The isomorphism problem for multiparameter quantized Weyl algebras*

K. R. Goodearl J. T. Hartwig

May 20, 2014

Abstract

In this note we solve the isomorphism problem for the multiparameter quantized Weyl algebras, in the case when none of the deformation parameters q_i is a root of unity, over an arbitrary field.

1 Introduction

The isomorphism problem for a family of algebraic structures given by generators and relations, is the problem of determining whether or not two members in the family are isomorphic. This is a very hard problem in general; for the family of finitely presented groups, the problem is known to be undecidable [1], [23].

Quantum algebras are various noncommutative associative algebras arising in the theory of quantum groups. They have many interesting properties from the point of view of ring theory (see e.g. [27], [18], [6], and references therein). When it comes to isomorphisms, the general rule is that quantum algebras are very rigid in the sense of having few automorphisms [12], [3], [28], [29]. This is in stark contrast with the commutative counterparts, where determining automorphism groups can be a wild problem [26].

In this paper we consider a family of quantum algebras, called multiparameter quantized Weyl algebras, introduced in [20]. They have been studied in many papers and are related to q-difference operators [17], [20], multiparameter quantum groups [20], twisted generalized Weyl algebras [21], [16], [9] and iterated skew polynomial rings [15], [7]. Some ring theoretic aspects that have been studied for these algebra include global and Krull dimension [11], [8], prime and primitive spectra [23], [15], [13], localizations and division rings of fractions [2], [17]. The automorphism group of a multiparameter quantized Weyl algebra was determined in [25] for generic parameters. The isomorphism problem for

*The research of the first-named author was supported by National Science Foundation grant DMS-0800948.

†2010 Mathematics Subject Classification. Primary 16W35; secondary 16S36.
quantized Weyl algebras \(A_q^1(K)\) of degree 1, with arbitrary parameters \(q\), was solved in [10].

Isomorphism problems have been studied for certain classes of generalized Weyl algebras [4], [24], [5]. Multiparameter quantized Weyl algebras are not however examples of generalized Weyl algebras, but rather of the more general class of twisted generalized Weyl algebras [21] for which no general results exist about isomorphisms or automorphisms. In [2] some necessary conditions are given for two multiparameter quantized Weyl algebras to be isomorphic.

In the present paper we solve the isomorphism problem for multiparameter quantized Weyl algebras by determining necessary and sufficient conditions for two such algebras to be isomorphic, in the case when certain parameters \(q_i\) are not roots of unity. The tools we use are Jordan’s simple localization [17] and Rigal’s methods [25] for determining automorphisms.

Notation

Throughout, we work over an arbitrary base field \(K\). For any integers \(a\) and \(b\), let \([a, b]\) denote the set \(\{ x \in \mathbb{Z} \mid a \leq x \leq b \}\).

2 Multiparameter quantized Weyl algebras

Definition 2.1. [20] Let \(n\) be a positive integer, \(Q = (q_1, \ldots, q_n)\) an \(n\)-tuple in \((K^*)^n\), and \(\Gamma = (\gamma_{ij})\) a multiplicatively skew-symmetric \(n \times n\) matrix with entries from \(K^*\). The multiparameter quantized Weyl algebra \(A_{Q, \Gamma}^n(K)\) is defined as the unital associative \(K\)-algebra with generators \(x_1, y_1, x_2, y_2, \ldots, x_n, y_n\) subject to defining relations

\[
\begin{align*}
y_i y_j &= \gamma_{ij} y_j y_i, & \forall i, j &\in [1, n] \quad (2.1) \\
x_i x_j &= q_i \gamma_{ij} x_j x_i, & i &< j \quad (2.2) \\
x_i y_j &= \gamma_{ji} y_j x_i, & i &< j \quad (2.3) \\
x_i y_j &= q_j \gamma_{ji} y_j x_i, & i &> j \quad (2.4) \\
x_j y_j - q_j y_j x_j &= 1 + \sum_{k=1}^{j-1} (q_k - 1) y_k x_k, & \forall j &\in [1, n]. \quad (2.5)
\end{align*}
\]

Frequently used are the elements

\[
z_i := [x_i, y_i] = 1 + \sum_{k=1}^{i} (q_k - 1) y_k x_k, \quad \forall i &\in [1, n]. \quad (2.6)
\]

They are normal elements (e.g., [17, §2.8]) and satisfy the following relations \((z_0 = 1\) by convention\):

\[
x_i y_i - q_i y_i x_i = z_{i-1}, \quad \forall i &\in [1, n]. \quad (2.7)
\]
As is well known, \(A_n^{Q,\Gamma}(\mathbb{K}) \) is an iterated skew polynomial algebra of the form

\[
A_n^{Q,\Gamma}(\mathbb{K}) = \mathbb{K}[y_1; \tau_2; \delta_2][y_2; \tau_3][x_2; \tau_4, \delta_4] \cdots [y_{n-1}; \tau_{2n-1}][x_n; \tau_{2n}, \delta_{2n}]
\]

(e.g., \([17]\) SS2.1, 2.8]). Consequently, \(A_n^{Q,\Gamma}(\mathbb{K}) \) is a noetherian domain. The Gelfand-Kirillov dimension of this algebra is \(2n \) \([13] \) Proposition 3.4).

3 Height one prime ideals

We let \(\langle Q, \Gamma \rangle \) denote the subgroup of of \(\mathbb{K}^* \) generated by the set

\[
\{q_1, \ldots, q_n\} \cup \{\gamma_{ij} \mid i, j \in [1, n], i < j\}.
\]

We say that a multiparameter quantized Weyl algebra \(A_n^{Q,\Gamma}(\mathbb{K}) \) is generic if \(\langle Q, \Gamma \rangle \) is free abelian of (the maximal possible) rank \(n(n+1)/2 \).

Rigal proved in \([25] \) Proposition 3.2.3] that if \(\mathbb{K} \) is algebraically closed of characteristic zero and \(A_n^{Q,\Gamma}(\mathbb{K}) \) is generic, then the height one prime ideals of \(A_n^{Q,\Gamma}(\mathbb{K}) \) are the principal ideals generated by the \(z_i \). Using results of Jordan \([17] \), we can improve this result by weakening the assumptions on \(\mathbb{K}, Q \) and \(\Gamma \), as follows

Theorem 3.1. Let \(A_n^{Q,\Gamma}(\mathbb{K}) \) be a multiparameter quantized Weyl algebra. Assume that for each \(i \in [1, n], q_i \) is not a root of unity. Then the set of height one prime ideals of \(A_n^{Q,\Gamma}(\mathbb{K}) \) equals

\[
\{(z_1), (z_2), \ldots, (z_n)\}.
\]

Proof. For each \(i \in [1, n] \), the subalgebra of \(A := A_n^{Q,\Gamma}(\mathbb{K}) \) generated by the elements \(x_1, y_1, \ldots, x_i, y_i \) is a multiparameter quantized Weyl algebra of the form \(A_i := A_i^{Q^i,\Gamma^i}(\mathbb{K}) \), where \(Q^i \) and \(\Gamma^i \) denote the restrictions of \(Q \) and \(\Gamma \) to \([1, i]\) and \([1, i]^{\times}\), respectively. It follows from \([17] \) Proposition 2.7] that \(z_i \) generates a completely prime ideal of \(A_i \). In \(A \), we have \((z_i) = z_i A \) by the normality of \(z_i \), from which it follows that \(A/(z_i) \) is an iterated skew polynomial ring over \(A_i/z_i A_i \), and thus is a domain. Consequently, \((z_i) \) is a completely prime ideal of \(A \).

Next, let \(Z \) be the multiplicative submonoid of \(A \) generated by the normal elements \(z_1, z_2, \ldots, z_n \). Jordan proved in \([17] \) Theorem 3.2] that the localization \(A[Z^{-1}] \) is a simple ring. Consequently, any nonzero prime ideal \(P \) of \(A \) must meet \(Z \), so \(z_1^{k_1}z_2^{k_2} \cdots z_n^{k_n} \in P \) for some nonnegative integers \(k_i \), not all equal to zero. Since \(P \) is prime and \(z_i \) is a normal element in \(A \) for every \(i \), it follows that \(z_j \in P \) for some \(j \in [1, n] \) and thus \((z_j) \subseteq P \). In particular, if \(P \) has height one, then \(P = (z_j) \).

Finally, since \((z_j) \nsubseteq (z_i) \) for any \(i \neq j \), we conclude that no \((z_i) \) can properly contain a nonzero prime ideal, that is, \((z_i) \) has height one. (This also follows from the Noncommutative Principal Ideal Theorem \([22] \) Theorem 4.1.11].)

\[\square\]
4 Automorphisms

The automorphisms of $A_{\mathbb{Q}}^Q, \Gamma_n(K)$ were determined by Rigal [25, Théorème 4.2.5] under the assumptions that K is algebraically closed of characteristic zero and $A_{\mathbb{Q}}^Q, \Gamma_n(K)$ is generic. These hypotheses were mainly used in determining the height one prime ideals of $A_{\mathbb{Q}}^Q, \Gamma_n(K)$. Theorem 3.1 can be used for this purpose, assuming only that the scalars q_i, for $i \in \{1, n\}$, are non-roots of unity. The remainder of Rigal’s proof carries through as given in [25], yielding the following theorem.

Theorem 4.1. Let σ be a K-algebra automorphism of $A_{\mathbb{Q}}^Q, \Gamma_n(K)$. If none of q_1, \ldots, q_n is a root of unity, there exists $(\mu_1, \ldots, \mu_n) \in (K^*)^n$ such that $\sigma(x_i) = \mu_i x_i$ and $\sigma(y_i) = \mu_i^{-1} y_i$ for all $i \in \{1, n\}$.

We shall also need to upgrade one of the lemmas used in the proof of the above theorem, [25, Lemme 4.2.2], under the same weakened hypotheses.

Lemma 4.2. Assume that none of q_1, \ldots, q_n is a root of unity. Give $A_{\mathbb{Q}}^Q, \Gamma_n(K)$ an \mathbb{N}-filtration by specifying total degrees

\[
d(x_i) = d(y_i) = 0, \quad \forall i \in \{1, n-1\},
\]
\[
d(x_n) = d(y_n) = 1.
\]

If $a, b \in A_{\mathbb{Q}}^Q, \Gamma_n(K) \setminus K$ such that $d(ab) = 2$ and $ab \in \text{Span}_K\{z_1, \ldots, z_n\}$, then either $(a, b) = (\mu x_n, \nu y_n)$ or $(a, b) = (\mu y_n, \nu x_n)$ for some $\mu, \nu \in K^*$.

5 Solution to the isomorphism problem

Theorem 5.1. Let $A_{\mathbb{Q}}^Q, \Gamma_n(K)$ and $A_{\mathbb{Q}}^{Q'}, \Gamma_m'(K)$ be two multiparameter quantized Weyl algebras, with standard generators x_i, y_i and x_i', y_i', respectively.

(I) Assume that q_1, \ldots, q_n and q_1', \ldots, q_m' are not roots of unity. Then $A_{\mathbb{Q}}^Q, \Gamma_n(K)$ and $A_{\mathbb{Q}}^{Q'}, \Gamma_m'(K)$ are isomorphic as K-algebras if and only if the following two conditions hold:

(i) $m = n$;

(ii) There exists a sign vector $\varepsilon \in \{1, -1\}^n$ such that for all $i \in \{1, n\}$,

\[
q_i' = q_i^{\varepsilon_i};
\]

and for all $i, j \in \{1, n\}$ with $i < j$,

\[
\gamma_{ij}' = \begin{cases}
\gamma_{ij}, & \text{if } (\varepsilon_i, \varepsilon_j) = (1, 1), \\
\gamma_{ji}, & \text{if } (\varepsilon_i, \varepsilon_j) = (-1, 1), \\
q_i^{-1} \gamma_{ji}, & \text{if } (\varepsilon_i, \varepsilon_j) = (1, -1), \\
q_i \gamma_{ij}, & \text{if } (\varepsilon_i, \varepsilon_j) = (-1, -1).
\end{cases}
\]
(II) If conditions (i) and (ii) above hold, then for any \(\mu \in (\mathbb{K}^*)^n \) and \(\varepsilon \in \{\pm 1\}^n \), there exists a unique \(\mathbb{K} \)-algebra isomorphism

\[
\varphi_{\mu, \varepsilon} : A_n^{Q, \Gamma}(\mathbb{K}) \rightarrow A_n^{Q', \Gamma'}(\mathbb{K})
\]

such that

\[
\varphi_{\mu, \varepsilon}(x_i) = \begin{cases}
\mu_i x'_i, & \varepsilon_i = 1 \\
\mu_i y'_i, & \varepsilon_i = -1
\end{cases}
\]

\[
\varphi_{\mu, \varepsilon}(y_i) = \begin{cases}
\lambda_i \mu_i^{-1} y'_i, & \varepsilon_i = 1 \\
-\lambda_i \mu_i^{-1} x'_i, & \varepsilon_i = -1
\end{cases}
\]

for all \(i \in [1, n] \), where \(\lambda = \lambda(\varepsilon) \in (\mathbb{K}^*)^n \) is defined by the recursion relation

\[
\lambda_i = q^{(\varepsilon_i-1)/2} \lambda_{i-1}, \quad \lambda_0 = 1.
\]

Finally, \((\mu, \varepsilon) \mapsto \varphi_{\mu, \varepsilon} \) defines a bijection between \((\mathbb{K}^*)^n \times \{\pm 1\}^n \) and the set of isomorphisms \(A_n^{Q, \Gamma}(\mathbb{K}) \rightarrow A_n^{Q', \Gamma'}(\mathbb{K}) \).

Proof. Set \(A := A_n^{Q, \Gamma}(\mathbb{K}) \) and \(A' := A_n^{Q', \Gamma'}(\mathbb{K}) \), and set \(z'_i := [x'_i, y'_i] \in A' \) for \(i \in [1, m] \), as well as \(z'_0 = 1 \in A' \). For \(i \in [1, n] \), write \(A_i \) for the subalgebra of \(A \) generated by \(x_1, y_1, \ldots, x_i, y_i \), and write \(A'_j \) for the analogous subalgebras of \(A' \).

(I): Suppose \(\varphi : A \rightarrow A' \) is an isomorphism of \(\mathbb{K} \)-algebras. Since the Gelfand-Kirillov dimensions of \(A \) and \(A' \) are \(2n \) and \(2m \), it is immediate that \(m = n \). Now \(\varphi \) must map the set of height one prime ideals of \(A \) bijectively onto the corresponding set for \(A' \). In view of Theorem 4.1, we conclude that there exist \(\lambda \in (\mathbb{K}^*)^n \) and a permutation \(\sigma \in S_n \) such that

\[
\varphi(z_i) = \lambda_i z'_{\sigma(i)}, \quad \forall i \in [1, n].
\]

Give \(A' \) the \(\mathbb{N} \)-filtration specified in Lemma 4.2. Let \(i = \sigma^{-1}(n) \). By definition of \(z_i \) we have \(z_i - z_{i-1} = (q_i - 1)y_i x_i \). Applying \(\varphi \) to both sides gives

\[
\lambda z'_i - \varphi(z_{i-1}) = (q_i - 1){\varphi(y_i)}{\varphi(x_i)},
\]

which implies

\[
\lambda(q'_i - 1)y'_i x'_i + c = (q_i - 1){\varphi(y_i)}{\varphi(x_i)}
\]

where \(d(c) = 0 \), and so \(d(\varphi(y_i) \varphi(x_i)) = 2 \). Now we use Lemma 4.2. We obtain that for \(i = \sigma^{-1}(n) \),

\[
(\varphi(x_i), \varphi(y_i)) \in \{ (\mu x'_i, \nu y'_i), (\mu y'_i, \nu x'_i) \mid \mu, \nu \in \mathbb{K}^* \}. \quad (5.3)
\]

Suppose \(i < n \). Then we can apply the same argument as above to the relation \(z_{i+1} - z_i = (q_{i+1} - 1)y_{i+1} x_{i+1} \) and obtain

\[
(\varphi(x_{i+1}), \varphi(y_{i+1})) \in \{ (\mu x'_i, \nu y'_i), (\mu y'_i, \nu x'_i) \mid \mu, \nu \in \mathbb{K}^* \}. \quad (5.4)
\]
But then (5.3) and (5.4) imply that x'_n has two different pre-images under $ϕ$, which is obviously impossible. Therefore $i = n$. So $ϕ(z_n) = λ_n'z'_n$ and

$$\{(ϕ(x_n), ϕ(y_n)) \in \{(μx'_n, νy'_n), (μy'_n, νx'_n) | μ, ν \in K^*\}\}. \quad (5.5)$$

In particular, for $j < n$ we have $d(ϕ(y_j)ϕ(x_j)) = d(ϕ(z_j) - ϕ(z_{j-1})) = 0$ which shows that $ϕ(x_j), ϕ(y_j) \in A'_{n-1}$. So $ϕ(A_{n-1}) \subseteq A'_{n-1}$. Hence, applying the argument leading to (5.3) to $ϕ|_{A_j}$ for $j = n - 1, n - 2, \ldots, 1$ we obtain

$$ϕ(z_i) = λ_i'z'_i, \quad ∀i \in [1, n], \quad (ϕ(x_i), ϕ(y_i)) \in \{(μx'_i, νy'_i), (μy'_i, νx'_i) | μ, ν \in K^*\}, \quad ∀i \in [1, n].$$

We define $ε \in \{1, -1\}^n$ by

$$ε_i = \begin{cases} 1, & \text{if } (ϕ(x_i), ϕ(y_i)) = (μ_i'x'_i, ν_i'y'_i) \text{ for some } μ_i, ν_i \in K^*, \\ -1, & \text{if } (ϕ(x_i), ϕ(y_i)) = (μ_i'y'_i, ν_i'x'_i) \text{ for some } μ_i, ν_i \in K^*. \end{cases}$$

Next we prove that (5.1) holds. Applying $ϕ$ to the relation $x_iy_i - q_iy_ix_i = z_{i-1}$ we obtain

$$μ_iν_i(x'_iy'_i - q_i'y'_ix'_i) = λ_{i-1}'z'_{i-1}, \quad ε_i = 1,$$

$$μ_iν_i(y'_ix'_i - q_i'x'_iy'_i) = λ_{i-1}'z'_{i-1}, \quad ε_i = -1.$$

Using $x'_iy'_i - q_i'y'_ix'_i = z'_{i-1}$, we get

$$μ_iν_i((q_i')^{-1} - q_i)x'_iy'_i \in A'_{i-1}, \quad ε_i = 1,$$

$$μ_iν_i((q_i')^{-1} - q_i)x'_iy'_i \in A'_{i-1}, \quad ε_i = -1.$$
It is straightforward to verify that these elements satisfy the relations (2.1)-(2.4). As for (2.5), note that this is equivalent to

\[x_i^*y_i^* - q_i y_i^* x_i^* = 1, \quad (5.6) \]

and that (5.7) is equivalent to \(x_j^* y_j^* - q_j y_j^* x_j^* = [x_j^* y_j^*] \). For both choices of \(\varepsilon_{j-1} \), the commutator \([x_j^* y_j^*] \) equals \(\lambda_{j-1} [x_j^* y_j^*] \). Consequently, (5.6) and (5.7) will both follow from

\[x_j^* y_j^* - q_j y_j^* x_j^* = \lambda_{j-1} z_{j-1}^*, \quad \forall j \in [1,n]. \quad (5.8) \]

It is straightforward to verify (5.8).

Since the elements \(x_i^*, y_i^* \) satisfy the relations (2.1)-(2.5), there is a unique \(K \)-algebra homomorphism \(\varphi: A \to A' \) such that

\[\varphi(x_i) = x_i^* \quad \text{and} \quad \varphi(y_i) = y_i^*, \quad \forall i \in [1,n]. \]

It is clearly surjective, since its image contains \(x_i' \) and \(y_i' \) for all \(i \in [1,n] \). Injectivity follows because \(A \) and \(A' \) are domains with the same finite Gelfand-Kirillov dimension (see [19 Proposition 3.15]).

(II): This follows from the proof of part (I) and Theorem 4.1. \(\square \)

References

[1] S. I. Adian, *On algorithmic problems in effectively complete classes of groups*, (Russian) Dokl. Akad. SSSR **123** (1958), 13–16.

[2] J. Allev, F. Dumas, *Sur le corps des fractions de certaines algèbres quantiques*, J. Algebra **170** (1994), 229–265.

[3] N. Andruskiewitsch, *On the automorphisms of \(U_q(g) \)*, in “Quantum groups”, IRMA Lectures in Mathematics and Theoretical Physics 12, European Mathematical Society (EMS), Zürich, 2008, pp. 107–133.

[4] V. V. Bavula, *The finite-dimensionality of Extns and Torns of simple modules over a class of algebras*, Funktsional. Anal. i Prilozhen. **25** (1991), 80–82.

[5] V. V. Bavula, D. A. Jordan, *Isomorphism problems and groups of automorphisms for generalized Weyl algebras*, Trans. Amer. Math. Soc. **353** (2001), 769–794.

[6] K. A. Brown, K. R. Goodearl, *Lectures on Algebraic Quantum Groups*, Birkhäuser Verlag, Basel, 2002.

[7] G. Cauchon, *Effacement des dérivations et spectres premiers des algèbres quantiques*, J. Algebra **260** (2003), 476–518.
[8] H. Fujita, E. Kirkman, J. Kuzmanovich, *Global and Krull dimensions of quantum Weyl algebras*, J. Algebra **216** (1999), 405–416.

[9] V. Futorny, J. T. Hartwig, *Multiparameter twisted Weyl algebras*, J. Algebra **357** (2012), 69–93.

[10] J. Gaddis, *Isomorphisms of some quantum spaces*, to appear in Proc. 31st Ohio State-Denison Conf., Preprint arXiv:1210.8413.

[11] A. Giaquinto, J. J. Zhang, *Quantum Weyl algebras*, J. Algebra **176** (1995), 861–881.

[12] J. Gómez-Torrecillas, L. EL Kaotit, *The group of automorphisms of the coordinate ring of quantum symplectic space*, Beitr. Algebra Geom. **43** (2002), 597–601.

[13] K. R. Goodearl, *Prime spectra of quantized coordinate rings*, in Interactions between Ring Theory and Representations of Algebras (Murcia 1998) (F. Van Oystaeyen and M. Saorín, eds.), Lecture Notes in Pure and Applied Math. 210, Marcel Dekker, New York, 2000, pp. 205–238.

[14] K. R. Goodearl and T. H. Lenagan, *Catenarity in quantum algebras*, J. Pure Appl. Algebra **111** (1996), 123–142.

[15] K. R. Goodearl, E. S. Letzter, *The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras*, Trans. Amer. Math. Soc. **352** (2000), 1381–1403.

[16] J. T. Hartwig, *Locally finite simple weight modules over twisted generalized Weyl algebras*, J. Algebra **303** (2006), 42–76.

[17] D. A. Jordan, *A simple localization of the quantized Weyl algebra*, J. Algebra **174** (1995), 267–281.

[18] A. Joseph, *Quantum Groups and Their Primitive Ideals*, Springer-Verlag, Berlin 1995.

[19] G. R. Krause and T. H. Lenagan, *Growth of Algebras and Gelfand-Kirillov Dimension*, Rev. Ed., Graduate Studies in Math. 22, Providence (2000) Amer. Math. Soc.

[20] G. Maltsiniotis, *Groupes quantiques et structures différentielles*, C. R. Acad. Sci. Paris Sér. I Math. **311** (1990), 831–834.

[21] V. Mazorchuk, L. Turowska, **-representations of twisted generalized Weyl constructions*, Algebr. Represent. Theory **5** (2002), 163–186.

[22] J.C. McConnell and J.C. Robson, *Noncommutative Noetherian Rings*, Chichester (1987) Wiley.
[23] M. O. Rabin, *Recursive unsolvability of group theoretic problems*, Ann. Math. 67 (1958), 172–194.

[24] L. Richard, A. Solotar, *Isomorphisms between quantum generalized Weyl algebras*, J. Algebra Appl. 5 (2006), 271–285.

[25] L. Rigal, *Spectre de l’algèbre de Weyl quantique*, Beitr. Algebra Geom. 37 (1996), 119–148.

[26] I. P. Shestakov, U. U. Umirbaev, *The tame and the wild automorphisms of polynomial rings in three variables*, J. Amer. Math. Soc. 17 (2003), 197–227.

[27] S. P. Smith, *Quantum groups: an introduction and survey for ring theorists*, in Noncommutative Rings (Berkeley, CA, 1989) (S. Montgomery and L. Small, eds.), Math. Sci. Res. Inst. Publ. 24, Springer, New York, 1992, pp. 131–178.

[28] M. Yakimov, *The Launois-Lenagan conjecture*, J. Algebra 392 (2013), 1–9.

[29] M. Yakimov, *Rigidity of quantum tori and the Andruskiewitsch-Dumas conjecture*, Preprint arXiv:1204.3218.

Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
goodearl@math.ucsb.edu

Department of Mathematics, University of California, Riverside, CA 92521, USA
hartwig@math.ucr.edu