1. はじめに

種々の炎症性組織では貯留した浸出液中にフィブリン塊が見られることはしばしば経験するところである。この現象は感染症において病原体を封じ込むための生体防御反応と考えられている。その機序はIL1, TNFαをはじめとする各種炎症性サイトカインより誘導される組織因子(TF)発現が起動する外因系血液凝固反応活性化による。腎炎においても、腎生検組織での糸球体フィブリン沈着はそこでの血液凝固反応活性化を意味し、抗凝固療法を行う根拠とされてきた。特に発症後短期間で腎機能が低下し、早期に適切な治療がなければ腎不全に陥り血液透析療法が必要となる加速進行性糸球体腎炎(RPGN、病理組織学的には半月体形成性糸球体腎炎)では糸球体への炎症細胞浸潤、半月体形成とフィブリン沈着が見られ、疾患の病態形成に炎症により誘導された血液凝固活性化が関与すると考えられており、オーストリアの研究グループを中心に本疾患の動物モデルやヒト腎生検組織を用いた研究が進められ、以下にこれらの研究を紹介すると共に私たちが行った尿トロンビンの研究についても紹介する。

Key words: urinary thrombin, inflammation-induced activation of blood coagulation, crescentic glomerulonephritis, biomarker for glomerulonephritis

2. 糸球体腎炎における血液凝固活性化

糸球体腎炎における血液凝固活性化異常としては、①全身性血液凝固活性化と②糸球体病变部での局所的血液凝固活性化がある。①としてはネフローゼ症候群(尿中への血漿アルブミン喪失による低アルブミン血症)に伴う過凝固状態による静脈血栓症の併発が良く知られているがその発生機序は未だ不明の点が多く、予防的抗凝固療法の妥当性についても出血性リスクを伴うことから明確な結論は得られていない。しかししながら、副腎皮質ステロイドパルス療法施行時にはさらに血栓症併発リスクが高まるとして予防的に抗凝固療法を行う医師が多いが、当然のことながら治療によりネフローゼ状態が改善すれば血栓性リスクは減ることから、出血性リスクを考慮して予防的抗凝固療法を中止する必要がある。②についてはトロンビンがフィブリン沈着を起こす他に白血球遊走、細胞増殖や基質増加を介して糸球体での炎症反応修飾やリモデリングに関与する可能

*仙台社会保険病院検査部[〒981-8501 宮城県仙台市青葉区堤町3-16-1]
Department of Laboratory Medicine, Sendai Shakaikoken Hospital
[3-16-1 Tsutsumi-machi, Aoba-ku Sendai 981-8501, Japan]
Tel: 022-275-3111 Fax: 022-275-6033 e-mail: ykitamoto@sendai-shaho.com
活性がある（図1）。糸球体での血漿凝固活性化化については、その重要性もかかわらず非侵襲的な良い指標がないため一般に医師の関心は薄く、ヒト腎炎での最新の研究は非常に少ない3) 一方、動物モデルを用いた研究は着実に進んでいる。家兔抗 GBM 抗体腎炎（RPGN モデル）では、糸球体での血漿凝固活性化化がマクロファージと糸球体固有細胞での組織因子（TF）発現により誘導され4) 6) その結果プロトロンピンがトロンピンに変換され、その働きによりフィブリンが糸球体に沈着することがわかっている。更に血漿凝固因子受容体研究の進歩によりトロンピンについては受容体 PAR1 を介して半月体性形成性腎炎病態（半月体形成、マクロファージ浸潤、フィブリン沈着）形成に深く関与することが動物モデル（マウス抗 GBM 抗体腎炎）で明らかにされている9)。

3. 新規炎症マーカー、尿トロンピン

トロンピンは血漿凝固反応の中心的分子であるが、循環血中ではその生成後に血管内皮細胞ヘパラン硫酸存在下でアンチトロンピン III (ATIII) と速やかに結合し失活する。よって、循環血中でのトロンピン活性測定は非常に困難であり、代わりにその生成量はトロンピン-ATIII 複合体（TAT）の血中濃度を測定することにより間接的に評価することができる。一方、私たちは糸球体トロンピン活性を直接測定し、健常者では全く検出されないが、腎炎患者の一部で活性が検出されることが初めて明らかにした10)。この尿トロンピン活性は血漿 TAT 濃度と全く相関せず、尿トロンピン陽性患者の腎生検組織では糸球体に TF が発現していることから、糸球体で生成したトロンピンが尿により運ばれ活性型のまま体外に排泄されると考えられた（図2）。更に、トロンピン陽性尿を 37℃2 時間保存しても、そのトロンピン活性は大きくは変化しないことから尿中では血液中と違ってトロンピンと ATIII の結合反応は進みにくく、従って尿トロンピン排泄量は糸球体でのトロンピン産生量を反映すると考えた。尿は血液に比べて一般により酸性で、蛋白濃度は極めて低く、各種電解質濃度も大きく異なることがその違いの原因かもしれない。測定に当初ってのは、尿中にはトロンピン以外に各種プロテアーゼが混在するため、測定に当たっては、尿中にはトロンピン以外に各種プロテアーゼが混在するため、最初に尿による発色性ペプチド基質（Val-Pro-Arg-MCA）の水解活性を測定し、続いてトロンピンの特異的インヒビターであるヒルジンを過剰量に加えて活性を測定し、ヒルジンにより阻害された基質水解活性を元のトロンピン活性とした。ヒルジンで阻害されない基質水解活性はトロンピン以外によると考えられるが、これは腎炎患者の他に健常者の尿にも検出される。これまでは生体試料でのトロンピン活性についてはいくつかの報告があるが、それらの多くはペプチド基質の水解活性そのものをトロンピン活性としており、真のトロンピン活性を測定しているとは言えない。

その生成機序から考えると尿トロンピンは糸球体の炎症活性化を反映すると予測される。各種糸
糊体腎炎のうち糸球体へのマクロファージを中心とする白血球浸潤（炎症活動性）が強いものとし
て半月体形成性糸球体腎炎があり、弱いものとし
て本邦で最も多い IgA 腎症（メサンギウム増殖
性腎炎）があるが、尿トロンビン活性は前者で高頻度（70%以上）に見られたのに対して後
者では稀（10%以下）と予想どおりの結果であっ
た。ところが意外なことにもう一つの糸球体への
白血球浸潤の強い急性糸球体腎炎では尿トロンビ
ン活性は殆ど見られなかった。これは主な白血球
浸潤部位が糸球体毛細血管内であるため（図3）
そこで生成したトロンビンは直ちに TAT となり
失活するためと考えた。これら三種の腎炎はすべ
て同様の尿検査異常（血尿・蛋白尿）を呈するが、
半月体形成性腎炎の子後は他の二者に比べて極めて
に悪いためその早期の発見と治療が臨床的に非常に
に重要であるが、尿トロンビン活性測定はこの目
的に有効なものとして大いに期待される。以上をま
とめると尿トロンビン活性は糸球体組織でのトロ
ンビン活性に由来し、糸球体腎炎活動性の指標と
して、腎炎診断（鑑別）診断と病態把握、更には
治療有効性の判定などに幅広く役立つことが期待
される。

4. 終わりに

本稿ではトロンビン以外の凝固・線溶系因子の
糸球体腎炎に於ける役割については紙面の都合上
割愛した。

Disclosure of Conflict of Interests

The author indicated no potential conflict of interest.

文献

1) Levi M, van der Poll T: Inflammation and coagulation. Crit
 Care Med 38(Suppl): S26-34, 2010.
2) Mathew TH, Kincaid-Smith P: Severe fibrin and crescent glomeru-
 lonephritis: clinical and morphological aspects of 33 patients. in
 Kincaid-Smith P, Mathew TH, Becker EL (eds): Glomerulone-
 phritis. New York, John Wiley & Sons, 1972, Pt2: 727-734.
3) Holdsworth SR, Tipping PG: Macrophage-induced Glomerular
 Fibrin Deposition in Experimental Glomerulonephritis in the
 Rabbit. J Clin Invest 76(4): 1367-1374, 1985.
4) Erlich JH, Holdsworth SR, Tipping PG: Tissue factor initiates
 glomerular fibrin deposition and promotes major histocompatibil-
 ity complex class I expression in crescentic glomerulonephritis.
 Am J Pathol 150(3): 873-880, 1997.
5) Tipping PG, Dowling JP, Holdsworth SR: Glomerular proco-
 agulant activity in human proliferative glomerulonephritis. J Clin
 Invest 81(1): 119-125, 1988.
6) Mahmoodi BK, Mudler AB, Waanders FH, Spronk MH, Mulder
 R, Slagman MCJ, Voogt L, Navis G, Tencate J, Kluiin-Nellemans
 JHC, Laverman GD: The impact of antiproteinuric therapy on
 the prothrombotic state in patients. J Thromb Haemost 9(12):
 2416-2423, 2011.
7) Crew RJ, Radhakrishnan, Appel G: Complications of the neph-
 rotic syndrome and their treatment. Clin Nephrol 62(4): 245-
 259, 2004.
8) Tipping PG, Erlich JH, Apostolopoulos J, Mackman N, Loskutoff
 D, Holdsworth SR: Glomerular tissue factor expression in cres-
 centic glomerulonephritis. Correlations between antigen, activity
 and mRNA. Am J Pathol 147: 1736-1748, 1995.
9) Cunningham MA, Rondeau E, Chen X, Coughlin SR, Holdsworth
 SR, Tipping PG: Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescen-
 tic glomerulonephritis. J Exp Med 191(3): 455-462, 2000.
10) Kitamoto Y, Imamura T, Fukui H, Tomita K: The role of thrombin in mesangial proliferative glomerulonephritis. Kidney Int 54(5):
 1767-1768, 1998.
11) Hooke DH, Gee DC, Atkins RC: Leukocyte analysis using mono-
 clonal antibodies in human glomerulonephritis. Kidney Int 31(4):
 964-972, 1987.