COLD CO GAS IN THE DISK OF THE YOUNG ERUPTIVE STAR EX LUP

Á. KÓSPÁL1,2, P. ÁBRÁHÁM1, T. CSENGERT3, U. GORTI4,5, TH. HENNING2, A. MOOR1, D. A. SEMENOV2, L. SZŰCS6, and R. GÜSTEN3

1 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest, Hungary; kospal@konkoly.hu
2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
3 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
4 SETI Institute, Mountain View, CA, USA
5 NASA Ames Research Center, Moffett Field, CA, USA
6 Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany

Received 2016 January 21; accepted 2016 March 9; published 2016 April 7

ABSTRACT

EX Lupi-type objects (EXors) form a sub-class of T Tauri stars, defined by sudden sporadic flare-ups of 1–5 mag at optical wavelengths. These eruptions are attributed to enhanced mass accretion from the circumstellar disk to the star, and may constitute important events in shaping the structure of the inner disk and the forming planetary system. Although disk properties may play a fundamental role in driving the outbursts, they are surprisingly poorly known. In order to characterize the dust and gas components of EXor disks, here we report on observations of the 12CO $J=3–2$ and $4–3$ lines, and the 13CO $3–2$ line in EX Lup, the prototype of the EXor class. We reproduce the observed line fluxes and profiles with a line radiative transfer model and compare the obtained parameters with corresponding ones of other T Tauri disks.

Key words: stars: individual(EX Lup) – stars: pre-main sequence – stars: variables: T Tauri, Herbig Ae/Be

1. INTRODUCTION

EX Lup is the prototype of EXors, one of the two main classes of young eruptive stars. EXors are young low-mass T Tauri stars exhibiting repetitive outbursts due to a sudden increase of the accretion rate (Herbig 1977, 2008). In 2008, EX Lup exhibited its largest outburst ever observed, triggering a series of multi-wavelength and multi-epoch investigations of the accretion process. These led to the discovery of the annealing of amorphous silicate particles to crystalline grains during the outburst and their transportation to the outer comet-forming zone (Ábrám et al. 2009; Juhász et al. 2012). Changes in the molecular features of H$_2$O, OH, and H$_2$ indicate that the outburst affected not only the surface mineralogy, but also the chemistry in the inner disk (Banzatti et al. 2012). Using high-resolution spectroscopic and spectroscopic tools, Goto et al. (2011), Kóspál et al. (2011), and Sicilia-Aguilar et al. (2012) concluded that the high accretion rate responsible for the outburst mostly affected the innermost 0.4 au region. They detected an accretion-related wind and the motion of non-axisymmetric distribution of material in the inner disk.

The emerging picture is broadly consistent with the magnetospheric accretion scenario, in which the infalling material reaches the star in hot spots. Indeed, X-ray and UV observations by Grosso et al. (2010) and by Teets et al. (2012) indicate accretion shocks. Recently, Kóspál et al. (2014) and Sicilia-Aguilar et al. (2015) studied the radial velocity variations of optical absorption and emission lines and discussed a different interpretation in terms of a possible brown dwarf companion on a tight eccentric orbit around EX Lup, or emission from stable accretion columns in the system.

All of the observations summarized above concentrated on the inner part of the disk, within a few au of the star. However, the structure and dynamics of the outer disk must play a significant role in driving the outburst by replenishing the material in the inner disk after each eruption. It is an open question whether the outer disks of EXors differ in any way from the disks of normal T Tauri stars. A negative answer could suggest that all low-mass stars undergo EXor phases during their early evolution.

Very little information is available on the outer disk or on global disk properties of the prototype, EX Lup. The emission of the cold dust component was detected at infrared wavelengths (Gras-Velázquez & Ray 2005; Sipos et al. 2009) and at 870 μm with APEX/LABOCA (Juhász et al. 2012). Modeling the spectral energy distribution (SED) based on these data, Sipos et al. (2009) and Juhász et al. (2012) deduced a modestly flared disk geometry. In the lack of spatially resolved infrared or millimeter data, the outer disk radius of EX Lup is unknown. Much less is known about the gas component. Warm carbon monoxide (CO) gas was detected in the fundamental lines at 4.5 μm and in the overtone band at 2.3 μm (Aspin et al. 2010; Goto et al. 2011; Kóspál et al. 2011). The profiles of the fundamental lines could be well fitted with an inner disk inclination angle between 40° and 50° (Goto et al. 2011). Concerning the cold gas in the disk, the only available millimeter CO observation reported in the literature, a 12CO (3–2) line targeted by van Kempen et al. (2007) using the James Clerk Maxwell telescope, was a non-detection.

In order to study the abundance, distribution, and kinematics of cold molecular gas in EX Lup’s disk, we obtained new submillimeter CO line observations with APEX/FLASH$^{+}$. In this Letter, we present the data and analyze the line profiles and line intensities, measure the CO mass and optical depth, reproduce the results with a chemical and radiative transfer model, and confront the results with those obtained for typical T Tauri-type stars.

2. OBSERVATIONS

We used the FLASH$^{+}$ receiver (Klein et al. 2012) at the APEX telescope (Güsten et al. 2006) to measure the 12CO (3–2), 13CO(3–2), and 12CO(4–3) lines toward EX Lup on 2015 March 30–April 1. The lower frequency channel was tuned to 344.2 GHz in USB to cover the 13CO(3–2) at
330.588 GHz, and the CO(3–2) at 345.796 GHz, respectively. The higher frequency channel was tuned to the \(^{12}\text{CO}(4–3)\) line at 461.041 GHz in USB. We used the XFFTS backends providing a nominal 38.15 kHz spectral resolution. Observations were carried out in the position switching mode with a relative reference position 100\(^\circ\) away.

The spectra have been averaged and a first order baseline has been removed. The noise level on a \(T_{\text{A}}^\ast\) scale in 1 km s\(^{-1}\) channels is 5.2 mK (0.21 Jy) for \(^{13}\text{CO}(3–2)\), 11.5 mK (0.55 Jy) for \(^{12}\text{CO}(4–3)\), and 7.7 mK (0.32 Jy) for \(^{13}\text{CO}(3–2)\). We used a Jy-to-K conversion of 41 Jy K\(^{-1}\) for the 3–2 lines and 48 Jy K\(^{-1}\) for the 4–3 line to convert from \(T_{\text{A}}^\ast\) scale to flux scale. The telescope’s beam is 19\(^\prime\)2, and 15\(^\prime\)3 at the corresponding frequencies.

3. RESULTS AND ANALYSIS

Our CO spectra are plotted in Figure 1. The \(^{12}\text{CO}\) lines are securely detected at 12\(\sigma\) and 7.7\(\sigma\) levels for the 3–2 and 4–3 lines, respectively. There is a marginal detection of the \(^{13}\text{CO}\) (3–2) line at a level of 2.6\(\sigma\), at the same radial velocity as the \(^{13}\text{CO}\) lines. The observed lines are single-peaked. The peak fluxes, total line intensities, line widths (FWHM of fitted Gaussians), and line positions (centers of the fitted Gaussians) are presented in Table 1.

The ratio of the 3–2 lines of the two different CO isotopologues can be used to calculate the optical depths of the lines. If we denote the optical depths of \(^{12}\text{CO}\) and \(^{13}\text{CO}\) by \(\tau_{12}\) and \(\tau_{13}\), respectively, then the ratio of the \(^{12}\text{CO}\) to the \(^{13}\text{CO}\) line is approximately \((1 - e^{-\tau_{12}})/(1 - e^{-\tau_{13}})\). Assuming that the optical depths of the different isotopologues follow the same proportions as the abundance ratios typical of local interstellar matter (Wilson 1999), \(\tau_{12} = 69 \times \tau_{13}\). Using these numbers, we obtained \(\tau_{12} \approx 20\) and \(\tau_{13} \approx 0.3\). Even considering the uncertainties in this evaluation, it is very likely that the \(^{12}\text{CO}\) lines are optically thick, while the \(^{13}\text{CO}\) line is optically thin.

The temperature of the CO gas can be estimated from the ratio of the optically thick \(^{12}\text{CO}(4–3)\) and \(^{12}\text{CO}(3–2)\) lines. In the Rayleigh–Jeans approximation, the ratio is expected to be the ratio of the squares of the line frequencies, i.e., about 1.78. Instead, using the total flux values from Table 1, we obtain 1.25 ± 0.15, significantly different from the Rayleigh–Jeans value. The low value suggests that the temperature is very low and that the Rayleigh–Jeans approximation is not valid. Indeed, using the Planck function, this line ratio corresponds to \(10^{+5}_{-4}\) K.

From the optically thin \(^{13}\text{CO}\) line, using the canonical \(10^{–4}\) CO-to-H\(_2\) abundance ratio, we estimate a total disk mass of \(2.3 \times 10^{–4}\) \(M_\odot\). If the abundance ratio is lower than \(10^{–4}\), as will be discussed in Section 5.2, then this disk mass should be considered as a lower limit.

4. CHEMICAL AND RADIATIVE TRANSFER MODELING

In order to reproduce the observed line profiles and line fluxes, we made a detailed chemical and radiative transfer model of the EX Lup disk. As a base, we used the model of Sipos et al. (2009) to fit the quiescent SED, providing radial and vertical dust density and dust temperature distributions. We used this physical model and performed a detailed simulation of the disk chemistry similarly to that described in Gorti et al. (2011). The CO abundance, densities, and temperatures were calculated without assuming local thermodynamical equilibrium (LTE), and included radiative pumping, dust background radiation, and spontaneous emission and collisions. In parallel, we verified the results with the state-of-the-art chemical code ALCHEMIC (Semenov et al. 2010), and found similar results. The obtained gas-phase \(^{12}\text{CO}\) fractional abundances were used as input for our line transport calculations, performed with the radmc-3d code.\(^7\) We assumed a homogeneous gas-to-dust ratio of 100 and a Keplerian velocity field with a microturbulent velocity of 0.1 km s\(^{-1}\), taken to be constant throughout the disk. The abundances of \(^{13}\text{CO}\) and \(^{15}\text{O}\) were calculated using a constant \(^{12}\text{CO}/^{13}\text{CO}\) ratio of 69 and \(^{12}\text{CO}/^{15}\text{O}\) ratio of 560 (Wilson 1999). The obtained densities and temperatures imply that LTE holds everywhere in the disk, thus we adopted LTE for modeling the line profiles. The gas temperature was assumed to be equal with the dust temperature. The line emission was calculated in 8 km s\(^{-1}\) wide windows centered on the rest frame wavelengths of the \(J = 3–2\) and 4–3 transitions of \(^{12}\text{CO}\) and \(^{13}\text{CO}\).

In Figure 1, we overplotted the resulting model spectra. In order to match the brightness of the observed lines, the gas temperature in our model had to be scaled down by a factor of 0.8. With this small modification, all measured line fluxes and line ratios are well reproduced by our model, indicating that the disk parameters responsible for the line width were reasonable estimates. This result also confirms that the inclination of 40\(^\circ\) used in the radiative transfer calculations is a good approximation. The double-peaked profiles characteristic for a disk in Keplerian orbit are not observed, which is probably due to the limited spectral resolution of the data. We emphasize that while our modeling provides a possible solution to reproduce the observed lines, it was not a fit to the lines. The exploration of the full parameter space needed to prove that this is a unique solution is beyond the scope of this Letter. For this reason, in the following, we base our discussion on our measured CO line fluxes.

\(^7\) http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
Table 1

Line	Frequency (GHz)	Peak Flux (Jy)	Flux (Jy km s⁻¹)	Width (km s⁻¹)	Position (km s⁻¹)
¹²CO(3–2)	345.796	2.63 ± 0.21	9.74 ± 0.41	3.6 ± 0.2	3.6 ± 0.2
¹²CO(4–3)	461.041	4.24 ± 0.55	12.15 ± 1.34	2.6 ± 0.3	3.9 ± 0.2
¹³CO(3–2)	330.588	0.82 ± 0.32	2.09 ± 0.74	2.7 ± 1.1	5.1 ± 0.5

5. DISCUSSION

5.1. Disk Mass from Dust Continuum Data

Sipos et al. (2009) assumed small grains and fitted the SED with a total disk mass of 0.025 M_\odot. Sicilia-Aguilar et al. (2015) could obtain a reasonably good fit to the SED with a total mass of $(1–3) \times 10^{-3} M_\odot$ by using grains between 0.1 and 100 μm with a collisional size distribution. In these studies, when converting the dust mass to total mass, a gas-to-dust mass ratio of 100 was assumed. While this is typical for the interstellar medium, circumstellar disks often have lower gas-to-dust mass ratios. Recently, Williams & Best (2014) measured values between 43 and 2 for T Tauri stars in Taurus, based on Submillimeter Array (SMA) observations of the 1.3 mm continuum and 13CO(2–1) and C18O(2–1) lines. Considering these uncertainties, the total disk mass of EX Lup from dust continuum data may be as high as 0.025 M_\odot (using small grains and a gas-to-dust ratio of 100) or as low as a few times $10^{-4} M_\odot$ (using a grain size distribution and a gas-to-dust ratio of 10). While the lower value is roughly consistent with the disk mass obtained from our 13CO data, the higher value is about 100 times higher, hinting at significant CO depletion in the disk of EX Lup.

5.2. CO Depletion in EX Lup

In order to find out whether the disk properties derived from our CO observations of EX Lup are in any way special, we need to compare it to normal, non-eruptive young stars. Thi et al. (2001) observed the 13CO(3–2) line in eight T Tauri-type stars and in seven Herbig Ae stars in the Taurus-Auriga cloud, calculated the total gas masses, and compared them with total masses inferred from 1.3 mm dust continuum measurements. They found that “masses derived from CO are generally 10–200 times lower than those found from the millimeter continuum.” In Figure 2, we reproduced Figure 10 from Thi et al. (2001), and overplotted EX Lup, using the same equations and assumptions to calculate the disk masses as was used in that paper (we estimated a range of 1.3 mm fluxes for EX Lup by extrapolating from the 870 μm flux presented in Juhász et al. (2012), using $\beta = 0–1.7$ as the spectral index of the dust opacity). Compared to the sample of Thi et al. (2001), EX Lup has a remarkably small disk mass and modest CO depletion. This result means that the total disk mass might be a factor of 10–100 higher than the value calculated in Section 3.

Thi et al. (2001) listed two possible reasons for the CO depletion: (1) freeze-out in the coldest, midplane regions of the disk (indeed, Rebouissou et al. 2015 found that the canonical gas-phase abundance of CO compared to H$_2$ of 10^{-4} is only reached above about 30–35 K; below this temperature, the ratio is much smaller because CO depletion due to freeze-out is very efficient), and (2) photodissociation by stellar or interstellar UV radiation in the disk surface. These two effects may operate in EX Lup as well. First, according to our radiative transfer model, the dust temperature in the disk midplane in the outer disk regions is indeed below 15 K; therefore, CO is expected to freeze-out. Second, the two M-type stars in the sample of Thi et al. (2001) show similar CO depletion factors (about 100), indicating similar radiation fields.

The fact that the CO depletion in EX Lup is less than those observed in normal T Tauri and most of those in Herbig Ae stars as well has interesting implications. EX Lup exhibited a large outburst in 2008, when both its optical and X-ray brightness increased by orders of magnitude (Kóspál et al. 2008; Teets et al. 2012). According to our modeling, both the midplane and the surface temperature increased in the disk during outburst (Ábrahám et al. 2009). On the one hand, the increased temperature might have evaporated CO ice and increased the abundance of gas-phase CO, as predicted by Vorobyov et al. (2013). On the other hand, the increased UV flux during outburst might have photodissociated a significant amount of CO gas. It seems that in the case of EX Lup, the latter effect was more dominant. Our low-J CO observations trace the bulk of the cold gas; therefore, the outburst affected the outer parts of the disk, and not only its innermost part (where Banzatti et al. (2015) found a depletion of hot CO after the outburst, interpreted as the depletion of material accumulated around and within the corotation radius at 0.02–0.3 au). Our observations support the conclusions of Vorobyov et al. (2013), whose numerical simulations showed that the chemical signatures of luminosity bursts in the gas-phase CO abundance may linger for several thousand years.

5.3. The Mechanism of EXor Outbursts?

Liu et al. (2016) observed four EXors in the 1.3 mm continuum with the SMA. They detected two targets, one with a relatively high dust mass (NY Ori, $9 \times 10^{-4} M_\odot$) and one
with much lower dust mass \((V1118~\text{Ori}, \, 6 \times 10^{-5} M_\odot) \). The other two targets were undetected, with \(3\sigma \) upper limits of \(6 \times 10^{-5} M_\odot \) for \(V1143~\text{Ori} \) and \(6 \times 10^{-6} M_\odot \) for \(VY~\text{Tau} \). Compared to these, the dust disk mass of \(\text{EX Lup} \) is in the range of the least massive \text{EXor} disks detected. Therefore, the prototype of the class fits into the trend that \text{EXors} disks are less massive than \text{FUor} disks. A possible cause for the low disk masses is binarity: there is a trend that stars with companions within 100 au generally have lower disk masses than single stars or wider binaries (Osterloh & Beckwith 1995; Andrews & Williams 2005). Indeed, many \text{EXors} are binaries (e.g., \(\text{VY Tau, XZ Tau, or V1118 Ori} \), see Leinert et al. 1993; Hartigan & Kenyon 2003; Reipurth et al. 2007). \text{EX Lup} have been searched for companions with different methods without conclusive results (see, e.g., Kóspál et al. 2014 and references therein).

The low \text{EXor} disk masses raise the question of what mechanism causes the eruption of these disks and what reservoir can replenish the material in the inner disk after it lands on the star. The low disk masses virtually exclude mechanisms related to gravitational instability. A promising new idea was presented by D’Angelo & Spruit (2012), who proposed that accretion onto a strongly magnetic protostar is inherently episodic if the disk is truncated close to the corotation radius. D’Angelo & Spruit (2012) demonstrated that this mechanism may work for \text{EX Lup}.

This work was supported by the Momentum grant of the MTA CSFK Lendület Disk Research Group, and the Hungarian Research Fund OTKA grant K101393. A.M. acknowledges support from the Bolyai Research Fellowship of the Hungarian Academy of Sciences.

Facility: APEX.

REFERENCES

Ábrahám, P., Juhász, A., Dullemond, C. P., et al. 2009, \textit{Natur}, 459, 224
Andrews, S. M., & Williams, J. P. 2005, \textit{ApJ}, 631, 1134
Aspin, C., Reipurth, B., Herczeg, G. J., & Capak, P. 2010, \textit{ApJL}, 719, L50
Banzatti, A., Meyer, M. R., Bruderer, S., et al. 2012, \textit{ApJ}, 745, 90
Banzatti, A., Pontoppidan, K. M., Bruderer, S., Muzerolle, J., & Meyer, M. R. 2015, \textit{ApJL}, 798, L16
D’Angelo, C. R., & Spruit, H. C. 2012, \textit{MNRAS}, 420, 416
Gori, U., Hollenbach, D., Najita, J., & Pascucci, I. 2011, \textit{ApJ}, 735, 90
Goto, M., Regály, Z., Dullemond, C. P., et al. 2011, \textit{ApJ}, 728, 5
Gras-Velázquez, Á., & Ray, T. P. 2005, \textit{A&A}, 443, 541
Grosso, N., Hamaguchi, K., Kastner, J. H., Richmond, M. W., & Weintraub, D. A. 2010, \textit{A&A}, 522, A56
Güsten, R., Nyman, L. Å., Schilke, P., et al. 2006, \textit{A&A}, 454, L13
Hartigan, P., & Kenyon, S. J. 2003, \textit{ApJ}, 583, 334
Herbig, G. H. 1977, \textit{ApJL}, 217, 693
Herbig, G. H. 2008, \textit{AJ}, 135, 637
Juhász, A., Dullemond, C. P., van Boekel, R., et al. 2012, \textit{ApJ}, 744, 118
Klein, B., Hochgürtel, S., Krämer, I., et al. 2012, \textit{A&A}, 542, L3
Kóspál, Á., Ábrahám, P., Goto, M., et al. 2011, \textit{ApJ}, 736, 72
Kóspál, Á., Mohler-Fischer, M., Sicilia-Aguilar, A., et al. 2014, \textit{A&A}, 561, A61
Kállay, A., Németh, P., Ábrahám, P., et al. 2008, \textit{IBVS}, 5819, 1
Leinert, C., Zinnecker, H., Weitzel, N., et al. 1993, \textit{A&A}, 278, 129
Liu, H. B., Galván-Madrid, R., Vorobyov, E. I., et al. 2016, \textit{ApJL}, 816, L29
Osterlo, M., & Beckwith, S. V. W. 1995, \textit{ApL}, 439, 288
Rebouissin, L., Wakelam, V., Guilloteau, S., Hersant, F., & Dutrey, A. 2015, \textit{A&A}, 579, A82
Reipurth, B., Guimarães, M. M., Connelley, M. S., & Bally, J. 2007, \textit{AJ}, 134, 2272
Semenov, D., Hersant, F., Wakelam, V., et al. 2010, \textit{A&A}, 522, A42
Sicilia-Aguilar, A., Fang, M., Roccatagliata, V., et al. 2015, \textit{A&A}, 580, A82
Sicilia-Aguilar, A., Kóspál, Á., Setiawan, J., et al. 2012, \textit{A&A}, 544, A93
Sipos, N., Ábrahám, P., Acosta-Pulido, J., et al. 2009, \textit{A&A}, 507, 881
Teets, W. K., Weintraub, D. A., Kastner, J. H., et al. 2012, \textit{ApJ}, 760, 89
Thi, W. F., van Dishoeck, E. F., Blake, G. A., et al. 2001, \textit{ApJ}, 561, 1074
van Kempen, T. A., van Dishoeck, E. F., Brinch, C., & Hogerheijde, M. R. 2007, \textit{A&A}, 461, 983
Vorobyov, E. I., Baraffe, I., Harries, T., & Chabrier, G. 2013, \textit{A&A}, 557, A35
Williams, J. P., & Best, W. M. J. 2014, \textit{ApJ}, 788, 59
Wilson, T. L. 1999, \textit{RPPh}, 62, 143