A Tabu Search and Hybrid Evolutionary Strategies Algorithms for the Integrated Process Planning and Scheduling with Due-date Agreement

Halil İbrahim Demir 1✉, Caner Erden 2, Abdullah Hülsü Kökçam 1✉, Alper Göksu 1

1 Sakarya University, Faculty of Engineering, Department of Industrial Engineering, Sakarya/Turkey
2 Sakarya Applied Science University, Faculty of Applied Science, Department of International Trade and Finance, Sakarya/Turkey
hidemir@sakarya.edu.tr, cerden@sabu.edu.tr, akokcam@sakarya.edu.tr, agoksu@sakarya.edu.tr

Abstract

There are three important functions of manufacturing which are process planning, scheduling and due date assignment. Instead of executing these functions separately, combining them together helps making more realistic and applicable plans. In this problem context random search, semi-tabu, random/semi-tabu hybrid, evolutionary strategies, and random/evolutionary strategies hybrid methods are utilized in solution. Different sized job shops are studied for performance tracking. As a result of study differences between individual solutions and integrated solutions was revealed. It is found that integrating these functions are advantageous in terms of total performance measure, and thus customer satisfaction. Random search is better than ordinary solutions. On the other hand, semi-tabu, evolutionary strategies and their hybrids are outperformed random search. Hybrid search methods are found promising.

Keywords: Process planning, weighted due-date assignment, weighted scheduling, random search, hybrid evolutionary strategies, hybrid semi-tabu search.

1. Introduction

Process planning, scheduling and due date assignment are three essential manufacturing functions in a job shop. Job shop scheduling is one of main production types and problem we studied should be considered seriously. Although classically these three functions are treated separately, lately numerous works are done on Integrated Process Planning and Scheduling...
(IPPS) and Scheduling with Due-date Agreement (SWDDA). Even though there are numerous works on some level of integration, unfortunately there are only a few works on IPPSDDA (Integrated Process Planning, Scheduling and Due-date Assignment) which fully integrates these three functions.

Since these three functions highly affect each other, it is better to integrate them as much as possible. Output of these functions are inputs to the downstream functions. For example, output of process planning becomes input for scheduling. Poor process plans cause poor scheduling performance. If there is no integration, process planner may always select some desired machines repeatedly and they may not select some undesired machines. This causes unbalanced machine loading and reduce shop floor performance. If due dates are given independently, then it may be unrealistic. We may give far due dates unnecessarily and this increase weighted earliness and due date costs. On the other hand, if we give too close due dates then we may not keep our promise and weighted tardiness cost increases. At the literature due dates are given disregarding the importance of customers, but in this study weight of each customer is considered.

In the literature some works punished tardiness, some punished earliness and tardiness, some punished maximum absolute lateness, and some punished number of tardy jobs etc. But in this research, we penalized sum of weighted tardiness, earliness, and due date related costs. These terms are penalized because we wanted to give realistic due dates and we penalized weighted due dates to prevent unnecessary far due dates especially for important customers. Far due date means loss of customer goodwill, loss of customer or price reduction. Weighted Tardiness is penalized to prevent late delivery. Similarly, to due date related cost, tardiness means customer ill will, loss of customer, loss of good reputation and price reduction. Classically only tardiness is punished but in JIT environment and in reality, earliness is also problem. Stock holding, storage and spoilage costs can be earliness costs. So weighted earliness is also punished in this study.

Only scheduling function is NP-Hard class problem. So integrated problem is even harder to solve. As we mentioned earlier there are not much work on IPPSDDA. For the problems on IPPS and on SWDDA exact solutions are tried for very small problems. But for large problems only some good heuristics are advisable. In this research we applied evolutionary strategies, semi-tabu, random, hybrid evolutionary strategies and hybrid tabu search techniques are applied in the solution of the problem.

We represented problem as chromosomes with (n+2) genes where n represent number of the jobs. First two genes are used to represent due date assignment rule and dispatching rule sequentially. Remaining genes are used to represent currently selected route of each job. As we mentioned five search techniques are used and compared with one another. Hybrid Evolutionary strategies is found best among all others.

Eight shop floors are tested, and characteristics of these shop floors are given at section 3.

We also tested different integration levels and tested the benefit of higher integration levels. Firstly, we tested unintegrated case where process plans are selected randomly, jobs are scheduled in random order and due dates are assigned randomly (externally). Later we integrated Weighted Minimum Slack (WMS) dispatching with process plan selection. After that we tested integration of Weighted Slack (WSLk) due date assignment with process plan selection. Finally, we integrated three functions and we tested integration of process planning with WMS dispatching and WSLk due date assignment. As we mentioned weighted due date assignment with weighted scheduling and process plan selection is not addressed at the literature but in this study, we tried to prove benefit of integration with weighted scheduling and weighted due date assignment.

Process planning is defined as the systematic determination of the methods by which a product is to be manufactured economically and competitively according to Society of Manufacturing Engineers.

Zhang and Mallur (1994) defined production scheduling as a resource allocator, that considers timing data while allocating resources to the tasks.

Pinedo and Chao (1998) defined the job shop-scheduling environment as; n jobs to be processed and m machines to process these jobs. Each job follows some predetermined routes, visiting a number of machines. Job shop problems occur primarily in industries where each customer order has specified characteristics and order sizes are moderately small.

Gordon et al. (2002) presented a good literature survey on SWDDA. According to Gordon et al. (2002) the scheduling problems involving due dates are of essential concern. In a conventional production environment, a job is expected to be completed before its due date. In a just-in-time environment, a job is required to be finished precisely at its due date.

If we look at more recent works, we see SWDWA (Scheduling with Due-window Assignment) problem became very popular in place of SWDDA problems. Here due window is tried to be assigned instead of due date. In this problem most suitable window with starting point and length is tried to be determined.

Development in hardware, software and algorithm makes it possible to solve new problems or to solve old problem easier which were hard to solve previously. After recent development in computer it is possible to develop process plans easier. CAPP (Computer Aided Process Planning) became possible and we can prepare process plan faster. Since process planning easier, we can prepare alternative process plans which help to balance shop floor and increase shop floor utilization.

Since we minimize weighted due date, earliness, and tardiness we should better schedule important customers earlier. If we give close due dates for important
customers at the beginning and schedule these customers earlier then there can be substantial improvements in performance measure and reduction in overall weighted cost. This is tried to be observed in this research.

It is important to solve problem in a reasonable amount of time otherwise solution would be practically useless. For this reason, we applied Evolutionary Strategies (ES), Semi-Tabu Search (ST), RS/ES hybrid, RS/ST hybrid and Random Search (RS) metaheuristics to find a good solution in an acceptable amount of time. We also compared search results with initial Ordinary Solutions (OS) solutions and proved searches are very useful. As expected, directed searches (ES, ST) and semi-directed searches (RS/ES, RS/ST) outperformed undirected (RS) search.

After representing problem as chromosome, we gave higher probability for first two genes to be selected for mutation operator. Because changes in these genes greatly affect solution compared to slow effect of a route of a single job. So, we applied dominant genes and found it useful.

We penalized weighted tardiness, earliness, and due dates. This penalty function is found to be realistic and very useful for IPPSDDA problem. These three terms in penalty function are all undesired. Tardiness is punished more according to earliness in terms of fixed and variable cost. These cost terms and penalty function are explained at section 3.

In short as integration level increased solution became better. Searches are found very useful and RS/ES outperformed all others. Best combination is observed where full integration with RS/ES is used. Using weighted due date assignment and weighted dispatching are found useful and dominant genes are used and this was also very helpful. In contrast to literature we penalized three terms which are weighted tardiness, earliness and due dates which is better and more realistic.

2. Background and literature survey

Although IPPS and SWDDA are both popular research topics, IPPSDDA are quite novel and only a few researches were made. If we look at the recent decade numerous works are conducted on IPPS. Traditionally three functions are applied sequentially and separately. Before going into detail, it is better to see recent surveys on IPPS; Tan and Khoshnevis (2000) and Phanden et al. (2011) prepared surveys on IPPS. For the SWDDA problem it is better to review survey of Gordon et al. (2002). For the IPPSDDA problem it is better to see Demir and Taskin (2005) and Ceven and Demir (2007). Demir and Taskin (2005) worked on IPPSDDA problem in a Ph.D. Thesis. Later Ceven and Demir (2007) worked on benefit of integrating due date assignment with IPPS problem in an M.S. Thesis.

If more literature is to be listed on IPPS problem we can give the following earlier works on this problem; Wilhelm and Shin (1985), Khoshnevis and Chen (1991), Zhang and Mallur (1994), Usher and Fernandes (1996), Brandimarte (1999), Weintraub et al. (1999), Morad and Zalzala (1999), Gindy et al. (1999).

If we integrate process plan selection with scheduling, then we should determine alternative process plans and number of alternative process plans wisely. Corti and Portioli-Staudacher (2004) studied alternative process plans availability and their effect on manufacturing system performance.

It is difficult to select best plans if there are multiple process plans. Ming and Mak (2000) studied process plan selection problem by using a hybrid Hopfield network-genetic algorithm. Bhaskaran (1990) studied process plan selection in his study.

Developments in hardware, software and algorithms provide us to solve the problems which could not be solved earlier, or we can solve the problems easier. Recent developments provide CAPP (Computer aided process planning). Usher and Fernandes (1996) and Aldakhilallah and Ramesh (1999) studied integration of process planning with CAPP.

IPPS problem is an NP-hard problem and researchers commonly uses metaheuristics such as genetic or evolutionary algorithms. Morad and Zalzala (1999), Moon et al. (2002), Kim et al. (2003), Drstvenšek and Balič (2003), Moon et al. (2008), Seker et al. (2013), Zhang and Wong (2015) are worked on this problem. Following works are relatively more recent works on IPPS; Ming and Mak (2000), Tan and Khoshnevis (2000), Thomalla (2001), Kim et al. (2003), Usher (2003), Drstvenšek and Balič (2003), Corti and Portioli-Staudacher (2004), Shrestha et al. (2008), Moon et al. (2008), Özgüven et al. (2010), Leung et al. (2010), Phanden et al. (2011), Li et al. (2012), Seker et al. (2013), Zhang and Wong (2015), Petrović et al. (2016), and Zhang et al. (2016).

As in IPPS there are hundreds of works on SWDDA. As it is mentioned earlier before going into detail of SWDDA it is better to see Gordon et al. (2002) as a state of the art survey on scheduling with common due date assignment.

Classically tardiness is tried to be penalized but according to JIT (Just in Time) philosophy we should penalize both earliness and tardiness. Since nobody prefer long due dates in this study all of weighted earliness, tardiness and due date related costs are tried to be minimized.

Due dates can be determined internally or externally. At the latter case we try to catch best performance according to externally dictated due dates. But at the former case we try to assign best due dates for the jobs that serve most to the benefit of the firm. For this reason, SWDDA problem gained importance as research topic and many works are conducted on this problem. If we look at the earlier works on SWDDA problem we can see the following works; Luss and Rosenwein (1993), Yang et al. (1994), Lawrence (1994), Cai et al. (1997),
Kovalyov (1997), Gordon and Kubiak (1998), Cheng and Kovalyov (1999), Gordon and Strusevich (1999).

Some of the recent works on SWDDA can be given as follows; Biskup and Jahnke (2001), Mosheiov (2001), Gordon et al. (2002), Birman and Mosheiov (2004), Lauff and Werner (2004), Baykasoglu et al. (2008), Gordon and Strusevich (2009), Allaoua and Osmane (2010), Tuong and Soukhal (2010), Li et al. (2011), Vinod and Sridharan (2011), Shabtay (2016), and Koulamas (2017).

We can assign common and separate due dates for every job. If we solve job shop scheduling problem, we may assign separate due dates but in case of assembly and simultaneous delivery cases we may assign common due dates for the jobs to be scheduled. Many works in the literature are on scheduling with common due date assignment (SWCDDA) such as Chen et al. (1997), Kovalyov (1997), Biskup and Jahnke (2001), Mosheiov (2001), Gordon et al. (2002), Gordon and Strusevich (2009), Allaoua and Osmane (2010), Tuong and Soukhal (2010), and Li et al. (2011).

Unlike SWCDDA some works are on SWSDDA (Scheduling with separate due date assignment) such as Gordon and Kubiak (1998), Cheng and Kovalyov (1999), Gordon and Strusevich (1999), Baykasoglu et al. (2008), Gordon and Strusevich (2009), Li et al. (2011), Vinod and Sridharan (2011). In this study every job gets its own due date.

Some of these studies have single, some double, and some have multiple machines. As an example to SMSWDDA (Single machine scheduling with due date assignment) following works can be given: Cai et al. (1997), Kovalyov (1997), Gordon and Strusevich (1999), Gordon et al. (2002), Gordon and Strusevich (2009), Allaoua and Osmane (2010), Tuong and Soukhal (2010), and Li et al. (2011).

Birman and Mosheiov (2004) studied two machine flow shop scheduling with due date determination (TMFSWDDA).

Following works are on PMSWDDA (Parallel machine scheduling with due date assignment); Cheng and Kovalyov (1999), Gordon et al. (2002), and Tuong and Soukhal (2010).

Following works are on MMSWDDA (Multi machine scheduling with due date assignment); Luss and Rosenwein (1993), Lawrence (1994), and Lauff and Werner (2004).

Some works are on JSSWDDA (Job shop scheduling with due date assignment) such as Yang et al. (1994), Baykasoglu et al. (2008), and Vinod and Sridharan (2011). In this study jobs are tried to be assigned separate due dates and every shop floor tested as a case of job shop with different sizes.

One of the current study areas is the dynamic scheduling problem. There are a limited number of studies in the literature on the dynamic integrated process planning, scheduling, and due date assignment (DIPPSDDA). Demir and Erden (2020) tried to optimize the dynamic environment with ant colony algorithm in their work. DIPPSDDA, which was previously improved with the genetic algorithm and some metaheuristic algorithms (Erden et al., 2019), was a new field of study.

3. Problem definition

As we mentioned earlier IPPS and SWDDA problems are studied extensively. In this research we studied IPPSDDA problem. We have three functions to be integrated which are process planning, scheduling, and due date assignment. Step by step we integrated these functions with each other and tried to see benefit of integration level. Problem is represented as chromosomes which have (n+2) genes where n is the number of jobs. First two genes are used to represent due date assignment and dispatching rule genes. There are two different due date assignments and four different dispatching rules. Mainly, we used WSLK weighted due date assignment rule and RDM (Random) due date assignment rule. At dispatching gene, we used WMS and SIRO (Service in Random Order) rules, so we have two dispatching rules to choose from.

We studied eight different shop floors with varying size. There are five different routes to choose from for each job in smaller shop floors. At the smallest shop floor, we have 5 machines, 25 jobs and 5 routes. There are 10 operations in each route. Processing time of each operation practically changes in between 1 and 30 minutes according to formula \((12 + z \times 6)\) where \(z\) is the standard normal numbers in which \(\sigma = 6\) and \(\mu = 12\).

At the largest shop floor, we have 40 machines, 200 jobs, 3 routes and there are 10 operations in each route. Processing times are same as in other shop floors. We took 3 alternative routes in larger shop floors to find a solution in a reasonable amount of time. Characteristics of each shop floors are listed at Table 1.

Table 1. Shop floors
Shop Floor
of machines
of Jobs
of Routes
Processing Times
of op. per job
We started from unintegrated version of the problem where process plan selection is made independently, due dates are determined randomly (externally) and jobs are dispatched randomly. Later WMS rule is integrated with process plan selection, but due dates are still determined randomly. After that we integrated WSLK due date assignment with process plan selection, but jobs are scheduled according to SIRO rule.

At the end we integrated all of the three functions. Process plan selection is performed with WMS dispatching and WSLK due date assignment. We found this case as the best. General flow diagram is given in Figure 1.

We assumed a working day as one shift which is 8 hours or 480 minutes. As a performance measure we tried to minimize weighted tardiness, earliness and due date related costs. We penalized these terms proportional with the weights of the customers and proportional to the tardiness, earliness and due dates multiplied with different constants. For tardiness and earliness, we also used fixed cost if there is tardiness or earliness. Penalty function for each term is given below where PD is penalty for due-date (Equation 1), PE is penalty for earliness (Equation 2), PT is penalty for tardiness (Equation 3), Penalty of a job is Penalty(j) (Equation 4) and Total penalty (Equation 5).

\[PD = weight_j \times 8 \times \left(\frac{Due\ Date}{480} \right) \]
\[PE = weight_j \times (5 + 4 \times \left(\frac{E}{480} \right)) \]
\[PT = weight_j \times (10 + 12 \times \left(\frac{T}{480} \right)) \]
\[Penalty(j) = PD + PE + PT \]
\[Total\ Penalty = j \times Penalty(j) \]

4. Solution techniques

We used initially randomly produced chromosome as the ordinary solution and compared this result with the results of evolutionary strategies, semi-tabu search, hybrid searches and random search results.

Scheduling problem alone belongs to NP-Hard problem and integrated problem is even harder to solve that is why some good heuristics are required to solve this problem in a reasonable amount of time. We applied pure, hybrid and random searches because of the characteristics of the problem. Each solution type is explained below.

Ordinary Solution (OS): OS is the initially randomly produced chromosome which represent any random chromosome possible at the beginning and as expected it is the poorest solution compared to the pure, hybrid and random search metaheuristics.

Random Search (RS): Here only RS is applied, and always brand-new solutions are produced randomly. To be fair with other search techniques same number of chromosomes are produced in each iteration as in other pure and hybrid metaheuristics. We applied 200, 150, 100 and 50 random iterations for eight shop floors in doubles, respectively. At each iteration we produced 10 new random chromosomes. Later we took best 10 chromosomes from previous main population and newly produced 10 chromosomes. Random search is found very useful compared to ordinary solutions and marginal improvements are very high at the very beginning of the search, but marginal improvement reduces sharply as iteration goes on. That is why random search is poor compared to the other metaheuristics. Hybrid searches are powerful with the combination of high marginal improvement of RS at the beginning and good search characteristics of the directed searches later on.

Evolutionary Strategies (ES): During 1960s Rechenberg (1965), and Schwefel (1981) two students of Technical University of Berlin, Germany, developed ES to solve optimization problem. Main difference
between ES and Genetic Algorithm (GA) is the operators used. While ES uses only mutation operator, GA uses both mutation and crossover operators. We produce ten new chromosomes by applying mutation operator in each iteration. ES flow diagram is given in Figure 2.

Semi-Tabu Search (ST): For a shop floor which consists of 200 jobs, there are 202 genes and totally $4 \times 2 \times 3200 = 2.1249119 \times 10^{96}$ combinations are possible. If we list every gene in tabu list, then problem becomes too complex to consider. Instead, we list only dominant genes in tabu list and apply mutation operator for remaining genes as given in Figure 3. Unlike ES we work on a single chromosome in every iteration, so we applied 10 times more iterations in this metaheuristic to be fair in comparison with ES.

Hybrid Evolutionary Strategies (RS/ES): This is a hybrid metaheuristic and initially at the first 5% of the iterations RS is applied and ES is applied to remaining 95% of the iterations. If a random number is generated between 0 and 1000 then expected value of the minimum is 500. If we generate two random numbers and take the minimum, then we get expected value of 330. If we generate three random numbers and take the minimum of these the expected value, we get is 250. Now if we look at marginal improvements, we get 500, 170 and 80, respectively. So, it is obvious that initial random iterations are very useful but marginal improvements reduces sharply. So here we started with RS and later we continued with ES. Since marginal benefits reduce sharply RS rate should be low and we applied 5% RS iterations.

Hybrid Semi-Tabu Search (RS/ST): Here again initially 5% RS is applied and later 95% ST search is applied. We used dominant genes in ES, ST, RS/ES and RS/ST while applying mutation operator. First two genes are dominant and that is why they had more probability to be selected for mutation. Using dominant genes improved efficiency of solution technique. While running program we recorded CPU times required. These times are listed at the Table 4 given at section 6.

As mentioned earlier, problem is represented as a chromosome with $n+2$ genes where n is the number of jobs. First two genes are used to represent due date assignment and dispatching rules, respectively. Remaining genes represent active selected route of each job. A sample chromosome is given at Figure 4.

Figure 2. Evolutionary strategies flow diagram

Figure 3. Semi-tabu search flow diagram

Terms used in Figure 3 is defined as follows:
- S_n: nth iteration solution
- $S_{\text{candidate}}$: candidate solution
- S_{opt}: optimum solution
- N: total iteration number (stopping criterion)
- n: current iteration number
- m: current trial number in tabu list
- M: Number of allowed trials in tabu list
5. Experimentation

Mainly two types of due date assignment rules are used. With different constants first gene takes one of four different values. Mainly WSLK and RDM due date assignment rules are used. At the first rule, which is WSLK, some constant added to total processing time of each job according to weight of that job. At the RDM due date assignment, due dates are determined randomly as explained at Appendix 1. Rules are listed at Table 2. At the second gene we used two dispatching rules which are WMS and SIRO. These rules are listed at Table 3 and explained at Appendix.

Table 2. Due-date assignment rules

Method	Constant q_j	Rule no
WSLK	q_j = (q₁, q₂, q₃)	1, 2, 3
RDM		4

Table 3. Dispatching rules

Method	Rule No
WMS	1
SIRO	2

We used a desktop computer with 3.1 GHz Intel i5-2400 processor and 4 GB ram with 64-bit Windows 10 operating system to run the program. We used Borland C++ 5.02 compiler. CPU Times are listed at Table 4. Screenshot of the program is given in Figure 5 and Figure 6.

Figure 5. Screenshot of the program start

We tested eight shop floors and certain number of iterations are applied for each shop floor. To be fair, same number of iterations are applied for both evolutionary search and random search. Since at the ES and RS, we produce 10 chromosomes and in ST we produce only one new chromosome thus we executed 10 times more iterations compared to the ES and RS. 200 iterations are applied for the smallest shop floors which are SF1 (Shop Floor 1) and SF2. For SF3 and SF4 we applied 150 iterations. For SF5 and SF6 we used 100 iterations and finally for the largest two shop floors which are SF7 and SF8 we applied 50 iterations.

Figure 6. Screenshot of the program results

If we look at the approximate CPU times for every shop floor from the tables mentioned above; for the small shop floor, it took approximately between 16 and 88 seconds CPU time. For the small-medium shop floor, it took approximately between 257 and 376 seconds and for the largest shop floor, it took between 250 and 346 seconds. CPU time of the largest shop floor is lower than the medium-large shop floor due to its iteration number.

SIRO-RDM (OS, RS, ES, ST, RS/ES, RS/ST), WMS-RDM (OS, RS, ES, ST, RS/ES, RS/ST), SIRO-WSLK (OS, RS, ES, ST, RS/ES, RS/ST), and WMS-WSLK (OS, RS, ES, ST, RS/ES, RS/ST) are the twenty-four solutions, we compared in this study. Initially, we tested SIRO-RDM combinations. Here three functions are unintegrated. Later we tested WMS-RDM combinations in which WMS scheduling is integrated with process plan selection and due-dates are determined randomly. After that, we tested SIRO-WSLK combinations. Now WSLK due-date assignment is integrated with process planning but now jobs are scheduled in random order. Later we tested all combinations at the fully integrated level which are
WMS-WSLK combinations. According to results, full integration with RS/ES found as the best solution. Searches are found always better compared to ordinary solutions and RS. Obtained results are explained in the conclusion section.

We tested eight shop floors for twenty-four different solutions. Shop floor characteristics and twenty-four types of solutions are explained in the previous sections of the study. At every shop floor, operation times are determined randomly according to the formula \((12 + z \times 6)\) where \(z\) is the standard normal numbers.

In first small shop floor (SF-1) there are 25 jobs and 5 machines. For this shop floor, we applied 200 iterations for ES and RS, 2000 iterations for ST which took 16 seconds on average. Smallest shop floor results are given in **Hata! Başvuru kaynağı bulunamadı.**

In second small shop floor (SF-2) there are 50 jobs and 10 machines. For this shop floor, we applied 200 iterations for ES and RS, 2000 iterations for ST which took 88 seconds on average. Second smallest shop floor results are given in **Hata! Başvuru kaynağı bulunamadı.**

In first small-medium shop floor (SF-3) there are 75 jobs 15 machines. For this shop floor, we applied 150 iterations for ES and RS, 1500 iterations for ST which took 173 seconds on average. First small-medium shop floor results are given in **Hata! Başvuru kaynağı bulunamadı.**

In second small-medium shop floor (SF-4) there are 100 jobs 20 machines. For this shop floor, we applied 150 iterations for ES and RS, 1500 iterations for ST which took 321 seconds on average. Second small-medium shop floor results are given in **Hata! Başvuru kaynağı bulunamadı.**

In first medium-large shop floor (SF-5) there are 125 jobs 25 machines. For this shop floor, we applied 100 iterations for ES and RS, 1000 iterations for ST which took 256 seconds on average. First medium-large shop floor results are given in Figure 11.

In second medium-large shop floor (SF-6) there are 150 jobs 30 machines. For this shop floor, we applied 100 iterations for ES and RS, 1000 iterations for ST which took 376 seconds on average. Second medium-large shop floor results are given in Figure 12.

In first largest shop floor (SF-7) we have 175 jobs to be scheduled and 35 machines on this shop floor. We applied 50 iterations for ES and RS, 500 iterations for ST which took 250 seconds on average. First largest shop floor results are given in Figure 13.

For the largest shop floor (SF-8) we have 200 jobs to be scheduled and 40 machines on this shop floor. We applied 50 iterations for ES and RS, 500 iterations for ST which took 346 seconds on average. Second largest shop floor results are given in Figure 14.

According to results, we found similar conclusions. Higher integration gave better results and full integration was the best. Searches are found superior to ordinary and RS solutions. Full integration with RS/ES gave the best results. Comparisons of twenty-four solution combinations for all the shop floors are given in Table 4. Best solution found in a level is indicated with bold text, for each shop floor. Best of all levels (24 solutions) are indicated with green bold text, for each shop floor.

Figure 7. Results of Shop Floor 1 (25x5x5)

Figure 8. Results of Shop Floor 2 (50x10x5)

Figure 9. Results of Shop Floor 3 (75x15x5)

Figure 10. Results of Shop Floor 4 (100x20x5)
Table 4 Comparison of twenty-four solution combinations for all of the shop floors

Level	Approach	Shop Floor 1	Shop Floor 2	Shop Floor 3	Shop Floor 4																			
		Best	Avg.	Worst	CPU																			
SIRO-RDM	OS	319	319	-	OS	646	646	646	-	RS	586	598	606	88	RS	853	895	908	179	RS	1269	1278	1285	331
	RS	265	272	276	17	RS	586	598	606	88	RS	853	895	908	179	RS	1269	1278	1285	331				
	ST	252	255	256	14	ST	554	562	565	79	ST	829	841	848	162	ST	1234	1246	1254	299				
	RS/ES	240	248	253	15	RS/ES	548	558	551	84	RS/ES	831	836	842	174	RS/ES	1207	1216	1221	312				
	RS/ST	267	268	270	15	RS/ST	557	570	574	82	RS/ST	847	862	866	167	RS/ST	1219	1230	1238	297				
WMS-RDM	OS	270	270	270	-	OS	564	564	564	-	OS	717	717	717	82	OS	1184	1184	1184	1184				
	RS	230	236	239	15	RS	520	528	532	88	RS	770	782	787	182	RS	1121	1139	1150	333				
	ST	201	205	208	14	ST	459	465	469	83	ST	700	706	713	172	ST	1058	1069	1075	306				
	RS/ES	195	201	203	16	RS/ES	407	415	418	82	RS/ES	729	738	741	171	RS/ES	1061	1068	1073	306				
	RS/ST	196	205	210	13	RS/ST	485	493	491	80	RS/ST	731	739	744	162	RS/ST	1098	1101	1103	294				
SIRO-WSLK	OS	314	314	314	-	OS	666	666	666	-	OS	997	997	997	-	OS	1372	1372	1372	-				
	RS	263	272	279	16	RS	571	588	596	94	RS	861	883	893	176	RS	1204	1222	1232	343				
WMS-WSLK	ES	248	255	257	16	ES	530	548	551	95	ES	812	824	831	170	ES	1130	1153	1160	331				
	ST	248	257	263	15	ST	544	557	563	87	ST	854	861	867	161	ST	1186	1200	1206	313				
	RS/ES	249	256	259	16	RS/ES	538	545	548	86	RS/ES	804	817	824	174	RS/ES	1138	1167	1178	333				
	RS/ST	261	265	268	15	RS/ST	541	549	553	86	RS/ST	833	847	850	162	RS/ST	1187	1195	1199	308				
SIRO-WSLK	ES	180	181	182	17	ES	372	374	375	99	ES	783	783	783	-	ES	1142	1142	1142	-				
	ST	182	183	184	17	ST	381	382	384	94	ST	756	759	781	176	ST	862	873	879	333				
WMS-WSLK	ES	180	181	182	17	ES	371	372	374	99	ES	564	566	568	185	ES	844	848	850	345				
	ST	181	182	183	17	ST	378	380	381	90	ST	577	580	582	177	ST	839	868	872	332				

Journal of Intelligent Systems: Theory and Applications 4(1) (2021) 24-36
For each SIRO-RDM combination, a single experiment was performed, and RS/ES 4 (50%), ES 3 (37.5%), and ST 1 (12.5%) times gave the best results. For each SIRO-WSLK combination, a single experiment was performed, and ES 4 (50%), RS/ES 3 (37.5%), and RS/ST 1 (12.5%) times gave the best results. For each WMS-RDM combination, 5 experiments were conducted on each shop floor and totally 40 experiments were performed on 8 shop floors. RS/ES 19 (47.5%), ES 11 (27.5%), RS/ST 6 (15%), and ST 4 (10%) times gave the best results in these experiments.

When the best value of all combinations was considered, RS/ES 28 (43.75%), ES 22 (34.38%), RS/ST 8 (12.5%), and ST 6 (9.38%) times gave the best results in a total of 64 experiments. When the average value of all combinations was considered, RS/ES 34 (53.13%), ES 20 (31.25%), RS/ST 7 (10.94%), and ST 3 (4.69%) times gave the best results in a total of 64 experiments.

7. Conclusion

Production process takes place upon three functions, which are production planning, scheduling, and due-date assignment. Conventionally these three functions are executed separately in practice. On the other hand, these functions affect each other significantly as they are tightly connected with each other. These functions should be considered simultaneously to prepare more accurate production plans, schedules, and due-date assignments.

To be more realistic on due-date assignments weights are given to customers related to their relative importance for a company, and a penalty function is applied to optimize due-dates, in this study. As there will be times that all customers could not be satisfied at the same time. There will be a decision to be made in which customers will be delivered early, and which will be delivered late. Not only being late in production is a problem but also being early. As there will be stock holding costs etc.

Integration of three functions (IPPSDDA problem), which are mentioned above, are discussed in this study. Weighted scheduling and weighted due-date assignment are integrated with process plan selection. WMS is used as a dispatching rule and WSLK used as a due-date assignment rule. Studies made over IPPS, SWDDA, and IPPSDDA are surveyed and briefly given to comprehend the problem scope.

To present this idea and to explain the point of view clearly a problem set is generated. Shop floors with distinct characteristics in terms of machines, jobs, routes, and processing times are generated in order to evaluate the effectiveness and efficiency of the integration and the algorithms.

Evolutionary Strategies, Semi-Tabu Search and their hybrids with Random Search are used and compared with Random search, ordinary solution, and each other for all integration levels. Algorithms are provided with flow diagrams to better understand them.
Starting with unintegrated problem (SIRO-RDM) integration level is increased step by step to the fully integrated problem (WMS-WSLK) and the solution performance is observed with the above-mentioned algorithms. The best performance is obtained in the fully integrated level in most of the shop floors with RS/ES algorithm. In some of them, ES performs better than its hybrid.

References

Aldakhilallah, K.A., Ramesh, R., 1999. Computer-integrated process planning and scheduling (CIPPS): intelligent support for product design, process planning and control. International journal of production research 37, 481–500.

Allaoua, H., Osmane, I., 2010. Variable Parameters Lengths Genetic Algorithm for Minimizing Earliness-Tardiness Penalties of Single Machine Scheduling With a Common Due Date. Electronic Notes in Discrete Mathematics, ISCO 2010 - International Symposium on Combinatorial Optimization 36, 471–478. https://doi.org/10.1016/j.endm.2010.05.060

Baykasoğlu, A., Göçken, M., Unutmaz, Z.D., 2008. New approaches to due date assignment in job shops. European Journal of Operational Research 187, 31–45. https://doi.org/10.1016/j.ejor.2007.02.020

Bhaskaran, K., 1990. Process plan selection. The International Journal Of Production Research 28, 1527–1539.

Birman, M., Mosheiov, G., 2004. A note on a due-date assignment on a two-machine flow-shop. Computers & Operations Research 31, 473–480. https://doi.org/10.1016/S0305-0548(02)00225-3

Biskup, D., Jahnke, H., 2001. Common due date assignment for scheduling on a single machine with jointly reducible processing times. International Journal of Production Economics 69, 317–322. https://doi.org/10.1016/S0925-5273(00)00040-2

Brandimarte, P., 1999. Exploiting process plan flexibility in production scheduling: A multi-objective approach. European Journal of Operational Research 114, 59–71. https://doi.org/10.1016/S0377-2217(98)00029-0

Cai, X., Lum, V.Y.S., Chan, J.M.T., 1997. Scheduling about a common due date with kob-dependent asymmetric earliness and tardiness penalties. European journal of operational research 98, 154–168.

Ceven, E., Demir, H.I., 2007. Benefits of Integrating Due-Date Assignment with Process Planning and Scheduling (Master of Science Thesis). Sakarya University.

Chen, Z.-L., 1997. Scheduling with batch setup times and earliness-tardiness penalties. European Journal of Operational Research 96, 518–537.

Cheng, T.C.E., Kovalyov, M.Y., 1999. Complexity of parallel machine scheduling with processing-plus-wait due dates to minimize maximum absolute lateness. European Journal of Operational Research 114, 403–410. https://doi.org/10.1016/S0377-2217(98)00111-8

Corti, D., Portioli-Staudacher, A., 2004. A concurrent engineering approach to selective implementation of alternative processes. Robotics and Computer-Integrated Manufacturing 20, 265–280. https://doi.org/10.1016/j.rcim.2003.10.012

Demir, H.I., Erden, C., 2020. Dynamic integrated process planning, scheduling and due-date assignment using ant colony optimization. Computers & Industrial Engineering 149, 106799. https://doi.org/10.1016/j.cie.2020.106799

Demir, H.I., Taskin, H., 2005. Integrated Process Planning, Scheduling and Due-Date Assignment (PhD Thesis). Sakarya University.

Drstvenšek, I., Balič, J., 2003. Responding ability in dynamic production circumstances. Journal of materials processing technology 133, 71–78.

Erden, C., Demir, H.I., Kökçam, A.H., 2019. Solving Integrated Process Planning, Dynamic Scheduling, and Due Date Assignment Using Metaheuristic Algorithms. Mathematical Problems in Engineering 2019.

Gindy, N.N., Saad, S.M., Yue, Y., 1999. Manufacturing responsiveness through integrated process planning and scheduling. International Journal of Production Research 37, 2399–2418.

Gordon, V., Kubiak, W., 1998. Single machine scheduling with release and due date assignment to minimize the weighted number of late jobs. Information Processing Letters 68, 153–159. https://doi.org/10.1016/S0020-0190(98)00153-7

Gordon, V., Proth, J.-M., Chu, C., 2002. A survey of the state-of-the-art of common due date
assignment and scheduling research. European Journal of Operational Research 139, 1–25. https://doi.org/10.1016/S0377-2217(01)00181-3

Gordon, V.S., Strusevich, V.A., 2009. Single machine scheduling and due date assignment with positionally dependent processing times. European Journal of Operational Research 198, 57–62. https://doi.org/10.1016/j.ejor.2008.07.044

Gordon, V.S., Strusevich, V.A., 1999. Earliness penalties on a single machine subject to precedence constraints: SLK due date assignment. Computers & Operations Research 26, 157–177.

Khoshnevis, B., Chen, Q.M., 1991. Integration of process planning and scheduling functions. J Intell Manuf 2, 165–175. https://doi.org/10.1007/BF01471363

Kim, Y.K., Park, K., Ko, J., 2003. A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling. Computers & Operations Research 30, 1151–1171. https://doi.org/10.1016/S0305-0548(02)00063-1

Koulamas, C., 2017. Common due date assignment with generalized earliness/tardiness penalties. Computers & Industrial Engineering 109, 79–83. https://doi.org/10.1016/j.cie.2017.04.040

Kovalyov, M.Y., 1997. Batch scheduling and common due date assignment problem: an NP-hard case. Discrete applied mathematics 80, 251–254.

Lauff, V., Werner, F., 2004. Scheduling with common due date, earliness and tardiness penalties for multimachine problems: A survey. Mathematical and Computer Modelling 40, 637–655. https://doi.org/10.1016/j.mcm.2003.05.019

Lawrence, S.R., 1994. Negotiating due-dates between customers and producers. International Journal of Production Economics 37, 127–138.

Leung, C.W., Wong, T.N., Mak, K.L., Fung, R.Y.K., 2010. Integrated process planning and scheduling by an agent-based ant colony optimization. Computers & Industrial Engineering 59, 166–180. https://doi.org/10.1016/j.cie.2009.09.003

Li, S., Ng, C.T., Yuan, J., 2011. Scheduling deteriorating jobs with CON/SLK due date assignment on a single machine. International Journal of Production Economics 131, 747–751. https://doi.org/10.1016/j.ijpe.2011.02.029

Li, X., Gao, L., Li, W., 2012. Application of game theory based hybrid algorithm for multi-objective integrated process planning and scheduling. Expert Systems with Applications 39, 288–297. https://doi.org/10.1016/j.eswa.2011.07.019

Luss, H., Rosenwein, M.B., 1993. A due date assignment algorithm for multiproduct manufacturing facilities. European Journal of Operational Research 65, 187–198.

Ming, X.G., Mak, K.L., 2000. A hybrid Hopfield network-genetic algorithm approach to optimal process plan selection. International Journal of Production Research 38, 1823–1839. https://doi.org/10.1080/002075400188618

Moon, C., Kim, J., Hur, S., 2002. Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering 43, 331–349. https://doi.org/10.1016/S0360-8352(02)00078-5

Moon, C., Lee, Y.H., Jeong, C.S., Yun, Y., 2008. Integrated process planning and scheduling in a supply chain. Computers & Industrial Engineering 54, 1048–1061. https://doi.org/10.1016/j.cie.2007.06.018

Morad, N., Zalzala, A., 1999. Genetic algorithms in integrated process planning and scheduling. Journal of Intelligent Manufacturing 10, 169–179. https://doi.org/10.1023/A:1008976720878

Mosheiov, G., 2001. A common due-date assignment problem on parallel identical machines. Computers & Operations Research 28, 719–732. https://doi.org/10.1016/S0305-0548(99)00127-6

Özgüven, C., Özbakır, L., Yavuz, Y., 2010. Mathematical models for job-shop scheduling problems with routing and process plan flexibility. Applied Mathematical Modelling 34, 1539–1548. https://doi.org/10.1016/j.apm.2009.09.002

Petrović, M., Vuković, N., Mitić, M., Miljković, Z., 2016. Integration of process planning and scheduling using chaotic particle swarm optimization algorithm. Expert Systems with Applications 64, 569–588.

Phanden, R.K., Jain, A., Verma, R., 2011. Integration of process planning and scheduling: a state-of-the-art review. International Journal of Computer Integrated Manufacturing 24, 517–534.
https://doi.org/10.1080/0951192X.2011.562543

Pinedo, M., Chao, X., 1998. Operations Scheduling with Applications in Manufacturing and Services. McGraw-Hill Higher Education.

Rechenberg, I., 1965. Cybernetic solution path of an experimental problem. Ministry of Aviation, Royal Aircraft Establishment, Library Translation.

Schwefel, H.-P., 1981. Numerical optimization of computer models. John Wiley & Sons, Inc.

Seker, A., Erol, S., Botsali, R., 2013. A neuro-fuzzy model for a new hybrid integrated Process Planning and Scheduling system. Expert Systems with Applications 40, 5341–5351. https://doi.org/10.1016/j.eswa.2013.03.043

Shabtay, D., 2016. Optimal restricted due date assignment in scheduling. European Journal of Operational Research 252, 79–89. https://doi.org/10.1016/j.ejor.2015.12.043

Shrestha, R., Takemoto, T., Ichinose, K., Sugimura, N., 2008. A study on integration of process planning and scheduling system for holonic manufacturing with modification of process plans. International Journal of Manufacturing Technology and Management 14, 359–378.

Tan, W., Khoshnevis, B., 2000. Integration of process planning and scheduling—a review. Journal of Intelligent Manufacturing 11, 51–63. https://doi.org/10.1023/A:1008952024606

Thomalla, C.S., 2001. Job shop scheduling with alternative process plans. International Journal of Production Economics 74, 125–134. https://doi.org/10.1016/S0925-5273(01)00119-0

Tuong, N.H., Soukhal, A., 2010. Due dates assignment and JIT scheduling with equal-size jobs. European Journal of Operational Research 205, 280–289. https://doi.org/10.1016/j.ejor.2010.01.016

Usher, J.M., 2003. Evaluating the impact of alternative plans on manufacturing performance. Computers & Industrial Engineering 45, 585–596. https://doi.org/10.1016/S0360-8352(03)00076-7

Usher, J.M., Fernandes, K.J., 1996. Dynamic process planning—the static phase. Journal of Materials Processing Technology 61, 53–58.

Vinod, V., Sridharan, R., 2011. Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system. International Journal of Production Economics 129, 127–146. https://doi.org/10.1016/j.ijpe.2010.08.017

Weintraub, A., Cormier, D., Hodgson, T., King, R., Wilson, J., Zozom, A., 1999. Scheduling with alternatives: a link between process planning and scheduling. IIE Transactions 31, 1093–1102. https://doi.org/10.1023/A:1007683710427

Wilhelm, W.E., Shin, H.-M., 1985. Effectiveness of alternate operations in a flexible manufacturing system. International Journal of Production Research 23, 65–79. https://doi.org/10.1080/00207548508904691

Yang, T., He, Z., Cho, K.K., 1994. An effective heuristic method for generalized job shop scheduling with due dates. Computers & industrial engineering 26, 647–660.

Zhang, H.-C., Mallur, S., 1994. An integrated model of process planning and production scheduling. International Journal of Computer Integrated Manufacturing 7, 356–364. https://doi.org/10.1080/095119292408944623

Zhang, L., Wong, T.N., 2015. An object-coding genetic algorithm for integrated process planning and scheduling. European Journal of Operational Research 244, 434–444. https://doi.org/10.1016/j.ejor.2015.01.032

Zhang, Z., Tang, R., Peng, T., Tao, L., Jia, S., 2016. A method for minimizing the energy consumption of machining system: integration of process planning and scheduling. Journal of Cleaner Production 137, 1647–1662.

Appendix. Due-date assignment rules

\[\text{Due date} = TPT + q_x \times k \]

where

\[q_x = q_1, q_2 \text{ or } q_3 \]

\[q_1 = 0.5 \times P_{avg}, \]

\[q_2 = P_{avg}, \]

\[q_3 = 1.5 \times P_{avg} \]

k is inversely determined according to the customer weights.

RDM (Random due assignment)

\[\text{Due} = N \sim (3 \times P_{avg}, (P_{avg})^2) \]

TPT: total processing time

\[P_{avg} : \text{mean processing time of all job waiting} \]