Quantum speed limit of a photon under non-Markovian dynamics

Zhen-Yu Xu 1 and Shi-Qun Zhu 1

1 School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China

Quantum speed limit (QSL) under noise has drawn considerable attention in real quantum computational processes and quantum communication. Though non-Markovian noise is proven to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity may even slow down the quantum evolution of an experimentally controllable photon system. As an important application, QSL time of a photon can be well controlled by regulating the relevant environment parameter properly, which is close to reach the currently available photonic experimental technology.

I. INTRODUCTION

A quantum version of brachistochrone problem that how fast a quantum system can evolve between two distinguishable states is of paramount importance in quantum information processing, for a transition from a state to its orthogonal one is regarded as the elementary step of a computational process [1, 2]. During the past decades, the study on the minimum time a quantum state required for reaching its orthogonal one, i.e., the quantum speed limit (QSL) time, has been mainly focused on closed quantum systems with unitary evolution, and a unified lower bound of QSL was obtained [3–8]: $\tau_{\text{QSL}} = \max \left\{ \pi h / (2\Delta E), \pi h / (2E) \right\}$, where the first quantity in braces is known as Mandelstam-Tamm (MT) type bound with $(\Delta E)^2 = \langle H^2 \rangle - \langle H \rangle^2$ and H is the Hamiltonian of the quantum system [3–5] while the second one is referred to as Margolus-Levitin (ML) type bound with $E = \langle H \rangle$ [7]. These bounds, providing a fundamental limit of the operation rate, are applicable to considerable quantum tasks such as quantum state transfer [9], quantum optimal control [10], and quantum metrology [11] and have been extended to nonorthogonal state cases [12–16] and derived from geometric aspects [17, 18].

In realistic physical processes, however, the quantum systems are open, and the environmental influence must be taken into account [19]. Recently, the QSL time has been extended to nonunitary evolution of open systems [20–22]. Two MT type bounds of QSL, based on the variance of the generator of the dynamics, were derived and applied to several typical noisy channels [20] and estimate the speed limits for quantum metrology under noise [21]. Importantly, a unified QSL bound including both MT and ML types for non-Markovian processes has been introduced in Ref. [22], where the ML bound is also proven to be sharper than the MT bound. Interestingly, it is discovered that the non-Markovian effect can speed up the quantum evolution with a damped Jaynes-Cummings (JC) model [22].

All-optical system has been regarded as an excellent test bed to explore the foundations of quantum physics as well as quantum information processing [23–24]. In this paper, with a photon in a simulated non-Markovian environment, we show that non-Markovian effect can slow down the quantum evolution which is contrary to former situation that non-Markovianity will lead to smaller QSL time for JC model [22]. In addition, we illustrate that the QSL time of a photon can be well controlled by adjusting the environment parameter. The above phenomena can be immediately tested with the experimental setups in Refs. [22–27].

II. NON-MARKOVION MODEL

The open system we consider in this paper is the polarization degree of a photon with its frequency functioning as the environment. To simulate the non-Markovian dynamics of the photon, we employ an experimental setup containing a rotatable Fabry-Pérot (FP) cavity followed by an interference filter and a quartz plate [23–27] (see in Fig. 1). A frequency comb of the photon is generated by a FP cavity and then two peaks are filtered out through an interference filter. The filtered frequency distribution $f(\omega)$, representing the probability density of finding photon in a mode with frequency ω in this letter, is set to be a two-peaked Gaussian distribution [28]

$$f(\omega) = \frac{\cos^2 \xi \sqrt{2\pi\sigma}}{\sqrt{2\pi\sigma}} e^{-\frac{(\omega-\omega_1)^2}{2\sigma^2}} + \frac{\sin^2 \xi \sqrt{2\pi\sigma}}{\sqrt{2\pi\sigma}} e^{-\frac{(\omega-\omega_2)^2}{2\sigma^2}},$$

where ω_1 and ω_2 are the centers of the Gaussian distribution and σ is the width. The parameter ξ is

![FIG. 1: A schematic diagram (simplified) of the photonic experimental setup for testing the non-Markovian effect on quantum speed limit.](image-url)

*Electronic address: zhenyuxu@suda.edu.cn
†Electronic address: szhu@suda.edu.cn
controls the relative weight of the two peaks, which can be adjusted by changing the tilted angle of the FP cavity [20]. Then the non-Markovian dephasing process of the polarization degree of the photon can occur in the interaction with its frequency degree in a quartz plate with the following Hamiltonian [29]

$$H^{ac} = -\hbar \int (n_H |H \rangle_s \langle H| + n_V |V \rangle_s \langle V|) \otimes \omega |\omega \rangle_e \langle \omega| \ \text{d}\omega,$$

where $n_{H(V)}$ is the refraction index of photon in the quartz plate, $|H(V)\rangle_s$ and $|\omega\rangle_e$ are the horizontal(terminal) polarization and frequency states of the photon.

Provided that an initial product photon state is of the form $\rho^s \otimes \rho^f$, where $\rho^s = (\rho_{jk})_{2 \times 2}$ ($j, k = V, H$) denotes the polarization state serving as the open system, and $\rho^f = \int \text{d}\omega \omega' F(\omega) \rho^f(\omega') \langle \omega'| \langle \omega|$ is the environmental state with $f(\omega) = |F(\omega)|^2$. The photon polarization state at time t reads

$$\rho_t^s = \Lambda_t \rho^s \text{ with } U_t = \text{tr}_e \left\{ U_t \rho^s \otimes \rho^f U_t^\dagger \right\},$$

with Λ_t, the quantum map and $U_t = \exp[-(i/\hbar) \int_0^t \text{d}t' H^{ac}]$. The density matrix of the polarization degree is then explicitly given by

$$\rho_t^f = \left(\begin{array}{cc} \rho_{VV} & \rho_{VH} \kappa_t \\ \rho_{HV} \kappa_t^* & \rho_{HH} \end{array} \right),$$

where $\kappa_t = \int f(\omega) e^{i\omega \Delta t} \text{d}\omega$ is the dephasing rate with $\Delta t = n_V - n_H$. By the frequency distribution in Eq. (1), it takes the form

$$\kappa_t = e^{-\frac{\pi}{2} \Delta t} \left(e^{i\omega_1 \Delta t} \cos^2 \xi + e^{i\omega_2 \Delta t} \sin^2 \xi \right).$$

III. QUANTUM SPEED LIMIT FOR A PHOTON

A unified lower bound including both MT and ML types for the minimal evolution time between an initial open system state $\rho = |\psi_0\rangle \langle \psi_0|$ and its target state ρ_{τ}, governed by the master equation $\dot{\rho}_t = \mathcal{L}_t \rho_t$ with \mathcal{L}_t the positive generator of the dynamical semigroup $\Lambda_t = \exp(\mathcal{L}_t t)$, has been derived [22]:

$$\tau_{\text{QSL}} = \max \{ \tau_1, \tau_2, \tau_\infty \},$$

with

$$\tau_p = \frac{1}{\Gamma_p^2} \sin^2 \left[L(\rho, \rho_\tau) \right], \ (p = 1, 2, \infty)$$

where $\Gamma_p^2 = (1/\tau) \int_0^\tau \| \mathcal{L}_t \rho_t \|_p$, and $\| A \|_p = (a_1^p + \cdots + a_n^p)^{1/p}$ denotes the p-norm of operator A, with a_1, \cdots, a_n the singular values of operator A. $L(\rho, \rho_\tau) = \text{arccos} \frac{\langle \psi_0 | \rho_\tau | \psi_0 \rangle}{\sqrt{\langle \psi_0 | \rho_\tau | \psi_0 \rangle^2 + \langle \psi_0 | \rho | \psi_0 \rangle^2}}$ represents the Bures angle between initial pure state $\rho = |\psi_0\rangle \langle \psi_0|$ and the target state ρ_τ. Note that τ_1 and τ_∞ are bounds of ML type derived by von Neumann trace inequality while the τ_p is a bound of MT type deduced according to Cauchy-Schwarz inequality.

With above model, for instance, we will evaluate the minimal evolution time between states ρ^s and ρ^s_τ, where ρ^s and ρ^s_τ denote the states of photon entering and leaving the quartz plate respectively with τ the actual driving time when the photon under non-Markovian dephasing. For simplicity, the initial state is set to be pure of the form $\rho^s = |\psi_0\rangle \langle \psi_0|$ with $|\psi_0\rangle = \sin \alpha |H \rangle + \cos \alpha |V \rangle$. It is convenient to check that the maximum in Eq. (1) is $\frac{\tau_\infty}{2}$, for $\Gamma_{\infty} = \Gamma_1^2/2 = \Gamma_2/\sqrt{2}$. With Eq. (10), the QSL time of a photon can be written as

$$\tau_{\text{QSL}} = \frac{2 \tau \sin^2 \theta}{\sin 2\alpha / \int_0^\tau \text{d}t |\kappa_t|},$$

with

$$\theta = \arccos \sqrt{1 - \frac{1}{2} (1 - \text{Re} \kappa_t) \sin^2 2\alpha}.$$

IV. NON-MARKOVIAN EFFECT ON QUANTUM SPEED LIMIT

In order to study the non-Markovian effect on the QSL time [Eq. (10)], we will employ two popular measures for non-Markovianity [10]: the divisibility of quantum maps [30] and the information flow [31, 32] based methods.

A quantum map $\Lambda = \{ \Lambda_t \}_{t \in [0, \tau]}$ is divisible if $\Lambda_t = \Lambda_{t-r} \Lambda_r$ for all $0 \leq r \leq t$ with Λ_{t-t} completely positive. In Ref. [30], Λ is regarded as Markovian if it is divisible, which implies that $\left\| (\Lambda_{t+\epsilon, t} \otimes 1) \rho^{ss'} \right\|_1 = 1$, $\epsilon \geq 0$, where $\rho^{ss'} = |\Psi\rangle \langle \Psi|$ with $|\Psi\rangle = (1/\sqrt{d}) \sum_{l=1}^d |l\rangle \langle l|$, a maximally correlated pure state of the d-dimensional open system s and an ancillary system s'. The non-Markovianity is then defined as [31],

$$N_{\text{RHP}}(\Lambda) = \int_{h_t > 0} h_t dt,$$

with $h_t = \lim_{\epsilon \to 0^+} \frac{\left\| (\Lambda_{t+\epsilon, t} \otimes 1) \rho^{ss'} \right\|_1 - 1}{\epsilon}$.

The quantum dynamics Λ we consider here is given by $\rho_t^s = \Lambda_t \rho^s$ [Eq. (3)]. Note that $\rho^{ss'} = |\Psi\rangle \langle \Psi|$ with $|\Psi\rangle = (|H\rangle \langle H| + |V\rangle \langle V|)/\sqrt{2}$. After simple calculations, we find that for small ϵ, the non-zero eigenvalues of $\left(\Lambda_{t+\epsilon, t} \otimes 1 \right) \rho^{ss'}$ are

$$\frac{1}{2} \pm \frac{1}{2} \sqrt{1 + \frac{2}{\Gamma_t^2 \kappa_t} \epsilon + \frac{\Gamma_t^2 \kappa_t}{\kappa_t^2} \epsilon + o(\epsilon)}.$$

We then get

$$h_t = \left\{ \begin{array}{ll} \partial_t \ln(|\kappa_t|), & \text{if } \partial_t |\kappa_t| > 0, \\
0, & \text{if } \partial_t |\kappa_t| \leq 0. \end{array} \right.$$
According to Eq. (10), we have

$$N_{RHP}(\Lambda) = \int_{\partial|\xi|>0} \partial_t \ln(|\xi|) dt. \quad (13)$$

The second measure for the non-Markovianity is based on the total amount of information, characterized by

$$N_{BLP}(\Lambda) = \max_{\rho_1, \rho_2} \int_{g_t>0} g_t dt, \quad (14)$$

where the maximization is over all initial state pairs. For single qubit, the optimal problem is easy to solve [20, 22, 43] and the optimal trace distance of the evolved states is found to be $D(\Lambda_{1}\rho_1^{t}, \Lambda_{1}\rho_2^{t}) = |\xi_t|$ [24]. Therefore,

$$N_{BLP}(\Lambda) = \int_{\partial|\xi|>0} \partial_t |\xi_t| dt. \quad (15)$$

Since $\ln(|\xi|)$ in Eq. (13) owns the same monotonicity as $|\xi|$ in Eq. (14), the divisibility of quantum maps and the information flow based methods is equivalent in this model. Due to the simplicity form of $|\xi|$, in the following, we will focus on the information flow measure (we also drop the subscript index BLP of $N_{BLP}(\Lambda)$ for convenience).

The non-Markovianity $N(\Lambda)$ is dependent on the dephasing duration τ, which is related to the thickness of the quartz plate. As an illustration, we consider $\tau \in [\pi/(\Delta\omega\Delta n), 2\pi/(\Delta\omega\Delta n)]$, and the non-Markovianity reads

$$N(\Lambda) = |\xi| - |\cos 2\pi e^{-\frac{t}{2}\left(\frac{\Delta\omega}{\Delta n}\right)^2}. \quad (16)$$

For a fixed time τ, the non-Markovianity can be adjusted by the parameter ξ and two critical points of sudden transition between Markovian and non-Markovian regions are found to be

$$\xi_1 = \frac{1}{2} \arccos(-q) \quad \text{and} \quad \xi_2 = \frac{1}{2} \arccos(q), \quad (17)$$

where $q = \sqrt{v} |\cos \delta|/\sqrt{v-u-v\sin^2 \delta}, \quad u = e^{2\pi \Delta n^2 t^2}, \quad v = e^{2\pi \Delta n^2 t^2}, \quad \delta = \Delta\omega\Delta n t/2$.

In Fig. 2, the QSL time $\tau_{QSL}(\tau_n)$ (blue solid curve) together with τ_2 (red dot-dashed curve) and τ_1 (green dashed curve) and non-Markovianity $N(\Lambda)$ (black dotted curve) are compared to parameter ξ in the case $\alpha = \pi/4$ and $\tau = 2\pi/(\Delta\omega\Delta n)$ with $\Delta\omega = \omega_2 - \omega_1$, where the related parameters are all selected according to experimental data with $\Delta n = 0.01$, $\sigma = 1.8$ THz, $\omega_1 = 2.676$ PHz (≈ 704.5 nm), and $\omega_2 = 2.692$ PHz (≈ 700.3 nm) [26].

![FIG. 2: Non-Markovian effect on quantum speed limit (QSL) of a photon under dephasing noise. QSL time τ_n (blue solid curve), τ_2 (red dot-dashed curve), τ_1 (green dashed curve), and $N(\Lambda)$ (black dotted curve) as a function of parameter ξ controlling the relative height of two peaks of frequency distribution. The initial state with $\alpha = \pi/4$ evolves during an actual driving time $\tau = 2\pi/(\Delta\omega\Delta n) \approx 0.39$ ps with $\Delta n = 0.01$, $\sigma = 1.8$ THz, $\omega_1 = 2.676$ PHz (≈ 704.5 nm), and $\omega_2 = 2.692$ PHz (≈ 700.3 nm) [26].](image)

The most remarkable feature appeared in Fig. 2 is that the non-Markovian effect will slow down the quantum evolution, for the monotonicity of $N(\Lambda)$ is in agreement with τ_{QSL} in the non-Markovian region $\xi \in [\xi_1, \xi_2]$. By controlling the environment parameter ξ (related to the tilted angle of the FP cavity), QSL time can be well controlled. The above phenomenon that the stronger the non-Markovianity, the longer time required to reach the target state is just the opposite side illustrated in Ref. [22], where the non-Markovian effect will speed up the evolution for corresponding model. To our common wisdom, the non-Markovianity reflects the memory effect of the environment, which is usually thought as beneficial in quantum tasks [44].

V. CONCLUSION

In this paper, with a photonic non-Markovian dephasing model, we illustrate that the non-Markovian effect can slow down the quantum speed limit, which presents an opposite effect of non-Markovianity that can speed up the quantum evolution for a JC model. The phenomenon we illustrated in this work is analyzed by real experimental data and can be tested immediately by all-optical setups in Refs. [23–27]. A strict theorem whenever the non-Markovian effect can speed up or slow down the quantum evolution is still not clear, however, the answer to this question is of great importance, especially in...
for valuable discussions. This work was supported by
quantum computational processes under noise.
Zhen-Yu Xu acknowledges Yu-Li Dong and Fei Zhou
for valuable discussions. This work was supported by
NNSFC under Grant Nos. 11204196, 11074184, and
SRFPDHE under Grant No. 20123201120004.

[1] M. A. Nielsen and I. L. Chuang, “Quantum Computation and Quantum Information”, (Cambridge University Press, Cambridge, England, 2000).
[2] L. B. Levitin, “Physical limitations of rate, depth, and minimum energy in information processing”, Int. J. Theor. Phys. 21, 299 (1982).
[3] L. Mandelstam and I. Tamm, “The uncertainty relation between energy and time in nonrelativistic quantum mechanics”, J. Phys. (USSR) 9, 249 (1945).
[4] G. N. Fleming, “A unitarity bound on the evolution of nonstationary states”, Nuovo Cimento A 16, 232 (1973).
[5] J. Anandan and Y. Aharonov, “Geometry of quantum evolution”, Phys. Rev. Lett. 65, 1697 (1990).
[6] L. Vaidman, “The rate of evolution of a quantum state”, Am. J. Phys. 60, 182 (1992).
[7] N. Margolus and L. B. Levitin, “The maximum speed of dynamical evolution”, Phys. D 120, 188 (1998).
[8] L. B. Levitin and T. Toffoli, “Fundamental Limit on the Rate of Quantum Dynamics: The Unified Bound Is Tight”, Phys. Rev. Lett. 103, 160502 (2009).
[9] M.-H. Yung, “Quantum speed limit for perfect state transfer in one dimension”, Phys. Rev. A 74, 030303(R) (2006).
[10] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro, “Optimal Control at the Quantum Speed Limit”, Phys. Rev. Lett. 103, 240501 (2009).
[11] V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology”, Nat. Photonics 5, 222 (2011).
[12] P. Pfeifer, “How fast can a quantum state change with time?”, Phys. Rev. Lett. 70, 3365 (1993).
[13] P. Pfeifer and J. Fröhlich, “Generalized time-energy uncertainty relations and bounds on lifetimes of resonances”, Rev. Mod. Phys. 67, 759 (1995).
[14] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum limits to dynamical evolution”, Phys. Rev. A 67, 052109 (2003).
[15] S. Luo, “How fast can a quantum state evolve into a target state?”, Phys. D 189, 1 (2004).
[16] S. Defnner and E. Lutz, “Energy–time uncertainty relation for driven quantum systems”, J. Phys. A: Math. Theor. 46, 335302 (2013).
[17] B. Jones and P. Kok, “Geometric derivation of the quantum speed limit”, Phys. Rev. A 82, 022107 (2010).
[18] M. Zwierz, “Comment on Geometric derivation of the quantum speed limit”, Phys. Rev. A 86, 016101 (2012).
[19] H.-P. Breuer and F. Petruccione, “The Theory of Open Quantum Systems” (Oxford University Press, Oxford, 2007).
[20] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho, “Quantum Speed Limit for Physical Processes”, Phys. Rev. Lett. 110, 050402 (2013).
[21] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga, “Quantum Speed Limits in Open System Dynamics”, Phys. Rev. Lett. 110, 050403 (2013).
[22] S. Defnner and E. Lutz, “Quantum Speed Limit for Non-Markovian Dynamics”, Phys. Rev. Lett. 111, 010402 (2013).
[23] A. Zeilinger, “Experiment and the foundations of quantum physics”, Rev. Mod. Phys. 71, S288–S297 (1999).
[24] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry”, Rev. Mod. Phys. 84, 777–838 (2012).
[25] J.-S. Xu, C.-F. Li, M. Gong, X.-B. Zou, C.-H. Shi, G. Chen, and G.-C. Guo, “Experimental Demonstration of Photonic Entanglement Collapse and Revival”, Phys. Rev. Lett. 104, 100502 (2010).
[26] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer and J. Piilo, “Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems”, Nature Phys. 7, 931 (2011).
[27] J.-S. Tang, C.-F. Li, Y.-L. Li, X.-B. Zou, G.-C. Guo, H.-P. Breuer, E.-M. Laine, J. Piilo, “Measuring non-Markovianity of processes with controllable system-environment interaction”, Europhys. Lett. 97, 10002 (2012).
[28] M. Born and E. Wolf, “Principles of Optics”, (Cambridge University Press, Cambridge, England, 1999).
[29] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li and G.-C. Guo, “Nonlocal Memory Effects in the Dynamics of Open Quantum Systems”, Phys. Rev. Lett. 108, 210402 (2012).
[30] A. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and Non-Markovianity of Quantum Evolutions”, Phys. Rev. Lett. 105, 050403 (2010).
[31] H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems”, Phys. Rev. Lett. 103, 210401 (2009).
[32] E.-M. Laine, H.-P. Breuer, and J. Piilo, “Measure for the non-Markovianity of quantum processes”, Phys. Rev. A 81, 062115 (2010).
[33] X.-M. Lu, X. Wang, and C. P. Sun, “Quantum Fisher information flow and non-Markovian processes of open systems”, Phys. Rev. A 82, 042103 (2010).
[34] A. K. Rajagopal, A. R. Usha Devi, and R. W. Rendell, “Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms”, Phys. Rev. A 82, 042107 (2010).
[35] S. Luo, S. Fu, and H. Song, “Quantifying non-Markovianity via correlations”, Phys. Rev. A 86, 044101 (2012).
[36] P. Haikka, J. D. Cresser, and S. Maniscalco, “Comparing different non-Markovianity measures in a driven qubit system”, Phys. Rev. A 83, 021122 (2011).
[37] B. Vacchini, A. Smirne, E.-M. Laine, J. Piilo and H.-P. Breuer, “Markovianity and non-Markovianity in quantum and classical systems”, New J. Phys. 13, 093004 (2011).
[38] D. Chrusciński, A. Kossakowski, and Á. Rivas, “Mea-
sures of non-Markovianity: Divisibility versus backflow of information”, Phys. Rev. A 83, 052128 (2011).

F. F. Fanchini, G. Karpat, L. K. Castelano, and D. Z. Rossatto, “Probing the degree of non-Markovianity for independent and common environments”, Phys. Rev. A 88, 012105 (2013).

M. Jiang and S. Luo, “Comparing quantum Markovianities: Distinguishability versus correlations”, Phys. Rev. A 88, 034101 (2013).

H.-S. Zeng, N. Tang, Y.-P. Zheng, and G.-Y. Wang, “Equivalence of the measures of non-Markovianity for open two-level systems”, Phys. Rev. A 84, 032118 (2011).

Z. Y. Xu, W. L. Yang, and M. Feng, “Proposed method for direct measurement of the non-Markovian character of the qubits coupled to bosonic reservoirs”, Phys. Rev. A 81, 044105 (2010).

Z. He, J. Zou, L. Li, and B. Shao, “Effective method of calculating the non-Markovianity N for single-channel open systems”, Phys. Rev. A 83, 012108 (2011).

F. Benatti, R. Floreanini, and G. Scholes, “Loss of coherence and memory effects in quantum dynamics”, J. Phys. B: At. Mol. Opt. Phys. 45, 150201 (2012).

S. Lloyd, “Ultimate physical limits to computation”, Nature 406, 1047-1054 (2000).

There have been introduced several other non-Markovianity measures based on Fisher information [33], fidelity [34], mutual information [35] etc. They do not coincide in general [36–40] except for a few cases [35, 41].