Characteristics of patients with atrial high rate episodes detected by implanted defibrillator and resynchronization devices

Kazuo Miyazawa, Daniele Pastori, David T. Martin, Wassim K. Choucair, Jonathan L. Halperin, and Gregory Y.H. Lip; on behalf of the IMPACT Study Investigators

Aims
Atrial high rate episodes (AHREs) are associated with increased risks of thromboembolism and cardiovascular mortality. However, the clinical characteristics of patients developing AHRE of various durations are not well studied.

Methods and results
This was an ancillary analysis of the multicentre, randomized IMPACT trial. In the present analysis, we classified patients according to the duration of AHRE < 6 min, > 6 min to < 6 h, > 6 to < 24 h and > 24 h, and investigated the association between clinical factors and the development of each duration of AHRE. Of 2718 patients included in the trial, 945 (34.8%) developed AHRE. The incidence rates of each AHRE duration category were 5.4/100, 12.0/100, 6.8/100, and 3.3/100 patient-years, respectively. The incidence rates of AHRE > 6 h were significantly higher in patients at high risk of thromboembolism (CHADS2 score > 3) compared to those at low risk (CHADS2 score 1 or 2). Using Cox regression analysis, age > 65 years and history of atrial fibrillation (AF) and/or atrial flutter (AFL) were risk factors for AHRE > 6 min. In addition, hypertension was associated with AHRE > 24 h (hazard ratio 2.13, 95% confidence interval 1.24–3.65, P = 0.006).

Conclusion
Atrial high rate episode > 6 min to < 6 h were most prevalent among all AHRE duration categories. Longer AHREs were more common in patients at risk of thromboembolism. Age and history of AF/AFL were risk factors for AHRE > 6 min. Furthermore, hypertension showed a strong impact on the development of AHRE > 24 h rather than age.

Keywords
Atrial fibrillation • Atrial high rate episode • Stroke • Thromboembolism • Clinical profile • Cardiac implantable electronic device

Introduction
Atrial fibrillation (AF) is associated with increased risks of stroke, myocardial infarction, heart failure, and mortality. A substantial proportion of AF is asymptomatic and often eludes detection by conventional diagnostic methods such as physical examination, 12-lead electrocardiogram (ECG), and 24-h Holter ECG. In approximately one-quarter of patients with stroke, no overt aetiology is identified, and these events may be related to atrial high rate episodes (AHREs), which generally represent either subclinical AF or atrial flutter (AFL). Cardiac implantable electronic devices (CIEDs) can automatically record all spontaneous episodes of atrial and ventricular arrhythmias regardless of symptoms. Previous studies demonstrated that AHRE is associated with increased risks of developing clinically manifest AF.
What's new?

- Atrial high rate episode (AHRE) lasting >6 min to <6 h most frequently occurred among duration-categorized AHREs in patients at risk of life-threatening arrhythmias.
- Atrial high rate episodes lasting >6 h more frequently occurred in patients at high risk of thromboembolism compared to those at low risk.
- Age and history of atrial fibrillation or flutter were risk factors associated with the development of AHREs lasting >6 min.
- Hypertension was a risk factor for the development of long AHRE (>24 h), with a greater impact than age.

Methods

Study population

The study design of IMPACT (ClinicalTrials.gov identifier NCT00559988) has been previously described. In brief, this interventional, single-blinded, randomized, multicentre trial enrolled 2718 patients with dual-chamber ICD or CRT-D devices (Biotronik, Inc.) at 104 centres in North America, Europe, and Australia. Eligible patients had at least one additional stroke risk factor (CHADS2 score ≥1) and were deemed able to tolerate anticoagulation therapy on the burden of AHRE and each patient’s intrinsic risk of thromboembolism. "At baseline and more frequent use of digoxin (Table 1)."

Definition of atrial high rate episode

Atrial high rate episode was defined as atrial tachyarrhythmias with ≥36 of 48 atrial beats and cycle lengths <300 ms (atrial rates >200 b.p.m.). For this analysis, we subdivided AHRE into five categories according to duration as no AHRE, episodes ≤6 min, >6 min but ≤6 h, >6 h but ≤24 h, and those lasting >24 h. Classification was based on the longest AHRE during follow-up (median 701 days and cumulative 5430 patient-years).

Statistical analysis

Continuous variables were expressed as mean ± standard deviation, and categorical variables as numbers and percentages. We compared categorical variables using the χ² test and continuous variables using the independent samples t-test for normally distributed data or Mann–Whitney U test for non-normal distribution. Significance was accepted at the 95% confidence interval (CI; two-sided P ≤ 0.05). Since we performed multiple (four pairwise) comparisons of baseline characteristics, the Bonferroni correction was applied to adjust the threshold for significance (0.05/4 = 0.0125).

To identify independent risk factors associated with AHRE, we performed Cox proportional hazards regression analysis. The multivariable models were adjusted for underlying heart disease, medications, and components of the CHA2DS2-VASc score as covariates. The cumulative incidence of AHRE of various durations was displayed using the Kaplan–Meier method. Receiver operating characteristic (ROC) analysis was performed to evaluate the discrimination of the risk scores to predict the development of AHRE based on the area under the ROC curves (AUC). To compare the predictive models, we calculated the difference between the AUCs by the method of DeLong et al.

Statistical analyses were performed using SAS version 9.2 (SAS Institute Inc., Cary, NC, USA), SPSS version 21 (IBM Corp., Armonk, NY, USA), and StatXact version 10 (Cytel, Cambridge, MA, USA).

Results

Baseline patient characteristics

Baseline characteristics of enrolled patients are shown in Table 1. Mean age was 64.4 years; 26.3% were women. Of all patients, 64% had ICD and 36% CRT-D devices. During a mean follow-up of 2.0 ± 1.2 years, 945 patients (34.8%) developed AHRE; 292 (10.7%) had AHRE ≤6 min, 284 (10.4%) >6 min to ≤6 h, 187 (6.9%) >6 to ≤24 h, and 182 (6.7%) >24 h.

Patients developing AHRE for ≤6 min were slightly younger, with less heart failure but a higher prevalence of non-ischaemic cardiomyopathy and higher proportion of ICD devices (Table 1). Patients with AHRE lasting >6 min to <6 h and >6 to ≤24 h were older and less frequently women than patients without AHRE. Conversely, a history of AF or AFL was more frequent in these groups. Patients with AHRE >24 h were older than those without AHRE but a similar proportion were women. In this group, there was a higher prevalence of AF or AFL at baseline and more frequent use of digoxin (Table 1).

Of those who developed AHRE, 64.6% had CHADS2 scores of 2 and 26.2% had CHA2DS2-VASc scores of 4 (Figure 1).

Incidence rates of atrial high rate episode

The Kaplan–Meier estimates of the cumulative incidence of each AHRE category are depicted in Figure 2. The incidence rates of each AHRE category during follow-up were 5.1/100, 2.0/100, 0.9/100, and 0.5/100 patient-years, respectively (Table 2). Time frame over which AHREs were documented was described in Supplementary material online, Table S1. To assess the relationship between incidence rate and thromboembolic risk, we divided patients into two groups according to CHADS2 score—those at low risk (CHADS2 score 1 or 2) and those at high risk (CHADS2 score ≥3)—and compared the incidence rates of each AHRE category in these two groups (Table 2). There were no significant differences between low-risk and
high-risk patients in the incidence rates of AHRE ≤6 min and >6 min to ≤6 h [risk ratio (RR) 0.906, 95% CI 0.728–1.128, RR 1.108, 95% CI 0.969–1.266], while the incidence rates of AHRE >6 to ≤24 h, and those lasting >24 h were higher in high-risk patients compared to those with low-risk CHA2DS2 scores (RR 1.244, 95% CI 1.029–1.504 and RR 1.476, 95% CI 1.113–1.957, respectively).

Similarly, we assessed this relationship using CHA2DS2-VASc score and observed the consistent results with the results using CHAD2S2 score, showing significantly high incidence rates of AHRE >6h in high-risk patients (CHA2DS2-VASc score >4) compared to those at low risk (CHA2DS2-VASc score 1–3) (RR 1.282, 95% CI 1.053–1.560 for AHRE >6 to ≤24h, RR 1.412, 95% CI 1.052–1.896 for AHRE >24h). Furthermore, AHRE >6 min to ≤6 h also occurred more frequently in high-risk patients compared to those at low risk (RR 1.172, 95% CI 1.022–1.345).

In order to assess the relationship between the development of AHRE over time, we compared the follow-up duration among four AHRE categories. Table 1 demonstrates that the follow-up duration in patients with AHRE >24h was significantly longer than those with AHRE ≤6 min (P = 0.008), while there was no significant difference in the follow-up duration among other AHRE duration subgroups.

Risk factors for the development of atrial high rate episode

Cox regression analysis found heart failure inversely associated with the risk of AHRE ≤6 min [hazard ratio (HR) 0.58, 95% CI 0.40–0.85, P = 0.005]. Conversely, age ≥65 years and a history of AF or AFL were associated with AHRE of durations longer than 6 min (Figure 3A–D). Female gender was inversely associated with AHRE >6 min to ≤6 h (HR 0.72, 95% CI 0.54–0.96, P = 0.027) and >6 to ≤24 h (HR 0.70, 95% CI 0.49–1.02, P = 0.061). Hypertension was associated with AHRE >24 h (HR 2.13, 95% CI 1.24–3.65, P = 0.006).

Additionally, we performed a subgroup analysis in patients without history of AF or AFL. In general, the consistent results of associations between AHRE and clinical factors were observed with the analysis for the entire population (Supplementary material online, Table S2). Several associations of long AHRE (>24h) with age ≥65 years and hypertension did not reach the statistically significant threshold in this analysis. This was in part due to a relative decrease in the number of patients with AHRE, although we found a trend for age ≥65 years and hypertension being associated with long AHRE (HR 1.44, 95% CI 0.99–2.09, P = 0.054 for age ≥65 years, HR 1.87, 95% CI 0.97–3.6, P = 0.063 for hypertension).

Table 1 Baseline characteristics of patients

Characteristic	No AHRE group (n = 1773)	≤6 min (n = 292)	P-value	P-value*	>6 min/≤6 h (n = 284)	P-value*	>6 h/≥24 h (n = 187)	P-value*	>24 h (n = 183)	P-value*
Age (years)	63.9 ± 11.2	62.4 ± 11.1	0.050	<0.001	66.8 ± 10.6	<0.001	66.8 ± 10.6	<0.001	66.5 ± 10.6	0.001
Women	490 (27.6)	86 (29.5)	0.522	0.030	38 (20.3)	0.032	40 (22.0)	0.102		
Hypertension	1480 (83.5)	243 (83.2)	0.914	0.140	160 (85.6)	0.463	167 (91.8)	0.003		
Diabetes mellitus	733 (41.3)	111 (38.0)	0.284	0.243	74 (39.6)	0.243	84 (46.2)	0.210		
Heart failure	1607 (90.6)	252 (86.3)	0.022	0.938	164 (87.7)	0.938	165 (90.7)	0.992		
History of stroke/TIA	159 (9.0)	34 (11.6)	0.146	0.632	14 (7.5)	0.632	13 (7.1)	0.408		
Vascular disease	1035 (58.4)	157 (53.7)	0.140	0.930	115 (61.5)	0.930	112 (61.5)	0.409		
Non-ischaemic CM	617 (34.8)	119 (40.8)	0.049	0.408	65 (34.8)	0.499	55 (30.2)	0.215		
Valvular disease	899 (50.7)	160 (54.8)	0.198	0.125	158 (55.6)	0.125	101 (54.0)	0.394	106 (58.2)	0.054
History of AF/AFL	138 (7.8)	29 (9.9)	0.212	<0.001	52 (18.3)	<0.001	63 (23.4)	<0.001		
CHADS2 score	2.5 ± 1.0	2.5 ± 1.1	0.341	0.353	2.5 ± 1.1	0.353	2.6 ± 1.0	0.074		
CHA2DS2-VASc score	3.9 ± 1.5	3.7 ± 1.4	0.070	0.492	3.9 ± 1.5	0.492	4.1 ± 1.4	0.055		
ICD	1095 (61.8)	211 (72.3)	0.001	0.934	128 (68.5)	0.073	112 (61.5)	0.953		
Primary prevention of SCD	1566 (88.3)	247 (84.6)	0.071	0.801	164 (87.7)	0.801	164 (90.1)	0.474		
Beta-blockers	1628 (91.8)	267 (91.4)	0.825	0.181	165 (88.2)	0.095	160 (90.7)	0.588		
ACE-I/ARB	1467 (82.7)	252 (86.6)	0.098	0.557	162 (86.6)	0.177	155 (85.2)	0.408		
Digoxin	230 (13.0)	39 (13.4)	0.857	0.101	29 (15.5)	0.330	34 (18.7)	0.032		
Statin	1310 (73.9)	200 (68.5)	0.054	0.545	144 (77.0)	0.355	140 (76.9)	0.373		
Follow-up periods (days)	NA	827.7 ± 426.9	Ref	830.4 ± 441.0	0.926	907.1 ± 443.7	0.053	936.9 ± 436.2	0.008	

AAD, antiarrhythmic drugs; ACE-I, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AFL, atrial flutter; AHRE, atrial high rate episode; ARB, angiotensin II receptor blocker; CM, cardiomyopathy; ICD, implantable cardioverter-defibrillator; NA, not applicable; SCD, sudden cardiac death; TIA, transient ischaemic attack.

aVersus no AHRE group.

bVersus AHRE ≤6 min.

cVersus AHRE >6 min.
Association of CHADS2 and CHA2DS2-VASc scores with atrial high rate episode

Receiver operating characteristic curves showed that the AUC values of the CHADS2 and CHA2DS2-VASc scores for development of any burden of AHRE were low, ranging from 0.50 to 0.54, although there was a trend suggesting a relationship between the CHA2DS2-VASc score and AHRE >24 h (AUC 0.54, 95% CI 0.50–0.58, P = 0.053; Supplementary material online, Table S3). There was no significant difference in AUC values between the CHADS2 and CHA2DS2-VASc scores (P = 0.131 for AHRE <6 min, P = 0.679 for AHRE >6 min to <6 h, P = 0.137 for AHRE >6 to <24 h, and P = 0.768 for AHRE >24 h).

Discussion

The main finding of this study is that in patients with ICD or CRT-D devices capable of continuous arrhythmia detection, specific patient characteristics are associated with the duration of atrial tachyarrhythmias. Older age and a history of AF or AFL were risk factors for AHRE of longer duration. Furthermore, hypertension showed a strong impact on the development of AHRE lasting >24 h rather than age.

In this population, AHRE between 6 min and 6 h was the most frequently detected duration. In previous studies, reported incidence rates of AHRE ranges from 30% to 70%, although incidence seems to
depend on the clinical characteristics of each study population. An increased risk of adverse outcomes such as ischaemic stroke or systemic embolism has been associated with AHRE >5–6 min.4 Whether AHRE have the same implications for antithrombotic prophylaxis as overt AF remains unclear.14 Cohort studies have demonstrated that stroke risk in untreated patients with AHRE increases with an increasing burden

![Figure 2](https://academic.oup.com/europace/advance-article/doi/10.1093/europace/euab186/6356790) The cumulative incidence of different burden of AHRE using the Kaplan–Meier method. AHRE, atrial high rate episode.

Incidence rate of each burden of AHREs
Overall
Low-risk group (CHADS2 = 1 or 2)
High-risk group (CHADS2 ≥ 3)
RR (95% CI)*

Number of patients
AHRE ≤ 6 min
6 min < AHRE ≤ 6 h
6 h < AHRE ≤ 24 h
AHRE > 24 h
Overall
Low-risk group (CHA2DS2-VASc = 1–3)
High-risk group (CHA2DS2-VASc ≥ 4)
RR (95% CI)*
Number of patients
AHRE ≤ 6 min
6 min < AHRE ≤ 6 h
6 h < AHRE ≤ 24 h
AHRE > 24 h

AHRE, atrial high rate episode; CI, confidence interval; RR, risk ratio.

*Low-risk group as a reference.
of AHRE, and the net benefit of anticoagulation therapy for patients with AHRE >24 h is under investigation in clinical trials. Anticoagulation may be considered for selected patients with longer burdens of AHRE (e.g. >24 h), based upon anticipated clinical benefit, once patient preferences are also weighed. Clinical practice guidelines recommend careful monitoring of patients with device-detected AHRE, including remote monitoring systems, especially for patients with greater burdens of AHRE and high-risk clinical profiles.

Previous study demonstrated that patients who developed AHRE >24 h showed a significantly higher risk of stroke or systemic embolism compared with those without AHRE, but other durations of AHRE did not show the association with an increased risk. In the present study, we found significant associations of AHRE >24 h with age, history of AF or AFL, and hypertension. Among those risk factors, age was associated with AHRE >24 h with a HR of 1.59, while hypertension showed more than two-fold risk for AHRE >24 h. This result may suggest that blood pressure may be an important target as one of the modifiable clinical factors for the prevention from adverse outcomes such as stroke or systemic embolism in patients who develop AHRE. Furthermore, stratification of patients according to AHRE duration disclosed a sex-based difference, as women were less likely to exhibit AHRE from 6 min to 24 h duration. Despite a lower

Clinical Factor	OR (95% CI)	P-value
Age over 65	0.82 (0.63-1.06)	0.122
Female gender	1.05 (0.80-1.39)	0.717
Hypertension	0.93 (0.66-1.31)	0.668
Diabetes mellitus	1.02 (0.78-1.32)	0.893
Heart failure	0.58 (0.40-0.85)	0.005
History of stroke or TIA	1.26 (0.83-1.91)	0.277
Vascular disease	0.93 (0.69-1.25)	0.612
Non-ischemic cardiomyopathy	1.14 (0.86-1.51)	0.366
Valvular disease	1.17 (0.91-1.51)	0.230
History of AF or AFL	1.42 (0.90-2.22)	0.130
Beta blockers	0.89 (0.55-1.42)	0.061
ACE-I or ARB	1.38 (0.95-2.00)	0.091
Digoxin	0.98 (0.68-1.42)	0.310
Antiarrhythmic drugs	0.84 (0.53-1.34)	0.466
Statin	0.86 (0.64-1.16)	0.312

Clinical Factor	OR (95% CI)	P-value
Age over 65	1.54 (1.21-1.97)	<0.001
Female gender	0.72 (0.54-0.96)	0.027
Hypertension	0.79 (0.58-1.06)	0.117
Diabetes mellitus	0.94 (0.74-1.21)	0.645
Heart failure	0.92 (0.61-1.39)	0.688
History of stroke or TIA	0.91 (0.59-1.40)	0.659
Vascular disease	0.92 (0.70-1.21)	0.563
Non-ischemic cardiomyopathy	1.05 (0.81-1.37)	0.726
Valvular disease	1.11 (0.87-1.41)	0.409
History of AF or AFL	2.50 (1.83-3.43)	<0.001
Beta blockers	0.70 (0.47-1.04)	0.076
ACE-I or ARB	1.35 (0.97-1.88)	0.074
Digoxin	1.17 (0.85-1.62)	0.329
Antiarrhythmic drugs	0.84 (0.57-1.26)	0.402
Statin	0.90 (0.68-1.20)	0.482

Figure 3 Clinical factors associated with the development of each burden of AHRE [(A) AHRE <6 min, (B) 6 min < AHRE ≤ 6 h, (C) 6 h < AHRE ≤ 24 h, and (D) AHRE > 24 h]. ACE-I, angiotensin-converting enzyme inhibitor; AF, atrial fibrillation; AFL, atrial flutter; ARB, angiotensin II receptor blocker; CI, confidence interval; CM, cardiomyopathy; HR, hazard ratio; TIA, transient ischaemic attack.
age-adjusted prevalence of overt AF in women compared with men, a difference in AHRE based on gender has not been previously reported and warrants confirmation in future studies. The association between use of digoxin and AHRE >24 h is difficult to explain in the absence of data on serum digoxin dosage, plasma concentration, and indications for therapy. Indeed, at supratherapeutic blood concentrations, digoxin is associated with an increased risk of adverse effects. We observed a negative association between short AHRE (<6 min) and heart failure, but the clinical relevance of such short AHRE is not well established because AHRE lasting <6 min was previously reported to have low positive predictive value for actual AF episodes. In addition, the LOOP (Atrial Fibrillation Detected by Continuous ECG Monitoring Using Implantable Loop Recorder to Prevent Stroke in High-risk Individuals) study showed that only a minority (16%) of short episodes of subclinical AF progressed to longer episodes >24 h, and that 22% of patients with AF detected by implantable loop recorder had no other episodes of AF in a 3-year follow-up. Thus, we cautiously interpret the results regarding the associations between short AHRE and clinical characteristics.

Use of the CHADS2 and CHA2DS2-VASc scores has extended beyond assessment of thromboembolism risk to predict new-onset AF,

Figure 3 Continued
left atrial remodelling, and AF recurrence after catheter ablation.21–23
We found no significant difference in the performance of the two scores to predict AHRE. In fact, unlike clinically manifest AF, these risk scores did not perform well in predicting device-detected AHRE of any duration. One explanation may be that AHRE relate more closely to arrhythmogenic atrial pathology than to thrombogenicity and risk of clinical ischaemic events.

Limitations
The present study has several limitations. First, the study population consisted of high-risk patients with ICD or CRT-D devices, who often had heart failure or other underlying heart disease associated with a risk of life-threatening arrhythmias. Their clinical characteristics may therefore differ from patients with other types of CIEDs, such as pacemakers and loop recorder. Although we investigated the relationship between clinical characteristics and the duration of AHRE, the association of AHRE with clinical outcomes, including stroke, heart failure, hospitalization, or mortality was not addressed because the IMPACT study randomly assigned patients to anticoagulation based on remote rhythm monitoring compared to conventional follow-up, which may affect the relationship between AHRE and clinical outcomes. Furthermore, we observed a significant difference in the follow-up durations between AHRE <6 min and AHRE >24 h, suggesting that long-term observation may more frequently detect longer AHRE duration during follow-up. Hence, the follow-up duration for each individual could possibly contribute to the results from this study, although there was no significant difference in the follow-up duration between other AHRE duration subgroups. Moreover, in the IMPACT study, AHREs were subjected to an adjudication by the expert committee in the case of events that would have triggered the initiation of anticoagulants. Although some of the AHREs might by chance be due to the false reading by CIEDs, longer AHREs were in general were subjected to an independent adjudication.

Conclusions
The duration of AHRE varies according to the clinical characteristics of patients with implanted defibrillator or resynchronization devices. Atrial high rate episode >6 min to <6 h was most prevalent among all AHRE duration categories in patients with ICD or CRT-D. Longer AHREs more frequently occurred in patients at risk of thromboembolism. Age and history of AF/AFL were risk factors for AHRE >6 min. Furthermore, hypertension showed a strong impact on the development of AHRE >24 h rather than age.

Supplementary material
Supplementary material is available at Europace online.

Acknowledgements
The authors thank Crystal Miller, Eric Chen, and Kazi Sharmin for contributions to data management, statistical analysis, and editing assistance for this study.

Funding
The IMPACT Study was supported by BIOTRONIK, Inc. (Lake Oswego, OR, USA).

Conflict of interest: G.Y.H.L. Consultant and speaker for BMS/Pfizer, Boehringer Ingelheim and Daiichi-Sankyo. No fees are received personally. D.T.M. is a consultant for Biotronik and Abbott. J.L.H. is a consultant for Biotronik, Abbott, and Medtronic. All other authors declared no conflict of interest.

Data availability
The data underlying this article were provided by BIOTRONIK under licence. Data will be shared on request to the corresponding author with permission of BIOTRONIK.

References
1. Vermond RA, Geelhoed B, Verweij N, Tielenman RG, Van der Harst P, Hillege HL et al. Incidence of atrial fibrillation and relationship with cardiovascular events, heart failure, and mortality: a community-based study from the Netherlands. J Am Coll Cardiol 2015;66:1000–7.
2. Gladstone DJ, Spring M, Dorian P, Panzav V, Thorpe KE, Hall J et al. Atrial fibrillation in patients with cryptogenic stroke. N Engl J Med 2014;370:2467–77.
3. Grau AJ, Weimair C, Buggle F, Heinrich A, Goertler M, Neumaier S et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German Stroke Data Bank. Stroke 2001;32:2559–66.
4. Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A et al. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med 2012;366:120–9.
5. Freedman B, Boriani G, Glotzer TV, Healey JS, Kirchhof P, Potpara TS. Management of atrial high-rate episodes detected by cardiac implanted electronic devices. Nat Rev Cardiol 2013;10:701–14.
6. Miyazawa K, Pastori D, Li Y-G, Glotzer TV et al. Device-detected subclinical atrial tachyarrhythmias: definition, implications and management—an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiología (SOLEACE). Europace 2017;19:1556–78.
7. Pastori D, Miyazawa K, Li Y, Székely O, Shahid F, Boriani G et al. Atrial high rate episodes in patients with cardiac implantable electronic devices: implications for clinical outcomes. Clin Res Cardiol 2019;108:1034–41.
8. Pastori D, Miyazawa K, Li Y, Székely O, Shahid F, Farcomeni A et al. Atrial high-rate episodes and risk of major adverse cardiovascular events in patients with cardiac implantable electronic devices. Clin Res Cardiol 2020;109:96–102.
9. Gonzalez M, Keating RJ, Markowitz SM, Liu CF, Thomas G, Ip JE et al. Newly detected atrial high rate episodes predict long-term mortality outcomes in patients with permanent pacemakers. Heart Rhythm 2016;13:2214–21.
10. Gorensek B, Bax J, Boriani G, Chen SA, Dugres N, Glotzer TV et al. Device-detected subclinical atrial tachyarrhythmias: definition, implications and management—an European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulación Cardiaca y Electrofisiología (SOLEACE). Europace 2017;19:1556–78.
11. Hindricks G, Potpara T, Dugres N, Arbelo E, Bax JJ, Blomström-Lundqvist C et al.; ESC Scientific Document Group. ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J 2021;42:373–498.
12. Pastori D, Miyazawa K, Li Y, Shahid F, Hado H, Lip GYH. Inflammation and the risk of atrial high-rate episodes (AHREs) in patients with cardiac implantable electronic devices. Clin Res Cardiol 2018;107:772–7.
13. Martin DT, Bersohn MM, Waldo AL, Wathen MS, Choucair WK, Lip GYH et al. Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J 2015;36:1660–8.
14. Delong ER, Delong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 88:44:837–45.
15. Bertaglia E, Blank B, Blomström-Lundqvist C, Brandes A, Cabanellas N, Dan G-A et al. Atrial high-rate episodes: prevalence, stroke risk, implications for management, and clinical gaps in evidence. Europace 2020;21:1459–67.
16. Van Gelder IC, Healey JS, Crnja HJM, Wang J, Hohnloser SH, Gold MR et al. Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT. Eur Heart J 2017;18:1339–44.
17. Lopes RD, Alings M, Connolly SJ, Beresh H, Granger CB, Mazuecos JB et al. Rationale and design of the apixaban for the reduction of thrombo-embolism in patients with device-detected sub-clinical atrial fibrillation (ARTESIA) trial. Am Heart J 2017;189:137–45.
18. Kirchhof P, Blank BF, Calvert M, Camm AJ, Chlouverakis G, Diener H-C et al. Probing oral anticoagulation in patients with atrial high rate episodes: rationale
Characteristics of patients with AHREs

and design of the Non-vitamin K antagonist Oral anticoagulants in patients with Atrial High rate episodes (NOAH-AFNET 6) trial. Am Heart J 2017;190:12–8.
18. Pastori D, Carnevale R, Nocella C et al. Digoxin and platelet activation in patients with atrial fibrillation: in vivo and in vitro study. J Am Heart Assoc 2018;7:e009509.
19. Kaufman ES, Israel CW, Nair GM, Armaganian L, Divakaramenon S, Mairesse GH et al., ASSERT Steering Committee and Investigators. Positive predictive value of device-detected atrial high-rate episodes at different rates and durations: an analysis from ASSERT. Heart Rhythm 2019;12:1241–6.
20. Diederichsen SZ, Haugan KJ, Brandes A, Lanng MB, Graff C, Krieger D et al. Natural history of subclinical atrial fibrillation detected by implanted loop recorders. J Am Coll Cardiol 2019;74:2771–81.
21. Chao T-F, Lin Y-J, Tsao H-M, Tsai C-F, Lin W-S, Chang S-L et al. CHADS(2) and CHA(2)DS(2)-VASc scores in the prediction of clinical outcomes in patients with atrial fibrillation after catheter ablation. J Am Coll Cardiol 2011;58:2380–5.
22. Li Y, Ding W, Wang H, Song N, Lin L, Wang Z et al. Relationship of CHA2DS2-VASc and CHADS2 score to left atrial remodeling detected by velocity vector imaging in patients with atrial fibrillation. PLoS One 2013;8:e77653.
23. Saliba W, Gronich N, Barnett-Griness O, Rennert G. Usefulness of CHADS2 and CHA2DS2-VASc scores in the prediction of new-onset atrial fibrillation: a population-based study. Am J Med 2016;129:843–9.