Photosynthetic characteristics of cotton are enhanced by altering the timing of mulch film removal

ZHANG Zhanqina, b, ZHANG Lia, b, TIAN Haiyana, NIU Yuanc, and YANG Xiangkuna, b*,

aXinjiang Academy of Agricultural and Reclamation Science, 221 Wuyi Road, Shihezi, Xinjiang, P.R. China 832000
bKey Lab of Xinjiang Production and Construction Corps for Cereal Quality Research and Genetic Improvement, 221 Wuyi Road, Shihezi, Xinjiang, P.R. China 832000
cShihezi Univ., Beisi Road, Shihezi, Xinjiang, P.R. China 832000

*Correspondence: starryyang@sina.com.

Abstract

Background: The photosynthetic parameters of cotton plants may be modified by the timing of film-removal during their growing period. This study was undertaken during 2015–2017 in Xinjiang, China, to determine to what extent the film mulching removal time—1 and 10 days before the first irrigation and 1 day before the second irrigation after seedling emergence— influenced cotton’s photosynthetic characteristics. The control group consisted of film mulching present throughout the growing period.

Results: The results suggested the following: (1) Removing mulching-film within 50 days of seedling emergence had adverse effects on soil temperature and moisture. (2) Film-removal before the first or second irrigation after emergence improved the net photosynthetic rate in cotton’s later flowering stage and its transpiration rate in mid and later flowering stages, while
enhancing the actual electron transport rate (ETR) and maximum electron transfer rate (ETRmax) between cotton photosystems I and II. (3) Film-removal treatment post-emergence also increased cotton plants’ tolerance to high irradiation, a trend more pronounced in the early flowering stage in wetter years. (4) Leaf area index (LAI) of cotton was reduced in the film-removal treatment, for which the greatest maximum accumulation of dry matter occurred in a drought year (i.e., 2015). (5) Film-removal increased lint cotton yield, except in dry year (2015).

Conclusions: Film-removal can improve cotton’s fiber quality to a certain extent. Collectively, our study’s experimental results indicate that applying mulch film removal at an appropriate, targeted time can improve photosynthesis and yield of cotton crops.

Keywords: chlorophyll fluorescence; gas exchange parameters; lint yield; removing mulch film; soil temperature and moisture content

Abbreviations Lists: △Wt2-t1, dry matter accumulation from t1 to t2; Ca, atmospheric CO2 concentration; Ci, intercellular CO2 concentration; Cond, conductance to H2O; D, portion of absorption light energy lost via the PS-II antenna pigment; E, portion of absorption light energy which cannot enter the photochemical process and cannot be lost through the antenna pigment; Elg, elongation percentage; ETR, actual electron transport rate; ETRmax, maximum electron transfer rate; F’, fluorescence at any time; F0, original fluorescence; F0’, minimal fluorescence at light adaptation; Fm, maximal fluorescence; Fm’, maximal Fluorescence at light adaptation; Fv/Fm, the maximum photochemical quantum yield of PS-II; GLM, general linear model; Ik, the minimum saturating irradiance (corresponding to plant
tolerance of intense light: \(\text{LAI} \), Leaf area index; \(\text{Ls} \), the stoma limit value; \(\text{LUE} \), light use efficiency; \(\text{MANOVA} \), multi-factor analysis of variance; \(\text{Mic} \), micronaire reading; \(\text{NPQ} \), the Stern-Volmer type non-photochemical fluorescence quenching; \(\text{P} \), actual photochemical quantum yield of PS-II; \(\text{PAR} \), photosynthetic active radiation; \(\text{Pn} \), photosynthetic rate; \(\text{PS-II} \), photoreaction system II; \(\text{qL} \), the coefficient of photochemical fluorescence quenching, assuming interconnected PS II antennae and lake model; \(\text{R}^2 \), Correlation Index; \(\text{rETR} \), the relative electron transfer rate; \(\text{Rmax} \), the maximum accumulation rate; \(\text{SFI} \), short fiber index; \(\text{Str} \), specific breaking strength; \(\text{t1} \), starting time of linear accumulation; \(\text{t2} \), end time of linear accumulation; \(\text{Tmax} \), the time when the dry matter accumulation rate reached a maximum; \(\text{UHML} \), upper-half mean length; \(\text{UI} \), uniformity index; \(\text{Wm} \), dry matter weight at the time when the dry matter accumulation rate reached a maximum; \(\text{WUE} \), water use efficiency; \(\text{WUEi} \), intrinsic WUE; \(\text{Y(II)} \), the actual photochemical quantum yield of PS-II; \(\text{Y(NO)} \), the quantum yield of non-light-induced non-photochemical fluorescence quenching; \(\text{Y(NPQ)} \), the quantum yield of light-induced (i.e., \(\Delta p \text{H} \) and zeaxanthin-dependent) non-photochemical fluorescence quenching; \(\alpha \), an initial slope of the fast light curve (conveying the efficiency of light energy utilization).
Introduction

China’s Xinjiang is a domestically and globally important cotton-growing region, where, since the early 1990s, the drip irrigation technique under mulch film (Hu and Li, 2003) has been extensively used because it considerably increases cotton production there (Jian et al., 2007; Rao et al., 2016). The cotton-growing industry has expanded greatly: in 2014 the cotton acreage in Xinjiang \(242 \times 10^4\) ha was six times its acreage in 1990 (Statistic Bureau of Xinjiang Uygur Autonomous Region, 1990–2014). The cotton yield of Xinjiang now accounts for > 50% of China’s total cotton production, and film mulching is now used in 85% of Xinjiang’s cotton fields (Bai et al., 2015).

However, the continuous and widespread application of mulch has led to the problem of plastic film residues, which has reduced cotton production (Li, 2016) and damaged farmland ecosystems (Dong et al., 2013; Nkwachukwu et al., 2013; Thompson et al., 2009; Adhikari et al., 2016). The abatement of residual film pollution is now an urgent issue impacting agricultural production in not only Xinjiang but also other arid and semi-arid regions. Yet it is difficult to convince cotton-growers to accept using a degradable mulch film as a substitute for common polyethylene film, since it is currently more expensive. Instead, mechanically recycling the plastic film has become a common practice to reduce film residues. More specifically, by removing the film only during key growth stages of cotton lets the film increase soil temperature and conserve soil moisture before its removal time, thus facilitating film recycling while preserving the film’s mechanical strength. This is an effective approach to reduce the pollution caused by such film residues.

Water availability (Wang et al., 2006) and temperature (Stong et al., 1999; Nabi et al.,
2008; Andersson et al., 2001) are the most crucial factors affecting crop yield in Xinjiang, which is best described as a desert-oasis agriculture region. It is inevitable that soil temperature, moisture content, and evaporation will modified by removing the plastic film during cotton’s growing season; hence this plant should be affected likewise. Photosynthesis is a vital physiological process that is sensitive to water conditions. Besides being affected by stomatal factors this process is also affected by non-stomatal factors of leaves, such as their chlorophyll content and chloroplast functioning (Zhao et al., 2007). For the latter, chlorophyll fluorescence technology offers a non-destructive way to determine plant photosynthetic efficiency (Gameiro et al., 2016); it can characterize intrinsic features involved in the absorption, transmission, dissipation, and distribution of light energy between different photosynthetic systems during photosynthesis (Zhao et al., 2007). This approach is now widely applied in crop resistance research, crop breeding, and physiological ecological research (Zhao et al., 2000; Kalaji et al., 2014).

Previous research (Li et al., 2010; Su et al., 2011a; Su et al., 2011b; Xie et al., 2012; Zhang et al., 2016) has mainly focused on how removal of the cotton field’s film layer changed soil temperature and cotton yield. Just a few studies have considered the effects of film-removal on the gas exchange characteristics of crop plants, such as maize (Zhang et al., 2016; Yu et al., 2006; He et al., 1999) and tobacco (Wang et al., 2010; Yang et al., 2010). Surprisingly, such studies on leaf gas exchange and chlorophyll fluorescence parameters are generally scarce for cotton crops grown.

Studying the photosynthetic characteristics of cotton plant populations at different film-removal times can provide valuable knowledge to guide cotton production best practices.
Here, our study objective was threefold: (1) to investigate the variation in cotton leaf gas exchange and chlorophyll fluorescence parameters of cotton populations across key plant growth stages, and (2) to examine the influence of film removal times on cotton growth, as well as lint cotton yield and its fiber quality; and (3) to provide a scientific basis for reducing residual film pollution in cotton production areas of arid and semi-arid regions.

Material and methods

Study area and design

The experimental research area was located in Shihezi, Xinjiang, China (44.3108°N, 85.986°E; elevation: 460 m). We established and replicated the field experiment yearly over a 3-year period (2015–2017) by using a split-plot experimental design with three replicates per treatment factor. For the latter, in the upper stratum (main plot level) was the type of cotton variety (XLZ 42 and XLZ 45, two varieties of *Gossypium hirsutum* L. unalike in their sensitivity to water.) used while the lower stratum had differing film-removal times (sub-plot level). Three treatments of mulch film-removal time were applied: 10 days (T10) and 1 day (T1) before the first irrigation and 1 day (E1) before the second irrigation after seedling emergence, with one control group of film mulching present across growth stages (CK). Four sub-plots were randomly arranged in every main plot and replicated three times, amounting to 24 sub-plots in all used in this experiment. Each sub-plot (84 m²) contained 12 rows of plants in 2 films (20-m long, 4.2-m wide; Fig. 1), with a 10-cm spacing between plants within a row, for a total of 2400 plants per sub-plot. The two varieties were arranged interspecifically in the field, such that, XLZ42 was on this film, but XLZ45 on the next one, with this alternation
continued. No buffer space was used between adjacent subplots.

Cotton seeds were purchased at the local market. In 2015 these seeds were sown by cotton planters on 24 April; they germinated on 6 May and plants were harvested on 10 September. In 2016, both cotton varieties were likewise sown on 5 May, germinated on 16 May, and harvested on 26 September. In 2017, they were sown on 21 April, germinated on 28 April, and harvested on 6 September. The length of the seasonal cotton-growing period in 2015, 2016, and 2017 was respectively 127, 134, and 131 days. Mulch film was removed manually at 19 (T10), 29 (T1), and 39 (E1) days after emergence in 2015; at 24 (T10), 34 (T1), 44 (E1) days after emergence in 2016; at 33 (T10), 43 (T1), 53 (E1) days after emergence in 2017.

The average air temperature, ≥ 10°C active accumulated temperature, and precipitation from May through September, was respectively 22.86°C, 3014°C, and 94 mm in 2015; 22.58°C, 3165°C, 120.2 mm in 2016; and 22.45°C, 3413°C, and 96.5 mm in 2017, (meteorological data obtained from the Shihezi Weather Bureau). For the basic physical and chemical properties of soil in experimental area, and the latter’s cropping pattern and field management practices, please refer to Yang et. al. (2017).

Sample collection and determination

Soil temperature measurement and calculation

After the cotton sowing, MicroLite USB Loggers (Fourier Technologies Ltd. Rosh, Haayin, Israel) were buried in the middle of each wide and narrow rows of XLZ42 in the four treatments at depths of 10 cm, 20 cm, and 30 cm (Fig. 1). So, in all, 24 data loggers were thus
buried. Data was collected hourly; daily average temperature was the mean value of 24 recorded values per day.

Accumulated soil temperature of different periods, similar to accumulated air temperature, is the sum of daily average soil temperatures of different soil layers during different periods. Average soil temperature is the mean value of accumulated soil temperature during a given period. Daily soil temperature difference is the difference between maximum and minimum daily temperatures. Accumulated soil temperature difference is the summed daily soil temperature difference during a given period. Average soil temperature difference is the mean value of accumulated soil temperature difference for a given period. For calculation methods refer to Chen (2005).

Measurement and calculation of soil moisture content

One week before the removal of film in 2017, a PR2 Profile Probe (Delta-T Devices Ltd., Burwell, Cambridge, UK) was buried in the middle of each of the wide and narrow rows of XLZ42 in the four treatments (Fig. 1); hence a total of eight probes were buried. During the 33–55 days since seedling emergence, the volumetric moisture content of the 0–10, 10–20, 20–30, 30–40, 40–60, and 60–100 cm soil layers were monitored daily. After 55 days post-emergence these measurements were taken once every 4 days, plus an extra additional measurement made before and after each irrigation event.

Gas-exchange parameters of cotton

The Li–6400 XT portable photosynthesis system (Li-Cor Inc, Lincoln, USA) was used to determine the gas exchange parameters of cotton (XLZ42 and XLZ45) leaves at 5, 15, 25, 35, and 45 days after they flowered. The standard leaf chamber (2 cm × 3 cm) was used, and three
plants were measured in this way per treatment combination (variety × removal time; the same for below). Each treatment combination thus had replicates three times. In each case, the sampling time of measurement was between 12:00 and 14:00, when the weather was clear and cloudless. The second leaf from top to bottom on the main stem was measured per plant. To reduce the error and ensure the consistency of these in situ measurements, we applied the method of Zhan (2014); briefly, approximately 100 leaves from 100 plants with uniform growth were first marked, with the same leaves measured each time.

The measured leaf parameters were as follows: Pn (photosynthetic rate, \(\mu \text{mol CO}_2 \text{ m}^{-2} \text{s}^{-1} \)), Trmmol (transpiration rate, \(\text{mmol H}_2\text{O m}^{-2} \text{s}^{-1} \)), Cond (conductance to H\text{O}, \(\text{mmol H}_2\text{O m}^{-2} \text{s}^{-1} \)), Ci (intercellular CO\text{2} concentration, \(\mu \text{mol mol}^{-1} \)), PAR (photosynthetic active radiation, \(\mu \text{mol photons m}^{-2} \text{s}^{-1} \)) and Ca (atmospheric CO\text{2} concentration, \(\mu \text{mol mol}^{-1} \)).

The stoma limit value (Ls) was calculated as \(Ls = 1 - (Ci/Ca) \) (Berry and Downtow, 1982). Water use efficiency (WUE) and intrinsic WUE (WUEi) were calculated according to the equations of \(\text{WUE} = \frac{\text{Pn}}{\text{Trmmol}} \) and \(\text{WUEi} = \frac{\text{Pn}}{\text{Cond}} \) (Penuelas et al., 1998). Light use efficiency (LUE) was calculated as \(\text{LUE} = \frac{(\text{Pn} / \text{PAR}) \times 100\%}{} \) (Li et al., 2014).

Chlorophyll fluorescence parameters of cotton leaf

A PAM-2500 portable modulated chlorophyll fluorometer (Heinz Walz GmbH, Eichenring, Effeltrich, Germany) was used to quantify the chlorophyll fluorescence parameters of the same-positioned leaf of sampled cotton plants. For each treatment combination three replicate plants were used. Each treatment combination thus had replicates three times. Their measuring time was between 8:00 and 12:00 on the same day the gas exchange parameters were measured, with a 2030-B leaf clip used. Before their determination, the leaf was fully
dark-adapted for ca. 30 min. We then set the measuring light intensity to 102 μmol m⁻² s⁻¹ and the actinic light intensity to 713 μmol m⁻² s⁻¹. The time interval between the first saturating pulse and open actinic light was 40 s, with a 20-s time interval between each saturating pulse after turning on the actinic light (width of 310 S). The saturating pulse intensity in the quenching analysis was 17 250 μmol m⁻² s⁻¹. Then, we transferred to the “Slow Kinetics Window” and started its automatic program to determine the slow-induction parameters. The following parameters were considered: F₀ (original fluorescence), Fₘ (maximal fluorescence), F’ (fluorescence at any time), Fₘ’ (maximal Fluorescence at light adaptation), and F₀’ (minimal fluorescence at light adaptation). The remaining fluorescence parameters were calculated according to established methods: Fᵥ/Fₘ was used to express the maximum photochemical quantum yield of photoreaction system II (PS-II) (Kitajima and Butler, 1975), Y(II) is the actual photochemical quantum yield of PS-II (Genty et al., 1989), qL is the coefficient of photochemical fluorescence quenching, assuming interconnected PS II antennae and lake model (Kramer et al., 2004), NPQ is the Stern-Volmer type non-photochemical fluorescence quenching (Bilger and Björkman, 1990), Y(NO) is the quantum yield of non-light-induced non-photochemical fluorescence quenching (Kramer et al., 2004), and Y(NPQ) expressed the quantum yield of light-induced (i.e., ΔpH and zeaxanthin-dependent) non-photochemical fluorescence quenching (Kramer et al., 2004).

Fitting the light curve

To do this, we determined the relative electron transfer rate (rETR, μmol m⁻² s⁻¹) under different intensities of PAR (9, 65, 111, 205, 352, 570, 722, 921, 1298, 1796, and 2139 μmol m⁻² s⁻¹). Each level of PAR lasted 20 s, with three replicates used per treatment combination.
We used pamwin-3 (the operating software of the PAM-2500 device) to fit curves to this collected data. The fitting formula used was $\text{ETR} = \frac{\text{PAR}}{(a \cdot \text{PAR}^2 + b \cdot \text{PAR} + c)}$ (Eilers and Peeters 1988).

Fitting parameters consisted of an initial slope of the fast light curve (α, electrons photons$^{-1}$, conveying the efficiency of light energy utilization), the minimum saturating irradiance (I_k, in μmol m$^{-2}$ s$^{-1}$, corresponding to plant tolerance of intense light), and the maximum electron transfer rate (ETRmax, in μmol m$^{-2}$ s$^{-1}$). The calculation formulas for each parameter were $\alpha = 1/c$; $\text{ETRmax} = 1/(b + 2 \cdot \sqrt{a \cdot c})$; $I_k = c/(b + 2 \cdot \sqrt{a \cdot c})$.

Dry matter accumulation, canopy structure, lint yield and fiber quality characters of cotton

Cotton plants— their shoots and roots in the 0–30 cm soil layer— were sampled in each subplot every 14 days from the day 33 (2017), day 21 (2016) and day 35 (2015) since seedling emergence. For details of this sample collection and determination, refer to Yang et. al. (2017). Further, a LAI-2200C plant canopy analyzer (Li-Cor Inc, Lincoln, USA) was used to measure and determine the leaf area index (LAI) of cotton, following Malone et. al., (2002). Yield and fiber quality characters of harvested cotton were measured according to Yang et. al. (2017).

Data analysis

Data processing and figure drawing were performed with Microsoft Excel 2010 (Microsoft Corporation, Redmond, USA) and SigmaPlot 12.5 (Systat Software Inc, San Jose, USA.), respectively.

The MANOVA (multi-factor analysis of variance) was carried out with univariate GLM
(general linear model). The number of days after flowering (df = 4), film-removal time (df = 3), and cotton variety (df = 1) were used as fixed factors, and the different photosynthetic characteristics were used respectively as the dependent variables in each GLM. Which fixed factors had significant effects on cotton’s photosynthetic characteristics was examined by conducting multiple comparisons using LSD (least significant difference) tests at an alpha level = 0.05. Associations between net photosynthetic rate (Pn) and other gas exchange parameters in the various treatment groups were investigated with Pearson correlations (n = 30) in a two-tailed test (* P < 0.05, ** P < 0.01). These analyses were carried out in SPSS v23.0 statistical software (International Business Machines Corp, Armonk, USA).

Dry matter accumulation of cotton was modeled using a logistic equation: Y = K/(1 + EXP [a + bt]). The method developed by Ming (2006) was used to calculate the following parameters: Rmax represents the largest dry matter accumulation rate at Tmax, which is the time at which cotton dry matter accumulation rate has reached its maximum; the weight of dry matter at Tmax is given by Wm. The time point when rectilinear accumulation starts is recorded as t1 and when it ends accumulation ends as t2; hence ΔW_{t2-t1} represents dry matter accumulated from t1 to t2. This analysis was performed in DPS16.05 (Tang and Zhang, 2012) using the Marquardt method.

Results

Soil temperature and moisture among film-removal treatments

Within 1 to 50 days after seedling emergence, soil temperature of all soil layers in the film-removal treatment was lower than those of CK. After the 50-day mark, however, the gap
gradually narrowed until it reversed, becoming higher than under CK (Fig. 2.). Soil average temperature, accumulated temperature, and mean temperature difference (Table 1) in the 0–30 cm soil layer during the entire growth period were highest in CK in 2015 (respectively 23.19°C, 2533°C, and 5.94°C) and T10 treatment in 2016 (respectively 22.93°C, 2583°C, and 2.98°C). In both experimental years, accumulated temperature difference (Table 1) was highest in CK, at 648°C (2015) and 145°C (2016).

From 37 days post-emergence to the first irrigation (i.e., 42 days since emergence), soil moisture content (v/v; the same blow) in the 0–10 cm soil layer was highest in CK, while for the 10–20 cm soil layer it was the highest in the T10 treatment. In deeper soil (40–100 cm soil layer), soil moisture content of CK was the highest among treatments. From the first to second irrigation (43–52 days after emergence), soil moisture content under CK in soil 0–30 cm deep increased slightly, but differences between treatments were not obvious. The rank order of moisture content in the 30–100 cm soil layer was thus T1 > CK > T10, and the deeper the soil layer, the greater the gap in moisture content found between treatments (Fig. 3.).

After the second irrigation (53 days after emergence), soil moisture content was greatest under CK in the 0–60 cm soil layer, while that under the T1 treatment was the highest for the 60–100 cm layer. From the 20-cm depth mark and downward, T10 consistently had the lowest moisture content (Fig. 3).

Gas exchange parameters of film-removal treatments at different days since flowering

The net photosynthetic rate (Pn, Fig. 4A) of film-removal treatments exceeded that of CK at 45 days after flowering, while at the early flowering stage there were no significant
differences among the treatments. Nonetheless, the film-removal treatment early in flowering of XLZ45 in 2017 had a slightly lower Pn than under CK, whereas the other film-removal treatments had Pn values slightly greater than CK’s.

At 5 days after flowering in 2017, relative to CK, the Pn (Fig. 4A), Cond (Fig. 4B) and Ci (Fig. 4C) values of XLZ45 under all film-removal treatments were lower but their Ls value was much higher (Fig. 4D). This indicated that the decreased photosynthetic rate of cotton plants in those film-removal treatments were driven by reductions in stomatal conductance.

However, at 45 days after flowering, the Pn (Fig. 4A), Cond (Fig. 4B) in 2016/2017 and Ci (Fig. 4C) in 2016 of CK were lower than those recorded in the T1 and T10 treatments, while the 2016 Ls value (Fig. 4D) of CK was higher than those of T1 and T10 treatments; hence, this indicated that in the years with more rainfall (i.e., 2016), net photosynthetic rate declined at this later growth stage because of lowered stomatal conductance. But in 2017, when rainfall was normal, the decreased net photosynthetic rate of CK plants was mainly caused by non-stomatal factors.

The MANOVA showed that different flowering days had a significant impact on Pn, Cond, Ci, and Ls, while treatments differed in their significant impact on Pn (2016/2017), Cond (2016/2017), and Ci (2016), whereas the cotton variety grown had a significant impact on only Pn (2016/2017) and Cond (2016).

According to the correlation coefficients of Pn with other gas exchange parameters of different treatments in 2016 and 2017 (Table 2), the association between Pn and Cond or LUE of each treatment in 2016 was stronger than that in 2017, whereas Pn and WUE were more strongly associated in 2017 than 2016. This indicated that cotton’s photosynthetic rate was
mainly affected by light energy utilization rate and stomatal factors in the year (2016) with heavy rainfall, yet in a normal rainfall year (2017) soil water status has a greater influence on photosynthesis.

Chlorophyll fluorescence parameters of cotton leaves among film-removal treatments at different days since flowering

Influence of mulch film removal on maximum photochemical quantum yield of PS-II (Fv/Fm) and actual photochemical quantum yield of PS-II (Y(II))

In the early stage of flowering (i.e., 5 days post-flowering), Fv/Fm of CK was the highest overall. As the process of cotton reproduction continued, the gap in Fv/Fm values between the CK and film-removal treatments gradually narrowed, with Fv/Fm under the film-removal treatments eventually surpassing CK. However, at 45 days post-flowering, except for Fv/Fm of XLZ42 plants in 2017 being significantly higher than CK, the Fv/Fm values for the film-removal treatment of different cotton varieties were all lower than CK’s (Fig. 5.). The MANOVA showed that only number of days since flowering in either year had a significant impact on Fv/Fm, whereas it was similar among film-removal treatments.

In 2017, removing the film mulching reduced the Y(II) value at the early flowering stage, which then increased significantly, especially in the late growth stage; the Y(II) value increased most when film was removed earliest (T10). However, in the heavy rainfall year (2016), removing the film significantly increase Y(II) at the early flowering stage. As cotton reproduction proceeded, the gap in Y(II) values between the film-removal treatments and CK gradually narrowed (Fig. 5.). In sum, in 2017, both the number of days after flowering and the timing of mulch removal significantly impacted Y(II). In 2016, only the latter had a
significant impact on Y(II).

Influence of mulch film removal on photochemical fluorescence quenching assuming interconnected PS-II antennae (qL) and Stern-Volmer type non-photochemical fluorescence quenching (NPQ)

The qL (Fig. 6.) value represents the level of electron transfer activity. In the year with more rainfall (2016), removing the plastic film significantly enhanced the qL of PS-II in the early stage of flowering (5 days post-flowering), but earlier film-removal (T1 and T10 treatments) weakened electron transfer activity of PS-II in the later growth stage. The qL under the E1 treatment was strongest during the whole cotton growth period. In the normal rainfall year (2017), removal of the film promoted electron transfer activity of PS-II of XLZ42 earlier in flowering (i.e., 1–15 days post-flowering) but that of XLZ45 in mid and later stages of flowering (i.e., 25–45 days post-flowering). At 45 days after flowering, qL of PS-II in the T10 treatment was the highest.

In the late flowering stage (45 days post-flowering), among treatments, the NPQ (Fig. 6.) of T10 was the lowest. However, in the early flowering stage, the NPQ of all three film-removal treatments exceeded that of CK in 2017, while the opposite occurred in 2016.

Different treatments, cotton varieties, and number of days after flowering had no significant influence on NPQ in 2016. Yet different treatments significantly affected qL, in that there were significant differences between E1 or T10 and CK. In 2017, only days after flowering had a significant impact on NPQ, and NPQ was similar among treatments. However, different treatments and days after flowering significantly influenced qL, with that of T10 differing considerably from the other three film-removal treatments.
Influence of mulch film removal on quantum yield of light-induced (Y(NPQ)) and non-light induced(Y(NO)) non-photochemical fluorescence quenching of cotton leaves

At the early stage of flowering (5 days post-flowering), the values of Y (NPQ) (Fig. 7.) of the three film-removal treatments in 2017 and the CK treatment in 2016 were greatest. This suggested cotton plants were stressed in each treatment and protected themselves by heat dissipation.

The Y (NO) value (Fig. 7.) is an index of photic injury. In the early flowering stage, the film-removal treatment of XLZ42 (i.e., with the lower Y(NO) value), which is better able to tolerate drought (mainly via heat dissipation to avoid the photic injury), whereas although XLZ45 (with the higher Y(NO) value) has poor drought tolerance it nonetheless tried to protect itself by heat dissipation, but film-removal treatment still received the photic injury. By contrast, in 2016 the lowest values of XLZ42 and XLZ45 were in the CK and T10 treatments, respectively. At the 45 days after flowering, T10 exhibited the lowest light protection capacity and the greatest photic injury. Multivariate analysis revealed that different treatments (both in 2016 and 2017) and days after flowering (2017) had a significant impact on Y (NPQ), while only days after flowering significantly affected Y (NO).

Effects of mulch film removal on energy conversion of cotton leaves in different growth stages

In 2017, except for the highest proportion of energy entering the photochemical process (P; that is, the actual photochemical quantum yield of PS-II) in the T10 treatment of XLZ45 at 45 days after flowering, the P value of the other treatments basically showed a unimodal curve change, with the highest proportion occurring in the first 15 days since flowering. This
indicated that in the normal year of rainfall, light energy absorbed at the early flowering stage is mainly shunted into photochemical reactions, but at the later flowering stage is mainly lost through thermal dissipation to avoid damage to cotton’s photosynthetic mechanism. In 2016, proportions of heat dissipation (D) under the four treatments were highest among years, changing little during the whole growth period. The P value of CK at 5 days after flowering was significantly lower than those of other treatments. Thus further suggested that the activity of PS-II photochemical reaction center of CK plants in their early flowering stage were lower in 2016 than in 2017, with most excess light energy absorbed by them dissipated via heat dissipation and a few parts entering photochemistry processes (Fig. 8.)

At 45 days after flowering, the P value of the T10 treatment was highest, and in 2017 more obviously so. This suggested that the earlier the film was removed, the sooner the drought stress, the more of which can increase the actual photochemical quantum yield of PS-II, making this trend is more obvious in the dry year (2015) performance of cotton.

Rapid light curve of cotton leaf in different film-removal treatments at different days after flowering

The rapid light curve directly conveys changes in the electron transfer activity of photoreaction system under different light intensity conditions. By fitting this curve to our data for cotton can be used gauge the maximum electron transfer rate (ETRmax, Table 3), light energy utilization efficiency (α, Table 4) and the tolerance degree to strong light (Ik, Table 5) of the plant’s photoreaction system.

In the rainy year (2016), removal of the film improved both the ETR (Fig. 9) and ETRmax (Table 3) of cotton in all growth periods, especially in its early flowering stage. In
the normal rainfall year (2017), however, it increased ETR (Fig. 9) and ETRmax (Table 3) in the mid flowering stage (15–25 days post-flowering). Film-removal treatments improved the light energy utilization efficiency in the early flowering stage but it was adversely affected in the mid flowering stage in the normal rainfall year (2017) (Table 4); in other plant growth periods it improved the light energy use efficiency of cotton (Table 3). The ability of plants to withstand strong light (Table 5) can be improved by removing the film at suitable periods, namely before the first irrigation in a rainy year, but before the second irrigation in normal rainfall years.

The MANOVA indicated that number of days after flowering (2016/2017) and different film-removal treatments (2016) had a significant impact on the ETRmax and Ik values of cotton, but in 2017 only days after flowering significantly influenced the α value.

Population-level physiological parameters of cotton among film-removal treatments at different days since flowering

As Figure 10 shows, leaf area index (LAI) of each treatment followed a unimodal curve of change. At the initial growth stage, leaf area increased most quickly, almost linearly. At different growth stages during the three years, the LAI of CK plants was generally the highest among treatments. Apart from the LAI of XLZ45 under the E1 treatment of in 2017 (= 4.40) being highest, larger values were found in CK for both cotton varieties: 4.75 (XLZ42 in 2017), 6.42 (XLZ45 in 2016), 5.93 (XLZ42 in 2016) and 4.60 (XLZ42 in 2015). Higher LAIs of CK plants were beneficial for promoting their dry matter accumulation.

The trend in cotton dry matter accumulation in the film-removal treatments followed an S-shaped curve (Fig. 11). As cotton grew in size, its dry matter accumulation increased, but
the rates of accumulation clearly varied among growth stages.

Table 6 shows that, in addition to 2015, all film-removal treatments promoted dry matter accumulation and maximum dry matter accumulation under the film-removal treatments were greatest overall. Specifically, T_{max} appeared earlier with film removed than in the CK, as did the linear accumulation, while the linear accumulation time (t_2-t_1) was longer with a larger $\Delta W_{t_2-t_1}$ as well.

Yield and fiber quality of cotton among film-removal treatments

The effect of removing the mulch film on yield was related to climatic conditions in different years. In the drought year (2015), it reduced the yield of cotton whereas in other years it increased the yield. Fiber quality was also improved, albeit to a certain extent, and the earlier the timing of film removal, the more pronounced was this trend. The lint yield and fiber quality showed no statistical difference between treatments. (Table 7).

Discussion

Influence of film-removal time on soil temperature, moisture, and cotton growth

Film mulching can increase soil temperature (Ramakrishna et al., 2006) and thereby directly influence crop performance. Compared with uncovered soil of the cotton field, the temperature of film-covered soil increased by 1–3°C from sowing time in spring to tasseling stages (Su et al., 2011a; Liu et al., 2014); however, no significant differences in soil temperature between film-covered and film-removed groups were found for summer-sown sweet potatoes (Hou et al., 2015). In our study, we found the soil temperature increase by the mulching film could be maintained for ca. 50 d. Within 50 d after cotton seedling emergence,
film removal lowers soil temperature. From then on, the gap in soil temperature among depth layers between film-removal groups and CK narrowed: generally, with the film removed and the closer to the surface soil layer, the bigger was the gap (Fig. 2.).

Mulching can reduce soil water consumption and increase water use efficiency, which is conducive to improved crop yields (Kader et al., 2017). However, some studies have shown that mulch can lead to increased water consumption of crops while promoting crop growth (Liu et al., 2014), leading to reduced water storage in deep soil layers (Sun et al., 2014). Removal the mulching film could significantly reduce soil moisture content before cotton plants begin to flower (Li et al., 2016; Zhang et al., 2016), whereas no such effects occurred when it was applied after florescence (Li et al., 2016). More than 20 years ago, Xia et al. (1994) showed that film removal before irrigation led to a soil moisture content of the 0–35 cm soil layer that was 18.2% lower, on average, up 30% lower than under constant mulching. Our study also indicated that, in 2017, the 0–60 cm soil layer treated with mulch had a higher moisture content, but deeper soil (60–100 cm layer) under T1 treatment had the greatest moisture (Fig. 3).

Film mulching mainly functions by increasing soil temperature and promoting plants’ growth and development early in ontogeny (Farrell and Gilliland, 2011; Braunack et al., 2015; O’Loughlin et al., 2015; Wang et al., 2016). As the growth process progresses, temperature becomes less of a dominant factor limiting crop growth, such that long-term film mulching can lead to excessive soil temperatures and poor soil permeability during late growth stages of plants. This can interfere with root respiration, affecting plant development and leading to detrimental impacts on crop yield and quality (Wang et al., 2009; Kwabiah, 2005; Li et al.,
2014; Jiang, 2011). However, there is research that suggests film-removal effects will vary
with different crops and film-removal timing. For a given species, removing the film from the
ground at the appropriate growth stage could effectively reduce soil temperature, enhance root
system activity, and optimize distribution of photosynthetic products. Doing so would also
help prevent crop prematurity and improve yield, whereas film removal at the time might
have negative consequences (Al-Assir et al., 1991; Kwon et al., 2011; Jiang et al., 2012).

This study showed that film-removal, when implemented at the same time in two years,
could nonetheless produce different cotton yield effects depending on climatic conditions
(Table 7). In a dry year, the treatment reduced the yield while in the wet year it increased the
yield, with fiber quality also partly enhanced.

Influence of film-removal timing on gas exchange parameters of cotton leaf

In the early growth stage of cotton, mulching has water-saving and temperature-raising effects,
which shortens the growing season of cotton. After starting to irrigate the cotton, with higher
temperatures and irrigation amounts, continuous mulching may have adverse effects on the
improved soil conditions, root development, and photosynthetic performance of targeted
plants (Du et al., 1989). Covering the soil with mulching film throughout the growth period
has been shown to cause rapid declines in net photosynthetic rate and chlorophyll content of
tobacco (Wang et al., Yang et al., 2010), tomato (Wang et al., 2004), beet (Cai et al., 1988),
cabbage (Zhang et al., 1995) and other crops, accelerating their diminished photosynthetic
function in later growth stages. However, removal of mulch at the right time increased
photosynthetic functioning of both tobacco (Wang et al., 2010) and maize (Zhang et al., 2016;
Yu et al., 2006; He et al., 1999), which increased the accumulation of photosynthetic products,
and alleviated the phenomenon of premature aging in these crop plants.

The results of our study also indicated that film removal could increase the Pn of cotton (Fig. 4A) in both its early and late flowering stages, and also elevate Cond (Fig. 4B) in the late flowering stage. However, in the normal rainfall year (2017), the cotton variety with poor drought-resistance (XLZ45) under the film-removal treatment had a lowered Pn (Fig. 4A) in its early flowering stage due to a reduction in Cond (Fig. 4B). For the variety with better drought resistance and in the years with more rainfall, its Pn (Fig. 4A) under the mulching treatments decreased in the later growth stage due to lower Cond (Fig. 4B).

Influence of film-removal timing on chlorophyll fluorescence parameters of cotton leaves

Chlorophyll fluorescence is closely related to each reaction in the process of photosynthesis, so how environmental change affects it may be shown by correlated changes in key fluorescence parameters (Chen et al., 2006). Just a few studies, from China and abroad, have investigated film-removal effects on chlorophyll fluorescence parameters at different growth stages. For example, removal of mulching film at the early growth stage can cause different degrees of drought stress (Zhang et al., 2016). In contrast to these, many studies (Mishra et al., 2012; Nankishore et al., 2016; Boussadia et al., 2008) worldwide have reported on how drought affects chlorophyll fluorescence parameters of crop plants.

Relevant studies have shown that Fv/Fm can be reliably used as a relative index for detecting drought-resistant crops (Zhang et al., 2003; Mishra et al., 2012; Nankishore et al., 2016), and it can quickly and accurately capture the water status of cotton leaves during drought stress (Xue et al., 2013). Under drought conditions, the Fv/Fm values of leaves from cotton (Xie et al., 2015; Tang et al., 2007; Liu et al., 2008), *Trigonella foenum-graecum*
(Baghbani-Arani et al., 2017), tulips (Miao et al., 2015), and olive trees (Boussadia et al., 2008) are known to decrease considerably. Drought was also shown to lower the Y(II) values of olive tree (Boussadia et al., 2008). In this study, we found that exposure to certain degree of drought stress during early flowering resulted in decreased Fv/Fm values under the all film-removal treatments (Fig. 5).

Some drought is beneficial for increasing the opened proportion of the PS II reaction center, so more light energy becomes used to promote photosynthetic electron transport (Zhao, et al., 2007), thereby improving the latter’s ability. For example, ETR of Prunus persica (L.) Batsch, var. silver king was significantly improved after water stress induction (Osorio et al., 2006). Recently, Cao et al. (2015) found that silicon (Si) was related to the high ETR of tomato under drought conditions, yet other work found the ETR of cotton (Deeba et al., 2012) decreases under drought conditions, and when its leaf water potential drops below –3Mpa, the ETR was reduced by more than 80% (Gleason et al., 2017). Earlier, Ogaya and Penuelas (2003) had found that drought treatments caused a slight decrease in ETR values of both Quercus ilex and Phillyrea latifolia, whereas Snider et al. (2013) believes cotton’s ETR is not affected by drought. Our results showed that removing the mulching film before irrigation in a rainy year (2016) could improve the ETR (Fig. 9.) and the ETRmax (Table 3), especially during early flowering. But in a normal rainfall year (2017), though film removal reduces ETR (Fig. 9.) and ETRmax (Table 3) early in flowering it improved both parameters in the mid flowering stage (i.e., 15 to 35 days since flowering began).

Under mild drought stress, the Fv/Fm, Y (II), and qL values of cotton plants can increase with prolonged stress (Xu et al., 2017). Drought stress also increased the NPQ of cotton (Liu
et al., 2008) and olive (Boussadia et al., 2008) plants, and also decreased the qL value of rice (Pieters et al., 2005).

Here, we found the Fv/Fm value of cotton under the film-removal treatments were generally higher after the hardening of certain drought stress in the mid stage of flowering (Fig. 5). Removing the film clearly improved the Y (II) values (Fig. 5) in the mid flowering stage in 2017 (i.e., 15 to 45 days since flowering). In 2017, the NPQ of film-removal treatments were higher than CK at the early flowering stage (Fig. 6). Our results suggest film removal can increase the qL value of cotton in rainy years, but normal rainfall years it would increase drought-resistant varieties’ qL value. In late flowering stage, the qL value of film-removal treatments were reduced in the years with heavy rainfall, while the opposite likely occurs true in years with normal rainfall.

Conclusion

To improve soil temperature and conserve soil moisture content when growing cotton plants, this effect of film mulching should be maintained for at least 50 days after seedlings emerge. Removing the film before this will seriously affect cotton growth and development. The benefits of timed removal of the film, whether before the first or second irrigation after emergence, should be decided according to the climate of a given year. It is beneficial for promoting photosynthesis in the late flowering stage of cotton after early drought stress induction for increasing the cotton yield.
Acknowledgments

We extend our gratitude to Mr. Jin Wang for providing us with the meteorological data.

Authors' contributions

Yang XK designed the study, Zhang ZQ wrote the main manuscript text and prepared all figures. Zhang L Tian HY and Niu Y carried out the experimental work and analysed data.

All authors reviewed the manuscript. All authors read and approved the final manuscript.

Funding

This study was supported financially by the special fund for scientific research into non-profit industries (agriculture; grant no. 201503120).

Availability of data and material

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

Not applicable
References

Adhikari R, Bristow KL, Casey PS, et al. Preformed and sprayable polymeric mulch film to improve agricultural water use efficiency. Agri. Water Management. 2016; 169, 1-13. https://doi.org/10.1016/j.agwat.2016.02.006

Al-Assir IA, Rubeiz IG, Khoury RY. Response of fall greenhouse COS lettuce to clear mulch and nitrogen fertilizer. J. Plant Nutr. 1991; 14(10), 1017-1022. https://doi.org/10.1080/01904169109364261

Andersson S, Nilsson S I. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor. Soil Biol. Biochem. 2001; 33, 1181 -1 191. https://doi.org/10.1016/S0038-0717(01)00022-0

Bagh-bani-Arani A, Modarres-Sanavy SAM, Mashhadi-Akbar-Boojar M, et al. Towards improving the agronomic performance, chlorophyll fluorescence parameters and igments in fenugreek using zeolite and vermicompost under deficit water stress[J]. Industrial Crops and Products, 2017; 15, 346-357. https://doi.org/10.1016/j.inderop.2017.08.049

Bai J, Wang J, Chen X, et al. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China. J. Arid Land. 2015; 7, 272–284. https://doi.org/10.1007/s40333-014-0012-x

Berry JA, Downton WJS. Environmental regulation of photosynthesis[M]// Govindjee., Photosynthesis (Vol Ⅱ). New York: Academic Press, 1982; 263-343. https://doi.org/10.1016/B978-0-12-294302-7.50017-3
Bilger W, Björkman O. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth. Res., 1990; 25(3), 173-185.
https://doi.org/10.1007/BF00033159

Boussadia O, Mariem FB, Mechri B, et al. Response to drought of two olive tree cultivars (cv Koroneki and Meski). Sci. Hortic., 2008; 116(4), 388-393.
https://doi.org/10.1016/j.scienta.2008.02.016

Braunack MV, Johnston DB, Price J, et al. Soil temperature and soil water potential under thin oxodegradable plastic film impact on cotton crop establishment and yield. Field Crops Res. 2015;184, 91-103. https://doi.org/10.1016/j.fcr.2015.09.009

Cai B, Xiao ZQ, Bai DC. The present and prospect of study on sugarbeet plastic mulching cultivated technique in our country. China Sugarbeet, 1988; 3,12-17.

Cao B L, Ma Q, Zhao Q. Effects of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hortic., 2015; 194, 53-62. https://doi.org/10.1016/j.scienta.2015.07.037

Chen J S. Characteristics of soil temperature and soil water for winter wheat with no-tillage and effect on winter wheat growth in north China plain. Ph. D. thesis, China Agric. Univ., China. 2005. (in Chinese with English abstract)

Chen JM, Yu XP, Cheng J A. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses. Acta Agriculturae Zhejiangensis, 2006; 18(1), 51-55.

Deeba F, Pandey A K, Ranjan S.et al. Physiological and proteomic responses of cotton
(Gossypium herbaceum L.) to drought stress. Plant Physiol. & Biochem., 2012; 53, 6-18.

https://doi.org/10.1016/j.plaphy.2012.01.002

Dong H G, Liu T, Li Y G. Effects of plastic film residue on cotton yield and soil physical and chemical properties in Xinjiang. Transactions of the Chinese Society of Agricultural Engineering, 2013; 29, 91-99. (in Chinese with English abstract)

https://doi.org/10.3969/j.issn.1002-6819.2013.08.011

Du CY, Yuan Z X, Jin Y. The effect of removing mulch is better for corn in the case of mulch film. Modern Agri., 1989; 10, 13. https://doi.org/10.14070/j.cnki.15-1098.1989.10.012

Farquher GD, Sharkey TD. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 1982, 33, 317-345. https://doi.org/10.1146/annurev.pp.33.060182.001533

Farrell AD, Gilliland T J. Yield and quality of forage maize grown under marginal climatic conditions in Northern Ireland. Grass Forage Sci., 2011; 66, 214-223.

https://doi.org/10.1111/j.1365-2494.2010.00778.x

Gameiro C, Utkin AB, Cartaxana P, et al. The use of laser induced chlorophyll fluorescence (LIF) as a fast and non destructive method to investigate water deficit in Arabidopsis. Agric. Water Management, 2016; 164, 127-136.

https://doi.org/10.1016/j.agwat.2015.09.008

Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects, 1989; 990(1), 87-92.

http://dx.doi.org/10.1016/S0304-4165(89)80016-9

Gleason SM, Wiggans DR, Bliss CA., Comas, L. H. Coordinated decline in photosynthesis
and hydraulic conductance during drought stress in Zea mays., 2017; 227,1-9.

https://doi.org/10.1016/j.flora.2016.11.017

He RX, Wang YG, Zhao JY. The effect of different growth period uncovering membrane in dry land on corn physiological properties and yields. J. Shanxi Agric. Univ., 1999; 1, 19-21+31+92-93. https://doi.org/10.13842/j.cnki.issn1671-8151.1999.01.006

Hou F, Zhang L, Xie B., et al. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L.) Lam.) in Northern China. Acta Physiol Plant, 2015, 37(164),1-10.

https://doi.org/10.1007/s11738-015-1912-x

Hu XT, Li MS. Effect of trickle irrigation under sub-film on the soil conditions of rhizosphere in cotton. Chinese Journal of Eco-Agriculture, 2003; 11, 121-123. (in Chinese with English abstract)

Jian GL, Zhang YJ, Lu MG.et al. Tons of cotton-a new thought of super high yield of cotton in China. High-Technology and Industrialization, 2007; 11,90-91. (in Chinese with English abstract)

Jiang GM, Li YN, Liu F, et al. Effects of soil moisture level and film mulch removal period on water use efficiency and physiological properties of maize (Zea mays L.). J. Food Agric. Environ. 2012; 10(3&4), 695-700.

Jiang WH. Study on growth and yield of film-mulched flue-cured tobacco under different irrigation amounts. Ms thesis, Northwest A & F Univ., China, 2011. (in Chinese with English abstract)

Kader MA, Senge M, Mojid MA, et al. Mulching type-induced soil moisture and temperature
regimes and water use efficiency of soybean under rain-fed condition in central Japan.

International Soil and Water Conservation Research, 2017, 5(4), 302-308.

https://doi.org/10.1016/j.iswcr.2017.08.001

Kalaji HM, Jajoo A, Oukarroum A, et al. Chapter 15 - The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants[M]/Emerging Technologies and Management of Crop Stress Tolerance. San Diego, Academic Press: 2014:347-384.

https://doi.org/10.1016/B978-0-12-800875-1.00015-6

Kitajima M, Butler WL. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1975; 376(1),105-115. https://doi.org/10.1016/0005-2728(75)90209-1

Kramer DM, Johnson G, Kiirats O, et al. New Fluorescence Parameters for the Determination of QA Redox State and Excitation Energy Fluxes. Photosynth Res., 2004; 79(2), 209.

https://doi.org/10.1023/B:PRES.0000015391.99477.0d

Kwabiah AB. Growth, maturity, and yield responses of silage maize (Zea mays L.) to hybrid, planting date and plastic mulch. J. New Seeds ,2005; 7(2),37-59.

http://dx.doi.org/10.1300/J153v07n02 03

Kwon KS, Azad MOK, Hwang JM. Mulching methods and removing dates of mulch affects growth and post harvest quality of garlic (Allium sativum L.) cv. uiseong. Kor. J. Hort. Sci. Technol. 2011; 29(4), 293-297.

Li FM, Wang J, Xu JZ, et al. Productivity and soil response to plastic film mulching durations for spring wheat on entisols in the semiarid Loess Plateau of China. Soil Till. Res., 2014;
Li J, Lv J, Liu XW, et al. Effect of different uncovering plastic film periods on water use efficiency, soil salinity and yield of cotton. Acta Agriculturae Boreali-occidentalis Sinica, 2016; 25(09), 1327-1332. https://doi.org/10.7606/j.issn.1004-1389.2016.09.008

Li P, Zhang YJ, Liu LT, et al. Effects of water stress on water utilization and leaf photosynthetic characteristics in cotton (*Gossypium hirsutum* L.) seedlings. Cotton Science, 2014; 26(2), 113-121.

Li SX, Zhang ZQ, Wei JJ. The effects of different ways of mulching film on cotton development. Xinjiang Agric. Sci., 2010; 47, 1218-1223. (in Chinese with English abstract)

Li YQ. Effect of Plastic Film Residue on Transportation of Water and Nitrate and Seedling Root of Crops. Ms thesis, Chinese Academy of Agricultural Sciences China, 2016. (in Chinese with English abstract)

Liu RX, Wang YH, Chen BL, et al. Effects of nitrogen levels on photosynthesis and chlorophyll fluorescence characteristics under drought stress in cotton flowering and boll-forming stage. Acta Agronomica Sinica, 2008; 34(4), 675–683. https://doi.org/10.3724/SP.J.1006.2008.00675

Liu SY, Li ZH, Zhang LF, et al. Effect of plastic film mulching on absorption and distribution of P and K and water use efficiency of spring maize in north China plain. Journal of Soil and Water Conservation, 2014; 28(4), 97-103. https://doi.org/10.13870/j.cnki.stbcxb.2014.04.018

Liu SY, Zang LF, Li ZH, et al. Effects of plastic mulch on soil moisture and temperature and
limiting factors to yield increase for dryland spring maize in the North China. Chinese Journal of Applied Ecology, 2014; 25, 3197-3206. (in Chinese with English abstract)
https://doi.org/10.13287/j.1001-9332.20140829.001

Malone S, Herbert DA, Holshouser DL. Evaluation of the LAI-2000 plant canopy analyzer to estimate leaf area in manually defoliated soybean. Agron. J., 2002; 94(5), 1012-1019. https://doi.org/10.2134/agronj2002.1012

Miao Y, Zhu Z, Guo Q, et al. Alternate wetting and drying irrigation-mediated changes in the growth, photosynthesis and yield of the medicinal plant Tulipa edulis. Industrial Crops and Products, 2015; 66, 81-88. https://doi.org/10.1016/j.indcrop.2014.12.002

Ming DX. Advanced biostatistics. China Agric. Press, Beijing. 2006. (in Chinese)

Mishra K B, Iannacone R, Petrozza A, et al. Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 2012, 182, 79-86. https://doi.org/10.1016/j.plantsci.2011.03.022

Nabi G, Mullins CE. Soil temperature dependent growth of cotton seedlings before emergence. Pedosphere, 2008;18(1), 54-59. https://doi.org/10.1016/S1002-0160(07)60102-7

Nankishore A, Farrell AD. The response of contrasting tomato genotypes to combined heat and drought stress. J. Plant Physiol., 2016; 202, 75-82. https://doi.org/10.1016/j.jplph.2016.07.006

Nkwachukwu OI, Chima CH, Ikenna AO, et al. Focus on potential environmental issues on plastic world towards a sustainable plastic recycling in developing countries. Int. J. Ind. Chem., 2013; 4, 34-46. https://doi.org/10.1186/2228-5547-4-34
Ogaya R, Peñuelas J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot., 2003; 50(2), 137-148. https://doi.org/10.1016/S0098-8472(03)00019-4

O’Loughlin J, Finnan J, Mcdonnel K, et al. Improving early growth in Miscanthus×giganteus crops by the application of plastic mulch film. Aspects of Applied Biology, 2015; 131, 217-221.

Osório M L, Breia E, Rodrigues A, et al. Limitations to carbon assimilation by mild drought in nectarine trees growing under field conditions. Environ. Exp. Bot., 2006; 55(3), 235-247. https://doi.org/10.1016/j.envexpbot.2004.11.003

Peñuelas J, Filella I, Llusia J, et al. Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia. J. Exp. Bot., 1998; 49 (319), 229-238.

Pieters AJ, Souki SE. Effects of drought during grain filling on PS II activity in rice. J. Plant Physio., 2005; 162, (8), 903-911. https://doi.org/10.1016/j.jplph.2004.11.001

Rao SS, Tanwar SPS, Regar PL. Effect of deficit irrigation, phosphorous inoculation and cycocel spray on root growth, seed cotton yield and water productivity of drip irrigated cotton in arid environment. Agric. Water Management, 2016; 169, 14-25. https://doi.org/10.1016/j.agwat.2016.02.008

Snider JL, Oosterhuis DM, Collins GD, et al. Field-acclimated Gossypium hirsutum cultivars exhibit genotypic and seasonal differences in photosystem II thermostability. J. Plant Physiol., 2013; 170(5), 489-496. https://doi.org/10.1016/j.jplph.2012.11.004
Stone PJ, Sorensen IB, Jamieson PD. Effect of soil temperature on phenology, canopy development, biomass and yield of maize in a cool-temperate climate. Field Crops Res., 1999; 63(2), 169-178. https://doi.org/10.1016/S0378-4290(99)00033-7

Su JJ, Deng FJ, Lin H, et al. Effects of uncovering plastic film on rhizosphere temperature, dry matter accumulation of organs, yield and fiber quality of upland cotton. Cotton Sci. 2011a; 23: 172-177. (in Chinese with English abstract)

Su J, Ning X, Lin H, et al. Effects of uncovering plastic film on soil temperature of cotton cropland, cotton yield and environment protection. Acta Agri. Boreali-occidentalis Sinica, 2011b; 20(3), 90-94. (in Chinese with English abstract)

Sun SJ, Fan YM, Xu ZH, et al. Effects of planting density on soil moisture and corn yield under plastic film mulching in a rain-fed region of northeast China. Chinese Journal of Ecology, 2014; 33(10), 2650-2655. https://doi.org/10.13292/j.1000-4890.2014.0226

Tang QY, Zhang CX. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2012; 20:254–260. https://doi.org/10.1111/j.1744-7917.2012.01519.x

Tang W, Luo Z, Wen SM, et al. Comparison of inhibitory effects on leaf photosynthesis in cotton seedlings between drought and salinity stress. Cotton Science, 2007; 19(1), 28-32.

Thompson RC, Swan SH, Moore CJ, et al. Our plastic age, Phil. Trans. R. Soc. B, 2009; 364,1973–1976. https://doi.org/10.1098/rstb.2009.0054

Wang FX, Feng SY, Hou XY, et al. Potato growth with and without plastic mulch in two typical regions of Northern China. Field Crops Res., 2009; 110(2), 123-129. https://doi.org/10.1016/j.fcr.2008.07.014
Wang JX, Pang XA, Wu WM, et al. Analysis on climate productive potential for cotton growth in Aral irrigated area. Arid Zone Res. 2006; 23:623-626. (in Chinese with English abstract)

Wang R, Liu GS, Bi QW, et al. Effect of plastic film mulching in whole growth period on the photosynthetic function, yield, and quality of flue-cured tobacco at different elevations in Enshi of Hubei Province. Chinese Journal of Ecology, 2010; 29(01), 43-49. https://doi.org/10.13292/j.1000-4890.2010.0061

Wang YP, Li XG, Zhu J, et al. Multi-site assessment of the effects of plastic-film mulch on dryland maize productivity in semiarid areas in China. Agric. For. Meteorol., 2016; 220, 160-169. http://dx.doi.org/10.1016/j.agrformet.2016.01.142

Wang YZ, Liu RT, Zhang JG. On physiological mechanism of early aging caused by plastic mulching on tomatoes. J. Shan xi Agric. Univ., 2004; 1, 60-62. https://doi.org/10.13842/j.cnki.issn1671-8151.2004.01.017

Xia ZX, Zhang Y. Comparison test of removal of film before irrigation and irrigation on surface film. Xinjiang agricultural reclamation science and technology, 1994; 2, 33.

Xie HX, He S, Zhou JW, et al. Effect of irrigation amount and buried depth of drip irrigation tape on cotton. J. Irri. Drain. 2012; 31: 134-136. (in Chinese with English abstract) https://doi.org/10.13522/j.cnki.ggps.2012.02.033

Xie WH, Ma SJ, Qi L, et al. The mitigating effects of Na+ accumulation on the drought-induced damage to photosynthetic apparatus in cotton seedlings. Acta Ecologica Sinica, 2015; 35(19), 6549-6556. https://doi.org/10.5846/stxb201403060382

Xu JW, Zhang XJ, Li ZB, et al. Preliminary study on photosynthetic characteristics of cotton
seedlings with different genotypes under drought stress in field experiments. Collection of papers of the 2017 annual meeting and the 9th general meeting of the cotton branch of China agricultural society, 2017; 103.

Xue HY, Zhang YJ, Liu LT, et al. Responses of spectral reflectance, photosynthesis and chlorophyll fluorescence in cotton during drought stress and rewatering. Scientia Agricultura Sinica, 2013; 46(11), 2386-2393.

https://doi.org/10.3864/j.issn.0578-1752.2013.11.024

Yang X, Zhang Z, Niu Y, et al. Cotton Root Morphology and Dry Matter Accumulation at Different Film Removal Times. Agron. J., 2017; 109, 2586–2597.

https://doi.org/10.2134/agronj2017.06.0310

Yang ZX, Yang TZ, Zhang XQ, et al. Effects of different mulching patterns on physiological characteristics, yield and quality of flue-cured tobacco. Chinese Journal of Soil Science, 2010; 41(02), 420-424.

Yu YM, Zhang W, Zhou ZJ. Experimental study on the appropriate film-removal time of mulching between rows of maize. Journal of Maize Sciences, 2006; S1, 104-105+107.

Zhan DX. The spatial distribution of cotton canopy photosynthesis and the physiological characteristics of leaf and non-leaf organs in response to water supply. Ph. D. thesis, Shihezi Univ., China. 2014. (in Chinese with English abstract)

Zhang JG, Du SH, Wang YZ, et al. Preliminary Study on the physiological mechanism of premature senescence of early cabbage caused by mulch film. China Vegetables. 1995; 5, 1-3.

Zhang JJ, Fan TL, Dang Y, et al. Effects of uncovering plastic film period and nitrogen
amount on the growth indexes and yield of spring maize in Loess Plateau of East Gansu.

Soil and Fertilizer Sciences in China. 2016; 4, 90-96. https://doi.org/10.11838/sfsc.20160415

Zhang WF, Gou L, Wang ZL, et al. Effect of nitrogen on chlorophyll fluorescence of leaves of high-yielding cotton in Xinjiang. Scientia Agricultura Sinica, 2003; 36(8), 893-898.

Zhang ZQ, Wei JJ, Yang XK, et al. Effects of plastic film uncover on soil temperature, moisture level and cotton root growth. Agric. Res. in the Arid Areas, 2016; 34, 55-61. (in Chinese with English abstract) https://doi.org/10.7606/j.issn.1000-7601.2016.02.09

Zhao HJ, Zou Q, Yu ZW. Chlorophyll fluorescence analysis technique and its application to photosynthesis of plant. Journal of Henan Agricultural University, 2000; 34(3), 248-251. https://doi.org/10.16445/j.cnki.1000-2340.2000.03.014

Zhao LY, Deng XP, Shan L. Effects of altered water condition on some chlorophyll fluorescence parameters of flag leaves of winter wheat. Chinese Journal of Eco-Agriculture, 2007; 15(1), 63-66.
Fig. 1. Cropping pattern and burial depth of MicroLite USB Loggers and PR2 Profile Probe in the mulching film-removal field experiment.

Fig. 2. Daily average soil temperature (°C) variation in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, with one control group of film mulching present across cotton plant growth stages (CK) and soil depth layers (10, 20, and 30 cm) across growth stages during 2015–2016. AT is air temperature.

Fig. 3. Soil volume moisture content variation of different soil layer at 33–128 days after emergence in 2017 in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, with one control group of film mulching present across cotton plant growth stages (CK).

Fig. 4. Gas exchange parameters of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3). Pn, photosynthetic rate; Cond, conductance to H2O; Ci, intercellular CO2 concentration; Ls, stoma limit value.

Fig. 5. Maximum photochemical quantum yield of PS-II (Fv/Fm) and actual photochemical quantum yield of PS-II (Y(II)) of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are
means ± standard deviation (n = 3).

Fig. 6. Coefficient of photochemical fluorescence quenching assuming an interconnected PS-II antennae (qL) and Stern-Volmer type non-photochemical fluorescence quenching (NPQ) of cotton varieties (XLZ42 and XLZ45), at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).

Fig. 7. Quantum yield of light-induced (Y(NPQ)) and non-light induced(Y(NO)) non-photochemical fluorescence quenching of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).

Fig. 8. Absorbed light dissipation of two cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. D, portion of absorption light energy lost via the PS-II antenna pigment; P, actual photochemical quantum yield of PS-II; E, portion of absorption light energy which cannot enter the photochemical process and cannot be lost through the antenna pigment.

Fig. 9. Rapid light curves of two cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively
Fig. 10. Leaf area index (LAI) variation of two cotton varieties (XLZ42 and XLZ45) in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2015–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).

Fig. 11. Dry matter accumulation of two cotton varieties (XLZ42 and XLZ45) in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2015–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Table 1. Soil average temperature, accumulated temperature, average temperature difference, and accumulated temperature difference in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, with one control group of film mulching present across growth stages (CK) for three soil depth layers (10, 20, and 30 cm) during 2015–2016.

Item	Year	Soil layer depth	CK	T1	E1	T10	Air Temperature (°C)
Average Temperature	2015	10 cm	23.56	23.08	22.27	23.48	23.54
		20 cm	23.68	22.87	22.49	23.06	
		30 cm	22.34	22.69	22.26	22.54	
	2016	10 cm	22.99	21.95	21.32	23.31	24.03
		20 cm	23.00	21.72	21.24	22.93	
		30 cm	22.70	21.60	21.09	22.55	
Accumulated Temperature	2015	10 cm	2572.90	2562.80	2535.62	2563.53	2571.68
		20 cm	2587.03	2529.05	2536.32	2517.27	
		30 cm	2439.18	2491.04	2472.97	2459.96	
	2016	10 cm	2587.76	2570.10	2547.73	2625.77	2703.08
		20 cm	2588.33	2536.72	2532.49	2582.41	
		30 cm	2554.44	2509.85	2501.04	2541.30	
Average Temperature Difference	2015	10 cm	9.79	6.46	6.18	8.38	13.34
		20 cm	5.58	4.59	4.22	5.28	
		30 cm	2.45	2.30	2.22	2.45	
	2016	10 cm	3.76	2.83	2.94	5.78	13.33
		20 cm	2.85	1.56	1.74	2.33	
		30 cm	1.28	0.84	0.81	0.85	
Accumulated Temperature Difference	2015	10 cm	1068.56	749.50	824.28	912.97	1452.6
		20 cm	609.13	524.83	538.85	571.94	
		30 cm	265.95	265.55	271.44	265.98	
	2016	10 cm	419.60	378.80	430.62	655.84	1514.7
		20 cm	319.50	217.42	264.24	258.89	
		30 cm	144.81	114.12	124.48	96.89	
Table 2. Correlation coefficients of net photosynthetic rate (Pn) and other gas exchange parameters in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence during 2016–2017 (n = 30).

Year	Treatment groups	Cond	Ci	Trmmol	WUE	WUEi	Ls	LUE
2016	CK	0.926**	0.433*	0.919**	0.021	-0.654**	-0.589**	0.971**
	E1	0.882**	-0.011	0.809**	0.192	-0.461*	-0.302	0.966**
	T1	0.938**	0.541**	0.830**	0.218	-0.855**	-0.784**	0.934**
	T10	0.939**	0.553**	0.875**	0.193	-0.872**	-0.801**	0.942**
2017	CK	0.478**	-0.331	0.590**	0.411*	0.305	0.358*	0.807**
	E1	0.480**	-0.516**	0.655**	0.449*	0.497**	0.559**	0.899**
	T1	0.094	-0.768**	0.28361	0.775**	0.801**	0.825**	0.889**
	T10	0.432*	-0.453*	0.757**	0.376*	0.328	0.423*	0.871**

Note: Pearson correlations were used. * Significant at the 0.05 probability level (two tailed). ** Significant at the 0.01 probability level (two tailed).

Cond, conductance to H₂O.

Ci, intercellular CO₂ concentration.

Trmmol, transpiration rate.

WUE, water use efficiency.

WUEi: intrinsic WUE.

Ls, limiting value of stomata.

LUE: light use efficiency.
Table. 3. Maximum electron transfer rate (ETRmax, μmol m$^{-2}$ s$^{-1}$) of two cotton varieties (XLZ42 and XLZ45) at different days after flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Values are means ± standard deviation (n = 3).

Year	Varieties	Treatments	Days after flowering (d)				
			5	15	25	35	45
2017	XLZ42	CK	112.8±13.49	203.43±68.76	350.87±102.4	216.07±34.76	158.63±30.01
		E1	114.1±12.65	242±7.5	273.8±57.09	269.97±98.73	163.37±28.63
		T1	133.7±31.4	339.75±30.19	312.8±31.68	221.03±37.5	175.9±12.85
		T10	142.27±12.95	293.57±49.84	315.5±3.38	226.53±65.22	153.8±43.27
	XLZ45	CK	220.27±93.04	202.7±66.08	260.2±32.46	244.67±72.55	140.07±15.14
		E1	87.3±5.91	261.17±54.77	279.23±26.5	262.3±35.13	166.83±12.39
		T1	94.07±23.07	223.9±69.86	312.17±34.04	254.07±66.68	118.2±65.06
		T10	122.67±10.36	360.77±96.89	320.53±14.02	209.7±28.74	160.87±37.17
2016	XLZ42	CK	134.2±22.29	209.4±12.87	185.95±7	258.9±7.35	240.2±160.94
		E1	586.27±129.82	561.13±352.3	331.1±8.02	294.4±22.88	231.97±31.76
		T1	146.1±45.72	365.37±180.43	182.35±19.73	223.55±5.87	209.85±18.6
		T10	434.75±22.98	375.33±176.71	248.3±16.03	204.15±25.39	244.35±1.34
	XLZ45	CK	151.9±7.6	289.9±26.02	254.9±30.21	259.25±0.49	220.85±15.49
		E1	381.6±77.64	209.93±6.67	243.9±35.5	243.05±57.77	304.75±10.25
		T1	222.53±51.7	517.5±25.74	207.6±25.81	248.95±8.41	197.9±31.68
		T10	475.33±197.34	286.53±83.56	307.4±26.02	226.05±16.33	195.2±64.06
Table 4. The initial slope of the fast light curve (α, electrons photons$^{-1}$) of two cotton varieties (XLZ42 and XLZ45) at different days after flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Values are means ± standard deviation (n = 3).

Year	Varieties	Treatments	Days after flowering (d)				
			5	15	25	35	45
2017	XLZ42	CK	0.22±0.01	0.28±0.03	0.3±0.01	0.27±0.04	0.28±0.02
		E1	0.27±0.06	0.3±0.01	0.29±0.01	0.29±0.03	0.28±0
		T1	0.25±0.04	0.29±0.02	0.23±0.02	0.31±0.02	0.28±0.01
		T10	0.28±0.01	0.29±0.01	0.28±0.01	0.32±0.03	0.32±0.02
		CK	0.21±0.03	0.25±0.04	0.29±0.01	0.29±0.03	0.31±0.03
		E1	0.19±0.01	0.3±0	0.25±0.03	0.26±0.02	0.27±0.03
		T1	0.12±0.07	0.32±0	0.24±0.06	0.3±0.04	0.27±0.06
		T10	0.29±0.02	0.25±0.01	0.26±0.02	0.31±0.02	0.33±0
2016	XLZ42	CK	0.23±0.04	0.25±0.02	0.29±0.01	0.26±0.02	0.29±0.02
		E1	0.26±0.02	0.25±0.01	0.24±0.01	0.23±0.01	0.27±0.05
		T1	0.23±0.03	0.29±0.05	0.28±0.02	0.24±0.02	0.27±0.01
		T10	0.26±0	0.28±0.01	0.28±0.02	0.26±0.01	0.29±0
		CK	0.26±0.02	0.26±0.01	0.27±0.01	0.27±0.02	0.29±0
		E1	0.3±0.02	0.26±0.01	0.24±0.01	0.27±0	0.27±0
		T1	0.27±0.07	0.28±0.01	0.27±0.01	0.27±0.01	0.29±0.04
		T10	0.28±0.01	0.27±0.02	0.26±0.01	0.27±0.01	0.3±0.01
Table 5. The minimum saturating irradiance (I_k, \(\mu \text{mol m}^{-2} \text{s}^{-1} \)) of two cotton varieties (XLZ42 and XLZ45) at different days after flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Values are means ± standard deviation (n = 3).

Year	Varieties	Treatments	Days after flowering (d)				
			5	15	25	35	45
2017	XLZ42	CK	510.67±65.8	749.8±337.86	1172.5±325.98	829.47±201.06	579.63±166.11
		E1	431.8±100.66	821±48.93	943.8±167.16	960.87±401.76	590.2±108.71
		T1	523±33.09	1165.75±14.21	1351.35±9.97	711.43±92.12	632.17±36.58
		T10	514.93±45.01	1022.97±208.47	1130.2±44.86	725.07±252.24	493.45±174.58
	XLZ45	CK	1019.9±319.56	800.5±197.89	885.73±131.5	860.73±293.51	458.63±85
		E1	460.83±64.73	884.4±189.65	1133.3±217.56	1001.27±198.83	619.1±38.7
		T1	1324.6±1356.12	709.2±232.78	1361.77±496.88	867.97±283.8	456.87±302.19
		T10	420.97±22.18	1455.9±364.75	1213.97±118.44	670.4±123.69	489.37±109.52
2016	XLZ42	CK	612.4±40.79	837.35±109.11	640.8±42.43	993.45±95.81	854±627.91
		E1	2326.3±263.48	2164.93±1232.72	1398.4±120.35	1285.87±119.02	977.73±27.21
		T1	653.57±258.24	1352.4±778.42	653.15±116.46	919.95±101.75	786.25±38.68
		T10	1642.95±80.26	1322.4±577.78	902.2±56.03	781.6±58.27	849.45±6.43
	XLZ45	CK	578.33±32.83	1105.7±44.69	959.5±56.21	966.95±77.29	767.25±48.72
		E1	1281.4±333.75	808.73±38.04	1011.65±86.9	885.55±211.35	1132.15±34.15
		T1	833.8±219.55	1877.15±4.45	774.7±42.35	912.05±8.56	708.4±209.87
		T10	1696±615.06	1045.9±257.11	1170.9±39.74	832.25±106.42	656.35±237.38
Table 6. Parameters for the logistic equation of two cotton varieties’ (XLZ42 and XLZ45) dry matter accumulation in various treatments groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence. The control group (CK) was film mulched throughout the growth stage.

Varieties and Years	Treatments	K	a	b	R²	Tmax (d)	t1 (d)	t2 (d)	Rmax (kg ha⁻¹ d⁻¹)	Wm (kg ha⁻¹)	△Wt2−t1 (kg ha⁻¹)
XLZ42, 2015	CK	28448.19	4.5183	-0.044	0.9813**	103	73	133	313.14	14224.1	8207.3
	E1	13546.26	3.6292	-0.0416	0.978**	87	56	119	140.86	6773.13	3908.1
	T1	9803.422	3.7293	-0.0505	0.9566**	74	48	100	123.86	4901.71	2828.29
	T10	13098.11	4.1369	-0.0478	0.9955**	87	59	114	156.55	6549.06	3778.81
XLZ42, 2016	CK	15233.5	4.8979	-0.0732	0.9866**	67	49	85	278.86	7616.75	4394.86
	E1	15730.68	4.9953	-0.0686	0.9889**	73	54	92	269.84	7865.34	4538.3
	T1	18790.06	4.4678	-0.0554	0.9953**	81	57	104	260.43	9395.03	5420.93
	T10	11573.49	5.2355	-0.0786	0.9933**	67	50	83	227.49	5786.75	3338.95
XLZ45, 2016	CK	26514.86	4.8979	-0.0396	0.9467**	99	66	133	262.48	13257.43	7649.54
	E1	19615.03	4.7176	-0.0635	0.9969**	74	54	95	311.55	9807.51	5658.93
	T1	30025.95	4.2929	-0.046	0.9612**	93	65	122	345.06	15012.98	8662.49
	T10	15532.38	4.5283	-0.0597	0.9794**	76	54	98	231.63	7766.19	4481.09
XLZ42, 2017	CK	19068.2	4.3338	-0.0457	0.9728**	95	66	124	217.82	9534.1	5501.17
	E1	24279.73	4.509	-0.0443	0.9943**	102	72	132	268.67	12139.86	7004.7
	T1	12510.99	4.3294	-0.0516	0.979**	84	58	109	161.48	6255.49	3609.42
	T10	20762.82	4.7209	-0.0476	0.9964**	99	72	127	247.01	10381.41	5990.07
XLZ45, 2017	CK	14775.97	4.5932	-0.0572	0.9719**	80	57	103	211.11	7387.99	4262.87
	E1	14817.38	4.692	-0.0551	0.9969**	85	61	109	204.16	7408.69	4274.82
	T1	18182.35	4.6752	-0.052	0.9915**	90	65	115	236.46	9091.17	5245.61
Note: k, a, and b are equation coefficients.

Tmax, the time when the dry matter accumulation rate reached a maximum.

t1, starting time of linear accumulation.

t2, end time of linear accumulation.

Rmax, the maximum accumulation rate.

Wm, dry matter weight at the time when the dry matter accumulation rate reached a maximum.

ΔWt2-t1, dry matter accumulation from t1 to t2. R2, Correlation Index.

* Significant at the 0.05 probability level. ** Significant at the 0.01 probability level.
| Varieties / Years | Treatments | Number of plants harvested (10^4 plants ha$^{-1}$) | Boll number on a single plant | Single boll weight (g) | Estimated yield of lint cotton (kg ha$^{-1}$) | UHML (mm) | Mic (g tex$^{-1}$) | Str (%) | Elg (%) | SFI (%) | UI (%) |
|------------------|------------|---|-------------------------------|------------------------|---|--------------|------------------------|----------|---------|---------|-------|
| XLZ42, 2015 | CK | 20.87±1.13a | 5.54±1.55a | 5.17±0.17a | 1914.23±734.23a | 27.78±0.94a | 5.09±0.07a | 29.80±2a | 6.50±0.14a | 7.23±0.41a | 85.38±1.29a |
| | E1 | 19.61±0.92a | 5.00±1.36ab | 5.00±0.48a | 1558.63±239.84a | 27.24±0.73a | 5.07±0.13a | 31.23±1.5a | 6.53±0.1a | 7.45±0.66a | 85.05±1.23a |
| | T1 | 18.79±1.57a | 4.92±0.89ab | 5.30±0.37a | 1715.35±582.44a | 26.76±0.88a | 5.10±0.05a | 29.55±2.07a | 6.40±0.14a | 7.40±0.29a | 85.15±0.53a |
| | T10 | 19.67±1.55a | 4.68±0.96b | 4.97±0.39a | 1539.82±528.93a | 27.06±0.66a | 5.21±0.16a | 29.28±1.58a | 6.43±0.17a | 7.23±0.43a | 85.55±1.02a |
| XLZ42, 2016 | CK | 12.14±2.74a | 6.76±0.24a | 5.93±0.15a | 1585.55±265.56a | 28.15±0.54a | 4.30±0.19a | 28.83±1.06ab | 7.10±0.1a | 7.10±0.1a | 85.57±0.15a |
| | E1 | 12.20±1.09a | 7.24±0.4a | 6.03±0.08a | 1631.69±293.12a | 27.86±1.6a | 4.31±0.19a | 27.67±0.67b | 7.03±0.21a | 7.40±0.4a | 85.00±0.85a |
| | T1 | 12.50±0.61a | 7.38±1.24a | 5.87±0.28a | 1586.81±163.05a | 28.13±0.11a | 4.25±0.27a | 29.40±1.4a | 7.03±0.06a | 7.43±0.32a | 84.83±0.74a |
| | T10 | 11.13±1.13a | 7.05±1.48a | 5.98±0.38a | 1609.93±236.6a | 28.30±0.65a | 4.57±0.24a | 28.9±0.44ab | 7.03±0.15a | 7.07±0.15a | 85.63±0.4a |
| XLZ45, 2016 | CK | 11.44±4.3a | 8.13±1.47a | 6.35±0.33a | 1558.84±141.97a | 29.85±0.38a | 3.92±0.2a | 30.77±0.45a | 7.53±0.21a | 6.83±0.06a | 86.2±0.89a |
| | E1 | 14.03±1.6a | 7.82±2.25a | 5.98±0.14a | 1484.72±171.66a | 29.58±0.57a | 3.91±0.23a | 30.57±1.33a | 7.53±0.15a | 7.62±0.26a | 85.47±0.67a |
| | T1 | 14.22±0.53a | 6.43±0.49a | 6.13±0.47a | 1609.83±206.19a | 30.04±0.67a | 3.76±0.44a | 31.33±1.2a | 7.72±0a | 6.83±0.15a | 86.17±0.55a |
| | T10 | 11.42±3.26a | 7.45±1.32a | 6.21±0.41a | 1602.97±208.3a | 29.61±0.06a | 3.99±0.15a | 31.0±3a | 7.5±0.1a | 7.27±0.32a | 84.6±0.04a |
| XLZ42, 2017 | CK | 14.23±1.03a | 8.83±1.65a | 4.77±0.19a | 2014.12±200.67ab | 27.84±0.63a | 4.42±0.28a | 29.53±1.21a | 6.8±0.1a | 7.03±0.49a | 86.13±1.25a |
| | E1 | 14.86±0.71a | 9.43±1.59a | 5.04±0.36a | 2257.29±248.48a | 27.43±0.15a | 4.36±0.14a | 28.57±0.32a | 6.77±0.06a | 7.37±0.15a | 85.1±0.26a |
| | T1 | 13.74±1.19a | 8.4±0.79a | 4.98±0.3a | 2056.67±22.4ab | 28.53±0.37a | 4.41±0.3a | 30.27±0.85a | 6.9±0.3a | 7.3±0.3a | 85.03±0.76a |
| | T10 | 14.67±1.4a | 8.37±2.06a | 4.63±0.16a | 1869.94±155.84b | 26.53±0.64a | 4.39±0.1a | 28.8±1.25a | 6.73±0.12a | 7.67±0.91a | 84.8±1.25a |
| XLZ45, 2017 | CK | 15.75±0.64a | 9.43±0.59a | 5.36±0.15a | 2177.05±166.17a | 27.47±1.01a | 4.27±0.07a | 29.57±0.7a | 6.83±0.15a | 7.73±0.7a | 84.8±1.9a |
| | E1 | 14.63±0.64a | 9.53±0.95a | 5.03±0.26a | 2243.54±389.42a | 27.21±1.1a | 4.41±0.3a | 28.8±2.77a | 6.7±0.1a | 7.57±0.65a | 84.9±1.08a |
| | T1 | 15.13±0.62a | 7.93±0.87a | 4.99±0.31a | 2157.72±271.74a | 27.39±0.35a | 4.45±0.25a | 29.33±0.95a | 6.77±0.15a | 7.8±0.7a | 84.3±1.17a |
| | T10 | 14.92±0.15a | 7.73±0.51a | 5.07±0.28a | 2154.97±175.75a | 29.09±0.53a | 4.52±0.06a | 31.93±0.83a | 6.9±0.6a | 7±0.1a | 85.63±0.25a |
Note: Values are means ± SD (n = 3). Within a column, values with different lowercase letters are significantly different at the $P < 0.05$ level according to LSD among treatment groups in the same year; different capital letters indicate significant difference at the $P < 0.01$ level according to LSD among treatment groups in the same year.

UHML, upper-half mean length.

Mic, micronaire reading.

Str, specific breaking strength.

Elg, elongation percentage.

SFI, short fiber index.

UI, uniformity index.
Appendix A. Supplementary data

Table A.1 F-value of MANOVA of the gas exchange parameters in 2016 and 2017

Sources	2016	2017						
	Pn	Cond	Ci	Ls	Pn	Cond	Ci	Ls
Modified model	200.088**	141.542**	65.057**	8.101**	11.91**	3.576**	2.194**	3.777**
Intercept	110894.332**	26178.777**	181542.677**	3611.083**	7460.875**	2206.061**	10563.354**	2718.328**
Days after flowering (A)	1759.517**	1230.597**	354.425**	45.153**	4.494**	5.304**	11.739**	24.512**
Film-removal time (B)	22.503**	24.025**	24.451**	0.26	12.868**	0.95	0.761	0.634
Cotton variety (C)	38.012**	59.156**	0.008	1.034	78.695**	11.925**	1.224	1.148
A×B	13.784**	20.541**	42.342**	3.163*	0.983	1.855	1.674	2.079
A×C	21.959**	22.677**	27.417**	6.017**	6.467**	3.283**	0.797	1.077
B×C	19.509**	17.749**	29.748**	3.751*	0.574	0.657	1.196	1.015
A×B×C	6.281**	4.209**	21.843**	2.989**	2.038*	0.697	1.165	1.16

Note: * The significance level of the mean difference was 0.05; **The significance level of the mean difference was 0.01.

Pn, photosynthetic rate.

Cond, conductance to H₂O.

Ci, intercellular CO₂ concentration.

Ls, The stoma limit value.
Sources	Fv/Fm	Y(II)	qL	NPQ	Y(NPQ)	Y(NO)	ETRmax	Ik	α
Modified model	1.935**	3.131**	2.375**	2.177**	3.737*	1.501	2.693**	2.793**	1.207
Intercept	66213.281**	2533.088**	627.964**	3496.608**	7913.723**	5416.21**	543.184**	565.14**	9507.458**
Days after flowering (A)	7.562**	1.936	2.4	2.048	1.937	2.917*	4.47**	4.597**	1.942
Film-removal time (B)	0.065	9.894**	5.9**	0.923	6.54**	2.688	4.82**	5.967**	1.477
Cotton variety (C)	1.148	0.014	0.108	0.997	0.787	0.75	0.218	1.221	3.485
A×B	1.541	5.19**	3.063**	3.09**	7.28**	0.686	3.016**	2.578**	1.128
A×C	0.266	1.779	1.963	1.287	1.745	1.259	0.242	0.342	2.207
B×C	1.806	0.946	0.577	3.807*	3.77*	1.697	2.842*	4.002*	0.509
A×B×C	1.417	1.014	1.244	1.819	1.238	1.674	1.162	1.108	0.211

Note: * The significance level of the mean difference was 0.05; **The significance level of the mean difference was 0.01.

Fv/Fm, the maximum photochemical quantum yield of photoreaction system II (PS-II).

Y(II), the actual photochemical quantum yield of PS-II.

qL, the coefficient of photochemical fluorescence quenching.

NPQ, the Stern-Volmer type non-photochemical fluorescence quenching.

Y(NPQ), the quantum yield of light-induced (i.e., ΔpH and zeaxanthin-dependent) non-photochemical fluorescence quenching.

Y(NO), the quantum yield of non-light-induced non-photochemical fluorescence quenching.

ETRmax, the maximum electron transfer rate.

Ik, the minimum saturating irradiance (corresponding to plant tolerance of intense light).

α, an initial slope of the fast light curve (conveying the efficiency of light energy utilization).
Table A.3 F-value of MANOVA of the chlorophyll fluorescence parameters in 2017

Sources	Fv/Fm	Y(II)	qL	NPQ	Y(NPQ)	Y(NO)	ETRmax	Ik	α
Modified model	17.192	7.975	1.979	6.572	8.86**	3.364**	6.619*	2.638	14.06
Intercept	1275.7	8845.1	3176.6	2723.6	4497.4	10795.9	2138.9	805.0	893.1
Days after flowering (A)	136.51	25.893	2.925*	19.139	25.993*	12.844*	49.53	13.84	103.3
Film-removal time (B)	0.026	10.179	3.596*	1.501	6.884*	2.204	0.949	0.971	1.171
Cotton variety (C)	1.346	0.342	0.796	1.639	0.286	3.032	0.393	1.131	0.033
A×B	0.149	10.933	1.955*	8.73**	13.426*	1.156	2.352	1.796	0.591
A×C	1.405	0.697	0.843	6.078*	3.141*	6.17**	0.392	1.272	1.193
B×C	0.009	0.874	1.161	2.092	1.36**	2.696	1.11	0.022	0.243
A×B×C	0.104	2.582*	1.689	2.798*	3.024*	1.64	1.718	1.273	0.175

Note: * The significance level of the mean difference was 0.05; **The significance level of the mean difference was 0.01.

Fv/Fm, the maximum photochemical quantum yield of photoreaction system II (PS-II).

Y(II), the actual photochemical quantum yield of PS-II.

qL, the coefficient of photochemical fluorescence quenching.

NPQ, the Stern-Volmer type non-photochemical fluorescence quenching.

Y(NPQ), the quantum yield of light-induced (i.e., ΔpH and zeaxanthin-dependent) non-photochemical fluorescence quenching.

Y(NO), the quantum yield of non-light-induced non-photochemical fluorescence quenching.

ETRmax, the maximum electron transfer rate.

Ik, the minimum saturating irradiance (corresponding to plant tolerance of intense light).

α, an initial slope of the fast light curve (conveying the efficiency of light energy utilization).
Fig. 1. Cropping pattern and burial depth of MicroLite USB Loggers and PR2 Profile Probe in the mulching film-removal field experiment.
Fig. 2. Daily average soil temperature (°C) variation in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, with one control group of film mulching present across cotton plant growth stages (CK) and soil depth layers (10, 20, and 30 cm) across growth stages during 2015–2016. AT is air temperature.
Fig. 3. Soil volume moisture content variation of different soil layer at 33–128 days after emergence in 2017 in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, with one control group of film mulching present across cotton plant growth stages (CK).
Fig. 4. Gas exchange parameters of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3). Pn, photosynthetic rate; Cond, conductance to H₂O; Ci, intercellular CO₂ concentration; Ls, stoma limit value.
Fig. 5. Maximum photochemical quantum yield of PS-II (Fv/Fm) and actual photochemical quantum yield of PS-II (Y(II)) of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Fig. 6. Coefficient of photochemical fluorescence quenching assuming an interconnected PS-II antennae (qL) and Stern-Volmer type non-photochemical fluorescence quenching (NPQ) of cotton varieties (XLZ42 and XLZ45), at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Fig. 7. Quantum yield of light-induced ($Y_{(NPQ)}$) and non-light induced($Y_{(NO)}$) non-photochemical fluorescence quenching of cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Fig. 8. Absorbed light dissipation of two cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. D, portion of absorption light energy lost via the PS-II
antenna pigment; P, actual photochemical quantum yield of PS-II; E, portion of absorption light energy which cannot enter the photochemical process and cannot be lost through the antenna pigment.
Fig. 9. Rapid light curves of two cotton varieties (XLZ42 and XLZ45) at different days since flowering in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2016–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Fig. 10. Leaf area index (LAI) variation of two cotton varieties (XLZ42 and XLZ45) in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2015–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).
Fig. 11. Dry matter accumulation of two cotton varieties (XLZ42 and XLZ45) in various treatment groups: 1 and 10 days before the first irrigation (respectively T1, T10) and 1 day before the second irrigation (E1) after seedling emergence, during 2015–2017. The control group (CK) had film mulching throughout the growth stages. Bars are means ± standard deviation (n = 3).