TITLE:
Asymptotic estimation theory for a finite dimensional pure state model (Abstract_要旨)

AUTHOR(S):
Hayashi, Masahito

CITATION:
Hayashi, Masahito. Asymptotic estimation theory for a finite dimensional pure state model. 京都大学, 1999, 博士(理学)

ISSUE DATE:
1999-03-23

URL:
http://hdl.handle.net/2433/181932

RIGHT:
論文内容の要旨

量子力学系の観測によって得られる測定値に関しては確率的にしか予言できない。測定結果にに関する確率分布 \(P(\omega) \)は、行った測定Mと測定対象である物理系の測定直前の状態 \(\rho \)に依存し、\(\rho (\omega M) = \rho (\omega | \rho, M) \)のように定まる。こうした点から量子力学と数理統計学を融合させた理論、量子推定理論が必要とされる。特に、光通信システムを始めとする量子力学を用うシステムから得られる情報の限界を迫るには量子推定理論が必要である。

量子推定理論は、未知の状態がパラメトリック集合 \(S = \{ \rho = \theta | \theta \in \Theta \} \)に属することだけが分かっているという仮定のもとで、未知のパラメータ \(\rho \)の値を観測データから推定する問題を考察する理論である。通常の推定では測定Mはあらかじめ指定されているが、量子推定では、指定されるのは集合 \(S \)のみで、測定Mは \(\theta \)の推定のためにももっと適したものを求めることが必要とされる。さらに、複数の未知の量子状態のサンプルが与えられたとき、複数のサンプルからなる系を一つの量子系と見て、合成量子系に対する測定を考えることもできる。このような観測は量子相関を用いた観測である。量子相関を用いた測定と各サンプルに対する逐次的測定が、推定誤差に関してどの程度の差があるか興味ある問題である。

本給論文において、推定する状態は有限次元ヒルベルト空間上の純粋状態全体からなる状態群に対する量子推定問題を取り扱っている。同一の未知の純粋状態のサンプルが \(n \)個独立に用意されたとの仮定のもとで、サンプル間の相関を利用した測定も含めて測定に関する最適化を行い、最適測定を行い、推定誤差を最小化する方法を導いた。以上の結果を基に、問題を解決するための方法を提案した。さらに、この推定法を用いて、サンプル数 \(n \)を有限大に近づけると、Fubini-Study距離による \(2 \)乗誤差を \(n \)で割った値がどのような値に収束するか具体的に計算し、その値が松本啓夫らによる研究で予想された値と一致することを示した。また、推定法をFubini-Study距離のものと比較した場合、誤差の大きさを評価する方法を導入した。
論文審査の結果の要旨

量子力学系で観測を行った場合得られる測定値に関しては確率的にしか予言できない。測定結果のに関する確率分布

\(P(d|\omega) \) は、行った測定 \(M \) と測定対象である物理系の測定直前の状態 \(\rho \) に依存し、\(P(d|\omega) = P(d|\rho, M) \) がに定まる。

こうした点から量子力学と数理統計学を融合させた理論、量子推定理論が必要とされる。特に、光通信システムを始めとする量子力学に従うシステムから得られる情報を限界を追い出すには量子推定理論が必要である。

量子推定理論は、真の状態がパラメトリック集合族 \(S = \{ \rho = \theta | \theta \in \Theta \} \) に属することだけが分かっているという仮定のもとで、未知のパラメータ \(\rho \) の値を観測データから推定する問題を考察する理論である。通常の推定では測定 \(M \) はあらかじめ指定されているが、量子推定では、指定されるのは集合族 \(S \) のみで、測定 \(M \) は \(\theta \) の推定のためにもっとも適したものを見つけることが必要となる。さらに、複数の未知の量子状態のサンプルが与えられたとき、複数のサンプルからなる系を一つの量子系と見ると、合成量子系に対する測定を考えることもできる。このように測定は量子相関を用いた測定と呼ばれることができる。量子相関を用いた測定は、各サンプル間の量子的干渉を用いた測定であり、各サンプルに対して逐次的に測定を行う方法では実現できない測定である。量子相関を用いた測定と各サンプルに対する逐次的な測定が、推定誤差に関してどの程度の差があるかは興味ある問題である。

本申請論文において申請者は有限次元ハルベクトル空間上的純粋状態全体からなる状態族に対する量子推定問題を取り扱っている。同一の未知の純粋状態のサンプルが \(n \) 個独立に用意されたとの仮定のもとで、Bayes法とミニマックス法とおよ

測定の最適値を求め、両者が一致し、かつ最適値は一意的であることを示している。さらに、この最適測定をたいして、サンプル数 \(n \) を無限大に近づけるときに、Fubini-Study距離による平均2乗誤差を \(n \) で割った値がどのような値に収束するか具体的に計算し、その値が松本啓史らによる研究で予想された値と一致することを示した。また、申請者はFubini-Study距離のものとの誤差の大小差型評価も行っている。

続いて、申請者は量子相関測定と、各量子状態に同一の測定を行った後統計処理を行って推定する場合との比較を行っている。サンプル数 \(n \) が有限のときは上記の最適測定の方が誤差は少ないことが示される。一方、\(n \) を無限大に近づけたときには両者の漸近的な誤差の値は1/\(n \)のオーダーで同一であることも証明している。

以上の結果は数学的に厳密な議論のもとに得られたものであり、量子推定理論の進展に大きく寄与するものである。さらに、従来の量子系の推定に関する研究は主として平均2乗誤差の観点から論じたものであるが、本申請論文では大偏差型の評価にも注目して議論しており、このことも高く評価できる。

また、参考文献では、本申請論文の先駆をなすものおよび申請論文の結果の応用が与えられている。

よって本申請論文は博士（理学）の学位論文として価値あるものと認める。

なお、平成11年2月1日、主論文および参考論文に述べられている研究業績を中心として、これに関連した研究分野について口頭試問した結果、合格と認めた。

— 209 —