TGFβ₁ signaling via αVβ₆ integrin
Martin P Kracklauer¹, Christian Schmidt*² and Guido M Sclabas²,3

Address: ¹Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 1 University Station, A4800, 78712, Austin, TX, USA, ²Department of Surgical Oncology and Molecular Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA and ³Department of Visceral and Transplantation Surgery, The University of Bern, Inselspital, Bern, 3010, Switzerland

Email: Martin P Kracklauer - mordechai30@hotmail.com; Christian Schmidt* - christian.schmidt@molecular-cancer.org; Guido M Sclabas - guido.m.sclabas@molecular-cancer.org

* Corresponding author

Abstract

Background: Transforming growth factor β₁ (TGFβ₁) is a potent inhibitor of epithelial cell growth, thus playing an important role in tissue homeostasis. Most carcinoma cells exhibit a reduced sensitivity for TGFβ₁ mediated growth inhibition, suggesting TGFβ₁ participation in the development of these cancers. The tumor suppressor gene DPC4/SMAD4, which is frequently inactivated in carcinoma cells, has been described as a key player in TGFβ₁ mediated growth inhibition. However, some carcinoma cells lacking functional SMAD4 are sensitive to TGFβ₁ induced growth inhibition, thus requiring a SMAD4 independent TGFβ₁ pathway.

Results: Here we report that mature TGFβ₁ is a ligand for the integrin αVβ₆, independent of the common integrin binding sequence motif RGD. After TGFβ₁ binds to αVβ₆ integrin, different signaling proteins are activated in TGFβ₁-sensitive carcinoma cells, but not in cells that are insensitive to TGFβ₁. Among others, interaction of TGFβ₁ with the αVβ₆ integrin resulted in an upregulation of the cell cycle inhibitors p21/WAF1 and p27 leading to growth inhibition in SMAD4 deleted as well as in SMAD4 wildtype carcinoma cells.

Conclusions: Our data provide support for the existence of an alternate TGFβ₁ signaling pathway that is independent of the known SMAD pathway. This alternate pathway involves αVβ₆ integrin and the Ras/MAP kinase pathway and does not employ an RGD motif in TGFβ₁-sensitive tumor cells. The combined action of these two pathways seems to be necessary to elicit a complete TGFβ₁ signal.

Background

The normal function of transforming growth factor β₁ (TGFβ₁) is essential for the entire organism, representing a multifunctional regulator of cell growth and differentiation [1–5]. TGFβ₁ is a potent inhibitor of epithelial cell proliferation. Upon binding of TGFβ₁, TGFβ₁-receptors phosphorylate SMAD2 or SMAD3 [6–12]. Phosphorylated SMAD2/3 associates with SMAD4 and, as a complex, moves into the nucleus, where it regulates gene expression [13–15].
SMAD4 (DPC4) is essential for this TGFβ signaling and transcriptional activation process [16]. In epithelial cells, TGFβ1 decreases c-myc, cdc2 and cyclin D1 expression, and it increases the expression of c-jun and c-fos [17–23]. Activation of the TGFβ signal pathway in epithelial cells leads to an increased expression of the cell cycle inhibitors p21WAF1 and p15ink4b and to a release of formerly sequestered p27kip [24–26]. It is assumed that the cooperative action of these cell cycle inhibitors results in the growth arrest mentioned above, although p15ink4b does not seem to be necessary in this regard. In addition to mutations in the TGFβ receptors, in a large number of carcinomas disruptions of this signaling pathway by the alteration of a single protein such as p15ink4b, p16, and p21Waf1 are found [2,27–39]. This may result in resistance to the growth-inhibiting action of TGFβ1.

In several cell lines, particularly in pancreatic carcinoma cells, resistance to TGFβ1 could be attributed to a loss of function of the SMAD4 (DPC4) protein [40–43]. However, the pancreatic carcinoma cell line BxPC-3, although homozygously deleted for SMAD4, is growth inhibited by TGFβ1 [30,44]. It is thus speculated that alternative signaling pathways in addition to the SMAD pathway may exist.

After binding to αvβ6 integrin, latent TGFβ1 is activated by processing of latent TGFβ by cleavage of the latency-associated Peptide (LAP) [45–57]. Recently, the interaction of latent TGFβ1 with αvβ6 integrin has been shown [45]. After binding of latent TGFβ1 to αvβ6 integrin, latent TGFβ1 is activated by cleavage of the latency-associated peptide (LAP) [45]. This αvβ6 integrin is also expressed by pancreatic carcinoma cells [58–63]. We hypothesized that there is a SMAD-independent TGFβ signaling pathway in TGFβ1-sensitive carcinoma cells. To address this question, several carcinoma cell lines with different degrees of TGFβ1 sensitivity were chosen as a model system. We investigated the interaction of TGFβ1 with the αvβ6 integrin and its influence on selected target genes known to be involved in cell cycle-regulated growth inhibition. Here, we demonstrate an alternate TGFβ1 signaling pathway via αvβ6 integrin contributing to TGFβ1 growth inhibition in TGFβ1-sensitive carcinoma cells.

Results

Mature TGFβ induces cytoskeletal immobilization of proteins and tyrosine phosphorylation via integrin αvβ6 only in TGFβ sensitive cells

Only integrins that have bound their ligands are anchored to the cytoskeleton [64,65]. In our experiments, mature TGFβ1, αvβ6 integrin, and F-actin colocalize (Figure 1), suggesting association with and activation of this integrin. To further support this finding, we stimulated cells and performed co-immunoprecipitated various integrin subunits of cytoskeletal anchored proteins [66,67] (additional file 1, 2, 3 and 4). Our data strongly suggest that mature TGFβ1 associates with αvβ6 integrin (additional file 1, 2, 3 and 4).

To determine whether binding of mature TGFβ1 leads to integrin-mediated signaling, we looked at the status of integrin-cytoskeleton-associated proteins [66,67] after incubation with mature TGFβ1 in selected carcinoma cell lines with different degrees of sensitivity to TGFβ1 (Table 1). Cytoskeletal anchored proteins were precipitated with anti αv and β6-antibodies. Immobilization of proteins to the cytoskeleton (Triton-X insoluble fraction, Figure 2B) as well as tyrosine phosphorylation of these proteins (Figure 2A) induced through mature TGFβ1 was only seen in the TGFβ1-sensitive carcinoma cell lines (Figure 2 and additional file 5). Notably, tyrosine phosphorylation of cytoskeletonally anchored proteins is further enhanced after combined treatment with mature TGFβ1 and fibronectin in TGFβ1 sensitive cells (Figure 3). In contrast, in the TGFβ1-resistant AsPC-1 and Capan-1 cells, the interaction of mature TGFβ1 with αvβ6 integrin resulted in an immobilization of high molecular weight proteins to the cytoskeleton without tyrosine phosphorylation (Figure 2). Again, stimulation of TGFβ1 sensitive cells BxPC-3, LoVo [68], SW48 [68], Keratinocytes, HeLa and DLD1 [69], results in an enhanced cytoskeletal immobilization and tyrosine phosphorylation of cellular proteins in response to stimulation with mature TGFβ1 (additional file 5). Remarkably, preincubation with the MEK1 inhibitor PD98059 resulted in a reduced cytoskeletal immobilization and tyrosine phosphorylation of cellular proteins in response to stimulation with mature TGFβ1. This finding is in agreement with other observations that MEK1-mediated signal transduction is involved in cytoskeletal remodeling and integrin engagement [70,71].

Activation of p125FAK, a central step in integrin-associated signaling [72,73], was determined to assess integrin-mediated signaling. BxPC-3 cells are sensitive to TGFβ1 but are SMAD4 deleted. We incubated BxPC-3 cells with mature TGFβ1 and observed an association on the cytoskeleton connected with integrin αvβ6 and activation of p125FAK (Figure 4). Indeed, TGFβ1 antibodies, cytochalasin D and BAPTA-AM [66] abolished the association on the cytoskeleton connected with integrin αvβ6 and activation of p125FAK. These data further suggest that TGFβ1 mediated activation of p125FAK depends on free intracellular calcium and an intact actin cytoskeleton.

In order to test whether TGFβ1 signaling via αvβ6 is specific for SMAD4 deleted BxPC-3 cells or if this is a general phenomenon, we investigated signaling in TGFβ1-sensitive carcinoma cell lines HeLa, MCF-7 and MDA-MB-23.1. TGFβ1 induced recruitment of p125FAK, p130Cas and Sos1/2 to the cytoskeleton. Enhanced expression of c-jun, c-fos,
p21WAF1 and p27KIP, while downregulating PCNA, is dependent on ERK1/2 signaling, an intact cytoskeleton and intracellular calcium (Figures 5, 6A, 7, 8 and additional files 6, 7 and 8). We also confirmed the purity of the commercially available mature TGFβ1 used in these experiments by silver stained non-reducing SDS-PAGE, with latent TGFβ1 as control (Figure 6B). We also demonstrated the SMAD4 deficiency of the BxPC-3 cells used (Figure 6C).

Table 1: SMAD4 status and TGFβ1 response of selected tumor cell lines were: (1) confirmed by PCR sequencing (data not shown) and (2) by [3H] thymidine incorporation assays (data not shown). WT denotes wild type.

Cell lines	Smad4 status¹	Growth inhibition² by TGFβ1
Panc-1	+ (WT)	+
BxPC-3	- (homozygous deleted)	+
Capan-1	- (frame shift mutation)	-
AsPC-1	- (amino acid replacement)	-
HeLa	+ (WT)	+
MCF-7	+ (WT)	+
MDA-MB-231	+ (WT)	+

Figure 1

Colocalization of TGFβ1, αVβ6 integrin and the cytoskeleton. Panc-1 cells were stimulated with mature TGFβ1 and stained using anti TGFβ1 (labeled with goat anti-rabbit IgG conjugate, A-11046), αV/β6 (labeled with goat anti-rabbit IgG conjugate, A-11046) and Actin antibodies. Magnification 1000x.
we assayed for the possible synergistic function of αVβ6 integrin on mature TGFβ1 mediated growth inhibition in Panc-1 cells. As shown in the additional file 10, combined treatment with αV and β6 blocking antibodies almost completely abolished the effect of mature TGFβ1 on the growth of Panc-1 cells. We therefore postulate that the growth inhibition of TGFβ1 is synergistically influenced by αVβ6 integrin.

Discussion

A recent study demonstrated an interaction of latent TGFβ1 with αVβ6 integrin, which led to an activation of latent TGFβ1 [45]. Incubation of different tumor cells with mature TGFβ1 resulted in a direct binding of TGFβ1 to αVβ6 integrin. Certain integrins appear to be preferentially associated with specific growth factor receptors [80]. The interaction of these two receptor classes seems to take place via the actin cytoskeleton. We were able to exclude such signal pathway association, since in our cytoskeletal preparations, no TGFβ1-receptors were detectable, indicating that mature TGFβ1 is a ligand for αVβ6.

It has been reported that activated integrins are associated with the cytoskeleton. Here, we show that binding of mature TGFβ1 to αVβ6 integrin resulted in an association of the cytoskeleton (Figure 10). In a variety of integrin-mediated signaling pathways, tyrosine phosphorylation of proteins immobilized to the cytoskeleton is enhanced [66,67]. The same was true in our experimental settings only for the TGFβ1-sensitive cells. This upregulation of activated SMAD2/3 may translocate to the nucleus and activate gene expression even in the absence of SMAD4. To exclude this possibility, cellular proteins were divided into cytoplasmatic and nuclear fractions after TGFβ1 stimulation, and localization and phosphorylation of SMAD2/3 were investigated. In the SMAD4 deleted BxPC-3 cells, TGFβ1 resulted in phosphorylation of SMAD2/3, but the activated SMAD proteins were retained in the cytoplasmatic fraction (Figure 9). Remarkably, in NP-9 cells [74], SMAD2/3 are translocated into the nucleus upon TGFβ1 stimulation (additional file 9(A)) but we could not observe an enhanced tyrosine phosphorylation of cytoskeletal anchored proteins (additional file 9(B)).

TGFβ1 mediated growth inhibition is dependent on αVβ6 integrin

Influence of TGFβ1 on cell growth is well established, but the mechanisms are not fully understood [75–79]. Here, we observed an enhanced tyrosine phosphorylation of proteins associated with the integrin-cytoskeleton-complex.

Enhanced Tyrosine Phosphorylation of proteins associated with the integrin-cytoskeleton-complex

Cytoskeletally anchored αVβ6 was immunoprecipitated after TGFβ1 and/or fibronectin stimulation (10 nM for 10 minutes) followed by Western analysis with antibodies against tyrosine-phosphorylated proteins (A). Reprobing with αV and β6 antibodies show equal amounts of precipitates used (B).

Figure 2
Phosphorylation and immobilization of proteins associated with the integrin-cytoskeleton-complex.

Cytoplasmatic anchored αVβ6 was immunoprecipitated after TGFβ1 stimulation (10 nM for 10 minutes) followed by Western analysis with antibodies against tyrosine-phosphorylated proteins (A) or Western blotting after biotinylation of all proteins and streptavidin detection (B). Presence of TGFβ1 (C), αV and β6 integrin (D) in the co-precipitates is also demonstrated. TGFβ1-receptor-I and II (TGFβRI and TGFβRII) are expressed at nearly equal levels in all cell lines as demonstrated by western blotting from whole cell extracts (E). In part the cells were preincubated with αV- and β6-antibodies (1:100 each for 30 min) or with a TGFβ antibody (15 µg/ml for 30 min).

Figure 3
Enhanced Tyrosine Phosphorylation of proteins associated with the integrin-cytoskeleton-complex.

Cytoskeletally anchored αVβ6 was immunoprecipitated after TGFβ1 and/or fibronectin stimulation (10 nM for 10 minutes) followed by Western analysis with antibodies against tyrosine-phosphorylated proteins (A). Reprobing with αV and β6 antibodies show equal amounts of precipitates used (B).
tyrosine phosphorylation was inhibited by preincubation with a TGF\(\beta\)_1 neutralizing antibody or by blocking of \(\alpha_\nu\beta_6\) integrin, thus again proving mature TGF\(\beta\)_1 as an initial signaling ligand for \(\alpha_\nu\beta_6\).

Binding of mature TGF\(\beta\)_1 to \(\alpha_\nu\beta_6\) integrin exerts several downstream effects in TGF\(\beta\)_1-sensitive cells (Figure 9). One is a marked phosphorylation of p125FAK. This phosphorylation is dependent on the integrity of the cytoskeleton, as disruption of actin filaments by cytochalasin D completely eliminated this effect, findings which have also been reported for several integrin signaling pathways [66,67]. Moreover, incubation of the TGF\(\beta\)_1 sensitive carcinoma cells with TGF\(\beta\)_1 caused immobilization of the docking protein p130Cas and of the guanine nucleotide exchange factor SOS to the cytoskeleton. Beyond this, a marked induction of the cell cycle inhibitors p21WAF1 and c-fos, and the decrease in p21Ras and MAPK ERK1/2 activation was observable after preincubation of SMAD4 wildtype BxPC-3 cells with a TGF\(\beta\)_1 antibody (15 \(\mu\)g/ml for 30 min), cytochalasin D and BAPTA AM, respectively.

Finally, TGF\(\beta\)_1 caused an activation of p21Ras and the MAP kinases ERK1 and ERK2. This TGF\(\beta\)_1-induced expression profile was not affected by preincubation of SMAD4 deleted BxPC-3 cells with a TGF\(\beta\)_1-RII blocking antibody, which was able to completely block TGF\(\beta\)_1-induced SMAD2/3 phosphorylation, thus demonstrating the independence of the TGF\(\beta\)_1-signaling from the known SMAD pathway in BxPC-3 cells. In contrast, preincubation with \(\alpha_\nu\)- and \(\beta_6\)-blocking antibodies curbed the TGF\(\beta\)_1-induced regulation of these genes as well, indicating the involvement of the MAP kinase pathway in TGF\(\beta\)_1 signaling in BxPC-3 cells. As shown recently, the growth-stimulatory effect of the TGF\(\beta\) superfamily member BMP-2 on CAPAN-1 cells was blocked by this inhibitor as well [81–83], supporting our findings.

Indeed, cytoskeletal immobilization of p130cas and SOS was not prevented by the MEK1 inhibitor PD 98059. Thus, these proteins are good candidates to link the integrin-mediated TGF\(\beta\)_1 signaling to the MAP kinase pathway, as was shown previously for signaling events induced by fluid stress or integrin mediated cell-adhesion in other cell types [71,84–91].

In order to generalize the integrin mediated TGF\(\beta\)_1-pathway identified in the SMAD4 deleted pancreatic tumor cell line BxPC-3, we investigated TGF\(\beta\)_1 signaling in the cervical carcinoma cell line HeLa and the mammary carcinoma cell lines MCF-7 and MDA-MB-231, harboring a wildtype SMAD4-gene. TGF\(\beta\)_1 bound to \(\alpha_\nu\beta_6\)-integrin in these cells as well, and this interaction resulted both in an immobilization of p130Cas and SOS1/2 and in tyrosine phosphorylation of cytoskeleton-associated proteins such as p125FAK. TGF\(\beta\)_1 stimulation of these cells activated p21Ras and MAPK ERK1/2, upregulated c-fos, c-jun/AP1, p21/WAF1 and p27 expression, and resulted a decrease of PCNA, similar to its actions in BxPC-3 cells. Preincubation with a TGF\(\beta\)-RII blocking antibody attenuated the TGF\(\beta\)_1 induced pattern, contrary to SMAD 4 deleted BxPC-3 cells. This preincubation also decreased activation of p21Ras and of MAPK ERK1/2, indicating the participation of the Ras/MAPK-pathway in TGF\(\beta\)_1 induced transcriptional activation.

The same attenuation of TGF\(\beta\)_1 induced gene expression and the decrease in p21Ras and MAPK ERK1/2 activation was observable after preincubation of SMAD4 wildtype cells with \(\alpha_\nu\beta_6\)-blocking antibodies, demonstrating that TGF\(\beta\)_1 signaling via \(\alpha_\nu\beta_6\)-integrin also is linked to the Ras/MAPK-pathway, and that both pathways have synergistic effects in TGF\(\beta\)_1-signaling. Full TGF\(\beta\)_1 induced transcriptional activation is only reached if both pathways are completed. This finding is supported by the observation that activation of p21/Ras and MAPK ERK1/2 induced by TGF\(\beta\)_1 is only reverted to the control level by the combination of the TGF\(\beta\)-RII blocking antibody and the \(\alpha_\nu\beta_6\)-blocking antibodies, or by inhibition of MEK1.

Linking of the TGF\(\beta\)-R pathway to the Ras/MAPK pathway is dependent on a functional SMAD4 gene product, because TGF\(\beta\)_1 induced gene expression and activation of Ras and ERK1/2 is attenuated by the TGF\(\beta\)-RII blocking antibody only in SMAD4 wild type cells, whereas in the...
Cell cycle genes in response to TGFβ1. Western Blot analysis of HeLa cells stimulated with 10 nM of mature TGFβ1 for the time indicated. Cytoskeletally anchored proteins are differentially marked. In part the cells were preincubated with αV and β6-antibodies (1:100 each for 30 min), with a TGFβ-RII antibody (15 µg/ml for 30 min), cytochalasin D, BAPTA AM and MEK1 inhibitor PD98059, respectively.
SMAD4 deleted BxPC-3 cells, no such influence was observable.

Based on our results, we suggest the following model of TGFβ1-signaling, which offers an explanation for the different growth responses to TGFβ1 (Fig. 10). In the TGFβ1-sensitive cell lines with intact SMAD pathway, the TGFβ1 response can be attributed to both the common SMAD signaling pathway and the integrin pathway described above. In the cell line BxPC-3, lacking the SMAD4 gene product, the SMAD4-independent pathway can explain the TGFβ1 sensitivity via αVβ6 integrin, the cytoskeleton and the Ras/MAP kinase pathway, resulting in an upregulation of the cell cycle inhibitors p21/WAF1 and p27, which in turn results in the TGFβ1-induced growth inhibition (additional file 10).

The cell lines Capan-1 and AsPC-1 are not only resistant to TGFβ1 because of their alterations in the SMAD pathway, but also because they cannot complete the alternate pathway, as demonstrated above. Furthermore, this alternate pathway may explain the TGFβ1 resistance of cells with no detectable defect in the SMAD pathway [92–101], as one can imagine that the cooperative action of the...
Figure 7

Cell cycle genes in response to TGFβ1. Western Blot analysis of MCF-7 and MDA-MB 231 cells as indicated after stimulation with TGFβ1 for the time indicated. Cytoskeletally anchored proteins are differentially marked. In part the cells were preincubated with αVβ6- and β6-antibodies (1:100 each for 30 min), with a TGFβ1-RII antibody (15 μg/ml for 30 min), cytochalasin D, BAPTA AM and MEK1 inhibitor PD98059, respectively.
both pathways is necessary to exert the complete growth inhibitory effect of TGFβ₁. Comparable effects have been described for the synergistic operation of growth factor receptor and anchorage dependent integrin signaling [102–119].

Recombinant mature TGFβ₁ does not contain a RGD motif, and thus binding of TGFβ₁ to the αᵥβ₆ integrin and the subsequent activation of this integrin must rely on a novel motif distinct from RGD. For αᵥβ₆ integrin, a novel non-RGD ligand recognition motif was recently described with the consensus motif DLXXL [120].

This motif has been detected on several proteins, including laminin, collagen and fibrinogen [120]. A BLAST search for this sequence in TGFβ₁ revealed a 70% similar motif in two parts of the molecule; one in the LAP (data not shown) and one in the mature TGFβ₁. In mature TGFβ₁, the DLXXL motif is freely accessible for interactions on the outside of the molecule. Therefore, it may be speculated that TGFβ₁ binding to αᵥβ₆ via this novel ligand recognition motif is facilitating the signaling. Moreover, a non-RGD ligand binding pocket in addition to the usual RGD binding site has been demonstrated for fibrinogen and the α₃β₃ integrin [121], supporting our findings.

Conclusions

We demonstrate an alternate TGFβ₁ signaling pathway via αᵥβ₆ integrin, independent of SMAD4. This pathway
seems to be required for full TGFβ1 induced transcriptional activation, which explains the TGFβ1 sensitivity of those cells lacking DPC4/SMAD4 function that still react with growth inhibition.

Methods

Cell Culture and TGFβ1 stimulation

All cells were obtained from from ATCC and maintained in DMEM supplemented with 17% fetal calf serum. Recombinant human proteins (mature TGFβ1, TNF-α, Fibronectin and Laminin 1) were purchased from R&D Systems. 10^6 cells were grown overnight in 6 cm diameter dishes with DMEM/10 % FCS. After washing twice with PBS (pH 7.4), fresh DMEM without FCS was added to the monolayer. Cells were stimulated with 10 nM of mature TGFβ1 or with fibronectin as described below. In blocking experiments, cells were preincubated with either a TGFβ1-RII-blocking antibody (R&D Systems # AF-241-NA, 15 µg/ml for 30 min), αv and β6-blocking antibodies (Santa Cruz, sc-6617 and sc-6632 respectively, 1:100 each for 30 min), or the MEK1 inhibitor PD98059 (New England Biolabs # 9900S, 7.5 ng/ml for 10 min) before stimulation with mature TGFβ1.

Indirect immunofluorescence

For indirect immunofluorescence, 10^4 cells were cultured on glass coverslips, stimulated with 10 nM mature TGFβ1 for 10 minutes, stained as described [66,67] and viewed using a Zeiss LSM-510 confocal microscope. Antibodies used were: actin (sc-8432), TGFβ1 (sc-146), αv (sc-6617) and β6 (sc-6632). The following fluorochrome-labeled antibodies were used (AlexaFluor, Molecular Probes):

Figure 9

Activation and nuclear translocation of SMAD2/3 in response to TGFβ1 (A). Nuclear and cytoplasmatic fraction of cellular proteins (BxPC-3) after stimulation with 10 nM of TGFβ1 for 10 minutes and Western blot analysis for SMAD2/3 and phosphorylated SMAD2/3. **Purity of cytoplasmatic and nuclear fraction (B).** Cytoplasmatic and nuclear extracts from K562 cells were probed with p125FAK, PCNA and IκBα antibodies at the same time. As predicted, p125FAK could exclusively be detected in the cytoplasmatic extract, whereas PCNA is found in the nucleus. IκBα served as loading control.
Ras

Immune complexes were washed five times with cold Triton X-100 lysis buffer. For re-precipitation, the pellet was boiled in 10 μl 0.1% SDS for 5 min and diluted 1:20 in the Triton X lysis buffer followed by the precipitation procedure. All samples were boiled in Laemmli denaturing buffer and analyzed by Western blotting. Whole cell lysates serving as positive controls were prepared by incubating monolayers with denaturing Laemmli buffer.

Treatment with Cytochalasin and Calcium Chelator

To disrupt the actin filaments of the cytoskeleton, the cell monolayer was treated with 25 nM cytochalasin D for 20 min at 37°C; TGFβ1 was then applied in the presence of 25 nM cytochalasin D. For chelating intracellular calcium, the cells were preincubated with 5 μM of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid, acetoxy methyl ester (BAPTA-AM) for 15 min. TGFβ1 was then applied in the presence of 5 μM of BAPTA.

[3H]-thymidine incorporation assay

For the TGFβeta1 growth inhibition assay, cells were seeded in 96-well microtiter plates at 10^4 cells/well in 100 μl of culture medium containing 10% FCS. After 24 h, medium was replaced by culture medium supplemented with 0.5% FCS. After an additional 24 h, cells were treated with 10 nM of mature TGFβ1. After incubation with TGFβ1 for 21 h, cells were pulsed with 200 nCi of [3H]-thymidine (1.74 TBq/mmol; Amersham, UK) for 3 h without changing the medium. Cells were washed once with PBS, incubated with trypsin for 10 min and collected by using a Skatron cell harvester. Radioactivity incorporated was determined by liquid scintillation counting.

Western Blot

Proteins were separated by SDS-PAGE and transferred to a polyvinylidene difluoride membrane (Roche) as described previously [66]. Blot membranes were blocked for 3 h at 37°C in PBS containing 5 % skim milk and probed with the respective antibodies (16 h at 4°C). The following antibodies were used in a dilution of 1:1,000: TGFβ1 (Santa Cruz [sc], sc-146), p-Tyr (sc-7020), βγ integrin (sc-6632), αβ-integrin (sc-6617), p125FAK (sc-557), TGFβ1-RII (sc-402), TGFβ1-RI (sc-400-G), ERK1/2-P (sc-7383), SMAD2/3 (sc-6033), SOS1/2 (sc-259), p130Cas-P (sc-668), p21Ras (sc-35), PCNA (sc-56), p27KIP (sc-282), p-ERK1/2 (sc-1641), p-ERK1/2 (sc-239), c-jun (sc-44), c-fos (sc-7202), p-ERK1/2 (sc-133), p-ERK1/2 (sc-35) and phospho-threonine antibody (New England Biolabs, # 9381). Detection antibodies (all from Dako; 1:5,000 for 1 h at room temperature) were mouse-anti-goat Ig, mouse-anti-rat Ig, rabbit-anti-mouse Ig, and porcine-anti-rabbit Ig-HRP [66]. To visualize all transferred proteins, we used the ECL protein biotinylation labeling modules (RPN 2202, Amersham) and streptavidin alkaline phosphatase (V020402, Amersham) in accordance with the manufacturer’s instructions.

Figure 10 Hypothesis about an alternate TGFβ1 signaling pathway via αvβ6 integrin, independent of RGD. This pathway may be required for full TGFβ1 induced transcriptional activation, which explains the TGFβ1 sensitivity of those cells lacking DPC4/SMAD4 function that still react with growth inhibition.

Cellular compartment	Proteins Assayed
Cell membrane	TGFβ1, Ras, βγ integrin, αβ integrin, F-actin, FAK-P
Nuclear membrane	SMAD2/3, SMAD4, p21Ras, p130Cas-P, p27KIP
Cytoskeleton	TGFβ1, Ras, β6 integrin, αvβ6 integrin, F-actin, FAK-P

Preparation of cytoplasmatic proteins and of nuclei

Cellular fractionation was performed as described in earlier reports [122–125]. Cells were scraped into 100 μl of ice-cold buffer A [10 mM Hapes (pH 7.9); 1.5 mM MgCl2; 10 mM KCl; 0.5 mM DTT; 0.05% NP-40]. Nuclei were pelleted in a microcentrifuge for 10 sec. at 4°C and 15,000 G. The supernatant was used to analyze cytoplasmatic proteins. Pre-treatment with trypsin for 10 min and collection by using a Skatron cell harvester. Radioactivity incorporated was determined by liquid scintillation counting.

Preparation of actin filaments of the cytoskeleton and immunoprecipitation

The cell monolayer was incubated with cell extraction buffer [0.1% Triton X-100, 80 mM KCl, 20 mM imidazole, 2 mM MgCl2, 2 mM EGTA, pH 7.8] for 5 min at 4°C. The Triton-insoluble fractions were then scraped into cold Triton X-100 lysis buffer [50 mM Tris/HCl (pH 7.4); 100 mM NaCl; 50 mM NaF; 5 mM EDTA; 40 mM glycophosphate; 1 mM sodium orthovanadate; 100 μM PMSF; 1 μM leupeptin; 1 μM pepstatin A; 1% (v/v) Triton X-100] and incubated for 20 min on ice, and clarified by centrifugation at 13000 g for 5 min at 4°C. For immunoprecipitation, the lysates were incubated for 4 h at 4°C with 1 μg of antibody (all from Santa Cruz) pre-adsorbed on Protein A-Sepharose beads (Pharmacia). Immune complexes were washed five times with cold Triton X-100 lysis buffer. For re-precipitation, the pellet was boiled in 10 μl 0.1% SDS for 5 min and diluted 1:20 in the Triton X lysis buffer followed by the precipitation procedure. All samples were boiled in Laemmli denaturing buffer and analyzed by Western blotting. Whole cell lysates serving as positive controls were prepared by incubating monolayers with denaturing Laemmli buffer.
Ras activation assay

Only activated p21^{Ras} is able to bind Raf1, leading to a Raf1-translocation to the cell membrane. After stimulation with 10 nM mature TGFβ₁ for 10 minutes, cells were incubated in sterile water until they lysed. The membrane fraction was lysed in Triton X-100 lysis buffer. Precipitation with 10 nM mature TGFβ₁ for 10 minutes was followed by Western analysis with antibodies against tyrosine-phosphorylated proteins (A) or Western blotting after biotinylation of all proteins and streptavidin detection (B). In part the cells were preincubated with α_v- and β₆-antibodies (1:100 each for 30 min) or with a TGFβRII antibody (15 µg/ml for 30 min).

Authors’ contributions

CS performed all assays and drafted the manuscript. MPK and GMS provided suggestions and comments for its finalization. All authors read and approved the final manuscript.

Additional material

Additional File 1

Portable Network Graphic (PNG) File showing that mature TGFβ₁ binds to α_vβ₃ integrin. The cells indicated were stimulated for ten minutes with 10 nM of either mature TGFβ₁, tumor necrosis factor α (TNFα) or fibronectin (FN). Cytoskeletal anchored proteins were extracted, co-immunoprecipitated (IP) and analyzed (Blot) with the antibodies indicated.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S1.png]

Additional File 2

Portable Network Graphic (PNG) File showing that mature TGFβ₁ binds to α_vβ₃ integrin. The cells indicated were stimulated for ten minutes with 10 nM of either mature TGFβ₁, tumor necrosis factor α (TNFα), laminin-1 (Lam1) or fibronectin (FN). Cytoskeletal anchored proteins were extracted, co-immunoprecipitated (IP) and analyzed (Blot) with the antibodies indicated.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S2.png]

Additional File 3

Portable Network Graphic (PNG) File showing that mature TGFβ₁ binds to α_vβ₃ integrin and the specificity of the signals detected as well. The cells indicated were stimulated for ten minutes with 10 µM of either mature TGFβ₁, tumor necrosis factor α (TNFα), or fibronectin (FN). Cytoskeletal anchored proteins were extracted, and analyzed (Blot) with secondary antibodies (α-mouse HRP plus α-rabbit HRP plus α-goat HRP conjugated antibodies.)

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S3.png]

Additional File 4

Portable Network Graphic (PNG) File showing the specificity of the signals detected. The cells indicated were stimulated for ten minutes with 10 nM of either mature TGFβ₁, tumor necrosis factor α (TNFα), or fibronectin (FN). Cytoskeletal anchored proteins were extracted, and analyzed (Blot) with secondary antibodies (α-mouse HRP plus α-rabbit HRP plus α-goat HRP conjugated antibodies.)

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S4.png]

Additional File 5

Portable Network Graphic (PNG) File showing enhanced cytoskeletal immobilization and tyrosine phosphorylation of cellular proteins in response to stimulation with mature TGFβ₁. Cytoskeletal anchored α_v- and β₆-antibodies (1:100 each for 30 min) or with a TGFβRII antibody (15 µg/ml for 30 min).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S5.png]

Additional File 6

Portable Network Graphic (PNG) File showing cell cycle genes in response to TGFβ₁. Western Blot analysis of HeLa, MCF-7 and Keratinocytes (Keratino) cells as indicated after stimulation with TGFβ₁ for the time indicated. Cytoskeletonally anchored proteins are differentially marked. In part the cells were preincubated with α_v- and β₆-antibodies (1:100 each for 30 min), with a TGFβRII antibody (15 µg/ml for 30 min), cytochalasin D, BAPTA AM and MEK1 inhibitor PD98059, respectively.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S6.png]

Additional File 7

Portable Network Graphic (PNG) File showing that PCNA regulation is dependent on α_vβ₆-integrins, intact cytoskeleton and free intracellular calcium. BxPC-3 cells were stimulated with 10 nM of mature TGFβ₁ for 6 hours. In part the cells were preincubated with α_v- and β₆-antibodies (1:100 each for 30 min), with a TGFβRII antibody (15 µg/ml for 30 min), cytochalasin D and BAPTA AM, respectively. Whole cell extract was probed with PCNA antibodies. Actin served as loading control.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S7.png]

Additional File 8

Portable Network Graphic (PNG) File showing the regulation of p27, p21, c-fos, and c-jun are dependent on α_vβ₆-integrins, intact cytoskeleton and free intracellular calcium. BxPC-3 cells were stimulated with 10 nM of mature TGFβ₁ for 6 hours. In part the cells were preincubated with α_v- and β₆-antibodies (1:100 each for 30 min), with a TGFβRII antibody (15 µg/ml for 30 min), cytochalasin D and BAPTA AM, respectively. Whole cell extract was probed with PCNA antibodies. Actin served as loading control.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S8.png]
Molecular Cancer 2003, 2

http://www.molecular-cancer.com/content/2/1/28

Additional File 9
Portable Network Graphic (PNG) File showing activation and nuclear translocation of SmAD2/3 in response to TGFβ1 (A). Nuclear and cytoplasmic fraction of cellular proteins (NP9) after stimulation with 10 nM of TGFβ1 for 10 minutes and Western blot analysis for SmAD2/3 and phosphorylated SmAD2/3. Cytoselectively anchored α/β1 was immuno-precipitated after TGFβ1 stimulation (10 nM for 10 minutes) followed by Western analysis with antibodies against tyrosine-phosphorylated proteins (C) or Western blotting after biotinylation of all proteins and streptavidin detection (D). In part the cells were preincubated with α- and β-antibodies (1:100 each for 30 min) or with a TGFβ antibody (15 μg/ml for 30 min).

Click here for file
http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S9.png

Additional File 10
Microsoft Excel spreadsheet showing TGFβ1 elicited growth inhibition of Panc-1 cells is dependent on α/β1 integrin function. The assay was performed as described in the "Methods" section.

Click here for file
http://www.biomedcentral.com/content/supplementary/1476-4598-2-28-S10.xls

Acknowledgements
CS acknowledges support from the Germ Fin Research Foundation. GMS is a recipient of a Fellowship of the Cancer League of Bern, Switzerland.

References
1. Shi Y and Massague J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113:685-700.
2. Massague J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000, 103:295-309.
3. Massague J: TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 1996, 85:947-950.
4. Massague J: Receptors for the TGF-beta family. Cell 1992, 69:1067-1070.
5. Cheifetz S, Weatherbee JA, Tsang ML, Anderson JK, Mole JE, Lucas R and Massague J: The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell 1987, 48:409-415.
6. Fink SP, Mikkelø J, Willton JK and Markowitz S: TGF-beta-induced nuclear localization of Smad2 and Smad3 in Smad4 null cancer cell lines. Oncogene 2003, 22:1317-1323.
7. Feng XH, Liang YY, Liang M, Zhai W and Lin X: Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell 2002, 9:133-143.
8. Feng XH, Lin X and Derynck R: Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(ink4B) transcription in response to TGF-beta. Embo J 2000, 19:5178-5193.
9. Stoppa M, Aktub D, Terstegen L, Garsio P, Gressner AM and Dooley S: Participation of Smad2, Smad3, and Smad4 in transforming growth factor beta (TGF-beta)-induced activation of Smad7. THE TGF-beta response element of the promoter requires functional Smad binding element and E-box sequences for transcriptional regulation. J Biol Chem 2000, 275:29308-29317.
10. Labbe E, Silvestri C, Hoodless PA, Wrana JL and Attisano L: Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998, 2:109-120.
11. Goto D, Yagi K, Inoue H, Iwamoto I, Kawabata M, Miyazono K and Kato M: A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-beta signals. FEBS Lett 1998, 430:201-204.
12. Kimura A, Imamura T, Soucheyhrayaki S, Kawabata M, Ishiaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K and ten Dijke P: TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Biochem J 1997, 323:533-536.
13. Song CZ, Siok TE and Gelehrter TD: Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator-inhibitor-1 promoter. J Biol Chem 1998, 273:29287-29290.
14. Feng XH, Zhang Y, Wu RY and Derynck R: The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-beta-induced transcriptional activation. Genes Dev 1998, 12:2153-2163.
15. Lagna G, Hata A, Hemmati-Brivanlou A and Massague J: Participation between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 1998, 393:838-840.
16. Yang X, Li C, Xu X and Deng C: The tumor suppressor Smad4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc Natl Acad Sci U S A 1998, 95:3667-3672.
17. Curry AF, Kinniburgh AJ, Twardzik DR and Wenner CE: Transforming growth factor alpha (TGFalpha) induction of C-FOS and C-MYC expression in C3H 10T1/2 cells. Biochem Biophys Res Commun 1988, 152:216-222.
18. Mercier T, Gaillard-Sanchez I, Martel P and Seillan-Heberden C: Constitutive overexpression of c-fos protein in rat liver epithelial cells decreases TGF-beta synthesis and increases TGF-beta 1 receptors. Biochem Biophys Acta 1995, 1266:64-72.
19. Zhang Y, Feng XH and Derynck R: Smad3 and Smad4 cooperate with c-jun/c-Fos to mediate TGF-beta-induced transcription. Nature 1998, 394:909-913.
20. Kurz SM, Providence KM and Higgins PJ: Antisense targeting of c-fos transcripts inhibits serum- and TGF-beta 1-stimulated PAI-1 gene expression and directed motility in renal epithelial cells. Cell Motil Cytoskeleton 2001, 48:163-174.
21. Chen CR, Kang Y, Siegel PM and Massague J: E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 2002, 110:19-32.
22. Kowalk TF: Smad about E2F. TGFbeta response factor Mci-C via a Smad3/E2F/p107 complex. Mol Cell 2002, 10:7-8.
23. Seoane J, Poupaudeau C, Staller P, Schader M, Eilers M and Massague J: TGFbeta influences Mci, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 2001, 3:400-408.
24. Yang L, Yang J, Venkataseswaru S, Ko T and Brattain MG: Autocrine TGFbeta signaling mediates vitamin D3 analog-induced growth inhibition in breast cells. J Cell Physiol 2001, 188:381-393.
25. Badiavas EV, Zhou L and Falanga V: The tumor suppressor SMAD4/DPC4 and transcriptional adaptor CBP/p300 are involved in the inhibition of breast cell growth. J Biol Chem 2001, 276:29287-29290.
26. Chen C, Wang XF and Sun L: Expression of transforming growth factor beta (TGFbeta) type III receptor restores autocrine TGFbeta activity in human breast cancer cells. J Biol Chem 1997, 272:12862-12867.
27. Jones RA and Mulder KM: TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett 1997, 117:41-50.
28. Simeone DM, Pham T and Logsdon CD: Disruption of TGFbeta signaling pathways in human pancreatic cancer cells. Ann Surg 2000, 232:273-80.
29. Adnane J, Bizouarri FA, Chen Z, Ohkanda J, Hamilton AD, Munoz-Antonio T and Sebrit SM: Inhibition of farnesyltransferase increases TGFbeta type II receptor expression and enhances the responsiveness of human cancer cells to TGFbeta. Oncogene 2000, 19:5525-5533.
30. Hata A: TGFbeta signaling and cancer. Exp Cell Res 2001, 264:111-116.
33. Rooke HM and Crosier KE: The smad proteins and TGFbeta signalling: uncovering a pathway critical in cancer. *Pathology* 2003, 34:193-201.

34. Bandopadhyay A, Zhu Y, Malik SN, Kreisberg J, Bratstein MG, Sprague EA, Luo J, Lopez-Casillas F and Sun LZ: Extracellular domain of TGFbeta type III receptor inhibits angiogenesis and tumor growth in human cancer cells. *Onco gene* 2002, 21:3541-3551.

35. Yuk K, Bandopadhyay A, Le T and Sun L: Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. *Onco gene* 2002, 21:7514-7523.

36. Dumont N and Arteaga CL: A kinase-inactive type II TGFbeta receptor impairs BMP signaling in human breast cancer cells. *Biochim Biophys Acta* 2003, 161:108-112.

37. Bruning A and Runnebaum IB: CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. *Gene Ther* 2003, 10:198-205.

38. Fincher CV, Buck A and Gress TM: TGFbeta-regulated transcriptional mechanisms in cancer. *Int J Gastrointest Cancer* 2002, 31:61-69.

39. Ryu B and Kern SE: The Essential Similarity of TGFbeta and Activin Receptor Transcriptional Responses in Cancer Cells. *Clin Cancer Res* 2003, 10:164-170.

40. Amendt C, Mann A, Schirmacher P and Blessing M: Resistance of keratinocytes to TGFbeta-mediated growth restriction and apoptosis induction accelerates re-epithelialization in wound wounds. *J Cell Sci* 2002, 115:2189-2198.

41. Ehrnsperger M, Beckefer JF, Shepherd T, Bond SL, McCrae KR, Hamilton GS and Lala PK: SV40 Tag transformation of the normal invasive trophoblast results in a premalignant phenotype. *Int J Cancer* 1998, 77:429-439.

42. Peng B, Fleming JB, Breslin T, Graver AM, Fujikawa S, Abbruzzese JL, Kaminski N, Garat C, Matthay MA, Rifkin DB and Sheppard D: Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. *Cancer Res* 2002, 62:3628-3638.

43. Bartsch D, Barth P, Bastian D, Ramsawamy A, Gerdès B, Chaloupka B, Deiss Y, Simon B and Schudy A: Higher frequency of DPC4/Smad4 alterations in pancreatic cancer cell lines than in primary pancreatic adenocarcinomas. *Cancer Lett* 1999, 139:43-49.

44. Gleich K, Seidel B, Gierschik P, Adler G and Menke A: TGFbeta1 represses proliferation of pancreatic cancer cells which correlates with Smad4-independent inhibition of ERK activation. *Onco gene* 2000, 19:4531-4541.

45. Hatzios SK, Sakuma T, Kawasaki HT, Guise Mj, Dalton SL, Wu J, Pirttet JF, Kaminski N, Garat C, Mathay MA, Rifkin DB and Sheppard D: The integrin alpha v beta 6 binds and activates latent TGFbeta 1: a mechanism for regulating pulmonary inflammation and fibrosis. *Cell* 1999, 96:319-328.

46. Buj T, Muntinga K, Chaloupka B, Ussal S, Tellier M and Schnapp LM: Integrin alphaVbeta3 mediates adhesion to LAP-TGFbeta1. *J Cell Sci* 2002, 115:4641-4648.

47. Ludbrook SB, Barry ST, Delves CJ and Horgan CM: The integrin alphaVbeta3 is receptor for the latency-associated peptides of transforming growth factors beta1 and beta3. *Biosci* 2003, 36:311-318.

48. Saharinen J, Hyytiainen M, Taipale J and Keski-Oja J: Latent transforming growth factor-beta binding proteins (LTBPs)–structural extracellular matrix proteins for targeting TGF-beta action. *Vitro Cell Growth Factor Rev* 1999, 10:99-117.

49. Mungen JS, Harpel JG, Giancotti FG and Rifkin DB: Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta3. *Mol Biol Cell* 1996, 9:2627-2638.

50. Saharinen J, Taipale J, Monni O and Keski-Oja J: Identification and characterization of a new latent transforming growth factor-beta/binding protein, LTBP-4. *J Biol Chem* 1998, 273:18459-18469.

51. Yuan X, Downing AK, Knott V and Handford PA: Solution structure of the transforming growth factor beta/binding protein-like module, a domain associated with matrix fibrils. *Embo J* 1997, 16:6659-6666.

52. Yang Y, Dignam JD and Gentry LE: Role of carbohydrate structures in the binding of beta1-latency-associated peptide to ligands. *Biochemistry* 1993, 32:1192-11932.

53. Grainger DJ, Wakefield L, Bethell HW, Farndale RW and Metcalfe JC: Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. *Nat Med* 1995, 1:932-937.

54. Annes JP, Mungen JS and Rifkin DB: Making sense of latent TGF-beta activation. *J Cell Sci* 2003, 116:217-224.

55. Altmann CR, Chang C, Munoz-Sanzjuan I, Bell E, Heke M, Rifkin DB and Brivanlou AH: The latent-TGFbeta-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling. *Dev Biol* 2002, 248:118-127.

56. Le M, Gohr CM and Rosenthal AK: Transglutaminase participates in the incorporation of latent TGFbeta into the extracellular matrix of aginating articular chondrocytes. *Connect Tissue Res* 2001, 42:245-253.

57. Saika S, Miyamoto T, Tanaka T, Ishida I, Ohnishi Y and Ooshima A: Latent TGFbeta binds to heparin and fibrillin-1 in human capsular opacification and in cultured lens epithelial cells. *Br J Ophthalmol* 2001, 85:1362-1366.

58. Linder S, Castanos-Velez E, von Rosen A and Biberfeld P: Immunohistochemical expression of extracellular matrix proteins and adhesion molecules in pancreatic carcinoma. *Hepatogastroenterology* 2001, 48:1321-1327.

59. Streit M, Schmidt R, Hilgenfeld RU, Thiel E and Kreuser ED: Adhesion receptors in malignant transformation and dissemination of gastrointestinal tumors. *J Mol Med* 1996, 74:253-268.

60. Lohr Z, Trautmann B, Gudermann T, Peters S, Zauner I, Maier A, Klopke G, Liebe S and Kreuser ED: Expression and function of receptors for extracellular matrix proteins in human ducal adenocarcinomas of the pancreas. *Pancreas* 1996, 12:248-259.

61. Weinel RJ, Rosendahl A, Pinschmidt E, Kisker O, Simon B and Santoso S: The alpha 6 integrin receptor in pancreatic carcinoma. *Gastrointest Cancer* 1995, 10B:523-532.

62. Weinel RJ, Rosendahl A, Neumann K, Chaloupka B, Erb D, Rothmund M and Santoso S: Expression and function of VLA-alpha 2, -alpha 3, -alpha 5 and -alpha 6 integrin receptors in pancreatic carcinoma. *Int J Cancer* 1992, 50:699-707.

63. Timar J, Chopra H, Rong X, Hatfield JS, Fligiel SE, Onoda JM, Taylor JD and Honn KV: Calcium channel blocker treatment of tumor cells induces alterations in the cytoskeleton, mobility of the integrin alpha IIb beta 3 and tumor-cell-induced platelet aggregation. *J Cancer Res Clin Oncol* 1992, 118:425-434.

64. Beck R, Nebe B, Guthoff R and Rychly J: Inhibition of lens epithelial cell adhesion by the calcium antagonist Mibebradil correlates with impaired integrin distribution and organization of the cytoskeleton. *Graefes Arch Clin Exp Ophthalmol* 2001, 239:452-458.

65. Schmidt C, Pommerenke H, Durr F, Nebe B and Rychly J: Mechanical stressing of integrin receptors induces enhanced tyrosine phosphorylation of cytoskeletally anchored proteins. *J Biol Chem* 1998, 273:5081-5087.

66. Pommerenke H, Schmidt C, Durr F, Nebe B, Luthen F, Muller P and Rychly J: The mode of mechanical integrin stressing controls intracellular signaling in osteoblasts. *J Bone Miner Res* 2002, 17:603-611.

67. Carethers JM and Pham TT: Mutations of transforming growth factor beta 1 type II receptor, BAX, and insulin-like growth factor II receptor genes in microsatellite unstable cell lines. In Vivo 2000, 14:13-20.

68. Therrien JP, Loignon M, Drouin R and Dubetzky EA: Ablation of p21(waf1/cip1) expression enhances the capacity of p53-deficient human tumor cells to repair UVB-induced DNA damage. *Cancer Res* 2001, 61:3781-3786.

69. Houle F, Rousseau S, Morrice N, Luc M, Mongrain S, Turner CE, Tanaka S, Moreau A and Huc S: Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. *Mol Biol Cell* 2003, 14:1418-1432.

70. Fincham VJ, James FM and Winder SJ: Active ERK/MAP kinase is targeted to newly forming cell-matrix adhesions by integrin engagement and v-Src. *Embo J* 2000, 19:2911-2923.

71. Sieg DJ, Hauck CR, Illic D, Klingbeil CK, Schaefer E, Damsky CH and Schlaepfer DD: FAK integrates growth-factor and integrin signals to promote cell migration. *Nat Cell Biol* 2000, 2:245-256.
72. Achison M, Elton CM, Hargreaves PG, Knight CG, Barnes MJ and Farland RW: Integrin-independent tyrosine phosphorylation of p125(fak) in human platelets stimulated by collagen. J Biol Chem 2001, 276:3167-3174.

73. Farre L, Casanova I, Guerrero S, Trías M, Capella G and Mangues R: Heterotopic implantation alters the regulation of apoptosis and the cell cycle and generates a new metastatic site in a human pancreatic tumor xenograft model. Faseb J 2002, 16:975-982.

74. Liboi E, Di Francesco P, Gallinari P, Testa U, Rossi GB and Peschle C: BMP-2 promotes osteoblastic cell differentiation and inhibits osteoblastic cell apoptosis. J Bone Miner Res 1998, 13:298-305.

75. Lahou M, DeCaprio JA, Ludlow JW, Livingston DM and Massague J: Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell 1999, 62:175-185.

76. Moustakas A, Lin HY, Lodish HF and Carr BI: Growth inhibition by transforming growth factor beta (TGF-beta) type I is restored in TGF-beta-resistant hepatoma cells after expression of TGF-beta receptor type II cDNA. Proc Natl Acad Sci U S A 1993, 90:5339-5343.

77. Interger RE, Haukipuro TP and Weinberg RA: TGF-beta induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. Mol Biol Cell 1996, 7:1335-1342.

78. Edens M and Leaf EB: In vitro assays for measuring TGF-beta growth stimulation and inhibition. Methods Mol Biol 2000, 142:1-11.

79. Giancotti FG and Ruoslahti E: Integrin signaling. Science 1999, 285:1028-1032.

80. Huang W, Rudkin GH, Carlens B, Ishida K, Ghasri P, Anvar B, Yamaguchi DT and Miller TA: Overexpression of BMP-2 modulates morphology, growth, and gene expression in osteoblast cells. Exp Cell Res 2002, 274:226-234.

81. Wyatt LE, Chung CY, Carlens B, Iida-Klein A, Rudkin GH, Ishida K, Yamaguchi DT and Miller TA: Bone morphogenetic protein-2 (BMP-2) and transforming growth factor-beta1 (TGF-beta1) alter connexin 43 phosphorylation in MC3T3-E1 Cells. BMC Cell Biol 2001, 2:14.

82. Zerath E, Holy X, Noel B, Malouvier A, Hott M and Marie PJ: Integrin-dependent tyrosine phosphorylation is associated with cell spreading and contact with extracellular matrix. J Biol Chem 2001, 276:33637-33643.

83. Farre L, Casanova I, Guerrero S, Trías M, Capella G and Mangues R: BMP-2 promotes osteoblastic cell differentiation and inhibits osteoblastic cell apoptosis. J Bone Miner Res 1998, 13:298-305.

84. Liboi E, Di Francesco P, Gallinari P, Testa U, Rossi GB and Peschle C: BMP-2 promotes osteoblastic cell differentiation and inhibits osteoblastic cell apoptosis. J Bone Miner Res 1998, 13:298-305.

85. Weyts FA, Li YS, van Leeuwen J, Weinans H and Chien S: Integrin-independent tyrosine phosphorylation of p125(fak) in human platelets stimulated by collagen. J Biol Chem 2001, 276:3167-3174.

86. Aplin AE, Stewart SA, Assoian RK and Juliano RL: Differential roles for alpha(M)beta(2) integrin clustering or activation in the control of apoptosis via regulation of akt and ERK survival mechanisms. J Cell Biol 2000, 151:1305-1320.

87. Aplin AE, Stewart SA, Assoian RK and Juliano RL: Integrin-mediated adhesion regulations require ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol 2001, 153:273-282.

88. Sablina AA, Chumakov PM, Levine AJ and Kopnin BP: p53 activation in response to microtubule disruption is mediated by integrin-ERK signaling. Exp Cell Res 2001, 268:899-909.

89. Bruton VG, Fincham VJ, McLean GW, Winder SJ, Parasekova C, Marshall JF and Frame MC: The prouicative phase and full development of integrin-dependent adhesions in colon epithelial cells require FAK- and ERK-mediated actin spine formation: deregulation in cancer cells. Neoplasia 2001, 3:15-22.

90. Ahmed N, Niu J, Dorahy DJ, Gu X, Andrews S, Meldrum CJ, Scott RJ, Baker MS, Macreadie IG and Agrez MV: Direct integrin alphavbeta6-ERK binding: implications for tumour growth. Oncogene 2002, 21:1370-1380.

91. Kleeff J, Maruyama H, Fries H, Buchler MW, Falb D and Korc M: Smad6 suppresses TGF-beta-induced growth inhibition in COLO-357 pancreatic cancer cells and is overexpressed in pancreatic cancer. Biochem Biophys Res Commun 1999, 255:268-273.

92. Calonge MJ and Massague J: Smad4/DPC4 silencing and hyperactive Ras jointly disrupt transforming growth factor-beta anti-proliferative responses in colon cancer cells. J Biol Chem 1999, 274:33637-33643.

93. Inman GJ and Alliday MJ: Resistance to TGF-beta correlates with a reduction of TGF-beta type II receptor expression in Burkitt’s lymphoma and Epstein-Barr virus-transformed B lymphoblastoid cell lines. J Gen Virol 2000, 81:1567-1578.

94. Lee S, Cho YS, Shim C, Kim J, Choi O, Oh S, Zhang W and Lee J: aberrant expression of Smad4 results in resistance against the growth-inhibitory effect of transforming growth factor-beta in the SiHa human cervical carcinoma cell line. Int J Cancer 2000, 88:490-507.

95. Paterson IC, Davies M, Stone A, Huntley S, Smith E, Pring M, Eveson JW, Robinson CM, Parkinson EK and Prime SS: TGF-beta1 acts as a tumor suppressor of human malignant keratinocytes independently of Smad 4 expression and ligand-induced G(1) growth arrest. Oncogene 2002, 21:1616-1624.

96. Macias-Silva M, Li W, Leu JI, Crissey MA and Taub R: Up-regulated transcriptional repressors SnoN and Ski bind Smad proteins to antagonize transforming growth factor-beta signals during liver regeneration. J Biol Chem 2002, 277:28483-28490.

97. Berger DH, Feng XH, Yang J, Bao L, Liu Y and Lin X: Resistance to transforming growth factor-beta occurs in the presence of normal Smad activation. Surgery 2002, 132:310-316.

98. Schwarte-Waldhoff I and Schmiegel W: Smad4 transcriptional pathways and angiogenesis. Int J Gastrointest Cancer 2002, 31:47-59.

99. Nicolas FJ and Hill CS: Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene 2003, 22:3698-3711.

100. Stoika R, Yakymovych M, Souchelnitsky S and Yakymovych I: Potential role of transforming growth factor beta1 in drug resistance of tumor cells. Acta Biochim Pol 2003, 50:497-508.

101. Yamanaka I, Koizumi M, Baba T, Yamashita S, Suzuki T and Kudo R: Epidermal growth factor increased the expression of alpha2beta1-integrin and modulated integrin-mediated signaling in human cervical adenocarcinoma cells. Exp Cell Res 2003, 286:165-174.

102. Kabir-Salmani M, Shiokawa S, Akimoto Y, Sakai K, Nagamatsu S, Nakamura Y, Lofti A, Kawakami I and Iwashita M: Alphavbeta3 integrin signaling pathway is involved in insulin-like growth factor 1-stimulated human extravillous trophoblast cell migration. Endocrinology 2003, 144:1620-1630.

103. Thanrick VL, Lee DY, White ES, Cui Z, Laros JM, Chacon R, Horowitz JC, Day RM and Thomas PE: Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem 2003, 278:12384-12389.

104. Smyth SS and Patterson C: Tiny dancers: the integrin-growth factor nexus in angiogenic signaling. J Cell Biol 2002, 158:17-21.

105. Elceiri BP, Puente XS, Hood JD, Stupack DG, Schlaepfer DD, Huang ZX, Sheppard D and Cheresh DA: Src-mediated coupling of focal adhesion kinase to integrin (alpha)(v)beta(3) in vascular endothelial growth factor signaling. J Cell Biol 2002, 157:149-160.

106. Herrmann U, Zong CS, Li W and Wang LH: RACK1, an insulin-like growth factor I (IGF-I) receptor-interacting protein, modulates IGF-I-dependent integrin signaling and promotes cell spreading and contact with extracellular matrix. Mol Cell Biol 2002, 22:2345-2365.

107. Lee JW and Juliano RL: The alpha5beta1 integrin selectively enhances epidermal growth factor signaling to the phosphatidylinositol-3-kinase/Akt pathway in intestinal epithelial cells. Biochim Biophys Acta 2002, 1542:23-31.

108. Bhowmick NA, Zent R, Ghiassi M, McDonnell M and Moses HL: Integrin beta 1 signaling is necessary for transforming growth factor-beta activation of p38MAPK and epithelial plasticity. J Biol Chem 2001, 276:46707-46713.
109. Gleeson LM, Chakraborty C, McKinnon T and Lala PK: Insulin-like growth factor-binding protein 1 stimulates human trophoblast migration by signaling through alpha 5 beta 1 integrin via mitogen-activated protein kinase pathway. J Clin Endocrinol Metab 2001, 86:2484-2493.

110. Lai CF, Feng X, Nishimura R, Teitelbaum SL, Avioli LV, Ross FP and Cheng SL: Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Sp1 and Smad signaling. J Biol Chem 2000, 275:36400-36406.

111. Renshaw MW, Price LS and Schwartz MA: Focal adhesion kinase mediates the integrin signaling requirement for growth factor activation of MAP kinase. J Cell Biol 1999, 147:611-618.

112. Skinner MA and Wildeman AG: beta(1) integrin binds the 16-kDa subunit of vascular H(+)-ATPase at a site important for human papillomavirus E5 and platelet-derived growth factor signaling. J Biol Chem 1999, 274:23119-23127.

113. Apolinario D and Juliano RL: Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J Cell Sci 1999, 112 (Pt 5):695-706.

114. Gu J, Tamura M and Yamada KM: Tumor suppressor PTEN inhibits integrin- and growth factor-mediated mitogen-activated protein (MAP) kinase signaling pathways. J Cell Biol 1998, 143:1375-1383.

115. Zheng B and Clemmons DR: Blocking ligand occupancy of the alphaVbeta3 integrin inhibits insulin-like growth factor I signaling in vascular smooth muscle cells. Proc Natl Acad Sci U S A 1998, 95:11217-11222.

116. Gotto A, Ritchie A, Takahira H and Broxmeyer HE: Thrombopoietin and erythropoietin activate inside-out signaling of integrin and enhance adhesion to immobilized fibronectin in human growth-factor-dependent hematopoietic cells. Ann Hematol 1997, 75:207-213.

117. Generesh E, Schuppan D and Lichtner RB: Signaling by epidermal growth factor factor differentially affects integrin-mediated adhesion of tumor cells to extracellular matrix proteins. J Mol Med 1996, 74:609-616.

118. Stopper GE, McNamara HP, Dike LE, Bojanowski K and Ingber DE: Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell 1995, 6:1349-1365.

119. Kraft S, Diefenbach B, Mehta R, Jonszczuk A, Luckenbach GA and Grothmann SL: Definition of an unexpected ligand recognition motif for alphavbeta6 integrin. J Biol Chem 1999, 274:1979-1985.

120. Hu DD, White CA, Panzer-Knodle S, Page JD, Nicholson N and Smith JW: A new model of dual interacting ligand binding sites on integrin alphaIIbbeta3. J Biol Chem 1999, 274:4633-4639.

121. Fujisawa S, Sclabas GM, Schmidt C, Niou J, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C and Chiao PJ: Inhibition of constitutive NF-kappaB activity by I kappa B alpha suppresses tumorigenesis. Oncogene 2003, 22:1365-1370.

122. Sclabas GM, Fujioka S, Schmidt C, Fan Z, Evans DB and Chiao PJ: Restoring apoptosis in pancreatic cancer cells by targeting the nuclear factor-kappaB signaling pathway with the anti-epidermal growth factor antibody IMC-C225. J Gastrointest Surg 2003, 7:37-43; discussion 43.

123. Fujioka S, Sclabas GM, Schmidt C, Frederick WA, Dong QG, Abbruzzese JL, Evans DB, Baker C and Chiao PJ: Function of nuclear factor kappaB in pancreatic cancer metastasis. Clin Cancer Res 2003, 9:346-354.

124. Dong QG, Sclabas GM, Fujioka S, Schmidt C, Peng B, Wu T, Tsao MS, Evans DB, Abbruzzese JL, McDonnell TJ and Chiao PJ: The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 2002, 21:6510-6519.

125. Mineo C, Anderson RG and White MA: Physical association with ras enhances activation of membrane-bound raf (RafCAAX). J Biol Chem 1997, 272:10345-10348.