Cofiniteness with respect to extension of Serre subcategories

Xiaoyan Yang
Department of Mathematics, Northwest Normal University, Lanzhou 730070, China
E-mail: yangxy@nwnu.edu.cn

Abstract

Let \(a \) be an ideal of a commutative noetherian ring \(R \), \(S \) a Serre subcategory of \(R \)-modules satisfying the condition \(C_a \) and \(N \) the subcategory of finitely generated \(R \)-modules. In this paper, we continue the study of \(N S-a \)-cofinite modules with respect to the extension subcategory \(N S \), show that some classical results of \(a \)-cofiniteness hold for \(N S-a \)-cofiniteness in the cases \(\dim R = d \) or \(\dim R/a = d - 1 \), where \(d \) is a positive integer. We also study \(N S-a \)-cofiniteness of local cohomology modules and the modules \(\text{Ext}^i_R(N, M) \) and \(\text{Tor}^i_R(N, M) \).

Key Words: Serre subcategory; \(N S-a \)-cofinite module

2020 Mathematics Subject Classification: 13E05; 13C15

Introduction and Preliminaries

Throughout this paper, \(R \) is a commutative noetherian ring with identity, \(a \) is a proper ideal of \(R \) and \(S \) is a Serre subcategory of \(R \)-modules, that is, \(S \) is closed under taking submodules, quotients and extensions. Alipour and Sazeedeh [3] introduced the cofiniteness with respect to \(S \) and \(a \). An \(R \)-module \(M \) is said to be \(S-a \)-cofinite if \(\text{Supp}_R M \subseteq \text{V}(a) \) and \(\text{Ext}^i_R(R/a, M) \in S \) for all \(i \geq 0 \).

Let \(N \) be the subcategory of finitely generated \(R \)-modules. The extension subcategory induced by \(N \) and \(S \) is denoted by \(NS \), consisting of those \(R \)-modules \(M \) for which there exist an exact sequence \(0 \to N \to M \to S \to 0 \) such that \(N \in N \) and \(S \in S \). It follows from [25, Corollary 3.3] that \(NS \) is Serre. When \(S = 0 \), an \(NS-a \)-cofinite module was known as classical \(a \)-cofinite module, defined for the first time by Hartshorne [15], giving a negative answer to a question of [14, Expos XIII, Conjecture 1.1], studied by numerous authors [6, 7, 8, 20, 21, 23]. When \(S = A \) the subcategory of artinian modules, they are \(a \)-cominimax modules studies in [6, 26] and when \(S = F \) the subcategory of all modules of finite support, they are \(a \)-weakly cofinite modules studies in [3, 12]. Recall that \(S \) satisfies the condition \(C_a \) if for every \(R \)-module \(M \), the following implication holds.

\[C_a: \text{If } M \in S, \text{ then } (0 :_M a) \text{ is in } S. \]

By [2, Lemma 2.2], the following Serre subcategories satisfy the condition \(C_a \). The class of zero modules; The class of artinian \(R \)-modules; The class of artinian \(a \)-cofinite \(R \)-modules;
The class of R-modules with finite support; The class of R-modules with finite Krull dimension. In this paper, we always assume that S satisfies the condition C_a.

The support of the Serre subcategory S is denoted by $\text{Supp}S$ which is

$$\text{Supp}S = \bigcup_{M \in S} \text{Supp}_R M = \{p \in \text{Spec}R \mid R/p \in S\}.$$

For an R-module M, we denote by $\text{Max}M$ the set of maximal ideal in $\text{Supp}_R M$. Assume that S satisfies the condition C_a. Alipour and Sazeedeh [24] extended the fundamental results about a-cofinite modules at small dimensions to $\mathcal{N}S$-a-cofinite modules. They showed that if M is an \mathcal{NS}-a-cofinite R-module of dimension ≤ 1 with $\text{Max}M \subseteq \text{Supp}S$ and N is a finitely generated R-module, then $\text{Ext}^i_R(N, M)$ is \mathcal{NS}-a-cofinite for each $i \geq 0$ (see [24, Theorem 2.7]); if $\dim R/a = 1$ and $\text{Max}M \subseteq \text{Supp}S$ then M is \mathcal{NS}-a-cofinite if and only if $\text{Supp}_R M \subseteq V(a)$ and $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i = 0, 1$ (see [3, Theorem 3.2]); if R is a local ring with $\dim R/a = 2$ and satisfies some further conditions, then an R-module M is \mathcal{NS}-a-cofinite if and only if $\text{Supp}_R M \subseteq V(a)$ and $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i = 0, 1, 2$ (see [24, Corollary 2.11]). They also investigated \mathcal{NS}-a-cofiniteness of local cohomology modules (see [24, Theorem 2.13]).

The first aim of this paper is to improve Alipour and Sazeedeh’s results in [3], that is to say, eliminate the hypothesis $\text{Max}M \subseteq \text{Supp}S$ entirely. We show that

Theorem 1. Let M be an R-module with $\dim R M \leq 1$. Then M is \mathcal{NS}-a-cofinite if and only if $\text{Supp}_R M \subseteq V(a)$ and $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i = 0, 1$ (see Theorem 1.3).

The second aim of this paper is to extend the results about a-cofiniteness in the cases $\dim R = d \geq 1$ or $\dim R/a = d - 1$ to \mathcal{NS}-a-cofiniteness, and improve Sazeedeh’s some results in [24]. More precisely, we show that

Theorem 2. Let a be an ideal of R such that either $\dim R/a = d - 1$ or $\dim R = d$. Then an a-torsion R-module M is \mathcal{NS}-a-cofinite if and only if $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i \leq d - 1$ (see Theorem 3.4 and Corollary 1.7).

Theorem 3. Let M be an \mathcal{NS}-a-cofinite R-module and N a finitely generated R-module with $\dim R N \leq 2$. Then the R-modules $\text{Ext}^i_R(N, M)$ and $\text{Tor}^i_R(N, M)$ are \mathcal{NS}-a-cofinite for all $i \geq 0$ (see Theorem 3.4).

As applications of these results, we show that if either $\dim R \leq 2$ or $\dim R/a \leq 1$ then the subcategory $\mathcal{NS}(R, a)_{cof} = \{M \in \text{Mod-}R \mid R M \in \mathcal{NS}$-$a$-cofinite $\}$ is abelian, and some results about \mathcal{NS}-a-cofiniteness of local cohomology modules are given.

Next we recall some notions which we will need later.

We write $\text{Spec}R$ for the set of prime ideals of R and $\text{Max}R$ for the set of maximal ideals of R. For an ideal a in R, we set

$$V(a) = \{p \in \text{Spec}R \mid a \subseteq p\}.$$
Let M be an R-module. The **associated prime** of M, denoted by Ass_RM, is the set of prime ideals p of R such that there exists a cyclic submodule N of M with $p = \text{Ann}_RN$. The set of prime ideals p such that there exists a cyclic submodule N of M with $p \supseteq \text{Ann}_RN$ is well-known to be the **support** of M, denoted by Supp_RM, which is equal to the set
\[\{ p \in \text{Spec}R | M_p \neq 0 \}. \]

A prime ideal p is said to be an **attached prime** of M if $p = \text{Ann}_R(M/L)$ for some submodule L of M. The set of attached primes of M is denoted by Att_RM. If M is artinian, then M admits a minimal secondary representation $M = M_1 + \cdots + M_r$ so that M_i is p_i-secondary for $i = 1, \cdots, r$. In this case, $\text{Att}_RM = \{ p_1, \cdots, p_r \}$.

The **arithmetic rank** of a, denoted by $\text{ara}(a)$, is the least number of elements of R required to generate an ideal which has the same radical as a, i.e.,
\[\text{ara}(a) = \min\{ n \geq 0 | \exists a_1, \cdots, a_n \in R \text{ with } \text{Rad}(a_1, \cdots, a_n) = \text{Rad}(a) \}. \]

For an R-module M, the arithmetic rank of a with respect to M, denoted by $\text{ara}_M(a)$, is defined by the arithmetic rank of the ideal $a + \text{Ann}_RM/\text{Ann}_RM$ in the ring R/Ann_RM.

The ith **local cohomology** of an R-module M with respect to a is
\[H^i_a(M) := \lim_{\to} \text{Ext}^i_R(R/a^n, M). \]

The reader can refer to [11] for more details about local cohomology. The module M is called **a-torsion** if $\Gamma_a(M) := H^0_a(M) = M$, or equivalently, $\text{Supp}_RM \subseteq V(a)$.

For an arbitrary R-module M, set
\[\text{cd}(a, M) = \sup\{ n \in \mathbb{Z} | H^n_a(M) \neq 0 \}. \]

The **cohomological dimension** of a is
\[\text{cd}(a, R) = \sup\{ \text{cd}(a, M) | M \text{ is an } R\text{-module} \}. \]

1. Cofiniteness with respect to extension subcategories

Let d be a positive integer such that either $\dim R/a = d - 1$ or $\dim R = d$. It is shown that an R-module M is $\mathcal{N}S$-a-cofinite if and only if $\text{Supp}_RM \subseteq V(a)$ and $\text{Ext}^i_R(R/a, M) \in \mathcal{N}S$ for $i = 0, \cdots, d - 1$. Moreover, we show that the subcategory $\mathcal{N}S(R, a)_{\text{cof}}$ is abelian in the cases $\dim R \leq 2$ and $\dim R/a \leq 1$.

Lemma 1.1. Let M be an R-module such that $(0 :_M a) \in \mathcal{N}S$. Then $(0 :_M a^n) \in \mathcal{N}S$ for all $n \geq 1$.

Proof. This follows from the proof of [24, Theorem 2.15]. \qed

The following lemma is used at several places of this paper.

Lemma 1.2. Let M be an R-module of zero dimension. Then M is $\mathcal{N}S$-a-cofinite if and only if $\text{Supp}_RM \subseteq V(a)$ and $\text{Hom}_R(R/a, M) \in \mathcal{N}S$.

3
Proof. ‘Only if’ part is trivial.

‘If’ part. By assumption, there exists a short exact sequence

\[0 \to N \to \text{Hom}_R(R/a, M) \to S \to 0 \]

with \(N \in \mathcal{N} \) and \(S \in \mathcal{S} \). If \(\text{Ass}_R M \subseteq \text{Supp}\mathcal{S} \), then \(\text{Ass}_R N \subseteq \text{Supp}\mathcal{S} \) and so \(N \in \mathcal{S} \) by a finite filtration of \(N \). Thus \(\text{Hom}_R(R/a, M) \in \mathcal{S} \). Since \(\mathcal{S} \) satisfies the condition \(C_a \), one has \(M \in \mathcal{S} \). Hence \([4 \text{ Lemma } 2.1] \) implies that \(\text{Ext}^i_R(R/a, M) \in \mathcal{N}\mathcal{S} \) for all \(i \geq 0 \). Now assume that \(\text{Ass}_R M \not\subseteq \text{Supp}\mathcal{S} \), and let \(\Phi = \{ p | p \in \text{Ass}_R M \cap \text{Supp}\mathcal{S} \} \). By \([10 \text{ Ch.IV, Section } 1.2, \text{ Proposition } 4] \), there is a submodule \(K \) of \(M \) such that \(\text{Ass}_R K = \text{Ass}_R M \setminus \Phi \) and \(\text{Ass}_R M/K = \Phi \subseteq \text{Supp}\mathcal{S} \). As \(\text{Supp}_R K \cap \text{Supp}\mathcal{S} = \emptyset \) and \(\text{Hom}_R(R/a, K) \in \mathcal{N}\mathcal{S} \), it follows that \(\text{Hom}_R(R/a, K) \) has finite length. So \(K \) is artinian \(a \)-cofinite by \([20 \text{ Proposition } 4.1] \) and then \(\text{Ext}^i_R(R/a, K) \in \mathcal{N} \) for all \(i \geq 0 \). Hence the exact sequence \(0 \to K \to M \to M/K \to 0 \) implies that \(\text{Hom}_R(R/a, M/K) \in \mathcal{N}\mathcal{S} \). Since \(\text{Ass}_R M/K \subseteq \text{Supp}\mathcal{S} \), by the preceding proof, \(M/K \in \mathcal{S} \). Hence the above sequence yields that \(\text{Ext}^i_R(R/a, M) \in \mathcal{N}\mathcal{S} \) for all \(i \geq 0 \). \(\square \)

We now present the first main theorem of this section, which eliminates the hypothesis \(\text{Max}M \subseteq \text{Supp}\mathcal{S} \) in \([3 \text{ Theorem } 3.2] \).

Theorem 1.3. Let \(M \) be an \(R \)-module with \(\dim_R M \leq 1 \). Then \(M \) is \(\mathcal{N}\mathcal{S} \)-\(a \)-cofinite if and only if \(\text{Supp}_R M \subseteq V(a) \) and \(\text{Ext}^i_R(R/a, M) \in \mathcal{N}\mathcal{S} \) for \(i = 0, 1 \).

Proof. ‘Only if’ part is obvious.

‘If’ part. By Lemma \([1 \text{ Lemma } 1.2] \) we may assume \(\dim_R M = 1 \), and let \(t = \text{ara}_M(a) \). If \(t = 0 \), then \(M = (0 :_M a^n) \) for some \(n \geq 1 \), and so the assertion follows by Lemma \([1 \text{ Lemma } 2.1] \). Next assume that \(t > 0 \). Let \(\Phi = \{ p | p \in \text{Ass}_R M \cap \text{Supp}\mathcal{S} | \dim_R/p = 1 \} \). Then there is a submodule \(K \) of \(M \) so that \(\text{Ass}_R K = \Phi \) and \(\text{Ass}_R M/K = \text{Ass}_R M/\Phi \) by \([10 \text{ Ch.IV, Section } 1.2, \text{ Proposition } 4] \). As \(\text{Hom}_R(R/a, K) \in \mathcal{N}\mathcal{S} \), there exists an exact sequence

\[0 \to N' \to \text{Hom}_R(R/a, K) \to S' \to 0 \]

with \(N' \in \mathcal{N} \) and \(S' \in \mathcal{S} \). Note that \(\text{Ass}_R K \subseteq \text{Supp}\mathcal{S} \), so a finite filtration of \(N' \) forces that \(N' \in \mathcal{S} \), and hence \(\text{Hom}_R(R/a, K) \in \mathcal{S} \). As \(\mathcal{S} \) satisfies the condition \(C_a \), one has \(K \in \mathcal{S} \) and then \(\text{Ext}^i_R(R/a, K) \in \mathcal{S} \) for all \(i \geq 0 \). Replacing \(M \) by \(M/K \) we may assume that every \(p \in \text{Ass}_R M \) with \(\dim_R/p = 1 \) is not in \(\text{Supp}\mathcal{S} \). Let \(\Phi = \{ p \in \text{Ass}_R M | \dim_R/p = 1 \} \). There is a submodule \(L \) of \(M \) so that \(\text{Ass}_R L = \text{Ass}_R M \setminus \Phi \) and \(\text{Ass}_R M/L = \Phi \) by \([10 \text{ Ch.IV, Section } 1.2, \text{ Proposition } 4] \). Since \(\text{Hom}_R(R/a, L) \in \mathcal{N}\mathcal{S} \) and \(\dim_R L = 0 \), it follows from Lemma \([1 \text{ Lemma } 1.2] \) that \(L \) is \(\mathcal{N}\mathcal{S} \)-\(a \)-cofinite and hence \(\text{Ext}^i_R(R/a, M/L) \in \mathcal{N}\mathcal{S} \) for \(i = 0, 1 \). Replacing \(M \) by \(M/L \) we may further assume that \(\text{Ass}_R M = \{ p \in \text{Supp}_R M | \dim_R/p = 1 \} \). Since \(\text{Hom}_R(R/a, M) \in \mathcal{N}\mathcal{S} \), there exists a short exact sequence

\[0 \to N \to \text{Hom}_R(R/a, M) \to S \to 0 \]
with $N \in \mathcal{N}$ and $S \in \mathcal{S}$, which implies that the set $\text{Ass}_R M$ is finite. Also for each $p \in \text{Ass}_R M$, the R_p-module $\text{Hom}_{R_p}(R_p/aR_p, M_p)$ is finitely generated and M_p is aR_p-torsion with $\text{Supp}_{R_p} M_p \subseteq V(pR_p)$, it follows from [20 Proposition 4.1] that the R_p-module M_p is artinian aR_p-cofinite. Let $\text{Ass}_R M = \{ p_1, \ldots, p_n \}$. It follows from [6 Lemma 2.5] that $V(aR_p) \cap \text{Att}_{R_p} M_p \subseteq V(p_j R_p)$ for $j = 1, \ldots, n$. Set

$$U = \bigcup_{j=1}^n \{ q \in \text{Spec} R | q R_{p_j} \in \text{Att}_{R_{p_j}} M_{p_j} \}. $$

Then $U \cap V(a) \subseteq \text{Ass}_R M$. On the other hand, for each $q \in U$ we have $q R_{p_j} \in \text{Att}_{R_{p_j}} M_{p_j}$, for some $1 \leq j \leq n$. Thus

$$(\text{Ann}_R M) R_{p_j} \subseteq \text{Ann}_{R_{p_j}} M_{p_j} \subseteq q R_{p_j},$$

and so $\text{Ann}_R M \subseteq q$. Since $t = \text{ara}_M(a) \geq 1$, there exist $y_1, \ldots, y_t \in a$ such that

$$\text{Rad}(a + \text{Ann}_R M) = \text{Rad}((y_1, \ldots, y_t) + \text{Ann}_R M).$$

As $a \notin (\bigcup_{q \in U \setminus V(a)} q) \cup (\bigcup_{p \in \text{Ass}_R M} p)$, we have $(y_1, \ldots, y_t) \notin (\bigcup_{q \in U \setminus V(a)} q) \cup (\bigcup_{p \in \text{Ass}_R M} p)$. Hence [19 Ex.16.8] provides an element $a_1 \in (y_2, \ldots, y_t)$ so that $y_1 + a_1 \notin (\bigcup_{q \in U \setminus V(a)} q) \cup (\bigcup_{p \in \text{Ass}_R M} p)$. Set $x = y_1 + a_1$. Then $x \in a$ and there is an exact sequence $0 \to M \xrightarrow{a} M \to M/xM \to 0$. By assumption, $\text{Hom}_R(R/a, M/xM) \in \mathcal{NS}$, it follows from Lemma 1.2 that M/xM is \mathcal{NS}-a-cofinite since $\dim_R M/xM = 0$. Therefore, by [3 Lemma 2.2], one has M is \mathcal{NS}-a-cofinite, as desired. □

The following corollary generalizes [21 Theorem 2.3] and [3 Theorem 3.2].

Corollary 1.4. If $\dim R/a \leq 1$, then an a-torsion R-module M is \mathcal{NS}-a-cofinite if and only if $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i = 0, 1$.

An R-module M is said to be weakly Laskerian if the set $\text{Ass}_R M/N$ is finite for each submodule N of M.

Corollary 1.5. Let M be a weakly Laskerian R-module such that $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for $i = 0, 1$. Then M is \mathcal{NS}-a-cofinite.

Proof. As M is weakly Laskerian, there is an exact sequence $0 \to N \to M \to F \to 0$ such that $N \in \mathcal{N}$ and $F \in \mathcal{F}$ by [21 Theorem 3.3]. Note that $\dim_R F \leq 1$ and $\text{Ext}^i_R(R/a, F) \in \mathcal{NS}$ for $i = 0, 1$ by assumption, it follows from Theorem 1.3 that F is \mathcal{NS}-a-cofinite, and then M is \mathcal{NS}-a-cofinite. □

The next is the second main theorem of this section, which is a nice generalization of [21 Theorem 2.3] and [3 Theorem 3.5].

Theorem 1.6. Assume that $\dim R/a = d \geq 1$. Then an R-module M is \mathcal{NS}-a-cofinite if and only if $\text{Supp}_R M \subseteq V(a)$ and $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for all $i \leq d$.

5
Proof. ‘Only if’ part is trivial.
 ‘If’ part. We proceed by induction on d. If $d = 1$ then the assertion follows by Corollary 1.4. Suppose, inductively, $d > 1$ and the result has been proved for smaller values of d. If a is nilpotent, say $a^n = 0$ for some integer n, then $M = (0:_R a^n) \in NS$ by Lemma 1.1 as $(0:_M a) \in NS$ and so M is NS-a-cofinite. Now assume that a is not nilpotent. We can choose a positive integer n such that $(0:_R a^n) = \Gamma_a(R)$. Put $\overline{R} = R/\Gamma_a(R)$ and $\overline{M} = M/(0:_M a^n)$ which is an \overline{R}-module. Taking \overline{a} as the image of a in \overline{R}, we have $\Gamma_\pi(\overline{R}) = 0$. Thus \overline{a} contains an \overline{R}-regular element so that $\dim R/a + \Gamma_a(R) \leq d - 1$. Note that $\text{Supp}_R(R/a + \Gamma_a(R)) \subseteq V(a)$, by the assumption and [3, Lemma 2.1], one has $\text{Ext}_R^i(R/a + \Gamma_a(R), M) \in NS$ for $i \leq d$. Also $(0:_M a^n) \in NS$, and thus $\text{Ext}_R^i(R/a + \Gamma_a(R), \overline{M}) \in NS$ for $i \leq d$. On the other hand, it is clear that $\text{Supp}_R\overline{M} \subseteq V(a + \Gamma_a(R))$. By the inductive hypothesis, the R-module \overline{M} is NS-a + $\Gamma_a(R)$-cofinite, and then \overline{M} is NS-a-cofinite by the proof of [24 Theorem 2.15]. Therefore, $(0:_M a^n) \in NS$ forces that M is NS-a-cofinite.

The following corollary is a nice generalization of [24 Corollaries 2.16 and 2.18].

Corollary 1.7. If $\dim R = d \geq 1$, then an a-torsion R-module M is NS-a-cofinite if and only if $\text{Ext}_R^i(R/a, M) \in NS$ for all $i \leq d - 1$.

Proof. Let a be an ideal of R with $\dim R/a \leq d - 1$. It follows from Theorem 1.6 that M is NS-a-cofinite if and only if $\text{Ext}_R^i(R/a, M) \in NS$ for all $i \leq d - 1$. Hence [24 Theorem 2.15] yields the desired statement. □

The next result eliminates the hypothesis $\text{Max} M \subseteq \text{Supp} S$ in [3, Theorem 3.4].

Corollary 1.8. (1) Let $NS^1(R, a)_{cof}$ denote the category of NS-a-cofinite R-modules M with $\dim_R M \leq 1$. Then $NS^1(R, a)_{cof}$ is abelian.
 (2) If either $\dim R \leq 2$ or $\dim R/a \leq 1$, then $NS(R, a)_{cof}$ is abelian.

Proof. We just prove (2) since the proof of (2) is similar.

Given an R-homomorphism $f : M \to N$ in $NS^1(R, a)_{cof}$, set $K = \ker f$, $I = \text{im} f$ and $C = \text{coker} f$. It is easy to obtain that $\text{Hom}_R(R/a, K), \text{Ext}_R^1(R/a, K) \in NS$ and hence the module $K \in NS^1(R, a)_{cof}$ by Theorem 1.4. This implies that $I \in NS^1(R, a)_{cof}$ and consequently $C \in NS^1(R, a)_{cof}$, as required. □

The following corollary is a generalization [3, Theorem 2.7].

Corollary 1.9. Let M be an NS-a-cofinite R-module with $\dim_R M \leq 1$ and N a finitely generated R-module. Then the R-modules $\text{Tor}_i^R(N, M)$ and $\text{Ext}_R^i(N, M)$ are NS-a-cofinite for all $i \geq 0$.

Proof. Since N is finitely generated, N has a free resolution

$$F^\bullet : \cdots \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to 0,$$
where all F_i have finite ranks. Then $\text{Tor}^R_i(N, M) = H_i(F^\bullet \otimes_R M)$ and $\text{Ext}^i_R(N, M) = H^i(\text{Hom}_R(F^\bullet, M))$ are subquotients of a direct sum of finitely many copies of M. Now, the assertion follows from Corollary 1.8(1). □

The next result is a more general version of [23, Theorem 2.8].

Corollary 1.10. If either $\dim R = d \geq 3$ or $\dim R/a = d - 1$, then the subcategory $\mathcal{NS}(R, a)_{\text{cof}}$ is abelian if and only if for any homomorphism $f : M \to N$ in $\mathcal{NS}(R, a)_{\text{cof}}$ and $i \leq d - 2$, $\text{Ext}^i_R(R/a, \text{coker}f) \in \mathcal{NS}$.

Proof. ‘Only if’ part is trivial.

‘If’ part. Since $\text{Ext}^i_R(R/a, \text{coker}f) \in \mathcal{NS}$ for all $i \leq d - 2$, we have $\text{Ext}^i_R(R/a, \text{im}f) \in \mathcal{NS}$ for all $i \leq d - 1$, and hence $\text{im}f$ is \mathcal{NS}-a-cofinite by Theorem 1.6 and Corollary 1.7. This implies that $\ker f$ and therefore $\text{coker}f$ is \mathcal{NS}-a-cofinite, as desired. □

The following result is a generalization of [23, Proposition 2.10].

Proposition 1.11. Let a and b be two ideals of R with $b \subseteq a$ and M an R-module. If n is a nonnegative integer such that $\text{Ext}^i_R(R/b, M)$ are \mathcal{NS}-a-cofinite for all $i \leq n$, then $\text{Ext}^i_R(R/a, M) \in \mathcal{NS}$ for all $i \leq n$.

Proof. Assume that $0 \to M \to E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} \cdots$ is an injective resolution of M. We get the exact sequences $0 \to M^i \to E^i \to M^{i+1} \to 0$ and isomorphisms

$$\text{Ext}^{i+1}_R(R/a, M) \cong \text{Ext}^{i}_R(R/a, M^i), \text{ Ext}^{i+1}_R(R/b, M) \cong \text{Ext}^{i}_R(R/b, M^i),$$

where $M^i = \ker d^i$ for $i \geq 0$. Hence, for each $i \geq 0$, there is an exact sequence

$$0 \to (0 :)_{M^i} \to (0 :)_{E^i} \xrightarrow{f^i} (0 :)_{M^{i+1}} \to \text{Ext}^{i+1}_R(R/b, M) \to 0.$$

We first show that $\text{Ext}^s_{R/b}(R/a, \text{Ext}^i_R(R/b, M)) \in \mathcal{NS}$ for all $s \geq 0$ and $0 \leq i \leq n$. Consider the Grothendieck spectral sequences

$$E^{p,q}_2 = \text{Ext}^p_{R/b}(\text{Tor}^R_q(R/b, R/a), \text{Ext}^i_R(R/b, M)) \Rightarrow \text{Ext}^{p+q}_R(R/a, \text{Ext}^i_R(R/b, M)).$$

For $s = 0$, we have $\text{Hom}_{R/b}(R/a, \text{Ext}^i_R(R/b, M)) \cong \text{Hom}_R(R/a, \text{Ext}^i_R(R/b, M)) \in \mathcal{NS}$ for $0 \leq i \leq n$. Now, assume that $s > 0$ and the result has been proved for all values smaller than s. Then $E^{p,0}_2 = \text{Ext}^p_{R/b}(R/a, \text{Ext}^i_R(R/b, M)) \in \mathcal{NS}$ for all $0 \leq p < s$. Since $\text{Supp}_{R/b} \text{Tor}^R_q(R/b, R/a) \subseteq \text{Supp}_{R/b} R/a$, it follows from [3, Lemma 2.4] that $E^{p,q}_2 \in \mathcal{NS}$ for all $0 \leq p < s$ and $q \geq 0$. There exists a finite filtration

$$0 = \Phi^{s+1}H^s \subset \cdots \subset \Phi^1H^s \subset \Phi^0H^s \subset H^s := \text{Ext}^i_R(R/a, \text{Ext}^i_R(R/b, M)),$$

such that $E^{s,0}_\infty \cong \Phi^sH^s/\Phi^{s+1}H^s = \Phi^sH^s$ is a submodule of $H^s \in \mathcal{NS}$, and so $E^{s,0}_\infty \in \mathcal{NS}$. For $r \geq 2$, consider the differential
Theorem 2.1. Let
result generalizes [23, Theorem 3.3 and Proposition 3.4] and [3, Theorem 3.5].

For $0 \leq \dim_\mathbb{K} \mathcal{H}$, we have an exact sequence

\[E^s_{-r-1} \xrightarrow{d_r^s} E^s_0 \xrightarrow{d_r^0} E^s_{-r+1} = 0. \]

We have an exact sequence $E^s_{-r-1} \to E^s_0 \to E^s_{-r+1} \to 0$. As $E^s_0 \cong E^s_\infty \in \mathcal{NS}$ for $r \gg 0$, the sequence implies that $E_2^s = \text{Ext}^s_{R/\mathbb{K}}(R/\mathfrak{a}, \text{Ext}^i_R(R/\mathfrak{b}, M)) \in \mathcal{NS}$ for all $s \geq 0$ and $0 \leq i \leq n$. Next consider the Grothendieck spectral sequences

\[E_2^{p,q} = \text{Ext}^p_{R/\mathbb{K}}(R/\mathfrak{a}, \text{Ext}^q_R(R/\mathfrak{b}, M)) \Rightarrow \text{Ext}^{p+q}_R(R/\mathfrak{a}, M). \]

For $0 \leq i \leq n$, there exists a finite filtration

\[0 = \Phi^{i+1}H^i \subseteq \Phi^iH^i \subseteq \cdots \subseteq \Phi^0H^i \subseteq \Phi^0H^i = H^i := \text{Ext}^i_R(R/\mathfrak{a}, M), \]

such that $\Phi^pH^i/\Phi^{p+1}H^i \cong E^{p,i-p}_r$ for $0 \leq p \leq i$. As $E^{p,i-p}_\infty$ is a subquotient of $E^{p,i-p}_2$, a successive use of the exact sequence

\[0 \to \Phi^{p+1}H^i \to \Phi^pH^i \to \Phi^pH^i/\Phi^{p+1}H^i \to 0 \]

implies that $\text{Ext}^i_R(R/\mathfrak{a}, M) \in \mathcal{NS}$ for all $i \leq n$. \[\square \]

Corollary 1.12. Let \mathfrak{a} and \mathfrak{b} be two ideals of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and M an \mathfrak{a}-torsion R-module.

1. If $\text{Ext}^i_R(R/\mathfrak{b}, M) \in \mathcal{NS}$-$\mathfrak{a}$-cofinite for each $i \geq 0$, then M is \mathcal{NS}-\mathfrak{a}-cofinite.
2. For a non-negative integer d, if $\dim R/\mathfrak{a} = d$ and $\text{Ext}^i_R(R/\mathfrak{b}, M)$ is \mathcal{NS}-\mathfrak{a}-cofinite for $0 \leq i \leq d$, then M is \mathcal{NS}-\mathfrak{a}-cofinite.

2. \mathcal{NS}-\mathfrak{a}-cofiniteness of local cohomology modules

This section, we study \mathcal{NS}-\mathfrak{a}-cofiniteness of local cohomology modules. The following result generalizes [23, Theorem 3.3 and Proposition 3.4] and [3, Theorem 3.5].

Theorem 2.1. Let M be an R-module and n a non-negative integer. If either $\dim R/\mathfrak{a} = 1$ or $\dim R/\mathfrak{a} = 2$, then $\text{Ext}^i_R(R/\mathfrak{a}, M) \in \mathcal{NS}$ for all $i \leq n+1$ if and only if $H^i_\mathfrak{a}(M)$ is \mathcal{NS}-\mathfrak{a}-cofinite for all $i \leq n$ and $\text{Hom}_R(R/\mathfrak{a}, H^{n+1}_\mathfrak{a}(M)) \in \mathcal{NS}$.

Proof. ‘If’ part follows from [9, Theorem 2.1].

‘Only if’ part. Set $s = 1$ in [9, Theorem 2.9], it is enough to show that $H^i_\mathfrak{a}(M)$ are \mathcal{NS}-\mathfrak{a}-cofinite for all $i \leq n$. We prove by induction on n. If $n = 0$ and $\text{Ext}^i_R(R/\mathfrak{a}, M) \in \mathcal{NS}$ for $i = 0$, then $\text{Hom}_R(R/\mathfrak{a}, \Gamma_\mathfrak{a}(M)), \text{Ext}^1_R(R/\mathfrak{a}, \Gamma_\mathfrak{a}(M)) \in \mathcal{NS}$, and so $\Gamma_\mathfrak{a}(M)$ is \mathcal{NS}-\mathfrak{a}-cofinite by Theorem [1,3] and Corollaries [1,4] and [1,7] and $\text{Hom}_R(R/\mathfrak{a}, H^1_\mathfrak{a}(M)) \in \mathcal{NS}$ by [9, Theorem 2.9]. Now, suppose that $n > 0$ and the result has been proved for smaller values of n. Then $H^i_\mathfrak{a}(X)$ is \mathcal{NS}-\mathfrak{a}-cofinite for $i \leq n - 1$ by the induction. Hence [9, Theorem 2.9] implies that $\text{Ext}^1_R(R/\mathfrak{a}, H^{n+1}_\mathfrak{a}(M)) \in \mathcal{NS}$ for $i = 0, 1$, and hence $H^i_\mathfrak{a}(M)$ is \mathcal{NS}-\mathfrak{a}-cofinite by Corollaries [1,4] and [1,7] and $\text{Hom}_R(R/\mathfrak{a}, H^{n+1}_\mathfrak{a}(M)) \in \mathcal{NS}$ by [9, Theorem 2.9]. \[\square \]
Corollary 2.2. Let \(a, b \) be two ideals of \(R \) with \(b \subseteq a \), \(n \) a non-negative integer and \(M \) be an \(R \)-module such that \(H^i_b(M) \) is \(\mathcal{NS} \)-\(a \)-cofinite for \(i \leq n + 1 \). If either \(\dim R/a \leq 1 \) or \(\dim R \leq 2 \), then \(H^i_a(M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \leq n \).

Proof. Consider the Grothendieck spectral sequence

\[
E_2^{p,q} = \text{Ext}_R^p(R/a, H^q_b(M)) \Rightarrow \text{Ext}_R^{p+q}(R/a, M).
\]

For \(0 \leq i \leq n + 1 \), there exists a finite filtration

\[
0 = H^{i+1} \subseteq H^i \subseteq \cdots \subseteq H^1 \subseteq H^0 = H := \text{Ext}^i_R(R/a, M),
\]

such that \(\Phi^p H^i / \Phi^{p+1} H^i \cong E_2^{p,i-p} \) for \(0 \leq p \leq i \). As \(E_2^{p,i-p} \) is a subquotient of \(E_2^{p,i-1} \), a successive use of the exact sequence

\[
0 \to \Phi^p H^i \to \Phi^p H^i / \Phi^{p+1} H^i \to 0
\]

implies that \(\text{Ext}_R^i(R/a, M) \in \mathcal{NS} \) for \(i \leq n + 1 \), and hence, by Theorem 2.1, \(H^i_a(M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \leq n \). \(\square \)

Corollary 2.3. Let \(M \) be a weakly Laskerian \(R \)-module such that \(\text{Ext}^i_R(R/a, M) \in \mathcal{NS} \) for \(i = 0, 1 \). If either \(\dim R/a \leq 1 \) or \(\dim R \leq 2 \), then \(H^i_a(M) \) is \(\mathcal{NS} \)-\(a \)-cofinite for every \(i \geq 0 \).

Proof. As \(M \) is weakly Laskerian, there is an exact sequence \(0 \to N \to M \to F \to 0 \) so that \(N \in \mathcal{N} \) and \(F \in \mathcal{F} \) by [5, Theorem 3.3]. Then \(F \) is \(\mathcal{NS} \)-\(a \)-cofinite by Theorem 2.1. Hence the above sequence and Theorem 2.1 yield the desired statement. \(\square \)

The next corollary is a more general version of [6, Theorem 2.15] and [16, Theorem 2.6].

Corollary 2.4. Let \(a, b \) be two ideals of \(R \) with \(b \subseteq a \), \(n \) a non-negative integer and \(M \) be an \(R \)-module such that \(\text{Ext}^i_R(R/b, M) \in \mathcal{NS} \) for \(i \leq n + 1 \). If \(\dim R/a = \dim R/b \leq 1 \), then \(H^i_a(H^j_b(M)) \) is \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \) and \(j \leq n \).

Proof. By Theorem 2.1, one has \(H^j_b(M) \) are \(\mathcal{NS} \)-\(b \)-cofinite for all \(j \leq n \), which implies that \(\text{Ext}^i_R(R/a, H^j_b(M)) \in \mathcal{NS} \) for all \(i \) and \(j \leq n \). Hence \(H^i_a(H^j_b(M)) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \) and \(j \leq n \) by Theorem 2.1 again. \(\square \)

The next corollary is a generalization of [20, Corollary 3.14 and Theorem 7.10] and [21, Corollary 2.12].

Corollary 2.5. If either \(\dim R/a \leq 1 \) or \(\dim R \leq 2 \) or \(\text{cd}(a, R) \leq 1 \), then \(H^i_a(M) \) is \(\mathcal{NS} \)-\(a \)-cofinite for any \(M \in \mathcal{NS} \) and every \(i \geq 0 \).

Proof. This follows from Theorem 2.1 and [9, Theorem 2.9]. \(\square \)

Corollary 2.6. Let \(M \neq 0 \) be in \(\mathcal{NS} \) such that \(\dim R/M/\mathfrak{a}M \leq 1 \). Then for each finitely generated \(R \)-module \(N \), the \(R \)-modules \(\text{Ext}^i_R(N, H^j_a(M)) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i, j \geq 0 \).
Proof. As $\text{Supp}_R H^d_a(M) \subseteq \text{Supp}_R M/aM$, it follows from Theorem 2.1 that $H^d_a(M)$ are \mathcal{NS}-a-cofinit for all $j \geq 0$. Now the assertion follows from Corollary 1.8.

The following proposition is a more general version of [8] Theorem 3.7.

Proposition 2.7. Let n be a non-negative integer such that $\text{Ext}_R^i(R/a, M) \in \mathcal{NS}$ for all $i \leq n + 1$. If either $\dim R = d \geq 3$ or $\dim R/a = d - 1$, then $H^i_a(M)$ is \mathcal{NS}-a-cofinite for $i < n$ if and only if $\text{Hom}_R(R/a, H^{i+d-3}_a(M)), \cdots, \text{Ext}_{R}^{d-3}(R/a, H^{i}_a(M)) \in \mathcal{NS}$ for $i \leq n$.

Proof. This follows from [9, Theorem 2.9] and Theorem 1.6 and Corollary 1.7.

The next result is a generalization of [20, Proposition 5.1].

Proposition 2.8. Let $M \in \mathcal{NS}$ be an R-module of dimension d. Then the top local cohomology module $H^d_a(M)$ is \mathcal{NS}-a-cofinite of zero dimension.

Proof. We use induction on d. This is clear if $d = 0$. So assume that $d > 0$ and replacing M with $M/\Gamma_a(M)$, we may assume that a contains an M-regular element x. By induction, $H^{d-1}_a(M/xM)$ is \mathcal{NS}-a-cofinite of zero dimension. Then the exact sequence

$$H^{d-1}_a(M/xM) \to H^d_a(M) \xrightarrow{\partial} H^d_a(M) \to 0$$

and Lemma 3.3 imply that $(0 : H^d_a(M) x)$ is \mathcal{NS}-a-cofinite of zero dimension. Thus, by [3, Lemma 2.2], $H^d_a(M)$ is \mathcal{NS}-a-cofinite of zero dimension.

An R-module M is minimax if there is a finitely generated submodule N of M, such that M/N is artinian.

Corollary 2.9. Let M be a minimax R-module of dimension d. Then $H^d_a(M)$ is artinian.

Proof. By Proposition 2.8, there is an exact sequence

$$0 \to N \to \text{Hom}_R(R/a, H^d_a(M)) \to A \to 0$$

with $N \in \mathcal{N}$ and $A \in \mathcal{A}$. But $\dim_R H^d_a(M) = 0$, it follows that $\text{Hom}_R(R/a, H^d_a(M))$ artinian, and so $H^d_a(M)$ is artinian.

The following proposition is a generalization of [11, Theorem 7.1.3].

Proposition 2.10. If $R/a \in \mathcal{S}$, then $H^i_a(M) \in \mathcal{S}$ for every $M \in \mathcal{NS}$ and all $i \geq 0$.

Proof. We use induction on i. First since $M \in \mathcal{NS}$, there is an exact sequence $0 \to N \to M \to S \to 0$ with $N \in \mathcal{N}$ and $S \in \mathcal{S}$. Then $H^0_a(N) = (0 : a^n)$ for some $n \geq 1$. Since $\text{Ass}_R(0 : a^n) \subseteq V(a)$, a finite filtration of $(0 : a^n)$ forces that $H^0_a(N) \in \mathcal{S}$. Also $H^0_a(S) \in \mathcal{S}$, so $H^0_a(M) \in \mathcal{S}$. Now assume, inductively, that $i > 0$ and that $H^{i-1}_a(M') \in \mathcal{S}$ for all finitely generated R-modules M'. Since $H^i_a(M) \cong H^i_a(M/\Gamma_a(M))$ for all $i > 0$, we may assume that $\Gamma_a(M) = 0$, and the ideal a contains an M-regular element x. Then the exact sequence $0 \to M \xrightarrow{\partial} M \to M/xM \to 0$ induces the following exact sequence.
By induction, $H^i_a(M/xM) \rightarrow H^i_a(M) \rightarrow H^i_a(M)$. By Lemma 3.1, we may assume $\dim_a(S)$. This follows from [3, Lemma 2.3] and [13, Corollary 2.2.13].

Corollary 2.11. (1) Let M be a minimax R-module. Then the R-module $H^i_a(M)$ is artinian for every $i \geq 0$ and $a \in \Max R$.

(2) Let R be a local ring and M a weakly Laskerian R-module. If $\dim R/a \leq 1$, then the set $\Supp_R H^i_a(M)$ is finite for every $i \geq 0$.

3. $\mathcal{N}S$-a-cofiniteness for extension and torsion functors

This section investigates $\mathcal{N}S$-a-cofiniteness of the R-modules $\Ext^i_R(N, M)$ and $\Tor^i_R(N, M)$. It is shown that $\Ext^i_R(N, M)$ and $\Tor^i_R(N, M)$ are $\mathcal{N}S$-a-cofinite for all $i \geq 0$ whenever N is finitely generated with $\dim_R N \leq 2$ and M is $\mathcal{N}S$-a-cofinite.

Lemma 3.1. Let M be an $\mathcal{N}S$-a-cofinite R-module and N a non-zero finite length R-module. Then $\Ext^i_R(N, M)$ and $\Tor^i_R(N, M)$ are in $\mathcal{N}S$ for all $i \geq 0$.

Proof. This follows from [3, Lemma 2.3] and [13, Corollary 2.2.13].

Lemma 3.2. Let M be an $\mathcal{N}S$-a-cofinite R-module and N a finitely generated R-module with $\dim_R N \leq 1$. Then $\Ext^i_R(N, M)$ and $\Tor^i_R(N, M)$ are $\mathcal{N}S$-a-cofinite of zero dimension for every $i \geq 0$.

Proof. By Lemma 3.1 we may assume $\dim_R N = 1$. It follows from [3, Lemma 2.1] that $\Ext^i_R(\Gamma_a(N), M) \in \mathcal{N}S$, and so $\Tor^i_R(\Gamma_a(N), M) \in \mathcal{N}S$ for all $i \geq 0$ by [13, Corollary 2.2.13]. The exact sequence $0 \to \Gamma_a(N) \to N \to \Gamma_a(N) \to 0$ induces the following two exact sequences

$$\Ext^{i-1}_R(\Gamma_a(N), M) \to \Ext^i_R(N/\Gamma_a(N), M) \to \Ext^i_R(N, M) \to \Ext^{i+1}_R(\Gamma_a(N), M),$$

$$\Tor^i_R(\Gamma_a(N), M) \to \Tor^i_R(N, M) \to \Tor^i_R(N/\Gamma_a(N), M) \to \Tor^{i+1}_R(\Gamma_a(N), M).$$

We may assume $\Gamma_a(N) = 0$. Then $a \not\subseteq \bigcup_{p\in \Ass_R N} p$ by [11, Lemma 2.1.1], and there exists an element $x \in a$ and an exact sequence $0 \to N \xrightarrow{x} N \to N/xN \to 0$, which induces the following exact sequence

$$\Ext^i_R(N/xN, M) \to \Ext^i_R(N, M) \xrightarrow{x} \Ext^i_R(N, M) \to \Ext^{i+1}_R(N/xN, M),$$

$$\Tor^i_R(N/xN, M) \to \Tor^i_R(N, M) \xrightarrow{x} \Tor^i_R(N, M) \to \Tor^{i+1}_R(N/xN, M).$$
for all \(i \geq 0 \). Hence we have an exact sequence
\[
\text{Ext}_i^R(N/xN, M) \rightarrow (0 : \text{Ext}_i^R(N, M)) \rightarrow 0
\]
and
\[
\text{Tor}_i^R(N/xN, M) \rightarrow (0 : \text{Tor}_i^R(N, M)) \rightarrow 0
\]
for \(i \geq 0 \). As the \(R \)-module \(N/xN \) is of finite length,
\[
(0 : \text{Ext}_i^R(N, M)), (0 : \text{Tor}_i^R(N, M)) \in \mathcal{NS}
\]
by Lemma 3.1 and \(\dim_R(0 : \text{Ext}_i^R(N, M)) = 0 = \dim_R(0 : \text{Tor}_i^R(N, M)) \) for all \(i \geq 0 \). Thus
\[
(0 : \text{Ext}_i^R(N, M)), (0 : \text{Tor}_i^R(N, M)) \in \mathcal{NS}
\]
dim \((0 : \text{Ext}_i^R(N, M)) \) = \(0 = \dim_R(0 : \text{Tor}_i^R(N, M)) \) for all \(i \geq 0 \). Note that \(\text{Supp}_R\text{Ext}_i^R(N, M) \), \(\text{Supp}_R\text{Tor}_i^R(N, M) \subseteq \text{V}(a) \), we have \(\dim_R\text{Ext}_i^R(N, M) = 0 = \dim_R\text{Tor}_i^R(N, M) \). Hence Lemma 3.2 implies that \(\text{Ext}_i^R(N, M) \) and \(\text{Tor}_i^R(N, M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \). □

Lemma 3.3. The class of \(\mathcal{NS} \)-\(a \)-cofinite \(R \)-modules of zero dimension is closed under taking submodules and quotients.

Proof. Let \(0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0 \) be a short exact of \(R \)-modules with \(M \), \(\mathcal{NS} \)-\(a \)-cofinite of zero dimensions. Then \(\text{Hom}_R(R/a, L) \in \mathcal{NS} \). So \(L \) is \(\mathcal{NS} \)-\(a \)-cofinite by Lemma 1.2 and therefore \(N \) is \(\mathcal{NS} \)-\(a \)-cofinite. □

The next main theorem of this section generalizes [24, Theorems 2.8 and 2.10] and [11, Theorem 2.4] and [22, Theorem 2.4].

Theorem 3.4. Let \(M \) be an \(\mathcal{NS} \)-\(a \)-cofinite \(R \)-module and \(N \) a finitely generated \(R \)-module with \(\dim_R N \leq 2 \). Then \(\text{Ext}_i^R(N, M) \) and \(\text{Tor}_i^R(N, M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \).

Proof. By analogy with the proof of Lemma 3.2 we may assume \(\Gamma_a(N) = 0 \) and \(\dim_R N = 2 \). Then there exists an element \(x \in a \) and an exact sequence \(0 \rightarrow N_x \rightarrow N \rightarrow N/xN \rightarrow 0 \), which induces two exact sequences
\[
\text{Ext}_i^R(N/xN, M) \rightarrow \text{Ext}_i^R(N, M) \rightarrow \text{Ext}_i^{i+1}(N/xN, M),
\]
\[
\text{Tor}_i^{i+1}(N/xN, M) \rightarrow \text{Tor}_i^R(N, M) \rightarrow \text{Tor}_i^R(N/xN, M)
\]
for \(i \geq 0 \). Since \(\dim_R N/xN = 1 \), it follows from Lemma 3.2 that \(\text{Ext}_i^R(N/xN, M) \) and \(\text{Tor}_i^R(N/xN, M) \) are \(\mathcal{NS} \)-\(a \)-cofinite of zero dimension. Thus \((0 : \text{Ext}_i^R(N, M)), (0 : \text{Tor}_i^R(N, M)) \) and \(\text{Ext}_i^R(N, M)/x\text{Ext}_i^R(N, M), \text{Tor}_i^R(N, M)/x\text{Tor}_i^R(N, M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \) by Lemma 3.3. Consequently, by [3, Lemma 2.2], the \(R \)-modules \(\text{Ext}_i^R(N, M) \) and \(\text{Tor}_i^R(N, M) \) are \(\mathcal{NS} \)-\(a \)-cofinite for all \(i \geq 0 \). □

The following result is a generalization of [11, Theorems 2.5 and 2.10].

Corollary 3.5. Let \((R, m) \) be local, and let \(M \) be an \(\mathcal{NF} \)-\(a \)-cofinite \(R \)-module and \(N \) a finitely generated \(R \)-module such that either \(\dim_R M = 2 \) or \(\dim_R N = 3 \). Then \(\text{Ext}_i^R(N, M) \) and \(\text{Tor}_i^R(N, M) \) are \(\mathcal{NF} \)-\(a \)-cofinite for all \(i \geq 0 \).

Proof. Denote \(\Phi \) the set of all modules \(\text{Ext}_i^R(R/a, \text{Ext}_i^R(N, M)) \) and \(\text{Ext}_i^R(R/a, \text{Tor}_i^R(N, M)) \) for \(i, j \geq 0 \). Let \(L \in \Phi \) and \(L' \) be a submodule of \(L \). It is enough to show that \(\text{Ass}_R L/L' \) is finite. To this end, according to [19, Exercise 7.7] and [17, Lemma 2.1] we may assume that
R is complete. Suppose the contrary is true. Then there exists a countably infinite subset $\{p_k\}_{k=1}^\infty$ of $\text{Ass}_R L/L'$, such that none of which is not equal to m, and hence $m \not\subseteq \bigcup_{k=1}^\infty p_k$ by Lemma 3.2]. Let $S = R \setminus \bigcup_{k=1}^\infty p_k$. Then the $S^{-1}R$-module $S^{-1}M$ is $\mathcal{N}_S^{-1}a$-cofinite with $\dim_{S^{-1}R}S^{-1}M \leq 1$ or $\dim_{S^{-1}R}S^{-1}N \leq 2$, it follows from Corollary 1.9 and Theorem 3.4 that $S^{-1}L$ is a weakly Laskerian $S^{-1}R$-module and so $\text{Ass}_{S^{-1}R}(S^{-1}L/S^{-1}L')$ is a finite set. But $S^{-1}p_k \in \text{Ass}_{S^{-1}R}(S^{-1}L/S^{-1}L')$ for all $k = 1, 2, \cdots$, which is a contradiction. \[\square \]

References

[1] R. Abazari, K. Bahmanpour, Cofiniteness of extension functors of cofinite modules, J. Algebra 330 (2011) 507–516.
[2] M. Aghapournahr, L. Melkersson, Local cohomology and Serre subcategories, J. Algebra 320 (2008) 1275–1287.
[3] N. Alipour, R. Sazeedeh, Cofiniteness with respect to extension of Serre subcategory, arXiv:2205.14533v1, 28 May 2022.
[4] M. Asgharzadeh and M. Tousi, A unified approach to local cohomology modules using serre classes, Canad. Math. Bull. 53 (2010) 577–586.
[5] K. Bahmanpour, On the category of weakly Laskerian cofinite modules, Math. Scand. 115 (2014) 62–68.
[6] K. Bahmanpour, R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra 321 (2009) 1997–2011.
[7] K. Bahmanpour, R. Naghipour, M. Sedghi, On the category of cofinite modules which is Abelian, Proc. Amer. Math. Soc. 142 (2014) 1101–1107.
[8] K. Bahmanpour, R. Naghipour, M. Sedghi, Cofiniteness with respect to ideals of small dimensions, Algebra Represent. Theor. 18 (2015) 369–379.
[9] M. Behrouzian, M. Aghapournahr, Lower bounds of certain general local cohomology modules, Comm. Algebra 48 (2020) 2406–2417.
[10] N. Bourbaki, Algèbre, commutative, Hermann, 1961–1983 (Chap. 1–Chap. 9).
[11] M.P. Brodmann, R.Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, 1998.
[12] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra 34 (2006) 681–690.
[13] H. Faridian, Gorenstein Homology and Finiteness Properties of Local (Co)homology, Ph. D. thesis, Shahid Beheshti University (2020), arXiv:2010.03013v1.
[14] A. Grothendieck, Cohomologie locale des faisceaux cohérents et thôrèvemes de Lefschetz locaux et globaux, (SGA 2), North-Holland, Amsterdam, 1968.
[15] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1969/1970) 145–164.
[16] A. Mafi, Cofiniteness of composed local cohomology modules, Forum Math. 25 (2013) 173–178.
[17] T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math. 104 (2001) 519–525.
[18] T. Marley, J.C. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra 256 (2002) 180–193.
[19] H. Matsumura, Commutative ring theory, Cambridge University press, 1986.
[20] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra 285 (2005) 649–668.
[21] L. Melkersson, Cofiniteness with respect to ideals of dimension one, *J. Algebra* **372** (2012) 459–462.

[22] R. Naghipour, K. Bahmanpour, I.K. Gorji, Cofiniteness of torsion functors of cofinite modules, *Colloq. Math.* **136** (2014) 221–230.

[23] M. Nazari, R. Sazeedeh, Cofiniteness with respect to two ideals and local cohomology, *Algebra Represent. Theor.* **22** (2019) 375–385.

[24] R. Sazeedeh, Cofiniteness with respect to extension of Serre subcategories at small dimensions, arXiv:2205.14535v1, 28 May 2022.

[25] T. Yoshizawa, Subcategories of extension modules by Serre subcategories, *Proc. Amer. Math. Soc.* **138** (2010) 1965–1968.

[26] H. Zöschinger, Minimax moduln, *J. Algebra* **102** (1986) 1–32.