Oxidative Stress in Digestive Disease
Guest Editor: Yuji Naito

Oxidative Stress and Ischemia-Reperfusion Injury in Gastrointestinal Tract and Antioxidant, Protective Agents

Makoto Sasaki* and Takashi Joh

Internal Medicine and Bioregulation, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho, Nagoya City 467-8601, Japan

Received: 21 August, 2006; Accepted 7 September, 2006

Summary Exacerbation of hypoxic injury after reoxygenation is a crucial mechanism mediating organ injury in transplantation, and in myocardial, hepatic, gastrointestinal, cerebral, renal, and other ischemic syndromes. The occlusion and reperfusion of the splanchnic artery is a useful animal model to elucidate the mechanism of gastrointestinal injury induced by ischemia-reperfusion (I/R). Although xanthine oxidase is a major source of reactive oxygen species (ROS), which plays an important role in the I/R-induced intestinal injury, there are many other sources of intracellular ROS. Various treatment modalities have been successfully applied to attenuate the I/R injury in animal models. This review focuses on the role of oxidant stress in the mechanism of I/R injury and the use of antioxidant agents for its treatment.

Key Words: oxidant stress, ischemia-reperfusion, antioxidant

Introduction

Oxidant stress, such as that due to free radicals and/or reactive oxygen species is known to cause organ injury. A growing body of evidence indicates that oxidative stress plays an important role in the pathogenesis of many clinical conditions [1–3] involving cardiovascular diseases [4, 5], liver diseases [6, 7], lung disease [8, 9], gastrointestinal disorders [10–12], neurological disorders [13, 14], muscle damage [15], diabetes [16], and aging [17]. The involvement of free radicals in gastrointestinal injury observed after ischemia-reperfusion (I/R) has also been reported [18–20]. Superoxide and hydrogen peroxide are considered to be the major free radicals contributing to gastrointestinal injury after I/R. Acute gastrointestinal mucosal lesions can be by abolishing these reactive oxygen species [21].

The present review focuses on the oxidant stress during ischemia and reperfusion injury in the gastrointestinal tract and the use of antioxidant agents in its treatment.

Oxidant Stress during Ischemia-Reperfusion Injury in the Gastrointestinal Tract

An important assumption that oxygen free radicals play a crucial role in the pathogenesis of I/R has been supported by many lines of evidence that superoxide dismutase (SOD)—a highly specific scavenger of superoxide—prevents I/R induced gastrointestinal injury [18, 22]. Additionally, reperfusion-induced oxidant stress in the gastrointestinal tract is supported by reduced glutathione (GSH) consumption and concomitant formation of oxidized glutathione (glutathione disulfide: GSSG) in the gastrointestinal mucosa that is subjected to I/R [23, 24]. These changes are signifi-
cantly reversed by both SOD and allopurinol. Conversely, there are reports that the disappearance of most of the GSH occurs during the ischemic period and GSH is not oxidized during the I/R episode [25].

By using electron spin resonance spectrometry and low-level chemiluminescence, Nilsson and co-workers demonstrated that there is a burst of oxidant formation immediately after 2–5 min of reperfusion of the ischemic intestine [26, 27]. This oxidant formation after reperfusion was supposedly derived from the electron transport chains of the mitochondria [28, 29], xanthine oxidase (XO) metabolism [30, 31], endothelial cells [32, 33], prostaglandins [34], and activated neutrophils [35, 36].

Since superoxide is more efficient as a reducing agent than as an oxidizing agent, its formation is not considered to induce high levels of cytotoxicity. Spontaneous or SOD-catalyzed dismutation of superoxide (O$_2^-\cdot$) produces hydrogen peroxide (H$_2$O$_2$). Additionally, superoxide—a relatively low-energy radical—is responsible for the production of highly reactive and harmful hydroxyl radicals (HO$^-\cdot$) by the Haber-Weiss reaction.

\[
O_2^-\cdot + H_2O_2 \rightarrow OH^- + HO^- + O_2
\]

Typically, HO$^-\cdot$ causes biological damage by stimulating the free chain reaction of the lipid side chains of the membrane phospholipids and DNA strand breakage and causing organelle and cell disruption [37].

Relative Contributions of Ischemia and Reperfusion to Mucosal Injury

The interruption of blood supply results in an ischemic injury. Paradoxically, restoration of the blood supply causes additional cell injury that is referred to as reperfusion injury. There are several lines of evidence in the oxygen radical hypothesis of gastrointestinal I/R injury that tend to support an important assumption that the tissue injury observed after reperfusion is due to the reintroduction of oxygen rather than a delayed manifestation of injury incurred during the ischemic period. Parks and Granger have demonstrated that the mucosal injury produced after 3 h ischemia followed by 1 h of reperfusion was significantly greater than that produced after 4 h of ischemia without reperfusion [38]. They also observed that 3 h of intestinal ischemia followed by 1 h of reperfusion with deoxygenated perfusate produced significantly less mucosal injury than that produced by reperfusion with oxygenated whole blood. Furthermore, the assumption that reoxygendation results in greater mucosal injury after reperfusion is supported by the consistent observation that antioxidants and inhibitors of oxy-radical formation (e.g., allopurinol) attenuate only that component of the mucosal injury that manifests after reperfusion [39]. Ates and co-workers demonstrated that the administration of antioxidants immediately before reperfusion is as effective in attenuating the mucosal injury as it would be if the antioxidant were to be administered before ischemia [40]. Oxy-radical production during the reperfusion period is largely responsible for the injury observed in intestinal models of I/R.

Xanthine Oxidase (XO)

The concept that

The concept that XO-derived oxidants mediate the intestinal injury associated with I/R was first proposed in 1981 [41]. Subsequently, several studies have supported this concept and it is now considered that XO is a major source of oxidant generation during I/R injury in the gastrointestinal tract. In comparison with the other organs, the intestine can generate high amounts of oxidants during I/R. The intestinal mucosa has tremendous capacity to oxidize hypoxanthine via the XO, which exists in normal healthy tissues predominantly as a NAD$^+$-reducing xanthine dehydrogenase (XD) [42]. Under ischemic conditions, XD rapidly converts to XO by ischemia-mediated protease, and XO is capable of reducing molecular oxygen to both O$_2^-$ and H$_2$O$_2$ (Fig. 1) [39]. However, there are also adverse reports that the activity of XO decreases during ischemia but increases subsequently following reperfusion [43].

Intestinal ischemia reduces cellular ATP levels rapidly and completely within 20 min while increasing the concentration of AMP and hypoxanthine [23, 44, 45]. Menguy et al. also reported that hemorrhagic shock resulted in a 75% reduction in ATP, a 27% reduction in ADP, and a 350% increase in AMP concentrations in the gastric mucosa within 15 min [46]. Therefore, 30-min of ischemia is sufficient to produce prolonged functional and structural changes in a rat intestine [47]. ATP depletion results in loss of ATP-dependent ion channel regulation, producing passive ion flux across the cell membrane. Increased intracellular Ca$^{2+}$ is harmful, one of its important consequences being the activation of a calcium-dependent protease, which cleaves of XD to form...

![Fig. 1. Mechanism of xanthine oxidase-mediated free radical injury. Modified from Granger et al [39].](image-url)
XO. Fructose-1,6-biphosphate (F16BP), which is a high-energy glycolytic intermediate [48], prevents the depletion of intracellular ATP during ischemia. Thus, it prevents the conversion of XD to XO [49] and inhibits free radical production, thereby protecting the intestine during the I/R injury [51].

It can be estimated (assuming a tissue PaO$_2$ of 20 mmHg) that the XO activity measured in a cat intestine subjected to I/R injury produced superoxide and hydrogen peroxide fluxes of 1 and 40 nmol·min$^{-1}$·g$^{-1}$, respectively [39]. These rates of oxidant production are cytotoxic to cells in culture [32] and exceed the fluxes required to increase microvascular permeability. Parks et al. have demonstrated that intra-arterial infusion of XO (to achieve a plasma activity of ~2 mU/ml) in nonischemic intestines produced an increase in microvascular permeability that is comparable to that observed after I/R [53]. Furthermore, the cytotoxicity is largely prevented by SOD and dimethyl sulfoxide (DMSO), a hydroxyl radical scavenger, which supports the assumption that these oxidants mediate the increased microvascular permeability induced by arterial XO infusion.

Previous research supports the hypothesis that the intestine appears to be the most sensitive to I/R injury among the other internal organs [39, 54]. The intestine is composed of labile enterocytes that are easily injured by episodes of ischemia, and subsequent reperfusion results in further damage to the intestinal mucosa. Enterocytes that are located at the microvilli tips are more sensitive to the effect of ischemia than those present in the crypts. This is because of the their location at the end of the distribution of a central arteriole and a relative lack of collateral blood flow, which can result in a lower PaO$_2$: in the distal enterocytes as when compared with that in the crypts [55]. Intestinal XO activity, which is one of the major sources of free radicals, is found primarily in the mucosal layer with an increasing gradient of activity from the villus base to the tip. This is an additional reason for the increased sensitivity of the villus tip to I/R injury as compared to that of the base [54]. Additionally, the differentiated enterocytes—located at the tip of the microvilli—are inherently more sensitive to ischemia-induced injury than their undifferentiated counterparts that are located at the base [36].

Nitric Oxide (NO)

The role of nitric oxide (NO) in I/R injury is still controversial. Inhibition of NO in certain models of I/R injury causes tissue dysfunction, whereas it proves beneficial in others.

NO is synthesized from L-arginine by a family of enzymes known as NO synthase (NOS). The constitutive forms of NOS (neural NOS: nNOS and endothelial NOS: eNOS) are critical to normal physiology, and the inhibition of these enzymes causes tissue injury [57]. However, the inducible form of NOS (iNOS), which is only expressed in the response to cytokines and growth factors, produces a large amount of NO that contributes to the pathophysiology of I/R injury. Therefore, while the use of selective inhibitors of iNOS, namely, N(6)-(iminoethyl)-L-lysine (L-NIL) and ONO-1714 has been shown to be beneficial [58–60], the use of nonselective inhibitors, namely, N(G)-nitro-L-arginine methyl ester (L-NAME) has been shown to be deleterious in gastrointestinal I/R injury [61]. Additionally, iNOS knockout mice are more resistant to intestinal I/R-induced bacterial translocation and mucosal injury, further supporting the role of iNOS as an important mediator of I/R injury in the intestine [62]. The nonselective NO inhibitors such as NG-monomethyl-L-arginine (L-NMMA) and L-NAME aggravate the gastric mucosal injury due to I/R, and this effect is blocked by L-arginine [63].

Using an NO-sensitive electrode, Wada and his co-workers measured the NO concentrations in the gastric mucosa and concluded that NO has an important pathological role in acute gastric mucosal injury induced by I/R [64]. They state that the NO concentration in the gastric mucosa increases during the ischemic period; subsequently, reperfusion causes a rapid decrease to normal levels. NOS inhibitors prevent both the increase in NO concentration during the ischemic episode and the mucosal injury induced by I/R.

NO has many beneficial effects in the I/R injury scavenging of oxygen free radicals, reduction of leukocyte adhesion to the mesenteric endothelium, and maintenance of normal vascular permeability [65–67]. During the early phase of reperfusion, after ischemia, an increase in O$_2^-$ limits the accumulation of NO and prevents any of the beneficial effects of NO; as a result, the leukocytes tend to adhere to the endothelium [68]. Supplementation of NO using NO donors such as FK-409, molsidomine, and nitroprusside have been shown to attenuate gastrointestinal I/R injury [58, 69–71].

Endothelial Cells and Polymorphonuclear Neutrophils (PMNs)

Both endothelial cells and polymorphonuclear neutrophils (PMNs) are another potential source of oxidants in the gastrointestinal tract. NADPH oxidase is found in both these cells, and reoxygenation promotes oxidant generation by NADPH [32, 33]. Moreover, activated PMNs secrete a variety of enzymes such as myeloperoxidase (MPO) and elastase that can injure parenchymal cells and the microvasculature [72].

Intravitreal microscopic studies of tissue exposed to I/R injury reveal an acute inflammatory response that is characterized by increased adhesion and emigration of PMNs in postcapillary venules, microvascular permeability, and
mucosal injury [73]. Reduced PMNs and monoclonal antibodies that interfere with the adhesion and emigration of the PMNs across venules provide significant protection against I/R injury [74, 75]. Determination of tissue-associated MPO activity showed that the infiltration of PMNs in the mucosal layer during the reperfusion period is significantly more than that during ischemia [35]. The increased mucosal MPO activity after reperfusion can be significantly attenuated by the use of antioxidants. However, this attenuation of MPO activity is reflective of the blockage of the recruitment of PMNs into the mucosal layer rather than the inhibition of MPO catalytic activity [39]. These observations suggest that the adhesion interaction between PMNs and endothelial cells plays a crucial role in I/R injury and this process mainly depends on the oxidant stress.

Antioxidants: Protective Agents against Ischemia-Reperfusion Injury

Under normal conditions, the oxygen molecule undergoes a tetravalent reduction by the cytochrome system in the mitochondria to form water. However, one to two percent of the oxygen molecules that escape this pathway undergoes univalent reduction and generates oxygen-derived free radicals. Under normal conditions, these radicals are neutralized by endogenous antioxidant enzymes such as SOD and GSH, thereby having no deleterious effect on the cells [76]. However, oxidative stress occurs when the production of oxidants exceeds the capacity of the antioxidant defense systems of the cell, or when the effectiveness of the antioxidant defense system decreases. The human body has many natural antioxidants; however, not all of them are capable of protection against the attack of oxidants induced by the I/R condition.

Many animal studies have shown that antioxidant agents are useful in protection against I/R-induced gastrointestinal injury. XO inhibitors such as allopurinol, significantly reduce the severity of intestinal mucosal lesions and gastric lesions induced by I/R; [18, 19, 22, 77–80]. Enteral administration of XO inhibitors such as pterin aldehyde or folic acid also attenuates the I/R-induced increase in microvascular permeability [81]. Although XO plays a crucial role in mucosal damage during reperfusion, it is also provoke the injury caused during the ischemic episodes [22].

Table lists antioxidant agents that have been reported to be helpful in reducing I/R-induced tissue damage in the intestine and stomach separately. The agents that have been used are acetaminophen [82], allopurinol [18, 19, 22, 23, 77–80, 83–87], astragalus membranaceus [88], anti-thrombin III [89], bilirubin [90, 91], captopril [92], cimetidine [93], 5-(2-amino-ethylamino)-1-phenyl-2-pentanone (compound 1A) [94], CV-6209—a platelet-activating factor antagonist [95], cystathionine [96], cyclosporine [97, 98], desferrioxamine [99–101], dimethyl sulfoxide (DMSO) [19, 83, 102–104], edaravone [105], epidermal growth factor (EGF) [106, 107, 108], ellagic acid—one of the polyphenols [109], fullerol [110], glutamine [103, 111–113], honey [102, 114], IT-066—a novel histamine H₁-receptor antagonist (H₂RA) [115], mannitol [116, 117], melatonin and its precursor 5-HTryptophan [40, 118–127], methylprednisolone [116], N-acetylcysteine (NAC) [117, 128–131], nitroglycerine [132, 133], pyrrolidine dithiocarbamate (PDC) [134, 135], pyruvate [136], rapamycin [97], rebamipide [100, 103, 137, 138], rotenone [139], selenium [140, 141], SOD [18, 19, 22, 77–79, 85, 142], sofalcone [143, 144], succulate [79, 145–148], T-593—an H₂RA [149, 150], 2,2,6,6-tetramethylpiperidine-1-oxyl (TPL) [151], trimetazidine [152, 153], verapamil [87, 154, 155, 156], vitamin C [116, 117, 157–159], vitamin E [116], and zinc N-(3-aminopropionyl)- L-histidine (Z-103) [21].

Intravenous administration of N-acetylcysteine (NAC), which is a free radical scavenger, has been proved to be beneficial in protection against I/R injury of intestine [117, 128]; however, there are some controversial reports in this regard [147, 160]. Some reports have demonstrated that NAC treatment resulted in significant aggravation of the gastric mucosal injury after I/R injury [147, 161]. Although intraluminal perfusion of NAC increased the hexosamine concentration, gastric mucus was significantly decreased. This resulted in the exacerbation of the mucosal injury.

Some types of H₂RA, which inhibit acid secretion by parietal cells, are potent antioxidants and it has been suggested that these exert a protective effect on I/R-induced gastric mucosal injury. Although the luminal acid was completely neutralized by NaOH instead of T-593 (an H₂RA), no reduction in the mucosal clearance was observed. This indicated that the endogenous luminal acid does not play an important role in gastric injury induced by localized I/R stress [149]. Kitano demonstrated that compared to luminal perfusion with an HCl solution alone, the luminal perfusion with a solution containing HCl and H₂RA, cimetidine (3 mmol/l) significantly reduced the total area of erosions. Additionally, cimetidine (3 mmol/l) inhibited hydroxyl radical-induced lipid peroxidation of human erythrocyte membranes by 60% in vitro; this indicated that cimetidine possesses a protective effect against acute gastric mucosal injury induced by I/R not only due to the suppression of gastric acid secretion but also due to its antioxidant properties when it is present at high concentrations in the intragastric environment [93]. Furthermore, Naito et al. [115] showed that IT-066 (an H₂RA) scavenged the superoxide and hydroxyl radicals generated by the hypoxanthine-XO system and the hydrogen peroxide-ferrous iron system, respectively, by a spin trapping method using 5,5-dimethyl-1-pyrroline-N-oxide.

Mucoprotective agents such as sofalcon, sucralfate, and rebamipide have also been suggested to have antioxidant

Note: The text appears to be a continuation of the previous discussion on antioxidants and their role in protecting against ischemia-reperfusion injury in the gastrointestinal tract. The text mentions various agents and their mechanisms of action, along with references to scientific studies. There is no direct mention of the specific reference texts provided in the image, but the content is integrated coherently with the mentioned studies and agents.
Table. A list of antioxidant agents used against ischemia-reperfusion injury in the intestine and stomach

Agent	Intestine	Stomach	Reference			
	Author	Outcome	Reference	Author	Outcome	Reference
Acetaminophen				Nakamoto	mucosal lesion	82
Allopurinol	Parks	↓ histological damage, ↑ blood flow	38	Itoh	mucosal lesion, ↓ XO	18
Schoenberg		↓ mucosal damage	23	Perry	mucosal permeability	19
Haglund		↓ mucosal damage	77	Laudanno	mucosal lesion	79
Bilbao		↓ histological damage, ↓ mortality	78	Alarcon de la Lastra	mucosal lesion, ↓ mucosal neutrophils	84
Boros		↓ histological damage, ↑ blood flow	80	Zollei	mucosal permeability, ↓ mucosal lesion, ↓ histological damage	85
Horne		↓ mucosal damage	83			
Hakguder		↑ motility	86			
Kulah		↓ histological damage, ↓ MDA, ↑ GSH, ↓ LDH	87			
Astragalus membranaceus	Hei	↓ histological damage, ↑ NO, ↓ Endothelin-1, ↑ SOD, ↑ GSH	88			
Anti-thrombin III	Ozden	↓ histological damage, ↓ MPO, ↓ MDA	89			
Bilirubin	Ceran	↓ histological damage, ↓ MDA	90			
	Hammerman	↓ histological damage, ↓ thiobarbituric acid-reducing substances	91			
Captopril	Buyukgebiz	↓ histological damage, ↓ MDA	92			
Cimetidine				Kitano	mucosal lesion	93
Compound IA	Pousios	↓ histological damage, ↓ MDA	94	Yoshikawa	mucosal lesion, ↓ TBARS	95
CV-6299				Wada	mucosal lesion, ↓ TBARS	96
Cystathionine						
Cyclosporine	Puglisi	↓ histological damage	97, 98	Andrews	histological damage	99
Destrifexamine	Balogh	↓ MDA, ↓ TBARS, ↓ 4-hydroxy-alkenals	101	Kurokawa	mucosal permeability	100
DMSO	Horne	↓ mucosal damage	83	Perry	mucosal permeability	19
	Kojima	↓ apoptosis	103	Ali	mucosal lesion, ↓ vascular permeability, ↑ NP-SH	102
Darabreiner		↓ microvascular permeability, ↓ edema	104			
Edaravone	Tomatsuri	↓ mucosal damage, ↓ histological damage, ↓ TBARS, ↓ MPO, ↓ CINC-1	105			
EGF	Berlaga	↓ intraluminal bleeding, ↓ MPO, ↓ MDA	106			
	Villa	↓ intestinal permeability, ↓ histological damage	107			
	Martin	↓ mucosal damage	108			
Ellagic acid	Lai	↓ histological damage, ↓ MDA, ↑ GSH	110			
Fullerol						
Glutamin	Harward	↑ GSH, conjugated diene (a by-product of lipid peroxidation)	112			
	Basoglu	↓ NO, ↑ GSH	113			
	Kojima	↓ apoptosis	103			
Honey	Koltukusz	↓ mucosal damage, ↓ MDA	114			
IT-066						
Mannitol	Gunel	↓ histological damage, ↓ MDA, ↑ GSH	116			
	Byrka-Owczarek	↓ histological damage, ↑ blood flow	117			
Melatonin (L-tryptophan)	Kazez	↓ histological damage, ↓ MDA	121	Konturek	histological damage, ↑ blood flow	118, 119
	Ustundag	↑ GSH-Px, ↑ SOD, ↑ selenium	122	Brzozowski	mucosal lesion	120
	Sileri	↓ bacterial translocation	126	Cabeza	histological damage, ↓ XO, ↑ SOD, ↑ GSH, ↑ PGE2	123, 124
	Ates	↑ catalase, ↑ SOD, ↑ GSH-Px, ↓ MDA	40	Bulbullah	mucosal lesion, ↓ histological damage	125
	Ozacmak	↓ MDA, ↓ contraction, ↓ histological damage, ↓ GSH	127			
Methyldprednisolone	Gunel	↑ GSH	116			
NAC	Cuzzocrea	↓ nitrosose, ↓ PARS, ↓ MPO, ↓ MDA, ↓ P-selectin, ↓ ICAM-1	128			
Agent	Intestine	Stomach	Reference			
-----------	-----------	---------	-----------			
Sun	↓ endothelial and epithelial permeability, ↓ MPO, ↓ IL-1beta		129			
Montero	↓ histological damage		130			
Olanders	↓ endothelial permeability, IL-1beta		131			
Byrka-Owczarek	↑ blood flow		117			
Nitroglycerine	Dun ↓ histological damage, ↓ MDA, ↓ LDH		132			
	Khanna ↓ intestinal permeability, ↓ histological damage, ↑ MPO	133				
PDTC	Maillick ↑ blood flow, ↑ HO, ↓ LDH, ↓ histological damage	134				
Pyruvate	Cicalesse ↓ histological damage, ↓ free radical	136				
Rapamycin	Puglisi ↓ histological damage	97				
Rebamipide	Kojima ↓ apoptosis	103				
Rotenone	Ichikawa ↓ mucosal damage, ↓ TBARS, ↓ CINC-1, ↓ TNF-alpha	139				
Selenium	Yoshida ↓ histological damage, ↑ blood pressure	140				
Ozturk	↓ histological damage, ↑ bacterial translocation, ↓ MDA	141				
SOD	Parks ↓ histological damage, ↑ blood flow	22				
	Haglund ↓ mucosal damage	77				
	Bilbao ↓ histological damage	78				
Riaz	↓ MDA, ↓ neutrophil rolling & adhesion	142				
Sofalcone	Yoshikawa ↓ mucosal lesion	143				
	Momo ↓ mucosal lesion, ↓ MDA	144				
Sucralfate	Sencan ↓ histological damage, ↓ enterocyte apoptosis	148				
	Lauddano ↓ mucosal lesion	79				
	al-Swayeh ↓ mucosal lesion, ↓ vascular permeability, ↓ superoxide, ↑ NP-SH	145				
	Wada ↓ mucosal lesion, ↓ TBARS	146				
	Mojzis ↓ mucosal lesion, ↓ mucus	147				
T-593 (H2RA)	Seno ↓ mucosal permeability	149				
	Naito ↓ mucosal lesion	150				
TPL	Udassin ↓ intestinal permeability	151				
Trimetazidine	Tsimoyiannis ↓ peritoneal adhesion	152				
	Tetik ↓ histological damage, ↓ MDA, ↓ MPO	153				
Verapamil	Mecan ↓ histological damage	155				
Kulah	↓ histological damage, ↓ MDA, ↓ GSH	87				
Vitamin C	Nakamura ↓ histological damage, ↓ lipid peroxides, ↓ GSSH/GSH	159				
Vitamin E	Gune & ↑ GSH	116				
Z-103	Gune ↓ histological damage, ↑ blood flow	117				

Table. A list of antioxidant agents used against ischemia-reperfusion injury in the intestine and stomach (continued)

- **Compound IA:** 5-(2-amino-ethylamino)-1-phenyl-2-pentanone
- **DMSO:** dimethyl sulfoxide
- **EGF:** epidermal growth factor
- **NAC:** N-acetylcysteine
- **PDTC:** pyrrolidinedithiocarbamate
- **SOD:** superoxide dismutase
- **TPL:** 2,2,6,6-tetramethylpiperidine-1-oxyl
- **Z-103:** zinc N-(3-aminopropionyl)-L-histidine

J. Clin. Biochem. Nutr.
properties; thus, they may prevent I/R-induced mucosal injury. High concentrations of sucralfate (3–10 mg/ml) reduced the superoxide radicals generated by leukocytes or xanthine-XO, and protected erythrocyte membrane ghosts against lipid peroxidation induced by hydrogen peroxide and Fe²⁺ in vitro [146]. The administration of sucralfate, either before ischemia or before reperfusion, prevented the gastrointestinal mucosal injury due to I/R stress [79, 145–148]. Rebamipide also reduced gastrointestinal damage by the pretreatment of ischemic changes [100, 103, 137, 138]. Only intraluminal administration of sofalcon before the onset of ischemia has been proven to be effective in providing gastric mucosal protection against I/R injury [143, 144].

Conclusion

Oxygen-derived free radicals play a major role in the pathophysiological mechanism of ischemia-reperfusion injury of the intestine. The sources of reactive oxygen species are abundant, and the attenuation of oxidant stress minimizes the extent of the ischemia-reperfusion injury. Therefore, antioxidant agents play an important role in the treatment of intestinal injury induced by ischemia-reperfusion.

References

[1] Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., McCord, J.M., and Harman, D.: Oxygen radicals and human disease. Am. Intern. Med., 107, 526–545, 1987.

[2] Halliwell, B. and Gutteridge, J.M.: Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum. Toxicol., 7, 7–13, 1988.

[3] Halliwell, B., Gutteridge, J.M., and Cross, C.E.: Free radicals, antioxidants, and human disease: where are we now? J. Lab. Clin. Med., 119, 598–620, 1992.

[4] McCord, J.M.: Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med., 312, 159–163, 1985.

[5] Jeroudi, M.O., Hartley, C.J., and Bolli, R.: Myocardial reperfusion injury: role of oxygen radicals and potential therapy with antioxidants. Am. J. Cardiol., 73, 2B–7B, 1994.

[6] Comporti, M.: Lipid peroxidation and cellular damage in toxic liver injury. Lab. Invest., 53, 599–623, 1985.

[7] Poli, G., Albano, E., and Dianzani, M.U.: The role of lipid peroxidation in liver damage. Chem. Phys. Lipids., 45, 117–142, 1987.

[8] Kalra, J., Chaudhary, A.K., and Prasad, K.: Increased production of oxygen free radicals in cigarette smokers. Int. J. Exp. Pathol., 72, 1–7, 1991.

[9] Ryrfeldt, A., Bannenberg, G., and Moldeus, P.: Free radicals and lung disease. Br. Med. Bull., 49, 588–603, 1993.

[10] Otamiri, T. and Sjödahl, R.: Oxygen radicals: their role in selected gastrointestinal disorders. Dig. Dis. Sci., 9, 133–141, 1991.

[11] Simmonds, N.J. and Rampton, D.S.: Inflammatory bowel disease—a radical view. Gut, 34, 865–868, 1993.

[12] Das, D. and Banerjee, R.K.: Effect of stress on the antioxidant enzymes and gastric ulceration. Mol. Cell. Biochem., 125, 115–125, 1993.

[13] Adams, J.D., Jr. and Odunze, I.N.: Oxygen free radicals and Parkinson’s disease. Free Radic. Biol. Med., 10, 161–169, 1991.

[14] Dickinson, M.J. and Singh, I.: Down’s syndrome, dementia, and superoxide dismutase. Br. J. Psychiatry., 162, 811–817, 1993.

[15] Jackson, M.J. and O’Farrell, S.: Free radicals and muscle damage. Br. Med. Bull., 49, 630–641, 1993.

[16] Oberley, L.W.: Free radicals and diabetes. Free Radic. Biol. Med., 5, 113–124, 1988.

[17] Harman, D.: The aging process. Proc. Natl. Acad. Sci. U.S.A., 78, 7124–7128, 1981.

[18] Itoh, M. and Guth, P.H.: Role of oxygen-derived free radicals in hemorrhagic shock-induced gastric lesions in the rat. Gastroenterology, 88, 1162–1167, 1985.

[19] Perry, M.A., Wadhwa, S., Parks, D.A., Pickard, W., and Granger, D.N.: Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology, 90, 362–367, 1986.

[20] Parks, D.A., Bulkley, G.B., and Granger, D.N.: Role of oxygen-derived free radicals in digestive tract diseases. Surgery, 94, 415–422, 1983.

[21] Yoshikawa, T., Naito, Y., Tanigawa, T., Yoneta, T., Yasuda, M., Ueda, S., Oyamada, H., and Kondo, M.: Effect of zinc-carnosine chelate compound (Z-103), a novel antioxidant, on acute gastric mucosal injury induced by ischemia-reperfusion in rats. Free Radic. Res. Commun., 14, 289–296, 1991.

[22] Parks, D.A., Bulkley, G.B., Granger, D.N., Hamilton, S.R., and McCord, J.M.: Ischemic injury in the cat small intestine: role of superoxide radicals. Gastroenterology, 82, 9–15, 1982.

[23] Schoenberg, M.H., Fredholm, B.B., Haglund, U., Jung, H., Sellin, D., Younes, M., and Schildberg, F.W.: Studies on the oxygen radical mechanism involved in the small intestinal reperfusion damage. Acta. Physiol. Scand., 124, 581–589, 1985.

[24] Younes, M., Mohr, A., Schoenberg, M.H., and Schildberg, F.W.: Inhibition of lipid peroxidation by superoxide dismutase following regional intestinal ischemia and reperfusion. Res. Exp. Med. (Berl.), 187, 9–17, 1987.

[25] Gibson, D.D., Brackett, D.J., Squires, R.A., Balla, A.K., Lerner, M.R., McCay, P.B., and Pennington, L.R.: Evidence that the large loss of glutathione observed in ischemia/reperfusion of the small intestine is not due to oxidation to glutathione disulfide. Free Radic. Biol. Med., 14, 427–433, 1993.

[26] Turrens, J.F., Giulivi, C., Pinus, C., Roldan, E., Lavagno, C., and Boveris, A.: Low level chemiluminescence from isolated rat hepatocytes, intact lung and intestine in situ. Basic Life Sci., 49, 239–242, 1988.

[27] Nilsson, U.A., Lundgren, O., Haglund, E., and Bylund-Fellenius, A.C.: Radical production during in vivo intestinal ischemia and reperfusion in the cat. Am. J. Physiol., 257,
Parks, D.A. and Granger, D.N.: Contributions of ischemia and reperfusion injury to intestinal mucosal injury. *J. Clin. Invest.*, **90**, 1193–1199, 1992.

Zhang, J. and Piantadosi, C.A.: Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. *J. Clin. Invest.*, **90**, 1193–1199, 1992.

Parks, D.A., Williams, T.K., and Beckman, J.S.: Conversion of xanthine dehydrogenase to oxidase in ischemic rat intestine: a reevaluation. *Am. J. Physiol.*, **254**, G768–G774, 1988.

Bindoli, A., Cavallini, L., Rigobello, M.P., Coassin, M., and Di Lisa, F.: Modification of the xanthine-converting enzyme in endothelial cell plasma membrane. *Am. J. Respir. Cell Mol. Biol.*, **12**, 41–49, 1995.

Grisham, M.B. and Granger, D.N.: Metabolic sources of reactive oxygen metabolites during oxidative stress and ischemia with reperfusion. *Clin. Chest. Med.*, **10**, 71–81, 1989.

Grisham, M.B., Hernandez, L.A., and Granger, D.N.: Xanthine oxidase and neutrophil infiltration in intestinal ischemia. *Am. J. Physiol.*, **251**, G567–G574, 1986.

Grace, P.A.: Ischaemia-reperfusion injury. *Br. J. Surg.*, **81**, 637–647, 1994.

Aust, S.D., Morehouse, L.A., and Thomas, C.E.: Role of metals in oxygen radical reactions. *J. Free Radic. Biol. Med.*, **1**, 3–25, 1985.

Parks, D.A. and Granger, D.N.: Contributions of ischemia and reperfusion to mucosal lesion formation. *Am. J. Physiol.*, **250**, G749–G753, 1986.

Granger, D.N.: Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. *Am. J. Physiol.*, **255**, H11269–H11275, 1988.

Ates, B., Yilmaz, I., Geckil, H., Iraz, M., Birincioglu, M., and Fiskin, K.: Protective role of melatonin given either before ischemia or prior to reperfusion on intestinal ischemia-reperfusion damage. *J. Pineal. Res.*, **37**, 149–152, 2004.

Granger, D.N., Rutli, G., and McCord, J.M.: Superoxide radicals in feline intestinal ischemia. *Gastroenterology*, **81**, 22–29, 1981.

Parks, D.A. and Granger, D.N.: Xanthine oxidase: biochemistry, distribution and physiology. *Acta Physiol. Scand. Suppl.*, **548**, 87–99, 1986.

Harisch, G., Kretschmer, M., Richter, T., and Pickel, M.: Investigations on the influence of copper succinate on the production of superoxide anion radicals by bovine small intestinal mucosa cells. *Zentralbl. Veterinarmed A*, **36**, 576–584, 1989.

Younes, M., Schoenberg, M.H., Jung, H., Fredholm, B.B., Haglund, U., and Schildberg, F.W.: Oxidative tissue damage following regional intestinal ischemia and reperfusion in the cat. *Res. Exp. Med. (Berl.)*, **184**, 259–264, 1984.

Blum, H., Summers, J.J., Schnall, M.D., Barlow, C., Leigh, J.S., Jr., Chance, B., and Busby, G.P.: Acute intestinal ischemia studies by phosphorus nuclear magnetic resonance spectroscopy. *Ann. Surg.*, **204**, 83–88, 1986.

Menguy, R., Deshailllets, L., and Masters, Y.F.: Mechanism of stress ulcer: influence of hypovolemic shock on energy metabolism in the gastric mucosa. *Gastroenterology*, **66**, 46–55, 1974.

Robinson, J.W., Mirkovitch, V., Winistorfer, B., and Saegesser, F.: Response of the intestinal mucosa to ischaemia. *Gut*, **22**, 512–527, 1981.

Juergens, T.M. and Hardin, C.D.: Fructose-1,6-bisphosphate as a metabolic substrate in hog ileum smooth muscle during hypoxia. *Mol. Cell. Biochem.*, **154**, 83–93, 1996.

Lazzarino, G., Tavazzi, B., Di PIERRO, D., and Giardina, B.: Ischemia and reperfusion: effect of fructose-1,6-bisphosphate. *Free Radic. Res. Commun.*, **16**, 325–339, 1992.

Akimitsu, T., White, J.A., Carden, D.L., Gute, D.C., and Korthuis, R.J.: Fructose-1,6-diphosphate or adenosine attenuate leukocyte adherence in postischemic skeletal muscle. *Am. J. Physiol.*, **269**, H1743–H1751, 1995.

Sola, A., De Oca, J., Alfaro, V., Xaus, C., Jaurrieta, E., and Hotter, G.: Protective effects of exogenous fructose-1,6-bisphosphate during small bowel transplantation in rats. *Surgery*, **135**, 518–526, 2004.

Simón, R.H., Scoggin, C.H., and Patterson, D.: Hydrogen peroxide causes the fatal injury to human fibroblasts exposed to oxygen radicals. *J. Biol. Chem.*, **256**, 7181–7186, 1981.

Parks, D.A., Shah, A.K., and Granger, D.N.: Oxygen radicals: effects on intestinal vascular permeability. *Am. J. Physiol.*, **247**, G167–G170, 1984.

Granger, D.N., Hollwarth, M.E., and Parks, D.A.: Ischemia-reperfusion injury: role of oxygen-derived free radicals. *Acta Physiol. Scand. Suppl.*, **548**, 47–63, 1986.

Takeyoshi, I., Zhang, S., Nakamura, K., Ikoma, A., Zhu, Y., Starzl, T.E., and Todo, S.: Effect of ischemia on the canine large bowel: a comparison with the small intestine. *J. Surg. Res.*, **62**, 41–48, 1996.

Hinnebusch, B.F., Ma, Q., Henderson, J.W., Siddique, A., Archer, S.Y., and Hodin, R.A.: Enterocyte response to ischemia is dependent on differentiation state. *J. Gastrointest. Surg.*, **6**, 403–409, 2002.

Kubes, P. and McCafferty, D.M.: Nitric oxide and intestinal inflammation. *Am. J. Med.*, **109**, 150–158, 2000.

Kubes, P.: Ischemia-reperfusion in feline small intestine: a role for nitric oxide. *Am. J. Physiol.*, **264**, G143–G149, 1993.

Naito, Y., Takagi, T., Ichikawa, H., Tomatsu, N., Kuroda, M., Iozaki, Y., Katada, K., Uchiyama, K., Kokura, S., Yoshida, N., Okanoue, T., and Yoshikawa, T.: A novel potent inhibitor of inducible nitric oxide inhibitor, ONO-1714, reduces intestinal ischemia-reperfusion injury in rats. *Nitric Oxide*, **10**, 170–177, 2004.
Moore-Olufemi, S.D., Xue, H., Allen, S.J., Moore, F.A., Stewart, R.H., Laine, G.A., and Cox, C.S., Jr.: Inhibition of intestinal transit by resuscitation-induced gut edema is reversed by L-NIL. J. Surg. Res., 129, 1–5, 2005.

Kim, H. and Hwan Kim, K.: Role of nitric oxide and mucus in ischemia-reperfusion-induced gastric mucosal injury in rats. Pharmacology, 62, 200–207, 2001.

Suzuki, Y., Deitch, E.A., Mishima, S., Lu, Q., and Xu, D.: Inducible nitric oxide synthase gene knockout mice have increased resistance to gut injury and bacterial translocation after an intestinal ischemia-reperfusion injury. Crit. Care Med., 28, 3692–3696, 2000.

Iwata, F., Joh, T., Yokoyama, Y., and Itoh, M.: Role of endogenous nitric oxide in ischaemia-reperfusion injury of rat gastric mucosa. J. Gastroenterol. Hepatol., 13, 997–1001, 1998.

Wada, K., Kamisaki, Y., Ohkura, T., Kanda, G., Nakamoto, K., Kishimoto, Y., Ashida, K., and Itoh, T.: Direct measurement of nitric oxide release in gastric mucosa during ischemia-reperfusion in rats. Am. J. Physiol., 274, G465–G471, 1998.

Wink, D.A., Hambauer, I., Krishna, M.C., DeGraff, W., Gamson, J., and Mitchell, J.B.: Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl. Acad. Sci. U S A., 90, 9813–9817, 1993.

Lefer, A.M. and Lefer, D.J.: The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc. Res., 32, 743–751, 1996.

Kosonen, O., Kankaanranta, H., Malo-Ranta, U., and Moilanen, E.: Nitric oxide-releasing compounds inhibit neutrophil adhesion to endothelial cells. Eur. J. Pharmacol., 382, 111–119, 1999.

Gauthier, T.W., Davenpeck, K.L., and Lefer, A.M.: Nitric oxide attenuates leukocyte-endothelial interaction via P-selectin in splanchic ischemia-reperfusion. Am. J. Physiol., 267, G562–G568, 1994.

Payne, D. and Kubes, P.: Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am. J. Physiol., 265, G189–G195, 1993.

Andrews, F.J., Malcontenti-Wilson, C., and O’Brien, P.E.: Protection against gastric ischemia-reperfusion injury by nitric oxide generators. Dig. Dis. Sci., 39, 366–373, 1994.

Kawata, K., Takeyoshi, I., Iwanami, K., Sunose, Y., Aiba, M., Ohwhada, S., Matsumoto, K., and Morishita, Y.: A spontaneous nitric oxide donor ameliorates small bowel ischemia-reperfusion injury in dogs. Dig. Dis. Sci., 46, 1748–1756, 2001.

Weiss, S.J.: Oxygen, ischemia and inflammation. Acta. Physiol. Scand. Suppl., 548, 9–37, 1986.

Granger, D.N. and Korthuis, R.J.: Physiologic mechanisms of postischemic tissue injury. Annu. Rev. Physiol., 57, 311–332, 1995.

Hernandez, L.A., Grisham, M.B., Twoghi, B., Arfors, K.E., Harlan, J.M., and Granger, D.N.: Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am. J. Physiol., 253, H699–H703, 1987.

Granger, D.N., Benoit, J.N., Suzuki, M., and Grisham, M.B.: Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am. J. Physiol., 257, G683–G688, 1989.

Cerqueira, N.F., Hussni, C.A., and Yoshida, W.B.: Pathophysiology of mesenteric ischemia/reperfusion: a review. Acta. Cir. Bras., 20, 336–343, 2005.

Haglund, U.H., Morris, J.B., and Bulkley, G.B.: Haemodynamic characterization of the isolated (denervated) parabiotically perfused rat jejunum. Acta. Physiol. Scand., 132, 151–158, 1988.

Bilbao, J., Garcia-Alonso, I., Portugal, V., Barcelo, P., Ortiz, J., and Mendez, J.: Therapeutic usefulness of antioxidant drugs in experimental intestinal reperfusion syndrome. Rev. Esp. Enferm. Dig., 80, 237–241, 1991.

Laudanno, O.M., Bedini, O.A., Cesolari, J.A., and San Miguel, P.: Sucralfate in the prevention of acute gastric lesions induced by ischemia-reperfusion. Acta. Gastroenterol. Latinoam., 21, 85–88, 1991.

Boros, M., Karcasony, G., Kaszaki, J., and Nagy, S.: Reperfusion mucosal damage after complete intestinal ischemia in the dog: the effects of antioxidant and phospholipase A2 inhibitor therapy. Surgery, 113, 184–191, 1993.

Granger, D.N., McCord, J.M., Parks, D.A., and Hollwarth, M.E.: Xanthine oxidase inhibitors attenuate ischemia-induced vascular permeability changes in the cat intestine. Gastroenterology, 90, 80–84, 1986.

Nakamoto, K., Kamisaki, Y., Wada, K., Kawasaki, H., and Itoh, T.: Protective effect of acetaminophen against acute gastric mucosal lesions induced by ischemia-reperfusion in the rat. Pharmacology, 54, 203–210, 1997.

Horne, M.M., Pascoe, P.J., Ducharme, N.G., Barker, I.K., and Grovum, W.L.: Attempts to modify reperfusion injury of equine jejunal mucosa using dimethylsulfoxide, allopurinol, and intraluminal oxygen. Vet. Surg., 23, 241–249, 1994.

Alarcon de la Lastra, A.C., Martin, M.J., Motilva, V., Jimenez, M., La Casa, C., and Lopez, A.: Gastroprotection induced by silymarin, the hepatoprotective principle of Silybum marianum in ischemia-reperfusion mucosal injury: role of neutrophils. Planta Med., 61, 116–119, 1995.

Zollei, I.: Experimental study of hypovolaemic shock-induced gastric mucosal lesions in the rat. Ann. Acad. Med. Singapore, 28, 85–89, 1999.

Hakguder, G., Akgur, F.M., Ates, O., Olguner, M., Aktug, T., and Ozser, E.: Short-term intestinal ischemia-reperfusion alters intestinal motility that can be preserved by xanthine oxidase inhibition. Dig. Dis. Sci., 47, 1279–1283, 2002.

Kulah, B., Besler, H.T., Akdag, M., Oruc, T., Altnok, G., Kulacoglu, H., Ozmen, M.M., and Coskun, F.: The effects of verapamil vs. allopurinol on intestinal ischemia/reperfusion injury in rats. “An experimental study”. Hepatogastroenterology, 51, 401–407, 2004.

Hei, Z.Q., Huang, H.Q., Zhang, J.J., Chen, B.X., and Li, X.Y.: Protective effect of Astragalus membranaceus on intestinal mucosa reperfusion injury after hemorrhagic shock in rats. World J. Gastroenterol., 11, 4986–4991, 2005.
warm intestinal ischemia-reperfusion injury in rats. *Res. Exp. Med. (Berl.)*, **198**, 237–246, 1999.

[90] Ceran, C., Sonmez, K., Turkyllmaz, Z., Demirogullar, B., Dursun, A., Duzgun, E., Basaklar, A.C., and Kale, N.: Effect of bilirubin in ischemia/reperfusion injury on rat small intestine. *J. Pediatr. Surg.*, **36**, 1764–1767, 2001.

[91] Hammerman, C., Goldschmidt, D., Caplan, M.S., Kaplan, M., Bromiker, R., Edelman, A.I., Gartner, L.M., and Hochman, A.: Protective effect of bilirubin in ischemia-reperfusion injury in the rat intestine. *J. Pediatr Gastroenterol. Nutr.*, **35**, 344–349, 2002.

[92] Buyukgebiz, O., Aktan, A.O., Yegen, C., Yalcin, A.S., Haklar, G., Yalin, R., and Ercan, Z.S.: Captopril increases endothelin serum concentrations and preserves intestinal mucosa after mesenteric ischemia-reperfusion injury. *Res. Exp. Med. (Berl.)*, **194**, 339–348, 1994.

[93] Kitano, M., Wada, K., Kamisaki, Y., Nakamoto, K., Ishihama, Y., Wada, K., Kitano, M., Wada, K., Kamisaki, Y., Nakamoto, K., and Yoshikawa, T., Takahashi, S., Naito, Y., Ueda, S., Tanigawa, A.A., al-Rashed, R.S., and al-Tuwaijiri, A.S.: Natural honey prevents ischemia-reperfusion-induced gastric mucosal lesions and increased vascular permeability in rats. *Eur. J. Gastroenterol. Hepatol.*, **9**, 1101–1107, 1997.

[94] Kojima, M., Iwakiri, R., Wu, B., Fujise, T., Watanabe, K., Lin, T., Amemori, S., Sakata, H., Shimoda, R., Oguzu, T., Ootani, A., Tsunada, S., and Fujimoto, K.: Effects of antioxidative agents on apoptosis induced by ischemia-reperfusion in rat intestinal mucosa. *Aliment. Pharmacol. Ther.*, **18** Suppl 1, 139–145, 2003.

[95] Nabarreiner, R.M., White, N.A., Snyder, J.R., Feldman, B.F., and Donaldson, L.L.: Effects of Carolina rinse solution, dimethyl sulfoxide, and the 21-aminosteroid, U-74389G, on microvascular permeability and morphology of the equine jejunum after low-flow ischemia and reperfusion. *Am. J. Vet. Res.*, **66**, 525–536, 2005.

[96] Tomatsu, N., Yoshiida, N., Takagi, T., Katada, K., Isozaki, Y., Yamamoto, E., Uchiyama, K., Kokura, S., Ichikawa, H., Naito, Y., Yano, T., and Yoshikawa, T.: Edaravone, a newly developed radical scavenger, protects against ischemia-reperfusion injury of the small intestine in rats. *Int. J. Mol. Med.*, **13**, 105–109, 2004.

[97] Berlanga, J., Praes, P., Remirez, D., Gonzalez, R., Lopez-Saura, P., Aguier, J., Ojeda, M., Boyle, J.J., Fitzgerald, A.J., and Playford, R.J.: Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage. *Am. J. Pathol.*, **161**, 373–379, 2002.

[98] Villa, X., Kuluz, J.W., Schleien, C.L., and Thompson, J.F.: Epidermal growth factor reduces ischemia-reperfusion injury in rat small intestine. *Crit. Care Med.*, **30**, 1576–1580, 2002.

[99] Martin, A.E., Luquette, M.H., and Besner, G.E.: Timing, route, and dose of administration of heparin-binding epidermal growth factor-like growth factor in protection against intestinal ischemia-reperfusion injury. *J. Pediatr. Surg.*, **40**, 1741–1747, 2005.

[100] Iino, T., Tashima, K., Umeda, M., Ogawa, Y., Takada, M., Takata, K., and Takeuchi, K.: Effect of ellagic acid on gastric damage induced in ischemic rat stomachs following ammonia or reperfusion. *Life Sci.*, **70**, 1139–1150, 2002.

[101] Lai, H.S., Chen, Y., Chen, W.J., Chang, J., and Chiang, L.Y.: Free radical scavenging activity of fullerol on grafts after small bowel transplantation in dogs. *Transplant. Proc.*, **32**, 1272–1274, 2000.

[102] Stein, H.J., Hinder, R.A., and Oosthuizen, M.M.: Gastric mucosal injury caused by hemorrhagic shock and reperfusion: protective role of the antioxidant glutathione. *Surgery*, **108**, 467–473; discussion 473–464, 1990.

[103] Harward, T.R., Coe, D., Souba, W.W., Klingman, N., and Sechas, M.N.: Protective effect of a novel antioxidant activating factor antagonist, CV-6209, on gastric mucosal injury caused by ischemia-reperfusion in rats. *J. Pediatr.* **140**, 275–280, 2003.
Melatonin reduces bacterial translocation after intestinal ischemia-reperfusion injury. Transplant. Proc., 36, 2944–2946, 2004.

[115] Naito, Y., Yoshikawa, T., Matsuyama, K., Yagi, N., Arai, M., Nakamura, Y., Kaneko, T., Yoshida, N., and Kondo, M.: Effect of a novel histamine H2 receptor antagonist, IT-066, on acute gastric injury induced by ischemia-reperfusion in rats, and its antioxidative properties. Eur. J. Pharmacol., 294, 47–54, 1995.

[116] Gunel, E., Caglayan, F., Caglayan, O., Dilsiz, A., Duman, S., and Aktan, M.: Treatment of intestinal reperfusion injury using antioxidant agents. J. Pediatr. Surg., 33, 1536–1539, 1998.

[117] Byrka-Owczarek, K., Stepelwska-Mazur, K., Krason, M., Bohosiewicz, J., Koszutski, T., and Wójtynek, G.: The evaluation of the protective action of antioxidants on small intestine of rabbits experimentally injured by ischemia and reperfusion. J. Pediatr. Surg., 39, 1226–1229, 2004.

[118] Konturek, P.C., Konturek, S.J., Majka, J., Zembala, M., and Hahn, E.G.: Melatonin affords protection against gastric lesions induced by ischaemia-reperfusion possibly due to its antioxidative and mucosal microcirculatory effects. Eur. J. Pharmacol., 322, 73–77, 1997.

[119] Konturek, P.C., Konturek, S.J., Brzozowski, T., Dembinski, A., Zembala, M., Myta, B., and Hahn, E.G.: Gastroprotective activity of melatonin and its precursor, L-tryptophan, against stress-induced and ischaeima-induced lesions is mediated by scavenge of oxygen radicals. Scand. J. Gastroenterol., 32, 433–438, 1997.

[120] Brzozowski, T., Konturek, P.C., Konturek, S.J., Pajdo, R., Bielanski, W., Brzozowska, I., Stachura, J., and Hahn, E.G.: The role of melatonin and L-tryptophan in prevention of acute gastric lesions induced by stress, ethanol, ischemia, and aspirin. J. Pineal. Res., 23, 79–89, 1997.

[121] Kazez, A., Demirbag, M., Ustundag, B., Ozercan, I.H., and Saglam, M.: The role of melatonin in prevention of intestinal ischemia-reperfusion injury in rats. J. Pediatr. Surg., 35, 1444–1448, 2000.

[122] Ustundag, B., Kazez, A., Demirbag, M., Canatan, H., Halifeoglu, I., and Ozercan, I.H.: Protective effect of melatonin on antioxidative system in experimental ischemia-reperfusion of rat small intestine. Cell Physiol. Biochem., 10, 229–236, 2000.

[123] Cabeza, J., Motilva, V., Martin, M.J., and de la Lastra, C.A.: Mechanisms involved in gastric protection of melatonin against oxidant stress by ischemia-reperfusion in rats. Life Sci., 68, 1405–1415, 2001.

[124] Cabeza, J., Alarcon-de-la-Lastra, C., Jimenez, D., Martin, M.J., and Motilva, V.: Melatonin modulates the effects of gastric injury in rats: role of prostaglandins and nitric oxide. Neurosignals, 12, 71–77, 2003.

[125] Bulboller, N., Akkus, M. A., Ilhan, Y. S., Baysal, F., Ozercan, I., Aygen, E., and Kirkil, C.: The effects of L-tryptophan and pentoxifylline on stress ulcer. Ulus. Travma. Acil. Cerrahi. Derg., 9, 90–95, 2003.

[126] Sileri, P., Sica, G.S., Gentileschi, P., Venza, M., Benavoli, D., Zarzembowski, T., Manzelli, A., and Gaspari, A.L.: Neurosignals, 10, 903–913, 2005.

[127] Ichikawa, H., Takagi, T., Uchiyama, K., Higashihara, H.,
Katada, K., Isozaki, Y., Naito, Y., Yoshida, N., and Yoshikawa, T.: Rotenone, a mitochondrial electron transport inhibitor, ameliorates ischemia-reperfusion-induced intestinal mucosal damage in rats. Redox Rep., 9, 313–316, 2004.

[140] Yoshida, W.B., Alasio, T., Mazziotta, R., Naito, Y., Yoshikawa, T., Nakamura, S., Takahashi, S., Naito, Y., Riaz, A.A., Wan, M.X., Schafer, T., Dawson, P., Menger, M.D., Mojzis, J., Hegedusova, R., and Mirossay, L.: Role of ischemia/reperfusion plus ammonia in the rat. Nippon Yakurigaku Zasshi., 104, 313–323, 1994.

[141] Ozturk, C., Avlan, D., Cinel, I., Cinel, L., Unlu, A., Camdeviren, H., Atik, H., and Oral, U.: Selenium pretreatment prevents bacterial translocation in rat intestinal ischemia/reperfusion model. Pharmacol. Res., 46, 171–175, 2002.

[142] Riaz, A.A., Wan, M.X., Schafer, T., Dawson, P., Menger, M.D., Jeppsson, B., and Thorlacius, H.: Allopurinol and superoxide dismutase protect against leucocyte-endothelium interactions in a novel model of colonic ischaemia-reperfusion. Br. J. Surg., 89, 1572–1580, 2002.

[143] Yoshikawa, T., Nakamura, S., Takahashi, S., Naito, Y., and Kondo, M.: Effect of sofalcone on gastric mucosal injury induced by ischemia-reperfusion and its antioxidant properties. J. Clin. Gastroenterol., 17, S111–S115, 1993.

[144] Momo, K., Hoshina, K., Ishibashi, Y., and Saito, T.: Preventive effects of troxipide on a newly developed model of acute gastric mucosal lesion (AGML) induced by ischemia/reperfusion plus ammonia in the rat. Nippon Yakurigaku Zasshi., 104, 313–323, 1994.

[145] al-Swayeh, O.A., al-Humayyd, M.S., Mustafa, A.A., al-Tuwaijri, A.S., al-Rashed, R.S., and Ali, A.T.: Sucralfate attenuates gastric mucosal lesions and increased vascular permeability induced by ischaemia and reperfusion in rats. J. Gastroenterol. Hepatol., 12, 481–489, 1997.

[146] Wada, K., Kamisaki, Y., Kitano, M., Kishimoto, Y., Nakamoto, K., and Itoh, T.: Effects of sucralfate on acute gastric mucosal injury and gastric ulcer induced by ischemia-reperfusion in rats. Pharmacology., 54, 57–63, 1997.

[147] Mojzis, J., Hegedusova, R., and Mirossay, L.: Role of mucus in ischemia/reperfusion-induced gastric mucosal injury in rats. Physiol. Res., 49, 441–446, 2000.

[148] Sencan, A., Yilmaz, O., Ozer, E., Gunsar, C., Genc, K., Ulukus, C., Taneli, C., and Mir, E.: Does sucralfate prevent apoptosis occurring in the ischemia/reperfusion-induced intestinal injury? Eur. J. Pediatr. Surg., 13, 231–235, 2003.

[149] Seno, K., Joh, T., Yokoyama, Y., and Itoh, M.: Role of endogenous acid in gastric mucosal injury induced by local ischemia-reperfusion in the rat. J. Clin. Gastroenterol., 21, S108–S112, 1995.

[150] Naito, Y., Yoshikawa, T., Matsuyama, K., Yagi, N., Nakamura, Y., Nishimura, S., Kaneko, T., Yoshida, N., and Kondo, M.: Effect of the histamine H2-receptor antagonist (+/-)(E)-l-[2-hydroxy-2-(4-hydroxyphenyl)ethyl]-3-[2-[[5-methylamino]methyl-2-furyl] methyl]thio[ethyl]-2'-[methylsulfonyl]guanidine on acute gastric mucosal injury in rats and its free-radical scavenging activities. Arzneimittelforschung., 47, 845–848, 1997.

[151] Udassin, R., Haskel, Y., and Samuni, A.: Nitroxide radical attenuates ischaemia/reperfusion injury to the rat small intestine. Gut., 42, 623–627, 1998.

[152] Tsimoyiannis, E.C., Lekkas, E.T., Paizis, J.B., Boulis, S.A., Page, P., and Kotoulas, O.B.: Prevention of peritoneal adhesions in rats with trimetazidine. Acta. Chir. Scand., 156, 771–774, 1990.

[153] Tetic, C., Ozden, A., Calli, N., Bilgihan, A., Bostanci, B., Yis, O., and Bayramoglu, H.: Cytoprotective effect of trimetazidine on 60 minutes of intestinal ischemia-reperfusion injury in rats. Transpl. Int., 12, 108–112, 1999.

[154] Sato, N., Kawano, S., Tsuji, S., and Kamada, T.: Microvascular basis of gastric mucosal protection. J. Clin. Gastroenterol., 10, S13–S18, 1988.

[155] Mocan, H., Gedik, Y., Erduran, E., Mocan, Z.M., Okten, A., Gacar, N., and Pul, N.: The role of calcium channel entry blocker in experimental ischemia-reperfusion-induced intestinal injury. Pol. J. Pharmacol., 47, 179–183, 1995.

[156] al-Dohayan, A.D. and al-Tuwaijri, A.S.: The potential synergistic effect of calcium channel blockers and alpha-tocopherol on gastric mucosal injury induced by ischaemia-reperfusion. Eur. J. Gastroenterol. Hepatol., 8, 1107–1110, 1996.

[157] Ekman, T., Risberg, B., and Bagge, U.: Ascorbate reduces gastric bleeding after hemorrhagic shock and retransfusion in rats. Eur. Surg. Res., 26, 187–193, 1994.

[158] Ekman, T., Risberg, B., Bagge, U., and Braide, M.: Blocking of endothelial-leukocyte interaction (rolling) does not improve reflow in the rat gastric mucosa after hemorrhagic shock and retransfusion. Shock., 2, 257–261, 1994.

[159] Nakamura, M., Ozaki, M., Fuchinoue, S., Teraoka, S., and Ota, K.: Ascorbic acid prevents ischemia-reperfusion injury in the rat small intestine. Transpl. Int., 10, 89–95, 1997.

[160] Hazinedaroglu, S.M., Dulger, F., Kayaoglu, H.A., Pehlivan, M., Serinsoz, E., Canbolat, O., and Erverdi, N.: N-acetylcysteine in intestinal reperfusion injury: an experimental study in rats. ANZ J. Surg., 74, 676–678, 2004.

[161] Seno, K., Joh, T., Yokoyama, Y., and Itoh, M.: Role of mucus in gastric mucosal injury induced by local ischemia/reperfusion. J. Lab. Clin. Med., 126, 287–293, 1995.