Technical Due Diligence for Minihydro Power Plant Project in Indonesia

Suksmo Satriyo Pangarso1, Jaka Aminata2 and Nuki Agya Utama3

1,2,3 Master of Energy, Post Graduate School, Universitas Diponegoro, Semarang 50241, Indonesia
1 PT Sarana Multi Infrastruktur (Persero), Jakarta 10220, Indonesia
2 Faculty of Economics and Business, Universitas Diponegoro, Semarang 50275, Indonesia
3 ASEAN Centre for Energy, Jakarta 12950, Indonesia
*Email: satriyopangarso@students.undip.ac.id; satriyo.pangarso@gmail.com

Abstract. Technical due diligence as part of the bankability due diligence carried out by the bank for the minihydro power plant (MHPP) project which will be financed for its construction. This research is to determine important variables as the object of due diligence and to conduct technical due diligence based on the variables. The important variables as the object of due diligence were obtained from interviews with group of experts who have experience in the construction of MHPP. The results of the interviews were processed using the Relative Importance Index (RII) and the Analytical Hierarchy Process (AHP) method to determine the risk ranking/weight. The due diligence process is carried out on submitted project documents and onsite verification to three sample of MHPPs at West Sumatera Province, Indonesia. Based on the assessment to each variables to the sample MHPPs, we get result that one MHPP does not ready to be financed from a technical point of view.

Keywords. AHP, due diligence, minihydro, powerplant, RII

1. Introduction
The Business Plan for the Provision of Electricity of PT Perusahaan Listrik Negara (Persero) (RUPTL) for 2021 to 2031[1] states that there are still many additional needs for minihydro power plant (MHPP) in Indonesia, as the option as cheap renewable energy power. MHPP is a hydroelectric power plant with a capacity below 10 MW [2]. The report ASEAN Centre for Energy[3] also shows that the levelized cost of electricity of hydroelectric power in ASEAN countries is USD 0.044/kWh, lower than that of biomass power plants (USD 0.088/kWh).

One of the important things in the development of MHPP is the availability of funding to build the project. ICED-USAID states that funding for MHPP in general ranges from 65% to 75% of the total investment cost [4]. This means that the independent power producer (IPP) must be able to convince the banks that their MHPP project to be developed has mitigated the risks that may arise if it has received financing. One of the risks that must be mitigated is the risk related to technical aspects.

Many research discuss the technical feasibility study of MHPP in Indonesia, but they never mention what kind technical aspects need to be considered to make the project bankable (worthiness to be financed). There are many MHPP in have already signed power purchase agreement but have not obtained financial close yet [5].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
2. Method
Before the technical due diligence process is carried out, it is necessary to agree on what variables will be the object of the assessment. Therefore, a literature study and interviews from competent experts in the development of MHPPs were carried out. These variables are obtained using the Relative Importance Index (RII) and Analytical Hierarchy Process (AHP) method to get the ranking as well as the weighing of the frequency and the severity. The risk is multiplication between frequency and severity[6]. These variables include the stages of planning, construction, and operation. Figure 1 represents the research methodology.

![Research Methodology Diagram](image)

Figure 1: Research methodology

Based on the list of variables obtained through RII and AHP method, the technical due diligence process can be carried out. Data related to the MHPP Project is obtained from planning data (feasibility study, detailed engineering design and interconnection study), procurement and contracts (engineering contracts and machine purchase contracts), permit and licenses, PPA, and other data related to human resources.

3. Results and Discussions
3.1. Data Gathering and Processing
Interviews were conducted on 20 experts with technical backgrounds who have experience at least 2 MHPP projects. There are 11 important variables obtained from interviews and processed by RII and AHP Method.
Table 1: Important technical variables for technical due diligence

Variable	Description	References	
T1	Quality of feasibility study	Feasibility studies made must include important things such as a description of geological conditions, hydrology, head, capacity factor.	[7],[8],[9],[10],[11],[12],[13],[14], Interviews
T2	Detail engineering design (DED) for civil work	DED must be clear and detailed in providing information related to the type and specifications of the main building (dam/dam, intake, sand trap, waterway or tunnel, head pond or head tank, penstock, outlet)	[8],[15],[9],[10], Interviews
T3	Mechanical and electrical design	The design of mechanical and electrical equipment must provide complete information about the specifications of the turbine and generator and transmission equipment.	[8],[9],[11],[14], Interviews
T4	Local grid condition	The condition of the local electricity network must be able to absorb and distribute electricity production to the maximum and in safe conditions.	[7],[16],[17],[9],[15],[11],[18], [13], Interviews
T5	Point of interconnection	The distance of the interconnection point should not be too far from the MHPP.	[19],[20], Interviews
T6	Electricity load and its projections	The condition of the electricity load must be able to absorb the electricity generated by the MHPP to the maximum within the PPA period.	[13], Interviews
T7	Experience of the IPP	The IPP must have experience in developing and operating MHPP.	[13],[21],[20], Interviews
T8	Experience of the consultant	The Consultant must have experience in designing a MHPP, and the MHPP is already operating properly (at least 2 MHPPs)	[13], Interviews
T9	Experience of the contractor	The Contractor must have experience in building a MHPP, and the MHPP is already operating properly (at least 2 MHPPs)	[7],[16],[8],[17],[9],[15],[10], Interviews
T10	Operation & maintenance ability	The team appointed to carry out operation and maintenance activities must have been doing the same activity for at least 2 years.	[14],[21], Interviews
T11	Supplier’s credibility	The supplier must have experience in supplying MHPP’s equipment in Indonesia, and the MHPP must have been operating properly (at least 2 MHPPs).	[7],[13], Interviews

First interview is in order to obtain frequency index uses 5- Likert’s scale frequency. The question is how important the variable on the success of the MHPP Project. The result of interview is presented in Table 3, and the data is processed using RII method.

Table 2: Likert scale for RII method

1	2	3	4	5
Very unimportant	Not important	Fairly Important	Important	Very Important

Table 3: Result of interview (Likert’s scale)

Resp. (R)	Variables (T)	1	2	3	4	5	6	7	8	9	10	11
R1		3	4	2	4	4	4	4	2	4	1	3
R2		3	3	2	2	2	2	2	2	2	2	2
R3		3	4	3	4	2	4	3	3	3	2	2
R4		3	4	1	2	3	3	3	4	4	2	2
R5		3	2	2	2	2	2	2	2	3	2	3
R6		3	3	3	1	2	2	2	2	2	2	2
R7		3	1	1	3	2	3	2	1	3	2	2
R8		2	3	2	4	3	4	2	2	3	2	2
R9		3	1	2	3	3	3	3	3	3	1	2
R10		5	2	4	3	4	3	4	4	4	2	2
R11		4	4	3	3	3	4	4	4	4	2	2
R12		4	4	2	3	2	2	2	3	2	1	2
R13		3	3	2	4	2	4	3	2	4	2	2
R14		3	3	3	1	1	3	1	3	3	2	2
R15		3	3	2	3	3	2	3	3	3	3	3
R16		4	4	4	4	4	4	4	3	4	3	4
R17		4	2	1	3	3	3	3	3	3	2	2
R18		4	4	3	4	4	4	4	4	4	4	4
R19		2	1	1	2	1	2	1	1	1	1	1
R20		4	4	3	4	2	3	5	4	5	3	4

Second interview is in order to obtain severity index uses 9-scale of Saaty’s number [22]. The question is how important the variable if compared with other variable with regard the effect on the success of MHPP project. Table 5 presents the geometric mean of result of interview from 20 respondents. The data in Table 5 is processed using AHP method.

AHP method is used to assess the severity that will be faced by a MHPP project caused by errors in mitigating technical aspects as listed in Table 1. Eigen factor as the result of AHP method is converted to severity index based on a severity scale which described on PMBOK Guide [23].

Table 4: 9-scale of Saaty’s number

1	2	3	4	5	6	7	8	9
Equal importance	Moderate importance	Strong importance	Very Strong importance	Extremly important				
Table 5: Result of interview (9-scale of Saaty’s number)

	Geomean		Geomean
T1 vs T2	2 1/4	T4 vs T5	2 3/4
T1 vs T3	2 3/7	T4 vs T6	1 5/8
T1 vs T4	2 2/7	T4 vs T7	2 3/4
T1 vs T5	3 5/9	T4 vs T8	2 3/5
T1 vs T6	2 1/8	T4 vs T9	2 2/3
T1 vs T7	2 1/6	T4 vs T10	2 3/5
T1 vs T8	2	T4 vs T11	3 1/9
T1 vs T9	1 4/7	T5 vs T6	1 3/5
T1 vs T10	2	T5 vs T7	1 2/7
T1 vs T11	2 2/5	T5 vs T8	1 1/2
T2 vs T3	4	T5 vs T9	1 2/5
T2 vs T4	3 2/3	T5 vs T10	1 1/2
T2 vs T5	3 3/4	T5 vs T11	1 3/4
T2 vs T6	2 5/7	T6 vs T7	2 2/5
T2 vs T7	2 1/7	T6 vs T8	2 4/7
T2 vs T8	2 1/3	T6 vs T9	2 1/2
T2 vs T9	1 1/2	T6 vs T10	2 5/9
T2 vs T10	3 3/7	T6 vs T11	3
T2 vs T11	3 1/3	T7 vs T8	3 5/6
T3 vs T4	2 2/3	T7 vs T9	3 1/4
T3 vs T5	3	T7 vs T10	3
T3 vs T6	2	T7 vs T11	2 2/7
T3 vs T7	2	T8 vs T9	2
T3 vs T8	2 1/5	T8 vs T10	2 1/2
T3 vs T9	1 1/2	T9 vs T10	3 1/2
T3 vs T10	2	T9 vs T11	3 1/5
T3 vs T11	1 3/4	T10 vs T11	1 6/7

Table 6 presents the risk level of each technical variable in Table 1. The risk level is the multiplication between frequency and severity [6].

Table 6: Frequency, severity, and risk rank for technical variable

Frequency	Severity	Risk = Frequency x Severity					
RII	Rank	Eigen	Rank	Risk level	Rank	Weigh	
T1	0.6300	1	0.1676	2	0.1056	1	21%
T2	0.5600	2	0.1817	1	0.1018	2	20%
T3	0.3800	9	0.1138	3	0.0432	5	8%
T4	0.5500	3	0.1082	4	0.0595	3	12%
T5	0.4400	8	0.0627	8	0.0276	8	5%
T6	0.5500	3	0.0885	5	0.0487	4	10%
T7	0.4900	6	0.0852	6	0.0418	6	8%
T8	0.4700	7	0.0579	9	0.0272	9	5%
T9	0.5500	3	0.0629	7	0.0346	7	7%
T10	0.2900	11	0.0380	10	0.0110	11	2%
T11	0.3300	10	0.0336	11	0.0111	10	2%

In this study, the quality of feasibility study (T1) is considered the most important variable to be considered for mitigation.
3.2. Sample MHPP for Technical Due Diligence
There are 3 MHPPs are involved in this technical due diligence. All MHPPs have a same capacity, same type of turbine and located in West Sumatera, Indonesia.

Table 7: Sample MHPP for Technical Due Diligence
MHPP #1
Capacity
Location
Main structure
Type of turbine

3.3. Technical Due Diligence Process
The technical due diligence process is carried out on the related document of the MHPP (procurement, permits, PPA, contracts, company profiles, and key person’s profile). Basically, the due diligence will be assessed the availability and documents/data completeness, the data consistency, and actual condition at site.

Table 8: Items to be assessed for technical due diligence
Feasibility study
Hydrology
Catchment area
Head
Type of soil
DED
Civil structure
Sand trap
Head ponds
Powerhouse
Mechanical & electrical
Generator
Transmission line
Interconnection study
Grid condition
Load demand
Human resources
Experience of the IPP
Experience and capability
Experience of the consultant
Experience of the contractor
Operation and maintenance capability

To ensure the quality of planning documents (feasibility study and detail engineering design), the quality of MHPP and the best practise of operation & maintenance works

Supplier credibility
Supply and after sales record
To ensure the quality of equipment (s) to be supplied and after sales warranty

3.4. Scoring
The scoring for the technical due diligence will be in 1-5 (1 = very poor, 2 = poor, 3 = fair, 4 = good, 5 = excellent). The MHPP have to obtain minimum score “3 or fair” to pass the technical due diligence process. The minimum score is concluded refer to the discussions with the experts and experience involved in technical due diligence process for MHPPs during 2013-2019.

Table 9: Scoring & Parameters

No	1	2	3	4	5	References	
T1	1	Incomplete data	1500 - <2000 mm/year	2000 - <2500 mm/year	2500 - <3000 mm/year	>= 3000 mm/year	[24] Interviews
2	Incomplete data	<100,000 ha	100,000-500,000 ha	500,000 – 1,500,000 ha	>1,500,000 ha	[24] Interviews	
3	Incomplete data	Ephemeral river	Episodic/intermittent river	Periodically river	Permanent river	[25] Interviews	
4	Incomplete data	H net <=2 m	2m < H net <=30 m	30 m < H net <=100 m	H net > 100 m	[26] Interviews	
5	Incomplete data	Tipically CL,CH, SW,SM,SC,SP	The relatively stable ground and not find indication of ground movement evidence, typically GW-GC-SC	The relatively stable ground and not find indication of ground movement, typically shale (argillaceous) or RQD<25	The relatively stable ground and not find indication of ground movement, typically sediment, slate, granite, diorite, basal	[27] Interviews	
6	Incomplete data	High risk for erosion (example: andosol, laterit, grumosol, podsol, podsolik, regosol litosol, organosol, renzina)	There is the slightly potential for erosion (example: brown forest soil, noncalcic brown, Mediterranean)	There is no potential for erosion (example: latosol)	There is no potential for erosion (example: alluvial, planosol, literite)	[28][29] Interviews	
T2	7	Incomplete data	Complete data, but the data is inconsistent with other	The data is complete and consistent	The data is complete and consistent with other	Complete data, there is consistent with other	[30][29] Interviews
8							
9							
10							
T3	11	document, ex. Deviate with Basic Design in the Feasibility Study	data/document, construction drawing is available	data, 3D simulation available			
T3	12						
T3	13						

T3	14	Incomplete data	Complete data, but the data is inconsistent with other document, ex. Deviate with Basic Design in the Feasibility Study	Complete data, there consistent with other data, 3D simulation available
T3	15			
T3	16			
T3	17			

T4	18	Incomplete data	Complete data, but there is a limitation for power distribution and there are limitations to power delivery and a significant additional investment is required for capacity upgrades	Complete data, there is no limitation for power distribution
T4	19			
T4	20			

| T5 | 19 | Incomplete data | Complete data, distance of point of connection >30 km | Complete data, distance of point of connection 20 < PoC <=30 km |
| T5 | 20 | | | |

| T6 | 20 | Incomplete data | Complete data, load absorption < 70% | Complete data, load absorption 100% |
| T6 | 21 | | | |

| T7 | 21 | Incomplete data | Involving in 1 project, and already in operation phase in a good condition | Involving in 3 projects, and already in operation phase in a good condition |
| T7 | 22 | | | |

T8	22	Incomplete data	Involving in 1 project, and already in operation phase in a good condition	Involving in 3 projects, and already in operation phase in a good condition
T9	23	Incomplete data	Involving in 2 projects, and already in operation phase in a good condition	
T10	24	Incomplete data	Involving in 3 projects, and already in operation phase in a good condition	
T11	25	Incomplete data	Involving in 3 projects, and already in operation phase in a good condition	

[30][29] Interviews
3.5. Result and discussion

The result of the technical due diligence is presented in Table 10. The MHPP # 2 does not pass the minimum score. Based on the documents submitted, there are several weakness and potential risk to be mitigated for MHPP#2.

- The river has only small catchment area. In the other hand, there is high rainfall in the area. Based on our experience and discussion with the experts, the data is contradictory. The wider a watershed, the greater the possibility of rainwater being captured.
- There is significant difference between the FS and the DED of MHPP#2. The generating capacity of MHPP#2 according to the FS is 6 MW, while in the DED is 8 MW.
- The other risk is local grid capability. The local grid conditions can only absorb 3.9 MW.
- The distance of point of interconnection is far from the power house (24 kms). It will requires larger investment costs and the possibility of significant losses.
- There is no information regarding operation and maintenance strategy. The IPP has no exeperience to operate and maintenance power plant.

Table 10 : Technical due diligence result

	MHPP#1	MHPP#2	MHPP#3
Feasibility study			
Weight	[1]	[2]	[1]x
Score	[3]	[4]	[1]x
Final score	[3]	[4]	[1]x
T1: Hidrology			
Rainfall	21%	3	0.74
Catchment Area	2	3	2
Discharge	4	3	4
Capacity factor	Head	4	4
Type of rock	4	4	4
Type of soil	3	3	3
DED			
T2: Civil structure			
Weir	20%	4	0.80
Sandtrap	4	4	4
Waterway	4	2	4
Headponds	4	2	4
Penstock	4	2	3
Power house	4	2	3
Tailrace	4	4	3
T3: Mechanical & Electrical			
Turbine	8%	4	1
Generator	4	2	3
Electrical Cubicle	4	2	3
Transmission Line	4	2	3
Interconnection study			
T4: Grid condition			
Local grid condition	12%	3	0.24
Transmission line			

IOP Publishing
T5	19	Point of connection	Point of connection	5%	4	0.48	3	0.36	5	0.60		
T6	20	Load demand	Load demand	10%	3	0.15	2	0.10	4	0.20		
Human resources												
T7	21	Experience and capability	Experience of the IPP	8%	2	0.16	1	0.08	1	0.08		
T8	22	Experience and capability	Experience of the consultant	5%	5	0.25	5	0.25	5	0.25		
T9	23	Experience and capability	Experience of the contractor	7%	5	0.35	5	0.35	5	0.35		
T10	24	Experience and capability	Operation and maintenence capability	2%	2	0.04	1	0.02	1	0.02		
Supplier												
T11	25	Supplier credibility	Supply and after sales record	2%	5	0.10	5	0.10	5	0.10		

	100%	3.31	2.65	3.28
	PASS	N-PASS	PASS	

4. Conclusions

The technical due diligence which conducted on 3 MHPPs shows that MHPP #2 has not technically feasible to obtain financing yet. There are several potential risk which need to be mitigated. Improvements to the DED by concerning to the actual conditions in the field (availability of discharge, installed capacity, and electricity absorption) absolutely necessary to determine the investment cost and how mitigate the risk might be occured in the construction and operating phase. The appointment of experience consultant, contractor and operator (for operation and maintenance work) needs to be considered, since the IPP have no experience in MHPP development.
References

[1] MEMR Republic of Indonesia 2021 The Business Plan for the Provision of Electricity of PT Perusahaan Listrik Negara (Persero) (RUPTL) for 2021-2031 (Jakarta)
[2] MPWPH Republic of Indonesia 2016 Regulation of the Minister of Public Works and Public Housing of the Republic of Indonesia Number 9 of 2016 concerning Procedures for Implementing Government and Business Entity Cooperation in Utilization of Water Resources for Power Plant Development
[3] Energy A C for 2019 Levelized Costs of Electricity (LCOE) for Selected Renewable Energy Technologies in The ASEAN Member States II Website ACE 51
[4] USAID & OJK 2016 Training Package: Sustainable Finance in Clean Energy Financing-OJK (ICED-USAID)
[5] MEMR 2020 Semester I 2020, 24 NRE Power Plants Operate - Press Release of Ministry of Energy and Mineral Resources Republic of Indonesia
[6] Hossen M M, Kang S and Kim J 2015 Construction schedule delay risk assessment by using combined AHP-RII methodology for an international NPP project Nuclear Engineering and Technology 47 362–79
[7] Ahmad S and Tahar R M 2014 Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia Renewable Energy 63 458–66
[8] Şengül Ü, Eren M, Eslamian Shiraz S, Gezder V and Sengül A B 2015 Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey Renewable Energy 75 617–25
[9] Çolak M and Kaya I 2017 Prioritization of renewable energy alternatives by using an integrated fuzzy MCDM model: A real case application for Turkey Renewable and Sustainable Energy Reviews 80 840–53
[10] Ozorhon B, Batmaz A and Caglayan S 2018 Generating a Framework to Facilitate Decision Making in Renewable Energy Investments Renewable and Sustainable Energy Reviews 95 217–26
[11] Lee H C and Chang C Ter 2018 Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan Renewable and Sustainable Energy Reviews 92 883–96
[12] Karakas E and Yildiran O V 2019 Evaluation of renewable energy alternatives for Turkey via modified fuzzy AHP International Journal of Energy Economics and Policy 9 31–9
[13] Wang Y, Xu L and Solangi Y A 2020 Strategic renewable energy resources selection for Pakistan: Based on SWOT-Fuzzy AHP approach Sustainable Cities and Society 52
[14] Saraswat S K and Digalwar A K 2020 Evaluation of energy sources based on sustainability factors using integrated fuzzy MCDM approach International Journal of Energy Sector Management
[15] Liu X and Zeng M 2017 Renewable energy investment risk evaluation model based on system dynamics Renewable and Sustainable Energy Reviews 73 782–8
[16] Ren J and Sovacool B K 2015 Prioritizing low-carbon energy sources to enhance China’s energy security Energy Conversion and Management 92 129–36
[17] Büyüközkan G and Güleyüz S 2017 Evaluation of Renewable Energy Resources in Turkey using an integrated MCDM approach with linguistic interval fuzzy preference relations Energy 123 149–63
[18] Ayağ Z and Samanlioglu F 2020 Fuzzy AHP-GRA approach to evaluating energy sources: a case of Turkey International Journal of Energy Sector Management 14 40–58
[19] Nasution M A, Ambarita H and Siregar I 2018 Social and Technical Barriers that Affect the Growth of Small-Scale Hydropower Independent Power Producers in Indonesia IOP Conference Series: Materials Science and Engineering vol 420
[20] Eshra N M, Zobaa A F and Abdel S H E 2021 Assessment of mini and micro hydropower potential in Egypt: Multi-criteria analysis Energy Reports 7 81–94
[21] Kul C, Zhang L and Solangi Y A 2020 Assessing the renewable energy investment risk factors for sustainable development in Turkey Journal of Cleaner Production 276 124164

[22] Saaty T L 2004 Decision making — the Analytic Hierarchy and Network Processes (AHP/ANP) Journal of Systems Science and Systems Engineering 13 1–35

[23] Project Management Institute 2013 A Guide To The Project Management Body of Knowledge (PMBOK Guide) (Project Management Institute, Inc.)

[24] Director General of Watershed Management Development and Social Forestry M of F R of I Regulation of the Director General of Watershed Management Development and Social Forestry Number: P. 3/V-Set/2013 concerning Guidelines for Identification of Watershed Characteristics

[25] Syarifuddin A 2000 Geographic Sains fo Senior High School, Second Grade, Curriculum of 1994 (Jakarta: Bumi Aksara)

[26] Loots I, van Dijk M, Barta B, van Vuuren S J and Bhagwan J N 2015 A review of low head hydropower technologies and applications in a South African context Renewable and Sustainable Energy Reviews 50 1254–68

[27] Department of Civil Works Republic of Indonesia 2005 Guidelines for Construction and Civil Buildings: Analysis of the Bearing Capacity of Shallow Soil Foundation for Water Building (Pd T-02-2005-A)

[28] Ministry of Agriculture Republic of Indonesia Decision Letter of the Minister of Agriculture number 837/Kpts/Um/11/1980 concerning Criterian and Procedures for Determining Protected Forests

[29] Ramos H, Betâmio De Almeida A, Portela M M and Pires De Almeida H 2000 Title: Guideline for Design of Small Hydropower Plants

[30] Japan International Cooperation Agency, Electric Power Development Co. L and JP Design Co. L 2011 Guideline and Manual for Hydropower Development Vol. 2 Small Scale Hydropower