HLA haploidentical hematopoietic cell transplantation (haplo-HCT) using posttransplantation cyclophosphamide (PT-Cy) is an alternative strategy when a matched sibling donor (MSD) is not available. We performed a systematic review and meta-analysis to compare the outcomes of MSD vs haplo-HCT. Eleven studies (1410 haplo-HCT and 6396 MSD recipients) were meta-analyzed. All studies were retrospective and high quality, and 9 were multicenter. Haplo-HCT was associated with ~50% lower risk of chronic graft-versus-host disease (GVHD) (hazard ratio [HR], 0.55; 95% confidence interval [CI], 0.41-0.74), but higher risk of nonrelapse mortality (HR, 1.36; 95% CI, 1.12-1.66). Relapse, survival, acute GVHD, and GVHD-free relapse-free survival were not significantly different between the groups. Deciphering the relative contribution of PT-Cy and HLA disparity to the observed outcome differences between the groups requires further research.

Introduction

Although an HLA-matched sibling is considered the optimal donor in allogeneic hematopoietic cell transplantation (HCT), haploidentical HCT (haplo-HCT) has emerged as a major alternative strategy. However, a consensus opinion regarding the outcomes of HCT using a matched sibling donor (MSD) vs a haploidentical donor has not been achieved, due in part to the heterogeneity of previous studies and the lack of a randomized trial. To address this knowledge gap, we performed a systematic review and meta-analysis and generated the highest level of evidence using the available data.

Methods

PubMed and Scopus were searched through 1 June 2019 using the following MeSH terms and keywords: “graft-versus-host disease” (GVHD), “haploidentical transplant,” “matched related donor,” and “matched sibling donor.” The identified articles were screened for full-text review based on title and abstract. The bibliography of the eligible articles was reviewed to identify additional studies. The included studies had to be in English, published as peer-reviewed articles, used posttransplant cyclophosphamide (PT-Cy) in haplo-HCT recipients, and reported ≥1 of the following outcomes in both MSD and haplo-HCT groups: acute GVHD, chronic GVHD (cGVHD), disease-free survival (DFS), overall survival (OS), nonrelapse mortality (NRM), relapse, and GVHD-free relapse-free survival (GRFS). Data were independently extracted by 2 authors, and disagreements were resolved through discussion with the last author. Data synthesis was performed according to the guidelines for systematic reviews and meta-analyses. We chose a random-effects model (R version 3.6.0) because of the expected heterogeneity of studies in their populations, exposures, and interventions.
Study (year)	n	Age, median (range), y	Male, %	Disease	Conditioning, RI/MA, %	Graft source, BM/PB, %	GVHD prophylaxis	F/U, median (range), mo
Ahmed et al (2019)	139	33 (19-69)	58	HL	100/0	PT-Cy based	70/30	52 (2-101)
MSD	457	33 (18-66)	56	HL	100/0	CNI+ (MMF 31%, MTX 48%, other 21%)	4/96	37 (5-100)
Bashey et al (2016)	116	51 (20-74)	46	HL	100/0	PT-Cy + Tac/MMF	55/45	22 (4-62)
MSD	181	53 (19-74)	58	HL	100/0	MMF/CNI	48/54	36 (11-87)
Burroughs et al (2008)	28	32 (14-62)	46	DLBCL	100/0	PT-Cy	100/0	52 (2-101)
MSD	38	33 (17-64)	53	DLBCL	100/0	CNI	0/100	36 (2-97)
Devillier et al (2018)	33	≥60	NR	AML	100/0	PT-Cy based	0/100	26 (4-77)
MSD	31	≥60	NR	AML	84/16	MMF	6/94	NR
Dietrich et al (2016)	59	18 NR	NHL	78/22	PT-Cy	75/25	2/98	48 (12-73)
MSD	2024	18 NR	NHL	NR	CNI/MMF	5/18	NR	NR
Dreger et al (2019)	61	29 (17-68)	54	HL	100/0	PT-Cy	51/49	24 (3-58)
MSD	90	32 (12-67)	63	HL	100/0	CNI	14/86	24 (3-70)
Gauthier et al (2018)	180	55 (18-75)	64	HL, NHL	100/0	PT-Cy	93/7	36 (7-8)
MSD	807	54 (18-77)	61	HL, NHL	100/0	CNI	2/98	36 (7-8)
Martinez (2017)	98	31 (18-68)	57	HL	90/10	PT-Cy	61/39	27 (1-64)
MSD	338	32 (18-67)	43	HL	69/31	CNI	10/89	27 (1-76)
Robinson et al (2018)	218	41 (18-55)	59	AML, ALL	40/60	PT-Cy	57/43	NR
MSD	843	42 (18-55)	52	AML, ALL	16/84	CNI	12/88	NR
Solh et al (2016)	128	50 (19-74)	54	Any	59/41	PT-Cy	52/48	24 (12-123)

The study by Bashey et al used the National Institutes of Health consensus criteria for cGVHD grading (mild vs moderate vs severe), whereas all other studies used the original classification system (limited vs extensive). ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BM, bone marrow; CNI, calcineurin inhibitor; DLBCL, diffuse large B-cell lymphoma; F/U, follow-up; Haplo, haploidentical; HL, Hodgkin lymphoma; MA, myeloablative; MMF, mycophenolate mofetil; MTX, methotrexate; NHL, non-Hodgkin lymphoma; NR, not reported; PB, peripheral blood; PT-Cy, posttransplant cyclophosphamide; RI, reduced intensity; Tac, tacrolimus.

*Multicenter study.
†Registry study.
‡Recipient age 18 to 54 years.
§Recipient age ≥55 years.
that is due to heterogeneity rather than chance. Funnel plots and which estimates the percentage of total variation across studies activity analysis by excluding potential outliers and then compar-
ing the pooled effect size with vs without outliers. A study was considered outliers.

Egger is more likely to affect smaller studies and can be assessed by points were allocated based on the selection process of cohorts (0-4), comparability of cohorts (0-2), and the assessment of outcomes of study participants (0-3). We considered total scores of 0 to 3, 4 to 6, and 7 to 9 as low, moderate, and high quality, respectively.

Results and discussion

A total of 20 articles was identified for the full-text review, 11 of which were selected for final analysis (1410 haplo-HCT and 6396 MSD recipients) (11-21) (Table 1; supplemental Figure 1). One study reported outcomes for patients aged <55 years and ≥55 years separately and was considered 2 studies. We used as much information as possible from each study. For example, if studies A and B had overlapping populations but study A reported an outcome that study B did not, we kept both studies but used A for its unique outcome and B for the other outcomes.

All studies were retrospective, 9 were multicenter, and all but 1 were published between 2016 and 2019. Meta-analysis results are shown in Figure 1. The most remarkable result was for cGVHD (7 studies; no outliers), with a pooled hazard ratio of 0.55 (95% confidence interval, 0.41-0.74) for haplo-HCT vs MSD, corresponding to a 50% lower risk after haplo-HCT. In contrast, there was an increased risk for NRM (6 studies; no outliers) after haplo-HCT, with a pooled hazard ratio of 1.37 (95% confidence interval, 1.12-1.66). Results for OS (7 studies), DFS (8 studies), relapse (7 studies), GRFS (4 studies), and grade II-IV (5 studies) or III-IV (5 studies) acute GVHD were not significant. Egger’s regression suggested the
presence of publication bias for OS (P = .01) and DFS (P = .07) but not for the other outcomes. All studies were classified as high quality (supplemental Table 1).

In the absence of a randomized controlled trial, our findings from a meta-analysis of several large studies indicate a consistent and substantially reduced risk for cGVHD after haplo-HCT compared with MSD. Grading of cGVHD and the chosen definitions were not consistent across studies. Of the 7 studies included for cGVHD with MSD. Grading of cGVHD and the chosen definitions were not substantially reduced risk for cGVHD after haplo-HCT compared with MSD. Grading of cGVHD and the chosen definitions were not consistent across studies. Another limitation of our analysis is related to registry studies (n = 8). Although registry studies typically include large sample sizes, the quality of data depends on the reports from individual centers and may be variable. The reduction in cGVHD did not translate into more relapse; however, we found an increased risk for NRM after haplo-HCT. The reduction in cGVHD, the insignificant results for acute GVHD, and the separation of NRM curves early after HCT in most of the examined studies suggest infections and complications of delayed immune reconstitution as the main suspects for increased NRM after haplo-HCT, highlighting the value of infection-focused comparative studies and better supportive care.

Our analysis considered PT-Cy-based haplo-HCT and MSD without PT-Cy as “packages” and is not able to address the independent role of other relevant factors, such as conditioning intensity, graft source, and underlying disease. The prefered donor type may depend on these factors and their interactions, as suggested in recent works. Studies comparing haplo-HCT vs MSD, both using PT-Cy, as well as studies comparing MSD with vs without PT-Cy, could address the relative role of PT-Cy and HLA disparity in outcome differences observed in this meta-analysis. The results of 1 such study (BMT CTN 1203) were recently reported; a PT-Cy GVHD prophylaxis platform was the only 1 of the 3 randomized platforms that was superior to a nonrandomized contemporaneous tacrolimus plus methotrexate cohort for GRFS and cGVHD requiring immunosuppression in reduced-intensity matched-donor peripheral blood HCT. The BMT CTN 1703/1801 trial is comparing PT-Cy (plus tacrolimus and methotrexate) with tacrolimus plus methotrexate in reduced-intensity matched-donor peripheral blood HCT.

Acknowledgment
The authors thank Todd E. DeFor and Xianghua Luo for statistical input.

Authorship
Contribution: A.R. designed the study and wrote the manuscript; M.A.M. conducted the literature search; M.A.M. and W.C. extracted the data; W.C. and H.C. performed the meta-analysis; LL, A.B., X.Z., R.R., W.S., M.H., and D.J.W. critically evaluated the results and the manuscript; and A.B. and X.Z. provided additional data.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

ORCID profiles: M.H., 0000-0001-5372-510X; D.J.W., 0000-0001-8078-8579; A.R., 0000-0002-9384-272X.

Correspondence: Armin Rashidi, Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, 14-132 Phillips Wangensteen Building, 516 Delaware St SE, Minneapolis, MN 55455; e-mail: arashidi@umn.edu.

References

1. Szydlo R, Goldman JM, Klein JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol. 1997;15(5):1767-1777.
2. Kasamon YL, Bolanos-Meade J, Prince GT, et al. Outcomes of nonmyeloablative HLA-haploidentical blood or marrow transplantation with high-dose post-transplantation cyclophosphamide in older adults. J Clin Oncol. 2015;33(28):3152-3161.
3. Bashey A, Zhang MJ, McCurdy SR, et al. Mobilized peripheral blood stem cells versus unstimulated bone marrow as a graft source for T-cell–replete haploidentical donor transplantation using post-transplant cyclophosphamide. J Clin Oncol. 2017;35(26):3002-3009.
4. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;(339):b2535.
5. Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137-159.
6. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-560.
7. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629-634.
8. Lin L, Chu H. Quantifying publication bias in meta-analysis. Biometrics. 2018;74(5):785-794.
9. Viechtbauer W, Cheung MW-L. Outlier and influence diagnostics for meta-analysis. Res Synth Methods. 2010;1(2):112-125.
10. Deeks JJ, Dinnes J, D’Amico R, et al; European Carotid Surgery Trial Collaborative Group. Evaluating non-randomised intervention studies. Health Technol Assess. 2003;7(27):iii-x, 1-173.
11. Burroughs LM, O’Donnell PV, Sandmaier BM, et al. Comparison of outcomes of HLA-matched related, unrelated, or HLA-haploidentical related hematopoietic cell transplantation following nonmyeloablative conditioning for relapsed or refractory Hodgkin lymphoma. Biol Blood Marrow Transplant. 2008;14(11):1279-1287.
12. Martinez C, Gayoso J, Canals C, et al; Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Post-transplantation cyclophosphamide-based haploidentical transplantation as alternative to matched sibling or unrelated donor transplantation for Hodgkin lymphoma: a registry study of the Lymphoma Working Party of the European Society for Blood and Marrow Transplantation. J Clin Oncol. 2017;35(30):3425-3432.
13. Solh M, Zhang X, Connor K, et al. Factors predicting graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic cell transplantation: multivariable analysis from a single center. *Biol Blood Marrow Transplant*. 2016;22(6):1403-1409.

14. Ghosh N, Karmali R, Rocha V, et al. Reduced-Intensity Transplantation for Lymphomas Using Haploidentical Related Donors Versus HLA-Matched Sibling Donors: A Center for International Blood and Marrow Transplant Research Analysis. *J Clin Oncol*. 2016;34(26):3141-3149.

15. Robinson TM, Fuchs EJ, Zhang MJ, et al; Acute Leukemia Working Party of the European Society for Blood and Marrow Transplant and the Center for International Blood and Marrow Transplant Research. Related donor transplants: has posttransplantation cyclophosphamide nullified the detrimental effect of HLA mismatch? *Blood Adv*. 2018;2(11):1180-1186.

16. Dreger P, Sureda A, Ahn KW, et al. PTCy-based haploidentical vs matched related or unrelated donor reduced-intensity conditioning transplant for DLBCL. *Blood Adv*. 2019;3(3):360-369.

17. Devillier R, Legrand F, Rey J, et al. HLA-matched sibling versus unrelated versus haploidentical related donor allogeneic hematopoietic stem cell transplantation for patients aged over 60 years with acute myeloid leukemia: a single-center donor comparison. *Biol Blood Marrow Transplant*. 2018;24(7):1449-1454.

18. Gauthier J, Poiré X, Gac A-C, et al. Better outcome with haploidentical over HLA-matched related donors in patients with Hodgkin’s lymphoma undergoing allogeneic hematopoietic cell transplantation—a study by the Francophone Society of Bone Marrow Transplantation and Cellular Therapy. *Bone Marrow Transplant*. 2018;53(4):400-409.

19. Dietrich S, Finel H, Martinez C, et al. Post-transplant cyclophosphamide-based haplo-identical transplantation as alternative to matched sibling or unrelated donor transplantation for non-Hodgkin lymphoma: a registry study by the European society for blood and marrow transplantation. *Leukemia*. 2016;30(10):2086-2089.

20. Ahmed S, Kanakry JA, Ahn KW, et al. Lower graft-versus-host-disease and relapse risk in post-transplant cyclophosphamide-based haploidentical versus matched sibling donor reduced-intensity conditioning transplant for Hodgkin lymphoma [published online ahead of print 25 May 2019]. *Biol Blood Marrow Transplant*. doi:10.1016/j.bbmt.2019.05.025.

21. Bashey A, Zhang X, Jackson K, et al. Comparison of outcomes of hematopoietic cell transplants from T-replete haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and HLA-identical sibling donors: a multivariable analysis including disease risk index. *Biol Blood Marrow Transplant*. 2016;22(1):125-133.

22. Shulman HM, Sullivan KM, Weiden PL, et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. *Am J Med*. 1980;69(2):204-217.

23. Filipovich AH, Weissdorf D, Pavletic S, et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. *Biol Blood Marrow Transplant*. 2005;11(12):945-956.

24. Perales MA, Tomlinson B, Zhang MJ, et al. Alternative donor transplantation for acute myeloid leukemia in patients aged ≥50 years: young HLA-matched unrelated or haploidentical donor [published online ahead of print 17 May 2019]? *Haematologica*. doi:10.3324/haematol.2018.215202.

25. Bolaños-Meade J, Reshef R, Fraser R, et al. Three prophylaxis regimens (tacrolimus, mycophenolate mofetil, and cyclophosphamide; tacrolimus, methotrexate, and bortezomib; or tacrolimus, methotrexate, and maraviroc) versus tacrolimus and methotrexate for prevention of graft-versus-host disease with hematopoietic cell transplantation with reduced-intensity conditioning: a randomised phase 2 trial with a non-randomised contemporaneous control group (BMT CTN 1203). *Lancet Haematol*. 2019;6(3):e132-e143.