Transcriptomics analysis of field-droughted pear (Pyrus spp.) reveals potential drought stress genes and metabolic pathways

Sheng Yang¹, Mudan Bai¹,², Guowei Hao¹, Huangping Guo¹ and Baochun Fu¹,²

¹ Pomology Institute, Shanxi Agricultural University, Taiyuan, Shanxi, China
² Shanxi Key Laboratory of Germplasm Improvement and Utilization in Pomology, Taiyuan, Shanxi, China

ABSTRACT

Drought acts as a major abiotic stress that hinders plant growth and crop productivity. It is critical, as such, to discern the molecular response of plants to drought in order to enhance agricultural yields under droughts as they occur with increasing frequency. Pear trees are among the most crucial deciduous fruit trees worldwide, and yet the molecular mechanisms of drought tolerance in field-grown pear remain unclear. In this study, we analyzed the differences in transcriptome profiles of pear leaves, branches, and young fruits in irrigation vs field-drought conditions over the growing seasons. In total, 819 differentially expressed genes (DEGs) controlling drought response were identified, among which 427 DEGs were upregulated and 392 DEGs were downregulated. Drought responsive genes were enriched significantly in monoterpenoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis. Fourteen phenylpropanoid, five flavonoid, and four monoterpenoid structural genes were modulated by field drought stress, thereby indicating the transcriptional regulation of these metabolic pathways in fruit exposed to drought. A total of 4,438 transcription factors (TFs) belonging to 30 TF families were differentially expressed between drought and irrigation, and such findings signal valuable information on transcriptome changes in response to drought. Our study revealed that pear trees react to drought by modulating several secondary metabolic pathways, particularly by stimulating the production of phenylpropanoids as well as volatile organic compounds like monoterpenes. Our findings are of practical importance for agricultural breeding programs, while the resulting data is a resource for improving drought tolerance through genetic engineering of non-model, but economically important, perennial plants.

INTRODUCTION

Along with an increasing global population, drought is becoming one of the most persistent factors that limits agricultural production and food security around the world, especially in arid and semi-arid regions (Mittler, 2006). In turn, drought is responsible for losses in the multibillions of dollars annually (Fahad et al., 2017; Lesk, Rowhani & Ramankutty, 2016). China is facing a perilous water crisis in which 50% of the national territory is located...
in arid and semi-arid regions (Hu & Zhang, 2001). The temporal-spatial distribution of annual precipitation causes 26.7% of the national land territorial area in Northwest China to have arid and semiarid climates, a region where drought is common. Predicting drought severity is difficult, and to do so requires consideration of several factors such as rainfall amount and distribution, evaporative demands, and the moisture storing ability of soils (Saud et al., 2017; Tadesse & Melkam, 2016). Globally, several management strategies have been implemented for improved crop production under drought environments (Bodner, Nakhtoroosh & Kaul, 2015; Fahad et al., 2017). Among these, the development of crop varieties with an increased tolerance to drought functions as an important and effective strategy to combat drought.

Plants cope with water deficiency by complex mechanisms from molecular, biochemical and physiological processes at the cellular or whole plant level (Bray, 1997; Goufo et al., 2017; Huber & Bauerle, 2016; Ruggiero et al., 2017; Zandalinas et al., 2017). With the advent of new high throughput “-omics” technologies like proteomics and transcriptomics, notable strides have been made towards understanding the molecular mechanisms that regulate tolerance to drought. Previous studies have demonstrated signal transduction of drought stress perception to the nucleus via complex cellular signaling networks involving second messengers. These include reactive oxygen intermediates (ROIs) and calcium, calcium-associated proteins, and kinase cascade such as mitogen-activated protein (MAP) (Bray, 1997; Chen et al., 2002; Huber & Bauerle, 2016; Knight & Knight, 2001; Liu et al., 1998; Zandalinas et al., 2017). Drought stress signaling cascades are comprised of many stress-responsive genes. These include molecular chaperones such as late embryogenesis abundant (LEA) proteins and heat shock proteins (HSPs) that function as effector molecules. Other examples include transcription factors (TFs) like members of the APETALA2/ethylene-responsive element binding protein (AP2/EREPB), a basic leucine zipper (bZIP), WRKY, and MYB proteins that act as regulator molecules (Shinozaki & Yamaguchi-Shinozaki, 2007; Song et al., 2005; Wang, Vinocur & Altman, 2003). The physiological and molecular mechanisms of plant responses to drought have been extensively studied in model plants with dehydration treatments in controlled laboratory or greenhouse conditions (Li, Xu & Huang, 2016; Wang et al., 2018; Zarafshar et al., 2014). However, results from these studies most often translate poorly to field-grown plants. Clarifying the molecular mechanisms that regulate drought tolerance from crops grown under field conditions will facilitate a more thorough grasp of the complex interactions between drought response and environmental factors that crops encounter in the field during the growing season. As such, the task of developing an improved understanding of molecular elements in responsiveness to field drought in non-model plants will aid in both traditional and modern breeding applications towards improving stress tolerance.

Pear is one of the most vital fruit crops in the world and the second major crop among deciduous fruits in China after apples (Silva et al., 2014). The crop has considerable value both economically and in terms of personal health. In China, pear is primarily grown in the Northwestern region, accounting for 60 percent of pear production in the country. YuluXiangli (Pyrus spp) is an improved pear cultivar that is highly tolerant to drought, and it is an ideal source for examining genomic responses to drought in order to explore valuable
tolerance genes (Okubo & Sakuratani, 2000; Zong et al., 2014). The full genome sequencing and resequencing of multiple pear cultivars (Huang et al., 2015; Li, Xu & Huang, 2016; Wang et al., 2018; Wu et al., 2013) have enabled several transcriptome studies of drought responses in pear, thereby revealing a broad, multifaceted response to drought. Such a response features coordination between phytohormone signaling pathways, the reduction of photosynthetic gene expression, and the alteration in expression of genes involved in stress-induced leaf senescence. These studies, however, have been restricted to greenhouses under certain durations of drought stimuli treatment as opposed to field conditions that use early time points with samples exclusively from leaves (Li, Xu & Huang, 2016; Wang et al., 2018).

The primary objectives of the present study were to identify differentially expressed genes (DEGs) and to compare the gene expression patterns in leaf, branch, and fruit tissue of pear in response to drought induced by withdrawal of irrigation in the field. The findings will provide an unrivaled resource for understanding the mechanisms underlying drought resistance in pear.

MATERIAL AND METHODS

Plant growth conditions and drought treatment

Field drought experiments were performed for three continuous years in a pear germplasm nursery at the Institute of Fruit, Shanxi Academy of Agricultural Science, beginning on 21 October 2015 and concluding on 21 October 2018. The pear nursery is located in a semi-arid area of Taigu, Shanxi Province, China (37°26′N, 112°26′E) with an altitude of 750 m and managed according to common cultural practices in the region. In this region, the annual average temperature is 9.8 °C with an annual accumulated temperature above 10 °C (AT10) of 3529 °C. The annual hours of sunshine range from 2,500 h to 2,600 h with an average frost-free period of 149 days. The annual rainfall is 450 mm, and the annual accumulative evaporation is 1,800 mm, which is approximately four times higher than the average total rainfall.

The pear cultivar YuluXiangli (*Pyrus spp*) was used in the experiment. YuluXiangli was derived from a cross between *Pyrus bretschneiderie* and *Pyrus sinkiangensis*, and is resistant to drought. The irrigation (control) and field-drought treatments were assigned via a randomized block design with three replicates, where the fields were divided into six plots with 10 healthy and uniform 15-year-old pear trees per plot. Field drought plots were exposed to rainfall without additional irrigation, whereas control plots were irrigated in November, May, and July, each of which received 728.5 tons water/acre. The maximum water holding capacity was 30% in field-drought treatment (severe drought) and 75% to 80% in control with irrigation. Fertilization and pest controls were consistent among the field-drought and control plots.

In total, 100 young leaves, branches, and young fruits, including 10 from each tree, were independently harvested on 5 May 2018, and were swiftly placed in liquid nitrogen and stored at −80 °C for RNA extraction.
At maturity, 10 fruits, each from a single tree, were independently harvested to determine fruit soluble solids content with a handheld PAL-1 digital display sugar meter (Atago, Tokyo, Japan) and single fruit weight.

Total RNA extraction, library preparation and sequencing

Total RNA was extracted from young leaves, branches, and young fruits for each treatment using RNApreo Pure Plant Kit (Tiangen, Beijing, China) in accordance with the manufacturer’s instructions. RNA purity and integrity were determined by Agilent 2100 Bioanalyzer (Agilent Technology, USA) according to the manufacturer’s instructions. The qualified RNA with an RNA integrity number (RIN) of ≥7 and an 28S/18S ribosomal RNA ratio of ≥0.7 was applied to construct 10 cDNA libraries (5 repeats for drought and irrigation, respectively). Equal amounts of RNA from young leaves, branches, and young fruits for each treatment were mixed, and then were diluted to 1 ng/µL for library construction. Briefly, RNA was enriched by magnetic beads containing poly-T oligos and fragmented first to 200–300 bp in length by ion interruption, and reversed transcribed to the first strand of cDNA by 6-bp random primers. Then, the first strand of cDNA was used as a template to synthesize the second strand of cDNA. Library fragments were enriched by PCR amplification to select the fragment size of 300–400 bp. Equal amounts of libraries with different index sequences were pooled prior to sequencing and diluted to 2 nM for paired-end sequencing on the Illumina HiSeq 2500 platform. All raw reads were deposited in the NCBI repository with Bioproject: PRJNA655255 under the accession numbers SRR12424088–SRR12424107.

Read mapping and transcript profiling

The adapter and low-quality sequences were removed from the raw RNA-seq reads to generate high-quality clean reads that were aligned to the pear genome reference GCF_000315295.1_Pbr_v1.0 (https://ftp.ncbi.nlm.nih.gov/genomes/all/000/315/295/GCF_000315295.1_Pbr_v1.0/) with HISAT2 (http://ccb.jhu.edu/software/htsat2/index.shtml). Following the alignments, the raw counts for each pear gene were normalized as fragments per kilobase of transcript per million mapped reads (FPKM) (Trapnell et al., 2010). Principal component analysis (PCA) was performed to compare the log2-transformed FPKM values of the expressed gene profiles among tissue-type and stages using the prcomp function in the R program (https://www.r-project.org/). The hierarchical clustering of samples was performed using Pheatmap in R. Read coverage over gene body was calculated by RSeQC (Wang, Wang & Li, 2012), and the corresponding plot figure was made by using ggplot2 with R script.

Identification of differentially expressed genes (DEGs)

DEGs among tissue-types at different stages were located using the statistical package DEGseq with the MA-plot-based method (Wang et al., 2010) in R version 3.0.3, where genes were considered differentially expressed if |log2FoldChange|>1, and an adjusted p value using Benjamini–Hochberg procedure (Benjamini & Hochberg, 1995) (false discovery rate (FDR)) was <0.05.
Gene annotation (GO) and functional enrichment analysis
The GO enrichment analysis for biological processes, molecular functions, and cellular components was performed using TopGo (Alexa & Rahnenfuhrer, 2016) with P value <0.05. Pathway enrichment analysis was implemented on all DEGs in the Kyoto Encyclopedia of Genes and Genome (KEGG) platform (http://www.genome.jp/kegg/) (Kanehisa et al., 2008). An adjusted P value <0.05 was considered statistically significant.

Statistical analysis
Single fruit weight and soluble solid content were expressed as the mean ± standard error from 10 independent biological replicates by SPSS (V24.0, IBM Corporation, Armonk, NY, USA). These were subjected to one-way analysis of variance (ANOVA), followed by Duncan’s Multiple Range post-hoc test, and the significance level was set to P < 0.01.

Validation of transcripts by quantitative real-time PCR (qRT-PCR)
The expression levels of a set of randomly selected 13 DEGs were validated by a qRT-PCR assay. Total RNA used for RNA-seq was treated with RNase-free DNase I (New England Biolabs, Ipswich, MA, USA) to eradicate all contaminating DNA. A total of 1,000 ng RNA was used for the reverse transcription with PrimeScript™1st stand cDNA Synthesis Kit. qRT-PCR was performed with SYBR Premix Ex Taq (TaKaRa, Dalian, China) on ABI Step One RT-PCR system, according to the manufacturer’s instructions (20 µL reaction mix: 1 µL cDNA, 10 µL 2×SYBR real-time PCR premixture, 0.4 µL each 10 µM primer, and 8.2 µL distilled water). Three biological replicates with two technical replicates were performed for each sample. The gene IDs and sequences of 13 primers are listed in Table 1. The PCR program was as follows: 95 °C for 5 min, followed by 40 cycles of 95 °C for 15s, and 60 °C for 30s. Relative expression was normalized to the internal control gene GAPDH gene with 2^{−ΔΔCT} method (Livak & Schmittgen, 2001). Pearson’s correlation was performed using R software (ver. 3.2.4, R Core Team, 2014) to determine the correlation of gene expression between qRT-PCR and transcriptomic data.

RESULTS
Effect of drought stress on physiological traits and antioxidant activities
Two irrigation treatments were applied to pear trees over the course of three continuous years. Irrigated pear trees were well irrigated, whereas pear trees subjected to deficit irrigation were not irrigated over the same period of time. As shown in Fig. 1, rainfalls during the 2018 season were extremely scarce (Fig. 1A), the consequence of which was a severe decrease in single fruit weight and soluble solids content (Figs. 1B and 1C).

RNA-seq and de novo assembly
Paired-end RNA-Seq was performed on 10 cDNA libraries (5 repeats for drought and irrigation). Each sample was independently aligned, processed for quality control, and then normalized. A total of 400,755,040 clean reads (Table S1) were generated, among which more than 71.7% were mapped to the pear genome GCF_000315295.1_Pbr_v1.0_genomic.fna (Table 2). As indicated by FPKM, the expression
values showed high correlations (Spearman correlation coefficient (SCC) = 0.99) among biological replicates, which in turn demonstrated that the sequencing quality was satisfactory for subsequent analyses. Principal component analyses (PCA) revealed that the five replicates of each treatment were located nearest to each other (Fig. 2), thereby demonstrating the reliability of our datasets.

Identification of DEGs between field drought and irrigation treatment

In total, 819 DEGs between drought and irrigation were identified by pairwise sample comparisons (Fig. 3A), among which 427 DEGs were upregulated and 392 DEGs were downregulated in comparison to that of irrigation (Table S2). The expression changes of genes in response to field drought are shown in Fig. 3B. The highly expressed (log2FoldChange < -3.5) drought specific genes (Fig. 3C) included gene38569 encoding Probable WRKY TF40, gene 1490 encoding WRKY TF 18, gene 30473 encoding ferritin-4, gene 7768 and gene 6357 encoding 4-hydroxycoumarin synthase 1, gene 5151 encoding

Table 1 The gene IDs and primer sequences for qRT-PCR.

ID	Primer	5’ to 3’
gene40303	gene40303-F	TGGAGGCAGATAGGGTGA
	gene40303-R	CCGTGTTAGGAAGCATCG
gene10948	gene10948-F	AGCCCTGCTTCTATTCTGC
	gene10948-R	ATTTGCTTGATTCCTTGCC
gene1490	gene1490-F	GTTCGATTATCGAGCAAGAG
	gene1490-R	GAGGGGATGAAGGTTGT
gene2348	gene2348-F	GAAACCTTACTGGCAATCT
	gene2348-R	CTCATACCATAACCAACGA
gene37199	gene37199-F	GTTCGGGTGGTGATGGTAG
	gene37199-R	TCCCTGCAATCAGGGTCTC
gene8748	gene8748-F	ATGGGATTAGGGAGGAAC
	gene8748-R	AGAAGCTTGAGGAGAAC
gene4671	gene4671-F	TGCAAAAGGAAGGCAAC
	gene4671-R	ATGGGAAGTAAAGGTCCGA
gene10009	gene10009-F	GAGATGTTGAGGAGGAAC
	gene10009-R	ATTCACCGAGAGGCAAC
gene7767	gene7767-F	GCTGGTTGATGGTGGTG
	gene7767-R	TGTCGAAGTGGTGGTCA
gene39889	gene39889-F	GAGATGTGAGGAGGGAAC
	gene39889-R	ATTCACCGAGAGGCAAC
gene7760	gene7760-F	TCGTGGTGGAAATGGT
	gene7760-R	CAGTGTGGTTTGGTCC
gene7261	gene7261-F	CGATACAAGAGATGGGAAG
	gene7261-R	AGTTCGATTACAGAAAGCA
gene16914	gene16914-2F	TTTATTCTGTTGATCAGGACTACCA
	gene16914-2R	TCTACCTCCTCCTCCTCCT
histidine-containing phosphotransfer protein 4, gene 16914 encoding protein NIM1-INTERACTING 1, and gene12366 encoding uncharacterized protein LOC103951864 (Table 3). Genes that were highly expressed in irrigated samples but identified in drought samples included gene 27148 encoding GDL79_ARATH GDSL esterase/lipase At5g33370,
Table 2 Summary of read numbers based on the RNA-Seq data from field drought and irrigation samples.

Sample	Clean_Reads	Total_Mapped	Multiple_Mapped	Uniquely_Mapped
Drought_1	44498956	32352950(72.70%)	3292204(10.18%)	29060746(89.82%)
Drought_2	40138692	29058326(72.39%)	2929579(10.08%)	26128747(89.92%)
Drought_3	40161076	27616611(68.76%)	3020158(10.94%)	24596453(89.06%)
Drought_4	44937140	32560917(72.46%)	3313185(10.18%)	29247732(89.82%)
Drought_5	41366108	29276201(70.77%)	3178099(10.86%)	26098102(89.14%)
Irrigation_1	40866274	29458607(72.09%)	3015133(10.24%)	26443474(89.76%)
Irrigation_2	38421602	28293159(73.64%)	2752309(9.73%)	25540850(90.27%)
Irrigation_3	36898382	26838597(72.74%)	2709184(10.09%)	24129413(89.91%)
Irrigation_4	37725898	26256731(69.60%)	2917913(11.11%)	23338818(88.89%)
Irrigation_5	35740912	25796677(72.18%)	2616670(10.14%)	23180007(89.86%)

Figure 2 Principal component analysis (PCA) of the pear transcriptome of 10 samples collected from field drought and irrigation pear trees.

Yang et al. (2022), PeerJ, DOI 10.7717/peerj.12921

gene 5286 encoding uncharacterized protein LOC103944059 isoform X1, gene 1170 encoding putative receptor protein kinase ZmPK1, gene13865 encoding gibberellin-regulated protein 11, gene19880 encoding type I inositol 1,4,5-trisphosphate 5-phosphatase CVP2-like isoform X2, and three genes (gene33465, gene39363, and gene34550) encoding palmitoyl-monogalactosyldiacylglycerol delta-7 desaturase (Fig. 3D, Table 4). The specific expression of 2 DEGs, WRKY TF 18 (gene 1490) and NIM1-INTERACTING 1 (gene 16914), was analyzed by RT-qPCR. Consistent with our RNA-seq results, WRKY TF 18 (gene 1490) was highly expressed in drought treatment at a relatively stable expression level, and the transcription of NIM1-INTERACTING 1 (gene 16914) was consistent with the RNA-seq result only in the irrigation (Fig. 4).
Figure 3 Differential expression analysis. (A) Venn diagram of DEGs between drought and irrigation treatment. (B) Heat map of the DEG expression levels. (C) Highly expressed genes (log2FoldChange < −3.5) exclusively identified in field drought samples. (D) Highly expressed genes identified exclusively in irrigation samples.

Co-expression analysis of DEGs during field drought treatment
In order to investigate the co-expressed genes during field drought stress, all the genes that were differentially expressed between drought and irrigation were statistically clustered into
Gene_ID	Irrigation_1.fpkm	Irrigation_2.fpkm	Irrigation_3.fpkm	Irrigation_4.fpkm	Irrigation_5.fpkm	Drought_1.fpkm	Drought_2.fpkm	Drought_3.fpkm	Drought_4.fpkm	Drought_5.fpkm	Swissprot	Description
10948	0.16	0.06	0.26	0.41	0.07	0	0	0	0	0	LOR6_ARATH Protein LURP-one-related 6-like [Arabidopsis thaliana GN=At2g05910 PE=2 SV=1]	
12366	2.59	3.46	6.12	9.01	4.27	0.14	0.22	0.7	0.24	0.32	uncharacterized protein LOC103951864 [Pyrus x bretschneideri]	
1490	0.52	1.22	1.03	2.73	2.14	0.33	0	0.05	0.16	0.11	WRYK40_ARATH Probable WRYK transcription factor 40 [Arabidopsis thaliana GN=WRYK40 PE=1 SV=1]	
15293	0.18	0.17	0.39	0.36	0.13	0	0.03	0	0.04	0	ACA12_ARATH Calcium-transporting ATPase 12, plasma membrane-type [Arabidopsis thaliana GN=ACA12 PE=2 SV=1]	
16914	2.37	3.21	12.8	6.9	4.92	0.74	0.19	0	0.85	0	protein NIM1-INTERACTING 1 [Pyrus x bretschneideri]	
18080	0.55	0.22	0.23	0.17	0.05	0	0.06	0	0	0	RKD4_ARATH Protein RKD4 [Arabidopsis thaliana GN=RKD4 PE=3 SV=1]	
18198	0.42	0.61	3.77	2.83	0.09	0	0	0.45	0.11	0.11	YE04_SCNP0 Uncharacterized RNA-binding protein C17H9.04c [Schizosaccharomyces pombe (strain 972/ATCC 24843) GN=SPAC17H9.04c PE=1 SV=1]	
21231	0	0.12	0.86	0.31	0.46	0	0	0.12	0	0	uncharacterized protein LOC103961606 [Pyrus x bretschneideri]	
27549	3.17	3.81	2.73	1.63	5.48	0	0.14	0.04	0.04	0	REXO4_YEAST RNA exonuclease 4 [Saccharomyces cerevisiae (strain ATCC 204508/S288c) GN=REX4 PE=1 SV=1]	
30473	4.38	5.38	13.7	9.03	16.2	0	0.13	1.09	0.66	1.09	FR3_SOYBN Ferritin-5, chloroplastic [Glycine max PE=2 SV=1]	
38569	12.6	14.1	22.1	27	28.3	2.01	1.2	3.31	1.66	0.4	WRK40_ARATH Probable WRYK transcription factor 40 [Arabidopsis thaliana GN=WRYK40 PE=1 SV=1]	
40303	0.31	0.07	0.25	0.62	0	0	0	0	0	0.08	uncharacterized protein LOC103940893 [Pyrus x bretschneideri]	
5151	0.49	0.13	0.22	0.12	0.06	0	0	0	0	0	AHP4_ARATH Histidine-containing phosphotransfer protein 4 [Arabidopsis thaliana GN=AHP4 PE=1 SV=2]	
6357	0.25	0.15	0.17	0.05	0	0	0	0.05	0	0	4-hydroxycoumarin synthase 1 [Sorbus aucuparia GN=BS2 PE=1 SV=1]	

(continued on next page)
Table 3 (continued)

Gene_ID	Irrigation_1.fpkm	Irrigation_2.fpkm	Irrigation_3.fpkm	Irrigation_4.fpkm	Irrigation_5.fpkm	Drought_1.fpkm	Drought_2.fpkm	Drought_3.fpkm	Drought_4.fpkm	Drought_5.fpkm	Swissprot Description
7768	0.49	0.45	0.53	0.64	0.5	0	0	0.1	0	0	BIPS2_SORAU 4-hydroxycoumarin synthase 1 OS=Sorbus aucuparia GN=BIS2 PE=1 SV=1
8943	0.56	0.53	0.25	0.34	0.43	0.05	0.1	0	0	0	RKD4_ARATH Protein RKD4 OS=Arabidopsis thaliana GN=RD4 PE=3 SV=1

Different groups according to their expression profiles. The largest group (Fig. 5A) included 539 genes that predominantly annotated to RLP12_ARATH and increasingly expressed under field drought conditions. Receptor-like protein 12 participated in the perception of CLV3 and CLV3-like peptides to act as extracellular signals regulating meristems maintenance (149/539). ZIF1_ARATH Protein ZINC INDUCED FACILITATOR-LIKE 1 (120/539), TMVRN_NICGU TMV resistance protein N (90/539), Y3475_ARATH Probable LRR receptor-like serine/threonine-protein kinase At3g47570 (86/539), and WRK40_ARATH Probable WRKY transcription factor 40 were responsible for the regulation of genes responsive to biotic and abiotic stresses (79/539). The second largest group (Fig. 5B) contained 293 genes whose expression increased under field drought conditions. Genes in this cluster were mainly annotated to BAMS_BETPL Beta-amyrin synthase, which catalyzes the formation of the most popular triterpene among higher plants, HDAC6_HUMAN Histone deacetylase 6, HDAC6_HUMAN Histone deacetylase 6, KAP1_ARATH Adenylyl-sulfate kinase 1, chloroplastic, and RAP24_ARATH Ethylene-responsive transcription factor RAP2-4. The third largest group (Fig. 5C) contained 35 genes whose expression decreased under field drought conditions.

Functional analysis of DEGs between drought and irrigation

Functional analysis was performed to locate enriched GO terms and KEGG pathways involving the DEGs. As shown in Table 5, DEGs were significantly assigned to microtubule (GO:0005874), polymeric cytoskeletal fiber (GO:0099513), and supramolecular complex (GO:0099080) in the cell component (CC) category. In the molecular function (MF) category, DEGs were primarily assigned to microtubules motor activity (GO:0003777), motor activity (GO:0003774), and microtubules binding (GO:0008017). In the biological process (BP) category, DEGs were mainly assigned to microtubules-based movement (GO:0007018) and the movement of cell or subcellular components (GO:0006928). These results demonstrate that DEGs involved in binding, transport, and movement were critical during drought stress.

KEGG pathway enrichment analysis revealed that DEGs were notably enriched in plant monoterpenoid biosynthesis, flavonoid biosynthesis, diterpenoid biosynthesis, cysteine and methionine metabolism, phenylpropanoid biosynthesis, and carotenoid biosynthesis (Fig. 6, Table S3), suggesting specific metabolic events during drought. DEGs were identified using the log2 fold change of the transcript level in field drought compared to the irrigation, and were mapped into the related metabolic pathways (Table 6), thereby revealing a significant impact of field drought on secondary metabolism.
Table 4

Gene_ID	Irrigation 1.fpkm	Irrigation 2.fpkm	Irrigation 3.fpkm	Irrigation 4.fpkm	Drought 1.fpkm	Drought 2.fpkm	Drought 3.fpkm	Drought 4.fpkm	Swissprot Description
gene1170	0.03	0	0	0.04	0.11	0.22	0.24	0.37	0
gene1175	0.02	0	0	0	0.17	0.08	0.03	0.03	0.53
gene1257	0.01	0.03	0	0.09	0.19	0.08	0.01	0.02	0.13
gene13865	0	0	0.09	0	0.2	1.05	0.11	0.35	0.23
gene15590	0	0	0	0	0.17	0.06	0.06	0.25	0.38
gene19880	0.03	0	0.05	0	0.44	0.14	0.15	0.19	0.44
gene20415	0	0	0.23	0	0.17	0.53	0.47	0.78	0.88
gene2079	0	0	0	0	0.03	0.01	0.01	0.02	0.26
gene25389	0.03	0	0	0	0.26	0.03	0.03	0	0.26
gene27148	2.16	0.19	0.69	0.24	0.19	43.7	6.64	0.15	0.21
gene33465	0	0.05	0	0	1.89	0.57	0.41	0.42	4.75
gene3352	0.04	0	0	0.04	1.25	0.47	0.05	0.19	0.48
gene34550	0	0.09	0.23	0	0.09	1.79	0.75	0	0.19
gene3550	0	0.09	0.23	0	0.09	1.79	0.75	0	4.39

(continued on next page)
Table 4 (continued)

Gene_ID	Irrigation_1.fpkm	Irrigation_2.fpkm	Irrigation_3.fpkm	Irrigation_4.fpkm	Drought_1.fpkm	Drought_2.fpkm	Drought_3.fpkm	Drought_4.fpkm	Drought_5.fpkm	Swissprot Description
gene 36183	0	0	0	0.08	0	0.43	0	0.1	0.1	0.35
gene 37360	0	0.08	0	0	0	0.46	0.32	0.17	0	0.09
gene 39363	0.09	0.05	0	0.1	0.77	0.1	0.16	0.44	2.3	
gene 39363	0.09	0.05	0	0.1	0.77	0.1	0.16	0.44	2.3	
gene 4671	0	0	0	0.05	0	0.1	0.05	0.11	0.12	0.42
gene 5286	0.25	0.09	0.39	0.41	0	6.9	1.95	0.2	0.51	11.7
gene 5286	0.25	0.09	0.39	0.41	0	6.9	1.95	0.2	0.51	11.7
gene 5488	0.05	0.03	0	0.02	0	0.84	0.11	0.06	0.03	0.72
gene 6278	0	0.04	0	0	0.04	0.22	0.08	0.12	0.08	0.59
gene 8791	0	0	0	0.02	0	0.02	0.1	0.04	0.06	0.11

Drought modulated the expression of many DEGs that codify for structural enzymes of the monoterpenoid biosynthesis, flavonoid pathway, and phenylpropanoid biosynthesis (Table 6); the majority of these genes were downregulated under field drought. Four DEGs including the salutaridine reductase-like (SalR) gene family (gene18404, gene39888, gene39889, and gene10010) and nerolidol synthase 1-like (gene237) were involved in monoterpenoid biosynthesis, all of which were downregulated (Table 7) in response to drought stress. Drought modulated the expression of the majority of the structural flavonoid genes (Table 7), most notably three 3,5-dihydroxybiphenyl synthase-like (gene7767, gene7762, and gene 6358), one leucoanthocyanidin reductase-like isoform X1 (gene3879), one BAHD acyltransferase At5g47980-like (gene7261), one salutaridinol 7-O-acetyltransferase-like (gene10701), one vinorine synthase-like (gene34704), and 4-hydroxycoumarin synthase 2 (gene7760). All the aforementioned genes were upregulated by drought. The specific expression of 4 DEGs SalR (gene39889), 3,5-dihydroxybiphenyl
Figure 4 RNAseq and qRT-PCR validation results of differential gene expression under drought and irrigation. The left Y-axis indicates the gene expression levels calculated by the RPKM method. The right Y-axis indicates the relative gene expression levels.

synthase (gene7767), BAHD acyltransferase (gene7261), and 4-hydroxycoumarin synthase 2 (gene7760) was analyzed by RT-qPCR, and proved consistent with our RNA-seq results of high expression in drought treatment at a relatively stable expression level (Fig. 4).

Differentially expressed transcription factors under drought stress

Transcription factors (TFs) play key regulatory roles in plant signaling responses, those which activate or inhibit gene expression at the transcriptional level in response to stress. Field-drought treatment led to a number of TFs being differentially expressed (Fig. 7). In total, 4438 differentially expressed TFs were identified, belonging to 30 TF families...
such as bHLHs (basic helix-loop-helix), NAC (NAM/ATAF/CUC), MYB (v-myb avian myeloblastosis viral oncogene homolog), ERF (ethylene-responsive element binding factor), C2H2s and C3Hs (C2H2 and C3H zinc-finger proteins), WRKYs (WRKY proteins), and bZIPS (basic region-leucine zipper).
Category	GO.id	Term	Up	Down	DEG	Total	P value	FDR
BP	GO:0007018	microtubule-based movement	14	0	14	44	7.10E−14	4.72E−11
BP	GO:0006928	movement of cell or subcellular component	14	0	14	45	1.00E−13	4.72E−11
BP	GO:0007017	microtubule-based process	14	1	15	118	1.20E−08	1.62E−06
BP	GO:0007349	cellularization	3	0	3	5	7.60E−05	0.003257636
BP	GO:0009558	embryo sac cellularization	3	0	3	5	7.60E−05	0.003257636
BP	GO:0008150	biological process	111	95	206	9279	0.00012	0.004715
BP	GO:0019748	secondary metabolic process	1	5	6	41	0.00015	0.005440385
BP	GO:0055072	iron ion homeostasis	1	2	3	7	0.00026	0.008756429
BP	GO:0009698	phenylpropanoid metabolic process	1	4	5	31	0.00034	0.009926316
BP	GO:0019318	hexose metabolic process	0	5	5	32	0.00039	0.009926316
MF	GO:0003777	microtubule motor activity	14	0	14	44	3.30E−13	1.04E−10
MF	GO:0003774	motor activity	14	0	14	45	4.70E−13	1.11E−10
MF	GO:0008017	microtubule binding	14	0	14	60	3.60E−11	6.79E−09
MF	GO:0015631	tubulin binding	14	0	14	73	5.90E−10	9.27E−08
MF	GO:0008092	cytoskeletal protein binding	14	1	15	115	3.60E−08	2.68E−06
MF	GO:0019825	oxygen binding	1	2	3	4	4.30E−05	0.00202745
MF	GO:0033815	biphenyl synthase activity	0	3	3	4	4.30E−05	0.00202745
MF	GO:0003824	catalytic activity	93	67	160	5794	0.0001	0.0041
MF	GO:0003674	molecular function	139	109	248	10119	0.00015	0.005440385
MF	GO:0016787	hydrolase activity	47	18	65	1920	0.00025	0.008731481
CC	GO:0005874	microtubule	11	0	11	70	2.70E−08	2.68E−06
CC	GO:0099513	polymeric cytoskeletal fiber	11	0	11	71	3.20E−08	2.68E−06
CC	GO:0099080	supramolecular complex	11	0	11	72	3.70E−08	2.68E−06
CC	GO:0099081	supramolecular polymer	11	0	11	72	3.70E−08	2.68E−06
CC	GO:0099512	supramolecular fiber	11	0	11	72	3.70E−08	2.68E−06
CC	GO:0015630	microtubule cytoskeleton	11	1	12	107	3.00E−07	1.95E−05
Table 5 (continued)

Category	GO.id	Term	Up	Down	DEG	Total	P value	FDR
CC	GO:0005576	extracellular region	11	7	18	250	3.10E−07	1.95E−05
CC	GO:0044430	cytoskeletal part	11	1	12	124	1.50E−06	8.84E−05
CC	GO:0048046	apoplast	9	1	10	89	2.90E−06	0.000160865
CC	GO:0005856	cytoskeleton	11	1	12	139	4.90E−06	0.000256706

Figure 6 KEGG enrichment pathway analysis of differentially expressed genes between drought and irrigation pear trees.

Validation of DEG-based gene expression

In order to validate the RNA-Seq gene expression results, qRT-PCR was performed to evaluate the expression levels of the 13 randomly selected DEGs in irrigation vs field-drought conditions (Table 7). As shown in Fig. 4, the expression of the 13 DEGs was largely identical between RNA-Seq and qRT-PCR in spite of certain differences in the absolute fold change. The verified results from the qRT-PCR demonstrated trends similar to the transcriptomic results, which suggests that these DEGs could play significant roles in the regulation of production performance under field-drought conditions.
Table 6 Top 10 pathways in metabolism related to DEGs in field drought samples compared to irrigation conditions.

Pathway	Level1	Level2	Up	Down	DEG total	P value	FDR	
Fatty acid elongation	Metabolism	Lipid metabolism	3	4	7	60	0.000222794	0.015372772
Monoterpenoid biosynthesis	Metabolism	Metabolism of terpenoids and polyketides	0	4	4	21	0.000801546	0.018443153
Sesquiterpenoid and triterpenoid biosynthesis	Metabolism	Metabolism of terpenoids and polyketides	0	5	5	36	0.000801876	0.018443153
Phenylpropanoid biosynthesis	Metabolism	Biosynthesis of other secondary metabolites	5	9	14	303	0.004178352	0.057661261
Carbon fixation in photosynthetic organisms	Metabolism	Energy metabolism	1	6	7	104	0.005694659	0.065488575
Selenocompound metabolism	Metabolism	Metabolism of other amino acids	1	2	3	21	0.008750089	0.077724824
Cutin, suberine and wax biosynthesis	Metabolism	Lipid metabolism	3	1	4	40	0.009011574	0.077724824
Flavonoid biosynthesis	Metabolism	Biosynthesis of other secondary metabolites	0	5	5	75	0.01920126	0.132488694
Cysteine and methionine metabolism	Metabolism	Amino acid metabolism	5	2	7	154	0.040390415	0.232244887
Cyanoamino acid metabolism	Metabolism	Metabolism of other amino acids	4	1	5	118	0.09692841	0.514466178

Figure 7 Differentially expressed transcription factors genes between drought and irrigation treatment.

DISCUSSION

Drought is one of the vital factors limiting plant growth and distribution. Understanding the complex mechanisms of drought responses in plants is essential for improving
Table 7 Effects of drought on monoterpenoid pathway and flavonoid biosynthesis.

Pathway	Gene id	foldChange	log2FoldChange	Gene prediction
Monoterpenoid biosynthesis	gene 18404	0.645958365	−0.630486914	Salutaridine reductase-like [Pyrus × bretscheideri]
Monoterpenoid biosynthesis	gene 39888	0.423999841	−1.23786437	Salutaridine reductase-like [Pyrus × bretscheideri]
Monoterpenoid biosynthesis	gene 39889	0.318598399	−1.650189078	Salutaridine reductase-like [Pyrus × bretscheideri]
Monoterpenoid biosynthesis	gene10009	0.233266788	−2.099947181	Salutaridine reductase-like isoform X1 [Pyrus × bretscheideri]
Monoterpenoid biosynthesis	gene10010	0.265228317	−1.914693282	Salutaridine reductase-like [Pyrus × bretscheideri]
Monoterpenoid biosynthesis	gene237	0.931868371	−0.101801911	(3S,6E)-nerolidol synthase 1-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene7767	−1.533981312	2.66172E−12	3,5-dihydroxybiphenyl synthase-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene7762	−0.49454945	0.30798286	3,5-dihydroxybiphenyl synthase-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene3879	-Inf	1	Leucoanthocyanidin reductase-like isoform X1 [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene7261	−0.510002646	0.062753961	BAHD acyltransferase At5g47980-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene10701	−0.035249252	0.880552832	Salutaridinol 7-O-acyltransferase-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene34704	0.004359729	0.96585065	Vinorine synthase-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene6358	-Inf	0.000106527	3,5-dihydroxybiphenyl synthase-like [Pyrus × bretscheideri]
Flavonoid biosynthesis	gene7760	−1.047453808	0.04585677	4-hydroxycoumarin synthase 2 [Pyrus × bretscheideri]

drought tolerance through programmed selection with precise strategies of stress-testing, particularly in light of ongoing global climate change. In the present study, we identified differentially expressed genes under field-drought stress and irrigation control with RNA-Seq in the pear cultivar YuluXiangli. A total of 819 DEGs were detected, and 4,438 TFs were differentially expressed between drought and irrigation control. Our findings represent valuable information on transcriptome changes in response to drought. Drought responsive genes are mainly enriched in biosynthesis-related pathways—monoterpenoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis—and they belong mainly to bHLHs, NAC, MYB, ERF, C2H2s, and C3Hs, as well as to WRKYs transcription factor families. Our analysis provides a solid foundation for both the identification and the functional analysis of potential candidate genes related to drought tolerance.

The prolonged and severe field drought imposed in this experiment modulated the accumulation of phenylpropanoids, flavonoids, monoterpenoid biosynthesis, and several volatile organic compounds in the pear. Previous studies demonstrated the drought-modulated accumulation of phenylpropanoids, flavonoids, terpenoids, and carotenoids under drought (Li et al., 2018; Murphy & Zerbe, 2020; Savoi et al., 2016; Sircelj et al., 2005). This accumulation acted as antioxidants and protected plants from the adverse effects of drought conditions (Nichols, Hofmann & Williams, 2015). Our study demonstrated
Modulation of the biosynthetic pathways of phenylpropanoids and flavonoids by drought stress at the transcript level, leading to an enhanced accumulation of derivatives of benzoic and cinnamic acids as well as several flavonoids. This was congruent with previous results (Li et al., 2018; Murphy & Zerbe, 2020; Nichols, Hofmann & Williams, 2015; Savoi et al., 2016; Sircej et al., 2005). Five of 14 phenylpropanoid DEGs as well as all of the flavonoid DEGs were upregulated under drought stress, the result of which enhanced the concentration of accumulation within these compounds. Flavonoid aggregation in cytoplasm is capable of effectively detoxifying drought-induced harmful H$_2$O$_2$ molecules. In the present study, the elevated flavonoid aggregation was induced by drought stress condition, supporting previous results in Achillea pachycephala Rech.f. (Gharibi et al., 2019), Brassica napus (Rezayian, Niknam & Ebrahimzadeh, 2018), Arabidopsis (Nakabayashi et al., 2014), grape (Degu et al., 2015; Savoi et al., 2016), and white clover (Ballizany et al., 2012). The physiological and molecular mechanisms underlying the drought-induced accumulation of these compounds to modulate phenylpropanoid as well as the flavonoid biosynthetic pathway need to be further elucidated by integrated transcriptome and metabolite profiling.

The monoterpenoid biosynthesis was significantly modulated by the prolonged and severe field drought conditions in the present experiment. Plant terpenes were synthesized in the plastids through the 2C-methyl-D-erythritol-4-phosphate pathway (MEP), and in the cytosol through the mevalonate (MVA) (Tholl, 2006). A number of terpenoid metabolites were involved in adaptation to adverse environments (Pichersky & Raguso, 2018; Murphy & Zerbe, 2020), including biotic and abiotic stresses; however, the knowledge of drought-modulated regulatory mechanism of monoterpene biosynthesis is limited (Zhang et al., 2019). All of the four-terpene synthase (TPS) genes encoding salutaridine reductase (SalR) and nerolidol synthase 1 involved in monoterpenoid biosynthetic pathway were downregulated under drought conditions. Salutaridine reductase catalyzes the stereo specific reduction of salutaridine to 7(S)-salutaridinol, nerolidol synthase 1 converts geranyl diphosphate (GPP) into S-linalool, and farnesyl diphosphate (FPP) into (3S)-E-nerolidol in the biosynthesis of morphin (Ziegler et al., 2009). Morphine resides within the diverse class of metabolites called benzylisoquinoline alkaloid, and drought stress, it has been noted, can increase alkaloids in opium poppy (papaver sominiferum) (Szabó et al., 2003). Our results were unlike previous findings in several plants (Selmar & Kleinwächter, 2013), those such as Chrysopogon zizanioides (Ziegler et al., 2009) and grapevine (Griesser et al., 2015; Savoi et al., 2016). Ziegler et al. (2009) reported upregulation of the gene encoding Salutaridine reductase under drought stress specifically in leaf tissue of Chrysopogon zizanioides. Drought-induced monoterpenoid production was observed in several plants (Selmar & Kleinwächter, 2013) including grapevine leaves (Griesser et al., 2015; Savoi et al., 2016). Six TPS genes, one of which included the nerolidol synthase 1-like gene, were differentially expressed in response to abiotic stresses in Santalum album (Zhang et al., 2019). Further biochemical and transcriptomic profiling is needed to address terpenoid biosynthetic pathways and their spatiotemporal regulation in response to adverse drought stress.

Transcription factors (TFs) modulate diverse transcriptional regulation and play significant regulatory roles in plant signaling responses to developmental and
environmental changes (Ulker & Somssich, 2004; Osakabe et al., 2014; Yu et al., 2015). In the present study, 4,438 differentially expressed TFs were identified to promote or suppress abiotic stress responses, including the bHLHs, NAC, MYB, ERF, C2H2s, C3Hs, and WRKY families. WRKY TFs have been reported to be involved in drought stress responses through the ABA signaling pathway (Ulker & Somssich, 2004; Osakabe et al., 2014). Overexpression of ZmWRKY58 enhances the drought and salt tolerance in transgenic rice (Cai et al., 2014). Drought-responsive WRKY TFs TaWRKY33 and TaWRKY1 confer the transgenic Arabidopsis plants drought and/or heat resistance (He et al., 2016). The cotton WRKY TF GhWRKY33 reduces transgenic Arabidopsis resistance to drought stress (Wang et al., 2019). In the present study, a total of 79 WRKY genes induced by field drought treatment were grouped in cluster 1, the majority of which were upregulated. Li, Xu & Huang (2016) reported 637 transcription factors responsive to dehydration in pear, among which 45 WRKY genes were differentially expressed. Huang et al. (2015) classified a total of 103 WRKY TFs in the pear genome, demonstrating an improvement of tolerance to drought by manipulating the PbWRKYs. Therefore, WRKY TFs may play significant roles in regulating drought stress responses.

CONCLUSION

We utilized deep sequencing technology to investigate the transcriptome profiles in pear leaves, branches, and young fruits in response to the prolonged field drought induced by irrigation withdrawal. A total of 819 DEGs were detected, and 4,438 TFs were differentially expressed between drought and irrigation control, presenting valuable information on transcriptome changes in response to drought. We illustrated the flavonoids and monoterpenoid biosynthesis-related genes specifically expressed in drought and irrigation control during field-grown season in pear. Validation of gene expression by 13 randomly selected genes was in correspondence with transcriptomic results. Several candidate genes including flavonoid and terpenoid genes, transcription factors, and drought-responsive elements, were involved in transcriptional regulation of plant response to drought. Such information is important to germplasm management and in endeavoring to improve pear productivity.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Shanxi Province Natural Science Foundation (201801D121255, 20210302124122), the Research Subject of Agricultural Science and Technology Innovation of Shanxi Academy of Agricultural Sciences (YCX2018D2YS14), the Project of Scientific and Technological Innovation research of Shanxi Academy of Agricultural Sciences (YCX2020S10), and the China Agriculture Research System (CARS-28-28). There was no additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Grant Disclosures
The following grant information was disclosed by the authors:
The Shanxi Province Natural Science Foundation: 201801D121255, 20210302124122.
The Research Subject of Agricultural Science and Technology Innovation of Shanxi Academy of Agricultural Sciences: YCX2018D2YS14.
The Project of Scientific and Technological Innovation research of Shanxi Academy of Agricultural Sciences: YCX2020SJ10.
The China Agriculture Research System: CARS-28-28.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sheng Yang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Mudan Bai performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Guowei Hao performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
• Huangping Guo and Baochun Fu conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
 The sequence data is available at NCBI: PRJNA655255. The raw data are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.12921#supplemental-information.

REFERENCES
Alexa A, Rahnenfuhrer J. 2016. top GO: enrichment analysis for gene ontology. R package version 2.26.0. Available at https://bioconductor.org/packages/release/bioc/html/topGO.html#:~:text=Enrichment%20Analysis%20for%20Gene%20Ontology&text=topGO%20package%20provides%20tools%20for,can%20be%20implemented%20and%20applied.

Ballizany WL, Hofmann RW, Jahufer MZZ, Barrett BA. 2012. Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Functional Plant Biology 39:167–177 DOI 10.1071/FP11193.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57(1):289–300.
Bodner G, Nakhforoosh A, Kaul H. 2015. Management of crop water under drought: a review. *Agronomy for Sustainable Development* **35**:401–442. DOI 10.1007/s13593-015-0283-4.

Bray EA. 1997. Plant responses to water deficit. *Trends in Plant Science* **2**(2):48–54.

Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B. 2014. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. *Plant Cell, Tissue and Organ Culture* **119**:565–577. DOI 10.1007/s11240-014-0556-7.

Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. *The Plant Cell* **14**(3):559–574. DOI 10.1105/tpc.010410.

Degu A, Morcia C, Tumino G, Hochberg U, Toubiana D, Mattivi F, Schneider A, Bosca P, Cattivelli L, Terzi V, Fait A. 2015. Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. *Plant Physiology and Biochemistry* **86**:24–33. DOI 10.1016/j.plaphy.2014.11.006.

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J. 2017. Crop production under drought and heat stress: plant responses and management options. *Frontiers in Plant Science* **8**:1–16.

Gharibi S, Sayed Tabatabaei BE, Saeidi G, Talebi M, Matkowski A. 2019. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in *Achillea pachycephala* Rech.f. *Phytochemistry* **162**:90–98. DOI 10.1016/j.phytochem.2019.03.004.

Goufo P, Moutinho-Pereira JM, Jorge TF, Correia CM, Oliveira MR, Rosa EAS, António C, Trindade H. 2017. Cowpea (*Vigna unguiculata* L. Walp.) metabolomics: osmoprotection as a physiological strategy for drought stress resistance and improved yield. *Frontiers in Plant Science* **8**:1–22.

Griesser M, Weingart G, Schoedl-Hummel K, Neumann N, Becker M, Varnuza K, Liebner F, Schuhmacher R, Fornec R. 2015. Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (*Vitis vinifera* cv. Pinot noir). *Plant Physiology and Biochemistry* **88**:17–26. DOI 10.1016/j.plaphy.2015.01.004.

He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, Ma YZ, Xu ZS. 2016. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. *BMC Plant Biology* **16**(1):116. DOI 10.1186/s12870-016-0806-4.

Hu YQ, Zhang Q. 2001. Some issues of arid environments dynamics. *Advances in Earth Science* **16**(1):18–22.
Huang XS, Li KQ, Xu XY, Yao ZH, Jin C, Zhang SL. 2015. Genome-wide analysis of WRKY transcription factors in white pear (Pyrus bretschneideri) reveals evolution and patterns under drought stress. *BMC Genomics* **16**(1):1104 DOI 10.1186/s12864-015-2233-6.

Huber AE, Bauerle TL. 2016. Long-distance plant signaling pathways in response multiple stressors: the gap in knowledge. *Journal of Experimental Botany* **67**:2063–2079 DOI 10.1093/jxb/erw099.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. *Nucleic Acids Research* **36**:D480–D484.

Knight H, Knight MR. 2001. Abiotic stress signaling pathways: specificity and cross-talk. *Trends in Plant Science* **6**(6):262–267 DOI 10.1016/S1360-1385(01)01946-X.

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. *Nature* **529**:84–87 DOI 10.1038/nature16467.

Li KQ, Xu XY, Huang XS. 2016. Identification of differentially expressed genes related to dehydration resistance in a highly drought-tolerant pear, Pyrus betulaefolia, as through RNA-Seq. *PLOS ONE* **11**(2):e0149352 DOI 10.1371/journal.pone.0149352.

Li M, Li Y, Zhang W, Li S, Gao Y, Ai X, Zhang D, Liu B, Li Q. 2018. Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber seedling leaves. *Analytical Biochemistry* **559**:71–85 DOI 10.1016/j.ab.2018.08.020.

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. *The Plant Cell* **10**(8):1391–1406 DOI 10.1105/tpc.10.8.1391.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta \Delta CT}$ method. *Methods* **25**:402–408 DOI 10.1006/meth.2001.1262.

Mittler R. 2006. Abiotic stress, the field environment and stress combination. *Trends in Plant Science* **11**(1):15–19 DOI 10.1016/j.tiplants.2005.11.002.

Murphy KM, Zerbe P. 2020. Specialized diterpenoid metabolism in monocot crops: Biosynthesis and chemical diversity. *Phytochemistry* **172**:112289 DOI 10.1016/j.phytochem.2020.112289.

Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K. 2014. Enhancement of oxidative and drought tolerance in *Arabidopsis* by overaccumulation of antioxidant flavonoids. *The Plant Journal* **77**(3):367–379 DOI 10.1111/tpj.12388.

Nichols SN, Hofmann RW, Williams WM. 2015. Physiological drought resistance and accumulation of leaf phenolics in white clover interspecific hybrids. *Environmental and Experimental Botany* **119**:40–47 DOI 10.1016/j.envexpbot.2015.05.014.
Okubo M, Sakuratani T. 2000. Effects of sodium chloride on survival and stem elongation of two Asian pear rootstock seedlings. *Scientia Horticulturae* **85**(1–2):85–90 DOI 10.1016/S0304-4238(99)00141-7.

Osakabe Y, Osakabe K, Shinozaki K, Tran LSP. 2014. Response of plants to water stress. *Frontiers in Plant Science* **5**:86 DOI 10.3389/fpls.2014.00086.

Pichersky E, Raguso RA. 2018. Why do plants produce so many terpenoid compounds? *New Phytologist* **220**(3):692–702 DOI 10.1111/nph.14178.

R Core Team. 2014. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.r-project.org/.

Rezayian M, Niknam V, Ebrahimzadeh H. 2018. Differential responses of phenolic compounds of Brassica napus under drought stress. *Iranian Journal of Plant Physiology* **8**:2417–2425.

Ruggiero A, Punzo P, Landi S, Costa A, Van Ooosten M, Grillo S. 2017. Improving plant water use efficiency through molecular genetics. *Horticulture* **3**:31 DOI 10.3390/horticulturae3020031.

Saud S, Fahad S, Yajun C, Ihsan MZ, Hammad HM, Nasim W, Amanullah Jr, Arif M, Alharby H. 2017. Effects of nitrogen supply on water stress and recovery mechanisms in *Kentucky bluegrass* plants. *Frontiers in Plant Science* **8**:983 DOI 10.3389/fpls.2017.00983.

Savoi S, Wong DCJ, Arapitsas P, Miculan M, Buccetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. 2016. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (*Vitis vinifera* L.). *BMC Plant Biology* **16**:67 DOI 10.1186/s12870-016-0760-1.

Selmar D, Kleinwächter M. 2013. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. *Plant and Cell Physiology* **54**:817–826 DOI 10.1093/pcp/pct054.

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. *Journal of Experimental Botany* **58**(2):221–227.

Siva GJ, Souza TM, Barbieri RL, De Oliveira AC. 2014. Origin, domestication, and dispersing of pear (*Pyrus spp.*). *Advances in Agriculture* **2014**:541097 DOI 10.1155/2014/541097.

Sircelj H, Tausz M, Grill D, Batic F. 2005. Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. *Journal of Plant Physiology* **162**:1308–1318 DOI 10.1016/j.jplph.2005.01.018.

Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang PC, Zhu JK. 2005. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. *The Plant Cell* **17**(8):2384–2396 DOI 10.1105/tpc.105.033043.

Szabó B, Lakatos Á, Kőszegi T, Botz L. 2003. HPTLC and HPLC determination of alkaloids in poppies subjected to stress. *J Planar Chromatogr-Modern TLC* **16**:293–297 DOI 10.1556/JPC.16.2003.4.9.

Tadesse A, Melkam A. 2016. Drought tolerance mechanisms in field crops. *World Journal of Biology and Medical Science* **3**(2):15–39.
Tholl D. 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. *Current Opinion in Plant Biology* 9(3):297–304 DOI 10.1016/j.pbi.2006.03.014.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nature Biotechnology* 28:511–515 DOI 10.1038/nbt.1621.

Ulker B, Somssich IE. 2004. WRKY transcription factors: from DNA binding towards biological function. *Current Opinion in Plant Biology* 7(5):491–498 DOI 10.1016/j.pbi.2004.07.012.

Wang H, Wang Z, Zhang M, Jia B, Heng W, Ye Z, Zhu L, Xu X. 2018. Transcriptome sequencing analysis of two different genotypes of Asian pear reveals potential drought stress genes. *Tree Genetics & Genomes* 14:40 DOI 10.1007/s11295-018-1249-x.

Wang L, Wang S, Li W. 2012. RSeQC: quality control of RNA-seq experiments. *Bioinformatics* 28:2184–2185 DOI 10.1093/bioinformatics/bts356.

Wang N, Xu S, Sun Y, Liu D, Li Zhou, Yang Li, Li X. 2019. The cotton WRKY transcription factor (GhWRKY33) reduces transgenic *Arabidopsis* resistance to drought stress. *Scientific Reports* 9:724 DOI 10.1038/s41598-018-37035-2.

Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. *Planta* 218(1):1–14 DOI 10.1007/s00425-003-1105-5.

Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S. 2013. The genome of the pear (*Pyrus bretschneideri* Rehd.). *Genome Research* 23(2):396–408 DOI 10.1101/gr.144311.112.

Yu X, Liu Y, Wang S, Tao Y, Wang Z, Shu Y, Peng H, Mijiti A, Wang Z, Zhang H, Ma H. 2015. CarNAC4, a NAC-type chickpea transcription factor conferring enhanced drought and salt stress tolerances in Arabidopsis. *Plant Cell Reports* 35(3):1–15.

Zandalinas SI, Sales C, Beltrán J, Gómez-Cadenas A, Arbonà V. 2017. Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. *Frontiers in Plant Science* 7:1954 DOI 10.3389/fpls.2016.01954.

Zarafshar M, Akbarinia M, Askari H, Hosseini SM, Rahaei M, Struve D, Striker GG. 2014. Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (*Pyrus boissieriana*). *Biotechnology, Agronomy and Society and Environment* 18(3):353–366.
Zhang X, Niu M, Teixeira da Silva JA, Zhang Y, Yuan Y, Jia Y, Xiao Y, Li Y, Fang L, Zeng S, Ma G. 2019. Identification and functional characterization of three new terpene synthase genes involved in chemical defense and abiotic stresses in Santalum album. *BMC Plant Biology* **19**(1):115 DOI 10.1186/s12870-019-1720-3.

Ziegler J, Brandt W, Geißler R, Facchini PJ. 2009. Removal of substrate inhibition and increase in maximal velocity in the short chain dehydrogenase/reductase salutaridine reductase involved in morphine biosynthesis. *Journal of Biological Chemistry* **284**:26758–26767 DOI 10.1074/jbc.M109.030957.

Zong Y, Sun P, Liu J, Yue XY, Niu QF, Teng YW. 2014. Chloroplast DNA-based genetic diversity and phytogeography of *Pyrus betulaefolia* (Rosaceae) in Northern China. *Tree Genetics & Genomes* **10**(3):739–749 DOI 10.1007/s11295-014-0718-0.