On generalization of an integral inequality and its applications

Ghulam Farid1*, Sajid Iqbal2 and Josip Pečarić3

Abstract: In this paper, we give generalization of an integral inequality. We find its applications in fractional calculus by involving different kinds of fractional integral operators, for example Riemann–Liouville fractional integral, Caputo fractional derivative, Canavati fractional derivative and Widder derivative, Saigo fractional integral operator, etc.

1. Introduction

In the ocean of inequalities, integral inequalities received great attention by many scientists, for example mathematicians, physicists, and statisticians. Here, we want to pay our attention to an integral inequality by Mitrinović and Pečarić (1991).

Theorem 1.1 Let \(f_i : [0, \infty) \to \mathbb{R} \), \(i = 1, 2, 3, 4 \), be non-negative functions and let \(g \) be a real function which has the following representation

\[
g(x) = \int_0^\infty k(x, t)dh(t),
\]

where \(k(x, t) \geq 0 \), when \(x \in [0, \infty) \), \(t \in [0, \infty) \), and \(h \) is a non-decreasing function. If \(p, q \) are two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1 \), \(p > 1 \), then
\[\int_0^\infty f_1(x)f_2(x)g(x)dx \leq C \left(\int_0^\infty f_3(x)g(x)dx \right)^{\frac{1}{2}} \left(\int_0^\infty f_4(x)g(x)dx \right)^{\frac{1}{2}} \]

(1.2)

where

\[C = \sup_{t \in \Omega_1} \left\{ \left(\int_0^\infty k(x,t)f_1(x)f_2(x)dx \right) \left(\int_0^\infty k(x,t)f_3(x)dx \right)^{\frac{1}{2}} \left(\int_0^\infty k(x,t)f_4(x)dx \right)^{\frac{1}{2}} \right\}. \]

Fractional integral inequalities are useful in establishing the uniqueness of solutions for certain fractional partial differential equations. They also provide upper and lower bounds for the solutions of fractional boundary value problems. These considerations have led various researchers in the field of integral inequalities to explore certain extensions and generalizations by involving fractional calculus operators (see Agarwal & Pang, 1995, Anastassiou, 2011, Andrić, Pečarić, & Perić, 2011, Widder, 1941).

In this paper, we are interested to give a generalization of integral inequality (Equation 1.2). Further, we give applications to fractional calculus; many researchers are working in this field and participate a lot in the theory of inequalities, for example, books in references Anastassiou (2009), Baleano, Diethelm, Scalas, and Trujillo (2012), Kilbas, Srivastava, and Trujillo, 2006, Bainov and Simeonov (1992), Widder (1941), also see for papers references Andrić, Barbir, Farid, and Pečarić (2014a, 2014b), Andrić, Pečarić, and Perić (2013a, 2013b), Andrić et al. (2011), Canavati (1987) and Farid and Pečarić (2012a, 2012b).

The organization of the paper is as follows: In Section 2, we give a generalization of integral inequality (Equation 1.2) and some remarks. In Section 3, we give applications for fractional integrals and fractional derivatives, and in Section 4, we give applications for Widder derivatives and linear differential operators. In the last Section 5, we give improvements of these results. In the whole paper, we suppose that all integrals exist.

2. Main results

Here, we give a generalization of integral inequality (Equation 1.2) and some remarks.

Theorem 2.1 Let \((\Omega_1, \Sigma_1, \mu_1), (\Omega_2, \Sigma_2, \mu_2)\) be measure spaces with \(\sigma\)-finite measures and \(f_i: \Omega_i \rightarrow \mathbb{R}, i = 1, 2, 3, 4,\) be non-negative functions. Let \(g\) be the function having representation

\[g(x) = \int_{\Omega_1} k(x,t)f(t)d\mu_1(t) \]

(2.1)

where \(k: \Omega_2 \times \Omega_1 \rightarrow \mathbb{R}\) is a general non-negative kernel and \(f_i: \Omega_i \rightarrow \mathbb{R}\) be a real-valued function, and \(\mu_1\) is a non-decreasing function. If \(p, q\) are two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1, p > 1,\) then

\[\int_{\Omega_1} f_1(x)f_2(x)g(x)d\mu_2(x) \leq C \left(\int_{\Omega_2} f_3(x)g(x)d\mu_2(x) \right)^{\frac{1}{2}} \left(\int_{\Omega_2} f_4(x)g(x)d\mu_2(x) \right)^{\frac{1}{2}} \]

(2.2)

where

\[C = \sup_{t \in \Omega_1} \left\{ \left(\int_{\Omega_2} k(x,t)f_1(x)f_2(x)d\mu_2(x) \right) \left(\int_{\Omega_2} k(x,t)f_3(x)d\mu_2(x) \right)^{\frac{1}{2}} \left(\int_{\Omega_2} k(x,t)f_4(x)d\mu_2(x) \right)^{\frac{1}{2}} \right\}. \]

Proof Using Equation 2.1, we have
\[
\begin{align*}
&\left\{ f_1(x)f_2(x)g(x)dx \right\}_{a_2}^{a_1} = 2 \left\{ f_1(x)f_2(x)k(x,t)dt \right\}_{a_1}^{a_2} \left\{ f_1(x)f_2(x)dx \right\}_{a_1}^{a_2} \\
&\quad = \int_{a_1}^{a_2} \left(\int_{a_1}^{a_2} k(x,t)dt \right) dx \\
&\quad \leq C \left(\frac{\lambda^p}{p} \int_{a_1}^{a_2} f_3(x)dx + \frac{\lambda^{-q}}{q} \int_{a_1}^{a_2} f_4(x)dx \right),
\end{align*}
\]

where
\[
\lambda = \left(\int_{a_1}^{a_2} k(x,t)dx \right)^{\frac{1}{p}} \left(\int_{a_1}^{a_2} f_1(x)dx \right)^{\frac{1}{q}}.
\]

Therefore, we have
\[
\int_{a_1}^{a_2} f_1(x)f_2(x)g(x)dx \leq C \left(\frac{\lambda^p}{p} \int_{a_1}^{a_2} f_3(x)dx + \frac{\lambda^{-q}}{q} \int_{a_1}^{a_2} f_4(x)dx \right).
\]

while from value of \(\lambda\) we get (Equation 2.2).

Corollary 2.2 If we set \(f_3(x) = f_1^q(x)\) and \(f_4(x) = f_2^q(x)\), then we get
\[
\int_{a_1}^{a_2} f_1(x)f_2(x)g(x)dx \leq C \left(\frac{\lambda^p}{p} \int_{a_1}^{a_2} f_1^q(x)dx + \frac{\lambda^{-q}}{q} \int_{a_1}^{a_2} f_2^q(x)dx \right),
\]

where
\[
C = \sup_{x \in \Omega_1} \left\{ \left(\int_{a_1}^{a_2} k(x,t)f_1(x)f_2(x)dx \right)^{\frac{1}{p}} \left(\int_{a_1}^{a_2} k(x,t)f_1^q(x)dx \right)^{\frac{1}{q}} \right\}.
\]

Corollary 2.3 If we put \(f(t) = 1\) and \(\Omega_1 = \Omega_2 = [0, \infty)\) and replace \(d\mu_1(t)\), \(d\mu_2(x)\) by measures \(dh(t), dx\) in Theorem 2, then we get Theorem 1.

Remark 2.4 If we put \(f_3(x) = f_1^q(x), f_4(x) = f_2^q(x), f(t) = 1\), and \(\Omega_1 = \Omega_2 = [0, \infty)\) and replace \(d\mu_1(t)\), \(d\mu_2(x)\) by measures \(dh(t), dx\), then we get a result of Volkov (1972).

3. Applications for fractional integrals

Let \([a, b], -\infty < a < b < \infty\) be a finite interval on real axis \(\mathbb{R}\). For \(f \in L_1[a, b]\), the left-sided and right-sided Riemann–Liouville fractional integrals of order \(\alpha > 0\) are defined by
\[
J^\alpha_a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt, \quad x > a,
\]
\[
J^\alpha_b f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, \quad x < b.
\]

\[\text{http://dx.doi.org/10.1080/23311835.2015.1066528}\]
Here, Γ is the gamma function $\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} \, dt$.

Theorem 3.1 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$. Then, for $a > 0$, we have

$$\int_a^x f_1(x)J_{a}^p f(x) \, dx \leq C \left(\int_a^x f_1(x)J_{a}^p f(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^x f_1(x)J_{a}^q f(x) \, dx \right)^{\frac{1}{2}}$$

(3.1)

where

$$C = \sup\limits_{t \in (a,b)} \left\{ \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right) \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right)^{\frac{1}{2}} \right\}.$$

Proof If we apply Theorem 2.1 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(x) = dx$, $d\mu_2(t) = dt$ and the kernel $k(x, t) = \begin{cases} \frac{t-x-\gamma^{-1} \Gamma(a)}{\Gamma(a)} & a \leq t \leq x \\ 0 & x < t \leq b, \end{cases}$

then g becomes $J_{a}^p f$ and we get the inequality (Equation 3.1).

Corollary 3.2 If we set $f_1(x) = f_1^q(x)$ and $f_2(x) = f_1^p(x)$, then we get

$$\int_a^x f_1(x)J_{a}^p f(x) \, dx \leq C \left(\int_a^x f_1(x)J_{a}^p f(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^x f_1(x)J_{a}^q f(x) \, dx \right)^{\frac{1}{2}}$$

where

$$C = \sup\limits_{t \in (a,b)} \left\{ \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right) \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^t (x-t)\gamma^{-1} f_1(x) \, dx \right)^{\frac{1}{2}} \right\}.$$

Theorem 3.3 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$. Then, for $a > 0$, we have

$$\int_a^b f_1(x)J_{a}^p f(x) \, dx \leq C \left(\int_a^b f_1(x)J_{a}^p f(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b f_1(x)J_{a}^q f(x) \, dx \right)^{\frac{1}{2}}$$

(3.2)

where

$$C = \sup\limits_{t \in (a,b)} \left\{ \left(\int_a^t (t-x)^\gamma f_1(x) \, dx \right) \left(\int_a^t (t-x)^\gamma f_1(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^t (t-x)^\gamma f_1(x) \, dx \right)^{\frac{1}{2}} \right\}.$$

Proof Applying Theorem 2.1 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(x) = dx$, $d\mu_2(t) = dt$ and the kernel $k(x, t) = \begin{cases} \frac{(t-x-\gamma^{-1} \Gamma(a))}{\Gamma(a)} & x \leq t \leq b \\ 0 & a < t \leq x, \end{cases}$

then g becomes $J_{a}^p f$ and we get the inequality (Equation 3.2).

Corollary 3.4 If we set $f_1(x) = f_1^q(x)$ and $f_2(x) = f_1^p(x)$, then we get
\[
\int_{a}^{b} f_1(x)f_2(x) J_{\alpha-f}(x)dx \leq C \left(\int_{a}^{b} f_1^2(x) J_{\alpha-f}(x)dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f_2^2(x) J_{\alpha-f}(x)dx \right)^{\frac{1}{2}}
\]

where

\[
C = \sup_{x \in [a,b]} \left\{ \left(\int_{a}^{b} (t-x)^{\alpha-1} f_1(x)dx \right) \left(\int_{a}^{b} (t-x)^{\alpha-1} f_2(x)dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} (t-x)^{\alpha-1} f_2(x)dx \right)^{\frac{1}{q}} \right\}.
\]

Next, we observe the Caputo fractional derivatives (for details see Kilbas et al., 2006, Section 2.4, also Anastassiou, 2009, p. 449; Baleanu et al., 2012, p. 16) for $\alpha \geq 0$ define n as

\[
n = \lfloor \alpha \rfloor + 1, \text{ for } \alpha \not\in \mathbb{N}_0; \quad n = \lfloor \alpha \rfloor, \text{ for } \alpha \in \mathbb{N}_0,
\]

where $\lfloor \cdot \rfloor$ is the integral part. For $f \in AC^n[a, b]$ the left-sided and right-sided Caputo fractional derivatives of order α are defined by

\[
^{C}D^{\alpha}_a f(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{f^{(n)}(t)}{(x-t)^{\alpha-n+1}} dt,
\]

and

\[
^{C}D^{\alpha}_b f(x) = \frac{(-1)^n}{\Gamma(n-\alpha)} \int_{x}^{b} \frac{f^{(n)}(t)}{(t-x)^{\alpha-n+1}} dt.
\]

Theorem 3.5 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$. Then, for $f \in AC^n[a, b]$, $\alpha \geq 0$, and n defined in Equation 3.3, we have

\[
\int_{a}^{b} f_1(x)f_2(x) D^{\alpha}_a f(x)dx \leq C \left(\int_{a}^{b} f_1^2(x) D^{\alpha}_a f(x)dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f_2^2(x) D^{\alpha}_a f(x)dx \right)^{\frac{1}{2}}
\]

where

\[
C = \sup_{x \in [a,b]} \left\{ \left(\int_{a}^{b} (x-t)^{\alpha-n+1} f_1(x)dx \right) \left(\int_{a}^{b} (x-t)^{\alpha-n+1} f_2(x)dx \right)^{\frac{1}{p}} \left(\int_{a}^{b} (x-t)^{\alpha-n+1} f_2(x)dx \right)^{\frac{1}{q}} \right\}.
\]

Proof Applying Theorem 2 with $\Omega_1 = \Omega_2 = (a, b)$, $d\mu_1(x) = dx$, $d\mu_2(t) = dt$ and the kernel

\[
k(x, t) = \begin{cases} \frac{(x-t)^{\alpha-n+1}}{\Gamma(n-\alpha)} & a \leq t \leq x \\ 0 & x < t \leq b, \end{cases}
\]

and replacing f by $f^{(n)}$, g becomes $^{C}D^{\alpha}_a f$ and we get the inequality (Equation 3.7).

Corollary 3.6 If we set $f_3(x) = f_1^2(x)$ and $f_4(x) = f_2^2(x)$, then we get

\[
\int_{a}^{b} f_1(x)f_2(x) D^{\alpha}_a f(x)dx \leq C \left(\int_{a}^{b} f_1^2(x) D^{\alpha}_a f(x)dx \right)^{\frac{1}{2}} \left(\int_{a}^{b} f_2^2(x) D^{\alpha}_a f(x)dx \right)^{\frac{1}{2}}
\]

where
Lemma 3.9 derivatives, given in Andrić et al. (2013b).

We continue with extensions that require composition identities for the left-sided Caputo fractional derivatives, given in Andrić et al. (2013b).

Theorem 3.7 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$, and n defined in Equation 3.3, we have

\[
\int_a^b f_1(x)f_2(x)dx \leq C \left(\int_a^b f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}} \left(\int_a^b f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}}
\]

where

\[
C = \sup_{t \in [a,b]} \left\{ \left(\int_a^b (x-t)^{n-a-1} f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}} \right\}.
\]

Proof Applying Theorem 2 with $\Omega_1 = \Omega_2 = (a, b), d\mu_1(x) = dx, d\mu_2(t) = dt$ and the kernel

\[
k(x, t) = \begin{cases} \frac{x - t + a - 1}{t - a} & x \leq t \leq b \\ 0 & 0 < t \leq x, \end{cases}
\]

and replacing f by f^m, g becomes $\mathcal{D}_a^\alpha f$ and we get the inequality (Equation 3.7).

Corollary 3.8 If we set $f_3(x) = f_1^p(x)$ and $f_4(x) = f_2^q(x)$, then we get

\[
\int_a^b f_1(x)f_2(x)\mathcal{D}_a^\alpha f(x)dx \leq C \left(\int_a^b f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}} \left(\int_a^b f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}}
\]

where

\[
C = \sup_{t \in [a,b]} \left\{ \left(\int_a^b (t-x)^{n-a-1} f_1(x)^\frac{1}{p} f_2(x)^\frac{1}{q} dx \right)^\frac{1}{\frac{1}{p} + \frac{1}{q}} \right\}.
\]

We continue with extensions that require composition identities for the left-sided Caputo fractional derivatives, given in Andrić et al. (2013b).

Lemma 3.9 Let $\beta > \alpha \geq 0$, m and n are given by Equation 3.3 for β and α, respectively. Let $f \in AC^n[a, b]$ be such that $f^{(n)}(a) = 0$ for $i = 0, n, n + 1, \ldots, m - 1$. Let $\mathcal{D}_a^\alpha f, \mathcal{D}_a^\beta f \in L_1[a, b]$. Then,

\[
\mathcal{D}_a^\alpha f(x) = \frac{1}{\Gamma(\beta - a)} \int_a^x (x-t)^{\beta-a-1} \mathcal{D}_a^\beta f(t) dt, \quad x \in [a, b].
\]
THEOREM 3.10
Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$ let $\beta > \alpha \geq 0$, and n are given by Equation 3.3 for β and α, respectively. Let $f \in AC^n[a,b]$ such that $f^{(n)}(a) = 0$ for $i = n, n+1, \ldots, m − 1$.

Let $\mathcal{D}^\alpha_{a+}f, \mathcal{D}^\alpha_{a+}f \in L_1[a,b]$. Then, we have

$$\int_a^x f_1(x)f_2(x)\mathcal{D}^\alpha_{a+}f(x)dx \leq C \left(\int_a^x f_1(x)\mathcal{D}^\alpha_{a+}f(x)dx\right)^{\frac{1}{p}} \left(\int_a^x f_2(x)\mathcal{D}^\alpha_{a+}f(x)dx\right)^{\frac{1}{q}} \quad (3.8)$$

where

$$C = \sup_{t \in (a,b)} \left\{ \left(\int_a^t (x-t)^{\beta-a-1}f_1(x)dx \right) \left(\int_a^t (x-t)^{\beta-a-1}f_2(x)dx \right)^{\frac{1}{p}} \times \left(\int_a^t (x-t)^{\beta-a-1}f_2(x)dx \right)^{\frac{1}{q}} \right\}.$$

Proof Applying Theorem 2.1 with $\Omega_1 = \Omega_2 = (a,b)$, $d\mu_1(x) = dx$, $d\mu_2(t) = dt$ and the kernel

$$k(x,t) = \begin{cases} \frac{(x-t)^{\beta-a-1}}{(t-a)^{\beta-a}} & a \leq t \leq x \\ 0 & x < t \leq b, \end{cases}$$

and replacing f by $D^\alpha_{a+}f$, g becomes $D^\alpha_{a+}f$ and we get the inequality (Equation 3.8).

COROLLARY 3.11 If we set $f_1(x) = f_1^p(x)$ and $f_2(x) = f_2^q(x)$, then we get

$$\int_a^x f_1(x)f_2(x)\mathcal{D}^\alpha_{a+}f(x)dx \leq C \left(\int_a^x f_1^p(x)\mathcal{D}^\alpha_{a+}f(x)dx\right)^{\frac{1}{p}} \left(\int_a^x f_2^q(x)\mathcal{D}^\alpha_{a+}f(x)dx\right)^{\frac{1}{q}}$$

where

$$C = \sup_{t \in (a,b)} \left\{ \left(\int_a^t (x-t)^{\beta-a-1}f_1^p(x)dx \right) \left(\int_a^t (x-t)^{\beta-a-1}f_2^q(x)dx \right)^{\frac{1}{p}} \times \left(\int_a^t (x-t)^{\beta-a-1}f_2^q(x)dx \right)^{\frac{1}{q}} \right\}.$$

Remark 3.12 Using Theorem 2.1 and composition identities for the right-sided Caputo fractional derivatives given in Andrić et al. (2013b, Theorem 2.2), similar results can be stated and proved for the right-sided Caputo fractional derivatives (for details see Andrić et al., 2014a; Farid, & Pečarić, 2012b).

Results given for the Caputo fractional derivatives can be analogously done for two other types of fractional derivative that we observe: Canavati type and Riemann–Liouville type. Here, as an example inequality for each type of fractional derivatives, we give inequality analogous to the Equation 3.8 obtained with composition identity for the left-sided fractional derivatives. Proofs are omitted.

For more details on the Canavati fractional derivatives, see Canovati (1987): we consider subspace $C^\alpha_{a+}[a,b]$ defined by

$$C^\alpha_{a+}[a,b] = \{ f \in C^{n-1}[a,b]: f^{(n-1)} \in C[a,b] \}.$$

For $f \in C^\alpha_{a+}[a,b]$, the left-sided Canavati fractional derivative of order α is defined by

$$\mathcal{C}D^\alpha_{a-}f(x) = \frac{1}{\Gamma(n-\alpha)} \frac{d}{dx} \int_a^x (x-t)^{n-\alpha-1}f^{(n-1)}(t)dt = \frac{d}{dx} f^{(n-1)}(x).$$

Composition identity for the left-sided Canavati fractional derivatives is given in Andrić et al. (2011):
Lemma 3.13. Let $\beta > a > 0$, $m = [\beta] + 1$, and $n = [a] + 1$. Let $f \in C^1_{a^+}[a, b]$ be such that $f^{(i)}(a) = 0$ for $i = n - 1, n, \ldots, m - 2$. Then, $f \in C^0_{a^+}[a, b]$ and

$$\frac{1}{\Gamma(\beta - \alpha)} \int_a^x (x-t)^{\beta-\alpha-1} f(t) \, dt, \ x \in [a, b].$$

Theorem 3.14. Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$. Let $\beta > a > 0$, m and n given by Equation 3.3 for β and a, respectively. Let $f \in C^0_{a^+}[a, b]$ be such that $f^{(i)}(a) = 0$ for $i = n - 1, n, \ldots, m - 2$. Then, we have

$$\int_a^x f_1(x) f_2(x) D^\alpha_{a^+} f(x) \, dx \leq C \left(\int_a^x f_1(x) D^\alpha_{a^+} f(x) \, dx \right)^{\frac{1}{p}} \left(\int_a^x f_2(x) D^\alpha_{a^+} f(x) \, dx \right)^{\frac{1}{q}}$$

where

$$C = \sup_{x \in [a, b]} \left\{ \left(\int_a^x (x-t)^{\beta-\alpha-1} f_1(x) \, dx \right) \left(\int_a^x (x-t)^{\beta-\alpha-1} f_2(x) \, dx \right)^{\frac{1}{p}} \right\}.$$

For more details on Riemann–Liouville fractional derivatives, see Kilbas et al. (2006), Section 2.1: for $f : [a, b] \to \mathbb{R}$, the left-sided Riemann–Liouville fractional derivative of order α is defined by

$$D^\alpha_{a^+} f(x) = \frac{1}{\Gamma(n - \alpha)} \int_a^x (x-t)^{n-\alpha-1} f(t) \, dt = \frac{d^n}{dx^n} J^{n-\alpha}_a f(x).$$

The following lemma summarizes conditions in the composition identity for the left-sided Riemann–Liouville fractional derivatives (for details see Andrić et al., 2013a).

Lemma 3.15. Let $\beta > a > 0$, $m = [\beta] + 1$, and $n = [a] + 1$. The composition identity

$$D^\alpha_{a^+} f(x) = \frac{1}{\Gamma(\beta - \alpha)} \int_a^x (x-t)^{\beta-\alpha-1} D^\alpha_{a^+} f(t) \, dt, \ x \in [a, b],$$

is valid if one of the following conditions holds:

(i) $f \in J^\alpha_{a+}(L_1[a, b]) = \{ f : f = J^\alpha_{a+} \varphi, \varphi \in L_1[a, b] \}$.

(ii) $J^{\beta-\alpha}_a f \in AC^n[a, b]$ and $D^{\beta-\alpha}_a f(\alpha) = 0$ for $k = 1, \ldots, m$.

(iii) $D^{\beta-\alpha}_a f \in AC[a, b], D^{\beta-\alpha}_a f \in C[a, b], \text{and } D^{\beta-\alpha}_a f(\alpha) = 0$ for $k = 1, \ldots, m$.

(iv) $f \in AC^n[a, b], D^{\beta-\alpha}_a f, D^{\beta-\alpha}_a f \in L_1[a, b], \beta - \alpha \notin \mathbb{N}, D^{\beta-\alpha}_a f(\alpha) = 0$ for $k = 1, \ldots, m$ and $D^{\beta-\alpha}_a f(\alpha) = 0$ for $k = 1, \ldots, n$.

(v) $f \in AC^{n+1}[a, b], D^{\beta-\alpha}_a f, D^{\beta-\alpha}_a f \in L_1[a, b], \beta - \alpha - l \notin \mathbb{N}, D^{\beta-\alpha}_a f(\alpha) = 0$ for $k = 1, \ldots, l$.

(vi) $f \in AC^n[a, b], D^{\beta-\alpha}_a f, D^{\beta-\alpha}_a f \in L_1[a, b], \text{and } f^{(k)}(\alpha) = 0$ for $k = 0, \ldots, m - 2$.

(vii) $f \in AC^n[a, b], D^{\beta-\alpha}_a f, D^{\beta-\alpha}_a f \in L_1[a, b], \beta \notin \mathbb{N}$ and $D^{\beta-\alpha}_a f$ is bounded in a neighborhood of $m = a$.

Theorem 3.16. Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$. Also, let $\beta > a > 0$, $m = [\beta] + 1$, and $n = [a] + 1$. Suppose that one of the conditions in (i)-(vii) in Lemma 3.15 holds for f, a, f and let $D^\alpha_{a^+} f \in L_1[a, b]$, then we have

$$\int_a^x f_1(x) f_2(x) D^\alpha_{a^+} f(x) \, dx \leq C \left(\int_a^x f_1(x) D^\alpha_{a^+} f(x) \, dx \right)^{\frac{1}{p}} \left(\int_a^x f_2(x) D^\alpha_{a^+} f(x) \, dx \right)^{\frac{1}{q}}.$$

where

\[
C = \sup_{t \in (a,b)} \left\{ \left(\int_a^x (x - t)^{\beta+1} f_1(x) f_2(x) dx \right) \left(\int_a^x (x - t)^{\beta+1} f_3(x) dx \right)^{\frac{1}{2}} \right\}.
\]

Next, we give the results for a generalized fractional integral operator, the **Saigo fractional integral operator** (for details see, Saigo, 1978).

Let \(a > 0, \beta, \eta \in \mathbb{R}\). Then, the Saigo fractional integrals \(I^{a,\beta,\eta}_x\) of order \(a\) for a real-valued continuous function \(f\) are defined by:

\[
I^{a,\beta,\eta}_x f(x) = \frac{x^{\alpha-\beta}}{\Gamma(\alpha)} \int_a^x (x - t)^{\alpha-1} _2F_1 \left(\alpha + \beta - \eta; \alpha; 1 - \frac{t}{x} \right) f(t) dt, \quad x \in [a, b]. \tag{3.9}
\]

where, the function \(_2F_1(\ldots)\) appearing as the kernel for operator (Equation 3.9) is the Gaussian hyper-geometric function defined by

\[
_2F_1(a, b; c; t) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n n!} t^n,
\]

and \((a)_n\) is the Pochhammer symbol: \((a)_n = a(a + 1) \cdots (a + n - 1), (a)_0 = 1\).

THEOREM 3.17 Let \(p, q\) be two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1, \; p > 1\). Then, for \(a > 0\), we have

\[
\int_a^x f_1(x) f_2(x) I^{a,\beta,\eta}_x f(x) dx \leq C \left(\int_a^x f_1(x) I^{a,\beta,\eta}_x f(x) dx \right)^{\frac{1}{2}} \left(\int_a^x f_2(x) I^{a,\beta,\eta}_x f(x) dx \right)^{\frac{1}{2}}, \tag{3.10}
\]

where

\[
C = \sup_{t \in (a,b)} \left\{ \left(\int_a^x x^{\alpha-\beta} _2F_1 \left(\alpha + \beta - \eta, \alpha; 1 - \frac{t}{x} \right) (x - t)^{\alpha-1} f_1(x) f_2(x) dx \right)^{\frac{1}{2}} \right\}.
\]

Proof Applying Theorem 2 with \(\Omega_1 = \Omega_2 = (a, b), d\mu_1(x) = dx, d\mu_2(t) = dt\) and the kernel \(g\) becomes \(I^{a,\beta,\eta}_x f\) and we get the inequality (Equation 3.10). \(\square\)

\[
k(x,t) = \begin{cases}
\frac{\beta-\eta}{\Gamma(\alpha)} _2F_1(\alpha + \beta - \eta, \alpha; 1 - \frac{t}{x}) (x - t)^{\alpha-1}, & a \leq t \leq x; \\
0, & x < t \leq b,
\end{cases}
\]

COROLLARY 3.18 If we set \(f_3(x) = f_1(x) f_2(x)\) and \(f_4(x) = f_1^a(x)\), then we get

\[
\int_a^x f_1(x) f_2(x) I^{a,\beta,\eta}_x f(x) dx \leq C \left(\int_a^x f_1(x) I^{a,\beta,\eta}_x f(x) dx \right)^{\frac{1}{2}} \left(\int_a^x f_2(x) I^{a,\beta,\eta}_x f(x) dx \right)^{\frac{1}{2}},
\]

where
\[
C = \sup_{\alpha, \beta \in [0,1]} \left\{ \left(\int_0^1 x^{\alpha-\beta} f_2(\alpha + \beta, -\eta, \alpha; 1 - \frac{t}{x}) (x-t)^{-\eta-1} f_2(x) dx \right)^{1/2} \times \left(\int_0^1 x^{\alpha-\beta} f_3(\alpha + \beta, -\eta, \alpha; 1 - \frac{t}{x}) (x-t)^{-\eta-1} f_2(x) dx \right)^{1/2} \}.
\]

Remark 3.19 If we put \(\beta = -\alpha \) in Theorem 3.17, then we get the results for the right sided Riemann–Liouville fractional integral.

4. Applications for Widder derivatives and linear differential operators

In this section, we apply our results for Widder derivatives and linear differential operators. The following are taken from Widder (1928).

Let \(f, u_0, u_1, \ldots, u_n \in C^{n+1}([a, b]), n \geq 0, \) and the Wronskians

\[
W_i(x) = W[u_0(x), u_1(x), \ldots, u_i(x)], \quad i = 0, 1, \ldots, n.
\]

For \(i \geq 0, \) the differential operator of order \(i \) (Widder derivative):

\[
L_i f(x) = \frac{W[u_0(x), u_1(x), \ldots, u_{i-1}(x), f(x)]}{W_{i-1}(x)}
\]

\(i = 1, \ldots, n+1; L_0 f(x) = f(x), \forall x \in [a, b]. \) Consider also

\[
g_i(x, t) = \frac{1}{W_i(t)} \begin{vmatrix} u_0(t) & u_1(t) & \ldots & u_i(t) \\ u_0(t) & u_1(t) & \ldots & u_i(t) \\ \vdots & \vdots & \ddots & \vdots \\ u_0^{i-1}(t) & u_1^{i-1}(t) & \ldots & u_i^{i-1}(t) \\ u_0(x) & u_1(x) & \ldots & u_i(x) \end{vmatrix}
\]

\(i = 1, \ldots, n; g_0(x, t) = \frac{u_0(x)}{u_0(t)}, \forall x, t \in [a, b]. \)

Example 4.1 Sets of the form \(\{u_0, u_1, \ldots, u_n\} \) are \(\{u_0, u_1, \ldots, u_n\}, \{1, \sin x, -\cos x, -\sin 2x, \cos 2x, \ldots, (-1)^n \sin^n x, (-1)^n \cos^n x, \ldots\}. \)

We also mention the generalized Widder–Taylor’s formula (see Anastassiou, 2011; Widder, 1928).

Theorem 4.2 Let the functions \(f, u_0, u_1, \ldots, u_n \in C^{n+1}([a, b]), \) and the Wronskians \(W_0(x), W_1(x), \ldots, W_n(x) > 0 \) on \([a, b], x \in [a, b] \) Then, for \(t \in [a, b] \) we have

\[
f(x) = y(t) \frac{u_0(x)}{u_0(t)} + L_1 f(t) g_1(x, t) + \ldots + L_n f(t) g_n(x, t) + R_n(x),
\]

\((4.4) \)
where

\[R_n(x) = \int_a^x g_n(x,s)L_n f(s)ds \]

For example (Widder, 1928), one could take \(u_0(x) = c > 0 \). If \(u_i(x) = x^i, i = 0, 1, \ldots , n \), defined on \([a, b] \), then

\[L_f y(t) = f^i(t) \text{ and } g_n(x, t) = \frac{x^n - t^n}{t^{n+1}}, \quad t \in [a, b]. \]

We need the following result.

Corollary 4.3 By additionally assuming for fixed \(x_0 \in [a, b] \) that \(L_f(x_0) = 0, i = 0, 1, \ldots , n \), we get

\[f(x) = \int_{x_0}^x g_n(x,s)L_n f(s)ds. \]

(4.5)

Note that all the results of this section are under the assumptions of Theorem 4.2 and Corollary 4.3.

Theorem 4.4 Let \(p, q \) be two real numbers such that \(\frac{1}{p} + \frac{1}{q} = 1 \), for \(p > 1 \). Then, we have

\[
\int_{x_0}^x f_1(x) f_2(x) f(x) dx \leq C \left(\int_{x_0}^x f_1(x) f(x) dx \right)^{\frac{1}{p}} \left(\int_{x_0}^x f_2(x) f(x) dx \right)^{\frac{1}{q}} \]

(4.6)

where

\[
C = \sup_{x \in [a, b]} \left\{ \left(\int_{x_0}^x g_1(x, t) f_1(x) f_2(x) dx \right) \left(\int_{x_0}^x g_2(x, t) f_2(x) f(x) dx \right) \right\}^{\frac{1}{2}} \times \left(\int_{x_0}^x g_3(x, t) f_3(x) dx \right)^{\frac{1}{2}}.
\]

Proof Applying Theorem 2 with \(\Omega_1 = \Omega_2 = (a, b), d\mu_1(x) = dx, d\mu_2(t) = dt \) and the kernel \(k(x,t) \) with particular kernel \(g_n(x,t) \), also replacing \(f \) by \(L_n f \), \(g \) becomes \(f \) and we get the inequality (Equation 4.6).

Corollary 4.5 If we set \(f_1(x) = f_1^n(x) \) and \(f_2(x) = f_2^n(x) \), then we get

\[
\int_{x_0}^x f_1(x) f_2(x) f(x) dx \leq C \left(\int_{x_0}^x f_1^n(x) f(x) dx \right)^{\frac{1}{p}} \left(\int_{x_0}^x f_2^n(x) f(x) dx \right)^{\frac{1}{q}} \]

where

\[
C = \sup_{x \in [a, b]} \left\{ \left(\int_{x_0}^x g_1(x, t) f_1^n(x) f_2^n(x) dx \right) \left(\int_{x_0}^x g_2(x, t) f_2^n(x) f(x) dx \right) \right\}^{\frac{1}{2}} \times \left(\int_{x_0}^x g_3(x, t) f_3^n(x) dx \right)^{\frac{1}{2}}.
\]

Onward, we follow Kreider, Kuller, and Perkins (1966, pp. 145–154).
Let I be a closed interval of \mathbb{R}. Let $a_i(x), i = 0, 1, \ldots, n-1 (n \in \mathbb{N}_0)$, $h(x)$ be continuous functions on I and let $L = D^n + a_{n-1}(x)D^{n-1} + \ldots + a_0(x)$ be a fixed linear differential operator on $C^0(I)$. Let $y_1(x), \ldots, y_n(x)$ be a set of linear independent solutions to $Ly = 0$. Here, the associated Green's function for L is

$$H(x, t): = \begin{vmatrix}
y_1(t) & \ldots & y_1(t) \\
y_2(t) & \ldots & y_2(t) \\
\vdots & & \vdots \\
y_{n-2}(t) & \ldots & y_{n-2}(t) \\
y_{n}(t) & \ldots & y_{n}(t)
\end{vmatrix}, \quad (4.7)$$

which is a continuous function on I^2. Consider fixed $x_0 \in I$, then

$$y(x) = \int_{x_0}^{x} H(x, t)h(t)dt, x \in I \quad \text{(4.8)}$$

is the unique solution to the initial value problem

THEOREM 4.6 Let p, q be two real numbers such that $\frac{1}{p} + \frac{1}{q} = 1$, for $p > 1$. Then, we have

$$Ly = h; y^{(i)}(x_0) = 0, i = 0, 1, \ldots, n-1. \quad \text{(4.9)}$$

$$\int_{x_0}^{x} f_1(x)f_2(x)y(x)dx \leq C\left(\int_{x_0}^{x} f_1(x)y(x)dx\right)^{\frac{q}{p}} \left(\int_{x_0}^{x} f_2(x)y(x)dx\right)^{\frac{1}{p}} \quad \text{(4.10)}$$

where

$$C = \sup_{x \in (a,b)} \left\{ \left(\int_{x_0}^{x} H(x, t)f_2(x)dx\right)\left(\int_{x_0}^{x} H(x, t)f_1(x)dx\right)^{\frac{1}{p}} \right\}$$

Proof Applying Theorem 2 with $\Omega_1 = \Omega_2 = (a, b), d\mu_1(x) = dx, d\mu_2(t) = dt$ and the kernel $k(x, t)$ with particular kernel $H(x, t)$, also replacing f by h, g becomes y and we get the inequality (Equation 4.10). \hfill \square

COROLLARY 4.7 If we set $f_3(x) = f_1^p(x)$ and $f_4(x) = f_2^q(x)$, then we get

$$\int_{x_0}^{x} f_3(x)f_4(x)y(x)dx \leq C\left(\int_{x_0}^{x} f_3^p(x)y(x)dx\right)^{\frac{q}{p}} \left(\int_{x_0}^{x} f_4^q(x)y(x)dx\right)^{\frac{1}{q}}$$

where

$$C = \sup_{x \in (a,b)} \left\{ \left(\int_{x_0}^{x} H(x, t)f_4(x)dx\right)\left(\int_{x_0}^{x} H(x, t)f_3(x)dx\right)^{\frac{1}{p}} \right\}$$

\hfill \square
5. Generalization of previous results

In this last section, we want to give improvements of the previous results.

Theorem 5.1 Let \((\Omega_1, \Sigma_1, \mu_1)\) and \((\Omega_2, \Sigma_2, \mu_2)\) be measure spaces with \(\sigma\)-finite measures and \(f_i: \Omega_1 \rightarrow \mathbb{R}, \ i = 1, \ldots, 2n\), be non-negative functions. Let \(g\) be the function that has the following representation

\[
g(x) = \int_{\Omega_1} k(x, t)f(t)d\mu_1(t) \tag{5.1}
\]

where \(k: \Omega_1 \times \Omega_1 \rightarrow \mathbb{R}\) is a general non-negative kernel and \(f: \Omega_1 \rightarrow \mathbb{R}\) be a real-valued function. If \(p_i, i = 1, \ldots, n\), are positive real numbers such that \(\sum_{i} \frac{1}{p_i} = 1\), then

\[
\int_{\Omega_2} \prod_{j=1}^{n} f_j(x)g(x)d\mu_2(x) \leq C \prod_{j=1}^{n} \left(\int_{\Omega_2} f_{n+1}(x)g(x)d\mu_2(x) \right)^{\frac{1}{n}} \tag{5.2}
\]

where

\[
C = \sup_{t \in \mathbb{R}} \left\{ \left(\int_{\Omega_2} k(x, t)f_1(x) \cdots f_n(x)d\mu_2(x) \right) \prod_{j=1}^{n} \left(\int_{\Omega_2} k(x, t)f_{n+1}(x)d\mu_2(x) \right)^{\frac{1}{n}} \right\}.
\]

Proof For fixed \(\lambda > 0, \lambda \neq 1\) we define \(c_i\) as follows

\[
c_i = \frac{1}{\ln \lambda} \left(\prod_{j=1}^{n} \left(\int_{\Omega_2} f_{n+1}(x)g(x)d\mu_2(x) \right)^{\frac{1}{n}} \right)^{-1}, \ i = 1, \ldots, n.
\]

For these numbers, one can observe

\[
\sum_{i=1}^{n} c_i = 0
\]

and from this we obtain

\[
\prod_{i=1}^{n} (\lambda^{c_i})^{\frac{1}{n}} = 1. \tag{5.3}
\]

Using the representation of \(g\), and Equation 5.3, we have

\[
\int_{\Omega_2} f_1(x) \cdots f_n(x)g(x)d\mu_2(x) = \int_{\Omega_2} f_1(x) \cdots f_n(x)k(x, t)f(t)d\mu_2(x)d\mu_1(t)
\]

\[
= \int_{\Omega_2} \left(\int_{\Omega_1} k(x, t)f_1(x) \cdots f_n(x)d\mu_2(x) \right)f(t)d\mu_1(t)
\]

\[
\leq C \prod_{i=1}^{n} \left(\int_{\Omega_2} f_{n+1}(x)k(x, t)d\mu_2(x) \right)^{\frac{1}{n}} f(t)d\mu_1(t)
\]

\[
= C \prod_{i=1}^{n} \left(\int_{\Omega_2} f_{n+1}(x)k(x, t)d\mu_2(x) \right)^{\frac{1}{n}} f(t)d\mu_1(t)
\]
Now, using the inequality between arithmetic and geometric means, we have
\[
\leq C \sum_{j=1}^{n} \frac{\int_{\Omega_j} f_j(x) d\mu_j(x)}{\rho_j} f(t) d\mu_j(t).
\]
Thus, we have
\[
\int_{\Omega_j} f_1(x) \ldots f_n(x) g(x) d\mu_j(x) \leq C \sum_{j=1}^{n} \frac{\delta_j}{\rho_j} \int_{\Omega_j} f_j(x) g(x) d\mu_j(x).
\]
Using definition of \(c_n \), we get (Equation 5.2).

COROLLARY 5.2 If we set \(f_{n,j}(x) = f_j(x)^p \), then we have
\[
\int_{\Omega_j} \prod_{j=1}^{n} f_j(x) g(x) d\mu_j(x) \leq C \prod_{j=1}^{n} \left(\int_{\Omega_j} f_j(x)^p g(x) d\mu_j(x) \right)^{\frac{1}{n}}
\]
where
\[
C = \sup_{\text{test}} \left\{ \int_{\Omega_j} \left(\int_{\Omega_j} f_1(x) \ldots f_n(x) d\mu_j(x) \right)^{\frac{1}{n}} \right\}.
\]

COROLLARY 5.3 If we put \(f(t) = 1 \) and \(\Omega_1 = \Omega_2 = [0, \infty] \) and replace \(d\mu_1(t), d\mu_2(x) \) by measures \(dh(t), dx \), respectively, in Theorem 5.1, then we get Varošenec (1995, Theorem 1). Further, if we set \(f_{n,j}(x) = f_j(x)^p \), we get a generalization of Volkov’s result (1972).

Remark 5.4 If we take \(n = 2 \) in Equation 5.2 of Theorem 5.1, we get Equation 2.2 of Theorem 2.

Remark 5.5 Applications of results in this section for various types of fractional integrals and fractional derivatives can be observed in Sections 3 and 4 and we omit the details.

Funding
The authors received no direct funding for this research.

Author details
Ghulam Farid
E-mail: ghfarid@ciit-attok.edu.pk
Sajid Iqbal
E-mail: sjd_uos2000@yahoo.com
Josip Pečarić
E-mail: pecaric@element.hr

1 Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan.
2 Department of Mathematics, University of Sargodha (Sub-Campus Bhakkar), Bhakkar, Pakistan.
3 Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28A, 10000 Zagreb, Croatia.

Citation information
Cite this article as: On generalization of an integral inequality and its applications, Ghulam Farid, Sajid Iqbal & Josip Pečarić, Cogent Mathematics (2015), 2: 1066528.

References
Agarwal, R. P., & Pang, P. Y. H. (1995). Opial inequalities with applications in differential and difference equations. Dordrecht: Kluwer Academic.
Anastassiou, G. A. (2009). Fractional differentiation inequalities. New York, NY: Springer.
Anastassiou, G. A. (2013). Advanced inequalities (Vol. 11). Singapore: World Scientific.
Andrić, M., Pečarić, J., & Perić, I. (2011). Improvements of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities. Dynamic Systems and Applications, 20, 383–394.
Andrić, M., Pečarić, J., & Perić, I. (2013a). A multiple Opial type inequality for the Riemann–Liouville fractional derivatives. Journal of Mathematical Inequalities, 7, 139–150.
Andrić, M., Pečarić, J., & Perić, I. (2013b). Composition identities for the Caputo fractional derivatives and applications to Opial-type inequalities. Mathematical Inequalities \\& Applications, 16, 657–670.
Andrić, M., Barbir, A., Farid, G., & Pečarić, J. (2014a). Opial-type inequality due to Agarwal–Pang and fractional differential inequalities. Integral Transforms and Special Functions, 25, 324–335.
Andrić, M., Barbir, A., Farid, G., & Pečarić, J. (2014b). More on certain Opial-type inequality for fractional derivatives and exponentially convex functions. Nonlinear Functional Analysis and Applications, 19, 563–584.
