ON GRADED SECOND MODULES

H. ANSARI-TOROGHY AND F. FARSHADIFAR

Abstract. This paper deals with some results concerning graded second modules.

1. Introduction

Throughout this paper, \(R \) will denote a commutative ring with identity.

A proper submodule \(N \) of an \(R \)-module \(M \) is said to be prime if for any \(r \in R \) and \(m \in M \) with \(rm \in N \), we have \(m \in N \) or \(r \in (N:_RM) \) [6].

In [7], I.G. Macdonald introduced the notion of secondary modules. A non-zero \(R \)-module \(M \) is said to be secondary if for each \(a \in R \) the endomorphism of \(M \) given by multiplication by \(a \) is either surjective or nilpotent [7].

In [11], S. Yassemi introduced the dual notion of prime submodules (i.e., second submodules) and investigated some properties of this class of modules. A non-zero submodule \(N \) of an \(R \)-module \(M \) is said to be second if for each \(a \in R \) the homomorphism \(N \rightarrow N \) is either surjective or zero. This implies that \(\text{Ann}_R(N) = P \) is a prime ideal of \(R \) and \(S \) is said to be \(P \)-second [11]. More information about of this class of modules can be found in [2] and [3].

Let \(G \) be a group with identity \(e \). The ring \(R \) graded by the group \(G \) will be denoted by \(R = \oplus_{g \in G} R_g \), where \(R_g \) is an additive subgroup of \(R \) and \(R_g.R_h \subseteq R_{gh} \) for every \(g, h \) in \(G \). If an element of \(R \) belongs to \(\cup_{g \in G} R_g = h(R) \), then it is called homogeneous and any \(x_g \in R_g \) is said to have degree \(g \). In the rest of this paper let \(R \) be a \(G \)-graded ring. An \(R \)-module \(M \) is said to be a graded module if \(M = \oplus_{g \in G} M_g \) for a family of subgroups \(\{M_g\}_{g \in G} \) of \(M \) such that \(R_g.M_h \subseteq M_{gh} \) for every \(g, h \) in \(G \). A graded submodule \(N \) of \(M \) is a submodule verifying \(N = \oplus_{g \in G}(N \cap M_g) \). Moreover, \(M/N \) becomes a graded \(R \)-module with \((M/N)_g = (M_g + N)/N \). In this case, \(M/N \) is called a gr-quotient of \(M \). Also if an element of \(M \) belongs to \(\cup_{g \in G} M_g = h(M) \), then it is called homogeneous. Let \(M = \oplus_{g \in G} M_g \) and \(N = \oplus_{g \in G} N_g \) be graded \(R \)-modules. An \(R \)-homomorphism \(f : M \rightarrow N \) is said to be a gr-homomorphism of degree \(h \),
If \(I\) and \(J\) are graded ideals of \(R\) such that \(I \subseteq J\), then \(\text{Gr}(I) \subseteq \text{Gr}(J)\).
(c) If P is a gr-prime ideal of R, then $Gr(P^n) = P$ for all $n > 0$.

A graded submodule N of a graded R-module M is said to be gr-minimal if it is minimal in the lattice of graded submodules of M [8].

Proposition 2.3. Let M be a graded R-module. Then the following hold.

(a) If S is a gr-secondary submodule of M, then S is gr-second if and only if $Ann_R(S)$ is a gr-prime ideal of R.

(b) Let S be a graded submodule of a P-gr-second module M. Then S is a P-gr-secondary submodule if and only if S is a P-gr-second submodule.

(c) If S is a gr-minimal submodule of M, then S is a gr-second submodule of M.

Proof. (a) This is obvious.

(b) Assume S is a P-gr-secondary submodule of M. Then $P = Ann_R(M) \subseteq Ann_R(S) \subseteq Gr(Ann_R(S)) = P$ by using Lemma 2.2 (a). Thus $P = Ann_R(S)$. Now the assertion follows from part (a). The reverse implication is clear.

(c) Let S be a gr-minimal submodule of M. Since for each $r \in h(R)$, rS is a graded submodule of M, by assumption, $rS = 0$ or $rS = S$ as desired.

Proposition 2.4. Let P be a gr-prime ideal of R. Then the following hold.

(a) The sum of P-gr-second R-modules is a P-gr-second R-module.

(b) Every product of P-gr-second R-modules is a P-gr-second R-module.

(c) Every non-zero gr-quotient of a P-gr-second R-module is a P-gr-second R-module.

Proof. We only prove the part (a). The proofs of parts (b) and (c) are similar.

(a) Let M_1, M_2, \ldots, M_n be P-gr-second R-modules. Then for each $1 \leq i \leq n$ we have $Ann_R(M_i) = P$ and hence $Ann_R(\sum_{i=1}^n M_i) = P$. If $r \in h(R) - P$, then $rM_i = M_i$. Hence $r(\sum_{i=1}^n M_i) = \sum_{i=1}^n M_i$, as desired.

Lemma 2.5. Let P be a graded prime ideal of R and let S be a non-zero graded submodule of a graded R-module M. Then the following are equivalent.

(a) S is a P-gr-second submodule of M.

(b) $W^{gr}(S) \subseteq Ann_R(S) = P$, where

$$W^{gr}(S) = \{a \in h(R) : \text{the homothety } S^a \rightarrow S \text{ is not surjective}\}.$$

Proof. It is straightforward.

A graded R-module M is said to be gr-divisible if $ax = m$ with $a \in h(R)$ and $m \in h(M)$, has a solution in M [8].
Theorem 2.6. Let M be a graded R-module and let S be a non-zero graded submodule of M satisfying that $\text{Ann}_R(S) = P$ is a graded prime ideal of R. Then the following are equivalent.

(a) S is a P-gr-second submodule of M.
(b) S is a gr-divisible R/P-module.
(c) $rS = S$ for all $r \in h(R) - P$.
(d) $IS = S$ for all graded ideals I with $I \not\subseteq P$.
(e) $W^{gr}(S) \subseteq P$.

Proof. $(a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d)$ and $(d) \Rightarrow (e)$ are straightforward.

$(e) \Rightarrow (a)$. By Lemma 2.5. □

Definition 2.1. Let P be a graded prime ideal of R. A graded submodule N of a graded R-module M is called a minimal P-gr-secondary (resp. P-gr-second) submodule of M if N is a P-gr-secondary (resp. P-gr-second) submodule which contains no other P-gr-secondary (resp. P-gr-second) submodules of M.

Theorem 2.7. Let M be a graded R-module. Then a submodule N of M is minimal P-gr-secondary if and only if N is a minimal P-gr-second submodule of M.

Proof. (\Leftarrow). By Proposition 2.3 (b).

(\Rightarrow). Assume that N is a minimal P-gr-secondary submodule of M. If $r \in W^{gr}(N)$, then $rN \neq N$. Since rN is a graded quotient of N, we have that rN is a P-gr-secondary submodule of N. As N is a minimal P-gr-secondary submodule of M, $rN = 0$ so that $r \in \text{Ann}_R(N)$. Therefore, $W^{gr}(N) \subseteq \text{Ann}_R(N)$. Thus N is a P-gr-second submodule of M by using Lemma 2.5. Now the result follows from Proposition 2.3 (b). □

R is said to be a gr-field if every nonzero homogeneous element of R is invertible.

A graded R-module M is said to be gr-injective if it is an injective object in the category of graded R-modules.

A graded R-module M is said to be graded torsion-free if $a \in h(R)$ and $m \in M$ with $am = 0$ implies that either $m = 0$ or $a = 0$ [4].

Theorem 2.8. Let M be a gr-prime module. Then the following are equivalent.

(a) M is a gr-second module.
(b) M is a gr-injective $R/\text{Ann}_R(M)$-module.
Proof. Since M is a gr-primary module, we have that $P = \text{Ann}_R(M)$ is a gr-primary ideal of R by [4, 2.7] and M is a gr-torsion-free R/P-module by [4, 2.11]. Hence the graded R/P-homomorphism $\phi : M \to S^{-1}M$ given by $\phi(m) = m/1$, where $S = h(R/P) - 0$, is a monomorphism.

$(a) \Rightarrow (b)$. Since M is a P-gr-second module, we have that M is a gr-divisible R/P-module by Theorem 2.6. This implies that ϕ is an isomorphism. Hence M is an $S^{-1}(R/P)$-module. As $S^{-1}(R/P)$ is a gr-field and M is a gr-divisible $S^{-1}(R/P)$-module by [8, B.II.2], it is easy to see by a similar argument as the ungraded case that M is a gr-injective R/P-module.

$(b) \Rightarrow (a)$. Since M is a gr-injective R/P-module, we have that M is a gr-divisible R/P-module. Thus we have that M is gr-second by Theorem 2.6. □

Proposition 2.9. Let M be a graded R-module and let N be a graded submodule of M. Then we have the following.

(a) If M is a gr-primary module and N is a gr-second submodule of M, then N is $\text{Ann}_R(N)$-gr-primary.

(b) If M is a gr-primary module and N is a gr-second submodule of M, then $rN = rM \cap N$ for each $r \in h(R)$.

(c) If $\text{Ann}_R(N)$ is a gr-primary ideal of R and N is a gr-minimal in the set of all graded submodules K of M such that $\text{Ann}_R(K) = \text{Ann}_R(N)$, then N is a gr-second submodule of M.

Proof. (a) First we note that as N is a gr-second submodule of M, $\text{Gr}(\text{Ann}_R(N)) = \text{Ann}_R(N)$ by Lemma 2.2 (c). Now let $rm \in N$, where $r \in h(R) - \text{Ann}_R(N)$ and $m \in h(M)$. Since N is a gr-second submodule of M, we have $rN = N$. Thus $rm = rn$ for some $n \in N$. As $r \not\in \text{Gr}(\text{Ann}_R(N))$, we have $r \not\in \text{Gr}(\text{Ann}_R(M))$ by Lemma 2.2 (b). As M is gr-primary, we have that $m \in N$ as required.

(b) Let $r \in h(R)$ and let $rm \in N$. Since N is gr-second, $rN = 0$ or $rN = N$. If $rN = 0$, we have $r \in \text{Ann}_R(M)$ because M is gr-prime. Hence $rN = rM \cap N = 0$. If $rN = N$, then $rm = rn$ for some $n \in N$. Since M is gr-prime and $r \not\in \text{Ann}_R(N)$, we have $m = n$. Thus $rm \in rN$. Therefore $rM \cap N = N \subseteq rN$. Thus $rM \cap N = N = rN$ because the reverse inclusion is clear.

(c) As $\text{Ann}_R(N)$ is gr-prime, $N \neq 0$. Let $r \in h(R)$ and $rN \neq N$. Since rN is a graded submodule of M, the claim is obviously true in the case that $\text{Ann}_R(rN) = \text{Ann}_R(N)$ by assumption. So we assume that $\text{Ann}_R(rN) \not\subseteq \text{Ann}_R(N)$. Then there exists $s \in h(\text{Ann}_R(rN))$ such that $s \not\in \text{Ann}_R(N)$. Hence $srN = 0$. Since $\text{Ann}_R(N)$ is gr-prime, it follows that $rN = 0$, as desired. □

A graded R-module M is said to be graded injective cogenerator if it is injective cogenerator object in the category of graded R-modules.
Theorem 2.10. Let E be a graded injective cogenerator of R and let N be a graded submodule of a graded R-module M. Then N is a gr-prime submodule of M if and only if $\text{Hom}_R(M/N, E)$ is a gr-second R-module.

Proof. Let N be a gr-prime submodule of M and let $r \in h(R)$. Then $M/N \neq 0$ if and only if $\text{Hom}_R(M/N, E) \neq 0$ by using similar arguments as the ungraded case. Further, $M/N \xrightarrow{r} M/N$ is either injective or zero if and only if

$$\text{Hom}_R(M/N, E) \xrightarrow{r} \text{Hom}_R(M/N, E)$$

is either surjective or zero by using similar arguments as the ungraded case. □

A graded submodule N of a graded R-module M is said to be gr-maximal if it is maximal in the lattice of graded submodules of M [8].

Theorem 2.11. Let R be an integral domain which is not a gr-field and K the gr-field of quotients of R. Then the R-module K has no gr-minimal submodule and K is the only gr-second submodule of K.

Proof. Since $(0 :_K r) = 0$ for every non-zero element $r \in h(R)$, we have $\text{Ann}_R(N) = 0$ for every non-zero graded submodule N of M. Consequently, K has no gr-minimal submodule, for if L is a gr-minimal submodule of K, then $\text{Ann}_R(L)$ is a gr-maximal ideal of R. But since R is not a gr-field, $\text{Ann}_R(L) \neq 0$, which is a contradiction. Clearly K is a 0-gr-second submodule of K.

To show that K is the only gr-second submodule of K, we assume the contrary and let S be a proper gr-second submodule of K. Since S is proper, there exists $y/u \in h(K)$ and $y/u \notin S$. This implies that $1/u \notin S$. There exists $0 \neq x/t \in h(S)$ because S is gr-second. Since $\text{Ann}_R(S) = 0$, we have $uS = S$. Thus $x/t = u(z/h)$ for some $z/h \in S$. It follows that $x/u = (tz)/h \in S$. Now $xS = S$ implies that $x/u = xw$ for some $w \in S$. Since $x \neq 0$, it follows that $1/u = w \in S$, which is a contradiction. □

Acknowledgement

The authors are grateful to the referees for their valuable comments and suggestions.

References

[1] H. Ansari-Toroghy and F. Farshadifar, Graded comultiplication modules, Chiang Mai J. Sci., to appear.
[2] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., to appear.
[3] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., to appear.
[4] S. E. Atani, On graded prime submodules, Chiang Mai J. Sci. 33 (2006), 3–7.
[5] W. Bruns and J. Herzong, *Cohen-Macaulay Rings*, 39, Cambridge studies in Advanced Mathematics, 1996.
[6] J. Dauns, *Prime submodules*, J. Reine Angew. Math., 298 (1978), 156–181.
[7] I.G. Macdonald, *Secondary representation of modules over a commutative ring*, Sympos. Math., XI (1973), 23–43.
[8] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holland, Amsterdam, 1982.
[9] M.A. Refai, M. Hailat, and S. Obiedat, *Graded radicals and graded prime spectra*, Far East J. Math. Sci. (FJMS), Part I (2000), 59-73.
[10] R. Y. Sharp, *A symptotic behavior of certain sets of attached prime ideals*, J. London Math. Soc., 34 (1986), 212–218.
[11] S. Yassemi, *The dual notion of prime submodules*, Arch. Math (Brno) 37 (2001), 273–278.

Department of Mathematics, Faculty of Science, Guilan University, P. O. Box 1914, Rasht, Iran.
E-mail: ansari@guilan.ac.ir

Department of Mathematics, Faculty of Science, Guilan University, P. O. Box 1914, Rasht, Iran.
E-mail: farshadifar@guilan.ac.ir