Trend analysis of major cancer statistics according to sex and severity levels in Korea

Minsu Ock¹, Woong Jae Choi², Min-Woo Jo³*

¹ Department of Preventive Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea, ² School of Biosystem and Biomedical Science, Korea University, Seoul, South Korea, ³ Department of Preventive Medicine, University of Ulsan College of Medicine, Seoul, South Korea

* mdjominwoo@gmail.com

Abstract

Existing epidemiologic reports or studies of cancer statistics in Korea lack sufficient data on cancer severity distributions and observed survival rates. This study analyzed trends in major cancer statistics according to sex and severity levels in Korea from 2006 to 2013. We included eight cancers (hepatocellular carcinoma, and thyroid, colorectal, gastric, lung, prostate, breast, and cervical cancer), using Korea Central Cancer Registry data. Severity level was classified by Surveillance, Epidemiology, and End Results (SEER) stage as follows: localized, regional, distant, or unknown. Numbers of incident cancer cases from 2006 to 2013 were described by sex and SEER stage. We estimated up to 8-year observed survival rates of major cancers by sex and SEER stage, and provided prevalence rates by sex and SEER stage in 2011, 2012, and 2013. Although increases in new cancer cases are slowing and the total number of incident cancer cases in 2013 decreased for the first time since 2006, the number of prevalent cancer cases was 663,530 in 2013, an increase of 13.3% compared to 2011. Among the five cancers affecting both sexes, sex-related differences in 5-year observed survival rates for lung cancer were greatest in the localized stage (men, 31.9%; women, 48.1%), regional stage (men, 20.0%; women, 31.3%), and unknown stage (men, 24.3%; women, 37.5%). The sum of the proportions of localized and regional stages for thyroid and breast cancer was over 90% in 2013, while the sum of the proportions of localized and regional stages for lung cancer was only 56.7% in 2013. Differences in observed survival rates between men and women were prominent in lung cancer for all SEER stages. The reported epidemiologic data from this study can be used to obtain a more valid measure of cancer burden using a summary measure of population health.

Introduction

The burden of cancer is substantial not only in developed countries but also in developing countries [1]. In 2013, 8.2 million people died from cancer, 14.9 million people were newly diagnosed with cancer, and cancer was the cause of 196.3 million disability-adjusted life years (DALYs) worldwide [2]. The incidence of cancer is expected to increase continuously and strain the world’s healthcare resources owing to population growth and aging [3]. In South
Korea (hereinafter Korea), cancer is the leading cause of death. In 2013, there were 75,334 deaths due to cancer, and 225,343 cancer cases were newly diagnosed [4]. Furthermore, the burden of cancer in 2012 was 3,471.79 DALYs per 100,000 persons [5] and DALYs due to all neoplasms accounted for 8.44% of total DALYs [6].

Measuring the disease burden is essential for proper allocation of healthcare resources [7]. In the case of cancer, it is also important to measure the cancer burden to determine priorities for healthcare services and research. In this context, generating accurate cancer statistics is required to establish cancer control and prevention strategies [4]. Accordingly, many countries such as the United States [8], Japan [9], Canada [10], and Australia [11] have been attempting to improve the collection and analysis of cancer data and release annual reports of national cancer statistics. Korea also publishes annual reports of cancer statistics, including incidence rates, mortality rates, relative survival rates, and prevalence rates by sex [4], and several studies have provided descriptive epidemiology of various cancers [12–15].

However, existing epidemiologic reports or studies of cancer statistics in Korea have two limitations. First, data regarding cancer severity distributions were insufficient, and only incidence rates of cancer based on the Surveillance, Epidemiology, and End Results (SEER) stage were available. When estimating DALYs due to cancer using the prevalence-based approach, the main method of the study of global burden of disease, prevalence data regarding severity distribution are required to accurately calculate the DALYs [16]. Second, survival data in annual reports and previous studies were based on relative survival rates, not observed survival rates. In terms of relative survival rates, values above 100% can be estimated in some groups of patients, and this result appears counterintuitive for patients. Furthermore, observed survival rates by severity level provide patients with more accurate prognostic information for cancer, compared to overall relative survival rates.

In the present study, we analyzed the trends in major cancer statistics in Korea according to sex and severity levels from 2006 to 2013. Specifically, we described the number of incident cancer cases by sex and SEER stage from 2006 to 2013. Furthermore, we estimated up to 8-year observed survival rates of major cancers by sex and SEER stage. We also provided the 5-year prevalence rates of major cancers by sex and SEER stage in 2011, 2012, and 2013.

Materials and methods
A total of eight cancers (hepatocellular carcinoma, thyroid cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, breast cancer, and cervical cancer) were included in the present study.

Data
We used data from the Korea Central Cancer Registry (KCCR) of the National Cancer Center Korea. More than 190 hospitals participate in the KCCR, and data regarding over 90% of newly diagnosed cancers in Korea are collected [17]. The KCCR offers annual national cancer incidence, survival, and prevalence data, and the KCCR database includes information regarding patients with cancer, such as sex, age, and date of diagnosis [4]. From the KCCR, we obtained the number of cancer patients by sex, age, and severity level from 2006 to 2013, as well as follow-up data for mortality for up to eight years. Furthermore, we utilized mid-year population data based on resident registration from the Korean Statistical Information Service of Statistics Korea to calculate incidence rates and prevalence rates [18]. The severity level was classified by SEER stage as follows: localized stage, regional stage, distant stage, and unknown stage. The SEER stage was based on the time of diagnosis.
Analysis

First, we described the number of incident cancer cases according to sex and SEER stage from 2006 to 2013. The incidence rates by sex and SEER stage were determined as the number of incident cancer cases by sex and SEER stage divided by the mid-year population by sex. The means of incidence rates and their 95% confidence intervals from 2006 to 2013 according to Poisson distribution assumption were estimated by type of cancer, sex, and SEER stage. Furthermore, we conducted statistical tests for linear trend of overall incidence rates and proportions of incidence rates by stage.

Patients with cancer identified in 2006 underwent follow-up for all-cause mortality and observed survival rates by sex and SEER stage. All-cause mortality and observed survival rates by sex and SEER stage in each follow-up year were calculated as the number of patients with cancer alive by sex and SEER stage in each follow-up year divided by the total number of patients with cancer by sex and SEER stage in 2006.

Finally, we estimated the prevalence rates for eight cancers by sex and SEER stage in 2011, 2012, and 2013. Fig 1 shows the method of estimating the number of prevalent cases. We assumed that patients with cancer who lived more than five years past their diagnosis were recovered from the cancer, and these patients were excluded from the prevalent cases. For example, prevalent cases in 2013 included the patients with cancer who were diagnosed in 2013, as well as patients with cancer who were diagnosed since 2009 and still alive (Fig 1). As with incidence rates, the 5-year prevalence rates by sex and SEER stage were calculated as the number of prevalent cases by sex and SEER stage divided by the mid-year population by sex.

In the case of breast cancer, we only analyzed the female patients, because male patients account for a small proportion of the total patients with breast cancer. For a similar reason, all
analyses were restricted to individuals aged ≥ 30 years. In particular, in the case of prostate cancer, only individuals aged ≥ 50 were included in the analyses, because prostate cancer patients under age 50 are rare in Korea.

We used Microsoft Office Excel 2010 and Stata software (Stata/SE 13.1) for all analyses. In this study, P-values less than 0.05 were regarded statistically significant.

Ethical approval
Ethical approval and consent to participate were unnecessary because we used publicly available data without any personal identifiers.

Results

Incident cancer cases

Figs 2 and 3 show the proportions of incident cancer cases for a total of eight cancers by sex and SEER stage from 2006 to 2013. S1 File shows additional details of the number of incident cancer cases, mean incidence rates, and statistical tests for linear trend of overall incidence rates and proportions of incidence rates by SEER stage (S1 File). The total number of newly diagnosed cancer cases between 2006 and 2013 increased by 22,966 and 32,525 cases for men (from 60,138 to 83,104) and women (from 54,462 to 86,987), respectively. However, increases in incident cancer cases are slowing, and the number of newly diagnosed cancer cases in 2013 decreased for the first time since 2006.

In men, the most common cancer in 2013 was gastric cancer (20,266), followed by colorectal cancer (16,593), and lung cancer (16,171). The incidence rate per 100,000 population was higher in the order of gastric cancer (125.7), prostate cancer (125.4), and colorectal cancer (102.9). The proportion of local stage in 2013 was largest in gastric cancer (62.3%), followed by prostate cancer (55.0%) and hepatocellular carcinoma (45.7%). The proportion of distant stage in 2013 was largest in lung cancer (43.7%), followed by hepatocellular carcinoma (15.0%) and colorectal cancer (14.2%). In gastric cancer, the proportion of local stage increased by 17.5 percentage points between 2006 and 2013 (P-trend < 0.001). However, the proportion of distant stage in the same period increased by 9.9 percentage points in lung cancer (P-trend < 0.001).

In women, the most common cancer in 2013 was thyroid cancer (34,087), followed by breast cancer (17,231) and colorectal cancer (11,025). The incidence rate per 100,000 population was higher in the order of thyroid cancer (201.9), breast cancer (102.0), and colorectal cancer (65.3). The proportion of local stage in 2013 was largest in gastric cancer (58.8%), followed by breast cancer (58.0%) and cervical cancer (54.5%). However, the proportion of distant stage in 2013 was largest in lung cancer (41.7%), followed by hepatocellular carcinoma (15.9%) and colorectal cancer (15.8%). Although the proportion of the local stage in lung cancer between 2006 and 2013 increased by 6.7 percentage points (P-trend < 0.001), the proportion of the distant stage in lung cancer during the same period increased by 5.6 percentage points (P-trend < 0.001).

Survival rates

Fig 4 shows 8-year observed survival rates for men by SEER stage. Among the six cancers, the 5-year observed survival rate of thyroid cancer was highest in all SEER stages: 95.3% (localized stage), 95.2% (regional stage), 56.4% (distant stage), and 90.9% (unknown stage). The 5-year observed survival rate for lung cancer was lowest in localized stage (31.9%), while 5-year observed survival rates for colorectal cancer and gastric cancer were over 80% in localized...
stage (81.5% and 81.1%, respectively). In regional stage and distant stage, the 5-year observed survival rate was lowest for hepatocellular carcinoma (11.3% and 3.2%, respectively).

Fig 5 shows 8-year observed survival rates for women by SEER stage. Among the seven cancers, the 5-year observed survival rate of thyroid cancer was highest in all SEER stages: 98.7% (localized stage), 98.1% (regional stage), 70.8% (distant stage), and 95.5% (unknown stage). The 5-year observed survival rate of hepatocellular carcinoma was lowest in all SEER stages: 34.8% (localized stage), 12.2% (regional stage), 2.3% (distant stage), and 30.4% (unknown stage). Among the five cancers affecting both men and women, the differences in the 5-year observed survival rates of lung cancer were greatest in localized stage (31.9% in men and 48.1% in women), regional stage (20.0% in men and 31.3% in women), and unknown stage (24.3% in men and 37.5% in women). In the case of distant stage, the differences in the 5-year observed survival rates of thyroid cancer were greatest (56.4% in men and 70.8% in women). S2 File shows additional details for observed survival rates of up to eight years by sex and SEER stage (S2 File).
Table 1 shows the trends in overall 5-year prevalence rates of cancers by sex and SEER stage from 2011 to 2013. The number of prevalent cancer cases was 663,530 in 2013, which represented a 13.3% increase compared to 2011. The sums of proportions of localized stage and regional stage for thyroid cancer and breast cancer were over 90% in 2013, while the sum of proportions of localized stage and regional stage for lung cancer was only 56.7% in 2013.

In 2011, the highest prevalence rate per 100,000 population in men was for gastric cancer (495.9), followed by prostate cancer (477.8) and colorectal cancer (403.6). In 2013, the highest prevalence rate per 100,000 population in men was for prostate cancer (519.0), followed by gastric cancer (511.1) and colorectal cancer (429.4). In 2011, the highest prevalence rate per 100,000 population in women was for thyroid cancer (806.5), followed by breast cancer (404.8) and colorectal cancer (248.1). In 2013, the highest prevalence rate per 100,000 population in women was for thyroid cancer (952.8), followed by breast cancer (444.0) and colorectal cancer.

Fig 3. Number of incident cases for seven cancers in women according to SEER stage from 2006 to 2013.

https://doi.org/10.1371/journal.pone.0203110.g003
Among five cancers affecting both men and women, thyroid cancer was about 4.4 times more common in women, while hepatocellular carcinoma, colorectal cancer, gastric cancer, and lung cancer were more common in men.

Discussion

In the present study, we analyzed the number of incident cancer cases, observed survival rates, and prevalence rates by sex and SEER stage for eight cancers (hepatocellular carcinoma, thyroid cancer, colorectal cancer, gastric cancer, lung cancer, prostate cancer, breast cancer, and cervical cancer) from 2006 to 2013 in Korea. The main strength of this study is that we described national cancer statistics for major cancers considering the severity level of the cancer. Because data regarding severity level are often scarce [16, 19], the results from this study...
will be helpful to allow more accurate estimation of the scale of the burden of disease. When collecting national epidemiologic data for other diseases, such as diabetes mellitus and asthma, it will be necessary to collect information regarding severity level using a functional scale.

Another strength of the present study is that we provided up to 8-year observed survival rates by gender and SEER stage. Following a cancer diagnosis, patient often wonder about their prognosis, including successful treatment rates and survival rates [20]. Accurate information concerning disease prognosis is necessary to enable cancer patients to select treatment options and plan their own lives. The results from this study regarding observed survival rates will assist medical professionals in providing more accurate prognostic information about
their disease to patients with cancer, compared to overall relative survival rates. Most of the previous studies regarding cancer statistics in Korea have reported relative survival rates, not observed survival rates [4, 12–15]. Although a relative survival rate has the advantage of

Table 1. Number of cancer cases and prevalence rates of cancers by sex and SEER stage from 2011 to 2013.

Cancer	Stage	2011	2012	2013			
	Men N	Women N	Men N	Women N			
	Rate	Rate	Rate	Rate			
Hepatocellular carcinoma	Localized	17,633 113.2	5,859 35.9	18,731 118.1	6,085 36.6	19,502 120.9	6,277 37.2
	Regional	6,233 40.0	1,901 11.6	6,548 41.3	1,952 11.7	6,754 41.9	2,071 12.3
	Distant	2,615 16.8	930 5.7	2,605 16.4	969 5.8	2,484 15.4	930 5.5
	Unknown	5,668 36.4	2,437 14.9	5,117 32.2	2,226 13.4	4,858 30.1	2,139 12.7
	Total	32,149 206.4	11,127 68.2	33,001 208.0	11,232 67.6	33,598 208.3	11,417 67.6
Thyroid cancer	Localized	9,502 61.0	58,221 356.7	11,324 71.4	66,821 402.1	12,744 79.0	71,361 422.6
	Regional	13,489 86.6	60,721 372.0	16,499 104.0	70,773 425.9	19,105 118.5	77,613 459.6
	Distant	138 1.9	855 5.2	297 1.9	878 5.3	292 1.8	852 5.0
	Unknown	2,407 15.4	11,846 72.6	2,487 15.7	11,333 68.2	2,511 15.6	11,074 65.6
	Total	25,693 164.9	131,643 806.5	30,609 192.9	149,805 901.5	34,652 214.9	160,900 952.8
Colorectal cancer	Localized	26,136 167.8	15,416 94.4	29,057 183.1	16,987 102.2	30,414 188.6	17,812 105.5
	Regional	25,434 163.3	17,182 105.3	27,137 171.0	18,453 111.0	28,522 176.8	19,268 114.1
	Distant	5,689 36.5	3,924 24.0	5,902 37.2	4,083 24.6	5,907 36.6	4,120 24.4
	Unknown	5,622 36.1	3,981 24.4	4,947 31.2	3,559 21.4	4,413 27.4	3,245 19.2
	Total	62,881 403.6	40,503 248.1	67,043 422.5	43,082 259.3	69,256 429.6	44,445 263.2
Gastric cancer	Localized	49,667 318.8	23,671 145.0	54,142 341.2	25,638 154.3	57,037 353.6	26,904 159.3
	Regional	17,676 113.5	8,722 53.4	17,767 111.4	8,685 52.3	17,468 108.3	8,710 51.6
	Distant	3,981 25.6	1,924 11.8	3,973 25.0	1,921 11.6	3,737 23.2	1,783 10.6
	Unknown	5,940 38.1	3,570 21.9	4,948 31.2	2,983 18.0	4,196 26.0	2,696 16.0
	Total	77,264 495.9	37,887 232.1	80,739 508.8	39,227 236.1	82,438 511.4	40,093 237.4
Lung cancer	Localized	8,043 51.6	4,709 28.9	8,137 56.0	5,477 33.0	9,528 59.1	6,185 36.6
	Regional	10,291 66.1	3,842 23.5	10,921 68.8	4,230 25.5	11,434 70.9	4,552 27.0
	Distant	9,517 61.1	5,112 31.3	9,844 62.0	5,312 32.0	10,640 66.0	5,673 33.6
	Unknown	5,329 34.2	3,516 21.5	4,876 30.7	3,242 19.5	4,711 29.2	3,153 18.7
	Total	33,180 213.0	36,071 222.0	34,530 217.6	34,261 199.9	36,313 225.1	19,563 115.8
Breast cancer	Localized	- -	- -	- -	- -	- -	- -
	Regional	- -	- -	- -	- -	- -	- -
	Distant	- -	- -	- -	- -	- -	- -
	Unknown	- -	- -	- -	- -	- -	- -
	Total	- -	- -	- -	- -	- -	- -
Cervical cancer	Localized	- -	- -	- -	- -	- -	- -
	Regional	- -	- -	- -	- -	- -	- -
	Distant	- -	- -	- -	- -	- -	- -
	Unknown	- -	- -	- -	- -	- -	- -
	Total	- -	- -	- -	- -	- -	- -
Prostate cancer	Localized	19,149 275.5	- -	21,505 295.2	- -	23,100 304.3	- -
	Regional	6,817 98.1	- -	7,779 108.6	- -	8,733 115.1	- -
	Distant	2,213 31.8	- -	2,408 33.0	- -	2,567 33.8	- -
	Unknown	5,035 72.4	- -	4,962 68.1	- -	4,989 65.7	- -
	Total	33,214 477.8	- -	36,654 503.1	- -	39,389 519.0	- -

*Per 100,000 population

https://doi.org/10.1371/journal.pone.0203110.t001
evaluating the results of cancer treatment, it also leads cancer patients to overestimate their
survival rates. Furthermore, relative survival rates above 100% can be calculated in a cancer
with a favorable prognosis, such as thyroid cancer [21], and such values can cause difficulty for
cancer patients in understanding their prognosis.

When comparing cancers in terms of proportion of SEER stage in the incident cancer
cases, the proportions of distant stage were larger in lung cancer, hepatocellular carcinoma,
and colorectal cancer than in other cancers. Efforts should be made to detect these cancers at
an early stage. In particular, the proportions of distant stage for lung cancer in 2013 were
43.7% in men and 41.7% in women; these proportions have increased compared to 2006 (P-
trend <0.001). Based on these results, we may assume that a fair number of patients with lung
cancer had inoperable disease at the time of diagnosis. It is known that lung cancer screening
in high-risk groups can reduce lung cancer mortality, although several issues, including radia-
tion risk, overdiagnosis bias, and validity of screening method, might be reviewed [22]. If lung
cancer screening guidelines are adopted in Korea, distributions of severity level in lung cancer
can be monitored to evaluate the effectiveness of those screening guidelines.

On the other hand, in the case of gastric cancer, the proportion of local stage tended to
increase and the proportion of distant stage tended to decrease. The proportions of localized
stage for gastric cancer in 2006 were 44.8% in men and 43.3% in women, whereas theses pro-
portions in 2013 were 62.3% in men and 58.8% in women (P-trend <0.001). However, the
proportions of distant stage for gastric cancer in 2006 were 12.1% in men and 12.3 in women,
whereas theses proportions in 2013 were 10.4% in men and 10.6% in women (P-trend
<0.001). One of the hypotheses that can explain these changes is that the Korean National
Cancer Screening Program for gastric cancer is effective. It is also reported that the Korean
National Cancer Screening Program for gastric cancer has reduced the gastric cancer mortality
[23]. However, since these changes are not prominent in other cancers, there may be limita-
tions in estimating the effect of the overall Korean National Cancer Screening Program.

Another noticeable finding is the rapid statistically significant increase in the both inci-
dence of thyroid cancer cases and incidence rates of thyroid cancer. However, the majority of
thyroid cancers were either local stage or regional stage in both men and women. The propor-
tion of distant stage for thyroid cancer in 2013 was only 0.8% in men and 0.5% in women,
respectively. Furthermore, there were no differences in observed survival rates between local-
ized stage and regional stage. Accordingly, prevalence rates of thyroid cancer have also been
increasing recently in both men and women, as determined by the present study. Consistent
with the findings of previous studies [21, 24], these results can be explained as overdiagnosis of thyroid cancer in Korea. A national effort to reduce unnecessary use of ultra-
sonography screening in the asymptomatic general population is required.

In general, the observed survival rates in men were lower than those in women. The differ-
ces in observed survival rates between men and women were particularly prominent in lung
cancer for all SEER stages. The 5-year observed survival rate of lung cancer in the localized
stage was 31.9% in men and 48.1% in women, respectively. Differences in the histological type
of lung cancer are considered as a plausible explanation for these differences [25], but there
has also been speculation that men with lung cancer might be more likely to be current or for-
mer smokers than women with lung cancer, which could contribute to the presence of more
comorbid conditions in male patients than in female patients [26]. In Korea, the current smok-
ing rate in men (42.1%) was seven times higher than that in women (6.2%) in 2013 [27].
Although the current smoking rate in men has decreased since 2011, a more aggressive smok-
ing policy to prohibit smoking in men is required to reduce the gap in these lung cancer sur-
vival rates, and gender-sensitive tobacco control policies are needed [28].
Although increases in new cancer cases are slowing and the total number of incident cancer cases in 2013 decreased for the first time since 2006, the number of prevalent cancer cases was 663,530 in 2013, an increase of 13.3% compared to 2011. In most cancers, the prevalence rates showed steady increases between 2011 and 2013. The trends were the same when thyroid cancer was excluded from the prevalent cancer cases. The increased total prevalence rates of cancers most likely be due to increased prevalence rates in localized and regional stages. For example, the prevalence rate of breast cancer in the localized stage increased from 222.0 (per 100,000) to 258.2 between 2011 and 2013, but the prevalence rate of breast cancer in the distant stage increased from 14.5 to 15.5 during the same period. The prevalence rate is expected to rise continuously, considering the increasing availability of more effective treatment and diagnosis. Accordingly, evaluation and improvement of health-related quality of life in patients with cancer will become another major issue in Korea [29–31].

This study had several limitations. First, not all cancers were included in this study. We only focused on eight major cancers, which were known for their high incidence, and other cancers including leukemia, kidney cancer, and pancreatic cancer were omitted from the present study. Further study on these cancers is required. Second, analyses in this study were restricted to individuals aged ≥ 50 years for prostate cancer and individuals aged ≥ 30 for other cancers. However, this restriction would not be significant considering that it affects a small proportion of the total number of patients with cancer. Third, we estimated the 5-year prevalence of cancers owing to data limitations and general perceptions of cancer survival. This could mean that cancer survivors’ mortality might not be affected by their cancer after five years’ survival. Further studies will be needed to explore the mortality of cancer survivors beyond five years, as well as long-term follow-up data on cancer survival by SEER stage. Fourth, the cause of death could not be identified in this study. Therefore, only the all-cause mortality rate was reported, and the cause-specific mortality rate could not be reported. Fifth, this study focused on descriptive analyses. Further studies will be required to determine the factors that influence the increase or decrease of incidence and prevalence rates and the changes in severity distribution by sex and type of cancer. Sixth, we did not consider changes in population structure in this study. The reason for this is that the overall numbers of incidence and prevalence cases reported in this study are meaningful in calculating the burden of cancer. In future studies, it would be meaningful to calculate the age standardized incidence and prevalence rates according to changes in population structure in Korea.

Conclusions

In this study, we analyzed the trends in major cancer statistics according to SEER stage from 2006 to 2013 in Korea. Although increases in new cancer cases are slowing and the total number of incident cancer cases in 2013 decreased for the first time since 2006, the number of prevalent cancer cases was 663,530 in 2013, an increase of 13.3% compared to 2011. In most cancers, the prevalence rates showed steady increases between 2011 and 2013. When comparing cancers in terms of proportion of SEER stage in the incident cancer cases, the proportions of distant stage were larger in lung cancer, hepatocellular carcinoma, and colorectal cancer than in other cancers. The differences in observed survival rates between men and women were particularly prominent in lung cancer for all SEER stages. The reported prevalence rates from this study can be used to obtain a more valid measure of cancer burden using a summary measure of population health, such as DALY and quality-adjusted life year. Furthermore, it will be possible to perform additional studies estimating cancer-specific quality-adjusted life expectancy using the data regarding observed survival rates from this study.
Supporting information

S1 File. Number of incident cancer cases and mean incidence rates by sex.

(DOCX)

S2 File. Absolute survival rates of up to eight years by sex.

(DOCX)

Author Contributions

Conceptualization: Minsu Ock, Min-Woo Jo.

Data curation: Minsu Ock, Woong Jae Choi.

Formal analysis: Minsu Ock, Woong Jae Choi.

Funding acquisition: Min-Woo Jo.

Investigation: Minsu Ock, Woong Jae Choi.

Methodology: Minsu Ock, Woong Jae Choi.

Project administration: Min-Woo Jo.

Resources: Min-Woo Jo.

Supervision: Min-Woo Jo.

Validation: Min-Woo Jo.

Writing – original draft: Minsu Ock, Min-Woo Jo.

Writing – review & editing: Woong Jae Choi.

References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136(5):E359–386. https://doi.org/10.1002/ijc.29210 PMID: 25220842

2. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. The global burden of cancer 2013. JAMA Oncol 2015; 1(4):505–527. https://doi.org/10.1001/jamaoncol.2015.0735 PMID: 26181261

3. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol 2016. [Epub ahead of print].

4. Oh CM, Won YJ, Jung KW, Kong HJ, Cho H, Lee JK, et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2013. Cancer Res Treat 2016; 48(2):436–450. https://doi.org/10.4143/crt.2016.089 PMID: 26987395

5. Gong YH, Yoon SJ, Jo MW, Kim A, Kim YA, Yoon J, et al. The Burden of Cancer in Korea during 2012: Findings from a Prevalence-Based Approach. J Korean Med Sci 2016; 31 Suppl 2:S168–S177.

6. Yoon J, Oh IH, Seo H, Kim EJ, Gong YH, Ock M, et al. Disability-adjusted Life Years for 313 Diseases and Injuries: the 2012 Korean Burden of Disease Study. J Korean Med Sci 2016; 31 Suppl 2:S146–S157

7. Ock M, Han JW, Lee JY, Kim SH, Jo MW. Estimating quality-adjusted life-year loss due to noncommunicable diseases in Korean adults through to the year 2040. Value Health 2015; 18(1):61–66. https://doi.org/10.1016/j.jval.2014.09.008 PMID: 25952235

8. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67(1):7–30. https://doi.org/10.3322/caac.21387 PMID: 28055103

9. Higashi T, Nakamura F, Shibata A, Emori Y, Nishimoto H. The national database of hospital-based cancer registries: a nationwide infrastructure to support evidence-based cancer care and cancer control policy in Japan. Jpn J Clin Oncol 2014; 44(1):2–8. https://doi.org/10.1093/jjco/hyt013 PMID: 23448800
10. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics 2015. Toronto, ON: Canadian Cancer Society; 2015.

11. Australian Institute of Health and Welfare. Cancer in Australia 2014: actual incidence data from 1982 to 2011 and mortality data from 1982 to 2012 with projections to 2014. Asia Pac J Clin Oncol 2015; 11(3):208–220. https://doi.org/10.1111/ajco.12407 PMID: 26264473

12. Park JY, Jang SH. Epidemiology of Lung Cancer in Korea: Recent Trends. Tuberc Respir Dis (Seoul) 2016; 79(2):58–69.

13. Shin A, Kim J, Park S. Gastric cancer epidemiology in Korea. J Gastric Cancer 2011; 11(3):135–140. https://doi.org/10.5230/jgc.2011.11.1.135 PMID: 22076217

14. Han HH, Park JW, Na JC, Chung BH, Kim CS, Ko WJ. Epidemiology of prostate cancer in South Korea. Prostate Int 2015 Sep; 3(3):99–102. https://doi.org/10.1016/j.prnj.2015.06.003 PMID: 26473152

15. Lee EY, Xuan Mai TT, Chang Y, Ki M. Trends of liver cancer and its major risk factors in Korea. Epidemiol Health 2015; 37:e2015016. https://doi.org/10.4178/eph/e2015016 PMID: 25773443

16. Burststein R, Fleming T, Haagensen J, Salomons J, Murrey CJ. Estimating distributions of health state severity for the global burden of disease study. Popul Health Metr 2015; 13:31. https://doi.org/10.1186/s12963-015-0064-y PMID: 26582970

17. National Cancer Center, National Cancer Registration Program. Accessed on Sep 6, 2017. Available from: https://ncc.re.kr/main/ncc?uri=english/sub04_ControlPrograms02

18. Statistics Korea, Korean Statistical Information Service. Accessed on Sep 6, 2017. Available from: http://kostat.go.kr/portal/eng/index.action

19. Ock M, Jo MW, Gong YH, Lee HJ, Lee J, Sim CS. Estimating the severity distribution of disease in South Korea using EQ-5D-3L: a cross-sectional study. BMC Public Health 2016; 16:234. https://doi.org/10.1186/s12889-016-2904-5 PMID: 25358464

20. Cartwright LA, Dumenci L, Siminoff LA, Matsuyama RK. Cancer patients’ understanding of prognostic information. J Cancer Educ 2014; 29(2):311–317. https://doi.org/10.1007/s13187-013-0603-9 PMID: 24402976

21. Park S, Oh CM, Cho H, Lee JY, Jung KW, Jun JK, et al. Association between screening and the thyroid cancer “epidemic” in South Korea: evidence from a nationwide study. BMJ 2016; 355:i5745. https://doi.org/10.1136/bmj.i5745 PMID: 27903497

22. Gullati S, Mulshine JL. Lung cancer screening guidelines: common ground and differences. Transl Lung Cancer Res 2014; 3(3):131–138. https://doi.org/10.3978/j.issn.2218-6751.2014.06.12 PMID: 25806292

23. Jun JK, Choi KS, Lee HY, Suh M, Park B, Song SH, et al. Effectiveness of the Korean National Cancer Screening Program in Reducing Gastric Cancer Mortality. Gastroenterology 2017; 152(6):1319–1328. e7. https://doi.org/10.1053/j.gastro.2017.01.029 PMID: 28147224

24. Ahn HS, Kim HJ, Welch HG. Korea’s thyroid-cancer “epidemic”—screening and overdiagnosis. N Engl J Med 2014; 371(19):1765–1767. https://doi.org/10.1056/NEJMp1409841 PMID: 25372048

25. Sakurai H, Asamura H, Goya T, Eguchi K, Nakanishi Y, Sawabata N, et al. Survival differences by gender for resected non-small cell lung cancer: a retrospective analysis of 12,509 cases in a Japanese Lung Cancer Registry study. J Thorac Oncol 2010; 5(10):1594–1601. https://doi.org/10.1097/JTO.0b013e3181f1923b PMID: 20736855

26. Svensson G, Ewers SB, Olsson O, Olsson H. Gender-related survival in different stages of lung cancer—A population study over 20 years. Open Journal of Internal Medicine 2014; 4:47–58.

27. Choi S, Kim Y, Park S, Lee J, Oh K. Trends in cigarette smoking among adolescents and adults in South Korea. Epidemiol Health 2014; 36:e2014023. https://doi.org/10.4178/eph/e2014023 PMID: 25358464

28. Tsai YW, Tsai TI, Yang CL, Kuo KN. Gender differences in smoking behaviors in an Asian population. J Womens Health (Larchmt) 2008; 17(6):971–978.

29. Pfaendler KS, Wenzel L, Mechanic MB, Penner KR. Cervical cancer survivorship: long-term quality of life and social support. Clin Ther 2015; 37(1):39–48. https://doi.org/10.1016/j.clinthera.2014.11.013 PMID: 25592090

30. Wood AW, Barden S, Terk M, Cesaretti J. The Influence of Stigma on the Quality of Life for Prostate Cancer Survivors. J Psychosoc Oncol 2017. [Epub ahead of print].

31. Dehkordi A, Heydarnemad MS, Fatehi D. Quality of Life in Cancer Patients undergoing Chemotherapy. Oman Med J 2009; 24(3):204–207. https://doi.org/10.5001/omj.2009.40 PMID: 22224186