Inhibitory Effects of Physalis alkekengi L., Alcea rosea L., Bunium persicum B. Fedtsch. and Marrubium vulgare L. on Mushroom Tyrosinase

Foroogh Namjoyan 1, Alireza Jahangiri 2, Mohammad Ebrahim Azemi 1, Elahe Arkian 3, Hamideh Mousavi 3

1Department of Pharmacognosy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
2Department of Medicinal Chemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
3Medical Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran

*Corresponding author: Elahe Arkian, Medical Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran. Tel: +98-9132803410, E-mail: elahe_arkian@yahoo.com

Published online 2015 February 20.

1. Background

Melanin is a pigment with a polymeric complicated structure, which plays an important role in determination of mammalian skin and hair color. It is widely distributed in organisms, including fungi, plants and animals. Another role of melanin is absorption of Ultraviolet (UV) rays to protect the skin (1). Melanin synthesis occurs in a special kind of skin cells named melanocytes, which is stimulated by UV radiations (2). Keratinocytes are another kind of cells that surround melanocytes. Melanin is transported to keratinocytes after its synthesis (3).

Melanogenesis is a process that results in melanin production. This process is a combination of two kinds of enzymatic and chemical reactions. The enzymatic reactions are catalyzed by tyrosinase, which oxides L-tyrosine to dopaquinone. This step is a rate-limiting step in melanogenesis (4). Tyrosinase is a key enzyme that catalyses hydroxylation of monophenols to O-diphenols (monophenolase activity) and oxidation of O-diphenols to quinones (diphenolase activity) (5). Next reactions occur spontaneously at physiological pH value (4).

Abnormal accumulation of melanin leads to hyperpigmentation disorders. The enzymatic browning of vegetables and fruits is another issue that tyrosinase represents (4). Tyrosinase could contribute to neurodegenerative diseases such as Parkinson through formation of the neurotoxin 5-S-cysteinyl-dopamine during the oxidation of dopamine to an O-quinone and reaction with cellular thiols (6). These undesirable phenomena encouraged researchers to find new tyrosinase inhibitors for use in cosmetic, medicine and food industries to prevent or treat hyperpigmentation disorders and food browning (4). The common tyrosinase inhibitors such as hydroquinone regardless of potent tyrosinase inhibitory effect, have limitations in use, because of its mutagenicity and cytotoxicity effects (7). Also very few tyrosinase inhibitors are used in food industry due to off-flavors, off-odors, food safety and economic values (1). Furthermore, these adverse effects spurred us to find natural tyrosinase inhibitors.

It has been shown that Physalis edulis L., Marrubium vulgare L., Althea officinalis L. and...
Cuminum cyminum L. could inhibit tyrosinase (8-10). Since close plants and other species of a genus may have the same effects, we selected Physalis alkekengi, Marrubium vulgare L., Alcea rosea L. and Bunium persicum B. Fedtsch for this study.

P. alkekengi (Solanaceae), known as winter cherry, is an indigenous plant to central and southern Europe, China and Indochina and naturalized in the U.S (11). It has antimicrobial (12), antioxidant (13), hypoglycemic (14), antineoplastic (15), anti-inflammatory (16), antispasmodic (17) and anti-fertility (18) effects. Winter cherry in folk medicine is used as a diuretic in kidney and bladder ailments and in the treatment of gout and rheumatism (11).

B. persicum (Apiaceae) is distributed in central Asia, Iran, Pakistan, Afghanistan, Keshmir and Pamir (19). The B. persicum exhibits antimicrobial (20), antifungal (21), antioxidant (22), α-amylase inhibitory (23), anticonvulsant (24), antinociceptive, ant-inflammatory (25) and antihistaminic (26) effects.

A. rosea (Malvaceae), known as Hollyhock is widely grown in gardens and parks in the Southern Europe and Asia. Some pharmacological effects including antibacterial, analgesic, anti-inflammatory and cytotoxic activities (27-29) have been reported.

M. vulgare (Lamiaceae) is a medicinal plant used in folk medicine for many diseases including acute and chronic bronchitis, whooping cough, asthma, tuberculosis, pulmonary catarrh, respiratory infections, diarrhea, jaundice, debility and painful menstruation (11). It has anti-bacterial, antifungal (30), antioxidant (31), analgesic (32), anti-diabetic (33), antihepatotoxic (34), hypotensive (35), antispasmodic (36) and antimicrobial (37) activities.

2. Objectives

P. alkekengi, M. vulgare, A. rosea and B. persicum are some plants available in Iran, which have not been subjected for tyrosinase inhibitory effects before, so the aim of this study was to evaluate inhibitory effects of these plants on mushroom tyrosinase activity.

3. Materials and Methods

3.1. Chemicals

Mushroom tyrosinase (lyophilized powder, 310 unit/mg solid) and L-dopa (powder, ≥ 98 %) from Sigma Chemical Co, kojic acid (powder, ≥ 98.0 %) from Fluka Chemical Co, DMSO (Dimethyl sulfoxide), ethanol and n-hexane from Sigma Chemical Co were used.

3.2. Plant Materials

P. alkekengi (from sites near Tehran), A. rosea (from Isfahan), B. persicum (from Chubar Mountains in Kerman) and M. vulgare (from 1000 m above the sea level near Tehran) were collected. They were identified by the pharmacognosy department of Ahvaz Jundishapur University of Medical Sciences. Then the plants were shade dried at room temperature and milled.

3.3. Preparation of Extracts

The aerial parts of P. alkekengi, A. rosea and M. vulgare and seeds of B. persicum were extracted with ethanol 80% for 72 hours. After filtering, the B. persicum extract was defatted with n-hexane. The extracts were concentrated by rotary evaporator (Heidolph, Germany). Then the concentrated extracts were freeze-dried by vacuum freeze dryer (Operon, Korea) and the yields were 7.76, 12.35, 10.56, 6.69 and 8.62% for P. alkekengi, A. rosea, B. persicum (total), B. persicum (defatted) and M. vulgare, respectively. The obtained extracts powder (0.1 g) was dissolved in three mL of DMSO. Then the extracts were diluted with 25 mM phosphate Buffer (pH 6.8).

3.4. Tyrosinase Inhibition Assay

The tyrosinase activity was measured according to Karioti et al. (8) with some modifications. First, 50 µL of each extracts in six different concentrations (0.3, 4.2, 21.0, 0.52 and 0.26 mg/mL) was mixed with 100 µL of mushroom tyrosinase (9.63 U/mL) and incubated at 25°C for five minutes. Then 100 µL of 5 mM of L-Dopa solution (substrate for tyrosinase) was added to the mixture reaction. The amount of dopachrome as a product was immediately measured at 475 nm of optical density.

The increased absorbance at 475 nm was recorded during 35 minutes. DMSO and kojic acid were used as negative and positive controls, respectively. The concentrations 0.04, 0.08, 0.12 and 0.16 mg/mL of kojic acid were used. The inhibitory effects of test samples on the enzyme activity were expressed as percent inhibition and IC50 values were calculated. IC50 value is the concentration of the inhibitor that inhibits 50% of tyrosinase activity under experimental conditions and obtained through plot of inhibition percent versus Log conc (mg/mL).

$$\% \text{Inhibition} = \frac{[(A - B) - (C - D)]}{(A - B)} \times 100$$

A: optical density of L-Dopa, DMSO and enzyme.
B: optical density of L-Dopa and DMSO.
C: optical density of test sample (kojic acid and the extracts), enzyme and L-Dopa.
D: optical density of test sample (kojic acid and the extracts) and L-Dopa.

3.5. Determination of Enzyme Kinetic Parameters

Fifty microliters of different concentrations (0.52, 1.04, 2.08 and 4.16 mg/mL) of extracts were incubated with 100 µL of mushroom tyrosinase at 25°C for five minutes. Then different volumes (100, 80, 60, 40, 20 and 10 µL) of 5 mM L-Dopa in phosphate buffer (pH 6.8) were added to the reaction mixture. Kinetic parameters, Vm and Km of tyrosinase activity were calculated by linear regression from
Lineweaver–Burk plots. The inhibition constant \(K_i \) of an inhibitor was obtained from the secondary plot of Lineweaver–Burk plots. The secondary plot consists of vertical axis that is the slopes of Lineweaver–Burk plots and horizontal axis that is inhibitor concentrations. The intercept on the horizontal axis is \(K_i \)\(^{(38)}\).

3.6. Statistical Analysis

The measurements were performed in triplicate and mean was used in calculations.

4. Results

4.1. Inhibitory Effects of Plants on Mushroom Tyrosinase Activity

In this study, tyrosinase inhibitory effects of *P. alkekengi*, *A. rosea*, *B. persicum* and *M. vulgare* on diphlenolase activity of mushroom tyrosinase were evaluated. As with increasing the concentration of all plants, the activity of tyrosinase decreased. Therefore, plants had a dose-dependent inhibitory effect on tyrosinase (Figure 1).

All total extracts of plants inhibited tyrosinase weaker than kojic acid (\(IC_{50} = 0.014 \) mg/mL). \(IC_{50} \) values of *P. alkekengi*, *A. rosea*, *B. persicum* and *M. vulgare* were calculated 0.09, 0.38, 0.37, 0.38 and 2.82 mg/mL, respectively.

4.2. Kinetic Study of Mushroom Tyrosinase Activity

The kinetic behavior of the samples for the inhibition of tyrosinase was also analyzed by lineweaver-Burk plots. kojic acid, *P. alkekengi*, *A. rosea* and *B. persicum* increased the \(K_m \), but the \(K_m \) was decreased when *M. vulgare* was used. All the extracts and kojic acid decreased \(V_m \) value (Table 1). Lineweaver–Burk plots of *P. alkekengi* different concentrations were shown in Figure 2. As *P. alkekengi* exhibited the most tyrosinase inhibitory activity, its \(K_i \) was calculated as 0.41 mg/mL (Figure 3).

Table 1. Kinetic Parameters of Enzyme With and Without Extracts

Variable	No Inhibitor	Kojic Acid	*P. alkekengi*	*A. rosea*	*B. persicum* (Total)	*B. persicum* (Defatted)	*M. Vulgare*
\(K_m \) (mM)	0.16	0.45	0.22	0.3	0.17	0.19	0.11
\(V_m \) (U) \(^a\)	4.3	2	1.5	2.2	1.6	1.6	2.1

\(^a\) Unit: One unit (U) of enzymatic activity was defined as the amount of enzyme needed for increasing 0.001 unit of absorbance per min at 475 nm under the experimental conditions.

Figure 1. The Effect of Different Concentrations of *P. alkekengi*, *A. rosea*, *B. persicum* and *M. vulgare* on Mushroom Tyrosinase Activity for the Catalysis of L-Dopa

Figure 2. Lineweaver–Burk Plots of Mushroom Tyrosinase and L-Dopa With and Without *P. alkekengi* Different Concentrations

Figure 3. The Slope of Lineweaver–Burk Plots Versus the Concentration of *P. alkekengi* for Determination of Inhibitory Constant \((K_i) \) of Tyrosinase
5. Discussion

The tyrosinase inhibitors could be used in medicine, cosmetic and food industries to treat or prevent hyperpigmentation disorders and food browning. Based on our best knowledge, studies on anti-tyrosinase effect of A. rosea, B. persicum and M. vulgare have not been performed before.

Among test plants, P. alkekengi showed the most tyrosinase inhibitory effects, indicating its potent tyrosinase inhibitors or high content of active compounds with tyrosinase inhibitory effects.

Other species of this genus, P. divaricata and P. edulis exhibited tyrosinase inhibitory activities. P. divaricata showed tyrosinase inhibitory effect with IC$_{50}$ value of 3.34 mg/mL (39) and P. edulis inhibited tyrosinase 32% at 10 mg/mL (9), while P. alkekengi showed tyrosinase inhibitory activity of 32% at 0.03 mg/mL. Therefore, P. alkekengi showed more potent tyrosinase inhibitory activity than P. edulis and P. divaricata.

The fruits of P. alkekengi have a lot of ascorbic acid (40). Ascorbic acid can prevent enzymatic reactions of tyrosinase through trapping the O-dopaquinone intermediate (1). Steroids can inhibit tyrosinase and so far three steroids from the aerial parts of Trifolium balansae were isolated which showed potent tyrosinase inhibitory effects (41). Some steroidal compounds such as physalin were isolated from P. alkekengi (42), which may contribute to its tyrosinase inhibitory activity.

Total and defatted extracts of B. persicum exhibited similar inhibitory effects on mushroom tyrosinase, which shows that non-polar compounds of B. persicum do not contribute to its tyrosinase inhibitory effect. In another study, B. persicum showed 42% inhibition at 1.14 mg/mL for diphenolase activity of mushroom tyrosinase (43). This difference could be due to various experimental conditions.

Cuminaldehyde, kaempferol, caffeic acid and p-coumaric acid are found in B. persicum (44) and can inhibit mushroom tyrosinase (1, 45-47). The tyrosinase inhibitory effect of B. persicum may be related to these compounds.

C. cyminum another kind of cumin could inhibit tyrosinase more potent than B. persicum, 45.8% at 50 µg/mL (10). It may contribute to more content of Cuminaldehyde in C. cyminum than B. persicum (44, 48). Gholamhoseinian et al. reported that C. cyminum had more anti-tyrosinase effect than B. persicum (43).

A. officinalis, another species of Althea, inhibited tyrosinase activity 48% (9) at 10 mg/mL, when A. rosea showed the same inhibition at 1.75 mg/mL. Therefore, A. rosea was more potent than A. officinalis in tyrosinase inhibition.

The flowers of A. rosea are the source of polyphenolic compounds such as anthocyanins (49) shown to have tyrosinase inhibitory activity (4). Other species of Marrubium, M. cylleneum and M. velutinum inhibited tyrosinase by 35.44% and 30.56% at 0.033 mg/mL, respectively and M. vulgare showed 16% inhibition at 0.05 mg/mL (8). Therefore, M. vulgare was weaker than M. velutinum and M. cylleneum in tyrosinase inhibition, which may be related to their high content of tyrosinase inhibitors. Amongst 45 isolated compounds with tyrosinase inhibitory activity from M. velutinum and M. cylleneum, querectin showed the most activity (49.67% at 0.051 mM) (8). Some of these compounds such as several flavonoids (ladanin, glycoside derivatives of luteolin, chrysoeriol and apigenin) and cinnamic acid derivatives were isolated from M. vulgare (8, 33) that may contribute to its inhibitory activity.

Kojic acid, P. alkekengi, A. rosea and B. persicum exhibited mixed inhibition. They can bind to free enzyme and enzyme-substrate complex and reduce the affinity of substrate for the mushroom tyrosinase (50). However, M. vulgare showed uncompetitive inhibition. It can bind to enzyme-substrate complex and produce deactivated ES complex and cannot bind to free enzyme (50). Although B. persicum inhibited tyrosinase through mixed mechanism, cuminaldehyde showed uncompetitive inhibition in previous studies (1).

In this study, we used crude extracts. Active compounds have a key role in inhibitory effect on mushroom tyrosinase. We did not isolate, identify and study pure active compounds. It can be performed on most potent herbs in future. According to this study, the extract of P. alkekengi had the most inhibitory effect on mushroom tyrosinase, but in vivo and clinical studies are needed to confirm the inhibitory effect and safety of P. alkekengi. Study active compounds of P. alkekengi could lead to development of new and effective tyrosinase inhibitors.

Antibacterial, antioxidant and anti-tyrosinase effects have been shown for P. alkekengi, A. rosea, B. persicum and M. vulgare; therefore, these plants could be considered as good food additives to prevent food browning and growth of microbes, but more studies on anti-browning effects and safety of these plants should be performed.

Acknowledgements

The authors are grateful to the pharmacognosy Department of Ahvaz Jundishapur University of Medical Sciences.

Authors’ Contributions

Study concept and design: Foroogh Namjoyan, Alireza Jahangiri and Mohammad Ebrahim Azemi, Acquisition of data: Elaheh Arkian, Analysis and interpretation of data: Alireza Jahangiri and Elaheh Arkian, Drafting of the manuscript: Elaheh Arkian and Hamideh Mousavi, Critical revision of the manuscript for important intellectual content: Foroogh Namjoyan, Mohammad Ebrahim Azemi and Alireza Jahangiri, Statistical analysis: Elaheh Arkian.

Funding/Support

This research was performed as pharm. D thesis and a part of a project granted (HC-009) by Ahvaz Jundishapur University of Medical Sciences.
References

1. Kim YJ, Uyama H. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci. 2005;62(10):2077–2083.

2. Lin J, Chiang H, Lin Y, Wen K. Natural products with skin-whitening effects. Food and Drug Analysis. J. 2008;16(2).

3. Smit N, Vicanova J, Pavel S. The hunt for natural skin whitening agents. Int J Mol Sci. 2009;10(2):326–49.

4. Chang TS. An updated review of tyrosinase inhibitors. Int J Mol Sci. 2009;10(4):440–75.

5. Wang Q, Gui L, Chen XR, Song KG, Yi L, Chen QX. Inhibitory effects of phloridzin dihydrate on the activity of mushroom (Agaricus bisporus) tyrosinase. Bioorg Med Chem. 2007;15(3):5687–5691.

6. Vauzour D, Vafeiadou K, Spencer JP. Inhibition of the formation of the neurotoxin 5,6-cis-dienyl-riboflavin by polyphenols. Biochem Biophys Res Commun. 2007;362(2):340–6.

7. Germans JP, Wang S, Miner A, Hao W, Ready JM. Discovery of small-molecule inhibitors of tyrosinase. Bioorg Med Chem Lett. 2007;17(24):6879–83.

8. Karioti A, Protopappata A, Megoula N, Skaltsa H. Identification of tyrosinase inhibitors from Marrubium vulgareum and Marrubium cylleneum. Bioorg Med Chem. 2007;15(7):2708–14.

9. Baurin N, Arnoult E, Scior T, Do QT, Bernard P. Preliminary screening of some tropical plants for anti-tyrosinase activity. J Ethnopharmacol. 2002;82(2–3):335–6.

10. Adhikari A, Devkota HP, Takano A, Mansour R, Bekir A, Mejdbour H, et al. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L, essential oil grown in Tunisia. Lipids Health Dis. 2011;10:161.

11. Meunier J, Valente E, Picciola S, Dromard P, et al. Antihepatotoxic effect of marrubium vulgare and withania somnifera extracts on carbon tetrachloride-induced hepatotoxicity in rats. J Basic Clin Pharmacol. 2010;4(2):247–54.

12. Schlemper T, Ribas A, Nicolau M, Cechinel Filho V. Pharmacological evidence of hypotensive activity of Marrubium vulgare and Poecilium vulgare in spontaneously hypertensive rat. Clin Exp Hypertens. 2001;23(4):329–43.

13. Schlemper V, Ribas A, Nicolau M, Cechinel Filho V. Antispasmodic effects of hydroalcoholic extract of Marrubium vulgare isolated from fruits. J Ethnopharmacol. 2010;129(3):286–92.

14. El Bardi S, Lyoussi B, Wibo M, Morel N. Pharmacological evidence of hypotensive activity of Marrubium vulgare and Poecilium vulgare in spontaneously hypertensive rat. Clin Exp Hypertens. 2001;23(4):329–43.

15. Schlemper V, Ribas A, Nicolau M, Cechinel Filho V. Antispasmodic effects of hydroalcoholic extract of Marrubium vulgare isolated from fruits. J Ethnopharmacol. 2010;129(3):286–92.

16. Namjooyan F, Mohammadi F, Asghari B. Seed essential oil analysis of Bunium persicum Boiss. seed. Iranian J Reprod Med. 2010;8(1):63–70.

17. Sabudak T, Tareq Hassan Khan M, Iqbal Choudhary M, Oksuz S. Antifungal effects of the flower of Althaea rosea (L.) Cav. Phytomedicine. 2011;18(12):1037–46.

18. Namjooyan F, Moosavi H, Jahangiri A, Azemi M. Inhibitory activity of Hydroalcoholic extract of Physalis alkekengi against mushroom tyrosinase. Pak J Pharm Sci. 2012;25(5):1317–20.

19. Sabudak T, Tareq Hassan Khan M, Iqbal Choudhary M, Oksuz S. Antifungal effects of the flower of Althaea rosea (L.) Cav. Phytomedicine. 2011;18(12):1037–46.

20. Lim JY, Ishiguro K, Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res. 2004;18(10):919–22.

21. Salehi P, Homayonnadi M, Jabraian A, Ardakani M. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. J Agric Food Chem. 2007;55(4):1553–6.

22. Xie LP, Chen QX, Huang H, Wang HZ, Zhang RQ. Inhibitory effects of small-molecule inhibitors of tyrosinase. Lipids Health Dis. 2012;11:139.

23. Namjooyan F et al. The in-vitro evaluation of antibacterial, antifungal and cytotoxic activities of the extracts obtained from the flowers of Alcea rosea L. J Ethnopharmacol. 2010;130(2):274–280.

24. Wang DF, Shang JY, Yu QH. [Analgesic and anti-inflammatory effects of the flower of Althaea rosea (L.) Cav. Zhongguo Zhong Yao Za Zhi. 1989;14(1):46–8.

25. Hajihashemi V, Sajjadi SE, Zomorodkia M. Antinociceptive and antinflammatory activities of Bunium persicum essential oil, hydrolactic oil and polyphenolic extracts in animal models. Pharm Biol. 2011;49(3):146–51.

26. Bokabady MH, Moghaddas A. Antihistaminic Effect of Bunium persicum on Guinea Pig Tracheal Chains. Iranian Biomed J. 2004;8(4):349–55.

27. Seyednejad SM, Koochak H, Darabpour E, Motamedhi H, A survey on Hibiscus rosa-sinensis, Alcea rosea L. and Malva neglecta Wall as antibacterial agents. Asian Pacific J Tropical Med. 2010;3(5):353–5.

28. Mertio T, Fatouh T, Ozturk B. [Antimicrobial and Cytotoxic Activities of the Extracts Obtained from the Flowers of Alcea Rosea L. J Ethnopharmacol. 2010;130(2):274–280.

29. Derry M, Hijazi S, Mabrouk A, Oussar N, Darme B. Comparison and in vivo anti-diabetic activity of wild Algerian Thomoson Marrubium vulgare L. infusion. Fitoterapia. 2013;84(2):286–92.

30. Elberry AA, Harraz FM, Ghareib SA, Nagy AA, Gabr SA, Sulaiman MI, et al. Antihypertensive effect of marrubium vulgare and withania somnifera extracts on carbon tetrachloride-induced hepatotoxicity in rats. J Basic Clin Pharmacol. 2010;4(2):247–54.

31. De Souza MM, de Jesus RA, Cechinel Filho V. Analgetic and hypotensive effects of hydroalcoholic extract obtained from Marrubium vulgare. Phytotherapy. 1998;5(1):103–7.

32. Boudjelal A, Henchiri C, Siracusa L, Sari M, Ruberto G. Compositional analysis and in vivo anti-diabetic activity of wild Algerian Thomoson Marrubium vulgare L. infusion. Fitoterapia. 2013;84(2):286–92.

33. Chen QX, Kubo I. Kinetics of mushroom tyrosinase inhibition by quercetin. J Agric Food Chem. 2002;50(1):341–5.

34. Namjooyan F, Moosavi H, Jahangiri A, Azemi M. Inhibitory activities of selected medicinal plants on mushroom tyrosinase. Planta Medica. 2011;77(12).

35. Sosa-Bourdouci C. Sur les baies de quelques Solanées et leur te-neur en acide ascorbique (Vitamine C). Bulletin de la Société Bota-nique de France. 1940;87(2):322–4.

36. Sabudak T, Tareq Hassan Khan M, Iqbal Choudhary M, Oksuz S. Potent tyrosinase inhibitors from Trifolium balansae. Nat Prod Res. 2006;20(7):605–670.

37. Kawai M, Matsuda T, Khyuno S, Matsuki H, Takenaka M, Satsuika T, et al. A New physalin from Physalis alkekengi: structure of physalin L. Phytochemistry. 1987;26(12):3317–3318.

38. Gholambeshian A, Razmi Z. Screening the methanolic extracts of some plants for tyrosinase inhibitory activity. Toxicological & Environmental Chemistry. 2012;94(4):330–8.

39. Shariﬁf F, Yassa N, Mozaffarian V. Bioactivity of major components from the seeds of Bunium persicum (Boiss.) Fedtch. Fedtch. J Pharm Sci. 2010;20(3):3300–4.

40. Xie LP, Chen QX, Huang H, Wang HZ, Zhang RQ. Inhibitory effects of some flavonoids on the activity of mushroom tyrosinase. Biochem. J (Mosc.). 2006;398(4):487–91.

41. Lim JY, Ishiguro K. Kubo I. Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res. 1999;13(5):371–5.

42. Iwai K, Kishimoto N, Kakino Y, Mochida K, Fujita T. In vivo antitoxic effects and tyrosinase inhibitory activities of seven
hydroxycinnamoyl derivatives in green coffee beans. J Agric Food Chem. 2004;52(15):4893-8.

48. Hajlaoui H, Mighri H, Noumi E, Snoussi M, Trabelsi N, Ksouri R, et al. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil; a high effectiveness against Vibrio spp. strains. Food Chem Toxicol. 2010;48(8-9):2186-92.

49. Zargari A. Medicinal plants. Tehran: Tehran university; 1992.

50. Lai CJ, Wu JC. A simple kinetic method for rapid mechanistic analysis of reversible enzyme inhibitors. Assay Drug Dev Technol. 2003;1(4):527-35.