ORIGINAL CONTRIBUTION

Allele Frequency of Apolipoprotein Gene Polymorphisms and Association between Genotype and Serum Lipid and Apolipoprotein Levels

Hao Chen1, Chigusa Date2, Shinji Ikemoto3, Takeo Nakayama1, Nobuo Yoshiike4, Tetsuji Yokoyama1, Fukue Seino1, Mohammad Mostafa Zaman1, Hiroko Iwaoka1, Yasuhiro Matsumura4, Masako Iwaya4, Michiko Sugiyama4, Mitsuru Tsuchida5, Momoko Yamaguchi4, Hiroshige Itakura3, and Heizo Tanaka1

The rare allele frequency of the restriction fragment length polymorphism (RFLP) with Xba I (X+) at the apolipoprotein B (apo B) gene locus was 0.041 in men and 0.026 in women in H-Y district, Shiso County, Hyogo Prefecture, Japan: EcoR I at apo B gene (E−)=0.073 and 0.076, Msp I at apo Al-CIII gene (M−)=0.423 and 0.430, and Sac I at apo Al-CIII gene (S+)=0.309 and 0.349. There was no marked age- or sex-difference in the frequencies. The frequencies of X+ and E− were lower and those of S+ and M− were higher in H-Y district than in Caucasian populations.

In this population, according to the ANOVAs, the genotype for EcoR I was significantly (p<0.05) associated with serum total cholesterol, LDL cholesterol and apo B in women, and the genotype for Sac I with serum triglycerides and Msp I with serum apo CIII in men. The absolute values of Spearman correlation coefficients between genotypes and serum lipids or apolipoproteins were less than 0.2 after adjustment for age. J Epidemiol, 1995; 141-151.

allele frequency, genetic association study, serum lipid, serum apolipoprotein, restriction fragment length polymorphism

Serum lipids and apolipoproteins are considered to be influenced by both environmental and genetic factors. In many epidemiological and experimental studies, it has been shown that several lifestyle factors are related to the level of serum lipids: e.g. a positive or inverse relation of total fat, saturated fat, cholesterol and polyunsaturated fat to serum total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C), and a positive relation of physical activity and alcohol consumption to serum high density lipoprotein cholesterol (HDL-C). Although, as for the genetic factors, there have been some family and twin studies as well as studies on the association of family history with hyperlipidemia, they have not only advantages but also disadvantages, e.g. “family aggregation” in family studies, “shared environment” in family and twin studies, and recall bias in family histories. In contrast to these studies, “candidate gene” approach by identifying genotypes related to inter-individual variations of serum lipids and apolipoproteins in populations has recently been proved highly effective with development of the polymerase chain reaction (PCR) method.

One of the two aims of the present study is to epidemiologically describe the allele frequencies of four restriction fragment length polymorphisms (RFLPs) with Xba I and EcoR I at the apolipoprotein B (apo B), and Msp I and Sac I at the apo Al-CIII gene loci in a rural Japanese population, H-Y district, Shiso County, Hyogo Prefecture, Japan. The other aim is to estimate the association between the genotype and serum TC, LDL-C, HDL-C, triglycerides (TG), apo B, apo AI and apo CIII levels in the population.
SUBJECTS AND METHODS

Study District

H-Y district is located in the north-western part of Hyogo Prefecture, Japan. Most of the residents are salaried employees of minor companies, who supplement their income with part-time jobs in forestry and agriculture.

Subjects

All residents of H-Y district aged 40 years or older, 2,510 men and 2,621 women, were invited to undergo an examination in 1992, which was conducted under a Japanese law for the prevention of cardiovascular disease. Of these, 73% (1,832/2,510) of the men and 76% (1,992/2,621) of the women responded to the invitation. As for the persons aged 20-39 years, only those who desired to be examined were recruited.

Not only to genotype four RFLPs but also to measure serum lipids and apolipoproteins, a total of 893 unrelated subjects were randomly selected from the respondents. The sample size was determined, taking into account the statistical power to detect the significant difference in the allele frequencies between the Japanese and other populations. Individuals who refused to be genotyped, who took lipid-lowering medication, and who suffered from diabetes mellitus, chronic renal and hepatic diseases and chronic alcohol abuse were excluded. Finally, 673 subjects were recruited for the present analyses.

We obtained informed consent from all of the subjects. Ethical approval for the present study was granted by the Ethical Review Committee, Medical Research Institute, Tokyo Medical and Dental University.

Measurement of Serum Lipids and Apolipoproteins

Using venous blood drawn in overnight fasting state, determination was made of serum total cholesterol and triglycerides by enzymatic methods6,7, and serum HDL-C by dextran sulfate/Mg²⁺ precipitation8. The level of serum LDL-C was calculated using the Friedewald's formula9. As to the control over accuracy and precision of serum lipid measurement, the standardization was achieved by participation in the CDC Lipid Standardization Program through Osaka Prefectural Center for Adult Diseases, Japan.

Serum apo B, apo AI and apo CIII concentrations were measured by the method of turbidimetric immunoassay (TIA).

DNA Analyses

The subjects were genotyped for four RFLPs with Xba I and Eco R I at the apo B, and Msp I and Sac I at the apo AI-CIII gene loci.

Total genomic DNA was prepared from the leukocytes of five milliliter venous blood collected in vacuum tubes containing ethylene diamine tetraacetate (EDTA), using the Nucleic Acid Extraction Kit-IsoQuick (MicroProbe Corp.). All polymerase chain reactions (PCRs) were carried out on the Programmable Thermal Controller PTC-100 (MJ Research Inc.) in a final volume of 200 µl including 0.5 unit of Taq polymerase (Perkin Elmer Cetus), 3.2 µl of 1.25 mM dNTPs, 2.0 µl of 10 mM each primer, 2.0 µl of 10% reaction buffer and 1.0 µg of template DNA. The oligonucleotide primers and conditions for PCRs are shown in Table I. Ten µl of amplification product was incubated with the equal volume of digestion mixture including restriction endonuclease (Takara Biomedicals). The digestion products were electrophoresed on 4.5% polyacrylamide gel at 180 volt for 1.5 hour.

Table 1. Oligonucleotide primer and PCR condition.

RFLP and Primer	Enzyme site Location	Sequence	PCR condition	Fragment Size
Xba I Primer 1	Exon 26 of the B gene	5'-CCGTGAGGTGACTCAGAGAC-3' 5'-AGGCAGGCATGGCTCCAAGG-3'	Initial denaturation 96°C for 2 min. 30 cycles: 96°C for 0.5 min., 62°C for 1 min., 72°C for 4 min.	217,253 bp
Xba I Primer 2	Exon 26 of the B gene			
EcoR I Primer 3	Exon 29 of the B gene	5'-AACAACAGTAGACTTTTATAA-3' 5'-ATCTCTTTTACGTGAATTATG-3'	35 cycles: 94°C for 1 min., 55°C for 1 min., 72°C for 1 min.	418,637 bp
EcoR I Primer 4	Exon 29 of the B gene			
Sac I Primer 5	3' non-coding region of the CHI gene	5'-CTGACTGTTGCTGCAGTGCAGT-3' 5'-CCAGAAGGTGGATAGACGCGC-3'	Same as the condition for Xba I	264,270 bp
Sac I Primer 6	3' non-coding region of the CHI gene			
Msp I Primer 7	Intron 3 of the AI gene	5'-CAGCGCAGAGACTATGTGT-3' 5'-CCGTTGTCAGCTGGAGCGA-3'	Initial denaturation 96°C for 2 min. 30 cycles: 96°C for 0.5 min., 58°C for 1 min., 72°C for 3 min.	190,304 bp
Msp I Primer 8	Intron 3 of the AI gene			
The gel samples were stained with ethidium bromide. The presence or absence of cutting sites were designated to ‘+’, or ‘−’ respectively.

Different 20 samples were measured twice for each of Xba I, EcoR I, Sac I and Msp I polymorphisms to assess the reproducibility, which was found to be 100%.

The allele frequency was estimated by the gene-counting method.

Statistical Analyses
SAS software (Version 6.08) was used for all statistical analyses.

The frequency distributions of values for serum lipids and apolipoproteins were examined whether they followed the normal distribution or not. Since, of them, serum TG and apo CIII concentrations appeared to be approximately log-normally distributed, the values were logarithmically transformed for statistical analyses, although the non-transformed means are presented in the tables.

ANOVA was performed using the general linear model procedure (PROC GLM) to estimate the association between each of the RFLPs and each of serum lipids or apolipoproteins. Age was included as an independent variable in the model to adjust its effect. Least-Square means, the values for genotype class means after adjustment for age, were also calculated.

Since persons homozygous for the X+ allele (X+X+) of Xba I and E− allele (E−E−) of EcoR I were very few in H-Y district, they were also combined with those heterozygous for the corresponding allele, X + X − or E+ E −, for ANOVAs.

In addition, Spearman correlation coefficients were calculated between RFLPs and serum traits, adjusting age effect, in order to estimate the strength of association.

RESULTS
Serum Lipids and Apolipoproteins
The means and standard deviations of serum lipids and apolipoproteins are presented in Table 2. The mean of serum apo B-related trait (TC, LDL-C or apo B) increased with age, reaching the maximum at the age group of 50-59 in men and at the age group of 60-69 in women. Then, afterwards, it decreased. Women showed lower levels than men until the age of 49 years, but their levels surpassed men’s at the age of 50 years and over.

The mean or median of serum TG showed the same change with age as that of serum TC in both sexes.

No age-dependent change was observed in the mean of serum HDL-C, while the levels in women were higher than those in men. The mean of serum apo Al had a peak at the age group of 50-59 in both men and women, while women showed higher means than men after the age of 50 years. The mean or median of serum apo CIII tended to decrease with age in men, but to increase in women.

Allele and Genotype Frequencies
The gender- and age-specific allele frequencies of four RFLPs for apo B and Al-CIII genes are shown in Table 3. The rare allele frequencies of Xba I RFLP were in the range of 0.020 to 0.051 in men and 0.014 to 0.038 in women: 0.031-0.122 and 0.050-0.153 for EcoR I, 0.277-

Table 2. Means and standard deviations of serum lipid (mmol/L) and apolipoprotein (mg/dL) levels in H-Y district, Shiso County, Hyogo Prefecture, Japan.

Age	Number	TC ± SD	LDL-C ± SD	TG ± SD	HDL-C ± SD
Men					
<40	44	4.81 ± 0.97	2.82 ± 0.91	3.26 ± 4.19	1.34 ± 0.48
40-	50	5.14 ± 0.86	3.24 ± 0.92	3.35 ± 2.11	1.21 ± 0.25
50-	56	5.43 ± 0.86	3.41 ± 0.86	3.89 ± 2.95	1.29 ± 0.28
60-	94	4.81 ± 0.92	2.97 ± 0.89	2.55 ± 1.40	1.35 ± 0.31
≥70	49	5.02 ± 0.96	3.33 ± 0.92	2.56 ± 1.10	1.16 ± 0.28
Women					
<40	49	4.59 ± 0.78	2.84 ± 0.73	1.57 ± 0.59	1.43 ± 0.24
40-	72	5.09 ± 0.99	3.25 ± 0.87	2.26 ± 1.48	1.37 ± 0.27
50-	90	5.56 ± 1.02	3.59 ± 0.90	2.77 ± 1.30	1.41 ± 0.34
60-	93	5.84 ± 0.97	3.80 ± 0.92	3.29 ± 2.08	1.38 ± 0.34
≥70	76	5.61 ± 0.99	3.74 ± 0.83	2.70 ± 1.28	1.35 ± 0.31

TC=total cholesterol; LDL-C=low density lipoprotein cholesterol; HDL-C=high density lipoprotein cholesterol; TG=triglycerides; Apo=apolipoprotein.

Table 2. Continued

Age	Number	Apo B ± SD	Apo Al ± SD	Apo CIII ± SD
Men				
<40	44	94.52 ± 33.03	150.95 ± 28.62	14.26 ± 7.51
40-	50	110.35 ± 26.26	155.41 ± 25.91	15.16 ± 5.05
50-	56	110.75 ± 26.02	158.84 ± 29.93	15.39 ± 5.40
60-	94	88.29 ± 24.92	150.84 ± 27.58	12.70 ± 3.86
≥70	49	95.39 ± 22.12	132.94 ± 20.27	12.28 ± 3.44
Women				
<40	49	75.92 ± 17.86	148.41 ± 19.90	10.19 ± 1.93
40-	72	90.75 ± 22.75	154.32 ± 25.78	11.27 ± 3.74
50-	90	102.94 ± 23.40	162.19 ± 25.75	13.17 ± 3.96
60-	93	113.20 ± 28.47	160.40 ± 24.35	14.50 ± 5.51
≥70	76	104.04 ± 22.24	150.07 ± 25.11	12.70 ± 3.28
Table 3. Allele frequency of Apo B and Apo Al-CIII gene RFLPs in H-Y district, Shiso County, Hyogo Prefecture, Japan

Gene Region and RFLP	Age (years)	——	—+	++	Rare Allele Frequency	——	—+	++	Rare Allele Frequency
Apo B Xba I	<40	41	3	0	0.034	47	2	0	0.020
	40-	45	3	1	0.051	70	2	0	0.014
	50-	51	5	0	0.045	86	4	0	0.022
	60-	87	7	1	0.047	87	5	1	0.038
	≥70	47	2	0	0.020	71	5	0	0.033
	total	271	20	2	0.041	361	18	1	0.026
EcoR I	<40	0	5	39	0.057	1	13	35	0.153
	40-	0	3	46	0.031	1	6	65	0.056
	50-	0	8	48	0.071	1	7	82	0.050
	60-	0	15	80	0.079	0	11	82	0.059
	≥70	3	6	40	0.122	0	15	61	0.099
	total	3	37	253	0.073	3	52	325	0.076
Apo Al-CIII Sac I	<40	19	24	1	0.295	18	24	7	0.388
	40-	19	27	3	0.337	24	39	9	0.396
	50-	28	25	3	0.277	39	42	9	0.333
	60-	47	41	7	0.289	41	39	13	0.349
	≥70	18	26	5	0.367	34	39	3	0.296
	total	131	143	19	0.309	156	183	41	0.349
Msp I	<40	4	29	11	0.420	10	23	16	0.439
	40-	14	18	17	0.469	18	36	18	0.500
	50-	10	24	22	0.393	13	47	30	0.406
	60-	13	51	31	0.405	18	44	31	0.430
	≥70	10	24	15	0.449	9	41	26	0.388
	total	51	146	96	0.423	68	191	121	0.430

n = number of subjects. Apo = apolipoprotein. Frequency = [Hom × 2 + Het]/([Hom + Het + Hoc] × 2). Hom = homozygosity with rare allele; Het = heterozygosity; Hoc = homozygosity with common allele.

Table 4. Association of genotypes with serum lipids (mmol/L) or apolipoprotein (mg/dL) according to the ANOVAs, age-adjusted.

RFLP	Genotype	n	TC	LDL-C	Apo B	TG	HDL-C	Apo Al	Apo CIII
Xba I	——	271	4.98±0.06	3.13±0.06	97.52±1.67	8.52±1.07	1.31±0.02	149.04±1.66	12.82±1.02
	—+	20	5.40±0.21	3.33±0.21	108.22±6.15	12.59±1.35	1.33±0.08	155.94±6.11	15.17±1.08
	++	2	5.46±0.66	3.94±0.62	108.58±19.45	5.37±2.45	1.10±0.23	138.32±19.34	11.61±1.29
	p	0.130	0.275	0.146	0.357	0.375	0.314	0.080	
EcoR I	——	3	4.99±0.55	2.98±0.52	94.62±16.14	8.71±2.14	1.41±0.19	154.58±16.07	14.16±1.21
	—+	37	4.89±0.16	3.07±0.15	98.67±4.56	8.89±1.23	1.20±0.06	143.34±4.54	12.79±1.06
	++	253	5.03±0.06	3.16±0.06	98.71±1.75	8.71±1.10	1.29±0.02	151.10±1.74	12.97±1.02
	p	0.701	0.829	0.971	0.984	0.235	0.270	0.874	
Sac I	——	131	4.97±0.08	3.11±0.08	95.12±2.40	7.24±1.12	1.38±0.03	151.77±2.41	12.36±1.03
	—+	143	5.05±0.08	3.17±0.08	101.31±2.31	10.47±1.12	1.25±0.03	149.50±2.32	13.53±1.03
	++	19	5.01±0.22	3.23±0.21	99.74±6.33	10.53±1.35	1.09±0.08	143.87±6.35	13.76±1.08
	p	0.812	0.777	0.177	0.048	0.070	0.471	0.073	
Msp I	——	51	5.14±0.14	3.31±0.13	105.99±3.85	10.96±1.20	1.24±0.05	148.09±3.87	14.37±1.05
	—+	146	5.02±0.08	3.16±0.07	97.53±2.28	8.91±1.12	1.26±0.03	148.34±2.29	12.74±1.03
	++	96	4.93±0.10	3.04±0.09	95.77±2.80	7.41±1.15	1.33±0.03	153.46±2.82	12.62±1.03
	p	0.461	0.231	0.087	0.215	0.197	0.355	0.048	
Table 4. Continued

RFLP	Genotype	n	TC	LDL-C	Apo B	TG	HDL-C	Apo Al	Apo CIII
Xba I	- -	361	5.44±0.05	3.52±0.05	99.76±1.30	6.76±1.07	1.39±0.02	159.15±1.32	12.13±1.02
	- +	18	5.25±0.23	3.33±0.21	99.98±5.81	10.00±1.29	1.30±0.07	152.13±5.91	11.78±1.08
	+ +	1	6.02±0.98	3.43±0.87	103.39±24.65	16.38±2.95	1.11±0.31	142.54±25.05	17.22±1.34
	p		0.423	0.460	0.334	0.313	0.081	0.054	0.445
EcoR I	- -	3	4.53±0.57	2.68±0.50	79.59±14.21	6.03±1.91	1.39±0.18	158.59±14.49	11.86±1.18
	- +	52	5.13±0.14	3.25±0.12	93.40±3.41	6.92±1.17	1.36±0.04	150.53±3.47	11.75±1.04
	+ +	325	5.49±0.06	3.57±0.05	101.10±1.36	6.92±1.07	1.39±0.02	156.92±1.39	12.19±1.02
	p		0.015	0.014	0.041	0.962	0.790	0.230	0.706
Sac I	- -	156	5.49±0.08	3.58±0.07	100.91±1.98	6.92±1.10	1.38±0.03	156.67±2.01	11.85±1.02
	- +	183	5.41±0.07	3.42±0.07	98.54±1.83	6.76±1.10	1.40±0.02	156.38±1.86	12.08±1.02
	+ +	41	5.33±0.16	3.28±0.14	101.93±3.88	7.94±1.17	1.40±0.05	152.30±3.94	13.36±1.05
	p		0.634	0.079	0.579	0.707	0.740	0.597	0.065
Msp I	- -	68	5.32±0.12	3.39±0.11	98.65±3.01	7.24±1.15	1.37±0.04	153.83±3.04	12.61±1.04
	- +	191	5.43±0.07	3.53±0.06	99.75±1.79	6.92±1.07	1.38±0.02	154.10±1.81	12.12±1.02
	+ +	121	5.49±0.09	3.57±0.08	100.78±2.25	6.76±1.10	1.40±0.03	158.14±2.28	11.85±1.03
	p		0.549	0.392	0.847	0.909	0.835	0.311	0.372

ANOVA = analysis of variance. RFLP = restriction fragment length polymorphism. SE = standard error. n = number of subject. TC = total cholesterol; LDL-C = low density lipoprotein cholesterol; HDL-C = high density lipoprotein cholesterol; TG = triglycerides; Apo = apolipoprotein. Differences of serum levels among the 3 genotypes were tested by ANOVA controlling for age.

Table 5. Spearman correlation coefficient of RFLPs with serum lipids or apolipoproteins, age-adjusted.

Independent	Men (n = 293)	Women (n = 380)												
	TC	LDL-C	TG	Apo B	HDL-C	Apo Al	Apo CIII	TC	LDL-C	TG	Apo B	HDL-C	Apo Al	Apo CIII
Xba I	0.094	0.061	0.023	0.095	0.081	0.075	-0.043	0.050	0.010	0.005	-0.102	-0.150	0.007	
EcoR I	0.033	0.027	-0.002	0.023	0.077	0.108	0.005	0.146	0.147	0.018	0.118	0.019	0.066	0.036
Sac I	0.015	0.047	0.103*	0.105*	-0.167	-0.078	0.100*	-0.064	-0.105*	0.001	-0.039	0.005	-0.009	0.082
Msp I	-0.033	-0.083	-0.092	-0.067	0.188	0.083	-0.084	0.043	0.066	-0.003	0.021	0.031	0.015	-0.068

*: p < 0.010; †: 0.010 ≤ p < 0.050; ††: 0.050 ≤ p < 0.100. n = number of subject.

RFLP = restriction fragment length polymorphism. TC = total cholesterol; LDL-C = low density lipoprotein cholesterol; HDL-C = high density lipoprotein cholesterol; TG = triglycerides; Apo = apolipoprotein.

0.367 and 0.296–0.396 for Sac I and 0.393–0.469 and 0.388–0.500 for Msp I RFLPs. No marked gender- and age-difference was observed in the allele frequency of any RFLP.

As for all of the four RFLPs, the genotype frequency distribution in each age group by sex was close to or not significantly different from the Hardy-Weinberg prediction (all of χ² < 6.00, d.f. = 2, p > 0.05)

Associations of RFLPs with Serum Lipids and Apolipoproteins

The results of the ANOVA are shown in Table 4. Xba I RFLP was not associated with variation in any biochemical trait, but suggestively (0.05 ≤ p < 0.10) associated with serum HDL-C and apo A1 in women. In women, the genotype for EcoR I RFLP was significantly associated with serum TC, LDL-C, and apo B. The genotype for Sac I RFLP was significantly associated with serum TG and suggestively associated with serum HDL-C and apo CIII in men and with serum LDL-C and apo CIII in women. Msp I RFLP was significantly related to serum apo CIII and suggestively to serum apo B in men. (Another ANOVA was done for the association of Xba I or EcoR I RFLPs with serum traits, in which the minor and heterozygous genotypes were combined. As presented in Appendix 1, the results were almost similar to those of non-combined analyses, Table 4).

As shown in Table 5, Spearman correlation coefficients were relatively small between RFLPs and serum traits with the absolute value less than 0.2.
Table 6. Allele frequencies of RFLPs at the apo B and Al-CIII gene loci among different populations (reviews).

Gene	RFLP	Frequency (cutting)	Population (n)	Age (years)	Author	Reference
B	Xba I	0.49 (+)	Caucasians (404)	52–58	Marshall, HW; et al.	13
	Xba I	0.50 (+)	Caucasians (84)	58±10	Hegele, RA; et al.	14
	Xba I	0.53 (+)	Caucasians (122)	73±6*	Genest, JJ, Jr; et al.	15
	Xba I	0.52 (+)	French (309)	3–18	Hallman, DM; et al.	16
	Xba I	0.41–0.44 (+)	Finns (307)		Aalto-Setala, K; et al.	17
	Xba I	0.29 (+)	South Asians (107)	40–69*	Renges, HH; et al.	18
	Xba I	0.10 (+)	Javanese (205)	1–80	Gajra, B; et al.	19
	Xba I	0.09 (+)	Chinese (221)	25–60	Saha, N; et al.	20
	Xba I	0.04 (+)	Japanese (107)	19–80	Aburatani, H; et al.	21
	EcoRI	0.11 (−)	Caucasians (84)	58±10	Hegele, RA; et al.	14
	EcoRI	0.18 (−)	Caucasians (404)	52–58	Marshall, HW; et al.	13
	EcoRI	0.21 (−)	Caucasians (122)	73±6*	Genest, JJ, Jr; et al.	15
	EcoRI	0.20 (−)	French (309)		Hallman, DM; et al.	16
	EcoRI	0.11 (−)	South Asians (46)	40–69*	Renges, HH; et al.	18
	EcoRI	0.06 (−)	Javanese (205)	1–80	Gajra, B; et al.	19
	EcoRI	0.08 (−)	Chinese (221)	25–60	Saha, N; et al.	20
	Al-CIII	0.03 (−)	Caucasians (52)	20–50	Paul, H; et al.	22
	Al-CIII	0.08 (−)	Caucasians (145)	50±7	Ordovas, JM; et al.	23
	Al-CIII	0.08 (−)	Caucasians (404)	52–58	Marshall, HW; et al.	13
	Al-CIII	0.11 (−)	Caucasians (231)		Thompson, EA; et al.	24
	Al-CIII	0.05 (−)	Mediterranean (129)		Antonarakis, SE; et al.	25
	Al-CIII	0.04 (−)	U.S. Blacks (75)		Antonarakis, SE; et al.	25
	Al-CIII	0.13 (−)	Blacks (62) (U.S.)		Thompson, EA; et al.	24
	Al-CIII	0.26 (−)	Blacks (27)	20–50	Paul, H; et al.	22
	Al-CIII	0.46 (−)	Indian Asians (23)	20–50	Paul, H; et al.	22
	Al-CIII	0.22 (−)	Chinese (53)		Meng, XW; et al.	26
	Al-CIII	0.40 (−)	Japanese (82)	20–62	Satoh, J; et al.	27
	Al-CIII	0.44 (−)	Japanese (68)		Thompson, EA; et al.	24
	Al-CIII	0.45 (−)	Japanese (75)		Rees, A; et al.	28
	Al-CIII	0.56 (−)	Japanese (27)	20–50	Paul, H; et al.	22
	Al-CIII	0.01 (+)	Caucasians (92)	20–50	Paul, H; et al.	22
	Al-CIII	0.07 (+)	Caucasians (404)	52–58	Marshall, HW; et al.	13
	Al-CIII	0.08 (+)	Caucasians (145)	50±7	Ordovas, JM; et al.	23
	Al-CIII	0.09 (+)	Caucasians (366)		Thompson, EA; et al.	24
	Al-CIII	0.09 (+)	Mediterranean (129)		Antonarakis, SE; et al.	25
	Al-CIII	0.06–0.11 (+)	Finns (307)	3–18	Aalto-Setala, K; et al.	17
	Al-CIII	0.05 (+)	U.S. Blacks (75)		Antonarakis, SE; et al.	25
	Al-CIII	0.13 (+)	Blacks (53) (U.S.)		Thompson, EA; et al.	24
	Al-CIII	0.27 (+)	Blacks (28)	20–50	Paul, H; et al.	22
	Al-CIII	0.19 (+)	Indian Asians (24)	20–50	Paul, H; et al.	22
	Al-CIII	0.17 (+)	Chinese (45)		Meng, XW; et al.	26
	Al-CIII	0.33 (+)	Japanese (75)		Rees, A; et al.	28
	Al-CIII	0.34 (+)	Japanese (82)	20–62	Satoh, J; et al.	27
	Al-CIII	0.35 (+)	Japanese (34)	20–50	Paul, H; et al.	22
	Al-CIII	0.37 (+)	Japanese (68)		Thompson, EA; et al.	24

*: Only male subjects were employed.
DISCUSSION

The levels of serum total cholesterol for both men and women in H-Y district are almost the same as those of the whole of Japan according to the Japanese National Survey of Circulatory Disorders, 1990\(^{29}\). For women, the average values of serum HDL-C in H-Y district were 0.078 mmol/L (3 mg/dL) lower than those in whole Japan, although there was no difference for men. Therefore, the subjects of the present study did not appear to differ markedly from the average Japanese.

The rare allele frequencies of Xba I (X+) and EcoR I RFLPs (E-) in H-Y district (Table 3) were much lower than those in American and European populations (Table 6\(^{13-28}\)). The median value of the frequencies (the range from the lowest to the highest values) of X+ from the Caucasian populations was 0.49 (0.41–0.53)\(^{13-17}\) and that of E- was 0.18 (0.11–0.21)\(^{13-16}\), although the frequencies observed in the present study were almost the same as those from another Japanese population\(^{21}\), 0.04 for X+ and a Chinese population\(^{29}\), 0.09 for X+ and 0.08 for E-.

On the other hand, the frequencies of Sac I (S+) and Msp I RFLPs (M-) were four times as high as those in Caucasian populations, 0.08 (0.01–0.11) for S+ and 0.08 (0.03–0.11) for M-\(^{13,17,22-25}\) and 0.08 (0.00–0.11) for M-\(^{13,22-25}\) and American black populations, 0.09 (0.05–0.13)\(^{24,25}\) and 0.08 (0.04–0.13)\(^{24,25}\). The frequencies in other Japanese populations, 0.35 (0.33–0.37) for S+\(^{22,24,27,28}\), and 0.45 (0.44–0.56) for M-\(^{22,24,27,28}\), and those in a Chinese population, 0.17 and 0.22\(^{29}\), were not different from ours.

According to the Japanese National Nutrition Survey\(^{29}\), fat intake was 20–30 g/day and the P/S ratio of the diet (P: polyunsaturated fat, S: saturated fat) was 1.0–1.5 during the national privation period before 1960. Fat intake increased during the high economic growth period from 1960 to 1975, reached the level of 55–60 g/day in 1975, and was stabilized during the low economic growth period from 1975 to 1990. Although the level of fat intake is still much lower and the P/S ratio is much higher in current Japanese than in Europeans and Americans\(^{20-32}\), there is no marked difference in the average level of serum cholesterol between Japan\(^{12}\) and the US\(^{20}\) recently. Thus, from an ecological point of view, this fact might be partially explained by genetic susceptibility of serum cholesterol to dietary fat exposures. Xba I and EcoR I RFLPs, of which allele frequencies are extremely different between these two populations, are likely to be related to this kind of genetic susceptibility. There are some dietary manipulation studies which support this hypothesis\(^{24-30}\). The frequencies of some genotypes, e.g. X−X− which might be associated with the high sensitivity to high saturated fatty acids and cholesterol diet\(^{37}\), were extremely high in the Japanese population.

Xba I RFLP was not significantly correlated to any serum trait in both sexes in the present study, but fourteen\(^{17,18,20,39-49}\) of the sixteen studies\(^{17,18,20,21,39-50}\) reported the significant relationship with serum TC, LDL-C, TG, apo B, HDL-C or apo AI in non-Japanese populations. Our result agreed with the other study in the Japanese population\(^{51}\). EcoR I RFLP was significantly correlated to serum TC, LDL-C and apo B only in women. On the other hand, the positive, negative and non-association took the nearly equal share in the number of the literatures\(^{20,43,45,51-55}\) (Appendix 2).

Sac I and Msp I RFLPs were significantly or suggestively associated with serum TG, HDL-C, apo B, LDL-C or apo CIII in men or women. Some studies suggested an association of Sac I with TG positively\(^{23,56-58}\) and with HDL-C inversely\(^{57,58}\), but others did not\(^{59}\). The persons with M+M+ genotype of Msp I RFLP tended to have higher level of serum HDL-C or apo AI than those with M−M− genotype\(^{57,60}\) (Appendix 2).

Thus, we can not conclude that the four RFLPs selected in the present study are genetically strong factors for the levels of serum lipids and apolipoproteins, although the statistical associations of some RFLPs with serum traits were observed.

ACKNOWLEDGMENTS

This work was supported in part by Grant-in-Aid for General Scientific Research (No. 02454199 ; No. 06454226) from Ministry of Education, Science, Sports and Culture of Japan, and Japan Heart Foundation Research Grant for 1994. We are indebted to the staffs of Haga and Yasutomi Health Centers, Shiso County, Hyogo Prefecture, Japan for their kind cooperation in our investigation.

REFERENCES

1. Willett W, ed. Nutritional Epidemiology. New York, USA: Oxford University Press, Inc., 1990: 341-379.
2. Stender M, Hense HW, Doring A, Keil U. Physical activity at work and cardiovascular disease risk: results from the MONICA Augsburg study. Int J Epidemiol 1993; 22(4): 644-650.
3. Srivastava LM, Vasisht S, Agarwal D, Goedde HW. Relation between alcohol intake, lipoproteins and coronary heart disease: the Interest Continues. Alcohol & Alcoholism 1991; 41: 107-121.
4. Rice T, Vogler GP, Perry TS, Laskarzewski PM, Rao DC. Familial Aggregation of Lipids and Lipoproteins in Families Ascertained through Random and Nonrandom Probands in the Iowa Lipid Research Clinics Family Study. Hum Hered 1991 ; 41 : 107-121.
5. Phillips DIW. Twin studies in medical research: can they tell us whether diseases are genetically determined? Lancet 1993 ; 341 : 1008-1009.
6. Siedel J, Hagele E, Ziegennhorn J, Wahlensfeld AW. Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem 1983 ; 29 :
148 H. Chen et al.

7. Nagele U, Hagele E, Sauer G, et al. Reagent for the enzymatic determination of serum total triglyceride with improved lipolytic efficiency. J Clin Chem Clin Biochem 1984; 22: 165-174.

8. Warnick GR, Benderson J, Albers JJ. Dextran sulfate-Mg2+ precipitation procedure for quantification of high-density lipoprotein cholesterol. Clin Chem 1982; 28: 1379-1388.

9. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499-502.

10. Hartl DL, Clark AG. Darwinian Evolution in Mendelian Population. In: Hartl DL, Clark AG, ed. Principles of Population Genetics. Second ed. Sunderland: Sinauer Associates, Inc., 1989: 1-60.

11. SAS Institute Inc., ed. SAS/STAT user's guide. 6 ed. Cary, NC: SAS Institute Inc., 1990.

12. Ministry of Health and Welfare, ed. National Survey on Circulatory Disorders 1990. Tokyo: Japan Heart Foundation, 1993.

13. Marshall HW, Morrison LC, Wu LL, et al. Apolipoprotein polymorphisms fail to define risk of coronary artery disease. Circulation 1994; 89(2): 567-577.

14. Hegele RA, Huang LS, Herbert PN, et al. Apolipoprotein B-gene DNA polymorphisms associated with myocardial infarction. N Engl J Med 1986; 315: 1509-1515.

15. Genest J Jr., Ordovas JM, McNamara JR, et al. DNA polymorphisms of the apolipoprotein B gene in patients with premature coronary artery disease. Atherosclerosis 1990; 82(1-2): 7-17.

16. Hallman DM, Visvikis S, Steinmetz J, Boerwinkle E. The effect of variation in the apolipoprotein B gene on plasma lipid and apolipoprotein B levels. Ann Hum Genet. 1994; 58: 35-64.

17. Aalto-Setala K, Viikari J, Akerblom HK, Kuusela V, Kontula K. DNA polymorphisms of the apolipoprotein B and A-I/C-III genes are associated with variations of serum low density lipoprotein cholesterol level in childhood. J Lipid Res 1991; 32(9): 1477-1487.

18. Renges HH, Wile DB, McKeigue PM, Marmot MG, Humphries SE. Apolipoprotein B gene polymorphisms are associated with lipid levels in men of South Asian descent. Atherosclerosis 1991; 91(3): 267-275.

19. Gajra B, Candlish JK, Saha N, et al. Influence of polymorphisms for apolipoprotein B (ins/del, XbaI, EcoRI) and apolipoprotein E on serum lipids and apolipoproteins in a Javanese population. Genet Epidemiol. 1994; 11(1): 19-27.

20. Saha N, Tay JS, Humphries SE. Apolipoprotein B-gene DNA polymorphisms (XbaI and EcoRI), serum lipids, and apolipoproteins in healthy Chinese. Genet Epidemiol 1992; 9(1): 1-10.

21. Aburatani H, Matsumoto A, Itoh H, et al. A study of DNA polymorphism in the apolipoprotein B gene in a Japanese population. Atherosclerosis 1988; 72: 71-76.

22. Paul H, Galton D, Stocks J. DNA polymorphic patterns and haplotype arrangements of the apoAI, apoC3, and apoA4 gene cluster in different ethnic groups. Hum Genet. 1987; 75: 264-268.

23. Ordovas JM, Civeira F, Genest J Jr., et al. Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease. Atherosclerosis 1991; 87(1): 75-86.

24. Thompson EA, Deeb S, Walker D, Motulsky AG. The detection of linkage disequilibrium between closely linked markers: RFLPs at the A1-C3 apolipoprotein genes. Am J Hum Genet. 1988; 42: 113-124.

25. Antonarakis SE, Oetjen P, Chakravarti A, et al. DNA polymorphism haplotypes of the human apolipoprotein ApoAI-ApoC3-ApoA4 gene cluster. Hum Genet. 1988; 80: 265-273.

26. Meng XW, Zhang GY, Li P, Du YZ. DNA polymorphisms and haplotypes in the apoAI-C3 gene region and coronary heart disease. Acta Genetica Sinica 1990; 17(6): 411-417.

27. Satoh J, Hattori N, Onuki M, et al. Apolipoprotein A1-C3 Gene Polymorphisms in Japanese Myocardial Infarction Survivors. Jpn J Hum Genet 1987; 32: 15-20.

28. Rees A, Stocks J, Paul H, Ohuchi Y, Galton D. Haplotypes identified by DNA polymorphisms at the apolipoprotein A1 and C3 loci and hypertriglyceridaemia. Hum Genet. 1986; 72: 168-171.

29. Ministry of Health and Welfare, ed. National Nutrition Survey, 1990. Tokyo: Dai-Ichi Shuppan, 1992.

30. Okayama A, Ueshima H, Marmot MG, et al. Changes in total serum cholesterol and other risk factors for cardiovascular disease in Japan, 1980-1989. Int J Epidemiol 1993; 22(6): 1038-1047.

31. Tell GS, Evans GW, Folsom AR, et al. Dietary fat intake and carotid artery wall thickness: The Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol 1994; 139: 979-989.

32. Stephen AM, Wald NJ. Trends in individual consumption of dietary fat in the United States, 1920-1984. Am J Clin Nutr 1990; 52: 457-469.

33. Posner BM, Cupples LA, Franz MM, Gagnon DR. Diet and Heart Disease Risk Factors in Adult American Men and Women — The Framingham Offspring-Spouse Nutrition Studies. Int J Epidemiol 1993; 22(6): 1014-1025.

34. Abbey M, Belling B, Clifton P, Nestel P. Apolipoprotein B gene polymorphism associates with plasma cholesterol changes induced by dietary fat and cholesterol. Nutr Metab Cardiovasc Dis. 1991; 1: 10-12.

35. Tikkanen MJ, Xu CF, Hamalainen T, et al. XbaI polymorphism of the apolipoprotein B gene influences plasma lipid response to diet intervention. Clin Genet 1990; 37(5): 327-334.

36. Tikkanen MJ, Helio T. Genetic variants of apolipoprotein B: relation to serum lipid levels and coronary artery disease among the Finns. Ann Med 1992; 24(5): 357-361.

37. Friedlander Y, Kaufmann NA, Cedar H, Kark JD. XbaI polymorphism of the apolipoprotein B gene and plasma lipid and lipoprotein response to dietary fat and cholesterol: a clinical trial. Clin Genet 1993; 43(5): 223-231.

38. Talmud PJ, Boerwinkle E, Xu CF, et al. Dietary intake and gene variation influence the response of plasma lipids to dietary intervention. Genet Epidemiol 1992; 9(4): 249-260.

39. Law A, Wallis SC, Powell LM, et al. Common DNA polymorphism within coding sequence of apolipoprotein B gene associated with altered lipid levels. Lancet 1986; 1: 1301-1302.

40. Berg K. DNA polymorphism at the apolipoprotein B locus is associated with lipoprotein level. Clin Genet. 1986; 30: 515-520.

41. Talmud P, Humphries S. DNA polymorphisms and the apolipoprotein B gene. Lancet. 1986; 2: 104.

42. Hansen PS, Gerdes LU, Klausen IC, Gregersen N, Faergeman O. Polymorphisms in the apolipoprotein B-100 gene.
contributes to normal variation in plasma lipids in 464 Danish men born in 1948. Hum Genet 1993; 91(1): 45-50.

43. Peocock R, Dunning A, Hamsten A, et al. Apolipoprotein B gene polymorphisms, lipoproteins and coronary atherosclerosis: A study of young myocardial infarction survivors and healthy population-based individuals. Atherosclerosis 1992; 92: 151-164.

44. Friedlander Y, Kaufmann NA, Cedar H, Weinberg N, Kark JD. The role of Xbal polymorphism of the apolipoprotein B gene in determining levels and covariability of lipid and lipoprotein variables in a sample of Israeli offspring with family history of myocardial infarction. Atherosclerosis 1993; 98(2): 165-177.

45. Paulweber B, Friedl W, Krempler F, Humphries SE, Sandhofer F. Association of DNA polymorphism at the apolipoprotein B gene locus with coronary heart disease and serum very low density lipoprotein levels. Arteriosclerosis 1990; 10(1): 17-24.

46. Vilella E, Balanya J, Masana L, et al. Low density lipoprotein ligand-receptor interactions in normal healthy individuals characterized by their Xbal apolipoprotein B DNA polymorphism. Atherosclerosis 1992; 93(1-2): 145-153.

47. Lehtimaki T, Moilanen T, Aalto-Setala K, et al. Association of apolipoprotein E and B polymorphisms with serum lipids. Ann Med 1991; 23: 657-662.

48. Aalto-Setala K, Tikkanen MJ, Taskinen MR, et al. Xbal and c/g polymorphisms of the apolipoprotein B gene locus are associated with serum cholesterol and LDL-cholesterol levels in Finland. Atherosclerosis 1988; 74: 47-54.

49. Houlston RS, Turner PR, Revill J, Lewis B, Humphries SE. The fractional catabolic rate of low density lipoprotein in normal individuals is influenced by variation in the apolipoprotein B gene: a preliminary study. Atherosclerosis 1988; 71: 181-185.

50. Darnfors C, Wiklund 0, Nilsson J, et al. Lack of correlation between the apolipoprotein B Xbal polymorphism and blood lipid levels in a Swedish population. Atherosclerosis 1989; 75(2-3): 183-188.

51. Mendis S, Shepherd J, Packard CJ, Gaffney D. Restriction fragment length polymorphisms in the Apo B gene in relation to coronary heart disease in a southern Asian population. Clin Chim Acta 1991; 196(2-3): 107-117.

52. Tybjaerg-Hansen A, Nordestgaard BG, Gerdes LU, Humphries SE. Variation of apolipoprotein B gene is associated with myocardial infarction and lipoprotein levels in Danes. Atherosclerosis 1991; 89(1): 69-81.

53. Pouliot MC, Despres JP, Dionne FT, et al. ApoB-100 gene EcoR1 polymorphism: Relations to plasma lipoprotein changes associated with abdominal visceral obesity. Arterioscler Thromb. 1994; 14: 527-533.

54. Houlston RS, Turner PR, Lewis B, Humphries SE. Genetic epidemiology of differences in low-density lipoprotein (LDL) cholesterol concentration: possible involvement of variation at the apolipoprotein B gene locus in LDL kinetics. Genet Epidemiol 1990; 7(3): 199-210.

55. de Benedictis G, Rose G, Mazzei R, et al. EcoRI-RFLP of the Apo B gene : a study in a sample group from south Italy. Ann Hum Genet 1991; 55(Pt 2): 103-113.

56. Tybjaerg-Hansen A, Nordestgaard BG, Gerdes LU, Faergeman O, Humphries SE. Genetic markers in the apo AI-CIII-AIV gene cluster for combined hyperlipidemia, hypertriglyceridemia, and predisposition to atherosclerosis. Atherosclerosis 1993; 100(2): 157-169.

57. Hegele RA, Breslow JL. Apolipoprotein genetic variation in the assessment of atherosclerosis susceptibility. Genet Epidemiol. 1987; 4: 163-184.

58. Anderson RA, Wallace RB. Apoprotein A1 linked genetic polymorphisms associated with high density lipoprotein levels. Clin Res. 1985; 39(suppl): 260.

59. Kasturi R, Yatsu FM, Alam R, Rogers S. Restriction fragment length polymorphism of the apoprotein A-I-LC-III gene cluster in control and stroke-prone white and black subjects: racial differences [see comments]. Stroke 1992; 23(9): 1257-1264.

60. Anderson RA, Burns TL, Wallace RB, Folsom AR, Sprafka JM. Genetic markers associated with high density lipoprotein cholesterol levels in a biracial population sample. Genet Epidemiol 1992; 9(2): 109-121.

61. Jenner K, Sidoli A, Ball M, Rodriguez JR, Pagani F, Giudici G, Vergani C, Mann J, Baralle FE, Shoulders CC. Characterization of genetic markers in the 3' end of the apo B gene and their use in family and population studies. Atherosclerosis 1988; 69(1): 39-49.

62. Hegele RA, Brunt JH, Connelly PW. Multiple genetic determinants of variation of plasma lipoproteins in Alberta Hutterites. Arterioscler Thromb Vasc Biol. 1995; 15: 861-871.
Appendix 1. Association of genotypes with serum lipids (mmol/L) or apolipoprotein (mg/dL) according to the ANOVAs, age-adjusted, minor homozygosity and heterozygosity combined.

RFLP	Genotype	n	TC	LDL-C	Apo B	TG	HDL-C	Apo A I	Apo C III
Xba I									
	- -	271	4.98±0.06	3.13±0.06	97.52±1.67	8.51±1.07	1.31±0.02	149.09±1.66	12.82±1.02
	- + / + +	22	5.41±0.20	3.39±0.20	109.53±5.85	11.75±1.32	1.27±0.07	152.25±5.85	14.79±1.07
	p		0.044	0.193	0.050	0.264	0.301	0.222	0.049
EcoR I									
	- - / + +	40	4.89±0.15	3.07±0.14	98.37±4.39	8.91±1.23	1.21±0.05	144.15±4.38	12.88±1.05
	+ +	253	5.03±0.06	3.16±0.06	98.71±1.74	8.71±1.10	1.29±0.02	151.11±1.74	12.97±1.02
	p		0.409	0.557	0.989	0.860	0.177	0.141	0.904

Appendix 1. Continued

RFLP	Genotype	n	TC	LDL-C	Apo B	TG	HDL-C	Apo A I	Apo C III
Xba I									
	- -	361	5.44±0.05	3.52±0.05	99.76±1.30	6.76±1.07	1.39±0.02	159.15±1.32	12.13±1.02
	- + / + +	19	5.39±0.23	3.38±0.20	102.10±5.68	10.47±1.29	1.19±0.07	146.25±5.76	12.02±1.07
	p		0.853	0.698	0.689	0.104	0.042	0.039	0.891
EcoR I									
	- - / + +	55	5.10±0.13	3.22±0.12	92.65±3.31	6.76±1.15	1.36±0.04	150.97±3.37	11.75±1.05
	+ +	325	5.49±0.06	3.57±0.05	101.10±1.36	6.92±1.07	1.39±0.02	156.92±1.39	12.30±1.02
	p		0.007	0.007	0.019	0.856	0.508	0.103	0.405

ANOVA = analysis of variance. RFLP = restriction fragment length polymorphism. SE = standard error. n = number of subject. TC = total cholesterol; LDL-C = low density lipoprotein cholesterol; HDL-C = high density lipoprotein cholesterol; TG = triglycerides; Apo = apolipoprotein.
Appendix 2 Associations of RFLPs with serum lipids and apolipoproteins in selected populations (reviews).

Gene	RFLP (site)	Association	Population (age)	Author	Reference
B	Xba I(+)	LDL-C ↑	Fins (9–21)	Aalto-Setala, K; et al.	17
Xba I(+)	HDL-C ↓, HDL-C/TC ↓	South Asian men (40–69)	Renges, HH; et al.	18	
Xba I(+)	HDL-C ↓, apoAI ↓, apoAII ↓	Chinese (25–60)	Saha, N; et al.	20	
Xba I(+)	TG ↑, TC ↑	White men (50–69)	Law, A; et al.	39	
Xba I(+)	TC ↑, apoB ↑	Norwegian (309)	Berk, K; et al.	40	
Xba I(+)	TC ↑	White	Talmud, P; et al.	41	
Xba I(+)	TC ↑, apoB ↑	Danish men (45)	Hansen, PS; et al.	42	
Xba I(+)	LDL-C ↑, apoB ↑	Swedish (35–45)	Peacock, R; et al.	43	
Xba I(+)	TC ↓, LDL-C ↓, apoB ↑	Israeli (25–64)	Friedlander, Y; et al.	44	
Xba I(+)	TC ↑, LDL-C ↑, apoB ↑	Austrian	Paulweber, B; et al.	45	
Xba I(+)	TC ↑, LDL-C ↑, apoB ↑	Spanish (19–65)	Villeva, E; et al.	46	
Xba I(+)	TC ↑, Fins (3–18)	Finnish	Lehtimaki, T; et al.	47	
Xba I(+)	TC ↑, LDL-C ↑	White	Houlston, RS; et al.	49	
Xba I(+)	NS	Japanese	Aburata, H; et al.	21	
Xba I(+)	NS	Swedish	Darnfors, C; et al.	50	
B	EcoR I(−)	TC ↑, VLDL-C ↑, TG ↑	Austrian	Paulweber, B; et al.	45
EcoR I(−)	LDL-C ↑, VLDL-C ↑, TG ↑	Danish	Tybjaerg-Hansen, A; et al.	52	
EcoR I(−)	TC ↑, apoB ↑	White men	Pouliot, MC; et al.	53	
EcoR I(−)	LDL-C ↓	Spanish (35–49)	Houlston, RS; et al.	54	
EcoR I(−)	TC ↓, LDL-C ↓, apoB ↓	South Italian (50–60)	De Benedictis, G; et al.	55	
EcoR I(−)	NS	Swedish (25–60)	Saha, N; et al.	20	
EcoR I(−)	NS	Danish men (40–69)	Tybjaerg-Hansen, A; et al.	56	
EcoR I(−)	NS	White	Mendis, S; et al.	51	
A1-CIII	Sac I(+)	LDL-C ↑	Fins (9–21)	Aalto-Setala, K; et al.	17
Sac I(+)	TG ↑	White (40–59)	Ordovas, JM; et al.	23	
Sac I(+)	TG ↑	Danish men (40–69)	Tybjaerg-Hansen, A; et al.	56	
Sac I(+)	HDL-C ↓, TG ↑	White	Hegele, RA; et al.	57	
Sac I(+)	HDL-C ↓, TG ↑	White	Anderson, RA; et al.	58	
Sac I(+)	NS	White and Black (45–80)	Kasturi, R; et al.	59	
Sac I(+)	HDL-C ↓, TG ↑	Hutterite Brethren	Hegele, RA; et al.	62	
A1-CIII	Msp I(+)	apoAI ↑	White	Hegele, RA; et al.	57
Msp I(+)	HDL-C ↑	Black men (35–74)	Anderson, RA; et al.	60	

(1) RFLP = restriction fragment length polymorphism.
(2) TC = total cholesterol; VLDL-C = very low density lipoprotein cholesterol; LDL-C = low density lipoprotein cholesterol; HDL-C = high density lipoprotein cholesterol; TG = triglycerides; Apo = apolipoprotein.
(3) ↑: positive association; ↓: negative association; NS: non significant association.