Non-High-Density Lipoprotein Cholesterol and Risk of Cardiovascular Disease: The Japan Epidemiology Collaboration on Occupational Health Study

Huan Hu1,2, Ami Fukunaga2, Toshitaka Yokoya3, Tohru Nakagawa4, Toru Honda4, Shuichiro Yamamoto4, Hiroko Okazaki5, Toshiaki Miyamoto6, Naoko Sasaki7, Takayuki Ogasawara7, Naoki Gonmori8, Kenya Yamamoto9, Ai Hori10, Kentaro Tomita11, Satsue Nagahama12, Maki Konishi2, Nobumi Katayama2, Hisayoshi Morioka1, Isamu Kabe13, Tetsuya Mizoue2 and Seitaro Dohi5 for the Japan Epidemiology Collaboration on Occupational Health Study Group

1 Department of Public Health, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
2 Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo, Japan
3 Mitsubishi Heavy Industries, Ltd., Kanagawa, Japan
4 Hitachi Health Care Center, Hitachi, Ltd., Ibaraki, Japan
5 Mitsui Chemicals, Inc., Tokyo, Japan
6 NIPPON STEEL CORPORATION, EAST NIPPPON WORKS Kimitsu Area, Chiba, Japan
7 Mitsubishi Fuso Truck and Bus Corporation, Kanagawa, Japan
8 East Japan Works (Keihin), JFE Steel Corporation, Kanagawa, Japan
9 Division of Chemical Information, National Institute of Occupational Safety and Health, Kanagawa, Japan
10 Department of Global Public Health, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
11 Healthplant Co., Ltd., Tokyo, Japan
12 All Japan Labour Welfare Foundation, Tokyo, Japan
13 KUBOTA Corporation, Tokyo, Japan

Aims: We aimed to investigate the association between non-high-density lipoprotein cholesterol (non-HDL-C) levels and the risk of cardiovascular disease (CVD) and its subtypes.

Methods: In this contemporary cohort study, we analyzed the data of 63,814 Japanese employees aged ≥30 years, without known CVD in 2012 and who were followed up for up to 8 years. The non-HDL-C level was divided into 5 groups: <110, 110-129, 130-149, 150-169, and ≥170 mg/dL. The Cox proportional hazards model was used to calculate the hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) for CVD and its subtypes associated with each non-HDL-C group, considering 130-149 mg/dL as the reference group.

Results: During the study period, 271 participants developed CVD, including 78 myocardial infarctions and 193 strokes (102 ischemic strokes, 89 hemorrhagic strokes, and 2 unknowns). A U-shaped association between non-HDL-C and stroke was observed. In the analysis of stroke subtypes, the multivariable-adjusted HR (95% CI) for hemorrhagic stroke was 2.61 (1.19–5.72), 2.02 (0.95–4.29), 2.10 (1.01–4.36), and 1.98 (0.96-4.08), while that for ischemic stroke was 1.54 (0.77–3.07), 0.91 (0.46-1.80), 0.73 (0.38–1.41), and 1.50 (0.87–2.56) in the <110, 110-129, 150-169, and ≥170 mg/dL groups, respectively. Individuals with elevated non-HDL-C levels had a higher risk of myocardial infarction.

Conclusions: High non-HDL-C levels were associated with an increased risk of myocardial infarction. Moreover, high and low non-HDL-C levels were associated with a high risk of stroke and its subtypes among Japanese workers.

Key words: Non-high-density lipoprotein cholesterol, Stroke, Myocardial infarction
Introduction

Cardiovascular disease (CVD) is a leading cause of mortality, accounting for 31% of all global deaths in 2016. In Japan, CVD accounted for approximately 23% of all deaths in 2019. Stroke is the most prevalent CVD in Japanese, accounting for >60% of all CVD cases. To reduce the burden of CVD, especially stroke, it is necessary to identify the modifiable risk factors.

Non-high-density lipoprotein cholesterol (non-HDL-C) is the sum of atherogenic lipoproteins (e.g., very low-density lipoprotein, intermediate-density lipoprotein, and low-density lipoprotein cholesterol (LDL-C)). High levels of non-HDL-C are assumed to carry a high risk of atherosclerotic diseases. Further, high non-HDL-C levels have been consistently associated with an increased risk of coronary heart disease (CHD) and CVD.

However, the association between non-HDL-C levels and the risk of stroke is less clear. Studies on the risk of total stroke associated with non-HDL-C levels are mainly from Asian countries, and reported mixed findings. Cohort studies from China and Korea have reported that high non-HDL-C levels are associated with an increased risk of total stroke. However, a pooled analysis of 10 Japanese cohort studies did not find such an association. Further, a recent study has reported a U-shaped association in Japanese men. With regard to stroke subtypes, a meta-analysis of 68 prospective studies (mainly conducted in Europe and North America) reported that higher non-HDL-C levels were associated with higher risk of ischemic stroke, but not hemorrhagic stroke. However, the pooled analysis of Japanese cohort studies did not find significant associations between non-HDL-C levels and ischemic stroke or hemorrhagic stroke. A Japanese study has reported an increased risk of intracerebral hemorrhage among men with low non-HDL-C levels (<110 mg/dL), suggesting a need for additional research on the association between low non-HDL-C levels and the risk of stroke.

Previous studies on the association between non-HDL-C levels and stroke in Japan were based on cohorts established in the 1980s and the 1990s, and the participants were mainly middle-aged and older community dwelling adults. Population characteristics including circulating lipids (e.g., an increasing trend in high-density lipoprotein cholesterol (HDL-C)) and morbidity (e.g., a decline in the incidence of stroke) have changed markedly over the past decades. In addition, the productivity losses and economic burden due to CVD in the Japanese working population are substantial, accounting for more than one in five premature deaths in 2015. Thus, evidence from a working population based on recent measurements of lipids is warranted to prevent premature CVD deaths in workers.

Aim

In this study, we examined the association between non-HDL-C levels and the risk of CVD and its subtypes using data from an ongoing large-scale cohort study of Japanese workers.

Methods

Setting

This cohort study used data from the Japan Epidemiology Collaboration on Occupational Health (J-ECOH) Study, which is an ongoing multi-company study of workers in Japan. To date, annual health checkup data between January 2008 and March 2020 have been collected. In the J-ECOH Study, the CVD registry was established in participating companies in April 2012. Details of the J-ECOH Study and CVD registration have been described elsewhere. The study protocol, including the consent procedure, was approved by the Ethics Committee of the National Center for Global Health and Medicine, Japan.

Participants

The baseline population of the present study is comprised of workers in 8 participating companies which provided data on serum lipids including total cholesterol. A total of 79,039 participants aged ≥30 years attended either the 2010 or 2011 health checkup. We excluded participants who reported a history of CVD at baseline (n=835); those with missing data on total cholesterol, HDL-C, body mass index (BMI), and smoking status or those with missing data necessary for diagnosis of diabetes and hypertension at baseline (n=7,307). We further excluded participants who neither attended any subsequent health checkups nor had information on CVD, mortality, and long-term sick leave (n=7,083). Finally, 63,814 participants, comprising 53,550 men...
and 10,264 women, were included

Annual Health Checkup
The body height and weight were measured using a scale while the participant wore light clothes and no shoes. BMI was calculated as weight in kilograms divided by the square of height in meters. Smoking status was assessed by using a self-administered questionnaire. Blood pressure (BP) was measured using an automatic BP monitor, with the participants in a sitting position. Total cholesterol, LDL-C, and HDL-C levels were measured using the enzymatic method. Plasma glucose levels were measured using either the enzymatic or glucose oxidase peroxidative electrode method. HbA1c levels were measured using a latex agglutination immunoassay, high-performance liquid chromatography, or the enzymatic method. All the laboratories involved in the health checkups of the participating companies received satisfactory scores (rank A or a score > 95 out of 100) from external quality control agencies.

Exposure
We used the 2011 health checkup data for exposure assessment. When 2011 data were not available, we used the 2010 checkup data. Non-HDL-C levels were calculated by subtracting HDL-C levels from total cholesterol levels. Non-HDL-C levels were classified into 5 groups according to the previous study among Japanese general population and the Japan Atherosclerosis Society guideline: < 110, 110-129, 130-149, 150-169, and ≥ 170 mg/dL.

Outcome
Incident CVD events, including fatal and non-fatal myocardial infarction (MI) and stroke, were ascertained from April 2012 to March 2020. For fatal cases, the cause of death was determined based on available information, including data from death certificates (51%), information obtained from the bereaved family or colleagues (21%), and other sources/missing (13%, source not specified; 15%, missing). For non-fatal cases, the diagnosis of each CVD event was based on data from medical certificates written by a treating physician and submitted to the company through the worker (85%), confirmation with the treating physician (2%), self-report (7%), or missing (6%).

Covariates
The covariates included age, sex, smoking status, BMI, hypertension, diabetes, the HDL-C level, and lipid-lowering treatment. Hypertension was defined as systolic BP ≥ 140 mmHg, diastolic BP ≥ 90 mmHg, or receiving medical treatment for hypertension. Diabetes was defined as HbA1c level ≥ 6.5%, fasting plasma glucose level ≥ 126 mg/dL, random plasma glucose level ≥ 200 mg/dL, or receiving medical treatment for diabetes.

Statistical Analysis
We calculated age-and sex-adjusted baseline characteristics of the subjects using the analysis of covariance for continuous variables and the marginal structural binomial regression model for categorical variables. Person-time was calculated from March 31, 2012 (one day before the beginning of the follow-up period) to the date of first occurrence of a CVD event; date of censoring, which was determined individually based on the available information, including data on annual health checkups, sick leave, retirement, and death; or the end of follow-up (for most companies, this was March 31, 2020). Cox proportional hazards regression models were performed to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for CVD and its subtypes associated with each non–HDL-C group using the 130-149 mg/dL group as the reference group, considering that a U-shaped association may exist between non-HDL-C levels and the risk of total stroke. We first adjusted for age (years, continuous) and sex in model 1, and then further adjusted for current smoker (yes or no), BMI (kg/m², continuous), hypertension (yes or no), and diabetes (yes or no) in model 2. We additionally adjusted for the HDL-C level and lipid-lowering treatment in model 3. Worksite was treated as strata. We tested the linear trend by treating non-HDL-C as a continuous variable and tested the non-linear trend using the fractional polynomials analysis. To further facilitate comparability with previous studies, we also calculated the HRs for the development of MI associated with a one standard deviation (SD) unit change in the non-HDL-C level.

Multiple sensitivity analyses were performed by excluding participants who were receiving lipid-lowering treatment, fatal CVD cases occurred during the first three years of follow-up, and CVD cases without death/medical certificates. Fractional polynomial analysis was conducted using STATA version 15.0 (StataCorp, College Station, TX, USA). All other statistical analyses were performed using SAS version 9.3 (SAS Institute, Cary, NC, USA). A two-sided P value of < 0.05 was considered statistically significant.
Table 1. Age- and sex-adjusted means or frequencies of risk factors for CVD according to non-HDL-C levels at baseline

Non-HDL-C (mg/dL)	<110	110-129	130-149	150-169	≥170
N	9,839	12,823	14,721	12,530	13,901
Male, %a	75.0	80.4	85.9	88.1	90.6
Age (years)b	44.0 (0.09)	45.7 (0.08)	46.8 (0.07)	47.6 (0.08)	47.5 (0.07)
Body mass index (kg/m²)	21.9 (0.03)	22.9 (0.03)	23.6 (0.03)	24.2 (0.03)	24.8 (0.03)
Current smoker, %	35.7	32.7	33.5	34.0	36.0
Total cholesterol (mg/dL)	160.5 (0.18)	181.4 (0.16)	197.7 (0.14)	214.8 (0.16)	245.1 (0.15)
High-density lipoprotein cholesterol (mg/dL)	64.9 (0.14)	61.3 (0.12)	58.3 (0.11)	55.9 (0.12)	53.3 (0.12)
Lipid-lowering treatment, %	5.1	6.4	6.9	7.3	9.7
Systolic blood pressure (mmHg)	119.5 (0.15)	120.9 (0.13)	121.7 (0.12)	122.9 (0.13)	124.4 (0.12)
Diastolic blood pressure (mmHg)	74.8 (0.10)	75.8 (0.09)	76.5 (0.08)	77.5 (0.09)	78.5 (0.09)
Hypertension, %	20.3	21.3	22.4	23.3	24.5
HbA1c (%)	5.50 (0.01)	5.56 (0.01)	5.61 (0.01)	5.66 (0.01)	5.76 (0.01)
Blood glucose (mg/dL)	98.1 (0.20)	99.2 (0.18)	100.2 (0.16)	101.1 (0.18)	103.1 (0.17)
Diabetes, %	7.8	8.1	8.5	8.8	10.0

a, age adjusted; b, sex adjusted

Table 2. Hazard ratio and 95% confidence interval for CVD according to non-HDL-C levels

Non-HDL-C (mg/dL)	No. of events	Person-years	Model 1	Model 2	Model 3
<110	34	61,439	1.37 (0.88-2.15)	1.53 (0.97-2.40)	1.67 (1.06-2.63)
110-<130	38	79,235	1.04 (0.68-1.60)	1.10 (0.71-1.69)	1.14 (0.74-1.76)
130-<150	45	89,704	Reference	Reference	Reference
150-<170	59	76,073	1.45 (0.99-2.14)	1.38 (0.94-2.04)	1.35 (0.91-1.99)
≥170	95	84,655	2.06 (1.44-2.93)	1.85 (1.30-2.64)	1.75 (1.23-2.50)

P for linear trend: <0.001 0.008 0.06
P for non-linear trend: Not applicable Not applicable <0.001

Model 1: adjusted for age and sex
Model 2: adjusted for covariates in model 1, smoking, BMI, hypertension, and diabetes
Model 3: adjusted for covariates in model 2, HDL-C, and lipid-lowering treatment

Results

Table 1 shows the age-and sex-adjusted baseline characteristics of the study participants according to their non-HDL-C levels. Participants with higher non-HDL-C levels were more likely to be men and current smokers, and had higher BMI, BP, HbA1c levels, and blood glucose levels. Accordingly, they had a higher prevalence of hypertension and diabetes.

During 391,106 person-years of follow-up, there were 271 incident CVD cases, including 78 MI cases and 193 stroke cases (102 ischemic stroke cases, 89 hemorrhagic stroke cases, and 2 unknown cases). Table 2 shows that low and high non-HDL-C levels were associated with an increased risk of total CVD, with a multivariable-adjusted HR (95% CI) of 1.67 (1.06-2.63), 1.14 (0.74-1.76), 1.35 (0.91-1.99) and 1.75 (1.23-2.50) in the <110, 110-129, 150-169, and ≥ 170 mg/dL groups, respectively, compared to the 130-159 mg/dL group.

Table 3 and Supplementary Fig.1 show a U-shaped association between non-HDL-C levels and the risk of total stroke (P for nonlinear trend = 0.001). In the analysis of stroke subtypes, the multivariable-adjusted HR for hemorrhagic stroke was 2.61 (1.19-5.72), 2.02 (0.95-4.29), 2.10 (1.01-4.36), and 1.98 (0.96-4.08), while that for ischemic stroke was 1.54 (0.77-3.07), 0.91 (0.46-1.80), 0.73 (0.38-1.41), and 1.50 (0.87-2.56) in the <110, 110-129, 150-169, and ≥ 170 mg/dL groups, respectively.

The association between non-HDL-C levels and the risk of MI was linear (Table 4). The multivariable-adjusted HR for MI was 0.85 (0.27-2.63), 0.69 (0.26-1.82), 1.58 (0.79-3.15), and 1.90 (1.00-3.61) in the
The sensitivity analyses. The associations between non-HDL-C levels and risk of CVD and its subtypes did not change after excluding participants who were <110, 110-129, 150-169, and ≥170 mg/dL groups, respectively (P for linear trend = 0.004).

The study results were generally supported by the associations between non-HDL-C levels and risk of CVD and its subtypes did not change after excluding participants who were <110, 110-129, 150-169, and ≥170 mg/dL groups, respectively (P for linear trend = 0.004).
receiving lipid-lowering treatment, fatal CVD cases occurred within the first three years, and CVD cases without death/medical certificates (Supplementary Table 1, 2, 3).

Discussion

In this large-scale prospective study of a working population in Japan, we found that low and high non-HDL-C levels were associated with an increased risk of CVD. Regarding the CVD subtypes, we found a U-shaped association between non-HDL-C levels and total stroke. For MI, a positive linear relationship was observed. To our knowledge, this is the first study to investigate the association between non-HDL-C levels and CVD using data from a contemporary cohort in Japan.

Our finding that low and high non-HDL-C levels were associated with an increased risk of CVD was partly in line with a previous study, which showed a U-shaped association between non-fasting triglycerides and CVD mortality in Japanese general population24. To our knowledge, no previous study has reported a U-shaped association between non-HDL-C levels and the risk of total stroke, except one recent Japanese study, which suggested a U-shaped association in men12. However, several studies conducted in China and Korea reported a positive association between non-HDL-C levels and the risk of total stroke8-10. Our study showed that high and very low non-HDL-C levels were associated with a high risk of hemorrhagic stroke, although the nonlinear association was not statistically significant, due in part to the small number of hemorrhagic strokes. A meta-analysis of mainly Western studies and a pooled analysis of 10 Japanese cohort studies showed that the incidence rate ratio of acute MI was 1.62 (1.35-1.95) for a one SD unit change in the non-HDL-C level. Concordant with our findings, two meta-analyses that were mainly based on studies on Western populations showed that non-HDL-C was positively associated with CHD4, 5, with one reporting an adjusted HR of 1.50 (1.39-1.61) for a one SD unit change in the non-HDL-C level4. Similarly, the pooled analysis of 10 Japanese cohort studies showed that the incidence rate ratio of acute MI was 1.62 (1.35-1.95) for a one SD unit change in the non-HDL-C level11. Our study was underpowered due to small number of ischemic stroke cases included in our study. Studies from both Western and Asian countries, except Japan, have reported a positive association between non-HDL-C and ischemic stroke4, 9. In contrast, previous studies in Japan have consistently reported no association1, 12, 31. For example, a pooled analysis of 10 Japanese cohort studies did not show an association between non-HDL-C levels and the risk of ischemic stroke11. Lacunar infarctions account for a larger proportion (>50%) of ischemic stroke in the Japanese population than in Western or other Asian populations (10-30%)32. Previous studies have shown non-HDL-C levels are associated with atherothrombotic infarction (another subtype of ischemic stroke) but not with lacunar infarction12, 31. The difference in the subtype distribution of ischemic stroke may account for the lack of association between non-HDL-C and ischemic stroke in Japanese studies, including our study.

In our study, the risk of MI increased with the increasing non-HDL-C levels, with an adjusted HR (95% CI) of 1.26 (1.08–1.48) for a one SD unit change in the non-HDL-C level. Concordant with our findings, two meta-analyses that were mainly based on studies on Western populations showed that non-HDL-C was positively associated with CHD4, 5, with one reporting an adjusted HR of 1.50 (1.39-1.61) for a one SD unit change in the non-HDL-C level4. Similarly, the pooled analysis of 10 Japanese cohort studies showed that the incidence rate ratio of acute MI was 1.62 (1.35-1.95) for a one SD unit change in the non-HDL-C level11. Our study was
conducted in a working population, including young- and middle-aged people, and used the most recent data on lipids and CVD (study period 2011-2019). The findings from our study and previous studies4,5,11 provide strong evidence that non-HDL-C levels can be used to identify individuals at a high risk of MI.

Strengths and Limitations

The strength of our study is that we included young- and middle-aged people and used data from a large working population. However, our study has some limitations. First, the lack of data on the subtypes of hemorrhagic stroke and ischemic stroke did not allow us to analyze their associations with non-HDL-C levels. Second, the CVD registry data are mainly based on data from medical certificates written by a physician and submitted to the company by the worker. This registry primarily covers relatively severe cases because the submission of a medical certificate is required when taking long-term (\(\geq 2\) weeks) sick leave. On the other hand, patients with milder forms of CVD were not well covered by this registration system because they were not required to submit a medical certificate if they took sick leave for <2 weeks. We also noticed that about 20\% did not provide medical certificates (self-reported or missing data). However, the results did not change obviously after excluding cases without death/medical certificates. Third, due to the lack of data on socioeconomic status, family history of CVD, and lifestyle factors other than smoking status (e.g., alcohol consumption, diet, and physical activity), we were unable to control for potential effects of these factors. Fourth, our study is a Japanese occupational cohort. Therefore, our findings may not be generalizable to the general population or other racial/ethnic groups.

Conclusion

Using data from a recent cohort study including Japanese workers, our study showed that high non-HDL-C levels were associated with a high risk of MI. Moreover, high and low non-HDL-C levels were associated with a high risk of total stroke, especially hemorrhagic stroke. Further studies are needed to confirm the present finding of a U-shaped association between non-HDL-C levels and the risk of total stroke and its subtypes.

Notice of Grant Support

This study was supported by the Industrial Health Foundation, Industrial Disease Clinical Research Grants (140202-01, 150903-01, 170301-01), the Japan Society for the Promotion of Science KAKENHI (16H05251), and the Grant of National Center for Global Health and Medicine (28-Shi-1206, 30-Shi-2003, 19A1006).

Conflict of Interest

The authors declared they do not have anything to disclose regarding conflict of interest with respect to this manuscript.

References

1) World Health Organization. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed April 16, 2021)

2) Ministry of Health, Labor and Welfare. https://www.mhlw.go.jp/toukei/saikin/hw/jinkou/kakutei19/index.html (Accessed April 16, 2021)

3) Mo X, Gai RT, Sawada K, Takahashi Y, Cox SE, Nakayama T, Mori R. Coronary heart disease and stroke disease burden attributable to fruit and vegetable intake in Japan: projected DALYS to 2060. BMC Public Health, 2019; 19: 707

4) Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA, 2009; 302: 1993-2000

5) Liu H, Deng X, Peng Y, Zeng Q, Song Z, He W, Zhang L, Gao G, Xiao T, Yu X. Meta-analysis of serum non-high-density lipoprotein cholesterol and risk of coronary heart disease in the general population. Clin Chim Acta, 2017; 471: 23-28

6) Sniderman AD, Williams K, Contois JH, Monroe HM, McQueen MJ, de Graaf J, Furberg CD. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes, 2011; 4: 337-345

7) Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, Thorand B, Giampaoli S, Brambilla P, Tunstall-Pedoe H, Moir A, Iacoviello L, Veronesi G, Grassi G, Mathiesen EB, Söderberg S, Linneberg A, Brenner H, Amouyel P, Ferrière J, Tamosiunas A, Nikitin YP, Drygas W, Melander O, Jöckel KH, Leistner DM, Shaw JE, Panagiotakos DB, Simons LA, Kavousi M, Vasan RS, Dullaart RPF, Wannamethee SG, Risérus U, de Lemos JA, Omland T, Kuulasmaa K, Landmesser U, Blankenberg S; Multinational Cardiovascular Risk Consortium. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium. Lancet, 2019; 394: 2173-2183

8) Gu X, Yang X, Li Y, Cao J, He W, Chen J, Shen C, Yu L, Huang J, Gu D. Usefulness of Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol as Predictors of Cardiovascular
Disease in Chinese. Am J Cardiol, 2015; 116: 1063-1070
9) Wu J, Chen S, Zhou Y, Wang C, Wang A, Zhang Q, Gao X, Hu H, Wu S, Zhao X. Non-High-Density Lipoprotein Cholesterol on the Risks of Stroke: A Result from the Kaifian Study. PLoS One, 2013; 8: e74634
10) Kim MK, Han K, Joung HN, Baek KH, Song KH, Kwon HS. Cholesterol levels and development of cardiovascular disease in Koreans with type 2 diabetes mellitus and without pre-existing cardiovascular disease. Cardiovasc Diabetol, 2019; 18: 139
11) Tanabe N, Iso H, Okada K, Nakamura Y, Harada A, Ohashi Y, Ando T, Ueshima H; Japan Arteriosclerosis Longitudinal Study Group. Serum total and non-high-density lipoprotein cholesterol and the risk prediction of cardiovascular events: the JALS-ECC. Circ J, 2010; 74: 1346-1356
12) Saito I, Yamagishi K, Kokubo Y, Yatsuha H, Iso H, Sawada N, Inoue M, Tsugane S. Non-High-Density Lipoprotein Cholesterol and Risk of Stroke Subtypes and Coronary Heart Disease: The Japan Public Health Center-Based Prospective (JPHC) Study. J Atheroscler Thromb, 2020; 27: 363-374
13) Arai H, Yamamoto A, Matsuawa Y, Saito Y, Yamada N, Oikawa S, Mabuchi H, Teramoto T, SASaki J, Nakaya N, Itakura H, Ishikawa Y, Ouchi Y, Horibe H, Kita T. Serum lipid survey and its recent trend in the general Japanese population in 2000. J Atheroscler Thromb, 2005; 12: 98-106
14) Yokoyama S. Trend of HDL increase among Japanese people continues in National Health and Nutrition Survey. J Atheroscler Thromb, 2018; 25: 554-556
15) Iso H. A Japanese health success story: trends in cardiovascular diseases, their risk factors, and the contribution of public health and personalized approaches. EPMA J, 2011; 2: 49-57
16) Toyoda K. Epidemiology and registry studies of stroke in Japan. J Stroke, 2013; 15: 21-26
17) Ministry of Health, Labor and Welfare. https://www.mhlw.go.jp/english/database/db-hh/1-2.html (Accessed April 16, 2021)
18) Hu H, Mizoue T, Sasaki N, Ogawara T, Tomita K, Nagahama S, Hori A, Nishihara A, Imai T, Yamamoto M, Eguchi M, Kochi T, Miyamoto T, Honda T, Nakagawa T, Yamamoto S, Okazaki H, Uehara A, Shimizu M, Murakami T, Kuwahara K, Nanri A, Konishi M, Kabe I, Dohi S; Japan Epidemiology Collaboration on Occupational Health Study Group. Prediabetes and cardiovascular disease risk: A nested case-control study. Atherosclerosis, 2018; 278: 1-6
19) Islam Z, Akter S, Inoue Y, Hu H, Kuwahara K, Nakagawa T, Honda T, Yamamoto S, Okazaki H, Miyamoto T, Ogawara T, Sasaki N, Uehara A, Yamamoto M, Kochi T, Eguchi M, Shirakawa T, Shimizu M, Nagahama S, Hori A, Imai T, Nishihara A, Tomita K, Sone T, Konishi M, Kabe I, Mizoue T, Dohi S; Japan Epidemiology Collaboration on Occupational Health Study Group. Prediabetes, Diabetes, and the Risk of All-Cause and Cause-Specific Mortality in a Japanese Working Population: Japan Epidemiology Collaboration on Occupational Health Study. Diabetes Care, 2021; 44: 757-764
20) Kinoshita M, Yokote K, Arai H, Iida M, Ishigaki Y, Ishibashi S, Umemoto S, Egusa G, Ohmura H, Okamura T, Kihara S, Koba S, Saito I, Shoji T, Daida H, Tsukamoto K, Deguchi J, Dohi S, Dobashi K, Hamaguchi H, Haru M, Hiro T, Biro S, Fujioka Y, Maruyama C, Miyamoto Y, Murakami Y, Yokode M, Yoshida H, Rakugi H, Wakisaka T, Yamashita S; Committee for Epidemiology and Clinical Management of Atherosclerosis. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2017. J Atheroscler Thromb, 2018; 25: 846-984
21) American Diabetes Association. American Diabetes Association Standards of medical care in diabetes—2017. Diabetes Care, 2017; 40: S1-135
22) Shimamoto K, Ando K, Fujita T, Hasebe N, Higaki J, Horiuichi M, Imai Y, Imazumis T, Ishimitsu T, Ito M, Ito S, Itoh H, Iwao H, Kai H, Kario K, Kashihara N, Kawanov Y, Kim-Mitsuyama S, Kimura G, Kohara K, Komuro I, Kumagai H, Matsuura H, Miura K, Morishita R, Naruse M, Node K, Ohya Y, Rakugi H, Saito I, Saitoh S, Shimada K, Shimosawa T, Suzuki H, Tamura K, Tanahashi N, Tsushima T, Uchiyama M, Ueda S, Umemura S; Japanese Society of Hypertension Committee for Guidelines for the Management of Hypertension. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2014). Hypertens Res, 2014; 37: 253-390
23) Richardson DB, Kinlaw AC, MacLehose RF, Cole SR. Standardized binomial models for risk or prevalence ratios and differences. Int J Epidemiol, 2015; 44: 1660-1672
24) Hirata A, Okamura T, Hirata T, Sugiyama D, Ohkubo T, Okuda N, Kita Y, Hayakawa T, Kadota A, Kondo K, Miura K, Okayama A, Ueshima H. Relationship between non-fasting triglycerides and cardiovascular disease mortality in a 20-year follow-up study of a Japanese general population: NIPPON DATA90. J Epidemiol, 2021. doi: 10.2188/jea.JE20200399
25) Wieberdink RG, Poels MM, Vernooij MW, Koudstaal PJ, Hofman A, van der Lugt A, Breetler MM, Ikram MA. Serum lipid levels and the risk of intracerebral hemorrhage: the Rotterdam Study. Arterioscler Thromb Vasc Biol, 2011; 31: 2982-2989
26) Rist PM, Buring JE, Ridker PM, Kase CS, Kurth T, Rexrode KM. Lipid levels and the risk of hemorrhagic stroke among women. Neurology, 2019; 92: e2286-e2294
27) Oonedo G, Yoshida Y, Suzuki K, Shinkai H, Hori S, Kobori K, Takayama Y, Sekiguchi M. Smooth muscle cells in the development of plasmatic arterionecrosis, atherosclerosis, and arterial contraction. Blood Vessels, 1978; 148-156
28) Romero JR, Himali JJ, Beiser A, Pase MP, Davis-Plourde KL, Parva P, Seshadri S, Mitchell GF. Aortic stiffness and cerebral microbleeds: The Framingham Heart Study. Vasc Med, 2021; 1358863X20979740
29) Ding J, Mitchell GF, Bots ML, Sigurdsson S, Harris TB, Garcia M, Eiriksdottir G, van Buchem MA, Gudnason V, Launer LJ. Carotid arterial stiffness and aortic stiffness in the development of plasmatic arterionecrosis, atherosclerosis, and arterial contraction. Blood Vessels, 2014). Hypertens Res, 2021; 1358863X20979740
30) van Sloten TT, Protogerou AD, Henry RM, Schram MT, Launer LJ, Stehouwer CD. Association between arterial
stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis.
Neurosci Biobehav Rev, 2015: 121-130
31) Imamura T, Doi Y, Ninomiya T, Hata J, Nagata M, Ikeda F, Mukai N, Hirakawa Y, Yoshida D, Fukuhara M, Kitazono T, Kiyohara Y. Non-high-density lipoprotein cholesterol and the development of coronary heart disease and stroke subtypes in a general Japanese population: the Hisayama Study. Atherosclerosis, 2014; 233: 343-348
32) Kim BJ, Kim JS. Ischemic stroke subtype classification: an asian viewpoint. J Stroke, 2014; 16: 8-17
Supplementary Table 1. Hazard ratio and 95% confidence interval for CVD according to non-HDL-C levels (excluded people who were taking lipid-lowering medications)

	No. of events	Person-years	Model 1	Model 2	Model 3
Total CVD					
Non-HDL-C (mg/dL)					
< 110	32	59,263	1.51 (0.94-2.42)	1.70 (1.06-2.74)	1.86 (1.15-3.01)
110-<130	36	75,154	1.16 (0.74-1.83)	1.22 (0.78-1.93)	1.27 (0.80-2.01)
130-<150	38	83820	Reference	Reference	Reference
150-<170	52	70,479	1.52 (1.00-2.31)	1.44 (0.95-2.19)	1.40 (0.92-2.13)
≥ 170	84	75,918	2.20 (1.50-3.23)	1.97 (1.34-2.90)	1.86 (1.26-2.74)
Myocardial Infarction					
Non-HDL-C (mg/dL)					
< 110	3	59,263	0.55 (0.15-2.00)	0.68 (0.19-2.49)	0.83 (0.23-3.05)
110-<130	5	75,154	0.62 (0.21-1.82)	0.67 (0.23-1.95)	0.72 (0.25-2.12)
130-<150	10	83820	Reference	Reference	Reference
150-<170	17	70,479	1.87 (0.85-4.08)	1.69 (0.77-3.70)	1.61 (0.74-3.52)
≥ 170	31	75,918	2.98 (1.46-6.08)	2.46 (1.20-5.04)	2.22 (1.08-4.56)
1-SD increase			1.66 (1.39-1.97)	1.48 (1.23-1.79)	1.38 (1.13-1.67)
Hemorrhagic stroke					
Non-HDL-C (mg/dL)					
< 110	16	59,263	2.53 (1.17-5.47)	2.64 (1.21-5.77)	2.64 (1.20-5.79)
110-<130	18	75,154	1.97 (0.93-4.17)	2.03 (0.96-4.31)	2.03 (0.96-4.31)
130-<150	11	83820	Reference	Reference	Reference
150-<170	19	70,479	1.95 (0.93-4.10)	1.90 (0.90-3.99)	1.90 (0.90-3.99)
≥ 170	20	75,918	1.85 (0.89-3.86)	1.74 (0.83-3.64)	1.74 (0.83-3.65)
Ischemic stroke					
Non-HDL-C (mg/dL)					
< 110	13	59,263	1.42 (0.69-2.93)	1.57 (0.75-3.26)	1.79 (0.85-3.74)
110-<130	13	75,154	0.95 (0.46-1.95)	0.99 (0.48-2.04)	1.05 (0.51-2.15)
130-<150	17	83820	Reference	Reference	Reference
150-<170	14	70,479	0.91 (0.45-1.84)	0.86 (0.43-1.75)	0.83 (0.41-1.69)
≥ 170	33	75,918	1.92 (1.07-3.45)	1.76 (0.98-3.17)	1.62 (0.90-2.93)

Model 1: adjusted for age and sex
Model 2: further adjusted for smoking, BMI, hypertension, and diabetes
Model 3: further adjusted for HDL-C
	No. of events	Person-years	Model 1	Model 2	Model 3
Total CVD					
Non-HDL-C (mg/dL)					
<110	29	61,433	1.27 (0.79-2.05)	1.44 (0.89-2.33)	1.56 (0.96-2.54)
110-<130	34	79,230	1.02 (0.65-1.61)	1.08 (0.69-1.71)	1.12 (0.71-1.77)
130-<150	41	89,698	Reference	Reference	Reference
150-<170	55	70,670	1.49 (0.99-2.23)	1.41 (0.94-2.11)	1.38 (0.92-2.06)
≥170	85	84,637	2.02 (1.39-2.93)	1.81 (1.24-2.63)	1.72 (1.18-2.51)
Myocardial Infarction					
Non-HDL-C (mg/dL)					
<110	2	61,433	0.37 (0.08-1.68)	0.46 (0.10-2.10)	0.54 (0.12-2.49)
110-<130	4	79,230	0.50 (0.16-1.59)	0.55 (0.17-1.77)	0.60 (0.19-1.91)
130-<150	10	89,698	Reference	Reference	Reference
150-<170	20	70,670	2.20 (1.03-4.69)	2.01 (0.94-4.31)	1.94 (0.91-4.15)
≥170	29	84,637	2.73 (1.33-5.60)	2.30 (1.16-4.73)	2.09 (1.02-4.31)
1-SD increase			1.60 (1.38-1.86)	1.39 (1.20-1.61)	1.31 (1.12-1.53)
Hemorrhagic stroke					
Non-HDL-C (mg/dL)					
<110	13	61,433	2.24 (0.98-5.14)	2.39 (1.03-5.52)	2.37 (1.02-5.51)
110-<130	16	79,230	1.92 (0.87-4.24)	1.99 (0.90-4.40)	1.98 (0.90-4.38)
130-<150	10	89,698	Reference	Reference	Reference
150-<170	18	70,670	2.03 (0.94-4.41)	1.96 (0.91-4.25)	1.97 (0.91-4.28)
≥170	18	84,637	1.79 (0.83-3.89)	1.66 (0.77-3.62)	1.71 (0.78-3.73)
Ischemic stroke					
Non-HDL-C (mg/dL)					
<110	14	61,433	1.25 (0.63-2.46)	1.37 (0.69-2.72)	1.54 (0.77-3.07)
110-<130	14	79,230	0.83 (0.42-1.63)	0.87 (0.44-1.71)	0.91 (0.46-1.80)
130-<150	21	89,698	Reference	Reference	Reference
150-<170	15	70,670	0.78 (0.40-1.52)	0.75 (0.39-1.46)	0.73 (0.38-1.41)
≥170	38	84,637	1.76 (1.03-3.00)	1.61 (0.94-2.75)	1.50 (0.87-2.56)

Model 1: adjusted for age and sex
Model 2: further adjusted for smoking, BMI, hypertension, and diabetes
Model 3: further adjusted for HDL-C

Supplementary Table 2. Hazard ratio and 95% confidence interval for CVD according to non-HDL-C levels (excluded fatal CVD cases in the first 3 years)
Supplementary Table 3. Hazard ratio and 95% confidence interval for CVD according to non-HDL-C levels (excluded CVD cases without death/medical certificate)

	No. of events	Person-years	Model 1	Model 2	Model 3
Total CVD					
Non-HDL-C (mg/dL)					
< 110	26	61,428	1.29 (0.78-2.14)	1.46 (0.87-2.43)	1.55 (0.93-2.59)
110-<130	34	79,225	1.16 (0.72-1.85)	1.23 (0.77-1.97)	1.26 (0.79-2.02)
130-<150	36	89,685	Reference	Reference	Reference
150-<170	47	76,044	1.45 (0.94-2.24)	1.38 (0.89-2.13)	1.35 (0.88-2.09)
≥ 170	79	84,608	2.15 (1.45-3.19)	1.92 (1.30-2.86)	1.86 (1.25-2.76)
Myocardial Infarction					
Non-HDL-C (mg/dL)					
< 110	3	61,428	0.52 (0.14-1.84)	0.63 (0.17-2.27)	0.73 (0.20-2.66)
110-<130	4	79,225	0.46 (0.15-1.43)	0.50 (0.16-1.56)	0.54 (0.17-1.69)
130-<150	11	89,685	Reference	Reference	Reference
150-<170	17	76,044	1.69 (0.79-3.61)	1.57 (0.73-3.35)	1.52 (0.71-3.24)
≥ 170	25	84,608	2.18 (1.07-4.44)	1.86 (0.91-3.79)	1.70 (0.83-3.47)
1-SD increase			1.58 (1.33-1.88)	1.38 (1.16-1.63)	1.29 (1.08-1.55)
Hemorrhagic stroke					
Non-HDL-C (mg/dL)					
< 110	12	61,428	2.19 (0.92-5.24)	2.35 (1.00-5.67)	2.29 (0.95-5.55)
110-<130	17	79,225	2.23 (0.99-5.00)	2.32 (1.03-5.22)	2.29 (1.02-5.16)
130-<150	9	89,685	Reference	Reference	Reference
150-<170	15	76,044	1.90 (0.83-4.35)	1.83 (0.80-4.19)	1.85 (0.81-4.23)
≥ 170	19	84,608	2.13 (0.96-4.70)	1.95 (0.88-4.33)	1.99 (0.89-4.43)
Ischemic stroke					
Non-HDL-C (mg/dL)					
< 110	11	61,428	1.28 (0.59-2.76)	1.42 (0.65-3.08)	1.54 (0.71-3.36)
110-<130	13	79,225	1.01 (0.49-2.10)	1.06 (0.51-2.22)	1.10 (0.53-2.30)
130-<150	16	89,685	Reference	Reference	Reference
150-<170	14	76,044	0.96 (0.47-1.97)	0.92 (0.45-1.89)	0.90 (0.44-1.85)
≥ 170	35	84,608	2.12 (1.17-3.83)	1.94 (1.07-3.52)	1.84 (1.01-3.34)

Model 1: adjusted for age and sex
Model 2: further adjusted for smoking, BMI, hypertension, and diabetes
Model 3: further adjusted for HDL-C