DIVERGENCE OF NON-RANDOM FLUCTUATION IN FIRST PASSAGE PERCOLATION

SHUTA NAKAJIMA

Abstract. We study non-random fluctuation in the first passage percolation on \(\mathbb{Z}^d \) and show that it diverges for any dimension. We also prove the divergence of the non-random shape fluctuation, which was conjectured in [Yu Zhang. The divergence of fluctuations for shape in first passage percolation. Probab. Theory. Related. Fields. 136(2) 298–320, 2006].

1. Introduction

First Passage Percolation is a dynamical model of infection, which was introduced by Hammersley and Welsh [14]. The model has received much interests both in mathematics and physics because it has rich structures from the viewpoint of the random metric and it is related to the KPZ-theory [18]. See [2] on the background and related topics.

We consider the first passage percolation (FPP) on the lattice \(\mathbb{Z}^d \) with \(d \geq 2 \). The model is defined as follows. The vertices are the elements of \(\mathbb{Z}^d \). Let us denote by \(E^d \) the set of edges:

\[
E^d = \{ \{v, w\} : v, w \in \mathbb{Z}^d, |v - w|_1 = 1 \},
\]

where we set \(|v - w|_1 = \sum_{i=1}^d |v_i - w_i| \) for \(v = (v_1, \cdots, v_d) \), \(w = (w_1, \cdots, w_d) \). Note that we consider non-oriented edges in this paper, i.e., \(\{v, w\} = \{w, v\} \) and we sometimes regard \(\{v, w\} \) as a subset of \(\mathbb{Z}^d \) with a slight abuse of notation. We assign a non-negative random variable \(\tau_e \) on each edge \(e \in E^d \), called the passage time of the edge \(e \). The collection \(\tau = \{\tau_e\}_{e \in E^d} \) is assumed to be independent and identically distributed with common distribution \(F \).

A path \(\gamma \) is a finite sequence of vertices \((x_1, \cdots, x_l) \subset \mathbb{Z}^d \) such that for any \(i \in \{1, \cdots, l-1\} \), \(\{x_i, x_{i+1}\} \in E^d \). Given an edge \(e \in E^d \), we write \(e \in \gamma \) if there exists \(i \in \{1, \cdots, l-1\} \) such that \(e = \{x_i, x_{i+1}\} \).

Given a path \(\gamma \), we define the passage time of \(\gamma \) as

\[
T(\gamma) = \sum_{e \in \gamma} \tau_e.
\]

For \(x \in \mathbb{R}^d \), we set \([x] = ([x_1], \cdots, [x_d])\) where \([a]\) is the greatest integer less than or equal to \(a \). Given two vertices \(v, w \in \mathbb{R}^d \), we define the first passage time between vertices \(v \) and \(w \) as

\[
T(v, w) = \inf_{\gamma : [v] \to [w]} T(\gamma),
\]

where the infimum is taken over all finite paths \(\gamma \) starting at \([v]\) and ending at \([w]\). A path \(\gamma \) from \(v \) to \(w \) is said to be optimal if it attains the first passage time, i.e., \(T(\gamma) = T(v, w) \). We define \(G(t) = \{x \in \mathbb{R}^d : \exists T(0, x) \leq t\} \).

By Kingman’s subadditive ergodic theorem, if \(\mathbb{E}\tau_e < \infty \), for any \(x \in \mathbb{R}^d \), there exists a non-random constant \(g(x) \geq 0 \) such that

\[
\mathbb{E}^x T(0, x) \geq t \geq 0.
\]

Date: April 26, 2018.

2010 Mathematics Subject Classification. Primary 60K37; secondary 60K35; 82A51; 82D30.

Key words and phrases. random environment, first passage percolation.
(1.1) \[g(x) = \lim_{t \to \infty} t^{-1} T(0,tx) = \lim_{t \to \infty} t^{-1} \mathbb{E}[T(0,tx)] \quad a.s. \]

This \(g(x) \) is called the \textit{time constant}. Note that, by the subadditivity, if \(x \in \mathbb{Z}^d \), then \(g(x) \leq \mathbb{E}T(0,x) \) and moreover for any \(x \in \mathbb{R}^d \), \(g(x) \leq \mathbb{E}T(0,x) + 2d \mathbb{E} \tau_c \). It is easy to check the homogeneity and convexity: \(g(\lambda x) = \lambda g(x) \) and \(g(rx + (1-r)y) \leq rg(x) + (1-r)g(y) \) for \(\lambda \in \mathbb{R} \), \(r \in [0,1] \) and \(x, y \in \mathbb{R}^d \). It is well-known that if \(F(0) < p_c(d) \), then \(g(x) > 0 \) for any \(x \neq 0 \) \[19\]. Therefore, if \(F(0) < p_c(d) \), then \(g : \mathbb{R}^d \to \mathbb{R}_{\geq 0} \) is a norm.

1.1. \textbf{non-random fluctuation.} Hammersley and Welsh \[14\] have proved that \(\frac{1}{N} T(0, N \mathbf{e}_1) \) converges to \(g(\mathbf{e}_1) \) in probability when \(d = 2 \). This statement was strengthened by Kingman \[16\] as stated in \(1.1\). Since then, the rate of this convergence becomes one of the basic problems in this model. The difference \(T(0, x) - g(x) \) can be naturally divided into the \textit{random fluctuation} part and \textit{non-random fluctuation} part as follows:

\[
T(0, x) - g(x) = \underbrace{T(0, x) - \mathbb{E}T(0, x)}_{\text{random}} + \underbrace{\mathbb{E}T(0, x) - g(x)}_{\text{non-random}}.
\]

Let us briefly review the earlier works. It is widely believed that there exist universal constants \(\chi(d), \chi'(d) \geq 0 \) such that for any \(x \in \mathbb{R}^d \), as \(t \to \infty \),

\[
T(0,tx) - \mathbb{E}T(0,tx) \sim \sqrt{\text{Var}(T(0,tx))} \sim t^{\chi(d)} \quad \text{and} \quad \mathbb{E}T(0,tx) - g(tx) \sim t^{\chi'(d)},
\]

in a suitable sense. This “universal” means that these values are independent of distributions. To state the previous works precisely, we introduce four relevant quantities:

\[
\chi(d) = \inf \liminf_{t \to \infty} \frac{\log \text{Var}(T(0,tx))}{2 \log t}, \quad \chi'(d) = \inf \liminf_{t \to \infty} \frac{\log \text{Var}(T(0,tx))}{2 \log t},
\]

\[
\bar{\chi}(d) = \sup \limsup_{t \to \infty} \frac{\log \text{Var}(T(0,tx))}{2 \log t}, \quad \bar{\chi}'(d) = \sup \limsup_{t \to \infty} \frac{\log \text{Var}(T(0,tx))}{2 \log t}.
\]

Due to the works of Kesten \[20\], it is (the best currently) known that \(0 \leq \chi(d) \leq \bar{\chi}(d) \leq 1/2 \) under the condition that the second moment of \(\tau \) is finite. On the other hand, Newman and Piza showed that \(\bar{\chi}(2) \geq 1/8 \) for useful distributions under an exponential moment condition \[21\], where useful distributions are defined in \(1.3\) below.

Let us move on to the previous researches on the non-random fluctuation. Alexander found the relationship between \(\bar{\chi}(d) \) and \(\chi'(d) \) and he proved \(\bar{\chi}'(d) \leq 1/2 \) with an exponential moment condition \[1\], which was later relaxed to a low moment condition \[11\]. For the lower bounds, it is proved that \(\chi'(d) \geq -1 \) \[20\] and \(\bar{\chi}'(d) \geq -1/2 \) \[3\] with an exponential moment condition.

Remarkably, it was shown in \[3\] that \(\chi(d) \) and \(\chi'(d) \) in \(1.2\) are actually the same under the assumption of the existence of \(\chi(d) \) in a suitable sense. In fact, it is expected that they have the exactly same growth \[12\] \[15\]. As a consequence, the above four quantities should be all the same, which are called the \textit{fluctuation exponent} collectively. From the KPZ-theory, it is conjectured that \(\chi(2) = \chi'(2) = 1/3 \). However for other dimensions, the values are unknown. Some physicists predicted that for sufficiently large dimension, \(\chi(d) = 0 \) \[9\] \[13\] \[22\]. If it is correct, the further problem can be conceivable whether the random fluctuation and non-random fluctuation diverge or not. In this paper, we prove that the latter diverges for any dimension \(d \geq 2 \), which is the first result around related models. Accordingly, we believe that the former does so.

We restrict our attention to the following class of distributions. A distribution \(F \) is said to be \textit{useful} if

\[
\mathbb{P}(\tau_c = F^-) < \begin{cases} p_c(d) & \text{if } F^- = 0 \\ \bar{p}_c(d) & \text{otherwise}, \end{cases}
\]

\[1.3\]
where \(p_c(d) \) and \(\bar{p}_c(d) \) stand for the critical probabilities for \(d \)-dimensional percolation and oriented percolation model, respectively and \(F^- \) is the infimum of the support of \(F \). Note that if \(F \) is continuous, i.e., \(\mathbb{P}(\tau_e = a) = 0 \) for any \(a \in \mathbb{R} \), then \(F \) is useful.

Theorem 1. Suppose that \(F \) is useful and \(\mathbb{E}[\tau^2_\epsilon(\log \tau_\epsilon)_+] < \infty \). Let \(x_d \in \partial \mathbb{B}_d \) such that there exist \(x_1 \in \mathbb{R}^d \) and \(r > 0 \) such that \(B(x_1, r) \subset \mathbb{B}_d \) and \(x_d \in \partial B(x_1, r) \), where \(B(x, r) = \{ y \in \mathbb{R}^d \mid d(x, y) \leq r \} \). Then there exists a sequence \(x_n \in \mathbb{Z}^d \) such that \(x_n/|x_n| \rightarrow x_d/|x_d| \) and

\[
\lim_{n \rightarrow \infty} \mathbb{E}|T(0, x_n) - g(x_n)| = \infty.
\]

In particular, by Jensen inequality,

\[
\lim_{n \rightarrow \infty} \mathbb{E}|T(0, x_n) - g(x_n)| = \infty.
\]

Remark 1. Let \(R = \sup \{ r > 0 \mid B(0, r) \subset \mathbb{B}_d \} \). We take an arbitrary point \(x_d \in \partial B_d \cap \partial B(0, R) \) (see Figure 1). Then \(x_d \) satisfies the assumption in Theorem 1.

We will prove Theorem 1 as a corollary of Theorem 2. Let \(\mathbb{B}_d = \{ x \in \mathbb{R}^d \mid g(x) \leq 1 \} \). We consider the fluctuation of \(G(t) \) from \(t \mathbb{B}_d \).

Definition 1. For \(l > 0 \) and a subset \(\Gamma \) of \(\mathbb{R}^d \) containing the origin \(\mathbb{R}^d \), let

\[
\Gamma^{-}_l = \{ v \in \Gamma \mid d(v, \Gamma^c) \geq l \} \ \text{and} \ \Gamma^{+}_l = \{ v \in \mathbb{R}^d \mid d(v, \Gamma) \leq l \},
\]

where \(d \) is the Euclidean distance. Given three sets \(A, B, C \subset \mathbb{R}^d \), we define the fluctuation of \(A \) from \(B \) inside \(C \) as

\[
F_C(A, B) = \inf \{ \delta > 0 \mid B_{-\delta} \cap C \subset A \cap C \subset B_{+\delta} \cap C \}.
\]

Remark 2. If \(A, B, C \) are convex subset, \(F_C(A, B) \) is coincide with the Hausdorff distance \(d_H(A \cap C, B \cap C) \). Although they do not coincide in general, the same proofs still work with a suitable modification and the results below hold even when we replace \(F_C(A, B) \) by \(d_H(A \cap C, B \cap C) \).

To consider the directional fluctuation, we define the following cone.

Definition 2. Given \(\theta \in \mathbb{R}^d \) and \(r > 0 \), let

\[
L(\theta, r) = \{ a \cdot v \mid a \in [0, \infty), \ v \in B(\theta, r) \},
\]

where \(B(x, r) \) is the closed ball whose center is \(x \) and radius is \(r \).

Note that if \(r > 2 \), \(L(\theta, r) \) is the entire \(\mathbb{R}^d \). Let us consider the divergence of the non-random shape fluctuation \(F(G(t), t \mathbb{B}_d) \), which was predicted in Remark 2 of [22].

Theorem 2. Suppose that \(F \) is useful and \(\mathbb{E}[\tau^2_\epsilon(\log \tau_\epsilon)_+] < \infty \). Let \(x_d \in \partial \mathbb{B}_d \) such that there exist \(x_1 \in \mathbb{R}^d \) and \(r > 0 \) such that \(B(x_1, r) \subset \mathbb{B}_d \) and \(x_d \in \partial B(x_1, r) \). Then for any \(r > 0 \), there exists \(c > 0 \) such that for any sufficiently large \(t \),

\[
F_{L(\{ x_d \}, \{ r \})}(G(t), t \mathbb{B}_d) \geq c(\log \log t)^{1/d}.
\]

1.2. **Notation and terminology.** This subsection collects useful notations and terminologies for the proof.

- It is useful to extend the definition of Euclidean distance \(d(\cdot, \cdot) \) as

\[
d(A, B) = \inf \{ d(x, y) \mid x \in A, \ y \in B \} \quad \text{for} \ A, B \subset \mathbb{R}^d.
\]

When \(A = \{ x \} \), we write \(d(x, B) \).

- Let \(F^- \) and \(F^+ \) be the infimum and supremum of the support of \(F \), respectively:

\[
F^- = \inf \{ \delta > 0 \mid \mathbb{P}(\tau_e < \delta) > 0 \}, \quad F^+ = \sup \{ \delta > 0 \mid \mathbb{P}(\tau_e > \delta) > 0 \}.
\]

- We simply write \(\log^{(2)} x = \log \log x \).
2. **Proof of the Divergence of the Non-random Fluctuation**

The heuristic behind the proof for $\sup_{x \in \mathbb{Z}^d} |\mathbb{E}T(0, x) - g(x)| = \infty$ is the following. Given $x \in \mathbb{Z}^d$, observe that $2(\mathbb{E}T(0, x) - g(x)) \geq \mathbb{E}T(0, x) + \mathbb{E}T(x, 2x) - \mathbb{E}T(0, 2x)$, by using the facts $\mathbb{E}T(0, 2x) - 2g(x) \geq 0$ and $\mathbb{E}T(0, x) = \mathbb{E}T(x, 2x)$. Therefore, noting that $T(0, x) + T(x, 2x) \geq T(0, 2x)$, it suffices to find a vertex $x \in \mathbb{Z}^d$ such that $\Delta(x) = T(0, x) + T(x, 2x) - T(0, 2x)$ is sufficiently large with some probability. However, this strategy does not work directly because $\Delta(x)$ is still complicated object. Instead, we first suppose that $\sup_{x \in \mathbb{Z}^d} |\mathbb{E}T(0, x) - g(x)| < \infty$ and we will find a vertex where $\Delta(x) > 0$ with probability greater than 1, which leads to a contradiction.

2.1. **Proof of Theorem** Let $B \subset \mathbb{R}^d$ be a convex subset and $x_d \in \partial B$. Suppose that there exists $x_1 \in \mathbb{R}^d$ and $r > 0$ such that $B(x_1, r) \subset B$ and $x_d \in \partial B(x_1, r)$. Let L be an unique tangent plane of $\partial B(x_1, r)$ at x_d. Then there exists $K > 0$ such that for any $t > 0$ and $y \in tL$ with $|y - tx_d| \leq \sqrt{t}$,

$$d(y, \partial(tE_d)) \leq K.$$

Proof. By the rotation and translation, it suffices to prove it in the case where $d = 2$, $x_1 = re_2$ and $x_d = 0$ (See Figure 1). Then $L = \{(x, 0) \mid x \in \mathbb{R}\}$. Note that $\partial tB(x_1, r)$ can be expressed by a function $y = tr - t\sqrt{r^2 - (x/t)^2}$ and if $|x| \leq \sqrt{t}$, $tr - t\sqrt{r^2 - (x/t)^2} \leq K$ with some constant $K > 0$ independent of t. Since ∂tE_d is between tL and $\partial(tB(x_1, r))$, $d(y, \partial(tE_d)) \leq K$ follows.

Note that L is also a tangent plane of ∂B_d at x_d. Let $K > 0$ to be chosen later. Suppose that

$$\lim_{t \to \infty} \frac{F_{t(x_d, r)}(G(t), tE_d)}{(\log(t^{d/2}))^{1/d}} = 0,$$

and we shall derive a contradiction. Then for any $\epsilon > 0$, we can take a positive sequence $\{t_n\}_{n=1}^{\infty}$ such that $t_n \uparrow \infty$ as $n \to \infty$ and

$$F_{t(x_d, r)}(G(t_n), t_nE_d) \leq \epsilon(\log(t^{d/2}))^{1/d}.$$

for any $n \in \mathbb{N}$.

One can find a finite subset S_n of t_nL such that the following hold:

$$\#S_n = [(\log t_n)^{1/8}],
\text{if } a \neq b \in S_n, |a - b| \geq t_n^{1/2}(\log t_n)^{-1/8},
\text{for any } a \in S_n, |a - t_nx_d| \leq t_n^{1/2}.$$

Given $a, b, y \in \mathbb{R}^d$, we define $T(a, y, b) = T(a, y) + T(y, b)$, which is the first passage time from a to b passing through y.

![Figure 1](image-url)

Left: Figure of x_d and L.
Right: The schematic picture of Step 2 in the proof of Lemma
Lemma 2. Under the assumption of (2.2), if we take $K > 0$ sufficiently large independent of h, for any sufficiently large $n \in \mathbb{N}$ and $y \in S_n$,
\[\mathbb{E}T(0, 2t_n x_d) \leq \mathbb{E}T(0, y, 2t_n x_d) \leq K \epsilon (\log (t_n)^{1/d} + \mathbb{E}T(0, 2t_n x_d)). \]

Proof. Because g is a norm, the triangular inequality leads to $g(2t_n x_d) \leq g(y) + g(2t_n x_d - y)$ for any $y \in S_n$. By the reflection symmetry, we have $B(2x_d - x_1, r) \subset \{ x \in \mathbb{R}^d \mid g(2x_d - x) \leq 1 \}$. By Lemma 1 there exist $y_1 \in t_n B_d$ and $y_2 \in \{ x \in \mathbb{R}^d \mid g(2x_d - x) \leq t_n \}$ such that $|y - y_1|, |y - y_2| \leq K$. Since $g(x) \leq 2d \mathbb{E}[\tau_e | x]$, for any $x \in \mathbb{R}^d$, we obtain for sufficiently large n,
\[g(y) + g(2t_n x_d - y) - 4dK \mathbb{E}[\tau_e] \leq g(y_1) + g(y_2) \leq 2t_n = g(2t_n x_d). \]

By Lemma 1 for any $y \in S_n$, there exist $y_1, y_2 \in \mathbb{R}^d \cap L(x_d, r)$ such that $|y_1 - y|, |y_2 - y| \leq K$ and $g(y_1) = g(2x_d - y_2) = t_n$. Under the assumption (2.2), there exist $y_1', y_2' \in G(t_n)$ such that $|y_1' - y_1|, |y_2' - y_2| \leq \epsilon (\log (t_n)^{1/d})$. Note that $|y_1' - y_2'| \leq 2K + \epsilon (\log (t_n)^{1/d})$ and, in particular,
\[\mathbb{E}[T(y_1', y_2')] \leq 4d \mathbb{E}[\tau_e] (K + \epsilon (\log (t_n)^{1/d}). \]

This yields
\[\mathbb{E}[T(0, y, 2t_n x_d)] \leq g(y) + g(2t_n x_d - y) + 4d \mathbb{E}[\tau_e] (K + \epsilon (\log (t_n)^{1/d}) \leq g(2t_n x_d) + \frac{1}{2} K \epsilon (\log (t_n)^{1/d}). \]

Since $g(2t_n x_d) \leq 2d \mathbb{E}[\tau_e] + \mathbb{E}(0, 2t_n x_d)$, it follows that
\[\mathbb{E}(0, 2t_n x_d) \leq \mathbb{E}(0, y, 2t_n x_d) \]
\[\leq \frac{1}{2} K \epsilon (\log (t_n)^{1/d}) + g(2t_n x_d) \]
\[\leq K \epsilon (\log (t_n)^{1/d}) + \mathbb{E}(0, 2t_n x_d). \]

□

Lemma 3. Under the assumption of (2.2), for any sufficiently large $n \in \mathbb{N}$ and $y \in S_n$,
\[\mathbb{P}\{ T(0, y, 2t_n x_d) < T(0, 2t_n x_d) + 2K \epsilon (\log (t_n)^{1/d}) \} \geq \frac{1}{2}. \]

Proof. By Lemma 2, and the fact $T(a, y, b) \geq T(a, b)$, we have
\[\mathbb{E}[T(0, 2t_n x_d)] + K \epsilon (\log (t_n)^{1/d}) \]
\[\geq \mathbb{E}[T(0, y, 2t_n x_d)] \]
\[\geq \mathbb{E}[T(0, y, 2t_n x_d)] + 2K \epsilon (\log (t_n)^{1/d}; T(0, y, 2t_n x_d) \geq T(0, 2t_n x_d)] + 2K \epsilon (\log (t_n)^{1/d}] \]
\[+ \mathbb{E}[T(0, 2t_n x_d); T(0, y, 2t_n x_d) < T(0, 2t_n x_d) + 2K \epsilon (\log (t_n)^{1/d})] \]
\[= \mathbb{E}[T(0, 2t_n x_d)] + 2K \epsilon (\log (t_n)^{1/d}) \mathbb{P}(T(0, y, 2t_n x_d) \geq T(0, 2t_n x_d) + 2K \epsilon (\log (t_n)^{1/d}). \]

Rearranging it, we obtain
\[\mathbb{P}(T(0, y, 2t_n x_d) < T(0, 2t_n x_d) + 2K \epsilon (\log (t_n)^{1/d}) > 1/2. \]

□

The following is a crucial property of a useful distribution.

Lemma 4. If F is useful, there exists $\delta > 0$ and $D > 0$ such for any $v, w \in \mathbb{Z}^d$,
\[\mathbb{P}(T(v, w) < (F^- + \delta) | v - w|_1) \leq e^{-D |v - w|_1}. \]

For a proof of this lemma, see Lemma 5.5 in [1].

Definition 3. Let $c > 0$ be a fixed constant. A $y \in S_n$ is said to be black if for any $a, b \in B(y, c (\log (t_n)^{1/d})$ satisfying $|a - b| \geq \frac{c}{2} (\log (t_n)^{1/d}$, $T(a, b) \geq (F^- + \delta) |a - b|_1$. A $y \in S_n$ is said to be good if $T(0, y, 2t_n x_d) < T(0, 2t_n x_d) + 2K \epsilon (\log (t_n)^{1/d}$ and y is black.
Note that by Lemma 4 we have
\[
\lim_{n \to \infty} \inf_{S_n} \min_{y \in S_n} \mathbb{P}(y \text{ is black}) = 1,
\]
where S_n runs over all subset of $t_n L$ satisfying (2.3). Combining it with Lemma 3, we have that for sufficiently large $n \in \mathbb{N}$,
\[
\mathbb{P}(y \text{ is good}) \geq 3/8.
\]

Lemma 5. Under the assumption of (2.2), independent of the choice of S_n, we have the following: for any sufficiently large $n \in \mathbb{N}$,
\[
\mathbb{P}(\{y \in S_n | y \text{ is good}\} \geq 2S_n/4) \geq 1/8.
\]

Proof. By (2.7), we obtain
\[
\frac{3}{8}S_n \leq \mathbb{E}[\{y \in S_n | y \text{ is good}\}]
\]
\[
\leq \frac{1}{2}S_n \mathbb{P}(\{y \in S_n | y \text{ is good}\} \geq 2S_n/4) + \frac{S_n}{8}.
\]
Rearranging it, the proof is completed. \hfill \Box

We define three events $\mathcal{A}_1, \mathcal{A}_2,$ and \mathcal{A}_3 as
\[
\mathcal{A}_1 = \{\{y \in S_n | y \text{ is good}\} \geq 2S_n/4\},
\]
\[
\mathcal{A}_2 = \{\forall a, b \in B(0, t_n^2) \text{ satisfying } |a - b| \geq t_n^{1/4}, T(a, b) \geq (F^- + \delta)|a - b|_1\},
\]
\[
\mathcal{A}_3 = \{\forall y \in S_n, \max_{z = 0, 2t_n x_d} |T(z, y) - \mathbb{E}[T(z, y)]| \leq t_n^{1/2}(\log t_n)^{-1/4}\}.
\]

Lemma 5 and Lemma 4 lead to
\[
\lim_{n \to \infty} \inf_{S_n} \mathbb{P}(\mathcal{A}_1) = 1/8,
\]
\[
\lim_{n \to \infty} \inf_{S_n} \mathbb{P}(\mathcal{A}_2) = 1,
\]
Moreover, we have the following.

Lemma 6.
\[
\lim_{n \to \infty} \inf_{S_n} \mathbb{P}(\mathcal{A}_3) = 1.
\]

Proof. We use the sublinear variance \[5, 6, 10\]: Under the assumption $\mathbb{E}[\tau_0^2(\log \tau_0)_+] < \infty$, there exists $C > 0$ depending only on F and d such that for any $x \in \mathbb{R}^d$,
\[
\mathbb{V}(T(0, x)) \leq C \frac{|x|}{\log |x|}.
\]
Then by the Chebyshev’s inequality and the union bound, we have
\[
\mathbb{P}(\exists y \in S_n \text{ such that } \max_{z = 0, 2t_n x_d} |T(z, y) - \mathbb{E}[T(z, y)]| \leq t_n^{1/2}(\log t_n)^{-1/4})
\]
\[
\leq 2\frac{1}{2}S_n \max_{y \in S_n} \mathbb{P}(|T(0, y) - \mathbb{E}[T(0, y)]| \leq t_n^{1/2}(\log t_n)^{-1/4})
\]
\[
\leq 2C'(\log t_n)^{1/8}(\log t_n)^{-1/2} \to 0,
\]
where C' is a constant depending only on d and F. \hfill \Box

We set $\mathcal{A} = \mathcal{A}_1 \cap \mathcal{A}_2 \cap \mathcal{A}_3$. Note that for sufficiently large $n \in \mathbb{N}$, independent of the choice of S_n, we have
\[
\mathbb{P}(\mathcal{A}) \geq 1/16.
\]
Given $y \in S_n$, let us define $\mathcal{A}_y = \{\forall z \in S_n \text{ with } z \neq y, T(0, y, 2t_n x_d) < T(0, z, 2t_n x_d)\}$.

Lemma 7. If we take \(h > 0 \) sufficiently small depending on \(c \), for any \(y \in S_n \), the following holds:

\[
\mathbb{P}(A_y) \geq \mathbb{P}(\forall e \in B(y, c(\log \log t_n)^{1/4}), \; \tau_e \leq F^- + \delta/2) \mathbb{P}(A \cap \{ y \text{ is good } \}).
\]

Proof. We use the resampling argument in [4]. Let \(\tau^* = \{ \tau_e^* \}_{e \in E^c} \) be independent copy of \(\{ \tau_e \}_{e \in E^c} \). We enlarge the probability space so that we can measure the event both for \(\tau \) and \(\tau^* \) and we still denote the joint probability measure by \(\mathbb{P} \). We define \(\tilde{\tau} = \{ \tilde{\tau}_e \}_{e \in E^c} \) as

\[
\tilde{\tau}_e = \begin{cases}
\tau_e^* & \text{if } e \in B(y, c(\log^2 t_n)^{1/4}) \\
\tau_e & \text{otherwise.}
\end{cases}
\]

Note that the distributions of \(\tau \) and \(\tilde{\tau} \) are the same under \(\mathbb{P} \) since \(\tau \) and \(\tau^* \) are independent. Thus \(\mathbb{P}(A_y) = \mathbb{P}(A_y) \), where \(A_y \) is the same condition as \(A_y \) for \(\tilde{\tau} \). We write \(\tilde{T}(a, b) \) for the first passage time from \(a \) to \(b \) with respect to \(\tilde{\tau} \). We define \(\tilde{T}(a, y, b) \) similarly. Since the right hand side of (2.16) equals to

\[
\mathbb{P}(\forall e \in B(y, c(\log \log t_n)^{1/4}), \; \tau_e \leq F^- + \delta/2, \; A \cap \{ y \text{ is good } \}),
\]

it suffices to show that the event in (2.17) implies \(A_y \). To do this, we suppose that \(\tau \) and \(\tilde{\tau} \) are in this event.

Step 1 \((\tilde{T}(0, y, 2t_n x_d) + 4Kc(\log^2 t_n)^{1/4} < T(0, y, 2t_n x_d)) \)

We take an arbitrary optimal path \(\gamma = (\gamma_i)_{i=1}^l \subset \mathbb{Z}^d \) for \(T(0, y, 2t_n x_d) \). Let \(s = \min \{ i \in \{1, \ldots, l\} | \gamma_i \in B(y, c(\log^2 t_n)^{1/4}) \} \) and \(f = \max \{ i \in \{1, \ldots, l\} | \gamma_i \in B(y, c(\log^2 t_n)^{1/4}) \} \).

By the assumption, we have

\[
\tilde{T}(0, y, 2t_n x_d) \leq T(0, \gamma_s) + T(\gamma_f, 2t_n x_d) + |\gamma_f - \gamma_s|_1 (F^- + \delta/2).
\]

On the other hand, \(y \) is black, and we have

\[
T(0, y, 2t_n x_d) \geq T(0, \gamma_s) + T(\gamma_f, 2t_n x_d) + (|\gamma_f - \gamma_s|_1 \vee |y| - \gamma_s|_1)(F^- + \delta)
\]

Since \(|\gamma_s - |y|| \geq \frac{c}{2d}(\log t_n)^{1/4} \), we have

\[
\tilde{T}(0, y, 2t_n x_d) + 4Kc(\log^2 t_n)^{1/4} < T(0, y, 2t_n x_d).
\]

Step 2 \((\tilde{T}(0, y, 2t_n x_d) < \tilde{T}(0, z, 2t_n x_d) \text{ for } \forall z \in S_n \text{ with } z \neq y) \)

Let \(z \in S_n \) with \(z \neq y \). We first suppose that \(\tilde{T}(0, z, 2t_n x_d) \leq T(0, z, 2t_n x_d) \). Then, since we resample the configurations only on \(B(y, c(\log^2 t_n)^{1/4}) \), any optimal path \(\gamma = (\gamma_i)_{i=1}^l \) for \(\tilde{T}(0, z, 2t_n x_d) \) must touch with \(B(y, c(\log^2 t_n)^{1/4}) \), i.e., there exists \(i \in \{1, \ldots, l\} \) such that \(\gamma_i \in B(y, c(\log^2 t_n)^{1/4}) \). By the definition, \([z] \) is included in \(\gamma \) and let \(j \in \{1, \ldots, l\} \) be \(\gamma_j = [z] \). Without loss of generality, we can suppose that \(i < j \). Then, by the condition of \(A_2 \), it is easy to check that

\[
\tilde{T}(0, z) \geq \tilde{T}(0, y) + \frac{1}{2} (F^- + \delta) t_n^{1/2}(\log t_n)^{-1/8}.
\]

If there exists \(i' > j \) such that \(\gamma_{i'} \in B(y, c(\log^2 t_n)^{1/4}) \), by \(\tilde{T}(\gamma_i, y, \gamma_{i'}) < 2dc(\log^2 t_n)^{1/4} \) and the condition \(A_2 \), \(\tilde{T}(0, y, 2t_n x_d) < \tilde{T}(0, z, 2t_n x_d) \) as desired. Thus, without loss of generality, we suppose that for any \(i' > j \), we may assume \(\gamma_{i'} \notin B(y, c(\log^2 t_n)^{1/4}) \). Since we change the configurations only on \(B(y, c(\log^2 t_n)^{1/4}) \), we have \(\tilde{T}(z, 2t_n x_d) = T(z, 2t_n x_d) \). By the condition \(A_3 \), it yields

\[
\tilde{T}(y, 2t_n x_d) - \tilde{T}(z, 2t_n x_d)
\]

\[
\leq \tilde{T}(y, 2t_n x_d) - ET(y, 2t_n x_d) + |ET(z, 2t_n x_d) - ET(y, 2t_n x_d)| + ET(z, 2t_n x_d) - T(z, 2t_n x_d)
\]

\[
\leq 3t_n^{1/2}(\log t_n)^{-1/4}.
\]

Together with (2.18), this gives

\[
\tilde{T}(0, y, 2t_n x_d) < \tilde{T}(0, z, 2t_n x_d).
\]
We now turn to the case \(\tilde{T}(0, z, 2t_n x_d) \geq T(0, z, 2t_n x_d) \). Then, since
\[
T(0, y, 2t_n x_d) - 2K\epsilon (\log^{(2)} t_n)^{1/d} < T(0, 2t_n x_d)
\]
by the goodness of \(y \), Step 1 implies \(\tilde{T}(0, y, 2t_n x_d) < \tilde{T}(0, z, 2t_n x_d) \). Thus the proof is completed.

Since \(\{A_y\}_{y \in S_n} \) are disjoint from each other, if we take \(c \) sufficiently small, by Lemma\(^7\) we get
\[
1 \geq \sum_{y \in S_n} P(A_y) \geq \sum_{y \in S_n} \mathbb{P}(\forall c \subset B(y, c(\log^{(2)} t_n)1/d), \; \tau_c \leq F^- + \delta/2)\mathbb{P}(\{ y \text{ is good } \}; \; A) \geq \mathbb{E}[\sharp\{ y \in S_n \mid y \text{ is good } \} \cap A] \min_{y \in S_n} \mathbb{P}(\forall c \subset B(y, c(\log^{(2)} t_n)1/d), \; \tau_c \leq F^- + \delta/2).
\]
Since \(\sharp\{ y \in S_n \mid y \text{ is good } \} \geq \frac{2S_n}{4} \) on the event \(A \), by (2.15), this is further bounded from below by
\[
\frac{2S_n}{4} \mathbb{P}(A)(\log t_n)^{-c} \geq (\log t_n)^{1/32}.
\]
If we take \(n \) sufficiently large, we have a contradiction and the proof of Theorem\(^2\) is completed.

3. PROOF OF THE DIVERGENCE OF THE NON-RANDOM FLUCTUATION

Proof of Theorem\(^7\). We first prove that for any \(\epsilon > 0 \), \(\sup_{x \in \mathbb{Z}^{d} \cap L(x_d, \epsilon)} |\mathbb{E}T(0, x) - g(x)| < \infty \) leads to a contradiction. Note that \(\sup_{x \in \mathbb{R}^{d} \cap L(x_d, \epsilon)} |\mathbb{E}T(0, x) - g(x)| < \infty \), since \(g(x) \leq 2d\mathbb{E}\tau_c|x| \). We set \(k > 0 \) as
\[
k = \sup_{x \in \mathbb{R}^{d} \cap L(x_d, \epsilon)} |\mathbb{E}T(0, x) - g(x)| < \infty.
\]
By the definition of \(G(t) \), we obtain for any \(t > k \),
\[
(t - k)B_d \cap L(x_d, \epsilon) \subset G(t) \cap L(x_d, \epsilon) \subset (t + k)B_d \cap L(x_d, \epsilon).
\]
Therefore, writing \(\text{diam}(B_d) = \sup\{d(x, y) \mid x, y \in B_d\} \), we have
\[
F_{L(x_d, \epsilon)}(G(t), tB_d) \leq k\text{diam}(B_d),
\]
which contradicts Theorem\(^2\).

Therefore, for any \(m \in \mathbb{N} \), we can find a sequence \(\{x_n^{[m]}\}_{n \in \mathbb{N}} \subset L(x_d, 1/m) \cap \mathbb{Z}^{d} \) such that \(|\mathbb{E}T(0, x_n^{[m]}) - g(x_n^{[m]})| \geq n \). Let us define \(x_n = x_n^{[m]} \). Then
\[
\lim_{n \to \infty} |\mathbb{E}T(0, x_n) - g(x_n)| = \infty \text{ and } \lim_{n \to \infty} x_n/|x_n| = x_d/|x_d|.
\]

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Michael Damron, Syota Esaki and Ryoki Fukushima for helpful discussions and comments. He also thanks Yohsuke T. Fukai for useful comments on the theoretical and experimental researches of the shape fluctuation in physics. This research is partially supported by JSPS KAKENHI 16J04042.
References

[1] Kenneth S. Alexander. Approximation of subadditive functions and convergence rates in limiting-shape results. *Ann. Probab.* 25, 30–55, 1997

[2] A. Auffinger, M. Damron, and J. Hanson. 50 years of first passage percolation, 2015. ArXiv e-print 1511.03262.

[3] A. Auffinger, M. Damron, and J. Hanson. Rate of convergence of the mean for sub-additive ergodic sequences. *Adv. in Math.* 285, (5), 138–181, 2015

[4] J. van den Berg and H. Kesten. Inequalities for the time constant in first-passage percolation. *Ann. Appl. Probab.* 56–80, 1993

[5] I. Benjamini, G. Kalai and O. Schramm. First passage percolation has sublinear distance variance. *Ann. Probab.* 31, 1970–1978, 2003

[6] M. Benaim and R. Rossignol. Exponential concentration for first passage percolation through modified Poincaré inequalities. *Ann. Inst. H. Poincaré, Probab. Statist.* 44, 544–573, 2008

[7] Sourav Chatterjee. A general method for lower bounds on fluctuations of random variables, 2017 ArXiv e-print 1706.04290.

[8] J. Cox and R. Durrett. Some Limit Theorems for Percolation Processes with Necessary and Sufficient Conditions. *Ann. Probab.* 9, 583–603, 1981

[9] J. Cook, B. Derrida. Directed polymers in a random medium: 1/d expansion and the h-tree approximation. *J. Phys. A* 23, 1523–1554, 1990

[10] M. Damron, J. Hanson, and P. Sosoe. Sublinear variance in first-passage percolation for general distributions. *Probab. Theory. Related. Fields.* 163, 223–258, 1981

[11] M. Damron and N. Kubota. Rate of convergence in first-passage percolation under low moments. *Stochastic Process. Appl.* 126 (10), 3065–3076, 2016

[12] M. Damron and X. Wang. Entropy reduction in Euclidean first-passage percolation. *Electron. J. Probab.* 21 (65), 1–23, 2016

[13] T. Halpin-Healy. Diverse manifolds in random media. *Phys Rev. Lett.* 62, 442–445, 1989

[14] J. M. Hammersley and D. J. A. Welsh, First-passage percolation, subadditive processes, stochastic networks and generalized renewal theory, in Bernoulli, Bayes, Laplace Anniversary Volume (J. Neyman and L. Lecam, eds.), Springer-Verlag, Berlin and New York, 61-110, 1965

[15] Kurt Johansson. Shape Fluctuations and Random Matrices. *Comm. Math. Phys.* 209 (2), 437476, 2000.

[16] J. F. C. Kingman. The ergodic theory of subadditive stochastic processes. *J. Roy. Statist. Soc. Ser. A* 30, 499510, 1968.

[17] M. Kardar, G. Parisi, Y.-C. Zhang. Dynamic scaling of growing interfaces. *Phys. Rev. Lett.* 56, 889892, 1986.

[18] H. Krug and H. Spohn. Kinetic roughening of growing surfaces. In: *Solids Far From Equilibrium*. C. Godrèche ed., Cambridge University Press, 1991

[19] Harry Kesten. Aspects of first passage percolation. In Lecture Notes in Mathematics. vol. 1180, 125–264, 1986.

[20] Harry Kesten. On the speed of convergence in first-passage percolation. *Ann. Appl. Probab.* 3, 296-338, 1993.

[21] C. Newman and M. Piza. Divergence of shape fluctuations in two dimensions. *Ann. Probab.* 23, 977–1005, 1995.

[22] T. Natterman and W. Renz. Interface roughening due to random impurities at low temperatures. *Phys. Rev. B* 38, 5184–5187, 1988.

[23] Yu Zhang. The divergence of fluctuations for shape in first passage percolation. *Probab. Theory. Related. Fields.* 136(2), 298–320, 2006.