Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation

Järv, Olle

2017

http://hdl.handle.net/10138/189494
https://doi.org/10.1080/13658816.2017.1287369

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.
Please cite the original version.
Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation

Olle Järv, Henrikki Tenkanen & Tuuli Toivonen

To cite this article: Olle Järv, Henrikki Tenkanen & Tuuli Toivonen (2017) Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation, International Journal of Geographical Information Science, 31:8, 1630-1651, DOI: 10.1080/13658816.2017.1287369

To link to this article: http://dx.doi.org/10.1080/13658816.2017.1287369

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 07 Feb 2017.

Article views: 828

View related articles

View Crossmark data
Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation

Olle Järv, Henrikki Tenkanen and Tuuli Toivonen

Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland

ABSTRACT

Novel digital data sources allow us to attain enhanced knowledge about locations and mobilities of people in space and time. Already a fast-growing body of literature demonstrates the applicability and feasibility of mobile phone-based data in social sciences for considering mobile devices as proxies for people. However, the implementation of such data imposes many theoretical and methodological challenges. One major issue is the uneven spatial resolution of mobile phone data due to the spatial configuration of mobile network base stations and its spatial interpolation. To date, different interpolation techniques are applied to transform mobile phone data into other spatial divisions. However, these do not consider the temporality and societal context that shapes the human presence and mobility in space and time. The paper aims, first, to contribute to mobile phone-based research by addressing the need to give more attention to the spatial interpolation of given data, and further by proposing a dasymetric interpolation approach to enhance the spatial accuracy of mobile phone data. Second, it contributes to population modelling research by combining spatial, temporal and volumetric dasymetric mapping and integrating it with mobile phone data. In doing so, the paper presents a generic conceptual framework of a multi-temporal function-based dasymetric (MFD) interpolation method for mobile phone data. Empirical results demonstrate how the proposed interpolation method can improve the spatial accuracy of both night-time and daytime population distributions derived from different mobile phone data sets by taking advantage of ancillary data sources. The proposed interpolation method can be applied for both location- and person-based research, and is a fruitful starting point for improving the spatial interpolation methods for mobile phone data. We share the implementation of our method in GitHub as open access Python code.

1. Introduction

To better understand how societies function and to improve social justice and environmental sustainability, we need to attain enhanced spatio-temporal knowledge about the locations and mobilities of people (Hägerstrand 1970, Sheller and Urry 2006, Cresswell...
and Merriman 2011, Kwan 2013). This knowledge has become possible due to the global adoption of mobile information and communication devices in the age of the Big Data, while human interactions through mobile devices create digital footprints of people in space and time (Kitchin 2014). Thus, ubiquitous mobile phones are considered as proxies for people (Asakura and Hato 2004, González et al. 2008, Ahas et al. 2010).

For example, passively collected time-stamped and location-aware information on mobile phone use, such as call detail records (CDRs), is rapidly enhancing our understanding about individual human mobility (Yuan et al. 2012, Järv et al. 2014). Such data is applied to understand the relation between human mobility and social networks (Phithakkitnukan et al. 2012), ethnic differences in human activity spaces (Järv et al. 2015) and for estimating travel times to public facilities (Wesolowski et al. 2015). At the population level, flourishing literature demonstrates how CDR data is used for investigating spatial distributions and temporal dynamics of local and national population (Reades et al. 2009, Kang et al. 2012, Deville et al. 2014), seasonal migration patterns (Silm and Ahas 2010), spatial structures of cities (Louail et al. 2014), traffic flow (Wang et al. 2012), disease risks (Wesolowski et al. 2012) and socio-economic levels of the population (Soto et al. 2011, Blumenstock et al. 2015).

However, investigation of human presence and mobility based on CDR data imposes theoretical and methodological challenges. For example, one challenging issue is representing the whole population while not everyone is using mobile phones for different reasons (e.g. young children, elderly). Socio-economic biases may exist in a sample while network operators have different segmentation strategies and service costs. Phone users’ call activity habits and patterns vary in space and time according to individuals’ socio-economic characteristics, preferences, lifestyle, habits and work attributes (Castells et al. 2007). Also, authority (legislation) and environmental (physical extent of mobile network) domains may limit where and when mobile phones can be used. These aspects may influence research findings derived from CDR data while creating spatial, temporal and socio-economic biases at both the individual and aggregated levels (Yuan et al. 2012, Wesolowski et al. 2013, Järv et al. 2014, Zhao et al. 2016).

One important methodological challenge is the spatial perspective of CDR data since the spatial accuracy of given data depends on the spatial distribution of mobile network base stations, which is not equally distributed in space and changes over time. Furthermore, while more advanced interpolation techniques are applied (e.g. Louail et al. 2014, Pei et al. 2014), they do not consider the environmental and societal contexts that shape the human presence and mobility in space and time. To obtain more precise spatio-temporal knowledge about human presence and mobility, we need to develop a spatial interpolation technique for CDR data that considers the social structures and human practices.

This paper seeks to contribute to mobile phone-based research in the social sciences by addressing the need to give more attention to the spatial perspective of passively collected mobile phone data (e.g. CDR data) and by overcoming the uneven spatial accuracy problem in base station coverage areas. We suggest applying a dasymetric interpolation approach that is well known in population mapping studies. With this paper we aim: (1) to put forward a generic conceptual framework for a multi-temporal function-based dasymetric (MFD) interpolation method for mobile phone data; and (2) to empirically investigate how and to what extent the proposed method improves a night-time and daytime population distribution derived from mobile phone data. In
doing so, this paper also contributes to dasymetric population modelling by combining spatial, temporal and volumetric mapping techniques while incorporating a function-based population allocation with mobile phone data. To our knowledge, this is the first attempt to comprehensively apply a dasymetric technique for interpolating mobile phone data.

Next, we provide a brief overview on how the spatial perspective is considered in passively collected mobile phone-based research. We then introduce a dasymetric interpolation approach and put forward the conceptual framework of the proposed dasymetric method and demonstrate the empirical results in the case of Tallinn, Estonia. Finally, we discuss the method, obtained outcomes and future steps.

2. Background and literature review

2.1. The spatial perspective of passively collected mobile phone data

To a large extent, the spatial accuracy of passively collected mobile phone data, such as CDR data, is determined by the locations of base stations – the geographical location of each mobile phone use is allocated to the base station that provided the network signal. Hence, the spatial accuracy of data corresponds to the coverage areas of a mobile network base station, which is spatially not fixed and varies according to the density of base stations (for some exceptions, see, e.g. Calabrese et al. 2013). The simplest way to examine given data from a spatial perspective is to use (aggregated) geographic locations of base stations (antennae) as point-based units. Latter approach is widely applied in individual mobility studies (González et al. 2008, Yuan et al. 2012, Järv et al. 2014) and its relation to social phenomena and processes (Phithakkitnukoon et al. 2012, Demissie et al. 2013, Järv et al. 2015, Wesolowski et al. 2015). However, this type of data is difficult to integrate and validate with other data sources.

Certainly, CDR data is further assigned to discrete areal polygons using different techniques. Most commonly, a spatial overlay technique is used to attribute given data to predefined spatial (e.g. administrative and statistical) units given the locations of a base station (Ahas et al. 2010, Wesolowski et al. 2012, Trasarti et al. 2015, Williams et al. 2015). Conventional choropleth mapping allows for integrating and validating the mobile phone data with other attribute data in a given spatial division. However, choropleth mapping ignores the fact that: (1) the spatial distribution of base stations does not depend on predefined spatial units – an administrative unit may have none or many base stations; and (2) the spatial division of coverage areas and predefined spatial units does not utterly coincide – a base station located at one predefined spatial unit may provide a mobile network signal partly (or entirely) to other predefined units and thus represent CDR data from an area that is larger than where the given base station is actually located.

Another widely applied technique is to interpolate the study area to theoretical coverage areas (polygons) of a base station using a Voronoi tessellation (Delaunay triangulation) technique in Euclidean space (e.g. Wang et al. 2012) with some exceptions (see Iqbal et al. 2014, Jacobs-Crisioni et al. 2014). This way, station-based mobile phone data can be attributed to spatial units indicating base stations’ coverage areas. The use of Voronoi tessellation provides more accurate spatial distribution as compared to previous approaches; however, the resulting spatial division is not compatible with
other existing spatial divisions of administration and, hence, does not allow data integration or validation with data in other spatial divisions. Moreover, the two overlay techniques described above depend on the locations of base stations, and any changes in the spatial configuration of a mobile network over time may create biases in both longitudinal and repeated research.

The latter weaknesses can be overcome by applying a straightforward areal weighting spatial interpolation technique; the spatial division of coverage areas and its attributes are simply interpolated by areal intersection to desired spatial units such as statistical grids (Candia et al. 2008, Louail et al. 2014) or administrative areas (Soto et al. 2011, Deville et al. 2014). Areal weighting is also applied the other way round; predefined spatial units and its attributes are interpolated into coverage areas of base stations (Kang et al. 2012, Doyle et al. 2014). Indeed, using statistical grids or administrative areas enables data integration and validation with other data sources in any spatial division. However, this method assumes that mobile phone data as a proxy for people is equally distributed on a plane surface without considering temporality, environmental context or societal structures that shape human presence and mobility in space and time.

Several attempts are made to apply more sophisticated spatial interpolation techniques to enhance the spatial accuracy of mobile phone data within a coverage area of a base station. Ratti et al. (2006) applied a neighbour linear interpolation method based on centroids of a Voronoi polygon to represent the probable population in a raster surface. Csáji et al. (2013) refined the spatial locations of people within each Voronoi polygon based on the probability density calculation from the maximum likelihood estimation and the signal decay of a base station. Similarly, Pei et al. (2014) applied a probabilistic distribution approach to refine the spatial accuracy of people within each Voronoi polygon to grid cells using the inverse distance weighting. Nevertheless, the given sophisticated spatial interpolation techniques still assume space as a plane surface and people in space as a function of the distance from a base station. To the authors’ knowledge, only in the supporting information in Deville et al. (2014) was there a preliminary attempt made to apply the dasymetric technique by ancillary land-use data to interpolating CDR data.

2.2. Dasymetric interpolation approach and the integration of time

In population research, several spatial interpolation methods are used to go beyond aggregated and predefined census tract and administrative units for finer-scale spatial resolution (Eicher and Brewer 2001, Mennis 2003, Langford 2006). Given the feasibility and reliability of widely used dasymetric mapping, the dasymetric interpolation technique is one of the best approaches for refining the spatial resolution of population data (Wu et al. 2005, Mennis and Hultgren 2006). The dasymetric technique for refining population distribution is successfully applied, for example, for studying tourism (Vaz and Campos 2013), accessibility (Langford et al. 2008, Shannon 2014), risk exposures and disaster management (Linard and Tatem 2012, Smith et al. 2014).

In general, the dasymetric spatial interpolation technique transforms population data from one set of spatial units (source zones) into another spatial division (target zones) using additional ancillary data sources – data that can be related directly or indirectly to
the spatial presence of people for assisting the interpolation. Physical environmental (land use, land cover and zonal data) information is widely used to extract a populated area from a non-populated area and further conduct spatial weighting based on selected attributes (Dobson et al. 2000, Ruther et al. 2015). Additional ancillary variables considered in dasymetric mapping include the national mailing information (Langford et al. 2008), addresses of businesses (Greger 2015), road network proximity and traffic counts (Smith et al. 2014), points-of-interests (Bakillah et al. 2014), night-imagery (Dobson et al. 2000), detailed cadastral maps (Maantay et al. 2007) and building functions with vertical and volumetric information (Aubrecht et al. 2009, Greger 2015, Biljecki et al. 2016).

In recent years, dasymetric interpolation techniques have witnessed fast development given new data sources, improved statistical assessment for estimating accuracy, and advancing multiple areal interpolation with relational data sources, 3D modelling and spatio-temporal interpolation (see, e.g. Nagle et al. 2014, Ruther et al. 2015, Biljecki et al. 2016, Mennis 2016). Interestingly, the concept of the dasymetric interpolation technique is well suited for integrating the temporal perspective (hourly, weekday and seasonal rhythms) for population mapping (e.g. Martin et al. 2015, Mennis 2016). Temporally sensitive multidimensional dasymetric interpolation modelling of a population based on census data has already been elaborated upon since 2000 (Dobson et al. 2000, Aubrecht et al. 2009). Since then, different conceptual frameworks have been proposed for dynamic population distribution modelling while also distinguishing population subgroups, such as local residents, visitors and transit (Bhaduri et al. 2007, Aubrecht et al. 2014, Martin et al. 2015, Mennis 2016). In these studies, the spatial distribution of the population is interpolated as a function of time, while the spatial layer is related to time-dependent ancillary data sources about human presence and activities (e.g. time use survey, activity travel diary).

However, these advanced dasymetric interpolation methods do not consider the verticality of a built environment, and vice versa, spatially advanced building population mapping methods do not consider temporality (Ural et al. 2011, Biljecki et al. 2016), except a study by Greger (2015). In urbanised societies, the vertical dimension and volumetric data about a built environment are two of the essential environmental attributes that determine the spatial distribution of people (Ahola et al. 2007, Biljecki et al. 2016).

Thus, we propose a conceptual framework of the MFD interpolation for mobile phone data that also takes into account the verticality of a built environment, similar to Greger (2015). This enables obtaining more accurate spatio-temporal information about human presence and mobility derived from mobile phone data such as CDR, which increases the applicability and reliability of given data.

3. The conceptual framework of an MFD interpolation for mobile phone data

Since mobile phone data as a proxy for people is predominantly estimated by coverage areas of a base station (or antennae) as source zones, we propose a generic MFD interpolation method that first disaggregates the distribution of mobile phone data within each coverage area, and then aggregates mobile phone data to the desired
spatial division as target zones using different spatially and temporally sensitive ancillary data sources (Figure 1). At minimum, three ancillary data sources are needed – a spatial layer with land-cover data, volume (height) of built environment and time-dependent human activity data.

In general, the MFD interpolation method for mobile phone data has five modelling steps (Figure 2): (I) the preparation of a physical surface layer; (II) the spatial disaggregation of a physical surface layer by both source zones (i.e. coverage areas of a base

Figure 1. The representation of MFD interpolation method – point-based mobile phone data at base station level (a) – is usually assigned to theoretical coverage areas of a base station as source zones (b) and interpolated to target zones using simple areal weighting method (c). The proposed MFD method disaggregates mobile phone data within each source zone using ancillary data (d) to transform it to desired target zones (e).

Figure 2. The conceptual framework for the proposed MFD interpolation method for refining mobile phone data as a proxy for people in five modelling steps.
station) and target zone layers; (III) the integration of time-dependent human activity data with a disaggregated physical surface layer; (IV) the integration of mobile phone data with a disaggregated physical surface layer; and (V) the spatial aggregation of disaggregated surface layer to desired target zones as the output of the MFD method. In the MFD method, any desired spatial division can be used as target zones according to any research need – statistical grid cells (as in this case study), census tracts, administrative units, transport analysis zones or any other spatial division. Next, each modelling step is described in the following subsections.

3.1. The preparation of physical surface layer

First, the physical surface layer is prepared, where (1) the vertical dimension is incorporated and (2) a functional attribute is assigned, which can be linked to human activity data. The vertical dimension is essential since the verticality of a built environment determines the population density whereas the best indicator is the total floor area of a building (e.g. Biljecki et al. 2016). The method is flexible regarding the vertical dimension, and input data can be either ready-made data or estimated (from building footprints and heights) for the buildings’ total floor area (m²) or volume (m³).

The activity function attribute of each spatial unit enables linking the estimated human presence by activity type in time with the physical surface layer. The method is flexible regarding the detail level of activity function classification as long as it is possible to link with time usage of people by classified human activity data (Eurostat 2009, UNSD 2016) and corresponds to available input data and research needs. We propose to apply six activity function types – residential, work and school, retail and service, transport, restricted area and other areas, since these types have distinguished temporal usage patterns.

The required physical surface layer may be already available in case of detail cadastral data, including the vertical dimension or 3D models on a built environment (Biljecki et al. 2016). However, there are several ways to prepare a given layer, for example, by integrating land-use and/or land-cover data with building information; building footprints may be derived from cadastral maps, satellite imagery or volunteered geographic information databases such as OpenStreetMap (OSM) or GoogleMaps. Building height can be derived from areal imagery and remote sensing such as LIDAR measurements (Alahmadi et al. 2013). While information about the vertical dimension at building level is not available, more rough estimates may be applied such as the average height of a city block or a neighbourhood.

Building functions related to human activity types in the spatial layer can be further enhanced with additional crowdsourced data such as OSM and online address (business) registers (Greger 2015), and even assign several functionalities to a building if such data is available. Finally, each spatial unit in the physical surface layer includes three attributes: activity function type \(a \); surface unit type (building; non-building) \(u \); and a vertical dimension (number of floors; height).
3.2. **The spatial disaggregation by source and target zones**

In the second step of the MFD method, two spatial layers are applied in addition to the physical surface layer – the spatial division of mobile phone data as source zones and the spatial division of desired spatial units as target zones (Figure 1). The spatial division of mobile phone data is usually represented by the theoretical coverage areas of a base station using a Voronoi tessellation method. The desired spatial division of target zones is applied according to a research need.

First, a geometric union technique is applied for these three spatial layers to disaggregate the physical surface layer into subunits in order to designate each subunit to a unique source zone \(j \) and target zone \(z \). Second, the area for each disaggregated subunit polygon is calculated, which enables calculating an estimated total floor area \(FA \) for each spatial subunit \(s \) by multiplying the area with the vertical dimension regarding the number of floors or height, whereas in both cases the default value is set to 1 for non-building units. This allows for a calculation of a relative floor area \(RFA \) for each subunit \(s \) within a base station \(j \) given the total sum of estimated total floor area \(FA \) of all subunits within a base station \(j \) as follows:

\[
RFA = \frac{FA_s}{\sum FA_s \in j}
\]

At this point, each disaggregated subunit in the physical surface layer has three additional attributes: source zone ID, target zone ID and a relative floor area \(RFA \) within a coverage area of a base station to which a given unit belongs.

3.3. **The integration of time-dependent human activity data**

In the third step of the MFD method, the disaggregated physical surface layer is linked with time-dependent human activity data based on the activity function type of a spatial subunit. The link allows for a more accurate interpolation of mobile phone data between disaggregated spatial subunits within each base station coverage area, while taking into account the probabilities of human activity types.

In general, the probability of people to conduct certain activities at certain spatial subunits at a certain time can be acquired from a time-use survey (Eurostat 2009, UNSD 2016) or activity travel diary data (see Schönfelder and Axhausen 2010). Given data sources allow for an extraction of the average distribution of people by activity type in time that can be associated with spatial subunits based on the activity location type. Any classification of human activity types can be applied, as long as the activity classification is congruent with activity function types of a spatial subunit, such as associating home activities with residential areas. Ideally, the data source is from the case study area. However, the activity classification can represent a more general (e.g. national) level or even from a neighbouring country or elsewhere, as long as the classification represents human activity patterns similar enough for the case study area given the similar social and environmental contexts.

The temporal resolution of human activity data in the MFD method depends on available data sources and research needs. Thus, the basis of the method is the distribution of people by activity type at given time intervals, for example, hourly
intervals. The estimated distribution of people by activity type (e.g. being at home) in a given time unit can be further refined if input data contains more fine-grained information about weekly (working day vs. weekend) and seasonal (e.g. summer vs. winter; holiday weeks and months) variations in mobility and activity patterns of people.

In this modelling step, an estimated human presence \(EHP \) in time unit \(t \) is calculated for each disaggregated spatial subunit \(s \) within a base station \(j \) given its \(RFA \) and time-dependent probability for human presence, which is a combination of a daily hour factor \(H \), a weekday factor \(W \) and a seasonal (monthly) factor \(M \), according to a human activity function type \(a \) and spatial unit type \(u \) (land or building). The total sum of \(EHP \) of disaggregated spatial subunits within each coverage area of a base station \(j \) in time unit \(t \) is 1. \(EHP \) is calculated as follows:

\[
EHP_t = (H_{au}W_{au}M_{au}) \times RFA_{ij}
\]

MFD method can be used to calculate \(EHP \) for the whole population, whereas it can also be calculated separately for each subgroup of a population (e.g. youth, working-age people, and elderly; local vs. non-locals) if the given division is available for both human activity data and mobile phone data. Another possibility is to calculate \(EHP \) separately for local residents and non-residents (e.g. transit, visitors and tourists). This would provide a more accurate refinement of population distribution within a base station.

It is possible to derive the hourly distribution of people by activity type from time-use survey data. Activity travel diaries can provide weekday and seasonal differences in the probable human presence by activity type (Schönfelder and Axhausen 2010). Seasonal differences can also be derived from longitudinal time-activity studies where personal time use in indoors and outdoors (e.g. Hussein et al. 2012) can be linked to spatial unit type (building, land) as an indication for seasonal influence. This combines hourly, weekday and seasonal factors for calculating the distribution of people by activity type as a function of time.

3.4. The integration of mobile phone data

In the fourth step of the MFD method, mobile phone data is linked to spatial subunits in the physical spatial layer by base station \(j \) (source zones) and disaggregated into each spatial subunits according to its \(EHP \) by given time unit \(t \) (e.g. hourly intervals as in this study). While mobile phone data is considered as a proxy for population mapping, it is recommended to normalise mobile phone data to represent the relative population distribution within the study area. Thus, the total sum of the relative share of mobile phone data \(RMP \) in a study area \(S \) in time unit \(t \) is always 1. \(RMP \) for each base station \(j \) is calculated from all mobile phone data \(MP \) conducted within a study area \(S \) in given time unit \(t \) as follows:

\[
RMP = \frac{MP_{ij}}{\sum MP_{ij} \in S}
\]

Next, normalised mobile phone data of each base station \(j \) in time unit \(t \) is interpolated into disaggregated spatial subunits \(s \) within a coverage area of a given base station \(j \) regarding \(EHP \) coefficients of each spatial subunit \(s \). A relative observed population \(ROP \) for each disaggregated subunit \(s \) for given time unit \(t \) is calculated based on an
estimated human presence EHP_t and a relative share of mobile phone data RMP_t in the given time unit t as follows:

$$ROP_t = EHP_t \times RMP_t$$ \hspace{1cm} (4)

3.5. The spatial aggregation to desired target zones

In the final step, disaggregated spatial subunits in the physical surface layer are dissolved by desired target zones z (each subunit is already assigned to a unique target zone in the second step of the method). Thus, the share of relative observed population ROP_t of each subunit s within each target zone z in time t is summarised to $ZROP$ as follows:

$$ZROP_t = \sum_{s \in z} ROP_t$$ \hspace{1cm} (5)

As an outcome, the distribution of a relative observed population derived from mobile phone data, which was originally assigned to the coverage areas of a base station, is now more realistically transformed to the desired spatial division of target zones. In the next section, an empirical implementation of the proposed MFD method is described.

4. Implementation of the proposed MFD method

We selected Tallinn, the capital city of Estonia, as our case study area to empirically test the proposed MFD method given the availability of mobile phone data. Tallinn is a medium-sized European city and the biggest city in Estonia, located within a total area of 145 km2 and with over 400,000 inhabitants (Figure 3). Based on the conceptual framework of the proposed MFD interpolation method for mobile phone data, we developed an open access tool for the Python programming language, which is freely available on GitHub (http://doi.org/10.5281/zenodo.252612).

We investigated mobile phone data from a 1-month study period in March 2015, linked to the 290 base stations that provide the coverage area for a mobile network signal for the case study area. Three different random mobile phone data sets at the base station level are applied: (1) raw CDR data from working days (Monday–Friday) at night (2 AM–6 AM); (2) raw CDR data during working days at daytime (4 PM–5 PM); and (3) the most probable home locations of mobile phone users derived from CDR data using the anchor point method (Ahas et al. 2010). Comprehensive details about applied mobile phone data sets are provided in Section S1 in the Supplemental material.

In addition to mobile phone data (source zones), we applied five different ancillary data sets derived from six data sources (Table 1) for implementing the proposed MFD method for mobile phone data for Tallinn, Estonia. We applied two target zone layers to investigate the method for 500 m (0.25 km2, $n = 664$) and 100 m (0.01 km2, $n = 16,280$) statistical grid cell layers from Statistics Estonia.

Since ready-made data is not available, we prepared the physical surface layer using four ancillary data sets: (1) land-cover data to classify land-cover parcels by six activity...
function types (residential, work, retail and service, other, transport, restricted); (2) building footprint data to integrate buildings with the main usage function (residential and public, non-residential); (3) normalised Digital Surface Model (nDSM) data from LiDAR to calculate building heights for estimating the number of floors; and (4) the Open Street Map database to provide additional information to extract buildings with public, service and retail as the main functions. An overlay method was applied to create a physical surface layer where each disaggregated spatial subunit in the physical surface layer has three attributes: the number of floors, activity function type and spatial unit type of either building or land.

In the second step, a geometric union between the physical surface layer, the Voronoi polygon layer representing theoretical coverage areas and official statistical grid layer for target zones is applied. We received two different disaggregated physical surface layers since we are investigating the results of MFD method at two target zone levels. In the third step, we applied a national time-use survey data and calculated the average hourly distribution of people by activity type to estimate the human presence for spatial units

Figure 3. The population registry data representing a night-time population distribution in Tallinn for 500 m (a) and 100 m spatial resolution (b) in 2015.

Table 1. The list of ancillary data sets used in the case study.

Data set	Attributes	Source	Date
Land-cover data	Land-cover parcels with classification (polygon)	The Estonian National Topographic Database (ENTD), the Land Board of Estonia (LBE)	2015
Building data	1. Building footprints (polygon) with binary usage classification (residential or public; other)	The ENTD, the LBE	2015
	2. Building heights based on LiDAR measurements with 1 m accuracy (raster)	The nDSM data, the LBE	2013
	3. Building functionality based on crowdsourcing input on building usage (point) for refining building usage classification	The OpenStreetMap Database (OSM)	2015
Human activity data	The average hourly distribution of people by activity type based on cross-sectional time-use survey study	The Estonian Time Use Survey, Statistics Estonia	2010
Population register data	Residential population data at building level, which is aggregated to both target zones (100 m and 500 m grid cells)	The Population registry data, Tallinn municipality	2015
in the physical surface layer. We also applied a seasonal factor to refine the estimated human presence for each disaggregated spatial subunit. In the fourth step, we applied all three mobile phone data sets and calculated the relative observed population according to MFD. Finally, we created six spatial output layers in the two target zones for three data sets. A detailed description of the implementation of the MFD method in Tallinn is provided in Section S2 in Supplemental material.

To compare the outcome of the MFD method, we created another six spatial output layers where population distribution derived from mobile phone data is interpolated to target zones using the simple areal weighting (AW) interpolation method. We applied population register data at the building level that is aggregated to both target zone layers as the best available baseline to empirically demonstrate how the proposed MFD method improves a night-time (sleeping) population distribution compared to the AW method. To evaluate the accuracy and validity of the proposed MFD method against AW method for refining population distribution derived from mobile phone data, we performed three statistical analysis: (1) linear regression for comparing correlation coefficients and standard error of the estimate (Maantay et al. 2007); (2) the mean absolute error; and (3) the coefficient of variation (CV) based on root mean square error of each target zone normalised by the baseline target zone value (Mennis 2016).

5. Results

5.1. Population distribution by activity function type

In general, the proposed MFD interpolation method refines a night-time population distribution derived from mobile phone data by activity function type significantly better than areal weighting (AW) when compared to reference data (Figure 4). For the case of a night-time population distribution, some 94% of people are at home according to a national time-use survey. In comparison, the proposed MFD method relocates 86%
of a night-time population derived from night-time call activities to residential areas, whereas with AW the given share is only 22%. In the case of a sleeping population distribution at night, we can consider that 100% of population register data indicates a sleeping population in residential areas. In comparison, we applied home anchor points of mobile phone users derived from call activities as an indicator for the sleeping population. The MFD method relocates 100% of home anchor points to residential areas, whereas the given share is only 24% in the case of the AW method.

During the day (as an example of 4 PM to 5 PM), population distribution by activity function type between the two interpolation approaches is less obvious, although population division with the MFD method coincides more with a national time-use survey.

5.2. Night-time population distribution in target zones

A visual comparison between two interpolation methods in interpolating the spatial distribution of a night-time population derived from home anchor points (Figure 5) and call activities conducted between 2 AM and 6 AM (Figure S3 in Supplemental material) reveals distinct spatial differences regarding both target zones; the MFD method

![Diagram](image-url)

Figure 5. The distribution of home anchor points derived from call activities as an indication for a night-time population by a simple AW and the proposed MFD interpolation methods with both target zone layers.
relocates the population to residential areas compared to the AW method, which distributes people equally in space.

The comparison of population register data as a baseline distribution for a night-time population distribution and population distribution in the case of home anchor points (Figure 6) and call activities (Figure S4 in Supplemental material) demonstrates the differences with the baseline distribution between two interpolation approaches, especially in case of 100 m grid cells. In general, the population distribution using the MFD method has fewer differences with population register data, whereas the influence of the method is more significant in areas where larger coverage areas of a base station occur.

Interestingly, the given difference maps reveal an inherent weakness of mobile phone data. There is a tendency to systematically overestimate the population in the city centre (blue colour) where human communication is significantly more active. However, the aim of the proposed MFD method is not to resolve the given bias, but to refine mobile phone data (e.g. population) within the coverage areas of a base station. Thus, the proposed method relocates the population into more populated target zones and increases the number of target zones with no population as compared to a simple AW method (Figure S5 and Figure S6 in Supplemental material).

Figure 6. Difference (percentage points) in a night-time population distribution between population register data as the baseline distribution and home anchor points by MFD and AW interpolation methods with both target zone layers. Target zones in red colour indicate underestimation and blue colour overestimation of population, indicated by home anchor points.
5.3. Evaluating MFD method for interpolating population distribution

Table 2 summarises the statistical comparison of the MFD method and simple AW method for refining mobile phone-based population distribution in comparison to population register data as a baseline distribution for a night-time population. Regardless of the evaluation measure, the MFD method outperforms the AW method; the former has higher correlation coefficients with a lower standard error (Figure S7 and Figure S8 in Supplemental material), lower mean absolute error and coefficient of variation of RMSE, especially for the 500 m × 500 m target zone resolution. The MFD method improves population distribution more for home anchor points since it corresponds better with population register data, as both indicate a sleeping population. The finding supports the visual evidence presented in the previous subsections suggesting that incorporating spatio-temporally dependent ancillary data in interpolating mobile phone data by coverage areas of base station clearly improves the refinement of human presence to target zones as compared to a simple areal weighting interpolation method.

5.4. Daytime population distribution in target zones

A visual comparison between two interpolation methods in interpolating the spatial distribution of a daytime population derived from call activities conducted between 4 PM and 5 PM (Figure 7) reveals fewer distinct spatial differences regarding both target zones. During a given time period, call activities are clearly concentrated to the city centre, where a dense base station network already exists, and the proposed MFD method has a less significant effect on refining population distribution as compared to a night-time population.

Regardless of target zone resolution, MFD method has a less significant effect in relocating a daytime population to target zones within the study area (Figure 8) given the strong correlation in population distribution between two interpolation approaches (Figure S9 in Supplemental material). On a smaller scale, however, some significant population relocations occur at grid level. In the case of 500 m target zones, for example, in almost 50% of all target zones, the MFD method relocates ±0.01–0.05% points of the relative observed population (Figure S10 in Supplemental material). This indicates ±40–200 relocated people

Table 2. Summary of evaluating the results of both interpolation methods against population register data regarding two target zone levels and two mobile phone data sets to indicate a night-time population.

Target zone level	Evaluation method	Call activities 2 AM to 6 AM	Home anchor points			
		MFD	AW	MFD	AW	
500 m grid cells (n = 664)	Linear regression	Correlation coefficient	0.674	0.511	0.832	0.686
		Std. Error	0.189	0.220	0.142	0.186
		The mean absolute error (MAE)	0.087	0.122	0.072	0.107
		Coefficient of variation (CV) based on the RMSE	0.211	0.242	0.142	0.186
100 m grid cells (n = 16280)	Linear regression	Correlation coefficient	0.472	0.233	0.618	0.347
		Std. Error	0.016	0.018	0.014	0.017
		The mean absolute error (MAE)	0.005	0.008	0.004	0.008
		Coefficient of variation (CV) based on the RMSE	0.019	0.019	0.015	0.017
in a target zone as compared to the population estimate by the AW method. Furthermore, almost 10% of all target zones have more than ±200 relocated people in a target zone with the MFD method.

Figure 7. The distribution of call activities (4 PM to 5 PM) as an indication for a daytime population in given time period by simple AW and the proposed MFD interpolation methods with both target zone layers.

Figure 8. Difference (percentage points) in the distribution of call activities (4 PM – 5 PM) as an indication for a daytime population between the proposed MFD and simple AW interpolation methods with both target zone layers. Target zones in red colour indicate higher population distribution with the proposed MFD interpolation method as compared to simple AW. Grid cells with blue colour indicate the opposite.
6. Discussion and conclusions

The implementation of passively collected mobile phone data such as CDR data to investigate human presence and mobility is mushrooming in social sciences. However, the given data has theoretical and methodological challenges that one needs to acknowledge. This paper gives attention to one of the important challenges that has not been widely discussed to date – the uneven spatial resolution of CDR data due to the uneven spatial configuration of mobile network base stations, and its spatial interpolation. We introduced a dasymetric interpolation approach as one promising way to overcome this. Thus, we proposed a generic conceptual framework of the multi-temporal function-based dasymetric (MFD) interpolation to enhance the spatial resolution of mobile phone data, while taking into account the socio-spatial structure (land use, building volume) and time-dependent human activity data.

The empirical findings demonstrate that the applied MFD interpolation method transforms CDR data as an indication of population distribution to desired target zones (statistical grid cells) more accurately than a simple areal weighting method. The finding was confirmed by evaluating the results of both interpolation methods against population register data as a baseline for a night-time population. In general, the results were consistent with call activity and home anchor point data sets and two different target zone levels with 100 and 500 m resolution. The MFD method had less of an effect for a daytime population interpolation compared to the areal weighting method at the city level; however, it refines the population between target zones significantly on a smaller scale, which is essential, for example, in planning and risk assessment at the micro level.

As the results clearly show, the proposed interpolation method refines the population distribution estimates within a base station coverage area. Yet, it does not resolve the inherent bias of mobile phone data – the fact that it is influenced by the variance of human interactions with mobile devices in space and time, whereas one spatial outcome is the tendency to overestimate the city centre, given its higher probability for human interaction. However, the proposed MFD method can reduce the given biases to some extent when introducing population subgroups to the method, which is similar to Martin et al. (2015).

In general, the method can be improved by providing more accurate ancillary data about the socio-spatial structure and human activities or by incorporating additional data sources. For instance, traffic count data refines an estimated human presence for different sections of a road network. Also, more accurate knowledge about coverage areas of a base station would improve the spatial interpolation of CDR data since commonly (also in this case study), a straightforward Voronoi tessellation for theoretical coverage areas of a base station is applied, which does not coincide with the actual coverage areas. Certainly, more detailed research about the sensitive scale issue of EHP at different spatial resolutions and the comprehensive validation of accuracy estimates of the method need to be conducted in future.

We did not demonstrate how the proposed MFD method can be applied to examine societal issues. However, the method is generally applicable in the broad field of social sciences since the method: (1) can transform mobile phone data to any desired spatial division of target zones (e.g. grids and census tracts) given the research need; (2) enables
reliable data comparison, integration and validation of mobile phone data with other data
sources; (3) enables reliable mobile phone data interpolation for longitudinal and repeated
research; and (4) can improve a systematic estimate of population distribution in time and
space from a small scale (e.g. neighbourhood level) to a country level (e.g. global level),
depending on mobile phone and ancillary data availability. Thus, the method can provide
dynamic population distribution mapping to assess object-oriented risks (Smith et al. 2014)
or to model more realistic spatio-temporal accessibility to services (Tenkanen et al. 2016).

We only applied the proposed interpolation method for population modelling at an
aggregated level; however, it can also be used for person-based research for refining
personal mobility patterns and activity spaces at the individual level. The method can be
developed to refine the probable location of an individual within a base station depend-
ing on the individual’s spatio-temporal activities derived from one’s mobile phone
usage. For example, individual meaningful locations (e.g. home and work) derived
from one’s CDR data at the base station level (Ahas et al. 2010) allow the model to
calculate personal probabilities for a given individual to be associated with a certain
type of spatial subunit within certain coverage areas in a given time. Certainly, one must
acknowledge and preserve the privacy of phone users regarding the use of mobile
phone data (see, e.g. Yin et al. 2015).

We conclude that the proposed multi-temporal, function-based dasymetric interpola-
tion method offers a promising approach to increase the usability and reliability of
passively collected mobile phone data. Our empirical findings provide a solid base to
improve the spatial interpolation methods for mobile phone-based research. Furthermore,
this study contributes to developing dasymetric population modelling by incorporating
mobile phone data. To facilitate the future development of the proposed approach, we
share the implementation of our method in GitHub as open access Python code.

Acknowledgements

We thank Prof. Rein Ahas at University of Tartu and Positium LBS for kindly providing us mobile
phone data, Dr. Anto Aasa for helping us to receive land-cover and building data, and Ivari
Rannama at Tallinn municipality for providing population registry data. This research received
financial support from the Helsinki Metropolitan Region Urban Research Program and Kone
Foundation. H.T. thanks the DENVI doctoral program at University of Helsinki for support. We
would like to thank also the valuable and constructive comments of the four anonymous referees,
which helped us in improving the content and clarity of this paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research received financial support from the Helsinki Metropolitan Region Urban Research
Program (MetropAccess project) and Kone Foundation. H.T. thanks the DENVI doctoral program at
University of Helsinki for support.
References

Ahas, R., et al., 2010. Using mobile positioning data to model locations meaningful to users of mobile phones. *Journal of Urban Technology*, 17 (1), 3–27. doi:10.1080/10630731003597306

Ahola, T., et al., 2007. A spatio-temporal population model to support risk assessment and damage analysis for decision-making. *International Journal of Geographical Information Science*, 21 (8), 935–953. doi:10.1080/13658810701349078

Alahmadi, M., Atkinson, P., and Martin, D., 2013. Estimating the spatial distribution of the population of Riyadh, Saudi Arabia using remotely sensed built land cover and height data. *Computers, Environment and Urban Systems*, 41, 167–176. doi:10.1016/j.compenvurbsys.2013.06.002

Asakura, Y. and Hato, E., 2004. Tracking survey for individual travel behaviour using mobile communication instruments. *Transportation Research Part C: Emerging Technologies*, 12 (3–4), 273–291. doi:10.1016/j.trc.2004.07.010

Aubrecht, C., et al., 2009. Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use. *Computers, Environment and Urban Systems*, 33 (1), 15–25. doi:10.1016/j.compenvurbsys.2008.09.007

Aubrecht, C., Steinnocher, K., and Huber, H., 2014. DynaPop—population distribution dynamics as basis for social impact evaluation in crisis management. In: *Proceedings of the 11th International ISCRAM Conference*. University Park, PA: The Pennsylvania State University, 314–318.

Bakillah, M., et al., 2014. Fine-resolution population mapping using OpenStreetMap points-of-interest. *International Journal of Geographical Information Science*, 28 (9), 1940–1963. doi:10.1080/13658816.2014.909045

Bhaduri, B., et al., 2007. LandScan USA: a high-resolution geospatial and temporal modeling approach for population distribution and dynamics. *GeoJournal*, 69 (1–2), 103–117. doi:10.1007/s10708-007-9105-9

Biljecki, F., et al., 2016. Population estimation using a 3D city model: a multi-scale country-wide study in the Netherlands. *PLoS One*, 11 (6), e0156808. doi:10.1371/journal.pone.0156808

Blumenstock, J., Cadamuro, G., and On, R., 2015. Predicting poverty and wealth from mobile phone metadata. *Science*, 350 (6264), 1073–1076. doi:10.1126/science.aac4420

Calabrese, F., et al., 2013. Understanding individual mobility patterns from urban sensing data: a mobile phone trace example. *Transportation Research Part C: Emerging Technologies*, 26, 301–313. doi:10.1016/j.trc.2012.09.009

Candia, J., et al., 2008. Uncovering individual and collective human dynamics from mobile phone records. *Journal of Physics A: Mathematical and Theoretical*, 41 (22), 224015. doi:10.1088/1751-8113/41/22/224015

Castells, M., et al., 2007. *Mobile communication and society: a global perspective: a project of the annenberg research network on international communication*. Cambridge, MA: MIT Press.

Cresswell, T. and Merriman, P., 2011. *Geographies of mobilities: practices, spaces, subjects*. Farnham: Ashgate.

Csáji, B.C., et al., 2013. Exploring the mobility of mobile phone users. *Physica A: Statistical Mechanics and Its Applications*, 392 (6), 1459–1473. doi:10.1016/j.physa.2012.11.040

Demissie, M.G., de Almeida Correia, G.H., and Bento, C., 2013. Exploring cellular network handover information for urban mobility analysis. *Journal of Transport Geography*, 31 (0), 164–170. doi:10.1016/j.jtrangeo.2013.06.016

Deville, P., et al., 2014. Dynamic population mapping using mobile phone data. *Proceedings of the National Academy of Sciences*, 111 (45), 15888–15893. doi:10.1073/pnas.1408439111
Dobson, J.E., et al., 2000. LandScan: a global population database for estimating populations at risk. *Photogrammetric Engineering and Remote Sensing*, 66 (7), 849–857.

Doyle, J., et al., 2014. Population mobility dynamics estimated from mobile telephony data. *Journal of Urban Technology*, 21 (2), 109–132. doi:10.1080/10630732.2014.888904

Eicher, C.L. and Brewer, C.A., 2001. Dasymetric mapping and areal interpolation: implementation and evaluation. *Cartography and Geographic Information Science*, 28 (2), 125–138. doi:10.1559/152304001782173727

Eurostat, 2009. *Harmonised European time use surveys: 2008 guidelines*. Luxembourg: European Communities.

González, M.C., Hidalgo, C.A., and Barabási, A.-L., 2008. Understanding individual human mobility patterns. *Nature*, 453 (7196), 779–782. doi:10.1038/nature06958

Greger, K., 2015. Spatio-temporal building population estimation for highly urbanized areas using GIS: spatio-temporal building population estimation. *Transactions in GIS*, 19 (1), 129–150. doi:10.1111/tgis.2015.19.issue-1

Hägerstrand, T., 1970. What about people in regional science? *Papers of the Regional Science Association*, 24 (1), 6–21. doi:10.1007/BF01936872

Hussein, T., Paasonen, P., and Kulmala, M., 2012. Activity pattern of a selected group of school occupants and their family members in Helsinki — Finland. *Science of the Total Environment*, 425, 289–292. doi:10.1016/j.scitotenv.2012.03.002

Iqbal, M.S., et al., 2014. Development of origin–destination matrices using mobile phone call data. *Transportation Research Part C: Emerging Technologies*, 40, 63–74. doi:10.1016/j.trc.2014.01.002

Jacobs-Crisioni, C., et al., 2014. Evaluating the impact of land-use density and mix on spatiotemporal urban activity patterns: an exploratory study using mobile phone data. *Environment and Planning A*, 46 (11), 2769–2785. doi:10.1068/a130309p

Järv, O., Ahas, R., and Witlox, F., 2014. Understanding monthly variability in human activity spaces: a twelve-month study using mobile phone call detail records. *Transportation Research Part C: Emerging Technologies*, 38 (0), 122–135. doi:10.1016/j.trc.2013.11.003

Järv, O., et al., 2015. Ethnic differences in activity spaces as a characteristic of segregation: a study based on mobile phone usage in Tallinn, Estonia. *Urban Studies*, 52 (14), 2680–2698. doi:10.1177/0042098014550459

Kang, C., et al., 2012. Towards estimating urban population distributions from mobile call data. *Journal of Urban Technology*, 19 (4), 3–21. doi:10.1080/10630732.2012.715479

Kitchin, R., 2014. *The data revolution: big data, open data, data infrastructures and their consequences*. London: Sage Publications Ltd. doi:10.4135/9781473909472

Kwan, M.-P., 2006. Obtaining population estimates in non-census reporting zones: an evaluation of the 3-class dasymetric method. *Computers, Environment and Urban Systems*, 30 (2), 161–180. doi:10.1016/j.compenvurbsys.2004.07.001

Langford, M., et al., 2008. Urban population distribution models and service accessibility estimation. *Computers, Environment and Urban Systems*, 32 (1), 66–80. doi:10.1016/j.compenvurbsys.2007.06.001

Linard, C. and Tatem, A.J., 2012. Large-scale spatial population databases in infectious disease research. *International Journal of Health Geographics*, 11 (1), 1. doi:10.1186/1476-072X-11-7

Louail, T., et al., 2014. From mobile phone data to the spatial structure of cities. *Scientific Reports*, 4, 5276. doi:10.1038/srep05276

Maantay, J.A., Maroko, A.R., and Herrmann, C., 2007. Mapping population distribution in the urban environment: the Cadastral-based Expert Dasymetric System (CEDS). *Cartography and Geographic Information Science*, 34 (2), 77–102. doi:10.1559/152304007781002190

Martin, D., Cockings, S., and Leung, S., 2015. Developing a flexible framework for spatiotemporal population modeling. *Annals of the Association of American Geographers*, 105 (4), 754–772. doi:10.1080/00045608.2015.1022089
Mennis, J., 2003. Generating surface models of population using dasymetric mapping. The Professional Geographer, 55 (1), 31–42.

Mennis, J., 2016. Dasymetric spatiotemporal interpolation. The Professional Geographer, 68 (1), 92–102. doi:10.1080/00330124.2015.1033669

Mennis, J. and Hultgren, T., 2006. Intelligent dasymetric mapping and its application to areal interpolation. Cartography and Geographic Information Science, 33 (3), 179–194. doi:10.1559/152304006779077309

Nagle, N.N., et al., 2014. Dasymetric modeling and uncertainty. Annals of the Association of American Geographers, 104 (1), 80–95. doi:10.1080/00045608.2013.843439

Pei, T., et al., 2014. A new insight into land use classification based on aggregated mobile phone data. International Journal of Geographical Information Science, 28 (9), 1988–2007. doi:10.1080/13658816.2014.913794

Phithakkitnukoon, S., Smoreda, Z., and Olivier, P., 2012. Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS ONE, 7 (6), e39253. doi:10.1371/journal.pone.0039253

Ratti, C., et al., 2006. Mobile landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design, 33 (5), 727–748. doi:10.1068/b32047

Reades, J., Calabrese, F., and Ratti, C., 2009. Eigenplaces: analysing cities using the space–time structure of the mobile phone network. Environment and Planning B: Planning and Design, 36 (5), 824–836. doi:10.1068/b34133t

Ruther, M., Leyk, S., and Buttenfield, B.P., 2015. Comparing the effects of an NLCD-derived dasymetric refinement on estimation accuracies for multiple areal interpolation methods. GIScience & Remote Sensing, 52 (2), 158–178. doi:10.1080/15481603.2015.1018856

Schönfelder, S. and Axhausen, K.W., 2010. Urban rhythms and travel behaviour: spatial and temporal phenomena of daily travel. Farnham: Ashgate.

Shannon, J., 2014. What does SNAP benefit usage tell us about food access in low-income neighborhoods? Social Science & Medicine, 107, 89–99. doi:10.1016/j.socscimed.2014.02.021

Sheller, M. and Urry, J., 2006. The new mobilities paradigm. Environment and Planning A, 38 (2), 207–226. doi:10.1068/a37268

Silm, S. and Ahas, R., 2010. The seasonal variability of population in Estonian municipalities. Environment and Planning A, 42 (10), 2527–2546. doi:10.1068/a43139

Smith, A., Martin, D., and Cockings, S., 2014. Spatio-temporal population modelling for enhanced assessment of urban exposure to flood risk. Applied Spatial Analysis and Policy, 9 (2), 145–163. doi:10.1007/s12061-014-9110-6

Soto, V., et al., 2011. Prediction of socioeconomic levels using cell phone records. In: J.A. Konstan, et al. eds. User Modeling, Adaption and Personalization. UMAP 2011. Lecture Notes in Computer Science, vol 6787. Berlin: Springer, 377–388.

Tenkanen, H., et al., 2016. Health research needs more comprehensive accessibility measures: integrating time and transport modes from open data. International Journal of Health Geographics, 15 (1), 1–12. doi:10.1186/s12942-016-0052-x

Trasarti, R., et al., 2015. Discovering urban and country dynamics from mobile phone data with spatial correlation patterns. Telecommunications Policy, 39 (3–4), 347–362. doi:10.1016/j.telpol.2013.12.002

UNSD, 2016. United Nations statistics division time use data portal [online]. Available from: unstats.un.org/unsd/gender/timeuse/index.html [Accessed 10 Oct 2016].

Ural, S., Hussain, E., and Shan, J., 2011. Building population mapping with aerial imagery and GIS data. International Journal of Applied Earth Observation and Geoinformation, 13 (6), 841–852. doi:10.1016/j.jag.2011.06.004

Vaz, E. and Campos, A.C., 2013. A multi-dasymetric mapping approach for tourism. Journal of Spatial and Organizational Dynamics, 1 (4), 265–277.

Wang, P., et al., 2012. Understanding road usage patterns in urban areas. Scientific Reports, 2, 1001.

Wesolowski, A., et al., 2013. The impact of biases in mobile phone ownership on estimates of human mobility. Journal of the Royal Society Interface, 10 (81), 20120986. doi:10.1098/rsif.2012.0986
Wesolowski, A., et al., 2012. Quantifying the impact of human mobility on malaria. *Science*, 338 (6104), 267–270. doi:10.1126/science.1223467

Wesolowski, A., et al., 2015. Quantifying the impact of accessibility on preventive healthcare in sub-Saharan Africa using mobile phone data. *Epidemiology*, 26 (2), 223–228. doi:10.1097/EDE.0000000000000239

Williams, N.E., et al., 2015. Measures of human mobility using mobile phone records enhanced with GIS data. *PLoS ONE*, 10 (7), e0133630. doi:10.1371/journal.pone.0133630

Wu, S., Qiu, X., and Wang, L., 2005. Population estimation methods in GIS and remote sensing: a review. *GIScience & Remote Sensing*, 42 (1), 80–96. doi:10.2747/1548-1603.42.1.80

Yin, L., et al., 2015. Re-identification risk versus data utility for aggregated mobility research using mobile phone location data. *PLoS One*, 10 (10), e0140589. doi:10.1371/journal.pone.0140589

Yuan, Y., Raubal, M., and Liu, Y., 2012. Correlating mobile phone usage and travel behavior – a case study of Harbin, China. *Special Issue: Geoinformatics 2010*, 36 (2), 118–130.

Zhao, Z., et al., 2016. Understanding the bias of call detail records in human mobility research. *International Journal of Geographical Information Science*, 30 (9), 1738–1762. doi:10.1080/13658816.2015.1137298