Identification of miRNAs associated with dendritic cell dysfunction during acute and chronic hepatitis B virus infection

Avishek Kumar Singh1,2 | Sheetalnath Babasaheb Rooge1 | Aditi Varshney1 | Madavan Vasudevan3 | Manoj Kumar4 | Robert Geffers5 | Vijay Kumar1 | Shiv Kumar Sarin MD, DM,1,4 Senior Professor

1Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
2Vascular and Interventional Translational Laboratory, Departments of Radiology, Mayo Clinic, Rochester, Minnesota, USA
3Bionivid Technology Private Limited, Bangalore, India
4Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
5Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany

Correspondence
Shiv Kumar Sarin, MD, DM, Senior Professor, Department of Hepatology, Institute of Liver and Biliary Science (ILBS), New Delhi 110070, India. Email: shivsarin@gmail.com

Funding information
Department of Science and Technology, Ministry of Science and Technology, Grant/Award Number: SR/S2/JCB-80)/2012; Department of Biotechnology, Ministry of Science and Technology, Grant/Award Numbers: BT/IN/German/08/SKS/2010, BT/PR12502/AGR/36/660/2009

Abstract
The uptake or expression of hepatitis B virus (HBV) proteins by dendritic cells (DCs) is considered important for disease outcome. Differential expression of microRNA (miRNA) may have a role in viral persistence and hepatocellular injury. The miRNA expression was investigated by microarray in DCs from different stages of HBV infection and liver disease namely, immune active (IA; n = 20); low replicative (LR; n = 20); HBeAg negative (n = 20); acute viral hepatitis (AVH, n = 20) and healthy controls (n = 20). miRNA levels were analyzed by unsupervised hierarchical clustering and principal component analyses and validated by quantitative polymerase Chain Reaction (qPCR). The miRNA-messenger RNA (mRNA) regulatory networks identified 19 miRNAs and 12 target gene interactions in major histocompatibility complex and other immune pathways. miR-2278, miR-615-3p, and miR-3681-3p were downregulated in the IA group compared to healthy control, miR-152-3p and miR-3613-3p in the LR group compared to IA group and miR-152-3p and miR-503-3p in HBe negative compared to LR group. However, miR-7-1-1-3p, miR-192-5p, miR-195-5p, and miR-32-5p in LR, miR-342-3p, and miR-940 in HBe negative, and miR-34a-5p, miR-130b-3p, miR-221-3p, miR-320a, miR-324-5p, and miR-484 in AVH were upregulated. Further, qPCR confirmed changes in miRNA levels and their target genes associated with antigen processing and presentation. Thus, a deregulated network of miRNAs-mRNAs in DCs seems responsible for an impaired immune response during HBV pathogenesis.

Keywords
acute viral hepatitis, antigen presentation, chronic hepatitis B, HBe antigen, microarray, RT-qPCR

Abbreviations: CALR, calregulin; CANX, calnexin; DC, dendritic cell; DC-SIGN, DC-specific intercellular adhesion molecule 3-grabbing non-integrin; HBV, hepatitis B virus; HLA, human leukocyte antigen; HSP, heat shock protein; MHC, major histocompatibility complex; SD, standard deviation; TCR, T cell receptor; TNF-a, tumor necrosis factor alpha.
INTRODUCTION

The hallmark of chronic hepatitis B (CHB) infection is the lack of a robust hepatitis B virus (HBV)-specific CD8+ and CD4+ T-cell response leading to the induction of virus-specific T and B cell responses. HBV can downregulate host immune responses by interfering with toll-like receptors (TLR) expression and signaling pathways or via inhibition of interferon response.\(^1\) Besides, the expression of HBV proteins in/by dendritic cell (DC) can lead to impairment of their immune-stimulatory function, causing insufficient/ineffective priming of CD4+ T cells, possibly contributing to the persistence of viral hepatitis.\(^2\) DCs do not support HBV replication but can take up HBV proteins which may affect DC activity.\(^3\) Binding and uptake of HBV virions by DCs may also be responsible for the impaired function of DC in HBV-infected patients. Functional alterations in DC or its precursors from chronic HBV patients also contribute to the impaired HBV-specific immune response.\(^4,5\) Patients with advanced fibrosis or cirrhosis show a decrease in DC numbers in peripheral blood of chronic HBV patients compared to healthy individuals.\(^5,6\) Not surprisingly, DCs from CHB patients are less efficient in inducing T-cell proliferation in vitro than those isolated from healthy individuals\(^6,7\) and show low expression of IFN-α and DC-specific intercellular adhesion molecule 3-grabbing non-integrin which may affect initial events of immune activation.\(^8\) However, some clinical studies have shown that DCs in chronic hepatitis B carriers are functionally intact.\(^9\) Thus, DCs appear to be a central player in initiating and controlling the magnitude and quality of adaptive immune responses.\(^5\) However, the molecular mechanisms associated with DC dysfunction in CHB patients remain poorly understood.

Aberrant expression of certain micro RNAs (miRNAs) can lead to pathological consequences in many liver pathologies including viral hepatitis, acute and chronic liver diseases, and hepatocellular carcinoma.\(^10,11\) Therefore, a detailed investigation on the expression of miRNAs in the DCs should provide an in-depth understanding of the molecular mechanisms associated with immune-compromised status in CHB patients and also useful in the management of liver diseases.\(^12,13\) The natural history of chronic HBV infection is a dynamic process that can progress gradually or rapidly consisting of four phases of the underlying liver disease, of variable duration and outcome. All phases have been pathogenetically linked to the level of HBV replication and the strength and targets of the host immune reactivity against the replicating HBV. In childhood infection, the first phase is called as "immune-tolerant phase" characterized by normal serum levels of alanine aminotransferase (ALT) and very high levels of HBV DNA with minimal fibrosis and inflammation in the liver. The majority of chronically infected individuals can develop "immune active (IA) phase" (second phase) characterized by elevated ALT and high HBV DNA levels and persistent immune-mediated necroinflammatory activity. The third phase is called "HBeAg-negative chronic infection" characterized by low-level HBV DNA, raised ALT with significant liver disease on liver biopsy. The fourth phase is called a "LR phase," characterized by low HBV DNA level, persistent normal ALT with no significant liver disease on liver biopsy. Here, we have analyzed the aberrant expression of miRNA and their target genes in DCs from freshly separated PBMC of hepatitis B patients with following distinct phenotypes: (i) acute viral hepatitis, (ii) IA, (iii) LR, and (iv) HBeAg negative CHB individuals. Our study suggested the involvement of 19 miRNAs and 12 target genes for DC-related immune dysfunction in hepatitis B patients.

METHODS

2.1 Study cohort

HBV-infected patients visiting the Institute of Liver and Biliary Sciences, New Delhi were screened and enrolled in this study. The study protocol was approved by the Ethics Committee of ILBS. Informed consent was obtained from all patients and their detailed history recorded. The inclusion criteria for the four study groups (Table 1) were as follows: (i) acute viral hepatitis (AVH): patients with features of acute hepatitis, ALT >10x ULN, HBsAg positive, HBeAg positive, IgM Anti-HBc positive and spontaneous viral clearance of HBsAg by 12 months of follow up of the patients; (ii) IA: HBsAg positive patients for more than 6 months, HBeAg positive, anti-HBe negative, high DNA (>20,000 IU/ml), raised ALT and significant liver disease on liver biopsy (HAI >3, fibrosis score ≥2); (iii) LR: patients with HBSAg positive for >6 months, HBeAg negative, anti-HBe positive, DNA (<2000 IU/ml), persistent normal ALT and no significant liver disease on liver biopsy (HAI ≤3, fibrosis score <2); (iv) HBeAg negative CHB patients with HBsAg positive for >6 months, HBeAg negative, anti-HBe positive, DNA (>2000 IU/ml), raised ALT and significant liver disease on liver biopsy (HAI >3, fibrosis score ≥2); (v) healthy controls: age, sex and nutritional status matched asymptomatic healthy individuals with no history or clinical features of any liver disease and with normal levels of serum transaminases and negative for IgM anti-HAV, IgM anti-HEV, HBsAg, anti-HBe, IgG anti-HBc markers. Immune tolerant (Phase I) patients were not included in this study. All patients were treatment naive at the time of sampling.

Exclusion criteria included co-infection with hepatitis C, hepatitis D, or HIV; decompensated liver disease; chronic hepatitis B with Child-Pugh B and C; liver disease of unknown etiologies; serum creatinine more than 1.5 times upper limit of normal; hemoglobin <10 g/dl; platelet and WBC counts were <70,000 and <3000 per cubic millimeter respectively; no serious concurrent medical illnesses like malignancy, severe cardiopulmonary disease, uncontrolled diabetes mellitus, alcohol consumption more than 20 g/day.

2.2 Isolation of dendritic cells and RNA

DCs were isolated from freshly separated PBMCs using a blood DC isolation kit (Miltenyi Biotec, Cat No: 130-091-379) as per the manufacturer protocol. The purity of the DC population was ascertained by flow cytometry after staining with fluorochrome-conjugated antibodies against CD14, CD19, BDCA-1, BDCA-2, and BDCA-3. DCs with...
Parameters	AVH-B (N = 20)	HBeAgNeg CHB (N = 20)	Low Replicative (N = 20)	Immune Active (N = 20)	Healthy (N = 20)	p Value *
Age (years)	47.50 (29.00–69.00)	34.00 (22.00–66.00)	36.50 (23.00–68.00)	35.00 (21.00–53.00)	38.00 (29.00–59.00)	.14
Male gender (%)	69.50	82.5	78.00	71.25	64.3	.06
Total bilirubin (mg/dl)	19.30 (12.40–20.39)	0.80 (0.46–1.80)	0.875 (0.40–1.90)	0.90 (0.50–1.39)	0.80 (0.6–1.0)	.001
Serum bilirubin direct (mg/dl)	11.03 (10.21–14.40)	0.10 (0.04–0.50)	0.10 (0.01–0.30)	0.15 (0.10–0.30)	0.08 (0.005–0.10)	<.001
Serum bilirubin indirect (mg/dl)	7.89 (0.50–9.32)	0.70 (0.33–1.6)	0.75 (0.32–1.70)	0.70 (0.40–1.24)	0.75 (0.50–0.95)	.063
Total protein biuret (g/dl)	7.25 (6.80–8.40)	7.45 (5.90–9.30)	7.40 (6.30–8.70)	7.50 (6.70–9.00)	7.7 (7.10–8.20)	.70
Albumin (g/dl)	4.85 (1.70–3.80)	4.25 (2.10–4.80)	4.40 (2.70–4.90)	4.15 (3.70–4.50)	4.50 (4.00–4.80)	.002
Globulin (g/dl)	4.30 (3.70–6.70)	3.30 (2.50–4.50)	3.20 (2.40–4.60)	3.30 (2.80–5.30)	3.40 (3.00–3.70)	.016
ALT (IU/L)	527.50 (440.50–2251.00)	46.50 (4200–50800)	26.00 (14.00–40.00)	70.00 (44.00–181.00)	32.00 (23.00–39.00)	<.001
AST (IU/L)	470.50 (410.50–1013.00)	43.00 (4200–38200)	24.50 (18.00–34.00)	58.00 (45.00–128.00)	27.00 (18.00–35.00)	<.001
SAP (IU/L)	113.50 (68.00–149.00)	83.50 (5000–26800)	65.00 (53.00–107.00)	78.50 (54.00–106.00)	74.00 (63.00–79.00)	.062
GGT (IU/L)	43.50 (16.00–64.00)	21.50 (8.00–605.00)	14.50 (9.00–55.00)	22.00 (13.00–79.00)	16.00 (10.00–36.00)	.022
AFP (ng/ml)	7.05 (2.74–22.26)	4.21 (1.68–18.16)	4.04 (1.25–8.28)	3.87 (1.20–12.06)	2.00 (1.93–2.08)	.134
INR	1.32 (1.20–3.05)	1.00 (0.90–1.20)	1.00 (0.95–1.20)	1.00 (0.9–1.10)	1.00 (0.90–1.10)	.016
Log10 [HbsAg] (IU/ml)	2.87 (1.70–4.93)	3.84 (2.16–5.10)	3.32 (1.54–4.75)	3.99 (2.23–4.77)		.093
Log10 [HBV DNA] (IU/ml)	3.66 (3.00–5.93)	3.80 (3.30–8.04)	2.56 (0.78–3.28)	7.18 (4.30–8.04)	<.001	
HAI	4.00 (4.00–5.50)	2.00 (1.00–3.00)	4.00 (4.00–6.00)	4.00 (4.00–6.00)		.003
Fibrosi	2.00 (2.00–3.00)	0.00 (0.00–1.00)	2.00 (2.00–3.00)			.01

Note: (Unless otherwise indicated, all values are shown as median [minimum-maximum].

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyltransferase; HAI, histological activity index; INR, international normalized ratioSAP, serum amyloid P component.

*p < .05 was considered significant.
isolated from DCs. The whole-genome miRNA expression profiling was done by microarray on RNA samples from 50 subjects. Remaining 50 samples were stored for validation studies. The serum bilirubin and albumin levels in the healthy subjects and all the patients groups except the AVH group were within the normal range. Posthoc comparison revealed that in the AVH group serum bilirubin, ALT, aspartate aminotransferase (AST) and albumin levels was statistically significant compare to all other groups (Table 1).

2.3 | Analysis of miRNA expression

The expression of miRNA was determined using Agilent’s human miRNA microarray version V16 as described earlier. Unsupervised hierarchical clustering of differentially expressed genes between patient groups were done using Pearson uncentered algorithm with average linkage rule. The pathway enrichment analysis of miRNAs was done using DIANA-miRPath v3.0 while the miRNA:mRNA gene regulatory network was visualized using CytoScape V 2.8.2.

2.4 | Quantitation of miRNA and target gene expression

The levels of miRNAs and their target mRNAs isolated from DCs were measured by real time quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) as described previously. The details of miRNA and gene primers can be found in Tables S1 and S2 respectively. The results were analyzed by the ΔΔCt method.

2.5 | Statistical analysis

For identification of differentially expressed miRNAs the test p value (Unpaired Student’s t-test with Benjamini Hochberg false discovery rate [FDR] correction) threshold adjusted for false discovery rate of <0.05 was considered. miRNA target based pathway analysis done using miRPath was done with a p value threshold of <0.05 (Fischer’s Exact Test) along with FDR correction enabled for identifying pathways that are enriched and a Micro-T threshold of 0.8 for genes targeted by differentially expressed miRNAs. Continuous variables in the demographic and clinical characteristics of patients and control subjects were summarized as median (range) and categorical variables as frequency and percentage. The comparison of continuous data was carried out using the Kruskal–Wallis test followed by posthoc comparison by probability adjustment. p Value < .05 considered significant.

3 | RESULTS

3.1 | Clinical characteristics of the enrolled patients with HBV infection

A total of 140 patients were assessed for eligibility criteria and finally 100 patients were enrolled in this study (Figure S1). The demographic and clinical characteristics of the enrolled HBV patients and healthy subjects are given in Table 1. Of these, 40 patients were excluded based on not meeting the inclusion criteria, declined to participate, and set exclusion criteria for the poor quality of RNA
3.3 | Status of differentially expressed miRNAs in DCs

The levels of differentially expressed miRNAs were analyzed by unsupervised hierarchical clustering. Each patient group and healthy control showed specific miRNA expression patterns as revealed by unique heat maps (Figure 3). For example, miR-454, miR-615-3p, miR-605, miR-2278, and miR-3681-3p were high in the healthy group but low in immune active patients whereas miR-3907, miR-500a*, miR-4313, and miR-4323 were downregulated in immune active patients (Figure 3A). Likewise, nearly 25 miRNAs including miR-500a*, miR-125b, miR-3907 were down in the immune active group, showed relatively elevated profiles in the low replicative group of patients (Figure 3B). The levels of ~22 miRNAs including miR-3907, miR-500a*, miR-125b, miR-3907 were elevated whereas miR-660 was down. Interestingly, levels of miR-30a, miR-7, miR-10a, miR-10c, miR-223*, and so forth were downregulated in the immune active patients (Figure 3D).

The differentially expressed DC miRNAs were predicted to engage multiple cellular and signaling networks essential for antigen processing and presentation, MHC I signaling, type I interferon signaling, TLR signaling, T cell receptor signaling, MAP kinase, and PI3K-Akt signaling and apoptosis and so forth. (Figure 4).

3.4 | Pathway enrichment analysis for differentially expressed miRNAs in DCs

Gene pathway enrichment for differentially expressed miRNAs was determined using a web-based pathway analysis program “Kyoto Encyclopedia of Genes and Genomes” (KEGG; https://www.genome.jp/kegg/). There was significant enrichment of specific pathways (p value < .05) which could impact primary immunodeficiency, antigen processing and presentation, T cell receptor signaling and protein folding, and so forth. as evident from up- (red) or downregulation (green) of selective pathways/molecules (Figure S2). In the immune active versus healthy group, some key genes involved in the antigen processing and presentation pathway were upregulated for both the MHC-I and MHC-II pathways. Elevated levels of calnexin and calreticulin, and chaperones HSP70 and HSP90 in MHC-I pathway could stimulate CD4 and CD8 T
cell and NK cell functions (Figure S2A). The MHC-I pathway seemed to be downregulated in low replicative compared to immune active group resulting in low levels of calnexin, HSP70, HSP90, and proteasomal activator subunit PA28 whereas the MHC-II pathway remained unaffected (Figure S2B). In the antigen versus low replicative group, the MHC-I pathway may be activated despite low expression of calreticulin and HSP70 impacting CD8 T cell and NK cell functioning (Figure S2C). Further, in the AVH group as compared to immune active subjects, both MHC-I and MHC-II pathways should be downregulated (Figure S2D).

3.5 Network of miRNAs and their target genes and their confirmation by RT-qPCR

The target-based pathway enrichment analysis of DC miRNAs showed a network of 19 miRNAs and 12 target gene interactions with multiple nodes each with interdependent gene regulation by miRNAs in MHC-I and MHC-II pathways to affect CD4 and CD8 T cell and NK cell functioning during hepatitis B-related disease progression (Figure S3E and Table S5).

There was specific downregulation miR-2278, miR-615-3p, and miR-3681-3p in the DCs of immune active group versus healthy control. Low levels of miR-615-3p and miR-3681-3p in DCs would result in elevated expression of calnexin (CANX) gene (Figure S3A) which functions as a chaperone for MHC class I α-chain.\(^{17}\) Further, downregulation of miR-615-3p, would lead to elevated expression of HSP70 (HSPA1B) and HSP90 (HSPA8) genes which play important immunoregulatory functions, required for maturation of dendritic cells and induction of immune responses.\(^{18}\) As expected, the RT-qPCR analysis confirmed the microarray data and revealed decrease levels of miR-2278, miR-615-3p, and miR-3681-3p in this interpretation and elevated levels of their seven target genes, namely, CANX, CALR, HSPA1B, HSPA8, HSPA8AB1, HLA-A and HLA-B (Figure 5A).

In low replicative compared to an immune active group, four miRNAs viz, miR-7-1-3p, miR-192-5p, and miR-195-5p and miR-32-5p were upregulated whereas miR-152-3p and miR-3613-3p were downregulated. The level of miR-149-5p remained indeterminate (Figure S3B). Low expression of miR-152-3p and miR-3613-3p should enhance the expression of HSP70 (HSPA1B), HSP90
HSP90AA1, and calnexin (Figure S3B). Our RT-qPCR results confirmed elevated expression of miR-7-1-3p, miR-192-5p, and miR-195-5p and miR-32-5p and low levels of miR-3613-3p (Figure 5B). Further, all miRNA target genes except for CALR were found to be downregulated including HLA-A, HLA-B, HLA-C, HSPA1B, HSPA8, HSP90AA1, NFYA, CANX, and PSME3 (Figure 5B).

In HBeAg negative compared to a low replicative group, two miRNAs each were either up- (miR-342-3p and miR-940) or down-regulated (miR-152-3p and miR-503-3p). The levels of miR-149-5p remained indeterminate (Figure S3C). Elevated levels of miR-342-3p and miR-940 would collectively reduce HSP70 (HSPA1B) expression whereas low miR-503-5p levels should enhance calnexin (CANX) gene expression. Further, low miR-152-3p will stimulate the expression of HLA-A and HSP90 (HSP90AA1) genes (Figure S3C). Our RT-qPCR results largely confirmed the miRNA levels as observed in microarray and regulation of the cognate target genes (Figure 5C).

Interestingly, in AVH versus immune active group, all six miRNAs, viz., miR-34a-5p, miR-130b-3p, miR-221-3p, miR-320a, miR-324-5p, and miR-484 were upregulated (Figure S3D). The elevated levels of these miRNAs could down-regulate the expression of multiple genes which are crucial for antigen processing and presentation pathways such as, HLA-A, HLA-B, HLA-C, HSP-70, HSP90, CANX and CALR and impair DC function. As expected, RT-qPCR analyses confirmed the elevated levels of all six miRNA levels and downregulation of their cognate genes (Figure 5D).

4 | DISCUSSION

The phenotypic and functional impairment of DCs in CHB patients have been reported earlier by several research groups.5,8,19 The impaired DC function is often correlated with ineffective antiviral response and thus, viral persistence in CHB patients.7 The degree of liver inflammation in CHB patients is found to be inversely proportional to DC numbers in peripheral blood owing perhaps to their migration from peripheral blood to the inflammatory site in the
SINGH ET AL.

The **CALR** gene is essential for the production of MHC class I proteins. Low miR-CALR, HSPA1B, HSPA8, HSP90AB1, HLA, and regulate the functioning of CD4+ and CD8+ T cells and NK cells during disease progression. We observed specific downregulation of miR-615-3p, miR-2278, and miR-3681-3p in the immune active group compared to healthy controls. Downregulation of miR-615-3p and miR-2278 could be an innate mechanism allowing DC proliferation aided by elevated expression of key immune regulators such as CANX, CALR, HSPA1B, HSPA8, HSP90AB1, HLA-A and HLA-B genes (Figure S3A) as also corroborated by gene expression analysis (Figure S5A). In fact, a low miR-2278 level is reported to correlate with enhanced calreticulin (CALR) gene essential for the production of MHC class I proteins. Since expression of HLA antigens are critical for the cytotoxic T cell controlled immune response against viruses and other pathogens, its dysregulation could be associated with increased risk, rapid progression, and severity of liver diseases. Importantly, there are no reports implicating miR-615-3p, and miR-3681-3p in the regulation of HLA, calnexin, caregulin, or heat shock protein.

In low replicative compared to the immune active group, there was specific upregulation of four miRNAs, viz, miR-7-1-3p, miR-32-5p, miR-192-5p and miR-195-5p, and downregulation of miR-152-3p and miR-3613-3p (Figure S3B). All elevated miRNAs may down-regulate the above immunoregulatory genes except for CALR. Further, miR-192-5p is reported to regulate liver cell death during acute liver injury whereas miR-195-5p can regulate cell growth and inhibit cell cycle by suppressing CDK8 or bFGF genes. However, the involvement of these miRNAs in DC function will require functional validation. Downregulation of miR-152-3p and miR-3613-3p in the low replicative HBV patients may induce aberrant DNA methylation and thus, gene silencing. Importantly, the miR-152 expression is frequently downregulated in HBV-related HCC tissues and inversely correlates with DNA methyltransferase 1. Thus, restoration of miR-152-3p could have therapeutic implications in the treatment of tumors. However, the role of miR-152-3p, miR-3613-3p, and miR-149-5p in DCs needs further investigation.

In HBcAg negative versus low replicative interpretation, two miRNAs each were upregulated (miR-342-3p and miR-940) or downregulated (miR-152-3p and miR-503-3p) impacting the expression of their cognate genes. There are no reports on the involvement of these miRNA in DC function. Interestingly, in the AVH group compared to immune active patients, levels of all six miRNAs, viz., miR-34a-5p, miR-130b-3p, miR-221-3p, miR-320a, miR-324-5p, and miR-484 were high. Dysregulation of these miRNA may result in the overexpression of protein disulfide isomerase family A, member 3 (BRP57) or beta-2-microglobulin (B2M) in the MHC-I pathway, and cathepsin B (CTSB) in the MHC-II pathway (Figure S2D). However, there are no reports implicating these miRNAs in DC dysfunction.

FIGURE 4 Bubble plot representation of the immune signaling and biochemical pathways affected by differentially expressed miRNAs in dendritic cells of hepatitis B patients. This analysis reveals the regulation of selective signaling pathways by different clusters of miRNAs under various clinico-pathological conditions associated with HBV. The X-axis shows term enrichment of miRNAs involved in targeting various pathways (shown as colored modules) while the Y-axis shows enrichment significance (p Value) of the immune signaling and biochemical pathways. HBV, hepatitis B virus; miRNA, micro RNAs.
Thus, in this study, we found the involvement of 19 miRNAs and 12 target genes in different HBV patient groups might influence key regulatory pathways and activities of DCs during HBV pathogenesis (Table S5). Most identified miRNAs were unique and seem to differentiate acute and chronic infection with and without hepatic injury. Further, the integrome analysis confirmed the regulation of unique clusters of miRNAs and their target genes that may be responsible for viral clearance or persistence. Further, these miRNAs could be used as important therapeutic targets.

ACKNOWLEDGMENTS

This study was supported by grants to Dr. S.K. Sarin from the Department of Biotechnology (DBT), Government of India (Grant Nos. BT/PR12502/AGR/36/660/2009 and BT/IN/German/08/SKS/2010). AKS has been a Senior Research Fellow of the Department of Biotechnology, New Delhi while SBR and AV received Senior Research Fellowships from the Council of Scientific and Industrial Research, New Delhi for the period of this study. VK has been a J.C. Bose National Fellow of the Department of Science and Technology, Government of India (Grant No. SR/S2/JCB-80)/2012).

CONFLICT OF INTERESTS

The authors of this article declare no relationships with any companies whose products or services may be related to the subject matter of the article.

AUTHOR CONTRIBUTIONS

Shiv K. Sarin and Manoj Kumar designed the study and interpreted the results. Avishek K. Singh, Sheetalnath B. Rooge, and Aditi Varshney collected clinical samples, isolated RNA from dendritic cells, and validated results. Avishek K. Singh and Robert Geffers performed the microarray analyses. Madavan Vasudevan performed the bioinformatics data analyses. Avishek K. Singh and Vijay Kumar interpreted the results and wrote the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES

1. Luangsay S, Gruffaz M, Isorce N, et al. Early inhibition of hepatocyte innate responses by hepatitis B virus. J Hepatol. 2015;2015(63):1314-1322.

2. Lambotin M, Raghuraman S, Stoll-Keller F, Baumert TF, Barth H. A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol. 2010;8:350-360.

3. Untergasser A, Zedler U, Langenkamp A, et al. Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection. Hepatology. 2006;43:539-547.

4. Kunitani H, Shimizu Y, Murata H, Higuchi K, Watanabe A. Phenotypic analysis of circulating and intrahepatic dendritic cell subsets in patients with chronic liver diseases. J Hepatol. 2002;36:734-741.

5. van der Molen RG, Sprengers D, Binda RS, et al. Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B. Hepatology. 2004;2004(40):738-746.

6. Zheng B, Zhou J, Qu D, et al. Increased infiltration of intrahepatic DC subsets closely correlate with viral control and liver injury in immune active pediatric patients with chronic hepatitis B. Clin Immunol. 2007;122:173-180.

7. Zheng BJ, Zhou J, Qu D, et al. Selective functional deficit in dendritic cell–T cell interaction is a crucial mechanism in chronic hepatitis B virus infection. J Viral Hepat. 2004;11:217-224.

8. Sukriti S, Trehanpati N, Kumar M, Pande C, Hisar SS, Sarin SK. Functionally aberrant dendritic cell subsets and expression of DC-SIGN differentiate acute from chronic HBV infection. Hepatol Int. 2016;10:916-923.

9. Tavakoli S, Mederacke I, Herzog-Hauff S, et al. Peripheral blood dendritic cells are phenotypically and functionally intact in chronic hepatitis B virus (HBV) infection. Clin Exp Immunol. 2008;151:61-70.

10. Szabo G, Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542-552.

11. Wang XW, Heegaard NH, Orum H. MicroRNAs in liver disease. Gastroenterology. 2012;142:1431-1443.

12. Mahgoub A, Steer CJ. MicroRNAs in the evaluation and potential treatment of liver diseases. J Clin Med. 2016;5:52.

13. Singh AK, Rooge SB, Varshney A, et al. Global micro RNA expression profiling in the liver biopsies of hepatitis B virus infected patients suggests specific miRNA signatures for viral persistence and hepatocellular injury. Hepatology. 2018;67:1695-1709.

14. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008:3:1100-1108.

15. Raychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput. 2000;2000:455-466.

16. Williams DB, Watts TH. Molecular chaperones in antigen presentation. Curr Opin Immunol. 1995;7:77-84.

17. Vassilakos A, Cohen-Doyle MF, Peterson PA. The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J. 1996;15:1495-1506.

18. Hickman-Miller HD, Hildebrand WH. The immune response under stress: the role of HSP-derived peptides. Trends Immunol. 2004;25:427-433.

19. Woltman AM, Op den Brouw ML, Blasta PJ. Hepatitis B virus lacks immune activating capacity, but actively inhibits plasmacytoid dendritic cell function. PLoS One. 2011;6:e15324.

20. Wang K, Fan X, Fan Y, Wang B, Han L, Hou Y. Study on the function of circulating plasmacytoid dendritic cells in the immunoreactive phase of patients with chronic genotype B and C HBV infection. J Viral Hepat. 2007;14:276-282.

21. Xie Q, Shen HC, Jia NN, et al. Patients with chronic hepatitis B infection display deficiency of plasmacytoid dendritic cells with reduced expression of TLR9. Microbes Infect. 2009;11:515-523.

22. O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010;10:111-122.

23. Wijeyesakere SJ, Gagnon JK, Arora K. Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP. Proc Natl Acad Sci USA. 2015;112:E5608-E5617.

24. Shiie DC, Kao KJ. Proportional amplification of individual HLA-A and –B antigens during upregulated expression of total class I HLA molecules. Hum Immunol. 1995;42:174-180.

25. Roy S, Benz F, Alder J, et al. Down-regulation of miR-192-5p protects from oxidative stress-induced acute liver injury. Clin Sci (Lond). 2016:130:1197-1207.

26. Luo Q, Zhang Z, Dai Z, et al. Tumor-suppressive microRNA-195-5p regulates cell growth and inhibits cell cycle by targeting cyclin dependent kinase 8 in colon cancer. Am J Transl Res. 2016;8:2088-2096.

27. Wang J, Li L, Jiang M, Li Y. MicroRNA-195 inhibits human gastric cancer by directly targeting basic fibroblast growth factor. Clin Transl Oncol. 2017;19:1320-1328.

28. Huang J, Wang Y, Guo Y, Sun S. Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology. 2010;52:60-70.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Singh AK, Rooge SB, Varshney A, et al. Identification of miRNAs associated with dendritic cell dysfunction during acute and chronic hepatitis B virus infection. J Med Virol. 2021;93:3697-3706. https://doi.org/10.1002/jmv.26629