Using PhET simulation to learning the concept of acid-base

O Nuraida, G S Akbar, I Farida* and S Rahmatullah
Department of Chemistry Education, Universitas Islam Negeri Sunan Gunung Djati Jl. A.H. Nasution No. 105, Bandung, Indonesia

*farchemia65@uinsgd.ac.id

Abstract. This study aims to analyze student outcomes after learning the acid-base concept supported by PhET Simulation. The PhET simulation is used to help visualize sub-microscopic representation of the acid base solution. The method used is one group pre-test and post-test design with the subject this study consists of thirty high school students in the Bandung area. The research instrument used was a test that measured the ability to distinguish the strength of acid-base at the level of sub-microscopic representation, calculate the degree of ionization, the relationship of K_a to concentration, and analyze the pH of the solution. The result of this study it can be concluded that the PhET simulation can improve student learning outcomes to the level sub-microscopic representation.

1. Introduction
Acid-base is one of the chemical concepts that includes several concepts including theory, definition, characteristics, strength, neutralization reaction, indicator and solution pH [1]. The concept of acid-base includes three levels of chemical representation, namely macroscopic, sub microscopic, and symbolic representations [2]. Reactions in acid or base solutions and characteristic strengths of acid-base involve proton transfer. The process that involves sub-microscopic level cannot be seen directly by students, even though the phenomenon that occurs can be observed using acid-base indicators [3]. There is a tendency for students to experience misconceptions regarding the strength of acid and base. Students assume, if a strong acid or base is diluted, it will become weak acid or base [4]. Solution pH is a measure of acid-base strength, not acidissty or basicity [5-7]. This is presumably because learning places more emphasis on understanding at the level of macroscopic and symbolic representation [8]. Understanding at the level of sub-microscopic representation is ignored. Various studies state students lack understanding the concept of acid-base, because learning does not use media that can link macroscopic phenomena that are observed through experiments with sub-microscopic representations involving the molecular level [9-11].

Therefore, one way to strengthen students' conceptions is to use computer-based media technology that is able to accommodate the need for abstract sub-microscopic level visualization. The learning process by applying science and technology will positively influence student achievement on student learning outcomes [12,13]. One of the android-based media is PhET (Physics Education Technology), which is a simulation media released by the University of Colorado [14]. Research using the PhET simulation as a learning medium has been carried out on the solubility equilibrium concept [15-17]. PhET simulation also provides PhET Acid-Base Solution (ABS) which is able to visualize the level of sub-microscopic representation of the acid-base concept. This paper describes how to use of PhET in chemistry learning and its impact on student understanding of the concept of acid-base.
2. Methods
The research method used by researchers is a pre-experimental design with one group pre-test and post-test [18]. This research was conducted at one secondary school in the Bandung area with 30 research subjects. Research subjects were grouped into three achievement groups based on the final chemistry test scores obtained. Three achievement groups are high, medium and low groups. Student understanding is measured using a written test. Written test compiled to measure four competency indicators, namely: 1) Measuring the ability to analyze the pH of strong / weak acids and strong / weak bases with the same concentration, 2) Describe the calculation of the degree of ionization of a solution known for the K_a or K_b value and its concentration, 3) Using the principle of the relationship between K_a and the concentration and number of ionized H$^+$ ions, 4) Analyzing the difference in sub-microscopic representation between strong/weak acid solutions and strong/weak base solutions with the same concentration. The four competency indicators are taught to students using PhET simulations following the steps of scientific approach [19]. The research instrument used was a description of learning with a scientific approach, observation guidelines, student worksheets, and written tests.

3. Results and discussion
The learning process uses a scientific approach assisted by PhET simulations. For this reason, five stages of learning are carried out, namely observing, asking, collecting data, associating and drawing conclusions [20]. In the stage of observing, questioning and collecting data, students observe discourses and images related to acid-base phenomena and are asked to give questions that are relevant to the phenomenon. The purpose of the two stages is to arouse the curiosity of students, so that it makes them more interested in exploring further concepts. In the data collection stage, students conduct experiments measuring the pH of some acid-bases such as HCl, CH$_3$COOH, NaOH, NH$_4$OH solution which have the same concentration of 0.1 M; 0.01 M and 0.001 M. Furthermore, students connect the strength of acids or bases with the degree of ionization, the equilibrium constant of acid (K_a) and the basic equilibrium constant (K_b). At the association stage, students use PhET simulations so that students can understand how the different sub-microscopic representations of acid or base solutions are concentrated equally.

The following explains how the PhET Simulation is used in chemistry learning using a scientific approach. In the display of interface PhET acid base solution simulation there are two choices, namely "introduction" and "my solution". To understand the features of the display interface PhET simulations, students are asked to select the menu introduction. On the introduction menu there are several features, namely solutions, views and tools. The solution features available choices of solution, Water, Strong Acid, Weak Acid, Strong Base, and Weak Base. In the views feature there are Molecule, Graph, and Hide Views options. The tool features a choice of a pH meter, a universal indicator, and a light test kit. Display introduction can be seen in Figure 1. Once the basic features PhET simulations understood, then students select My Solution menu. Student Analysis of the pH of strong acid solutions, strong bases, weak acids, and strong bases with the same concentration was carried out using a pH meter and universal indicator. The ability of students to analyze sub-microscopic representations of various acid and base solutions having the same concentration is done by comparing each sub-microscopic representation seen in a PhET simulation.
Although the concentrations of strong acids / weak acids and strong bases / weak bases are the same, they can observe that each has a different pH solution. The difference is caused by the number of different concentrations of H_3O^+ or OH^- ions depending on the value of the degree of ionization, K_a or K_b of the solution. The display of the relationship between sub-microscopic representation and the pH of the solution can be seen in Figure 2.

This strategy can improve the understanding of students who tend to assume that the pH of the solution indicates acid strength, not acidity. The use of PhET simulations accompanied by experiments can be a bridge between observations through real phenomena with molecular level visualization. The effect of experimental learning activities that are strengthened by the use of PhET simulations through a scientific approach can be seen from the results of the pre-test and post-test. Overall, there was an increase in students' understanding of the concept of acid and base. Improvement of students' cognitive learning outcomes for each group has a significant increase in achievement. The high achievement group gets an n-gain value of 0.8 with a high category, the medium achievement group gets an n-gain value of 0.8 with a high category, and the low achievement group gets an n-gain value of 0.6 with a medium category. While the average n-gain value for all achievement groups is 0.8 with a high category.

A common weakness of students in learning acid-base material is to distinguish between the concept of acid or base strength and the level of acidity or basicity [4]. By using a PhET simulation these problems can be overcome. For this reason, students are asked to observe and analyze the submicroscopic representations of strong acids, weak acids, strong bases and weak bases with the same concentration. Using the PhET simulation feature as illustrated in Figure 3, students can analyze the difference between acid strength (which is related to the value of K or degree of ionization) and acidity / basicity (which is related to the amount of Hydronium H_3O^+ ions or OH^- hydroxide ions in solution).
Figure 3. Sub-microscopic representation: (a) strong acid 0.01M (b) Weak acid 0.01M (c) Strong base 0.01 M, (d) Weak Base 0.01 M.

The successful use of PHET simulations in learning can be seen from the improvement of students' abilities in the fourth learning indicator. The ability of students to analyze the pH of a weak acid solution as well as strong bases, strong acids, weak bases, the same concentration for each achievement group get an average n-gain value based on an average achievement group of 0.7 with a high predicate. The ability of students to analyze the differences in sub-microscopic representation for each achievement group is at an average value of n-gain of 0.8 with a high predicate.

Improved students' ability to analyze, allegedly influenced by practical learning activities strengthened by the use of simulated PhET. Besides, students get real experiences through direct observation of phenomena (levels of macroscopic representation), visually they can connect with levels of sub-microscopic representations [8,21]. This strategy can improve the understanding of students who tend to assume that the pH of the solution indicates acid strength, not acidity. The use of PhET simulation accompanied by practicum can be a bridge between observations through real phenomena with molecular level visualization. This is in line with Etikasari et al., acid and base learning using experiments can provide experience to students [22], so students can build concepts related to the material conducted during the experiment [23]. PhET simulations help students to have an atomic or particle level imagination [14,24]. Irwansyah et al., suggest that understanding sub-microscopic can be obtained through the use of computer and android technology that can visualize the sub-microscopic level [25]. The inclusion of visualizations and analogies of sub-microscopic forms in learning makes it easy for students to structure and the number of particles of a substance that cannot be directly observed by the eye [26,27].

4. Conclusion

Chemistry learning using PhET simulation can improve students' ability to analyze and relate macroscopic phenomena with sub-microscopic visualization. Students are able to distinguish sub-microscopic levels of strong acids / weak acids and strong bases / weak bases so as to avoid misconceptions.

Acknowledgments

Thank you to Puslitpen LP2M UIN Sunan Gunung Djati Bandung for funding the publication process in this study.

References

[1] Gilbert T R 2018 *The Science in Context* ed E Fahlgren (Canada: W. W. Norton & Company, Inc.)

[2] Farida I, Helsy I, Fitriani I and Ramdhan I M A 2018 Learning Material of Chemistry in High School Using Multiple Representations *IOP Conference Series: Materials Science and Engineering* vol 288
[3] Nuranisa E and Farida I 2014 Analisis Representasi Teks Konsep Asam Basa Dalam Buku Kimia SMA *Simposium Nasional Inovasi Pembelajaran Sains* (Bandung: Prodi Magister Pengajaran Fisika ITB)

[4] Barke H-D and Hazari Y 2009 *Misconceptions in Chemistry* vol 44 (Berlin, Heidelberg: Springer Berlin Heidelberg)

[5] Cooper M M, Kouyoumdjian H and Underwood S M 2016 Investigating Students’ Reasoning about Acid–Base Reactions *J. Chem. Educ.* 93 1703–12

[6] Ozmen H, Demircioğlu G and Coll R K 2009 A comparative study of the effects of a concept mapping enhanced laboratory experience on turkish high school students _ understanding of acid-base chemistry *Int. J. Sci. Matjematics Educ.* 7 1–2

[7] Amry U W, Rahayu S and Yahmin 2017 Analisis Miskonsepsi Asam Basa Pada Pembelajaran Konvensional dan Dual Situated learning (DSLM) *J. Pendidik. Teor. Penelit. dan Pengemb.* 2385–91

[8] Farida I, Liliasari L, Sopandi W and Widyanotoro D H 2017 A web-based model to enhance competency in the interconnection of multiple levels of representation for pre-service teachers *Ideas 21st Century Educ.* 359–62

[9] Helsy I, Farida I, Ramdhani M A and others 2017 Volta-Based Cells Materials Chemical Multiple Representation to Improve Ability of Student Representation *Journal of Physics: Conference Series* vol 895 p 12010

[10] Sari C W and Helsy I 2018 Analisis Kemampuan Tiga Level Representasi Siswa Pada Konsep Asam-Basa Menggunakan Kerangka Dac (Definition, Algorithmic, Conceptual) *J. Tadris Kim.* 3 158–70

[11] Yaman F and Ayas A Assessing Changes in High School Students’ Conceptual Understanding through Concept Maps before and after the Computer-Based Predict-Observe-Explain (CB-POE) Tasks on Acid-Base Chemistry at the Secondary Level *Chem. Educ. Res. Pract.* 16 843–55

[12] Irwansyah F S, Lubab I, Farida I and Ramdhani M A 2017 Designing Interactive Electronic Module in Chemistry Lessons *J. Phys. Conf. Ser.* 895 012009

[13] Irwansyah F S, Yusuf Y M, Farida I and Ramdhani M A 2018 Augmented Reality (AR) Technology on the Android Operating System in Chemistry Learning *IOP Conference Series: Materials Science and Engineering* vol 288

[14] Clark T M and Chamberlain J M 2014 Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom *J. Chem. Educ.* 91 1198–202

[15] Farida I and Purwanti V 2013 Profil Kemampuan Representasi Kimia Mahasiswa Pada Konsep Kesetimbangan Kelarutan Menggunakan Chemsense Animator Dan Simulasi PhET *The 2nd International Conference of the Indonesian Chemical Society 2013*

[16] Wiwit W, Sura M and M. Luthfi F 2013 Penerapan Pembelajaran Kimia Dasar Menggunakan Media Powerpoint 2010 Dan Phet Simulation Dengan Pendekatan Modification Of Reciprocal Teaching Berbasis Konstruktivisme *Exacta* 11 29–32

[17] Widyastuti F, Helsy I, Farida I and Irwansyah F S 2019 Implementation of PDEODE (Predict, Discuss, Explain, Observe, Discuss, Explain) Supported by PhET Simulation on Solubility Equilibrium Material *Journal of Physics: Conference Series* vol 1155 p 12071

[18] Creswell J W 2009 *Research Design: Qualitative, Quantitative and Mixed Methods Approaches* (Nebraska: Sage,Pub)

[19] Laelasari N and Sari 2017 Penerapan Pendekatan Saintifik untuk Mengembangkan Keterampilan Proses Sains dan Sikap Ilmiah Siswa pada Konsep Kelarutan dan Hasil Kali Kelarutan *J. Tadris Kim.* 1 20–6

[20] Sari S and Hidayat R Y 2017 Pengembangan Keterampilan Berpikir Kreatif Siswa Pada Praktikum Jenis-Jenis Koloid: Pendekatan Sainstifik *J. Tadris Kim.* 1 32

[21] Fauzi H, Farida I, Sukmawardani Y and Irwansyah F S 2019 The making of e-module based in inquiry on chemical bonding concept with representation ability oriented *Journal of Physics:*
Conference Series vol 1402 p 55059

[22] Etikasari M, Rosilawati I and Tania L 2015 Efektivitas Pendekatan Ilmiah Pada Materi Asam Basa dalam Meningkatkan Keterampilan Mengorganisasikan J. Pendidik. dan Pembelajaran Kim. 4 42–55

[23] Farida I, Zahra R R and Irwansyah F S 2020 Experiment Optimization on The Reaction Rate Determination and Its Implementation in Chemistry Learning to Develop Science Process Skills J. Pendidik. Sains Indones. (Indonesian J. Sci. Educ. 8 67–77

[24] Alifiyanti I F and Ishafit 2018 Penerapan model pembelajaran inkuiri terbimbing berbantuan PhET Simulation untuk meningkatkan kemampuan berpikir kritis siswa pada pokok bahasan teori kinetik gas di MAN 3 Ngawi Pros. Semin. Nas. Quantum 25 392–400

[25] Irwansyah F S, Ramdani I and Farida I 2017 The development of an Augmented Reality (AR) technology-based learning media in metal structure concept Ideas for 21st Century Education (Taylor & Francis Group) pp 233–7

[26] Chiu M-H and Wu H-K 2009 The Roles of Multimedia in the Teaching and Learning of the Triplet Relationship in Chemistry BT - Multiple Representations in Chemical Education Multiple Representations in Chemical Education vol 4 (Springer Netherlands) pp 251–83

[27] Farida I 2009 The Importance Of Development Of Representational Competence In Chemical Problem Solving Using Interactive Multimedia Sci. Educ.