Qualitative and quantitative phytochemical composition, antimicrobial activity, and brine shrimp cytotoxicity of different solvent extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*

James Kiamba Mailu1,2*, Joseph Mwanzia Nguta1, James Mucunu Mbaria1 and Mitchel Otieno Okumu1,3

Abstract

Background: The root, root bark, and root tubers of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* are used for managing bacterial and fungal infections among the Luo community of Kisumu East Sub County in Kenya. However, data on the efficacy of these plants against common bacterial and fungal pathogens is not available. The safety of these plants is also not known. This study aimed to investigate the phytochemical composition, antimicrobial properties, and safety of different solvent extracts of the roots, root barks, and root tubers of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. The broth microdilution method evaluated the antimicrobial activities of the root, root bark, and root tuber extracts (water, acetone, and methanol) of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. Gram-positive (*Bacillus cereus*, *Staphylococcus aureus*), gram-negative (*Escherichia coli*), and fungal (*Candida albicans*) microorganisms were used in the evaluation. The safety of the extracts was evaluated in *Artemia salina*. The phytochemical composition of the extracts was determined using qualitative and quantitative assays.

Results: In general, the extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* displayed poor antimicrobial properties relative to conventional antimicrobial agents including Amoxicillin, Gentamicin, and Nystatin. The aqueous extract of *Acanthus polystachyus* and the aqueous, acetone, and methanol extracts of *Keetia gueinzii* were safe in *Artemia salina* but all other extracts were cytotoxic to *Artemia salina*.

Conclusions: These findings suggest that the use of the roots, root barks, and root tubers of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* is limited by poor antimicrobial efficacy and cytotoxicity.

Keywords: Antimicrobial activity, Medicinal plants, *Acanthus polystachyus*, *Keetia gueinzii*, *Rhynchosia elegans*, *Artemia salina*

Background

Antimicrobial Resistance (AMR) is considered to be one of the major public health problems facing mankind [1]. The misuse of antimicrobial agents is a key driver of AMR [1]. Incidences of prolonged illness, the need for expensive medicines, AMR related disability and death highlight the cost of AMR to the global economy [1]. The absence of effective antimicrobial agents
may jeopardize the success of treatment in important infections which may occur during surgery or cancer [1]. The emergence of drug resistance for clinical isolates of *Bacillus cereus*, *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans* have been reported for most of the widely prescribed antibiotics and antifungal drugs such as Amoxicillin, Gentamicin, and Nystatin [2–4]. In the last few years, there has been a global increase in the use of medicinal plants to manage both human and veterinary diseases [5]. This has prompted the World Health Organization (WHO) for the first time to add traditional medicine to the latest revision of the international statistical classification of diseases [6]. Medicinal plants may offer a range of interesting possibilities to fight drug resistance [7–9]. Their diverse pharmacological activities may be exploited for the management of various disease conditions including combating pathogens [10]. Among these plants, *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* may hold some promise [11].

Acanthus polystachyus is a shrub of the Acanthaceae family, grows in the wild, and is native to several countries in East Africa including Kenya, Uganda, Tanzania, Burundi, Sudan, and Rwanda [12]. It has pink flowers and soft, hairy leaves [12]. It is traditionally indicated for malaria, scorpion sting, and as an anti-emetic [13, 14]. Studies on the wound healing activity of the leaves have also been reported [12]. *Rhynchosia elegans* is a perennial climbing herb that belongs to the Fabaceae family and is widely distributed in Eritrea, Ethiopia, Uganda, Kenya, Tanzania, the Democratic Republic of Congo, and Yemen [15]. It is traditionally indicated for malaria, common cold and fever in humans, and blackleg disease, anthrax, and amoebiasis in livestock [13, 16]. *Keetia gueinzii* is a shrub of the Rubiaceae family [17]. It has a wide geographical distribution in many African countries including Mozambique, Malawi, Zambia, Cameroon, Sudan, Ethiopia, Rwanda, Burundi, Uganda, Kenya, Tanzania, Central African Republic, and South Africa [17]. It is traditionally indicated for malaria [18]. *Acanthus polystachyus* (roots), *Keetia gueinzii* (root barks), and *Rhynchosia elegans* (root tubers) are used for managing microbial infections in Kenya [11]. There are no pharmacological reports on *Rhynchosia elegans* and *Keetia gueinzii*. Moreover, there is a paucity of information on the phytochemical composition, antimicrobial effectiveness, and safety of these plants including *Acanthus polystachyus*. The present study aimed to fill this gap by determining the phytochemical composition, antimicrobial (bacteria and fungi) activity, and brine shrimp cytotoxicity of the root, root bark, and root tuber extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* prepared using water, acetone, and methanol.

Methods

Ethical approval

Ethical approval of the study was obtained from the Biosafety, Animal use and Ethics committee of the Faculty of Veterinary Medicine, University of Nairobi. Ref: FVM BAUEC/2019/210 and the National Commission for Science, Technology & Innovation (NACOSTI). License No: NACOSTI/P/20/3004.

Plant collection

The root bark of *Keetia gueinzii*, roots of *Acanthus polystachyus*, and root tuber of *Rhynchosia elegans* were collected in a Sub County in Kisumu with the assistance of traditional medicine practitioners in the study area. The plant samples were identified at the University Herbarium and voucher specimens deposited for future reference; JM2019/264/001 for root bark of *Keetia gueinzii*, JM2019/284/003 for roots of *Acanthus polystachyus*, and JM2019/284/002 for root tubers of *Rhynchosia elegans*.

Preparation of plant material

Plant parts were washed with running water and allowed to dry. The root bark of *Keetia gueinzii* was scraped while the whole root of *Acanthus polystachyus* and root tuber of *Rhynchosia elegans* were cut into small pieces. The parts were dried in air at room temperature for 4 weeks and ground to a fine powder weighed on an analytical balance, and stored in zip-lock plastic bags awaiting further use.

Extraction

Aqueous extract

The method of Tadesse et al. and Yong et al. were used with modifications [19, 20]. Briefly, one hundred and sixty-five grams of sample was weighed into a 2-L conical flask and 1-L of distilled water added until there was complete dissolution. The conical flask was placed in a water bath at 90°C and incubated for 60 min with intermittent shaking. The resulting solution was filtered, supernatant collected into 1-L flasks, and freeze-dried intermittently shaking. These were first filtered with 100% acetone and 100% methanol for 72 h generated with 100% acetone and 100% methanol for 72 h. The recovered powder was transferred into a Buchi Lyovapor freeze drier operating at 0.5 mbar −104°C. The recovered powder was transferred into an air-tight glass container until further use [19, 20]. The percentage yield of the extract was calculated.

Organic extracts (acetone and methanol)

The methods of Mostafa et al. and Naz et al. were used with modifications [21, 22]. Briefly, five hundred grams of the powdered plant materials were separately macerated with 100% acetone and 100% methanol for 72 h with intermittent shaking. These were first filtered through cotton wool to remove coarse residues then further filtered through a Whatman No. 1 filter paper and...
centrifuged at 5000 rpm for 10 min. The resulting filtrates were concentrated on a Buchi-R Rota-vapor under reduced pressure at 50 °C. The percentage yield of the extracts was calculated.

Qualitative phytochemical screening

The methods described by Iqbal et al., Pandey and Jaradat et al. were used to evaluate the presence of alkaloids, phenols, saponins, flavonoids, glycosides, terpenoids, and tannins in the prepared extracts [23–26]. Visual color changes/precipitation was used for evaluation and qualitatively recorded as + to indicate the presence of a metabolite and − to indicate the absence of a metabolite.

Quantitative phytochemical composition

Total phenolic content determination

The phenolic content of the extracts was determined using the methods of Harnafi et al. and Singleton et al. [27, 28] with modifications as described by Okumu et al. [29]. The standard which was used to represent phenolics in the extracts was Gallic acid. The standard (Gallic acid; 10 mg) was dissolved in 100 mL of methanol. Serial dilutions ranging from 0.25 to 2.0 were pipetted from the prepared standard solution and transferred to 10 mL volumetric flasks. 2.5 mL of a 1:10 dilution of Folin reagent and 2.0 mL of Sodium carbonate (Na₂CO₃; 7.5% w/v) solution was added. Distilled water was added to the mixture until the total volume in the flask was 10 mL. Distilled water + Folin reagent + Na₂CO₃ served as the blank. All flasks were kept on a water bath at 45 °C for ¾ of an hour. Spectroscopic readings were taken at 765 nm. The readings were used to calibrate a standard curve. The extracts under investigation were weighed (10 mg) and dissolved in 10 mL of methanol. A pipette was used to transfer one mL of the extract + methanol mixture to a 10 mL volumetric flask and the colour was developed in a similar manner to the standard. Spectroscopic readings (in triplicate) of the different extracts were taken at 765 nm. The results were summarized as mean ± standard deviation (Mean ± SD) and the quantities of phenolics in the test samples were determined by extrapolation from the curve and calculated as milligrams of Gallic acid equivalents per gram of the dry plant material (mg. GAE.g⁻¹). The formula described by Gouveia and co-workers was used [30], i.e.

Total flavonoid content determination

The flavonoid content of the prepared extracts was determined according to the method of Atanassova et al. [31] with modifications as described by Okumu et al. [29]. The standard used to represent flavonoids in the extracts was Catechin. The standard (10 mg) was dissolved in 100 mL of methanol to make a stock solution. Aliquots of 0.1 to 1.0 mL were pipetted from the stock solution and transferred to 10 mL volumetric flasks which contained distilled water (4 mL). Sodium Nitrite (NaNO₂); 0.3 mL (5% w/v) was added. 10% w/v Aluminum Chloride (AlCl₃); 0.3 mL was added after 5 min. 1 M Sodium hydroxide (NaOH; 2 mL was added after a further 6 min and the total volume was made up to the mark using distilled water. Spectroscopic readings were taken at 510 nm. Distilled water was used to blank the instrument. A calibration curve was prepared from the spectroscopic readings. Extracts were weighed (10 mg) and dissolved in 10 mL methanol. An aliquot (1 mL) of each of the extracts was pipetted to 10 mL volumetric flasks and treated in the same manner as the standard. Spectroscopic readings were taken at 510 nm. Distilled water was used to blank the instrument. All tests were done in triplicate and the results averaged and expressed as mean ± standard deviation (Mean ± SD). The concentration of flavonoids in the extracts was determined by extrapolation from the curve and calculated as milligrams of Catechin equivalents per gram of the dry plant material (mg. CE. g⁻¹) based on the formula described by Gouveia and co-authors [30] i.e.

\[
\text{Total flavonoid content in mg/g} = \frac{\text{Concentration of catechin established from the curve in mg/mL}}{\text{Volume of the extract solution in mL}} \times \frac{\text{Weight of the extract in g}}{\text{Volume of the extract solution in mL}}
\]

Quantitative determination of tannins

The method of Amadi et al. was used [32] and Ejikeme et al. [33] were used. Briefly, Sodium tungstate (Na₂WO₄); 50 g was dissolved in distilled water (37 mL) to make the Folin-Denis reagent. Phosphomolybdic acid (H₃PMo₁₂O₄₀); 10 g and Orthophosphoric acid (H₃PO₄); 25 mL were then added. The mixture was refluxed for 2 h, allowed to cool before distilled water was added. Tannic acid (0.2 g) was dissolved in distilled water, transferred to a 200 mL volumetric flask, and made up to the mark to make a 1 mg/mL stock solution. Serial dilutions of the tannic acid solution ranging from 0.2–1.0 mg/mL were pipetted into 25 mL volumetric flasks. Folin-Denis reagent (1.25 mL) was added to each flask followed by Na₂CO₃ solution (2.5 mL). The mixture was made to 100 mL with distilled water and allowed to stand for ½ hour in a water bath at 25 °C. Absorbance was determined at 700 nm and the calibration curve was plotted. Each extract was weighed (0.5 g), transferred to a conical flask, and dissolved in 50 mL of distilled water. The
mixture was boiled gently for 60 min on an electric hot plate and filtered using into a 50 mL volumetric flask. Folin-Denis reagent (2.5 mL) and saturated Na₂CO₃ solution (5 mL) was added to 25 mL of distilled water and 5 mL of diluted extract. The solution was thoroughly agitated before being allowed to stand for ½ an hour in a 25 °C water bath. Absorbance was read at 700 nm and the tannic acid content of the extracts was calculated using the formula described by Sheikh and colleagues [34], i.e.

Tannic acid (mg/100 g)
\[
= \frac{C \times \text{extract volume} \times 100}{\text{Aliquot volume} \times \text{weight of sample}} \tag{34}
\]

where C is the concentration of tannic acid read off the graph.

Antimicrobial activity assay

Preparation of bacterial and fungal suspension

The method of Teh et al. was used with minor modifications [35]. Briefly, bacterial stock cultures were sub-cultured on blood agar and incubated at 37 °C for 24 h. Fungal stock cultures were sub-cultured in Sabouraud dextrose broth at 35 °C for 48 h. The test strains were suspended in sterile saline to give a final density of 1.5 × 10⁶ CFU/mL of bacteria or 1.5 × 10⁵ spores/mL of fungi.

Determination of the minimum inhibitory concentration (MIC) of extracts

The extracts were tested against bacterial (*Escherichia coli* ATCC 25922, *Staphylococcus aureus* ATCC 25923, *Bacillus cereus* ATCC 11778) and fungal species (*Candida albicans* ATCC 10231) using broth dilution method as adopted from the method of Teke et al. with slight modifications [36]. About 1.6 g of the crude extracts were transferred into 4 mL of pre-sterilized Muller Hinton Broth and Sabouraud dextrose broth for bacteria and fungi respectively contained in a sterilized 10 mL test tube. Each test tube was clearly labeled and put in a test tube rack. Serial two-fold dilutions of plant extracts of 400, 200, 100, 50, 25 and 12.5 mg/mL concentration were prepared. Using a sterile 1 mL pipette, 0.1 mL of bacterial and fungal suspension was dispensed into each of the test tubes. A test tube containing Muller Hinton Broth without extract and 0.1 mL of the inoculum was used as a negative control. The tubes were incubated at 37 °C for 24 h for bacteria and 35 °C for 48 h for fungi. All experiments were carried out in triplicate. A two-fold dilution of conventionally used antimicrobials (Amoxicillin, Gentamicin, and Nystatin) were used as positive controls for gram-positive bacteria, gram-negative bacteria, and fungi respectively. Visual turbidity after incubation was used for inference. The minimum inhibitory concentration of the extracts and controls was determined from readings on culture plates and was defined as the lowest concentration of these substances that completely inhibited the growth of the different organisms [37].

Determination of the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) of extracts

The method of Mostafa et al. [21] was used to determine the minimum bactericidal concentration (MBC) of the extracts and controls. The method of Wayne et al. [38] was used to determine the minimum fungicidal concentration (MFC) of the extracts and controls. In the determination of the MBC of the extracts, a sterile pipette was used to draw 0.1 mL suspension from the two lowest concentrations of extracts that exhibited invisible growth in the MIC test tubes. These were then sub-cultured onto sterile Muller Hinton Agar plates, incubated at 37 °C for 24 h and microbial growth was examined for each plant extract at different test concentrations. The MBC of the test samples (extracts and controls) was taken as the concentration that did not exhibit any bacterial growth on freshly inoculated agar plates. On the other hand, the MFC was defined as the lowest concentration of test substance (extracts and controls) that prevented visible growth of the fungus.

Artemia salina (Brine shrimp) lethality assay

The method of Meyer et al. was used [39]. Brine shrimp (*Artemia salina*) eggs were hatched at room temperature in a shallow rectangular dish containing the marine salt solution prepared by dissolving 38.5 g of commercial sea salt in 1 L of distilled water [39]. Ten, 48-h brine shrimp larvae were transferred from the hatching trough to 5 mL sample vials. Aliquots (5, 50, and 500 µl) of 5 mg/ml stock solutions of the extracts and standard (vincristine sulphate) were pipetted into the sample vials and made up to the mark with marine salt solution to a final concentration of 10,100, and 1000 µg/mL respectively [39]. Distilled water was used as a control. All experiments were carried out in quintuples and surviving larvae were counted after 24 h. Probit analysis was used to determine the median lethal concentration (LC₅₀) of the extracts and the standard cytotoxic drug [40]. Meyer’s and Clarkson’s toxicity indices were used to classify the acute toxicity of the extracts and standard drug [41, 42].
Results

The ethnobotanical information on the plant species used in this study and the extraction yield is summarized in Table 1. The percentage yield of the aqueous extracts was 21.20%, 17.80%, and 20.20% respectively for *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. Table 1. The percentage yield of the acetone extracts was 4.30%, 4.90%, and 0.80% respectively for *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. Table 1. The percentage yield of the methanol extracts was 20.20%, 0.80%, and 5.20% respectively for *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. Table 1.

The results of the Preliminary phytochemical screening of crude root, root bark, and root tuber extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* are summarized in Table 2. The aqueous root extracts of *Acanthus polystachyus* contained glycosides, phenols, saponins, and tannins. Table 2. The acetone root extracts of *Acanthus polystachyus* contained alkaloids, flavonoids, glycosides, and phenols. Table 2. The methanol root extracts of *Acanthus polystachyus* contained alkaloids, flavonoids, glycosides, phenols, saponins, and terpenoids. Table 2. The aqueous root bark extracts of *Keetia gueinzii* contained glycosides, phenols, and tannins. Table 2. The acetone root bark extracts of *Keetia gueinzii* contained alkaloids, flavonoids, glycosides, and phenols. Table 2. The methanol root bark extracts of *Keetia gueinzii* contained alkaloids, phenols, saponins, and tannins. Table 2. The aqueous root tuber extracts of *Rhynchosia elegans* contained phenols, saponins, tannins, and terpenoids. Table 2. The acetone root tuber extracts of *Rhynchosia elegans* contained phenols, saponins, and tannins. Table 2. The methanol root tuber extracts of *Rhynchosia elegans* contained phenols and saponins. Table 2. The minimum inhibitory/bactericidal/antifungal concentrations of the crude root, root bark, and root tuber extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* are summarized in Table 3.

The antimicrobial properties of the acetone extracts of *Acanthus polystachyus* and *Keetia gueinzii* against gram-positive *Bacillus cereus* were better than the activities of the aqueous and methanol extracts of the plants. Table 3. However, the observed antimicrobial properties were weaker than the standard drug (Amoxicillin). Table 3. Aqueous and acetone extracts of *Acanthus polystachyus* were ineffective against *Staphylococcus aureus* at the doses tested. Table 3. The same was true for aqueous and acetone extracts of *Rhynchosia elegans*. Table 3. The aqueous and acetone extracts of *Keetia gueinzii* exhibited the best antimicrobial properties against *S. aureus*. Table 3. However, the observed activity was weaker than the standard drug (Amoxicillin). Table 3 All of the prepared extracts of the plants had poor efficacy against *E. coli* and *C. albicans*. Table 3. The brine shrimp cytotoxicity of the

Table 1 Ethnobotanical information on the plant species used in this study and their extraction yield

Species	Family	Local name	Voucher number	Part used	Extraction yield (%)
Acanthus polystachyus	Acanthaceae	Nyanandi	JM2019/284/003	Root	21.20 4.30 10.10
Keetia gueinzii	Rubiaceae	Atego	JM2019/264/001	Root bark	17.80 4.90 10.90
Rhynchosia elegans	Leguminosae	Jandalusi/Jandarusi	JM2019/284/002	Root tuber	20.20 0.80 5.20

Table 2 Preliminary phytochemical screening of crude root, root bark, and root tuber extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* respectively

Plant metabolite	Tests	Root extracts of *Acanthus polystachyus*	Root bark extracts of *Keetia gueinzii*	Root tuber extracts of *Rhynchosia elegans*						
	Aqueous	Acetone	Methanol	Aqueous	Acetone	Methanol	Aqueous	Acetone	Methanol	
Alkaloids	Drageordorff's test	–	+	+	–	–	+	–	+	–
Flavonoids	Alkaline reagent test	–	+	+	+	–	–	–	–	–
Glycosides	Keller-kiliani test	+	+	+	+	+	–	–	+	–
Phenols	Ferric chloride test	+	+	+	+	+	+	+	+	+
Saponins	Froth test	+	–	+	+	–	+	–	+	–
Tannins	Ferric chloride test	+	–	–	+	+	+	+	+	–
Terpenoids	Salkowski test	–	–	+	–	–	–	+	–	–

+: metabolite present; –: metabolite absent
Table 3 The minimum inhibitory/bactericidal/fungicidal concentrations of crude root, root bark, and root tubr extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rychnosia elegans* respectively

Type of pathogen	Plant extract	MIC (mg/mL)	MBC (mg/mL)	MFC (mg/mL)	MBC/MIC	MFC/MIC
Bacillus cereus (Gram +ve)	*Acanthus polystachyus*					
Aqueous	25	50	–	2	–	
Acetone	12.5	12.5	–	1	–	
Methanol	100	200	–	2	–	
Keetia gueinzii						
Aqueous	50	100	–	2	–	
Acetone	12.5	12.5	–	1	–	
Methanol	25	50	–	2	–	
Rychnosia elegans						
Aqueous	ND	ND	–	ND	–	
Acetone	*	*	–	*	–	
Methanol	ND	ND	–	ND	–	
Staphylococcus aureus (Gram +ve)	*Acanthus polystachyus*					
Aqueous	ND	ND	–	ND	–	
Acetone	ND	ND	–	ND	–	
Methanol	200	400	–	2	–	
Keetia gueinzii						
Aqueous	12.5	12.5	–	1	–	
Acetone	12.5	12.5	–	1	–	
Methanol	25	50	–	2	–	
Rychnosia elegans						
Aqueous	ND	ND	–	ND	–	
Acetone	*	*	–	*	–	
Methanol	200	400	–	2	–	
Amoxicillin	0.00156	0.00156	–	1	–	
Escherichia coli (Gram –ve)	*Acanthus polystachyus*					
Aqueous	ND	ND	–	ND	–	
Acetone	ND	ND	–	ND	–	
Methanol	200	400	–	2	–	
Keetia gueinzii						
Aqueous	200	400	–	2	–	
Acetone	200	400	–	2	–	
Methanol	200	400	–	2	–	
Rychnosia elegans						
Aqueous	ND	ND	–	ND	–	
Acetone	*	*	–	*	–	
Methanol	ND	ND	–	ND	–	
Gentamycin	0.0156	0.0156	–	1	–	
Candida albicans	*Acanthus polystachyus*					
Aqueous	ND	ND	–	ND	–	
Acetone	400	400	–	1	–	
Methanol	200	400	–	2	–	
Keetia gueinzii						
Aqueous	ND	ND	–	ND	–	
Acetone	200	400	–	2	–	
Methanol	100	200	–	2	–	
Rychnosia elegans						
Aqueous	ND	ND	–	ND	–	
The crude root, root bark, and root tuber extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* is summarized in Table 4. The acetone and methanol extracts of *Acanthus polystachyus* roots and *Rhynchosia elegans* root tubers were cytotoxic in brine shrimp with LC50 values less than 100 µg/mL. Table 4.

Plant species	Part used	Solvent used	Mortality per test dose	LC50 (µg/mL)	Toxicity		
			10 µg/ml	100 µg/ml	1000 µg/ml	Meyer’s toxicity index [41]	Clarkson’s toxicity index [44]
A. polystachyus	Roots	Acetone	0	1	50	195.17 (109.11–349.08)	Toxic
		Distilled water	0	0	0	No death	Non-toxic
		Methanol	0	6	49	174.26 (93.37–325.23)	Toxic
K. gueinzii	Root bark	Acetone	0	0	0	No death	Non-toxic
		Distilled water	0	0	3	148,735,210.7 (2,807,216.20–7,880,462,816)	Non-toxic
		Methanol	0	0	1	1.0 × 10^{16} (2.0 × 10^{15}–5.1 × 10^{19})	Non-toxic
R. elegans	Root tuber	Acetone	0	2	50	175.77 (98.27–314.39)	Toxic
		Distilled water	0	0	49	422.09 (199.52–893.59)	Toxic
		Methanol	0	5	50	168.76 (94.35–301.85)	Toxic
1% DMSO	–	–	0	0	0	No death	Non-toxic
Vincristine sulphate	–	–	8	31	50	45.77 (19.75–106.06)	Toxic

Table 5: Quantitative estimation of phytochemicals responsible for the antimicrobial properties of aqueous, acetone, and methanol extracts of *A. polystachyus*, *K. gueinzii*, and *R. elegans*

Plant	Extract	TFC (mg/g CE)	TPC (mg/g GAE)	TC (mg/g TAE)
A. polystachyus	Aqueous	0.32	2.14	16.61
	Acetone	15.45	8.83	8.50
	Methanol	2.62	2.22	7.66
K. gueinzii	Aqueous	16.32	3.00	80.65
	Acetone	15.45	3.64	87.71
	Methanol	18.63	3.54	85.20
R. elegans	Aqueous	2.37	2.14	9.27
	Acetone	7.07	3.28	25.63
	Methanol	3.67	2.36	17.31

TFC total flavonoid content, mg milligrams, g grams, GAE gallic acid equivalents, TPC total phenolic content, CE catechin equivalents, TC tannin content, TAE tannic acid equivalents.
extracts of the root bark of *Acanthus polystachyus*, the aqueous, acetone, and methanol extracts of the root bark of *Keetia gueinzii*, and the aqueous extracts of the root tubers of *Rhynchosia elegans* were non-cytotoxic to brine shrimp with LC$_{50}$ values of less than 100 µg/mL. Table 4. The acetone extract of *Acanthus polystachyus* had the highest total phenolic content (8.83 mg/g GAE) while the methanol extract of *Acanthus polystachyus* and the aqueous extract of *Rhynchosia elegans* had the least total phenolic content (2.14 mg/g GAE). Table 5. The acetone extract of *Keetia gueinzii* had the highest tannin content (87.71 mg/g TAE) while the methanol extract of *Acanthus polystachyus* had the least tannin content (7.66 mg/g TAE). Table 5.

Discussion

Antimicrobial agents have kept disease-causing microbial infections at bay for many decades[10, 43, 44]. However, the tide seems to be changing because microbes continue to develop elaborate mechanisms which confer resistance to the antimicrobial agents which are currently available in the market [45–47]. The development of new drugs to combat the rising threat of antimicrobial resistance is impeded by reduced economic incentives, challenging regulatory requirements, and other factors [48, 49]. New policies and renewed research are therefore urgently required to mitigate the unfolding crisis of antimicrobial resistance. Medicinal plants and their extracts may be suitable alternatives in the quest to solve this crisis. Indeed, literature is rife with reports on the efficacy of medicinal plants against common bacterial and fungal pathogens [50–53]. The practice of traditional herbal medicine in Kenya is deeply entrenched in society. However, scientific data to support the claims emanating from the practice of traditional herbal medicine in the country is scanty. *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* are routinely used in Kisumu County to manage a host of diseases including microbial infections [11]. There is a paucity of information on the phytochemical composition, antimicrobial properties, and safety of these plants. This study aimed to determine the phytochemical composition, antimicrobial properties, and safety of different solvent extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans*. The yield of the prepared extracts of *Acanthus polystachyus*, *Keetia gueinzii*, and *Rhynchosia elegans* ranged from 0.8% w/w to 21.2% w/w. This was higher than the extract yield of *Oxalis corniculata*, *Cinnamomum tamala*, *Ageratana adenophora*, and *Artemisia vulgaris* which ranged from 2.38% w/w to 9.35% w/w [54]. The values were similar to the 0.89% w/w to 30.27% w/w yield of water, 50% ethanol, 70% ethanol, 95% ethanol, acetone, and dichloromethane extracts of *Blepharis linarifolia*, *Tinospora bakis*, *Cyperus rotundus*, *Maera psudopetalosa*, *Dicoma tomentosa*, and *Guiera senegalensis*, [55].

The solvents which are used during the extraction period have been reported to exert some influence on the nature and the quantity of secondary metabolites [29, 56, 57]. Therefore, the choice of solvent is a key aspect of achieving the desired pharmacological activity of the plant extracts. In the present study, acetone extracts had the highest total phenolic, total flavonoid, and tannin content. A study on the comparative effects of some extraction solvents on the antimicrobial activity of *Eucalyptus camaldulensis* revealed that both the type and concentration of the solvent greatly affected the antimicrobial properties of the plant [58]. It was reported that the 30% acetone extract of *Eucalyptus camaldulensis* showed the highest inhibition of *Acinetobacter baumannii* [58]. This trend was also observed when the acetone extracts of *Acanthus polystachyus* and *Keetia gueinzii* were tested against the gram-positive *Bacillus cereus* pathogen.

The minimum inhibitory concentration (MIC) of the extracts against the gram-positive *Bacillus cereus* ranged from 12.5 to 100 mg/mL. This was higher than the MIC reported on Thai medicinal plant extracts but was lower than the MIC value reported for the acetone extract of *Nigella sativa* (black curcumin) [55, 59]. The minimum bactericidal concentration (MBC) of the extracts against gram-positive *Bacillus cereus* ranged from 12.5 to 200 mg/mL. This was higher than the 12.5–25 mg/mL range reported for the methanol extract of *Rosa damascene* [60]. The minimum inhibitory (MIC) of the extracts against gram-negative *Staphylococcus aureus* ranged from 12.5 to 200 mg/mL while the minimum bactericidal concentration (MBC) ranged from 12.5 to 400 mg/mL. These values were higher than what was reported on 239 traditional Chinese extracts reported by Kim and colleagues who reported MIC values ranging from 0.10 to 12.5 mg/mL and MBC values ranging from 0.78 to 25 mg/mL [61]. The MIC of the extracts against gram-negative *E. coli* ranged from 200 mg/mL to ineffective. This was higher than the MIC values reported for aqueous and ethanol extracts of the fruit, leaves, and stem of *Solanum incanum* reported by Sbhatu and Ahraha [62]. The MBC of the extracts against gram-negative *E. coli* ranged from 400 to ineffective. These values were comparable to the values reported for extracts prepared from *Psidium guajava*, *Salvia officinalis*, *Ziziphus spinachristii*, *Morus alba*, and *Olea Europea* [63]. The MIC of the extracts against *Candida albicans* ranged from 100 mg/
This may explain the activity of the aqueous and methanol extracts of *C. albicans* shown to significantly reduce biofilm mass formed by *Staphylococcus aureus*. Phenols have been shown to have a broad spectrum of activity against gram-positive (*Bacillus cereus* and *Staphylococcus aureus*), gram-negative (*Escherichia coli*) bacteria and fungal (*Candida albicans*) microorganisms. The choice of the solvent appeared to affect the antimicrobial activity of root barks of *Keetia gueinzii*. Extracts prepared by using highly polar solvents such as water and methanol displayed better antimicrobial activity against *Bacillus cereus* than the extract prepared using acetone. It is worth noting that phenols, saponins, and tannins were common compounds in both the aqueous and methanol extracts but were absent in the acetone extracts. It could be argued that these compounds may have some role in the antimicrobial activity exhibited by these extracts. Moreover, the presence of alkaloids in the methanol extract of *Keetia gueinzii* may be the reason for the good antimicrobial activity of this extract against *Staphylococcus aureus*. Phenols have been shown to significantly reduce biofilm mass formed by *C. albicans* thereby reducing the number of viable cells [65]. This may explain the activity of the aqueous and methanol extracts of *Keetia gueinzii* against *C. albicans*.

The total flavonoid content (TFC) of the extracts ranged from 0.32 to 18.63 mg/g catechin equivalents (CE) while the total phenolic content (TCP) ranged from 2.14 to 8.83 mg/g gallic acid equivalents (GAE). These values were lower than the TCP and TFC of *Alternanthera sesailis, Basella alba, Cassia tora, Digeria muricata, Ipomoea aquatica, Leucas cephalotes, Portulacea oleracea*, and *Solanum nigrum* [66]. The tannin content of the extracts ranged from 7.66 to 87.7 mg/g TAE. These values were lower than the aqueous extracts of *Cassia asiatica* and *Musa acuminate* [67].

The brine shrimp cytotoxicity of the extracts ranged from 168.76 to 148, 735, 210.7 µg/mL. These values were comparable to those reported by Tili and colleagues on *Hernaria fontanessi, Ziziphus lotus, Plantago ovata*, and *Thymelaeae hirsuta* [68]. Based on the brine shrimp lethality model, acetone and methanol extracts of *Acanthus polystachyus* and all extracts of *Rhynchosia elegans* were toxic in the brine shrimp model. The presence of alkaloids and flavonoids in the acetone and methanol extracts of *Acanthus polystachyus* could be the reason for the observed toxicity. A study on the brine shrimp cytotoxicity of endemic Papuan plants e.g. *Piper methysticum* and *Evodia suaveolens* were not only cytotoxic to brine shrimp but were also rich in alkaloids and flavonoids [69]. Further evidence of the brine shrimp cytotoxicity of alkaloids is exemplified in the work of Seremet and colleagues who reported that pyrrolizidine alkaloids isolated from *Senecio vernalis, Symphytum officinale, Petasites hybridus*, and *Tussilago farfara* were cytotoxic to brine shrimp [70]. Popovic and colleagues evaluated the antioxidant and *Artemia salina* cytotoxic activities of *Usnea barbata* dry extracts in different solvent systems and reported that all extracts (acetone, ethyl acetate, ethanol, methanol, and water) had high cytotoxicity in *Artemia salina* [71]. This is in agreement with some of the findings of this study particularly in the case of acetone and methanol extracts of *Rhynchosia elegans*. However, distilled water extracts of *Acanthus polystachyus*, acetone root bark extracts of *Keetia gueinzii*, and distilled water and methanol root bark extracts of *Keetia gueinzii* were relatively safe in *Artemia salina*.

Conclusions

The use of the roots, root barks, and root tubers of *Acanthus polystachyus, Keetia gueinzii*, and *Rhynchosia elegans* is limited by poor antimicrobial efficacy against *Bacillus cereus, Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans*. Except for the root barks of *Keetia gueinzii*, the use of all other plants tested is limited by safety concerns.

Abbreviations

WHO: World Health Organization; FVM: Faculty of Veterinary Medicine; BAUDEC: Biosafety animal use and ethics committee; NACOSTI: National Commission for Science, Technology, and Innovation; GAE: Gallic acid equivalents; CE: Catechin equivalents; TAE: Tannic acid equivalents; TCP: Total phenolic content; TFC: Total flavonoid content; TC: Tannin content; UV: Ultraviolet;–visible; CFU: Colony-Forming Unit; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; ATCC: American Type Culture Collection; MFC: Minimum Fungical Concentration; LC50: Median lethal concentration in brine shrimp.

Acknowledgements

The authors are thankful to the Department of Public Health, Pharmacology, and Toxicology for providing research facilities that made this study possible. The authors are also grateful for the support of Mr. Peter Olewe and Mr. Kimu Musembii for their assistance identification of the medicinal plants collected from the study area.

Authors’ contributions

JKM: Conceptualization, data curation, formal analysis, investigation, methodology, project administration, resources, visualization, writing original draft, and writing review and editing. JMM: Conceptualization, investigation, methodology, supervision, validation, writing review, and editing. JMJ: Conceptualization, investigation, methodology, supervision, validation, writing review, and editing. MOO: Formal analysis, investigation, validation, visualization, writing original draft, writing review, and editing. All authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or non-profit organizations.
Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Plant authentication

Samples of the whole plant of Acanthus polystachyus, Keetia gueinzii, and Rhynchosia elegans were collected, transported to the University of Nairobi herbarium where they were authenticated by Mr. Kimeu Musemb. Voucher specimens were deposited for future reference; JM2019/284/003 for roots of Acanthus polystachyus, JM2019/264/001 for root bark of Keetia gueinzii, and JM2019/284/002 for root tubers of Rhynchosia elegans.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Public Health, Pharmacology, and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, PO Box 29053-00626, Nairobi, Kenya.
2. Department of Pharmacy, Kenya Medical Training College, Kisumu Campus, Kenya, PO Box 1594, Kisumu, Kenya.
3. Department of Pharmacy, Jaramogi Oginga Odinga Teaching and Referral Hospital, PO Box 849-40100, Kisumu, Kenya.

Received: 4 August 2021 Accepted: 22 September 2021
Published online: 28 September 2021

References

1. Antimicrobial resistance. http://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 31 July 2021
2. Chalmers G, Cormier AC, Nadeau M, Côté G, Reid-Smith RJ, Boerlin P (2017) Determinants of virulence and of resistance to cethofur, gentamicin, and spectinomycin in clinical Escherichia coli from broiler chickens in Québec, Canada. Vet Microbiol 203:149–157
3. Abd El Tawab AA, El-Hofy FI, El-Eshwwi KK, El-Shora HE (2019) Detection of some virulence and resistance genes of S. aureus and B. cereus isolated from some meat products. Nat Sci 17:85–91. https://doi.org/10.7537/manscience/17021909
4. Freire JCP, de Júnior JKC, de Silva DF, de Sousa JP, Guerra FQS, de Oliveira LE (2017) Antifungal activity of essential oil of Candia albicans strains isolated from users of dental prostheses. Evid Based Complement Altern Med. https://doi.org/10.1155/2017/1181572
5. Ruhsam M, Hollingsworth PM (2018) Authentication of Eleutherococcus rhododendron (Keetia) And Delile in Global Plants on JSTOR. https://plants.jstor.org/compilation/Keetia.gueinzii. Accessed 1 May 2020
6. Yong YK, Zakaria ZA, Kadhir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z (2013) Chemical constituents and antihistamine activity of Bixa orellana leaf extract. BMC Complement Altern Med 13:32. https://doi.org/10.1186/1472-6882-13-32
7. Mostafa AA, Al-Aikar AA, Almaayr KS, Dawood TM, Sholkamy EN, Bakri MM (2018) Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci 25:361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
8. Naz R, Ayub H, Nawaz S, Islam ZU, Yasmn T, Bano A, Wakeel A, Zia S, Roberts TH (2017) Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedical plant species from Punjab, Pakistan. BMC Complement Altern Med 17:1–13. https://doi.org/10.1186/s12906-017-1691-z
9. Iqbal E, Salim KA, Lim LBL (2015) Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Gynophalum mus velutinus (Airy Shaw) from Brunei Darussalam. J King Saud Univ Sci 27:224–232. https://doi.org/10.1016/j.jsbs.2015.02.003
10. Pandey S (2015) Preliminary phytochemical screening and in vitro antibacterial activity of Bauhinia variegata Linn. against human pathogens. Asian Pac J Trop Dis 5:123–129. https://doi.org/10.21037/apjtd.2015.02.003
11. Jaradat N, Alqam HA, Alhidaq SQ, Alhajj D, Al Araj A (2015) Phytoconstituents, free radical scavenging potential, total phenols and total flavonoids assessments for Violet Horned Poppy from Jerusalem Mountains. J Mater Environ Sci 6:2958–2966
12. Usman A, Abdulrahman FI, Usman A (2009) Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thorngingii (Moraceae). AJTCAM 6:289–295. https://doi.org/10.4314/ajtcam.v6i3.77
13. Hamnaa H, Caid HS, el Houida BH, Azz M, Amrani S (2008) Hypolipemic activity of polyphenol-rich extracts from Ocimum basilicum in Triton WR-1339-induced hyperlipidemic mice. Food Chem 108:205–212
14. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178
15. Okumu MO, Bamba JM, Kanja LW, Gakuya DW, Kiama SG, Ochola FO (2016) Phytochemical profile and antioxidant capacity of leaves of Moringa oleifera (lam) extracted using different solvent systems. J Pharmacogn Phytochem 5:302–308
30. Gouveia S, Castilho PC (2011) Antioxidant potential of Artemisia argentea L’Hér alcoholic extract and its relation with the phenolic composition. Food Res Int 44:1620–1631
31. Atanassova M, Georgieva S, Ivancheva K (2011) Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. JUCMT 46:81–88
32. Teke GN, Elissée KN, Roger KJ (2013) Chemical composition, antimicrobial properties and toxicity evaluation of the essential oil of Cupressus lusitanica Mill leaves from Cameroon. BMC Complement Altern Med 13:130. https://doi.org/10.1186/1472-6882-13-130
33. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antifungal activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1007/jpha.2015.11.005
34. Finney DJ (1952) Probit analysis: a statistical treatment of the sigmoid probability curve. Cambridge University Press, Cambridge
35. Hamidi MR, Jovanova B, Kadifkova Panovska T (2014) Toxicological evaluation of medicinal plants used in Vietnamese folk medicine. J Ethnopharmacol 92:177–191
36. Santajit S, Nazni WA, Nurulhusna AH, Norazah A, Lee HL (2017) Determination of physical and phytochemical constituents of some tropical timbers indigenous to the Nigeria forest area. Eur Sci J 10:247–270
37. Sheikh N, Kumar Y, Misra AK, Pfoze L (2013) Phytochemical screening to validate the ethnobotanical importance of root tubers of Dioscorea specie of Meghalaya North East India. J Med Plants 162–69
38. Teh CH, Nazmi WA, Nurulhusna AH, Norazah A, Lee HL (2017) Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol 17:36. https://doi.org/10.1186/s12866-017-0936-3
39. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: A tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(Suppl 6):S01–S02
40. Finney DJ (1952) Probit analysis: a statistical treatment of the sigmoid probability curve. Cambridge University Press, Cambridge
41. Hamidi MR, Jovanova B, Kadifkova Panovska T (2014) Toxicological evaluation of medicinal plants used in Vietnamese folk medicine. J Ethnopharmacol 92:177–191
42. Santajit S, Indras of Nigeria. Eur Sci J 10:247–270
43. Miller MR, Jovanova B, Kadifkova Panovska T (2014) Toxicological evaluation of medicinal plants used in Vietnamese folk medicine. J Ethnopharmacol 92:177–191
44. Spellberg B, Gilbert DN (2014) The future of antibiotics and resistance: a comprehensive review on medicinal plants as antimicrobial therapeutics: A tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(Suppl 6):S01–S02
45. Reygaert WC (2018) An overview of the antimicrobial resistance mechanisms. Korean J Chem Tech 39:162–176
46. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: A tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(Suppl 6):S01–S02
47. Hamidi MR, Jovanova B, Kadifkova Panovska T (2014) Toxicological evaluation of medicinal plants used in Vietnamese folk medicine. J Ethnopharmacol 92:177–191
48. Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176
49. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: A tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(Suppl 6):S01–S02
50. Gould IM, Bal AM (2013) New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence 4:185–191. https://doi.org/10.4161/VIRU.22507
51. Michael CA, Dominy-Howes D, Lobbate M (2014) The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health. https://doi.org/10.3389/FPubH.2014.00145
52. Anand U, Jacobo-Herrera N, Altemimi A, Lakhssassi N (2019) A comprehensive review on medicinal plants as antimicrobial therapeutics: A tribute to a career of leadership by John Bartlett. Clin Infect Dis 59(Suppl 6):S01–S02
53. Bologan V (2011) Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 45:31–34
54. Sanchez J, Indras of Nigeria. Eur Sci J 10:247–270
55. Manandhar S, Lutel S, Dahal RK (2019) In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J Trop Med. https://doi.org/10.1155/2019/1895340
56. Farooq A (2012) Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Sci Pol Technol Aliment 11(3):293–301
57. Nayir A, Zhou X, Huang SP, Wang Y, Li X, Zhu GP (2018) Comparative effects of some extraction solvents on the antimicrobial activity of Euca lyptus camaldulensis leaf, bud, capsule and seed crude extracts. Nat Prod Res 33:2560–2565. https://doi.org/10.1080/14786419.2018.1450494
58. Kuncharoen N, Mai Sci CJ, Nanosombat S, Ritcharoon B, Sukcharoen P (2018) Antimicrobial activity of Thai medicinal plant extracts against oral and gastrointestinal pathogenic bacteria and prebiotic effect on the growth of lactobacillus acidophilus. Chiang Mai J Sci 45(1):33–44
59. Jafari-Sales A, Jafari B, Khesanpour H, Pashazadeh M (2020) Antibacterial effect of methanolic extract of rosa damascena on standard bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa in vitro. UMLS 4:40–46
60. Kbel S, Baniya MK, Danekhu K, Fathah-KH, Habimana Q, Mavumengwana V, Li HB, Wang XH, Corke H (2020) Large-scale screening of 239 traditional Chinese medicinal plant extracts for their antibacterial activities against multidrug-resistant Staphylococcus aureus and cytotoxic activities. Pathogens 9:185. https://doi.org/10.3390/PATHOGENS9030185
61. Sihabat DB, Abirah MA (2020) Preliminary antimicrobial profile of Solanum incanum L.: a common medicinal plant. Evid Based Complement Altern Med. https://doi.org/10.1155/2020/5647065
62. Hemseg HA, Moussa IM, Ibrahim SH, Dawoud TM, Alhajji JH, Mubarak AS, Kabli SI, Alsubki TA, Tawfik AM, Marouf SA (2020) Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi J Biol Sci 27:3221–3227
63. Naje H, Kamarien M, Marutelesc L, Gheorghe I, Popa M, Grădișteanu G, Lazar V (2018) Antifungal activity of some medicinal plant extracts against Candida albicans nosocomial isolates. Rom Biotechnol Lett 23:14073. https://doi.org/10.26327/RBL2018.190
64. Guo N, Liu J, Wu X, Bi X, Meng R, Wang X, Xiang H, Deng X, Yu L (2009) Antifungal activity of thymol against clinical isolates of flavonol-sensitive and-resistant Candida albicans. J Med Microbiol 58:1074–1079
65. Anay S, Baniya MK, Danekhu K, Kurwar P, Gurung R, Koirala N (2019) Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 8:96. https://doi.org/10.3390/PLANTS8040096
66. Ng ZX, Samsuri SN, Yong PH (2020) The antioxidant index and chemometric analysis of tannin, flavonoid, and total phenolic extracted from medicinal plant foods with the solvents of different polarities. J Food Process Preserv. https://doi.org/10.1111/JFPP.14680
67. Tili H, Marino A, Cinestra G, Cacciola F, Mondello L, Misceli N, Tavani MF, Naja H, Nastri A (2021) Polyphenol profile, antibacterial activity and brine shrimp toxicity of leaf extracts from six Tunisian spontaneous species. Nat Prod Res 35:1057–1063
68. Lestani MS, Himawan T, Abadi AL, Retnowati R (2015) Toxicity and phytochemistry test of methanol extract of several plants from Papua using the Brine Shrimp Lethality Test (BSLT). J Chem Pharm Res 7:866–872
69. Seremet OC, Olanu OT, Guta CM, Nitulescu GM, Ilii M, Negres S, Zbarcea CE, Purdel CN, Spandidos DA, Tsatsakis AM (2018) Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models. Mol Med Rep 17:7757–7763
70. Popovici V, Bucur L, Popescu A, Schröder V, Costache T, Rambu D, Cuculea IE, Gird CE, Gariaie A, Gherghel D, Voda B (2021) Antioxidant and cytotoxic activities of Ulexea barberi (L.) F.H. Wigg. Dry extracts in different solvents. Plants 10:909. https://doi.org/10.3390/PLANTS10050909

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.