Impaired Reduction of N$_2$O to N$_2$ in Acid Soils Is Due to a Posttranscriptional Interference with the Expression of nosZ

Binbin Liu,a Åsa Frostegård,a Lars R. Bakkenb
Departments of Chemistry, Biotechnology, and Food Sciencea and Environmental Sciences,b Norwegian University of Life Sciences, Ås, Norway

ABSTRACT Accumulating empirical evidence over the last 60 years has shown that the reduction of N$_2$O to N$_2$ is impaired by low soil pH, suggesting that liming of acid soils may reduce N$_2$O emissions. This option has not gained much momentum in global change research, however, possibly due to limited understanding of why low pH interferes with N$_2$O reductase. We hypothesized that the reason is that denitrifying organisms in soils are unable to assemble functional N$_2$O reductase (N$_2$OR) at low pH, as shown to be the case for the model strain Paracoccus denitrificans. We tested this by experiments with bacteria extracted from soils by density gradient centrifugation. The soils were sampled from a long-term liming experiment (soil pH 4.0, 6.1, and 8.0). The cells were incubated (stirred batches, He atmosphere) at pH levels ranging from 5.7 to 7.6, while gas kinetics (NO, N$_2$O, and N$_2$) and abundances of relevant denitrification genes (nirS, nirK, and nosZ) and their transcripts were monitored. Cells from the most acidic soil (pH 4.0) were unable to reduce N$_2$O at any pH. These results warrant a closer inspection of denitrification communities of very acidic soils. Cells from the neutral soils were unable to produce functional N$_2$OR at pH values of ≤6.1, despite significant transcription of the nosZ gene. The N$_2$OR expressed successfully at pH 7.0, however, was functional over the entire pH range tested (5.7 to 7.6). These observations lend strong support to our hypothesis: low soil pH diminishes/prevents reduction of N$_2$O, primarily by precluding a successful assembly of functional N$_2$O reductase.

IMPORTANCE Impaired N$_2$O reduction in acid soils was first observed ~60 years ago, and the phenomenon has been rediscovered several times since then. The practical implication would be that the emissions of N$_2$O from cropped soils could be controlled by soil pH management, but this option has largely been ignored till now. One reason for this could be that the mechanisms involved have remained obscure. Here, we provide compelling evidence that the primary reason is that low pH interferes with the making of the enzyme N$_2$O reductase rather than the function of the enzyme if properly assembled. The implications are important for understanding how pH controls the kinetics of N$_2$O and N$_2$ production by denitrification. The improved understanding provides credibility for soil pH management as a way to mitigate N$_2$O emissions.

Denitrification in soil is the major source of atmospheric N$_2$O (1, 2), which contributes to global warming and destruction of stratospheric ozone. The ultimate driver of the ongoing N$_2$O accumulation in the atmosphere is the input of reactive nitrogen to the biosphere through fertilization and biological nitrogen fixation in agriculture and NOx from combustion (3). This anthropogenic reactive nitrogen will sooner or later return to the atmosphere either as N$_2$O or N$_2$, depending on a plethora of factors which control the N$_2$/N$_2$O/N$_2$ product ratio of denitrification within the various parts of the biosphere. This product ratio determines the atmospheric footprint of anthropogenic nitrogen, and the mechanisms controlling this ratio are a key issue where microbial ecology can possibly find solutions to a major environmental problem (4).

Wijler, Delwiche, and Nömmik (5, 6) pioneered investigations of the gaseous products of denitrification in soils and provided the first evidence for a negative effect of acidity on the rate of N$_2$O reduction. Since then, the phenomenon has been rediscovered several times with a variety of soils as summarized by Šimek and Cooper (7), and it now appears an indisputable fact that the N$_2$O/(N$_2$O + N$_2$) product ratio of denitrification in soils tends to increase with increasing acidity of the soils. The implication of this would be that N$_2$O emission from cropped soils could be minimized by management of pH in cropped soils. However, this mitigation option has not gained much momentum, and only a few attempts have been made to rigorously test the effect of pH management on N$_2$O emission in agronomic field experiments as summarized by Qu et al. (8). We believe that there are two main reasons for this lack of interest: the strength of the pH control of the N$_2$/N$_2$O/N$_2$ product ratio of denitrification has not been fully appreciated, and the mechanisms involved have not been understood.

Recent experiments with the model organism Paracoccus denitrificans (9) shed some light on the mechanisms. At pH 7, P. denitrificans reduced NO$_3^-$ to N$_2$, with negligible amounts of N$_2$O emitted. At pH values of <7, transient accumulation of N$_2$O was
observed, which increased with decreasing pH, and at pH 6 the cultures produced only N₂O. Thus, with decreasing pH, the cells had increasing difficulty in expressing nitrous oxide reductase (N₂O:OR) activity. It was demonstrated that this was not due to a restriction at the transcriptional level. A series of supplementary experiments showed that N₂O:OR, expressed at pH 7, was fully functional at pH 6, although the specific rate was ~50% of that at pH 7. The observed pH response curve of N₂O reduction rate was in good agreement with the pH response of N₂O:OR in vitro as determined by Fujita and Dooley (10). The most plausible explanation for these observations is that low pH interferes with the assembly of the enzyme, which occurs in the periplasm (11), where pH is expected to be less controlled than in the cytoplasm (9).

We recently obtained some evidence for a similar posttranscriptional effect of low pH on the expression of N₂O:OR in soil bacterial communities, by measuring gene transcription and rates of N₂O reduction in soils from long-term liming experiments (12). In those experiments, where intact soils were investigated, the functional N₂O:OR was produced at substantially lower soil pH than the minimum for this to occur in P. denitrificans. This could suggest that the soils harbor bacteria with a more acid-tolerant expression of N₂O:OR than that of P. denitrificans. Direct evidence for this cannot be provided by such soil incubation experiments, however, due to the potential creation of neutral/alkaline microsites within the soil matrix. This is one reason the pH preference of soil bacteria can only be studied by extracting the cells from the soil matrix (13, 14). Another shortcoming of experiments with intact soil is that it is impossible to test whether functional N₂O:OR, expressed at pH 7, is functional at low pH, as shown for P. denitrificans.

To address these questions, we extracted cells by density gradient centrifugation from soils previously studied (12). The extracted cells were transferred to liquid medium and exposed to a pH range of 5.7 to 7.6. The NO, N₂O, and N₂ production during the incubation period of 28 h with oxic conditions. The entire procedure from extraction and no fluorescent signals were emitted.

RESULTS

NO, N₂O, and N₂ production. To characterize the pH-dependent kinetics of NO, N₂O, and N₂ production by denitrification, we extracted cells from the three soils (pHm 4.0, 6.1, and 8.0), transferred them to media with 3 pH levels (pHm 5.7, 6.1, and 7.6) in gas-tight serum vials, and replaced the air with helium (He) after a period of 28 h with oxic conditions. The entire procedure from soil to anoxic incubation is illustrated in Fig. 1. At the end of the incubation, measured pH was marginally higher (<0.2 pH units) than the initial pH. The NO, N₂O, and N₂ production during the anoxic phase is shown in Fig. 2. The pHm had a profound effect on the rate of denitrification and the composition of its gas production. None of the communities were able to produce detectable amounts of N₂ at pHm 5.7 and 6.1. At pHm 7.6, the communities from pHm 6.1 and pHm 8.0 soils produced transient N₂O peaks but finally converted all available NO₃⁻ to N₂ (50 µmol N₂ vial⁻¹). The recovery of NO₃⁻ to N₂ was close to 100% for treatment, which reached stable plateaus of either N₂ or N₂O (2 mM NO₃⁻ in 50 ml = 100 µmol N).

In contrast, the community from pHm 4.0 was unable to produce N₂ even at pHm 7.6. This lack of N₂:OR activity was not expected, and we investigated the phenomenon further in a series of experiments at several pHm levels of around 7, using the same procedure as that for the results presented in Fig. 2. This invariably showed that practically all NO₃⁻ was converted to N₂O. The results of these experiments (including those presented in Fig. 2) are summarized in Fig. 3a, where the N₂O indices are plotted against pHm. For the bacteria extracted from pHm 4.0 soil, the indices were around 1.0 at all tested pH levels, i.e., the production of N₂ was insignificant.

Another conspicuous effect of pHm is that the transient NO accumulation declined with increasing pHm. This is clearly seen in Fig. 2 and further elaborated in Fig. 3b, where the NO indices are plotted against pHm (based on the data presented in Fig. 2 and the supplemental experiments with bacteria extracted from the soil with pHm 4.0). In addition to this direct effect of pHm on NO accumulation, the communities were different; NO indices were highest for the community from the most acidic soil.

Since the pHm 6.1 and 8.0 soil communities showed very similar pH-dependent denitrification phenotypes, we decided to concentrate on the soil with intermediate pH (6.1) for testing our core hypothesis regarding the pH dependency of N₂O reductase synthesis. This ensured the cells used were extracted from a soil of which the pH was within the experimental pH range (pHm 5.7 to 7.6).

Quantification of functional genes and transcripts. Standard curves for calibration of quantitative PCR were linear for all genes studied (10² to 10⁶ copies; r² > 0.99, efficiency of ~76 to 87%). Melting curve analysis showed one distinct peak for each expected PCR product and no nonspecific peaks. The primers for nosZ generated a dimer peak in the melting curve analysis, but this did not influence the accuracy of the quantitative PCR since the data were collected at 82°C, where the primer dimer had been denu- tured and no fluorescent signals were emitted.

Figure 4 shows the copy numbers of nirK, nirS, and nosZ genes (a to c) and transcripts (d to f) throughout the anoxic incubation, with a slow increase throughout the incubation. The initial copy numbers of nirK genes declined with pH, reflecting changes during the 28 h of oxic preincubation at the respective pHm (see Fig. 1). Although pHm clearly affected the growth of denitrifying bacteria, both during the 28-h oxic preincubation (resulting in different initial number of gene copies during the anoxic incubation) and during the anoxic incubation, the pHm had no consistent effect on the ratio between the copy numbers of nosZ and nir (nirK + nirS), as shown in Fig. S1 in the supplemental material.

Transcription of the nirS, nirK, and nosZ genes was quantified for the pHm 6.1 samples when incubated in media with pHm 5.7, 6.1, and 7.6. For nirS and nosZ genes, the transcription, presented as mRNA copy numbers, increased sharply during the first 10 to 15 h and reached somewhat higher levels at pHm 7.6 than at pHm 6.1 (Fig. 4). The NirK mRNA copy numbers were 1 to 2 orders of magnitude lower than those of nirS.

To evaluate whether pHm had any effect on the transcriptional
regulation of the three genes, we calculated the number of transcripts per gene (i.e., cDNA/DNA). Figure 5 shows the average values (cDNA/DNA) for the first 40 h of incubation (the ratios throughout the anoxic incubation are shown in Fig. S2 in the supplemental material). For nosZ, these average transcription ratios were low (0.01 to 0.02) and essentially independent of pH_m. Higher values were recorded for nirS, with a trend toward lower values at the highest pH, although this was not statistically significant (P = 0.33, one-way analysis of variance [ANOVA]). This trend was even more pronounced for nirK (and statistically significant, P = 0.007).

Since the gene copy numbers increased substantially during the first 20 h of anoxic incubation at pH_m 6.1 and 7.6 (Fig. 4), one might suspect a major shift in the bacterial community composition due to growth of one or a few populations, representing only a small fraction of the originally extracted bacteria. We evaluated this qualitatively by running denaturing gradient gel electrophoresis (DGGE) analyses of the nosZ genes during the first 80 h of the pH_m 7.6 incubation of cells extracted from soil with pH 6.1. The results show a large number of bands which were essentially unaltered during the whole incubation period (see Fig. S3 in the supplemental material).

The cells extracted from the pH 4.0 soil were unable to make functional N2OR even at pH 7.0 to 7.6 (Fig. 2 and 3). To investigate if this could be due to lack of nosZ transcription, gene transcripts for this community were quantified during incubation in medium with pH_m 7.6. The results showed that the copy numbers of nirS and nosZ transcripts were in the same range as for cells extracted from pH 6.1 soil, but the cells were unable to reduce N2O to N2 (Fig. 6).

FIG 1 Outline of the oxic/anoxic incubations of cells extracted from soils with different pH (pH 4.0, 6.1, and 8.0). The cells were incubated in minimal media with different pH (pH_m 5.7, 6.1, and 7.6) at 15°C.

pH sensitivity of N\textsubscript{2}OR. The direct effect of pH on N\textsubscript{2}OR activity and oxic respiration was tested by first producing cells with an intact denitrification proteome developed at pH 7.0 (weakly buffered medium), which were then used to inoculate vials with strongly buffered medium covering a pH range from 5.7 to 7.6 (lower pH levels could be desirable but would require another buffer system). Two sets of vials were incubated, both with a medium without NO\textsubscript{3} and NO\textsubscript{2} but with different treatments regarding headspace gas composition. Set 1 had 10 ml O\textsubscript{2} liter-1 in the headspace, in order to measure oxic respiration. Set 2 had anoxic (He) headspace with N\textsubscript{2}O (~5.4 ml liter-1) and nitrate-free medium, in order to measure the potential rate of N\textsubscript{2}O reduction. The outline of the entire experiment is illustrated in Fig. S4 in the supplemental material. The results are summarized in Fig. 7, where the average rates during the first 5 h of incubation are plotted against pHm. The oxic respiration rate (Fig. 7A) was ~1 μmol O\textsubscript{2} vial-1 h-1 and not much affected by pHm. The rates of N\textsubscript{2}O reduction (Fig. 7B) were ~1.15 μmol N\textsubscript{2}O vial-1 h-1 at pH 7.2 and 7.6 and fell gradually with pH to reach ~0.6 μmol N\textsubscript{2}O vial-1 h-1 at pH 5.7.

DISCUSSION

The primary denitrification experiments (Fig. 1 and 2) were designed to investigate whether any of the soils along the pH gradient from 4.0 to 8.0 harbored denitrifying bacteria that could produce functional N\textsubscript{2}OR at lower pH than the limit observed for *P. denitrificans* (9). The results indicate that this is not the case; all three soil communities were unable to produce significant amounts of functional N\textsubscript{2}OR at pHm values of ≤6.1 within the time span of the incubation experiments (~100 h), suggesting that the published results from the denitrification model organism demonstrate a more general phenomenon applicable to a wide range of different bacteria. This leads to the obvious question of how organisms in intact soils with pH values of ≤6.1 were indeed able to reduce some N\textsubscript{2}O to N\textsubscript{2} (albeit later/slower than in the more alkaline soils) under anoxic conditions, as demonstrated in...
our previous study (12). Our tentative explanation is that the successful making of N2OR in moderately acid soils (i.e., pH of ~6.0) takes place in neutral/alkaline microsites with higher pH than the average (bulk) pH of the soil. Such microsites may be created within and around clusters of actively denitrifying cells. This has been demonstrated in biofilms (15) and utilized to differentiate between denitrifying and nondenitrifying colonies in agar (16).

We are not aware of any studies of this phenomenon in soils, but alkalinization (1 to 2 pH units) of the soil close to roots during active uptake of NO3− has been demonstrated (17). If the finding for the model organism *P. denitrificans* (9) also applies to other bacteria, a local pH value of 6.1 is needed to make the N2OR. This would be increasingly difficult with increasing acidity of the soil, thus explaining the observation that the transient peak of N2O increased gradually with increasing soil acidity (12). An interesting extrapolation of this is that the distribution of denitrifi-
cation activity within the soil matrix (clumped in large colonies versus dispersed throughout the soil) could have an effect on the N₂O emission: locally neutral/high pH may be reached in microsites with a high density of actively denitrifying bacteria (hence production of functional N₂OR), whereas single cells within the soil matrix are unlikely to achieve this.

We were also interested in the kinetics of NO accumulation during anoxic respiration since NO is considered a strong inducer of transcription of nir and nor, coding for nitrite and nitric oxide reductase, respectively (18). NO was also recently found to induce nosZ transcription in P. denitrificans (19). The results (Fig. 2) demonstrate that the transient accumulation of NO decreased with increasing pHm and that the community from the most acidic soil produced more NO than those from the more alkaline soils compared at the same pHm (Fig. 3). Thus, low pH soils appear to select for organisms that produce large amounts of NO due to imbalanced denitrification. Imbalanced denitrification leading to a high net production of NO was recently demonstrated for Agrobacterium tumefaciens in response to changing oxygen levels (20, 21). An alternative explanation could be that low-pH soil selects for organisms that reduce all nitrate to nitrite prior to the reduction of nitrite, which has been observed for certain strains within the genus Thauera (22). Nitrite accumulation would enhance NO emission at moderately low pH due to chemical decomposition (23).

By quantification of gene transcription as a function of pHm, we wanted to clarify if pH affected the transcriptional regulation of nosZ. The data as presented in Fig. 4 (copies vial⁻¹) could suggest that the transcription of nosZ is strongly repressed by low pH. However, transcription must be evaluated against the copy number of the same genes. The copy number of nosZ genes was clearly higher in the vials with higher pHm, even at the onset of the anoxic incubation. This probably reflects that the organisms harboring the nosZ genes grow faster at high than at low pH, both during the oxic incubation and during the subsequent anoxic incubation. A stringent test is thus to calculate the ratio of mRNA copies/DNA copies of nosZ as shown in Fig. 5. This suggests that pH had no effect on the transcriptional regulation of the nosZ genes (the mRNA/DNA ratio for nosZ was not much affected by pH). It should be kept in mind, though, that PCR-based quantifications of genes and transcripts are biased. The PCR primers used in this study will not capture all the genes coding for N₂OR (24). However, the mRNA/DNA ratios should be valid for the genes amplified with the primers used, since cDNA and DNA were amplified by the same set of primers. Thus, for the organisms harboring these genes, there is no evidence for a pH-dependent transcription of the nosZ gene. The result corroborates earlier findings (9, 12) that transcriptional regulation provides no explanation for the low N₂OR activity in acid soils.

The results for the cells extracted from soil with pH 4.0 are difficult to understand for several reasons. One would expect that if denitrifying bacteria with an acid-tolerant N₂OR expression exist, they should be selected in the most acidic soil, but the results lend no support to this notion; the bacteria extracted from the most acidic soil were unable to produce functional N₂OR even at pH values around 7.0 (Fig. 2 and 3). We hypothesized that the complete lack of N₂OR activity in the pH₄ 4.0 cells could be ascribed to a “silencing” of the nosZ genes in this soil through mutation of the nosZ gene itself or another gene necessary for its expression, such as nosR (25). The latter was reported in a recent, comparative study of denitrification in strains within the genus Thauera, of which one strain was unable to reduce N₂O to N₂, apparently due to the absence of an intact nosR gene (22). However, the quantification of transcripts (Fig. 6) in cell extracts from the pH₄ 4.0 soil in the present study lends no support to such lack of transcription, at least for the organisms whose nosZ genes were captured by our primers. An alternative explanation is that mutations may have occurred in other genes coding for factors involved in nosZ maturation or, as discussed above, that those factors do not function at low pH.

The complete lack of N₂ production by the cells from the soil with pH₄ 4.0, even at pHm values of ≥7, is in stark contrast to recent findings in our laboratory that this soil is able to express N₂OR quite effectively in response to liming (unpublished data). This may suggest a serious bias in the cell extraction by density gradient centrifugation. Nadeem et al. (26) recently investigated this by comparing the kinetics of N₂O and N₂ production by loosely attached and strongly attached cells (the latter extracted by vigorous dispersion of the pellet beneath the density gradient of the first extraction). The results demonstrated a moderate bias in
the sense that the loosely attached cells produced less N₂ and more N₂O than the strongly attached cells. This bias might be more severe for the soil with pH 4.0 than for the other soils, thus reconciling the apparently conflicting observations of the response to increased pH (intact soil responding by N₂O reduction, extracted cells not). This does not resolve the puzzle, however, that the cells extracted from this soil were notoriously unable to reduce N₂O to N₂ despite significant transcription of nosZ (Fig. 6).

In the last set of experiments, cells with an intact denitrification proteome, expressed at pH 7.0, were challenged to reduce N₂O at a range of pH values (Fig. 7). The results strongly support our hypothesis that the successfully assembled N₂OR is functional over a wide pH range and provide indirect evidence that the complete inability of the indigenous soil bacteria to produce active N₂OR at pH values of ≤6.1 is a posttranscriptional problem which is due to interference with the making of the enzyme. At present, we do not know why organisms are unable to make functional N₂OR at pH values of ≤6.1. Based on the results with P. denitrificans, we hypothesized that it may be due to interference with the assembly of the protein in the periplasm where the insertion of Cu²⁺ is possibly hindered by low pH (9). If so, the enzyme could be “repaired” by increasing the pH, as demonstrated for copper-deficient N₂OR in Pseudomonas stutzeri (27). In theory, this may even happen at low pH, albeit so slowly that it will not be observed within the time frame of our incubation experiments. Further investigations are needed to clarify these questions.

One would expect that acid environments select for organisms which are able to produce active N₂OR successfully at low pH. Our data provide compelling evidence that such organisms are not present in the soils studied. Is there any evidence for it elsewhere? Palmer and Horn (28) found high rates of N₂O reduction in acid (pH 4.4) peat soils, determined by anoxic incubation of soil slurries. The N₂O reduction was ascribed to denitrification driven by organisms with nirS rather than nirK. This is hardly evidence for acid-tolerant production of N₂OR, since there may exist neutral/alkaline hot spots within the soil matrix, as discussed above. Green et al. (29, 30) studied denitrifying communities in contaminated subsurface soils and found that environments with low pH (3, 4) selected for denitrifying bacteria within the genus Rhodanobacter. They concluded that these organisms represent an acid-tolerant group of denitrifiers, able to reduce NO₃⁻ all the way to N₂. Six isolates were recently genome sequenced, confirming the presence of nirK and nosZ genes, although three of the isolates lacked the gene for nitrate reductase (31). To our knowledge, no stringent test has been conducted to evaluate the ability of Rhodanobacter strains to express N₂OR at low pH. However, the investigation by van den Heuvel et al. (32) sheds some light on this. They grew denitrifying communities from acid soils in continuous reactors at variable pH and found that low pH selected for Rhodanobacter strains which were evidently able to denitrify at pH as low as 4. However, although the communities were able to reduce NO₃⁻ to N₂ when grown at neutral pH, they produced practically pure N₂O at pH values of <6.2. Thus, it may well be that Rhodanobacter strains are adapted to denitrify at low pH, but they appear to have the same difficulties with producing active N₂OR at such low pH as other bacteria.

We are aware that the primers used for nosZ in this study fail to amplify atypical nosZ genes claimed to be important in soils (33). However, this would hardly affect the validity of our conclusions regarding the lack of functional N₂O reductase at low pH and the robust functioning of N₂O reductase (expressed at pH 7.0) at pH below 6. We are also aware that the composition of the microbial communities may have an impact on denitrification rates, the gaseous product composition, and the emissions from soils as explored in several studies, which are reviewed recently by Braker and Conrad (34). One common notion in these studies has been that high N₂O emission could be ascribed to the absence of organisms carrying nosZ (35). This appears irrelevant in our case, however, since the nosZ gene pool was abundant at all 3 pH levels (12).

In conclusion, we are beginning to understand why soil acidity exerts a pervasive control of the N₂O/(N₂ + N₂O) product ratio of denitrification and hence on the propensity of soils to emit N₂O. Some empirical evidence for a direct effect of pH on N₂O emissions has been provided by studying the spatial distribution of N₂O emission and pH in forested riparian soils (36) and grassland soils (37). More rigorous testing is clearly needed to evaluate this. The immediate effect of liming acid soils may be to enhance N₂O emissions; however, as demonstrated by Clough et al. (38) and Bagnis et al. (39), the reason for this is that liming acid soils will induce a transient enhancement of C and N mineralization and nitrification and hence also the rate of denitrification. The net outcome may thus be that liming induces a transient enhancement of N₂O emission despite a lowered N₂O/(N₂ + N₂O) product ratio of denitrification. However, the long-term effect of sustaining a high pH in agricultural soils is most likely to secure low N₂O emissions.

MATERIALS AND METHODS

Soil and extraction of bacteria. Peat soils (Saprific Histosol, FAO/ISRIC/ISS, containing 45% organic C, 2% organic N) were sampled from a soil liming experiment (pH 4.0 to 8.0) established in 1978 (40), which was used previously for investigating N₂O production by nitrification (41) and denitrification (12). The soils were sieved (6 mm) while moist and stored moist (1.5 ml water g⁻¹ soil [dry weight], i.e., ~50% air-filled porosity) at 4°C until used. The outline of the preincubation, cell extraction, and subsequent incubations is shown in Fig. 1. To raise the microbial biomass/activity prior to cell extraction, moist soil samples (20 g fresh weight = 8 g dry weight) were mixed with finely ground clover leaves (5 mg/g soil [dry weight]) and incubated for 85 h at 15°C (monitored for respiration rate and NO and N₂O production [see Fig. 5 in the supplemental material]). Cells were then extracted by dispersion/density gradient centrifugation as described by Bakken and Lindahl (42). The pH of soil slurries of pH 6.1 and 4.0 soils was adjusted to 7.0 prior to dispersion. The total number of cells extracted was determined by epifluorescence microscopy (43) in preliminary experiments (7 × 10⁹ to 9 × 10⁹ cells g⁻¹ soil [dry weight], which is 10 to 12% of the total numbers of cells in the soils; no statistical difference between soils as tested by one-way analysis of variance [ANOVA]).

Culture conditions and general incubation procedure. The medium was the same as that used by Morley et al. (44): 3 mM (NH₄)₂SO₄, 5 mM glutamic acid, 1.76 mg liter⁻¹ EDTA, 10 mg liter⁻¹ ZnSO₄, 5 mg liter⁻¹ FeSO₄, 1.5 mg liter⁻¹ MnSO₄, 0.4 mg liter⁻¹ CuSO₄, 0.25 mg liter⁻¹ Co(NO₃)₂, 0.15 mg liter⁻¹ H₂BO₃, 1 mg liter⁻¹ nicotinic acid, 0.5 mg liter⁻¹ thiamine, and 1 mg liter⁻¹ biotin, buffered with sodium phosphate (10 mM for the oxic preculturing and 100 mM for the denitrification experiments). The concentration of NO₃⁻ was either 1 or 2 mM (KNO₃), except when determining potential N₂O reduction, for which NO₃⁻-free medium was used, prepared as described by Bergaust et al. (19).

All culturing was done in serum vials (120 ml) with butyl rubber septa, containing a 50-ml culture volume, vigorously stirred by Teflon-coated magnetic bars and placed in a robotized incubation system (at 15°C) which monitors the headspace concentrations of O₂, CO₂, NO, N₂O, and...
N	extsubscript{2}. The system is described in detail by Molstad et al. (45), who also describe the techniques to replace headspace atmosphere with He prior to inoculation.

The extracted cells (~10 ml) were transferred to vials containing 40 ml weakly buffered medium (10 mM phosphate, pH 7.0) and incubated (oxic) for 8 h. The precultured suspensions were then used to inoculate vials (5 ml vial	extsuperscript{-1}) containing 45 ml strongly buffered medium (100 mM phosphate, 2 mM KNO	extsubscript{3}) at three different pH levels (pH	extsubscript{m} 5.7, 6.1, and 7.6), which were first incubated for 28 h under oxic conditions (oxic incubation [28 h], Fig. 1) while respiration rates were measured. Measured respiration and apparent oxic growth rates (0.14 to 0.25 h	extsuperscript{-1}) are shown in Fig. S6 and S7 in the supplemental material. The motivation for these oxic precultivations was to secure a low level of intact denitrification enzymes in the cells prior to the anoxic incubation (preexisting denitrification enzymes would be diluted by oxic growth).

The vials were then made anoxic by evacuating and filling with pure helium (He) twice (reducing oxygen concentration to ≤250 µl liter	extsuperscript{-1} = 0.4 µM in the liquid), and the incubation was continued for 100 h (anoxic incubation, Fig. 1). The incubation robot only takes 15 vials, thus it was not possible to include replicates for all 9 treatments. However, the experiment was repeated several times (n ≥ 3), both for the community extracted from the soil with pH 6.1 (for quantification of genes and transcripts, see below) and for the community extracted from the most acidic soil (pH 4.0). There was generally little variation in gas kinetics results between replicates within and between experiments, as seen in Fig. 3, which condenses the results in one graph.

The NO and N	extsubscript{2}O indices (12) were calculated in order to summarize the effect of pH	extsubscript{m} on the transient accumulation of NO and N	extsubscript{2}O as a fraction of the total N gas produced:

\[
I_{N_2O} = \frac{\int_0^T N_2O(t) dt}{\int_0^T N_2O(t) dt + \int_0^T NO(t) dt + \int_0^T N_2(t) dt}
\]

\[
I_{NO} = \frac{\int_0^T NO(t) dt}{\int_0^T N_2O(t) dt + \int_0^T NO(t) dt + \int_0^T N_2(t) dt}
\]

where NO(t), N	extsubscript{2}O(t), and N	extsubscript{2}(t) are the amounts of the three gases at any time t and T is the time when all NO	extsubscript{3} is recovered as gas (NO + N	extsubscript{2}O + N	extsubscript{2}).

Determination of the effect of low pH on denitrification enzymes expressed at high pH. To determine the direct effect of pH on the activity of the denitrification enzymes, cells extracted from soil with pH 6.1 were incubated at pH	extsubscript{m} 7.0 (10 mM phosphate buffer) under anoxic conditions and allowed to deplete the 2 mM NO	extsubscript{3} in the medium (recovered as N	extsubscript{2} in the headspace). This culture was then used to inoculate a series of vials containing 45 ml strongly buffered medium (100 mM phosphate buffer) with five different pH	extsubscript{m} levels ranging from 5.7 to 7.6. We prepared two sets of vials for these experiments: (i) the first set had oxic headspace (10 ml O	extsubscript{2} liter	extsuperscript{-1}) and was used to determine the oxic respiration; (ii) the second set had NO	extsubscript{3}	extsuperscript{-} free medium and He atmosphere to which we added ~0.6 ml pure N	extsubscript{2}O, resulting in ~5.4 ml NO	extsubscript{2} liter	extsuperscript{-1} in the headspace (~170 µM N	extsubscript{2}O in the liquid). These vials were used to obtain a direct measurement of the rate of N	extsubscript{2}O reduction.

For both sets, O	extsubscript{2}, N	extsubscript{2}O, and N	extsubscript{2} concentrations were monitored by sampling every 40 to 60 min for a period of 20 h. The measured rates (i.e., O	extsubscript{2} consumption in set 1; N	extsubscript{2}O reduction in set 2) were fairly constant throughout the first 5 to 7 h of incubation, as illustrated for set 2 (see Fig. S8 in the supplemental material). Since the purpose of these experiments was to determine the direct effect of the change in pH, we report only the average rates during the first 5 h of incubation.

Extraction of nucleic acids. Gene expression was measured on cells from the pH	extsubscript{m} 6.1 soil incubated at pH	extsubscript{m} 5.6, 6.1, and 7.6 in a separate water bath, in parallel with the experiment in the incubation robot (stirring and temperature conditions were identical). Three replicate vials were sampled (entire vials) at each time point shown in Fig. 4. The cells were collected by centrifugation (10,000 × g, 10 min at 4°C) and resuspended in 1 ml of RNAprotect (Qiagen, Nordic-Norway) and quickly frozen at −20°C. The same treatment was also performed for cells form pH	extsubscript{m} 4.0 soil incubated at pH	extsubscript{m} 7.6 medium.

Total nucleic acids were isolated using a bead-beating method. To avoid RNase contamination, only certified nuclease-free tubes and diethyl pyrocarbonate (DEPC)-treated solutions (46) were used. The cell lysis, protein denaturation, and nucleic acid purification were performed by a method described in reference 47 with modifications (12, 48). The nucleic acid extracts were split into two portions, and these were treated with RNase and DNase, respectively. The extracts intended to contain only RNA were treated with an RNase-free DNase set (Qiagen, Nordic-Norway) for 30 min, but this did not remove all genomic DNA. An additional 2.5-h treatment was conducted with the DNase I kit (Sigma-Aldrich). This resulted in successful removal of all genomic DNA, as seen from the absence of PCR products from control samples that had been treated with DNase but not with reverse transcriptase. The A260/A280 ratios of both DNA and RNA were higher than 1.7 for all samples.

Reverse transcription. Reverse transcription (RT) was performed using the Superscript RT-PCR system (Invitrogen) with the method described in the manual. Two master mix solutions were prepared in separate 0.2-ml tubes. Master mix 1 contained 1 µl deoxyxynucleoside triphosphate (dNTP) mix (10 mM each; Takara Bio Co., Japan), 2 µl random hexamer primers (50 ng/µl; Promega), total RNA, and RNase-free water up to 13 µl. Master mix 2 contained 4 µl 5X first-strand buffer, 1 µl 0.1 M dithiothreitol (DTT), 1 µl Superscript III RT enzyme (200 units/µl), 1 µl RNaseOUT recombinant RNase inhibitor (Invitrogen; 40 units/µl). Master mix 1 solution was incubated at 65°C for 5 min and put on ice for 2 min. The contents of the tube were collected by brief centrifugation before master mix 2 was added. The tube was transferred to a thermocycler (Applied Biosystems) and incubated at 25°C for 5 min, 50°C for 60 min, and 70°C for 15 min. The cDNA was stored at −20°C until quantitative PCR analysis. Control samples containing the same concentration of RNA, but on which reverse transcription was not performed, were prepared for each gene (nirS, nirK, and nosZ) and subjected to quantitative PCR to ensure that all genomic DNA was removed by DNase.

Quantitative PCR. The genes and their transcripts were quantified with a StepOne Plus quantitative PCR system (Applied Biosystems). Gene fragments of nirS, nirK, and nosZ were amplified with the primer pairs cd3af, rcd3 (49, 50), 1F, 5R (51), Z-F, 1622R (50, 52), respectively. A standard curve method was employed, since previous studies using the same experimental setup for batch culture incubation showed that the use of a housekeeping gene as the endogenous standard generated unstable expression levels due to the rapid changes in bacterial activity and growth (20). Construction of the standard curves, as well as the quantitative PCR program, was as described previously (12).

DGGE. DGGE was performed on extracts from pH	extsubscript{m} 6.1 soil, sampled during the incubation shown in Fig. 2. The samples from pH	extsubscript{m} 7.6 medium were taken during the anoxic incubation period at 0 h, 20 h, 40 h, 60 h, and 80 h. The nosZ gene was amplified with primer pair ZF and 1622R-GC (50, 52). DGGE of PCR products was performed using the method described by Muyzer et al. (53) with the use of a Dcode system (Bio-Rad Laboratories). Polycrylamide gradient gel was made by 8% polycrylamide with 35 to 60% denaturant (100% defined as 7 M urea and 40% formamide). The gel was run for 200 min at 200 V in 1× Tris-acetate-EDTA (TAE) buffer at a constant temperature of 60°C. The gels were stained with ethidium bromide and photographed in a GelDoc XR UV light imager (Bio-Rad).

Statistical analyses. Statistical analyses were performed using Minitab 16 (Minitab Inc., State College, PA, USA). One-way ANOVA was used to compare the cell extraction efficiencies for the different soils and for testing if the pH in the media affected the mRNA/DNA ratio for the three genes in question. Preliminary analysis of the mRNA/DNA ratio showed...
that the distribution of the residuals deviated significantly from normal
distribution (P < 0.01; tested by Kolmogorov-Smirnov’s test for normality).
Hence, we analyzed the log-transformed data, for which the distribu-
tion of residuals did not significantly deviate from normal distribution
(P > 0.15). For cell extractions, log transformations prior to ANOVA were
not necessary (the distribution of residuals did not deviate significantly
from the normal distribution).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/MBio.01383-14/-/DCSupplemental.

Figure S1, DOCX file, 0.1 MB.
Figure S2, DOCX file, 0.2 MB.
Figure S3, DOCX file, 0.1 MB.
Figure S4, DOCX file, 0.1 MB.
Figure S5, DOCX file, 0.1 MB.
Figure S6, DOCX file, 0.1 MB.
Figure S7, DOCX file, 0.2 MB.

REFERENCES

1. Mosier AR. 1998. Soil processes and global change. Biol. Fertil. Soils 27:221–229. http://dx.doi.org/10.1007/s003740050424.

2. Ostrom NE, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, Gandhi H, Von Fischer JC, Robertson GP. 2010. Isotopologue data reveal bac-
terial denitrification as the primary source of N₂O during a high flux event following cultivation of a native temperate grassland. Soil Biol. Biochem. 42:499–506. http://dx.doi.org/10.1016/j.soilbio.2009.12.003.

3. Schlesinger WH. 2009. On the fate of anthropogenic nitrogen. Proc. Natl. Acad. Sci. U. S. A. 106:203–208. http://dx.doi.org/10.1073/pnas.0810193105.

4. Saggar S, Jha N, Deslippe J, Bolan NS, Luo J, Giltrap DL, Kim DG, Zaman M, Timmis KN, Bolan N. 2003. Investigations on the denitrifying process in soil. Plant Soil 255:155–169. http://dx.doi.org/10.1023/B:FPOT.0000014299.

5. Nömmik H. 1956. Investigations on denitrification in soil. Acta Agric. Scand. 2:195–228.

6. Simek M, Cooper JE. 2002. The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. Eur. J. Soil Sci. 53:345–354. http://dx.doi.org/10.1046/j.1365-2389.2002.00461.x.

7. Qu Z, Wang J, Almoey T, Bakken LR. 2014. Excessive use of nitrogen in Chinese agriculture results in high N₂O(NO₃-N)+N₂O production rate in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 465:173–195. http://dx.doi.org/10.1016/j.scitotenv.2012.11.050.

8. Wiljer J, Delessie G. 1954. Scan. Microbiol. 25:18–39. http://dx.doi.org/10.1111/j.1462-2920.2007.01557.x.

9. Bergaust I, Yao Y, Bakken LR, Frostegård Å. 2013. Dynamics of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitrite concentration. Microbiology 159:826–834. http://dx.doi.org/10.1099/mic.0.054148-0.

10. Bergaust I, Slapeleigh J, Frostegård Å, Bakken LR. 2008. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: the influence of nitrate, nitrite and oxygen availability. Environ. Microbiol. 10:3070–3081. http://dx.doi.org/10.1111/j.1462-2920.2007.01557.x.

11. Fernàndez-Calvin D, Bååth E. 2012. Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 158:826–834. http://dx.doi.org/10.1099/mic.0.054148-0.

12. Zumft WG. 1981. Changes of pH across the rhizosphere induced by roots. Plant Soil 67:1–26. http://dx.doi.org/10.1007/BF02277559.

13. van Spanning RJM, Richardson D, Ferguson S. 2007. Introduction to the biochemistry and molecular biology of denitrification, p 4–20. In Bothe H, Ferguson S, Newton WE (ed), Biology of the nitrogen cycle. Elsevier, Amsterdam, Netherlands.

14. Low Soil pH Impairs the Reduction of N₂O to N₂
Nissen S, Konstantinidis KT, Löfler FE. 2012. Unexpected non-denitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc. Natl. Acad. Sci. U. S. A. 109:19709–19714. http://dx.doi.org/10.1073/pnas.1211238109.

34. Braker G, Conrad R. 2011. Diversity, structure and size of N₂O producing microbial communities in soils—what matters for their functioning? Adv. Appl. Microbiol. 75:33–70. http://dx.doi.org/10.1016/j.aim.2010.09.002.

35. Philippot L, Andert J, Jones C, Bru D, Hallin S. 2011. Importance of denitrifiers lacking the genes coding for nitrous oxide reductase for N₂O emissions from soil. Glob. Change Biol. 17:1497–1504. http://dx.doi.org/10.1111/j.1365-2486.2010.02334.x.

36. van den Heuvel RN, Bakker SE, Jetten MS, Hefting MM. 2011. De-nitriﬁers producing more N₂O than N₂ as a result of adding moraine soil or shell sand into peat soil on physical properties and grass yield in western Norway. Acta Agric. Scand. B 66:9000002-5.

37. Ball BC, Horgan GW, Clayton H, Parker JP. 1997. Spatial variability of nitrous oxide ﬂux and controlling soil and topographic properties. J. Environ. Qual. 26:1399–1409. http://dx.doi.org/10.2134/jeq1997.2651399x.

38. Clough TJ, Kelliher FM, Sherlock RR, Ford CD. 2004. Lime and soil moisture effects in nitrous oxide emissions from a urine patch. Soils Sci. Soc. J. 68:1600–1609. http://dx.doi.org/10.2136/sssaj2004.1600.

39. Bags EM, Smales CI, Bateman EJ. 2010. Changing pH shifts the microbial source as well as the magnitude of N₂O emission from soil. Biol. Fertil. Soils 46:793–805. http://dx.doi.org/10.1007/s00374-010-0484-6.

40. Sogness LS, Fyroth G, Opstad SL, Arstein A, Børresen T. 2006. Effects of adding moraine soil or shell sand into peat soil on physical properties and grass yield in western Norway. Acta Agric. Scand. B 56:161–170. http://dx.doi.org/10.1080/09064710500218845.

41. Mørkved PT, Dörsch P, Bakken LR. 2007. The N₂O product ratio of nitriﬁcation and its dependence on long-term changes in soil pH. Soil Biol. Biochem. 39:2018–2057. http://dx.doi.org/10.1016/j.soilbio.2007.03.006.

42. Bakken LR, Lindahl V. 1995. Recovery of bacterial cells from soil, p 9–27. In van Elsas JD, Trevisor JT (ed), Nucleic acids in the environment: methods and applications. Springer Verlag, Heidelberg, Germany.

43. Noble RT, Fuhrman JA. 1998. Use of SYBR green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14:113–118. http://dx.doi.org/10.3354/ame014113.

44. Morley N, Baggs EM, Dörsch P, Bakken L. 2008. Production of NO, N₂O and N₂ by extracted soil bacteria, regulation by NO₃⁻ and O₂ concentrations. FEMS Microbiol. Ecol. 65:102–112. http://dx.doi.org/10.1111/j.1574-6941.2008.00495.x.

45. Molstad L, Dörsch P, Bakken LR. 2007. Robotized incubation system for monitoring gases (O₂, NO, N₂O, N₂) in denitrifying cultures. J. Microbiol. Methods. 71:202–211. http://dx.doi.org/10.1016/j.mimet.2007.08.011.

46. Blumberg DD. 1987. Creating a ribonuclease-free environment. Methods Enzymol. 152:20–24. http://dx.doi.org/10.1016/0076-6879(87)52005-5.

47. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ. 2000. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66:5488–5491. http://dx.doi.org/10.1128/AEM.66.12.5488-5491.2000.

48. Bælum J, Nicolaisen MH, Holben WE, Strobel BW, Sørensen J, Jacobsen CS. 2008. Direct analysis of tflA gene expression by indigenous bacteria in phenoxy acetic acid amended agricultural soil. ISME J 2:677–687. http://dx.doi.org/10.1038/ismej.2008.21.

49. Michotey Y, Méjean V, Bonin P. 2000. Comparison of methods for quantification of cytochrome CD1-denitrifying bacteria in environmental marine samples. Appl. Environ. Microbiol. 66:1564–1571. http://dx.doi.org/10.1128/AEM.66.6.1564-1571.2000.

50. Throbäck IN, Enwall K, Jarvis A, Hallin S. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49:401–417. http://dx.doi.org/10.1016/j.femsle.2004.04.011.

51. Braker G, Feseefeldt A, Wittzel KP. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirS and nirK) to detect denitriﬁying bacteria in environmental samples. Appl. Environ. Microbiol. 64:3769–3775.

52. Kloos K, Mergel A, Rosch C, Bothe H. 2001. Denitrification within the genus Azospirillum and other associative bacteria. Aust. J. Plant Physiol. 28:991–998.

53. Muyzer G, Teske A, Wirsen CO, Jannasch HW. 1995. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164:165–172. http://dx.doi.org/10.1007/BF02329967.