Takotsubo Syndrome: Changes in Diagnostic Criteria and Role of Nuclear Imaging

Kazuaki Okuyama, MD and Yoshihiro J. Akashi, MD, PhD

Received: May 7, 2018/Revised manuscript received: July 25, 2018/Accepted: July 29, 2018
© The Japanese Society of Nuclear Cardiology 2018

Abstract
Takotsubo syndrome (TTS) was first described in 1990. A wide variety of TTS cases have been reported since then; the international consensus has proposed several diagnostic criteria. The current diagnostic system often relies on identifying combinations of subsets of symptoms, or criteria, to define diagnoses. In the recently proposed TTS diagnostic criteria, obstructive coronary syndrome and pheochromocytoma involvement changes. Here, we review the criteria and the role of nuclear imaging in TTS diagnosis and discuss new directions that can provide better information.

Keywords: Acute coronary syndrome, Diagnosis, Nuclear imaging, Takotsubo syndrome

The clinical presentation of TTS in electrocardiographic changes and abnormal serum biomarkers is similar to that of acute coronary syndrome (ACS). The pathophysiology of TTS remains unclear. The latest hypothesis consider it as the integrated cardiovascular response to sudden surges in endogenous catecholamine concentrations or to exogenously administered catecholamines often in the context of acute severe stress. Accordingly, the diagnosis of TTS is still challenging because of ACS like clinical phenotype and unclear pathogenesis. The prognosis of TTS was initially reported to be favorable compared with that of ST-segment elevated myocardial infarction, whereas subsequent studies have demonstrated that the acute and long-term mortality in TTS are higher than previously recognized. Therefore, the accurate diagnosis is crucial for this entity. Here, we review the diagnostic criteria of TTS and discuss the availability of nuclear imaging in its diagnosis.

Changes in diagnostic criteria
The first diagnostic criteria were introduced by Abe et al. in 2003. Several criteria have been published since then; the Mayo Clinic Diagnostic Criteria are the most commonly applied. The conventional criteria have proposed the exclusion of significant stenosis of the coronary artery; however, the recent data have demonstrated that coronary artery disease (CAD) is frequently observed in patients with TTS. When the patients have CAD, the diagnosis of TTS become notably complicated. Such patients are more likely to be misdiagnosed as having ACS. The presence of obstructive CAD should not be considered as an exclusion criterion.

Pheochromocytoma is a rare neuroendocrine tumor derived from the medulla of the adrenal gland or extra-adrenal chromaffin tissue, and it secretes enormous catecholamines. Catecholamine storm triggers electrocardiographic abnormali-
ties, left ventricular systolic dysfunction, and an increase in the biomarkers; thus, it should be considered as the main pathophysiology of TTS. The conventional diagnostic criteria have excluded pheochromocytoma as a specific cause of TTS, whereas the clinical phenotype of TTS is consistent with that of pheochromocytoma. The diagnostic criterion of European Society of Cardiology thus includes pheochromocytoma as a secondary cause of TTS (7).

Based on the above-mentioned situation and current knowledge, the international expert consensus has provided new diagnostic criterion of TTS, International Expert Consensus Document on TTS, which helps to improve identification and classification of TTS (6). In the new criterion, it is noteworthy that coronary artery disease is not a contradiction in TTS and pheochromocytoma do not exclude the diagnosis of TTS (Table 1).

The role of nuclear cardiology

The nuclear imaging assesses coronary perfusion; cardiac metabolic function and sympathetic nervous are closely associated with the onset of TTS. The role of nuclear imaging in TTS diagnosis has not been well established yet. So far, no diagnostic criteria describe the usefulness of nuclear imaging in TTS diagnosis, which is already discussed in some papers (7, 8). Nuclear imaging provides useful information, particularly on CAD and pheochromocytoma combined with TTS. TTS should be distinguished from ACS; then, nuclear metabolic imaging greatly contribute to the accurate diagnosis. One study concluded that fatty-acid metabolism depicted by 123I-BMIPP myocardial scintigraphy was more severely
impaired than myocardial perfusion depicted by 99mTc scintigraphy in acute phase of TTS patients (9). The discrepancy between 99mTc scintigraphy and 123I-BMIPP scintigraphy is markedly lower in TTS than ST-segment elevated myocardial infarction (10). Under the perfusion tracers, the reduction of apical counts occurs by regional myocardial wall thinning in the apex, which is due to not the artifact but the partial volume effects. Others, it might be due to reduced regional perfusion in the takotsubo infarcted area and increased perfusion in non-takotsubo area or combined all these factors. No study has presented the use of stress-rest gated single-photon emission computed tomography in patients with TTS; it provides the evaluation of not only perfusion but also global and regional functions as well as the possible presence of ischemia.

123I-MIBG scintigraphy assesses myocardial sympathetic nerve terminal activity and detects adrenal and ectopic pheochromocytoma. Even in the subacute phase of TTS, decreased delayed H/M ratio and increased washout rate of 123I-MIBG represent the adrenergic hyperactivity in patients with TTS (11). The uptake of 123I-MIBG is impaired for months, and it is corresponding to a regional disturbance of sympathetic neuronal activity (12). The combination of 123I-MIBG scintigraphy and myocardial perfusion scintigraphy is useful to distinguish TTS from ACS in which innervation and myocardial scarring is matched.

Cardiac positron emission tomography (PET) using $[^{18}$F$]2$-fluoro-deoxy-glucose (FDG) depicts abnormal glucose metabolism in normal myocardial perfusion in patients with TTS; one of the recent studies demonstrated heterogeneous accumulation of FDG in the patients with TTS (13). One study using 13NH$_3$/Rb PET demonstrated impaired left ventricular perfusion in the acute phase and unchanged midventricular and apical flow in the acute and follow-up phases (14). Global left ventricular hyperemia and impaired coronary flow reserve (CFR) in the takotsubo infarcted area have been presented in their case series (14). In typical TTS, basal hyperperfusion probably caused by regionally increased metabolic requirement in which basal contractility increases to compensate for failing the heart. Also, it should be kept in mind that the findings of perfusion and CFR depend on the timing of acquiring the images after the onset of TTS.

Conclusion
The diagnostic criteria of TTS is updated; CAD and pheochromocytoma are also included into the new criteria. Therefore, it seems that now is favorable time to assess the availability of nuclear imaging for providing more accurate TTS diagnosis.

Acknowledgment
None.

Sources of funding
None.

Conflicts of interest
None.

Reprint requests and correspondence:
Yoshiihro J. Akashi, MD, PhD
Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, 216-8511, Japan
E-mail: yoakashi-circ@umin.ac.jp

References
1. Sato H, Tateishi H, Uchida T. Takotsubo-type cardiomyopathy due to multivessel spasm. In: Kodama K, Haze K, Hon M, eds. Clinical Aspect of Myocardial Injury: From Ischemia to Heart Failure. Tokyo: Kagakuyouronsyu Co.; 1990: p56-64.
2. Akashi YJ, Nef HM, Lyon AR. Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol 2015; 12: 387-97.
3. Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (Stress) cardiomyopathy. N Engl J Med 2015; 373: 929-38.
4. Stermaier T, Thiele H, Eitel I. Long-term excess mortality in Takotsubo syndrome: is it justified to charge Takotsubo for the excess long-term mortality?: Reply. Eur J Heart Fail 2016; 18: 879.
5. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 2008; 155: 408-17.
6. Ghadri JR, Wittstein IS, Prasad A, et al. International expert consensus document on Takotsubo syndrome (PART I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 2018; 39: 2032-46.
7. Lyon AR, Bossone E, Schneider B, et al. Current state of knowledge on Takotsubo syndrome: a Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2016; 18: 8-27.
8. Ghadri JR, Wittstein IS, Prasad A, et al. International expert consensus document on Takotsubo syndrome (PART II): Diagnostic workup and outcome, and management. Eur Heart J 2018; 39: 2047-2062.
9. Kurius S, Inoue I, Kawagoe T, et al. Myocardial perfusion and fatty acid metabolism in patients with takotsubo-like left ventricular dysfunction. J Am Coll Cardiol 2003; 41: 743-8.
10. Matsuo S, Nakajima K, Kinuya S, et al. Diagnostic utility of 123I-BMIPP imaging in patients with Takotsubo cardiomyopathy. J Cardiol 2014; 64: 49-56.
11. Christensen TE, Bang LE, Holmvang L, et al. 123I-MIBG scintigraphy in the subacute state of takotsubo cardiomyopathy. JACC Cardiovasc Imaging 2016; 9: 982-90.
12. Akashi YJ, Nakazawa K, Sakakibara M, et al. 123I-MIBG myocardial scintigraphy in patients with “takotsubo” car-
13. Kobylecka M, Budnik M, Kochanowski J, et al. Takotsubo cardiomyopathy: FDG myocardial uptake pattern in fasting patients. Comparison of PET/CT, SPECT, and ECHO results. J Nucl Cardiol 2017. [Epub ahead of print]

14. Christensen TE, Ahtarovski KA, Bang LE, et al. Basal hyperaemia is the primary abnormality of perfusion in Takotsubo cardiomyopathy: a quantitative cardiac perfusion positron emission tomography study. Eur Heart J Cardiovasc Imaging 2015; 16: 1162-9.