TURBULENCE IN ACCRETION DISKS: VORTICITY GENERATION AND ANGULAR MOMENTUM TRANSPORT VIA THE GLOBAL BAROCLINIC INSTABILITY

H. H. KLAHR and P. BODENHEIMER
UCO/Lick Observatory, University of California, Santa Cruz, CA 95064

Received 2000 June 7; accepted 2002 September 17

ABSTRACT

In this paper we present the global baroclinic instability as a source for vigorous turbulence leading to angular momentum transport in Keplerian accretion disks. We show by analytical considerations and three-dimensional radiation-hydrodynamic simulations that, in particular, protoplanetary disks have a negative radial entropy gradient, which makes them baroclinic. Two-dimensional numerical simulations show that a baroclinic flow is unstable and produces turbulence. These findings are tested for numerical effects by performing a simulation with a barotropic initial condition, which shows that imposed turbulence rapidly decays. The turbulence in baroclinic disks transports angular momentum outward and creates a radially inward-bound accretion of matter. Potential energy is released, and excess kinetic energy is dissipated. Finally, the reheating of the gas supports the radial entropy gradient, forming a self-consistent process. We measure accretion rates in our two-dimensional and three-dimensional simulations of $M = -10^{-4}$ to $-10^{-7} \, M_\odot \, yr^{-1}$ and viscosity parameters of $\alpha = 10^{-4}$ to 10^{-2}, which fit perfectly together and agree reasonably with observations. The turbulence creates pressure waves, Rossby waves, and vortices in the (R, ϕ)-plane of the disk. We demonstrate in a global simulation that these vortices tend to form out of little background noise and to be long-lasting features, which have already been suggested to lead to the formation of planets.

Subject headings: accretion, accretion disks — circumstellar matter — hydrodynamics — instabilities — methods: numerical — turbulence

1. INTRODUCTION

Protoplanetary disks appear to be a common feature around young stars (Beckwith & Sargent 1993; Strom, Edwards, & Skrutskie 1993). They are thought to provide the material and the environment for the formation of planets (e.g., Lissauer 1993). Thus, one needs to know the internal properties of such disks, such as the density, temperature, and turbulence, in order to estimate the timescales of the formation process. These quantities are not directly accessible via observation, and so one needs a model for these disks to derive observable quantities such as line emission and scattering efficiency for the light from the central star (Bell et al. 1997; Hartmann et al. 1998; Bell 1999).

The basic idea of most models is that there is a process in these disks that transfers angular momentum radially outward, so that mass will flow radially inward (Lüst 1952). Such a process might be turbulence (hydrodynamic or magnetohydrodynamic) or self-gravity (e.g., Larson 1989; Stone et al. 2000). Independent of the source for the angular momentum transport, it can be parameterized by an effective viscosity ν, which is usually scaled to the local sound speed c_s and the pressure scale height H_p of the disk by a dimensionless number α (Shakura & Sunyaev 1973):

$$\nu = \alpha c_s H_p.$$ \hspace{1cm} (1)

Using this simple description, it was possible to calculate the time evolution of disks (Lynden-Bell & Pringle 1974; Lin & Papaloizou 1980), the density and temperature structure, and the turbulent background as well as the laminar sub-Keplerian mean component of the gas flow. The α-models have influenced our understanding of the planetary formation process through their implications, for example, regarding the spatial distribution and collision rate of dust grains (Markiewicz, Mizuno, & Völk 1991; Weidenschilling & Cuzzi 1993; Dubrulle, Morfill, & Sterzik 1995; Klahr & Henning 1997), the opening of gaps by giant planets (Bryden et al. 1999; Kley 1999), or the radial drift rate of planets during their formation phase (Goldreich & Tremaine 1980; Ward 1997). They are also used to explain the generation of FU Orionis outbursts (Bell & Lin 1994; Kley & Lin 1999) as well as the measured accretion rates of T Tauri stars (Hartmann et al. 1998).

Despite the success of these models, α is still a free parameter for protoplanetary accretion disks. A barotropic Keplerian shear flow is in principle stable (Rayleigh stable) and does not develop turbulence per se despite the high Reynolds numbers. Dubrulle (1993), Richard & Zahn (1999), and Duschl, Strittmatter, & Biermann (2000) claim that the high Reynolds numbers will lead to turbulence in barotropic disks, but numerical investigations so far contradict this idea (Balbus, Hawley, & Stone 1996; Godon & Livio 1999a). Hydrodynamic turbulence has been shown for transporting angular momentum outward (Hawley, Balbus, & Winters 1999; Drecker & Rüdiger 2001), but it is not able to sustain itself and usually rapidly decays in barotropic simulations. For a long time, thermal convection in the vertical direction was thought to provide a turbulent transport of angular momentum in the outward direction (e.g., Cameron 1978; Lin & Papaloizou 1985). However, analytical investigations of convection indicates inward transport of angular momentum (Ryu & Goodman 1992), a result that was later confirmed by numerical simulations (see...
below). For disks around black holes or in cataclysmic variables, magnetohydrodynamic instabilities (e.g., magnetorotational instability) seem to provide a reasonable amount of viscosity (Balbus & Hawley 1991). Relatively massive protostellar disks around young stars (>0.1\(M_\odot\)) also have a proper mechanism for transporting angular momentum via self-gravity (Toomre 1964; Laughlin & Bodenheimer 1994).

In the less massive protoplanetary accretion disks (\(\approx 0.01 M_\odot\)), self-gravity is only important at the outermost radii (Bell et al. 1997). At the same time, the disk is so cool and so contaminated by tiny dust grains, which capture most of the few free electrons, that magnetic fields have negligible influence on the bulk of the disk matter in the regions where planets are expected to form (Gammie 1996). The submicron-size dust grains reduce the free electron density efficiently enough to prevent the possibility of the magnetorotational instability, since the field lines can diffuse faster than the shear can tangle the field. Only in the vicinity of the star, where dust has evaporated and no planets can form, is there sufficient ionization for the development of magnetic turbulence, which can generate \(\alpha \approx 0.01\) (Stone et al. 2000). In addition, if the optical depth above the disk is sufficiently small, cosmic rays and X-rays (Glassgold, Najita, & Igea 1997) could ionize the uppermost thin surface layers of the disk in the hypothetical absence of dust, which has led some authors to the speculation that between about 0.1 and 30 AU a disk consists of a nonaccreting “dead zone” sandwiched between two active layers at the surface (Gammie 1996).

Indeed, if there were no self-gravity working, basically no ionization present, and no shear instability possible, the disk would develop no turbulence, transport no angular momentum, release no accretion energy, and basically cool down to the ambient temperature, while orbiting the star on a time-constant orbit. In such a disk, timescales for the growth of planetesimals would be much longer than in the standard scenarios, since the Brownian motion of the micron-size dust is smaller and there is no turbulence acting on the dust in the centimeter to meter size range. Sedimentation of the grains to the midplane could create a shear instability (Cuzzi, Dobrovolskis, & Champney 1993), which would then generate turbulence. Some authors (Cuzzi, Dobrovolskis, & Hogan 1996) argue that the solar nebula at one time must have been turbulent in order to explain the size segregation effects during the formation of chondrites. In any case, we want to stress that it is of major relevance for planet formation to know whether protoplanetary disks are turbulent or not.

In this paper, we present numerical simulations of a purely hydrodynamic instability that works in accretion disks, namely, a baroclinic instability, similar to the one responsible for turbulent patterns on planets, for example, Jupiter’s Red Spot and the weather patterns of cyclones and anticyclones on Earth. Baroclinic instabilities arise in rotating fluids when surfaces of constant density are inclined with respect to the surfaces of constant pressure (e.g., Tritton & Davies 1985). Vortensity, defined as vorticity per unit surface density, is not conserved, as is the case in barotropic two-dimensional flows (Kelvin’s circulation theorem; see, e.g., Pedlosky 1987), and vortices can be generated.

Kippenhahn & Thomas (1982) studied the compatibility of thermal and hydrostatic equilibrium in thin radiative accretion disks but checked only axisymmetric flows. Cabot (1984) investigated the possibility and efficiency of a baroclinic instability for cataclysmic variables (CVs) in a local fashion, concentrating on local vertical fluctuations. He found that this instability produces insufficient viscosity to explain CVs but nevertheless enough viscosity (\(\alpha \approx 10^{-2}\)) for protoplanetary disks. Knobloch & Spruit (1986) also investigated the baroclinic instability due to the vertical stratification in the disk but found that it is not a reliable mechanism for angular momentum transport in thin disks. Ryu & Goodman (1992) considered linear growth of nonaxisymmetric disturbances in convectively unstable disks. They used the shearing-sheet approximation in a uniform disk and found that the flux of angular momentum was inward. Lin, Papaloizou, & Kley (1993) performed a linear stability analysis of nonaxisymmetric convective instabilities in disks but allowed for some disk structure in the radial direction. Their disk model includes a small radial interval in which the entropy has a small local maximum of 7% above the background but with a steep drop with an average slope of \(K \sim R^{-3}\) (\(K\) is the polytropic constant; see below).

Such a situation could be baroclinically unstable, and in fact that region is found to be associated with outward transport of angular momentum. Lovelace et al. (1999) and Li et al. (2000) investigated the stability of a strong local entropy maximum (a factor of 3 above the background with a slope \(K \sim R^{-14}\)) in a thin Keplerian disk and found the situation to be unstable to the formation of Rossby waves, which transported angular momentum outward and ultimately formed vortices (Li et al. 2001). Sheehan et al. (1999) studied the propagation and generation of Rossby waves in the protoplanetary nebula in great detail, but they had to assume some turbulence as a prerequisite.

In contrast, here we investigate a baroclinic instability that arises from the general radial (global) stratification of the gas flow in accretion disks. Please keep in mind that global refers to baroclinic and does not necessarily imply that the instability has a global character, i.e., depends on the boundary conditions. Our motivation is based on the observation of positive Reynolds stresses in radiation-hydrodynamic three-dimensional simulations of thermal convection in protoplanetary accretion disks (Klahr & Bodenheimer 2000). Since convection is known to have the property of transporting angular momentum inward (Kley, Papaloizou, & Lin 1993; Cabot 1996, hereafter C96; Stone & Balbus 1996, hereafter SB96), we were surprised by this result and started an investigation to identify the special ingredient that would explain this contradictory result. We found that the size of the simulation domain, especially the azimuthal extent, influences the sign of the Reynolds stresses (Klahr & Bodenheimer 2000, 2003). In order to accomplish a sufficient number of tests to isolate the crucial ingredient in our model and to show that artificial boundary effects are not contributing, we stripped the three-dimensional radiation-hydrodynamic simulation down to a flat two-dimensional \((R, \phi)\) disk calculation. The radially varying initial temperature \((\approx\) entropy \(~K\)) in these calculations approximately reproduces the temperature distribution found in the three-dimensional simulations. These tests show that indeed there is angular momentum transport outward and that the lower order azimuthal modes give the fastest growth rates in baroclinic simulations.

In §2 we make an argument to show that protoplanetary accretion disks can be unstable to a nonaxisymmetric global baroclinic instability as long as the source term of
vorticity (baroclinic term) does not vanish. In § 3 we explain the changes to the TRAMP code (Three-dimensional Radiation-Hydrodynamic Modeling Project; Klahr, Henning, & Kley 1999) that became necessary for the simulations presented here. Two results from three-dimensional radiation-hydrodynamic simulations are shown in § 4. One model adopts an artificial heating term similar to that in C96 and SB96, while the other one is self-consistent in the sense that the only possible heating is a pure effect of compression and shock dissipation. In § 5 we describe tests with the two-dimensional flat approximation that prove numerically the existence of our numerical scheme. In $\frac{\partial}{\partial x}$ we discuss the first global (two dimensional) simulation of an accretion disk allowing for the baroclinic instability and find the interesting result that large vortices form. These vortices are long-lived high-pressure anticyclones with an overdensity by a factor of up to 4. It has been suggested that such vortices could be direct precursors of protoplanets, whose formation could be initiated by concentration of dust toward their centers (Barge & Sommeria 1995; Tanga et al. 1996; Godon & Livio 1999a, b). There is also the possibility that the overdense regions could eventually undergo gravitational collapse (see Adams & Watkins 1995a), but our present code does not allow for this process. In the last section (§ 7), we discuss our results.

2. STABILITY CONSIDERATIONS

In this section we show that a baroclinic instability is plausible in a disk. The instability can arise only if there is an inclination between the density and pressure gradients (baroclinic term):

$$\nabla p \times \nabla \rho \neq 0 .$$

(2)

Here we analyze the situation using the standard polytropic equation

$$p = K \rho^\gamma ,$$

(3)

where p is the pressure and ρ is the mass density. We choose a value of $\gamma = 1.43$, which is representative for a mixture of molecular hydrogen and neutral helium with typical abundances for protoplanetary accretion disks. If K is constant as a function of R, as used by various authors (e.g., Adams & Watkins 1995a, 1995b; Goldreich, Goodman, & Narayan 1986; Nautha & Toth 1998; Godon & Livio 1999a, 1999b), the baroclinic term vanishes, and vorticity is conserved in plane-parallel flows.

In contrast to previous numerical work, we choose a radially varying entropy $K(R)$ (§ 5.2) for the initial state of the two-dimensional simulations. This is the best way to mimic the density and temperature distribution that arises in the three-dimensional radiation-hydrodynamic calculation. In other words, any realistic disk has a radial entropy (S) gradient ($p/\rho^\gamma \neq \text{const}$). This can be seen from a simple argument, where we assume only that the aspect ratio of the disk (H_d/R) is constant for a range of radii. The pressure is never only a function of local density but is also a function of local gravity, both of which change with radius:

$$p \sim \Sigma H_d \Omega^2 \sim \rho \Omega^2 R^2 \sim \rho R^{-1} \sim \Sigma R^{-2} .$$

(4)

This result holds for any accretion disk, as long as H_d/R is constant. The exact dependence of K on R nevertheless depends on the specifics of a given simulation. For example, in a thermally convective region a density distribution of $\rho \propto R^{-1}$ and a temperature distribution of $T \propto R^{-1}$ are typical. Thus, it follows that

$$p \propto T \rho \propto K(R) \rho^\gamma \Rightarrow K(R) \propto R^{-2+\gamma} .$$

(5)

In a more general fashion, if $\rho \propto R^{-\beta_r}$, $T \propto R^{-\beta_T}$, and $K \propto R^{-\beta_K}$, this equation reads

$$\beta_K = \beta_T + \beta_r (1 - \gamma) .$$

(6)

It is obvious that there are certain stable profiles, for if $\beta_T = \beta_r (\gamma - 1)$, then $\beta_K = 0$ (e.g., for $\beta_r = 1 \Rightarrow \beta_T = 0.43$), but our three-dimensional radiation-hydrodynamic calculations do not show this particular profile (see § 4). Thus, $\beta_K = 0.57$ for the initial state in our baroclinic simulations. It follows from equations (2) and (6) that

$$\nabla p \times \nabla [K(R) \rho]\sim -\beta_K (\partial_\rho \rho) ,$$

(7)

which is always nonzero if there is an azimuthal density fluctuation and a nonzero β_K. On the other hand, isothermal disks are always barotropic by definition.

Baroclinic instabilities have been widely studied in the context of meteorology and oceanography (e.g., Tritton & Davies 1985; Pedlosky 1987). There are some theoretical models as well as some laboratory experiments that can help us to understand the basic mechanism of this instability (S. Sakai, I. Izawa, & E. Aramaki 1997). The onset of a baroclinic instability lies in the radial entropy gradient. This entropy gradient can result from the temperature gradient between the equator and North Pole of Earth. It can also be realized in an experiment in which a fluid is contained between two concentric cylinders—one is heated, and the other one is cooled down. In the absence of rotation, thermal convection will occur in the radial direction. This would lead to one large-scale convection cell between the equator and North Pole (Hadley cell; Hadley 1735) as well as to thermal convection between the cylinders. However, the rotation of Earth (or the rotation of the cylinders) inhibits this convection since it allows only for concentric flows, and no convective heat exchange occurs in the radial direction. However, if the entropy gradient is strong enough, the centrifugal force becomes unstable and begins to meander. This is the baroclinic instability. As the water meanders, it is once again able to transport heat radially. The same happens in Earth’s atmosphere, where the baroclinic instability leads to meteorological effects at midlatitudes such as the meandering jet stream and the high- and low-pressure systems (anticyclones and cyclones), determining our daily weather.

Available at http://www.gfd-dennou.org/library/gfd_exp.
Protoplanetary accretion disks are believed to have thermal convection perpendicular to their midplane (Cameron 1978; Lin & Papaloizou 1985). The disks do not fulfill the Schwarzschild criterion for vertical stability at a wide range of radii. Also, for the radial stratification a Schwarzschild criterion can be formulated that indicates that if rotational effects were negligible there would be radial thermal convection occurring (e.g., convective zones in stars).

The Schwarzschild criterion for stability of the radial stratification is actually never fulfilled in our baroclinic disks, since the radial component of the adiabatic temperature gradient (see Kippenhahn & Weigert 1990) is

$$V_{ad} = \frac{p}{P} \frac{\partial T}{\partial P} = 1 - \frac{1}{\gamma} = 0.3 \, ,$$

while the absolute temperature gradient in the radial direction is

$$V = \frac{p}{P} \frac{dT}{dP} = \frac{\beta_T}{\beta_T + \beta_P} = 0.5 \, .$$

Thus, $V_{ad} < V$. Furthermore, the Brunt-Väisälä frequency in the radial direction can be calculated via (see Kippenhahn & Weigert 1990)

$$N^2(r) = -\frac{g}{H_d}(V_{ad} - V) \, .$$

Here g is the radial component of gravity (not its absolute value as in Kippenhahn & Weigert). At a local radius R_0, centrifugal force and gravity may cancel each other, but if a parcel of gas is radially perturbed in a viscosity-free disk, then it conserves its given angular momentum $\Omega_0 R_0^2$. It therefore feels an effective gravity of

$$g = \Omega_0^2 (R_0^4 R^{-3} - R_0^3 R^{-2}) \, ,$$

which can be expanded for small deviations $a = R - R_0$ into

$$g = -\Omega_0^2 a \, .$$

Radial gravity locally follows basically the same dependence as the vertical component of gravity. Thus, it follows that

$$N^2(r) = -0.2\Omega^2 \, ,$$

which is obviously negative and thereby convectively unstable. Interestingly, a positive gradient in entropy also leads to this situation, but in this case the flow would be unstable to perturbations with $a < 0$.

Nevertheless, the rotation prevents the disk from being convectively unstable in the radial direction, which can be seen from the baroclinic version of the Rayleigh criterion (e.g., Solberg-Heiland criterion),

$$\frac{1}{R^2} \frac{\partial R^2 \Omega^2}{\partial R} = \frac{\partial \ln P}{\partial R} (V - V_{ad}) > 0 \, ,$$

which in the case of a Keplerian protoplanetary accretion disk is

$$\Omega^2 - N^2 H_d \frac{1}{\bar{R}} \frac{\partial P}{\partial R} > 0 \, .$$

With $p \sim \rho T \sim R^{-2}$, it follows that

$$\Omega^2 \left(1 - 0.4 \frac{H_d}{R} \right) > 0 \, ,$$

which gives a value of about 0.96Ω^2, which is a sufficient condition for stability if only axisymmetric perturbations are permitted. If nonaxisymmetric perturbations are allowed, it is only a necessary condition for stability. Such a situation is a typical onset to the formation of nonaxisymmetric baroclinic instabilities (meanders, vortices), as we discussed before (see Tritton & Davies 1985).

A detailed linear or nonlinear, possibly local, stability analysis of the global baroclinic instability in the context of accretion disks still has to be performed to get a sufficient criterion on the instability. Such an analysis should not be confused with the global stability analysis of a local baroclinic instability as in Lovelace et al. (1999) and Li et al. (2000).

3. CHANGES IN TRAMP

The code TRAMP was introduced and extensively discussed by Klahr et al. (1999). The equations used here are the same as in that paper. However, two additional features have been added to the code, which are crucial for the work presented in this paper.

3.1. Shearing Disk

As already mentioned in Klahr et al. (1999), rigid wall boundaries in the radial direction can affect the flow pattern and are not the perfect choice for simulations of disks. SB96 use the ZEUS code described in Stone & Norman (1992) in the shearing-sheet approximation (Hawley, Gammie, & Balbus 1995). This approximation is possible only for pseudo-Cartesian coordinate systems, which themselves strongly limit the scale of the computational domain; i.e., the box size has to be small in comparison to the local radius. A direct consequence of the pseudo-Cartesian coordinates is that there can be no global radial gradient of the density, temperature, and entropy. Thus, local studies of the global baroclinic instability are impossible.

In order to overcome this problem, TRAMP calculates on a spherical (R, θ, ϕ) grid; thus, large portions of the disk can be simulated, and one is restricted only by the computational effort required. We push forward a new set of radial boundary conditions that we call shearing-disk boundaries, which in fact correspond to a shearing sheet for spherical coordinates and disks. In the shearing-sheet approximation, one uses simple periodic boundary conditions, i.e., the values for the ghost cells are determined from the values of cells on the opposite side of the computational domain in a simple fashion [e.g., for the density $\rho(0) = \rho(NX - 1)$, where NX is the maximum number of zones in a given direction]. In the shearing-disk approximation, one makes two assumptions: first, that the mean values of each quantity follow a power-law scaling with the radius R, which is usually the case in steady-state accretion disks for a certain range of radii, and second, that the fluctuations are proportional to the mean value. Thus, it follows for the two inner and two
out the outer ghost cells that

\[\rho(0, J, K) = \rho^*(NX - 1, J, K) \left[\frac{R(0)}{R(NX - 1)} \right]^{-\beta_p}, \]

\[\rho(1, J, K) = \rho^*(NX, J, K) \left[\frac{R(1)}{R(NX)} \right]^{-\beta_p}, \]

\[\rho(NX + 1, J, K) = \rho^*(2, J, K) \left[\frac{R(NX + 1)}{R(2)} \right]^{-\beta_p}, \]

\[\rho(NX + 2, J, K) = \rho^*(3, J, K) \left[\frac{R(NX + 2)}{R(3)} \right]^{-\beta_p}. \]

The asterisk indicates the implementation of the global shear in a manner similar to that given in SB96 and C96. With the assumption that the inner and outer boundaries each move with the local Keplerian speed, it follows that there is a mean angular offset between inner and outer grid at time of \(\delta \phi = (\Omega_{R(1)} + \Omega_{R(2)} - \Omega_{R(NX)} - \Omega_{R(NX+1)})t/2 \). This offset translates into an integer offset \(dK = \text{ABS}(\delta \phi/d\phi) \) defined via the angular width of a grid cell \(d\phi \) and two interpolation factors \(C_1 = (\delta \phi, d\phi)/d\phi \) and \(C_2 = 1 - C_1 \):

\[\rho^*(K) = C_2 \rho(K + dK) + C_1 \rho(K + dK - 1). \]

The value for \(\beta_p \) is 1 in all three-dimensional simulations since we are performing calculations around \(R = 5 \) AU, where the surface density is almost constant \((\beta \phi = 0) \). For the azimuthal frequency \((\phi = \omega) \), \(\beta_p = 1.5 \) is obvious. The \(\beta_T = 1.0 \) in the three-dimensional simulations for the temperature follows from the assumption of a constant relative pressure scale height \(H_p/R = \text{const} \), which is necessary to make inner and outer vertical stratification fit in polar coordinates. The two-dimensional simulations use \(\beta_T = 0.0 \) in the isentropic case (model 2) but \(\beta_T = 1.0 \) in the baroclinic unstable case (models 3, 4, and 5). Model 6 uses open boundaries rather than shearing-disk conditions. Finally, \(\beta_p = 1.5 \) for the polar velocity component \((\phi = \theta) \) assumes the fluctuations to be proportional to the local speed of sound. For the radial velocity \(u_r, \beta_p = -2 - \beta_p \) is chosen to conserve the mass flux over the radial boundaries in a spherical coordinate system where \(\rho u_r R^2 = \text{const} \). It was tested that kinetic energy flux and momentum flux are not artificially amplified by the boundary condition (see model 2). We damp the radial velocity component of the inner and outer four grid cells by a factor of \(f_{d} = 0.05 \) each time step \(u_r := u_r(1.0 - f_{d}) \) in order to prevent the model from creating artificial resonant oscillations in the radial direction. These radial waves can even occur in one-dimensional radial models if there is no damping. Model 2 (see below) is our basic test that the treatment of our boundary conditions does not lead to a numerical instability. Angular momentum is not conserved, which allows the possibility of a net transport of angular momentum into or out of the computational domain by turbulence and thus of driving an accretion process or suppressing it, depending on the direction of the transport.

This new method was extensively tested and will be the subject of an upcoming paper, where its properties will be compared to other choices of boundary conditions under various physical disk situations.

Using this new numerical method, we combine the virtues of local simulations (good resolution and moderately large time steps) with the possibility of treating global systematic gradients, previously exclusively reserved for global simulations.

3.2. Reynolds Averaging

As an addition to the earlier TRAMP version, there is now the possibility of measuring the transport properties of the turbulence, i.e., the correlations of the fluctuations especially for the radial transport of angular momentum. A similar method was already used in C96 as well as in SB96. This turbulent stress tensor \(T \) is then scaled by the square of the sound speed, representing the pressure at the midplane. The \(T_{rr} \)-component corresponds to the angular momentum transport, which corresponds to the classical \(\alpha \)-value, or in other words, an \(\alpha \) is a measure of how much viscosity would be needed in order to simulate the turbulent angular momentum transport by viscous diffusion of angular momentum in a laminar flow. Since we also investigate other components of the stress tensor, we define

\[\alpha = A_{rr} = \frac{\langle u'_r (p u_r) \rangle}{\bar{p}c_s^2}, \]

with

\[\langle u'_r (p u_r) \rangle = \langle p u_r u_r \rangle - \bar{u}_r \langle p u_r \rangle, \]

where angle brackets and a bar represent spatial and time averages, respectively. We use the symbol \(A_{rr} \) because the symbol \(\alpha_{rr} \) is generally used for the helicity of the velocity field.

A detailed discussion of the measurements of the Reynolds stresses including \(A_{\theta\theta} \) and \(A_{\phi\phi} \) for compressible turbulence will be discussed in an upcoming paper by H. H. Klühler & G. Rüdiger (2003, in preparation). In a similar manner, we measure the strength and isotropy of the turbulence via the determination of the on-diagonal terms of the stress tensor \(T_{rr}, T_{\theta\theta}, \) and \(T_{\phi\phi} \), which, scaled by the square of the sound speed, are three different indicators of the square of the turbulent Mach number:

\[A_{rr} = \frac{\langle u_r^2 \rangle}{c_s^2}, \]

\[A_{\theta\theta} = \frac{\langle u_{\theta}^2 \rangle}{c_s^2}, \]

\[A_{\phi\phi} = \frac{\langle u_{\phi}^2 \rangle}{c_s^2}. \]

In the same way, we determine the mean density fluctuation in the flow by \(\langle \rho^2 \rangle / \bar{\rho}^2 \). We define \(M = (A_{rr} + A_{\theta\theta} + A_{\phi\phi})^{1/2} \) to be the Mach number in our models.

4. THREE-DIMENSIONAL RADIATION-HYDRODYNAMIC SIMULATIONS

The inviscid three-dimensional simulations of thermal convection in disks (Klahr & Bodenheimer 2000) showed radically outward-directed angular momentum transport if the section of the disk was large enough. In the following, we show that the angular momentum transport is not dominated by the vertical thermal convection but by the hydrodynamic turbulence in the \((R, \phi) \)-plane of the disk, which
results from the radial entropy gradient self-consistently introduced by solving the energy equation in our radiation-hydrodynamic code.

As a continuation of our previous work (Klahr et al. 1999), we have performed simulations of three-dimensional chunks of protoplanetary accretion disks. We have tested the influence of viscosity, artificial heating, and boundary conditions extensively. Since highly viscous flows tend to become axisymmetric (C96; Klahr et al. 1999), we were especially interested in simulations with high Reynolds numbers as in SB96. In model 1, we switch off the application of the viscous forces in the momentum equation but keep the heating, corresponding to \(\alpha = 0.01 \), from the local viscous dissipation function \(\Phi \) in the energy equation

\[
\Phi = (VT)u ,
\]

where \(T \) is the viscous stress tensor. For the viscosity \(\nu \) we adopt \(\nu = \alpha c_s^2 / \Omega_{\text{Kepler}} \). For more details we refer to Klahr et al. (1999). In an additional simulation (model 1B), we forgot the artificial heating and show that a self-consistent heating of the disk via the dissipation of compression waves, especially shocks, and the release of gravitational energy can lead to the same baroclinic effects as the artificial heating in model 1. Artificial heating simplifies the numerical effort, since it stabilizes the vertical and radial structure of the disk and thus allows for longer integration times for the mean values (see Table 1).

Artificial von Neumann & Richtmyer (1950) viscosity (see also Stone & Norman 1992) for the proper treatment of shocks is included, as is flux-limited radiative transport with a simple dust opacity \((\kappa = 2 \times 10^{-4} T^2 \text{cm}^2 \text{g}^{-1}) \). The goal was to investigate the influence of our more global approach, especially a wider azimuthal range, on the simulation results.

The particular models that we present here (models 1 and 1B; see Table 1) cover a radial range from 3.5 to 6.5 AU, a vertical opening angle of \(\pm 7^\circ \), and an azimuthal extent of \(90^\circ \). They use only 20 grid cells in the vertical direction but 51 in radius and 60 in azimuth. A follow-up paper will deal with radius, the strength of the measured Reynolds stresses \(\alpha = A_{\text{st}} \), the Mach number \(M \) of the turbulence, and the ratio of the time over which the averaging was performed to the orbital period at the outer edge of the disk.

Table 1

Name	Grid	\(R_{\text{st}} \) (AU)	\(\varepsilon_{\phi} \) (deg)	\(\beta_K \)	\(\alpha = A_{\text{st}} \)	\(M \)	\(t_{\text{ave}} / t_{\text{orb}} \)
Model 1	51 \times 20 \times 60	3.5–6.5	90	...	\(2 \times 10^{-3} \)	0.5	68
Model 1B	51 \times 20 \times 60	3.5–6.5	90	...	\(2 \times 10^{-2} \)	1.5	14
Model 2	64^2	4.0–6.0	30	0.0	\(2 \times 10^{-9} \)	10^{-4}	110
Model 3	64^2	4.0–6.0	30	0.0	\(3 \times 10^{-4} \)	0.04	1
Model 4	128^2	4.0–6.0	30	0.57	\(1.5 \times 10^{-4} \)	0.03	110
Model 5	128^2	3.0–7.0	60	0.57	\(2 \times 10^{-4} \)	0.04	130
Model 6	128^2	1.0–10.0	360	0.57	\(8 \times 10^{-3} \)	0.3	50

Notes.—These parameters are the dimensioning of the grid, \((n_r, n_\phi, n_z)\) or \((n_z, n_\phi)\), the radial extent of the disk \(R_{\text{st}} \), to \(R_o \), the azimuthal extent \(\varepsilon_{\phi} \), the parameter \(\beta_K \) that describes the variation of the polytropic \(K \) with radius, the strength of the measured Reynolds stresses \(\alpha = A_{\text{st}} \), the Mach number \(M \) of the turbulence, and the ratio of the time over which the averaging was performed to the orbital period at the outer edge of the disk.
by nature not dissipation free even if one has no viscous forces. Thus, the negative α-values are a result of the heating and cooling of the gas.

Looking at the flow pattern and density distribution in the (R, ϕ)-plane (Fig. 3), we do not see the convection cells from Figure 1. What we see are vortices, vorticity waves (e.g., Rossby waves, baroclinic waves), and pressure waves propagating in the flow. These are the sources of the positive Reynolds stress. They are counteracting the negative Reynolds stresses generated by the thermal convection. In the turbulence terminology, one would possibly identify geostrophic turbulence (irregular waves; see, e.g., Tritton & Davies 1985). This can be seen in the spectral density distribution of the flow in the azimuthal direction (Fig. 4). Only at the smallest resolved scales (i.e., meso scale) does the slope approach the Kolmogorov spectrum ($k^{-5/3}$). At larger scales the slope is even steeper than for Earth atmospheric geostrophic turbulence (k^{-3}), which indicates how strong small-scale turbulence is being pumped into the smallest possible wavenumbers. In this calculation the minimal k is 4 since we calculate only a quarter of the disk. However, 360° full-circle simulations (see model 6) indicate that $k = 1$ is the mode where the energy will pile up. The dissipation in this calculation thus does not only occur at the smallest scales, as in three-dimensional incompressible turbulence, but at all scales, especially at the large scales where shocks form. The idea to drive the accretion process via shocks was already suggested by Spruit (1987), but in his barotropic models the shocks could not form without the presence of an external perturber.

The Mach number of the flow is the smallest in the midplane (compare $M_{\text{max}} = 0.6$ in Fig. 3 with $M = 0.5$ in Fig. 2). Velocities rise, eventually beyond the sound speed, with height above the midplane. From this result several questions arise: (1) Why did neither Stone & Balbus (1996) nor Balbus et al. (1996) observe these positive Reynolds stresses and violent turbulence? (2) What is the source for the vorticity and turbulence in the (R, ϕ)-direction? (3) Especially, how can we be sure that we are not observing boundary effects? We explicitly answer these questions in §7.
The strategy in order to identify the source for turbulence and angular momentum transport was to simplify our model step by step by removing physics from the simulation and to wait for the turbulence and Reynolds stresses to disappear. The first effect that we found was that whenever we decreased the azimuthal extent of the computational domain below a critical value of $\frac{10}{14}$, the Reynolds stresses switched to negative values, as in two-dimensional axisymmetric calculations (Klahr & Bodenheimer 2003). Since the SB96 calculation covers roughly only $\frac{10}{14}$, this was the first hint that our findings might result from the more global simulation.

4.1. No Artificial Heating

The artificial heating in model 1 has the benefit that there is a well-defined laminar equilibrium state for the disk. This is ideal for any stability investigation as well as for the setup of a numerical model, but one can argue that this artificial heating is inconsistent with the lack of dissipation of kinetic energy. Consequently, the findings with model 1 could result purely from the artificial heating or, even worse, from the specific shape of the dissipation function (see eq. [27]). Thus, we repeated the simulation of model 1 but switched off the heating completely. This simulation is numerically more complicated and more expensive than model 1 since the initial state is far from equilibrium and the disk undergoes strong fluctuations in density and temperature. Only 14 orbits could be performed during a 10 hr run on the Cray T90. The disk vertically shrinks by 20% before it reaches a new self-consistent state with a midplane temperature of 40 K, down from 150 K in the initial state.

If the temperature changes by a factor of almost 4 (150 \rightarrow 40 K), one could expect the disk height (\sim pressure scale height) to change by about a factor of 2, but the factor of 2 in scale height is true only for vertically isothermal disks. Our disks have a vertical temperature profile that becomes flatter as the temperatures decrease because the opacities also decrease (proportional to $\frac{1}{T^2}$). This means that the high-temperature disk has temperature, pressure, and density profiles that fall off much more steeply than the pressure scale height estimated for the midplane temperature might suggest. The cooler disk, on the other hand, is closer to an isothermal disk and thus does not shrink in proportion to the root of the midplane temperature.

The vertical grid structure was readjusted during this cooling: the initial vertical opening angle was $\frac{10}{14}$, but during the vertical shrinking, the gradients above the disk became too steep for the numerical technique to work. Thus, we constructed a new vertical grid of $\frac{10}{14}$, also with 20 grid points, and interpolated the values linearly from the old onto the new grid.

The newly gained state of 40 K was then maintained for more than 100 orbits (see Fig. 5, which is similar to Fig. 3). The disk turbulence was transonic (see Fig. 6), and the heating was highly nonhomogeneous in space and time, in contrast to model 1, where it was assumed to be smoothly distributed. But nevertheless, the general result was the same: the disk develops a radial entropy gradient, turbu-
lence, and vorticity. In addition, the accretion of matter that results from the positive Reynolds stresses feeds energy into the system, which is radiated away after the turbulence is dissipated in shocks.

These self-consistent simulations will have to be continued in our future work. The simulations are numerically much more unstable than the heated or polytropic models, but in the end, only they can provide realistic predictions for the density, temperature, turbulence, and evolution of accretion disks.

4.2. Radial Entropy Gradient

Another glance at Figure 3 shows that temperature (contour lines) and density (colors) are not perfectly aligned. Thus, pressure and density gradients also do not point in the same direction, a clear indication of a baroclinic flow, where the entropy decreases with radius. To test the relevance of this possible instability for the generation of the observed turbulence, we removed the vertical structure of the disk and got rid of the radiation transport. Thus, the three-dimensional density ρ was replaced by the surface density Σ, and the three-dimensional pressure p by the vertically integrated pressure $P = \Sigma T$ (in dimensionless units).

Fig. 3.—Model 1 at a time near the end of the run: surface density (colors; 96 [violet] to 335 [red] g cm$^{-2}$), velocities (arrows; $v_{\text{max}} = 0.6 \times$ the local sound speed), and isotemperature contours in the midplane.

Fig. 4.—Model 1 at the same time as in Fig. 3: spectral density distribution of the velocities at the midplane computed along the ϕ-direction and averaged over radius. The slope for isotropic, incompressible turbulence (i.e., a Kolmogorov spectrum) is indicated by the dashed line, and the spectrum for two-dimensional geostrophic flows by the dotted line.
In Figure 7 we plot the $K / C_2^T / C_1^T / C_0^T / C_1^T$ values in the midplane (before model 1 becomes turbulent) as $K = K_{\text{max}}$. If one measures this K-value in the turbulent state of the disk, the fluctuations of K are too strong, which hides the general trend. The next section describes the results of using such an entropy distribution in a two-dimensional (R, ϕ) disk.

5. TWO-DIMENSIONAL SIMULATIONS

The flow characteristics in the three-dimensional simulations, e.g., the turbulence cascade and the small vertical velocity fluctuation, indicated that the disk instability must be a two-dimensional effect. In order to verify this thesis, we removed the vertical structure and performed two-dimensional (R, ϕ) simulations.

Both of the following models were first developed as one-dimensional radial axisymmetric models with density slope $\rho \sim R^{-1} [\rho(1 \text{ AU}) = 10^{-10} \text{ g cm}^{-2}]$, which corresponds, in the two-dimensional flat disk, to $\Sigma = \text{const} (\approx 300 \text{ g cm}^{-2})$.

The initial temperature was then chosen to be either constant ($T = T_0$) as a function of radius or to follow a power law [$T = T_0 (R / R_0)^{-1}$]. The value for T_0 was adjusted to create a local pressure scale height of $H / R = 0.055$ at the mid-radius $R_0 = 5$ AU, to match that in the three-dimensional radiation-hydrodynamic calculations. For obvious reasons this pressure scale height condition is fulfilled only at R_0 for the constant-temperature case but for all radii in the $T \propto R^{-1}$ case. In the constant-temperature model, H / R varies as $R^{0.215}$, which means that the relative pressure scale height increases slightly with radius. Both models use an identical computational domain with radii between 4.0 and 6.0 AU and an azimuthal extent of 30°, with a moderate resolution at 64² grid cells. The boundary conditions are identical to those of model 1: a shearing disk plus damping of the radial velocities in four grid cells near the inner and outer boundaries. The artificial viscosity is the same as in model 1. Both models are initially kicked by a random density perturbation with 1% amplitude: $\rho \equiv \rho(0.99 + 0.02 \text{RAND})$.

The initial temperature was then chosen to be either constant ($T = T_0$) as a function of radius or to follow a power law [$T = T_0 (R / R_0)^{-1}$]. The value for T_0 was adjusted to create a local pressure scale height of $H / R = 0.055$ at the mid-radius $R_0 = 5$ AU, to match that in the three-dimensional radiation-hydrodynamic calculations. For obvious reasons this pressure scale height condition is fulfilled only at R_0 for the constant-temperature case but for all radii in the $T \propto R^{-1}$ case. In the constant-temperature model, H / R varies as $R^{0.215}$, which means that the relative pressure scale height increases slightly with radius. Both models use an identical computational domain with radii between 4.0 and 6.0 AU and an azimuthal extent of 30°, with a moderate resolution at 64² grid cells. The boundary conditions are identical to those of model 1: a shearing disk plus damping of the radial velocities in four grid cells near the inner and outer boundaries. The artificial viscosity is the same as in model 1. Both models are initially kicked by a random density perturbation with 1% amplitude: $\rho \equiv \rho(0.99 + 0.02 \text{RAND})$.

Fig. 5.—Model 1B: surface density 52 orbits after the initial state (colors: 20 [violet] to 523 [red] g cm⁻²), velocities (arrows; $v_{\text{max}} = 0.75 \times$ the local sound speed), and isotemperature contours in the midplane.
where RAND is a uniformly distributed random number between 0 and 1. Afterward, the system was allowed to evolve freely. We advect the internal energy and calculate the PdV work arising from compression and shock dissipation in the same manner as in the three-dimensional calculations. For the time being there is no radiative cooling, because cooling would immediately change the temperature profile and we are interested in the behavior of given temperature distributions. Models with radiative cooling will be dealt with in future work.

5.1. Model 2: Radially Constant Entropy ($T = \text{const}$)

This model developed no turbulence. The initially induced turbulence decayed rapidly, with an e-folding time for the kinetic energy in R of ≈ 4.3 orbits (see Figs. 8 and 9). Nevertheless, the initially introduced turbulence always transported angular momentum outward, never inward (see model 2B). Figure 8 shows the surface density distribution and flow field after about 90 orbits. The surface density is almost constant ($299.955 \, \text{g cm}^{-2} < \Sigma < 300.125 \, \text{g cm}^{-2}$). The arrows indicate that there is still small noise in the velocity field, with a Mach number of about 10^{-4}. In Figure 9 the evolution of the total kinetic energy in both coordinates and the enstrophy of the flow are plotted, in units of the initial values. The overall mean mass accretion rate is given in solar masses per year. Here and in the following models, a negative value of \dot{M} indicates accretion toward the star. Enstrophy is the integral square of the local vorticity. One clearly sees that the kinetic energy as well as enstrophy are decaying, as is expected for a barotropic disk.

![Graphs and images](image.png)
Kinetic energy in ϕ and enstrophy are calculated from the deviations from the Keplerian profile. The residual finite values of these quantities result from the laminar (not strictly Keplerian) steady-state flow. The resulting mean turbulence, measured by the strength of the components of the stress tensor (see Fig. 10), is also very low.

We also tested the effect of stronger initial perturbations. For model 2B, we gave model 2 an initial random density fluctuation of 50%. Still, the turbulence rapidly decayed as expected, but we have to stress that the turbulence in this barotropic simulation already had the property of effectively transporting angular momentum outward. The Reynolds stresses during the first orbit (see Fig. 11) are positive ($\langle \alpha = A_{r0} \rangle \approx 3.0 \times 10^{-4}$), nevertheless rapidly decreasing afterward.

We conclude that positive Reynolds stresses are a common feature of hydrodynamic turbulence in disks and not exclusively a result of baroclinic simulations. This is also a result of Hawley et al. (1999), which shows that positive Reynolds stresses are correlated to the decay of turbulence. Only thermal convection, which must not be confused with isotropic turbulence, has a tendency of transporting angular momentum inward. Nevertheless, in barotropic disks hydrodynamic turbulence cannot sustain itself and decays.

5.2. Model 3: Radially Varying Entropy ($T \sim R^{-1}$)

Using a different initial state leads to a completely different result. The flow becomes turbulent within a few orbits, with kinetic energy rising exponentially until saturation due to shock dissipation occurs. Model 3 (Fig. 12) shows some similarities to model 1 (Fig. 3), even though we are comparing a three-dimensional and a two-dimensional simulation. After 100 orbits, the surface density shows deviations from axisymmetry ($286 \text{ g cm}^{-2} < \Sigma < 318 \text{ g cm}^{-2}$). The velocities are 10^2 times stronger than the ones in model 2.

The initial instability grows quickly (Fig. 13). The kinetic energy in the radial direction grows by a factor of 10^3 within 40 orbits. This translates into a characteristic growth time of ≈ 5.0 orbits. The other components, especially the enstrophy, grow more slowly but do not saturate as quickly as the radial kinetic energy (which is also slightly damped for numerical reasons; see § 3.1). The strong rise of enstrophy (\approx vorticity generation) is an indication that a baroclinic instability is at work.

The angular momentum transport and also the off-diagonal components of the stress tensor (Fig. 14) are orders of magnitude stronger than in model 2. They are weaker than in models 1 and 1B, which may result from the smaller
computational domain, especially in the azimuthal direction, artificially limiting the wavenumbers of the instability. The angular momentum transport ($\alpha = A_{r0}$) is in the mean as strong as 1.5×10^{-4}. This value should be contrasted to the strength of the turbulence itself. An A_{r} and A_∞ of $\approx 10^{-3}$ correspond to a turbulent Mach number as strong as 0.05. In isotropic turbulence, this value could be used for a mixing-length model and would then predict an α-viscosity of $\alpha = 2.5 \times 10^{-3}$ to 5×10^{-2}, depending on the estimates of the “typical eddy size.” The lower value of α that we obtain indicates that even when strong turbulence develops it does not automatically generate strong Reynolds stresses, which again is evidence for nonisotropic turbulence. The energy of this turbulence is drawn from the entropy background, which can maintain its profile due to the accretion of mass. The measured mass accretion rate of $\dot{M} \approx -2.0 \times 10^{-9} M_\odot \ yr^{-1}$ is in rough agreement with the expectation from a viscous accretion disk model with a surface density of $\approx 300 \ g \ cm^{-2}$ and an α-parameter of 1.5×10^{-4}.

The turbulence saturates because of dissipation from shocks and stays at a high, almost sonic, level. This level is on the long term quite variable.

Our simulation demonstrates that nonmagnetic turbulence can drive outward angular momentum transport and is maintained itself by the resulting accretion process. Such a conclusion has been in doubt for a long time, since no instability mechanism has been convincingly demonstrated to work in Rayleigh-stable and nonionized disks.

We checked our findings on model 3 by redoing the simulation at twice the resolution (model 4: 128×128 grid cells) and obtained general agreement (see Fig. 15), with a mean $\alpha = A_{r0}$ slightly larger than that of model 3. A detailed study of the influence of resolution on our results is a current subject of our investigations and will be part of a future paper.

For model 5 we used also a resolution of 128×128 grid cells, but this time we used a computational domain that was essentially twice as wide in both directions. It spans radii from 3 to 7 AU and 60° in the ϕ-direction. The numerical resolution is thus about the same as in model 3. In Figure 16 we plot the Reynolds stresses, which are stronger than in the previous models, with $\alpha = A_{r0} \approx 6 \times 10^{-4}$. This larger scale simulation shows also the formation of a vortex (see Fig. 17). It is an anticyclonic prograde vortex with higher density and pressure than the background. The vortex emits spiral waves in the ambient accretion disk.

Since model 5 is so far the best compromise between resolution and angular width, it is well suited for the examination of the spectral density distribution (see Fig. 18) and comparison with model 1 (see Fig. 4). Here one clearly sees

Fig. 9.—Model 2: time development of kinetic energy in the r-direction (top left) and in the ϕ-direction (top right), the spatially mean accretion rate in \dot{M}, yr^{-1} averaged over 5 orbits (bottom left), and the enstrophy (integral square vorticity; bottom right). The units for kinetic energy and enstrophy are normalized to the first value occurring in the data set. As predicted for barotropic flows, no instability growth can be observed within the first 100 orbits. No vorticity is generated.
the transition between two-dimensional and "three-
dimensional" characteristics (even though the calculations
are actually two-dimensional) of the spectrum at a wave-
number of about 60, a value that was so far observed in all
simulations. This transitional wavenumber is known as the
"Rhines blocking wavenumber"; roughly speaking, for

\[m = k > 60 \], energy cascades only down to smaller scales,
while for \(k < 60 \), it inversely cascades up to larger scales.
The wavenumber \(k = 60 \) corresponds to about 6/ in azi-
muth or a tenth of the radius, which is almost 2 pressure
scale heights. Structures that are smaller than this are not
influenced by the rotation and apparently behave like three-

![Graphs showing Reynolds stress](image1)

Fig. 10.—Model 2: azimuthally and time-averaged Reynolds stress over 10 orbits (top left) taken 100 orbits after the initial perturbation, measured in units of an effective \(A_{\rho} \) (see eq. [22]) and plotted as a function of radius (in AU). The mean value is \(\alpha = A_{\rho} \approx 2.0 \times 10^{-8} \), which is practically 0. Other frames give the overall Mach number, the strength of the turbulence in the radial direction \(A_{r} \); see eq. [24]), and the azimuthal direction \(A_{\phi} \); see eq. [26]).

![Graphs showing Reynolds stress](image2)

Fig. 11.—Model 2B: azimuthally and time-averaged Reynolds stress over 1 orbit (top left) right after a strong initial density perturbation, measured in units of an effective \(A_{\rho} \) (see eq. [22]) and plotted as a function of radius (in AU). The mean value is \(\alpha = A_{\rho} \approx 3 \times 10^{-8} \). Other frames give the overall Mach number, the strength of the turbulence in the radial direction \(A_{r} \); see eq. [24]), and the azimuthal direction \(A_{\phi} \); see eq. [26]).
dimensional turbulence \((k^{-5/3}) \); i.e., energy cascades down to smaller scales to be ultimately dissipated. Structures bigger than this feel the Coriolis force and thus the rotation and shear. Consequently, they are forced to have twodimensional characteristics and an inverse energy cascade with \(k^{-3} \). The same behavior can be observed in Earth’s atmosphere, where small structures of up to 500 km in extent (i.e., local winds) behave according to \(k^{-5/3} \), while larger structures (like hurricanes) follow a \(k^{-3} \) distribution.

The studies on the influence of the computational domain will have to be continued in future investigations. The same is true for parameter studies on the initial distribution of density (as well as \(\gamma \) and temperature) in the disk models and the influence on \(\alpha \). The fact that we found a working hydrodynamic instability for disks that generates Reynolds stresses with the right sign and reasonable \(\alpha \)-values seems to support the paradigm of a viscously driven accretion process. Considering the limitations of our numerical method, we could argue that a better method or higher resolution could also lead to even stronger turbulent viscosity, since only the sound speed seems to be a natural upper limit for the velocity fluctuations.

Other flow characteristics besides the Reynolds stress are very strongly developed. First, the two-dimensional turbulence itself produces a significant turbulent (rms) pressure that is not accounted for in \(\alpha \)-models. Second, the vorticity and the deviation from the mean Keplerian profile are significant features, which also cannot be handled in diffusion models. And finally, even though \(\alpha \)-models might assume that there is some underlying nonaxisymmetric turbulence, they never would predict the formation of large-scale flow features such as long-lived and growing vortices of several scale heights diameter. Even if such features were assumed to be present initially, \(\alpha \)-models would smear them out and not amplify them (Godon & Livio 1999b).

We have now demonstrated the capability of the global baroclinic instability to form nonaxisymmetric structures and vortices in the local simulations with periodic boundaries. The next question to be investigated concerns what would happen if the global shear were not fixed by the radial boundary conditions but were free to evolve. Thus, we set up a global baroclinic simulation to see how a real disk would behave and to what extent it could still be described by an \(\alpha \)-model.
Fig. 13.—Model 3: quantities plotted have the same meaning as those in Fig. 9 and are directly comparable. In baroclinic flows, vorticity and enstrophy are created, and instability growth can be observed within the first 100 orbits.

Fig. 14.—Model 3: azimuthally and time-averaged Reynolds stress over 380 orbits (starting with 2030 orbits after the initial perturbation), measured in units of an effective A_{α} (see eq. [22]) and plotted as a function of radius (in AU). The mean value (top left) is $\alpha = A_{\alpha} \approx 1.5 \times 10^{-4}$. Other frames show the overall Mach number and the strength of the turbulence in the radial direction (A_r; see eq. [24]) and in the azimuthal direction (A_{ϕ}; see eq. [26]).
6. A GLOBAL TWO-DIMENSIONAL SIMULATION

Our global simulation shows that all the findings from the local models (models 3, 4, and 5) can be confirmed. Actually, the Reynolds stresses are even stronger than in the local simulations, since smaller wavenumbers in the azimuthal direction can be resolved. The wavenumber $m = 1$ seems to be the preferential mode of the instability. A further discovery was the self-consistent formation of long-lived anticyclonic vortices as a direct result of the global baroclinic instability. This may have major relevance for the formation process of planets.

The simulation (model 6) covers the entire 360° of the circumference of the disk and a radial section between 1 and 10 AU. The grid measures 128×128 grid cells, which are radially logarithmically distributed. We can thus resolve azimuthal wavenumbers between 1 and 64. The boundary conditions in the radial direction were changed from periodic to simple nonreflecting outflow conditions (vanishing gradients), not allowing for inflow. As a result of this
change, we could also drop the damping of the radial component of the velocity close to radial boundaries. The density distribution again was \(\rho \propto R^{-1} \) (constant \(\Sigma \approx 300 \, \text{g cm}^{-2} \)), and the temperature distribution was \(T \propto R^{-1} \); thus, we have a baroclinically unstable situation as in model 3, which results from \(H/R = 0.055 \). The model was first run into a stable one-dimensional axisymmetric state, where the residual velocities were less than \(10^{-4} \, \text{cm s}^{-1} \). Without a symmetry-breaking instability and turbulence generation, this disk cannot evolve and would stay perfectly laminar forever, as in the dead zone described by Gammie (1996).

The initial density distribution was then perturbed by random noise of amplitude only 0.1%. The initial state is practically axisymmetric. Figure 19 illustrates the evolution of the flow in two space dimensions, over the full 360°. After the first orbit (30 yr at 10 AU; Fig. 19a), only little structure has evolved, but with time, a prominent anticyclonic vortex forms, which reflects the assumption that \(m = 1 \) is the preferred mode. Intermittently, a second vortex also forms, and we assume that their number is limited only by the narrowness of our disk and a lack of matter. The vortex grows in mass and propagates radially outward, possibly as a result of the gradient of background vorticity and the fact

Fig. 17.—Model 5: quantities plotted have the same meaning as those in Fig. 12. This calculation was run over 230 orbits.

Fig. 18.—Model 5: spectral density distribution of the velocities at the midplane computed along the \(\varphi \)-direction and averaged over radius. The slope for isotropic, incompressible turbulence (i.e., a Kolmogorov spectrum) is indicated by the dashed line, and the spectrum for two-dimensional geostrophic flows by the dotted line.
that anticyclonic vortices are a local sink for angular momentum in the global vorticity field. Anyway, since a radial drift of vortices in barotropic flows has never been reported, this effect might also be linked to the baroclinic features of the flow. A detailed investigation of this effect still has to be performed.

Figure 20 shows the Reynolds stress and turbulent Mach number averaged over the orbits from 430 to 500. We see that the Reynolds stress does not disappear as we remove the shearing-disk boundaries. The stresses are comparable in the main part of the disk to those in models 3, 4, and 5 and deviate only at the physical edge of the disk, where density and sound speed drop by orders of magnitude. We can conclude that the shearing-disk boundary condition does not significantly affect the results.

Figure 21 shows the situation after about 10^4 yr in real Cartesian coordinates to give an impression of the global nature of the simulation. Figure 22 shows the flow pattern in more detail in (R, φ)-coordinates at the end of the simulation. A huge vortex has formed that has a factor of 4 overdensity with respect to the ambient disk and a factor of 2 overdensity with respect to the initial local surface density. It is a high-pressure anticyclone that has the property of collecting solid material in its center (Tanga et al. 1996; Godon & Livio 1999b). At the same time, the overdense blob inherits a substantial fraction of the disk gas, which is not confined by self-gravity but only by the pressure gradient generated by the anticyclonic (less prograde) rotation. While the initial nebula (from 1 to 10 AU) had a mass of about 10^{-2} M_⊙, there are only 8 × 10^{-7} M_⊙ left after 10^4 yr, which corresponds to a mass loss (radially inward and outward) of 2.0 × 10^{-7} M_⊙ yr^{-1}. We cannot tell in this simulation how fast mass is being accreted onto the star, since our computational domain ends at 1 AU. The red blob collects a total of \approx 10^{30} g (170 M_J or 0.5 Jupiter masses [M_J]). Without further addition of mass or cooling, this object is not gravitationally unstable, since the Toomre Q in the disk is about 10 and the local Jeans mass in the condensation is about 2.5 M_J.

We see that even in a disk that is not massive enough to fragment into planets or brown dwarfs (Boss 1998), a kind of pre-protoplanet can form simply as a result of baroclinicity and the resulting vorticity. The object, which is not yet gravitationally bound, could evolve into a planet in one of two ways: (1) it could efficiently collect solid particles in the center and wait until the critical mass for gas accretion is reached or (2) it could concentrate enough gas and cool down efficiently to become gravitationally unstable. In
either scenario, the timescale for planet formation will be shorter than in cases without the vortices in the disk. Additionally, the vortex scenario can explain why there could be a solid core in a planet even if it formed by gravitational instability rather than by accretion of solid material to form a core followed by gas capture.

7. CONCLUSIONS

The global baroclinic instability is found to generate turbulence in disks and drive an accretion process. In general, we found numerically that isotropic turbulence in the \((R, \phi)\)-plane of the disk has the property of transporting angular momentum radially outward, but only the global baroclinic instability seems to provide a reliable source for this turbulence in the first place. Thermal convection in the vertical direction of the disk is not necessary for this effect.

These results seem to be unaffected by the type of simulation. Whether two-dimensional or three-dimensional, whether polytropic, artificially heated, or not heated, whether open boundaries or shearing disk, all simulations lead to the same conclusions. Nevertheless, only global three-dimensional nonheated models have the credibility to predict exact \(\alpha\)-values.

We showed that a protoplanetary disk with a density and temperature distribution that cannot be described by a single polytropic \(K\) is not barotropic and is possibly unstable against nonaxisymmetric perturbations. This nonisentropic situation (with a radial entropy gradient) is ultimately a consequence of the radially decreasing gravitational force. The vertical component of gravity pushes the disk together and determines the pressure. Thus, it is natural for nonisothermal disks to be baroclinic.

We demonstrated numerically in a simple two-dimensional simulation that a baroclinic disk is unstable and develops strong geostrophic turbulence, while a barotropic disk is perfectly stable.

Now we can answer the questions raised in § 4. (1) Balbus et al. (1996; see also Hawley et al. 1999) could not observe this kind of instability since their simulations were barotropic. The simulations in SB96 allowed for local baro-clinic effects, but no global entropy gradient was present. They used the shearing-box approximation; thus, \(\beta_p, \beta_T = 0\), and \(\beta_K\) is automatically zero. (2) The instability is purely hydrodynamic with an initial e-folding time for the growth of about 5 orbital periods for an entropy gradient with \(\beta_K = 0.57\). It occurs naturally in rotational shear flows when surfaces of constant density are inclined relative to surfaces of constant pressure. A detailed stability analysis does not exist yet, but this is true for a lot of turbulent situations. Indications are, however, that the lowest order modes have the fastest growth rates. It is also not known yet whether we are observing a linear or a nonlinear instability operating in the disks. (3) The barotropic shearing-disk simulations as well as the baroclinic open-boundary simulations indicate that the shearing-disk boundary conditions are not responsible for the turbulence.

Thermal convection is only indirectly related to the baroclinic instability, since convective and radiative transport are responsible for the radial temperature distribution and therefore the radial entropy gradient. An isothermal disk would always be barotropic, but we are considering only the situation where the optical depth is larger than 1, so the disks are not isothermal. The optical depth greater than 1 is also necessary for thermal convection, but a vertically convectively stable, purely radiative disk can also establish a radial entropy gradient. If convection is present, then it can be important in generating the initial nonaxisymmetric perturbations induced in the Keplerian disk that are necessary to set off the baroclinic instability. On the other hand, convection produces negative Reynolds stresses; however, these
turn out to be orders of magnitude weaker than the ones created by the baroclinic instability.

The simulations also generate vorticity, as can be made plausible by a simple argument. Equation (7) shows how a density fluctuation in the φ-direction leads to a pressure gradient that does not exactly line up with the density gradient. Thus, imagine two parcels of gas on the same orbit around the central object. When they get pushed apart in the azimuthal direction, the pressure will try to restore the previous state by pushing them together again. In a barotropic disk they perform a damped oscillation, and the perturbation decays, but in a baroclinic disk, assuming that the perturbation occurs only along the azimuthal direction, the gas pressure will now not only push the parcels azimuthally together again but also will drive the gas parcels slightly radially outward. For two reasons they are then driven back to the lower radius. First, there is the gas pressure at the larger radius, and, second, they do not have enough angular momentum to stay on that higher orbit. When they return to their lower orbit, they will fall behind their original azimuthal position, since the gas on a lower orbit has a larger angular velocity than the one on the outer orbit. Thus, it is clear that a nonaxisymmetric radial velocity distribution is created—$\partial v_r/\partial \varphi \neq 0$—and therefore vorticity generated. This leads first to a “meandering” flow that eventually becomes completely chaotic, characterized by irregular waves. Furthermore, a radially local perturbation spreads quickly in the radial direction, since it always affects and perturbs neighboring radii. Other works (e.g., Adams & Watkins 1995a) have considered the behavior of vortices and their interaction with viscosity before, but none of them have created them. We show here for the first time that they form necessarily in a realistic disk in the absence of an underlying viscosity.

Finally, the baroclinic instability generates turbulence with velocities close to the sound speed. Dissipation does not occur (homogeneously in time and space) on the small scales as in α-models but occurs in large-scale shock structures. The calculations strongly suggest that this baroclinic instability is a feasible way to maintain turbulence and outward angular momentum transport in protoplanetary disks, even if the physical conditions do not allow for MHD turbulence. It would follow that there is no such thing as a dead zone in protoplanetary disks. Evidently then, also the paradigm of layered accretion has to be revised. One also has to take into account

![Fig. 21. Pre-protoplanet in model 6: surface density (colors: 650 [red], 550 [yellow], 450 [green], and 250 [blue] to <100 [black] g cm$^{-2}$) in the global model is projected in a Cartesian frame after 320 orbits at the outer radius, which corresponds to 104 yr. Note that the condensation is partially artificially smeared out in the φ-direction, which is a result of the low-order advection scheme. In reality, one could expect the pre-protoplanet to be more strongly confined.](image)
a transition zone in a disk, which separates regions where MHD turbulence or hydrodynamic turbulence dominate and in which the two processes may coexist. It also would be fruitful and interesting to study the transition zone and in general the interaction between hydrodynamic turbulence and self-gravitational instabilities, since such a process could be crucial for planet formation. These combined effects would be important at the earliest stages of evolution of a protoplanetary disk, when the disk is still relatively massive and material is still accreting onto the disk from the surrounding molecular cloud. Once the disk becomes optically thick and radiative transfer effects become important, one can expect baroclinic effects to occur.

Gravitational and baroclinic instabilities seem to have certain properties in common. Each of them leads to nonaxisymmetric modes and an angular momentum transport that is not necessarily describable by an α-formalism. In baroclinic disks we are able to measure quite reasonable and, even more significant, all positive values for the Reynolds stresses, but it could be dangerous to use these values in the viscous description of an accretion disk. Our global model shows dramatically how far a real disk can depart from the idealized axisymmetric laminar disk that evolves in quasi–steady state on viscous timescales. Thus, results from α-disk models can reflect only the long-term average properties of disks.

The transonic turbulence would be expected to be very influential on the passive dust contaminant in generating collisions and mixing as well as concentrating the dust grains. Nevertheless, the Mach number associated with mixing of angular momentum is almost 2 orders of magnitude less than that of the turbulence, which reflects the nonisotropic two-dimensional character of the turbulence. The spectral density (see Figs. 4 and 18) indicates that there is also turbulence on the small scales, but only resolution studies can show how much energy really decays toward the Kolmogorov scale. In short, a baroclinic disk is much more turbulent than “viscous.”

Our simple global two-dimensional model already shows azimuthal density fluctuations of a factor of 4, but most up-to-date models that try to interpret observational data use axisymmetric disks. Our global simulation could be a first step in showing how the spectral (radiation) energy distribution of a baroclinically unstable disk would look, in contrast to an axisymmetric one.
The anticyclonic rotating gas parcels are vortices, which could be the precursors of planetary formation. They can be thought of as pre-protoplanets. In this connection, more realistic three-dimensional models with radiation transport could allow for higher mass concentration, since the cooling can locally decrease the pressure. The planets could form either by concentration of dust in the centers of the vortices, as was suggested by Tanga et al. (1996) and Godon & Livio (1999b), or by sufficient gas accretion onto a vortex so that it undergoes gravitational collapse (Adams & Watkins 1995a). This second process would happen in a similar fashion to the model by Boss (1998), with the big difference that the vorticity takes care of the local mass enhancement even after the disk or even parts of the disk have become gravitationally stable. It furthermore is an easy way to explain a solid core for Jupiter and Saturn, since the preplanetary embryo, the rotating slightly overdense vortex, will already have accumulated planetesimals.

In a final speculation, we suggest that there is a connection between UX Orionis events (Natta et al. 1999) and the baroclinic instabilities. It would be logical to expect overdense vortices to form in disks around Ae/Be stars. In a nearly edge-on disk, a transit of such a cloud, which has a higher scale height than the material in the surrounding disk, could obscure the stellar light. In a viscous α disk, these overdense regions would smear out in the azimuthal direction on a dynamical timescale, which is an orbital period, but in a viscosity-free disk, they do not only persist, they can form.

Further two-dimensional and three-dimensional simulations are necessary to determine the proper role for the global baroclinic instability in accretion-disk theory. Questions to be addressed are abundant. For example, what is the influence of the aspect ratio H/R of the disk on the instability? What are the critical values for β_K? Can one measure the growth rates for idealized perturbations with a single wavenumber n?

Apparently, the dissipation and conservation properties of different numerical hydrodynamic schemes affect the development of the instability. We already noticed that not all available codes show the same results if one does baroclinic simulations. We will continue with these tests, and we suggest that other owners of hydrodynamic codes should try to do so as well, in order to prove or disprove our findings.

The next step in our investigations of this new instability will be a detailed stability analysis, which has to be the ultimate proof for our numerical findings.

We want to thank Steve Balbus, Robbins Bell, Jürgen Blum, Axel Brandenburg, Geoff Bryden, Andi Burkert, William Cabot, Pat Cassen, Jeff Cuzzi, Sandy Davies, Steve Desch, Christian Fendt, Charles Gammie, Patrick Godon, John Hawley, Thomas Henning, Sascha Kempf, Willy Kley, Greg Laughlin, Doug Lin, Mordecai-Mark Mac Low, Andy Nelson, Laura Nett, Günther Rudiger, Michal Różycka, Scott Seagarves, Frank Shu, Jim Stone, Paolo Tanga, Caroline Terquem, David Trilling, Dotty Woolum, and Richard Young for support, fruitful criticism, and inspirational discussions. The results are based on calculations performed at the HLH (Hochleistungsrechenzentrum) in Jülich, Germany, and with the NPAI grants CSC217 and CSC222 in San Diego. This research has been supported in part by the NSF through grant AST 96-18548, by NASA through grant NAGS-4610, and by a special NASA astrophysics theory program that supports a joint Center for Star Formation Studies at NASA Ames Research Center, the University of California, Berkeley, and the University of California, Santa Cruz.
