INTRODUCTION

Flavonoids are phenylbenzo-γ-pirone derivatives commonly occurring in plants, so they are frequent components of the human diet. Many of the pharmacological effects of flavonoids are linked to their known biological functions as antioxidants, due to free-radical scavenging and metal chelating. Their interactions with enzymes, adenosine receptors and biomembranes are well documented (Bors et al., 1994; Rice-Evans et al., 1996; Cao et al., 1997). Flavonoids possess several biological activities including anti-inflammatory, antiallergic, antiangiogenic and immunomodulatory properties. Flavonoids help prevent age-related, cardiovascular and neurodegenerative diseases and are even thought to reduce the risk of cancer (Steinmetz and Potter, 1996).

In this work we studied the antioxidative activity of selected flavonoids: I 3’ II 8 biapigenine (amentoflavone), 4’-methoxy-5,7-dihydroxyflavone 6-C-β-glucopyranoside (isocytisoside) and 7-O-[2-O-feruloyl-β-glucuronopyranosyl (1→2) glucuronopyranoside] (tricine); we used all-trans β-carotene as standard carotenoid molecule. In our earlier investigations (Adamska et al., 2003; Jodynis-Liebert et al., 2005) we found that 4’-methoxy-5,7-dihydroxyflavone 6-C-β-glucopyranoside (isocytisoside) protected against hepatotoxicity induced by carbon tetrachloride and APAP in rats, and it also inhibited the growth of microorganisms, especially Gram-positive bacteria (Bylka et al., 2004). Amentoflavone possesses anti-inflammatory (Berghöfer and Hölzl, 1989), antiulcerogenic, antioxidant (Conforti et al., 2002) and antiviral activity (Lin et al., 1999; Ma et al., 2001). The immune system is positively influenced by tricine derivatives (Bucar et al., 1998). Liang et al. (2009) reported synergistic interaction of β-carotene with flavonoid (baicalin) against lipid peroxidation and promoting...
ABTS cation radical scavenging. All-trans β-carotene (vitamin A precursor) is also a powerful scavenger of singlet oxygen, with a rate constant exceeding $10^{10} \text{M}^{-1} \text{sec}^{-1}$, near that of diffusion control (Foote et al., 1970).

In this work we assessed the antioxidant activity of selected flavonoids and all-trans β-carotene in the same solvent (Dimethyl sulfide, DMF) by modified ABTS cation radical decolorization assay and electron paramagnetic resonance (EPR) technique.

MATERIALS AND METHODS

PLANT MATERIAL

Aerial parts of flowering plants of *Axyris amaranthoides* L. and leaves of *Viburnum lantana* L. were collected from the Poznan University of Medical Sciences garden (Department of Medicinal and Cosmetic Natural Products). Leaves with stems of *Aquilegia vulgaris* L. were collected from the Botanical Garden of A. Mickiewicz University. Voucher specimens are deposited at the Department of Pharmacognosy [Nos. KF 0661999, KF 1082000, KF 1261998].

FLAVONOID SAMPLE PREPARATION

Air-dried and powdered *Axyris amaranthoides* aerial parts (250 g) were extracted three times with 50% MeOH. Combined extracts were evaporated under reduced pressure and treated with hot water. The precipitate formed in the cooling extract was obtained by filtration. The filtrate was successively partitioned with CHCl₃ and n-BuOH. The butanol-glucuronopyranosyl 6-glucuronopyranosyl (as reference sample, DMF in water; 10⁻² by volume) was a product of the reaction of the ABTS cation radical (ABTS⁺⁺) was a product of the reaction of the ABTS stock solution with 2.45 mM (final concentration) Na₂S₂O₈ sodium peroxy-hexaoxodisulfate (VI) (Sigma Chemical Co, USA) in water. ABTS⁺⁺ is a blue/green chromophore with absorption maxima at wavelengths 415 nm, 645 nm, 734 nm and 815 nm (Miller and Rice-Evans, 1996). In this study the 734 nm maximum for detection was used. The molar extinction coefficient (ε) of ABTS⁺⁺ in water at 734 nm is $(1.50 \pm 0.05) \times 10⁴ \text{M}^{-1} \text{cm}^{-1}$.

After 20 h of refrigerated storage at 4°C in darkness the ABTS⁺⁺ solution was diluted with water to get absorbance (0.70 ± 0.01) at 734 nm at room temperature. Next, five different concentrations (10 μM, 1 μM, 0.5 μM, 0.1 μM, 0.01 μM) of trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) (Sigma-Aldrich, U.S.A.) and the analyzed antioxidants in DMF (dimethylformamide) (POCH, Poland) were prepared. Trolox, a water-soluble vitamin E analogue, has been used as an electron- or H-donating agent which is able to scavenge cation radical (ABTS⁺⁺) 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) to ABTS.

To prepare samples for radical scavenging ability (TEAC) measurements, to 3 ml solution of ABTS⁺⁺ in water (0.70 absorbance at 734 nm) was added (1) 30 μl of only DMF, (2) 30 μl trolox in DMF or (3) 30 μl the investigated antioxidants (flavonoids or all-trans β-carotene) in DMF. The absorbance changes of ABTS⁺⁺ in samples with antioxidants were measured at 734 nm. Absorbance measurements in the range of 200–1000 nm were taken at room temperature 1 min after sample preparation (as reference sample, DMF in water; $10^⁻²$ by volume). Next, spectral measurements for extended periods were made: 1 min after sample preparation on the first day, 48 h afterwards on the third day, 120 h afterwards on the sixth day, and 168 h afterwards on the eighth day. Values are averages of two measurements.
Antioxidant activity of different flavonoids

where \(A_{\text{max}} \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l DMF; \(A \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l flavonoids or all-trans \(\beta \)-carotene in DMF; \(A_{\text{trolox}} \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l trolox in DMF.

\[
\text{TEAC} = \frac{(A_{\text{max}} - A)}{(A_{\text{max}} - A_{\text{trolox}})}
\]

where \(A_{\text{max}} \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l DMF; \(A \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l flavonoids or all-trans \(\beta \)-carotene in DMF; and \(A_{\text{trolox}} \) is the absorbance of the mixture of 3 ml ABTS•+ with 30 \(\mu \)l trolox in DMF.

SPECTRAL MEASUREMENTS

The absorption spectra were measured with a UV/VIS Lambda 20 (Perkin Elmer) spectrophotometer in the 1 cm cell at room temperature. The \(^1 \)H and \(^{13} \)C NMR spectra of flavonoids were measured with a Varian Unity 300 to check the sample quality. The EPR spectra were measured with a Radiopan SEX-2540 spectrometer. The EPR 335 mT magnetic field parameters were sweep width 10 mT and sweep time 5 min; and the amplitude parameters were modulation frequency 100 kHz, modulation width 0.02 mT, and amplification 3·10⁻³. The parameters for microwave status were frequency 9.38544 ± 0.00001 GHz, power 7.5 mW, phase 72°, digital marker 1 mT and room temperature.

RESULTS AND DISCUSSION

The antioxidant activity of different flavonoids depends on the number and location of hydroxyl groups of the flavonoid ring system (Lien et al., 1999). According to Cos et al. (1998) the o-dihydroxy structure in the B ring, the 2,3-double bond in conjugation with the 4-oxo function in the C ring, and the 3- and 5-OH groups with the 4-oxo function in the A and C rings are very important for effective free radical scavenging activity (Fig. 1). Cao et al. (1997) reported that the relationship between peroxyl radical absorbing activity and the number of hydroxyl groups in flavonoids is a linear function. Another possible contributory mechanism to the antioxidant activity of flavonoids is their ability to stabilize membranes by decreasing their fluidity and partitioning flavonoids into the hydrophobic core of the membrane (Arora et al., 2000; Harborne and Williams, 2000). To assess whether the polarity of flavonoids is an important factor in their antioxidant capacity, we tested three flavonoids having different polarity. From lowest to highest polarity they are I 3’ II 8 biapigenine (amentoflavone), 4’-methoxy 5,7-dihydroxyflavone 6-C-\(\beta \)-glucopyranoside (isocytisoside) and 7-O-\(\beta \)-[2-O-feruloyl]-\(\beta \)-glucuronopyranosyl (1→2) glucuronopyranoside (tricine) (Fig. 2 a–c). The tricine was extracted from Axyris amaranthoides L. (Chenopodiaceae), isocytisoside from Aquilegia vulgaris L. (Ranunculaceae) (33) and amentoflavone from Viburnum lantana L. (Caprifoliaceae).

Our results comprise total antioxidant capacity data for the selected flavonoids in comparison with nonpolar all-trans \(\beta \)-carotene as standard carotenoid molecule.

MONITORING OF ANTIOXIDANT ACTIVITY OF SELECTED FLAVONOIDS AND ALL-TRANS \(\beta \)-CAROTENE BY MODIFIED ABTS RADICAL CATION DECOLORIZATION ASSAY

Figure 3 shows the decreasing of absorbance (at 734 nm) of the cation radical ABTS⁺⁺ during testing time. The kinetic curve of ABTS⁺⁺ bleaching was similar to that of ABTS⁺⁺ with 0.01 and 0.1 \(\mu \)M trolox, so we used trolox concentrations higher than 0.5 \(\mu \)M (1 \(\mu \)M and 10 \(\mu \)M trolox) for TEAC calculation. Figure 4 a–d presents the antioxidant activity curves of the flavonoids and all-trans \(\beta \)-carotene for concentrations of 0.5 \(\mu \)M (s), 1 \(\mu \)M (r) and 10 \(\mu \)M(O).

The all-trans \(\beta \)-carotene scavenging time of the cation radical ABTS⁺⁺ is much longer than that of flavonoids; the slope of the all-trans \(\beta \)-carotene curve is smaller than for flavonoids. The slope is highest for the flavonoid of the highest polarity, tricine, so the cation radical ABTS⁺⁺ scavenging time is the shortest among the investigated samples.

The concentration range is an important factor for antioxidant action in the case of flavonoids, but not so much for all-trans \(\beta \)-carotene. The TEAC values of the flavonoids and all-trans \(\beta \)-carotene are summarized in Table 1.
Flavonoid TEAC values range from 0.79 to 2.10 and depend on the number and position of OH and other substituents of the molecule (Lien et al., 1999). Re et al. (1999) gave flavonoid TEAC values of 1.29 at 1 min and 2.06 for 6 min after sample preparation; the value for all-trans β-carotene is 2.47, and the reaction between carotenoids and ABTS•+ is essentially completed after 1 min although a further inefficient reaction takes place thereafter.

In our study (Tab. 1) the TEAC value of all-trans β-carotene was 0.12 for 1 min and 0.33 at 8 days after sample preparation. For the flavones the TEAC values 1 min after sample preparation were 0.68 for amentoflavone, 0.32 for isocytisoside and 0.73 for tricine, but after 8 days the TEAC value was 1 for all flavonoid samples.

Our data and literature data (Re et al., 1999) indicate that the solvent, the antioxidant concentration and the test time are very important factors in TEAC measurements. In our method the same solvent (DMF) was used for the different antioxidants: (flavonoids) and nonpolar all-trans β-carotene. The use of DMF in our study eliminated the possible effects of differences in polarity between solvents.
The relation between free radical scavenging and the concentrations of flavonoids and trolox was linear (Fig. 5). In the case of all-trans β-carotene, however, even at its highest concentration (10 μM) there was no such linear relationship (Fig. 6); the absorbance changes at 734 nm were not linear with sample concentration.

A high all-trans β-carotene concentration generates crystals; the so-called Shibata peak is at 540 nm (Shibata, 1956) and it aggregates at ~500 nm, modifying the physical properties of the membrane (Gruszecki, 1999). Aggregated forms of carotene are less effective antioxidants than monomeric forms (Cantrell et al., 2003). Such peaks were not observed in our electronic absorption steady-state study, but recent time-resolved (fs) stimulated emission data from Bialek-Bylka et al. (2008) indicate the presence of aggregated forms of β-carotene, so our conclusion that all-trans β-carotene is a less efficient antioxidant than the investigated flavonoids is open to question.

TABLE 1. Antioxidant activity (TEAC) of flavonoids and all-trans β-carotene at test times

Day	Trolox equivalent antioxidant capacity (TEAC)	± 0.02
1	I 3’ II 8 bisapigenine (amentoflavone)	0.68
	4’-methoxy 5,7-dihydroxyflavone	0.32
	6-C-β-glucopyranoside (isocytiside)	
3	7-O-β[2-O-feruloyl-β-glucuronopyranosyl (1→2) glucuronopyranoside] (tricine)	0.73
6	1.00	1.00
8	1.00	1.00

* 1 min after sample preparation; ** 48 h after sample preparation; *** 120 h after sample preparation; **** 168 h after sample preparation.

TABLE 2. Amplitude of EPR signals of ABTS•⁺ with admixture of analyzed compounds

DMF (control)	3 ml ABTS•⁻ + 30 μl : one of the following compounds	Amplitude (A) of EPR signal (a. u.)	ΔA = ± 0.1
trolox	7.8		6.4
I 3’ II 8 biapigenine (amentoflavone)	7.3		
4’-methoxy-5,7-dihydroxyflavone 6-C-β-glucopyranoside (isocytiside)	7.8		
7-O-β[2-O-feruloyl-β-glucuronopyranosyl (1→2) glucuronopyranoside] (tricine)	6.3		
all-trans β-carotene	6.4		

* equipment error; ** measurement immediately after sample preparation; *** line width ΔB = (1.0 ± 0.1) mT, g = 2.0051 ± 0.0001

** Fig. 3. ** Time effect on the suppression of the absorbance (at 734 nm) of the ABTS•⁻. Control ABTS•⁻ (××). Trolox: 10 μM (○), 1 μM (△), 0.5 μM (▽), 0.1 μM (□) overlapped with (△) and (××) and 0.01 μM (□).

According to Subramanian et al. (2003), the antioxidant activity of compounds can be evaluated by monitoring free radical generation in the presence of antioxidants using the EPR technique. The free radical concentration is proportional to the second integral of the EPR spectrum. In our case, the addition of the antioxidants tricine, isocytiside, amento-flavone and all-trans β-carotene to the...
ABTS•+ mixture did not change the EPR spectra in terms of line width and line shape (line width $\Delta B = 1.0 \pm 0.1$ mT and $g = 2.0051 \pm 0.0001$ for samples with and without antioxidants). In all the samples investigated with EPR only the signal of the ABTS cation radical is detected. The free radical concentrations (proportional to the EPR amplitude signals) of ABTS•+ are different because of the scavenge effect of antioxidants present in the samples. The EPR data are given in Table 2.

We applied a modified ABTS cation radical decolorization assay method to screen the antioxidant activity of selected flavonoids of different polarity and also nonpolar all-trans β-carotene as a standard representative of carotenoid molecules, in the same solvent (DMF). Antioxidant capacity was highest for the flavonoid with the highest polarity, tricine. At the 10 μM flavonoid concentration, total bleaching of ABTS•+ occurred after 48 h. This flavonoid possesses an -OH group at position 4’ in the B ring, which is very important for high antioxidant capacity, and it also has an -OMe group at positions 3’ and 5’ in the B ring, responsible for increasing antioxidant capacity (Dugas et al., 2000).

Similarly to tricine, amentoflavone has an -OH group at position 4’ in the B ring but it has no -OMe group; that is why its antioxidant capacity is lower.

Fig. 4. Time effect on suppression of ABTS•+ absorbance at 734 nm (averages of 2 measurements). (a) 3’II 8 biapigenine (amentoflavone), (b) 4’-methoxy 5,7-dihydroxyflavone 6-C-β-glucopyranoside (isocytisoside), (c) 7-O-β-2-O-feruloyl-β-glucuronopyranosyl (1→2) glucuronopyranoside (tricine), (d) all-trans β-carotene; concentrations 10 μM (--), 1 μM (---Δ--) and 0.5 μM (---△---).
than that of tricine derivatives. For antioxidant capacity, the angle between the B ring and the plane of the A and C rings can also play a role (Harborne and Williams, 2000). In amentoflavone one of the B rings is less mobile than the other.

For efficient free radical scavenging the flavonoid concentration is an important factor: 10 μM (the highest investigated concentration) had the most pronounced effect.

In the experimental conditions of both the spectroscopic methods we used, the selected flavonoids showed better antioxidant activity and scavenged free radicals faster than all-trans β-carotene.

ACKNOWLEDGEMENTS

This work was funded by the Polish Ministry of Science and Higher Education (grant no. DS 62-176/2010). The results were presented during the 4th Conference of the Polish Society of Plant Experimental Biology in 2009 in Cracow, Poland.

REFERENCES

ADAMSKA T, MLYNARCZYK W, JODYNIS-LIEBERT J, BYLKA W, and MATLAWSKA I. 2003. Hepatoprotective effect of the ethanol extract and isocytisoside from Aquilegia vulgaris. Phytotherapy Research 17: 691–696.

ARORA A, BYREM TM, NAIR M, and STRASBURG G. 2000. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Archives of Biochemistry and Biophysics 373: 102–109.

BERGHOFER R, and HOLZL J. 1989. Isolation of 13', 118 biapigenin (amentoflavone) from Hypericum perforatum. Planta Medica 55: 91.

BIALEK-BYLKA GE, KAKITANI Y, LI CH, KOYAMA Y, KURI M, YAMANO Y, and NAGAE H. 2008. Excitation followed by stimulated-emission from diabatic levels in all-trans- and 15-cis-β-carotenes: Effects of molecular symmetry and solvent polarity. Chemical Physics Letters 454: 367–373.

BORS W, MICHEL C, and SARAN M. 1994. Flavonoid antioxidants Rate constants for reactions with oxygen radicals. Methods in Enzymology 234: 420–429.

BUCAR F, JACKAK SM, NOREEN Y, KARTNIG T, PERERA P, BOHLIN L, and SCHUBERT-ZSILAVECZ M. 1998. Amentoflavone from Biophytum sensitivum and its effect on COX-1/COX-2 catalysed prostaglandin biosynthesis. Planta Medica 64: 373–374.

BYLKA W, and MATLAWSKA I. 1997. Flavonoids from Aquilegia vulgaris. Acta Poloniae Pharmaceutical 54: 331–333.

BYLKA W, SZAUFER-HAJDRYCH M, MATLAWSKA I, and GOSLINSKA O. 2004. Antimicrobial activity of isocytisoside and extracts of Aquilegia vulgaris. Letters in Applied Microbiology 39: 93–97.

CANTRELL A, MCGARVEY DJ, TRUSCOTT TG, RUNCAM F, and BOHM F. 2003. Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Archives of Biochemistry and Biophysics 412: 47–52.

CAO G, SOFIC E, and PRIOR RL. 1997. Antioxidant and prooxi-
dant behavior of flavonoids: structure-activity relationships. Free Radical Biology and Medicine 22: 749–760.

CHIAR VM, ILYAS M, WAGNER H, NASZMEYLI A, CHEN FCC, CHEN LK, LIM YC, and LIN YM. 1977. 13C NMR spectroscopy of biflavonoids. Phytochemistry 16: 1273–1278.

CONFORTI F, STATTI GA, TUNDIS R, MENICHINI F, and HOUGHTON P. 2002. Antioxidant activity of methanolic extract of Hypericum triquetrifolium Turra aerial part. Fitoterapia 73: 479–483.

COS P, YING L, CALOMME M, HU JP, CIMANGA K, VAN POEL B, PIETERS L, VLETINCK AJ, and VANDEN BERGHE D. 1998. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products 61: 71–76.
Dugas AJ Jr, Castañeda-Acosta J, Bonin GC, Price KL, Fischer NH, and Winston GW. 2000. Evaluation of total peroxyl radical-scavenging capacity of flavonoids: structure-activity relationships. Journal of Natural Products 63: 327–331.

Foote CS, Denny RW, Weaver L, Chong Y, and Peters J. 1970. Quenching of singlet oxygen. Annals of the New York Academy of Sciences 171: 139–145.

Gruszecki Wl. 1999. Carotenoids in Membranes. In: Frank HA, Young AJ, Britton G, Cogdell RJ [eds.], The Photochemistry of Carotenoids, 363–379. Kluwer Academic Publishers, Dordrecht, Netherlands.

Harborne JB, and Williams ChA. 2000. Advances in flavonoid research since 1992. Phytochemistry 55: 481–504.

Jodynisd-Liebert J, Matlawksa I, Bylka W, and Murias M. 2005. Protective effect of Aquilegia vulgaris on APAP-induced oxidative stress in rats. Journals of Ethnopharmacology 97: 351–358.

Liang R, Han R-M, Fu L-M, Al X-CH, Zhang J-P, and Skibsted LH. 2009. Baicalin in radical scavenging and its synergistic effect with β-carotene in antilipoxidation. Journal of Agricultural and Food Chemistry 57: 7118–7124.

Lien EJ, Ren S, Bui HH, and Wang R. 1999. Quantitative structure-activity relationship analysis of phenolic antioxidants. Free Radical Biology and Medicine 26: 285–294.

Lin YM, Flawin MT, Schure R, Chen FC, Sidwell R, Barnard D, Huffmann JH, and Kern E. 1999. Antiviral activities of biflavonoids. Planta Medica 65: 120–125.

Ma SC, But PPH, Ooi VEC, He YH, Lee SHS, Lee SF, and Lin RC. 2001. Antiviral ameno flavone from Selaginella sinensis. Biological and Pharmaceutical Bulletin 24: 311–312.

Markham KR, and Geiger H. 1994. 1H Nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadeuterodimethylsulfoxide. In: Harborne JB [ed.], The Flavonoids Advances in Research since 1986, 441–497. Chapman and Hall, London, UK.

Miller NJ, and Rice-Evans CA. 1996. Spectrophotometric determination of antioxidant activity. Redox Report 2: 161–171.

Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, and Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231–1237.

Rice-Evans CA, Miller NJ, and Paganga G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20: 933–956.

Shibata K. 1956. Absorption spectra of suspensions of carotene crystals. Biochimica et Biophysica Acta 22: 398–399.

Steinmetz KA, and Potter JD. 1996. Vegetables, fruit, and cancer prevention: A review. Journal of American Dietetic Association 96: 1027–1039.

Subramanian R, Goh NK, Chia TF, Tan SN, and Chia LS. 2003. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry 62: 219–228.