Probiotics in Human Immunodeficiency Virus Infection: A Systematic Review and Evidence Synthesis of Benefits and Risks

George M. Carter,1 Aryan Esmaeili,2 Hardikumar Shah,2 Debbie Indyk,2 Matthew Johnson,4 Michael Andreae,5 and Henry S. Sacks3

1Foundation for Integrative AIDS Research, Brooklyn; 2Icahn School of Medicine at Mount Sinai; 3Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai; 4Teachers College, Columbia University; 5Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, New York

People living with human immunodeficiency virus frequently use dietary supplements, including probiotics, but concern exists about ingesting live organisms. We performed a systematic review of the benefits of probiotics and a meta-analysis of sepsis risk. We undertook a protocol-driven, comprehensive review to identify all relevant studies, assess their quality, and summarize the evidence. Of 2068 references, 27 were analyzed. The data suggest possible benefits for CD4 count, recurrence or management of bacterial vaginosis, and diarrhea management. We examined randomized, controlled studies explicitly assessing sepsis in any patient population, and we found zero cases of supplement-associated bacteremia or fungemia in 39 randomized controlled trials comprising 9402 subjects. The estimated number needed to harm is 7369 in Bayesian approach (95% credible interval: 1689, ∞), which should reassure clinicians. No or mild adverse effects were reported. Longer duration studies investigating different individual and mixed strains for plausible indications are needed to establish best practices.

Keywords. bacteremia; fungemia; HIV infection; probiotics.

Individuals living with human immunodeficiency virus (HIV) frequently use dietary supplements [1]. The use of probiotics may be inexpensive and potentially clinically important interventions to reduce HIV-related morbidity and mortality [2].

Human immunodeficiency virus infects CD4+ T lymphocytes and monocyte-derived-macrophages colonizing the gut-associated lymphoid tissue [3]. Significant disruption to gut architecture can occur, with a concomitant release of lipopolysaccharide (LPS) into peripheral blood, correlating with systemic immune activation, a hallmark of HIV disease progression [4]. Probiotics may reduce immune activation and bacterial translocation [5] and possibly reduce acquisition or transmission of infections [6].

This paper expands and updates previous reviews. Level B evidence was found for treating diarrhea; it was not possible to make a recommendation regarding use of probiotics in HIV-infected patients [7]. A meta-analysis in children found evidence for decreased duration of diarrhea and fever but limited data for HIV+ children [8]. Evidence is fairly robust for the use of probiotics for primary prevention, with weaker evidence as secondary prophylaxis for Clostridium difficile infections [9]. Probiotics may modulate immune function, offset the sequelae of malnutrition, mitigate enteric infections and eventually serve as microbicides or vehicles for mucosal delivery of vaccines [10, 11]. Probiotics may have clinical benefits; however, access remains a limiting factor in some settings [12–14]. Our review adds an HIV-specific focus to a systematic review previously conducted of conditions pathologically similar to HIV [15].

Several case reports document probiotic organisms causing sepsis [16], but no studies provide numerical estimates of risk. Therefore, we assessed data from randomized controlled trials (RCTs) in people with and without HIV where probiotics were administered, and risk of sepsis arising from bacteremia or fungemia was explicitly assessed. We derived a risk estimate and number needed to harm (NNH) using Bayesian analytical methods.

METHODS

We conducted a systematic review, querying multiple databases, providing a comprehensive overview of the use of probiotics, prebiotics, or synbiotics in HIV disease and a data synthesis of sepsis risk of probiotics. Our protocol was registered with PROSPERO [17].

SEARCH METHODS

Eligibility Criteria

We included clinical trials of individuals of any age with documented HIV disease with or without concurrent or active infection, whether or not they were on antiretroviral (ARV) therapy.
We defined probiotic supplements as commensal bacterial or fungal supplements, in any form, including capsule, tablet, powder, softgel, or fortified food forms. Prebiotics were defined as nondigestible food ingredients that modify intestinal microbiota by enhancing the growth of commensal bacteria [18]. Studies of synbiotics combining prebiotics and probiotics were included.

Information Sources

We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (The Cochrane Library), Cochrane Reviews, Cochrane Trials, AEGIS, AMED, CINAHL, Google Scholar, and the World Health Organization. Searches were conducted from database inception through March 2016.

Study Selection

Reviewer pairs independently screened citations and abstracts of all publications obtained by the search strategies (Figure 1). Disagreements were resolved by consensus.

Data Collection Process

For eligible trials, we obtained full articles and assessed their relevance based on the preplanned criteria for inclusion in the systematic review.

Data Items

We extracted data on study design, intervention, trial design, site, number of participants, inclusion and exclusion criteria, duration, toxicity/adverse events, primary endpoint, secondary endpoint, findings, baseline differences, conclusions, efficacy, and safety (Table 1).

QUALITY APPRAISAL

Risk of Bias of Individual Studies

We evaluated methodological quality with the Cochrane Collaboration’s tool for assessing the risk of bias [19], on the basis of sequence generation, allocation concealment, blinding, intention to treat or per protocol analysis, missing data and attrition, and selective reporting. We recorded details of trial design, conflict of interests and sponsor, participant characteristics, interventions and outcome measures (Table 2).

Risk of Bias Within Studies

Studies were assessed for randomized allocation, allocation concealment and participants, and observer blinding. Two studies were observational [20, 21].

DATA ABSTRACTION

Summary Measures

Our primary clinical outcome was the effect on diarrhea. Other outcomes included CD4, microbial translocation, microbicidal effects and bacterial vaginosis (BV). Insufficient data on viral load was available to warrant a separate assessment.

SYNTHESIS

Sepsis Risk Meta-Analysis

We pooled data from all studies with predefined and explicit reporting on sepsis risk (bacteremia or fungemia) from the use of probiotics, including HIV-negative patients (Supplemental Table). In our Bayesian fixed effects model, \(\pi \) denotes the probability of not observing an adverse event in study \(i \) under the placebo condition; \(\rho \) denotes the ratio of the probability of non-events in the treatment condition of study \(i \) relative to the probability of nonevent in the placebo condition; therefore, the probability of not observing an adverse event in the treatment condition is \(\rho \pi \). The model assumes a priori that the risk of an adverse event is more probable in the treatment condition, so that the probability ratio is contained within the unit interval, i.e., \(0 \leq \rho \leq 1 \). The model assumes that the probability of an adverse event is constant across studies; hence, it assumes \(\pi_i = \pi \) and \(\rho_i = \rho \) for all studies \(i \). To reflect lack of knowledge about the parameters, we chose to assume uniform priors on \(\pi \) and \(\rho \). We approximated the posterior median of the NNH by Markov chain Monte Carlo in OpenBugs. We deemed that a Bayesian random effects analysis would not yield significant differences in our analysis [22].

RESULTS

Search Outcome

A total of 2068 titles were identified (see Figure 1). Of these, 27 were pulled for review. The following outcomes were reviewed:

Figure 1. Flow chart of selection process of reviewed studies. Studies included add up to more than 26 due to multiple outcomes in some studies.
Reference	Population/ARV	Duration	Intervention/Duration	Comparator	Outcomes (Endpoint)
Anukam et al [28]	Adult HIV+ women, n = 24	Over 15 d	Yogurt fermented with specific strains; n = 12	Yogurt with standard strains n = 12	CD4, hematologic parameters, diarrhea duration
Cunningham-Rundles et al [31]	n = 17 Pediatric HIV	Lactobacillus plantarum 299v - 1st child received in a juice; further children received packets	Placebo packet n = unclear	Nutrient status and growth; colonization of gut and immunological effects	
Gautam et al [23]	n = 146 HIV+ ≤15 years old Randomized by ARV use	3 mo	Lactobacillus sporogens n = 35 on ARV n = 30 not, MN only n = 25 not, probiotic	Supplement without probiotics n = 31 on ARV; n = 25 not	CD4
Gonzalez-Hernandez et al [3]	n = 17 Pediatric HIV	Over 16 wk	Prebiotic: 10 grams of agavins from Agave tequilana Weber var. azul (FOS with mainly β(2–1) linkages, and some β(2–6) linkages); Probiotic: Lactobacillus rhamnosus HN001, Bifidobacterium lactis Bi-07 at 10^9 cfu/mL, or Symbiotic combination	Placebo was a product of Biogel without probiotics or prebiotic n = 5	Immune activation (soluble [s]CD14, LP5); impact on commensal and pathogenic bacterial species, flatulence and abdominal distension by week 12 were noted.
Gori et al [18]	n=57 HIV+ ARV naive Each arm, n = 19	12 wk; follow-up at 16 wk off tx	Prebiotics: 15 (n = 19) or 30 g (n = 19) short-chain galactooligosaccharides, long-chain fructooligosaccharides, pectin hydrolysate-derived acidic oligosaccharides daily	Placebo n = 19	Diarrhea-primary CD4, HIV VL-secondary
Heiser et al [30]	n = 35 HIV+ adults on ARV (nelfinavir-containing regimen) Pilot study	12 wk	Phase 1: Probiotics (1.2 g of acidophilus/bifidus mix) and 12 g/d of soluble fiber first 4 wk; Phase 2 added in 10/g day titrated up to 30 g/day within 1 wk of L-glutamine (“S” group) n = 28 in S (active)	Standard of care (“C”) n = 7	Immune activation (soluble [s]CD14, LP5); impact on commensal and pathogenic bacterial species, flatulence and abdominal distension by week 12 were noted.
Hemsworth et al [41]	n = 25 Adult HIV+ study On ARV	30 d each tx; 14 d washout	MN and probiotic (A), MN alone (B) and probiotic alone (C). A: MN plus Lactobacillus acidophilus CAN-1 (minutes 10^9 cfu/mL); B: MN alone; and C: L rhamnosus CAN-1 (minutes 10^9 cfu/mL).	3-arm crossover design	No single primary outcome stated; effects on immune status, bowel health, and QoL
Hummelen et al [29]	n = 65 (see also next entry)	25 wk (6 mo)	Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 n = 32	Placebo n = 33	To prevent or cure bacterial vaginosis
Hummelen et al [46]	n = 65, women HIV+ ARV naive	25 wk	Oral capsules L rhamnosus GR-1 and L reuteri RC-14 n = 32 probiotics	Placebo n = 33	CD4, immune markers, diarrhea; effect on bacterial vaginosis
Hummelen et al [36]	N = 112 Adult (>18) HIV+ ARV naive	4 wk	MN fortified yogurt with L rhamnosus GR-1 n = 55	a MN fortified yogurt without additional probiotic L rhamnosus GR-1 (n = 57) for 4 wk	CD4 Secondary outcomes: hematological indicators (creatinine, albumin, ALT, and full blood count); inciden of diarrheal episodes, symptoms, physical energy and their ability to perform activities of daily living.
Irvine et al [38]	n=150 HIV+ Mixed ARV use.	3 y	Probiotic yogurt consumption. n = 68 on probiotics	Not consuming the yogurt. n = 82	CD4 count; prophylactic effect on diarrhea
Irvine et al [21]	n = 171 Adult HIV+ approximately 60% on ARV	3 y (see above)	Plain yogurt supplemented with the probiotic strain L rhamnosus GR-1 (Fit) as an adjunct to the diet; patients on ARV n = 85	Not consuming probiotic yogurt rather maize flour, beans n = 86	Gl health, QoL, and immune function.
Reference	Population/ARV	Duration	Intervention/Duration	Comparator	Outcomes (Endpoint)
---------------------------	--------------------------------	----------	---	---------------------	---------------------
Kerac et al [24]	795 children with severe acute malnutrition (age range, 5–168 mo) HIV+: 170/399 (42.6%) Few on ARV	Median 33 d	Symbiotic2000 Forte (Medipharm AB, Kagerod, Sweden): 10^{10} cfu total of mix of Pedococcus pentosaceus 16:1 LMG P-20608, Leuconostoc mesenteroides 23–77:1 LMG P-20607, Lactobacillus paracasei subsp. paracasei F-19 LMG P-17806, and L plantarum 2362 LMG P-20606 plus prebiotic fibres (2.5 grams of each per 10^{10} bacteria) (oat bran rich in β-glucans), inulin, pectin, and resistant starch)	Standard RUTF HIV^{+} 192/396 (48.5%)	Nutritional cure (weight-for-height >80% of National Center for Health Statistics median on 2 consecutive outpatient visits). Secondary outcomes included death, weight gain, time to cure, and prevalence of clinical symptoms (diarrhea, fever, and respiratory problems).
Saint-Marc et al [20]	n = 17 with various serious OIs, stage IV disease	15 d	Saccharomyces boulardii n = 17	None	Impact on diarrhea; weight
Saint-Marc et al [33]	n = 35 HIV^{+} All pts on AZT, stage IV disease	7 d	S boulardii 2 500-mg sachets n = 18	Placebo	Impact on diarrhea
Salminen et al [35]	n = 17 HIV^{+} On ARV (20 enrolled; 1 lost to f/u after first period; 2 before randomization)	2 wk	L rhamnosus GG caps, 1–5 × 10^{10} cfu n = 17	Placebo (crossover)	Primary GI symptoms/diarrhea; VAS 0–100 mm CD4, HIV load monitored
Schunter et al [42]	N = 33 HIV^{+} women on ARV	4 wk	Symbiotic 2000 (see Kerac et al [24] entry) n = 14	Fiber-only placebo n = 13 (PP)	Microbial translocation; cellular activation; plasma and fecal bacterial levels
Trois et al [34]	N = 77 RCT, HIV^{+} children; 48.6% (probiotics) and 61.5% (placebo) on ARV; 62.2% and 48.7% in probiotics and placebo arms, respectively, were using didanosine	2 mo	Standard formula containing Bifidobacterium bifidum with Streptococcus thermophilus—2.5 × 10^{10} cfu in 100 mL milk. n = 38	Placebo (14 g formula diluted in 100 mL of milk) daily throughout a 2-month period. n = 39	1- CD4 2- The quality and number of stools assessed by questionnaire (watery to normal stool consistency, number of stools passed during a 24-h period).
Villar-Garcia et al [26]	n = 44 HIV^{+} Stable ARV, VL < 20 for at least 2 y	12 wk w/12 wk follow-up	S boulardii, 6 × 10^{6} living "bacteria" n = 22	Placebo n = 22	Translocation: change of LBP Other markers of translocation, CD4
Wolf et al [37]	n = 39 HIV^{+} Most not on ARV.	21 and 35 d	L reuteri n = 21	Placebo n = 18	Safety, tolerability. Secondary: serum chemistry, hematology, immune profile, urinalysis, physical examination, GI tolerance and fecal microbiota data.
Yang et al [39]	N = 17 HIV^{+} CD4 ≥ 250	3 mo	2 billion Bacillus coagulans GBI-30, 6086 n = 10	No subsps n = 7	Residual gut inflammation. Gastrointestinal Symptom Rating Scale administered monthly. Viremia, CD4^{+} T-cell percentage/concentration, sCD14, soluble intestinal fatty acid binding protein, sCD163, o-dimer, CRP, IL-6, and tumor necrosis factor-α

Abbreviations: ALT, alanine transaminase; ARV, antiretroviral; AZT, azidothymidine; βM, beta-2-microglobulin; cfu, colony-forming unit; CRP, C-reactive protein; DNA, deoxyribonucleic acid; FOS, fructooligosaccharide; f/u, follow up; GI, gastrointestinal; HIV, human immunodeficiency virus; IL, interleukin 6; ITT, intent to treat; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide; MN, micronutrient; OI, opportunistic infection; PICOS, patient/problem intervention comparison outcome setting; PP, per protocol; pts, patients; GoL, quality of life; qPCR, quantitative polymerase chain reaction; RCT, randomized controlled trial; rRNA, ribosomal ribonucleic acid; RUTF, ready-to-use therapeutic food; tx, treatment; VAS, Visual Analogue Scale; VL, viral load.
Reference	Primary Endpoint	Study Design	Selection Bias	Performance Bias	Detection Bias	ITT/PP	Comments
Anukam et al [28]	Moderate diarrhea	DB CT	I	I	Unclear	PP	No randomization or allocation described. Research funded in part by Urex Biotech Inc. and Natural Sciences and Engineering Research Council of Canada.
Cunningham-Rundles et al [31]	Nutrient status and growth; colonization; immune effects	Observational case study; DB RCT	I	I	I	PP	Although 17 participants initially enrolled, only in a later description was it stated parents or children chose between identical packets (Cunningham-Rundles et al [31]). Of these, 14 were evaluable and 5 received placebo packets.
d’Ettorre, et al [43]	Inflammation and translocation	Observational	N/A	N/A	N/A	N/A	Comparator arm was 11 HIV-negative individuals given the 1 g probiotics bid. Bloodwork was done in each group (but not CD4 counts in the HIV- group).
Falasca, et al [40]	Inflammation and translocation	Observational	N/A	N/A	N/A	N/A	No comparator arm. 30 HIV+ men on ARV.
Gautam et al [23]	CD4, pediatric	RCT	A	I	I	PP	Randomization by using colored cards in white envelopes. Not blinded; participants received probiotic, MN syrup or sachets.
Gonzalez-Hernandez et al [3]	Safety, CD4, translocation	DB RCT	U	U	A	ITT	Explicit commentary on randomization and blinding methods lacking; analysis appeared to be ITT but not explicitly stated. The placebo was a product of Biogel without probiotics or prebiotic, but with the same flavor and characteristics.
Gori et al [18]	Soluble (s)CD14, LPS; effect on bacterial load in feces	DB RCT	U	A	A	ITT, PP	“Subjects were randomized in three groups . . . ” but no further description. There may be conflicts of interest. Safety monitoring is not described.
Heiser et al [30]	Diarrhea from protease inhibitors	Randomized, not blinded	U	I	I	PP	Randomization not described; unblinded study (observational/pilot study). Glutamine added at week 4 only for treated group.
Hemsworth et al [41]	Immune status, bowel health, QoL	DB RCT, crossover	A	A	A	ITT, model	One dropped out within the first month.
Hummelen et al [46]	Bacterial vaginosis	DB RCT	A	A	A	ITT	Possible conflict of interest.
Hummelen et al [29]	CD4	DB RCT	A	A	A	PP	Dr. Reid no longer holds patents for the use of Lactobacillus GR-1 and RC-14. Chr Hansen provided capsules; financial support from Danone Institute Canada, AFMInet.
Hummelen et al [36]	CD4	DB RCT	A	A	A	ITT	It appears 3 early withdrawals were treated as data carried forward.
Irvine et al [21]	GI health, QoL, immune function	Observational, retrospective	N/A	N/A	N/A	N/A	Observational.
Kerac et al [24]	Primary outcome was nutritional cure	DB RCT	A	A	A	ITT	33-day study. No sepsis seen but investigated. Cure as weight-for-height >80% of National Center for Health Statistics median on 2 consecutive outpatient visits.
Saint-Marc et al [20]	Diarrhea; weight	Observational	N/A	N/A	N/A	N/A	Preliminary observational study.
Saint-Marc et al [33]	Diarrhea	DB RCT	A	A	A	ITT	One patient was precluded from taking doses due to a cerebral toxo-induced coma.
Salminen et al [35]	Primary GI symptoms, diarrhea.	DB RCT crossover	A	I	U	PP	This study was financially supported by Valio Ltd., Helsinki, Finland. 14-day washout period between treatment periods.
Schunter et al [42]	Translocation; cellular activation	DB RCT	A	A	A	PP	No adverse events or side effects reported or mentioned.
Trois et al [34]	Diarrhea; CD4	DB RCT	U	A	U	ITT	Randomization by “cast lots” and products “blinded by a person” not involved in the study.
diarrhea (9); adverse events (11); BV (1); CD4 count (14); and translocation (6) (Figure 1 and Table 3).

Studies included patients on ARVs, patients not on ARVs, and a few patients had mixed use of ARV therapy. In general, descriptions of which ARVs were used were not available (eg, [21, 23–26]). Populations included adult and pediatric studies.

Risk of Bias
Publication bias analysis was precluded by the small numbers of studies [27]. We found no evidence of selective reporting or conflicts of interest; however, some studies were funded by nutritional supplement or yogurt companies (Table 2).

Impact on Human Immunodeficiency Virus- or Antiretroviral-Associated Diarrhea
Nine studies evaluated various probiotic formulas for diarrhea. Of these, 1 showed mixed benefit, 3 reported benefit, 2 reported no benefit, 1 reported prophylactic benefit, and 2 no reported prophylactic effect. Outcomes varied in terms of frequency of stools, consistency, duration, hospital stay, and use of concomitant antimicrobials and other medications to control diarrhea. Populations varied in age (pediatric/adult) as well as ARV use. Trial duration varied from as little as 2 weeks to 3 years, with the majority of studies lasting 2–25 weeks. On those not yet on ARV, one 2-week study showed benefit [28], whereas a 25-week [29] and 33-day pediatric study showed no benefit [24].

Among those using ARV therapy, a 3-year study assessing probiotic-fortified yogurt saw symptom alleviation and improved work productivity [21]. A 12-week study that included fiber and glutamine found benefit in terms of resolution or reduction in number of stools with decreased loperamide use [30]. Although seeing resolution of diarrhea in an initial case, a further study to assess safety in pediatric populations was undertaken. This study among congenitally infected children showed that Lactobacillus plantarum 299v colonized the gut during use, and for younger children there was some improvement in offsetting anergy while potentially offsetting failure to thrive as assessed by growth rates [31, 32]. Two studies investigating Saccharomyces boulardii among very ill patients with acquired immune deficiency syndrome observed significant benefit [20, 33].

A pediatric study, where half were on stable ARV at baseline, saw no differences between arms using formula [34]. A 2-week study showed no benefit with more fecal incontinence experienced by the treated group (P = .5) [35].

In summary, overall data are inconclusive for a role of bacterially based probiotics for managing HIV-associated diarrhea; however, more studies are needed to determine whether higher doses or combinations of bacterial species may have benefit. The use of the fungal S boulardii may have some benefit.

Impact on CD4 Count/Immunological Impact
Fifteen studies reported CD4 counts at baseline and end of study. In 4 studies among ARV-naive patients, 2 found benefit, 1 found no benefit, and 1 reported increases in CD4 in treatment group and declines among placebo recipients that were not statistically significant. Among 7 studies on HIV+ patients on ARV, 4 reported benefit and 3 did not. Two studies with mixed populations on or not on ARV showed a modest increase in CD4 count. Two pediatric studies showed positive effect [8, 19].

Four studies evaluated patients not on ARV, with moderate changes over relatively short periods. The largest effect was an increase of 102 CD4 cells over 16 weeks in a symbiotic arm compared with control in a small study investigating the impact of such interventions on markers of microbial translocation and inflammation [3]. A 30-day study observed, on average, a 3- to 4-fold improvement compared with controls (P < .02) [28].
Table 3. Probiotics and Prebiotics in HIV: Summaries by Outcome

Reference	Population	Duration	ARV	Effect	Results
Anukam et al [28]	Adult HIV* women, n = 24	15 d	–	+	Diarrhea with flatulence and nausea: At 30 d, probiotic group only 4 of 12 had moderate diarrhea, whereas 8 of 11 (73%) did in the probiotic group (no P value). Resolution of other GI symptoms reported in the probiotic group but not the control. The effect disappeared at the 3-month follow-up without treatment.
Cunningham-Rundles et al [31]	n = 17; Pediatric HIV	1 month/2 wk	+	+	Case report: One 11-year-old child with failure-to-thrive on AZT saw after 1-month use resolution of mouth ulcers, candidiasis, and diarrhea; improved appetite; weight gain continued 142 d posttreatment. RCT: Colonization observed by 2 wk of use; subsequent decline approximately 1 mo after stopping. Most children were anergic at BL; supplementation resulted in a positive immunological effect, generally within 1 month. No flatulence or other side effects/AE were observed.
Hummelen et al [46]	n = 65, women	25 wk	–	+	13 of 51 (26%) participants experienced diarrhea for at least 1 day during the intervention. Median number of days similar in both groups and low in both groups (2 days in the placebo group/median 151 days recorded vs 5 days in the probiotic group/148 day recorded) (P = .4). Adverse event: Control: 2 diarrhea, 1 constipation, 3 nausea, 2 itching or peeling skin, 1 dizinness, and 1 vaginal odor. Probiotics: none reported having diarrhea; 1 abdominal discomfort; 3 nausea; 1 vomiting.
Irvine et al [38]	n = 150 HIV* adults	3 y	±	+	Among those consuming yogurt, 56 of 67 (84%) participants did not report any diarrhea symptoms vs 57 of 82 (69%) participants among the nonconsuming group (P = .05). Alleviated GI symptoms, improved work productivity, nutritional intake, and tolerance to ARV. See next entry.
Irvine et al [21]	n = 171; adult HIV*	3 y (see above)	± approximately 60% on ARV	–	No effect on incidence of diarrhea (P = .1). Clinical: Median 2 h more work daily (P = .01), experienced a lower fever incidence (P = .01), and were more likely to achieve daily nutrient requirements for vitamin A, several B complex vitamins, and calcium (P = .002); less ARV-related stomach pain (P = .02) and less GI symptoms that affect daily life (P = .03).
Kerac et al [24]	795 severely malnourished children	Median 33 d	– (+); Few on ARV	–	Primary outcome: No effect on prespecified nutritional or clinical outcomes from severe acute malnutrition. Children with severe acute malnutrition (age range, 5–168 mo); HIV+: 170 of 399 (42.6%). Inpatient sybiotic users had longer duration of severe diarrhea. Outpatients had less severe diarrhea, but this was not statistically significant (P = .07).
Saint-Marc et al [20]	n = 17 HIV* adults	15 d	?	+	Weight gain of approximately 8 kg observed; resolution of liquid diarrhea in the majority (16 of 17) and normalization of bowel in 4. CD4 count mentioned but outcomes not noted. Patients diagnosed with various serious OIs, stage IV disease.
Saint-Marc et al [33]	n = 35 HIV* adults	7 d	+	+	Resolution of diarrhea in 61% of S.b. recipients vs 12% placebo (P < .002); stool number, weight and volume also improved in S.b. group. CD4 not evaluated. All patients on AZT, stage IV disease.
Salminen et al [39]	n = 17 HIV* adults	2 wk	+	–	Diarrhea: no effect on stool frequency or stool consistency. 41% on treatment vs 29% on placebo reported fecal incontinence (P = .5). No AE or side effect-related withdrawals; no bacteremia reported. (20 enrolled; 1 lost to f/u after first period; 2 before randomization.)
Reference	Population	Duration	ARV	Effect	Results
----------------------------	------------------	----------	------	--------	---
Trois et al [34]	N = 77 HIV* children	2 mo	±	(+)	Formula feeding seemed to improve bowel function; added probiotics slightly improved reduction in liquid stools but not statistically significant. Didanosine may have blunted response. 48.6% (probiotics) and 61.5% (placebo) on ARV; 62.2% and 48.7% in probiotics and placebo arms, respectively, were using ddi.
Wolf et al [37]	n = 39 HIV* adults	21 and 35 d study	−/some +	−	Bowel function or symptoms: no effect; *L. reuteri* may be fed to HIV-positive individuals at 1 × 10^{10} cfu/day “without any clinically significant safety or tolerance problems.”
Anukam et al [28]	Adult HIV* women, n = 24	15 d	−	+	8 of 12 subjects at day 15 and 10 of 11 at day 30, who consumed the probiotic yogurt, had an increase in CD4; placebo 347.25 ± 76.81−30 d change = −2.2; Tx 359.9 ± 70.1−30 d change = 6.7 (mean values)
Hemsworth et al [41]	Adult HIV*; n = 11	48 wk	+	+	A weak increase in CD4 percentages and absolute numbers among HIV-1-infected patients between T0 and T1 was observed (respectively 26.45 ± 10.46 and 29.1 ± 8.62, P = .065) with median recovery of 65 cell/L.
Falasca et al [40]	Adult HIV*; n = 30	4 wk	+	(+)	Average increase 45.9 ± 35.2 cells/µL (732.2 ± 208.1 vs 778.1 ± 286.8 cell/µL, P = .154). No control arm. Effect was not statistically significant.
Gautam et al [23]	n = 146 HIV* ≤15 years old	3 mo	±	+	BL CD4 was over 600. Not on ARV, children 6−15 saw a +65 increase in probiotic arm (n = 20) vs −88 decline in control (n = 25; P = .0022). WHO stage improved in probiotics arm (P = .02). On ARV, there was no effect on WHO stage of disease or BMI. Similar decreases in CD4 were seen in both groups on ARV. Patients randomized by ARV use
Gonzalez- Hernandez et al [3]	RCT; n = 20	16 wk	−	+	5 patients in each of 4 arms. The symbiotic group had greatest CD4 increase (+102; P = .06); IL-6 decreased significantly (P = .016).
Gori et al [18]	n = 57 HIV* Each arm, n = 19	12 wk; f/u 16 wk	−	−	No effect on CD4 changes in any arm (prebiotics only).
Heiser et al [30]	n = 35; pilot study	12 wk	+	+	Placebo BL −320 ± 237−wk12 441 ± 171 NS; Tx BL–468 ± 306−wk12 590 (292 (P < .01); (regimen with neflinavir or lopinavir/ ritonavir)
Hemsworth et al [41]	n = 25; Adult HIV* pilot study	30 d each tx; 14 d washout	+	(+)	n = 21 for data: Mean CD4; a mean change of +19 cells/µL (SD = 142); B mean change +41 cells/µL (SD = 221); C a mean change of −7 cells/µL (SD = 154); (P all >.05); Overall: There was an overall increase in CD4 by +9 cells/µL, and the frequency of participants with a CD4 count below 200 dropped from 5 to 3. Subjects reported improved energy
Hummelen et al [46]	n = 65, women	25 wk	−	+	BL−10 wk. Average −3 CD4 cells/µL (95% CI, −97 to 91) with placebo vs +50 (95% CI, −61 to 162) probiotics (P = .5). BL−25 wk. CD4 + 19 cells/µL (95% CI, −90 to 129) placebo vs probiotics +46 cells/µL (95% CI, −100 to 192; P = .8). Stratified: CD4 = 200−350 placebo mean increase of 34 cells (95% CI, −37 to 105) vs probiotics +158 cells/µL (95% CI, 35−281) at 10 weeks (P = .1). CD4 < 200: 4 on probiotics mean increase of 93 cells/µL (95% CI, 26−159) vs mean decrease of 63 cells/µL (95% CI, −95 to −42) (P = .04) of 2 on placebo.
Hummelen et al [36]	N = 112; Adult (>18) HIV*	4 wk	−	−	MN + probiotic: BL−4 wk: average decline in CD4 count of −70 cells/µL (95% CI, −154 to −15); MN alone: −63 cells/µL (95% CI, −157 to −30; P = .9).
Irvine et al [21]	n = 171; Adult HIV*	3 y	±	approximately 60% on ARV	Average increase in CD4 of 0.13 cells/mL per day (95% CI, 0.07−20, P = .001). Yogurt consumers experienced an additional increase of 0.28 cells/mL per day (95% CI, 0.10−46; P = .003). Adjusting for length of time on ARV: +0.17 cells/mL per day (95% CI, 0.01−34; P = .04).
Kerac et al [24]	795 children HIV*: 170/399 (42.6%)	Median 33 d	−/+	−	CD4 taken at first outpatient visit, 2 wk after discharge from ward, seropositive children with severe acute malnutrition (age range 9−168 mo); CD4 < 20% of seropositive children in whom CD4 taken): Symbiotic 61 of 92 (66.3%); Control 67 of 103 (65.0%); Symbiotic CD4% (mean) 18.3 ± 9.6 (n = 92); Control 17.8 ± 10.1 (n = 103)
Salminen et al [35]	n = 17 HIV* On ARV	2 wk	+	0	362 ± 249 and 362 ± 239 at end of study. Crossover design may blunt effect if initial treatment with GG persists longer than 2 wk. 20 enrolled; 1 lost to f/u after first period; 2 before randomization.
Schunter et al [42]	N = 33 HIV* women on ARV	4 wk	+	−	CD4: Placebo−BL 627 (SD = 293); Day 28−619 (337); Probiotic−683 (259); Day 28−697 (296) (P = .862).

CD4

- **Anukam et al [28]**
 - Adult HIV* women, n = 24
 - 15 d
 - BL
 - Increase:
 - Placebo: 359.9 ± 70.1 ± 30 d = 6.7
 - Treatment: 347.25 ± 76.81 ± 30 d = −2.2
 - Average increase in CD4 by +93 cells/µL (95% CI, 26–159) vs mean decrease of 63 cells/µL (95% CI, −95 to −42) (P = .04) of 2 on placebo.

- **Hummelen et al [46]**
 - Placebo vs probiotics
 - Increase in CD4 by +50 cells/µL (95% CI, −61 to 162) probiotics (P = .5).
 - BL vs probiotics: +158 cells/µL (95% CI, 35–281) at 10 weeks (P = .1).

- **Irvine et al [21]**
 - Average increase in CD4 of 0.13 cells/mL per day (95% CI, 0.07–20, P = .001).
 - Yogurt consumers experienced an additional increase of 0.28 cells/mL per day (95% CI, 0.10–46; P = .003).

- **Kerac et al [24]**
 - Symbiotic 61 of 92 (66.3%); Control 67 of 103 (65.0%); Symbiotic CD4% (mean) 18.3 ± 9.6 (n = 92); Control 17.8 ± 10.1 (n = 103).

- **Salminen et al [35]**
 - 362 ± 249 and 362 ± 239 at end of study. Crossover design may blunt effect if initial treatment with GG persists longer than 2 wk. 20 enrolled; 1 lost to f/u after first period; 2 before randomization.

- **Schunter et al [42]**
 - CD4: Placebo−BL 627 (SD = 293); Day 28−619 (337); Probiotic−683 (259); Day 28−697 (296) (P = .862).
A 25-week study among women also observed an average loss of 3 CD4 cells/μL with placebo versus an increase of 50 and 46 cells/μL with probiotics at 10 weeks, although the differences were not statistically significant. Mean or median baseline and end-of-study CD4 values were not provided. However, women with CD4 < 200 at baseline saw a greater mean increase in CD4 count of 93 cells/μL versus a mean decrease of 69 cells/μL among placebo recipients [29]. No benefit was seen in a 4-week study on CD4 count [36].

Some studies reported sporadic ARV use. Among those on zidovudine monotherapy, an apparent reduction was found in the placebo group. No other biomarker changes except a + P = .05 observed drop in sCD163. No adverse events: “safe and well tolerated.”

Table 3 continued.

Reference	Population	Duration	ARV	Effect	Results
Trois et al [34]	N = 77 HIV* children	2 mo	±	+	Mean CD4: count increased in the probiotics group and a small decrease in the control group (P = .049). Probiotics—BL 673 (528, 962); end of study: 791 (509, 951); Placebo—BL 580 (337, 821); end of study: 538 (332, 789); P = .35; Δlog10 CD4 Probiotics 0.04 (±0.19); placebo –0.26 (±0.16); P < .048
Villar-Garcia et al [26]	n = 44 HIV*	12 wk	+	–	No effect on CD4 count (12 wk on treatment and at 12 wk follow-up). Patients received stable ARV, VL < 20 for at least 2 yr
Wolf et al [37]	n = 39 HIV*	21 and 35 d study	–/some +	–	CD4 Placebo –Day 0 –441 ± 31; Day 21 –467 ± 34–intervention ended; Day 35 –484 ± 34; L. reuten –Day 0 –498 ± 39; Day 21 –461 ± 46–intervention ended; Day 35–433 ± 33 (P = .05 at d35 between arms)
Yang et al [39]	N = 17 HIV* CD4 ≥ 250	3 mo	+	+	CD4: –81 to + 315 (median + 31) cells/mm3 for placebo; –109–232 (median + 25) cells/mm3 for the probiotic; CD4% median increased; −1.8% (range −7.5% to +3.7%) placebo vs +2.8% (range −1.5 to +4.7%) probiotic (P = .018). CD4+ T-cell slopes over prior year were similar, but the percentages increased more in the probiotic group compared with the placebo group. No other biomarker changes except a P = .05 observed drop in sCD163. No adverse events: “safe and well tolerated.”

Bacterial Vaginosis

Reference	Population	Duration	ARV	Effect	Results
Hummelen et al [46]	n = 65	25 wk (6 mo)	–	(+)	Cure of BV unaffected but may act as a prophylaxis against recurrence.
Hummelen et al [29]	n = 65, women	25 wk	–	(+)	Supplementation did not enhance the cure of BV among women living with HIV, but may prevent the condition among this population.

Translocation

Reference	Population	Duration	ARV	Effect	Results
d’Ettorre et al [43]	Observational; n = 20	48 wk	+	+	Markers of immune activation (CD4+ CD38+ HLA-DR, CD4+ CD38+ HLA-DR+) and inflammation (hsCRP) decline from T0 to T1; markers of translocation (soluble [s]CD14, D-dimer) did not change significantly.
Falasca et al [40]	Observational; n = 30 men	4 wk	+	(+)	Some impact on inflammatory cytokine levels; statistically significant increase in TGF-β; increase in CD56+ NK cells (possibly associated with increase in IL4/IL-17 ratio). Statistically significant reduction in cystatin-C.
Gonzalez-Hernandez et al [3]	RCT; n = 20	16 wk	–	+	Reduction in 16S rDNA in symbiotic group (P = .048). Increase in stool for beneficial bacteria and decline in Clostridium sp 5 in each arm, probiotic, prebiotic, symbiotic, placebo.
Gori et al [18]	n = 57 HIV* Each arm, n = 19	12 wk	–	–	Activation markers: No effect (%CD8+CD38+ DR+ CD4+ CD8* FoxP3+ %CD14 + B7-H1*; %CD19 + B7-H1*). Increased NK cell effector/target ratios in 15 g group. No serious AEs, impact on liver/kidney function. Follow-up at 16 wk off treatment.
Schun et al [42]	N = 33 HIV* women on ARV	4 wk	+	–	No effect on 16S rDNA, CRP, or TNF-α and γ-IFN. Increase in % CD38+DR+ PD1+ and decrease in CD38+
Villar-Garcia et al [26]	n = 44 HIV*	12 wk/12 wk follow-up	+	–	LBP: Statistically significant decline in LBP 13.6% (n = 3) in the placebo group vs B0% (n = 11) in the probiotic group (P = .02). IL-6: Reduction in per protocol analysis (n = 19 tx, n = 16 placebo) at 12 wk and persisting at 24 wk (P < .01) β2M: Statistically significant reduction by ITT at week 24 vs placebo. However, this marker was higher at BL in treatment group (P = .02). All other markers: No effect (including LPS, sCD14, hs-CRP, fibrinogen, TNF-α, ESR. Stable ARV, VL < 20 for at least 2 yrs.

Abbreviations: AE, adverse event; ARV antiretroviral; AZT, azidothymidine; β2M, beta-2-microglobulin; BL, baseline; BMI, body mass index; BV, bacterial vaginosis; cfu, colony-forming units; CI, confidence intervals; CRP, C-reactive protein; ddI, didanosine; ESR, erythrocyte sedimentation rate; f/u, follow up; GI, gastrointestinal; HIV, human immunodeficiency virus; IL, interleukin; ITT, intent-to-treat; LBP, lipopolysaccharide binding protein; NK, natural killer; NS, not statistically significant; PP, per protocol; RCT, randomized controlled trials; rDNA, ribosomal deoxyribonucleic acid; S.b., Saccharomyces boulardii; SD, standard deviation; TGF, tumor growth factor; TNF, tumor necrosis factor; Tx, treatment; VL, viral load; WHO, World Health Organization.
“Because this trend continued after 2 week of washout it is not interpreted to be treatment related.” [37] An observational retrospective study over 3 years evaluated supplemented yogurt. Adjusting for length of time using ARV medication, probiotic users gained 0.17 cells/µL per day (or approximately 62 CD4/ year); however, the nutritional content of the yogurt may also have had an effect [38].

Seven studies evaluated adults with HIV on ARV. In a 2-week crossover trial among 17 patients, no impact on CD4 was seen [35]. A 3-month study saw no change in absolute CD4 count; however, there was a significant increase in CD4 percentage compared with placebo (+2.8% vs −1.8%, P = .018) [39]. An open-label study of 30 HIV+ men observed an increase in CD4 over 4 weeks; however, this was not statistically significant [40]. A larger increase in those receiving glutamine and probiotics arm was significant compared with control [30]. A 3-period (30 days), crossover trial showed greater CD4 improvement in the micronutrient phase, whereas the addition of probiotics did not show any effect on CD4 count [42]. An open-label study among 20 HIV+ adults on ARV over 48 weeks showed a median increase of 65 cells/µL [43].

In an open-label, pediatric study over 3 months, the probiotic group increased CD4 count 65 cells/µL compared with a loss of 88 cells/µL in the control in children >5 years, with a trend observed among children under 5: +22 CD4 versus placebo loss of 65 cells [23]. A 2-month pediatric study observed a 118 cell increase in mean CD4 count in children 2–12 years of age versus a loss of 42 cells/mm³ in the control arm [34].

We further assessed the studies based on their interventions and CD4 outcome to see whether any pattern of benefit, lack of benefit, or harm appeared. In reviewing the data from this perspective, all studies that used bacterial interventions such as Bi- fidus or Lactobacilli spp all reported moderate increases in CD4 counts. A larger increase was observed among those on a symbiotic (combination of prebiotics and probiotics); however, there were only 5 patients per arm [3]. No benefit for CD4 count was seen in one study of S boulardii. Formal meta-analysis was precluded due to variability in use or not of ARV, populations (adult/pediatric) and variability in reporting CD4 data [3, 23, 29, 30, 38].

Overall, our analysis suggests a potential role for the use of probiotics in improving CD4 counts modestly. Longer-term studies of probiotics and synbiotics in the context of more advanced ARV therapy are warranted, as well as observational studies in communities where immediate ARV is not yet available.

Probiotics Impact on Bacterial Vaginosis

Bacterial vaginosis may increase risk of transmission or acquisition of HIV [44], increasing proinflammatory cytokines and disrupting mucosal barrier function [45]. We found 1 trial assessing the potential impact of probiotics. The only RCT, among 65 HIV+ women with BV defined as a Nugent score [44] of 4–10 over 6 months, showed no enhanced cure rate. However, the probiotic intervention may be prophylactic for BV [46].

Probiotics/Prebiotics Effect on Human Immunodeficiency Virus-Associated Bacterial Translocation

We found 6 studies that assessed the impact of probiotics or prebiotics on markers of translocation in HIV disease, 4 showing some effect and 2 showing none. A 16-week study of a symbiotic observed reductions in plasma bacterial deoxyribonucleic acid, and a median CD4 increase of 102 (P = .05), along with a decline in interleukin (IL)-6 (P = .016) [3]. A 4-week study with translocation as the primary endpoint found no effect on bacterial 16S ribosomal ribonucleic acid (RNA) concentration or soluble CD14 (sCD14) [42]. Another 4-week study using a yogurt drink observed an improvement in natural killer (NK) cell counts (CD56+) as well as modest reductions in messenger RNA cytokine levels of IL-1β, IL-10, IL-12, tumor growth factor-β, along with the inflammatory marker cystatin-C [40]. However, a study of mix of probiotics over 48 weeks saw no effect on markers of translocation (sCD14), but it did see improvements in markers of activation and inflammatory markers (eg, high-sensitivity C-reactive protein) [43]. A probiotic oligosaccharide mixture given over 12 weeks resulted in reductions in sCD14 and activated CD4+/CD25+ cells along with increased NK cell activity [18, 47].

Among 44 HIV+ individuals given S boulardii over 4 weeks, LPS-binding protein (a marker of translocation) and IL-6 (a marker of inflammation) were statistically significantly decreased compared with placebo recipients. Other markers of inflammation, CD4 and CD8, were unaffected [26].

In summary, the data are inconclusive; however, there is a signal that prebiotics may have a modest impact on markers of translocation and/or markers of inflammation and immune activation. Studies assessing prebiotics versus synbiotics should be contemplated.

Probiotics: Side Effects and Adverse Events

The most serious potential adverse event from ingesting live organisms is sepsis. Numerous case reports of probiotic organisms causing bloodstream infection are reported, but no formal assessment has been made [15]. Snydman [48] noted no evidence of an increase of bacteremia at a population level of use of probiotics and stated that more trials are needed. Several studies showed no risks associated with use among neonates [49–52], although caution exists for patients with a peripherally inserted central catheter line, environmentally acquired infections arising during severe immunosuppression, and use of prebiotic and synbiotic among those with pancreatitis [15, 53]. A large study observed increased mortality when using a multispecies probiotics preparation [54]; however, others suggest that probiotics may be safe when used [55].
We reviewed and combined RCTs in people with and without HIV where probiotics were administered and risk of sepsis arising from bacteremia or fungemia was explicitly assessed (Supplementary Table). We found 39 RCTs, where the total number of study participants is 9401, and the total number that received a probiotic is 5060. We found 0 events among these RCTs.

For the Bayesian fixed effects analysis, the resulting posterior distributions for the parameters are the Beta (9402, 1) and Beta (5061, 1) distributions for \(\pi \) and \(\rho \), respectively. Using Monte Carlo integration (with 1 million samples from the posterior distribution), we approximate the posterior median of the NNH to be 7369 and the 95% posterior lower credible bound (1689). Indeed, even the point estimate is conservative compared to the 7634 that we previously reported. The point estimate (7634) or, more conservatively, the lower bound (1689) was obtained by fitting a Bayesian model with a posterior distribution for the NNH. Indeed, even the point estimate is conservative because the many studies excluded for lack of explicit assessment of sepsis most likely would have reported such an adverse event. The observed rate is far lower than to the risks of some commonly prescribed conventional medications. For example, widely used proton pump inhibitors increase the risk of sepsis ranging from 18 to 89 among community patients [71]. Longer-term and community-based trials should provide more robust data.

DISCUSSION

Firm conclusions are difficult due to variability in populations, interventions, and outcomes, and as a result, data synthesis on specific outcomes was precluded. Overall, probiotics appear to exert some positive influence on clinical symptoms, a moderate improvement on CD4 count, and limited effects on markers of translocation. It was disappointing to find that studies did not investigate the potential for vaginally or rectally applied probiotic suppositories as microbicides, even though such products are available on the market.

In HIV, diarrhea is caused by various infections and medications, eg, antibiotic therapy/prophylaxis, ARV therapy. Among HIV-negative populations, commensal organism supplements have a salutary effect on antibiotic-associated diarrhea [57], as well as inflammatory gut diseases and infections [15]. Mechanisms of action are not fully understood, but they may include interference with pathogen adhesion, growth and toxin release, modulation of immunity, and manipulation of host factors that reduce inflammation and encourage gut healing [2, 58].

There was some evidence that combinations of 2 or more strains were more efficacious than single strains in therapeutic and prophylactic effects on different forms of diarrhea, as some review studies have suggested [59]. Studies investigating combinations of interventions may offer greater efficacy, eg, use of agents such as glutamine, \(N \)-acetylcyesteine, micronutrients for managing diarrhea [60]. Studies that include micronutrients may optimize benefits, for example, in offsetting hyperlactateemia and mitochondrial toxicity associated with some ARV drugs [61] or improving gut architecture [62].

Antiretroviral therapy-treated individuals who fail to have an immunologic response (CD4 < 200) have been observed to have lower levels of *Lactobacilli*, with elevated levels of LPS and sCD14 [63], whereas other research underscores that increased inflammatory markers such as IL-6 and sCD14 are elevated compared with those achieving immunological restitution or to controls [64]. There is evidence for greater translocation among untreated individuals along with immunological perturbations (eg, increased activated CD38\(^*\) and Ki67\(^*\)) [65]. Few gut *Lactobacilli* may blunt ARV efficacy [66]. Most studies were too short to properly assess impact on immune function; however, some showed immunological benefit. Studies in macaque models underscore a potential for altering gut immunity through effects on Th17 cells [67]; however, a robust effect in improving Th17 cells in the gut was enhanced with infusion of IL-21 [68].

Probiotics show equivocal effects on markers of translocation. Although the impact of probiotics on BV was not strong, there is some evidence that BV may be prevented [69, 70], possibly reducing risk of HIV transmission.

As for the most feared risk, fungemia or bacteremia, our NNH should provide reassurance, whether one adopts the point estimate (7634) or, more conservatively, the lower bound (1689). Indeed, even the point estimate is conservative because the many studies excluded for lack of explicit assessment of sepsis most likely would have reported such an adverse event. The observed rate is far lower than to the risks of some commonly prescribed conventional medications. For example, widely used proton pump inhibitors increase the risk of *C. difficile* infection, with a NNH ranging from 28 of those admitted to hospital using antibiotics to 899 among community patients [71]. Longer-term and community-based trials should provide more robust data.

Strengths

This systematic review evaluates the use of probiotics for the full range of outcomes in HIV disease. We developed a model for the assessment of sepsis risk in the face of a “zero numerator” challenge, helping to quantify potential risk.

Limitations

Many studies were of short duration and comprised small numbers of patients and variability in the nature of the interventions used and outcomes assessed. We deemed it inappropriate to undertake formal meta-analyses of prespecified outcomes, except for risk of sepsis. The methodological quality of several of the studies was poor (Table 2).
CONCLUSIONS

In this study, we discovered the following key results: the risk of sepis is low; the best balance of microbial strains to use to optimize outcomes has not yet been identified, and such combinations may be specific to indications, populations, and genders; there may be potential benefit for CD4 count, recurrence, or management of BV and diarrhea; and there is an uncertain effect on translocation, BV treatment.

Future studies should focus on restoration of optimal gut, vaginal, or rectal microbiomes. There is intense and growing interest in characterizing the microbiome, including which gut ecologies are more optimal for health [72, 73]. Longer-term studies should explore using a community-relevant mix of bacteria and/or fungi for outcomes such as diarrhea and CD4 count. Studies among women to assess effects on vaginal, gastrointestinal, and microbical effects are warranted, as well as the use of Lactobacilli in suppositories. Species of Lactobacilli in combination with other genera may have clinically meaningful effects among those with poor immunological response despite ARV; these subsets and impact on inflammatory markers deserve further scrutiny. Such studies with immunological outcomes (CD4, activation markers) require longer duration, particularly in the context of ARV use. Such studies are being contemplated [74]. Studies of S. boulardii for noninfection-associated diarrhea are warranted.

Given the paucity of evidence for adverse events, low cost, and potential for economic value to people living in poverty [2, 12], the use of probiotics seems practical and feasible. Restoration of gut flora to a more healthful ecology may have several important clinical benefits particularly in conjunction with improved nutrition and access to micronutrient supplementation [75].

Supplementary Data

Supplementary material is available online at Open Forum Infectious Diseases online (http://OpenForumInfectiousDiseases.oxfordjournals.org/).

Acknowledgments

We gratefully acknowledge the assistance of Maud Dupuy and Kirti Dasu.

Financial support

This work was supported by funds from the National Center for Complementary and Alternative Medicine (NCCAM) (grant no. SR01AT5824); and the National Center for Advancing Translational Sciences (NCATS) (grant nos. UL1 TR001073 and SKL2TR001071-03), of the US National Institutes of Health (NII).

Potential conflicts of interest.

All authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

References

1. Lorenzo A, Robinson N. A review of the use of complementary and alternative medicine and HIV: issues for patient care. AIDS Patient Care STDS 2013; 27:503–10.
2. Reid G, Anand S, Bingham MO, et al. Probiotics for the developing world. J Clin Gastroenterol 2005; 39:485–8.
3. Gonzalez-Hernandez LA, Jave-Suarez LF, Fatuatis-Morris M, et al. Synbiotic therapy decreases microbial translocation and inflammation and improves immunological status in HIV-infected patients: a double-blind randomized controlled pilot trial. Nutr J 2012; 11:90.
4. Douek DC, Roederer M, Kouk RA. Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 2009; 60:471–84.
5. Zareie M, Johnson-Henry K, Jery J, et al. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006; 55:1553–60.
6. Bolton M, van der Straten A, Cohen CR. Probiotics: potential to prevent HIV and sexually transmitted infections in women. Sex Transm Dis 2008; 35:214–25.
7. Guinan S. The effectiveness of probiotics for managing diarrhoea in people with HIV infection: a critically appraised topic. HIV Med 2013; 14:187–90.
8. Salari P, Nifikar S, Abdollahi M. A meta-analysis and systematic review on the effect of probiotics in acute diarrhea. Inflamm Allergy Drug Targets 2012; 11:3–14.
9. McFarland LV. Probiotics for the primary and secondary prevention of C. difficile infections: a meta-analysis and systematic review. Antibiotics (Basel) 2015; 4:60–78.
10. Seator RD. Probiotics – a viable therapeutic alternative for enteric infections especially in the developing world. Discov Med 2010; 10:119–24.
11. Williams B, Landay A, Presti RM. Microbiome alterations in HIV infection a review. Cell Microbiol 2016; 18:645–51.
12. Enos MK, Burton JP, Dols J, et al. Probiotics and nutrients for the first 1000 days of life in the developing world. Benef Microbes 2013; 4:3–16.
13. Sazawal S, Kolodziej M. Systematic review with meta-analysis: Lactobacillus rhamnosus GG in the prevention of antibiotic-associated diarrhoea in children and adults. Aliment Pharmacol Ther 2015; 42:1149–57.
14. Li RZ, Threapleton DE, Wang YJ, et al. Comparative effectiveness and tolerance of treatments for Helicobacter pylori: systematic review and network meta-analysis. BMJ 2015; 351:h4052.
15. Wilson NL, Moneyham LD, Alexandrow AW. A systematic review of probiotics as a potential intervention to restore gut health in HIV infection. J Assoc Nurses AIDS Care 2013; 24:98–111.
16. Doron S, Snyderman DR. Risk and safety of probiotics. Clin Infect Dis 2015; 15: S129–34.
17. Sacks HS, Carter GM, Indky D, et al. Probiotic supplementation in HIV disease: Bayesian and systematic meta-analyses. PROSPERO CRD42013004766. 2013. Available at: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013004766. Accessed 19 August 2016.
18. Gori A, Rizzardini G, Van’t Land B, et al. Specific probiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial. Mucosal Immunol 2011; 4:554–63.
19. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions 5.1.0 [updated March 2011]. The Cochrane Collaboration 2011. Available at: http://handbook.cochrane.org/. Accessed 19 August 2016.
20. Saint-Marc T, Rossello-Prats L, Touraine JL. Efficacy of Saccharomyces boulardii in the treatment of diarrhea in AIDS. Ann Med Interne (Paris) 1991; 142:64–5.
21. Irvine SL, Hummelen R, Hekmat S. Probiotic yogurt consumption may improve gastrointestinal symptoms and nutritional intake of people living with human immunodeficiency virus in Mwanza, Tanzania. Nutr Res 2011; 31:875–81.
22. Pu R, Garleheimer G, Grant M, et al. Conducting quantitative synthesis when comparing medical interventions: AHRO and the Effective Health Care Program. J Clin Epidemiol 2011; 64:1187–97.
23. Gautam N, Dayal R, Agarwal D, et al. Role of multivitamins, micronutrients and probiotics supplementation in management of HIV infected children. Indian J Pediatr 2011; 78:1361–6.
24. Kerac M, Bunn J, Seal A, et al. Probiotics and prebiotics for severe acute malnutrition (PROSUTY study): a double-blind efficacy randomised controlled trial in Malawi. Lancet 2009; 374:136–44.
25. Schunter M, Chu H, Hayes TL, et al. Randomized pilot trial of a synbiotic dietary supplement in chronic HIV-1 infection. BMC Complement Altern Med 2012; 12:84.
26. Villar-Garcia J, Hernandez JJ, Guerri-Fernandez R, et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treatment patients: a double-blind, randomized, placebo-controlled trial. J Acquir Immune Defic Syndr 2015; 68:526–33.
27. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected with the use of funnel plots. Lancet 2001; 357:654–60.
28. Anukam KC, Osazuwa EO, Osadolor HB, et al. Yogurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea. Mucosal Immunol 2013; 6:239–43.
29. Heiser CR, Ernst JA, Barrett JT, French N, et al. Probiotics, soluble fiber, and L-glutamine (GLN) reduce nelfinavir (NFV)– or lopinavir/ritonavir (LPV/r)-related diarrhea. J Int Assoc Physicians AIDS Care (Chic) 2004; 3:121–9.
30. Cunningham-Rundles S, Ahrene S, Bengmark S, et al. Probiotics and immune response. Am J Gastroenterol 2000; 95(1 Suppl)S22–5.

Downloaded from http://ofid.oxfordjournals.org/ by guest on October 18, 2016
41. Hemsworth JC, Hekmat S, Reid G. Micronutrient supplemented probiotic yogurt.
40. Falasca K, Vecchiet J, Ucciferri C, et al. Effect of probiotic supplement on cytokine.
52. Braegger C, Chmielewska A, Decsi T, et al. Supplementation of infant formula
51. Piemontese P, Giannì ML, Braegger CP, et al. Tolerance and safety evaluation in a
43. d
37. Wolf BW, Wheeler KB, Ataya DG, Garleb KA. Safety and tolerance of
35. Salminen MK, Tynkkynen S, Rautelin H, et al. The ef
32. Cunningham-Rundles S, Ahrne S, Johann-Liang R, et al. Effect of probiotic bac-
36. Hummelen R, Hemsworth J, Changalucha J, et al. Effect of micronutrient and pro-
50. Parma M, Stella Vanni V, Bertini M, Candiani M. Probiotics in the prevention of
49. Dasopoulou M, Briana DD, Boutsikou T, et al. Motilin and gastrin secretion and
48. Snydman D. The safety of probiotics. Clin Infect Dis
47. Gori A, Van
34. Hummelen R, Hemsworth J, Hekmat S, et al. Probiotic yogurt consumption is associa-
33. Saint-Marc T, Blehaut H, Musial C, Touraine JL. [Diarrhees en relation avec le
42. Snydman DR, Falasca K, Reynolds G, et al. Safety and effectiveness of probiotic
46. Merlini E, Bai F, Bellistri GM, et al. Evidence for polymicrobial flora translocating
45. Marchetti G, Bellistri GM, Borghi E, et al. Microbial translocation is associated
44. Pirotta M, Fethers KA, Bradshaw CS. Bacterial vaginosis - More questions than
40. Falasaka K, Vecchiet J, Ucciferri C, et al. Effect of probiotic supplement on cytokine
38. Irvine SL, Hummelen R, Hekmat S, et al. Probiotic yogurt consumption is associa-
37. Wolf BW, Wheeler KB, Ataya DG, Garleb KA. Safety and tolerance of
36. Hummelen R, Hemsworth J, Changalucha J, et al. Effect of micronutrient and pro-
35. Salminen MK, Tynkkynen S, Rautelin H, et al. The ef
32. Cunningham-Rundles S, Ahrne S, Johann-Liang R, et al. Effect of probiotic bac-
31. Cunning-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
30. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
29. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
28. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
27. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
26. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
25. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
24. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
23. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
22. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
21. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
20. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
19. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
18. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
17. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
16. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
15. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
14. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
13. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
12. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
11. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
10. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
9. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
8. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
7. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
6. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
5. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
4. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
3. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
2. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-
1. Cunningham-Rundles S, Ahnre S, Johann-Liang R, et al. Effect of probiotic bac-

Probiotics in HIV Infection-Benefits and Risk

OFID

13