Original Article

A minimum data set for traumatic brain injuries in Iran

Maryam Edalatfar 2, Mohsen Sadeghi-Naini a, Hamid Reza Khayat Kashani a, Mitra Movahed b, Mahdi Sharif-Alhoseini c, a

a Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
b Department of Psychology, HELP University, Kuala Lumpur, Malaysia
c Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran

\textbf{A R T I C L E I N F O}

Article history:
Received 4 July 2020
Received in revised form 20 August 2021
Accepted 14 September 2021
Available online 28 September 2021

Keywords:
Traumatic brain injuries
Registries
Data systems

\textbf{A B S T R A C T}

\textbf{Purpose:} Traumatic brain injury (TBI) is one of the major public health concerns worldwide. Developing a TBI registry could facilitate characterizing TBI, monitoring the quality of care, and quantifying the burden of TBI by collecting comparable and standardized epidemiological and clinical data. However, a national standard tool for data collection of the TBI registry has not been developed in Iran yet. This study aimed to develop a national minimum data set (MDS) for a hospital-based registry of patients suffering from TBI in Iran.

\textbf{Methods:} The MDS was designed in 2 phases, including a literature review and a Delphi study with content validation by an expert panel. After the literature review, a comprehensive list of administrative and clinical items was obtained. Through a two-round e-Delphi approach conducted by invited experts with clinical and research experience in the field of TBI, the final data elements were selected.

\textbf{Results:} A MDS of TBI was assigned to 2 parts: administrative part with 5 categories including 52 data elements, and clinical part with 9 categories including 130 data elements.

\textbf{Conclusion:} For the first time in Iran, we developed a MDS specified for TBI consisting of 182 data elements. The MDS would facilitate implementing a TBI's national level registry and providing essential, comparable and standardized information.

© 2021 Chinese Medical Association. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Traumatic brain injury (TBI) is one of the major public health concerns worldwide as it results in considerable mortalities and lifelong devastating physical, cognitive and emotional morbidities. This poses significant social and economic burdens on patients, families, and societies. The prevalence of TBI has been increasing since 1990. In 2016 the number of TBI victims was estimated to be 55.5 million individuals around the world.1, 2 Globally, organizations such as the International Initiative for Traumatic Brain Injury Research have launched international collaborative research since 2010 and developed a standardized data collection called Common Data Elements for TBI.3 However, in low- and middle-income countries (LMICs), due to TBI-related limited research funding and efforts, a high-quality data-specific registry at the national level is scarce. Meanwhile, the evidence carried out in high-income countries is not translatable and applicable for LMICs owing to far differences in their care strategies and resources.4 A TBI-specific registry in which comparable and standardized epidemiological and clinical data are collected is an advantageous mechanism to characterize TBI, quantify its true magnitude and economic and social burdens caused by this injury in LMICs. Besides, it could assist in monitoring and evaluating the quality of care and converting the research results into recommendations for more effective management of clinical conditions. As mentioned before, there is an unmet need for developing a national registry system and minimum data set (MDS) for TBI in LMICs. A MDS tool specifically concerning TBI could provide a set of standardized minimum data for each patient suffering from TBI and unifying definitions for terms and data elements. The data generated from studies implementing the MDS will be comparable and consistent at national and international levels. This would enable researchers and health care professionals to enhance basic and clinical research and practices. This study aimed to develop a national MDS for a hospital-based registry of TBI patients in Iran.

* Corresponding author.
E-mail addresses: sharif.mahdi@gmail.com, msharif@tums.ac.ir (M. Sharif-Alhoseini).
Peer review under responsibility of Chinese Medical Association.
Table 1
Administrative data elements related to traumatic brain injury inpatients.

Administrative data elements	Agreement level (%)	Final decision		
	First round	Second round	Kept	No. of elements
Demographics				
Name9,10	100		✓	9
Age9-11	100		✓	
Sex9-11	100		✓	
Marital status10,12	69	75	✓	
Ethnicity9-11	53.8	25		
Race9-11	69.2	25	✓	
Birth country name10,11	61.5	100	✓	
Current country of resident10,12	76.9		✓	
Population size of place of residence10,12	100		✓	
Primary language10,12	69.2	100	✓	
Fluent written/spoken languages12	69.2	25	✓	
Handedness9-11	64.2	75	✓	
Socioeconomic status				8
Education				
Level of education (highest degree)9-11	69.2	50		
Education (number of years completed)10-12	69.2	100	✓	
Parent's years of education; if child10,12	69.2	100	✓	
Classified as a special student10,12	53.8	25		
Ever expelled from school10,12	53.8	25		
Ever failed to advance to the next grade10,12	69.2	25		
Employment				
Current primary occupational status10,12	100		✓	
Job classification12	92.3		✓	
Employment level9-11	38.5			
Working for paid/unpaid work10,12	38.5			
Number of months with job in last year10,12	53.8	25		
Number of employers10,12	33.3			
Number of people supervised by patient in job10,12	38.5			
Cohabits				
Living situation9,10	76.9		✓	
Primary people living with9,11	69.2	50		
Number of patient’s children12	69.2	50		
Number of cohabits12	38.5			
Number of children living with12	53.8	25		
Parents status (dead/alive)12	38.5			
Type of primary caregiver12	69.2	25		
Income				
Annual income of household12	53.8	50		
Number of people supported by the income12	38.5			
Home-ownership12	46.2			
Insurance				
Possession of health insurance10,12	92.3		✓	
Type of health insurance10,12	92.3		✓	
Deployment				
Military status^11,12	46.2			
-----------------------	------			
Military occupational status^11,12	38.5			
Branch of service in military^11,12	30.8			
Military rank^11,12	30.8			
Place of deployment^12	30.8			

Sport

Participation in school sports^12	38.5
Type of school sport played primarily^12	38.5
Number of years of school sport played^12	38.5
Type of school sports played secondarily^12	30.8
Participation in recreational sports^12	23.1
Type of recreational sport^12	38.5
Participation in professional sports^12	84.2
Type of professional sport^12	69.2
Number of years of professional sports played^12	46.2

Past medical history

Behavioral history

Current alcohol, tobacco or illicit drug usages^9,11	100
Number of days per month with minimum one alcoholic drink^10,12	69.2
Average number of alcoholic drinks per day^10,12	46.2
Number of days in last month with 5 for men, 4 for women or more drinks^10,12	30.8
Alcohol usage in more than 1 year ago^9,12	61.5
Alcohol usage duration^10,12	46.2
Type(s) of tobacco used^9,12	61.5
Type(s) of illicit drug used^9,12	74.6
Tobacco or illicit drug usage duration^9,12	74.6
Marijuana usage in past^9	61.5
Cigarette usage in past^9	69.2
Being in trouble in society because of drug use^9	53.8

History of TBI

Number of prior concussions^10,11	73.3
Number of prior TBI^10,11	92.3
Number of prior traumatic injury^10	73.3
Number of blasts experienced^10,11	61.5
LOC experienced in prior TBI(s)^10,11	61.5
Longest duration of LOC in prior TBI(s)^10,11	61.5
Youngest age at LOC in prior TBI(s)^10,11	69.2
Confusion experienced in prior TBI(s)^10	76.9
Longest duration of confusion in prior TBI^10	76.9

Medical history

Medical problems/conditions^9,12	100
Medical problems time-points^10,12	69.2
Ongoing medical condition/disease^10,12	84.6
History of perinatal neurologic condition^10	61.5
History of attention/learning deficit in developmental years^10,11	84.6
History of psychiatric or emotional problems^9,11	100
History of hospitalization for emotional or psychiatric problems^9	100
Prior or concomitant medication (name, dosage, rout)^9,11	92.3
Methods

The MDS was designed in 2 phases, including a literature review and a Delphi study with content validation by an expert panel.

The literature search was performed using keywords in MEDLINE (via PubMed) and Google Scholar in January 2019. In PubMed, the Medical Subject Headings (MeSH) terms “Brain Injuries”, “Data Collection”, “Common Data Elements”, and “Registries” were used. In addition, the Google search engine was used to find the scientific association publications related to the registration of TBI patients. Inclusion criteria were currently ongoing registries and English language. Two researchers extracted all the data elements independently and determined a comprehensive list of administrative and clinical items.

Through a 2-round e-Delphi approach, the final data elements were chosen by 16 invited experts with clinical and research experience in the TBI field. They were informed about the study’s process. The experts should only consider the feasibility (or applicability) of elements whose main criteria, including validity, reliability, sensitivity, and specificity were already proven. To this end, they were asked to choose elements with respect to local capacity and limitations of registries, hospital settings, and health care resources in Iran. An online questionnaire was developed which contained dichotomous questions (agree/disagree answers) concerning the necessity of each data element. Each item with more than 75% agreement was included, and one with less than 50% agreement was excluded in the first round. In the second round, the items with 50%–75% agreement were surveyed again, and if there was 75% consensus over a subject, it was included.

Results

Three hundred data elements were compiled in the final list from 3 current large multi-center TBI-registries and a national institute of data standardization in the United States. The data elements were classified into 2 parts, including administrative and clinical data (Tables 1 and 2). Fourteen experts participated in the Delphi process, 79% of whom had more than 10 years of experience in trauma center hospitals. In the first round, 152 items were marked as definitive, 58 items were deleted, and 89 items were moved to the next round. In the second round, the experts removed 59 items and accepted 30 items. The resulting MDS had 2 parts, 14 categories, 22 subcategories, and 182 items (Tables 1 and 2, colored cells).

In the first round, items related to the “Injury” and “Post-Discharge Status” categories were approved more than other categories (n = 17, 94.4%; n = 35, 94.6%, respectively). At the end of the process, “Post-Discharge Status” and “Socioeconomic Status” classifications had the highest and lowest approval rating, respectively (n = 36, 97.3%; n = 8, 20%).

Table 3 shows 4 included data standards and the number of data elements. The present MDS was the most adapted according to the National Institute of Neurological Disorders and Stroke and the...
Clinical data elements	Agreement level (%)	Final decision	No. of elements
Pre-hospital presentation			8
Type of initial medical services provided at scene10,11	84.6	✔	
Initial medical care provider at scene10,11	61.5	100	✔
Time interval from injury scene to hospital10	73.3	50	
Mode of transport from injury scene to hospital10,11	84.6		
Worst vital signs (systolic/diastolic blood pressure, pulse rate, respiratory rate, temperature, arterial oxygen saturation)10,12	100	✔	
Hypotensive episode10-12	92.3	✔	
Best GCS9,10,12	69.2	25	
Worst GCS9,10,12	100	✔	
Seizure10,12	100	✔	
Duration of seizure10,12	100	✔	
Emergency department			13
Name of primary or secondary referral hospital10,11	92.3	✔	
Hospital admission time-point10,11	100	✔	
Primary hospital admission time-point10,11	73.3	50	
Reason; if injury late presentation10,12	69.2	50	
Professional referral; if injury late presentation10,12	61.5	25	
Arrival vital signs (systolic/diastolic blood pressure, pulse rate, respiratory rate, temperature, arterial oxygen saturation)9-11	100	✔	
Arrival mode of ventilation (assisted or spontaneous)10,11	100	✔	
Type of respiratory support device10,11	91.7	✔	
Partial pressure of oxygen and carbon dioxide10,11	66.7	100	✔
Arrival GCS9,10	100	✔	
GCS confounders9,11	91.7	✔	
Arrival pupil reactivity10,11	92.3	✔	
Arrival pupil size10	91.7	✔	
Discharge vital signs (systolic/diastolic blood pressure, pulse rate, respiratory rate, temperature, arterial oxygen saturation)9,10	73.3	25	
Discharge mode of ventilation (assisted or spontaneous)10	73.3	25	
Discharge GCS10	73.3	25	
Discharge pupil reactivity10	73.3	50	
Discharge pupil size10	73.3		
Systemic second insults (hypoxia, hypotension, coagulopathy, aspiration, seizure, cardiopulmonary arrest)10,12	83.3	✔	
Best motor response score11	73.3	25	
Sedated11	73.3	50	
Fluid therapy9,10	91.7	✔	
Emergency department discharge time since injury10	61.7	25	
Discharge destination10,12	92.3	✔	
In-patient daily neurologic assessment	5		
---------------------------------------	---		
Type of GCS (adult/pediatric)\(^8,10,12\)	84.6	✓	
GCS\(^9,12\)	100	✓	
Worst GCS during the first 24-hour\(^10\)	61.7	50	
GCS trend during the first 48-hour\(^10\)	73.3	50	
GCS confounders\(^9,12\)	83.3	✓	
Pupils size\(^11,12\)	91.7	✓	
Pupils shape\(^12\)	50	25	
Pupils reactivity\(^11,12\)	100	✓	

In-patient physical assessment	12	
LOC\(^10,11\)	100	✓
Duration of LOC\(^10,11\)	91.7	✓
Source of verification of LOC\(^10,11\)	69.2	25
Lucid interval of LOC\(^10,11\)	91.7	✓
PTA\(^10,11\)	100	✓
Duration of PTA\(^10,11\)	83.3	✓
Source of verification of PTA\(^10,11\)	69.2	25
AOC\(^10,11\)	91.7	✓
Duration of AOC\(^10,11\)	83.3	✓
Source of verification of AOC\(^10,11\)	69.2	25
TBI symptom/sign category\(^10,12\)	100	✓
TBI symptoms/signs\(^10-12\)	100	✓
Worsens with cognitive activity\(^10-12\)	83.3	✓
Worsens with physical activity\(^10-12\)	83.3	✓
Self-assessment of symptoms severity\(^10,12\)	83.3	✓
Head circumference in each hospital unit\(^13\)	33.3	
Weight in each hospital unit\(^11,12\)	25	
Height in each hospital unit\(^11,12\)	25	
Weight and height measurement type\(^11,12\)	58.3	25

Second insults/complication	17		
Complication\(^11,12\)	100	✓	
Type of complication\(^10-12\)	91.7	✓	
Wound\(^10,12\)	91.7	✓	
Type of wound\(^10,12\)	83.3	✓	
Laboratory abnormalities\(^9,12\)	91.7	✓	
Hypotensive episode\(^10,12\)	91.7	✓	
Hypertension\(^9,12\)	83.3	✓	
Hypoxic episode\(^10,12\)	91.7	✓	
Inadvertent hypocapnia\(^10-12\)	61.5	75	✓
Hyperventilation\(^12\)	71.3	75	✓
Cardiac arrest\(^10,12\)	100	✓	
Seizure(s)\(^10-12\)	100	✓	
Type of seizure\(^10-12\)	83.3	✓	
Seizure duration\(^10,12\)	83.3	✓	
Hypothermia\(^10,12\)	66.7	100	✓
Hyperthermia\(^12\)	83.3	✓	
Electroencephalography monitoring type\(^12\)	41.7		
Aspiration of foreign materials\(^12\)	66.7	75	✓
Surgery			
---	---		
Surgical procedure description¹⁰⁻¹²	100	✓	
Surgery time-point¹⁰⁻¹²	91.7	✓	
Duration of surgery¹⁰⁻¹²	91.7	✓	
Surgery type (elective/emergent)^{10,12}	100	✓	

Anesthesia			
Anesthesiologist visit^{10,12}	100	✓	
Standard American Society of Anesthesiologists monitors¹²	66.7	25	
Temperature¹²	45.5		
Partial pressure oxygen brain tissue measurement¹²	53.8	25	
Inadvertent hypocapnia¹²	69.2	25	
Hypotensive episode¹²	53.8	25	
Hypoxia¹²	73.3	25	
Intra-venous anesthesia drug¹²	66.7	75	✓
Arterial line¹²	69.2	25	
Foley catheter¹²	75	✓	
Transfusion¹²	100	✓	
Transfusion type¹²	92.3	✓	
Extubated at end¹²	76.9	✓	
Microdialysis glutamate value¹²	33.3		
Microdialysis lactate to pyruvate ratio¹²	25		
Cerebral spinal fluid drainage¹²	83.3	✓	

Medications		
Name of medications^{10,11}	100	✓
Dose of medication administered^{10,11}	100	✓
Route of medication administered^{10,11}	100	✓
Duration of medication administered^{10,11}	100	✓

Hospital units			
Units hospitalized in^{10,12}	69.2	75	✓
Timeframe hospitalized in each unit^{10,12}	92.3	✓	

Laboratory	11	
Sampling time-points^{11,12}	100	✓
Type of lab specimen^{10,12}	62.3	25

Chemistry			
Glucose¹⁰⁻¹²	83.3	✓	
Glycosylated hemoglobin¹²	8.3		
Urea^{11,12}	50	100	✓
Creatinine^{10,12}	66.7	75	✓
Amylase^{11,12}	33.4		
Serum glutamic oxaloacetic transaminase^{11,12}	41.7		
Serum glutamic pyruvic transaminase^{11,12}	33.3		
Lactate dehydrogenase¹⁰⁻¹²	41.7		
Alkaline phosphatase^{11,12}	16.7		
Gamma-glutamyl transferase¹²	8.3		
Total bilirubin^{11,12}	33.3		
Sodium^{10,11}	66.7	75	✓
Potassium^{10,11}	58.3	75	✓
Calcium¹¹	50	25	
Chloride¹⁰	25		
Magnesium¹¹	66.7	75	✓
Cholesterol¹²	16.7		
Parameter	Value		
---	-------		
Triglyceride	16.7		
Low-density lipoprotein	16.7		
High-density lipoprotein	16.7		
Very low density lipoprotein	8.3		
Apolipoprotein B	8.3		
Apolipoprotein E	8.3		
Apolipoprotein A	8.3		
Atrial natriuretic peptide	16.7		
Brain natriuretic peptide	16.7		
Insulin	16.7		
Cortisol	25		
Ferritin	8.3		
Total iron binding capacity	8.3		
Cobalamin	16.7		
C-reactive protein	25		
Creatine kinase-MB	25		

Hematology

Parameter	Value
Complete blood count with differential	83.3
Prothrombin time/ International normalized ratio	75
Partial thromboplastin time	75

Other tests

Test	Value
Alcohol blood test	50
Toxic drug test	66.7
Pregnancy test	33.3
Arterial blood gas	66.7

Discharge status

Event	Value
Vital status on discharge (alive/died)	84.6
Discharge time-point	100
Discharge time since injury	66.7
Destination upon discharge from hospital	91.7

If Alive:

Parameter	Value
GCS	100
GCS confounders	91.7
Pupil size	92.3
Pupil reactivity	91.7
Pupil shape	33.3

If Died:

Parameter	Value
Death time-point	100
Place of death	84.6
Principle cause of death	84.6
Death cause reliability	84.6

Post-discharge status

Event	Value
Follow-up time since injury	100

Socioeconomic

Parameter	Value
Living situation	92.3
Reasons for changes in living situation	83.3
Education status	84.6
Status of school attendance	83.3
Returned to work/school after discharge	91.7
Employment status	91.7
Transforming Research and Clinical Knowledge in Traumatic Brain Injury (73.6% and 72.5%, respectively).

The inclusion criteria were considered as patients with TBI who would present at the hospital within 24 h of injury and require an emergency brain CT scan per the Canadian CT Head Rule.13

Discussion

For the first time in Iran, we established a TBI-specific MDS comprising 181 data elements. It would facilitate implementing a national-level TBI registry. To date, a handful of studies regarding

Table 3

Included data standards	Number of elements	All Extracted for 1st round, n = 300	Kept after 2nd round, n = 182	Specific for present MDS
Collaborative European neuro-trauma effectiveness research in TBI	56 29	22	0	
Transforming research and clinical knowledge in TBI	417 182	132	12	
International mission for prognosis and analysis of clinical trials in TBI	198 126	95	2	
National institute of neurological disorders and stroke	526 188	134	36	

MDS: minimum data set, TBI: traumatic brain injury

GCS: Glasgow Coma Scale, LOC: loss of consciousness, PTA: post-traumatic amnesia, AOC: alteration of consciousness
TBI have been conducted sporadically in Iran; however, the data were not recorded systematically and did not provide sufficient, comparable, and standardized basic information.14–17 Compiling data elements from current large studies collaborating in the International Initiative for Traumatic Brain Injury Research7 could be one of the strengths of the MDS. Benefit from the good updated resources could result in providing standard and consistent MDS at the international level.9–12 In addition, applying the Delphi technique would lead to developing the MDS based on the collective knowledge of experts in the field.

Among the reference studies, the approved data elements of our MDS were to a greater extent identical to the National Institute of Neurological Disorders and Stroke16 as a consistent structure of the Common Data Elements for TBI11 that could ensure compatibility of MDS.

Data element determination and the level of details should depend on the aim of the study.13 In designing the current MDS, the administrative and clinical data elements were collected according to the requirements of a hospital-based registry. Consideration of scopes, resources, and capacities could be critical to the success of a registry.18 Eventually, although we made our best effort to develop a reliable, high-valued MDS concerning TBI, this MDS should undertake pilot studies in Iran in the future to identify its limitations and deficiencies.

Funding

This study was supported by grant number 43012 from Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Ethical statement

The study was reviewed and confirmed by the Ethics Committee of Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Declaration of competing interest

The authors declare that they have no conflicts of interest.

Author contributions

Hamid Reza Khayat Kashani designed the original idea. Maryam Edalatfar and Mohsen Sadeghi-Naini carried out the study and collected data. Maryam Edalatfar and Mitra Movahed prepared the manuscript. Mahdi Sharif-Alhiseini supervised the study.

References

1. GBD 2016 Traumatic Brain Injury and Spinal Cord Injury collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:56–87. https://doi.org/10.1016/S1474-4422(18)30415-0.

2. Norton R, Kobusingye O. Injuries. N Engl J Med. 2013;368:1723–1730. https://doi.org/10.1056/NEJMra1109343.

3. Rubiano AM, Carney N, Chesnut R, et al. Global neurotrauma research challenges and opportunities. Nature. 2015;527:5193–5197. https://doi.org/10.1038/nature16355.

4. Yue JK, Vassar MJ, Lingmsa HF, et al. Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma. 2013;30:1831–1844. https://doi.org/10.1089/neu.2013.2970.

5. Thompson HJ, Vavilala MS, Rivara FP. Common data elements and federal interagency traumatic brain injury research informatics system for TBI research. Amnu Rev Nurs Res. 2015;33:1–11. https://doi.org/10.1891/0739-6866.33.1.

6. Maas AI, Menon DK, Steyerberg EW, et al. Collaborative European neurotrauma effectiveness research in traumatic brain injury (CENTER-TBI): a prospective longitudinal observational study. Neurosurgery. 2015;76:67–80. https://doi.org/10.1227/NEU.0000000000000575.

7. International initiative for traumatic brain injury research (InTBIIR). Available at: https://intbri.nih.gov/.

8. Boulkedid R, Abdoul H, Loustau M, et al. Using and reporting the Delphi method for selecting healthcare quality indicators: a systematic review. PloS One. 2011;6, e20476. https://doi.org/10.1371/journal.pone.0020476.

9. Andrew IR Maas. Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury. CENTER-TBI. 2013. Available at: https://www.center-tbi.eu/.

10. National Institute of Neurological Disorders and Stroke. Transforming research and clinical knowledge in traumatic brain injury (TRACK-TBI) 2013. Available at: https://tracktbi.ucsf.edu/.

11. IMPACT. International mission for prognosis and analysis of clinical trials in TBI. Available at: http://www.tbi-impact.org/cde/.

12. National Institute of Neurological Disorders and Stroke (NINDS). Common data element 2010. Available at: https://www.commondataelements.ninds.nih.gov/Traumatic%20Brain%20Injury.

13. Streli IG, Wells GA, Vandenheuken K, et al. The Canadian CT Head Rule for patients with minor head injury. Lancet. 2001;357:1391–1396. https://doi.org/10.1016/S0140-6736(00)04561-x.

14. Reza A, Riahi E, Daneshi A, et al. The incidence of traumatic brain injury in Tehran, Iran. Brain Inj. 2018;32:487–492. https://doi.org/10.1080/02699052.2018.1429658.

15. Kavosi Z, Jafari A, Hatam N, et al. The economic burden of traumatic brain injury due to fatal traffic accidents in shahid rajaee trauma hospital, Shiraz, Iran. Arch Trauma Res. 2015;4, e22594. https://doi.org/10.5812/atr.22594.

16. Aghahkani N, Azami M, Jasemi M, et al. Epidemiology of traumatic brain injury in Urmia, Iran. Iran Red Crescent Med J. 2013;15:173–174. https://doi.org/10.5812/ircmj.2090.

17. Fakharian E, Mohammadzadeh M, Behdadmsheh S, et al. Repetitive traumatic brain injury in patients from Kashan, Iran. Iran Red Crescent Med J. 2016;21, e23869. https://doi.org/10.2812/truammon.23869.

18. Gliklich RE, Dreyer NA, Leavy MB. Registries for Evaluating Patient Outcomes: A User’s Guide. third ed. Rockville: Agency for Healthcare Research and Quality (US); 2014.