126 GeV Higgs boson and universality relations
in the $SO(5) \times U(1)$ gauge-Higgs unification

Yutaka Hosotani
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

The Higgs boson mass $m_H = 126$ GeV in the $SO(5) \times U(1)$ gauge-Higgs unification in the Randall-Sundrum space leads to important consequences. An universal relation is found between the Kaluza-Klein (KK) mass scale m_{KK} and the Aharonov-Bohm phase θ_H in the fifth dimension; $m_{KK} \sim 1350$ GeV$/\sin \theta_H^{0.787}$. The cubic and quartic self-couplings of the Higgs boson become smaller than those in the SM, having universal dependence on θ_H. The decay rates $H \rightarrow \gamma\gamma, gg$ are evaluated by summing contributions from KK towers. Corrections coming from KK excited states turn out very small. With $\theta_H = 0.1 \sim 0.35$, the mass of the first KK Z is predicted to be $2.5 \sim 6$ TeV.

I. INTRODUCTION

The discovery of a Higgs-like boson with $m_H = 126$ GeV at LHC may give a hint for extra dimensions. We show [1] that the observed Higgs boson mass in the gauge-Higgs unification scenario leads to universal relations among the AB phase θ_H, the KK mass m_{KK}, the Higgs self couplings, and the KK Z boson mass $m_{Z(1)}$, independent of the details of the model.

The gauge-Higgs unification scenario is predictive. As a result of the Hosotani mechanism [2-6] the Higgs boson mass emerges at the quantum level without being afflicted with divergence. The Higgs couplings to the KK towers of quarks and W/Z bosons have a distinctive feature that their signs alternate in the KK level, significant departure from other extra dimensional models such as UED models. As a consequence contributions of KK modes to the decay rate $\Gamma(H \rightarrow \gamma\gamma)$ turn out very small. Surprisingly the gauge-Higgs unification gives nearly the same phenomenology at low energies as the standard model (SM).

The gauge-Higgs unification can be confirmed by finding the KK Z boson in the range $2.5 \sim 6$ TeV and by determining the Higgs self couplings and Yukawa couplings at LHC and ILC.

II. $SO(5) \times U(1)$ GAUGE-HIGGS UNIFICATION IN RS

The model is given by $SO(5) \times U(1)$ gauge theory in the Randall-Sundrum (RS) warped space

$$ds^2 = e^{-2\sigma(y)}\eta_{\mu\nu}dx^\mu dx^\nu + dy^2$$

where $\eta_{\mu\nu} = \text{diag}(-1,1,1,1)$, $\sigma(y) = \sigma(y+2L) = \sigma(-y)$, and $\sigma(y) = k|y|$ for $|y| \leq L$. The RS space is viewed as bulk AdS space ($0 < y < L$) with AdS curvature $-6k^2$ sandwiched by the Planck brane at $y = 0$ and the TeV brane at $y = L$. The $SO(5) \times U(1)$ model was proposed by Agashe et al [7,8]. It has been elaborated in refs. [9,10], and a concrete realistic model has been formulated in ref. [1]. The schematic view of the gauge-Higgs unification is given below.

$$\begin{align*}
5D \ A_M & \begin{cases}
\text{four-dim. components } A_\mu & \in \text{4D gauge fields } \gamma, W, Z \\
\text{extra-dim. component } A_y & \in \text{4D Higgs field } H
\end{cases} \\
\sim & \text{AB phase } \theta_H \text{ in extra dim.}
\end{align*}$$

Hosotani mechanism \Downarrow

Dynamical EW symmetry breaking
The 5D Lagrangian density consists of
\[\mathcal{L} = \mathcal{L}_{\text{bulk}}^{\text{gauge}}(A, B) + \mathcal{L}_{\text{bulk}}^{\text{fermion}}(\Psi_a, \Psi_F, A, B)
+ \mathcal{L}_{\text{brane}}^{\text{fermion}}(\tilde{\chi}_a, A, B) + \mathcal{L}_{\text{brane}}^{\text{scalar}}(\tilde{\Phi}, A, B) + \mathcal{L}_{\text{brane}}^{\text{int}}(\Psi_a, \tilde{\chi}_a, \tilde{\Phi}). \] (2)

SO(5) and U(1)_X gauge fields are denoted by A_M and B_M, respectively. The two associated gauge coupling constants are g_A and g_B. Two quark multiplets and two lepton multiplets \Psi_a are introduced in the vector representation of SO(5) in each generation, whereas \Psi_F extra fermion multiplets are introduced in the spinor representation. These bulk fields obey the orbifold boundary conditions at y_0 = 0 and y_1 = L given by

\[\begin{align*}
A_y(x, y_j) &= \frac{A_y}{A_y} (x, y_j + y) P_j^{-1}, \\
B_x(x, y_j) &= \frac{B_x}{B_x} (x, y_j + y), \\
\Psi_a(x, y_j) &= P_j \Gamma^5 \Psi_a (x, y_j + y), \\
\Psi_F(x, y_j) &= (-1)^j P_j^{\text{sp}} \Gamma^5 \Psi_F (x, y_j + y), \\
P_j &= \text{diag} (-1, -1, -1, -1, 1), \\
P_j^{\text{sp}} &= \text{diag} (1, 1, 1, 1, 1).
\end{align*} \] (3)

The orbifold boundary conditions break SO(5) × U(1)_X to SO(4) × U(1)_X ≃ SU(2)_L × SU(2)_R × U(1)_Y.

The brane interactions are invariant under SO(4) × U(1)_X. The brane scalar \tilde{\Phi} is in the (1, 2)_{-1/2} representation of [SU(2)_L, SU(2)_R|U(1)_X]. It spontaneously breaks SU(2)_R × U(1)_Y to U(1)_Y by non-vanishing \langle \tilde{\Phi} \rangle whose magnitude is supposed to be much larger than the KK scale m_{KK}. At this stage the residual gauge symmetry is SU(2)_L × U(1)_Y. Brane fermions \tilde{\chi}_a are introduced in the (2, 1) representation. The quark-lepton vector multiplets \Psi_a are decomposed into (2, 2) + (1, 1). The (2, 2) part of \Psi_a, \chi_a in (2, 1) and \tilde{\Phi} in (1, 2) form SO(4) × U(1)_X invariant brane interactions. All exotic fermions become heavy, acquiring masses of O(m_{KK}).

Further with brane fermions all anomalies associated with gauge fields of SO(4) × U(1)_X are cancelled.[10]

With the orbifold boundary conditions \[\int \mathcal{L}_{\text{brane}}^{\text{fermion}}(\tilde{\chi}_a, A, B) \]
there appear four zero modes of A_y in the components (A_y)_a^5 = -(A_y)_a (a = 1, \cdots, 4). They form an SO(4) vector, or an SU(2)_L doublet, corresponding to the Higgs doublet in the SM. The AB phase is defined with these zero modes by

\[e^{i \Theta_H/2} \sim P \exp \left\{ ig_A \int_0^L dy A_y \right\}. \] (4)

At the tree level the value of the AB phase \Theta_H is not determined, as it gives vanishing field strengths. At the quantum level its effective potential V_{eff} becomes non-trivial. The value of \Theta_H is determined by the location of the minimum of V_{eff}. This is the Hosotani mechanism and induces dynamical gauge symmetry breaking. It leads to gauge-Higgs unification, resolving the gauge-hierarchy problem. Without loss of generality one can assume that (A_y)_4^5 component develops a non-vanishing expectation value. Let us denote the corresponding component of \Theta_H by \theta_H. If \theta_H takes a non-vanishing value, the electroweak symmetry breaking takes place.

III. \ V_{eff}(\theta_H) AND m_H

Given the matter content one can evaluate V_{eff}(\theta_H) at the one loop level unambiguously. The \theta_H dependent part of V_{eff}(\theta_H) is finite, being free from divergence. V_{eff}(\theta_H) depends on several parameters of the theory: \theta_H = V_{eff}(\theta_H; \xi, c_t, c_F, n_F, k, z_L) where \xi is the gauge parameter in the generalized RG gauge, c_t and c_F are the bulk mass parameters of the top and extra fermion multiplets, n_F is the number of the extra fermion multiplets, and k, z_L are parameters specifying the RS metric [11]. Given these parameters, V_{eff} is fixed, and the location of the global minimum of V_{eff}(\theta_H), \theta_H^{\text{min}} is determined.

With \theta_H^{\text{min}} determined, m_Z, g_w, \sin^2 \theta_W are determined from g_A, g_B, k, z_L and \theta_H^{\text{min}}. The top mass m_t is determined from c_t, k, z_L, \theta_H^{\text{min}}, whereas the Higgs boson mass m_H is given by

\[m_H^2 = \frac{1}{f^2_H} \left. \frac{d^2 V_{eff}}{d \theta_H^2} \right|_{\theta_H^{\text{min}}}, \quad f_H = \frac{2}{g_w} \sqrt{\frac{k}{L (z_L^2 - 1)}}. \] (5)
Let us take $\xi = 1$. Then the theory has seven parameters $\{g_A, g_B, k, z_L, c_I, c_F, n_F\}$. Adjusting these parameters, we reproduce the values of five observed quantities $\{m_2, g_w, \sin^2 \theta_W, m_t, m_H\}$. This leaves two parameters, say z_L and n_F, free. Put differently, the value of θ_H^{min} is determined as a function of z_L and n_F: $\theta_H^{\text{min}} = \theta_H(z_L, n_F)$. We comment that contributions from other light quark/lepton multiplets to V_{eff} are negligible.

$V_{\text{eff}}(\theta_H)$ in the absence of the extra fermions ($n_F = 0$) was evaluated in refs. $[2, 11]$. It was found there that the global minima naturally appear at $\theta_H = \pm \frac{\pi}{2}$ at which the Higgs boson becomes absolutely stable. It is due to the emergence of the H parity invariance. $\theta_H = \pm \frac{\pi}{2}$ is related to m_{H^\pm} and m_{A^\pm}.

In particular the Higgs trilinear coupling to W, Z, quarks and leptons are all proportional to $\cos \theta_H$ and vanish at $\theta_H = \pm \frac{\pi}{2}$. This, however, conflicts with the observation of an unstable Higgs boson at LHC. To have an unstable Higgs boson the H parity invariance must be broken, which is most easily achieved by introducing extra fermion multiplets Ψ_F in the spinor representation of $SO(5)$.\footnote{For simplicity, only right-handed fermions are considered.}

Let us take $n_F = 3, z_L = e^{kL} = 10^7$ as an example. $\{g_w, \sin^2 \theta_W\}$ are related to $\{g_A, g_B\}$ by

$$g_w = \frac{g_A}{\sqrt{L}}, \quad \tan \theta_W = \frac{g_B}{\sqrt{g_A^2 + g_B^2}}, \tag{6}$$

where $z_L = e^{kL}$. The observed values of $\{m_2, g_w, \sin^2 \theta_W, m_t, m_H\}$ are reproduced with $k = 1.26 \times 10^{10} \text{GeV}$, $c_I = 0.330$, $c_F = 0.353$ for which the minima of V_{eff} are found at $\theta_H = \pm 0.258$. The KK mass scale is $m_{KK} = \pi k z_L^{-1} = 3.95 \text{TeV}$. $V_{\text{eff}}(\theta_H)$ is depicted in Fig. 1 with red curves. For comparison V_{eff} in the case of $n_F = 0$ is also plotted with a blue curve. When $n_F = 0$ and $z_L = 10^7$, the minima are located at $\theta_H = \pm \frac{\pi}{2}$. The observed values of $\{m_2, g_w, \sin^2 \theta_W, m_t\}$ are reproduced with $k = 3.16 \times 10^9 \text{GeV}$ and $c_I = 0.345$. In this case the Higgs boson mass determined by $\{6\}$ becomes $m_H = 87.9 \text{GeV}$, and $m_{KK} = 993 \text{GeV}$. One can see how the position of the minima is shifted from $\theta_H = \pm \frac{\pi}{2}$ to $\theta_H = \pm 0.082\pi = \pm 0.258$ by the introduction of the extra fermions.

![Fig. 1](image-link)
FIG. 1: The effective potential $V_{\text{eff}}(\theta_H)$ for $z_L = 10^7$. $U = 16\pi^6 m_{KK}^{-4} V_{\text{eff}}$ is plotted. The red curves are for $n_F = 3$ with $m_H = 126 \text{GeV}$. V_{eff} has minima at $\theta_H = \pm 0.258$ and $m_{KK} = 3.95 \text{TeV}$. The blue curve is for $n_F = 0$ in which case $m_H = 87.9 \text{GeV}$ and $m_{KK} = 993 \text{GeV}$.

IV. UNIVERSALITY

As explained above, the AB phase $\theta_H = \theta_H^{\text{min}}$ is determined as a function of z_L and n_F: $\theta_H(z_L, n_F)$. The KK mass scale $m_{KK} = \pi k z_L^{-1}$ is also determined as a function of z_L and n_F: $m_{KK}(z_L, n_F)$. The relation between them is plotted for $n_F = 1, 3, 9$ in the top figure in Fig. 2. One sees that all points fall on one universal curve to good accuracy, independent of n_F.

Similarly one can evaluate the cubic (λ_3) and quartic (λ_4) self-couplings of the Higgs boson H by expanding $V_{\text{eff}}[\theta_H + (H/f_H)]$ around the minimum in a power series in H. They are depicted in the bottom figure in Fig. 2. Although the shape of $V_{\text{eff}}(\theta_H)$ heavily depends on n_F, the relations $\lambda_3(\theta_H)$ and $\lambda_4(\theta_H)$ turn out universal, independent of n_F.

It is rather surprising that there hold universal relations among θ_H, m_{KK}, λ_3 and λ_4. Once θ_H is determined from one source of observation, then many other physical quantities are fixed and predicted. The gauge-Higgs unification gives many definitive predictions to be tested by experiments. We tabulate values of various quantities determined from $m_H = 126 \text{GeV}$ with given z_L for $n_F = 3$ in Table I.
\[m_{\text{KK}} \sim \frac{1350 \text{ GeV}}{(\sin \theta_H)^{0.787}}. \]

TABLE I: Values of the various quantities with given \(n_F \) for \(n_F = 3 \). \(m_{Z(1)} \) and \(m_{F(1)} \) are masses of the first KK Z boson and the lowest mode of the extra fermion multiplets. Relations among \(\theta_H, m_{\text{KK}} \) and \(m_{Z(1)} \) are universal, independent of \(n_F \).

\(z_L \)	\(\theta_H \)	\(m_{\text{KK}} \)	\(m_{Z(1)} \)	\(m_{F(1)} \)
\(10^8 \)	0.360	3.05 TeV	2.41 TeV	0.668 TeV
\(10^7 \)	0.258	3.95	3.15	0.993
\(10^6 \)	0.177	5.30	4.25	1.54
\(10^5 \)	0.117	7.29	5.91	2.53

V. \(H \to \gamma \gamma \gamma \gamma \)

In the gauge-Higgs unification all of the 3-point couplings of \(W, Z \), quarks and leptons to the Higgs boson \(H \) at the tree level are suppressed by a common factor \(\cos \theta_H \) compared with those in the SM.\[13\] The decay of the Higgs boson to two photons goes through loop diagrams in which \(W \) boson, quarks, leptons, extra fermions and their KK excited states run. The decay rate \(\Gamma[H \to \gamma \gamma] \) is given by

\[\Gamma(H \to \gamma \gamma) = \frac{\alpha^2 g_w^2 m_H^3}{1024 \pi^3 m_W^2} |F_{\text{total}}|^2, \]
\[F_{\text{total}} = F_W + \frac{4}{3} F_{\text{top}} + \left(2(Q_X^{(F)})^2 + \frac{1}{2} \right) n_F F_F , \]

\[F_W = \cos \theta_H \sum_{n=0}^{\infty} I_{W(n)} \frac{m_W}{m_{W(n)}} F_1(\tau_{W(n)}) , \quad I_{W(n)} = \frac{g_{\text{SM}(n)} W_{(n)}}{g_\alpha m_{W(n)} \cos \theta_H} , \]

\[F_{\text{top}} = \cos \theta_H \sum_{n=0}^{\infty} I_{t(n)} \frac{m_t}{m_{t(n)}} F_{1/2}(\tau_{t(n)}) , \quad I_{t(n)} = \frac{y_t(n)}{y_t^{\text{SM}} \cos \theta_H} , \]

\[F_F = \sin \frac{1}{2} \theta_H \sum_{n=0}^{\infty} F_{n}(F(n)) \frac{m_t}{m_{F(n)}} F_{1/2}(\tau_{F(n)}) , \quad I_{F(n)} = \frac{y_{F(n)}}{y_t^{\text{SM}} \sin \frac{1}{2} \theta_H} , \]

where \(W^{(0)} = W, \ t^{(0)} = t, \ \tau_a = 4m_a^2/m_H^2 \). The functions \(F_1(\tau) \) and \(F_{1/2}(\tau) \) are defined in Ref. [19], and \(F_1(\tau) \sim 7 \) and \(F_{1/2}(\tau) \sim -\frac{1}{3} \) for \(\tau \gg 1 \). \(Q_X^{(F)} \) is the \(U(1)_X \) charge of the extra fermions. \(I_{W(0)} \) and \(I_{t(0)} \) are \(\sim 1 \).

In Fig. 3 \(I_{W(n)}, \ I_{t(n)}, \) and \(I_{F(n)} \) are plotted. One sees that the values of these \(I \)'s alternate in sign as \(n \) increases, which gives sharp contrast to the UED models.

\[I_{W(n)} \sim (-1)^n I_{W}^\infty , \quad I_{t(n)} \sim (-1)^n I_{t}^\infty , \quad I_{F(n)} \sim (-1)^n I_{F}^\infty \quad \text{for} \ n \gg 1 \]

up to \((\ln n)^p\) corrections. This is special to the gauge-Higgs unification models. It has been known in the models in flat space as well [21]. As a consequence of the destructive interference due to the alternating sign, the infinite sums in the rate [18] converges rapidly. There appears no divergence.

Let \(F_{W \text{only}} \) and \(F_{t \text{only}} \) be the contributions of \(W = W^{(0)} \) and \(t = t^{(0)} \) to \(F_{\text{total}} \). The numerical values of the amplitudes \(F \)'s are tabulated in Table II for \(n_F = 3 \). It is seen that contributions of KK states to the amplitude are small. The dominant effect for the decay amplitude is the suppression factor \(\cos \theta_H \).

All Higgs couplings \(HWW, HZZ, H\bar{c}c, Hbb, H\tau\bar{\tau} \) are suppressed by a factor \(\cos \theta_H \) at the tree level. The corrections to \(\Gamma[H \rightarrow \gamma\gamma] \) and \(\Gamma[H \rightarrow gg] \) due to KK states amount only to 0.2% (2%) for \(\theta_H = 0.117(0.360) \). Hence we conclude

branching fraction: \(B(H \rightarrow j) \sim B^{\text{SM}}(H \rightarrow j) \)

\[j = WW, ZZ, \gamma\gamma, gg, bb, \bar{c}c, \tau\bar{\tau}, \cdots \]

\(\gamma\gamma \) production rate: \(\sigma^{\text{prod}}(H) \cdot B(H \rightarrow \gamma\gamma) \sim (\text{SM}) \times \cos^2 \theta_H \).

The signal strength in the \(\gamma\gamma \) production relative to the SM is about \(\cos^2 \theta_H \). It is about 0.99 (0.91) for \(\theta_H = 0.1 \) (0.3). This contrasts to the prediction in the UED models in which the contributions of KK states can add up in the same sign to sizable amount. [22]
VI. SIGNALS OF GAUGE-HIGGS UNIFICATION

There are several constraints to be imposed on the gauge-Higgs unification.

(i) For the consistency with the S parameter, we need $\sin \theta_H < 0.3$.\[7\]
(ii) The tree-level unitarity requires $\theta_H < 0.5$.\[23\]
(iii) Z' search at Tevatron and LHC. The first KK Z corresponds to Z'. No signal has been found so far, which implies that $m_{Z(1)} > 2\text{ TeV}$. With the universality relations in Sec. IV it requires $\theta_H < 0.4$.
(iv) In ref. \[24\] the consistency with other precision measurements such as the Z boson decay and the forward-backward asymmetry on the Z resonance has been investigated when $n_F = 0$. Reasonable agreement was found for $m_{KK} > 1.5\text{ TeV}$. We need to reanalyze in the case $n_F \geq 1$.

All of those constraints above point $\theta_H < 0.4$. When θ_H is very small, the KK mass scale m_{KK} becomes very large and it becomes very difficult to distinguish the gauge-Higgs unification from the SM. The range of interest is $0.1 < \theta_H < 0.35$, which can be explored at LHC with an increased energy 13 or 14 TeV. The gauge-Higgs unification predicts the following signals.

1) The first KK Z should be found at $m_{KK} = 2.5 \sim 6\text{ TeV}$ for $\theta_H = 0.35 \sim 0.1$.
2) The Higgs self-couplings should be smaller than those in the SM. λ_3 (λ_4) should be $10 \sim 20\%$ ($30 \sim 60\%$) smaller for $\theta_H = 0.1 \sim 0.35$, according to the universality relations. This should be explored at ILC.
3) The lowest mode ($F(1)$) of the KK tower of the extra fermion Ψ_F should be discovered at LHC. Its mass depends on both θ_H and n_F. For $n_F = 3$, the mass is predicted to be $m_{F(1)} = 0.7 \sim 2.5\text{ TeV}$ for $\theta_H = 0.35 \sim 0.1$.

VII. FOR THE FUTURE

The $SO(5) \times U(1)$ gauge-Higgs unification model of ref. \[1\] has been successful so far. Yet further elaboration may be necessary.

1) Flavor mixing has to be incorporated to explore flavor physics.\[25\]
2) It is curious to generalize the model to incorporate SUSY. The Higgs boson mass becomes smaller than in non-SUSY model. $m_H = 126\text{ GeV}$ should give information about SUSY breaking scales.\[26\]
3) The orbifold boundary conditions (P_0, P_1) in \[3\] have been given by hand so far. It is desirable to have dynamics which determine the boundary conditions.\[27, 28\]
4) Not only electroweak interactions but also strong interactions should be integrated in the form of grand gauge-Higgs unification.\[29\]

Acknowledgments

This work was supported in part by scientific grants from the Ministry of Education and Science, Grants No. 20244028, No. 23104009 and No. 21244036.
References

[1] S. Funatsu, H. Hatanaka, Y. Hosotani, Y. Orikasa and T. Shimotani, arXiv:1301.1744 [hep-ph]. To appear in Phys. Lett. B.

[2] Y. Hosotani, Phys. Lett. B126 (1983) 309; Ann. Phys. (N.Y.) 190 (1989) 233.

[3] A. T. Davies and A. McLachlan, Phys. Lett. B200 (1988) 305; Nucl. Phys. B317 (1989) 237.

[4] M. Kubo, C.S. Lim and H. Yamashita, Mod. Phys. Lett. A17 (2002) 2249.

[5] N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Nucl. Phys. B657 (2003) 169; Erratum-ibid. 669 (2003) 381.

[6] H. Hatanaka, T. Inami and C.S. Lim, Mod. Phys. Lett. A13 (1998) 2601.

[7] K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B719 (2005) 165.

[8] A. D. Medina, N. R. Shah and C. E. M. Wagner, Phys. Rev. D76 (2007) 095010.

[9] Y. Hosotani, K. Oda, T. Ohnuma and Y. Sakamura, Phys. Rev. D78 (2008) 096002; Erratum-ibid. 79 (2009) 079902.

[10] Y. Hosotani, S. Noda and N. Uekusa, Prog. Theoret. Phys. 123 (2010) 757.

[11] Y. Hosotani, M. Tanaka and N. Uekusa, Phys. Rev. D82 (2010) 115024.

[12] Y. Hosotani, P. Ko and M. Tanaka, Phys. Lett. B680 (2009) 179.

[13] Y. Sakamura and Y. Hosotani, Phys. Lett. B645 (2007) 442.

[14] Y. Hosotani and Y. Sakamura, Prog. Theoret. Phys. 118 (2007) 935.

[15] Y. Sakamura, Phys. Rev. D76 (2007) 065002.

[16] G.F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, JHEP 0706 (2007) 045.

[17] Y. Hosotani and Y. Kobayashi, Phys. Rev. D674 (2009) 192.

[18] K. Hasegawa, N. Kurahashi, C.S. Lim and K. Tanabe, Phys. Rev. D87 (2013) 016011.

[19] J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, “The Higgs Hunter’s Guide”, Front. Phys. 80 (2000) 1.

[20] N. Maru and N. Okada, Phys. Rev. D77 (2008) 055010.

[21] A. Falkowski, Phys. Rev. D77 (2008) 055018.

[22] K. Nishiwaki, K. -y. Oda, N. Okuda and R. Watanabe, Phys. Rev. D85 (2012) 035026; G. Belanger, A. Belyaev, M. Brown, M. Kakizaki and A. Pukhov, Phys. Rev. D87 (2013) 016008.

[23] N. Haba, Y. Sakamura and T. Yamashita, JHEP 1003 (2010) 069.

[24] Y. Hosotani, M. Tanaka, and N. Uekusa, Phys. Rev. D84 (2011) 075014.

[25] Y. Adachi, N. Kurahashi, C.S. Lim, and N. Maru, JHEP 1011 (2010) 150.

[26] H. Hatanaka and Y. Hosotani, Phys. Lett. B713 (2012) 481.

[27] Y. Hosotani, Proceeding for SCGT 2002, hep-ph/0303066.

[28] N. Haba, Y. Hosotani, and Y. Kawamura, Prog. Theoret. Phys. 111 (2004) 265.

[29] K. Kojima, K. Takenaga, and T. Yamashita, Phys. Rev. D84 (2011) 051701; T. Yamashita, Phys. Rev. D84 (2011) 115016.