MULTIGRADED RINGS, DIAGONAL SUBALGEBRAS, AND
RATIONAL SINGULARITIES

KAZUHIKO KURANO, EI-ICHI SATO, ANURAG K. SINGH, AND KEI-ICHI WATANABE

To Paul Roberts

1. Introduction

We study the properties of F-rationality and F-regularity in multigraded rings
and their diagonal subalgebras. The main focus is on diagonal subalgebras of bi-
graded rings: these constitute an interesting class of rings since they arise naturally
as homogeneous coordinate rings of blow-ups of projective varieties.

Let X be a projective variety over a field K, with homogeneous coordinate ring A.
Let $a \subset A$ be a homogeneous ideal, and $V \subset X$ the closed subvariety defined by a.
For g an integer, we use a_g to denote the K-vector space consisting of homogeneous
elements of a of degree g. If $g \gg 0$, then a_g defines a very ample complete linear
system on the blow-up of X along V, and hence $K[a_g]$ is a homogeneous coordinate
ring for this blow-up. Since the ideals a^h define the same subvariety V, the rings
$K[a^h]_g$ are homogeneous coordinate ring for the blow-up provided $g \gg h > 0$.

Suppose that A is a standard \mathbb{N}-graded K-algebra, and consider the \mathbb{N}^2-grading
on the Rees algebra $A[at]$, where $\deg rt^j = (i, j)$ for $r \in A_i$. The connection with
diagonal subalgebras stems from the fact that if a^h is generated by elements of
degree less than or equal to g, then

$$K[a^h]_g \cong \bigoplus_{k \geq 0} A[at]_{(gk, hk)}.$$

Using $\Delta = (g, h)\mathbb{Z}$ to denote the (g, h)-diagonal in \mathbb{Z}^2, the diagonal subalgebra
$A[at]_{\Delta} = \bigoplus_k A[at]_{(gk, hk)}$ is a homogeneous coordinate ring for the blow-up of Proj A
along the subvariety defined by a, whenever $g \gg h > 0$.

The papers [GG, GGH, GGP, TR] use diagonal subalgebras in studying blow-
ups of projective space at finite sets of points. For a polynomial ring and a
a homogeneous ideal, the ring theoretic properties of $K[a]$ are studied by Simis,
Trung, and Valla in [STV] by realizing $K[a]$ as a diagonal subalgebra of the Rees
algebra $A[at]$. In particular, they determine when $K[a]$ is Cohen-Macaulay for a
a complete intersection ideal generated by forms of equal degree, and also for a the

2000 Mathematics Subject Classification. Primary 13A02; Secondary 13A35, 13H10, 14B15.
A.K.S. was supported by NSF grants DMS 0300600 and DMS 0600819.
ideal of maximal minors of a generic matrix. Some of their results are extended by
Conca, Herzog, Trung, and Valla as in the following theorem:

Theorem 1.1. [CHTV, Theorem 4.6] Let $K[x_1,\ldots,x_m]$ be a polynomial ring over
a field, and let \mathfrak{a} be a complete intersection ideal minimally generated by forms of
degrees d_1,\ldots,d_r. Fix positive integers g and h with $g/h > d = \max\{d_1,\ldots,d_r\}$.

Then $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay if and only if $g > (h-1)d - m + \sum_{j=1}^r d_j$.

When A is a polynomial ring and \mathfrak{a} an ideal for which $A[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay,
Lavila-Vidal [Lv1, Theorem 4.5] proved that the diagonal subalgebras $K[(\mathfrak{a}^h)_g]$ are
Cohen-Macaulay for $g \gg h > 0$, thereby settling a conjecture from [CHTV]. In
[CH] Cutkosky and Herzog obtain affirmative answers regarding the existence of
a constant c such that $K[(\mathfrak{a}^h)_g]$ is Cohen-Macaulay whenever $g \geq c h$. For more
work on the Cohen-Macaulay and Gorenstein properties of diagonal subalgebras,
see [HHR, Hy2, Lv2], and [LvZ].

As a motivating example for some of the results of this paper, consider a poly-
nomial ring $A = K[x_1,\ldots,x_m]$ and an ideal $\mathfrak{a} = (z_1,z_2)$ generated by relatively
prime forms z_1 and z_2 of degree d. Setting $\Delta = (d+1,1)\mathbb{Z}$, the diagonal subalgebra
$A[\mathfrak{a}^h]_\Delta$ is a homogeneous coordinate ring for the blow-up of $\text{Proj} A = \mathbb{P}^{m-1}$ along
the subvariety defined by \mathfrak{a}. The Rees algebra $A[\mathfrak{a}^h]_\Delta$ has a presentation

$$R = K[x_1,\ldots,x_m,y_1,y_2]/(y_2z_1 - y_1z_2),$$

where $\deg x_i = (1,0)$ and $\deg y_j = (d,1)$, and consequently R_Δ is the subalgebra of
R generated by the elements x_i, y_j. When K has characteristic zero and z_1 and z_2
are general forms of degree d, the results of Section 3 imply that R_Δ has rational
singularities if and only if $d \leq m$, and that it is of F-regular type if and only
if $d < m$. As a consequence, we obtain large families of rings of the form R_Δ,
standard graded over a field, which have rational singularities, but which are not
of F-regular type.

It is worth pointing out that if R is an \mathbb{N}^2-graded ring over an infinite field
$R_{(0,0)} = K$, and $\Delta = (g,h)\mathbb{Z}$ for coprime positive integers g and h, then R_Δ is the
ring of invariants of the torus K^* acting on R via

$$\lambda: r \mapsto \lambda^{hi-gj} r \quad \text{where } \lambda \in K^* \text{ and } r \in R_{(i,j)}.$$

Consequently there exist torus actions on hypersurfaces for which the rings of in-
variants have rational singularities but are not of F-regular type.

In Section 4 we use diagonal subalgebras to construct standard graded normal
rings R, with isolated singularities, for which $H^2_{m}(R)_0 = 0$ and $H^2_{m}(R)_1 \neq 0$. If
S is the localization of such a ring R at its homogeneous maximal ideal, then,
by Danilov’s results, the divisor class group of S is a finitely generated abelian
group, though S does not have a discrete divisor class group. Such rings R are
also of interest in view of the results of [RSS], where it is proved that the image
of $H^2_m(R)_0$ in $H^2_n(R)$ is annihilated by elements of R^+ of arbitrarily small positive degree; here R^+ denotes the absolute integral closure of R. A corresponding result for $H^2_m(R)_1$ is not known at this point, and the rings constructed in Section 4 constitute interesting test cases.

Section 2 summarizes some notation and conventions for multigraded rings and modules. In Section 3 we carry out an analysis of diagonal subalgebras of bigraded hypersurfaces; this uses results on rational singularities and F-regular rings proved in Sections 5 and 6 respectively.

The authors would like to thank Shiro Goto and Ken-ichi Yoshida for their valuable comments.

2. Preliminaries

In this section, we provide a brief treatment of multigraded rings and modules; see [GW1, GW2, HHR], and [HIO] for further details.

By an \mathbb{N}^r-graded ring we mean a ring $R = \bigoplus_{n \in \mathbb{N}^r} R_n$, which is finitely generated over the subring R_0. If (R_0, m) is a local ring, then R has a unique homogeneous maximal ideal $M = mR + R_+,$ where $R_+ = \oplus_{n \neq 0} R_n$.

For $m = (m_1, \ldots, m_r)$ and $n = (n_1, \ldots, n_r)$ in \mathbb{Z}^r, we say $n > m$ (resp. $n \geq m$) if $n_i > m_i$ (resp. $n_i \geq m_i$) for each i.

Let M be a \mathbb{Z}^r-graded R-module. For $m \in \mathbb{Z}^r$, we set $M_{\geq m} = \bigoplus_{n \geq m} M_n$, which is a \mathbb{Z}^r-graded submodule of M. One writes $M(m)$ for the \mathbb{Z}^r-graded R-module with shifted grading $[M(m)]_n = M_{m+n}$ for each $n \in \mathbb{Z}^r$.

Let M and N be \mathbb{Z}^r-graded R-modules. Then $\text{Hom}_R(M, N)$ is the \mathbb{Z}^r-graded module with $[\text{Hom}_R(M, N)]_n = \text{Hom}_R(M, N)_n$ being the abelian group consisting of degree preserving R-linear homomorphisms from M to $N(n)$.

The functor $\text{Ext}_R^i(M, -)$ is the i-th derived functor of $\text{Hom}_R(M, -)$ in the category of \mathbb{Z}^r-graded R-modules. When M is finitely generated, $\text{Ext}_R^i(M, N)$ and $\text{Ext}_R^i(M, N)$ agree as underlying R-modules. For a homogeneous ideal a of R, the local cohomology modules of M with support in a are the \mathbb{Z}^r-graded modules $H^i_a(M) = \text{Ext}^i_R(R/a^n, M)$.

Let $\varphi: \mathbb{Z}^r \to \mathbb{Z}^s$ be a homomorphism of abelian groups satisfying $\varphi(\mathbb{N}^r) \subseteq \mathbb{N}^s$. We write R^{φ} for the ring R with the \mathbb{N}^s-grading where $[R^{\varphi}]_n = \bigoplus_{\varphi(m) = n} R_m$.
If M is a \mathbb{Z}^r-graded \mathcal{R}-module, then M^φ is the \mathbb{Z}^s-graded \mathcal{R}^φ-module with

$$[M^\varphi]_n = \bigoplus_{\varphi(m)=n} M_m.$$

The change of grading functor $(-)^\varphi$ is exact; by [HHR] Lemma 1.1 one has

$$H^i_{\mathfrak{m}}(M)^\varphi = H^i_{\mathfrak{m}^\varphi}(M^\varphi).$$

Consider the projections $\varphi_i: \mathbb{Z}^r \to \mathbb{Z}$ with $\varphi_i(m_1, \ldots, m_r) = m_i$, and set

$$a(\mathcal{R}^\varphi_i) = \max \{ a \in \mathbb{Z} | [H^i_{\mathfrak{m}}(\mathcal{R}^\varphi_i)]_a \neq 0 \};$$

this is the a-invariant of the \mathbb{N}-graded ring \mathcal{R}^φ_i in the sense of Goto and Watanabe [GW1]. As in [HHR], the multigraded a-invariant of \mathcal{R} is

$$a(\mathcal{R}) = (a(\mathcal{R}^\varphi_1), \ldots, a(\mathcal{R}^\varphi_r)).$$

Let \mathcal{R} be a \mathbb{Z}^2-graded ring and let g, h be positive integers. The subgroup $\Delta = (g, h)\mathbb{Z}$ is a diagonal in \mathbb{Z}^2, and the corresponding diagonal subalgebra of \mathcal{R} is

$$\mathcal{R}_\Delta = \bigoplus_{k \in \mathbb{Z}} \mathcal{R}_{(gk, hk)}.$$

Similarly, if M is a \mathbb{Z}^2-graded \mathcal{R}-module, we set

$$M_\Delta = \bigoplus_{k \in \mathbb{Z}} M_{(gk, hk)},$$

which is a \mathbb{Z}-graded module over the \mathbb{Z}-graded ring \mathcal{R}_Δ.

Lemma 2.1. Let A and B be \mathbb{N}-graded normal rings, finitely generated over a field $A_0 = K = B_0$. Set $T = A \otimes_K B$. Let g and h be positive integers and set $\Delta = (g, h)\mathbb{Z}$. Let a, b, and m denote the homogeneous maximal ideals of A, B, and T_Δ respectively. Then, for each $q \geq 0$ and $i, j, k \in \mathbb{Z}$, one has

$$H^q_{m}(T(i, j)\Delta)_k = (A_{i+gk} \otimes H^q_a(B)_{j+hk}) \oplus \bigoplus_{q_1+q_2=q+1} (H^q_a(A)_{i+gk} \otimes H^q_b(B)_{j+hk}).$$

Proof. Let $A^{(g)}$ and $B^{(h)}$ denote the respective Veronese subrings of A and B. Set

$$A^{(g, i)} = \bigoplus_{k \in \mathbb{Z}} A_{i+gk} \quad \text{and} \quad B^{(h, j)} = \bigoplus_{k \in \mathbb{Z}} B_{j+hk},$$

which are graded $A^{(g)}$ and $B^{(h)}$ modules respectively. Using # for the Segre product, we have

$$T(i, j)\Delta = \bigoplus_{k \in \mathbb{Z}} A_{i+gk} \otimes_K B_{j+hk} = A^{(g, i)} # B^{(h, j)}.$$

The ideal $A^{(g)}_+ A$ is a-primary; likewise, $B^{(h)}_+ B$ is b-primary. The Künneth formula for local cohomology, [GW1] Theorem 4.1.5], now gives the desired result.

Notation 2.2. We use bold letters to denote lists of elements, e.g., $z = z_1, \ldots, z_s$ and $\gamma = \gamma_1, \ldots, \gamma_s$.
3. Diagonal subalgebras of bigraded hypersurfaces

We prove the following theorem about diagonal subalgebras of \(\mathbb{N}^2 \)-graded hypersurfaces. The proof uses results proved later in Sections 5 and 6.

Theorem 3.1. Let \(K \) be a field, let \(m, n \) be integers with \(m, n \geq 2 \), and let

\[
\mathcal{R} = K[x_1, \ldots, x_m, y_1, \ldots, y_n]/(f)
\]

be a normal \(\mathbb{N}^2 \)-graded hypersurface where \(\deg x_i = (1, 0), \deg y_j = (0, 1) \), and \(\deg f = (d, e) > (0, 0) \). For positive integers \(g \) and \(h \), set \(\Delta = (g, h)\mathbb{Z} \). Then:

1. The ring \(\mathcal{R}_\Delta \) is Cohen-Macaulay if and only if \([(d - m)/g] < e/h \) and \([(e - n)/h] < d/g \). In particular, if \(d < m \) and \(e < n \), then \(\mathcal{R}_\Delta \) is Cohen-Macaulay for each diagonal \(\Delta \).

2. The graded canonical module of \(\mathcal{R}_\Delta \) is \(\mathcal{R}(d - m, e - n)_\Delta \). Hence \(\mathcal{R}_\Delta \) is Gorenstein if and only if \((d - m)/g = (e - n)/h \), and this is an integer.

If \(K \) has characteristic zero, and \(f \) is a generic polynomial of degree \((d, e) \), then:

3. The ring \(\mathcal{R}_\Delta \) has rational singularities if and only if it is Cohen-Macaulay and \(d < m \) or \(e < n \).

4. The ring \(\mathcal{R}_\Delta \) is of F-regular type if and only if \(d < m \) and \(e < n \).

For \(m, n \geq 3 \) and \(\Delta = (1, 1)\mathbb{Z} \), the properties of \(\mathcal{R}_\Delta \), as determined by \(m, n, d, e \), are summarized in Figure 1.

![Figure 1. Properties of \(\mathcal{R}_\Delta \) for \(\Delta = (1, 1)\mathbb{Z} \).](image-url)
Remark 3.2. Let \(m, n \geq 2 \). A generic hypersurface of degree \((d, e) > (0, 0)\) in \(m, n \) variables is normal precisely when

\[
m > \min(2, d) \quad \text{and} \quad n > \min(2, e).
\]

Suppose that \(m = 2 = n \), and that \(f \) is nonzero. Then \(\dim R_{\Delta} = 2 \); since \(R_{\Delta} \) is generated over a field by elements of equal degree, \(R_{\Delta} \) is of F-regular type if and only if it has rational singularities; see \cite{Wa}. This is the case precisely if

\[
d = 1, \ e \leq h + 1, \quad \text{or} \quad e = 1, \ d \leq g + 1.
\]

Following a suggestion of Hara, the case \(n = 2 \) and \(e = 1 \) was used in \cite{Si} Example 7.3 to construct examples of standard graded rings with rational singularities which are not of F-regular type.

Proof of Theorem 3.1. Set \(A = K[x], B = K[y], \) and \(T = A \otimes_K B \). By Lemma 2.1 \(H^q_m(T_{\Delta}) = 0 \) for \(q \neq m + n - 1 \). The local cohomology exact sequence induced by

\[
0 \longrightarrow T(-d, -e)_\Delta \xrightarrow{f} T_{\Delta} \longrightarrow R_{\Delta} \longrightarrow 0
\]

therefore gives \(H^{q-1}_m(R_{\Delta}) = H^q_m(T(-d, -e)_{\Delta}) \) for \(q \leq m + n - 2 \), and also shows that \(H^{m+n-2}_m(R_{\Delta}) \) and \(H^{m+n-1}_m(R_{\Delta}) \) are, respectively, the kernel and cokernel of

\[
H^{m+n-1}_m(T(-d, -e)_{\Delta}) \xrightarrow{f} H^m_m(R_{\Delta})
\]

\[
[H^m_m(A(-d)) \otimes H^n_n(B(-e))]_{\Delta} \xrightarrow{f} [H^m_m(A) \otimes H^n_n(B)]_{\Delta}.
\]

The horizontal map above is surjective since its graded dual

\[
[A(d-m) \otimes B(e-n)]_{\Delta} \xleftarrow{f} [A(-m) \otimes B(-n)]_{\Delta}
\]

\[
T(d-m, e-n)_{\Delta} \xleftarrow{f} T(-m, -n)_{\Delta}
\]

is injective. In particular, \(\dim R_{\Delta} = m + n - 2 \).

It follows from the above discussion that \(R_{\Delta} \) is Cohen-Macaulay if and only if \(H^q_m(T(-d, -e)_{\Delta}) = 0 \) for each \(q \leq m + n - 2 \). By Lemma 2.1 this is the case if and only if, for each integer \(k \), one has

\[
A_{-d+gk} \otimes H^n_n(B)_{-e+hk} = 0 = H^m_m(A)_{-d+gk} \otimes B_{-e+hk}.
\]

Hence \(R_{\Delta} \) is Cohen-Macaulay if and only if there is no integer \(k \) satisfying

\[
d/g \leq k \leq (e - n)/h \quad \text{or} \quad e/h \leq k \leq (d - m)/g,
\]

which completes the proof of (1).

For (2), note that the graded canonical module of \(R_{\Delta} \) is the graded dual of \(H^{m+n-2}_m(R_{\Delta}) \), and hence that it equals

\[
\coker(T(-m, -n)_{\Delta} \xrightarrow{f} T(d-m, e-n)_{\Delta}) = R(d-m, e-n)_{\Delta}.
\]
This module is principal if and only if \(R(d - m, e - n)_\Delta = R_\Delta(a) \) for some integer \(a \), i.e., \(d - m = ga \) and \(e - n = ha \).

When \(f \) is a general polynomial of degree \((d, e)\), the ring \(R_\Delta \) has an isolated singularity. Also, \(R_\Delta \) is normal since it is a direct summand of the normal ring \(R \). By Theorem 5.1, \(R_\Delta \) has rational singularities precisely if it is Cohen-Macaulay and \(a(R_\Delta) < 0 \); this proves (3).

It remains to prove (4). If \(d < m \) and \(e < n \), then Theorem 5.2 implies that \(R \) has rational singularities. By Theorem 6.2 it follows that for almost all primes \(p \), the characteristic \(p \) models \(R_p \) of \(R \) are F-rational hypersurfaces which, therefore, are F-regular. Alternatively, \(R_p \) is a generic hypersurface of degree \((d, e) < (m, n)\), so Theorem 6.5 implies that \(R_p \) is F-regular. Since \((R_p)_\Delta\) is a direct summand of \(R_p \), it follows that \((R_p)_\Delta\) is F-regular. The rings \((R_p)_\Delta\) are characteristic \(p \) models of \(R_\Delta \), so we conclude that \(R_\Delta \) is of F-regular type.

Suppose \(R_\Delta \) has F-regular type, and let \((R_p)_\Delta\) be a characteristic \(p \) model which is F-regular. Fix an integer \(k > d/g \). Then Proposition 6.3 implies that there exists an integer \(q = p^e \) such that

\[
\text{rank}_K \left((R_p)_\Delta\right)_k \leq \text{rank}_K \left[H^m_{m+p}((\omega(q))]_k, \right.
\]

where \(\omega \) is the graded canonical module of \((R_p)_\Delta\). Using (2), we see that

\[
H^m_{m+p}((\omega(q)) = H^m_{m+p}((R_p(qd - qm, qe - qn)_\Delta)).
\]

Let \(T_p \) be a characteristic \(p \) model for \(T \) such that \(T_p/fT_p = R_p \). Multiplication by \(f \) on \(T_p \) induces a local cohomology exact sequence

\[
\cdots \longrightarrow H^m_{m+p}((T_p(qd - qm, qe - qn)_\Delta) \longrightarrow H^m_{m+p}((R_p(qd - qm, qe - qn)_\Delta)
\]

\[
\longrightarrow H^m_{m+p}((T_p(qd - qm - d, qe - qn - e)_\Delta) \longrightarrow \cdots.
\]

Since \(H^m_{m+p}((T_p(qd - qm, qe - qn)_\Delta) \) vanishes by Lemma 2.1, we conclude that

\[
\text{rank}_K \left((R_p)_\Delta\right)_k \leq \text{rank}_K \left[H^m_{m+p}((T_p(qd - qm - d, qe - qn - e)_\Delta)]_k.
\]

\[
= \text{rank}_K \left[H^m_{m+p}(A_p)_{qd - qm - d + gk} \otimes H^g_{v_q}(B_p)_{qe - qn - e + hk}
\]

Hence \(qd - qm - d + gk < 0 \); as \(d - gk < 0 \), we conclude \(d < m \). Similarly, \(e < n \). \(\square \)

We conclude this section with an example where a local cohomology module of a standard graded ring is not rigid in the sense that \(H^2_m(R)_0 = 0 \) while \(H^2_m(R)_1 \neq 0 \). Further such examples are constructed in Section 4.

Proposition 3.3. Let \(K \) be a field and let

\[
\mathcal{R} = K[x_1, x_2, x_3, y_1, y_2]/(f)
\]

where \(\deg x_i = (1, 0) \), \(\deg y_j = (0, 1) \), and \(\deg f = (d, e) \) for \(d \geq 4 \) and \(e \geq 1 \). Let \(g \) and \(h \) be positive integers such that \(g \leq d - 3 \) and \(h \geq e \), and set \(\Delta = (g, h)\mathbb{Z} \).

Then \(H^2_m(R_\Delta)_0 = 0 \) and \(H^2_m(R_\Delta)_1 \neq 0 \).
Proof. Using the resolution of R over the polynomial ring T as in the proof of Theorem 3.1, we have an exact sequence

$$H_m^2(T_\Delta) \rightarrow H_m^3(R_\Delta) \rightarrow H_m^3(T(-d, -e)_\Delta) \rightarrow H_m^4(T_\Delta).$$

Lemma 2.1 implies that $H_m^2(T_\Delta) = 0 = H_m^3(T_\Delta)$. Hence, again by Lemma 2.1,

$$H_m^2(R_\Delta)_0 = H^3(A)_{-d} \otimes B_{-e} = 0 \quad \text{and} \quad H_m^2(R_\Delta)_1 = H^3(A)_{g-d} \otimes B_{h-e} \neq 0. \quad \square$$

4. Non-rigid local cohomology modules

We construct examples of standard graded normal rings R over \mathbb{C}, with only isolated singularities, for which $H_m^2(R)_0 = 0$ and $H_m^2(R)_1 \neq 0$. Let S be the localization of such a ring R at its homogeneous maximal ideal. By results of Danilov [Da1, Da2], Theorem 4.1 below, it follows that the divisor class group of S is finitely generated, though S does not have a discrete divisor class group, i.e., the natural map $\text{Cl}(S) \rightarrow \text{Cl}(S[[t]])$ is not bijective. Here, remember that if A is a Noetherian normal domain, then so is $A[[t]]$.

Theorem 4.1. Let R be a standard graded normal ring, which is finitely generated as an algebra over $R_0 = \mathbb{C}$. Assume, moreover, that $X = \text{Proj} R$ is smooth. Set (S, m) to be the local ring of R at its homogeneous maximal ideal, and \hat{S} to be the m-adic completion of S. Then

1. the group $\text{Cl}(S)$ is finitely generated if and only if $H^1(X, O_X) = 0$;
2. the map $\text{Cl}(S) \rightarrow \text{Cl}(\hat{S})$ is bijective if and only if $H^1(X, O_X(i)) = 0$ for each integer $i \geq 1$; and
3. the map $\text{Cl}(S) \rightarrow \text{Cl}(S[[t]])$ is bijective if and only if $H^1(X, O_X(i)) = 0$ for each integer $i \geq 0$.

The essential point in our construction is in the following proposition:

Theorem 4.2. Let A be a Cohen-Macaulay ring of dimension $d \geq 2$, which is a standard graded algebra over a field K. For $s \geq 2$, let z_1, \ldots, z_s be a regular sequence in A, consisting of homogeneous elements of equal degree, say k. Consider the Rees ring $\mathcal{R} = A[z_1t, \ldots, z_st]$ with the \mathbb{Z}^2-grading where $\deg x = (n, 0)$ for $x \in A_n$, and $\deg z_it = (0, 1)$.

Let $\Delta = (g, h)\mathbb{Z}$ where g, h are positive integers, and let m denote the homogeneous maximal ideal of \mathcal{R}_Δ. Then:

1. $H_m^q(\mathcal{R}_\Delta) = 0$ if $q \neq d + 1, d$; and
2. $H_m^{d+s+1}(\mathcal{R}_\Delta)_i \neq 0$ if and only if $1 \leq i \leq (a + ks - k)/g$, where a is the a-invariant of A.

In particular, \mathcal{R}_Δ is Cohen-Macaulay if and only if $g > a + ks - k$.
Example 4.3. For $d \geq 3$, let $A = \mathbb{C}[x_0, \ldots, x_d]/(f)$ be a standard graded hypersurface such that $\text{Proj} A$ is smooth over \mathbb{C}. Take general k-forms $z_1, \ldots, z_{d-1} \in A$, and consider the Rees ring $R = A[z_1t, \ldots, z_{d-1}t]$. Since $(z) \subset A$ is a radical ideal,
\[
\text{gr}((z), A) \cong A/(z)[y_1, \ldots, y_{d-1}]
\]
is a reduced ring, and therefore R is a reduced ring, and therefore $\mathcal{R} = A[z_1t, \ldots, z_{d-1}t]$ is integrally closed in $A[t]$. Since A is normal, so is R. Note that $\text{Proj} \mathcal{R}_\Delta$ is the blow-up of $\text{Proj} A$ at the subvariety defined by (z), i.e., at $k^{d-1}(\deg f)$ points. It follows that $\text{Proj} \mathcal{R}_\Delta$ is smooth over \mathbb{C}. Hence \mathcal{R}_Δ is a standard graded \mathbb{C}-algebra, which is normal and has an isolated singularity.

If $\Delta = (g, h)\mathbb{Z}$ is a diagonal with $1 \leq g \leq \deg f + k(d-2) - (d+1)$ and $h \geq 1$, then Theorem 4.2 implies that
\[
H^2_m(\mathcal{R}_\Delta)_0 = 0 \quad \text{and} \quad H^2_m(\mathcal{R}_\Delta)_1 \neq 0.
\]

The rest of this section is devoted to proving Theorem 4.2. We may assume that the base field K is infinite. Then one can find linear forms x_1, \ldots, x_{d-s} in A such that $x_1, \ldots, x_{d-s}, z_1, \ldots, z_s$ is a maximal A-regular sequence.

We will use the following lemma; the notation is as in Theorem 4.2.

Lemma 4.4. Let a be the homogeneous maximal ideal of A. Set $I = (z_1, \ldots, z_s)A$. Let r be a positive integer.

(1) $H^0_a(I') = 0$ if $q \neq d - s + 1, d$.

(2) Assume $d > s$. Then, $H^{d-s+1}_a(I'_i) \neq 0$ if and only if $i \leq a + ks + rk - k$.

(3) Assume $d = s$. Then, $H^{d-s+1}_a(I'_i) \neq 0$ if and only if $0 \leq i \leq a + ks + rk - k$.

Proof. Recall that A and A/I^r are Cohen-Macaulay rings of dimension d and $d-s$, respectively. By the exact sequence
\[
0 \longrightarrow I' \longrightarrow A \longrightarrow A/I' \longrightarrow 0
\]
we obtain
\[
H^q_a(I') = \begin{cases}
H^q_a(A) & \text{if } q = d \\
H^{d-s}_a(A/I^r) & \text{if } q = d - s + 1 \\
0 & \text{if } q \neq d - s + 1, d,
\end{cases}
\]
which proves (1).

Next we prove (2) and (3). Since A/I^r is a standard graded Cohen-Macaulay ring of dimension $d-s$, it is enough to show that the a-invariant of this ring equals $a + ks + rk - k$. This is straightforward if $r = 1$, and we proceed by induction. Consider the exact sequence
\[
0 \longrightarrow I'/I'^{r+1} \longrightarrow A/I^{r+1} \longrightarrow A/I^r \longrightarrow 0.
\]
Since z_1, \ldots, z_s is a regular sequence of k-forms, I^r/I^{r+1} is isomorphic to $(A/I)(-rk)^{\binom{r+s}{r}}$.
Thus, we have the following exact sequence:

$$0 \rightarrow H^d_a((A/I)(-rk)) \rightarrow H^d_a(A/I^{r+1}) \rightarrow H^d_a(A/I^r) \rightarrow 0.$$

The a-invariant of $(A/I)(-rk)$ equals $a + ks + rk$, and that of A/I^r is $a + ks + rk - k$ by the inductive hypothesis. Thus, A/I^{r+1} has a-invariant $a + ks + rk$. □

Proof of Theorem 4.2. Let $B = K[y_1, \ldots, y_s]$ be a polynomial ring, and set

$$T = A \otimes_K B = A[y_1, \ldots, y_s].$$

Consider the \mathbb{Z}^2-grading on T where $\deg x = (n, 0)$ for $x \in A_n$, and $\deg y_i = (0, 1)$ for each i. One has a surjective homomorphism of graded rings

$$T \rightarrow \mathcal{R} = A[z_1 t, \ldots, z_s t] \quad \text{where} \quad y_i \mapsto z_i t,$$

and this induces an isomorphism

$$\mathcal{R} \cong T/I_2(z_1 : : z_s).$$

The minimal free resolution of \mathcal{R} over T is given by the Eagon-Northcott complex

$$0 \rightarrow F^{-(s-1)} \rightarrow F^{-(s-2)} \rightarrow \cdots \rightarrow F^0 \rightarrow 0,$$

where $F^0 = T(0, 0)$, and F^{-i} for $1 \leq i \leq s - 1$ is the direct sum of $(s-1)^i$ copies of

$$T(-k, -(i-1)) \oplus T(-2k, -(i-1)) \oplus \cdots \oplus T(-ik, -1).$$

Let \mathfrak{n} be the homogeneous maximal ideal of T_Δ. One has the spectral sequence:

$$E_2^{p,q} = H^p(H^q_\mathfrak{n}(F^*_\Delta)) \Rightarrow H^p_{\mathcal{R}}(\mathcal{R}).$$

Let G be the set of (n, m) such that $T(n, m)$ appears in the Eagon-Northcott complex above, i.e., the elements of G are

$$(0, 0),$$

$$(-k, -1),$$

$$(-k, -2), (-2k, -1),$$

$$(-k, -3), (-2k, -2), (-3k, -1),$$

$$\vdots$$

$$(-k, -(s-1)), \ldots \quad (-s-1)k, -1).$$

Let \mathfrak{a} and \mathfrak{b} be the homogeneous maximal ideal of A and B respectively. For integers n and m, the Küneth formula gives

$$H^q_{\mathfrak{n}}(T(n, m))$$

$$= H^q_{\mathfrak{n}}(A(n) \otimes_K B(m))$$

$$= (H^q_{\mathfrak{n}}(A(n)) \otimes B(m)) \oplus (A(n) \otimes H^q_{\mathfrak{n}}(B(m))) \oplus \bigoplus_{i+j=q+1} H^i_{\mathfrak{a}}(A(n)) \otimes H^j_{\mathfrak{b}}(B(m))$$

$$= H^q_{\mathfrak{n}}(T(n, m)) \oplus H^q_{\mathfrak{n}}(T(n, m)) \oplus \bigoplus_{i+j=q+1} H^i_{\mathfrak{a}}(A(n)) \otimes_K H^j_{\mathfrak{b}}(B(m)).$$
As A and B are Cohen-Macaulay of dimension d and s respectively, it follows that

$$H^n_q(F^\bullet) = 0 \quad \text{if } q \neq s, d, d + s - 1.$$

In the case where $d > s$, one has

$$H^n_a(F^\bullet) = H^n_b(F^\bullet) \quad \text{and} \quad H^n_d(F^\bullet) = H^n_d(F^\bullet),$$

and if $d = s$, then

$$H^n_d(F^\bullet) = H^n_a(F^\bullet) \oplus H^n_b(F^\bullet).$$

We claim $H^n_b(F^\bullet)_\Delta = 0$. If not, there exists $(n, m) \in G$ and $\ell \in \mathbb{Z}$ such that

$$H^n_b(T(n, m))_{(g\ell, h\ell)} \neq 0.$$

This implies that

$$H^n_b(T(n, m))_{(g\ell, h\ell)} = A(n)_{g\ell} \otimes_K H^n_b(B(m))_{h\ell} = A_{n+g\ell} \otimes_K H^n_b(B)_{m+h\ell}$$

is nonzero, so

$$n + g\ell \geq 0 \quad \text{and} \quad m + h\ell \leq -s,$$

and hence

$$-n - \frac{n}{g} \leq \ell \leq -\frac{s + m}{h}.$$

But $(n, m) \in G$, so $n \leq 0$ and $m \geq -(s - 1)$, implying that

$$0 \leq \ell \leq -\frac{1}{h},$$

which is not possible. This proves that $H^n_b(F^\bullet)_\Delta = 0$. Thus, we have

$$H^n_d(F^\bullet)_\Delta = \begin{cases} 0 & \text{if } q \neq d, d + s - 1, \\ H^n_d(F^\bullet)_\Delta & \text{if } q = d. \end{cases}$$

It follows that

$$E^{p,q}_2 = H^p(H^n_d(F^\bullet)_\Delta) = E^{p,q}_\infty$$

for each p and q. Therefore,

$$H^i_m(R_\Delta) = E^{i-d,d}_2 = H^{i-d}(H^n_d(F^\bullet)_\Delta) = H^{i-d}(H^n_d(F^\bullet)_\Delta) = H^i_m(R_\Delta)$$

for $d - s + 1 \leq i \leq d - 1$, and

$$H^i_m(R_\Delta) = 0 \quad \text{for } i < d - s + 1.$$

We next study $H^i_\alpha(R)$. Since

$$R = A \oplus I(k) \oplus I^2(2k) \oplus \cdots \oplus I^r(rk) \oplus \cdots,$$

we have

$$H^i_\alpha(R) = H^i_\alpha(A) \oplus H^i_\alpha(I(k)) \oplus H^i_\alpha(I^2(2k)) \oplus \cdots \oplus H^i_\alpha(I^r(rk)) \oplus \cdots.$$

Theorem 4.2 (1) now follow using Lemma 4.4 (1).

Assume that $d > s$. Then, by Lemma 4.4 (2), $H^{d-s+1}(I^\tau(rk)) \neq 0$ if and only if $i \leq a + ks - k$.

We claim $H^n_b(F^\bullet)_\Delta = 0$. If not, there exists $(n, m) \in G$ and $\ell \in \mathbb{Z}$ such that

$$H^n_b(T(n, m))_{(g\ell, h\ell)} \neq 0.$$

This implies that

$$H^n_b(T(n, m))_{(g\ell, h\ell)} = A(n)_{g\ell} \otimes_K H^n_b(B(m))_{h\ell} = A_{n+g\ell} \otimes_K H^n_b(B)_{m+h\ell}$$

is nonzero, so

$$n + g\ell \geq 0 \quad \text{and} \quad m + h\ell \leq -s,$$

and hence

$$-n - \frac{n}{g} \leq \ell \leq -\frac{s + m}{h}.$$

But $(n, m) \in G$, so $n \leq 0$ and $m \geq -(s - 1)$, implying that

$$0 \leq \ell \leq -\frac{1}{h},$$

which is not possible. This proves that $H^n_b(F^\bullet)_\Delta = 0$. Thus, we have

$$H^n_d(F^\bullet)_\Delta = \begin{cases} 0 & \text{if } q \neq d, d + s - 1, \\ H^n_d(F^\bullet)_\Delta & \text{if } q = d. \end{cases}$$

It follows that

$$E^{p,q}_2 = H^p(H^n_d(F^\bullet)_\Delta) = E^{p,q}_\infty$$

for each p and q. Therefore,

$$H^i_m(R_\Delta) = E^{i-d,d}_2 = H^{i-d}(H^n_d(F^\bullet)_\Delta) = H^{i-d}(H^n_d(F^\bullet)_\Delta) = H^i_m(R_\Delta)$$

for $d - s + 1 \leq i \leq d - 1$, and

$$H^i_m(R_\Delta) = 0 \quad \text{for } i < d - s + 1.$$

We next study $H^i_\alpha(R)$. Since

$$R = A \oplus I(k) \oplus I^2(2k) \oplus \cdots \oplus I^r(rk) \oplus \cdots,$$

we have

$$H^i_\alpha(R) = H^i_\alpha(A) \oplus H^i_\alpha(I(k)) \oplus H^i_\alpha(I^2(2k)) \oplus \cdots \oplus H^i_\alpha(I^r(rk)) \oplus \cdots.$$

Theorem 4.2 (1) now follow using Lemma 4.4 (1).

Assume that $d > s$. Then, by Lemma 4.4 (2), $H^{d-s+1}(I^\tau(rk)) \neq 0$ if and only if $i \leq a + ks - k$.

Assume that \(d = s \). Then, by Lemma 4.4 (3), \(H^{d-s+1}_a(I^r(rk))_i \neq 0 \) if and only if \(-rk \leq i \leq a + ks - k \).

In each case, \(H^{d-s+1}_a(R)(gi, hi)_i \neq 0 \) if and only if \(1 \leq i \leq a + ks - k \).

5. Rational singularities

Let \(R \) be a normal domain, essentially of finite type over a field of characteristic zero, and consider a desingularization \(f: Z \to \text{Spec} R \), i.e., a proper birational morphism with \(Z \) a nonsingular variety. One says \(R \) has rational singularities if \(R^i \omega_Z = 0 \) for each \(i \geq 1 \); this does not depend on the choice of the desingularization \(f \). For \(\mathbb{N} \)-graded rings, one has the following criterion due to Flenner [Fl] and Watanabe [Wa1].

Theorem 5.1. Let \(R \) be a normal \(\mathbb{N} \)-graded ring which is finitely generated over a field \(R_0 \) of characteristic zero. Then \(R \) has rational singularities if and only if it is Cohen-Macaulay, \(a(R) < 0 \), and the localization \(R_p \) has rational singularities for each \(p \in \text{Spec} R \setminus \{ R_+ \} \).

When \(R \) has an isolated singularity, the above theorem gives an effective criterion for determining if \(R \) has rational singularities. However, a multigraded hypersurface typically does not have an isolated singularity, and the following variation turns out to be useful:

Theorem 5.2. Let \(R \) be a normal \(\mathbb{N}^r \)-graded ring such that \(R_0 \) is a local ring essentially of finite type over a field of characteristic zero, and \(R \) is generated over \(R_0 \) by elements

\[
x_{11}, x_{12}, \ldots, x_{1t_1}, \quad x_{21}, x_{22}, \ldots, x_{2t_2}, \ldots, \quad x_{r1}, x_{r2}, \ldots, x_{rt_r},
\]

where \(\deg x_{ij} \) is a positive integer multiple of the \(i \)-th unit vector \(e_i \in \mathbb{N}^r \). Then \(R \) has rational singularities if and only if

1. \(R \) is Cohen-Macaulay,
2. \(R_p \) has rational singularities for each \(p \) belonging to \(\text{Spec} R \setminus (V(x_{11}, x_{12}, \ldots, x_{1t_1}) \cup \ldots \cup V(x_{r1}, x_{r2}, \ldots, x_{rt_r})) \), and
3. \(a(R) < 0 \), i.e., \(a(R^{\mathbb{N}^r}) < 0 \) for each coordinate projection \(\varphi_i: \mathbb{N}^r \to \mathbb{N} \).

Before proceeding with the proof, we record some preliminary results.

Remark 5.3. Let \(R \) be an \(\mathbb{N} \)-graded ring. We use \(R^\mathbb{N} \) to denote the Rees algebra with respect to the filtration \(F_n = R_{\geq n} \), i.e.,

\[
R^\mathbb{N} = F_0 \oplus F_1 T \oplus F_2 T^2 \oplus \cdots.
\]
When considering $\text{Proj } R^2$, we use the \mathbb{N}-grading on R^2 where $[R^2]_n = F_n T^n$. The inclusion $R = [R^2]_0 \hookrightarrow R^2$ gives a map

$$\text{Proj } R^2 \xrightarrow{f} \text{Spec } R.$$

Also, the inclusions $R_n \hookrightarrow F_n$ give rise to an injective homomorphism of graded rings $R \hookrightarrow R^2$, which induces a surjection

$$\text{Proj } R^2 \twoheadrightarrow \text{Proj } R.$$

Lemma 5.4. Let R be an \mathbb{N}-graded ring which is finitely generated over R_0, and assume that R_0 is essentially of finite type over a field of characteristic zero.

If R_p has rational singularities for all primes $p \in \text{Spec } R \setminus V(R_+)$, then $\text{Proj } R^2$ has rational singularities.

Proof. Note that $\text{Proj } R^2$ is covered by affine open sets $D_+(r T^n)$ for integers $n \geq 1$ and homogeneous elements $r \in R_{\geq n}$. Consequently, it suffices to check that $[R^2_{(r T^n)}]_0$ has rational singularities. Next, note that

$$[R^2_{(r T^n)}]_0 = R + \frac{1}{r}[R]_{\geq n} + \frac{1}{r^2}[R]_{\geq 2n} + \cdots.$$

In the case $\deg r > n$, the ring above is simply R_r, which has rational singularities by the hypothesis of the lemma. If $\deg r = n$, then

$$[R^2_{(r T^n)}]_0 = [R_r]_{\geq 0}.$$

The \mathbb{Z}-graded ring R_r has rational singularities and so, by [Wa1, Lemma 2.5], the ring $[R_r]_{\geq 0}$ has rational singularities as well. \hfill \square

Lemma 5.5. [Hy2, Lemma 2.3] Let R be an \mathbb{N}-graded ring which is finitely generated over a local ring (R_0, m). Suppose $[H^i_{m+r_+}(R)]_{\geq 0} = 0$ for all $i \geq 0$. Then, for all ideals a of R_0, one has

$$[H^i_{a+r_+}(R)]_{\geq 0} = 0 \quad \text{for all } i \geq 0.$$

We are now in a position to prove the following theorem, which is a variation of [Fl, Satz 3.1], [Wa1, Theorem 2.2], and [Hy1, Theorem 1.5].

Theorem 5.6. Let R be an \mathbb{N}-graded normal ring which is finitely generated over R_0, and assume that R_0 is a local ring essentially of finite type over a field of characteristic zero. Then R has rational singularities if and only if

1. R is Cohen-Macaulay,
2. R_p has rational singularities for all $p \in \text{Spec } R \setminus V(R_+)$, and
3. $a(R) < 0$.

Proof. It is straightforward to see that conditions (1)–(3) hold when R has rational singularities, and we focus on the converse. Consider the morphism

$$Y = \text{Proj } R^2 \xrightarrow{f} \text{Spec } R.$$
Let $g: Z \to Y$ be a desingularization of Y; the composition

$$Z \xrightarrow{g} Y \xrightarrow{f} \text{Spec} R$$

is then a desingularization of $\text{Spec} R$. Note that $Y = \text{Proj} R^\sharp$ has rational singularities by Lemma 5.3 so

$$g_* \mathcal{O}_Z = \mathcal{O}_Y \quad \text{and} \quad R^q g_* \mathcal{O}_Z = 0 \quad \text{for all} \quad q \geq 1.$$

Consequently the Leray spectral sequence

$$E_2^{p,q} = H^p(Y, R^q g_* \mathcal{O}_Z) \Rightarrow H^{p+q}(Z, \mathcal{O}_Z)$$

degenerates, and we get $H^p(Z, \mathcal{O}_Z) = H^p(Y, \mathcal{O}_Y)$ for all $p \geq 1$. Since $\text{Spec} R$ is affine, we also have $R^p(g \circ f)_* \mathcal{O}_Z = H^p(Z, \mathcal{O}_Z)$. To prove that R has rational singularities, it now suffices to show that $H^p(Y, \mathcal{O}_Y) = 0$ for all $p \geq 1$. Consider the map $\pi: Y \to X = \text{Proj} R$. We have

$$H^p(Y, \mathcal{O}_Y) = H^p(X, \pi_* \mathcal{O}_X) = \bigoplus_{n \geq 0} H^p(X, \mathcal{O}_X(n)) = [H^p_{R^+}(R)]_{\geq 0}.$$

By condition (1), we have $[H^p_{m+R^+}(R)]_{\geq 0} = 0$ for all $p \geq 0$, and so Lemma 5.5 implies that $[H^p_{R^+}(R)]_{\geq 0} = 0$ for all $p \geq 0$ as desired. \square

Proof of theorem 5.2. If R has rational singularities, it is easily seen that conditions (1)–(3) must hold. For the converse, we proceed by induction on r. The case $r = 1$ is Theorem 5.6 established above, so assume $r \geq 2$. It suffices to show that $R_{\mathfrak{M}}$ has rational singularities where \mathfrak{M} is the homogeneous maximal ideal of R. Set

$$m = \mathfrak{M} \cap [R^{r-1}]_0,$$

and consider the \mathbb{N}-graded ring S obtained by inverting the multiplicative set $[R^{r-1}]_0 \setminus m$ in R^{r-1}. Since $R_{\mathfrak{M}}$ is a localization of S, it suffices to show that S has rational singularities. Note that $a(S) = a(R^{r-1})$, which is a negative integer by (1). Using Theorem 5.6 it is therefore enough to show that $R_{\mathfrak{P}}$ has rational singularities for all $\mathfrak{P} \in \text{Spec} R \setminus V(x_{r_1}, x_{r_2}, \ldots, x_{r_t})$. Fix such a prime \mathfrak{P}, and let $\psi: Z^r \to Z^{r-1}$ be the projection to the first $r-1$ coordinates. Note that R^ψ is the ring R regraded such that $\deg x_{r_j} = 0$, and the degrees of x_{ij} for $i < r$ are unchanged. Set

$$p = \mathfrak{P} \cap [R^{r-1}]_0,$$

and let T be the ring obtained by inverting the multiplicative set $[R^{r-1}]_0 \setminus p$ in R^{r-1}. It suffices to show that T has rational singularities. Note that T is an \mathbb{N}^{r-1}-graded ring defined over a local ring (T_0, \mathfrak{p}), and that it has homogeneous maximal ideal $\mathfrak{p} + bT$ where

$$b = (R^{\psi})_+ = (x_{ij} \mid i < r)R.$$
Using the inductive hypothesis, it remains to verify that $a(T) < 0$. By condition (1), for all integers $1 \leq j \leq r - 1$, we have

$$[H^i_{\frak{m}}(R)^{\varphi_j}]_{i \geq 0} = 0 \quad \text{for all } i \geq 0,$$

and using Lemma 5.5 it follows that

$$[H^i_{p+b}(R)^{\varphi_j}]_{i \geq 0} = 0 \quad \text{for all } i \geq 0.$$

Consequently $a(T^{\varphi_j}) < 0$ for $1 \leq j \leq r - 1$, which completes the proof. \hfill \Box

6. F-regularity

For the theory of tight closure, we refer to the papers [HH1, HH2] and [HH3]. We summarize results about F-rational and F-regular rings:

Theorem 6.1. The following hold for rings of prime characteristic.

1. Regular rings are F-regular.
2. Direct summands of F-regular rings are F-regular.
3. F-rational rings are normal; an F-rational ring which is a homomorphic image of a Cohen-Macaulay ring is Cohen-Macaulay.
4. F-rational Gorenstein rings are F-regular.
5. Let R be an \mathbb{N}-graded ring which is finitely generated over a field R_0. If R is weakly F-regular, then it is F-regular.

Proof. For (1) and (2) see [HH1] Theorem 4.6 and [HH1] Proposition 4.12 respectively; (3) is part of [HH2] Theorem 4.2, and for (4) see [HH2] Corollary 4.7, Lastly, (5) is [LS] Corollary 4.4.

The characteristic zero aspects of tight closure are developed in [HH4]. Let K be a field of characteristic zero. A finitely generated K-algebra $R = K[x_1, \ldots, x_m]/\frak{a}$ is of F-regular type if there exists a finitely generated \mathbb{Z}-algebra $A \subseteq K$, and a finitely generated free A-algebra

$$R_A = A[x_1, \ldots, x_m]/\frak{a}_A,$$

such that $R \cong R_A \otimes_A K$ and, for all maximal ideals μ in a Zariski dense subset of $\text{Spec } A$, the fiber rings $R_A \otimes_A A/\mu$ are F-regular rings of characteristic $p > 0$. Similarly, R is of F-rational type if for a dense subset of μ, the fiber rings $R_A \otimes_A A/\mu$ are F-rational. Combining results from [Ha, HW, MS, Sm] one has:

Theorem 6.2. Let R be a ring which is finitely generated over a field of characteristic zero. Then R has rational singularities if and only if it is of F-rational type. If R is \mathbb{Q}-Gorenstein, then it has log terminal singularities if and only if it is of F-regular type.
Proposition 6.3. Let K be a field of characteristic $p > 0$, and R an \mathbb{N}-graded normal ring which is finitely generated over $R_0 = K$. Let ω denote the graded canonical module of R, and set $d = \dim R$.

Suppose R is F-regular. Then, for each integer k, there exists $q = p^e$ such that

$$\operatorname{rank}_K R_k \leq \operatorname{rank}_K [H^d_m(\omega^{(q)})]_k.$$

Proof. If $d \leq 1$, then R is regular and the assertion is elementary. Assume $d \geq 2$. Let $\xi \in [H^d_m(\omega)]_0$ be an element which generates the socle of $H^d_m(\omega)$. Since the map $\omega^{[q]} \mapsto \omega^{(q)}$ is an isomorphism in codimension one, $F^c(\xi)$ may be viewed as an element of $H^d_m(\omega^{(q)})$ as in [Wa2].

Fix an integer k. For each $e \in \mathbb{N}$, set V_e to be the kernel of the vector space homomorphism

$$R_k \longrightarrow [H^d_m(\omega^{(p^e)})]_k,$$

where $c \mapsto cF^e(\xi)$.

If $cF^{e+1}(\xi) = 0$, then $F^c(cF^{e+1}(\xi)) = c^p F^{e+1}(\xi) = 0$; since R is F-pure, it follows that $cF^e(\xi) = 0$. Consequently the vector spaces V_e form a descending sequence

$$V_1 \supseteq V_2 \supseteq V_3 \supseteq \cdots.$$

The hypothesis that R is F-regular implies $\bigcap_e V_e = 0$. Since each V_e has finite rank, $V_e = 0$ for $e \gg 0$. Hence the homomorphism (6.3.1) is injective for $e \gg 0$. \hfill \square

We next record tight closure properties of general \mathbb{N}-graded hypersurfaces. The results for F-purity are essentially worked out in [HR].

Theorem 6.4. Let $A = K[x_1, \ldots, x_m]$ be a polynomial ring over a field K of positive characteristic. Let d be a nonnegative integer, and set $M = (\binom{d+m-1}{d} - 1)$. Consider the affine space \mathbb{A}^M_K parameterizing the degree d forms in A in which x_1^d occurs with coefficient 1.

Let U be the subset of \mathbb{A}^M_K corresponding to the forms f for which A/fA F-pure. Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$.

Let V be the set corresponding to forms f for which A/fA is F-regular. Then V contains a nonempty Zariski open set if $d < m$, and is empty otherwise.

Proof. The set U is Zariski open by [HR page 156] and it is empty if $d > m$ by [HR Proposition 5.18]. If $d \leq m$, the square-free monomial $x_1 \cdots x_d$ defines an F-pure hypersurface $A/(x_1 \cdots x_d)$. A linear change of variables yields the polynomial

$$f = x_1(x_1 + x_2) \cdots (x_1 + x_d)$$

in which x_1^d occurs with coefficient 1. Hence U is nonempty for $d \leq m$.

If $d \geq m$, then A/fA has a-invariant $d - m \geq 0$ so A/fA is not F-regular. Suppose $d < m$. Consider the set $W \subseteq \mathbb{A}^M_K$ parameterizing the forms f for which A/fA is F-pure and $(A/fA)_{\mathfrak{m}_1}$ is regular; W is a nonempty open subset of \mathbb{A}^M_K. Let f correspond to a point of W. The element $\mathfrak{m}_1 \in A/fA$ has a power which
is a test element; since A/fA is F-pure, it follows that \mathfrak{p}_1 is a test element. Note
that $\mathfrak{p}_2, \ldots, \mathfrak{p}_m$ is a homogeneous system of parameters for A/fA and that \mathfrak{p}_1^{d-1}
generates the socle modulo $(\mathfrak{p}_2, \ldots, \mathfrak{p}_m)$. Hence the ring A/fA is F-regular
if and only if there exists a power q of the prime characteristic p such that
\[
q x_1^{(d-1)q+1} \notin (x_2^q, \ldots, x_m^q, f)A.
\]
The set of such f corresponds to an open subset of W; it remains to verify that
this subset is nonempty. For this, consider
\[
f = x_1^d + x_2 \cdots x_{d+1},
\]
which corresponds to a point of W, and note that A/fA is F-regular since
\[
x_1^{(d-1)p+1} \notin (x_2^p, \ldots, x_m^p, f)A.
\]

These ideas carry over to multi-graded hypersurfaces; we restrict below to the
bigraded case. The set of forms in $K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ of degree (d, e) in
which $x_1^d y_1^e$ occurs with coefficient 1 is parametrized by the affine space \mathbb{A}_K^N
where $N = \binom{d+m-1}{d-1}'$.

Theorem 6.5. Let $B = K[x_1, \ldots, x_m, y_1, \ldots, y_n]$ be a polynomial
ring over a field K of positive characteristic. Consider the \mathbb{N}^2-grading on B with
deg $x_i = (1, 0)$ and deg $y_j = (0, 1)$. Let d, e be nonnegative integers, and consider
the affine space \mathbb{A}_K^N parameterizing forms of degree (d, e) in which $x_1^d y_1^e$
occurs with coefficient 1.

Let U be the subset of \mathbb{A}_K^N corresponding to forms f for which B/fB is F-pure.
Then U is a Zariski open set, and it is nonempty if and only if $d \leq m$ and $e \leq n$.

Let V be the set corresponding to forms f for which B/fB is F-regular. Then V
contains a nonempty Zariski open set if $d < m$ and $e < n$, and is empty otherwise.

Proof. The argument for F-purity is similar to the proof of Theorem 6.4, if $d \leq m$
and $e \leq n$, then the polynomial $x_1 \cdots x_d y_1 \cdots y_e$ defines an F-pure hypersurface.

If B/fB is F-regular, then $a(B/fB) < 0$ implies $d < m$ and $e < n$. Conversely,
if $d < m$ and $e < n$, then there is a nonempty open set W corresponding to forms f for
which the hypersurface B/fB is F-pure and $(B/fB)_{\mathfrak{p}_1, \mathfrak{p}_2}$ is regular. In
this case, $x_1 y_1 \in B/fB$ is a test element. The socle modulo the parameter ideal $(x_1 - y_1, x_2, \ldots, x_m, y_2, \ldots, y_n)B/fB$ is generated by x_1^{d+e-1}, so B/fB is F-regular
if and only if there exists a power $q = p^e$ such that
\[
x_1^{(d+e-1)q+1} \notin (x_1^q - y_1^q, x_2^q, \ldots, x_m^q, y_2^q, \ldots, y_n^q, f)B.
\]
The subset of W corresponding to such f is open; it remains to verify that it is
nonempty. For this, use $f = x_1^q y_1^q + x_2 \cdots x_{d+1} y_2 \cdots y_{e+1}$.
References

[CHTV] A. Conca, J. Herzog, N. V. Trung, and G. Valla, *Diagonal subalgebras of bigraded algebras and embeddings of blow-ups of projective spaces*, Amer. J. Math. 119 (1997), 859–901.

[CH] S. D. Cutkosky and J. Herzog, *Cohen-Macaulay coordinate rings of blowup schemes*, Comment. Math. Helv. 72 (1997), 605–617.

[Da1] V. I. Danilov, *The group of ideal classes of a completed ring*, Math. USSR Sbornik 6 (1968), 493–500.

[Da2] V. I. Danilov, *Rings with a discrete group of divisor classes*, Math. USSR Sbornik 12 (1970), 368–386.

[Fl] H. Flenner, *Rationale quasihomogene Singularitäten*, Arch. Math. 36 (1981), 35–44.

[GG] A. V. Geramita and A. Gimigliano, *Generators for the defining ideal of certain rational surfaces*, Duke Math. J. 62 (1991), 61–83.

[GGH] A. V. Geramita, A. Gimigliano, and B. Harbourne, *Projectively normal but superabundant embeddings of rational surfaces in projective space*, J. Algebra 169 (1994), 791–804.

[GGP] A. V. Geramita, A. Gimigliano, and Y. Pitteloud, *Graded Betti numbers of some embedded rational n-folds*, Math. Ann. 301 (1995), 363–380.

[GW1] S. Goto and K.-i. Watanabe, *On graded rings. I*, J. Math. Soc. Japan 30 (1978), 179–213.

[GW2] S. Goto and K.-i. Watanabe, *On graded rings. II (Z^n-graded rings)*, Tokyo J. Math. 1 (1978), 237–261.

[Ha] N. Hara, *A characterisation of rational singularities in terms of injectivity of Frobenius maps*, Amer. J. Math. 120 (1998), 981–996.

[HW] N. Hara and K.-i. Watanabe, *F-regular and F-pure rings vs. log terminal and log canonical singularities*, J. Algebraic Geom. 11 (2002), 363–392.

[HH1] M. Hochster and C. Huneke, *Tight closure, invariant theory, and the Briançon-Skoda theorem*, J. Amer. Math. Soc. 3 (1990), 31–116.

[HH2] M. Hochster and C. Huneke, *F-regularity, test elements, and smooth base change*, Trans. Amer. Math. Soc. 346 (1994), 1–62.

[HH3] M. Hochster and C. Huneke, *Tight closure of parameter ideals and splitting in module-finite extensions*, J. Algebraic Geom. 3 (1994), 599–670.

[HH4] M. Hochster and C. Huneke, *Tight closure in equal characteristic zero*, in preparation.

[HHR] M. Herrmann, E. Hyry, and J. Ribbe, *On the Cohen-Macaulay and Gorenstein properties of multigraded Rees algebras*, Manuscripta Math. 79 (1993), 343–377.

[HIO] M. Herrmann, S. Ikeda, and U. Orbanz, *Equimultiplicity and blowing up: an algebraic study*, Springer-Verlag, Berlin-New York, 1988.

[HR] M. Hochster and J. Roberts, *The purity of the Frobenius and local cohomology*, Adv. in Math. 21 (1976), 117–172.

[Hy1] E. Hyry, * Blow-up rings and rational singularities*, Manuscripta Math. 98 (1999), 377–390.

[Hy2] E. Hyry, *The diagonal subring and the Cohen-Macaulay property of a multigraded ring*, Trans. Amer. Math. Soc. 351 (1999), 2213–2232.

[Lv1] O. Lavila-Vidal, *On the Cohen-Macaulay property of diagonal subalgebras of the Rees algebra*, Manuscripta Math. 95 (1998), 47–58.

[Lv2] O. Lavila-Vidal, *On the diagonals of a Rees algebra*, thesis, Universitat de Barcelona, 1999.

[LvZ] O. Lavila-Vidal and S. Zarzuela, *On the Gorenstein property of the diagonals of the Rees algebra*, Collect. Math. 49 (1998), 383–397.

[LS] G. Lyubeznik and K. E. Smith, *Strong and weak F-regularity are equivalent for graded rings*, Amer. J. Math. 121 (1999), 1279–1290.
[MS] V. B. Mehta and V. Srinivas, *A characterization of rational singularities*, Asian J. Math. 1 (1997), 249–271.

[RSS] P. Roberts, A. K. Singh, and V. Srinivas, *Annihilators of local cohomology in characteristic zero*, Illinois J. Math. 51 (2007), 237–254.

[STV] A. Simis, N. V. Trung, and G. Valla, *The diagonal subalgebra of a blow-up algebra*, J. Pure Appl. Algebra 125 (1998), 305–328.

[Si] A. K. Singh, *Veronese subrings and tight closure*, Pacific J. Math. 192 (2000), 399–413.

[Sm] K. E. Smith, *F-rational rings have rational singularities*, Amer. J. Math. 119 (1997), 159–180.

[Tr] N. V. Trung, *Diagonal subalgebras and blow-ups of projective spaces*, Vietnam J. Math. 28 (2000), 1–15.

[Wa1] K.-i. Watanabe, *Rational singularities with k*-action*, in: Commutative algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math. 84, Dekker, New York, (1983), 339–351.

[Wa2] K.-i. Watanabe, *F-regular and F-pure normal graded rings*, J. Pure Appl. Algebra 71 (1991), 341–350.

Department of Mathematics, Meiji University, Higashimita 1-1-1, Tama-ku, Kawasaki-shi 214-8571, Japan

E-mail address: kurano@math.meiji.ac.jp

Department of Mathematics, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka-city 812-8581, Japan

E-mail address: esato@math.kyushu-u.ac.jp

Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, UT 84112, USA

E-mail address: singh@math.utah.edu

Department of Mathematics, Nihon University, Sakura-Josui 3-25-40, Setagaya, Tokyo 156-8550, Japan

E-mail address: watanabe@math.chs.nihon-u.ac.jp