An investigation of the role of spectroscopic factors in the breakup reaction of ^{11}Be

B. Canbula, R. Bulur, D. Canbula, and H. Babacan

Department of Physics, Faculty of Arts and Sciences, Celal Bayar University, 45140, Muradiye, Manisa, Turkey

The experimental elastic cross section data of the projectile ^{11}Be on target ^{12}C at 49.3 MeV/nucleon energy is analysed. The calculations for the elastic scattering is performed by the phenomenological optical model. The different optical potentials to include breakup effects into the calculations, which are neutron+^{12}C, neutron+^{10}Be and $^{10}\text{Be}+^{12}\text{C}$, are described with the aid of the global potentials for neutron interactions and fitted to experimental data for the core and target interaction. Also, the first analysis of the optical model for ^{10}Be on target ^{12}C at 39.1 MeV is done for building the interaction potential of the core and the target for ^{11}Be. For investigating the effects of the spectroscopic factor obtained from the direct capture process using the nuclear level density are compared with the previous cross section and spectroscopic factor results. Obtained results for the elastic cross section are reproduced the experimental data very well, and shows the requirement of including spectroscopic properties such as the spectroscopic factors and the density of the excited states to explain this elastic cross section data.

PACS numbers: 21.10.Jx, 21.10.Ma, 24.10.Ht, 24.60.Gv

I. INTRODUCTION

Experiments with radioactive ion beams (RIB) started a new era in the nuclear reaction physics for the last decades [1-3]. With regard to probing and understanding the nuclear structure, in these experiments, some unexpected properties of the nucleus have been discovered. One of the most intriguing attributes is the halo structure [1], consisting of a core and a weakly-bound valance nucleon(s) to this core. Up to now, this phenomenon has been greatly investigated experimentally on the various targets [4-6], and caused a challenge for nuclear reaction theorists to reproduce the experimental data [4,5,8]. ^{11}Be is one of the four one-neutron halo nuclei together with ^{16}C [9], and newly reported ^{31}Ne [10], and ^{37}Mg [11]. Some experiments has been conducted for understanding of structure of ^{11}Be. Firstly, Tanihata et. al [2] observed a large radii for ^{11}Be compared to ^{10}Be in cross section measurements with targets at 90 MeV/A, and concluded the halo structure for ^{11}Be originating from its small neutron separation energy of 0.503 MeV. A few years later, Fukuda et al. [12] confirmed this conclusion in elastic scattering of ^{11}Be on C and Al targets at 33 MeV/nucleon. Since these distinguished works, ^{11}Be has been been studied experimentally [6,13-16] and theoretically [17,18].

One experimental study about ^{11}Be is performed by Cortina-Gil et al. [6] for the cross section of the elastic scattering on ^{12}C at 49.3 MeV/nucleon incident energy. The first theoretical investigation of this measurement is an adiabatic approximation assuming no internal motion between the valance nucleon and the core in projectile, and also neglecting the interactions between the valance nucleon and the target nucleus [8]. Also, in the same year, Al-Khalili et al. [20] investigated the same reaction with the few-body Glauber model, in which the particles of the projectile are considered as following straight line paths through the interaction field of the target. In addition to these studies, the continuum-discretized coupled-channels (CDCC) method was applied to this elastic scattering by Takashina et. al. [21], and also they used the same parameter set for the optical potentials between the projectile components and the target as in Ref. [20]. In this non-adiabatic method, due to the very low neutron or proton separation energy, the continuum states of the projectile above this threshold energy are discretized to finite number of states using momentum bins. Including the breakup effects into the theoretical calculations of mentioned methods gives almost the same results.

In the present study, the elastic scattering of the projectile halo nucleus ^{11}Be on the target ^{12}C at 49.3 MeV/nucleon [6] is investigated as a breakup reaction using the optical model with the aid of a nuclear structure model. Different from other studies, the optical model potential used for the interaction between the core nucleus ^{10}Be and the target ^{12}C is obtained by fitting to elastic cross section data at 39.1 MeV/nucleon. This data [13] is investigated with optical model for the first time in this study. As for the interaction between the valance neutron of the halo nucleus and the target, the optical potential is deduced from an interpolation for different incident energies of neutron on ^{12}C target by means of global potential of Ref. [22]. In order to described non-elastic contributions, we use a surface potential, which can be named as DPP (dynamical polarization potential) or VCP (virtual coupling potential), in our calculations. Finally, a binding potential is employed for $n+^{10}\text{Be}$ system. Unlike similar studies, we determine the value of the spectroscopic factor, describing the wave function of ^{11}Be in terms of the wave function of ^{10}Be, with the method given in Ref. [23] for the direct neutron capture reaction $^{10}\text{Be}+n \rightarrow ^{11}\text{Be}+\gamma$. However, we use a new nuclear level
density (NLD) model \cite{21}, which strongly depends on the deformation of nucleus.

This paper organized as follows: The method used in this study is presented in Sec. III the results obtained by this method are given for the breakup reaction of 11Be in Sec. IV and finally in Sec. V concluding remarks drawn from this study are given.

II. THEORY

Since the mid-fifties, the optical model has been greatly used to investigate the elastic scattering cross section for both light and heavy ions in a wide range of incident energy. The optical model considers the projectile and the target nuclei as the structureless particles in order to avoid many-body problems in nuclear physics calculations, and describes the interaction between the projectile and target with an effective potential. In this work, since we included breakup effects, the halo projectile 11Be is considered as a two-body system, which consists of 10Be core and a valance neutron. Therefore, we define the effective potentials between projectile components and the target 12C, which are $n+^{12}$C, 10Be+12C and $n+^{10}$Be as used Ref. \cite{22}.

\[U_{\text{eff}} = U_{\text{CT}} + U_{\text{VT}} + U_{\text{CV}}, \]

where C, T, V correspond to 10Be core, 12C target and valance nucleon, respectively. An effective potential is a combination of the following terms as

\[U(r) = V_{l}(r) + V_{\text{Coal}}(r) + V_{\text{Val}}(r) + V_{\text{Sur}}(r) + V_{\text{SO}}(r). \]

The first term is the centrifugal potential, which is defined as

\[V_{l}(r) = \frac{\hbar l(l+1)}{2mr^{2}}. \]

Traditionally. Uniformly charged sphere assumption is employed for nucleus,

\[V_{C}(r) = \begin{cases} \frac{Z_{p}Z_{T}e^{2}}{2R_{c}} & r \leq R_{c} \\ \frac{Z_{p}Z_{T}e^{2}}{r} & r \geq R_{c} \end{cases} \]

where the charge radius R_{c} is defined as $R_{c} = r_{c}(A_{p}^{1/3} + A_{T}^{1/3})$, the Coulomb potential parameter r_{c} is taken as 1.2 fm in this work. In the optical model, the volume term in a effective potential has a crucial role and can be described with the real part of this term. However, for inelastic contributions, an imaginary part is added to the volume term for the purpose of considering absorption of the reaction flux from the elastic channel to inelastic reaction channels. Therefore, conventionally the volume term consists of real and imaginary parts in reaction studies,

\[V_{\text{Val}}(r) = \frac{-V_{0}}{1 + \exp \left(\frac{r-R_{c}}{a_{v}} \right)} + \frac{-iW_{0}}{1 + \exp \left(\frac{r-R_{c}}{a_{w}} \right)} \]

where potential depths, radius and surface diffuseness parameters for both real and imaginary parts should be adjusted elastic scattering data. Even if the investigated reaction is the elastic scattering, non-elastic contributions can still exist in the elastic channels. To include these contributions, the surface potential are used

\[V_{\text{Sur}}(r) = -4V_{0}\exp \left(\frac{r-R_{c}}{a_{v}} \right) - 4iW_{0}\exp \left(\frac{r-R_{c}}{a_{w}} \right), \]

which is in derivative form of the volume term. Final term in Eq. (2) is the spin-orbit potential

\[V_{\text{SO}}(r) = \left(\frac{\hbar}{m_{e}c} \right)^{2} \frac{1}{r} \frac{d}{dr} \left[\frac{V_{SO}}{1 + \exp \left(\frac{r-R_{c}}{a_{SO}} \right)} \right] 2L \cdot s \]

where $(\hbar/m_{e}c)^{2} = 2 \text{ fm}^{2}$.

The optical potential parameters in these equations can be determined from elastic scattering data. As a first step in fitting procedure of potential parameters, the geometrical parameters are adjusted to positions of peaks occurred in data. Afterwards, the potential depths of all used optical model potentials are fitted to experimental data to give the minimum χ^{2} value.

In the case of halo nucleus 11Be, the spectroscopic factor as a structure property is used to describe the ground state and the first excited state of 11Be in terms of 10Be. The spectroscopic factor can be determined from the fitting to experimental cross section data of transfer or direct capture processes, and also they can be obtained theoretically from the shell model calculations. In literature, many transfer processes include the spectroscopic factor value of 11Be for 9Be(t,p)11Be \cite{26} \cite{27} and 11Be(p,d)11Be \cite{30} \cite{31} reactions. However, the experimental data of the direct capture cross section for 10Be(n,γ)11Be is not available, but the direct capture cross section data can be deduced from Coulomb dissociation \cite{34}. As a tool for calculations of the light ion cross sections such as direct capture processes, the nuclear level density has a crucial role to reproduce the measured data and define the spectroscopic factor. Therefore, the relation between the direct capture cross section and the nuclear level density, which is the number of the excited levels around an excitation energy, can be defined as \cite{23}

\[\sigma_{DC}(E) = <S> \int_{0}^{E} \sum_{J_{f},\Pi_{f}} \rho(E_{f}, J_{f}, \Pi_{f}) \sigma_{f}^{\text{cont}}(E)dE_{f}, \]

where S represents the average spectroscopic factor, and ρ is the level density function in terms of the excitation energy E_{f}, total angular momentum J_{f}, and the parity Π_{f} of compound nucleus. In the present work, we calculate the direct neutron capture cross section and compare to deduced data \cite{32} from Coulomb dissociation of 11Be measured by Nakamura et. al. \cite{33}. To do this calculation, Laplace-like formula \cite{24} is used for the energy dependence of the nuclear level density parameter
in Fermi gas model. According to this formula the level density parameter strongly depends on the deformation of the nucleus, and the results obtained with this formula are very successful to describe low-lying collective levels compared to other phenomenological level density models [44–46]. Therefore, keeping in mind that 10Be and 11Be are well-deformed nuclei, we expect that this formula is convenient to explain the neutron capture cross section data of 10Be. In the following section, we will give the optical potential parameters, which are used in this study, and the results of our calculations.

III. RESULTS AND DISCUSSION

To describe the interactions between the projectile and target, we consider the weakly-bound nucleus 11Be as 10Be+n on 12C target. For this purpose, firstly we focus on the interaction between the neutron and the target. Great number of experimental data in 0-100 MeV energy range [38–42] is found for the elastic scattering of neutron on 12C, and can be used to define the effective potential between the valence nucleon and the target for in case 11Be. Unfortunately, for 49.3 MeV incident energy, no experimental data is available. Thus, an interpolation of the global parametrization [22] is used. The results obtained with this global potential are given in Figure 1. As seen from figure, this interpolation of the global parametrization for $n+^{12}$C at 49.3 MeV incident energy gives us a good agreement in wide range energy.

In contrast to 11Be, very long-lived ($T_{1/2} = 1.5 \times 10^{6}$y) and a tightly-bound nucleus 10Be has a greater neutron separation energy, which is 6.81 MeV. One of the experimental study about 10Be is Lapoux et. al. [13] in which they measured the elastic cross section for 10Be and 15Be projectiles on proton and 12C targets at 39.1 MeV/nucleon and 38.4 MeV/nucleon, respectively, and these data was investigated using the microscopic Jeukenne-Lejeune-Mahaux nucleon-nucleus potential for proton target and framework of folding model for C target. Unlike the other studies, [21] in order to be more physical and reliable, the potential parameters describing the interaction between the core and the target are adjusted to the elastic scattering data at 39.1 MeV/nucleon energy [22]. Our obtained values of the potential depth parameters are shallow compared to their potential. We use the experimental β_2 quadrupole deformation value, which is -0.6 [13], for the first (2$^+$) excited level of 12C, which is 4.4 MeV. Also, in order to take into account the non-elastic contributions caused from the interactions at surface region, additionally one can add the surface term into the effective potential. This potential is sometimes referred as surface term, derivative of Woods-Saxon potential form, DPP and VCP, and can be obtained by different methods. The parameters of DPP can be obtained from microscopic [14, 16] or phenomenological [17, 52] calculations by fitting to the experimental data. For 10Be+12C, we used a phenomenological DPP obtained from the fit process to the experimental data combined with a volume term. Obtained results using the optical potentials for 49.3 MeV incident energy are represented by black line.

FIG. 1: (Color online) Cross sections for n+12C at 28.2 MeV, 35.0 MeV, 53.0 MeV, 65.0 MeV, 75.0 MeV, 85.0 MeV, 94.8 MeV, 95.0 MeV, 96.0 MeV. Obtained results using the optical potentials for 49.3 MeV incident energy are represented by black line.
TABLE I: Adjusted potential parameters for n^+^{12}C, n^+^{10}Be, 10Be+12C and 11Be+12C interactions. r_c is taken as 1.20 fm for the Coulomb interaction.

Interaction Type	Volume	Surface	Spin-Orbit			
V$_0$(MeV)	r$_v$(fm)	a$_v$(fm)	V$_0$(MeV)	r$_w$(fm)	a$_w$(fm)	
n^+^{12}C	37.5	1.127	0.676	4.90	1.127	0.676
10Be+12C	15.049	0.950	0.580	23.326	1.100	0.630
n^+^{10}Be	37.5	1.127	0.676			
11Be+12C	42.793	0.950	0.580	3.935	1.100	0.630
11Be+12C	29.635	1.100	0.580	1.036	1.100	0.630

The most successful method is to fit the spectroscopic factor values to the experimental cross section data directly, but the traditional way of estimating spectroscopic factor is to use the shell model in which the spectroscopic factor is defined as the square of normalization of the overlap integral between the wave function of the valence nucleon in the state of the target nucleus and the residual nucleus. Also, the spectroscopic factor is a key ingredient for the direct capture process for which the related cross section often dominates the total cross section at the very low energies of astrophysical interest. The direct capture process is can be used for obtaining the spectroscopic factor and known to play a notable role for light exotic nuclei systems for which few, or even no resonant states are available. Although many works containing the spectroscopic factors derived from the transfer processes are existing for the halo nucleus 11Be, the direct neutron capture cross section data for 10Be to compose 11Be is not available in the literature. However, the direct capture cross sections can be obtained deduced data from the Coulomb dissociation.

In obtaining the spectroscopic factor with the aid of the direct capture cross section calculations, the most important component is the nuclear level density. Generally, the reasons for not trusting to level density models to use in such calculations are their insufficient agreements with the experimental observables and their way of taking into account the collective effects. For overcoming these challenges, recently, we introduced a new Laplacelike formula for the NLD parameter to improve the predictive power for describing the low-lying collective levels, which are well known to be of vital importance for the direct capture process. With this formula, a great agreement is achieved with the experimental observables. Therefore, the direct neutron capture cross section calculation based on this level density model for 10Be($n+\gamma$)11Be processes is shown in Figure 3. Although the data could not be reproduced below 0.5 MeV, in the

FIG. 2: (Color online) Cross sections for 10Be+12C target at 39.1 MeV. Solid red line represents the results obtained by using the optical potential parameters given in Table I. The experimental data is taken from [13].

FIG. 3: (Color online) The direct neutron capture cross section results for 10Be($n+\gamma$)11Be reaction at 0-3 MeV lab. energy. The solid red line represents the results of the present work using the level density model [24], and obtained spectroscopic factor value is 1.48. The deduced experimental data from Coulomb dissociation data of 11Be [36] is taken from Ref. [35].
Finally, our prediction for the elastic scattering cross section on the results, the value of this factor is taken as 1.0. The spectroscopic factor of the first excited state has less effective potential, while the spectroscopic factor of the ground state. Since the average value of the spectroscopic factor is taken as 0.71 for the ground state and 0.62 for the first excited state. The solid red line represents the cross section result with the spectroscopic factor value of 1.48 obtained from the direct capture cross section. The experimental data is taken from [6].

The rest of the energy range the same behaviour is well explained. The obtained average value for the spectroscopic factor is 1.48. The value of parameters used in our level density calculation are 1.345 for \tilde{a} and 0.285 for β, which are taken from our previous study.

Considering ^{11}Be as a two-body projectile, all values of the optical potential parameters are given in Table I for $n+^{12}\text{C}$, $n+^{10}\text{Be}$ and $^{10}\text{Be}+^{12}\text{C}$ interactions. The parameter values of potential depths for $^{10}\text{Be}+^{12}\text{C}$ at 39.1 MeV incident energy are rearranged as 46.3 MeV and 13.8 MeV of real and imaginary parts, respectively. The same procedure is repeated for the surface potential as 9.820 MeV and 3.661 MeV. Also, to include non-elastic contribution for $^{11}\text{Be}+^{12}\text{C}$, a surface potential is added to effective potential. Moreover, to compare our results, we perform another calculation with the spectroscopic factor obtained by Schmitt et al. which is 0.71 for the ground state and 0.62 for the first excited state, respectively. The results of this calculation is also shown in Figure 4 with dashed blue line. In our calculations the average value of the spectroscopic factor is taken as the spectroscopic factor of the ground state. Since the spectroscopic factor of the first excited state has less effective potential, the value of this factor is taken as 1.0. Finally, our prediction for the elastic scattering cross section of ^{11}Be on ^{12}C is shown in Figure 4 with solid red line. As seen from this figure, the inclusion of the nuclear level density with the Laplace-like formula in the reaction calculations has a very well effect on reproducing the cross section data. Also, the fit method we used for the optical potential parameters, which is to adjust the geometrical parameters to positions of peaks and the depths to give minimum χ^2, effects the agreement in a positive way.

IV. CONCLUSIONS

In summary, we have investigated the elastic scattering cross section data of the projectile ^{11}Be on ^{12}C target at 49.3 MeV/nucleon. To include breakup effects into the calculations, the different optical potentials for $n+^{12}\text{C}$, $n+^{10}\text{Be}$ and $^{10}\text{Be}+^{12}\text{C}$ are described. Also, the present study contains the first analysis of the phenomenological optical model for 39.1 MeV incident energy of the projectile ^{10}Be on ^{12}C target. Obtained results are in better agreement compared to the microscopic study of Lapoux et al. which is the first and the only study of this reaction.

Not only the effect of including the spectroscopic factor into calculations are found significant for the breakup reaction of ^{11}Be but also adjusting the geometrical parameters to positions of peaks and the depths to give minimum χ^2 gives positive contributions to reproduce the scattering data.

The theoretical framework used for obtaining the spectroscopic factor by using the nuclear nuclear level density to calculate the direct neutron capture cross section is employed for the first time in breakup reaction calculation of ^{11}Be. Moreover, the nuclear level density is used for the first time as a spectroscopic tool in a light exotic nuclei induced reaction. Consequently, beside the success of the nuclear level density with the Laplace-like formula for the level density parameter as a structure model, the results show that this new method seems appropriate to perform the reaction calculations.

Acknowledgments

This work was supported by the Turkish Science and Research Council (TÜBİTAK) under Grant No. 112T566. Bora Canbula acknowledges the support through TÜBİTAK PhD Program fellowship BIDEB-2211 Grant.

[1] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).
[2] I. Tanihata, H. Hamagaki, O. Hashimoto, S. Naganiya, Y. Shida, N. Yoshikawa, O. Yamakawa, K. Sugimoto, T. Kobayashi, D.E. Greiner, T. Takahashi, Y. Nojiri, Phys. Lett. B 160, 380 (1985).
[3] I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda, H. Sato, Phys. Lett. B 206, 592 (1988).
Y. Takahashi, K. Miura, Nucl. Instrum. Methods in Phys. Res. **287**, 455 (1990).

[40] J.H. Osborne, F.P. Brady, J.L. Romero, J.L. Ullmann, D.S. Sorenson, A. Ling, N.S.P. King, R.C. Haight, J. Rapaport, R.W. Finlay, E. Bauge, J.P. Delaroche, A.J. Koning, Phys. Rev C **70**, 054613 (2004).

[41] P. Mermod, J. Blomgren, C. Johansson, A. Ohrn, M. Osterlund, S. Pomp, B. Bergenwall, J. Klug, L. Nilsson, N. Olsson, U. Tippawan, P. Nadel-Turonski, O. Jonsson, A. Prokofiev, P.-U. Renberg, Y. Maeda, H. Sakai, A. Tamii, K. Amos, R. Crespo, and A. Moro, Phys. Rev C **74**, 054002 (2006).

[42] J. Klug, J. Blomgren, A. AtaÃ§, B. Bergenwall, A. Hildebrand, C. Johansson, P. Mermod, L. Nilsson, S. Pomp, U. Tippawan, K. Elmgren, N. Olsson, O. Jonsson, A. Prokofiev, P.-U. Renberg, P. Nadel-Turonski, S. Dangtip, P. Phansuke, M. Osterlund, C. Le Brun, J. F. Lecolley, F. R. Lecolley, M. Louvel, N. Marie-Noury, C. Schweitzer, Ph. Eudes, F. Haddad, C. Lebrun, A. J. Koning, X. Ledoux, Phys. Rev. C **68**, 064605 (2003).

[43] W.J. Vermeer, M.T. Esat, J.A. Kuehner, R.H. Spear, Phys. Lett. B **122**, (1987).

[44] M.S. Hussein, G.R. Satchler, Nucl. Phys. A **567**, 165 (1994).

[45] D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Lett. B **358**, 14 (1995).

[46] J.C. Pacheco, N. Vinh Mau, Nucl. Phys. A **669**, 135 (2000).

[47] L.F. Canto, R. Donangelo, M.S. Hussein, Nucl. Phys. A **529**, 243 (1991).

[48] L.F. Canto, R. Donangelo, M.S. Hussein, M.P. Pato, Nucl. Phys. A **542**, 131 (1992).

[49] K. Yabana, Y. Ogawa, Y. Suzuki, Phys. Rev. C **45**, 2909 (1992).

[50] K. Yabana, Y. Ogawa, Y. Suzuki, Nucl. Phys. A **539**, 295 (1992).

[51] N. Takigawa, M. Ueda, M. Kuratani, H. Sagawa, Phys. Lett. B **288**, 244 (1992).

[52] J.S. Al-Khalili, Nucl. Phys. A **581**, 315 (1995).

[53] Y. Sakuragi, S. Funada, Y. Hirabayashi, Nucl. Phys. A **588**, 65c (1995).

[54] K.T. Schmitt, K.L. Jones, A. Bey, S.H. Ahn, D.W. Baradayan, J.C. Blackmon, S.M. Brown, K.Y. Chae, K.A. Chipps, J.A. Ciezewski, K.I. Hahn, J.J. Kolata, R.L. Kozub, J.F. Liang, C. Matei, M. Matos, D. Matyas, B. Moazen, C. Nesaraja, F. M. Nunes, P.D. O’Malley, S.D. Pain, W.A. Peters, S.T. Pittman, A. Roberts, D. Shapira, J F. Shriner, Jr., M.S. Smith, I. Spassova, D. W. Stracener, A. N. Villano, and G. L. Wilson, Phys. Rev. Lett. **108**, 192701 (2012).