Hydrogen diffusion under the effect of stress and temperature gradients

Zhichao Zhang1,2, Can Ayas1, Vera Popovich1 and Jurriaan Peeters1

1Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, Netherlands.
2Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
E-mail: zhichao.zhang@northumbria.ac.uk

Abstract. In this paper, a finite element (FE) model is developed to investigate lattice hydrogen diffusion in a solid metal under the influence of stress and temperature gradients. This model is applied to a plate with a circular hole which is subjected to temperature and hydrogen concentration gradients. It is demonstrated that temperature gradients significantly influence hydrogen diffusion and hence susceptibility to hydrogen embrittlement when utilizing hydrogen for gas turbines.

1. Introduction
Hydrogen can be used to store renewable energy, and then converted back to electricity using gas turbines [1, 2, 3]. Currently, the utilisation of hydrogen is limited due to the high costs and difficulties in storage and transportation, which have been investigated previously [4]. However, hydrogen embrittlement, a commonly observed adverse effect on metals and alloys, has rarely been studied in relation to gas turbines.

Hydrogen embrittlement is the reduction of ductility and toughness in a metal when a small amount of hydrogen is present, which induces sudden failure [5]. Consequently, the distribution of hydrogen concentration is of paramount importance. Hydrogen transport in the material takes place via either lattice diffusion or dislocation movement [6]. Thus, some hydrogen atoms move to normal interstitial lattice sites which are the majority, whilst the others stay in defect-traps which are the minor fraction of sites [7]. Nevertheless, most studies on hydrogen embrittlement have not considered high temperature conditions, especially where a temperature gradient exists, which is the typical working environment for major metallic components in gas turbines and fuel cells.

Therefore, this paper aims to investigate hydrogen diffusion in lattice sites under the influence of both stress and temperature gradients by a finite element (FE) model.

2. Methodology
An FE model is developed using Abaqus 6.14 in order to solve the transport equations for hydrogen and heat, which is subsequently validated by literature data [7].
2.1. Hydrogen transport equation

The conservation of hydrogen concentration can be written as:

$$\frac{\partial C}{\partial t} + \nabla \cdot \mathbf{J} = 0 \quad (1)$$

where C is the hydrogen concentration (mol/m3), \mathbf{J} is the concentration flux (mol/(m2s)), and t is time (s). Next, the mass flux \mathbf{J} here is obtained as:

$$\mathbf{J} = -\frac{DC}{RT} \nabla \mu = -DS \left\{ \nabla \phi + \frac{\phi \ln \phi}{T} \nabla T - \frac{\phi V_H}{RT} \nabla \sigma_H \right\} \quad (2)$$

Here D is diffusivity (m2/s), R is the gas constant (8.31 J/(mol K)), T is temperature (K), μ is the chemical potential (J/mol), σ_H is the hydrostatic stress (Pa), V_H is the partial molar volume of hydrogen, $\phi = C/S$ is the normalized concentration and S is the hydrogen solubility.

2.2. FE model and validation

The FE model is validated for a square plate with a hole under plane strain conditions. Making use of the symmetry conditions, a quarter of the geometry illustrated in Figure 1 is modelled.

![Figure 1: Geometry and boundary conditions.](image)

The plate is maintained in a constant temperature environment, and has an initial uniform hydrogen concentration of 20 mol/m3. Hydrogen flux at all boundaries are zero. An evenly distributed tensile load of 100 MPa is on the top surface. An FE mesh with an element size of 1 mm is generated away from the hole, and the near-hole mesh is refined to 0.1 mm. Material properties representative of a Nickel based Alloy 690 are listed in Table 1.

Parameter	Value
ρ (kg/m3)	8.19×10^3
N_L (m3/mol)	9.24×10^{28}
D (m2/s)	3.8×10^{-11}
E (GPa)	200
ν	0.3
V_H (m3/mol)	2×10^{-6}

3. Results and discussion

Since the FE model developed can accurately predict stress mediated hydrogen diffusion, it is now employed to investigate the combined influence of temperature and stress gradients on hydrogen concentration at steady state. Table 2 lists boundary conditions for two new case studies A and B. The difference between the two cases is the temperature distribution, which is shown in Figure 3.
Figure 2: Distribution of hydrostatic stress (a) and lattice hydrogen concentration (b).

Table 2: Boundary conditions of Case A and B.

Boundary	Traction (MPa)	Displacement	Temperature (K)	Concentration (mol/m³)	
Top	$t_1 = 0, t_2 = 200$	$U_2 = 0$	$T_A = 300$	$T_B = 1000$	$C_L = 0$
Bottom	$t_1 = 0$	$U_2 = 0$	$\nabla T_A = 0$	$\nabla T_B = 0$	$\nabla C_L = 0$
Left	$t_2 = 0$	$U_1 = 0$	$\nabla T_A = 0$	$\nabla T_B = 0$	$\nabla C_L = 0$
Right	$t_1 = 0, t_2 = 0$	$U_1 = 0$	$T_A = 300$	$T_B = 1000$	$C_L = 0$
Hole	$t_1 = 0, t_2 = 0$	$U_1 = 0$	$T_A = 1000$	$T_B = 300$	$C_L = 100$

*The subscripts A and B here refer to the temperature in Case A and B respectively.

Figure 3: Temperature distribution in Case A (a) and B (b).

Figure 4 illustrates steady state lattice hydrogen concentration profiles (C_L). According to Figure 4 (a), C_L decreases nearly linearly away from the hole, where the temperature is high. However, in the low-temperature zone in Case A, there is a convex in the concentration profile. This feature is a direct result of $\phi \ln \phi \nabla T$ in Equation (2), which shows that a temperature gradient is a driving force for the transport of lattice hydrogen.

The effect of the temperature gradient is more clearly illustrated along the line ($y = 0$) by plotting C_L and $\phi \ln \phi$ against the X coordinate in Figure 5. Here $\phi \ln \phi$ is the coefficient in front of $T^{-1} \nabla T$ in Equation (2) and is termed the Soret effect factor. In Figure 5 (a), $\phi \ln \phi$ peaks in the low-temperature zone, which ultimately results a bump in the C_L profile. In contrast, Figure 4 (b) demonstrates that hydrogen diffusion is negligible due to the combined effects of the
temperature gradient and the fact that the mass diffusivity decays exponentially with decreasing temperature. Consequently, the majority of hydrogen atoms stay very close to the hole. This is potentially very beneficial to the mechanical reliability of materials in contact with hydrogen gas.

4. Conclusions
The findings demonstrate the temperature gradient effect on steady state hydrogen distribution. Depending on the direction of the thermal gradient, this effect can either enhance mass diffusion and even cause a local increase in hydrogen concentration profiles, or severely hinder hydrogen diffusion. Consequently, the temperature gradient is an important factor which should be accounted for the assessment of hydrogen embrittlement in gas turbines.

References
[1] Cappelletti A and Martelli F 2017 International Journal of Hydrogen Energy 42 10513–10523
[2] Ahmadi P and Kjeang E 2017 International Journal of Energy Research 41 714–727
[3] Klein S and Schouten B 2020 Turbomachinery Technical Conference & Exposition, ASME Turbo Expo 2020, June 22-26, 2020, London, United Kingdom GT2020-14592
[4] Taamallah S, Vogiatzaki K, Alzahrani F M, Mokheimer E M, Habib M and Ghoniem A F 2015 Applied Energy 154 1020–1047
[5] Ayas C, Deshpande V and Fleck N 2014 Journal of the Mechanics and Physics of Solids 63 80–93
[6] Sofronis P and McMeeking R M 1989 Journal of the Mechanics and Physics of Solids 37 317–350
[7] Barrera O, Tarleton E, Tang H and Cocks A 2016 Computational Materials Science 122 219–228