SMAC, a computational system to link literature, biomedical and expression data

Stefano Pirrò1,2, Emanuela Gadaletta1, Andrea Galgani3, Vittorio Colizzi2 & Claude Chelala1

High-throughput technologies have produced a large amount of experimental and biomedical data creating an urgent need for comprehensive and automated mining approaches. To meet this need, we developed SMAC (SMart Automatic Classification method): a tool to extract, prioritise, integrate and analyse biomedical and molecular data according to user-defined terms. The robust ranking step performed on Medical Subject Headings (MeSH) ensures that papers are prioritised based on specific user requirements. SMAC then retrieves any related molecular data from the Gene expression Omnibus and performs a wide range of bioinformatics analyses to extract biological insights. These features make SMAC a robust tool to explore the literature around any biomedical topic. SMAC can easily be customised/expanded and is distributed as a Docker container (https://hub.docker.com/r/hfx320/smac) ready-to-use on Windows, Mac and Linux OS. SMAC’s functionalities have already been adapted and integrated into the Breast Cancer Now Tissue Bank bioinformatics platform and the Pancreatic Expression Database.

The NCBI PubMed1 is a biomedical literature-based search engine that provides data from MEDLINE®, life science journals and online books. It is the largest and most widely used resource for biomedical and scientific research, with over 27 million citations for biomedical literature available currently for querying.

In order to index the large amount of stored data, the National Library of Medicine (NLM) created a controlled vocabulary thesaurus named MeSH (Medical Subject Headings)2. MeSH descriptors are assigned to 16 categories, with each category divided into subcategories. In each subcategory, descriptors are arrayed hierarchically from most general to most specific in up to twelve hierarchical levels. Because of the branching structure of the hierarchies, these lists are sometimes referred to as “trees”. Each MeSH descriptor appears in at least one location in the tree, but it may appear in additional places if appropriate. Articles in PubMed are classified using multiple MeSH terms, from roots to leaves.

While PubMed offers simple and fast search capabilities, it is a daunting, not to mention time-consuming, task to wade through the sea of information retrieved. For this reason, fast automatic extraction and integration of biological insights from biomedical literature represents a very attractive prospect.

Several automatic literature solutions were designed to identify, retrieve and extract information from a body of works based on user-defined search parameters. GoPubMed4 links PubMed articles with the Gene Ontology5 by parsing and categorising the abstracts. More recently, Frisch and colleagues developed LitInspector, a tool to provide gene and signal transduction pathway mining within PubMed3. Despite the first version being free of use, the resource is now part of the Genomatix® Software Suite and requires a license. PolySearch2 is a text-mining approach that extracts associative relationships between biomedical entities, such as genes, proteins, human diseases, drugs, metabolites etc. A smart and user-friendly interface allows the user to conduct more than 60 unique combinations for each search. Similar to PolySearch2, pubmed.mineR7 combines the advantages of the existing algorithms with the flexibility provided by an R package.

Although very valuable, the aforementioned tools do not provide any kind of linkage or integration with the molecular data generated from the published studies. For these reasons we developed SMAC, a fast and automated method for collecting, prioritising, integrating and analysing biomedical data extracted from PubMed and Gene Expression Omnibus (GEO)8. The open-source nature of SMAC allows for add-on modules to be...
incorporated into the architecture thereby expanding the scope of the original software. SMAC is distributed as a docker container (https://hub.docker.com/r/hfx320/smac) and can be used out-of-box in any Windows, Mac or Linux system. The source code of SMAC is also available on GitHub (https://github.com/wynstep/SMAC).

Since its inception, SMAC has been employed successfully as a valuable module in Breast Cancer Now Tissue Bank bioinformatics9 and the Pancreatic Expression database10.

Methods

SMAC is designed to extrapolate and link literature, biomedical and molecular data from user-defined queries and conduct bioinformatics analysis. It exploits latest NCBI programmatic access APIs and R packages to support either simple and complex queries, produced with a human-readable and -writeable syntax.

SMAC performs five main tasks during its execution (Fig. 1): (i) explore the literature by listing the most relevant manuscripts, according to the query; (ii) prioritise literature-related, biomedical data; (iii) create gene networks whereas strength and reliability of interactions is proportional to co-citation rate; (iv) extract expression data from GEO and convert it to a standard format; (v) perform specific bioinformatics analyses, based on user selections.

Starting the analysis. SMAC is able to support two main operative situations. Users can either extract all relevant publications and their associated data starting from a text-free user-defined query or use SMAC to retrieve information, and subsequent data, from a defined list of PubMed IDs (PMIDs). Text-free search terms, defining the concepts of interest (topic or list of PMIDs), and an email address must be defined to launch the data selection and retrieval process. To speed up an analysis, users can limit the amount of results retrieved and/or bypass the recovery of expression data.

Retrieval and prioritisation of literature data. SMAC exploits the Entrez Programming Utilities to mine biomedical literature and identify the most relevant articles. Records are then ranked according to the “Best Match” relevance algorithm11 that takes into consideration different factors i.e. past usage of an article, publication date, number of citations etc. For each publication reclaimed, a comprehensive set of information is collected (Table 1).

Prioritisation of biomedical data. Medical Subject Headings (MeSH) represent a reliable bulk of terms for connecting the literature and the biomedical layers. Among the subjects retrieved, some are more important than others. For this reason, it’s crucial to apply a prioritisation procedure that takes into consideration the (i) hierarchical level (specificity), (ii) abundance in topics-related articles and (iii) abundance in all PubMed citations. The prioritisation workflow is composed of two main parts: first, MeSH terms are sorted separately according to each criteria, second the Robust Ranking Aggregation method12 prioritises the most statistically-relevant elements by detecting those that are ranked consistently better than expected under the null hypothesis of the random allocation of items.

Retrieval and manipulation of expression data. The integration of molecular data generated from published studies supersedes the functionality of all the existing tools. SMAC takes advantage of the R/Bioconductor package GEOquery13 to retrieve expression datasets from NCBI Gene Expression Omnibus8. For each GEO series (GSE), three data packages are generated in order to reflect sample-level granularity: pData includes the phenotypic and experimental information deposited by the research group. SMAC applies a text-mining approach to stratify samples into different biological groups. Moreover, cancer samples are identified and separated from normal/controls. This step is crucial for performing a subset of analyses, particularly designed for tumour data.

eData packs the expression levels belonging to each sample.

tData reports the information related to the technology used for generating the data, as well as a conversion dictionary between probes and gene names. The presence of tData is fundamental to reduce the dimensionality of eData as it allows for the merging expression levels belonging to the same gene, thereby facilitating subsequent bioinformatics analyses.
Table 1. Description of the metadata retrieved for each publication.

Type of information	Description
PMID	Unique identifier number for publications stored in PubMed
Title	Full title of the publication
Authors	List of authors, separated by comma
Journal	Full name of the journal that published the paper
Date of publication	Date of publication is always reported using the yyyy-mm-dd format
MeSH headings	List of the medical headings associated to the publication
GSE codes	List of the GEO dataset linked to the PMID
Platforms	Experimental platforms used for generating the data
ftp-links	Web link for the direct download of the GEO raw data
Analyses	List of analyses performed by SMAC on each tuple PMID:GSE

Bioinformatics analysis. SMAC incorporates a body of bioinformatics analysis to be applied on the eData extracted and manipulated from GEO. While the core analyses can be applied to any kind of expression data, regardless of the biological context, a subset of analyses are cancer-specific and can only be applied to cancer-related datasets. Results are provided by SMAC in a shape of interactive graphs generated by the plotly R package (https://plot.ly).

Principal Component Analysis (PCA) – Core analysis. A PCA reduces the complexity of multidimensional data while minimising the loss of information and preserving data structure\(^\text{14}\). A set of “components” are extracted from the expression dataset, by linearly combining the original genes. Data are transformed into a coordinate system and presented as an orthogonal projection. The outcome of this analysis is reported by SMAC in a form of a 2D/3D scatterplot where the position of samples, reflects their mutual similarity (Fig. 2A). As an explorative analysis, PCA captures the presence of clusters of samples showing similar expression patterns.

Gene expression levels – Core analysis. The normalised expression levels (z-scores) for the most variable genes \((n = 20, \overline{n} = 50, n = 100 \text{ or an arbitrary number decided by the user})\) is presented across all samples in the GEO dataset. Moreover, samples are clustered according to their expression profiles for the subset of genes. This analysis produces a heatmap where rows and columns represent genes and samples, respectively (Fig. 2B).

Gene interaction network – Core analysis. Using the set of papers stored in the literature layer, SMAC uses the Entrez Programming Utilities elink to extract the genes correlated to the publications, together with a set of scores that reflects their association rate. SMAC then implements the R package visNetwork (http://datastorm-open.github.io/visNetwork/) to produce an interaction network by overlapping the genes with the, manually-curated, Mentha interactome\(^\text{15}\). Nodes (genes) are coloured according to their association-score while edges (connection between genes) are weighted according to the Mentha scoring system (Fig. 2C).

Tumour purity – Cancer related. The cellular purity of cancer samples is often affected by the presence of small amounts of infiltrating stromal and immune cells that may confound subsequent analyses. If SMAC detects the presence of cancer samples, it will apply the ESTIMATE algorithm\(^\text{16}\) to infer the tumour purity from the corresponding expression data. This results in an interactive 3D scatterplot that correlates all the calculated scores (Stromal, Immune and ESTIMATE), where samples (dots) are coloured according to their purity percentage (Fig. 2D).

Molecular classification – Cancer related. Molecular classification models are applied to datasets comprising breast cancer samples. First, the PAM50 single sample predictor, is used to predict the molecular subtype of each sample —Luminal A (LumA), Luminal B (LumB), Basal-like (Basal), Her2-enriched (Her2) and Normal breast-like (Norm). Next, the molecular status of key breast cancer receptors, oestrogen, progesterone and Her2, is estimated using mclust. Results are presented as interactive bar plots showing the percentage of samples belonging to each molecular subtype and receptor status profile (Fig. 2E).

Distribution of the software. SMAC has been developed using Python and R, and is distributed to public in a form of Docker package (https://hub.docker.com/r/hfx320/smac). Thanks to its modularity, users can easily edit the source code of SMAC (available on GitHub at https://github.com/wynstep/SMAC) by implementing R-based, custom analyses to be included in the main pipeline. Further analytical modules will be also implemented in future releases of the software.

Results

Semantic similarity with Polysearch2 database. To evaluate the reliability of the terms retrieved by SMAC, we conducted three biomedical tests focussed on diabetes, multiple sclerosis and metformin. The mesh R package\(^\text{17}\) was used to calculate the semantic similarity among SMAC and Polysearch2 terms (adopted as Gold Standard). A wide range of semantic, similarity measures were explored: Shortest-Path\(^\text{18}\), Weighted-Link\(^\text{19}\), Wu and Palmer\(^\text{20}\), Leacock and Chodorow\(^\text{21}\), Li\(^\text{22}\) and Lord\(^\text{23}\).
Apart from Lord’s metrics, all the others are defined as path-based similarity measures and assume that the hierarchy of headings is organised along the lines of semantic similarity. Lord’s metrics is an Information-based value and is correlated with the frequency of the heading in a given document collection. All the scores are normalised between 0 and 1 and represent the probability of two sets of MeSH terms to be similar. For this reason, a value of 0.5 (50% probability) is often used as minimum threshold to select the statistically significant comparisons.

The benchmark conducted against Polysearch2 shows that all the path-based similarity measures have a value higher than 0.5, with the Shortest-Path methods achieving peaks of 0.84 when comparing Diabetes-related terms (Fig. 3). Lord’s metric shows similarity measures between 0.89 and 0.97 in all the tests, demonstrating that SMAC is able to capture the biomedical insights correctly.

In our comparison benchmarks, path-based tests can be considered more stringent. In fact, two MeSH terms will be considered more similar if they share the same hierarchical level (specificity) and the semantics. On the other hand, Lord’s method takes into account both the semantic similarity and the frequency of the term in the PubMed dataset.

Comparison with other tools. SMAC represents a cutting-edge technology in terms of data mining. To the best of our knowledge, no other method offers users the ability to link and integrate the literature and biomedical information in PubMed with the -omics data stored in GEO. Table 2 provides a comparison of SMAC with other tools that have been developed for re-analysing datasets from GEO including GEO2R8, shinyGEO25, GEOquery13, ImaGEO26, ScanGEO27, GEO2Enrichr28 and BART29. SMAC is the only tool that has been designed and developed to run locally, all results are retrieved on-the-go from the NCBI servers, then downloaded and analysed on the host machine. There is a potential to include enrichment and meta analyses modules in the next release of SMAC.

Evaluation of the computational speed. We evaluated the computational speed of SMAC by calculating the Time of Execution (ToE) for downloading and analysing an increasing number of invasive breast cancer samples from GEO (GSE10248426). A local machine with 2 Xeon 5600 processors and 6GB of RAM was used. All the analysis currently implemented in SMAC have been applied on each downloaded dataset. As reported in Fig. 4 there is a positive correlation between the ToE and the number of samples, for both downloading and analysing the data and an overall speed of less than 1 s per sample.

Adaption of SMAC by BCNTB bioinformatics and the Pancreatic Expression database. SMAC has been integrated successfully into the infrastructure of BCNTB bioinformatics and PED. This model was
employed to reduce the burden and time required to select and curate the data manually. These cancer initiatives have expanded the functionality of SMAC by incorporating multiple analytical modalities into its base code. The adoption and expansion of SMAC by BCNTB bioinformatics and PED has allowed for an exponential growth in the data available to the breast and pancreatic cancer research community.

SMAC cross-references entries in PubMed with cancer-specific domains (controlled vocabulary terms). For each entry identified by SMAC, the PubMed identifier, title, authors, publication date and abstract are extracted and made available to researchers.

BCNTB bioinformatics and PED comprise both data mining and analytical components. For the latter, a secondary identification stage was incorporated into SMAC to replace a second manual curation step. Attributes relating to the submission of experimental data, such as GEO identifiers, are extracted and computational links

Table 2. Comparison of SMAC with other tools focused on the reanalysis of GEO datasets.
between the entry and its associated experimental data established. If data is publicly available, SMAC accesses and downloads the relevant data files. These are fed into the analytical pipelines developed for each resource automatically.

Adoption of SMAC has allowed for automation of the data retrieval, extraction, preparation and analysis process. Furthermore, this system opens up the opportunity for periodic enrichment of the resources with minimal manual intervention. These cancer resources are freely available from http://bioinformatics.breastcancertissuebank.org and http://www.pancreasexpression.org.

Conclusions
We designed SMAC, the Smart Automatic Classification system (https://hub.docker.com/r/hfx320/smac) to bridge literature information, biomedical headings and molecular data. Starting from a text-free, user-defined query, SMAC collects and prioritises all the topic-related publications in PubMed. A set of biomedical terms (MeSH) are also extracted and ranked according to multiple features (specificity, local and global abundances). Unlike other tools available, SMAC integrates and slims the molecular data generated from published studies. A set of core and, where relevant, cancer-specific bioinformatics analyses are applied on the retrieved datasets and outcomes are reported in an interactive fashion. A benchmark with Polysearch2 clearly highlights the reliability of SMAC to extract the biomedical insights from the literature layer.

The modularity of the architecture of SMAC permits custom modules to be incorporated, expanding its functionality. SMAC has been already adopted by two important cancer resources focused on breast and pancreatic cancer and, in future, aims to be incorporated into more biomedical resources.

Data Availability
https://hub.docker.com/r/hfx320/smac.

References
1. Canese, K. & Weiss, S. PubMed: the bibliographic database (2013).
2. Bachrach, C. A. & Charen, T. Selection of Medline contents, the development of its thesaurus, and the indexing process. Medical Informatics 3, 237–254 (1978).
3. Frisch, M., Klocke, B., Haltmeier, M. & Frech, K. LitInspector: literature and signal transduction pathway mining in PubMed abstracts. Nucleic Acids Research 37, W115–W140 (2009).
4. Doms, A. & Schroeder, M. GoPubMed: exploring PubMed with the Gene Ontology. Nucleic Acids Research 33, W783–W786 (2005).
5. Gene Ontology Consortium: going forward. Nucleic Acids Research 43, D1049–D1056 (2014).
6. Liu, Y., Liang, Y. & Wishart, D. PolySearch2: a significantly improved text-mining system for discovering associations between human diseases, genes, drugs, metabolites, toxins and more. Nucleic Acids Research 43, W535–W542 (2015).
7. Ranji, J., Shah, A. R. & Ramachandran, S. pubmed.miner: An R package with text-mining algorithms to analyse PubMed abstracts. Journal of Bioinformatics 40, 671–682 (2015).
8. Barrett, T. et al. NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research 41, D991–D995 (2012).
9. Gadaleta, E., Pirrò, S., Dayem Ullah, A. Z., Marzec, J. & Chelala, C. BCNTB bioinformatics: the next evolutionary step in the bioinformatics of breast cancer tissue banking. Nucleic Acids Res. 46, D1055–D1061 (2018).
10. Marzec, J. et al. The Pancreatic Expression Database: 2018 update. Nucleic Acids Res. 46, D1107–D1110 (2018).
11. Fiorini, N. et al. Best Match: New relevance search for PubMed. PLoS Biol 16, e2005343 (2018).
12. Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012).
13. Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 23, 1846–1847 (2007).
14. Groth, D., Hartmann, S., Klie, S. & Selbig, J. Principal components analysis. Methods Mol Biol 930, 527–547 (2013).
15. Calderone, A., Castagnoli, L. & Cesareni, G. mentha: a resource for browsing integrated protein-interaction networks. Nat Methods 10, 690–691 (2013).
16. Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4, 2612 (2013).
17. Yu, G. Using meshes for MeSH term enrichment and semantic analyses. Bioinformatics, https://doi.org/10.1093/bioinformatics/bty410 (2018).
18. Bulskov, H., Knappe, R. & Andreassen, T. On Measuring Similarity for Conceptual Querying. in Flexible Query Answering Systems (eds Carbonell, J. G. et al.) 2522, 100–111 (Springer Berlin Heidelberg, 2002).
19. Richardson, R., Smeaton, A. E., Smeaton, A. F., Murphy, J. & Murphy, J. Using WordNet as a Knowledge Base for Measuring Semantic Similarity between Words. (In Proceedings of AICS Conference, 1994).
20. Wu, Z. & Palmer, M. Verbs Semantics and Lexical Selection. In Proceedings of the 32Nd Annual Meeting on Association for Computational Linguistics 133–138, https://doi.org/10.3115/981732.981751 (Association for Computational Linguistics, 1994).
21. Leacock, C. & Chodorow, M. Filling in a sparse training space for word sense identification. (March, 1994).
22. Li, Y., Bandar, Z. A. & McLean, D. An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15, 871–882 (2003).
23. Lord, P. W., Stevens, R. D., Brass, A. & Goble, C. A. Investigating semantic similarity measures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19, 1275–1283 (2003).
24. Bettembourg, C., Diot, C. & Dameron, O. Optimal Threshold Determination for Interpreting Semantic Similarity and Particularity: Application to the Comparison of Gene Sets and Metabolic Pathways Using GO and ChEBI. PLoS ONE 10, e0133579 (2015).
25. Dumas, J., Gargano, M. A. & Dancik, G. M. shinyGEO: a web-based application for analyzing gene expression omnibus datasets. Bioinformatics 32, 3679–3681 (2016).
26. Toro-Dominguez, D. et al. ImaGEO: integrative gene expression meta-analysis from GEO database. Bioinformatics 35, 880–882 (2019).
27. Koeppen, K., Stanton, B. A. & Hampton, T. H. ScanGEO: parallel mining of high-throughput gene expression data. Bioinformatics 33, 1300–1301 (2017).
28. Gundersen, G. W. et al. GEO2Enrichr: browser extension and server app to extract gene sets from GEO and analyze them for biological functions. Bioinformatics 31, 3060–3062 (2015).
29. Amaral, M. L., Erikson, G. A. & Shokhirev, M. N. BART: bioinformatics array research tool. BMC Bioinformatics 19 (2018).
30. Cheng, S. H.-C. et al. Validation of the 18-gene classifier as a prognostic biomarker of distant metastasis in breast cancer. PLoS ONE 12, e0184372 (2017).
Author Contributions
S.P. designed and implemented retrieval and prioritisation modules with input from A.G. and V.C. S.P. and E.G. designed and implemented bioinformatics modules applied to cancer data. S.P. and E.G. wrote the main manuscript text and prepared figures. C.C. designed and supervised implementation of bioinformatics modules and expansion to cancer data. All authors contributed to SMAC development and reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019