Substitution Boosts Charge Separation for High Solar-Driven Photocatalytic Performance

Gong Zhang,†,⊥,⊥ Le Zhang,∥,¶ Yang Liu,‡ Limin Liu,∥ Chin-Pao Huang,§ Huijuan Liu,*†,⊥ and Jinghong Li*†

†State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
‡Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, China
§Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
∥Beijing Computational Science Research Center, Beijing 100084, China
⊥University of Chinese Academy of Sciences, Beijing 100039, China

ABSTRACT: Bandgap engineering of photocatalysts is a common approach to achieving high effective utilization of solar resource. However, the difficulty in achieving bandgap narrowing and high activity simultaneously seems to be irreconcilable via the traditional modification pathway. Herein, we have substituted iodine for a fraction of bromine atoms in BiOBr to overcome this restriction and provided some deep-seated insights into how the substitution boosts the photocatalytic properties. The substituted BiOBr0.75I0.25 exhibited exceptional photoactivity, with photon-to-current conversion efficiency approximately 6 times greater than TiO2 in UV region, and more than 10 times higher than BiOBr or BiOI in visible-light region. We found that the substitution narrowed the bandgap, facilitated the diffusion of electron with small effective mass, as well as induced oxygen vacancies on [Bi2O2]2+ layers. By virtue of the stronger dipole moments produced, the enhancement of intrinsic electric fields between [Bi2O2]2+ and halogen slabs was achieved in BiOBr0.75I0.25; thereby the distance the photogenerated electron could diffuse was sufficient to inhibit the recombination. Our findings not only shed light on the potential properties of hybrid-halide photocatalysts but also provide a strategy for developing high efficiency catalysts.

KEYWORDS: BiOBr, iodine, substitution, vacancy, photoactivity

INTRODUCTION

Photocatalysts provide significant potential for the conversion of solar radiation to chemical energy.1−3 Different approaches for narrowing the bandgap have developed into an active pursuit by researchers aimed at gathering solar energy.4,5 Doping, a common method for the modification of nanomaterials, is traditionally considered to be of crucial and scientific significance in materials science.6 Unfortunately, the difficulty of simultaneously achieving bandgap narrowing and high photoactivity seems to be irreconcilable. Although some success has been reported in achieving visible light activity by using dopants, the charge carrier trapping and recombination sites induced in the bulk have negative effects on photocatalytic activity.7,8

As the layered ternary semiconductors, bismuth oxyhalides (BiOX, X = Cl, Br, and I) with [Bi2O2]2+ slabs sandwiched between halogen atom slabs have drawn extensive attention due to their superior photocatalytic performance, in some cases surpassing that of TiO2 in UV region.9−11 However, in contrast to some other Bi-based semiconductors (such as BiVO4, Bi2WO6 and BiFeO3),12,13 lower visible-light activities of the BiOX need to be enhanced for satisfying practical applications. In BiOX crystals, the valence band is comprised of X np and O 2p states, while the conduction band minimum (CBM) is dominated by Bi 6p states. The BiOX crystals may be vested in O 2p and X np to Bi 6p, a p-to-p charge-transfer type, and the bandgap can also be derived using the charge-transfer energy minus the valence-bandwidth.14 The charge-transfer energy is proportional to the Pauling electronegativity of X atom (3.16, 2.96, and 2.66 for Cl, Br, and I, respectively), which shows an apparent trend of the bandgap narrowing with the X atomic number. Hence, there are numerous reports on the preparation of BiOBr or BiOI that have good visible-light photoactivity.15,16

Received: July 14, 2016
Accepted: September 23, 2016
Published: September 23, 2016
Additionally, the intrinsic electric fields due to the dipole moments between the [Bi₂O₂]²⁺ layer and the anionic halogen atoms also determine the separation of photogenerated charge carriers. With increasing halogen atomic number, the covalent bond between the Bi and X atoms is strengthened, which promotes the internal electric fields through an increase in the dipole moments; thereby the photogenerated charge carriers are separated effectively. Notably, in recently reported organic−inorganic mixed-halide perovskites, notwithstanding the coexistence of other elusive factors, remarkably enhanced photovoltaic performances have been indeed observed resulting from substitution. This has prompted us to hypothesize that the homogeneous substitution with foreign halogen atoms in BiOX would be feasible to achieve a strong intrinsic electric field for long charge diffusion length.

Meanwhile, during the process of pursuing optimized internal dipole moments, a few dangling bonds will be simultaneously created in the covalently bonded layers when strengthening the covalent bonding effect between bismuth and halogen atoms, resulting in vacancies in the crystal. Defects, as active sites where the charge carriers can be effectively separated, have been recently reported to narrow the band gap as well. Thus, the defect bismuth oxy-hybrid-halides have the potential to reconcile the apparent contradiction between bandgap narrowing and performance, and to provide an ideal platform to attain a comprehensive understanding of correlations between the structure, defects, and properties.

Herein, we report a detailed investigation on the substitution of iodine for bromine in BiOBr to optimize the performance through compositional tuning. The BiOBr₁₀₇I₂₅ exhibited exceptional photoactivity, with photon-to-current conversion efficiency approximately 6 times greater than TiO₂ in the UV region, and more than 10 times higher than BiOBr or BiOI in the visible-light region. On the basis of the results of X-ray absorption fine structure (XAFS) spectra, positron annihilation lifetime spectra (PAS), and electron paramagnetic resonance (EPR) spectroscopy, it was found that the BiOBr₁₀₇I₂₅ nanosheets had a larger bandgap and a higher density of states near the Fermi level compared to the pristine BiOBr nanosheets. These results indicate that the substitution of iodine for bromine can effectively tune the electronic properties of BiOBr, leading to enhanced photocatalytic performance.
(EPR) spectra in association with theoretical calculations, the relationships between substitution, vacancies, and enhanced activity were analyzed thoroughly.

**RESULTS AND DISCUSSION**

The substitution of iodine atoms into the BiOBr crystal should have the best potential for the preparation of highly efficient photocatalysts. Here, we achieve this by applying a facile solvothermal method (see Experimental Section). In contrast to the morphology range from flake to solid sphere with addition of different amounts of precursors (Figure S1), regular spheres with porous structure assembled from numerous smooth and flower-like nanoshells were observed in the case of Bi:Br:I ratio of 1.0:1.5:1.5 (Figure 1a), similar to BiOBr and BiOI. The sphere was further observed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) (Figure 1b). Generally, the detector in HAADF gathers electrons that change high-angle scattering, the signal intensity of which is directly proportional to the atomic number, Z. Therefore, the sharp contrast in the image enables the identification of the Bi (Z = 83), Br (Z = 35), and I (Z = 53) ions in shells. As shown in the inset in Figure 1b, the brightest spots symbolize Bi atoms, spots with the darkness represent Br atoms, and the spots with intermediate darkness stand for the I atoms, which are well-distributed in the Br host sites. Uniform distribution of Bi, O, Br, and I was observed throughout the structure (Figure 1c). The elemental composition of the sample was analyzed via energy dispersive X-ray spectroscopy (EDX). The Bi:Br:I atomic ratio was around 1.075:0.25:0.5, which was further confirmed through the ion chromatography (IC) and inductively coupled plasma optical emission spectrometry (ICP-OES). Moreover, on the basis of calculated reaction enthalpy (Figure S2), a stable bismuth oxy-hybrid-halide structure could be achieved by random substitution of iodine atoms into the BiOBr crystal. XRD pattern confirms that the sample has a tetragonal matlockite crystal structure (Figure 1d), representing a layered structure with [Bi2O2]2+ interleaved between halogen atoms slabs. Meanwhile, in contrast to BET surface areas of 45.8 and 42.6 m² g⁻¹ of BOBr and BiOI, a decreased value of 29.2 m² g⁻¹ was observed in BiOBr0.75I0.25, after iodine substitution (Figure S3).

Extended X-ray absorption fine structure spectroscopy (EXAFS) measurements were performed to study the arrangement of atoms around the photoabsorber. The Bi L-edge oscillation curve for BiOBr/I displays a remarkable difference in comparison with those of unsubstituted BiOBr and BiOI (Figure 1e), indicating the different local atomic arrangements in the catalysts. Fourier transform (FT) curves present three peaks in the range from 1 to 4 Å, corresponding to Bi–O, Bi–Br, and Bi–I distances, respectively. The FT curve of BiOBr shows the Bi–Br coordination with a main peak at 2.80 Å, whereas the peak is shifted to higher R by 0.08 Å in BiOBr/I. The high-R shift of the Bi–Br peak that resulted from the elongated distance between Bi and Br (Table S1) was due, most probably, to the electrostatic repulsion induced by the iodine with a smaller charge-to-mass ratio in BiOBr/I (Figure S4). On the contrary, the Bi–I coordination is almost the same as that in BiOI. Thus, on the basis of the coordination information and the fitted distance between Bi and halogen atoms, the atom distributions in BiOBr/I were established (Figure S5). Hence, we denoted the material as BiOBr0.75I0.25.

On the basis of the as-identified atom arrangements in BiOBr0.75I0.25, first-principle calculations were first performed to evaluate the effect of substitution on the band gap energy. BiOBr possesses a bandgap of 2.82 eV (Figure 2a). The substitution of iodine atoms for 25% the bromine in the BiOBr crystal results in a sharp down-shift of Bi 6p orbitals to VBM, decreasing the bandgap to 2.52 eV (Figure S6a). Further, carrier mobility, characterizing how rapidly an electron can
transfer through materials under field, was investigated using effective mass approximation, to evaluate the effect of substitution on photoinduced carrier separation efficiency.\textsuperscript{32,33}

In a semiconductor, the movement of electron takes place in a periodic potential, different from its motion in vacuum, and the effective mass ($m^*$) is a quantity that is applied to simplify the band structure by constructing an analogy to the behavior of a free particle with the same mass.\textsuperscript{34} A particle with small effective mass means will have low inertia and high carrier mobility ($\mu$) based on the formulas:

$$\mu = \frac{e\tau_s}{m^*}$$

where $e$ and $\tau_s$ are electron charge and mean scattering time, respectively. Remarkably, BiOBr\textsubscript{0.75}I\textsubscript{0.25} exhibits the smallest $m^*_e$ (electron) and the largest $m^*_h$ (hole) among all of the compositions studied (Figure 2b), which suggests that the electron in the iodine-substituted material has the highest mobility. Moreover, iodine has a substantially larger radius than that of the atom it is replacing; thereby the equilibrium positions of the unsubstituted atoms nearby are shifted away from the original sites. Thus, the dipole moment for BiOBr\textsubscript{0.75}I\textsubscript{0.25} increased to 2.98 D, with respect to the values of 1.70 and 2.45 D for BiOBr and BiOI. The enhanced intrinsic electric field due to the promoted dipole moment could facilitate the diffusion of the small effective mass $m^*_e$ to the trap sites, leaving the heavy hole at its original (VBM), which would effectively decrease their recombination probability.\textsuperscript{35}

Mott–Schottky plots were constructed to determine the carrier density of BiOBr, BiOI, and BiOBr\textsubscript{0.75}I\textsubscript{0.25}, respectively. The observed positive slopes indicate the n-type nature of BiOX samples (Figure 3).\textsuperscript{36,37} The carrier density could be determined by the relation:

$$N_d = \left(\frac{2}{e\varepsilon_0\varepsilon} \right) \left( \frac{dC^{-2}}{dV} \right)^{-1}$$

where $N_d$ is the number of donors, $\varepsilon$ is the dielectric constant, $e$ is the electron charge, and $\varepsilon_0$ is vacuum permittivity. Notably, BiOBr\textsubscript{0.75}I\textsubscript{0.25} exhibits an order of magnitude higher carrier density than BiOBr and BiOI (carrier densities for BiOBr, BiOI, and BiOBr\textsubscript{0.75}I\textsubscript{0.25} were evaluated as $1.25 \times 10^{18}$, $1.38 \times 10^{18}$, and $1.29 \times 10^{19}$, respectively). In addition, flat-band potential of BiOBr\textsubscript{0.75}I\textsubscript{0.25} was negatively shifted, which depressed charge carriers’ recombination by enhancing band bending at interface.\textsuperscript{38} Meanwhile, conduction band edges of n-type BiOX can be obtained from the following equation:

$$V_{CB} = U_b - \frac{K_B T}{q} \ln \left( \frac{N_d}{N_C} \right)$$

in which $N_C$ is the density of states in CB; $q$ is unsigned charge of an electron. In contrast to the DOS result for defect-free BiOBr\textsubscript{0.75}I\textsubscript{0.25} negative shifted CB in the Mott–Schottky plot was due to the presence of transition state induced by oxygen vacancies, which was in good agreement with the theoretical calculations as well.

Figure 4. Formation of oxygen vacancies on BiOBr\textsubscript{0.75}I\textsubscript{0.25}. (a) The HRTEM image of [Bi\textsubscript{2}O\textsubscript{2}]\textsuperscript{2+} layers ([001] direction), confirming the existence of defects on the layer. Scale bar, 2 nm. Inset: Annular bright-field and dark-field STEM imaging in the white dash quadrate for visualizing atomic arrangements in the covalence layers (blue and red balls represent bismuth and oxygen atom, respectively). The white arrowhead in the dark-field STEM image indicates the shift of the bismuth atom, which might have resulted from the deficiency of oxygen atom on layer. (b) Positron annihilation lifetime spectra (PAS) with lifetime parameters (table inset), and (c) low temperature (70 K) EPR spectra of BiOBr, BiOI, and BiOBr\textsubscript{0.75}I\textsubscript{0.25}, respectively.
As discussed above, the substitution of iodine atoms into the BiOBr crystal could improve the carrier density because of the large electron mobility. Remarkably, in some domains, a distorted lattice can be observed in [Bi2O2]2+ layers (Figure 4a). Such lattice disorder is usually derived from atom deficiency. It should also be noted that the oxygen vacancies can be regarded as electron donor species. To ascertain this, the nature of the defects was first studied by PAS. Figure 4b depicts the three types of positron annihilation measurements for the BiOX, and the table inset shows lifetime components of the two positrons, \( \tau_1 \) and \( \tau_2 \), with the corresponding intensities \( I_1 \) and \( I_2 \), respectively. Normally, \( \tau_1 \) was derived from the defects with small-size in bulk, while \( \tau_2 \) results from positrons trapped by defects with larger size on surface. According to the theoretically calculated lifetime of positrons, the short \( \tau_1 \) around 189 ps could be assigned to positron annihilation as trapped at the oxygen defects, while the other component (\( \tau_2 \)) around 460 ps was attributed to larger vacancy clusters on surface. Moreover, further information on the concentration of the vacancies could be gained from the relative intensity (I). In comparison with the values of 0.45 and 0.71 of BiOBr and BiOI, respectively, the \( I_1/I_2 \) value of BiOBr0.75I0.25 increased to 2.12, indicating a higher concentration of defects after iodine substitution.

The underlying mechanism of the oxygen vacancy formation is, in fact, closely related to the generation of reduced states of bismuth with iodine substitution, and depended on the synthetic process as well. As observed in the electronic density distribution (Figure S6), the local atomic arrangement in BiOBr0.75I0.25 strengthens the covalent interaction between the bismuth and halogen atoms, resulting in remarkable variations in the electronic landscape around the Bi atoms. The enhancing covalency can also be quantitatively noticed according to effective ionic valence, which is the variance between Mulliken charge and primitive ionic charge in the compound. The average Mulliken charge of halogen atoms in BiOBr0.75I0.25 decreased to \(-0.22\) with respect to that of \(-0.43\) and \(-0.33\) in BiOBr and BiOI, respectively; the corresponding effective ionic valence increased from 0.57 and 0.67 to 0.78 (the primitive ionic charge of a halogen ion is \(-1.00\)).

The greater value in BiOBr0.75I0.25 means a higher level of covalent interaction between the halogen elements and bismuth atoms. The binding energy of Bi 4f in the BiOBr0.75I0.25 is red-shifted by 0.5 eV (Figure 5a), and the absorption edge energy of Bi species in first-order derivative of Bi L-edge XANES is red-shifted by 0.3 eV with respect to unsubstituted BiOBr and BiOI (Figure 5b), implying the presence of low valence state bismuth species. Moreover, during the solvothermal synthetic process, the Bi atoms possess inadequate oxygen as bonding partners to accommodate the valence variation. EPR spectra were then performed to gain more information on the BiOBr0.75I0.25. As shown in Figure 4c, both BiOBr and BiOI have a weak signal at \( g = 2.003 \). On the contrary, BiOBr0.75I0.25 exhibits obvious EPR signal at \( g = 2.003 \), indexing to the low-valence Bi atoms with dangling bonds located in the [Bi2O2]2+ layers, bringing about a high concentration of oxygen vacancies (OVs) in the crystal.

The existence of OVs in the semiconductor greatly changes the Bader charges, band structure, partial density of states (PDOS), total density of states (TDOS), and frontier molecular orbitals (Figure 6). As above-mentioned, the substitution of iodine atoms into BiOBr decreased the bandgap by 0.30 eV. To further investigate the electron density contour maps, it must be noted that Bi 6p and X np states generated another high-density region in the presence of OVs, resulting in a sharp downshift of localized Bi 6p states and moderate downshift of the X np states, further narrowing the bandgap by 0.26 eV. This trend is consistent with the UV/vis diffuse reflection data (Figure S8). In addition, newly hybridized states between the Bi 6p and X np states created a transition energy band between CBM and VBM, which was also conducive to photon absorption. The occupied states near the Fermi level could be considered to consist of isolated and localized states, which were mainly due to the existence of reduced Bi species. The presence of the transition states will facilitate electron diffusion by the polaron hopping mechanism. Moreover, in contrast to defect-free material, the observed k-vector (crystal momentum) in the Brillouin zone for CB and VBM is different in the doped BiOBr0.75I0.25, indicating that it is of an indirect bandgap semiconductor. Hence, the recombination efficiency of as-generated electron–hole pairs is far slower than that in the defect-free material.

Further examination of electron density distribution demonstrated that the covalent interactions were strengthened between the halogen slabs and Bi atoms in the BiOBr0.75I0.25 thereby the dipole moment increased to 3.38 D. Additionally, the variation in electronic structures induced by the OVs implies that the electron-donor species can also serve as a dopant to enhance the electron mobility. According to the effective mass approximation, the electron effective mass was decreased by a factor of 1.5 in contrast to defect-free
material. The small effective mass with high mobility would effectively diffuse in the enhanced intrinsic electric fields, thereby inhibiting recombination.

The photon-to-current conversion efficiency of BiOBr_{0.75}I_{0.25} was investigated by using the photocurrent action spectra and included the state-of-the-art TiO_2 catalyst for comparison. Figure 7a shows that BiOBr has the lowest photocurrent, BiOI has an intermediate photon-to-current efficiency, and BiO-Br_{0.75}I_{0.25} achieves much higher photocurrent than BiOBr, BiOI, and BiOBr_{I} with other Br:I ratios in the UV−visible-light regions (Figure S8). The superior photoactivity of BiOBr_{0.75}I_{0.25} is reasonably speculated to originate from its high carrier mobility, density, and the enhanced dipole moments. It must be noted that the maximum photocurrent of BiOBr_{0.75}I_{0.25} is approximately 6 times greater than P25 TiO_2 toward light region from 330 to 350 nm. In addition, chronoamperometric technique was applied for evaluating the photoresponse of catalysts. Upon power excitation, photocatalysts exhibited instantaneous photocurrents, which then sharply reverted to steady state after the light was turned off. BiOBr_{0.75}I_{0.25}, with the highest carrier mobility, exhibits a photocurrent density of 620 μA cm⁻² under AM 1.5, which is more than 10 times higher than BiOBr and BiOI (Figure 7b). A similar tendency is also observed under visible-light irradiation (Figure 7c).

The charge-transfer properties of the photocatalysts were further measured by means of electrochemical impedance spectrum (EIS) measurements. We selected equivalent circuit (EC) (Figure 7d, inset), which has been evidenced to be suitable in fitting Bi-based semiconductors, to fit the parameters in different electrochemical processes. Similar to the role of surface state reported in former literature, bulk defect crystals were here emphasized in EC model, which can not only trap holes from the valence band (R_{trapping}), but similarly influence the transfer of holes from solid interface to the donor species in solution, as defined by R_{ct,trap}. As shown in Figure 7d, the electrical resistance of BiOBr_{0.75}I_{0.25} was much smaller than that of BiOBr and BiOI in the dark as indicated by smaller impedance arc radius, which was undoubtedly attributed to the existence of OVs with high concentration after substitution. Under light illumination, the smaller charge-transfer resistance
(Rct, trap) on the surface of BiOBr0.75I0.25 resulted from the enhanced diffusion of electrons with high mobility (Table S2). Meanwhile, the Ctrap value, which reflects the quantity of trapped carriers in surface states, was 4.9 × 10⁻⁴ F cm⁻² in BiOBr0.75I0.25, in sharp contrast to the values of 6.1 × 10⁻⁵ and 4.7 × 10⁻⁵ F cm⁻² in BiOI and BiOBr. The increase in Ctrap is ascribed to the larger quantities of photoinduced holes on the surface.

Moreover, the photocatalytic performance of the BiOX materials was evaluated. First, with UV light (200–400 nm) irradiation, the red-color of Rhodamine (RB) was totally degraded by BiOBr0.75I0.25 within 5 min, whereas 20 min was needed with TiO₂. Under visible light, pseudo-first-order kinetics was fitted well in degradations, and the apparent rate constant (k) of 1.2 min⁻¹ was calculated for BiOBr0.75I0.25, which was in sharp contrast to that of 0.32 and 0.067 min⁻¹ with BiOI and BiOBr (Figure 8a). In contrast to BiVO₄, a state-of-the-art Bi-based material for photocatalytic splitting water, defect-rich BiOBr0.75I0.25 catalyst exhibited the higher photocatalytic efficiency to the colored chemicals.49 Meanwhile, due to the suitable iodine substitution as well as the as-induced active oxygen vacancies, degradation efficiency for RB under the same light irradiation outperformed other BiOBrₓIₓ samples reported before.50 Furthermore, EPR spectra followed by radical-trapping were carried out to gain deep insights into reactions.51 An intensity ratio of 1:2:2:1 in 4-fold characteristic peak was observed for DMPO—•OH adduct in BiOBr.29 Notably, a seven-line spectrum characteristic signal with higher intensity was observed for the BiOBr0.75I0.25 (Figure 8b). The results show that the reaction of the excited electrons or holes with oxygen in aqueous suspension is able to generate a significant amount of oxidant as shown by the formation of 5,5-dimethyl-1-pyrroline-N-oxyl (DMPOX).52 In addition, the photogenerated charge carriers participated in the photocatalytic reaction directly, which was confirmed by the photocatalytic oxidation of Bisphenol A (BPA), and reduction of Cr⁶⁺ in neutral conditions. BPA, which has been reported to cause adverse effects on aquatic organisms,53 was chosen as a probe to assess the role of holes in degradation.54 Under solar light, the degradation rate constant (k) is 0.19 min⁻¹ in BiOBr0.75I0.25, which is approximately 7 times that of TiO₂, indicating the direct attack by a high concentration of holes (Figure 8c). Meanwhile, the reduction of Cr⁶⁺ was completed in 30 min with BiOBr0.75I0.25 at a rate constant 0.056 min⁻¹, while negligible H₂O₂ was detected, implying that the Cr⁶⁺ was reduced by these photogenerated electrons (Figure 8d). The photoactivities of BiOBr0.75I0.25 over 10 consecutive cycles for three contaminants containing solutions are shown in Figure S10. A decreased catalytic efficacy after 10 cycles can be observed in the RB- and Cr⁶⁺-containing solutions, which were...
due to a strong adsorptive effect with RB, and deposition of as-reduced CrIII on surface in neutral condition. The photocatalytic degradation to BPA in the 10th almost remained the same as the first time. Overall, the observed stability was an important attribution for practical application of BiOBr0.75I0.25 to environmental remediation.

■ CONCLUSIONS

In summary, we here prepared oxygen-vacancy-rich bismuth oxy-hybrid-halide photocatalysts by substitution of iodine atoms into BiOBr crystal, which was confirmed by quantitative analysis of the corresponding EXAFS regions. Results of experimental observations and theoretical calculations showed that the iodine substitution narrowed the bandgap, promoted the carrier mobility, and could be regarded as a prerequisite for the formation of oxygen vacancies. The photocatalytic experiments showed that the vacancy-rich structure constructed by substitution reconciled the apparent contradiction between bandgap narrowing and high activity; striking enhancements were achieved in photon-to-current conversion efficiency in both UV and visible-light regions. The results led to a greater mechanistic understanding of the synergistic effect in hybrid-halide photocatalysts, for example, in hybrid-halide perovskite solar cells.55 The relationships among the structure, defects, and enhanced properties will provide a theoretical foundation for the design of a highly efficient catalyst.

■ EXPERIMENTAL SECTION

Materials Synthesis. 2.0 g of polyvinylpyrrolidone (PVP) (Mw = 30 000) (Aldrich) was added to 40 mL of hot ethylene glycol (70 °C) to obtain a homogeneous solution, and then 1 mmol of Bi(NO3)3·5H2O (Alfa) was carefully dissolved in 2 min. Meanwhile, 1.5 mmol of KBr was added under ultrasound, and subsequently 1.5 mmol of KI was added into the reaction mixture. The mixture was then kept in a Teflon-lined autoclave (filled to 80% of its entire capacity), which was sealed and placed in an electric oven at 160 °C for 12 h. When the Teflon-lined autoclave was allowed to cool at room temperature, pale-yellow precipitate was filtered. The washing procedure was repeated several times with distilled water and absolute ethanol.

Additionally, for preparing samples with different substitution levels, the procedures were the same as for the BiOBr0.75I0.25 except that the amounts of halogen precursors and reaction temperatures were adjusted accordingly (Table 1).

Characterizations for Bismuth Oxyhalides. The particle size, composition, and crystal structure of the sample were characterized by powder X-ray diffraction (XRD) (PANalytical Inc.) equipped with Cu Kα irradiation. Morphologies of the samples were observed by Zeiss field emission scanning electron microscopy (FESEM). Transmission electron microscopy (TEM) was measured using a high-resolution JEM-ARM200F TEM/STEM for exploring the information on structure and lattice. X-ray photoelectron spectroscopy (XPS) was conducted in a PHI5000 Versa Probe system (Physical Electronics, MN) using monochromatic Al Kα radiation (225 W, 15 mA, 15 kV), and the binding energy was calibrated with internal standard by use of C 1s peak at 284.80 eV. To explore light absorbance and emission behavior, UV−visible absorption spectra were recorded in diffuse light.

Table 1. Reaction Details and Ratios of the As-Obtained Bi–Br–I in the BiOBrI

| Bi(NO₃)₃ (mmol) | KBr (mmol) | KI (mmol) | Bi:Br:I | temp/°C |
|---------------|------------|-----------|---------|---------|
| 1.00          | 0.00       | 1.50      | 1:0:1   | 150     |
| 1.00          | 0.50       | 0.50      | 1:0.65:0.12 | 150    |
| 1.00          | 0.50       | 1.5       | 1:0.75:0.25 | 150    |
| 1.00          | 1.00       | 1.00      | 1:0.45:0.48 | 160    |
| 1.00          | 1.25       | 1.50      | 1:0.70:0.22 | 160    |
| 1.00          | 1.50       | 0.00      | 1:1:0   | 160     |

KBr was added under ultrasound, and subsequently 1.5 mmol of KI was added into the reaction mixture. The mixture was then kept in a Teflon-lined autoclave (filled to 80% of its entire capacity), which was sealed and placed in an electric oven at 160 °C for 12 h. When the Teflon-lined autoclave was allowed to cool at room temperature, pale-yellow precipitate was filtered. The washing procedure was repeated several times with distilled water and absolute ethanol.

Materials Synthesis. 2.0 g of polyvinylpyrrolidone (PVP) (Mw = 30 000) (Aldrich) was added to 40 mL of hot ethylene glycol (70 °C) to obtain a homogeneous solution, and then 1 mmol of Bi(NO₃)₃·5H₂O (Alfa) was carefully dissolved in 2 min. Meanwhile, 1.5 mmol of KBr was added under ultrasound, and subsequently 1.5 mmol of KI was added into the reaction mixture. The mixture was then kept in a Teflon-lined autoclave (filled to 80% of its entire capacity), which was sealed and placed in an electric oven at 160 °C for 12 h. When the Teflon-lined autoclave was allowed to cool at room temperature, pale-yellow precipitate was filtered. The washing procedure was repeated several times with distilled water and absolute ethanol.

Additionally, for preparing samples with different substitution levels, the procedures were the same as for the BiOBr₀.₇₅I₀.₂₅ except that the amounts of halogen precursors and reaction temperatures were adjusted accordingly (Table 1).

Characterizations for Bismuth Oxyhalides. The particle size, composition, and crystal structure of the sample were characterized by powder X-ray diffraction (XRD) (PANalytical Inc.) equipped with Cu Kα irradiation. Morphologies of the samples were observed by Zeiss field emission scanning electron microscopy (FESEM). Transmission electron microscopy (TEM) was measured using a high-resolution JEM-ARM200F TEM/STEM for exploring the information on structure and lattice. X-ray photoelectron spectroscopy (XPS) was conducted in a PHI5000 Versa Probe system (Physical Electronics, MN) using monochromatic Al Kα radiation (225 W, 15 mA, 15 kV), and the binding energy was calibrated with internal standard by use of C 1s peak at 284.80 eV. To explore light absorbance and emission behavior, UV−visible absorption spectra were recorded in diffuse light.

Table 1. Reaction Details and Ratios of the As-Obtained Bi–Br–I in the BiOBrI

| Bi(NO₃)₃ (mmol) | KBr (mmol) | KI (mmol) | Bi:Br:I | temp/°C |
|---------------|------------|-----------|---------|---------|
| 1.00          | 0.00       | 1.50      | 1:0:1   | 150     |
| 1.00          | 0.50       | 0.50      | 1:0.65:0.12 | 150    |
| 1.00          | 0.50       | 1.5       | 1:0.75:0.25 | 150    |
| 1.00          | 1.00       | 1.00      | 1:0.45:0.48 | 160    |
| 1.00          | 1.25       | 1.50      | 1:0.70:0.22 | 160    |
| 1.00          | 1.50       | 0.00      | 1:1:0   | 160     |
reflection mode (UV2401/2, Shimadzu, Japan). Positron annihilation lifetime spectra (PAS) measurements were performed via a fast—slow coincidence method. X-ray absorption fine structure spectroscopy (XAFS) for Bi L-edge was carried out at the Shanghai Synchrotron Radiation Facility (SSRF) on beamline BL14W1. Photocatalytic Measurements. A two-electrode configuration system was used for photocurrent action spectra,56 where catalysts were covered on FTO glasses by the surgical-blade method as working electrode (a glass rod was applied to roll the pastes containing 0.2 g of powder and 0.5 mL of ethanol on FTO) in 0.2 M KCl electrolyte; a platinum wire with high purity served as a counter electrode. Light source was a 300 W xenon lamp equipped with a monochromator, and PEC cell with an illumination area of 0.12 cm² was illuminated from the FTO side. A lock-in amplifier synchronized with light chopper (monochromatic illuminating 0.2 M KCl electrolyte; a platinum wire with high purity served as a counter electrode. Light source was a 300 W xenon lamp equipped with a monochromator, and PEC cell with an illumination area of 0.12 cm² was illuminated from the FTO side. A lock-in amplifier synchronized with light chopper (monochromatic illuminating 0.2 M KCl electrolyte; a platinum wire with high purity served as a counter electrode. Light source was a 300 W xenon lamp equipped with a monochromator, and PEC cell with an illumination area of 0.12 cm² was illuminated from the FTO side. A lock-in amplifier synchronized with light chopper (monochromatic illuminating 0.2 M KCl electrolyte; a platinum wire with high purity served as a counter electrode. Light source was a 300 W xenon lamp equipped with a monochromator, and PEC cell with an illumination area of 0.12 cm² was illuminated from the FTO side. A lock-in amplifier synchronized with light chopper (monochromatic illuminating 0.2 M KCl electrolyte; a platinum wire with high purity served as a counter electrode. Light source was a 300 W xenon lamp equipped with a monochromator, and PEC cell with an illumination area of 0.12 cm² was illuminated from the FTO side. A lock-in amplifier synchronized with light chopper (monochromatic illumina- tion was evaluated about 15 µW/cm² was applied for recording the current signal. P25 TiO₂-coated photoelectrode was first applied as the control. Photoelectrochemical properties were measured in a standard three-electrode configuration using a Princeton Versa STAT 3 electrochemical workstation, with BiOX electrodes as photoanodes; Pt wire and an Ag/AgCl electrode were applied as counter and reference electrodes in KCl electrolyte, respectively. The light was from an AM 1.5 solar power system, whose wavelength below 420 nm was removed to achieve visible light by an optical filter. Photocatalytic Test. Photocatalytic effectiveness was investigated by oxidation of Rhodamine B (RB), Bisp henol A (BPA), and the reduction of CrVI in an initial concentration of 10 mg L⁻¹. Specifically, 20 mg of catalyst was added to 50 mL of solution containing the above chemicals. Before light irradiation, to attain adsorptive equilibrium, mixtures were mixed in the dark about 60 min. After a predetermined time, samples were withdrawn for analyzing the concentration of the chemicals. In cycle runs, the photocatalytic reaction was 5, 20, and 30 min for RB, BPA, and CrVI, respectively. The concentration of RB was detected by UV/vis spectrophotometry (UV2401/2, Shimadzu). Residual concentration of BPA was determined via an Agilent high performance liquid chromatography (HPLC) system through a C18 column. For BPA, the mobile phase was the mixture of methanol and ultrapure water with a volume ratio of 30:70. Hexavalent chromium was detected by UV/vis spectrophotometry at 400 nm via the 1,5-diphenylcarbazid analytical method following the AFNOR standard NFT 90-043. 57 H₂O₂ was analyzed spectrophotometrically at 400 nm applying potassium titanium oxalate solution.

Computational Details for Bismuth Oxyhalides. All of the calculations were conducted by the Vienna ab initio simulation package (VASP), and the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional within the generalized gradient approximation (GGA) was employed. 59 The cutoff energy for basis set was set to 450 eV. Brillouin zone was sampled with a 4 × 4 × 4 × k-mesh of Monkhorst–Park scheme. 60 When treating valence-core interactions with S, 6, and 7 valence electrons for Bi, O, and X (X = Br, I), the projector augmented-wave method (PAW) was used. Structures were relaxed until residual force on atomic individual was less than 0.01 eV /Å. The BiOX are a sort of layered compounds with P₄/nmm space group. BiOX were composed by [Bi₂O₂]²⁺ layers and two sheets of X-ions arranged in a sandwiched way. In this work, a 2 × 2 × 1 supercell was applied for all calculations.

Author Contributions
G.Z. and L.Z. contributed equally to this work.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was financially supported by the National Science Fund for Distinguished Young Scholars of China (Grant no. 51225805), the Funds for Creative Research Groups of China (no. 51221892), National Key Research and Development Program of China (no. 2016YFA0203101), National Basic Research Program of China (no. 2013CB934004), National Natural Science Foundation of China (no. 51527139), and Tsinghua University Initiative Scientific Research Program.

REFERENCES
(1) Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-Metal Nanostructures for Efficient Conversion of Solar to Chemical Energy. Nat. Mater. 2011, 10, 911–921.
(2) Zhao, Z.; Tian, J.; Sang, Y.; Cabot, A.; Liu, H. Structure, Synthesis, and Applications of TiO₂ Nanobelts. Adv. Mater. 2015, 27, 2557–2582.
(3) Huang, G.; Chen, Y. Z.; Jiang, H. L. Metal-Organic Frameworks for Catalysis. Huaxue Xuebao 2016, 74, 113–129.
(4) Han, R. B.; Lu, S.; Wang, Y.; Zhang, X. H.; Wu, Q.; He, T. Application of SO₂ and 1° Co-Doped Polyanioline Counter Electrode in Dye-sensitized Solar Cells. Acta Chem. Sin. 2015, 73, 1061–1068.
(5) Li, J.; Zhao, K.; Yu, Y.; Zhang, L. Facet-Level Mechanistic Insights into General Homogeneous Carbon Doping for Enhanced Solar-to-Hydrogen Conversion. Adv. Funct. Mater. 2015, 25, 2189–2201.
(6) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient Photocatalytic Water Splitting by a Chemically Modified n-TiO₂. Science 2002, 297, 2243–2245.
(7) Tao, J.; Luttrell, T.; Batzill, M. A Two-Dimensional Phase of TiO₂ with a Reduced Bandgap. Nat. Chem. 2011, 3, 296–300.
(8) Wang, J.; Tafen, D. N.; Lewis, J. P.; Hong, Z.; Manivannan, A.; Zhi, M.; Li, M.; Wu, N. Origin of Photocatalytic Activity of Nitrogen-Doped TiO₂ Nanobelts. J. Am. Chem. Soc. 2009, 131, 12290–12297.
(9) Jiang, J.; Zhao, K.; Xiao, X.; Zhang, L. Synthesis and Facet-Dependent Photoactivity of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.
(10) Zhao, K.; Zhang, L.; Wang, J.; Li, Q.; He, W.; Yin, J. J. Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.
(11) Wang, H.; You, T. T.; Shi, W. W.; Li, J. H.; Guo, L. Au/TiO₂/ Au as a Plasmonic Coupling Photocatalyst. J. Phys. Chem. C 2012, 116, 6490–6494.
(12) Martinez Suarez, C.; Hernández, S.; Russo, N. BiVO₄ as Photocatalyst for Solar Fuels Production through Water Splitting: A Short Review. Appl. Catal., A 2015, 504, 158–170.
(13) Murcia-López, S.; Fábrega, C.; Monllor-Satoca, D.; Hernández-Alonso, M. D.; Penelas -Pérez, G.; Morata, A.; Morante, J. R.; Andreu, T. Tailoring Multilayered BiVO₄ Photocathode by Pulsed Laser Deposition for Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 4076–4085.
(14) Huang, W. L.; Zhu, Q. DFT Calculations on the Electronic Structures of BiO₂ (X = F, Cl, Br, I) Photocatalysts with and without Semiconductors. J. Comput. Chem. 2009, 30, 183–190.
(15) Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed [001] Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.
(16) Zhang, H.; Yang, Y.; Zhou, Z.; Zhao, Y.; Liu, L. Enhanced Photocatalytic Properties in BiOBr Nanosheets with Domi-82
(17) Myung, Y.; Wu, F.; Banerjee, S.; Park, J.; Banerjee, P. Electrical Conductivity of P-type BiOCl Nanosheets. *Chem. Commun.* 2015, *51*, 2629–2632.

(18) Li, J.; Yu, Y.; Zhang, L. Bismuth Oxyhalide Nanomaterials: Layered Structures Meet Photocatalysis. *Nanoscale* 2014, *6*, 8473–8488.

(19) Sato, J.; Kobayashi, H.; Inoue, Y. Photocatalytic Activity for Water Decomposition of Indates with Octahedrally Coordinated di0 Configuration. II. Roles of Geometric and Electronic Structures. *J. Phys. Chem. B* 2003, *107*, 7970–7975.

(20) Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snait, H. J. Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells. *Energy Environ. Sci.* 2014, *7*, 982–988.

(21) Antonietta Loi, M.; Hummelen, J. C. Hybrid Solar Cells: Perovskites under the Sun. *Nat. Mater.* 2013, *12*, 1087–1089.

(22) Ma, Y. W.; Lu, Y. H.; Yi, J. B.; Feng, Y. P.; Herrg, T. S.; Liu, X.; Gao, D. Q.; Xue, D. S.; Xue, J. M.; Ouyang, J. Y.; Ding, J. Room Temperature Ferromagnetism in Teldon due to Carbon Dangling Bonds. *Nat. Commun.* 2013, *3*, 727.

(23) Zuo, F.; Wang, L.; Wu, T.; Zhang, Z.; Borchardt, D.; Feng, P. Self-Doped Ti4+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. *J. Am. Chem. Soc.* 2010, *132*, 11856–11857.

(24) Xie, K.; Umezawa, N.; Zhang, N.; Reunchan, P.; Zhang, Y.; Ye, J. Self-Doped SrTiO3-Delta Photocatalyst with Enhanced Activity for Non-Polar Crystals. *ACS Appl. Mater. Interfaces* 2014, *6*, 2629–3033.

(25) Guan, M.; Xiao, C.; Zhang, J.; Fan, S.; An, R.; Cheng, Q.; Xie, J.; Zhou, M.; Ye, B.; Xie, Y. Vacancy Associates Promoting Solar-Driven Photocatalytic Activity of Ultrathin Bismuth Oxychloride Nanosheets. *J. Am. Chem. Soc.* 2013, *135*, 10411–10417.

(26) Barrientos, P.; Ham, H. C.; Shao-Horn, Y.; Allard, L. F.; Hwang, G. S.; Ferreira, P. J. Atomic Structure and Composition of Artificial Photosynthesis under Visible Light. *Chem. Soc. Rev.* 2012, *41*, 15670–15675.

(27) Zhang, X.; Meng, F.; Christianson, J. R.; Arroyo-Torres, C.; Lukowski, M. A.; Liang, D.; Schmidt, J. R.; Jin, S. Vertical Heterostructures of Layered Metal Chalcogenides by Van Der Waals Epitaxy. *Nano Lett.* 2014, *14*, 3047–3054.

(28) He, S.; Li, C.; Chen, H.; Su, D.; Zhang, B.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. A Surface Defect-Promoted Ni Nanocatalyst with Simultaneously Enhanced Activity and Stability. *Chem. Mater.* 2013, *25*, 1040–1046.

(29) Liu, G.; Wang, T.; Ouyang, S.; Liu, L.; Jiang, H.; Yu, Q.; Kako, T.; Ye, J. Band-Structure-Controlled BiOCl(b)(1-x)/2-xI-x Solid Solutions for Visible-Light Photocatalysis. *J. Mater. Chem. A* 2015, *3*, 8123–8132.

(30) Zitolo, A.; Goedler, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of Catalytic Sites for Oxygen Reduction in Iron- and Nitrogen-Doped Graphene Materials. *Nat. Mater.* 2015, *14*, 937.

(31) Liu, Y.; Cheng, H.; Lyu, M.; Fan, S.; Liu, Q.; Zhang, W.; Zhi, Y.; Wang, C.; Xiao, C.; Wei, S.; Ye, B.; Xie, Y. Low Overpotential in Vacancy-Rich Ultrathin CoSe2 Nanosheets for Water Oxidation. *J. Am. Chem. Soc.* 2014, *136*, 15670–15675.

(32) Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. Electronic Structure and Carrier Mobility in Graphdiyne Sheet and Nanoribbons: Theoretical Predictions. *ACS Nano* 2011, *5*, 2593–2600.

(33) Bardeen, J.; Shockley, W. Deformation Potentials and Mobilities in Non-Polar Crystals. *Phys. Rev.* 1950, *80*, 72–80.

(34) Pekar, S. The Method Effective Electron Mass in Crystals. *Zh. Eksperimental’noi Teor. Fiz.* 1946, *16*, 933–935.

(35) Jin, H.; Wiendlocha, B.; Heremans, J. P. P-type Doping of Elemental Bismuth with Indium, Gallium and Tin: A Novel Doping Mechanism in Solids. *Energy Environ. Sci.* 2015, *8*, 2027–2040.

(36) Liu, G.; Wang, T.; Zhou, W.; Meng, X.; Zhang, H.; Liu, H.; Kako, T.; Ye, J. Crystal-Facet-Dependent Hot-Electron Transfer in Plasmonic-Au/Semiconductor Heterostructures for Efficient Solar Photocatalysis. *J. Mater. Chem. C* 2015, *3*, 7538–7542.
(56) Chen, D.; Zhang, H.; Liu, Y.; Li, J. Graphene and Its Derivatives for the Development of Solar Cells, Photoelectrochemical, and Photocatalytic Applications. *Energy Environ. Sci.* 2013, 6, 1362−1387.

(57) Demoisson, F.; Mullet, M.; Humbert, B. Pyrite Oxidation by Hexavalent Chromium: Investigation of the Chemical Processes by Monitoring of Aqueous Metal Species. *Environ. Sci. Technol.* 2005, 39, 8747−8752.

(58) Yuan, S.; Fan, Y.; Zhang, Y.; Tong, M.; Liao, P. Pd-Catalytic In Situ Generation of H2O2 from H2 and O2 Produced by Water Electrolysis for the Efficient Electro-Fenton Degradation of Rhodamine B. *Environ. Sci. Technol.* 2011, 45, 8514−8520.

(59) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B: Condens. Matter Mater. Phys.* 1996, 54, 11169−11186.

(60) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* 1996, 77, 3865−3868.