Diagnostic significance of CK19, galectin-3, CD56, TPO and Ki67 expression and BRAF mutation in papillary thyroid carcinoma

LIHUA HUANG1*, XUMING WANG2,3*, XUAN HUANG2,3*, HUAVEI GUI1, YAN LI2,3, QIONGXIA CHEN2,3, DONGLING LIU1 and LIJIANG LIU2,3

1Department of Pathology, Wuhan Puai Hospital, Wuhan, Hubei 430030; 2Department of Histopathology, Jiangda Pathology Institute, and 3Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, Hubei 430056, P.R. China

Received November 1, 2016; Accepted September 22, 2017

DOI: 10.3892/ol.2018.7873

Abstract. The aim of the present study was to examine the rate of BRAF mutation and the expression profiles of CK19, galectin-3, CD56, thyroid peroxidase (TPO) and Ki67 in papillary thyroid carcinoma (PTC) and papillary thyroid micro-carcinoma (PTMC). A total of 246 cases of thyroid disease were collected, including PTC, PTMC, nodular goiter (NG) and Hashimoto thyroiditis (HT). The results revealed that CK19 expression was 116/120 in PTC, 61/64 in PTMC, 2/34 in NG and 1/28 in HT. Galectin-3 positive expression was 115/120 in PTC, 60/64 in PTMC, 6/34 in NG and 4/28 in HT. TPO positive expression was 8/120 in PTC, 1/64 in PTMC, 30/34 in NG and 25/28 in HT. CD56-positive expression was 12/120 in PTC, 3/64 in PTMC, 33/34 in NG and 26/28 in HT. Ki67 labeling index was 2.52±0.46% in PTC (120 cases), 2.62±0.52% in PTMC (64 cases), 2.55±0.44% in NG (34 cases) and 2.58±0.48% in HT (28 cases). BRAF mutation rate was 93/120 in PTC, 47/64 in PTMC, 3/34 in NG and 2/28 in HT. These results suggested that expression patterns of CK19, galectin-3, CD56 and TPO and BRAF mutation exhibit diagnosis value in thyroid disease. However, Ki67-positive rate exhibits no notable diagnosis value in thyroid disease.

Introduction

It is well-known that the incidence of papillary thyroid carcinoma (PTC) and papillary thyroid micro-carcinoma (PTMC) is increasing each year worldwide: An ~120.85% increase in FTMC incidence and an ~58.1% increase in PTC incidence was demonstrated between 1990-2015 (1-10). PTC and PTMC are the most common types of thyroid malignancies (11-21). However, distinguishing PTC and PTMC from thyroid papillary hyperplasia is challenging due to tumor heterogeneity (22-27). Occasionally, cases of papillary thyroid hyperplasia, in particular solitary nodules with papillary change, are difficult to distinguish from PTMC (22-27). Papillary formation is frequently observed in thyroid disease (benign or malignant), but the treatment plans differ considerably (1-5,7-10). In China, nodular goiter (NG) is a common disease; it was demonstrated that the incidence of NG was 5.0-10.0% from 1990 to 2011, and it was 4 times higher in females compared with in males in 2011 (11-16). It can be difficult to distinguish papillary hyperplasia in PTMC from papillary hyperplasia nodules of NG (11-16). Therefore, it was proposed that the increasing incidence of PTC and PTMC may partly be due to misdiagnosis. Thus, in the present study, the diagnosis of cases in Wuhan Puai Hospital (Wuhan, China) and Jiangda Pathology Institute (Wuhan, China) was reviewed. The expression profiles of CK19, galectin-3, CD56 and TPO, as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation. Although numerous previous studies have reported that CK19, galectin-3, CD56 and thyroid peroxidase (TPO), as well as BRAF mutation, were used to distinguish between benign and malignant papillary formation.
44 females; mean age, 47.5 years; age range, 28-65 years). The 62 non-malignant cases included 34 cases of NG and 28 cases of Hashimoto thyroiditis (HT). The diagnosis of PTC and PTMC was based on characteristic cytological features, including nuclear irregularity, nuclear groove and pseudo-inclusions and psammoma bodies (Fig. 1A) (10), and immunohistochemistry results, including CK19 and galectin-3, which was performed using the immunohistochemistry methods described below (28). All resected specimens were fixed in 10% neutral buffered formalin (pH 7.4) at room temperature for 24 h, embedded in paraffin, and cut into 4-μm sections. Informed consent was obtained from all patients, and all experiments were approved by the Ethics Committee of Jianghan University.

Reagents. Anti-CK19 (keratin 19) mouse monoclonal antibody (cat. no. TA500212), anti-TPO rabbit polyclonal antibody (cat. no. TA323628), rabbit polyclonal anti-Ki67 antibody (cat. no. TA314198), rabbit polyclonal anti-galectin-3 antibody anti-galectin-3 antibody (cat. no. APS4962SU-N), and mouse monoclonal anti-CD56 antibody (cat. no. TA353710) were purchased from OriGene Technologies, Inc. (Beijing, China). The Human BRAF V600E gene mutation detection kit was from Wuhan YZY Biopharma Co., Ltd. (Wuhan, China). The TIANamp FFPE DNA kit (DP331) was purchased from Beijing Zhongshan Golden Bridge Biotechnology, Co., Ltd. (Beijing, China). The biotin-streptavidin horseradish peroxidase detection systems (SP test kit; cat. no. SP-9000) and diaminobenzidine (DAB) colorization test kit (cat. no. ZLI-9017) were purchased from Beijing Zhongshan Golden Bridge Biotechnology, Co., Ltd. (Beijing, China). The TIANamp FFPE DNA kit (DP331) was purchased from Tiangen Biotech Co., Ltd. (Beijing, China). The Human BRAF V600E gene mutation detection kit was from Wuhan YZY Biopharma Co., Ltd. (Wuhan, China).

Histology and immunohistochemistry. Standard hematoxylin and eosin staining was performed on 4-μm paraffin sections of above specimens: Tissues that were fixed in 10% neutral buffered formalin for 12 h at room temperature, the processed and embedded in paraffin wax. Sections measuring 4-μm thickness were stained in 0.5% hematoxylin staining solution (1 g haematoxylin, 15 g aluminum potassium sulfate, 10 ml absolute ethyl alcohol and 200 ml distilled water) for 10 min at room temperature. The slides were placed under running tap water at room temperature for at least 10 min following 1% hydrochloric acid alcohol differentiation for 1 min at room temperature. Then, the samples were stained in working 1% eosin Y staining solution (1 g eosin Y, 100 ml distilled water and 1 drop glacial acetic acid) for 1 min at room temperature and dehydrated at room temperature. Then, the slides were viewed with a microscope subsequent to the addition of a coverslip. Immunostaining was performed using following appropriate antibodies on 4-μm tumor sections using a ‘two-step’ method. The tissue slides were deparaffinized twice with 100% xylene for 15 min at 37°C and rehydrated gradually in an ethanol series (100, 95 and 80% ethanol) for 10 min at room temperature. The endogenous peroxidase activity was inhibited by incubation for 10 min at room temperature in a 3% hydrogen peroxide/methanol buffer. Antigen retrieval was performed by immersing the slides in an ethylenediamine tetraacetic acid buffer (pH 8.0), followed by boiling in a water bath at 100°C for 10 min. The slides were rinsed in PBS and subsequently incubated with anti-CK19 (keratin 19) mouse monoclonal antibody (dilution 1:100; cat. no. TA500212), rabbit polyclonal anti-galectin-3 antibody (dilution 1:100; cat. no. AP54962SU-N), anti-TPO rabbit polyclonal antibody (dilution 1:100; cat. no. TA323628), mouse monoclonal anti-CD56 antibody (dilution 1:100; cat. no. TA353710) or rabbit polyclonal anti-Ki67 antibody (dilution 1:100; cat. no. TA314198) (all from OriGene Technologies, Inc.) overnight at 4°C in a humidified chamber. Following this incubation, the slides were washed three times with PBS containing 0.05% Tween-20. The slides were then incubated with biotin-labeled goat anti-mouse/Rabbit IgG secondary antibodies antibody at a ready-to-use dilution (cat. no. SP-9000; Beijing Zhongshan Golden Bridge Biotechnology, Co., Ltd.) for 1 h at 37°C. The slides were then washed three times and developed with DAB chromogen. The slides were then washed gently with tap water, prior to counterstaining with hematoxylin at room temperature for 10 min, and then were observed by light microscope (magnification, x400, BX51; Olympus Corporation, Tokyo, Japan).

Evaluation of immunohistochemical staining. For staining of CK19, galectin-3, CD56 and TPO, the signals were considered positive when immunoreactivity was clearly observed in the cell membrane and/or cytoplasm by light microscope.
It was scored manually, and all fields of view that included the tumor were examined. For each antibody, with the exception of Ki67, no staining or weak staining in \(<10\%\) of the cells was scored as negative, and staining in \(\geq10\%\) of cells was scored as positive. The known positive or negative controls were taken at the same time; the judgement of the staining was compared with the control. If the staining was the same as the negative control or only no more than 10% cells were weakly stained, it was scored as negative. While, if the staining was the same as the positive control or >10% cells were stained, it was scored as negative. The individual cells were counted. The proportion was the number of positive cells divided by the total number of cells. For Ki67 staining, the Ki67 staining in the cell nuclei was examined in ~500 cells manually and indicated as a percentage of the total nuclei. All above experiments were scored or examined by at least two pathologists.

DNA isolation from formalin-fixed, paraffin-embedded (FFPE) tissue sections. DNA was isolated from 5-8 FFPE tissue sections from each patient using the TIANamp FFPE DNA kit, according to the manufacturer’s instructions. The DNA was stored at -20°C.

BRAF mutation detection. BRAF mutation was detected using the Human BRAF V600E gene mutation detection kit (Wuhan YZY Biopharma Co., Ltd.). DNA amplification was performed with the StepOnePlus Real-Time PCR system (Thermo Fisher Scientific, Inc., Waltham, MA, USA) in a total volume of 25 µl. The thermocycling conditions were as follows: An initial UNG treatment for 10 min at 37°C and pre-degeneration for 5 min at 95°C, then 40 cycles of denaturation at 95°C for 15 sec, an annealing step at 60°C for 60 sec. After the reaction, according to the amplification curve, suitable fluorescence thresholds (threshold defined in the amplification curve of logarithmic exponential growth) were identified and Cq values were calculated (29).

Statistical analysis. Statistical analysis was performed using SPSS 12.0 software (SPSS, Inc., Chicago, IL, USA). Data are presented as the mean ± standard deviation. The \(\chi^2\) test and Fisher’s exact test were used to compare immunohistochemistry results between the experimental groups and the control groups. A one-way analysis of variance and Dunnett’s test was used to compare Ki67 immunohistochemistry results between groups. \(P<0.05\) was considered to indicate a statistically significant difference. All experiments were performed at least three times.

Results

CK19 expression. CK19 staining was detected predominantly in the cytoplasm in PTC (Fig. 1B), but was absent in NG (Fig. 1C). Positive staining of CK19 was detected in 116/120 cases of PTC, 61/64 in PTMC, 2/34 in NG and 1/28 in HT (Table I). CK19 expression was significantly

Groups	Positive	Negative	\(\chi^2\)	P-value
PTC vs. NG			116.8	\(<0.001\)
PTC	116	4		
NG	2	32		
PTC vs. HT			113.3	\(<0.001\)
PTC	116	4		
HT	1	27		
PTC vs. PTMC			0.028	\(=0.957\)
PTC	116	4		
PTMC	61	3		
PTMC vs. NG			77.5	\(<0.001\)
PTMC	61	3		
NG	2	32		
PTMC vs. HT			70.5	\(<0.001\)
PTMC	61	3		
HT	1	27		
NG vs. HT			0.298	\(=0.863\)
NG	2	32		
HT	1	27		

PTC, papillary thyroid carcinoma; PTMC, papillary thyroid micro-carcinoma; NG, nodular goiter; HT, Hashimoto thyroiditis.
more common in PTC compared with NG (P<0.001), PTC compared with HT (P<0.001), PTMC compared with NG (P<0.001), and PTMC compared with HT (P<0.001; Table I). However, no significant differences in CK19 expression were observed between PTC and PTMC, or between NG and HT (Table I).

Galectin-3 expression. Galectin-3 expression was detected predominantly in the cytoplasm and nucleus in PTC (Fig. 1D), but was absent in NG (Fig. 1E). Galectin-3-positive staining was detected in 115/120 cases of PTC, 60/64 of PTMC, 6/34 of NG and 4/28 of HT. Galectin-3 expression was significantly more common in PTC compared with NG (P<0.001), PTC compared with HT (P<0.001), PTMC compared with NG (P<0.001), and PTMC compared with HT (P<0.001; Table II). No significant differences in galectin-3 expression were observed between PTC and PTMC, or between NG and HT (Table II).

TPO expression. TPO expression was detected predominantly in the plasma membrane in PTC (Fig. 1F), but was absent in NG (Fig. 1G). TPO-positive staining was detected in 8/120 cases of PTC, 1/64 in PTMC, 30/34 in NG and 25/28 in HT. TPO expression was significantly less common in PTC compared with NG (P<0.001), PTC compared with HT (P<0.001), PTMC compared with NG (P<0.001) and PTMC compared with HT (P<0.001; Table III). However, no significant differences were observed between PTC and PTMC, or between NG and HT (Table III).

CD56 expression. CD56 expression was detected predominantly in the cytoplasm in PTC (Fig. 1H), but was absent in NG (Fig. 1I). CD56-positive staining was detected in 12/120 cases of PTC, 3/64 in PTMC, 25/28 in NG and 26/28 in HT. CD56 expression level was significantly less common in PTC compared with NG (P<0.001), PTC compared with HT (P<0.001), PTMC compared with NG (P<0.001) and PTMC compared with HT (P<0.001; Table IV). No significant differences in CD56 expression were observed between PTC and PTMC, or between NG and HT (Table IV).

Ki67 expression. Ki67 expression was detected predominantly in the cell nucleus (Fig. 1J). Ki67-positive index was 2.52±0.46% in PTC (120 cases), 2.62±0.52% in PTMC (64 cases), 2.55±0.44% in NG (34 cases), and 2.58±0.48% in HT (28 cases). Ki67-positive index was not significantly different between PTC and NG, PTC and HT, PTMC and NG, PTMC and HT or NG and HT (Table V).

BRAF mutation rate. The BRAF mutation rate was identified to be 77.5% (93/120) in PTC, 73.4% (47/64) in PTMC, 8.8% (3/34) in NG and 7.1% (2/28) in HT. The BRAF mutation rate was significantly higher in PTC compared with NG (P<0.001), PTC compared with HT (P<0.001), PTMC compared with NG (P<0.001) and PTMC compared with HT (P<0.001; Table VI). However, no significant differences in BRAF mutation rate were observed between PTC and PTMC, or between NG and HT (Table VI).

Table II. Galectin-3 expression.

Groups	Positive	Negative	χ^2	P-value
PTC vs. NG	91.6 P<0.001			
PTC	115	5		
NG	6	28		
PTC vs. HT	90.7 P<0.001			
PTC	115	5		
HT	4	24		
PTC vs. PTMC	0.07 P>0.791			
PTC	115	5		
PTMC	60	4		
PTMC vs. NG	55.1 P<0.001			
PTMC	60	4		
NG	6	28		
PTMC vs. HT	54.4 P<0.001			
PTMC	60	4		
HT	4	24		
NG vs. HT	0.13 P>0.72			
NG	6	28		
HT	4	24		

PTC, papillary thyroid carcinoma; PTMC, papillary thyroid micro-carcinoma; NG, nodular goiter; HT, Hashimoto thyroiditis.
Table III. TPO expression.

Groups	Positive	Negative	\(\chi^2 \)	P-value
PTC vs. NG			90.5	P<0.001
PTC	8	112		
NG	30	4		
PTC vs. HT			84.7	P<0.001
PTC	8	112		
HT	25	3		
PTC vs. PTMC			1.36	P>0.242
PTC	8	112		
PTMC	1	63		
PTMC vs. NG			73.2	P<0.001
PTMC	1	63		
NG	30	4		
PTMC vs. HT			69.7	P<0.001
PTMC	1	63		
HT	25	3		
NG vs. HT			0.07	P>0.785
NG	30	4		
HT	25	3		

PTC, papillary thyroid carcinoma; PTMC, papillary thyroid micro‑carcinoma; NG, nodular goiter; HT, Hashimoto thyroiditis; TPO, thyroid peroxidase.

Table IV. CD56 expression.

Groups	Positive	Negative	\(\chi^2 \)	P-value
PTC vs. NG			92.9	P<0.001
PTC	12	108		
NG	33	1		
PTC vs. HT			77.3	P<0.001
PTC	12	108		
HT	26	2		
PTC vs. PTMC			0.97	P>0.331
PTC	12	108		
PTMC	3	61		
PTMC vs. NG			77.6	P<0.001
PTMC	3	61		
NG	33	1		
PTMC vs. HT			66.1	P<0.001
PTMC	3	61		
HT	26	2		
NG vs. HT			0.03	P>0.863
NG	33	1		
HT	26	2		

PTC, papillary thyroid carcinoma; PTMC, papillary thyroid micro‑carcinoma; NG, nodular goiter; HT, Hashimoto thyroiditis.
Discussion

Papillary formation is often observed in benign and malignant thyroid diseases (30-32), meaning that it is difficult to distinguish between benign and malignant lesions (30-32). The pathological morphological characteristics, such as papillary architecture with typically complex branching, nuclear features including nuclear irregularity, nuclear groove and pseudoinclusion and psammoma bodies, are widely used in the diagnosis of thyroid diseases. However, to distinguish PTC from thyroid papillary hyperplasia and solitary nodules with papillary change is challenging due to tumor heterogeneity. Thus, immunohistochemistry is also essential in the diagnosis (30-32).

CK19 is a member of the keratin family that is an intermediate filament protein in epithelial cells (33). CK19 is highly expressed in papillary carcinoma, but not in benign follicular nodules, which is useful in diagnosis (33). In previous studies, the CK19 positive rate was reported to be 84-100% in PTC, 59-84% in PTMC, 26.80% in NG and 20% in HT (33-38). In the present study, CK19 expression was detected in 96.7% (116/120) of PTC, 95.3% (61/64) of PTMC, 5.9% (2/34) of NG and 3.6% (1/28) of HT. Thus, CK19 expression is indicated to be valuable in the diagnosis of thyroid carcinoma.

Galectin-3 is a member of the β-galactoside-binding mammalian family of lectins that serves functions in metastasis, angiogenesis, proliferation and apoptosis of multiple tumor types, including thyroid carcinoma (39). In previous...
The incidence of NG is high in China compared with papillary formation (11-16). However, it can be difficult to distinguish NG from malignant papillary formation (11-16). The present study presents evidence to support the view that analysis of expression patterns of CK19, galecin-3, TPO and CD56, together with BRAF mutation, will be useful in the diagnosis of thyroid carcinoma. It was demonstrated that CK19 and galecin-3 were often positively expressed, and TPO and CD56 were often negatively expressed, in PTC and PTMC, and it was revealed that the BRAF mutation rate was high in PTC and PTMC. However, not all PTC and PTMC cases indicated that CK19 and galecin-3 were completely positively expressed. Therefore, these negative cases require additional analysis.

Acknowledgements

The present study was supported by the National Natural Science Foundation of China (grant nos. 81470110, 81272754 and 30870981) and the Science Foundation of Health Office of Hubei Province (grant no. WJ2015Z059). The authors would like to thank Professor Zhaoyi Wang for providing critical reading of this study.

References

1. Ito Y, Nikiforov YE, Schlumberger M and Vignieri R: Increasing incidence of thyroid cancer: Controversies explored. Nat Rev Endocrinol 9: 178-184, 2013.
2. Jung KW, Won YJ, Hong IJ, Oh CM, Seo HG and Lee JS: Cancer statistics in Korea: Incidence, mortality, survival and prevalence in 2010. Cancer Res Treat 45: 1-14, 2013.
3. Ito Y, Fukushima M, Higashiyama T, Kihara M, Takamura Y, Kobayashi K, Miya A and Miyauchi A: Incidence and predictors of right paraesophageal lymph node metastasis of N0 papillary thyroid carcinoma located in the right lobe. Endocr J 60: 389-392, 2013.
4. Yoshie P, Nair S, Nair D and Chaturvedi P: Incidence of occult papillary carcinoma of thyroid in Indian population: Case series and review of literature. J Cancer Res Ther 10: 693-695, 2014.
5. Wang J, Gao L, Song C and Xie L: Incidence of metastases from 524 patients with papillary thyroid carcinoma in cervical lymph nodes posterior to the sterno-clavicular joint (Level VIa): Relevance for endoscopic thyroidectomy. Surgery 159: 1557-1564, 2016.
6. Zhu J, Wang X, Zhang X, Li P and Hou H: Clinicopathological features of recurrent papillary thyroid cancer. Diagn Pathol 10: 96, 2015.
7. Liu X, Ouyang D, Li H, Zhang R, Lv Y, Yang A and Xie C: Papillary thyroid cancer: Dual-energy spectral CT quantitative parameters for preoperative diagnosis of metastasis to the cervical lymph nodes. Radiology 275: 167-176, 2015.
8. Zhang YZ, Qin F, Han ZG, Liu Q, Zhou L and Wang YW: Prognostic significance of DLL4 expression in papillary thyroid cancer. Eur Rev Med Pharmacol Sci 19: 2901-2905, 2015.
9. Zhou SF, Hu SY, Ma L, Miao L and Mao WZ: Correlations between papillary thyroid cancer and peripheral blood levels of matrix metalloproteinase-2, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2. Chin Med J (Engl) 126: 1925-1929, 2013.
10. Zhu Y, Wang C, Zhang GN, Shi Y, Xu SQ, Jia SJ and He R: Papillary thyroid cancer located in malignant struma ovari with omentum metastasis: A case report and review of the literature. World J Surg Oncol 14: 17, 2016.
11. Shi RL, Qu N, Liao T, Wang YL, Wang Y, Sun GH and Ji QH: Expression, clinical significance and mechanism of Slit2 in papillary thyroid cancer. Int J Oncol 48: 2053-2062, 2016.
12. Shi RL, Qu N, Liao T, Wei WJ, Lu ZW, Ma B, Wang YL and Ji QH: Relationship of body mass index with BRAF (V600E) mutation in papillary thyroid cancer. Tumour Biol 37: 8383-8390, 2016.
13. Shi X, Liu R, Basolo F, Giannini R, Shen X, Teng D, Guan H, Shan Z, Teng W, Musholt TJ, et al: Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab 101: 103-117, 2016.

14. Su X, Li Z, He C, Chen W, Fu X and Yang A: Radiation exposure, young age, and female gender are associated with high prevalence of RET/PTC1 and RET/PTC3 in papillary thyroid cancer: A meta-analysis. Oncotarget 7: 16716-16730, 2016.

15. Gao B, Tian W, Jiang Y, Zhang X, Zhao J, Zhang S, Chen J and Luo D: Poor prediction of giant nodular goiter. Int J Med Sci 9: 778-785, 2012.

16. Tan Z, Ge MH, Zheng CM, Wang QL, Nie XL and Jiang LH: The significance of Delphian lymph node in papillary thyroid cancer. Asia Pac J Clin Oncol 13: e380-e393, 2017.

17. Ma J, Fong Li HS, Hong CY and Chiu VS: VEGF mutation and its association with clinicopathological features of papillary thyroid microcarcinoma: A meta-analysis. J Huazhong Univ Sci Technolog Med Sci 35: 591-599, 2015.

18. Lu ZZ, Zhang Y, Wei SF, Li DS, Zhu QH, Sun SJ, Li M and Li LI: Outcome of papillary thyroid microcarcinoma: Study of 1,990 cases. Mol Clin Oncol 3: 672-676, 2015.

19. Qu N, Zhang L, Ji QH, Chen JY, Zhi YX, Cao YM and Shen Q: Risk factors for central compartment lymph node metastasis in papillary thyroid microcarcinoma: A meta-analysis. World J Surg 44: 2459-2469, 2015.

20. Zhang LY, Liu ZW, Liu YW, Gao WS and Zheng C: Risk factors for nodal metastasis in cN0 papillary thyroid microcarcinoma. Asian Pac J Cancer Prev 16: 3361-3363, 2015.

21. Zhang L, Liu Z, Liu Y, Gao W and Zheng C: The clinical prognosis of patients with cN0 papillary thyroid microcarcinoma by cervical lymph node metastasis. World J Surg Onc 13: 138, 2015.

22. Park YJ, Kim YA, Lee YJ, Kim SH, Park SY, Kim KW, Chung JY, Youn YK, Kim KH, Park DJ and Cho BY: Papillary microcarcinoma in comparison with larger papillary thyroid carcinoma in BRAF(V600E) mutation, clinicopathological features, and immunohistochemical findings. Head Neck 32: 38-45, 2010.

23. Arora N, Turbendian HK, Kato MA, Moo TA, Zarnegar R and Fahey TJ III: Papillary thyroid carcinoma and microcarcinoma: Is there a need to distinguish the two? Thyroid 19: 477-473, 2009.

24. Batistatou A, Charalabopoulou K, Nakanishi Y, Vagianos C, Hirohisa S, Agraftis NJ and Scopa CD: Differential expression of dysadherin in papillary thyroid carcinoma and microcarcinoma: Correlation with E-cadherin. Endocr Pathol 19: 197-202, 2008.

25. Antonaci A, Consorti F, Mardente S, Natalizi S, Giovannone G and Della Rocca C: Survivin and cyclin D1 are jointly expressed in thyroid papillary carcinoma and microcarcinoma. Oncol Rep 19: 517-522, 2008.

26. Sandogar T, Erkan N and Vardar E: Papillary carcinoma arising in a thyroglossal duct cyst with associated microcarcinoma of the thyroid and without cervical lymph node metastasis: A case report. J Med Case Rep 2: 42, 2008.

27. Barbacci EC, Mazzucconi G, Barone P, Orsini P and Pasquini C: Thyroid papillary cancers: Microcarcinoma and carcinoma, incidental cancers and non-incidental cancers—are they different diseases? Clin Endocrinol (Oxf) 63: 577-581, 2005.

28. Schneider DF and Chen H: New developments in the diagnosis and treatment of thyroid cancer. CA Cancer J Clin 63: 374-394, 2013.

29. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT(T)) method. Methods 25: 402-408, 2001.

30. Romero-Rojas A, Cuervo-Martinez J, Osorio-Arango K and Olaya N: Histological variants and prognostic factors of papillary thyroid carcinoma at the Colombian Instituto Nacional de Cancerologia, 2006-2012. Biomedica 35: 429-436, 2015.

31. Sak SD: Variants of papillary thyroid carcinoma: Multiple faces of a familiar tumor. Turk Patoloji Derg 31 (Suppl 1): S34-S47, 2015.

32. Lee JH, Shin JH, Lee HW, Oh YL, Hahn SY and Ko EY: Sonographic and cytopathologic correlation of papillary thyroid carcinoma variants. J Ultrasound Med 34: 264-274, 2015.

33. Song Q, Wang D, Lou Y, Li C, Fang C, He X and Li J: Diagnostic significance of CK19, TG, K667 and galectin-3 expression for papillary thyroid carcinoma in the northeastern region of China. Diagn Pathol 10: 125, 2015.

34. Gong L, Chen P, Liu X, Han Y, Zhou Y, Zhang W, Li H, Li C and Xie J: Expressions of D2-40, CK19, galectin-3, VEGF and EGFR in papillary thyroid carcinoma. Gland Surg 1: 25-32, 2012.

35. Liu Z, Yu P, Xiong Y, Zeng W, Li X, Mainaiti Y, Wang S, Song H, Shi J and Li D: The significance of VEGF and HBME-1 expression for diagnosis of papillary thyroid carcinoma. Int J Clin Exp Med 8: 4369-4374, 2015.

36. Laco J, Ryska A, Cap J and Celakovský P: Expression of galectin-3, cytokaterin 19, neural cell adhesion molecule and E-cadherin in certain variants of papillary thyroid carcinoma. Cesk Patol 44: 103-106, 2005.

37. Nasr MR, Mokhpadiyay Y, Zhang S and Katznein AL: Absence of the BRAF mutation in HBME1+ and CK19+ atypical cell clusters in Hashimoto thyroiditis: Supportive evidence against preneoplastic change. Am J Clin Pathol 132: 906-912, 2009.

38. Lamba Saini M, Weynald B, Rahier J, Mourad M, Hamoir M and Van de Paele H: Use of modified thyroid function test of uncertain malignant potential. Diagn Pathol 10: 32, 2015.

39. de Oliveira JT, Ribeiro C, Barros R, Gomes C, de Matos AJ, Reis CA, Rutteman GR and Gättert F: Hoxpia unfold regulates galectin-3 in mammary tumor progression and metastasis. PloS One 10: e0134588, 2015.

40. Ma H, Yan J, Zhang C, Qin S, Qin L, Liu L, Wang X and Li N: Expression of papillary thyroid carcinoma-associated molecular markers and their significance in follicular epithelial dysplasia with papillary thyroid carcinoma-like nuclear alterations in Hashimoto's thyroiditis. Int J Clin Exp Pathol 7: 9909-8007, 2014.

41. Tang W, Huang C, Tang C, Xu J and Wang H: Galectin-3 may serve as a potential marker for diagnosis and prognosis in papillary thyroid carcinoma: A meta-analysis. Oncotargets Ther 9: 455-460, 2016.

42. Zhang LY, Liu ZW, Liu YW, Gao WS and Zheng C: Risk factors for nodal metastasis in cN0 papillary thyroid microcarcinoma. Asian Pac J Cancer Prev 16: 3361-3363, 2015.

43. Zeng W, Li X, Maiaiti Y, Wang S, Song H, Wang J and Huang Y: Acetylcholine esterase, estrogen receptor-α and β in papillary thyroid carcinoma. BMC Cancer 14: 383, 2014.
55. Rossi M, Buratto M, Tagliati F, Rossi R, Lupo S, Trasforini G, Lanza G, Franceschetti P, Bruni S, Degli Uberti E and Zatelli MC: Relevance of BRAF(V600E) mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer. Thyroid 25: 221-228, 2015.

56. Koochak A, Rakhshani N, Karbalaiya Niya MH, Tameshkel FS, Sohrabi MR, Babae MR, Rezvani H, Bahar B, Imanzade F, Zamani F, et al: Mutation analysis of KRAS and BRAF genes in metastatic colorectal cancer: A first large scale study from Iran. Asian Pac J Cancer Prev 17: 603-608, 2016.

57. Gertz RJ, Nikiforov Y, Rehruwer W, McDaniel L and Lloyd RV: Mutation in BRAF and other members of the MAPK pathway in papillary thyroid carcinoma in the pediatric population. Arch Pathol Lab Med 140: 134-139, 2016.

58. Kowalska A, Walczyk A, Kowalik A, Pałyga I, Trybek T, Kopczyński J, Kajor M, Chrpek M, Pięciak L, Chłopek M, et al: Increase in papillary thyroid cancer incidence is accompanied by changes in the frequency of the BRAF V600E mutation: A single-institution study. Thyroid 26: 543-551, 2016.

59. Sun Y, Shi C, Shi T, Yu J and Li Z: Correlation between the BRAF(v600E) gene mutation and factors influencing the prognosis of papillary thyroid microcarcinoma. Int J Clin Exp Med 8: 22525-22528, 2015.

60. Li J, Zhang S, Zheng S, Zhang D and Qiu X: The BRAF V600E mutation predicts poor survival outcome in patients with papillary thyroid carcinoma: A meta analysis. Int J Clin Exp Med 8: 22522-22525, 2015.

61. Fu QF, Pan PT, Zhou L, Liu XL, Guo F, Wang L and Sun H: Clinical significance of preoperative detection of serum p53 antibodies and BRAF(V600E) mutation in patients with papillary thyroid carcinoma. Int J Clin Exp Med 8: 21327-21334, 2015.

62. Kowalska A, Kowalik A, Pałyga I, Walczyk A, Gąsior-Perczak D, Kopczyński J, Lizis-Kolus K, Szymska-Skrubot D, Hurej S, Radowicz-Chil A, et al: The usefulness of determining the presence of BRAF V600E mutation in fine-needle aspiration cytology in indeterminate cytological results. Endokrynol Pol 67: 41-47, 2016.