Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency

Francis C Weng1, Chien-Hao Su2,3,4, Ming-Tsung Hsu2, Tse-Yi Wang2,3, Huai-Kuang Tsai2,3*, Daryi Wang1*

Abstract
Background: Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies.

Results: Among the discarded data, we found that 23.7 ± 3.9% of singletons and 14.1 ± 1.0% of contigs were assigned to taxa. The recovery rates for singletons were higher than those for contigs. The Pearson correlation coefficient revealed a high degree of similarity (0.94 ± 0.03 at the phylum rank and 0.80 ± 0.11 at the family rank) between the proposed taxonomic binning approach and those reported in original studies. In addition, an evaluation using simulated data demonstrated the reliability of the proposed approach.

Conclusions: Our findings suggest that taking account of conserved neighboring gene adjacency improves taxonomic assignment when analyzing metagenomes using Sanger sequencing. In other words, utilizing the conserved gene order as a criterion will reduce the amount of data discarded when analyzing metagenomes.

Background
The investigation of metagenomes, which sequences DNA from mixed environmental samples directly, has provided insights into microbial communities, and is now widely used to study various living microorganisms as a system [1-4]. The major goal of metagenomic studies is to determine the systemic properties of a microbial community, including the genetic, metabolic, ecological, physiological and behavioral aspects of all community members [5-8]. Some high-throughput pipelines have been constructed for high-performance computational analysis of metagenomic data [9,10]. The pipelines facilitate taxonomic binning of huge amounts of sequencing data by referring to databases of known microbial genomes [11-14]. Based on the above approaches, recent investigations have revealed enormous variations among the microbiomes of diverse environments, such as human intestinal and salivary microbiota [15-17], microbial communities growing on sunken whale skeletons [18], and open ocean communities [19,20].

To study genetic materials from natural environmental samples, Sanger sequencing technologies have been used for generating DNA sequences [15,16,20]. Yet, much more metagenomic datasets were conducted using next generation sequencing (NGS) technologies (e.g., Roche GS-FLX, Illumina 1G analyzer, and Applied Biosystems SOLiD) which yield shorter fragments ranging from 30 bp to 350 bp [21]. As huge amount of sequencing data were produced, analysis tools have become a critical
player in data interpretation [22]. For example, when scaffolds and contigs are assigned to phylogenetically related groups, GLIMMER [23], GeneMark.hmm [24], and MetaGene [25] are widely used to identify putative coding sequences (CDSs). Subsequently, the taxonomic assignment of CDSs is performed using BLAST [26] or other homology search tools [27] with sequence databases. Recently, some advanced taxonomic assigning tools like MEGAN [28], Phymm [29], PhyloPythia [30] were published. However, the majority of the reads only contain partial coding regions. Thus, they were usually unidentified because of the limited match length. For example, in two distal gut microbiomes, approximately 40% of 139,521 high-quality reads were discarded after sequence assembly. Moreover, approximately 40% of 50,164 CDSs predicted by using the GLIMMER package were excluded from further analysis due to insignificant BLAST scores [15]. In 13 healthy Japanese individuals, 33% of 1,065,392 shotgun reads failed to assemble, and 25% of 662,548 CDSs (identified by MetaGene) were excluded from further analysis [16]. It is estimated that existing analytical methods discard approximately 30-40% of metagenomic data from Sanger approaches [11,15,16,18,19,31]. Considering the drawback, we were motivated to re-analyzed the discarded reads of metagenomes generated using Sanger sequencing.

To overcome the limitations of current binning approaches, which rely heavily on the BLAST hit score, we propose a method for assigning reads discarded by the original studies (Figure 1). The new approach combines the BLAST search scores (two or more CDSs in a read) and the concept of conserved gene adjacency. The rationale is based on the theory that genomes are shuffled, so local gene-order conservation reflects the specificity of microbial organisms [32]. For example, the conservation of the gene order in prokaryotes is known to be an important feature; hence, it has been used in function inference [33,34]. Since gene order conservation is a genomic feature that is extensively conserved between closely related species [35,36], the trend should be universal in prokaryotic genomes [37]. Furthermore, it is known that overlapping gene pairs are frequently observed in microbial chromosomes [38] and conserved across species [39] in all three transcriptional directional classes: unidirectional (→→), convergent (→←), and divergent (←→) [40,41]. Therefore, we argue that, if a genomic fragment contains two or more adjacent CDSs that are identified by BLASTX, it is reasonable to assign the sequence by using the proposed strategy, which combines two BLASTX hit scores and the adjacency of the two genes.

A recent study showed that the average gene density in prokaryotic genomes is one gene per 1,000 nucleotides [41], which is close to the sequence length yielded by whole genome shotgun sequencing. Thus, we were aware that the read length would be the limitation of this approach. In our study, we only applied the analyses to conventional Sanger reads, which have higher potential to contain adjacent gene information than NGS. We first used simulated metagenomes to estimated the ratio of discarded singletons that may contain at least two neighboring genes [42]. We found that approximately 49% of discarded singletons contained gene pairs in all three transcriptional directional classes. Subsequently, we collected data from conventional metagenome projects that were generated via Sanger sequencing, and re-analyzed the fragments that were discarded from two types of metagenomic data, 13 healthy Japanese individuals [16] and the skeletons of whale carcasses (whale fall) [18]. Two types of genomic fragments, assembled contigs and raw single reads (singletons), were analyzed separately. The results showed that between 12.9% and 31.4% of the discarded data were assigned to taxa. Furthermore, the microbial compositions using discarded data and those reported in previous studies [15,16,18] were highly consistent in the family and phylum ranks. Therefore, we conclude that the proposed metagenomic sequencing approach provide a more comprehensive overview of the functional and taxonomic content of a microbiome.

Results and Discussion

NGS technology facilitates the investigation of microbial communities. Because of the enormous number of short DNA fragments in metagenomic datasets, some bioinformatics tools, such as MEGAN [28], PhymmBL [29] and TACOA [43], have been developed for phylogenetic classification. However, current taxonomic binning methods have to discard a large number of sequences due to low homology scores. To address this problem, we developed a method that assigns discarded genomic fragments by combining the BLAST search scores and the criterion of gene adjacency. First, to assess the feasibility of our approach, we used simulated metagenomes to analyze the distribution of the number of CDSs in discarded singletons. In the simulated data sets, which had different levels of complexity [simLC, simMC and simHC, see Methods], we found that nearly half of the discarded singletons contained two or more partial CDSs (Table 1), suggesting that some of the discarded datasets could still be assigned to taxa.

Binning discarded metagenomic fragments

We used two kinds of metagenomes from whale fall samples (contigs) and healthy Japanese individuals (singletons) respectively (see Methods). Since the singletons were not available in the public domains, we repeated the assembly strategies and obtained similar datasets.
Figure 1 Overview of the proposed approach
As shown in Table 2, between 4,990 and 7,660 discarded contigs were collected from three whale fall microorganisms; and for the Japanese individuals, between 7,078 and 28,244 discarded singletons were collected after the assembly process. Under the proposed approach, between 12.9% and 14.9% of the discarded contigs in the whale fall samples were assigned to taxa. In the group of Japanese individuals, we were able to assign between 16.9% and 31.4% of the discarded singletons (see Table 3) to taxa. Based on the results, we suggest that the proposed binning strategy can be applied for re-analyzing the discarded reads of metagenomic data.

The consistency of binning with discarded fragments compared to the strategies in previous studies

To validate our approach, we compared the proposed taxonomic binning strategy using discarded datasets with the strategies in previous studies [15,16,18]. We used Pearson correlation coefficient to evaluate the similarity of the two groups. For taxonomic assignments

Table 1 Number (and ratio) of discarded singletons that did not contain any CDS and those that contain one, two and three or more CDSs in the simulated metagenomes.

Number of CDS on singleton	simLC	simMC	simHC			
	Singletons	Singletons	Singletons			
	%	%	%			
0	2575	6.2	2637	6.5	3986	6.0
1	18219	44.0	18072	44.8	29926	45.0
2	17549	42.4	16832	41.7	27874	41.9
3 or more	3081	7.4	2838	7.0	4738	7.1
Total singletons	41424	100	40379	100	66524	100

Table 2 Summary of collected metagenomic fragments.

Data type I (contigs)	Location	Position	Total contigs	Assigned Contigs	Unassigned Contigs	Average length (bp)
whale fall sub. 1	Pacific Ocean, Santa Cruz Basin (N33.30 W 119.22)	section of rib bone	35975	33139	7039	1167
whale fall sub. 2	Pacific Ocean, Santa Cruz Basin (N33.30 W 119.22)	bone	32459	32395	7660	1199
whale fall sub. 3	West Antarctic Peninsula Shelf (S65.10 W64.47)	bone	27130	26841	4990	1357

Data type II (singletons)	Sex	Age	Total reads	Assigned CDSs	Assigned Singletons	Unassigned CDSs	Unassigned Singletons	Average length (bp)
Japanese In-A	Male	45 years	76434	29247	33139	7039	1167	
Japanese In-B	Male	6 months	80617	14718	7078	1058		
Japanese In-D	Male	35 years	84237	48033	28244	1034		
Japanese In-E	Male	3 months	80852	27860	10838	1124		
Japanese In-M	Female	4 months	89340	26350	8456	1008		
Japanese In-R	Female	24 years	85787	45438	21661	998		
Japanese F1-S	Male	30 years	78452	40427	15378	1005		
Japanese F1-T	Female	28 years	81348	46487	21780	958		
Japanese F1-U	Female	7 months	82525	27332	11791	969		
Japanese F2-V	Male	37 years	80772	49411	19733	1006		
Japanese F2-W	Female	36 years	79163	42750	16961	1039		
Japanese F2-X	Male	3 years	80858	41337	19351	1040		
Japanese F2-Y	Female	1.5 years	79754	49315	20061	990		

a Genes with best hits at 30% identity or higher in Archaea and Bacteria kingdoms from JGI.
b Genes with best hits less than 30% identity in Archaea and Bacteria kingdoms from JGI.
c Phred and PCAP assembly package for Japanese samples.
d The number of predicted open-reading frames showing similarity to genes in the “in-house NR database”.

Weng et al. BMC Bioinformatics 2010, 11:565
http://www.biomedcentral.com/1471-2105/11/565
Page 4 of 10
using homology search tools, reads were assigned down to the class, order, family, and genus ranks [3,5,11,14,16,29,43]. Therefore, we separated the comparison into phylum and family ranks to describe the similarity between the original results and our binning results. We found that the results derived by our taxonomic binning strategy and those reported in previous studies were consistent. The correlation coefficients were 0.94 ± 0.03 in the phylum rank and 0.80 ± 0.11 in the family rank (Table 3). For example, the compositional view of Japanese individual F1-U showed a high degree of similarity between the two binnings (Figure 2). The correlation coefficient was 0.99 in both the phylum rank and the family rank. The consistency between the two datasets indicates that taxonomic binning using discarded data is as representative as the binning strategies used in previous studies.

To further evaluate our approach, we used 10,000 simulated singletons (simMC) for taxonomic binning to quantify the performance of our analysis. As shown in Table 4, the discarded singletons with the length of ~1 kb (Table 2) were correctly assigned with sensitivity between 36.8-25.9% and specificity between 93.3-79.0% between phylum and genus (using E-value 10^-2, hits numbers 250). The hit number is positively correlated with the sensitivity but is negatively correlated with specificity, while the E-values do not seem to affect accuracy. In comparison with same method but without considering the gene adjacency, our approach showed a slight decrease in specificity but increased in sensitivity. For example, in family and genus ranking, the sensitivity is approximately four times higher than the method that does not consider gene adjacency (Table 4). Furthermore, because of the lack of similar analysis for discarded reads, here, we referred to previous studies using whole metagenomic data. For example, in TACOA [43], which reportedly performed better than PhyloPythia [44], the average sensitivity for binning 1 kb singletons ranged from 71% in the superkingdom rank to 22% in the class rank; and the average specificity ranged from 73% in the superkingdom rank to 64% in the class rank. Although our dataset sources (discarded dataset) were different from TACOA (whole dataset), the results indicate that with suitable filters and criteria, reliable information in the discarded data can be retrieved.

It has been observed that HGT (horizontal gene transfer) occurs frequently in prokaryotes [45]. Such a mechanism of genetic variability within a species may create bias in taxonomic binning based on a traditional homology search method. However, not all genes are equally itinerant, and they do not exhibit the same HGT behavior [46,47]. Preferential HGT correlates strongly with the functions of different types of genes. For example, informational genes (those involved in transcription, translation, and related processes) are far less likely to be transferred horizontally than operational genes (e.g. housekeeping functions) because they are complex systems [46]. In genome wide studies using 116 prokaryotes [48], the authors reported 46,759 HGT events in a total of 3,245,653 ORFs, but the horizontal transfer

Table 3 Summary of reassignments using discarded metagenomic data.

Data type I (contigs)	Contigs	Re-assigned	Average length (bp)	Rate (%)	r (phylum)	r (family)
whale fall sub. 1	7039	1050	1388	14.9	0.98	0.92
whale fall sub. 2	7660	995	1295	12.9	0.98	0.77
whale fall sub. 3	4990	720	1400	14.4	0.97	0.79

Data type II (singletons)	Singletons	Re-assigned	Average length (bp)	Rate (%)	r (phylum)	r (family)
Japanese In-A	13399	3542	1074	26.4	0.95	0.85
Japanese In-B	7078	2050	1073	28.9	0.99	0.90
Japanese In-D	28244	5542	1061	16.9	0.89	0.72
Japanese In-E	10838	2888	1129	26.6	0.99	0.95
Japanese In-M	8546	2159	1057	25.2	0.93	0.86
Japanese In-R	21661	3993	1020	18.4	0.96	0.80
Japanese F1-S	15378	3216	1018	20.9	0.95	0.82
Japanese F1-T	21780	4395	971	20.1	0.93	0.59
Japanese F1-U	11791	3711	983	31.4	0.99	0.99
Japanese F2-V	19733	4007	1020	20.3	0.90	0.61
Japanese F2-W	16961	4011	1052	23.6	0.89	0.77
Japanese F2-X	19351	4402	1054	22.7	0.92	0.66
Japanese F2-Y	20061	4766	1002	23.7	0.96	0.82

The consistency between binning with discarded fragments and that in the original studies was tested by the Pearson correlation coefficient (r).
clusters (more than one gene) were relatively low (only 1,357 cases). Our approach considers the BLAST search scores and the criterion of conserved gene adjacency. Hence, the bias resulting from HGT should be relatively low compared to that of other approaches using a single hit.

Conclusions
Since a large amount of metagenomic data generated using Sanger sequencing fails to satisfy the cut-off for taxonomic binning, we introduce a criterion based on a genomic feature, namely, the conservation of gene adjacency between prokaryotes. Our analysis suggests that considering the conserved neighboring gene adjacency reduces the amount of data discarded by current methods. In fact, a latest update of MEGAN software has incorporated similar analysis for pair reads, and the assignment for LCA-gene has been improved considering the conserved adjacency [49]. In addition, we are aware that the vast majority of recent metagenomic datasets were produced by NGS technologies (e.g., Roche GS-FLX, Illumina 1G analyzer, and Applied Biosystems SOLiD), and our analysis can only be applied to datasets with longer reads, such as Sanger. Yet, Roche’s first-generation instrument, 454 GS 20 (released in 2005), yielded 100-bp reads, the latest version GS Junior System (released in 2009, Roche) already yielded demonstrably higher read lengths, exceeding 500 bp. Hopefully, the limitations of sequence length will be resolved in the near future, and our study will provide a basis for analyzing metagenomic data.

Methods
Collection of metagenomes and microbial genome sequence
Figure 1 shows an overview of our methodology. We used two kinds of metagenome samples: sunken whale skeletons (whale fall) and human distal guts. Three independent whale fall samples were collected in 2005 [18]. The assembled sequence data was downloaded from NCBI ftp://ftp.ncbi.nih.gov/genbank/wgs/ with accession numbers AAFY01000001-AAFY01028151 (whale fall 1), AAFZ01000001-AAFZ01029934 (whale fall 2), and AAGA01000001-AAGA01026232 (whale fall 3). The microbiomes of distal guts were collected from 13 healthy Japanese individuals (six individuals and
Table 4 Sensitivity and specificity of taxonomic binning at different taxonomic ranks using discarded dataset of simMC.

Criteria	Accuracy	P	O	F	G
with	1e-2	50	31.8	97.2	28.3
		150	34.9	94.5	30.8
		250	36.8	93.3	31.7
		350	37.9	92.7	32.0
	1e-4	50	29.7	97.4	27.8
		150	34.1	94.9	30.3
		250	36.0	93.7	31.4
		350	37.1	93.2	31.7
	1e-6	50	29.1	97.5	27.3
		150	33.1	94.9	29.7
		250	35.0	93.7	30.8
		350	36.2	93.2	31.3
without	1e-2	50	31.3	99.6	9.6
		150	20.0	99.7	7.3
		250	17.5	99.6	7.3
		350	16.3	99.3	7.3

Criteria considering gene adjacency and without considering gene adjacency were tested separately. P: phylum, O: order, F: family, G: genus. Sn and Sp denote sensitivity (%) and Specificity (%).

Collection of discarded genomic fragments

We analyzed two types of discarded genomic fragments: contigs that failed to meet the criteria in the original studies and singletons that were left for analysis. The discarded contigs, which were obtained from the DOE Joint Genome Institute (JGI, http://www.jgi.doe.gov/), contained genes that failed to pass the 30% BLAST identity cut-off, or they had no hits in the Archaea and Bacteria kingdoms of each microbiome.

To collect the discarded singletons, we followed the criteria considering gene adjacency and without considering gene adjacency. We randomly selected 10,000 non-redundant singletons from simMC for analysis.

Accuracy evaluation using simulated datasets

To estimate the proportion of discarded singletons that contain at least two genes from real metagenomes, we downloaded three simulated metagenomic data sets of varying complexity as benchmarks and calculated the number of CDSs in each singleton. The three simulated datasets, a low-complexity community (simLC), a moderate-complexity community (simMC) and a high-complexity community (simHC), were compiled by combining sequencing reads randomly selected from 113 genomes [42]. After assembling the simulated datasets using Phrap (v3.57), all remaining singletons were published by the Department of Energy (DOE) Joint Genome Institute. They are available through the Integrated Microbial Genome (IMG) system. In addition, we also used simMC to evaluate the performance of our taxonomic assignment method. In total, there are 15,197 contigs and 40,379 singletons that Phrap assembler failed to assemble. We randomly selected 10,000 non-redundant singletons from simMC for analysis.

Taxonomic assignment of discarded genomic fragments

To incorporate the conservation of gene order into the taxonomic classification, each discarded genomic fragment was screened for protein encoding genes via a BLASTX search against the NCBI ENTREZ Genome Project database. An expected cut-off value (E) of 10^{-5} was used to select the top 250 potential coding elements as the default settings. (We discuss the selection criteria in Accuracy evaluation using simulated datasets.)

Normally, the best hits are selected from BLAST results, but best hits do not provide information on adjacent genes. Therefore, the top 250 hits were selected instead. In our strategies, adjacent gene pair is a pair of genes that are directly next to each other in a given chromosome. Thus, each hit was grouped with its corresponding species. These hits were then compared in a pair-wise fashion in order to identify adjacent CDSs. The transcriptional direction (unidirectional (→→), convergent (→←), and divergent (←→)) of all identified adjacent CDSs should be consistent with the genomic
arrangement of reference genomes. Next, the pairs with inconsistent genomic arrangement were removed. Subsequently, among the remaining pairs, we ran the lowest common ancestor (LCA) algorithm used in MEGAN [28] to analyze the data. The source code is provided in the supplementary material (see [Additional file 1]). It requires perl and Basic Local Alignment Search Tool (BLAST) on the work station. The program has been tested by using several resources listed in Collection of discarded genomic fragments and in Collection of simulated datasets.

Comparison of binning discarded fragments in the proposed approach and the original studies

To assess the consistency of binning results using the discarded dataset and the binning results reported in original studies, we compared the quantitative contribution of microorganisms in discarded data set and original data set. Contigs and singletons were performed separately. Because the phylogenetic taxonomies constructed by the NR database (used in previous studies) and the NCBI ENTREZ Genome Project database (used in our study) were not consistent, we selected 22 phyla and 166 families that were consistent in both databases to estimate the similarity of the binning results (see [Additional file 2]). To quantify the similarity, we calculated Pearson correlation coefficient. We found that, in each environment, the taxonomic binning was dominated by a limited number of phylotypes; and the remaining phylotypes only made a small contribution. To avoid over-estimation resulting from the latter, all phylotypes less than five were combined before calculating Pearson correlation coefficient in both datasets.

Accuracy evaluation using simulated datasets

The selection of appropriate criteria may have a critical effect on our system’s performance. In Table 4, the relationships between the criteria (E-value threshold (10⁻², 10⁻⁴, and 10⁻⁶) and BLAST hits numbers (50, 150, 250 and 350)) and the accuracy of our system were evaluated using a simulated discarded dataset. Twelve combinations (3 E-values * 4 BLAST hits numbers) were tested for the performance evaluation.

Taxonomic reassignment for simulated data was evaluated by comparing the assignments made by our method to those of the real corresponding taxa in different taxonomic ranks (i.e., species, genus, family, order, class, phylum and superkingdom). In this study, we employed the adapted definition of sensitivity and specificity [43, 53]. The accuracy was evaluated for each taxonomic class. Let the i-th taxonomic class of taxonomic rank r be denoted as class i. The true positives (TPi) are defined as the number of genomic fragments correctly assigned to class i; the false positives (FPi) are defined as the number of fragments from any class j ≠ i that is wrongly assigned as i. The false negatives (FNi) are defined as the number of fragments from class i that is erroneously assigned to any other class j ≠ i. For a genomic fragment whose taxonomic class cannot be inferred, the algorithm classifies it as “unclassified”. The unclassified (Ui) are the numbers of fragments from class i that cannot be assigned to a taxonomic class.

The sensitivity (Sn) for a taxonomic class i is defined as the percentage of fragments from class i correctly classified. It is computed by:

\[Sn_i = \frac{TP_i}{TP_i + FN_i + Ui} \]

The reliability (expressed in percentage) of the predictions made by the classifier for class i is denoted as specificity (Sp). It is measured using the following equation:

\[Sp_i = \frac{TP_i}{TP_i + FP_i} \]

To select appropriate E-value threshold, the data in Table 4 were examined. Since the results indicated that the E-values do not affect the performance of taxonomic binning, we selected a loose criterion (E-value 10⁻⁵) as default. The hit number is positively correlated with the sensitivity but is negatively correlated with specificity. (Table 4), the hit number 250 was selected as default considering the sensitivity, specificity and also the runtime required.

Additional material

Additional file 1: Reassignment_using_gene_adjacency.pl. Perl script for reassignment using gene adjacency.

Additional file 2: Supplemental Table S1. The phylotypes used to estimate the binning similarity.

Acknowledgements

We wish to thank the reviewers for their valuable comments and suggestions, which helped us to improve our analysis. This work was supported by the National Science Council of Taiwan under grants NSC99-2621-B-001-005-MY2, NSC99-2627-B-001-005-MY3 to DW, and grant NSC98-2221-E-001-015, NSC98-2627-B-001-003 to HKT.

Author details

1Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan. 2Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan. 3Research Center for Information Technology Innovation, Academia Sinica, Taipei, 115, Taiwan. 4Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 106, Taiwan.

Authors’ contributions

DW and HKT formulated the studies, participated in the experiment design, and drafted the manuscript. FCHW participated in the program design of.
the study and helped draft the manuscript. CHS, MTH and TYW collected the data and performed the statistical analysis. All the authors read and approved the final manuscript.

Received: 24 December 2009 Accepted: 18 November 2010
Published: 18 November 2010

References

1. Veite JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M. Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 2009, 33(1):236-255.

2. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, et al. Metagenomic approaches in systems microbiology. FEMS Microbiol Rev 2009, 33(1):236-255.

3. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Large gene overlaps in prokaryotic bacterial genomes. Genomics 1999, 59(1):169-181.

4. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, et al. The next meta-challenge for Bioinformatics. Nucleic Acids Res 2008, 36(7):2267-2269.

5. Soergel DA, Zhai Y, Natarajan K, Lee S, Raphael BJ, Bafna V, Friedman R, et al. Improved microbial genome identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.

6. Bork P, Konin E. Predicting functions from protein sequences–where are the bottlenecks? Nat Genet 1998, 18(4):313-318.

7. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, et al. Comparative Metagenomics of Microbial Communities. Annu Rev Genet 2008, 42:554-577.

8. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, et al. Improved microbial genome identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.

9. Martin HG, Tettelin H, Rossello-Mora R, Parsek MR, Koonin EV. The Bacterial Species Definition Challenge: Making Sense of Genetic and Ecological Diversity. Science 2007, 315(5818):1126-1130.

10. McHardy AC, Martin HG, Tettelin H, Rossello-Mora R, Parsek MR, Koonin EV. The Bacterial Species Definition Challenge: Making Sense of Genetic and Ecological Diversity. Science 2007, 315(5818):1126-1130.

11. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. Improved microbial genome identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.

12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.

13. Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981, 147(1):195-197.

14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.

15. Pearson WR. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Meth 2007, 4(6):495-500.

16. Krause L, Diaz NN, Goesmann A, Nattkemper TW, Rohwer F, et al. The next meta-challenge for Bioinformatics. Nucleic Acids Res 2008, 36(7):2267-2269.

17. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genomic shotgun sequences. Nucleic Acids Res 2006, 34(19):5623-5630.

18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.

19. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biol 2007, 5(3):e16.

20. Chao A. Non-parametric estimation of the number of classes in a population. Scand J Statist 1984, 11:265-270.

21. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genomic shotgun sequences. Nucleic Acids Res 2006, 34(19):5623-5630.

22. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990, 215(3):403-410.

23. Feuk L, Carson AR, Pai DA. Structure variation discovery in the genome of individual humans. Nat Genet 2006, 38(9):919-926.

24. Porat S, Sitt A, Baron-Mahler M, Ofek E, Lichtenstein A, Friedberg H, et al. The bulk and diversity of the human gut microbiota. Proc Natl Acad Sci USA 2007, 104(25):10816-10821.

25. Hugenholtz P, Tyson GW. Describing the diversity of uncultured microorganisms using analysis of 16S rRNA gene sequences. Annu Rev Genet 2000, 34(1):371-396.

26. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

27. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

28. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

29. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

30. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

31. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

32. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

33. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

34. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

35. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

36. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

37. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

38. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

39. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

40. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

41. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

42. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

43. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

44. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.

45. Culley FJ, processing of shotgun Fragments. Trends in Genetics 2003, 19(9):462-468.
46. Jain R, Rivera MC, Lake JA: Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 1999, 96(7):3801-3806.
47. Zhaxybayeva O, Lapierre P, Gogarten JP: Genome mosaicism and organismal lineages. Trends Genet 2004, 20(5):254-260.
48. Nakamura Y, Ishi T, Matsuda H, Gojobori T: Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 2004, 36(7):760-766.
49. Mitra S, Schubach M, Huson DH: Short clones or long clones? A simulation study on the use of paired reads in metagenomics. BMC Bioinformatics 2010, 11(Suppl 1):S12.
50. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8(3):186-194.
51. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 1998, 8(3):175-185.
52. Huang X, Wang J, Aluru S, Yang SP, Hillier L: PCAP: a whole-genome assembly program. Genome Res 2003, 13(9):2164-2170.
53. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000, 16(5):412-424.

Cite this article as: Weng et al.: Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency. BMC Bioinformatics 2010 11:565.