Sex Differences in Severity and Mortality Among Patients With COVID-19: Evidence from Pooled Literature Analysis and Insights from Integrated Bioinformatic Analysis

Xiyi Wei¹,²,#, Yu-Tian Xiao¹,#, Jian Wang¹,³,⁶,#, Rui Chen¹,#, Wei Zhang¹,#, Yue Yang¹, Daojun Lv⁴, Chao Qin², Di Gu¹, Bo Zhang⁵, Weidong Chen⁵, Jianquan Hou³, Ninghong Song², Guohua Zeng⁴, Shancheng Ren¹,*

Author Affiliations:
1. Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
2. Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
3. Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, Jiangsu 215006, China.
4. Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Shanghai, China.
5. NovelBio Bio-Pharm Technology Co., Ltd., Shanghai, China.
6. Department of Urology, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.

These authors contributed equally.

* Correspondence:
Shancheng Ren, MD, PhD.
Department of Urology, Shanghai Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai 200433, Shanghai, China.
Email: renshancheng@gmail.com
Abstract

Importance:

There are reports that a sex disparity exists in outcomes in patients with COVID-19, with men having more severe cases and higher mortality than women.

Objective:

To conduct a meta-analysis of current studies that examined sex differences in severity and mortality in patients with COVID-19, and identify potential mechanisms underpinning these differences.

Methods:

We performed a systematic review to collate data from observational studies examining associations of sex differences with clinical outcomes of COVID-19. PubMed, Web of Science and four preprint servers were searched for relevant studies. Data were extracted and analyzed using meta-analysis where possible, with summary data presented otherwise. Publicly available bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data were analyzed to explore the potential mechanisms underlying the observed association.

Results:

39 studies met inclusion criteria, representing 77932 patients, of which 41510 (53.3%) were males. Men were at a markedly increased risk of developing severe cases compared with women (OR = 1.63; 95% CI = 1.28-2.06). Furthermore, the pooled odds ratio (OR) of mortality for male group compared with the female group indicated significant higher mortality rate for male (OR = 1.71; 95% CI = 1.51-1.93). Subgroup analyses suggested that in patients with average age > 50 yr, the male had significantly higher severity rate than female (OR = 1.94; 95% CI = 1.16-3.26). However, in patients with average age < 50 yr, the male group only exhibited a
marginally increased severity rate compared with the female group (OR = 1.45; 95% CI = 1.07-1.96). Data from scRNA-seq suggest that men have a higher amount of ACE2-expressing pulmonary alveolar type II cells than women. Sex-based immunological differences exist, with cytokines associated with cytokine release syndrome preferentially expressed in men, and those associated with defense and recovery from viral infection preferentially expressed in women. ScRNA-seq data of the prostate and testis revealed that these two organs might be potential targets for SARS-CoV-2 infection in the male population. The expression of androgen receptor (AR) is positively correlated with ACE2, and there is evidence that AR may directly regulate the expression of ACE2.

Conclusions:

This meta-analysis detected an increased severity and mortality rate in the male populations with COVID-19, which might be attributable to the sex-based differences in cellular compositions and immunological microenvironments of the lung. The host cell receptor ACE2 is likely regulated by AR signaling pathway, which is identified as a potential target for prevention and treatment of SARS-Cov-2 infections in men.

Keywords

COVID-19, AR, ACE2, single-cell, sex difference, morbidity, severity, mortality.
Introduction

Coronavirus disease 2019 (COVID-19), ascribed to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an emerging outbreak globally since December 2019. The management of COVID-19 has become a current emergency public health event, which has attracted increasing attention. Early recognition, testing and isolation are the effective response to curb transmissions.\(^1\,^2\) Health security capacities improving, global collaboration in relation to COVID-19 and current travel restrictions are necessary for global epidemic control.\(^3\,^4\) Around 6.4-24.9% of patients infected with SARS-CoV-2 may progress to severe and even fatal acute respiratory distress syndrome (ARDS), 5-26.1% of patients need treatment in the intensive care unit (ICU), and the fatality rate of patients can reach 1.4-7.2%.\(^5\,^8\) Older age, higher Sequential Organ Failure Assessment (SOFA) score, chronic comorbidities were the risk factors associated with the patients of the 2019-nCoV infection\(^9\,^{10}\). However, whether the sex difference is related to the risk factors for infection, severity, and mortality of COVID-19 is still lacking a comprehensive analysis based on the integration of new studies.\(^11\)

Although some cases report support for sex differences to be associated with the onset and prognosis of COVID-19 pneumonia,\(^12\) some studies do not support this observation. The Chinese Center for Disease Control and Prevention reports on 44672 confirmed cases showing that sex differences may be a risk factor for mortality, but there is no sex differences in morbidity.\(^7\) Even more confirmed cases of female than male in South Korea are reported by the Korean Society of Infectious Diseases.\(^13\) Therefore, a meta-analysis was performed to reveal the correlation between sex differences and the prevalence, severity and mortality of COVID-19 pneumonia. ACE2 as a receptor of SARS-CoV and spike protein can be primed by TMPRSS2 are exploited to entry into target cells, which play an vital role in coronavirus pneumonia infection.\(^14\) We also performed an integrated bioinformatic analysis, leveraging data from bulk microarray, bulk RNA sequencing (RNA-seq), single-cell tRNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq)
to provide valuable clues of possible underlying mechanism.

Materials and Methods

Systematic review and Meta-analysis

Search Strategy and Selection Criteria

Two of the investigators (W.X. and W.J.) independently retrieved relevant literature from the databases including PubMed, Web of Science, bioRxiv and MedRxiv preprint servers from inception to March 19, 2020. We searched studies with no language restrictions to analyze the association between sex difference with prevalence, severity and mortality of the patients with the 2019-nCoV infection. Keywords and relative variant search terms were utilized as follows: SARS-CoV-2 and COVID-19. These terms were combined with "AND" or "OR". We first reviewed the titles and abstracts of the retrieved citations (excluding conference abstracts and critical articles), and then evaluated the eligibility for inclusion of the full text that was deemed pertinent.

We searched the literature on cases of the 2019-nCoV infection reported in different countries since December 2019. We excluded studies that may overlap based on the relative information reported in the studies, such as the time of patient data collection, hospital units and departments. We uniformity defined ICU patients, ARDS patients, severe patients and critical patients as severe group in our study.

Inclusion criteria should comply with the following: 1) observational studies that involved patients with the 2019-nCoV infection had a detailed description of the sex ratio, number of severe or dead patients; 2) studies with the most reported cases if data overlap with another document. Exclusion Criteria: 1) studies that did not provide available full text; 2) studies not reported separately for gender or no desired data; 3) data overlapping.
Data Extraction and Quality Assessment

Two investigators extracted independently the data from eligible studies. Any discrepancy was resolved by consensus. The following information was abstracted: the last name of the first author; date of manuscript acceptance or publication; date of patient collection; total patients in the study; number of male participants, number of female participants; number of severe cases; number of severe male cases; number of severe female cases; number of cases with comorbidities; number of deaths; number of male deaths; number of female deaths and smoking history.

We evaluated potential sources of bias in included studies using the appraisal tool to assess the quality of cross-sectional studies (AXIS) (Supplementary Table S1).\(^{15}\)

Pooled Analysis

The data of individual studies were summarized. We attempted to perform analysis of sex difference predisposition of incidence, severity, and mortality in patients COVID-19. Subgroup analyses of sex differences predisposition of severity were also carried out according to the average age of patients in included studies. Meta-analysis was undertaken with Stata v12.0 (Stata Corporation, College Station, TX, USA) software, the results of which were presented in forest plots. Heterogeneity among studies were estimated using fixed-effects and random-effects models, which was reported using the Cochrane’s Q-test\(^ {16}\) and the inconsistency index value (I\(^ 2\))\(^ {17}\). Funnel plots and Egger test were used to assess for publication bias and small study effects. All hypothesis tests were two-tailed. P < 0.05 was considered statistically significant.

For any outcome measurement that is otherwise not meta-analyzable, we presented an albatross plot,\(^ {18}\) which is a novel graphical tool for presenting results from studies, allowing an approximation of underlying effect sizes and the potential identification of heterogeneity sources across studies. The albatross plots were constructed using Stata v14.0 (Stata Corporation, College Station, TX, USA).
Bioinformatic Analyses

Single-cell RNA Sequencing Analysis Pipeline

Single-cell RNA Sequencing (scRNA-seq) data analysis was performed by NovelBio Bio-Pharm Technology Co., Ltd. with NovelBrain Cloud Analysis Platform. We applied fastp\(^1\) with default parameter filtering the adaptor sequence and removed the low quality reads to achieve the clean data based on the GSO datasets (Normal Prostate: GSE117403 and Normal Lung tissue: GSE122960). We downloaded the aggregated matrix. Cells contained over 200 expressed genes and mitochondria UMI rate below 20% passed the cell quality filtering and mitochondria genes were removed in the expression table.

Seurat package (version: 2.3.4, https://satijalab.org/seurat/) was used for cell normalization and regression based on the expression table according to the UMI counts of each sample and percent of mitochondria rate to obtain the scaled data. PCA was constructed based on the scaled data with top 2000 high variable genes and top 10 principals of 20 PCs were used for tSNE construction and UMAP construction. Utilizing graph-based cluster method, we acquired the unsupervised cell cluster result based the PCA top 10 principal and we calculated the marker genes by FindAllMarkers function with wilcox rank sum test algorithm under following criteria: 1. lnFC > 0.25; 2. P value < 0.05; 3. min.pct > 0.1.

The corresponding websites for the datasets, if available, were used for downloading figures for visualization of scRNA-seq data of normal human tissues of the prostate (https://strandlab.net/) and the testis (https://humantestisatlas.shinyapps.io/humantestisatlas1/).

Cell Communication Analysis.

To enable a systematic analysis of cell–cell communication molecules, we applied cell communication analysis based on the CellPhoneDB,\(^2\),\(^3\) a public repository of ligands, receptors and their interactions. Membrane, secreted and peripheral proteins of the cluster of different time point was annotated. Significant
mean and Cell Communication significance (p value<0.05) was calculated based on the interaction and the normalized cell matrix achieved by Seurat Normalization.

Differential Gene Expression Analysis

To identify differentially expressed genes among samples, the function `FindMarkers` with wilcoxon rank sum test algorithm was used under following criteria: 1. \(\ln(FC) > 0.25 \); 2. \(P \text{ value}<0.05 \); 3. \(\text{min.pct}>0.1 \). Volcano plot was constructed by the R package “ggplot2”.

Co-regulation Network Analysis

To discover the gene co-regulation network, `find_gene_modules` function of `monocle3` was used with the default parameters.

GO analysis

Gene ontology (GO) analysis was performed to elucidate the biological functions or processes of the differentially expressed gene in the experiment.\(^{23}\) GO annotations were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/), UniProt (http://www.uniprot.org/) and the Gene Ontology website (http://www.geneontology.org/). Fisher’s exact test was utilized to identify the significant GO categories and q-values were calculated for false discovery rate control.

Pathway Analysis

KEGG database was used to figure out the significant pathways enriched. Fisher’s exact test was utilized to select the significant pathway, and the threshold of significance was defined by FDR cutoff values.\(^{24}\)

Bulk Microarray/RNA-seq Data Analysis

Microarray data available from public repositories were accessed from GSE5901 and GSE 56188 using the R package “GEOquery”. Gene expression analysis and
visualization were performed using custom R codes. Correlation between genes were analyzed using the publicly available TCGA datasets at the TIMER 2.0 website (http://timer.cistrome.org/).25

ChIP-seq analysis

ChIP-seq data from the ENCODE project26 were analyzed using the WashU EpiGenome Browser.27 Human tissue samples or standard cell lines with both AR ChIP-seq data and histone mark ChIP-seq data available were selected.

Results

Study Selection and Characteristics

We recorded the selection process and completed a PRISMA flow diagram (Figure 1). From a total of 1561 records identified and screened by abstract and title, 108 articles were selected for full-text assessment. Among these, 69 were excluded due to lack of gender distinction or overlapping data. Thirty-nine studies, published between February 7, 2020 and March 17, 2020, were finally filtered for qualitative analysis and quantitative meta-analysis, thirty-four from China and five from other countries (Table 1), including a total of 77932 patients with an approximate average age of 61.04. Most studies were retrospective study, and ten were descriptive case series. The comprehensive characteristics of patients subsumed are displayed in Table 1, including gender ratio, severe cases, smoking history, death cases and comorbidity information. Three variables were analyzed for the meta-analysis in our systematic review.

Meta-analysis results

The comprehensive results of our meta-analysis are presented in Figure 2, Table 2, Table 3 and Table 4. Thirty-nine studies involving 77932 patients were assessed in the comparison of the sex differences in patient composition. Part of the reported cases
are concentrated in Wuhan, China, but from different hospitals. Overall, male accounted for 53.3% of all patients and female accounted for 46.7% (41510, 36408 respectively). Among the patients included, the number of males was higher than that of females (39 studies; 77932 patients; Odds = 1.12), especially in the Chinese population (34 studies; 50488 patients; Odds = 1.13). Because the sex-specific numbers of the general population in the investigated areas are typically not provided, a meta-analysis for sex-specific incidence or morbidity is not feasible. We therefore provided an albatross plot for visualization of the comparison of the male proportion in each study with 0.5 (Figure 2A). It can be observed from the albatross plot that studies with large sample sizes and low p values tend to report a male proportion over 0.5. Twenty-one studies (3905 patients) reported the severe cases according to the setting standards mentioned above. Regarding the severe case rate (Figure 2B), the male group exhibited a prominently increased severity rate compared with the female group (21 studies; 3905 patients; OR = 1.63; 95% CI = 1.28-2.06, P=0.000). Subgroup meta-analysis suggested that in patients with average age > 50 yr, the male had significantly higher severity rate than female (OR = 1.94; 95% CI = 1.16-3.26, P=0.000). However, in patients with average age < 50 yr, the male group only exhibited a marginally increased severity rate compared with the female group (OR = 1.45; 95% CI = 1.07-1.96, P=0.006, Figure 2C). A total of 8 studies included information of smoking history with available information about percentage of severe cases. With the percentage of positive smoking history ranged from 5.6% to 23.3%. A total of only 252 cases with smoking history were reported against the study outcome. We consider it would be inappropriate to pool the results for stratified analysis based on the limited cases. In the 39 studies mentioned above, a total of 8 studies (50936 patients) provided mortality information. The pooled estimate of OR of mortality for male group compared with the female group indicated significant survival risk for male (8 studies; 49869 patients; OR = 1.71; 95% CI = 1.51-1.93, P=0.000) (Figure 2D).
Heterogeneity, Publication bias and Sensitivity analysis

Regarding the severity and mortality, moderate heterogeneity was observed ($I^2=40.9\%$, $I^2=0.0\%$ respectively). However, heterogeneity increased when analysis of patients’ sex composition was conducted (overall $I^2=95.8\%$, China subgroup $I^2=57.2\%$). Supplementary Figure S1A and S1B indicate that no significant publication bias for the gender composition and severe rate analysis was observed, which was confirmed by Eggers test (Table S2) ($p=0.777$, $P = 0.055$, respectively). In addition, there was no published bias for mortality analysis (Supplementary Figure S1C) (Egger’s test: $P = 0.376$). The influence of each study on the combined results was detected by sensitivity analysis. Table S3 and Table S4 show that no individual study significantly affected the combined OR.

Identification of Sex-Based Differential Gene Expression

To explore the molecular aspects of the potential sex-based physiological and immunological differences, we first analyzed a published human lung tissue scRNA-seq datasets. After data processing and quality control procedures, transcriptomic profiles for 43358 cells from human lung samples were acquired (Figure 3A).

We identified 19 clusters using graph-based clustering method. Based on marker gene expression, a total of 10 cell types were identified, including pulmonary alveolar type I (AT1) cells, AT2 cells, ciliated & goblet cells, endothelial cells, Fibroblasts, Macrophages, monocytes, plasma cells, and T cells. Comparison of the abundance of different cell types in male and female lung tissues was presented in Figure 3B. Most cell fractions do not differ greatly between tissues of male and female origins, except for plasma cells which are preferably enriched in female samples. Given the comparable percentages of total AT2 cells, men have a significantly higher percentage of ACE2-expressing AT2 cells. Feature plot also revealed a higher level of ACE2 expression in male lung tissue, especially in AT2 cells (Figure 3C). We performed a co-expression network analysis in the cells from male samples and discovered that, among others, androgen receptor (AR) exhibited a co-expression pattern with ACE2.
To further elucidate the role of sex-based impact on ACE2 expression and downstream effects, differential expression analysis was performed between ACE-expressing cells of male and female origins (Figure 4A). We discovered that the down-regulated genes in the male populations were enriched in pathways related to viral infections and immune response (Figure 4B). Intercellular communication analysis using CellPhoneDB revealed an active state of ACE-expressing AT2 cells, with ACE2 functioning both as a receptor and a ligand (Supplementary Figure S2). As cytokines are essential regulators of infection and immune response, we focused on the differential sex-based differential expression patterns on cytokines (Figure 4C). We discovered that IL6ST, a receptor of IL6, is expressed both in male and female population, with an average expression higher in male populations. Pro-inflammatory cytokines and chemokines, including CCL14, CCL23, IL7, IL16, and IL18, are also preferentially expressed in men, underlying the higher susceptibility of men developing cytokine release syndrome. TNFSF13B, which has been shown to be associated with the progression of chronic obstructive pulmonary disease (COPD) and pneumonia, is highly expressed in the monocyte-macrophage lineages of men. In contrast, cytokines with reported protective effects against viral infections, including CCL2, CCL3, and CCL4, are highly expressed in women.

In addition, we looked at scRNA-seq data of tissues from normal, male-specific organs including prostate and testis (Supplementary Figure S3-4). Two independent scRNA-seq datasets of the healthy human prostate tissues demonstrated that ACE2 is expressed in most prostate epithelial cell clusters, pericytes, and fibroblasts. scRNA-seq datasets of the testis revealed that ACE2 is preferentially expressed in Leydig and Sertoli cells. These data have provided evidence that prostate and testis could be potential targets for SARS-CoV-2 infection in men.
Androgen receptor positively regulates ACE2 and TMPRSS2

Previous reports have highlighted the role of ACE2 and TMPRSS2 as dependencies for SARS-CoV-2 cell entry.14 The role of AR acting as a transcription factor to activate the expression of TMPRSS2 has already been studied extensively in the context of various malignancies. We hypothesized that AR could also directly regulate ACE2 expression. At the single-cell level, we found a positive correlation between TMPRSS2 and ACE2 expression (Figure 5A, Pearson correlation coefficient $r = 0.713$). To verify this expression pattern across the spectrum of human tissues, we tested the correlation of expression level of AR and ACE2/TMPRSS2 in the TCGA PANCAN dataset (Figure 5B). We found that expression of ACE2 and TMPRSS2 is positively correlated with AR, irrespective of tissue types. We then utilized publicly available microarray datasets to investigate the impact of chemical or surgical castration, which lowers the level of androgens, on the expression level of these two genes. Unsurprisingly, both \textit{in vitro} and \textit{in vivo} studies (Figure 5C-D) demonstrated that castration leads to the decline of ACE2 and TMPRSS2, which could be reversed through androgen supplementation. To understand the mechanism underpinning the positive correlation between AR and ACE2, we analyzed publicly available ChIP-seq datasets and found that, around 4000 bp upstream of ACE2 transcription start site (TSS), there is overlap between AR ChIP-seq peaks and H3K4me1/H3K27ac ChIP-seq peaks (Supplementary Figure S5-6), indicating that AR likely binds to the enhancer regions and promotes the expression of ACE2.

Discussion

In recent months, SARS-CoV-2 quickly becomes a serious public health issue worldwide.59-62 COVID-19 is a species of coronavirus family, which is homologous with the SARS virus and MERS virus, causing diseases ranging from common cold to severe pneumonia.63,64 However, the knowledge of the COVID-19 remains poorly
understood. Altogether, the disease could be divided into four clinical types, including mild, moderate, severe and critical pneumonia. Recently, the epidemiology and clinical features of patients with COVID-19 have been widely reported. However, few studies have focused on the sex differences in the prevalence, severity and death of COVID-19.

This study is the first meta-analysis to appraise the role of gender in the incidence rate, morbidity and mortality of SARS-CoV-2 infection. Our pooled results demonstrated that gender played a prone role in COVID-19 infection. Concretely, male patients exhibited higher morbidity, incidence of severe disease and mortality compared with female patients. Of the 77,992 patients with COVID-19 included in our study, 53.3% were men, indicating that men were more likely to be infected with sars-cov-2 than women. Unanimously, in the analysis of 1755 SARS cases by Karlberg et al. the mortality rate of men was significantly higher than that of women (21.9% vs 13.2%, P < 0.0001). Leung et al. showed that in SARS patients, men were more likely to experience adverse events. It is worth noting that there is no clear evidence of sex differences in the prognosis of influenza. The sex differences of morbidity and prognosis is believed as a characteristic of coronavirus infection. In addition, we discovered that male patients with age > 50 yr were associated with a greater risk of progressing to severe cases or ICU cases. Interestingly, the epidemiological data from the 2002-2003 SARS epidemic and recent MERS also indicated that there might be sex and age-dependent differences in disease outcomes. According to the epidemiology analysis of SARS in the 2003 Hong Kong epidemic, both increasing age and male sex were associated with a greater risk for death. Channappanavar et al. infected mice with SARS-CoV and demonstrated that male mice were more susceptible to SARS-CoV infection compared to age matched females. Furthermore, the degree of sex-bias to SARS-CoV infection in middle-aged mice was more pronounced compared to young mice. Together, these data suggested that older male patients with COVID-19 should get more attention and prepared for ICU treatment when they were still mild cases.

The specific mechanism of sex differences is not clear. Some studies have shown
that different outcomes between males and females may pertain to the possibility that estrogen protects women from worse clinical outcomes during SARS-CoV infection.67,73 In a risk factor analysis of patients with COVID-19, smoking history was identified as a risk factor for disease progression.43 It was illustrated that the expression of ACE2 is significantly higher in the lungs of smokers, which might be the reason for higher percentage of severe cases in smokers. Notably, the smoking rate of men is typically much higher than that of women.12 This seems to explain the results theoretically, however, there was only a small proportion of cases with smoking history and thus the influence of smoking on sexual differences seems to be weak. Another possible explanation is the different levels of ACE2 expression. Current results show that SARS-CoV-2 enter into cells through ACE2, and the receptor binding domain of SARS-CoV-2 S and SARS-CoV possess homologous affinity to ACE2.74 Research has shown that Compared with SARS-CoV, the receptor binding domain of SARS-CoV-2 has a higher binding force to ACE2 than that of SARS-CoV-2.75 Anterior studies have reported that the high expression of ACE2 receptor in idiosyncratic organs of SARS patients pertains to the corresponding specific organ failure.76,77 It should be noted that the ACE2 gene is pitched on the X chromosome. Studies have shown that men had higher levels of circulating ACE2 than women and patients with diabetes or cardiovascular disease.78 Therefore, due to the high expression of ACE2, male patients may be more likely to develop severe symptoms and die of SARS-CoV-2. In addition to that, spike protein promotes the attachment and entry of coronavirus into target cells by binding to its cellular receptor.79 Recent studies have confirmed that in COVID-19, SARS-CoV-2 also relies on the priming of spike protein by TMPRSS2 to enter target cells. Inhibitors of TMPRSS2, as a clinical option, can block virus entry.14 However, the mechanisms need further elucidation.

In our study, single-cell transcriptomic profiling of human lung tissue samples revealed that ACE2 expression is higher in male lung tissue than in female, and that AR is co-expressed with ACE2/TMPRSS2. It is worth mentioning that androgen expression is significantly higher in men than women. This is consistent with our
findings that COVID-19 has a higher incidence severity and mortality in men. We speculate that AR may be one of the important factors causing gender differences in COVID-19. Our further integrated bioinformatic analysis revealed that in LNCaP prostate cancer cell line, the expression of ACE2 and TMPRSS2 decreased significantly after treatment with the AR inhibitor bicalutamide. Similarly, in the prostate of castrated mice, the expression of ACE2 and TMPRSS2 decreased significantly, and their expression was up-regulated after supplementation with androgen. These evidences suggest that anti-AR may be a new strategy for treating males with SARS-CoV-2 infection. However, further research is needed to confirm this speculation.

A great quantity of patients with severe COVID-19 infection have experienced cytokine release syndromes, or “cytokine storms”.60 Previous cases of infectious diseases such as SARS, Middle East respiratory syndrome and Ebola virus infections have also demonstrated that cytokine storms can trigger the immune system to attack the body violently, which is a momentous cause of acute respiratory distress syndrome and multiple organ failure.80-82 A previous study demonstrated that there was a positive correlation between the severity of pneumonia and the cytokine storm and inflammatory response caused by intravascular virus.83,84 IL-6 is the main proinflammatory factor causing cytokine storm, which can significantly damage organ function, as well as IL-7, IL-16 and IL-18.45,85,86 Our study observed that the expression levels of IL-6ST, IL-7, IL-16 and IL-18 in male were significantly higher than that in female. These findings and observations may help to explain why the risk of severe events in male is strikingly higher than in female.

Our data revealed that CCL14, CCL21, and CCL23 (important pro-inflammatory factors) have increased expression in the lungs of male patients with COVID-19, which may promote COVID-19-related cytokine storms. In flu disease, type I interferon-mediated production of the CCL2 recruits inflammatory dendritic cells (IDCs) to the tracheal epithelium, which is conducive to virus control.87 Previous studies have shown that CCL3, CCL4 can inhibit HIV-1 from entering CD4 T cells and play a protective role.88 CXCL16, mainly located in the respiratory epithelium, is
a ligand for CXCR6 playing an important role in homeostasis of Resident memory T cells in the respiratory tract. In our study, the expressions of CCL2, CCL3, CCL4, and CXCL16 were lower in male patients than female patients, which may aggravate the condition of male COVID-19 patients to a certain extent. BAFF (gene name Tnfsf13b) is closely related to B-cell activation and adaptive humoral immune response. BAFF is elevated in lung tissue of COPD patients and can cause lung inflammation and injury. Therefore, our data show that BAFF expression is increased in male COVID-19 patients, which may worsen the condition.

Admittedly, there remain certain shortages in our systematic review. First of all, only thirty-nine studies were incorporated which focused on the morbidity, severity and mortality of COVID-19 infection. These studies are mostly from China. Up to March 28, 2020, more than 600,000 cases have been reported worldwide. Most of aforementioned cases have not been covered and published in the available studies. With an intensified body of case studies being reported, more large population and superior quality studies could be embedded to consolidate our findings. Secondly, our systematic review was consisted of 39 individual studies with various contexts, which may induce insufficient statistical availability and dispersive results to a lesser extent. Third, in rare cases, there is no way to determine which reports are repeated. there may be some overlap in patients among different studies, especially most of the included Chinese studies were summarized in the national report. However, in the sensitivity analysis, the results were still consistent after omitting the Chinese national report in the analysis (Figure 4A). As for the heterogeneity of gender composition analysis, it may be attributed to a different baseline ratio of male and female in each region.

There may be sex differences in the susceptibility and diseases progression of patients with COVID-19. The clinical symptoms of male are more serious than those of women, and the outcome of hospitalization is less favorable. From the results of integrated bioinformatic analyses, it can be postulated that androgen deprivation therapy, frequently adopted in the treatment of prostate cancer, could potentially exert a protective and therapeutic effect against the coronavirus. Nevertheless, the findings
of the study should be interpreted with caution. Large population-based studies are needed to verify these findings.

Acknowledgments

Funding:
This research is partially funded by National Natural Science Foundation (81872105 to S.R.) and National Major R&D Program (2017YFC0908002 to S.R.)

Conflicts of Interest:
Z.B. and C.W. are co-founders of NovelBio Bio-Pharm Technology Co., Ltd. The other authors have no conflicts of interest to disclose.

Ethical Statement:
The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.
Reference

1. Niud Y, Xu F. Deciphering the power of isolation in controlling COVID-19 outbreaks. *Lancet Glob Health* 2020; 8(4): e452-e3.
2. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. *Intensive Care Med* 2020.
3. Kandel N, Chungong S, Omaar A, Xing J. Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. *Lancet* 2020.
4. Chinazzi M, Davis JT, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. *Science* 2020.
5. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. *JAMA* 2020.
6. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in Italy. *JAMA* 2020.
7. Novel Coronavirus Pneumonia Emergency Response Epidemiology T. [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China]. *Zhonghua Liu Xing Bing Xue Za Zhi* 2020; 41(2): 145-51.
8. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. *N Engl J Med* 2020.
9. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. *JAMA Intern Med* 2020.
10. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* 2020.
11. Wenham C, Smith J, Morgan R, Gender, Group C-W. COVID-19: the gendered impacts of the outbreak. *Lancet* 2020; 395(10227): 846-8.
12. Cai H. Sex difference and smoking predisposition in patients with COVID-19. *Lancet Respir Med* 2020.
13. Korean Society of Infectious D, Korean Society of Pediatric Infectious D, Korean Society of E, et al. Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. *J Korean Med Sci* 2020; 35(10): e112.
14. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. *Cell* 2020.
15. Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). *BMJ Open* 2016; 6(12): e011458.
16. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. *Ann Intern Med* 1997; **127**(9): 820-6.

17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; **327**(7414): 557-60.

18. Harrison S, Jones HE, Martin RM, Lewis SJ, Higgins JPT. The albatross plot: A novel graphical tool for presenting results of diversely reported studies in a systematic review. *Res Synth Methods* 2017; **8**(3): 281-9.

19. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* 2018; **34**(17): i884-i90.

20. Vento-Tormo R, Efremova M, Botting RA, et al. Single-cell reconstruction of the early maternal-fetal interface in humans. *Nature* 2018; **563**(7731): 347-53.

21. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes. *Nat Protoc* 2020.

22. Cao J, Spielmann M, Qiu X, et al. The single-cell transcriptional landscape of mammalian organogenesis. *Nature* 2019; **566**(7745): 496-502.

23. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; **25**(1): 25-9.

24. Draghici S, Khatri P, Tarca AL, et al. A systems biology approach for pathway level analysis. *Genome Res* 2007; **17**(10): 1537-45.

25. Li T, Fan J, Wang B, et al. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. *Cancer Res* 2017; **77**(21): e108-e10.

26. Davis CA, Hitz BC, Sloan CA, et al. The Encyclopedia of DNA elements (ENCODE): data portal update. *Nucleic Acids Res* 2018; **46**(D1): D794-D801.

27. Li D, Hsu S, Purushotham D, Sears RL, Wang T. WashU Epigenome Browser update 2019. *Nucleic Acids Res* 2019; **47**(W1): W158-W65.

28. Qian GQ, Yang NB, Ding F, et al. Epidemiologic and Clinical Characteristics of 91 Hospitalized Patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. *QJM* 2020.

29. Wang Y, Liu Y, Liu L, Wang X, Luo N, Ling L. Clinical outcome of 55 asymptomatic cases at the time of hospital admission infected with SARS-Coronavirus-2 in Shenzhen, China. *J Infect Dis* 2020.

30. Su YJ, Lai YC. Comparison of clinical characteristics of coronavirus disease (COVID-19) and severe acute respiratory syndrome (SARS) as experienced in Taiwan. *Travel Med Infect Dis* 2020: 101625.

31. Dong XC, Li JM, Bai JY, et al. [Epidemiological characteristics of confirmed COVID-19 cases in Tianjin]. *Zhonghua Liu Xing Bing Xue Za Zhi* 2020; **41**(5): 638-42.

32. Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. *J Infect* 2020.
33. Wu Y, Guo W, Liu H, et al. Clinical outcomes of 402 patients with COVID-2019 from a single center in Wuhan, China. medRxiv 2020: 2020.03.07.20032672.
34. Gao Q, Hu y, Dai z, Wu J, Xiao F, Wang J. The epidemiological characteristics of 2019 novel coronavirus diseases (COVID-19) in Jingmen, Hubei, China. medRxiv 2020: 2020.03.07.20031393.
35. Chen X, Zheng F, Qing Y, et al. Epidemiological and clinical features of 291 cases with coronavirus disease 2019 in areas adjacent to Hubei, China: a double-center observational study. medRxiv 2020: 2020.03.03.20030353.
36. Zhang G, Hu C, Luo L, et al. Clinical features and outcomes of 221 patients with COVID-19 in Wuhan, China. medRxiv 2020: 2020.03.02.20030452.
37. Wu W, Xu Z, Jin Y, Pan A. Key Points of Clinical and CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV) Imported Pneumonia Based On 21 Cases Analysis. medRxiv 2020: 2020.03.03.20030775.
38. Easom N, Moss P, Barlow G, et al. 68 Consecutive patients assessed for COVID-19 infection; experience from a UK regional infectious disease unit. medRxiv 2020: 2020.02.29.20029462.
39. Cao M, Zhang D, Wang Y, et al. Clinical Features of Patients Infected with the 2019 Novel Coronavirus (COVID-19) in Shanghai, China. medRxiv 2020: 2020.03.04.20030395.
40. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study. AJR Am J Roentgenol 2020: 1-6.
41. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020.
42. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020.
43. Qi D, Yan X, Tang X, et al. Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: a retrospective, descriptive, multiple-center study. medRxiv 2020: 2020.03.01.20029397.
44. Wang Y, Zhou Y, Yang Z, Xia D, Geng S. Clinical Characteristics of Patients with Severe Pneumonia Caused by the 2019 Novel Coronavirus in Wuhan, China. medRxiv 2020: 2020.03.02.20029306.
45. Chen X, Zhao B, Qu Y, et al. Detectable serum SARS-CoV-2 viral load (RNAemia) is closely associated with drastically elevated interleukin 6 (IL-6) level in critically ill COVID-19 patients. medRxiv 2020: 2020.02.29.20029520.
46. Cheng JL, Huang C, Zhang GJ, et al. [Epidemiological characteristics of novel coronavirus pneumonia in Henan]. Zhonghua Jie He He Xi Za Zhi 2020; 43(0): E027.
47. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond
Princess cruise ship, Yokohama, Japan, 2020. *Euro Surveill* 2020; **25**(10).

48. Wu J, Liu J, Zhao X, et al. Clinical Characteristics of Imported Cases of COVID-19 in Jiangsu Province: A Multicenter Descriptive Study. *Clin Infect Dis* 2020.

49. Li K, Wu J, Wu F, et al. The Clinical and Chest CT Features Associated with Severe and Critical COVID-19 Pneumonia. *Invest Radiol* 2020.

50. Li J, Zhang Y, Wang F, et al. Sex differences in clinical findings among patients with coronavirus disease 2019 (COVID-19) and severe condition. *medRxiv* 2020: 2020.02.27.20027524.

51. Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. *J Infect* 2020; **80**(4): 401-6.

52. Liu Y, Sun W, Li J, et al. Clinical features and progression of acute respiratory distress syndrome in coronavirus disease 2019. *medRxiv* 2020: 2020.02.17.20024166.

53. Xu YH, Dong JH, An WM, et al. Clinical and computed tomographic imaging features of novel coronavirus pneumonia caused by SARS-CoV-2. *J Infect* 2020; **80**(4): 394-400.

54. Cao W. Clinical features and laboratory inspection of novel coronavirus pneumonia (COVID-19) in Xiangyang, Hubei. *medRxiv* 2020: 2020.02.23.20026963.

55. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir Med* 2020.

56. lei l, Jian-ya G. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. *medRxiv* 2020: 2020.02.20.20025536.

57. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. *medRxiv* 2020: 2020.02.16.20023671.

58. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. *Allergy* 2020.

59. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. *BMJ* 2020; **368**: m606.

60. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; **395**(10223): 497-506.

61. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. *Lancet* 2020; **395**(10223): 514-23.

62. Sun K, Chen J, Viboud C. Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: a population-level observational study. *The Lancet Digital Health* 2020; **2**(4): e201-e8.

63. Drosten C, Gunther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. *N Engl J Med* 2003; **348**(20): 1967-76.
64. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. *N Engl J Med* 2012; 367(19): 1814-20.

65. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. *N Engl J Med* 2020.

66. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet* 2020; 395(10223): 507-13.

67. Karlberg J, Chong DS, Lai WY. Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? *Am J Epidemiol* 2004; 159(3): 229-31.

68. Leung GM, Hedley AJ, Ho LM, et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients. *Ann Intern Med* 2004; 141(9): 662-73.

69. Vom Steeg LG, Klein SL. Sex and sex steroids impact influenza pathogenesis across the life course. *Semin Immunopathol* 2019; 41(2): 189-94.

70. Wang XL, Yang L, Chan KH, et al. Age and Sex Differences in Rates of Influenza-Associated Hospitalizations in Hong Kong. *Am J Epidemiol* 2015; 182(4): 335-44.

71. Cheng Q, Zhao G, Xie L, Wang X. Impacts of age and gender at the risk of underlying medical conditions and death in patients with avian influenza A (H7N9): a meta-analysis study. *Ther Clin Risk Manag* 2018; 14: 1615-26.

72. Channappanavar R, Fett C, Mack M, Ten Eyck PP, Meyerholz DK, Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. *J Immunol* 2017; 198(10): 4046-53.

73. Klein SL, Flanagan KL. Sex differences in immune responses. *Nat Rev Immunol* 2016; 16(10): 626-38.

74. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. *Cell* 2020.

75. Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. *Cell Mol Immunol* 2020.

76. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. *Diabet Med* 2006; 23(6): 623-8.

77. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. *Acta Diabetol* 2010; 47(3): 193-9.

78. Patel SK, Velkoska E, Burrell LM. Emerging markers in cardiovascular disease: where does angiotensin-converting enzyme 2 fit in? *Clin Exp Pharmacol Physiol* 2013; 40(8): 551-9.

79. Glowacka I, Bertram S, Muller MA, et al. Evidence that TMPRSS2 activates the severe
acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. *J Virol* 2011; **85**(9): 4122-34.

80. Chien JY, Hsueh PR, Cheng WC, Yu CJ, Yang PC. Temporal changes in cytokine/chemokine profiles and pulmonary involvement in severe acute respiratory syndrome. *Respirology* 2006; **11**(6): 715-22.

81. Zhou J, Chu H, Li C, et al. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of inflammatory cytokines and chemokines in human macrophages: implications for pathogenesis. *J Infect Dis* 2014; **209**(9): 1331-42.

82. Kong SL, Chui P, Lim B, Salto-Tellez M. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. *Virus Res* 2009; **145**(2): 260-9.

83. Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. *Sci China Life Sci* 2020; **63**(3): 364-74.

84. Pedersen SF, Ho YC. SARS-CoV-2: A Storm is Raging. *J Clin Invest* 2020.

85. Wauquier N, Becquart P, Padilla C, Baize S, Leroy EM. Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis. *PLoS Negl Trop Dis* 2010; **4**(10).

86. Garanina E, Martynova E, Davidyuk Y, et al. Cytokine Storm Combined with Humoral Immune Response Defect in Fatal Hemorrhagic Fever with Renal Syndrome Case, Tatarstan, Russia. *Viruses* 2019; **11**(7).

87. Palomino-Segura M, Perez L, Farsakoglu Y, et al. Protection against influenza infection requires early recognition by inflammatory dendritic cells through C-type lectin receptor SIGN-R1. *Nat Microbiol* 2019; **4**(11): 1930-40.

88. Hudspeth K, Fogli M, Correia DV, et al. Engagement of NKp30 on Vdelta1 T cells induces the production of CCL3, CCL4, and CCL5 and suppresses HIV-1 replication. *Blood* 2012; **119**(17): 4013-6.

89. Wein AN, McMaster SR, Takamura S, et al. CXCR6 regulates localization of tissue-resident memory CD8 T cells to the airways. *J Exp Med* 2019; **216**(12): 2748-62.

90. Seys LJ, Verhamme FM, Schinwald A, et al. Role of B Cell-Activating Factor in Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med* 2015; **192**(6): 706-18.
Figure Legends

Figure 1. Flow diagram of the study selection process.

Figure 2. Visualization of pooled analyses of morbidity, severity, age subgroup severity and mortality. (A) An albatross plot of the morbidity. (B) A forest plot of severity. (C) A forest plot of severity with age subgroup analysis. (D) A forest plot of mortality.

Figure 3. Single-cell transcriptomic profiling of human lung tissue samples. (A) t-SNE view of combined adult human lung tissue samples from 2 male and 6 female donors. Color coded by re-evaluated clusters. (B) Comparison of percentages of different cell types between lung tissue samples of male and female origins. (C) Feature plot showing the expression level of ACE2. (D) ACE2 co-expression network in lung tissues of male origin.

Figure 4. Sex-based differences in gene expression, pathway enrichment and cell-cell communications. (A) Volcano plot showing differentially expressed genes between male and female lung tissue samples. (B) Visualization of enriched pathways. (C) Bubble plot visualization of differentially expressed cytokines in ACE2-expressing cell populations.

Figure 5. Co-expression analysis of AR, ACE2 and TMPRSS2. (A) Single-cell RNAseq data of adult lung tissues showing a positive correlation between ACE2 and TMPRSS2 expression pattern. (B) Heatmap showing the correlation between AR and ACE2/TMPRSS2 in multiple cancer types across the TCGA PANCAN cohort. (C)(D) Changes in expression after chemical (C) or surgical (D) castration. r, Pearson correlation coefficient. N3, Prostate from sham-treated mouse. C3, Prostate, 3 days after castration. C14, Prostate, 14 days after castration. C14+T3, Prostate, 3 days after testosterone treatment of C14.
Table 1 Characteristics of all patients with COVID-19 included in the meta-analysis

Author	Date	Deadline	Area	Average Age	Total Patients	Male	Female	Severe smoking	Death	Comorbidities
Qian G	3/17	2/21	China, Zhejiang	50 (5-96)	91	37	54	9	0	23
Livingston E	3/17	3/1	Italy	64	22512	1362	9850	6721	1625	
Wang Y	3/17	2/23	China, Shenzhen	49 (2-69)	55	22	23	2	0	8
KSID	3/16	3/2	Korea	20-50	41212	5161	3540	19512	1805	
Su Y	3/14	2/11	China, Taiwan	86.6	10	7	3			
Deng X	3/12	3	China, Tianjin	48.6 (18-80)	153	72	63			
Watanabe K	3/12	2/20	Japan	634	321	231	110			
Deng L	3/11	2/13	China, Zhuhai	\	33	17	16			
Zhou F	3/11	1/31	China, Wuhan	56 (40-67)	191	119	72	119	11	34
Su YJ	3/10	2/11	China, Taiwan	56.6	10	7	3			
Deng X	3/10	2/20	China, Xiangyang	43.1 (17.1)	21	10	7			
Gao Q	3/10	2/14	China, Wuhan	48 (35-88)	213	108	105	33		7
Chen X	3/6	2/14	China, Wuhan	64.0 (34-59.0)	291	145	146	50		2
Zhang G	3/6	2/14	China, Wuhan	55.0 (38-66.6)	221	106	113	55		12
Wu B	3/6	2/17	China, Guangdong	43 (17.1)	21	10	7			
Nicholas E	3/6	2/27	UK	42.5 (0.5-76)	68	32	36			
Cao M	3/6	2/25	China, Shanghui	50 (16.3)	198	101	97	19	1	1
Zhao R	3/3	2/23	China, Shanghui	44.4 (12.2)	101	56	45	14		
Young B	3/3	2/24	Singapore	47.5 (31-73)	18	9	9			
Xiao F	3/3	2/14	China, Shanghui	43.0 (83-78)	73	41	32	9		
Ni B	3/3	2/16	China, Guangdong	48.0 (20-80)	267	149	118	56	53	4
Wang Y	3/3	2/10	China, Wuhan	\	118	48	62	38	26	51
Chen X	3/3	2/27	China, Wuhan	46.0 (18.1)	48	37	11	27		3
Cheng J	3/2	1/2	China, Henan	46.5 (8-89)	1679	572	505	72		11
Wu Z	2/28	2/14	China, Jiangsu	46.1 (18.12)	99	39	41	3		0
Li K	2/29	2/11	China, Shanghui	45.5 (12.3)	83	44	39	25		
Li J	2/29	2/11	China, Wuhan	62.0 (21-70.0)	87	28	19	47		
Guan R	2/28	1/29	China, Wuhan	47.5 (38-80)	1099	637	462	173	20	15
Tian S	2/27	1/30	China, Beijing	47.5 (41-94)	262	127	135	46		
Liu Y	2/27	2/1	China, Wuhan	55 (43-66)	189	59	50	53		31
Su Y	2/25	2/21	China, Beijing	43.9 (16.8)	59	29	21	13		
Gao R	2/25	2/20	China, Xiangyang	\	128	60	68	21		
Yang X	2/24	1/26	China, Wuhan	59.7 (13.3)	52	35	17	52	32	21
Liu L	2/23	2/3	China, Shanghui	45 (34-91)	51	14	9	17		
Liu Y	2/22	1/24	China, Wuhan	48.7 (13.9)	59	15	25	13		
Zhang J	2/19	3/2	China, Wuhan	57 (25-87)	159	71	69	54	9	
Su X	2/19	1/26	China, Zhejiang	41 (32-52)	62	36	26			
CDC	2/11	1/15	China	49 (40-60)	4414	4281	21987	8255	1023	5276
Huang C	2/15	1/2	China, Wuhan	56 (42-68)	138	75	63	36		6
Wang D	2/7	1/28	China, Wuhan	\	138	75	63	36		64

Reference:
- Retrospective Research
- Descriptive Research
- Observational Research
Table 2. Gender differences in the composition of patients with COVID-19

Author	Date	Area	Total Patients	Male	Female	Reference
Qian GQ	3/17	China,Zhejiang	91	37	54	28
Livingston E	3/17	Italy	22512	13462	9050	6
Wang Y	3/17	China,Shenzhen	55	22	23	29
KSID	3/16	Korea	4212	1591	2621	13
Su Y	3/14	China,Taiwan	10	7	3	30
Dong X	3/13	China,Tianjin	135	72	63	31
Deng L	3/11	China,Zhuhai	33	17	16	32
Zhou F	3/11	China,Wuhan	191	119	72	10
Wu Y	3/10	China,Wuhan	297	147	150	33
Gao Q	3/10	China,Wuhan	213	108	105	34
Chen X	3/6	China,Hubei	291	145	146	35
Zhang G	3/6	China,Wuhan	221	108	113	36
Wu W	3/6	China,Guangdong	21	10	11	37
Nicholas E	3/6	UK	68	32	36	38
Cao M	3/6	China,Shanghai	198	101	97	39
Zhao W	3/3	China, Hunan	101	56	45	40
Young B	3/3	Singapore	18	9	9	41
Xiao F	3/3	China,Zhuhai	73	41	32	42
Qi D	3/3	China,Chongqing	267	149	118	43
Wang Y	3/3	China,Wuhan	110	48	62	44
Chen X	3/3	China,Wuhan	48	37	11	45
Cheng J	3/2	China,Henan	1079	573	505	46
Mizumoto K	3/1	Japan	634	321	313	47
Wu J	2/29	China,Jiangsu	80	39	41	48
Li K	2/29	China,Chongqing	83	44	39	49
Li J	2/29	China,Wuhan	47	28	19	50
Guan W	2/28	China	1099	637	459	8
Tian S	2/27	China,Beijing	262	127	135	51
Liu Y	2/27	China,Wuhan	109	59	50	52
Xu Y	2/25	China,Beijing	50	29	21	53
Cao W	2/25	China,Xiayang	128	60	68	54
Yang X	2/24	China,Wuhan	52	35	17	55
Liu L	2/23	China,Chongqing	51	32	19	56
Liu J	2/22	China,Wuhan	40	15	25	57
Zhang J	2/19	China,Wuhan	140	71	69	58
Xu X	2/19	China,Zhejiang	62	36	26	59
CDC	2/17	China	44672	22981	21691	7
Huang C	2/15	China,Wuhan	41	30	11	60
Wang D	2/7	China,Wuhan	138	75	63	5
Table 3. Comparison of severe cases between male and female patients with COVID-19

Author	Date	Male	Male Severe	Female	Female Severe	P Value	Reference
Wu Y	3/10	147	45	150	38	\	33
Gao Q	3/10	108	22	105	11	\	34
Chen X	3/6	145	27	146	23	0.629	35
Zhang G	3/6	108	35	113	20	0.011	36
Wu W	3/6	10	4	11	3	0.038	37
Cao M	3/6	101	17	97	2	<0.001	39
Qi D	3/3	149	39	118	11	<0.001	43
Wang Y	3/3	48	24	62	14	0.004	44
Chen X	3/3	37	24	11	3	<0.001	45
Zhao W	3/1	56	8	45	6	0.89	40
Li K	2/29	44	15	39	10	0.402	49
Guan W	2/28	637	100	459	73	\	8
Tian S	2/27	127	26	135	20	0.23	51
Liu Y	2/27	59	28	50	25	0.79	52
Xu Y	2/25	29	7	21	6	\	53
Cao W	2/25	60	12	68	9	>0.05	54
Liu L	2/23	32	3	19	4	0.109	56
Liu J	2/22	15	7	25	6	0.138	57
Zhang J	2/19	71	33	69	25	0.219	58
Huang C	2/15	30	11	11	2	0.24	60
Wang D	2/7	75	22	63	14	0.34	5

*Severe group in our study included ICU cases, severe case and critical cases.
Table 4. Comparison of mortality between male and female patients with COVID-19

Author	Date	Male	Male Died	Female	Female Died	P Value	Reference
KIDS	3/16	1591	13	2621	9	\	13
Zhou F	3/11	119	38	72	16	0.15	10
Wu Y	3/10	147	13	150	4	\	33
Gao Q	3/10	108	5	105	2	\	34
Zhang G	3/6	108	7	113	2	0.681	36
Cheng J	3/2	573	7	505	4	\	46
Yang X	2/24	35	21	17	11	\	55
CDC	2/17	22981	653	21691	370	\	7
Supplementary Figure Legends

Figure S1. Funnel plots for different outcomes. Funnel plots for (A) male/female ratio, (2) odds ratio of severe cases, and (3) odds ratio of mortality.

Figure S2. Bar charts representing cell-cell communications. Intercellular communications between ACE2-expressing AT2 cells with other types of cells, with the ACE2 molecule functioning as (A) a receptor, and (B) a ligand.

Figure S3. Single-cell transcriptomic profiling of normal prostate tissue samples. (A) (B) scRNA-seq of normal prostate tissues from 3 healthy young donors (GSE117403). (A) Left, UMAP clustering of combined normal prostate tissue samples. Middle, feature plot showing ACE2 expression level of individual cells. Right, violin box plot showing the expression level of ACE2 among different cell populations. (B) Bar chart showing the percentage of ACE-positive cells in different epithelial cell clusters. (C) scRNA-seq of normal prostate tissues from 15 healthy donors aged 17-42 (GUDMAP 16-WPBW). Left, UMAP clustering of combined normal prostate tissue samples. Middle, feature plot showing ACE2 expression level of individual cells. Right, violin box plot showing the expression level of ACE2 among different cell populations.

Figure S4. Single-cell transcriptomic profiling of testis tissue samples. Clustering and ACE2 expression level of single testicular cells in (A) young adults, (B) spermatogonial stem cells, and (C) men during puberty. Left, clustering maps. Right, Feature maps showing ACE2 expression level of individual cells. SSCs, spermatogonial stem cells.

Figure S5. Genome browser view of AR ChIP-seq and H3K27ac ChIP-seq tracks at the ACE2 locus in the C4-2B cell line.

Figure S6. Genome browser view of AR ChIP-seq, H3K27ac ChIP-seq, H3K4me1 ChIP-seq, and ATAC-seq tracks at the ACE2 locus in the LNCaP cell line.
ACE2-expressing AT2 Cells, ACE2 as a receptor

ACE2-expressing AT2 Cells, ACE2 as a ligand
A

B

ACE2+ Cell Percentage

C
Author	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20		
Qian G	Yes	Yes	Yes	Yes	Yes	Yes		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	17	
Livingston E	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	7											
Wang Y	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	14	
Cho S	Yes	No	Yes	Yes	Yes	No	Yes	15														
Wu Y	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	16
Zhou F	Yes	No	Yes	17																		
Chen X	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	18	
Zhang G	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	19	
Wu W	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	20	
Qiao F	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	21	
Q D	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	22	
Wang Y	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	23	
Chen X	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	24	
Zhang J	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	25	
Wu W	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	26	
Li K	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	27	
Li J	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	28	
Guan W	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	29	
Tan J	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	30	
Lu Y	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	31	
Xu X	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	32	
Gao W	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	33	
Yang X	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	34	
Liu L	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	35	
Liu J	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	36	
Zhang J	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	37	
Xiong H	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	38	
Huang C	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	39	
Wang D	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	No	Yes	40	

Table S1. Risk of bias and methodological quality of the included studies.
Table S2. Egger’s regression test of each analysis.

| | Coef. | Std. Err. | t | P>|t| | 95% CI |
|--------|----------|-----------|---------|------|--------------|
| Morbidity | -0.2573771 | 0.9040747 | -0.28 | 0.777 | -2.089206 |
| Severity | 1.259753 | 0.6167905 | 2.04 | 0.055 | -0.0312042 |
| Mortality | 0.358895 | 0.3756831 | 0.96 | 0.376 | -0.5603686 |

Table S3. Sensitivity analysis of the severity for 21 included studies

Author	Date	Estimate OR	95% CI
Wu Y	3/10	1.6678668	1.291166 2.1544712
Gao Q	3/10	1.6009253	1.252503 2.0462716
Chen X	3/6	1.6682906	1.29682 2.1461678
Zhang G	3/6	1.5895121	1.243146 2.0323834
Wu W	3/6	1.6275051	1.277919 2.0727232
Cao M	3/6	1.5475454	1.245357 1.9230609
Qi D	3/3	1.5309649	1.220754 1.9200046
Wang Y	3/3	1.5507388	1.23053 1.9542725
Chen X	3/3	1.5827113	1.253737 1.9980072
Zhao W	3/1	1.6524721	1.294761 2.10901
Li K	2/29	1.637333	1.279081 2.095926
Guan W	2/28	1.7173474	1.362389 2.1647866
Tian S	2/27	1.6450169	1.277818 2.1177359
Liu Y	2/27	1.6843767	1.32092 2.1478407
Xu Y	2/25	1.6603048	1.305324 2.1118217
Cao W	2/25	1.6307118	1.274032 2.0872478
Liu L	2/23	1.6617414	1.317398 2.0960901
Liu J	2/22	1.6055609	1.262431 2.0419543
Zhang J	2/19	1.6403354	1.275406 2.1096814
Huang C	2/15	1.6150899	1.269645 2.0545242
Wang D	2/7	1.6432891	1.280324 2.1091533
Combined		1.6256158	1.28406 2.0580247

Table S4. Sensitivity analysis of the mortality for 8 included studies

Author	Date	Estimate OR	95% CI
KIDS	3/16	1.6962082	1.498673 1.9197793
Zhou F	3/11	1.7105864	1.510205 1.9375559
Wu Y	3/10	1.6939224	1.49752 1.916083
Gao Q	3/10	1.704739	1.507646 1.927598
Zhang G	3/6	1.700071	1.503474 1.9223759
Cheng J	3/2	1.7099531	1.511843 1.9340236
Yang X	2/24	1.7215263	1.522026 1.9471766
CDC	2/17	1.939573	1.307478 2.8772526
Combined		1.7082885	1.51129 1.9309661