BOHR’S PHENOMENON FOR SOME UNIVALENT HARMONIC FUNCTIONS

CHINU SINGLA, SUSHMA GUPTA, AND SUKHJIT SINGH

ABSTRACT. In 1914 Bohr proved that there is an $r_0 \in (0, 1)$ such that if a power series $\sum_{m=0}^{\infty} c_m z^m$ is convergent in the open unit disc and $|\sum_{m=0}^{\infty} c_m z^m| < 1$ then, $\sum_{m=0}^{\infty} |c_m z^m| < 1$ for $|z| < r_0$. The largest value of such r_0 is called the Bohr radius. In this article, we find Bohr radius for some univalent harmonic mappings having different dilatations and in addition, also compute Bohr radius for the functions convex in one direction.

1. Introduction

The Bohr inequality, first introduced in 1914 by Harald Bohr in his seminal work [3] and subsequently improved independently by M. Riesz, I. Schur and F. Wiener, essentially states that if $f(z) = \sum_{m=0}^{\infty} a_m z^m$ is an analytic function in the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$ and $|f(z)| < 1$ for all $z \in D$, then

$$\sum_{m=0}^{\infty} |a_m| r^m \leq 1$$

for all $z \in D$ with $|z| = r \leq r_0 = 1/3$ and $1/3$ is the largest possible value of r_0, called the Bohr radius. The inequalities of the type (1) have become famous by the name Bohr inequalities and the problems of finding the largest possible values of r_0 in different setups are now a days called the Bohr radius problems. For a glimpse of the ongoing current research in this area we refer the reader to some recent articles, e.g. [1, 2, 6, 9, 10] and references therein.

In 2010, Abu Muhanna [9] investigated some Bohr radius problems using the concept of subordination. For two analytic functions f and g in D, g is said to be subordinate to f (written, $g \prec f$) if there exists a function ψ analytic in D with $\psi(0) = 0$ and $|\psi(z)| < 1$ such that $g = f \circ \psi$. In particular, when f is univalent, then $g \prec f$ is equivalent to $g(0) = f(0)$ and $g(D) \subset f(D)$. We shall denote by $S(f)$, the class of all functions g subordinate to a fixed function f. A class of analytic (harmonic) functions in the unit disc D is said to possess classical Bohr’s phenomenon if an inequality of the type (1) is satisfied in $|z| < r_0$.

2010 Mathematics Subject Classification. Primary 30A10, 30C45.

Key words and phrases. Bohr radius, harmonic univalent functions, convex in one direction.

Work of first author is supported by UGC - CSIR, New Delhi in the form of Senior Research Fellowship vide Award Letter Number - 2061540842.
for some \(r_0, 0 < r_0 \leq 1 \). It is known (see [3]) that not all classes of functions have classical Bohr’s phenomenon. So, Abu Muhanna [3] reformulated classical Bohr’s phenomenon and proved the following result:

Theorem 1.1. If \(f(z) = \sum_{m=0}^{\infty} a_m z^m \) is a univalent function and \(g(z) = \sum_{m=1}^{\infty} b_m z^m \in S(f) \), then

\[
\sum_{m=1}^{\infty} |b_m| r^m \leq d(f(0), \partial f(\mathbb{D}))
\]

for all \(|z| = r \leq r_0 = 3 - \sqrt{8} = 0.17157.. \), where \(d(f(0), \partial f(\mathbb{D})) \) is the Euclidean distance between \(f(0) \) and \(\partial f(\mathbb{D}) \), the boundary of \(f(\mathbb{D}) \). The value of \(r_0 \) is sharp for \(f(z) = z/(1-z)^2 \), the Koebe function. Further, if \(f \) is convex univalent in \(\mathbb{D} \), then \(r_0 = 1/3 \).

In the recent years, a number of research articles (for example see [1, 7, 8]) are published and many hidden facts of this subject are brought into broad daylight. In particular, Bhowmik and Das [1] successfully extended the Bohr inequalities of type (2) for certain harmonic functions. A complex valued function \(f(z) = u(x,y) + iv(x,y) \) of \(z = x + iy \in \mathbb{D} \) is said to be harmonic if both \(u(x,y) \) and \(v(x,y) \) are real harmonic in \(\mathbb{D} \). It is known that such an \(f \) can be uniquely represented as \(f = h + \overline{g} \), where \(h \) and \(g \) are analytic functions in \(\mathbb{D} \) with \(f(0) = h(0) \). It immediately follows from this representation that \(f \) is locally univalent and sense preserving whenever its Jacobian \(J_f \), defined by \(J_f(z) := |h'(z)| - |g'(z)| \), satisfies \(J_f(z) > 0 \) for all \(z \in \mathbb{D} \); or equivalently if \(h' \neq 0 \) in \(\mathbb{D} \) and the (second complex) dilatation \(w_f \) of \(f \), defined by \(w_f(z) = g'(z)/h'(z) \), satisfies the condition \(|w_f(z)| < 1 \) in \(\mathbb{D} \). A harmonic function \(f = h + \overline{g} \) defined in \(\mathbb{D} \) is said to be K-quasiconformal if its dilatation \(w_f \) satisfies \(|w_f| \leq k, k = (K - 1)/(K + 1) \in [0, 1) \). In view of the work of Schaubroeck in [11], aforesaid definitions and notations for subordination of analytic functions can be extended to harmonic functions without any change. This lead Bhowmik and Das [1] to extend Theorem 1.1 as under:

Theorem 1.2. Let \(f(z) = h(z) + \overline{g(z)} = \sum_{m=0}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m \) be a sense preserving K-quasiconformal harmonic mapping defined in \(\mathbb{D} \) such that \(h \) is univalent in \(\mathbb{D} \), and let \(f_1(z) = h_1(z) + \overline{g_1(z)} = \sum_{m=0}^{\infty} c_m z^m + \sum_{m=0}^{\infty} d_m z^m \in S(f) \). Then

\[
\sum_{m=1}^{\infty} |c_m| r^m + \sum_{m=1}^{\infty} |d_m| r^m \leq d(h(0), \partial h(\mathbb{D}))
\]

for \(|z| = r \leq r_0 = (5K + 1 - \sqrt{8K(3K+1)}/(K + 1) \). This result is sharp for the function \(p(z) = z/(1-z)^2 + k\overline{z}/(1-z)^2 \), where \(k = (K - 1)/(K + 1) \). Moreover, if we take \(h \) to be convex univalent then the inequality in (3) holds for \(|z| = r \leq r_0 = (K + 1)/(5K + 1) \). This result is again sharp for the function \(q(z) = z/(1-z) + k\overline{z}/(1-z) \).
In this article, our aim is to establish the Bohr’s phenomenon and compute Bohr radius for some subclasses of univalent harmonic functions. We also propose to improvise Theorem 1.1 and 1.2 stated above.

We close this section by setting certain notations for subsequent use in this paper. We denote by S_{H}, the class of univalent harmonic functions f normalized by the conditions $f(0) = 0$ and $f'(0) = 1$. In addition, if $f'(0) = 0$ also, then the class is denoted by S_{H}^{0}. Further, K_{H}^{0} is the usual subclass of S_{H}^{0} consisting of convex functions. A domain Ω is said to be convex in the direction θ, $0 \leq \theta < \pi$, if the intersection of the straight line through the origin and the point $e^{i\theta}$ in the complex plane is connected or empty. A function f mapping the open unit disc D onto such a domain is called convex in direction θ.

2. Main Results

We begin this section by stating following lemma which immediately follows from the work of Bhowmik and Das [2].

Lemma 2.1. Let $f(z) = \sum_{m=0}^{\infty} a_{m} z^{m}$ and $g(z) = \sum_{m=0}^{\infty} b_{m} z^{m}$ be two analytic functions in D and $g \prec f$. Then
\[
\sum_{m=0}^{\infty} |b_{m}| r^{m} \leq \sum_{m=0}^{\infty} |a_{m}| r^{m}
\]
for $|z| = r \leq 1/3$.

Using this lemma, we now improvise Theorem 1.1 by taking univalent analytic function in D as $f(z) = z + \sum_{m=2}^{\infty} a_{m} z^{m}$. Making use of well known De Brange’s theorem: $|a_{m}| \leq m, m = 2, 3, ..., $ and after some simple calculations, we easily get:

Theorem 2.2. If $f(z) = z + \sum_{m=2}^{\infty} a_{m} z^{m}$ is a univalent analytic function in D and $g(z) = \sum_{m=1}^{\infty} b_{m} z^{m} \in S(f)$, then
\[
\sum_{m=1}^{\infty} |b_{m}| r^{m} \leq 1
\]
for all $|z| = r \leq 1/3$.

In a similar manner, we restate Theorem 1.2 as under;

Theorem 2.3. Let $f(z) = h(z) + \sum_{m=2}^{\infty} a_{m} z^{m}$ and $g(z) = z + \sum_{m=1}^{\infty} b_{m} z^{m}$ be a sense preserving K-quasiconformal harmonic mapping in D, such that h is analytic univalent in D. Then
\[
\sum_{m=1}^{\infty} |a_{m}| r^{m} + \sum_{m=1}^{\infty} |b_{m}| r^{m} \leq 1
\]
for $|z| = r \leq r_0 = (2K + 1 - \sqrt{K(3K + 2)})/(K + 1)$ and it is sharp for
$p(z) = z/(1 - z)^2 + k\bar{z}/(1 - z)^3$. If we take h to be convex univalent then the
inequality in (6) holds for $|z| = r \leq r_0 = (K + 1)/(3K + 1)$ and it is sharp for
p(z) = z/(1 - z) + k\bar{z}/(1 - z)$, where $k = (K - 1)/(K + 1)$. Further, let
f_1(z) = h_1(z) + g_1(z) = \sum_{m=1}^{\infty} c_m z^m + \sum_{m=0}^{\infty} d_m z^m \in S(f)$. Then

$$\sum_{m=1}^{\infty} |c_m|^m + \sum_{m=1}^{\infty} |d_m|^m \leq 1$$

for $|z| = r \leq r_0 = \min(1/3, (2K + 1 - \sqrt{K(3K + 2)})/(K + 1))$. If we take
h to be convex univalent then the inequality in (6) holds for $|z| = r \leq r_0 = \min(1/3, (K + 1)/(3K + 1))$.

In next theorem, we establish Bohr’s phenomenon for univalent harmonic
functions $f = h + \overline{g} \in S_H$ whose dilatation g'/h' is suitably chosen.

Theorem 2.4. Let $f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m$ be a
univalent and K-quasiconformal harmonic mapping in D, where h is analytic
univalent in D and $g'(z)/h'(z) = ke^{\theta z^2}, k = (K - 1)/(K + 1) \in (0, 1), n \in \mathbb{N}, \theta \in \mathbb{R}$. Then

$$\sum_{m=1}^{\infty} |a_m|^m + \sum_{m=1}^{\infty} |b_m|^m \leq 1$$

for $|z| = r \leq r_0$, where r_0 is the only root of the equation

$$\frac{(k + 1)r}{(1 - r)^2} - \frac{2nr}{(1 - r)} - kn^2\log(1 - r) = 1$$

in $(0, 1)$ and this r_0 is best possible one.

Letting $k \to 1$ (equivalently, $K \to \infty$) we obtain the following result.

Corollary 2.5. Let $f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m$ be a
univalent harmonic mapping in D, where h is analytic univalent in D and
g'(z)/h'(z) = e^{\theta z^2}, n \in \mathbb{N}, \theta \in \mathbb{R}$. Then

$$\sum_{m=1}^{\infty} |a_m|^m + \sum_{m=1}^{\infty} |b_m|^m \leq 1, a_1 = 1$$

for $|z| = r \leq r_0$, where r_0 is the only root in $(0, 1)$ of the equation $\phi(r) = 0$, where

$$\phi(r) = \frac{2r}{(1 - r)^2} - \frac{2nr}{(1 - r)} - n^2\log(1 - r) - 1.$$

This r_0 is the best possible one.

By plotting the graph of $\phi(r)$ w.r.t r for different values of n, we observe
that there is only one root of $\phi(r)$ in $(0, 1)$ which is the Bohr radius for that
value of n in the dilatation function. Figure [1] illustrates the case when $n = 3$.
and in the following table we have listed values of r_0 computed for $n = 1, 2, 3$ and 4.

n	r_0
1	0.3485...
2	0.3121...
3	0.1794...
4	0.0959...

We observe that if $n \to \infty$, then $r_0 \to 0$.

Lemma 2.1 and Theorem 2.4 together lead us to the following result for the subordination class $S(f)$.

Corollary 2.6. Let $f_1(z) = h_1(z) + g_1(z) = \sum_{m=1}^{\infty} c_m z^m + \sum_{m=1}^{\infty} d_m z^m \in S(f)$ where f is as defined in Theorem 2.4. Then

\[
\sum_{m=1}^{\infty} |c_m| r^m + \sum_{m=1}^{\infty} |d_m| r^m \leq 1
\]

for $|z| = r \leq r_1 = \min(1/3, r_0)$, where r_0 is same as obtained in Theorem 2.4.

Next theorem shows the existence of Bohr’s phenomenon for $f \in S_H$ with dilatation $w_f = (a + z)/(1 + az), a \in (-1, 1)$.

Theorem 2.7. Let $f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m$ be a univalent harmonic mapping in \mathbb{D}, where h is univalent in \mathbb{D} and $g'(z)/h'(z) = \frac{a + z}{1 + az}, a \in (-1, 1)$ Then

\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} |b_m| r^m \leq 1 + |a|
\]

for $|z| = r \leq r_0$, where $r_0 = 0.2291...$ is a unique root lying in $(0, 1)$ of $r^3 - 3r^2 + 5r - 1 = 0$.

Remark 2.8. We observe that if we take $g'/h' = \frac{a + z}{1 - az}, a \in (-1, 1)$, in Theorem 2.7, then we obtain the same value of r_0.

Figure 1. $\phi(r)$ w.r.t r for $n = 3$.

}\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} |b_m| r^m \leq 1 + |a|
\]
In the following theorem we establish Bohr’s phenomenon for univalent harmonic functions convex in one direction.

Theorem 2.9. Let \(f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=1}^{\infty} b_m z^m \) be a harmonic mapping in \(\mathbb{D} \), where \(h \) is analytic univalent in \(\mathbb{D} \) and \(h(z) + e^{i\theta} g(z) \) is convex univalent in \(\mathbb{D} \) for some \(\theta \in \mathbb{R} \). Then

\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} |b_m| r^m \leq 1
\]

for \(|z| = r \leq r_0 = 0.2192 \ldots \).

We can drop the condition of univalency of \(h \) in Theorem 2.9 if we take \(b_1 = 0 \).

Theorem 2.10. Let \(f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=2}^{\infty} b_m z^m \in S_H \) be a harmonic mapping in \(\mathbb{D} \), where \(h(z) + e^{i\theta} g(z) \) is convex univalent in \(\mathbb{D} \) for some \(\theta \in \mathbb{R} \). Then

\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=2}^{\infty} |b_m| r^m \leq 1
\]

for \(|z| = r \leq r_0 = (3 - \sqrt{5})/2 = 0.3134 \ldots \), where \(r_0 \) is a unique root in \((0, 1)\) of \(4r^3 - 9r^2 + 12r - 3 = 0 \). This result is sharp for Koebe function\(K(z) = \frac{z - 1/2z^2 + 1/6z^3}{(1-z)^3} \).

Our last theorem gives Bohr radius for convex univalent harmonic functions in \(S_H \).

Theorem 2.11. Let \(f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=2}^{\infty} b_m z^m \in K_H, z \in \mathbb{D} \). Then

\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=2}^{\infty} |b_m| r^m \leq 1
\]

for \(|z| = r \leq r_0 = (3 - \sqrt{5})/2 = 0.3819 \ldots \). This value of \(r_0 \) is sharp for \(L(z) = \frac{1}{2} \left[\sqrt{1 + \frac{1}{(1-z)^2}} + \sqrt{1 - \frac{1}{(1-z)^2}} \right] \).

3. Proof of theorems

We begin this section by stating a lemma which is easy to prove.

Lemma 3.1. Let \(h(z) = \sum_{m=0}^{\infty} a_m z^m \) and \(g(z) = \sum_{m=0}^{\infty} b_m z^m \) be two holomorphic functions in \(\mathbb{D} \) such that \(h(z) = g(z) \). Then

\[
\sum_{m=0}^{\infty} |a_m| r^m = \sum_{m=0}^{\infty} |b_m| r^m
\]

for all \(|z| = r < 1 \).
Proof of Theorem 2.4 From \(g'(z) = ke^{i\theta}z^n h'(z) \), we get
\[
\sum_{m=1}^{\infty} mb_m z^{m-1} = ke^{i\theta} \sum_{m=1}^{\infty} ma_m z^{m+n-1}, \quad z \in \mathbb{D},
\]
where \(a_1 = 1 \) and on integrating we obtain
\[
\sum_{m=1}^{\infty} b_m z^{m} = ke^{i\theta} \sum_{m=1}^{\infty} \frac{m}{m+n} a_m z^{m+n}, \quad z \in \mathbb{D}.
\]
Now, applying Lemma 3.1, we get
\[
\sum_{m=1}^{\infty} |b_m| r^m = k \sum_{m=1}^{\infty} \frac{m}{m+n} |a_m| r^{m+n}
\]
for all \(|z| = r < 1 \). Since \(h \) is analytic univalent in \(\mathbb{D} \) and according to De Brange’s theorem, \(|a_m| \leq m, m = 2, 3, \ldots \), therefore, from (17), we have
\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} |b_m| r^m = \sum_{m=1}^{\infty} |a_m| r^m + k \sum_{m=1}^{\infty} \frac{m^2}{m+n} r^{m+n}
\]
\[
\leq \sum_{m=1}^{\infty} mr^m + k \sum_{m=1}^{\infty} \frac{m^2}{m+n} r^{m+n}
\]
\[
= \sum_{m=1}^{\infty} mr^m + k \sum_{m=n+1}^{\infty} \frac{(m-n)^2}{m} r^m
\]
\[
\leq \sum_{m=1}^{\infty} mr^m + k \sum_{m=1}^{\infty} \frac{(m-n)^2}{m} r^m
\]
\[
= (k+1) \sum_{m=1}^{\infty} mr^m + kn^2 \sum_{m=1}^{\infty} \frac{1}{m} r^m - 2kn \sum_{m=1}^{\infty} r^m
\]
\[
= \frac{(k+1)r}{1-r} - kn^2 \log(1-r) - \frac{2knr}{1-r}.
\]
Thus \(\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} |b_m| r^m \leq 1 \) if
\[
\frac{(k+1)r}{(1-r)^2} - kn^2 \log(1-r) - \frac{2knr}{1-r} \leq 1.
\]
Now, we need to verify that inequality (18) holds for \(r \leq r_0 \), where \(r_0 \) is the unique root of the equation (8) lying in (0,1). For this let
\[
\phi(r) = \frac{(k+1)r}{(1-r)^2} - kn^2 \log(1-r) - \frac{2knr}{1-r} - 1.
\]
Then \(\phi'(r) \) is continuous in (0,1), \(\phi(0) = -1 < 0 \) and \(\lim_{r \to 1^-} \phi(r) > 0 \) implies that there is at least one root of \(\phi(r) = 0 \) in (0,1). But \(\phi'(r) > 0 \) for all \(r \in (0,1) \), \(k \in (0,1) \) and for all \(n \in \mathbb{N} \) shows that \(\phi \) is strictly increasing in
1.0
0.5
0.0
-0.5
-1.0
-1.0
-0.5
0.0
0.5
1.0
-1.0
-0.5
0.0
0.5
1.0

Figure 2. Image of $|z| < 0.3485$ under $f_0(z)$.

(0, 1). Hence $\phi(r) = 0$ has a unique root r_0 in $(0, 1)$.

To see that this r_0 is best possible one, we consider $f_0(z) = z/(1 - z)^2 + \frac{z}{(1 - z)^2} - 2z/(1 - z) - \log(1 - z)$. f_0 maps $|z| < 0.3485...$ onto the region given in the Figure 2 from which it is evident that r_0 is sharp and can not be improved further.

Proof of Theorem 2.7 From $g'(z) = \left(\frac{a + z}{1 + az}\right) h'(z)$ we obtain

\[
\sum_{m=1}^{\infty} mb_m z^{m-1} = \left(\frac{a + z}{1 + az}\right) \sum_{m=1}^{\infty} ma_m z^{m-1}, \ z \in \mathbb{D}
\]

where $a_1 = 1$ and this gives

\[
\sum_{m=1}^{\infty} mb_m z^{m-1} + \sum_{m=1}^{\infty} mab_m z^m = \sum_{m=1}^{\infty} ma a_m z^{m-1} + \sum_{m=1}^{\infty} ma_m z^m, \ z \in \mathbb{D}.
\]

Thus we have

\[
\sum_{m=1}^{\infty} m|b_m||z|^{m-1} - \sum_{m=1}^{\infty} m|a||b_m||z|^m \leq \sum_{m=1}^{\infty} m|a||a_m||z|^{m-1} + \sum_{m=1}^{\infty} m|a_m||z|^m.
\]

On integrating from 0 to r, we get

\[
\sum_{m=1}^{\infty} |b_m|r^m - \sum_{m=1}^{\infty} m |a||b_m||r|^{m+1} \leq \sum_{m=1}^{\infty} |a||a_m||r|^m + \sum_{m=1}^{\infty} m |a_m||r|^{m+1},
\]
and this implies
\[\sum_{m=1}^{\infty} \left(|b_m| - \frac{m-1}{m} |a| |b_{m-1}| \right) r^m \leq \sum_{m=1}^{\infty} \left(|a| |a_m| + \frac{m-1}{m} |a| |a_{m-1}| \right) r^m.\]

Now, we have
\[
\sum_{m=1}^{\infty} (|a_m| + |b_m|) r^m = \sum_{m=1}^{\infty} (|a_m| + |b_m|) r^m - \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1} + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1}\right) r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1}\right) \right)
= \sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} (|b_m| - \frac{m-1}{m} |a| |b_{m-1}|) r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1}\right) r^m.
\]

From (20), we get
\[
\sum_{m=1}^{\infty} (|a_m| + |b_m|) r^m \leq \sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=1}^{\infty} \left(|a| |a_m| + \frac{m-1}{m} |a| |a_{m-1}| \right) r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1}\right)
\]
\[
\leq \sum_{m=1}^{\infty} (1 + |a|) |a_m| r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |a_{m-1}| r^{m-1}\right) + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| r^{m-1}\right)
\]
\[
= \sum_{m=1}^{\infty} (1 + |a|) |a_m| r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |a_{m-1}| \right) r^m + \sum_{m=1}^{\infty} \left(\frac{m-1}{m} |a| |b_{m-1}| \right) r^m.
\]

Therefore, we get
\[
\sum_{m=1}^{\infty} \left(\frac{1}{m+1}\right) (|a_m| + |b_m|) r^m \leq (1 + |a|) \sum_{m=1}^{\infty} |a_m| r^m.
\]

Multiplying both sides with \(r\) and then differentiating w.r.t \(r\), we get
\[\sum_{m=1}^{\infty} (|a_m| + |b_m|) r^m \leq (1 + |a|) \sum_{m=1}^{\infty} (m + 1) |a_m| r^m.\]

As \(h\) is univalent, so \(|a_m| \leq m\) by De Branges’s Theorem. From (21), we have
\[\sum_{m=1}^{\infty} (|a_m| + |b_m|) r^m \leq (1 + |a|) \sum_{m=1}^{\infty} (m + 1) m r^m
= \sum_{m=1}^{\infty} (1 + |a|) \left(\frac{r (1 + r)}{(1 - r)^2} + \frac{r}{(1 - r)^2}\right) \leq (1 + |a|)
\]
for \(r^3 - 3r^2 + 5r - 1 \leq 0\) and this happens for \(r \leq 0.2291\).

Proof of Theorem 2.9 Let \(h(z) + e^{i\theta} g(z) = \psi(z)\), where \(\psi(z) = \sum_{m=1}^{\infty} C_m z^m\) is a convex univalent function. So, we have \(|a_m + e^{i\theta} b_m| = |C_m| \leq 1\) for all
\[m \in \mathbb{N}. \text{ This implies } |b_m| \leq 1 + |a_m|, m \in \mathbb{N}. \] We have with \(|a_1| = 1, \)

\[
\sum_{m=1}^{\infty} |a_m|r^m + \sum_{m=1}^{\infty} |b_m|r^m \leq \sum_{m=1}^{\infty} |a_m|r^m + \sum_{m=1}^{\infty} (1 + |a_m|)r^m
\]

\[
= 2 \sum_{m=1}^{\infty} |a_m|r^m + \sum_{m=1}^{\infty} r^m.
\]

Since \(h \) is univalent in \(\mathbb{D} \), so by De Brange’s Theorem, we have \(|a_m| \leq m \) and hence we get

\[
(22) \quad \sum_{m=1}^{\infty} |a_m|r^m + \sum_{m=1}^{\infty} |b_m|r^m \leq 1
\]

for \(\frac{2r}{(1-r^2)} + \frac{r}{1-r} \leq 1 \) i.e. for \(2r^2 - 5r + 1 \geq 0 \). This is true for \(r \leq r_0 = \frac{5 - \sqrt{17}}{4} = 0.2192... \).

Now to prove Theorem 2.10, we first state the following result of Sheil-Small [19].

Lemma 3.2. If \(f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=2}^{\infty} b_m z^m \in S^0_{\mathbb{H}} \) is convex in one direction, then

\[
|a_m| \leq \frac{(m+1)(2m+1)}{6}, \quad |b_m| \leq \frac{(m-1)(2m-1)}{6}.
\]

Proof of Theorem 2.10 \(h + e^{i\theta}g \) is convex univalent implies that \(f \) is convex in the direction \(-\theta/2 \), by the well known result of Clunie and Sheil-Small [4]. Therefore, from Lemma 3.2, we have

\[
|a_m| \leq \frac{(m+1)(2m+1)}{6}, \quad |b_m| \leq \frac{(m-1)(2m-1)}{6}
\]

and so,

\[
\sum_{m=1}^{\infty} |a_m|r^m + \sum_{m=2}^{\infty} |b_m|r^m \leq \sum_{m=1}^{\infty} \frac{(m+1)(2m+1)}{6} r^m + \sum_{m=2}^{\infty} \frac{(m-1)(2m-1)}{6} r^m
\]

\[
= \sum_{m=1}^{\infty} \frac{2m^2 + 1}{3} r^m
\]

\[
= \frac{2r(r+1)}{3(1-r)^3} + \frac{r}{3(1-r)}
\]

\[
\leq 1
\]

if \(4r^3 - 9r^2 + 12r - 3 \leq 0 \). This inequality holds for \(r \leq r_0 = 0.3134... \), where \(r_0 \) is unique root of \(4r^3 - 9r^2 + 12r - 3 = 0 \) in \((0, 1) \). This result is sharp for \(K(z) = \frac{z^{-1/2}z^2 + 1/6z^3}{(1-z)^3} + \frac{1/2z^2 + 1/6z^3}{(1-z)^3} \), where \(K \) is harmonic mapping in \(\mathbb{D} \), which
maps $|z| < 0.3134$ onto region given in Figure 3. It is clear from Figure 3 that $|K(z)| < 1$ for $|z| < 0.3134...$ and $0.3134...$ can not be improved. Hence this r_0 is sharp for inequality (14) also.

To prove Theorem 2.11, we need following result of Duren [5].

Lemma 3.3. If a harmonic function $f(z) = h(z) + g(z) = z + \sum_{m=2}^{\infty} a_m z^m + \sum_{m=2}^{\infty} b_m z^m \in K^0_H, z \in \mathbb{D}$, then

$$|a_m| \leq \frac{m + 1}{2} \quad \quad |b_m| \leq \frac{m - 1}{2}.$$

Proof of Theorem 2.11 In view of Lemma 3.3 $f(z) \in K^0_H$ implies that

$$|a_m| \leq \frac{m + 1}{2} \quad \quad |b_m| \leq \frac{m - 1}{2}.$$

This gives for $a_1 = 1$,

$$\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=2}^{\infty} |b_m| r^m \leq \sum_{m=1}^{\infty} \frac{m + 1}{2} r^m + \sum_{m=2}^{\infty} \frac{m - 1}{2} r^m$$

$$= 2 \sum_{m=1}^{\infty} m r^m$$

$$= \frac{r}{(1 - r)^2}$$

$$\leq 1.$$
for \(r \leq r_0 = 0.3819\ldots \). This value of \(r_0 \) is best possible, as the result is sharp for \(L(z) = \frac{1}{2} \left[\frac{1}{1-z} + \frac{z}{(1-z)^2} + \frac{1-z}{1-z^2} \right] \). For \(L(z) \) we have
\[
\sum_{m=1}^{\infty} |a_m| r^m + \sum_{m=2}^{\infty} |b_m| r^m = \sum_{m=1}^{\infty} \frac{m+1}{2} r^m + \sum_{m=2}^{\infty} \frac{1-m}{2} r^m \\
= \sum_{m=1}^{\infty} m r^m \\
= \frac{r}{(1-r)^2} \\
\leq 1
\]
for \(r \leq 0.3819\ldots \). Thus \(r_0 \) is sharp.

References

[1] Bappaditya Bhowmik and Nilanjan Das. “Bohr phenomenon for locally univalent functions and logarithmic power series”. In: Computational Methods and Function Theory 19.4 (2019), pp. 729–745.
[2] Bappaditya Bhowmik and Nilanjan Das. “Bohr phenomenon for subordinating families of certain univalent functions”. In: Journal of Mathematical Analysis and Applications 462.2 (2018), pp. 1087–1098.
[3] Harald Bohr. “A theorem concerning power series”. In: Proceedings of the London Mathematical Society 2.1 (1914), pp. 1–5.
[4] J Clunie and T Sheil-Small. “Harmonic univalent functions”. In: Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), pp. 3–25.
[5] Peter Duren. “Harmonic mappings in the plane”. In: LECTURE NOTES IN MATHEMATICS-SPRINGER VERLAG- (1994), pp. 408–408.
[6] Ilgiz R Kayumov, Saminathan Ponnusamy, and Nail Shakirov. “Bohr radius for locally univalent harmonic mappings”. In: Mathematische Nachrichten 291.11-12 (2018), pp. 1757–1768.
[7] Ming-Sheng Liu, Saminathan Ponnusamy, and Jun Wang. “Bohr’s phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings”. In: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 114.3 (2020), pp. 1–15.
[8] ZhiHong Liu and Saminathan Ponnusamy. “Bohr radius for subordination and K-quasiconformal harmonic mappings”. In: Bulletin of the Malaysian Mathematical Sciences Society 42.5 (2019), pp. 2151–2168.
[9] Yusuf Abu Muhanna. “Bohr’s phenomenon in subordination and bounded harmonic classes”. In: Complex Variables and Elliptic Equations 55.11 (2010), pp. 1071–1078.
[10] Yusuf Abu Muhanna, Rosihan M Ali, and Saminathan Ponnusamy. “On the Bohr inequality”. In: Progress in Approximation Theory and Applicable Complex Analysis. Springer, 2017, pp. 269–300.
[11] Lisbeth E Schaubroeck. “Subordination of planar harmonic functions”. In: Complex Variables and Elliptic Equations 41.2 (2000), pp. 163–178.

[12] Terry Sheil-Small. “Constants for planar harmonic mappings”. In: Journal of the London Mathematical Society 2.2 (1990), pp. 237–248.

Chinu Singla
Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal 148106, Punjab
India.
Email address: chinusingla204@gmail.com

Sushma Gupta
Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal 148106, Punjab
India.
Email address: sushmagupta1@yahoo.com

Sukhjit Singh
Department of Mathematics
Sant Longowal Institute of Engineering and Technology
Longowal 148106, Punjab
India.
Email address: sukhjitsd@yahoo.com