Higher order generalized Euler characteristics and generating series *

S.M. Gusein-Zade † I. Luengo ‡ A. Melle–Hernández §

Abstract

For a complex quasi-projective manifold with a finite group action, we define higher order generalized Euler characteristics with values in the Grothendieck ring of complex quasi-projective varieties extended by the rational powers of the class of the affine line. We compute the generating series of generalized Euler characteristics of a fixed order of the Cartesian products of the manifold with the wreath product actions on them.

Let X be a topological space (good enough, say, a quasi-projective variety) with an action of a finite group G. For a subgroup H of G, let $X^H = \{x \in X : Hx = x\}$ be the fixed point set of H. The orbifold Euler characteristic $\chi_{orb}(X, G)$ of the G-space X is defined, e.g., in [1], [10]:

$$
\chi_{orb}(X, G) = \frac{1}{|G|} \sum_{(g_0, g_1) \in G \times G} \chi(X^{(g_0, g_1)}) = \sum_{[g] \in G^*} \chi(X^{(g)}/C_G(g)),
$$

(1)

*Math. Subject Class.: 32M99, 32Q55, 55M35. Keywords: complex quasi-projective varieties, finite group actions, orbifold Euler characteristic, wreath products, generating series.

†Partially supported by the Russian government grant 11.G34.31.0005, RFBR-13-01-00755, NSh-4850.2012.1 and Simons-IUM fellowship. Address: Moscow State University, Faculty of Mathematics and Mechanics, GSP-1, Moscow, 119991, Russia. E-mail: sabir@mccme.ru

‡The last two authors are partially supported by the grant MTM2010-21740-C02-01. Address: University Complutense de Madrid, Dept. of Algebra, Madrid, 28040, Spain. E-mail: iluengo@mat.ucm.es

§Address: ICMAT (CSIC-UAM-UC3M-UCM). Dept. of Algebra, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040, Madrid, Spain. E-mail: amelle@mat.ucm.es

1
where G_* is the set of conjugacy classes of elements of G, $C_G(g) = \{ h \in G : h^{-1}gh = g \}$ is the centralizer of g, and $\langle g \rangle$ and $\langle g_0, g_1 \rangle$ are the subgroups generated by the corresponding elements.

The higher order Euler characteristics of (X, G) (alongside with some other generalizations) were defined in [3], [13].

Definition: The Euler characteristic $\chi^{(k)}(X, G)$ of order k of the G-space X is

$$\chi^{(k)}(X, G) = \frac{1}{|G|} \sum_{g \in G^{k+1}, \ g_ig_j = g_jg_i} \chi(X^{\langle g \rangle}) = \sum_{[g] \in G_*} \chi^{(k-1)}(X^{\langle g \rangle}, C_G(g)),$$

where $g = (g_0, g_1, \ldots, g_k)$, $\langle g \rangle$ is the subgroup generated by g_0, g_1, \ldots, g_k, and $\chi^{(0)}(X, G)$ is defined as $\chi(X/G)$.

The usual orbifold Euler characteristic $\chi^{\text{orb}}(X, G)$ is the Euler characteristic of order 1, $\chi^{(1)}(X, G)$.

The higher order generalized Euler characteristics takes values in the Grothendieck ring of complex quasi-projective varieties extended by the rational powers of the class of the affine line. Let $K_0(\text{Var}_C)$ be the Grothendieck ring of complex quasi-projective varieties. This is the abelian group generated by the isomorphism classes $[X]$ of quasi-projective varieties modulo the relation:

— if Y is a Zariski closed subvariety of X, then $[X] = [Y] + [X \setminus Y]$.

The multiplication in $K_0(\text{Var}_C)$ is defined by the Cartesian product. The class $[X]$ of a variety X is the universal additive invariant of quasi-projective varieties and can be regarded as a generalized Euler characteristic of X. Let \mathbb{L} be the class $[\mathbb{A}^1_C]$ of the affine line and let $K_0(\text{Var}_C)[\mathbb{L}^{1/m}]$ be the extension of the Grothendieck ring $K_0(\text{Var}_C)$ by all the rational powers of \mathbb{L}.

The formula for the generating series of the generalized orbifold Euler characteristics of the pairs (X^n, G_n) in [9] uses the (natural) power structure over the Grothendieck ring $K_0(\text{Var}_C)$ (and over $K_0(\text{Var}_C)[\mathbb{L}^{1/m}]$) defined in [7]. (See also [8] and [9] for some generalizations of this concept.) This means that for a power series $A(T) \in 1 + t \cdot R[[t]]$ ($R = K_0(\text{Var}_C)$ or $K_0(\text{Var}_C)[\mathbb{L}^{1/m}]$) and for an element $m \in R$ there is defined a series $(A(T))^m \in 1 + t \cdot R[[t]]$ so that all the properties of the exponential function hold. For a quasi-projective variety M, the series $(1 - t)^{-[M]}$ is the Kapranov zeta-function of M: $\zeta_{[M]}(t) := (1 - t)^{-[M]} = 1 + [M] \cdot t + [\text{Sym}^2 M] \cdot t^2 + [\text{Sym}^3 M] \cdot t^3 + \ldots$, where $\text{Sym}^k M = M^k/S_k$ is the k-th symmetric power of the variety M. A
geometric description of the power structure over the over the Grothendieck ring $K_0(\text{Var}_C)$ is given in [7] or [9]. The (natural) power structures over $K_0(\text{Var}_C)$ and over $K_0(\text{Var}_C)[\mathbb{L}^{1/m}]$ possess the following properties:

1) $(A(t^s))^m = (A(t))^m |_{t \rightarrow t^s}$;

2) $(A(\mathbb{L}^s t))^m = (A(t))^{L^s m}$.

One can define a power structure over the ring $\mathbb{Z}[u_1, \ldots, u_r]$ of polynomials in r variables with integer coefficients in the following way. Let $P(u_1, \ldots, u_r) = \sum_{k \in \mathbb{Z}_{\geq 0}} p_k u^k \in \mathbb{Z}[u_1, \ldots, u_r]$, where $k = (k_1, \ldots, k_r)$, $u = (u_1, \ldots, u_r)$, $u^k = u_1^{k_1} \cdots u_r^{k_r}$, $p_k \in \mathbb{Z}$. Define

$$(1 - t)^{-P(u_1, \ldots, u_r)} := \prod_{k \in \mathbb{Z}_{\geq 0}^r} (1 - u^k t)^{-p_k},$$

where the power (with an integer exponent $-p_k$) means the usual one. This gives a λ-structure on the ring $\mathbb{Z}[u_1, \ldots, u_r]$ and therefore a power structure over it (see, e.g., [9, Proposition 1])

i.e., for polynomials $A_i(u)$, $i \geq 1$, and $M(u)$, there is defined a series $(1 + A_1(u) t + A_2(u) t^2 + \ldots)^M(u)$ with the coefficients from $\mathbb{Z}[u_1, \ldots, u_r]$. Let $r = 2$, $u_1 = u$, $u_2 = v$. Let $e : K_0(\text{Var}_C) \rightarrow \mathbb{Z}[u, v]$ be the ring homomorphism which sends the class $[X]$ of a quasi-projective variety X to its Hodge–Deligne polynomial $e(X; u, v) = \sum h^{ij}_X (-u)^i (-v)^j$.

Remark. Let R_1 and R_2 be rings with power structures over them. A ring homomorphism $\varphi : R_1 \rightarrow R_2$ induces the natural homomorphism $R_1[[t]] \rightarrow R_2[[t]]$ (also denoted φ) by $\varphi(\sum a_i t^i) = \sum \varphi(a_i) t^i$. In [9] Proposition 2], it was shown that if a ring homomorphism $\varphi : R_1 \rightarrow R_2$ is such that $(1 - t)^{-\varphi(m)} = \varphi((1 - t)^{-m})$ for any $m \in R$, then $\varphi((A(t))^{-m}) = (\varphi(A(t)))^{\varphi(m)}$ for $A(t) \in 1 + tR[[t]]$, $m \in R$.

There are two natural homomorphism from the Grothendieck ring $K_0(\text{Var}_C)$ to the ring \mathbb{Z} of integers and to the ring $\mathbb{Z}[u, v]$ of polynomials in two variables: the Euler characteristic (with compact support) $\chi : K_0(\text{Var}_C) \rightarrow \mathbb{Z}$ and the Hodge–Deligne polynomial. Both possesses the following well known identities:

(1) the formula of I.G. Macdonald [12]:

$$\chi(1 + [X] t + [\text{Sym}^2 X] t^2 + [\text{Sym}^3 X] t^3 + \ldots) = (1 - t)^{-\chi(X)},$$
and the corresponding formula for the Hodge–Deligne polynomial (see [4, Proposition 1.2]):

\[
e(1 + [X]t + [\text{Sym}^2 X]t^2 + \ldots) = (1 - T)^{-e(X;u,v)} = \prod_{p,q} \left(\frac{1}{1 - u^p v^q t} \right)^{e^{p,q}(X)}.
\]

These properties and the previous remark imply that the corresponding homomorphisms respect the power structures over the corresponding rings: \(K_0(\text{Var}_\mathbb{C})\) and \(\mathbb{Z}[u,v]\) respectively, see [8].

A generalization of the orbifold Euler characteristic to the orbifold (or stringly) Hodge numbers and the orbifold Hodge–Deligne polynomial (for an action of a finite group \(G\) on a non-singular quasi-projective variety \(X\)) was defined in [5], [15], [2].

Let \(X\) be a smooth quasi-projective variety of dimension \(d\) with an (algebraic) action of the group \(G\). For \(g \in G\), the centralizer \(C_G(g)\) of \(g\) acts on the manifold \(X^{(g)}\) of fixed points of the element \(g\). Suppose that its action on the set of connected components of \(X^{(g)}\) has \(N_g\) orbits, and let \(X_{1}^{(g)}, X_{2}^{(g)}, \ldots, X_{N_g}^{(g)}\) be the unions of the components of each of the orbits. At a point \(x \in X_{\alpha_g}^{(g)}, 1 \leq \alpha_g \leq N_g\), the differential \(dg\) of the map \(g\) is an automorphism of finite order of the tangent space \(T_x X\). Its action on \(T_x X\) can be represented by a diagonal matrix \(\text{diag}(\exp(2\pi i \theta_1), \ldots, \exp(2\pi i \theta_d))\) with \(0 \leq \theta_j < 1\) for \(j = 1, 2, \ldots, d\) (\(\theta_j\) are rational numbers). The shift number \(F_{\alpha_g}^{(g)}\) associated with \(X_{\alpha_g}^{(g)}\) is \(F_{\alpha_g}^{(g)} = \sum_{j=1}^{d} \theta_j \in \mathbb{Q}\). (It was introduced in [15].)

Definition: The generalized orbifold Euler characteristic of the pair \((X, G)\) (see [9]) is

\[
[X, G] = \sum_{g \in G} \sum_{\alpha_g = 1}^{N_g} [X_{\alpha_g}^{(g)}/C_G(g)] \cdot \mathbb{L}^{F_{\alpha_g}^{(g)}} \in K_0(\text{Var}_\mathbb{C})[\mathbb{L}^{1/m}]. \tag{3}
\]

Since the Euler characteristic and the Hodge–Deligne polynomial are additive invariants they factor through \(K_0(\text{Var}_\mathbb{C})[\mathbb{L}^{1/m}]\) and the Euler characteristic morphisms sends \([X, G]\) to the orbifold Euler characteristic \(\chi^{\text{orb}}(X, G)\). The Hodge–Deligne polynomial morphism sends it to the orbifold Hodge–Deligne polynomial from [2], [14].

Let \(G^n = G \times \ldots \times G\) be the Cartesian power of the group \(G\). The symmetric group \(S_n\) acts on \(G^n\) by permutation of the factors: \(s(g_1, \ldots, g_n) = \ldots\)
The wreath product \(G_n = G \wr S_n \) is the semidirect product of the groups \(G^n \) and \(S_n \) defined by the described action. Namely the multiplication in the group \(G_n \) is given by the formula \((g, s)(h, t) = (g \cdot s(h), st)\), where \(g, h \in G^n \), \(s, t \in S_n \). The group \(G^n \) is a normal subgroup of the group \(G_n \) via the identification of \(g \in G^n \) with \((g, 1) \in G^n \). For a variety \(X \) with a \(G \)-action, there is the corresponding action of the group \(G_n \) on the Cartesian power \(X^n \) given by the formula
\[
((g_1, \ldots, g_n), s)(x_1, \ldots, x_n) = (g_1 x_{s^{-1}(1)}, \ldots, g_n x_{s^{-1}(n)}),
\]
where \(x_1, \ldots, x_n \in X \), \(g_1, \ldots, g_n \in G \), \(s \in S_n \). One can see that the quotient \(X^n / G_n \) is naturally isomorphic to the space \(\text{Sym}^n(X/G) = (X/G)^n / S_n \). In particular, in the Grothendieck ring of complex quasi-projective varieties one has \([X^n / G_n] = [(X/G)^n / S_n] = [\text{Sym}^n(X/G)]\).

A formula for the generating series of the \(k \)-th order Euler characteristics of the pairs \((X^n, G_n)\) in terms of the \(k \)-th order Euler characteristics of the \(G \)-space \(X \) was given in [13] (see also [3]).

The generating series of the orbifold Hodge–Deligne polynomials \(e(X^n, G_n; u, v) \) of the pairs \((X^n, G_n)\) was computed in [14].

A reformulation of the result of [14] in terms of the generalized orbifold Euler characteristic with values in \(K_0(\text{Var}_C)[L^{1/m}] \) was given in [9]. Using properties of the power structure one has ([9, Theorem 4]):
\[
\sum_{n \geq 0} [X^n, G_n] t^n = \left(\prod_{r=1}^{\infty} \left(1 - L^{(r-1)d/2} t^r \right) \right)^{-[X,G]}.
\]

Here we define higher order generalized Euler characteristics of a pair \((X, G)\) (with \(X \) non-singular) and give a formula for the generating series of the \(k \)-th order generalized Euler characteristic of the pairs \((X^n, G_n)\).

Before giving the definition of the higher order generalized Euler characteristic of a pair \((X, G)\) we discuss some versions of the definition (3) and of the equation (4).

For a \(G \)-variety \(X \) (not necessarily non-singular) its inertia stack (or rather class) \(I(X, G) \) is defined by
\[
I(X, G) := \sum_{[g] \in G} [X^g / C_G(g)]
\]
\((g_{s^{-1}(1)}, \ldots, g_{s^{-1}(n)}) \).
(see e.g. [11], [6]). One can see that it is an analogue of the generalized orbifold Euler characteristic (3) without the shift factor $L^{F(g)}$. This inspires the following version of the definition (3).

Definition: For a rational number φ_1, let

$$ [X, G]_{\varphi_1} := \sum_{[g] \in G, \alpha_g = 1}^{N_g} \sum_{\alpha_g = 1}^{[X^{(g)}(g)/C_G(g)]} \prod_{r = 1}^\infty (1 - L^{F(g)} \varphi_1 (r-1)d/2 r^r) \in K_0(Var_C)[L^{1/m}], \quad (6) $$

That is the Zaslow shift $F(g)$ is multiplied by φ_1. For $\varphi_1 = 1$ one gets the generalized Euler characteristic $[X, G]$ from (3), for $\varphi_1 = 0$ one gets the inertia class $I(X, G)$. The arguments from [9] easily give the following version of Equation (4).

Proposition 1

$$ \sum_{n \geq 0} [X^n, G_n]_{\varphi_1} t^n = \left(\prod_{r = 1}^\infty (1 - L^{F(g)} \varphi_1 (r-1)d/2 r^r) \right)^{-[X, G]}.$$

Thus multiplication of Zaslow’s shift by a number (at least by 1 or 0) makes sense. For the corresponding definition of the higher order generalized Euler characteristic one can use factors φ_k depending on the order of the Euler characteristic.

Let X be a non-singular d-dimensional quasi-projective variety with a G action and let $\varphi = (\varphi_1, \varphi_2, \ldots)$ be a fixed sequence of rational numbers. We use the notations introduced before (3).

Definition: The **generalized orbifold Euler characteristic of order k** of the pair (X, G) is

$$ [X, G]^k_{\varphi} := \sum_{[g] \in G, \alpha_g = 1}^{N_g} \sum_{\alpha_g = 1}^{[X^{(g)}(g)/C_G(g)]} \prod_{r = 1}^\infty (1 - L^{F(g)} \varphi_1 (r-1)d/2 r^r) \in K_0(Var_C)[L^{1/m}], \quad (8) $$

where $[X, G]^1_{\varphi} := [X, G]_{\varphi_1}$ is the (modified) generalized orbifold Euler characteristic given by (6).

Remark. The definition (2) (as well as (1)) contains two equivalent versions. One can say that here we formulate an analogues of the second one. A formula
analogous to the first one (with the factor $\frac{1}{|G|}$ in front) cannot work directly, at least without tensoring the ring $K_0(\text{Var}_C)[L^{1/m}]$ by the field \mathbb{Q} of rational numbers. Moreover, it seems that there is no analogue of Theorem 1 in terms of the power structure. This gives the hint that a definition of this sort makes small geometric sense (if any).

Taking the Euler characteristic, one gets $\chi([X, G]_\varphi^k) = \chi^{(k)}(X, G)$.

To prove the formula for the generating series of $[X^n, G_n]_{\varphi^k}$ we will use some technical statements.

Lemma 1

$$[X' \times X'', G' \times G'']_{\varphi^k} = [X', G']_{\varphi^k} \times [X'', G'']_{\varphi^k}. \tag{9}$$

The proof is obvious.

Let X_1 and X_2 be two G-manifolds and let $X_1^m \times X_2^{n-m}$ be embedded into $(X_1 \coprod X_2)^n$ in the natural way: a pair of elements $(x_1, \ldots, x_m) \in X_1^m$ and $(x_2, \ldots, x_{2,n-m}) \in X_2^{n-m}$ is identified with $(x_1, \ldots, x_m, x_2, \ldots, x_{2,n-m}) \in (X_1 \coprod X_2)^n$. Let $\text{Sym}^n(X_1^m \times X_2^{n-m})$ be the orbit of $X_1^m \times X_2^{n-m}$ under the S_n-action on $(X_1 \coprod X_2)^n$. The wreath product G_n acts on $\text{Sym}^n(X_1^m \times X_2^{n-m})$.

Lemma 2

$$[\text{Sym}^n(X_1^m \times X_2^{n-m}), G_n]_{\varphi^k} = [X_1^m, G_m]_{\varphi^k} \times [X_2^{n-m}, G_{n-m}]_{\varphi^k}. \tag{10}$$

Proof. An element $(g, s) \in G_n$ has fixed points on $\text{Sym}^n(X_1^m \times X_2^{n-m})$ if and only if it is conjugate to an element $(g', s') \in G_n$ such that $s' = (s_1, s_2) \in S_m \times S_{n-m} \subset S_n$ and the element $(g', s') = ((g_1, g_2), (s_1, s_2))$ has fixed points on $X_1^m \times X_2^{n-m}$ (and only on it). The centralizer of the element (g', s') is $C_{G_n}((g_1, s_1)) \times C_{G_{n-m}}((g_2, s_2))$. The components of $(X_1^m \times X_2^{n-m})_{((g', s'))}$ are the products $(X_1^m)_{((g_1, s_1))} \times (X_2^{n-m})_{((g_2, s_2))}$ of the components of $(X_1^m)_{((g_1, s_1))}$
and \((X_{2}^{n-m})^{(g_{s},s_{2})} \). The shift \(F_{\alpha\beta}^{(g',s')} \) is equal to \(F_{\alpha}^{(g_{1},s_{1})} + F_{\beta}^{(g_{2},s_{2})} \). Therefore

\[
[\text{Sym}^{n} (X_{1}^{m} \times X_{2}^{n-m}), G_{n}]_{\varphi}^{k} = \sum_{\alpha\beta} \sum_{[g',s'] \in \alpha\beta} [(X_{1}^{m} \times X_{2}^{n-m})^{(g',s')}, C_{G_{m}} ((g_{1}, s_{1})) \times C_{G_{n-m}} ((g_{2}, s_{2}))]_{\varphi}^{k-1} \cdot \mathbb{L} (F_{\alpha}^{(g_{1}, s_{1})} + F_{\beta}^{(g_{2}, s_{2})})
\]

\[
= \sum_{\alpha} \sum_{[g_{s}, s_{1}] \in \alpha} [(X_{1}^{m})^{(g_{s}, s_{1})}, C_{G_{m}} ((g_{1}, s_{1}))]_{\varphi}^{k-1} \cdot \mathbb{L} F_{\alpha}^{(g_{1}, s_{1})}
\]

\[
= \sum_{\beta} \sum_{[g_{s_{2}}, s_{2}] \in \beta} [(X_{1}^{m})_{g_{s_{2}}, s_{2}}, C_{G_{m}} ((g_{2}, s_{2}))]_{\varphi}^{k-1} \cdot \mathbb{L} F_{\beta}^{(g_{2}, s_{2})}
\]

\[
= [X_{1}^{m}, G_{m}]_{\varphi}^{k} \times [X_{2}^{n-m}, G_{n-m}]_{\varphi}^{k}.
\]

\[\square\]

Let \(X \) be a \(G \)-manifold and let \(c \) be an element of \(G \) acting trivially on \(X \). Let \(r \) be a fixed positive integer. Denote by \(G \cdot \langle a \rangle \) the group generated by \(G \) and the additional element \(a \) commuting with all the elements of \(G \) and such that \(\langle a \rangle \cap G = \langle c \rangle, c = a^{r} \). Define the action of the group \(G \cdot \langle a \rangle \) on \(X \) (an extension of the \(G \)-action) so that \(a \) acts trivially.

Lemma 3 (cf. [13, Lemma 4-1]) In the described situation one has

\[[X, G \cdot \langle a \rangle]_{\varphi}^{k} = r^{k} [X, G]_{\varphi}^{k}. \]

Proof. We shall use the induction on \(k \). For \(k = 0 \) this is obvious (since \([X, G]_{\varphi}^{0} = [X/G] \)). Each conjugacy class of elements from \(G \cdot \langle a \rangle \) is of the form \([g]a^{s} \), where \([g] \in G_{s}, 0 \leq s < r \). The fixed point set of \(ga^{s} \) coincides with \(X^{0} \), the Zaslow shift \(F_{\alpha}^{\langle a \rangle} \) at each component of \(X^{0} \) coincides with \(F_{\alpha}^{g} \) (since \(a \) acts trivially). The centralizer \(C_{G \cdot \langle a \rangle} (ga^{s}) \) is \(C_{G} (g) \cdot \langle a \rangle \). Therefore

\[[X, G \cdot \langle a \rangle]_{\varphi}^{k} = \sum_{[g] \in G_{s}} r^{N_{g}} \sum_{\alpha = 1}^{N_{g}} [X_{\alpha}, C_{G} (g) \cdot \langle a \rangle]_{\varphi}^{k-1} \cdot \mathbb{L} F_{\alpha}^{g} = r^{k} [X, G]_{\varphi}^{k}. \]

\[\square\]

Theorem 1 Let \(X \) be a smooth quasi-projective variety of dimension \(d \) with a \(G \)-action. Then

\[\sum_{n \geq 0} [X^{n}, G_{n}]_{\varphi}^{k} \cdot t^{n} = \left(\prod_{r_{1}, \ldots, r_{k} \geq 1} \left(1 - \mathbb{L} \Phi_{\alpha} (\mathbb{Z}) / 2 \cdot t^{r_{1} r_{2} \cdots r_{k}} \right) r_{1}^{2} \cdots r_{k}^{2} \right) \right) - [X, G]_{\varphi}^{k}, \]

(11)
where
\[\Phi_k(r_1, \ldots, r_k) = \varphi_1(r_1 - 1) + \varphi_2 r_1(r_2 - 1) + \ldots + \varphi_k r_1 r_2 \cdots r_{k-1} (r_k - 1). \]

Proof. To a big extent we shall follow the lines of the proof of Theorem A in [13]. We shall use the induction on the order \(k \). For \(k = 1 \) the equation coincides with the one from Proposition [1]. Assume that the statement is proved for the generalized Euler characteristic of order \(k - 1 \). One has
\[
\sum_{n \geq 0} [X^n, G_n]_k^k t^n = \sum_{n \geq 0} t^n \left(\sum_{[(g, s)] \in G_n^{\ast}} \sum_{\text{comp}} [(X^n)_{\text{comp}}^\langle (g, s) \rangle, C_G_n((g, s))]_k^{k-1} \cdot \mathbb{F}_{\text{comp}}^{\langle (g, s) \rangle} \right),
\]
where the sums are over all the conjugacy classes \([(g, s)] \) of elements of \(G_n \) and over all the components of \((X^n)^\langle (g, s) \rangle \) (or rather unions of components from an orbit of the \(C_G_n((g, s)) \)-action on the components of it).

The conjugacy classes \([(g, s)] \) of elements of \(G_n \) are characterized by their types. Let \(a = (g, s) \in G_n, g = (g_1, \ldots, g_n) \). Let \(z = (i_1, \ldots, i_r) \) be one of the cycles in the permutation \(s \). The cycle-product of the element \(a \) corresponding to the cycle \(z \) is the product \(g_{i_r} g_{i_{r-1}} \cdots g_{i_1} \in G \). The conjugacy class of the cycle-product is well-defined by the element \(g \) and the cycle \(z \) of the permutation \(s \). For \([c] \in G_\ast \) and \(r \geq 0 \), let \(m_r(c) \) be the number of \(r \)-cycles in the permutation \(s \) whose cycle-products lie in \([c]\). One has
\[
\sum_{[c] \in G_\ast} rm_r(c) = n.
\]
The collection \(\{m_r(c)\}_{r,c} \) is called the type of the element \(a = (g, s) \in G_n \). Two elements of the group \(G_n \) are conjugate to each other if and only if they are of the same type.

In [13] (see also [14]) it is shown that, for an element \((g, s) \in G_n \) of type \(\{m_r(c)\} \), the subspace \((X^n)^\langle (g, s) \rangle \) can be identified with
\[
\prod_{[c] \in G_\ast} \prod_{r \geq 1} (X^c)^{m_r(c)}. \tag{12}
\]
By [13] Theorem 3.5] the centralizer of the element \((g, s) \in G_n \) is isomorphic to
\[
\prod_{[c] \in G_\ast} \prod_{r \geq 1} \{(C_G(c) \cdot \langle a_{r,c} \rangle) \cap S_{m_r(c)} \}
\]
(acting on the product component-wise) where \(C_G(c) \cdot \langle a_{r,c} \rangle \) is the group generated by \(C_G(c) \) and an element \(a_{r,c} \) commuting with all the elements of \(C_G(c) \) and such that \(a_{r,c} = c \), \(\langle a_{r,c} \rangle \cap C_G(c) = \langle c \rangle \), and \(a_{r,c} \) acts on \((X^c)^{m_r(c)} \) trivially.

The components of \((X^c)^{m_r(c)} \) (with respect to the \(C_G(c) \cdot \langle a_{r,c} \rangle \)-action) are \(\text{Sym}^{m_r(c)} \left(\prod_{\alpha=1}^{N_a} (X^{c}\alpha)^{m_{r,c}(\alpha)} \right) \), where \(\sum_{\alpha=1}^{N_a} m_{r,c}(\alpha) = m_r(c) \). Here and below the sum over \(\text{comp} \) means the summation over all the components indicated in the summands. Therefore

\[
\sum_{n \geq 0} [X^n, G_n]_G t^n = \sum_{n \geq 0} t^n \left(\sum_{\{m_{r,c}(\alpha)\}} \prod_{[c], r} \left\{ (X^c)^{m_{r,c}(\alpha)} \right\}_{\text{comp}, [c], r} \prod_{[c], r} \left\{ (C_G(c) \cdot \langle a_{r,c} \rangle) \cdot S_{m_r(c)} \right\}_{\varphi}^{k-1} \cdot \mathbb{L}^{F^{(g_s)}_{\text{comp}}} \right)
\]

Iterating Lemma 2 one gets

\[
\sum_{\{m_{r,c}(\alpha)\}} \prod_{[c], r} \left\{ (X^c)^{m_{r,c}(\alpha)} \right\}_{\text{comp}, [c], r} \prod_{[c], r} \left\{ (C_G(c) \cdot \langle a_{r,c} \rangle) \cdot S_{m_r(c)} \right\}_{\varphi}^{k-1} \times \\
\mathbb{L} \phi_k \left(\sum_{[c], r} m_{r,c}(\alpha)(F_{\alpha}^{c} + \frac{(r-1)d}{2}) \right)
\]

\[
= \prod_{[c], r} \left(\sum_{\{m_{r,c}(\alpha)\}} \prod_{\alpha=1}^{N_a} \left\{ (X^{c}\alpha)^{m_{r,c}(\alpha)} \right\}_{\text{comp}, [c], r} \prod_{[c], r} \left\{ (C_G(c) \cdot \langle a_{r,c} \rangle) \cdot S_{m_r(c)} \right\}_{\varphi}^{k-1} \times \\
\mathbb{L} \phi_k \left(\sum_{[c], r} m_{r,c}(\alpha)(F_{\alpha}^{c} + \frac{(r-1)d}{2}) \right) \right)
\]
By the induction one gets

\[\prod_{r_1, \ldots, r_{k-1} \geq 1} \prod_{[c], r \alpha=1} \left(1 - \Phi_{k-1}(r) \frac{d}{2} \phi_k \left(L \phi_k \left(F_{\alpha} + \frac{(r-1)d}{2} \right) \right)_{r_1 \cdots r_{k-1}} r_2 r_3^2 \cdots r_{k-1}^{k-2} \right)^{-1} \]

\[= \prod_{r_1, \ldots, r_{k-1} \geq 1} \left(1 - \Phi_{k-1}(r) \frac{d}{2} \phi_k \left(r_1 \cdots r_{k-1} \right) \right)^{r_2 r_3^2 \cdots r_{k-1}^{k-2}} \]

(Here we use the properties of the power structure.)

\[= \prod_{r_1, \ldots, r_{k-1} \geq 1} \left(1 - \Phi_k \left(\frac{d}{2} \phi_k \right) \right)^{r_2 r_3^2 \cdots r_{k-1}^{k-2}} \]

\[= \prod_{r_1, \ldots, r_{k-1} \geq 1} \left(1 - \Phi_k \left(\frac{d}{2} \phi_k \right) \right)^{r_2 r_3^2 \cdots r_{k-1}^{k-2}} \]

In the last two equations \(r \) is substituted by \(r_k \). □

Remark. For \(\varphi = 0 \), i.e. if \(\varphi_i = 0 \) for all \(i \), the definition of the higher order generalized Euler characteristics does not demand \(X \) to be smooth. This way one gets the definition of a sort of higher order inertia classes and the statement of Theorem 11 holds for an arbitrary \(G \)-variety \(X \).

Since \(\chi([X^n, G_n]^k) = \chi(X, G) \), \(\chi(\mathbb{L}) = 1 \), taking the Euler characteristic of the both sides of the equation (11) one gets Theorem A of [13]:

\[\sum_{n \geq 0} \chi^{(k)}(X^n, G_n) \cdot t^n = \left(\prod_{r_1, \ldots, r_{k-1} \geq 1} \left(1 - t^{r_1 r_2 \cdots r_{k-1}} r_2 r_3^2 \cdots r_{k-1}^{k-2} \right) \right)^{-1} \]

Let \(e^{(k)}(X, G; u, v) := e([X, G]^k; u, v) \) be the higher order Hodge–Deligne polynomial of \((X, G) \) (of order \(k \)). Applying the Hodge–Deligne polynomial homomorphism, one gets a generalization of the main result in [14]:

\[\sum_{n \geq 0} e^{(k)}(X^n, G_n; u, v) \cdot t^n = \left(\prod_{r_1, \ldots, r_{k-1} \geq 1} \left(1 - (uv)^{d/2} \cdot t^{r_1 r_2 \cdots r_{k-1}} r_2 r_3^2 \cdots r_{k-1}^{k-2} \right) \right)^{-e^{(k)}(X, G; u, v)} \]
References

[1] M. Atiyah, G. Segal. On equivariant Euler characteristics. J. Geom. Phys. 6 (1989), no.4, 671–677.

[2] V. Batyrev, D. Dais. Strong McKay correspondence, string-theoretic Hodge numbers and mirror symmetry. Topology 35 (1996), no.4, 901–929.

[3] J. Bryan, J. Fulman. Orbifold Euler characteristics and the number of commuting m-tuples in the symmetric groups. Ann. Comb. 2 (1998), no.1, 1–6.

[4] J. Cheah On the cohomology of Hilbert schemes of points, J. Algebraic Geom. 5 (1996), 479–511.

[5] L. Dixon, J. Harvey, C. Vafa, E. Witten. Strings on orbifolds. I. Nucl. Phys. B 261 (1985), 678–686.

[6] T. de Fernex, E. Lupercio, T. Nevins, B. Uribe. Stringy Chern classes of singular varieties. Adv. Math. 208 (2007), no.2, 597–621.

[7] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández. A power structure over the Grothendieck ring of varieties. Math. Res. Lett. 11 (2004), 49–57.

[8] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández. Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points, Michigan Math. J. 54 (2006), no. 2, 353–359.

[9] S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández. On the power structure over the Grothendieck ring of varieties and its applications. Proc. Steklov Inst. Math. 258 (2007), no.1, 53–64.

[10] F. Hirzebruch, Th. Höfer. On the Euler number of an orbifold. Math. Ann. 286 (1990), no.1-3, 255–260.

[11] T. Kawasaki. The signature theorem for V-manifolds. Topology 17 (1978), no.1, 75–83.

[12] I.G. Macdonald. The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos. Soc. 58 (1962), 563–568.
[13] H. Tamanoi. Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K-theory. Algebraic & Geometric Topology 1 (2001), 115–141.

[14] W. Wang, J. Zhou. Orbifold Hodge numbers of wreath product orbifolds. J. Geometry and Physics 38 (2001), 152–169.

[15] E. Zaslow, Topological orbifold models and quantum cohomology rings. Commun. Math. Phys. 156 (1993), 301–331.