Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Knowledge about COVID-19 vaccine and vaccination in Vietnam: A population survey

Minh Cuong Duong*, Bich Thuy Duong, Hong Trang Nguyen, Trang Nguyen Thi Quynh, Duy Phong Nguyen

Article history:
Received 2 September 2021
Accepted 13 January 2022
Available online 19 January 2022

Background: Coronavirus disease 2019 (COVID-19) vaccine acceptance is essential in controlling the virus. Vaccine knowledge influences vaccine acceptance and understanding this is vital in planning immunization strategies.

Objectives: This study aimed to examine the public COVID-19 vaccine knowledge levels and predictors of low knowledge levels in Vietnam.

Methods: A cross-sectional, community-based survey was conducted between April 16 and July 16, 2021. To examine the community knowledge levels regarding the vaccine essentialness and efficacy, a self-administered questionnaire was developed and comprised 7 questions with 5 Likert scale responses corresponding to the levels of agreement or disagreement with the provided statements and scores ranging from 0 to 4. An individual’s knowledge score above the mean score of all participants was defined as “acceptable” and that below was defined as “low.”

Results: Among 1708 respondents, the mean age was 34.3 ± 13.4 years, 942 (55.2%) were females, and 787 (46.7%) had acceptable knowledge levels. Age (adjusted odds ratio [AOR] 0.984 [95% CI 0.972–0.995], \(P = 0.005 \)) and being vaccinated against COVID-19 (0.653 [0.431–0.991], \(P = 0.045 \)) were inversely associated with lower knowledge levels. Those with a Gapminder income of $8 to <$15 per day (1.613 [1.117–2.329], \(P = 0.001 \)), $2 to <$8 (2.093 [1.313–3.335], \(P = 0.002 \)), and <$2 (3.341 [1.951–5.722], \(P < 0.001 \)), less than a high school education (4.214 [1.616–10.988], \(P = 0.003 \)), and nonclinical professionals and nonhealth lecturers (1.83 [1.146–2.922], \(P = 0.01 \)) were positively associated with lower knowledge levels.

Conclusion: To ensure a successful vaccine rollout, it is crucial to improve community knowledge about vaccine essentialness and efficacy. Those who are at young age, who have low income or education levels, and working in nonclinical and nonhealth education fields should be the target of the intervention programs. Community education programs may benefit from using those who have been immunized as role models.
The objective of this study was to examine the general community’s COVID-19 vaccine knowledge and associated predictors in Vietnam. This study was important because it will assist Vietnam and comparable countries in guiding interventional measures aimed at building and maintaining community’s receptiveness of COVID-19 vaccine.

Methods

Study context

Vietnam has experienced the fourth COVID-19 wave starting on April 27, 2021. This is considered the first “real wave” with 40,609 cumulative incident cases being reported in more than half of cities (52.4%, 33 of 63) across Vietnam as of the end of the study period. Of these affected areas, Ho Chi Minh City—one of the 2 research sites for the paper-based survey—was hit hard by the outbreak with 23,913 cumulative incident cases (58.9%). Considering this situation, we were able to examine the public COVID-19 vaccine knowledge in the context of an ongoing severe COVID-19 outbreak. During this time, the AstraZeneca/Oxford COVID-19 vaccine was available to priority groups including frontline health care workers and those working in COVID-19 prevention and control. A few fatal cases related to COVID-19 vaccine were reported. Vietnam has started its largest-ever COVID-19 vaccination campaign since July 10, 2021.

Study design

A cross-sectional, anonymous survey using a self-administered questionnaire was conducted across Vietnam between April 16, 2021, and July 16, 2021. The questionnaire was administered by 2 different data collection methods including online and paper-based questionnaires. The paid SurveyMonkey platform (www.surveymonkey.com) was used for the online component of the survey given favorable characteristics of SurveyMonkey including easier access, avoidance of input and data coding errors, and faster distribution. Participants were asked to read the online participant information sheet and consent form and answer a yes-no question to confirm their willingness to participate voluntarily in the survey. After answering this question, participants were directed to complete the online questionnaire. This informed consent procedure is validated elsewhere. In the paper-based survey, participants were asked to read a hard copy of the participant information sheet and complete a written informed consent form and a hard copy of the questionnaire. Only participants who fully understood and agreed to participate in the study were enrolled in the study. Vietnamese people aged 18 years and older who were able to read and answer the survey were eligible to participate in the study. After the survey, information on the year of birth of participants was used to cross-check their age. Data of those participants aged younger than 18 years were excluded from the analysis. At the end of the data collection period, to prevent duplicate entries obtained from the online survey, entries submitted from the same Internet protocol address were separately reviewed by the researchers (M.C.D. and H.T.N.) and included in the analysis once consensus was reached. The study was approved by the Phenikaa University Ethics Committee (reference 216/Q-DHP-KHCN).

To recruit both online and paper-based participants, a snowball sampling technique was used, using the authors’
COVID-19 vaccine knowledge in Vietnam

A total of 1872 people including 1003 paper-based (53.6%) and 869 online participants (46.4%) agreed to participate in the study (Figure 1). Of these 1872 people, 164 online participants (8.8%) had missing answers and were removed from the analysis. Therefore, 1708 (91.2%) people were included in the study (Figure 1). Of these 1872 people, 164 online participants and 869 online participants (46.4%) agreed to participate in the survey and included 100 individuals (i.e., 50 participants each) from different backgrounds to help refine the final survey and confirm its validity and reliability.31 To ensure study participants’ understanding of the questionnaire, the online and paper-based surveys used a questionnaire that was written in Vietnamese. Contact details of the researchers (M.C.D. and H.T.N.) were provided so that study participants could contact for assistance.

Statistical analysis

Data were analyzed using the SPSS version 26 (IBM Corp, Armonk, NY). Continuous variables were displayed as mean ± 1 SD and range. Categorical variables were presented as a count and percentage. Study participants’ vaccine knowledge levels were defined in relation to the mean score achieved by all participants. Scores above the mean were defined as “acceptable” and those below were defined as “low.” This analysis approach has been validated elsewhere.18 Chi-square test and chi-square test for trend were used to compare categorical data. t test was used to compare continuous data. A binary logistic regression model was developed to examine predictors of a low vaccine knowledge. All independent variables were entered into the model. Alpha was set at 5% level.

Maintenance of study standard

The online survey was a part of this study. Like the online survey, the paper-based survey used the snowball sampling technique to recruit participants. Therefore, to increase the study’s transparency and possibilities for interpreting the results, this paper was reported in accordance with the recommended Checklist for Reporting Results of Internet E-Surveys42,43 and the Strengthening the Reporting of Observational Studies in Epidemiology Statement guidelines for reporting observational studies.44

Results

Baseline characteristics

A total of 1872 people including 1003 paper-based (53.6%) and 869 online participants (46.4%) agreed to participate in the study (Figure 1). Of these 1872 people, 164 online participants (8.8%) had missing answers and were removed from the analysis. Therefore, 1708 (91.2%) people were included in the study. The mean age of all participants was 34.3 ± 13.4 years (Table 1). Female participants accounted for 55.2% (942 of 1708). Contact details of the researchers (M.C.D. and H.T.N.) were provided so that study participants could contact for assistance.

[Figure 1. Flowchart of study participants.]
They fully complete the vaccination schedule. Less than one-third (20.6%, 352 of 1708) strongly disagreed that they do not need to undertake any other preventive measures after COVID-19 and 36.4% (621 of 1708) strongly disagreed that they are completely protected against COVID-19.

The knowledge score of all participants was 19.2 ± 2.8 (Table 2). Hence, a score at least 20 indicated an acceptable knowledge level of COVID-19 vaccine knowledge and accounted for 46.7% of study participants (797 of 1708). In large cities in northern Vietnam, the proportion of participants having a low knowledge level was 59.6% (31 of 52) in Bac Ninh, 59.4% (231 of 389) in Hanoi, and 58.1% (25 of 43) in Nghe An, whereas that of the middle of Vietnam was 56.7% (72 of 127) (Appendix 3). In southern Vietnam, this proportion was 80% (44 of 55) in Tien Giang, 43.5% (254 of 587) in Ho Chi Minh City, and 43.4% (53 of 122) in Can Tho.

Predictors of a low level of vaccine knowledge

A low knowledge level was significantly associated with age, gender, region, Gapminder income levels and jobs (P < 0.001), and education levels (P = 0.035) (Table 3). There was no statistically significant association between knowledge level and household composition, chronic health conditions, experiences with COVID-19 disease, and being vaccinated (P > 0.05).

Model for predicting a low level of vaccine knowledge

Age (adjusted odds ratio [AOR] 0.984 [95% CI 0.972–0.995], P = 0.005) and being vaccinated (0.653 [0.431–0.991], P = 0.045) were negatively associated with a low knowledge level (Table 4). Having a Gapminder income of $8 to $15 per day (1.613 [1.117–2.329], P = 0.001), $2 to $8 (2.093 [1.313–3.335], P = 0.002), and <$2 (3.341 [1.951–5.722], P < 0.001) corresponded with higher odds of having a low knowledge level compared with those whose Gapminder income was $32 or more per day. Having an education level of less than high school was positively associated with a low knowledge level compared with those whose education levels were undergraduate or above (4.214 [1.616–10.888], P = 0.003). Working in other health-related fields was positively associated with a low knowledge level compared with those who

Table 1

Baseline characteristics of study participants (N = 1708)

Characteristics	Summary statisticsa
Age (y)	34.3 ± 13.4 (18–80)
Age groups (y)	
≤ 20	379 (22.2)
21–40	818 (47.9)
41–60	430 (25.2)
≥ 61	81 (4.7)
Female	942 (55.2)
Region of current residence	
Northern Vietnam	734 (43)
Middle Vietnam	127 (7.4)
Southern Vietnam	847 (49.6)
Gapminder income levels (US$ per day)	
< 2	348 (20.4)
2 to < 8	253 (14.8)
8 to < 15	583 (34.1)
15–32	343 (20.1)
≥ 32	181 (10.6)
Household composition	
Alone	135 (7.9)
With family	1272 (74.5)
With friends	301 (17.6)
Education levels	
< high school	29 (1.7)
High school	140 (8.2)
College	140 (8.2)
≥ Undergraduate level	1399 (81.9)
Jobs	
Health students	126 (7.4)
Nonhealth students	378 (22.1)
Working in nonhealth-related fields	856 (50.1)
Clinical doctors and/or health lecturers	152 (8.9)
Working in other health-related fields	196 (11.5)
Chronic health conditionsb	222 (13)
Experiences with COVID-19 diseasec	48 (2.8)
Vaccinated against COVID-19	129 (7.6)

Abbreviation used: COVID-19, coronavirus disease 2019.

a Mean ± SD (minimum–maximum) for continuous variables and n (%) for categorical variables.

b Chronic communicable and/or noncommunicable diseases.

c Acquiring COVID-19 and/or having family members or friends/colleagues acquiring COVID-19.

Table 2

COVID-19 vaccine knowledge score of study participants (N = 1708)

Characteristics	Summary statisticsa
Knowledge score (points)	19.2 ± 2.8 (11–28)
Score groups	
≤ 14	134 (7.8)
15–19	777 (45.5)
20–24	768 (45.0)
≥ 25	29 (1.7)
Knowledge levels	
Low	911 (53.3)
Acceptable	797 (46.7)

Abbreviation used: COVID-19, coronavirus disease 2019.

a Mean ± SD (minimum–maximum) for continuous variables and n (%) for categorical variables.
Discussion

Although there are similar studies conducted in other countries,9,12-15 there was no study in Vietnam. To the best of our knowledge, this is the first study examining the level of COVID-19 vaccine knowledge in the general community in Vietnam. Our study identifies priority groups for intervention. The study also allowed us to get insight into the vaccine knowledge levels of different health professional groups who are central to vaccination education and role models, particularly those who are not clinical doctors such as nurses and pharmacists.

The study included 1708 selected individuals across Vietnam, including large cities and those with a high COVID-19 burden. The distribution of our participants by region of residence was skewed to southern Vietnam (49.6%) provided that this region accounts for 36% of the total population in Vietnam.45 This may also explain the low number of participants experiencing COVID disease in our study given that the fourth COVID-19 wave started in northern Vietnam. The number of participants getting vaccinated was low because the vaccine was exclusively available to frontline health care workers during the study period. Participants aged between 21 and 60 years and female gender were predominant in our study, which were comparable with the age and gender distributions in Vietnam.45 Given that the average income per day in Vietnam is $9.8,46 more than two-thirds of our participants (69.3%) earned less than $15 per day.

We found that more than half of participants (53.3%) had low vaccine knowledge levels. Given the mean knowledge score of 19.2 achieved by all participants, high proportions of participants having low knowledge levels, defined as their knowledge scores lower than this mean score, were documented in large cities across Vietnam. Our overall rate of low vaccine knowledge was comparable with that reported in community surveys conducted in India and Jordan.15,16 However, our proportion was higher than that reported in Bangladesh (43%, 713 of 1658) and Ethiopia (26%, 128 of 492).9,14 Although the questionnaires used in these studies were not the same, all questionnaires aim to explore essential aspects of COVID-19 vaccine knowledge including the vaccine

\textbf{Table 3}

Unadjusted predictors tested for a low level of COVID-19 vaccine knowledge among study participants (N = 1708)

\begin{tabular}{|c|c|c|c|}
\hline
Predictors & COVID-19 knowledge levelsa & P value & OR (95% CI) \\
\hline
Age (y) & 32.6 ± 12.9 & 36.2 ± 13.7 & < 0.001b \\
Female & 526 (57.7) & 416 (52.2) & 0.02a \\
\hline
Region & & & \\
Northern Vietnam & 435 (47.8) & 290 (37.5) & < 0.001a \\
Middle Vietnam & 72 (7.9) & 55 (6.9) & \\
Southern Vietnam & 404 (44.3) & 443 (55.6) & \\
\hline
Gapminder income levels (US$ per day) & & & \\
< 2 & 238 (26.1) & 110 (13.8) & < 0.001d \\
2 to < 8 & 155 (17.0) & 98 (12.3) & \\
8 to < 15 & 297 (32.6) & 286 (35.9) & \\
15–32 & 154 (16.9) & 189 (23.7) & \\
> 32 & 67 (7.4) & 114 (14.3) & \\
\hline
Household composition & & & \\
Alone & 64 (7.0) & 71 (8.9) & 0.13c \\
With family & 674 (74.0) & 598 (75.0) & \\
With friends & 173 (19.0) & 128 (16.1) & \\
\hline
Education levels & & & \\
< high school & 23 (2.5) & 6 (0.8) & < 0.035d \\
High school & 70 (7.7) & 70 (8.8) & \\
College & 76 (8.3) & 64 (8.0) & \\
≥ Undergraduate level & 742 (81.5) & 657 (82.4) & \\
\hline
Jobs & & & \\
Health students & 93 (10.2) & 33 (4.1) & < 0.001a \\
Nonhealth students & 222 (24.4) & 156 (19.6) & \\
Working in nonhealth-related fields & 405 (44.4) & 451 (56.6) & \\
Clinical doctors and/or health lecturers & 68 (7.5) & 84 (10.5) & \\
Working in other health-related fields & 123 (13.5) & 73 (9.2) & \\
Chronic health conditionse & 113 (12.4) & 109 (13.7) & 0.471c \\
Experiences with COVID-19 diseasef & 24 (2.6) & 24 (3.0) & 0.662c \\
Vaccinated against COVID-19 & 63 (6.9) & 66 (8.3) & 0.313c \\
\hline
\end{tabular}

Abbreviations used: COVID-19, coronavirus disease 2019; OR, odds ratio.

a Mean ± SD for continuous variables and number (%) for categorical variables.

b t test.

c Chi-square test.

d Chi-square test for trend.

e Chronic communicable and/or noncommunicable diseases.

f Acquiring COVID-19 and/or having family members or friends/colleagues acquiring COVID-19.

worked as clinical doctors or health lecturers (1.83 [1.146–2.922], P = 0.01).
were associated with low vaccine knowledge levels. Our
findings were consistent with previous studies in other
countries.14,16 It has been documented that young age, low
income, and education levels are significantly related to low
levels of health knowledge in general probably because these
groups are less likely to have heard of the health informa-
tion.1 In contrast, people with high education levels are more
knowledgeable and concerned about their health and life
events that could affect them, such as COVID-19 vaccinations,
through access to more sources of health information.1 In line
with another study, we found that being vaccinated against
COVID-19 was associated with a good vaccine knowledge
level.17 It is documented that health care workers who are
willing to be COVID-19 vaccinated serve as an important role
model function for the public.52,53 It has also been found that
the public vaccine acceptance is influenced by their peers and
social networks.54 Considering our finding of a positive asso-
ciation between being vaccinated against COVID-19 and
acceptance of vaccine knowledge levels, we believe that,
regardless of the professions, people who are vaccinated can
present role models for the community. Future research is
needed to examine how the community education programs
using these role models could effectively approach different
population groups.

In our study, participants working in health-related fields
rather than clinical doctors and health lecturers such as nurses
and pharmacists were more likely to have lower knowledge
levels compared with clinical doctors and health lecturers. To
the best of our knowledge, there is no study examining the
levels of COVID-19 vaccine knowledge among different health
professional groups in Vietnam. However, a study conducted
on Vietnamese health students found a difference in the levels
of COVID-19 vaccine acceptance by their specialist fields with
more public health students but less preventive medicine
students accepting the vaccine compared with general medi-
cine students although the differences in levels of vaccine
knowledge between these students were not examined.55
Similarly, a study in the United States found that direct med-
cal care providers had higher vaccine acceptance (49%, 595 of
1207) than other health professionals although the vaccine
knowledge levels among health professionals were not
examined.56 It should be noted that this U.S. study was con-
ducted between October 7 and November 9, 2020, and thus,
vaccine acceptance rate of this study population may have
increased owing to the recent changes in the local COVID-19
situations and community education regarding COVID-19
vaccination. Studies in Jordan and Italy found that health
care workers had higher vaccine knowledge levels than nonmedical-related professions.16,17 The finding of our study
was different than the Jordanian and Italian studies probably
because of the difference in selecting the reference group.
Based on our experience with the Vietnam context, clinical
doctors and health lecturers are updated with medical scien-
tific publications more regularly than those working in other
health and nonhealth-related fields and, thus, were selected as
our reference group. By doing this, we could be able to
compare the vaccine knowledge levels of other health profes-
sionals who were not physicians and health lecturers with
those of physicians and health lecturers. Unlike us, none of
the Jordanian and Italian studies examined the differences in
the vaccine knowledge levels between different health profes-
sional groups. Our study makes it possible to highlight the
differences in the vaccine knowledge levels between health
professional groups and, therefore, helps in developing more
targeted intervention programs. It is clear that, in addition to
vaccine knowledge, COVID-19 vaccine acceptance was influ-
enced by other factors including enabling environments (e.g.,
convenient vaccination places and easy and accessible vacci-
nation booking), social influences (e.g., salient social norms in
favor of vaccination), and motivation (e.g., increasing motiva-
tion to get vaccinated through building timely trust in

Table 4

Predictors	P	Adjusted OR (95% CI)
Age (y)	0.005	0.984 (0.972–0.995)
Female	0.518	0.933 (0.756–1.151)
Region		
Northern Vietnam	0.725	0.928 (0.613–1.405)
Southern Vietnam	0.318	0.812 (0.54–1.221)
Middle Vietnam†		
Gapminder income levels (US per day)		
< 2	0.000	3.341 (1.051–10.722)
2 to < 8	0.002	2.093 (1.313–3.335)
8 to < 15	0.011	1.613 (1.177–2.329)
15–32	0.258	1.248 (0.85–1.833)
> 32†		
Household composition		
Alone	0.441	0.839 (0.538–1.31)
With family	0.245	1.189 (0.888–1.591)
With friends†		
Education levels		
< High school	0.003	4.214 (1.616–10.988)
High school	0.975	1.006 (0.684–1.481)
College	0.515	1.133 (0.779–1.648)
≥ Undergraduate level‡		
Jobs		
Health students	0.34	1.345 (0.732–2.471)
Nonhealth students	0.09	0.644 (0.387–1.072)
Working in nonhealth-related fields	0.921	0.981 (0.671–1.434)
Working in other health-related fields	0.01	1.83 (1.146–2.922)
Chronic health conditions‡	0.27	1.207 (0.864–1.686)
Experiences with COVID-19 disease‡	0.641	1.157 (0.628–2.13)
Vaccinated against COVID-19	0.045	0.653 (0.431–0.991)

Abbreviations used: COVID-19, coronavirus disease 2019; OR, odds ratio.
† Reference group.
‡ Chronic communicable and/or noncommunicable diseases.
§ Acquiring COVID-19 and/or having family members or friends/colleagues
acquiring COVID-19.
vaccines. However, like our study, the varied vaccine acceptance rates in different occupational roles in health care found in the U.S. study implied that the nonclinical professionals should be targeted—with educational interventions to ensure a successful COVID-19 vaccination. It should be noted that health professionals such as pharmacists, rather than physicians, have been identified as a professional figure in the health section who is qualified to improve the public vaccine acceptance in general. Indeed, a study in Vietnam also found that community pharmacists could take an important part in disseminating COVID-19 related knowledge to the public. Hence, to ensure a successful COVID-19 vaccine rollout, education programs in Vietnam should focus on improving the vaccine knowledge in those who are working in health-related fields but are not clinical doctors and health lecturers, such as nurses and pharmacists. Further studies are needed to examine the reasons for the low levels of vaccine knowledge in this group.

We found that only 41.6% of participants believed that vaccination was needed, despite the ongoing COVID-19 outbreak in Vietnam. In addition, only 20.6% of participants strongly agreed that getting vaccinated was a good way to protect oneself from COVID-19. At the time this manuscript was developed, the local government had been implemented the largest-ever vaccination campaign together with other preventive measures to control the outbreak. This implies that vaccination together with these measures may be the only way to achieve this goal as can be seen in other vaccine preventable diseases. In light of this, community education needs to emphasize the importance of the combined vaccination and nonvaccine measures in controlling the outbreak.

Our participants’ vaccine knowledge regarding vaccine efficacy and essentialness needs to be improved because 16.2% of participants strongly agreed that they were completely protected against COVID-19 after they fully completed the vaccination schedule. Only 36.4% of participants strongly disagreed that they did not need to undertake any other preventive measures after they fully completed the vaccination schedule. In addition, less than one-fifth of participants strongly agreed that vaccines developed by different manufacturers had different levels of efficacy (17.1%), and the available vaccines may not be effective on new variants compared with the original strain (12.8%). The WHO has emphasized the importance of managing the community’s expectations toward the vaccine to ensure that those who have been vaccinated do not stop practicing protective behaviors. Another issue is that only 30.3% of our participants strongly agreed that being vaccinated themselves contributed to the protection of the community against COVID-19. Vaccination not only protects oneself from COVID-19 but also helps create herd immunity to stop its spread and protect vulnerable groups who cannot get vaccinated. It is estimated that 65–70% of the population needs to be vaccinated to achieve herd immunity against COVID-19. Hence, vaccination can be conceptualized as a social responsibility, which plays an important role in educating the community regarding the essentialness of COVID-19 vaccination. Indeed, it is documented that social responsibility is positively associated with COVID-19 vaccination intention.

Considering the loss of life and economic consequences owing to COVID-19, social responsibility attached to vaccination should be emphasized by governments. Our findings highlight the need to tailor the current education program to enhance the community knowledge regarding both the essentialness and efficacy of vaccine.

Our study has some limitations. First, the government started the largest-ever COVID-19 vaccination program and enhanced the community education toward COVID-19 vaccines on the media to respond to an outbreak of COVID-19 during the study period. This may have influenced our participants’ responses to the survey. However, we believe that it is negligible given that we ended the study when the program started. Nevertheless, we have identified room for improvement of the community education programs. Second, many cities in Vietnam had been under lockdown during the study period making the online survey the most efficient method to collect data at large. Given the online survey, duplicate entries may be an issue and affect the validity of the study. However, before completing the survey, participants were asked to read the participant information sheet outlining the research purposes and what participants were required to do. Only participants who fully understood and agreed to participate in the study were enrolled in the study. We screened and reviewed potentially duplicate entries, and although we could not remove duplicates completely, these strategies should make them negligible. Third, given our study aimed to target the community at large, recruiting participants using a snowball sampling technique could cause selection bias. However, in addition to the online survey, we used a paper-based recruitment procedure in 2 largest cities in Vietnam to include those who were unable to complete the online survey such as the older and those who did not have an Internet-enabled device or Internet connection. The use of a combination of 2 different, complementary data collection methods helped include a diverse study population in our study, which increased the generalizability of the study’s results. Finally, responses to our vaccine knowledge questions can be influenced by study participants’ antivaccination attitudes, which were not assessed in this study. Consequently, our study may underestimate the true vaccine knowledge level among participants who want to avoid all vaccination or COVID-19 vaccination (antivaxxers).

Conclusion

People who are at young age, have low income or education levels, and work in nonclinical and nonhealth education fields have low COVID-19 vaccine knowledge levels. To ensure a successful COVID-19 vaccine rollout and sustainable control and prevention of COVID-19, it is crucial to improve the knowledge about vaccine essentialness and efficacy in the community. Community education programs may be beneficial from using those who have been vaccinated as role models.

References

1. Case JB, Winkler ES, Errico JM, Diamond MS. On the road to ending the COVID-19 pandemic: are we there yet? Virology. 2021;557:70–85.
2. Yang Chan EY, Shahzada TS, Sham TST, et al. Narrative review of non-pharmaceutical behavioural measures for the prevention of COVID-19 (SARS-CoV-2) based on the Health-EDRM framework. Br Med Bull. 2020;136(1):46–87.
3. World Health Organization. Advice for the public: coronavirus disease (COVID-19). Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public. Accessed July 13, 2021.

4. Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. J Compr Public Health. 2021;15(5):471–472.

5. Edwards B, Biddle N, Gray M, Sollis K. COVID-19 vaccine hesitancy and resistance: correlates in a nationally representative longitudinal survey of Australian adults. PLoS One. 2021;16(1):e0249844. https://doi.org/10.1371/journal.pone.0249844.

6. Al-Marshoudi S, Al-Balushi H, Al-Wahaibi A, et al. Knowledge, attitudes, and practices (KAP) toward the COVID-19 vaccine in Oman: a cross-sectional study. Vaccines (Basel). 2021;9(6):602.

7. Freeman D, Loe BS, Chadwick A, et al. COVID-19 vaccine hesitancy in the United Kingdom: the Oxford coronavirus examinations, attitudes, and narratives survey (Oceans II) [ahead of print]. Psychol Med. https://doi.org/10.1017/S0033291720051885. Accessed May 10, 2021.

8. Elhadi M, Al-Basit A. COVID-19 vaccine hesitancy and acceptance among adult population in Ethiopia. Infect Drug Resist. 2021;14:2015–2025.

9. Saeterdal I, Lewin S, Austvoll-Dahlgren A, Glenton C, Munabbi-Babigumira S. Interventions aimed at communities to inform and/or educate about early childhood vaccination. Cochrane Database Syst Rev. 2014;11(1):CD010232.

10. Freeman D, Loe BS, Chadwick A, et al. COVID-19 vaccine hesitancy in the UK: the Oxford coronavirus examinations, attitudes, and narratives survey (Oceans II) [ahead of print]. Psychol Med. https://doi.org/10.1017/S0033291720051885. Accessed May 10, 2021.

11. Kadkhoda K. Herd immunity to COVID-19. J Community Health. 2020;46(5):975–981.

12. Islam MS, Siddique AB, Akter R, et al. Knowledge, attitudes and perceptions of COVID-19 vaccine acceptance among adult population in Bangladesh. Eur J Epidemiol. 2020;35(8):775–779.

13. Elhamdi M, Aloufi A, Alhadi A, et al. Knowledge, attitude, and acceptance of healthcare workers and the public regarding the COVID-19 vaccine: a cross-sectional study. BMC Public Health. 2021;21(1):955.

14. Edwards B, Biddle N, Gray M, Sollis K. COVID-19 vaccine hesitancy and resistance: correlates in a nationally representative longitudinal survey of Australian adults. PLoS One. 2021;16(1):e0249844. https://doi.org/10.1371/journal.pone.0249844.

15. Al-Marshoudi S, Al-Balushi H, Al-Wahaibi A, et al. Knowledge, attitudes, and practices (KAP) toward the COVID-19 vaccine in Oman: a cross-sectional study. Vaccines (Basel). 2021;9(6):602.

16. Durr AA, Eisenbach N, Taiber S, et al. Vaccine hesitancy: the next challenge in the prevention and control of COVID-19. J Community Health. 2020;46(5):975–981.

17. Edwards B, Biddle N, Gray M, Sollis K. COVID-19 vaccine hesitancy and resistance: correlates in a nationally representative longitudinal survey of Australian adults. PLoS One. 2021;16(1):e0249844. https://doi.org/10.1371/journal.pone.0249844.

18. Ahrné C, Shitu S, Mose A. Understanding of COVID-19 vaccine knowledge, attitude, acceptance, and determinants of COVID-19 vaccine acceptance among adult population in Ethiopia. Infect Drug Resist. 2021;14:2015–2025.

19. Freeman D, Loe BS, Chadwick A, et al. COVID-19 vaccine hesitancy in the UK: the Oxford coronavirus examinations, attitudes, and narratives survey (Oceans II) [ahead of print]. Psychol Med. https://doi.org/10.1017/S0033291720051885. Accessed May 10, 2021.

20. Saeterdal I, Lewin S, Austvoll-Dahlgren A, Glenton C, Munabbi-Babigumira S. Interventions aimed at communities to inform and/or educate about early childhood vaccination. Cochrane Database Syst Rev. 2014;11(1):CD010232.

21. Freeman D, Loe BS, Chadwick A, et al. COVID-19 vaccine hesitancy in the UK: the Oxford coronavirus examinations, attitudes, and narratives survey (Oceans II) [ahead of print]. Psychol Med. https://doi.org/10.1017/S0033291720051885. Accessed May 10, 2021.

22. Karande A, Gaikwad A, Dhawade M, et al. Public awareness on COVID-19 vaccination: a cross-sectional study. Trop Med Infect Dis. 2020;5(6):e00155820. https://doi.org/10.12691/tm-5-6-0.

23. Boel F, Sabella EA, Roma P, et al. Knowledge and acceptance of COVID-19 vaccines and the influence of knowledge on their decision to get vaccinated. J Am Pharm Assoc (2003). 2022;62(1):309–316.

24. Galle F, Sabella EA, Roma P, et al. Knowledge and acceptance of COVID-19 vaccination among undergraduate students from central and Southern Italy. Vaccines (Basel). 2021;9(6):639.

25. Duong MC, Nguyen HT, Duong BT, Vu MT. The levels of COVID-19 related health literacy among university students in Vietnam. Infect Chemother. 2021;53(1):107–117.

26. Hoang TD, Colebunders R, Fodjo JNS, Nguyen NPT, Tran TD, Vo TV. Well-being of healthcare workers and the General Public during the COVID-19 pandemic in Vietnam: an online survey. Int J Environ Res Public Health. 2021;18(9):4737.

27. Le XT, Nguyen HT, Le HT, et al. Rural-urban differences in preferences for influenza vaccination among women of childbearing age: implications for local vaccination service implementation in Vietnam. Trop Med Int Health. 2021;26(2):228–236.

28. Nguyen TT, Lafond KE, Nguyen TX, et al. Acceptability of seasonal influenza vaccines among health care workers in Vietnam in 2017. Vaccine. 2020;38(28):4624–4629.

29. Li X, Wiesen E, Diorditsa S, et al. Impact of Adverse Events Following Immunization in Viet Nam in 2013 on chronic hepatitis B infection. Vaccine. 2016;34(6):869–873.

30. Ministry of Health. COVID-19 bulletin on the evening of July 16: Hanoi, Ho Chi Minh City and 23 provinces added 1,883 new cases. Available at: https://ncov.moh.gov.vn/vi/web/guest/6847426-5839. Accessed July 23, 2021.

31. Ministry of Health, Vietnam Ministry of Health’s Covid-19 pandemic information portal. Available at: https://ncov.moh.gov.vn/en/web/guest/trang-chu. Accessed July 15, 2021.

32. Ministry of Health. Information on a death after receiving vaccine against COVID-19: an anaphylaxis occurred in a patient with a history of NSAIDS hypersensitivity. Available at: https://moh.gov.vn/tin-lcn-quan-jasset_publication/vy/3hydrateace/?title=3hydrateace%20-covid-19-soc-phan-ve-tren-nen-ko-ai-di-ung-non-steroid. Accessed May 7, 2021.
50. Duong MC, Nguyen HT, Duong BT, Vu MT. Assessment of hand hygiene practices of university students in Vietnam amid the COVID-19 pandemic: a brief report [e-pub ahead of print]. Disaster Med Public Health Prep. https://doi.org/10.1017/dmp.2021.256. Accessed August 24, 2021.

51. Islam JY, Khatun F, Alam A, et al. Knowledge of cervical cancer and HPV vaccine in Bangladeshi women: a population based, cross-sectional study. BMC Womens Health. 2018;18(1):15.

52. Biswas N, Mustapha T, Khubchandani J, Price JH. The nature and extent of COVID-19 vaccination hesitancy in healthcare workers. J Community Health. 2021;46(6):1244–1251.

53. Qunaibi E, Basheti I, Soudy M, Sultan I. Hesitancy of Arab healthcare workers towards COVID-19 vaccination: a large-scale multinational study. Vaccines (Basel). 2021;9(5):446.

54. Larson HJ. Negotiating vaccine acceptance in an era of reluctance. Hum Vaccin Immunother. 2013;9(8):1779–1781.

55. Nguyen VT, Nguyen MQ, Le NT, Nguyen TNH, Huynh G. Predictors of intention to get a COVID-19 vaccine of health science students: a cross-sectional study. Risk Manag Healthc Policy. 2021;2021(14):4023–4030.

56. Shekhar R, Sheikh AB, Upadhyay S, et al. COVID-19 vaccine acceptance among health care workers in the United States. Vaccines (Basel). 2021;9(2):119.

57. Petrelli F, Tiffi F, Scuri S, Nguyen CTT, Grappasonni I. The pharmacist’s role in health information, vaccination and health promotion. Ann Ig. 2019;31(4):309–315.

58. Orenstein WA, Ahmed R. Simply put: vaccination saves lives. Proc Natl Acad Sci U S A. 2017;114(16):4031–4033.

59. Calnan M, Douglass T. Hopes, hesitancy and the risky business of vaccine development. Health Risk Soc. 2020;22(5–6):291–304.

60. Yu Y, Luo S, Mo PK, et al. Prosociality and social responsibility were associated with intention of COVID-19 vaccination among university students in China [e-pub ahead of print]. Int J Health Policy Manag. https://doi.org/10.34172/ijhpm.2021.64. Accessed August 24, 2021.

Minh Cuong Duong, MD, MMed, PhD, Lecturer, University of New South Wales, New South Wales, Australia

Bich Thuy Duong, MD, PhD, Clinical Doctor, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

Hong Trang Nguyen, MD, MSc, Lecturer, Phenikaa University, Hanoi, Vietnam

Trang Nguyen Thi Quynh, B.Nurse, MPH, Lecturer, Phenikaa University, Hanoi, Vietnam

Duy Phong Nguyen, MD, MMed, PhD, Professor, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
Appendix

Appendix 1

Questionnaire

I. General information:

1. Year of birth (please specify):
2. Gender: □ Male □ Female
3. Residential address (please only specify the city name):
4. Region of residence: □ Northern Vietnam □ Middle Vietnam □ Southern Vietnam
5. Gapminder income levels (US$ per day)*: □ <2 □ 2 - <8 □ 8 - <15 □ 15 - <32 □ ≥32
6. Household composition: □ Living alone □ Living with family □ Living with friends
7. Education levels: □ Less than high school □ High school □ College □ Undergraduate level or above
8. Majors: □ Health students □ Non-health students □ Working in non-health related fields □ Being clinical doctor and/or health lecturer □ Working in other health related fields
9. Health conditions: □ Do not have chronic conditions □ Having chronic, noncommunicable diseases □ Having chronic, communicable diseases
10. COVID-19 disease experience: □ Having COVID-19 or acquired COVID-19 previously □ Having a family member who has COVID-19 or acquired COVID-19 previously □ Having a friend/colleague who has COVID-19 or acquired COVID-19 previously □ Never acquire COVID-19, or know anyone who has COVID-19 or acquired COVID-19 previously

*To assist study participants in completing the questionnaire easily, the currency was converted to VND and the unit was VND per month in the Vietnamese version of the questionnaire.

II. COVID-19 vaccine knowledge:

1. I am completely protected against COVID-19 after I fully complete the COVID-19 vaccination schedule

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree

2. I do not need to undertake any other COVID-19 preventive measures after I fully complete the COVID-19 vaccination schedule

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree

3. Being vaccinated for COVID-19 myself contributes to the protection of the community against COVID-19

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree
4. Getting vaccinated for COVID-19 is a good way to protect myself from COVID-19

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree

5. I do not need to get vaccinated for COVID-19 because the COVID-19 outbreak is controlled very well in Vietnam.

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree

6. COVID-19 vaccines developed by different manufacturers have different levels of efficacy

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree

7. The available COVID-19 vaccines may be less effective on new variants compared with the original strain

Strongly agree	Agree	Neutral/no opinion	Disagree	Strongly disagree
Appendix 2

Details of participants’ responses to COVID-19 vaccine knowledge questions

Questions response (assigned score)	Summary statistics n (%)
Q1. I am completely protected against COVID-19 after I fully complete the COVID-19 vaccination schedule	
Strongly agree (0)	277 (16.2)
Agree (1)	745 (43.6)
Neutral/no opinion (2)	389 (22.8)
Disagree (3)	259 (15.2)
Strongly disagree (4)	38 (2.2)
Q2. I do not need to undertake any other COVID-19 preventive measures after I fully complete the COVID-19 vaccination schedule	
Strongly agree (0)	25 (1.5)
Agree (1)	55 (3.2)
Neutral/no opinion (2)	199 (11.6)
Disagree (3)	808 (47.3)
Strongly disagree (4)	621 (36.4)
Q3. Being vaccinated for COVID-19 myself contributes to the protection of the community against COVID-19	
Strongly agree (4)	518 (30.3)
Agree (3)	919 (53.8)
Neutral/no opinion (2)	228 (13.4)
Disagree (1)	31 (1.8)
Strongly disagree (0)	12 (0.7)
Q4. Getting vaccinated for COVID-19 is a good way to protect myself from COVID-19	
Strongly agree (4)	352 (20.6)
Agree (3)	885 (51.8)
Neutral/no opinion (2)	323 (18.9)
Disagree (1)	133 (7.8)
Strongly disagree (0)	15 (0.9)
Q5. I do not need to get vaccinated for COVID-19 because the COVID-19 outbreak is controlled very well in Vietnam	
Strongly agree (0)	17 (1)
Agree (1)	28 (1.6)
Neutral/no opinion (2)	208 (12.2)
Disagree (3)	745 (43.6)
Strongly disagree (4)	710 (41.6)
Q6. Vaccines developed by different manufacturers have different levels of efficacy	
Strongly agree (4)	292 (17.1)
Agree (3)	819 (48)
Neutral/no opinion (2)	463 (27.1)
Disagree (1)	113 (6.6)
Strongly disagree (0)	21 (1.2)
Q7. The available COVID-19 vaccines may be less effective on new variants compared with the original strain	
Strongly agree (4)	219 (12.8)
Agree (3)	877 (51.3)
Neutral/no opinion (2)	552 (32.3)
Disagree (1)	54 (3.2)
Strongly disagree (0)	6 (0.4)
Appendix 3: Distribution of levels of COVID-19 vaccine knowledge in Vietnam.