The specificity of Babesia-tick vector interactions: recent advances and pitfalls in molecular and field studies

Anna Bajer* and Dorota Dwużnik-Szarek

Abstract

Background: Babesia spp. are protozoan parasites of great medical and veterinary importance, especially in the northern Hemisphere. Ticks are known vectors of Babesia spp., although some Babesia-tick interactions have not been fully elucidated.

Methods: The present review was performed to investigate the specificity of Babesia-tick species interactions that have been identified using molecular techniques in studies conducted in the last 20 years under field conditions. We aimed to indicate the main vectors of important Babesia species based on published research papers (n = 129) and molecular data derived from the GenBank database.

Results: Repeated observations of certain Babesia species in specific species and genera of ticks in numerous independent studies, carried out in different areas and years, have been considered epidemiological evidence of established Babesia-tick interactions. The best studied species of ticks are Ixodes ricinus, Dermacentor reticulatus and Ixodes scapularis (103 reports, i.e. 80% of total reports). Eco-epidemiological studies have confirmed a specific relationship between Babesia microti and Ixodes ricinus, Ixodes persulcatus, and Ixodes scapularis and also between Babesia canis and D. reticulatus. Additionally, four Babesia species (and one genotype), which have different deer species as reservoir hosts, displayed specificity to the I. ricinus complex. Eco-epidemiological studies do not support interactions between a high number of Babesia spp. and I. ricinus or D. reticulatus. Interestingly, pioneering studies on other species and genera of ticks have revealed the existence of likely new Babesia species, which need more scientific attention. Finally, we discuss the detection of Babesia spp. in feeding ticks and critically evaluate the data on the role of the latter as vectors.

Conclusions: Epidemiological data have confirmed the specificity of certain Babesia-tick vector interactions. The massive amount of data that has been thus far collected for the most common tick species needs to be complemented by more intensive studies on Babesia infections in underrepresented tick species.

Keywords: Piroplasm, Polymerase chain reaction, Sequencing, Phylogenetic analysis, Ticks

Background

Babesia spp. are protozoan parasites of great medical and veterinary importance, especially in the northern Hemisphere [1, 2]. Amongst the many Babesia species that infect animals, Babesia bovis and Babesia bigemina are notable for the significant economic losses they cause in the cattle industry worldwide [3], and several Babesia species (i.e. Babesia canis, Babesia...
rossi, Babesia vogeli, Babesia gibboni, Babesia conradae and Babesia vulpes) may cause serious health problem in dogs [4–6]. There is increasing interest in babesiosis in humans due to the rising number of cases in the USA [2, 7], Canada [8] and China [7, 9]. In the USA alone, the cumulative number of cases of babesiosis in humans from 2006 to 2018 was estimated to be between 20,000 and 24,000 [7]. In Canada, over 1100 human cases, mostly due to Babesia duncani, have been recently reported [7, 8]. In China, over 125 cases have been reported, including 58 due to a Babesia crassa-like novel pathogen [7, 9–12].

Hard ticks are the vectors of Babesia parasites, which are emerging tick-borne pathogens [1, 13]. In a recent review/meta-analysis on Babesia spp. prevalence in questing ticks, the estimated global prevalence was 2.1% [14]. However, this prevalence was calculated jointly for 19 different Babesia species and 23 tick species.

In the life cycle of piroplasms, obligate intracellular parasites that belong to the phylum Apicomplexa [15, 16], ticks play a pivotal role as definitive hosts, in which sexual reproduction of the parasite (gametogony) occurs, followed by asexual amplification (sporogony), resulting in life stages invasive for vertebrate hosts (sporozoites). As highly specialized intracellular parasites, Babesia are believed to display a high specificity for both tick vectors and vertebrate hosts [1]. However, humans may be an example of broadened/disrupted host specificity for Babesia, as there is no human-specific Babesia species and babesiosis in humans is caused by several zoonotic species, including Babesia microti, Babesia divergens, Babesia venatorum, Babesia duncani and Babesia crassa-like [2, 7, 9].

Interestingly, a single tick species may act as a specific vector for several species of Babesia, e.g. Ixodes ricinus has already been indicated as a presumptive vector for at least nine species of Babesia, Ixodes persulcatus for five, and Dermacentor reticulatus for six [14]. However, this phenomenon is not contradictory to the specificity of certain Babesia sp.-tick vector interactions. In addition, the main vectors for many important Babesia species, including B. conradae, B. duncani and B. crassa-like, have yet to be identified.

This review was carried out to investigate the specificity of Babesia-tick interactions that have been identified using molecular techniques in studies performed over the past 20 years under field conditions. Based on published research papers and molecular data derived from the GenBank database (Additional file 1: Text S1), we indicate the main vectors for important Babesia species. Finally, we discuss the detection of Babesia spp. in feeding ticks and critically evaluate the data on the role of the latter as vectors.

Proving the specificity of a Babesia-tick vector interaction

The first records of babesiosis in cattle (also termed Texas fever or redwater disease) and dogs (also termed malignant jaundice and bilious fever) are from the end of the nineteenth century (reviewed in [3, 4, 6]). At that time, a classical approach to identifying the etiological agent and vector of a disease was based on experimental infection under controlled conditions by injecting blood from an infected dog into a naïve one, or through the infestation of naïve animals with a suspected tick vector [6]. For canine babesiosis, early research carried out from the 1890s to the 1930s showed that there were three distinct vector-specific parasites in different regions of the world. Interestingly, this knowledge was overlooked for the next 50 years, and only at the end of twentieth century was the ‘Babesia canis’ complex of species divided into three distinct vector-specific species: Babesia canis, with the ornate dog tick D. reticulatus as its vector; Babesia rossi, with Haemaphysalis elliptica as its vector; and Babesia vogeli, with the brown dog tick Rhipicephalus sanguineus sensu lato (s.l.) as its vector [6, 17, 18].

In recent years, the use of novel laboratory/molecular biology techniques allowing for the identification of genetic material of pathogens/endo symbionts in ticks collected from humans, domestic animals, wildlife, or the environment, has resulted in an enormous increase in new data on tick-microorganism interactions. This rapidly growing amount of new information for various tick-borne pathogens, including Babesia, presents challenges, including how the detection of the genetic material of pathogens in ticks should best be interpreted [19]. A review focused on the vector competence of hard ticks and Borrelia burgdorferi sensu lato spirochetes [20] underlined the pitfalls of concluding vector competence based only on the detection of pathogen DNA in ticks, i.e. without complementary experimental studies.

A well-established, experimental approach to conclusively prove vector competence should encompass three distinct processes: the acquisition of a piroplasm by uninfected ticks feeding on an infected experimental host (or on infected blood in in vitro experiments); the maintenance of the piroplasm through the moult to the next life stadium (transstadial transmission); and, finally, transmission of the piroplasm to naïve hosts during a subsequent blood meal (based on [20]). A tick species should not be considered a competent vector of Babesia spp. unless all three of these processes have been experimentally demonstrated. These kinds of experiments are laborious and expensive due to difficulties in obtaining infective piroplasm isolates, the raising of laboratory colonies of ticks of appropriate species (including artificial feeding and infection of ticks), and/or access to specific...
vertebrate hosts of babesiae. Therefore, it is not surprising that the great majority of studies on species of Babesia in ticks are presently based on field-derived data, with the application of molecular techniques for the detection of DNA of the piroplasm in questing and/or engorged ticks [14, 21–30]. In the case of field-derived data, the detection of Babesia DNA in engorged ticks (of any life stage) collected from human or animal hosts is only indicative of the acquisition of piroplasms from an infected host. It is worth remembering that, although the majority of humans are free of tick-borne pathogens, piroplasm infections may be very common among free-living animals (i.e. > 80% in roe deer and > 60% in red foxes; [21]) or circulating among pets and livestock [26, 31]. Whereas detection of Babesia DNA in questing (host-seeking) larvae suggests successful transovarial transmission, detection in questing nymphs or adult ticks indicate that babesiae were both acquired during the blood meal in the preceding life stadium and passed through the moult (transstadial transmission) [20, 32], confirming the occurrence of at least two of the key processes mentioned above.

However, field-derived data alone can never satisfy the final criterion of vector competence (the unequivocal demonstration of the transmission of babesiae by a feeding tick), but may provide important information on actual health risks constituted by certain tick species in certain regions, habitats or conditions.

Confirmed and unconfirmed interactions between Babesia and Ixodes spp.

Confirmed interactions between Babesia capreoli, Babesia divergens, Babesia microti, Babesia venatorum and I. ricinus

Ixodes ricinus has been the best-examined tick species for at least four species of Babesia: B. capreoli, B. microti, B. divergens and B. capreoli (Additional file 2: Table S1). Interestingly, in the papers published between 2000 and 2010, mostly B. microti and B. divergens were reported in I. ricinus, and only in the last 5–10 years have the range and ranking of Babesia species expanded and changed. Babesia venatorum (previously known as ‘Babesia sp. EU1’) has been more frequently reported in I. ricinus since its identification as a species separate from B. divergens [105], and seems to be more common/widespread than B. microti or B. divergens (Additional file 2: Table S1). Similarly, since the detailed re-description of B. capreoli by Malandrin et al. [106] in a study which also provided a simple method to differentiate between B. capreoli and B. divergens based on the presence of three single nucleotide polymorphisms in a complete 18S ribosomal DNA sequence (rDNA), both the recognition and reported prevalence of B. capreoli in I. ricinus have increased. It is worth underlining here that B. capreoli, B. venatorum and B. divergens all belong to the Babesia sensu stricto group (clade X; [107]) and share a high similarity (up to 99.8% identity; [105, 106]) in the conserved 18S rRNA gene. Consequently, before wide recognition of B. capreoli and B. venatorum, these two species could have been (mis)identified as B. divergens or B. divergens-like, and this (mis)identification could have contributed to a higher reported prevalence of B. divergens in papers published in the period between 2000 and 2010 (Additional file 2: Table S1). It has also contributed to misidentification of B. divergens in human cases of babesiosis [105]. Better awareness of this is still needed for differentiation between these three Babesia species. Moreover, co-infection of ticks with different combinations of B. venatorum, B. capreoli and B. divergens has also been reported in several recent studies [21], and may have contributed to the lack of proper identification of the species involved. Ixodes ricinus ticks can acquire these three Babesia species when feeding on domestic and free-living ungulates, including cattle (acquisition of B. divergens), roe deer (Capreolus capreolus; acquisition of B. capreoli and B. venatorum) and red deer ((Cervus elaphus; acquisition of B. divergens) [21, 106, 108–110]. In natural conditions, deer species (roe deer Capreolus capreolus and red deer Cervus elaphus) are considered the most important sources of a blood meal for I. ricinus females, and the presence/density of deer is positively associated with the occurrence/density of I. ricinus [111].

Among the numerous studies on Babesia in I. ricinus ticks, the largest dataset (between 18,000 and 25,000 examined ticks) originated from long-term (2000–2019) studies in the Netherlands and Belgium (Additional file 2: Table S1; [21]). Four Babesia species from two clades and a Babesia sp. deer genotype were identified in this dataset: B. venatorum (210 positive ticks, prevalence 0.8%); B. microti-like [45 sequences of B. microti, prevalence of B. microti-like (clade 1) 2.6%]; B. capreoli (11 positive ticks, prevalence 0.04%); B. divergens (four positive ticks, prevalence 0.01%); and Babesia sp. deer genotype (Babesia odocoilei-like, one sequence, prevalence < 0.01%).

Additional evidence supporting the specific interactions between I. ricinus and these four Babesia species is the repeated observations of these babesiae in different European countries (Additional file 2: Table S1). Interestingly, apart from a single observation for D. reticulatus, these species of Babesia have not been observed in other (questing) tick species that did not belong to the genus Ixodes (Table 1). Three of these species were additionally identified in two other Ixodes species from Eurasia, i.e. B.
Country	Reference	Dermacentor species (n)	Babesia spp. species	Species identification method
Austria	Hodžić et al. [155]	*D. reticulatus* (128)	10% Babesia canis, 9 (7%)	PCR sequencing
Austrian	Leschnik et al. [161]	*D. reticulatus* (12)	16.7% Babesia canis	PCR sequencing
Belgium, the Netherlands,	Sprong et al. [162]	*D. reticulatus* (1741)	0.9% Babesia canis, 16 (0.9%)	PCR sequencing
Germany, UK	Jongejan et al. [139]	*D. reticulatus* (855)	1.9% Babesia canis, 14 (1.6%)	PCR sequencing
France	Bonnet et al. [140]	*D. marginatus* (377)	0.6% Babesia bovis, 1 (0.3%)	PCR-RLB for selected Babesia species
Germany	Galfsky et al. [50]	*D. reticulatus* (30)	3.3% Babesia capreoli, 1 (3.3%)	PCR sequencing
Hungary	Hornok et al. [164]	*D. reticulatus* (413)	8.2% Babesia canis, 34 (8.2%)	PCR sequencing
Lithuania and Latvia	Radzjevskaia et al. [87]	*D. reticulatus* (2440)	1.3% Babesia capreoli, 17	PCR sequencing
Poland	Bajer et al. [131]	*D. reticulatus* (29)	3.4% Babesia canis, 57	PCR sequencing
Poland	Mierzejewska et al. [137]	*D. reticulatus* (2585)	4.2% (108) Babesia microti Munich, 1	PCR sequencing
Poland	Wojcik-Fatla et al. [165]	*D. reticulatus* (468)	4.5% Babesia microti Munich, 21 (4.5%)	PCR sequencing
Poland	Wojcik-Fatla et al. [74]	*D. reticulatus* (582)	2.7% Babesia microti, 12 (2.1%)	PCR sequencing
Romania	Corduneanu et al. [166]	*D. reticulatus* (75 in 15 pools)	8% MIR Babesia canis, 6 (8% MIR)	PCR sequencing
Russia	Rar et al. [167]	*D. reticulatus* (81)	3.6% Babesia canis, 3 (3.6%)	PCR sequencing
Slovakia	Majláthová et al. [168]	*D. reticulatus* (326)	36% Babesia canis, 5	PCR sequencing
Slovakia	Svehlová et al. [80]	*D. reticulatus* (600)	1.8% Babesia canis, 11 (1.8%)	PCR sequencing
Slovenia	Duh et al. [169]	*D. reticulatus* (100)	1% Babesia canis, 1 (1%)	PCR sequencing
Spain	Garcia-Sanmartin et al. [125]	*D. reticulatus* (97)	5% Babesia canis, 1 (1%)	PCR-RLB
Switzerland	Schaarschmidt et al. [88]	*D. reticulatus* (23)	39% Babesia canis, 9 (39%)	PCR sequencing
Ukraine	Karbowiak et al. [170]	*D. reticulatus* (205)	3.4% Babesia canis, 4	PCR sequencing
Ukraine	Rogovskyy et al. [90]	*D. reticulatus* (98)	4% Babesia canis, 1 (1%)	PCR sequencing
USA	Swei et al. [144]	*D. albipictus* (471 questing larvae)	7.2% Babesia duncani (2 strains: WA1 And BH3), 34 (7.2%)	PCR sequencing
China	Abdallah et al. [171]	*D. silvarum* (84)	4.8% Babesia motasi-like, 3 (3.6%)	RLB, PCR sequencing
Mongolia	Battsetseg et al. [153]	*D. nuttalli* (108 = 54 pools)	6.5% MIR Babesia caballi, 7 (6.5% MIR)	Species-specific PCR

*MIR Minimal infection rate, PCR polymerase chain reaction, RLB reverse line blot

* Questing and feeding ticks
capreoli, B. microti, and B. venatorum in Ixodes persulcatus from Mongolia, Russia and Japan, and B. microti in Ixodes pavlovycki from Russia (Additional file 2: Table S1; [112]). These tick species constitute the ‘I. ricinus complex’; thus the observed Babesia-tick interactions may be specific for all the species in the complex; however, this idea needs further investigation.

More evidence for the specificity of the interactions between these four Babesia species and ticks from the I. ricinus complex was obtained from data deposited in GenBank. The data are presented in Fig. 1 as percentage share of each tick species from which certain Babesia sequences were obtained. Clearly, I. ricinus and I. persulcatus are the main sources of numerous B. venatorum, B. divergens and B. capreoli sequences (95–97% of all deposited 18S rDNA sequences), and are significant sources of B. microti sequences.

Babesia microti is one of these four species commonly reported in I. ricinus (Additional file 2: Table S1). In many of the studies conducted at the beginning of the present century this piroplasm species was reportedly the most common one in I. ricinus ticks in Europe, although again, some of the results may be misleading as PCR products were not sequenced in any of these studies, and all positive PCR results were assumed to indicate B. microti infections. There is also a high discrepancy between the reported prevalences of B. microti in ticks (Additional file 2: Table S1). Rodents constitute the main reservoir hosts and the main source of B. microti infection for I. ricinus ticks [113–116], especially for larvae and nymphs which feed on rodents in woodland and open habitats [23, 117, 118].

Interestingly, although more species of ticks feed as juveniles on rodents, B. microti has been rarely reported in tick species other than I. ricinus, although again, B. microti DNA has been repeatedly identified in engorged ticks of different species (Ixodes trianguliceps, D. reticulatus, Haemaphysalis concinna [23, 28, 30]. Interestingly, both main B. microti strains, of which one is potentially zoonotic (US type, Jena) and the other non-zoonotic (Munich), were identified in I. ricinus ticks from different European countries and at different frequencies [30, 112, 114, 119].

Babesia microti has also been reported in other species of the I. ricinus complex, as mentioned previously (Additional file 2: Table S1; Fig. 1). Babesia microti (US type, Hobetsu, Kobe) has also been found in ticks in Japan, with a zoonotic US type identified in I. persulcatus ticks [120]. However, the most significant characteristic of this piroplasm is the role of I. scapularis as its vector in the USA, where this Babesia species is responsible for the majority of human cases, including fatal and congenital...
cases [121], and one of the reasons that Yang et al. [7] declared this region ‘Ground Zero’ for human babesiosis. The majority of tick studies in the USA have been focused on *I. scapularis* for this reason, and *Babesia* cf. *microti* has been found additionally, to date, only in one study, in two questing *Amblyomma americanum* ticks (Table 2). Thus, the specificity of the *B. microti-I. scapularis* interaction based on environmental studies in the USA is well documented (Additional file 2: Table S1) and the relevant sequences have been deposited in the GenBank database (Fig. 1i).

Confirmed interactions between *B. odocoilei* and *I. scapularis* and between *B. odocoilei*-like and *I. ricinus

In contrast to *I. ricinus*, in *I. scapularis* only one other *Babesia* species has been identified, *B. odocoilei* in ticks from Canada and the USA (Additional file 2: Table S1). In Canada, *B. odocoilei* was found to be the prevailing species [122–124]. This is another babesia with deer as its main vertebrate host (American white-tailed deer, *Odocoileus virginianus*) [124]. Interestingly, also in Europe, DNA of a *Babesia* sp. genetically similar to *B. odocoilei* (*B. odocoilei*-like or ‘deer genotype’) was detected several times in *I. ricinus* ticks (Additional file 2: Table S1; [21, 108]). However, this interaction needs more studies to support its relevance. In summary, molecular data from 20 years of eco-epidemiological studies support the role of *I. ricinus* (or *I. ricinus* complex) as a vector of two babesiae clades, I and X [107], associated with two groups of reservoir hosts, deer and rodents.

Unconfirmed interactions between *Babesia bigemina*, *Babesia bovis*, *Babesia caballi*, *B. caballi*-like, *Babesia canis*, *Babesia major*, *Babesia ovis*, *Babesia vulpes* and *I. ricinus*

The available molecular studies on questing *I. ricinus* ticks do not support interactions between *B. bigemina*, *B. bovis*, *B. caballi*, *B. caballi*-like, *B. canis*, *B. major*, *B. ovis* or *B. vulpes* and *I. ricinus*. Also, the available sequences of these *Babesia* species do not support the role of *I. ricinus* as their vector (Fig. 1). The majority of these *Babesia* species have been reported only in one study, which used a PCR-reverse line blot (RLB) method [125]. Considering the high number of studies on these *Babesia* species, together with the wide range of diagnostic methods applied (PCR sequencing, nested PCR, quantitative PCR, next-generation sequencing), it is highly probable that *I. ricinus* ticks are not vectors for them. The highest number of these studies concern *B. canis*, which was reported from the Czech Republic and Poland [126–128]. However, the authors of the first study, Rybarova et al. [126], concluded that *B. canis* may have been misidentified, possibly as a consequence of the short-sequence PCR product, and thus requires further investigation [126]. In Poland, a recent analysis of the distribution of *D. reticulatus* and outbreaks of canine babesiosis found strong geographical and temporal (seasonal) associations between them [129], which would be less likely if *I. ricinus* were also a competent vector of this piroplasm.

Interactions between *Babesia* and *Dermacentor* spp.

Confirmed interaction between *B. canis* and *D. reticulatus*

The ornate dog tick is both the second most common tick species in Europe and the second-best studied tick species (Table 1). Other *Dermacentor* species have been much less studied. Although a range of babesiae have been reported in *D. reticulatus*, the most common and widespread one is *B. canis* (Table 1), the main cause of canine babesiosis in central and north-eastern Europe [130–133]. The great majority (> 80%) of *B. canis* sequences originate from the tick species *D. reticulatus* (Fig. 1). Interestingly, the geographical range of this tick species is expanding in many European countries [129, 134, 135], and this expansion is clearly associated with the emergence of canine babesiosis, although in some tick populations DNA of *B. canis* has not yet been found [136, 137]. During our long-term studies (since 2012 up until the present) on the expansion of the distributions of *D. reticulatus* and *B. canis* in Poland, we have examined the highest number of questing adult ticks for *Babesia* spp. to date (Additional file 2: Table S1; [137]). About 100 *Babesia* sequences were derived from at least 200 *Babesia*-positive ticks, all but one identified as *B. canis* [21, 132, 137]. In addition, DNA of *B. microti* was identified in one adult *D. reticulatus* tick [137]. Interestingly, the opposite occurrence of these two *Babesia* species was found in juvenile, partially engorged *D. reticulatus* ticks (larvae and nymphs) collected from rodents, where *B. microti* constituted the majority of *Babesia*-positive samples, and only two samples yielded *B. canis* DNA [23]. As larvae and nymphs of *D. reticulatus* feed on rodents, and mainly on voles (*Microtus* and *Alexandromys* spp.), the key reservoir of *B. microti* (over 60% of voles infected in three studies [21, 30, 114]), the detection of *B. microti* DNA in engorged instars collected directly from these hosts is not surprising. More surprising is the apparent loss of *B. microti* during the moult of instars to the adult stadium, as DNA of *B. microti* is sporadically found in questing adult *D. reticulatus* ticks (Table 1). Transovarial and transstadial transmissions of *B. canis* in *D. reticulatus* ticks constitute the key routes enabling maintenance of this piroplasm in tick populations [32] and are in contrast with unsuccessful transstadial transmission of *B. microti* in this tick species, as can be seen in the results of the eco-epidemiological studies listed in Table 1. Thus it is highly unlikely that *D. reticulatus* plays any role as a
Table 2: Species of *Babesia* reported in tick species other than *Ixodes* or *Dermacentor* spp.

Country	Reference	Tick species (n)	Babesia spp. prevalence	Babesia species, number of isolates and prevalence (%)	Species identification method
Czech Republic, Slovakia	Rybarova et al. [126]	*Haemaphysalis concinna* (150)	4%	Babesia sp., 6 (4%)	PCR sequencing
USA	Shock et al. [172]a	*Amblyomma americanum* (184, including questing)	3.3%	Babesia cf. microti, 2 (from questing)	PCR sequencing
China	Abdallah et al. [171]	*Haemaphysalis qinghaiensis* (242)	13.5%	Babesia sp. Xinjiang, 32 (13.2%)	PCR-RLB, PCR sequencing
China	Li et al. [173]	*Rhipicephalus microplus* (459)	0.4%	Babesia bigemina, 2 (0.4%)	PCR sequencing
China	Zhuang et al. [174]	*Haemaphysalis longicornis* (144)	0.7%	Babesia sp., 1 (0.7%)	NGS
China	Niu et al. [175]	*Haemaphysalis qinghaiensis* (188)	21.3%	Babesia sp. Xinjiang, 40 (21.3%)	Species-specific PCR
Hungary	Hornok et al. [150]	*Haemaphysalis inermis* (315)	NC	Babesia crassa-like, ten pools	PCR sequencing (pools)
Hungary		*Haemaphysalis punctata* (259)	NC	Babesia sp. Kh-Hc222, one pool	
		Haemaphysalis punctata (61)	NC	Babesia sp. Irk-Hc133, four pools	
		Haemaphysalis concinna (24)	0%	-	
		Rhipicephalus bursa (50)	4%	B. caballi, 1 (2%)	
				Babesia ovis, 1 (2%)	
Slovakia	Hamšíková et al. [116]	*Haemaphysalis concinna* (91)	6.6%	Babesia sp. 1 (Eurasia), 5	PCR sequencing
Turkey	Brinkmann et al. [176]	*Rhipicephalus bursa* (76)	1.3%	Babesia sp. 2 (Eurasia), 1	
Turkey	Orkun et al. [151]	*Haemaphysalis parva* (793)	1.6%	B. ovis, 1 (1.3%)	NGS
		Hyalomma marginatum (105)	12%	Babesia ovis, 4 (0.5%)	PCR sequencing
				Babesia sp., 1 (0.1%)	
		Rhipicephalus turanicus (9)	11%	Babesia occulans, 12 (11%)	
				Babesia sp. tavsan 1 (1)	
Israel	Harrus et al. [177]	*Rhipicephalus turanicus* (83 pools)	1.2% MIR	Babesia vogeli, one pool (1.2%)	PCR sequencing (pools)
vector of *B. microti*, and the identification of DNA of *B. microti* in adult ticks can be the result of the detection of blood remnants of previous stages that have fed on infected rodents [138].

The possible role of *D. reticulatus* as a vector of *B. caballi* (aetiological agent of equine babesiosis) seems questionable in light of the numerous studies (Table 1), as DNA of *B. caballi* was detected only once, in two questing ticks in the Netherlands [139]. The second report on *B. caballi* in *D. reticulatus* was based on PCR-RLB method [125]. In that study, many other *Babesia* spp. were found in *D. reticulatus* ticks (Tables 1, 2; Additional file 2: Table S1). However, as there is little or no support from other field studies for these findings, the role of *D. reticulatus* as a vector of *B. bigemina* or *B. divergens* is considered doubtful (Table 1).

Unconfirmed interactions between *B. bigemina*, *B. caballi*, *B. capreoli*, *B. divergens*, *B. microti*, *B. odocoilei*-like, *B. venatorum*, *B. vulpes* and *D. reticulatus*

Despite the high number of studies carried out in large geographical areas, there are only a few reports of *B. bigemina*, *B. caballi*, *B. capreoli*, *B. divergens*, *B. microti*, *B. odocoilei*-like, *B. venatorum* or *B. vulpes* in *D. reticulatus* (Table 1). Thus the role of this tick species as their vector is not supported by published eco-epidemiological studies.

Babesia bovis-Dermacentor marginatus interaction

The only available field study, from France [140], on questing *D. marginatus* ticks reported one tick infected with *B. bovis* (Table 1). More studies are needed on field-collected ticks from different areas where *D. marginatus* occurs.

Babesia duncani-Dermacentor albipictus interaction

Babesia duncani is a quite recently described species, and causes human babesiosis in western USA [141, 142]. *Babesia duncani* was first isolated in 1991 from a patient from Washington State, USA, and was then referred to as ‘Babesia strain WA1’ [143]. To date, there have been 12 confirmed human cases of babesiosis due to *B. duncani*, two presumed cases that preceded the description of *B. duncani* in the USA [144], and a rapidly increasing number of suspected cases in Canada [7]. *Babesia duncani* has not been found in questing *I. scapularis* (Additional file 2: Table S1). Swei et al. [144] provide evidence from their recent field study that the vector for *B. duncani* is the winter tick *D. albipictus* (Table 1), and the reservoir host is likely the mule deer *Odocoileus hemionus*. Interestingly, broad, overlapping ranges of these two species cover a large portion of far-western North America, where the human cases were identified. Swei et al’s [144] study was focused on the detection of *Babesia* DNA in questing ticks, so the authors attempted to collect the only questing stadium in the life cycle of *D. reticulatus*.

Table 2 (continued)

Country	Reference	Tick species (n)	Babesia spp. prevalence	Babesia species, number of isolates and prevalence (%)	Species identification method
Italy	Romiti et al. [152]	*Rhipicephalus bursa* (980 in 110 pools)	14.6% pools	*B. caballi*, 16 pools (14.5%)	qPCR with TaqMan probe for *B. caballi*
Japan	Masatani et al. [178]	*Haemaphysalis formosensis* (159)	1.3%	*Babesia sp.* (feral raccoon strain) (1.3%)	PCR sequencing
Japan	Sivakumar et al. [101]	*Haemaphysalis longicornis* (175)	9.7%	*Babesia ovata*, 17 (9.7%)	Species-specific PCR for *B. ovata*
Thailand	Wattanamethanont et al. [179]	*Haemaphysalis laevis* (11,309), *Haemaphysalis wellingtoni* (16), *Rhipicephalus microplus* (859), total of 419 tick pools	0.2% (1/419 pools)	*Babesia sp.* (new), 1 (0.2% pools)	PCR sequencing

MIR for tick pools

NGS Next-generation sequencing, qPCR quantitative PCR, NC not calculated (pools with different number of ticks tested); for other abbreviations, see Table 1

* Mostly questing, but also some feeding ticks tested together
Bajer and Dwużnik-Szarek Parasites Vectors (2021) 14:507

Interactions between Babesia and Haemaphysalis spp.

Confirmed interactions between B. crassa-like and Haemaphysalis concinna and between B. crassa and Haemaphysalis parva

The relict tick H. concinna occurs in Europe and Asia in isolated, geographically limited locations [145]. Together with I. ricinus and D. reticulatus, H. concinna constitutes an important element of the ectoparasite community of domestic and wild animals and humans in Europe [145–147]. Although there is a rather limited number of studies on Babesia in H. concinna (Table 2), they encompass a wide geographical area, from central Europe to the Far East. Recent studies have revealed (i) a great diversity of Babesia in H. concinna; (ii) the presence of unique strains or species of Babesia, which could not be identified to species level; (iii) the wide distribution of these strains/species in the world (Table 2); and (iv) the possible role of strains/species with an increasing distribution in human babesiosis, i.e. in China [9]. We recently detected one of these strain/species in two juvenile H. concinna ticks collected from rodents in western Poland [148]. Two Babesia sequences displayed the highest similarity (97.4 and 100%) to an undescribed Babesia species from H. concinna in Russia (KJ486560). In a phylogenetic analysis using information on Babesia from H. concinna available from GenBank (Fig. 2), these two sequences grouped with a few Babesia sequences from I. persulcatus and H. concinna from Russia and China [Fig. 2; [149]; shown in Table 2 for Babesia from Hungary [150]). Interestingly, this group of sequences was the most similar (sister group) to those of the ovine

![Fig. 2](Molecular phylogenetic analysis of 18S rDNA of selected Babesia spp. (500 base pairs). The evolutionary history was inferred by using the maximum likelihood method and the Kimura two-parameter model. The tree with the highest log likelihood (-2752.03) is shown. The percentage of trees in which the associated taxa clustered together is shown next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying neighbour-joining and BioNJ algorithms to a matrix of pairwise distances estimated using the maximum composite likelihood approach, and then selecting the topology with a superior log likelihood value. A discrete γ distribution was used to model evolutionary rate differences among sites (five categories (+G, parameter = 2,1600)). This analysis involved 32 nucleotide sequences. There were a total of 458 positions in the final dataset. Evolutionary analyses were conducted in MEGA X)
piroplasm *B. crassa* (95.7% similarity). The third branch of the tree includes *B. crassa*-like sequences from both human clinical cases [9] and *H. concinna* ticks. According to this phylogenetic tree, at least three different species/strains of *Babesia* are associated with *H. concinna*, and are of some pathogenic potential, thus there is an urgent need for better descriptions and characterizations of babesiae from *H. concinna*.

Interestingly, the majority (71%) of sequences of ovine piroplasm *B. crassa* deposited in GenBank originated from *H. parva*, a well-established vector of this species [1], with some share of other *Haemaphysalis* and *Ixodes* spp. (Fig. 1). This interaction was also reported in a recent study from Turkey ([151]; Table 2). This pattern suggests that, although *H. parva* is a vector of *B. crassa*, *H. concinna* is a vector of *B. crassa*-like species, a likely *B. crassa* is a vector of *H. parva*, a well-established vector of this species, although more field studies are needed to confirm these interactions.

Interactions between *Babesia* sp. Xinjiang and *Haemaphysalis qinghaiensis* or *Haemaphysalis longicornis*

In two recent studies from China, new zoonotic *Babesia* sp. Xinjiang was found in 13% of *H. qinghaiensis* (Table 2). The prevalence was also similar in *H. longicornis*, so it is likely that these two *Haemaphysalis* spp. can act as vectors for this species, although more field studies are needed to confirm these interactions.

Interactions between *Babesia* and other tick species

As can be seen in Table 2, there are only a few studies on *Babesia* in other tick species (questing ticks) despite the availability of suitable molecular techniques (reviewed in [22]). This is partially due to the difficulty of obtaining questing individuals of tick species with life cycles that involve one or two host species, like *Rhipicephalus microplus* or *Hyalomma* spp. Studies on the genera *Rhipicephalus* and *Hyalomma* are mainly focused on feeding ticks, and thus do not provide strong evidence on their role as vectors.

Confirmed and unconfirmed interactions between *Babesia* and other tick species based on GenBank data

The majority of molecular data (18S rDNA) derived from GenBank confirmed the expectations that arose from earlier experimental studies and field observations (summarized in [1]), and reflect specificity in *Babesia*-tick vector interactions. In the case of *Babesia vogeli*, the majority (96%) of sequences originated from *R. sanguineus* s.l. (Fig. 1a); both *H. parva* (73%) and *Haemaphysalis leachi* (27%) constituted the source of *B. rossi* (Fig. 1b), and *B. canis* originated mostly from *D. reticulatus* (Fig. 1c), as mentioned previously. Sequences of *B. bovis* were derived only from *R. annulatus* (Fig. 1e).

However, in the case of *B. caballi*, with ten tick species assigned to deposited 18S rDNA sequences of this species, there is no evidence of any established interaction (Fig. 1). Of these ten species, four are *Rhipicephalus* species, three *Dermacentor* spp. (but not *D. reticulatus*), two *Hyalomma* spp. and one *Amblyomma*. In two recent studies, *B. caballi* was found in 16 pools of *R. bursa* in Italy (Table 2; [152]) and in seven *D. nuttalli* from Mongolia [153]. Such a variety of tick species might reflect the ability of *B. caballi* to adopt to transmission in parts of the world where horses are bred and/or our inability to determine the main vector for this *Babesia* species. These days, because anti-tick treatments (acaricides, vaccines [3]) can easily be applied to animals of economic significance (horses, cattle, sheep), *Babesia* species specific for these hosts may have been partially eliminated and thus hard to find in their vectors.

A similar problem concerning the determination of tick vectors exists for the recently described *B. vulpes*, a common parasite of red foxes (*Vulpes vulpes*) in Europe [154]. There are not many sequences of *B. vulpes* derived from ticks in GenBank, although at least six tick species, *I. ricinus*, *Ixodes canisuga*, *Ixodes hexagonus*, *Ixodes kaiseri*, *D. reticulatus* and *H. punctata*, have been identified as vectors of this species [29, 125]. *Babesia vulpes* was found in one study in four *D. reticulatus* in Austria [155], and in another study in one *I. ricinus* and one *H. punctata* in Spain [125]. As can be seen from the data discussed here, there is little evidence from eco-epidemiological studies that *I. ricinus*, *D. reticulatus* or *H. concinna* constitute the main vector of *B. vulpes*. The apparent scarcity of data from the most common tick species, together with one of the highest prevalences of this species of *Babesia* in foxes (30–60%), suggests that nidicolous tick species associated with red foxes, such as *I. hexagonus* or *I. canisuga* [29, 156], are its main vectors. Interestingly, dogs are sporadically found infected with *I. hexagonus* [157], and a few cases of babesiosis due to *B. vulpes* have been also recorded in dogs [5, 154]. Due to their nidicolous habit, it would be problematic to collect unfed ticks of these species and either confirm or exclude their role as vectors of *B. vulpes*.

New *Babesia* species and their vectors

Few studies have been carried out on tick species other than the three most studied ones (Table 2). However, these studies often reveal new *Babesia* species or strains, e.g. in studies carried out in Turkey, Japan and Thailand (Table 2). These interesting findings should encourage researchers to continue, and expand on, such studies.
to increase the number of new species described. More records of new Babesia species/strains in association with certain tick species are needed to recognize new Babesia-vector interactions.

Detection of Babesia spp. in ticks from hosts

There are numerous studies reporting Babesia spp. in ticks collected from their hosts, especially ticks collected from dogs, cattle, animals that are hunted (i.e. deer or foxes), birds or small mammals [23, 25, 26, 29, 31, 158]. As mentioned at the beginning of this review, and also in many other reviews [19], the results of such studies can be inconclusive or misleading if no control of host infection is performed at the time of tick collection. When ticks are collected from species of rodents in which Babesia infections are common [114, 159, 160], these ticks, regardless of the species, may contain pathogen DNA (‘meal contamination’ [23]). The detection of DNA of certain Babesia sp. in engorged/partially engorged ticks should be treated with caution and considered in the light of a possible reservoir role of the vertebrate host for the Babesia species in question. As mentioned above, the detection of B. microti in a high percentage of D. reticulatus larvae feeding on voles does not actually support the role of this tick as a vector of B. microti because the parasite is apparently lost during the moult of the tick. Similarly, the detection of any Babesia species known to be associated with dogs in ticks collected from dogs (i.e. B. canis in I. ricinus) should be treated as an accidental finding, not as the discovery of a new Babesia—tick vector interaction. Regarding B. vulpes, DNA of this piroplasm has been identified in three tick species (I. ricinus, I. hexagonus, I. canisuga) collected from foxes, while the prevalence of B. vulpes in foxes was close to 50% [29]. Determination of the presence of a pathogen in a tick collected from a certain host may provide very useful information; however, this information should not be used as proof that the tick in question is a vector of that particular pathogen.

Conclusions

The application of molecular methods in eco-epidemiological studies may help researchers to identify specific interactions between certain Babesia and tick species. Well-supported data for the most common Babesia and tick species, i.e. I. ricinus, I. scapularis, I. persulcatus and D. reticulatus, have been reported during the past 20 years. Published findings on Babesia-tick associations have provided evidence for specific interactions, and also complemented experimental transmission studies because they reflect the actual epidemiological situation in certain habitats, e.g. the actual health hazard constituted by certain Babesia and tick species in certain locations. It is worth underlining the importance of the correct choice of methods for studies on Babesia-tick interactions. These methods should enable both the detection and accurate identification of a wide range of Babesia species in ticks. There are presently many methods/techniques that can be used to perform such studies [22]. The wide use of combined PCR and sequencing methods has enabled the identification/confirmation of new or lesser known species of Babesia, such as B. venatorum and B. capreoli, in the widely studied I. ricinus tick. The same methods enabled the identification of new strains/species of Babesia in less-studied tick species, such as H. concinna, Haemophysalis flavia and Rhipicephalus turanicus (Table 2). The massive amount of data collected thus far for the most common tick species should be complemented by more intensive studies on Babesia infection in underrepresented tick species.

Abbreviations

NGS: Next-generation sequencing; PCR: Polymerase chain reaction; qPCR: Quantitative polymerase chain reaction; rDNA: Ribosomal DNA; RLB: Reverse line blot.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13071-021-05019-3.

Additional file 1: Text S1. Range of this review.

Additional file 2: Table S1. Species of Babesia reported in Ixodes spp.

Acknowledgements

We sincerely thank Ms Caroline Rust, UK, for the proofreading of a previous version of this article.

Authors’ contributions

DDS: data collection and analysis, phylogenetic analysis, drafting the manuscript; AB: conceptualization, data collection, drafting the manuscript, project funding. Both authors read and approved the final manuscript.

Funding

The study was supported by the National Science Centre Sonata Bis grant no. 2014/14/E/NZ7/00153 (AB).

Availability of data and materials

All data generated or analysed during this study are included in this published article and its additional files.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 9 July 2021 Accepted: 14 September 2021 Published online: 28 September 2021
References

1. Gray JS, Estrada-Paré A, Zintl A. Vectors of babesiosis. Annu Rev Entomol. 2019;64:149–65.
2. Krause PJ. Human babesiosis. Int J Parasitol. 2019;49:165–74.
3. Bock R, Jackson L, de Vos A, Jorgensen W. Babesiosis of cattle. Parasitol. 2004;129(Suppl):S247–69.
4. Birkenheuer AJ, Buch J, Beall MJ, Braff J, Chandrashekar R. Global distribution of canine Babesia species identified by a commercial diagnostic laboratory. Vet Parasit Res Stud Rep. 2022;100471.
5. Solano-Gallego L, Sainz Á, Roura X, Estrada-Peña A, Guadalupe M. A review of canine babesiosis: the European perspective. Parasit Vectors. 2016;9:336.
6. Penzhorn BL. Don’t let sleeping dogs lie: unravelling the identity and epidemiology of Babesia canis. Vet Parasitol Reg Stud Rep. 2020;22:100471.
7. Yang Y, Christie J, Köster L, Du A, Yao C. Emerging human babesiosis caused by Babesia venatorum. Clin Infect Dis. 2018;14:1110–9.
8. Zhou X, Li SG, Wang JZ, Huang JL, Zhou HJ, Chen JH, Zhou XN. Emergence of Babesia canis in China: a population-based study. Emerg Microbes Infect. 2014;3:e55.
9. Jiang JF, Zheng YC, Jiang RR, Li H, Huo QB, Jiang BG, et al. Human babesiosis caused by Babesia canis: a case series. J Eukaryot Microbiol. 2019;66:119–23.
10. Qi C, Zhou D, Liu J, Cheng Z, Zhang L, Wang L, et al. Detection of Babesia divergens using molecular methods in anemic patients in Shandong Province. China Parasitol Res. 2011;109:241–5.
11. Jongejans F, Vellenberg G. The global importance of ticks. Parasitol Today. 2004;19:53–4.
12. Nochyte TE, Raleau C, Fischer S, Slaghi C. Global distribution of Babesia species in questing ticks: a systematic review and meta-analysis based on published literature. Pathogens. 2021;10:230.
13. Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, et al. The revised classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2012;59:196–203.
14. Pazzaglia F, Lepore C, Venier S, et al. Transovarial transmission of Babesia canis in the Dermacentor reticulatus tick. Ann Agric Environ Med. 2018;25:669–71.
15. Blaschitz M, Narodoslavsky-Gföller M, Kanzler M, Stank G, Walochnik J. Babesia species occurring in Austrian Ixodes ricinus ticks. Appl Environ Microbiol. 2008;74:4841–6.
16. Václavík T, Balážová A, Baláž V, Tkadlec E, Schichor M, Zechmeisterová K, et al. Landscape epidemiology of tick-borne pathogens in central Europe. Transbound Emerg Dis. 2021;68:1685–96.
17. Venclová K, Mendel J, Betlalová B, Blážejová H, Jedlicková P, Straková P, et al. Neglected tick-borne pathogens in the Czech Republic, 2011–2014. Ticks Tick Borne Dis. 2016;7:107–12.
18. Rudolf I, Golyovchenko M, Sikutová S, Rudek F, Grubhoffer L, Hubálek Z. Babesia microti (Plasmodiophora: Babesiidae) in nymphal Ixodes ricinus (Acari: Ixodidae) in the Czech Republic. Folia Parasitol (Praha). 2005;52:274–6.
19. Kiltgaard K, Kjr LL, Isbmand A, Hansen MF, Radiker R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark.Ticks Tick Borne Dis. 2019;10:1060–5.
20. Sormunen JJ, Andersson T, Aspi J, Bäck J, Cederberg T, Haavisto M, et al. Monitoring of ticks and tick-borne pathogens through a nationwide research station network in Finland.Ticks Tick Borne Dis. 2020;11:101449.
21. Sormunen JJ, Klemola T, Hänninen J, Mäkelä S, Vuorinen I, Penttinenet R, et al. The importance of study duration and spatial scale in pathogen-detection evidence from a tick-infested island. Emerg Microbes Infect. 2018;7:189.
22. Aki T, Bourgois G, Soug ML, Appoline J, Poirel MT, Gibert P, et al. Detection of tick-borne pathogens in questing Ixodes ricinus in the French Pyrenees and first identification of Rickettsia monocacensis in France. Parasite. 2019;26:20.
23. Bonnet S, Michelet L, Moutailleur S, Cheval J, Hébert C, Vassy-Taussat M, Elliot M. Identification of parasitic communities within European ticks using next-generation sequencing. PLoS Negl Trop Dis. 2014;8:e2753.
24. Jouglin M, Perez G, Butet A, Malandrin L, Bastian S. Low prevalence of zoonotic Babesia in small mammals and Ixodes ricinus in Brittany, France. Vet Parasitol. 2017;230:58–60.
25. Lebert I, Agoulon A, Bastian S, Butet A, Cargnelutti B, Cébe N, et al. Distribution of ticks, tick-borne pathogens and the associated local environmental factors including small mammals and livestock, in two French agricultural sites: the OSCAR database. Biodivers Data J. 2020;5:e50123.
26. Paul REL, Cote M, Le Naour E, Bonet SJ. Environmental factors influencing tick densities over seven years in a French suburban forest. Parasit Vectors. 2016;9:309.
46. Reis C, Cote M, Paul RE, Bonnet S. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis. 2011;11:907–16.
47. Lejal E, Moutailler S, Simo L, Vayssier-Taussat M, Pollet T. Tick-borne pathogen detection in midgut and salivary glands of adult Ixodes ricinus. Parasit Vectors. 2019;12:152.
48. Franke J, Fritsche J, Tomaso H, Straube E, Dorn W, Hildebrandt A. Co-existence of pathogens in host-seeking and feeding ticks within a single natural habitat in central Germany. Appl Environ Microbiol. 2010;76:6829–36.
49. Galfsky D, Król N, Pfeffer M, Obiegala A. Long-term trends of tick-borne pathogens in regard to small mammal and tick populations from Saxony, Germany. Parasit Vectors. 2019;12:131.
50. Hildebrandt A, Franke J, Schmoock G, Pauliks K, Krämer A, Straube E. Diversity and co-existence of tick-borne pathogens in central Germany. J Med Entomol. 2011;48:651–5.
51. Overzier E, Pfister K, Herb I, Mahling M, Böck G Jr, Silaghi C. Detection of tick-borne pathogens in roe deer (Capreolus capreolus), in questing ticks (Ixodes ricinus), and in ticks infesting roe deer in southern Germany. Ticks Tick Borne Dis. 2013;4:320–8.
52. Springer A, Hölsterschinken M, Lienhart F, Ermel S, Rehage J, Hüslerkotte K, et al. Emergence and epidemiology of bovine babesiosis due to Babesia divergens on a northern German beef production farm. Front Vet Sci. 2020;7:649.
53. Schorn S, Pfister K, Reulen H, Mahling M, Silaghi C. Occurrence of Babesia spp., Rickettsia spp. and Bartonella spp. in Ixodes ricinus in Bavarian public parks, Germany. Parasit Vectors. 2011;15:135.
54. Eshoo MW, Crowder CD, Carolan HE, Rounds MA, Ecker DJ, Haag H, et al. Detection of Anaplasma phagocytophilum and Babesia microti co-infections in Ixodes ricinus ticks in central-eastern region of Poland. Vector Borne Zoonotic Dis. 2011;11:359–64.
55. Egyed L, Elő P, Sréter-Lancz Z, Széll Z, Balogh Z, Sréter T. Seasonal activity of tick-borne pathogens in questing ticks. Parasitol Res. 2010;105:831–7.
56. Cassini R, Bonoli C, Montarsi F, Tessarin C, Marcer F, Galuppi R. Detection of Babesia EU1 in Ixodes ricinus ticks in northern Italy. Vet Parasitol. 2012;207:61–7.
57. Floris R, Cecco P, Mignozzi K, Boemo B, Cinco M. First detection of Babesia EU1 and Babesia divergens-like in Ixodes ricinus ticks in north-eastern Italy. Parasitologa. 2009;51:23–8.
58. Zanet S, Ferroglio E, Battisti E, Tizzani P. Ecological niche modeling of Babesia sp. infection in wildlife experimentally evaluated in questing Ixodes ricinus ticks. Geospat Health. 2020;20(1):51.
59. Capillina V, Berzina I, Bormane A, Salmane I, Vilks K, Kazarina A, et al. Prevalence and phylogenetic analysis of Babesia spp. in Ixodes persulcatus ticks in Latvia. Exp Appl Acarol. 2016;68:325–36.
in urban and suburban areas of Switzerland. Parasit Vectors. 2017;10.558.

88. Schaarschmidt D, Gilli U, Gottstein B, Marroeros N, Kuhnert P, Daeprent JA, et al. Questing Dermacentor reticulatus harbouring Babesia canis DNA associated with outbreaks of canine babesiosis in the Swiss Midlands. Ticks Tick Borne Dis. 2013;4:334–40.

89. Didyk YM, Blaňárová L, Pogrebnyak S, Akimov I, Peťko B, Víchová B. Emergence of tick-borne pathogens (Borrelia burgdorferi sensus lato, Anaplasma phagocytophilum, Rickettsia raoultii and Babesia microti) in the Kyiv urban park, Ukraine. Ticks Tick Borne Dis. 2017;8(2):219–25.

90. Rogowsky J, Kostol M, Gillis DC, Holman PJ, Neboqartik N, Rogowska YY, et al. Diversity of Borrelia spirochetes and other zoonotic agents in ticks from Kyiv, Ukraine. Ticks Tick Borne Dis. 2018;9:404–9.

91. Aliota MT, Dupuis AP, Wilczek MP, Peters RJ, Ostfeld RS, Kramer LD. The emergence of tick-borne pathogens (Borrelia burgdorferi sensus lato, Anaplasma phagocytophilum, Rickettsia raoultii and Babesia microti) in ticks from northern Spain. Med Vet Entomol. 2008;22:318–25.

92. Edwards MJ, Russell JC, Davidson EN, Yanushhevski TJ, Fleischman BL, Heist RO, et al. A 4-year survey of the range of ticks and tick-borne pathogens in the Lehigh Valley region of eastern Pennsylvania. J Med Entomol. 2019;56:1122–34.

93. Edwards MJ, Barbalat LA, Makkapati A, Pham KD, Bugbee LM. Relatively low prevalence of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected in the Lehigh Valley region of eastern Pennsylvania. Ticks Tick Borne Dis. 2015;6:812–9.

94. Hersh MH, Ostfeld RS, McHenry DJ, Tibbetts M, Brunner JL, Killilea BD, et al. Infection and co-infection rates of Babesia microti and Borrelia burgdorferi in host-seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania. J Med Entomol. 2015;52:693–8.

95. Mitchell RJ, Russell JC, Davidson EN, Yanushhevski TJ, Fleischman BL, Heist RO, et al. Infection and co-infection rates of Babesia microti and Borrelia burgdorferi from small mammal hosts. PLoS ONE. 2014;9:e99348.

96. Hutchinson ML, Strohecker MD, Simmons TW, Kyle AD, Helwig MW. Prevalence rates of Borrelia burgdorferi (Sipirochaetae: Sipirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Protoplasma Babesiae) in host-seeking Ixodes scapularis (Acari: Ixodidae) from Pennsylvania. J Med Entomol. 2014;52:1399–403.

97. Steiner FE, Pinger RR, Vann CN, Grindle N, Ayotte MJ, Sullivan B, Grindle N, et al. Detection of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. Vector Borne Zoonotic Dis. 2021;21:86–91.

98. Prusinski MA, Kokas JE, Huley KT, Kogut SJ, Lee J, Backerson PB. Prevalence of Borrelia burgdorferi (Sipirochaetae: Sipirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Protoplasma Babesiae) in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

99. Steiner FE, Pinger RR, Vann CN, Ayotte MJ, Sullivan B, Grindle N, et al. Detection of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

100. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected in southern Ontario, Canada. Pathogens. 2021;10.327.

101. Sivakumar B, Shiva Kumar B, Kandavel K, Sivasankar P, Thomas J, et al. Detection of Babesia microti and Babesia microti in the Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2021;58:693–8.

102. Miltholland MT, Xu G, Rich SM, Achtenberger LT, Mullinax JM, Li AY, Pathogen co-infections harbored by adult Ixodes scapularis from white-tailed deer compared with questing adults across sites in Maryland, USA. Vector Borne Zoonotic Dis. 2021;21:86–91.

103. Prusinski MA, Kokas JE, Huley KT, Kogut SJ, Lee J, Backerson PB. Prevalence of Borrelia burgdorferi (Sipirochaetae: Sipirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Protoplasma Babesiae) in Ixodes scapularis (Acari: Ixodidae) collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

104. Steiner FE, Pinger RR, Vann CN, Grindle N, Ayotte MJ, Sullivan B, Grindle N, et al. Detection of Babesia microti and Anaplasma phagocytophilum in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

105. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

106. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

107. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

108. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

109. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

110. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

111. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

112. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.

113. Scott JD, Pascoe EL, Sajid MS, Foley JE. Detection of Babesia microti in Ixodes scapularis ticks collected from recreational lands in the Hudson Valley region, New York, USA. J Med Entomol. 2014;51:226–36.
126. Rybarova M, Honsova M, Papousek I, Siroky P. Variability of species Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol (Praha). 2017;64:6028.

127. Cieniuch S, Starczak J, Ruczaj A. The first detection of Babesia canis in Ixodes ricinus ticks (Acari, Ixodidae) collected in urban and rural areas in northern Poland. Pol J Microbiol. 2009;58:231–6.

128. Starczak J, Cieniuch S, Lass A, Biernat B, Racewicz M. Detection and quantification of Anaplasma phagocytophilum and Babesia spp. in Ixodes ricinus ticks from urban and rural environment, northern Poland, by real-time polymerase chain reaction. Exp Appl Acarol. 2015;66:663–81.

129. Dwuznik-Szarek D, Mierzejewska EJ, Rodo A, Goździk K, Bęhne-Borowczyk J, Kiewra D, et al. Monitoring the expansion of Dermacentor reticulatus and occurrence of canine babesiosis in Poland in 2016–2018. Parasit Vectors. 2021;14:267.

130. Adasek L, Winiarczyk S. Molecular characterization of Babesia canis isolates from naturally infected dogs in Poland. Vet Parasitol. 2008;152:235–41.

131. Bajer A, Mierzejewska EJ, Rodo A, Bednarska M, Kowalec M, Welc-Faleciak R. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland. Part 1. A population study on sled dogs during the racing season. Vet Parasitol. 2014;202:276–86.

132. Bajer A, Mierzejewska EJ, Rodo A, Welc-Faleciak R. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland. Part 2. Occurrence and control of babesiosis in a sled dog kennel during a 13-year-long period. Vet Parasitol. 2014;202:234–40.

133. Foldvári G, Široky P, Szekeres S, Majoros G, Sporig H. Dermacentor reticulatus: a vector on the rise. Parasit Vectors. 2016;9:314.

134. Rubel F, Brugger K, Pfeffer M, Chitrimia-Obler D, Didyk YM, Fu S, et al. Geographical distribution, climate adaptation and vector competence of the Eurasian hard tick Haemaphysalis concinna.Ticks Tick Borne Dis. 2018;9:1080–9.

135. Dwuznik D, Mierzejewska EJ, Alsarraf M, Bajer A. A new focus of the tick Haemaphysalis concinna in western Poland. Exp Appl Acarol. 2019;78:93–112.

136. Duscher GG, Feiler A, Lesnichik M, Joachim A. Seasonal and spatial distribution of ixodid tick species feeding on naturally infested dogs from Eastern Austria and the influence of acaricides/repellents on these parameters. Parasit Vectors. 2013;6:76.

137. Dwuznik-Szarek D, Mierzejewska EJ, Alsarraf M, Alsarraf M, Bajer A. Pathogens detected in the tick Haemaphysalis concinna in western Poland: known and unknown threats. Exp Appl Acarol. 2021. https://doi.org/10.1007/s10493-021-00647-x.

138. Rar VA, Epikhina TI, Suntsova OV, Kozlova IV, Lisak OV, Pukhovskaya NM, et al. Genetic variability of Babesia parasites in Haemaphysalis spp. and Ixodes persulcatus ticks in the Baikal region and far east of Russia. Infect Genet Evol. 2014;28:270–5.

139. Hornok S, Takács N, Kotschán J, György Z, Micsutka A, Iceton S, et al. Diversity of Haemaphysalis-associated piromplasms of ruminants in central-eastern Europe, Hungary. Parasit Vectors. 2015;8:627.

140. Orkun O, Çakmak A, Nalbantoğlu S, Karaet Z. Turkey tick news: a molecular investigation into the presence of tick-borne pathogens in host-seeking ticks in Anatolia; initial evidence of putative vectors and pathogens, and footsteps of a secretly rising vector tick, Haemaphysalis parva. Ticks Tick Borne Dis. 2020;11:101373.

141. Romiti M, Magliano A, Antognetti V, Manni G, Cerisini A, Scicluna MT, et al. Investigation of ixodid ticks as vectors of Babesia caballi and Theileria equi (Protozoa: Apicomplexa) in central Italy. J Vector Ecol. 2020;45:25–31.

142. Battsettseg B, Xuan X, Ikadia H, Bautista JL, Byamba B, Boldbaatar D, et al. Detection of Babesia caballi and Babesia equi in Dermacentor nutalli adult ticks. Int J Parasitol. 2001;31:384–6.

143. Banetti G, Cardoso L, Brilliante-Simões P, Schnittert L. Establishment of Babesia vulpes n. sp. (Apicomplexa: Babesiidae), a piromplasmod species pathogenic for domestic dogs. Parasit Vectors. 2015;12:129.

144. Hoddic A, Zöér J, Duscher GG. Dermacentor reticulatus, a putative vector of Babesia cabri microti (syn. Theileria annae) piromplasms. Parasitol Res. 2017;116:1075–7.

145. Dwuznik D, Mierzejewska EJ, Kowalec M, Alsarraf M, Starczak L, Opalinski P, et al. Ectoparasites of red foxes (Vulpes vulpes) with a particular focus on ticks in subcutaneous tissues. Parasitology. 2020;147:1359–68.

146. Mierzejewska EJ, Welc-Faleciak R, Karbowski G, Kowalec M, Bęhne JM, Bajer A. Dominance of Dermacentor reticulatus over Ixodes ricinus (Ixodidae) on livestock, companion animals and wild ruminants in eastern and central Poland. Exp Appl Acarol. 2015;66:83–101.

147. Torina A, Alongi A, Scimeca S, Vicente J, Caracappa S, de la Fuente J. Prevalence of tick-borne pathogens in ticks in Sicily. Transbound Emerg Dis. 2010;57:46–8.

148. Bajer A, Welc-Faleciak R, Bednarska M, Alsarraf M, Bęhne-Borowczyk J, Sinski E, et al. Long-term spatiotemporal stability and dynamic changes in the haemoparasite community of bank voles (Myodes glareolus) in NE Poland. Microb Ecol. 2014;68:196–211.

149. Tolkaicz K, Alsarraf M, Kowalec M, Dwuznik D, Grybeyk M, Bęhne JM, et al. Bartonella infections in three species of Microtus: prevalence and genetic diversity, vertical transmission and the effect of concurrent Babesia microti infection on its success. Parasit Vectors. 2018;11:491.

150. Lesnichik MW, Khanakih G, Duscher G, Wille-Piazzai W, Horweck C, Joachim A, et al. Species, developmental stage and infection with microbial pathogens of engorged ticks removed from dogs and questing ticks. Med Vet Entomol. 2012;26:440–6.

151. Spreu H, Fonville M, Docters van Leeuwen A, Devillers E, Ibañez-Justi‑ cia A, Stroo A, et al. Detection of pathogens in Dermacentor reticulatus in northwestern Europe: evaluation of a high-throughput array. Helioz. 2019;9:e01270.

152. Stagliči L, Weis L, Pflister K. Dermacentor reticulatus and Babesia canis in Bavaria (Germany)—a geo-referenced field study with digital habitat characterization. Pathogens. 2020;9:541.
164. Hornok S, Kartali K, Takács N, Hofmann-Lehmann R. Uneven seasonal distribution of Babesia canis and its two 18S rDNA genotypes in questing Dermacentor reticulatus ticks in urban habitats. Ticks Tick Borne Dis. 2016;7:694–7.

165. Wójcik-Faat A, Bartosik K, Buczek A, Dutkiewicz J. Babesia microti in adult Dermacentor reticulatus ticks from Eastern Poland. Vector-Borne Zoonotic Dis. 2012;12:841–3.

166. Corduneanu A, Ursache TD, Taulescu M, Sevastre B, Modry D, Mihalca AD. Detection of DNA of Babesia canis in tissues of laboratory rodents following oral inoculation with infected ticks. Parasit Vectors. 2020;13:166.

167. Rat V, Fomenko NV, Dobrovovsky AK, Livanova LL, Rudakova SA, Fedorov EG, et al. Tickborne pathogen detection, western Siberia, Russia. Emerg Infect Dis. 2005;11:1708–15.

168. Majláthová V, Majláth I, Vichová B, Gulová I, Derdáková M, Sesztáková E, Petrokova B. Polymerase chain reaction confirmation of Babesia canis canis and Anaplasma phagocytophilum in dogs suspected of babesiosis in Slovakia. Vector Borne Zoonotic Dis. 2011;11:1447–51.

169. Duh D, Slovák M, Sakšida A, Strasek K, Petrovec M, Avšič-Zupanc T. Molecular detection of Babesia canis in Dermacentor reticulatus ticks collected in Slovakia. Biologia. 2006;61:231–3.

170. Karboviak G, Vichová B, Slivinska K, Werszko J, Dedyk J, Petko B, et al. The infection of questing Dermacentor reticulatus ticks with Babesia canis and Anaplasma phagocytophilum in the Chernobyl exclusion zone. Vet Parasitol. 2014;204:372–5.

171. Abdallah OM, Niu Q, Yu P, Guan G, Yang J, Chen Z, et al. Identification of piroplasm infection in questing ticks by RLB: a broad range extension of tick-borne piroplasm in China? Parasitol Res. 2016;115:2035–44.

172. Shock BC, Moncayo A, Cohen S, Mitchell EA, Williamson PC, Lopez G, et al. Diversity of piroplasms detected in blood-fed and questing ticks from several states in the United States. Ticks Tick Borne Dis. 2014;5:373–80.

173. Li LH, Wang JZ, Zhu D, Li XS, Lu Y, Yin SQ, et al. Detection of novel piroplasmid species and Babesia microti and Theilenia orientalis genotypes in hard ticks from Tengchong County, southwest China. Parasitol Res. 2020;119:1259–69.

174. Zhuang L, Du J, Cui XM, Li H, Tang F, Zhang PH, et al. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infect Dis Poverty. 2018;7:45.

175. Niu Q, Liu Z, Yang J, Gao S, Pan Y, Guan G, et al. Genetic characterization and molecular survey of Babesia sp. Xinyang infection in small ruminants and wuxid ticks in China. Infect Genet Evol. 2017;49:330–5.

176. Brinkmann A, Hekimoğlu O, Dinçer E, Hagedorn P, Nitsche A, Ergünay K. A cross-sectional screening by next-generation sequencing reveals Rickettsia, Coxiella, Francisella, Babesia, Theilenia and Hematobia species in ticks from Anatolia. Parasit Vectors. 2019;12:26.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.