Sequence variation and functional analysis of a FRIGIDA orthologue (BnaA3.FRI) in Brassica napus

Licong Yi, Chunhong Chen, Shuai Yin, Haitao Li, Zhaohong Li, Bo Wang, Graham J. King, Jing Wang* and Kede Liu*

Abstract

Background: Allelic variation at the FRIGIDA (FRI) locus is a major contributor to natural variation of flowering time and vernalization requirement in Arabidopsis thaliana. Dominant FRI inhibits flowering by activating the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC), which represses flowering prior to vernalization. Four FRI orthologues had been identified in the domesticated amphidiploid Brassica napus. Linkage and association studies had revealed that one of the FRI orthologues, BnaA3.FRI, contributes to flowering time variation and crop type differentiation.

Results: Sequence analyses indicated that three out of the four BnaFRI paralogues, BnaA3.FRI, BnaA10.FRI and BnaC3.FRI, contained a large number of polymorphic sites. Haplotype analysis in a panel of 174 B. napus accessions using PCR markers showed that all the three paralogues had a biased distribution of haplotypes in winter type oilseed rape (\(P < 0.01\)). Association analysis indicated that only BnaA3.FRI contributes to flowering time variation in B. napus. In addition, transgenic functional complementation demonstrated that mutations in the coding sequence of BnaA3.FRI lead to weak alleles, and subsequently to flowering time variation.

Conclusion: This study for the first time provides a molecular basis for flowering time control by BnaA3.FRI in B. napus, and will facilitate predictive oilseed rape breeding to select varieties with favorable flowering time and better adaption to latitude and seasonal shifts due to changing climate.

Keywords: Brassica napus, FRIGIDA, Haplotype, Flowering time, Crop type

Background

Timely transition from vegetative to reproductive growth is of great significance for plants, in avoiding adverse environments and ensuring seed set. In the model species Arabidopsis thaliana, a flowering time regulatory gene network has been established [1]. External and internal signals associated with different pathways converge on the common set of key integrators FLOWERING LOCUS T (FT), LEAFY (LFY), and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1), which act on downstream genes to promote floral organ formation [1–4]. FT is a key flowering integrator gene encoding a florigen protein that moves through the phloem from leaves to the shoot apex, and induces the floral transition in many plant species [5, 6].

The photoperiod and vernalization pathways are the two major pathways responding to environmental cues that determine the flowering time of A. thaliana, as well as most other plants [7]. Based on vernalization requirement, genotypes of A. thaliana may be grouped into late flowering (winter-annual) and early flowering ecotypes (summer-annual). FLOWERING LOCUS C (FLC) and FRIGIDA (FRI) are the two key genes in the vernalization pathway [8–10]. Dominant FRI represses flowering through activating the expression of FLC [11], which encodes a MADS box transcriptional regulator and represses flowering through directly inhibiting the expression of SOC1 gene [8, 12]. Vernalization promotes flowering
Brassica napus (AC genome, oilseed rape, canola or rapeseed) is the third most important oil crop in the world. This domesticated amphidiploid species most likely originated from a natural cross between B. rapa (A genome) and B. oleracea (C genome) ~ 7500 years ago [17]. As with Arabidopsis, B. napus can have a vernalization requirement to initiate flowering. Based on vernalization requirement, the three crop types of oilseed rape recognized are spring-type (SOR), semi-winter type (SWOR, rapeseed accessions that initiate flowering with a moderate vernalization condition (0 - 4 °C for 15-30 d)) and winter-type (WOR). Due to historical duplication events that have occurred since Arabidopsis and Brassica diverged from a common ancestor, the diploid genomes of B. rapa and B. oleracea appear triplicated compared with Arabidopsis, and so the B. napus crop genome is extreme complex [17]. A large number of QTLs and candidate genes that contribute to flowering time variation have been documented in B. napus [18–23]. Orthologues of major flowering genes such as CONSTANS (CO), FLC, and FT have been found to be functionally conserved between B. napus and Arabidopsis. For example, the BnaFLC orthologues were proven to confer winter requirement in B. napus and contribute to the major vernalization-responsive flowering time variation in B. napus in a manner similar to that of AtFLC in Arabidopsis [24]. Variations at the BnaFLC orthologous loci that result in loss-of-function or reduced cold sensitivity alleles have been associated with different vernalization requirements and differentiation of WOR and SOR crop types in B. napus [25]. In addition, QTL mapping identified associations between FRI locus at the A3 chromosome (BnaA3.FRI) and vernalization response and flowering time variation in B. napus [18, 26, 27]. However, the molecular bases towards flowering regulation by BnaA3.FRI in B. napus are still unknown.

More recently, four FRI paralogues (BnaA.FRI.a, BnaA.FRI.b, BnaA.FRI.c and BnaA.FRI.d) were identified in B. napus [28]. In this study, we renamed the four paralogues as BnaA3.FRI, BnaA10.FRI, BnaC3.FRI and BnaC9.FRI, respectively, according to their locations in the ‘Darmor-bzh’ reference genome [17]. Association study further indicated that one of the FRI orthologues, BnaA3.FRI, was a major regulator of flowering time and vernalization [28]. We analyzed the sequence polymorphisms of the four BnaFRI paralogues in B. napus and performed functional analysis of BnaA3.FRI. By profiling the allelic variation of BnaA3.FRI in a panel of 174 B. napus accessions representing different crop types, we confirmed that the nucleotide polymorphism within this gene was associated with flowering time variation and local adaption. Expression of BnaA3.FRI in wild-type (WT) Arabidopsis Col-0 revealed that sequence variations in the coding region of BnaA3.FRI result in weak alleles, and led to early flowering. This study provides further molecular evidence to support predictive breeding of B. napus to select varieties with favorable flowering time and better adaption to latitude and seasonal shifts due to changing climate.

Methods

Plant materials and growth conditions
A collection of 174 B. napus cultivar accessions from across the world, including 17 winter-type oilseed rape (WORs), 39 spring-type oilseed rape (SORs), and 118 semi-winter-type oilseed rape (SWORs), was used for genotype analyses of BnaA3.FRI (Additional file 1). A subset of 30 accessions representing different crop types was used for identification of nucleotide polymorphism and haplotype determination of BnaA3.FRI (Additional file 2). The duration of flowering time (from the date of sowing to the date of half of the plants flowering) of all the accessions was recorded in two successive years (2013-2014) of field trials at spring growth environments (Xining, Qinghai, 36°35′ N, 101°47′ E and Lanzhou, Gansu, 36°02′ N, 103°50′ E) in North China. Seeds were sowed on May 21 and harvested on September 16, 2013 at Xining, and sowed on May 20 and harvested on September 19, 2014 at Lanzhou. At these two spring environments, plants were grown under a day length of 14 ~ 14.5 h without vernalization. All these accessions were also grown in semi-winter environment at Wuhan (30°36′ N, 114°18′ E). Seeds were sowed on October 1, 2013 and harvested on May 12, 2014. Plants were grown under a day length of 10 ~ 11 h and vernalized in the winter. The temperatures during the whole growth period of oilseed rape in the three field sites were provided in Additional file 3. Each accession was grown in the field under natural rain-fed conditions in two-row plots with 8-10 plants per row. Tissues of roots, hypocotyledonary axis, cotyledons, leaves, stems, floral buds, siliques and seeds from Tapidor (a typical WOR) were collected and used for gene expression pattern analysis. In addition, leaves before and after vernalization, floral buds and flowers from Tapidor, Ningyou7 (a typical SWOR) and Westar (a typical SOR) were collected for analysis of BnaA3.FRI expression. Samples from three individual plants were obtained as biological replicates.
Wild-type *A. thaliana* ecotype Columbia (Col-0) (*fri* + *FLC*) was used for transformation of *BnaA3.FRI*. Seeds of T1 and T2 (includes both homo- and heterozygous) transgenic lines were screened on half-strength Murashige and Skoog (MS) medium containing 50 mg/L kanamycin under a 16-h-light/8-h-dark photoperiod in greenhouse. All plants were grown under the condition of 16-h-light/8-h-dark photoperiod and 70% humidity at 23 °C. Five plants per line were selected (days to flowering was close to the mean of days to flowering of the respective line) as biological repeats for gene expression analysis.

Nucleotide polymorphism and haplotype analysis of BnaFRIs

Genomic DNA of all the *B. napus* accessions was extracted from young leaves using a CTAB method [29]. The genomic fragments including ~0.2 kb 5’ UTR region and ~2.2 kb from ATG to 3’ UTR region of the *BnaA3.FRI*, and ~2.2 kb fragment from ATG to 3’UTR region of *BnaA10.FRI, BnaC3.FRI*, and *BnaC9.FRI* from five WORs (Darmor, Express, Sollox, Tapidor, Bakow) and five SORs (Drakkar, Grouse, Westar, Altex, No.2127) cultivars were amplified and sequenced. For marker-based haplotype (mHAP) analysis, four INDEL markers (ID-A3FRI.1, ID-A3FRI.2, ID-A10FRI and ID-C3FRI) were developed to determine haplotypes for *BnaA3.FRI, BnaA10.FRI* and *BnaC3.FRI* in *B. napus*, respectively (Fig. 1a, Additional file 4). Marker ID-A3FRI.1 was designed to detect the 29 bp and 11 bp INDELS in the 5’ UTR of *BnaA3.FRI*, while ID-A3FRI.2 was designed to detect the 21 bp INDELS in exon1 of *BnaA3.FRI* (Fig. 1a). ID-A10FRI and ID-C3FRI discriminated the 21 bp and 9 bp INDELS in exon1 of *BnaA10.FRI* and *BnaC3.FRI*, respectively.

The 2.4 kb fragment of *BnaA3.FRI* described above was amplified from another 20 *B. napus* accessions including SOR, SWOR, and WOR accessions, and

Fig. 1 Sequence variations within BnaFRIs. **a** Exon-intron structure of *BnaA3.FRI, BnaA10.FRI*, and *BnaC3.FRI*. Black rectangles indicate exons, white rectangles indicate introns. Numbers above gene structures indicate the base pair positions relative to the ATG start codon. The positions of these three BnaFRIs referred to the respective parologue in winter-type cv. Tapidor. Triangles indicate INDELS, and the numbers below each triangle indicate the length of INDELS. Arrows mark the position and orientation of INDEL markers. **b** The nine haplotypes (HAP1-HAP9) of *BnaA3.FRI* in 30 *B. napus* accessions. The sequenced fragment included 200 bp 5’ UTR and 2.2 kb gene regions of *BnaA3.FRI*. Base pair position of +1 is given relative to the ‘ATG’ start codon. Pos., the positions of nucleotide and amino acid refer to the HAP1, which represented by winter-type cv. Tapidor. ‘mHAP’, marker-based haplotype. ‘HAP’, haplotype inferred by gene sequence. ‘+’ indicate insertion, ‘—’ indicate deletion. ‘*’ indicates the same sequence with HAP1.
sequenced for polymorphism analysis (Additional file 2). Sequence analysis was conducted by SeqMan Pro (DNASTar, Madison, WI, USA). The amino acid sequences of BnaFRI were predicted using the online software FGE-NESH+ (http://linux1.softberry.com/berry.phtml).

Plasmid construction

For the functional complementation assay, a 3.8 kb genomic DNA fragment of BnaA3.FRI including 1.5 kb upstream sequence, the complete coding sequence, and 100 bp downstream region was amplified from each of Tapidor (a typical WOR with HAP1) and Ningyou7 (a typical SWOR with HAP2), with primers BnaA3.FRI-PF-BamHI and BnaA3.FRI-GR-SmaI (Additional file 4) using KOD-PLUS DNA Polymerase (TOYOBO, OSAKA JAPAN) and cloned into the BamHI-SmaI sites of the intermediate vectors to generate plasmids pHAP1::HAP1, pHAP2::HAP1, and pHAP2::HAP2.

In order to investigate the effects of different BnaA3.-FRI alleles, promoter-swap constructs were generated. The promoters (a DNA fragment of 1.5 kb upstream of the BnaA3.FRI) were amplified from HAP1 (Tapidor) and HAP2 (Ningyou7) using primers BnaA3.FRI-PF-BamHI and BnaA3.FRI-PR-SmaI, and cloned into the BamHI-SmaI sites of pCAMBIA2301 to construct intermediate vectors. The coding sequences of BnaA3.FRI from four different haplotypes were amplified from Tapidor (HAP1), Ningyou7 (HAP2), 3B014-2 (HAP3), and Altex (HAP8), respectively, using primers BnaA3.FRI-GF-Smal and BnaA3.FRI-GR-EcoRI, and introduced into the Smal-EcoRI sites of the intermediate vectors to generate plasmids pHAP1::HAP2, pHAP1::HAP3, pHAP1::HAP8 and pHAP2::HAP1. In plasmid pHAP2::HAP1, the coding sequence of HAP1 was driven by the promoter from HAP2. In plasmids pHAP1::HAP2, pHAP1::HAP3, pHAP1::HAP8, and pHAP1::HAP8, the coding regions of HAP2, 3, and 8 were driven by the promoter from HAP1. All primers used in this study are listed in Additional file 4.

To analyze the expression pattern of BnaA3.FRI, a 1.4 kb fragment promoter from Tapidor (HAP1) was amplified using primers proF-BamHI and proR-HindIII and then cloned into the BamHI-HindIII sites of pCAMBIA2301-GUS, which was generated from pCAMBIA2301 by inserting the β-glucuronidase (GUS) gene into the HindIII–PmlI sites, to construct the pBnaA3.FRI-GUS plasmid. For cellular localization analysis, full-length of BnaA3.FRI cDNA sequence (1729 bp) was isolated from Tapidor (HAP1) using primers BnaA3.FRI–F-PmlI and BnaA3.FRI–R-AsiSI (Additional file 4) and inserted into the PmlI-AsiSI sites of pDOE20 (30) to generate mVenus-BnaA3.FRI (YFP-BnaA3.FRI) fusion protein. Meanwhile, a nuclear marker Ghd7 [31] was introduced into the BamHI-XbaI sites of pDOE20 to generate the mTurquoise2-GHD7 (CFP-GHD7) fusion protein. In this way, two fusion proteins co-express in a single construct.

Plant transformation and phenotyping

For expression pattern determination and functional analysis of BnaA3.FRI, Agrobacterium tumefaciens strain GV3101 harboring plasmid pHAP1::HAP1, pHAP1::HAP2, pHAP1::HAP3, pHAP1::HAP8, pHAP2::HAP2, pHAP2::HAP1, or pBnaA3.FRI::GUS was used to transform A. thaliana accession Col-0 by a floral dip method [32]. T1 and T2 transgenic plants were screened on half-strength MS plates containing 50 mg/L kanamycin. Flowering time of 15 T2 transgenic plants of each line was recorded. Flowering time was determined by the mean rosette leaf number or the mean days from sowing to bolting time, with the bolting time determined by when the inflorescence stem was 1 cm high.

RT-PCR analysis

Total RNA was isolated using an RNAprep Pure Plant kit (BioTeKe, China) according to the manufacturer’s instructions. The concentration of RNA was determined by spectrometry (NanoDrop; Thermo Scientific, USA). RNase-free DNasel (Thermo Scientific, USA) was used to remove contaminated DNA, and then a RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, USA) was used to reverse transcribe RNA samples. Quantitative RT-PCR (qRT-PCR) was performed to analyze the expression levels of BnaA3.FRI in B. napus, and BnaA3.FRI and AtFLC in transgenic plants. Amplification of cDNA was conducted using a SYBR Green master mixture (BioRad, USA) at 37 °C overnight followed by decolorization with 70% ethanol [34]. A transient expression experiment was performed in tobacco (Nicotiana benthamiana cv. SR1) leaves to analyze the subcellular localization of BnaA3.FRI according to Voinnet et al. [35]. The Agrobacterium GV3101 cells containing the pDOE20 recombinant plasmid that expresses CFP-GHD7 and YFP-BnaA3.FRI, also expresses the silencing suppressor p19 of Tomato bushy stunt virus, were harvested and re-suspended in the solution of 10 mM MES-KOH, pH 5.6, containing 10 mM.
MgCl₂ and 150 mM acetosyringone to a final density of 0.8 at 600 nm (OD₆₀₀). The Agrobacterium suspension was injected into expanded leaves of 6-week-old tobacco plants. Three days after injection, the leaves were observed with a laser scanning confocal imaging system (TCS SP2, Leica, Germany).

Statistical analysis
For flowering time and gene expression comparison between each two data sets, we performed F-test to compare the significant level of sample variances (α = 0.05), and then equal variance or unequal variance two-tailed t-test was conducted according to the result of F-test (equal variance t-test when the P value of F-test equal to or above 0.05, unequal variance t-test when the P value of F test below 0.05).

Results
Sequence variations of BnaFRI paralogues in B. napus
To investigate sequence variations of the four BnaFRIs (BnaA3.FRI, BnaA10.FRI, BnaC3.FRI and BnaC9.FRI) in different crop types of B. napus, the 2.4 kb genomic fragment of BnaA3.FRI (including 200 bp 5' UTR and ~2.2 kb gene region), and the ~2.2 kb genomic fragments of BnaA10.FRI, BnaC3.FRI and BnaC9.FRI (from ATG to ~50 bp 3' UTR) were amplified from five SORs and five WORs and sequenced. Four INDELs and 26 single nucleotide polymorphisms (SNPs) were identified in BnaA3.FRI (Additional file 5). Of the four INDELs, two (29 bp and 11 bp) were located in the 5' UTR, one (21 bp) in exon 1, and the other (4 bp) in intron 1 (Fig. 1a). Of the 26 SNPs, 14 result in amino acid substitutions (Fig. 1b). In BnaA10.FRI, a total of four INDELs and 26 SNPs were identified (Additional file 5). Three (21 bp, 9 bp and 3 bp) of the INDELs located in exon 1, and the other (1 bp) in intron 1 (Fig. 1a). Eleven of the SNPs result in amino acid substitutions. Six INDELs and 44 SNPs were identified in BnaC3.FRI (Fig. 1a, Additional file 5). Of the six INDELs, two (21 bp and 9 bp) were located in exon 1, three (2 bp, 1 bp and 7 bp) in intron 1, and the other (11 bp) in intron 2 (Fig. 1a). Fourteen of the SNPs cause amino acid substitutions. All the INDELs in exons of the three paralogues result in in-frame amino acid insertion/deletion. Although such variations were found in these three BnaFRI paralogues, no such sequence variation was detected in BnaC9.FRI.

To explore the haplotype variations of BnaFRIs in different B. napus crop types, a panel of 174 B. napus accessions, including 39 SORs, 118 SWORs, and 17 WORs (Additional file 1) were genotyped using the four INDEL markers, ID-A3FRI.1, ID-A3FRI.2, ID-A10FRI, and ID-C3FRI (Fig. 1a). Haplotypes detected by these INDEL markers are named as marker-based haplotypes (mHAPs) (Fig. 1b). In total, four BnaA3.FRI mHAPs (mHAP1, 2, 3, and 4), three BnaA10.FRI mHAPs (mHAP1, 2, and 3), and four BnaC3.FRI mHAPs (mHAP1, 2, 3, and 4) were identified in the 174 accessions (Table 1). For BnaA3.FRI, 40 accessions were inferred as mHAP1 (22.99%), 106 as mHAP2 (60.92%), 25 as mHAP3 (14.37%), and 3 as mHAP4 (1.7%). For BnaA10.FRI, 89 accessions were inferred as mHAP1 (51.14%), 37 as mHAP2 (21.26%), 48 as mHAP3 (27.59%), and 15 as mHAP4 (8.62%). For BnaC10.FRI, 89 accessions were inferred as mHAP1 (51.14%), 37 as mHAP2

| Table 1 Haplotype of BnaFRIs in a panel of 174 B. napus by INDEL markers |
|-----------------------------|-------------------|-------------------|-------------------|
| | Frequency | INDELs |
| BnaA3.FRI | | |
| mHAP1^b | 40 (22.99%) | Promoter^c (29 bp) | Promoter (11 bp) | Exon 1 (21 bp) |
| mHAP2 | 106 (60.92%) | | + | + |
| mHAP3 | 25 (14.37%) | | – | – |
| mHAP4 | 3 (1.7%) | | + | – |
| BnaA10.FRI | | |
| mHAP1 | 89 (51.14%) | | + | + |
| mHAP2 | 37 (21.26%) | | – | – |
| mHAP3 | 48 (27.59%) | | + | – |
| BnaC3.FRI | | |
| mHAP1 | 125 (71.84%) | | + | + |
| mHAP2 | 33 (18.97%) | | – | – |
| mHAP3 | 15 (8.62%) | | – | + |
| mHAP4 | 1 (0.57%) | | + | – |

^a The location and length of INDEL
^b Marker-based haplotype. For each paralogue, haplotype in winter oilseed rape cv. Tapidor was inferred as mHAP1
^c +, insertion; –, deletion
(21.26%), and 48 as mHAP3 (27.59%). For BnaC3.FRI, 125 accessions were inferred as mHAP1 (71.84%), 33 as mHAP2 (18.97%), 15 as mHAP3 (8.62%), and 1 as mHAP4 (0.57%) (Table 1).

To further explore sequence variations of BnaA3.FRI, the ~ 2.4 kb genomic fragment of BnaA3.FRI mentioned above was amplified from another 20 B. napus accessions representing different crop types, and sequenced (Additional file 2). In addition to the previously identified 30 polymorphic sites (4 INDELs and 26 SNPs) in the 10 B. napus accessions, three more polymorphic sites were identified in exon 1, including one 3-bp INDEL and two SNPs (Fig. 1b). All sequence variations detected across the 30 sequenced accessions could be classified into nine haplotypes (HAP1-HAP9) (Fig. 1b). HAP1 was identified in 10 accessions, HAP2 in eight accessions, HAP3 in 15 accessions, and HAP4 in 29 accessions. HAP 1-3, 5-7, and 9 corresponded to mHAP2, HAP8 to mHAP3, and HAP9 inferred by INDEL markers. HAP2 to HAP7 were all the WOR carried HAP1, which corresponded to the mHAP1 inferred by INDEL markers. The WOR accessions contained mHAP1, mHAP2, and mHAP3 with frequencies of 82.35% (14/17) and 17.65% (3/17), respectively. Chi-square analysis indicated that only WOR had a biased distribution of BnaC3.FRI mHAPs (Table 2). These results indicated that all the three BnaFRI paralogues may involve in the crop type differentiation in B. napus.

Associations of BnaFRIs with crop type and flowering time of B. napus

To check associations between each BnaFRI paralogue and B. napus crop type, Chi-square analyses were performed to test the distributions of BnaFRI mHAPs within each crop type. For BnaA3.FRI, all the WOR accessions only contained mHAP1, the majority of SWOR accessions contained mHAP2 (97/118, 82.2%), while the SOR accessions contained three major haplotypes, mHAP1 (15/39, 38.46%), mHAP2 (9/39, 23.08%) and mHAP3 (14/39, 35.90%), and a minor haplotype mHAP4 (1/39, 2.56%). Chi-square analysis indicated that the crop types had a biased number of lines with each of the BnaA3.FRI mHAPs (Table 2), which denied the null hypothesis (H_0) that BnaA3.FRI mHAPs follow the same distribution among crop types. For BnaA10.FRI, the frequency of mHAP1, mHAP2, and mHAP3 in SOR accessions were 15.58% (6/39), 51.28% (20/39), and 33.33% (13/39), respectively, and 58.47% (69/118), 11.86% (14/118), and 29.66% (35/118), respectively, in SWOR. The WOR accessions only contained mHAP1 and mHAP2, which the frequencies were 82.35% (14/17) and 17.65% (3/17), respectively. Chi-square analysis indicated that BnaA10.FRI mHAPs also displayed a biased distribution among the three crop types. For BnaC3.FRI, the majority of mHAP1 was the most represented mHAP in the SOR and SWOR accessions (33/39, 84.62%, and 87/118, 73.73%, respectively), and the mHAP2 was the most represented mHAP in WOR accessions (70.59%). Chi-square analysis showed that only WOR had a biased distribution of BnaC3.FRI mHAPs (Table 2). These results indicated that all the three BnaFRI paralogues may involve in the crop type differentiation in B. napus.

To dissect the associations of BnaFRIs and flowering time, the flowering time of different BnaFRI mHAPs within each crop type were compared using t-tests. For BnaA3.FRI, the means of flowering date of SOR accessions with mHAP1, mHAP2, and mHAP3 had no difference in spring environments at 2013XN and 2014LZ (Fig. 2a, b). However, accessions with mHAP1 flowered later than those with mHAP3 in all environments (Fig. 2c). The SWOR accessions with mHAP1 flowered later than those with mHAP3 in all environments (Fig. 2d, e, and f), and displayed a significant difference in flowering time when grown in the spring environment of 2013XN and 2014LZ. The SWOR accessions with mHAP2 showed an intermediate flowering time between mHAP1 and mHAP3 (Fig. 2d, e, and f). The WOR accessions, which only contained mHAP1, flowered extremely late or did not flower when grown in the two spring environments of 2013XN and 2014LZ, and flowered (178.5 ± 5.08 d) much later than all SOR and SWOR accessions when grown in the winter environment of 2014WH (Additional file 1). Different from BnaA3.FRI, the accessions with different BnaA10.FRI or BnaC3.FRI mHAPs within each crop type did not

Table 2 Chi-square test for the BnaFRIs haplotype distributions within different crop type of B. napus

Haplotypes	Spring	Semi-winter	Winter
mHAP1	15	6	14
mHAP2	9	20	13
mHAP3	14	14	35
mHAP4	0	3	0
Total	39	39	39

Chi-square test for BnaA3.FRI haplotypes and crop types

Haplotypes	Spring	Semi-winter	Winter
mHAP1	33	69	14
mHAP2	32	19	11
mHAP3	4	11	1
mHAP4	0	0	0
Total	39	39	39

Chi-square test for BnaA10.FRI haplotypes and crop types

Haplotypes	Spring	Semi-winter	Winter
mHAP1	14	69	14
mHAP2	9	19	11
mHAP3	4	11	1
mHAP4	0	0	0
Total	39	39	39

Chi-square test for BnaC3.FRI haplotypes and crop types

Haplotypes	Spring	Semi-winter	Winter
mHAP1	15	69	14
mHAP2	9	19	11
mHAP3	4	11	1
mHAP4	0	0	0
Total	39	39	39

H0: BnaFRIs mHAPs follow the same distribution among the three B. napus crop types

a: mHAP, haplotype based on INDEL markers
b: degrees of freedom
c: *** $p < 0.001$, * $p < 0.05$
display significant variations on flowering time in all assessed environments (Additional files 6, 7). For the combinations of the three BnaFRI haplotypes, the significant difference on flowering time was only observed between the SOR accessions with BnaA3.FRI mHAP1 + BnaC3.FRI mHAP1 + BnaA10.FRI mHAP2 (133.4 ± 15.89 d) and accessions with BnaA3.FRI mHAP3 + BnaC3.FRI mHAP1 + BnaA10.FRI mHAP2 (164.5 ± 2.36 d) in 2014WH environment (Additional file 8), which was mainly caused by the mHAP difference of BnaA3.-FRI. These results suggested that, among the three BnaFRI s, only BnaA3.FRI is associated with flowering time variation in B. napus. We thus focused our study on functional analysis of BnaA3.FRI.

Expression and subcellular localization of BnaA3.FRI
The expression level of BnaA3.FRI was analyzed in leaves before and after vernalization, floral buds, and flowers of the three crop types represented by Tapidor (WOR with HAP1), Ningyou7 (SWOR with HAP2), and Westar (SOR with HAP2) using quantitative RT-PCR (qRT-PCR). As shown in Fig. 3a, BnaA3.FRI expressed in all the four tissues, and displayed a lowest level in leaves after vernalization and highest in floral buds.

To explore the expression pattern of BnaA3.FRI, we checked the mRNA transcripts of BnaA3.FRI in roots, hypocotyledonal axes, cotyledons, leaves, stems, floral buds, siliques and seeds from the WOR variety Tapidor (Fig. 3b). BnaA3.FRI transcribed in all tissues but showed much higher expression level in roots, leaves, floral buds and seeds (Fig. 3b). Transgenic Arabidopsis lines harboring the construct pBnaA3.FRI::GUS, which contained the 1.5 kb promoter region of BnaA3.FRI from Tapidor (HAP1), were used for GUS staining. Histochemical staining revealed strong GUS activity in roots, leaves, and flowers (Fig. 3c–g).

Previous studies in Arabidopsis demonstrated that FRI acts as a scaffold protein to recruit several chromatin modifiers in nucleus and epigenetically modify the key flowering regulator FLC [11, 13]. BnaA3.FRI is predicted to translate a putative protein containing 596 amino acids, which carries the conserved ‘Frigida’ domain [36], and shares 58% identity in amino acid sequence with AtFRI (AF228500) [15, 28]. To explore the subcellular localization of the BnaA3.FRI protein, the plasmid pDOE20, that co-expresses fusion proteins YFP-BnaA3.FRI and CFP-Ghd7, was introduced into tobacco leaves for transient expression analysis. The results
demonstrated that BnaA3.FRI was co-localized with Ghd7 in the nucleus (Fig. 3h).

Functional analysis of BnaA3.FRI

In Arabidopsis, FRI is the major determinate of flowering time variation [15]. In order to understand the effect of BnaA3.FRI variation on flowering time, binary vectors pBnaA3.FRI::BnaA3.FRI that contained a 3.8 kb DNA fragment including 1.5 kb 5' UTR, 2.2 kb coding and 100 bp downstream regions of BnaA3.FRI HAP1 (pHA-P1::HAP1) or HAP2 (pHAP2::HAP2) were transformed into A. thaliana Columbia (Col-0) (fri + FLC), respectively. Two independent T2 transgenic lines each were selected from the HAP1 and HAP2 positive transgenic plants. One-way ANOVA and t-test indicated that the two T2 transgenic lines harboring BnaA3.FRI HAP1 (47.2 ± 3.79 d and 37.4 ± 6.43 l; 46.71 ± 3.15 d and 33.3 ± 6.25 l) or HAP2 (30.22 ± 2.74 d, and 17.6 ± 3.35 l; 28.11 ± 1.29 d and 16 ± 1.91 l) flowered significantly later than WT Col-0 (24.17 ± 0.37 d and 13.75 ± 0.66 l) (P < 0.01) (Fig. 4b, d). Moreover, both days to flowering and rosette leaf number of the two HAP1 transgenic lines were significantly greater than those of the two HAP2 transgenic lines (Fig. 4a–d), suggesting that HAP1 is a strong allele.

To confirm whether the later flowering of transgenic lines was caused by elevated AtFLC expression level due to the introduction of a functional BnaA3.FRI gene, qRT-PCR was performed to compare the expression...
levels of \textit{BnaA3.FRI} and \textit{AtFLC} between transgenic lines and WT Col-0. In accordance with the flowering time variations between these lines, the \textit{BnaA3.FRI} and \textit{AtFLC} levels in the two HAP2 transgenic lines were significantly lower than those in the two HAP1 transgenic lines (Fig. 4c and e).

Effects of sequence variations in promoter and coding regions of \textit{BnaA3.FRI}

To validate whether variations in promoter resulted in differential expression of \textit{BnaA3.FRI}, or whether the variations in coding sequence cause functional defects of the \textit{BnaA3.FRI} protein, combinations of promoter and coding sequence of different haplotypes (pHAP1::HAP2, pHAP1::HAP3, pHAP1::HAP8, and pHAP2::HAP1) were transformed into Col-0 for phenotypic and transcriptional analysis. All transgenic lines harboring recombinant \textit{BnaA3.FRI} haplotypes showed later flowering when compared to WT Col-0 (Fig. 5a, Additional file 9). The transgenic lines that harbored pHAP2::HAP1 (41.5 ± 7.29 d) flowered significantly later than lines harboring pHAP1::HAP2 (30.91 ± 3.94 d), pHAP1::HAP3 (32.1 ± 2.72 d), or pHAP1::HAP8 (35 ± 3.13 d) ($P < 0.01$) (Fig. 5a). Moreover, the rosette leaf number for pHAP2::HAP1 (26.9 ± 7.75 leaves) was also significantly higher than for the transgenic lines pHAP1::HAP1 (16.9 ± 3.26 leaves) or pHAP1::HAP3 (18.75 ± 2.65 leaves) ($P < 0.01$) (Fig. 5c). However, no significant difference in days to flowering was observed between the transgenic lines of pHAP2::HAP1 and pHAP1::HAP1, or between pHAP1::HAP2 and pHAP2::HAP2 (Fig. 5a). These results indicate that variations in the coding sequence of \textit{BnaA3.FRI} leading to weak alleles, and causing variations in flowering time.

The \textit{BnaA3.FRI} expression levels in pHAP1::HAP3, pHAP2::HAP1, and pHAP1::HAP1 transgenic lines were significantly higher than the transgenic lines harboring pHAP2::HAP2, pHAP1::HAP2, and pHAP1::HAP8, and WT Col-0 ($P < 0.01$) (Fig. 5b). While driven by the same promoter, the \textit{BnaA3.FRI} mRNA levels showed
significant differences among the transgenic lines of pHAP1::HAP1, pHAP1::HAP2, pHAP1::HAP3, and pHAP1::HAP8, and also between pHAP2::HAP1 and pHAP2::HAP2 (Fig. 5b), suggesting that there might have an important cis-element necessary for transcription within the coding region. The transcription levels of AtFLC were up-regulated in all transgenic lines when compared to WT Col-0 (Fig. 5d). It is worth noting that the expression level of BnaA3.FRI did not correlate with the mRNA level of AtFLC (Fig. 5b, d). However, the expression level of AtFLC was proportional to the flowering time of these transgenic lines (Fig. 5a, d). Taken together, our results demonstrate that HAP1 is stronger than other haplotypes and mutations in the coding sequence of BnaA3.FRI result in weak alleles, which contribute to variation in flowering time.

Discussion

Potential functional divergence of different FRI orthologues in B. napus

Four FRI orthologues, BnaA3.FRI, BnaA10.FRI, BnaC3.FRI and BnaC9.FRI, had previously been identified in B. napus [28, 37]. In this study, a large number of sequence variations including INDELs and SNPs were identified within the coding sequences of BnaA3.FRI, BnaA10.FRI and BnaC3.FRI (Additional file 5). In contrast to the high level of polymorphism observed in the other B. napus FRI genes, no sequence variation was identified in BnaC9.FRI. Correspondingly, the orthologue of BnaC9.FRI in B. oleracea, BolC.FRI.b, was also highly conserved in different crop types of B. oleracea [38]. Moreover, BnaC9.FRI in B. napus displayed a high level of mRNA transcripts in both vernalized and non-vernalized tissues [38]. These results suggest BnaC9.FRI may be functionally important, but requires further investigation.

Marker-based haplotype analysis of BnaFRIs in a panel of 174 B. napus identified four, three, and four mHAPs for BnaA3.FRI, BnaA10.FRI and BnaC3.FRI, respectively. Chi-square analyses showed that the WOR accessions had a biased distribution in mHAPs of all the three BnaFRIs, and the SOR and SWOR had a biased distribution in mHAPs of BnaA3.FRI and BnaA10.FRI (Table 2). However, of the three BnaFRIs, only BnaA3.FRI variation was associated with flowering time variation in B. napus (Fig. 2), and no association was identified between flowering time and combinations of BnaFRIs alleles (Additional file 8). In accordance with previous studies, our results suggested that BnaA3.FRI plays important roles in vernalization response, crop type differentiation and flowering time variation in B. napus [18, 26–28]. However, associations of BnaC3.FRI and BnaA10.FRI with vernalization response and flowering time have not documented. Sequence analyses indicated that the two
BnaC3.FRI haplotypes shared extremely high amino acid identity to the two BolC.FRIa alleles (99.3% between BnaC3.FRI -mHAP1 and BolC.FRIa-E8, and 99.8% between BnaC3.FRI -mHAP2 and BolC.FRIa-E1) (Additional file 10), the corresponding orthologues in B. oleracea [38]. Moreover, BnaC3.FRI -mHAP1 and BolC-FRIa-E1 were over-represented in both winter type B. napus and B. oleracea [38]. The two BolC.FRIa alleles have been demonstrated to equally delay flowering time in Arabidopsis [38], indicating that sequence variations in BolC.FRIa do not affect its function, which is in accordance with our result that BnaFRI.C3 did not associate with flowering time variation in B. napus (Additional file 7). Thus, further study will need to speculate the specific functions of BanC3.FRI and BnaA10.FRI.

Variation of BnaA3.FRI is tightly associated with flowering time variation in B. napus

Previous linkage and association studies indicated that BnaA3.FRI is an important flowering regulator [28] in B. napus. Extensive sequence variations were identified in both 5’ UTR and coding region of BnaA3.FRI (Fig. 1), and could be classified into four mHAPs across the 174 accessions. The distribution of haplotypes showed strong association with crop type differentiation, as all the WOR accessions contained mHAP1, the majority of SWOR contained mHAP2, while the SOR did not have a major haplotype (Table2). Expression of different BnaA3.FRI haplotypes in Arabidopsis showed that the function of mHAP1 (corresponding to HAP1) is much stronger than mHAP2 (corresponding to HAP2) and mHAP3 (corresponding to HAP8) (Figs. 4 and 5). Thus, our results establish that the BnaA3.FRI mHAP1 is the wild type allele, and confers the vernalization requirement and late flowering of WOR.

Further investigation of the relationship between BnaA3.FRI haplotypes and variations in flowering time in both SWOR and SOR indicated that different BnaA3.-FRI haplotypes were consistent with significant differences in flowering time (Fig. 2). As expected, the SWOR with mHAP1 flowered later than those with mHAP2 or mHAP3, especially in spring environment (Fig. 2e). The later flowering of SWOR with mHAP1 may result from the activated expression of BnaFLCs. In Arabidopsis, FRI is a major determinant of vernalization response and flowering time variation, which is primarily achieved by activating the expression of FLC, and so loss-of-function mutation of FRI could lead to early flowering [15, 39]. The vernalization pathway appears to be conserved in B. napus, since QTLs corresponding to BnaA3.FRI and BnaA10.FLC explained the majority of vernalization response and flowering time variations in different populations [18, 40]. However, it was interesting to note that the SOR containing mHAP1 flowered earlier than those with mHAP2 or mHAP3 (Fig. 2e). This may because the major FLC locus (BnaA10.FLC) in SORs, which is a key gene in vernalization pathway and acts down-stream of FRI, is mutated (our unpublished data). On the other hand, a similar result has also been documented in Arabidopsis, where summer-annual accessions with functional FRI alleles accelerate flowering relative to those with nonfunctional FRI alleles [16]. Both the SOR and summer-annual Arabidopsis have an early flowering growth type and can initiate flowering without vernalization via the photoperiod pathway. Thus, further investigation will be needed to identify the specific flowering time control mechanism of BnaA3.FRI in SOR, and whether it works independent from FLC or vernalization.

Variation in coding region of BnaA3.FRI results in weak alleles

In this study, we identified 33 polymorphic sites within the 5’ UTR and coding region of BnaA3.FRI in 30 B. napus accessions (Fig. 1b). An excess of non-synonymous mutations were identified within the coding region of BnaA3.FRI, with 14 SNPs and two INDELS predicted to cause amino acid substitution or deletion (Fig. 1b). The majority of these polymorphic sites were common between this and a previous study [28], and no frame shift or stop codons mutations were identified within BnaA3.FRI. This differs from the FRI mutation types in Arabidopsis, where the major two mutant alleles, FRI (Col) and FRI (Ler), are loss-of-function and vernalization insensitive [10, 15, 39, 41]. Functional analysis of four different BnaA3.FRI haplotypes in Arabidopsis (HAP1, HAP2, HAP3, and HAP8) indicated they were all functional (Fig. 5). However, HAP1 showed a much stronger function in delaying flowering time than the other three haplotypes. These results suggest that these sequence variations in the coding region of BnaA3.FRI result in weak alleles, and contribute to subtle flowering time variation in B. napus and appear to be under ongoing active selection since domestication. Candidate gene association analysis by Wang et al. [28] identified several SNPs that associate with flowering time variation. We conclude that further studies will need to identify the key amino acid sites that influence the function of BnaA3.FRI protein. The two INDELS in 5’ UTR differentiated two major kinds of promoters. However, transgenic analysis demonstrated they had an equivalent function under the conditions tested (Fig. 5). This indicates that these variations in promoter had no or little effect on the expression of BnaA3.FRI.

Conclusions

In this study we identified a number of sequence variations in the coding region as well as 5’ UTR region of
BnaA3.FRI, and investigated the effects of these variations on flowering time by association and transgenic analysis in B. napus and Arabidopsis, respectively. While major variations observed in coding sequence of BnaA3.FRI confer weak alleles that lead to flowering time variation, variations in promoter had no or little effect on the expression of BnaA3.FRI. These results thus provide useful information for selection of appropriate alleles in B. napus breeding for optimal flowering time.

Additional files

Additional file 1: Accession information of the 174 B. napus and their BnaA3.FRI haplotypes. (XLXS 20 kb)

Additional file 2: Sequence variations and haplotypes of BnaA3.FRI in 30 B. napus. (XLXS 14 kb)

Additional file 3: The temperature data for the whole growth period of oilseed rape in the three field sites. (XLXS 20 kb)

Additional file 4: Primers used in this study. (XLSX 12 kb)

Additional file 5: Polymorphic sites within BnaA3.FRI, BnaA10.FRI, and BnaC3.FRI. (XLXS 14 kb)

Additional file 6: The effect of different BnaA10.FRI haplotypes on mean days to flowering in SORs (accession numbers of mHAP1-3 were 6, 20, and 13, respectively) (A-C) and SWORs (accession numbers of mHAP1-3 were 69, 14, and 35, respectively) (D-F). Numbers above each box indicate the means of days to flowering for the three growing conditions (2013XN = at year 2013, Qinghai, spring environment; 2014LZ = at year 2014, Gansu, spring environment; 2014WH = at year 2014, Wuhan, semi-winter environment). mHAP marker-based haplotype. (TIFF 421 kb)

Additional file 7: The effect of different BnaC3.FRI haplotypes on mean days to flowering in SORs (accession numbers of mHAP1-3 were 33, 2, and 4, respectively) (A-C), and SWORs (accession numbers of mHAP1-3 were 87, 19, and 11, respectively) (D-F), and WOR (accession numbers of mHAP1 and 2 were 5 and 12, respectively) (G). Numbers above each box indicate the means of days to flowering for the three growing conditions (2013XN = at year 2013, Qinghai, spring environment; 2014LZ = at year 2014, Gansu, spring environment; 2014WH = at year 2014, Wuhan, semi-winter environment). mHAP marker-based haplotype. (TIFF 590 kb)

Additional file 8: The effect of combinations of BnaFRI haplotypes on mean days to flowering in SORs (A-C), SWORs (D-F), and WOR (G). 1+1+1 indicates the combinations of BnaA3.FRI + BnaA10.FRI + BnaC3.FRI, and so on for the rest. Numbers in brackets indicate the accession number of each combination. Numbers above each box indicate the means of days to flowering for the three growing conditions (2013XN = at year 2013, Qinghai, spring environment; 2014LZ = at year 2014, Gansu, spring environment; 2014WH = at year 2014, Wuhan, semi-winter environment). **, significant difference according to t-test (p = 0.05), P < 0.01. mHAP marker-based haplotype. (TIFF 554 kb)

Additional file 9: Variance of phenotype for flowering time of all the transgenic lines harboring different BnaA3.FRI haplotypes and Col-0. (A) The phenotype at flowering stage, (B) days to flowering; (C) rosette leaf numbers at bolting stage. Letters indicate significant differences according to t-test (p = 0.05) (TIFF 1200 kb)

Additional file 10: Multiple sequence alignment between BnaC3.FRI and BolC.FRI. The Genbank accession numbers of BolC.FRI-a1-E1 and BolC.FRI-a2-EB alleles used for the alignment were XP_013629499.1 and AF873850.1, respectively. Stars indicate the non-synonymous mutations. Arrows indicate the two locations of amino acid deletions. (TIFF 6910 kb)

Abbreviations

BAC: bacterial artificial chromosome; CFP: mTurquoise2; CO: CONSTANS; FR: FRIGIDA; FT: FLOWERING LOCUS T; GUS: β-glucuronidase; HAP: haplotype; INDEL: insertion/deletion; LFY: LEAFY; mHAP: haplotype based on marker; QTL: Quantitative trait locus; SNP: Single nucleotide polymorphisms; SOC1: SUPPRESSOR OF OVEREXPRESS OF CONSTANS; SOR: Spring oilseed rape; SWOR: Semi-winter oilseed rape; UTR: Untranslated regions; WOR: Winter oilseed rape; YFP: mVenus

Acknowledgements

Not applicable.

Funding

This work was supported by the National Natural Science Foundation (31471531) and National Basic Research and Development Programme of China (2015CB150200). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The data sets supporting the results of this article are included within the article.

Authors’ contributions

JW and LY conceived and designed the experiments. LY supervised the work and wrote the paper. LY and CC amplified and sequenced the BnaFRI alleles. LY, CC, and SY performed the marker analysis of BnaA3.FRI and transgenic analysis. H.L. recorded the flowering date of the 174 B. napus accessions. ZL and BW contributed to sequence alignment and haplotype analysis of BnaFRI. KL and GK provided guidance on data statistical analysis, and presentation of the results. JW, KL, and GK revised the paper. All authors approved and read the final manuscript.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430071, China. 2Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia.

Received: 26 April 2017 Accepted: 6 February 2018
Published online: 13 February 2018

References

1. Fornara F, de Montaigu A, Coupland G. SnapShot: Control of flowering in Arabidopsis. Cell. 2010;141(3):530–550.
2. Wang L, Bai Y, Wang Y, Wang H, Zhao Z, Li G, et al. A novel MADS box gene, FOSG1, confers a late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell. 2001;13(4):395–41.
10. Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol. 2005;138(2):1163–73.

11. Choi K, Kim J, Hwang HJ, Kim S, Park C, Kim SY, Lee I. The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. Plant Cell. 2011;23(12):289–303.

12. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 2002;21(16):4327–37.

13. Hu X, Kong X, Wang C, Ma L, Zhao J, Wei J, Zhang X, Loake GJ, Zhang T, Huang J, et al. Proteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization. Plant Cell. 2014;26(12):4763–81.

14. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature. 2004;427(6970):164–7.

15. Johanson U. Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science. 2000;290(5490):344–7.

16. Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halliday Dottor M, Schmitt J. A latitudinalcline in flowering time in Arabidopsis Thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci U S A. 2004;101(13):4712–7.

17. Chalhoub B, Denoel F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcam H, Tong C, Samans B, et al. Plant genes. Early allopolyploid evolution in the post-Neolithic Brassica Napus oilseed genome. Science. 2014;345(6199):950–3.

18. Long Y, Shi J, Qu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, et al. Flowering time quantitative trait loci analysis of oilseed brassica in multiple environments and genomewide alignement with Arabidopsis. Genetics. 2007;177(4):2433–44.

19. Cai CC, Tu JX, Fu TD, Chen BY. The genetic basis of flowering time and photoperiod sensitivity in rapeseed (Brassica Napus L.). Genetika. 2008;44(3):381–8.

20. Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Preece SJ, et al. A tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica Napus). J Exp Bot. 2014;65(1):545–53.

21. Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Frontiers in Plant Science. 2016;7:338.

22. Xu L, Hu K, Zhang Z, Guan C, Chen S, Hua W, Li J, Wen J, Yi B, Shen J, et al. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica Napus L.). DNA Res. 2016;23(1):43–52.

23. Axelson T, Shavroukova Y, Lagercrantz U. Multiple flowering time QTLs within several brassica species could be the result of duplicated copies of an ancestral gene. Genome. 2001;44(5):565–66.

24. Tadese M, Sheldon CC, Hellwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ. Control of flowering time by FLC orthologues in Brassica Napus. Plant J. 2001;28(5):545–53.

25. Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, et al. A tourist-like MITE insertion in the upstream region of the BnFLCA10 gene is associated with vernalization requirement in rapeseed (Brassica Napus). BMC Plant Biol. 2012;12:238.

26. Osborn TC, Kole C, Parkin IA, Sharpe AG, Kuiper M, Lydiate DJ, Trick M. Comparison of flowering time genes in Brassica Rapa, B. Napus and Arabidopsis Thaliana. Genetics. 1997;146(3):1123–9.

27. Schiess S, Iniguez-Luy F, Qian W, Snowden RJ. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica Napus. BMC Genomics. 2015;16:737.

28. Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Muller AE, Jung C. Flowering time variation in oilseed rape (Brassica Napus L.) is associated with allelic variation in the FRIGIDA homologue BnAFRI. J Exp Bot. 2011;62(15):5641–58.

29. Doyle JD. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–5.

30. Schiess S, Iniguez-Luy F, Qian W, Snowden RJ. Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica Napus. BMC Genomics. 2015;16:737.

31. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, et al. Natural variation in GhF3 is an important regulator of heading date and yield potential in rice. Nat Genet. 2008;40(6):761–7.

32. Clough SJ, Bent AF. Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998;16:735–43.

33. Yang H, Liu J, Huang S, Guo T, Deng L, Hua W. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in Brassica Napus L. Gene. 2014;538(1):113–22.

34. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–7.

35. Voinnet O, Rivas S, Mestre P, Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 2003;33(5):949–56.

36. Risik JM, Laurie RE, Macknight RC, Day CL. FRIGIDA and related proteins have a conserved central domain and family specific N- and C-terminal regions that are functionally important. Plant Mol Biol. 2010;73(4-5):493–505.

37. Schiess S, Samans B, Huttel B, Reinhard R, Snowden RJ. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front Plant Sci. 2014;5:404.

38. Irwin JA, Lister C, Sourmpourou E, Zhang Y, Howell EC, Teakle G, Dean C. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol. 2012;12:21.

39. Gazzani S, Gendall AR, Lister C, Dean C. Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol. 2003;132(2):1107–14.

40. Le Corre V, Roux F, Reboud Y. DNA polymorphism at the FRIGIDA gene in Arabidopsis Thaliana: extensive nonsynonymous variation is consistent with local selection for flowering time. Mol Biol Evol. 2002;19(8):1261–71.

Submit your next manuscript to BioMed Central and we will help you at every step:

- We accept pre-submission inquiries
- Our selector tool helps you to find the most relevant journal
- We provide round the clock customer support
- Convenient online submission
- Thorough peer review
- Inclusion in PubMed and all major indexing services
- Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit