Orbifold regularity of weak Kähler-Einstein metrics

Chi Li
Stony Brook University
Gang Tian†
Beijing University and Princeton University

1 Introduction

In the resolution of the YTD conjecture on the existence of Kähler-Einstein metrics on Fano manifolds (see [23] and also [5]), a crucial tool is a compactness result. In its simplest form, this result says that the Gromov-Hausdorff limit of a sequence of smooth Kähler-Einstein manifolds \((X_i, \omega_i, \text{KE})\) is a normal Fano variety \(X := X_\infty\) with klt singularities and that there is a weak Kähler-Einstein metric \(\omega_{\infty, \text{KE}}\) on \(X_\infty\). The existence of a Gromov-Hausdorff limit follows from Gromov’s compactness theorem. So the important information in this statement is about the regularity of \(X_\infty\). It was the second author ([20], [22], see also [15]) who first pointed out the route to prove that \(X_\infty\) is an algebraic variety is to establish a so-called partial \(C^0\)-estimate. He demonstrated in [20] how to achieve this when the complex dimension \(n\) is equal to 2 by showing that a sequence of Kähler-Einstein surfaces converges to a Fano orbifold with a smooth orbifold Kähler-Einstein metric. Note that when \(n = 2\), klt singularities are nothing but quotient singularities or orbifold singularities. Two key ingredients to prove the partial \(C^0\)-estimate in dimension 2 are orbifold compactness result of Einstein 4-manifolds and Hörmander’s \(L^2\)-estimates.

Recently, Donaldson-Sun [7] and the second author [21] generalized the partial \(C^0\)-estimate to higher dimensional Kähler-Einstein manifolds. Here they need to rely on compactness results of higher dimensional Einstein manifolds developed by Cheeger-Colding and Cheeger-Colding-Tian (see [4] and the reference therein). Compared to the complex dimension 2 case, the second author also conjectured that \(\omega_{\infty, \text{KE}}\) is a smooth orbifold metric away from analytic subvarieties of complex codimension 3. Note that in [4], it was proved that the (metric) singular set of \(X_\infty\) has complex codimension at least 2.

It can be shown that, by partial \(C^0\)-estimate, there is a uniform \(C^2\)-estimate of the potential of \(\omega_{\infty, \text{KE}}^w\) on \(X_\infty^\text{reg}\). Then the Evans-Krylov theory or Calabi’s 3rd derivative estimate allows one to show that \(\omega_{\infty, \text{KE}}^w\) is smooth on \(X_\infty^\text{reg}\) (see [20], [7], [23]). Alternatively using Păun’s Laplacian estimate in [16] and Evans-Krylov theory, Berman-Boucksom-Eyssidieux-Guedj-Zeriahi [1] showed directly that any weak Kähler-Einstein metric \(\omega_{\text{KE}}^w\) on a klt Fano variety \(X_\infty\) is smooth on \(X_\infty^\text{reg}\). The purpose of this note is to answer the question by the second author about the regularity of \(\omega_{\text{KE}}^w\) on the orbifold locus \(X_\infty^\text{orb}\) of \(X_\infty\). First, if \((X, -K_X)\) is a klt Fano variety, then by [8, Proposition 9.3] there exists a closed subset \(Z \subset X\) with \(\text{codim}_X Z \geq 3\) such that \(X \setminus Z\) has quotient singularities. So we just need to show the following regularity result. For the definition of weak Kähler-Einstein metric, see Definition 1.

Theorem 1. Assume that \(\omega_{\text{KE}}^w\) is a weak Kähler-Einstein metric on \(X_\infty\). Then \(\omega_{\text{KE}}^w\) is a smooth orbifold metric on \(X_\infty^\text{orb}\).
Our proof now uses the existence of an orbifold resolution, i.e., Theorem 3 which is proved by algebraic method. However, we believe that it is not necessary. There should be a purely differential geometric proof of Theorem 1 which does not rely on Theorem 3. In a subsequent paper, we will analyze further structures of singularities of higher codimension. We believe that our analysis can be used to yield a complete understanding of the singularity for any 3-dimensional weak Kähler-Einstein metrics.

2 Regularity on the orbifold locus

From now on we will denote by X any \mathbb{Q}-Fano variety with klt singularities. Assume $\iota : X \to \mathbb{P}^N$ is an embedding given by the linear system $|−mK_X|$ for $m > 0 \in \mathbb{Z}$ sufficiently large and divisible. Let $h_0 = (\iota^*h_{FS})^{1/m}$ be the pull back of the Fubini-Study Hermitian metric h_{FS} on $\mathcal{O}_{\mathbb{P}^N}(1)$ normalized to be a Hermitian metric on $-K_X$. The Chern curvature form of h_0 is

$$\omega_0 = -\sqrt{-1} \partial \bar{\partial} \log h_0$$

which is a positive $(1,1)$-current on X. ω_0 is a smooth positive definite $(1,1)$-form on X^{reg}. However, on the singular locus X^{sing}, ω_0 in general is not canonically related to the local structure of X. Assume $p \in X^{\text{orb}}$ is a quotient singularity. By this, we mean that there exists a small neighborhood U_p which is isomorphic to a quotient of a smooth manifold by a finite group. In other words, there exists a branched covering map $U_p \to \tilde{U}_p/G \cong U_p$. The lifting of metric ω_0 to the cover \tilde{U}_p in general is degenerate.

Now we define an adapted volume for on X by

$$\Omega = |v|^2h_0 (v \wedge \bar{v})^{1/m}.$$

Here v is any local generator of $\mathcal{O}(mK_X)$ and v^* is the dual generator of $\mathcal{O}(-mK_X)$. The Kähler-Einstein equation

$$\text{Ric}(\omega_0) = \omega_0.$$

(1)

can be transformed into a complex Monge-Ampère equation:

$$(\omega_0 + \sqrt{-1} \partial \bar{\partial} \phi)^n = e^{-\phi} \Omega.$$

(2)

Definition 1. A weak solution to the (2) is a bounded function $\phi \in L^\infty(X) \cap \text{PSH}(X, \omega)$ satisfying (2) in the sense of pluripotential theory.

Let’s first recall the method to prove the regularity of ϕ on X^{reg} following [1]. One first chooses a resolution $\pi : \tilde{X} \to X$ with simple normal crossing exceptional divisor $E = \pi^{-1}(X^{\text{sing}})$ such that π is an isomorphism over X^{reg}. Then we can pull back the equation (2) to \tilde{X} and get:

$$(\pi^* \omega_0 + \sqrt{-1} \partial \bar{\partial} \psi)^n = e^{-\psi} \pi^* \Omega.$$

(3)

On the other hand we can write:

$$K_{\tilde{X}} = \pi^*K_X + \sum_{i=1}^r a_i E_i - \sum_{j=1}^s b_j F_j,$$

such that $E = \cup_{i=1}^r E_i \cup \cup_{j=1}^s F_j$ and $a_i > 0$, $b_j > 0$. The klt property implies: $a_i > 0$, and $0 < b_j < 1$. Analytically, choosing a smooth Kähler metric η on \tilde{X}, there exists $f \in C^\infty(\tilde{X})$ such that:

$$\pi^* \Omega = e^f \prod_{i=1}^r |\sigma_i|^{2a_i} \prod_{j=1}^s |\sigma_j|^{2b_j} \eta^n.$$

where \(s_i \) and \(\sigma_j \) are defining sections of \(E_i \) for \(F_j \) respectively and \(|s_i|^2 \) and \(|\sigma_j|^2 \) are some fixed hermitian norms of them. So we have:

\[
(\pi^*\omega_0 + \sqrt{-1} \partial \bar{\partial} \psi)^n = e^{-\psi_+ + \sum_i a_i \log |s_i|^2 - \sum_j b_j \log |\sigma_j|^2} \eta^n = e^{\psi_+ - \psi_-} \eta^n, \tag{4}
\]

Here we have denoted

\[
\psi_+ = f + \sum_i a_i \log |s_i|^2, \quad \psi_- = \psi = \sum_j b_j \log |\sigma_j|^2.
\]

It’s easy to see that they satisfy the quasi-plurisubharmonic condition:

\[
\sqrt{-1} \partial \bar{\partial} \psi_+ \geq -C \eta, \quad \sqrt{-1} \partial \bar{\partial} \psi_- \geq -C \eta, \tag{5}
\]

for some uniform constant \(C > 0 \). To get Laplacian estimate of \(\psi \) away from \(Z \), we can first regularize (4) to

\[
(\omega_\epsilon + \sqrt{-1} \partial \bar{\partial} \psi_\epsilon)^n = e^{\psi_+ - \psi_-} \eta^n, \tag{6}
\]

where \(\omega_\epsilon = \pi^*\omega_0 - \epsilon \theta_E \) is a Kähler metric on \(\tilde{X} \), and \(\psi_\pm, \epsilon \in C^\infty(\tilde{X}) \) converges to \(\psi_\pm \) in \(L^p(\tilde{X}) \cap L^\infty(\tilde{X}\setminus Z) \) for some \(p > 1 \). Using (5) and cleverly modifying the \(C^2 \)-estimate of Aubin-Yau-Siu, Păun [16] proved the Laplacian estimate for the solution \(\psi_\epsilon \) away from \(Z \). More precisely, for any compact set \(K \subset \tilde{X}\setminus Z \), there exists a constant \(A = A(\|\psi\|_\infty, K) \), such that

\[
\Delta_\eta \psi_\epsilon \leq A(\|\psi\|_\infty, K) e^{-\psi_-}.
\]

From this estimate, we know that the right-hand side of (6) is uniformly \(C^{1,\alpha} \) on \(\tilde{X}\setminus Z \). By Evan-Krylov’s theory ([3]), we know that \(\psi_\epsilon \) is uniformly \(C^{2,\alpha} \) and hence by bootstrapping, \(C^{k,\alpha} \) on \(\tilde{X}\setminus Z \). Now because \(\psi_\epsilon \) converges to \(\psi \) in \(C^k \) norm uniformly away from \(Z \), we get that \(\psi \) is smooth on \(\tilde{X}\setminus Z \).

One can also prove the regularity on \(X^\text{reg} \) with the help of Kähler-Ricci flow. Starting from the work in [6], this idea has been used several times in the literature to prove the regularity of weak solutions to complex Monge-Ampère equations. Recall that the Kähler-Ricci flow is a solution to the following equation:

\[
\frac{\partial \omega}{\partial t} = -Ric(\omega) + \omega; \quad \omega(0) = \omega_0, \tag{7}
\]

As in the elliptic case, this equation can be transformed into the following Monge-Ampère flow

\[
\frac{\partial \phi}{\partial t} = \log \frac{\omega + \sqrt{-1} \partial \bar{\partial} \phi}{\omega_0}, \quad \phi(0, \cdot) = \phi_0. \tag{8}
\]

To define a solution to this Monge-Ampère flow on the singular variety \(X \), Song-Tian [19] pulled up the flow equation in (8) to \(\tilde{X} \) to get:

\[
\frac{\partial \hat{\phi}}{\partial \tau} = \log \frac{\pi^*\omega + \sqrt{-1} \partial \bar{\partial} \hat{\phi}}{\pi^*\omega_0} + \hat{\phi}; \quad \hat{\phi}(0, \cdot) = \pi^* \phi_0. \tag{9}
\]

Theorem 2 ([19]). Let \(\phi_0 \in PSH_p(X, \omega_0) \) for some \(p > 1 \). Then the Monge-Ampère flow (9) on \(\tilde{X}\setminus E \) has a unique solution \(\phi \in C^\infty((0, T_0) \times \tilde{X}\setminus E) \cap C^0([0, T_0) \times \tilde{X}\setminus E) \) such that for all \(t \in [0, T_0) \), \(\phi(t, \cdot) \in L^\infty(\tilde{X}) \cap PSH(\tilde{X}, \pi^*\omega_0) \).

Since \(\tilde{\phi} \) is constant along (connected) fibre of \(\pi \), \(\tilde{\phi} \) descends to a solution \(\phi \in C^\infty((0, T_0) \times X^\text{reg}) \cap C^0([0, T_0] \times X^\text{reg}) \) of the Monge-Ampère flow.

Now suppose \(\omega_{KE}^w = \omega_0 + \sqrt{-1} \partial \bar{\partial} \phi_{KE}^w \) is a weak solution to the equation (2). If one can prove that the solution \(\phi(t) \) to (8) with the initial condition \(\phi(0) = \phi_{KE}^w \) is stationary, then it follows
from Theorem (2) that ω_{KE}^{w} is smooth on X_{reg}^∞. The idea to prove stationarity in [6] is to show that the energy functional is decreasing along the flow solution $\phi(t)$ and to use the uniqueness of weak Kähler-Einstein metrics. These are indeed true in the current case by the work of [1].

To prove Theorem 1, the main observation is that the above arguments can be used to prove the regularity of ω_{KE}^{w} on X^{orb} as long as one can find a partial resolution by orbifolds: $\pi^{\text{par}} : X^{\text{par}} \to X$. Indeed, by the next section, there exist orbifold (partial) resolutions. If $\pi^{\text{par}} : X^{\text{par}} \to X$ is an orbifold resolution, then we can write:

$$K_{X^{\text{par}}} = (\pi^{\text{par}})^{*}K_{X} + \sum_{i} a_{i}E_{i} - \sum_{j=1}^{s} b_{j}F_{j},$$

where $E = \bigcup_{i=1}^{r}E_{i} \bigcup \bigcup_{j=1}^{s}F_{j}$ is now a simple normal crossing divisor within orbifold category (in the sense of Satake [17, 18]). The klt property of X again implies $a_{i} > 0$ and $0 < b_{i} < 1$. Then the similar argument as in the proof of regularity of ω_{KE}^{w} on X^{reg} carries over to the orbifold setting to prove the orbifold regularity of ω_{KE}^{w} on X^{orb}.

Note that it was already observed in [19, Section 4.3] that if X has only orbifold singularities, then the Kähler-Ricci flow smooths out initial metric to become genuine smooth orbifold metric immediately when $t > 0$.

3 Orbifold partial resolution

The results in this section were communicated to us by Chenyang Xu.

Lemma 1 (Resolution of Deligne-Mumford stacks). Let X be an integral Deligne-Mumford stack which is of finite type over \mathbb{C}. Then there exists a birational proper representable morphism $g^{\text{sm}} : X^{\text{sm}} \to X$ from a smooth Deligne-Mumford stack X^{sm}. Furthermore, we can assume that g^{sm} is isomorphic over the smooth locus of X, and the exceptional locus of g^{sm} is a normal crossing divisorial closed substacks of X^{sm}.

Proof. This follows from the functoriality property of resolution of singularities (see [26], [12], [2], [24]).

Lemma 2 (Blow up the indeterminacy locus). Let X be a projective scheme. Let X be a normal Deligne-Mumford stack with a dense open set $U \subset X$, such that U admits a morphism $U \to X$. Then we can blow up an ideal $I \subset \mathcal{O}_{X}$ to obtain a Deligne-Mumford stack \tilde{X} such that $\tilde{X} \to X$ is isomorphic over U and $f_{\tilde{X}}$ extends to a morphism $f : \tilde{X} \to X$.

Proof. We can replace X by \mathbb{P}^{N}. Let $D \subset U$ be the pull back of a hyperplane section H which does not vanish along U, and we let $I \subset \mathcal{O}_{X}$ be the ideal of the closure of D in \mathcal{O}_{X}. Then the rest of the proof follows from the cases for schemes as in [9, II.7.17.3].

Theorem 3. Let X be a quasi-projective normal variety. Let X^{orb} be the locus where X only has orbifold singularity. Then there exists $f^{\text{par}} : X^{\text{par}} \to X$ a proper birational morphism, such that X^{par} only has quotient singularity and f^{par} is an isomorphic over X^{orb}.

Proof. After taking the closure of $X \subset \mathbb{P}^{N}$, we can assume X is projective.

By [25, 2.8], we know there is a smooth Deligne-Mumford stack X^{0} whose coarse moduli space is X^{orb}. It follows from [14, Theorem 4.4] that $X^{0} = [Z/G]$ for some quasi-projective scheme Z and linear algebraic group G. Actually, Z can be taken as the frame bundle of X^{orb} and $G = GL_{n}(\mathbb{C})$. Then by [14, Theorem 5.3], there is a proper Deligne-Mumford stack X, such that $X^{0} \subset X$ is a dense open set.
Consider the rational map $f : \mathcal{X} \to X$, by Lemma 2 we know that there is a blow up $\mathcal{Y} \to \mathcal{X}$ along the indeterminacy locus of f, such that there is a morphism $g : \mathcal{Y} \to X$. Moreover, by the construction, we know over X^{orb},

$$\mathcal{Y}^0 := g^{-1}(X^{\text{orb}}) \cong \mathcal{X}^0.$$

By Lemma 1, we know that there is a smooth Deligne-Mumford stack $h : \mathcal{Y}^{\text{sm}} \to \mathcal{Y}$, where h is a representable proper birational morphism which is isomorphic over the smooth locus of \mathcal{Y}. In particular, h is isomorphic over \mathcal{Y}^0.

As \mathcal{X} has finite stabilizer and $\mathcal{Y}^{\text{sm}} \to \mathcal{Y} \to \mathcal{X}$ is proper, we know that \mathcal{Y}^{sm} has also finite stabilizer. Thus it follows from [11] that \mathcal{Y}^{sm} admits a coarse moduli space, which we denote by \mathcal{X}^{par}. It has a morphism $f^{\text{par}} : \mathcal{X}^{\text{par}} \to X$ by the universal property. And we easily check that they satisfy all the properties.

\[\Box\]

Acknowledgement: We would like to thank Chenyang Xu for communicating the results in the last section to us. The first author would like to thank Professor J. Starr for discussions about stacks.

References

[1] R.J. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi: Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, arXiv:1111.7158.

[2] E. Bierstone, P. Milman: Functoriality in resolution of singularities, Publ. Res. Inst. Math. Sci. 44 (2008), 609-639.

[3] Z. Błocki: Interior regularity of the complex Monge-Ampère equation in convex domains, Duke Math. Journal, Vol. 105, No. 1, 163-181.

[4] J. Cheeger, T. Colding, G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. Vol. 12 (2002) 873-914.

[5] X.X. Chen, S. Donaldson, S. Sun: Kahler-Einstein metrics on Fano manifolds, I, arxiv:1211.4566, II, arxiv:1212.4714, III, arxiv:1211.4566.

[6] X.X. Chen, G. Tian, Z. Zhang: On the weak Kähler-Ricci flow, Trans. Amer. Math. Soc. 363 (2011), 2849-2863.

[7] S.K. Donaldson, S. Sun: Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. arXiv:1206.2609.

[8] D. Greb, S. Kebekus, S. J Kovács, T. Peternell: Differential forms on log canonical spaces, Publications mathématiques de l’IHÉS, November 2011, Volume 114, Issue 1, pp 87-169.

[9] R. Hartshorne: Algebraic geometry. Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52.

[10] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964), 109-203.

[11] S. Keel, S. Mori: Quotients by groupoids, Ann. of Math., number 1, volume 145, 1997, 193-213.

[12] J. Kollár: Lectures on resolution of singularities, Annals of Mathematics Studies, 166. Princeton University Press, Princeton, NJ, 2007.
[13] J. Kollár and S. Mori: Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, 134. Cambridge University Press, 1998.

[14] A. Kresch: On the geometry of Deligne-Mumford stacks, Proc. Sympos. Pure Math., volume 80, Amer. Math. Soc., Providence, RI, 2009, 259-271.

[15] C. Li, PhD thesis, 2012. Available at www.math.sunysb.edu/~chili.

[16] M. Păun: Regularity properties of the degenerate Monge-Ampère equations on compact Kähler manifolds. Chin. Ann. Math. Ser. B 29 (2008), no. 6, 623-630.

[17] I. Satake: On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363.

[18] I. Satake: The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan 9 (1957), 446-492.

[19] J. Song, G. Tian: The Kähler-Ricci flow through singularities, arXiv:0909.4898.

[20] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101, (1990), 101-172.

[21] G. Tian, Partial C^0-estimate for Kähler-Einstein metrics, Commun. Math. Stat. (2013) 1: 105-113.

[22] G. Tian, Einstein metrics on Fano manifolds. Metric and Differential Geometry, Proceeding of the 2008 conference celebrating J. Cheeger’s 65th birthday, edited by Dai et al., Progress in Mathematics, volume 239. Birkhauser, 2012.

[23] G. Tian, K-stability and Kähler-Einstein metrics, arXiv:1211.4669.

[24] M. Temkin: Functorial desingularization of quasi-excellent schemes in characteristic zero: the non embedded case. Duke Math. J. Volume 161, Number 11 (2012), 2023-2255.

[25] A. Vistoli: Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., volume 97, 1989, number 3, 613-670.

[26] J. Wodarczyk: Simple Hironaka resolution in characteristic zero, J. Amer. Math. Soc. 18 (2005), no. 4, 779-822.