Sigma Models with $\mathcal{N}=8$ Supersymmetries in 2+1 and 1+1 Dimensions

Alexander D. Popov

Institut für Theoretische Physik, Leibniz Universität Hannover
Appelstraße 2, 30167 Hannover, Germany

and

Bogoliubov Laboratory of Theoretical Physics, JINR
141980 Dubna, Moscow Region, Russia

Email: popov@itp.uni-hannover.de

Abstract

We introduce an $\mathcal{N}=8$ supersymmetric extension of the Bogomolny-type model for Yang-Mills-Higgs fields in 2+1 dimensions related with twistor string theory. It is shown that this model is equivalent to an $\mathcal{N}=8$ supersymmetric U(n) chiral model in 2+1 dimensions with a Wess-Zumino-Witten-type term. Further reduction to 1+1 dimensions yields $\mathcal{N}=(8,8)$ supersymmetric extensions of the standard U(n) chiral model and Grassmannian sigma models.
1 Introduction and Summary

Nonlinear sigma models in k dimensions describe mappings of a k-dimensional manifold X into a manifold Y (target space). In particular, as target spaces one can consider Lie groups G (chiral models) and homogeneous spaces G/H for closed subgroups $H \subset G$. Sigma models and their \mathcal{N}-extended supersymmetric generalizations play an important role both in physics and mathematics (see e.g. [1, 2]). For instance, two-dimensional sigma models serve as a theoretical laboratory for the study of more complicated (quantum) super Yang-Mills theory since they share many of its features such as asymptotic freedom, nontrivial topological structure, the existence of instantons, ultraviolet finiteness for the $\mathcal{N}=4$ supersymmetric case etc. [3]. Moreover, supersymmetric two-dimensional sigma models are the building blocks for superstring theories [3, 4].

Recall that for two-dimensional nonlinear sigma models admitting a Lagrangian formulation the number of supersymmetries is intimately related to the geometry of the target space. Namely, it was argued that Lagrangian $\mathcal{N}=1$ models can be defined for any target space Y, for $\mathcal{N}=2$ the target space must be Kähler, for $\mathcal{N}=4$ it must be hyper-Kähler, and no Lagrangian models were introduced for $\mathcal{N}>4$ [5, 6]. Similar results hold for sigma models in three dimensions. In particular, this means that a target space Y admits no more than $\mathcal{N}=1$ supersymmetry in the case of (non-Kähler) group manifolds G and $\mathcal{N}\leq 2$ supersymmetries for homogeneous Kähler spaces G/H.

The field equations of the standard G and G/H sigma models in 1+1 and 2+0 dimensions can be obtained by dimensional reduction of the self-dual Yang-Mills (SDYM) equations in 2+2 dimensions, with a gauge group G [7]. Concretely, the SDYM model reduced to two dimensions is equivalent to the sigma model with G-valued scalar fields, while the G/H sigma model arises after imposing additional algebraic constraints. Similar reduction to 2+1 dimensions yields a modified integrable chiral model [8]. Recall that the SDYM model in 2+2 dimensions can be endowed with up to four supersymmetries [9, 10]. Reducing the \mathcal{N}-extended supersymmetric SDYM equations in 2+2 dimensions to 2+1 and 1+1 dimensions yields models which have twice as many supersymmetries (cf. [11] for reductions from 3+1 dimensions). We will show that for $G=U(n)$ and $\mathcal{N}=4$ these models are equivalent to $U(n)$ chiral models with $\mathcal{N}=8$ supersymmetries. These new supersymmetric sigma models in 2+1 and 1+1 dimensions are well defined on the level of equations of motion, but their Lagrangian formulation is not known yet.

In this note we concentrate on the reduction of the $\mathcal{N}=4$ SDYM equations (instead of arbitrary $\mathcal{N}\leq 4$) in 2+2 dimensions since for this case a Lagrangian can be written down at least in terms of the component fields of a reduced Yang-Mills-type supermultiplet. Moreover, it was shown by Witten [12] that the $\mathcal{N}=4$ SDYM model appears in twistor string theory, which is a B-type topological string with the supertwistor space $\mathbb{CP}^{3|4}$ as a target space\footnote{For other variants of twistor string models see [13].}. This fact gives additional arguments in favour of introducing $\mathcal{N}=8$ supersymmetric sigma models in 2+1 and 1+1 dimensions related with twistor string theory and of studying their properties.

2 $\mathcal{N}=4$ supersymmetric SDYM equations in 2+2 dimensions

Superspace $\mathbb{R}^{4|16}$. Let us consider the four-dimensional space $\mathbb{R}^{2,2} := (\mathbb{R}^4, g)$ with the metric
d$s^2 = g_{\mu\nu}dx^\mu dx^\nu = \det(dx^{\alpha\dot{\alpha}}) = dx^{1i}dx^{2\dot{i}} - dx^{2i}dx^{1\dot{i}}$ \hspace{1cm} (2.1)
with \((g_{\mu\nu}) = \text{diag}(-1, +1, +1, -1)\). Here \(\mu, \nu, \ldots = 1, \ldots, 4\) are vector indices and \(\alpha = 1, 2, \dot{\alpha} = \bar{1}, \bar{2}\) are spinor indices. We choose the real coordinates\(^2\) \((x^\mu) = (x^a, \bar{t}) = (t, x, y, \bar{t})\) with \(a, b, \ldots = 1, 2, 3\) such that
\[
x^{11} = \frac{1}{2}(t - y), \quad x^{12} = \frac{1}{2}(x + \bar{t}), \quad x^{21} = \frac{1}{2}(x - \bar{t}) \quad \text{and} \quad x^{22} = \frac{1}{2}(t + y). \tag{2.2}
\]

On the space \(\mathbb{R}^{2,2}\) one can introduce real Majorana-Weyl spinors and extend \(\mathbb{R}^{2,2}\) to a space with additional anticommuting (Grassmann) coordinates \(\theta^i\) and \(\eta_\dot{i}\) of helicity \(+\frac{1}{2}\) and \(-\frac{1}{2}\), respectively. Here index \(i = 1, \ldots, 4\) parametrizes fundamental and its conjugate representations of the R-symmetry group \(\text{SL}(4, \mathbb{R})\) with addition anticommuting (Grassmann) coordinates \(\theta^i\) and \(\eta_\dot{i}\) respectively. Here index \(i = 1, \ldots, 4\) parametrizes fundamental and its conjugate representations of the R-symmetry group \(\text{SL}(4, \mathbb{R})\) [9]. Thus, \((x^{\alpha\dot{\alpha}}, \eta_\dot{i}^\alpha, \theta^i\) are coordinates on superspace \(\mathbb{R}^{4|16}\).

Supersymmetry algebra. The \(\mathcal{N}=4\) supersymmetry algebra in 2+2 dimensions is generated by \(P_{\alpha\dot{\alpha}} = \partial_{\alpha\dot{\alpha}} = \partial/\partial x^{\alpha\dot{\alpha}}\) and 16 real supercharges
\[
Q_{i\alpha} := \partial_{i\alpha} - \eta_\dot{i}^\alpha \partial_{\alpha\dot{\alpha}} \quad \text{and} \quad Q^i_{\alpha} := \partial^i_{\alpha} - \theta^i_{\dot{\alpha}} \partial_{\alpha\dot{\alpha}}, \tag{2.3}
\]
with \(\partial_{i\alpha} := \partial/\partial \theta^i\) and \(\partial^i_{\alpha} := \partial/\partial \eta_\dot{i}^\alpha\). The only nontrivial (anti)commutators in this superalgebra read
\[
\{Q_{i\alpha}, Q^j_{\beta}\} = -2\delta^j_i \partial_{\alpha\dot{\beta}}. \tag{2.4}
\]

In what follows we will also need superderivatives
\[
D_{i\alpha} := \partial_{i\alpha} + \eta_\dot{i}^\alpha \partial_{\alpha\dot{\alpha}} \quad \text{and} \quad D^i_{\alpha} := \partial^i_{\alpha} + \theta^i_{\dot{\alpha}} \partial_{\alpha\dot{\alpha}}, \tag{2.5}
\]
which anticommute with the operators (2.3) and satisfy
\[
\{D_{i\alpha}, D^j_{\beta}\} = 2\delta^j_i \partial_{\alpha\dot{\beta}}. \tag{2.6}
\]

Antichiral superspace. On the superspace \(\mathbb{R}^{4|16}\) we can introduce spin-tensor fields depending on both bosonic and fermionic coordinates (superfields) and impose on them various constraints. In particular, on any superfield \(\mathcal{A}\) one can impose the so-called antichirality conditions \(\mathcal{L}_Z \mathcal{A} = 0\), where \(\mathcal{L}_Z\) denotes the Lie derivative along a vector superfield \(Z\). One can easily solve these equations by using a coordinate transformation on superspace \(\mathbb{R}^{4|16}\),
\[
(x^{\alpha\dot{\alpha}}, \eta_\dot{i}^\alpha, \theta^i) \rightarrow (x^{\alpha\dot{\alpha}} = x^{\alpha\dot{\alpha}} - \theta^i \eta_\dot{i}^\alpha, \eta_\dot{i}^\alpha, \theta^i), \tag{2.7}
\]
under which \(\partial_{\alpha\dot{\alpha}}, D_{i\alpha}\) and \(D^i_{\alpha}\) transform to the operators
\[
\tilde{\partial}_{\alpha\dot{\alpha}} = \partial_{\alpha\dot{\alpha}}, \quad \tilde{D}_{i\alpha} = \partial_{i\alpha}, \quad \tilde{D}^i_{\alpha} = \partial^i_{\alpha} + 2\theta^i \partial_{\alpha\dot{\alpha}}. \tag{2.8}
\]
The antichirality conditions then mean that a superfield \(\mathcal{A}\) satisfies the equations
\[
\tilde{D}_{i\alpha} \mathcal{A} = 0 \tag{2.9}
\]
meaning that \(\mathcal{A}\) is defined on superspace \(\mathbb{R}^{4|8} \subset \mathbb{R}^{4|16}\) called antichiral superspace with coordinates \((x^{\alpha\dot{\alpha}}, \eta_\dot{i}^\alpha)\). Note that for transformed supercharges we have
\[
\tilde{Q}_{i\alpha} = \partial_{i\alpha} - 2\eta_\dot{i}^\alpha \partial_{\alpha\dot{\alpha}} \quad \text{and} \quad \tilde{Q}^i_{\alpha} = \partial^i_{\alpha}. \tag{2.10}
\]
\(^2\)Our conventions are chosen to match those of [14] after reduction to the space \(\mathbb{R}^{2,1}\) with coordinates \((t, x, y)\).
N=4 SDYM in superfields. The field content of $\mathcal{N}=4$ supersymmetric SDYM is given by a supermultiplet $(A_{\a\a}, \chi^{\a}, \phi^{ij}, \tilde{\chi}^{\dot{\a}}, G_{\dot{\a}\dot{\b}})$ of fields on $\mathbb{R}^{4|8}$ of helicities $(+1, +\frac{1}{2}, 0, -\frac{1}{2}, -1)$. Here $A_{\a\a}$ are the components of a gauge potential with the field strength $F_{a\bar{a}, \b\bar{\b}} = \partial_{a\bar{a}} A_{\b\bar{\b}} - \partial_{\b\bar{\b}} A_{a\bar{a}} + [A_{a\bar{a}}, A_{\b\bar{\b}}]$. Note that the scalars ϕ^{ij} are antisymmetric in ij and all the fields, including the fermionic ones χ^{\a} and $\tilde{\chi}^{\dot{\a}}$, live in the adjoint representation of the gauge group $U(n)$.

The $\mathcal{N}=4$ SDYM equations [15, 9] can be written in terms of superfields on antichiral superspace $\mathbb{R}^{4|8} [9, 16]$. Namely, all fields from the above $\mathcal{N}=4$ supermultiplet can be combined into superfields $A_{a\bar{a}}$ and $A_{\dot{a}}^i$ on $\mathbb{R}^{4|8}$ in terms of which the $\mathcal{N}=4$ SDYM equations read

$$[\nabla_{a\bar{d}}, \nabla_{b\bar{d}}] + [\nabla_{a\bar{b}}, \nabla_{b\bar{a}}] = 0 \, , \quad [\nabla_{a\bar{a}}, \nabla_{b\bar{b}}] + [\nabla_{a\bar{a}}, \nabla_{b\bar{b}}] = 0 \, , \quad [\nabla_{a\bar{a}}, \nabla_{b\bar{b}}] + [\nabla_{a\bar{a}}, \nabla_{b\bar{b}}] = 0 \, , \quad (2.11)$$

where we have introduced the covariant derivatives

$$\nabla_{a\bar{d}} := \partial_{a\bar{d}} + A_{a\bar{d}} \quad \text{and} \quad \nabla_{\dot{a}}^i := \partial_{\dot{a}}^i + A_{\dot{a}}^i \, . \quad (2.12)$$

Note that (2.11) can be combined into the manifestly supersymmetric equations

$$\{\nabla_{a\bar{d}}, \nabla_{b\bar{d}}\} + \{\nabla_{a\bar{d}}, \nabla_{b\bar{d}}\} = 0 \, \quad (2.13)$$

with

$$\tilde{\nabla}_{a\bar{d}}^{\dot{a}} := \nabla_{a\bar{d}} + 2\tilde{\eta}^i \nabla_{a\bar{d}} = \tilde{D}_{a\bar{d}}^\dot{a} + \tilde{A}_{a\bar{d}}^\dot{a} \quad \text{and} \quad \tilde{A}_{a\bar{d}}^\dot{a} := A_{a\bar{d}}^\dot{a} + 2\tilde{\eta}^i A_{a\bar{d}}^i \, , \quad (2.14)$$

where $A_{a\bar{d}}$ and $A_{a\bar{d}}^i$ depend only on $x^{a\bar{a}}$ and $\eta^{\dot{a}}$.

It is not difficult to see that equations (2.13) are the compatibility conditions for the linear system of differential equations

$$\lambda_{\pm}^\dot{a} (D_{a\bar{d}}^\dot{a} + \tilde{A}_{a\bar{d}}^\dot{a}) \psi_{\pm} = 0 \, , \quad (2.15)$$

where $\lambda_{\pm}^\dot{a} = \varepsilon^{\dot{a}\dot{b}} \lambda_{\dot{b}}^{\pm}$, $(\lambda^{\pm}_{\dot{b}}) = (1 \, \lambda^{+})^T$, $(\lambda^{-}_{\dot{b}}) = (\lambda^{-} \, 1)^T$ and the extra (local) coordinates λ_{\pm} lie on patches U_{\pm} covering the Riemann sphere $\mathbb{C}P^1 = U_+ \cup U_-$ (see e.g. [17]). Here ψ_{\pm} are $n \times n$ matrices depending not only on $x^{a\bar{a}}$ and $\eta^{\dot{a}}$ but also (holomorphically) on $\lambda_{\pm} \in U_{\pm}$.

The field equations of the $\mathcal{N}=4$ SDYM model in the component fields read

$$F_{a\bar{d}} = 0 \, , \quad D_{a\bar{a}} \chi^{\a} = 0 \, , \quad D_{a\bar{a}} D^{\a\a} \phi^{ij} + \{\chi^{\a}, \chi^{\dot{\a}}\} = 0 \, , \quad (2.16a)$$

$$D_{a\bar{a}} \tilde{\chi}^{\dot{a}} + [\chi^{\a}, \phi_{ij}] = 0 \, , \quad \varepsilon^{\a\b} D_{a\bar{a}} G_{\b\bar{\b}} - \frac{1}{2} \{\chi^{\a}, \tilde{\chi}^{\dot{\a}}\} - \frac{1}{4} [\phi_{ij}, D_{a\bar{a}} \phi_{ij}] = 0 \, , \quad (2.16b)$$

where $F_{a\bar{d}, \b\bar{\b}} := -\frac{1}{2} \varepsilon^{\a\b} F_{a\bar{a}, \b\bar{\b}}$, $D_{a\bar{a}} := \partial_{a\bar{a}} + [A_{a\bar{a}}, \cdot]$ and $\phi_{ij} := \frac{1}{4!} \varepsilon_{ijkl} \phi^{kl}$. These equations can be extracted from (2.11) by using η-expansions and Bianchi identities (see e.g. [16]). We will not reproduce this derivation. Note only that (2.16) follows from the Lagrangian $[9, 12]$

$$\mathcal{L} = \text{tr} \left(G^{a\b} F_{a\b} + \tilde{\chi}^{\dot{a}} D_{a\bar{a}} \chi^{\a} + \phi_{ij} D_{a\bar{a}} D^{a\a} \phi^{ij} + \phi_{ij} \chi^{\a} \chi_{\dot{a}} \right) \, . \quad (2.17)$$
3 $\mathcal{N}=8$ supersymmetric sigma models in 2+1 dimensions

Reduction and spinors on $\mathbb{R}^{2,1}$. The $\mathcal{N}=8$ supersymmetric Bogomolny-type equations in 2+1 dimensions are obtained from the described $\mathcal{N}=4$ super SDYM equations by the dimensional reduction $\mathbb{R}^{2,2} \rightarrow \mathbb{R}^{2,1}$. Namely, we impose the ∂_4-invariance condition on all the fields $(A_{a\dot{a}}, \chi^i, \phi^j, \bar{\chi}^\dot{i}, \bar{G}_{\dot{a}\dot{b}})$ from the $\mathcal{N}=4$ supermultiplet. Also, the components A_μ of a gauge potential split into the components A_α in 2+1 dimensions and the Lie-algebra valued scalar field $\varphi := A_4$ (Higgs field). To see how this splitting looks in spinor notation, we briefly discuss spinors in 2+1 dimensions.

Recall that $\mathcal{N}=4$ SDYM theory on $\mathbb{R}^{2,2}$ has $\text{SL}(4,\mathbb{R}) \cong \text{Spin}(3,3)$ as an R-symmetry group \cite{9}. Analogously to the case of standard $\mathcal{N}=4$ super Yang-Mills (SYM) in Minkowski space with the $\text{Spin}(6)$ R-symmetry, the appearance of the group Spin(3,3) can be interpreted via a reduction of $\mathcal{N}=1$ SYM theory on space $\mathbb{R}^{5,5} \cong \mathbb{R}^{2,2} \times \mathbb{R}^{3,3}$ to $\mathbb{R}^{2,2}$ with internal space $\mathbb{R}^{3,3}$ \cite{10}. Furthermore, after reduction from $\mathbb{R}^{2,2}$ to $\mathbb{R}^{2,1}$ the R-symmetry group becomes Spin(4,4) and supersymmetry gets enlarged to $\mathcal{N} = 8$ with Spin(4,4) as the manifest R-symmetry group (cf. \cite{11} for Minkowski and \cite{18} for Euclidean signatures). Roughly speaking, this happens due to no distinction between dotted and undotted spinor indices in three dimensions. Recall that the rotation group SO(2,2) of $\mathbb{R}^{2,2}$ is locally isomorphic to SU(1,1) \times SU(1,1) \cong Spin(2,1) \times Spin(2,1) \cong Spin(4,4). Upon dimensional reduction to 2+1 dimensions, the rotation group of $\mathbb{R}^{2,1} = (\mathbb{R}^3, g)$ with $g = (a_{ab}) = \text{diag}(-1,1,1)$ is locally SU(1,1) \cong Spin(2,1), which is the diagonal subgroup of Spin(2,1) \times Spin(2,1) \cong Spin(4,4). Therefore, the distinction between dotted and undotted indices disappear.

Coordinates and derivatives on $\mathbb{R}^{3|16}$. The ∂_4-invariance reduces superspace $\mathbb{R}^{4|16}$ with coordinates x^μ, η_i^a and $\theta^{i\alpha}$ to $\mathbb{R}^{3|16}$ with coordinates x^α, η_i^a and $\theta^{i\alpha}$. Furthermore, x^α and η_i^a parametrize reduced antichiral superspace $\mathbb{R}^{3|8}$. For bosonic coordinates $x^{\alpha \beta} \rightarrow x^{\alpha \beta}$ in spinor notation we have

$$x^{\alpha \beta} = \frac{1}{2}(x^{\alpha \beta} + x^{\beta \alpha}) + \frac{1}{2}(x^{\alpha \beta} - x^{\beta \alpha}) = x^{(\alpha \beta)} + x^{[\alpha \beta]} .$$

(3.1)

Thus, we have coordinates

$$y^{\alpha \beta} := x^{(\alpha \beta)} \quad \text{with} \quad y^{11} = x^{11} = \frac{1}{2}(t - y), \quad y^{12} = \frac{1}{2}(x^{21} + x^{21}) = \frac{1}{2} x, \quad y^{22} = x^{22} = \frac{1}{2}(t + y) \quad \text{(3.2)}$$

on $\mathbb{R}^{2,1}$ and $x^{[\alpha \beta]} = -\varepsilon^{\alpha \beta} x^4 = -\varepsilon^{\alpha \beta} \tilde{t}$, where $\varepsilon^{12} = -\varepsilon^{21} = 1$.

For derivatives we obtain

$$\partial_{\alpha \beta} = \frac{1}{2} (\partial_{\alpha \beta} + \partial_{\beta \alpha}) + \frac{1}{2} (\partial_{\alpha \beta} - \partial_{\beta \alpha}) = \partial_{(\alpha \beta)} - \varepsilon_{\alpha \beta} \partial_4 = \partial_{(\alpha \beta)} - \varepsilon_{\alpha \beta} \partial_4 ,$$

(3.3)

where $\varepsilon_{12} = -\varepsilon_{21} = -1$ and

$$\partial_{(11)} = \frac{\partial}{\partial y^{11}} = \partial_t - \partial_y , \quad \partial_{(12)} = \partial_{(21)} = \frac{1}{2} \frac{\partial}{\partial y^{12}} = \partial_x , \quad \partial_{(22)} = \frac{\partial}{\partial y^{22}} = \partial_t + \partial_y \quad \text{(3.4)}$$

For the operators (2.8) acting on \tilde{t}-independent superfields we have

$$\check{D}_{i\alpha} = \partial_{i\alpha} \quad \text{and} \quad \check{D}_{\dot{a}} = \partial^i + 2\theta^{i\beta} \partial_{(\alpha \beta)} .$$

(3.5)

Similarly, supercharges (2.10) reduce to the operators

$$\hat{Q}_{i\alpha} = \partial_{i\alpha} - 2\eta^i_\beta \partial_{(\alpha \beta)} \quad \text{and} \quad \hat{Q}_\dot{a} = \partial^i .$$

(3.6)
anticommuting with (3.5).

\(N = 8 \) supersymmetric Bogomolny-type equations on \(\mathbb{R}^{2,1} \). After imposing the condition of \(\bar{t}\)-independence on all fields in the linear system (2.15), we obtain the equations

\[
\lambda_\pm^2 (\hat{D}_\alpha^i + \hat{A}_\alpha^i) \psi_\pm = 0
\]

with

\[
\hat{A}_\alpha^i = A_\alpha^i + 2 \theta^{i\beta} (A_{(\alpha\beta)} - \varepsilon_{\alpha\beta} \bar{\varphi}) ,
\]

and \(\hat{D}_\alpha^i \) given in (3.5). Here \(A_\alpha^i, A_{(\alpha\beta)} \) and \(\bar{\varphi} \) are superfields depending only on \(y^{\alpha\beta} \) and \(\eta_i^\beta \).

The compatibility conditions for the linear system (3.7) read

\[
\{ \hat{D}_\alpha^i + \hat{A}_\alpha^i, \hat{D}_\beta^j + \hat{A}_\beta^j \} + \{ \hat{D}_\beta^i + \hat{A}_\beta^i, \hat{D}_\alpha^i + \hat{A}_\alpha^i \} = 0 .
\]

As usual, these manifestly \(N = 8 \) supersymmetric equations are equivalent to equations in component fields,

\[
f_{\alpha\beta} + D_{\alpha\beta} \varphi = 0 , \quad D_{\alpha\beta} \chi^{ij} + \varepsilon_{\alpha\beta} [\varphi, \chi^{ij}] = 0 ,
\]

\[
D_{\alpha\beta} \phi^{ij} + 2 [\varphi, [\varphi, \phi^{ij}]] + \chi^{\alpha x} \chi_i^\alpha = 0 ,
\]

\[
D_{\alpha\beta} \tilde{\chi}_i^\alpha - \varepsilon_{\alpha\beta} [\varphi, \chi_i^\alpha] + [\chi_i^\alpha, \phi_{ij}] = 0 ,
\]

\[
\varepsilon^{\gamma\delta} D_{\alpha\gamma} G_{\delta\beta} + [\varphi, G_{\alpha\beta}] - \frac{1}{2} \{ \chi_i^\alpha, \tilde{\chi}_i^\alpha \} - \frac{1}{4} [\phi_{ij}, D_{\alpha\beta} \phi^{ij}] - \frac{1}{4} \varepsilon_{\alpha\beta} [\phi_{ij}, [\phi^{ij}, \varphi]] = 0 ,
\]

where \(D_{\alpha\beta} := \partial_{(\alpha\beta)} + [A_{(\alpha\beta)}, \cdot] \), \(f_{\alpha\beta} := -\frac{1}{2} \varepsilon^{\gamma\delta} [D_{\alpha\gamma}, D_{\beta\delta}] \) and \(\varphi := A_4 = A_{\bar{t}} \). Obviously, these equations are \(\partial_4 \)-reduction of (2.16).

Supersymmetric sigma models. Note that matrices \(\psi_\pm \) in (3.7) are defined up to a gauge transformation generated by a matrix which does not depend on \(\lambda_\pm \) and therefore one can choose a gauge such that

\[
\psi_+ = \Phi^{-1} + O(\lambda_+) \quad \text{and} \quad \psi_- = 1_n + \lambda_- Y + O(\lambda^2) ,
\]

where \(\Phi \) is a \(U(n) \)-valued superfield and \(Y \) is a \(u(n) \)-valued superfield both depending only on \(y^{\alpha\beta} \) and \(\eta_i^\alpha \). For this gauge, from (3.7) we obtain

\[
\hat{A}_1^i = 0 \quad \text{and} \quad \hat{A}_2^i = \Phi^{-1} \hat{D}_2^i \Phi ,
\]

and from (3.8) we have

\[
\hat{A}_1^i = 0 \quad \text{and} \quad \hat{A}_2^i = \Phi^{-1} \partial_2^i \Phi , \quad A_{(11)} = 0 \quad \text{and} \quad A_{(12)} - \bar{\varphi} = 0 ,
\]

\[
A_{(21)} = \Phi^{-1} \partial_{(2)} \Phi \quad \text{and} \quad A_{(22)} = \Phi^{-1} \partial_{(22)} \Phi .
\]

Substituting (3.12) into (3.9), we obtain equations

\[
\hat{D}_1^i (\Phi^{-1} \hat{D}_2^i \Phi) + \hat{D}_2^i (\Phi^{-1} \hat{D}_2^i \Phi) = 0
\]

which after using (3.5) and (3.13) read

\[
\partial_x (\Phi^{-1} \partial_x \Phi) + \partial_y (\Phi^{-1} \partial_y \Phi) - \partial_t (\Phi^{-1} \partial_t \Phi) + \partial_y (\Phi^{-1} \partial_t \Phi) - \partial_t (\Phi^{-1} \partial_y \Phi) = 0 ,
\]
\[\partial_1^j (\Phi^{-1} \partial_x \Phi) - \partial_t (\Phi^{-1} \partial_2^j \Phi) + \partial_y (\Phi^{-1} \partial_3^j \Phi) = 0, \quad \partial_1^j (\Phi^{-1} \partial_t \Phi) + \partial_1^j (\Phi^{-1} \partial_y \Phi) - \partial_x (\Phi^{-1} \partial_2^j \Phi) = 0, \quad (3.16) \]

\[\partial_1^j (\Phi^{-1} \partial_2^j \Phi) + \partial_1^j (\Phi^{-1} \partial_2^j \Phi) = 0. \quad (3.17) \]

Note that the last two terms in (3.15) are the Wess-Zumino-Witten terms which spoil the standard Lorentz invariance but yield an integrable U(n) chiral model in 2+1 dimensions. For reduction to 1+1 dimensions one should simply put \(\partial_y \Phi = 0 \) in (3.15)-(3.17) obtaining an \(\mathcal{N}=8 \) supersymmetric extensions of the standard U(n) chiral model in two dimensions with field equations

\[\partial_t (\Phi^{-1} \partial_t \Phi) - \partial_x (\Phi^{-1} \partial_2^j \Phi) = 0, \quad \partial_1^j (\Phi^{-1} \partial_2^j \Phi) + \partial_1^j (\Phi^{-1} \partial_2^j \Phi) = 0, \quad (3.18a) \]

\[\partial_1^j (\Phi^{-1} \partial_2^j \Phi) - \partial_t (\Phi^{-1} \partial_2^j \Phi) = 0, \quad \partial_1^j (\Phi^{-1} \partial_t \Phi) - \partial_x (\Phi^{-1} \partial_2^j \Phi) = 0. \quad (3.18b) \]

For \(\Phi \) taking values in the Grassmannian manifold \(\text{Gr}(k,n) \subset \text{U}(n) \), equations (3.15)-(3.17) and (3.18) describe correspondingly supersymmetric Grassmannian sigma models in 2+1 and 1+1 dimensions.

There is not yet a Lagrangian description of equations (3.15)-(3.17) or (3.18). However, using the equivalence of equations (3.10) to (3.14), one can write explicitly a Lagrangian in terms of the \(U(1) \) valued superfield \(\Phi \).

Supersymmetry transformations. For brevity, we consider only 2+1 dimensions, where the 16 supercharges have the form (3.6). Further reduction to 1+1 dimensions does not create any problem. From (3.6) we obtain

\[\{ \tilde{Q}_{i\alpha}, \tilde{Q}^j_{\beta} \} = -2\delta_i^j \partial_{(\alpha\beta)} \quad (3.19) \]

On a (scalar) superfield \(\Sigma \) an infinitesimal supersymmetry transformation \(\hat{\delta} \) acts by

\[\hat{\delta} \Sigma := \epsilon^i_\alpha \tilde{Q}_{i\alpha} \Sigma + \epsilon^j_\alpha \tilde{Q}^j_{\beta} \Sigma \quad (3.20) \]

where \(\epsilon^i_\alpha \) and \(\epsilon^j_\alpha \) are 16 Grassmann parameters. In particular, for coordinates \(y^{\alpha\beta} \) and \(\eta^\beta_i \) on the antichiral superspace \(\mathbb{R}^{3|8} \) we have \(\delta y^{\alpha\beta} = -2\epsilon^i (\alpha^\beta) \eta_i^\beta \) and \(\delta \eta_i^\alpha = \epsilon^i_\alpha \).

It is obvious that the sigma model field equations (3.14) are invariant under the supersymmetry transformations (3.20) because the operators \(\tilde{D}^i_{\alpha} \) as well as \(\tilde{D}_{\alpha i} \) anticommute with the supersymmetry generators \(\tilde{Q}_{i\alpha} \) and \(\tilde{Q}^j_{\beta} \). Note that these \(\mathcal{N}=8 \) supersymmetric extensions of the \(U(n) \) and \(\text{Gr}(k,n)=\text{U}(n)/\text{U}(k) \times \text{U}(n-k) \) sigma models in 2+1 and 1+1 dimensions are not the standard ones defined only for \(\mathcal{N} \leq 1 \) and \(\mathcal{N} \leq 2 \), respectively. It will be interesting to study this new kind of sigma models in more detail.

Acknowledgements

The author would like to thank Olaf Lechtenfeld for reading the manuscript and useful remarks. This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG).
References

[1] W.J. Zakrzewski, “Low dimensional sigma models”, IOP Publishing, Bristol, 1989.

[2] A.M. Perelomov, Phys. Rept. 174 (1989) 229.

[3] A.M. Polyakov, “Gauge fields and strings,” Harwood, N.Y., 1987.

[4] M.B. Green, J.H. Schwarz and E. Witten, “Superstring theory”, CUP, Cambridge, 1987.

[5] B. Zumino, Phys. Lett. B 87 (1979) 203.

[6] L. Alvarez-Gaumé and D.Z. Freedman, Commun. Math. Phys. 80 (1981) 443.

[7] R.S. Ward, Phil. Trans. Roy. Soc. Lond. A 315 (1985) 451; “Multidimensional integrable systems,” In: Field Theory, Quantum Gravity and Strings, Eds. H.J. De Vega, N. Sanchez, Vol. 2, p.106, 1986.

[8] R.S. Ward, J. Math. Phys. 29 (1988) 386; Commun. Math. Phys. 128 (1990) 319.

[9] W. Siegel, Phys. Rev. D 46 (1992) 3235 [hep-th/9205075].

[10] S.V. Ketov, H. Nishino and S.J. Gates Jr., Nucl. Phys. B 393 (1993) 149 [hep-th/9207042].

[11] N. Seiberg, Nucl. Phys. Proc. Suppl. 67 (1998) 158 [hep-th/9705117].

[12] E. Witten, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171].

[13] N. Berkovits, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045]; N. Berkovits and L. Motl, J. High Energy Phys. 04 (2004) 056 [hep-th/0403187]; W. Siegel, “Untwisting the twistor superstring,” hep-th/0404255; O. Lechtenfeld and A.D. Popov, Phys. Lett. B 598 (2004) 113 [hep-th/0406179]; I.A. Bandos, J.A. de Azcarraga and C. Miquel-Espanya, J. High Energy Phys. 07 (2006) 005 [hep-th/0604037]; M. Abou-Zeid, C.M. Hull and L.J. Mason, “Einstein supergravity and new twistor string theories,” hep-th/0606272.

[14] O. Lechtenfeld, A.D. Popov and B. Spendig, J. High Energy Phys. 06 (2001) 011 [hep-th/0103196]; M. Wolf, J. High Energy Phys. 06 (2002) 055 [hep-th/0204185]; M. Ihl and S. Uhlmann, Int. J. Mod. Phys. A 18 (2003) 4889 [hep-th/0211263].

[15] A.M. Semikhatov, Phys. Lett. B 120 (1983) 171; I.V. Volovich, Phys. Lett. B 123 (1983) 329.

[16] C. Devchand and V. Ogievetsky, Nucl. Phys. B 481 (1996) 188 [hep-th/9606027].

[17] A.D. Popov and C. Saemann, Adv. Theor. Math. Phys. 9 (2005) 931 [hep-th/0405123]; A.D. Popov, C. Saemann and M. Wolf, J. High Energy Phys. 10 (2005) 058 [hep-th/0505161].

[18] M. Blau and G. Thompson, Phys. Lett. B 415 (1997) 242 [hep-th/9706225].