Systematic review of anastomotic complications of esophagojejunostomy after laparoscopic total gastrectomy

Mikito Inokuchi, Sho Otusuki, Yoshitaka Fujimori, Yuya Sato, Masatoshi Nakagawa, Kazuyuki Kojima

METHODS: A literature search was conducted in PubMed for studies published from January 1, 1994 through January 31, 2015. The search terms included “laparoscopic,” “total gastrectomy,” and “gastric cancer.” First, we selected 16 non-randomized controlled trials (RCTs) comparing LTG with open total gastrectomy (OTG) and conducted an updated meta-analysis of anastomotic complications after total gastrectomy. The Newcastle-Ottawa scoring system (NOS) was used to assess the quality of the non-RCTs included in this study. Next, we reviewed anastomotic complications in 46 case studies of LTG to compare the various procedures for EJS.

RESULTS: The overall incidence of anastomotic leakage associated with EJS was 3.0% (30 of 984 patients) among LTG procedures and 2.1% (31 of 1500 patients) among OTG procedures in the 16 non-RCTs. The incidence of anastomotic leakage did not differ significantly between LTG and OTG (odds OR = 1.42, 95%CI: 0.86-2.33, \(P = 0.17, I^2 = 0\)). Anastomotic stenosis related to EJS was reported in 72 (2.9%) of 2484 patients, and the incidence was 3.2% among LTG procedures and 2.7% among OTG procedures. The incidence of anastomotic stenosis related to EJS was slightly, but not significantly, higher in LTG than in OTG (OR = 1.55, 95%CI: 0.94-2.54, \(P = 0.08, I^2 = 0\)). The various procedures for LTG were classified into six categories in the review of case studies of LTG. The incidence of EJS leakage was similar (1.1% to 3.2%), although the incidence of EJS stenosis was relatively high when the OrVil™ device was used (8.8%) compared with other procedures (1.0% to 3.6%).

CONCLUSION: The incidence of anastomotic complications associated with EJS was not different between LTG and OTG. Anastomotic stenosis was relatively common when the OrVil™ device was used.
INTRODUCTION

Laparoscopic distal gastrectomy (LDG) is an established minimally invasive procedure for the treatment of gastric cancer, particularly early-stage disease. Several meta-analyses of randomized controlled trials (RCTs) comparing LDG with conventional open distal gastrectomy (ODG) have reported the short-term advantages of LDG, such as less pain, less operative bleeding, and earlier recovery. Moreover, LDG was associated with fewer minor postoperative complications, such as wound infection and medical complications, compared with ODG in several meta-analyses, including non-RCTs. In contrast, no RCTs comparing laparoscopic total gastrectomy (LTG) with open total gastrectomy (OTG) have been reported, although one RCT compared laparoscopy-assisted gastrectomy including both distal and total gastrectomy with open gastrectomy. Esophagojejunostomy (EJS) after LTG is a complicated procedure requiring extensive experience and a skilled technique, which is a major reason why LTG is not as commonly performed as LDG. However, several meta-analyses of non-RCTs that included patients with mismatched clinical factors have been reported. First, in 2012, Haverkamp et al published a meta-analysis of 8 non-RCTs, showing that LTG was associated with a longer operative time, less blood loss, and a shorter hospital stay than OTG. Postoperative complications did not differ between LTG and OTG in their meta-analysis. Shen et al demonstrated that LTG was associated with a slightly, but not significantly, lower incidence of postoperative complications than OTG. Regarding individual complications, there were slightly lower risks of wound infection and pneumonia with LTG. Chen et al showed that postoperative medical complications were significantly less frequent with LTG than with OTG, but surgical complications were not. In two meta-analyses published in 2014, LTG was shown to result in a longer operative time, less blood loss, lower analgesic use, earlier resumption of oral intake, earlier hospital discharge, and fewer postoperative complications. Regarding individual complications, LTG was associated with fewer wound-related problems than OTG.

This review focused on anastomotic complications of EJS after LTG. We conducted a meta-analysis of postoperative anastomotic complications of EJS, such as anastomotic leakage and stenosis, by analyzing the results of non-RCTs that compared LTG with OTG. In addition, we analyzed case series of EJS in conjunction with LTG and evaluated the different procedures used to perform EJS.

MATERIALS AND METHODS

Literature overview

First, to conduct this meta-analysis comparing anastomotic complications of EJS between LTG and OTG, a literature search was performed in PubMed for studies published from January 1, 1994 through January 31, 2015. The search terms included “laparoscopic,” “total gastrectomy,” and “gastric cancer.” Reports in languages other than English, reviews, and meta-analyses were excluded. Twenty non-RCTs, but no RCTs, were found. To minimize bias in this meta-analysis of anastomotic complications, we excluded studies that included hand-assisted or robotic approaches, other diseases, and mismatched reconstruction procedures. Four studies were excluded from this meta-analysis for the following reasons. The text of a study by Du et al was not available online; a study by Usui et al included hand-assisted procedures; a study by Kwon et al included robotic surgery; and a study by Mochiki et al included jejunal pouch interposition reconstruction in OTG. The 16 selected non-RCTs are summarized in Table 1. LTG and OTG were compared with regard to anastomotic leakage or stenosis of the EJS.

The Newcastle-Ottawa scoring system (NOS) was used to assess the quality of the non-RCTs. With the NOS, the maximum scores are four points for selection, two for comparability (reconstruction method and the extent of lymphadenectomy), and three for outcome assessment. The studies included in this meta-analysis were of sufficient quality according to the NOS (Table 2).

Second, to review case series reporting anastomotic complications of EJS in LTG, a search of PubMed, performed as described above, yielded 53 case series reports (including more than 10 patients) of LTG that included reconstruction procedures and a results of postoperative anastomotic complications.

Key words: Gastric cancer; Laparoscopic; Gastrectomy; Anastomosis; Complication

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Inokuchi M, Otsuki S, Fujimori Y, Sato Y, Nakagawa M, Kojima K. Systematic review of anastomotic complications of esophagojejunostomy after laparoscopic total gastrectomy. World J Gastroenterol 2015; 21(32): 9656-9665 Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i32/9656.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i32.9656
Table 1 Summary of non-randomized controlled trials comparing laparoscopic total gastrectomy and open total gastrectomy

Author	Year	Nation	n	Extent of LND	Matched factors
Kim et al[30]	2008	South Korea	60	D1 + 8a, 9	1, 2, 3, 5, 6, 7
Topal et al[31]	2008	Belgium	60	D2	1, 2, 3, 4, 5, 6, 7
Kawamura et al[32]	2009	Japan	81	D2-No.10	1, 2, 3, 4, 6, 7
Sakuramoto et al[33]	2009	Japan	74	D1 + 8a, 9/D2-No.10	1, 2, 3, 4, 6, 7
Kim et al[34]	2011	South Korea	190	D2-No.10	1, 2, 3, 4, 5, 6, 7
Arrington et al[35]	2012	United States	50	D0/D1/D2-No.10	1, 2, 5, 6, 7
Eom et al[36]	2012	South Korea	448	D2-No.10	1, 2, 4, 5, 6, 7
Siani et al[37]	2012	Italy	50	D2-No.10	1, 2, 5, 6, 7
Bo et al[38]	2013	China	234	D2-No.10	1, 2, 3, 5, 6, 7
Guan et al[39]	2013	China	97	D2	2, 3, 5, 6, 7
Jeong et al[40]	2013	South Korea	244	D1 + No.8a, 9/D2	1, 2, 3, 4, 5, 7
Kim et al[41]	2013	South Korea	346	D2-No.10	1, 2, 3, 4, 5, 6, 7
Lee et al[42]	2013	South Korea	348	D2	1, 2, 4, 5, 6, 7
Shim et al[43]	2013	South Korea	70	D1 + 8a, 9, 11p/D2	1, 2, 5, 6, 7
Lee et al[44]	2014	South Korea	84	D1 + No.8a, 9, 11p	1, 2, 5, 6, 7
Matsuda et al[45]	2015	Japan	48	D1 + No.8a, 9, 11p	2, 3, 4, 5, 6, 7

*Based on Japanese gastric cancer treatment guidelines. 1. age; 2. sex; 3. body mass index; 4. ASA or comorbidity; 5. tumor stage; 6. extent of LND; 7. reconstruction method. LND: Lymph node dissection.

Table 2 Quality assessment of non-randomized controlled trials based on the Newcastle-Ottawa scoring system

Author	Selection of cases and controls	Definition of controls	Comparability1	Exposure	Same method of ascertainment for cases and controls	Non-response rate
Kim et al[30]	*	*	**	*	**	*
Topal et al[31]	*	*	**	*	**	*
Kawamura et al[32]	*	*	**	*	**	*
Sakuramoto et al[33]	*	*	**	*	**	*
Kim et al[34]	*	*	**	*	**	*
Arrington et al[35]	*	*	**	*	**	*
Eom et al[36]	*	*	**	*	**	*
Siani et al[37]	*	*	**	*	**	*
Bo et al[38]	*	*	**	*	**	*
Guan et al[39]	*	*	**	*	**	*
Jeong et al[40]	*	*	**	*	**	*
Kim et al[41]	*	*	**	*	**	*
Lee et al[42]	*	*	**	*	**	*
Shim et al[43]	*	*	**	*	**	*
Lee et al[44]	*	*	**	*	**	*
Matsuda et al[45]	*	*	**	*	**	*

*Controls selected on the basis of the extent of lymphadenectomy and reconstruction procedure (maximum, 2 stars).

Several studies partly included comparisons, such as comparisons between LTG and LPG or between different EJS procedures. However, 4 studies were excluded because they also included proximal gastrectomy or other diseases, and 3 studies were excluded because of a suspicion of overlapping data from the same institution. The remaining 46 studies were included in this review (Table 3). We classified anastomotic procedures into the following 6 categories: (1) extracorporeal reconstruction by a single stapling technique using a circular stapler; (2) intracorporeal reconstruction by a single stapling technique using a circular stapler; (3) intracorporeal reconstruction by a double (or hemi-double) stapling technique using a circular stapler with a trans-abdominally inserted anvil (DST/HDST); (4) intracorporeal reconstruction by a double (or hemi-double) stapling technique using a circular stapler with a trans-orally inserted anvil (OrVilTM) (DST/HDST by TOA); (5) intracorporeal reconstruction by side-to-side anastomosis using a linear stapler; and (6) intracorporeal reconstruction by functional end-to-end anastomosis using linear staplers.

Statistical analysis

Review Manager software, version 5.2 (Cochrane Collaboration, Oxford, United Kingdom), was used to perform this meta-analysis. For discontinuous variables, each postoperative complication was extracted from the trial report; odds ratios (ORs) were
Author	Year	Country	n	EJS leakage	EJS stenosis
Extracorporeal SST					
Hur et al[49]	2013	South Korea	18	0 (0)	0 (0)
Lee et al[50]	2010	Japan	67	1 (1.5)	6 (0.0)
Kunisaki et al[51]	2011	Japan	15	1 (6.7)	0 (0)
Yoon et al[52]	2012	South Korea	65	3 (4.6)	3 (4.6)
Mou et al[53]	2013	China	12	0 (0)	0 (0)
Jung et al[54]	2013	South Korea	47	2 (4.3)	2 (4.3)
Li et al[55]	2014	China	108	1 (0.9)	0 (0)
Sahoo et al[56]	2014	India	47	0 (0)	0 (0)
Total			379	8 (2.1)	11 (2.9)
Intracorporeal SSWI with trans-abdominally inserted anvil					
Usui et al[57]	2008	Japan	15	0 (0)	0 (0)
Kinoshita et al[58]	2010	Japan	10	0 (0)	0 (0)
Lee et al[59]	2012	South Korea	88	3 (3.4)	3 (0.0)
Shim et al[60]	2013	South Korea	12	2 (1.7)	5 (4.2)
Kim et al[61]	2013	South Korea	36	0 (0)	0 (0)
Yoshikawa et al[62]	2013	Japan	20	0 (0)	0 (0)
Du et al[63]	2013	China	52	0 (0)	0 (0)
Total			233	5 (2.1)	5 (2.1)
Intracorporeal HDST/DST with trans-abdominally inserted anvil					
Omori et al[64]	2009	Japan	10	0 (0)	0 (0)
Nunobe et al[65]	2011	Japan	41	2 (4.9)	3 (7.3)
Shim et al[66]	2013	South Korea	14	1 (7.1)	1 (7.1)
Lafemina et al[67]	2013	United States	17	1 (5.9)	1 (5.9)
Muguruma et al[68]	2014	Japan	32	0 (0)	0 (0)
Zhao et al[69]	2014	China	26	0 (0)	0 (0)
Total			140	4 (2.9)	5 (3.6)
Intracorporeal HDST/DST with trans-orally inserted anvil					
Jeong et al[70]	2009	South Korea	16	0 (0)	0 (0)
Kachlides et al[71]	2011	United States	16	0 (0)	3 (19)
Kunisaki et al[72]	2011	Japan	30	1 (3.3)	0 (0)
Marangoni et al[73]	2012	United Kingdom	13	0 (0)	0 (0)
Liao et al[74]	2013	China	27	1 (3.7)	1 (3.7)
Shim et al[75]	2013	South Korea	12	2 (17)	4 (33)
Xie et al[76]	2013	China	28	0 (0)	0 (0)
Zuzik et al[77]	2013	Japan	52	1 (1.9)	11 (21)
Hiyoshi et al[78]	2014	Japan	21	2 (9.5)	0 (0)
Total			215	7 (3.2)	19 (8.8)
Intracorporeal STSA					
Huscher et al[79]	2007	Italy	11	0 (0)	0 (0)
Inaba et al[80]	2010	Japan	53	2 (3.8)	0 (0)
Bracale et al[81]	2010	Italy	67	4 (6.0)	2 (3.0)
Tsujimoto et al[82]	2012	Japan	15	0 (0)	0 (0)
Nagai et al[83]	2013	Japan	94	2 (2.1)	0 (0)
Petersen et al[84]	2013	Denmark	30	3 (10)	0 (0)
Shim et al[85]	2013	South Korea	10	0 (0)	1 (10)
Morimoto et al[86]	2014	Japan	77	0 (0)	1 (1.3)
Yamamoto et al[87]	2014	Japan	52	1 (1.9)	0 (0)
Total			409	12 (2.9)	4 (1.0)
Intracorporeal FETEA					
Ziqiang et al[88]	2008	China	14	0 (0)	0 (0)
Kim et al[89]	2012	South Korea	124	3 (2.4)	6 (4.8)
Kim et al[53]	2013	South Korea	139	1 (0.7)	1 (0.7)
Elbhaba et al[90]	2013	Japan	65	0 (0)	3 (4.6)
Hiyoshi et al[91]	2014	Japan	24	0 (0)	0 (0)
Tsurola et al[92]	2014	Japan	97	1 (1.0)	0 (0)
Total			463	5 (1.1)	10 (2.2)

EJS: Esophagojejunostomy; SST: Single-stapling technique; DST: Double-stapling technique; HDST: Hemi-double stapling technique; STSA: Side-to-side anastomosis; FETEA: Functional end-to-end anastomosis.

calculated from the total number of patients and the observed numbers of events of interest in all groups using a random-effects model. In the tables of our results, squares indicate point estimates of ORs, with 95% confidential intervals (CIs) indicated by horizontal bars. The diamonds represent the summary ORs with 95% CIs from the included studies. P values < 0.05 were considered to indicate statistical significance.
The I² statistic was used to quantitatively assess heterogeneity. Graphical exploration with funnel plots was used to evaluate publication bias. Publication bias was assessed on the basis of the funnel plot of the included studies.

RESULTS

This meta-analysis included a total of 2484 patients, 984 of whom underwent LTG and 1500 of whom underwent OTG. Anastomotic leakage of EJS was reported in 61 (2.5%) of 2484 patients in the 16 studies. The overall incidence of anastomotic leakage of EJS was 3.0% (30 of 984 patients) with LTG and 2.1% (31 of 1500 patients) with OTG in the 16 studies. The incidence of anastomotic leakage did not differ significantly between LTG and OTG (Figure 1A). Anastomotic stenosis of EJS was reported in 72 (2.9%) of the 2484 patients, and the incidence was 3.2% with LTG and 2.7% with OTG. The incidence of anastomotic stenosis of EJS was slightly, but not significantly, higher in LTG than in OTG (Figure 1B). Publication bias was assessed for each complication using the funnel plot of the included studies. No complications were associated with publication bias, and a symmetric distribution was maintained with all of the studies lying within the 95%CI (data not shown).

In the review of the case series, the overall incidence...
of anastomotic leakage of EJS in the 46 studies was 2.2% (41 of 1839). The incidences of EJS leakage according to the anastomotic procedure are also shown in Table 3. The overall incidence of anastomotic stenosis of EJS was 2.9% (54 of 1839). The incidences of anastomotic stenosis according to the anastomotic procedure are also shown in Table 3. It was relatively common with the DST/HDST by TOA procedure.

DISCUSSION

In this updated meta-analysis, the incidence of anastomotic leakage of EJS did not differ significantly between LTG and OTG. This outcome was consistent with the findings of previous meta-analyses by Wang et al.[12,19]. The incidence of anastomotic leakage of EJS after TG in our review was not higher than that in other studies of OTG, which have reported incidences of 1.0% to 2.1%.[20-22] The Japanese National Clinical Database (NCD) of digestive surgery reported that the incidence of anastomotic leakage after total gastrectomy was 4.4% (881 of 20011) in 2011.[23] Detailed information, specifically on LTG or OTG, was unavailable. Most of the leaks must have occurred at the EJS in that study. Diverse anastomotic procedures have been reported in studies of LTG. In our review, the incidence of anastomotic leakage of EJS was similar between the various procedures.

In our study, the incidence of anastomotic stenosis of EJS was slightly, but not significantly, higher with LTG than with OTG. One problem was that EJS stenosis was not clearly defined in many of the studies included in our analysis. EJS stenosis was not graded based on a standardized assessment, such as the Clavien-Dindo classification. Therefore, it was unclear whether endoscopic dilation or reoperation was performed in all of the patients diagnosed with EJS stenosis. Another problem was that EJS stenosis often occurred several weeks or months after LTG. Therefore, an accurate incidence of anastomotic stenosis was not shown among the short-term outcomes of LTG, and anastomotic stenosis was not mentioned in the NCD report. In our review of case-series studies, the incidence of anastomotic stenosis was higher among the procedures performed using the OrvilTM device. In a review by Unemura et al.[24] comparing procedures used to perform EJS after LTG, the use of circular staplers was significantly associated with higher incidences of both anastomotic leakage (4.7%) and stenosis (8.3%) compared with the use of linear staplers (1.1% and 1.8%, respectively). Even in our analysis, linear stapler methods apparently reduced the risk of stenosis. An anastomotic site formed by a linear stapler could probably secure a wider diameter than one formed by a circular stapler[24]. As another investigator insisted, the high incidence of anastomotic stenosis after DST/HDST may be explained by the following causes: excessive tension at the anastomotic site and focal ischemia at the site where the two staple lines overlap.[25] In the study of the Orvil™ device, which was associated with the highest incidence of anastomotic stenosis, the use of a circular stapler with a smaller size (21 mm) significantly increased the rate of EJS anastomosis compared with the use of a normal-sized stapler (25 mm).[25] To pass the anvil head of Orvil™ easily through the esophageal entrance, the smaller anvil was probably used in some cases in that study. In OTG, the use of a circular stapler with a small diameter (21 mm) was a significant risk factor for EJS stenosis.[26] Both the DST/HDST procedure and the use of a smaller circular stapler could increase the stenosis in the EJS when the Orvil™ device is used. However, several studies on the use of Orvil™ have shown favorable results. Anastomotic complications may be closely associated with learning curves of surgeons.[25] Therefore, they will probably decrease in any procedures as surgeons acquire more experience and improve their technical skills in performing EJS.

In addition, the value of meta-analyses of non-RCTs remains controversial, as non-RCTs often include groups of patients who are mismatched with respect to background characteristics. Our meta-analysis also had limitations despite the inclusion of studies in which the patients were matched as closely as possible. To draw definitive conclusions, prospective studies are needed to clarify the usefulness of LTG. A prospective phase II study of LTG or laparoscopic proximal gastrectomy has begun in Japan, with anastomotic leakage as the primary endpoint. The problems currently associated with EJS after LTG are an important concern. However, the postoperative outcomes of EJS are expected to improve in the future with increased experience and enhanced surgical skills.

In conclusion, the incidences of anastomotic complications of EJS were similar in this meta-analysis comparing LTG and OTG. In case studies of LTG, the incidence of anastomotic leakage of EJS was not different between various anastomotic procedures, although anastomotic stenosis was relatively common in the DST/HDST by TOA procedure.

COMMENTS

Background

Esophagojejunostomy (EJS) after laparoscopic total gastrectomy (LTG) is a complicated procedure requiring extensive experience and a skilled technique, which is a major reason why LTG is not as commonly performed as laparoscopic distal gastrectomy. No randomized controlled trials (RCTs) comparing LTG with open total gastrectomy (OTG) has been reported yet. Several meta-analyses of non-RCTs, including patients with mismatched clinical factors, have been reported.

Research frontiers

Anastomotic complication was a major issue in LTG. Various anastomotic procedures of EJS have been attempted for EJS in LTG. Anastomotic methods were roughly categorized into two groups; circular stapler method had been usually performed in OTG, and linear stapler method developed in LTG.

Innovations and breakthroughs

This meta-analysis of non-RCT of LTG vs OTG was updated, and several non-
RCTs were excluded due to including hand-assisted or robotic approaches, other diseases, and mismatched reconstruction procedures. Furthermore, we reviewed case series of LGT, and categorized various anastomotic methods of EJS into the following six procedures: (1) extracorporeal reconstruction by single stapling technique using a circular stapler; (2) intracorporeal reconstruction by single stapling technique using a circular stapler; (3) intracorporeal reconstruction by double (or semi-double) stapling technique using a circular stapler with a trans-abdominally inserted anvil (DST/HDST); (4) intracorporeal reconstruction by double (or semi-double) stapling technique using a circular stapler with a trans-orally inserted anvil (OrViTM) (DST/HDST by TOA); (5) intracorporeal reconstruction by side-to-side anastomosis using a linear stapler; and (6) intracorporeal reconstruction by functional end-to-end anastomosis using linear staplers.

Applications

The incidence of anastomotic leakage of EJS was similar between LGT and OTG, although that of anastomotic stenosis was slightly, but not significantly, higher with LGT than with OTG. In case series of LGT, the incidence of anastomotic leakage of EJS was not different in various anastomotic procedures, although anastomotic stenosis was slightly higher in the procedure of DST/HDST by TOA.

Terminology

Single stapling technique of EJS is the following procedure. The purse-string suture is placed in distal esophageal stump. The anvil head of a circular stapler is inserted into the esophageal lumen. The circular stapler is inserted into the distal limb of the jejunum. The circular stapler is combined with the anvil head, and EJS is performed. In double or semi-double stapling technique, abdominal esophagus is cut by a linear stapler, and EJS is performed by a circular stapler. The anvil head is inserted trans-abdominally before esophageal transection. However, OrViTM is a device including a trans-orally inserted anvil. The anvil head of OrViTM connected with gastric tube is inserted through pharynx and esophageal entrance intraoperatively. Single-to-side anastomosis is performed peristaltically by a linear stapler. Functional end-to-end anastomosis is performed anti-peristaltically, and the entry hall is closed by a linear stapler.

Peer-review

This paper is an interesting article. Perhaps the only drawback is that there is no any RCT study, but it has been correctly referred.

REFERENCES

1. Memon MA, Khan S, Yunus RM, Barr R, Memon B. Meta-analysis of laparoscopic and open distal gastrectomy for gastric carcinoma. *Surg Endosc* 2008; 22: 1781-1789 [PMID: 18437472 DOI: 10.1007/s00464-008-9925-9]

2. Chen XZ, Hu JK, Yang K, Wang L, Lu QC. Short-term evaluation of laparoscopic-assisted distal gastrectomy for predictive early gastric cancer: a meta-analysis of randomized controlled trials. *Surg Laparosc Endosc Percutan Tech* 2009; 19: 277-284 [PMID: 19692873 DOI: 10.1097/SLQ.0b013e3181b080d3]

3. Ohtani H, Tamori Y, Noguchi K, Azuma T, Fujimoto S, Oba H, Aoki T, Minami M, Hirakawa K. A meta-analysis of randomized controlled trials that compared laparoscopic-assisted and open distal gastrectomy for early gastric cancer. *J Gastrinntest Surg* 2010; 14: 958-964 [PMID: 20354807 DOI: 10.1007/s11605-010-1195-x]

4. Kodera Y, Fujiwara M, Ohashi N, Nakayama G, Koike M, Morita S, Nakao A. Laparoscopic surgery for gastric cancer: a collective review with meta-analysis of randomized trials. *J Am Coll Surg* 2010; 211: 677-686 [PMID: 20609270 DOI: 10.1016/j.jamcollsurg.2010.07.013]

5. Liang Y, Li G, Chen P, Yu J, Zhang C. Laparoscopic versus open gastrectomy for early distal gastric cancer: a meta-analysis. *ANZ J Surg* 2011; 81: 673-680 [PMID: 22295306]

6. Viuñuela EF, Gonen M, Brennan MF, Coit DG, Strong VE. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and high-quality nonrandomized studies. *Ann Surg* 2012; 255: 446-456 [PMID: 22330034 DOI: 10.1097/SLA.0b013e3182468264]

7. Inokuchi M, Sugita H, Otsuki S, Sato Y, Nakagawa M, Kojima K. Laparoscopic distal gastrectomy reduced surgical site infection as compared with open distal gastrectomy for gastric cancer in a meta-analysis of both randomized controlled and case-controlled studies. *Int J Surg* 2015; 15: 61-67 [PMID: 25644544 DOI: 10.1016/j.ijsu.2015.01.030]

8. Cai J, Wei D, Gao CF, Zhang CS, Zhang H, Zhao T. A prospective randomized study comparing open versus laparoscopy-assisted D2 radical gastrectomy in advanced gastric cancer. *Dig Surg* 2011; 28: 331-337 [PMID: 21934308 DOI: 10.1159/000330782]

9. Haverkamp L, Weijis TJ, van der Sluis PC, van der Tweel I, Ruud JP, van Hillegersberg R. Laparoscopic total gastrectomy versus open total gastrectomy for cancer: a systematic review and meta-analysis. *Surg Endosc* 2013; 27: 1509-1520 [PMID: 23263644 DOI: 10.1007/s00464-012-2661-1]

10. Shen H, Shan C, Liu S, Qiu M. Laparoscopy-assisted versus open total gastrectomy for gastric cancer: a meta-analysis. *J Laparoendosc Adv Surg Tech A* 2013; 23: 832-840 [PMID: 23980591 DOI: 10.1089/lap.2013.0152]

11. Chen K, Xu WW, Zhang RC, Pan Y, Wu D, Mou VP. Systematic review and meta-analysis of laparoscopy-assisted and open total gastrectomy for gastric cancer. *World J Gastroenterol* 2013; 19: 5365-5376 [PMID: 23983442 DOI: 10.3748/wjg.v19.i32.5365]

12. Xiong JJ, Nunes QM, Huang W, Tan CL, Ke NW, Xie SM, Ran X, Zhang H, Chen YH, Liu XB. Laparoscopic vs open total gastrectomy for gastric cancer: a meta-analysis. *World J Gastroenterol* 2013; 19: 8114-8123 [PMID: 24307808 DOI: 10.3748/wjg.v19.i44.8114]

13. Wang W, Zhang X, Shen C, Zhi X, Wang B, Xu Z. Laparoscopic versus open total gastrectomy for gastric cancer: an updated meta-analysis. *PLoS One* 2014; 9: e88753 [PMID: 24558421 DOI: 10.1371/journal.pone.0088753]

14. Du J, Zheng J, Li Y, Li J, Ji G, Dong G, Yang Z, Wang W, Gao Z. Laparoscopic-assisted total gastrectomy with extended lymph node resection for advanced gastric cancer—reports of 82 cases. *Hepatogastroenterology* 2010; 57: 1589-1594 [PMID: 21443126]

15. Usubi S, Yoshida T, Ito K, Hiranuma S, Kudo SE, Iwai T. Laparoscopic-assisted total gastrectomy for early gastric cancer: comparison with conventional open total gastrectomy. *Surg Laparosc Endosc Percutan Tech* 2005; 15: 309-314 [PMID: 16340559]

16. Kwon Y, Cho SI, Kwon YJ, Yang KS, Jang YJ, Kim JH, Park SH, Park YJ, Park S. Safety of transorally-inserted anvil for esophagegojejunostomy in laparoscopic total gastrectomy. *Eur J Surg Oncol* 2014; 40: 330-337 [PMID: 24373299 DOI: 10.1016/j.ejso.2013.01.018]

17. Mochocki E, Kamimura H, Haga N, Asao T, Kuwano H. The technique of laparoscopically assisted total gastrectomy with jejunal interposition for early gastric cancer. *Surg Endosc* 2002; 16: 540-544 [PMID: 11928051]

18. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcalse-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: URL: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

19. Wang W, Li Z, Tang J, Wang M, Wang B, Xu Z. Laparoscopic versus open total gastrectomy with D2 dissection for gastric cancer: a meta-analysis. *J Cancer Res Clin Oncol* 2013; 139: 1721-1734 [PMID: 23990014 DOI: 10.1007/s00432-013-1462-9]

20. Deguchi Y, Fukagawa T, Morita S, Okishi M, Saka M, Katai H. Identification of risk factors for esophagegojejunal anastomotic leakage after gastric surgery. *World J Surg* 2012; 36: 1617-1622 [PMID: 22415758 DOI: 10.1007/s00268-012-1559-3]

21. Nomura S, Sasaki M, Katai H, Sano T, Maruyama K. Decreasing complication rates with stapled esophagegojejunostomy following a learning curve. *Gastric Cancer* 2000; 3: 97-101 [PMID: 11984718]

22. Hyodo M, Hosoya Y, Hirashima Y, Haruta H, Karashima K, Saito S, Yokoyama T, Arai W, Zuiki T, Yasuda Y, Nagai H. Minimum leakage rate (0.5%) of stapled esophagegojejunostomy with
sacrifice of a small part of the jejunum after total gastrectomy in 390 consecutive patients. Dig Surg 2007; 24: 169-172 [PMID: 17476107]

23 Watanabe M, Miyata H, Gotoh M, Baba H, Kimura W, Tomita N, Nakagoe T, Shimada M, Kitagawa Y, Sugihara K, Mori M. Total gastrectomy risk model: data from 20,011 Japanese patients in a nationwide internet-based database. Ann Surg 2014; 260: 1034-1039 [PMID: 25072429 DOI: 10.1097/SLA.0000000000000781]

24 Umemura A, Koeda K, Sasaki A, Fujiwara H, Kimura Y, Iwaya T, Akiyama Y, Wakabayashi G. Totally laparoscopic total gastrectomy for gastric cancer: literature review and comparison of the procedure of esophagegajjunostomy. Asian J Surg 2015; 38: 102-112 [PMID: 25458736 DOI: 10.1016/j.asjsurg.2014.09.006]

25 Zuki T, Hosoya Y, Kaneda Y, Kurashina K, Saito S, Ui T, Haruta H, Hyodo M, Sato N, LeF AF, Yashuda Y. Stenosis after use of the double-stapling technique for reconstruction after laparoscopic-assisted total gastrectomy. Surg Endosc 2013; 27: 3683-3689 [DOI: 10.1007/s00464-013-2945-0]

26 Fukagawa T, Gotoda T, Oda I, Deguchi Y, Saka M, Morita S, Katai H. Stenosis of esophago-jejunostomy after gastric surgery. World J Surg 2010; 34: 1859-1863 [PMID: 20455850 DOI: 10.1007/s00268-010-0609-y]

27 Kim SG, Lee YJ, Ha WS, Jung EJ, Ju YT, Jeong CY, Hong SC, Choi SK, Park ST, Bae K. LATG with extracorporeal esophagegajjunostomy: is this minimal invasive surgery for gastric cancer? J Laparoendosc Adv Surg Tech A 2008; 18: 572-578 [PMID: 18721007 DOI: 10.1089/sla.2007.0106]

28 Topal B, Leys E, Ectors N, Aerts R, Penninckx F. Determinants of complications and adequacy of surgical resection in laparoscopic versus open total gastrectomy for adenocarcinoma. Surg Endosc 2008; 22: 980-984 [PMID: 17690934]

29 Kawamura H, Yokota R, Homma S, Kondo Y. Comparison of invasiveness between laparoscopic-assisted total gastrectomy and open total gastrectomy. World J Surg 2009; 33: 2389-2395 [PMID: 19760315 DOI: 10.1007/s00268-009-0208-y]

30 Sakuramoto S, Kikuchi S, Futawatari N, Katada N, Moriya H, Hirai K, Yamashita K, Watanabe M. Laparoscopic-assisted pancreas- and spleen-preserving total gastrectomy for gastric cancer as compared with open total gastrectomy. Surg Endosc 2009; 23: 2416-2423 [PMID: 19266232]

31 Kim MG, Kim BS, Kim TH, Kim KC, Yook JH, Kim BS. The effects of laparoscopic assisted total gastrectomy on surgical outcomes in the treatment of gastric cancer. J Korean Surg Soc 2011; 80: 245-250 [PMID: 22166043 DOI: 10.4174/jkss.2011.80.4.245]

32 Arrington AK, Nelson R, Chen SL, Ellenhorn JD, Garcia-Aguilar J, Kim J. The evolution of surgical technique for total gastrectomy over a 12-year period: a single institution’s experience. Am Surg 2012; 78: 1054-1058 [PMID: 23025939]

33 Eom BW, Lee JH, Park do J, Lee HJ, Kim HH, Yang HK. Comparison of short-term surgical outcomes between laparoscopic-assisted total gastrectomy and open total gastrectomy for gastric cancer. J Laparoendosc Adv Surg Tech A 2013; 23: 323-331 [PMID: 23379290 DOI: 10.1089/lap.2012.0389]

34 Lee MS, Lee JH, Park do J, Lee HJ, Kim HH, Yang HK. Comparison of short- and long-term outcomes of laparoscopic-assisted total gastrectomy and open total gastrectomy in gastric cancer patients. Surg Endosc 2013; 27: 2598-2605 [PMID: 23539255 DOI: 10.1007/s00464-013-2796-8]

35 Shin JH, Oh SJ, Yoo HM, Jeon HM, Park CH, Song KY. Short-term outcomes of laparoscopic versus open total gastrectomy: a matched-cohort study. Am J Surg 2013; 206: 346-351 [PMID: 23642650 DOI: 10.1016/j.amjsurg.2012.11.011]

36 Lee SR, Kim HO, Son BH, Shin JH, Yoo CH. Laparoscopic-assisted total gastrectomy versus open total gastrectomy for upper and middle gastric cancer in short-term and long-term outcomes. Surg Laparosc Endosc Percutan Tech 2014; 24: 277-282 [PMID: 24710235 DOI: 10.1097/SLE.0b013e3182901290]

37 Matsuda T, Iwasaki T, Mitsutsui M, Hirata K, Maekawa Y, Tsugawa D, Sugita Y, Shimada E, Kakeji Y. Surgical outcomes of intracorporeal circular-stapled esophagegajjunostomy using modified over-and-over suture technique in laparoscopic total gastrectomy. Surg Endosc 2015; Epub ahead of print [PMID: 25631108]

38 Hur H, Jeon HM, Kim W. Laparoscopic pancreas- and spleen-preservation D2 lymph node dissection in advanced cxT2 upper-third gastric cancer. J Surg Oncol 2008; 97: 169-172 [PMID: 18095269]

39 Lee SE, Ryu KW, Nam BH, Lee JH, Kim YW, Yu JS, Cho SJ, Lee JY, Kim CG, Choi IJ, Kook MC, Park SR, Kim MJ, Lee JS. Technical feasibility and safety of laparoscopic-assisted total gastrectomy in gastric cancer: a comparative study with laparoscopically-assisted distal gastrectomy. J Surg Oncol 2009; 100: 392-395 [PMID: 19598150 DOI: 10.1002/jso.21345]

40 Kunisaki C, Makino H, Oshima T, Fujii S, Kimura J, Takagawa R, Kosaka T, Akiyama H, Morita S, Endo I. Application of the transorally inserted anvil (OrVil) after laparoscopic-assisted total gastrectomy. Surg Endosc 2011; 25: 1300-1305 [PMID: 20953884 DOI: 10.1007/s00464-010-1367-5]

41 Yoon HM, Kim YW, Lee JH, Ryu KW, Eom BW, Park JY, Choi IJ, Kim CG, Lee JY, Cho SJ, Roh YJ. Robot-assisted total gastrectomy is comparable with laparoscopically assisted total gastrectomy for early gastric cancer. Surg Endosc 2012; 26: 1377-1381 [PMID: 22083338 DOI: 10.1007/s00464-011-2043-0]

42 Mou TY, Hu YF, Yu J, Liu H, Wang YN, Li GX. Laparoscopic splenic hilum lymph node dissection for advanced proximal gastric cancer: a modified approach for pancreas- and spleen-preserving total gastrectomy. World J Gastroenterol 2013; 19: 4992-4999 [PMID: 23946606 DOI: 10.3748/wjg.v19.i30.4992]

43 Jung YJ, Kim DJ, Lee JH, Kim W. Safety of intracorporeal circular stapling esophagegajjunostomy using trans-orally inserted anvil (OrVil) following laparoscopic total or proximal gastric cancer - comparison with extracorporeal anastomosis. World J Surg Oncol 2013; 11: 209 [PMID: 23970279 DOI: 10.1186/1477-7819-11-209]

44 Li P, Huang CM, Zheng CH, Xie JW, Wang JB, Lin JX, Lu J, Wang Y, Chen QY. Laparoscopic spleen-preserving splenic hilar lymphadenectomy in 108 consecutive patients with upper gastric cancer. World J Gastroenterol 2014; 20: 11376-11383 [PMID: 25170225 DOI: 10.3748/wjg.v20.i32.11376]

45 Sahoo MR, Gowda MS, Kumar AT. Early rehabilitation after surgery program versus conventional care during perioperative period in patients undergoing laparoscopic assisted total gastrectomy. J Minim Access Surg 2014; 10: 132-138 [PMID: 25013329 DOI: 10.4103/0972-9941.134876]

46 Usui S, Nagai K, Hiranuma S, Takiguchi N, Matsumoto A, Inokuchi M et al. Anastomotic complications of LTG - Comparison of short-term surgical outcomes between laparoscopic and open total gastrectomy for gastric carcinoma: a case-control study using propensity score matching method. J Am Coll Surg 2013; 216: 184-191 [PMID: 23211177 DOI: 10.1016/j.jamcollsurg.2012.10.014]
52 Inokuchi M, Tanaka H, Otani T, Ono R, Ohuchida K, Nakata K, Miyasaka Y, Maeyama R, Toma K, Yamamoto J, Hase K. Outcome of overlap anastomosis using a linear stapler after laparoscopic total gastrectomy. J Gastrointest Surg 2014; 18: e25-e29 [PMID: 21036074 DOI: 10.1016/j.jgiss.2010.09.005]

53 Bracale U, Marzano E, Nastro P, Barone M, Cuccurullo D, Cutini G, Corcione F, Pignata G. Side-to-side esophagojejunosomy during totally laparoscopic total gastrectomy for malignant disease: a multicenter study. Surg Endosc 2010; 24: 2475-2479 [PMID: 20396906 DOI: 10.1007/s00268-012-0988-z]

54 Tsujimoto H, Uyama I, Yaguchi Y, Kumano I, Takahata R, Matsumoto Y, Yoshida K, Horiguchi H, Aosasa S, Ono S, Yamamoto J, Hase K. Outcome of overlap anastomosis using linear stapler after laparoscopic total and proximal gastrectomy. Langenbeck's Arch Surg 2012; 397: 833-840 [PMID: 22398434 DOI: 10.1007/s00423-012-0939-3]

55 Nagai E, Ohuchida K, Nakata K, Miyasaka Y, Maeyama R, Toma H, Shimizu S, Tanaka M. Feasibility and safety of intracorporeal esophagojejunal anastomosis after laparoscopic gastrectomy: inverted T-shaped anastomosis using linear staplers. Surgery 2013; 153: 732-738 [PMID: 23035598 DOI: 10.1016/j.surg.2012.10.012]

56 Petersen TI, Pahlé E, Sommer T, Zilling T. Laparoscopic minimal invasively total gastrectomy with linear stapled esophagojejunosomy—experience from the first thirty procedures. Anticancer Res 2013; 33: 3269-3273 [PMID: 23890900]

57 Morimoto M, Kitamura H, Hayakawa T, Tanaka M, Matsuo Y, Takeyama H. The overlap method is a safe and feasible for esophagojejunosomy after laparoscopic-assisted total gastrectomy. World J Surg 2014; 38: 811-817 [PMID: 25527860 DOI: 10.1007/s00268-012-2699-8]

58 Yamamoto M, Zaima M, Yamamoto H, Harada H, Kawamura J, Yamaguchi T. A modified overlap method using a linear stapler for intracorporeal esophagojejunosomy after laparoscopic total gastrectomy. Hepatogastroenterology 2014; 61: 543-548 [PMID: 24901178]

59 Ziqiang W, Zhimin C, Jun C, Xiao L, Huaxing L, Pei Wu Y. A modified method of laparoscopic side-to-side esophagojejunal anastomosis: report of 14 cases. Surg Endosc 2008; 22: 2091-2094 [PMID: 18401659 DOI: 10.1007/s00464-008-9744-z]

60 Kim HS, Kim MG, Kim BS, Lee IS, Lee S, Yook JH, Kim BS. Comparison of totally laparoscopic total gastrectomy and laparoscopic-assisted total gastrectomy methods for the surgical treatment of early gastric cancer near the gastroesophageal junction. J Laparoendosc Adv Surg Tech A 2013; 23: 204-210 [PMID: 23256854 DOI: 10.1089/lap.2012.0393]

61 Liao QG, Ou XW, Liu SQ, Zhang SR, Huang W. Laparoscopy-assisted total gastrectomy with trans-orally inserted anvil (OrVil®): a single institution experience. World J Gastroenterol 2013; 19: 755-760 [PMID: 23431026 DOI: 10.3734/wjg.v19.i15.755]

62 Xie JW, Huang CM, Zheng CH, Li P, Wang JB, Lin JX, Jun L. A safe anastomotic technique of using the transorally inserted anvil (OrVil) in Roux-en-Y reconstruction after laparoscopy-assisted total gastrectomy for proximal malignant tumors of the stomach. World J Surg Oncol 2013; 11: 256 [PMID: 24094137 DOI: 10.1186/1477-7819-11-256]

63 Hiroyoshi Y, Oki E, Ando K, Ito S, Saeki H, Morita M, Baba H, Maehara Y. Outcome of esophagojejunosomy during totally laparoscopic total gastrectomy: a single-center retrospective study. Anticancer Res 2014; 34: 7277-7272 [PMID: 25503153]

64 Huscger CG, Mingoli A, Sagrini G, Brachini G, Binda B, Di Paolo M, Ponzano C. Totally laparoscopic total and subtotal gastrectomy with extended lymph node dissection for early and advanced gastric cancer: early and long-term results of a 100-patient series. Am J Surg 2007; 194: 839-44; discussion 844 [PMID: 18057891]

65 Inaba K, Satoh S, Ishida Y, Taniguchi K, Isogaki J, Kanaya S, Uyama I. Overlap method: novel intracorporeal esophagojejunosomy after laparoscopic total gastrectomy. J Am Coll Surg 2010; 211: e25-e29 [PMID: 21036074 DOI: 10.1016/j.jamcollsurg.2010.09.005]

66 Lee YH, Jeon MK, Na JY, Park KH, Kwon DS, Lim KS, Hwang JY, Lee JH, Park SW, Oh JH, Park JY, Kim YA. Overlap anastomosis for intracorporeal esophagojejunosomy after laparoscopic total gastrectomy. J Gastrin 2014; 20: 13556-13562 [PMID: 23090806 DOI: 10.3748/wjg.v13.i7.13556]
Ebihara Y, Okushiba S, Kawarada Y, Kitashiro S, Katoh H. Outcome of functional end-to-end esophageojunostomy in totally laparoscopic total gastrectomy. *Langenbecks Arch Surg* 2013; 398: 475-479 [PMID: 23354359 DOI: 10.1007/s00423-013-1051-z]

Tsunoda S, Okabe H, Obama K, Tanaka E, Hisamori S, Kinjo Y, Sakai Y. Short-term outcomes of totally laparoscopic total gastrectomy: experience with the first consecutive 112 cases. *World J Surg* 2014; 38: 2662-2667 [PMID: 24838484 DOI: 10.1007/s00268-014-2611-2]

P- Reviewer: Kawabata Y, Lara FJP S- Editor: Ma YJ L- Editor: A E- Editor: Zhang DN
