The cost of approximate controllability for semilinear heat equations in one space dimension

Kim Dang Phung
17 rue Léonard Mafrand 92320 Châtillon, France
phung@cmla.ens-cachan.fr

Abstract: This note deals with the approximate controllability for the semilinear heat equation in one space dimension. Our aim is to provide an estimate of the cost of the control.

Keywords: Cost of approximate controllability, Semilinear heat equation.

1 Introduction and main result

In this paper, we apply a successful combination of three key tools which allows to get a measure of the cost of the approximate controllability for semilinear heat equation. The first tool consists to get enough information about the approximate control for the linear heat equation with a potential depending on space-time variable. Then a fixed point method is applied. The fixed point technique described here was previously used in [Z] to prove the exact controllability for semilinear wave equation in one dimension. The last tool, usually used for control problem (see [FCZ2, p.589] e.g.), consists to choose adequately the time of controllability.

Many results exist by now concerning the approximate controllability for semilinear heat equation in a bounded domain \(\Omega \subset \mathbb{R}^n, n \geq 1 \) when the control acts in a non-empty subdomain \(\omega \subset \Omega, \omega \neq \Omega \) (see [FPZ, IK] or [FCZ2] and references therein). In particular, it is proved in [FCZ2] that for any time \(T > 0 \), if the system

\[
\begin{aligned}
\partial_t u - \Delta u + f(u) &= h \cdot 1_{\omega} \quad \text{in } \Omega \times (0, T), \\
 u &= 0 \quad \text{on } \partial \Omega \times (0, T), \\
 u(\cdot, 0) &= u_0 \quad \text{in } \Omega,
\end{aligned}
\]

with \(f : \mathbb{R} \to \mathbb{R} \) locally lipschitz-continuous, admits at least one globally defined and bounded solution \(u^* \), corresponding to the data \(u_0^* \in L^2(\Omega) \) and \(h^* \in L^\infty(\omega \times (0, T)) \), and further if the function \(f \) satisfies

\[|f'(s)| \leq c(1 + |s|^p) \quad \text{a.e., with } p \leq 1 + 4/n \quad \text{and } c > 0, \]

and

\[
\lim_{|s| \to \infty} \frac{f(s)}{|s| \ln^{3/2} (1 + |s|)} = 0,
\]

then for any \(u_0 \in L^2(\Omega), \ u_d \in L^2(\Omega) \) and \(\varepsilon > 0 \), there exists a control \(h \in L^\infty(\omega \times (0, T)) \) such that the solution of (1.1) is globally defined in \([0, T]\) and satisfies

\[\| u(\cdot, T) - u_d \|_{L^2(\Omega)} \leq \varepsilon. \]
However, in [FCZ2], no information was given about a measure of the control with respect to \(\varepsilon \). In this paper, we provide an estimate of the control but under more restrictive hypothesis. Our result is

\[\text{Theorem .- Let } \Omega = (0,1) \text{ and } T > 0. \text{ Assume } f \in C^1(\mathbb{R}) \text{ and} \]

\[
\lim_{|s| \to \infty} \frac{f(s)}{|s| \sqrt{\ln (1 + |s|)}} = 0 ,
\]

then, for any \((u_0, u_d) \in H_0^1(\Omega) \times H_0^1(\Omega)\) and any \(\varepsilon \in (0, 1]\), there exist a control \(h_\varepsilon \in L^2(\omega \times (0,T))\) and a function \(u = u(x,t) \in L^\infty (\Omega \times (0,T))\) such that

\[
\|h_\varepsilon\|_{L^2(\omega \times (0,T))} \leq \exp\left\{ e^{C/\varepsilon} \right\} ,
\]

\[
\|u(\cdot, T) - u_d\|_{L^2(\Omega)} \leq \varepsilon ,
\]

and

\[
\begin{cases}
\partial_t u - \partial_{xx} u + f(u) = h_\varepsilon \cdot 1_\omega \quad \text{in } \Omega \times (0,T) , \\
u = 0 \quad \text{on } \partial \Omega \times (0,T) , \\
u \big(\cdot,0\big) = u_0 \quad \text{in } \Omega .
\end{cases}
\]

Here, \(C\) is a positive constant independent on \(\varepsilon\).

Remark .- Notice that we do not assume \(f(0) = 0\). If \(f(0) = 0\) (which correspond to the case \(u^* = 0\)), we can use the following control strategy to provide an estimate of the control when \(u_0 \in L^2(\Omega)\): we divide the time interval \((0, T)\) in two subintervals. During the first time interval \((0, T/2)\), we use a null control to steer the semilinear heat equation starting from \(u_0\) to zero (see [FCZ2]). In the second time interval \((T/2, T)\), we apply the above Theorem with null initial data.

The rest of this note is devoted to the proof of Theorem.

2 Proof of Theorem

We proceed in three steps.

Step 1 .- Preliminary on the cost of the approximate controllability for the linear heat equation with a potential. We first recall some results from [P] concerning the cost of the approximate controllability for the heat equation with a potential \(a = a(x,t) \in L^\infty (\Omega \times (0,T))\). We denote \(\|a\|_\infty = \|a\|_{L^\infty (\Omega \times (0,T))}\). In the sequel, \(c_1 > 1\) and \(c_2 > 1\) are two constants only depending on \(\Omega\) and \(\omega\). Let \(T' \in (0,T]\) called time of controllability of the linear system. We introduce the operator \(C\) given by

\[
C : \vartheta \in L^2 (\omega \times (0,T')) \longrightarrow w(\cdot, 0) \in L^2 (\Omega) ,
\]

where \(w \in C\left([0,T'] ; H_0^1 (\Omega) \right) \cap W^{1,2} (0,T ; L^2 (\Omega))\) is the solution of

\[
\begin{cases}
-\partial_t w - \Delta w + aw = E \vartheta \cdot 1_\omega \quad \text{in } \Omega \times (0,T') , \\
w = 0 \quad \text{on } \partial \Omega \times (0,T') , \\
w(\cdot,T') = 0 \quad \text{in } \Omega ,
\end{cases}
\]

with \(a \in L^\infty (\Omega \times (0,T))\) and \(E = \exp\left\{ c_2 \left(1 + T' \|a\|_\infty \left(1 + e^{c_2 T' \|a\|_\infty^2} + \|a\|_\infty^{2/3} \right) \right) \right\} .\) We define \(\mathcal{F} = \text{Im } C\) the space of exact controllability initial data with the following norm:

\[
\|w_0\|_{\mathcal{F}} = \inf \left\{ \|\vartheta\|_{L^2(\omega \times (0,T'))} \ \big| \ C \vartheta = w_0 \right\} .
\]
Denote C^* the adjoint of C. It has been proved (see \[T]\) that the operator $B = CC^*$ is non-negative, compact and self-adjoint on $L^2(\Omega)$ which allows us to associate the Hilbert basis with eigenfunctions ξ_n of B and eigenvalues $\mu_n > 0$ where μ_n is non-increasing and tends to zero. Furthermore, let the sets $S_n = \{m > 0 / \alpha_n < \mu_m \leq \alpha_n\}$ where

$$\alpha_n = e^{\mu_n + e^{-n}},$$ \hspace{1cm} (2.2)

for all $n > 0$, then each function $\phi \in L^2(\Omega)$ can be represented in the form $\phi = \sum_{n \geq 0} \phi_n$ where $\phi_n = \sum_{m \in S_n} \langle \phi, \xi_m \rangle \xi_m$. Finally, let $N > 0$ and $z \in H^1_0(\Omega)$, then we can write, in $L^2(\Omega)$:

$$z = \sum_{n \leq N} z_n + \sum_{n > N} z_n \text{ with } z_n = \sum_{m \in S_n} \langle z, \xi_m \rangle \xi_m,$$

with the properties

$$\left\| \sum_{n \leq N} z_n \right\|_{L^2(\Omega)} \leq c_3 \frac{1}{\sqrt{N+1}} \| z \|_{L^2(\Omega)} ,$$

$$\left\| \sum_{n \leq N} z_n - z \right\|_{L^2(\Omega)} \leq c_3 \frac{D}{\ln(2+\sqrt{N+1})} \| z \|_{H^1_0(\Omega)} ,$$ \hspace{1cm} (2.3)

for some constant $c_3 > 0$ independent on N, z, T and a and where $D = c_1 \left(T' e^{c_1 T'} a, \| a \|_{\infty}^2 + \frac{1}{\omega} \right) > 1$ (see \[T]\). Here, $\sum_{n \leq N} z_n \in F$ and precisely

$$\sum_{n \leq N} z_n = \sum_{n \leq N} \sum_{m \in S_n} \langle z, \xi_m \rangle \xi_m = C \left(\sum_{n \leq N} \sum_{m \in S_n} \langle z, \xi_m \rangle \frac{1}{\mu_m} C^* \xi_m \right).$$

On another hand, let $\chi \cdot 1_{\omega}$ be the null-control function which steers to zero at time T' the solution of the heat equation with potential $a(x, T' - t)$ and initial data $\pi_0 \in L^2(\Omega)$. It is known (see \[FCZ1\]) that

$$\| \chi \|_{L^2(\omega \times (0,T'))} \leq G \| \pi_0 \|_{L^2(\Omega)},$$ \hspace{1cm} (2.4)

where $G = \exp \left(c_0 \left(1 + \frac{1}{T'} + T' \| a \|_{\infty} + \| a \|_{\infty}^{2/3} \right) \right)$ for some constant $c_0 > 0$ only depending on Ω and ω.

Therefore, for all $T' \in (0,T]$, $a \in L^\infty(\Omega \times (0,T))$, $\pi_0 \in L^2(\Omega)$, $z \in H^1_0(\Omega)$, if we choose $\ell(x, T' - t) = E \sum_{n \leq N} \sum_{m \in S_n} \langle z, \xi_m \rangle \frac{1}{\mu_m} C^* \xi_m$

then from \[T, P, Q, R\] and \[T\], the solution $v_1 \in C \left([0, T'] ; H^1_0(\Omega) \right) \cap W^{1,2} \left(0, T' ; L^2(\Omega) \right)$ of

$$\begin{cases}
\partial_t v_1 - \Delta v_1 + a(x, T' - t) v_1 = (\chi + \ell) \cdot 1_{\omega} & \text{in } \Omega \times (0, T'), \\
v_1 = 0 & \text{on } \partial \Omega \times (0, T'), \\
v_1 (\cdot, 0) = \pi_0 & \text{in } \Omega,
\end{cases}$$

satisfies

$$\| v_1 (\cdot, T') - z \|_{L^2(\Omega)} \leq c_4 D e^{-N} \| z \|_{H^1_0(\Omega)} ,$$ \hspace{1cm} (2.5)

and moreover

$$\| \chi + \ell \|_{L^2(\omega \times (0,T'))} \leq G \| \pi_0 \|_{L^2(\Omega)} + c_4 D e^{c_4 T'} \| z \|_{L^2(\Omega)} ,$$ \hspace{1cm} (2.6)

for any $N \geq N_o$ where $N_o > 0$ and $c_4 \geq e^{N_o}$. Clearly, the approximate-control function ℓ depends on N, z and a coming from E and the Hilbert basis (ξ_n, μ_n).

Next, let us introduce the operator S given by

$$S : \lambda \in \mathbb{R} \rightarrow v_2 (\cdot, T') \in H^1_0(\Omega),$$
where $v_2 \in C \left([0, T'] ; H^1_0 (\Omega) \cap W^{1,2} (0, T' ; L^2 (\Omega)) \right)$ is the unique solution of

$$
\begin{cases}
\partial_t v_2 - \Delta v_2 + a (x, T' - t) v_2 = \lambda \text{ in } \Omega \times (0, T') , \\
v_2 = 0 \text{ on } \partial \Omega \times (0, T') , \\
v_2 (\cdot, 0) = 0 \text{ in } \Omega ,
\end{cases}
$$

One can easily check that

$$
\| S (\lambda) \|_{H^1_0 (\Omega)} = \| \nabla v_2 (\cdot, T') \|_{L^2 (\Omega)} \leq | \lambda | \sqrt{T'} e^{c_5 T' |a|_\infty^2} ,
$$

for some constant $c_5 > 0$ only depending on Ω and ω.

Consequently, for all $T' \in (0, T]$, $a \in L^\infty (\Omega \times (0, T))$, $\pi_o \in L^2 (\Omega)$, $z_d \in H^1_0 (\Omega)$, if we choose $z = z_d - S (\lambda)$ the solution $v_3 = v_1 + v_2 \in C \left([0, T'] ; H^1_0 (\Omega) \cap W^{1,2} (0, T' ; L^2 (\Omega)) \right)$ of

$$
\begin{cases}
\partial_t v_3 - \Delta v_3 + a (x, T' - t) v_3 = \lambda + (\chi + \ell) \cdot 1_\omega \text{ in } \Omega \times (0, T') , \\
v_3 = 0 \text{ on } \partial \Omega \times (0, T') , \\
v_3 (\cdot, 0) = \pi_o \text{ in } \Omega ,
\end{cases}
$$

satisfies, taking into account (2.6), (2.7) and (2.8),

$$
\| v_3 (\cdot, T') - z_d \|_{L^2 (\Omega)} \leq c_4 D e^{-N} \left(\| z_d \|_{H^1_0 (\Omega)} + | \lambda | \sqrt{T'} e^{c_5 T' |a|_\infty^2} \right) ,
$$

and

$$
\| \chi + \ell \|_{L^2 (\omega \times (0, T'))} \leq G (\pi_o) + c_4 E e^{c_5} \left(\| z_d \|_{L^2 (\Omega)} + | \lambda | \sqrt{T'} e^{c_5 T' |a|_\infty^2} \right) .
$$

Finally, let $q \in L^\infty (\Omega \times (0, T))$. Now, we conclude with the construction of a solution v of the heat equation with a potential and a second member and with a control acting on the interval $(T - T', T)$. Precisely, we divide the time interval $(0, T)$ in two subintervals. During the first time interval $(0, T - T')$, we let the system

$$
\begin{cases}
\partial_t v - \Delta v + q v = \lambda \text{ in } \Omega \times (0, T - T') , \\
v = 0 \text{ on } \partial \Omega \times (0, T - T') , \\
v (\cdot, 0) = u_o \text{ in } \Omega ,
\end{cases}
$$

to evolve freely without control. In the second time interval $(T - T', T)$, we choose $a (\cdot, t) = q (\cdot, T - t)$, $\pi_o = v (\cdot, T - T')$ and the control function such that

$$
\begin{cases}
\partial_t v - \Delta v + q v = \lambda + [(\chi + \ell) (x, T' - T + t)] \cdot 1_{\omega \times (T - T', T)} \text{ in } \Omega \times (0, T) , \\
v = 0 \text{ on } \partial \Omega \times (0, T) , \\
v (\cdot, 0) = u_o \text{ in } \Omega ,
\end{cases}
$$

satisfies

$$
\| v (\cdot, T) - z_d \|_{L^2 (\Omega)} \leq c_4 D e^{-N} \left(\| z_d \|_{H^1_0 (\Omega)} + | \lambda | \sqrt{T'} e^{c_5 T' |q|_\infty^2} \right) ,
$$

and moreover

$$
\| \chi + \ell \|_{L^2 (\omega \times (0, T'))} \leq G (v (\cdot, T - T')) + c_4 E e^{c_5} \left(\| z_d \|_{L^2 (\Omega)} + | \lambda | \sqrt{T'} e^{c_5 T' |q|_\infty^2} \right) ,
$$

for any $N \geq N_o$ where $N_o > 0$ and $c_4 \geq e^{N_o}$. Notice that one can easily check that

$$
\| v (\cdot, T - T') \|_{L^2 (\Omega)} \leq e^{c_6 T' |q|_\infty^2} \left(\| u_o \|_{L^2 (\Omega)} + c_6 | \lambda | \sqrt{T} \right) ,
$$

for some constant $c_6 > 0$ only depending on Ω and ω.

Choosing

$$
N \leq \ln \left(c_4 D e^{\frac{1 + \varepsilon}{\varepsilon}} \left(1 + \| z_d \|_{H^1_0 (\Omega)} + | \lambda | \sqrt{T'} e^{c_5 T' |q|_\infty^2} \right) \right) < N + 1
$$

for some $c_4 > 0$ and $\varepsilon > 0$. The proof is complete.
then one has
\[\| u (\cdot, T) - z_d \|_{L^2(\Omega)} \leq \varepsilon , \]
and moreover,
\[
\| x + \ell \|_{L^2(\omega \times (0, T'))} \leq Ge^{c\varepsilon T} \|q\|^2 \left(\| u_0 \|_{L^2(\Omega)} + c_6 |\lambda| \sqrt{T} \right) + c_4 E \exp \left(q \frac{1 + \| z_d \|_{H^1_0(\Omega)} + |\lambda| \sqrt{T} \varepsilon^{c_5 T'\|q\|^2}}{e} \right) .
\]

Step 2 .- Introduction of \(g \) and choice of \(T' \). We begin to fix \(\varepsilon \in (0, 1) \) and \((u_0, u_d) \in H^1_0(\Omega) \times H^1_0(\Omega) \). Next, we introduce
\[
g (s) = \begin{cases} \frac{f(s) - f(0)}{f'(0)} & \text{for } s \neq 0 \\ 0 & \text{at } s = 0 \end{cases}
\]
which satisfies, from our hypothesis on \(f \), the following assertion
\[
\forall \delta > 0 \quad \exists C_{\delta} > 0 \quad \forall s \in \mathbb{R} \quad |g(s)| \leq C_{\delta} + \delta \sqrt{\ln (1 + |s|)} ,
\]
and consequently, for any \(u \in L^\infty(\Omega \times (0, T)) \), \(g(u) \in L^\infty(\Omega \times (0, T)) \) and one has
\[
\forall \delta > 0 \quad \exists C_{\delta} > 0 \quad \|g(u)\|_\infty \leq C_{\delta} + \delta \sqrt{\ln (1 + u})_\infty .
\]
Hence, we easily deduce that
\[
\forall \delta > 0 \quad \exists C_{\delta} > 0 \quad \exp \left(\frac{1}{\delta} \|g(u)\|_\infty^2 \right) \leq C_{\delta} + \|u\|_\infty . \quad (2.8)
\]
Now, we take \(T' \in (0, T] \) depending on \(\varepsilon \) and \(\|g(u)\|_\infty \) as follows
\[
T' = \begin{cases} T - \varepsilon \|g(u)\|_\infty & \text{if } \varepsilon \|g(u)\|_\infty^2 \leq 1 \\ \varepsilon \|g(u)\|_\infty & \text{if } \varepsilon \|g(u)\|_\infty^2 > 1 \end{cases} \quad (2.9)
\]

Step 3 .- The fixed point method thanks to the homotopy invariance of the Leray-Schauder degree. In order to prove Theorem, we will apply the homotopical version of the Leray-Schauder fixed point theorem.

Theorem (Leray-Schauder) .- Let \(E \) be a Banach space and \(H : E \times [0, 1] \to E \) be a compact continuous mapping such that \(H(u, 0) = 0 \) for every \(u \in E \). If there exists a constant \(K \) such that \(\|u\|_E < K \) for every pair \((u, \sigma) \in E \times [0, 1]\) satisfying \(u = H(u, \sigma) \), then the mapping \(H(\cdot, 1) : E \to E \) has a fixed point.

We introduce the following mapping \(H \)
\[
H : (u, \sigma) \in L^\infty(\Omega \times (0, T)) \times [0, 1] \to \sigma y \in L^\infty(\Omega \times (0, T))
\]
where \(y \in C ([0, T]; H^1_0(\Omega)) \cap W^{1,2}(0, T; L^2(\Omega)) \) is the solution of
\[
\begin{cases}
\partial_t y - \Delta y + \sigma g(u) y = -\sigma f(0) + h \cdot 1_{\omega} & \text{in } \Omega \times (0, T) , \\
y = 0 & \text{on } \partial \Omega \times (0, T) , \\
y(\cdot, 0) = u_0 & \text{in } \Omega ,
\end{cases}
\]

}\}

\[
\begin{cases}
\partial_t y - \Delta y + \sigma g(u) y = -\sigma f(0) + h \cdot 1_{\omega} & \text{in } \Omega \times (0, T) , \\
y = 0 & \text{on } \partial \Omega \times (0, T) , \\
y(\cdot, 0) = u_0 & \text{in } \Omega ,
\end{cases}
\]
when the control function \(h \) depends on \((u, \sigma)\) as follows: from \(q = \sigma g (u) \in L^\infty (\Omega \times (0, T)) \), we take \(a (\cdot, t) = q (\cdot, T - t) \) and generate the eigencouple \((\xi_n, \mu_n)\), next we choose the control function

\[
h (x, T - t) = \begin{cases} 0 & \text{for } T' \leq t < T \\ \chi (x, T' - t) + E \sum_{n \leq N} \sum_{m \in S_n} (u_d - S (-\sigma f (0), \xi_n) \frac{1}{\mu_n} C^* \xi_m) & \text{for } 0 < t < T'
\end{cases}
\]

where \(N \geq N_0 \) is such that \(N \leq \ln \left(c_4 D e^{\frac{1 + T'}{2} \left(1 + \| u_d \|_{L^2 (\Omega)} + \| \sigma g (u) \|_{\infty} \right) + \| \sigma g (u) \|_2^2 / 3 \right) \).

with

\[
\begin{align*}
G &= \exp \left(c_0 \left(1 + \frac{1}{T'} + T' \| \sigma g (u) \|_{\infty} + \| \sigma g (u) \|_{2/3} / 2 \right) \right), \\
D &= c_1 \left(T' e^{c T' \| \sigma g (u) \|_{2/3}^2} \right) + \frac{1}{T'} > 1, \\
E &= \exp \left(c_2 \left(1 + T' \| \sigma g (u) \|_{\infty} + \| \sigma g (u) \|_{2/3} / 2 \right) \right).
\end{align*}
\]

Clearly, the control function \(h \) depends on \(\varepsilon, u, u_d \) and \((u, \sigma)\) coming from \(E \) and the eigencouple \((\xi_n, \mu_n)\).

From now, we use the letter \(c \) to denote a positive constant only depending on \(\Omega \) and \(\omega \), whose value can change from line to line. From (2.10) and (2.11), the control function is bounded as follows:

\[
\| h \|_{L^2 (\omega \times (0, T))} \leq \left(\| u_o \|_{L^2 (\Omega)} + \| \sigma f (0) \| \sqrt{T'} \right) \exp \left(c \left(1 + T' \| \sigma g (u) \|_{\infty}^2 + \frac{1}{T'} + T' \| \sigma g (u) \|_{\infty} + \| \sigma g (u) \|_{2/3} / 2 \right) \right) \]

and therefore

\[
\| h \|_{L^2 (\omega \times (0, T))} \leq \left(\| u_o \|_{L^2 (\Omega)} + \| \sigma f (0) \| \sqrt{T'} \right) \exp \left(c \left(1 + T' \| \sigma g (u) \|_{\infty}^2 + \sqrt{T'} \| \sigma g (u) \|_{\infty} + \| \sigma g (u) \|_{2/3} / 2 \right) \right) \]

\[
\exp \left(\frac{1}{T} \left(1 + \| u_d \|_{H^1_0 (\Omega)} + \| \sigma f (0) \|^2 \right) \right) e^{T' \| \sigma g (u) \|_{2/3}^2} \right) \right).
\]

The continuity and compactness property of \(H \) comes from the following embedding

\[
W^{1,2} (0, T; L^2 (\Omega)) \cap L^\infty (0, T; H^1_0 (\Omega)) \subset L^\infty (\Omega \times (0, T))
\]

which is compact in one dimension of space. It remains to prove that

\[
\| u \|_{\infty} < K,
\]

for every pair \((u, \sigma) \in L^\infty (\Omega \times (0, T)) \times [0, 1] \) satisfying \(u = H (u, \sigma) \).
The solution \(u \) of the nonlinear system \(H(u, \sigma) = u \) is also solution of the linear system

\[
\begin{align*}
\partial_t \psi - \partial_{xx} \psi + q(x, t) \psi &= b(x, t) \quad \text{in } \Omega \times (0, T), \\
\psi &= 0 \quad \text{on } \partial \Omega \times (0, T), \\
\psi(\cdot, 0) &= \sigma u_o \quad \text{in } \Omega,
\end{align*}
\]

by substituting \(q = \sigma^2 g(u) \) and \(b = \sigma (-\sigma f(0) + h \cdot \mathbf{1}_\omega) \). But such solution \(\psi \) satisfies, in one space dimension, the following inequality

\[
\|\psi\|_{L^\infty(0, T)}^2 \leq c e^{cT\|g\|_{L^\infty(0, T)}^2} (\|\sigma u_o \|_{H^1_0(\Omega)}^2 + \|b\|_{L^2(\Omega \times (0, T))}^2).
\]

Consequently, the later inequality and (2.13) imply that

\[
\|u\|_{L^2(\Omega \times (0, T))}^2 \leq c e^{cT\|g(u)\|_{L^\infty(0, T)}^2} (\|u_o\|_{H^1_0(\Omega)}^2 + \|u_d\|_{L^2(\Omega)}^2 + |f(0)| T^2)
\]

\[
\cdot \exp \left(c \left(1 + T^2 + T \left(\|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) + \|g(u)\|_{L^\infty(0, T)} \right) \right)
\]

which gives

\[
\|u\|_{L^2(\Omega \times (0, T))}^2 \leq \left(\|u_o\|_{H^1_0(\Omega)}^2 + \|u_d\|_{L^2(\Omega)}^2 + |f(0)| T^2 \right) \exp \left(C_T \left(1 + \|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) e^{cT/\varepsilon} \right),
\]

where \(C_T > 0 \) is a constant only depending on \(T, \Omega \) and \(\omega \).

Now if \(\varepsilon \|g(u)\|_{L^\infty(0, T)}^2 > 1 \) then by the choice of \(T' \) given by (2.40), we have

\[
\|u\|_{L^2(\Omega \times (0, T))}^2 \leq \left(\|u_o\|_{H^1_0(\Omega)}^2 + \|u_d\|_{L^2(\Omega)}^2 + |f(0)| T^2 \right)
\]

\[
\cdot \exp \left(c \left(1 + T^2 + T \left(\|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) + \|g(u)\|_{L^\infty(0, T)} \right) \right)
\]

which gives

\[
\|u\|_{L^2(\Omega \times (0, T))}^2 \leq \left(\|u_o\|_{H^1_0(\Omega)}^2 + \|u_d\|_{L^2(\Omega)}^2 + |f(0)| T^2 \right)
\]

\[
\cdot \exp \left(c \left(1 + T^2 + T \left(\|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) \right) \right)
\]

and finally, using (2.48), there exists a constant \(C' > 0 \) only depending on \(\left(\|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) \), \(T, \Omega \) and \(\omega \) such that

\[
\|u\|_{L^2(\Omega \times (0, T))}^2 \leq \left(\|u_o\|_{H^1_0(\Omega)}^2 + \|u_d\|_{L^2(\Omega)}^2 + |f(0)| T^2 \right) \exp \left(C_T \left(1 + \|u_d\|_{H^1_0(\Omega)} + |f(0)|^2 \right) e^{cT/\varepsilon} \right) (C' + \|u\|_{L^\infty(\Omega \times (0, T))}^2).
\]
where $C_T > 0$ is a constant only dependent on T, Ω and ω.

We conclude that any solution $(u, \sigma) \in L^\infty(\Omega \times (0, T)) \times [0, 1]$ of $u = H(u, \sigma)$ satisfies the following estimate: there is a constant $C > 0$ independent of (u, σ) such that for any $\varepsilon \in (0, 1]$,
\[\|u\|_\infty^2 \leq \exp\left(\frac{C}{\varepsilon}\right), \]
which allows us to get to the existence of a fixed point for $H(\cdot, 1)$. Furthermore, by (2.13), the control is then bounded as follows: for any $\varepsilon \in (0, 1]$,
\[\|h\|_{L^2(\omega \times (0, T))} \leq \exp\left(\frac{C}{\varepsilon}\right). \]

This completes the proof.

Remark. Notice that the measure of the cost of the control of the semilinear heat equation (1.2) can be improved and become of order e^{C/ε^2} by adding the following more restrictive hypothesis $f(0) = 0$ and
\[\lim_{|s| \to \infty} \frac{f(s)}{|s| \sqrt{\ln \ln (1 + |s|)}} = 0. \]
Indeed, the minimization of the second member of (2.12) with respect to the quantity $\|g(u)\|_\infty$ suggests us our choice (2.9) of the time of controllability T'. But the minimization of the second member of (2.12) when $f(0) = 0$ with respect to $\varepsilon \in (0, 1]$, suggests to take $T' = \varepsilon T$ in order to get an estimate of the cost of order e^{C/ε^2}.

References

[FPZ] C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh, 125A (1995) 31-61.

[FCZ1] E. Fernandez-Cara et E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differential Equations 5 (2000), no. 4-6, 465-514.

[FCZ2] E. Fernandez-Cara and E. Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non linéaire, 17 (2000) 583-616.

[K] A. Khapalov, Some aspects of the asymptotic behavior of the solutions of the semilinear heat equation and approximate controllability, J. Math. Anal.Appl. 194 (1995) 858-882.

[P] K.-D. Phung, Note on the cost of the approximate cotrollability for the heat equation with potential, J. Math. Anal.Appl. 295 (2004) 527-538.

[Z] E. Zuazua, Exact controllability for semilinear wave equations in one space dimension, Ann. Inst. H. Poincaré Anal. Non linéaire, 10 (1993) 109-129.