Comparison of carbon footprint and net ecosystem carbon budget under organic materials retention combined with reduced mineral fertilizer

Ying Liu (✉ 632084441@qq.com)
Jiangxi Agricultural University https://orcid.org/0000-0003-2398-5482

Haiying Tang
Jiangxi Agricultural University

Pete Smith
University of Aberdeen

Chuan Zhong
Nanjing Agricultural University

Guoqin Huang
Jiangxi Agricultural University

Research

Keywords: Astragalus sinicus L., rice straw, reduced mineral fertilizer, carbon footprint, greenhouse gas emission, net ecosystem carbon budget

Posted Date: January 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-51084/v2

License: ☑️ ① This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on March 1st, 2021. See the published version at https://doi.org/10.1186/s13021-021-00170-x.
Abstract

Background: Excessive application of chemical fertilizer has resulted in lower nitrogen uptake and utilization efficiency of crops, decreasing soil fertility, increasing greenhouse gas emissions, and worse environment pollution. Organic material retention is regarded as the key to solve these problems. The objective of this study is to conduct an assessment of carbon budget under *Astragalus sinicus* L. and rice straw retention combined with reduced mineral fertilizer based on the two-year field experiment in a paddy field in the south of China. The experiment was randomized complete block design including four treatments with triplicates: control CK (winter follow, 120 kg ha⁻¹ N fertilizer for each rice season) and three treatments with *Astragalus sinicus* L. and rice straw retention named RA, RB, and RC (reduced N fertilizer by 15%, 27.5%, and 40% in each rice season).

Results: Treatments RA, RB, and RC increased greenhouse gases emissions by 9.30%~101.25%, among which CH₄ accounted for more than 60%; Carbon input of crops from treatments RA, RB, and RC increased by 2.25%~12.10% compared with control CK over the two years. Though treatments RA, RB, and RC enhanced CO₂ emissions, however, treatment RB decreased carbon footprint and became carbon sink.

Conclusions: The results of this study reveal that treatment RB (*Astragalus sinicus* L. and rice straw retention with reduced N fertilizer by 27.5%) is better in reducing chemical fertilizer amount, increasing crop yield and carbon input, which is more conducive to sustainable development of agriculture.

Background

Carbon (C) footprint refers to the total carbon dioxide (CO₂) emissions generated directly or indirectly by an activity or product throughout its life cycle and expressed in CO₂ equivalent (CO₂-eq)[1]. Greenhouse gas (GHG) emissions come from agriculture accounts for 20%~30% in the globe[2]. The C footprint in agriculture can systematically evaluate the indirect C emissions (diesel, electricity, fertilizer, pesticide and agricultural film) from agricultural inputs and the total amount of direct C emissions[3]. The C budget and balance includes C input (mostly coming from crop C sequestration and C output (direct and indirect GHG emissions) in agriculture ecosystem.

Rice is one of the important crops in the world while paddy field is also an important agriculture GHG emissions source[4]. Rice planting area in China occupies approximately 19% in the world [5]. With the increase of population in the future, the demand for rice will inevitably increase, which will consume more energy, chemical fertilizers and pesticides, contributing directly and indirectly to GHG emissions from farmland. CO₂ is considered to be the major greenhouse gas because of the highest concentration in the atmosphere and the longest duration of its existence. CO₂ contributes 60% to global warming[6]. According to the fifth report of IPCC, the atmospheric concentrations of CO₂ had reached 391*10⁶ (V/V) by 2011, which were 40% higher than that before the Industrial Revolution[7]. The global CO₂ released by soil (680 pg) is 1.31 times of that released by fuel combustion (520 pg) every year [4]. Methane (CH₄) and nitrous oxide (N₂O) emissions from paddy fields in China accounts for 17.9% and 80% of the total emissions and their concentrations are also increasing at the speed of 0.03 and 0.75 ppb/a in recent years [8,9,10].

Meanwhile, farmland ecosystem is also an important system for C sequestration and GHG reduction. Increasing studies indicate that straw retention can sequestrate C and reduce GHG emissions through directly inputting soil organic carbon (SOC) and increasing C storage [11,12]. China is abundant with crop straw resources, with an average annual production of 7.6 to 8.2 million tons [13], accounting for about 25% in the world [14] and the rice straw in the south of China accounts for about 50% ~ 60% [15].

Winter green manure and double-rice rotation is the traditional planting patterns in the south of China. *Astragalus sinicus* L. and rice straw contain a lot of nutrients and their reasonable application can not only replace part of chemical fertilizer, solving the adverse problems caused by excessive application of chemical fertilizer[16], but also avoid the waste of resources and environmental pollution resulted from straw burning [17] as well as increase SOC content[11,12]. However, increased CH₄ emissions in paddy field after straw retention may offset GHG emissions reduction effect of soil C sequestration [18,19], which can not be ignored as an important GHG leakage. To clarify whether the reduced mineral fertilizer under *Astragalus sinicus* L. and rice straw retention can lower GHG emissions and enhance C sink, it is necessary to conduct an analysis to reveal whether there are trade-offs between these two indicators by using C footprint and net ecosystem carbon budget (NECB).
At present, most studies mainly focus on the effect of different tillage systems and different rotation patterns on C footprint ([20], [21],[22]) or use the available data to calculate C footprint or use remote sensing and numeric modeling to investigate the water-carbon interactions or simulate C sequestration([23],[24],[25],[26],[27]). However, little is known on comprehensive effects of reduced mineral fertilizer under organic material retention on C footprint and NECB. To provide theoretical basis for C sequestration and emissions reduction of paddy field and sustainable development of agriculture, we conducted the two-year field experiment to test the following hypotheses: (1) whether organic material retention combined with reduced mineral fertilizer can increase crop C input? (2) whether C input can offset the increased GHG emissions? (3) Whether fertilizer and year had interactive effect on C footprint and NECB?

Materials And Methods

Experiment site characteristics

The field experiment was conducted at Yujiang County, Yingtan City from 2017 to 2019. This place belongs to subtropical monsoon humid climate with mean annual temperature and precipitation of 17.6°C and 1741 mm, respectively. Most of the soils are silt-deposited soils and a few are red loam soils. Before the experiment, the pH, organic matter content, total nitrogen (N) content, total phosphorus, and total potassium in surface soil (0-15 cm) were 5.12, 34.7 g kg\(^{-1}\), 1.9 g kg\(^{-1}\), 0.66 mg kg\(^{-1}\), and 15.33 mg kg\(^{-1}\).

Experiment design and management

The experiment adopted split plot design. The main zone includes two kinds of rice straw retention amount (0 and 6000 kg ha\(^{-1}\)). The secondary zone includes reduced chemical fertilizer at 3 different rates compared with control CK. They combine in pairs, and there are four treatments with triplicates (Table 1): CK (winter fallow, without organic materials retention and 120 kg ha\(^{-1}\) N fertilizer was applied for each rice season), and three treatments with Astragalus sinicus L. and rice straw retention combined with reduced mineral fertilizer named RA (-15% N fertilizer for each rice season), RB (-27.5% N fertilizer for each rice season), and RC (-40% N fertilizer for each rice season). Each plot area is 25 m\(^2\) (5m×5m), around which there are protection lines to prevent water and fertilizer cross-contamination.

The pure phosphorus and potassium was 20 kg ha\(^{-1}\) and 60 kg ha\(^{-1}\) respectively. 60%, 30% and 10% N fertilizer (N 46%) was used as basic, tiller and panicle fertilizer respectively. Phosphorus fertilizer (P\(_2\)O\(_5\) 12%) was used as basic fertilizer and applied once. 70% and 30% potassium fertilizer (K\(_2\)O 60%) was applied as tiller and panicle fertilizer. The N and P basic fertilizers were applied 1 day before rice transplanting, the tiller fertilizer was applied 5-7 days after rice transplanting and the panicle fertilizer was applied when the main stem was 1-2 cm long.

Experiment materials

The species of Astragalus sinicus L. was Yujiang Daye. Seeds of 37.5 kg ha\(^{-1}\) were sown on 3 October in 2017 and 7 October in 2018, and they were weighted, mixed, calculated the average value (retention amount of Astragalus sinicus L. was the same for each plot except control CK), and plowed into the field at the blooming stage in the middle of April of next year. The early rice was “Yueru No. 6”, which was transplanted on 26 April 2018 and 25 April 2019 and harvested on 12 July 2018 and 11 July 2019; the late rice was “Huarun No. 2” that was transplanted on 18 July 2018 and 15 July 2019 and harvested on 2 November 2018 and 16 November 2019. After the early rice harvest, the straw was cut into 3-5 cm sections with a guillotine, and then plowed into the field. After the late rice harvest, the straw was left and covered with the field. The residue height of rice was 2-3 cm.

Measurement of items and methods

Collection and measurement of GHG

GHG were collected by using static chamber with the size of 50 cm×50 cm×50 cm. When the rice plant exceeded 50 cm, the other chamber with the same size and two-way opening was added. There is one fixed sampling base with a groove of 5 cm depth filled with water when measuring at per plot. Samples were collected once per 7-8 days and 15 days from 8:00 to 11:00 during rice ([28]) and Astragalus sinicus L. growth period, respectively. A 50 ml syringe was used to extract the gas at 0, 10, 20 and 30 min and the
syringe was pulsed back and forth 5-10 times to evenly mix the gas. After the gas was extracted and stored in vacuum bags, gas samples were quickly taken back and analyzed by using Agilent 7890A gas chromatography.

Calculation of GHG

The gas emissions flux is calculated according the equation:

\[F = \rho \times h \times \frac{dc}{dt} \times 273 \times \frac{273 + T}{T} \]

(1)

Where \(F \) is the gas emissions flux, \(\rho \) is the gas density under standard conditions (kg m\(^{-3}\)), \(h \) is the net height (m) of sampling box, \(\frac{dc}{dt} \) is the change rate of gas concentration in the sampling tank per unit time, \(T \) is the average temperature (°C) in the sampling tank during sampling process, and 273 is the constant of the gas equation.

The cumulative emissions of CH\(_4\) and N\(_2\)O from paddy fields were calculated as follows:

\[T_n = \sum_{i=1}^{n} F_i \times D_i \]

(2)

Where \(T_n \) is cumulative annual emissions, \(F_i \) is the average daily emissions flux of CH\(_4\) and N\(_2\)O between two sampling periods; \(D_i \) is the number of days between two sampling intervals.

C footprint calculation

According to PAS 2050[29], C footprint of agricultural production is calculated as the sum of all direct and indirect GHG emissions during one crop production in a certain cropping system (kg CO\(_2\)-eq ha\(^{-1}\)) based on life cycle assessment and expressed in CO\(_2\) equivalent (CO\(_2\)-eq). Therefore, in this study, C footprint of *Astragalus sinicus* L. and rice production includes indirect and direct GHG emissions, of which the former are from agricultural inputs (fertilizers, pesticides, machinery, electric irrigation) while the later are from CH\(_4\) and N\(_2\)O emission in the paddy field. GHG emissions from agricultural inputs are estimated using the following formula:

\[CE_{input} = \sum (A_i \times \delta_i) \]

(3)

In the formula, \(CE_{input} \) refers to the total GHG emissions (kg CO\(_2\)-eq ha\(^{-1}\)) from agricultural inputs, \(i \) refers to a certain agricultural input, \(A_i \) is the intensity or quantity of the \(i \)th individual agricultural input (pesticide/fertilizer, kg ha\(^{-1}\); electricity, kwh ha\(^{-1}\); Diesel, L ha\(^{-1}\)), and \(\delta_i \) is the coefficient factors of the \(i \)th individual agricultural input. The GHG emissions factors from agricultural inputs are shown in Table 2.

\[CF = (CE_{input} + EN_2O + ECH_4) / Y \]

(4)

In the formula, \(CF \) refers to C footprint, and \(ECH_4 \) and \(EN_2O \) refers to CH\(_4\) and N\(_2\)O cumulative emissions are converted to CO\(_2\)-eq from soils during *Astragalus sinicus* L. and rice growth season. \(Y \) refers to the amount of *Astragalus sinicus* L. and rice yield (kg ha\(^{-1}\)).

Total C input and NECB

Total C input based on C sequestration in biomass was estimated using the following equation [30]: \(E_{input} = B_{total} \ (B_{grain} + B_{straw} + B_{root} + B_{litter} + B_{rhizodeposites}) \times f_c \times (44/12) \)

(5)

Crop yield and straw were weighed on site, root biomass, litter and rhizodeposites are calculated according to Salam et al[31] and Huang et al[32]. \(f_c \) is the C percentage in grain (40% for rice) [33].

\[NECB = E_{input} - E_{output} \ (CO_2 \ equivalent \ of \ CH_4 \ and \ N_2O \ cumulative \ emissions \ plus \ CO_2 \ emissions \ from \ plant \ respiration \ and \ soil \ microbial \ respiration). \]

(6)

Data analysis

A statistical analysis was performed using Microsoft Excel 2010 and SPASS 17.0 software. Origin 9.0 software was used to create a diagram. A mixed linear model was used to analyze the effects of fertilizer and year on mean GHG, CO$_2$, C input, C footprint, crop biomass and NECB during the crop growing season. Mean values for each variable were compared by a one-way ANOVA, followed by a Duncan’s post hoc test ($P < 0.05$).

Results And Discussion

GHG emissions

The GHG emissions from all the treatments includes indirect emissions from agricultural inputs (Table 2) and direct CH$_4$ and N$_2$O emissions (Table 3), among which the former accounts for more than 17% and the latter occupies more than 60%. The GHG emissions from all the treatments ranged from 9731 to 19584 kg CO$_2$-eq ha$^{-1}$ and treatments RA, RB and RC with organic materials retention combined with different reduced mineral fertilizer increased by 9.30%~101.25% compared with that of control CK over the two years. The difference of GHG emissions between treatments RA, RC and control CK was significant ($P<0.05$), while the difference between control CK and treatment RB was insignificant (Table 3), which maybe caused by the different turnover depth and decomposition rate of *Astragalus sinicus* L. and rice straw in each plot. The study result of Zhu et al. [34] indicated that different depth of straw retention (0 ~ 10cm, 10 ~ 20cm, 20 ~ 30cm, 30 ~ 40cm) had different effects on GHG emissions. This might because that the different depth of straw retention made the straw lie in different soil layers with different natural conditions and microbial diversity, which affected straw decomposition rate [35],[36] and SOC content [37], thus affecting GHG emissions. From Table 5 we can see that straw retention had significant effect on GHG, C input, and crop biomass. Year had significant impact on CO$_2$ and NECB. Moreover fertilizer and year had significant effect or interactive effect on GHG emissions, CO$_2$, C footprint, and NECB.

C footprint components of all the treatments

The C emissions per unit area of all the treatments was 9731 to 19584 kg CO$_2$ eq ha$^{-1}$ and the C footprint per unit production was 0.52~1.01 kg CO$_2$ eq kg$^{-1}$. The C footprint of all the treatments are mainly from C output of soil CH$_4$, N fertilizer and electricity consumption for irrigation (Table 2), accounting for 60.25%~81.88%, 6.64%~15.73% and 5.35%~10.77%, respectively (Fig. 2). Compared with C footprint of control CK, treatments RA and RC increased by 60.32% and 34.92%, while treatment RB decreased by 17.46%, which maybe attributed to the less N fertilizer application amount, lower C output of CH$_4$ and N$_2$O as well as higher yield of treatments RB (table 3). Our result was consistent with previous studies which reported soil CH$_4$ was dominate source of C footprint in paddy field [38],[39]. Compared with control CK, treatments RA, RB and RC enhanced CH$_4$ emissions mainly resulting from the following reasons: (1) The continuous flood irrigation provided a favorable anaerobic environment for the growth and reproduction of methanogens and methanotrophs (Fig.1) [40],[41],[42]; (2) Mulching and retention of rice straw and *Astragalus sinicus* L. can maintain soil moisture, provide organic matter for soil and reduce soil redox potential, thus leading to the CH$_4$ emissions increase [43],[44]; (3) Organic materials retention supplied methanogenic bacteria with adequate substrates [1,45],[46] while the decomposition of straw consumed oxygen, enhanced soil anaerobic environment and inhibited the activity of methane oxidizing bacteria, thus promoting CH$_4$ emissions [47]; (4) The application of mineral fertilizer and the decomposition of organic materials accelerated the rice and its root growth, thus making the secretion and abscission of rice root increase and providing a substrate for related microorganisms, resulting in the rapid increase of CH$_4$ emissions [48].

Fertilizer and site years had significant interactive effect on C footprint (Table 5). Fertilizer (mineral fertilizer combined with organic materials) had different effect on GHG emissions when the rainfall and temperature were different over the two years, therefore, there exists an interactive effect between fertilizer and year. Different temperature and rainfall can affect the evaporation and loss rate of N fertilizer, thereby affecting N$_2$O emissions, because there was a linear relationship between N$_2$O emissions and N fertilizer [49],[50]. Meanwhile temperature, rainfall and crop straw retention also affect soil moisture and aeration condition, thus affecting GHG emissions. CH$_4$ is produced in an anaerobic environment [51]. Nitrification is sufficient when the soil contains sufficient oxygen, while denitrification mainly occurs in poor oxygen environments in soils [52],[53]. Moreover, rainfall can improve
the temperature of soil water, enhance microbial activity, increase organic matter/N mineralization rate, and promote the rapid release of large amounts of C and N in soil in a short period, thus promoting GHG emissions[[54],[55],[56]].

NECB

The NECB can be used to assess the short-term net C budget balance via C input and output in an aggro-ecosystem[[57]]. For control CK and the treatments with retention of *Astragalus sinicus* L. and rice straw combined with different amount of reduced mineral fertilizer, C input of crops varied from 31.98 Mg CO\textsubscript{2} -eq ha-1 to 35.85 Mg CO\textsubscript{2} -eq ha-1 and C output ranged from 26.59 Mg CO\textsubscript{2} -eq ha-1 to 40.79 Mg CO\textsubscript{2} -eq ha-1. Control CK and treatment RB became C sink compared with treatments RA and RC, because control CK was winter fallow and its C output was the least and treatments RB had the most crop biomass and C input (Table 4). Straw retention had significant effect on crop biomass and C input. The effect of Year as well as fertilizer*year on NECB was significant (Table 5).

CO\textsubscript{2} emissions contributed to the largest proportion for C output. CO\textsubscript{2} emissions was significantly affected by straw retention (Table 5). CO\textsubscript{2} emissions from treatments RA, RB and RC was higher than that of control CK (Table 4), which might result from the accumulation of soil total organic carbon, microbial biomass carbon, soluble organic carbon caused by *Astragalus sinicus* L. and straw retention. Moreover, the application of mineral fertilizer and the decomposition of straw also promoted the growth and reproduction of soil microorganisms, thus enhancing soil respiration and promoting soil CO\textsubscript{2} emissions[[58],[59],[60],[61],[62]]. With the growth of *Astragalus sinicus* L. and rice plants, crop root secretion and abscission increased, which strengthened the microbial activity and rice respiration, thus increasing CO\textsubscript{2} emissions[[63],[64]]. Moreover, straw C decomposition also stimulated the mineralization of SOC to produce CO\textsubscript{2}[[65]].

Conclusion

The GHG emissions of treatments RA, RB and RC with organic material retention combined with reduced mineral fertilizer at the rate of 15%, 27.5%, and 40% respectively increased by 9.30%~101.25% over the two years compared with that of control CK, mainly resulting from increased soil CH\textsubscript{4} emissions, which occupied more than 60%. Meanwhile the treatments RA, RB and RC increased the yield (including *Astragalus sinicus* L., and rice biomass) by 28.08%~34.99% compared with that of control CK. Treatment RB decreased C footprint mainly attributed to reduced N fertilizer and higher yield compare with control CK. Treatment RB (*Astragalus sinicus* L. and rice straw retention with reduced N fertilizer by 27.5%) became C sink, because increased C input outweighed the increased C output. These results suggest that treatment RB is better in reducing chemical fertilizer amount, increasing crop yield and C input, which is more conductive to sustainable development of agriculture.

Abbreviations

C: Carbon; N: Nitrogen; CO\textsubscript{2}: Carbon dioxide; GHG: Greenhouse gas; CH\textsubscript{4}: Methane; N\textsubscript{2}O: Nitrous oxide; SOC: Soil organic carbon; NECB: Net ecosystem carbon budget

Declarations

Data sharing and Data Accessibility

The data that supports the findings of this study are available in the supplementary material.

Funding

This research was financially supported by the National Natural Science Foundation of China, grant number: 41661070, and the National Key R&D Program, grant numbers: 2016YFD0300208.

Ethics approval and consent to participate

Not applicable.
Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

L Y conducted the field experiment and wrote the manuscript, T H Y and Z C analyzed the data, P S reviewed and edited the manuscript and H G Q applied for financial support for the project.

Acknowledgement:

We would like to thank Yang Wenting, Yang Binjuan and Zhou Quan for their help in our research group.

References

[1] World Resources Institute. Product Accounting and Reporting Standard. Draft for Stakeholder Review. New Standards for Tracking GHG Emissions from Policies and Goals [2010-10-21]. https://www.wri.org/blog/2012/12/released-review-new-standards-tracking-ghg-emissions-policies-andgoals.

[2] Vermeulen SJ, Campbell BM, Ingram, JSI. Climate Change and Food Systems. Annual Review of Environment & Resources. 2012; 37: 195-222.

[3] Hillier J, Hawes C, Squire G, Hilton A, Wale S, Smith P. The carbon footprints of food crop production. International Journal of Agricultural Sustainability. 2009;7(2):107-118.

[4] Sun H, Zhou S, Fu Z, Chen G, Zou G, Song X. A two-year field measurement of methane and nitrous oxide fluxes from rice paddies under contrasting climate conditions. Scientific Report. 2016; 6:1-11.

[5] Cheng C, Zeng Y, Yang X, Huang S, Shang Q. Effect of different tillage methods on net global warming potential and greenhouse gas intensity in double rice-cropping systems. Acta Scientiae Circumstantiae. 2015; 35:1887–1895.

[6] Zhang YM, Hu CS, Zhang JB, Dong WX, Wang YY, Song LN. Research Advances on source/sink intensions and greenhouse effects of Co, CH and in agricultural soils. Chinese Journal of Eco-Agriculture. 2011; 19(4): 966-975.

[7] IPCC. Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2013.

[8] Ghosh S, Majumdar D & Jain MC. Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere. 2003; 51: 181-195.
[9] WMO. The state of greenhouse gases in the atmosphere based on global observation through 2012. WMO Greenhouse Gas Bulletin, 2013, 9: 1-4.

[10] Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basics.htm. 2014;18(2):95-123.

[11] Liu C, Lu M, Cui J, Li B, Fang CM. Effects of straw carbon input on carbon dynamics in agricultural soils: a Meta-analysis. Global Change Biology. 2014; 20(5): 1366-1381.

[12] Wang W, Lai DYF, Wang C, Pan T, Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil and Tillage Research. 2015; 152: 8-16.

[13] Pan GX, Li LQ, Liu XY, Cheng K, Bian RJ, Ji CY, et al. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China. Science and Technology Review. 2015; 33: 92-101.

[14] Jiang CQ, Zheng QS and Zu CL. . Chinese Journal of Ecology. 2015; 34:1158-1165.

[15] Zhu Q, Huang D, Liu S, Zhang W, Wu J. Status and prospects of crop straw comprehensive utilization in hilly red soil region. Chinese Journal of Ecology. 2005; 24(12): 1482-1486.

[16] Zhou X, Liao Y, Yanhong LU, Xie J, Yang Z, Nie J, et al. Responses of Contents of Soil Organic Carbon Fractions to Chinese Milk Vetch-rice Straw Synergistic Dispatching Under the Condition of Reducing Fertilizer Application. Journal of Soil & Water Conservation. 2017; 31: 282-290.

[17] Wang L, Li XM, Xu Y. The economic losses caused by crop residues burnt in open field in China. Journal of Arid Land Resources and Environment. 2008; 22: 170-175.

[18] Lu F, Wang XK, Han B, Ouyang ZY, Zheng H. Straw return to rice paddy: Soil carbon sequestration and increased methane emission. Chinese Journal of Applied Ecology. 2010; 21(1): 99-108.

[19] Naser HM, Nagata O, Tamura S, Hatano R. Methane emissions from five paddy fields with different amounts of rice straw application in central Hokkaido, Japan. Soil Science & Plant Nutrition. 2010;53(1):95-101.
[20] Zhang XQ, Pu C, Zhao X, Xue JF, Zhang R, Nie ZJ, et al. Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat–summer maize cropping system of the North China Plain. Ecological Indicators. 2016; 67: 821-829.

[21] Wang FJ, Zhang MY, Zhang HL, Chen F. Evaluation of tillage treatments on soil carbon sequestration in North China Plain. Journal of China Agricultural University. 2012; 17(4): 40-45.

[22] Jiang ZH, Yang X, Liu YZ, Lin JD, Wu Yang XY, Yang JP. Comparison of carbon footprint between spring maize–late rice and early rice–late rice cropping system. Acta Ecologica Sinica. 2019; 39(21): 8091-8099.

[23] Xu X, Zhang B, Liu Y, Xue Y, Di B. Carbon footprints of rice production in five typical rice districts in China. Acta Ecologica Sinica. 2013; 22 (3) : 227-232.

[24] Yan M, Cheng K, Luo T, Yan Y, Pan G, Rees RM. Carbon footprint of grain crop production in China – based on farm survey data. Journal of Cleaner Production. 2015; 104: 130-138.

[25] Sun P, Wu YP, Xiao JF, Hui JY, Liu SG. Remote sensing and modeling fusion for investigating the ecosystem water-carbon coupling processes. Science of The Total Environment. 2019; 697: 134064.

[26] Zhao FB, Wu YP, Yao YY, Sun K, Zhang XS, Leigh Winowiecki, Tor-G. Vågen, Xu J C, Qiu L J, Sun P C, Sun Y Z. Predicting the climate change impacts on water-carbon coupling cycles for a loess hilly-gully watershed. Journal of Hydrology. 2020; 581: 124388.

[27] Qiu LJ, Wu YP, Hao MD, Shen J, Lei XH, Laio WH, Li YK. Simulation of the irrigation requirements for improving carbon sequestration in a rainfed cropping system under long-term fertilization on the Loess Plateau of China. Agriculture, Ecosystems and Environment. 2018; 265: 198-208.

[28] Zhong C, Yang BJ, Zhang P, Li P, Huang GQ. Effect of Paddy-upland Rotation with Different Winter Corps on Rice Yield and CH₄ and N₂O Emissions in Paddy Fields. Journal of Nuclear Agricultural Sciences. 2019; 33(2) : 0379-0388.

[29] BSI and Carbon Trust. Specification for the Assessment of the Life Cycle Greenhouse Gas Emissions of Goods and Services, p. 36. Publicly Available Specification-PAS 2050: 2011. London, U K.

[30] Jiang ZH, Lin JD, Liu YZ, Mo CY, Yang JP. Double paddy rice conversion to maize paddy rice reduces carbon footprint and enhances net carbon sink. Journal of Cleaner Production. 2020; 258: 1-9.
[31] Salam, MU, Jones JW, Jones JGW. Phasic development of rice seedlings. Agronomy Journal. 1997; 89: 653-658.

[32] Huang J, Chen Y, Sui P, Gao W. Estimation of net greenhouse gas balance using crop- and soil-based approaches: Two case studies. Science of the Total Environment. 2013; 456-457, 299-306.

[33] Dubey A & Lal R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA. J. Crop Improvement. 2009; 23, 332-350.

[34] Zhu XM, An J, Ma L, Chen SL, Li JQ, Zou H, Zhang YL. Effects of different straw returning depths on soil greenhouse gas emission and maize yield. Scientia Agricultura Sinica. 2020; 53(5): 977-989.

[35] Coppens F, Garnier P, Gryze SD, Merckx R, Recous S. Soil moisture, carbon and nitrogen dynamics following incorporation and surface application of labelled crop residues in soil columns. European Journal of Soil Science. 2010;57(6):894-905.

[36] Frey S D, Elliott E T, Paustian K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients. Soil Biology and Biochemistry, 1999; 31(4): 573-585.

[37] Dong S S, Dou S. Effect of different ways of corn stover application to soil on composition and structural characteristics of organic carbon in black soil. Journal of Agro-Environment Science. 2017; 2: 322-328.

[38] Jiang Y, Liao P, van Gesteld, N, Sun YN, Zeng YJ, Huang S, Zhang WJ, van Groenigenb KJ. Lime application lowers the global warming potential of a double rice cropping system. Geoderma. 2018; 325, 1-8.

[39] Liao B, Wu X, Yu Y, Luo S, Lu G. Effects of mild alternate wetting and drying irrigation and mid-season drainage on CH₄ and N₂O emissions in rice cultivation. Science of The Total Environment. 2019; 698: 134-212.

[40] Feng Y, Xu Y, Yu Y, Xie Z, Lin X. Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry. 2012; 46(1): 80-88.

[41] Thakur AK, Mohanty RK, Patil DU, Dhiraj U, Ashwani K. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy and Water Environment. 2013; 12 (4): 413-424.

[42] Wang M, Zhang Z, Chunbo L, Lin Y. CH₄ and N₂O emissions from rice paddy field and their GWPs research in different irrigation modes in cold region. Research of Soil & Water Conservation. 2016; 23 (2): 95-100.
[43] Li DM, Cheng YH, Liu MQ, Qin JT, Jiao JG, Li HX, et al. Effects of Non-flooded with Straw Mulching Management on Methane Emission and Rice Yield in Paddy Field. Journal of Agro-Environment Science. 2012; 31(10): 2053-2059.

[44] Thangarajan R, Bolan NS, Guanglong Tian, Naidu R, Kunhikrishnan A. Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment. 2013; 465: 72-96.

[45] Yao Z, Zheng X, Rui W, Xie B, Butterbach-Bahl K, Zhu J. Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment. 2013; 79(11): 641-649.

[46] Khosa MK, Sidhu BS & Benbi DK. Effect of organic materials and rice cultivars on methane emission from rice field. Journal of Environmental Biology. 2010; 31(3): 281.

[47] Bayer C, Costa FD, Pedroso GM, Zschornack T, Camargo ES, Lima MA de, et al. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Research. 2014; 162: 60-69.

[48] Zhang ZS, Guo LJ, Liu TQ, Li CF, Cao CG. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat cropping systems in central China. Atmospheric Environment. 2015; 122: 636–644.

[49] Zou J, Yao H, Lu Y, Zheng X, Wang Y. Direct emission factor for N$_2$O from rice–winter wheat rotation systems in southeast China. Atmospheric Environment. 2005; 39(26): 4755-4765.

[50] Yang SY, Yan P, Ma YH, Han HB, Wang DL, Fang HY. Effects on emissions of soil greenhouse gas by fertilizing to winter wheat. Ecology and Environmental Sciences. 2010; 19(7): 1642-1645.

[51] Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001; 37(1): 25-50.

[52] Kool DM, Dolfing J, Wrage N, Groenigen JWV. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biology & Biochemistry. 2011; 43(1): 174-178.

[53] Wu D, Zhao Z, Han X, Meng F, Wu W, Zhou M, et al. Potential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N$_2$O emission events in North China Plain cropping systems. Soil Biology & Biochemistry. 2018; 121: 147-153.
[54] Unger S, Mágua C, Pereira JOS, David TS, Werner C. The influence of precipitation pulses on soil respiration – Assessing the “Birch effect” by stable carbon isotopes. Soil Biology & Biochemistry. 2010;42(10): 1800-1810.

[55] Liu C, Wang K, Meng S, Zheng X, Zhou Z, Han S, et al. Effects of irrigation, fertilization and crop straw management on nitrous oxide and nitric oxide emissions from a wheat-maize rotation field in northern China. Agricultural, Ecosystems and Environments. 2011; 140 (1-2): 226-233.

[56] Borken W, Matzner E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Global Change Biology. 2009; 15(4): 808-824.

[57] Smith P, Lanigan G, Kutsch WL, Buchmann N, Eugster W, Aubinet M, et al. Measurements necessary for assessing the net ecosystem carbon budget of croplands. Agriculture, Ecosystem & Environment. 2010; 139: 302-315.

[58] Wang SC, Zhao YW, Wang JZ, Zhu P, Cui X, Han XZ, et al. The efficiency of long-term straw return to sequester organic carbon in Northeast China’s cropland. Journal of integrative agriculture. 2018; 17(2): 436-448.

[59] Yang X, Meng J, Lan Y, Chen WF, Yang TX, Yuan J, et al. Effects of maize stover and its biochar on soil CO$_2$ emissions and labile organic carbon fractions in Northeast China. Agriculture, ecosystems & environment. 2017; 240: 24-31.

[60] Zhao Y, Xue Z, Guo H, Mu X, Li C. Effects of tillage and crop residue management on soil respiration and its mechanism. Transactions of the Chinese Society of Agricultural Engineering. 2014; 30(19):155-65.

[61] He J, Li HM, Fang Li, Hu X, Kong WC. Influence of straw application on agricultural greenhouse gas emissions in China. Chinese Agri-cultural Science Bulletin. 2011; 27(20): 246-250.

[62] Heintze T, Eickenscheidt U, Schmidhalter M Drösler. Influence of soil organic carbon on greenhouse gas emission potential after application of biogas residues or cattle slurry: Results from a pot experiment. Pedosphere. 2017; 27(5): 807-821.

[63] Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry. 2010; 42(9): 1363-1371

[64] Cayuela ML, Velthof GL, Mondini C, Sinicco T, Groenigen JWV. Nitrous oxide and carbon dioxide emissions during initial decomposition of animal by-products applied as fertilisers to soils. Geoderma. 2010;157(3-4):235-42.
Li S, Li YB, Li XS, Tian XH, Zhao AQ, Wang SJ, et al. Effect of straw management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong Plain. Soil and Tillage Research. 2016; 157:43-51.

Tables

Table 1 Field experimental design

treatments	Chinese milk vetch retention amount kg ha\(^{-1}\)	Rice straw retention amount kg ha\(^{-1}\)	N application of each rice season kg ha\(^{-1}\)
CK	0	0	120
RA	full	6000	-15%
RB	full	6000	-27.5%
RC	full	6000	-40%

Table 2 Agricultural inputs (Ai), and related coefficient factors (\(\delta_i\)) and application rate

Treatments	GHG emission source from agricultural inputs	Emission coefficient	Agricultural inputs	Unit	Application rate	
			Chinese milk vetch	Early rice	Late rice	
CK	N fertilizer	6.38	kg ha\(^{-1}\)	0	120	120
RA	N fertilizer	6.38	kg ha\(^{-1}\)	0	102	102
RB	N fertilizer	6.38	kg ha\(^{-1}\)	15	87	87
RC	N fertilizer	6.38	kg ha\(^{-1}\)	30	72	72
Same for all the treatments	P fertilizer	0.44	kg ha\(^{-1}\)	0	20	20
Same for all the treatments	K fertilizer	0.61	kg ha\(^{-1}\)	0	60	60
Same for all the treatments	Diesel for machinery	2.63	kg ha\(^{-1}\)	41	70	70
Same for all the treatments	Pesticide	14.0	kg ha\(^{-1}\)	7	13	13
Same for all the treatments	Electricity for irrigation	1.12	kg ha\(^{-1}\)	0	468	468
Note: the data were obtained from the average value of agricultural input in this study. N represents Nitrogen fertilizer; P represents Phosphate fertilizer; K represents Potash fertilizer; GHG represents Greenhouse gas.

Table 3 average annual GHG emissions and C footprint during crop growth seasons over the two years (kg CO$_2$ eq ha$^{-1}$)

T	Indirect emission	Direct emission	Average GHG emissions	Yield (kg.ha$^{-1}$)	Carbon footprint (kg CO$_2$-eq/kg$^{-1}$)						
N	P	K	Diesel	Electricity	Pesticides	CH$_4$	N$_2$O				
CK	1531	18	73	476	1048	462	5863c	260	9731c	15209b	0.63c
RA	1301	18	73	476	1048	462	16037a	169	19584a	19479a	1.01a
RB	1206	18	73	476	1048	462	7164c	189	10636c	20530a	0.52c
RC	1110	18	73	476	1048	462	13577b	261	17025b	20124a	0.85b

Note: T represents treatment; GHG represents Greenhouse gas; C represents Carbon; Yield represents Chinese milk vetch straw and rice biomass. The different lowercase letters indicate significant differences among treatments at $P < 0.05$.

Table 4 Assessment of C budget and balance in different treatments (Mg CO$_2$ ha$^{-1}$)

Items	CK	RA	RB	RC
C input of Chinese milk vetch and rice	31.98	35.37	35.85	10.64
GHG (direct and indirect)	9.73	19.58		17.03
CO$_2$ Cumulative emissions	16.86	21.21	21.64	19.78
Total	31.98	35.37	40.79	35.85
NECB	5.39	-5.42	3.56	-4.1

Note: GHG represents Greenhouse gas; CO$_2$ represents Carbon dioxide; C represents Carbon; NECB represents Net ecosystem carbon budget.
Table 5 Interactions of straw retention, fertilizer and year on mean GHG, CO$_2$, C input, C footprint, crop biomass and NECB during the crop growing season. F-values are provided for interactions.

	GHG	CO$_2$	C input	C footprint	Crop biomass	NECB
Straw retention a						
-SR						
+SR	15748.89**	20879.21	34641.17*	0.7922	20044.44***	-1.99
Year b						
2018	14235.30	26169.29	32901.9658	0.7808	18278.67	-7.50
2019	14253.75	13579.86 ***	35050.6183	0.7300	19392.42	7.22***
F-values						
Fertilizer *Year	51.458 ***	49.338***	0.924	6.271**	1.000	6.689**

Note: There were significant interactions (Fertilizer×Year) for the six variables. * (0.01 < $P \leq$ 0.05), ** (0.001 < $P \leq$ 0.01), or *** ($P \leq$ 0.001) are used to represent significant effects among the treatments. a,b Values were averaged across different treatments, crop, and years.

GHG represents Greenhouse gas; CO$_2$ represents Carbon dioxide; C represents Carbon; NECB represents Net ecosystem carbon budget.

-SR represents straw (Astragalus sinicus L. and rice) retention

+SR represents no straw (Astragalus sinicus L. and rice) retention

Figures
Figure 1

Abundances of methanogens and methanotrophs during the 2018 rice season in response to incorporation of Chinese milk vetch and rice straw combined with reduced chemical fertilizer. Different lowercase letters in the same column indicate significant differences among the treatments at $P \leq 0.05$.
Figure 2

average annual compositions of C footprint during crop growth season over the two years

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureS1.png
- supplementarymaterials.xlsx