Antennal Transcriptome Analysis and Comparison of Chemosensory Gene Families in Two Closely Related Noctuidae Moths, *Helicoverpa armigera* and *H. assulta*

Jin Zhang1,2‡, Bing Wang1‡, Shuanglin Dong2, Depan Cao1, Junfeng Dong3, William B. Walker4, Yang Liu1*, Guirong Wang1*

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China, 2 Education Ministry Key Laboratory of Integrated Management of Crop Disease and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China, 3 College of Forestry, Henan University of Science and Technology, Luoyang, 471003, China, 4 Swedish University of Agricultural Sciences, Department of Plant Protection Biology, Chemical Ecology Research Group, Alnarp, Sweden

‡ These authors contributed equally to this work.
*

Abstract

To better understand the olfactory mechanisms in the two lepidopteran pest model species, the *Helicoverpa armigera* and *H. assulta*, we conducted transcriptome analysis of the adult antennae using Illumina sequencing technology and compared the chemosensory genes between these two related species. Combined with the chemosensory genes we had identified previously in *H. armigera* by 454 sequencing, we identified 133 putative chemosensory unigenes in *H. armigera* including 60 odorant receptors (ORs), 19 ionotropic receptors (IRs), 34 odorant binding proteins (OBPs), 18 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). Consistent with these results, 131 putative chemosensory genes including 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs were identified through male and female antennal transcriptome analysis in *H. assulta*. Reverse Transcription-PCR (RT-PCR) was conducted in *H. assulta* to examine the accuracy of the assembly and annotation of the transcriptome and the expression profile of these unigenes in different tissues. Most of the ORs, IRs and OBPs were enriched in adult antennae, while almost all the CSPs were expressed in antennae as well as legs. We compared the differences of the chemosensory genes between these two species in detail. Our work will surely provide valuable information for further functional studies of pheromones and host volatile recognition genes in these two related species.

Introduction

Olfaction plays a key role in many aspects of insect behavior, such as foraging, oviposition and mate recognition. Possessing a sophisticated olfactory system to detect and interpret odorants...
in the environment is a prerequisite to survival and reproduction for insects. An understanding of how chemicals are detected by the antenna, transduced to the brain, and consequently translated into behavior is essential to clarify the mechanism of odorant detection in insects.

In the last few decades, much progress has been made in deciphering the mechanisms of periphery detection of insect olfaction. Olfactory signal transduction is best summarized in several discrete steps: first, the hydrophobic chemical volatiles enter into the sensillum lymph through the pores on the surface of the sensilla [1,2], and then bind to water-soluble odorant binding proteins (OBPs)/chemosensory protein (CSPs), which are abundant in the sensillum lymph (up to 10 mM) [3–10]. Then, the odorants activate the odorant/ionotropic receptors (ORs/IRs) expressed on the dendritic membrane of olfactory sensory neurons (OSNs) alone or in complex with the binding proteins [11,12], upon which, the chemical signal is translated into electrical signals that are transduced to the antennal lobe (AL). In addition, sensory neuron membrane proteins (SNMPs), and odorant degrading enzymes (ODEs) are also involved in different steps in signal transduction pathway [13–16].

Identification of the chemosensory genes is prerequisite for functional exploration of olfactory genes. Previously, these studies have mostly been focused on model species with sequenced genome available, such as Drosophila melanogaster, Bombyx mori, Aphis gossypii and several other insect species [17–22]. With the development of the next generation sequencing (NGS) techniques, numerous chemosensory genes have been identified from various insect species, such as Manduca sexta [23], Helicoverpa armigera [24], Cydia pomonella [25], Spodoptera littoralis [26–28], Sesamia inferens [29], Chilo suppressalis [30] and Aphis gossypii [31], etc.

The two closely related species, H. armigera and H. assulta are important pest species in China. These two species are so similar that they both use (Z)-11-hexadecenal (Z11-16:Ald) and (Z)-9-hexadecenal (Z9-16:Ald) as their main sex pheromone components, but in nearly reversed ratios [32]. However, their foraging ranges are widely differentiated, H. armigera is a polyphagous species posing a major threat to over 200 different plants, while H. assulta is an oligophagous insect, which mainly feed on Solanaceae plants, including tobacco and hot pepper [33,34]. Their feeding preferences may be associated with differences in their olfactory and gustatory system. Aiming to understand the olfactory mechanism of these two related species, our lab previously conducted a 454 sequencing of adult male and female antennae from H. armigera [24]; several chemosensory genes, including 45 ORs and 12 IRs were identified. However, considering the hypothesis that the number of the glomeruli equals the number of ORs [35,36], the number of ORs was lower than expected, suggesting that some ORs might have been missed. The number of other identified chemosensory genes (GRs, OBPs, and CSPs) was also less than the number of genes reported in other Lepidoptera insects [26,37]. This might be because the sequencing depth of 454 is much lower than Illumina technology and some low-level expressed genes were omitted. In order to find the missing chemosensory genes in H. armigera and identify all of the olfactory genes in H. assulta, we sequenced the adult antennae of H. armigera and H. assulta using Illumina HiSeq 2000 platform. Our study greatly enriches the information on the molecular mechanisms of chemoreception in these species, with a total number of 133 putative chemosensory unigenes in H. armigera including 60 ORs, 19 IRs, 34 OBPs, 18 CSPs, and 2 SNMPs, and 131 putative chemosensory unigenes with 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs in H. assulta. Then we completely compared the differences of the chemosensory genes (ORs, IRs, OBPs, CSPs) between these two species. Further Reverse Transcription-PCR (RT-PCR) assays in H. assulta were conducted to examine the expression profile of these unigenes in different tissues. Our work will surely provide an extensive molecular basis for further research in pheromone and host volatile recognition of these two related species.
Results and Discussion

Transcriptome assembly and Gene Ontology (GO) Annotation

The RNA extracted from the mix of male and female antennae of *H. armigera* was sequenced using Illumina HiSeq 2000 platform, while the RNA from male and female antennae of *H. assulta* was sequenced separately. A total of 47,407,880 and 51,051,262 raw reads were obtained from male and female *H. assulta* antennae samples, respectively and a total of 58,035,052 raw reads were got from the mixed sample of *H. armigera*. After trimming adaptor sequences, contaminating sequences and low quality sequences, high quality contigs were generated. These contigs were further assembled by paired-end joining and gap-filling, and clustered into unigenes. An overview of the sequencing and assembly process is presented in Table 1. The clean reads of the three antennal transcriptomes in this study have been in the NCBI SRA database, under the accession number of SRX707455 (*H. assulta* male), SRX707456 (*H. assulta* female) and SRX707450 (*H. armigera* mix-sex). The results showed 50.8% (*H. armigera*) and 54.0% (*H. assulta*) of the unigenes were matched to the entries in NCBI non-redundant (nr) protein database by blastx homology search with a cut-off E-value of 10^{-5} (S1 Material).

![Fig. 1](image1)

Fig. 1 illustrates the distribution of the *H. armigera* and *H. assulta* unigene set in GO terms. Among the 53,479 (*H. armigera*) and 44,319 (*H. assulta*) unigenes, only 12,611 (23.6%) and 11,369 (25.6%) correspond to at least one GO-term, respectively. Similar results were observed in other transcriptome analyses for *M. sexta* [23], and *Sesamia inferens* [29]. As one unigene could align to multiple GO categories, 51,360 and 54,273 were assigned to biological process, 26,169 and 27,809 to cellular component and 14,086 and 15,489 to molecular function in *H. assulta* and *H. armigera*, respectively. In the molecular function category, the terms of binding and catalytic activity were the most represented. In the cellular component terms, cell and cell part were the most abundant. Cellular process, single-organism process and metabolic process were most abundant in the biological process category. In each of the three GO categories, the more abundant terms were almost the same as those observed in the antennal transcriptome of *M. sexta* [23], *S. littoralis* [26–28], *S. inferens* [29], *A. gossypii* [31] and *Agrotis ipsilon* [38].

The candidate olfactory receptors in *H. armigera* and *H. assulta*

As the centerpiece of peripheral olfactory reception, ORs are the most important and determine the sensitivity and specificity of odorant reception [16]. All of the unigenes were searched by blastx and tblastn using the ORs identified from *H. armigera* [24,39] and *H. virescens* [40], leading to identification of 60 putative OR genes in *H. armigera* and 64 OR genes in *H. assulta*, which was almost consistent with the number of glomeruli (65) in *H. armigera* and *H. assulta*.

Table 1. Assembly summary of *H. assulta* and *H. armigera* antennal transcriptome.

Sample	Total Number	Total Length (nt)	Mean Length (nt)	N50	Consensus Sequences	Distinct Clusters	Distinct Singletons
H. assulta							
Contig Female	79,148	37,642,130	476	1283	-	-	-
Male	82,205	37,372,283	455	1227	-	-	-
Unigene Female	50,763	53,062,714	1045	2270	50,763	13,100	37,663
Male	50,698	51,544,572	1017	2205	50,698	14,234	36,464
Merge	44,319	59,006,938	1331	2488	44,319	15,830	28,489
H. armigera							
Contig Mix	97,631	38,170,555	391	811	-	-	-
Unigene Mix	53,479	48,077,592	899	1597	53,479	17,149	36,330

doi:10.1371/journal.pone.0117054.t001
All these OR genes in *H. assulta* and the ORs not identified in previous 454 sequencing of *H. armigera* were listed in Table 2. Considering the hypothesis that the number of glomeruli is equal to the number of ORs [35,36], we conclude that most of the ORs have now been identified. In the *H. armigera* antennal transcriptome, all of the 45 previously identified ORs were accounted for. HarmOR37 and OR38, which we predicted to be two genes, turned out to be two fragments of one transcript. We have identified 15 ORs from our Illumina sequencing that were not identified in the 454 sequencing and 6 of these genes have not been identified in any other previous study on *H. armigera*. One of the PR HarmOR14.2 identified by Jiang et al [42], was also found in this Illumina sequencing. The previously identified HarmOR5 was actually a GR, consistent with a report from Liu et al [39]. In *H. assulta*, 64 candidate ORs were identified. 59 of them had high similarity (>70%) with ORs from *H. armigera*, suggesting they may be orthologous genes in these two species. Notably, there were two OR8 homologies named as HassOR8 and OR8.2. In total, 5 species-specific ORs were found in *H. assulta* and named as HassOR8.2, 64, 68, 69, 70. Conversely, homologues of HarmOR15 were not found in *H. assulta* and it might be a species-specific OR in *H. armigera*. The absence of HassOR15 could suggest that this gene has low transcription in the antennae, which precluding its identification in the antennal transcriptome, or else HassOR15 may not exist in *H. assulta*. We tested for HassOR15 with PCR, but not find any bands. Transcriptome analysis of *S. littoralis* did not result in

![Gene ontology (GO) classification of the *H. armigera* and *H. assulta* unigenes with Blast2GO program.](https://doi.org/10.1371/journal.pone.0117054.g001)
Unigene reference	Gene Name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity (%)	Transmembrane domain (No)	Full length				
H. assulta												
Co-receptor												
CL1541. Contig3	HassOrco	3223	473	gi	163845598	gb	ABU45983.2	odorant receptor Or83b [Helicoverpa assulta]	0	100%	7	Yes
Pheromone receptors												
CL613.Contig1	HassOR6	1518	425	gi	240148399	gb	ACS45306.1	olfactory receptor 6 [Helicoverpa assulta]	0	100%	7	Yes
CL373.Contig1	HassOR11	1802	431	gi	240148403	gb	ACS45308.1	candidate odorant receptor 2 [Helicoverpa assulta]	0	100%	6	Yes
CL174. Contig16	HassOR13	1596	424	gi	240148401	gb	ACS45307.1	candidate odorant receptor 1 [Helicoverpa assulta]	0	100%	7	Yes
CL4389. Contig1	HassOR14	845	244	gi	582120691	gb	AHI44516.1	olfactory receptor 14 [Helicoverpa assulta]	0	100%	4	No
CL2595. Contig3	HassOR14.2	1498	440	gi	486139852	gb	AGK90019.1	olfactory receptor 14b [Helicoverpa assulta]	0	99%	4	Yes
CL613.Contig3	HassOR16	2008	322	gi	240148405	gb	ACS45309.1	candidate odorant receptor 3 [Helicoverpa assulta]	0	100%	4	No
Olfactory receptors												
Unigene8904	HassOR1	1621	454	gi	148533561	gb	ABQ84982.1	putative chemosensory receptor 12 [Spodoptera littoralis]	0	84%	4	Yes
Unigene8630	HassOR3	1296	256	gi	486139730	gb	AGK90013.1	olfactory receptor 3 [Helicoverpa assulta]	0	98%	4	No
CL5377. Contig2	HassOR7	1920	411	gi	486139804	gb	AGK90015.1	olfactory receptor 7 [Helicoverpa assulta]	0	99%	5	No
CL4032. Contig2	HassOR8	1419	396	gi	22293497	emb	CAD31949.1	putative chemosensory receptor 8 [Heliothis virescens]	0	73%	6	No
CL4032. Contig3	HassOR8.2	1198	346	gi	22293497	emb	CAD31949.1	putative chemosensory receptor 8 [Heliothis virescens]	0	68%	5	No
Unigene13949	HassOR9	1339	401	gi	486139812	gb	AGK90016.1	olfactory receptor 9 [Helicoverpa assulta]	0	42%	6	Yes
Unigene3735	HassOR10	2073	390	gi	486139829	gb	AGK90017.1	olfactory receptor 10 [Helicoverpa assulta]	0	99%	4	Yes
Unigene20510	HassOR12	1462	408	gi	486139840	gb	AGK90018.1	olfactory receptor 12 [Helicoverpa assulta]	0	98%	6	Yes
CL2098. Contig1	HassOR17	1322	399	gi	486139869	gb	AGK90020.1	olfactory receptor 17 [Helicoverpa assulta]	0	99%	6	Yes
Unigene11863	HassOR18	1307	398	gi	486139883	gb	AGK90021.1	olfactory receptor 18 [Helicoverpa assulta]	0	85%	4	Yes
Unigene17037	HassOR19	1451	402	gi	51127350	emb	CAG38120.1	putative chemosensory receptor 19 [Heliothis virescens]	3.00E-177	51%	6	Yes
CL771. Contig3	HassOR20	1552	393	gi	486139895	gb	AGK90022.1	olfactory receptor 20 [Helicoverpa assulta]	0	99%	7	Yes
Unigene1626	HassOR21	1535	403	gi	51127354	emb	CAG38122.1	putative chemosensory receptor 21 [Heliothis virescens]	0	84%	7	Yes
CL117. Contig1	HassOR21.2	1293	408	gi	452113244	gb	AGG08879.1	putative olfactory receptor 19 [Spodoptera littura]	9.00E-156	58%	6	No
Unigene20296	HassOR22	1367	414	gi	452113244	gb	AGG08879.1	putative olfactory receptor 19 [Spodoptera littura]	3.00E-79	38%	5	Yes

(Continued)
Table 2. (Continued)

Unigene reference	Gene Name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Transmembrane domain (No)	Full length				
Unigene13967	HassOR23	1262	413	gi	333408659	gb	AEF32141.1	odorant receptor [Spodoptera exigua]	0	81%	7	Yes
Unigene1383	HassOR24	1303	391	gi	114217265	dbj	BAF31195.1	candidate olfactory receptor [Bombyx mori]	1.00E-174	68%	4	Yes
Unigene7768	HassOR25	1322	390	gi	152963569	tpg	DA05974.1	TPA: odorant receptor 15 [Bombyx mori]	3.00E-92	46%	7	Yes
Unigene12785	HassOR26	2241	408	gi	452113238	gb	AGG08876.1	putative olfactory receptor 51 [Spodoptera litura]	0	57%	4	Yes
Unigene10865	HassOR27	1578	427	gi	550848946	gb	AGG32141.1	candidate olfactory receptor [Spodoptera exigua]	5.00E-120	48%	6	Yes
Unigene9858	HassOR28	1315	392	gi	390276101	dbj	BAF31195.1	candidate olfactory receptor 51 [Spodoptera litura]	8.00E-146	59%	5	No
Unigene18117	HassOR29	1307	395	gi	238623677	dbj	BAH63312.1	olfactory receptor [Bombyx mori]	7.00E-128	44%	7	Yes
Unigene21012	HassOR30	2349	382	gi	238623681	dbj	BAH63314.1	olfactory receptor [Bombyx mori]	0	48%	6	Yes
Unigene20285	HassOR31	1313	395	gi	550848946	gb	AGG32141.1	candidate olfactory receptor 51 [Spodoptera litura]	0	69%	6	Yes
Unigene18165	HassOR32	1345	393	gi	152963559	tpg	DA05974.1	TPA_exp: odorant receptor 33 [Bombyx mori]	2.00E-113	42%	4	No
Unigene2633	HassOR33	3736	414	gi	390276101	dbj	BAF31195.1	candidate olfactory receptor 51 [Spodoptera litura]	4.00E-139	52%	6	Yes
Unigene5593	HassOR34	1318	393	gi	238623718	dbj	BAH63331.1	olfactory receptor [Bombyx mori]	4.00E-169	60%	6	Yes
CL5009. Contig1	HassOR35	1617	407	gi	238623728	dbj	BAH63331.1	olfactory receptor [Bombyx mori]	1.00E-24	27%	5	Yes
Unigene7932	HassOR36	2330	387	gi	238623728	dbj	BAH63331.1	olfactory receptor [Bombyx mori]	1.00E-154	65%	7	Yes
Unigene463	HassOR38	1390	429	gi	452113240	gb	AGG08877.1	putative olfactory receptor 44 [Spodoptera litura]	0	89%	5	Yes
CL1016. Contig2	HassOR39	1244	387	gi	550848962	gb	AGY14589.1	putative odorant receptor, partial [Sesamia inferens]	6.00E-114	66%	6	No
CL2958. Contig1	HassOR40	1468	401	gi	238623701	dbj	BAH63324.1	olfactory receptor [Bombyx mori]	9.00E-132	66%	7	No
CL3469. Contig2	HassOR41	2067	402	gi	238623753	dbj	BAH63350.1	olfactory receptor [Bombyx mori]	0	75%	6	Yes
CL3125. Contig2	HassOR42	2949	445	gi	238623761	dbj	BAH63354.1	olfactory receptor [Bombyx mori]	0	69%	6	Yes
CL3068. Contig1	HassOR43	1726	396	gi	238623768	dbj	BAH63358.1	olfactory receptor [Bombyx mori]	3.00E-133	51%	7	Yes
Unigene5665	HassOR44	1344	415	gi	550848960	gb	AGY14588.1	putative odorant receptor, partial [Sesamia inferens]	5.00E-98	54%	7	Yes
Unigene20272	HassOR45	1481	429	gi	379070042	gb	AF091732.1	putative odorant receptor OR24 [Cydia pomonella]	5.00E-166	58%	7	Yes
Unigene14231	HassOR46	1477	448	gi	550848938	gb	AGY14577.1	putative odorant receptor, partial [Helicoverpa armigera]	0	69%	6	Yes
Unigene6202	HassOR47	1287	179	gi	152963569	tpg	DA05974.1	TPA: odorant receptor 15 [Bombyx mori]	9.00E-64	45%	2	No
Unigene1397	HassOR48	1183	322	gi	152963593	tpg	DA05986.1	TPA_exp: odorant receptor 30 [Bombyx mori]	6.00E-117	56%	3	No
CL2112. Contig2	HassOR50	1386	383	gi	669161203	gb	AIG51896.1	odorant receptor, partial [Helicoverpa armigera]	0	98%	6	No

(Continued)
Unigene reference	Gene Name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Transmembrane domain (No)	Full length				
Unigene14012	HassOR52	1466	419	gi	666916207	gb	AIG51898.1	odorant receptor [Helicoverpa armigera]	0	99%	7	Yes
Unigene14277	HassOR55	1709	405	gi	666916213	gb	AIG51901.1	odorant receptor, partial [Helicoverpa armigera]	5e-151	98%	3	Yes
Unigene21491	HassOR56	1311	395	gi	666916215	gb	AIG51902.1	odorant receptor, partial [Helicoverpa armigera]	0	97%	7	No
Unigene14960	HassOR57	1283	390	gi	666916217	gb	AIG51903.1	odorant receptor, partial [Helicoverpa armigera]	0	98%	7	Yes
CL4114. Contig1	HassOR59	1670	416	gi	666916221	gb	AIG51905.1	odorant receptor, partial [Helicoverpa armigera]	4e-169	98%	6	Yes
Unigene1839.	HassOR60	1463	391	gi	666916223	gb	AIG51906.1	odorant receptor [Helicoverpa armigera]	0	98%	5	No
Unigene8759	HassOR61	1490	343	gi	270012723	gb	EFA09171.1	odorant receptor 13 [Tribolium castaneum]	2.00E-10	27%	6	No
Unigene21569	HassOR62	1446	409	gi	379070028	gb	AF91725.1	putative odorant receptor OR17 [Cydia pomonella]	2.00E-88	51%	6	No
CL773. Contig1	HassOR63	1437	407	gi	512916917	ref	XP_004928758.1	putative odorant receptor 85c-like [Bombyx mori]	4.00E-50	41%	7	Yes
Unigene1419	HassOR64	1371	395	gi	380011625	ref	XP_003689900.1	odorant receptor 46a, isoform A-like [Apis florea]	4.00E-07	28%	6	No
Unigene13993	HassOR65	1371	422	gi	512897082	ref	XP_004924066.1	odorant receptor [Bombyx mori]	7.00E-68	70%	6	Yes
Unigene16125	HassOR66	1321	396	gi	512916917	ref	XP_004928758.1	putative odorant receptor 85c-like [Bombyx mori]	1.00E-93	54%	7	Yes
Unigene2753	HassOR67	3066	398	gi	512916917	ref	XP_004928758.1	putative odorant receptor 85c-like [Bombyx mori]	0	75%	7	No
CL4451. Contig1	HassOR68	1316	369	gi	512934792	ref	XP_003689900.1	odorant receptor 46a, isoform A-like [Apis florea]	0	80%	5	No
CL1322. Contig2	HassOR69	1266	395	gi	299522734	ref	NP_001177509.1	odorant receptor 69 [Nasonia vitripennis]	3.00E-06	25%	5	No
CL2112. Contig1	HassOR70	1231	400	gi	238626367	dbj	BAH66317.1	olfactory receptor [Bombyx mori]	1.00E-128	51%	6	No

H. armigera

Unigene6363	HarmOR1	1466	454	gi	148533561	gb	ABQ84982.1	putative chemosensory receptor 12 [Spodoptera littoralis]	0	85%	2	Yes
Unigene18477	HarmOR14.2	1499	440	gi	486139562	gb	AGK90006.1	olfactory receptor 14b [Helicoverpa armigera]	0	98%	4	No
CL7391. Contig1	HarmOR50	1269	400	gi	666916203	gb	AIG51896.1	odorant receptor, partial [Helicoverpa armigera]	0	98%	6	No
Unigene8351	HarmOR52	1428	419	gi	666916207	gb	AIG51898.1	odorant receptor, partial [Helicoverpa armigera]	0	99%	6	Yes
CL3322. Contig2	HarmOR55	1515	357	gi	666916213	gb	AIG51901.1	odorant receptor, partial [Helicoverpa armigera]	8e-154	99%	3	No
Unigene26235	HarmOR56	1014	307	gi	666916215	gb	AIG51902.1	odorant receptor, partial [Helicoverpa armigera]	0	98%	1	No
identification of a HarmOR15 homologue either [26–28]. Liu et al (2014) reported that they identified 57 ORs from *H. armigera* transcriptome, and they did not identify HarmOR28, 33, 37 in their transcriptome [39], however in our study, these genes were found, and the homologues of HassOR28, 33, 37 were also identified. Six of the HarmORs (OR4, 49, 51, 53, 54, 58) identified by Liu et al (2014) were not found in this *H. armigera* transcriptome neither in *H. assulta*. These 64 *H. assulta* ORs and 66 *H. armigera* ORs (including HarmOR4, 49, 51, 53, 54, 58) clustering with 62 *B. mori* ORs [43] and 21 *H. virescens* ORs [40,44] were used for a phylogenetic analysis (Fig. 2). In this analysis, the olfactory co-receptor (Orco) and pheromone receptor (PR) families were highly conserved, while other HassORs clustered separately with HarmORs. Consistent with the results of sequence similarity analysis, the phylogenetic analysis also showed that there are 59 groups of orthologous OR genes in these two species. There are 7 *H. armigera* unique ORs (HarmOR4, 15, 49, 51, 53, 54, 58) and 5 *H. assulta* unique ORs (HassOR8.2, 54, 68, 69, 70). The complete comparison of the OR genes in *H. armigera* (from our study and Australia) and *H. assulta* were listed in S3 Material. Even for the PRs, which display high similarities in their sequences, their functions were somewhat different [42,45]. These differences may account for the recognition of species-specific pheromone blends. Other ORs, which had relatively low similarities compared to PRs, may be associated with detection of host plant compounds. Functional characterization of the ORs from these two species will ultimately contribute to an explanation of principles in host selection. The RT-PCR results showed that 64 ORs were exclusively or primarily expressed in the antennae, which verified the integrity of the transcriptome assembly (Fig. 3). The PR13 was biased in male antenna while other ORs were almost equally expressed in both male and female antenna, which is consistent with results reported recently [42]. Faint expressions of OR9 and OR18 in the legs is consistent with the existence of chemosensory sensilla on the surface of legs, as earlier study by Sun et al also reported that OR5 was expressed in male moth legs of *Plutella xylostella* [46].

Table 2. (Continued)

Unigene reference	Gene Name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Transmembrane domain (No)	Full length				
Unigene15149	HarmOR57	828	264	gi	666916217	gb	AIG51903.1	odorant receptor, partial [Helicoverpa armigera]	0	99%	4	No
CL3441. Contig1	HarmOR59	1595	416	gi	666916221	gb	AIG51905.1	odorant receptor, partial [Helicoverpa armigera]	2e-173	100%	6	Yes
CL7559. Contig1	HarmOR60	1126	370	gi	666916223	gb	AIG51906.1	odorant receptor [Helicoverpa armigera]	0	98%	3	No
Unigene11361	HarmOR61	408	126	gi	669092346	gb	AII01045.1	odorant receptors [Dendrolimus houi]	7e-15	34%	2	No
Unigene16370	HarmOR62	459	142	gi	586746120	gb	EAR6837.3	transmembrane protein, putative [Tetrahymena thermophila SB210]	3.9	27%	3	No
CL1781. Contig2	HarmOR63	1481	407	gi	669092356	gb	AII01050.1	odorant receptors [Dendrolimus houi]	1e-108	41%	7	No
CL3217. Contig1	HarmOR65	1346	422	gi	512897082	ref	XP_004920466.1	PREDICTED: uncharacterized protein LOC101736921 [Bombyx mori]	2e-68	71%	6	Yes
CL252.Contig1	HarmOR66	982	296	gi	512919671	ref	XP_004928758.1	PREDICTED: putative odorant receptor 85c-like [Bombyx mori]	2e-83	56%	6	No
Unigene14307	HarmOR67	1526	398	gi	379070020	gb	AF91721.1	putative odorant receptor OR12 [Cydia pomonella]	0	71%	7	Yes

doi:10.1371/journal.pone.0117054.t002
Figure 2. Phylogenetic tree of putative *H. armigera* and *H. assulta* ORs with other Lepidoptera ORs. This tree was constructed using FastTree based on alignment results of MAFFT. Harm: *H. armigera* (black), Hass: *H. assulta* (red), Bmor: *B. mori* (blue), Hvir: *H. virescens* (purple).
doi:10.1371/journal.pone.0117054.g002
The candidate ionotropic receptors in *H. armigera* and *H. assulta*

A second type of olfactory receptor, IR, was first found in OSNs housed in coeloconic sensilla of *Drosophila* [47]. IRs belong to an ancient chemosensory receptor family, and most of the IRs in *Drosophila* have clear orthologs with genus of Diptera [48,49], Hymenoptera [50], and Lepidoptera [23,24,37,51]. In this study, we identified 19 IRs in *H. armigera* and 19 IRs in *H. assulta*, and named them based on homologous sequences from other insects. The 19 IRs identified in *H. assulta* and the 7 IRs not identified in previous 454 sequencing from *H. armigera* were listed here (Table 3).

We did not find HarmIR7d.3 and IR75p.1 in *H. armigera* identified by Liu et al [39]. The comparison of the IR genes in *H. armigera* (from our study and Australia) and *H. assulta* were listed in S3 Material. These 19 *H. assulta* and 21 *H. armigera* IRs (including HarmIR7d.3 and IR75p.1) clustering with that of *B. mori* (17) [52], *S. littoralis* (12) [52] and *D. melanogaster* (66) [50] were used for a phylogenetic analysis (Fig. 4). The two highly conserved co-receptors IR8a and IR25a were present here as well as the two large sub-families of IR7d and IR75 clades. The phylogenetic analysis proved that there are 15 groups of orthologous IR genes in these two species, 5 *H. armigera* unique...
Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	TMD (No)	Full length				
H. assulta												
Unigene21327	HassIR21a	2733	857	gb	ADR64678.1	putative chemosensory ionotropic receptor IR21a [Spodoptera littoralis]	0	82%	5 Yes			
Unigene23288	HassIR40a	394	124	gb	ADR64680.1	putative chemosensory ionotropic receptor IR40a [Spodoptera littoralis]	5.00E-52	82%	1 No			
CL1374.Contig1	HassIR41a	1926	607	gb	ADR64681.1	putative chemosensory ionotropic receptor IR41a [Spodoptera littoralis]	0	81%	3 Yes			
Unigene8703	HassIR68a	1395	465	gb	ADR64682.1	putative chemosensory ionotropic receptor IR68a [Spodoptera littoralis]	0	86%	4 No			
Unigene5557	HassIR75d	940	304	gb	ADR64683.1	putative chemosensory ionotropic receptor IR75d [Spodoptera littoralis]	3.00E-158	73%	0 No			
CL3797.Contig2	HassIR75p	1995	619	gb	ADR64684.1	putative chemosensory ionotropic receptor IR75p [Spodoptera littoralis]	0	88%	3 Yes			
CL3227.Contig1	HassIR75q.2	4384	632	gb	ADR64685.1	putative chemosensory ionotropic receptor IR75q.2 [Spodoptera littoralis]	0	82%	4 Yes			
CL3227.Contig4	HassIR75q.1	2708	643	gb	ADR64686.1	putative chemosensory ionotropic receptor IR75q.1 [Spodoptera littoralis]	0	53%	3 Yes			
CL3067.Contig1	HassIR76b	1947	544	gb	ADR64687.1	putative chemosensory ionotropic receptor IR76b [Spodoptera littoralis]	0	84%	3 Yes			
Unigene7935	HassIR1	2165	638	gb	ADR64688.1	putative chemosensory ionotropic receptor IR1 [Spodoptera littoralis]	0	68%	3 Yes			
CL4084.Contig1	HassIR87a	2270	642	gb	ADR64689.1	putative chemosensory ionotropic receptor IR87a [Spodoptera littoralis]	0	90%	3 Yes			
Unigene10844	HassIR25a	3299	918	gb	AFC91757.1	putative ionotropic receptor IR25a [Cydia pomonella]	0	88%	3 Yes			
CL2193.Contig4	HassIR4	2749	384	gb	AFC91763.1	putative ionotropic receptor IR4, partial [Cydia pomonella]	1.00E-46	49%	1 Yes			
Unigene20831	HassIR8a	3152	895	gb	AFC91764.1	putative ionotropic receptor IR8a, partial [Cydia pomonella]	0	81%	4 Yes			
Unigene7787	HassIR93a	2732	873	gb	AFC91753.1	putative ionotropic receptor IR93a, partial [Cydia pomonella]	0	75%	3 Yes			
Unigene18021	HassIR7d.1	353	117	gi	666916243	gb	AIG51916.1	ionotropic receptor, partial [Helicoverpa armigera]	1e-80	99%	0 No	
Unigene10598	HassIR7d.3	998	329	gi	666916247	gb	AIG51918.1	ionotropic receptor, partial [Helicoverpa armigera]	7e-91	100%	2 No	
Unigene50	HassIR60a	1757	585	gi	666916249	gb	AIG51919.1	ionotropic receptor, partial [Helicoverpa armigera]	0	97%	3 No	
Unigene12668	HassIR64a	1881	553	gi	666916251	gb	AIG51920.1	ionotropic receptor, partial [Helicoverpa armigera]	3e-156	97%	4 No	
H. armigera												
Unigene36139	HarmlR2	209	69	gi	666916241	gb	AIG51915.1	ionotropic receptor, partial [Helicoverpa armigera]	3e-40	100%	1 No	
Unigene30991	HarmlR7d.1	300	100	gi	666916243	gb	AIG51916.1	ionotropic receptor, partial [Helicoverpa armigera]	3e-66	100%	0 No	
Unigene32554	HarmlR7d.2	353	117	gi	666916245	gb	AIG51917.1	ionotropic receptor, partial [Helicoverpa armigera]	2e-80	100%	1 No	
Unigene8281	HarmlR60a	543	180	gi	666916249	gb	AIG51919.1	ionotropic receptor, partial [Helicoverpa armigera]	2e-125	99%	3 No	
Unigene1966	HarmlR64a	562	187	gi	666916251	gb	AIG51920.1	ionotropic receptor, partial [Helicoverpa armigera]	8e-122	99%	2 No	
Unigene4424	HarmlR68a	364	120	gi	666916253	gb	AIG51921.1	ionotropic receptor, partial [Helicoverpa armigera]	3e-81	100%	2 No	
CL6604.Contig1	HarmlR93a	624	207	gi	666916257	gb	AIG51923.1	ionotropic receptor, partial [Helicoverpa armigera]	6e-132	96%	4 No	

doi:10.1371/journal.pone.0117054.t003
RT-PCR showed the IR genes were all predominantly expressed in male and female antennae (Fig. 5).

Candidate odorant binding proteins in *H. armigera* and *H. assulta*

OBPs are small, water-soluble, extracellular proteins that are located in the sensillum lymph, and generally thought to contribute to capture and transport of the odorants and pheromones.
to the receptors [16, 53]. In all, we annotated 29 OBP genes from H. assulta and 34 OBPs genes from H. armigera. The 29 OBPs identified in H. assulta and the 8 OBPs not identified in previous 454 sequencing from H. armigera were listed here (Table 4). The number of OBPs identified in the present study was in a reasonable range compared to other transcriptome analyses from Agrotis ipsilon (33) [38], S. littoralis (36) [26], S. inferens (24) [29]. All of the 34 OBPs from H. armigera as well as 29 OBPs from H. assulta were used to construct a phylogenetic tree clustering with OBPs from B. mori [17] and H. virescens (Fig. 6) and named based on the homologous genes. The newly identified genes were named according to the length of the unigenes for HarmOBP23-30. We did not detect homologous genes (HarmOBP7, 7.2, 9, 16, 17, 20, 21) in H. assulta. The comparison of the OBP genes in H. armigera and H. assulta were listed in S3 Material. These differences in OBPs might be associated with differences in the recognition of volatiles emitted by the host plant, therefore functional characterization of these proteins will be a prerequisite for research in host selection. The RT-PCR results indicated that 24 HassOBP genes (GOBP1, 2, PBP1, 2, 3, OBP6, 8, 9.2, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32) were primarily or exclusively expressed in male and female antenna (Fig. 7). HassOBP1, 2, 3, 4 and 5 were almost equally expressed in male and female antennae and legs. Some OBPs have been reported not being exclusive to the antenna, Sun et al reported that PxyIPBP2 and PxyIPBP3 had faint expressions in legs [54] and Sengul et al also reported that an OBP gene was expressed in male fly legs [55]. Expression of OBP56a in the oral disk of the house fly Phormia regina has been reported as a fatty acid solubilizer [56, 57].

Candidate chemosensory proteins in H. armigera and H. assulta

CSPs are another class of small soluble proteins in insects. Several CSPs are present at high concentrations in the lymph of chemosensilla and exhibit binding activity towards odorants and pheromones [58]. In this study, we identified 17 CSP genes in H. assulta and 18 CSP genes
Table 4. Unigenes of candidate odorant binding proteins in *H. assulta* and *H. armigera*.

Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Full length	Signal peptide		
H. assulta										
	Pheromone binding protein									
Unigene3583	HassPBP1	927	170	gb	AEB54585.1	PBP1 [Helicoverpa armigera]	1.00E-113	94%	Yes	Yes
CL1179.Contig2	HassPBP2	3054	165	gb	AEB54583.1	PBP2 [Helicoverpa armigera]	1.00E-99	92%	Yes	Yes
CL341.Contig1	HassPBP3	7544	164	gb	ABB91374.1	PBP3 [Helicoverpa assulta]	2.00E-94	100%	Yes	Yes
	General odorant binding protein									
CL4678.Contig1	HassGOBP1	903	162	gb	AAW65076.1	general odorant binding protein 1 [Helicoverpa assulta]	6.00E-99	99%	No	Yes
CL1767.Contig2	HassGOBP2	1620	162	gb	AAQ54909.1	general odorant binding protein 2 [Helicoverpa assulta]	3.00E-109	100%	Yes	Yes
	Other odorant binding protein									
CL126.Contig2	HassOBP1	2485	161	gb	AEX07272.1	odorant binding protein [Helicoverpa assulta]	3.00E-84	97%	Yes	Yes
CL1167.Contig1	HassOBP2	1023	143	gb	AEB54586.1	OBP2 [Helicoverpa armigera]	2.00E-76	93%	Yes	Yes
CL3124.Contig2	HassOBP3	623	147	gb	ACG92788.1	odorant binding protein 3 [Helicoverpa assulta]	4.00E-100	99%	Yes	Yes
CL1018.Contig1	HassOBP4	1008	147	gb	AEX07276.1	odorant binding protein [Helicoverpa assulta]	7.00E-85	96%	Yes	Yes
Unigene9995	HassOBP5	1624	147	gb	AEX07271.1	odorant binding protein [Helicoverpa assulta]	1.00E-92	99%	Yes	Yes
Unigene14608	HassOBP6	826	147	gb	AEX07270.1	odorant binding protein [Helicoverpa assulta]	8.00E-82	95%	Yes	Yes
Unigene16224	HassOBP8	1076	139	gb	AEB54589.1	OBP8 [Helicoverpa armigera]	5.00E-93	100%	Yes	Yes
CL3057.Contig1	HassOBP9.2	3281	148	gb	ACG92789.1	odorant binding protein 9 [Helicoverpa assulta]	7.00E-90	99%	Yes	Yes
CL3394.Contig2	HassOBP13	2390	141	gb	ACG92790.1	odorant binding protein 13 [Helicoverpa assulta]	4.00E-80	99%	Yes	Yes
CL4268.Contig1	HassOBP14	684	137	gb	AFI57167.1	odorant binding protein 18 [Helicoverpa armigera]	2.00E-87	99%	Yes	Yes
Unigene19151	HassOBP15	816	168	gb	ADY17882.1	odorant binding protein [Spodoptera exigua]	2.00E-74	73%	Yes	Yes
CL1135.Contig1	HassOBP18	2355	146	gb	AFG72998.1	odorant binding protein 1 [Cnaphalocrocis medinalis]	3.00E-69	79%	Yes	Yes
CL2004.Contig3	HassOBP19	1810	130	gb	AGP03460.1	SexiOBP14 [Spodoptera exigua]	2.00E-49	62%	Yes	No
CL810.Contig2	HassOBP22	7234	146	gb	AGP03458.1	SexiOBP12 [Spodoptera exigua]	6.00E-69	76%	Yes	Yes
CL2229.Contig1	HassOBP23	1763	244	gb	AGH70107.1	odorant binding protein 11 [Spodoptera exigua]	2.00E-68	81%	Yes	Yes
CL2035.Contig1	HassOBP24	700	204	gb	AGC92793.1	odorant binding protein 19 [Helicoverpa assulta]	8.00E-123	99%	Yes	Yes
CL1769.Contig1	HassOBP25	658	186	gb	AEX07273.1	odorant binding protein [Helicoverpa assulta]	2.00E-128	97%	Yes	Yes
Unigene15089	HassOBP26	1415	154	gb	AGP03457.1	SexiOBP11 [Spodoptera exigua]	6.00E-80	76%	Yes	Yes
Unigene2050	HassOBP27	584	147	gb	AEX07279.1	odorant binding protein [Helicoverpa armigera]	1.00E-85	97%	Yes	Yes
(Continued)
in *H. armigera*. The 17 CSPs identified in *H. assulta* and the 6 CSPs not identified in previous 454 sequencing from *H. armigera* were listed here (Table 5). The comparison of the CSP genes in *H. armigera* and *H. assulta* were listed in S3 Material. All of the 17 CSPs from *H. assulta* and 18 CSPs from *H. armigera* were used to construct a phylogenetic tree clustering with CSPs from *B. mori* [59] and *H. virescens* [60] (Fig. 8) and named based on the homologous genes, while the newly identified genes HarmCSP14-19 were named according to the length of the unigenes. We did not detect the homologous gene of HarmCSP9 in *H. assulta*.

Comparing with the number of CSPs identified from other Lepidoptera: *B. mori* (18) [61], *M. sexta* (21) [23], *S. littoralis* (21) [26], *S. inferens* (24) [37], we may have missed some CSPs in this transcriptome. The RT-PCR results showed that CSP6, 10, 11, 13, 19 were antennal enriched, while other CSPs were almost equally expressed in the three test tissues (Fig. 9). The antennal enriched CSPs may be involved in the chemoreception [62]. There are some reports about the expression of CSPs in tissues other than antenna [37,63–65]. The CSPs expressed in legs may participate in other physiological processes beyond chemoreception [66].

Candidate sensory neuron membrane proteins in the *H. assulta*

SNMPs are insect membrane proteins that are associated with pheromone-sensitive neurons in Lepidoptera and Diptera [67–70]. The insect SNMP family consists of two subfamilies, SNMP1 and SNMP2, which were first identified from *A. polyphemus* [67] and *Manduca sexta* [71], respectively. Since then, much progress has been achieved in the identification of SNMP1 and SNMP2 in different insect orders [69,72–80]. The expression of SNMP1 in pheromone-specific
Figure 6. Phylogenetic tree of putative *H. armigera* and *H. assulta* OBPs with OBPs from other insects. The shown tree was constructed using FastTree based on alignment results of MAFFT. Harm: *H. armigera* (black), Hass: *H. assulta* (red), Bmor: *B. mori* (blue), Hvir: *H. virescens* (purple).

doi:10.1371/journal.pone.0117054.g006
olfactory neurons suggests it may be involved in pheromone detection [44,67,72], while SNMP2 was found to express in the supporting cells [70,77]. In this study, we identified two SNMP genes, SNMP1 and SNMP2, from *H. assulta* antennal transcriptomes (Table 6), for the identification of two SNMP in our previous study, we did not list the HarmSNMP here. Both HassSNMP1 and SNMP2 have the complete ORFs and the two transmembrane domains. RT-PCR results showed SNMP1 was primarily expressed in antennae and SNMP2 was aboundant expressed in antennae as well as in legs (Fig. 5).

Conclusion

We carried out comprehensive analysis of the antennal transcriptomes of *H. armigera* and *H. assulta* using Illumina HiSeq 2000 platform. We successfully annotated 133 putative chemosensory genes: 60 ORs, 19 IRs, 34 OBPs, 18 CSPs, and 2 SNMPs in *H. armigera* and 131 putative chemosensory genes: 64 ORs, 19 IRs, 29 OBPs, 17 CSPs, and 2 SNMPs in *H. assulta*. Later we completely compared the differences of the chemosensory genes between these two species. RT-PCR confirmed the distribution profiles of these chemosensory genes in different tissues.
Table 5. Unigenes of candidate chemosensory proteins in *H. assulta* and *H. armigera*.

Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Full length	Signal peptide				
H. assulta												
CL2680.Contig1	HassCSP	774	127	gb	ABB91378.1	chemosensory protein [Helicoverpa assulta]	6.00E-73	98%	Yes	Yes		
CL4029.Contig1	HassCSP2	407	120	gb	AEX07265.1	CSP2 [Helicoverpa armigera]	3.00E-75	91%	Yes	Yes		
Unigene16387	HassCSP4	1640	96	gb	AEX07269.1	CSP4 [Helicoverpa armigera]	4.00E-46	100%	No	No		
CL2023.Contig1	HassCSP5	757	127	gb	AEB54579.1	CSP5 [Helicoverpa armigera]	9.00E-85	99%	Yes	Yes		
CL3762.Contig1	HassCSP6	1227	123	gb	AEX07267.1	CSP6 [Helicoverpa armigera]	8.00E-76	97%	Yes	Yes		
CL1078.Contig1	HassCSP7	1305	111	gb	AEX07268.1	CSP7 [Helicoverpa armigera]	1.00E-63	93%	Yes	Yes		
CL488.Contig1	HassCSP8	543	128	gb	AFR92095.1	chemosensory protein 11 [Helicoverpa armigera]	3.00E-76	91%	Yes	Yes		
Unigene16790	HassCSP10	692	107	gb	AGR39575.1	chemosensory protein 5 [Agrotis ipsilon]	1.00E-54	92%	Yes	Yes		
CL126.Contig12	HassCSP11	3000	150	gb	AGY49270.1	putative chemosensory protein [Sesamia inferens]	2.00E-77	84%	Yes	Yes		
Unigene8153	HassCSP12	361	102	gb	AFR92092.1	chemosensory protein 8 [Helicoverpa armigera]	1.00E-63	93%	No	Yes		
Unigene20980	HassCSP13	683	122	gb	AFR92094.1	chemosensory protein 10 [Helicoverpa armigera]	4.00E-82	100%	No	Yes		
CL3149.Contig1	HassCSP14	1914	292	gb	AHG05678.1	chemosensory protein [Chilo suppressalis]	4.00E-59	77%	Yes	Yes		
CL2815.Contig2	HassCSP15	477	124	gb	AGH20053.1	chemosensory protein 15, partial [Helicoverpa armigera]	1.00E-72	98%	Yes	Yes		
Unigene18506	HassCSP16	520	123	gb	AGR39578.1	chemosensory protein 8 [Agrotis ipsilon]	5.00E-57	77%	Yes	Yes		
Unigene215	HassCSP17	434	110	gb	AGH20056.1	chemosensory protein 18, partial [Helicoverpa assulta]	3.00E-60	99%	No	No		
Unigene18603	HassCSP18	482	107	gb	AGY49260.1	putative chemosensory protein, partial [Sesamia inferens]	5.00E-44	99%	Yes	Yes		
Unigene26196	HassCSP19	363	101	ref	NP_001091781.1	chemosensory protein 15 [Bombyx mori]	1.00E-39	68%	No	No		
H. armigera												
CL4900.Contig1	HarmCSP14	2257	292	gb	KF487617.1	chemosensory proteins 5 [Dendrolimus houi]	4.00E-80	79%	Yes	Yes		
Unigene9880	HarmCSP15	562	124	gi	461726399	gb	AGH20053.1	chemosensory protein 15, partial [Helicoverpa armigera]	5e-72	99%	Yes	Yes
Unigene24782	HarmCSP16	517	123	gb	AGR39578.1	chemosensory protein 8 [Agrotis ipsilon]	2.00E-56	76%	Yes	Yes		
CL1141.Contig1	HarmCSP17	524	128	gb	AEX07269.1	chemosensory protein 4 [Helicoverpa armigera]	1.00E-75	99%	Yes	Yes		
Unigene26004	HarmCSP18	526	107	gb	AGY49260.1	putative chemosensory protein, partial [Sesamia inferens]	1.00E-43	99%	Yes	Yes		
CL5007.Contig1	HarmCSP19	1082	122	gb	AFR92094.1	chemosensory protein 10 [Helicoverpa armigera]	5.00E-80	100%	Yes	Yes		

DOI:10.1371/journal.pone.0117054.t005
and found a predominance of expression in the male and female antennae. This transcriptomic analyses greatly expands the information in *H. armigera* compared to the 454 sequencing and will surely benefit the exploration of chemoreception mechanisms in *H. armigera* and *H. assulta*.

Figure 8. Phylogenetic tree of putative *H. armigera* and *H. assulta* CSPs with CSPs from other insects. The shown tree was constructed using FastTree based on alignment results of MAFFT. Harm: *H. armigera* (black), Hass: *H. assulta* (red), Harm: *H. armigera* (green), Bmor: *B. mori* (blue), Hvir: *H. virescens* (purple).

doi:10.1371/journal.pone.0117054.g008
Materials and Methods

Insect rearing and tissue collection

The *H. assulta* larvae were collected from the tobacco fields with the permission of the Experiment Station of Henan University of Science and Technology in Xuchang, Henan Province, China. The insects were fed with an artificial diet at a temperature of 27 ± 1°C with a photoperiod of 16 h: 8 h, L: D. Pupae were sexed and males and females were put into separate cages for eclosion. *H. armigera* used in all experiments were obtained from a colony maintained at the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China. Adult moths were given a 10% honey solution after emergence. Antennae were excised from 3-day-old male and female moths and immediately frozen and stored in liquid nitrogen until use.

cDNA Library Construction and Illumina Sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). Total RNA was dissolved in RNase-free water and RNA integrity was verified by gel electrophoresis. RNA

Unigene reference	Gene name	Length (bp)	ORF (aa)	Blastx best hit (Reference/Name/Species)	E value	Identity	Full length	TMD (No)				
Unigene4312	HassSNMP1	2876	523	gi	510381297	gb	AGN48098.1	sensory neuron membrane protein 1 [Spodoptera litura]	0	88%	Yes	2
Unigene1683	HassSNMP2	1742	520	gi	510812726	gb	AGN52677.1	sensory neuron membrane protein 2 [Spodoptera exigua]	0	86%	Yes	2

doi:10.1371/journal.pone.0117054.t006
quantity was determined on a Nanodrop ND-2000 spectrophotometer (NanoDrop products, Wilmington, DE, USA). cDNA library construction and Illumina sequencing of the samples were performed at Beijing Genomics Institute (BGI, Shenzhen, China). To disrupt mRNA into short fragments, fragmentation buffer and divalent cations were used at 94°C for 5 min. Using these short fragments as templates, random hexamer-primers were used to synthesize first-strand cDNA. Second-strand cDNA was generated using buffer, dNTPs, RNase H, and DNA polymerase I. After end-repair and ligation of adaptors, the products were amplified by PCR and purified with QIAquick PCR purification kit (Qiagen, Hilden, Germany) and resolved with elution buffer (EB) for end reparation and poly (A) addition. Then, the short fragments connected to sequencing adapters and detected by agarose gel electrophoresis were selected as templates for PCR amplification and sequencing using Illumina HiSeq 2000 (Illumina, San Diego, CA, USA).

Assembly and function annotation
Transcriptome de novo assembly was carried out with the short read assembly program Trinity (version 20120608) \cite{81}. Then the Trinity outputs were clustered by TGICL \cite{82}. The consensus cluster sequences and singletons make up the unigenes dataset. The annotation of unigenes were performed by NCBI blastx against a pooled database of non-redundant (nr) and SwissProt protein sequences with e-value $< 1e^{-5}$. The blast results were then imported into Blast2GO \cite{83} pipeline for GO Annotation.

Identification of chemosensory genes
The tblastn program was performed, with available sequences of OBP, CSP, OR, IR and SNMP proteins from Lepidoptera species as “query” to identify candidate unigenes encoding putative OBPs, CSPs, ORs, IRs and SNMPs in \textit{H. armigera} and \textit{H. assulta}. All candidate OBPs, CSPs, ORs, IRs and SNMPs were manually checked by the blastx program at the National Center for Biotechnology Information (NCBI).

Sequence and phylogenetic analysis
The open reading frames (ORFs) of the putative chemosensory genes were predicted by using ORF finder (http://www.ncbi.nlm.nih.gov/orffinder/). Putative N-terminal signal peptides of OBPs and CSPs were predicted by Signal IP 4.0 (http://www.cbs.dtu.dk/services/SignalP/) \cite{84}. The TMDs (Transmembrane Domain) of ORs and IRs were predicted using TMHMM Server Version 2.0 (http://www.cbs.dtu.dk/services/TMHMM). Alignments of amino acid sequences were performed by MAFFT (https://www.ebi.ac.uk/Tools/msa/mafft/). The phylogenetic trees were constructed by FastTree for phylogenetic analyses of ORs, IRs, OBPs, and CSPs, based on the amino acid sequences of the putative chemosensory genes and the sequences of other insects. The OR data set contained OR sequences identified in Lepidoptera (64 from \textit{H. assulta}, 66 from \textit{H. armigera} (including HarmOR4, 49, 51, 53, 54, 58 identified by Liu et al), 21 from \textit{H. virescens} and 62 from \textit{B. mori}) \cite{24,39,40,43,44}. The IR data set contained 19 IRs from \textit{H. assulta}, 21 IRs from \textit{H. armigera} (including HarmIR7d.3 and IR75p.1 identified by Liu et al), 12 IRs from \textit{S. littoralis}, 17 IRs from \textit{B. mori} and 66 IRs from \textit{D. melanogaster} \cite{24,39,50,52}. The OBP data set contained OBP sequences 34 from \textit{H. armigera}, 29 from \textit{H. assulta}, 35 from \textit{B. mori} and 17 from \textit{H. virescens} \cite{17,24,39}. The CSP data set contained the 18 sequences from \textit{H. armigera}, 17 sequences from \textit{H. assulta}, 16 sequences from \textit{B. mori} \cite{59} and 9 from \textit{H. virescens} \cite{60}.

Expression analysis by semi-quantitative reverse transcription PCR

Semi-quantitative reverse transcription PCR was performed to verify the expression of candidate chemosensory genes. Male and female antennae, legs (both sexes mixed) were collected from 3-day old adult *H. assulta* after eclosion and total RNA was extracted using TRizol reagent (Invitrogen, Carlsbad, CA, USA) and digested with DNase I (Fermentas, Vilnius, Lithuania). The cDNA was synthesized from total RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific, Waltham, MA, USA). Gene specific primers were designed using Primer 3 (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) (S2 Material) and synthesized by Sangon Biotech Co., Ltd (Shanghai, China). Taq MasterMix (CW BIO, Beijing, China) was used for PCR reactions under general 3-step amplification of 94°C for 30s, 55–60°C for 30s, 72°C for 30s.

Supporting Information

S1 Material. Species distribution of the blastx results. Unigenes were searched against the NR protein database using blastx with a cut off e-value $< 10^{-5}$. Species with proportions of more than 1% are shown. (TIF)

S2 Material. Primers for RT-PCR expression analyses of *H. assulta* ORs, IRs, OBPs, CSPs, SNMPs. (XLS)

S3 Material. The complete comparison of the olfactory genes (ORs, IRs, OBPs, CSPs, SNMPs) in *H. armigera* (from our study and Australia) and *H. assulta*. (XLSX)

Author Contributions

Conceived and designed the experiments: JZ BW SD YL GW. Performed the experiments: JZ BW. Analyzed the data: JZ BW YL. Contributed reagents/materials/analysis tools: DC JD. Wrote the paper: JZ WBW YL GW.

References

1. Kanaujia S, Kaissling KE (1985) Interactions of pheromone with moth antennae: Adsorption, desorption and transport. Journal of Insect Physiology 31: 71–81.
2. Kaissling KE, Colbow K (1987) R. H. Wright Lectures on Insect Olfaction: (Burnaby, BC: Simon Fraser University).
3. Vogt RG, Riddiford LM (1981) Pheromone binding and inactivation by moth antennae. Nature 293: 161–163. PMID: 18074618
4. Prestwich GD (1996) Proteins that smell: pheromone recognition and signal transduction. Bioorganic & Medicinal Chemistry 4: 505–513. PMID: 8733654
5. Pophof B (2004) Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkworms *Antheraea polyphemus* and *Bombyx mori*. Chemical Senses 29: 117–125. PMID: 14977808
6. Leal WS (2007) Rapid binding, release and inactivation of insect pheromones. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology 148: S81–S81.
7. Kaissling KE (2009) Olfactory perireceptor and receptor events in moths: a kinetic model revised. Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology 195: 895–922. doi:10.1007/s00359-009-0461-4 PMID: 19687043
8. Laughlin JD, Ha TS, Jones DN, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133: 1255–1265. doi:10.1016/j.cell.2008.04.046 PMID: 18585358
9. Lautenschlager C, Leal WS, Clardy J (2007) Bombyx mori pheromone-binding protein binding non-pheromone ligands: Implications for pheromone recognition. Structure 15: 1148–1154. PMID: 17850754

10. Grosse-Wilde E, Svatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chemical Senses 31: 547–555. PMID: 16679489

11. Wojtaszek H, Leal WS (1999) Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. Journal of Biological Chemistry 274: 30950–30956. PMID: 10521490

12. Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193–200. PMID: 15664171

13. De Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. Journal of Chemical Ecology 34: 882–897.

14. Rutzler M, Zwiebel LJ (2005) Molecular biology of insect olfaction: recent progress and conceptual models. Journal of Comparative Physiology A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191: 777–790. PMID: 16094545

15. Sato K, Touhara K (2009) Insect olfaction: receptors, signal transduction, and behavior. Results and Problems in Cell Differentiation 47: 121–138. PMID: 19083129

16. Leal WS (2013) Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology 58: 373–391. doi: 10.1146/annurev-ento-120811-153635 PMID: 23020622

17. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH (2009) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10: 332. doi: 10.1186/1471-2164-10-332 PMID: 19624863

18. Zhou JJ, Kan Y, Antoniw J, Pickett JA, Field LM (2006) Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. Chem Senses 31: 453–465. PMID: 16581978

19. Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim JH, et al. (1999) A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in Drosophila. Neuron 22: 327–338. PMID: 10069338

20. Forêt S, Wanner KW, Maleszka R (2007) Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expresional profiling. Insect Biochemistry and Molecular Biology 37: 19–28. PMID: 17175443

21. Zhou JJ, He XL, Pickett JA, Field LM (2008) Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Molecular Biology 17: 147–163. doi: 10.1111/j.1365-2583.2007.00789.x PMID: 18353104

22. Cao D, Liu Y, Walker WB, Li J, Wang G (2014) Molecular Characterization of the Aphis gossypii Olfactory Receptor Gene Families. PLoS One 9: e101187. doi: 10.1371/journal.pone.0101187 PMID: 24971460

23. Bengtsson JM, Trona F, Montagne N, Anfora G, Ignell R, et al. (2012) Putative chemosensory receptors of the coding moth, Cylia pomonella, identified by antennal transcriptome analysis. PLoS One 7: e31620. doi: 10.1371/journal.pone.0031620 PMID: 22363688

24. Jacquin-Joly E, Legeai F, Montagne N, Monsemps C, Francois MC, et al. (2012) Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis. Int J Biol Sci 8: 1036–1050. doi: 10.7150/ijbs.4469 PMID: 22904672

25. Legeai F, Malpel S, Montagne N, Monsemps C, Cousserans F, et al. (2011) An Expressed Sequence Tag collection from the male antennae of the Noctuid moth Spodoptera littoralis: a resource for olfactory and pheromone detection research. BMC Genomics 12: 86. doi: 10.1186/1471-2164-12-86 PMID: 21276261

26. Zhang YN, Xia YH, Zhu JY, Li SY, Dong SL (2014) Putative Pathway of Sex Pheromone Biosynthesis and Degradation by Expression Patterns of Genes Identified from Female Pheromone Gland and Adult
30. Cao D, Liu Y, Wei J, Liao X, Walker WB, et al. (2014) Identification of Candidate Olfactory Genes in *Chilo suppressalis* by Antennal Transcriptome Analysis. Int J Biol Sci 10: 846–860. doi: 10.7150/ijbs.9297 PMID: 25076861

31. Li Z-Q, Zhang S, Luo J-Y, Wang C-Y, Lv L-M, et al. (2013) Ecological Adaption Analysis of the Cotton Pheromone Receptor Orthologs in Two Closely Related *Helicoverpa* species. Insect Biochemistry and Molecular Biology 35: 575–583. PMID: 15857763

32. Wang HL, Zhao CH, Wang CZ (2005) Comparative study of sex pheromone composition and biosynthesis in *Helicoverpa armigera*, *H. assulta* and their hybrid. Insect Biochemistry and Molecular Biology 35: 575–583. PMID: 15857763

33. Wittler LP, Matsui F, Krieger J, Raming K, Dewer YM, Conzelmann S, et al. (2002) Divergence of Gene Family Receptor to a Key Mulberry Leaf Volatile. Current Biology 19: 881–889. doi: 10.1016/j.cub.2009.04.035 PMID: 19427209

34. Liu NY, Xu W, Papanicolaou A, Dong SL, Anderson A (2014) Identification and characterization of three chemosensory receptor families in the cotton bollworm *Helicoverpa armigera*. BMC Genomics 15: 597. doi: 10.1186/1471-2164-15-597 PMID: 25027790

35. Carlsson MA, Galizia CG, Hansson BS (2002) Spatial representation of odours in the antennal lobe of the moth *Spodoptera littoralis* (Lepidoptera: Noctuidae). Chem Senses 27: 231–244. PMID: 11923186

36. Fishilevich E, Vosshall LB (2005) Genetic and functional subdivision of the *Drosophila* antennal lobe. Current Biology 15: 1548–1553. PMID: 16139209

37. Zhang YN, Jin JY, Jin R, Xia YH, Zhou JJ, et al. (2013) Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer *Sesamia inferens* (Walker). PLoS One 8: e69715.

38. Gu SH, Sun L, Yang RN, Wu KM, Guo YY, et al. (2014) Molecular Characterization and Differential Expression of Olfactory Genes in the Antennae of the Black Cutworm Moth Agrotis ipsilon. PLoS One 9: e103420. doi: 10.1371/journal.pone.0103420 PMID: 25083706

39. Liu NY, Xu W, Papanicolaou A, Dong SL, Anderson A (2014) Identification and characterization of three chemosensory receptor families in the cotton bollworm *Helicoverpa armigera*. BMC Genomics 15: 597. doi: 10.1186/1471-2164-15-597 PMID: 25027790

40. Krieger J, Grosse-Wilde E, Gohl T, Dewer YM, Raming K, et al. (2004) Genes encoding candidate pheromone receptors in a moth (*Heliothis virescens*). Proceedings of the National Academy of Sciences of the United States of America 101: 11845–11850. PMID: 15289611

41. Berg BG, Galizia CG, Brandt R, Mustaparta H (2002) Digital atlases of the antennal lobe of the tobacco budworm moths, the Oriental *Helicoverpa assulta* (male) and the American *Heliothis virescens* (male and female). Journal of Comparative Neurology 446: 123–134. PMID: 11932931

42. Jiang XJ, Guo H, Di C, Yu S, Zhu L, et al. (2014) Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related *Heliothis* species. Insect Biochemistry and Molecular Biology 48: 63–74. doi: 10.1016/j.ibmb.2014.02.010 PMID: 24632377

43. Tanaka K, Ueda Y, Ono Y, Nakagawa T, Suwa M, et al. (2009) Highly Selective Tuning of a Silkworm Olfactory Receptor to a Key Mulberry Leaf Volatile. Current Biology 19: 881–890. doi: 10.1016/j.cub.2009.04.035 PMID: 19427209

44. Krieger J, Raming K, Dewer YM, Bette S, Conzelmann S, et al. (2002) A divergent gene family encoding candidate olfactory receptors of the moth *Heliothis virescens*. Eur J Neurosci 16: 619–628. PMID: 12270037

45. Liu Y, Liu C, Lin K, Wang G (2013) Functional Specificity of Sex Pheromone Receptors in the Cotton Bollworm *Helicoverpa armigera*. PLoS One 8: e62094. doi: 10.1371/journal.pone.0062094 PMID: 23614018

46. Sun M, Liu Y, Walker WB, Liu C, Lin K, et al. (2013) Identification and Characterization of Pheromone Receptors and Interplay between Receptors and Pheromone Binding Proteins in the Diamondback Moth, *Plutella xylostella*. PLoS One 8: e62098. doi: 10.1371/journal.pone.0062098 PMID: 23626773

47. Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB (2009) Variant Ionotropic Glutamate Receptors as Chemosensory Receptors in *Drosophila*. Cell 136: 149–162. doi: 10.1016/j.cell.2008.12.001 PMID: 19135896

48. Liu C, Pitts RJ, Bobbot JD, Jones PL, Wang G, et al. (2010) Distinct Olfactory Signaling Mechanisms in the Malaria Vector Mosquito *Anopheles gambiae*. PLoS Biology 8: e1000467. doi: 10.1371/journal.pbio.1000467 PMID: 20824161

49. Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ (2011) Transcriptome profiling of chemosensory appendages in the malaria vector *Anopheles gambiae* reveals tissue—and sex-specific signatures of odor coding. BMC Genomics 12: 271. doi: 10.1186/1471-2164-12-271 PMID: 21619637
50. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, et al. (2010) Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genetics 6: e1001064. doi: 10.1371/journal.pgen.1001064 PMID: 20808886

51. Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, et al. (2013) Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14: 198.

52. Olivier V, Monsempes C, François MC, Poivet E, Jacquin-Joly E (2011) Candidate chemosensory odorant-binding proteins in insects. Vitamins and Hormones 83: 241-286.

53. Zhou JJ (2010) Odorant-binding proteins in insects. Vitamins and Hormones 83: 241–272.

54. Sun M, Liu Y, Wang G (2013) Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xylostella. Journal of Insect Physiology 59: 46–55. doi: 10.1016/j.jinsphys.2012.10.020 PMID: 23147025

55. Sengul MS, Tu Z (2008) Characterization and expression of the odorant-binding protein 7 gene in Anopheles stephensi and comparative analysis among five mosquito species. Insect Molecular Biology 17: 631–645. doi: 10.1111/j.1365-2583.2008.00837.x PMID: 18811600

56. Ishida Y, Ishibashi J, Leal WS (2013) Fatty acid solubilizer from the oral disk of the blowfly. PLoS One 8: e51779. doi: 10.1371/journal.pone.0051779 PMID: 23326317

57. Pelosi P, Iovinella I, Felicioli A, Dani FR (2014) Soluble proteins of chemical communication: an overview across arthropods. Front Physiol 5: 320. doi: 10.3389/fphys.2014.00320 PMID: 25221516

58. Pelosi P, Zhou JJ, Ban LP, Calvello M (2006) Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences 63: 1658–1676. PMID: 16786224

59. Foret S, Wanner KW, Maleszka R (2007) Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expression profiles. Insect Biochemistry and Molecular Biology 37: 19–28. PMID: 17175443

60. Picimbon JF, Dietrich K, Krieger J, Breer H (2001) Identity and expression pattern of chemosensory proteins in Heliothis virescens (Lepidoptera, Noctuidae). Insect Biochemistry and Molecular Biology 31: 1173–1181. PMID: 11583930

61. Gong DP, Zhang HJ, Zhao P, Lin Y, Xia QY, et al. (2007) Identification and expression pattern of the chemosensory protein gene family in the silkworm, Bombyx mori. Insect Biochemistry and Molecular Biology 37: 266–277. PMID: 17296501

62. Zhang YN, Ye ZF, Yang K, Dong SL (2014) Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 536: 279–286. doi: 10.1016/j.gene.2013.12.011 PMID: 24361960

63. Hua JF, Zhang S, Cui JJ, Wang DJ, Wang CY, et al. (2013) Functional characterizations of one odorant binding protein and three chemosensory proteins from Apolygus lucorum (Meyer-Dur) (Hemiptera: Miridae) legs. Journal of Insect Physiology 59: 690–696. doi: 10.1016/j.jinsphys.2013.04.013 PMID: 23665333

64. Liu YL, Guo H, Huang LQ, Pelosi P, Wang CZ (2014) Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. Journal of Experimental Biology 217: 1821–1826. doi: 10.1242/jeb.102020 PMID: 24625642

65. Jacquin-Joly E, Vogt RG, Francois MC, Nagnan-Le Meillour P (2001) Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chemical Senses 26: 833–844. PMID: 11555479

66. Kitabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochemistry and Molecular Biology 28: 785–790. PMID: 9807224

67. Rogers ME, Sun M, Lerner MR, Vogt RG (1997) Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Anttheraea polyphemus with homology to the CD36 family of membrane proteins. Journal of Biological Chemistry 272: 14792–14799. PMID: 9169446

68. Vogt RG (2003) Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. Insect Pheromone Biochemistry and Molecular Biology. pp. London: Elsevier Academic Press. 391–445p.

69. Benton R, Vannice KS, Vosshall LB (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289–293. PMID: 17943085

70. Forstner M, Gohl T, Gondesen I, Raming K, Breer H, et al. (2008) Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chemical Senses 33: 231–239. doi: 10.1093/chemse/bjn087 PMID: 18209018
71. Robertson HM, Martos R, Sears CR, Todres EZ, Walden KK, et al. (1999) Diversity of odorant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Molecular Biology 8: 501–518. PMID: 10620045

72. Rogers ME, Krieger J, Vogt RG (2001) Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. Journal of Neurobiology 49: 47–61. PMID: 11536197

73. Nichols Z, Vogt RG (2008) The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochemistry and Molecular Biology 38: 398–415.

74. Vogt RG, Miller NE, Litvack R, Fandino RA, Sparks J, et al. (2009) The insect SNMP gene family. Insect Biochemistry and Molecular Biology 39: 448–456. PMID: 19364529

75. Li P-Y, Qin Y-C (2011) Molecular cloning and characterization of sensory neuron membrane protein and expression pattern analysis in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). Applied Entomology and Zoology 46: 497–504.

76. Gomez-Diaz C, Reina JH, Cambillau C, Benton R (2013) Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins. PLoS Biology 11: e1001546. PMID: 23637570

77. Gu SH, Yang RN, Guo MB, Wang GR, Wu KM, et al. (2013) Molecular identification and differential expression of sensory neuron membrane proteins in the antennae of the black cutworm moth Agrotis ipsilon. Journal of Insect Physiology 59: 430–443. doi: 10.1016/j.jinsphys.2013.02.003 PMID: 23454276

78. Liu S, Zhang YR, Zhou WW, Liang QM, Yuan X, et al. (2013) Identification and characterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Archives of Insect Biochemistry and Physiology 82: 29–42. doi: 10.1002/arch.21069 PMID: 23027616

79. Liu C, Zhang J, Liu Y, Wang G, Dong S (2014) Expression of SNMP1 and SNMP2 genes in antennal sensilla of Spodoptera exigua (Hubner). Archives of Insect Biochemistry and Physiology 85: 114–126. doi: 10.1002/arch.21150 PMID: 24436214

80. Zhang J, Liu Y, Walker WB, Dong SL, Wang GR (2014) Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Science.

81. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652. PMID: 21572440

82. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: 651–652. PMID: 12651724

83. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676. PMID: 16081474

84. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8: 785–786. doi: 10.1038/nmeth.1701 PMID: 21959131