A NEW MODEL FOR ELECTROSTATIC MEMS WITH TWO FREE BOUNDARIES

MARTIN KOHLMANN

Abstract. A moving boundary problem with two free boundaries modeling a two-dimensional idealized MEMS device with pull-in instability is discussed. We use a fixed point argument to show that the model possesses stationary solutions for small source voltages. We also give a rigorous evidence that solutions of the model converge towards solutions of the associated small aspect ratio equation in the vanishing aspect ratio limit.

CONTENTS

1. Introduction and main results
2. Solvability beyond the pull-in instability
3. The small aspect ratio limit
4. Outlook
References

1. INTRODUCTION AND MAIN RESULTS

Micro-Electro Mechanical Systems (MEMS) are a technology that relies on miniaturized mechanical elements and electro-mechanical devices obtained from microfabrication. Depending on their type of use, MEMS have various applications, e.g., as microsensors or microactuators. Over the past several decades researchers and developers have demonstrated miscellaneous types of MEMS for almost every possible sensing and actuating modality as temperature, pressure, inertial forces, chemical species, magnetic fields or radiation. In particular, accelerometers have become key components of commercial systems as smart phones, navigation systems, air bags and of health-enabling technologies. Due to the wide range of applications and their practical importance, the technology of MEMS has eventually created an interdisciplinary area of research coined by joint work of engineers, physicists and mathematicians.

A simple idealized mathematical model for a modern MEMS device consists of a rigid ground plate and a thin, deformable and elastic membrane that is suspended above the rigid plate and is held fixed along its boundary. A voltage difference between the ground plate and the free membrane induces an electric field in the...
space between the two components of the device and causes a Coulomb force on the membrane and hence a mechanical deformation. We refer the reader to \cite{25, 27, 30} for a detailed presentation of the modeling assumptions leading to the governing equations for this type of model.

In the present paper, we intend to discuss an enhanced model for electrostatic MEMS consisting also of two components, but both of them are free elastic membranes. Pick $u, v \in W^2_{\infty}(-1, 1)$, $0 \geq u > v \geq -1$, let

$$\Omega_{u,v} = \{(x, z) \in (-1, 1) \times \mathbb{R}; v(x) < z < u(x)\}$$

and denote the two horizontal boundary components of $\Omega_{u,v}$ by $\Gamma_u = \{z = u(x)\}$ and $\Gamma_v = \{z = v(x)\}$. The case when no source voltage is applied is modeled by Γ_0 and Γ_{-1}. For non-zero source voltage, the one-dimensional displacement of the membranes from Γ_0 and Γ_{-1} respectively is modeled by the functions u and v; see Fig. 1.

![Figure 1: An idealized model for an electrostatic MEMS device with two free boundaries.](image)

Let $\partial_x = \frac{\partial}{\partial x}, \partial_z = \frac{\partial}{\partial z}, \nabla_\varepsilon = (\varepsilon \partial_x, \partial_z)$ and $\Delta_\varepsilon = \varepsilon^2 \partial_x^2 + \partial_z^2$. Our problem reads

1. $\Delta_\varepsilon \varphi = 0,$ \hspace{1cm} in $\Omega_{u,v}$,
2. $\varphi = \frac{z - v}{u - v}$ \hspace{1cm} on $\partial \Omega_{u,v}$,
3. $\partial_x^2 u = \lambda |\nabla_\varepsilon \varphi|^2,$ \hspace{1cm} on Γ_u,
4. $\partial_x^2 v = -\mu |\nabla_\varepsilon \varphi|^2,$ \hspace{1cm} on Γ_v,
5. $u(\pm 1) = 0,$
6. $v(\pm 1) = -1.$

The function φ models the electrostatic potential in the region $\Omega_{u,v}$ and (1) is the Laplace equation. The parameter $\varepsilon > 0$ is the aspect ratio of the device comparing gap size to device length. The boundary condition (2) stems from the assumption that the potential is equal to one on the upper membrane, vanishes on the lower
membrane and is linear on the boundary components \(\bar{\Omega}_{u,v} \cap \{ x = \pm 1 \} \). The parameters \(\lambda, \mu > 0 \) in Eq. (3) and Eq. (4) are inversely proportional to the surface tension coefficients of the membranes. Precisely, the left-hand sides of (3) and (4) correspond to the curvature of \(\Gamma_u \) and \(\Gamma_v \) respectively, and the right-hand side is the energy density of the electric field inside \(\Omega_{u,v} \). The minus sign in (4) is a consequence of the fact that the membranes should attract each other. Note that \(\lambda \) and \(\mu \) depend quadratically on the source voltage of the device. Finally, we need the conditions (5) and (6) as both membranes should be held fixed on the boundary of \(\Omega_{u,v} \). Observe that (1)–(6) is a free boundary problem since the domain \(\Omega_{u,v} \) and its boundary components \(\Gamma_u \) and \(\Gamma_v \) are a priori unknown and depend on the solution \((u, v, \varphi) \).

A major factor limiting the effectiveness of the idealized MEMS device is the so-called pull-in instability: If the source voltage increases beyond a certain threshold value, the membranes \(\Gamma_u \) and \(\Gamma_v \) will come closer and closer and finally touch. In this case, there is no steady state of the MEMS but structure collapse and failure instead as the mechanical forces can no longer balance the electrostatic forces. To guarantee the functionality of a MEMS device it is of particular importance to know precisely the value of the pull-in voltage. In this context, small aspect ratio models have been studied with regularity in recent years; we refer the reader to [7, 25, 27] for an overview and to [1, 4, 8, 10, 11, 14, 15, 30] for further details. The recent references [2, 3, 23, 31] relate generally to consequences of the small aspect ratio limit. Formally sending \(\varepsilon \to 0 \) in (1)–(6) yields the solution (7)

\[
\varphi_0(x, z) = \frac{z - v}{u - v}
\]

and the coupled system (8)

\[
\begin{align*}
u''(x) &= \frac{\lambda}{(u - v)^2}, \quad u(1) = 0, \\
v''(x) &= -\frac{\mu}{(u - v)^2}, \quad v(1) = -1.
\end{align*}
\]

Eq. (8) and Eq. (9) will be referred to as the small aspect ratio equations of the model (1)–(3). The pull-in instability corresponds to the singularity of the right-hand sides of (8) and (9) obtained for \(u(x) = v(x) \).

The small aspect ratio model of the MEMS model with only one free boundary on \((-1/2, 1/2)\) reads (10)

\[
w''(x) = \frac{\Lambda}{(w + 1)^2}, \quad w(1) = 0,
\]

and has been widely studied in recent years. In [1, 26] it is explained that Eq. (10) is analytically solvable and that its solutions \(w(x; \Lambda) \) satisfy the implicit formula

\[
\sqrt{(w + 1)(w + 1 - \Lambda/E)} + \frac{\Lambda}{E \sqrt{2E}} \tanh^{-1} \sqrt{\frac{w + 1 - \Lambda/E}{w + 1}} = x,
\]

where \(E \) as a function of \(\Lambda \) is obtained from

\[
\sqrt{\frac{1 - \Lambda/E}{2E}} + \frac{\Lambda}{E \sqrt{2E}} \tanh^{-1} \sqrt{1 - \Lambda/E} = 1/2.
\]
It is shown numerically and by bifurcation arguments that there exists a threshold \(\Lambda_*\) such that, for \(0 < \Lambda < \Lambda_*\), Eq. (10) has two solutions and for \(\Lambda > \Lambda_*\), there exists no solution. One of the solutions in the case \(0 < \Lambda < \Lambda_*\) is stable under perturbations while the other one is instable. Since \(\Lambda\) is quadratically proportional to the source voltage, the threshold \(\Lambda_*\) corresponds to the pull-in voltage of the device. Moreover, an asymptotic expansion for \(w\) is computed. The more general narrow-gap model

\[
\alpha^2 \partial^2_t w + \partial_t w - \partial^2_x w = -\frac{\Lambda}{(w+1)^2}, \quad (t, x) \in (0, \infty) \times (-1, 1),
\]

has been subject of [8, 16, 18] in the hyperbolic case \(\alpha > 0\) and of [3, 11, 14, 13, 17, 30] in the parabolic case \(\alpha = 0\).

For \(v \equiv -1\) and \(\mu = 0\), we recover the MEMS model with a fixed ground plate from (11)–(13) and the problem (11)–(13) reduces to the model presented in [20] where the authors prove the existence of a solution \((u, \varphi)\) in suitable Sobolev and Hölder spaces for small values of the parameter \(\lambda\), i.e., for small voltage values. In addition, a justification of the small aspect ratio model (10) is given by showing that steady state solutions of the free boundary problem converge towards stationary solutions of the small aspect ratio equation when the aspect ratio \(\varepsilon\) of the device tends to zero.

The plan of the paper at hand is first to obtain an existence result for the problem (11)–(13) with two free boundaries. We prove that for sufficiently small values of \(\lambda, \mu\), there exists a solution \((u, v, \varphi)\) to (1)–(6) in appropriate function spaces.

Theorem 1. Fix some \(\varepsilon \in (0, 1), r_0 \in (0, \frac{2}{3})\) and \(\alpha \in [0, 1)\). There is a number \(a_0 = a_0(r_0) > 0\) so that the problem (11)–(13) admits for each \((\lambda, \mu) \in (0, a_0)^2\) a solution \((u, v, \varphi)\) such that

\[
\begin{align*}
\varphi &\in W^2_2(\Omega_{u,v}) \cap C(\Omega_{u,v}) \cap C^{2+\alpha}(\Omega_{u,v} \cup \Gamma_u \cup \Gamma_v), \\
\|u\|_{W^2_2(-1,1)}, \|v\|_{W^2_2(-1,1)} &\le r_0.
\end{align*}
\]

The functions \(u, v\) and \(x \mapsto \varphi(x, z)\), for fixed \(z\), are even and \(u\) and \(v\) are convex and satisfy \(|\partial^2_x u(x)|, |\partial^2_x v(x)| \le r_0\). Moreover, there is \(\kappa_0 \in (0, \frac{1}{3})\), independent of \(\varepsilon\), such that

\[
0 \ge u(x) \ge -\frac{1}{3} + \kappa_0 \quad \text{and} \quad -\frac{1}{3} - 2\kappa_0 \ge v(x) \ge -1
\]

and

\[
\|u\|_{W^2_2(-1,1)}, \|v\|_{W^2_2(-1,1)} \le 3.
\]

Our second result shows that for any family \(\{(u_\varepsilon, v_\varepsilon, \varphi_\varepsilon)\}_{\varepsilon \in (0,1)}\) of solutions, obtained under the assumptions of Theorem 1, there is a null sequence \(\{\varepsilon_k\}_{k \in \mathbb{N}}\) such that convergence \((u_{\varepsilon_k}, v_{\varepsilon_k}, \varphi_{\varepsilon_k}) \to (u_0, v_0, \varphi_0), k \to \infty\), to a solution of the small aspect ratio model (7)–(10) associated with (11)–(13) holds. Let \(L_4\) denote the characteristic function of the set \(A \subset \mathbb{R}^2\).

Theorem 2. Let \(\{(u_\varepsilon, v_\varepsilon, \varphi_\varepsilon)\}_{\varepsilon \in (0,1)}\) be a family of solutions to (11)–(13) as specified in Theorem 1. Then there exists a null sequence \(\{\varepsilon_k\}_{k \in \mathbb{N}}\) and solutions \(u_0, v_0\) to
the small aspect ratio equations (8) and (9) such that
\[u_{ε_k} \to u_0 \quad \text{and} \quad v_{ε_k} \to v_0 \quad \text{in} \quad W^1_∞(-1, 1) \]

and
\[ϕ_{ε_k} 1_{Ω_{u_{ε_k}, v_{ε_k}}} \to ϕ_0 1_{Ω_{u_0, v_0}} \quad \text{in} \quad L_2((-1, 1) \times (0, 1)), \]
as \(k \to ∞ \), where \(ϕ_0 = \frac{z - u_0}{u_0 - v_0} \) is the potential in Eq. (7).

2. Solvability beyond the pull-in instability

We first transform the problem (1)–(6) on the a priori unknown domain \(Ω_{u,v} \) to a corresponding problem on the fixed reference domain \(Ω := (-1, 1) \times (0, 1) \); see Fig. 2. Therefore, we introduce a transformation of coordinates \(T = T_{u,v} : Ω_{u,v} \to Ω \) given by
\[
T(x, z) = (x', z') = \left(x, \frac{z - v(x)}{u(x) - v(x)} \right).
\]

One easily checks that, for any \(u, v \in W^2_∞(-1, 1) \), \(T_{u,v} \) is a diffeomorphism \(Ω_{u,v} \to Ω \) with the inverse
\[
T^{-1}(x', z') = (x', z'(u(x') - v(x')) + v(x')).
\]

![Figure 2: Transformation onto a fixed reference domain.](image)

Let \(\tilde{∇}_{u,v} w = T_{u,v} \circ ∇_ε \circ T_{u,v}^{-1} \) and \(\tilde{Δ}_{u,v} ε = T_{u,v} \circ Δ_ε \circ T_{u,v}^{-1} \) denote the transformed first and second order derivative operators on \(Ω \). We omit the tedious calculations leading to the explicit formulas
\[
\tilde{Δ}_{u,v} w = ε^2 w_{x' x'} - 2ε^2 w_{x' z'} \left(\frac{z' (\tilde{u}' - \tilde{v}') + \tilde{v}'}{\tilde{u} - \tilde{v}} \right) + \frac{ε^2 [z' (\tilde{u}' - \tilde{v}') + \tilde{v}']^2}{(\tilde{u} - \tilde{v})^2} - \frac{ε^2 w_{z' z'} [z' (\tilde{u}' - \tilde{v}') + \tilde{v}']}{\tilde{u} - \tilde{v}} - \frac{z' (\tilde{u}'' - \tilde{v}'') + \tilde{v}''}{\tilde{u} - \tilde{v}}
\]
and
\[
\tilde{∇}_{u,v} w = \begin{pmatrix} ε w_{x'} \\ \frac{w_{z'}}{\tilde{u} - \tilde{v}} \end{pmatrix} + \frac{w_{z'}}{\tilde{u} - \tilde{v}} \left(ε [z' (\tilde{v}' - \tilde{u}')] - \frac{\tilde{v}'}{1} \right)
\]
with $(\tilde{u}, \tilde{v}, \tilde{\varphi}) = (u, v, \varphi) \circ T^{-1}_{w,v}$. The transformed problem \([1]–[6]\) on the fixed domain Ω then reads

\begin{align}
\Delta_{u,v;x}\tilde{\varphi} &= 0, & \text{in } \Omega, \\
\tilde{\varphi} &= z', & \text{on } \partial\Omega, \\
\partial^2_{x} \tilde{u} &= \lambda|\nabla_{u,v;x}\tilde{\varphi}|(\cdot,1)^2, & \text{on } (-1,1), \\
\partial^2_{x} \tilde{v} &= -\mu|\nabla_{u,v;x}\tilde{\varphi}|(\cdot,0)^2, & \text{on } (-1,1), \\
\tilde{u}(\pm1) &= 0, \\
\tilde{v}(\pm1) &= -1.
\end{align}

For $r_0 \in (0, \frac{2}{3})$, let

\begin{align*}
C_1 := \{u \in W^2_{\infty}(-1,1); u(x) = u(-x), u(\pm1) = 0, 0 \leq \partial^2_x u \leq r_0\}, \\
C_2 := \{v \in W^2_{\infty}(-1,1); v(x) = v(-x), v(\pm1) = -1, -r_0 \leq \partial^2_x v \leq 0\}.
\end{align*}

The following lemma and Lemma 4 of \cite{20} provide some important properties of the sets C_1 and C_2.

Lemma 3. The sets C_1, C_2 are convex, closed and bounded subsets of $W^2_q(-1,1)$ for any $1 \leq q \leq \infty$, and there is $\kappa_0 \in (0, \frac{1}{q})$ such that $0 \geq u(x) \geq -\frac{1}{q} + \kappa_0$ and $-\frac{1}{3} - 2\kappa_0 \geq v(x) \geq -1$, for all $(u, v) \in C_1 \times C_2$, $-1 \leq x \leq 1$.

Proof. It follows immediately from the definitions that C_1, C_2 are convex and closed in $W^2_{\infty}(-1,1)$. Thus C_1, C_2 are weakly closed in $W^2_{\infty}(-1,1)$ and hence convex and closed in $W^2_q(-1,1)$ for any $1 \leq q \leq \infty$. As shown in \cite{20}, any $u \in C_1$ satisfies

\begin{align}
0 &\geq u \geq -\frac{r_0}{2}, \\
|\partial_x u| &\leq 2r_0
\end{align}

on $(-1,1)$, and C_1 is bounded in $W^2_q(-1,1)$ for any $1 \leq q \leq \infty$. Pick $v \in C_2$ and $x, y \in (-1,1)$. We integrate

\[\partial_x v(x) = \partial_x v(y) + \int_y^x \partial^2_x v(z) \, dz \]

with respect to y on $(-1,1)$ and use that $v(-1) = v(+1)$ to obtain that

\begin{align}
|\partial_x v| &\leq 2r_0.
\end{align}

Since v is concave and $v(\pm1) = -1$, we also have $v \geq -1$. Assume that v attains a maximum at $x_m \in [0,1)$. Then $\partial_x v(x_m) = 0$ and

\[v(x) - v(x_m) = \int_{x_m}^x \partial_x v(y) \, dy = \int_{x_m}^x (x - y)\partial^2_x v(y) \, dy. \]

Using once again the boundary condition $v(1) = -1$, we observe that

\[-1 - v(x_m) = \int_{x_m}^1 (1 - y)\partial^2_x v(y) \, dy \geq -r_0. \]

Then

\[v \leq v(x_m) \leq r_0 - 1 < -\frac{r_0}{2}, \]
as \(r_0 \in (0, \frac{2}{3}) \), and we infer that
\[
-1 \leq v < u \leq 0 \quad \text{on } [-1, 1].
\]
In particular, \(C_2 \) is bounded in \(W^2_q((-1,1)) \) and hence in \(W^2_q(-1,1) \) for any \(1 \leq q \leq \infty \). We let \(\kappa_0 = \frac{1}{2} \left(\frac{2}{3} - r_0 \right) \) to complete the proof. \(\square \)

Lemma 3 shows that, for \((u, v) \in C \times C_2, \Omega_{u,v} \) is as defined in the introduction. The next step will be to solve the subproblem (13), (14) for \((u, v) \in C \times C_2 \) given.

Proposition 4. Given \((u, v) \in C \times C_2, \) there is a unique solution \(\tilde{\phi} = \tilde{\phi}_{u,v;\varepsilon} \) to the problem (13), (14). Moreover, \(\tilde{\phi} \) is even with respect to \(x', \)
\[
-1 \leq z'(u(x') - \tilde{v}(x')) + \tilde{v}(x') \leq \tilde{\phi}(x', z') \leq 1, \quad (x', z') \in \Omega,
\]
and
\[
\|\tilde{\phi}\|_{W^2_q(\Omega)} \leq c_1
\]
for some positive constant \(c_1 = c_1(r_0, \varepsilon) \). Finally, for any \(\varepsilon > 0 \), the mapping
\[
(u, v) \mapsto \tilde{\phi}_{u,v;\varepsilon} : C \times C_2 \rightarrow W^2_q(\Omega)
\]
is continuous when \(C \times C_2 \) is equipped with the product topology of \(W^2_q(-1,1) \times W^2_q(-1,1) \).

Proof. We show that \(-\tilde{\Delta}_{u,v;\varepsilon} \) is elliptic for \((u, v) \in C \times C_2 \) by showing that its principal part
\[
A := \begin{pmatrix}
\varepsilon^2 & -\varepsilon^2 z'(u'-\tilde{v}') + \tilde{v}' \\
-\varepsilon^2 z'(u'-\tilde{v}') + \tilde{v}' & \frac{1 + \varepsilon^2 z'(u'-\tilde{v}') + \tilde{v}'}{(u-\tilde{v})^2}
\end{pmatrix}
\]
is positive definite. Let
\[
t = \varepsilon^2 + \frac{1 + \varepsilon^2 [z'(u'-\tilde{v}') + \tilde{v}']^2}{(u-\tilde{v})^2}
\]
denote the trace and the determinant of \(A \). Using the estimates (19)–(21) it is easy to derive that
\[
1 + \varepsilon^2 \leq t \leq C_1 \varepsilon^2 + C_2 \quad \text{and} \quad d \geq \varepsilon^2,
\]
where \(C_1, C_2 > 0 \) only depend on \(r_0 \). Since the eigenvalues \(e_\pm \) of \(A \) are given by
\[
e_\pm = \frac{1}{2} \left(t \pm \sqrt{t^2 - 4d} \right)
\]
we conclude that
\[
e_+ \geq e_- \geq \frac{e_+ e_-}{e_+ + e_-} = \frac{d}{t} \geq \frac{\varepsilon^2}{C_1 \varepsilon^2 + C_2} > 0.
\]
Hence \(-\tilde{\Delta}_{u,v;\varepsilon} \) is strictly elliptic and the ellipticity constant depends only on \(r_0 \) and \(\varepsilon \) and not on \((u, v) \in C \times C_2 \).

Setting \(\psi(x', z') = \tilde{\phi}(x', z') - z' \), the problem (13), (14) is equivalent to
\[
-\tilde{\Delta}_{u,v;\varepsilon} \psi = f_{u,v;\varepsilon} \quad \text{in } \Omega,
\]
\[
\psi = 0 \quad \text{on } \partial \Omega,
\]
where

$$f_{u,v,z} = \varepsilon^2 \left(\frac{z'(\tilde{u}' - \tilde{v}')}{(\tilde{u} - \tilde{v})^2} [z'(\tilde{u}' - \tilde{v}') + \tilde{v}''] - \frac{z''(\tilde{u}' - \tilde{v}')}{(\tilde{u} - \tilde{v})} \right).$$

Clearly, \(f \in L_\infty(\Omega) \) with \(\|f_{u,v,z}\|_{L_\infty(\Omega)} \leq C_3 \varepsilon^2 \), \(C_3 = C_3(r_0) > 0 \). Rewriting \(\Delta_{u,v,z} \) in divergence form,

$$\Delta_{u,v,z} w = \partial_{x'} \left(\varepsilon^2 w_{x'} - \varepsilon^2 \frac{z'(\tilde{u}' - \tilde{v}') + \tilde{v}'}{(\tilde{u} - \tilde{v})} w_{x'} \right) + \partial_{z'} \left(-\varepsilon^2 \frac{z'(\tilde{u}' - \tilde{v}') + \tilde{v}'}{(\tilde{u} - \tilde{v})} w_{x'} + \frac{1 + \varepsilon^2[z'(\tilde{u}' - \tilde{v}') + \tilde{v}']^2}{(\tilde{u} - \tilde{v})^2} \right)$$

$$- \varepsilon^2 (\tilde{u}' - \tilde{v}') w_{x'},$$

we see that the coefficients of \(\Delta_{u,v,z} \) are uniformly bounded with respect to \((u,v) \in C_1 \times C_2\). Applying Theorem 9.1 and Theorem 10.1 in [20], we conclude that there exists a unique solution \(\psi = \psi_{u,v,z} \in W_2^2(\Omega) \) to (24), (25) such that

$$\|\psi\|_{W_2^2(\Omega)} \leq C_4 (\|\psi\|_{L_2(\Omega)} + 1)$$

with a constant \(C_4 \) depending on \(r_0 \) and \(\varepsilon \), but not on \((u,v) \in C_1 \times C_2\). The function \(\tilde{\phi}(x',z') = \psi(x',z') + \tilde{c} \) clearly solves (13) and (14). Let \(1 \) be the constant function with value 1 on \(\overline{\Omega} \). Then \(\Delta_{u,v,z} 1 \equiv \Delta_{u,v,z} \tilde{\phi} = 0 \) in \(\Omega \) and \(\tilde{\phi} \leq 1 \) on \(\partial \Omega \). By the maximum principle \(\tilde{\phi} \leq 1 \) in \(\overline{\Omega} \) and hence \(\tilde{\phi}(x',z') \leq 1 \) for all \((x',z') \in \Omega\). Let \(w := z'(\tilde{u} - \tilde{v}) + \tilde{v} \). By (12), \(\Delta_{u,v,z} w = 0 \) in \(\Omega \) and \(w \leq \tilde{\phi} \) on \(\partial \Omega \). A further application of the maximum principle achieves \(w \leq \tilde{\phi} \) in \(\overline{\Omega} \) and this completes the proof of (22). Combining (22) and (28) we immediately obtain \(\|\tilde{\phi}\|_{W_2^2(\Omega)} \leq C_5 \), for some positive constant \(C_5 \) only depending on \(r_0 \) and \(\varepsilon \), and hence (23). To see that \(\tilde{\phi} \) is even, we observe that, since \(\tilde{u} \) and \(\tilde{v} \) are even, the operator \(\Delta_{u,v,z} \) is invariant under the transformation \((x',z') \mapsto (-x',z') \). Hence \(\tilde{\phi}(-x',z') \) is another solution of (13), (14) and, by uniqueness, \(\tilde{\phi}(x',z') = \tilde{\phi}(-x',z') \), as was to be shown. That \((u,v) \mapsto \tilde{\phi}_{u,v,z}\) is continuous follows from analogous arguments as in the proof of Lemma 6 in [21].

In the following lemma we obtain control of the gradient of \(\tilde{\phi} \) on the horizontal boundary components.

Lemma 5. There is a constant \(c_2 > 0 \) depending only on \(r_0 \in (0, 1/2) \) and \(\varepsilon \in (0, 1) \) such that the solution \(\tilde{\phi}_{u,v,z} \) to (13), (14), for \((u,v) \in C_1 \times C_2\), satisfies

$$\|\partial_{x'} \tilde{\phi}_{u,v,z}(\cdot,0)\|_{W^{1/2}_2(-1,1)} \leq c_2 \quad \text{and} \quad \|\partial_{z'} \tilde{\phi}_{u,v,z}(\cdot,1)\|_{W^{1/2}_2(-1,1)} \leq c_2$$

and there is a constant \(c_3 > 0 \) such that

$$0 \leq \langle \partial_{x'} \tilde{\phi}_{u,v,z}(x',0), \partial_{x'} \tilde{\phi}_{u,v,z}(x',1) \rangle \leq 1 + c_3 \varepsilon^2, \quad x' \in (-1, 1).$$

Proof. Applying Theorem II-5.5 in [21] and (28), there is a positive constant \(k_1 \) only depending on \(\Omega \) such that

$$\|\partial_{x'} \tilde{\phi}_{u,v,z}(\cdot,0)\|_{W^{1/2}_2(-1,1)} \leq k_1 \|\tilde{\phi}_{u,v,z}\|_{W_2^2(\Omega)} \leq c_2.$$
Let \(w_\alpha(z') := (z')^{1+\alpha}, \alpha > 0\). Then \(\tilde{\varphi}_{u,v,z} \geq w_\alpha\) on \(\partial \Omega\), and using (19), (20), (21), \(|\tilde{u}'|, |\tilde{v}'| \leq r_0\) and \(z' \in (0,1)\), we infer that there is a constant \(k_3 > 0\) such that for interior points we have

\[
\tilde{\Delta}_{u,v,z} w_\alpha = \alpha (1+\alpha)(z')^{\alpha-1} \frac{1+\varepsilon^2[z'(\tilde{u} - \tilde{v}) + \tilde{v}]^2}{(\tilde{u} - \tilde{v})^2} + \varepsilon^2 \alpha (z')^{\alpha-1} \left(\frac{2}{(\tilde{u} - \tilde{v})^2} z' \tilde{u}' \tilde{v}' \left(\frac{z' (\tilde{u}' - \tilde{v}') + \tilde{v}'}{\tilde{u} - \tilde{v}} \right) \right) \geq \frac{(1+\alpha)(z')^{\alpha-1}}{(\tilde{u} - \tilde{v})^2} \left(\alpha - \frac{3}{2} k_3 r_0 \varepsilon^2 \right).
\]

As \(r_0 < \frac{3}{4}\) we conclude that \(-\tilde{\Delta}_{u,v,z} w_{k_3 \varepsilon^2} \leq 0\) in \(\Omega\) so that, by the weak maximum principle,

\[
w_{k_3 \varepsilon^2} - \tilde{\varphi}_{u,v,z} \leq \max_{\Omega} \{w_{k_3 \varepsilon^2} - \tilde{\varphi}_{u,v,z}\} = \max_{\partial \Omega} \{w_{k_3 \varepsilon^2} - \tilde{\varphi}_{u,v,z}\} \leq 0,
\]

i.e., \(\tilde{\varphi}_{u,v,z} \geq w_{k_3 \varepsilon^2}\) in \(\Omega\). For \(z' \neq 1\) we observe

\[
\frac{1}{z'-1}(\tilde{\varphi}_{u,v,z}(x', z') - \tilde{\varphi}_{u,v,z}(x', 1)) = \frac{1}{z'-1}(\tilde{\varphi}_{u,v,z}(x', z') - 1) \leq \frac{1}{z'-1}(w_{k_3 \varepsilon^2}(z') - w_{k_3 \varepsilon^2}(1)).
\]

Sending \(z' \to 1\) yields \((\partial_{z'} \tilde{\varphi}_{u,v,z})(x', 1) \leq \partial_{z'}(w_{k_3 \varepsilon^2})(1) = 1 + k_3 \varepsilon^2\). Finally, as \(\tilde{\varphi}_{u,v,z} \leq 1\) in \(\Omega\) and \(\tilde{\varphi}_{u,v,z}(x', 1) = 1\), we must have \((\partial_{z'} \tilde{\varphi}_{u,v,z})(x', 1) \geq 0\). Similarly, we obtain

\[
\frac{1}{z'}(\tilde{\varphi}_{u,v,z}(x', z') - \tilde{\varphi}_{u,v,z}(x', 0)) = \frac{1}{z'} \tilde{\varphi}_{u,v,z}(x', z') \geq \frac{1}{z'}(w_{k_3 \varepsilon^2}(z') - w_{k_3 \varepsilon^2}(0)),
\]

and hence \((\partial_{z'} \tilde{\varphi}_{u,v,z})(x', 0) \geq (\partial_{z'} w_{k_3 \varepsilon^2})(0) = 0\). Let \(\tilde{w}_\alpha(z') = w_\alpha(1 - z')\). Then

\[
\tilde{\Delta}_{u,v,z} \tilde{w}_\alpha \geq \frac{(1+\alpha)(1-z')^{\alpha-1}}{(\tilde{u} - \tilde{v})^2} \left(\alpha - \frac{3}{2} k_3 r_0 \varepsilon^2 \right),
\]

and \(-\tilde{\Delta} \tilde{w}_{k_3 \varepsilon^2} \leq 0\). Again, by the weak maximum principle,

\[
\tilde{w}_{k_3 \varepsilon^2} - (1 - \tilde{\varphi}_{u,v,z}) \leq \max_{\Omega} \{\tilde{w}_{k_3 \varepsilon^2} - (1 - \tilde{\varphi}_{u,v,z})\} = \max_{\partial \Omega} \{\tilde{w}_{k_3 \varepsilon^2} - (1 - \tilde{\varphi}_{u,v,z})\} \leq 0,
\]

i.e., \(\tilde{\varphi}_{u,v,z} \leq 1 - \tilde{w}_{k_3 \varepsilon^2}\) in \(\Omega\). Hence

\[
\frac{1}{z'}(\tilde{\varphi}_{u,v,z}(x', z') - \tilde{\varphi}_{u,v,z}(x', 0)) = \frac{1}{z'} \tilde{\varphi}_{u,v,z}(x', z') \leq \frac{1}{z'} \left(1 - (1 - z')^{1 + k_3 \varepsilon^2}\right)
\]

and L'Hospital's rule implies that \((\partial_{z'} \tilde{\varphi}_{u,v,z})(x', 0) \leq 1 + k_3 \varepsilon^2\). This completes the proof of the lemma. \(\square\)
Equations (15) and (16) with the boundary conditions (17) and (18) read

\[
\partial_{x^2}^2 \tilde{u} = \lambda \frac{1 + \varepsilon^2 (\partial_{x^2} \tilde{u})^2}{(\tilde{u} - \tilde{v})^2} |(\partial_{x^2} \tilde{\varphi})(\cdot, 1)|^2, \\
\tilde{u}(\pm 1) = 0
\]

and

\[
\partial_{x^2}^2 \tilde{v} = -\mu \frac{1 + \varepsilon^2 (\partial_{x^2} \tilde{v})^2}{(\tilde{u} - \tilde{v})^2} |(\partial_{x^2} \tilde{\varphi})(\cdot, 0)|^2, \\
\tilde{v}(\pm 1) = -1.
\]

Let

\[g_{u,v} := \frac{1 + \varepsilon^2 (\partial_{x^2} \tilde{u})^2}{(\tilde{u} - \tilde{v})^2} |(\partial_{x^2} \tilde{\varphi})(\cdot, 1)|^2,\]
\[h_{u,v} := \frac{1 + \varepsilon^2 (\partial_{x^2} \tilde{v})^2}{(\tilde{u} - \tilde{v})^2} |(\partial_{x^2} \tilde{\varphi})(\cdot, 0)|^2.\]

Since \(g_{u,v}, h_{u,v} \in L_\infty(-1, 1)\) the second order problem

\[
w''(x') = (\lambda g_{u,v}(x'), -\mu h_{u,v}(x')), \\
w(\pm 1) = (0, -1)
\]

possesses for any \(\lambda, \mu > 0\) a unique solution \(w = S(u, v) \in W_\infty^2(-1, 1)^2\). Our goal is to show that the map \(S = (S_1, S_2)\) has a fixed point in \(C_1 \times C_2\) by means of Schauder’s theorem.

Proposition 6. Pick \(r_0 \in (0, \frac{1}{2})\) and \(\varepsilon \in (0, 1)\) and let

\[a_0 = a_0(r_0) := \frac{r_0(\frac{1}{2}r_0 - 1)^2}{(1 + c_3)^2(1 + 4r_0^2)}.\]

The problem (15)-(18) admits for each \((\lambda, \mu) \in (0, a_0)^2\) a solution

\[(\tilde{u}, \tilde{v}, \tilde{\varphi}_{u,v; \varepsilon}) \in C_1 \times C_2 \times W_2^{2+\sigma}(\Omega).\]

The function \(\tilde{\varphi}_{u,v; \varepsilon}\) satisfies the properties stated in Proposition 4 and \(\tilde{u}, \tilde{v}\) satisfy the bounds established in Lemma 5. Moreover, \(\tilde{u}, \tilde{v}\) belong to \(W_2^{2+\sigma}(-1, 1)\) for any \(\sigma \in [0, 1/2)\).

Proof. Recall that \(C_1, C_2\) are convex, closed and bounded subsets of \(W_2^2(-1, 1)\). Using the arguments in the proof of Lemma 8 of [20], we see that \(S_i : C_1 \times C_2 \rightarrow W_2^{2+\sigma}(-1, 1), i = 1, 2,\) is continuous for each \(\sigma \in [0, 1/2)\) and there is a positive constant \(c_4\) depending on \(r_0, \varepsilon\) and \(\sigma\) such that

\[\|S(u, v)\|_{W_2^{2+\sigma}(-1, 1)^2} \leq \max\{\lambda, \mu\}c_4, \quad \forall (u, v) \in C_1 \times C_2.\]

Clearly, \(S(u, v)\) is even, since \(\tilde{u}, \tilde{v}\) and \(x' \mapsto \tilde{\varphi}\) are even, and \(S_1(u, v)\) and \(-S_2(u, v)\) are convex in view of (19) and (30). Observe that, for all \((u, v) \in C_1 \times C_2,\)

\[0 \leq \partial_{x^2}^2 S_1(u, v) = \lambda \frac{1 + \varepsilon^2 (\partial_{x^2} \tilde{u})^2}{(\tilde{u} - \tilde{v})^2} |(\partial_{x^2} \tilde{\varphi})(\cdot, 1)|^2 \leq \frac{\lambda}{a_0} r_0.\]

Then \(0 \leq \partial_{x^2}^2 S_1(u, v) \leq r_0\) for \(\lambda \in (0, a_0]\). Similarly, one has \(0 \geq \partial_{x^2}^2 S_2(u, v) \geq -r_0\) for \(\mu \in (0, a_0]\). This shows that \(S : C_1 \times C_2 \rightarrow C_1 \times C_2\) for \((\lambda, \mu) \in (0, a_0)^2\). The
embedding $W^{2+\sigma}(-1,1)\hookrightarrow W^2_2(-1,1)$ is compact and hence $S: C_1 \times C_2 \to C_1 \times C_2$ is continuous and compact and has a fixed point $(\tilde{u}, \tilde{v}) \in C_1 \times C_2$ in view of Schauder’s theorem. It follows from our definitions that \tilde{u} and \tilde{v} enjoy the properties stated in the proposition. □

We finally improve the regularity of $(\tilde{u}, \tilde{v}, \tilde{\varphi})$ and pull the solution back to $\Omega_{u,v}$.

The following corollary completes the proof of Theorem 1.

Corollary 1. Let $(\tilde{u}, \tilde{v}, \tilde{\varphi}_{u,v})$ denote the solution to \(13\)–\(18\) obtained in Proposition 6 and let $\alpha \in [0,1)$. Then $(u, v, \varphi) = (\tilde{u}, \tilde{v}, \tilde{\varphi}_{u,v}) \circ T_{u,v}$ is a solution to \(1\)–\(6\) with regularity

$$u, v \in C^{2+\alpha}([-1,1]),$$

$$\varphi \in W^2_2(\Omega_{u,v}) \cap C(\overline{\Omega_{u,v}}) \cap C^{2+\alpha}(\Omega_{u,v} \cup \Gamma_u \cup \Gamma_v).$$

Proof. As $\Omega_{u,v}$ is a Lipschitz domain (cf. \[12, Ch. 6.2\]) and satisfies the exterior cone condition (cf. \[12, p. 193\]) on any point of $\partial \Omega_{u,v}$, and as $T_{u,v} \in C(\Omega_{u,v}, \overline{\Omega})$, we can apply the arguments in the proof of Corollary 10 of \[20\] to infer that $\varphi \in W^2_2(\Omega_{u,v}) \cap C(\overline{\Omega_{u,v}})$ is an even solution with respect to x to \(1\)–\(6\). Similarly, as the boundary $\partial \Omega_{u,v}$ is a curvilinear polygon of class C^1 (cf. \[13, Def. 1.4.5.1\]) with the four vertices $V = \{(\pm 1, -1), (1, -1), (-1, 0), (1, 0)\}$ connected by W^∞_∞-curves, it remains to check that $\omega_v \in (0, \pi/2]$, for all $v \in V$, where ω_v denotes the measure of the angle at $v \in V$, cf. \[20\]. This is clearly satisfied as

$$\omega_{(\pm 1,0)} = \arccos \left(\frac{(\partial_x u)(1)}{\sqrt{1 + (\partial_x u)(1)^2}} \right) \in (0, \pi/2],$$

$$\omega_{(\pm 1,-1)} = \arccos \left(\frac{(\partial_y v)(1)}{\sqrt{1 + (\partial_y v)(1)^2}} \right) \in (0, \pi/2].$$

It follows immediately that $u, v \in C^{2+\alpha}([-1,1])$ and, as $\Omega_{u,v}$ satisfies an exterior sphere condition (cf. \[12, p. 27\]) on any boundary point, that $\varphi \in C^{2+\alpha}(\Omega_{u,v} \cup \Gamma_u \cup \Gamma_v)$; cf. \[12, Thm. 6.13 & Lem. 6.18\]. □

3. The small aspect ratio limit

Fix r_0 and α, λ and μ as in Theorem 1 and consider a family $\{(u_\epsilon, v_\epsilon, \varphi_\epsilon)\}_{\epsilon \in (0,1)}$ of solutions to \(11\). Recall that $\varphi_\epsilon = \varphi_\epsilon \circ T_{w_\epsilon,v_\epsilon}^{-1}$, with $T_{u,v}$ as in \(11\), and define $\psi_\epsilon: \Omega \to \mathbb{R}$ by $\psi_\epsilon(x', z') = \varphi_\epsilon(x', z') - z'$. Let us first obtain some uniform estimates on ψ_ϵ.
Lemma 7. Fix $0 < \epsilon_0 < 1$. There exists a positive constant K depending only on κ_0 and ϵ_0 such that, for all $\epsilon \in (0, \epsilon_0]$,

\begin{align*}
(31) \quad & \|\psi_\epsilon\|_{L^\infty(\Omega)} \leq 2, \\
(32) \quad & \|\psi_\epsilon\|_{L^2(\Omega)} \leq K\epsilon, \\
(33) \quad & \|\partial_x \psi_\epsilon\|_{L^2(\Omega)} \leq K\epsilon, \\
(34) \quad & \|\partial^2_x \psi_\epsilon\|_{L^2(\Omega)} \leq K\epsilon^2.
\end{align*}

Proof. By (23), we have $-2 \leq \psi_\epsilon \leq 1$ and hence (31) follows. Let $f_\epsilon = f_{u_\epsilon, v_\epsilon; \epsilon}$ as in (26). Then

\begin{equation}
(35) \quad \|f_\epsilon\|_{L^\infty(\Omega)} \leq C_1 \epsilon^2,
\end{equation}

with $C_1 = C_1(\kappa_0) > 0$. In view of (24), (25) and (27), integration by parts yields

\[\int_{\Omega} f_\epsilon \psi_\epsilon \, d(x', z') = \int_{\Omega} (-\Delta_x \psi_\epsilon) \psi_\epsilon \, d(x', z') = \sum_{k=1}^{5} I_k \]

where

\begin{align*}
I_1 &= \epsilon^2 \int_{\Omega} (\partial_{x'} \psi_\epsilon)^2 \, d(x', z'), \\
I_2 &= -2\epsilon^2 \int_{\Omega} \frac{z'(\bar{u}_\epsilon' - \bar{v}_\epsilon')}{\bar{u}_\epsilon - \bar{v}_\epsilon} \, d(x', z'), \\
I_3 &= \int_{\Omega} \frac{1 + \epsilon^2 [z'(\bar{u}_\epsilon' - \bar{v}_\epsilon') + \bar{v}_\epsilon']^2 (\partial_{x'} \psi_\epsilon)^2 \, d(x', z'),}{} \\
I_4 &= \epsilon^2 \int_{\Omega} (\bar{u}_\epsilon' - \bar{v}_\epsilon') \frac{z'(\bar{u}_\epsilon' - \bar{v}_\epsilon') + \bar{v}_\epsilon'}{(\bar{u}_\epsilon - \bar{v}_\epsilon)^2} (\partial_{x'} \psi_\epsilon) \psi_\epsilon \, d(x', z'), \\
I_5 &= -\epsilon^2 \int_{\Omega} \frac{\bar{u}_\epsilon'}{\bar{u}_\epsilon - \bar{v}_\epsilon'} (\partial_{x'} \psi_\epsilon) \psi_\epsilon \, d(x', z').
\end{align*}

Now

\[I_1 + I_2 + I_3 = \int_{\Omega} \epsilon^2 \left(\frac{(\partial_{x'} \psi_\epsilon)^2}{\bar{u}_\epsilon - \bar{v}_\epsilon} (\bar{u}_\epsilon' - \bar{v}_\epsilon') + \bar{v}_\epsilon' \right) \frac{\partial_{x'} \psi_\epsilon}{\bar{u}_\epsilon - \bar{v}_\epsilon} \, d(x', z') \]

and, as $|\psi_\epsilon| \leq 2$ and $|\Omega| = 2$,

\[|I_4| \leq C_2 \epsilon^2 \|\partial_{x'} \psi_\epsilon\|_{L^2(\Omega)}, \quad C_2 = C_2(\kappa_0) > 0. \]

Again using integration by parts and (25), I_5 can be rewritten in the form

\[I_5 = \frac{\epsilon^2}{2} \int_{\Omega} \partial_{x'} \left(\frac{\bar{u}_\epsilon'}{\bar{u}_\epsilon - \bar{v}_\epsilon} \right) \psi_\epsilon^2 \, d(x', z') \]

and hence there is a constant $C_3 = C_3(\kappa_0) > 0$ such that $|I_5| \leq C_3 \epsilon^2$. Now

\[\int_{\Omega} f_\epsilon \psi_\epsilon \, d(x', z') \geq \|\partial_{x'} \psi_\epsilon\|_{L^2(\Omega)}^2 - C_2 \epsilon^2 \|\partial_{x'} \psi_\epsilon\|_{L^2(\Omega)} - C_3 \epsilon^2 \]

\[= (\epsilon \|\partial_{x'} \psi_\epsilon\|_{L^2(\Omega)} - C_2 \epsilon^2/2)^2 + (1 - \epsilon^2)\|\partial_{x'} \psi_\epsilon\|_{L^2(\Omega)}^2 \]

\[- (C_2^2/4 + C_3) \epsilon^2 \]
and hence
\[4C_1\varepsilon^2 \geq \int_{\Omega} f_{x_0}\psi_{x_0}^2(x', z') \geq (1 - \varepsilon^2)\|\partial_x\psi_x\|_{L^2(\Omega)}^2 - \left(\frac{C_2^2}{4} + C_3\right)\varepsilon^2. \]

As \(0 < \varepsilon \leq \varepsilon_0 < 1\) we infer that
\[\|\partial_x\psi_x\|_{L^2(\Omega)}^2 \leq \frac{4C_1 + C_2^2/4 + C_3}{(1 - \varepsilon_0)^2}\varepsilon^2. \]

Thus there is \(C_4 = C_4(\kappa_0, \varepsilon_0) > 0\) such that \(\|\partial_x\psi_x\|_{L^2(\Omega)} \leq C_4\varepsilon\) and this proves (33). Estimate (32) follows from (25), (33), the Cauchy-Schwarz inequality and Fubini’s Theorem as
\[
\|\psi_x\|_{L^2(\Omega)}^2 = \int_{\Omega} \int_{z'} \|\partial_x\psi(x', y')\|^2 dy' d(x', z') \leq \int_{\Omega \times [0, 1]} |\partial_x\psi_x(x', y')|^2 d(x', y', z')
\]
\[
= \|\partial_x\psi_x\|_{L^2(\Omega)}^2 \leq C_4^2\varepsilon^2.
\]

Now we compute
\[
(36) \quad \int_{\Omega} f_{x_0}(\partial_{x_0}^2\psi_{x_0}) d(x', z') = \int_{\Omega} (-\Delta_x\psi_x)(\partial_{x_0}^2\psi_{x_0}) d(x', z') = \sum_{k=1}^4 J_k
\]
where
\[
J_1 = \varepsilon^2 \int_{\Omega} (\partial_{x_0}^2\psi_{x_0})(\partial_{x_0}^2\psi_{x_0}) d(x', z'),
\]
\[
J_2 = -2\varepsilon^2 \int_{\Omega} \frac{z'(\tilde{u}_x^2 - \tilde{v}_x^2) + \tilde{v}_x^2}{(\tilde{u}_x - \tilde{v}_x)^2}(\partial_{x_0}\partial_x\psi_{x_0})(\partial_{x_0}^2\psi_{x_0}) d(x', z'),
\]
\[
J_3 = \int_{\Omega} \frac{1 + \varepsilon^2(z'(\tilde{u}_x^2 - \tilde{v}_x^2) + \tilde{v}_x^2)^2}{(\tilde{u}_x - \tilde{v}_x)^2}(\partial_{x_0}^2\psi_{x_0})^2 d(x', z'),
\]
\[
J_4 = \int_{\Omega} f_{x_0}(\partial_x\psi_{x_0})(\partial_{x_0}^2\psi_{x_0}) d(x', z').
\]

By [13, Lem. 4.3.1.2. & 4.3.1.3], \(J_1\) can be rewritten as
\[
J_1 = \varepsilon^2 \int_{\Omega} (\partial_{x_0}^2\psi_{x_0})^2 d(x', z').
\]

Hence Eq. (36) can be rewritten as
\[
\int_{\Omega} f_{x_0}(1 - \partial_{x_0}\psi_{x_0})(\partial_{x_0}^2\psi_{x_0}) d(x', z')
\]
\[
= \varepsilon^2 \int_{\Omega} \left(\partial_{x_0}\partial_x\psi_{x_0} - \frac{z'(\tilde{u}_x^2 - \tilde{v}_x^2) + \tilde{v}_x^2}{\tilde{u}_x - \tilde{v}_x}\partial_{x_0}^2\psi_{x_0}\right)^2 d(x', z') + \int_{\Omega} \frac{|\partial_{x_0}^2\psi_{x_0}|^2}{(\tilde{u}_x - \tilde{v}_x)^2} d(x', z')
\]
and we conclude
\[
\|\partial_{x_0}^2\psi_{x_0}\|_{L^2(\Omega)}^2 \leq \int_{\Omega} \frac{|\partial_{x_0}^2\psi_{x_0}|^2}{(\tilde{u}_x - \tilde{v}_x)^2} d(x', z') \leq \int_{\Omega} f_{x_0}(1 - \partial_{x_0}\psi_{x_0})(\partial_{x_0}^2\psi_{x_0}) d(x', z')
\]
\[
\leq \|f_{x_0}\|_{L^\infty(\Omega)}(\sqrt{2} + \|\partial_{x_0}\psi_{x_0}\|_{L^2(\Omega)})\|\partial_{x_0}^2\psi_{x_0}\|_{L^2(\Omega)}.
\]

By (33) and (35), there is a constant \(C_5 = C_5(\kappa_0, \varepsilon_0) > 0\) such that
\[
\|\partial_{x_0}^2\psi_{x_0}\|_{L^2(\Omega)} \leq C_5\varepsilon^2.
\]
This implies \(\ell_\lambda \) and choosing \(K \) to be the maximum of \(C_4 \) and \(C_5 \) completes the proof of our lemma. \(\square \)

Remark 8. For the proof of Theorem 2 we will also need a slightly extended version of [20, Lem. 12]: For \(\vartheta \in W_2^2(\Omega) \) we have

\[
\| (\partial_x \vartheta)(\cdot, 0) \|_{L_2(-1, 1)} + \| (\partial_x \vartheta)(\cdot, 1) \|_{L_2(-1, 1)} \leq \sqrt{2} \left(\| \partial_x \vartheta \|_{L_2(\Omega)} + \| \partial_{xx} \vartheta \|_{L_2(\Omega)} \right).
\]

Since the proof of the estimate for \(\| (\partial_x \vartheta)(\cdot, 0) \|_{L_2(-1, 1)} \) is analogous to what is presented in [20, Lem. 12], we omit it for the convenience of the reader.

Proof of Theorem 2. Since \(\{ \epsilon_k \}_{\epsilon \in (0, 1)} \) and \(\{ \epsilon_k \}_{\epsilon \in (0, 1)} \) are bounded in \(W_2^2(-1, 1) \), a successive application of the Arzelà-Ascoli Theorem yields the existence of a null sequence \(\{ \epsilon_k \}_{k \geq 1} \) and \(\{ \nu_k \}_{k \geq 1} \) of real-valued functions on \((-1, 1)\), and \(u_0, v_0 \in W^2_\infty(-1, 1) \) such that

\[
\begin{align*}
\epsilon_k &\to u_0 \quad \text{in } W^1_\infty(-1, 1), \\
\nu_k &\to v_0 \quad \text{in } W^1_\infty(-1, 1), \\
\epsilon_k &\to u_0 \quad \text{in } W^2_\infty(-1, 1), \\
\nu_k &\to v_0 \quad \text{in } W^2_\infty(-1, 1).
\end{align*}
\]

Then \(0 \geq u_0(x) \geq -1/3 + \kappa_0 \) and \(-1/3 - 2\kappa_0 \geq v_0(x) \geq -1 \) on \([-1, 1]\] and, by Lemma 7 and 57,

\[
\frac{1 + \epsilon_k^2 (\partial_{zz} \epsilon_k)^2}{(u_k - \varphi_k)^2} | (\partial_{zz} \epsilon_k)(\cdot, 1)|^2, \quad \frac{1 + \epsilon_k^2 (\partial_{zz} \nu_k)^2}{(u_k - \varphi_k)^2} | (\partial_{zz} \nu_k)(\cdot, 0)|^2 \to \frac{1}{(u_0 - v_0)^2}
\]

in \(L_1(-1, 1) \). In particular, \(u_0, v_0 \) are solutions to the small aspect ratio equations \(\mathbf{8} \) and \(\mathbf{9} \) satisfying \(u_0(\pm 1) = 0 \) and \(v_0(\pm 1) = -1 \). Applying Lemma 7 to \(\psi_k = \tilde{\varphi}_{\epsilon_k} - z' \), we get

\[
\lim_{k \to \infty} \| \psi_k \|_{L_2(\Omega)} = \lim_{k \to \infty} \int_{\Omega} | \tilde{\varphi}_{\epsilon_k}(x', z') - z'|^2 d(x', z') = 0
\]

and by the change of variables \((x', z') \to (x, z)\)

\[
\int_{\Omega} | \tilde{\varphi}_{\epsilon_k}(x', z') - z'|^2 d(x', z') = \int_{-1}^{1} \int_{v_k}^{u_k} | \varphi_{\epsilon_k}(x, z) - \frac{z - v_k}{u_k - v_k} |^2 \frac{dx \, dz}{u_k - v_k} \geq \int_{-1}^{1} \int_{v_k}^{u_k} | \varphi_{\epsilon_k}(x, z) - \frac{z - v_k}{u_k - v_k} |^2 \, dx \, dz,
\]

so that \(\varphi_{\epsilon_k} 1_{\Omega_{u_k, v_k}} \to \varphi_0 1_{\Omega_{u_0, v_0}} \) in \(L_2(\Omega) \). This achieves the proof. \(\square \)

4. Outlook

In this paper we have shown that the problem \(\mathbf{1} \)–\(\mathbf{6} \) possesses solutions for small values \(\lambda, \mu \) and we have given a justification of the associated small aspect ratio model by proving convergence towards solutions of \(\mathbf{8}, \mathbf{9} \) when the aspect ratio of the device tends to zero. In this section, we present some plans for further research associated with the model introduced in this paper.
We do not yet have a deeper insight into the behavior of the MEMS model with two independent parameters λ, μ for large values of λ or μ. For instance, one can ask for the occurrence of the pull-in instability in case of, e.g., λ small and μ large. A first goal for further work is to vary (λ, μ) through the parameter space $(0, \infty)^2$ and to check whether (and where) the solution constructed here ceases to exist and which consequences this has for the problem.

For the idealized MEMS model with a fixed ground plate, the authors of [5, 6] have recently shown that the parabolic free boundary problem with the condition

$$\partial_t u - \partial^2_x u = -\lambda \left(\varepsilon^2 |\partial_x \varphi|^2 + |\partial_z \varphi|^2 \right), \quad t > 0, \quad x \in (-1, 1),$$

on the free boundary possesses some interesting mathematical and physical properties: First, the associated MEMS model is shown to be locally well-posed in $W^2_p(-1, 1), 2 < p < \infty$. Next, the authors address global existence issues and present a result on asymptotic stability of the stationary solutions. Finally, the small aspect ratio limit is discussed in a similar manner as in [20]. From the technical point of view, the approach of [5] benefits from a fixed point argument, regularizing effects of the heat semigroup, Lyapunov theory and the Principle of Linearized Stability. The parabolic MEMS model with one free boundary and an additional curvature term is the subject of [6].

It is an open problem to study the parabolic free boundary problem with two free boundaries. Then the functions u and v depend on a temporal variable $t \geq 0$ and the spatial variable $x \in [-1, 1]$ and the elliptic operator $-\partial^2_x$ on the left-hand side of [3], [4] and [8], [9] has to be replaced by the parabolic operator $\partial_t - \partial^2_x$. A further generalization may be obtained by adding terms of the form $\alpha^2 \partial^2_t u$ and $\beta \partial^4_x u$ on the left-hand side of [3] and similarly in [4] respectively, as explained in [22]. The parameters $\alpha, \beta > 0$ model the mechanical effects damping and bending.

In [28, 29], a disk shaped idealized MEMS device model is presented. In this model, the rigid ground plate and the elastic membrane have drum shaped geometry. Assuming cylindrical symmetry, the displacement of the free membrane only depends on the radial component. It is not far to seek that the drum shaped model can be generalized by allowing for two moving boundaries as explained in this paper. A further reference concerning radially symmetric solutions of a MEMS model with bending and stretching is [21] where the authors discuss fourth-order elliptic equations.

Acknowledgement. The author is grateful to the anonymous referee whose suggestions helped to improve the initial version of this paper.

References

[1] D.H. Bernstein, P. Guidotti, and J.A. Pelesko. Analytical and numerical analysis of electrostatically actuated MEMS devices. Proceedings of Modeling and Simulation of Microsystems 2000, San Diego, CA, pp. 489–492, 2000.

[2] N.D. Brubaker, A.E. Lindsay. The onset of multivalued solutions of a prescribed mean curvature equation with singular non-linearity. European Journal of Applied Mathematics, doi:10.1017/S0956792513000077.
[3] N.D. Brubaker, J.A. Pelesko. Non-linear effects on canonical MEMS models. European J. Appl. Math. 22(5):455–470, 2011.
[4] T.A. Driscoll and J.A. Pelesko. The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models. J. Engrg. Math., 53(3-4):239–252, 2005.
[5] J. Escher, P. Laurençot, and C. Walker. A parabolic free boundary problem modeling electrostatic MEMS. arXiv:1211.5973v1.
[6] J. Escher, P. Laurençot, and C. Walker. Dynamics of a free boundary problem with curvature modeling electrostatic MEMS. arXiv:1302.6026v1.
[7] P. Esposito, N. Ghoussoub, and Y. Guo. Mathematical analysis of partial differential equations modeling electrostatic MEMS, volume 20 of Courant Lecture Notes in Mathematics. Courant Institute of Mathematical Sciences, New York, 2010.
[8] G. Flores, G. Mercado, and J.A. Pelesko. Dynamics and touchdown in electrostatic MEMS. Proceedings of IDETC/CIE 2003, 19th ASME Biennial Conf. on Mechanical Vibration and Noise, pp. 1–8, 2003.
[9] G. Flores, G. Mercado, J.A. Pelesko, and N. Smyth. Analysis of the dynamics and touchdown in a model of electrostatic MEMS. SIAM J. Appl. Math., 67(2):434–446 (electronic), 2006/07.
[10] N. Ghoussoub and Y. Guo. On the partial differential equations of electrostatic MEMS devices: stationary case. SIAM J. Math. Anal., 38(5):1423–1449 (electronic), 2006/07.
[11] N. Ghoussoub and Y. Guo. On the partial differential equations of electrostatic MEMS devices. II. Dynamic case. NoDEA Nonlinear Differential Equations Appl., 15(1-2):115–145, 2008.
[12] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der mathematischen Wissenschaften 224. Springer-Verlag, Berlin, 1977.
[13] P. Grisvard. Elliptic problems in nonsmooth domains, volume 24 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[14] Y. Guo. Global solutions of singular parabolic equations arising from electrostatic MEMS. J. Differential Equations, 245(3):809–844, 2008.
[15] Y. Guo. On the partial differential equations of electrostatic MEMS devices. III. Refined touchdown behavior. J. Differential Equations, 244(9):2277–2309, 2008.
[16] Y. Guo. Dynamical solutions of singular wave equations modeling electrostatic MEMS. SIAM J. Appl. Dyn. Syst., 9(4):1135–1163, 2010.
[17] K.M. Hui. The existence and dynamic properties of a parabolic nonlocal MEMS equation. Nonlinear Anal., 74(1):298–316, 2011.
[18] N.I. Kavallaris, A.A. Lacey, C.V. Nikolopoulos, and D.E. Tzanetis. A hyperbolic non-local problem modelling MEMS technology. Rocky Mountain J. Math., 41(2):505–534, 2011.
[19] O.A. Ladyzhenskaya and N.N. Uraltseva. Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York, 1968.
[20] P. Laurençot and C. Walker. A stationary free boundary problem modeling electrostatic MEMS. Arch. Rational Mech. Anal. 207(1):139–158, 2013.
[21] P. Laurençot and C. Walker. Sign-preserving property for some fourth-order elliptic operators in one dimension and radial symmetry. arXiv:1303.2237.
[22] J. Lega, A.E. Lindsay. Quenching solutions of a fourth order PDE with a singular nonlinearity modelling a MEMS capacitor. SIAM J. Appl. Math. 72(3):935–958, 2012.
[23] Z. Liu, X. Wang. On a parabolic equation in MEMS with fringing field. Arch. Math. 98(4):373–381, 2012.
[24] J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris, 1967.
[25] J.A. Pelesko and D.H. Bernstein. Modeling MEMS and NEMS. Chapman & Hall/CRC, Boca Raton, FL, 2003.
[26] J.A. Pelesko and A.A. Triolo. Nonlocal Problems in MEMS Device Control. Proceedings of Modeling and Simulation of Microsystems 2000, San Diego, CA, pp. 509–512.
[27] J.A. Pelesko and A.A. Triolo. Nonlocal problems in MEMS device control. J. Engrg. Math., 41(4):345–366, 2001.
[28] J.A. Pelesko. Electrostatic field approximations and implications for MEMS devices. ESA 2001 Proceedings, pp. 126–137.
[29] J.A. Pelesko. Multiple Solutions in Electrostatic MEMS. Proceedings of Modeling and Simulation of Microsystems 2001, Hilton Head, SC, pp. 290–293.
[30] J.A. Pelesko. Mathematical modeling of electrostatic MEMS with tailored dielectric properties. SIAM J. Appl. Math., 62(3):888–908 (electronic), 2001/02.
[31] J. Wei. Point ruptures for a MEMS equation with fringing field. Commun. PDE 37:1462–1493, 2012.

Dr. Martin Kohlmann, Goerderlerstrae 36, 38228 Salzgitter, Germany
E-mail address: martin_kohlmann@web.de