BPS BLACK HOLES IN N=2 FIVE DIMENSIONAL ADS SUPERGRAVITY

K. Behrndta, A. H. Chamseddineb,c and W. A. Sabrab,d

aHumboldt-Universität, Institut für Physik
Invalidenstraße 110, 10115 Berlin, Germany
bCenter for Advanced Mathematical Sciences, American University of Beirut, Lebanon
cInstitute for Theoretical Physics, ETH Zuerich Switzerland.
dPhysics Department, Queen Mary and Westfield College,
Mile End Road, E1 4NS, London, United Kingdom

Abstract

BPS black hole solutions of $U(1)$ gauged five-dimensional supergravity are obtained by solving the Killing spinor equations. These extremal static black holes live in an asymptotic AdS_5 space time. Unlike black holes in asymptotic flat space time none of them possess a regular horizon. We also calculate the influence, of a particular class of these solutions, on the Wilson loops calculation.
In the past years a considerable amount of work has been devoted to establish a duality between supergravity and super Yang Mills theories. For example the conformal field theory (CFT) living on the boundary of the five-dimensional anti-de Sitter space (AdS) is expected to be dual (in certain limits) to the four-dimensional super Yang Mills theory. Since this conjecture has been made [1] and further developed in [2], five-dimensional anti-de Sitter spaces have received a great deal of interest.

The aim of this letter is to describe BPS black holes living in an asymptotic AdS vacuum (for the AdS case, Reissner-Nordström solutions have been discussed in [3] and non-abelian monopoles in [4]). To keep these solutions as general as possible we formulate them in terms of D=5, N=2 supergravity with an arbitrary prepotential, i.e. the N=4,8 black holes appear as a special subclass for special choices of the prepotential of the N=2 theory. Because the asymptotic vacuum should be AdS instead of flat Minkowski space, we gauge a U(1) subgroup of the SU(2) automorphism group, which results in a scalar potential that becomes constant at infinity.

In the first part we will describe these black holes as solutions of the Killing spinor equations of gauged D=5, N=2 supergravity [5] and in the second part we ask for the modification of the Wilson-loop calculations as done in [6], [7], [8].

First, we briefly describe the theory of N = 2 supergravity coupled to an arbitrary number n of abelian supermultiplets. N = 2 supergravity theories in five-dimensions can be obtained, for example, by compactifying eleven-dimensional supergravity on a Calabi-Yau 3-folds [9]. The massless spectrum of the compactified theory contains (h(1,1) − 1) vector multiplets with real scalar components. Including the graviphoton, the theory has h(1,1) vector bosons. The theory also contains h(2,1) + 1 hypermultiplets, where h(1,1) and h(2,1), are the Calabi-Yau Hodge numbers. In what follows and for our purposes the hypermultiplets are switched off. The anti-de Sitter supergravity can be obtained by gauging the U(1) subgroup of the SU(2) automorphism group of the N = 2 supersymmetry algebra. This gauging, which breaks SU(2) down to U(1) can be achieved by introducing a linear combination of the abelian vector fields present in the ungauged theory, i.e. A_μ = V_I A^I_μ, with a coupling constant g. To restore supersymmetry, g-dependent and gauge-invariant terms have to be added. In a bosonic background, this amounts to the addition of a scalar potential, (for more details see [10, 11]).

The bosonic part of the effective gauged supersymmetric N = 2 Lagrangian which describes the coupling of vector multiplets to supergravity is given by

\[e^{-1} \mathcal{L} = -\frac{1}{2} R - \frac{1}{4} G_{I J} F^I_{\mu \nu} F^{J \mu \nu} - \frac{1}{2} g_{ij} \partial_\mu \phi^i \partial_\mu \phi^j + \frac{e^{-1}}{48} \varepsilon^{\mu \nu \rho \sigma \lambda} C_{I J K} F^I_{\mu \nu} F^J_{\rho \sigma} A^K_\lambda \]

\[+ \ g^2 V_I V_J \left(6 X^I X^J - \frac{9}{2} g^{ij} \partial_i X^I \partial_j X^J \right) \]

where R is the scalar curvature, \(F_{\mu \nu} = 2 \partial_\mu A_\nu \) is the Maxwell field-strength tensor and \(e = \sqrt{-g} \) is the determinant of the Fünfbein \(e^a_m \).

5 The signature (− + + + +) is used. Antisymmetrized indices are defined by: \([ab] = \frac{1}{2} (ab - ba) \).
The physical quantities in (1) can all be expressed in terms of a homogeneous cubic polynomial V which defines “very special geometry” \[12\].

$$G_{IJ} = -\frac{1}{2} \frac{\partial}{\partial X^I} \frac{\partial}{\partial X^J} (\ln V)|_{V=1}, \quad g_{ij} = G_{IJ} \partial_i X^I \partial_j X^J|_{V=1}, \quad (\partial_i \equiv \frac{\partial}{\partial \phi^i}). \quad (2)$$

For Calabi-Yau compactification

$$V = \frac{1}{6} C_{IJK} X^I X^J X^K = X^I X_I = 1. \quad (3)$$

V is the intersection form, X^I and X_I correspond to the size of the 2 and 4-cycles and C_{IJK} are the intersection numbers of the Calabi-Yau threefold.

Since we are interested in finding BPS solutions in the gauged theory, we display the supersymmetry transformation of the Fermi fields in a bosonic background

$$\delta \psi_\mu = \left(D_\mu + \frac{i}{8} X_I \Gamma_{\mu}^{\nu \rho} - 4 \delta_{\mu}^{\nu} \Gamma_{\rho} \right) F_{\nu \rho}^I + \frac{1}{2} g \Gamma_{\mu} X^I V_I - \frac{3}{2} ig V_I A_I^I \epsilon, \quad \delta \lambda_i = \left(3 \frac{i}{8} \partial_i X_I \Gamma^{\mu \nu} F_{\mu \nu}^I - \frac{i}{2} g_{ij} \Gamma^{\mu} \partial_\mu \phi^j + \frac{3}{2} ig V_I \partial_i X^I \right) \epsilon \quad (4)$$

where ϵ is the supersymmetry parameter and D_μ is the covariant derivative.

The spherically symmetric BPS electric solutions can be obtained by solving for the vanishing of the gravitino and gaugino supersymmetry variation for a particular choice for the supersymmetry parameter. We impose the projection operator condition on the spinor ϵ

$$\epsilon = (ia \Gamma_0 + b \Gamma_1) \epsilon, \quad (5)$$

where $a^2 + b^2 = 1$ and this breaks $N = 2$ supersymmetry to $N = 1$.

We briefly\[11\] describe the procedure of obtaining solutions preserving $N = 1$ supersymmetry. First we start with an ansatz for the metric and gauge field

$$ds^2 = -e^{2V} dt^2 + e^{2W} \left(dr^2 + f^2 r^2 \left(d\theta^2 + \sin^2 \theta d\phi^2 + \cos^2 \theta d\psi^2 \right) \right), \quad A_I^I = e^{-2U} X^I$$

where the functions U, V, W and f are functions of r, and (θ, ϕ, ψ) are the polar coordinates of the 3-sphere. As solution of the gauge field equations we find

$$e^{2U} X_I = \frac{1}{3} H_I$$

where H_I is a harmonic functions which depends on the electric charge q_I. The supersymmetry variation of the gaugino and the time component of the gravitino imply the following relations

$$e^{2V} = e^{-4U} f^2, \quad e^{2W} = e^{2U} \frac{1}{f^2}$$

\[6\]More detailed analysis will be given in \[11\].
where we used some relations of special geometry analog to the derivation in [13].

The time and spatial components of the gravitino transformation imply differential constraints on the Killing spinor. These are

\[
(\partial_t - ig) \epsilon = 0 ,
\]

\[
\left(\partial_r - \frac{i}{2f} \left(\frac{1}{r} + 3U' \right) \Gamma_0 - \frac{1}{2} \left(\frac{1}{r} + U' \right) \right) \epsilon = 0 ,
\]

\[
\left(\partial_\phi + \frac{i}{2} \Gamma_{012} \right) \epsilon = 0 ,
\]

\[
\left(\partial_\phi + \frac{i}{2} \sin \theta \Gamma_{013} - \frac{1}{2} \cos \theta \Gamma_{23} \right) \epsilon = 0 ,
\]

\[
\left(\partial_\psi + \frac{i}{2} \cos \theta \Gamma_{014} + \frac{1}{2} \sin \theta \Gamma_{24} \right) \epsilon = 0 .
\]

Going to the rescaled coordinates

\[
X^I = V^{-\frac{1}{3}} Y^I
\]

where \(V = e^{3U} \), one obtains the following solution\(^7\)

\[
\epsilon = e^{igt} e^{-\frac{i}{2} \Gamma_{012} \theta} e^{\frac{i}{2} \Gamma_{23} \phi} e^{-\frac{i}{2} \Gamma_{014} \psi} \phi(r)
\]

\[
\phi(r) = \frac{1}{2} \sqrt{\frac{f + 1}{g^2 r^2 V^2}} \left(1 - i \Gamma_0 \right) \epsilon_0
\]

(6)

where \(f = \sqrt{1 + g^2 r^2 V^2} \) and \(\epsilon_0 \) is an arbitrary constant spinor. Thus, inserting all terms in our ansatz one obtains

\[
d s^2 = -V^{-4/3} (1 + g^2 r^2 V^2) d t^2 + V^{2/3} \left[\frac{d r^2}{1 + g^2 r^2 V^2} + r^2 (d \theta^2 + \sin^2 \theta d \phi^2 + \cos^2 \theta d \psi^2) \right]
\]

\[
F_{lm}^I = -\partial_m (V^{-1} Y^I) , \quad V = 1 - C_I J K Y^J Y^K , \quad \frac{1}{2} C_I J K Y^J Y^K = H_I = 3 V_I + \frac{q_I}{r^2}
\]

(7)

Note that the constant parts in the harmonic functions are given by \(V_I \), which fixes the \(U(1) \) that has been gauged. The only deviation from the ungauged case \([13]\) comes via the function \(f^2 = 1 + g^2 r^2 V^2 \). This term however changes completely the singularity structure of the black hole solution. To investigate this in more detail we may consider simple cases were \(V \) can be written as

\[
V = H^n = \left(1 + \frac{q}{r^2} \right)^n , \quad n = 0, 1, 2, 3 .
\]

\(^7\)The Killing spinors for a general \(AdS_p \times S^q \) geometry are also discussed in \([14]\).
Obviously, the first case \((n = 0)\) defines the \(AdS_5\) vacuum with no black hole. The cases of \(n = 1, 2\) correspond to black holes with a singular horizon and they appear naturally as BPS solutions of \(N = 4, 8\) supergravity. In both cases the scalars are either zero or blow up near the horizon. The last case \((n = 3)\) is an example of a BPS black hole of \(N = 2\) supergravity, which seems to have a regular horizon at \(r \simeq 0\). However this coordinate system is misleading. Defining

\[
\rho^2 = r^2 + q
\]

one finds

\[
ds^2 = -e^{2V}dt^2 + e^{-2V}\Delta^{-1}d\rho^2 + \Delta \rho^2d\Omega_3
\]

\[
e^{2V} = H^\frac{2n}{3} + g^2\rho^2\Delta \quad , \quad \Delta = H^\frac{3n}{2} \quad , \quad \tilde{H} = 1 - \frac{q}{\rho^2}
\]

In the ungauged case \((g=0)\) the horizon is at \(\tilde{H} = 0\) (or \(\rho^2 = q\)), which is regular in the case \(n=3\) or \(\Delta = 1\). But taking into account the gauging the horizon disappeared \((e^{\pm 2V}\) is finite at \(\rho^2 = q\) for \(n = 3)\) and the singularity at \(\rho = 0\) becomes naked. For the other cases \((n = 1, 2)\) the horizon becomes singular. For \(n = 1\) the singular horizon is infinitely far away, i.e. a light signal \((ds^2 = 0)\) would need infinite time to reach any finite distance (null singularity). But for \(n = 2\) the distance to the singular horizon is finite. This is different to the ungauged case \((g = 0)\), where all singular cases have null horizons. Note also, the naked singularity at \(\rho = 0\) for \(n = 3\) (i.e. \(\Delta = 1)\) is only a finite distance away! Certainly, this makes this solution rather suspicious and to overcome this situation one should consider the non-extremal case.

Let us nevertheless ask, what is the influence of this black hole on the Wilson loops as calculated in [6], [7], [8]. For this we calculate the Nambo-Goto action for open strings that are attached to the asymptotic boundary

\[
S = \frac{1}{2\pi\alpha'} \int d\tau d\sigma \sqrt{|\det g_{\alpha\beta}|} \quad , \quad g_{\alpha\beta} = \partial_\alpha X^{\alpha} X^{\beta} G_{MN}
\]

where \(G_{MN}\) is the 5d metric. For the worldsheet coordinates we choose the gauge

\[
\tau = t \quad , \quad \sigma = \theta
\]

where \(\theta\) is the polar angle in \(\Omega_3\) (see figure and the eq. [7]). Obviously, the string will stretch inside the AdS space and thus its position is given by a function \(f(\theta, \rho) = 0\), where \(\rho\) is the radial coordinate. This defining equation can also be expressed as \(\rho = \rho(\sigma = \theta)\). For the induced metric we find therefore

\[
g_{\tau\tau} = \partial_\tau X^M \partial_\tau X^N G_{MN} = G_{00} = -e^{2V}
\]

\[
g_{\sigma\sigma} = \partial_\sigma \rho \partial_\sigma \rho G_{\rho\rho} + G_{\theta\theta} = (\rho')^2 e^{-2V} \Delta^{-1} + \rho^2 \Delta
\]

and thus,

\[
S = \frac{1}{2\pi\alpha'} \int d\sigma d\tau \sqrt{(\rho')^2 \Delta^{-1} + \rho^2 e^{2V} \Delta}.
\]
Following arguments given by Maldacena [7], we use the fact that the Lagrangian does not depend explicitly on θ and therefore

$$c = \frac{\rho^2 e^{2V} \Delta}{\sqrt{(\rho')^2 \Delta^{-1} + \rho^2 e^{2V} \Delta}}. \quad (15)$$

The constant c can be determined by going at the extremum ρ_0 where $\rho' = 0$ i.e.

$$c^2 = \left(\rho^2 e^{2V} \Delta \right)_{\rho = \rho_0}. \quad (16)$$

In addition it follows from (15) that

$$d\sigma = \frac{d\rho}{\rho \Delta e^V \sqrt{\frac{1}{c^2} \rho^2 e^{2V} \Delta - 1}} = \frac{dy}{2g \rho_0 \sqrt{\frac{n}{2} \frac{1}{\rho_0^2} (y - \lambda)^\frac{2}{3} \sqrt{\frac{2n}{3} (y - \lambda)^\delta} - 1}}. \quad (17)$$

where $y = (\rho/\rho_0)^2$, $\lambda = q/\rho_0^2$ and $\delta = \frac{2(3-n)}{3}$ (see also the figure). Furthermore we consider here only the simplest case where $e^{2V} = g^2 \rho^2 \Delta$ (i.e. we neglect the first term), which is a good approximation for the region $0 < q < \rho^2$. Integrating this equation yields the function $\rho = \rho(\sigma = \theta)$ that determines the position of the string in the AdS space. We can also calculate the distance between both endpoints on the boundary

$$L = 2 \int_0^{\theta_L} \sqrt{g_{\sigma\sigma}} d\sigma^2 = \frac{(1 - \lambda)^\frac{\delta}{2}}{g} \int_1^\infty \frac{dy}{y^\frac{n}{2} (y - \lambda)^\frac{\delta}{2} \sqrt{y^\frac{2n}{3} (y - \lambda)^\delta} - (1 - \lambda)^\delta}. \quad (18)$$

Note, we are dealing here with a different asymptotic geometry of $\mathbf{R} \times S_3$ (where \mathbf{R} is the time).
There are some interesting things to notice. First, for \(n = 3 \) \((\delta = 0)\) all \(\lambda \) dependence drops out and \(L \sim 1/g \) becomes independent of \(\rho_0 \) and the charge \(q \), it scales only with cosmological constant. Thus it coincides with the case without black hole. Secondly, for \(\delta \neq 0 \) the integral is finite if \(\lambda < 1 \), i.e. the string is away from the horizon. However, if the horizon comes close to string (\(\lambda \to 1 \)) the integral becomes divergent for \(n = 1 \). However taking the pre-factor into account one finds that in this limit \(L \) behaves like \(L \sim \frac{1}{g}(1-\lambda)^{1-\frac{\delta}{2}} \). Therefore, the string endpoints approach each other \(L \to 0 \) for \(q \to \rho_0^2 \) (see figure) if the horizon becomes large enough. This is different from the (neutral) Schwarzschild black hole, where \(L \to \infty \) if the horizon comes close to the string \(\text{[8]} \).

Finally, one may insert the solution (17) in the action and calculate the energy

\[
E = \frac{T}{2\pi \rho_0^2} \int_1^{\infty} dy \left[\frac{y^{\gamma/6} (y - \lambda)^{\gamma/4}}{\sqrt{y^{2n/3} (y - \lambda) - (1-\lambda)^{\delta} - 1}} \right]
\]

(19)

where the last term is the subtraction of the infinite self-energy (see [7], [8]). Obviously, for \(\lambda \to 1 \) or \(q \to \rho_0^2 \) the energy remains finite although the string comes close to the singular horizon and it scales with the charge or the BPS mass of the black hole \(E \sim q \).

It is interesting to note that the energy is independent of \(g \).

Acknowledgements

We thank P. Townsend for bringing to our attention the reference [16], which deals with black hole solutions in (anti) de Sitter background without vector multiplets.

References

[1] J. Maldacena, \textit{The large N limit of superconformal field theory and supergravity}, \texttt{hep-th/9711200}.

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, \textit{Gauge theory correlators from non-critical string theory}, \texttt{hep-th/9802109}.

E. Witten, \textit{Anti-de Sitter space and holography}, \texttt{hep-th/9802150}.

[3] L. J. Romans, \textit{Nucl.Phys.} \textbf{B383} (1992) 395, \texttt{hep-th/9203018}.

[4] A. H. Chamseddine and M. S. Volkov, \textit{Phys.Rev.} \textbf{D57} (1998) 6242, \texttt{hep-th/9711181}; \textit{Phys.Rev.Lett.} \textbf{79} (1997) 3343, \texttt{hep-th/9707176}.

[5] A. H. Chamseddine and H. Nicolai, \textit{Phys. Lett.} \textbf{B96} (1980) 89 and unpublished notes.

[6] S.-J. Rey, \textit{Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity}, \texttt{hep-th/9803001}.

[7] J. Maldacena, \textit{Phys.Rev.Lett.} \textbf{80} (1998) 4859, \texttt{hep-th/9803002}.
[8] S.-J. Rey, S. Theissen and J.-T. Yee, hep-th/9803135
 A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, hep-th/9803138.
 hep-th/9803263.

[9] A. C. Cadavid, A. Ceresole, R. D’Auria, and S. Ferrara, Phys. Lett. B357 (1995) 76.

[10] M. Günyaydin, G. Sierra, and P. K. Townsend, Nucl. Phys. B242 (1984) 244; Nucl. Phys. B253 (1985) 573.

[11] K. Behrndt, A. H. Chamseddine and W. A. Sabra, to appear

[12] B. de Wit and A. Van Proyen, Phys. Lett. 293 (1992) 94.

[13] A. H. Chamseddine and W. A. Sabra, Phys. Lett. B426 (1998) 36, hep-th/9811161.

[14] H. Lu, C.N. Pope and J. Rahmfeld, A Construction of Killing spinors on S^n, hep-th/9805151.

[15] W. A. Sabra, Mod. Phys. Lett. A13 (1998) 239, hep-th/9708103

[16] L.A.J. London, Arbitrary dimensional cosmological multi - black holes, Nucl. Phys. B434 (1995) 709.