Staphylococcus pseudintermedius: an undocumented, emerging pathogen in humans

Staphylococcus pseudintermedius: ein undokumentierter, neu auftretender Erreger beim Menschen

Abstract

The first infections of methicillin-resistant *Staphylococcus pseudintermedius* in humans were recorded in 2006, and is now becoming a concern because of its close similarities to human pathogens in the *Staphylococcus intermedius* group (SIG). These bacteria have all the properties which a multidrug-resistant *Staphylococcus aureus* possesses.

The literature was searched using the term “*Staphylococcus pseudintermedius*” in PubMed and other reference databases. The virulence factor and the pathogenicity are under investigation, but reports have suggested that this commensal of animals is transmitted easily via close contact to animals by owners, veterinarians and staff.

Resistance to beta-lactams (including methicillin) is a primary concern. Drug resistance to methicillin is a considerable problem in developing countries, as antibiotic use is not regulated. Studies from Europe have reported multidrug resistant isolates from clinical specimens. Although data on drug resistance and pathogenesis of *S. pseudintermedius* are not sufficient, it is extremely important to identify the pathogen correctly. Only then can its pathogenesis be studied during the course of disease and appropriate measures developed to prevent it becoming a global problem.

Keywords: *Staphylococcus aureus*, *Staphylococcus pseudintermedius*, zoonosis

Zusammenfassung

Der Methicillin resistente *Staphylococcus pseudintermedius*, über den Infektionen beim Menschen erstmalig 2006 berichtet wurden, gibt wegen der großen Ähnlichkeit zu humanpathogenen Krankheitserreger den Ausgangspunkt der Besorgnis an der *Staphylococcus intermedius* Gruppe (SIG). Das Bakterium hat alle Eigenschaften eines multiresistenten *Staphylococcus aureus*.

Die Literatur wurde mit dem Begriff „*Staphylococcus pseudintermedius*” mit der PubMed-Literaturrecherche und anderen Datenbanken durchgeführt. Derzeit werden der Virulenzfaktor und die Pathogenität untersucht. Aus Berichten geht hervor, dass der Kommensale von Tieren durch engen Kontakt auf Halter, Tierärzte und deren Personal leicht übertragen wird. Die Resistenz gegenüber Beta-Laktamen, zu denen auch Methicillin gehört, ist ein Problem.

Die Resistenz gegen Methicillin ist vor allem in den Entwicklungsländern ein Problem, in denen der Einsatz von Antibiotika nicht reguliert ist. Studien aus Europa haben über Isolate mit Mehrfachresistenz aus klinischen Proben berichtet. Obwohl es noch keine ausreichenden Daten über Antibiotikaresistenz und Pathogenese gibt, ist es äußerst wichtig, den Erreger korrekt zu identifizieren, damit die Pathogenese im Krankheitsverlauf untersucht werden kann, bevor sich ein weltweites Problem entwickelt.
Introduction

The genus *Staphylococcus* is currently divided into 38 species and 17 subspecies. It is infamous for its drug resistance and multiple pathogenic factors [1]. Based on the presence of coagulase enzyme, genera were broadly divided into two categories: coagulase-positive and coagulase-negative species. Initially, only *Staphylococcus aureus* were thought to be a human pathogen, but in 1976, *Staphylococcus intermedius*, a new coagulase-positive species, was identified and reported to be associated with animal and human infections [2]. *Staphylococcus intermedius* was first considered to be a single species. Later, based on 16S rRNA typing, it was reclassified as *Staphylococcus intermedius* group (SIG), including three species: *S. intermedius*, *Staphylococcus pseudointermidius* and *Staphylococcus delphini*, which were closely related in terms of biochemical reactions. In this group, only *S. intermedius* was considered to be pathogenic in humans. *S. pseudintermedius* and *S. delphini* are canine commensals or opportunistic pathogens associated with skin and wound infections, predominately in animals. In recent veterinary literature, *S. pseudintermedius* is one of the important pathogens of zoonotic origin that causes wound and skin infections. According to the literature, up to 90% of healthy dogs may be colonized with *S. pseudintermedius* [3], [4]. *S. pseudintermedius* mimics *S. intermedius* phenotypically, which makes its identification difficult using automated identification systems. Until the last decade, it was falsely reported to be *S. intermedius* by phenotypic and automated systems, owing to a great paucity of data available for identification. Not all commercially available identification systems are able to correctly identify *S. pseudintermedius*. The unjustified use of antimicrobials in companion animals is responsible for emerging antimicrobial resistance. *S. pseudintermedius* is another link in the same chain in emerging drug resistance, as it is reported to be multidrug resistant, able to transmit from animals to humans, and possesses all the virulence factors of *S. aureus*. In 2006, the first cases of *S. pseudintermedius* infection in humans were reported by Van Hoovels [5] from 60-year-old patients with clinical presentation of ischemic cardiomyopathy and ventricle tachycardia, but it has likely been present in the community for far longer. Since then, there have been attempts to isolate and categorize this pathogen to study its virulence factors and pathogenesis in humans [5], [6]. The spectrum of infections caused by *S. pseudintermedius* is very close to *S. aureus* infections. A case series of 24 isolates by Somayaji in 2016 shows comorbidity factors, with the elderly being more prone to infection [7]. Only 2 patients (8%) out of 24 were below age 40, out of which one had a wound infection related to a dog bite.

Methods

Using the keyword “*Staphylococcus pseudintermedius*”, we searched PubMed, finding total of 339 publications including both veterinary and human medicine, out of which 72 were reported from humans. The search also included google and public health agency information (National institutes of health [NIH], Centers for Disease Control and Prevention [CDC], the European Centre for Disease Prevention and Control [ECDC], the US Food and Drug Administration (FDA), Agency for Healthcare Research and Quality [AHRQ], etc). We reviewed all literature published including research articles, original articles, review articles and case reports from human and veterinary medicine through July 21, 2018. The search strategy included only English-language publications.

Results

Genetic characterization

Several molecular methods are used for differentiating *S. pseudintermedius* from the *Staphylococcus intermedius* group (SIG, *S. intermedius*, *S. pseudintermedius*, and *S. delphini*), but these are limited to research purposes owing to its cost and lack of clinical association with disease. Ribotyping and PFGE are some of the various DNA-based techniques are used for *S. pseudintermedius* typing and epidemiological surveillance [8], [9], [10], [11], [12], [13]. In recent research-based studies, PCR-RFLP, spa typing and MLST are also used for typing [14], [15], [16], [17]. MALDI-TOF MS has shown promising results in identification and differentiation of SIG, although the sensitivity and specificity are not better for *S. intermedius* than for *S. pseudintermedius* [18]. Focusing on antibiotic resistance, multiplex PCR and SCC mec gene typing have been studied for macA gene detection, which is responsible for methicillin resistance.

Biochemical identification

S. pseudintermedius must be differentiated from other coagulase-positive *Staphylococcus* species by using a combination of biochemical tests (Table 1). On blood agar plate, it shows creamy white colonies with beta-hemolysin. The lack of biochemical and automation resources to differentiate between coagulase producing species of *Staphylococcus* group usually leads to erroneous reporting of all coagulase producing species as *Staphylococcus aureus*. *Staphylococci* are grouped together as *S. aureus*. The arginine dihydrolase test, β-gentibiose test, D-mannitol and polymyxin B disk differentiation tests are important
biochemical assays which can differentiate \textit{S. pseudintermedius} from other closely related \textit{Staphylococcus} [5], [18], [19], [20].

Pathogenic factor and pathogenesis

Pathogenic factors are very similar to \textit{S. aureus}. Knowledge about pathogenesis of \textit{S. pseudintermedius} is very limited in the case of strains originating from humans. Enzymes and toxins produced by \textit{S. pseudintermedius} have shown same activity in \textit{in vitro} tests (Table 2). Panton-Valentine leukocidin of \textit{S. aureus} is a cytotoxin that destroys leukocytes and causes tissue necrosis. A similar toxin, bio-component leukotoxin Luk-I, encoded by two genes, \textit{lukS/F}, is also produced by \textit{S. pseudintermedius}. Pathogenesis in humans has not been thoroughly studied and requires more detailed investigation. \textit{S. pseudintermedius} is an opportunistic pathogen. It is part of the normal flora of most dogs and does not cause any disease, unless the resistance of the host is lowered and the skin barrier altered by predisposing factors, such as atopic dermatitis, medical and surgical procedures, and or immunosuppressive disorders. Similar to \textit{S. aureus} infection in humans, colonization is likely to be a risk factor for infection and, in most circumstances, dogs are likely to become infected with a strain that they carry on their body [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58]. Case reports from implant devices have yielded alarming results about its pathogenesis, which suggests biofilm formation. \textit{Staphylococcus} genera are well-known for their biofilm-forming properties. Pomilio 2015 [59] conducted an interesting and novel \textit{in vitro} study to demonstrate biofilm formation properties by providing a simulated environment similar to wound infection by adding serum, adjusting pH and antibiotic concentrations for 48 to 72 hours of exposure. The results of that study demonstrated the ability to form biofilm \textit{in vitro} for the first time. Along with these findings other properties were also noted, such as the effect of serum and production of abundant amounts of extracellular polymeric substance (EPS) matrix, as observed by scanning electron microscope. This simulation suggested that this bacterium can produce biofilm on implant devices such as catheters, and is able to survive in wound environments by producing excessive amount of EPS, which stops antibiotic penetration in to biofilm.

Epidemiology

\textit{S. pseudintermedius} was initially misdiagnosed as \textit{S. intermedius} due to lack of data. Many details are still not available about epidemiology, transmission and risk factors, although on the basis of genetic lineage, it has now been confirmed world-wide. It was first reported from Belgium, and later in other countries with different signatures in their genetic makeup when categorized by multilocus sequence types (MLST) and spa types (Figure 1, Table 3). It is a part of normal flora in canines, colonizing the mouth, nose, perineum and groin. The transmission route is vertical in animals and horizontal or interspecies in the case of veterinary staff and dog owners via close contact with colonized pets. Risk factors in humans are immunosuppressed status, postsurgical infections, and old age. So far, there is no evidence of transmission of this pathogen between humans to human [20], [25], [58], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82]. \textit{S. pseudintermedius} exhibits variable clinical manifestations from superficial infection to invasive infections (Table 4). In dogs \textit{S. pseudintermedius} is mostly associated with skin and soft tissue infection, but in humans it has been reported from various sites, such as the endocardium (endocarditis), ear (otitis externa) and prosthetic joints (infections) [5], [6], [7], [19], [24], [83], [84], [85], [86].

Table 1: Phenotypic tests for differentiation of coagulase-positive \textit{Staphylococcus} species

Staphylococcus species	\textit{S. aureus}	\textit{S. intermedius}	\textit{S. pseudintermedius}	\textit{S. schleiferi}	\textit{S. hyicus}
Catalase	+	+	+	+	+
Coagulase	+	+	+	+	+
Clumping factor	+	+	-	+	-
Pigment	+	-	-	+	-
Pyrrolidonyl arylamidase	-	-	-	+	+
b-Galactosidase	-	+	+	+	-
Acetoin production	+	-	-	+	+
Mannitol fermentation	+	+	+	+	-
Maltose	+	-	+	-	-
Polymyxin B	R	S	S	S	S
Polymyxin E (10 μg)	R	S	R	S	R
Drug resistance

In the last decade, phenotypic and automated methods have not been able to differentiate between S. intermedius and S. pseudintermedius, and the drug resistance pattern is not well studied. Thus, definitive statements cannot be made yet. However, drug resistance in S. pseudintermedius has been reported by some authors in veterinary isolates [87]. The highest resistance rates of Staphylococcus species are against beta-lactam antibiotics, with almost 95% of the clinical isolates being resistant to penicillin [88], [89], [90]. The resistance mechanism of S. pseudintermedius is the same as in S. aureus. Drug resistance to beta lactams are mediated by Staphylococcal Chromosomal Cassette (SCCmec). The mecA gene is transmitted by plasmids between different Staphylococcus species. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for Staphylococcus genera, and the same is reported for S. pseudintermedius. Methicillin-resistant Staphylococcus pseudintermedius (MRSP) in animals has been reported to comprise 67% of total S. pseudintermedius infections and in humans it constitutes a prominent risk of drug resistant zoonotic infection transmission. MRSP infections or carriage can occur due to hospitalization, frequent visits to veterinary practices, and use of antimicrobial agents. MRSP can contaminate, colonize or infect animals. Reviews have showed increased resistance in MRSP isolates [17], [91]. Resistance to other classes of antimicrobials are not unusual for S. pseudintermedius. Fluoroquinolones, chloramphenicol, and aminoglycoside (Amikacin) are among the classes which have been reported to be ineffective against MDR isolates. 37% of MRSP clinical isolates in dogs were reported to be resistant to amikacin in the USA [92]. However, screening of drug resistance in S. pseudintermedius is an ongoing topic of research, as the isolates are not well-studied in humans. In a case series reported by Somayaji [7], 22.2% of S. pseudintermedius human-origin isolates were resistant to methicillin and other classes of antibiotics. The minimum inhibitory concentration (MIC) of almost of all antibiotic classes was much higher in the case of S. pseudintermedius biofilm as well as in static conditions, with the exception of Rifampicin, which cannot be always the choice of drug in treatment. Drug resistance in biofilm towards “last-resort” antibiotics such as Vancomycin, Linezolid, Tigecyclin is significant, comparable to biofilm produced by other species in the Staphylococcus genus. In hospital settings clinicians might not have any other range of possibilities to treat with antibiotics if this pathogen exhibits higher MIC values to Vancomycin, Linezolid, Tigecyclin than recommended doses as these are the last resort of antibiotics available [59].

Methicillin-resistant Staphylococcus pseudintermedius (MRSP) screening

Disk-diffusion and broth microdilution tests are the most commonly used phenotypic method for antimicrobial susceptibility testing. For methicillin-resistance screening in Staphylococcus species, oxacillin or cefoxitin are used as surrogate markers, because they are sensitive and more stable. In 2018, the Clinical and Laboratory Standards Institute (CLSI document M100-28), with interpretive criteria for the determination of in vitro antimicrobial susceptibility of MRSP for isolates from humans, neither the cefoxitin minimum inhibitory concentration (MIC) nor cefoxitin disk tests are reliable for detecting mecA-mediated resistance in S. pseudintermedius, as they may produce an unacceptably high percentage of false-negative results. This guideline advises that screening for methicillin resistance should be performed by using oxacillin 1 μg disk diffusion or the MIC breakpoints as neither cefoxitin MIC, nor cefoxitin disk tests are reliable for detecting mecA-mediated resistance for S. pseudintermedius (i.e., resistance in the case of ≥0.5 μg/mL of oxacillin for agar and broth dilution and ≤17 mm for disk diffusion) [93]. PCR targeting the mecA gene is the most reliable test for detecting methicillin resistance, but the equipment needed is available in only a few laboratories. The
Table 3: Type of study and country reported

Country	Study	Reported by	Reference
India	Canine pyoderma	Rakhi et al., 2015	[58]
Sri Lanka	SCCmec variants, analysis from dog isolates	Duim et al., 2018	[60]
Thailand	Enterotoxin gene profiling from dog, humans and environmental isolates	Phumthanakorn et al., 2018	[61]
China	Prevalence and characterization of isolates in pets	Feng et al., 2012	[62]
Hong Kong	Genomic sequencing of *S. pseudointermedius* isolate from canine pyoderma case	Tse et al., 2011	[46]
Japan	Multiplex PCR for species identification	Sasaki et al., 2010	[63]
Korea	Skin infection in dogs	Kang et al., 2017	[64]
	Molecular characteristics of new clonal complexes	Han Ji et al., 2018	[65]
Australia	Qac genes and biocide tolerance analysis, clonal diversity and geographic distribution in Australian animals	Worthing et al 2018	[66]
Zambia	Prevalence and characterization	Youn et al., 2014	[67]
United Kingdom	Pyoderma	Summers et al., 2014	[68]
	Genomic insights in *S. pseudointermedius*	McCarthy et al., 2015	[69]
Norway	Prevalence and characterization	Kjellman et al., 2015	[70]
Finland	Antimicrobial resistance in *S. pseudointermedius* and molecular epidemiology of MRSP in animals	Grønthal et al., 2017	[72]
Netherland	Development of RT PCR and compression with whole-genome sequences	Koen et al., 2017	[73]
Poland	Change in normal flora of canines	Kizerwetter-Swida et al., 2017	[99]
	Beta-hemolysin hlb Gene identification	Kmiecik et al., 2016	[75]
Switzerland	Taxonomy, diagnostics, ecology, epidemiology and pathogenicity	Bannoehr et al., 2012	[76]
Denmark	Systematic review	Pires Dos Santa et al., 2016	[77]
Sweden	Prevalence and drug resistance	Börjesson et al., 2015	[98]
Germany	Case-control risk factors related to *S. pseudintermedius* in dogs and cat	Lehner et al., 2014	[79]
France	Characterization of clinical canine methicillin-resistant and methicillin-susceptible *Staphylococcus pseudintermedius*	Haenni et al., 2014	[80]
Italy	Antimicrobial susceptibility and clonal distribution of MRSP in canine isolates	Ventrella et al., 2017	[81]
	Biofilm biofilm formation ability and drug resistance	Pompilio et al., 2015	[59]
US, Canada, Europe	Metacentric study (clonal spread in Europe and North America)	Perreten et al., 2010	[8]

Figure 1: Global demographic data (reported cases in grey)
Table 4: Clinical diseases caused in humans and dogs

Disease	Authors	Reference
Endocarditis	Van Hoovels et al., 2006	[5]
	Riegel P et al., 2010	[83]
Canine ear and wound infections	Tanabe T et al., 2013	[24]
SSTI (skin and soft tissue infections)	Tanabe T et al., 2013	[24]
Bacteremia	Chuang CY et al., 2010	[101]
Wound infection	Sasaki et al., 2007	[19]
Prosthetic joint infection	Somayaji R et al., 2016	[7]
Otitis externa	Somayaji R et al., 2016	[7]
UTI	Maaland et al., 2011	[85]
Rhinosinusitis	Stegmann et al., 2010	[87]
Bone marrow transplant recipient	Savini et al., 2013	[6]

PBP2a latex agglutination test is not reliable and not recommended, as it can result in false-positive results.

Treatment

The treatment of MRSP is difficult, as there are no pre-existing guidelines or data available on the drug resistance pattern. Animal isolates have shown high prevalence of drug resistance to almost all classes of antibiotics. In European studies [94], [95], animal isolates were screened for genes responsible for drug resistance among different classes of antibiotics; these isolates were found to be positive for all genes similar to those found in S. aureus. The high level of drug resistance in S. pseudintermedius limits treatment options. Three of 24 strains were diagnosed as MRSP in a study by Somayaji et al [7]. There was no specific treatment for these patients, who were managed as outpatients. The pattern showed resistance against antimicrobial classes such as macrolides, sulfonamides, and fluoroquinolones [7]. Decolonization in animals may be achieved by with products containing chlorhexidine. Since the MRSP infections exhibit a wide spectrum of clinical symptoms and manifestations, a structured, tailored treatment plan is required, taking into account severity of disease, comorbid conditions and hospitalization.

The resistance to antibiotics is directly proportional to antibiotic use. This is the point where clinicians have more control. To prevent further antibiotic resistance, the European Wound Management Association released position document which emphasize providing an optimal environment to promote rapid healing, restricting antibiotic use to situations where they are specifically indicated, and appropriate use to reduce antibiotic resistance[96]. Certain critical antibiotics for the treatment of MRSA in humans, such as mupirocin, are legally restricted to animals in some European countries [97]. 90% of dogs who underwent treatment for MRSP, also showed resistant to antibiotic classes approved for use in humans (ciprofloxacin, clindamycin, erythromycin, kanamycin, streptomycin, and trimethoprim). Rifampicin resistance was observed in 9 out of 10 S. pseudintermedius isolates [97], [92]. Frequent use of these drugs can increase the risk of developing antibiotic resistance, thus minimizing treatment options even for human cases.

Conclusions

Although S. pseudintermedius is a known colonizer in dogs, its sudden emergence in humans is cause for concern [5]. Since the literature suggests invasive infections occurred in humans, S. pseudintermedius certainly has the potential to be virulent in human hosts [5], [7], [24], [84], [88]. It is associated with implant, skin and wound infections. Correct identification with use of rapid, easy-to-use tools is required to produce a large database for future studies and establish management guidelines for infections caused by S. pseudintermedius. As data is still lacking, conclusion about its pathogenesis are not yet possible, so that all potentially pathogenic factors should be monitored before starting treatment. Both in vitro and in vivo studies are needed to establish the connection between virulence factors. From a microbiological perspective, all possible methods should be used to differentiate S. pseudintermedius from SIG, and drug resistance patterns need to be documented for future studies. More research is required to identify and establish the link between pathogenesis and clinical disease caused by S. pseudintermedius correlation in case of human. Strict indications should apply when using antibiotics to treat animals. Treatment of S. pseudintermedius in animals is very critical, as there are no guidelines yet on using human antibiotics for treatment, which might increase the drug resistance level in these strains. So far its colonization has not been reported from humans, but it is advisable to screen patients for this pathogen when coagulase-positive species of Staphylococcus are isolated, especially from wound or skin infections. There is urgent need to establish guidelines to treat animals so the emergence of drug resistance can be stopped.
Notes

Competing interests

The authors declare that they have no competing interests.

References

1. Kloos WE, Bannerman TL. Update on clinical significance of coagulase-negative staphylococci. Clin Microbiol Rev. 1994 Jan;7(1):117-40. DOI: 10.1128/cmr.7.1.117
2. Hajek V. Staphylococcus intermedius, a new species isolated from animals. Int J Syst Bacteriol. 1976;26:401-08. DOI: 10.1099/00207713-26-4-401
3. Rubin JE, Chirino-Trejo M. Prevalence, sites of colonization, and antimicrobial resistance among Staphylococcus pseudintermedius isolated from healthy dogs in Saskatoon, Canada. J Vet Diagn Invest. 2011 Mar;23(2):351-4. DOI: 10.1177/1040638710230022
4. Talan DA, Staatz D, Staatz A, Overturf GD. Frequency of Staphylococcus intermedius as human nasopharyngeal flora. J Clin Microbiol. 1989 Oct;27(10):2393. DOI: 10.1128/JCM.27.10.2393-1989
5. Van Hoovels L, Vankeerberghen A, Boel A, Van Vaerenbergh K, Van den Broeck E, Braeckman H. Methicillin-resistant Staphylococcus pseudintermedius. Vet Microbiol. 2009 Nov;139(3-4):333-8. DOI: 10.1016/j.vetmic.2008.09.070
6. Perreten V, Kadlec K, Schwarz S, Grönlund Andersson U, Finn M, Greco C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Dijkereen E, Van Der Velden E, Weese JS, Fitzgerald JR. Population genetic structure of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010 Jun;65(6):1145-54. DOI: 10.1093/jac/dqk078
7. Parreira V, Kadleck K, Schwarz S, Grönlund Andersson U, Finn M, Greco C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Dijkereen E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010 Jun;65(6):1145-54. DOI: 10.1093/jac/dqk078
8. Ruscher C, Lübbe-Becker A, Semmiller T, Wkelinski CG, Paasch A, Soba A, Stamm I, Kopp P, Wieler LH. Widespread rapid emergence of a distinct methicillin- and multidrug-resistant Staphylococcus pseudintermedius (MRSP) genetic lineage in Europe. Vet Microbiol. 2010 Aug;144(3-4):340-6. DOI: 10.1016/j.vetmic.2010.01.008
9. Black CC, Solymon SM, Eberlein LC, Bemis DA, Wagenar OM, Kania SA. Identification of a predominant multilocus sequence type, pulsed-field gel electrophoresis cluster, and novel staphylococcal chromosomal cassette in clinical isolates of mecA-containing, methicillin-resistant Staphylococcus pseudintermedius. Vet Microbiol. 2009 Nov;139(3-4):333-8. DOI: 10.1016/j.vetmic.2009.06.029
10. Fazakerley J, Williams N, Carter S, McEwan N, Nuttall T. Heterogeneity of Staphylococcus pseudintermedius isolates from atopic and healthy dogs. Vet Dermatol. 2010 Dec;21(6):578-85. DOI: 10.1111/j.1365-3164.2010.00894.x
11. Vincke S, Paasch A, Walther B, Ruscher C, Lübbe-Becker A, Wieler LH, Barbara K. Multidrug- and methicillin resistant Staphylococcus pseudintermedius as a cause of canine pyoderma: a case report. Berl Munch Tierarztl Wochenschr. 2010 Sep-Oct;123(9-10):353-6.
12. Soemardanto I, Banwarth U, Ulbricht-Mohyla H, Hijazin M, Alber J, Lämmler C, Aikineden O, Weiss R, Moritz A, Zschöck M. Genetic relatedness of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from a dog and the dog owner. Vet Res Sci. 2011 Dec;91(3):e25-7. DOI: 10.1016/j.vrsc.2011.01.027
13. Bannoehr J, Franco A, Iurescia M, Battisti A, Fitzgerald JR. Molecular diagnostic identification of Staphylococcus pseudintermedius. J Clin Microbiol. 2009 Feb;47(2):469-71. DOI: 10.1128/JCM.01915-08
14. Bannoehr J, Banzekour NL, Walter AS, Guardabassi L, Thoday KL, van den Broek AH, Fitzgerald JR. Population genetic structure of the Staphylococcus intermedius group: insights into agr diversification and the emergence of methicillin-resistant strains. J Bacteriol. 2007 Dec;189(23):8685-92. DOI: 10.1128/JB.01150-07
15. Solyman SM, Black CC, Duim B, van Dijkereen E, Wagenaar JA, Eberlein LC, et al. Multilocus sequence typing (MLST) for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus pseudintermedius, in Speaker Abstract S2.5: In: American Society for Microbiology, editor. 2nd ASM-ESCMID Conference on Methicillin-resistant Staphylococci in Animals: Veterinary and Public Health Implications. Washington, 2011 Sep 8-11. Washington, DC: ASM;17-18. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=&url=https%3A%2F%2Fwww.escmid.org%2FScomid_publications%2FScomid_elibrary%2Fmaterial%2F%3Fmid%3D11144&usg=AvvVws3xqux5h_z52aduhz5ADyB
16. Moodley A, Stegger M, Ben Zakour NL, Fitzgerald JR, Guardabassi L. Tandem repeat sequence analysis of staphylococcal protein A (spa) gene in methicillin-resistant Staphylococcus pseudintermedius. Vet Microbiol. 2009 Mar;135(3-4):320-6. DOI: 10.1016/j.vetmic.2009.08.070
17. Decrépitoris P, Fasola A, Benaglia C, Tonolla M, Petrini O. Identification of Staphylococcus intermedius group by MALDI-TOF MS. Syst Appl Microbiol. 2011 Feb;34(1):45-51. DOI: 10.1111/j.1365-3164.2010.11.004
18. Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. Reclassification of phenotypically identified staphylococcus intermedius strains. J Clin Microbiol. 2007 Sep;45(9):2770-8. DOI: 10.1128/JCM.01915-08
19. Bannoehr J, Guardabassi L. Staphylococcus pseudintermedius in the dog: taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet Dermatol. 2012 Aug;23(4):253-6. DOI: 10.1111/j.1365-3164.2012.10.046.x
20. Garbacz K, Zarnowska S, Pichowicz L, Haras K. Pathogenicity of Staphylococcus pseudintermedius. J Clin Microbiol. 2008 May;46(5):1599-607. DOI: 10.1128/JCM.01150-07
21. Iyori K, Futagawa-Saito K, Hisatsune J, Yamamoto M, Sekiguchi M, Ide K, Son WG, Olyvi T, Sugai M, Fukuyasu T, Iwasaki T, Nishifuji K. Methicillin-resistant Staphylococcus pseudintermedius exfoliative toxin A selectively digests canine desmoglein 1 and causes subcorneal clefs in canine epidermis. Vet Dermatol. 2011 Jul-Aug;22(4):319-26. DOI: 10.1111/j.1365-3164.2011.00952.x
23. Iyori K, Hisatsune J, Kawakami T, Shibata S, Murayama N, Ide K, Nagata M, Fukata T, Iwasaki T, Oshima K, Hattori M, Sugai M, Nishifuji K. Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs. FEMS Microbiol Lett. 2010 Nov;312(2):169-75. DOI: 10.1111/j.1574-6968.2010.02113.x

24. Tanabe T, Toyoguchi M, Hirano F, Chiba M, Onuma K, Sato H. Prevalence of staphylococcal enterotoxins in Staphylococcus pseudintermedius isolates from dogs with pyoderma and healthy dogs. Microbiol Immunol. 2013 Sep;57(9):651-4. DOI: 10.1111/1348-0421.12069

25. Bannoejr J, Brown JK, Shaw DJ, Fitzgerald RJ, van den Broek AH, Thoday KL. Staphylococcus pseudintermedius surface proteins SpsD and SpsO mediate adherence to ex vivo canine corneocytes. Vet Dermatol. 2012 Apr;23(2):119-24, e26. DOI: 10.1111/j.1365-3164.2011.01021.x

26. Pietrocola G, Gianotti V, Richards A, Noble G, Geoghegan JA, Rindi S, Monk IR, Bortd AS, Foster TJ, Fitzgerald JR, Speziaile P. Fibronectin Binding Proteins SpsD and SpsL. Both Support Invasion of Canine Epithelial Cells by Staphylococcus pseudintermedius. Infect Immun. 2015 Oct;83(10):4093-102. DOI: 10.1128/IAI.00542-15

27. Władyka B, Piejko M, Bzowska M, Pietra P, Krzyśk M, Mazurek L, Guevara-Lora I, Bukowski M, Sabat AJ, Friedrich AW, Bonar E, Miedzibrodzi K, Dubin A, Mak P. A peptide factor secreted by Staphylococcus pseudintermedius exhibits properties of both bacteriocins and virulence factors. Sci Rep. 2015 Sep 5;5:14569. DOI: 10.1038/srep14569

28. Gharsa H, Ben Siama K, Gómez-Sanz E, Lozano C, Klibi N, Jouini A, Messadi L, Boudabous A, Torres C. Antimicrobial resistance, bacteriocins and virulence factors. Sci Rep. 2015 Sep;5:14569. DOI: 10.1038/srep14569

29. Futagawa-Saito K, Suzuki M, Ohshima S, Sakurai N, Ba-Thein W, Fukuyasu T. Identification and prevalence of an enterotoxin-related gene, se-int, in Staphylococcus pseudintermedius isolates from dogs and pigeons. J Appl Microbiol. 2004;96(6):1361-6. DOI: 10.1111/j.1365-3164.2004.00874.x

30. Novick RP, Geisinger E. Quorum sensing in Staphylococcus. Annu Rev Genet. 2008;42:541-64. DOI: 10.1146/annurev.genet.42.110807.091640

31. Hendricks A, Schuberth HJ, Schueuer K, Lloyd DH. Frequency of superantigen-producing Staphylococcus intermedius isolates from canine pyoderma and proliferation-inducing potential of superantigens in dogs. Res Vet Sci. 2002 Dec;73(3):273-7. DOI: 10.1016/s0034-5288(02)00107-8

32. Novick RP, Forsythe PJ, Thoday KL. Species specificity in the adherence of staphylococci to canine and human corneocytes: a preliminary study. Vet Dermatol. 2005 Jun;16(3):156-61. DOI: 10.1111/j.1365-3164.2005.00452.x

33. Woolley KL, Kelly RF, Fazakerley J, Williams NJ, Nuttall TJ, McEwan NA. Reduced in vitro adherence of Staphylococcus species to feline corneocytes compared to canine corneocytes. Vet Dermatol. 2008 Feb;19(1):1-5. DOI: 10.1111/j.1365-3164.2007.00649.x

34. Lu YF, McEwan NA. Staphylococcal and micrococcal adherence to canine and feline corneocytes: quantification using a simple adhesion assay. Vet Dermatol. 2007 Feb;18(1):29-35. DOI: 10.1111/j.1365-3164.2007.00567.x
90. Yoon JW, Lee KJ, Lee SY, Chae MJ, Park JK, Yoo JH, Park HM. Antibiotic resistance profiles of Staphylococcus pseudintermedius isolates from canine patients in Korea. J Microbiol Biotechnol. 2010 Dec;20(12):1764-8.
