A computational cognitive modeling approach to the development of second-order theory of mind
Arslan, Burcu

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Arslan, B. (2017). A computational cognitive modeling approach to the development of second-order theory of mind. [Groningen]: University of Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
needed for the development of first-order theory of mind than the development of second-order theory of mind. This is because young children need first to understand conceptually others’ mental states (e.g., beliefs, intentions) might be different from their own mental states. This conceptual change seems to occur with the help of pragmatics and semantics components of language.

After a possible conceptual change, young children still need to overcome the complexity of the first-order false belief tasks in terms of executive functions, including working memory and cognitive control. They need to have efficient reasoning rules to attribute false beliefs to another agent (i.e., from zero-order theory of mind reasoning to first-order theory of mind reasoning), thus they need to overcome a possible serial processing bottleneck of working memory. Daily life tasks that involve working memory strategies together with cognitive control contribute to having the efficient reasoning rules (Chapter 5 and Chapter 6). Moreover, the syntactic component of language helps chunking of information that can pass through a working memory bottleneck. Finally, children need experience and feedback (i.e., verbal or nonverbal) to understand that first-order theory of mind reasoning strategy is needed in a given task or situation.

After having first-order false belief understanding, children again need to overcome the complexity of the second-order false belief tasks in terms of language and working memory strategies. Syntactic recursion in the language domain is a right representational tool to help them to have efficient reasoning rules to process hierarchical embedded beliefs in a linear way, in order to pass the serial processing bottleneck of working memory (Chapter 4).

After being able to deal with the complex working memory strategies, children still need experience in second-order false belief reasoning in order to revise their wrong first-order reasoning strategy to the correct second-order reasoning strategy (Chapter 2 and Chapter 3). This experience can be gained through reading narrative fiction and playing games that require second-order theory of mind as well as through social communication with parents, friends and siblings.
kinderen robots niet zien als programma’s, maar eigenschappen van levende wezens toeschrijven aan robots [Belpaeme et al., 2013], is het belangrijk dat de robots die met kinderen interacteren “weten” wat de beperkingen zijn van de theory of mind van een kind gegeven de leeftijd van dat kind, maar ook wat de onderliggende mechanismen zijn voor deze beperkingen. Daarnaast is het voor de sociale en cognitieve vaardigheden van de robot belangrijk dat de robot effectieve manieren “weet” om kinderen te stimuleren in hun theory of mind. Deze dissertatie heeft als doel om bij te dragen aan alle bovengenoemde onderzoeksgebieden door nieuwe inzichten te presenteren over de ontwikkeling van tweede-orde theory of mind in kinderen.

Eerder onderzoek naar de ontwikkeling van theory of mind in kinderen heeft aangetoond dat kinderen rond hun vierdejaar beginnen te slagen in de eerste-orde false-belief-taak [Wellman et al., 2001]. Het kost kinderen echter nog enkele jaren voordat ze ook slagen in de tweede-orde false-belief-taak, waarin kinderen hun theory of mind recursief moeten toepassen [Perner & Wimmer, 1985; Sullivan et al., 1994]. Omdat tweede-orde theory of mind belangrijk is in verschillende aspecten van menselijke sociale cognitie is het essentieel om de onderliggende mechanismen van de ontwikkeling van theory of mind in kinderen te begrijpen en om efficiënte manieren te vinden om deze ontwikkeling te versnellen.

Het hoofddoel van deze dissertatie is om de onderliggende mechanismen te onderzoeken die de tijd verklaren tussen de ontwikkeling van eerste-orde theory of mind en tweede-orde theory of mind en om te bepalen welke rol feedback speelt in het versnellen van de ontwikkeling van tweede-orde theory of mind in kinderen. Er is nog weinig aandacht geweest voor deze vragen. Daarnaast onderzoeken we ook hoe weertgeugen en cognitieve controle bijdragen aan de ontwikkeling van eerste-orde theory of mind in kinderen. Hiervoor maken we gebruik van een combinatie van computationele cognitieve modellen en empirisch onderzoek.

In Hoofdstuk 1 introduceer ik de methodologie en de onderzoeksvragen in dit proefschrift (zie Figuur 1.3). In navolging van deze methodologie presenteert Hoofdstuk 2 twee computationele cognitieve modellen die ik heb gebouwd aan de hand van eerder onderzoek en theorieën over de ontwikkeling van tweede-orde theory of mind in kinderen. Het doel van deze modellerenpak is, naast het doen van expliciete voorspellingen die empirisch getest kunnen worden, om een procedurele verklaring te geven voor de onderzoeksvragen “Gebruiken kinderen van vijf jaar oud die niet slagen in de tweede-orde false-belief-taak voornamelijk nulde-orde of eerste-orde theory of mind?” Om deze vraag te beantwoorden zijn computationele cognitieve modellen gebouwd met behulp van de twee mogelijke leermechanismen in ACT-R, te weten instance-based leren en reinforcement leren.

Het voornaamste verschil tussen deze twee leermechanismen geeft aan waar en hoe strategieselectie plaatsvindt. In het model met instance-based leren worden redeneerstrategieën (d.w.z. nulde-orde, eerste-orde, tweede-orde theory of mind) geregistreerd als chunks in het declaratieve geheugen. Strategieselectie en –revisie zijn daarom gebaseerd op de activatie van deze strategie-chunks. In het model met reinforcement leren, daarentegen, zijn strategieselectie en –revisie gebaseerd op utilities van de strategieën, die zijn geregistreerd als procedurele kennis.

Wat betekent dit verschil tussen de twee modellen? In het model van instance-based leren geldt dat wanneer er een beslissing gemaakt moet worden, de meest actieve ervaring in het geheugen (d.w.z. de chunk met de hoogste activatie) de basis is voor de beslissing. Wanneer deze beslissing wordt gevolgd door de feedback “Fout”, past het instance-based leermodel de strategie naar de strategie die één orde theory of mind hoger is. Bij de feedback “Correct” stabiliseert het gebruik van de gekozen strategie zich. Strategieselectie en –revisie zijn daarom expliciet. Daarentegen wordt in het reinforcement leermodel een beloning of straf teruggevoerd naar de regels die ten grondslag lagen aan de beslissing die leidde tot deze beloning of straf. Dit mechanisme van beloningen en straffen past de utilities van deze regels aan, waardoor het model uiteindelijk leert de juiste strategie te hanteren. In het reinforcement leermodel zijn strategieselectie en –revisie daarom impliciet. Het verschil tussen impliciete en expliciete strategieselectie leidt tot voorspellingen die verschillen voor de twee modellen (Figuur 2.2 en Figuur 2.3). In tegenstelling tot het reinforcement leermodel, voorspelt het instance-based leermodel dat kinderen die een fout antwoord geven in de tweede-orde false-belief-taak een antwoord geven op basis van eerste-orde theory of mind redeneren, als ze hierin voldoende ervaring hebben opgedaan. Deze voorverstelling is door ons bevestigd in empirisch onderzoek met 72 kinderen in de leeftijd van vijf tot zes jaar oud. De resultaten laten zien dat 17% van de antwoorden correct waren tegen 83% foute antwoorden. In lijn met onze voorverstelling werd in 65% van de foute antwoorden een antwoord gegeven dat overeenkomt met de eerste-orde theory of mind strategie, terwijl 29% overeenkomt met de nulde-orde theory of mind strategie. De overige 6% van de antwoorden was “Ik weet het niet.”

Beide modellen voorspellen dat het mogelijk is om de ontwikkeling van tweede-orde theory of mind te versnellen in kinderen van vijf jaar oud door de feedback “Fout” te geven zonder de reden aan te geven waarom het antwoord van het kind incorrect is. Deze voorspelling is in tegenstelling met eerdere resultaten in de ontwikkeling van eerste-orde theory of mind in kinderen, waaruit blijkt dat het

1 Setoh, Scott, & Baillargeon (2016) presenteren daarentegen aanwijzingen dat kinderen van twee-en-half jaar oud expliciete eerste-orde false-belief taken kunnen doen wanneer de taken laagdrempeliger zijn.

2 Zie ook het “zo simpel mogelijk en zo complex als noodzakelijk” argument in Hoofdstuk 1 voor de reden waarom de strategie één orde theory of mind wordt verhoogd in plaats van twee of meer.
niet mogelijk is om de ontwikkeling van eerste-orde theory of mind in kinderen te versnellen door feedback zonder uitleg te geven in de eerste-orde false-belief-taak (Clements et al., 2000; Melot & Angeard, 2003).

Daarnaast voorspelt het instance-based leermodel dat het geven van feedback met uitleg de kansen vergroot om de juiste tweede-orde theory of mind strategie te selecteren omdat strategierevisie explicit is. Dat wil zeggen, kinderen hebben er baat bij om uitleg te krijgen voor het feit dat ze de feedback “fout” hebben gekregen. Het reinforcement leermodel doet daarentegen geen uitspraken over uitleg van feedback omdat strategieselectie implicit is.

Om deze voorspellingen in Hoofdstuk 3 te testen hebben we 106 kinderen van 5 jaar oud getraind met 12 verschillende tweede-orde false-belief-taken in de volgende condities: (i) Feedback met uitleg; (ii) Feedback zonder uitleg; (iii) Geen feedback (Figuur 3.1). In de actieve controleconditie werden kinderen getraind met neutrale verhalen waarvoor geen theory of mind nodig was. De resultaten laten zien dat kinderen significant vaker correcte antwoorden geven in de post-test dan de pre-test in de ‘feedback zonder uitleg’ conditie (van 25% naar 49%), en bevestigen daarmee de voorspellingen van onze instance-based en reinforcement leermodellen. Zoals voorspeld door het instance-based leermodel hadden kinderen daarnaast baat bij extra uitleg wanneer ze de feedback “fout” ontvingen (van 31% naar 68%). Verrassenderwijs gaven kinderen ook vaker het juiste antwoord in de ‘geen feedback’ conditie (van 33% naar 55%). Zoals verwacht gaven kinderen niet significant vaker het juiste antwoord in de actieve controleconditie (van 29% naar 35%). Deze vooruitgang na training met tweede-orde false-belief-taken kan niet worden verklaard aan de hand van de leeftijd, verbale vaardigheden en kinderleermodellen. Zoals voorspeld door het instance-based leermodel hadden kinderen daarnaast baat bij extra uitleg wanneer ze de feedback “fout” ontvingen (van 31% naar 68%). Verrassenderwijs gaven kinderen ook vaker het juiste antwoord in de ‘geen feedback’ conditie (van 33% naar 55%). Zoals verwacht gaven kinderen niet significant vaker het juiste antwoord in de actieve controleconditie (van 29% naar 35%). Deze vooruitgang na training met tweede-orde false-belief-taken kan niet worden verklaard aan de hand van de leeftijd, verbale vermogen of de scores op simpele werkgeheugentaken. Daarnaast konden de kinderen het effect van hun training generaliseren naar een ander type tweede-orde false-belief-taak waar ze niet op waren getraind. Dit trainingseffect was stabiel bij een vervolgseizoen, 4 maanden na de pre-test.

In Hoofdstuk 2 en Hoofdstuk 3 hebben we niet gekeken naar de mogelijke rol van executive functies en taal in de ontwikkeling van tweede-orde theory of mind in kinderen. De aanname was dat kinderen voldoende vaardigheden op het gebied van executive functies en taal in het mental domein hebben om te slagen in tweede-orde false-belief-taken. Eerder onderzoek laat echter zien dat taal en executive functies effect kunnen hebben op de ontwikkeling van theory of mind in kinderen (Carlson & Moses, 2001; Carlson, Moses, & Breton, 2002; Carlson, Claxton, & Moses, 2014; Davis & Pratt; 1995, de Villiers & Pyers, 2002; de Villiers, 2005; de Villiers, 2007; Gordon & Olson, 1998; Keenan et al., 1998; Peterson & Siegel, 2000; Ruffman et al., 2002; Slade & Ruffman, 2005). In Hoofdstuk 4 presenteren we daarom een transversaal onderzoek met 89 kinderen, verdeeld over twee leeftijdsgruppen, een jongere groep (4;6 – 6;5 jaar oud) en een oudere groep (6;7 – 8;10 jaar oud), om de mogelijke rol van syntactische recursie in het taaldomein en van werkgeheugen in het domein van executive functie op de ontwikkeling van tweede-orde theory of mind in kinderen te onderzoeken.

De reden voor het gebruik van syntactische recursie is gebaseerd op eerder onderzoek dat laat zien dat de syntactische component van taal gerelateerd is aan de ontwikkeling van eerste-orde theory of mind in kinderen in termen van hiërarchische inbeddingsstructuur (de Villiers, 2005; de Villiers, 2007; Hollebrandse & Roep, 2014) en aan de ontwikkeling van tweede-orde theory of mind in termen van recursie (de Villiers et al., 2014; Hollebrandse et al., 2008). In tegenstelling tot deze eerdere onderzoeken hebben wij gebruik gemaakt van tweede-orde bijvoorbeeld bijzinnen3 om hun relatie met tweede-orde false-belief-taken te onderzoeken. Omdat we tweede-orde bijvoeglijke bijzinnen gebruiken in plaats van tweede-orde zelfstandige bijzinnen4 kunnen we ons specifiek richten op structurele parallelissen tussen tweede-orde recursie in het taaldomein en het mentale domein door de rol van waarde van de bijzinnen uit te sluiten.

Om de rol van werkgeheugen in de ontwikkeling van tweede-orde theory of mind te onderzoeken hebben we gebruik gemaakt van de serial processing bottleneck hypothese (Verbrugge, 2009), die een procedurele beschrijving geeft van de rol van complexe werkgeheugensstrategieën in de ontwikkeling van tweede-orde theory of mind. Waar simpele werkgeheugensstrategieën mensen alleen helpen met het opbouwen van een representatie van een lijst informatie en hierover te rapporteren, kunnen mensen met behulp van complexe werkgeheugensstrategieën informatie op een efficiëntere manier verwerken door verschillende stappen in de informatieverwerking te combineren. De serial processing bottleneck hypothese is gebaseerd op het resultaat dat werkgeheugen een beperkende factor is in het verwerken van informatie, doordat mensen slechts één chunk informatie tegelijk kunnen verwerken (Borst et al., 2010). Deze hypothese neemt aan dat kinderen een tijdslichaam hebben voor het uitvoeren van een bepaalde taak, en suggereert dat kinderen complexe werkgeheugensstrategieën nodig hebben om ervoor te zorgen dat hogere-orde5 mentale toestanden kunnen worden verwerkt binnen deze tijdslichaam.

Vanwege de beperking in het werkgeheugen moet tijdens elke stap in het redeneprocess informatie van het werkgeheugen worden opgeslagen in het langetermijngeheugen om later, indien nodig, weer opgehaald te worden. Informatie op- halen uit het langetermijngeheugen kost tijd en verhoogt de kans dat informatie
voeglijke bijzinnen. De analyses laten zien dat, hoewel tweede-orde syntactische verschil zien tussen de tekst die relevant was voor de taak (83%) en tekst die niet vanDiamond et al. (2002). Ze testten de vaardigheden op gebied van executive al.

teksten de waarden op het gebied van executive functies van 96 kinderen van 4 jaar oud door middel van de dag-nacht taak. In deze taak, die vergelijkbaar is aan de Stroop taak, moesten kinderen “dag” zeg- gen wanneer ze een afbeelding van de maan zagen, en “nacht” zeggen als ze een afbeelding van de zon zagen. Ze dwongen een aantal seconden pauze af tussen stimulus en respons door een kort liedje te spelen dat zei “Denk na over het antwoord, zeg het nog niet”. Deze manipulatie zorgde voor een verbetering in de prestaties van kinderen van (56% naar 86% juiste responses). In recente werk onderzochten Ling et al. (2016) of deze verbetering een gevolg was van de extra tijd, waardoor kinderen kun fouten konden herstellen, of door de zin “Denk na over het antwoord”. Ling et al. testten 72 kinderen van 4 jaar oud in twee condi- tions. In de eerste conditie gaf het liedje informatie over de taak door de zin “Denk na over het antwoord, zeg het nog niet”, terwijl het liedje in de andere conditie de tekst “Ik hoop dat je je vermaakt, ik vind je aardig” was. De resultaten lieten geen verschil zien tussen de tekst die relevant was voor de taak (83%) en tekst die niet relevant was (50%). Beide versies waren significant beter dan de standaardversie van de taak (51%).

Om de voorspellingen van de serial processing bottleneck hypothese op het ge- bied van de ontwikkeling van tweede-orde theory of mind in kinderen te testen, hebben we 89 kinderen in twee leeftijdsgroepen, een jongere (4;6 – 6;5 jaar) en een oudere (6;7 – 8;10 jaar), getest met een simpele werkgeheugen- en een complexe werkgeheugentaak naast een test op hun begrip van tweede-orde bij- voeglijke bijzinnen. De analyses laten zien dat, hoewel tweede-orde syntactische recursie significant correleert met redeneren aan de hand van tweede-orde theory of mind, de complexe werkgeheugentaak een betere voorspelling doet over het al dan niet slagen van kinderen in de tweede-orde false-belieftaak. Daarnaast waren, in lijn met bevindingen in de literatuur, de verantwoordingsscores (d.w.z. antwoorden op de vraag “Waarom?”) van zowel de jongere als de ouder leeftijdsgroep verre van perfect en lager dan de onuit- gelegde antwoordsscores op de tweede-orde false-belieftaak. Voor beide leeftijds- groepen waren correcte verantwoordingen voornamelijk van de vorm van implici- tie tweede-orde antwoorden (bijv. “Omdat ze niet weet dat Murat het zag”), en waren er geen expliciete tweede-orde verantwoordingen (bijv. “Omdat ze denkt dat Murat niet weet dat de chocola in de doos zit”), met uitzondering van één kind in de oudere leeftijdsgroep.

Naast het significant effect van de complexe werkgeheugentaak, verklaart de prestatie op de simpele werkgeheugentaak een significante deel van de va- riatie in de verantwoordingsscores van jongere kinderen (4 – 6 jaar oud). Deze significante correlatie met de prestaties op de simpele werkgeheugentaak ver- dwijnt voor de oudere kinderen, voor wie alleen de prestaties op de complexe werkgeheugentaak variatie in de verantwoordingsscores verklaart. Bovendien laten we zien dat de prestaties op de complexe werkgeheugentaak voor de ou- dere leeftijdsgroep alleen de verantwoordingsscores significant verklaart, maar niet de scores op de tweede-orde false-belieftaak. De reden hiervoor is dat er weinig variatie is in de onuitgelegde antwoordsscores op de false-belieftaak in deze leeftijdsgroep, terwijl er nog wel variatie is in der verantwoordingsscores. Verantwoording van antwoorden lijkt daarom een belangrijke variabele te zijn, omdat het een betere scheiding geeft van de tweede-orde redeneervaardigheden van kinderen. Hoewel oudere kinderen correcte antwoorden kunnen geven in de tweede-orde false-belieftaak, ontwikkelen deze kinderen zich nog steeds op het gebied van de verantwoording van hun antwoorden.

Hoofdstuk 5 en Hoofdstuk 6 gaan door over de rol van executive functies, maar verschuiven de aandacht van de ontwikkeling die kinderen doormaken op het gebied van de tweede-orde false-belieftaak naar de ontwikkeling die ze doorma- ken op het gebied van de eerste-orde false-belieftaak. In Hoofdstuk 5 staat de on- derzoeksvraag “Welk soort cognitieve vaardigheden helpt kinderen in het slagen in de expliciete eerste-orde false-belieftaak?”, en in Hoofdstuk 6 worden kinderen op gebied van de tweede-orde false-belieftaak onderzocht. Hierin wordt aan- genomen dat kinderen correcte antwoorden kunnen geven op de tweede-orde false-belieftaak, ontwikkelen deze kinderen zich nog steeds op het gebied van de verantwoording van hun antwoorden.
Als derde taak hebben we een eerste-orde false-belieftaak gemodelleerd. Onze van Kloo en Perner door een computationeel cognitief model te bouwen in de 2005; Henning et al., 2011). Om te bepalen of kinderen eerst cognitieve controle (Figuur 5.3). Waar de potloodtaak alleen om simpele werkgeheugenstrategieën vraagt, zijn voor de knikkertaak ook complexe werkgeheugenstrategieën nodig. Als derde taak hebben we een eerste-orde false-belieftaak gemodelleerd. Onze hypothese was dat ervaring met de knikkertaak meer zou bijdragen aan succes in de eerste-orde false-belieftaak dan ervaring met de potloodtaak.

De simulatieresultaten laten zien dat ervaring met taken die vragen om zowel simpele als complexe werkgeheugenstrategieën bijdragen aan succes in de eerste-orde false-belieftaak. Daarnaast is onze hypothese bevestigd door het feit dat het model de eerste-orde false-belieftaak veel sneller leerde wanneer het werd getraind met de knikkertaak, waarvoor complexe werkgeheugenstrategieën nodig zijn, dan wanneer het werd getraind met de potloodtaak.

In Hoofdstuk 6 onderzoeken we een andere belangrijke component van executieve functies, namelijk cognitieve controle, in relatie tot de ontwikkeling van eerste-orde theory of mind en redeneren in kinderen. Eerder onderzoek heeft aangetoond dat cognitieve controle en eerste-orde theory of mind redeneren zich rond dezelfde leeftijd ontwikkelen in kinderen (Perner & Lang, 1999; Müller et al., 2005; Henning et al., 2011). Om te bepalen of kinderen eerst cognitieve controle ontwikkelen en daarna eerste-orde theory of mind redeneren of vice versa, voerden Kloo en Perner (2003) een trainingsstudie uit, waarin kinderen van drie jaar oud werden getraind op de Dimensional Card Sorting taak, waarvoor cognitieve controle nodig is, of de eerste-orde false-belieftaak. In beide conditions werd expliciete feedback gegeven met uitleg over het juiste antwoord. De resultaten van Kloo en Perner laten zien dat er wederzijds een bijdrage is van de score op de Dimensional Card Sorting taak enerzijds en de eerste-orde false-belieftaak anderzijds, wat betekent dat kinderen die worden getraind op één van beide taken significant beter scoren op de andere taak. Op basis van deze bevindingen concludeerden Kloo en Perner dat kinderen van 3 jaar oud mogelijk problemen ondervinden om de representatie van een object of situatie te veranderen, en dat trainen met expliciete feedback kinderen helpt te begrijpen dat een object of situatie verschillend kan worden beschreven, afhankelijk van het perspectief. Kloo en Perner merkten echter ook op dat de exacte bijdrage van de ene taak op de andere taak nog onbekend is.

Ons doel in Hoofdstuk 6 is om een verklaring te geven voor de resultaten van Kloo en Perner door een computationeel cognitief model te bouwen in de cognitieve architectuur PRIMs. PRIMs theorie claimt dat trainen op een taak kan bijdragen aan het succes op een andere taak wanneer in beide taken succes afhankelijk is van het gebruik van dezelfde onderliggende strategie (bijv. een proactieve strategie) in het declaratief geheugen. Trainen op de ene taak kan dan voorkomen dat een simpelere strategie (bijv. een reactieve strategie) wordt geselecteerd om de andere taak uit te voeren. Ons model laat zien dat de Dimensional Card Sorting taak en de eerste-orde false-belieftaak een gezamenlijke onderliggende structuur hebben, waarin twee strategieën met elkaar in competitie zijn, waarvan slechts één leidt tot het juiste antwoord (Figuur 5.2). De resultaten van ons modellen passen goed bij de data van Kloo en Perner (Figuur 5.4). Op basis van deze modellen concluderen we dat, in tegenstelling tot wat Kloo en Perner beweren, de competitie tussen strategieën, waarvan slechts één leidt tot het juiste antwoord, het gemeenschappelijke element is in de twee taken. Door kinderen expliciet feedback te geven worden ze getraind in het gebruik van de controlestrategie die leidt tot het juiste antwoord, in plaats van te vertrouwen op een simpelere reactieve strategie.

Discussie

In de vorige sectie heb ik de resultaten van dit proefschrift samengevat. In deze sectie voeg ik de delen samen en bekijk het geheel in het licht van de theorieën uit Hoofdstuk 1 over de ontwikkeling van eerste-orde en tweede-orde theory of mind in kinderen, namelijk nieuw inzicht en complexiteit. Ik noem ook mogelijkheden voor vervolgonderzoek die meer licht zouden kunnen werpen over de ontwikkeling van de theory of mind in kinderen.

Nieuw inzicht

De nieuwe inzicht verklaring claimt dat kinderen alleen kunnen slagen voor de tweede-orde false-belieftaak wanneer ze zich realiseren dat mentale toestanden zoals overtuigingen bestaan, dat iemand overtuigd kan zijn van iets dat niet waar is, en dat ze deze concepten recursief kunnen toepassen [Miller 2009; 2012]. Zoals we hebben opgemerkt in Hoofdstuk 3, zijn onze resultaten dat kinderen die feedback zonder extra uitleg krijgen sneller leren te slagen in de tweede-orde false-belieftaak in tegenstelling met de literatuur die aantoont dat training in de eerste-orde false-belieftaak niet helpt kinderen van 3 jaar oud sneller te laten slagen voor de eerste-orde false-belieftaak, tenzij ze feedback en extra uitleg krijgen. Daarnaast verbeterden de scores op de tweede-orde false-belieftaak ook in de
conditie waarin ze geen feedback kregen. Dit resultaat was opmerkelijk gegeven onze modelvoorspellingen. We veronderstellen dat door blootstelling aan tweede-orde false-beliefverhalen en door tweede-orde theory of mind vragen te stellen met de verantwoordingsvraag “Waarom?”, kinderen worden gestimuleerd om na te denken over hun eigen antwoorden. Dat wil zeggen, door de verantwoordingsvraag te stellen worden kinderen gestimuleerd om hun incorrecte eerste-orde redeneerstrategie te corrigeren naar een tweede-orde redeneerstrategie.

De verbetering in prestatie die we zien in de conditie ‘feedback zonder verklaring’ en de conditie ‘geen feedback’ suggereert dat een nieuw inzicht niet de enige verklaring kan zijn, omdat we geen tweede-orde inbedding hebben gebruikt voor mentale toestanden in de verhalen of in de trainingssessies. Natuurlijk kunnen we niet uitsluiten dat kinderen nieuw inzicht verkrijgen over het recursief redenen in tweede-orde mentale toestanden als ze drie en vijf jaar oud zijn (zie ook Mahy, Moses, & Pfeifer, 2014 voor een review die claimt dat het moeilijk is om de mogelijkheid van nieuw inzicht uit te sluiten, zowel op gedragsniveau als op neuraal niveau).

Gezien de resultaten van onze computationele modelleeraanpak van Hoofdstuk 2, stellen we dat zelfs als kinderen een nieuw inzicht verkrijgen nadat ze slagen in de eerste-orde false-belieftaak, ze ook dan nog ervaring moeten krijgen in tweede-orde theory of mind redeneren om hun eerste-orde redeneerstrategie te verbeteren tot een tweede-orde redeneerstrategie. Daarnaast dienen de twee bevestigde voorspellingen van ons instance-based leermodel er op dat kinderen hun redeneerstrategieën expliciet selecteren en aanpassen.

Waar komen deze redeneerstrategieën vandaan? Een mogelijk antwoord is dat het ontwikkelen van theory of mind gerelateerd is aan het leren van algemene regels expliciet gebruiken om een specifiek antwoord te geven in de false-belieftaak. De computationele cognitieve modellen die we hebben geïntroduceerd in Hoofdstuk 5 laten zien dat complexe werkgeheugenstrategieën die een element van cognitieve controle bevatten bij kunnen dragen aan het slagen van kinderen in de eerste-orde false-belieftaak. Op basis van deze resultaten stellen we dat de ervaring die kinderen in het dagelijks leven opdoen met werkgeheugenstrategieën één van de belangrijke bronnen zou kunnen zijn van deze complexe en gespecialiseerde productieregels. Om deze verklaring en de serial processing bottleneck hypothese te testen is meer onderzoek nodig, mogelijk met een trainingsstudie waarin kinderen getraind worden met een complexe werkgeheugentaak in de ene conditie en met een simpele werkgeheugentaak in de andere conditie, waarbij hun vooruitgang op het gebied van tweede-orde theory of mind van een test tot een test wordt gegroepeerd.

In Hoofdstuk 6 liet onze modelleeraanpak zien dat het geven van expliciete feedback in de Dimensional Card Sorting taak en de eerste-orde false-belieftaak kinderen treint om flexibeler te zijn in hun gedrag in termen van de huidige doelen van een taak. Omdat de meeste kinderen slagen in de eerste-orde false-belieftaak rond het vierde levensjaar, vermoeiden we dat kinderen dan cognitieve controle beginnen uit te oefenen, dat betekent dat ze leren om flexibeler hun gedrag aan te passen aan hun huidige doel. Om te bepalen of er ook een bijdrage is van complexe werkgeheugenstrategieën aan het slagen in de tweede-orde false-belieftaak (far transfer) is meer onderzoek nodig. Op basis van onze resultaten in Hoofdstuk 3 en Hoofdstuk 4 voorspellen we dat de prestaties van kinderen in de tweede-orde false-belieftaak verbeteren door training met complexe functies te beperken om bijzinnen zoals in “Zij denkt dat hij denkt dat de sleutel in de auto ligt” te verwerken. Om dit soort zinnen te verwerken moeten kinderen de ingebonden mentale toestanden serieel verwerken, waarvoor kinderen vanwege de serial processing bottleneck complexe werkgeheugenstrategieën nodig hebben (Verbrugge, 2009), zoals besproken in Hoofdstuk 4.

Wat zou de rol van taal kunnen zijn in de ontwikkeling van tweede-orde theory of mind redeneren in kinderen? Volgens ons helpt syntactische recursie met het verdelen van hierarchisch ingebonden mentale toestanden in chunks door ze serieel te maken aan de hand van een efficiënte redeneerregel die makkelijk door de serial processing bottleneck gaat (zie ook Hollebrandse & Roep, 2014 voor een vergelijkbaar argument). Dit wordt ondersteund door onze resultaten, die laten zien dat er een hoge correlatie is tussen de beginstijl van tweede-orde bijvoeglijke bijzinnen en de score op de complexe werkgeheugentaak (Hoofdstuk 4).

De instance-based en de reinforcement leermethoden uit Hoofdstuk 2 bevatten complexe en gespecialiseerde redeneerregels in de vorm van ALS-DAN regels. Het is echter onwaarschijnlijk dat kinderen deze complexe en gespecialiseerde regels expliciet gebruiken om een specifiek antwoord te geven in de false-belieftaak. De computationele cognitieve modellen die we hebben geïntroduceerd in Hoofdstuk 5 laten zien dat complexe werkgeheugenstrategieën die een element van cognitieve controle bevatten bij kunnen dragen aan het slagen van kinderen in de eerste-orde false-belieftaak. Op basis van deze resultaten stellen we dat de ervaring die kinderen in het dagelijks leven opdoen met werkgeheugenstrategieën één van de belangrijke bronnen zou kunnen zijn van deze complexe en gespecialiseerde productieregels. Om deze verklaring en de serial processing bottleneck hypothese te testen is meer onderzoek nodig, mogelijk met een trainingsstudie waarin kinderen getraind worden met een complexe werkgeheugentaak in de ene conditie en met een simpele werkgeheugentaak in de andere conditie, waarbij hun vooruitgang op het gebied van tweede-orde theory of mind van een test tot een test wordt gegroepeerd.

In de volgende sectie bespreek ik de complexiteitsverklaring in termen van taal en executive functies.

Complexiteit

De complexiteitsverklaring claimt dat voor de complexere tweede-orde false-belieftaak een grotere vaardigheid op het gebied van executive functies en complexe taal nodig is vergeleken met de eerste-orde false-belieftaak (Miller, 2009; 2012).

Onze resultaten laten zien dat het beginpunt dat woorden die mentale toestanden beschrijven recursief kunnen worden gebukt, in tegenstelling tot wat de nieuwe-inzichtverklaring beweert, niet genoeg is om de extra vraag naar executive
Conclusies

In dit proefschrift hebben we computationele cognitieve modellen gecombineerd met empirisch onderzoek om de ontwikkeling van tweede-orde theory of mind in kinderen te onderzoeken. Na eerdere theorieën te hebben bestudeerd hebben we op basis van deze theorieën computationele cognitieve modellen gebouwd. Het bouwen van deze modellen stelde ons ertoe in staat om cognitieve modellen en cognitieve concepten precies te implementeren in plaats van deze concepten te gebruiken zonder onderscheid te maken in hun onderliggende componenten. De simulatieresultaten van de modellen brachten nieuwe voorspellingen aan het licht die we empirisch hebben getest. Bovendien hebben we de computationele modelleraanpak gebruikt om mechanismen te begrijpen die ten grondslag lagen aan beschikbare data in de literatuur. Op basis van onze modellen en empirische resultaten en samen met de bestaande literatuur, zou ik een chronologie willen voorstellen voor de factoren die bijdragen aan de ontwikkeling van tweede-orde theory of mind in kinderen, die is weergegeven in Figuur 7.1

De ontwikkeling van eerste-orde theory of mind is een noodzakelijke voorwaarde voor de ontwikkeling van tweede-orde theory of mind. Het lijkt waarschijnlijker dat er een nieuw inzicht nodig is voor de ontwikkeling van eerste-orde theory of mind dan voor de ontwikkeling van tweede-orde theory of mind. Dit komt doordat jonge kinderen eerst het inzicht moeten krijgen dat anderen mentale toestanden kunnen hebben (bijv. overtuigingen, intenties) die mogelijk anders zijn dan hun eigen mentale toestanden. Dit inzicht lijkt zich te ontwikkelen met behulp van pragmatiek en semantische componenten van de taal.

Na een mogelijk nieuw inzicht kampen jonge kinderen nog steeds met de complexiteit van eerste-orde false-belieftaken op het gebied van executive functions zoals werkgeheugen en cognitieve controle. Ze hebben efficiënte redeneringsregels nodig om te reconsolideren dat de overtuigingen van een ander incorrect zijn (d.w.z., van nullde-orde theory of mind redeneren naar eerste-orde theory of

werktegentalen, die niet alleen bestaan uit het herinneren van een lijst maar waarvoor ook cognitieve controle nodig is.

Zoals we echter hebben laten zien in Hoofdstuk 6, is werkgeheugen alleen niet genoeg. Kinderen hebben ook cognitieve controle nodig om een juist antwoord te geven. Voor eerste-orde theory of mind redeneren is het belangrijk om kinderen feedback te geven met een verklaring, zodat ze begrijpen dat cognitieve controle nodig is. Voor tweede-orde theory of mind redeneren is het daarentegen belangrijk dat kinderen voorbeelden zien waarmee ze hun incorrecte strategie kunnen corrigeren naar een tweede-orde theory of mind strategie.

Figuur 7.1. Een chronologie voor de factoren die bijdragen aan de ontwikkeling van tweede-orde theory of mind in kinderen.