Long non-coding RNA SATB2-AS1 inhibits microRNA-155-3p to suppress breast cancer cell growth by promoting breast cancer metastasis suppressor 1-like

Shaoqiang Cheng†, Bingshu Xia†, Hongbin Li², Yuying Li², Xinxin Lv², Yue Zhang and Yuanxi Huang¹*

Abstract

Background: Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) play vital roles in human cancers. Nevertheless, the effects of lncRNAs and miRNAs on breast cancer (BC) remain to be further investigated. This study was designed to testify the roles of lncRNA antisense transcript of SATB2 protein (SATB2-AS1) and microRNA-155-3p (miR-155-3p) in BC progression.

Methods: Levels of SATB2-AS1, miR-155-3p and breast cancer metastasis suppressor 1-like (BRMS1L) in BC were determined. The prognostic role of SATB2-AS1 in BC patients was assessed. The screened cells were respectively introduced with altered SATB2-AS1 or miR-155-3p to figure out their roles in malignant phenotypes of BC cells. The effect of varied SATB2-AS1 and miR-155-3p on BC cells in vivo was observed. Dual luciferase reporter gene assay and RNA-pull down assay were implemented to detect the targeting relationship of SATB2-AS1, miR-155-3p, and BRMS1L.

Results: SATB2-AS1 and BRMS1L were decreased while miR-155-3p was increased in BC cells and tissues. Patients with lower SATB2-AS1 expression had poor prognosis. Elevated SATB2-AS1 and inhibited miR-155-3p were able to restrain malignant behaviors of BC cells in vitro, as well as decelerate tumor growth in vivo. Oppositely, inhibited SATB2-AS1 and amplified miR-155-3p had converse effects on BC cell growth. MiR-155-3p mimic abrogated the impact of overexpressed SATB2-AS1. SATB2-AS1 could sponge miR-155-3p, and BRMS1L was the target gene of miR-155-3p.

Conclusion: Elevated SATB2-AS1 and inhibited miR-155-3p could suppress the malignant phenotypes of BC cells, thereby restricting the development of BC.

Keywords: Breast cancer, Long non-coding RNA antisense transcript of SATB2 protein, MicroRNA-155-3p, Breast cancer metastasis suppressor 1-like

Background

Breast cancer (BC) is the 2nd commonest cancer all over the world and is the most prevalent malignancy in females [1]. In practice, BC is a heterogeneous cascade of lesion containing a broad range of malignancies that vary in clinical course, imaging appearance and biology [2]. Due to earlier diagnosis and improvement of therapeutic effect, the BC survivors are remarkably enhancing.
[3]. However, there is still an elevating mortality in some particular countries [4]. It has been demonstrated that both environmental and genetic factors contribute to the risk of BC [5]. In addition, several clinicopathological parameters have been introduced in BC management, including clinical stages, histological grade, histological type and lymph node metastasis (LNM). Nevertheless, some patients that possess the same clinicopathological features have different outcomes of prognosis [6]. Thus, novel treatment methods for BC are urgently needed.

Long non-coding RNAs (lncRNAs), with a length of over 200 nucleotides, play a critical role in transcriptional and posttranscriptional processing, and genomic imprinting in oncogenesis [7]. Previous studies have confirmed that several lncRNAs participated in BC, such as lncRNA SNHG15 [8] and lncRNA linc00617 [9]. LncRNA antisense transcript of SATB2 protein (SATB2-AS1) is a novel lncRNA that has been scarcely discussed. As reported, SATB2-AS1 was abnormally down-regulated in colorectal carcinoma [10, 11], while its impact on progression of BC has not been studied yet. MicroRNAs (miRNAs) are non-coding RNAs of 21–25 nucleotides that are able to modulate protein expression via binding to the complementary sequence of 3′-untranslated region (3′-UTR) in the target mRNA [12]. A variety of miRNAs were demonstrated to be involved in the management of BC, including miR-9 and miR-221 [13]. Moreover, the role of miR-155-3p in BC has also been unraveled before [14]. Breast cancer metastasis suppressor 1-like (BRMS1L) was initially isolated from the core switch-independent 3 (SIN3)-HDAC complex in 2004 [15]. Although the effect of BRMS1L has been clarified in BC [16], the target relation between miR-155-3p and BRMS1L, and the role of lncRNA SATB2-AS1/miR-155-3p/BRMS1L axis in BC remain unexplored.

We aim to investigate the regulatory role of the lncRNA SATB2-AS1/miR-155-3p/BRMS1L axis in the biological functions of BC cells, and we inferred that lncRNA SATB2-AS1 may act as a competing endogenous RNA (ceRNA) to absorb miR-155-3p to affect the progression of BC by regulating BRMS1L.

Materials and methods

Ethics statement

Written informed consents were acquired from all patients before this study. The protocol of this study was confirmed by the Ethic Committee of Harbin Medical University Cancer Hospital (ethical number: 201204034).

Study subjects

An amount of 131 BC cases were collected from patients (aging 24–87 years, mean age of 51.26±12.37 years and peak age of 40–60 years) that had accepted resection in Harbin Medical University Cancer Hospital between January 2013 and December 2015. The clinicopathological characteristics of patients were analyzed, and the paraffin-embedded BC tissues (mean diameter of 3.14±2.48 cm) as well as adjacent normal tissues were collected. Among the 131 cases, there were 73 cases with LNM and 58 cases without LNM. According to the tumor, node and metastasis (TNM) stage, there were 34 cases of I stage, 9 cases of II stage, 32 cases of III stage and 26 cases of IV stage. The survival time was started to be recorded when the patient was diagnosed as BC. The follow-up time was 3 years and ended at November 30, 2018.

In situ hybridization (ISH)

Paraffin-embedded sections (4 μm) were dewaxed, rehydrated and treated with proteinase K for 20 min, and then were prehybridized by hybridization solution at 50 °C for 2 h. Afterwards, 80 nM locked nucleic acid-modified, 5′-digoxigenin (DIG)-labeled oligonucleotide probe of SATB2-AS1 with a sequence of TAG TGT TAA AGG AGT ARR AC AR A R G T T G G G A A G G A G T A T G A T G T T A A A G A G G A T GT ATGCCT, was appended to the hybridization solution at 50 °C overnight, and then was added with alkaline phosphatase conjugated anti-DIG antibody (Roche, Mannheim, Germany). Washed with staining solution, sections were incubated in NBT/BCIP developing solution (Roche) for 15–30 min. The staining was observed.

Cell culture

Human normal mammary cell line MCF-10A and BC cell lines MDA-MB-231, MDA-MB-468, BT-549, MCF-7 and T47D were all purchased from American Type Culture Collection (VA, USA) and were incubated with Dulbecco's modified Eagle medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% penicillin and streptomycin (P/S) for 48 h. The cells were trypsinized and subcultured, and well-grown cells in the 3rd passage were used in our experiments. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression of SATB2-AS1, then cell lines that had significant difference in expression of SATB2-AS1 from MCF-10A cells were screened for subsequent cellular experiments.
Cell grouping and transfection
MDA-MB-231 cells were classified into 7 groups: blank group (MDA-MB-231 cells without any treatment), overexpression (Oe)-negative control (NC) group (transfected with SATB2-AS1 overexpression NC vector), Oe-SATB2-AS1 group (transfected with SATB2-AS1 overexpression vector), inhibitor-NC group (transfected with miR-155-3p inhibitor NC), miR-155-3p inhibitor group (transfected with miR-155-3p inhibitor), sh-SATB2-AS1 + inhibitor-NC group (transfected with SATB2-AS1 low expression vector and miR-155-3p inhibitor NC), and sh-SATB2-AS1 + miR-155-3p inhibitor group (transfected with SATB2-AS1 low expression vector and miR-155-3p inhibitor).

MCF-7 cells were also divided into 7 groups: blank group (MCF-7 cells without any treatment), sh-NC group (transfected with SATB2-AS1 low expression NC vector), sh-SATB2-AS1 group (transfected with SATB2-AS1 low expression vector), mimic-NC group (transfected with miR-155-3p mimic NC), miR-155-3p mimic group (transfected with miR-155-3p mimic), Oe-SATB2-AS1 + mimic-NC group (transfected with SATB2-AS1 low expression vector and miR-155-3p mimic), and Oe-SATB2-AS1 + miR-155-3p mimic group (transfected with SATB2-AS1 low expression vector and miR-155-3p mimic).

Cultured cells were transfected with miRNA mimic, miRNA inhibitor, siRNAs, or plasmids using Lipofectamine 2000 (Thermo Fisher Scientific Inc., MA, USA) based on the manufacturer’s instructions.

3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay
MDA-MB-231 and MCF-7 cells were seeded and incubated. After the cells were incubated for 24, 48 and 72 h, each well was appended with 0.5 g/L MTT solution for 4-h incubation. The incubation was ended and the supernatant was removed, then each well was supplemented with 200 μL dimethyl sulfoxide and shaken for 10 min, thereby the violet crystal was fully dissolved. The optical density at 450 nm (OD_{450nm}) was analyzed by a microplate reader.

AnnexinV and propidium iodide solution for 10-min incubation with light avoidance. The cell apoptosis was assessed by a flow cytometer.

Transwell assay
The 8-μm Transwell chambers (Corning Glass Works, Corning, N.Y., USA) were coated by Matrigel (diluted at 1: 8 and not used in the migration assay). Cells were made into single cell suspension and seeded into the apical chambers at 1.5×10^5 cells/100 μL. The basolateral chambers were apended with 600 μL medium containing 10% FBS and the cells were incubated for 48 h. Subsequently, cells in the apical chambers were removed and the transmembrane cells were fixed with 5% glutaraldehyde and stained by 0.1% crystal violet dye for 10 min. The cell number was photographed under a microscope, 5 fields of view were collected in each membrane and the transmembrane cells were counted.

RTqPCR
Total RNA in tissues and cells was extracted by TRIzol reagent (Thermo Fisher Scientific). According to the instructions of reverse transcription kits (TaKaRa Biotechnology Co., Ltd., Lianoning, China), RNA was reversely transcribed into cDNA. PCR was conducted by SYBR Green PCR Master Mix (Applied Biosystems, CA, USA) and the ABI 7500 system (Applied Biosystems) with U6 as the internal reference of miR-155-3p and glyceraldehyde phosphate dehydrogenase (GAPDH) as the internal reference of SATB2-AS1 and BRMS1L. The PCR primers (Table 1) were synthetized by Genechem Co.,

Table 1 Primer sequence

Gene	Primer sequence
SATB2-AS1	F: 5′-ACACTAATAATACAAGGCCG-3′
	R: 5′-GGATCCCAAACACCTCATAACA-3′
miR-155-3p	F: 5′-GGACCAACAGCATCATCCCTGTA-3′
	R: 5′-CTGCTGAGAATCCTCAAGG-3′
U6	F: 5′-CCGTCCGCGCAACATATAAC-3′
	R: 5′-TTTACGGATTTTCGTTATCAT-3′
BRMS1L	F: 5′-AGTGGAAACCGGAAACCACCCTG-3′
	R: 5′-CAATCCAGGCCTTCAAACACA-3′
GAPDH	F: 5′-CGTGAATCATCCGGAAGACCTCC-3′
	R: 5′-TGGAGGCCAGGGCGTAGCCT-3′

F forward, R reverse, SATB2-AS1 antisense transcript of SATB2 protein, miR-155-3p microRNA-155-3p, BRMS1L breast cancer metastasis suppressor 1-like, GAPDH glyceraldehyde phosphate dehydrogenase
From the 5th day of the injection, the ethology of the nude mice was observed every 5 days. Tumor volume (\(a \times b^2\)) and the maximum transverse diameter (\(b\)) were measured by a caliper every 5 days. A total number of 70 Balb/C nude mice (aging 6 w and weighing 18-20 g) that purchased from SLAC Laboratory Animal Co., Ltd. (Shanghai, China) were subcutaneously implanted with 1 \(\times 10^8\) cells/mL at chest and back. The tumor growth was observed and the nude mice were euthanized after 30 days, then the tumors were harvested and weighed.

Western blot analysis
Proteins were extracted from tissues or cells and quantified. The protein samples (20 \(\mu\)g) were conducted with gel electrophoresis at 4 °C and transferred onto membranes, which were blocked with 5% bovine serum albumin for 1 h. Afterwards, the membranes were incubated with primary antibody against BRMS1L (1: 1000) and GAPDH (1: 3000, both from Abcam Inc., Cambridge, MA, USA) at 4 °C overnight, then incubated with relative secondary antibody (1: 2000, ZSGB-Bio, Beijing, China) for 1 h. The results were evaluated by enhanced chemiluminescent reagent kits.

Dual luciferase reporter gene assay
SATB2-AS1 and BRMS1L 3'-untranslated region (UTR) sequence containing binding sites of miR-155-3p was amplified and constructed into psiCHECK-2 vector (Promega Corporation, WI, USA) to establish wild-type SATB2-AS1 reporter (SATB2-AS1-WT) and wild-type BRMS1L reporter (BRMS1L-WT). Mutant-type (MUT) SATB2-AS1 reporter (SATB2-AS1-MUT) and mutant-type (MUT) BRMS1L reporter (BRMS1L-MUT) were produced by GeneArt Site-Directed Mutagenesis System (Thermo Fisher Scientific). Subsequently, the reporters were respectively co-transfected into cells with miR-155-3p mimic or mimic NC for 48 h. Luciferase activity was detected using the dual-luciferase assay system (Promega). The protein samples (20 \(\mu\)g) were conducted with gel electrophoresis at 4 °C and transferred onto membranes, which were blocked with 5% bovine serum albumin for 1 h. Afterwards, the membranes were incubated with primary antibody against BRMS1L (1: 1000) and GAPDH (1: 3000, both from Abcam Inc., Cambridge, MA, USA) at 4 °C overnight, then incubated with relative secondary antibody (1: 2000, ZSGB-Bio, Beijing, China) for 1 h. The results were evaluated by enhanced chemiluminescent reagent kits.

Statistical analysis
All data analyses were conducted using SPSS 21.0 software (IBM Corp. Armonk, NY, USA). The measurement data conforming to the normal distribution were expressed as mean ± standard deviation. The t test was performed for comparisons between two groups, one-way analysis of variance (ANOVA) was used for comparisons among multiple groups, and Tukey’s post hoc test was used for pairwise comparisons after one-way ANOVA. Relationship between SATB2-AS1 and clinicopathological characteristics of BC patients was analyzed by Chi square test, and the correlations among expression of SATB2-AS1, miR-155-3p and BRMS1L in BC tissues were detected by Pearson’s correlation coefficient test. Kaplan–Meier analysis was conducted for evaluating the survival of BC patients. P value < 0.05 was indicative of statistically significant difference.

Results
SATB2-AS1 and BRMS1L are decreased while miR-155-3p is increased in BC tissues
SATB2-AS1 expression was assessed (Fig. 1a) and it came out that in contrast to the adjacent normal tissues, SATB2-AS1 was down-regulated in BC tissues (\(P<0.001\)). Results of ISH indicated that SATB2-AS1 expression was lower in BC tissues (Fig. 1b).

MiR-155-3p and BRMS1L expression was assessed as well, and we found that BRMS1L was down-regulated (\(P<0.001\)) while miR-155-3p was up-regulated (\(P<0.001\)) in BC tissues versus adjacent normal tissues (Fig. 1c–e). Results of Pearson test indicated that SATB2-AS1 was negatively related to miR-155-3p (\(r = -0.672, P<0.001\)), miR-155-3p was negatively related to BRMS1L (\(r = -0.601, P<0.001\)), and SATB2-AS1 was positively related to BRMS1L (\(r = 0.625, P<0.001\)) (Fig. 1f–h).

Relations between SATB2-AS1 and clinicopathological characteristics of BC patients
BC patients were separated into the high and low expression groups based on the median SATB2-AS1 expression, and the relations between SATB2-AS1 expression and clinicopathological characteristics of BC patients were analyzed. The outcomes (Table 2) reflected that SATB2-AS1 expression was related to tumor diameter (\(P=0.003\)), LNM (\(P=0.002\)), TNM stage (\(P=0.008\)) and estrogen receptor (\(P=0.029\)) and progesterone receptor (\(P=0.018\)), while was not related to age (\(P=0.379\)), menopausal status (\(P=0.862\)), histological grade (\(P=0.138\)) and human epidermal growth factor receptor 2 (HER2) status (\(P=0.337\)) (Fig. 1i–l).
The prognostic role of SATB2-AS1 expression in BC patients was assessed by Kaplan–Meier analysis, and we found that low SATB2-AS1 expression indicated a poorer prognosis of BC patients (Fig. 1m).

SATB2-AS1 and BRMS1L are decreased while miR-155-3p is increased in BC cell lines

Expression levels of SATB2-AS1, BRMS1L and miR-155-3p in cells were assessed. RT-qPCR (Fig. 2a–c) reflected that with respect to MCF-10A cells, SATB2-AS1 was lowly expressed in MDA-MB-231 (P < 0.001), MDA-MB-468 (P < 0.001), BT-549 (P < 0.001), MCF-7 (P = 0.009) and T47D cell lines (P < 0.001); BRMS1L mRNA expression was also lower in MDA-MB-231 (P < 0.001), MDA-MB-468 (P < 0.001), BT-549 (P < 0.001), MCF-7 (P = 0.038) and T47D cell lines (P < 0.001); miR-155-3p was up-regulated in MDA-MB-231 (P < 0.001), MDA-MB-468 (P < 0.001), BT-549 (P < 0.001), MCF-7 (P < 0.001) and T47D cell lines (P < 0.001) when versus to MCF-10A cells. MDA-MB-231 cell line had the largest,

![Correlations of SATB2-AS1, miR-155-3p and BRMS1L expression levels with clinicopathological characteristics and prognosis of BC patients.](image-url)
SATB2-AS1, BRMS1L and miR-155-3p expression in cells were evaluated, and we have found that (Fig. 3a, b) in MDA-MB-231 cells, the levels of SATB2-AS1 ($P < 0.001$) and BRMS1L ($P < 0.001$) were higher, while miR-155-3p expression ($P < 0.001$) was lower in the oe-SATB2-AS1 group than in the oe-NC group; in MCF-7 cells, contrasted to the sh-NC group, SATB2-AS1 ($P < 0.001$) and BRMS1L ($P < 0.001$) were down-regulated, while miR-155-3p ($P < 0.001$) was up-regulated in the sh-SATB2-AS1 group.

The proliferation of BC cells was measured and it could be found that (Fig. 3c, d) in MDA-MB-231 cells, the cell viability ($P < 0.001$) and colony-forming ability ($P < 0.001$) were repressed in the oe-SATB2-AS1 group versus to its NC group; in MCF-7 cells, the cell viability ($P < 0.001$) and colony-forming ability ($P < 0.001$) were promoted in the sh-SATB2-AS1 group versus to its NC group.

Flow cytometry and Transwell assay were used to assess the apoptosis, invasion and migration of BC cells, the results indicated that (Fig. 3e–g) in MDA-MB-231 cells, the apoptosis rate ($P < 0.001$), and depressed migration ($P < 0.001$) and invasion rates ($P < 0.001$) versus to the Oe-NC group; in MCF-7 cells, the apoptosis rate was restricted ($P < 0.001$), and the migration ($P < 0.001$) and invasion rates ($P = 0.004$) were enhanced in the sh-SATB2-AS1 group with respect to the sh-NC group.

Results of in vivo assay indicated that from the 5th day on, the xenografts grew in different degrees, and on the 30th day, the nude mice were euthanized and the xenografts were harvested and weighed. The results (Fig. 3h, i) reflected that in nude mice injected with MDA-MB-231 cells, the volume ($P < 0.001$) and weight ($P < 0.001$) of the xenografts were both declined in the oe-SATB2-AS1 group than in the oe-NC group; in nude mice injected with MCF-7 cells, in comparison to the sh-NC group, the volume ($P < 0.001$) and weight ($P < 0.001$) of the xenografts were both increased in the sh-SATB2-AS1 group.

Inhibited miR-155-3p restricts malignant phenotypes of BC cells

The levels of SATB2-AS1, BRMS1L and miR-155-3p in MDA-MB-231 and MCF-7 cells of each group were assessed, and we have found that (Fig. 4a, b) in MDA-MB-231 cells, versus to the inhibitor-NC group, the miR-155-3p inhibitor group presented down-regulated miR-155-3p ($P < 0.001$), up-regulated BRMS1L ($P < 0.001$) and unchanged SATB2-AS1 expression ($P = 0.664$); in MCF-7 cells, the miR-155-3p mimic group exhibited up-regulated miR-155-3p ($P < 0.001$) while down-regulated BRMS1L ($P < 0.001$) and unchanged SATB2-AS1 expression ($P = 0.889$).

The proliferation of the BC cells was measured by MTT assay and colony formation assay, and it could be found that (Fig. 4c, d) in MDA-MB-231 cells, the cell viability ($P < 0.001$) and colony-forming ability ($P < 0.001$) were constrained in the miR-155-3p inhibitor group versus to its NC group; in MCF-7 cells, the cell viability ($P < 0.001$) and colony-forming ability ($P < 0.001$) were promoted in the miR-155-3p mimic group by contrast to its NC group.

Table 2: Relation between SATB2-AS1 expression and clinicopathological characteristics of BC patients

Clinicopathological characteristics	n	SATB2-AS1 expression		P
	Low expression (n = 66)	High expression (n = 65)		
Age (year)				
≥ 51	55	25	30	
< 51	76	41	35	
Menopause				
No	61	30	31	
Yes	70	36	34	
LNM				
No	58	20	38	
Yes	73	46	27	
Tumor diameter				
< 2 cm	46	15	31	
≥ 2 cm	85	51	34	
TNM stage				
I–II	73	29	44	
III–IV	58	37	21	
Histological grade				
G1	27	11	16	
G2	68	38	30	
G3	36	17	19	
Estrogen receptor				
+	58	23	35	
–	73	43	30	
Progesterone receptor				
+	61	24	37	
–	70	42	28	
HER2 status				
–	72	47	35	
+	59	29	30	

BC breast cancer, SATB2-AS1 antisense transcript of SATB2 protein, LNM lymph node metastasis, TNM tumor, node, and metastasis

while the MCF-7 cell line had the smallest difference in SATB2-AS1, BRMS1L and miR-155-3p expression from the MDA-MB-231 cell line. Thus, the two cell lines were selected for the following experiments.

Overexpressed SATB2-AS1 suppresses malignant phenotypes of BC cells

SATB2-AS1, BRMS1L and miR-155-3p expression in cells were evaluated, and we have found that (Fig. 3a, b) in MDA-MB-231 cells, the levels of SATB2-AS1 ($P < 0.001$) and BRMS1L ($P < 0.001$) were higher, while miR-155-3p expression ($P < 0.001$) was lower in the oe-SATB2-AS1 group than in the oe-NC group; in MCF-7 cells, contrasted to the sh-NC group, SATB2-AS1 ($P < 0.001$) and
Flow cytometry was employed to determine the apoptosis of BC cells, the results indicated that (Fig. 4e) in MDA-MB-231 cells, the apoptosis rate was elevated in the miR-155-3p inhibitor group \((P < 0.001) \) versus to its NC group; in MCF-7 cells, the apoptosis rate was suppressed in the miR-155-3p mimic group \((P < 0.001) \) by contrast to its NC group.

Transwell assay was applied and it could be observed that (Fig. 4f, g) in MDA-MB-231 cells, the miR-155-3p inhibitor group showed the repressed migration \((P < 0.001) \) and invasion rates \((P < 0.001) \) in comparison with its NC group; in MCF-7 cells, the miR-155-3p mimic group depicted the heightened migration \((P = 0.001) \) and invasion rates \((P = 0.002) \) with respect to its NC group.
Subcutaneous tumorigenesis in nude mice was used to observe the effect of miR-155-3p on tumor growth. We could find that (Fig. 4h, i) in nude mice injected with MDA-MB-231 cells, the volume ($P<0.001$) and weight ($P<0.001$) of the xenografts were reduced in the miR-155-3p inhibitor group versus to its NC group; in nude mice injected with MCF-7 cells, the volume ($P<0.001$) and weight ($P<0.001$) of the xenografts were augmented in the miR-155-3p mimic group versus to its NC group.

SATB2-AS1 serves as a ceRNA to sponge miR-155-3p, and BRMS1L is targeted by miR-155-3p

RNA22 and starBase online websites were employed to search for miRNAs possessing a chance to interact with SATB2-AS1. Among candidate miRNAs, miR-155-3p (Fig. 5a) was selected by virtue of its oncogenic effect in multiple cancers [14, 18, 19]. To further validate the interaction of SATB2-AS1 and miR-155-3p, WT SATB2-AS1 reporter containing predicted binding sites of miR-155-3p and MUT SATB2-AS1 reporter with mutant binding sites of miR-155-3p were constructed. Results of dual luciferase reporter gene assay (Fig. 5b) suggested that in MDA-MB-231 cells, contrasted to the SATB2-AS1-WT + mimic-NC group, the luciferase activities were reduced after co-transfection of SATB2-AS1-WT plasmid and miR-155-3p mimic (MDA-MB-231 cells, $P=0.003$; MCF-7 cells, $P=0.005$); No difference was seen in luciferase activity between the SATB2-AS1-MUT + mimic-NC group and SATB2-AS1-MUT + miR-155-3p mimic group (MDA-MB-231 cells, $P=0.774$; MCF-7 cells, $P=0.810$), suggesting that SATB2-AS1 interacted with miR-155-3p by putative binding sites.

Additionally, RNA pull-down assay was implemented to determine whether miR-155-3p could directly bind to SATB2-AS1. BC cells were transfected with biotinylated miR-155-3p and then were harvested for biotin-based pull-down assays. As shown by RT-qPCR, SATB2-AS1 was pulled down by biotin-labeled miR-155-3p oligos but not the mutated oligos that disrupted base pairing between SATB2-AS1 and miR-155-3p. The outcomes implied that miR-155-3p could directly bind to SATB2-AS1 (Fig. 5c).

Prediction tools, including TargetScan and microRNA.org were used to identify potential target genes of miR-155-3p. Among candidate genes, BRMS1L was selected due to its antitumor effect in human cancers [16, 20, 21]. To further test whether BRMS1L was a direct target of miR-155-3p, WT BRMS1L 3′-UTR reporter containing predicted miR-155-3p binding sites and BRMS1L-MUT reporter with mutant miR-155-3p binding sites were generated (Fig. 5d). Outcomes of dual luciferase reporter gene assay (Fig. 5e) mirrored that versus the BRMS1L-WT + mimic-NC group, the BRMS1L-WT + miR-155-3p mimic group showed with decreased luciferase activity (MDA-MB-231 cells, $P=0.002$; MCF-7 cells, $P=0.003$); However, no difference in luciferase activity was observed in the BRMS1L-MUT + mimic-NC group and BRMS1L-MUT + miR-155-3p mimic group (MDA-MB-231 cells, $P=0.656$; MCF-7 cells, $P=0.498$), indicating that miR-155-3p could interact with BRMS1L 3′-UTR by putative binding sites.

Elevated miR-155-3p reverses the suppressive effect of overexpressed SATB2-AS1 on malignant phenotypes of BC cells

Expression of SATB2-AS1, BRMS1L and miR-155-3p in cells of each group was evaluated, the results indicated that (Fig. 6a, b) in MDA-MB-231 cells, in comparison to the sh-SATB2-AS1 + inhibitor-NC group, miR-155-3p was decreased ($P<0.001$), BRMS1L was increased ($P<0.001$) and unchanged SATB2-AS1 expression ($P=0.528$) in the sh-SATB2-AS1 + mimic-NC group. In MCF-7 cells; contrasted to the oe-SATB2-AS1 + mimic-NC group, miR-155-3p was increased ($P<0.001$) while BRMS1L was decreased ($P<0.001$), and no change was seen in the SATB2-AS1 expression ($P=0.545$) in the oe-SATB2-AS1 + miR-155-3p mimic group.

The proliferation of the BC cells was measured by MTT assay and colony formation assay, and it could be found that (Fig. 6c, d) in MDA-MB-231 cells, versus the sh-SATB2-AS1 + inhibitor-NC group, the cell viability ($P<0.001$) and colony-forming ability ($P<0.001$) were repressed in the sh-SATB2-AS1 + miR-155-3p inhibitor

(See figure on next page.)

Fig. 4 Inhibited miR-155-3p restricts malignant phenotypes of BC cells. **a** Expression of SATB2-AS1, miR-155-3p and BRMS1L mRNA in BC cell lines was detected by RT-qPCR after miR-155-3p intervention; **b** protein expression of BRMS1L in and BC cell lines was determined by western blot analysis after miR-155-3p intervention; **c** proliferation of BC cells was determined by MTT assay after miR-155-3p intervention; **d** colony formation ability of BC cells was measured by colony formation assay after miR-155-3p intervention; **e** flow cytometry was used to evaluate the apoptosis of BC cells after miR-155-3p intervention; **f** Transwell assay was employed to measure the migration ability of BC cells after miR-155-3p intervention; **g** Transwell assay was employed to measure the invasion ability of BC cells after miR-155-3p intervention; **h** tumor volume of nude mice that had been injected with BC cells was measured after miR-155-3p intervention; **i** tumor weight of nude mice that had been injected with BC cells was measured after miR-155-3p intervention. The measurement data conforming to the normal distribution were expressed as mean ± standard deviation, one-way ANOVA was used for comparisons among multiple groups and Tukey’s post hoc test was used for pairwise comparisons after one-way ANOVA.
group; in MCF-7 cells, with respect to the Oe-SATB2-AS1 + mimic-NC group, the cell viability ($P<0.001$) and colony-forming ability ($P<0.001$) were promoted in the Oe-SATB2-AS1 + miR-155-3p mimic group.

Flow cytometry and Transwell assay were conducted to measure the apoptosis, migration and invasion of BC cells, the results indicated that (Fig. 6e–g) in MDA-MB-231 cells, by comparison to the sh-SATB2-AS1 mimic group, the sh-SATB2-AS1 + miR-155-3p inhibitor group was characterized by raised apoptosis rate ($P<0.001$), and inhibited migration ($P=0.001$) and invasion rates ($P=0.006$); in MCF-7 cells, versus to the Oe-SATB2-AS1 + mimic-NC group, the apoptosis rate was decreased ($P<0.001$), and invasion ($P<0.001$) and migration rates ($P<0.001$) were enhanced in the Oe-SATB2-AS1 + miR-155-3p mimic group.

The tumor growth was observed in nude mice after xenografts. We could find that (Fig. 6h, i) in nude mice injected with MDA-MB-231 cells, the volume ($P<0.001$) and weight ($P<0.001$) of the xenografts were decreased in the sh-SATB2-AS1 + miR-155-3p inhibitor group by comparison with the sh-SATB2-AS1 + inhibitor-NC group; in nude mice injected with MCF-7 cells, the volume ($P<0.001$) and weight ($P<0.001$) of the xenografts were increased in the Oe-SATB2-AS1 + miR-155-3p mimic group versus to the Oe-SATB2-AS1 + mimic-NC group.

Discussion

Nowadays, BC is the commonest cancer in women and is a main death-related cause. Its incidence continues to elevate with 1.6 million cases occurring in the world each year [22]. The ceRNA hypothesis implied that the lncRNAs are able to act as ceRNAs to interact with miRNAs, thereby regulating the expression of mRNAs [23]. This study was designed to identify the role of the lncRNA SATB2-AS1/miR-155-3p/BRMS1L axis in the biological functions of BC cells. Our results indicated that

![Figure 5](image_url)
Fig. 5 SATB2-AS1 serves as a ceRNA to sponge miR-155-3p, and BRMS1L is targeted by miR-155-3p. a The predicted binding sites of SATB2-AS1 and miR-155-3p; b regulatory relation between SATB2-AS1 and miR-155-3p in MDA-MB-231 and MCF-7 cells was assessed by dual luciferase reporter gene assay, a regulatory relation between SATB2-AS1 and miR-155-3p in MDA-MB-231 and MCF-7 cells was confirmed by RNA pull-down assay; c predicted binding sites of miR-155-3p and BRMS1L 3′-UTR; d target relation between miR-155-3p and BRMS1L was confirmed by dual luciferase reporter gene assay; e the measurement data conforming to the normal distribution were expressed as mean ± standard deviation, the t-test was performed for comparisons between two groups, one-way ANOVA was used for comparisons among multiple groups and Tukey’s post hoc test was used for pairwise comparisons after one-way ANOVA.

![Figure 6](image_url)
Fig. 6 Elevated miR-155-3p reverses the suppressive effect of overexpressed SATB2-AS1 on malignant phenotypes of BC cells. a Expression of SATB2-AS1, miR-155-3p and BRMS1L in BC cell lines; b protein expression of BRMS1L in BC cell lines; c proliferation of BC cells was determined by MTT assay; d colony formation ability of BC cells was measured by colony formation assay; e flow cytometry was used to evaluate the apoptosis of BC cells; f Transwell assay was employed to measure the migration ability of BC cells; g Transwell assay was employed to measure the invasion ability of BC cells; h tumor volume of nude mice that had been injected with BC cells; i tumor weight of nude mice that had been injected with BC cells. The measurement data conforming to the normal distribution were expressed as mean ± standard deviation, the t-test was performed for comparisons between two groups.
SATB2-AS1 could negatively regulate miR-155-3p in BC development, and the overexpression of SATB2-AS1 or down-regulation of miR-155-3p may suppress the malignant phenotypes of BC cells by promoting BRMS1L, thereby decelerating the progression of BC.

SATB2-AS1, miR-155-3p and BRMS1L expression in BC tissues and cell lines was determined in our research, and the outcomes reflected that SATB2-AS1 and BRMS1L were decreased, while miR-155-3p was increased in BC tissues and cell lines, respectively in contrast to adjacent normal tissues and human normal mammary cell line. Similarly, Xu et al. [10] and Wang et al. [11] have elucidated that SATB2-AS1 is down-regulated in colorectal carcinoma cells and tissues. A recent publication has indicated that miR-155-3p is increased in BC tissues and cells [14], and it has been previously confirmed that BRMS1L is down-regulated in BC tissues [16]. Furthermore, we have unveiled the relation between SATB2-AS1 and miR-155-3p, and also between miR-155-3p and BRMS1L. Both of the relationships have not been elucidated before.

Cellular experiments were applied to determine the roles of SATB2-AS1, miR-155-3p and BRMS1L in BC progression, and one of the findings implied that the amplification of SATB2-AS1 or knockdown of miR-155-3p was able to restrict the proliferation of BC cells. In line with this finding, a recent literature has illustrated that the down-regulation of SATB2-AS1 is associated with the promoted proliferation of colorectal carcinoma cells [12], and it has been validated that the elevation of miR-155-3p accelerated proliferation of BC cells [14]. In addition, another essential result in our study mirrored that elevated SATB2-AS1 could reduce miR-155-3p expression to repress the migration and invasion abilities of BC cells. Consistently, Wang et al. [11] have elucidated that the down-regulation of SATB2-AS1 could promote migration and invasion of colorectal carcinoma cells, and it has been discovered that MIR155 host gene (MIR155HG) reduction restricts migration and invasion of glioma cells via inhibiting the generation of its derivative miR-155-5p and miR-155-3p [19]. Moreover, we have found that the overexpressed SATB2-AS1 and inhibited miR-155-3p could promote the apoptosis of BC cells in accordance with the finding, Zhang et al. [14] have found that the elevated miR-155-3p is able to repress the apoptosis of BC cells, and it has been previously verified that the amplification of miR-155-5p could restrict bufalin-triggered apoptosis of triple-negative BC cells [24].

We have applied subcutaneous tumorigenesis in nude mice as well to testify the effects of varied SATB2-AS1 and miR-155-3p expression levels on BC tumor growth in vivo, and the outcomes indicated that the promotion of SATB2-AS1 and knockdown of miR-155-3p could restrain the BC tumor growth. Consistent with this finding, Wang et al. [11] have discovered that the overexpressed SATB2-AS1 could inhibit subcutaneous tumor formation in nude mice, and Tang et al. [18] have validated that the inhibition of miR-155-3p in hepatocellular carcinoma cells could decrease tumorigenesis in vivo.

Conclusion
In conclusion, we have found that IncRNA SATB2-AS1 could function as a ceRNA to sponge miR-155-3p, thereby regulating the malignant behaviors of BC cells via targeting BRMS1L. This study may be helpful for BC treatment, while further efforts are still needed.

Abbreviations
IncRNAs: Long noncoding RNAs; miRNAs: MicroRNAs; BC: Breast cancer; BRMS1L: Breast cancer metastasis suppressor 1-like; LNM: Lymph node metastasis; 3′-UTR: 3′-untranslated region; SIN3: Switch-independent 3; ceRNA: Competing endogenous RNA; TNM: Tumor, node and metastasis; ISH: In situ hybridization; DIG: Digoxigenin; FBS: Fetal bovine serum; RT-qPCR: Reverse transcription quantitative polymerase chain reaction; De: Overexpressed; Sh: Short hairpin; NC: Negative control; GAPDH: Glyceraldehyde phosphate dehydrogenase; OE: Overexpressed; UTR: Untranslated region; WT: Wild-type; MUT: Mutant-type; ANOVA: One-way analysis of variance.

Acknowledgements
The authors would like to acknowledge the reviewers for their helpful comments on this paper.

Authors’ contributions
YZ and YH contributed to study design; SC and BX contributed to manuscript editing; HL and YL contributed to experimental studies; XL contributed to data analysis. All authors read and approved the final manuscript.

Funding
The study was supported by National Natural Science Foundation of China (81673006) and Petrel Foundation of Harbin Medical University Cancer Hospital (JJZD2020-10).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Written informed consents were acquired from all patients before this study. The protocol of this study was approved by the Ethic Committee of Harbin Medical University Cancer Hospital (ethical number: 201205121). Animal experiments were strictly in accordance with the Guide to the Management and Use of Laboratory Animals issued by the National Institutes of Health. The protocol of animal experiments was approved by the Institutional Animal Care and Use Committee of Harbin Medical University Cancer Hospital (ethical number: 20120434).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 16 March 2020 Accepted: 8 July 2020
Published online: 17 July 2020
References

1. Simon SD, et al. Characteristics and prognosis of stage I-III breast cancer subtypes in Brazil: the AMAZONIA retrospective cohort study. Breast. 2019;44:113–9.

2. Budzisz MP, et al. Clinicopathological characteristics of metaplastic breast cancer—analysis of the basic immunohistochemical profile and comparison with other invasive breast cancer types. Breast. 2019;43:135–41.

3. Sproston I, et al. Incidence of isolated local breast cancer recurrence and contralateral breast cancer: a systematic review. Breast. 2018;39:70–9.

4. DeSantis CE, et al. International variation in female breast cancer incidence and mortality rates. Cancer Epidemiol Biomarkers Prev. 2015;24(10):1495–506.

5. Cuchra M, et al. The role of base excision repair in pathogenesis of breast cancer in the Polish population. Mol Carcinog. 2016;55(12):1899–1914.

6. Zeng B, et al. Downregulated miR-1247-5p associates with poor prognosis and facilitates tumor cell growth via DVL1/Wnt/beta-catenin signaling in breast cancer. Biochem Biophys Res Commun. 2018;505(1):302–8.

7. Xiao B, et al. The Prognostic Value of Expression of the Long Noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in patients with solid malignant tumors: a systematic review and meta-analysis. Med Sci Monit. 2018;24:5462–72.

8. Kong Q, Qu M. Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p. Biochem Biophys Res Commun. 2018;495(2):1594–600.

9. Li H, et al. Long noncoding RNA Linc00617 exhibits oncogenic activity in breast cancer. Mol Carcinog. 2017;56(1):3–17.

10. Xu M, et al. LncRNA SATB2-AS1 inhibits tumor metastasis and affects the tumor immune cell microenvironment in colorectal cancer by regulating SATB2. Mol Cancer. 2019;18(1):135.

11. Wang Y, et al. MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury. Brain Dev. 2019;41(8):949–61.

12. Wang Y, et al. MicroRNA-31 regulates the sensitivity of triple-negative breast cancer cells to docetaxel. Int J Cancer. 2017;141(6):1379–90.

13. Cheng CW, et al. Increased cellular levels of microRNA-9 and miRNA-221 correlate with cancer stemness and predict poor outcomes in human breast cancer. Cell Physiol Biochem. 2018;44(5):155–68.

14. Zhang G, et al. MicroRNA-155-3p promotes breast cancer progression through down-regulating CADM1. Oncotargets Ther. 2019;12:7993–8002.

15. Nikolaev AY, et al. Identification of a novel BRMS1-homologue protein p40 as a component of the mSin3A/p33(ING1b)/HDAC1 deacetylase complex. Biochem Biophys Res Commun. 2004;323(1):176–82.

16. Gong C, et al. BRMS1L suppresses breast cancer metastasis by inducing epigenetic silencing of FZD10. Nat Commun. 2014;5:5474.

17. Cai Q, et al. Long non-coding RNA LINCO0152 promotes breast cancer metastasis and epithelial-mesenchymal transition by regulating HIF-1alpha via miR-138. Open Biol. 2017;7(7):1700827.

18. Tang B, et al. MicroRNA-155-3p promotes HepG2 cell migration by downregulating SATB2. Mol Cancer. 2019;18(1):135.