Performance of different mulching materials on soil moisture content, weed infestation and growth of maize (Zea mays L.)

Zin Mar Aung¹, Thu Zar², Aung Zaw Htwe², Lwin Thuzar Nyein³, Htay Htay Oo²

¹Master Candidate, Department of Agronomy, Yezin Agricultural University, Myanmar
²Associate Professor, Department of Agronomy, Yezin Agricultural University, Myanmar
³Lecturer, Department of Agronomy, Yezin Agricultural University, Myanmar

Abstract
Two field experiments were conducted at Yezin and Sepin research farms, Yamethin, Myanmar to investigate the effect of different mulching materials on growth, soil moisture and weed infestation of maize and to identify the most suitable mulching materials for maize cultivation in the study areas during the dry season (October, 2019 to March, 2020). The experiments used randomized complete block design (RCB) with three replications. No mulching and six mulching materials, including rice straw mulching, rice husk mulching, maize stover mulching, mung bean stover mulching, soybean stover mulching and white plastic polyethylene mulching were tested. NK-621 (120 days) was used as the tested variety. Different mulching materials showed higher plant height and SPAD value than no mulching whereas rice straw mulching was highest at both locations. The highest LAI was achieved from rice straw mulching at Yezin. At Yamethin, the maximum LAI (2.71) was observed from maize stover mulching at maximum growth stage (MGS), LAI (2.19) observed from rice straw mulching at tassel stage (TS). The maximum crop growth rate (CGR) (13.31 gm⁻²day⁻¹) was achieved from rice straw mulching at Yezin and (14.19 gm⁻²day⁻¹) at Yamethin. Soil moisture content and weed infestation were significantly different among different mulching materials at two locations. White plastic polyethylene mulching and rice straw mulching were observed as the most suitable for soil moisture content and minimal weed infestation. According to the results, rice straw mulching is the best in all parameters among the treatments for Yezin and Yamethin areas.

Introduction
Maize (Zea mays L.) is a major cereal crop of the world and ranked as the third most important cereal crops followed by rice and wheat in the world (Gao et al., 2020). It is a cereal crop that can readily be grown effectively
under rainfed conditions and requires little management procedures and money, allowing it to fulfill the world’s increased food demand but moisture availability is a major problem in maize cultivation during dry season. Maize is Myanmar’s second most important cereal crop, utilized for human food, animal feed for livestock husbandry, and as one of the country’s primary agricultural exports. Hence, more production of maize is needed through expansion of cultivable area and increased production per unit area. In Myanmar, the average maize yield was 3.91 t ha\(^{-1}\) in 2019-2020, with a total sown area of 520,000 ha and a production of 2,018,000 MT (Ministry of Agriculture, Irrigation and Livestock, 2020).

Mulch is any material placed on the soil surface to avoid erosion, reduce weed growth, obtainable soil moisture (Awe et al., 2014) and soil temperature (Khan et al., 1988), both of which effect plant growth and yield and compensates for water limits, low temperatures, gravel mulches, and are the critical traditional methods that farmers have used in many dry areas (Lithourgidis et al., 2011). Mulches are made up of both organic and inorganic materials (Meyer et al., 1970). Crop residue and plastic mulches have been efficiently used to recover fallow efficiency and increase the amount of stored soil water obtainable for plant use (Unger et al., 2006). However, selecting the appropriate mulching materials is vital for the farmer to benefit from mulches (Kader et al., 2017).

The increase in yield is normally credited to increased soil moisture content because of reduced evaporation by mulching. However, the choice of appropriate mulch according to the environment, location, and weather is of great significance as it influences the overall efficiency and cost of the mulching mechanism. It is essential to know how different mulching materials influence soil conditions, crop growth, and resource utilization for optimizing water management and improving maize yield. However, research concerning with different mulching materials is relatively scarce on growth and weed infestation performance of maize in Myanmar. Therefore, the experiments were carried out to investigate the effect of different mulching materials on growth, soil moisture content and weed infestation of maize and to identify the most suitable mulching material for maize cultivation in Yezin and Yamethin areas.

Materials and methods

The field experiments were conducted at the upland field of Department of Agronomy, Yezin Agricultural University and Sepin Research Farm, Yamethin Township from October 2019 to March 2020 by using randomized complete block design with 3 replications. Yezin is located at 19° 49’59.6” N latitude, 96° 16’30.4” E longitude and 129 meters above sea level. It is situated in Nay Pyi Taw Union Council. Sepin is located at 20° 56’N latitude, 96° 05’ E longitude and 203 meters above sea level. It is situated in Mandalay region. The experimental area was 883.5 m\(^2\) (46.5 m × 19 m) and each plot size was 5.5 m × 5 m. The most widely sown variety, NK-621 (120 days) was used as the tested variety in both locations. Row and plant spacing were 75 cm and 25 cm respectively. There were seven different treatments in both experiments including: T1: control, T2: rice straw mulching, T3: rice husk mulching, T4: maize stover mulching, T5: mung bean stover mulching, T6: soybean stover mulching, T7: white plastic polyethylene mulching. The dry organic mulches of 10 ton ha\(^{-1}\) (10,000 kg ha\(^{-1}\)) were applied as the mulching materials on the surface of soil.

Land preparation and crop management

Land preparation was carried out to ploughing and harrowing of leveling in both experimental sites. The fertilizers were applied according to Department of Agricultural Research (DAR) recommended guidelines at the rate of 123.5 kg Urea ha\(^{-1}\), 123.5 kg Triple super phosphate ha\(^{-1}\) and 61.75 kg Muriate of potash ha\(^{-1}\) as basal, 61.75 kg Urea ha\(^{-1}\) and 30.88 kg Muriate of potash ha\(^{-1}\) at 20 DAS (days after sowing) and 61.75 kg Urea ha\(^{-1}\) and 30.88 kg Muriate of potash ha\(^{-1}\) at 40 DAS. Thinning was done at 2 weeks after sowing and left one healthy seedling per hole. AT 21 DAS, different mulching materials were covered after earthing up the experimental plots and irrigation
was done before one day of applying mulches at experimental sites. Four times of irrigation was applied throughout the whole season at the experimental sites. When the plants from no mulching began to wilt and the leaf started to roll, irrigation was applied. Pesticides and insecticides were sprayed as necessary at Yezin and Sepin research farm, Yamethin throughout the whole season of the crop.

Data collection

Plant height and SPAD value were recorded from randomly selected five plants in each plot at two weeks interval starting from 14 DAS (days after sowing) to 70 DAS. The percent of soil moisture content was recorded before water application, 1 DAI (Days after Irrigation), 3 DAI, 7 DAI and 14 DAI at Yezin and Yamethin. Weed infestation was determined by harvesting weeds within a 50 cm × 50 cm quadrat placed randomly in two locations within each plot at 45 DAS and 90 DAS. The leaves areas were measured at maximum growth stage (MGS), tasseling stage (TS) and grain filling stage (GFS). Leaf area index (LAI) and crop growth rate (CGR) were calculated by using the following formulas.

\[
\text{LAI} = \frac{\text{Sum of the leaf area of all leaves (cm}^2\text{)} \times \text{Ground area of field where the leaves have been collected (cm}^2\text{)}}{\text{}}
\]

\[\text{(Keshavare & Farahbakhsh, 2012)}\]

\[
\text{Crop Growth Rate (CGR)} = \frac{\text{Total dry matter at second sampling - Total dry matter at first sampling}}{\text{Time between second and first sampling} \times \text{Ground Area}}
\]

\[\text{(Oikeh et al., 2003)}\]

Data analysis

The data analyses were carried out by using Statistix (version 8th) software and the data visualization is showed by using R program (version 4.1.2) and treatment means were compared by using least significant difference (LSD) test at 5% level of significance (Gomez & Gomez, 1984).

Results and discussion

Plant height and SPAD value

Plant height of maize was significantly differed in different mulching materials at Yezin and Yamethin (Figure 1A & 1B). In all mulching materials, plant heights increased continuously from 14 to 70 DAS. There was a significant difference in plant height among different mulching materials at both locations. At 56 and 70 DAS, the tallest maize plant was recorded in T2 followed by T3, T4 and T7 was not significantly different with T1, which was the shortest. Similar to the Yezin experimental results, the maximum plant height was observed from T2 and the minimum plant height was recorded from T1 at Yamethin. At the experimental sites, different mulching materials showed superior performance in plant height than no mulching, indicating that mulching has positive effect on the growth and development of maize. The increased plant height in mulched plants was possibly due to better availability of soil moisture and optimum soil temperature provided by the mulch. These results are in agreement with Saif, Maqsood, Farooq, Hussain & Habib (2003) who also gave the similar findings as moisture stress resulted in a reduction in plant height. Kefale and Ranamukhaarachchi (2004) also found that moisture deficiencies during early vegetative stage reduced plant height and ear height leading to shorter internodes.

The mean SPAD value recorded from 14 to 70 DAS at Yezin and Yamethin was significantly different among different mulching materials (Figure 2A & 2B). At 70 DAS, the minimum SPAD value (17.28) was obtained from T1 while the maximum SPAD value (35.30) was obtained from T2 followed by T6 > T3 > T5 > T4 > T7 at Yezin. At 70 DAS, the highest SPAD value (51.74) was observed from T2 followed by T4 > T5 > T7 > T3 > T6 while the lowest SPAD
value (43.68) was resulted from T1 at Yame-then. A decrease in leaf greenness values may be as a result of a water shortage and en-
vironmental circumstances. Kante, Revilla, De
La Fuente, Caicedo and Ordas (2016) showed
that a reduction in the chlorophyll content of
plant leaves was directly linked with root
growth. The reduction of leaf chlorophyll val-
dues due to a water deficit has been observed for
squash (Ors, Ekici, Yildirim & Sahin, 2016), cab-
bage, cotton (Iqbal et al., 2019), and wheat
(Talebi, 2011).

Moisture content

The soil moisture content was measured at
1 DAI, 3 DAI, 7 DAI and 14 DAI (Day After Irri-
gation) intervals in every irrigation time. Ef-
fects of different mulching materials on soil
moisture content at 45 DAS (first time of irri-
gation), 68 DAS (second time of irrigation) and
84 DAS (third time of irrigation) at Yezin are
shown in Table 1. At 45 DAS (first time of irri-
gation), the soil moisture content was signifi-
cantly different among different mulching ma-
terials at 7 DAI and 14 DAI while T2 was re-
sulted the maximum soil moisture content
(13.81 %) followed by T7 > T4 > T5 > T3 > T6
whereas the minimum soil moisture (4.47 %)
was recorded from T1 at 14 DAI. At 68 DAS
(second time of irrigation), there were not sig-
nificantly different among the different mulch-
ing materials at 1 DAI and 3 DAI. At 14 DAI,
the maximum soil moisture content (7.51 %)
was observed from T2 > T4 > T6 > T5 > T7 > T3
while the minimum soil moisture content (3.81
%) was achieved from T1. At 84 DAS (third time
of irrigation), soil moisture contents were not
significantly different among the different mulch-
ing materials at 1 DAI and 3 DAI. At 14 DAI,
the maximum soil moisture content (5.58 %)
was observed from T7 followed by T2 > T6
> T4 > T3 > T5 whereas the lowest soil moisture
content (2.16 %) was recorded in the T1 which
was significantly lower than other treatments.
Therefore, mulching enables the soil moisture
levels to maintain for longer periods and acts as
a vapor barrier to reduce evaporation. Mulch
protects soil surface serving as a block which is
meant to prevent moisture loss from the soil,
and as a result, water would remain longer
under the soil and which can be converted into
soil moisture available for plant growth
(Sinukaban, 2007; Shaver, Peterson, Ahuja &
Westfall, 2013).

The different mulching materials affected
on soil moisture content at 45 DAS (first time of
irrigation), 78 DAS (second time of irrigation)
and 93 DAS (third time of irrigation) at Ya-
methin (Table 2). The soil moisture content
was recorded until 35 DAI (days after irriga-
tion). Whereas, the soil moisture contents were
significantly different among different mulch-
ing materials at 35 DAI and the highest soil
moisture contents (12.15 %) were observed
from T2 followed by T7, T4, T6, T5 and T3
meanwhile the lowest soil moisture content
(7.32 %) was resulted from T1. At 78 DAS (sec-
ond time of irrigation), the soil moisture con-
tent was significantly different among different
mulching materials at 14 DAI. The maximum
soil moisture content (23.53 %) was detected
from T7 followed by T4, T2, T5, T3 and T6 while
T1 was noted the minimum soil moisture con-
tent (23.53 %). At 93 DAS (third time of irriga-
tion), the soil moisture contents were signifi-
cantly different on different mulching materi-
als. At 14 DAI, the soil moisture content was
significantly different on different mulching
materials and the maximum moisture content
(16.43 %) was resulted from T7 followed by T4,
T2, T6, T5 and T3 although the minimum soil
moisture content (12.58 %) was recorded from
T1. In the present study, it may be assumed that
different mulches can improve soil moisture by
decreasing moisture losses from soil because
they completely covered around the root envi-
noment and may favorable for plant growth
due to effective use of water. The greater capac-
ity of straw mulch to maintain moisture con-
tent in the topsoil is attributed to lower soil
evaporation owing to the mulch cover, as op-
posed to soil with no mulch covering (Li, Li, Lin,
Feng & Dyck, 2018).

**Leaf area index (LAI) and crop growth rate
(CGR)**

In the present study, LAI was measured at
MGS, TS and GFS at Yezin (Figure 3A). At MGS
and TS, LAI value was significantly different
among different mulching treatments. At GFS,
LAI value was not significantly differences among mulching materials. However, the highest LAI value (1.33) was obtained from T2 followed by T6 > T4 > T5 > T3 whereas the minimum LAI (1.05) was observed in T1. Mean effect of different mulching materials was observed on leaf area index at Yamethin (Figure 3B). The LAI values of all mulching treatments were not significantly different at all sampling times. At MGS, the maximum LAI value (2.19) was obtained from T2 while the minimum LAI value (1.47) was recorded in T1. At TS, the maximum LAI (2.71) was obtained in T2 whereas the minimum LAI (1.57) was resulted in T1. At GPS, the highest LAI value (2.00) was observed from T7 which was followed by T2 with value of (1.91) while the minimum LAI value (1.54) was recorded from T1. In both experiments, no mulching plot obtained the lowest LAI in all growth stages. A larger leaf area contributes to a higher yield in maize as it helps capture of more solar energy, which enhances photosynthesis. These findings could imply that no mulching increases water evaporation, which has a negative impact on plant development and leaf number due to a reduction in photosynthetic rate and, as a result, a decrease in LAI. It shows a substantial rise in maize LAI when mulching is used (Tolk, Hawell & Evett, 1999).

Crop growth rate (CGR) measured at MGS and TS stages were also affected by different mulching in growth stages. Significantly differences in crop growth rate (CGR) were observed at Yezin (Figure 4A). CGR was significantly different among different mulching materials and the highest CGR (13.31 gm⁻²day⁻¹) was observed in T2 followed by T3, T7, T4, T5 and T6 whereas the lowest CGR (5.06 gm⁻²day⁻¹) produced in T1. At Yamethin, CGR was significantly different among different mulching materials (Figure 4B). The highest CGR value (14.19 gm⁻²day⁻¹) was obtained from T2 followed by T7 with mean value of (11.21 gm⁻²day⁻¹). T4, T6, T5 and T3 whereas the least CGR value (3.72 gm⁻²day⁻¹) was recorded in T1. In mulching treatments, the higher CGR was resulted from rice straw mulching treatments in both experiments. It could be assumed that rice straw mulching has contributed to increasing vegetative growth and has had a positive effect on the growth of the maize crop. These results are in arrangement with the investigations of Sharma and Sharma (2003); Singh, Vidya Chaudhari and Basu (2007) who also suggested that mulching advances result in plant growth, yield and yield quality.

Weed infestation

Weed infestation of grasses, sedges and broadleaf weeds was measured two times at 45 and 90 DAS. The weed infestation was significantly different between mulching and no mulching plots at Yezin (Table 3). At 45 DAS, the maximum grasses dry weight (43.74 g), sedges dry weight (20.41 g) and total weed dry weight (64.15 g) were observed from T1 and the minimum grasses dry weight (4.76 g), sedges dry weight (2.25 g) and total weed dry weight (7.0 g) were obtained from T7. In the experimental site, broadleaf weeds were not found during the growing season. At 90 DAS, the weed infestation was significantly different among different mulching treatments. The lowest grasses dry weight (38.66 g) was observed in T2, sedges dry weight (1.00 g) from T6 and total weed dry weight (40.86 g) was observed in T2 while the highest grasses dry weight (93.80 g), sedges dry weight (14.33 g) and total weed dry weight (108.13 g) were resulted from T1. It can be assumed that the plants with no mulching showed the most weed infestation due to favorable conditions for weed germination and weed growth. Evans, Knezevic, Lindquist, Moll and Kamprath (1997) reported that the wide species of weed families interfere with the standing maize crop for a prolonged period and are able to decrease ear number per plant and thousand seed weight linearly.

Similar to Yezin, weed infestation was measured two times at 45 DAS and 90 DAS at Yamethin. Weed infestation was significantly suppressed by the different mulching treatments (Table 4). At 45 DAS, the minimum grasses weight (0.18 g) was observed from T2 which was not significantly different with T7 with the mean value of (0.24 g) and the maximum grasses weight (0.70 g) was recorded from T1. Furthermore, T1 was recorded the highest sedges weight (0.87 g) and the lowest sedges weight (0.33 g) resulted in T7. T2 resulted the minimum broadleaves weed weight (0.36 g) which was the same with T7 whereas
T1 gave the maximum broadleaves weed weight (0.78 g). The maximum total weed weight (2.34 g) was recorded from T1 and the minimum total weed weight (0.93 g) was obtained from T7 < T2 < T6 < T3 < T4 < T5. At 90 DAS, the grasses weights were significantly different among different mulching materials and the maximum grasses weight (0.09 g) was observed from T1 and T5 whereas the minimum grasses weight (0.03 g) was obtained from T7 and T3. The sedges weights were not significantly different among different mulching materials. The maximum sedges weight (0.09 g) was achieved from T1 and the minimum sedges weight (0.04 g) was from T4. The highest broadleaves weed weight (0.17 g) was recorded from T1 whereas the lowest broadleaves weed weight (0.03 g) was achieved from T6. The maximum total weed weight (0.35 g) was found from T1 and the minimum total weed weight (0.25 g) was recorded from T6 < T7 < T2 < T3 < T4 < T5. Weeds not only compete for moisture, nutrients, light and air but also produce toxic allelochemicals in the plant rhizosphere through root exudation (Hussain, Khaliq, Matloob, Fahad & Tanveer, 2015). Sarma and Gautam, (2010) reported that yield loss due to weed infestation in maize crops is substantially greater than that of other agricultural diseases and pests, and depending upon nature, intensity and duration yield losses varying from 28-100%.

Figure 1. Plant height of maize as affected by different mulching materials at Yezin (A) and Yamethin (B) during dry season, 2019 – 2020

Figure 2. SPAD value of maize as affected by different mulching materials at Yezin (A) and Yamethin (B) during dry season, 2019 - 2020
Table 1. Soil moisture content as affected by different mulching materials at Yezin during the dry season, 2019 – 2020

Treatments	1st Irrigation (45 DAS)	2nd Irrigation (68 DAS)	3rd Irrigation (84 DAS)
	1 DAI 3 DAI 7 DAI 14 DAI	1 DAI 3 DAI 7 DAI 14 DAI	1 DAI 3 DAI 7 DAI 14 DAI
T1	19.72 16.34 9.31 d 4.47 d	34.52 22.67 5.38 e 3.81 c	13.51 10.30 4.02 d 2.16 d
T2	26.30 23.78 26.12 a 13.81 a	35.46 29.03 19.94 a 7.51 a	14.74 11.90 6.62 ab 4.59 ab
T3	24.23 22.53 18.20 ab 9.25 c	34.05 26.26 13.82 b 5.81 b	14.30 9.83 5.29 cd 3.16 cd
T4	22.92 21.27 18.33 bc 11.73 b	30.46 28.57 13.07 b 7.05 ab	14.02 11.33 5.05 cd 3.21 cd
T5	26.41 23.13 19.34 b 11.06 b	34.20 25.55 10.90 c 6.48 ab	13.91 11.10 5.88 bc 2.77 d
T6	21.81 20.44 15.69 c 9.22 c	37.29 27.37 8.43 d 6.61 ab	13.90 10.58 5.21 cd 4.09 bc
T7	24.02 20.16 18.15 bc 12.16 b	27.77 26.04 19.68 a 6.42 ab	13.90 11.79 7.35 a 5.58 a

LSD$_{0.05}$ 6.90 6.36 2.93 1.26 6.61 8.27 1.63 1.43 2.70 3.19 1.28 1.20
Pr>F 0.3941 0.2706 0.00001 0.00001 0.1094 0.7035 0.00001 0.0028 0.9719 0.7757 0.0022 0.0007
CV% 16.41 16.95 9.23 6.93 11.13 17.54 7.04 12.92 10.80 16.22 12.76 18.45

DAS = Days After Sowing, DAI = Days After Irrigation, T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching

Table 2. Soil moisture content as affected by different mulching materials at Yamethin during the dry season, 2019 – 2020

Treatments	1st Irrigation (45 DAS)	2nd Irrigation (78 DAS)	3rd Irrigation (93 DAS)
	1 DAI 7 DAI 14 DAI 1 DAI	7 DAI 14 DAI 1 DAI 7 DAI	14 DAI 1 DAI 7 DAI 14 DAI
T1	69.55 33.29 b 13.81 69.55	33.29 b 13.81 69.55 33.29 b	13.81 69.55 33.29 b 13.81
T2	64.96 51.01 a 26.31 64.96	51.01 a 26.31 64.96 51.01 a	26.31 64.96 51.01 a 26.31
T3	62.72 42.11 ab 16.50 62.72	42.11 ab 16.50 62.72 42.11 ab	16.50 62.72 42.11 ab 16.50
T4	65.81 51.09 a 20.30 65.81	51.09 a 20.30 65.81 51.09 a	20.30 65.81 51.09 a 20.30
T5	62.57 42.95 ab 20.38 62.57	42.95 ab 20.38 62.57 42.95 ab	20.38 62.57 42.95 ab 20.38
T6	60.24 44.64 a 16.80 60.24	44.64 a 16.80 60.24 44.64 a	16.80 60.24 44.64 a 16.80
T7	66.65 51.37 a 21.01 66.65	51.37 a 21.01 66.65 51.37 a	21.01 66.65 51.37 a 21.01

LSD$_{0.05}$ 15.69 11.30 7.551 15.69 11.30 7.551 11.30 7.551 15.69 11.30 7.551
Pr>F 0.8866 0.0385 0.0653 0.8866 0.0385 0.0653 0.8866 0.0385 0.0653 0.0653
CV% 13.64 14.05 21.99 13.64 14.05 21.99 13.64 14.05 21.99 13.64 14.05 21.99

DAS = Days After Sowing, DAI = Days After Irrigation, T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching
MGS= Maximum growth stage, TS= Tasseling stage, GFS= Grain filling stage

Figure 3. Leaf area index of maize as affected by different mulching materials at Yezin (A) and Yamethin (B) during dry season, 2019 – 2020

T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching

Figure 4. Crop growth rate of maize as affected by different mulching materials at Yezin (A) and Yamethin (B) during dry season, 2019 – 2020
Table 3. Weed infestation of maize as affected by different mulching materials at Yezin during the dry season, 2019 - 2020

Treatments	45 DAS	90 DAS				
	Grasses (g)	Sedges (g)	Total (g)	Grasses (g)	Sedges (g)	Total (g)
T1	43.74 a	20.41 a	64.15 a	93.80 a	14.33 a	108.13 a
T2	11.71 cd	12.62 b	23.97 c	38.66 e	2.20 de	40.86 d
T3	26.35 b	6.53 cd	32.88 b	70.67 b	3.80 cd	74.47 b
T4	12.75 c	6.75 cd	19.50 c	61.21 bcd	6.33 b	67.55 bc
T5	10.86 cd	8.85 c	19.71 c	56.85 cd	4.87 bc	61.72 c
T6	13.00 c	4.67 de	17.66 c	69.21 bc	1.00 e	70.21 bc
T7	4.76 d	2.25 e	7.01 d	54.75 d	6.80 b	61.55 c
LSD_{0.05}	7.19	3.00	6.67	13.00	2.40	12.61
Pr>F	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
CV%	22.98	19.14	14.19	11.49	24.00	10.24

T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching

Table 4. Weed infestation of maize as affected by different mulching materials at Yamethin during the dry season (2019 - 2020)

Treatments	45 DAS	90 DAS						
	Grasses (g)	Sedges (g)	Broadleaves Weed (g)	Total (g)	Grasses (g)	Sedges (g)	Broadleaves Weed (g)	Total (g)
T1	0.70 a	0.87 a	0.78 a	2.34 a	0.09 a	0.09	0.17 a	0.35 a
T2	0.18 e	0.41 de	0.36 d	0.95 e	0.04 bc	0.06	0.06 cd	0.15 c
T3	0.38 d	0.60 bc	0.53 b	1.52 c	0.03 c	0.05	0.07 bc	0.15 c
T4	0.46 c	0.76 a	0.59 b	1.81 b	0.07 ab	0.04	0.05 cd	0.16 c
T5	0.58 b	0.62 b	0.61 b	1.81 b	0.09 a	0.06	0.10 b	0.25 b
T6	0.42 cd	0.48 cd	0.45 c	1.36 d	0.04 bc	0.05	0.03 d	0.12 c
T7	0.24 e	0.33 e	0.37 d	0.93 e	0.03 c	0.05	0.05 cd	0.13 c
LSD_{0.05}	0.24	0.14	0.08	0.12	0.04	0.03	0.04	0.07
Pr>F	0.00001	0.00001	0.00001	0.00001	0.0112	0.1193	0.0001	0.0001
CV%	86.11	13.09	8.05	4.22	40.13	33.48	29.15	21.04

T1- No mulching, T2- Rice straw mulching, T3- Rice husk mulching, T4- Maize stover mulching, T5- Mung bean stover mulching, T6- Soybean stover mulching, T7- White plastic polyethylene mulching

Conclusion

In the present study, all mulching methods were found to have the best performance in soil moisture, leaf area index, crop growth rate, and weed infestation. Rice straw mulching resulted in the highest plant height and SPAD values. At three sampling times, the maximum LAI was achieved from rice straw mulching at Yezin. At Yamethin, the maximum LAI was recorded from rice straw mulching at MGS, maize stover mulching at TS and white plastic polyethylene mulching at GFS. The maximum CGR was achieved from rice straw mulching. White plastic polyethylene mulching and rice straw
mulching can be considered as the best for conservation of soil moisture and minimal weed infestation. Moreover, all of the mulching materials not only maintained the maximum soil moisture content but also suppressed weed infestation better than no mulching. Therefore, mulching practices are efficient for maize production, and rice straw mulching is the best in all parameters among the treatments for Yezin and Yamethin areas. Based on the results obtained in the future, different mulching rates should be tested, and soil nutrient recovery should be studied by type.

Author’s declaration
Authors declare that there is no conflict of interest. ZMA conducted field experiments, recorded and analyzed field data, and prepared the manuscript. TZ, AZH, LTN and HHO supervised the experiment and conducted manuscript proof-reading before submission. All authors read and approved the final version of the manuscript.

References
Awe, G.O., Reichert, J.M., Timm, L.C., & Wendroth, O.O. (2014). Temporal processes of soil water status in a sugarcane field under residue management. *Plant Soil*, 387, 395–411. CrossRef
Evans, S.P., Knezevic, S.Z., Lindquist, J.L., Moll, R.H., & Kamp-prath, E.J. (1977). Effect of population density on agronomic traits associated with genetic increases in yield of maize (*Zea mays L.*). *Agronomy Journal*, 96, 81-84. CrossRef
Gao, C., El-Sawah, A. M., Ali, D. F. I., Alhaj Hamoud, Y., Shagha-leh, H., & Sheteiwyy, M. S. (2020). The integration of bio and organic fertilizers improve plant growth, grain yield, quality and metabolism of hybrid maize (*Zea mays L.*). *Agronomy, 10*(3), 319.
Gomez, K.A., & Gomez, A. A. (1984). *Statistical procedures for agricultural research*. John Wiley & Sons.
Hussain, S., Khalig, A., Matloob, A., Fahad, S., & Tanveer, A. (2015). Interference and economic threshold level of little seed canary grass in wheat under different sowing times. *Environmental Science and Pollution Research*, 22, 441-449. CrossRef
Iqbal, R., Raza, M.A.S., Saleem, M.F., Khan, I.H., Ahmad, S., Zaheer, M.S., Aslam, M.U., & Haider, I. (2019). Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton. *Journal of Arid Land*, 11(5), 785–794. CrossRef
Kader, M. A., Senge, M., Mojid, M. A., & Nakamura, K. (2017). Mulching type induced soil moisture and temperature regimes and water use efficiency of soybean under rain-fed condition in central Japan. *International Soil and Water Conservation Research*, 5(4), 302-308. CrossRef
Kante, M., Revilla, P., Dela Fuente, M., Caicedo, M., & Ordas, B. (2016). Stay-green QTLs in temperate elite maize. *Euphytica*, 207(2), 463-473. CrossRef
Kefale, D., & Ranamukhaarachchi, S.L. (2004). Response of maize varieties to drought stress at different physiological stages in Ethiopia. *Tropical Science, 44*(2), 61-66. CrossRef
Keshavarz, L., & Farahbakhsh, H. (2012). Effect of super-absorbent on physio-morphological traits and forage yield of millet (*Pennisetum Americanum L.*) under different irrigation treatments. *International Journal of Plant, Animal and Environmental Sciences*, 2(3), 149-156.
Khan, M. J., Monke, E. J., & Foster, G. R. (1988). Mulchcover and canopy effect on soil loss. *Transactions of the ASAE*, 31(3), 706-711. doi: 10.13031/2013.30771.
Li, S., Li, Y., Lin, H., Feng, H., & Dyck, M. (2018). Effects of different mulching technologies on evapotranspiration and summer maize growth. *Agricultural Water Management*, 201, 309-318. CrossRef
Lithourgidis, A., Dordas, C., Damalas, C., & Vlachostergios, D. (2011). Annual intercrops: An alternative pathway for sustainable agriculture. *Australian Journal of Crop Science*, 5(4), 396-410.
Meyer, L. D., Wischmeier, W. H., & Foster, G. R. (1970). Mulch rates required for erosion control on steep slopes. *Soil Science Society of America Journal*, 34(6), 928-931. CrossRef
Ministry of Agriculture, Irrigation and Livestock (2020). Myanmar Agriculture Sector in Brief book, Yangon, Myanmar.
Oikeh, S. O., Carsky, R. J., Kling, J. G., Chude, V. O., & Horst, W. J. (2003). Differential N uptake by maize cultivars and soil nitrate dynamics under N fertilization in West Africa. *Agriculture, Ecosystems & Environment*, 100(2-3), 181-191.
Ors, S., Ekinci, M., Yildirim, E., & Sahin, U. (2016). Changes in gas exchange capacity and selected physiological properties of squash seedlings (*Cucurbita pepo L.*) under well-watered and drought stress conditions. *Archives of Agronomy and Soil Science*, 62(12), 1700-1710. CrossRef
Saif, U., Maqsood, M., Farooq, M., Hussain, S., & Habib, A. (2003). Effect of planting patterns and different irrigation levels on yield and yield component of maize (Zea mays L.). International Journal of Agriculture and Biology, 5(1), 64-66.

Sarma, C. K., & Gautam, R. C. (2010). Weed growth, yield and nutrient uptake in maize (Zea mays) as influenced by tillage, seed rate and weed control method. Indian Journal of Agronomy, 55(4), 299-303.

Sharma, R. R., & Sharma, V. P. (2003). Mulch type influences plant growth, albinism disorder and fruit quality in strawberry (Fragaria× ananassa Dusch.). Fruits, 58(4), 221-227. CrossRef

Shaver, T.M., Peterson, G.A., Ahuja, L.R., Westfall, D.G. (2013). Soil captivity enhancement with crop residue accumulation in semiarid dryland no-till agroecosystems. Geoderma, 192, 254-258. CrossRef

Singh, A. L., Chaudhari, V., & Basu, M. S. (2007). Boron deficiency and its nutrition of groundnut in India. Advances in Plant and Animal Boron Nutrition. Springer Publishers, 149-162.

Sinukaban, N. (2007). Effect of conservation tillage and straw mulch application on food crop production and nutrient loss trough erosion. In: Soil and water conservation key to sustainable development. Jakarta (ID): Publisher of the Directorate General of Land Rehabilitation and Social Forestry Ministry of Forestry. Pp. 1-14.

Talebi, R. (2011). Evaluation of chlorophyll content and canopy temperature as indicators for drought tolerance in durum wheat (Triticum durum Desf.). Australian Journal of Basic and Applied Sciences, 5(11), 1457-1462. Direct Link.

Tolk, J. A., Howell, T. A., & Evett, S. R. (1999). Effect of mulch, irrigation, and soil type on water use and yield of maize. Soil and Tillage Research, 50(2), 137-147. Direct Link.

Unger, P. W., Payne, W. A., & Peterson, G. A. (2006). Water conservation and efficient use. Dryland Agriculture, 23, 39-85.