ON THE FUNDAMENTAL GROUP OF COMPLETE MANIFOLDS WITH ALMOST EUCLIDEAN VOLUME GROWTH

JIANMING WAN

Abstract. It is proved that the fundamental group of a complete Riemannian manifold with nonnegative Ricci curvature and certain volume growth conditions is trivial or finite.

1. Introduction

Throughout the paper M denotes a complete noncompact Riemannian n-manifold with nonnegative Ricci curvature. Let $V_p(r)$ be the volume of the metric ball $B_p(r)$ origin at p with radius r in M. By Bishop-Gromov volume comparison, \(\frac{V_p(r)}{\omega_n r^n} \) is a decreasing function, where ω_n is the volume of unit ball in \mathbb{R}^n. So the limit is existent as r goes to infinite.

Denote the volume growth of M by

$$\alpha_M := \lim_{r \to \infty} \frac{V_p(r)}{\omega_n r^n}.$$

The α_M is independent of p and so a global geometric invariant. Moreover, the volume comparison also implies that $0 \leq \alpha_M \leq 1$ and $\alpha_M = 1$ if and only if M is isometric to \mathbb{R}^n. We say that M has Euclidean volume growth (or large volume growth) if $\alpha_M > 0$.

The main result of this note is

Theorem 1.1. Given n, there is a constant $C(n) < 2^n$ such that if an open n-manifold M satisfies

1) (1.1) $$\frac{V_p(2r)}{V_p(r)} > C(n)$$\n
for some $p \in M$ and all $r > 0$, then M is simple connected.

2) (1.2) $$\liminf_{r \to \infty} \frac{V_p(2r)}{V_p(r)} > C(n),$$\n
for some $p \in M$, then the fundamental group $\pi_1(M)$ is finite.

2010 Mathematics Subject Classification. 53C20.

Key words and phrases. nonnegative Ricci curvature, volume growth, fundamental group.
We should note that even though M has Euclidean volume growth, one cannot deduce that M is simple connected. So formula (1.1) holding for all $r > 0$ is important.

Set $\epsilon(n) = n - \log_2 \frac{C(n+x)}{2}$. We see immediately that 2) of Theorem 1.1 implies the following

Corollary 1.2. Given n, there is a constant $\epsilon(n)$ such that if an open n-manifold M satisfies

\[
\lim_{r \to \infty} \frac{V_p(r)}{p^{n-\epsilon}} > 0,
\]

for some $p \in M$, $0 \leq \epsilon < \epsilon(n)$, then $\pi_1(M)$ is finite.

This shows a gap phenomenon for a well-known result of Peter Li [5] and Anderson [1] states that $\pi_1(M)$ is finite provided M has Euclidean volume growth.

On the other hand, Anderson has proved that (see Theorem 1.1 in [1]) under condition (1.3), every finitely generated subgroup of $\pi_1(M)$ is actually of polynomial growth of order $\leq \epsilon < 1$. In [6] Bingye Wu proved that under condition (1.3) $\pi_1(M)$ is finitely generated. But every infinite group of finitely generated has polynomial growth of order at least 1 (I thank the referee for pointing out this fact. See Section 3). So Corollary 1.2 is also a consequence of Anderson and Wu’s results.

Acknowledgment: I would like to thank the referee for his (her) invaluable suggestions. The referee’s explanation clarify some understanding of mine on Anderson’s paper [1].

2. A related volume ratio

In this section we prove an estimate on the volume ratio $V_p(2r)/V_p(r)$ related to certain generated elements of $\pi_1(M)$ (Lemma 2.2 below). The main ingredients are Sormani’s uniform cut lemma [5] and some ideas due to Shen [4].

2.1. A uniform estimate. Let $g \in \pi_1(M, p)$ and $\pi : \tilde{M} \to M$ be the universal cover. Following [5], we say that γ is a minimal representative geodesic loop (based at p) of g if $\gamma = \pi \circ \gamma_\tilde{p}$, where $\gamma_\tilde{p}$ is a minimal geodesic connecting \tilde{p} and $g\tilde{p}$. So $L(\gamma) = d_{\tilde{M}}(\tilde{p}, g\tilde{p})$.

Given a group G, we say that $\{g_1, g_2, g_3, \cdots\}$ is an ordered set of independent generators of G if every g_i can not be expressed as the previous generators and their inverses, $g_1, g_1^{-1}, \cdots, g_{i-1}, g_{i-1}^{-1}$.

In [5] Sormani proved the following two lemmas.

Lemma 2.1. (halfway lemma) There exists an ordered set of independent generators $\{g_1, g_2, \cdots\}$ of $\pi_1(M, p)$ with minimal representative geodesic loops γ_k of length d_k such that

\[
d_M(\gamma_k(0), \gamma_k(d_k/2)) = d_k/2.
\]

In particular, we have a sequence of such generators if $\pi_1(M, p)$ is infinitely generated.

Lemma 2.2. (uniform cut lemma) Let M^n $(n \geq 3)$ be a complete manifold with $\text{Ric} \geq 0$. Let γ be a noncontractible geodesic loop based at p_0 of length $L(\gamma) = 2D$ such that

1. If σ based at p_0 is a loop homotopic to γ, then $L(\sigma) \geq 2D$;
2. The γ is minimal on $[0, D]$ and $[D, 2D]$.

Then there is a constant S_n depending on n such that if $x \in \partial B_{p_0}(rD)$ where $r \geq 1 + 2S_n$, then

\[
d(x, \gamma(D)) \geq (r - 1)D + 4S_n D.
\]
The main idea of proof of uniform cut lemma is to lift geodesic loop to the universal covering space and research carefully the related excess function. It contains a nice application of Abresch-Gromoll’s estimate on excess function [2]. The above two lemmas allow her to show that Milnor conjecture holds for the manifold with so called small linear diameter growth.

Let \(\gamma \) be a minimal representative geodesic loops based at \(p \) of \(L(\gamma) = d \) satisfying Lemma 2.1. The below estimate is important for our purpose.

Lemma 2.2. Let \(\sigma \) be a geodesic issuing from \(p \) such that \(\sigma(t) \) is minimal on \([0, d]\). Then there is a constant \(S(n) \) such that

\[
h \triangleq d_M(\gamma(d/2), \sigma|_{[0,d)}) \geq S(n)d.
\]

Proof. We set \(h_1 \triangleq d_M(\gamma(d/2), \sigma|_{[0,d/2)}) \) and \(h_2 \triangleq d_M(\gamma(d/2), \sigma|_{[d/2,d)}) \). By Lemma 2.2, we have

\[
H = d_M(\gamma(d/2), \sigma(d/2)) \geq 2S(n)d,
\]

where \(S(n) \) is a universal constant,

\[
S(n) = \frac{1}{n} \cdot \frac{1}{1 + (\frac{d}{n} - 1)^{n-1}}.
\]

Suppose that \(h_1 = d_M(\gamma(d/2), \sigma(r_0)) \). By the triangle inequality one has

\[
h_1 \geq \frac{d}{2} - r_0
\]

and

\[
h_1 \geq H - \frac{d}{2} - r_0.
\]

Then

\[
h_1 \geq H/2 \geq S(n)d.
\]

We also note that \(d_M(\gamma(d/2), \sigma(d)) \geq d/2 \). So similarly one has

\[
h_2 \geq H/2 \geq S(n)d.
\]

It follows that

\[
h = \min(h_1, h_2) \geq S(n)d.
\]

\[\square\]

2.2. A volume’s ratio. Continuing with notations \(p, d \) in Lemma 2.3 we shall prove

Lemma 2.4. We have the following ratio of volume

\[
\frac{V_p(2d)}{V_p(d)} \leq (1 - \frac{2S(n)}{3})^n(2^n - 1) + 1.
\]

Before giving the proof of Lemma 2.4 (following [4]) we introduce some necessary notations. Let \(\Sigma_p \) be a close subset of unit tangent sphere \(S_pM \subset T_pM \). Let \(B_{\Sigma_p}(r) \) be the set of points \(x \in B_p(r) \) such that there exists a minimal geodesic \(\gamma \) from \(p \) to \(x \) with \(\gamma(0) \in \Sigma_p \). We write \(V_{\Sigma_p}(r) \) for the volume of \(B_{\Sigma_p}(r) \).

We denote by \(\Sigma_p(r) \) the set of unit vectors \(v \in S_pM \) such that \(\gamma(t) = \exp_p(tv) \) is minimal on \([0, r]\).

Proof. of Lemma 2.4 We write \(\gamma = \gamma(d/2) \). Since \(h \leq d/2 \), we have \(B_p(d) \supset B_p(h) \cup B_{\Sigma_p(d)}(d) \). By the definition of \(h \), this gives \(V_p(d) \geq V_p(h) + V_{\Sigma_p(d)}(d) \), i.e.

\[
1 \geq \frac{V_p(h)}{V_p(d)} + \frac{V_{\Sigma_p(d)}(d)}{V_p(d)}.
\]

(2.1)
Claim 1:

(2.2) \[\frac{V_p(h)}{V_p(d)} \geq \left(\frac{2S(n)}{3} \right)^p. \]

By the Bishop–Gromov comparison theorem, \(\mu_\nu V_p(r) \geq V_p(\mu r) \) for \(\mu \geq 1 \). By Lemma 2.3, we have \(h \geq S(n)d \). So

\[V_p(h) \geq V_p(S(n)d) \geq \left(\frac{2S(n)}{3} \right)^p V_p(3d/2). \]

Since \(B_r(3d/2) \supset B_p(d) \), we have \(V_p(3d/2) \geq V_p(d) \). Thus we obtain (2.2).

Claim 2:

(2.3) \[\frac{V_{\Sigma_p(2r/d)}(d)}{V_p(d)} \geq \frac{1}{2^n-1} (\frac{V_p(2d)}{V_p(d)} - 1). \]

Following the observation of Shen (c.f. [4] Lemma 2.4), we see that

\[B_p(2r) \setminus B_p(r) \subset B_{\Sigma_p(2r)}(d) \setminus B_{\Sigma_p(r)}(d). \]

Then we have

\[V_p(2r) - V_p(r) \leq V_{\Sigma_p(r)}(2r) - V_{\Sigma_p(r)}(r) \leq (2^n-1)V_{\Sigma_p(r)}(r). \]

The second inequality follows from the generalized volume comparison (Lemma 2.2 of [4]). Thus

\[\frac{V_{\Sigma_p(r)}(r)}{V_p(r)} \geq \frac{1}{2^n-1} \left(\frac{V_p(2r)}{V_p(r)} - 1 \right). \]

Joining formulas (2.1), (2.2) and (2.3), we establish the lemma. \(\square \)

3. A PROOF OF THEOREM 1.1

We set

\[C(n) = (1 - \frac{2S(n)}{3})^p(2^n - 1) + 1. \]

If \(\frac{V_p(2r)}{V_p(r)} > C(n) \) for all \(r > 0 \), then there is no nontrivial generator satisfying Lemma 2.4. So \(M \) is simple connected. Thus the first part of Theorem 1.1 is proved.

The proof of second part of Theorem 1.1 is divided into two steps.

Firstly, \(\pi_1(M, p) \) is finitely generated. We argue by contradiction. Assume \(\pi_1(M, p) \) is infinitely generated, then by Lemma 2.3, there is a sequence \(\{d_k\} \), \(d_k \to \infty \) as \(k \to \infty \) satisfying Lemma 2.4, i.e.

\[\frac{V_p(2d_k)}{V_p(d_k)} \leq C(n), \]

for all \(k \geq 1 \). This contradicts to condition (1.2).

Secondly, condition (1.2) implies that \(V_p(r) \geq C \cdot r^{n-\varepsilon} \) for some \(\varepsilon < 1 \) and sufficiently large \(r \). So by Anderson’s result [1], \(\pi_1(M) \) has polynomial growth of order \(\leq \varepsilon < 1 \).

The form of \(C(n) \) allows us to write \(C(n) \approx 2^{n-\varepsilon}, \varepsilon < 1 \). By condition (1.2), there exists \(r_0 > 0 \), for all \(r \geq r_0 \), one has

\[V_p(2r) \geq 2^{r-\varepsilon} V_p(r). \]

So

\[V_p(r_0) \leq (2^{n-\varepsilon})^{-1} V_p(2r_0) \leq \cdots \leq (2^{n-\varepsilon})^{-k} V_p(2^k r_0), \]
For any $r \geq r_0$, we can assume $r \in [2^kr_0, 2^{k+1}r_0]$ for some $k \in \mathbb{N}$. Then
\[V_p(r) \geq V_p(2^kr_0) \geq \frac{V_p(r_0)}{r_0^{n-\epsilon}}(2^kr_0)^{n-\epsilon} \geq \frac{V_p(r_0)}{r_0^{n-\epsilon}}(2^kr_0 \cdot \frac{r}{2^{k+1}r_0})^{n-\epsilon} = \frac{V_p(r_0)}{(2r_0)^{n-\epsilon}}r^{n-\epsilon}.

It follows that $V_p(r) \geq C \cdot r^{n-\epsilon}$ for all $r > r_0$.

An algebraic fact: If Γ is an infinite group with generators $S = \{g_1, \cdots, g_k\}$, then $\#U(r) \geq r$ for all $r \in \mathbb{N}$, where $U(r)$ is the set of elements with word length $\leq r$ with respect to S. In particular, Γ has polynomial growth of order at least 1. (This proof is provided by referee)

To see this we argue by contradiction. Let r be the smallest integer so that $\#U(r) < r$, then $r - 1 \leq \#U(r - 1) \leq \#U(r) < r$. This shows $U(r) = U(r - 1)$. In other words, any word of length r can be expressed as a word of length $\leq r - 1$. It follows that $\Gamma = U(r - 1)$, which is finite, a contradiction.

The second part of Theorem 1.1 follows from above immediately.

Remark 3.1. Our proof of finite generation of $\pi_1(M)$ is much different to Wu’s arguments under condition (1.3). Wu’s proof was based on the estimate of ordered set of independent generators with minimal representative geodesic loops.

References

1. Anderson, M.T. On the topology of complete manifolds of nonnegative Ricci curvature. Topology 29 (1990), no. 1, 41-55.
2. Abresch, U. and Gromoll, D. On complete manifolds with nonnegative Ricci curvature. J. Amer. Math. Soc. 3 (1990), no. 2, 355-374.
3. Li, Peter Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature. Ann. of Math. (2) 124 (1986), no. 1, 1-21.
4. Shen, Zhongmin Complete manifolds with nonnegative Ricci curvature and large volume growth. Invent. Math. 125 (1996), no. 3, 393-404.
5. Sormani, Christina Nonnegative Ricci curvature, small linear diameter growth and finite generation of fundamental groups. J. Differential Geom. 54 (2000), no. 3, 547-559.
6. Wu, Bing Ye On the fundamental group of Riemannian manifolds with nonnegative Ricci curvature. Geom. Dedicata 162 (2013), 337-344.

School of Mathematics, Northwest University, Xi’an 710127, China
E-mail address: wanjm@aliyun.com