Multiscale modeling of brain network organization

Charley, Presigny and Fabrizio, De Vico Fallani

Inria Paris,
Aramis Project Team,
Paris,
France

Sorbonne University,
UPMC Univ Paris 06,
Inserm U-1127,
CNRS UMR-7225,
Paris Brain Institute (ICM),
Hopital Pitie-Salpetriere,
Paris,
France

(Dated: November 29, 2021)

A complete understanding of the brain requires an integrated description of the numerous scales of neural organization. It means studying the interplay of genes, synapses, and even whole brain regions which ultimately leads to different types of behavior, from perception to action, while asleep or awake. Yet, multiscale brain modeling is challenging, in part because of the difficulty to access simultaneously to information from multiple spatiotemporal scales. While some insights have been gained on the role of specific microcircuits (e.g., thalamocortical), a comprehensive characterization of how changes occurring at one scale can have an impact on other ones, remains poorly understood. Recent efforts to address this gap include the development of new analytical tools mostly adapted from network science and dynamical systems theory. These theoretical contributions provide a powerful framework to analyze and model interconnected complex systems exhibiting interactions within and between different scales, or layers. Here, we present recent advances for the characterization of the multiscale brain organization in terms of structure-function, oscillation frequencies and temporal evolution. Efforts are reviewed on the multilayer network properties underlying higher-order organization of neuronal assemblies, as well as on the identification of multimodal network-based biomarkers of brain pathologies, such as Alzheimer’s disease. We conclude this Colloquium with a perspective discussion on how recent results from multilayer network theory, involving generative modeling, controllability and machine learning, could be adopted to address new questions in modern neuroscience.

CONTENTS

I. Introduction 2
II. Multiscale modeling of brain structure and function 4
III. Multilayer network formalism 5
 A. Mathematical definition of multilayer networks 5
 B. Analytical tools for multilayer networks 7
 1. Micro-scale topology 7
 2. Meso-scale topology 8
 3. Macro-scale topology 9
IV. Multilayer brain networks 9
 A. Common types of multilayer brain networks 9
 B. Multilayer brain networks are more than the sum of their layers 10
 C. Filtering spurious links in multilayer brain networks 11
V. Multilayer network properties of brain organization 11
 A. Structure-function relationship 11
 B. Information segregation and integration 13
 C. Brain organizational properties of human behavior 15
VI. Multilayer network-based biomarkers of brain diseases 16
 A. Alzheimer’s disease 16
 B. Neuropsychiatric disorders 18
 C. Other neurological diseases 20
VII. Emerging perspectives 21
 A. Generative models of multiscale networks 21
 B. Controllability of multilayer networks 21
 C. Machine learning and multilayer networks 22
VIII. Conclusion 22
IX. Acknowledgement 23
References 23

* fabrizio.de-vico-fallani@inria.fr
I. INTRODUCTION

The brain is a formidable complex system which exhibits a wide repertoire of emergent phenomena that ultimately rule the behavior of most multicellular living beings. Those phenomena involve multiple spatial scales, from molecules to the whole brain, and stem from multiple temporal scales, from sub-milliseconds to the entire lifespan (Robinson et al., 2005). More broadly, scales can refer to other types of dimensions, such as complementary phenomenological information captured by different experimental technologies (e.g., magnetic resonance imaging, electrophysiology, genetics) or neuronal interactions at multiple topological levels (Bazinet et al., 2021; Betzel and Bassett, 2017b) (Fig. 1).

Disentangling such organizational complexity is crucial to understand basic neural functioning and, eventually, cure brain diseases (Cutsuridis, 2019). Modeling multiscale brain organization is indeed one of the most important challenges of our century. The number of flagship initiatives funding large projects that aim to reproduce multiscale brain behavior has significantly increased over the last two decades, i.e., Human Brain Project [1] and China Brain Project (Poo et al., 2016) just to cite few examples.

While at present there is no comprehensive theory of how to bridge multiple scales, the pursuit of such a theory remains critically important. Several recent models propose new ways to model neural activity within and between multiple scales, and further provide mechanistic insights into the brain organization. Hence, it is timely to discuss these emerging developments, and to seek to tie them together into a meaningful theoretical field that can be used to tackle current open questions in multiscale neuroscience and medicine.

Research in the field has progressively acknowledged the importance of considering brain organization from a holistic perspective and not from a reductionist angle (Breakspear, 2017; Deco et al., 2011; Engel et al., 2021). This is somewhat implicit in the term organization itself, which stems from the Medieval Latin *organizatio* i.e., the arrangement of parts in an organic whole. Accumulating evidence indicates that modeling how different brain components interact is often more realistic and effective in terms of behavior prediction, than simply considering their activity in isolation (Friston, 2011; Scannell et al., 1999).

Graphs (or networks) have progressively emerged as a natural way to describe heterogeneous connectivity diagrams at single scales or levels (Hilgetag and Kaiser, 2004; Jouve et al., 1998; Park and Friston, 2013; Sporns et al., 2000; Stam and Reijneveld, 2007). According to this framework, the nodes of a network correspond to different brain sites, such as neurons, neuronal ensembles or even larger areas but also to electric or optical sensors. The edges, or links, of the network represent either anatomical/structural connections or functional/dynamical interactions between the nodes. While the best practices for establishing the links between brain nodes are still evolving, the type of connectivity basically depends on the experimental technology. Anatomical brain networks are often derived from post-mortem tract tracing or in-vivo/vitro structural imaging (e.g., diffusion tensor imaging DTI) (Rubinov and Sporns, 2010). Dynamical brain networks are instead mostly obtained from in-vivo/vitro functional imaging, such as optical imaging, electrophysiology (e.g., EEG, MEG), or functional magnetic resonance imaging (fMRI) (De Vico Fallani et al., 2014).

The use of a network formalism to study the structure and dynamics of interconnected brain systems has a rich and pervasive heritage in seminal works at the intersection between physics and neuroscience. Studies on single-scale brain networks brought up major results and got structured around concepts and languages inspired from network theory. Similarly to other real interconnected systems, brain networks tend to exhibit an optimal balance between integration and segregation within their connectivity structure (Bassett and Bullmore, 2017). This peculiar structure, also known as small-world, is topologically characterized by the co-occurrence of short paths and abundant clustering links between nodes (Watts and Strogatz, 1998). Small-world networks ensure efficient communication between the nodes and favor global synchronization of oscillatory dynamics (Lago-Fernández et al., 2000; Latora and Marchiori, 2001).

Brain networks also exhibit other important topological properties, such as mesoscale modular organization as well as the presence of core hubs passing information between peripheral distant brain areas (Bullmore and Sporns, 2009; van den Heuvel and Sporns, 2011; Markov et al., 2013; Zamora-López et al., 2010). In addition, being embedded in space, brain networks are economic as they tend to minimize the energetic cost (e.g., metabolic) associated to the presence of long-range connections (Bullmore and Sporns, 2012).

At this stage, it is important to remind that the brain is a flexible system, and its organization can change adaptively with external environment, endo/exogenous inputs, as well as during diseases or after damages. As a consequence, topological properties of brain networks can exhibit shifts from normative physiological values and those deviations constitute the basis for the identification of new organizational mechanisms and biomarkers in both cognitive and clinical neuroscience (Fornito et al., 2015; Medaglia et al., 2015; Stam, 2014).
The aforementioned findings refer to brain networks obtained separately from different levels of information. Here, we expand the link between physics and neuroscience in the context of the network formalism by focusing on multilayer brain networks, enabling us to build a unifying framework to analyze and model neural organization across multiple scales and/or dimensions from a topological perspective. Indeed, multilayer network theory has been recently introduced as a powerful paradigm to simultaneously quantify the higher-order properties within and between different layers (i.e., scales) of connectivity (Boccaletti et al., 2014; De Domenico et al., 2013; Kivelä et al., 2014). In addition, multiscale brain modeling can be performed by designing biophysical models of single scale dynamics and simulating simple inter-layer connectivity schemes. Should the readers be interested in this classical approach, we direct them to some of the most recent reviews (Lytton et al., 2017; Si et al., 2016) and books (Cutsuridis, 2019).

The remainder of this Colloquium is organized as follows. In Sec.II we illustrate the rationale of multiscale brain modeling, and briefly review the main research lines and challenges. These arguments anticipate the introduction of the multilayer network theory to characterize brain network organization across multiple scales. In Sec. III, we present the multilayer network formalism by providing basic notions and definitions. We then introduce ways of characterizing multilayer network properties that have been adopted so far in network neuroscience. Sec.IV describes the different types of multilayer brain networks that have been investigated. Emphasis is given on the relevance of multilayer modeling as compared to single-layer alternatives and on the current practices to infer them from experimental data. We next turn into Sec.V, to detail a few examples of how we can use multilayer network theory to characterize and understand brain structure and function in physiological conditions. Then, in Sec. VI, we describe which multilayer network properties deviate from normative values in the presence of brain diseases, and how to derive enriched biomarkers of network reorganization associated with clinical outcomes. We close in Sec. VII by outlining the emerging frontiers of multilayer network theory in light of future developments in computational and experimental neuroscience. Except otherwise stated, brain networks refer here to connectivity graphs obtained with neuroimaging techniques in humans, which has been so far the main application of multilayer network theory in network neuroscience. Nonetheless, the presented formalism is broadly relevant and applicable to other animal species (primates and non-primates), data modalities (in-vitro/vivo), as well as to simulated neural models (in-silico).

By reviewing the research endeavors of multilayer network theory applied to the brain, we aim to stimulate a discussion and reflection on the exciting opportunity it constitutes for multiscale brain modeling. To this end, we kept to the minimum jargon terminology and we adopted an accessible language to reach the broadest multidisciplinary science community.
FIG. 2. **Bottom-up hierarchical modeling.** Panel a) The so-called K-set hierarchy showing the model progression from cell level to entire brain. K0 is a noninteracting collection of neurons. KI corresponds to a cortical column with sufficient functional connection density. KII represents a collection of excitatory and inhibitory populations. KIII is formed by the interaction of several KII sets and simulates the known dynamics of sensory areas with 1/f spectra (see inset). KIV is formed by the interaction of three KIII sets that models the genesis of simple forms of intentional behaviors. Panel b) Schematic view of major components involved in thalamocortical interactions. Different shading patterns code for different zones of the system, i.e. from micro (relay nuclei, thalamic reticular nuclei (TRN)) to macro scales (cortex). As indicated by key, all connections shown are excitatory except for the connection from the reticular cell to the relay cell, which is inhibitory.

Pictures and captions adapted from Kozma *et al.* (2007) (panel a) and Sherman and Guillery (1996) (panel b). Inset b) republished from Robinson *et al.* (2005) with permission of The Royal Society (U.K.); permission conveyed through Copyright Clearance Center, Inc.

II. MULTISCALE MODELING OF BRAIN STRUCTURE AND FUNCTION

The goal of multiscale modeling is to describe a system by simultaneously taking into account multiple features or mechanisms associated with different levels of information. These levels may represent phenomena of different nature, such as in continuum mechanics and molecular dynamics, or at different spatio/temporal resolution i.e., from micro to macro scales. Multiscale modeling is therefore central for the integrated understanding of a system behavior and for the prediction of the properties of one level from the other ones. Since most real-life phenomena involve a broad range of spatial or temporal scales, as well as the interaction between different processes, multiscale modeling has been widely adopted in several disciplines, from material science and algorithmics, to biology and engineering (Weinan, 2011).

In neuroscience, multiscale modeling typically considers multiple levels ranging from microscopic single neuron activity to macroscopic behavior of collective dynamics. This is achieved by bridging biophysical mechanistic models of neuron dynamics and experimental neuroimaging data (Gerstner *et al.*, 2012). Such “bottom-up” approach allows to predict macroscopic observables by integrating information at smaller scales, typically under the assumption of mean-field approximations (Breakspear and Stam, 2005; Siettos and Starke, 2016). This means that neuronal ensembles’ dynamics are progressively “averaged” across scales leading to a characteristic hierarchical nested structure where multiple units at finer-grained levels map into a new entity at coarser-grained ones (Fig. 2a) (Chialvo 2010; Expert *et al.*, 2010; Freeman 1975; Kozma and Freeman, 2003).

The thalamocortical model is perhaps one of the simplest examples that can reproduce disparate physiological and pathological conditions, from Parkinson’s disease to epileptic seizures (Bhattacharya *et al.*, 2011; Bonjean *et al.*, 2012; Jirsa and Haken, 1996; Sherman and Guillery, 1996; Lopes da Silva *et al.*, 1974; Sohjahman Haghighi and Markazi, 2017). In this model, both basic microscopic neuropathology (e.g., synaptic and dendritic dynamics) and mesoscale brain anatomy (e.g., corticocortical and corticothalamic pathways) are progressively incorporated to predict large-scale brain electrical activity (Fig. 2b).

With the advent of new technologies and tools that allow gathering more precise experimental data and efficient processing, multiscale brain modeling has witnessed a significant boost in the last decade. Increasingly more
sophisticated and accurate models have been proposed including, among others, large-scale anatomical and functional brain connectivity (Deco et al. 2011, 2008). However, to fully understand a multiscale system, models at different scales must be coupled together to produce integrated models across multiple levels. Indeed, global brain dynamics are strongly dependent on the interaction of several interconnected subnetworks that differently contribute to generate them. Thus, the study of how intrascale and inter-scale interactions give rise to collective behavior and to relationships with their environment is a central theme of modern multiscale brain modeling. Because of the substantial lack of biological evidence, especially concerning inter-scale connectivity, large parts of the studies have focused on analytical and numerical approaches (Dada and Mendes 2011). For example, intrascale interactions have been simulated adopting cellular automata perspectives (Kozma et al. 2004), while interscale connectivity have been established using wavelet transformations (Breakspear and Stam 2005). The use of “top-down” approaches, which start with the observation of biological characteristics in the intact system and then construct theories that would explain the observed behaviors, offers complementary solutions. In particular, data-driven methods based on statistical signal/image processing of neuroimaging data allow to derive network representations of the brain at both anatomical and functional levels. This information can be then used to generate more realistic models implementing observed brain connectivity schemes and not simulated ones (Siettos and Starke 2016).

Interestingly, the use of cross-frequency coupling represents a promising approach to derive inter-scale interactions across multiple signal oscillation frequencies (Jirsa and Müller 2013). Hence, while multiscale modeling in neuroscience has historically had a strong spatiotemporal connotation, it spans nowadays more layers of information, from structure/function to multiple oscillation regimes.

However, richer information and more accurate models also mean higher complexity and harder interpretation. These are both typical characteristics of multi-scale problems that require the use of efficient algorithms to simulate the fully integrated model and appropriate ways of analyzing and interpreting them (Chi 2016). This is actually one of the main challenges of big research projects supported by funding agencies around the world, such as the European Human Brain Project4 or the US BRAIN Initiative.5 The increasing number of open-source tools that can be freely accessed and customized to enrich multiscale brain models just confirms how broad and multidisciplinary is the community effort (Dura-Bernal et al.

III. MULTILAYER NETWORK FORMALISM

A. Mathematical definition of multilayer networks

The need to investigate complex systems with multiple types of connectivity has emerged, almost independently, from different disciplines including social science, engineering, and computer science (Dunlavy et al. 2011; Little 2002; Wasserman and Faust 1994). More recently, the physics community also produced pioneering works on various notions such as networks of networks (Zhou et al. 2006, 2007), node-colored networks (Newman 2003; Vazquez 2006), interdependent networks (Buldyrev et al. 2010; Gao et al. 2012) or multilayer networks (Jo et al. 2006; Kurant and Thiran 2006).

As a consequence, different terms have been introduced and adopted, thus producing a lack of a consensus set of terminology and mathematical formulation. Only in the last decade, we have eventually witnessed the dawning of general frameworks compatible with tools from complex systems and network science (Boccaletti et al. 2014; Kivelä et al. 2014), or based on tensorial formalisms (De Domenico 2017).

Formally, a multilayer network is defined as $\mathcal{M} = (\mathcal{G}, \mathcal{C})$ where \mathcal{G} is a set of graphs and \mathcal{C} a set of edges connecting the nodes of the different graphs (Boccaletti et al. 2014). More precisely, $\mathcal{G} = \{G_\alpha|\alpha \in \mathbb{N}\}$ with $G_\alpha = (V_\alpha, E_\alpha)$ being a graph at layer α. V_α is the set of nodes of G_α and E_α the set of its edges, with $E_\alpha \subseteq V_\alpha \times V_\alpha$. The set of edges between the nodes of the graphs at different layers α and β is denoted by $\mathcal{C} = \{E_{\alpha\beta} \subseteq V_\alpha \times V_\beta|\alpha \neq \beta\}$.

An equivalent, but less formal, convenient representation of a multilayer network is given by the so-called supra-adjacency matrix, $A = \{a_{ij}^{\alpha\beta}\}$. Here, the element $a_{ij}^{\alpha\beta}$ represents the link between node i in layer α and node j in layer β. Hence, given M layers in the graph, A will result in a matrix with M blocks on the main diagonal, accounting for the connections within layers, and $M(M - 1)$ off-diagonal blocks describing the links

3 humanbrainproject.eu
4 braininitiative.nih.gov
FIG. 3. Main configurations of multilayer networks. Panel a) Full multilayer network. Both within- and between-layer connections are allowed with no specific restrictions. This configuration is typically adopted to model multifrequency brain networks (see Sec.IV.A). Panel b) Multiplex networks. Only interlayer connections between the replica nodes are allowed. No restrictions on connections within layers. This configuration is typically used to model multimodal brain networks (see Sec.IV.A). Panel c) Temporal networks. Interlayer connections are allowed only between adjacent layers. No restrictions on connections within layers. This configuration is typically adopted to model time-varying brain networks (see Sec.IV.A). Image credit: Thibault Rolland, t.d.rolland@gmail.com

between different layers (Eq.1).

The above definitions are quite general and allow to describe complex systems exhibiting different number of nodes in each layer or scale, directed or undirected interactions, as well as weighted or unweighted connectivity. Without loss of generality, we introduce the analytical tools and metrics to characterize multilayer networks by assuming sparse, unweighted and undirected interactions.

Based on state-of-the-art studies, we consider multilayer networks composed of replica nodes. That means that all the layers will have the same number of nodes representing the same units of the system across different scales. In this configuration \(V_\alpha = V, \alpha \in \{1,...,M\} \) and only connectivity within and between layers is allowed to change (Fig.3a). In the following, we will refer to these general configurations as to full multilayer networks. The supra-adjacency matrix of full multilayer networks has the following form:

\[
A = \begin{pmatrix}
E_{11} & E_{12} & \cdots & E_{1M} \\
E_{21} & E_{22} & \cdots & E_{2M} \\
\vdots & \vdots & \ddots & \vdots \\
E_{M1} & E_{M2} & \cdots & E_{MM}
\end{pmatrix},
\]

where \(E_{\alpha\beta} \) contains interlayer links when \(\alpha \neq \beta \) and intralayer links when \(\alpha = \beta \).

Specific cases of full multilayer networks are the so-called multiplex networks. In multiplexes, interlayer connections are not present apart from those between replica nodes (Fig. 3b). These links inform the model of the existing nodal correspondences across layers. Hence, in a multiplex \(V_\alpha = V, \alpha \in \{1,...,M\} \) and \(C = \{E_{\alpha\beta} \subseteq \{(v,v)|v \in V}\}|\alpha \neq \beta\}. \) The associated supra-adjacency matrix becomes:

\[
A = \begin{pmatrix}
E_{11} & I & \cdots & I \\
I & E_{22} & \cdots & I \\
\vdots & \vdots & \ddots & \vdots \\
I & I & \cdots & E_{MM}
\end{pmatrix},
\]

where \(I \) is the \(N \times N \) identity matrix.

Based on the above configurations, many types of multiscale interconnected systems (e.g., spatial, temporal, multimodal) can be represented and investigated. For example, temporal networks are represented by a particular type of multiplex, where only replica nodes between adjacent layers are interconnected, and the blocks after the first diagonals in Eq.2 become zero matrices (Fig. 3c). We notice that in general the information contained in multilayer networks can be obtained neither from equivalent aggregated versions (e.g., where links are averaged across layers) nor from standard network metrics and tools (Zanin, 2015). For this reason, it is crucial to derive new concepts and methods to quantify the higher-order topological properties emerging from multilayer networks. In the next subsection, we introduce some of the metrics and tools that have been developed so far, mainly adapted from network science and dynamical systems theory (Battiston et al. 2014, Boccaletti et al. 2014), and that have been adopted in neuroscience. Should the readers be interested in a more complete picture of multilayer network analytical tools, we refer them to recent reviews by Boccaletti et al. (2014) and Bianconi (2018).
B. Analytical tools for multilayer networks

In the following, we briefly present some of the multilayer metrics that have been used in neuroscience. We categorize them according to the topological scale that they characterize, i.e. from nodes (micro-scale) to the entire network (macro-scale) passing by groups of nodes (meso-scale). As a reminder, the entry \(a_{ij}^{\alpha} \) of the supra-adjacency matrix \(A \) describes the interaction of node \(i \) in layer \(\alpha \) to node \(j \) in layer \(\beta \) of a given multilayer network. Since \(A \) is binary, \(a_{ij}^{\alpha} \) has either the value of 1 (presence of a link) or 0 (absence of a link). Note that \(a_{ij}^{\alpha} \) represents intralayer interactions in layer \(\alpha \). Finally, we denote the number of layers as \(M \) and the number of replica nodes in each layer as \(N \).

1. Micro-scale topology

The most intuitive nodal metric in classical network theory is the node degree, which measures the actual number of links a node has with the other nodes.

A simple extension in the case of multiplex networks is the so called overlapping degree:

\[
o_i = \sum_j \sum_\alpha a_{ij}^{\alpha},
\]

which actually sums the degrees of node \(i \) across all layers.

Another popular metric to measure how the degrees of node \(i \) are arranged across all layers is the multiplex participation coefficient \((\text{Battiston et al., 2014}) \):

\[
p_i = \frac{M}{M - 1} \left[1 - \frac{\sum_\alpha k_i^\alpha}{o_i} \right],
\]

where \(k_i^\alpha \) is the degree of node \(i \) at layer \(\alpha \). When \(p_i = 0 \), the links of the nodes are all concentrated in one layer; when \(p_i = 1 \), they are uniformly distributed across layers.

Triads of interconnected nodes, also called triangles, are simple configurations supporting transitivity, clustering and information segregation in the network \((\text{Newman, 2010}) \). Locally, this tendency is quantified via the clustering coefficient, which measures the proportion of nodes linked to a given node that are also linked together \((\text{Watts and Strogatz, 1998}) \). A relatively straightforward extension is the multiplex clustering coefficient \((\text{Cucuringu et al., 2015}) \):

\[
c_i = \frac{\sum_\alpha \sum_{\beta \neq \alpha} \sum_{\alpha \neq i, m \neq i} a_{ij}^{\alpha} a_{jm}^{\beta} a_{mi}^{\alpha}}{(M - 1) \sum_\alpha \sum_{\alpha \neq i, m \neq i} a_{ij}^{\alpha} a_{mi}^{\alpha}},
\]

which takes into account the possibility to form triangles by means of links belonging to two different layers.

These metrics determine which are the most central nodes in the network. In general there are many ways of defining the centrality of a node. For example, based on the computation of shortest paths, the betweenness of a node measures its tendency to connect topologically distant parts of the network \((\text{Freeman, 1977}) \). The extension to multiplex networks is the so-called overlapping betweenness centrality which reads \((\text{Yu et al., 2017a}) \):

\[
b_i = \frac{1}{(N - 1)(N - 2)} \sum_\alpha \sum_{s,s \neq t,t \neq i} \sum_{\alpha} \sigma_{st}^\alpha(i) \sigma_{st}^\alpha,
\]

where \(\sigma_{st}^\alpha(i) \) is the number of shortest paths from node \(s \) to \(t \) passing through node \(i \) in layer \(\alpha \) and \(\sigma_{st}^\alpha \) is the total number of shortest paths between node \(s \) and \(t \) in layer \(\alpha \).

Another celebrated centrality measure is the PageRank centrality, initially introduced in Google web search engines \((\text{Brin and Page, 1998}) \). PageRank centrality can be roughly thought of as the fraction of time a random walker spends visiting a node traveling through the links of the network.

In multiplex networks, random walkers have the possibility to jump to adjacent nodes and teleport to nodes in other layers, according to a modified version of the transition probability \(r_{ij}^{\alpha\beta} \) \((\text{see Halu et al., 2013 and De Domenico et al., 2015c for more details}) \). From a probabilistic perspective, the multiplex PageRank centrality of node \(i \) in layer \(\alpha \) can be obtained as the steady-state solution of the master equation \((\text{De Domenico et al., 2015c}) \):

\[
\pi_{i\alpha}(t + 1) = \sum_{j=1}^N \sum_{\beta=1}^M r_{ij}^{\alpha\beta} \pi_{j\beta}(t)
\]

The multiplex PageRank of a node \(\pi_i \) is then obtained by summing up the stationary probability solutions \(\pi_{i\alpha} \) over the layers.

2. Meso-scale topology

Network motifs are recurrent connection patterns involving few nodes and are therefore easily interpretable. They constitute the basic building blocks of a complex system architecture, coding for essential biological functions such as autoregulation, cascades and feed-forward loops \((\text{De Vico Fallani et al., 2008a, Milo et al., 2002, Sporns and Kötter, 2004}) \). When dealing with multiplex networks, motifs can be formed by edges belonging to different layers \((\text{Battiston et al., 2017}) \). Hence, the total number of possible configurations depends on the number of layers but also on the type of interaction, e.g., negative or positive. In these...
cases, Z-scores are typically used to determine the statistical abundance of a multiplex motif G according to the following formula:

$$Z(G) = \frac{F(G) - \hat{F}_R(G)}{S_R(G)}, \quad (8)$$

where F is the occurrence frequency of a given multiplex motif, while $\hat{F}_R(G)$ and $S_R(G)$ are respectively the mean frequency and its standard deviation obtained from a set of equivalent random multiplex graphs R. Alternatively, frequency coherent subgraphs can also be extracted by counting their abundance in a set of multiplex brain networks corresponding, for example, to different individuals (Huang et al. 2020).

The tendency of a network to form distinct groups, or clusters, of many nodes is an important prerequisite for the modularity of the system and its ability to process information in a segregated manner (Fortunato 2010).

Also known as communities, their detection is non trivial as one has to find an optimal separation that maximizes the number of links within-group and minimizes the between-group connection density (Newman 2006).

In the case of multiplex networks the definition of modularity incorporates the relation between different layers and partitions all the layers simultaneously (Mucha et al. 2010):

$$Q = \frac{1}{2l} \sum_{ij\alpha\beta} [(a_{ij}^\alpha - \gamma_\alpha \frac{k_i^\alpha k_j^\alpha}{2l^\alpha})\delta_{\alpha\beta} + \delta_{ij} H_{ij\beta} (\delta_{g_\alpha,g_\beta})], \quad (9)$$

where l is the total number of links in the multilayer, γ_α sets the granularity of the community structure in each layer, l^α is the total number of edges in layer α, $H_{ij\beta}$ is a parameter that tunes the consistency of communities across layers and $\delta_{g_\alpha,g_\beta} = 1$ when node i in layer α and node j in layer β belong to the same community, and zero otherwise. Maximization of Q is finally obtained via heuristic methods and gives an optimal network partition for each layer (Blondel et al. 2008).

In temporal networks, nodal metrics reflecting mesoscale network properties can be defined by measuring, for example, the node flexibility, i.e. the average number of times that a node changes community assignment across layers (Bassett et al. 2011).

A peculiar network partition consists in separating the network in a core of tightly connected nodes, and a periphery made by the remaining weakly connected nodes (Borgatti and Everett 2000). Similarly to a rich-club (Colizza et al. 2006), the presence of a core is crucial for the efficient integration of information between remote parts of the network (Csermely et al., 2013; Rombach et al., 2014; Verma et al., 2016; Zhang et al., 2015). Battiston et al. (2018) introduced a fast core-periphery detection algorithm for multiplex networks. Based on local information (Ma and Mondragón 2015), the method first defines a multiplex richness of a node by linearly combining its degrees in each layer, i.e. $\mu_i = \sum_\alpha c_\alpha k_i^\alpha$. Notably, the c^α parameter vector weights the richness contribution of each layer. Nodes are then ranked according to their μ_i values and the core-periphery separation is given by the optimal rank (Gonzalez-Astudillo et al. 2021):

$$r^* = \text{argmax}(\mu_r^+)$$

where μ_r^+ is the richness obtained when considering only the links of the node ranked in position r towards nodes with higher ranks.

In the case of weighted multiplexes, they also defined the coreness of a node as a probabilistic metric obtained by counting the number of times that a node belongs to the core across a range of increasing threshold values.

3. Macro-scale topology

Large-scale properties of complex networks are often derived by aggregating information at smaller topological scales. For example, the global-efficiency of a network, derived from the length of its shortest paths, quantifies the ability to integrate information from topologically distant nodes by means of a scalar number (Latora and Marchiori 2001).

In a multiplex network, a straightforward extension consists in computing the topological distances across layers. Thus, the global-efficiency reads (Boccaletti et al. 2014):

$$E_{glob} = \frac{1}{N(N-1)} \sum_{i\neq j} \frac{1}{d(i,j)}, \quad (11)$$

where $d(i,j)$ is the length of the shortest path, which is allowed to go through different layers, between node i and j.

Based on topological distances, one can also quantify the global tendency of a multiplex network to form highly clustered and efficient groups via the overlapping local-efficiency (Latora and Marchiori 2001; Yu et al., 2017a):

$$E_{loc} = \frac{1}{N(N-1)} \sum_\alpha \sum_{i\neq j \in G_\alpha} \frac{1}{k_i^\alpha (k_i^\alpha - 1)} d(i,j), \quad (12)$$

where G_i is a sub-graph containing the neighbors of node i and $d(i,j)$ is the length of the shortest path between node i and j at layer α.

The previous metric aggregates information from different layers and ignores possibly existing interlayer connection mechanisms. The latter ones can be easily retrieved by allowing paths to be formed between nodes in different layers \cite{Mandke et al. 2018}. For example, \cite{Tang et al. 2010} extended the concept of topological distance to temporal networks by allowing the formation of shortest paths across consecutive layers. Specifically, they introduced the characteristic temporal path length as:

$$L = \frac{1}{N(N-1)} \sum_{i \neq j} \frac{d_{ij}}{M-1} \sum_{t=1}^{M-1} \frac{a_{ij}^t a_{ij}^{t+1}}{(\sum_j a_{ij}^t)(\sum_j a_{ij}^{t+1})}$$

(14)

where d_{ij} is the temporal distance between node i and node j.

Same authors also introduced a metric to quantify the probability that the neighbor set of a node that is present at time t is also present at time $t + 1$. By averaging over all the nodes they eventually defined the temporal-correlation coefficient C as:

$$C = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{t=1}^{M-1} \frac{\sum_j a_{ij}^t a_{ij}^{t+1}}{(\sum_j a_{ij}^t)(\sum_j a_{ij}^{t+1})}$$

Together, the last two global metrics measure how the system information is respectively integrated and segregated over time and can be used to assess the small-world properties of time-varying networks \cite{Tang et al. 2010}.

In graph theory, the Laplacian matrix has many useful implications in real networks, from denoising to low-dimensional embedding \cite{Merris 1994}. Community structures can be, for example, approximated through the second smallest eigenvalue of the Laplacian, also called algebraic connectivity (λ_2). More in general, λ_2 informs on several important properties of a network such as synchronization, diffusion and resilience \cite{Fortunato 2010}.

In a full multilayer network, λ_3 is calculated from the associated supra-Laplacian matrix, whose elements are defined as:

$$L_{ij} = \begin{cases} k_i^\alpha + M - 1, & \text{if } i=j \text{ in layer } \alpha \\ -1, & \text{if } i \text{ and } j \text{ are connected} \\ 0, & \text{otherwise} \end{cases}$$

(15)

In multilayer networks, λ_2 is sensitive to the amount of intra- and inter-layer connectivity, and typically quantifies the integration/segregation balance among layers from a dynamical perspective \cite{Gomez et al. 2013, Radicchi and Arenas 2013}. Notably, λ_2 exhibits a phase transition when increasing the interlayer connection intensity, from layers being independent/segregated to a high overall dependence/integration \cite{Radicchi and Arenas 2013}.

\section{IV. Multilayer Brain Networks}

\subsection{A. Common types of multilayer brain networks}

Up to date multilayer brain networks have been mostly derived from experimental neuroimaging data in humans, with nodes representing the same entities, i.e. brain areas across layers. Multiplex networks represent the easiest way to bridge brain connectivity at different levels, as one does not have to explicitly infer interlayer connections. In this situation, interlayer links only virtually connect the replica nodes and the associated meaning is basically the one of identity between the same nodes across layers \cite{Battiston et al. 2014}.

This type of representation has been largely used to describe multimodal brain networks, whose different layers may contain structural and functional connectivity \cite{Battiston et al. 2018, Lim et al. 2019, Simas et al. 2015}, as well as interactions at different signal frequencies \cite{De Domenico et al. 2016, Guillou et al. 2017, Yu et al. 2017a}. A common situation when dealing with multimodal networks is that the nodes might not correspond to the same entity in their native space. This is for example the case of brain networks derived from fMRI and EEG signals, where nodes correspond respectively to image voxels and scalp sensors. To overcome this issue, advanced image and signal processing tools are used beforehand for projecting the native signals into the nodes of a common anatomical brain space, typically extracted from the structural MRIs of a subject’s head \cite{Baillet et al. 2001, Grech et al. 2008, Michel et al. 2004}. Multiplex networks have been also adopted to describe temporal brain networks, i.e. networks whose topology is changing over time \cite{Bassett et al. 2011, Braun et al. 2015, Pedersen et al. 2018}. In this case, each layer corresponds to a specific point, or instance, in time and only the replica nodes of temporally adjacent layers are interconnected according to a “markovian” rule (Fig. 3b). Unlike multimodal brain networks, the layers of a time-varying brain network do not correspond to different spatial or temporal/frequency scales, but they typically capture the dynamic network evolution within a fixed time resolution. This is typically in the order of milliseconds for motor behavior, minutes/hours for human learning, or years for aging as well as for neurodegenerative diseases.

Full multilayer network representations, containing both intra-layer and inter-layer nontrivial connectivity, have been mostly adopted to characterize brain signal interactions within and between different oscillation frequencies (Fig. 3a) \cite{Buldú and Porter 2018, Tewarie et al. 2016, 2021}. This representation is particularly useful for functional brain networks with a broad frequency content, such as in those obtained from electrophysiology, EEG or MEG signals. Although less frequent than multiplexes, this type of representation has a great
FIG. 4. Structural reducibility of multifrequency brain networks. Panel a) For each combination of layers a quality function measures the amount of new information added with respect to an equivalent single-layer model. Panel b) Median values of quality function obtained from fMRI multifrequency brain networks in healthy subjects. Shaded areas indicate the standard deviation around each value. Pictures and captions adapted from De Domenico et al. (2016).

potential for characterizing whole brain cross-frequency coupling, which has been recently shown to be crucial for many cognitive and pathological mental states (Jirsa and Müller, 2013).

We finally stress out that regardless of the type of construction, the resulting multilayer networks—either multiplex or full—generally exhibit higher-order properties that cannot be captured or resumed by simply aggregating information from different layers (Boccaletti et al., 2014; Kivelä et al., 2014).

B. Multilayer brain networks are more than the sum of their layers

Multilayer networks give richer description than standard network approaches, but do they really represent a step forward into the modeling of brain organization? Why aggregating layers is not enough? Are all layers necessary to capture the main organizational properties? De Domenico et al. (2015b) addressed these questions by introducing a structural reducibility approach to maximize the quantity of non-redundant topological information between the layers of a multiplex network with respect to its aggregated counterpart (Fig. 4b). For a large spectrum of networks, from protein-protein interactions to social networks, structural reducibility showed that the best configuration in terms of distinguishability is not necessarily the one with the highest number of layers (De Domenico et al., 2015b). On the contrary, De Domenico et al. (2016) showed that multifrequency brain networks derived from fMRI signals were not easily reducible since all the layers brought some non-redundant topological information (Fig. 4b). While the biological motive of this result still needs to be clarified, it suggests that even if fMRI oscillation amplitudes are under-represented in higher frequencies, their interaction might be still relevant from a brain network perspective. We show in the next sections that this result extends quite generally and can be used to better diagnose brain diseases (see Sec. V and Sec. VI).

While most research has focused on multiplex brain networks, a better understanding of the emerging properties in full multilayer brain networks still remains to be elucidated. Buldú and Porter (2018) addressed these aspects by studying the difference between frequency-based multiplexes and full multilayers derived from MEG brain signals (Fig. 5b). By evaluating the algebraic connectivity λ_2 (cf. Sec. III.B), they showed that full multilayer brain networks are close to an optimal transition point between integration and segregation of the layers. The layers in the equivalent multiplex configurations were instead more segregated and then far from this transition point (Radicchi and Arenas, 2013). These results were also confirmed by extensive numerical simulations and explained by the intrinsic lower interlayer connection density of the multiplexes (Fig. 5b). Interestingly, the full multilayer λ_2 values were associated with the phase-amplitude coupling of gamma ($30 – 40$ Hz) and theta ($4 – 7$ Hz) brain frequency bands, confirming the crucial role of cross-frequency coupling in the study of complex brain functions and dysfunctions (Aru et al., 2015; Canolty et al., 2006).

Altogether, these findings point out the importance of considering cross-layer interactions as a way to enrich the description as well as our understanding of the multiscale phenomena in complex brain networks.

FIG. 5. Emergent properties in full multilayer brain networks. Panel a) Intralayer and interlayer edges in the multifrequency MEG network. 1-edge between regions at the same frequency; 2-edge of the same area between different frequency bands; 3-edge between different nodes at different frequency bands. Panel b) Algebraic connectivity λ_2 as a function of the total interlayer connectivity (S_p). The vertical solid line corresponds to the actual value of interlayer connectivity, i.e., without modifying their weights. Pictures and captions adapted from Buldú and Porter (2018).
C. Filtering spurious links in multilayer brain networks

It’s important to remind that brain connectivity networks are estimated from experimental data. This necessarily implies the presence of spurious connections, often among the weakest ones, due to the statistical uncertainty associated with the connectivity estimator and/or to the presence of signal artifacts during the experiment (De Vico Fallani et al., 2014; Korhonen et al., 2021). For example, head motions are known to abnormally increase short-range connectivity, thus altering the original topology of the network as well as its connection intensity, i.e., the sum of the actual links’ weights (Lydon-Staley et al., 2019). This is particularly relevant as the topological properties of a network strongly depend on the number and weights of the existing edges (De Vico Fallani et al., 2017; Mandke et al., 2018). As a result of the construction process, multilayer brain networks are also influenced by such noise, which might alter the true association between the multiscale brain network organizational properties and the subject’s characteristics and behavior.

To mitigate the presence of unwanted alterations in the estimated links, two main strategies have been so far adopted following what has been done in standard network analysis. The first approach consists in manipulating the brain signals, while the second one operates directly on the connectivity matrices. Lydon-Staley et al. (2019) used the first approach to silence the effects of head motion on the recorded brain signals and in turn on the estimated brain network. They tested different signal denoising strategies, mainly based on regression and source separation techniques (Cichocki and Shunichi, 2002) on temporal brain multiplexes constructed from fMRI data. Specifically, they evaluated their ability in attenuating the nuisance effects on several network metrics, such as multiplex modularity and node flexibility (cf. Sec. III.B). Despite some variability, the obtained results suggested that regression-based approaches outperform source separation-based techniques, possibly due to their ability to explicitly incorporate the nuisance variables in the denoising process (Lydon-Staley et al., 2019).

The second approach consists in filtering the network’s links. This is typically achieved by fixing a threshold either on the percentage of strongest edges to retain or on their weights. Depending on the threshold value the resulting networks might have different densities and/or intensity. Mandke et al. (2018) evaluated the impact of network filtering on several topological properties such as multiplex PageRank (Eq. 7), multiplex modularity (Eq. 5) and participation coefficient (Eq. 4). Specifically, they tested several filtering criteria, e.g., spanning tree (MST) (Kruskal, 1956), efficiency cost optimization (ECO) (De Vico Fallani et al., 2017), singular value decomposition (SVD) (Golub and Van Loan, 2012) applied to each single layer separately, or adapted to the whole multiplex.

By using both synthetic and neuroimaging-derived multiplex networks, results indicated that SVD techniques lead to multilayer network properties that are quite robust to changes in connection density/intensity. MST and ECO techniques were instead effective only when filtering each layer separately, and therefore useful when dealing with multimodal brain networks, where layers are estimated from different type of data and the nature of the interlayer links cannot be straightforwardly established.

Note however, that these results have been obtained for multiplexes and the extension to full multilayer networks still remains to be investigated.

V. MULTILAYER NETWORK PROPERTIES OF BRAIN ORGANIZATION

A. Structure-function relationship

Both structural and functional brain organization are crucial determinants of complex neural phenomena such as cognition, perception, and consciousness (Park and Friston, 2013). An important question in modern neuroscience is how structural and functional connectivity are related to each other, and how such putative interaction can better our understanding of the brain organization. Recent studies using both model-based and data-driven approaches have for example demonstrated that connectivity at functional level could be in part predicted by the structural one, and that this prediction could explain several complex dynamics of brain functioning, from resting states to task-based and pathological conditions (Hansen et al., 2015; Park and Friston, 2013; Suarez et al., 2020; Wein et al., 2021).

But what are the higher-order topological properties of the multilayer network composed of both structural and functional layers and how these contribute to describe brain anatomo-functional organization? To address these questions, Battiston et al. (2017) first investigated the presence of simple connection motifs (cf. Sec. III.B) forming across the layers of a DTI-fMRI multiplex network. They found that motifs comprising both structural and positively correlated functional links are overabundant in the human brain (Fig. 6a). This confirms that the presence of an anatomical connection is likely to induce a synchronized activity between the corresponding brain regions (Skudlarski et al., 2008). However, other significant configurations were reported including the presence of triangles in the functional layer with no support in the structural one. Overall these results indicated that intrinsic functional organization of the brain is non-trivially constrained by the underlying anatomical network (Skudlarski et al., 2008), and cannot
FIG. 6. Multiplex motif analysis of multimodal brain networks. Panel a) Structural-functional 2-layer brain network. Interlayer links between replica nodes are omitted for the sake of visibility. Five nontrivial multiplex motifs of two nodes are possible based on the type of connectivity in the DTI structural layer (green nodes) and in the fMRI functional layer (yellow nodes). The Z-scores show the motifs that are overrepresented and underrepresented as compared to equivalent random networks. Panel b) Patterns of multiplex triangles comprising directed structural tuples (solid connections) closed by a functional edge (dashed connections). The overall motif counts normalized by equivalent random multiplexes are illustrated as a function of basal activation parameters P and Q of the Wilson-Cowan model. Pictures and captions is adapted from Battiston et al. (2017), with permission of AIP Publishing (Panel a), and Crofts et al. (2016) (panel b).

be fully explained by it.

Down the line, Ashourvan et al. (2019) investigated the multilayer modularity of DTI-fMRI multiplex networks. Main results showed that the structural layer is mostly dominating the community structure of the multiplex over a broad range of topological scales explored by varying the granularity parameter γ (Eq.9). Notably, the communities of the structural layer tended to spatially overlap with the cytoarchitectonic brain organization and were highly consistent across individuals. Instead, the communities of the functional layer were more heterogeneously distributed and less consistent across subjects, reflecting the dynamic repertoire of the brain functions (Ghosh et al. 2008; Hadriche et al. 2013).

By looking at the assortativity of DTI-fMRI multiplex networks, Lim et al. (2019) measured to what extent nodes with similar overlapping degrees tended to "wire" together. Results indicated that multimodal brain networks have a propensity to be assortative, which translates into an overall ability to facilitate system dynamics and resilience to random attacks (e.g., node removal) (Boccaletti et al. 2014). This evidence resolved the assortative/disassortative dichotomy previously observed with single-layer analysis of structural/functional brain networks. Notably, such multilayer assortativity resulted from a nontrivial structure/function interplay and pointed out a novel organizational mechanism optimally balancing the resilience to damages and retrainability of their effects.

Modeling the emergence of large-scale brain dynamics from microscale neuronal interactions is crucial for a mechanistic understanding of neural multiscale organization. An early study by Zhou et al. (2007) proposed a computational model based on the structural connectome of the cat cortex. By parametrizing the coupling between several Fitzhugh-Nagumo oscillators according to the available connectome, they simulated the ongoing activity in each region, and estimated the interareal functional connections via Pearson’s correlation (FitzHugh 1961). By means of this simple model, the Authors showed that a weak coupling parameter was sufficient to generate biologically plausible macroscale activity, with functional connectivity patterns mostly overlapping the modular organization of the structural network.

Crofts et al. (2016) used a similar approach based on the structural connectome of a macaque cortex and Wilson-Cowan neuronal models (Wilson and Cowan 1972). More relevant to this Colloquium, they analyzed the behavior of multiplex clustering patterns (such as in Eq.5) in the structural-functional networks as a function of two model parameters, i.e. one tuning the input to excitatory neurons, and the other one modulating the input to the inhibitory ones. Specifically, they defined multiplex clustering indices to quantify the presence of
functional links associated with common drivers in the structural layer. Main results showed that such quantities were maximal at the boundaries of the phase transition, from steady-state to oscillatory dynamics, as well as in other regions of the parameter space (Fig. 6b). Differently from previous results on single-layer analysis, this nontrivial behavior suggested that the system criticality does not only depend on the structure-functional interplay of the brain network, but also on the type of ongoing dynamics.

At the level of single neuron, [Bentley et al., 2016] proposed a multiplex approach to represent synaptic connections (structural) as well as extrasynaptic signaling interactions (functional) inferred from gene expression data of the C. Elegans worm. Despite the low degree of overlap between the synaptic and extrasynaptic connectomes, Authors found highly significant multiplex motifs (similar to the ones in Sec. III.B), pinpointing locations in the network where amine and neuropeptide signalling modulate synaptic activity. The presence of directed monoamine interactions and reciprocal synaptic connections was particularly significant among specific neurons implicated in learning, memory and motor functions. These results support the evidence that the structural/functional interplay is crucial to better understand the communication pathways between different parts of the C. Elegans nervous system.

In this direction, [Maertens et al., 2021] identified the shortest paths from touch sensory neurons to motor neurons allowing information flowing across different type of neurotransmitters and neuropeptides layers. By applying a time-delayed feedback control on the identified neurons, the Authors could eventually reproduce the typical C. Elegans locomotion, and characterize the neuromuscular multilayer connectivity mechanisms associated with the central pattern generator (CPG) (Fouad et al., 2018; Gjorgjieva et al., 2014).

Multilayer network theory has just started to provide tools and examples on how to model and analyze the interplay between structure and function of the brain. Several issues remain to be explored such as how to establish interlayer connections (Tewarie et al., 2021) or incorporate multilayer network mechanisms in the laws modeling the large-scale neuronal dynamics. (Hansen et al., 2015).

B. Information segregation and integration

Clustering and shortest paths are general concepts in complex systems that are both essential for efficient organization of many real-world networks (Latora and Marchiori, 2001; Watts and Strogatz, 1998). These concepts reconcile two long-standing opposed views of the brain functioning. On one hand, phrenology-based theories, which associate different cognitive tasks with segregated brain regions (Kanwisher, 2010). On the other hand,
global workplace theories, which instead hypothesize the necessity of interareal integration of information to realize the very same tasks (Dehaene and Naccache, 2001). Notably, network science has provided the tools to quantify network segregation and integration by demonstrating respectively the presence of many clustered connections and few shortest paths between areas. More recently, integration in the brain has been revisited and hypothesized to be determined by the presence of few core hubs in the network, and not directly by shortest paths (Deco et al., 2015; Obando and De Vico Fallani, 2017a).

By considering the multiscale aspects of brain network organization, segregation and integration must be adapted to capture higher-order phenomena such as cross-frequency coupling (Jirsa and Müller, 2013), multimodal information (Garcés et al., 2016) and temporal evolution (Hutchison et al., 2013). Tewarie et al. (2016) investigated information segregation and integration in MEG full multifrequency brain networks. They first observed the presence of strong dependencies between intra- and interlayer connectivity. By decomposing the multilayers into representative connectivity structures, or “eigenmodes”, they demonstrated that the overall amount of interlayer connectivity was associated with the second eigenmode, containing specific fronto-occipital network components common to all frequencies. In addition, they compared the empirical MEG multifrequency networks with those obtained from large-scale signals simulated with a thalamo-cortical model (Robinson et al., 2002, 2001). By increasing the model structural coupling parameter, the Authors reported a progressive increase in the resulting functional interlayer connectivity. Notably, real MEG multilayer networks maximally fit the model at the transition point of such increment, suggesting an optimal balance between segregation and integration of information between different frequency bands.

As for multimodal connectivity, Battiston et al. (2018) investigated the associated integration properties by evaluating the core-periphery structure of DTI-fMRI multiplex networks. They specifically calculated the multiplex coreness (cf. Sec III.B), which integrates information from different layers and provide a possibly more accurate characterization of the mesoscale brain network properties. Compared to single-layer analysis, results identified new core areas in the sensorimotor region of the brain that are key components of the so-called default mode network (DMN), i.e. a set of brain regions that is active when a person is not focused on the outside world (Raichle et al., 2001). Besides, results excluded previously established areas in the frontal region, whose belonging to the core system was still debated (Hagmann et al., 2008). By including structural (DTI) and functional (fMRI) network information, these findings offered a new enriched description of the integration properties of the human connectome’s core (Fig. 7).

Temporal brain networks have been previously shown to exhibit alternating periods of segregation and integration across multiple time scales, associated with the presence of “dynamical” hubs (de Pasquale et al., 2016), as well as state-dependent community structures (Al-Sharoa et al., 2019). To better understand the role of such transitions, Pedersen et al. (2018) studied the multilayer network flexibility (cf. Sec III.B) derived from a big dataset of resting-state fMRI signals (Fig. 8a). Results showed that the node flexibility, i.e. the frequency of community switching between consecutive time layers, was particularly high in specific associative brain regions (i.e., temporal and parietal) and correlated with the entropy of the connectivity variability. Because switching is known to increase in systems with high entropy or information load (Amigó et al., 2013), Authors eventually established the role of functional hubs for the associative cortex integrating information across differently specialized brain systems (van den Heuvel and Sporns, 2011). Interestingly, these high local flexibility values occurred mainly when the brain exhibited a globally low and steady network intensity, so as to minimize the overall energetic cost associated with the integrative temporal switching (Fig. 8b).

On longer time scales, Malagurski et al. (2020) investigated how brain segregation changes with age by using longitudinal fMRI data acquired over a 4 years timespan. By computing the multiplex modularity (Eq 9), they showed that the global flexibility, i.e. the average node flexibility, is significantly higher in healthy elderly as compared to a temporal null model, where the brain network layers are randomly shuffled (Chai et al., 2016; Sizemore and Bassett, 2018). Results also demonstrated that people with more segregated temporal networks tended to be more resistant to transient changes in modular allegiance (Harlalka et al., 2019; Meunier et al., 2010; Ramos-Núñez et al., 2017). Notably, older age was related to higher temporal variability in modular organization. However, no correlations were found with cognitive behavior, such as processing speed and memory encoding. Since flexibility is in general a good predictor of cognitive performance (cf. Sec V.C), further studies should include more cognitive domains, or lagged changes, to elucidate the role of age in the relation between the cognitive performance and temporal modular flexibility.

Taken together, these findings provided some concrete examples on how concepts such as segregation/integration of information can be adapted to multilayer brain networks. While most of the studies have focused on undirected connectivity, future research will be crucial to include directed links and better inform on communication pathways in neuronal systems (Avena-Koenigsberger et al., 2018).
FIG. 9. Stabilization of critical dynamics in multilayer glia-neuronal networks. Panel a) Left side: Glia cells redistribute metabolic resources from the bloodstream to neural synapses. Right side: Associated two-layer network model. Black arrows indicate neural synaptic interactions. Arrow thickness indicates synaptic strength which evolves according to spike time-dependent plasticity (STDP). Red arrows which terminate on black arrows represent the resource supply to the corresponding synapse. Panel b) Stability analysis of the two-layer STDP model. The largest eigenvalue λ of the neuronal network layer and the total resource R of all glia and synapses are illustrated as function of time. The data plotted in black correspond to a ‘baseline’ condition. For the data plotted in red (labelled ‘instability’), the initial evolution is the same as for the baseline data up until the diffusion of resources between the glial cells is turned off (vertical arrow). Pictures and captions adapted with permission from Virkar et al. (2016). Copyright 2016 by the American Physical Society.

C. Brain organizational properties of human behavior

The results presented in the previous paragraphs aimed to quantify the intrinsic structural and functional brain organization, with no reference to any specific mental state or behavior. Nonetheless, the brain is an extremely flexible and adaptive system, capable of altering its organization depending on endogenous and exogenous stimuli coming from the external environment (a property often referred to as plasticity). In this paragraph, we present some of the most recent results showing how multilayer brain network properties change according to specific behaviors, and how those higher-order topological changes are associated with inter-subject variability.

Human learning is perhaps one of the most intriguing (yet not completely understood) neural processes with numerous implications in our daily-life. A basic question in neuroscience is how learning is acquired through Hebbian plasticity, without leading to runaway excitation of the neural synaptic activity (Abbott and Nelson, 2000; Miller and MacKay, 1994; Watt and Desai, 2010). In their study, Virkar et al. (2016) proposed a mechanism for preserving stability of learning neural systems, via a 2-layer network model. The first layer contained a model neural network interconnected by synapses which undergo spike-timing dependent plasticity (STDP) (Feldman, 2012). The second layer contained a network model of glia cells interconnected via gap junctions, which diffusively transport metabolic resources to synapses (inter-layer edges) (Fig. 9a). Main results showed that, with appropriate model parameter values, the diffusive interaction between the two layers prevents runaway growth of synaptic strength, both during ongoing activity and during learning. These findings suggested a previously unappreciated role for fast dynamic glial transport of metabolites in the feedback control stabilization of slow neural network dynamics during learning (Fig. 9b). Notice that this is so far one of the few examples where multilayer network theory is used to model microscale neural organization across multiple temporal scales.

At larger spatial scales, Bassett et al. (2011) used a multilayer network approach to characterize human learning during a simple motor task. In particular, they built temporal brain networks from fMRI signals across consecutive experimental sessions. They used the multiplex modularity (Eq. 9) to find long-lasting modules and found that community organization changed smoothly with time, displaying coherent temporal dependence, as in complex long-memory dynamical sys-
Planning and executing motor acts is accompanied by changes in brain activity and connectivity on very short time scales of the order of milliseconds (Plutscheller and Lopes da Silva 1999). Svoboda and Li (2018). Tang et al. (2010) used an EEG temporal network approach to characterize such fast brain functional organization during a simple foot movement task. Compared to network sequences with randomly shuffled layers, brain networks showed a higher temporal clustering and a similar characteristic temporal path length (Eq.15). Put differently, dynamic brain networks exhibited a temporal small-world propensity, supporting both segregation and integration of information through time. While single-layer analysis had previously unveiled that segregation/integration properties fluctuate and adapt over the different phases of the movement (De Vico Fallani et al. 2008b), these findings provided new evidence on the intrinsic global temporal properties of motor-related brain networks.

VI. MULTILAYER NETWORK-BASED BIOMARKERS OF BRAIN DISEASES

Like any other complex system the brain can exhibit anomalous connectivity, which in turn may lead to abnormal behavior and clinical symptoms. Those brain connectivity changes can be spatially distributed, such as in schizophrenia or Alzheimer’s disease, or localized such as in stroke or traumatic injuries (Hallett et al. 2020). Looking at the network organization in both healthy and diseased conditions appears therefore fundamental to understand the resilience and vulnerabilities of the brain (Russo et al. 2012). From a medicine perspective, network-based biomarkers would represent advanced tools to monitor the disease progression and inform new therapeutics to mitigate or counteract the effects of the disease. In the last decade, standard network analysis has accumulated evidence documenting general reorganizational properties such as departure from optimal small-world configurations, aberrant modular reorganization, as well as significant loss of node centrality (Stam 2014). So far, these network changes remain rather aspecific, i.e. not univocally associated with specific neurological diseases or disorders. Since brain pathologies typically result from multifactor processes at different scales, integrating this multiscale information has a great potential to increase the specificity of network-based biomarkers (van den Heuvel and Sporns 2019). To this end, multilayer network science appears particularly appropriate and has been recently used to characterize and diagnose brain diseases.

A. Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common form of dementia. Clinically, it is characterized by mild memory impairments that gradually evolve up to severe cognitive impairments and eventually to death. In 2016, people affected by AD and other dementias were around 44 millions worldwide and this incidence is likely to augment because of longer life expectancy (Nichols et al. 2019). At cellular level, AD is characterized by the progressive accumulation of τ-tangles and β-amyloid plaques that cause neurons and
FIG. 11. Multifrequency and temporal reorganization of brain networks in Alzheimer’s disease. Panel a) Multiplex brain networks are constructed by layering different frequency-specific networks, while temporal networks were constructed by concatenating time-specific networks within frequency bands. Panel b) Top: hub disruption of MEG multifrequency networks in patients with Alzheimer’s disease. Each point correspond to a different brain area; k = slope of the regressing line. Bottom: Brain regions with significant between-group difference in overlapping weighted degree. PCUN.R = right precuneus; HIP.L = left hippocampus; IPL.R = right inferior parietal, but supramarginal and angular gyri; SPG.R = right superior parietal gyrus; MOG.L = left middle occipital gyrus; SOG.L = left superior occipital gyrus; IOG.L = left inferior occipital gyrus. Panel c) Scatter plot showing the Mahalanobis distance of each subject from AD or control group when combining of multiplex clustering coefficient (MCC) and participation coefficient (MPC) extracted from time-varying networks (gray line indicates equal distance). Of note, these losses of functional hubs could not be observed when looking at individual frequency layers. Such multilayer hub disruptions correlated with the accumulation of β-amyloid plaques in the cerebrospinal fluid, but also with the cognitive impairment of patients, demonstrating a potential clinical relevance. By using the multiplex participation coefficient (Eq. 4), results indicated that most vulnerable hub regions in patients with AD also lost their ability to foster communication across frequencies compared to healthy control subjects. Similiar results were obtained independently by [Guillon et al., 2017], showing a significant loss of multifrequency hubs in DMN regions and a strong association with memory impairment. By using a classification analysis, they eventually showed that integrating multiparticipation coefficient values with equivalent single-layer network metrics leads to improved distinguishability of AD and healthy controls.

synapses to die, thus leading to brain atrophy and disordered dysconnection patterns.

While the consequences of these changes on large-scale brain networks have been widely investigated, the accumulated results are often discordant and depend on the considered spatial or temporal scale [Gaubert et al., 2019; Tijms et al., 2013]. Multilayer networks represent an interesting approach to get an integrated, potentially more informative picture of the disease.

Multiplex networks have been used to provide a unified description of AD brain reorganization across multiple MEG frequency bands (Fig. 11a). Yu et al. (2017a) used different multiplex nodal metrics (e.g., overlapping clustering, local-efficiency and betweenness centrality) and consistently showed that physiological multiplex hub regions, including posterior parts of the DMN, were severely impacted by AD (Fig. 11b).
subjects. These results suggested that AD hindered the information load from flowing through different frequency bands which ultimately impairs the relevant cognitive abilities (e.g., memory retrieval).

Cai et al. (2020), addressed similar questions in EEG multifrequency brain networks. They showed that both multiplex clustering and multiparticipation coefficients presented significant decrements with respect to healthy controls in the posterior areas of the brain. These results confirmed a general tendency in AD patients to loose segregation and integration of information across signal frequencies. Yet, few observed increases in frontal areas suggested the presence of some compensatory mechanisms to be further elucidated (Guillon et al., 2019). In the same study, Authors also investigated the dynamic aspects of EEG brain networks in AD from a purely temporal perspective (Fig. 11a). By using the aforementioned multilayer metrics, they showed that AD temporal segregation was mostly impacted by AD in frontal and occipital areas, while temporal integration properties were less affected as compared to healthy subjects, mainly because of its higher variability across nodes. However, when combined together, nodal values of temporal segregation and integration led to a very high discrimination between AD affected as compared to healthy subjects, mainly because of its higher variability across nodes. Moreover, when combined together, nodal values of temporal segregation and integration led to a very high discrimination between AD and healthy subjects (> 90% accuracy), suggesting that spatial heterogeneity of temporal integration may also be related to progression of the disease (Fig. 11b).

To integrate and disentangle the role of different neuroimaging modalities in AD, Guillon et al. (2019) built multiplex networks composed of different connectivity types derived from DWI, fMRI and MEG data. This represents so far the most complete type of multiplex brain network merging together structural and functional information (Fig. 12a). By focusing on the mesoscale properties, Authors showed a selective reduction of multiplex coreness in the AD population, mainly involving temporal and parietal hub nodes of the DMN that are typically impacted by the anatomical atrophy and β-amyloid plaque deposition (Chételat et al., 2010). Such significant loss was mainly driven by few layers notably DWI, fMRI and MEG in the alpha1 (7 – 10 Hz) frequency range, and could be explained by a simple model reproducing the progressive random disconnection of the multilayer network via the preferential attacks of its core hubs (Fig. 12b). From a clinical perspective, Authors eventually reported that patients with larger coreness disruption tended to have more severe memory and cognitive impairments, in line with the general tendency observed in other previously described studies (Yu et al., 2017a) (Fig. 12c).

Taken together, these results suggest that AD is characterized by a multimodal and temporal dysconnection syndrome that primarily affects regions impacted by the atrophy process. Future research will be crucial to elucidate whether such a disruption tendency is compensated by other multilayer mechanisms, possibly involving more intact cortical systems, e.g., sensory motor (Albers et al., 2015; Guillon et al., 2019; Kubicki et al., 2016).

B. Neuropsychiatric disorders

Among neuropsychiatric disorders, schizophrenia is certainly one of the most studied ones due to its large population incidence. In 2017, over 20 millions people suffered from schizophrenia worldwide (James et al., 2018). Typical clinical symptoms include hallucinations, emotional blunting and disorganized speech and thoughts. The biological causes of schizophrenia are still poorly understood and many hypotheses are currently being investigated based for example on neurotransmitter dysregulation (Lang et al., 2007), myelin reduction (Cassoli et al., 2015) as well as oxidative stress (Steullet et al., 2016). At large spatial scales, low and high frequency neuronal oscillations, as well as their interactions, have been widely documented as a core feature of the neuropathology underlying schizophrenia (Moran and Hong, 2011). Functional connectivity changes, within and between frequency bands, have been reported in...
schizophrenic patients (Siebenhühner et al. 2013) and associated with persistent symptoms leading to disorganization of visuomotor mental functions (Brookes et al. 2016).

By using a multiplex approach, De Domenico et al. (2016) provided a first integrated characterization of the topological changes in schizophrenia from resting state fMRI-derived multifrequency networks. In particular, they evaluated the multiplex PageRank centrality (cf. Sec. 7) and showed a substantial reorganization of the most important multifrequency hubs of the brain, such as the precuneus cortex, a key region for the basic physiological brain organization (van den Heuvel and Sporns 2013). When injected into a random forest classifier, multiplex PageRank centrality metrics led to a classification accuracy of 80%, which is higher than standard network approaches, but comparable with otherwise much more sophisticated machine learning techniques. At cellular levels, schizophrenia has been hypothesized to result from excitatory-inhibitory neuronal dysfunction, with a consequent abnormal temporal coordination between large-scale macro areas of the cerebral cortex (Uhlhaas 2013 Uhlhaas and Singer 2010). By investigating temporal fMRI networks, Braun et al. (2016), showed that schizophrenic patients exhibited a multiplex network flexibility increase with respect to healthy subjects during a working memory task, typically used to assess the neural basis of cognitive deficits (Meyer-Lindenberg et al. 2001, 2005) (Fig. 13a). Interestingly, Authors were able to reproduce the same hyperflexibility when experimentally blocking the glutamate sensible synaptic receptors (NMDA receptors) in a separate group of healthy subjects (Fig. 13b). These results were further confirmed in a subsequent work, which localized such network hyperflexibility in specific brain zones including cerebellum, thalamus and frontoparietal task-related areas (Gifford et al. 2020). Altogether these findings indicated that microscale excitatory-inhibitory unbalances in schizophrenia might translate into temporally less stable and possibly disintegrated (rather than overly rigid) large-scale brain reorganization.

From a pure classification perspective multilayer brain networks have been also used as a multimodal network to better discriminate between schizophrenic and healthy subjects. Lombardi et al. (2016) considered a working memory fMRI experiment and built a 17-layers multiplex brain network where each layer contained a different type of nonlinear functional connectivity. For each layer they extracted standard nodal centrality metrics (i.e., strength, betweenness, clustering, and PageRank) and used them as classification features. Compared to a single-layer networks, built from simple linear correlations, they achieved a significantly higher classification (≈ 90% vs. ≈ 70%) for different types of working memory tasks. Following the same goal, Wilson et al. (2020) considered resting state fMRI data over a group of healthy individuals and a group of patients with schizophrenia. Originally, they built for the two groups a multiplex brain network, where each layer represents the functional network of a specific individual. By extending the popular node2vec unsupervised network embedding procedure (Grover and Leskovec 2016), they learned continuous node feature representations from multilayer networks based on random walkers which are allowed to move across layers. The resulting embeddings revealed a higher variability for the similarity between the nodes in the default mode network and salience subnetwork, suggesting a less stable within-module brain organization in the schizophrenic group. While the overall classification accuracy did not outperform state-of-the-art performance, learning the features in an unsupervised approach might be nevertheless important for future applications in automatic diagnosis.

Major depressive disorder (MDD) is clinically characterized by severe fatigue, aphasia, difficulty to focus and suicidal thoughts in extreme cases. Symptoms are diverse and their severity largely differs among patients. Since effective treatments are currently available, scientific research mostly focuses on identifying predictive biomarkers to enable a more personalized therapeutics. Previous
studies suggested that MDD leads to several brain signal alterations affecting functional connectivity within but also between different frequency bands \cite{Nugent et al. 2020, Tian et al. 2019}. To fully exploit this multifrequency information, \cite{Dang et al. 2020} proposed a full multilayer approach to improve the diagnosis of MDD. Specifically, they developed a convolutional neural network that directly takes as input the full multilayer brain networks to learn and extract the most discriminant features. The resulting classification accuracy ($\approx 97\%$) was comparable to state-of-the-art methods based on specific frequency bands. While promising, these findings suggested that machine learning algorithms for multilayer brain networks still remain to be finetuned in view of their concrete implication in the identification of the best intervention strategy to cure or alleviate MDD-related symptoms.

C. Other neurological diseases

Epilepsy is a group of neurological disorders characterized by seizures, which may vary in time and intensity, from short mild awareness loss to long vigorous convulsions. Epileptic seizures are underlaid by excessive synchronized neuronal activity in the entire cerebral cortex or in parts of it. In 2017, about 27 millions people suffered from epilepsy \cite{James et al. 2018} among which 30\% are not curable with drug treatments \cite{Kwan and Brodie 2000}. Clinical research mostly aims at identifying predictive neural markers of the seizures to allow preventive treatments or to localize the origin of the seizure to inform precise surgery \cite{Engel Jr. et al. 2013}.

Recent evidence has showed that epilepsy seizures are characterized by brain functional connectivity changes within, but also between, different brain signal frequencies \cite{Jacobs et al. 2018, Samice et al. 2018, Villa and Tetko 2010}. From a topological perspective, decrements of network efficiency have been reported between low-high frequency bands, before the seizure onset, and were associated to sensorial disturbance and mild loss of consciousness \cite{Yu et al. 2020}.

The intrinsic relationship between structural and functional layers can also unveil hidden connectivity structures characterizing different types of epilepsy. In this direction, \cite{Huang et al. 2020} used a DTI-fMRI multiplex approach to classify between epileptic seizures originating in different zones of the brain, namely the frontal and temporal lobe. In particular, Authors extended the concept of multiplex motifs to include subgraphs with more than 3 nodes (cf.Sec III.B). The most frequent multiplex patterns consisted of edges from both structural and functional layers that were spatially localized. Notably, the structural components were quite stable across conditions and involved regions belonging to the DMN system (i.e., cuneus, precuneus, and peripheral cortex) \cite{Horn et al. 2014}. Instead, the functional counterparts of the multiplex patterns, were highly variable and mostly involved regions concentrated in the respective epileptogenic zones, i.e. temporal and frontal lobes. Eventually, Authors demonstrated the superiority of these multiplex connectivity patterns to discriminate between epileptic patients and healthy controls (72-82\% classification accuracy), as compared to equivalent single-layer metrics or different multiplex metrics such as multiplex PageRank or algebraic connectivity (cf.Sec III.B). These results are in line with the one-to-many relationships between structural and functional brain networks \cite{Park and Friston 2013}, and can be used to finetune the research of predictive biomarkers in epilepsy.

Consciousness disorders regroup a variety of symptoms which go from complete loss of awareness and wakefulness, such as coma, to minimal or inconsistent awareness \cite{Giacino et al. 2014}. The differential diagnosis between the different types of disorders of consciousness is paramount to identify the best medical therapeutics. Recent results suggest that frequency-dependent functional brain connectivity is crucial to characterize impairments of consciousness, as well as to predict possible recovery processes \cite{Cacciola et al. 2019, Chenmu et al. 2014, Corazzol et al. 2017}. In an effort to provide a unified picture on the role of brain connectivity within and between frequency bands, \cite{Naro et al. 2020} adopted a multilayer network approach. By investigating brain networks derived from source-reconstructed EEG signals, Authors aimed to distinguish between patients suffering from unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), which often present similar symptoms \cite{Stender et al. 2014}. Results showed that several nodal multiplex metrics, including overlapping clustering, betweenness and multiplex participation coefficient, were significantly lower in UWS as compared to MCS patients. This was particularly evident in the frontoparietal regions of the brain whose relative loss of multiplex centrality is associated with the behavioral responsiveness of the patients quantified by the coma recovery scale \cite{Giacino et al. 2004}. By adopting a full multilayer network approach, Authors eventually reported a significantly lower interlayer connection intensity in the UWS group and could spot out those patients who regained consciousness one year after the experiment. Notably, the discrimination between UWS and MCS patients was not observed when looking separately at frequency-specific network layers. Although very preliminary, these results demonstrated the clinical value of considering multiplex/multilayer network approaches to derive more reliable neuromarkers of consciousness disorders.
VII. EMERGING PERSPECTIVES

In the previous sections, we provided useful conceptual insights and topological descriptions that quantify organizational properties of multilayer brain networks. Research in the field is very active and many issues remain to be addressed in the future for ultimately characterizing multiscale brain organization. We then close this Colloquium by briefly focusing on three broad directions of advances in multilayer network theory that we believe particularly relevant for addressing this gap.

A. Generative models of multiscale networks

Generative models for brain networks allow to move from descriptive top-down approaches to mechanistic bottom-up ones [Betzel and Bassett, 2017a]. These models usually define a set of local connection rules (e.g., probabilistic rewiring or preferential attachment), to grow synthetic networks with specific global properties (e.g., small-worldness or scale-free degree distribution). Network models in neuroscience have been mostly driven by biological and topological evidences or hypotheses [Betzel et al., 2016; Vertes et al., 2012].

Biologically inspired models mainly implemented minimal wiring cost principles [Bullmore and Sporns, 2012] and have been used to reproduce rich-club organization of brain networks [Vertes et al., 2014], characterize the phase transition of axonal growth [Nicosia et al., 2013], as well as to determine genetic risk factors of schizophrenia [Zhang et al., 2021a]. Topologically inspired models focused instead on reproducing the organizational properties of brain networks and have been adopted to identify the local connection mechanisms of network integration and segregation [Obando and De Vico Fallani, 2017b; Simpson et al., 2012; Sinke et al., 2016], or to reproduce the mesoscale modular properties of brain networks [Betzel et al., 2018].

The development of multilayer network models appears therefore a crucial step towards the multiscale modeling of the brain from a network perspective. On one hand, experimental technology is increasingly providing fresh data on different levels of neuronal interactions (e.g., calcium dynamics [Ahrens et al., 2013], spiking activity [Jun et al., 2017] and vascular support [Kirst et al., 2020; Macé et al., 2011]) and might offer precious spatiotemporal insights to test biologically-plausible multilayer connection criteria. On the other hand, we are currently witnessing a research thrust in the mathematical formalization of generative multilayer network models, mostly inspired by topological criteria.

For example, Bazzi et al. [2019] recently proposed a unifying probabilistic framework to generate multiplex networks with any type of modular structure, that explicitly incorporates a user-specified tunable dependency between layers. These models might be useful to better quantify and understand the generation of mesoscale properties in multimodal and temporal brain networks. Based on the extension of stochastic block models (SBM) [Peixoto, 2014], where nodes connect to each other with probabilities that depend on their group memberships, Valles-Catala et al. [2016] proposed an original approach to derive the most probable multiplex modular network associated with any observed single layer network. This framework looks particularly appealing for multiscale modeling as it might be used to identify the mesoscale inner workings of connectivity aggregation across different layers. Finally, multilevel exponential random graph models (ERGM) potentially represent the most powerful framework due to their ability to characterize arbitrary connection patterns forming within and between layers, and to reproduce full multilayer networks [Wang et al., 2013].

This decade will be crucial to elucidate how multilevel biological knowledge and multilayer network tools can be merged to establish a new generation of network-based multiscale models of brain organization.

B. Controllability of multilayer networks

Understanding a complex system means being able to describe it, reproduce it and ultimately control it [Liu and Barabási, 2016]. In the last decade, the development of network control theory applied to brain connectivity has led to a paradigm shift, offering new tools to understand how the brain control itself and how it can be controlled by exogenous events [Tang and Bassett, 2018].

Although still debated in the way it should be implemented and interpreted [Papo and Buldù, 2019; Tu et al., 2018], network controllability has allowed to identify the driver nodes that are more likely to steer the activity of human brain networks, opening huge possibilities for cognitive and clinical neuroscience, for example, via brain stimulation technology [Khambhati et al., 2016; Muldoon et al., 2016; Tang and Bassett, 2018]. More recently, a network control framework has been also used to determine the role of each C. Elegans neuron in locomotor behavior, that was confirmed by a-posteriori laser ablations [Yan et al., 2017]. While the development of network controllability for single-layer systems is in its adolescence, its extension to multilevel systems is however still in its infancy.

The application to temporal networks is perhaps the most intuitive extension of structural controllability. By considering discrete time-varying linear dynamics of the system, Pósfai and Hövel [2014], provided computational tools to study controllability based on temporal network characteristics. They specifically investigated the ability of single driver nodes to control a target and showed that the overall activity and the node degree distribution of
the temporal network are the main features influencing controllability. Although it might seem that static links would make it easier to control a system, Li et al. (2017) demonstrated that temporal networks can be controlled more efficiently and require less energy than their static single-layer counterparts. By using higher-order network models, Zhang et al. (2021b) also showed that the chronological ordering of interactions has a strong influence on the time needed to fully control the network.

Determining the energy needed by the driver nodes to steer the system is also crucial. Excessively energetic control signals could be for example impossible to produce or could merely damage the system itself. In the case of full multilayer networks, Wang and Zou (2017) demonstrated that there exists a tradeoff between the optimal controllability and optimal control energy that depends on the configuration and intensity of the interlayer connection patterns. In a separate study, Menichetti et al. (2016) showed that controlling multiplex networks is more costly than controlling single layers taken in isolation, and that multiplex networks can exhibit stable controllability regardless of the stability of its layers. They also reported that multiplex networks need in general more drivers and that this number depends on the degree correlations between low-degree nodes in the different layers.

Collectively, these findings encourage the development and application of controllability tools for multilayer networks with the goal of better understanding multiscale brain networks and improving the efficacy of possible intervention strategies.

C. Machine learning and multilayer networks

Network science is a successful approach to analyze and model complex systems and uncover mechanisms that explain the emergence of functions. However, network theory alone often fails to efficiently manipulate large datasets as well as different levels of resolution. More importantly, it focuses on specific hand-crafted topological features, and ignores less intuitive but possibly existing representative patterns, such as higher-order network interactions (Battiston et al. 2020).

In this regard, machine learning represents a powerful technique to handle big amount of data and learn from the data itself the hidden patterns associated with the intrinsic phenomena of the system (Bishop 2006). As a counterpart, machine learning ignores the fundamental laws of physics and can result in ill-posed problems or non-interpretable solutions. The combination of machine learning and network science represents therefore a potential win-win strategy to address the above mentioned limitations, as recently demonstrated by a number of theoretical works and applications (Muscoloni et al. 2017; Zanin et al. 2016). Nonetheless, when it comes to multiscale modeling, the type of algorithms must be rethought and extended to take into account the multilayer nature of the system, properly integrate the within- and between-layer concepts and explore the massive feature spaces (Alber et al. 2019; De Domenico et al. 2015a).

Based on a specific class of deep learning algorithms, Dang et al. (2020) developed a convolutional neural network that directly takes as input a full EEG multichannel network to learn and extract the most discriminative features. The core of their algorithm consisted of three consecutive convolutional layers, one batch normalization (BN) layer and one pooling layer. Such combination of basic hidden layers could effectively avoid overfitting and speed up the model training. Eventually, all learned features were concatenated together for classifying between healthy and major depressive diseased subjects.

Machine learning can be optimized to operate feature engineering and embed the original multilayer network into a low-dimensional space so as to allow a minimal representation of the main intrinsic properties of the system. Based on the popular node2vec algorithm (Grover and Leskovec 2016), Wilson et al. (2020) introduced a fast and scalable extension, called multi-node2vec, that learns the nodal features from complex multilayer networks through the Skip-gram neural network model (Fig. 14). Put simply, multi-node2vec is based on a random walker which has also the possibility of moving from one layer to another. Applied to fMRI multisubject networks, Authors showed that it improves the visualization and clustering of brain regions into communities of similar features and discriminates between schizophrenic and healthy groups of subjects.

More in general, the community detection task of partitioning the nodes of a multilayer network into densely connected subgroups, or communities, can be also viewed as a particular multilayer embedding. The development of multilayer community detection methods is still in its early stages, but several useful techniques have been developed over the past decade (De Domenico et al. 2015a; Mucha et al. 2010; Stanley et al. 2016; Wilson et al. 2017).

VIII. CONCLUSION

Understanding brain organization ultimately requires quantifying the interactions within and between multiple levels of neural structure and dynamics. In the last decade, multilayer network theory has been introduced to characterize complex systems exhibiting different levels, or layers, of connectivity as well as cross-level interactions. Here, we have presented and discussed many new developments in the field of multilayer network theory for the study of multiscale brain organization. We anticipate that in conjunction with more accurate experimental technologies and increasing computational power, mul-
FIG. 14. Illustration of the multi-node2vec algorithm. Beginning with a multilayer network (left), one first identifies a collection of multilayer neighborhoods (Bag of Nodes) via the NeighborhoodSearch procedure. Next, the Optimization procedure calculates the maximum likelihood estimator \(F \) through the use of the Skip-Gram neural network model (right) on the identified Bag of Nodes Picture and caption adapted from Wilson et al. (2020), reproduced with permission.

tilayer network theory can eventually become a key component of modern multiscale brain modeling. Through this Colloquium, we hope to have provided fresh elements to stimulate new ideas in scientists and practitioners wishing to advance multiscale brain modeling, which has important implications for the bettering of our health and cognitive function.

IX. ACKNOWLEDGEMENT

We would like to thank Mario Chavez for useful suggestions and discussion on the initial version of this Colloquium and Thibault Rolland for the graphical illustration preparation. FDVF and CP acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 864729). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

Abbott, L F, and Sacha B. Nelson (2000), "Synaptic plasticity: taming the beast," [Nature Neuroscience 3 (11), 1178–1183].

Achard, Sophie, Danielle S. Bassett, Andreas Meyer-Lindenberg, and Ed Bullmore (2008), "Fractal connectivity of long-memory networks," [Phys. Rev. E 77, 036104].

Ahrens, Misha B, Michael B Orger, Drew N Robson, Jennifer M Li, and Philipp J Keller (2013), "Whole-brain functional imaging at cellular resolution using light-sheet microscopy," [Nature Methods 10 (5), 413–420].

Al-Sharoa, Esraa, Mahmoud Al-Khassaweneh, and Selin Aviyente (2019), “Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI,” [IEEE transactions on bio-medical engineering 66 (3), 695–709].

Alber, Mark, Adrian Buganza Tepole, William R. Cannon, Suvranu De, Salvador Dura-Bernal, Krishna Garikipati, George Karniadakis, William W. Lytton, Paris Perdikaris, Linda Petzold, and Ellen Kuhl (2019), “Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences,” [npj Digital Medicine 2 (1), 115].

Albers, Mark W, Grover C Gilmore, Jeffrey Kaye, Claire Murphy, Arthur Wingfield, David A Bennett, Adam L Boxer, Aron S Buchman, Karen J Cruickshanks, Davauge P Devanand, Charles J Duffy, Christine M Gall, George A Gates, Ann-Charlotte Granholm, Takao Hensch, Roe Holzer, Bradley T Hyman, Frank R Lin, Ann C McKee, John C Morris, Ronald C Petersen, Lisa C Silbert, Robert G Struble, John Q Trojanowski, Joe Vergeese, Donald A Wilson, Shunbin Xu, and Li I Zhang (2015), “At the interface of sensory and motor dysfunctions and Alzheimer’s disease,” [Alzheimer’s & dementia : the journal of the Alzheimer’s Association 11 (1), 70–98, edition: 2014/07/09].

Amigó, José M, Peter E. Kloeden, and Ángel Giménez (2013), “Entropy increase in switching systems,” [Entropy 15 (6), 2363–2383].

Aru, Juhan, Jaan Aru, Viola Priesemann, Michael Wibral, Luiz Lana, Gordon Pippa, Wolf Singer, and Raul Vicente (2015), “Untangling cross-frequency coupling in neuroscience,” [Current Opinion in Neurobiology 31, 51–61 s1: Brain rhythms and dynamic coordination].

Ashourvan, Arian, Qawi K. Telesford, Timothy Verstynen, Jean M. Vettel, and Danielle S. Bassett (2019), “Multiscale detection of hierarchical community architecture in structural and functional brain networks,” [PLOS ONE 14 (5), e0215520 publisher: Public Library of Science].

Avena-Koenigsberger, Andrea, Bratislav Misić, and Olaf Sporns (2018), “Communication dynamics in complex
brain networks,” Nature Reviews Neuroscience 19 (1), 17–23.
Baillet, S, J.C. Mosher, and R.M. Leahy (2001), “Electromagnetic brain mapping,” IEEE Signal Processing Magazine 18 (6), 14–30.
Barak, Omri, and Misha Tsodyks (2014), “Working models of working memory,” Current Opinion in Neurobiology 25, 20–24.
Bassett, D S, N. F. Wymbs, M. A. Porter, F. J. Mucha, J. M. Carlson, and S. T. Grafton (2011), “Dynamic reconfiguration of human brain networks during learning,” Proceedings of the National Academy of Sciences 108 (18), 7641–7646.
Bassett, Danielle S, and Edward T. Bullmore (2017), “Small-world brain networks revisited,” The Neuroscientist 23 (5), 499–516, pMID: 27055008.
Battiston, Federico, Giulia Cencetti, Iacopo Iacoboni, Vito Latora, Maxime Lucas, Alice Patania, Jean-Gabriel Young, and Giovanni Petri (2020), “Networks beyond pairwise interactions: Structure and dynamics,” Physics Reports 874, 1–92, networks beyond pairwise interactions: Structure and dynamics.
Battiston, Federico, Jeremy Guillon, Mario Chavez, Vito Latora, and Fabrizio De Vico Fallani (2018), “Multiplex core-periphery organization of the human connectome,” Journal of The Royal Society Interface 15 (146), 20180514.
Battiston, Federico, Vincenzo Nicosia, Mario Chavez, and Vito Latora (2017), “Multiplex motif analysis of brain networks,” Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (4), 047404.
Battiston, Federico, Vincenzo Nicosia, and Vito Latora (2014), “Structural measures for multiplex networks,” Physical Review E 89 (3), 032804, arXiv: 1308.3182.
Bazinet, Vincent, Reinder Vos de Wael, Patric Hagmann, Boris C. Bernhardt, and Bratislav Misić (2021), “Multiscale communication in cortico-cortical networks,” Neurorimage 243, 118546.
Bazzi, Marya, Lucas G. S. Jeub, Alex Arenas, Sam D. Howison, and Mason A. Porter (2019), “A Framework for the Construction of Generative Models for Mesoscale Structure in Multilayer Networks,” arXiv:1608.06196 [cond-mat, physics:nlin, physics:physics, stat], 10.1103/PhysRevResearch.2.023100, arXiv: 1608.06196.
Bentley, Barry, Robyn Brickney, Christopher L. Barnes, Yee Lian Chew, Evvian Yemini, Edward T. Bullmore, Petra E. Vértes, and William R. Schafer (2016), “The Multilayer Connectome of Caenorhabditis elegans,” PLOS Computational Biology 12 (12), e1005283.
Betzel, Richard F, Andrea Avena-Koenigsberger, Joaquín Goñi, Ye He, Marcel A. de Reus, Alessandra Griffa, Petra E. Vértes, Bratislav Mišić, Jean-Philippe Thiran, Patric Hagmann, Martijn van den Heuvel, Xi-Nian Zuo, Edward T. Bullmore, and Olaf Sporns (2016), “Generative models of the human connectome,” NeuroImage 124 (Pt 1), 1054–1064.
Betzel, Richard F., and Danielle S. Bassett (2017a), “Generative models for network neuroscience: prospects and promise,” Journal of the Royal Society, Interface 14 (136), 10.1098/rsif.2017.0623.
Betzel, Richard F. and Danielle S. Bassett (2017b), “Multiscale brain networks,” NeuroImage 160, 73–83, functional Architecture of the Brain.
Betzel, Richard F, John D. Medaglia, and Danielle S. Bassett (2018), “Diversity of meso-scale architecture in human and non-human connectomes,” Nature Communications 9 (1), 346.
Betzel, Richard F, Theodore D. Satterthwaite, Joshua I. Gold, and Danielle S. Bassett (2017), “Positive affect, surprise, and fatigue are correlates of network flexibility,” Scientific Reports 7 (1), 520.
Bhattacharya, Basabdatta Sen, Damien Coyle, and Liam P. Maguire (2011), “A thalamo-cortico-thalamic neural mass model to study alpha rhythms in Alzheimer’s disease,” Neural Networks 24 (6), 631–645, special Issue: Neurocomputational Models of Brain Disorders.
Bianconi, Ginestra (2018), Multilayer networks: structure and function, first edition ed. (Oxford University Press, Oxford) eCILC: 1045077621.
Bishop, Christopher M (2006), Pattern recognition and machine learning (Springer).
Blondel, Vincent D, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre (2008), “Fast unfolding of communities in large networks,” Journal of Statistical Mechanics: Theory and Experiment 2008 (10), P10008.
Boccaletti, S, Giancarlo Bianconi, R. Criado, C. I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, and M. Zanin (2014), “The structure and dynamics of multilayer networks,” Physics Reports 544 (1), 1–122, arXiv: 1407.0742.
Bonjean, Maxime, Tanya Baker, Maxim Bazhenov, Sydney Cash, Eric Halgren, and Terrence Sejnowski (2012), “Interactions between core and matrix thalamocortical projections in human sleep spindle synchronization,” Journal of Neuroscience 32 (15), 5250–5263.
Borgatti, Stephen P. and Martin G Everett (2000), “Models of core/periphery structures,” Social Networks 21 (4), 375–395.
Braun, Urs, Axel Schäfer, Daniëlle S. Bassett, Franziska Rausch, Janina I. Schweiger, Edda Bilek, Susanne Erk, Nina Romanczuk-Seiferth, Oliver Grimm, Lena S. Geiger, Leila Haddad, Kristina Otto, Sebastian Mohlke, Andreas Heinz, Mathias Zink, Henrik Walter, Emanuel Schwarz, Andreas Meyer-Lindenten, and Heike Tost (2016), “Dynamic brain network reconfiguration as a potential schizophrenia genetic risk mechanism modulated by NMDA receptor function,” Proceedings of the National Academy of Sciences 113 (44), 12568–12573.
Braun, Urs, Axel Schäfer, Henrik Walter, Susanne Erk, Nina Romanczuk-Seiferth, Leila Haddad, Janina I. Schweiger, Oliver Grimm, Andreas Heinz, Heike Tost, Andreas Meyer-Lindenten, and Danielle S. Bassett (2015), “Dynamic reconfiguration of frontal brain networks during executive cognition in humans,” Proceedings of the National Academy of Sciences 112 (37), 11678–11683.
Breakspear, Michael (2017), “Dynamic models of large-scale brain activity,” Nature Neuroscience 20 (3), 340–352.
Breakspear, Michael, and Cornelis J Stam (2005), “Dynamics of a neural system with a multiscale architecture,” Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1457), 1051–1074. publisher: Royal Society.
Brint, Sergey, and Lawrence Page (1998), “The anatomy of a large-scale hypertextual web search engine,” Computer Networks and ISDN Systems 30 (1), 107–117, proceedings of the Seventh International World Wide Web Conference.
Brookes, Matthew J, Prejaas K. Tewarie, Benjamin A. Hsin, Ewan Robson, Lauren E. Gascoyne, Elizabeth B. Liddle, Peter F. Liddle, and Peter G. Morris (2016), “A multi-layer network approach to MEG connectivity analy-
Fornito, Alex, Andrew Zalesky, and Michael Breakspear (2014), “Graph analysis of functional brain networks: practical issues in translational neuroscience,” *Philosophical Transactions of the Royal Society B: Biological Sciences* **369**(1653), 20130521.

FitzHugh, Richard (1961), “Impulses and physiological states of nerve membranes,” *Biophysical Journal* **1**(6), 445–466.

Fornito, Alex (2021), “Genetic Influences on Brain Network Hubs,” *Biological Psychiatry* **89**(9), S22; publisher: Elsevier.

Fornito, Alex, Andrew Zalesky, and Michael Breakspear (2015), “The connectomics of brain disorders,” *Nature Reviews Neuroscience* **16**(3), 159–172.

Fortunato, Santo (2010), “Community detection in graphs,” *Physics Reports* **486**(3), 75–174.

Fouad, Anthony D, Shelly Teng, Julian R Mark, Alice Liu, Pilar Alvarez-Illera, Hongfei Ji, Angelica Du, Priya D Bhirgoo, Eli Cornblath, Shihi Asuka Guan, and Christopher Fang-Yen (2018), “Distributed rhythm generators underlie *Caenorhabditis elegans* forward locomotion,” *eLife* **7**, e29913.

Freeman, J Walter (1975), *Mass action in the nervous system* (Academic Press, Inc.).

Freeman, Linton C (1977), “A set of measures of centrality based on betweenness,” *Sociometry* **40**(1), 35–41.

Friston, Karl J (2011), “Functional and effective connectivity: A review,” *Brain Connectivity* **1**(1), 13–36.

Gao, Jianxi, Sergey V. Buldyrev, H. Eugene Stanley, and Shlomo Havlin (2012), “Networks formed from interdependent networks,” *Nature Physics* **8**(1), 40–48.

Garcés, Pilar, Ernesto Pereda, Juan A. Hernández-Tamames, Del-Pozo Francisco, Fernando Maestú, and José Ángel Pineda-Pardo (2016), “Multimodal description of whole brain connectivity: A comparison of resting state meg, fmri, and dwi,” *Human Brain Mapping* **37**(1), 20–34.

Gaubert, Sinead, Federico Raimondo, Marion Houot, Marie-Constance Corsi, Lionel Naccache, Jacobo Diego Sitt, Bertrand Herrmann, Delphine Oudiette, Geoffroy Gagliardi, Marie-Odile Habert, Bruno Dubois, Fabrizio De Vico Fallani, Hovagim Bakardjian, Stéphane Epelbaum, and Alzheimer’s Disease Neuroimaging Initiative (2019), “EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease,” *Brain* **142**(7), 2096–2112.

Gerstner, Wulfram, Henning Spreker, and Gustavo Deco (2012), “Theory and Simulation in Neuroscience,” *Science* **338**(6103), 60–65; publisher: American Association for the Advancement of Science Section: Review.

Ghosh, Anandamohan, Y. Rho, A. R. McIntosh, R. Köttér, and V. K. Jirs (2008), “Noise during rest enables the exploration of the brain’s dynamic repertoire,” *PLOS Computational Biology* **4**(8), 1–35.

Giaccio, Joseph T, Joseph J. Fins, Steven Laureys, and Nicholas D. Schiff (2014), “Disorders of consciousness after acquired brain injury: the state of the science.” *Nature Reviews Neurology* **10**(2), 99–114.

Giacino, Joseph T, Kathleen Kalmar, and John Whyte (2004), “The jfk coma recovery scale-revised: Measurement characteristics and diagnostic utility,” *Archives of Physical Medicine and Rehabilitation* **85**(12), 2020–2029.

Gifford, George, Nicolas Crossley, Matthew J Kempton, Sarah Morgan, Paola Dazzan, Jonathan Young, and Philip McGuire (2020), “Resting state fMRI based multilayer network configuration in patients with schizophrenia,” *NeuroImage* **255**, 102169.

Gjorgjieva, Julijana, David Biron, and Gal Haspel (2014), “Neurobiology of Caenorhabditis elegans Locomotion: Where Do We Stand?” *BioScience* **64**(6), 476–486.

Golub, GH, and C.F. Van Loan (2012), *Matrix Computations*, 4th ed. (The Johns Hopkins University Press).

Gómez, S, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and A. Arenas (2013), “Diffusion dynamics on multiplex networks,” *Phys. Rev. Lett.* **110**, 028701.

Gonzalez-Astudillo, Juliana, Tiziana Cattai, Giulia Bassignana, Marie-Constance Corsi, and Fabrizio De Vico Fallani (2021), “Network-based brain–computer interfaces: princi-
Grebbe, Roberta, Tracey Cassar, Joseph Muscat, Kenneth P. Camilleri, Simon G. Fabri, Michalis Zervakis, Petros Xanthopoulos, Vangelis Sakkalis, and Bart Vanrumste (2008), “Review on solving the inverse problem in EEG source analysis,” Journal of NeuroEngineering and Rehabilitation 5 (1), 25.

Grover, Aditya, and Jure Leskovec (2016), “Node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (Association for Computing Machinery) p. 855–864.

Guillon, J. Y., Attal, O. Colliot, V. La Corte, B. Dubois, D. Schwartz, M. Chavez, and F. De Vico Fallani (2017), “Loss of brain inter-frequency hubs in Alzheimer’s disease,” Scientific Reports 7 (1), 10879.

Guillon, Jeremy, Mario Chavez, Federico Battiston, Yohan Grover, Aditya, and Jure Leskovec (2016), “Node2vec: Scalable feature learning for networks,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (Association for Computing Machinery) p. 855–864.

Hadrich, Abir, Laurent Pezard, Jean-Louis Nandrino, Hamadi Gharibi, Abdennaceur Kachouri, and Viktor K. Jirsa (2013), “Mapping the dynamic repertoire of the resting brain,” NeuroImage 78, 448–462.

Hagmann, Patric, Leela Cammoun, Xavier Gigandet, Reto Meuli, Christopher J. Honey, Van J Wedeen, and Olaf Sporns (2008), “Mapping the structural core of human cerebral cortex,” PLOS Biology 6 (7), 1–15.

Hallett, Mark, Willem de Haan, Gustavo Deco, Reinhard Dengler, Riccardo Di Iorio, Cecile Gallea, Christian Gerloff, Christian Greffes, Rick C. Helmich, Morten L. Kringleb, Francesca Miraglia, Ivan Rektor, Ondrej Stryczek, Fabrizio Vecchio, Lukas J. Volz, Tao Wu, and Paolo M. Rossini (2020), “Human brain connectivity: Clinical applications for clinical neuropsychology,” Clinical Neurophysiology 131 (7), 1621–1651.

Halu, Arda, Raúl J. Mondragón, Pietro Panzarasa, and Ginestra Bianconi (2013), “Multiplex pagerank,” PLOS ONE 8 (10), 1–10.

Hansen, Enrique CA, Demian Battaglia, Gustavo Deco, and Viktor K. Jirsa (2015), “Functional connectivity dynamics: Modeling the switching behavior of the resting state,” NeuroImage 105, 525–535.

Harlalka, Vatika, Raju S. Bapi, P. K. Vinod, and Dapanj Roy (2019), “Atypical flexibility in dynamic functional connectivity quantifies the severity in autism spectrum disorder,” Frontiers in Human Neuroscience 13, 6.

Harvy, Jonathan, Nitish Thakor, Anastasios Bezerianos, and Junhua Li (2019), “Between-Frequency Topographical and Dynamic High-Order Functional Connectivity for Driving Drowsiness Assessment,” IEEE transactions on neural systems and rehabilitation engineering: a publication of the IEEE Engineering in Medicine and Biology Society 27 (3), 358–367.

van den Heuvel, Martijn P., and Olaf Sporns (2011), “Rich-club organization of the human connectome,” Journal of Neuroscience 31 (44), 15775–15786.

van den Heuvel, Martijn P., and Olaf Sporns (2013), “Network hubs in the human brain,” Trends in Cognitive Sciences 17 (12), 683–696.

van den Heuvel, Martijn P., and Olaf Sporns (2019), “A cross-disorder connectome landscape of brain dysconnectivity,” Nature Reviews Neuroscience 20 (7), 435–446.

Hilgetag, Claus C., and Marcus Kaiser (2004), “Clustered organization of cortical connectivity,” Neuroinformatics 2 (3), 353–369.

Hines, M. L., and N. T. Carnevale (2001), “Neuron: A tool for neuroscientists,” The Neuroscientist 7 (2), 123–135 pMID: 11496923, https://doi.org/10.1177/107385840100700207.

Horn, Andreas, Dirk Ostwald, Marco Reisert, and Felix Blankenburg (2014), “The structural–functional connectome and the default mode network of the human brain,” NeuroImage 102, 142–151.

Huang, Jiashuang, Qi Zhu, Mingliang Wang, Luping Zhou, Zhiqiang Zhang, and Daqingiang Zhang (2020), “Coherent Pattern in Multi-Layer Brain Networks: Application to Epilepsy Identification,” IEEE Journal of Biomedical and Health Informatics 24 (9), 2609–2620 conference Name: IEEE Journal of Biomedical and Health Informatics.

Hutchison, R Matthew, Thilo Womelsdorf, Elena A. Allen, Peter A. Bandettini, Vince D. Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff H. Duyan, Gary H. Glover, Javier Gonzalez-Castillo, Daniel A. Handwerker, Stella Keilholz, Vesa Kiviniemi, David A. Leopold, Francesco de Pasquale, Olaf Sporns, Martin Walter, and Catie Chang (2013), “Dynamic functional connectivity: Promise, issues, and interpretations,” NeuroImage 80, 360–378.

Jacobs, Julie, Joyce Y. Wu, Piero Perucca, Rina Zelmann, Maleka Mader, Francois Dubeau, Gary W. Mathern, Andreas Schulze-Bonhage, and Jean Gotman (2018), “Removing high-frequency oscillations,” Neurology 91 (11), e1040–e1052.

James, Spencer L, Dego Abate, Kalkidan Hassen Abate, Solomon M Abay, Cristiana Abhafat, and Injury Incidence & Prevalence Collaborators GBD 2017 Disease (2018), “Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017,” The Lancet 392 (10159), 1789–1858, publisher: Elsevier.

Jirsa, V K., and H. Haken (1996), “Field theory of electromagnetic brain activity,” Phys. Rev. Lett. 77, 960–963.

Jirsa, Viktor, and Viktor Müller (2013), “Cross-frequency coupling in real and virtual brain networks,” Frontiers in Computational Neuroscience 7, 78.

Jo, Hang-Hyun, Seung Ki Baek, and Hie-Tae Moon (2006), “Immunization dynamics on a two-layer network model,” Physica A: Statistical Mechanics and its Applications 361 (2), 534–542.

Jouve, B. P. Rosenstiehl, and M. Imbert (1998), “A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey,” Cerebral Cortex 8 (1), 28–39.

Jun, James J, Nicholas A. Steinmetz, Joshua H. Siegle, Daniel J. Denman, Marius Bauza, Brian Barbarits, Albert K. Lee, Costas A. Anastassiou, Alexandre Andri, Çağatay Aydın, Mladen Baric, Timothy J. Blanche, Vincent Bonin, João Couto, Barunbed Dutta, Sergey L. Gratny, Diego A. Gutinsky, Michael Häusser, Bill Karsh, Peter Ledochowitsch, Carolina Mora Lopez, Catalin Miletul, Silke Musa, Michael Okun, Marius Pachitariu, Jan Putzeys, P. Dylan Rich, Cyrille Rossant, Wei-lung Sun, Karel Svoboda, Matteo Carandini, Kenneth D. Harris, Christof Koch, John O’Keefe, and Timothy D. Harris (2017), “Fully integrated silicon probes for high-density
Robinson, P A, C. J. Rennie, and D. L. Rowe (2002), “Dynamics of large-scale brain activity in normal arousal states and epileptic seizures.” Phys. Rev. E 65, 041924.

Robinson, P A, C. J Rennie, D. L Rowe, S. C O’Connor, and E Gordon (2005), “Multiscale brain modelling,” Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1457), 1043–1050. publisher: Royal Society.

Robinson, P A, C. J Rennie, J. J. Wright, H. Bahramali, E. Gordon, and D. L. Rowe (2001), “Prediction of electroencephalographic spectra from neurophysiology,” Phys. Rev. E 63, 021903.

Rombach, M Puck, Mason A. Porter, James H. Fowler, and Peter J. Mucha (2014), “Core-periphery structure in networks,” SIAM Journal on Applied Mathematics 74 (1), 167–190.

Rubinov, Mikhail, and Olaf Sporns (2010), “Complex network measures of brain connectivity: Uses and interpretations,” Neuroimage 52 (3), 1059–1069. computational Models of the Brain.

Russo, Scott J, James W Murrough, Ming-Hu Han, Dennis S Charney, and Eric J Nestler (2012), “Neurobiology of resilience,” Nature Neuroscience 15 (11), 1475–1484.

Sanz Leon, Paula, Stuart Knock, M. Woodman, Lia Domide, Jochen Mersmann, Anthony McIntosh, and Viktor Jirsa (2013), “The virtual brain: a simulator of primate brain network dynamics,” Frontiers in Neuroinformatics 7, 10.

Scannell, JW, G.A.P.C. Burns, C.C. Hilgetag, M.A. O’Neil, and M.P. Young (1999), “The Connectional Organization of the Cortico-thalamic System of the Cat,” Cerebral Cortex 9 (3), 277–299.

Sherman, S M, and R. W. Guillery (1996), “Functional organization of thalamocortical relays,” Journal of Neurophysiology 76 (3), 1367–1395. pMID: 8890259.

Siebenhüner, Felix, Shannon A. Weiss, Richard Coppola, Daniel R. Weinberger, and Danielle S. Bassett (2013), “Intra- and inter-frequency brain network structure in health and schizophrenia,” PLOS ONE 8 (8), 1–13.

Siettos, Constantinos, and Jens Starke (2016), “Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools,” WIREs Systems Biology and Medicine 8 (5), 438–458.

Lopes da Silva, F H, A. Hoeks, H. Smits, and L. H. Zetterberg (1974), “Model of brain rhythmic activity,” Kybernetik 15 (1), 27–37.

Simas, Tiago, Mario Chavez, Pablo R. Rodriguez, and Albert Diaz-Guilera (2015), “An algebraic topological method for multimodal brain networks comparisons,” Frontiers in Psychology 6.

Simpson, Sean L, Malak N. Moussa, and Paul J. Laureniit (2012), “An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks,” NeuroImage 60 (2), 1117–1126.

Sinke, Michel RT, Rick M. Dijkhuizen, Alberto Caimo, Cornelis J. Stam, and Willem M. Otte (2016), “Bayesian exponential random graph modeling of whole-brain structural networks across lifespan,” NeuroImage 135, 79–91.

Sizemore, Ann E, and Danielle S. Bassett (2018), “Dynamic graph metrics: Tutorial, toolbox, and tale,” NeuroImage 180, 417–427. brain Connectivity Dynamics.

Skudlarski, Pawel, Kanchana Jagannathan, Vince D. Calhoun, Michelle Hampson, Beata A. Skudlarska, and Godfrey Pearlson (2008), “Measuring brain connectivity: Diffusion tensor imaging validates resting state temporal correlations.” NeuroImage 43 (3), 554–561.

Sohanian Haghighi, H, and A. H. D. Markazi (2017), “A new description of epileptic seizures based on dynamic analysis of a thalamocortical model,” Scientific Reports 7 (1), 13615.

Sporns, O, G. Tononi, and G.M. Edelman (2000), “Theoretical Neuroanatomy: Relating Anatomical and Functional Connectivity in Graphs and Cortical Connection Matrices.” Cerebral Cortex 10 (2), 127–141.

Sporns, Olaf, and Rolf Kötter (2004), “Motifs in brain networks,” PLOS Biology 2 (11), null.

Stam, Cornelis J (2014), “Modern network science of neurological disorders,” Nature Reviews Neuroscience 15 (10), 683–695.

Stam, Cornelis J, and Jaap C. Reijneveld (2007), “Graph theoretical analysis of complex networks in the brain.” Non-linear Biomedical Physics 1 (1), 3.

Stanley, Natalie, Saray Shai, Dane Taylor, and Peter J. Mucha (2016), “Clustering network layers with the strata multilayer stochastic block model.” IEEE Transactions on Network Science and Engineering 3 (2), 95–105.

Stender, Johan, Olivia Gosserserie, Marie-Auréle Bruno, Vanessa Charland-Verville, Audrey Vanhaudenhuyse, Athena Demertzii, Camille Chatelle, Marie Thomard, Aurorre Thibaut, Lizette Heine, Andrea Soddu, Mélanie Boly, Caroline Schnakers, Albert Gjeide, and Steven Laureys (2014), “Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study,” The Lancet 384 (9942), 514–522.

Steuellet, P. J. H. Cabungcal, A. Monin, D. Dwir, P. O’Donnell, M. Cuenod, and K. Q. Do (2016), “Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: A "central hub" in schizophrenia pathophysiology?” Schizophrenia Research 176 (1), 41–51.

Suárez, Laura E, Rose D. Markello, Richard F. Betzel, and Bratislav Misić (2020), “Linking structure and function in macroscale brain networks,” Trends in Cognitive Sciences 24 (4), 302–315.

Svoboda, Karel, and Nuo Li (2018), “Neural mechanisms of movement planning: motor cortex and beyond,” Current Opinion in Neurobiology 49, 33–41. neurobiology of Behavior.

Tang, Evelyn, and Danielle S. Bassett (2018), “Colloquium: Control of dynamics in brain networks,” Rev. Mod. Phys. 90. 031003.

Tang, J. S. Scellato, M. Musolesi, C. Mascolo, and V. Latora (2010), “Small-world behavior in time-varying graphs,” Physical Review E 81 (5), 055101. publisher: American Physical Society.

Tewarie, Prejaas, Arjan Hillebrand, Bob W. van Dijk, Cornelis J. Stam, George C. O’Neill, Piet Van Mieghem, Jil M. Meier, Mark W. Woolrich, Peter G. Morris, and Matthew J. Brookes (2016), “Integrating cross-frequency and within band functional networks in resting-state MEG: A multi-layer network approach,” NeuroImage 142, 324–336.

Tewarie, Prejaas K, Bastian Prasse, Jil M. Meier, Áine Byrne, Manlio De Domenico, Cornelis Jan (Kees) Stam, Matthew J Brookes, Arjan Hillebrand, Andreas Daffertshofer, Stephen Coombes, and Piet Van Mieghem
Vazquez, Alexei (2006), “Spreading dynamics on heterogeneous networks,” Neurobiology of Aging 34 (8), 2023–2036.

Tijms, Betty M, Alle Meije Wink, Willem de Haan, Wiesje M. van der Flier, Cornelis J. Stam, Philip Scheltens, and Frederik Barkhof (2013), “Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks,” Neurobiology of Aging 34 (8), 2023–2036.

Uhlhaas, Peter J (2013), “Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia,” Current Opinion in Neurobiology 23 (2), 283–290 macrocircuits.

Uhlhaas, Peter J, and Wolf Singer (2010), “Abnormal neural oscillations and synchrony in schizophrenia,” Nature Reviews Neuroscience 11 (2), 100–113.

Valle-Serrà, Toni, Francesco A. Massucci, Roger Guimerà, and Marta Sales-Pardo (2016), “Multilayer stochastic block models reveal the multilayer structure of complex networks,” Phys. Rev. X 6, 011036.

Vazquez, Alexei (2006), “Spreading dynamics on heterogeneous populations: Multitype network approach,” Phys. Rev. E 74, 066114.

Verma, T. F, Russmann, N.A.M. Araújo, J. Nagler, and H.J. Herrmann (2016), “Emergence of core–peripheries in networks,” Nature Communications 7 (1), 10441.

Villa, Alessandro EP, and Igor V. Tetzko (2010), “Cross-frequency coupling in mesiotemporal eeg recordings of epileptic patients,” Journal of Physiology-Paris 104 (3), 197–202 neural Coding.

Virkar, Yogesh S, Woodrow L. Shew, Juan G. Restrepo, and Edward Ott (2016), “Feedback control stabilization of critical dynamics via resource transport on multilayer networks: How glia enable learning dynamics in the brain,” Physical Review E 94 (4), 042310.

Vértes, Petra E, Aaron Alexander-Bloch, and Edward T. Bullmore (2014), “Generative models of rich clubs in Hebbian neuronal networks and large-scale human brain networks,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 369 (1663), 10.1098/rstb.2013.0531.

Vértes, Petra E, Aaron F. Alexander-Bloch, Nitin Gogtay, Jay N. Giedd, Judith L. Rapoport, and Edward T. Bullmore (2012), “Simple models of human brain functional networks,” Proceedings of the National Academy of Sciences of the United States of America 109 (15), 5868–5873.

Wang, Dingjie, and Xiufen Zou (2017), “Control energy and controllability of multilayer networks,” Advances in Complex Systems 20 (04n05), 1750008.

Watt, Alanna, and Niraj Desai (2010), “Homeostatic plasticity and stdp: keeping a neuron’s cool in a fluctuating world,” Frontiers in Synaptic Neuroscience 2, 5.

Watts, Duncan J, and Steven H. Strogatz (1998), “Collective dynamics of ‘small-world’ networks,” Nature 393 (6684), 440–442.

Wein, Simon, Gustavo Deco, Ana Maria Tomé, Markus Goldhacker, Wilhelm M. Mailoni, Mark W. Greenlee, and Elmar W. Lang (2021), “Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning,” Computational Intelligence and Neuroscience 2021, 5573740 publisher: Hindawi.

Weiman, E (2011), Principles of Multiscale Modeling (Cambridge University Press).

Williamson, Brady J, Manlio De Domenico, and Darren S. Kadis (2021), “Multilayer Connector Hub Mapping Reveals Key Brain Regions Supporting Expressive Language,” Brain Connectivity 11 (1), 45–55.

Wilson, James D, Melanie Baybay, Rishi Sankar, Paul Stillman, and Abbie M. Popa (2020), “Analysis of population functional connectivity data via multilayer network embeddings,” Network Science, 1–24.

Wilson, JD, J. Palowitch, S. Bhamidi, and Nobel A.B. (2017), “Community extraction in multilayer networks with heterogeneous community structure,” J Mach Learn Res. 18, 5458–5506.

Wang, Peng, Garry Robins, Philippa Pattison, and Emmanuel Lazega (2013), “Exponential random graph models for multilevel networks,” Social Networks 35 (1), 96–115.

Wasserman, Stanley, and Katherine Faust (1994), Social Network Analysis: Methods and Applications Structural Analysis in the Social Sciences (Cambridge University Press).

Zanin, M, D. Papo, P.A. Sousa, E. Menasalvas, A. Nicchi, E. Kubik, and S. Boccaletti (2016), “Combining complex...
networks and data mining: Why and how,” [Physics Reports 635, 1–44
combining complex networks and data mining: Why and how.
Zanin, Massimiliano (2015), “Can we neglect the multi-layer
structure of functional networks?” [Physica A: Statistical
Mechanics and its Applications 430, 184–192
Zatorre, Robert J, R Douglas Fields, and Heidi Johansen-
Berg (2012), “Plasticity in gray and white: neuroimaging
changes in brain structure during learning,” [Nature Neuro-
science 15 (4), 528–536
Zhang, Xiaolong, Urs Braun, Anais Harneit, Zhenxiang
Zang, Lena S. Geiger, Richard F. Betzel, Junfang
Chen, Janina I. Schweiger, Kristina Schwarz,
Jonathan Rochus Reinwald, Stefan Fritze, Stephanie Witt,
Marcella Rietschel, Markus M. Nöthen, Franziska Degen-
hardt, Emanuel Schwarz, Dusan Hirjak, Andreas Meyer-
Lindentag, Danielle S. Bassett, and Heike Tost (2021a),
“Generative network models of altered structural brain con-
nectivity in schizophrenia,” [NeuroImage 225, 117510
Zhang, Yan, and Ingo Scholtes (2021b), “Higher-order
models capture changes in controllability of temporal net-
works,” J. Phys. Complex. 2 (015007).
Zhou, Changsong, Lucia Zemanová, Gorla Zamora, Claus C.
Hilgetag, and Jürgen Kurths (2006), “Hierarchical organi-
zation unveiled by functional connectivity in complex brain
networks,” [Phys. Rev. Lett. 97, 238103
Zhou, Changsong, Lucia Zemanová, Gorla Zamora-López,
Claus C Hilgetag, and Jürgen Kurths (2007), “Struc-
ture–function relationship in complex brain networks ex-
pressed by hierarchical synchronization,” [New Journal of
Physics 9 (6), 178–178