Algorithm 1. LOM-PE algorithm

Input: ontology O_1, ontology O_2
Output: matching results

1 Function $LOMPE_Algorithm(O_1, O_2)$

2 begin
3 foreach $L_i \in O_1$ do
4 ComputeSim(L_i)
5 end
6 end

7 Function $ComputeSim(L = (a_1, a_2,\ldots, a_n))$

8 begin
9 $PAE \leftarrow GetPAnchorsE(\frac{n}{2})$
10 $PSE \leftarrow PredictNewPSE(PAE)$
11 $ComputeSim(L_a = (a_1, a_2,\ldots, a_{\frac{n}{2}+1}))$
12 $ComputeSim(L_b = (a_{\frac{n}{2}+1},\ldots, a_n))$
13 if $|L| \leq 1$ then
14 return
15 end
16 end

17 Function $GetPAnchorsE(a_i)$

18 begin
19 foreach $b_j \in O_2$ do
20 if $(a_i, b_j) \in PSE$ then
21 continue
22 end
23 $Sim(a_i, b_j) \leftarrow Compute(a_i, b_j)$
24 if $Sim(a_i, b_j) > ptValue$ then
25 $PAECandi \leftarrow PAECandi \cup b_j$
26 end
27 end
28 $PAE \leftarrow MaxTopk(PAECandi)$
29 end