Genome-wide identification, classification and expression profile analysis of the HSF gene family in *Hypericum perforatum*

Li Zhou¹, Xiaoding Yu¹, Donghao Wang¹, Lin Li¹, Wen Zhou¹, Qian Zhang¹, Xinrui Wang¹, Sumin Ye¹, Zhezhi Wang

¹ National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China

Corresponding Author: Zhezhi Wang
Email address: zzwang@snnu.edu.cn

Heat shock transcription factors (HSFs) are critical regulators of plant responses to various abiotic and biotic stresses, including high temperature stress. HSFs are involved in regulating the expression of heat shock proteins (HSPs) by binding with heat stress elements (HSEs) to defend against high-temperature stress. The *H. perforatum* genome was recently fully sequenced; this provides a valuable resource for genetic and functional analysis. In this study, 23 putative *HpHSF* genes were identified and divided into three groups (A, B, and C) based on phylogeny and structural features. Gene structure and conserved motif analyses were performed on *HpHSFs* members; the DNA-binding domain (DBD), hydrophobic heptad repeat (HR-A/B), and exon-intron boundaries exhibited specific phylogenetic relationships. In addition, the presence of various *cis*-acting elements in the promoter regions of *HpHSFs* underscored their regulatory function in abiotic stress responses. RT-qPCR analyses showed that most *HpHSF* genes were expressed in response to heat conditions, suggesting that HpHSFs play potential roles in the heat stress resistance pathway. Our findings are advantageous for the analysis and research of the function of HpHSFs in high temperature stress tolerance in *H. perforatum*.
Genome-wide identification, classification, and expression profile analysis of the HSF gene family in *Hypericum perforatum*

Li Zhou, Xiaoding Yu, Donghao Wang, Lin Li, Wen Zhou, Qian Zhang, Xinrui Wang, Sumin Ye, Zhezhi Wang*

National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China

*Corresponding Author: Zhezhi Wang
Shaanxi Normal University, Xi’an, Shaanxi, 710100, China
Email address: zzwang@snnu.edu.cn

Abstract

Heat shock transcription factors (HSFs) are critical regulators of plant responses to various abiotic and biotic stresses, including high temperature stress. HSFs are involved in regulating the expression of heat shock proteins (HSPs) by binding with heat stress elements (HSEs) to defend against high-temperature stress. The *H. perforatum* genome was recently fully sequenced, this provides a valuable resource for genetic and functional analysis. In this study, 23 putative *HpHSF* genes were identified and divided into three groups (A, B, and C) based on phylogeny and structural features. Gene structure and conserved motif analyses were performed on *HpHSF* members; the DNA-binding domain (DBD), hydrophobic heptad repeat (HR-A/B), and exon-intron boundaries exhibited specific phylogenetic relationships. In addition, the presence of various cis-acting elements in the promoter regions of *HpHSFs* underscored their regulatory function in abiotic stress responses. RT-qPCR analyses showed that most *HpHSF* genes were expressed in response to heat conditions, suggesting that HpHSFs play potential roles
in the heat stress resistance pathway. Our findings are advantageous for the analysis and research
of the function of HpHSFs in high temperature stress tolerance in *H. perforatum*.

Introduction

High temperature as an abiotic stress triggered by global warming is largely the result of
deforestation and increases in atmospheric CO\textsubscript{2} concentrations. Global warming has caused
worldwide declines in the yield of crops including wheat, rice, maize, and soybean, which are the
most widely consumed staple foods in the world and feed over 50% of humanity (Mittler et al.
2012; Sadok et al. 2020; Song et al. 2018; Zhu et al. 2019). High temperature has a pernicious
impact on plants, such as oxidative stress and membrane permeabilization, due to effects on
photosynthetic efficiency and decreased grain weight. Plants deploy several responses to mitigate
high temperature stress. The physiological and biochemical processes of stomatal development,
shade avoidance response, antioxidant defense, and selective autophagy play important roles in
adaptation to high temperature stress. These processes are regulated by essential genes and specific
transcriptional factors that are involved in modulating mechanisms and the alleviation of high-
temperature stress (Samakovli et al. 2020; Thirumalaikumar et al. 2020). Under heat stress, heat
shock transcription factors (HSFs) can activate the rapid accumulation and expression of heat
shock proteins (HSPs) to reduce heat-related damage such as electrolyte leakage, overproduction
of reactive oxygen species (ROS) and oxidative damage (Bokszczanin et al. 2013). Many HSPs
play a critical role in protecting plants from heat-induced damage as well as in protein folding,
aggregation, degradation, and intracellular distribution (Lin et al. 2011; Mittler et al. 2012). In the
heat shock reaction process, HSFs regulate the expression of heat stress-inducible genes by
recognizing the heat stress elements (HSEs) present in the promoter regions of HSP genes (Scharf
et al. 2012). Specifically, HSFs utilize their oligomerization domains to form trimmers and exert
their functions as sequence-specific trimeric DNA-binding proteins. Previous studies have shown
that transcription activation in vivo requires HSEs in HSF protein binding. The HSF recognizes a
typical 5 bp sequence, 5-nGAAn-3, which forms at least three contiguous inverted repeats in the
downstream HSP promoter (Saha et al. 2019). The highly conserved DNA-binding domain (DBD)
in the N-terminus includes one three-helical bundle (α\textsubscript{1}, α\textsubscript{2}, α\textsubscript{3}) and one antiparallel four-stranded
β-sheet (β1, β2, β3, β4) to form a helix-turn-helix structure. The DBD domain is required for HSE
specific binding to regulate the expression of downstream genes (Guo et al. 2016). The
oligomerisation domain (OD), also known as the HR-A/B region, has the characteristics of a coiled-
coil structure and plays a role in transcription factor activity. It is mainly located at the C-terminal
end of the HSF and connected to the DBD through a flexible linker comprising a heptad pattern of
hydrophobic amino acid residues (Lin et al. 2015). A nuclear localization signal (NLS) is also
present at the C-terminal of the HR-A/B region, consisting of a cluster of basic amino acids rich
in lysine and arginine residues, and is essential for nuclear import; some HSF genes also have a
nuclear export signal (NES) in the C-terminus, which contains several leucine residues and is
crucial for regulating the nucleocytoplasmic distribution of HSF proteins (Chidambaranathan et
al. 2018). Some HSF proteins also have short peptide motifs (AHA motifs) close to the C-terminal
for transcriptional activator functions (Kotak et al. 2004). Based on analysis of the conserved DBD
domain and HR-A/B regions, HSFs in plants are classified into three main classes (class A, B, and
C) (Nover et al. 2001). The number of amino acid residues connecting DBD to HR-A/B differs
among the three subgroups: Classes A, B, and C contain 9–39, 50–78, and 4–49 amino acid
residues, respectively (Miller & Mittler 2006; Prandl et al. 1998). Moreover, the number of amino
acids linking HR-A and HR-B also varies considerably in different subgroups. There are 21 and 7
amino acid residues inserted into the HR-A/B region in class A and class C, respectively, whereas
this region in class B HSFs is compact, without insert sequences, between the heptad
repeats(Baniwal et al. 2004). Additionally, the AHA motifs, which function by binding
transcription protein complexes to activate the transcription of HSPs, are unique to class A
members (Scharf et al. 2012). Recently, HSF gene families were analyzed in different species,
including maize, rice, pepper, tomato, soybean, and flax. Genome-wide analysis indicated that
HSF proteins in various species may have different functions in reducing damage to high-
temperature stress and also provide resources for evolutionary analysis (Guo et al. 2015; Saha et
al. 2019; Yang et al. 2016).

Hypericum perforatum is an herbaceous perennial plant in the family Hypericaceae, the
well-characterized secondary metabolites and pharmacological activities of which have attracted
the attention of researchers (Galeotti 2017). Substances present in the extracts of H. perforatum
include acyl-phloroglucinols, naphthodianthrones, xanthones, and flavonoids, and these
pharmacological compounds have been demonstrated to have antiviral, antitumor,
antiinflammatory, antimicrobial, and antioxidant effects (Nahrstedt & Butterweck 2010).
However, H. perforatum production and quality are challenged by various environmental
stresses, such as cold, high temperature, and drought (Lausen et al. 2020; Skyba et al. 2012;
Zobayed et al. 2005). Therefore, it is important to characterize the stress-resistance genes of H.
perforatum. In the current study, we identified 23 HpHSF genes and analyzed their physical and
chemical characteristics, conserved domains, gene structures, evolutionary relationships, and cis-
acting elements. Moreover, we explored expression profiles across four different tissues. In
conclusion, this study provides a foundation for improved exploration of HpHSF gene function
in H. perforatum.

Materials & Methods

Plant materials and treatment

Seeds of H. perforatum preserved in our laboratory were germinated and grown on a seedling
bed in a greenhouse (25 ± 2 °C, natural lighting). Humidity was maintained at 60%–80%. Two-
month-old H. perforatum seedlings were transferred to an incubator maintained at 42 °C for heat
stress treatments, and five time points (0, 1, 3, 6, and 12 h) were selected for sample collection.
The entire seedling was collected for expression analysis of HpHSF genes under heat stress
treatment. In addition, different tissue samples, including flowers, leaves, stems, and roots, were taken from two-year-old plants. All samples were collected in three replicates, and the samples were immediately immersed in liquid nitrogen and stored at -80°C for RNA isolation.

Identification of HpHSF members

The whole genome sequences of the HSF proteins in *H. perforatum* were detected and assembled by our laboratory (Zhou 2020). For HSF identification, the conserved amino acid sequence of DNA-binding domains (Pfam: PF00447) was used to search the *H. perforatum* genome. Moreover, the HSF sequences of *Capsicum annuum* L. (pepper), *Vitis vinifera* L. (grape), and *Arabidopsis thaliana* obtained from plantTFDB (http://planttfdb.cbi.pku.edu.cn) were used as BLAST queries against the *H. perforatum* genome. All output genes with default were searched for conserved DNA-binding domains using Interpro (http://www.ebi.ac.uk/interpro/) and SMART (http://smart.embl-heidelberg.de/). In addition, the candidate genes were analyzed using MARCOII (http://toolkit.tuebingen.mpg.de/marcoil) to retain genes with a coiled-coil structure. The detected genes are listed in Supplementary Table 1.

Phylogenetic relationship analysis and sequence analysis

Full-length amino acid sequences of HSF from *A. thaliana*, *C. annuum* L., *V. vinifera* L. (grape), and *H. perforatum* were aligned using Clustal X; the extension penalty and opening penalty of gap were 0.2 and 10, respectively. The cut-off for delay divergent sequences was set to 40%. Residue-specific and hydrophilic penalties were applied in alignment. Then, the phylogenetic tree was inferred using MEGA 6.0. The statistical method used was the neighbor-joining (NJ) method, and the test of phylogeny was based on the bootstrap method with 1000 bootstrap replicates and pairwise deletion. The amino acid substitution model used was the p-distance model. Parameters including molecular weight, isoelectric point, aliphatic index, instability index, percentage of negatively/positively charged residues, and GRAVY of HpHSF proteins were displayed using the ExPASy database (https://www.expasy.org/). Furthermore, conserved motifs in HpHSF proteins were searched using Heatster (Heatster, https://applbio.biologie.uni-frankfurt.de/hsf/heatster/) and the exon/intron organization of HpHSF proteins was obtained using the Gene Structure Display Server program (GSDS, http://gsds.cbi.pku.edu.cn/). The cis-acting elements of 1.5 kb upstream sequences of the transcription initiation site in the promoter region of *HpHSF* genes were analyzed using PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/). SWISS-MODEL server (https://swissmodel.expasy.org) programs were used to build and generate the three-dimensional structures of the HSF proteins.

Isolation of RNA and cDNA synthesis

Total RNA from *H. perforatum* samples was isolated using the HiPure Total RNA Mini Kit following the manufacturer’s protocol (Magen, China). The concentration of the isolated total RNA was determined using a NanoDrop 2000c spectrophotometer (Thermo Scientific, USA),
and the integrity of the RNA was directly quantified by running agarose gel (1% w/v) at 150 V for 10 min. One microgram of RNA was used for first strand cDNA synthesis using PrimeScript™ RT Reagent Kit (TaKaRa, China) according to the manufacturer’s instructions.

Primer design and qRT-PCR analysis

The primers for the 23 *HpHSF* genes were designed by GenScript (https://www.genscript.com). The parameters were: PCR amplicon size range: 100 – 180; primer Tm: minimum, optimum, and maximum: 59.5 °C, 60 °C, 60.5 °C, respectively; probe Tm: minimum, optimum, and maximum: 62 °C, 66 °C, and 70 °C, respectively. The specificity of the primers was determined using Bioedit by searching the primers given by GenScript against the *H. perforatum* genome (Supplementary Table 2). In addition, qRT-PCR was performed on the LightCycler 96 system (Roche Diagnostics GmbH) using the ChamQ™ SYBR® qPCR Master Mix (Vazyme, Nanjing, China) following the manufacturer’s instructions. *HpActin-2* was used as an internal control (Zhou 2019). The final cycle threshold (Ct) values were the mean of three values for each sample and three technical replicates, and the 2-ΔΔCt method was used to analyze the relative changes in gene expression (Livak & Schmittgen 2001). Data were analyzed using one-way ANOVA in the GraphPad Prism software (*, P <0.05; **, P < 0.01; ***, P < 0.001). qRT-PCR was performed with three biological replicates for each sample, and each sample consisted of three technical replicates. The primers for the *HpHSF* genes used for qRT-PCR analyses are listed in Supplementary Table 1.

Results

Identification and isolation of HSF genes in *H. perforatum*

Twenty-three genes were identified as members of the HSF transcription factor family in *H. perforatum* based on a conserved DBD domain search and coiled-coil structure detection. These genes were named ‘*HpHSF*’ with consecutive numbers. More detailed information about *HpHSF*01 to *HpHSF*23 is shown in Table 1. The identified *HpHSF*’s encoded 188–501 amino acids (average 345 aa), and molecular weights (MW) ranged from 21.72 to 54.91 kDa (average 39.15 kDa). The isoelectric points (pI) of *HpHSFs* varied from 4.79 to 8.86. Of the 23 *HpHSF* genes, the percentages of negatively charged residues (ASP + Glu) (n.c.r.) and positively charged residues (Arg + Lys) were 11.0%–17.6% and 8.4%–15.8%, respectively. According to the instability index analysis, all the *HpHSF* proteins were found unstable. In addition, the aliphatic index (A.I.) ranged from 54.52 to 76.18, and the grand average of hydropathicity (GRAVY) ranged from −0.826 to −0.523.

Conserved domains of *HpHSFs*
The DBD and HR-A/B conserved domains were observed in all of the *HpHSF* genes to reveal the sequence of conserved regions between members of the *HpHSF* genes; multiple alignments of 23 *HpHSF* genes were obtained using DNAMAN. The DBD domain close to the N-terminal was highly conserved (Fig. 1). The secondary structure prediction showed that the majority of the DBD domains consist of a four-stranded antiparallel β-sheet and three α-helices (α1–α3). In addition, MARCOIL was used for predicting the coiled-coil structure, which is characteristic of the HR-A/B regions adjacent to the DBD domain in the C-terminal. The 23 candidate *HpHSF* protein sequences were all determined to have a coiled-coil structure. The multiple alignment results of the HR-A/B regions showed that the *HpHSF* protein family could be divided into three classes based on the insertion amino acid residues between the A and B parts of the HR-A/B motif (Fig. 2).

Phylogenetic relationships among *HpHSF* genes

To investigate the evolutionary relationships of the *HpHSF* genes, a total of 88 HSFs, comprising 21 from *Arabidopsis*, 25 from pepper, 19 from grape, and 23 from *H. perforatum* were used for phylogenetic tree construction using MEGA6.0. HSFs were clearly classified into three main groups, namely HSF A, B, and C (Fig. 3). HSF A was the largest group, representing 52.2% of the total *HpHSF* genes; the second was HSF B, which represented 39.1%; and HSF C was the smallest group, which represented 8.7%. In addition, HSF A is classified into 9 subgroups (A1–A9) and includes 12 members (*HpHSF*07, *HpHSF*18, *HpHSF*12, *HpHSF*11, *HpHSF*16, *HpHSF*21, *HpHSF*17, *HpHSF*02, *HpHSF*23, *HpHSF*13, *HpHSF*10, *HpHSF*20); HSF B is further divided into 5 subgroups (B1–B5) consisting of nine members (*HpHSF*01, *HpHSF*03, *HpHSF*04, *HpHSF*05, *HpHSF*06, *HpHSF*14, *HpHSF*15, *HpHSF*19, *HpHSF*22), while HSF C only contained *HpHSF*08 and *HpHSF*09 in one subgroup. All of the *HpHSF* proteins in the phylogenetic tree were consistent with the classifications obtained from the HEATSTER database. HSF proteins were not clustered in A2, A7 and A9 sub-groups.

Gene Structures analysis, Conserved Motifs, and Protein Modeling of *HpHSF* genes

The gene structures of *HpHSF* genes were investigated through an analysis of the intron/exon boundaries, as shown in Figure 4A. *HpHSF*20 comprised three exons, and *HpHSF*03 comprised four exons, except for the aforementioned two *HpHSF* genes, all the other 21 *HpHSF* genes contained two exons and one intron. The intron phases of *HpHSF* genes were 0, except for phase 1 in *HpHSF*20 and phase 2 in *HpHSF*03. In conclusion, the gene structure was conserved among the 23 *HpHSF* members.

In addition, the conserved motifs and phylogenetic relationships of all 23 *HpHSF* proteins were revealed via a systematic examination (Table 2 and Fig. 4B). The HSF domains DBD, OD (HR-A/B), NLS, RD (Repressor Domain), AHA, and NES were found in *HpHSF* protein sequences. Twelve, nine, and two *HpHSF* proteins were classified in subclasses A, B, and C, respectively. The *HpHSF* proteins in subclass A were characterized by DBD at the N-terminus followed by the HR-A/B motif. NLS, AHA, and NES were found in partial subclass A HSF proteins. The RD
motif was only found in subclass B HpHSF sequences. Subclass C contained DBD, HR-A/B, and NLS, which were considered to be highly conserved motifs in HpHSF proteins. The HpHSF proteins were modeled using the SWISS-MODEL program (Fig. 5). A Drosophila heat shock transcription factor was used as a template, and the template model was taken from the Protein Data Bank (SMTL ID: 1hkt.1). The HpHSFs shared approximately 40% sequence similarity and 30% query coverage. The start position of the α1 DBD domain was notated.

Cis-acting elements analysis in the promoter regions of HpHSF genes

We searched for potential cis-acting elements in the 1.5 kb upstream sequences of the translation initiation codons of HpHSFs in the PlantCARE database, and the results revealed the presence of various cis-elements in the 5' flanking regions associated with stress, hormones, and development (Ning et al., 2017). In stress-related cis-acting elements, some elements related to various stresses, such as light, low/high temperature, drought, anaerobic induction, and wounds were found in a large number of HpHSF genes, including heat-shock response elements (HSEs), TC-rich repeats, Myb-binding DNA sequences (MBSs), anaerobic induction elements (AREs), and low temperature range (LTR) (Fig. 6, Supplementary Table 4). In addition, several hormone-related cis-acting elements were observed in the promoters: ABA-responsive elements (ABREs), MeJA responsive elements (TGACG-motif/CGTCA-motif), ethylene-responsive element (ERE), auxin-responsive elements (TGA-elements), and salicylic acid responsive elements (TCA-elements) were detected in the promoters of 19, 17, 13, 13 and, and 7 HpHSFs, respectively. These findings suggested that the HpHSF genes might be involved in multiple transcriptional regulation mechanisms for plant growth and stress responses.

Expression profiles of HpHSFs across different tissues

Based on the H. perforatum genes against RNA-seq data from four tissues—roots, stems, leaves, and flowers, a heat map of the transcription patterns of the HpHSF family was generated to explore the transcription patterns of HpHSF genes. RNA-seq data could be searched from the Sequence Read Archive (SRA-NCBI) with accession numbers SRR8438983 (flower), SRR8438984 (leaf), SRR8438985 (stem), and SRR8438986 (root). According to the FPKM values, the expression profiles of the HpHSF gene differed considerably in the four samples (Fig. 7). Among class A members, HpHSF12, HpHSF18, and HpHSF13 were expressed at high levels, while HpHSF02 and HpHSF23 were expressed at relatively low levels or were not detected. Moreover, the expression of HpHSF11, HpHSF18, HpHSF13, and HpHSF07 in leaves was higher than that in other tissues. Among the class B families, HpHSF15 was expressed at significantly high abundances in all tissues compared with other genes. HpHSF03 and HpHSF22 were expressed at very low levels or not expressed at all. In general, members of the class B family were expressed at higher levels in the root than in other tissues, except HpHSF01, as well as the two members of class C, implying their critical roles in roots.

Expression analysis of HpHSF genes under heat stress treatment
HSF genes were found to play an important role in plant thermotolerance. In our study, the expression patterns of the HpHSF gene family were determined using qRT-PCR to demonstrate how HSF genes respond to heat stress. As shown in Figure 8, the expression of HpHSF2, 12, and 21 did not significantly change with heat stress. HpHSF03, 11, 18 and 22 were repressed after heat stress treatment, and the remaining HpHSFs were up-regulated to varying degrees. Noticeably, the expression of HpHSF10 increased dramatically, and was approximately 300 times higher at 3 h than the levels in the control, indicating that HpHSF10 is involved in the pathway of heat stress response. In addition, the expression of HpHSF1, 14, 20, and 23 also changed considerably, and these genes are thus worthy of further consideration.

Discussion

Temperature is a key environmental factor affecting several physiological pathways in plants. Secondary metabolite production determines the immunologic defense and economic value of H. perforatum, which is a medicinal plant. The concentration of hypericin and pseudohypericin in H. perforatum is closely related to temperature. The heat tolerance and photosynthetic rates of H. perforatum are both significantly reduced at high temperatures, and the total hypericin content (hypericin + pseudohypericin) is lower following high temperature treatment (Zobayed et al. 2005). Heat stress has been demonstrated to be detrimental in other species, seed yield is reduced following exposure for five days to high temperatures in flax (Gusta et al. 1997). It is thus of great importance to study how medicinal plants respond to high temperature stress with regard to growth, metabolism, photosynthesis, and even global climate. The HSF gene family plays an important role in plant adaptations to various biotic or abiotic stresses, especially high temperature stress. HSFs regulate HSPs as a partner at the genetic and transcriptional level to improve high-temperature stress tolerance (Wang et al. 2004). In this study, the identification and characteristics of 23 HSF genes were investigated based on the H. perforatum genome database, and the expression profiles of these 23 genes were analyzed to explore their functions in the heat stress response in H. perforatum. The number of HpHSFs was low in comparison with numbers identified for other species; the 23 non-redundant complete genes in H. perforatum were fewer than those in G. raimondii (57), Salix purpurea (48), and Linum usitatissimum (34). Overall, the isolation and identification of these HSF genes are helpful for illustrating the molecular genetic basis of H. perforatum. The expression patterns of HpHSFs in four tissues and response to heat stress at 42 °C suggested that the HSF gene family was ubiquitously expressed, and several HpHSF genes could play important roles in adaptation to environmental stress.

The essential structures and motifs of 23 HpHSF genes and amino acids were identified. The conversed motifs of HpHSF protein, DBD, OD (HR-A/B), NLS, NES, and RD, were annotated. The DBD domain consists of approximately 100 amino acid residues that are highly conserved in yeast, plants, and mammals(Schultheiss et al. 1996). Similar to the results of previous studies, our findings showed that many sequences are conserved based on phylogenetic relationships in Arabidopsis, pepper, grape, and H. perforatum and the coiled-coil structure of HR-A/B region prediction. The HpHSF genes were classified into three classes (A, B, and C). Classes A and B
were further divided into 9 (A1-A9) and 5 (B1-B5) subclasses, respectively. The number of class
HSF genes varies in plants—15 in Arabidopsis and maize, 13 in rice and mung, and 16 in
soybean. There were nine class B HSFs in H. perforatum. The number of class B HSFs identified
in plants is 10 in mungbean, 8 in rice, 7 in maize, and 5 in Arabidopsis. Most of the subclasses
are shared among several species but are not identical. The subclasses A2, A7, and A9 identified
in our study have been reported in some species, such as Arabidopsis and Arachis(Wang et al.
2017), but not in H. perforatum. It was hypothesized that elimination of introns, exon shuffling,
and generations of exons might cause altered grouping in the phylogeny(Nover et al. 2001).
Overall, these observations suggested the functional conservation and divergence of HSF genes
among different plants.

HSF protein is involved in abiotic stress responses and hormone signaling in plants(Huang et al.
2015; Zhang et al. 2015). The cis-acting elements in the promoter region can regulate the
transcription activity of the corresponding genes. Research on the detection of cis-acting
elements could facilitate our understanding of the function and expression profiles of genes
(Fragkostefanakis et al. 2015; Wang et al. 2017). The promoter region of the HpHSF gene family
members contains various elements related to growth and development, hormone responses, and
stress responses. The numbers and types of elements vary among the HpHSF promoters, and
overlapping phenomena existed in different genes, implying that the members of the family may
regulate a variety of abiotic stresses and plant hormone signaling pathways simultaneously. This
reflects the diversity and complexity of the biological functions of the HpHSF gene family.

Gene expression profiles in different tissues are usually closely correlated with their functions in
organ development(Guo et al. 2008). In this study, the expression patterns of HpHSF genes in
four different tissues were investigated. Remarkably, the expression of HSF15 was found to be
highest among all genes in all four tissues. Each gene was expressed differently in the four
tissues, such as HSF10, which had the highest expression in roots but the lowest expression in
flowers, and HSF18, the expression of which was higher in leaves than in other tissues,
indicating their potential function in roots and leaves, respectively. All these HpHSF genes play
roles in different tissues to ensure the normal development of plants. The low expression in
certain organs of some HSFs does not mean that they have no function in these organs. Tissue-
specific expression patterns of identified HpHSF genes indicate that HpHSFs are widely
involved in the growth and development of various tissues, indicating an important role for
studying the functions of HpHSF genes in H. perforatum developmental biology.

Plant HSFs play a central role in eliciting the expression of genes encoding heat shock proteins
(HSPs) or other stress-inducible genes(Nishizawa-Yokoi et al. 2009; Scharf et al. 2012), which
are important for plant tolerance to heat or other stress conditions. According to previous reports,
the genome-wide expression profile suggested that several HSF genes are transcribed at
relatively high levels during heat stress (Chung et al. 2013; Giorno et al. 2012).
In this study, the 23 HpHSF genes with specific sequence features and amino acid motifs were identified. Base on the motifs, the HpHSF genes were phylogenetically divided into three broad groups. The abiotic stress-related cis-acting elements were identified in the promoter of HpHSF genes. The expression of 23 HpHSF genes in different tissues and distinct patterns during heat treatment was performed. Among these genes, 14 HpHSF genes were upregulated (>2-fold) and 4 (HpHSF3, 11, 18, 22) were downregulated during the heat stress treatment. Specifically, HpHSF10 was the most strongly induced (~300-fold) in response to heat stress; HSF20 expression was more than 90 folds that of the control after heat treatment; the levels of HSF14, HSF15, and HSF23 were about 20 times higher than those in the control group, indicating that these HpHSF genes were very sensitive with a strong heat stress response. These genes play an important role in regulating the response of H. perforatum to heat stress and warrant further attention and exploration. All the systematic and phylogenetically analysis of HpHSF genes contributed to the genomic improvement and medical values of H. perforatum for high temperature tolerance.

Conclusions

In conclusion, a comprehensive analysis of the HpHSF gene family with regard to the genomic structures, conserved motifs, phyletic evolution, cis-acting elements, and expression patterns was performed in this work. Overall, the bioinformatic analyses and expression profile studies of HSFs are helpful in understanding the important role of HSFs in H. perforatum’s response to heat stress and providing the foundation for exploring methods to understand and regulate these stress responses.

Acknowledgements

I would like to express my gratitude to all the people who helped me with writing this article, especially my supervisor, Prof. Wang, the completion of this thesis is inseparable from his valuable suggestions and patient guidance. I am also grateful to Lin Li, Donghao Wang, Qian Zhang and Xiaoding Yu for their help in the design of the study, acquisition of data and writing of manuscripts. Finally, I am indebted to my beloved family for their consistent support and encouragement.

References

Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, and von Koskull-Doring P. 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471-487. 10.1007/BF02712120
Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network C, and Fragkostefanakis S. 2013. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. 10.3389/fpls.2013.00315
Chidambaranathan P, Jagannadham PTK, Satheesh V, Kohli D, Basavarajappa SH, Chellapilla B, Kumar J, Jain PK, and Srinivasan R. 2018. Genome-wide analysis identifies chickpea (Cicer arietinum)
heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. *Plant Res* 131:525-542. 10.1007/s10265-017-0948-y

Chung E, Kim KM, and Lee JH. 2013. Genome-wide analysis and molecular characterization of heat shock transcription factor family in Glycine max. *J Genet Genomics* 40:127-135. 10.1016/j.jgg.2012.12.002

Fragkostefanakis S, Roth S, Schleiff E, and Scharf KD. 2015. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. *Plant Cell Environ* 38:1881-1895. 10.1111/pce.12396

Galeotti N. 2017. Hypericum perforatum (St John's wort) beyond depression: A therapeutic perspective for pain conditions. *J Ethnopharmacol* 200:136-146. 10.1016/j.jep.2017.02.016

Giorno F, Guerriero G, Baric S, and Mariani C. 2012. Heat shock transcriptional factors in Malus domestica: identification, classification and expression analysis. *BMC Genomics* 13:639. 10.1186/1471-2164-13-639

Guo J, Wu J, Ji Q, Wang C, Luo L, Yuan Y, Wang Y, and Wang J. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. *J Genet Genomics* 35:105-118. 10.1016/S1673-8527(08)60016-8

Guo M, Liu JH, Ma X, Luo DX, Gong ZH, and Lu MH. 2016. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses. *Front Plant Sci* 7:114. 10.3389/fpls.2016.00114

Guo M, Lu JP, Zhai YF, Chai WG, Gong ZH, and Lu MH. 2015. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). *BMC Plant Biol* 15:151. 10.1186/s12870-015-0512-7

Gusta LV, O'Connor BJ, and Bhatty RS. 1997. Flax (Linum usitatissimum L.) responses to chilling and heat stress on flowering and seed yield. 77:97-99. 10.4141/p95-205

Huang Y, Li MY, Wang F, Xu ZS, Huang W, Wang GL, Ma J, and Xiong AS. 2015. Heat shock factors in carrot: genome-wide identification, classification, and expression profiles response to abiotic stress. *Mol Biol Rep* 42:893-905. 10.1007/s12053-014-8326-x

Kotak S, Port M, Ganguli A, Bicker F, and von Koskull-Doring P. 2004. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. *Plant J* 39:98-112. 10.1111/j.1365-313X.2004.02111.x

Lausen ED, Emilsson T, and Jensen MB. 2020. Water use and drought responses of eight native herbaceous perennials for living wall systems. *Urban Forestry & Urban Greening* 54:126772.

Lin Q, Jiang Q, Lin J, Wang D, Li S, Liu C, Sun C, and Chen K. 2015. Heat shock transcription factors expression during fruit development and under hot air stress in Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit. *Gene* 559:129-136. 10.1016/j.gene.2015.01.024

Lin YX, Jiang HY, Chu ZX, Tang XL, Zhu SW, and Cheng BJ. 2011. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize. *BMC Genomics* 12:76. 10.1186/1471-2164-12-76

Livak KJ, and Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:402-408. 10.1006/meth.2001.1262

Miller G, and Mittler R. 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? *Ann Bot* 98:279-288. 10.1093/aob/mcl107

Mittler R, Finka A, and Goloubinoff P. 2012. How do plants feel the heat? *Trends Biochem Sci* 37:118-125. 10.1016/j.tibs.2011.11.007

Nahrstedt A, and Butterweck V. 2010. Lessons learned from herbal medicinal products: the example of St. John's Wort (perpendicular). *J Nat Prod* 73:1015-1021. 10.1021/np1000329

Nishizawa-Yokoi A, Yoshida E, Yabuta Y, and Shigeoka S. 2009. Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. *Biosci Biotechnol Biochem* 73:890-895. 10.1271/bbb.80809
Zhou W, Wang S, Yang L, Sun Y, Zhang Q, Li B, Wang B, Li L, Wang D, and Wang Z. 2019. Reference genes for qRT-PCR normalisation in different tissues, developmental stages, and stress conditions of Hypericum perforatum. *PeerJ* 7:e7133. 10.7717/peerj.7133

Zhou W, Zhang Q, Sun Y, Yang L and Wang Z. 2020. Genome-wide identification and characterization of R2R3-MYB family in Hypericum perforatum under diverse abiotic stresses. *Int J Biol Macromol* 145:341–354. 10.1016/j.ijbiomac.2019.12.100

Zhu P, Zhuang Q, Archontoulis SV, Bernacchi C, and Muller C. 2019. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. *Glob Chang Biol* 25:2470-2484. 10.1111/gcb.14632

Zobayed SM, Afreen F, and Kozai T. 2005. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. *Plant Physiol Biochem* 43:977-984. 10.1016/j.plaphy.2005.07.013
Table 1 (on next page)

The HSF genes identified from the *H. perforatum*.

Notes: MW (kDa): Molecular weight in kilo Dalton; pI, isoelectric point; n.c.r., total number of negatively charged residues (Asp + Glu); p.c.r., total number of positively charged residues (Arg + Lys); I.I., instability index; A.I., aliphatic index; GRAVY, grand average of hydropathicity.
Gene Name	Transcript ID	Length (kDa)	pI	n.c.r. (%)	p.c.r. (%)	I.I.	Stability	A.I.	GRAVY		
HpHSF01	HperS117g0097	293	882	32.23	5.05	43 (14.7%)	35 (11.9%)	57.40	unstable	75.26	−0.523
HpHSF02	HperS020g0043	381	1146	43.75	5.51	59 (15.5%)	48 (12.6%)	59.80	unstable	71.55	−0.752
HpHSF03	HperS219g0006	327	984	37.9	7.29	36 (11.0%)	36 (11.0%)	47.69	unstable	72.14	−0.660
HpHSF04	HperS024g0021	222	669	25.95	7.72	34 (15.3%)	34 (15.8%)	52.96	unstable	73.24	−0.796
HpHSF05	HperS024g0048	196	591	22.47	6.85	31 (15.8%)	31 (15.8%)	46.57	unstable	69.08	−0.747
HpHSF06	HperS245g0169	226	681	25.88	6.86	34 (15.0%)	34 (15.0%)	48.26	unstable	69.38	−0.737
HpHSF07	HperS025g0041	434	1305	48.47	5.22	64 (14.7%)	47 (10.8%)	58.65	unstable	76.18	−0.577
HpHSF08	HperS254g0011	376	1131	42.04	5.67	39 (10.4%)	39 (10.4%)	66.18	unstable	65.84	−0.655
HpHSF09	HperS333g0001	330	993	37.9	7.29	36 (11.0%)	36 (11.0%)	50.96	unstable	60.24	−0.600
HpHSF10	HperS346g0048	428	1287	46.16	5.02	65 (15.9%)	43 (10.5%)	57.83	unstable	67.64	−0.642
HpHSF11	HperS346g0247	324	975	37.51	5.91	38 (11.5%)	38 (11.5%)	57.46	unstable	69.85	−0.813
HpHSF12	HperS362g0014	409	1230	46.16	5.02	65 (15.9%)	43 (10.5%)	57.83	unstable	65.99	−0.745
HpHSF13	HperS388g0082	403	1212	46.49	4.79	71 (17.6%)	46 (11.4%)	47.52	unstable	65.56	−0.764
HpHSF14	HperS399g0019	195	588	22.35	8.86	26 (13.3%)	30 (15.4%)	63.69	unstable	58.10	−0.818
HpHSF15	HperS042g0257	248	747	27.78	5.78	40 (16.1%)	37 (14.9%)	46.02	unstable	61.33	−0.817
HpHSF16	HperS434g0151	501	1506	54.91	4.87	64 (12.8%)	42 (8.4%)	59.15	unstable	67.60	−0.608
HpHSF17	HperS044g0424	483	1452	53.92	4.99	63 (13.0%)	42 (8.7%)	51.71	unstable	74.66	−0.533
HpHSF18	HperS443g0073	397	1194	44.95	4.94	63 (15.9%)	41 (10.3%)	62.46	unstable	70.48	−0.723
HpHSF19	HperS006g0172	188	567	21.72	8.54	25 (13.3%)	28 (14.9%)	52.32	unstable	54.52	−0.797
HpHSF20	HperS064g0032	455	1368	51.78	5.91	64 (14.1%)	57 (12.5%)	62.11	unstable	71.12	−0.644
HpHSF21	HperS060g0017	495	1488	54.66	4.96	65 (13.1%)	45 (9.1%)	56.75	unstable	67.39	−0.650
HpHSF22	HperS079g0626	270	813	31.63	6.33	33 (12.2%)	28 (10.4%)	47.61	unstable	64.59	−0.826
HpHSF23	HperS091g0277	363	1092	41.62	5.39	57 (15.7%)	43 (11.8%)	61.47	unstable	69.53	−0.784
Table 2 (on next page)

Conserved domains and motifs of HpHSF proteins.

Notes: DBD: DNA-bind domain; OD: heptad repeat A (N-terminus) or B (C-terminus) domain; NLS: nuclear localization signal; NES: nuclear export signal; AHA: aromatic and hydrophobic amino acid residues embedded in an acidic context; RD: repressor domain.
Gene Name	Group	DBD	OD	NLS	NES	AHA	RD	RD+NLS
HpHSF01	B2	12-130	159-209	-	-	-	-	238-265
HpHSF02	A6	34-136	141-223	224-235	360-378	329-342	-	-
HpHSF03	B4	9-109	174-211	-	-	-	-	244-267
HpHSF04	B3	14-114	129-185	-	-	-	194-208	-
HpHSF05	B3	19-89	112-159	-	-	-	-	-
HpHSF06	B3	17-117	125-181	209-224	-	-	190-204	-
HpHSF07	A5	11-107	125-197	197-215	-	-	-	-
HpHSF08	C	38-136	156-220	-	-	-	-	-
HpHSF09	C	9-107	128-192	197-212	-	-	-	-
HpHSF10	A3	17-120	137-205	209-227	-	-	-	-
HpHSF11	A4	10-123	136-216	-	-	-	-	-
HpHSF12	A4	6-119	122-202	205-225	392-407	374-390	-	-
HpHSF13	A8	15-116	142-213	213-222	381-395	-	-	-
HpHSF14	B5	10-128	149-190	-	-	-	-	-
HpHSF15	B1	1-101	144-193	-	-	-	226-237	-
HpHSF16	A1	23-119	129-222	223-241	480-495	433-451	-	-
HpHSF17	A1	5-101	102-195	198-216	462-477	412-430	-	-
HpHSF18	A4	6-119	122-202	205-225	380-395	322-378	-	-
HpHSF19	B5	9-120	142-183	-	-	-	-	-
HpHSF20	A3	29-158	174-242	246-264	-	-	-	-
HpHSF21	A1	16-112	122-215	215-233	473-488	426-444	-	-
HpHSF22	B4	9-109	177-224	-	-	-	-	247-270
HpHSF23	A6	30-132	137-219	220-242	342-360	312-325	-	-
Figure 1

Multiple sequence alignment of the DBD domains of 23 members of the HSF protein family.

Three α-helices and four β-sheets were presented in the region.
Figure 2

Multiple sequence alignment of the HR-A/B regions of 23 members of the HSF protein family.

The annotations at the top describe the location and boundaries of the HR-A core, insert, and HR-B region within the HR-A/B region.
Figure 3

Phylogenetic tree of HSF proteins from *H. perforatum* (Hp), *Capsicum annuum L.* (Ca), *Vitis vinifera L.* (V), and *A. thaliana* (At).

The full-length of amino acid sequences of HSF proteins in the four species were used to construct the phylogenetic tree using MEGA 6, the statistical method used was the Neighbor-Joining (NJ) method, and the test of phylogeny was based on the bootstrap method with 1000 bootstrap replicates and pairwise deletion. The amino acid substitution model used was the p-distance model. Subclass numbers of *Arabidopsis*, pepper, and grape are listed.
Figure 4

Gene structure (A) and conserved motifs (B) of HpHSF family members.

(A) blank box, Grey box and black line were represented CDS, upstream/ downstream and intron, respectively. The number 0, 1, and 2 on the black line were intron phase. (B) DBD, OD (HR-A/B), RD, NLS, AHA and NES motifs of HpHSF members were identified by Heatster. The motifs were annotated and exhibited in different colored boxes.
Figure 5

Modelling of HpHSF family members, A Drosophila HSF was used as a template.

Templates corresponding to SMTL ID: 1hkt.1. The HpHSFs shared approximately 40% sequence similarity and 30% query coverage. The start position of the α1 DBD domain was notated by 1.
Manuscript to be reviewed

A 1
B 1
C 1
D 1

HpHSF1
HpHSF2
HpHSF3
HpHSF4

E 1
F 1
G 1
H 1

HpHSF5
HpHSF6
HpHSF7
HpHSF8

I 1
J 1
K 1
L 1

HpHSF9
HpHSF10
HpHSF11
HpHSF12

M 1
N 1
O 1
P 1

HpHSF13
HpHSF14
HpHSF15
HpHSF16

Q 1
R 1
S 1
T 1

HpHSF17
HpHSF18
HpHSF19
HpHSF20

U 1
V 1
W 1

HpHSF21
HpHSF22
HpHSF23

PeerJ reviewing PDF | (2020:09:52717:1:1:NEW 24 Jan 2021)
Figure 6

Number of *HpHSF* genes containing various *cis*-acting elements.

The graph was generated based on the presence of *cis*-acting elements responsive to specific processes/elicitors/conditions (x-axis) in *HSF* gene family members (y-axis).
Figure 7

Heat map representation and hierarchical clustering of *HpHSF* genes in flower, leaf, root, stem.

The expression values were calculated by fragments per kilobase of exon model per million mapped (FPKM).
Relative gene expression of *HpHSFs* analyzed by qRT-PCR response to heat stress treatment.

qRT-PCR data was normalized using *Hypericum perforatum Actin 2* gene and are shown relative to 0 h. X-axes are time course (0 h, 1 h, 3 h, 6 h and 12 h) and y-axes are scales of relative expression level. All Data represent means ± SD of three independent replicates. Statistical significance was analyzed by one way ANOVA (*, P < 0.05; **, P < 0.01; *** , P < 0.001).
