Plant-Derived Essential Oils; Their Larvicidal Properties and Potential Application for Control of Mosquito-Borne Diseases

Mahmoud Osanloo1,2, Mohammad Mehdi Sedaghat3, Alireza Sanei-Dehkordi4, Amir Amani5,6

1 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
2 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
3 Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
4 Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
5 Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
6 Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.

Abstract

Mosquito-borne diseases are currently considered as important threats to human health in subtropical and tropical regions. Resistance to synthetic larvicides in different species of mosquitoes, as well as environmental pollution, are the most common adverse effects of excessive use of such agents. Plant-derived essential oils (EOs) with various chemical entities have a lower chance of developing resistance. So far, no proper classification based on lethal concentration at 50% (LC50) has been made for the larvicidal activity of EOs against different species of Aedes, Anopheles and Culex mosquitoes. To better understand the problem, a summary of the most common mosquito-borne diseases have been made. Related articles were gathered, and required information such as scientific name, used part(s) of plant, target species and LC50 values were extracted. 411 LC50 values were found about the larvicidal activity of EOs against different species of mosquitoes. Depending on the obtained results in each species, LC50 values were summarized as follows: 24 EOs with LC50 < 10 µg/mL, 149 EOs with LC50 in range of 10-50 µg/mL, 143 EOs having LC50 within 50-100 µg/mL and 95 EOs showing LC50 > 100 µg/mL. EOs of Callitris glaucophylla and Piper betle against Ae. aegypti, Tagetes minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus having LC50 of ~ 1 µg/mL were potentially comparable to synthetic larvicides. It appears that these plants could be considered as candidates for botanical larvicides. [GMJ.2019;8:e1532]

DOI:10.31661/gmj.v8i0.1532

Keywords: Volatile Oil; Pesticides; Aedes; Anopheles; Culex
Introduction

Arthropod-borne diseases are the cause of more than 17% of all human infectious diseases around the world [1]. Mosquitoes (Diptera: Culicidae) are an important family of Arthropoda phylum which is grouped into 39 genera with a total of over 3000 species [2, 3]. More than half the world’s population lives in areas where mosquito-borne diseases are common. Mosquito-borne diseases represent a critical threat for billions of people worldwide, e.g., more than 3.9 billion people in over 128 countries are at risk of dengue, with 96 million cases estimated per year. Malaria causes more than 400,000 deaths every year globally; the majority of them are children under five years of age [1, 4]. Three genera of mosquito which are very important in the transmission of human diseases include *Aedes* (Chikungunya, Dengue fever, Lymphatic filariasis, Rift Valley fever, Yellow fever, Zika), *Anopheles* (Malaria, Lymphatic filariasis) and *Culex* (Japanese encephalitis, Lymphatic filariasis, West Nile fever) [1, 5]. All mosquitoes have immature aquatic stages. Thus, larviciding could be an efficient method to reduce the population of mosquitoes and prevent the transmission of such diseases [6-8]. Larvicides reduce their population in breeding places, where they are concentrated, immobilized and accessible before they emerge into adults [9, 10]. Larviciding is usually performed by applying synthetic larvicides such as organophosphates (e.g., temephos, fenthion, and malathion) or using an insect growth regulator (IGRs) such as methoprene [11, 12]. However, indiscriminate use of these agents affects the population of their natural enemies (such as *Gambusia* fish) and causes resistance in different species of mosquitoes [10, 13]. Additionally, synthetic insecticides are usually based on a single active ingredient. Thus, resistance against them is more probable compared with botanical insecticides having multiple components [14-16]. Developing resistance against insecticides also has been linked to their tendency to remain in the environment for a long time. During this period, larva starts to produce detoxifying enzymes or change their enzymes’ structure. Thus, resistance against the larvicides may be expected [17, 18]. Moreover, synthetic insecticides leave toxic residues in the environment and make safety concerns [13, 19]. In this regards, identification of active and eco-friendly bio-pesticides is crucial for successful management of mosquito-borne diseases. Essential oils (EOs) have been suggested as alternative sources for control of insects as selective and biodegradable agents with minimal impacts on non-target organisms and environment [13, 20]. EOs are complex mixtures of volatile organic compounds which are produced as secondary metabolites in plants [21]. They are obtained from hydrodistillation or steam distillation of plant entities such as flowers, roots, barks, leaves, seeds, peels, fruits, and woods [22]. EO-based pesticides consist of a combination of molecules which can act concerted on both behavioral and physiological processes. Thus, there is very little chance of resistance development among the treated mosquitoes [10, 21, 23]. Generally, EOs have different larvicidal activity (LA) against various species of mosquitoes. The most critical factor in developing EO-based larvicides is their potency in terms of their LAs. Currently, there is a single review paper, which has gathered LA of 122 plants against mosquitoes. However, the authors have not separated the LA-based on the mosquito species [24]. In this review we have given an update to the potential of herbal larvicides, gathering data for more than 400 LC50 values of EOs. EOs have been arranged based on their LC50 against each species to provide a better understanding and comprehensive knowledge about their larvicide potential.

Common Mosquito-Borne Diseases

In Table-1, profiles of the most common mosquito-borne diseases (including vectors, pathogenic agent, common hosts in vertebrate and distribution) have been summarized. Malaria, Yellow Fever, Dengue Fever, Zika, Chikungunya, West Nile, and Japanese encephalitis accounted for almost 0.7 million deaths around the world, annually [1].

Categorizing LA of EOs Against Different Species

Tables-2 to 9 brief 411 LC50 values on LA of different EOs against different species of mos-
Table 1. Profiles of the Most Common Mosquito-Borne Diseases

Disease	Vectors	Caused by	Vertebrate Hosts	Distribution
Malaria	*An. atroparvus*, *An. labranchiae*, *An. messeae*, *An. sacharovi*, *An. sergentii*, *An. superpictus Grassi*, *An. arabiensis*, *An. funestus*, *An. gambiae*, *An. melas*, *An. merus*, *An. moucheti*, *An. nili*, *An. barbirostris*, *An. lesteri*, *An. sinensis*, *An. aconitus*, *An. annularis*, *An. balabacensis*, *An. culicifacies*, *An. dirus*, *An. farauti*, *An. flavirostris*, *An. flaviatilis*, *An. koliensis*, *An. leucosphyrus*, *An. maculatus*, *An. minimus*, *An. punctulatus*, *An. stephensi*, *An. subpictus*, *An. sundaicus.*	Protozoan parasite; Plasmodium	Reptiles, birds, rodents, Primates and humans.	Endemic throughout most of the tropics. Ninety-five countries and territories have ongoing transmission
Yellow Fever	*Ae. aegypti*, *Ae. africanus*, *Ae. anomethea*, *Ae. albopictus*, *Ae. furcifer*, *Ae. luteocephalus*, *Ae. metallicus*, *Ae. bromeliae*, *Ae. serratus.*	Virus of the family Flaviviridae; genus Flavivirus.	Primates	Ghana, Guinea, Nigeria, Ethiopia, Liberia, Gambia, Mali, Senegal, Sudan, Togo, Uganda, Congo, Chad, Angola, Brazil, Colombia and Peru, Paraguay, Argentina, Philippines, Thailand, China, Malaysia, Japan, Pakistan, Taiwan, India, Sri Lanka, Burma, Malay Peninsula, Cambodia, Vietnam, Indonesia, India, Australia, Brazil, Venezuela, Mexico, Bolivia, Argentina, USA
Dengue Fever	*Ae. aegypti*, *Ae. albopictus*, *Ae. polynesiensis*, *Ae. scutellaris.*	Virus of the family Flaviviridae; genus Flavivirus.	Primates	Brazil, Colombia, Venezuela, Puerto Rico, Martinique, Honduras, Guadeloupe, El Salvador, French Guiana, Guinea, Bissau, Angola, Cabo Verde, Thailand, Vietnam, Singapore
Zika	*Ae. africanus*, *Ae. luteocephalus*, *Ae. aegypti*, *Ae. albopictus*, *Ae. furcifer*, *Ae. vitatus.*	The virus of the family Flaviviridae; genus Flavivirus.	Primates	
Japanese Encephalitis [33]

West Nile [32]

Chikungunya [30, 31]

Table 1. Profiles of the Most Common Mosquito-Borne Diseases

Disease	Vector(s)	Virus of the family	Species	Hosts
Benin, Burundi, Cameroon, Central African Republic, Comoros, Congo, Equatorial Guinea, Guinea, Kenya, Madagascar, Malawi, Mauritius, Mayotte, Nigeria, Senegal, South Africa, Sudan, Tanzania, Uganda, Zimbabwe, Cambodia, East Timor, India, Indonesia, Laos, Malaysia, Maldives, Myanmar, Pakistan, Philippines, Réunion, Seychelles, Singapore, Taiwan, Thailand and Vietnam.	Ae. albopictus, Ae. aegypti, Ae. henselli	Togaviridae; genus Alphavirus	Primates, birds, cattle, and rodents	
Australia, Bangladesh, Burma, Cambodia, China, Guam, India, Indonesia, Japan, Laos, Malaysia, Nepal, North Korea, Pakistan, Papua New Guinea, Philippines, Russia, Saipan, Singapore, South Korea, Sri Lanka, Taiwan, Thailand, Timor-Leste, Vietnam.	Ae. aegypti, Cx. pipiens, Cx. quinquefasciatus, Cx. australicus, Cx. globocoxitus, Cx. tarsalis, Cx. univittatus, Cx. annulirostris	Flaviviridae; genus Flavivirus	Birds, Horses, Other Mammals	
Cx. tritaeniorychynchus, Cx. annulirostris, Cx. vishnui, Cx. gelidus, Cx. sitiens, Cx. fuscocephela, An. subpictus, Ae. albopictus, Ae. japonicas	Virus of the family Flaviviridae; genus Flavivirus.			
Table 2. Larvicidal Activity of Essential Oils Against Aedes Aegypti

No.	Plant species	Used part(s)	LC$_{50}$ (µg/mL)	Ref No.	Plant species	Used part(s)	LC$_{50}$ (µg/mL)	Ref
1	Callitris glaucophylla	Unclear	0.69	[34]	Piper hostmanianum	Leaf	54.00	[64]
2	Piper betle	Leaf	0.72	[17]	Zanthoxylum armatum	Seed	54.00	[74]
3	Auxemama glazioviana	Heartwood	2.98	[35]	Croton sonderianus	Aerial parts	54.50	[56]
4	Mammea siamensis	Flower	5.90	[36]	Piper aduncum	Aerial parts	54.50	[75]
5	Cinnamomum rhynchophyllum	Leaf	6.00	[37]	Carum carvi	Unclear	54.62	[53]
6	Cinnamomum microphylum	Leaf	6.70	[37]	Syzygium lanceolatum	Leaf	55.11	[76]
7	Anacardium occidentale	Seed	9.10	[36]	Lippia sidoides	Leaf	56.00	[57]
8	Piper klotzschianum	Root	10.00	[38]	Mentha spicata	Leaf	56.08	[77]
9	Cinnamomum mollissimum	Leaf	10.20	[37]	Vitex negundo L	Unclear	56.13	[22]
10	Cananga odorata	Flower	10.40	[39]	Salvia officinalis	Seed	56.90	[42]
11	Cinnamomum impressicostatum	Leaf	10.70	[37]	Pinus kesiya	Leaf	57.00	[78]
12	Feronia limonia	Leaf	11.59	[40]	Lippia pedunculosa	Unclear	58.00	[18]
13	Citrus sinensis	Fruit	11.92	[14]	Apium graveolens	Leaf	59.32	[79]
14	Cinnamomum pubescen	Leaf	12.80	[37]	Dendropanax morbifera	Flower	62.32	[80]
15	Piper klotzschianum	Seed	13.27	[38]	Cordia leucomalloides	Leaf	63.10	[81]
16	Tagetes patula	Whole plant	13.57	[41]	Eugenia triquetrata	Aerial parts	64.80	[82]
17	Salvia elegans	Aerial parts	14.40	[42]	Swinglea glutinosa	Unclear	65.70	[46]
18	Citrus reticulata	Fruit	15.42	[43]	Tagetes lucida	Unclear	66.20	[46]
19	Apium graveolens	Seed	16.10	[44]	Boswellia ovalfoliata	Leaf	66.24	[83]
20	Chloroxylon swietenia	Leaf	16.50	[45]	Croton nepetaefolius	Aerial parts	66.40	[56]
21	Cymbopogon flexuosus	Unclear	17.10	[46]	Origanum scabrum	Leaf	67.13	[84]
22	Hiptis martiusii	Unclear	18.20	[47]	Acorus calamus	Root	67.20	[36]
23	Allium monanthum	Stem	19.38	[48]	Annona muricata	Seed	69.25	[36]
24	Lippia sidoides	Unclear	19.50	[47]	Syzygium aromaticum	Whole plant	77.00	[85]
25	Piper marginatum	Stem	19.90	[49]	Eugenia citriodora	Unclear	71.20	[46]

Continue in next Page
No.	Species	Part	Larvicidal Activity (%)	Compound Name	Part	Larvicidal Activity (%)
28	*Piper marginatum*	Inflorescence	19.90 [49]	*Knema globularia*	Seed	72.10 [36]
29	*Chloroxylon swietenia*	Stem	20.20 [50]	*Capraria biflor*	Leaf	73.39 [86]
30	*Citrus sinensis*	Unclear	20.60 [46]	*Stemona tuberosa*	Root	75.20 [36]
31	*Syzigium aromaticum*	Unclear	21.40 [47]	*Samanea saman*	Stem bark	79.20 [36]
32	*Cinnamomum sorcechnii*	Leaf	21.50 [37]	*Croton jacobinensis*	Leaf	79.30 [87]
33	*Ipomoea cairica*	Unclear	22.30 [51]	*Tagetes erecta*	Leaf Stem	79.78 [88]
34	*Piper marginatum*	Leaf	23.80 [49]	*Croton nepetaefolius*	Leaf	84.00 [57]
35	*Asarum heterotropoides*	Root	23.82 [52]	*Ocimum sanctum*	Aerial parts	85.11 [89]
36	*Zanthoxylum limonella*	Unclear	24.61 [53]	*Cunninghamia konishii*	Wood	85.70 [90]
37	*Psidium guajava*	Leaf	24.70 [54]	*Strychnos nux-vomica*	Seed	90.00 [36]
38	*Plectranthus mollis*	Whole plant	25.40 [55]	*Cunninghamia konishii*	Leaf	91.70 [90]
39	*Lippia sidoides*	Aerial parts	25.50 [56]	*Syzygium aromaticum*	Bud	92.56 [91]
40	*Phyllanthus pulcher*	Leaf & twig	25.80 [36]	*Syzygium aromaticum*	Bud	93.56 [14]
41	*Croton zehntneri*	Aerial parts	26.20 [56]	*Abautilon indicum*	Root	94.20 [36]
42	*Anethum graveolens*	Leaf	27.40 [36]	*Croton argyrophyloides	Aerial parts	94.60 [56]
43	*Croton zehntneri*	Leaf	28.00 [57]	*Eucalyptus urophylla*	Leaf	95.50 [59]
44	*Cryptomeria japonica*	Leaf	28.40 [58]	*Cordia curassavica*	Leaf	97.70 [81]
45	*Salvia leucantha*	Aerial parts	29.50 [42]	*Costus speciosus*	Root	98.50 [36]
46	*Citrus hystrix*	Fruit	30.07 [43]	*Guarea scabra*	Leaf	98.60 [72]
47	*Kaempferia galanga*	Root	30.70 [36]	*Nigella sativa L*	Seed	99.90 [92]
48	*Eucalyptus camaldulensis*	Leaf	31.00 [59]	*Pinus sylvestris*	Needles	100.39 [91]
49	*Curcuma zedoaria*	Unclear	31.87 [53]	*Croton argyrophyloides	Leaf	102.00 [57]
50	*Eucalyptus grandis*	Leaf	32.40 [60]	*Croton sonderianus*	Leaf	104.00 [57]
51	*Youngia japonica*	Aerial parts	32.45 [61]	*Kadsura heteroclit*	Leaf	111.79 [93]
52	*Chenopodium ambrosioides*	Aerial parts	35.00 [62]	*Lantana montevindensis	Leaf	117.00 [68]
53	*Murraya exotica*	Leaf	35.80 [63]	*Guarea silvatica*	Leaf	117.80 [72]

Continue in next Page
No.	Species	Part	Larvicidal Activity	Species	Part	Larvicidal Activity			
55	*Piper permucronatum*	Leaf	36.00 [64]	*Piper gaudichaudianum*	Leaf	121.00 [64]			
56	*Curcuma aromatica*	Rhizome	36.30 [65]	*Croton rhamnifoliioides*	Leaf	122.35 [94]			
57	*Clausena excavata*	Leaf	37.10 [66]	*Cymbopogon citratus*	Unclear	123.30 [46]			
58	*Chamaecyparis formosensis*	Heartwood	38.60 [67]	*Syzygium aromaticum*	Flower	124.69 [43]			
59	*Spondias purpurea*	Leaf	39.70 [54]	*Echinophora lamondiana*	Leaf	138.30 [95]			
60	*Clausena excavata*	Twig	40.10 [66]	*Sphaeranthus indicus Linn*	Leaf	140.00 [6]			
61	*Cinnamomum sintoc*	Leaf	41.10 [37]	*Guarea convergens*	Branch	145.10 [72]			
62	*Apium graveolens*	Unclear	42.07 [53]	*Croton tetradenius*	Leaf	152.00 [96]			
63	*Lippia alba*	Unclear	42.20 [46]	*Piper humaytanum*	Leaf	156.00 [64]			
64	*Lantana camara*	Leaf	42.30 [68]	*Cinnamomum cordatum*	Leaf	183.60 [37]			
65	*Cinnamomum porrectum*	Wood	43.50 [36]	*Myrica ovata*	Leaf	192.10 [54]			
66	*Zingiber nimmonii*	Rhizome	44.46 [12]	*Eugenia piauhiensis*	Leaf	230.00 [97]			
67	*Blumea eriantha*	Leaf	44.82 [69]	*Siparuna camporum*	Leaf	251.00 [97]			
68	*Zingiber cernuum*	Rhizome	44.88 [21]	*Guarea silvatica*	Branch	273.60 [72]			
69	*Mentha x villosa*	Leaf	45.00 [70]	*Lippia gracilis*	Unclear	282.00 [97]			
70	*Artemisia absinthium*	Leaf	46.33 [71]	*Piper aduncum*	Leaf	289.9 [98]			
71	*Lavandula gibsoni*	Whole plant	48.30 [55]	*Psidium myrsinites*	Leaf	292.00 [97]			
72	*Guarea humaitensis*	Branch	48.60 [72]	*Croton argyrophyllus*	Leaf	310.00 [99]			
73	*Zingiber zerumbet*	Rhizome	48.88 [43]	*Mentha piperita L*	Leaf	367.60 [100]			
74	*Foeniculum vulgare*	Unclear	49.32 [53]	*Echinophora lamondiana*	Flower	>125 [95]			
75	*Plectranthus amboinicus*	Leaf	51.80 [54]	*Echinophora lamondiana*	Stem	>125 [95]			
76	*Eucalyptus nitens*	Leaf	52.83 [73]	*Salvia apiana*	Seed	>125 [42]			
77	*Cananga odorata*	Unclear	52.90 [46]	*Myrica erythroxylon*	Leaf	>1000 [97]			
78	*Lippia origanoides*	Unclear	53.30 [46]	*Xylopia frutescens*	Unclear	>1000 [18]			
79	*Kaempferia galanga*	Rhizome	53.64 [43]	*Xylopia laevigata*	Unclear	>1000 [18]			
No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref	No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref
-----	-----------------------	--------------	--------------	-----	-----	-----------------------	--------------	--------------	-----
1	Echinops grijsii	Root	2.65	[13]	32	Artemisia absinthium	Leaf	57.57	[71]
2	Cinnamomum microphyllum	Leaf	6.20	[37]	33	Cupressus arizonica	Leaf	64.80	[107]
3	Cinnamomum pubescen	Leaf	7.90	[37]	34	Syzygium lanceolatum	Leaf	66.71	[76]
4	Tetradium glabrifolium	Fruit	8.20	[101]	35	Pinus brutia	Aerial parts	67.04	[110]
5	Cinnamomum mollissimum	Leaf	8.80	[37]	36	Coleus aromaticus	Leaf	67.98	[111]
6	Cinnamomum impressicostatum	Leaf	9.30	[37]	37	Toddalia asiatica	Root	69.09	[112]
7	Cinnamomum rhyncophyllum	Leaf	11.80	[37]	38	Pinus halepensis	Aerial parts	70.21	[110]
8	Ocimum basilicum	Leaf	11.97	[102]	39	Tetraclinis articulata	Leaf	70.60	[107]
9	Saussurea lappa	Root	12.41	[103]	40	Allium macrostemon	Bulb	72.86	[113]
10	Cinnamomum scortechinii	Leaf	16.70	[37]	41	Pinus stankewiczii	Aerial parts	81.66	[110]
11	Allium tuberosum	Root	18.00	[104]	42	Plectranthus barbatus	Leaf	87.25	[11]
12	Ocimum gratissimum	Leaf	26.10	[10]	43	Boswellia ovalifoliolata	Leaf	89.80	[83]
13	Eucalyptus nitens	Leaf	28.19	[73]	44	Syzygium zeylanicum	Leaf	90.45	[114]
14	Ruta chalepensis	Leaf	33.18	[105]	45	Pinus strobus	Aerial parts	127.98	[110]
15	Eugenia uniflora	Leaf	33.50	[106]	46	Foeniculum vulgare	Leaf	142.90	[115]
16	Chamaecyparis formosensis	Heartwood	34.90	[67]	47	Pinus nigra	Aerial parts	152.65	[110]
17	Cinnamomum sintoc	Leaf	36.50	[37]	48	Cinnamomum cordatum	Leaf	160.80	[37]
18	Cupressus benthamii	Leaf	37.50	[107]	49	Helichrysum italicum	Leaf	178.10	[115]
19	Heracleum sprengelianum	Leaf	37.50	[108]	50	Cunninghamia konishii	Wood	189.50	[90]
20	Cinnamomum osmophloeum	Leaf	40.80	[109]	51	Cunninghamia konishii	Leaf	194.40	[90]
21	Clausena excavata	Twig	41.10	[66]	52	Achillea millefolium	Leaf	211.30	[115]
22	Clausena excavata	Leaf	41.20	[66]	53	Hyptis suaveolens	Leaf	240.30	[116]
23	Chamaecyparis lawsoniana	Leaf	47.90	[107]	54	Eucalyptus urophylla	Leaf	285.80	[59]

Table 3. Larvicidal Activity of Essential Oils Against *Aedes albopictus*
Table 3. Larvicidal Activity of Essential Oils Against *Aedes albopictus*

No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref	No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref
24	Cryptomeria japonica	Leaf	51.20	[58]	55	Coriandrum sativum	Fruit	421.00	[117]
25	Cupressus macrocarpa	Leaf	54.60	[107]	56	Pinus canariensis	Aerial parts	>>200	[110]
26	Cupressus sempervirens	Leaf	54.70	[107]	57	Pinus pinaster	Aerial parts	>>200	[110]
27	Eucalyptus camaldulensis	Leaf	55.30	[59]	58	Lavandula angustifolia	Leaf	>250	[115]
28	Juniperus phoenicea	Leaf	55.50	[107]	59	Myrtus communis	Leaf	>250	[115]
29	Zingiber cernua	Rhizome	55.84	[21]	60	Rosmarinus officinalis	Leaf	>250	[115]
30	Blumea eriantha	Leaf	56.33	[69]	61	Artemisia absinthium	Leaf	57.57	[71]
31	Cupressus torulosa	Leaf	57.10	[107]	62	Cupressus arizonica	Leaf	64.80	[107]

Table 4. Larvicidal Activity of Essential Oils Against *Anopheles stephensi*

No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref	No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref
1	Kelussia odoratissima	Aerial parts	4.77	[118]	30	Murraya exotica	Leaf	56.30	[63]
2	Kelussia odoratissima	Aerial parts	4.88	[119]	31	Syzigium aromaticum	Unclear	57.49	[129]
3	Artemisia dracunculus	Aerial parts	11.36	[8]	32	Zanthoxylum armatum	Seed	58.00	[74]
4	Platycladus orientalis	Leaf	11.67	[120]	33	Zhumeria majdae	Leaf	61.34	[130]
5	Tagetes patula	Foliage	12.08	[41]	34	Origanum scabrum	Leaf	61.65	[84]
6	Ferulago carshochorum	Aerial parts	12.78	[121]	35	Boswellia ovalifoliata	Leaf	61.84	[83]
7	Chloroxylon swietenia	Leaf	14.90	[50]	36	Lavandula gibsoni	Aerial parts	62.80	[55]
8	Ipomoea cairica	Unclear	14.90	[51]	37	Origanum vulgare	Leaf	67.00	[4]
9	Feronia limonia	Leaf	15.03	[40]	38	Lawsonia inermis	Leaf	69.40	[131]
10	Chloroxylon swietenia	Stem	19.00	[50]	39	Cionura erecta	Root	77.30	[132]
11	Foeniculum vulgare	Seed	20.10	[122]	40	Cupressus arizonica	Leaf	79.30	[133]
12	Satureja bachtariarica	Aerial parts	24.27	[123]	41	Trachyspermum ammi	Seed	80.77	[134]
13	Bunium persicum	Seed	27.72	[2]	42	Eucalyptus camaldulensis	Leaf	89.85	[135]
14	Plectranthus amboinicus	Leaf	28.37	[124]	43	Coccinia indica	Leaf	95.30	[136]

Continue in next Page
Table 4. Larvicidal Activity of Essential Oils Against Anopheles stephensi

No	Plant species	Used part(s)	LC$_{50}$ (µg/mL)	Ref
15	*Citrus aurantium* Fruit	31.20	44 *Kadsura heteroclitia* Leaf 102.86 [93]	
16	*Plectranthus mollis* Aerial parts	33.50	45 *Stachys hyzantina* Leaf 103.29 [131]	
17	*Achillea kellalensis* Flower	35.42	46 *Heracleum persicum* Seed 104.80 [122]	
18	*Citrus paradisi* Fruit	35.71	47 *Ajuga chamaecistus tomentella* Aerial parts 117.72 [137]	
19	*Anethum graveolens* Aerial parts	38.80	48 *Coriandrum sativum* Seed 120.95 [122]	
20	*Achillea wilhelmsii* Leaf	39.04	49 *Cedrus deodora* Leaf 128.04 [131]	
21	*Zingiber nimmonii* Rhizome	41.19	50 *Stachys setifera* Leaf 181.62 [131]	
22	*Zingiber cernuum* Rhizome	41.34	51 *Thymus vulgaris* Leaf 191.33 [131]	
23	*Blumea eriantha* Leaf	41.61	52 *Stachys inflata* Leaf 195.84 [131]	

Table 5. Larvicidal Activity of Essential Oils Against Anopheles subpictus

No	Plant species	Used part(s)	LC$_{50}$ (µg/mL)	Ref
1	*Ocimum basilicum* Leaf	9.75	[102]	
2	*Eugenia uniflora* Leaf	31.08	[106]	
3	*Heracleum sprengelianum* Leaf	33.40	[108]	
4	*Blumea eriantha* Leaf	51.21	[69]	
5	*Zingiber cernuum* Rhizome	51.42	[21]	
6	*Artemisia absinthium* Leaf	52.02	[71]	
7	*Zingiber officinale* Rhizome	57.98	[140]	
8	*Coles aromaticus* Leaf	60.31	[111]	
9	*Zhumeria majdae* Leaf	61.34	[130]	
10	*Rosmarinus officinalis* Shoot	64.50	[140]	
11	*Cinnamomum zeylanicum* Leaf	71.96	[140]	
12	*Origanum vulgare* Leaf	74.14	[4]	
13	*Cymbopogon citrates* Leaf	77.24	[140]	
14	*Boswellia ovalifoliolata* Leaf	82.26	[83]	
15	*Syzygium zeylanicum* Leaf	83.11	[114]	
16	*Plectranthus barbatus* Leaf	84.20	[11]	
Table 6. Larvicidal Activity of Essential Oils Against Other Species of Anopheles

Plant species	Used part(s)	Target	LC50 (µg/mL)	Ref
Salvia leucantha	Aerial parts	An. quadrimaculatus	6.20	[42]
Salvia elegans	Aerial parts	An. quadrimaculatus	10.90	[42]
Salvia officinalis	Seed	An. quadrimaculatus	14.10	[42]
Ruta chalepensis	Aerial parts	An. quadrimaculatus	14.90	[141]
Echinophora lamondiana	Leaf	An. quadrimaculatus	26.20	[95]
Echinophora lamondiana	Flower	An. quadrimaculatus	46.90	[95]
Echinophora lamondiana	Stem	An. quadrimaculatus	65.60	[95]
Salvia apiana	Seed	An. quadrimaculatus	>125	[42]
Togeites minuta	Unclear	An. gambiae	<1.50	[142]
Piper capense	Unclear	An. gambiae	34.90	[143]
Cinnamomum osmophloeum	Leaf	An. gambiae	35.36	[144]
Plectranthus amboinicus	Leaf	An. gambiae	55.20	[145]
Blumea martiniana	Aerial parts	An. anthropophagus	46.86	[146]
Artemisia gilvescens	Unclear	An. anthropophagus	49.95	[147]
Cananga odorata	Flower	An. dirus	<1	[39]
Echinops grisiis	Root	An. sinensis	3.43	[13]
Juniperus procera	Unclear	An. arabiensis	14.42	[148]
Piper aduncum	Aerial parts	An. marajoora	50.90	[75]

anum have similar LC50 values (∼ 32 µg/mL). LC50 of other EOs are > 50 µg/mL. Table-6 summarizes information about LA of some EOs against other species of Anopheles such as An. quadrimaculatus, An. gambiae, An. anthropophagus, An. dirus, An. sinensis, An. arabiensis, and An. marajoara. Two EOs show excellent LA (i.e., LC50 ~1 µg/mL): T. minuta and Cananga odorata against An. gambiae and An. dirus, respectively. LC50 of two other EOs are also worthy to note: Salvia leucantha (6.20 µg/mL) against An. quadrimaculatus and Echinops grisiis (3.43 µg/mL) against An. sinensis. Among 66 reports on LA of EOs against Cx. quinquefasciatus (Table-7), EO of Cananga odorata demonstrates to be the best result with LC50 of below 1 µg/mL. After that, LC50 of 20 EOs are in the range of 10-50 µg/mL, and LC50 of 20 EOs are between 50-100 µg/mL. LC50 of 44 EOs are higher than 50 µg/mL. From Table-8, which summarizes LA of some EOs against Cx. pипiens, EOs of K. odoratissima, Echinops grisiis and Pelargonium roseum show to have LC50 at 2.69, 3.43 and 5.49 µg/mL, respectively. They are the most potent EOs against Cx. pипiens. Among other EOs, 8 EOs have LC50 between 10-50 and others have LC50 higher than 50 µg/mL. From Table-9, which briefs the larvicidal activity of different EOs on Cx. tritaeniorhynchus. None of the EOs have LC50 below 10 µg/mL. However, EOs of Ocimum basilicum and Ipomoea cairica with LC50 ~ 14 can be considered as effective against Cx. tritaeniorhynchus. While LC50 of other EOs is in range of 36-136 µg/mL.

Potent EOs in Terms of LA

Reviewing Tables-2 to 9, some EOs demonstrate proper LA against at least two species, thus, may be suggested as attractive candidates for preparing EO-based larvicides (Table-10). For instance, LC50 of Echinops grisiis is ∼ 3 µg/mL against three species: Cx. pипiens, An. sinensis and Ae. aegypti. EO of Cananga odorata is another candidate with LC50 ~ 1 µg/mL against Cx. quinquefasciatus and An. dirus and LC50 of 10 µg/mL against Ae. aegypti. EO of K. odoratissima with LC50 of 2 and 4 µg/mL...
No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref	No.	Plant species	Used part(s)	LC₅₀ (µg/mL)	Ref	
1	Cananga odorata	Flower	<1	[39]	34	Boswellia ovalifoliolata	Leaf	72.47	[83]	
2	Mentha longifolia	Unclear	17.00	[149]	35	Pimenta dioica	Fruit & berry	77.20	[153]	
3	Mentha suaveolens	Unclear	17.00	[149]	36	Origanum vulgare	Leaf	80.35	[4]	
4	Achillea kesselensis	Flower	21.79	[126]	37	Peumus boldus	Leaf	82.14	[157]	
5	Tagetes patula	Foliage	22.33	[41]	38	Zhumeria majdae	Leaf	88.51	[130]	
6	Feronia limonia	Leaf	22.49	[40]	39	Mentha spicata	Unclear	92.00	[149]	
7	Satureja montana	Aerial parts	25.60	[150]	40	Pelargonium graveolens	Aerial parts	98.40	[150]	
8	Pimpinella anisum	Fruit	26.10	[151]	41	Hyssopus officinalis	Aerial parts	99.50	[150]	
9	Tanacetum persicum	Aerial parts	28.53	[126]	42	Ravensara aromatica	Leaf	101.40	[153]	
10	Plectranthus mollis	Whole plant	29.50	[55]	43	Anthemis nobilis	Flower	108.70	[153]	
11	Rosmarinus officinalis	Stem & Leaf	30.60	[152]	44	Rosmarinus officinali	Flowering herb	111.10	[153]	
12	Thymus vulgar	Flowering top	32.90	[153]	45	Nepeta cataria	Flowering top	112.40	[153]	
13	Satureja hortensis	Flowering top	36.10	[153]	46	Mentha aquatica	Unclear	118.00	[149]	
14	Murraya exotica	Leaf	43.20	[63]	47	Lavandula angustifolia	Flower	121.60	[153]	
15	Thymus satureoides Boiss	Herb	43.60	[153]	48	Kadsura heteroclitica	Leaf	121.97	[93]	
16	Satureja bachitica	Aerial parts	44.96	[123]	49	Syzygium aromaticum	Buds	124.42	[91]	
17	Zingiber nimmonii	Rhizome	48.26	[12]	50	Cannabis sativa	Herb	127.30	[153]	
18	Zingiber cernuum	Rhizome	48.44	[21]	51	Salvia sclarea	Flower	127.50	[153]	
19	Blumea eriantha	Leaf	48.92	[69]	52	Pinus sylvestris	Needles	128.00	[91]	
20	Zanthoxylum armatum	Seed	49.00	[74]	53	Sphaeranthus indicus	Leaf	130.00	[6]	
21	Pinus nigra	Twig	49.80	[150]	54	Pelargonium roseum	Leaf	130.30	[153]	
22	Artemisia absinthium	Unclear	50.57	[71]	55	Nigella sativa	Seed	141.70	[92]	

Continue in next Page
Continue of Table 7. Larvicidal Activity of Essential Oils Against Culex quinquefasciatus

Plant species	Used part(s)	LC50 (µg/mL)	Ref
Kelussia odoratissima	Aerial parts	2.69	[119]
Echinops grijsii	Root	3.43	[13]
Pelargonium roseum	Leaf	5.49	[158]
Platycladus orientalis	Leaf	18.60	[2]
Bunium persicum	Seed	20.61	[2]
Asarum heterotropoides	Root	21.07	[52]
Thymus teucrioides	Aerial parts	23.17	[159]
Citrus limon	Lemon	30.14	[160]
Thymus leucospermus	Aerial parts	34.26	[159]
Citrus aurantium	Bitter orange	39.81	[160]
Oenanthe pimpinelloides	Aerial parts	40.26	[161]
Citrus sinensis	Sweet orange	51.50	[160]
Geranium maculatum	Unclear	57.28	[162]
Bupleurum fruticosum	Aerial parts	64.68	[161]
Conopodium capillifolium	Aerial parts	68.50	[161]
Hypericum sphyndylium	Aerial parts	77.41	[161]
Citrus bergamia	Unclear	85.74	[162]
Seseli montanum	Aerial parts	86.60	[161]
Eleoselinum asclepium	Aerial parts	96.96	[161]
Hypericum tomentosum from Tharka	Aerial parts	102.82	[163]
Hypericum tomentosum from Fernana	Aerial parts	125.26	[163]
Hypericum humilfusum	Aerial parts	156.80	[163]
Hypericum perforatum	Aerial parts	194.70	[163]

Table 8. Larvicidal Activity of Essential Oils Against Culex pipiens

Plant species	Used part(s)	LC50 (µg/mL)	Ref
Kelussia odoratissima	Aerial parts	2.69	[119]
Echinops grijsii	Root	3.43	[13]
Pelargonium roseum	Leaf	5.49	[158]
Platycladus orientalis	Leaf	18.60	[2]
Bunium persicum	Seed	20.61	[2]
Thymus leucospermus	Root	21.07	[52]
Asarum heterotropoides	Aerial parts	23.17	[159]
Citrus limon	Lemon	30.14	[160]
Oenanthe pimpinelloides	Aerial parts	40.26	[161]
Citrus sinensis	Sweet orange	51.50	[160]
Geranium maculatum	Unclear	57.28	[162]
Conopodium capillifolium	Aerial parts	68.50	[161]
Eoselinum asclepium	Aerial parts	96.96	[161]
Hypericum tomentosum from Tharka	Aerial parts	102.82	[163]
Hypericum tomentosum from Fernana	Aerial parts	125.26	[163]
Hypericum humilfusum	Aerial parts	156.80	[163]
Hypericum perforatum	Aerial parts	194.70	[163]
Table 9. Larvicidal Activity of Essential Oils Against Culex tritaeniorhynchus

Plant species	Used part (s)	LC₅₀ (µg/mL)	Ref
Ocimum basilicum	Leaf	14.01	[102]
Ipomoea cairica	Unclear	14.80	[51]
Eugenia uniflora	Leaf	36.35	[106]
Heracleum sprengelianum	Leaf	40.90	[108]
Zingiber cernuum	Rhizome	60.20	[21]
Blumea eriantha	Leaf	61.33	[69]
Artemisia absinthium	Unclear	62.16	[71]
Syzygium lanceolatum	Leaf	72.24	[76]
Coleus aromaticus	Leaf	72.70	[111]
Origanum scabrum	Leaf	78.87	[84]
Origanum vulgare	Leaf	84.93	[4]
Plectranthus barbatus	Unclear	94.34	[11]
Boswellia ovalifoliolata	Leaf	97.95	[83]
Syzygium zeylanicum	Leaf	97.96	[114]
Zingiber officinalis	Rhizome	98.83	[140]
Rosmarinus officinalis	Shoot	115.38	[140]
Cinnamomum zeylanicum	Bark	124.70	[140]
Cymbopogan citrates	Leaf	136.58	[140]

mL against Cx. pipiens and An. stephensi respectively, could also be considered as a potent larvicide. Besides mentioned EOs, the LA of 4 EOs is comparable with classic larvicide (i.e., ~ 1 µg/mL). LC₅₀ of Callitris glaucophylla and Piper betle against Ae. aegypti are 0.69 and 0.72 µg/mL, respectively. Cananga odorata show LC₅₀ < 1 µg/mL against both of Cx. quinquefasciatus and An. Dirus. EO of T. minuta has excellent LA against An. gambiae (LC₅₀ < 1.5 µg/mL).

Advantages of EOs as Larvicides

To control mosquito-borne diseases such as malaria, world health organization (WHO) recommends using larvicides; nowadays using in 55 countries around the worlds [164]. Continuous use of synthetic larvicides such as malathion and temephos along with environmental pollution, lead to occurring resistance in a various population of mosquitos such as Ae. aegypti, Cx. pipiens and An. stephensi [165-168]. Furthermore, many reports may be found about the impacts of the larvicides against non-target species. For instance, dichlorvos and tetraethyl pyrophosphate (belonging to organophosphates larvicides) and carbofuran (carbamates) have an effect on acetylcholinesterase in some species of fishes including Arapaima gigas, Rachycentron canadum, Oreochromis niloticus, and Electrophorus electricus [169]. In another study, sides effects of 2 other larvicides including Temephos and Novaluron against 10 species of aquatic insect families and copepods have been evaluated. It was revealed that their impact on Velidae, Odonata, Dytiscidae are significantly higher than that of other [170]. Oudemans (Amblyseius cucumeris) is a crucial predator of mites of tetranychid while two other common pesticides, i.e., Bifenthrin and Malathion posed an extremely effect on this beneficial non-target arthropod [171]. EOs are naturally extracted aroma compounds with broad applications such as flavoring additives, medicines, antioxidants, antifungal/bacterial and also larvicides [172-177]. In the past decade, EO based formulation have been suggested as alternative sources for control of mosquitoes to be used as larvicides [8, 127]. They offer advantages such as biodegradability, negligible effects on non-target specious
Table 10. Potent Essential Oils as Larvicide Against at Least 2 Species of Mosquitoes

Plant species	Target	LC$_{50}$ (µg/mL)	Ref
Ocimum basilicum	Cx. tritaeniorhynchus	14.01	[102]
	An. subpictus	9.75	
	Cx. pipiens	2.69	[118,119]
Kelussia odoratissima	An. stephensi	4.77	
	An. stephensi	4.88	
	Cx. pipiens	3.43	
Echinops grijsii	An. sinensis	3.43	[13]
	Ae. albopictus	2.65	
Cananga odorata	Cx. quinquefasciatus	<1	[39]
	An. dirus	<1	
	Ae. aegypti	10.40	
Cinnamomum microphyllum	Ae. albopictus	6.20	[37]
	Ae. aegypti	10.70	
Cinnamomum pubescen	Ae. albopictus	7.90	[37]
	Ae. aegypti	10.20	
Cinnamomum impressicostatum	Ae. albopictus	9.30	[37]
	Ae. aegypti	10.70	
Cinnamomum rhyncophyllum	Ae. albopictus	11.80	[37]
	Ae. aegypti	6.00	

and environment [101, 178]. Besides, resistance against larvicides is observed when a single active agent is used compared with those having multi-components, thus by using EOs, decreases the risk of occurring resistance in mosquito populations [14-16]. EOs are mixtures of many constituents such as flavonoids, alkaloids, and monoterpenes [179, 180]. Modes of action of mentioned constituents are different, for instance, main sites action of alkaloids and monoterpenes are Na-K-ATPase or Na$^+$ and K$^+$ channels [19, 181, 182], while flavonoids target acetylcholinesterase [183]. Synergistic effects of constituents of some EOs are nowadays well-known when they are used as anti-fungal or anti-bacterial agents [184, 185]. Types of synergism also reported in larvicidal studies, e.g., larvicidal activities (LC$_{50}$) of EOs of Syzygium aromaticum and K. odoratissima (57.49 and 4.77 µg/mL, respectively) significantly better than their major constituents, i.e., Eugenol (86.96 µg/mL) and Z-ligustilide (8.73 µg/mL) against An. stephensi [118, 129].

Conclusion

In this paper, mosquito-borne diseases have been reviewed. Previous studies about LA of EOs against different species of mosquitoes including Aedes, Anopheles, and Culex were investigated. For the first time, 411 LC$_{50}$ were ranked against each species, separately. LC$_{50}$ of 4 EOs are ~ 1µg/mL, including Calitris glaucophylla and Piper betle against Ae. aegypti, T. minuta against An. gambiae, and Cananga odorata against Cx. quinquefasciatus and An. dirus. The potency of mentioned EOs is comparable with synthetic larvicides, while simultaneously having some advantages such as reducing the chance of resistance and
minimum sides’ effects on non-target species. Thus, it could be considered as candidates for preparing botanical larvicides.

Acknowledgment

This study was supported by Tehran University of Medical Sciences & Health Services (grant No. 95-01-87-31860).

Conflict of Interest

There is no conflict of interest to the authors.

References

1. World Health Organization W.(2017) Fact sheet for Vector-borne diseases. Available from: http://www.who.int/mediacentre/factsheets/fs387/en/.
2. Sanei-Dehkordi A, Vatandoost H, Abaei MR, Davari B, Sedaghat MM. Chemical Composition and Larvicidal Activity of Bunium persicum Essential Oil Against Two Important Mosquitoes Vectors. J Essent Oil-Bear Plants.2016;19(2):349-357.
3. Reinert JF Revised list of abbreviations for genera and subgenera of Culicidae (Diptera) and notes on generic and subgeneric changes. J Am Mosq Control Assoc.2001;17(1):51-55.
4. Govindarajan M, Rajeswary M, Hoti SL, Benelli G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci.2016;104:77-82.
5. World Health Organization W.(2017) Mosquito-borne diseases. Available from: http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/.
6. Chellappandian M, Thanigavel A, Vasantha-Srinivasan P, Edwin ES, Ponsankar A, Selin-Rani S, et al. Toxicological effects of Sphaeranthus indicus Linn. (Asteraceae) leaf essential oil against human disease vectors, Culex quinquefasciatus Say and Aedes aegypti Linn., and impacts on a beneficial mosquito predator. Environ Sci Pollut Res Int.2017;25(11):10294-10306.
7. Gutierrez PM, Antepuesto AN, Eugenio BAL, Santos MFL. Larvicidal activity of selected plant extracts against the dengue vector Aedes aegypti mosquito. Int Res J Biol Sci.2014;3(4):23-32.
8. Osanloo M, Amani A, Sereshti H, Abai MR, Esmaeili F, Sedaghat MM. Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind Crops Prod.2017;109:214-219.
9. Soonwera M, Phasomkusolsil S.Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res.2016;115(4):1691-1703.
10. Sumitha KV, Thoppil JE. Larvicidal efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res.2016;115(2):673-680.
11. Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G. Eugenol, alpha-pinene and beta-caryophyllene from Plectranthus barbatus essential oil as eco-friendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res.2016;115(2):807-815.
12. Govindarajan M, Rajeswary M, Arivoli S, Tennyson S, Benelli G. Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue, and lymphatic filariasis mosquito vectors? Parasitol Res.2016;115(5):1807-1816.
13. Zhao MP, Liu QZ, Liu Q, Liu ZL (2017) Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the Three Species of Mosquitoes. Molecules.2017;22(2):205.
14. Araujo AF, Ribeiro-Paes JT, Deus JT, Cavalcante SC, Nunes Rde S, Alves PB, et al. Larvicidal activity of Syzygium aromaticum (L.) Merr and Citrus sinensis (L.) Osbeck essential oils and their antagonistic effects with temephos in resistant populations of Aedes aegypti. Mem Inst Oswaldo Cruz.2016;111(7):443-449.
15. Intirach J, Junkum A, Tuetun B, Choochote
Larvicidal Activity of Essential Oils

W, Chaithong U, Jitpakdi A, et al. Chemical constituents and combined larvicidal effects of selected essential oils against Anopheles cracens (Diptera: Culicidae). Psyche (Camb Mass). 2012; ID 591616.

16. Okumu FO, Knols BG, Fillinger U. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae. Malar J. 2007;6:63.

17. Vasantha-Srinivasan P, Senthil-Nathan S, Ponsankar A, Thanigaivel A, Edwin ES, Selin-Rani S, et al. Comparative analysis of mosquito (Diptera: Culicidae) responses to the insecticide Temephos and plant derived essential oil derived from Piper betle L. Ecotoxicol Environ Saf. 2017;139:439-446.

18. Nascimento AM, Maia TD, Soares TE, Menezes LR, Scher R, Costa EV, et al. Repellency and Larvicidal Activity of Essential oils from Xylopia laevigata, Xylopia frutescens, Lippia pedunculosa, and Their Individual Compounds against Aedes aegypti Liston. Neotrop Entomol. 2017;46(2):223-230.

19. Isman MB. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol. 2006;51:45-66.

20. Regnault-Roger C, Vincent C, Arnason JT. Essential oils in insect control: low-risk products in a high-stakes world. Annu Rev Entomol. 2012;57:405-424.

21. Rajeswary M, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G. Zingiber cernuum (Zingiberaceae) essential oil as effective larvicide and oviposition deterrent on six mosquito vectors, with little non-target toxicity on four aquatic mosquito predators. Environ Sci Pollut Res Int. 2017;25(11):10307-10316.

22. Balasubramani S, Rajendhiran T, Moola AK, Diana RKB. Development of nanoemulsion from Vetix negundo L. essential oil and their efficacy of antioxidant, antimicrobial and larvicidal activities (Aedes aegypti L.). Environ Sci Pollut Res Int. 2017;24(17):15125-15133.

23. Pavela R. Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytother Res. 2008;22(2):274-278.

24. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod. 2015;76:174-187.

25. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit vectors. 2012;5(1):69.

26. Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015 64:160-173.

27. Guzman A, Istrariz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010;36(S1):S40-S42.

28. Hills SL, Fischer M, Petersen LR. Epidemiology of Zika virus infection. J Infect Dis. 2017;216(S10):S868-S874.

29. Paixão ES, Barreto F, da Glória Teixeira M, da Conceição N, Costa M, Rodrigues LC. History, epidemiology, and clinical manifestations of Zika: a systematic review. Am J Public Health. 2016;106(4):606-612.

30. Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13):1231-1239.

31. Petersen LR, Powers AM. Chikungunya: epidemiology. F1000Research. 2016;5.

32. Ciota AT. West Nile virus and its vectors. Curr Opin Insect Sci. 2017;22:28-36.

33. Pearce JC, Learoyd TP, Langendorf BJ, Logan RG. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med. 2018;25(S1):S16-S26.

34. Shaalan EA-S, Canyon DV, Bowden B, Younes MWF, Abdel-Wahab H, Mansour A-H. Efficacy of botanical extracts from Callitris glaucophylla against Aedes aegypti and Culex annulirostris mosquitoes. Trop Biomed. 2006;23(2):180-185.

35. Costa FG, Pessoa OD, Menezes EA, Santiago GM, Lemos TL. Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub.(Boraginaceae). Flavour Fragrance J. 2004;19(6):529-532.

36. Promsiri S, Naksathit A, Kruatrachue M, Thavara U. Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci. 2006;13(3):179-188.

37. Jantan Ib, Yalvema MF, Ahmad NW, Jamal JA. Insecticidal Activities of the Leaf Oils of Eight Cinnamomum. species Against Aedes aegypti. and Aedes albopictus. Pharm Biol. 2005;43(6):526-532.

38. do Nascimento JC, David JM, Barbosa LC, de Paula VF, Demuner AJ, David JP, et al. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC.(Piperaceae).
39. Soonwera M (2015) Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say). Parasitol Res. 2012;114(12):4531-4543.

40. Senthilkumar A, Jayaraman M, Venkatesalu V. Chemical constituents and larvicidal potential of Feronia limonia leaf essential oil against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Parasitol Res. 2013;112(3):1337-1342.

41. Dharmagadda VS, Naik SN, Mittal PK, Vasudevan P. Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol. 2005;96(11):1235-1240.

42. Ali A, Tabanca N, Demirici B, Blythe EK, Ali Z, Baser KH, et al. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. J Agric Food Chem. 2015; 63(2):447-456.

43. Surthanan N, Choochote W, Tuetun B, Jungum A, Jitpakdi A, Chaithong U, et al. Chemical composition and larvicidal activity of edible plant derived essential oils against the pyrethroid susceptible and resistant strains of Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 2010;35(1):106-115.

44. Kumar S, Mishra M, Wahab N, Warikoo R. Larvicidal, Repellent, and Irritant Potential of the Seed-Derived Essential Oil of Ajpton graveolens Against Dengue Vector, Aedes aegypti L. (Diptera: Culicidae). Front Public Health. 2014;2(2):147.

45. Ravi Kiran S, Bhavani K, Sita Devi P, Rajeswara Rao BR, Janardhan Reddy K. Composition and larvicidal activity of leaves and stem essential oils of Chromoxyx oswietiana DC against Aedes aegypti and Anopholes stephenisi. Bioresour Technol. 2006;97(18):2481-2484.

46. Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Luna JED. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014;113(7):2647-2654.

47. Costa J, Rodrigues F, Angélico E, Silva M, Mota M, Santos N, et al. (2005) Chemical-biological study of the essential oils of Hymis martiusii, Lippia sidoides and Syzygium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev Bras Farmacogn. 2005;15(4):304-309.

48. Moon H-I. Larvicidal activity of major essential oils from stems of Allium monanthum Maxim. against Aedes aegypti L. J Enzyme Inhib Med Chem. 2011;26(6):827-830.

49. Aurran E, Neves I, Da Silva C, Santos G, Da Câmara C, Navarro D. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol. 2009;100(7):2284-2288.

50. Kiran SR, Bhavani K, Devi PS, Rao BR, Reddy KJ. Composition and larvicidal activity of leaves and stem essential oils of Chromoxyx oswietiana DC against Aedes aegypti and Anopholes stephenisi. Bioresour Technol. 2006;97(18):2481-2484.

51. Thomas TG, Rao S, Lal S. Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea caricina Linn. Jpn J Infect Dis. 2004;57(4):176-177.

52. Perumalsamy H, Kim N-J, Ahn Y-J. Larvicidal activity of compounds isolated from Asarum heterotropoides against Culex pipiens pallens, Aedes aegypti, and Ochlerotatus togoi (Diptera: Culicidae). J Med Entomol. 2009;46(6):1420-1423.

53. Pitawasawat B, Champakaew D, Choochote W, Jitpakdi A, Chaithong U, Kanjanapothi D, et al. Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia. 2007;78(3):205-210.

54. Lima MA, de Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT, et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 2011;10(55):11716-11720.

55. Kulkarni RR, Pawar PV, Joseph MP, Akulwad AK, Sen A, Joshi SP. Lavandula gibsoni and Plectranthus mollis essential oils: chemical analysis and insect control activities against Aedes aegypti, Anopheles sfithephensi and Culex quinquefasciatus. J Pest Sci. 2013;86(4):713-718.

56. de Lima GPG, de Souza TM, de Paula Freire G, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013;112(5):1953-1958.

57. Morais SM, Cavalcani ES, Bertini LM, Oliveira CLL, Rodrigues JRB, Cardoso
Larvicidal Activity of Essential Oils

58. Cheng S-S, Chua M-T, Chang E-H, Huang C-G, Chen W-J, Chang S-T. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresour Technol. 2009;100(1):465-470.

59. Cheng S-S, Huang C-G, Chen Y-J, Yu J-J, Chen W-J, Chang S-T. Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol. 2009;100(1):452-456.

60. Lucia A, GONZALEZ AUDINO P, Seccacini E, Licastro S, Zerba E, Masuh H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. 2007;23(3):299-303.

61. Liu XC, Liu Q, Chen XB, Liu QZ, Liu ZL. Larvicidal activity of the essential oil of Youngia japonica aerial parts and its constituents against Aedes albopictus. Z Naturforsch C. 2015;70(1-2):1-6.

62. Leyva M, del Carmen Marquetti M, Tacoronte JE, Scull R, Tiomno O, Mesa A, et al. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L.)(Diptera: Culicidae). Revista Biomed. 2009;20(1):5-13.

63. Krishnamoorthy S, Chandrasekaran M, Raj GA, Jayaraman M, Venkatesalu V. Identification of chemical constituents and larvicidal activity of essential oil from Murraya exotica L. (Rutaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Revista Biomed. 2009;20(1):5-13.

64. de Morais SM, Facundo VA, Bertini LM, Cavalcanti ESB, dos Anjos Júnior JF, Ferreira SA, et al. Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol. 2007;35(10):670-675.

65. Choochote W, Chayasit D, Kanjanapothi D, Rattanachanpichai E, Jitpakdi A, Tuetun B, et al. (2005) Chemical composition and mosquito potential of rhizome extract and volatile oil derived from Curcuma aromatica against Aedes aegypti (Diptera: Culicidae). J Vector Ecol. 2005;30(2):302.

66. Cheng SS, Chang HT, Lin CY, Chen PS, Huang CG, Chen WJ, et al. Insecticidal activities of leaf and twig essential oils from Clausena excavata against Aedes aegypti and Aedes albopictus larvae. Pest Manag Sci. 2009;65(3):339-343.

67. Kuo P-M, Chu F-H, Chang S-T, Hsiao W-F, Wang S-Y. Insecticidal activity of essential oil from Chamaecyparis formosensis Matsum. Holzforschung. 2007;61(5):595-599.

68. Costa J, Rodrigues F, Sousa E, Junior D, Campos A, Coutinho H, et al. Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem Nat Compd. 2010;46(2):313-315.

69. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, et al. Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res. 2017;116(4):1175-1188.

70. Lima TC, da Silva TK, Silva FL, Barbosa-Filho JM, Marques MO, Santos RL, et al. Larvicidal activity of Mentha x villosa Hudson essential oil, rotundifolone and derivatives. Chemosphere. 2014;104:37-43.

71. Govindarajan M, Benelli G. Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res. 2016;115(12):4649-4661.

72. Amazonas Maciel Magalhães L, da Paz Lima M, Ortiz Mayo Marques M, Facanali R, Pinto ACdS, Pedro Tadei W. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. 2010;15(8):5734-5741.

73. Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2017;54(3):670-676.

74. Tiwary M, Naik SN, Tewary DK, Mittal PK, Yadav S. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis. 2007;44(3):198-204.

75. de Almeida RR, Souto RN, Bastos CN, da Silva MH, Maia JG. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem
Biodivers.2009;6(9):1427-1434.

76. Benelli G, Rajeswary M, Govindarajan M. Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Pollut Res Int. 2016;25(11):10218-10227.

77. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res. 2012;110(5):2023-2032.

78. Govindarajan M, Rajeswary M, Benelli G. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors. Ecotoxicol Environ Saf.2016;129:85-90.

79. Nagella P, Ahmad A, Kim S-J, Chung I-M. Chemical composition, antioxidant activity and larvicidal effects of essential oil from leaves of Apium graveolens. Immunopharmacol Immunotoxicol. 2012;34(2):205-209.

80. Chung I-M, Seo S-H, Kang E-Y, Park S-D, Park W-H, Moon H-I. Chemical composition and larvicidal effects of essential oil of Dendropanax morbifera against Aedes aegypti L. Biochem Syst Ecol. 2009;37(4):470-473.

81. Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, et al. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. J Braz Chem Soc.2006;17(5):1027-1030.

82. Mora FD, Avila JL, Rojas LB, Ramirez R, Usubillaga A, Segnini S, et al. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the Northeast of Brazil. J Braz Chem Soc.2006;17(5):1027-1030.

83. Benelli G, Rajeswary M, Vijayan P, Senthilmurugan S, Alharbi NS, Kadaikunnan S, Alharbi NS, Benelli G. Acute toxicity and repellent activity of the Origanum seabrnum Boiss. & Heldr. (Lamiaceae) essential oil against four mosquito vectors of public health importance and its biosafety on non-target aquatic organisms. Environ Sci Pollut Res Int.2016;23(22):23228-23238.

85. Barbosa JD, Silva VB, Alves PB, Guminia G, Santos RL, Sousa DP, et al. Structure-activity relationships of eugenol derivatives against Aedes aegypti (Diptera: Culicidae) larvae. Pest Manag Sci.2012;68(11):1478-1483.

86. Souza LGdS, Almeida MCS, Monte FJQ, Santiago GMP, Braz-Filho R, Lemos TLG, et al. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Quim Nova. 2012;35(11):2258-2262.

87. Santos HS, Santiago GM, de Oliveira JP, Arriaga A, Marques DD, Lemos TL. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat Prod Commun. 2007;2(12):1323-1336.

88. Marques MM, Morais SM, Vieira ÍG, Vieira MG, Silva ARA, De Almeida RR, et al. Larvicidal activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. 2011;27(2):156-158.

89. Gbolade A, Lockwood G. Toxicity of Ocimum sanctum L. essential oil to Aedes aegypti larvae and its chemical composition. J Essent Oil-Bear Plants.2008;11(2):148-153.

90. Cheng S, Lin C, Chung M, Liu Y, Huang C, Chang S. Larvicidal activities of wood and leaf essential oils and ethanolic extracts from Cunninghamia konishii Hayata against the dengue mosquitoes. Ind Crops Prod.2013;47:310-315.

91. Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi IO. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed.2014;4(1):30-34.

92. Raj GA, Chandrasekaran M, Krishnamoorthy S, Jayaraman M, Venkatesalu V. Phytochemical profile and larvicidal properties of seed essential oil from Nigella sativa L. (Ranunculaceae), against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res.2015;114(9):3385-3391.

93. Govindarajan M, Rajeswary M, Benelli
Larvicidal Activity of Essential Oils

Osanloo M, et al.

G. delta-Cadinene, Calarene and .delta-4-Carene from Kadsura heteroclit.a

Essential Oil as Novel Larvicides Against Malaria, Dengue and Filariasis Mosquitoes. Comb Chem High Throughput Screen. 2016;19(7):565-571.

94. Santos GK, Dutra KA, Lira CS, Lima BN, Napoleao TH, Paiva PM, et al. Effects of Croton rhizopholoides essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules. 2014;19(10):16573-16587.

95. Ali A, Tabanca N, Ozek G, Ozek T, Aytac Z, Bernier UR, et al. Essential Oils of Echinophora lamondiana (Apiales: Umbelliferae): A Relationship Between Chemical Profile and Biting Deterrence and Larvicidal Activity Against Mosquitoes (Diptera: Culicidae). J Med Entomol. 2015;52(1):93-100.

96. Carvalho Kda S, SL ES, de Souza IA, Gualberto SA, da Cruz RC, Dos Santos FR, et al. Toxicological evaluation of essential oil from the leaves of Croton tetradenius (Euphorbiaceae) on Aedes aegypti and Mus musculus. Parasitol Res. 2016;115(9):3441-3448.

97. Dias CN, Alves LP, Rodrigues KA, Brito MC, Rosa Cdos S, do Amaral FM, et al. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evid Based Complement Altern Med. 2015;490765-490772.

98. Oliveira GL, Cardoso SK, Lara CR, Jr., Vieira TM, Guimaraes EF, Figueiredo LS, et al. (2013) Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). An Acad Bras Cienc. 2013;85(4):1227-1234.

99. Cruz RC, Silva SL, Souza IA, Gualberto SA, Carvalho KS, Santos FR, et al. Toxicological Evaluation of Essential Oil From the Leaves of Croton argyrophyllus (Euphorbiaceae) on Aedes aegypti (Diptera: Culicidae) and Mus musculus (Rodentia: Muridae). J Med Entomol. 2017;54(4):985-993.

100. da Silva Ramos R, Rodrigues AB, Farias AL, Simes RO, Pinheiro MT, Ferreira RM, et al. Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. (Lamiaceae). ScientificWorldJournal. 2017;4927214.

101. Liu XC, Liu Q, Chen XB, Zhou L, Liu ZL. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest Manag Sci. 2015;71(11):1582-1586.

102. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol. 2013;134(1):7-11.

103. Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW. Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2012;110(6):2125-2130.

104. Liu XC, Zhou L, Liu Q, Liu ZL. Laboratory Evaluation of Larvicidal Activity of the Essential oil of Allium tuberosum Roots and its Selected Major Constituent Compounds Against Aedes albopictus (Diptera: Culicidae). J Med Entomol. 2015;52(3):437-441.

105. Conti B, Leonardo M, Pistelli L, Profeti R, Ouerguemmi I, Benelli G. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L.(Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Parasitol Res. 2013;112(3):991-999.

106. Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, et al. Curzerene, trans-beta-elemenone, and gamma-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 2017;25(11):10272-10282.

107. Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliotopoulos G, Emmanouel N, et al. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2013;112(3):1113-1123.

108. Govindarajan M, Benelli G. Eco-friendly larvicides from Indian plants: Effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotoxicol Environ Saf. 2016;133:395-402.

109. Cheng SS, Liu JY, Huang CG, Hsui YR, Chen WJ, Chang ST. Insecticidal activities of leaf essential oils from
Cinnamomum osmophloeum against three mosquito species. Biore sour Technol. 2009;100(1):457-464.

10. Koutsaviti K, Giatropoulos A, Pitarokili D, Papachristos D, Michaelakis A, Tzakou O. Greek Pinus essential oils: larvicidal activity and repellency against Aedes albopictus (Diptera: Culicidae). Parasitol Res. (2015) 2015;114(2):583-592.

11. Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K. Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus, and Anopheles subpictus (Diptera: Culicidae). Parasitol Res. 2013;112(11):3713-3721.

12. Liu XC, Dong HW, Zhou L, Du SS, Liu ZL. Essential oil composition and larvicidal activity of Toddalia asiatica roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2013;112(3):1197-1203.

13. Liu XC, Liu Q, Zhou L, Liu ZL. Evaluation of larvicidal activity of the essential oil of Allium macrostemon Bunge and its selected major constituent compounds against Aedes albopictus (Diptera: Culicidae). Parasit Vectors. 2014;7:184.

14. Govindarajan M, Benelli G. alpha-Humulene and beta-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res. 2016;115(7):2771-2778.

15. Conti B, Canale A, Bertoli A, Gozzini F, Pistelli L. Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res. 2010;107(6):1455-1461.

16. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, et al. Larvicidal and repellent activity of Hypsitu suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 2012;110(5):2013-2021.

17. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 2013;112(3):1155-1161.

18. Osanloo M, Amani A, Sereshti H, Shayeghi M, Sedaghat MM. Extraction and chemical composition essential oil of Kelussia odoratissima and comparison its larvicidal activity with Z-ligustilide (major constituent) against Anopheles stephensi. J Entomol Zool Stud. 2017;5(4):611-616.
persicum and Achillea kfellalensis Against Two Medically Important Mosquitoes. J Essent Oil-Bear Plants. 2017;20(5):1254-1265.

127. Osanloo M, Sereshti H, Sedaghat MM, Amani A. Nanoemulsion of Dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ Sci Pollut Res Int. 2017;25(7):6466-6473.

128. Soleimani-Ahmadi M, Gorouhi MA, Azani S, Abadi Y, Paksa A, Rashid G, et al. Larvicidal Effects of essential oil and methanol extract of Achillea wilhelmsii C. Koch (Asteraceae) against Anopheles stephensi Liston (Diptera: Culicidae), a malaria vector. J Kerman Univ Med Sci. 2017;24(1):58-67.

129. Osanloo M, Sedaghat MM, Esmaeili F, Amani A (2018) Larvicidal Activity of Essential Oil of Syzygium aromaticum (Clove) in Comparison with Its Major Constituent, Eugenol, against Anopheles stephensi. J Arthropod Borne Dis. 2018;12(4):361.

130. Sanei-Dehkordi A, Soleimani-Ahmadi M, Akbarzadeh K, Salim Abadi Y, Paksa A, Gorouhi MA, et al. Chemical Composition and Mosquito Larvicidal Properties of Essential Oil from Leaves of an Iranian Indigenous Plant Zumeria majdae. J Essent Oil-Bear Plants.2016;19(6):1454-1461.

131. Khanavi M, Vatandoost H, Khosravi Dehaghi N, Sanei Dehkordi A, Sedaghat MM, Hadjiakhoondi A, et al. Larvicidal activities of some Iranian native plants against the main malaria vector, Anopheles stephensi. Acta Med Iran.2013;51(3):141-147.

132. Mozaafari E, Abai MR, Khanavi M, Vatandoost H, Sedaghat MM, Moridnia A, et al. Chemical Composition, Larvicidal and Repellency Properties of Cionura erecta (L.) Griseb. Against Malaria Vector, Anopheles stephensi Liston (Diptera: Culicidae). J Arthropod Borne Dis. 2014;8(2):147-155.

133. Sedaghat MM, Dekhordi AS, Khanavi M, Abai MR, Mohtarami F, Vatandoost H. Chemical composition and larvicidal activity of essential oil of Cupressus arizonica E.L. Greene against malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Pharmacognosy Res. 2011;3(2):135-139.

134. Pandey SK, Upadhyay S, Tripathi AK. Insecticidal and repellent activities of thymol from the essential oil of Trachyspermum ammi (Linn) Sprague seeds against Anopheles stephensi. Parasitol Res. 2009;105(2):507-512.

135. Medhi SM, Reza S, Mahnaz K, Reza AM, Abbas H, Fatemeh M, et al. Phytochemistry and larvicidal activity of Eucalyptus camaldulensis against malaria vector, Anopheles stephensi. Asian Pac J Trop Med. 2010;3(11):841-845.

136. Rajkumar S, Jebanesan A, Nagarajan R Effect of leaf essential oil of Coccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi. Asian Pac J Trop Med.2011;4(12):948-951.

137. Khanavi M, Najafi B, Sadati SN, Abai MR, Vatandoost H. Chemical Constitute and Larvicidal Activity of Fractions of Ajuga chamaecistus tomentella Plant against Malaria Vector Anopheles stephensi. J Arthropod Borne Dis.2016;11(1):116-123.

138. Mahnaz K, Alireza F, Hassan V, Mahdi S, Reza AM, Abbas H. Larvicidal activity of essential oil and methanol extract of Nepeta menthoideae against malaria vector Anopheles stephensi. Asian Pac J Trop Med.2012;5(12):962-965.

139. Maheshwaran R, Ignacimuthu S. Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotoxicol Environ Saf.2013;97:26-31.

140. Govindarajan M. Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med.2011;4(2):106-111.

141. Ali A, Demirci B, Kiyan HT, Bernier UR, Tsikolia M, Wedge DE, et al. Biting deterrence, repellency, and larvicidal activity of Ruta chalepensis (Sapindales: Rutaceae) essential oil and its major individual constituents against mosquitoes. J Med Entomol.2013;50(6):1267-1274.

142. Kyarimpa CM, Böhmndorfer S, Wasswa J, Kiremire BT, Ndiege IO, Kabasa JD. Essential oil and composition of Tagetes minuta from Uganda. Larvicidal activity on Anopheles gambiae. Ind Crops Prod.2014;62:400-404.

143. Matsayoh JC, Wathuta EM, Kariuki ST, Chepkorir R. Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae. J Asia-Pac Entomol. 2011;14(1):26-28.

144. Mdoe FP, Cheng SS, Msangi S, Nkwengulila
145. Kweka EJ, Senthilkumar A, Venkatesalu V. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae. Parasit Vectors. 2012;5:277.

146. Zhu L, Tian YJ. Chemical composition and larvicidal effects of essential oil of Blumea martinitana against Anopheles anthropophagus. Asian Pac J Trop Med. 2011;4(5):371-374.

147. Zhu L, Tian Y. Chemical composition and larvicidal activity of essential oil of Artemisia gilvescens against Anopheles anthropophagus. Parasitol Res. 2013;112(3):1137-1142.

148. Karunamoorthi K, Girmay A, Fekadu S. Larvicidal efficacy of Ethiopian ethnomedicinal plant Juniperus procera essential oil against Afrotropical malaria vector Anopheles arabiensis (Diptera: Culicidae). Asian Pac J Trop Biomed. 2012;4(Suppl 1):S99-s106.

150. Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, et al. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariaisis vector Culex quinquefasciatus Say (Diptera: Culicidae). Plant Protect Sci. 2014;50(1):36-42.

154. Pushpanathan T, Jebanesan A, Govindarajan M. The essential oil of Zingiber officinalis Linn (Zingiberaeaceae) as a mosquito larvicidal and repellent agent against the filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 2008;102(6):1289-1291.

155. Dua VK, Kumar A, Pandey AC, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn.(Fabaceae) against Culex quinquefasciatus Say, 1823. Parasit vectors. 2013;6(1):30.

156. Senthilkumar A, Kannathasan K, Venkatesalu V. Chemical constituents and larvicidal property of the essential oil of Blumea mollis (D. Don) Merr. against Culex quinquefasciatus. Parasitol Res. 2008;103(4):959-962.

157. de Castro DS, da Silva DB, Tiburcio JD, Sobral ME, Ferraz V, Taranto AG, et al. Larvicidal activity of essential oil of Peumus boldus Molina and its ascaridole-enriched fraction against Culex quinquefasciatus. Exp Parasitol. 2016;171:84-90.

158. Tabari MA, Youssefi MR, Esfandiarri A, Benelli G. Toxicity of beta-citronellol, geraniol and finalool from Pelargonium roseum essential oil against the West Nile and filariasis vector Culex pipiens (Diptera: Culicidae). Res Vet Sci. 2017;114:36-40.

160. Michaelakis A, Papachristos D, Kimbaris A, Koliopoulos G, Giatropoulos A, Polissiou MG. Citrus essential oils and four enantiomeric pinenes against Culex pipiens (Diptera: Culicidae). Parasitol Res. 2009;105(3):769-773.

161. Evergetis E, Michaelakis A, Kioulos E, Koliopoulos G, Haroutounian S. Chemical composition and larvicidal activity of essential oils from six Apiaceae family taxa against the West Nile virus vector Culex pipiens. Parasitol Res. 2009;105(3):769-773.

162. Zhao H, Ji G, Liu F, Werdin Gonzalez JO, Jesse EN, Yeguerman CA, et al. Polymer nanoparticles containing essential oils: new options for mosquito control. Environ Sci Pollut Res Int. 2017;24(20):17006-17015.
and larvicidal activity of several essential oils from Hypericum species from Tunisia. Parasitol Res. 2013;112(2):699-705.

164. Soltani A, Vatandoost H, Oshaghi MA, Ravasan NM, Enayati AA, Asgarian F. Resistance Mechanisms of Anopheles stephensi (Diptera: Culicidae) to Temephos. J Arthropod Borne Dis. 2015;9(1):71-83.

165. Assis CR, Linhares AG, Oliveira VM, Franca RC, Carvalho EV, Bezerra RS, et al. Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Sci Total Environ. 441:141-150.

166. Arredondo-Jimenez JJ, Valdez-Delgado KM (2006) Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico. Med Vet Entomol. 20(4):377-387.

167. Cheng S, Lin R, Zhang N, Yuan S, Zhou X, Huang J, et al. (2018) Toxicity of six insecticides to predatory mite Amblyseius cucumeris (Oudemans) (Acari: Phytoseiidae) in- and off-field. Ecotoxicol Environ Saf. 161:715-720.

168. Word Health Organization W. (2016) World Malaria Report. Available from: http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1.

169. Ma K, Li X, Hu H, Zhou D, Sun Y, Ma L, et al. (2017) Pyrethroid-resistance is modulated by miR-92a by targeting CpCPR4 in Culex pipiens pallingens. Comp Biochem Physiol B Biochem Mol Biol. 203:20-24.

170. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. (2017) Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty. 6(1):38.

171. Lucia A, Zerba E, Masuh H. Knockdown and larvicidal activity of six monoterpenes against Aedes aegypti (Diptera: Culicidae) and their structure-activity relationships. Parasitology research. 2013;112(12):4267-4272.

172. Rajashekar Y, Shivanandappa T. Mode of Action of the Natural Insecticide, Decaleside Involves Sodium Pump Inhibition. PLoS One. 2017;12(1):e0170836.

173. Perumalsamy H, Jang MJ, Kim J-R,
Kadarkarai M, Ahn Y-J. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit vectors. 2015;8(1):237.

184. Samber N, Khan A, Varma A, Manzoor N (2015) Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol. 2015;53(10):1496-1504.

185. Wongsariya K, Phanthong P, Bunyapraphatsara N, Srisukh V, Chomnawang MT. Synergistic interaction and mode of action of Citrus hystrix essential oil against bacteria causing periodontal diseases. Pharm Biol.2014;52(3):273-280.