A NOTE ON THE CHERN CONJECTURE IN DIMENSION FOUR

FAGUI LI

Abstract. Let M^4 be a closed immersed minimal hypersurface with constant squared length of the second fundamental form S and constant 3-mean curvature H_3 in S^5. If $H_2^3 \leq \frac{1}{2}$ and Gauss-Kronecker curvature K_M satisfies $K_M \leq 1$ (or $K_M \leq \frac{e^2}{4\pi^2}$), then M^4 is isoparametric.

1. Introduction

More than 50 years ago, S. S. Chern [5, 6] proposed the following famous and original conjecture:

Conjecture 1.1. Let M^n be a closed immersed minimal hypersurface of the unit sphere S^{n+1} with constant scalar curvature R_M. Then for each n, the set of all possible values for R_M is discrete.

With the development of the study, mathematicians realized the importance of Conjecture 1.1 and proposed the following stronger version. Up to now, it is so far from a complete solution of this problem and S. T. Yau raised it again as the 105th problem in his Problem Section [38]. Please see the excellent and detailed surveys on this topic by Scherfner-Weiss [28], Scherfner-Weiss-Yau [29] and Ge-Tang [18].

Conjecture 1.2. (Chern Conjecture) Let M^n be a closed immersed minimal hypersurface of the unit sphere S^{n+1} with constant scalar curvature. Then M^n is isoparametric.

The problem of classification for isoparametric hypersurfaces in spheres began in 1930 by Cartan and was finished by many mathematicians until 2020 (cf. Cecil-Chi-Jenson [1], Chi [8, 9, 10], Dorfmeister-Neher [15], Immervoll [19] and Miyaoka [22, 23], etc.), please see the elegant book [2] and survey [7] for more details. In 1968, J. Simons [30] showed the following theorem:

2010 Mathematics Subject Classification. 15A45, 15B57, 53C42.

Key words and phrases. Chern Conjecture, minimal hypersurfaces, scalar curvature, spheres.
Theorem 1.3. (Simons inequality) Let M^n be a closed immersed minimal hypersurface of the unit sphere \mathbb{S}^{n+1} with the squared length of the second fundamental form S. Then
\[
\int_M S(S-n) \geq 0.
\]
In particular, if $0 \leq S \leq n$, one has either $S \equiv 0$ or $S \equiv n$ on M^n.

The classification of $S \equiv n$ in Theorem 1.3 was characterized by Chern-do Carmo-Kobayashi [6] and Lawson [20] independently: The Clifford tori are the only closed minimal hypersurfaces in \mathbb{S}^{n+1} with $S \equiv n$, i.e., $S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}})$, $1 \leq k \leq n-1$.

For a closed immersed minimal hypersurface in \mathbb{S}^{n+1}, notice that $S = n(n-1) - R_M$, by the Gauss and Codazzi equations. Hence, Simons inequality gave the first pinching gap of Conjecture 1.1.

In 1983, Peng and Terng [26, 27] made the first breakthrough towards Chern Conjecture 1.1, they proved: If $S > n$, then $S > n + \frac{1}{12n}$. Moreover, for $n = 3$, $S \geq 6$ if $S > 3$. In 1993, Chang [3] completed the proof of Chern Conjecture 1.2 for $n = 3$. Next, Yang-Cheng [37] and Suh-Yang [31] improved the second pinching constant from $\frac{1}{12n}$ to $\frac{3}{4n}$. However, it is still an open problem for higher dimensional case that if $S \equiv \text{Constant} > n$, then $S \geq 2n$?

If $S \not\equiv \text{Constant}$, then the problem becomes more difficult. Peng and Terng [26, 27] obtained that there exists a positive constant $\delta(n)$ depending only on n, such that if $n \leq S \leq n + \delta(n), n \leq 5$, then $S \equiv n$. Later, Cheng and Ishikawa [4] improved the previous pinching constant for $n \leq 5$, Wei-Xu [35] extended the result to $n = 6, 7$ and Zhang [39] promoted it to $n \leq 8$. Finally, Ding-Xin [14] proved all the dimensions, in particular, they showed that if the dimension is $n \geq 6$, then the pinching constant $\delta(n) = \frac{2\sqrt{n}}{n}$. After that, Xu-Xu [36] improved it to $\delta(n) = \frac{2\sqrt{n}}{n}$ and Li-Xu-Xu [21] showed $\delta(n) = \frac{2\sqrt{n}}{n}$. Actually, due to some counterexamples of Otsuki [25], the condition $S \geq n$ is essential in the pinching results above. Very recently, using the height functions of the normal vector field (cf. [17, 24]), Ge-Li [16] proved that there is a positive constant $\delta(n) > 0$ depending only on n such that on any closed embedded, non-totally geodesic, minimal hypersurface M^n in \mathbb{S}^{n+1}, $\int_M S \geq \delta(n)\text{Vol}(M^n)$.

Lately, de Almeida-Brito-Scherfner-Weiss [12] showed that $M^n (n \geq 4)$ is isoparametric if it is a closed, minimally immersed hypersurface of \mathbb{S}^{n+1} with constant Gauss-Kronecker curvature and it has three pairwise distinct principal curvatures everywhere. For the case that $n = 4$, Tang and Yang [32] proved that, if $R_M \geq 0$, H_3 and the number of distinct principal curvatures g are constant, then M^4 is isoparametric. Deng-Gu-Wei [13] proved that if M^4 is a closed Willmore minimal hypersurfaces with
constant scalar curvature in \mathbb{S}^5, then it is isoparametric. In other words, they dropped the non-negativity assumption of the scalar curvature under the condition $H_3 \equiv 0$.

A recent great progress of Tang-Wei-Yan [33] and Tang-Yan [34] generalized the theorem of de Almeida and Brito [11] for $n = 3$ to any dimension n, strongly supporting Chern Conjecture 1.2. Note that the scalar curvature $R_M \geq 0$ for all isoparametric hypersurfaces and it can be found in [34].

Theorem 1.4. (Tang and Yan [34]) Let $M^n (n \geq 4)$ be a closed immersed hypersurface in \mathbb{S}^{n+1}. If the following conditions are satisfied:

(i) $\sum_{i=1}^{n} \lambda_i^k (k = 1, \cdots, n-1)$ are constants for principal curvatures $\lambda_1, \lambda_2, \cdots, \lambda_n$;

(ii) $R_M \geq 0$;

then M^n is isoparametric. Moreover, if M^n has n distinct principal curvatures somewhere, then $R_M \equiv 0$.

As an application of Theorem 1.4 in dimension four, we remove the condition of the scalar curvature $R_M \geq 0$, but we have some requirements for the Gauss-Kronecker curvature K_M and 3-mean curvature H_3.

Theorem 1.5. Let M^4 be a closed immersed minimal hypersurface with constant scalar curvature R_M and constant 3-mean curvature H_3 in \mathbb{S}^5. If $H_3^2 \leq \frac{1}{2}$ and Gauss-Kronecker curvature K_M satisfies $K_M \leq 1$ (or $K_M \leq \frac{s^2}{144}$), then M^4 is isoparametric.

2. **Proof of Theorem 1.5**

In this section, we will prove Theorem 1.5. Let M^n be a closed immersed minimal hypersurface in the unit sphere \mathbb{S}^{n+1} and denote by h the second fundamental form of hypersurface with respect to the unit normal vector field ν. If $\{\omega_1, \omega_2, \omega_3, \omega_4\}$ is a smooth orthonormal coframe field, then h can be written as

$$h = \sum_{i,j} h_{ij} \omega_i \otimes \omega_j.$$

The covariant derivative ∇h with components h_{ijk} is given by

$$\sum_k h_{ijk} \omega_k = dh_{ij} + \sum_k h_{kj} \omega_{ik} + \sum_k h_{ik} \omega_{jk},$$

and $\{\omega_{ij}\}$ is the connection forms of M^4 with respect to $\{\omega_1, \omega_2, \omega_3, \omega_4\}$, which satisfy the following structure equations:

$$d\omega_i = -\sum_j \omega_{ij} \wedge \omega_j, \quad \omega_{ij} + \omega_{ji} = 0,$$

$$d\omega_{ij} = -\sum_k \omega_{ijk} \wedge \omega_{kj} + \frac{1}{2} \sum_{k,l} R_{ijkl} \omega_k \wedge \omega_l,$$
where \(R_{ijkl} \) is the coefficients of the Riemannian curvature tensor on \(M^4 \). We have the Gauss and Codazzi equations:

\[
R_{ijkl} = \delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} + h_{ik} h_{jl} - h_{il} h_{jk},
\]

and

\[
h_{ijk} = h_{ikj}.
\]

It is a well-known fact that the dual (1, 1) tensor \(A \) (shape operator) of \(h \) is a self-adjoint linear operator in each tangent plane \(T_p M \) and its eigenvalues \(\lambda_1(p), \lambda_2(p), \ldots, \lambda_n(p) \) are the principal curvatures. Associated to the shape operator \(A \) there are \(n \) algebraic invariants given by

\[
\sigma_r(p) = \sigma_r(\lambda_1(p), \lambda_2(p), \ldots, \lambda_n(p)), \quad 1 \leq r \leq n,
\]

where \(\sigma_r : \mathbb{R}^n \to \mathbb{R} \) is the elementary symmetric functions in \(\mathbb{R} \) given by

\[
\sigma_r(x_1, \ldots, x_n) = \sum_{i_1 < i_2 < \cdots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r}.
\]

Observe that the characteristic polynomial of \(A \) can be written as

\[
det(\lambda I_n - A) = \sum_{r=0}^{n} (-1)^r \sigma_r \lambda^{n-r}.
\]

The \(r \)-mean curvature \(H_r \) of the hypersurface is then defined by

\[
(\binom{n}{r}) H_r = \sigma_r.
\]

Suppose

\[
f_k = \text{Tr}(A^k),
\]

by \(n = 4, H_1 = 0, \sigma_4 = K_M \) and \(f_2 = \text{Tr}(A^2) = ||h||^2 = S \) we have

\[
\begin{align*}
 f_1 &= \sigma_1 = nH_1 = 0 \\
 f_2 &= \sigma_2^2 - 2\sigma_2 = S \\
 f_3 &= \sigma_3 - 3\sigma_1\sigma_2 + 3\sigma_3 = 3\sigma_3 \\
 f_4 &= \sigma_4 - 4\sigma_1^2\sigma_2 + 4\sigma_1\sigma_3 + 2\sigma_2^2 = 4\sigma_4 = \frac{S^2}{2} - 4K_M.
\end{align*}
\]

Lemma 2.1. Let \(M^4 \) be a closed immersed minimal hypersurface in \(S^5 \) with constant scalar curvature \(R_M \neq 6 \) and constant 3-mean curvature \(H_3 \) (or equivalently \(f_3 \) is constant). If there are 4 distinct principal curvatures at the minimum point and maximum point of \(K_M \), then Gauss-Kronecker curvature \(K_M \) satisfies

\[
\sup_{x \in M^4} K_M(x) \geq \frac{S^2(S - 10) + 6f_3^2}{48(S - 6)} \geq \inf_{x \in M^4} K_M(x).
\]
A NOTE ON THE CHERN CONJECTURE IN DIMENSION FOUR 5

Proof. Set \(x_{\text{max}} \in M^4 \) and \(x_{\text{min}} \in M^4 \) such that
\[
K_M(x_{\text{max}}) = \sup_{x \in M^4} K_M(x), \quad K_M(x_{\text{min}}) = \inf_{x \in M^4} K_M(x).
\]
At point \(p \) (\(p = x_{\text{max}} \) or \(p = x_{\text{min}} \)), we can take orthonormal frames such that \(h_{ij} = \lambda_i \delta_{ij} \) for all \(i, j \). Thus at this point, we have
\[
\begin{cases}
\sum_{i=1}^{4} h_{ikk} = 0 \\
\sum_{i=1}^{4} \lambda_i h_{iik} = 0 \\
\sum_{i=1}^{4} \lambda_i^2 h_{iik} = 0 \\
\sum_{i=1}^{4} \lambda_i^3 h_{iik} = 0.
\end{cases}
\]

The first, second and third equations hold because \(f_1, f_2 \) and \(f_3 \) are constant. The fourth one comes from the fact that \(p \) is an extreme point of \(K_M \). Then \(h_{iik} = 0 \) by \(\lambda_i \neq \lambda_j \) \((i \neq j)\) at \(p \). Since \(f_3 \) is constant and due to Peng and Terng \cite{26, 27}, one has

\[
(2.4) \quad \mathcal{A} - 2\mathcal{B} = S f_4 - f_3^2 - S^2,
\]
and

\[
(2.5) \quad \frac{1}{4} \Delta f_4 = (4 - S)f_4 + 2\mathcal{A} + \mathcal{B},
\]
where
\[
\mathcal{A} = \sum_{i,j,k} h_{ijk} \lambda_i^2, \quad \mathcal{B} = \sum_{i,j,k} h_{ijk} \lambda_i \lambda_j.
\]
In addition, due to \(S \) is constant and by Simons’ identity \cite{30} we obtain

\[
(2.6) \quad 0 = \frac{1}{2} \Delta S = |\nabla h|^2 + S(4 - S),
\]
where \(|\nabla h|^2 = \sum_{i,j,k} h_{ijk}^2 \). Since \(h_{iik} = 0 \) for all \(i, k \) at \(p \) and let
\[
C = \lambda_1^2 h_{234}^2 + \lambda_2^2 h_{134}^2 + \lambda_3^2 h_{124}^2 + \lambda_4^2 h_{123}^2,
\]
we can directly calculate

\[
(2.7) \quad 3(\mathcal{A} - 2\mathcal{B}) = \sum_{i,j,k} h_{ijk}^2 \left((\lambda_i^2 + \lambda_j^2 + \lambda_k^2) - 2\lambda_i \lambda_j - 2\lambda_i \lambda_k - 2\lambda_j \lambda_k \right)
\]
\[
= \sum_{i,j,k} h_{ijk}^2 \left(2 (\lambda_i^2 + \lambda_j^2 + \lambda_k^2) - (\lambda_i + \lambda_j + \lambda_k)^2 \right)
\]
\[
= 6 \left(h_{234}^2(2S - 3\lambda_1^2) + h_{134}^2(2S - 3\lambda_2^2) + h_{124}^2(2S - 3\lambda_3^2) + h_{234}^2(2S - 3\lambda_4^2) \right)
\]
\[
= 2S|\nabla h|^2 - 18C
\]
\[
= 2S^2(S - 4) - 18C.
\]
Similarly
\[A = \frac{1}{3} \sum_{i,j,k} h_{ijk}^2 (\lambda_i^2 + \lambda_j^2 + \lambda_k^2) \]
(2.8)
\[= 2 \left(h_{123}^2 (S - \lambda_1^2) + h_{124}^2 (S - \lambda_2^2) + h_{134}^2 (S - \lambda_3^2) + h_{234}^2 (S - \lambda_4^2) \right) \]
\[= \frac{1}{3} S |\nabla h|^2 - 2C \]
\[= \frac{1}{3} S^2 (S - 4) - 2C. \]

By (2.7) and (2.8), we have
\[B = -\frac{1}{6} S^2 (S - 4) + 2C. \]

Due to \(f_4 = S^2 - 4K_M \) by (2.2) and (2.4)-(2.9), we have
\[18 \Delta K_M(p) + 48K_M(p)(S - 6) = S^2 (S - 10) + 6f_3^2. \]

The maximum principle implies that
\[\Delta K_M(x_{\text{max}}) \leq 0, \quad \Delta K_M(x_{\text{min}}) \geq 0. \]
Hence
\[48K_M(x_{\text{max}})(S - 6) \geq S^2 (S - 10) + 6f_3^2 \geq 48K_M(x_{\text{min}})(S - 6). \]
Specially, if \(0 \leq S < 6 \), then \(K_M(x_{\text{max}}) \leq K_M(x_{\text{min}}) \), we have \(K_M \) is constant and \(M^4 \) is isoparametric, i.e., \(S = 0 \) or \(S = 4 \). The proof is complete. \(\square \)

Lemma 2.2. Let \(M^4 \) be a closed immersed minimal hypersurface in \(S^5 \) with constant scalar curvature \(R_M \) and constant 3-mean curvature \(H_3 \) (or equivalently \(f_3 \) is constant). If there exists a point \(p \in M^4 \) with three distinct principal curvatures, then Gauss-Kronecker curvature \(K_M \) satisfies
\[-\Delta K_M(p) = 4(S - 4)K_M(p) - 2C_1 + 2(6\lambda^2 - S) \left(h_{111}^2 + h_{112}^2 \right) , \]
where \(C_1 = \lambda_1^2 h_{234}^2 + \lambda_2^2 h_{341}^2 + \lambda_3^2 (h_{124}^2 + h_{114}^2) + \lambda_4^2 (h_{123}^2 + h_{134}^2) \), \(\lambda_1(p) = \lambda_2(p) = \lambda \), \(\lambda_3(p) = \mu - \lambda \) and \(\lambda_4(p) = -\mu - \lambda \).

Proof. At point \(p \in M^4 \), we can take orthonormal frames such that \(h_{ij} = \lambda_i \delta_{ij} \) for all \(i, j \). Thus at this point, we have
\[
\begin{aligned}
& \sum_{i=1}^4 h_{iik} = 0 \\
& \sum_{i=1}^4 \lambda_i h_{iik} = 0 \\
& \sum_{i=1}^4 \lambda_i^2 h_{iik} = 0 .
\end{aligned}
\]

The first, second and third equations hold because \(f_1, f_2 \) and \(f_3 \) are constant. Then for all \(1 \leq k \leq 4 \), one has
\[h_{11k} = -h_{22k}, \quad h_{33k} = h_{44k} = 0, \]
(2.11)
By \(\lambda_i \neq \lambda_j \) (\(2 \leq i \neq j \leq 4 \)) at \(p \). Let \(C_2 = h_{234}^2 + h_{123}^2 + h_{124}^2 + h_{134}^2 + h_{114}^2 + h_{113}^2 \), by (2.11) we have

\[
3(\mathcal{A} - 2\mathcal{B}) = \sum_{i,j,k} h_{ijk}^2 \left(2(\lambda_i^2 + \lambda_j^2 + \lambda_k^2) - (\lambda_i + \lambda_j + \lambda_k)^2 \right)
\]

(2.12) By (2.12) and (2.13) we have

\[
B = 6(h_{234}^2 - 3\lambda_4^2) + h_{124}^2 S - 3\lambda_3^2) + h_{134}^2 (2S - 3\lambda_2^2) + h_{234}^2 (2S - 3\lambda_1^2)) +
\]

\[
\lambda_2 h_{111}^2 + h_{112}^2 (S - \lambda_1^2) + h_{113}^2 (S - \lambda_2^2) +
\]

\[
\lambda_3 h_{222}^2 + 3\lambda_2 h_{224}^2 + h_{223} (S - \lambda_1) + h_{224} (S - \lambda_2)
\]

(2.15) By (2.12) and (2.13), we have

\[
\mathcal{A} = \frac{1}{3} S^2 (S - 4) - 2C_1 + 4\lambda^2 (h_{111}^2 + h_{112}^2) .
\]

(2.16) By (2.5) and (2.11) we obtain

\[
|\nabla h|^2 = S(S - 4) = \sum_{i,j,k} h_{ijk}^2
\]

(2.17) Due to (2.2), (2.5), (2.16) and (2.17), we have

\[
-\Delta K_M(p) = 4(S - 4)K_M(p) - 2C_1 + 2(6\lambda^2 - S) (h_{111}^2 + h_{112}^2) .
\]
The proof is complete. □

Proof of Theorem 1.5. Suppose \(K_M(p) = \sup_{x \in M^4} K_M(x) \in M^4 \), we have just five possibilities for the principal curvatures \(\lambda_1(p), \ldots, \lambda_4(p) \) at point \(p \in M^n \):

1. \(\lambda_i(p) = \lambda_j(p) \) for all \(1 \leq i, j \leq 4 \).
2. \(\lambda_1(p) = \lambda_2(p) = \lambda \) and \(\lambda_3(p) = \lambda_4(p) = -\lambda \),
 \[
 A(p) = \begin{pmatrix}
 \lambda & 0 & 0 & 0 \\
 0 & \lambda & 0 & 0 \\
 0 & 0 & -\lambda & 0 \\
 0 & 0 & 0 & -\lambda
 \end{pmatrix}.
 \]
3. \(\lambda_1(p) = \lambda_2(p) = \lambda_3(p) = \lambda \) and \(\lambda_4(p) = -3\lambda \),
 \[
 A(p) = \begin{pmatrix}
 \lambda & 0 & 0 & 0 \\
 0 & \lambda & 0 & 0 \\
 0 & 0 & \lambda & 0 \\
 0 & 0 & 0 & -3\lambda
 \end{pmatrix}.
 \]
4. \(\lambda_1(p) = \lambda_2(p) = \lambda \), \(\lambda_3(p) = \mu - \lambda \) and \(\lambda_4(p) = -\mu - \lambda \),
 \[
 A(p) = \begin{pmatrix}
 \lambda & 0 & 0 & 0 \\
 0 & \lambda & 0 & 0 \\
 0 & 0 & \mu - \lambda & 0 \\
 0 & 0 & 0 & -\mu - \lambda
 \end{pmatrix}.
 \]
5. \(\lambda_i(p) \neq \lambda_j(p) \) for all \(1 \leq i \neq j \leq 4 \).

Due to Theorem 1.4, \(M^4 \) is isoparametric if \(S \leq 12 \). Hence, we just need to prove \(S \leq 12 \) at \(p \), since \(S \) is constant on \(M^4 \).

In the case (1), \(S \equiv 0 \).

In the case (2), due to \(H_3 \) is constant, also \(f_3 = 12H_3 \) is constant by (2.1) and (2.2), then \(f_3 = 0 \), \(M^4 \) is isoparametric (see Deng-Gu-Wei [13]). In fact, \(K_M \leq 1 \) (or \(K_M \leq \frac{S^2}{144} \)) implies that

\[
K_M = \lambda^4 \leq 1 \quad \text{(or } K_M = \lambda^4 \leq \frac{S^2}{144}, \text{)}
\]

and \(S = 4\lambda^2 \leq 4 \) (or \(\lambda^4 \leq \frac{S^2}{144} = \frac{16\lambda^4}{144} \)). Hence, \(S \leq 4 \) in this case.

In the case (3), if \(f_3^2 = 576\lambda^6 \leq 576 \), then \(\lambda^6 \leq 1 \) and \(S = 12\lambda^2 \leq 12 \).

In the case (4), some direct calculations show

\[
\begin{cases}
S & = 4\lambda^2 + 2\mu^2 \\
f_3 & = -6\mu^2\lambda \\
K_M & = \lambda^2(\lambda^2 - \mu^2)
\end{cases}
\]

(2.18)
By (2.18), one has

\((2.19) \quad \lambda^2 = \frac{\mu^2 + \sqrt{\mu^4 + 4K_M}}{2} \quad \text{or} \quad \lambda^2 = \frac{\mu^2 - \sqrt{\mu^4 + 4K_M}}{2}. \)

If \(K_M(p) = \lambda^2(\lambda^2 - \mu^2) < 0 \), we have \(0 < \lambda^2 < \mu^2 \). The maximum principle implies

\(\Delta K_M(p) \leq 0. \)

Due to (2.10) by Lemma 2.2 and \(S > 4 \), one has

\[0 \leq -\Delta K_M(p) = 4(S - 4)K_M(p) - 2C_1 + 2(6\lambda^2 - S) \left(h_{111}^2 + h_{112}^2\right), \]

and

\[0 \leq C_1 < (6\lambda^2 - S) \left(h_{111}^2 + h_{112}^2\right) = 2(\lambda^2 - \mu^2) \left(h_{111}^2 + h_{112}^2\right) \leq 0. \]

This creates a contradiction. Thus, \(K_M(p) \geq 0 \). By (2.19), we obtain

\(f_{3}^{2} = 36\mu^4\lambda^2 = 18\mu^4 \left(\mu^2 + \sqrt{\mu^4 + 4K_M}\right) \geq 36\mu^6. \)

If \(f_{3}^{2} \leq \frac{576\sqrt{16}}{25} \) and \(K_M \leq 1 \) (or \(K_M \leq \frac{S^2}{144} \)), then

\[S = 4\lambda^2 + 2\mu^2 = 4\mu^2 + 2\sqrt{\mu^4 + 4K_M} \leq 2\sqrt{10(\mu^4 + 2K_M)} \]

\[\leq 2\sqrt{10}\left(\frac{f_{3}^{2}}{36}\right)^{\frac{2}{3}} + 2 \]

\[= 12, \]

(or \(S \leq 2\sqrt{10}\left(\frac{f_{3}^{2}}{36}\right)^{\frac{2}{3}} + \frac{S^2}{144} \leq \sqrt{64 + \frac{5S^2}{36}} \) shows that \(S \leq 12 \)).

In the case (5), by (2.3) in Lemma 2.1 and \(K_M \leq 1 \) (or \(K_M \leq \frac{S^2}{144} \)), we have

\[\left(\text{or} \quad \frac{S^2}{144} \geq 1 \right) \geq K_M(p) \geq \frac{S^2(S - 10) + 6f_{3}^{2}}{48(S - 6)} \geq \frac{S^2(S - 10)}{48(S - 6)}, \]

and it implies that \(S \leq 12 \) if \(S \neq 6 \).

To sum up, all the cases show that \(S \leq 12 \) if \(f_{3}^{2} \leq \min\{576, \frac{576\sqrt{16}}{25}\} = \frac{576\sqrt{16}}{25} \). By (2.1) and (2.2), we have

\[H_{3}^{2} = \frac{f_{3}^{2}}{16} = \frac{f_{3}^{2}}{144} \leq \frac{4\sqrt{10}}{25} \approx 0.5059. \]

This completes the proof by \(H_{3}^{2} \leq 0.5 < 0.5059. \)

Acknowledgments. The author is very grateful to Professor Jianquan Ge, Professor Wenjiao Yan and Dr. Qichao Li for their kindly encouragements and supports.

REFERENCES

[1] T. E. Cecil, Q. S. Chi, and G. R. Jensen, *Isoparametric hypersurfaces with four principal curvatures*, Ann. Math. **166** (2007), no. 1, 1–76.

[2] T. E. Cecil and P. J. Ryan, *Geometry of hypersurfaces*. Springer Monographs in Mathematics. Springer, New York, 2015. xi+596 pp.

[3] S. P. Chang, *On minimal hypersurfaces with constant scalar curvatures in S^4*, J. Diff. Geom. **37** (1993), 523–534.

[4] Q. M. Cheng, S. Ishikawa, *A characterization of the Clifford torus*, Proc. Amer. Math. Soc. **127** (1999), 819–828.

[5] S. S. Chern, *Minimal submanifolds in a Riemannian manifold*, Mimeographed Lecture Note, Univ. of Kansas, 1968.

[6] S. S. Chern, M. do Carmo, S. Kobayashi, *Minimal submanifolds of a sphere with second fundamental form of constant length*, Functional Analysis and Related Fields, Springer-Verlag, Berlin. (1970), 59–75.

[7] Q. S. Chi, *The isoparametric story, a heritage of Élie Cartan*, to appear in Advanced Lectures in Mathematics.

[8] Q. S. Chi, *Isoparametric hypersurfaces with four principal curvatures, II*, Nagoya Math. J. **204** (2011), 1–18.

[9] Q. S. Chi, *Isoparametric hypersurfaces with four principal curvatures, III*, J. Diff. Geom. **94** (2013), 487–522.

[10] Q. S. Chi, *Isoparametric hypersurfaces with four principal curvatures, IV*, J. Diff. Geom. **115** (2020), 225–301.

[11] S. C. de Almeida, F. G. B. Brito, *Closed 3-dimensional hypersurfaces with constant mean curvature and constant scalar curvature*, Duke Math. J. **61** (1990), 195–206.

[12] S. C. de Almeida, F. G. B. Brito, M. Scherfner and S. Weiss, *On CMC hypersurfaces in S^{n+1} with constant Gauss-Kronecker curvature*, Adv. Geom. **18** (2018), 187–192.

[13] Q. T. Deng, H. L. Gu and Q. Y. Wei, *Closed Willmore minimal hypersurfaces with constant scalar curvature in $S^n(1)$ are isoparametric*, Adv. Math. **314** (2017), 278–305.

[14] Q. Ding and Y. L. Xin, *On Chern’s problem for rigidity of minimal hypersurfaces in the spheres*, Adv. Math. **227** (2011), 131–145.

[15] J. Dorfmeister and E. Neher, *Isoparametric hypersurfaces, case $g = 6$, $m = 1$*, Comm. Algebra **13** (1985), 2299–2368.

[16] J. Q. Ge and F. G. Li, *A lower bound for L_2 length of second fundamental form on minimal hypersurfaces*, arXiv:2103.07747.

[17] J. Q. Ge and F. G. Li, *Integral-Einstein hypersurfaces in spheres*, arXiv:2101.03753.

[18] J. Q. Ge and Z. Z. Tang, *Chern conjecture and isoparametric hypersurfaces*, Differential geometry, 49-60, Adv. Lect. Math. (ALM), 22, Int. Press, Somerville, MA, 2012.

[19] S. Immervoll, *On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres*, Ann. Math. **168** (2008), 1011–1024.

[20] H. B. Lawson, *Local Rigidity Theorems for Minimal Hypersurfaces*, Ann. Math. **89** (1969), 187–197.

[21] L. Li, H. W. Xu and Z. Y. Xu, *On Chern’s conjecture for minimal hypersurfaces in spheres*, arXiv:1712.01175.

[22] R. Miyaoka, *Isoparametric hypersurfaces with $(g,m) = (6,2)$*, Ann. Math. **177** (2013), 53–110.
[23] R. Miyaoka, *Errata of “isoparametric hypersurfaces with (g, m) = (6, 2)”*, Ann. Math. 183 (2016), 1057–1071.

[24] K. Nomizu and B. Smyth, *On the Gauss Mapping for Hypersurfaces of Constant Mean Curvature in the Sphere*, Comm. Math. Helv. 44 (1969), 484–490.

[25] T. Otsuki, *Minimal hypersurfaces in a Riemannian manifold of constant curvature*, Amer. J. Math. 92 (1970), 145–173.

[26] C. K. Peng and C. L. Terng, *Minimal hypersurfaces of spheres with constant scalar curvature*, Seminar on Minimal Submanifolds, Ann. Math. Stud., Princeton Univ. Press, Princeton, NJ, 1983, 177–198.

[27] C. K. Peng and C. L. Terng, *The scalar curvature of minimal hypersurfaces in spheres*, Math. Ann. 266 (1983), 105–113.

[28] M. Scherfner, S. Weiss, *Towards a proof of the Chern conjecture for isoparametric hypersurfaces in spheres*, in: Proc. 33 South German Diff. Geom. Colloq., 2008, 1–33.

[29] M. Scherfner, S. Weiss and S.T. Yau, *A review of the Chern conjecture for isoparametric hypersurfaces in spheres*, in: *Advances in Geometric Analysis*, in: Adv. Lect. Math. (ALM), vol.21, Int. Press, Somerville, MA, 2012, 175–187.

[30] J. Simons, *Minimal varieties in Riemannian manifolds*, Ann. Math. 88 (1968), 62–105.

[31] Y. J. Suh and H. Y. Yang, *The scalar curvature of minimal hypersurfaces in a unit sphere*, Comm. Contemp. Math. 9 (2007), 183–200.

[32] B. Tang and L. Yang, *An intrinsic rigidity theorem for closed minimal hypersurfaces in S^5 with constant nonnegative scalar curvature*. Chin. Ann. Math. Ser. B 39 (2018), no. 5, 879–888.

[33] Z. Z. Tang, D. Y. Wei and W. J. Yan, *A sufficient condition for a hypersurface to be isoparametric*, Tohoku Math. J. 72 (2020), 493–505.

[34] Z. Z. Tang and W. J. Yan, *On the Chern conjecture for isoparametric hypersurfaces*, arXiv:2001.10134.

[35] S. M. Wei and H. W. Xu, *Scalar curvature of minimal hypersurfaces in a sphere*, Math. Res. Lett. 14 (2007), 423–432.

[36] H. W. Xu and Z. Y. Xu, *On Chern’s conjecture for minimal hypersurfaces and rigidity of self-shrinkers*, J. Funct. Anal. 273 (2017), 3406–3425.

[37] H. C. Yang and Q. M. Cheng, *Chern’s conjecture on minimal hypersurfaces*. Math. Z. 227 (1998), 377–390.

[38] S. T. Yau, Problem section, In: Seminar on Differential Geometry, Ann. Math. Stud., 102, Princeton Univ. Press, Princeton, NJ, 1982, 669–706.

[39] Q. Zhang, *The pinching constant of minimal hypersurfaces in the unit spheres*, Proc. Amer. Math. Soc. 138 (2010), 1833-1841.

School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, P.R. CHINA.

Email address: faguili@mail.bnu.edu.cn