Effect of Various Nanoparticles (GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$) Additions on the Activity of CsF-RbF-AlF$_3$ Flux and Mechanical Behavior of Al/Steel Brazed Joints

Zhen Yao, Songbai Xue * and Junxiang Zhang

College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; yaozhen123@nuaa.edu.cn (Z.Y.); zhangjunxiang126@163.com (J.Z.)
* Correspondence: xuesb@nuaa.edu.cn; Tel.: +86-025-8489-6070

Received: 15 July 2020; Accepted: 5 August 2020; Published: 7 August 2020

Abstract: In this study, brazing AA6061 to Q235 steel using flame brazing was performed with 70.9 wt.% CsF-0.5 wt.% RbF-28.6 wt.% AlF$_3$ fluxes doped with GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ nanoparticles, matched with a Zn-15Al filler metal, and the spreadability of the filler metal and the mechanical properties of brazed joints were investigated at the same time. The results showed suitable amounts of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ doped into the base flux could strengthen the filler metal in wetting and spreading on the surface of aluminum alloy and steel to different degrees. The suitable ranges of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$, respectively, were 0.0075–0.01 wt.%, 0.0075–0.01 wt.%, 0.0075–0.01 wt.% and 0.009–0.01 wt.%, and the maximum spreading area was obtained via doping with GaF$_3$. The shear strength of brazed joints reached the peak at 126 MPa when 0.075 wt.% GaF$_3$ was added. Comparative tests proved that the activity of the CsF-RbF-AlF$_3$ flux doped with GaF$_3$ was the best. The reason was that the CsF-RbF-AlF$_3$-GaF$_3$ flux was competent in removing oxides of the base metal and decreasing the interfacial tension, in virtue of the activity of Ga$^{3+}$ as well as F$^-$.

Keywords: GaF$_3$; ZnF$_2$; Zn(BF$_4$)$_2$; Ga$_2$O$_3$; flux; Zn-Al filler metal; spreadability; mechanical properties

1. Introduction

The increase in joining dissimilar metals has been prompted by the increasing demand for light weights and fuel efficiency in modern industries in recent years [1]. The emerging trend towards lightweight, high performance and emissions reduction is leading to the increasing use of multi-material hybrid structures in electric vehicles [2]. The hybrid structure of aluminum and steel are superior to conventional materials because of the high mechanical properties of steel and the excellent corrosion resistance of aluminum [3]. Naturally, the combination of aluminum alloy and steel shows huge research value and future potential, and has become the subject of many investigators [4].

However, it remains an unconquerable problem to get stable brazed joints between aluminum/metals dissimilar to steel because of the formation of brittle and hard intermetallic compounds, like Fe$_x$Al$_y$ [5]. The complexity and randomness of the brazing process makes the design and development of brazing materials more complicated and time-consuming than ordinary materials [6]. Therefore, it is absolutely imperative to control the formation of Fe-Al intermetallic compounds. EI-Sayed and Naka [7] found that the maximum bond shear strength of 127 MPa was obtained for an Al-steel joint brazed at 663 K with a 3 s ultrasound application time using a Zn-14Al alloy. It was reported that the shear strength of brazed joints reached the peak at 131 MPa when the Zn-15Al filler metal was added in the joining of lap joints of 6061 aluminum alloy to the 304 stainless steel via a flame brazing process, with the Zn-xAl filler metals matching the CsF-0.5 wt.%...
RbF-AlF₃ flux [8]. The interfacial layer in the weld made with the Zn-15Al filler metal was comprised of \((\text{FeAl}_{3})\text{Zn}_{x}\) and \((\text{Fe}_{2}\text{Al}_{5})\text{Zn}_{x}\) [9].

Nanomaterials have been widely applied due to their unique properties. Joining technology at the nanometer scale has gradually developed with the popularity of nanomaterials, which have broad application prospects in the fields of electronics, aero-space, biology and health care [10]. Previous studies have indicated that [11] trace amounts of Ga₂O₃ addition in the CsF-0.5 wt.% RbF-AlF₃ flux could obviously strengthen the Zn-2Al filler metal in its wetting and spreading on the surface of 5052 aluminum alloy and Q235 low-carbon steel. One previous study discussed how the addition of GaF₃ and Ga₂O₃ nanoparticles influenced the wettability and spreadability of the CsF-AlF₃ flux under the same conditions [12].

The influence that adding heavy metal fluoride, ZnF₂, SnF₂, CdF₂, PbF₂ and KBF₄ into the KF-AlF₃ flux has on the spreadability of brazing aluminium was investigated, and adding ZnF₂ could greatly improve the brazing area [13]. Therefore, the fourth component, ZnF₂, has been considered for doping into CsF-0.5 wt.% RbF-AlF₃ flux in order to reduce the price in this paper. ZnCl₂ and SnCl₂ were added into the CsF-AlF₃ flux for connecting aluminium alloys [14]. The joints were bonded soundly when the mass fractions of ZnCl₂ and SnCl₂ are about 4%.

The effect of KBF₄ addition on the microstructure of the Mg-6Zn-1Si alloy has been investigated [15], and the morphology of the Mg₂Si phase changed with the addition of 1.5 wt.% KBF₄. To compare the activity of BF₄⁻ and its unified positive ions in reducing the variables, Zn(BF₄)₂ has been chosen.

In this paper, brazing AA6061 to Q235 steel using flame brazing has been performed with improved CsF-0.5 wt.% RbF-AlF₃ fluxes doped with a GaF₃, ZnF₂, Zn(BF₄)₂ and Ga₂O₃ nanoparticles-matched Zn-15Al filler metal, and the spreadability of the filler metal and the mechanical properties of the brazed joints were investigated at the same time. XDR analysis was carried out and the reaction mechanism was analyzed. The results could be useful for brazing AA6061 to Q235 steel while choosing a suitable flux.

2. Materials and Methods

The 6061 aluminum alloy and Q235 steel were used in this work as base metals. The compositions of the base metals were listed in Tables 1 and 2. Zn–15Al alloys were chosen as the filler metal. A CsF-0.5 wt.% RbF-AlF₃ flux was prepared by using commercial CsF-AlF₃ flux and an RbF of AR purity (Zhejiang Xinrui Welding Materials Co., Ltd., Shengzhou, China). CsF-RbF-AlF₃-GaF₃ fluxes with different compositions of AR purity GaF₃ were confected and the range of GaF₃ was 0.0001–0.125 wt.%. Same amounts of ZnF₂, and Zn(BF₄)₂ of AR purity were doped in the same way to obtain CsF-RbF-AlF₃-ZnF₂ fluxes and CsF-RbF-AlF₃-Zn(BF₄)₂ fluxes. Nano Ga₂O₃ powder in the same range was doped into the CsF-RbF-AlF₃ flux to get the corresponding CsF-RbF-AlF₃-Ga₂O₃ fluxes. After mixing into a liquid, the fluxes were then dried to powder with the oven. The chemical compositions of these four nanoparticles doped into the fluxes has been listed in Table 3.

Alloy	Mg	Si	Cu	Cr	Mn	Zn	Al
6061	1.10	0.61	0.25	0.12	0.01	0.01	Bal.

Alloy	C	Mn	Si	S	P	Fe
Q235	0.18	0.48	0.30	0.04	0.04	Bal.

Table 1. Chemical composition of 6061 aluminum alloy (wt.%).

Table 2. Chemical composition of Q235 steel (wt.%).
Table 3. Chemical composition of nanoparticles doped into the fluxes (wt.%).

Number	1	2	3	4	5	6	7	8	9	10	11
Composition	0	0.0001	0.001	0.00325	0.0045	0.005	0.006	0.0075	0.009	0.01	0.0125

Zn–15Al alloys were extruded into a 2 mm diameter wire as an advanced preparation. SiC paper was used for mechanically polishing the specimens and filler metals. Before brazing, these materials were all degreased with acetone and cleaned by ethanol.

In order to prepare for the spreading test, the base metals were processed into plates of 40 mm × 40 mm × 3 mm. The spreading test was performed according to China’s National Standard GB 11364-2008. The weights of the solder and flux used in the test should be 100 mg and 15 mg, respectively. The filler metals were placed in the center of the base metals covered with the fluxes prepared previously, as in Figure 1, and then put into the electrical resistance furnace (Zhejiang Xinrui Welding Materials Co., Ltd., Shengzhou, China). The heating temperature was uniformly set at 530 °C. The holding time of each test was set as 60 s. After spreading, the test boards were cleaned using ultrasonic wave wails and the spreading areas were calculated by the software Image-ro Plus (Image-Pro Plus Version 6.0). To be specific, we photographed the spreading boards with the graduated ruler and imported the image into Image-Pro Plus. By determining the actual scale in the picture and using chromatic aberration to circle the spreading outline, the spreading areas could be calculated. For the credibility of the results, the above tests of each group were repeated 5 times and the spreading areas of each group were averaged. At last, the residues of the fluxes were collected and the components in the residues were analyzed with a Brucker D8 XRD analyzer (Ningbo Institute of Materials Technology & Engineering, Ningbo, China).

![Figure 1. Schematic diagram of the spreading test (mm).](image)

For the shear performance tests, the supplied base metals for the brazed joint were processed into plates with the size of 60 mm × 25 mm × 3 mm. Figure 2 shows the schematic illustration of the brazed joint. The shear performance tests of the AA6061/Q235 brazed joints were carried out in strict accordance with China’s National Standard GB 11363-2008. The equipment was an SAMS-CMT5105 universal tensile testing machine (Nanjing University of Aeronautics and Astronautics, Nanjing, China), and the loading rate in the tensile process was 3 mm/min. The test results for each group of samples were all averaged from 5 samples. The brazing temperature was detected and controlled at around 530 °C.
3. Results and Discussion

3.1. The Spreadability and Wettability of Zn-15Al Filler Metal

The influence of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ particles, doped into CsF-0.5 wt.% RbF-AlF$_3$ fluxes, on the spreadability of the Zn-15Al filler metal was studied via spreading tests performed on the surface of the 6061 aluminum alloy and the Q235 steel. The results were as follows.

The relationships between the concentrations of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ and the spreading areas on the 6061 aluminum alloy are shown in Figure 3a. While the content of GaF$_3$ was 0.01 wt.%, the spreading area was maximized to 329 mm2, which was 65% larger than the area without any addition. With 0.0075 wt.%-doped ZnF$_2$, the spreading area was maximized at 312 mm2, and showed a 56% increase compared with the results derived without adding ZnF$_2$. While the content of Zn(BF$_4$)$_2$ was 0.0075 wt.%, the spreading area was maximized at 304 mm2, and was 52% larger than the area without any addition. With 0.009 wt.%-doped Ga$_2$O$_3$, the spreading area was maximized at 321 mm2 and showed a 61% increase compared with the results derived without adding Ga$_2$O$_3$.

Figure 3b showed that the spreadability of the Zn-15Al filler metal over Q235 steel was clearly improved with GaF$_3$ doped into the CsF-RbF-AlF$_3$ flux, compared to others. While the content of GaF$_3$ was 0.0075 wt.%, the spreading area was maximized at 189 mm2. With 0.01 wt.%-doped ZnF$_2$, the spreading area was maximized at 155 mm2. While the content of Zn(BF$_4$)$_2$ was 0.01 wt.%, the spreading area was maximized at 149 mm2. With 0.01 wt.%-doped Ga$_2$O$_3$, the spreading area was maximized at 161 mm2. With the addition of GaF$_3$, the spreading areas over Q235 steel underwent a 105% increase, compared with the results derived without adding GaF$_3$ (92 mm2), and this substance showed clear advantages over ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$.

The pictures of the best spreadings of Zn-15Al alloys on AA6061 and Q235, with CsF-RbF-AlF$_3$ flux doped with different additions, are shown in Figure 4. Taking the test results from two kinds of base metal together, it could be concluded that the suitable ranges of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ in the CsF-RbF-AlF$_3$ flux respectively were 0.0075–0.01 wt.%, 0.0075–0.01 wt.%, 0.0075–0.01 wt.% and 0.009–0.01 wt.% and the maximum spreading area of all the tests was obtained via doping with GaF$_3$.

Figure 2. Schematic illustration of the brazed joint (mm).

Figure 3. Spreading areas of Zn-15Al filler metal (a) 6061 aluminum alloy; (b) Q235 steel.
3.2. The Mechanical Properties of Brazed Joints

The variation of brazed joint shear strength was shown in Figure 5. It could be seen that the addition of GaF₃ has a significant impact on the brazed joint shear strength of AA6061/Q235. While the content of GaF₃ was 0.075 wt.%, the shear strength reached a maximum at 126 MPa, which was 110% higher than that achieved without GaF₃ addition (64.5 MPa). While the content of ZnF₂ was 0.01 wt.%, the maximum shear strength was 111 MPa. While the content of Zn(BF₄)₂ was 0.01 wt.%, the shear strength reached the top at 105 MPa. While the content of Ga₂O₃ was 0.01 wt.%, the maximum shear strength was 116 MPa.

![Figure 4](image-url)

Figure 4. Spreading boards of Zn-15Al filler metal on base metals with CsF-RbF-AlF₃ flux doped with different additions: (a–d) 6061 aluminum; (e–h) Q235 low-carbon steel.

![Figure 5](image-url)

Figure 5. Influence of contents of GaF₃, ZnF₂, Zn(BF₄)₂ and Ga₂O₃ on shear strength of brazed joints.
It could be seen that, only considering the shear strength of the AA6061/Q235 brazed joints, the addition range should be controlled as 0.0075–0.01 wt.%, and this appropriate addition range coincides with the results of the spreading test. Among the four doped ingredients selected, GaF$_3$ showed the best performance as regards the mechanical properties of brazed joints. The second-best performance was achieved with Ga$_2$O$_3$. At the same time, Zn(BF$_4$)$_2$ was inferior to others.

The typical fracture modes of the 6061/Q235 brazed joints were shown in Figure 6. The fracture of the joint occurred mainly at the interface layer of the brazing joint and the Q235 steel. It demonstrated that the interface layer between the filler metal and the Q235 steel was the weakest area of the whole joint, and that when there were layers of brittle compounds at the interface, the brazed joint would crack at the layers of brittle compounds first.

\[
\text{Zn(BF}_4\text{)}_2 \rightarrow \text{ZnF}_2 + 2\text{BF}_3
\] (1)
Zn(BF₄)₂ could produce BF₃ as shown Equation (1). BF₃ could react with oxides such as FeO, Fe₂O₃, NiO, Cr₂O₃ and ZnO, thus playing the role of removing the oxide film and promoting the wetting, spreading and flowing of the molten filler metal in the brazed part [16]. However, BF₃ could not react with oxides such as Al₂O₃ and MgO on the surface of the aluminum alloy, thus limiting the activity of the CsF-RbF-AlF₃-Zn(BF₄)₂ flux.

3.3.2. Effect of ZnF₂

It was found in the study [13] that adding ZnF₂ to the flux could produce a mass transfer effect, and improve the activity of the flux. This was because the ZnF₂ was reduced by the base metal, and molten Zn has great solubility in aluminum. It was also observed that adding ZnF₂ could reduce the initial temperature of the flux, which was also related to the reduction of the precipitation of molten Zn.

\[
\text{ZnF}_2 \xrightarrow{\Delta} \text{Zn} \downarrow + 2\text{F}^- \quad (2)
\]

\[
\text{F}^- + \text{Al}_2\text{O}_3 \rightarrow \text{AlF}_3 + \text{O}^{2-} \quad (3)
\]

\[
\text{F}^- + \text{Fe}_2\text{O}_3 \rightarrow \text{FeF}_3 + \text{O}^{2-} \quad (4)
\]
When heated, ZnF$_2$ would react as shown Equation (2). The F$^{-}$ generated by the reaction would react with the oxide on the surface of the base metals, as shown in Equations (3) and (4), respectively, thus enhancing the membrane removal effect of CsF-RbF-AlF$_3$ flux. The Zn atoms precipitated from the reaction would react with the aluminum atoms on the surface of the aluminum alloy and the Fe atoms on the surface of steel, and the wetting and spreading would be promoted on the surface of the base metals [17].

The presence of ZnSiO$_3$, ZnFe$_2$O$_4$, AlPO$_4$ and FePO$_4$ in the residue on the one hand indicated that the ZnF$_2$ in the flux did participate in the reaction, and the Zn atoms from the reduced precipitation participated in the reaction and played a role in improving the activity. On the other hand, it indicated that the enrichment phenomenon of P occurred, which resulted in the formation of compounds such as AlPO$_4$ and FePO$_4$, which also played an important role in the removal of the oxide film from the steel surface.

3.3.3. Effect of Ga$_2$O$_3$

The “skin effect” of high-frequency currents is a well-known natural phenomenon in physics, especially in electromagnetism. However, the “skin effect” of some oxides or halides in brazing has rarely been reported. It was found that [18] adding a very small amount of Ga$_2$O$_3$ to the CsF-RbF-AlF$_3$ flux could increase the brazed area by about 50~90%. Observing the surface of the spreading filler metal via its spectrum showed that much Ga$_2$O$_3$ was enriched at the spreading surface and at the edge of the spreading area. Further, the relative amount of Ga$_2$O$_3$ was higher here than in the middle part, from which it could be concluded that the chemical reaction mechanism resulted from the skin effect of the Ga$_2$O$_3$, which enabled the Ga$_2$O$_3$ to flow fast and then promote the CsF-RbF-AlF$_3$ flux flow, so as to improve the spreadability of the filler metal.

\[\text{MgO} + \text{Ga}_2\text{O}_3 \rightarrow \text{MgGa}_2\text{O}_4 \]

(5)

Extremely small amounts of Ga$_2$O$_3$ were enriched to participate in the reaction, and played a nonnegligible role. The appearance of MgGa$_2$O$_4$ indicated that the reaction between the flux and the MgO, which was more stable than Al$_2$O$_3$, was also liable to react as in Equation (5). However, RbF did not appear as a compound phase in the residue, which indicated that the compound of Rb was diffused-distributed, and acted as catalysis and welding aid. CsF always appeared in the form of Cs$_{11}$O$_3$, which indicated that CsF did undergo chemical reactions with Al$_2$O$_3$ and MgO, and replaced the O atoms in Al$_2$O$_3$ and MgO. This result explains why the spreading area increased with the increased addition of Ga$_2$O$_3$, shown in Figure 3.

3.3.4. Effect of GaF$_3$

From the above it was demonstrated that the CsF-RbF-AlF$_3$ flux doped with GaF$_3$ obtained the maximum spreading area, both on 6061 aluminum alloy and Q235 steel, and reached the highest shear strength of 126MPa. The CsF-RbF-AlF$_3$ flux doped with GaF$_3$ showed remarkable superiority to that doped with ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$.

The mechanism of GaF$_3$ could be summarized as a “synergistic effect” on the oxide removal of steel. When GaF$_3$ was doped, the flux could not only remove the oxide films on the surface of the aluminum alloy, but could also remove those on the surface of the steel at the same time, thus making it superior to brazed aluminum-steel heterogeneous materials.

\[\text{GaF}_3 \rightarrow \text{Ga}^{3+} + 3\text{F}^- \]

(6)

\[4\text{ZnO} + 2\text{GaF}_3 \rightarrow \text{ZnGa}_2\text{O}_4 + 3\text{ZnF}_2 \]

(7)

The ionic compound GaF$_3$ consists of cations Ga$^{3+}$ and anions F$^{-}$, and makes it such that Ga$^{3+}$ and F$^{-}$ ions can be more easily dissociated from GaF$_3$ than from Ga$_2$O$_3$, as in Equation (6), while been
heated. This flux was competent in removing the oxides of the base metal and decreasing the interfacial tension, in virtue of the activity of Ga$^{3+}$, which has “skin effect”, as well as F$^-$, which reacts as in Equations (3) and (4). In addition, as Equation (7) showed, the production of ZnF$_2$ enhanced the activity of the flux.

4. Conclusions

It was shown that the CsF-RbF-AlF$_3$ flux doped with GaF$_3$ obtained the maximum spreading area, both on 6061 aluminum alloy and Q235 low-carbon steel, and reached the highest shear strength of 126 MPa. The above analysis led to the following conclusions:

(1) The spreading tests indicated that the spreadability of the Zn-15Al filler metal both on Q235 steel and AA6061 alloy was promoted with a CsF-RbF-AlF$_3$ flux doped with GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$, and the performance of GaF$_3$ was the best. The suitable ranges of GaF$_3$, ZnF$_2$, Zn(BF$_4$)$_2$ and Ga$_2$O$_3$ respectively were 0.0075–0.01 wt.%, 0.0075–0.01 wt.%, 0.0075–0.01 wt.% and 0.009–0.01 wt.%.

(2) The shear strength of the brazed joints reached its peak at 126 MPa, when 0.075 wt.% GaF$_3$ was added. The second-best performance was Ga$_2$O$_3$. At the same time, Zn(BF$_4$)$_2$ was inferior to others.

(3) The fluxes doped with GaF$_3$ were competent in removing oxides of the base metal and decreasing the interfacial tension, in virtue of the activity of Ga$^{3+}$, which has a “skin effect”, as well as F$^-$. In consequence, the activity of the CsF-RbF-AlF$_3$ doped with GaF$_3$ was better than that of others.

Author Contributions: Conceptualization, S.X.; methodology, J.Z.; software, Z.Y.; validation, Z.Y.; formal analysis, Z.Y.; investigation, Z.Y.; resources, S.X.; data curation, Z.Y.; writing—original draft preparation, Z.Y.; writing—review and editing, Z.Y.; visualization, Z.Y.; supervision, S.X.; project administration, S.X.; funding acquisition, S.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China, Grant No. 51375233 and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Acknowledgments: We gratefully acknowledge the support of Jiangsu Higher Education Institutions for providing a scholarship for Zhen Yao. Songbai Xue acknowledges financial support from the National Natural Science Foundation of China, Grant No. 51375233.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Li, P.; Lei, Z.L.; Zhang, X.R.; Liu, J.G.; Chen, Y.B. Effects of laser power on the interfacial intermetallic compounds and mechanical properties of dual-spot laser welded–brazed Ti/Al butt joint. *Opt. Laser Technol.* 2020, 124, 1–11. [CrossRef]

2. Li, H.; Liu, X.S.; Zhang, Y.S.; Senkara, J.; Li, G.Y.; Ma, M.T. Current research and challenges in innovative technology of joining dissimilar materials for electric vehicles. *Mater. Rep.* 2019, 33, 3853–3861.

3. Xue, S.B.; Wang, B.; Zhang, L.; Long, W.M. Development of green welding technology in China during the past decade. *Mater. Rep.* 2019, 33, 2813–2830.

4. He, P.; Wang, H.Q.; Feng, J.C.; Qian, Y.Y. Optimization of induction coil of high frequency brazing broad plane aluminium to stainless steel. *Weld. Join.* 2005, 5, 20–23.

5. Matsuda, T.; Sano, T.; Munekane, M.; Ohata, M.; Hirose, S. Microscale tensile test of galvannealed steel/aluminum dissimilar joint for estimation of intrinsic interfacial strength. *Scr. Mater.* 2020, 186, 196–201. [CrossRef]

6. He, P.; Lin, P.P. The systematic project involving brazes development and intelligent brazing technology innovation: A materials genome perspective. *Mater. Rep.* 2019, 01, 156–161. [CrossRef]

7. El-Sayed, M.H.; Naka, M. Structure and properties of carbon steel–aluminium dissimilar joints. *Sci. Technol. Weld. Join.* 2005, 10, 27–31. [CrossRef]

8. Yang, J.L.; Xue, S.B.; Zhang, J.X. Development of novel CsF–RbF–AlF$_3$ flux for brazing aluminum to stainless steel with Zn–Al filler metal. *Mater. Des.* 2014, 64, 110–115. [CrossRef]
9. Dong, H.G.; Yang, L.Q.; Zhai, N.; Dong, C. Analysis on microstructure and mechanical properties of aluminum alloy/stainless steel joint made with flux-cored filler metal. *Trans. China Weld. Inst.* **2011**, *32*, 1–4.

10. He, P.; Jiao, Z.; Wang, J.; Lin, T.S. Research and application of joining technology at nanometer scale. *Trans. China Weld. Inst.* **2013**, *34*, 109–112.

11. Yao, Z.; Xue, S.B.; Yang, J.L.; Zhang, J.X. Inducing the effect of a Ga$_2$O$_3$ nano-particle on the CsF-RbF-AlF$_3$ flux for brazing aluminum to carbon steels. *Crystals* **2020**, *10*, 183. [CrossRef]

12. Yao, Z.; Xue, S.B.; Zhang, J.X. Comparative study on the activity of GaF$_3$ and Ga$_2$O$_3$ nanoparticle-doped CsF-AlF$_3$ flux for brazing 6061 Al/Q235 steel joints. *Crystals* **2020**, *10*, 498. [CrossRef]

13. Zhang, L.J. Investigation to fluoride brazing flux used for aluminium brazing. *Weld. Join.* **1996**, *6*, 7–8.

14. Cheng, F.J.; Qi, S.M.; Yang, Z.W.; Yao, J.F.; Zhao, H. Self-brazing mechanism of aluminum alloy at medium temperature. *J. Mater. Eng.* **2018**, *46*, 31–36.

15. Zhang, B.F.; Chen, Q.; Chen, X.W.; Zhang, H.L. Effect of KBF$_4$ addition on the microstructure of Mg-6Zn-1Si alloy. *Adv. Mater. Res.* **2012**, *535*, 996–999. [CrossRef]

16. Xiao, D.F.; Chen, D.H.; Qian, Y.Y.; Mao, J.Y.; Fan, F.H.; Yan, J. Study on corrosion resistance of aluminum soldering joint. *Weld. Join.* **1985**, *9*, 3–6.

17. Zhang, Q.Y.; Liu, S.Q.; Lan, T.; Fu, Y.C. Interfacial activity behavior of flux during aluminum brazing. *Acta Metall. Sin.* **1989**, *4*, 137–141.

18. Zhang, J.X.; Xue, S.B.; Xue, P.; Yang, J.L.; Lv, Z.P. Effect of Ga$_2$O$_3$ on the wettability and spreadability of CsF-AlF$_3$ flux/Zn-Al filler metal on the aluminum and steel. *Rare Met. Mater. Eng.* **2017**, *7*, 156–160.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).