Influence of small scale magnetic energy and helicity on the growth of large scale magnetic field

Kiwan Park1,2

(Dated: April 3, 2014)

The influence of initially given small scale magnetic energy ($E_M(0)$) and helicity ($H_M(0)$) on the magnetohydrodynamics (MHD) dynamo was investigated. Equations for $E_M(t)$, $H_M(t)$, and electromotive force (\mathbf{EMF}) were derived and solved. The solutions indicate small scale magnetic field b_i caused by $E_M(0)$ modifies \mathbf{EMF} and generates additional terms of which effect depends on magnetic diffusivity η, position of initial conditions (ICs) k_f, and time ($\sim e^{-\eta k_f^2 t}$). b, increases the inverse cascade of energy resulting in the enhanced growth of large scale magnetic field B. Simulation data show that $E_M(0)$ in small scale boosts the growth rate, which also proportionally depends on $H_M(0)$. If $E_M(0)$ is the same, positive $H_M(0)$ is more effective for MHD dynamo than negative $H_M(0)$. It was discussed why large scale magnetic helicity should have the opposite sign of the injected kinetic helicity.

PACS numbers:

Most of the astrophysical objects commonly include the interactions between magnetic fields and conducting fluids. To figure out the celestial phenomena, understanding the evolutions of magnetic fields such as generation, amplification (dynamo), and annihilation (reconnection) are the most rudimentary; but, the mechanism is not well understood yet. Helical kinetic and magnetic fields which exist in the system without reflection symmetry are thought to play a key role in the evolution of magnetic field. The physical meaning and role of helical kinetic turbulent motion (kinetic helicity, $\langle \mathbf{u} \cdot \mathbf{\omega} \rangle$, $\omega = \nabla \times \mathbf{u}$) are rather clear. It transfers (kinetic) energy to magnetic eddy and cascades the (magnetic) energy to larger scale magnetic eddies. In contrast, the role of helical magnetic field i.e., magnetic helicity ($H_M \equiv \langle \mathbf{A} \cdot \mathbf{B} \rangle$, $\mathbf{B} = \nabla \times \mathbf{A}$) is partially known. H_M is the topological measure of twist and linkage of magnetic field lines ($2\Phi_1\Phi_2$, $\Phi = \int \mathbf{B} \cdot d\mathbf{S}$, [1], [2]) and is called the force free field ($J \times \mathbf{B} = 0$, $\nabla \times \mathbf{B} = \lambda \mathbf{B}$) in the state of minimum energy equilibrium \cite{1}. It has been known that $|H_M|$ in the large scale boosts the generation of B field \cite{2}, but small scale $|H_M|$, more exactly $k^2|H_M|$, quenches the growth of B field. H_M is part of E_M and its magnitude cannot surpass $E_M/2k(t)$. This realizability condition implies E_M can have arbitrary magnetic helicity in the condition.

Another intuitional meaning of H_M can be grasped from the distribution of $\langle B_i(k) B_j(-k) \rangle$ \cite{2}, \cite{3}, \cite{4}.

$$\langle B_i(k) B_j(k') \rangle = P_{ij}(k) \frac{E_M(k)}{4\pi k^2} + \frac{i\epsilon_{ijl}k_l}{8\pi k^2} H_M(k).$$

This relation implies H_M is basically related to the correlation between different components in case of an isotropic system without reflection symmetry. Like E_M, H_M is a conserved quantity in an ideal MHD system, but it has a changeable sign, positive or negative. The unknown properties of H_M within the degenerate E_M leave room for investigating its influence on the profile of B fields and magnetic structure. Pouquet et al. \cite{13} derived the equations of E_M, H_M with kinetic equations and showed the inverse cascade of magnetic energy using EDQNM. But they chiefly concentrated on the derivation of E_M, H_M, and other variables paying less attention to their individual roles in MHD dynamo. Contrastively Ref.\cite{9} and \cite{12} showed the effect of initial E_M or H_M on MHD dynamo. However, the aims focused on the effect of $E_M(0)$ rather than $H_M(0)$. So we need another detailed analytic and experimental work that show the influence of H_M coupled with E_M more explicitly. For this, the equations of E_M and H_M were derived, and the solutions were found. Since $E_M(0)$ and $H_M(0)$ were given to the small scale magnetic eddy, the representation of modified \mathbf{EMF} was derived to explain simulation results.

For the simulation, magnetic field \mathbf{b}_i with a fractional helicity (fhm) drove a system as a precursor (one simulation step, $t<0.005$) to generate $E_M(0)$ and $H_M(0)$ at $k_f=5$. And then fully helical velocity field ($fhk=1.0$) was injected to the kinetic eddy at $k_f=5$ (helical kinetic forcing HKF) as a main simulation. All simulations were done with high order finite difference Pencil Code \cite{4} and the message passing interface (MPI) in a periodic box of spatial volume $(2\pi)^3$ with mesh size 256^3. The basic equations solved in the code are,

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \mathbf{u}$$

$$\frac{D\mathbf{u}}{Dt} = -\nabla \ln \rho + \frac{\mathbf{J} \times \mathbf{B}}{\rho} + \nu(\nabla^2 \mathbf{u} + \frac{1}{3} \nabla(\nabla \cdot \mathbf{u})) + \mathbf{f}$$

$$\frac{\partial \mathbf{A}}{\partial t} = \mathbf{u} \times \mathbf{B} - \eta \nabla \times \mathbf{B}.$$
The amplitude of magnetic forcing function with various magnetic helicity ratios modifying day's law tions in an isotropic MHD system lacking reflection sym-

\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B}. \] \[(5) \]

If variables are split into the mean values and fluctuations like \(\mathbf{U} = \mathbf{U} + \mathbf{u} \) → \(\mathbf{u}(\mathbf{U} = 0) \) and \(\mathbf{B} = \mathbf{B} + \mathbf{b} \), the magnetic induction equation for \(\mathbf{B} \) field becomes,

\[\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{b}) + \eta \nabla^2 \mathbf{B} \] \[(6) \]

\[\sim \nabla \times \alpha \mathbf{B} + (\eta + \beta) \nabla^2 \mathbf{B}. \] \[(7) \]

(Here, electromotive force \(EMF \langle \mathbf{u} \times \mathbf{b} \rangle \) was replaced by \(\alpha \mathbf{B} - \beta \nabla \times \mathbf{B} \) \((\alpha = 1/3 \int_{\mathbb{R}^3} (\mathbf{j} \cdot \mathbf{b}) - (\mathbf{u} \cdot \omega)) \) \(d\tau \), \(\beta = 1/3 \int_{\mathbb{R}^3} (\mathbf{u}^2) \) \(d\tau \)).

E_M(t) or \(H_M(t) \) can be found from the exact momentum and magnetic induction equation using EDQM(13).

But the same \(H_M(t) \) and \(E_M(t) \) can be derived from mean field method(10, 11). From Eq.(7), we get \(\frac{\partial H_M}{\partial t}(\mathbf{B}, \mathbf{F}) \):

\[\frac{\partial}{\partial t} (\mathbf{A} \cdot \mathbf{B}) = 2(\xi \cdot \mathbf{B}) - 2\eta(\mathbf{B} \cdot \nabla \times \mathbf{B}) \]

\[= 2\alpha(\mathbf{B} \cdot \mathbf{B}) - 2(\beta + \eta)(\mathbf{B} \cdot \nabla \times \mathbf{B}) \] \[(8) \]

In Fourier space

\[\frac{\partial}{\partial t} H_{M,L} = 4\alpha E_{M,L} - 2k^2(\beta + \eta)H_{M,L} \] \[(k = 1). \] \[(9) \]

Also \(\partial_t E_{M,L} \) can be derived from Eq.(7).

\[\frac{\partial}{\partial t} \frac{1}{2} \mathbf{B}^2 \] \[= (\mathbf{B} \cdot \nabla \times \xi - \frac{c}{\sigma}(\mathbf{B} \cdot \nabla \times \mathbf{J}) \]

\[= (\alpha \mathbf{B} \cdot \nabla \times \mathbf{B}) - (\beta \nabla \times \mathbf{B} \cdot \nabla \times \mathbf{B}) \]

\[= \mathbf{c} \cdot (\mathbf{J} \cdot \nabla \times \mathbf{B}) \] \[(10) \]

In Fourier space,

\[\frac{\partial}{\partial t} E_{M,L} = \frac{1}{\sigma} k^2(\mathbf{B} \cdot \mathbf{B}) - k^2(\beta + \eta)(\mathbf{B}^2) \]

\[= \frac{1}{\sigma} k^2 H_{M,L} - 2k^2(\beta + \eta)E_{M,L} \] \[(k = 1). \] \[(11) \]

\(\partial E_M/\partial t \) and \(\partial H_M/\partial t \) have two normal mode solutions \((\mathbf{A} \cdot \mathbf{B}) + (\mathbf{B} \cdot \mathbf{B}) \) and \((\mathbf{A} \cdot \mathbf{B}) - (\mathbf{B} \cdot \mathbf{B}) \), from which two exact solutions can be derived(6).

\[2H_{M,L}(t) = (H_{M,L_0} + 2E_{M,L_0})e^{2\int_0^\tau (\alpha - \beta - \eta) d\tau} \]

\[+ (H_{M,L_0} - 2E_{M,L_0})e^{-2\int_0^\tau (\alpha + \beta + \eta) d\tau} \]

\[4E_{M,L}(t) = (H_{M,L_0} + 2E_{M,L_0})e^{2\int_0^\tau (\alpha - \beta - \eta) d\tau} \]

\[- (H_{M,L_0} - 2E_{M,L_0})e^{-2\int_0^\tau (\alpha + \beta + \eta) d\tau} \]

\[(12) \]

\[(13) \]

\(E_{M,L}(t) \) and \(H_{M,L}(t) \) proportionally depend on the initial values of large scale, which was shown in Ref.6.

Alfvén effect of large scale is so strong that the evolution of small scale \(\mathbf{b} \) field is subordinate to the large scale magnetic field. The other factors affecting the growth of \(\mathbf{B} \) field are \(\int_0^\tau (\alpha - \beta - \eta) d\tau \) and \(\int_0^\tau (\alpha + \beta + \eta) d\tau \) originated from small scale velocity and magnetic field. However, the effect of initial small scale magnetic field \(\mathbf{b}_i(0) \) distinctly appears only when \(E_{M,L_0} \) and \(H_{M,L_0} \) are
FIG. 2: (a) The plots of $E_{M,L}$ with various $H_M(0)$ at $k_f=5$. (b) E_M at $k=1$, 2, and 5. Thin lines indicate E_M with negative $H_M(0)$ ($fhm = -1$), thick lines are for E_M with zero $H_M(0)$ ($fhm = 0$), and thicker lines are for E_M with positive $H_M(0)$ ($fhm = +1$). (c) $|H_{M,L}|/2$ with various $H_M(0)$ at $k_f=5$. Most of $H_{M,L}$ is negative when the system is driven by the positive $\langle v \cdot \omega \rangle$, but $H_{M,L}$ is positive (thick lines) at $0 < t < 8$. (d) H_M of $k=1$, 2, and 5. small. Since α is negative and other terms are positive, the second terms in Eq.(12) and Eq.(13) dominantly decide the evolution of $E_{M,L}$ and $H_{M,L}$. Also negative $H_{M,L,0} - 2E_{M,L,0}$ indicates the evolving E_M is positive but $H_{M,L}$ is negative.

We should note that E_M in Eq.(13) is limited to the helical magnetic energy. If the system is not isotropic, a general case, the assumption that $\langle v \times b_i \rangle$ is the linear function of B is hard to be used. E_M is partially helical and partially nonhelical so quite a few considerable terms additively remain. Nonetheless, since the small scale field is globally inclined to be isotropic (locally anisotropic in MHD) and the system is driven by a fully helical kinetic energy, the assumption is valid and reasonable.

Our main interest if how the initial $b_i(0)$ affects EMF and the growth rate of large scale magnetic field eventually. We can guess $b_i(0)$ in small scale and this new field modifies α and β in EMF. The magnetic induction equation due to $E_M(0)$ is,

$$\frac{\partial b_i}{\partial t} \approx \eta \nabla^2 b_i.$$ \hspace{1cm} (14)

In Fourier space,

$$\frac{\partial b_i}{\partial t} \approx -\eta k_f^2 b_i \Rightarrow b_i(t) = b_i(0) e^{-\eta k_f^2 t}.$$ \hspace{1cm} (15)

While weak magnetic field does not conspicuously affect the velocity field u, u determines the profile of b field. Ignoring dissipation term, the approximate small scale magnetic field b is

$$\frac{\partial b}{\partial t} = \nabla \times (u \times B) + \nabla \times (u \times b_i).$$ \hspace{1cm} (16)

With the assumption of isotropy without mirror symmetry, EMF $\xi(=\xi_1+\xi_2)$, ξ_1 by \vec{B}, ξ_2 by b_i can be represented by a simple form. Eq.(16) indicates b is a linear function of B and b_i (kinetic dynamo). Hence, the components of EMF will be only B's, $\nabla \times B$, b_i, $\nabla \times b_i$ (we drop divergence of magnetic field). Thus, the basic structure of EMF is

$$\xi = \xi_1 + \xi_2 = \alpha_1 B - \beta_1 \nabla \times B + \alpha_2 b_i - \beta_2 \nabla \times b_i.$$ \hspace{1cm} (17)
Then ξ_2 is from,
$$
\xi_2 = \int_{-\infty}^{t} \frac{d}{dt} \left(u(x,t) \times \nabla \times \left(u(x',t') \times b_i(x',t') \right) \right) dt'.
$$

All the components of Eq. (18) except the terms that fit Eq. (17) are to be dropped. Thus,
$$
\xi_{2x} = \left(u_y \frac{\partial u_x'}{\partial x} - u_z \frac{\partial u_x'}{\partial x} - u_z \frac{\partial u_x'}{\partial x} + u_z u_y' \frac{\partial b_z}{\partial y} + u_x u_z' \frac{\partial b_y}{\partial z} \right)
\equiv \alpha_{2x} b_{ix} - \beta_{2x} (\nabla \times b_i)x
$$

ξ_{2y} has the same structure but the variables rotate: $x \rightarrow y$, $y \rightarrow z$, $z \rightarrow x$. And for ξ_{2z}, $x \rightarrow z$, $y \rightarrow x$, $z \rightarrow y$. Since small scale eddies are isotropic, the coefficients of b_{ix}, b_{iy}, b_{iz} are the same.

$$
\frac{1}{3} \left(u_y \frac{\partial u_x'}{\partial x} - u_z \frac{\partial u_x'}{\partial x} + u_x \frac{\partial u_y'}{\partial y} - u_z \frac{\partial u_y'}{\partial y} + u_x \frac{\partial u_z'}{\partial z} - u_y \frac{\partial u_z'}{\partial z} \right)
$$

Then, α_2 is
$$
\alpha_2 = -\frac{1}{3} \int_{-\infty}^{t} \mathbf{u}(x,t) \cdot \nabla \times \mathbf{u}(x,t') \, dt'.
$$

In the same way,

$$
\beta_2 = \frac{1}{3} \int_{-\infty}^{t} \mathbf{u}(x,t) \cdot \mathbf{u}(x,t') \, dt'.
$$

The coefficients α_1 and β_1 related to \mathbf{B} are the same.

In contrast if the small scale magnetic field is so large that magnetic field meaningfully affects the velocity fields, we need to solve the momentum equation \mathbf{u} first. We assume that dissipation effect is ignorably small and Lorentz force is a dominant term in the momentum equation. Then,

$$
\frac{\partial \mathbf{U}}{\partial t} \sim \mathbf{J} \times \mathbf{B} = (\mathbf{J} + \mathbf{j} + \mathbf{j}) \times (\mathbf{B} + \mathbf{b}_i + \mathbf{b})
$$

Small scale momentum equation is,

$$
\frac{\partial \mathbf{b}_i}{\partial t} \sim \mathbf{B} \cdot \nabla \mathbf{b} + \mathbf{b}_i \cdot \nabla \mathbf{b}.
$$

Here we assume the average of \mathbf{b}_i is not zero and \mathbf{b}_t does not change within the small scale eddy turnover time.

The integrand of $\xi_{M,1x}$ in the first term is,

$$
\xi_{M,1x} \sim B_z \frac{\partial b_y'}{\partial x} b_z - B_x \frac{\partial b_y'}{\partial x} b_y.
$$

$\xi_{M,1y}$ and $\xi_{M,1z}$ are the same with the rotation of variables mentioned above. And the assumption of isotropy makes the results simple.

$$
\frac{\partial b_y'}{\partial x} b_z - \frac{\partial b_y'}{\partial y} b_x = \frac{\partial b_y'}{\partial z} b_z - \frac{\partial b_x'}{\partial z} b_y - \frac{\partial b_y'}{\partial z} b_x
$$
Fig. 2(b) includes more detailed evolution of k and H the positive H of negative H to H by is not influenced. Fig. 2(c) are to compare the growth rate of η the negative η is proportional to t, which means the influence is gradually disappears. These new terms increase the growth rate of η into a negative. This positive H indicates the point (time) when the positive H is produced is injected to the system. This fast decrease of H boosts the growth of $|H_M|$ at $k=1, 2$. In contrast, for the negative $H_M(0)$ at $k=5$, injected negative H_M mitigates the decreasing speed of $|H_M|$ at $k=5$ and growing speed of $|H_M|$ at $k=1, 2$. In case $H_M(0)$ at $k=5$ is 0, H_M at $k=5$ first drops because the negative H_M flows in. But as the magnitude of \mathbf{B} field grows, the diffusion of positive H_M from large scale, sort of counteraction on the basis of H_M, conservation, makes H_M at $k=5$ grow to be positive.

Up to now we have used the fact that the left handed magnetic helicity($\langle \mathbf{a}_2 \cdot \mathbf{b}_2 \rangle < 0$) is generated when the system is driven by the right handed kinetic helicity($\langle \mathbf{u}_2 \cdot \mathbf{\omega}_2 \rangle > 0$) without enough consideration. Mathematically the growth of larger scale magnetic field(\mathbf{B}_1) or helicity(\mathbf{H}_1) is described by a differential equation like Eq. (7) or Eq. (8). However, since the differential equation in itself cannot describe the change of sign of variables, more fundamental and physical approach is required.

In case of $\alpha \Omega$ dynamo, there was a trial to explain the handedness of twist and writhe in corona ejection using the concept of magnetic helicity conservation.[2] However, even when there is no effect of differential rotation, α^2 dynamo, the sign of generated H_M is opposite to that of the injected $\langle \mathbf{u} \cdot \mathbf{\omega} \rangle$.

We assume the magnetic field $B_1 y$(Eq. 3(a)) interacts with right handed helical kinetic plasma motion. The velocity can be divided into toroidal component $u_{2,t}$ and poloidal component $u_{2,p} \hat{z}$. The interaction of this toroidal motion with B_1 produces $j_2 \sim u_{2,t} \hat{x} \times B_1$. The induced current density $j_{2,p}$ in the front is toward positive \hat{z} direction, but the rear current density $j_{2,\tau}$ is along with the negative \hat{z}. These two current densities become the sources of magnetic field $-b_{2,\hat{z}} j \sim \nabla \times B$. Again this induced magnetic field interacts with the poloidal kinetic velocity $u_{2,p} \hat{z}$ and generates $-\mathbf{j}_M \hat{y} \sim \langle \mathbf{u}_2 \cdot \mathbf{\omega}_2 \rangle$. Finally this \mathbf{j}_M produces \mathbf{B}_{in}, which forms a circle from the magnetic field \mathbf{B}_1(upper picture in Fig. 3(b)). If we go one step further from here, we see \mathbf{B}_{in} can be considered as a new toroidal magnetic field \mathbf{B}_{tor}, and \mathbf{B}_1 as \mathbf{B}_{pol}. This new helical magnetic field structure

Thus, $\alpha_{M,1}$ related to \mathbf{B} field is

$$\alpha_{M,1} = \frac{1}{3} \int_{-\infty}^{t} \mathbf{b}(x, t') \cdot \mathbf{j}(x, t') d t' \Rightarrow \alpha_{M,2} \quad (29)$$

Finally, the complete \mathbf{EMF} is,

$$\xi = \frac{1}{3} \langle \mathbf{\dot{j}}(\mathbf{\cdot} \mathbf{b}) - \langle \mathbf{u} \cdot \mathbf{\omega} \rangle \rangle \mathbf{\tau} \mathbf{B} + \frac{1}{3} \langle u^2 \rangle \mathbf{\tau} \nabla \times \mathbf{B}$$

$$+ \frac{1}{3} \langle \mathbf{\dot{j}}(\mathbf{\cdot} \mathbf{b}) - \langle \mathbf{u} \cdot \mathbf{\omega} \rangle \rangle \mathbf{b}_{i}(0) e^{-\eta k^2 t}$$

$$+ \frac{1}{3} \langle u^2 \rangle \mathbf{\tau} \nabla \times \mathbf{b}_{i}(0) e^{-\eta k^2 t} \quad (30)$$

(τ is substituted for the integration. Only magnitude is considered.)

b_i makes the additional terms in \mathbf{EMF} causing $2a_\mathbf{EMF}$ in \mathbf{EMF} field causing \mathbf{kB} field grows, the diffusion of positive \mathbf{H} is not influenced.

When the system with these initial conditions is driven by H_K, the growth of $E_{M,L}$ increases in proportion to $H_M(0)$ (Fig. 2(a)). However, $E_M(0)$ is in fact a more important factor in the growth rate. $E_M(0)$ and $H_M(0)$ of the reference H_K are 5.02×10^{-12} and -9.02×10^{-14}, and those for $fhm = -1$ are 1.82×10^{-5} and -6.77×10^{-6}. The plot shows that growth rate of the latter is even larger than that of the former.

Fig. 2(b) includes more detailed evolution of E_M at $k=1, 2, 5$ for $fhm = 0, \pm 1.0$. The plot shows E_M with the positive $H_M(0)$ at $k=5$ decreases faster than that of negative $H_M(0)$ when positive $\langle \mathbf{v} \cdot \mathbf{\omega} \rangle$(i.e., negative H_M is produced) is injected to the system. This fast drop of E_M at $k=5$ leads to the larger growth of E_M at $k=2$, and this causes slow but larger growth rate of $E_{M,L}$.

Fig. 2(c) are to compare the growth rate of $|H_{M,L}|$ with various initial magnetic helicity. The growth rate is also proportional to $H_M(0)$. Thick lines($0.3 < t < 8$) at Fig. 2(c) indicate $H_{M,L}$, therefore the cusp in the plot indicates the point (time) when the positive H_M turns into a negative. This positive H_M is thought to be
has the left handed polarity, i.e., \(\langle \mathbf{a} \cdot \mathbf{b} \rangle < 0 \) (lower plot of Fig. 3(b)). \(\mathbf{B}_{\text{tor}} \) interacts with the positive \(\langle \mathbf{u}_2 \cdot \omega_2 \rangle \) and induces the current density \(\mathbf{J} \) which is antiparallel to \(\mathbf{B}_{\text{tor}} \). Then \(\mathbf{B}_{\text{pol}} \) is reinforced by this \(\mathbf{J} \). This is \(\alpha^2 (B_{\text{pol}} \leftrightarrow B_{\text{tor}}) \) dynamo with the external forcing source.

We have seen how \(E_M(0) \) and \(H_M(0) \) in small scale affect the growth of large scale \(B \) field. The initially given magnetic energy produces additional terms that include \(\mathbf{b}_i \sim e^{-\eta k_f^2 t} \) in \(EMF \). Roughly there appears to be a linear like relation between the growth rate of \(E_{M,L} \) and \(H_M(0) \) or \(E_M(0) \). However, we need more study before making a conclusion because \(E_M \) can involve arbitrary \(H_M(\leq 2E_M/k) \) which is almost a conserved quantity with a changeable sign and magnitude. \(E_M(0) \) modifies \(EMF \) term generating \(\mathbf{b}_i \) and the related additional terms. Besides the three explicit factors (\(\eta, k_f, t \)) affecting the growth rate, the interaction between \(\mathbf{B} \) or \(\mathbf{A} \) and \(\mathbf{b}_i \) needs to be found out for more complete understanding the influence of \(H_M(0) \) and \(E_M(0) \). And deriving the modified \(EMF \), we assumed the system was isotropic. But, it is rather difficult to use the assumption when there is a mean or large scale magnetic field in the system. At least we need to consider the local anisotropy due to the mean magnetic field although the system driven by isotropic random force is globally isotropic. We will leave this topic for the future work.

Kiwan Park acknowledges the grant and comments from Dr. Dongsu Ryu at UNIST.

* 1Ulsan National Institute of Science and Technology, South Korea
[1] D. Biskamp. Magnetohydrodynamic Turbulence. February 2008.
[2] E. G. Blackman and A. Brandenburg. Doubly Helical Corona Ejections from Dynamos and Their Role in Sustaining the Solar Cycle. \textit{ApJL}, 584:L99–L102, February 2003.
[3] E. G. Blackman and G. B. Field. \textit{Physical Review Letters}, 89(26):265007, 2002.
[4] A. Brandenburg. The Inverse Cascade and Nonlinear Alpha-Effect in Simulations of Isotropic Helical Hydro-magnetic Turbulence. \textit{ApJ}, 550:824–840, April 2001.
[5] U. Frisch, A. Pouquet, J. Leorat, and A. Mazure. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. \textit{Journal of Fluid Mechanics}, 68:769–778, April 1975.
[6] F. Krause and K.-H. Rädler. Mean-field magnetohydrodynamics and dynamo theory. 1980.
[7] M. Lesieur. Turbulence in fluids. Stochastic and numerical modelling. 1987.
[8] H. K. Moffatt. Magnetic Field Generation in Electrically Conducting Fluids. 1978.
[9] K. Park. Influence of initial conditions on the large-scale dynamo growth rate. \textit{MNRAS}, 434:2020–2031, September 2013.
[10] K. Park and E. G. Blackman. Comparison between turbulent helical dynamo simulations and a non-linear three-scale theory. \textit{MNRAS}, 419:913–924, January 2012.
[11] K. Park and E. G. Blackman. Simulations of a magnetic fluctuation driven large-scale dynamo and comparison with a two-scale model. \textit{MNRAS}, 423:2120–2131, July 2012.
[12] K. Park, E. G. Blackman, and K. Subramanian. Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories. \textit{PRE}, 87(5):053110, May 2013.
[13] A. Pouquet, U. Frisch, and J. Leorat. Strong MHD helical turbulence and the nonlinear dynamo effect. \textit{Journal of Fluid Mechanics}, 77:321–354, September 1976.
[14] A. Yoshizawa. Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modelling and Statistical Theory (Fluid Mechanics and Its Applications), London: Springer. 2011.