When two dimensional crystals are atomically close, their finite thickness becomes relevant. Using transport measurements, we investigate the electrostatics of two graphene layers, twisted by θ = 22° such that the layers are decoupled by the huge momentum mismatch between the K and K’ points of the two layers. We observe a splitting of the zero-density lines of the two layers with increasing interlayer energy difference. This splitting is given by the ratio of single-layer quantum capacitance over interlayer capacitance Cm and is therefore suited to extract Cm. We explain the large observed value of Cm by considering the finite dielectric thickness dm of each graphene layer and determine dm ≈ 2.6 Å. In a second experiment, we map out the entire density range with a Fabry-Pérot resonator. We can precisely measure the Fermi wavelength λ in each layer, showing that the layers are decoupled. Our findings are reproduced using tight-binding calculations.

RESULTS

Zero-density lines

The numerical conductance dG/dVtg as a function of Vtg and Vbg is shown in Fig. 2A for sample A and Fig. 2B for sample B. In both cases, two pronounced curved lines are observed, corresponding to a dip in the conductance G. The lines cross at zero gate voltages, and the splitting between these lines increases with increasing difference in Vtg and Vbg. One line (following the yellow dashed line) is affected more strongly by the top-gate voltage and therefore corresponds to the condition for charge neutrality in the upper graphene layer, whereas the other line (red dashed) indicates charge neutrality in the lower layer.

From electrostatic considerations, we find that the zero-density condition can be expressed as (details are given in the Supplementary Materials):
where C_{bg} (C_{tg}) is the geometric capacitance of the bottom (top) graphene to the bottom (top) gate (see Fig. 2C) and the density in the bottom (top) graphene layer is n_b (n_t). The capacitance measured between the two graphene plates is C_{m}. The quantum capacitance C_{q} is $\frac{\epsilon}{\epsilon_0}$ of the top layer is proportional to the density of states at the Fermi energy in the top layer (the analog relation holds for the bottom layer). For a single sheet of graphene, the slope of the zero-density line in a (V_{bg}, V_{tg}) map is given by the ratio $-C_{bg}/C_{tg}$ (prefactor in the above equations). For the two-layer system, the deviations from linearity of the constant-density line are governed by the ratio between quantum capacitance and C_m, respectively. Therefore, the splitting is smaller in sample B, where C_m is larger, as compared to sample A, where C_m is smaller.

Analytical formulas for the zero-density lines [i.e., $V_{bg}(V_{tg}) | n_t = 0$ and $V_{bg}(V_{tg}) | n_b = 0$] can be calculated using the ideal density of states of defect-free graphene and are depicted in Fig. 2 (A and B) for the different electrostatic configurations (i.e., with or without hBN between the graphene sheets). The formulas and details of the calculation are given in the Supplementary Materials. Fitting these curves to the data allows us to extract C_m, which is the only free fitting parameter. The other capacitances in the problem are given by the thickness of the top and bottom hBN, i.e., $C_{bg} = \epsilon_{hBN}/d_{hBN}$ with $\epsilon_{hBN} = 3.3\epsilon_0$. A discussion for the precision of this method is given in the Supplementary Materials.

For sample A, we obtain an interlayer capacitance of $C_m = 3.51 \pm 0.60 \text{ F cm}^{-2}$, which corresponds to the expected value for a plate separation of $d = 3.5 \text{ nm}$ and the hBN dielectric constant of $\epsilon_{hBN} = 3.3\epsilon_0$. For sample B, we determine a large interlayer capacitance $C_m = 2.3 \pm 0.3 \text{ F cm}^{-2}$. This value is three times larger than the capacitance between two thin plates, separated by vacuum and an interlayer distance of 2.2 nm, which is the expected distance between two graphene layers (17, 18). Consistent with our findings, large interlayer capacitance values have been reported in (9) in large perpendicular magnetic fields (quantum Hall regime) with a capacitance model that is only valid for $n_t = -n_b$. A detailed explanation for the large value of C_m has not been given so far.

The finite thickness of graphene
To understand the origin of such a large effective interlayer capacitance, we need to take into account the finite thickness of graphene, as this reduces the effective distance between the capacitor plates, leading to an enhanced interlayer capacitance. Therefore, we have estimated the extent of the p_z orbitals of carbon atoms in graphene from first-principles calculations (details are given in the Supplementary Materials). We calculated the integrated local density of states profile $\rho(z)$ of single-layer graphene in the energy range $E \in [-3, 3]$ eV from the charge neutrality point at $E_c = 0$ eV. In this energy range, the bands are of pure p_z orbital character without contributions from the s_-, p_x- and p_y-like orbitals. The calculated integrated local density of states ILDOS(z) as a function of distance from the center of the carbon atom is shown in Fig. 2D. From the charge distribution, we then calculated the expectation value of the position operator $\langle z \rangle$ for one lobe of p_z orbital (positive z). The values are shown as black dashed lines in the figure. Since there is a substantial amount of charge at $|z| > \langle z \rangle$, we have to take into account the induced charge density $\Delta \rho = \rho(E = 0) - \rho(E)$ in an external electric field E, which determines the dielectric thickness of graphene $\epsilon = 6.9\epsilon_0$ decays to the vacuum permittivity. The dielectric thickness is the relevant quantity if considering a single layer of graphene to be a nanocapacitor on its own. The dielectric thickness of graphene d_ϵ is indicated by the blue shaded region in Fig. 2D, with values according to (19).

To check whether twisted bilayer graphene (tBLG) displays a qualitatively different electrostatic behavior than AA- and AB-stacked BLGs, we performed first-principles calculations of tBLG with a twist angle of 22° (details of computations are given in the Supplementary Materials). In Fig. 2E, we show the comparison of the induced charge density $\Delta \rho(z) = \rho(E = 0) - \rho(E)$ for tBLG, AA BLG, and AB BLG under an external electric field $E_z = 1 \text{ V nm}^{-1}$ perpendicular to the BLG lattice. The interlayer distance of AA and AB BLGs was set to 3.51 Å to fit the average distance between tBLG layers. Nevertheless, the results are representative and insensitive to small deviations of interlayer distance from the optimized value or to the choice of the dispersive correction due to van der Waals forces (see the Supplementary Materials). One can see that the responses of the different BLGs to the external electric field E_z are almost the same on the outer side of the BLG, while they are very different in the interlayer region. For $z = 13 \pm 0.7$ Å, we observe a flattening of $\Delta \rho(z)$ in the case of tBLG compared to AA and AB BLGs. Within this region, the amplitude of $\Delta \rho(z)$ for tBLG is 15 times smaller than for AB BLG and 50 times smaller for AA BLG, demonstrating a qualitatively different electrostatic behavior.
of $d_g = 2.6 \pm 0.2$ Å from our measurements, which is in agreement with theoretical predictions in single-layer graphene exhibiting 2.4 Å (19). Using a similar model for the hBN device with $1/C_m = d_g/\epsilon_g + d_{hBN}/\epsilon_{hBN}$, we find $d_{hBN} = 35$ Å, which is in excellent agreement with the thickness measured with the atomic force microscopy (AFM). However, the correction by the thickness of graphene ($= 1$ Å) in this case is of the order of the measurement accuracy of our AFM.

Our analysis is generally valid in the large angle regime ($> 5^\circ$). If the twist gets reduced, then the bands of the upper and lower layers start to hybridize at smaller energies, leading to a reduction of Fermi velocity and an increase of quantum capacitance. We expect to observe a stronger splitting in this case. For small twists, once the layers are coupled at low enough energies, there will be only one line in the gate-map at zero total density. Regarding the interlayer capacitance, in Fig. 2E, one can see that the interlayer charge distribution is different for AA-stacked graphene and tBLG. This indicates a modification of the interlayer capacitance toward smaller angles.

Decoupled Fabry-Pérot Interferences

In the next step, we use a Fabry-Pérot interferometer to measure the layer density of sample B for arbitrary gate voltages and compare the results to tight-binding simulations based on an elaborate electrostatic model. The analysis of the Fabry-Pérot resonance pattern will allow us to determine the Fermi wavelength in the individual layers and will reveal that the graphene layers are indeed electronically decoupled. In Fig. 3 (A and B), we show dG/dV_{bg} for fixed V_{tg} for top gates, sized $L = 190$ and 320 nm, respectively. For both cases, the cavity width $W \gg L$. The zero-density lines are depicted in yellow for the top layer and dark red for the bottom layer.

The Fabry-Pérot resonator exhibits a pattern that can be qualitatively understood by considering the layer densities in the regions underneath and outside the top gate, as depicted in Fig. 3C. The density in the single-gated outer regions is affected only by V_{bg}. Since $V_{bg} < 0$, the outer regions are p-doped (blue colored). For small voltages, labeled (1) and (2) in Fig. 3 (A and C), the density of each of the two layers is comparable, i.e., there is only a small energy difference U between the two layers (see Fig. 3D). A p-n-p cavity below the top gate is formed for a sufficiently positive top-gate voltage (2) in both layers. Given a large energy difference between the layers, it becomes possible to create a p-n-p cavity in only one layer (3) or also in both (4).

As soon as a p-n-p cavity is formed, the conductance is modulated by standing waves, leading to the observed resonance pattern in Fig. 3 (A and B). In the inner region (3), only one set of Fabry-Pérot resonances, related to zero density in the upper layer, is observed. For densities beyond the zero-density line of the lower layer (dark red line in Fig. 3A), a more complex resonance pattern appears.

The resonance pattern is determined by the Fabry-Pérot condition, where the jth resonance is $j = 2L/\lambda_F = k_F L / \pi$, where L is the cavity size and λ_F is the Fermi wavelength. Note that $k_F = \sqrt{n} \pi$ is given by the density in the top and bottom layer. As expected, we observe a finer spacing of the resonance pattern for the larger cavity (Fig. 3B with $L = 320$ nm) as compared to the smaller cavity (Fig. 3A with $L = 190$ nm). In the region between the zero-density lines, 6 resonances are observed at large U for $L = 190$ nm and even 10 resonances for $L = 320$ nm, i.e., it is possible to fill 10 modes in the upper resonator while there is still no cavity formed in the lower layer. By assuming that L is given by the lithographic size, it follows...
that \(\lambda_{F, \text{bottom}} = 640 \text{ nm} \) and \(\lambda_{F, \text{top}} = 64 \text{ nm} \) once the first mode fits into the cavity in the bottom layer at large \(U \). Therefore, the wavelength can differ by an order of magnitude between two graphene layers despite the fact that those layers are atomically close.

In the measurement, especially for the larger cavity (Fig. 3B), it can also be seen that the oscillation amplitude is largest for either small values of \(V_{bg} \) or close to the zero-density lines. Under these conditions, either the graphene part tuned only by \(V_{bg} \) or the cavity below the top gate is close to zero density; therefore, the density profile along the junction is especially flat, leading to a smooth transition between the cavity and the outer region. The enhanced oscillation amplitude can be understood by considering that smooth p-n interfaces act as strong angular filters (13, 15).

Simulation of density and transport

We now compare the resonance pattern to tight-binding simulations. The underlying density profiles \(n_t(x) \) and \(n_b(x) \) are obtained from a self-consistent electrostatic model where we assume that the dispersion relation remains linear, such that the carrier density formulas (20) derived for single-layer graphene with quantum capacitance (21, 22) taken into account can be readily applied. The extremely thin spacing between the two graphene layers leads to a notable electrostatic coupling. Effectively, the channel potential of the top layer plays the role as a gate for the bottom layer and vice versa. For the twisted bilayer sample B (see Fig. 4A), the electrostatic coupling between the layers is significant, as can be seen by comparing to the classical density profiles (dashed lines). In Fig. 4B, we calculate the interlayer energy difference \(U(V_{tp}, V_{bg}) \) for sample B. The maximum value that we can reach is \(U = 80 \text{ meV} \) in our device. We note here that the formula given in (2, 9) for the displacement field [i.e., \(D = 1/2(C_{tp}V_{tp} - C_{bg}V_{bg}) \)] only holds under the condition \(n_t = -n_b \). Apparently, lines of constant \(U \) (white lines in Fig. 4B) do not have a constant slope in the \((V_{tp}, V_{bg})\) map. A more detailed comparison is given in the Supplementary Materials.

To see whether the electrostatic model is in agreement with the experiment, we perform transport simulations based on a real-space Green’s function approach, considering two dual-gated, electronically decoupled graphene layers. To optimize the visibility of the Fabry-Pérot interference fringes, we implement periodic boundary hoppings along the transverse dimension (23), equivalent to the assumption of infinitely wide graphene samples. This is justified since \(W \gg L \) in our device. The normalized conductances \(g_t(V_{tp}, V_{bg}) \) and \(g_b(V_{tp}, V_{bg}) \) for the top and bottom graphene layers, respectively, are calculated using carrier density profiles \(n_t(x) \) and \(n_b(x) \). The numerical derivative of the results is shown in Fig. 4C. To compare with the measurement, we consider the numerical derivative \(\partial g_{tot}/\partial V_{tp} \) of the sum \(g_t + g_b = g_{tot} \) (Fig. 4D). The excellent agreement to the measurement (Fig. 3B) is a strong indication that the wave functions of the top and bottom layers are essentially decoupled and individually tunable.

The tight-binding theory allows us to compare the electrostatic model to the experiment and to estimate the precision of the obtained value for the graphene interlayer capacitance \(C_m \). For the cavity \(L = 320 \text{ nm} \) and for \(V_{bg} = -10 \text{ V} \), we observe \(N = 11 \pm 1 \) modes between the two zero-density lines in the experimental data (Fig. 3B) and \(N = 11 \pm 0.5 \) modes in the tight-binding data (Fig. 4D). Since the splitting of zero-density lines is proportional to \(C_m \), we estimate the error to be \(\approx 10\% \) for \(C_m \) and therefore, we estimate the dielectric thickness of graphene \(d_s = 2.6 \pm 0.2 \text{ Å} \).

DISCUSSION

We have performed transport experiments for two representative cases of decoupled layers of graphene. We investigated two devices: one where decoupling is achieved by a thin hBN layer (sample A)
and the other where the decoupling is given by the large momentum mismatch between graphene layers due to a large twist angle (sample B). In both cases, we observed a clear splitting of the charge neutrality points in a two-terminal measurement with the strength of the splitting given by \(C_Q / C_m \). By comparing to a self-consistent electrostatic model, we extracted a very large geometric interlayer capacitance \(C_m = 7.5 \pm 0.7 \, \text{fF cm}^{-2} \) for the tBLG sample, which we explained by taking into account an effective dielectric thickness of graphene of \(d_e = 2.6 \pm 0.2 \, \text{Å} \). In a further step, we investigated Fabry-Pérot fringes that originate from p-n-p cavities created with a local top gate and a global back gate. We were able to form a p-n-p cavity in only one of the layers and could tune the wavelength in each layer individually. In an \(L = 320 \, \text{nm} \) cavity, we observed the first mode in the bottom layer, while we had already filled 10 modes in the top layer. The measurements are in very good agreement with the results from tight-binding simulations based on two graphene layers electronically decoupled but electrostatically coupled through their quantum capacitances. Our work emphasizes that the finite thickness of two-dimensional materials is relevant for the electronic properties of van der Waals heterostructures where conducting layers are in close proximity.

MATERIALS AND METHODS

To achieve ballistic transport, we encapsulate (24) either tBLG (sample B) or graphene–3.5-nm hBN–graphene between hBN layers (sample A) and use a graphite bottom gate (25, 26). The alignment of the graphene layers is controlled by the method described in (27, 28), and we used twist angles (between the graphene layers) \(\theta \approx 0^\circ \) for sample A and \(\theta \approx 22^\circ \) for sample B. The thickness of the top, bottom, and intermediate hBN layers is determined by AFM. Electrical one-dimensional contacts are achieved by reactive ion etching and evaporation of Cr/Au. Top gates of sizes 320 and 190 nm are defined by electron beam lithography. By adjusting the top-gate voltage \(V_{tg} \) and the back-gate voltage \(V_{bg} \), a Fabry-Pérot cavity can be formed below the top gate. Two-terminal linear conductance measurements are performed using a low-frequency lock-in technique (177 Hz) at the temperature \(T = 1.5 \, \text{K} \).

REFERENCES AND NOTES

1. K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto, 2D materials and van der Waals heterostructures. Science 353, 949 (2016).
2. J. D. Sanchez-Yamagishi, J. L. Luo, A. F. Young, B. M. Hunt, K. Watanabe, T. Taniguchi, R. C. Ashoori, P. Jarillo-Herrero, Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer. Nat. Nanotechnol. 12, 118–122 (2017).
3. R. V. Gorbachev, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. Tudorovskiy, I. V. Grigorieva, A. H. MacDonald, S. V. Morozov, K. Watanabe, T. Taniguchi, L. A. Ponomarenko, Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).
4. X. Liu, K. Watanabe, T. Taniguchi, B. I. Halperin, P. Kim, Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
5. X. Liu, Z. Hao, K. Watanabe, T. Taniguchi, B. I. Halperin, P. Kim, Interlayer fractional quantum Hall effect in a coupled graphene double-layer. Nat. Phys. 15, 893–897 (2019).
6. M. T. Greenaway, E. E. Vdovin, A. Mishchenko, O. Makarovskiy, A. Patané, J. R. Wallbank, Y. Cao, A. V. Kretinin, M. J. Zhu, S. V. Morozov, V. I. Fal’ko, K. S. Novoselov, A. K. Geim, T. M. Fromhold, L. Eaves, Resonant tunneling between the chiral Landau states of twisted graphene lattices. Nat. Phys. 11, 1057–1062 (2015).
7. A. Luican, G. Li, A. Reina, J. Kong, R. R. Nair, K. S. Novoselov, A. K. Geim, E. Y. Andrei, Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 106, 126802 (2011).
8. A. V. Rozhkov, A. O. Sbyschakov, A. L. Rakhmanov, F. Nori, Electronic properties of graphene-based bilayer systems. Phys. Rep. 648, 1–104 (2016).
9. J. D. Sanchez-Yamagishi, T. Taychatanapat, K. Watanabe, T. Taniguchi, A. Yacoby, P. Jarillo-Herrero, Screening, and layer-polarized isolating states in twisted bilayer graphene. Phys. Rev. Lett. 108, 076601 (2012).
10. T. Chani, R. Ribeiro-Palau, C. R. Dean, K. Shepard, Resistivity of rotated graphite–graphene contacts. Nano Lett. 16, 4477–4482 (2016).
11. R. Ribeiro-Palau, C. Zhang, K. Watanabe, T. Taniguchi, J. Hone, C. R. Dean, Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

12. W. Liang, M. Rockrath, D. Bozovic, J. H. Hafner, M. Tinkham, H. Park, Fabry-Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001).

13. V. V. Cheianov, V. I. Fal’ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene. Phys. Rev. B 74, 041403 (2006).

14. A. F. Young, P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222–226 (2009).

15. P. Rickhaus, R. Maurand, M.-H. Liu, M. Weiss, K. Richter, C. Schönenberger, Ballistic magnetoresistance of suspended graphene. Nat. Commun. 4, 2342 (2013).

16. A. Varlet, M.-H. Liu, V. Krueckl, D. Bischoff, P. Simonet, K. Watanabe, T. Taniguchi, K. Richter, K. Ensslin, T. Ihn, Fabry-Perot interference in gapped bilayer graphene with broken anti-Klein tunneling. Phys. Rev. Lett. 113, 116601 (2014).

17. Y. Huang, J. Wu, K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes. Phys. Rev. B 74, 245413 (2006).

18. S. J. Haigh, A. Gholinia, R. Jallil, S. Romani, L. Britnell, D. C. Elias, K. S. Novoselov, L. A. Ponomarenko, A. K. Geim, R. Gorbachev, Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

19. J. Fang, W. G. Vandenberge, M. V. Fischetti, Microscopic dielectric perturbations of graphene nanoribbons and graphene. Phys. Rev. B 84, 45318 (2016).

20. M.-H. Liu, Theory of carrier density in multigated doped graphene sheets with quantum correction. Phys. Rev. B 87, 125427 (2013).

21. S. Luryi, Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988).

22. T. Fang, A. Konar, H. Xing, D. Jena, Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering. Phys. Rev. B 78, 205403 (2008).

23. M.-H. Liu, K. Richter, Efficient quantum transport simulation for bulk graphene heterojunctions. Phys. Rev. B 86, 115455 (2012).

24. L. Wang, I. Merci, P. Y. Huang, G. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, F. Kim, J. Hone, K. L. Shepard, C. R. Dean, One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

25. A. A. Zibrov, C. Kometter, H. Zhou, E. M. Spanton, T. Taniguchi, K. Watanabe, M. P. Zaelet, A. F. Young, Tunable interacting composite fermion phases in a half-filled bilayer graphene Landau level. Nature 549, 360–364 (2017).

26. H. Overweg, H. Eggimann, X. Chen, S. Slizovskiy, M. Eich, R. Pisoni, Y. Lee, P. Rickhaus, K. Watanabe, T. Taniguchi, V. Fal’ko, T. Ihn, K. Ensslin, Electrostatically induced quantum point contacts in bilayer graphene. Nano Lett. 18, 553–559 (2018).

27. K. Kim, M. Yankowitz, B. Fallahazad, S. Kang, H. C. P. Mova, S. Huang, S. Larentis, C. M. Corbet, T. Taniguchi, K. Watanabe, S. K. Banerjee, B. J. Le Roy, E. Tutuc, Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

28. K. Kim, A. DaSilva, S. Huang, B. Fallahazad, S. Larentis, T. Taniguchi, K. Watanabe, B. J. Le Roy, A. H. MacDonald, E. Tutuc, Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. U.S.A. 114, 3364–3369 (2017).

29. H. Schmidt, T. Liedtke, P. Barthold, E. M. Cagn, V. I. Fal’ko, R. J. Haug, Tunable graphene system with two decoupled monolayers. Appl. Phys. Lett. 93, 127208 (2008).

30. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, L. Ciamician, A. D. Corso, S. de Gironcoli, P. Dalhug, R. A. Di Stasio Jr., A. Ferretti, A. Flores, G. Fratesi, S. Grimani, C. R. Gebauer, T. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kucükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncè, D. Rocca, S. Sabatini, B. Santra, M. Schlifp, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umani, N. Vast, X. Wu, S. Baroni. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465301 (2017).

31. A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

32. A. M. Rappe, K. M. Rabe, E. Kaxiras, J. D. Joannopoulos, Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

33. S. Grimme, J. Antony, S. Ehrlisch, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

34. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

35. H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

36. S. Grimme, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, L. Ciamician, A. D. Corso, S. de Gironcoli, P. Dalhug, R. A. Di Stasio Jr., A. Ferretti, A. Flores, G. Fratesi, S. Grimani, C. R. Gebauer, T. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj, E. Kucükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncè, D. Rocca, S. Sabatini, B. Santra, M. Schlifp, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umani, N. Vast, X. Wu, S. Baroni, Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465301 (2017).

Acknowledgments: Funding: We acknowledge financial support from the European Graphene Flagship, the Swiss National Science Foundation via NCCR Quantum Science and Technology, the Deutsche Forschungsgemeinschaft through SFB 1277 project A07, and the Taiwan Ministry of Science (107-2112-M-006-004-MY3 and 107-2627-E-006-001) and Ministry of Education (Higher Education Sprout Project). This work is also supported by the National Science Center under the contract DEC-2018/29/B/ST3/01892 and, in part, by PAAD Infrastructure cofinanced by Operational Programme Innovative Economy, Objective 2.3. Growth of hBN crystals was supported by the Elemental Strategy Initiative conducted by MEXT, Japan and the CREST (JPMJCR15FS3). JST. Author contributions: P.R. fabricated the device and performed measurements and data analysis. Tight-binding calculations and density simulations were provided by M.H.-L. Density functional theory calculations were performed by M.K. A.K., Y.L., and P.R. were involved in the fabrication and measurements. T.T. and K.W. provided hBN crystals. K.R., K.E., and T.I. supervised the work. All authors contributed to the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.