Threshold for electron trapping nonlinearity in Langmuir waves
D. J. Strozzi, E. A. Williams, H. A. Rose, D. E. Hinkel, A. B. Langdon et al.

Citation: Phys. Plasmas 19, 112306 (2012); doi: 10.1063/1.4767644
View online: http://dx.doi.org/10.1063/1.4767644
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v19/i11
Published by the American Institute of Physics.

Related Articles
Dust negative ion acoustic shock waves considering dust size distribution effect
Phys. Plasmas 19, 113702 (2012)
Time-synchronized continuous wave laser-induced fluorescence on an oscillatory xenon discharge
Rev. Sci. Instrum. 83, 113506 (2012)
Effect of plasma resonances on dynamic characteristics of double graphene-layer optical modulator
J. Appl. Phys. 112, 104507 (2012)
Volumetric measurements of a spatially growing dust acoustic wave
Phys. Plasmas 19, 113701 (2012)
Interaction of dust-ion acoustic solitary waves in nonplanar geometry with electrons featuring Tsallis distribution
Phys. Plasmas 19, 112302 (2012)

Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/
Journal Information: http://pop.aip.org/about/about_the_journal
Top downloads: http://pop.aip.org/features/most_downloaded
Information for Authors: http://pop.aip.org/authors

ADVERTISEMENT
Threshold for electron trapping nonlinearity in Langmuir waves

D. J. Strozzi,1,E. A. Williams,1 H. A. Rose,2 D. E. Hinkel,1 A. B. Langdon,1 and J. W. Banks1
1Lawrence Livermore National Laboratory, Livermore, California 94551, USA
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 19 August 2012; accepted 31 October 2012; published online 28 November 2012)

We assess when electron trapping nonlinearity is expected to be important in Langmuir waves. The basic criterion is that the inverse of the detrapping rate \(\nu_d\) of electrons in the trapping region of velocity space must exceed the bounce period of deeply trapped electrons, \(\tau_B \equiv (n_e/\delta n)^{1/2}/2\pi/\omega_{pe}\).

A unitless figure of merit, the “bounce number” \(N_B \equiv 1/\nu_d\tau_B\), encapsulates this condition and defines a trapping threshold amplitude for which \(N_B = 1\). The detrapping rate is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code LOKI, show trapping nonlinearity increases continuously with \(N_B\) for transverse loss, and is significant for \(N_B \approx 1\). The detrapping rate due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified manner. A simple way to combine convective and collisional detrapping is given. Application to underdense plasma conditions in inertial confinement fusion targets is presented. The results show that convective transverse loss is usually the most potent detrapping process in a single f/8 laser speckle. For typical plasma and laser conditions on the inner laser cones of the National Ignition Facility, local reflectivities \(\sim 3\%\) are estimated to produce significant trapping effects.

I. INTRODUCTION

The nonlinear behavior of Langmuir waves (LWs) is a much-studied problem in basic plasma physics from the 1950s to the present. In this paper, we focus on nonlinearity due to electron trapping in the LW potential well. This intrinsically kinetic effect has motivated theoretical work such as nonlinear equilibrium or Bernstein-Greene-Kruskal (BGK) modes, Landau damping reduction, nonlinear frequency shift, and the sideband instability. Important applications of trapping occur in LWs driven by coherent (e.g., laser) light, including the laser plasma accelerator and stimulated Raman scattering (SRS). The latter allows the prospect of laser pulse compression to ultra-high amplitudes (the backward Raman amplifier). In addition, SRS is an important risk to inertial confinement fusion (ICF), due both to loss of laser energy and the production of energetic (or “hot”) electrons that can pre-heat the fuel. Ignition experiments at the National Ignition Facility (NIF) have shown substantial stimulated Raman backscatter (SRBS) from the inner cones of laser beams. The current study is prompted primarily by SRS-driven LW’s. Much recent work has focused on nonlinear kinetic aspects of SRS, including “inflation” due to Landau damping reduction, saturation by sideband instability, and LW self-focusing in multi-D particle-in-cell simulations, Vlasov simulations, and theory.

One goal is to find reduced descriptions, such as envelope equations, that approximately incorporate kinetic effects. Our aim is to provide theoretical estimates for when electron trapping nonlinearity is important in LW dynamics. These allow for self-consistency checks—or invalidations—of linear calculations of LW amplitudes. This work is, therefore, not primarily intended to study nonlinear LW dynamics, although we do present Vlasov simulations to quantify the onset of trapping in the presence of convective transverse loss. We consider a single, quasi-monochromatic wave with electron number density fluctuation \(\delta n(\mathbf{x}, t)\cos(kx - \omega t)\), and slowly-varying, unitless amplitude \(\delta N \equiv \delta n/n_e\), where \(n_e\) is the background electron density. We refer to an electron as “trapped” if it is within the phase-space island centered about the phase velocity \(v_p \equiv \omega/\mathbf{k}\) and bounded by the separatrix in the instantaneous wave amplitude, regardless of how long it has been there. The dielectric response of the plasma depends on the distribution function, and therefore manifests trapping effects only after enough time has passed for the (typically space-averaged) distribution to be distorted. We call such a distribution trapped or flattened, since trapping produces a plateau in the space-averaged distribution centered at \(v_p\). Deeply trapped electrons have an angular frequency \(\omega_B \equiv \omega_{pe}\delta N^{1/2}/(\omega_{pe}^2/n_e)^{1/2}\) defines the plasma frequency in SI units), known as the bounce frequency, corresponding to a bounce period \(\tau_B \equiv 2\pi/\omega_B \propto \delta N^{-1/2}\). In our language, an electron is trapped instantaneously, but a distribution becomes trapped over a time \(\sim \tau_B\). For a process that detraps electrons at a rate \(\nu_d\), the unitless “bounce number” \(N_B \equiv 1/\nu_d\tau_B\) measures how many bounce orbits a trapped electron completes before being detrapped.

Our estimates stem from the assumption that nonlinear trapping effects are significant when \(N_B\) is roughly unity. Trapping nonlinearity develops continuously with wave amplitude, and is not an instability with a hard threshold. Vlasov simulations presented in Sec. IV of driven LWs with a

See full article for detailed explanations and references.
finite transverse profile demonstrate this. In addition, transit-
time damping calculations \(^{31}\) show the reduction in Landau
damping varies continuously with \(N_B\) and obtains a \(2\times\) reduction for \(N_B \approx 1\). Bounce number estimates are
qualitative and demonstrate basic parameter scalings. The
quantitative role of trapping depends on the specific
application.

We consider two detrapping processes: convective loss
and Coulomb collisions. For a LW of finite spatial extent,
electrons enter and leave the wave from the surrounding
plasma (assumed here to be in thermal equilibrium, i.e.,
Maxwellian). Trapping will only be effective if these elec-
trons complete a bounce orbit before transiting the wave. We
find the detrapping rate for both longitudinal end loss, which
is applied to SRBS in underdense ICF conditions in Sec. VI. We
conclude in Sec. VII. The Appendix presents details of
our collisional derivation and discusses the validity of our
Fokker-Planck (FP) model.

II. GENERAL CONSIDERATIONS

This section presents our overall framework for estimating
the trapping threshold, and lays out some definitions. Consider the trapped electrons in a LW field, attempting to undergo bounce orbits. There is a time-dependent condition for trapping to distort the distribution significantly, even in the absence of any detrapping process. For instance, if a LW is suddenly excited in a Maxwellian plasma, electrons execute bounce orbits according to what we call the dynamic bounce number

\[
N_B^{\text{dyn}}(t) = \int_0^t \frac{dt'}{\tau_B(t')}. \quad (1)
\]

The time dependence of \(\tau_B\) allows for a slowly varying wave amplitude \(\delta n(t)\). Vlasov simulations presented in Sec. IV show that trapping starts to significantly affect the dielectric response when \(N_B^{\text{dyn}} \approx 0.5\). That is, it takes a finite time for the distribution to reflect trapping. The early works of Morales and O’Neill\(^{2,4}\) indicate such behavior, where the damping rate and frequency shift evolve over several bounce periods until approaching steady values as the system reaches a BGK state.\(^1\)

To estimate the threshold for trapping to overcome a
detrapping process, we assume the wave has been present long
enough that \(N_B^{\text{dyn}} \geq 1\). The distribution has had enough time to become flattened, to the extent the detrapping process allows. For flattening to occur, an appreciable fraction of trapped electrons must remain so for about a bounce period before being detrapped. We are interested in the number of electrons in the trapping region, and how long they stay there.

We define the “trapping region” to extend from

\[u = u_B \pm u_T/2, \]

where \(u_T \equiv 4(k_{De})^{-1} \delta N^{1/2} \) is the full width of the phase-space trapping island and \(\lambda_{De} \equiv \tau_T/\alpha_{pe}\) with \(u_T \equiv (T_e/m_e)^{1/2}\). Throughout this paper, we use

\[u_X \equiv v_X/\tau_T \quad (2) \]
to denote the scaled velocity \(v_X\) for various subscripts \(X\). Let \(N_u(t)\) denote the fraction of electrons in the trapping region at the initial time \(t = 0\), which continuously remain so to some later time \(t\) (note \(N_u(t = 0) = 1\)). At \(t = 0\), we take the electron distribution to be Maxwellian. The fact that only some electrons in the trapping region lie within the separatrix (depending on their initial phase \(kx\)) is not relevant, since all the detrapping processes considered here are insensitive to the electron’s phase in the wave. That is, the rate at which electrons leave the trapping region is independent of \(kx\).

The detrapping rate \(\nu_d\) is defined by assuming exponen-
tial decay for the trapped fraction: \(N_u(t) = e^{-\nu_u t}\). We allow for several independent detrapping processes to occur simultane-
ously, in that the overall detrapping rate \(\nu_{d,t}\) is the sum of the rates \(\nu_{d,i}\) for each ith process considered separately.
Since a detrapping process generally does not strictly follow exponential decay, we choose a critical fraction \(N^c_t \), which obtains for a critical time \(t = t^c \), and let \(\nu_d = \ln(1/N^c_t)/t^c \). \(\nu_d \) is independent of \(N^c_t \) for exponential decay. We set \(N^c_t = 1/2 \) in what follows. Given the approximate nature of our calculation, further refinement of \(\nu_d \) has little value.

In the literature, detrapping processes are sometimes approximated by a 1D kinetic equation with a Bhatnagar-Gross-Krook relaxation (or simply a Krook) operator:34

\[
[\partial_t + v \partial_z - (e/m_e) E \partial_z] f = \nu_k \cdot \left(\hat{n}_f / n_0 - f \right).
\]

The linear electron susceptibility \(\chi \) for this kinetic equation is

\[
\chi(\omega, k) = -\frac{Z^2(\zeta)}{2(k^2D_e)^2} \left[1 + i \frac{\nu_k}{kv_{Te}\sqrt{2}Z(\zeta)} \right]^{-1},
\]

where \(\zeta \equiv k \omega/v_{Te}\sqrt{2} \) and \(Z \) is the plasma dispersion function.35 The Krook operator relaxes the electron distribution function \(f \) to an equilibrium \(f_0 \), and locally conserves number density \(n = \int dv f \). The above operator does not conserve momentum or energy, although it can easily be generalized to do so. In a 1D-1V system, a Krook operator can mimic detrapping by transverse convective loss (a higher space-time rate to do so). In a 1D-1V system, a Krook operator can mimic deterrent loss by transverse convective loss (a higher space-time rate to do so). In a 1D-1V system, a Krook operator can mimic deterrent loss by transverse convective loss (a higher space-time rate to do so). In a 1D-1V system, a Krook operator can mimic deterrent loss by transverse convective loss (a higher space-time rate to do so). In a 1D-1V system, a Krook operator can mimic deterrent loss by transverse convective loss (a higher space-time rate to do so.

SRS simulations with a 1D Vlasov code and Krook operator, and its suppression of kinetic inflation, are presented in Ref. 37. In this paper, we do not use a Krook operator to model detrapping, although we do use one in our 2D Vlasov simulations to make them effectively finite in the transverse direction (a purely numerical purpose), and to include collisional LW damping in our application to ICF conditions in Sec. VI.

We take the bounce period of all trapped electrons to be \(\tau_B \), the result for deeply trapped electrons. The actual period slowly increases to infinity for electrons near the separatrix. We then define the bounce number for process \(i \) as

\[
N^B_{i} \equiv \frac{1}{\nu_d,i\tau_B} = \left[\frac{\delta N}{\delta N^0} \right]^{p_i}_0.
\]

We have expressed \(N^B_{i} \) as a ratio of the LW amplitude to a “threshold” amplitude \(\delta N^0 \), to some power \(p_i \). Recall that trapping effects like the Landau damping reduction develop continuously with \(\delta N \), so the threshold for trapping nonlinearity is not a hard one. Besides the \(\delta N^{-1/2} \) dependence of \(\tau_B \), \(\nu_d,i \) also depends on \(\delta N^0 \) in a process-dependent way. For \(\nu_d,i \), independent of wave amplitude, which we show below is the case for convective loss, the power \(p_i = 1/2 \). This is not the case for detrapping by Coulomb collisions, which is shown in Sec. V to have \(p_i = 3/2 \). The overall detrapping rate \(\nu_d = \sum_i \nu_d,i \), gives an overall bounce number via \(N^B = \sum_i N^B_{i} \). We also define an overall threshold amplitude \(\delta N^0 \) such that \(N^B O \delta N = \delta N^0 = 1 \); it is not generally true that \(\delta N^0 = \sum_i \delta N^0_i \).

We then define the bounce number for process \(i \) as

\[
N^B_{i} \equiv \frac{1}{\nu_d,i\tau_B} = \left[\frac{\delta N}{\delta N^0} \right]^{p_i}_0.
\]

We have expressed \(N^B_{i} \) as a ratio of the LW amplitude to a “threshold” amplitude \(\delta N^0 \), to some power \(p_i \). Recall that trapping effects like the Landau damping reduction develop continuously with \(\delta N \), so the threshold for trapping nonlinearity is not a hard one. Besides the \(\delta N^{-1/2} \) dependence of \(\tau_B \), \(\nu_d,i \) also depends on \(\delta N^0 \) in a process-dependent way. For \(\nu_d,i \), independent of wave amplitude, which we show below is the case for convective loss, the power \(p_i = 1/2 \). This is not the case for detrapping by Coulomb collisions, which is shown in Sec. V to have \(p_i = 3/2 \). The overall detrapping rate \(\nu_d = \sum_i \nu_d,i \), gives an overall bounce number via \(N^B = \sum_i N^B_{i} \). We also define an overall threshold amplitude \(\delta N^0 \) such that \(N^B O \delta N = \delta N^0 = 1 \); it is not generally true that \(\delta N^0 = \sum_i \delta N^0_i \).

III. CONVETIVE LOSS: THEORY

In a LW of finite spatial extent, electrons remain in the trapping region only until they transit the wave. This detrapping manifests itself by longitudinal loss out of the ends of the wavepacket (the \(x \) direction for our field representation \(\cos(kx - \omega t) \)), as well as transverse loss out the sides. End loss is found by considering a wavepacket of length \(L_t \) and infinite transverse extent. We work in the rest frame of the wavepacket, which may differ from the lab frame depending on application. For instance, a free LW propagates at group velocity \(v_g = 3\pi^2/\nu_d \) for \(k^2\Delta e \ll 1 \), while a LW driven by a driver fixed in the lab frame (such as the ponderomotive drive in SRS) will essentially be at rest. For \(\nu_d \ll v_g \), we can treat all trapped electrons as moving forward at \(v_g \). Thus, for end loss \(N_{tr,el} = 1 - v_t/L_t \). To find \(N_{tr,el} \), we take \(N_{tr,el} = 1/2 \), which gives \(\tau^0_B = L_t/v_g \) and \(\nu_d = K_0 v_g/L_t \). The bounce number for end loss is \(N_{tr,el} = [\delta N/\delta N^0]^{1/2} \), with exponent \(p_d = 1/2 \) and threshold amplitude \(\delta N^0 = [2\pi K_0 L_t/v_g]^2 \). In practical units, \(\delta N^0 = (1.05 \times 10^{15}/n_{e,cc})T_{e,AV}/(v_g/\nu_{\delta e,AV})^2 \) where \(n_{e,cc} \) is in \(cm^{-3} \), \(T_{e,AV} \) is in \(keV \), and \(v_{\delta e,AV} \) is in \(m/s \).

For transverse side loss, consider a cylindrical wavepacket of transverse diameter \(L_t \) and infinite longitudinal length. In \(N \) total spatial dimensions, the cylinder has an \(N - 1 \) dimensional cross-section. Electrons with a Maxwellian distribution are transiting the cylinder, with unnormalized distribution \(f_{1} = u_{\perp}^{-1/2} \exp[-u_{\perp}^2/2] \) where \(u_{\perp} \) is the transverse speed and \(f_{1} \) is the number of electrons per \(du_{\perp} \). The average \(u_{\perp} = (\pi/2)^{1/2} \) \((8/\pi)^{1/2} \) \((1.25, 1.60) \) for \(N = (2, 3) \), indicating that detrapping is faster in 3D than in 2D.

We find the number of initially trapped electrons \((|x| \leq L_t/2) \), that remain so after some time \(t \), by summing the fraction of electrons with a given \(u_{\perp} \) that remain trapped, times \(f_{1} \). All electrons with \(|u_{\perp}| > 1/\omega \) with \(\omega = v_{Te}/L_t \) have escaped, so this sets the limits of integration. In 2D, the trapped fraction is \((1 - |u_{\perp}| / \hat{\omega}) \) for \(|u_{\perp}| < 1/\hat{\omega} \), and the total trapped fraction is

\[
N^2_{tr,el} = (2\pi)^{-1/2} \int_{-1/\hat{\omega}}^{1/\hat{\omega}} du_{\perp} e^{-u^2_{\perp}/2}[1 - |u_{\perp}| / \hat{\omega}^2].
\]

In 3D, we obtain

\[
N^3_{tr,el} = \int_{0}^{1/\hat{\omega}} du_{\perp} e^{-u^2_{\perp}/2} \times \left[1 - \frac{2}{\pi} \arcsin(u_{\perp} / \hat{\omega}) - u_{\perp} / \hat{\omega} \right].
\]

The factor in square brackets is the trapped fraction. The limiting forms are

\[
N^2_{tr,el} (\hat{\omega} \ll 1) \approx 1 - [2/\pi]^{1/2} \hat{\omega}.
\]
parabolic cross-section.

Langmuir waves driven by SRS in such speckles would also acquire an elliptical cross-section. In a laser beam smoothed with phase polarization-smoothing schemes or a non-spherical lens; plates, elliptical speckles can be produced by certain transverse length. In a laser beam smoothed with phase u plus of electrons in 3D over 2D (proportional to increases with transverse speed. A wavepacket with asym-

The resulting detrapping rate, based on \(N_{\text{tr,sl}} = 1/2 \), is

\[
N_{\text{tr,sl}}(\tilde{t} \ll 1) \approx \frac{1}{2} \left\{ \frac{1}{2} \right\}^{1/2} \tilde{t},
\]

with \(K_d = (1.02, 2.08) \) in (2D, 3D). As expected, the 3D detrapping rate is faster. The 3D detrapping rate exceeds the 2D one by a larger factor than the average transverse speed because the faster electrons leave first, and the relative surplus of electrons in 3D over 2D (proportional to \(u_z \)) increases with transverse speed. A wavepacket with asymmetric (e.g., elliptical) cross-section should have a rate between the 2D and 3D result with \(L_z \) taken as the shortest transverse length. In a laser beam smoothed with phase plates, elliptical speckles can be produced by certain polarization-smoothing schemes or a non-spherical lens; Langmuir waves driven by SRS in such speckles would also acquire an elliptical cross-section.

Comparing the end loss and side loss rates gives

\[
\frac{\nu_{\text{d,el}}}{\nu_{\text{d,sl}}} = \frac{K_d \nu_p L_z}{K_d \nu_T L_{||}}.
\]

with \(K_d = \frac{1}{2} \) in the wavepacket frame. For the LW to not experience strong Landau damping, we have \(\nu_p > \nu_T \), \(L_z/L_{||} \) depends on the physical situation (laser speckles are discussed in Sec. VI). The bounce number for side loss is analogous to end loss: \(N_{B,sl} = \left| \frac{\delta N}{\delta N_{sl}} \right|^{1/2} \), with exponent \(p_{sl} = 1/2 \) and threshold amplitude \(\delta N_{sl} = 2 \pi K_d L_{||} L_{||} \). In practical units and for the 3D \(K_d \), \(\delta N_{sl} = (9.44 \times 10^{18} / n_{e,cr}) T_{e,cr} L_{||}^2 \).

IV. VLASOV SIMULATIONS OF CONVECTIVE SIDE LOSS

In this section, we quantify the competition between convective side loss and electron trapping in a driven Langmuir wave. We use the parallel, 2D-2V Eulerian Vlasov code LOKI. This code employs a finite-volume method which discretely conserves particle number. The discretization uses a fourth-order accurate approximation for well-resolved features, and smoothly transitions to a third-order upwind method as the size of solution features approaches the grid scale. This construction enables accurate long-time integration by minimizing numerical dissipation, while retaining robustness for nonlinearly generated high frequencies. As a result, the method is neither strictly monotone- or positivity-preserving nor does it eliminate the so-called recurrence problem. This occurs at a recurrence time of \(t_{\text{rec}} = L/\sqrt{\Delta t} \) when further linear evolution of a sinusoidal perturbation cannot be represented on a given grid.

Our simulations are 1D or 2D, with \(x \) the longitudinal coordinate as above, and \(y \) the transverse coordinate. Only electrons are mobile, there is a fixed, uniform neutralizing background charge, and there is no magnetic field. The total electric field is \(\vec{E} = \vec{E}_o + \vec{E}_d \), where the internal electric field \(\vec{E}_o = -\nabla \phi_i \) and \(\nabla^2 \phi_i = -\rho/e_o \). The external driver field is \(\vec{E}_d = E_0 \hat{z} \) with

\[
E_0 = E_0 A(t) h(y) \cos(k_0 \tau - \omega_0 t).
\]

There is no \(y \) component to the driver field, which would be needed if the driver were derived from a scalar potential. The temporal envelope \(A(t) \) ramps up from zero to unity over a time \(50/\omega_{pe} \) and then stays constant. The transverse profile \(h(y) \) is

\[
h(y) = \cos^2 \frac{2 \pi y}{L_y} = \frac{1}{2} \left(1 + \cos k_1 y \right), \quad |y| < \frac{L_y}{4}
\]

0 otherwise.

\[
|y| \geq \frac{L_y}{4}
\]

The numerical aspects of our runs are as follows. The \(x \) domain extends for one driver wavelength, with periodic boundaries for fields and particles. \(N_x = 32 \) zones in \(x \) was used for all runs in this paper, except for two \(N_x = 64 \) cases in Fig. 2(a). 2D runs had periodic boundaries for fields and particles at \(|y| = L_y/2 \). A Krook operator with \(\nu_k(\nu_k) = 0 \) for \(|y| < 0.4 L_y \) and rising rapidly in the boundary region \(0.4 < |y|/L_y < 0.5 \) was used to relax the distribution to the initial Maxwellian near the transverse boundaries. The runs were, thus, effectively finite in \(y \). We used \(N_y = 11 \) to 45 zones in \(y \), with more used for larger \(L_y \) and to check convergence. The \(\nu_e \) and \(\nu_T \) grids both extended to \(\pm \pi \). \(N_{ey} = 32 \) zones in \(y \) were used throughout. \(N_{ex} \) is set by two requirements: the trapping region must be adequately resolved, and recurrence phenomena must not be significant. We found \(\Delta t_e \approx 0.1 \nu_e \) was sufficient to give converged results. LOKI’s advection scheme is designed to mitigate aliasing problems, and we only saw modest effects related to it when comparing runs with different \(N_{ex} \). The convergence of our numerical results is shown in Fig. 2(a). The black curve is typical: it uses \(N_x = 32 \) and has a typical \(\Delta t_e/\nu_T \), which we kept similar by varying \(N_{ex} \) with wave amplitude and \(k_0 \).
We first present 1D runs with $E_z = 0$ and $h(y) = 1$, which are detailed in Table I. From linear theory with $A(t) = 1$, $E_\ell = E_\ell^\text{lin} \cos(k_0x - \omega_0t)$, where

$$
\frac{E_\ell^\text{lin}}{E_0} = \left| \frac{1}{1 + \chi} \right| = [(1 + \text{Re}\chi)^2 + (\text{Im}\chi)^2]^{-1/2}. \quad (18)
$$

χ is the linear electron susceptibility from Eq. (4) with $\nu_K = 0$, evaluated at the driver k_0 and ω_0. We chose ω_0 to give nearly the maximum E_ℓ^lin for a given k_0. For $k_0\lambda_{De} < 0.53$, a linearly resonant ω_0 exists where $1 + \text{Re}\chi = 0$; the maximum E_ℓ^lin then occurs close to this point. No linear resonance exists for $k_0\lambda_{De} > 0.53$, which is called the loss of resonance. Some ω_0 still maximizes E_ℓ^lin in this regime. The non-resonant case differs from the resonant one, in that reducing $\text{Im}\chi$ and Landau damping, e.g., by flattening the distribution at the phase velocity by electron trapping or some other means, does not lead to a large enhancement in the Langmuir wave response to an external drive. The term $1 + \text{Re}\chi$ in Eq. (18) keeps E_ℓ^lin finite even if $\Im\chi = 0$. For the parameters of the run 1D.7a, we find $E_\ell^\text{lin}/E_0 = 1.80$ for the full, complex χ, while setting $\text{Im}\chi = 0$ slightly increases it to $E_\ell^\text{lin}/E_0 = 2.01$.

Similar logic applies to kinetic inflation of stimulated Raman scattering. Electron trapping and the resultant Landau damping reduction can greatly increase the scattering at a resonant wavelength. However, scattering at a non-resonant wavelength is not subjected to inflation, and can even decrease, due to reducing $\text{Im}\chi$. Non-resonant SRS can occur in a situation seeded away from resonance, or if the plasma conditions are such that no resonance exists for any scattered wavelength, namely, high T_e and low n_0.

Figure 2 presents the results of our 1D runs. Panel (a) shows the time evolution of the amplitude of E_z for $k = k_0$, normalized to the linear value from Eq. (18). Early in time, $(\omega_0t - 100 - 200)$ the linear response is achieved, which validates the linear dispersion and properties of LOKI when using the chosen grid resolution. As time progresses, the response increases due to the damping reduction, and then oscillates due to the interplay of the frequency shift and the fixed driver. Similar behavior was seen in Ref. 28. We plot the results vs. the dynamic bounce number N_B^dyn from Eq. (1), using the time-dependent E_z, in the center and right panels. N_B^dyn is, thus, a trapping-based re-scaling of time. The other runs from Table I are included as well. The driver strength E_0 was chosen in runs 1D.35b, 1D.5a, and 1D.7a to give similar bounce periods. In all cases, the linear response is achieved after a transient period related to driver turn-on, until $N_B^\text{dyn} \approx 0.5$. After this point, the response increases, until the frequency shift develops at $N_B^\text{dyn} \approx 1$. As $k_0\lambda_{De}$ increases, the enhancement above linear response decreases. This is likely due to the rapid increase of the frequency shift with $k\lambda_{De}$, as shown by most theoretical calculations, e.g., Ref. 4. For $k_0\lambda_{De} = 0.7$, there is a slight enhancement to $1.3\times$ the linear response, followed by a dip to about $0.7\times$ and subsequent oscillation about unity. This lack of significant trapping nonlinearity agrees with the above discussion of the non-resonant regime.

From Eq. (13), the 2D side loss rate is $\nu_{A\text{sl}} = 4.08v_{Te}/L_y$, where we have taken $L_\perp = L_y/4$, the full-width at half-max of $h(y)$. The side loss bounce number is then

$$
N_{B,\text{sl}} = \frac{L_y}{25.6\lambda_{De}} \delta N^{1/2}. \quad (19)
$$

Recall that electrons feel the total electric field \tilde{E} (drive plus internal), and δN is an equivalent density fluctuation. Gauss’s law gives $\delta N = \frac{k_0^2}{\omega_0^2} - E_z$, where E_z is the amplitude of the k_0 Fourier mode of the on-axis field $E_z(y = 0)$,

Run	$k_0\lambda_{De}$	ω_0/ω_{pe}	E_ℓ^lin/E_0	E_0	ω_0/ω_{pe}	Plot curve
1D.35a	0.35	1.22	11.9	1.25 \times 10^{-5}	871	Red dash
1D.35b	"	"	"	5 \times 10^{-5}	436	Solid black
1D.35c	"	"	"	1 \times 10^{-4}	218	Blue dash
1D.5a	0.5	1.44	3.22	1.3 \times 10^{-4}	434	Black dash
1D.5b	"	"	"	5.2 \times 10^{-4}	217	Green dash
1D.7a	0.7	1.79	1.80	1.7 \times 10^{-4}	430	Black dot
TABLE II. 2D LOKI runs with transverse driver profile \(h(y)\). All runs have \(k_0\lambda_{De} = 0.35\), \(\omega_v/\omega_{pe} = 1.22\), and \(E_{d0}/m_e\nu_T e\omega_{pe} = 2 \times 10^{-4}\), the same as run 1D.35c.

Run	\(L_y/\lambda_{De}\)	\(N_{B,sl} = L_y/884\lambda_{De}\)	Plot curve
2D100	100	0.113	red
2D200	200	0.226	dark blue
2D400	400	0.452	green
2D800	800	0.905	magenta
2D1200	1200	1.357	blue

and \(\vec{E} = E_e/m_e\nu_T e\omega_{pe}\) denotes a normalized field. Using the linear response from Eq. (18), we obtain the linear estimate \(N_{B,sl}\) as run 1D.35c. For these values, our linear estimate becomes \(N_{B,sl} = L_y/884\lambda_{De}\).

The 2D LOKI runs are listed in Table II. All runs used \(k_0\lambda_{De} = 0.35\), \(\omega_v/\omega_{pe} = 1.22\), and \(E_{d0} = 2 \times 10^{-4}\), the same as run 1D.35c. For these values, our linear estimate becomes \(N_{B,sl} = L_y/884\lambda_{De}\).

The field magnitude \(E_x(y = 0)\) is plotted vs. the dynamic bounce number \(N_{B,sl}^{dyn}\) found using Eq. (20) for the 2D runs in Fig. 3. The black curve is the analogous 1D run 1D.35c. For \(N_{B,sl}^{dyn} \leq 4\), there is a continuous increase in the response with profile width \(L_y\). This allows us to quantify trapping nonlinearity vs. \(L_y\), which we do in Fig. 4. The abscissa in that figure is the side loss bounce number, \(N_{B,sl}\), computed with linear response as in Eq. (20). The ordinate is the field enhancement due to trapping, scaled to the same quantity for the 1D run. This is shown at times corresponding to several values of \(N_{B,sl}^{dyn}\), ranging from 0.75 to 2. These times are early enough that the amplitudes have been mostly increasing, with little oscillation due to the frequency shift. The curves agree well, and demonstrate the continuous development of trapping effects with wide profiles. Slightly more than half the 1D trapping effect obtains for \(N_{B,sl} = 1\), which vindicates our \(N_B \sim 1\) approximate threshold for trapping.

And \(E = E_e/m_e\nu_T e\omega_{pe}\) denotes a normalized field. Using the linear response from Eq. (18), we obtain the linear estimate \(N_{B,sl}\) as run 1D.35c. For these values, our linear estimate becomes \(N_{B,sl} = L_y/884\lambda_{De}\).

The 2D LOKI runs are listed in Table II. All runs used \(k_0\lambda_{De} = 0.35\), \(\omega_v/\omega_{pe} = 1.22\), and \(E_{d0} = 2 \times 10^{-4}\), the same as run 1D.35c. For these values, our linear estimate becomes \(N_{B,sl} = L_y/884\lambda_{De}\).

The field magnitude \(E_x(y = 0)\) is plotted vs. the dynamic bounce number \(N_{B,sl}^{dyn}\) found using Eq. (20) for the 2D runs in Fig. 3. The black curve is the analogous 1D run 1D.35c. For \(N_{B,sl}^{dyn} \leq 4\), there is a continuous increase in the response with profile width \(L_y\). This allows us to quantify trapping nonlinearity vs. \(L_y\), which we do in Fig. 4. The abscissa in that figure is the side loss bounce number, \(N_{B,sl}\), computed with linear response as in Eq. (20). The ordinate is the field enhancement due to trapping, scaled to the same quantity for the 1D run. This is shown at times corresponding to several values of \(N_{B,sl}^{dyn}\) ranging from 0.75 to 2. These times are early enough that the amplitudes have been mostly increasing, with little oscillation due to the frequency shift. The curves agree well, and demonstrate the continuous development of trapping effects with wide profiles. Slightly more than half the 1D trapping effect obtains for \(N_{B,sl} = 1\), which vindicates our \(N_B \sim 1\) approximate threshold for trapping.

The 2D LOKI runs are listed in Table II. All runs used \(k_0\lambda_{De} = 0.35\), \(\omega_v/\omega_{pe} = 1.22\), and \(E_{d0} = 2 \times 10^{-4}\), the same as run 1D.35c. For these values, our linear estimate becomes \(N_{B,sl} = L_y/884\lambda_{De}\).

The field magnitude \(E_x(y = 0)\) is plotted vs. the dynamic bounce number \(N_{B,sl}^{dyn}\) found using Eq. (20) for the 2D runs in Fig. 3. The black curve is the analogous 1D run 1D.35c. For \(N_{B,sl}^{dyn} \leq 4\), there is a continuous increase in the response with profile width \(L_y\). This allows us to quantify trapping nonlinearity vs. \(L_y\), which we do in Fig. 4. The abscissa in that figure is the side loss bounce number, \(N_{B,sl}\), computed with linear response as in Eq. (20). The ordinate is the field enhancement due to trapping, scaled to the same quantity for the 1D run. This is shown at times corresponding to several values of \(N_{B,sl}^{dyn}\) ranging from 0.75 to 2. These times are early enough that the amplitudes have been mostly increasing, with little oscillation due to the frequency shift. The curves agree well, and demonstrate the continuous development of trapping effects with wide profiles. Slightly more than half the 1D trapping effect obtains for \(N_{B,sl} = 1\), which vindicates our \(N_B \sim 1\) approximate threshold for trapping.

The plasma response to a driver with transverse profile \(h(y)\) differs from the 1D case. This can be seen in the ordinate of Fig. 4 falling below zero for the smallest \(L_y = 100\). There have been several linear calculations of transit-time damping in LWs of finite extent, mostly by integration along particle orbits. Reference 38 showed that, for a potential with a step-function profile in space, the transit-time damping exceeds that for an infinite plane-wave for \(\omega_v/\nu_T \gg 1\), while for \(\omega_v/\nu_T \sim 1\) it can be less. We adopt the alternative approach of writing the response as a superposition of responses to the Fourier modes comprising the drive. This is particularly convenient for our \(h(y)\), which (when periodically repeated) is composed of only two Fourier modes. For simplicity, we present the result for \(h(y)\) periodically repeated, instead of the actual LOKI profile with compact support over \(|y| < L_y/4\). The compact case would lead to a continuous Fourier transform rather than discrete series, and introduce a line width around the dominant modes. This does not change the qualitative result. Unlike Ref. 38, our compact profile \(h(y)\) is not a step function but smooth, with \(h\) and \(h'\) continuous at all points (although \(h''\) is not).

The drive \(E_d\), made periodic in \(y\), is

\[
E_d = \frac{E_0}{4} e^{i(k_0 x - \omega_0 t)} \left[1 + \frac{1}{2} e^{i\chi} + \frac{1}{2} e^{-i\chi}\right] + c.c. \tag{21}
\]

A standard kinetic calculation, accounting for the fact that \(E_d^{lin}\) has no \(y\) component and thus does not come from a potential, gives the field at \(y = 0\)

\[
E_x^{lin}(x, t, y = 0) = E_0 |R| \cos(k_0 x - \omega_0 t + \pi), \tag{22}
\]

\[
2R = \frac{1}{1 + \chi} + \frac{1 + (k_0/k)_+^2}{1 + (k_0/k)_+}. \tag{23}
\]

Note that the linear \(E_x(y = 0) = 0\) for our \(E_d\). \(x\) is a real phase. \(\chi\) is the collisionless susceptibility for \(\nu_T = 0\) from Eq. (4), which depends only on \(\omega\) and \(k = |k|\), \(\chi_0 = \chi(k_0, \omega_0)\) and

![Figure 3](image3.png)
FIG. 3. Amplitude of \(k = k_0\) mode of \(E_x(y = 0)\) for 2D LOKI runs with transverse driver profiles \(h(y)\) with various \(L_y\). Run parameters and curve meanings are given in Table II. Black curve is 1D run 1D.35c.

![Figure 4](image4.png)
FIG. 4. Departure from linear response for 2D LOKI runs, scaled to the same quantity from the 1D run 1D.35c. The colored curves are taken at times when the dynamic bounce number \(N_{B,sl}\) has reached the value indicated by the colored text. \(N_{B,sl}\) is found from linear response, using Eq. (20).
\(\chi_s = \chi(k_s, \omega_0) \) with \(k_s = (k_0^2 + k_1^2)^{1/2} \). For \(k_1 = 0 \), we recover the 1D result Eq. (18). Physically, the higher-\(k \) modes induced by the transverse profile are more Landau damped (as well as being slightly off resonance for the fixed \(\omega_0 \)), which reduces the response. For the parameters of Table II, we find \(|R|/|R|_{1D} = (0.801, 0.948) \) for \(L_y = (100, 200) \), where \(|R|_{1D} = 11.9 \) is the value for \(L_y \to \infty \). We, thus, obtain a slight decrease in the linear response for our sharpest profile (\(L_y = 100 \)), and an insignificant change for wider ones. This is borne out by Fig. 3. The red curve for \(L_y = 100 \) shows no signs of trapping, and reaches a steady level slightly more than 0.8 times the 1D linear value. The blue curve (\(L_y = 200 \)) shows a slight trapping enhancement, and reaches a steady level slightly above 1.2× linear after about 2 bounce periods.

V. COULOMB COLLISIONS

Collisions remove electrons from the trapping region via pitch-angle scattering (from electron-ion and electron-electron collisions) as well as parallel drag and diffusion (from only electron-electron collisions since \(m_i/m_e \gg 1 \)). We adopt a Fokker-Planck collision operator, and discuss its validity in the Appendix

\[
\frac{\partial f}{\partial t} = v_0 (1 + Z_{\text{eff}}) u^{-3} \partial_u [(1 - \mu^2) \partial_u f] + 2v_0 u^{-2} \partial_u (f + u^{-1} \partial_u f),
\]

\(\mu = \cos \theta, \) where \(\theta \) is the pitch angle between \(\vec{u} \) and the \(u_s \) direction, and \(u = |\vec{u}|, v_0 \) is a thermal electron-electron collision rate

\[
n_0 = \frac{\omega_{pe} \ln \Lambda_{ee}}{8\pi N_{De}}.
\]

\(N_{De} = n_e z_{De}^3 \) and \(\ln \Lambda_{ee} = 24 - \ln(n_e^{1/2}/T_e) \) (\(n_e \) in \(cm^{-3} \), \(T_e \) in eV) is the electron-electron Coulomb logarithm appropriate for \(T_e > 10 \) eV (Ref. 40, p. 34). The effective charge state is

\[
Z_{\text{eff}} = \sum_i j_i Z_i^2 / Z \ln \Lambda_{ei},
\]

where \(j_i = n_i / n_e \), \(Z = \sum_i Z_i j_i \) with \(j_i = n_i / n_e \), \(\sum_i j_i = 1 \), and \(\ln \Lambda_{ei} = \ln \Lambda_{ee} \). Be and diamond ablators are also being considered. For illustration, we take \(Z_{\text{eff}} = 4 \) as the lowest reasonable value (fully ionized H), and use \(Z_{\text{eff}} = 4 \) (fully ionized Be) to represent an ablator plasma.

It is useful to define a unitless time \(\hat{t} \) (different from the side loss \(t \) used above), which demonstrates some of the basic collisional scaling

\[
\hat{t} = v_0 t / \delta N,
\]

Our collisional calculation of the trapped fraction is detailed in the Appendix. The key observation is that the distribution in the trapping region can be decomposed into Fourier modes \(\sin n (v_x - v_x / \nu_x + 1 / 2) \) for \(n = 1, 3, \ldots \), and the diffusion rate of mode \(n \) is proportional to \(n^2 \). After a short time, only electrons in the \(n = 1 \) mode remain trapped, so it suffices to consider just the number in the \(n = 1 \) mode. At \(t = 0 \), this is 81% of the total (the other 19% rapidly diffuses out).

The upshot is that \(\eta_{\text{tr}}, \) the fraction of initially trapped particles remaining in the fundamental mode after time \(t \), is

\[
\eta_{\text{tr}}(\hat{t}, Z_{\text{eff}}, u_p) = 0.81 \int_0^\infty du \mu_{\text{eff}} \exp[-u^2 / 2 - D \hat{t}].
\]

\(D(u_p, Z_{\text{eff}}) \) is given in Eq. (A12).

Equation (29) is an implicit, integral equation for \(\hat{t} \) as a function of \(Z_{\text{eff}}, u_p, \) and \(\eta_{\text{tr}} \). We find the “exact” solution by performing the integral numerically, and interpolating \(\hat{t} \) for a desired \(\eta_{\text{tr}} \). We derive an approximate solution, valid for \(u_p \gg 1 \), for \(\hat{t} \) in the Appendix. The result is

\[
\hat{t} \approx \hat{t}_0 + \hat{t} u_p^2,
\]

\(\hat{t}_0 \) and \(\hat{t}_1 \) are both positive and depend only on \(Z_{\text{eff}} \), so \(\hat{t} \) decreases with increasing \(u_p \). Figure 5 plots \(\eta_{\text{tr}}(\hat{t}) \) for several \(u_p \) and \(Z_{\text{eff}} \), using the exact results (solid curves) and the approximate form for \(u_p \to \infty \) of Eq. (A19) (dashed curves). Few electrons remain trapped at \(\hat{t} = 1 \). The approximate forms are quite good, even though \(u_p \) is not that large.

Figure 6 displays the relative error \(\epsilon \equiv 1 - \eta_{\text{app}} / \eta_{\text{ex}} \) between \(\hat{t} \) for \(\eta_{\text{tr}} = 1 / 2 \) computed two ways. The exact \(\eta_{\text{ex}} \)
is found numerically, and \(\tilde{i}_{\text{app}} \) is from Eq. (30), with Eq. (A20) for \(t_0 \) and Eq. (A25) for \(t_1 \). The agreement is excellent, within 1\% for most of parameter space.

The collisional detrapping rate \(\nu_{d,c} \) is

\[
\nu_{d,c} = \frac{\nu_c \ln(1/N_i)}{t}.
\]

Note that \(\nu_{d,c} \sim \Delta N^{-1} \) since \(u_{tr} \sim \Delta N^{1/2} \): the larger the wave amplitude, the wider the trapping region extends in velocity, and collisions take longer to remove the electron from this region. Recall that \(\nu_{d,c} \) depends slightly on the choice of \(N_r \) due to the non-exponential decay of \(N_r \) with \(t \); as with convective loss we choose \(N_r = 1/2 \).

The collisional bounce number is

\[
N_{B,c} = \left[\frac{\Delta N}{\Delta N_i} \right]^{3/2} = \left[\frac{2\pi \nu_c \ln(1/N_i)}{o_{pe}} \right]^{2/3}.
\]

The amplitude exponent for collisions is \(p_r = 3/2 \), unlike the convective loss value of 1/2. This stems from the fact that \(\nu_d \) for collisions is amplitude-dependent while for convective loss it is not. We now construct the overall bounce number \(N_{B,0} \) for convective side loss and collisions, as outlined above. Assuming that separate detrapping processes are independent, and their detrapping rates add, yields

\[
N_{B,0}^{-1} = N_{B,sl}^{-1} + N_{B,c}^{-1} = \left[\frac{\Delta N_{sl}}{\Delta N} \right]^{1/2} + \left[\frac{\Delta N_c}{\Delta N} \right]^{3/2}.
\]

We define an overall threshold amplitude \(\Delta N_0 \) such that \(N_{B,0}[\Delta N = \Delta N_0] = 1 \). Equation (33) gives a cubic equation for \(\Delta N_0^3/2 \)

\[
a^3 - \Delta N_{sl}^{1/2}a^2 - \Delta N_{c}^{3/2} = 0.
\]

There are two ways to compare the relative importance of side loss and collisions. One is: for which process must the wave amplitude \(\Delta N \) be larger for trapping to be significant (\(N_B = 1/2 \))? The other is: for a given \(\Delta N \), which process will detraps more effectively? The two views are not equivalent, due to the different dependence of the side loss and collisional detrapping rate on \(\Delta N \). The first amounts to comparing the thresholds \(\delta N_{sl} \) and \(\delta N_c \), which can be computed just from plasma and wave properties without knowing \(\Delta N \). The ratio of detrapping rates can be written in terms of a critical amplitude \(\delta N_{tr} \)

\[
\frac{\nu_{d,c}}{\nu_{d,sl}} = \frac{\delta N_{tr}}{\Delta N_i}, \quad \delta N_{tr} = \frac{\ln2}{IK_{sl}o_{pe} L_{Dc}}.
\]

VI. PARAMETER STUDY FOR ICF UNDERDENSE PLASMAS

We now apply our analysis to ICF conditions where SRS can occur, namely, the underdense coronal plasma. SRS is a parametric three-wave process where a pump light wave such as a laser (which label mode 0) decays to a scattered light wave (mode 1) and a Langmuir wave (mode 2). We restrict ourselves to exact backscatter (SRBS; \(k \parallel \) anti-parallel to \(k_0 \)), as this generates the largest \(k_2 \) (smallest \(v_{pe}/v_T \)) and thus makes trapping effects more important (small transverse components to \(k_2 \) have little effect on the phase velocity). Both measurements and simulations with the paraxial-envelope propagation code pF3D \(^{41} \) have shown backscatter to be the dominant direction for SRS. With \(k_1 = k_2 \), the phase-matching conditions are \(\omega_0 = \omega_1 + \omega_2 \) and \(k_0 = k_1 + k_2 \) with \(k_1 < 0 \). We employ the (cold) light-wave dispersion relation \(\omega_0^2 = (ck_1)^2 + \omega_{ce}^2 \) for modes \(i = 0 \) and 1, and use the vacuum wavelength \(\lambda_i = 2\pi/c/\omega_i \). Frequency matching, thus, requires \(n_r < n_{tr}/4 \), with \(n_{tr} \equiv (e\gamma n_e/e^2)\omega_1^2 \) the critical density for mode \(i \), and \(n_r < n_{tr,0} \). For specific examples, we choose \(\lambda_0 = 351 \text{ nm} \), appropriate for frequency-tripled UV light currently in use on NIF. Specific plasma conditions thought to be typical for SRBS on NIF ignition targets, during early to mid peak laser power, are \(n_e/n_0 = 0.1 \) and \(T_e = 2 \text{ keV} / (\lambda_1 \approx 550 \text{ nm}) \). \(^{42}\) The scattered wavelength continuously increases during a NIF experiment, consistent with the hohlraum filling to higher density.

An important case for this paper is LW’s driven by SRBS in the speckles of a phase-plate-smoothed laser beam. \(^{43}\) For a laser wavelength \(\lambda_0 \) and square RPP with optics F-number \(F \), the intense speckles have \(L_\perp \approx F\lambda_0 \) and \(L_\parallel \approx 5F^2 \lambda_0 \). \(^{44}\) A speckled beam is not the only situation where SRS can occur; for instance, there has been recent interest in re-amplification of backscatter by crossing laser beams \(^{45}\) and backward Raman amplifiers. \(^{46}\) However, for a single laser beam, experiments at Omega and pF3D simulations show speckle physics, and its modification by beam smoothing, must be accounted for to accurately model SRS. \(^{47,48}\) Experiments have also verified the increase in backscatter with increased gain per speckle length, by changing the laser aperture and thus the effective \(F \). \(^{49}\) We, therefore, focus on speckles. On NIF, four laser beams, each smoothed by a phase plate and with an overall \(F = 22 \) square aperture, are grouped into a “quad” which yields an effective square aperture of \(F \approx 8 \). We, thus, use \(F = 8 \) for illustration. As the beams of a quad propagate through a target, they can separate from one another, refract, and undergo other effects that change the...
shape of their effective aperture and speckle pattern. We do not pursue this further here, but it should be born in mind when applying our analysis. Also, the ratio $L_\perp / L_\parallel = 1/5$ is so small that $\nu_{\text{det}} / \nu_{\text{SRBS}} \approx (K_3 / K_1) \lambda p / SF = 0.008 \lambda p$ (3D) is small for essentially all speckles of interest. Thus, side loss is a more potent detrapping mechanism than end loss, in speckles.

To quantify detrapping rates, we consider the threshold amplitudes δN_{\parallel} and δN_s. Unlike δN_{\parallel}, δN_s depends on ω_2 and k_2 of the Langmuir wave. For a given set of plasma conditions, the choice of (ω_2, k_2) is not unique but depends on the application. For SRS developing locally, one can choose the LW corresponding to the largest growth rate for those conditions. Another approach is to consider a single scattered-light frequency as it propagates through a target. We consider only k variations induced by spatial profiles and not ω variations due to temporal plasma evolution50 (which is mostly relevant to stimulated Brillouin scattering). In this case, the matching conditions given the local plasma properties dictate how k_2 varies.

Figure 7 presents the local λ_1 for SRBS computed in two ways. The black curves are found by phase-matching with a “natural” LW, by which we mean $\omega_2 = \Re[\omega_{2r}]$ where complex ω_{2r} satisfies

$$1 + \chi[k_2, \omega_{2r}] = 0 \quad (36)$$

with real $k_2 = k_0 - k_1$. To find ω_{2r}, we set $\nu_K = 0$ and recover the usual collisionless χ. We use $\nu_K \neq 0$ below as a simple way to include collisional LW damping when Landau damping is negligible. The red curves in Fig. 7 are the λ_1 which maximizes the local spatial SRBS gain rate in the strong damping limit41

$$\partial \ln I_1(\lambda_1, z) = \left[\frac{2\pi r_e^2 I_0}{m_e c^2 \omega_0 k_0} \right] \left[k_2^2 \frac{\Im \chi}{|k_1| \Im \frac{1}{1 + \chi}} \right]. \quad (37)$$

![FIG. 7. Wavelength λ_1 in nm for SRBS light (increments of 50 nm), for a pump wavelength $\lambda_p = 351$ nm. Black solid: λ_1 phase-matched with a natural Langmuir wave, satisfying the dispersion relation Eq. (36) with $\nu_K = 0$. Red dash: λ_1 for the maximum local SRBS spatial gain rate.](image)

We use the collisionless χ with $\nu_K = 0$. The first bracket is independent of λ_1, while the second bracket is not. The two results for λ_1 in Fig. 7 are very close except for high-$k_2 \lambda_{De}$ LW’s (low n_e, high T_e), where Landau damping and its variation with λ_1 is significant. We choose for convenience to use λ_1 matched to a natural LW below. We display in Fig. 8 the $k_2 \lambda_{De}$ corresponding to two choices of λ_1. The black curves use the λ_1 phase-matched to a natural LW (the black curves in Fig. 7), while the red curves are for a constant $\lambda_1 = 550$ nm.

The side loss threshold δN_{\parallel} is shown in Fig. 9, for $L_\perp = F \lambda_0$ and $F = 8$. It simply represents the variation in λ_{De}, and is independent of (ω_2, k_2). Figure 10 depicts the collisional threshold δN_s for $Z_{\text{eff}} = 1$ and 4. The decrease of δN_s with electron density is mainly due to the decrease of the $(k \lambda_{De})^3$ factor in ν_e (see Eq. (28)), which in turn is due to the $1/v_e^2$ fall in the Coulomb cross-section (see Eq. (25)). The ratio $\delta N_{s}/\delta N_{\parallel}$ is displayed in Fig. 11, which indicates collisions have a minor effect except for low n_e and low T_e;
this relative importance depends strongly on the transverse length \(L \) chosen for side loss. Figure 12 plots the critical amplitude \(\delta N_{cr} \) from Eq. (35). For \(\delta N > \delta N_{cr} \), the side loss detrapping rate exceeds the collisional rate. \(\delta N_{cr} \) is larger at smaller \(n_e \), indicating collisional detrapping is more relevant. 2D particle-in-cell simulations with the VPIC code of Raman amplifier experiments\(^4\),\(^5\)\(^2\) found that collisions mattered for low-intensity seed light waves in a low-density plasma \((n_e/n_{cr} \sim 0.01)\).

The reflectivities which correspond to trapping nonlinearity can also be estimated. We assume that the LW’s are in the strong damping limit,\(^5\)\(^1\) and write

\[
\delta N = \frac{1}{2} \frac{(k_2 \lambda D)^2}{1 + \chi} \frac{V_0 V_i}{v_e^2}.
\] (38)

\(V_i = eE_i/m_e\omega_i \) is the oscillation velocity for light wave \(i \); in practical quantities we have \((V_i/c)^2 = I_i/\lambda^2 / n_{cr} \), with \(P_0 \equiv 2\pi^2 (\epsilon_0/e^2) m_e^2 c^5 = 1.37 \times 10^{18} \text{ W cm}^{-2} \cdot \text{m}^{-2} \).

FIG. 10. Threshold Langmuir wave amplitude for collisions, \(\delta N_{i} \), LW \(\omega _2 \) and \(k_2 \) are for phase-matched SRBS with a natural LW (black solid curves of Fig. 7), and pump wavelength \(\lambda_0 = 351 \text{ nm} \). Black solid: \(Z_{eff} = 1 \). Red dash: \(Z_{eff} = 4 \). From right to left, curves are for \(\delta N_i = [1, 2.5, 10, 30] \times 10^{-4} \).

FIG. 11. Ratio \(\delta N_{i}/\delta N_{a} \) from Figs. 9 and 10 for \(Z_{eff} = 4 \).

FIG. 12. Critical amplitude \(\delta N_{cr} \) from Eq. (35) for \(Z_{eff} = 4 \). The side loss detrapping rate is faster than the collisional one for \(\delta N > \delta N_{cr} \). Blue curves are for \(\delta N_{cr} = 3 \times 10^{-5}, 1 \times 10^{-4}, 3 \times 10^{-4}, 1 \times 10^{-3} \).

\(\eta_i = [1 - n_e/n_{cr,i}]^{1/2} \) reflects the decrease in group velocity. With reflectivity \(R = I_1/I_0 \), we find

\[
\delta N = \frac{I_0}{I_{cr}} R^{1/2},
\] (39)

\[
I_{cr} \equiv \frac{1 + \chi}{k_2 \lambda D} \frac{T_e}{m_e c^2 \lambda_0^2} \frac{P_0}{(\eta_0 n_1)^{1/2}}.
\] (40)

The “critical intensity” \(I_{cr} \) is introduced for convenience. Since trapping effects become significant for \(\delta N \approx \delta N_i \), where \(\delta N_i \) is the detrapping threshold for process \(i \), we define the threshold reflectivity \(R_{thr,i} \) for which \(\delta N = \delta N_i \)

\[
R_{thr,i} = \left[\frac{I_{cr}}{I_0} \delta N_i \right]^{2}.
\] (41)

To illustrate the threshold reflectivity, we consider SRBS of the phase-matched natural LW. The critical intensity \(I_{cr} \) is plotted in Fig. 13. We use \(\chi \) from Eq. (4) including...
the Krook operator $\nu_k \neq 0$ to damp the LW when $k_z \lambda_D e$ is small and Landau damping is ineffective. For this purpose, we choose ν_k to be the collisional, unmagnetized frictional drag rate in the electron momentum equation.\(^{53,54}\) This rate is appropriate for the drag on the bulk sloshing motion of the electrons in the LW electric field, and not collisions of resonant electrons with $v \approx v_p$, I_e, minimizes in the lower-right region near the 2.5×10^{14} curve, where Landau and collisional damping are both weak. The threshold reflectivity $R_{\text{thr},sl}$ for trapping to overcome side loss is plotted in Fig. 14, for a pump with $I_0 = 10^{15}$ W/cm\(^2\). A small reflectivity produces a large LW in the lower-right corner where damping is weak, thus allowing trapping to more easily occur.

Our analysis assumes a Maxwellian electron distribution f. This is not well known in ICF plasmas, and is an active area of research. For instance, nonlocal transport due to scale lengths that are not sufficiently short compared to collisional mean free paths, as well as hot electron generation by SRS-produced LWs, lead to significant non-Maxwellian features. This becomes more important for speeds larger than the thermal speed, where collisions become less effective and which LW phase velocities generically are. The dominant effect of non-thermal f on our analysis is via the collisionless part of Imχ and the LW Landau damping rate, which depends sensitively on $f(v_p)$, while Reχ and the real frequency are determined by the bulk motion of the entire f. The low T_e, high n_e parameter region, with small $k_z \lambda_D e$ and large v_p/ν_{ce}, is where Landau damping is most susceptible to non-thermal f. But, Landau damping is quite small here for a Maxwellian, and is dominated by collisional damping. The latter relies on the scattering of the bulk electrons on ions, and is therefore not very sensitive to details of f. Our results should be somewhat insensitive to the presence of non-Maxwellian tails.

We now consider the specific plasma conditions mentioned above as typical for SRBS on NIF ignition experiments, namely, $n_e/n_{cr} = 0.1$ and $T_e = 2$ keV.\(^{42}\) The phase-matched SRBS modes have $\lambda_1 = 553$ nm, $k_z \lambda_D e = 0.297$, and $\omega_2/\omega_{pe} = 1.155$. The calculated backscatter gain rate is significant in both the CH ablator and He gas fill. The material affects a trapping assessment only via collisions. From Fig. 11, for $Z_{af} = 4$, we find $\delta N_e/\delta N_{sl} = 0.24$, so we just consider side loss. The 3D side loss detrapping rate is $\nu_{d,sl} = 13/ps$, or a time of $1/\nu_{d,sl} = 0.072$ ps. The side loss threshold is $\delta N_{sl} = 2.7 \times 10^{-3}$, the critical intensity is $I_{cr} = 1.96 \times 10^{16}$ W/cm\(^2\), and the threshold reflectivity is $R_{\text{thr},sl} = (5.28 \times 10^{15}$ W cm\(^{-2}\)/I_0)3. A typical intensity for inner cones of lasers in NIF ignition experiments of $I_0 = 3 \times 10^{14}$ W/cm\(^2\) gives $R_{\text{thr},sl}$ = 0.03. Larger beam-averaged reflectivities are frequently measured in experiments, and even larger values will occur in intense speckles.

Finally, we show that SSD\(^{33}\) is not likely to reduce trapping effects in SRBS on NIF. Recent experiments have utilized $\Delta \tau_1 = 45$ GHz of SSD bandwidth in the fundamental, 1054 nm laser light. After frequency-tripling, this corresponds to a speckle lifetime of $\tau_{sl} = 1/(3 \Delta \tau_1) = 7.4$ ps. For the reference SRBS conditions discussed above, $\tau_{sl} \sim 100/\nu_{d,sl}$. Thus, SSD is much less effective at detrapping than side loss. Moreover, a Langmuir wave overcomes SSD detrapping ($\tau_p < \tau_{sl}$) for a very low amplitude of $\delta N = 2.5 \times 10^{-7}$, or a reflectivity of $(4.9 \times 10^8$ W cm\(^{-2}\)/I_0)2.

VII. CONCLUSIONS AND FUTURE PROSPECTS

This paper presented a framework for estimating when electron trapping nonlinearity becomes important in Langmuir-wave dynamics. Detrapping by convective loss in the longitudinal and transverse directions was discussed, as well as detrapping by Coulomb collisions (electron-electron and electron-ion). 2D-2V simulations with the Vlasov code LOKI quantified trapping effects in driven LWs with finite transverse profiles, and showed that they increase with the side loss bounce number as the transverse width increases. These runs showed trapping has little importance for $k_x \lambda_{De} = 0.7$, which is above the loss of resonance value of 0.53. We explained this in terms of Eq. (18), and related it to the lack of kinetic inflexion in non-resonant Raman scattering.

We applied our results to LWs driven by SRBS in NIF-relevant conditions. An f/8 intense laser speckle was taken as the LW size in order to estimate side loss. Side loss from speckles is generally more effective at detrapping electrons than collisions, although this is not the case for wider LWs or high-Z plasmas. Linear response at the locally resonant SRBS scattered wavelength allowed us to obtain a local reflectivity needed for trapping to overcome side loss. This gives small values (~1%) for plasma conditions from which SRBS is thought to originate in current NIF experiments. Moreover, it is the speckle, and not the lower beam average, intensity that matters. Preliminary assessment of pF3D simulations\(^{55}\) of NIF targets indicates that a significant fraction of SRBS-generated LWs above our trapping threshold. Future work will assess this, and attempt to incorporate trapping effects into enveloped propagation codes like pF3D.

ACKNOWLEDGMENTS

We gratefully recognize J. A. F. Hittinger and R. L. Berger for helpful discussions and support. Work at LLNL was supported by US Department of Energy Contract No.
DE-AC52-07NA27344 and partly under LDRD Tracking No. 12-ERD-061.

APPENDIX A: DERIVATION OF COLLISIONAL RESULTS

We restate our collision operator from Eq. (24)

\[\frac{1}{\nu_0} \frac{\partial f}{\partial t} = (1 + Z_{\text{eff}})u^{-3} \frac{\partial}{\partial u} [u^{-3} (1 - \mu^2) \frac{\partial f}{\partial \mu}] + 2u^{-2} \frac{\partial}{\partial u} [f + u^{-1} \frac{\partial f}{\partial u}], \]

(A1)

The second term describes collisions of tail electrons off bulk electrons, and is valid for \(\nu_p \gg 1 \). The parallel (\(u_p \)) and perpendicular (\(u_{\perp} \)) velocities are given by \(u_{\perp} = \mu u \) and \(u_{\perp} = (1 - \mu^2)^{1/2} u \) with \(u \in [0, \infty) \) and \(\mu \in [-1, 1] \). We compute \(N_{\text{tr}} \), the number of electrons initially trapped, that remain so up to time \(t \), that is, once an electron leaves the trapping region its coherent bounce motion stops, even if it re-enters the trapping region later. The trapping region extends from \(u_{\perp} = u_p \pm u_{\perp} / 2 \) and over all \(u_{\perp} \).

Changing variables from \((\mu, u)\) to \((u_{\perp}, u_{\perpendicular})\) gives

\[\frac{1}{\nu_0} \frac{\partial f}{\partial t} = \left[D_{xx} \frac{\partial^2 f}{\partial u_{\perp}^2} + D_z \frac{\partial f}{\partial u_{\perpendicular}} + D_{\perp \perp} \frac{\partial^2 f}{\partial u_{\perp} \partial u_{\perpendicular}} \right]

+ D_z \frac{\partial f}{\partial u_{\perpendicular}} + D_{\perp \perp} \frac{\partial^2 f}{\partial u_{\perp}^2}. \]

(A2)

The \(D_z \)'s are straightforward to work out, and we do not give them. We assume \(u_{\perp} \) is small, and order derivatives as \(\partial / \partial u_{\perp} \sim 1 / u_{\perp} \) and \(\partial / \partial u_{\perpendicular} \sim 1 \) (\(v_{\perp} \sim v_{\perp} \) in physical units). For sufficiently small \(u_{\perp} \), the dominant term is \(D_{xx} \frac{\partial^2 f}{\partial u_{\perp}^2} \). For \(u_{\perp} \gg 1 \), this is valid if \(u_{\perp} \ll F(Z_{\text{eff}}) / u_p \), where \(F \) is a function of \(Z_{\text{eff}} \). With this approximation, the collision operator yields a 1D diffusion equation

\[\frac{1}{\nu_0} \frac{\partial f}{\partial t} = D_{xx} \frac{\partial^2 f}{\partial u_{\perp}^2}, \]

(A3)

\[D_{xx} \equiv \frac{(u_{\perp}^2 + u_{\perpendicular}^2) u_{\perp}^2 (1 + Z_{\text{eff}}) + 2u_p^2}{(u_{\perp}^2 + u_{\perpendicular}^2)^{5/2}}. \]

(A4)

We solve this equation subject to the outflow boundary conditions \(f(u_{\perp} = u_{\perp} \pm u_{\perp} / 2) = 0 \) the boundaries of the trapping region. The initial condition for the trapped distribution is \(f = f_0 \exp[-(u_{\perp}^2 + u_{\perpendicular}^2) / 2] \) (a Maxwellian with \(u_{\perp} \) evaluated at \(u_{\perp} \) inside the trapping region, and \(f = 0 \) otherwise. The number of trapped electrons is

\[N_{\text{tr}} = 2\pi \int_0^\infty du_{\perp} \int_{u_{\perp}}^{u_p} f. \]

(A5)

We choose \(f_0 = (2\pi u_{\perp})^{-1} e^{u_{\perp}^2 / 2} \) so \(N_{\text{tr}}(t = 0) = 1 \). \(f \) has the solution

\[f = \sum_{n=1,3,\ldots} f_n(u_{\perp}, t) \sin n \pi w, \]

(A6)

\[f_n = \frac{2}{\pi^2} \frac{n u_{\perp}}{u_p} \exp[-n^2 / 2 - n^2 D \kappa]. \]

(A7)

\(w \equiv (u_{\perp} - u_{\perpendicular}) / u_{\perp} \), \(\kappa \) is given by Eq. (27), and \(D \equiv D_{xx} u_{\perp}^3 \). The sum is over odd positive integers since the even terms vanish. The trapped fraction becomes

\[N_{\text{tr}} = \frac{8}{\pi^2} \sum_n n^{-2} \int_0^\infty dx \exp[-x - n^2 D \kappa] \]

(A8)

\(x \equiv u_{\perp}^2 / 2 \) is a dummy integration variable. The decay rate of mode \(n \) goes like \(n^2 \), as is typical of diffusion problems. After a short time, the \(n = 1 \) term dominates. Retaining just this term, and evaluating \(8 / \pi^2 = 0.81 \), we find

\[N_{\text{tr}} \approx 0.81 N_{\text{tr}}. \]

(A9)

\[I(t, a) = b \equiv \frac{N_{\text{tr}}}{0.81}. \]

(A13)

Numerically finding \(t \) reveals it is linear in \(a \) for \(a \ll 1 \). We, thus, write \(t = t_0 + at_1 \) and expand for \(a \ll 1 \)

\[I \approx I(t_0, 0) + at_1 \partial I(t_0, 0) + a^2 \partial^2 I(t_0, 0) + O(a^3) = b. \]

(A14)

We choose \(t_0 \) such that \(I(t_0, 0) = b \). We find

\[I(t, 0) = \int dx \exp[-W_0], \]

(A15)

\[W_0 = x + D_0 t, \]

(A16)

\[D_0 = 2(1 + Z)x + 2. \]

(A17)

Performing the integral gives an implicit equation for \(t \)

\[e^{-2t} \frac{1}{2 + (1 + Z)t} = b. \]

(A18)

This gives an exact formula for \(N_{\text{tr}} \) in the limit \(u_p \to \infty \)

\[N_{\text{tr}}(t) = \frac{0.81 e^{-2t}}{1 + 2(1 + Z)t} u_p \to \infty. \]

(A19)

The temporal decay of \(N_{\text{tr}} \) is, thus, not strictly exponential. This formula reflects the different mathematical character of parallel dynamics from electron-electron collisions \(\to e^{-2t} \) and pitch-angle scattering from collisions with all species
(1 + Z)t. Equation (A18) is transcendental, and can be "solved" in terms of the Lambert W function. We are interested in cases where $t < 1$, so we Taylor expand e^{-2t} to order t^2 and obtain

$$t_0 = \frac{1 - b}{Y + [Y^2 - 2 + 2b]^{1/2}}, \quad Y \equiv 1 + b(1 + Z). \quad (A20)$$

This formula is valid (t_0 real) for b above $b_0(Z)$. For $Z = 0$, we have $b_0 = 5^{1/2} - 2 \approx 0.236$, and b_0 decreases with Z. For our choice of $N_e = 1/2$, $b = 0.617 > b_0$ for all Z. We have used the quadratic formula in a form that demonstrates the large-Z limit more clearly, which to leading order in Y is

$$t_0 \approx \frac{1 - b}{2Y}, \quad Y \gg 1. \quad (A21)$$

With $N_e = 1/2$ this becomes

$$t_0 \approx \frac{0.31}{2.62 + Z}. \quad (A22)$$

This form is accurate to within 10% for all $Z \geq 0$. The correction for finite a is

$$t_1 = -[\partial I/\partial I]_{t=t_0,a=0}$$

$$= -\int_0^\infty dx \exp[-W_0(\partial_D)]_{a=0} \int_0^\infty dx \exp[-W_0]D_0. \quad (A24)$$

The result is

$$t_1 = t_0 \frac{11 + 6Z + 10t_0(1 + Z)}{(1 + 2t_0(1 + Z))(2 + Z + 2t_0(1 + Z))}. \quad (A25)$$

Using $N_e = 1/2$ and our approximate form for t_0,

$$t_1 \approx \frac{1.15 + 5.70Z^{-1} + 6.09Z^{-2}}{Z + 7.23 + 16.3Z^{-1} + 11.7Z^{-2}}. \quad (A26)$$

1. Validity of FP Model

Our FP model neglects large-angle scattering, which can detrap electrons in a single collision. We estimate their importance, and show that the FP detrapping rate dominates. As an example, we use the case from the end of Sec. VI, namely, $n_e/n_c = 0.1$, $T_e = 2$ keV, $\lambda_1 = 553$ nm, $k_2 \lambda_{De} = 0.297$, $\omega_2/\omega_{pe} = 1.155$, and $Z_{eff} = 4$, giving $\ln \Lambda_e = 7.5$. Consider a trapped electron with $v_x = v_p$ and a typical $v_\perp = v_T$. This is elastically scattered ($|\vec{r}| = (v_p^2 + v_{T,p}^2)^{1/2} = \text{const}$) to the boundary of the trapping region in one collision. The electron’s (initial, final) angle with respect to the v_x direction is (θ_1, θ_F)

$$\cos \theta = \frac{v_p}{(v_p^2 + 1)^{1/2}}. \quad (A27)$$

The critical angle $\theta_c = \theta_F - \theta_1$ separates large from small scattering angles, and is given without approximation by

$$2\delta N \cot^2 \frac{\theta_c}{2} = -2\delta N + \frac{\omega_2}{\omega_{pe}} \delta N^{1/2} + (k \lambda_{De})^2$$

$$+ k \lambda_{De} (k \lambda_{De})^2 + 4(\omega_2/\omega_{pe}) \delta N^{1/2} - 4\delta N^{1/2}. \quad (A29)$$

Figure 15 shows θ_c for our example parameters. For $\delta N \ll 1$, we have

$$\theta_c \approx \frac{2\delta N^{1/2}}{(k \lambda_{De})^2 + 2(\omega_2/\omega_{pe}) \delta N^{1/2}]^{1/2}}. \quad (A30)$$

We employ the potential for Yukawa-screened Coulomb scattering of an electron by an ion of charge Z: $V = -(U_c/r)e^{-r/d}$ with $U_c \equiv Ze^2/(4\pi\epsilon_0)$. The quantum cross-section, in the first Born approximation, is

$$\frac{1}{\sigma T} \frac{d \rho}{d \Omega} = \frac{1 + \delta}{4\pi} \frac{\delta}{(\delta + \sin^2(\theta/2))^2}. \quad (A31)$$

$\sigma_T \equiv 4\pi(1 + \delta)^{-1} \left(U_c/h\omega_{pe}v_p \right)^2$ is the total cross-section, and $\delta \equiv (h\omega_{pe}/2\mu_T)^2$ is finite, and typically very small. For our example parameters, $\delta = 5.14 \times 10^{-9}$. The cross-section, integrated from θ_1 to θ_2, is

$$\frac{\sigma_2^2}{\sigma_T} = (1 + \delta)^{-1} \frac{\sin^2(\theta_2/2) - \sin^2(\theta_1/2)}{(\delta + \sin^2(\theta_1/2)) (\delta + \sin^2(\theta_2/2))}. \quad (A32)$$

The total cross section from $\theta_1 = 0$ to $\theta_2 = \pi$ is finite (without imposing any cutoffs) and equals σ_T. The cross sections for small-angle scattering $\sigma_S (\theta_1 = 0 \text{ to } \theta_2 = \theta_c)$ and large-angle scattering σ_L. $\sigma_L/\sigma_S = \delta(1 + \delta)^{-1} \cos^2(\theta_c/2)$. For our example parameters

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure15}
\caption{Black: angle θ separating small- from large-angle scattering from Eq. (A29). Red: Ratio $v_{e//}/v_{e\perp}$ from Eq. (A33), with the $\delta N = 0$ value marked.}
\end{figure}
The detrapping rate due to large-angle scatters is approximately the rate at which our typical electron under-
certain conditions. For a typical electron, the rate is given by
\[\frac{\nu_L}{\nu_{d,c}} = 0.36 \frac{\delta N}{\log \Lambda_{ci}} \]
(A33)

The ratio depends only on \(\ln \Lambda_{ci} \) for small \(\delta N \), so the FP result captures the basic parameter dependence. Large-angle scattering enhances the FP detrapping rate by a modest amount. For our parameters, \(\nu_L/\nu_{d,c} \approx 0.048 \) at \(\delta N = 0 \), and the ratio is plotted in Fig. 15. Since the FP results were found for \(\delta N \ll 1 \), the comparison of \(\nu_L \) and \(\nu_{d,c} \) may not be accurate at large \(\delta N \).

Supplementary Material

1. B. Bernstein, J. M. Greene, and M. D. Kruskal, Phys. Rev. 108, 546 (1957).
2. T. O’Neil, Phys. Fluids 8, 2255 (1965).
3. W. M. Manheimer and R. W. Flynn, Phys. Fluids 14, 2393 (1971).
4. G. M. Orell and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972).
5. R. L. Dewar, Phys. Fluids 15, 712 (1972).
6. C. B. Wharton, J. H. Malmberg, and T. M. O'Neil, Phys. Fluids 11, 1761 (1968).
7. W. L. Krueer, J. M. Dawson, and R. N. Sudan, Phys. Rev. Lett. 28, 338 (1969).
8. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).
9. M. V. Goldman and D. F. DuBois, Phys. Fluids 8, 1404 (1965).
10. J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmidt, C. S. Liu, and M. N. Rosebluth, Phys. Fluids 17, 778 (1974).
11. W. L. Krueer, The Physics of Laser Plasma Interactions (Westview, Boulder, CO, 2003).
12. N. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82, 4448 (1999).
13. J. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L. Kaufman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).
14. S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford University Press, Oxford, UK, 2004).
15. E. Moses and C. R. Wuest, Fusion Sci. Technol. 47, 314 (2005).
16. B. Meehan, L. J. Ahern, A. A. Callahan, L. E. Dellow, S. Dixit, E. G. Dzenitis, M. J. Edwards, C. A. Haynam, D. E. Hinkel, S. Jones, O. Jones, O. Landen, R. A. London, P. Michel, J. D. Moody, J. L. Milovich, M. B. Schneider, C. A. Thomas, R. P. J. Town, A. L. Warrick, S. Weber, K. Widmann, S. H. Glenzer, L. J. Suter, B. J. MacGowan, J. L. Kline, G. A. Kyrala, and A. Niikro, Phys. Plasmas 17, 056304 (2010).
17. H. X. Xu, D. F. DuBois, and B. Beuzerides, Phys. Rev. Lett. 86, 4306 (2001).
18. D. J. Strozzi, E. A. Williams, A. B. Langdon, and A. Bers, Phys. Plasmas 14, 013104 (2007).
19. D. Bénisti, D. J. Strozzi, L. Gre млнilet, and O. Morice, Phys. Rev. Lett. 103, 155002 (2009).
20. D. Bénisti, O. Morice, L. Gre млнilet, E. Siminos, and D. J. Strozzi, Phys. Rev. Lett. 105, 015001 (2010).
21. I. N. Ellis, D. J. Strozzi, B. J. Winjum, F. S. Tsung, T. Grismayer, W. B. McCrea, J. E. Fahlen, and E. A. Williams, “Convective Raman amplification of light pulses causing kinetic inflation in inertial fusion plasmas,” Phys. Plasmas (to be published).