Preparation and investigation of structure, optical, nonlinear optical and thermoelectric properties of Bi$_2$Se$_3$ thin film

A. Abdel Moez, A. H. Elmeleegi and Ahmed I. Ali

ABSTRACT

Bi$_2$Se$_3$ thin film was prepared using thermal evaporation. Structure and surface topography were investigated using both of Diffraction Electron Microscope (DEM) and Transmission Electron Microscope (TEM). Optical results confirmed that thin film has a direct energy gap. Moreover, the values for all of oscillating energy (E$_o$), dispersion energy (E$_d$) and ratio of the free carrier concentration on the effective mass (N/m*) were determined optically. The dielectric constant (ε') and tangent loss (ε'') were calculated. The density of states (DOS) for both of valence band (Nv) and conduction band (Nc) and also position of Fermi level were determined. The nonlinear optical results such as third-order optical susceptibility ($\chi (3)$), refractive index (n2) and absorption coefficient (β_c) were determined. The influence of temperature on IV results was studied; finally the dependence of all of Dispersion factor (D), parallel inductance (Lp) and Seebeck coefficient (S) values on temperature for this film was studied.

INTRODUCTION

Chalcogenide materials were widely investigated as a result of their electronic applications and also their linear and nonlinear optical properties [1–4]. Among all these binary chalcogenide is Bi$_2$Se$_3$ which is suitable for optical thermoelectric applications [5], solar cell [6], and photosensitive devices, photovoltaic cells, etc. [7–11]. Bi$_2$Se$_3$ thin films have been prepared using various techniques such as electro-deposition [12] and Successive Ionic Layer Absorption and Reaction (SILAR) [13] methods. The structure of Bi$_2$Se$_3$ thin films was studied [14–20]; it was found that these films had polycrystalline structure with rhombohedral structure [17,18], with space group (R-3 m) (166) [20]. Optical properties of Bi$_2$Se$_3$ thin films were investigated [21–27]. It is known that Bi$_2$Se$_3$ had an energy gap around 1.51 eV [21], and it ranges from 1.4 to 2.25 eV [22]. The energy gap of the film decreased with annealing to become 1.10 eV [23]. In addition the substrate temperature influence the energy gap to 1.25 eV [24]. Transmitted values increased with annealing temperature [26]. Many reports about the Bi$_2$Se$_3$ thin films were published and confirmed that the Bi$_2$Se$_3$ thin films have direct optical transitions and the electrical conductivity and current densities affected strongly with temperature and thicknesses [26–31]. Due to excellent thermoelectric properties of Bi$_2$Se$_3$ thin films and its application, some researchers were studied it widely [32–37], and reported that the temperature increased electron-hole generation [33]. Moreover, IV behaviour increased with annealing temperature [38–40].

Still the linear and nonlinear optical properties of Bi$_2$Se$_3$ thin films did not investigated in details, which motivated us to study the optical and nonlinear and thermoelectric properties of Bi$_2$Se$_3$ thin films for exploring the surface charge and the value of second harmonic generation.

In this paper, Bi$_2$Se$_3$ thin film was prepared using vacuum thermal evaporation technique. The structure and surface topography were investigated using both of Diffraction Electron Microscope (DEM) and Transmission Electron Microscope (TEM). Optical properties were measured for the Bi$_2$Se$_3$ thin film. Moreover, optical parameters including; oscillating energy (E$_o$), dispersion energy (E$_d$) and ratio of the free carrier concentration on the effective mass (N/m*) were determined optically using the calculated values of refractive index (n). The dielectric constant (ε') and tangent loss (ε'') were calculated. The density of states (DOS) and position of Fermi level were determined. The nonlinear optical results such as third-order optical susceptibility ($\chi (3)$), refractive index (n2) and absorption coefficient (β_c) were determined. The influence of temperature on IV results was studied; finally the dependence of all of Dispersion factor (D), parallel inductance (Lp) and Seebeck coefficient (S) values on temperature for this film was studied.

CONTACT A. Abdel Moez aam692003@yahoo.com

Solid State Physics Department, Physical Research Division, National Research Centre (NRC), 33 El Bohout Street, Giza, Dokki 12622, Egypt

This article has been republished with minor changes. These changes do not impact the academic content of the article.

© 2021 Informa UK Limited, trading as Taylor & Francis Group
inductance \((L_p)\) and Seebeck coefficient \((S)\) values on temperature for this film was studied.

Experimental Work

\(\text{Bi}_2\text{Se}_3\) material was prepared from \(\text{Bi}\) and \(\text{Se}\) pure elements with high purity (5 N). Due to some of elements are reactive at high temperatures with oxygen, synthesis was accomplished in evacuated silica tubes \(\sim 10^{-4}\)Torr and then sealed. The inner walls of silica tubes were coated with pure powder graphite, in order to prevent any reactions between the used elements and silica at elevated temperatures. The sealed silica tubes were heated inside a furnace up to 1150 K and kept at this value for about 10 hours. The homogenised melt was quenched in ice-water, to facilitate rapid quenching the specimens were sealed in tubes with a small diameter (about 2–3 mm). Thin films were prepared using vacuum thermal evaporation technique of type Edward – (EDWARDS E 306), the studied films were deposited under vacuum of \(10^{-3}\) torr. The structure of these films was studied using transmission electron microscope of type ”JEOL-TEM -1230-Japan made. The optical transmittance and reflectance spectra of these films were measured using double beam spectrophotometer with of type (JASCO corp., V-570) with wavelength range 300–2500 nm. Current-Voltage properties during illumination with UV-lamp and room light were taken from Virtins Instruments digital-computerised oscilloscope. The electrical measurements were done by Keithley 6517A electrometer.

Results and discussions

Structure

The structure and surface topography of \(\text{Bi}_2\text{Se}_3\) thin film were studied using both of \(\text{DEM}\) with different values of magnifications (dir. magnif.) as shown in Figure 1(a,b), (dir. magnif. = 2500x for (a) and dir. magnif. = 2000x for (b). The \(q\) spacing between layers for this sample were determined and tabulated in (Table 1), while (TEM) images with different values of direct magnifications (dir. magnif. = 2500x for (a) and dir. magnif. = 2000x for (b)) are shown in Figure 2(a,b). From this Fig it was noticed that, the grains were distributed homogeny over the film.

Optical results

The measured optical properties such as transmission \((T)\), Reflection \((R)\) and Absorption \((A)\) for this sample are shown in (Figure 3).

From Figure (3), it was seen that the values of both \((T\) and \(R)\) had a reverse behaviour (500–1000 nm), while these values identified from (1000–2500 nm). The absorption coefficient \((\alpha)\) of this investigated film was determined as [41]

\[
\alpha = \frac{n}{d} \ln \left[\frac{1-T^2}{1-R^2} \right]
\]

(1)

Where \((d)\) is the film thickness. Figure 4(a) shows the relation between \((\alpha, h\nu^2)\) and photon energy \((h\nu)\) for this film, it is clear that, this film has a direct optical energy gap\((E_{g,dir}\) with value 1.85 eV (Table 2).

Urbach tail for these sample was calculated using the following Equation [42]

\[
\alpha = \alpha_0 e^{\frac{h\nu}{E_{u}}}
\]

(2)

where \((E_u)\) is the Urbach constant (tail). In order to determine the Urbach tail, the relation between \(\ln (\alpha)\) and \((h\nu)\) is shown in Fig. 4(b). The calculated \((E_u)\) value is in (Table 2).

The refractive index \((n)\) for this film was calculated as [43]

\[
n = \frac{(1+\sqrt{R})}{(1-\sqrt{R})}
\]

(3)

Figure 1. DEM Images with dir. magnif. = 2500x for (a) and dir. magnif. = 2000x for (b) for \(\text{Bi}_2\text{Se}_3\) thin films.
Table 1. The d-spacing for Bi$_2$Se$_3$ thin film.

Spot	d-Spacing (nm)	Spot	d-Spacing (nm)
1	0.3326	1	0.3843
2	0.3207	2	0.3877
3	0.3053	3	0.3345
4	0.2765	4	0.3241
5	0.2692	5	0.3356
6	0.2839	6	0.3462
7	0.2309	7	0.3379
8	0.2252	8	0.2858
9	0.2246	9	0.2907
10	0.2228	10	0.283

The oscillator strength (f) was determined as [47]

$$f = E_o - E_d$$ \hspace{1cm} (8)

Another important parameter is static refractive index (n_o), which was determined, as [48]:

$$n_o = \left[\frac{E_o}{E_d} + 1\right]^{-0.5}$$ \hspace{1cm} (9)

The values of both (ε') and (ε'') for this sample were determined as [49]:

$$\varepsilon' = n^2 - k^2$$ \hspace{1cm} (10)

$$\varepsilon'' = (n^2 + k^2)^2 - (n^2 - k^2)^{0.5}$$ \hspace{1cm} (11)

Figure 4(c) shows the dependence of both (n) and extinction coefficient (k) on wavelength (λ). From this figure it is noted that, the (n) values decreased with (λ), while (k) values increased (λ), which give indication that, the absorption ability for this sample increased with wavelength (λ).

The single oscillator for the Bi$_2$Se$_3$ thin film can be expressed by [44].

$$n^2 - 1 = \frac{E_o - E_d}{E_o - (nh)^2}$$ \hspace{1cm} (4)

The values of (E_o) and (E_d) are obtained from the intercept on vertical axis (E_o) and the slope of (E_o, E_d)$^{-1}$ resulting from Figure 5(a). The calculated values of (E_o) and (E_d) for this film is shown in (Table 2).

The relation between (n^2) and (λ^2) for Bi$_2$Se$_3$ thin film is presented in Figure 5(b). The values of (N/m^*) for this sample was determined as [45].

$$n^2 - k^2 = \varepsilon L \left(\frac{\alpha}{4\pi^2\varepsilon_0 m^*}\right) \lambda^2$$ \hspace{1cm} (5)

Where (ε_L) is the lattice dielectric constant, (ε_0) is the permittivity of free space, the values of both of (N/m^*) and (ε_L) are shown in (Table 2).

The values of both (M_{-3}) and (M_{-5}) can be derived using the next equations [46]:

$$E_o^2 = \frac{M_{-3}}{M_{-5}}$$ \hspace{1cm} (6)

$$E_d^2 = \frac{M_{-5}}{M_{-3}}$$ \hspace{1cm} (7)

Figure 3. The optical measured parameters such as, Transmittance, Reflectance and Absorbance for Bi$_2$Se$_3$ thin film.

Figure 6 (a) shows the dependence of both (ε') and (ε'') on (hv), from Figure (6) it was found that both (ε') and (ε'') increase with (hv) as a result of increasing electrons mobility's.

Real part of optical conductivity (σ_r) and imaginary part of optical conductivity (σ_i) were calculated as [50]

$$\sigma_r = \frac{\varepsilon'' \omega}{2\pi}$$ \hspace{1cm} (12)

Figure 2. TEM Images with dir. magnif. = 2500x for (a) and dir. magnif. = 2000x for (b) for Bi$_2$Se$_3$ thin films.
\(\sigma_2 = \frac{(1-e^{-\chi})}{4\chi} \) \hspace{1cm} (13)

Figure 6(b) shows influence of \((h\nu)\) on both \((\sigma_1)\) and \((\sigma_2)\). It is clear from Figure 6 that both \((\sigma_1)\) and \((\sigma_2)\) increase with \((h\nu)\), while \((\sigma_1)\) increases strongly with \((h\nu)\), this gives indication, that this film had a high ability to absorb photons and increase its conductivity.

Linear optical susceptibility \((\chi^{(1)})\) describes the response of the material to photon energy, which determined as [51]:

\[X^1 = \frac{\chi^{(1)}}{4\pi} \] \hspace{1cm} (14)

It was found that \((\chi^{(1)})\) increased with \((h\nu)\) as in Figure 6(c), also the values of \((\chi^{(1)})\) have a maximum

Table 2. The calculated results for Bi\(_2\)Se\(_3\) thin film.

Fermi level Position (eV)	\(N_s\)	\(N_C\)	\(N/m^4\)	\(n_0\)	\((f) (eV)^2\)	\(M_{-3}\) (eV)	\(M_{-1}\) (eV)	\(E_d\) (eV)	\(E_a\) (eV)	\(E_o\) (eV)	
0.17	7.9E+21	2.2E+22	2.3E+51	01.48	21.92	02.28	04.68	05.12	02.22	04.20	1.85

Figure 5. (a) The dependence of \((n^2-1)^{-1}\) on \((h\nu)^2\) and \((b)\) the dependence of \(n^2\) on \(\lambda^2\) for Bi\(_2\)Se\(_3\) thin film.
value higher than \((E_g)\), this means that this material is a promise material for optical devices.

Nonlinear optical properties

The third-order nonlinear optical susceptibility \(\chi^{(3)}\) was determined as [52]:

\[
X^{(1)} = A \left\{ \frac{E_x \times E_y}{4\pi \varepsilon_0 (E_x^2 - h\nu^2)} \right\}^2
\]

(15)

Where \(A = 1.7 \times 10^{-10}\) c.s.u [53]. \(\chi^{(3)}\) increase with \((h\nu)\) as in Figure 6(c), this could attribute to the variation of free carrier concentration which leads to the increase of electrons mobility, while \((n_2)\) which resulted from nonlinear effects and determined as [54,55]

\[
n_2 = \left(12\pi X^{(3)}\right)/n_o
\]

(16)

The dependence of \((n_2)\) on \((\lambda)\) for this thin film is in Figure 7(a). The values of \((n_2)\) decrease with \((\lambda)\). Also \((\beta_c)\) was determined as [56]:

\[
\beta_c = \frac{4\pi^2 X^{(3)}}{n_2 h\nu^2}
\]

(17)

the values of \((\beta_c)\) increase with \((h\nu)\) as in Figure 7(b), as a result high number of excited electron which overcome band gap.

Both real and imaginary parts of the third-order nonlinear optical susceptibility \(\chi^{(3)}\) were determined as follows [57]

\[
\text{Re} \chi^{(3)}(\epsilon_{us}) = 10^{-4} \left\{ \frac{\varepsilon_0 \chi_n^2 \lambda_n^2}{\pi} \right\}
\]

(18)

\[
\text{Im} \chi^{(3)}(\epsilon_{us}) = 10^{-2} \left\{ \frac{\varepsilon_0 \chi_n^2 \lambda_n^2}{4\pi} \right\}
\]

(19)

The relation between both of \(\text{Re} \chi^{(3)}\) and \(\text{Im} \chi^{(3)}\) is shown in Figure 7(c), from the Figs it is clear that, both of \(\text{Re} \chi^{(3)}\) and \(\text{Im} \chi^{(3)}\) increase \((h\nu)\), this could be attributed to the increase of electorn mobility which gives advaced to high resopnse for changing optical properties.

Electrical susceptibility \(\chi(\epsilon)\) was determined using the following relation [58]:

\[
X_c = \frac{n^2 - k^2 - \varepsilon_r}{4\pi}
\]

(20)

Also relative permittivity \(\varepsilon_r\) was calculated as [59]:

\[
\varepsilon_r = (X_c + 1)
\]

(21)

The dependence of both of \(\chi(\epsilon)\) and \(\varepsilon_r\) on \((h\nu)\) for this thin film is shown in Figure 7(d). It is clear that the
values of both $\chi(e)$ and ε_r with $h\nu$; this could be attributed to the increasing of electron mobility with $h\nu$.

Semiconducting and electronic results

The density of states (DOS) are calculated as follow [60]:

$$N_V = 2 \left(\frac{2nKTm^*_{h}}{h^2} \right)^{\frac{3}{2}}$$

$$N_C = 2 \left(\frac{2nKTm^*_{e}}{h^2} \right)^{\frac{3}{2}}$$

Where N_v and N_C are the density of states for both valence and conduction bands, respectively, effective mass of holes in (Bi$_2$Se$_3$) $m^*_{h} = 0.24m_0$ [61], effective mass of electrons in (Bi$_2$Se$_3$) $m^*_{e} = 0.12m_0$ [62].

The position of Fermi level was determined as [53]:

$$E_f = \left(\frac{KT}{q} \right) \ln \frac{N_C}{N_V}$$

Figure 7. (a) the dependence of n_2 on λ, (b) the influence of $h\nu$ on β_c, (c) the dependence of both of real $\chi^{(3)}$, $\text{Im}\,\chi^{(3)}$ on $h\nu$ and (d) the dependence of both of $\chi(e)$, ε_r on $h\nu$ for Bi$_2$Se$_3$ thin film.

Figure 8. The influence of temperature on both of resistivity (a) and capacitance (b) for Bi$_2$Se$_3$ thin film.
The values of Fermi level position for this investigated thin film are shown in (Table 2).

Electrical and I-V characterisation results

The electrical resistivity and capacitance were studied for this sample. The dependence of both electrical resistivity (ρ) and capacitance (C) on temperature is shown in Figure 8 (a,b). From this figure it is noted that, (ρ) decreases with temperature with in temperature range (298 – 312 k), this is due to increase of electron mobility with temperature which leads to decrease of resistivity, while within temperature range (328 – 348 k) (ρ) increase with temperature due to increase the random motion electrons, which leads to increase the impedance for current passes. On the other hand the capacitance (C) increases with temperature as a result of increase of the electron mobility with temperature within temperature range (298–350 k), and decreases within temperature range (353–388 k).

The studied IV characterisation is shown in Figure 9, from this figure it is clear that the IV increases linearly with temperature, this due to increase of the electrons mobility’s with temperature which leads to increase the electric current. The influence of temperature on measured values of both of (D, L_p and S) with different frequencies are shown in Figure 10 (a,b,c). From this figure it is noted that, (D) increases with both of temperature and frequency as a result of increasing the electron mobility’s with temperature, while (L_p) decreases with temperature at low frequencies, while at high frequencies, (L_p) increase with temperature due to increase of electron mobility. Finally (S) increased with temperature as a result of decreasing the electrical resistivity for this film with temperature.

![Figure 9](image-url) The influence of temperature on IV characterisation for Bi$_2$Se$_3$ thin film.

![Figure 10](image-url) (a) The relation between frequency and D, (b) frequency and L_p at different temperature, (c) relation between S and temperature for Bi$_2$Se$_3$ thin film.
Conclusion

The structure and surface topography for this sample were investigated using both of DEM and TEM photos, it is found that, the grains were distributed all over the film. Bi2Se3 thin film had a direct energy gap with value 1.98 eV. The determined parameters \((E_g)\) and \((E_0)\) had a values of 4.20 and 5.12 eV respectively, while the values of both of \(M_1, M_2\) and \(f\) had a values of 4.68 eV, 2.28 eV and 21.92 (eV)\(^2\) respectively. The \((N/m^2)\) had a value of 2.3 \(\times 10^{51}\). The determined dielectric parameters such as \((\varepsilon')\) and \((\varepsilon'')\) increase with \((h\nu)\) as a result of increasing the electron mobility’s, the same behaviour was obtained for \((\sigma_1, \sigma_2)\) with \((h\nu)\). The density of states \((DOS)\) for both of \((N_d)\) and \((N_s)\) determined with values of \(7.9 \times 10^{21}\) and \(2.2 \times 10^{22}\) respectively. The values of nonlinear results such as \((\chi^{(3)})\) and \((\beta)\) increase with \((h\nu)\) as a result of increase electron mobility and electron response to absorb light beam, also the same results were obtained for both of \((\chi, \varepsilon)\) with \((h\nu)\). The temperature affected strongly on both of electrical resistivity and capacitance for this film. The \(IV\) results increase with temperature as a result of increase electron mobility’s with temperature. The temperature affected strongly on all of \((D, L_p\) and \(S)\) which give an advanced to control and change these properties either by change frequency or change temperature.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

A. Abdel Moez \(\text{http://orcid.org/0000-0002-4755-759X}\)

References

[1] Seddon AB. Chalcogenide glasses: a review of their preparation, properties and applications. J Non-Crystal Solids. 1995;184:44–50.
[2] Sanghera JS, Aggarwal ID. Active and passive chalcogenide glass optical fibers for IR applications: a review. J Non-Crystal Solids. 1999;256-257:6–16.
[3] Tikhomirov VK. Photoinduced effects in undoped and rare-earth doped chalcogenide glasses: review. J Non-Crystal Solids. 1999;256-257:328–336.
[4] Zakery A, Elliott SR. Optical properties and applications of chalcogenide glasses: a review. J Non-Crystal Solids. 2003;330(1–3):1–12.
[5] Kang Y, Zhang Q, Fan C, et al. High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J Alloy Comp. 2017;700(5):223–227.
[6] Jagminas A, Valiunas I, Vernese GP, et al. Alumina template-assisted growth of bismuth selenide nanowire arrays. J Non-Crystal Solids. 2008;310:428–433.
[7] Xiao F, Hangarter C, Yoo B, et al. Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim Acta. 2008;53(28):8103–8117.
[8] Xiao C, Li Z, Li K, et al. Accounts of chemical research, decoupling interrelated parameters for designing high performance thermoelectric materials. Accut Chem Resear. 2014;47(4):1287–1295.
[9] Ko J, Kim J, Choi S, et al. Nanograned thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets. J Mater Chem A. 2013;1(41):12791–12796.
[10] Borisova S, Krumrain J, Luysberg M, et al. Mode of Growth of Ultrathin Topological Insulator Bi2Te3 Films on Si (111) Substrates. Cryst Growth Design. 2012;12(12):6098–6103.
[11] Tang H, Liang D, Richard LJ, et al. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano. 2011;59(9):7510–7516.
[12] Torane AP, Lokhande CD, Patil PS, et al. Preparation and characterization of electrodeposited Bi2Se3 thin films. Mater Chem Phys. 1998;55(1):51–54.
[13] Sankapal BR, Mane RS, Lokhande CD. Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys. 2000;63(3):230–234.
[14] Neha DD, Vishvanath BG, Kishorkumar VK, et al. Effect of substrate on the nanostructured Bi2Se3 thin films for solar cell applications. J Mater Sci Mater Electron. 2016;27(3):2385–2393.
[15] Harpeneds R, Gedanken A. Microwave-assisted synthesis of nanosized Bi2Se3. New J Chem. 2003;27(8):1191–1193.
[16] Suvarta DK, Bp N, BG V, et al. Room temperature deposition of nanostructured Bi2Se3 thin films for photoelectrochemical application: effect of chelating agents. New J Chem. 2013;37(9):2821–2828.
[17] Bushra I, Ratnamala C. Characterization and synthesis of Bi2Se3 topological insulator thin film using thermal evaporation. Adv Mater Lett. 2016;7(10):100–150.
[18] Plachinda P, Hopkins M, Rouvimov S, et al. Topological insulator Bi2Se3 films on silicon substrates. J Electron Mater. 2020;49(3):2191–2196.
[19] Jereng SK, Joo K, Kim Y, et al. Ordered growth of topological insulator Bi2Se3 thin films on dielectric amorphous SiO2 MBE. Nanoscale. 2013;5(21):10618–10622.
[20] Han C, Jia Y, Chang Y, et al. The electrochemical self-assembly of hierarchical dendritic Bi2Se3 nanostructures, Cryst Eng Commun. 2014;16(13):2823–2834.
[21] Adam AM, Lilov E, Ibrahim EMM, et al. Correlation of structural and optical properties in as-prepared and annealed Bi2Se3 thin films. J Mater Proc Tech. 2019;264:76–83.
[22] Patil VT, Toda YR, Gujarathi DN. Structural, transport and optical properties of nanostructured vacuum evaporated Bi2Se3 thin films. Int J Sci Eng Res. 2014;5(12):1220–1227.
[23] Meyvel S, Sathy P, Parthibavanarman M. Annelling effect on structural, optical and electrical properties of bismuth selenidetin films using chemical bath deposition method. Elixir Thin Film Technol. 2016;101:43922–43926.
[24] Cosmas MM, Charles M, Sathiaraj TS. Chemical synthesis and properties of novel Bi2Se3 nanostructures and microplates. Int Schol Res Net ISRN Ceram. 2012;2012:839612.

[25] Kannan AG, Manjulavalli TE. Structural, optical and electrical properties of Bi2Se3 thin films prepared by spray pyrolysis technique. Intern J ChemTech Res. 2015;8:599–606.

[26] Biljana P, Ivan G. Chemical deposition and characterization of glassy bismuth(III) selenide thin films. Thin Solid Films. 2002;408(1–2):6–10.

[27] Augustine S, Kang JK, Mathai E, et al. Structural, electrical and optical properties of Bi2Se3 and Bi2Se (3-x)Tex thin films. Mater Reser Bull. 2005;40(8):1314–1325.

[28] Pejova B, Grozdanov I, Tanuevski A. Optical and thermal band gap energy of chemically deposited bismuth(III) selenide thin films. Mater Chem Phys. 2004;83(2–3):245–249.

[29] Lin YC, Chen YS, Lee CC, et al. A study on the epitaxial Bi2Se3 thin film grown by vapor phase epitaxy. AIP Adv. 2016;6(6):065218.

[30] Chistyakov VV, Domozhirova AN, Huang CA, et al. Thickness dependence of conductivity in Bi2Se3 topological insulator. J PhysicsConference Series. 2019;1389:012051.

[31] Menshikova SI, Rogacheva EI, AYu S, et al. Dependence of electrical conductivity on Bi2Se3 thin film thickness. Func Mater. 2017;24(4):555–558.

[32] Minghua G, Zhenyu W, Yong X, et al. Tuning thermoelectricity in a Bi2Se3 topological insulator via varied film thickness. New J Phys. 2016;18(1):015008.

[33] Dohun K, Paul S, Nicholas PB, et al. Ambipolar surface state thermoelectric power of topological insulator Bi2Se3. Nano Lett. 2014;14(4):1701–1706.

[34] Phuoc HL, Chien NL, Chih WL, et al. Thermoelectric properties of bismuth-selenide films with controlled morphology and texture grown using pulsed laser deposition. Appl Surf Sci. 2013;285:657–663.

[35] Sankapal BR, Pathan HM, Lokhande CD. Photoelectrochemical (PEC) studies on chemically deposited Bi2Se3 thin films. Ind J Pure Appl Phys. 2002;40:331–336.

[36] Qin Z. Two-dimensional tunnel transistors based on Bi2Se3 thin film. IEEE Elect Devce Lett. 2014;35(1):129–131.

[37] Ligang X, Qiya L, Min Z, et al. Photoelectric properties of Bi2Se3 films grown by thermal evaporation method. Mater Res Exp. 2020;7(1):016429–016435.

[38] Tan Y, Guo Z, Shang Z, et al. Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation. Sci Rep. 2016;6:21799–21805.

[39] Lu S, Zhao C, Zou Y, et al. Third order nonlinear optical property of Bi2Se3. Optics Expers. 2013;21(2):2072–2082.

[40] Hsieh D, McIver JW, Tchorschky DH, et al. Nonlinear optical probe of tunable surface electrons on a topological insulator. Phy Rev Lett. 2011;Re106(5):057401.

[41] Fadel M, Fayek SA, Abou-Helal MO, et al. Structural and optical properties of SeGe and SeGeX (X = In, Sb and Bi) amorphous films. J Alloy Comp. 2009;485(1–2):604–609.

[42] Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys Rev. 1953;92(5):1324–1324.

[43] Pankove JI. Optical process in semiconductors. Dover, New York; 1971.

[44] Torris J, Cisneros JJ, Gordillo G, et al. A simple method to determine the optical constants and thicknesses of ZnxCd1−xS thin films. Thin Solid Films. 1996;289(1–2):238–241.

[45] Gad SA, Mhmoud Abdel Moez A. Tunable non-linear optical, semiconducting and dielectric properties of In1-xMnxSe thin films. J Electron Mater. 2019;48(8):5176–5183.

[46] Farid AM, El-Zawawi IK, Ammara AH. Compositional effects on the optical properties of GeSb40−xSe60 thin films. Vacuum. 2012;86(9):1255–1261.

[47] Wemple SH, DiDomenico J. Optical dispersion and the structure of solids. Phys Rev Lett. 1969;23(20):1156–1160.

[48] Anshu K, Sharma A. Study of Se based quaternary SePb (Bi,Te) chalcogendine thin films for their linear and non-linear optical properties. Optik. 2016;127(1):48–54.

[49] Djurisic AB, Li EH. Modeling the optical properties of sapphire (α-Al2O3). Opt Commun. 1998;157(1–6):72–76.

[50] Ammar AH, Frid AM, Sayam MAM. Heat treatment effect on the structural and optical properties of AgInSe2 thin films. Vacum. 2002;66(1):27–38.

[51] Fritz SE, Kelley TW, Frisbie CD. Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer. J Phys Chem. 2005;109(21):10574–10577.

[52] Ziabari AA, Ghodsi FE. Optoelectronic studies of sol–gel derived nanostructured CdO–ZnO composite films. J Alloy Comp. 2011;509(35):8748–8755.

[53] Gad SA, Mahmoud GM, Abdel Moez A. Tunable non-linear optical, semiconducting and dielectric properties of In1-xMnxSe thin films. J Electron Mater. 2019;48(8):5176–5183.

[54] Tichá H, Tichy L. Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J Optoelectron Adv Mater. 2002;4(2):381–386.

[55] Zhou P, You G, Li J, et al. Annealing effect of linear and nonlinear optical properties of Ag: β2O3 nano-composite films. Optics Expers. 2005;13(5):1508–1514.

[56] Derkowskaa B, Sahraoui B, Phua XN, et al. Nonlinear optical properties in ZnSe crystals. Proc SPIE. 2001;4412:337–341.

[57] Shaikh RN, Anis M, Shirsat MD, et al. Investigation on the linear and nonlinear optical properties of L-lysine doped ammonium dihydrogen phosphate crystal for NLO applications. IOSR J Appl Phys. 2014;6(1):42–46.

[58] Gupta V, Mansingh AI. Influence of post deposition annealing on the structural and optical properties of sputtered zinc oxide film. J Appl Phys. 1996;80(2):1063.

[59] Braslavsky SE. Glossary of terms used in photochemistry. Pur App Chem. 2007;79(3):293.

[60] Sze SM. Physics of semiconductor devices. New York: Wiley-Inter science; 1969.

[61] Martinez G, Piot BA, Hakl M, et al. Determination of the energy band gap of Bi2Se3. Sclent Repor. 2017;7(1):6891–6895.

[62] Sushkov AB, Jenkins GS, Schmadel DC, et al. Far-infrared cyclotron resonance and faraday effect Bi2Se3. Phys Rev B. 2010;82(12):125110.