HYPERSPACES OF COUNTABLE COMPACTA

TARAS BANAKH, PAWEŁ KRUPSKI, AND KRZYSZTOF OMILJANOWSKI

Abstract. Hyperspaces \(\mathcal{H}(X) \) of all countable compact subsets of a metric space \(X \) and \(\mathcal{A}_n(X) \) of infinite compact subsets which have at most \(n \) (\(n \in \mathbb{N} \)) or finitely many (\(n = \omega \)) or countably many (\(n = \omega + 1 \)) accumulation points are studied. By descriptive set-theoretical methods, we fully characterize them for 0-dimensional, dense-in-itself, Polish spaces and partially for \(\sigma \)-compact spaces \(X \). Using the theory of absorbing sets, we get characterizations of \(\mathcal{H}(X) \), \(\mathcal{A}_\omega(X) \) and \(\mathcal{A}_{\omega + 1}(X) \) for nondegenerate connected, locally connected Polish spaces \(X \) which are either locally compact or nowhere locally compact. For every \(n \in \mathbb{N} \), we show that if \(X \) is an interval or a simple closed curve, \(\mathcal{A}_n(X) \) is homeomorphic to the linear space \(c_0 = \{ (x_i) \in \mathbb{R}^\omega : \lim x_i = 0 \} \) with the product topology; if \(X \) is a Peano continuum and a point \(p \in X \) is of order \(\geq 2 \), then the hyperspace \(\mathcal{A}_1(X, \{p\}) \) of all compacta with exactly one accumulation point \(p \) also is homeomorphic to \(c_0 \).

1. Introduction

All spaces in the paper are metric.
Let \(\mathcal{K}(X) \) be the hyperspace of all nonempty compact subsets of \(X \) with the Vietoris topology. It is well known that \(\mathcal{K}(X) \) shares many basic topological properties of space \(X \) like, e.g., completeness, local compactness, compactness, connectedness, local connectedness, dimension 0. Recall also that \(\mathcal{K}(X) \) is an absolute neighborhood retract (ANR) if and only if \(X \) is locally continuum-connected and it is an absolute retract (AR) if, additionally, \(X \) is connected [11]; if \(X \) is nondegenerate noncompact, locally compact, locally connected (connected) then \(\mathcal{K}(X) \) is an \(I^\omega \)-manifold (\(\cong I^\omega \setminus \{ \text{point} \} \)) [11].

For a nondegenerate Peano continuum \(X \), \(\mathcal{K}(X) \cong I^\omega \) (the symbol \(\cong \) stands for “homeomorphic to”).

The hyperspace \(\mathcal{F}(X) \subset \mathcal{K}(X) \) of all finite subsets of \(X \) was also extensively studied for various spaces \(X \). Clearly, for the rationals \(\mathbb{Q} \), \(\mathcal{F}(\mathbb{Q}) \cong \mathbb{Q} \).

It follows from Lemma [3.9 (19 Lemma 3.1)] that \(\mathcal{F}(\mathbb{R} \setminus \mathbb{Q}) \cong \mathbb{Q} \times (\mathbb{R} \setminus \mathbb{Q}) \) and \(\mathcal{F}(\{0,1\}^\omega) \cong \mathbb{Q} \times \{0,1\}^\omega \). If \(X \) is locally path-connected (and connected) then \(\mathcal{F}(X) \) is an ANR (AR) which is homotopy dense in \(\mathcal{K}(X) \) [15]; for a nondegenerate Peano continuum \(X \), \(\mathcal{F}(X) \cong [0,1]^\omega \setminus (0,1)^\omega \) [13].

Date: May 21, 2021.
2020 Mathematics Subject Classification. Primary 57N20; Secondary 54B20, 54H05.

Key words and phrases. absorbing set, absolute retract, accumulation point, Borel set, coanalytic set, Hilbert cube, hyperspace, locally connected space, strongly universal set.
Another interesting subspace of $\mathcal{K}(X)$ is the hyperspace $\mathcal{H}(X)$ of all nonempty at most countable compacta which seems to have been less recognized. In general, if X is an uncountable Polish space, then $\mathcal{H}(X)$ is Π^1_1-complete [23, Theorem (27.5)] (in such case we will call it the Hurewicz set for X). The hyperspace $\mathcal{H}(\mathbb{Q})$ was characterized by H. Michalewski [29] as a first category, zero-dimensional, separable, metrizable space with the property that every nonempty clopen subset is Π^1_1-coanalytic.

Another interesting subspace of $\mathcal{K}(X)$ is $\mathcal{K}(\mathbb{Q})$. For any Polish space or a σ-compact metric space without isolated points, $\mathcal{K}(\mathbb{Q})$ is a Π^1_1-absorbing $\sigma\delta\sigma$-absorber Π^1_1. For any Polish space X without isolated points, $\mathcal{K}(\mathbb{Q})$ is true absolute $F_{\sigma\delta}$ and $\mathcal{A}_\omega(X)$ is true absolute $F_{\sigma\delta\sigma}$. For $X = \mathbb{Q}$, $\mathcal{A}_n(\mathbb{Q})$ is in the small Borel class $D_{2n}(F_{\sigma\delta})$ in $\mathcal{K}(\mathbb{R})$ but we do not know if it is absolute $F_{\sigma\delta}$.

Next, we characterize $\mathcal{A}_n(X)$, $n \in \mathbb{N}$, for any 0-dimensional Polish space which is dense-in-itself (i.e., without isolated points) as the infinite product \mathbb{Q}^ω. If X is a 0-dimensional σ-compact metric space without isolated points then

$$\mathcal{A}_n(X, F) := \{ A \in \mathcal{A}_n(X) : A' \subset F \} \cong \mathbb{Q}^\omega$$

for any $F \in \mathcal{K}(X)$ of cardinality $|F| \geq n$. In particular, the hyperspace $\mathcal{A}_1(\mathbb{Q}, \{ q \}) = \{ A \in \mathcal{A}_1(\mathbb{Q}) : A' = \{ q \} \}$ also is homeomorphic to \mathbb{Q}^ω. Thus, we get a partial answer to the question asked in [20] if $\mathcal{A}_1(\mathbb{R} \setminus \mathbb{Q})$ is homeomorphic to $\mathcal{A}_1(\mathbb{Q})$. The full positive answer is equivalent to the $F_{\sigma\delta\sigma}$-absoluteness of $\mathcal{A}_1(\mathbb{Q})$ which remains an open problem.

We show that for a dense-in-itself, 0-dimensional space X, the hyperspace $\mathcal{A}_\omega(X)$ is homeomorphic to the standard, everywhere Π^1_1-complete set $S_4 \subseteq \{0,1\}^\omega$ in two cases: X a Polish space or a σ-compact metric space.

Next, we characterize $\mathcal{A}_n(X)$, $n \in \mathbb{N}$, for any 0-dimensional Polish space which is dense-in-itself (i.e., without isolated points) as the infinite product \mathbb{Q}^ω. If X is a 0-dimensional σ-compact metric space without isolated points then

$$\mathcal{A}_n(X, F) := \{ A \in \mathcal{A}_n(X) : A' \subset F \} \cong \mathbb{Q}^\omega$$

for any $F \in \mathcal{K}(X)$ of cardinality $|F| \geq n$. In particular, the hyperspace $\mathcal{A}_1(\mathbb{Q}, \{ q \}) = \{ A \in \mathcal{A}_1(\mathbb{Q}) : A' = \{ q \} \}$ also is homeomorphic to \mathbb{Q}^ω. Thus, we get a partial answer to the question asked in [20] if $\mathcal{A}_1(\mathbb{R} \setminus \mathbb{Q})$ is homeomorphic to $\mathcal{A}_1(\mathbb{Q})$. The full positive answer is equivalent to the $F_{\sigma\delta\sigma}$-absoluteness of $\mathcal{A}_1(\mathbb{Q})$ which remains an open problem.

We show that for a dense-in-itself, 0-dimensional space X, the hyperspace $\mathcal{A}_\omega(X)$ is homeomorphic to the standard, everywhere Π^1_1-complete set $S_4 \subseteq \{0,1\}^\omega$ in two cases: X a Polish space or a σ-compact metric space.

Next, we characterize $\mathcal{A}_n(X)$, $n \in \mathbb{N}$, for any 0-dimensional Polish space which is dense-in-itself (i.e., without isolated points) as the infinite product \mathbb{Q}^ω. If X is a 0-dimensional σ-compact metric space without isolated points then

$$\mathcal{A}_n(X, F) := \{ A \in \mathcal{A}_n(X) : A' \subset F \} \cong \mathbb{Q}^\omega$$

for any $F \in \mathcal{K}(X)$ of cardinality $|F| \geq n$. In particular, the hyperspace $\mathcal{A}_1(\mathbb{Q}, \{ q \}) = \{ A \in \mathcal{A}_1(\mathbb{Q}) : A' = \{ q \} \}$ also is homeomorphic to \mathbb{Q}^ω. Thus, we get a partial answer to the question asked in [20] if $\mathcal{A}_1(\mathbb{R} \setminus \mathbb{Q})$ is homeomorphic to $\mathcal{A}_1(\mathbb{Q})$. The full positive answer is equivalent to the $F_{\sigma\delta\sigma}$-absoluteness of $\mathcal{A}_1(\mathbb{Q})$ which remains an open problem.

We show that for a dense-in-itself, 0-dimensional space X, the hyperspace $\mathcal{A}_\omega(X)$ is homeomorphic to the standard, everywhere Π^1_1-complete set $S_4 \subseteq \{0,1\}^\omega$ in two cases: X a Polish space or a σ-compact metric space.

If X is a dense-in-itself, 0-dimensional Polish space, then the hyperspaces $\mathcal{A}_n(X)$ and $\mathcal{H}(X)$ are homeomorphic to $\mathcal{H}(\mathbb{Q})$.

Studying hyperspaces of compacta of reasonably nice spaces of positive dimensions, we unavoidably enter into infinite-dimensional topology. Here, we intensively employ the theory of absorbing sets. We describe (apparently new) an $F_{\sigma\delta\sigma}$-absorber Π_3 and an $F_{\sigma\delta\sigma}$-absorber Σ_4 in the Hilbert cube and
our main results in Section 8 are the following characterizations:
\[A_\omega(X) \cong \Sigma_4, \quad A_{\omega+1}(X) \cong \mathcal{H}(X) \cong \mathcal{H}(I) \]
if \(X \) is nondegenerate, connected, locally connected and either (1) locally compact or (2) Polish, nowhere locally compact.

One of the simplest examples of type (2)-spaces is \(\mathbb{R}^2 \setminus \mathbb{Q}^2 \). Other natural examples of such spaces include the set of all “irrational points” of the Sierpiński carpet, infinite countable products of non-compact intervals, Nöbeling or Lipscomb universal spaces of dimension \(\geq 1 \). In particular, the characterization extends the Cauty’s characterization of \(\mathcal{H}(I) \) over all spaces \(X \) as in (1) and (2).

The hyperspace \(A_n(X) \) is more difficult to handle. In Sections 9 and 10 the following characterizations are obtained:
\[A_n(I) \cong A_n([0,1]) \cong A_n(S^1) \cong \Pi_3 \cong c_0 : = \{ (x_i) \in \mathbb{R}^\omega : \lim x_i = 0 \}. \]
Incidentally, the characterizations answer [20 Question 2.17] and a question in [6] if \(A_n(S^1) \) is contractible.

Finally, in Section 11 we show that if \(X \) is a Peano continuum with a point \(p \) of order \(\geq 2 \) and \(p \in F \in \mathcal{F}(X) \), then
\[\{ A \in A_n(X) : X \subset A \} \cong A_1(X, \{ p \}) \cong c_0. \]

2. Borel complexity of \(A_n(X) \) and \(A_\omega(X) \)

Let us recall the standard notations of absolute Borel classes of spaces:

- for a countable ordinal \(\alpha \geq 1 \), \(\Pi_\alpha^0 \) is the absolute \(\alpha \)-th multiplicative class (i.e., \(\Pi_1^0 \) is the class of compact metrizable spaces, \(\Pi_2^0 \) is the class of Polish spaces, etc.);
- for \(\alpha \geq 2 \), \(\Sigma_\alpha^0 \) is the absolute \(\alpha \)-th additive class (i.e., \(\Sigma_2^0 \) is the class of \(\sigma \)-compact spaces, \(\Sigma_3^0 \) is the class of absolute \(G^\delta_\sigma \)-spaces, etc.).

The class of absolute coanalytic spaces is denoted by \(\Pi^1_1 \).

Let \(\Gamma \) be a family of subsets of \(X \). For a natural number \(n \), let \(D_{2n}(\Gamma) \) be the family of sets of type \(\bigcup_{k=1}^n (A_{2k-1} \setminus A_{2k}) \) where \((A_k)_{k=1}^n \) is an increasing sequence of sets from \(\Gamma \). For the class \(\Gamma \) of \(F^\delta_\sigma \)-sets, elements of the small Borel class \(D_{2n}(\Gamma) \) will be called sets of difference type \(D_{2n}(F^\delta_\sigma) \).

If \(\mathcal{P} \) is a topological property, then a subspace \(Y \subset Z \) is everywhere (nowhere) \(\mathcal{P} \) if every (no) nonempty, relatively open subset of \(Y \) has \(\mathcal{P} \).

For \(E, F \subset X \) and \(n \in \mathbb{N} \), denote:
- the closed subspace \(F_n(X) = \{ A \in \mathcal{K}(X) : |A| \leq n \} \) of \(\mathcal{K}(X) \),
- \(A_{=n}(X) = \{ A \in \mathcal{K}(X) : |A| = n \} \),
- \(A_n(E, F) = \{ A \in A_n(X) : A \setminus A' \subset E \setminus A' \subset F \} \),
- \(A_{=n}(E, F) = \{ A \in A_{=n}(X) : A \setminus A' \subset E \setminus A' \subset F \} \),
- \(\mathcal{K}(X)^E = \{ K \in \mathcal{K}(X) : F \subset K \} \), \(A_n(X)^E = A_n(X) \cap \mathcal{K}(X)^E \),
- \(\mathcal{K}(X)_F = \{ K \in \mathcal{K}(X) : F \cap K \neq \emptyset \} \), \(A_n(X)_F = A_n(X) \cap \mathcal{K}(X)_F \).
Theorem 2.1. For each \(n \in \mathbb{N} \),

1. \(A_n(X) \) and \(A_n(X, F) \), for any \(F \in \mathcal{K}(X) \), are \(F_{\sigma \delta} \)-sets in \(\mathcal{K}(X) \);
2. \(A_\omega(X) \) is \(F_{\sigma \delta} \) in \(\mathcal{K}(X) \);
3. if \(X \) is metric separable and \(F \) is an \(F_{\sigma} \)-subset of \(X \), then \(A_\omega(X) \) is \(F_{\sigma \delta} \) in \(\mathcal{K}(X) \);
4. \(A_n(X, F) \) is of type \(F_{\sigma \delta} \) in \(\mathcal{K}(X) \);
5. \(A_n(F, X) \) is of type \(G_{\delta \sigma} \) in \(\mathcal{K}(X) \);
6. \(A_n(F, X), A_n(X, F) \) and \(A_n(F) \) are of type \(D_{2n}(F_{\sigma \delta}) \) in \(\mathcal{K}(X) \).

Proof. K. Kuratowski proved in [26] that the derived set map

\[D : \mathcal{K}(X) \setminus \mathcal{F}(X) \to \mathcal{K}(X), \quad D(A) = A' \]

is Borel of the second class. Actually, it is convenient to consider \(D \) as a map from the whole \(\mathcal{K}(X) \) to the space \(\mathcal{K}(X) \cup \{\emptyset\} \) with the isolated point \(\{\emptyset\} \) and then a direct proof in [10] of Kuratowski’s theorem shows that the preimage under \(D \) of each closed set in \(\mathcal{K}(X) \) is \(F_{\sigma \delta} \) in \(\mathcal{K}(X) \).

Observe that

\[A_n(X) = D^{-1}(\mathcal{F}_n(X)) \quad \text{and} \quad A_n(X, F) = D^{-1}(F) \cap A_n(X) \]

which establishes (1) and yields (2).

Now, fix a metric \(d \) generating the topology of \(X \). For \(x \in X \) and \(\varepsilon > 0 \) denote by

\[B(x, \varepsilon) = \{ y \in X : d(y, x) < \varepsilon \} \quad \text{and} \quad B[x, \varepsilon] = \{ y \in X : d(y, x) \leq \varepsilon \} \]

the open and closed \(\varepsilon \)-balls centered at \(x \). For \(A \subseteq X \), let

\[B(A, \varepsilon) = \bigcup_{a \in A} B(a, \varepsilon) \quad \text{and} \quad B[A, \varepsilon] = \bigcup_{a \in A} B[a, \varepsilon] \]

Fix a countable dense set \(D \) in \(X \) and \(n \in \mathbb{N} \).

(3). The equality

\[A_\equiv(X, F) \cap \bigcap_{m \in \mathbb{N}} \bigcup_{A \in [D] \leq n} \{ K \in A_\equiv(X) : K \setminus B[A, \frac{1}{m}] \in [F_k]^{\leq k} \} \]

witnesses that the sets \(A_\equiv(X, F) \) is of type \(F_{\sigma \delta} \) in \(A_\equiv(X) \).

(4). The equality

\[A_\equiv(X) \setminus A_\equiv(X, F) = \bigcap_{k \in \mathbb{N}} \bigcup_{A \in [D] \leq n} \bigcup_{m \in \mathbb{N}} \{ K \in A_\equiv(X) : K \cap B(F_k, \frac{1}{m}) \setminus B[A, \frac{1}{m}] \in [X]^{\leq m} \} \]
Corollary 2.2. If P will exploit the standard sets F represented in slightly different from $[23]$ but equivalent forms: complete, respectively $[23, Exercise (23.1), Exercise (23.6)]$. They can be $(2), (6)$ of Theorem 2.1 are absolute.

(5). Since $A_n(F) = A_n(F, X) \cap A_n(X, F)$, the set $A_n(F)$ is of type $D_2(F_{\sigma\delta})$ in $A_n(X)$ according to the preceding two statements.

(6). For every $k \in \mathbb{N}$, choose an $F_{\sigma\delta}$-set S_{2k} in $K(X)$ such that

$$S_{2k} \cap A_{=k}(X) = A_{=k}(F, X).$$

Since $A_k(X)$ and $A_{k-1}(X)$ are $F_{\sigma\delta}$-sets in $K(X)$, we can assume that $A_{k-1}(X) \subseteq S_{2k} \subseteq A_k(X)$. Put $S_1 = A_0(X) \setminus A_0(F)$ and $S_{2k-1} = A_{k-1}(X)$ for $k > 1$.

Since $A_n(F, X) = \bigcup_{k=1}^{n} (S_{2k} \setminus S_{2k-1})$, the set $A_n(F, X)$ is of type $D_{2n}(F_{\sigma\delta})$ in $K(X)$.

For every $k > 1$ put $T_{2k} = A_k(X)$ and choose an $F_{\sigma\delta}$-set T_{2k-1} in $K(X)$ such that

$$T_{2k-1} \cap A_{=k}(X) = A_{=k}(X) \setminus A_{=k}(F, X).$$

Since $A_k(X)$ and $A_{k-1}(X)$ are $F_{\sigma\delta}$-sets in $K(X)$, we can assume that $A_{k-1}(X) \subseteq T_{2k-1} \subseteq A_k(X)$. Put also

$$T_2 = A_1(X), \quad T_1 = A_1(X) \setminus A_1(X, F) = A_{=1}(X) \setminus A_{=1}(X, F).$$

Since

$$A_n(X, F) = \bigcup_{k=1}^{n} (T_{2k} \setminus T_{2k-1}),$$

the set $A_n(X, F)$ is of type $D_{2n}(F_{\sigma\delta})$ in $K(X)$.

Since $A_{=1}(X) = A_1(X)$ is of type $F_{\sigma\delta}$ in $K(X)$, the set $A_{=1}(F, X) \setminus A_{=1}(X, F)$ is of type $F_{\sigma\delta}$ in $A_{=1}(X)$ (by statements (3) and (4)) and hence in $K(X)$. It means that the set

$$Q_1 = A_1(F, X) \setminus A_1(F) = A_{=1}(F, X) \setminus A_{=1}(X, F)$$

is of type $F_{\sigma\delta}$ in $K(X)$. For $k > 1$, let $Q_{2k-1} = S_{2k} \cap T_{2k-1}$.

Since

$$A_n(F) = \bigcup_{k=1}^{n} (S_{2k} \setminus Q_{2k-1}),$$

the set $A_n(F)$ is of type $D_{2n}(F_{\sigma\delta})$ in $K(X)$. □

Corollary 2.2. If X is a Polish space then the Borel classes of sets in (1), (2), (6) of Theorem 2.1 are absolute.

In order to evaluate Borel classes of $A_n(X)$ and $A_\omega(X)$ from below, we will exploit the standard sets P_3 and S_4 which are Π^0_4-complete and Σ^0_4-complete, respectively [23, Exercise (23.1), Exercise (23.6)]. They can be represented in slightly different from [23] but equivalent forms:

- $P_3 = \{(x_i)_{i \in \mathbb{N}} : \forall j \in \omega \forall^\infty k \in \omega \ (x_{2j}(2k+1) = 0)\}$
- $S_4 = \{(x_i)_{i \in \mathbb{N}} : \forall^\infty j \in \omega \forall^\infty k \in \omega \ (x_{2j}(2k+1) = 0)\}$.
Theorem 2.3. If \(X \) contains a compactum of the Cantor-Bendixson rank 3, then \(A_n(X) \) is not \(G_{\delta\sigma} \) in \(K(X) \) and \(A_\omega(X) \) is not \(G_{\delta\sigma\delta} \) in \(K(X) \). If \(X \) is dense-in-itself then

1. \(A_n(X) \) and \(A_\omega(X) \) are nowhere \(G_{\delta\sigma} \) and nowhere \(G_{\delta\sigma\delta} \) in \(K(X) \), respectively.
2. If \(F \in K(X) \) and \(|F| \geq n \) then \(A_n(X,F) \) is nowhere \(G_{\delta\sigma} \) in \(K(X)_F \)
3. If \(F \in K(X) \) is infinite then \(A_\omega(X,F) \) is nowhere \(G_{\delta\sigma\delta} \) in \(K(X)_F \).

Proof. Let the Cantor-Bendixson rank of some \(A \in K(X) \) equals 3. Without loss of generality we can assume that \(A = \text{cl}\{2^{-j} + 2^{-(j+k)} : j, k \in \omega\} \). For any \(n \in \mathbb{N} \), put

\[
\chi(n) = \begin{cases}
\text{cl}\{2^{-j} + 2^{-(j+k)} : 1 \leq j \leq n-1, k \in \omega\}, & \text{if } n > 1; \\
\emptyset, & \text{if } n = 1.
\end{cases}
\]

Define a continuous map \(\psi_n : \{0,1\}^\mathbb{N} \to K(X) \) by

\[
\psi_n(x) = \chi(n) \cup \text{cl}\{2^{-j} + 2^{-(j+k)x_{2j-n(2k+1)}} : j \geq n, k \in \omega\} \subset A.
\]

One easily checks that

\[
\psi_n^{-1}(A_n(X)) = P_3 \quad \text{and} \quad \psi_1^{-1}(A_\omega(X)) = S_4.
\]

This guarantees that \(A_n(X) \) is not \(G_{\delta\sigma} \) and \(A_\omega(X) \) is not \(G_{\delta\sigma\delta} \).

Now, assume that \(X \) has no isolated points. Then every nonempty open subset of \(X \) contains a copy of \(A \). Consider a basic open set \(\mathcal{U} \) in the Vietoris topology in \(K(X) \):

\[
\mathcal{U} = \langle U_1, \ldots, U_k \rangle = \{K \in K(X) : K \subset \bigcup_{i=1}^k U_i, (\forall i) U_i \cap K \neq \emptyset\},
\]

where \(U_i \)’s are open subsets of \(X \) and pick points \(u_i \in U_i \) for \(i = 1, \ldots, k \).

(1). Assume, without loss of generality, that \(A \subset U_1 \). Then

\[
A \cup \{u_1, \ldots, u_k\} \in \mathcal{U}
\]

and the map

\[
\tilde{\psi}_n : \{0,1\}^\mathbb{N} \to \mathcal{U}, \quad \tilde{\psi}_n(x) = \psi_n(x) \cup \{u_1, \ldots, u_k\}
\]

satisfies

\[
(\tilde{\psi}_n)^{-1}(A_n(X) \cap \mathcal{U}) = P_3 \quad \text{and} \quad (\tilde{\psi}_1)^{-1}(A_\omega(X) \cap \mathcal{U}) = S_4
\]

which completes the proof of (1).

(2) and (3). Let \(\mathcal{U}_F = \langle U_1, \ldots, U_k \rangle \cap K(X)_F \). We can assume that \(A \subset \bigcup_{i=1}^k U_i \) and \(\{0\} \cup \{2^{-j} : j = 1, \ldots, n-1\} \subset F \) in case (2) and \(\{0\} \cup \{2^{-j} : j \in \mathbb{N}\} \subset F \) in case (3). Then

\[
(\tilde{\psi}_n)^{-1}(A_n(X,F) \cap \mathcal{U}_F) = P_3 \quad \text{and} \quad (\tilde{\psi}_1)^{-1}(A_\omega(X,F) \cap \mathcal{U}_F) = S_4
\]

in respective cases.
The following general fact can also be observed.

Proposition 2.4. Let Γ be any absolute Borel class containing class Σ_2^0 or any projective class. If an uncountable metrizable separable space X is not in Γ, then $A_n(X)$ is not in Γ for each $n \in \mathbb{N} \cup \{\omega\}$.

Proof. Suppose $A_n(X)$ belongs to Γ. Since X is uncountable, it contains infinitely many accumulation points. So, we can find $K \in A_n(X)$. Consider the continuous map $\delta : X \to A_n(X)$, $\delta(x) = \{x\} \cup K$ and observe that the image $\delta(X)$ is closed in $A_n(X)$, hence it is in Γ. Then $\delta(X) \setminus \{K\}$ belongs also to Γ. Since $\delta \upharpoonright \Omega \setminus K : X \setminus K \to \delta(X) \setminus \{K\}$ is a homeomorphism, the space $X \setminus K$ is in Γ and so is the space $X = (X \setminus K) \cup K$, a contradiction.

□

3. **Hyperspaces $A_n(X)$ for 0-dimensional X**

In this section, we characterize hyperspaces $A_n(X)$, $n \leq \omega$, for 0-dimensional Polish or σ-compact spaces without isolated points.

Lemma 3.1. $P_3 \cong \mathbb{Q}^{\omega}$. In particular, P_3 is of the first category (in itself) and nowhere $G_{\delta\sigma}$.

Proof. Represent \mathbb{N} as the countable disjoint union $\mathbb{N} = \bigcup_{n \in \omega} N_n$, where $N_n = \{2^p(2k + 1) : k \in \omega\}$ and let $\text{pr}_{N_n} : \{0,1\}^N \to \{0,1\}^{N_n}$ be the projection. Since the set $\{x \in \{0,1\}^N : \forall^\infty i (x_i = 0)\}$ is homeomorphic to \mathbb{Q}, the sets $Z_n = \text{pr}_{N_n}(P_3)$ are also homeomorphic to \mathbb{Q}. For each $n \in \omega$, fix a homeomorphism $h_n : Z_n \to \mathbb{Q}$ and let a homeomorphism $h : P_3 \to \mathbb{Q}^{\omega}$ be defined by $h(x) = (h_n(\text{pr}_{N_n}(x)))_{n \in \omega}$.

□

Lemma 3.2. The set S_4 is of the first category (in itself) and strongly homogeneous (i.e., every two nonempty clopen subsets are homeomorphic). In particular, S_4 is nowhere $G_{\delta\delta\sigma}$.

Proof. For each $m \in \omega$, put $T_m = \{x \in \{0,1\}^N : (\exists n \geq m) (\forall r \geq n) (\forall^\infty k) (x_{2^r(2k+1)} = 0)\}$.

Observe that
- $S_4 = \bigcup_m T_m$,
- $T_m \subset T_{m+1}$,
- T_m is closed in S_4,
- T_m is nowhere dense in T_{m+1}.
It follows that S_4 is of the first category.

The strong homogeneity follows directly from the definition of S_4. □

The following theorem is due to Steel [31, Theorem 2] and van Engelen [18, Theorem 4.6].

Lemma 3.3. If $\alpha \geq 3$, then any two 0-dimensional, metric separable, first category spaces from the class $\Pi^0_\alpha (\Sigma^0_\alpha)$ which are nowhere $\Sigma^0_\alpha (\Pi^0_\alpha)$ resp. are homeomorphic.

It was shown in [20] that $A_1(X)$ is of the first category for any second countable topological space X. We provide a quick argument for this fact valid for any $A_n(X)$ in the case of a dense-in-itself, metric, separable, 0-dimensional space X.

Lemma 3.4. Let X be a dense-in-itself, metric, separable, 0-dimensional space, $n \leq \omega$ and $F \in K(X)$ be a set of cardinality $\geq n$. Then the hyperspaces $A_n(X)$, $A_n(X, F)$, $A_{\omega+1}(X)$ and $H(X)$ are of the first category.

Proof. Let A denote any of the hyperspaces. Let $\{B_1, B_2, \ldots\}$ be a clopen base in X which is closed under finite unions and $B_{i,k}$ be the family of all A in A such that $1 \leq |A \setminus B_i| \leq k$. Since X has no isolated points, the sets $B_{i,k}$ are nowhere dense in A. Clearly, A is the union $\bigcup_{i,k} B_{i,k}$. □

Now, we get the following characterizations.

Theorem 3.5. If X is a dense-in-itself, 0-dimensional Polish space then

1. $A_n(X) \cong A_n(X, F) \cong P_\omega \cong \mathbb{Q}^\omega$ for each $n \in \mathbb{N}$ and $F \in K(X)$ of cardinality $\geq n$;
2. $A_\omega(X) \cong A_\omega(X, F) \cong S_4$ for each infinite $F \in K(X)$;
3. $A_{\omega+1}(X) \cong H(X) \cong H(\mathbb{Q})$.

Proof. Parts (1) and (2) follow from Corollary 2.2 Theorem 2.3 and Lemmas 3.2 3.4

For part (3), observe that nonempty clopen subsets of $A_{\omega+1}(X)$ and $H(X)$ are Π^1_1-complete. To see this, let $U = \langle U_1, \ldots, U_k \rangle$ be a basic clopen set in $K(X)$, where U_1, \ldots, U_k are basic clopen subsets of X. Take a countable dense subset Q in $\bigcup_{i=1}^k U_i$ and choose $A_1 \in A_1(U_1)$. The set U is a Polish 0-dimensional space containing the Hurewicz set $H(Q) \cong H(\mathbb{Q})$. Now, the continuous map $f : U \to U$, $f(A) = A \cup A_1$ satisfies $f^{-1}(A_{\omega+1}(X) \cap U) = f^{-1}(H(X) \cap U) = H(Q)$. Thus, by Lemma 3.4 we can apply the Michalewski’s characterization 29. □
Theorem 3.6. If \(X \) is a 0-dimensional \(\sigma \)-compact metric space and \(F \in \mathcal{K}(X) \), then \(\mathcal{A}_n(X,F) \) is in \(\Pi_3^0 \) for each \(n \in \mathbb{N} \) and \(\mathcal{A}_\omega(X,F) \) is in \(\Sigma_3^0 \).

Proof. We can assume that \(X \) is contained in the Cantor set \(C \). Consider the derived set operator \(D \) on \(\mathcal{K}(C) \). The preimage \(D^{-1}(\mathcal{F}_n) \) is \(F_{\sigma\delta} \) in \(\mathcal{K}(C) \) for each \(n \in \mathbb{N} \) and \(F_{\sigma\delta} \) for \(n = \omega \). Let \(C = U_1 \supseteq U_2 \supseteq \ldots \). The sets \(X_j = X \cap (U_j \setminus U_{j+1}) \) are \(\sigma \)-compact. It follows that \(\mathcal{F}(X_j) \) are also \(\sigma \)-compact. Hence, each \(\mathcal{F}(X_j) \cup \{\emptyset\} \) as a subset of a compact space \(\mathcal{K}(C) \cup \{\emptyset\} \) is \(\sigma \)-compact.

Let \(\mathcal{B}_j = \{A \in \mathcal{K}(C) : A \cap (U_j \setminus U_{j+1}) \in \mathcal{F}(X_j) \cup \{\emptyset\}\} \).

The intersection map \(\Phi : \mathcal{K}(C) \to \mathcal{K}(C) \cup \{\emptyset\}, \quad \Phi(A) = A \cap (U_j \setminus U_{j+1}) \)

is continuous \([27, \text{Theorems 2 and 3, p.180}]\), consequently,

\[
\mathcal{B}_j = \Phi^{-1}(\mathcal{F}(X_j) \cup \{\emptyset\})
\]

is \(F_{\sigma} \) in \(\mathcal{K}(C) \).

Observe that

\[
\mathcal{A}_n(X,F) = D^{-1}(\mathcal{F}_n(K_i)) \cap \mathcal{A}_n(X) = D^{-1}(\mathcal{F}_n(K_i)) \cap \bigcap_{j=1}^{\infty} \mathcal{B}_j
\]

which shows that

\(\mathcal{A}_n(X,F) \) is \(F_{\sigma \delta} \) in \(\mathcal{K}(C) \) for \(n \in \mathbb{N} \), and is \(F_{\sigma \delta \sigma} \) in \(\mathcal{K}(C) \) for \(n = \omega \).

\(\square \)

Theorem 3.7. (1) If \(X \) is a dense-in-itself, 0-dimensional \(\sigma \)-compact metric space then \(\mathcal{A}_n(X,F) \cong \mathbb{Q}^\omega \) for any \(F \in \mathcal{K}(X) \) of cardinality \(|F| \geq n \);

(2) \(\mathcal{A}_w(X) \cong \mathcal{A}_w(X,F) \cong S_4 \) for any infinite \(F \in \mathcal{K}(X) \).

Proof. (1). \(\mathcal{A}_n(X,F) \) is in \(\Pi_3^0 \) by Theorem 3.6. Theorem 2.3 and Lemma 3.4 guarantee that the hyperspace is nowhere \(\Sigma_3^0 \) and of the first category, so Lemma 3.3 applies.

(2). The space \(X \) can be considered as an \(F_{\sigma} \)-subset of the Cantor set \(C \). By Theorem 2.1 (6), the hyperspaces \(\mathcal{A}_n(X) \), \(n \in \mathbb{N} \), are \(F_{\sigma \delta \sigma} \)-subsets of \(\mathcal{K}(C) \), so \(\mathcal{A}_w(X) \) also is \(F_{\sigma \delta \sigma} \) in \(\mathcal{K}(C) \), hence \(\mathcal{A}_w(X) \) is in \(\Sigma_1^3 \), \(\mathcal{A}_w(X,F) \) is in \(\Sigma_1^0 \) by Theorem 3.6. Both hyperspaces are nowhere \(\Pi_1^0 \) (Theorem 2.3) and of the first category (Lemma 3.4), hence they are homeomorphic to \(S_4 \) by Lemma 3.3. \(\square \)

Corollary 3.8. (1) \(\mathcal{A}_n(\mathbb{Q},F) \cong \mathcal{A}_n(\mathbb{R} \setminus \mathbb{Q}) \cong \mathcal{A}_n(\mathbb{R} \setminus \mathbb{Q},F') \cong \mathbb{Q}^\omega \) for any \(F \in \mathcal{K}(\mathbb{Q}) \) and \(F' \in \mathcal{K}(\mathbb{R} \setminus \mathbb{Q}) \) of cardinalities \(\geq n \).

(2) \(\mathcal{A}_w(\mathbb{Q}) \cong \mathcal{A}_w(\mathbb{Q},F) \cong \mathcal{A}_w(\mathbb{R} \setminus \mathbb{Q}) \cong \mathcal{A}_w(\mathbb{R} \setminus \mathbb{Q},F') \cong S_4 \) for any infinite \(F \in \mathcal{K}(\mathbb{Q}) \) and \(F' \in \mathcal{K}(\mathbb{R} \setminus \mathbb{Q}) \).
In view of Lemma 3.3 and by Theorem 3.5, Theorem 2.3 and Lemma 3.4, the question asked in [20] if \(A_1(\mathbb{R} \setminus \mathbb{Q}) \) is homeomorphic to \(A_1(\mathbb{Q}) \) reduces to the problem of the \(F_{\sigma \delta} \)-absoluteness of \(A_1(\mathbb{Q}) \) (more generally, of \(A_n(\mathbb{Q}) \)); equivalently, whether or not \(A_1(\mathbb{Q}) \) is \(F_{\sigma \delta} \) in \(K(C) \), where \(C \) is a Cantor set. Aiming at this direction, we observe several facts shedding some light on the structure of \(A_n(\mathbb{Q}) \).

We use the following lemma due to van Engelen [19, Lemma 3.1].

Lemma 3.9. Let \(X \) and \(Y \) be 0-dimensional metric separable spaces, \(X = \bigcup_{i=1}^{\infty} X_i \), \(Y = \bigcup_{i=1}^{\infty} Y_i \) with \(X_i \) (resp. \(Y_i \)) closed and nowhere dense in \(X \) (resp. \(Y \)) and let every nonempty clopen subset of \(X \) (resp. \(Y \)) contain a closed nowhere dense copy of each \(Y_i \) (resp \(X_i \)). Then \(X \sim Y \).

Lemma 3.10. Every nonempty clopen subset of \(A_n(\mathbb{Q}) \) contains a closed copy of \(A_n(\mathbb{Q}) \) for \(n \in \mathbb{N} \cup \{ \omega \} \).

Proof. We can assume that a clopen subset \(U \) of \(A_n(\mathbb{Q}) \) is of the form \(U = \langle U_1, \ldots, U_m \rangle \) for nonempty disjoint clopen subsets \(U_i \) of \(\mathbb{Q} \). The set \(A_n(U_1) \) is a closed copy of \(A_n(\mathbb{Q}) \).

Fix points \(u_i \in U_i, i = 2, \ldots, m \). Then

\[
\{ A \cup \{ u_2, \ldots, u_m \} : A \in A_n(U_1) \}
\]

is a closed copy of \(A_n(\mathbb{Q}) \) in \(U \). \(\square \)

By [19, Theorem 4.1] and Lemmas 3.4, 3.10 we get

Proposition 3.11. \(A_n(\mathbb{Q}) \) is strongly homogeneous and \(A_n(\mathbb{Q}) \cong A_n(\mathbb{Q}) \times \mathbb{Q} \) for \(n \in \mathbb{N} \cup \{ \omega \} \).

One can easily see

Lemma 3.12. \(A_1(\mathbb{Q})^{(q)} = \text{cl}(A_1(\mathbb{Q}), \{q\}) \) (the closure in \(A_1(\mathbb{Q}) \)).

Proposition 3.13. \(A_1(\mathbb{Q})^{(q)} \cong A_1(\mathbb{Q}) \cong A_1(\mathbb{Q})^{(q)} \setminus A_1(\mathbb{Q}, \{q\}) \) for every \(q \in \mathbb{Q} \).

Proof. We have:

\[
A_1(\mathbb{Q})^{(q)} = \bigcup_{p \in \mathbb{Q} \setminus \{q\}} A_1(\mathbb{Q})^{(p,q)} \quad \text{and} \quad A_1(\mathbb{Q}) = \bigcup_{p \in \mathbb{Q}} A_1(\mathbb{Q})^{(p)}.
\]

Each \(A_1(\mathbb{Q})^{(p,q)} \) is closed and nowhere dense in \(A_1(\mathbb{Q})^{(q)} \). Similarly, each \(A_1(\mathbb{Q})^{(p)} \) is closed and nowhere dense in \(A_1(\mathbb{Q}) \). If \(U = \langle U_1, \ldots, U_m \rangle \cap A_1(\mathbb{Q})^{(q)} \) is nonempty for nonempty disjoint clopen subsets \(U_i \) of \(\mathbb{Q} \) and \(q \in U_1 \), then, as in (3.1),

\[
\{ A \cup \{ u_2, \ldots, u_m \} : A \in A_1(U_1) \cap A_1(\mathbb{Q})^{(q)} \}
\]
is a closed and nowhere dense copy of \(A_1(\mathbb{Q})^{[p]} \) in \(U \). Analogously, each nonempty clopen set \((U_1, \ldots, U_m) \cap A_1(\mathbb{Q}) \) in \(A_1(\mathbb{Q}) \) contains a closed nowhere dense copy of \(A_1(\mathbb{Q})^{[p,q]} \). Now apply Lemma 3.9.

To prove the second equivalence, represent \(A_1(\mathbb{Q})^{[q]} \setminus A_1(\mathbb{Q}, \{q\}) \) as a union \(\bigcup_{k \in \mathbb{N}} B_k \), where

\[
B_k = \{ A \in A_1(\mathbb{Q})^{[q]} : A \subset \{q\} \cup (\mathbb{Q} \setminus (q - \frac{\sqrt{2}}{k}, q + \frac{\sqrt{2}}{k})) \}.
\]

One can easily check that each \(B_k \) is closed, nowhere dense in \(A_1(\mathbb{Q})^{[q]} \setminus A_1(\mathbb{Q}, \{q\}) \) as well as it can be embedded as a closed nowhere dense subset in each nonempty clopen subset of \(A_1(\mathbb{Q}) \). Conversely, each nonempty clopen subset of \(A_1(\mathbb{Q})^{[q]} \setminus A_1(\mathbb{Q}, \{q\}) \) contains a closed nowhere dense copy of \(A_1(\mathbb{Q})^{[q]} \).

\(\square \)

A map \(A_1(\mathbb{Q}, \{0\}) \times \mathbb{Q} \to A_1(\mathbb{Q}) \) given by the translation \((A, q) \mapsto A + q\) is a continuous bijection (it is not a homeomorphism, though). Hence, by Theorem 3.7, Lemma 3.12 and Proposition 3.13, we get

Corollary 3.14. \(A_1(\mathbb{Q}) \) is a one-to-one continuous image of \(\mathbb{Q}^{\omega} \). Equivalently, \(\text{cl}(A_1(\mathbb{Q}, \{q\})) \) is a one-to-one continuous image of \(A_1(\mathbb{Q}, \{q\}) \).

4. Preliminaries related to strongly universal and absorbing sets

From now on, all spaces are assumed to be metric separable and all maps continuous.

We recall a basic terminology and facts related to absorbing sets. The reader is referred to [1, 3, 4, 30] for more details.

The standard Hilbert cube \(I^\omega \) (\(I = [0, 1] \)) is considered with the metric

\[
d(x, y) = \sum_{k \in \omega} \frac{|x_k - y_k|}{2^k}.
\]

A map \(f : X \to Y \) is approximated arbitrarily closely by maps with property \(\mathcal{P} \) if for any open cover \(\mathcal{U} \) of \(Y \) there is a map \(g : X \to Y \) with property \(\mathcal{P} \) such that \(f \) is \(\mathcal{U} \)-close to \(g \), i.e., for each \(x \in X \) there is \(U \in \mathcal{U} \) containing \(\{f(x), g(x)\} \).

A closed subset \(B \subset X \) is a (strong) \(Z \)-set in \(X \) if the identity map of \(X \) can be approximated arbitrarily closely by maps \(f : X \to X \) such that \(B \cap f(X) = \emptyset \) (\(B \cap \text{cl}(f(X)) = \emptyset \)).

An embedding \(f : X \to Y \) is a \(Z \)-embedding if \(f(X) \) is a \(Z \)-set in \(Y \). A countable union of (compact) \(Z \)-sets in \(X \) will be called a (\(\sigma \)-compact) \(\sigma Z \)-set in \(X \).

A subset \(A \subset Y \) is homotopy dense in \(Y \) if there is a deformation \(H : Y \times [0, 1] \to Y \) such that \(H(Y \times (0, 1)) \subset A \) (a deformation through \(A \)).
Fact 4.1. [7, Lemma 2.6] If M is an ANR, a subset $X \subset M$ is homotopy dense in M and Z is a strong Z-set in M, then $Z \cap X$ is a strong Z-set in X.

Let M be an absolute neighborhood retract (ANR). It is known that

- B is a Z-set in M if and only if $M \setminus B$ is homotopy dense in M (see [32, Corollary 3.3]),
- if M is completely metrizable and B is a σZ-set in M, then $M \setminus B$ is homotopy dense in M ([4, Exercise 3, p. 31]),
- if A is homotopy dense in M then A is an ANR (an absolute retract (AR) if M is an AR) (see [30, Theorem 4.1.6]).

A space X has the strong discrete approximation property (SDAP) if any map $f : \bigoplus_{n \in \mathbb{N}} I^n \to X$ from the topological sum of finite-dimensional cubes can be approximated arbitrarily closely by maps $g : \bigoplus_{n \in \mathbb{N}} I^n \to X$ such that the family $\{g(I^n) : n \in \mathbb{N}\}$ is discrete.

Fact 4.2. [5, Proposition 1.7], [4, 1.4.1.] If M is an ANR with SDAP or M is locally compact then every Z-set in M is a strong Z-set in M.

We will also need

Fact 4.3. If X is a homotopy dense subset of a locally compact ANR M and there are Z-sets Z_i in M such that $X \subset \bigcup_{i \in \mathbb{N}} Z_i$, then X has SDAP.

The above fact can be easily derived from Facts 4.2, 4.1 and [4, Theorem 1.4.10] which says that each ANR X that can be represented as a union of countably many strong Z-sets in X has SDAP.

The famous Toruńczyk’s theorem [33] says that a space X is an \mathbb{R}^ω-manifold if and only if X is a Polish ANR with SDAP.

The following theorem was proved by the first author [4].

Theorem 4.4. A space X is an ANR with SDAP if and only if X is homeomorphic to a homotopy dense subset of an \mathbb{R}^ω-manifold.

Let C be a topological class of spaces. A space X is strongly C-universal if for each $C \in C$ and closed $B \subset C$, every map $f : C \to X$ which is a Z-embedding on B can be approximated arbitrarily closely by Z-embeddings $g : C \to X$ such that $g \restriction B = f \restriction B$.

A space X is called C-absorbing if

- X is an ANR with SDAP,
- $X = \bigcup_{n \in \mathbb{N}} X_n$, where each X_n is a Z-set in X and $X_n \in C$,
- X is strongly C-universal.

A fundamental theorem of M. Bestvina and J. Mogilski [5] says that a C-absorbing space is topologically unique up to a homotopy type. In particular,

Theorem 4.5. Any two C-absorbing AR’s are homeomorphic.
It is often more convenient to consider strongly universal pairs and absorbing pairs of spaces.

From now on, \(\tilde{C} \) will denote a class of pairs \((K, C)\) such that \(K \) is compact, \(C \subset K \) and \(C \in \tilde{C} \).

A pair of spaces \((M, X)\) \((X \subset M)\) is called

- **strongly \(\tilde{C} \)-universal** (some authors prefer to say \(X \) is strongly \(C \)-universal in \(M \)) if for each pair \((K, C)\) \(\in \tilde{C}\) and each closed \(B \subset K \) every map \(f : K \to M \) which is a \(Z \)-embedding on \(B \) and satisfies \((f \mid B)^{-1}(X) = B \cap C \) can be approximated arbitrarily closely by \(Z \)-embeddings \(g : K \to M \) such that \(g \mid B = f \mid B \) and \(g^{-1}(X) = C \).

Remarks 4.6. In the above definition,

1. if \(M \) is an ANR, then pairs \((K, C)\) can be replaced by pairs \((I_\omega J, C)\) \([1, Proposition 3.3]\);
2. if \(M \) is an \(R_\omega \) or \(I_\omega \)-manifold, then map \(f \) can be replaced by an embedding \([4, 1.1.21, 1.1.26]\).

Proving strong universality of pairs is usually cumbersome. An easier property is the preuniversality which is verified as a first step.

A pair \((M, X)\) is

- **\(\tilde{C} \)-preuniversal** if for any pair \((K, C)\) \(\in \tilde{C}\) there exists a map \(f : K \to M \) such that \(f^{-1}(X) = C \);

- **everywhere \(\tilde{C} \)-preuniversal** if for any nonempty open set \(U \subset X \) and pair \((K, C)\) \(\in \tilde{C}\) there exists a map \(f : K \to M \) such that \(f^{-1}(X) = C \).

Henceforth, we restrict our attention to a Borel or projective class \(C \neq \Pi^0_2 \) containing all compacta.

We gather several general facts on strongly \(\tilde{C} \)-universal pairs.

Fact 4.7. \([1, Corollary 4.4]\) If \(M \) is an ANR (AR) and \((M, X)\) is strongly \(\tilde{C} \)-universal, then \(X \) and \(M \setminus X \) are homotopy dense in \(M \) ANR’s (AR’s).

Fact 4.8. \([1, Corollary 6.2]\) If \(M \) is an ANR, \(Y \subset M \) is homotopy dense in \(M \) and \((Y, X)\) is strongly \(\tilde{C} \)-universal, then \((M, X)\) is strongly \(\tilde{C} \)-universal.

Fact 4.9. \([1, Lemma 7.1]\) If \(M \) is an ANR, \((M, X)\) is strongly \(\tilde{C} \)-universal and \(U \) is an nonempty open subset of \(E \), then \((U, X \cap U)\) is strongly \(\tilde{C} \)-universal.

Fact 4.10. \([1, Proposition 7.2]\) If \(M \) is an ANR, \(U \) is an open cover of \(M \) and \((U, X \cap U)\) is strongly \(\tilde{C} \)-universal for every \(U \in U \), then \((M, X)\) is strongly \(\tilde{C} \)-universal.

Fact 4.11. \([1, Theorem 9.5]\) If \(M \) is an ANR, \((M, X)\) is strongly \(\tilde{C} \)-universal and \(A \) is a \(Z \)-set in \(M \), then \((M, X \cup A)\) is strongly \(\tilde{C} \)-universal for every subset \(B \subset A \).
Fact 4.12. [3] Theorem 3.1] Suppose \(M \) is an ANR, a subset \(X \subset M \) has SDAP, \(X \) is homotopy dense in \(M \) and the pair \((M,X)\) is strongly \(\mathcal{C} \)-absorbing. Then \(X \) is strongly \(\mathcal{C} \)-absorbing.

A pair \((M,X)\) is \(\mathcal{C} \)-absorbing (or \(X \) is a \(\mathcal{C} \)-absorber in \(M \)), if

- \(X \in \mathcal{C} \),
- \((M,X)\) is strongly \(\mathcal{C} \)-universal,
- \(X \) is contained in a \(\sigma \)-compact \(\sigma Z \)-set in \(M \).

A fundamental theorem on absorbing pairs is the following.

Theorem 4.13. [1 Corollary 10.8] If \(M_i \) is an \(\mathbb{R}^\omega \)- or \(\mathbb{I}^\omega \)-manifold and pairs \((M_i,X_i)\) are \(\mathcal{C} \)-absorbing, \(i = 1, 2 \), then \(X_1 \cong X_2 \) if and only if \(X_1 \) and \(X_2 \) are homotopically equivalent; in particular, if \(X_1 \) and \(X_2 \) are AR’s, then \(X_1 \cong X_2 \). If \(M_i \) is an AR for \(i = 1, 2 \), then \((M_1,X_1) \cong (M_2,X_2)\) under a homeomorphism \(h \) of pairs (i.e., \(h(M_1) = M_2 \) and \(h(X_1) = X_2 \)).

Standard \(\Pi^0_3 \)-absorbing pairs are \((\mathbb{R}^\omega, c_0)\) and \((\mathbb{I}^\omega, c_0)\), where \(c_0 = c_0 \cap \mathbb{I}^\omega \).

[16]. More examples of \(\Pi^0_3 \)-absorbing pairs can be found in [8 9 16 17 21 22 23 30].

The Hurewicz set \(\mathcal{H}(\mathbb{I}) \) is a \(\Pi^1_1 \)-absorber in \(K(\mathbb{I}) \) [7 1.4].

5. Strongly universal sets in Lawson semilattices

A topological semilattice is a topological space \(X \) endowed with a continuous commutative, associative operation \(* : X \times X \to X\) such that \(x * x = x \) for all \(x \in X \).

For subsets \(A, B \) of a semilattice \(X \) denote \(A * B := \{a * b : a \in A, b \in B\} \).

A subset \(A \) of \(X \) is a subsemilattice if \(A * A \subset A \). A topological semilattice \(X \) is called Lawson if it has a base of the topology consisting of subsemilattices. A subsemilattice \(A \) of \(X \) is a coideal if \((X \setminus A) * X \subset X \setminus A \).

Examples 5.1. Natural examples of Lawson semilattices are

1. Euclidean or Hilbert cubes with \((x_i) * (y_i) := (\max\{x_i, y_i\})\),
2. Vietoris hyperspaces \(K(X) \) with \(A * B := A \cup B \).
3. Hyperspaces \(F(X), A_\omega(X), A_{\omega+1}(X) \) and \(\mathcal{H}(X) \) are coideals in \(K(X) \).

A subset \(X \) of a space \(M \) is called locally path-connected in \(M \) if for any point \(x \in M \) and neighborhood \(U_x \subset M \) of \(x \) there exists a neighborhood \(V_x \subset M \) of \(x \) such that for any points \(y, z \in V_x \cap X \) there exists a continuous map \(\gamma : [0,1] \to U_x \cap X \) such that \(\gamma(0) = y \) and \(\gamma(1) = z \). Locally path-connected in \(M \) subsets \(X \) are also called \(LC^0 \) in \(M \).

A space \(X \) is locally path-connected (\(LC^0 \)) if \(X \) is \(LC^0 \) in \(X \). If \(X \) is locally path-connected in \(M \), then \(X \) is locally path-connected but not conversely.
The following useful result was proved by W. Kubiš, K. Sakai and M. Yaguchi in [21].

Theorem 5.2. If X is a dense locally path-connected (and connected) sub-semilattice in a Lawson semilattice M, then M and X are ANR’s (AR’s) and X is homotopy dense in M.

The next theorem is an important special case of a more general result recently proved by the first author [2, Theorem 9].

Theorem 5.3. Let M be a Lawson semilattice and X be a dense in M coideal which is LC^0 in M. If our class C is Π^0_3-hereditary (i.e. for each $C \in C$, any G_δ-subset of C belongs to C), then the following conditions are equivalent:

1. the pair (M, X) is strongly \tilde{C}-universal;
2. (M, X) is everywhere \tilde{C}-preuniversal.

If M is a Polish space and X has SDAP, then conditions (1) and (2) are equivalent to

3. X is strongly C-universal.

6. TWO STANDARD BOREL ABSORBERS IN \mathbb{I}^ω

Consider the following subsets of \mathbb{I}^ω:

- $\Sigma_2 = \{(x_i)_{i \in \omega} \in \mathbb{I}^\omega : \exists n \forall m \geq n \ (x_m = 0)\}$;
- $\Pi_3 = \{(x_i)_{i \in \omega} \in \mathbb{I}^\omega : \forall n \exists k \forall m \geq k \ (x_{2^n(2m+1)} = 0)\}$;
- $\Sigma_4 = \{(x_i)_{i \in \omega} \in \mathbb{I}^\omega : \exists n_0 \forall n \geq n_0 \exists m_0 \forall m \geq m_0 \ (x_{2^n(2m+1)} = 0)\}$.

The sets Π_3 and Σ_4 belong to classes Π_3 and Σ_4, respectively, and are connected analogs of p_3 and s_4 used in the proof of Theorem 2.3.

As an application of Theorem 5.3, we are going to show that the pairs $(\mathbb{I}^\omega, \Pi_3)$, $(\mathbb{I}^\omega, \Sigma_4)$ are absorbing for Borel classes Π_3^0 and Σ_4^0, respectively.

Lemma 6.1.

1. The pair $(\mathbb{I}^\omega, \Sigma_2)$ is everywhere Σ_2^0-preuniversal;
2. The pair $(\mathbb{I}^\omega, \Pi_3)$ is everywhere Π_3^0-preuniversal;
3. The pair $(\mathbb{I}^\omega, \Sigma_4)$ is everywhere Σ_4^0-preuniversal.

Proof. We will first prove that the pairs are preuniversal. For every $m \in \omega$ let $pr_m : \mathbb{I}^\omega \to \mathbb{I}$, $pr_m : x \mapsto x(m)$, be the coordinate projection.

1. Given a compact metrizable space K and an F_σ-set $C \subset K$, write C as the union $C = \bigcup_{n \in \omega} C_n$ of an increasing sequence of closed sets C_n in K. For every $n \in \omega$ choose a continuous function $f_n : K \to \mathbb{I}$ such that $f_n^{-1}(0) = C_n$. Consider the diagonal product $f = (f_n)_{n \in \omega} : K \to \mathbb{I}^\omega$ and observe that $f^{-1}(\Sigma_2) = \bigcup_{n \in \omega} C_n = C$.

2. Given a compact metrizable space K and an $F_{\sigma\delta}$-set $C \subset K$, write C as the intersection $C = \bigcap_{n \in \omega} C_n$ of a decreasing sequence $(C_n)_{n \in \omega}$ of $F_{\sigma\delta}$-sets in K. By the preceding item, for every $n \in \omega$ there exists a continuous
map \(f_n : K \to \mathbb{I}^\omega \) such that \(f_n^{-1}(\Sigma_2) = C_n \). Let \(g_0 : K \to \{0\} \subset \mathbb{I} \) be the constant function and, for every \(k \in \mathbb{N} \), let \(g_k = \text{pr}_m \circ f_n \) where \(n, m \in \omega \) are unique numbers such that \(k = 2^n(2m + 1) \). Consider the diagonal product \(g = (g_k)_{k \in \omega} : K \to \mathbb{I}^\omega \) and observe that \(g^{-1}(\Sigma_3) = \bigcap_{n \in \omega} C_n = C \).

3. Let \(C \) be any \(F_{\sigma\delta\sigma} \)-set in a compact metrizable space \(K \). By [23, 23.5(i)], there exists a sequence \((C_n)_{n \in \omega}\) of \(F_{\sigma} \)-sets \(C_n \) in \(K \) such that \(C = \bigcup_{m \in \omega} \bigcap_{n=m}^{\infty} C_n \). By the first item, for every \(n \in \omega \) there exists a continuous function \(f_n : K \to \mathbb{I}^\omega \) such that \(f_n^{-1}(\Sigma_2) = C_n \). Let \(g_0 : K \to \{0\} \subset \mathbb{I} \) be the constant function and, for every \(k \in \mathbb{N} \), let \(g_k = \text{pr}_m \circ f_n \) where \(n, m \in \omega \) are unique numbers such that \(k = 2^n(2m + 1) \). Consider the diagonal product \(g = (g_k)_{k \in \omega} : K \to \mathbb{I}^\omega \) and observe that \(g^{-1}(\Sigma_4) = \bigcup_{m \in \omega} \bigcap_{n=m}^{\infty} C_n = C \).

In order to see that the pairs are everywhere preuniversal, fix an open basic set \(U = U_0 \times \cdots \times U_n \times \mathbb{I} \times \mathbb{I} \times \cdots \) and apply an embedding \(h : \mathbb{I}^\omega \to U \) which is linear on each of the first \(n + 1 \) coordinates and the identity on the others. Observe that \(h \) sends each of the sets \(\Sigma_2, \Sigma_3, \Sigma_4 \) into itself and use their preuniversality in \(\mathbb{I}^\omega \).

Recall that \(\mathbb{I}^\omega \) is a Lawson semilattice (Examples 5.1).

Lemma 6.2. The sets \(\Sigma_2, \Sigma_3, \Sigma_4 \) are dense coideals in \(\mathbb{I}^\omega \) and are \(LC^0 \) in \(\mathbb{I}^\omega \).

Proof. The first two properties are evident. Let \(A \in \{ \Sigma_2, \Sigma_3, \Sigma_4 \} \). To see that \(A \) is \(LC^0 \) in \(\mathbb{I}^\omega \), consider an open basic set \(U = U_0 \times \cdots \times U_n \times \mathbb{I} \times \mathbb{I} \times \cdots \) in \(\mathbb{I}^\omega \), where \(U_i \) is connected open in \(\mathbb{I} \) for each \(i \leq n \), and choose arbitrary distinct points \((a_i)_{i \in \omega}, (b_i)_{i \in \omega} \in U \cap A \). Denote \(\Gamma = \{ i : a_i \neq b_i \} \). There is a segment \(\gamma(t) = (x_i(t))_{i \in \Gamma} \subset \mathbb{I}^\Gamma \) from \((a_i)_{i \in \Gamma} \) to \((b_i)_{i \in \Gamma} \), \(t \in \mathbb{I} \). Put \(\tilde{\gamma}(t) = (\tilde{x}_i(t))_{i \in \omega}, \) where

\[
\tilde{x}_i(t) = \begin{cases}
 x_i(t), & \text{if } i \in \Gamma; \\
 a_i = b_i, & \text{otherwise.}
\end{cases}
\]

Then \(\tilde{\gamma}(t) \) is a segment from \((a_i)_{i \in \omega} \) to \((b_i)_{i \in \omega} \) in \(U \cap A \).

Lemma 6.3. The sets \(\Sigma_2, \Sigma_3, \Sigma_4 \) are contained in a \(\sigma \)-compact \(\sigma Z \)-set in \(\mathbb{I}^\omega \).

Proof. This follows from the inclusions

\[
\Sigma_2 \subset \Sigma_3 \subset \Sigma_4 \subset \bigcup_{i \in \omega} X_i,
\]

where \(X_i = \{(x_n) \in \mathbb{I}^\omega : x_n = 0 \text{ for } n \leq i \} \), and from the fact that the pseudo-interior \((0,1)^\omega \) is homotopy dense in the Hilbert cube \(\mathbb{I}^\omega \).

Now, Theorem 5.3 Lemmas 6.1 6.2 6.3 and Fact 4.3 imply the following corollary.

Corollary 6.4. (1) The pair \((\mathbb{I}^\omega, \Pi_3)\) is \(\Pi_3^3 \)-absorbing and \(\Pi_3 \) is \(\Pi_3^3 \)-absorbing.
Lemma 7.1. If a subspace $X \subset M$ is LC^0 in M, then $\mathcal{F}(X)$ is LC^0 in $K(M)$.

Proof. Let U be an open in M neighborhood of a point $x \in M$. There is an open in M neighborhood $V \subset U$ of x such that any two points $a,b \in V \cap X$ can be joined by a path in $U \cap X$.

Claim 7.1.1. For each finite sets $A,B \subset V \cap X$ there is a path

$$\gamma : I \to \langle U \rangle \cap \mathcal{F}(X) \quad \text{such that} \quad \gamma(0) = A \quad \text{and} \quad \gamma(1) = B.$$

Indeed, suppose $|A| \geq |B|$, choose a surjection $s : A \to B$ and paths $\gamma_{a,s(a)} : I \to \langle U \rangle \cap \mathcal{F}(X)$ such that $\gamma_{a,s(a)}(0) = a$ and $\gamma_{a,s(a)}(1) = s(a)$. Then $\gamma(t) := \bigcup_{a \in A} \gamma_{a,s(a)}(t)$ is the required path.

Now, let $\langle U_1, \ldots, U_k \rangle$ be a basic open set in the Vietoris topology in $K(M)$ and $K \in \langle U_1, \ldots, U_k \rangle$.

By the assumption and compactness of K, one can find open in M sets V_1, \ldots, V_m such that $K \in \langle V_1, \ldots, V_m \rangle \subset \langle U_1, \ldots, U_k \rangle$, each V_i is contained in some U_j and and any two points $a,b \in V_j \cap X$ can be joined by a path in $U_j \cap X$ for each j such that $V_i \subset U_j$. Let $A,B \in \langle V_1, \ldots, V_m \rangle \cap \mathcal{F}(X)$. Using Claim 7.1.1 one constructs inductively a path from A to B in $\langle U_1, \ldots, U_k \rangle \cap \mathcal{F}(X)$.

Clearly, if X is dense in M then $\mathcal{F}(X)$ is dense in $K(M)$ and if X is connected, then $\mathcal{F}(X)$ is connected either. Lemma 7.1 and Theorem 5.2 applied to $\mathcal{F}(X) \subset K(M)$ yield the following lemma.

Lemma 7.2. If $X \subset M$ is dense and LC^0 in M (and connected), then $\mathcal{F}(X)$ and $K(X)$ are homotopy dense in $K(M)$ and the hyperspaces $\mathcal{F}(X)$, $K(X)$ and $K(M)$ are ANR’s (AR’s).

Theorem 7.3. If a subspace X of a dense-in-itself space M is dense and LC^0 in M (and connected), then

1. $\mathcal{A}_n(X)$, $\mathcal{A}_{\omega+1}(X)$ and $\mathcal{H}(X)$ are ANR’s (AR’s) which are LC^0 in $K(M)$ and homotopy dense in $K(M)$;
2. $\mathcal{A}_n(X)$ is an ANR (AR) for each $n \in \mathbb{N}$.

Proof. First, let us notice that for each $n \in \mathbb{N} \cup \{\omega\}$ the hyperspace $\mathcal{A}_n(X)$ is dense in $K(M)$. This follows easily from the fact that $\mathcal{F}(X)$ is dense in $K(M)$, M has no isolated points and there are nontrivial paths in X in small neighborhoods of points of M.

(2) The pair $(\mathbb{I}^\infty, \Sigma_4)$ is Σ_4^0-absorbing and Σ_4 is Σ_4^0-absorbing.
(1) Let $\mathcal{U} \subset \mathcal{K}(M)$ be an open neighborhood of $K \in \mathcal{K}(M)$. By Lemma 7.1 there is an open $\mathcal{V} \subset \mathcal{U}$ containing K such that any two $F_1, F_2 \in \mathcal{F}(X) \cap \mathcal{V}$ can be joined by a path in $\mathcal{F}(X) \cap \mathcal{U}$. Let $A_1, A_2 \in \mathcal{A}_0(X) \cap \mathcal{V}$. By Lemma 7.2 there is a homotopy $H : \mathcal{K}(M) \times I \to \mathcal{K}(M)$, $H(Y, 0) = Y$, $H(Y, t) \in \mathcal{F}(X)$ for each Y and $t > 0$. Choose sufficiently small $0 < t_0 < 1/2$ such that $H(A_i, [0, t_0]) \subset \mathcal{V}, i = 1, 2$. Put $\gamma_1(t) = A_1 \cup H(A_1, t)$ for $0 \leq t \leq t_0$ and let $\gamma : [0, 1 - t_0] \to \mathcal{F}(X) \cap \mathcal{U}$ be a path such that $\gamma(t_0) = H(A_1, t_0)$ and $\gamma(1 - t_0) = H(A_2, t_0)$. Then

$$
\forall = \begin{cases}
\gamma_1(t), & 0 \leq t \leq t_0; \\
\gamma(t) \cup A_1, & t_0 \leq t \leq 1 - t_0; \\
H(A_2, t) \cup A_1, & 1 - t_0 \leq t \leq 1
\end{cases}
$$

is a path in $\mathcal{A}_0(X) \cap \mathcal{U}$ from A_1 to $A_1 \cup A_2$. Similarly, there is a path in $\mathcal{A}_0(X) \cap \mathcal{U}$ from A_2 to $A_1 \cup A_2$. It means that the hyperspace $\mathcal{A}_0(X)$ is LC^0 in $\mathcal{K}(M)$. The proof for $\mathcal{A}_{n+1}(X)$ and $H(X)$ is the same.

Since $\mathcal{A}_0(X)$ is a dense subsemilattice of $\mathcal{K}(M)$, we conclude by Theorem 5.2 that $\mathcal{A}_0(X)$ is a homotopy dense in $\mathcal{K}(M)$ ANR, which implies that also $\mathcal{A}_{n+1}(X)$ and $H(X)$ are homotopy dense ANR’s. If X is connected then $\mathcal{K}(M)$ is AR (Lemma 7.2), hence all the hyperspaces are AR’s, as homotopy dense subsets.

(2) Theorem 5.2 is not applicable to hyperspaces $\mathcal{A}_n(X), n \in \mathbb{N}$, for they are not subsemilattices of $\mathcal{K}(M)$. Therefore, we provide a more direct argument.

Consider basic open sets $\langle U_0, U_1, \ldots, U_k \rangle$ in the Vietoris topology in $\mathcal{K}(X)$, $k \geq 0$, where U_i’s are open path-connected subsets of X. The sets $\mathcal{A}_n(X) \cap \langle U_0, U_1, \ldots, U_k \rangle$ form an open base in $\mathcal{A}_n(X)$ which is closed under finite intersections. We are going to show that each of them is contractible in itself.

Choose points $x_0 \in U_0$ and $s_i \in U_i$ for each $0 < i \leq k$. Let $h : I \to h(I) \subset U_0$ be a homeomorphism such that $h(0) = x_0$.

For $r \in I$, let $C_r = h \left(\{0\} \cup \left\{ \frac{r}{j} : j \in \mathbb{N} \right\} \right)$ and $S = C_1 \cup \{s_1, \ldots, s_k\}$.

The set $\mathcal{F}(X) \cap \langle U_0, \ldots, U_k \rangle$ is dense in the Lawson semilattice $\langle U_0, \ldots, U_k \rangle$ and it is LC^0 in $\langle U_0, \ldots, U_k \rangle$, by Lemma 7.1 so it is an ANR homotopy dense in $\langle U_0, \ldots, U_k \rangle$, by Theorem 7.3. Hence, there is a homotopy $H : \langle U_0, \ldots, U_k \rangle \times I \to \langle U_0, \ldots, U_k \rangle$ through finite sets, i.e.

$$
H(K, 0) = K \quad \text{and} \quad H(K, t) \in \mathcal{F}(X) \quad \text{for} \quad t > 0.
$$
The subspace $U = \bigcup_{i=0}^{k} U_i$ is locally path-connected and
\[
\mathcal{E} = \mathcal{F}(X) \cap \langle U_0, U_1, \ldots, U_k \rangle
\]
is an expansion hyperspace in U in the sense of [15]. Moreover, each element
of \mathcal{E} intersects each component of U. Therefore \mathcal{E} is an AR [15, Lemma
3.6], so it is contractible. Since $\{x_0, s_1, \ldots, s_k\} \in \mathcal{E}$, there is a homotopy
$F: \mathcal{E} \times \mathbb{I} \to \mathcal{E}$ such that
\[
F(Y, 0) = Y \quad \text{and} \quad F(Y, 1) = \{x_0, s_1, \ldots, s_k\}.
\]
Define a homotopy
\[
G: \mathcal{A}_n(X) \cap \langle U_0, U_1, \ldots, U_k \rangle \times \mathbb{I} \to \mathcal{A}_n(X) \cap \langle U_0, U_1, \ldots, U_k \rangle,
\]
by
\[
G(Y, t) = \begin{cases}
Y \cup H(Y, 4t), & \text{for } t \in [0, 1/4]; \\
Y \cup F(H(Y, 1), 4(t - 1/4)), & \text{for } t \in [1/4, 1/2]; \\
H(Y, 4(t - 1/2)) \cup C_{(t-1/2)} \cup \{s_1, \ldots, s_k\}, & \text{for } t \in [1/2, 3/4]; \\
F(H(Y, 1), 4(t - 3/4)) \cup \langle S \rangle, & \text{for } t \in [3/4, 1].
\end{cases}
\]
Homotopy G is a deformation which contracts $\mathcal{A}_n(X) \cap \langle U_0, U_1, \ldots, U_k \rangle$
in itself to the point S. In particular, if X is connected then $\mathcal{A}_n(X) = \mathcal{A}_n(X) \cap \langle X \rangle$ is contractible.

Summarizing: $\mathcal{A}_n(X)$ is a locally connected space with an open base
closed under finite intersections, each of whose elements is connected and
homotopically trivial. It means that $\mathcal{A}_n(X)$ is an ANR (see [30, Corollary
4.2.18]); if X is connected then $\mathcal{A}_n(X)$ is contractible, hence an AR.

\[\square\]

8. Universality and absorbing properties of $\mathcal{A}_\omega(X)$, $\mathcal{A}_{\omega+1}(X)$
and $\mathcal{H}(X)$

Lemma 8.1. The pair $(\mathcal{K}(\mathbb{I}), \mathcal{A}_\omega(\mathbb{I}))$ is Σ^0_4-preuniversal. The pairs $(\mathcal{K}(\mathbb{I}), \mathcal{A}_{\omega+1}(\mathbb{I}))$
and $(\mathcal{K}(\mathbb{I}), \mathcal{H}(\mathbb{I}))$ are Π^1_1-preuniversal.

Proof. Consider the map
\[
\psi: \mathbb{I}^\omega \to \mathcal{K}(\mathbb{I}), \quad \psi((x_n)_{n \in \omega}) = \text{cl}(\{2^{-(n+1)} + 2^{-(n+m+1)}x_{2n(2m+1)} : n, m \in \omega\}).
\]
Observe that the preimage $\psi^{-1}(\mathcal{A}_\omega(\mathbb{I})) = \Sigma_4$. Now the strong Σ^0_4-universality
of the pair $(\mathbb{I}^\omega, \Sigma_4)$ (Corollary 5.4) implies the Σ^0_4-preuniversality of the pair
$(\mathcal{K}(\mathbb{I}), \mathcal{A}_\omega(\mathbb{I}))$.

The preuniversality of $(\mathcal{K}(\mathbb{I}), \mathcal{H}(\mathbb{I}))$ follows directly from the R. Cauty’s
result that the pair is Π^1_1-absorbing [14]. In fact, the construction in [14]
shows that $(\mathcal{K}(\mathbb{I}), \mathcal{A}_{\omega+1}(\mathbb{I}))$ is strongly Π^1_1-universal.

\[\square\]

Lemma 8.1 implies
Lemma 8.2. Let X be a dense subspace of a space M such that for any non-empty set $U \subset M$ the intersection $U \cap X$ contains a topological copy of the segment I. Then the pair $(\mathcal{K}(M), A_\omega(X))$ is everywhere Σ^0_4-preuniversal and pairs $(\mathcal{K}(M), A_{\omega+1}(X))$ and $(\mathcal{K}(M), \mathcal{H}(X))$ are everywhere Π^1_3-preuniversal.

Theorem 8.3. If X is a dense subset of a dense-in-itself space M and X is LC^0 in M, then the pair $(\mathcal{K}(M), A_\omega(X))$ is strongly Σ^0_4-universal. The pairs $(\mathcal{K}(M), A_{\omega+1}(X))$ and $(\mathcal{K}(M), \mathcal{H}(X))$ are strongly Π^1_3-universal.

Proof. By Corollary 2.2, the hyperspace $A_\omega(X)$ is an $F_{\sigma\delta\sigma}$-subset of the Polish space $\mathcal{K}(M)$, hence $A_\omega(X) \in \Sigma^0_4$. By Theorem 5.3 $(\mathcal{K}(M), A_\omega(X))$ is strongly Σ^0_4-universal. The spaces $A_{\omega+1}(X)$ and $\mathcal{H}(X)$ belong to class Π^1_3 if X is Polish; if not, then by [23] (33.5) $\mathcal{K}(X)$ is in Π^1_3 and the hyperspaces $A_{\omega+1}(X) = A_{\omega+1}(M) \cap \mathcal{K}(X)$ and $\mathcal{H}(X) = \mathcal{H}(M) \cap \mathcal{K}(X)$ also belong to Π^1_3 as intersections of a Polish space and Π^1_3-sets.

Notice that $A_\omega(X) \subset A_{\omega+1}(X) \subset \mathcal{H}(X)$. Therefore in case (1), it remains to find a σ-compact σZ-subset of $\mathcal{K}(M)$ that covers $\mathcal{H}(X)$. We may use the following idea due to R. Cauty [7, Lemme 5.6]. We can assume that the metric ρ in M is bounded by 1. The locally path-connected space X admits an equivalent metric

$$d(x, y) = \begin{cases}
\inf \{\text{diam}_\rho(C) : C \text{ is a continuum in } X \text{ containing } x, y\}, \\
1, \text{otherwise.}
\end{cases}$$

Define

$$Z_k = \{K \in \mathcal{K}(M) : |K| \geq 2 \text{ and } (\exists x \in K) d(x, K \setminus \{x\}) \geq \frac{1}{k}\}.$$

Each Z_k is a closed subset of $\mathcal{K}(M)$, thus it is σ-compact. In order to show that the sets are Z-sets in $\mathcal{K}(M)$, we apply to them a deformation
Theorem 8.5. \(H_t : \mathcal{K}(M) \to \mathcal{K}(M) \) through \(\mathcal{K}(X) \) (it exists by Lemma 7.2) followed by the, so called, expansion deformation

\[E_t : \mathcal{K}(X) \to \mathcal{K}(X), \quad E_t(K) = \{ x \in X : d(x, K) \leq t \}. \]

More precisely, for \(t > 0 \) take a map \(f_t = E_t \circ H_t : \mathcal{K}(M) \to \mathcal{K}(X) \). Each \(Z_k \) contains an isolated point, while \(E_t(K) \) for \(t > 0 \) has no isolated points. Hence, for sufficiently small \(t > 0 \), \(f_t \) maps \(\mathcal{K}(M) \) into \(\mathcal{K}(M) \setminus \bigcup_{k \in \mathbb{N}} Z_k \) and approximates the identity map on \(\mathcal{K}(M) \). Moreover, since each \(A \in \mathcal{H}(X) \) contains an isolated point, we get the desired inclusion \(\mathcal{H}(X) \subset \bigcup_{k \in \mathbb{N}} Z_k \).

In case (2), \(\mathcal{K}(M) \) is an \(\mathbb{R}^\omega \)-manifold (see [12]) and \(A_\omega(X), A_{\omega+1}(X), \mathcal{H}(X) \) being homotopy dense in \(\mathcal{K}(M) \), they are ANR’s with SDAP by Theorem 4.3. Moreover, since the pairs \((\mathcal{K}(M), A_\omega(X)), (\mathcal{K}(M), A_{\omega+1}(X)) \) and \((\mathcal{K}(M), \mathcal{H}(X)) \) are strongly universal in respective classes \(4.3 \) the spaces \(A_\omega(X), A_{\omega+1}(X) \) and \(\mathcal{H}(X) \) are universal in the classes by 4.12.

Since \(Z \)-sets in the \(\mathbb{R}^\omega \)-manifold \(\mathcal{K}(M) \) are strong \(Z \)-sets (Fact 4.2), the sets \(Z_k \cap A_\omega(X), Z_k \cap A_{\omega+1}(X) \) are \(Z \)-sets in \(A_\omega(X), A_{\omega+1}(X) \) and \(\mathcal{H}(X) \), respectively, by Theorem 7.3 and Fact 4.1. They also belong to the classes. Therefore all sufficient conditions for absorbing sets in the classes are satisfied.

Finally, we get the following characterizations.

Theorem 8.5. \(A_\omega(X) \cong \Sigma_4, A_{\omega+1}(X) \cong \mathcal{H}(X) \cong \mathcal{H}(I) \) in each of the following cases.

1. \(X \) is nondegenerate, connected, locally connected and locally compact (i.e. \(X \) is a nondegenerate generalized Peano continuum); if \(X \) is compact (i.e., \(X \) is a nondegenerate Peano continuum), then
 - \((\mathcal{K}(M), A_\omega(X)) \cong (\mathbb{P}, \Sigma_4) \),
 - \((\mathcal{K}(M), A_{\omega+1}(X)) \cong (\mathcal{K}(M), \mathcal{H}(X)) \cong (\mathcal{K}(I), \mathcal{H}(I)) \).
2. \(X \) is nondegenerate, Polish, connected, locally connected and nowhere locally compact.

Proof. (1) for noncompact \(X \) follows from Theorem 8.4 Corollary 6.4, Theorem 7.3 and Theorem 4.13. In case when \(X \) is a nondegenerate Peano continuum, we also use the Curtis-Schori characterization \(\mathcal{K}(M) \cong \mathbb{R}^\omega \) [14].

(2) follows from Theorem 8.4 Corollary 6.4 Theorem 7.3 and Theorem 4.5.

\[\square \]

9. **Hyperspaces** \(A_n(I), n \in \mathbb{N} \)

Recall that \(\mathcal{K}(I) \cong \mathbb{P}^\omega \). It will be more convenient to work with the pair \((\mathcal{K}(J), A_n(J)) \), where \(J = [-1, 1] \).

Lemma 9.1. The pair \((\mathcal{K}(J), A_n(J)) \) is strongly \(\mathbb{P}^\omega \)-universal.
Proof. We apply an approach developed in [21].

Let C be an $F_{\sigma\delta}$-subset of \mathbb{I}^ω, B a closed subset of \mathbb{I}^ω, $f : \mathbb{I}^\omega \to \mathcal{K}(J)$ an embedding which is a Z-embedding on B and $\epsilon > 0$. Our goal is to find a Z-embedding $g : \mathbb{I}^\omega \to \mathcal{K}(J)$ such that $g \upharpoonright B = f \upharpoonright B$, $g^{-1}(A_n(J)) \setminus B = C \setminus B$, and $\text{dist}(f(x), g(x)) < \epsilon$ for each $x \in \mathbb{I}^\omega$, where dist denotes the Hausdorff distance in the hyperspace $\mathcal{K}(J)$ (see Remarks [4.6]).

The first ingredient in a construction of an approximation g is the embedding $\phi_n : \mathbb{I}^\omega \to \mathcal{K}(J)$,

\begin{equation}
\phi_n((x_j)_{j \in \omega}) = \{-1\} \cup \{-2^{-(j+1)} + x_j2^{-2-j} : j \in \omega\} \cup \chi(n) \cup \\
\text{cl}\{2^{-(j+1)} + 2^{-(j+k+1)}x_{2j-n(2k+1)} : j \geq n, k \in \omega\},
\end{equation}

where $\chi(n)$ is defined in [21]. The positive part of $\phi_n((x_j)_{j \in \omega})$ is responsible for the property $\phi_n^{-1}(A_n(J)) = \Pi_3$, while the negative one exhibits 1-1 correspondence $\phi_n : \mathbb{I}^\omega \to \mathcal{K}(J)$.

The pair $(\mathbb{I}^\omega, \Pi_3)$ being strongly Π^0_3-universal, there is an embedding $\zeta : \mathbb{I}^\omega \to \mathbb{I}^\omega$ such that $\zeta^{-1}(\Pi_3) = C$. Put

\begin{equation}
\xi = \psi \zeta.
\end{equation}

We have

\begin{equation}
\xi^{-1}(A_n(J)) = C.
\end{equation}

Next, we need a deformation $H : \mathcal{K}(J) \times \mathbb{I} \to \mathcal{K}(J)$ through finite sets. Deformation H can be easily modified to satisfy

$$\text{dist}(K, H(K, t)) \leq 2t \quad \text{and} \quad H(K, t) \subset [-1 + t, 1 - t]$$

(see [21] (1-4), p. 183).

We are going to verify that the embedding $g : \mathbb{I}^\omega \to \mathcal{K}(J)$ defined by

\begin{equation}
g(x) = H(f(x), \mu(x)) \cup \left(\min H(f(x), \mu(x)) + \mu(x)\xi(x)\right),
\end{equation}

where

\begin{equation}
\mu(x) = \frac{1}{4} \min\{\epsilon, \min\{\text{dist}(f(x), f(z)) : z \in B\}\}
\end{equation}

(we use standard operations $\alpha A := \{\alpha a : a \in A\}$ and $x + A := \{x + a : a \in A\}$), satisfies the definition of strong Π^0_3-universality of pair $(\mathcal{K}(J), A_n(J))$.

Clearly, g is continuous and since $\mu(x) = 0$ for $x \in B$, it agrees with f on B. It also ϵ-approximates f, as

\begin{equation}
\text{dist}(f(x), g(x)) \leq \\
\text{dist}(f(x), H(f(x), \mu(x))) + \text{dist}(H(f(x), \mu(x)), g(x)) \leq \\
3\mu(x) = \frac{3}{4} \min\{\epsilon, \min\{\text{dist}(f(x), f(z)) : z \in B\}\}.
\end{equation}

Mapping g is 1-1 on B. So, let $x, y \in \mathbb{I}^\omega \setminus B$. Then both numbers $\mu(x)$ and $\mu(y)$ are positive. Suppose $g(x) = g(y)$. It follows that

\begin{equation}
-\mu(x) = \min g(x) = \min g(y) = -\mu(y)
\end{equation}
hence $\mu(x) = \mu(y)$ and $\zeta(x)_j = \zeta(y)_j$ for each $j \in \omega$, so $x = y$. Suppose $x \in B$, $y \notin B$ and $g(x) = g(y)$. Then $g(y) = f(x)$. On the other hand,

$$\text{dist}(g(y), f(B)) \geq \text{dist}(f(y), f(B)) - \text{dist}(f(y), g(y)) \geq \frac{1}{4} \text{dist}(f(y), f(B)) > 0,$$

by (9.6) and since f is 1-1, a contradiction. Thus, g is 1-1.

It follows from (9.3) that $g^{-1}(A_n(\mathbb{I})) \setminus B = C \setminus B$.

The image $g(\mathbb{I}^\omega)$ is a Z-set in $K(\mathbb{J})$. Indeed, $g(\mathbb{I}^\omega \setminus B) = g(\mathbb{I}^\omega) \setminus g(B)$ is a σZ-set in $K(\mathbb{J})$ because deformation H through finite sets satisfies

$$\forall (t > 0) \ H(g(K(\mathbb{J}) \setminus B), t) \cap g(K(\mathbb{J}) \setminus B) = \emptyset$$

(since, for each $x \notin B$ and $t > 0$, the set $H(g(x), t)$ is finite whereas $g(x)$ is not). Now, $g(B)$ is a Z-set, so the union $g(B) \cup g(K(\mathbb{J}) \setminus B) = g(K(\mathbb{J}))$ is a compact σZ-set, hence a Z-set in $K(\mathbb{J})$.

□

Lemma 9.2. $A_n(\mathbb{J})$ is contained in a σZ-set in $K(\mathbb{J})$.

Proof. The σZ-set we are looking for was constructed in a more general setting (for generalized Peano continua) in the proof of Case (1) of Theorem [8.1].

Since $A_n(\mathbb{I})$ is in class Π^0_3, Lemmas [9.1] and [9.2] imply

Theorem 9.3. The pair $(K(\mathbb{I}), A_n(\mathbb{I}))$ is Π^3_3-absorbing for each $n \in \mathbb{N}$. Consequently, $A_n(\mathbb{I}) \cong \Pi^3_3 \cong c_0 \cong c_0$.

Corollary 9.4. $A_n((0, 1))$, $A_n([0, 1))$ and $A_n((0, 1])$ are also Π^3_3-absorbers in $K(\mathbb{I})$ for each $n \in \mathbb{N}$. Hence they are all homeomorphic to c_0.

Proof. Observe that the set $B = \{A \in K(\mathbb{I}) : A \cap \{0, 1\} \neq \emptyset\}$ is a Z-set in $K(\mathbb{I})$ and $A_n((0, 1)) = A_n(\mathbb{I}) \setminus B$. It is known from [11, Corollary 9.4] that the difference of an Π^3_3-absorber and a Z-set in a Hilbert cube $K(\mathbb{I})$ is again an Π^3_3-absorber in $K(\mathbb{I})$. The argument for the remaining intervals is similar. □

Remark 9.5. Corollary [9.4] absorbs [20, Theorem 2.4, Corollary 2.5], [6, Theorem 5.1] and provides a positive answer to the question in [20, Question 2.17] of whether or not $S_c((0, 1])$ is homeomorphic to $S_c((0, 1))$.

Remark 9.6. The above method of showing the strong Π^3_3-universality is specific for X an arc—we continuously select a point from a finite set (the point $\min H(f(x), \mu(x))$ from $H(f(x), \mu(x))$) and such selections are characteristic for arcs [28]. Using Corollary [9.4] and general facts about strongly \mathcal{U}-universal pairs, it is shown in Section [10] that the pair $(K(S^1), A_n(S^1))$ is Π^3_3-absorbing. One may ask for what other “nice” spaces X the pair $(K(X), A_n(X))$ is Π^3_3-absorbing.
By S^1 we denote the unit circle in \mathbb{R}^2.

Theorem 10.1. The pair $(\mathcal{K}(S^1), A_n(S^1))$ is $\overrightarrow{\Pi}_3^0$-absorbing. Hence, $A_n(S^1) \cong c_0$.

Proof. The hyperspace $E = \mathcal{K}(S^m) \setminus \{S^1\}$ is an AR. Let U be its open cover by sets $U_p = \mathcal{K}(S^1 \setminus \{p\})$, $p \in S^1$. The pair $(\mathcal{K}(I), A_n((0, 1)^m))$ is strongly $\overrightarrow{\Pi}_3^0$-universal by Corollary 9.3. By Fact 4.9 the pair $(\mathcal{K}((-1, 1)), A_n((0, 1)))$ is strongly $\overrightarrow{\Pi}_3^0$-universal. Let $h : (0, 1) \to S^1 \setminus \{p\}$ be a homeomorphism and $\overline{h} : \mathcal{K}((0, 1)) \to \mathcal{K}(S^1 \setminus \{p\})$ be the induced homeomorphism. Clearly, $\overline{h}(A_n((0, 1))) = A_n(S^1 \setminus \{p\})$ and the pair $(U_p, A_n(S^1 \setminus \{p\}))$ is strongly $\overrightarrow{\Pi}_3^0$-universal. Since $A_n(S^1 \setminus \{p\}) = U_p \cap A_n(S^1)$, we infer by Fact 4.10 that the pair $(E, A_n(S^m))$ is strongly $\overrightarrow{\Pi}_3^0$-universal. The singleton $\{S^1\}$ being a Z-set in $\mathcal{K}(S^1)$, E is homotopy dense in $\mathcal{K}(S^1)$. Then, by Fact 4.8 the hyperspace $(\mathcal{K}(S^1), A_n(S^1))$ is also strongly $\overrightarrow{\Pi}_3^0$-universal.

The proof that $A_n(S^1)$ is contained in a σZ-set in $\mathcal{K}(S^1)$ is the same as for Lemma 9.2.

11. Hyperspaces $A_n(X)^F$

As we have noticed in Remark 9.6 there is an essential obstacle in proving that $A_n(X)$ is an $\overrightarrow{\Pi}_3^0$-absorber in $\mathcal{K}(X)$ for nondegenerate Peano continua other than I and S^1. The obstacle disappears for hyperspaces $A_n(X)^F \subseteq \mathcal{K}(X)^F$ and $A_1(X, \{p\}) \subseteq \mathcal{K}(X)^{\{p\}}$, where F is a fixed finite subset of X which contains a point of order ≥ 2 and p is a fixed point of order ≥ 2 (a point $p \in X$ is of order ≥ 2 if there is an arc $L \subseteq X$ containing p in its combinatorial interior). The latter hyperspace is a natural counterpart of c_0 whose elements converge to the same number 0.

Theorem 11.1. Suppose X is a Peano continuum, $F \subseteq X$ is finite and contains a point p of order ≥ 2, $n \in \mathbb{N}$. Then the pairs $(\mathcal{K}(X)^F, A_n(X)^F)$ and $(\mathcal{K}(X)^{\{p\}}, A_1(X, \{p\})$ are $\overrightarrow{\Pi}_3^0$-absorbing.

Consequently, $A_n(X)^F \cong A_1(X, \{p\}) \cong c_0$.

Proof. Recall that $\mathcal{K}(X)^F$ is a Hilbert cube $[14]$. Clearly, $A_n(X)^F = A_n(X) \cap \mathcal{K}(X)^F$ is $F_{\sigma \delta}$ in $\mathcal{K}(X)^F$. Also $A_1(X, \{p\})$ is $F_{\sigma \delta}$ in $\mathcal{K}(X)^{\{p\}}$, since it equals the preimage $D^{-1}(\{p\})$, where D is the derived set operator on $\mathcal{K}(X)^{\{p\}}$.

In order to prove the strong $\overrightarrow{\Pi}_3^0$-universal property, we proceed similarly to the proof of Lemma 9.1.

There is a deformation $H : \mathcal{K}(X) \times [0, 1] \to \mathcal{K}(X)$ through finite sets such that $\text{dist}(H(A,t), A) \leq 2t$. If we add F to each $H(A,t)$ we get a
continuous deformation $K(X)^F \times [0,1] \to K(X)^F$ through finite sets satisfying $\text{dist}(H(A,t),A) \leq 2t$ for $A \in K(X)^F$. So, we can assume that $H : K(X)^F \times [0,1] \to K(X)^F$ is such. Choose an arc $L \subset X$ containing p in its combinatorial interior. Note that each set $H(A,t)$ contains p. To simplify further description, assume without loss of generality that $L = \mathbb{I} = [-1,1]$ and $p = 0$. We modify the definition of embedding ϕ_n from (9.1) in its “negative” part in which the sequence $\{-2^{-(j+1)} + x_j2^{-(j+2)} : j \in \omega\}$ is now replaced with an increasing sequence $l(x)$ obtained in the following way. For any $x = (x_j) \in \mathbb{I}^\omega$, put

$$a(x)_j = -(2^{2j} + \frac{x_j}{2^{2j}})^{-1}.$$

Observe that the sequence $a(x) = (a(x)_j)$ satisfies

(1) $a(x)$ is strictly increasing and converging to 0,

(2) for each $x, y \in \mathbb{I}^\omega$ and $i < j$, vectors

$$(a(x)_i, a(x)_{i+1}) \quad \text{and} \quad (a(y)_j, a(y)_{j+1})$$

are not parallel.

Let $x' \in \mathbb{I}^\omega$ be the sequence $1, x_1, 1, x_1, 2, 1, x_1, x_2, x_3, 1, \ldots$. Put $l(x) = a(x')$. Clearly, $l(x)$ also satisfies conditions (1-2).

Now, let

$$(11.1) \quad \psi_n(x) = l(x) \cup \chi(n) \cup \text{cl}(\{2^{-(j+1)} + 2^{-(j+k+1)}x_{2j-n(2k+1)} : j \geq n, k \in \omega\})$$

Note that, for each $n \in \mathbb{N}$, we have

$$(11.2) \quad \psi^{-1}_n(A_n(\mathbb{I})) = \Pi_3 = \psi^{-1}_1(A_1(\mathbb{I}, \{0\})).$$

Define

$$(11.3) \quad g(x) = H(f(x), \mu(x)) \cup \mu(x)\xi(x).$$

where $\mu(x)$ is defined in (9.5) and $\xi(x)$ is defined by (9.2) with ψ_n modified as above. Now, $l(x)$ is responsible for $g(x)$ being 1-1. Indeed, suppose $x, y \in \mathbb{I}^\omega \setminus B$ and $g(x) = g(y)$. Then $\mu(x)$ and $\mu(y)$ are positive. If the set

$$W = (H(f(x), \mu(x)) \cup H(f(y), \mu(y))) \cap [-1,0)$$

is non-empty, let $\alpha = \max W$ and notice that, for sufficiently large k, say for $k \geq j$, numbers $\mu(x)l(\zeta(x))_k$ and $\mu(y)l(\zeta(y))_k$ are greater than α; if $W = \emptyset$, then put $j = 0$. So, we can assume that $\mu(x)l(\zeta(x))_j = \mu(y)l(\zeta(y))_i$ for some $i \geq j$. Since sequences $\mu(x)l(\zeta(x))$ and $\mu(y)l(\zeta(y))$ are increasing, it follows that also $\mu(x)l(\zeta(x))_{j+1} = \mu(y)l(\zeta(y))_{i+1}$. Thus $i = j$ by property (2). But then $\mu(x)l(\zeta(x))_k = \mu(y)l(\zeta(y))_k$ for each $k \geq j$. Choose $m \geq j$
such that $(\zeta(x)')_m = 1 = (\zeta(y)')_m$. Then

$$-\mu(x)(2^{2m} + \frac{1}{2^{2m}})^{-1} = \mu(x)a(\zeta(x)')_m = \mu(x)l(\zeta(x))_m =$$

$$\mu(y)l(\zeta(y))_m = \mu(y)a(\zeta(y)')_m = -\mu(y)(2^{2m} + \frac{1}{2^{2m}})^{-1}$$

which implies $\mu(x) = \mu(y)$. Hence, for each $k \geq j$,

$$-(2^{2k} + \frac{\zeta(x')_k}{2^{2k}})^{-1} = a(\zeta(x)')_k = l(\zeta(x))_k =$$

$$l(\zeta(y))_k = a(\zeta(y)')_k = -(2^{2k} + \frac{\zeta(y')_k}{2^{2k}})^{-1},$$

so $(\zeta(x)')_k = (\zeta(y)')_k$. Consequently, $\zeta(x) = \zeta(y)$ and $x = y$.

The remaining arguments are exactly the same as in the proofs of Lemmas 9.1 and 9.2.

□

References

[1] J. Baars, H. Gladdines and J. van Mill, Absorbing systems in infinite-dimensional manifolds, Topology Appl. 50 (1993), 147–182. https://doi.org/10.1016/0166-8641(93)90019-a

[2] T. Banakh, The strong universality of ANRs with a suitable algebraic structure, preprint.

[3] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, Dissertationes Math. (Rozprawy Mat.), 386 (2000), 38 pp. https://doi.org/10.4064/dm386-0-1

[4] T. Banakh, T. Radul and M. Zarichnyi, Absorbing sets in Infinite-Dimensional Manifolds, VNTL Publishers, Lviv, 1996.

[5] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313. https://doi.org/10.1307/mmj/1029003410

[6] J. Camargo, D. Maya and P. Pellicer-Covarrubias, Path connectedness, local path connectedness and contractibility of $S_c(X)$, Colloq. Math. 160 (2020), no. 2, 183–211. https://doi.org/10.4064/cm7516-1-2019

[7] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivable, Fund. Math. 138 (1991), 35–58. https://doi.org/10.4064/fm-138-1-35-58

[8] R. Cauty, L'espace des arcs d'une surface, Trans. Amer. Math. Soc. 332 (1992), 193–209. https://doi.org/10.2307/2154028

[9] R. Cauty, T. Dobrowolski, H. Gladdines and J. van Mill, Les hyperespaces des rétractes absolus et des rétractes absolus de voisinage du plan, Fund. Math. 148 (1995), 257–282. https://doi.org/10.4064/fm-148-3-257-282

[10] D. Cenzer, and R. D. Mauldin, On the Borel class of the derived set operator, Bull. Soc. Math. France 110 (1982), no. 4, 357–380. https://doi.org/10.24033/bsmf.1994

[11] D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), no. 2, 139–152.

[12] Curtis, D. W. Hyperspaces homeomorphic to Hilbert space. Proc. Amer. Math. Soc. 75 (1979), no. 1, 126–130. https://doi.org/10.2307/2042687

[13] D. W. Curtis, Hyperspaces of finite subsets as boundary sets, Topology Appl. 22 (1986), 97—107. https://doi.org/10.1016/0166-8641(86)90081-7
[14] D. W. Curtis and R. M. Schori, Hyperspaces of Peano continua are Hilbert cubes. Fund. Math. 101 (1978), no. 1, 19–38. https://doi.org/10.4064/fm-101-1-19-38
[15] D. W. Curtis and N. To Nhu, Hyperspaces of finite subsets which are homeomorphic to oo-dimensional linear metric spaces. Topology Appl. 19 (1985), no. 3, 251–260. https://doi.org/10.4064/tap(1985)19:3-251-260
[16] J. J. Dijkstra, J. van Mill and J. Mogilski, The space of infinite-dimensional compacta and other topological copies of \((l^2)\omega\). Pacific J. Math. 152 (1992), 255–273. https://doi.org/10.2140/pjm.1992.152:255
[17] T. Dobrowolski and L. R. Rubin, The hyperspaces of infinite-dimensional compacta for covering and cohomological dimension are homeomorphic, Pacific J. Math. 164 (1994), 15–39. https://doi.org/10.2140/pjm.1994.164.15
[18] F. van Engelen, Characterizations of the countable infinite product of rationals and some related problems. Rend. Circ. Mat. Palermo (2) Suppl. No. 11 (1985), 37–54 (1987). MR897969
[19] F. van Engelen, On the homogeneity of infinite products. Topology Proc. 17 (1992), 303–315.
[20] S. García-Ferreira and Y. F. Ortiz-Castillo, The hyperspace of convergent sequences, Topology Appl. 196 (2015), part B, 795–804. https://doi.org/10.1016/j.topol.2015.05.022
[21] H. Gladdines and J. van Mill, Hyperspaces of Peano continua of Euclidean spaces, Fund. Math. 142 (1993), 173–188.
[22] H. Gladdines and J. van Mill, Hyperspaces of infinite-dimensional compacta, Compositio Math. 88 (1993), 143–153.
[23] A. Kechris, Classical descriptive set theory, Springer, 1995.
[24] W. Kubiś, K. Sakai and M. Yaguchi, Hyperspaces of separable Banach spaces with the Wijsman topology, Topology Appl. 148 (2005), 7–32. https://doi.org/10.1016/j.topol.2004.07.009
[25] P. Krupski and A. Samulewicz, More absorbers in hyperspaces, Topology Appl. 221 (2017), 352–369. https://doi.org/10.1016/j.topol.2017.02.055
[26] K. Kuratowski, Les fonctions semi-continues dans l’espace des ensembles fermés, Fund. Math. 18 (1932), 148–159. https://doi.org/10.4064/fm-18-1-148-159
[27] K. Kuratowski, Topology, vol. I, Academic Press and PWN, 1966.
[28] K. Kuratowski, S. B. Nadler, Jr. and S. G. Young, Continuous selections on locally compact separable metric spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 18 (1970), 5–11.
[29] H. Michalewski, Homogeneity of \(K(\mathbb{Q})\), Tsukuba J. Math. 24 (2000), no. 2, 297–302. https://doi.org/10.21099/tkbjm/1496164151
[30] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland, 2002.
[31] John R. Steel, Analytic sets and Borel isomorphisms. Fund. Math. 108 (1980), no. 2, 83–88. https://doi.org/10.4064/fm-108-2-83-88
[32] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of \(l^2\)-manifolds, Fund. Math. 101, (1978), 93–110. https://doi.org/10.4064/fm-101-2-93-110
[33] H. Toruńczyk, Characterizing Hilbert space topology. Fund. Math. 111 (1981), no. 3, 247–262. https://doi.org/10.4064/fm-111-3-247-262

Email address: t.o.banakh@gmail.com

Ivan Franko National University of Lviv (Ukraine) and Jan Kochanowski University in Kielce (Poland)

Email address: pawel.krupski@pwr.edu.pl
