Raman scattering in a Heisenberg $S = 1/2$ antiferromagnet on the triangular lattice

Natalia Perkins1,2 and Wolfram Brenig2

1Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA
2Institute for Theoretical Physics, Technical University Braunschweig, Mendelssohnstr. 3, 38106 Braunschweig, Germany

(Dated: March 2, 2008)

We investigate two-magnon Raman scattering from the $S = 1/2$ Heisenberg antiferromagnet on the triangular lattice, considering both the effect of renormalization of the one-magnon spectrum by $1/S$ corrections and final-state magnon-magnon interactions. The bare Raman intensity displays two peaks related to one-magnon van-Hove singularities. We find that $1/S$ self-energy corrections to the one-magnon spectrum strongly modify this intensity profile. The central Raman-peak is significantly enhanced due to plateaus in the magnon dispersion, the high frequency peak is suppressed due to magnon damping, and the overall spectral support narrows considerably. Additionally we investigate final-state interactions by solving the Bethe-Salpeter equation to $O(1/S)$. In contrast to collinear antiferromagnets, the non-collinear nature of the magnetic ground state leads to an irreducible magnon scattering which is retarded and non-separable already to lowest order. We show that final-state interactions lead to a rather broad Raman-continuum centered around approximately twice the 'roton'-energy. We also discuss the dependence on the scattering geometry.

I. INTRODUCTION

Raman scattering is an effective tool to study the excitation spectrum of magnetic systems since the intensity of the inelastically scattered light is directly related to the density of singlet states at zero momentum. In local-moment magnets with well defined magnon excitations this quantity is linked to the two-magnon density of states. Therefore, magnetic Raman scattering plays an important role in understanding the dynamics and interactions of magnons in conventional spin systems.1,2,3,4 This is particularly true for the spin-1/2 square-lattice Heisenberg antiferromagnet (HAF) of the high-T_c superconductor parent compounds, where experimental5,6,7 and theoretical8,9,10,11 studies of the magnetic correlations by Raman scattering may provide important insight into the energy scales relevant to the pairing mechanism (for reviews see Refs.12,13).

Raman scattering from HAFs can be understood in terms of the Loudon-Fleury (LF) processes14, in which two magnons are simultaneously created by light absorption and emission. In the limit of large on-site Coulomb correlations U, the Hamiltonian describing these processes can be obtained as a leading term of the expansion in $t/(U - \omega)$, where t is the nearest-neighbor (NN) hopping, and ω is of the order of phonon frequencies.1515

The Raman intensity of HAFs on hypercubic lattices with unfrustrated NN exchange and collinear type of antiferromagnetic (AFM) order allows for a straightforward semi-quantitative interpretation in terms of the LF processes. In fact, in real space, exchanging two NN spins of $S = 1/2$ leads to an excitation with energy $\Omega \sim (z - 1)J$, where z is the coordination number and J is the AFM exchange energy. The reduction of Ω/J by -1 is a consequence of the exchange link between the NN sites and can be interpreted in terms of a two-magnon interactions in the final state. In momentum space, the linear spin-wave theory yields non-dispersive magnons along the the magnetic Brillouin zone (BZ) boundary, leading to a square-root divergence of the bare two-magnon density of states at $\Omega = zJ$. Inclusion of the final state magnon-magnon interactions broadens the singularity and shifts it down to $\Omega \sim 2.9J$.15,16,17 In two dimensions, which is consistent, both with the real-space result $\Omega = J(4 - 1) = 3J$, and with the experimentally observed Raman profile.

In contrast to conventional collinear HAFs, very little is known theoretically about Raman scattering from frustrated HAFs. This is intriguing, since the singlet spectrum is believed to be an essential fingerprint of such magnets. The spin $S = 1/2$ HAF on the triangular lattice (THAF) with NN exchange interactions is a prominent example of strongly frustrated spin systems. It has a ground state with non-collinear 120$^\circ$ degree ordering of the spins. Due to this non-collinearity of the classical ground state, nontrivial corrections to the spin-wave spectrum appear already to first order in $1/S$. It has been shown in Refs.15,16,17 that $1/S$ corrections strongly modify the form of the magnon dispersion of the triangular HAF. The resulting dispersion turns out to be almost flat in a wide range of momenta in which it possesses shallow local minima, "rotons", at the midpoint of the faces of the hexagonal BZ. This differs strongly from the classical spin-wave spectrum, which lacks such minima and flat zones. Similar results have been obtained in series expansion studies19.

Motivated by these recent findings, in this paper, we analyze the Raman scattering from the THAF by $1/S$ expansion. This is complementary to the recent analysis of Raman scattering on finite, 16 sites THAFs by means of exact diagonalization.20 First, our results show that the Raman intensity is very sensitive to both $1/S$ corrections of the magnon spectrum and the magnon-magnon interactions in the final state. Moreover, we find that the Loudon-Fleury process on the THAF leads to a Raman profile, which is independent at $O(1/S)$ of the scattering geometry.

The manuscript is organized as follows. In section II we review results from existing calculations15,16,17 of the one magnon excitations in the THAF to first order in $1/S$ needed for our study of the Raman spectra. In section III we consider the LFP to leading order in $1/S$. In section IV we calculate the...
to quartic order in the boson fields. We have
\[H - E_0 = 3JS(H_2 + H_3 + H_4), \]
where \(E_0 = 3JS^2/2 \) is the classical ground state energy and
\[
H_2 = \sum_k A_k a_k^\dagger a_k + \frac{B_k}{2} (a_k^\dagger a_{-k}^\dagger + a_k a_{-k}) \tag{5}
\]
\[
H_3 = -i \sqrt{\frac{3}{8S}} \sum_{k_1,k_2,k_3} (a_{k_1}^\dagger a_{k_2} a_{k_3} - a_{k_3}^\dagger a_{k_2} a_{k_1}) \times \nonumber \tag{6}
\]
\[
(\delta_{k_1} + \delta_{k_2} - \delta_{k_3, k_1 + k_2}) \nonumber \tag{6}
\]
\[
H_4 = - \frac{1}{16S} \sum_{k_1,k_2,k_3,k_4} \delta_{k_3 + k_4, k_1 + k_2} a_{k_1}^\dagger a_{k_2} a_{k_3} a_{k_4} \times \nonumber \tag{7}
\]
\[
(4\nu_{k_1+k_3} + \nu_{k_2+k_4} + \nu_{k_1+k_2} + \nu_{k_3+k_4}) - 2 \delta_{k_1+k_2+k_3+k_4} (a_{k_1}^\dagger a_{k_2}^\dagger a_{k_3} a_{k_4} + a_{k_4}^\dagger a_{k_3} a_{k_2} a_{k_1}) \nonumber \tag{7}
\]
\[
(\nu_{k_1} + \nu_{k_2} + \nu_{k_3}), \nonumber \tag{7}
\]
where momentum \(k \) is defined in the first magnetic BZ. We use the following notations:
\[
A_k = 1 + \nu_k/2, \quad B_k = -3\nu_k/2, \tag{8}
\]
and the momentum dependent functions are
\[
\nu_k = \frac{1}{3} (\cos k_x + 2 \cos \frac{k_y}{2} \cos \frac{k_y \sqrt{3}}{2}), \tag{9}
\]
\[
\nu_k = \frac{2}{3} \sin \frac{k_x}{2} (\cos k_x - \cos \frac{k_y \sqrt{3}}{2}). \tag{10}
\]

The expressions for \(H_3 \) and \(H_4 \) have been obtained first in Ref.\(^{12}\). The essential difference between Eqsns.\(^{12}\) - \(^\dagger\) and a corresponding expansion around a Neel state on a hypercubic lattice is the occurrence of the term \(H_3 \), which is present due to the non-collinearity of the classical ground state configuration of the THAF. In the remainder of this paper we set the scale of energy to \(3J/2 = 1 \), i.e. for \(S = 1/2 \) the prefactor in Eqn.\(^{12}\) is unity.

To proceed, we diagonalize the quadratic part of the Hamiltonian \(H_2 \) by a Bogoliubov transformation to a set of magnon quasiparticles
\[
a_k \equiv u_k \phi_k + v_k \phi_{-k}^\dagger \tag{11}
\]
\[
a_k^\dagger \equiv u_k^\dagger \phi_k^\dagger + v_k \phi_{-k} \tag{11}
\]
where \(\phi_k^\dagger \) are bosons, and the coherence coefficients
\[
u_k = \sqrt{\frac{A_k + E_k}{2E_k}} \tag{12}
\]
\[
u_k = \sqrt{\frac{A_k - E_k}{2E_k}} \tag{12}
\]
satisfy \(\nu_k^2 - \nu_k^2 = 1 \). The Hamiltonian \(H_2 \) in terms of the Bogoliubov quasiparticles reads
\[
H_2 = \sum_k E_k \phi_k^\dagger \phi_k, \tag{13}
\]

II. MODEL

The Hamiltonian of the THAF reads
\[
H = J \sum_{\langle ij \rangle} S_i S_j, \tag{1}
\]
where \(S_i \) are spin-1/2 operators, \(i \) refers to sites on the triangular lattice, \(\langle \rangle \) denotes NN summation, and \(J \) is the exchange interaction. The classical ground state of the THAF\(^{21}\) is a non-collinear 120° degree ordering of spins which is shown in Fig.\(^1\). To avoid the complexity of a three-sublattice notation it is convenient to work within a locally rotated frame of reference in which the magnetic order is ferromagnetic. To achieve this we assume a gauge in which the \((x, z) \)-coordinates label the lattice plane and a uniform twist with a pitch vector \(\mathbf{Q} = (4\pi/3, 0) \) is applied to the \(y \)-axis. The laboratory frame-of-reference spin \(S_i \) is related to the spin \(\tilde{S}_i \) in the rotated frame through
\[
\tilde{S}_i = \begin{bmatrix} \sin(q_i) & -\cos(q_i) & 0 \\ 0 & \cos(q_i) & \sin(q_i) \\ 0 & 0 & -1 \end{bmatrix}^{-1} S_i, \tag{2}
\]
where \(q_i = 2\pi(2l_i + m_i)/3 \) and \((l_i, m_i) \) are integers labeling the points on the triangular lattice, which is depicted in Fig.\(^1\). In contrast to \(S_i \), the spin \(\tilde{S}_i \) is amenable to a representation in terms of a single Holstein-Primakoff boson field on all sites
\[
\tilde{S}_i^+ = S - a_i^+ a_i \tag{3}
\]
\[
\tilde{S}_i^- = (2S - a_i^+ a_i)^{1/2} a_i \tag{3}
\]
\[
\tilde{S}_i^\dagger = a_i^+ (2S - a_i^+ a_i)^{1/2}. \tag{3}
\]

Because we intend to study magnon interactions to first order in \(1/S \), we need to expand the Hamiltonian in Eqn.\(^1\) up

FIG. 1: a) Classical 120° degree non-collinear spin order on the triangular lattice. Basic vectors of triangular lattice: \(\vec{\delta}_1 = (\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}) \), \(\vec{\delta}_2 = (\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}) \) and \(\vec{\delta}_3 = (1, 0) \). b) Definition of scattering angles for LF vertex.
van-Hove singularities, i.e. at

Terms with three creation (destruction) operators are present in

H

at the center of the zone, where

E

FIG. 2: One magnon dispersion. Top: linear spin-wave dispersion

c and the dispersion is given by

The magnon dispersion \(E_k \) is depicted in Fig. 2. It vanishes

To treat the interaction between magnons we need to express

For the quartic part we obtain

Eqns. (15) - (19) allow to construct all vertices relevant to

II. LOUDON-FLEURY VERTEX

We use the framework of the Loudon-Fleury (LF) model

in evaluating the magnon interactions within the Raman re-

Moreover

E\(_k\) of from Eqn. (14). Middle and bottom: real and imaginary part

Re(\(i\hbar/2 \)) of one magnon dispersion to \(O(1/S) \) from a solution of

Eqs. (10) - (12) from Ref. 16 to calculate the renormalized magnon dis-

For the triplic part we obtain

\[H_4 = \frac{1}{16S} \sum_{k,p} h(k,p) c_k^\dagger c_{-k-p}^\dagger + O(c^\dagger_c^\dagger c^\dagger c + h.c.) \quad , \] (18)

where again terms irrelevant for the Raman scattering are not

displayed explicitly and

\[h(k,p) = 2((u_k^2 + v_k^2)(\nu_k + 4\nu_k + \nu_p) - 3(u_k^2 +

v_k^2)\nu_p v_p(2\nu_k + \nu_p) - 3(u_k^2 + v_k^2)\nu_k (\nu_k + 2\nu_p)

+ 4u_k\nu_k v_p v_p(2 + \nu_k + \nu_p + 2\nu_k + \nu_p)) \] (19)

Apart from that Eqns. (4) - (10) can be used to derive the one-magnon selfenergy to \(O(1/S) \). This has been done in

Ref. 16 to which we refer the reader for details. For the pur-

pose of the present work it is sufficient to employ Eqns. (10)

- (12) from Ref 16 to calculate the renormalized magnon dis-

\begin{align*}
\sum_{\nu} & \sum_{p} \sum_{u} \sum_{v} \sum_{w} \sum_{x} \sum_{y} \sum_{z} \\
& \left(\epsilon_{\nu}(\hat{\sigma}_{\nu} \cdot \delta)(\hat{\sigma}_{\nu} \cdot \delta)\right) \right) S_{x+i} S_{x+i}
\end{align*}

where the polarizations \(\hat{\epsilon}_{\nu} = \cos \theta \hat{\phi} + \sin \theta \hat{\phi} \) and \(\hat{\epsilon}_{\nu} = \cos \phi \hat{\phi} + \sin \phi \hat{\phi} \) of the incoming and the outgoing light are

determined by angles \(\theta \) and \(\phi \), defined with respect to the

x-axis. To derive the final form of the scattering LF vertex, we

first write spin operators in terms of Holstein-Primakoff bosonic

a-operators (5), and then express the latter in terms
In principle the Raman vertex contains also contributions to the IPP vertex. In the following we consider only the leading order contributions to the IPP vertex.

of the boson quasi-particle operators c. We get the following expression

$$ R = \sum_k M_k (c_{k}^{+}c_{-k}^{+} + c_{k}^{+}c_{-k}^{+}) \equiv r^{-} + r^{+}, \quad (21) $$

where M_k is given by

$$ M_k = (F_1(\theta, \phi) + F_2(k, \theta, \phi))u_k + F_2(k, \theta, \phi)(v_k^{2} + \bar{v}_k^{2}), \quad (22) $$

and we have introduced the following notations:

$$ F_1(\theta, \phi) = 2S \sum_{\mu=1}^{3} f_{\mu}(\theta, \phi), $$

$$ F_2(k, \theta, \phi) = 2S \left(f_3(\theta, \phi) \cos k_{x} + f_1(\theta, \phi) \cos \left(\frac{k_{x}^{2}}{2} + \frac{\sqrt{3}k_{y}}{2}\right) + f_2(\theta, \phi) \cos \left(\frac{k_{x}^{2}}{2} - \frac{\sqrt{3}k_{y}}{2}\right)\right), $$

$$ f_{\mu}(\theta, \phi) = \hat{\epsilon}_{\text{in}} \cdot \delta_{\mu}. $$

In principle the Raman vertex contains also $c_{k}^{+}c_{k}^{+}$ terms. However, at zero momentum and to lowest order in $1/S$ these terms do not contribute to the Raman response at finite frequency, and we dropped them. Note that R is explicitly Hermitian.

IV. RAMAN INTENSITY

We now calculate the Raman intensity including one- and two-magnon renormalizations up to $O(1/S)$. The Raman intensity $I(\Omega)$ is obtained via Fermi’s golden-rule from

$$ I(\omega_n) = \text{const} \times \text{Im} \int_0^\beta d\tau e^{i\omega_n \tau} \langle T_\tau (R(\tau)R) \rangle \quad (24) $$

by analytic continuation of the bosonic Matsubara frequencies $\omega_m = 2\pi m T$ onto the real axis as $i\omega_m \rightarrow \Omega + i\eta$, where $\Omega = \omega_{\text{in}} - \omega_{\text{out}}$ refers to the inelastic energy transfer by the photon, and for the remainder of this paper we assume the temperature $T = 1/\beta$ to be zero. The prefactor ‘const’ refers to some arbitrary units by which the observed intensities are scaled.

The role of interactions is summarized in Fig. 3. Two effects have to be distinguished, namely renormalizations of the one-magnon propagators, i.e. $G^0 \rightarrow G$, and vertex corrections to the Raman intensity (final state interactions), i.e $R \rightarrow \Gamma$.

All propagators are expressed in terms of the irreducible two-magnon renormalizations up to $O(1/S)$.

In order to evaluate Raman intensity (Eqn. (24)) we have to consider only the leading order contributions to the IPP vertex Γ. Two effects have to be distinguished, namely renormalizations of the one-magnon propagators, i.e. $G^0 \rightarrow G$, and vertex corrections to the Raman intensity (final state interactions), i.e $R \rightarrow \Gamma$.

All propagators are expressed in terms of the irreducible two-magnon renormalizations up to $O(1/S)$.

In this work we consider only the leading order contributions to Γ. They are shown in Fig. 3(b). The quartic vertex $\gamma_4(k, p)$ is identical to the two-particle-two-hole contribution from H_4 of Eqs. (18)-(19) and reads

$$ \gamma_4(k, p) = -\frac{1}{2S} h(k, p) \quad (26) $$
The two addends forming the irreducible vertex \(\gamma_3(\mathbf{k}, \mathbf{p}, \omega_n, \omega_o) \) are assembled from \(H_3 \) and one intermediate propagator, and can be written as

\[
\gamma_3(\mathbf{k}, \mathbf{p}, \omega_n, \omega_o) = \frac{1}{2S} \sum_{\mathbf{k}, \mathbf{p}} (f(\mathbf{k}, \mathbf{p})g(-\mathbf{k}, -\mathbf{p}) \times
\]

\[
G^0(\mathbf{k} - \mathbf{p}, i\omega_o - i\omega_n) c^\dagger_{\mathbf{k}} c^\dagger_{-\mathbf{p}} c_{\mathbf{p}} c^\dagger_{-\mathbf{k}},
\]

(27)

where the functions \(f(\mathbf{k}, \mathbf{p}) \) and \(g(\mathbf{k}, \mathbf{p}) \) obey the symmetry relation \(f(\mathbf{k}, \mathbf{p}) = -f(-\mathbf{k}, -\mathbf{p}) \).

To keep \(\gamma_3 \) to leading order in \(1/S \) we retain only the zeroth order propagators \(G^0 \) for each intermediate line. In principle, \(H_3 \) allows for an additional two-particle irreducible graph, with the incoming(outgoing) legs placed into the particle-hole(hole-hole) channel and one intermediate line at zero momentum and frequency. However, we verified that these contributions vanish exactly.

Due to \(\gamma_3 \), Eqn. (23) is an integral equation with respect to both, momentum and frequency. This is the first major difference to Raman scattering from collinear HAFs, where only \(\gamma_4 \) exists at \(O(1/S) \). To proceed, further approximations have to be made. Here we simplify \(\gamma_3 \) by assuming the dominant contribution from the frequency summations to result from the mass-shell of the propagators in the intermediate particle-particle reducible sections of Fig. 3:

\[
-i\omega_n \approx E_k
\]

(28)

\[
-i\omega_o \approx E_p.
\]

This approximation will be best for sharp magnon lines and the transferred frequencies \(i\omega_m \) close to the van-Hove singularities of \(2E_k \).

In this approximation for \(\gamma_3 \), the two-particle irreducible vertex \(\gamma \) simplifies to

\[
\gamma(\mathbf{k}, \mathbf{p}, \omega_n, \omega_o) \approx \gamma(\mathbf{k}, \mathbf{p}) = \gamma_3(\mathbf{k}, \mathbf{p}) + \gamma_4(\mathbf{k}, \mathbf{p})
\]

(29)

\[
= -\frac{1}{2S} \left(\frac{2E_{k-p}f(\mathbf{k}, \mathbf{p})g(\mathbf{k}, \mathbf{p})}{(E_k - E_p)^2 - E_{k-p}^2} + h(\mathbf{k}, \mathbf{p}) \right).
\]

Now we can perform the frequency summation over \(\omega_m \) on the right hand side of Eqn. (23) as well as the analytic continuation \(i\omega_m \rightarrow \Omega + i\eta \equiv z \). With this \(\Gamma \) in the latter equation turns into a function of \(\mathbf{p} \) and \(z \) only, leading to

\[
\sum_{\mathbf{k}, \mathbf{p}} L_{\mathbf{k}, \mathbf{p}}(z) \Gamma_{\mathbf{p}}(z) = r^-(\mathbf{k})
\]

(30)

\[
L_{\mathbf{k}, \mathbf{p}}(z) = \delta_{\mathbf{k}, \mathbf{p}} - \frac{\gamma(\mathbf{k}, \mathbf{p})}{z - 2E_{\mathbf{p}r}},
\]

(31)

which is an integral equation with respect to momentum only.

In the rest of the paper the superscript \('r' \) refers to the case when renormalized propagators with \(E_{\mathbf{p}r} \) are taken in the two-particle reducible part of the Raman intensity, while \(E_{\mathbf{p}} \) corresponds to the usage of bare propagators.

Close inspection of the vertex \(\gamma(\mathbf{k}, \mathbf{p}) \) shows, that it does not separate into a finite sum of products of lattice harmonics of the triangular lattice. Therefore, Eqns. (30) - (31) cannot be solved algebraically in terms of a finite number of scattering channels, but require a numerical solution. On finite lattices this can be done by treating Eqn. (31) as a linear equation for \(\Gamma_{\mathbf{p}}(z) \) at fixed \(z \). This marks another significant difference between Raman scattering from collinear and non-collinear antiferromagnets.

Finally, the expression for the Raman intensity from Eqn. (24) can be written as

\[
I(\Omega) = \text{const} \times (J(\Omega) - J(-\Omega))
\]

(32)

\[
J(\Omega) = \text{Im} \sum_{\mathbf{k}} \frac{M_{\mathbf{k}} \Gamma_{\mathbf{k}}(\Omega + i\eta)}{\Omega + i\eta - 2E_{\mathbf{k}r}}.
\]

(33)

We now discuss the Raman intensity for several levels of approximations. First, we neglect final state interactions and set \(\Gamma_{\mathbf{k}}(z) \rightarrow M_{\mathbf{k}} \). Fig. 4 shows the Raman intensity as a function of the transferred photon frequencies \(\Omega \) for this case. This figure contrasts the Raman bubble with bare propagators against that with renormalized ones. Such results can be obtained on fairly large lattices, since they do not involve a solution of the integral equation (30), but only a calculation of the one magnon self-energy\(\Omega \). We keep the shift \(i\eta \) off the real axis deliberately small in this figure, in order to discriminate its effect from that of the actual life-time broadening due to the imaginary part of \(E_{\mathbf{k}r} \).

First we would like to note that we find the line shape to be insensitive to the scattering geometry. This is in a sharp contrast to Raman scattering from the square lattice HAF, where
Raman amplitudes in A_{1g}, B_{1g} and B_{2g} symmetries are very different.

In case of the bare Raman bubble, one can see two well-defined peaks, one at energy $\Omega = 3/\sqrt{2}$ and one at $\Omega = 4/3$ - both in units of $3J/2$. These energies correspond to 2 times that of the maximum and of the BZ-boundary saddle-point of the classical spin-wave spectrum E_k. Clearly, the dominant spectral weight does not stem from the k-points at the upper cut-off of the linear spin-wave energy but from the BZ-boundary. This does not reflect the bare two-magnon density of states but is an effect of the Raman matrix element M_k, which samples the BZ regions preferentially.

Switching on $1/S$ corrections, two modifications of the intensity occur. First, both maxima are shifted downwards by a factor of ~ 0.7 due to the corresponding renormalizations of the one magnon energies. Second, as the BZ-boundary saddle-point of E_k has turned into a flat region, occupying substantial parts of the BZ for E_k, the intensity of the lower energy peak is strongly enhanced due to the very large density of one-magnon states. Equally important, the imaginary part of E_k is finite in the BZ-region which corresponds to the maximal one-magnon energies. This smears the peak at the upper frequency cut-off in $I(\Omega)$ almost completely - as can be seen from the solid line in Fig. 4. In contrast to that, $Im[E_k^\ast]$ almost vanishes in the flat regions on the BZ-boundary due to phase-space constraints, leading to a further relative enhancement of the intensity from there.

Next we turn to final-state interactions. In Fig. 5 we compare $I(\Omega)$ from the Raman bubble obtained with propagators renormalized to $O(1/S)$ and only bare Raman vertices to the intensity obtained by including also the dressed Raman vertex $\Gamma_k(z)$ from Eqn. (30). The numerical solution of the latter equation requires some comments. Since the kernel $L_{k,p}(z)$ is not sparse and has rank $N^2 \times N^2$, already moderate lattice sizes lead to rather large dimensions and storage requirements for the linear solver. We have chosen $N = 69$, leading to a 4761×4761 system which we have solved 200 times to account for 200 frequencies in the interval $\Omega \in [0, 2.5]$. The kernel has points and lines of singular behavior in (k,p)-space, which stem from the singularities of the Bogoliubov factors $u|v|$ in $g|h|(|k,p)$ and from the energy denominators in Eqn. (29). In principle, such regions are of measure zero with respect to the complete (k,p)-space, yet we have no clear understanding of their impact on a solution of Eqn. (30) as $N \to \infty$. In our case, i.e. a finite lattice, we have chosen to regularize these points and lines by cutting off eventual singularities in $L_{k,p}$. The comparatively small system sizes require a rather larger artificial broadening $i\eta$ in order to achieve acceptably smooth line shapes. This can be seen by contrasting the dashed curve in Fig. 5 and solid curve in Fig. 4 which correspond to identical quantities, however for different finite systems, 252×252 vs 69×69.

The main message put forward by Fig. 5 is that the final state interactions lead to a flattening of the peak from the two-magnon density of states, transforming it to a rather broad Raman continuum. This can be understood, at least qualitatively, from the RPA-like functional form of the Bethe-Salpeter equation. Discarding momentum dependencies and iterating the two-magnon bubble times the irreducible vertex γ, leads to a renormalization of the intensity by a factor, roughly of the form $\sim 1/(1 - \gamma \rho(\Omega))$, where $\rho(\Omega)$ refers to the two-magnon bubble. Directly at the peak position of the Raman bubble this renormalization factor may get small, thereby suppressing the over-all intensity. While exactly the same mechanism is at work also for the square lattice HAF, its impact on the spectrum is complete different. In the latter case the peak-intensity without final state interactions is at the upper cut-off of the Raman intensity. Suppression of this peak-intensity simply shifts the maximum intensity to lower frequencies within the Raman spectrum. This shift is then interpreted in terms of a two-magnon binding energy. Such reasoning cannot be pursued in the present case.

V. CONCLUSION AND DISCUSSION

To summarize, we have investigated magnetic Raman scattering from the two-dimensional triangular Heisenberg antiferromagnet considering various levels of approximation within a controlled $1/S$-expansion. Our study has revealed several key differences as compared to the well-known magnetic Raman scattering from the planar square lattice spin-1/2 antiferromagnet.

First, we found that the intensity profile is insensitive to the in-plane scattering geometry of the incoming and outgoing light at $O(1/S)$. This has to be contrasted against the clear difference between A_{1g} and $B_{1g,2g}$ symmetry for the square-lattice case.

Second, on the level of linear spin-wave theory, we showed...
that the Raman intensity has two van-Hove singularities. The less intensive peak is located at the upper edge of the two-magnon density of states and stems from twice the maximum of the one-magnon energy. This is similar to the square-lattice case. However, the dominant peak is located approximately in the center of the two-magnon density of states. This peak stems from the Loudon-Fleury Raman-vertex strongly selecting the Brillouin zone boundary regions where the one-magnon dispersion on the triangular lattice has an additional weak van-Hove singularity. This is absent on the square lattice.

Next, we calculated the Raman intensity with the one-magnon spectrum, renormalized to $O(1/S)$, however neglecting final-state interactions within the Raman process. In this case we have obtained a sharp and almost δ-functional Raman peak at energy $\sim J/2$. At this energy the real part of the renormalized one-magnon dispersion shows a large plateau-region at the Brillouin zone boundary with a roton-like shallow minimum. Moreover, due to phase-space constraints the one-magnon life-time is large in this region. Therefore, the two-magnon density of states in this region is strongly enhanced, as compared to the linear spin-wave result. In contrast to that, the intensity at the upper edge of the spectrum is reduced by a factor of approximately 0.7.

In a last step, we considered the impact of the final-state interactions to $O(1/S)$. Due to the non-collinear ordering on the triangular lattice, and in sharp contrast to the square-lattice case, we find, that even to lowest order the two-magnon scattering is neither instantaneous in time, nor separable in momentum space. Our solution of the corresponding Bethe-Salpeter equation reveals a broad continuum-like Raman profile which results from a smearing of the intensity of the two-roton peak by virtue of repeated two-magnon scattering. While, at this order in $1/S$ the over-all form of the Raman profile is reminiscent of that on the square-lattice, one has to keep in mind, that in the latter case the position of the maximum in the center of the Raman continuum has to interpreted rather differently, namely in terms of a two-magnon binding effect.

In conclusion we hope that our theoretical investigation will stimulate further experimental analysis of triangular, and more generally frustrated magnetic systems by Raman scattering. Several novel materials with triangular structure have been investigated thoroughly over the last few years, among them the cobaltites, Na$_2$CoO$_2$, and the spatially anisotropic triangular antiferromagents Cs$_2$CuCl$_3$ and κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$. To our knowledge however, magnetic Raman scattering on such systems remains a rather open issue.

VI. ACKNOWLEDGEMENTS

We would like to thank A. Chubukov for useful discussions. One of us (W.B.) acknowledges partial support by the DFG through Grant No. BR 1084/4-1 and the hospitality of the KITP, where this research was supported in part by the NSF under Grant No. PHY05-51164.

1. Eliot, R. J., and R. Loudon, Phys. Lett. 3A, 189 (1963)
2. P. A. Fleury, S. P. S. Porto, L. E. Cheesman, and H. J. Guggenheim, Phys. Rev. Lett. 17, 84 (1966)
3. J. B. Parkinson, J. Phys. C 2, 102 (1969)
4. P. A. Fleury and H. J. Guggenheim, Phys. Rev. Lett. 24, 1346 (1970)
5. K. B. Lyons, P. A. Fleury, J. P. Remeika, A. S. Cooper, and T. J. Negran, Phys. Rev. B 37, 2353 (1988);
6. S. Sugai, S. I. Shamoto, and M. Sato, Phys. Rev. B 38, 6436 (1988);
7. P. E. Sulewski, P. A. Fleury, K. B. Lyons, and S.-W. Cheong, Phys. Rev. Lett. 67, 3864 (1991)
8. R. R. P. Singh, P. A. Fleury, K. B. Lyons, and P. E. Sulewski Phys. Rev. Lett. 62, 2736 (1989);
9. C. M. Canali and S. M. Girvin, Phys. Rev. B 45, 7127 (1992)
10. A. V. Chubukov, D. M. Frenkel, Phys. Rev. Lett. 74, 3057 (1995);
11. F. Nori, R. Merlin, S. Haas, A. W. Sandvik, and E. Dagotto, Phys. Rev. Lett. 75, 553 (1995)
12. G. Blumberg, M. Kang, M. V. Klein, K. Kadowaki, and C. Kendziora, Science 278, 1427 (1997);
13. T. P. Devereaux, R. Hackl, Rev. Mod. Phys. 79, 175 (2007)
14. P. A. Fleury and R. Loudon, Phys. Rev. 166, 514 (1968)
15. B. S. Shastry and B. I. Shraiman, Phys. Rev. Lett. 65, 1068 (1990).
16. A. V. Chubukov, S. Sachdev and T. Senthil, J. Phys.: Condens. Matter 6, 8891 (1994)
17. O.A. Starykh, A. V. Chubukov and A. G. Abanov, Phys. Rev. 74, 180403 (R) (2006)
18. A. L. Chernyshev and M.E. Zhitomirsky, Phys. Rev. Lett 97, 207202 (2006)
19. W. H. Zheng, J. O. Jeraestrad, R. R. P. Singh, R. H. McKenzie, R. Coldea, Phys. Rev. B 74, 224420 (2006)
20. F. Vernay, T.P. Devereaux and M. J. P. Gingras, J. Phys.: Condens. Matter 19, 145243 (2007)
21. T. Jolicouer, J. C. Leguillou, Phys. Rev. B 40, 2727 (1989).
22. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
23. R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C. Wolters, and Z. Tylczynski, Phys. Rev. Lett. 88, 137203, (2002).
24. Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito, Phys. Rev. Lett. 91, 107001 (2003)