Multi-drug Resistant and Extended Spectrum β-lactamase Producing Salmonella Species Isolated from Fresh Chicken Liver Samples

Adhikari S, Khadka S, Sapkota S, Sharma BR, Ghimire A, Chalise M, Gurung D, Kunwar S

1Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, 44200, Nepal.

2Department of Biochemistry and Molecular Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, P.R. China.

3State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, P.R. China.

Corresponding Author
Sujan Khadka,
Department of Microbiology, Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, 44200, Nepal.
E-mail: sukha11@yahoo.com

Citation
Adhikari S, Khadka S, Sapkota S, Sharma BR, Ghimire A, Chalise M, et al. Multi-drug Resistant and Extended Spectrum β-lactamase Producing Salmonella Species Isolated from Fresh Chicken Liver Samples. Kathmandu Univ Med J. 2020;69(1):23-7.

ABSTRACT

Background
Emergence of antibiotic resistance among microbes contaminating the fresh meat products is a global public health concern as they can be easily transmitted to humans through their consumption and contact.

Objective
The current study was conducted to determine the distribution of antimicrobial resistance among Salmonella species isolated from fresh chicken liver samples with special emphasis on extended spectrum beta-lactamase (ESBL) production.

Method
A total of 200 fresh chicken liver samples were cultivated for the isolation of Salmonella and further subcultivated to detect extended spectrum beta-lactamase production among them. Antimicrobial susceptibility testing (AST) was done by disk diffusion method using a panel of 7 antimicrobials.

Result
Out of 200 samples analyzed, 61 (30.5%) samples harbored Salmonella species out of which 15 (7.5%) samples showed the presence of Salmonella Typhi. A significant association was noted in the incidence of Salmonella with various factors pertaining to the butchers, such as age, sex, literacy rate, practices of washing knives and chopping board, wearing aprons and gloves and type of water used (p < 0.05). Salmonella isolates were highly sensitive to amikacin (82.0%) and least sensitive to tetracycline (3.3%). All the isolates were resistant to colistin. Sixty (98.4%) isolates were identified as multi-drug resistant (MDR). The total number of extended spectrum beta-lactamase producers reported among Salmonella isolates was 29 (47.5%).

Conclusion
The results indicate that the fresh chicken liver samples sold in Bharatpur Metropolis are reservoirs of multi-drug resistant Salmonella, including extended spectrum beta-lactamase producers, that could potentially be transmitted to the humans by direct contact or through inadequate cooking.

KEY WORDS
Antimicrobial susceptibility testing, Extended spectrum beta-lactamase, Fresh chicken liver samples, Multi-drug resistant, Salmonella
INTRODUCTION

Avian Salmonella infections are significant causes of clinical disease in poultry and a potential source of foodborne transmission of Salmonella in humans. About 95.0% of salmonellosis cases were estimated to originate from food materials and the colonization of Salmonella covers humans and animals including livestock, poultry, rodents and birds. Poor hygienic environment, improper storage or cooking, cross-contamination, infected stocks contribute to the development of Salmonella in poultry and poultry products leading to the major source of human foodborne illness and loss of product shelf-life.

Poultry products have always topped the incidence of salmonellosis in many developing as well as developed countries. The incidence of human salmonellosis has increased greatly over the past 20 years and this can mostly be attributed to epidemics of S. Enteritidis in poultry. Salmonella serotypes differ significantly in their pathogenic potentials and a study suggested the confirmed cases of Salmonella sp. in the surveillance network Food Net from the period 1996-2006.

Chicken liver is an important low-cost source of animal protein, phosphorus, others minerals, and B-complex vitamins; however, the presence of MDR resistant Salmonella sp. in chicken livers have become the solemn concern of food safety and one of the major public health problems. The frequency of isolation of Salmonella strains resistant to several antimicrobial agents has increased in several countries worldwide including Nepal. Thus, the purpose of the present study was to determine the prevalence of MDR and ESBL producing Salmonella sp. from chicken livers sold at different slaughterhouses in Bharatpur.

METHODS

A descriptive cross-sectional study was conducted for 5 months from February to June 2018 in Bharatpur Metropolitan City and laboratory analyses were performed at the Microbiology laboratory of Birendra Multiple Campus, Nepal. Random sampling was done to collect 200 non-repeated single whole liver samples from different slaughterhouses located at different places of Bharatpur (Baseni, Dipendra Chowk, Hope Chowk, Junhal Road, Bel Chowk, Malpot Chowk and Gitanagar). An approval was initially sought from the Research Committee of Birendra Multiple Campus to conduct this work. Animal samples were processed according to the animal research ethical guidelines. The sample size was determined in accordance with the incidence rate based on the previous study. Properly labeled fresh chicken liver samples were included in this study whereas refrigerated and improperly labeled samples were excluded. Each butcher was briefed of the purpose of sample collection and verbal informed consent was taken assuring them of total confidentiality.

Slaughterhouse’s sanitary and salubrious status was studied by a brief interview using semi-structured questionnaires and through observations as well.

Whole fresh chicken liver samples were collected separately in sterile zip-locked plastic bags with the help of sterile forceps and scissors, stored in cold box and transported aseptically to the laboratory for further processing within an hour. The samples were ground in sterile mortar and pestle to make fine particles and 1 g of them was inoculated into 9 ml of distilled water and dilutions up to 10^-5 were made. From each of 10^-3, 10^-4 and 10^-5 dilutions, 0.1 ml of inoculum was spread in nutrient agar plates in triplicate and incubated at 37°C for 24 h to obtain a viable count of the bacteria. For the isolation of Salmonella, 1 ml of the inoculum was enriched in Selenite F-broth (Himedia, M025S) and incubated at 37°C for 24 h. A loopful of culture in Selenite F-broth was directly streaked on XLD agar (Himedia, MH031) and incubated at 37°C for 24 h. Black-centered red colonies on XLD agar were sub-cultured on NA plates at 37°C for 24 h to obtain a pure culture of the isolates. For further identification of Salmonella sp., Gram staining and various biochemical tests (SIM, MR-VP, citrate, catalase, oxidase, urease and TSI) were performed. A slide agglutination test using antisera (Statens serum institute, Copenhagen) was used to detect S. Typhi O9, poly O and H antigens.

All the isolates were tested for susceptibility to antimicrobial agents on MHA by Modified Kirby-Bauer disc diffusion method as recommended by the Clinical Laboratory Standards Institute. The antibiotic discs used were amikacin (30 µg), cotrimoxazole (25 µg), ciprofloxacin (5 µg), colistin (10 µg), tetracycline (30 µg), gentamicin (10 µg) and azithromycin (15 µg). The turbidity of inoculums from a pure culture of Salmonella isolates on nutrient agar plates incubated at 37°C for 24 h were adjusted to the equivalent turbidity of 0.5 McFarland standards before spreading uniformly over the surface of Mueller-Hinton agar (MHA) (Titan Biotech Ltd. Bhiwadi-301019, Rajasthan, India) plates. Using sterile tweezers, the antibiotic discs were placed widely spaced aseptically on the surface of the MHA plate. The organism was classified as resistant, intermediate or sensitive according to CLSI performance standards. Resistance to more than three structural classes of the antimicrobials tested was considered as MDR.

Salmonella Typhimurium ATCC 14028 was used as a reference strain for quality control purposes.

Primary screening test for ESBL production was done by using ceftazidime and cefotaxime discs against which the organisms showing the zone of inhibition < 22 mm for ceftazidime (CAZ) (30 µg) and < 27 mm for cefotaxime (CTX) (30 µg) were considered to be probable ESBL producers. The phenotypic confirmatory test was done for suspected ESBL producing isolates for which antibiotics combinations of ceftazidime + clavulanic acid (CAZ/CAC) (30/10 µg) and cefotaxime + clavulanic acid (CTX/CTC) (30/10 µg) were
used according to the protocols recommended by CLSI. An increase in the zone of inhibition by ≥ 5 mm around the discs containing cephalosporin with clavulanate over the discs containing cephalosporin alone were ESBL producers.

The data obtained from laboratory investigation were tabulated and presented in defined tables and chi-square test ($\chi^2$) was performed using SPSS V. 20 software. P value ≤ 0.05 was assigned to have a significant association.

**RESULTS**

Total viable counts for the collected samples ranged from $7.8 \times 10^4$-$4.1 \times 10^7$. Among 200 fresh chicken liver samples, 61 (30.5%) showed the growth of *Salmonella* sp. while 139 (69.5%) didn’t. Of 61 *Salmonella*, 15 (7.5%) were identified as *S. Typhi*.

*Salmonella* sp. were isolated from 51 (28.2%) male butchers and 10 (52.6%) female butchers. The highest proportion of the samples contaminated by *Salmonella* sp. was obtained in the butchers of the age group 36-45 (55.7%) followed by the age group 46-55 (23%). Samples collected from the butchers of the age group 25-35 showed a lower prevalence of *Salmonella* sp. (9.8%). Forty-five (26.2%) samples collected from illiterate and 16 (57.1%) samples collected from literate butchers were *Salmonella* sp. positive. The higher contamination of *Salmonella* sp. was recovered from the butchers who seldom-washed knives and chopping boards (48.9%), from those who used groundwater (52.6%) and from the butchers without apron and gloves (52.8%). A significant association was noted between the contamination of liver samples with the age, gender and literacy rate of butchers, type of water used, practices of washing knives and chopping board and wearing aprons and gloves (p < 0.05) (Table 1).

Out of seven different locations the samples were collected from, the highest proportion of *Salmonella* sp. was recovered from Junhal Road (53.3%) followed by Baseni (40.9%) and Malpot Chowk (37.0%). Samples collected from Hope Chowk showed the lowest prevalence of *Salmonella* (12.9%). Moreover, the highest incidence of *S. Typhi* (20.0%) was reported from samples collected from Junhal Road (Table 2).

**DISCUSSION**

In the present study, out of 200 samples, 61 (30.5%) were *Salmonella* positive and 139 (69.5%) were negative. Within the positive samples, 15 (7.5%) were identified as *S. Typhi* and the remaining 46 (23.0%) were other *Salmonella* species. This result showed a higher incidence of *Salmonella* than a study by Gupta which reported that the presence of *Salmonella* in layer chicken was 9.3%. Similarly, in another study in Yangzhou city, China, between April 2011 and March 2012, a total of 240 chicken carcasses were tested, and the overall contamination rate for *Salmonella* was 33.8%. However, the incidence of *Salmonella* in the present study is higher than a study by Shrestha et al. who isolated 26.2% *Salmonella* in poultry meat in Chitwan district of Nepal. In another study in the same district, 26.1% occurrence of

---

**Table 1. Association of different attributes of butchers with the contamination of meat by *Salmonella* species**

| Attributes                  | Frequency (%) | *Salmonella* isolates (%) | P-value |
|-----------------------------|---------------|--------------------------|---------|
| Butcher’s gender            |               |                          |         |
| Male                        | 181 (90.5)    | 51 (28.2)                | 0.0276* |
| Female                      | 19 (9.5)      | 10 (52.6)                |         |
| Butcher’s age               |               |                          |         |
| 25-35                       | 46 (23.0)     | 6 (9.8)                  | 0.004*  |
| 36-45                       | 78 (39.0)     | 34 (55.7)                |         |
| 46-55                       | 53 (26.5)     | 14 (23.0)                |         |
| >55                         | 23 (11.5)     | 7 (11.5)                 |         |
| Butcher’s literacy rate     |               |                          |         |
| Literate                    | 172 (86.0)    | 45 (26.2)                | 0.001*  |
| Illiterate                  | 28 (14.0)     | 16 (57.1)                |         |
| Washing of knives and chopping board |           |                          |         |
| Washed frequently           | 157 (78.5)    | 40 (25.5)                | 0.003*  |
| Seldom washed               | 43 (21.5)     | 21 (48.9)                |         |
| Type of water used          |               |                          |         |
| Municipal                   | 181 (90.5)    | 51 (28.2)                | 0.0276* |
| Ground water                | 19 (9.5)      | 10 (52.6)                |         |
| Use of apron/gloves         |               |                          |         |
| Yes                         | 147 (73.5)    | 33 (22.4)                |         |
| No                          | 53 (26.5)     | 28 (52.8)                | 0.0001* |

*Significant at 5% level of significance
Salmonella was reported from the poultry meat samples which is lesser than the prevalence of Salmonella reported in the current study. These differences might be due to differences in geography, time and season of study.

A large number of Salmonella sp. (52.6%) was isolated from the meat collected from female butchers compared to male butchers (28.2%). There was a significant association between the gender of the butchers with the number of Salmonella isolates (p < 0.05). Female butchers usually involve in household activities, children caring and cleanliness which increase their exposures to microbes as compared to the male. This may possibly lead them to be the carrier of bacteria and cause more contamination in the food products they handle. The occurrence of Salmonella in the fresh chicken liver sample was significantly affected by age of butchers (p < 0.05). In the current study, maximum contamination was found in the age group 36-45 years probably due to the lack of sanitation and personal hygiene as the people of this age group are mostly involved in children caring and cleaning which might make them more likely to be contaminated with bacteria. The presence of Salmonella in liver samples was significantly affected by the literacy rate of butchers (p < 0.05). This might be due to the lack of knowledge about the importance of sanitation in illiterate ones. In contrast, the literate butchers might know the importance of sanitation and so they use clean water and clean the slaughter area frequently. The highest number of the sample (37) was collected from Bel Chowk area in which 11 (29.7%) samples showed the presence of Salmonella including 3 S. Typhi. The lowest number of samples (15) was collected from Junhal Road area in which 8 (53.3%) were positive to Salmonella including 3 S. Typhi. Most of the sample collected areas were densely populated and the butchers weren’t aware of good hygienic practices while handling the poultry. In every location, most of them used bare dirty hands to slaughter the chicken which might be the reason for the contamination. A significant association was noted between the contamination of liver samples with water sources, practices of washing knives and chopping board and wearing aprons and gloves (p < 0.05). Therefore, the use of municipal water, gloves, aprons, good hygienic environment of the slaughterhouse as well as proper personal hygiene of the butchers should be prioritized.

Amikacin was found to be the most effective antibiotic inhibiting the growth of 50 (82.0%) bacteria followed by gentamicin which was able to inhibit 46 (75.4%) isolates. Thus, amikacin and gentamicin can be used for the treatment against Salmonella species causing various diseases in humans due to the consumption of contaminated poultry products. Colistin was found to be 100.0% resisted followed by tetracycline (96.7%) and azithromycin (77.0%) which means they are not appropriate antibiotics for Salmonella. Moreover, the use of colistin has been banned due to their side effects of nephrotoxicity and neurotoxicity and has been replaced by other antibiotics. In the present study, out of 61 isolates, only one Salmonella isolate was single drug-resistant whereas 60 (98.4%) others were identified as multidrug-resistant. In a similar study by Halawa et al. in 2016, out of 23 Salmonella isolates, 87.0% were reported to be MDR. The frequency for ESBL producing Salmonella isolates was 29 (47.5%) in the current study. A similar study performed by Shrestha et al. detected 55.2% of the total Salmonella isolates as ESBL producers. Moreover, similar research conducted by Wu et al. in China detected 8.6% of Salmonella sp. as ESBL producer which is very low compared to our study. Extreme and haphazard use of broad-spectrum antibiotics might be associated with a higher rate of ESBL production in Salmonella.

This study only determines the prevalence of Salmonella species and their MDR pattern with special focus on ESBL production. The source of contamination of meat was not assessed though. We were unable to perform the molecular characterization of bacteria due to the financial and laboratory scarcity. Future studies should address these limitations.

**CONCLUSION**

The present study shows that chicken meat sold at Bharatpur Metropolis are contaminated with MDR and

---

**Table 3. Antibiotic susceptibility pattern, MDR and ESBL Producers**

| Antibiotics | Antibiotic | Susceptibility | Pattern | MDR isolates (%) | ESBL producers |
|-------------|------------|----------------|---------|------------------|----------------|
|             |            | S (%)          | R (%)   | I (%)            | Screening test positive (%) | Confirmed test positive (%) |
| Gentamicin  |            | 46 (75.4)      | 12 (19.7) | 3 (4.9)         |                             |                             |
| Cotrimoxazole|          | 26 (42.6)      | 35 (57.4) | 0 (0)           |                             |                             |
| Ciprofloxacin|          | 31 (50.8)      | 14 (23.0) | 16 (26.8)       |                             |                             |
| Colistin    |            | 0 (0)          | 61 (100.0) | 0 (0)           | 60 (98.4)               | 33 (54.1)               | 29 (47.5)               |
| Tetracycline|            | 2 (3.3)        | 59 (96.7) | 0 (0)           |                             |                             |
| Azithromycin|            | 14 (23.0)      | 47 (77.0) | 0 (0)           |                             |                             |
| Amikacin    |            | 50 (82.0)      | 0 (0)    | 11 (18)         |                             |                             |

S=sensitive R=resistant I=intermediate
ESBL producing *Salmonella* sp. This suggests a dire need of taking initiatives to control the dissemination of such pathogens. Haphazard use of antibiotics, poor personal hygiene, illiteracy rate of the butchers, improper handling and storage practices are some of the factors concerned authorities should address.

**REFERENCES**

1. Shivaprasad HL. Fowl typhoid and pullorum disease. Revue Scientifique et Technique-Office International des Epizooties. 2000;19(2):405-24.
2. Murray CJ. Salmonellae in the environment. Revue Scientifique et Technique. Office International des Epizooties. 1991;10(3):765-85.
3. Carramiñana JJ, Rota C, Agustin I, Herrera A. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. *Veterinary Microbiology*. 2004;104(1-2):133-9.
4. Soults N, Koidis P, Madden RH. Presence of Listeria and Salmonella spp. in retail chicken in Northern Ireland. *Letters in Applied Microbiology*. 2003;37(5):421-3.
5. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
6. Harsh DC, Macachlan NJ, Walker RL. Veterinary Microbiology. 2nd edition. Blackwell, USA.: Ames, Iowa: Blackwell Pub., c2004.; 2004. https://trove.nla.gov.au/version/46532630.
7. Henson S. The economics of food safety in developing countries. 2013.
8. Shrestha A, Bajracharya AM, Subedi H, Turha RS, Kafle S, Sharma S, et al. Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Dhaka, Bangladesh. *International Journal of Food Microbiology*. 2017;201(1):1-5.
9. Jeung RM, Morris J. Consumer perception of food risk in chicken meat. *Nutrition and Food Science*. 2001;31(6):270-9.
10. Steel KJ, Barrow GI, Feltham RK. Cowan and Steel's manual for the identification of medical bacteria. Cambridge University Press; 1993.
11. Guard-Petter J. The chicken, the egg and Salmonella enteritidis. *Environmental Microbiology*. 2001;3(7):421-30.
12. Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, Hurd T, et al. Multi-drug resistance and extended spectrum beta-lactamase producing *Salmonella* isolated from retail chicken in Northern Ireland. *Letters in Applied Microbiology*. 2003;37(5):421-3.
13. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
14. Soults N, Koidis P, Madden RH. Presence of Listeria and Salmonella spp. in retail chicken in Northern Ireland. *Letters in Applied Microbiology*. 2003;37(5):421-3.
15. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
16. Harsh DC, Macachlan NJ, Walker RL. Veterinary Microbiology. 2nd edition. Blackwell, USA.: Ames, Iowa: Blackwell Pub., c2004.; 2004. https://trove.nla.gov.au/version/46532630.
17. Henson S. The economics of food safety in developing countries. 2013.
18. Shrestha A, Bajracharya AM, Subedi H, Turha RS, Kafle S, Sharma S, et al. Multi-drug resistance and extended spectrum beta lactamase producing Gram negative bacteria from chicken meat in Dhaka, Bangladesh. *International Journal of Food Microbiology*. 2017;201(1):1-5.
19. Jeung RM, Morris J. Consumer perception of food risk in chicken meat. *Nutrition and Food Science*. 2001;31(6):270-9.
20. Steel KJ, Barrow GI, Feltham RK. Cowan and Steel's manual for the identification of medical bacteria. Cambridge University Press; 1993.
21. Guard-Petter J. The chicken, the egg and Salmonella enteritidis. *Environmental Microbiology*. 2001;3(7):421-30.
22. Jones TF, Ingram LA, Cieslak PR, Vugia DJ, Tobin-D'Angelo M, Hurd T, et al. Multi-drug resistance and extended spectrum beta-lactamase producing *Salmonella* isolated from retail chicken in Northern Ireland. *Letters in Applied Microbiology*. 2003;37(5):421-3.
23. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
24. Harsh DC, Macachlan NJ, Walker RL. Veterinary Microbiology. 2nd edition. Blackwell, USA.: Ames, Iowa: Blackwell Pub., c2004.; 2004. https://trove.nla.gov.au/version/46532630.
25. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
26. Harsh DC, Macachlan NJ, Walker RL. Veterinary Microbiology. 2nd edition. Blackwell, USA.: Ames, Iowa: Blackwell Pub., c2004.; 2004. https://trove.nla.gov.au/version/46532630.
27. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.
28. Harsh DC, Macachlan NJ, Walker RL. Veterinary Microbiology. 2nd edition. Blackwell, USA.: Ames, Iowa: Blackwell Pub., c2004.; 2004. https://trove.nla.gov.au/version/46532630.
29. Hald T. Foodborne infections and intoxications: Chapter S. Pathogen Updates: Salmonella. Elsevier Inc. Chapters; 2013.