Flood induced phenotypic plasticity in amphibious genus Elatine (Elatinaceae)

Attila Molnár V., János Pál Tóth, Gábor Sramkó, Orsolya Horváth, Agnieszka Popiela, Attila Mesterházy, Balázs András Lukács

Vegetative characters are widely used in the taxonomy of the amphibious genus Elatine. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine Elatine species (E. brachysperma, E. californica, E. gussonei, E. hexandra, E. hungarica, E. hydropiper, E. macropoda, E. orthosperma and E. triandra) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability for species identification. Cultivated plant clones were kept under controlled conditions exposed to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of stem, length of internodium, length of lamina, width of lamina, length of petioles, length of pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension) were measured on on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to unravel the morphological differences between aquatic and terrestrial forms. Aquatic and terrestrial forms of the species differed significantly in all characters studied. Despite nearly all traits showed significant differences between aquatic and terrestrial forms, the results of MDA cross-validated and Random Forest classification clearly indicated that only seed traits are stable within species (i.e. different forms of the same species keep similar morphology). Consequently, only seed morphology is valuable for taxonomic purposes since vegetative traits are highly influenced by environmental factors.
Flood induced phenotypic plasticity in amphibious genus *Elatine* (Elatinaceae)

Attila Molnár V.ª*, János Pál Tóthʰ, Gábor Sramkóᵃ, Orsolya Horváthᵃ, Agnieszka Popielaᵈ, Attila Mesterházyᵉ, Balázs András Lukácsᶠ

*Corresponding author:

*Corresponding author:

e-mail: mva@science.unideb.hu, Tel.: +36-52-512-900 ext. 62648

Address: University of Debrecen, Faculty of Sciences & Technology, Department of Botany, Debrecen, Egyetem tér 1., Hungary H-4032

The first two authors contributed equally to the work.

ᵃDepartment of Botany, Faculty of Sciences & Technology, University of Debrecen, H-4032

Debrecen, Egyetem tér 1., Hungary, mva@science.unideb.hu;

ᵇResearch Institute for Viticulture and Oenology, H-3915 Tarcal, Könyves K. u. 54., Hungary, acutiformis@yahoo.com;

ᶜMTA-ELTE-MTM Ecology Research Group, H-1117 Budapest, Pázmány P. sétány 1/C., Hungary, sramko.gabor@science.unideb.hu;

ᵈDepartment of Botany and Nature Conservation, University of Szczecin, 71-412, Szczecin, Felczaka 3a, Poland, popiela@univ.szczecin.pl;

ᵉHunyadi u. 55., H-9500 Celldömölk., Hungary, amesterhazy@gmail.com;

ᶠDepartment of Tisza Research, MTA Centre for Ecological Research, H-4026, Debrecen, Bem tér 18/C, Hungary, lukacs.balazs@okologia.mta.hu;

Abstract

Vegetative characters are widely used in the taxonomy of the amphibious genus *Elatine*. However, these usually show great variation not just between species but between their aquatic and terrestrial forms. In the present study we examine the variation of seed and vegetative characters in nine *Elatine* species (*E. brachysperma*, *E. californica*, *E. gussonei*, *E. hexandra*, *E. hungarica*, *E. hydropiper*, *E. macropoda*, *E. orthosperma* and *E. triandra*) to reveal the extension of plasticity induced by the amphibious environment, and to test character reliability
for species identification. Cultivated plant clones were kept under controlled conditions exposed
to either aquatic or terrestrial environmental conditions. Six vegetative characters (length of
stem, length of internodium, length of lamina, width of lamina, length of petioles, length of
pedicel) and four seed characters (curvature, number of pits / lateral row, 1st and 2nd dimension)
were measured on 50 fruiting stems of the aquatic and on 50 stems of the terrestrial form of the
same clone. MDA, NPMANOVA Random Forest classification and cluster analysis were used to
unravel the morphological differences between aquatic and terrestrial forms. Aquatic and
terrestrial forms of the species differed significantly in all characters studied. Despite nearly all
traits showed significant differences between aquatic and terrestrial forms, the results of MDA
cross-validated and Random Forest classification clearly indicated that only seed traits are stable
within species (i.e. different forms of the same species keep similar morphology). Consequently,
only seed morphology is valuable for taxonomic purposes since vegetative traits are highly
influenced by environmental factors.

Keywords: adaptation, cultivation experiments, macrophyte, morphological variability, seed-
morphology, seed characters, vegetative characteristics, wetland ephemerophytes, water depth

Introduction

Environmentally induced phenotypic change plays a key role in the adaptation of organisms to
rapidly changing environmental conditions (Bradshaw, 1965; Schlichting, 1986). This
phenomenon is especially important for aquatic and semi aquatic plants (Wells & Pigliucci,
2000; Kaplan, 2002; Dorken & Barret, 2004), which enables them to survive and reproduce in
heterogeneous and temporally highly variable environments. Water depth is a temporally and
spatially changing dynamic factor in wetlands and littoral communities (Rea & Ganf, 1994).
Although the morphological (Nielsen & Sand-Jensen, 1997), ecological (Volder, 1997; Warwick
& Brock, 2003; Lin et al., 2012), and physiological (Valanne et al., 1982; Laan & Blom, 1990;
Robe & Griffiths 1998; Mommer & Visser 2005; Klančnik et al. 2012) aspects of phenotypic
plasticity are well studied among the aquatics, its importance has been underestimated in
taxonomical and evolution studies on plants (Davis & Heywood, 1963; Kaplan, 2002).
Phenotypic plasticity maximises plants' fitness in a variable environment (Bradshaw, 1965;
Wright & McConnaughay, 2002), thus, can play an important role in adaptation to amphibious
When cultivated under moist conditions, many of the freshwater angiosperms can be induced to transform into small terrestrial form. It has been recorded that this phenomenon sometimes appears in certain cases of aquatic species like *Nymphaea alba*, *Nuphar lutea*, *Myriophyllum* and *Utricularia* spp. In nature the production of terrestrial form from these aquatic species can greatly contribute to their survival over periods of temporal drought in less humid areas (Hejný, 1960; den Hartog & Segal, 1964).

Amphibious aquatics are adapted to a dual-life; under submerged conditions they develop aquatic form, whereas the same individual can have different terrestrial form on open air. This duality in life history can involve surprising physiological alterations (Ueno et al., 1988; Ueno, 1998; Agarie et al., 2002); all of the amphibious species have the ability to photosynthesize on air by developing air leaves or terrestrial shoots (Maberly & Spence, 1989). Hence these species are exposed to extreme conditions of temperature, availability of gases and solar radiation (Germ et al., 2002). They usually live in the littoral zone of lakes, wetlands and rivers or ephemeral wetlands, where their phenotypic plasticity is a key factor for survival in their temporal and fast changing environment (Deil, 2005).

Amphibious habit occurs in several genera of aquatic plants but a whole genus is very rarely adapted to live in temporal waters. Such is the genus *Elatine* that contains ca.15–25 ephemeral, amphibious species (Heywood et al., 2007) widespread in temperate region of both hemispheres. Surprisingly, there is only a few studies dealing with the causal relationship between their morphology and environmental variables and its effect on their taxonomy (Popiela & Łysko, 2010; Popiela et al., 2011, 2012) – a telling fact is that the last worldwide monograph on *Elatine* was published more than 140 years ago (Dumortier, 1872). Amongst the main causes of this obscurity are probably their enigmatic rarity, erratic temporal appearance that depends mainly on environmental factors like the amount of precipitation and the extent of inundation (Takács et al., 2013). Unquestionably, the high degree of the morphological variability of *Elatine* also contributes to the taxonomic uncertainties, which is evidently connected to their amphibious life-history. The clonal nature of *Elatine* also contributes to their morphological variability, because large clonal plants are especially exposed to variation in water depth over time and space (Vretare et al., 2001).

The main distinguishing characters of *Elatine* species are related to flower and seed morphology (Cook, 1968a; Brinkkemper et al., 2008; Uotila, 2009, 2010; Molnár V. et al., 2013a, 2013b), but
vegetative traits (i.e., relative length of pedicel, sepals or petals, form of leaves, etc.) are also frequently used in descriptions of *Elatine* taxa (Wight, 1830; Albrecht, 2002; Lægaard 2008). An example is the length of pedicel, which has great importance in separation of some species-pairs (e.g.: *E. ambigua* and *E. triandra*; *E. hungarica* and *E. campylosperma*; *E. gussonei* and *E. hydropiper*), but the taxonomic value of such characters are generally disregarded. Even though the unusual degree of morphological variability and the crucial importance of *in vitro* cultural studies in the genus were pointed out more than 60 years ago by Mason (1956: 239): ‘The differences between aquatic and terrestrial forms of the same species often seem greater than the differences between species’ and ‘The genus is in need of a thorough cultural study designed to test the nature of characters and their validity as criteria of species’. According to the best of our knowledge, such experiments have not been accomplished and published yet.

As part of our ongoing researches aiming at the taxonomic clarification of the genus *Elatine* in Europe, we examine the level of phenotypic plasticity in the genus in order to lay down the basis of a comprehensive taxonomic study. More specifically, we provide here a study of seed and vegetative traits concerning the aquatic and terrestrial form of nine *Elatine* species studied in a laboratory culture system. Our aims were to (i) quantify the degree of phenotypic plasticity in case of vegetative organs and seeds, and (ii) to examine the phenotypic overlap among the species, and then (iii) determine which type of traits could be used to differentiate the species in practical identification. This is done in hope of serving as a base for future taxonomic works in the genus *Elatine*, including practical guide to the thoughtful usage of morphological variation in this genus.

Material and methods

Plant material and cultivation

We set up a cultivation experiment to study the plastic variation of *Elatine* species in waterlogged and submerged conditions. To eliminate the effect of genetic variation within the studied species we used only clones of the same individual for any comparison of morphological differences. Seeds of nine annual, clonal *Elatine* species collected from indigenous populations were included for the present study (Table 1). *Elatine hungarica*, *E. hydropiper* and *E. triandra* are protected species and sampled in Hungary with the permission of the Hortobágy National Park Directorate (Permission id.: 45-2/2000, 250-2/2001). We collected seeds only from one
aquatic form specimen in all *Elatine* species, due to submerged condition enables only autogamy
and ensure that different capsules contains seeds with the same genetic information. Seeds were
sown in 12.5 × 8.5 cm plastic boxes on sterilised (autoclaved for 3 hours, 180ºC) soil, which was
continuously wetted and germinated in the laboratory of the Department of Botany at University
of Debrecen. Plantlets were grown in climate controlled rooms (with 14h/day light and 30 µmol
m² sec⁻¹ light intensity, temperatures: under light 22±2 ºC and under darkness 18±2 ºC). Two
specimens of one week old plantlets from each species were transplanted, then one specimen was
grown under continuous water cover to develop into aquatic form, while the another one
(terrestrial forms) was grown on wet mud until they both reached fruiting stage and form a clone
bed with minimum 50 fruiting stems, between 45 and 70 days (Fig. 1.). For the morphological
study six traits (length of stem, length of internode, length of lamina, width of lamina, length of
petioles, length of pedicel) were measured on 50 fruiting stems of the aquatic and on 50 stems of
the terrestrial form of the same clone using calliper (0.1 mm accuracy). Leaf traits and internodes
were measured on 3 leaves of each specimens. 3 capsules were collected from each sample. Then
seed were pooled and 50 randomly collected seeds were photographed from each clone and four
traits [curvature (°), number of pits / lateral row, 1st dimension (mm), 2nd dimension (mm)] were
measured on digital images (Fig. 2). Curvature of seeds was measured following the method of
Mifsud (2006).

Data analyses
Multivariate and univariate statistical analyses were applied to determine the validity of
vegetative and seed traits. Multiple Discriminant Analysis (Linear Discriminant Analysis for
more than two groups) was used to reveal morphological differences between terrestrial and
aquatic forms based on vegetative and seed traits using SPSS 16.
In the analyses the predefined groups were the two ecological forms of the studied species. Mean
scores of our predefined groups were plotted to illustrate the pattern of morphological
differentiation. Wilks’s λ was used to measure the discriminatory power of the model. Its values
change from 0 (perfect discrimination) to 1 (no discrimination). For visualise the relationship
between the different species and forms based on vegetative and seed characters Mahalanobis
distance based UPGMA trees were constructed.
To test the statistical significance of the visible pattern obtained by MDA and UPGMA trees, we used Mahalanobis distance based Permutational Multivariate Analysis of Variance (NPMANOVA), since some of our variables do not show normal distribution. The number of permutations was set to 10000. Linear discriminant analysis frequently achieves good performances in the tasks of face and object recognition, even though the assumptions of common covariance matrix among groups and normality are often violated (Duda et al., 2001, Li et al., 2006).

Classification of our groups was made using the cross-validated grouping function in SPSS. In this method, one known specimen is left out at a time, and assigned using the discriminant function which is calculated based on all the cases except the given case. The numbers of correct assignments were used to evaluate the usefulness of the discriminant function. High numbers of correct assignments indicate diagnostic differences between the surveyed groups.

Random Forest was also used to determine variable importance and classification accuracy in vegetative and seed characters (Liaw & Wiener, 2002). Random Forest is an algorithm (Breiman 2001) for classification that uses an ensemble of classification trees. Each of the classification trees is built using a bootstrap sample of the data, and at each split the candidate set of variables is a random subset of the variables. The results of MDA and Random Forest classification have been presented as a confusion matrix.

The most discriminative traits were also tested independently by the non-parametric Kruskal-Wallis test using R computing environment (R Development Core Team 2014). The results are interpreted by the kruskalmc function in pgirmess package. kruskalmc makes multiple comparisons of treatments.

Results

Vegetative traits

The vegetative traits of the aquatic or terrestrial forms of the nine *Elatine* species were different with high discriminatory power (Wilks's $\lambda = 0.0001$, p<0.001). The first two axes explained 67% of variance (43% of axis 1 and 24% of axis 2, respectively). The length of the 3rd lamina (-0.593), length of the 1st lamina (-0.591), length of stem (0.505), and length of the 2nd lamina (-0.477) had the highest relative importance in the first function based on the standardized canonical discriminant function coefficients values. In the second function the most important
variables are length of stem (0.401), length of the 2nd lamina (0.782), and width of the 1st lamina (-0.823). The scatter plot of group mean scores on the first two canonical axes showed a relatively large distance between the aquatic and the terrestrial forms of the same species (Fig. 3B). These distances are sometime larger than the distance between the different species (Fig. 3D). The cross-validated classification correctly assigned 77.7% of the specimens. The lowest assignment success was in case of E. hexandra (aquatic) (38%) and E. hungarica (terrestrial) (30%) (see: Table 2). The Random Forest variable importance analysis also indicate the importance of the length of pedicel, the 1st lamina, the stem and the 1st petiole (Fig. 4). The success rate of Random Forest classification was 82.33% (Table 3). The variation of important vegetative traits indicated substantial differences between the terrestrial and aquatic forms within the species, however the variation of each forms has high overlaps between the species (Fig. 5). The results of the NPMANOVA indicated all predefined groups were significantly different from each other (p<0.05). On the UPGMA tree the different forms of the same species clustered to different branches with the exception of E. macropoda and E. gussonei (Fig. 3D).

Univariate analysis on the measured vegetative traits indicated significant differences between the different ecological forms of the same species. None of the vegetative traits were alone suitable for species identification (see Table 4, Fig. 3B, 3D).

Seed traits

The seed traits of the aquatic or terrestrial forms of the nine Elatine species were differed significantly (Wilks’s $\lambda = 0.001$, p<0.001). The first two axes explained more than 83% of the total variance between groups (52% of axis 1 and 31% of axis 2, respectively). Curvature (0.873) and the 2nd dimension (0.47) showed the largest loadings in the first discriminant function based on the standardized canonical discriminant coefficient values, while in the second discriminant function the number of pits on the testa in a lateral row (0.832) and the 1st dimension (0.62) had notable loadings. The group centroids of the aquatic and terrestrial forms of the same species are positioned very close to each other, and at the same time the species are well separated with the exception of Elatine hungarica and E. californica (Fig. 3C).

The cross-validated classification could assign only 50.2 % of the specimens correctly to the predefined groups, although the success of assignments at the species level is usually high 83.8%
(Table 5). The lowest level of correct assignments occurred between *E. californica* (62%) and *E. hungarica* (57%).

The Random Forest variable importance indicate that the curvature and the number of pits are the most useful characters in classification. (Fig. 6). The success rate of Random Forest classification was 49.78% (Table 6). The average classification success is 87.5% in species level. The within species variation of important seed traits did not differ between the terrestrial and aquatic forms, and the variation of each forms had only small overlaps between the species (Fig. 7).

The seed trait based NPMANOVA indicated significant differences (p<0.05) between the species but difference between the two ecological forms of the same species were not significant with three exceptions. The two forms of *E. gussonei* (p=0.03) and the aquatic and terrestrial forms of *E. hungarica* and *E. hydropiper* (p<0.05) proved to be different. We also tested the usefulness of the measured seed traits independently. The Kruskall-Wallis test found none of the seed traits to be suitable for perfect discrimination of all species alone, although different forms of the same species are not significantly separable (Table 7 and Fig. 5).

Discussion

Phenotypic plasticity is the ability of an organism to change its phenotype in response to relatively rapid changes of its environment (Price et al. 2003). This was documented for several aquatic plants, e.g. *Potamogeton* (Idestam-Almquist & Kautsky, 1995; Kaplan 2002) and *Batrachium* (Cook 1968b; Garbey et al., 2004, 2006). An important type of potentially adaptive plasticity involves differences in morphological, anatomical and physiological characteristics of leaves along environmental gradients such as light and/or water availability (Wells & Pigliucci, 2000). Nonetheless, if distinctive morphological features of taxa depend on environmental conditions, phenotypic plasticity may cause taxonomic errors. Plant taxonomy is sensible of errors when forms of a species are erroneously named as distinct taxa (Kaplan, 2002; Sultan 2004). Understanding this issue in such threatened and vulnerable genus as *Elatine* can contribute to a clarified taxonomy what is essential for an effective conservation. Mason (1956) highlighted that the taxonomy of *Elatine* suffers from the high levels of phenotypic plasticity. According to his opinion several *Elatine* species or ecotypes of a species had classified into wrong taxa due to the phenotypic variation displayed. For example *Elatine hungarica*, which is
listed on IUCN Red List as data deficient taxon (Bilz et al., 2011), was merged to *Elatine hydropiper* (Cook, 1968a; Casper & Krausch, 1980) based on shared vegetative characteristics. Additionally, *Elatine gussonei*, which is an enigmatic plant of the Mediterranean was firstly described as a variety of *Elatine hydropiper* and was later classified as a separate species based on the shape of the seed and the length of flowers pedicels (Brullo et al., 1988).

The results and method applied in this study provide much evidence to explain why seed traits are better than vegetative traits in taxonomy of *Elatine*. Although some students of the genus were arguing for the taxonomic importance of pedicel length (Seubert, 1845; Moesz, 1908, Cook, 1968a), others had expressed doubts about its relevance, and clearly attributed morphological variation to response to environmental differences (Margittai, 1939; Soó, 1974). Our results indicate that vegetative characters have less taxonomic relevant information than what was usually considered before. It suggest that it is not appropriate to use vegetative traits in species identification within the *Elatine* genus.

The investigation of the extent of phenotypic plasticity of seed and vegetative traits in nine *Elatine* species grown in different environmental circumstances gave a clear answer to the above debate. Although only one clone of each field-collected specimen was investigated, this assured that the reported difference between the different ecotypes of the same clone stands for phenotypic plasticity and it is not influenced by genotypic difference. The similar placement of different ecotypes of the same species in the seed trait based multivariate analyses (Fig. 3) indicates clearly the stability of seed characters. Secondly, we consider this relatively limited sampling is still the most comprehensive experimental study in the genus, thus we regard our data and conclusions as pioneering in the genus.

Different species boundaries were indicated by the statistical analysis of different set of vegetative and seed traits. On one hand our results clearly demonstrate that aquatic or terrestrial conditions can induce morphological alteration (i.e. different appearance of the same species), thus, we can conclude that vegetative traits are highly influenced by environmental factors. Moreover, we found various morphological distances between the different ecological forms of the same species according to vegetative traits. The morphological distance between the different ecological forms showed a large heterogeneity and nearly all was statistically significant. For example the aquatic and terrestrial forms of *E. macropoda*, *E. californica* and *E. gussonei* were only slightly different and the two forms clustered to the same branch in the UPGMA tree,
whereas the morphological distance between the two forms of *E. triandra* is bigger than the
difference between species. Because of the previously described instability, the vegetative trait
based identification is not reliable and could lead to erroneous species identification.
Consequently, the usage of vegetative traits in some literature sources (e.g. Moesz 1908) to
separate species needs careful re-evaluation and highly cautious use. In fact the total ignorance
of phenotypic plasticity in *Elatine* taxonomy might lead to much narrower species concepts then
what would be necessary to apply in such a genus. An example can be the report of *E. ambigua*
from Europe (Moesz 1908). We suspect this plant was a form of *E. triandra* with elongated
pedicels, what is otherwise the distinguishing character between the two species. If a more wide
species concept would have been applied, the specimen could have been correctly identified as
E. triandra.
Vegetative and regenerative traits are affected by different selection forces (Grime, 2001). Vegetative
organs play an important role in photosynthesis and the physical maintenance of the whole plant in
various and often changing environment. Phenotypic plasticity (i.e. the morphological alteration of plants
vegetative organs) is the most important adaptation of plants to temporal and spatial environmental
variability (Sultan, 2000). Plasticity gives opportunity for plants to improve their resource acquisition,
their resistance and adaptability to stress and disturbance (Grime et al., 1986). The significant vegetative
variability of the amphibious genus *Elatine* therefore plays a key role in adaptation to starkly different
environmental conditions. Seed traits belong to regenerative traits with the basic role of propagation, and
could similarly vary under different habitat characteristics (i.e. aquatic or terrestrial). Nevertheless, we
found seed traits to be more stable. Although different environmental conditions can influence some
reproductive traits in aquatic plants, but this phenomenon recognized only in seed numbers (Garbey et al.,
2004), seed mass (Fenner & Thompson, 2005) and seed size (Westoby et al., 1992), and not in seed
morphology. Most probably reproductive traits are under a selective pressure that favors stability even in
different habitat characteristics. Disregarding the reason behind the stability of seed traits in the
amphibious genus *Elatine* – similar to other plant species – reproductive characteristics are favorable in
species identification.
Based on our analyses aquatic and terrestrial forms of the same species were not statistically
different from each other, except in few cases, when we suspect phylogenetically independent
occurrence of the same character. Contrary to our findings based on the vegetative traits, the
morphological distance between seeds of two ecological forms of the same species were very
small as seen on the UPGMA tree (Fig. 3C). Thus, seed traits show more stability under different
environmental influence than vegetative traits. Among the measured seed traits the curvature and
the number of pits had the biggest standardised loadings on the first and the second discriminant
function, thus proved to be useful for identifying species. Based on seed characteristics, all
European species form distinct groups. There is only one species pair where the separation is not
possible based on seed traits: the Eurasian *E. hungarica* and North-American *E. californica*,
which have similar seeds. Whether this shared morphology is due to phylogenetic relatedness or
simple morphological homoplasy warrants for further research.

Acknowledgements

We are very grateful to Csaba Máthé, Márta M-Hamvas, Pertti Uotila and Luis Eguiarte for their
professional comments and linguistic improvements on the earlier draft of this paper. The authors would like to thank to Viktor Löki (Debrecen) for collecting *Elatine californica* and *E. brachysperma* samples in the US, to Zsanett Ajtay and Anna Farkas (Debrecen) for their assistance during laboratory work, and to Nikola Rahmé (Budapest) for photographing seeds.

References

Agarie, S., M. Kai, H. Takatsuji & O. Ueno, 2002. Environmental and hormonal regulation of
gene expression of C4 photosynthetic enzymes in the amphibious sedge *Eleocharis vivipara*.
Plant Science 163: 571–580.
Albrecht, D.E., 2002. *Elatine macrocalyx* (Elatinaceae), a new species from central and western
Australia. Nuysia 14: 319–324.
Bilz, M, S.P. Kell, N. Maxted & R.V. Lansdown, 2011. European Red List of vascular plants.
Publication Office of the European Union, Luxembourg.
Bradshaw, A.D., 1965. Evolutionary significance of phenotypic plasticity in plants. Advances in
Genetics. 13: 115–155.
Breiman, L. (2001). Random Forests. Machine Learning 45: 5-32.
Brinkkemper, O., E.J. Weeda, S.J.P. Bohncke & W.J. Kuijper, 2008. The past and present
occurrence of *Elatine* and implications for palaeoenvironmental reconstructions. Vegetation
History and Archaeobotany 17: 15–24.
Brullo, S., E. Lanfranco, P. Pavone & G. Ronsisvalle, 1988. Taxonomical notes on the endemic
flora of Malta. Giornale Botanico Italiano 122: 45.
Casper, S. J. & H-D. Krausch, 1980. Elatinaceae. In: Ettl, J., J. Gerloff & H. Heynig (eds), Süßwasserflora von Mitteleuropa. Band 24. Teil. 2. Saururacea bis Asteraceae, VEB Gustav-Fischer Verlag, Jena: 614–626.

Cook, C.D.K., 1968a: Elatine L. In: Tutin, T.G., V.H. Heywood, N.A. Burges, D.M. Moore, D.H. Valentine, S.M. Walters & D.A. Webb (eds), Flora Europaea 2, Cambridge Univ. Press, Cambridge: 295–296.

Cook, C.D.K., 1968b. Phenotypic plasticity with particular reference to three amphibious plant species. In: Heywood, V. H. (eds), Modern Methods in Plant Taxonomy, Academic Press, London: 97–111.

Deil, U., 2005. A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. Phytocoenologia 35: 533–706.

Davis, P.H. & V.H. Heywood, 1963. Principles of angiosperm taxonomy. Oliver and Boyd, Edinburgh.

den Hartog, C. S. & Segal, 1964. A new classification of water-plant communities. Acta Botanica Neerlandica 13: 367–393.

Dorken, M.E. & S.C.H. Barrett, 2004. Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): a clonal aquatic plant. Journal of Ecology 92: 32–44.

Duda, R O, Hart, P E & Stork, D G 2001. Pattern Classification. New York: Wiley. 680 pp.

Dumortier, B.C., 1872. Examen critique des Élatinacées. Bulletin de la Société Royale de Botanique de Belgique 11: 254–274.

Fenner, M. & K. Thompson 2005. The ecology of seeds. Cambridge University Press, New York.

Garbey, C., G. Thiébaut & S. Muller, 2004. Morphological plasticity of a spreading aquatic macrophyte, Ranunculus peltatus, in response to environmental variables. Plant Ecology 173: 125-137.

Garbey, C., G. Thiébaut & S. Muller, 2006. An experimental study of the plastic responses of Ranunculus peltatus Schrank to four environmental parameters. Hydrobiologia 570: 41–46.

Germ, M., Z. Mazej, A. Gaberščik & D-P. Häder, 2002). The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus aquatic macrophytes with amphibious character. Journal of Photochemistry and Photobiology B: Biology 66: 37–46.
Grime, J. P. 2001. Plant strategies, Vegetation processes and ecosystem properties. John Wiley & Sons, England.
Grime, J. P., J. C. Crick & J. E. Rincon, 1986. The ecological significance of plasticity. Symposia of the Society for Experimental Biology 40: 5–29.
Hejný, S. 1960. Ökologische Characteristik der Wasser- und Sumpfplanzen in den Slowakische Tiefebenen (Donau- und Theissgebiet). Verlag der Slowakischen Akademie der Wissenschaften, Bratislawa.
Heywood ,V., R. Brummit, A. Culham & O. Seberg (eds.), 2007. Flowering plant families of the World. Royal Botanic Gardens, Kew.
Idestam-Almquist, J. L. & Kautsky , 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquatic Botany 52: 205–216.
Kaplan, Z., 2002. Phenotypic plasticity in Potamogeton (Potamogetonaceae). Folia Geobotanica 37: 141–170.
Klančnik, K., M. Mlina & A. Gaberščik, 2012. Heterophylly results in a variety of “spectral signatures” in aquatic plant species. Aquatic Botany 98: 20–26.
Laan, P., C.W.P.M. Blom, 1990. Growth and survival responses of Rumex species to flooded and submerged conditions: the importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. Journal of Experimental Botany 41: 775–783.
Lægaard, S., 2008. Elatine rotundifolia sp. nov. (Elatinaceae) from Ecuador. Nordic Journal of Botany 26: 235–236.
Li, T., Zhu, S. & Ogihara, M. 2006. Using Discriminant Analysis for Multi-Class Classification: An Experimental Investigation. Knowledge and Information Systems 10: 453–72.
Liaw, A. & Wiener, M. (2002). Classification and Regression by randomForest. R News 2: 18–22.
Lin, H-F., P. Alpert & F-H. Yu, 2012. Effects of fragment size and water depth on performance of stem fragments of the invasive, amphibious, clonal plant Ipomoea aquatica. Aquatic Botany 99: 34–40.
Maberly, S.C. & D.H.N. Spence, 1989. Photosynthesis and photorespiration in freshwater organisms: amphibious plants. Aquatic Botany 34: 267–286.
Margittai, A., 1939. Megjegyzések a magyar Elatine-fajok ismeretéhez. Botanikai Közlemények 36: 296–307.

Mason, H.L., 1956. New species of Elatine in California. Madrono 13: 239–240.

Mifsud, S., 2006. A comparative study between Elatine gussonei (from Malta) and Elatine macropoda (from Majorca). Aquatic Gardeners [Serial online]. URL: http://www.aquatic-gardeners.org/latine/Comparitive_study.pdf (accessed 23 November 2014)

Moesz, G., 1908. Magyarország Elatine-i. Die Elatinen Ungarns. Magyar Botanikai Lapok 7: 2–35.

Molnár, V.A., O. Horváth, J. Tökölyi L. & Somlyay, 2013a. Typification and seed morphology of Elatine hungarica Moesz (Elatinaceae). Biologia 68: 210–214.

Molnár, V.A., A. Popiela & B.A. Lukács, 2013b. Elatine gussonei (Sommier) Brullo et al. (Elatinaceae) in Sicily. Plant Biosystems 148: 27–30.

Mommer, L. & E.J.W. Visser, 2005. Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. Annals of Botany 96: 581–589.

Nielsen, S.L. & K. Sand-Jensen, 1997. Growth rates and morphological adaptations of aquatic and terrestrial forms of amphibious Littorella uniflora (L.) Aschers. Plant Ecology 129: 135–140.

Popiela, A. & A.R. Łysko, 2010. The distribution of Elatine macropoda Guss. (Elatinaceae). Acta Societatis Botanicorum Poloniae 79: 81–86.

Popiela, A., A.R. Łysko, A. Wieczorek & D. Nalepka, 2011. The distribution of Elatine hexandra (Lapierre) DC. (Elatinaceae). Acta Societatis Botanicorum Poloniae 80: 27–32.

Popiela, A., A.R. Łysko, A. Wieczorek & V.A. Molnár, 2012. The distribution of Elatine hydropiper L. (Elatinaceae). Acta Societatis Botanicorum Poloniae 81: 137–143.

Popiela, A., A.R. Łysko, A. Molnár V., Z. Kącki & B.A. Lukács 2015: Distribution, morphology and habitats of Elatine triandra (Elatinaceae) in Europe, with particular reference to the central part of the continent. – Acta Botanica Gallica DOI 10.1080/12538078.2015.1088470.

Price, T.D., A. Qvarnström, D.E. Irwin, 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society 270: 1433–1440.

R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: http://www.R-project.org/ (Accessed 29 November 2014).
Rea, N. & G.G. Ganf, 1994. How emergent plants experience water regime in a Mediterranean-type wetland. Aquatic Botany 49: 117–136.

Robe, W. E. & H. Griffiths, 1998. Adaptations for an amphibious life: changes in leaf morphology, growth rate, carbon and nitrogen investment, and reproduction during adjustment to emersion by the freshwater macrophyte Littorella uniflora. New Phytologist 140: 9–23.

Schlichting, C.D., 1986. The evolution of phenotypic plasticity in plants. Annual Review of Ecology, Evolution and Systematics 17: 667–693.

Seubert, M., 1845. Elatinarum Monographia. Nova Acta Academiae Caesareae Leopoldino Carolinae Germanicae Natura Curiosorum 21: 33-60.

Soó, R., 1974. Systematisch-nomenklatorische Bemerkungen zur Flora Mitteleuropas mit Beziehungen zur südosteuropäischen Flora. Nachträge und Verbesserungen. Feddes Repertorium 85: 433–453.

Sultan, S. E., 2000. Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5: 537–542.

Sultan, S.E., 2004. Promising directions in plant phenotypic plasticity. Perspectives in Plant Ecology, Evolution and Systematics 6: 227–233.

Takács, A., A. Schmotzer, G. Jakab, T. Deli, A. Mesterházy, G. Király, B.A. Lukács, B. Balázs, R. Perič, J.P. Eliáš, G. Sramkó, J. Tökölyi & V.A. Molnár, 2013. Key environmental variables affecting the distribution of Elatine hungarica in the Pannonian Basin. Preslia 85: 193–207.

The PLANTS Database, 2014. Flora of North America. URL: http://plants.usda.gov (accessed 29 November 2014).

Ueno, O., 1998. Induction of Kranz anatomy and C$_4$-like biochemical characteristics in a submerged amphibious plant by abscisic acid. Plant Cell 10: 571–583.

Ueno, O., M. Samejima, S. Muto & S. Miyachi, 1988. Photosynthetic characteristics of an amphibious plant, Eleocharis vivipara: Expression of C$_4$ and C$_3$ modes in contrasting environments. Proceedings of the National Academy of Sciences USA 85: 6733–6737.

Uotila, P., 1978. Elatine hydropiper L. aggr. in northern Europe. Memoranda Societatis pro Fauna et Flora Fennica 50: 113–123.
Uotila, P., 2009. Lectotypifications in *Elatine* (Elatinaceae) and some taxonomic remarks. Annales Botanici Fennici 46: 90–94.

Uotila P. 2010. Elatinaceae, pp. 62–69. In: Jonsell, B. & Karlsson, T. (eds), Flora Nordica 6, The Swedish Museum of Natural History, Stockholm.

Valanne, N., E-M. Aro & E. Rintamäki, 1982. Leaf and chloroplast structure of two aquatic *Ranunculus* species. Aquatic Botany 12: 13–22.

Volder, A., A. Bonis & P. Grillas, 1997. Effects of drought and flooding on the reproduction of an amphibious plant, *Ranunculus peltatus*. Aquatic Botany 58: 113–120.

Vretare V., S.E.B. Weisner, J.A. Strand & W. Granéli, 2001. Phenotypic plasticity in *Phragmites australis* as a functional response to water depth. Aquatic Botany 69: 127–145.

Warwick, N.W.M. & M.A. Brock, 2003. Plant reproduction in temporary wetlands: the effects of seasonal timing, depth, and duration of flooding. Aquatic Botany 77: 153–167.

Wells, C.L. & M. Pigliucci, 2000. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspectives in Plant Ecology, Evolution and Systematics 3: 1–18.

Westoby, M., E. Jurado & M. Leishmann 1992. Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7: 368–372.

Wight, R., 1831. *Elatine ambigua*. In Hooker, W.J. (eds), Botanical Miscellany. Vol. 2. London. P.: 103.

Wright, S.D. & K.D.M. McConnaughay, 2002. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biology 17: 119–131.
Aquatic (continuously flooded) and terrestrial (growing on wet mud) forms with same age of three central European *Elatine* species cultivated in plastic boxes. Scale bars represent 10 mm.
Seed traits measured as examplified by three *Elatine* species studied.
Figure 3 (on next page)

Morphological relationships among the surveyed *Elatine* species as displayed by MDA scatterplots (A, B) and UPGMA cluster diagrams(C,D).

Symbols indicate the group based on seed traits (A,C) and on vegetative traits (B,D).
Dot chart of variable importance as measured by a Random Forest for vegetative traits (Liaw & Wiener, 2002).
Boxplots of the most discriminative vegetative traits among the nine *Elatine* species studied.

Terrestrial (T) and aquatic (A) forms are significantly differed in all the species; the aquatic forms are relatively larger than terrestrial ones. Notations: Boxes means 25–75 percentiles, lines are medians, squares are means, whiskers are standard deviations.
Dotchart of variable importance as measured by a Random Forest for seed traits.
Figure 7 (on next page)

Boxplots of the most discriminative seed traits among the nine *Elatine* species studied. Terrestrial (T) and aquatic (A) forms are not significantly differed in all the species.

Notations: Boxes means 25–75 percentiles, lines are medians, squares are means, whiskers are standard deviations.
Number of pits on the lateral row of testa

Curvature (°)

- brachysperma
- californica
- gussonei
- hexandra
- hungarica
- hydropiper
- macropoda
- orthosperma
- triandra
Table 1 (on next page)

Table 1. - Taxonomic position, distribution and sample source of nine *Elatine* species studied.
Species	Section	Distribution	Locality
Elatine brachysperma A. Gray	Seubert	North-American (The PLANTS Database 2014)	USA: Fallbrook (CA) (N 33.4°, W 117.4°)
Elatine californica A. Gray	Seubert	North-American (The PLANTS Database 2014)	USA: Los Angeles (CA) (N 33.8°, W 118.3°)
Elatine gussonei Sommier	Seubert	Central Mediterranean (Molnár V. et al. (2013b))	Sicily: Modica (N 36°, E 14.7°)
Elatine hexandra (Lapierre) DC.	Seubert	Sub-Atlantic and Central-European (Popiela et al. 2011)	Poland: (N51.55°, E17.35°)
Elatine hungarica Moesz	Seubert	temperate Eurasian (Takács et al. 2013)	Hungary: Konyár (N 47.3°, E 21.7°)
Elatine hydropiper L.	Seubert	Euro-Siberian (Popiela et al. 2012)	Hungary: Tiszagyenda (N 47.4°, E 20.5°)
Elatine macropoda Guss.	Seubert	Mediterranean (Popiela et al. 2010)	Sardinia: Olmedo (N 40.6°, E 8.4°)
Elatine orthosperma Düben	Seubert	Northern European (Uotila 1978)	Finnland: Oulu (N 65.0°, 25.4°)
Elatine triandra Schkuhr	Seubert	Cosmopolitan (Popiela et al. 2015)	Hungary: Kisköre (N 47.5°, E 20.5°)
Table 2. – MDA Cross validated classification based on vegetative traits. Rows: given group; columns: predicted groups. The 77.7 % of the specimens are correctly assigned.

Abbreviations hereafter: bra = *Elatine brachysperma*, hyd = *E. hydropiper*, tri = *E. triandra*, ort = *E. orthosperma*, hex = *E. hexandra*, mac = *E. macropoda*, gus = *E. gussonei*, cal = *E. californica*, hun = *E. hungarica*, T = Terrestrial; A = Aquatic.
	braAq	braTe	hydTe	hydAq	e	q	ortAq	hexTe	hexAq	macTe	macAq	gusTe	gusAq	calTe	calAq	q	hunTe	hunAq	Total	
braAq	46	0	0	2	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	50
braTe	0	40	1	0	0	0	1	0	8	0	0	0	0	0	0	0	0	0	0	50
hydTe	0	4	28	0	0	0	2	1	3	3	1	0	0	0	0	0	3	0	8	50
hydAq	5	0	2	41	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	50
triTe	0	0	0	0	45	0	0	0	2	3	0	0	0	0	0	0	0	0	0	50
triAq	0	0	1	0	46	0	0	0	3	0	0	0	0	0	0	0	0	0	0	50
ortTe	0	6	0	0	0	0	36	0	2	0	0	0	0	0	0	0	0	6	0	50
ortAq	0	0	2	0	0	0	0	48	0	0	0	0	0	0	0	0	0	0	0	50
hexTe	0	9	1	0	0	0	3	1	32	0	0	0	0	0	0	1	0	3	0	50
hexAq	6	7	1	0	6	0	0	0	6	19	0	0	0	0	0	3	0	2	0	50
macTe	0	0	0	0	0	0	1	0	42	4	0	0	0	0	3	0	0	0	0	50
macAq	0	0	0	0	0	0	3	0	0	0	0	46	0	1	0	0	0	0	0	50
gusTe	0	0	0	0	0	0	0	0	0	0	0	0	0	40	9	0	1	0	0	50
gusAq	0	0	0	0	0	0	0	0	0	0	0	40	9	0	1	0	0	0	0	50
calTe	0	0	1	0	0	0	2	0	0	0	0	0	0	41	5	1	0	0	0	50
calAq	0	0	1	0	0	0	1	0	0	0	0	0	2	0	0	9	37	0	0	50
hunTe	0	6	7	0	0	0	5	5	9	0	0	0	0	0	3	0	15	0	0	50
hunAq	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	48	0	50
Total	57	73	44	44	51	46	49	61	62	27	42	52	40	59	62	48	35	48	900	
Table 3 (on next page)

Table 3. Confusion matrix from Random Forest classification based on vegetative traits. Abbreviations as in Table 2.
| | braA | braT | calA | gusA | gusT | hexA | hexT | hunA | hunT | hydA | hydT | macA | macT | ortA | ortT | triA | triTe |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| | q | e | q | e | q | e | q | e | q | e | q | e | q | e | q | e |
| braAq | 38 | 0 | 0 | 3 | 3 | 0 | 2 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 24 |
| braTe | 0 | 43 | 0 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 14 |
| calAq | 40 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 26 |
| calTe | 0 | 6 | 40 | 0 | 0 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 20 |
| gusAq | 0 | 0 | 0 | 2 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 06 |
| gusTe | 0 | 0 | 0 | 2 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 06 |
| hexA | 5 | 0 | 0 | 1 | 0 | 2 | 47 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
| hexTe | 4 | 0 | 0 | 1 | 0 | 0 | 33 | 0 | 3 | 0 | 4 | 0 | 0 | 1 | 3 | 46 |
| hunA | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 00 |
| hunTe | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 31 | 0 | 9 | 0 | 0 | 1 | 5 | 38 |
| hydA | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 0 | 0 | 0 | 3 | 0 | 0 | 14 |
| hydT | 2 | 0 | 3 | 0 | 0 | 2 | 11 | 0 | 28 | 0 | 0 | 2 | 0 | 0 | 0 | 44 |
| macA | 0 | 0 | 0 | 0 | 0 | 0 | 48 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 04 |
| macT | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 0 | 0 | 0 | 08 |
| ortAq | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 46 | 0 | 0 | 08 |
| ortTe | 3 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 43 | 14 |
| triAq | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 06 |
| triTe | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 06 |
Table 4 (on next page)

Table 4. - Kruskal-Wallis groups based on vegetative characters. The significant level set to 0.05.

Unique letters indicate significantly different groups while the same letters means statistically not different subsets. Abbreviations as in Table 2.
	stem	pedicel	1st petiole	1st leaf
braAq	a	a	a	a
braTe	bcd	a	bc	bcd
calAq	bef	ab	b	efg
calTe	cd	bc	cde	efg
gusAq	eg	de	bcd	ae
gusTe	g	d	de	efg
hexAq	cdh	c	bcd	bci
hexTe	ah	c	cde	fgh
hunAq	ch	ce	f	bd
hunTe	a	c	bcd	efg
hydAq	bdf	a	f	bd
hydTe	ah	a	bcd	fhi
macAq	bef	d	f	a
macTe	efg	de	f	aeg
ortAq	bcd	a	f	chi
ortTe	a	a	ae	a
triAq	bcd	a	b	d
triTe	a	a	de	bcd
Table 5. – Cross validated classification based on seed traits. Rows: given group; columns: predicted groups. Only 50.7% of the specimens are correctly assigned.

Abbreviations as in Table 2.
	braTe	braAq	calTe	calAq	gusTe	gusAq	hexTe	hexAq	hunTe	hunAq	hydTe	hydAq	macTe	macAq	ortTe	ortAq	triTe	triAq	Total
braTe	10	29	0	0	0	0	0	0	0	0	0	1	0	0	0	7	3	50	
braAq	9	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	50	
calTe	0	0	15	16	0	0	0	0	11	8	0	0	0	0	0	0	0	50	
calAq	0	0	16	14	0	0	0	0	12	8	0	0	0	0	0	0	0	50	
gusTe	0	0	0	0	38	10	0	0	1	0	0	0	1	0	0	0	0	50	
gusAq	0	0	0	0	14	30	0	0	2	2	0	0	2	0	0	0	0	50	
hexTe	0	0	0	0	0	24	21	0	0	0	0	1	4	0	0	0	0	50	
hexAq	0	0	0	0	0	19	26	0	1	0	0	3	1	0	0	0	0	50	
hunTe	0	0	10	6	0	7	0	0	23	3	0	0	1	0	0	0	0	50	
hunAq	0	0	8	3	7	3	0	0	6	23	0	0	0	0	0	0	0	50	
hydTe	0	0	2	0	0	0	0	0	0	0	0	31	17	0	0	0	0	50	
hydAq	0	0	1	0	0	0	0	0	0	0	16	33	0	0	0	0	0	50	
macTe	0	0	0	0	0	3	2	0	0	0	0	29	16	0	0	0	0	50	
macAq	0	0	0	0	0	7	7	0	0	0	0	22	13	0	0	1	0	50	
ortTe	0	0	0	0	0	0	0	0	0	0	0	0	0	29	21	0	0	50	
ortAq	0	0	0	0	0	2	0	0	0	0	0	0	0	26	22	0	0	50	
triTe	7	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	50	
triAq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	22	28	50	
Total	26	70	52	39	59	50	53	58	55	45	47	50	62	34	55	43	53	49	900
Table 6. Confusion matrix from Random Forest classification based on seed traits. Abbreviations as in Table 2.																			
	braAq	braTe	calAq	calTe	gusAq	gusTe	hexAq	hexTe	hunAq	hunTe	hydAq	hydTe	macAq	macTe	ortAq	ortTe	triAq	triTe	class.error
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
braAq	29	21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.42
braTe	26	19	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0.62
calAq	0	0	18	19	0	0	0	0	4	8	0	1	0	0	0	0	0	0	0.64
calTe	0	0	20	20	0	0	0	0	3	7	0	0	0	0	0	0	0	0	0.60
gusAq	0	0	0	0	34	13	0	0	0	0	1	0	0	0	0	0	0	2	0.32
gusTe	0	0	0	0	16	32	0	0	1	1	0	0	0	0	0	0	0	0	0.36
hexAq	0	0	0	0	0	0	0	18	21	1	0	0	0	0	7	2	0	0	0.64
hexTe	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	0.52
hunAq	0	0	3	5	3	2	0	0	25	12	0	0	0	0	0	0	0	0	0.50
hunTe	0	0	8	7	4	2	0	0	6	23	0	0	0	0	0	0	0	0	0.54
hydAq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	13	0	0	0.26
hydTe	0	0	0	0	0	0	0	0	20	30	0	0	0	0	0	0	0	0	0.40
macAq	0	1	0	0	0	0	5	3	0	0	0	0	0	20	21	0	0	0	0.60
macTe	0	0	0	0	1	0	4	1	0	0	0	0	0	24	20	0	0	0	0.60
ortAq	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	23	27	0
ortTe	0	0	0	0	0	0	0	0	0	0	0	0	0	25	25	0	0	0	0.50
triAq	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	26	0.48
triTe	1	2	0	0	0	0	1	0	0	0	0	0	0	1	1	0	27	17	0.66
Table 7 (on next page)

Table 7. - Kruskal-Wallis groups based on seed traits. The significant level set to 0.05.

Unique letters indicates significantly different groups while the same letters means statistically not different subsets. Abbreviations as in Table 2.
ID	number of pits	curvature
braAq	abc	ab
braATe	abcd	a
calAq	efg	cde
calTe	defg	cde
gusAq	h	c
gusTe	h	cde
gusAq	abcd	bf
hexTe	abc	abf
hunAq	adef	c
hunTe	abde	cd
hydAq	ij	e
hydTe	i	de
macAq	bch	f
macTe	ch	f
ortAq	ij	abf
ortTe	i	abf
triAq	gj	ab
triTe	fg	abf