True versus apparent shapes of bow shocks

Jorge A. Tarango-Yong ⋆ & William J. Henney †
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, Michoacán, México

Accepted XXX. Received YYY; in original form ZZZ.

ABSTRACT
Astrophysical bow shocks are a common result of the interaction between two supersonic plasma flows, such as winds or jets from stars or active galaxies, or streams due to the relative motion between a star and the interstellar medium. For cylindrically symmetric bow shocks, we develop a general theory for the effects of inclination angle on the apparent shape. We propose a new two-dimensional classification scheme for bow shapes, which is based on dimensionless geometric ratios that can be estimated from observational images. The two ratios are related to the flatness of the bow’s apex, which we term planitude and the openness of its wings, which we term alatitude. We calculate the expected distribution in the planitude–alatitude plane for a variety of simple geometrical and physical models: quadrics of revolution, wilkinoids, cantoids, and ancantoids. We further test our methods against numerical magnetohydrodynamical simulations of stellar bow shocks and find that the apparent planitude and alatitude measured from infrared dust continuum maps serve as accurate diagnostics of the shape of the contact discontinuity, which can be used to discriminate between different physical models.

Key words: circumstellar matter – hydrodynamics – stars: winds, outflows

1 INTRODUCTION
The archetypal bow shock is formed when a solid body moves supersonically through a compressible fluid. Terrestrial examples include the atmospheric re-entry of a space capsule, or the sonic boom produced by a supersonic jet (van Dyke 1982). In astrophysics the term bow shock is employed more widely, to refer to many different types of curved shocks that have approximate cylindrical symmetry. Instead of a solid body, astrophysical examples usually involve the interaction of two supersonic flows, such as the situation of a stellar wind emitted by a star that moves supersonically through the interstellar medium (van Buren & McCray 1988; Kobulnicky et al. 2010; van Marle et al. 2011; Mackey et al. 2012, 2015). In such cases, two shocks are generally produced, one in each flow. Sometimes, especially in heliospheric studies (Zank 1999; Scherer & Fichtner 2014), the term “bow shock” is reserved for the shock in the ambient medium, with the other being called the “wind shock” or “termination shock”. However, in other contexts such as colliding wind binaries (Stevens et al. 1992; Gayley 2009) such a distinction is not so useful.

A further class of astrophysical bow shock is driven by highly collimated, supersonic jets of material, such as the Herbig Haro objects (Schwartz 1978; Hartigan et al. 1987) that are powered by jets from young stars or protostars. Additional examples are seen in planetary nebulae (Phillips et al. 2010; Meaburn et al. 2013), active galaxies (Wilson & Ulvestad 1987), and in galaxy clusters (Markevitch et al. 2002). In the jet-driven case, the term “working surface” is often applied to the entire structure comprising the two shocks plus the shocked gas in between them, separated by a contact discontinuity. The working surface may be due to the interaction of the jet with a relatively quiescent medium, or may be an “internal

© 2017 The Authors

⋆ E-mail: j.tarango@irya.unam.mx
† E-mail: w.henney@irya.unam.mx
weaker of the two (in terms of momentum), so that the shell curves working surface” within the jet that is due to supersonic temporal wind is anisotropic. The streamlines (thin lines) are drawn to be qualitatively realistic: they are straight in regions of hypersonic flow, but curved in subsonic regions, responding to pressure gradients in the shocked shells. Streamline slopes are discontinuous across oblique shocks.

In empirical studies the relationship between these theoretical constructs and the observed emission structures is not always clear. In such cases the term “bow shock” is often used in a more general sense to refer to the entire arc of emission. In this paper, we will concentrate on stellar bow shocks, in which the position of the star can serve as a useful reference point for describing the bow shape. The empirical terminology that we will employ is illustrated in Figure 1. The apex is the point of closest approach of the bow to the star, which lies on the approximate symmetry axis, and the region around the apex is sometimes referred to as the head of the bow. The wings are the swept-back sides of the bow, which lie in a direction from the star that is orthogonal to the axis, with the far wings being the wing region farthest from the apex. Finally, the tail is the region near the axis but in the opposite direction from the apex.

Figure 2 shows an idealized schematic of how a double bow-shock shell is formed from the interaction of two supersonic streams: an inner wind and an outer wind, with the inner wind being the weaker of the two (in terms of momentum), so that the shell curves back around the inner source. The outer wind may be from another star, or may be a larger scale flow of the interstellar medium, such as the champagne flow produced by the expansion of an H ii region away from a molecular cloud (Tenorio-Tagle 1979; Shu et al. 2002; Medina et al. 2014). Alternatively, it may be due to the supersonic motion of the inner source through a relatively static medium, in which case the outer wind will not be divergent as shown in the figure but rather plane-parallel. The thickness of the shocked shells at the apex depends on the Mach number, M, of the flows and the efficiency of the post-shock cooling. For sufficiently strong cooling, the post-shock cooling zone thickness is negligible and the shock can be considered isothermal. In this case, the shell thickness is of order M^{-2} times the source-apex separation (Henney 2002), which can become very small for high Mach numbers. The shell thickness will tend to increase towards the wings, due to the increasing shock obliqueness, which reduces the perpendicular Mach number.

In the extreme thin-shell limit, the entire bow structure can be treated as a surface. The bow radius measured from the inner source (star) is $R(\theta, \phi)$, where θ is the polar angle, measured from the star-apex axis, and ϕ is the azimuthal angle, measured around that axis. Assuming cylindrical symmetry about the axis, this reduces to $R(\theta)$, which is illustrated in Figure 3, following Canto et al. (1996). The separation between the two sources is D and the complementary angle, as measured at the position of the outer source, is θ_1. The minimum value of $R(\theta)$ is the stagnation radius, R_0, which occurs at the apex ($\theta = 0$). In a steady state, ram-pressure balance on the axis implies that

$$\frac{R_0}{D} = \beta^{1/2} \left(1 + \beta^{-1/2}\right),$$

where β is the momentum ratio between the two winds. If the winds are isotropic, with inner wind mass-loss rate M_w and terminal velocity V_w, while the outer wind has corresponding values M_{w1} and V_{w1}, then the momentum ratio is

$$\beta = \frac{M_w V_w}{M_{w1} V_{w1}}.$$

The case where the outer wind is a parallel stream (Wilkin 1996) corresponds to the limit $\beta \to 0$, in which case D is no longer a meaningful parameter.

The paper is organized as follows. In § 2 we outline the geometric parameters that are necessary for describing bow shapes and introduce two dimensionless ratios: planitude and alatude. In § 3 we derive general results for the projection of bow shapes on to the
Bow shock shapes

2 PLANITUDE AND ALATUTE OF BOW SHAPES

The stagnation radius \(R_0 \) describes the linear scale of the bow shock, but in order to characterize its shape more parameters are required. To efficiently capture the diversity of bow shapes, we propose the parameters shown in Figure 4. The perpendicular radius \(R_90 \) is the value of \(R(\theta) \) at \(\theta = 90^\circ \), whereas \(R_c \) is the radius of curvature of the bow at the apex (\(\theta = 0 \)), which in cylindrical symmetry simplifies to

\[
R_c = \frac{R_0}{R_0 - R_{90,0}},
\]

where \(R_{90,0} \) is \(d^2 R/d\theta^2 \) evaluated at \(\theta = 0 \).

A fourth parameter is the asymptotic opening angle of the far wings, \(\theta_{\infty} \), which is useful in the case that the wings are asymptotically conical. However, in many bow shocks the wings tend towards the asymptotic angle only slowly, making \(\theta_{\infty} \) difficult to measure, especially since the emission from the far wings is often weak at best. In contrast, the three radii, \(R_0, R_90, \) and \(R_c \), are straightforward to determine from observations. One simple method to estimate the radius of curvature is to make use of the Taylor expansion\(^1\) of \(R(\theta) \) about the apex (with \(\theta \) in radians):

\[
R(\theta) = R_0 + \frac{1}{2} R_{90,0} \theta^2 + O(\theta^4),
\]

so that fitting a polynomial in \(\theta^2 \) to \(R(\theta) \) for \(|\theta| < \Delta \theta \) yields \(R_0 \) and \(R_{90,0} \) from the first two coefficients, and hence \(R_c \) from equation (3). Experience has shown that \(\Delta \theta = 30^\circ \) and three terms in the polynomial are good choices, where the third term is used only as a monitor (if the co-efficient of \(\theta^3 \) is not small compared with \(R_c \), then it may indicate a problem with the fit).

Since we have three radii, we can construct two independent dimensionless parameters:

\[
\text{Planitude } \Pi \equiv \frac{R_c}{R_90}, \quad \text{Alatute } \Lambda \equiv \frac{R_90}{R_0}
\]

and these will be the principal shape parameters that we will use in the remainder of the paper. The planitude, \(\Pi \), is a measure of the flatness of the head of the bow around the apex, while the alatute, \(\Lambda \), is a measure of the openness of the bow wings. Although “planitude” can be found in English dictionaries, “alatute” is a new word that we introduce here, derived from the latin ala for “wing”.

Several previous studies have discussed the relation between \(R_{90} \) and \(R_90 \) as a diagnostic of bow shape (for example Robberto et al. 2005; Cox et al. 2012; Meyer et al. 2016), but as far as we know, we are the first to include \(R_c \). Robberto et al. (2005) § 4.2 use the ratios \(R_0/D \) and \(R_{90}/D \) in analyzing proplyd bow shapes in the Trapezium cluster in the center of the Orion Nebula (Hayward et al. 1994; García-Arredondo et al. 2001; Smith et al. 2005). In that case, the source of the outer wind is known, and so \(D \) is well-determined (at least, in projection), but for many bow shocks \(D \) is not known, and is not even defined for the moving-star or parallel-stream case. Cox et al. (2012) § 4.1 compare the observed shapes of bow shocks around cool giant stars with an analytic model, and use \(A \) and \(B \) for the projected values of \(R_0 \) and \(R_{90} \), respectively (see next section for discussion of projection effects). Meyer et al. (2016) § 3.2 analyze the distribution of \(R_{90}/R_90 \) (the reciprocal of our \(\Lambda \)) for hydrodynamic simulations of bow shocks around runaway OB stars.

3 PROJECTION ONTO THE PLANE OF THE SKY

In this section we calculate the apparent shape on the plane of the sky of the limb-brightened border of a shock or shell that is idealized as an arbitrary cylindrically symmetric surface.

3.1 Frames of reference

Consider body-frame cartesian coordinates \((x, y, z)\), where \(x \) is the symmetry axis, and spherical polar coordinates \((R, \theta, \phi)\), where \(\theta \) is the polar angle and \(\phi \) the azimuthal angle. Since the surface is cylindrically symmetric, it is can be specified as \(R = R(\theta) \), so that cartesian coordinates on the surface are:

\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} = R(\theta) \begin{pmatrix}
 \cos \theta \\
 \sin \theta \cos \phi \\
 \sin \theta \sin \phi
\end{pmatrix}.
\]

symmetric bow) and that the orientation of the axis is already known. Generalization to cases where these assumptions do not hold is discussed in Appendix C.
We define unit vectors \(\hat{\mathbf{i}} \) when the surface is viewed perpendicular to its axis (Fig. 6) that in this case the unit vectors are given by \(\hat{\mathbf{i}} = \hat{\mathbf{x}} \). The relationship between the two frames is illustrated in Figure 5.

Suppose that the viewing direction makes an angle \(\alpha \) with the \(z \) axis, so that we can define observer-frame coordinates \((x', y', z')\), which are found by rotating the body-frame coordinates about the \(y \) axis:

\[
\begin{bmatrix}
 x' \\
 y'
 z'
\end{bmatrix} = \begin{bmatrix}
 x \cos i - z \sin i \\
 y \\
 z \cos i + x \sin i
\end{bmatrix}.
\]

The relationship between the two frames is illustrated in Figure 5. All quantities in the observer’s frame are denoted by attaching a prime to the equivalent quantity in the body frame. The celestial coordinates on the “plane of the sky” are given by \((x', y', z')\) with \(x' \) being the projected symmetry axis of the surface, while the line of sight lies along \(-z'\). The inclination angle \(i \) is defined so that \(i = 0^\circ \) when the surface is viewed perpendicular to its axis \((side on)\) and \(i = 90^\circ \) when it is viewed along its axis \((end on)\).

3.2 Unit vectors normal and tangential to the surface

We define unit vectors \(\hat{n}, \hat{t} \), such that \(\hat{n} \) is normal to the surface, while \(\hat{t} \) is tangent to the surface in a plane of constant \(\phi \). For \(\phi = 0 \) the surface lies in the \(xy \) plane and it is straightforward to show (Fig. 6) that in this case the unit vectors are given by

\[
\hat{t}_0 = \begin{bmatrix}
 -\cos \alpha \\
 \sin \alpha \\
 0
\end{bmatrix} \quad \text{and} \quad \hat{n}_0 = \begin{bmatrix}
 \sin \alpha \\
 \cos \alpha \\
 0
\end{bmatrix},
\]

where \(\alpha \) is the slope angle, given by

\[
\tan \alpha = -\frac{\frac{dy}{dx}|_{R(\theta)}}{\frac{dx}{dx}|_{R(\theta)}} = \frac{1 + \omega \tan \theta}{\tan \theta - \omega}.
\]

\[\hat{n} = \left(\frac{1}{1 + \omega^2} \right) \sin \theta \cos \phi \sin i + \left(\frac{\omega}{1 + \omega^2} \right) \sin \theta \sin \phi \cos i - \left(\frac{\omega}{1 + \omega^2} \right) \cos \theta \sin i + \left(\frac{1}{1 + \omega^2} \right) \cos \theta \cos i
\]

\[\hat{t} = \left(\frac{1}{1 + \omega^2} \right) \sin \theta \cos \phi \sin i + \left(\frac{\omega}{1 + \omega^2} \right) \sin \theta \sin \phi \cos i - \left(\frac{\omega}{1 + \omega^2} \right) \cos \theta \sin i + \left(\frac{1}{1 + \omega^2} \right) \cos \theta \cos i
\]

3.3 Tangent line

The boundary on the plane of the sky of the projected surface is the locus of those lines of sight that graze the surface tangentially. This corresponds to a curved line on the surface itself, which we denote the tangent line, and which is defined by the condition

\[
\hat{n} \cdot \hat{t} = 0.
\]

We denote by \(\phi_t \) that value of \(\phi \) that satisfies this relation for a given inclination, \(i \), and polar angle, \(\theta \):

\[
\sin \phi_t = -\tan i \tan \alpha = \tan i \frac{1 + \omega \tan \theta}{\omega - \tan \theta}.
\]

From equations (7, 8) it follows that the observer-frame coordinates of the tangent line are given by

\[
\left(\begin{array}{c}
 x'_t \\
 y'_t \\
 z'_t
\end{array} \right) = \frac{R(\theta)}{\sin \theta} \left(\begin{array}{c}
 \cos \theta \cos i - \sin \theta \sin \phi_t \sin i \\
 \sin \theta (1 - \sin^2 \phi_t)^{1/2} \cos \theta \sin i + \sin \theta \sin \phi_t \cos i
\end{array} \right).
\]
Note that, in general, \(\tau \gamma \) is not a linear function of \(x \gamma \) and \(y \gamma \), so that the tangent line is not a plane curve.

The apparent shape \((x', y')\) of the tangent line on the plane of the sky can also be described in polar form as \(R'(\theta', \phi)\), where

\[
R' = (x'^2 + y'^2)^{1/2} \quad \text{and} \quad \tan \theta' = y'/x'.
\]

(17)

Note that equation (15) will not have a solution for arbitrary values of \(\theta \) and \(i \), but only when \(|\tan i| \tan |\alpha| < 1 \). In particular, if \(i \neq 0 \), then the tangent line only exists for \(\theta > \theta_0 \) where \(\theta_0 \) is the value of \(\theta \) on the tangent line’s projected symmetry axis \((\theta' = 0) \), given implicitly by

\[
\tan \theta_0 = \left[\tan i + \omega(\theta_0) \right] \frac{1}{1 - \omega(\theta_0)} \tan i.
\]

(18)

In addition, if the surface is sufficiently “open” \((\alpha \geq \sigma_{\text{min}} > 0 \text{ for all } \theta)\), then for those inclinations with \(|i| > |\sin \theta_{\text{obs}}| \) the tangent line does not exist for any value of \(\theta \). In other words, when the viewing angle is sufficiently close to face-on, the projected surface has no “edge” and will no longer look like a bow shock to the observer.

3.4 Characteristic radii on the plane of the sky

In order to compare the shell shape given by \(R(\theta) \) with observations, it is convenient to define the following apparent radii in the observer frame: \(R_0' \) and \(R_{90}' \). These are projected distances of the shell tangent line from the origin. The first is measured in the direction of the symmetry axis, and the second in a perpendicular direction. More concretely, \(R_0' = \gamma' \) \((\theta' = 0) \) and \(R_{90}' = \gamma' \) \((\theta' = 90) \). From equations (15) and (16) we find that:

\[
R_0' = R(\theta_0) \cos(\theta_0 + i)
\]

(19)

Where \(\theta_0 \) is the solution of equation (18), and

\[
R_{90}' = R(\theta_{90}) \sin \theta_{90} \left(1 - \sin^2 \left(\phi_7(\theta_{90}) \right) \right)^{1/2}
\]

(20)

Where \(\theta_{90} \) is the solution of the implicit equation:

\[
\cot \theta_{90} = \frac{1 - \left[1 + \omega(\theta_{90})^2 \sin^2 2i \right]^{1/2}}{2 \omega(\theta_{90}) \cos^2 2i}
\]

(21)

The projected alatitude (see § 2) is then given by \(N' = R_{90}' / R_{90} \).

Similarly, the projected planitude is \(\Pi' = R_0' / R_0 \), where \(R_0' \) is found by applying the equivalent of equation (3) for primed quantities:

\[
R_0' = \left(R_0^2 - R_{\theta, \theta, 0}' \right)^{1/2}
\]

(22)

3.5 Line-of-sight velocities on the tangent line

Motions in a thin shocked shell will be predominantly tangential to the shell surface. In addition, for the particular case of windward bowshocks, the flow in each azimuthal slice can be shown to be independent (Wilkin 2000), which implies that the shell velocity is parallel to \(\hat{T} \). The projected line-of-sight shell velocity is therefore

\[
v_{\text{los}} = (Q' - \xi') v_{\gamma}(\theta) = \frac{v_{\gamma}(\theta)(1 + \omega^2)^{1/2} \sin i}{\sin \theta - \omega \cos \theta},
\]

(23)

where \(v_{\gamma}(\theta) \) is the gas velocity along the shell and the standard sign convention has been adopted such that velocities away from the observer are deemed positive.

4 QUADRICS OF REVOLUTION

For an arbitrary surface of revolution, application of equations (15, 16) to determine the projected shape of the tangent line is not straightforward and in general requires numerical techniques. However, analytical results can be found for the important class of surfaces known as quadrics of revolution (Goldman 1983; Gfrerrer & Zsombor-Murray 2009), which are formed by rotating a conic section plane curve about its symmetry axis. Examples are the sphere, spheroids (oblate and prolate), and right circular paraboloids and hyperboloids.\(^2\) We ignore the degenerate cases of cylinders, cones, and pairs of parallel planes. While mathematically simple, these quadrics are sufficiently flexible that they can provide a useful approximation to more complex bow shock shapes.

The shape of the quadratic curves in the \(xy \) plane \((\phi = 0)\) are shown in Figure 7(a) and (b) for the ellipse and hyperbola case, respectively. The conic section itself is fully described by two lengths, \(a \) and \(b \), which are the semi-axes.\(^3\) However, the curve can be translated along the \(x \) axis to an arbitrary point with respect to the star, so that the apex distance \(R_0 \) has no necessary relation to \(a \) or \(b \) and therefore the star/bow combination requires three independent lengths for its specification. The displacement \(x_0 \) from the star to the “center” of the conic section is

\[
x_0 = R_0 - \sigma a \quad \text{with} \quad \sigma = \begin{cases} +1 & \text{ellipse} \\ -1 & \text{hyperbola} \end{cases}
\]

(24)

For hyperbolas the center is “outside” of the bow and \(x_0 \) is always positive, whereas for ellipses the center is “inside” the bow and \(x_0 \) is usually negative, except when \(a < R_0 \) (see Figure 7).

A general parametric form\(^4\) for the \(xy \) coordinates of the quadrics (in the \(\phi = 0 \) plane, and with the star at the origin) as a function of \(t = [0, \pi] \) is then

\[
\begin{align*}
x &= x_0 + \sigma a C(t) \\
y &= b S(t)
\end{align*}
\]

(25)

where

\[
S, C = \begin{cases} \sin, \cos & \text{ellipse} \\ \sinh, \cosh & \text{hyperbola} \end{cases}
\]

(26)

Except for the circle case \((\sigma = +1, a = b)\), the parametric variable \(t \) is not actually an angle in physical space. Instead, the polar form of the bow shape \(R(\theta) \) must be found by substituting equations (25) into \(\theta = \tan^{-1} y/x \) and \(R = (x^2 + y^2)^{1/2} \).

The type of quadratic surface can be characterized by the quadric parameter:

\[
Q = \frac{b^2}{a^2}.
\]

(27)

where \(Q < 0 \) corresponds to open surfaces (hyperboloids) and \(Q > 0 \) corresponds to closed surfaces (oblate spheroids with \(Q > 1 \) and prolate spheroids with \(Q < 1 \)). Special cases are the sphere \((Q = 1)\) and the paraboloid \((Q = 0)\). Alternatively, one can define a quadric\(^2\)

\(^2\) We consider only the case of a single sheet of a 2-sheet hyperboloid or paraboloid, since these are the versions that resemble a bow, whereas the 1-sheet versions resemble the waist of an hourglass.

\(^3\) Note that we do not require that \(a > b \), so either \(a \) or \(b \), may be the semi-major axis.

\(^4\) The special case of the parabola needs to be treated differently, see Appendix A.
Figure 7. Example off-center conic sections that can form quadrics of revolution: (a) ellipse, (b) hyperbola. The relationship is shown between the conic section parameters a, b, θ_0 and the bowshock characteristic radii R_0, R_90, R_c, as defined in Fig. 4. The origin (center of the weaker flow) is indicated by a red star, the center of curvature of the apex of the bow shock is indicated by a green dot, and the geometric center of the conic section is indicated by a blue cross, which is offset by x_0 from the origin. Note that R_0, R_90, R_c, a, and b are all lengths and are always positive, whereas x_0 is a displacement and may be positive or negative.

Figure 8. Example of a family of conic sections, all with the same planitude (flatness at apex, marked by white dot): $\Pi = R_c/R_0 = 2$. The quadric angle, θ_0, varies over the family (see text), with lower values of θ_0 giving larger values of the alatude, $\Lambda = R_90/R_0$, meaning more open wings. Different values of Π can be achieved for the exact same quadrics by sliding them along the x-axis, which will also change the axis scales since these are normalized by R_0.

Angle:

$$\theta_0 = \sigma \tan^{-1}(b/a),$$

which is marked in Figure 7. In the case of hyperboloids, the asymptotic opening angle of the wings (§2 and Fig. 4) is $\theta_\infty = \pi + \theta_0$ (note that $\theta_0 < 0$ in this case), and the minimum slope angle is $\alpha_{\min} = |\theta_0|$, see discussion following equation (18).

The set of parameters (Q, a, x_0) are then sufficient to characterize the star/bow combination, where a is the quadric scale and x_0 is its center displacement from the star. However, we can also characterize the star/bow by (R_0, Π, Λ), where R_0 is the star-apex distance, and Π and Λ are the planitude and alatude, see §2. We now derive the equivalences between these two descriptions. The apex radius of curvature for a conic section is

$$R_c = b^2/a = |Q|,$$

whereas the perpendicular radius, R_90, is the value of y when $x = 0$, which can be found from equations (24, 25) as

$$R_90^2 = Q \left(\sigma a^2 - x_0^2\right).$$

Combining equations (5, 6, 24, 27–30) yields

$$R_0 = x_0 + \sigma a$$

$$\Pi = \frac{aQ}{a + \sigma x_0}$$

$$\Lambda = \left(\frac{a - \sigma x_0}{a + \sigma x_0}\right)^{1/2}$$

with $\sigma = \text{sgn} \, Q$. It also follows that the quadric parameter in terms of the planitude and alatude is

$$Q = 2\Pi - \Lambda^2.$$
Hence, it is the sign of $2\Pi - \Lambda^2$ that determines σ and whether a quadric is a spheroid or a hyperboloid. For example, for a constant planitude, Π, we can have a family of different quadric types, with varying alatitude, Λ, that increases from oblate, through prolate and paraboloid, to hyperboloid, as illustrated in Figure 8.

4.1 Parabolic departure function

The special case of confocal conic sections ($\Lambda = \Pi$) can be written in polar form as

$$ R(\theta) = R_0 \frac{1 + e \cos \theta}{1 + e} \quad (35) $$

where $e = (1 - Q)^{1/2}$ is the conic eccentricity. For the confocal parabola ($e = 1$), the dimensionless reciprocal radius is therefore $R_0/R(\theta) = \frac{1}{2}(1 + \cos \theta)$, which suggests the following form for a departure function that measures the difference between a given shape $R(\theta)$ and the parabola:

$$ \Delta(\cos \theta) = \frac{R_0}{R(\theta)} - \frac{1}{2}(1 + \cos \theta) \quad (36) $$

From equations (35) and (36) it is clear that Δ is a linear function of $\cos \theta$ for other confocal conics, being positive for ellipses ($e < 1$) and negative for hyperbolae ($e > 1$). Examples are shown in Figure 9 for a grid of 9 conics centered on the confocal parabola, with (Π, Λ) ranging from 3/4 to 4/3 of (2, 2). The hyperbolae have negative values of Δ in the far wings, with tracks that end at $\cos R_0$.

Strictly speaking, the departure function is redundant if one is interested in only conic sections, since they are fully determined by Π and Λ. Nonetheless, as we will show in following sections, it is a useful tool for studying general $R(\theta)$, being very sensitive to small variations in the shape.

4.2 Plane-of-sky projection of quadric surfaces

We now apply the machinery of § 3 to find the projected shape of a quadric bow on the plane of the sky. The intrinsic 3D shape of the shell is given by rotating equations (25) about the x-axis, but it is more convenient to first transform to a reference frame where the origin is at the center of the conic section:

$$ (X, Y, Z) = (x - x_0, y, z) \quad (37) $$

In this new frame, the quadric shape is

$$ X = a C(t) $$
$$ Y = b S(t) \cos \phi $$
$$ Z = b S(t) \sin \phi $$

The azimuth of the tangent line as a function of inclination and parametric variable is then found from equations (10, 15) to be

$$ \sin \phi_t = \frac{b C(t)}{a S(t)} \tan i \quad (39) $$

Combining equations (8, 38, 39) gives the observer-frame cartesian plane-of-sky coordinates of the tangent line:

$$ X'_t = C(t) \left(a^2 \cos^2 \phi + \sigma b^2 \sin^2 \phi \right) \tan^2 i \quad (40) $$
$$ Y'_t = b S(t) \left(1 - \frac{b^2 C^2(t)}{a^2 S^2(t)} \tan^2 i \right)^{1/2} $$

We wish to show that this projected shape is a conic section of the same variety (ellipse or hyperbola) as the one that generated the original quadric. If this were true, then it would be possible to write the plane-of-sky coordinates as

$$ X'_t = a' C(t') $$
$$ Y'_t = b' S(t') \quad (41) $$

Comparing equations (40) and (41), we find after some algebra that the two forms for (X'_t, Y'_t) are indeed consistent, with the equivalences:

$$ a' = a f_{a,i} \cos i \quad (42) $$
$$ b' = b \quad (43) $$
$$ t' = C^{-1} [f_{a,i}, C(t)] \quad (44) $$

where for convenience we define the quadric projection factor:

$$ f_{a,i} = \left(1 + Q \tan^2 i \right)^{-1/2} \quad (45) $$

This demonstrates the original claim that the projected shape is also a conic section, which means that we can re-use the previous equations (31–34) with primed quantities substituted for unprimed ones. From equations (27, 42, 43) it follows that the quadric parameter of the projected shape is

$$ Q' = \frac{Q}{f_{a,i} \cos^2 i} \quad (46) $$

Finally, we transform the projected reference frame back to be centered on the star again:

$$ (x'_t, y'_t) = (X'_t + x'_0, Y'_t) \quad (47) $$

where the projected quadric displacement x'_0 follows from simple foreshortening:

$$ x'_0 = x_0 \cos i \quad (48) $$

Figure 9. Parabolic departure function, $\Delta(\cos \theta)$, for conic sections with different planitude and alatitude, centered on that of the confocal parabola, (Π, Λ) = (2, 2), which has $\Delta(\cos \theta) = 0$. Planitude (shown by different line colors) determines the slope of Δ at the apex, $\cos \theta = 1$. Alatitude (shown by different line widths) determines the value of Δ at $\cos \theta = 0$. All conics with $\Pi = \Lambda$ have departure functions that are straight lines.
Figure 10. Effects of projection on quadrics of revolution: variation with inclination, $|i|$, of bow size and shape. Different line colors correspond to varying quadric parameter, Q, (see key), while variation in line width corresponds to variation in the “true” planitude, Π, or apex radius of curvature. Vertical gray rectangles show quartiles of $|\sin i|$, which will be equally populated for an isotropic distribution of orientations. (a) Projected planitude: Π'. (b) Projected alatude, Λ'.

Figure 11. As Figure 10, but (a) diagnostic planitude–alatude diagram: Λ' versus Π', and (b) projected/true star-apex distance: R_0'/R_0 versus $|i|$. In (a), shading indicates different classes of quadrics: hyperboloids (white), prolate spheroids (dark gray), and oblate spheroids (light gray), with the limiting case of paraboloids shown by the thin black line.
Bow shock shapes

The projection of the apex distance then follows from the primed version of equation (31) as
\[
\frac{R'_0}{R_0} = \cos \alpha \left(1 + \frac{\Pi}{Q} (f_0 \alpha - 1) \right)
\]
and the projected planitude and alatude can be calculated from equations (32, 34, 42, 46) as
\[
\begin{align*}
\Pi' &= \frac{\Pi}{(R'_0/R_0) f_0 \alpha \cos \alpha} \quad (50) \\
\Lambda' &= (2 \Pi' - Q')^{1/2} \quad (51)
\end{align*}
\]
These are all shown in Figures 10 and 11 for a variety of quadric parameter Q (line color) and true planitude Π (line thickness). The projected planitude and alatude (Fig. 10) behave in a qualitatively similar fashion. Whatever the true values of Π and Λ, all spheroids ($Q > 0$) tend towards $\Pi' = 1$ and $\Lambda' = 1$ as the inclination increases towards 90°. This is because when the spheroid is oriented edge-on, we see its circular cross-section. Hyperboloids behave differently: although Π' and Λ' initially decrease with increasing inclination (for true $\Pi > 2$), they turn around and increase again as $|\alpha|$ approaches the critical value $\alpha_{\text{crit}} = 90° - |\theta_0|$. For $|\alpha| > \alpha_{\text{crit}}$ the tangent line does not exist (see § 3.3) because the line of sight is “inside” the asymptotic cone of the far wings (with opening half angle $\alpha_{\text{min}} = |\theta_0|$), and so no limb-brightened shell would be visible.\(^5\) For paraboloids and spheroids, $\alpha_{\text{min}} = 0$, which means that the tangent line exists for all viewing angles.

In Figure 11a, we show the inclination-dependent tracks of the quadrics in the diagnostic Π'--Λ' plane of projected alatude versus projected planitude. The true planitude and alatude, which are seen for an edge-on viewing angle $\alpha = 0°$, are marked by filled circles. The zones corresponding to each class of quadric (oblate spheroid, prolate spheroid, or hyperboloid) are marked by gray shading, and it can be seen that the tracks never cross from one zone to another. The convergence of all the spheroid tracks on the point ($\Pi', \Lambda') = (1, 1)$ is apparent, as is the divergence of the hyperboloid tracks towards ($\Pi', \Lambda') = (+\infty, +\infty)$. The paraboloids, by contrast, converge on the point ($\Pi', \Lambda') = (2, 2)$, and the special case of the confocal paraboloid,\(^6\) with true planitude and alatude ($\Pi, \Lambda = (2, 2)$), is the only quadric whose apparent shape remains identical for all inclination angles.

Figure 11b shows how the apparent star-apex separation varies

\(^5\) As illustrated in Figure 8 of Graham et al. (2002), the isophotal emission contours are elliptical in such a case (assuming cylindrical symmetry) and no curved bow shape is apparent. Deviations from cylindrical symmetry can result in a curved emission arc, even for this no-tangent case (Graham et al.’s Fig. 9), but that is beyond the scope of this paper.

\(^6\) So named because the star is at the focus of the parabola.
with inclination. For moderate inclinations, $|i| < 30^\circ$, this depends primarily on the true planitude Π, with very little influence of the quadric parameter Q. For $\Pi > 1$, the separation increases with $|i|$, whereas for $\Pi < 1$ it decreases slightly. Note, however, that for cases where the projected distance to the source of the external flow, D', can be measured, then R_0'/D' is always an increasing function of $|i|$. For larger inclinations, $|i| > 30^\circ$, the strands for different Q begin to separate, with hyperbolae showing the strongest increase of R_0' with $|i|$.

A complementary view of the effects of projection is shown in Figure 12, which shows “snapshots” of (Π', Λ') for a sequence of 6 values of the inclination, equally spaced in $|\sin i|$, so that each panel is equally likely for an isotropic distribution of orientations. The distribution of the true Π and Λ are each assumed to be uniform on the range $[0.5, 4.5]$, giving a uniformly filled square of values for $|i| = 0$, which becomes increasingly distorted as $|i|$ increases. The color scale represents Q and the symbol size is proportional to R_0'/R_0. It can be seen that the points tend to cluster closer and closer to the diagonal, $\Lambda' = \Pi'$, as the inclination increases, and that the points just below this line tend to have the largest values of R_0'/R_0. The green shaded region shows the zone of true Λ, Π for hyperboloids where the tangent lines still exists for that value of $|i|$. This becomes smaller and smaller as $|i|$ increases, which explains why the hyperboloid zone becomes increasingly depopulated: all quadratics that lay above this region when $i = 0^\circ$ will no longer be visible as a bow for this value of $|i|$. Note that this figure is merely illustrative of the qualitative effects of projection, since in reality there is no particular reason to expect a uniform distribution in true Π and Λ.

5 THIN-SHELL BOW SHOCK MODELS

More physically realistic examples of bow shapes are provided by steady-state hydrodynamic models for the interaction of hypersonic flows in the thin-shell limit. The classic examples are the solutions for the wind–parallel stream and wind–wind problems (see § 1) of Canto et al. (1996, hereafter CRW), where it is assumed that the two shocks are highly radiative and that the post-shock flows are perfectly mixed to form a single shell of negligible thickness. In this approximation, the shape of the shell is found algebraically by CRW from conservation of linear and angular momentum, following an approach first outlined in Wilkin (1996). For the wind–stream case, the resulting bow shape was dubbed wilkinoid by Cox et al. (2012) and has the form:

$$R(\theta) = R_0 \csc \theta (3(1 - \theta \cot \theta))^{1/2}.$$ \hspace{1cm} (52)

For the wind–wind case, a family of solutions are found that depend on the value of β, the wind momentum ratio,\(^7\) see Figure 3, equations (1, 2), and surrounding discussion in § 1. We propose that these shapes be called cantoids. The exact solution for the cantoid shapes (eqs. [23, 24] of CRW) is only obtainable in implicit form, but an approximate explicit solution (eq. [26] of CRW) is very accurate for $\beta \leq 0.1$. The wilkinoid shape corresponds to the $\beta \to 0$ limit of the cantoids. Note that CRW employ cylindrical polar coordinates, z and r, see our Figure 3, and we follow this usage for the thin-shell models discussed in this section. CRW’s z axis corresponds to the cartesian x axis used in sections 3 and 4 of the current paper, while the r axis corresponds to y when $\phi = 0$.

\(^7\) By always placing the weaker of the two winds at the origin, it is only necessary to consider $\beta \leq 1$.

5.1 Bow shocks from anisotropic wind–wind interactions

We wish to generalize the results of Canto et al. (1996, CRW) to the case where the inner wind is no longer isotropic, but instead has a density that falls off with angle, θ, away from the symmetry axis. Specifically, at some fiducial spherical radius, R_0, from the origin, the wind mass density is given by

$$\rho(R, \theta) = \begin{cases} \rho_0 \cos^k \theta & \text{for } \theta \leq 90^\circ \\ 0 & \text{for } \theta > 90^\circ \end{cases}$$ \hspace{1cm} (53)

where ρ_0 is the density on the symmetry axis and $k \geq 0$ is an anisotropy index. The wind velocity is still assumed to be constant and the wind streamlines to be radial, so the radial variation of density at each angle is $\rho(R, \theta) = \rho(R_0, \theta)/(R/R_0)^2$ and the wind mass loss rate and momentum loss rate per solid angle both have the same $\cos^k \theta$ dependence as the density. Examples are shown in Figure 13 for a variety of different values of k. As k increases, the wind becomes increasingly jet-like.

Our primary motivation for considering such an anisotropic wind is the case of the Orion Nebula proplyds and their interaction with the stellar wind of the massive star θ Ori C (García-Arredondo et al. 2001). The inner “wind” in this case is the transonic photoevaporation flow away from a roughly hemispherical ionization front, where photoionization equilibrium, together with monodirectional illumination of the front, implies that the ionized hydrogen density, n, satisfies $n^2 \propto \cos \theta$, which is equivalent to $k = 0.5$ in equation (53).

\(^8\) Note that the wind anisotropy axis must be aligned with the star–star axis to maintain cylindrical symmetry.

A generalization of the cantoids to the case of an anisotropic\(^8\) inner wind is developed next, giving rise to what we call ancantoids, which depend on an anisotropy index, k, in addition to β.
Since the primary source of ionizing photons is the same star that is the source of the outer wind, it is natural that the inner wind’s axis should be aligned with the star–star axis in this case. For other potential causes of wind anisotropy (for instance, bipolar flow from an accretion disk), there is no particular reason for the axes to be aligned, so cylindrical symmetry would be broken. Nevertheless, we calculate results for general k with aligned axes, so as to provide a richer variety of cylindrically symmetric bow shock shapes than are seen in the cantoids.

The general solution for the bow shock shape, $R(\theta)$, in the CRW formalism is

$$R(\theta) = \frac{J_w + J_{w1}}{(\Pi_{wr} + \Pi_{wr1} \cos \theta - (\Pi_{wz} + \Pi_{wz1}) \sin \theta)}$$

(54)

where Π_{wr}, Π_{wz}, J_w are the accumulated linear radial momentum, linear axial momentum, and angular momentum, respectively, due to the inner wind emitted between the axis and θ. The equivalent quantities for the outer wind have subscripts appended with “1”. The inner wind momenta for our anisotropic case (replacing CRW’s eqs. [9, 10]) are:

$$\Pi_{wz} = \frac{k + 1}{2(k + 2)} M_w^0 V_w \max \left(1 - \cos k+2 \theta, 1\right)$$

$$\Pi_{wr} = (k + 1) M_w^0 V_w I_k(\theta)$$

(55)

where

$$M_w^0 V_w = \frac{2\pi}{k + 1} \beta^2 \rho_0 V_w$$

(56)

is the total mass-loss rate of the inner wind. The integral

$$I_k(\theta) = \int_0^{\max(\theta, \pi/2)} \cos^k \theta \sin^2 \theta d\theta$$

(57)

has an analytic solution in terms of the hypergeometric function, $_2F_1(-\frac{1}{2}, -\frac{1}{2}; \frac{1}{2}; \cos^2 \theta)$, but is more straightforwardly calculated by numerical quadrature. The angular momentum of the inner wind about the origin is $J_w = 0$ because it is purely radial. The outer wind momenta are unchanged from the CRW case, but are given here for completeness:

$$\Pi_{wz1} = -\frac{M_w^0 V_{w1}}{4} \sin^2 \theta_1$$

$$\Pi_{wr1} = \frac{M_w^0 V_{w1}}{4} \left(\theta_1 - \sin \theta_1 \cos \theta_1\right)$$

(58)

$$J_{w1} = -\frac{M_w^0 V_{w1}}{4} \left(\theta_1 - \sin \theta_1 \cos \theta_1\right)$$

We define β in this case as the momentum ratio on the symmetry axis, which means that

$$M_w^0 V_{w1} = 2(k + 1) \beta M_w^0 V_w$$

(59)

Substituting equations (55–59) into equation (54) and making use
of the geometric relation between the interior angles of the triangle shown in Figure 3:

$$R \sin(\theta + \theta_1) = D \sin \theta_1,$$

(60)

yields

$$\theta_1 \cot \theta_1 = 1 + 2\beta \left(h(\theta) \cot \theta - \frac{1 - \cos k^2 \theta}{k + 2} \right),$$

(61)

which is the generalization of CRW’s equation (24) to the anisotropic case. Equation (61) is solved numerically to give $\theta_1(\theta)$, which is then combined with equations (60) and (1) to give the dimensionless bow shape, $R(\theta; \beta, k)/R_0$, where we now explicitly indicate the dependence of the solution on two parameters: axial momentum ratio, β, and anisotropy index, k. We refer to the resultant bow shapes as ancantoids.

5.2 True shapes of cantoids and ancantoids

The shapes of the ancantoid bow shocks are shown in Figure 14 for three different values of β, and are compared with the CRW results for cantoids (dashed curves). The location of these shapes in the planitude–alatitude plane is shown in Figure 15, where the gray background shading indicates the zones of different quadric classes, as in §4, Figures 11 and 12. Values of Π and Λ are calculated via the analytic expressions derived in Appendix B1 and B2, respectively, which are only approximate in the case of Λ. However, the filled square symbols show the exact results for $\beta = 0.5$, which can be seen to lie extremely close to the approximate results, even for the worst case of $k = 0$. The leading term in the relative error of equation (B14) scales as $(\beta/(k + 2))^2$, so the approximation is even better for smaller β and larger k.

It is apparent from Figure 14 that the $k = 0$ ancantoid is identical to the cantoid for $\theta \leq 90^\circ$ ($z > 0$, to the right of vertical dotted line.)
there is a discontinuity in the second derivative of the bow shape. In Fig. 14, but is slightly more swept back in the far wings. Since the true planitude and alatitude depend on \(R(\theta) \) only in the range \(\theta = [0, 90^\circ] \), the cantoid and the \(k = 0 \) ancantoid behave identically in Fig. 15. There is a general tendency for the bows to be flatter and more open with increasing \(\beta \) and decreasing \(k \), with the cantoid being most open at a given \(\beta \). All the models cluster close to the diagonal \(\Lambda = \Pi \) in the planitude–alatitude plane, but with a tendency for \(\Lambda > \Pi \) at higher anisotropy. There is therefore a degeneracy between \(\beta \) and \(k \) for higher values of \(\beta \). The wilkinoid shape, which corresponds to the \(\beta \to 0 \) limit of the cantoids, is marked by a white plus symbol in Figure 15, and lies in the prolate spheroid region of the plane. Cantoids lie either in the prolate spheroid or hyperboloid regions, according to whether \(\beta \) is less than or greater than about 0.01. For ancantoids of increasing \(k \), this dividing point moves to higher values of \(\beta \), until almost the entire range of models with \(k = 8 \) are within the prolate spheroid zone.

However, the true planitude and alatitude, which are what would be observed for a side-on viewing angle (\(i = 0 \)), are not at all sensitive to the behavior of the far wings of the bow shock, which has a rather different implication as to which variety of quadric best approximates each shape. We illustrate this is Figure 16, which shows two different ways of estimating the quadric angle, \(\theta_Q \) (see § 4). The first is from \((\Pi, \Lambda)\), as in Figure 15:

\[
\theta_Q^{\text{head}} = \text{sgn} \left(2\Pi - \Lambda^2\right) \tan^{-1} \sqrt{2\Pi - \Lambda^2}^{1/2},
\]

which follows from equations (27), (28), and (34). The second is from the asymptotic opening angle of the wings, \(\theta_\infty \) (Fig. 4):

\[
\theta_Q^{\text{tail}} = \theta_\infty - 180^\circ,
\]

where \(\theta_\infty \) is calculated from equation (B17) for ancantoids, or (B19) for cantoids. If the bow shock were truly a quadric, then these two definitions would agree. However, as seen in Figure 16, this is not the case for the cantoids and ancantoids. While \(\theta_Q^{\text{tail}} \) generally corresponds to a prolate spheroid (except for the largest values of \(\beta \)), \(\theta_Q^{\text{head}} \) always corresponds to a hyperbola. This tension between the shape of the head and the shape of the far wings has important implications for the projected shapes (as we will see in the next section), since the far wings influence the projected planitude and alatitude when the inclination is large.

Figure 17 shows the parabolic departure function (see § 4.1) for the thin-shell models. This provides an alternative perspective on the resultant bow shapes, with two different types of behavior being apparent. Models with high \(\beta \) and low anisotropy behave similarly to the hyperboloids, such as the \((\Pi, \Lambda) = (3/2, 8/3), (2, 8/3), (8/3, 8/3),\) and \((3/2, 2)\) cases from Figure 9. This is the case for the \(\beta \geq 0.01 \) models in Figure 17a, which all show departure functions that become negative in the far wings (more open than parabola) and terminate at a \(\theta_\infty < 180^\circ \). The second type of behavior is shown by models with low \(\beta \) or high anisotropy, which behave like spheroids for positive and mildly negative values of \(\cos \theta \), but, unlike the spheroids, all tend towards \(\Delta = 0 \) in the far tail as \(\cos \theta \to -1 \).

\[\text{Figure 18. Apparent bow shapes as a function of inclination angle for isotropic thin shell models. (a) Confocal paraboloid for comparison (shape independent of inclination). (b) Wilkinoid. (c) Cantoid, } \beta = 0.001. \text{ (d) Cantoid, } \beta = 0.01.\]

\[\text{Figure 19. Further apparent bow shapes as a function of inclination angle for anisotropic thin shell models (ancantoids). (a) } \beta = 0.001, k = 0.5; \text{ (b) } \beta = 0.1, k = 0.5; \text{ (c) } \beta = 0.001 k = 3; \text{ (d) } \beta = 0.1 k = 3.\]

\[5.3 \text{ Apparent shapes of projected cantoids and ancantoids}\]

Figures 18 and 19 show the apparent bow shapes of various thin shell models (wilkinoid, cantoids, ancantoids) for different inclination angles \([\i] \). For comparison, Figure 18a shows the confocal paraboloid, whose apparent shape is independent of inclination (see Appendix A). The wilkinoid (Fig. 18b) shows only subtle changes, with the wings becoming slightly more swept back as the inclination increases. The cantoids (Fig. 18c and d) behave in the opposite way, with the wings becoming markedly more open once \([\i] \) exceeds 60° (for \(\beta = 0.001 \)), or 45° (for \(\beta = 0.01 \)). The ancantoids (Fig. 19) can show more complex behavior. For instance, in the \(k = 0.5, \beta = 0.001 \)
Figure 20. Apparent projected shapes of wilkinoid, cantoids and ancantoids in the \(\Pi' - \Lambda' \) plane. Colored symbols indicate the \(|i| = 0 \) position for \(\beta = 0.001, 0.003, 0.01, 0.03, 0.1, 0.3 \). Thin lines show the inclination-dependent tracks of each model, with tick marks along each track for 20 equal-spaced values of \(|\text{sin} i|\). Gray shaded regions are as in Fig. 11a. The wilkinoid track is shown in white. (a) Isotropic wind model (cantoid) and proplyd-like model (ancantoid, \(k = 0.5 \)). (b) Hemispheric wind model (ancantoid, \(k = 0 \)) and jet-like model (ancantoid, \(k = 3 \)).

ancantoid (Fig. 19a) the near wings begin to become more closed with increasing inclination up to \(|i| = 60^\circ \), at which point they open up again, whereas the opening angle of the far wings increases monotonically with \(|i|\).

The inclination-dependent tracks that are traced by the thin-shell models in the projected planitude–alatitude plane are shown in

Figure 21. As Fig. 20a but zoomed in to show the wilkinoid track (white) and the convergence of the cantoid tracks (purple) to the wilkinoid as \(\beta \to 0 \).

Figure 20. The behavior is qualitatively different from the quadric shapes shown in Figure 11a in that the tracks are no longer confined within the borders of the region of a single type of quadric (hyperboloid or spheroid). At low inclinations, many of the models behave like the prolate spheroids, but then transition to a hyperboloid behavior at higher inclinations, which is due to the tension between the shape of the head and the shape of the far wings, as discussed in the previous section. This can be seen most clearly in the \(\beta = 0.001, k = 0.5 \) ancantoid (lowest red line in Fig. 20a, see also zoomed version in Fig. 21). The track begins heading towards \((\Pi', \Lambda') = (1, 1)\), as expected for a spheroid, but then turns around and crosses the paraboloid line to head out on a hyperboloid-like track.

Ancantoids with different degrees of inner-wind anisotropy are shown in Figure 20b. In all cases, the tracks follow hyperboloid-like behavior at high inclinations, tending to populate the region just above the diagonal \(\Lambda' = \Pi' \). The \(k = 0 \) ancantoids show a kink in their tracks at the point where the projected apex passes through \(\theta = 90^\circ \), due to the discontinuity in the second derivative of \(R(\theta) \) there (see footnote 9). The wilkinoid has a much less interesting track, most clearly seen in the zoomed Figure 21, simply moving the short distance from \((5/3, \sqrt{3})\) to \((6/2, \sqrt{5}/3)\). Despite its location in the ellipsoid region of the plane, the fact that it has \(\theta_{\infty} = 180^\circ \) means that it behaves more like a parabola at high inclination, but converges on \((\sqrt{5}/2, \sqrt{5}/3)\) instead of \((2, 2)\) since the far wings are asymptotically cubic, rather than quadratic.

The local density of tick marks gives an indication of how likely it would be to observe each portion of the track, assuming an isotropic distribution of viewing angles. It can be seen that the ticks tend to be concentrated towards the beginning of each track, near the \(|i| = 0\) point, so the hyperboloid-like portions of the tracks would be observed for only a relatively narrow range of inclinations. This concentration becomes more marked as \(\beta \) becomes smaller, which helps to resolve the apparent paradox that the wilkinoid corresponds to the \(\beta \to 0 \) limit of the cantoids, and yet follows a qualitatively different track. The detailed behavior of the small-\(\beta \) cantoid models
is shown in Figure 21, which zooms in on the region around the wilkinoid track. It can be seen that for 0.001 the cantoid tracks begin to develop a downward hook, similar to the k = 0.5 cantoids discussed above. For 10^{-4} this begins to approach the wilkinoid track and the high inclination, upward portion of the track becomes less and less important as decreases.

6 MORE REALISTIC BOW SHOCK MODELS

The assumptions underlying the models of the previous section may break down in various ways. To test whether the planitude–alatitude analysis is still useful in less “ideal” situations, we here apply it to more realistic simulations of stellar bow shocks. We choose a pair of hydromagnetic (HD) and magnetohydrodynamic (MHD) moving-star simulations from Meyer et al. (2017), in which the only difference is the presence (MHD case) or absence (HD case) of an ambient magnetic field with strength B = 7 \mu G, oriented parallel to the stellar velocity. In each case, the inner wind comes from a 20 M\odot main-sequence star, with mass loss rate and terminal velocity that are roughly constant with time at M_w ≈ 4 \times 10^{-7} M\odot yr^{-1} and V_w = 1200 km s^{-1}, while the outer wind is a parallel stream due to the star’s own motion at 40 km s^{-1} through a uniform medium of density 0.57 cm^{-3}.

For these parameters, the radiative cooling distance for shocked ambient gas in the bow is a significant fraction (≈ 10%) of the bow shock size, R_0, tending to increase towards the wings, and the radiative cooling in the shocked stellar wind is even less efficient. This represents a gross violation of the assumptions behind the thin-shell models, since the total shocked shell thickness is of the same order as R_0. The parabolic departure function (see § 4.1) for the shape of the contact discontinuity in the two models is shown in Figure 22 as blue symbols. The MHD simulation shows a strongly negative dip in the departure function close to the apex (cos θ = 1), indicating a very flat shape. The HD simulation shows only a small negative dip in the departure function at the apex, but otherwise approximately follows the wilkinoid curve in the forward hemisphere. In both cases the departure function is more positive than the wilkinoid in the far wings (cos θ < −0.5), but we do not have data for the full range of θ, and so two different extrapolations for θ → 180° are shown. In the first (dashed red line in figure), we fit a low-order polynomial of cos θ to the points with cos θ < −0.5 and extend it to cos θ = −1, which gives an asymptotically closed shape. In the second extrapolation (solid red line in figure), we fit a polynomial that is multiplied by (1 + cos θ)^1/2, which forces the departure function to zero at cos θ = −1, giving an asymptotically open shape, as with the wilkinoid. In a true steady state, the far

10 Note that, in the non-magnetic HD models, efficient thermal conduction leads to a thick layer of hot, thermally evaporated ambient material that separates the shocked stellar wind from the cool, dense shell of shocked ambient gas (see § 3.3 of Meyer et al. 2014). In this case, the contact discontinuity is taken to be the boundary between hot and cold ambient gas, as opposed to the material discontinuity between shocked ambient gas and shocked wind gas. In the MHD models, the thermal conduction is almost completely suppressed, so that the material and contact discontinuities coincide.

11 Meyer et al. (2017) speculate that this flatness may be the signature of the formation of a complex multiple-shock topology at the apex (de Sterck & Poedts 1999). For our purposes, the reason does not matter, merely that the magnetic and non-magnetic models predict markedly different shapes.

Figure 22. Departure function for the shape of the contact discontinuity, measured from two numerical simulations of a 20M\odot main-sequence star, moving at 40 km s^{-1} through a uniform medium of density 0.57 cm^{-3} (Meyer et al. 2017). (a) Magnetohydrodynamic simulation with ambient magnetic field of strength 7 \mu G, oriented parallel to the stellar velocity. (b) Hydrodynamic simulation with zero magnetic field. Blue dots show the measured shape, while the thick, pale-red line shows a 12th-order Chebyshev polynomial fit. The published shapes only extend to θ = 130–150°, so we extrapolate the shapes out to θ = 180°. Two different extrapolations are shown, corresponding to bows that are asymptotically closed (dashed red line) or open (solid red line). For comparison, black lines show the departure function for wilkinoid (thick line) and cantoids (thin lines).
In particular, the projected shapes of both simulations vary much more strongly with $|i|$ than the wilkinoid does. For the HD simulation, the on-axis peak in the dust continuum maps, although the same ordering of the three inclinations along the tracks corresponds to what is predicted, although quantitatively there are some slight deviations. This close agreement stems from the fact, emphasized by Meyer et al. (2014), that the long-wavelength dust emission from hot-star bow shocks tends to be dominated by material just outside the contact discontinuity. Note that there is almost no difference in the planitude–alatitude tracks between the closed and open extrapolations. This is because Π' and Λ' only depend on the portion of $R(\theta)$ between θ_1 (eq. [18]) and θ_0 (eq. [21]), and these are both smaller than the θ range where extrapolation is necessary, except for in the HD case at the highest inclinations.

Figure 25 shows the inclination dependence of the projected apex distance, R_0'. As in the previous figure, the lines show the prediction based on the shape of the contact discontinuity, while the square symbols show the results from the 60 μm dust continuum maps. In addition, triangle symbols show results from He I optical

13 The shape measurements were performed by converting to contours the 60 μm images in Meyer et al. (2017)’s Fig. 10 and then tracing the ridge of minimum radius of curvature of the contours. Identical results are found from using the 100 μm maps instead. For the 25 μm maps, although the same results are found for low inclinations, in the maps with $|i| \geq 45^\circ$ in the HD case it becomes impossible to trace the limb-brightened rim because it becomes fainter than the emission from the true apex of the bow.

14 There is an apparent error in the spatial scales for the HD simulations in Figs. 10 and 11 of Meyer et al. (2017), with the dust emission peaks occurring at radii that are clearly too large. The stated apex distance for the contact discontinuity in this simulation is 0.69 pc from Table 2 of Meyer et al. (2014), and the position of the peak in dust column density is 0.70 pc from Fig. 17a of Meyer et al. (2014). These are consistent with Figs. 3, 4, and 7 of Meyer et al. (2017), but not with Figs. 10 and 11. Luckily, the position of the true apex is clearly visible in the 25 μm maps of Fig. 10 at inclinations of 45$^\circ$ and 60$^\circ$. The projected separation of the true apex is $R_0 \cos i$, independent of the bow shape, which allows a correction factor of 0.65 to be found, assuming that the on-axis peak in the 25 μm emission coincides with the peak in dust
The probability density is defined so that its integral over the full range of the histogrammed variable is unity, making it independent of the histogram bin widths. This means that the characteristic width of an approximately unimodal distribution is one over the maximum probability density.

Figure 25. Apparent projected apex distance of simulations. Line and symbol meanings are as in Figure 24. In addition, triangle symbols at \(|i| = 0°\) denote radius measured on Hβ optical emission maps. Note that the distances for the blue square symbols have been adjusted according to the correction factor discussed in footnote 14.

Figure 26. Histograms of (top to bottom) projected planitude, alatude, and bow shock size for the shape of the contact discontinuity in the Meyer et al. (2017) simulations. The y axis gives the probability density (per unit x-axis quantity), assuming a uniform distribution of viewing directions.

7 SUMMARY AND DISCUSSION

We have shown that the shapes of stellar bow shocks can be usefully characterized by two dimensionless numbers: the planitude, \(\Pi\), or flatness of the bow’s apex, and the alatude, \(\Lambda\), or openness of the bow’s wings (§ 2). The planitude and alatude can be estimated from ratios of lengths that can be straightforwardly measured from observations or theoretical models. We develop a general method (§ 3) for finding the projected shape, \((\Pi^\prime, \Lambda^\prime)\), of a bow shock’s limb-brightened edge, or tangent line, as a function of inclination angle, \(i\), where the emission shell is idealized as a cylindrically symmetric surface.

We first apply this method to find inclination-dependent tracks on the projected planitude–alatude plane for the special case of quadric surfaces (§ 4), such as hyperboloids, paraboloids, and spheroids, where the tangent line is a conic section. The spheroids and hyperboloids occupy distinct regions of the plane, with the paraboloids defining the boundary between the two. As the inclination is increased from \(|i| = 0°\) (side-on) to \(|i| = 90°\) (end-on), the tracks first tend to approach the diagonal \(\Lambda^\prime = \Pi^\prime\), corresponding to confocal conics, always remaining within their own region. At the highest inclinations, the spheroids all converge at \(|i| = 90°\) on the point \((\Pi^\prime, \Lambda^\prime) = (1, 1)\) and the paraboloids on the point \((\Pi^\prime, \Lambda^\prime) = (2, 2)\). The hyperboloids, on the other hand diverge as \((\Pi^\prime, \Lambda^\prime) \to (\infty, \infty)\) for a finite \(i_{\text{crit}}\), which depends on the asymptotic opening angle of the tail. For \(|i| > i_{\text{crit}}\), the tangent line no longer exists for the hyperboloid, and it would no longer appear to be a curved bow shock. We introduce the parabolic departure function...
We are grateful for financial support provided by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, through grant Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica IN111215. JATY acknowledges support via a research studentship from Consejo Nacional de Ciencias y Tecnología, Mexico.

ACKNOWLEDGEMENTS

We are grateful for financial support provided by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, through grant Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica IN111215. JATY acknowledges support via a research studentship from Consejo Nacional de Ciencias y Tecnología, Mexico.

REFERENCES

Astropy Collaboration et al., 2013, A&A, 558, A33
Canto J., Raga A. C., Wilkin F. P., 1996, ApJ, 469, 729
Cox N. L. J., et al., 2012, A&A, 537, A35
García-Arredondo F., Henney W. J., Arthur S. J., 2001, ApJ, 561, 830
Gayley K. G., 2009, ApJ, 703, 89
Gfrerrer A., Zsomor-Murray P., 2009, Journal for Geometry and Graphics, 13, 131
Goldman R., 1983, IEEE Computer Graphics and Applications, 3, 68
Graham M. F., Meaburn J., Garrington S. T., O’Brien T. J., Henney W. J., O’Dell C. R., 2002, ApJ, 1570, 222
Hartigan P., Raymond J., Hartmann L., 1987, ApJ, 316, 323
Hayward T. L., Houck J. R., Miles J. W., 1994, ApJ, 433, 157
Henney W. J., 2002, Revista Mexicana de Astronomía y Astrofísica, 38, 71
Henney W. J., García-Díaz M. T., O’Dell C. R., Rubin R. H., 2013, MNRAS, 428, 691
Kobulnicky H. A., Gilbert J. J., Kiminki D. C., 2010, ApJ, 710, 549
Kobulnicky H. A., et al., 2016, ApJS, 227, 18
Mackey J., Mohamed S., Neilson H. R., Langer N., Meyer D. M.-A., 2012, ApJ, 751, L10
Mackey J., Gvaramadze V. V., Mohamed S., Langer N., 2015, A&A, 573, A10
Markевич M., Gonzalez A. H., David L., Vikhlinin A., Murray S., Forman W., Jones C., Tucker W., 2002, ApJ, 567, L27
Meaburn J., Bousin P., Akras S., 2013, MNRAS, 435, 3462
Medina S.-N. X., Arthur S. J., Henney W. J., Mellema G., Gazol A., 2014, MNRAS, 445, 1797
Meyer D. M.-A., Mackey J., Langer N., Gvaramadze V. V., Mignone A., Izzard R. G., Kaper L., 2014, MNRAS, 444, 2754
Meyer D. M.-A., van Marle A.-J., Kuiper R., Kley W., 2016, MNRAS, 459, 1146
Meyer D. M.-A., Mignone A., Kuiper R., Raga A. C., Kley W., 2017, MNRAS, 464, 3229
Ochsendorf B. B., Verolot S., Cox N. L. J., Bernet O., Kaper L., Tielens A. G. G. M., 2014, A&A, 566, A75
Phillips J. P., Cuesta L. C., Ramos-Larios G., 2010, MNRAS, 409, 881
Raga A. C., Binette L., Canto J., Calvet N., 1990, ApJ, 360, 601
Robberto M. et al., 2005, AJ, 129, 1534
Scherer K., Fichtner H., 2014, ApJ, 782, 25
Schwartz R. D., 1978, ApJ, 223, 884
Shu F. H., Lizaro S., Galli D., Cantó J., Laughlin G., 2002, ApJ, 580, 969
Smith N., Bally J., Shuping R. Y., Morris M., Cassis M., 2005, AJ, 130, 1763
Stevens I. R., Blondin J. M., Pollock A. M. T., 1992, ApJ, 386, 265
Tenorio-Tagle G., 1979, A&A, 71, 59
Wilkin F. P., 1996, ApJ, 459, L31
Wilkin F. P., 2000, ApJ, 532, 400
Wilson A. S., Ulvestad J. S., 1987, ApJ, 319, 105
Zank G. P., 1999, Space Sci. Rev., 89, 413
de Sterck H., Poedts S., 1999, A&A, 343, 641
van Buren D., McCray R., 1988, ApJ, 329, L93
van Dyke M., 1982, An album of fluid motion. Parabolic Press, Stanford, CA
van Marle A. J., Meliani Z., Keppens R., Decin L., 2011, ApJ, 734, L26

APPENDIX A: PARABOLOIDS AND THEIR PLANE-OF-SKY PROJECTION

Equation (25) for the xy coordinates of a quadric in the $\phi = 0$ plane cannot be used in the case of a paraboloid ($Q = 0$). Instead, a convenient parametrization is

$$x = R_0 \left(1 - \frac{1}{2} \Pi^2 \right)$$

$$y = R_0 \Pi t,$$

where we have “baked in” knowledge of the planitude, $\Pi = R_x / R_0$ (see § 2). The projected plane-of-sky coordinates of the tangent line follow from equation (8) as

$$x' / R_0 = \left(1 - \frac{1}{2} \Pi^2 \right) \cos \phi \sin i$$

$$y' / R_0 = \Pi \cos \phi \sin i.$$

The azimuth of the tangent line is found from equations (10, 15) as

$$x' / R_0 = \cos \phi \left[1 + \frac{1}{2} \Pi \tan^2 i - \frac{1}{2} \Pi \left(\Pi^2 - \tan^2 i\right)\right]$$

$$y' / R_0 = \Pi \left(2 - \tan^2 i\right)^{1/2}.$$

The projected star-apex distance, R_{0y}', is the value of x'_{ϕ} when $y'_{\phi} = 0$, yielding

$$R_{0y}' / R_0 = \cos \phi \left[1 + \frac{1}{2} \Pi \tan^2 i\right].$$
Note that this same result can be obtained from a Taylor expansion of equation (45) substituted into (49) in the limit $Q \to 0$.

Equation (A3) can be rewritten in the form

$$ x_0' = R_0' \left(1 - \frac{1}{2} \Pi' t'^2 \right), \quad \text{(A5)} $$

where

$$ \Pi' = \frac{211}{2 \cos^2 i + \Pi \sin^2 i}, \quad \text{(A6)} $$

and

$$ t' = \cos i \left(t^2 - \tan^2 i \right)^{1/2}, \quad \text{(A7)} $$

which demonstrates that the projected shape is also a parabola. It is apparent from (A6) that the projected platitude obeys

$$ \lim_{t' \to 0^+} \Pi' = 2, \quad \text{for all values of the true platitude} \quad \Pi. \quad \text{(A8)} $$

For the special case of the confocal paraboloid, $\Pi = \Lambda = 2$, we have $\Pi' = \Pi$ and $\Lambda' = \Lambda$ by equations (A6) and (A8) for all inclinations, so its shape is unaffected by projection.

APPENDIX B: ANALYTIC DERIVATION OF THIN-SHELL BOW SHAPE PARAMETERS

In this appendix, we provide analytic calculations of the platitude, alatude, and asymptotic opening angle for the wilkinoid, cantoids, and ancantoids. We first consider the most general case of the ancantoids, and then show how results for cantoids and the wilkinoid follow as special cases.

B1 Planitude of ancantoids

From equations (3) and (5), the platitude depends on the apex second derivative, $R_{\theta \theta \theta}$, as

$$ \Pi = \left(1 - R_{\theta \theta \theta}/R_0 \right)^{-1}. \quad \text{(B1)} $$

From equation (4), the second derivative can be found from the coefficient of θ^2 in the Taylor expansion of $R(\theta)$. Since we do not have $R(\theta)$ in explicit analytic form, we proceed via a Taylor expansion of the implicit equations (60) and (61), retaining terms up to θ^4 to obtain from equation (61):

$$ \theta_1^2 = \theta_0^2 \left(1 + C_{k\beta} \theta^2 \right) + O(\theta^6), \quad \text{(B2)} $$

with the coefficient $C_{k\beta}$ given by

$$ C_{k\beta} = \frac{1}{15} \left[\frac{3k}{20} - \frac{\beta}{15} \right]. \quad \text{(B3)} $$

Note that it is necessary to include the θ^4 term in the expansion of θ_1^2 so that θ_1/θ is accurate to order θ^2. Then, from equation (60) we find

$$ \frac{R}{\xi_k} = \frac{1}{\sin(\theta + \theta_1)} \left(\frac{\beta^{1/2}}{1 + \beta^{1/2}} \left[1 + \frac{C_{k\beta}}{2 \left(1 + \beta^{1/2} \right)} \left(1 + 2\beta^{1/2} \right) \right] + O(\theta^4), \quad \text{(B4)} \right.$$}

where in the second line we have carried out a Taylor expansion of the two sin terms and substituted (B2). Comparing coefficients of unity and θ^2 between equations (4) and (B4) we find

$$ \frac{R_0}{D} = \frac{\beta^{1/2}}{1 + \beta^{1/2}} \quad \text{(B5)} $$

$$ \frac{R_{\theta \theta \theta}}{R_0} = \frac{C_{k\beta}}{1 + \beta^{1/2}} + \frac{1}{3} \left(1 + 2\beta^{1/2} \right), \quad \text{(B6)} $$

so that the final result for the platitude, from (B1), is

ancantoid $\Pi = \left(1 - \frac{C_{k\beta}}{1 + \beta^{1/2}} - \frac{1}{3} \left(1 + 2\beta^{1/2} \right) \right)^{-1} \quad \text{(B7)}$

B2 Alatitude of ancantoids

To find the alatude, $\Lambda = R_{\theta \theta \theta}/R_0$, we use equation (60) at $\theta = 90^\circ$ to write

$$ \Lambda = \frac{D}{R_0} \tan \theta_{1,90}, \quad \text{(B8)} $$

where $\theta_{1,90} = \theta_1(\theta = 90^\circ)$, which, following equation (61), must satisfy

$$ \theta_{1,90} \cot \theta_{1,90} = 1 - \frac{2\beta}{k + 2}. \quad \text{(B9)} $$

Combining (B8) and (B9) with (B5) yields

$$ \Lambda = \left(1 + \beta^{1/2} \right) \frac{\theta_{1,90}}{\beta^{1/2} \left(1 - \xi_k \beta \right)}, \quad \text{(B10)} $$

where

$$ \xi_k = \frac{2}{k + 2}. \quad \text{(B11)} $$

We now take the Taylor expansion of equation (B9) to find

$$ \theta_{1,90}^2 + \frac{1}{\beta} (\theta_{1,90}^2) + O(\theta_{1,90}^2) = 3 \xi_k \beta, \quad \text{(B12)} $$

which, if $\theta_{1,90}$ is small, has the approximate solution

$$ \theta_{1,90} \approx \left(\frac{3 \xi_k \beta}{1 + \xi_k \beta} \right). \quad \text{(B13)} $$

Substituting back into equation (B8) yields an approximate value for the alatitude of

ancantoid $\Lambda \approx \left(\frac{3 \xi_k \beta}{1 + \xi_k \beta} \right) \frac{\left(1 + \beta^{1/2} \right)}{\left(1 + \frac{1}{2} \xi_k \beta \right)^{1/2} (1 - \xi_k \beta)}. \quad \text{(B14)}$

This approximation is surprisingly accurate, with a relative error of order 1% even for β as large as 0.5 with $k = 0$.

B3 Planitude and alatitude of cantoids and wilkinoid

Since Π and Λ depend on only that portion of the inner wind emitted in the forward hemisphere, $\theta < 90^\circ$, the results for the cantoids can be found by taking $k = 0$, in which case equations (B3, B7, B11, B14) yield

$$ \Pi = \frac{5}{3} \left(1 - \beta^{1/2} \right), \quad \text{(B15)} $$

$$ \Lambda = \frac{\sqrt{3}}{\left(1 + \frac{1}{2} \beta \right)^{1/2} (1 - \beta^{1/2})}. \quad \text{(B15)} $$
The wilkinoid shape is equal to the $\beta \to 0$ limit of the cantoid, so its planitude and alatitude are given by:

\[
\begin{align*}
\Pi_w &= \frac{5}{3} \\
\Lambda_w &= \sqrt{3}.
\end{align*}
\]

The wilkinoid results can also be obtained directly from equation (52), and in the case of Λ this has already been noted by several authors (Cox et al. 2012; Meyer et al. 2016).

B4 Asymptotic opening angle

The asymptotic opening angle of the far wings, θ_{∞}, can be found from equation (61) for the ancantoids, together with the condition that $\theta_{\infty} + \theta_{1\infty} = \pi$. These yield the implicit equation

\[
\theta_{\infty} = -\left(\frac{k + 2(1 - \beta)}{k + 2}\right) \tan \theta_{\infty} = \pi + 2\beta I_k(\pi/2),
\]

where

\[
I_k(\pi/2) = \frac{\sqrt{\pi}}{4} \Gamma\left(\frac{k+1}{2}\right)
\]

and Γ is the usual Gamma function. This can be compared with the equivalent result obtained by CRW for the cantoids:

\[
\theta_{\infty} - \tan \theta_{\infty} = \frac{\pi}{1 - \beta}.
\]

Note that, unlike in the cases of Π and Λ, equation (B17) does not reduce to equation (B19) in the limit $k \to 0$. This is because, for $\theta > 90^\circ$, the $k = 0$ ancantoid differs from the cantoid since the former has no wind in the backward hemisphere (see Figure 13). Therefore there is less inner support for the far wings of the bow, and so θ_{∞} is smaller than in the cantoid case. The wilkinoid result again follows from $\beta \to 0$, implying that $\theta_{\infty} = \pi$, or, in other words, that the far wings are asymptotically parallel to the symmetry axis, as is the case for the paraboloid (App. A). In the case of the wilkinoid, however, the behavior is cubic in the wings, $z \sim r^3$, as opposed to quadratic as in the paraboloid.

We then optimize\(^{16}\) to find best-fit values (x_c^*, y_c^*), which minimize the objective function

\[
f(x_c, y_c) = \sum_{k=1}^{N} \left(|r_k - r_c| - \bar{R}(x_c, y_c) \right)^2.
\]

The best-fit radius of curvature is then given by $R^*_c = \bar{R}(x_c^*, y_c^*)$.

If we also know the position, $r_0 = (x_0, y_0)$, of the bow’s central source, then we can find the unit vector in the direction of the bow’s projected axis as

\[
\hat{\xi} = \frac{r_0 - r_c^*}{|r_0 - r_c^*|},
\]

and the apex distance from the source as

\[
R_0 = |r_c^* + R_c^* \hat{\xi} - r_0|.
\]

A refinement of the method is then to repeat the circle fit after restricting the set of points to those lying within a certain angle $\Delta \theta$ of the bow axis by requiring

\[
\hat{\xi} \cdot (r_k - r_c^*) \geq |r_k - r_c^*| \cos \Delta \theta,
\]

where we find that best results are obtained with $\Delta \theta \leq 30^\circ$.

If quantitative estimates exist for the uncertainties, ϵ_k, in the measurements of r_k, then it is appropriate to incorporate weights of ϵ_k^{-2} in the objective function. In cases where the bow shape is traced by eye, based on real or synthetic observations, a more practical approach is to maintain uniform weighting but to place a greater density of points r_k in regions where the shape is well-determined and to place them more sparsely in regions where the shape is less certain.

Note that this method is not necessary if the orientation of the bow axis is known a priori, in which case the Taylor series method described in § 2 is more efficient and accurate.

This paper has been typeset from a \texttt{LaTeX} file prepared by the author.

\(^{16}\) For example, using a Levenberg-Marquardt algorithm, such as \texttt{astropy.modeling.fitting.LevMarLSQFitter} from the Astropy library (Astropy Collaboration et al. 2013).

\(^{17}\) This is only valid if the resultant $R_0 < R_c^*$, otherwise the opposite sign of $\hat{\xi}$ must be taken.