The relationship between working condition factors and well-being

Bum-Joon Lee1, Shin-Goo Park1*, Kyoung-Bok Min3, Jin-Young Min4, Sang-Hee Hwang2, Jong-Han Leem1, Hwan-Cheol Kim1, Sung-Hwan Jeon1, Yong-Seok Heo1 and So-Hyun Moon1

Abstract

Objectives: Working conditions can exert influence on the physical, mental, and even social health of workers. Well-being is an appropriate index for the evaluation of a person’s overall health. This paper investigated the association between various working conditions and worker’s well-being.

Methods: Data from 10,019 interviews were collected from the second wave of the Korean Working Conditions Survey (2010) conducted by the Korea Occupational Safety and Health Agency between June and October 2010. The data from 5,995 employed workers were examined in this study. Well-being was measured through the WHO Five Well-Being Index (1998 version). Sociodemographic and working conditions were analyzed. Adjusted odds ratios for well-being were calculated with adjusted sociodemographic factors, working condition factors, or both.

Results: Workers’ well-being was significantly higher when they were satisfied with their working conditions (OR = 1.656, 95% CI = 1.454–1.885), when their actual working hours were the same as their anticipated working hours (OR = 1.366, 95% CI: 1.120–1.666) or exceeding less than 10 hours (OR = 1.245, 95% CI: 1.004–1.543), and when their employment was stable (OR = 1.269, 95% CI: 1.098–1.467).

Conclusions: This study supports the association between working condition factors and well-being in workers.

Keywords: Working condition survey, Employed worker, Working conditions, Well-being

Introduction

Working conditions have significant influence on a worker’s quality of life. Workers spend more than a half of their waking hours on working [1]. Therefore, naturally, working conditions may exert influence on other areas of life, including eating, sleeping, housing, and developing interpersonal relationships, directly or indirectly. Moreover, Working conditions affect workers’ physical and mental health [2]. Due to industrial development, working conditions have become more diverse and complicated. Therefore, it is essential to closely measure and evaluate the influence of each working condition on workers’ health as society continues to evolve and change.

As industry has developed and the problems presented by poverty and illness have been resolved, society’s priority has transitioned from “survival” to “better life”. “The measurement for well-being (such as WHO well-being index)” is an appropriate measurement of a subject’s physical, mental, and social health because it encompasses the absence of both illness and negative emotions [3]. Well-being so closely related to mental health that subjects with a low WHO Five well-being index score are often recommended for depression screening tests [4]. Well-being has been linked with physical health by several studies that demonstrate that satisfied individuals have stronger immune systems and enjoy better physical health [5-7]. Additionally, there seems to be a positive feedback loop between a worker’s well-being and productivity. Individuals with high well-being are more productive in occupational activities than are individuals with low well-being, and productive individuals are happier than non-productive individuals [8].

Many previous studies on the influence of working conditions on health have focused on the occurrence of specific diseases like musculoskeletal illness [9,10], occupational cancers [11], and sleep disorders [12,13] in risky working
conditions, or the influence of job stresses, job satisfaction on life habits like smoking and drinking [14,15]. Although a few studies examined the influence of psychological occupational factors on well-being in specific occupations like teaching [16], there is a lack of research on the influence of overall working conditions on well-being. The present study examines how the working conditions are related to employed workers’ well-being. Data were gathered from the second wave of the Korean Working Conditions Survey.

Materials and methods

Working conditions survey

This study used a sample from the second wave of the Korean Working Conditions Survey (2010) conducted by the Korea Occupational Safety and Health Agency. The methodology and survey questionnaire used for the second Korean Working Conditions Survey is similar to those used in the European Working Conditions Survey, and the second survey built on investigations begun in the first survey (2006).

Briefly, the goal of the survey was to gather comprehensive information on Korean working conditions to shed light the nature and types of changes affecting the workforce and the quality of work-life for employees. The specific objective of the survey was to develop social and occupational health indicators for the working environment. We used multi-stage, random sampling from the Enumeration Districts in the 2005 Population and Housing Census. The survey was carried out at a number of different sampling areas, determined using probability proportional to population size and to population density. The survey data were collected from a nationally representative sample of the economically active population 15 years and older, excluding retirees, unemployed, homemakers, and students [17].

In this study, we defined the subjects as only ‘employed workers’, so we exclude ‘a self-employed worker’ or ‘an unpaid worker for familial business. With these exclusion criteria, among 10,019 survey interviews conducted at workers’ homes between June and October 2010, the data from only 5,995 employed workers were used in this study.

The Institutional Review Board of Inha University Hospital approved the study protocol.

WHO five well-being index

Well-being was evaluated through the WHO Five Well-Being Index (the 1998 version). Although the index was originally designed to measure well-being in diabetic patients [18], its effectiveness has been supported in diagnostic depression screening [4] and evaluation of emotional well-being in patients with chronic diseases including cardiovascular diseases [18] and Parkinson’s disease [19], and in young children [20], and elderly adults [21].

The index consists of five positively worded items, each of which reflects the presence or absence of well-being. Subjects respond to questions about their positive feelings within the last two weeks on 6-point scale (0–5). A raw score lower than 13 out of 30 or an individual item score of 0 or 1 on any of the five items implies poor well-being [22], and a raw point score considerably below 13 may necessitate screening for depression with the Major Depression Inventory (under ICD-10) [4]. This study has evaluated the states of well-being of the subjects by classifying subjects with a raw score below 13 or a score of 0 or 1 on one of more items into the “poor well-being” group. Meanwhile, those who responded to all the items with a score of 2 or higher and had a total score higher than 13 were assigned to the “fair well-being” group [22].

Definition of independent variables

The survey collected information on several sociodemographic factors. Age, educational levels and monthly income were classified. Based on survey responses, the degrees of difficulty balancing income and expenses with total monthly earnings were divided into “difficult,” “somewhat difficult,” “somewhat easy,” and “easy.” Overall subjective health status, smoking status and alcohol assumption scale were also remarked. Subjects were grouped into “non-drinkers,” “moderate drinkers,” and “excessive drinkers” (i.e., individuals who consumed more than 2 glasses of alcohol a day).

Information on working condition factors was also collected and organized. Occupations were divided into 9 categories based on the Korean employment classification of occupation. Length of employment was divided into “<1 year,” “1–5 years,” “5–10 years,” “10+ years.” Employment types were divided into “contingent” and “regular” employees, and employment stability (“stable” or “unstable”) was determined by researchers based on the subjects’ responses. The presence and the absence of shifts were noted, and total weekly work hours were categorized into “<40 hours,” “40 hours,” “40–60 hours,” and “60+ hours.” Based on the calculated difference between the actual and desired working time, we had categories of individuals who “lacked work time,” worked “10+ hours longer” than desired, worked “<10 hours longer” than desired or experienced “no difference” between actual and desired work time. Monthly work on the weekends was divided into “4+ days a month,” “1–4 days,” and “none.” Work condition satisfaction was divided into “satisfied” and “unsatisfied.” Degree of work stress was divided into the categories of “mild,” “moderate,” and “severe.”

Statistical analysis

All data were analyzed with the SPSS (version 14.0) after encoding was completed. A descriptive analysis was carried out on sociodemographic and working condition factors. Pearson’s chi-squared analysis was carried out between
each factor and well-being. Logistic regressions yielded crude and adjusted odds ratios of working condition factors and the well-being. For logistic regression analysis, three models were used for adjusting effect of other factors. The model 1 was adjusted for sociodemographic factors (gender, age, education, monthly income, balancing income and expenses, health status, smoking, and drinking); the model 2 was adjusted for working conditional factors (type of occupation, number of years employed, employment type, employment stability, weekly working time, difference between actual and desired working time, monthly weekend work, satisfaction with working conditions, and work stress); and the model 3 was adjusted for both sociodemographic and working conditional factors. Pearson correlation analysis was used to test for multicollinearity among individual factors. The significance threshold was 0.05.

Results
Sociodemographic factors and well-being
The average raw score of the WHO Five Well-being Index in the 5,995 participants was 13.29 (SD: 5.53); 2,415 (40.3%) were in the poor well-being group, while 3,580 (59.7%) were in the fair well-being group.

Well-being did not significantly differ between genders. Subjects who were under 30 or 40–49 years old had higher well-being scores. Subjects with higher education levels had significantly higher scores of well-being. Subjects with income greater than 3 million KRW had significantly higher well-being than those with lower incomes. Subjects who experienced a balance between their income and expenses (income-expense balance) had significantly higher well-being than those who faced an imbalance between income and expenses. Workers who reported better health status had significantly higher scores of well-being. Smoking and drinking were both related to well-being (Table 1).

Working condition factors and well-being
A univariate analysis revealed that of the 9 types of jobs, clerks had higher well-being, whereas subjects working in agriculture, forestry and fishing had lower well-being. Workers with 5–10 years’ experience showed somewhat higher well-being than workers with other lengths of work experience in univariate analysis, all the other working condition factors, employment types, employment stability, weekly working time, difference between the actual and desired working time, monthly weekend work, working condition satisfaction, work stress, had statistically significant relationship with workers’ subjective well being except shift working (Table 2).

In the analysis of the 9 types of jobs, only the model 2 showed a significant difference with an OR of 1.251 in office workers (95% CI: 1.042–1.502), and an OR of 0.433 in farmers and fishermen (95% CI: 0.200–0.937), but the difference was not significant in model 3. No relationship was observed between employment types and well-being in model 1, 2 and 3. A significant relationship between employment stability and well-being was present. Well-being was significantly higher when employment was stable, and this pattern remained constant in all the 3 models (model 1: OR = 1.204, 95% CI: 1.063–1.365; model 2: OR = 1.222, 95% CI: 1.065–1.402; model 3: OR = 1.269, 95% CI: 1.098–1.467).

A relationship was found between well-being and the difference between workers’ actual and desired working time. Subjects who reported that their actual working hours were as desired or exceeding less than 10 hours showed significantly higher well-being than subjects who worked ≥10 hours longer than desired. The OR was 1.533 (95% CI: 1.294–1.816), 1.297 (95% CI: 1.065–1.580) in model 1, 1.401 (95% CI: 1.159–1.693), 1.305 (95% CI: 1.064–1.602) in model 2, and 1.366 (95% CI: 1.120–1.666), 1.245 (95% CI: 1.004–1.543) in model 3. Additionally, subjects who did not work on weekends showed higher well-being than those who worked 4+ weekend days a month. These results were constant only in model 1.

Satisfaction or non-satisfaction with working conditions was related to well-being. In all the three models, subjects who were satisfied with their working conditions demonstrated significantly higher well-being. (Model 1: OR = 1.723, 95% CI: 1.519–1.955; Model 2: OR = 2.209, 95% CI: 1.957–2.492; Model 3: OR = 1.656, 95% CI: 1.454–1.885).

After adjusted for sociodemographic or working conditional factor, unremarkable relationship was found between degree of job stress and well-being (Table 3).

Discussion
We conducted this study to evaluate the association between general working condition factors and employed workers’ well-being in a nationwide representative sample of Korea. After we adjusted sociodemographic and working condition factors, workers’ well-being was significantly higher when they were satisfied with their working conditions (OR = 1.656, 95% CI: 1.454–1.885), when their actual working hours were the same as their desired working hours (OR = 1.366, 95% CI: 1.120–1.666) or exceeding less than 10 hours (OR = 1.245, 95% CI: 1.004–1.543), and when their employment was stable (OR = 1.269, 95% CI: 1.098–1.467).

This current study is the first one that studied the relationship between general working conditional factors and workers’ well-being. Therefore, few comparable outcomes exist. Previous findings [23] merely compared a few working conditions such as employees to the unemployed, and professionals to inexperienced workers. Previous studies have not addressed the relationship between other working conditional factors and well-being.
The sociodemographic factors were drawn from a nationwide survey on working conditions and included gender, age, educational level, monthly income, income-expense balance, health status, smoking, and drinking. The workers' well-being has no differences between the genders. This finding is consistent with a previous study that gender accounts little for the variance in individual differences in well-being [24]. Older subjects tended to have lower well-being. This result contradicts the finding that older individuals are happier with their lives than younger individuals [25]. However, another study [26] proposed that older individuals tended to have lower well-being than younger individuals because the former experience more health problems and less satisfaction with the future than the latter. That study and the current one both found a positive correlation between education levels and well-being. Another research [27] has suggested a correlation between income and well-being at lower income levels but not at higher income levels. In the current study, the subjects with a monthly income of 3 million or more KRW had significantly higher well-being than subjects with a lower income. However, income-expense balance had a stronger correlation with well-being than absolute monthly income did. Subjects who reported it was either somewhat difficult or easy to balance their income and expenses

Table 1 Sociodemographic factors and well-being
Total

Total
Gender Male
Female
Age
<29
30–39
40–49
50–59
>60
Education Middle school or lower
High school
Junior college
College or higher
Monthly income (KRW)
<1 million
1≤, <2 million
2≤, <3 million
≥3 million
Balancing income and expenses
Somewhat difficult
Somewhat easy
Easy
Health status
Normal
Good
Very good
Smoking
Current smoker
Ex-smoker
Drinking
Moderate drinker
Excessive drinker

*p-value: Pearson's chi-squared test.
experienced higher well-being than those who reported it was difficult.

Subjects with normal, good, or very good self-reported health status had higher well-being than those with poor self-reported health status. This finding accords with the results of a previous study [23]. Interestingly, only 264 subjects (4.2%) had bad self-reported health status, whereas 4,571 (72.6%) reported their health status was “good” and “very good.” We can hypothesize that there is a “healthy worker effect” that may occur in surveys that are distributed only to workers who are currently employed.

Current smokers had somewhat lower scores of well-being than non-smokers, respectively. Moderate drinkers showed higher well-being status than non-drinkers. Excessive

Table 2 Working condition factors and well-being	Total	Poor	Fair	p-value*		
Type of occupation						
Unskilled	1,143	531	46.5	612	53.5	<0.001
Semi-skilled	445	195	43.8	250	56.2	
Skilled	685	300	43.8	385	56.2	
Expertise	492	175	35.6	317	64.4	
Sales	727	278	38.2	449	61.8	
Service	922	402	43.6	520	56.4	
Clerk	1,494	492	32.9	1,002	67.1	
Senior management	53	18	34.0	35	66.0	
Agriculture, forestry and fishing	34	24	70.6	10	29.4	
Years employed						
<1 yr	1,166	486	41.7	680	58.3	0.023
1 ≤, <5 yrs	2,847	1,179	41.4	1,668	58.6	
5 ≤, ≤10 yrs	967	350	36.2	617	63.8	
>10 yrs	1,015	400	39.4	615	60.6	
Employment type						
Contingent	1,288	601	46.7	687	53.3	<0.001
Regular	4,707	1,814	38.5	2,893	61.5	
Employment stability						
Unstable	1,871	830	44.4	1,041	55.6	<0.001
Stable	4,124	1,585	38.4	2,539	61.6	
Shift working						
Present	605	243	40.2	362	59.8	0.950
Absent	5,390	2,172	40.3	3,218	59.7	
Weekly working time						
<40 hrs	929	388	41.8	541	58.2	<0.001
40 hrs	1,893	648	34.2	1,245	65.8	
40<, ≤60 hrs	2,687	1,142	42.5	1,545	57.5	
>60 hrs	486	237	48.8	249	51.2	
Difference between the actual and desired working time						
≥10 hrs longer	774	395	51.0	379	49.0	<0.001
<10 hrs longer	1,128	461	40.9	667	59.1	
No difference	3,390	1,240	36.6	2,150	63.4	
Lack of working time	703	319	45.4	384	54.6	
Monthly weekend work						
More than 4 days	835	368	44.1	467	55.9	<0.001
1 ~ 4 days	2,611	1,166	44.7	1,445	55.3	
none	2,549	881	34.6	1,668	65.4	
Working condition satisfaction						
Dissatisfied	1,795	1,004	55.9	791	44.1	<0.001
Satisfied	4,200	1,411	33.6	2,789	66.4	
Work stress						
Severe	1,855	789	42.5	1,066	57.5	0.018
Moderate	2,472	995	40.3	1,477	59.7	
Mild	1,668	631	37.8	1,037	62.2	

*p-value: Pearson’s chi-squared test.
drinkers showed the lowest well-being status. This result is consistent with previous findings [28-30] that suggest that smoking and excessive drinking are detrimental to physical as well as mental health, as measured by life satisfaction and well-being.

Fifth EWCS (2010) evaluated mental well-being of the workers by using WHO-Five well-being index. According to the fifth EWCS Overview report (2012), the result of the index regarded as a good predictor of mortality and functional ability. 20% (male: 18%, female: 22%) of the workers of the EU 27 countries were classified into 'mental health at risk'. Percentage of the elder workers (above 50 year-old) was 7 percent point more than the younger’s (below 35 year-old). In this study, the percentage of low mental well-being group in Korean employed workers was 40.3%. Comparing between this study and...
fifth EWCS Overview report, well-being of the Korean employed workers were lower than average of the 27 EU counties. The relations between ages and well-being or job and well-being were similar. There are little information about the relation between well-being and working condition factors in EWCS report [31].

This study, however, has several limitations. First, although it demonstrates a relationship between working condition factors and well-being, we cannot make conclusions regarding causality. Second, we did not take into account the “healthy worker effect” during our analysis, which could influence our results. Third, we did not examine variations in individual personality traits that could influence workers’ well-being. Although an existing study explored the hypothesis that individuals’ positive personality traits are closely related to their well-being [32], we were not able to investigate personality traits because the working conditions survey did not contain the necessary items. Fourth, we didn’t assess the relationship between well-being and physically or chemically hazardous working condition factors which could be exist on specific job such as noise, heavy metals, organic chemicals. However, some of these factors could be included in type of occupation.

Conclusions

This is the first study that analyzed association between general working conditions and workers’ well-being. We expect further research to figure out causal relationships between general or specific working conditions and workers’ well-being.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

BJ: The first author of this article. He designed the study, interpreted the data, and drafted the manuscript. SG: The corresponding author of this article. He suggested the study design, interpreted the data, and revised the manuscript. KB: He consulted the study method and revised the manuscript. JY: she revised the manuscript. SHH: she translated the manuscript. All authors have approved the final version of the manuscript.

Acknowledgements

This work was supported by Korea occupational safety and health agency.

Author details

1Department of Occupational and Environmental Medicine, Inha University, 7-306, 3-GA, Sinheung-dong, Jung-Gu, Incheon, Republic of Korea.
2Department of Dentistry, Keimyung University School of Medicine, Daegu, Republic of Korea.
3Department of Occupational & Environmental Medicine, Ajou University School of Medicine, Suwon, Republic of Korea.
4Department of Occupational and Environmental Medicine, Inha University, 7-306, 3-GA, Sinheung-dong, Jung-Gu, Incheon, Republic of Korea.

Received: 7 February 2014 Accepted: 29 September 2014
Published online: 04 November 2014

References

1. OECD statistics: http://stats.oecd.org/
2. Park J, Lee N: First Korean working conditions survey: a comparison between South Korea and EU Countries. Ind Health 2009, 47(1):50–54.
3. Diener E, Wirtz D, Toiv W, Kim-Prieto C, Choi D, Oishi S, Biswas-Diener R: New well-being measures: short scales to assess flourishing and positive and negative feelings. Soc Indicators Res 2010, 97(2):143–156.
4. Awata S, Bech P, Koizumi Y, Seki T, Kurijama S, Hozawa A, Ohmori K, Nakaya N, Matsuoka H, Tsui J: Validity and utility of the Japanese version of the WHO-Five Well-Being Index in the context of detecting suicidal ideation in elderly community residents. Int J Psychogeograph 2007, 19(1):77–88.
5. Kamen-Siegel L, Rodin J, Seligman ME, Dwyer J: Explanatory style and cell-mediated immunity in elderly men and women. Health Psychol 1991, 10(4):229.
6. Segerstrom SC, Taylor SE, Kemeny ME, Fahey JL: Optimism is associated with mood, coping, and immune change in response to stress. J Pers Soc Psychol 1998, 74:1646–1655.
7. Stone AA, Shiffman S: Ecological momentary assessment (EMA) in behavioral medicine. Ann Behav Med 1994, 16(3):199–202.
8. Kelloway EB, Balting J: Job characteristics, role stress and mental health. J Occup Psychol 1991, 64(4):291–304.
9. Daraiseh N, Genaidy A, Karwowski W, Davis L, Stambough J, Huston R: Musculoskeletal outcomes in multiple body regions and work effects among nurses: the effects of stressful and stimulating working conditions. Ergonomics 2003, 46:1178–1199.
10. Karlqvist M, Fonnqvist EW, Hagberg M, Hagman M, Toominnings A: Self-reported working conditions of VDU operators and associations with musculoskeletal symptoms: a cross-sectional study focusing on gender differences. Int J Ind Ergon 2002, 30:277–294.
11. Stevens RG, Hansen J, Costa G, Haus E, Kauppinen T, Aronson KJ, Castano-Vinyals G, Stevens RG, Hansen J, Costa G, Haus E, Kauppinen T, Aronson KJ, Castano-Vinyals G: The Gotland Male Depression Scale: A Screening tool for depression in Parkinson’s disease. Nord J Psychiatry 2012, 66:777–783.
12. Ohayon MM, Lemoine P, Arnaud-Briant V, Dreyfus M: Prevalence and consequences of sleep disorders in a shift worker population. J Psychosom Res 2002, 53:577–583.
13. Schwartz JR, Roth T: Shift Work Sleep Disorder: burden of illness and approaches to management. Drugs 2006, 66:2357–2370.
14. Kahn H, Cooper CL: Mental health, job satisfaction, alcohol intake and occupational stress among dealers in financial markets. Sues Med 1990, 6:285–298.
15. Rouvenon A, Kvimalik M, Vittanen M, Pentti J, Vahtera J: Work stress, smoking status, and smoking intensity: an observational study of 46,190 employees. J Epidemiol Community Health 2005, 59:63–69.
16. Lee J, Lee J: An Analysis of the Structural Relationship Among Teachers’ Optimism, Teaching Flow, and Well-Being. J Korean Teach Educ 2011, 28(1):66–90.
17. JWCS statistics 2011: http://www.kosha.or.kr/jsp/jwcs/index.do?fw=index&menuId=7598
18. Birks-Smith M, Rasmussen: A Screening for mental disorders in cardiology outpatients. Nordic J Psychiatry 2008, 62(2):147–150.
19. Schneider CB, Pihlatsch M, Rasmussen: A Screening for mental disorders in cardiology outpatients. Nordic J Psychiatry 2008, 62(2):147–150.
20. Allgaier A, Pietsch K, Frühe B, Prast E, Sigl-Glöckner J, Schulte-Körne G: Depression in pediatric care: is the WHO-Five Well-Being Index a valid screening instrument for children and adolescents? Gen Hosp Psychiatry 2012, 34(3):234–241.
21. Allgaier A, Kramer D, Sarako B, Meng J, Fejtkova S, Hegelr U: Beside the Geriatric Depression Scale: the WHO-Five Well-being Index as a valid screening tool for depression in nursing homes. Int J Geriatr Psychiatry 2013, 28(11):1197–1204.
22. Zierau F, Bille A, Rutz W, Bech P: The Gotland Male Depression Scale: A validity study in patients with alcohol use disorder. Nord J Psychiatry 2002, 56(4):265–271.
23. Diener E, Suh EM, Lucas RE, Smith HL: Well-being: Three decades of progress. Psychol Bull 1999, 125(2):276.
24. Nolen-Hoeksema S, Jackson B: Mediators of the gender difference in rumination. Psychol Women Q 2001, 25(1):37–47.
25. Mroczek DK, Kolarz CM: The effect of age on positive and negative affect: a developmental perspective on happiness. J Pers Soc Psychol 1998, 75(3):333.
26. Argyle M: Causes and correlates of happiness. In Well-being: the foundations of hedonic psychology. Edited by Kahneman D, Diener E, Schwarz N. Russell Sage Foundation; 1999:353. http://www.scholarpedia.org/w/index.php?title=Psychology_of_happiness&action=cite&rev=37099.
27. Myers D: Psychology of happiness. Scholapedia 2007, 2(8):3149.
28. Lepper HS: Use of other-reports to validate well-being measures. Soc Indicators Res 1998, 44(3):367–379.
29. Koivumaa-Honkanen H, Honkanen R, Viinamäki H, Heikillä K, Kaprio J, Koskenvuo M: Self-reported life satisfaction and 20-year mortality in healthy Finnish adults. Am J Epidemiol 2000, 152(10):983–991.
30. Lang I, Wallace RB, Huppert FA, Melzer D: Moderate alcohol consumption in older adults is associated with better cognition and well-being than abstinence. Age Ageing 2007, 36(3):256–261.
31. Parent-Thirion A: 5th European Working Conditions Survey: Overview Report. Publications Office of the European Union, 2012. in press.
32. Peterson C: A primer in positive psychology. USA: Oxford University Press; 2006.

doi:10.1186/s40557-014-0034-z
Cite this article as: Lee et al.: The relationship between working condition factors and well-being. Annals of Occupational and Environmental Medicine 2014 26:34.