The Charge Form Factor of the Neutron from $^2\text{H}(\vec{e}, e' n)p$

I. Passchiera, L. D. van Buurena,b D. Szczerbac, R. Alarcond, Th. S. Bauera,e, D. Boersmaa,e, J. F. J. van den Branda,b, H. J. Bultena,b, M. Ferro-Luzzia,b, D. W. Higinbothamf, C. W. de Jagera,g, S. Klousa,b, H. Kolstera,b, J. Langc, D. Nikolenkoh, G. J. Noorena, B. E. Norumf, H. R. Poolmana,b, I. Rachekh, M. C. Simania,b, E. Sixd, H. de Vriesa, K. Wangf, Z.-L. Zhoui

aNIKHEF, NL-1009 DB Amsterdam, The Netherlands
bDept. of Physics and Astronomy, VU, NL-1081 HV, Amsterdam, The Netherlands
cInstitut für Teilchenphysik, ETH, CH-8093 Zürich, Switzerland
dDept. of Physics and Astronomy, ASU, Tempe, AZ 85287, USA
ePhysics Dept., UU, NL-3508 TA Utrecht, The Netherlands
fDept. of Physics, UVa, Charlottesville, VA 22901, USA
gTJNAF, Newport News, VA 23606, USA
hBINP, Novosibirsk, 630090, Russian Federation
iLaboratory for Nuclear Science, MIT, Cambridge, MA 02139, USA

We report on the first measurement of spin-correlation parameters in quasifree electron scattering from vector-polarized deuterium. Polarized electrons were injected into an electron storage ring at a beam energy of 720 MeV. A Siberian snake was employed to preserve longitudinal polarization at the interaction point. Vector-polarized deuterium was produced by an atomic beam source and injected into an open-ended cylindrical cell, internal to the electron storage ring. The spin correlation parameter A_{ed}^V was measured for the reaction $^2\text{H}(\vec{e}, e'n)p$ at a four-momentum transfer squared of 0.21 (GeV/c)^2 from which a value for the charge form factor of the neutron was extracted.

1. Motivation

The charge distribution of the neutron is described by the charge form factor G_E^n, which is related to the Fourier transform of the distribution and is generally expressed as a function of Q^2, the square of the four-momentum transfer. Data on G_E^n are important for our understanding of the nucleon and are essential for the interpretation of electromagnetic multipoles of nuclei, e.g. the deuteron.

Since a practical target of free neutrons is not available, experimentalists mostly resorted to (quasi)elastic scattering of electrons from unpolarized deuterium4,5 to determine this form factor. The shape of G_E^n as function of Q^2 is relatively well known from high precision elastic electron-deuteron scattering2, but the absolute scale still contains a systematic uncertainty of about 50\%. The slope of G_E^n at $Q^2 = 0 \text{ (GeV/c)}^2$ is known from measurements where thermal neutrons are scattered from atomic electrons 3.1,2}
The systematic uncertainties can be significantly reduced through the measurement of electronuclear spin observables. The scattering cross section with both longitudinal polarized electrons and a polarized target for the $^2\text{H}(\vec{e}, e'N)$ reaction, can be written as

$$S = S_0 \left\{ 1 + P_1^d A^V_d + P_2^d A^T_d + h(A_e + P_1^d A^V_{ed} + P_2^d A^T_{ed}) \right\},$$

where S_0 is the unpolarized cross section, h the polarization of the electrons, and P_1^d (P_2^d) the vector (tensor) polarization of the target. The target analyzing powers and spin-correlation parameters (A_i), depend on the orientation of the nuclear spin. The polarization direction of the deuteron is defined by the angles Θ_d and Φ_d in the frame where the z-axis is along the direction of the three-momentum transfer (\vec{q}) and the y-axis is defined by the vector product of the incoming and outgoing electron momenta. The observable $A^V_{ed}(\Theta_d = 90^\circ, \Phi_d = 0^\circ)$ contains an interference term, where the effect of the small charge form factor is amplified by the dominant magnetic form factor (see e.g. Refs. [4,5]). In the present paper we describe a measurement performed at NIKHEF (Amsterdam), which uses a stored polarized electron beam and a vector-polarized deuterium target, to determine G^n_E via a measurement of $A^V_{ed}(90^\circ, 0^\circ)$.

2. Experimental setup

The experiment was performed with a polarized gas target internal to the AmPS electron storage ring. An atomic beam source (ABS) [6,7] was used to inject a flux of 4.6×10^{16} deuterium atoms/s into a cooled storage cell.

Polarized electrons were produced by photo-emission from a strained-layer semiconductor cathode (InGaAsP) [8]. After linear acceleration to 720 MeV the electrons were injected and stacked in the AmPS storage ring. Every 5 minutes the ring was refilled, after reversal of the electron polarization at the source. The polarization of the stored electrons was maintained by setting the spin tune to 0.5 with a strong solenoidal field (using the Siberian snake principle [9]).

Scattered electrons were detected in the large-acceptance magnetic spectrometer [10]. The electron detector was positioned at a central angle of 40°, resulting in a central value of $Q^2 = 0.21(\text{GeV/c})^2$. Neutrons and protons were detected in a time-of-flight (TOF) system made of two subsequent and identical scintillator arrays. Each of the four bars in an array was preceded by two plastic scintillators used to identify and/or veto charged particles. By simultaneously detecting protons and neutrons in the same detector, one can construct asymmetry ratios for the two reaction channels $^2\text{H}(\vec{e}, e'p)n$ and $^2\text{H}(\vec{e}, e'n)p$, in this way minimizing systematic uncertainties associated with the deuteron ground-state wave function, absolute beam and target polarizations, and possible dilution by cell-wall background events.

3. Results

An experimental asymmetry ($A_{exp} = \frac{N_+ - N_-}{N_+ + N_-}$) can be constructed, where N_\pm is the number of events that pass the selection criteria, with hP_1^d either positive or negative. A_{exp} for the $^2\text{H}(\vec{e}, e'p)n$-channel, integrated up to a missing momentum of 200 MeV/c,
was used to determine the effective product of beam and target polarization by comparing to the predictions of the model of Arenhövel et al. [4]. This advanced, non-relativistic model has shown to provide good descriptions for quasifree proton knockout from tensor-polarized deuterium[11]. Finite acceptance effects were taken into account with a Monte Carlo code.

The spin-correlation parameter for the neutron events was obtained from the experimental asymmetry by correcting for the contribution of protons misidentified as neutrons (less than 1%, as determined from a calibration with the reaction $^1\text{H}(e,e'p)$), and for the product of beam and target polarization, as determined from the $^2\text{H}(\vec{e},e'p)n$ channel.

![Figure 1](image1.png)

Figure 1. Data and predictions for the sideways asymmetry $A_{V_el}^{V}(90^\circ,0^\circ)$ versus missing momentum for the $^2\text{H}(\vec{e},e'n)p$ reaction. The curves represent the results of the full model calculations of Arenhövel et al. assuming various values for G_E^n.

![Figure 2](image2.png)

Figure 2. Data and theoretical predictions for G_E^n. The solid circle shows our result, the cross, open circle, and square the results from double polarization measurements on ^3He [12] and the triangle on ^2H [13]. The shaded area indicates the systematic uncertainty from Ref. [2]. The dotted curve shows the results of Ref. [14], while the solid and dashed curves represent the predictions of the VMD-model of Ref. [15].

Figure 3 shows the spin-correlation parameter for the $^2\text{H}(\vec{e},e'n)p$ channel as a function of missing momentum. The data are compared to the predictions of the full model of Arenhövel et al.[4], assuming the dipole parameterization for the magnetic form factor of the neutron, folded over the detector acceptance with our Monte Carlo code for various values of G_E^n. Full model calculations are required for a reliable extraction of G_E^n. We
extract $G_E^n(Q^2 = 0.21 \text{(GeV}/c)^2) = 0.066 \pm 0.015 \pm 0.004$, where the first (second) error indicates the statistical (systematic) uncertainty.

In Fig. 2 we compare our experimental result to other data obtained with spin-dependent electron scattering. The figure also shows the results from Ref. [2]. It is seen that our result favors their extraction of G_E^n which uses the Nijmegen potential.

4. Conclusions

In summary, we presented the first measurement of the sideways spin-correlation parameter $A_{ed}^V(90^\circ, 0^\circ)$ in quasifree electron-deuteron scattering from which we extract the neutron charge form factor at $Q^2 = 0.21 \text{(GeV}/c)^2$. When combined with the known value and slope [3] at $Q^2 = 0 \text{(GeV}/c)^2$ and the elastic electron-deuteron scattering data from Ref. [2], this result puts strong constraints on G_E^n up to $Q^2 = 0.7 \text{(GeV}/c)^2$.

We would like to thank the NIKHEF and Vrije Universiteit technical groups for their outstanding support and Prof. H. Arenhövel for providing the calculations. This work was supported in part by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the National Science Foundation under Grants No. PHY-9504847 (Arizona State Univ.), US Department of Energy under Grant No. DE-FG02-97ER41025 (Univ. of Virginia) and the Swiss National Foundation.

REFERENCES

1. A. Lung et al., Phys. Rev. Lett. 70, 718 (1993).
2. S. Platchkov et al., Nucl. Phys. A510, 740 (1990).
3. S. Kopecki et al., Phys. Rev. Lett. 74, 2427 (1995); Phys. Rev. C56, 2229 (1997).
4. H. Arenhövel, W. Leidemann, and E. L. Tomusiak, Z. Phys. A331, 123 (1988); Erratum, Z. Phys. A334, 363 (1989).
5. T.W. Donnelly and A.S. Raskin, Ann. Phys. 169, 247 (1986).
6. M. Ferro-Luzzi et al., Nucl. Instr. Meth. A364, 44 (1995).
7. L. D. van Buuren et al., these proceedings.
8. Y. B. Bolkhovityanov et al., Proc. of the 12th Int. Symposium on High Energy Spin Physics, edited by C. W. de Jager et al., p. 730–732, World Scientific, 1997.
9. Ya. S. Derbenev and A. M. Kondratenko, Sov. Phys.-JETP 37, 968 (1973); Sov. Phys.-Dokl. 20, 830 (1975).
10. D.J.J. de Lange et al., Nucl. Instr. Meth. A412, 254 (1998); Nucl. Instr. Meth. A406, 182 (1998).
11. Z.-L. Zhou et al. Phys. Rev. Lett. 82, 687 (1999).
12. M. Meyerhoff et al., Phys. Lett. B327, 201 (1994); C.E. Jones et al., Phys. Rev. C44, R571 (1991); A.K. Thompson et al., Phys. Rev. Lett. 68, 2901 (1992).
13. T. Eden et al., Phys. Rev. C50, R1749 (1994).
14. S. Galster et al., Nucl. Phys. B32, 221 (1971).
15. M.F. Gari and W. Krümpelmann, Phys. Lett. B274, 159 (1992).