Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice

Submitted by Guy Lenaers on Tue, 04/07/2015 - 14:53

Wersinger, Delphine Bonnet [1], Benkafadar, Nesrine [2], Jagodzinska, Jolanta [3], Hamel, Christian [4], Tanizawa, Yukio [5], Lenaers, Guy [6], Delettre, Cécile [7]

Public Library of Science

Article scientifique dans une revue à comité de lecture

2014

Anglais

2014

e97222

9

PLoS One

1932-6203

Mots-clés

Age Factors [8], Animals [9], Blotting, Western [10], Contrast Sensitivity [11], DNA Primers [12], Electroretinography [13], Endoplasmic Reticulum Stress [14], Endoribonucleases [15], Evoked Potentials, Visual [16], Heat-Shock Proteins [17], Immunohistochemistry [18], Membrane Proteins [19], Mice [20], Mice, Knockout [21], Microscopy, Electron, Transmission [22], Polymerase Chain Reaction [23], Protein Disulfide-Isomerases [24], Protein-Serine-Threonine Kinases [25], Retina [26], Retinal ganglion cells [27], Unfolded Protein Response [28], Visual Acuity [29]

Wolfram syndrome is an early onset genetic disease (1/180,000) featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs) were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC) abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections.

Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP), protein disulfide isomerase (PDI) and inositol-requiring enzyme 1 alpha (Ire1α) markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.
Liens
1. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=16945
2. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=16946
3. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=16947
4. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=702
5. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=16949
6. http://okina.univ-angers.fr/guy.lenaers/publications
7. http://okina.univ-angers.fr/publications?f%5Bauthor%5D=24168
8. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=10043
9. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=964
10. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1425
11. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15006
12. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=8592
13. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15007
14. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=14438
15. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15008
16. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15009
17. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=8364
18. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=7464
19. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=8989
20. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1102
21. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1147
22. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=1560
23. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=8595
24. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15010
25. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=10461
26. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15011
27. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=6591
28. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=15012
29. http://okina.univ-angers.fr/publications?f%5Bkeyword%5D=13671
30. http://okina.univ-angers.fr/publications/ua9350
31. http://dx.doi.org/10.1371/journal.pone.0097222
32. http://www.ncbi.nlm.nih.gov/pubmed/24823368?dopt=Abstract

Publié sur [Okina](http://okina.univ-angers.fr)