Fast versions of Shor’s quantum factoring algorithm

Christof Zalka*
zalka@t6-serv.lanl.gov

February 4, 2022

Abstract

We present fast and highly parallelized versions of Shor’s algorithm. With a sizable quantum computer it would then be possible to factor numbers with millions of digits. The main algorithm presented here uses FFT-based fast integer multiplication. The quick reader can just read the introduction and the “Results” section.

*Supported by Schweizerischer Nationalfonds and LANL
Contents

1 Introduction 3
 1.1 Motivation ... 3
 1.2 Summary .. 3
 1.3 assumptions on future quantum computer architectures 3
 1.4 First algorithm: standard but with parallelized addition 3
 1.4.1 improved standard algorithm with $S = 3L$ and $T = 12L^3$ 3
 1.4.2 parallelizing addition .. 4
 1.5 Second algorithm: using FFT-based fast integer multiplication . 4

2 Assumptions on future quantum computer architectures 4

3 The standard algorithm 6
 3.0.1 3L qubits are enough .. 11
 3.1 parallelizing the standard algorithm 12

4 Using FFT-based fast multiplication 13
 4.1 Outline of FFT-multiplication ... 14
 4.2 2-level FFT-multiplication ... 15
 4.3 computational cost of 2-level FFT-multiply 16
 4.3.1 space requirements .. 17
 4.3.2 time requirements .. 17

5 Results 18
 5.1 discussion .. 20

6 Appendices 21
 6.1 parallelizing addition .. 21
 6.2 Why not the $O(n^{\log_2 3})$ Karatsuba-Ofman algorithm? 24
 6.3 The fast Fourier transform (FFT) and FFT-multiply 25
 6.3.1 the FFT-algorithm .. 25
 6.3.2 the quantum fast Fourier transform (QFFT) 26
 6.3.3 computing convolutions with the FFT 28
 6.3.4 1-level FFT-multiply .. 29
 6.3.5 the 2-level FFT-multiply .. 30
 6.4 How to compute the FFT in reversible computation 31
 6.4.1 introduction ... 31
 6.4.2 “quantum” + “quantum” addition: $a, b \to a, b + c$ 32
 6.4.3 computing the modulus ... 33
 6.4.4 computing $x \cdot 2^m \mod (2^n + 1)$ 34
 6.4.5 assessment of total cost .. 34
 6.4.6 parallelizing this .. 35
1 Introduction

1.1 Motivation

The algorithms presented here are useful to factor very large numbers, that is, thousands to millions of digits. Quantum computers which could do that will at best be available in several decades. Still I think it is worth it to investigate already now what such machines could do. Also it shows that messages encrypted even with very large RSA1 keys could possibly be decrypted in several decades.

1.2 Summary

1.3 assumptions on future quantum computer architectures

We don’t know the architecture and power of future (sizable2) quantum computers. It may therefore seem premature to optimize a quantum algorithm and I admit that my results should be considered as a rough guide rather than precise predictions. I make plausible assumptions on the architecture of future quantum computers which I will try to justify below. My main assumptions are that QC’s will anyways be parallel, that qubits will be expensive, that QC’s will have a high “connectivity” between its qubits, that QC”s may be slow and that fault tolerant techniques (quantum error correcting codes) will be used. That means that I’m looking for highly parallelizable algorithms which nevertheless don’t use much more space (qubits) than simpler algorithms. If there are plenty of qubits, additional parallelization schemes could be used with a relatively bad space-time tradeoff of the form $T_p \sim 1/S$. Because present propositions for fault tolerant techniques3 are especially slow for Toffoli gates, I will only count those for my performance analyses.

1.4 First algorithm: standard but with parallelized addition

1.4.1 improved standard algorithm with $S = 3L$ and $T = 12L^3$

First I give an improved version of the standard algorithm1 which uses only $3L$ qubits and some $12L^3$ Toffoli gates, where L is the number of bits of the number to be factored. The ideas that lead to these improvements are due to several people. My contribution is the observation that it is enough to compute the modular exponentiation correctly for most but not all input values, as it should still be possible to extract the period of this function is a few runs of the quantum computer. This allows substantial simplifications of the algorithm. The idea is used throughout this paper.

1RSA is a widely used public-key cryptosystem whos security relies on the difficulty to factor large numbers

2I think one shouldn’t call a 2 or 3 quantum bit system a quantum computer

3
1.4.2 parallelizing addition

The standard way to compute the modular exponentiation \[11\] is to decompose it into many modular multiplications which again are decomposed into additions. Usually the addition has to be done bit after bit. I propose a way to parallelize it such that the execution time essentially becomes a constant for large numbers. The space requirements of the algorithm increase from \(S = 3L\) to \(S = 5L\) qubits.

1.5 Second algorithm: using FFT-based fast integer multiplication

Here we directly “attack” the modular multiplication by using the fast Fourier transform (FFT)-based multiplication technique which led to the famous Schönhage-Strassen algorithm.

Note that the FFT here has nothing to do with the quantum Fourier transform. The latter Fourier-transforms the amplitudes of a quantum register. The former is a classical operation, even though it is applied to a superposition and thus is computed in “quantum parallelism”. Applied to a “classical” basis state it computes the Fourier transform of the values which are represented in binary in several registers.

FFT-based fast integer multiplication is rather complicated, it consists of several “subroutines” which I have figured out how to do reversibly. Also the Fourier transform employed is not the usual one over the complex numbers, but over the finite ring of integers modulo some fixed integer. FFT-multiply reduces the multiplication of two big numbers to many smaller multiplications. I will use the same technique again to compute these smaller multiplications, thus I propose a 2-level FFT-multiply.

I have investigated numerous other versions, like 1-level FFT-multiply with parallelized addition or the \(O(n \log^3 n)\) Karatsuba-Ofman algorithm or FFT-multiply using a modulus which is not of the form \(M = 2^n + 1\) as is usually used. These algorithms seemed not to perform well enough either on space (Karatsuba-Ofman) or on time and I’m not discussing all these possibilities.

2 Assumptions on future quantum computer architectures

As mentioned above, my main assumptions are that quantum computers will be parallel, that qubits will be expensive and that communication across the QC will be fast (contrary e.g. to a cellular automaton).

The parallelism assumption comes from the following observations: Qubits have to be controlled by exterior field which are again controlled by a classical computer. Probably every qubit or few qubits will have its own independent (classical) control unit. This also explains why I think that qubits will be expensive, thus we want to use as few of them as possible. Also if decoherence is
strong we will have a high rate of memory errors acting on resting qubits. This will make necessary periodic error recovery operations (quantum error correction) also on resting qubits, thus the QC must anyways be capable of a high degree of parallelism. Note that in the case where memory errors dominate over gate inaccuracy errors we actually loose nothing by running the computation in parallel, as it will not increase the error rate by much.

Here I have of course assumed that large quantum computations will need fault tolerant techniques (see e.g. Shor [5]). Thus all “computational” qubits will be encoded in several physical qubits and operations (gates) will be done on the encoded qubits, thus without decoding. Presently proposed schemes (Shor [6], Gottesman [12]) are much slower on Toffoli gates than on the other used gates, which is why I propose to only count the Toffoli gates when assessing the execution time.

I assume that better fault tolerant schemes will be found, e.g. ones using less space than the very space-consuming concatenation technique (see Knill et al. [4] or Alaronov et al [7]). Also I think that faster ways of implementing the Toffoli gate fault tolerantly will be found.

Actually there is an argument (Manny Knill, private communication) which shows that it is not possible to implement all gates of a set of universal gates transversally, that is bitwise between the individual qubits of the encoded computational qubits. That is because otherwise errors that don’t lead out of the code space could happen, which couldn’t be detected. Present schemes allow the transversal implementation of CNOT, NOT and Hadamard transform. Therefore in these schemes it is not possible to implement the Toffoli gate transversally. I now propose to look for a scheme where all the “classical” gates Toffoli, CNOT and NOT can be implemented transversally, but not non-classical gates like the Hadamard. This would help a lot for Shor’s algorithm (and probably also for applications of Grover’s algorithm) as there except for a few gates at the eginning and at the end, we use only such “classical” gates.

Why do I think that QC’s may be much slower than todays conventional computers? I think that 2-bit gates (or multi-bit gates) will be slow, as it is not easy to keep qubits from interacting with each other sometimes and then (with exterior fields) to make them interact strongly. Actually this is essentially true for all present quantum computer hardware proposals.

The assumption that fast quantum communication will be possible between (relatively) distant parts of a QC is not well founded, rather I think it will simply be a necessity for quantum computations. It should be possible for QC’s which either use photons to represent qubits or where a coupling to photons is possible. Then connections could simply be optical, possibly simply with optical fibers. In the ion trap scheme it is clear that a large QC could hardly consist of a single ion trap. Cirac and Zoller have thus extended their proposal to couple ion-trap qubits to photons.

The degree of connectivity may still be less than desired. When interpreting my results for computation time, one must keep in mind that things might actually be worse for a realistic quantum computer.

A general assumption that I make is that measurements of qubits will not
be too hard, as otherwise fault tolerance would be much harder to achieve.

I also assume that classical computation will be much cheaper (and probably also faster) than quantum computation. Therefore where possible I (pre-) compute things classically. (Of course this makes sense only up to a certain point.)

3 The standard algorithm

The most part of Shor’s quantum factoring algorithm consists of computing the modular exponentiation. This can be seen as a classical computation, as it transforms computational basis states into computational basis states. Of course this transformation is applied “in quantum parallelism” to a large superposition of such states. Still we can think of it as being applied to just one basis state. Then it differs from conventional computation only in that it must be reversible.

So for Shor’s algorithm we have to compute:

\[x \rightarrow x, a^x \mod N \] (1)

Any conventional algorithm can also be run on a reversible machine, except that then a lot of “garbage” bits will be produced. If we are content with leaving around the input (here \(x \)), there is a general procedure to get rid of the garbage. Say we want to compute \(f(x) \), but necessarily also produce garbage \(g(x) \). Then we can do the following to get rid of it:

\[x \rightarrow x, g(x), f(x) \rightarrow x, g(x), f(x), f(x) \rightarrow x, 0, 0, f(x) \] (2)

In the 2\(^{nd}\) step we copy \(f(x) \) to an auxiliary register, initialized to 0. This can simply be done by bitwise CNOT. The last step is the time reverse of the first, thus it “uncomputes” \(g(x) \) and the first copy of \(f(x) \). In general the work space will have a size about the number of operations of the computation. Fortunately we can do much better for the modular exponentiation, as we will see later.

How can one compute efficiently a modular exponentiation with a large exponent? The method is:

\[a^x \mod N = \sum a^{2^i} \mod N = \prod_i \left(a^{x_i2^i} \mod N \right) \mod N \] (3)

Where the \(x_i \) are the bits of the binary expansion of \(x \). The numbers \(a^{2^i} \mod N \) can be calculated by repeated squaring. The modular exponentiation is then computed by modular multiplication of a subset of these numbers. We will have a “running product” \(p \) which we will modularly multiply with the next candidate factor \(a^{2^i} \mod N \) if \(x_i \) is 1. Reversibly we will do:

\[p \rightarrow p, p \cdot A \mod N \rightarrow 0, p \cdot A \mod N \] (4)

The 2\(^{nd}\) step is possible because modular multiplication with \(A \) is a 1 to 1 function and furthermore because we know how to efficiently compute its inverse. The general scheme in reversible computation for such a situation is:
\[x \rightarrow x, f(x) \rightarrow 0, f(x) \] (5)

For the 2\text{nd} step imagine that we applied the inverse of \(f \) to \(f(x), 0 \), thus obtaining \(f(x), x \). So the 2\text{nd} step above is essentially the time reverse of this. For modular multiplication the inverse function is simply the modular multiplication with the inverse of \(A \) modulo \(N \). \(A \) has such an inverse because it is relatively prime with \(N \). This is because we assume that the constant \(a \) is relatively prime with \(N \). Then \(A^{-1} \mod N \) can easily be precomputed classically using Euclid's algorithm for finding the least common divisor of 2 numbers.

Let's now concentrate on how to compute

\[p \rightarrow p, p \cdot A \mod N \] (6)

we can make a further simplification:

\[p \cdot A \mod N = \sum p_i 2^i \cdot A \mod N = \left(\sum p_i (2^i A \mod N) \right) \mod N \] (7)

Again the numbers \(2^i A \mod N \) can be precomputed classically. So now we have reduced modular multiplication to the addition of a set of numbers of the same length as \(N \).

For this modular addition there are 2 possibilities: either we first add all numbers not modularly and then compute the modulus, or we have a “running sum” \(s \) and every time we add a new number to it we compute the modulus. At least for conventional computation the 1\text{st} possibility is preferable: Say \(L \) is the number of bits of \(N \), and thus also the length and the number of the summands. The total sum will then be some \(\log_2 L \) bits longer than \(L \). To compute the modulus of this number will take some \(\log_2 L \) steps, whereas we have to do some \(L \) steps if we compute the modulus at each addition. For reversible computation the problem is that computing the modulus of the total sum is not 1 to 1 whereas modular addition (of a fixed “classical” number) is. First I will describe the modular addition technique and later I will show that the more efficient method is also possible in reversible computation.

Let’s first see how we can make a (non-modular) addition of a fixed (“classical”) number to a quantum register. Actually this can be done directly without leaving the input around. So we want to do

\[s \rightarrow s + B \] (8)

Addition of course is done binary place by binary place, starting with the least significant bit. For every binary place we will also have to compute a carry bit. In reversible computation we will need a whole auxiliary register to temporarily hold these carry bits before they get “uncomputed”. Thus we will do

\[s \rightarrow c, s + B \rightarrow s + B \] (9)
Say c_i is the carry bit that has been calculated from the place number $i - 1$, thus we will want to add it to the bit s_i. Then for every place we have to do the following operations:

$$c_{i+1} = (s_i + B_i + c_i \geq 2) \quad s_i \rightarrow s_i \oplus B_i \oplus c_i$$

(10)

Here the parenthesis means a logical expression and \oplus means XOR which is the same as addition modulo 2. To show how to uncompute the carries later, it is preferable to first compute the new s_i and then compute the carry c_{i+1}:

$$s_i \rightarrow s_i \oplus B_i \oplus c_i$$

(11)

$$\text{if } B_i = 0 : \quad c_{i+1} = c_i \text{ AND } \bar{s}_i \quad \text{if } B_i = 1 : \quad c_{i+1} = c_i \text{ OR } s_i$$

(12)

The AND and OR can be realized by using a Toffoli gate (CCNOT). Thus for either value of B_i we need a Toffoli gate per binary place and later another Toffoli gate to uncompute the carry.

Actually we want to add only if some conditional quantum bit is 1. We could now make every gate conditional on this bit. Thus a NOT would become a CNOT, a CNOT a CCNOT and so on. This would increase the cost of the computation a lot, as much more Toffoli gates would be used, e.g. a CCCNOT needs 3 Toffoli gates. Therefore it is preferable to do as little as possible conditional on the “enable-qubit” (which decides whether we should add or not). For addition I propose the following: when uncomputing the carries, we also uncompute the s_i’s conditional on the negation of the “enable-qubit”. The computation of the s_i’s usually needs only CNOT’s and no Toffolis, so by making this operation conditional on the enable qubit we will avoid costly things like CCCNOT.

The following quantum network shows these operations for 1 binary place:

$$B_i = 0 \quad \ quad
Note that $s' = s + B$ if $s < N - B$ and $s' = s + B - N$ if $s \geq N - B$. To do this, we first compute the condition bit $(s \geq N - B)$, and then, depending on it, we add B, resp. $B - N$. How can we uncompute the condition bit? To do this we have to be able to compute it from s'. It is easy to see that it is simply $(s' < B)$. Formally:

$$s \rightarrow (s \geq N - B), s \rightarrow (s \geq N - B), s' \rightarrow (s \geq N - B) \oplus (s' < B) = 0$$ (14)

Of course $B - N$ is negative, so we have to add the complement $2^n + B - N$, where 2^n is the smallest power of 2 which is larger or equal to N. After this addition we then simply have to flip the bit with place value 2^n in the result.

Let’s look at the second step in the above equation where the addition is done. Thus at the i^{th} binary place the classical bit we want to add is either B_i or $(2^n + B - N)_i$. If these two bits are equal we can use the simple addition network described above. For the other 2 cases where $B_i \neq (2^n + B - N)_i$, the network is more complicated, even though I have found a way to do it with the same number of Toffoli gates. I describe below only the case $B_i = 0$ and $(2^n + B - N)_i = 1$ as the remaining case is very similar. So:

$B_i = 0$ $\quad (2^n + B - N)_i = 1$

The dashed line should be left away when we first compute the sum but should be solid (thus here forming a Toffoli gate) when we uncompute the carries (and possibly also the sum). To see that this network does what it should, consider separately the cases $a_i = 0$ and $a_i = 1$. In the first case the carry c_{i+1} should only be set if $s_i = c_i = 1$ and in the other case it should always be set except when $s_i = c_i = 0$. It is easy to check that this works out as it should.

Let’s now look at the computation of the comparison (qu)bits. A comparison seems to cost about as much as an addition. Say we start the comparison from the most significant bits downwards. For 2 random numbers we will usually see after a few bits which number is larger, only if the two numbers are equal or differ only in the least significant bit, have we to go through all bits. Of course in quantum parallelism we can’t do that, as there will usually always be some fraction of the superposition (of computational basis states) which are
still equal for all bits we have looked at. But, I argue, that once this fraction is small enough, we don’t really have to care about it.

More generally I say that if we compute the modular exponentiation wrongly for some small fraction of input values x, it doesn’t matter much. Say

$$x \to x, a^x \mod N + E(x) \quad \text{where} \quad E(x) = 0 \quad \text{for most } x$$

(15)

Say the fraction of the input values x in the superposition for which $E(x) \neq 0$ is equal to $\epsilon \ll 1$. The scalar product of this state and the intended state then is $1 - \epsilon$. It is clear that there will be little change in the distribution of output values observed at the end of the quantum computation. Anyways it is clear that a quantum computer will work imperfectly and the error level we expect will not be small. This may well still be true with error correction techniques, as these techniques are very expensive (especially in space) so that we will only use them as much as necessary. Therefore the classical post-processing will anyways have to take such errors into account.

So I propose to simplify the modular exponentiation computation by allowing “algorithmic” (or “deterministic”) errors. In particular here I propose to only compare some of the most significant bits of two numbers to be compared. If these bits are equal for the two numbers, we e.g. say that the 1. number is the larger. I make here the plausible assumption that for estimating the error rate I can think of the numbers as uniformly distributed random numbers. Mathematically (and therefore very cautiously) inclined people have questioned the validity of this assumption. Here I simply assume that it is true, but note that one could heuristically test it by running the simplified modular exponentiation algorithm on a conventional computer for many inputs and check the error rate.

What error rate per modular addition can we tolerate? The modular exponentiation consists of $4L$ modular multiplications each of which consists of L modular additions. So for an overall error rate ϵ we are allowed an error rate of about $\epsilon/(4L^2)$. With the random number assumption this says that for comparison we should look at the $2 + 2 \log_2(L) - \log_2(\epsilon)$ most significant bits of the two numbers. For definiteness I will choose $\epsilon = 0.01$. So e.g. for $L = 1000$ bit numbers we only have to compare some $2 + 2 \cdot 10 + 7 = 29$ bits, thus only a small fraction of L. For estimates of the cost (time and space) of the algorithm I will leave this small contribution away (note also that the contribution is not in leading order of L).

How many Toffoli gates do we use? First we need 1 Toffoli gate per binary place and then 2 Toffolis for uncomputing the carries. So conditional modular addition cost us $3L$ Toffoli gates.

Now let’s look at the algorithm where we first add up all summands and only then compute the modulus (mod N). The problem is that computing the modulus of the total sum is not a 1 to 1 function. I propose the following algorithm: Along with the total sum s we compute an “approximate total sum” s' which carries only some of the most significant bits. To compute s' of course we also only add up the most significant bits of the summands, thus this doesn’t
cost us much. Now we can determine from s' how often we have to subtract N from s to get the modulus. Finally we run part of this algorithm backwards and in particular uncompute s'. In more detail:

$$0 \rightarrow s, s' \rightarrow s, s', [s'/N] \rightarrow s \mod N, s', [s'/N] \rightarrow s \mod N, s' \rightarrow s \mod N$$

(16)

Here $[s'/N]$ means the integral part of s'/N. Thus we compute $s \mod N$ as $s - N\lfloor s'/N \rfloor$. How many of the most significant bits do we have to use for s'? We want the probability of a wrong modular multiplication to be smaller than $\epsilon/(4L)$. Thus s' should have some $2 + 7 + \log_2(L)$ correct bits below the most significant bit of N. To get these bits correct we have to use some $2 + 7 + 2\log_2(L)$ bits in each addition when computing s'. Being the sum of L numbers of about the size of N, s' will be some $\log_2(L)$ bits longer than N. So all in all s' will have length $9 + 3\log_2(L)$ and each addition will also use as many bits. I won’t describe detailed quantum circuits for all this, because at any rate the cost associated with s' is relatively low. (Exercise for the ambitious reader: why do I go through the trouble of computing s' separately and not just copy some of the most significant bits of s?)

Let’s look at the total number of Toffoli gates for such a modular exponentiation. We now use the simple (non-modular) conditional addition circuit described above. To compute the sum and uncompute the carries it needs 3 Toffoli gates per binary place. Then per modular multiplication we need L such additions, each of length L. We need another modular multiplication to uncompute the old value of the running product by using $A^{-1} \mod N$. Then to compute the modular exponentiation we need $2L$ such steps. This gives a total of $12L^2$ Toffoli gates.

3.0.1 3L qubits are enough

So far it seems that this algorithm uses some $5L$ qubits (in leading order). To see this let’s look at a modular multiplication step:

$$x, p \rightarrow x, p, A \cdot p \mod N \rightarrow x, A \cdot p \mod N$$

(17)

Now x is a $2L$ bit number, whereas p and $A \cdot p \mod N$ are L bit numbers. Another L qubits of workspace is needed to temporarily store the carry bits for each addition before they are uncomputed. Thus we get a total of $5L$ qubits.

Now Manny Knill (private communication) and possibly others have observed that one can reduce this to $3L$ qubits. First let’s look at the quantum FFT (that is Fourier transform of the amplitudes of a register). In Shor’s algorithm this QFFT is the last operation before readout. In this case the QFFT can be simplified (see appendix) by interleaving unitary operations and measurements of qubits. This QFFT procedure has the following structure: Hadamard-transform the most significant qubit of the register and measure it. Then if the observed value is 1, apply certain phase shifts to all the other qubits of the register. Then Hadamard transform the second most significant qubit and measure it. Again,
depending on the measured values of the two most significant qubits, we have to apply certain phase shifts on the remaining unobserved qubits. So every step consists of Hadamard transforming the most significant still unobserved qubit, then measuring it and then applying certain phase shifts on the remaining unobserved qubits. The values of these phase shifts depend on the so far measured qubit-values. The measured values give us the binary representation of the “output number”. Note that it is in bit-reversed order, thus we get the least significant bits first. This bit-inversion is a feature of the FFT algorithm.

The register we apply this procedure to, is the input register \(x \). But most action happens in the other registers. All that happens to the input register is the following: It starts out initialized to the \(|0\rangle \) state, then we make the uniform amplitude superposition of all possible input values \(x \) by Hadamard transforming each qubit. Then each of these qubits controls a modular multiplication, thus it decides whether the multiplication is done or not (in each of the quantum-parallel computations). And finally the \(x \) register undergoes the QFFT procedure described above. So after having controlled “its” modular multiplication a \(x \)-qubit does nothing until the final QFFT.

Usually we would imagine that we would go from least significant modular multiplications to most significant ones (significance = significance of associated \(x \)-control bit). But of course the order in which we multiply doesn’t matter, so we can e.g. turn around the order. Then the most significant \(x \)-qubits will first be ready for the QFFT. So we can interleave controlled modular multiplication steps and QFFT steps, thus after each controlled modular multiplication we will get another bit of the (classical) final output.

After having been Hadamard transformed right at the beginning, a \(x \)-qubit doesn’t do anything until it controls “its” modular multiplication. Moreover the \(x \)-qubits in the uniform-amplitude superposition are not entangled. Thus we don’t really have to prepare them all at the beginning of the algorithm, but we prepare the \(x \)-qubit only just before “its” modular multiplication.

Therefore we have eliminated the 2\(L \) qubit long \(x \)-register and in leading order need only 3\(L \) qubits.

3.1 parallelizing the standard algorithm

Let’s first think of a classical computation of the modular exponentiation. Clearly there are several possibilities to parallelize the algorithm, at least if we are ready to use much more space (bits). The modular exponentiation consists of many modular multiplications and each such multiplication consists of many additions. Let’s e.g. look at the addition of \(L \) number, each of length \(L \). Instead of having just 1 running sum, adding one summand after the other to it, we could in parallel sum up equal subsets of the summands and then add together these partial sums. In the most extreme case we would group the summands in pairs, then add each pair, then add pairwise these sums etc. Thus we could make the whole sum in \(\log_2(L) \) steps instead of \(L \). Of course this would require on the order of \(L \) additional \(L \)-bit registers. In reversible computation the partial sums would also have to be uncomputed, possibly roughly doubling.
the cost. Note that the same ideas can also be applied to the parallelization of the \(L \) modular multiplications.

Rough considerations show that with this kind of parallelization one reduces the time of the computation about in the same proportion as one increases the space (qubits):

\[
T \sim \frac{1}{S} \quad (18)
\]

In this paper I consider such a space-time tradeoff as too costly, assuming that qubits will be very expensive, but just in case, it may be good to keep in mind this possibility for parallelization.

I propose a technique for parallelizing the individual addition steps with a much better space-time tradeoff. The technique is described in detail in the appendix, here I just give a rough outline of the basic ideas:

Usually we have to do addition binary place by binary place, as any lower significance bit can change the value of a higher significance bit. Now a first observation which we exploit, is that the probability of such a dependence goes down exponentially with the distance of the two bits in the binary representation, thus we can use the observation that some “algorithmic errors” are tolerable.

The other idea is to chop the two numbers to be added into blocks of some fixed length. To add two corresponding blocks we really should know the value of the carry bit coming from the preceding block. The idea is to compute the sum of the blocks for both possible values of this unknown carry bit. In a second step we then go through all blocks from low to high significance and for each block determine what the correct carry bit should have been.

The first step takes time proportional to the length of a block and the second step proportional to the number of blocks. Thus, by choosing block-length and the number of blocks about equal, we get a square root speed up.

4 Using FFT-based fast multiplication

The above “standard algorithm” can directly handle a modular multiplication. If we want to use fast integer multiplication techniques, it seems that we have to compose the modular multiplication out of several regular multiplications, at least I haven’t found a better way to do it. Thus we use:

\[
p \cdot A \mod N = p \cdot A - N \cdot \lfloor p \cdot \frac{A}{N} \rfloor \quad (19)
\]

Where \(\lfloor \rfloor \) means integral part. Note that of course we precompute \(\frac{A}{N} \) classically, and that we only need it to some \(L \) significant digits. Thus we have to compute some three \(L \) times \(L \) bit multiplications. I will show later how to do all this reversibly.

2There is a way to speed up the multiplication of large integers by using the fast Fourier transform technique, where the Fourier transform is performed
over the ring of integer modulo something. By iterating this technique one obtains the famous Schönhage-Strassen algorithm [13, 14] with complexity of order \(O(n \ln n \ln \ln n)\) to multiply two \(n\) bit integers. Although for very large numbers this is the fastest known algorithm, it is seldomly used because up to quite large numbers other ways of speeding up multiplication are faster. In particular the \(O(n^{\log_2 3})\) karatsuba-Ofman algorithm or its variations are used. I won’t use it because it seems to use too much space, as I show in the appendix. On the other hand the FFT based multiplication technique is naturally parallel without using much more space.

4.1 Outline of FFT-multiplication

Here I give a rough outline of how one can speed up multiplication using FFT. Things are described in more details in the appendices.

Say we want to multiply two \(L\)-bit numbers. First we split each of them into \(b\) blocks of size \(l = L/b\). Then the multiplication consists essentially of convolutions:

\[
a \cdot b = \sum_i \left(\sum_j a_j b_{i-j} \right) 2^{l-i} \quad \text{where} \quad a = \sum_i a_i 2^{l-i} \quad b = \sum_i b_i 2^{l-i} \quad (20)
\]

where the range of the summation indices has to be figured out carefully. The expression in parenthesis is known as a convolution.

The Fourier transformation comes in because the Fourier transform of a convolution of two functions is the pointwise product of the Fourier transforms of the functions. For the discrete Fourier transform this is true for the discrete convolutions appearing in the above equation. The discrete Fourier transform of the numbers \(a_n\) is given by:

\[
\hat{a}_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} a_m \omega^{nm} \quad \text{where} \quad \omega = e^{2\pi i/N} \quad (21)
\]

Using the fast Fourier transform algorithm (FFT) one can now compute the convolutions according to the scheme:

\[
a \cdot b = FFT^{-1}[FFT[a] \cdot FFT[b]] \quad (22)
\]

where the multiplication on the right hand side means pointwise multiplication. Pointwise multiplication is of course much easier to compute than the convolution and furthermore it can trivially be done in parallel. This procedure can help save time because of the great efficiency of the FFT. A problem is that we really want to make exact integer arithmetic, but with the usual FFT we use real (actually complex) numbers and can compute only to some accuracy. Still this technique is sometimes used [15] and the accuracy is chosen high enough so that rounding at the end always gives the correct integers.
For higher efficiency one generalizes the Fourier transform to the ring of integers modulo some fixed modulus. Apart from the $1/\sqrt{N}$ term, the discrete Fourier transform can be defined over any ring with any ω. The point is that we still want to be able to use the FFT algorithm and of course still want the convolution theorem to be true.

For the fast Fourier transform algorithm to work, we need $\omega^N = 1$. For the convolution theorem still to be true we furthermore need the condition:

$$\sum_{j=0}^{N-1} \omega^{jp} = 0 \quad \text{for all} \quad 0 < p < N \quad (23)$$

This is e.g. true in the ring mod 13 for $\omega = 6$ and $N = 12$, thus in particular $6^{12} \mod 13 = 1$. Because we also have to compute the inverse Fourier transform, we must furthermore demand that ω has an inverse in the ring, but this is usually no problem. We will compute the FFT over a modulo ring. The convolution theorem is then modified in that we will get the modulus of the intended results. Usually we will therefore simply choose the modulus larger than any possible result, so that taking the modulus doesn’t change anything. Sometimes we will also use the Chinese remainder theorem. Thus we will compute the convolution with respect to 2 relatively prime moduli which are individually too small, but which allow us to recover the correct result.

The FFT algorithm is most efficient for N a power of 2. Furthermore for their algorithm Schönhage-Strassen chose $\omega = 2$ or some small power of 2, and the modulus a power of 2 plus 1. This makes the operations in the FFT very easy because multiplication with ω^n is just a shift in binary and also the modulus is easy to compute. More precisely, Schönhage-Strassen chose the modulus $\omega^{N/2} + 1$ for which the above conditions are always fulfilled. I will also adopt this choice.

To get the cost (space and time) of the algorithm we need to know the “parameters” b and \tilde{l}. b is the number of blocks and \tilde{l} is essentially the block length rounded to the next power of 2. The ring over which we compute the FFT will be the ring of integer modulo $(2^\tilde{l} + 1)$, thus we will handle numbers with $2\tilde{l}$ bits. Both numbers b and \tilde{l} are of the same order of magnitude, namely either $b = 4 \cdot \tilde{l}$ or $b = 2 \cdot \tilde{l}$. The product $b \cdot \tilde{l}$ is usually $2L$ rounded to the next power of 2. Thus

$$b \cdot 2\tilde{l} = 4L \ldots 8L \quad (24)$$

depending on L. Again, things are described in detail in the appendix.

4.2 2-level FFT-multiplication

As mentioned above the Schönhage-Strassen algorithm iterates the FFT multiplication technique. Thus the component-wise multiplication of $FFT[a]$ and $FFT[b]$ is again done with FFT-multiply and so on. I propose to use FFT-multiply on two levels.
I have investigated various algorithms, like 1-level FFT-multiply with parallelized addition for the component-wise multiplications. For simplicity I will only present the algorithms which have turned out to perform well. This is in particular 2-level FFT-multiply with the individual operations in the FFT parallelized, as described in the appendix.

An important point is that the 2nd level FFT-multiply is much more efficient than the 1st level (for the same size of numbers). Remember that the component-wise multiplications are actually done modulo some modulus of the form $m = 2^n + 1$. It turns out that this can be done directly with some minor modification of the FFT-multiply. This modification consists of some multiplication with a square root of ω. To make this simple we have to choose ω an even power of 2.

As for the first level FFT we have two parameters that characterize the second level FFT, namely b' and \tilde{l}'. Where b' is the number of blocks and \tilde{l}' is the number of bits per block. The modulus relative to which we calculate the FFT is $2^{2b'} + 1$.

4.3 computational cost of 2-level FFT-multiply

First let’s see how to compute the modular multiplication reversibly. I propose the straight forward scheme:

\[
p \rightarrow p, \lfloor p \cdot \frac{A}{N} \rfloor \rightarrow p, \lfloor p \cdot \frac{A}{N} \rfloor \rightarrow p, N \lfloor p \cdot \frac{A}{N} \rfloor \rightarrow p, pA - N \lfloor p \cdot \frac{A}{N} \rfloor (25)
\]

In every one of these 4 steps we have to compute a multiplication and then uncompute the garbage. This is of the form:

\[
p \rightarrow G(p, A), pA \rightarrow p, pA (26)
\]

Thus for a modular multiplication we need a total of 8 simple multiplications of the form $p \rightarrow G(p, A), pA$. For a 1-level FFT-multiply this would look as follows:

\[
p \rightarrow \tilde{p} \rightarrow \tilde{p}, \tilde{p} \cdot \tilde{A} \rightarrow \tilde{p}, \tilde{p} \cdot \tilde{A} \rightarrow \tilde{p}, \tilde{p} \cdot \tilde{A}, pA (27)
\]

Where the tilde stands for Fourier transform and $\tilde{p} \cdot \tilde{A}$ is a component-wise product.

For a 2-level FFT-multiply we have:

\[
p \rightarrow \tilde{p} \rightarrow G'(\tilde{p}, \tilde{A}), \tilde{p} \cdot \tilde{A} \rightarrow G'(\tilde{p}, \tilde{A}), \tilde{p} \cdot \tilde{A}, pA (28)
\]

where G' represents the lower level garbage which is produced when \tilde{p} and \tilde{A} are multiplied component-wise using the second level FFT-multiply. So one multiplication consists of 2 first level FFT’s and b lower level multiplications. So for the modular multiplication (MM) we can write:
\[1MM = 8(2FFT_1 + b \times 1m) \]

Where \(1m \) stands for 1 lower level multiplication. Schematically the step \(\tilde{p} \rightarrow G'(\tilde{p}, \tilde{A}), \tilde{p} \cdot \tilde{A} \) is done as follows:

\[
(\tilde{p} = b \times p') \rightarrow b \times (\tilde{p}', \tilde{p}' \cdot \tilde{A}', \text{carries}) \rightarrow b \times (\tilde{p}', \tilde{p}' \cdot \tilde{A}', p' \cdot \tilde{A}') = G'(\tilde{p}, \tilde{A}), \tilde{p} \cdot \tilde{A} \quad (30)
\]

Where the carries are used as work space during the lowest level multiplication which is done as in the standard algorithm. One lower level multiplication consists of 2 lower level FFT’s and \(b' \) lowest level multiplications (denoted by \(\mu \)). Thus now:

\[1MM = 8(2 \, FFT_1 + b \times (2 \, FFT_2 + b' \times 1\mu)) \quad (31) \]

4.3.1 Space requirements

We have to look where in the algorithm most qubits are used. Because FFT-multiply is relatively space-intensive, this is during the lower level FFT-multiply and in particular when during the lowest level multiplication the carries are used for addition (eq. 30). In this step \(\tilde{p}', \tilde{p}' \cdot \tilde{A}' \) and the carries each use space \(b' \cdot 2b' \) (as the modulus is \(2^{2b'} + 1 \)). In the modular multiplication scheme we see that apart from this, there is also sometimes an \(L \)-bit number around, but for simplicity I neglect this relatively small contribution. Thus all in all we get:

\[
S = b \times 3(b' \cdot 2b') = b \times 3 \cdot 2(\tilde{l} \ldots \tilde{4}\tilde{l}) = 12b\tilde{l} \ldots 24b\tilde{l} = 24L \ldots 96L \quad (32)
\]

where I have used that \(b' \cdot b' = 2\tilde{l} \ldots 4\tilde{l} \) and \(b\tilde{l} = 2L \ldots 4L \), depending on the size of \(L \) relative to the next power of 2. On average (averaging over \(\log L \)) the space requirements are about \(50L \), thus closer to \(24L \) than to \(96L \).

4.3.2 Time requirements

For this we first have to know the cost of the FFT which consists of steps of the form:

\[
a, b \rightarrow (a + b) \, mod \, (2^n + 1), (a - b)2^m \, mod \, (2^n + 1) \quad (33)
\]

where \(a, b \) are non-negative and smaller than \(2^n + 1 \). How to do this and what it costs is investigated in the appendix. There we get for the number of Toffoli gates for such an operation on two \(n \)-bit numbers:

\[
T = 13n \quad (34)
\]

where \(T \) can be thought of as standing for either “time” or “Toffoli”.

Now without further measures the first level FFT would dominate the time of the parallelized 2-level algorithm. So in the appendix I also show how to
parallelize the individual FFT-operations. The number of Toffoli gates per individual FFT-operation then rises to:

\[T = 26(n + 14) \]

(35)

but because of the parallelization, the execution time becomes approximately a constant (for our range of input numbers):

\[T_p = 540 \]

(36)

where \(T_p \) means the execution time of the parallelized algorithm, measured in units of the time needed for one Toffoli gate.

Plugging all this into equation (31) we get the number of Toffoli gates for 1 modular multiplication. Multiplying this with \(4L \) gives the number of Toffoli gates for the whole modular exponentiation:

\[T = 4L \cdot 8 \left(2 \log_2(b) \cdot \frac{b}{2} \cdot 26(2I + 14) + b \times (2 \log_2(b') \cdot \frac{b'}{2} \cdot 13(2b') + b' \times 3(2b')^2) \right) \]

(37)

Remember that for the first level FFT we use the parallel algorithm whereas for the second level algorithm we use the standard algorithm. In an FFT the basic operation is carried out \(\log_2(b) \cdot b/2 \) times. For the standard modular multiplication which is used at the lowest level, there is a 3 for the cost of a conditional addition.

Let’s now obtain the execution time of the parallelized algorithm. For this we have to drop the factors \(b/2, b'/2 \) and \(b' \), and plug in the execution time for the parallelized basic FFT-operation:

\[T_p = 4L \cdot 8 \left(2 \log_2(b) \cdot 540 + \left(2 \log_2(b') \cdot 13(2b') + 3(2b')^2 \right) \right) \]

(38)

5 Results

The dominant part of Shor’s quantum factoring algorithm is modular exponentiation. I have found 2 (reversible) algorithms for modular exponentiation which perform well for factoring very large numbers. In particular I have introduced much parallelism while still using \(O(L^3) \) space (qubits). I have looked at numbers of up to several million digits and some of the approximate results below are only valid for this range.

Also I have given an improved version of the standard version of Shor’s algorithm (which uses \(O(L^3) \) gates, where \(L \) is the number of bits of the number to be factored). The first of the 2 fast algorithms is a version of this standard algorithm with a parallelized addition. It’s performance is summarized in the following 3 quantities:

\[S = 5L \]

(39)

\[T = 52L^3 \]

(40)
\[T_p = 600L^2 \] (41)

Where \(S \) is the number of qubits used in the algorithm, \(T \) is the total number of Toffoli gates and \(T_p \) is the execution time of the parallelized algorithm measured in execution times of a single Toffoli gate. Note that the result for \(T_p \) is approximate and only valid for the range of \(L \) we are looking at.

For very large numbers an FFT-based multiplication algorithm is used to compute the modular multiplications in the modular exponentiation. The FFT-multiply technique is iterated once, thus it is a 2-level FFT-multiply. The main virtue of this algorithm is that it is naturally parallel without using much more space (qubits). The performance of this algorithm depends on the value of \(L \) relative to the next power of 2 and it is not easy to give closed form expressions for \(S, T \) and \(T_p \). The expressions for \(T \) and \(T_p \) come from rough fits to the graph below.

\[
S = 24L \ldots 96L \quad (42)
\]
\[
T \approx 2^{17}L^2 \quad (43)
\]
\[
T_p \approx 2^{17}L^{1.2} \quad (44)
\]

\(T \) and \(T_p \) are plotted as the thick solid lines in the following graph. TheEventMEX thin solid lines refer to the standard algorithm with parallelized addition. The two straight lines are \(T \) and \(T_p \) for this algorithm. For a fair comparison with the FFT-based algorithm we have to give this algorithm the same amount of space, even though the space-time tradeoff of the additional parallelization achievable with this additional space is not good. This is what the zig-zag thin solid line represents. I have assumed that the extra space can be used for parallelization with space-time tradeoff of the form \(T_p \sim 1/S \). The zig-zag is because the amount of space used by the FFT-based algorithm has such a non-continuous behavior.

The straight dotted line is the standard algorithm with \(S = 3L \) and \(T = 12L^3 \).

Note that the graph is logarithmic in the number \(L \) of bits of the number to be factored and also in \(T, T_p \).
5.1 discussion

The thin zig-zag line and the lower thick line are of most interest as they give the execution times of the two algorithms (given the same amount of space for both). We see that they cross around $L \approx 2^{13} \approx 8000$. Thus to factor numbers of more than 8000 bits the FFT-based algorithm is preferable. (This is provided that we have the necessary $S = 24L \ldots 96L$ qubits available and not e.g. only $S = 3L$.)

Given a quantum computer with space and speed comparable to today’s conventional PC’s but fully parallel and well “connected”, the FFT-based algorithm could be used to factor numbers with maybe up to millions of binary digits. Consider e.g. a number with $L = 2^{20} \approx 10^6$ binary digits. We would
need something around $S = 50$ Million qubits (≈ 6 Million qubytes). Assuming a Toffoli execution-time of $1 \mu s$ the computation would take around 1 month. The standard algorithm would take some 2^{24} times more time.

Note that the computational resources of the universe are only enough to factor numbers with several thousand decimal digits when using the best known classical factoring algorithms.

The possibility that very large numbers could be factored once sizable quantum computers can be built, may be of interest already now, as it shows that very large RSA-keys would have to be used to ensure that a message remains unreadable for several decades to come.

6 Appendices

6.1 parallelizing addition

The following is a known technique in classical computation: To add two L bit numbers, decompose them each into b blocks each of length l, thus $L = b \cdot l$. We can’t simply add the corresponding blocks in parallel to get the sum because we don’t know the carry bit coming from the preceding block. The idea now is to compute for each block (really each pair of blocks) both possibilities, once assuming that the carry bit coming from the preceding block is 0 and once that it is 1. This takes time $O(l)$. Then starting with the least significant block, we go through all blocks, each time determining what the correct carry for the next block is and from that which of the two trial-additions was correct and what the correct carry is for the next block. This takes time $O(b)$. This method can also be iterated, thus e.g. a scheme with $L = b' \cdot b \cdot l$ will take time $O(b' + b + l)$.

Because we are allowed to make “algorithmic” errors for a small fraction of the input values, we can speed up things even further. The probability that flipping a block carry bit will change such a carry bit much further up (in the number) is small for generic summands, namely 2^{-n} to the minus the number of bits between them. Thus the 2^{nd} step of the above algorithm can be somewhat parallelized. Say we group the blocks into b' superblocks each containing b'' blocks, thus $b = b' \cdot b''$. Now we first assume that the input carry bit to each superblock is 0 and compute the sequence of correct block carry bits within each superblock. The probability that the outgoing carry bit of the superblock is wrong because we used 0 as an incoming carry bit is small. Of course this is done in parallel for all superblocks. So now that we have the (most probably correct) superblock input carry bits we compute a second sequence of block-carry bits for each superblock.

Now let’s look at a reversible version of this. Remember that we want to add a fixed (“classical”) number to a quantum register. I propose the following scheme:

\footnote{computational qubits, the actual number of physical qubits will be higher by some factor depending on the fault tolerant scheme used}
a → g₀ → g₀, g₁ → g₀, g₁, p → g₀, g₁, p, f → g₀, g₁, p, f, f₁, f₂ (45)
→ g₀, g₁, p, f, f₁, f₂, a + A → a, a + A (46)

This may need some explanation. a is the (“quantum-”) number to which we want to add the fixed number A. Actually the above sequence of operations doesn’t manage to get rid of the input a directly, so it will have to be called twice to uncompute a is a 2nd step. g₀ and g₁ are the 2 numbers we get by once guessing 0 as input carry for all blocks and once 1. These 2 numbers also include the output carries of all blocks. g₀ can be computed from a without leaving the input a around. Then we compute g₁ from g₀. Because we leave the input around, such an addition can actually be done without carry bits and therefore also without the need to uncompute them.

p denotes the provisional block carry bits which are determined by assuming that the input carry to each superblock is 0. Then f is the final such carry series. Thus when we want to assemble the final sum, f tells us for each block whether we should take it from g₀ or g₁.

Remember that we want to do the addition depending on a conditional qubit e (e for “enable”). For this purpose I use f₁ and f₂. f₁ is the bitwise AND of f with e and f₂ is the bitwise AND of f and e. We have a quantum register initialized to |0⟩ ready for the final sum a + A. We now copy g₀ into it if for the block the corresponding bit of f₁ is 1 and then we copy g₁ into it if the corresponding bit of f₂ is 1. By “copy” I really mean XOR. Because this XOR depends on f₁, we actually need a Toffoli gate for “copying” each binary place.

After that we uncompute all the intermediate quantities to get back a. Thus we are left with a and if e is 1, with a + A. Schematically:

\[a, e \text{ AND } (a + A) = a, e \text{ AND } s \quad (47) \]

In a second run of the sequence we bitwise XOR the first register with the second one minus A. Again we do this only if e = 1. Thus depending on the enable bit, we are left with either 0, s (when e = 1) or a, 0 (when e = 0). In order to have the result for both cases in the same register, we have to swap (exchange) the bits in the two registers depending on e. To do this I propose to first XOR the 1st register into the 2nd which gives 0, s resp. a, a. Then, depending on e we XOR the 2nd into the 1st, which costs us a Toffoli gate per binary place.

Now let’s look how this algorithm performs. How much space do we need? To get g₀ and g₁ we need 2(L + b) qubits. This is when we store the carry bits for getting g₀ in the space for g₁, which forces us to compute g₀ and g₁ one after the other. Then we need another 4b qubits for the 4 versions of block carry bits and finally another L for the final sum. Thus \(S = 3L + 6b \). Below we will see that for the range of L in which we are interested, \(b \approx L/6 \) and thus \(S \approx 4L \). The standard addition costs 2L, thus parallelization here costs about 2L additional qubits.
Let’s count the total number of Toffoli gates: Computing g_0 costs $2L$ Toffolis as it is an unconditional addition. Computing g_1 costs only L Toffolis as here we don’t even have to uncompute carries. The bits of p are computed by copying either one of two bits into it, which one depending on yet another bit. This can certainly be done with 2 Toffolis. Thus p and f cost us each $2b$ Toffolis. f_1 and f_2 cost us each b Toffolis and the copying of g_0 resp. g_1 to get the final sum costs another $2L$ Toffolis. This totals to $5L + 6b$. But to uncompute a we have to do all this twice, plus at the end we need L Toffolis to swap the two registers depending on e. Thus a total addition step costs $T = 11L + 12b \approx 13L$ Toffolis. This compares to only $3L$ Toffolis for the standard addition, but we hope that we still get a substantial speed up due to parallelization.

So how much time does the algorithm take? I again measure this in (sequential) Toffoli gates. The result may depend more than other quantities on the unknown details of a quantum computer architecture, so the following is essentially an educated guess. g_0 and g_1 are computed one after the other, but in parallel for all blocks. This costs some $2l + l$ Toffoli time steps. The computation of p takes some b'' steps, each involving 2 Toffolis. The same is true for f. It looks like f_1 and f_2 could be computed in full parallelism. In practise it may not be possible to use e simultaneously as control bit for many Toffoli gates, thus we may want to make some copies of e (and maybe also of \bar{e}). Somewhat arbitrarily I set the time cost to $2b''$ for computing both f_i’s. A similar situation occurs at the end when we obtain the final sum by copying from g_0 and g_1. With the conservative assumption that we do this sequentially for each block, we get $2l$ time steps. The total is $5l + 6b''$.

Again this has to be doubled to account for the uncomputation of a and we also have to take into account the conditional swapping of the registers at the end. For this conditional swapping I assume that there are enough copies of e to do this in l time steps. Thus a total addition step costs $T_p = 11l + 12b''$ Toffoli time steps. (Here the index p stands for “parallel”.)

Let’s now consider how we make the decomposition $L = b'b''l$ into superblocks and blocks. The superblocks have to be large enough to make it very improbable that a carry “runs all the way through them”. The error probability per superblock has to be smaller than the error probability per full addition. Let’s first conservatively set it to $\epsilon/(4L^3)$. Thus with the usual uniform random number assumption we get that a superblock should be at least some $9 + 3\log_2(L)$ bits long.

Let’s not overdo formal generality, and let’s assume that L is in the following range: $L = 2^9 \ldots 2^{25}$. Then \log_2 of the length of a superblock is about 5 to 6 and we get that the overall error is still smaller than ϵ when we reduce the length of a superblock to about $4 + 3\log_2(L)$. To chose a reasonable block size within a superblock, note that the number of blocks per superblock b'' and the length of a block l contribute about equally to the computation time T_p. So to minimize T_p we should chose them about equal. So we get the following approximate Formula for the computation time per addition: $T_p \approx 23\sqrt{3} + 3\log_2(L)$. For the range $L = 2^9 \ldots 2^{25}$ we get $T_p \approx 130 \ldots 200$. As I will propose to use this algorithm for not too large values...
of L, I simply set $T_p \approx 150$.

Also consider the following table:

L	$3 + 3 \log_2 L (= b'' \cdot l)$	b''	l	$T_p (= 11l + 12b'')$	$3L$	speed up
500	30	5	6	127	1500	12
5000	40	6	7	150	15000	100
50000	50	7	7	161	150000	900

With $T_p = 150$ per addition we get the following comparison of space and time for the full modular exponentiation:

- conventional: $S = 3L$ $T = 12L^3$ \((48)\)
- with parallelized addition: $S = 5L$ $T = 52L^3$ $T_p = 600L^2$ \((49)\)

6.2 Why not the $O(n^{\log_2 3})$ Karatsuba-Ofman algorithm?

In particular there is the Karatsuba-Ofman algorithm with running time $O(n^{\log_2 3}) \approx O(n^{1.58})$. Actually there is a whole series of algorithms with ever smaller exponents, which are actually approaching 1, but here I will only consider the basic case.

In conventional computation it seems that one of these algorithms usually beats Schönhage-Strassen for the size of numbers of interest. Of course for practical applications the computer architecture, word size etc. also play a big role. It seems that for reversible computation and assumptions I make about the possible architecture of a quantum computer, things look differently and a variant of the Schönhage-Strassen algorithm may actually find an application.

The reason for this is that I assume that qubits will be very expensive. Also I look for algorithms which can be massively parallelized, but again without increasing the work space too much. As I will show below, Schönhage-Strassen does this nicely, massive parallelization will not increase the space demand dramatically. Karatsuba-Ofman can also naturally be parallelized, but, as I show, it seems that it will use a lot of space for this. The algorithm is simple, to multiply to n-bit numbers we split each of the numbers in two $n/2$-bit pieces, assuming that n is even. Thus:

$$a \cdot b = (a' + 2^{n/2}a'')(b' + 2^{n/2}b'') = a'b' + (a'b'' + a''b')2^{n/2} + a''b''2^n \quad (50)$$

So we could now compute the product by computing 4 products of $n/2$-bit numbers, which takes about the same time. But there is the following simple trick which allows to do it in only 3 such multiplications:

$$a'b'' + a''b') = (a' + a'')(b' + b'') - a'b' - a''b'' \quad (51)$$
Note that we anyways have to compute \(a'b'\) and \(a''b''\). By iterating this technique, thus applying it again to the smaller multiplications, we get the asymptotic \(O(n^{\log_2 3})\) performance. Clearly the smaller multiplications can be done in parallel.

Now let’s look at the space requirements of such a parallelization. At the first level we have to store the six \(n/2\)-bit numbers \(a', b', a'', b'', (a' + a'')\) and \((b' + b'')\). For each lower level the space needed is \(3/2\) times the space needed at the upper level. By summing up this geometric series and noting that there are some \(\log_2 n\) levels, we get the result that we need total space \(O(n^{\log_2 3})\). This is too much if, as I expect, qubits will be very expensive.

Actually even without parallelization the Karatsuba-Ofman algorithm uses much space. For this we look at the point at which on all levels the sums \(a' + a''\) and \(b' + b''\) have been prepared.

6.3 The fast Fourier transform (FFT) and FFT-multiply

6.3.1 the FFT-algorithm

The discrete Fourier transform of \(N\) numbers over the complex numbers is:

\[
\tilde{a}_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} e^{2\pi i \frac{n}{N} m} a_m
\]

(52)

It can be generalized to numbers out of any ring by replacing \(e^{2\pi i / N}\) by some fixed ring-element \(\omega\). In general of course also the normalization \(1/\sqrt{N}\) must be left away:

\[
\tilde{a}_n = \sum_{m=0}^{N-1} \omega^{n-m} a_m
\]

(53)

If \(\omega^N = 1\) and \(N\) can be decomposed into small prime factors, the fast Fourier transform (FFT) -algorithm can be used, which is widely used on computers. Usually \(N\) is a power of 2: \(N = 2^l\), as then the FFT is most efficient and best suited for binary digital computers. I demonstrate the FFT for this case and will also include the normalization \(1/\sqrt{N}\), but it can easily be left away for rings where there is no \(1/\sqrt{2}\).

In the first step of the FFT we reduce the original task to 2 Fourier transforms over \(N/2\) numbers each. This is then iterated \(\log_2 N = l\) times until we are left with (trivial) Fourier transforms of single numbers.

We start with:

\[
\tilde{a}_n = \frac{1}{\sqrt{N}} \sum_{m=0}^{N-1} \omega^{n-m} a_m
\]

(54)

Consider the binary representations of \(n\) and \(m\):
\[n = \left(\begin{array}{c} n' \\ n'' \end{array} \right) = \left(\begin{array}{c} n_2, n_1, n_0 \\ n'' = \left\lfloor \frac{n}{4} \right\rfloor \end{array} \right) \quad m = \left(\begin{array}{c} m = \left\lfloor \frac{n}{2} \right\rfloor \\ m' = m \mod 2^{l-1} \end{array} \right) \quad m'' = m \mod 2^{l-2} \] (55)

Where the definitions of \(n'', m''\) and so on should be clear. The symbol \(\left\lfloor \cdot \right\rfloor\) means the integer part. We now consider separately the 2 cases \(n_0 = 0, 1\) and sum over the 2 values of \(m_{l-1}^{-1}:

\[\bar{a}_{(n', n_0)} = \frac{1}{\sqrt{N/2}} \sum_{n'=0}^{N/2-1} \frac{1}{\sqrt{2}} \sum_{m_{l-1}=0}^{1} \omega^{(2n'+n_0)(2^{l-1}m_{l-1}+m')} a_{(m_{l-1}, m')} \] (56)

\[= \frac{1}{\sqrt{N/2}} \sum_{m'=0}^{N/2-1} \frac{1}{\sqrt{2}} \sum_{m_{l-1}=0}^{1} \omega^{2n'm'} \omega^{n_0m'} \omega^{2^{l-1}n_0m_{l-1}} a_{(m_{l-1}, m')} \] (57)

\[= \frac{1}{\sqrt{N/2}} \sum_{m'=0}^{N/2-1} (\omega^2)^{n'm'} \omega^{n_0m'} a_{(0,m')} + (-1)^{n_0} a_{(1,m')} \] (58)

On the second level we then have:

\[a'_{(n_0, n_1, m''')} = (\omega^2)^{n_1m'''} \frac{a'_{(n_0, 0, m''')} + (-1)^{n_1} a'_{(n_0, 1, m''')}}{\sqrt{2}} \] (59)

and so on. Note that the leftmost bits in the parenthesis are still the most significant ones. In the end we have:

\[\bar{a}_{(n_{l-1}, n_{l-2}, \ldots, n_0)} = a_{(n_0, n_1, \ldots, n_{l-1})} \] (60)

So in the end we have to interpret the bits in the reversed order to get the numbers of the result in the right order.

The actual operations we have to do are transformations of the following form of 2 numbers:

\[a, b \rightarrow \frac{a+b}{\sqrt{2}}, \omega^k \frac{a-b}{\sqrt{2}} \] (61)

6.3.2 the quantum fast Fourier transform (QFFT)

Note that the Fourier transform over the complex numbers is a unitary transformation of \(N\) complex numbers. It is therefore in principle possible to apply it physically to the \(2^l\) amplitudes of an \(l\)-qubit quantum register:

\[|\text{quantum-register}\rangle = \sum_{n=0}^{2^l-1} a_n \ |n\rangle \rightarrow \sum_{n=0}^{2^l-1} \bar{a}_n \ |n\rangle \] (62)
where the $|n\rangle$ are the “computational” basis states given by the binary representation of n. Note that such a transformation is very different from what is usually done on conventional computers where the values represented by binary words are transformed. It is therefore misleading to say that quantum computers are much faster than conventional computers at the FFT.

The QFFT can be done very efficiently. The FFT is done level by level (l levels) as the operations on every level are individually unitary. In the classical FFT on every level $N/2$ basic operations of the form (eq. 61) are carried out. In the QFFT all these $N/2$ operations are done in parallel.

So on level number $l - l'$ we should transform the amplitudes as follows (see eq. 59):

$$a_{(n_{l-1},...n_l',...n_0)} \rightarrow e^{2\pi i \frac{n_{l'} (n_{l'-1}...n_0)}{2^l+1}} \frac{a_{(n_{l-1},...0,...n_0)} + (-1)^{n_{l'}} a_{(n_{l-1},...1,...n_0)}}{\sqrt{2}}$$

(63)

where the parenthesis mean the value in binary given by the bits. This operation can be done in 2 steps, first without the phase factor $e^{i...}$ and then multiplying the basis states with $n_{l'} = 1$ with appropriate phase factors:

$$a_{(n_{l-1},...n_l',...n_0)} \rightarrow \frac{a_{(n_{l-1},...0,...n_0)} + (-1)^{n_{l'}} a_{(n_{l-1},...1,...n_0)}}{\sqrt{2}}$$

(64)

$$a_{(n_{l-1},...1,...n_0)} \rightarrow e^{2\pi i \frac{(n_{l'-1}...n_0)}{2^l+1}} a_{(n_{l-1},...1,...n_0)}$$

(65)

The first step is simply a Hadamard transformation on qubit number l'. The conditional rephasing can be decomposed into conditional rephasings on individual qubits:

$$a_{(n_{l-1},...1,...n_0)} \rightarrow e^{2\pi i \frac{n_{l'-1}}{2^l+1}} e^{2\pi i \frac{n_{l'-2}}{2^l+1}} ... e^{2\pi i \frac{n_0}{2^l+1}} a_{(n_{l-1},...1,...n_0)}$$

(66)

So these are l' gates, each one a phase shift on some qubit, conditional on qubit number l'. Note that in the end we should also swap bit number $l - 1$ with bit number 0, bit number $l - 2$ with bit number 1 and so on to get the originally intended result, but usually it is not necessary to do this explicitly.

Let’s summarize in words how the QFFT is carried out: We begin by Hadamard transforming the most significant qubit. Then we apply appropriate phase shifts to all less significant qubits, conditional on the most significant one being 1. Then we Hadamard transform the second most significant qubit and conditional on it we apply appropriate phase shifts to all less significant qubits and so on.

After Hadamard transforming a qubit we don’t apply gates to it any more. Thus if, as in Shor’s algorithm, the register is to be observed right after the QFFT, we can always measure qubits after they were Hadamard transformed, thus interleaving unitary gates and measurements.

27
A further advantage of this is that now the phase shifts are no more conditional: we do them if the last measured qubit was 1 and don’t do anything otherwise.

Note that most phase shifts are very small, so it is enough to carry out only the $O(\log l)$ largest one on every level, without significantly changing the state of the QC.

Also we can wait with applying phase shifts to a qubit until just before it is Hadamard transformed (and then measured). The size of the phase shift will then depend on the already measured values of the higher significance qubits. So now what we do it to apply some phase shift to a qubit, Hadamard transform and measure it. Then we move on to the next lower significance qubit.

In fault tolerant quantum computing the phase shift gates will have to be composed of several gates from a fixed “set of universal gates”. Still the QFFT is a negligible part of the factoring algorithm.

6.3.3 computing convolutions with the FFT

Say we have two sets of numbers a_n and b_n with $n = 0 \ldots N - 1$. Then the convolution is given by:

$$c_n = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \delta_{k+l,n} a_k b_l \quad \text{where} \quad n = 0 \ldots 2N - 2 \quad (67)$$

This can efficiently be computed using the FFT. The statement is essentially that the component-wise product of the FFT’s of the a’s and the b’s is the FFT of the convolution. So we try:

$$c'_n = \sum_{m=0}^{N-1} \omega^{-n-m} \tilde{a}_m \tilde{b}_m \quad (68)$$

$$= \sum_{m=0}^{N-1} \omega^{-n-m} \sum_{k=0}^{N-1} \omega^{m-k} a_k \sum_{l=0}^{N-1} \omega^{m-l} b_l \quad (69)$$

$$= \sum_{k,l} \sum_{m} \omega^{m(k+l-n)} a_k b_l = N \sum_{k,l} (\delta_{k+l-n,0} + \delta_{k+l-n,N}) a_k b_l \quad (70)$$

Where for the last step I have used:

$$\sum_{n=0}^{N-1} \omega^{p n} = 0, \quad \text{except for} \quad p = \text{integer} \cdot N \quad (71)$$

This is true for $\omega = e^{2\pi i/N}$ (sum up the geometric series), but for a general ring it has to be required in addition to $\omega^N = 1$. Note that $\omega^{-1} = \omega^{N-1}$.

Also besides the convolution we have gotten a second unwanted term. It can be made to vanish by setting the “upper half” of the sets a_n and b_n equal to zero. So to compute the convolution of two N-number sets we then have to use FFT’s with $2N$ numbers.
6.3.4 1-level FFT-multiply

I assume that the reader has looked at the outline of FFT-multiply in the main body of the paper. We want to do the FFT over the ring of integers modulo some fixed element \(\omega \). First note that things will work out for the particular class of moduli \(M = \omega^{N/2} + 1 \), where \(N \) is a power of 2. It is easy to see that, as required, \(\omega^N = 1 \), where we now do all operations modulo \(M \). The other property (eq. \ref{eq:71}) is demonstrated in the book by Hopcroft et. al. \cite{14}. We will choose \(\omega \) a small power of 2 which makes the operations in the FFT very efficient on a binary digital computer.

As mentioned, the numbers to be multiplied are first decomposed into blocks of bits. The question now is what size of blocks we should choose. If there were an adequate modulus, we would like to choose the block size much smaller than the number of blocks. Unfortunately the modulus proposed above is quite large and so there is no point in choosing small blocks as in the course of the FFT the numbers we operate with will quickly become the size of the modulus.

If we insist on a small modulus we must be ready to give up the ease with which we can operate with the above \(\omega \) and \(M \). Also it is not trivial to find such moduli where there are primitive roots with \(\omega^{2^l} = 1 \) and the condition of eq. \ref{eq:71}. It may still pay off, but I have given up this path as it is rather complicated.

So back to the above choice of \(\omega \) and \(M \). So how do we choose the number \(b \) of blocks and their size \(l \)? Note that \(b \) is the number of numbers we have to Fourier transform, thus it must be a power of 2. Then the modulus will be \(M = \omega^{b/2} + 1 \). For the result not to get truncated the block size has to be somewhat less than \((\log_2 M)/2 \), which means that \(b \) and \(l \) are both going to be of the order of magnitude of \(\sqrt{L} \), where \(L \) is the number of bits of the numbers we want to multiply.

Without further justification I show how to obtain the \(b \) and \(l \) which I have found to be optimal. First we set

\[k = [\log_2(2L)] \quad (72) \]

Then there are 2 cases:

- \(k \) even: \(b = 2^{k+1} \) and \(\tilde{l} = 2^{k-1} \) \quad (73)
- \(k \) odd: \(b = 2^{k+1} \) and \(\tilde{l} = 2^{k-1} \) \quad (74)

Where \(\tilde{l} \) is the next power of 2 after \(l \). And \(l \) is:

\[l = [2L/b] \quad (75) \]

The modulus is \(M = 2^{2\tilde{l}} + 1 \). Thus for \(k \) even we have \(\omega = 2 \) and for \(k \) odd \(\omega = 4 \). The components of the convolution are the sum of some \(b \) products of numbers with \(l \) bits. For the convolution not to be truncated by the modulus we thus must require:
If this condition is not true I simply revise my choice of b, effectively going to the next larger size of the algorithm. Thus in practise I increase k by 1 and get the new b and l from it. There would be more efficient methods, but as this occurs seldomly for large L, I choose the easier way.

6.3.5 the 2-level FFT-multiply

One can iterate the FFT-multiply and apply it to the component product of the Fourier transformed factors. Actually FFT-multiply is much more efficient on the second level (or still lower levels). On the second level we have to multiply two 2^l bit numbers modulo $2^{2l} + 1$ which can be done quite efficiently by modifying the way we computed the convolution. This time we don’t have to pad the factors with zeros, so the decomposition into blocks is $b' = 2^l$, where the prime refers to the second level. Note that now the block size l' is automatically a power of 2. So a factor a is decomposed into its blocks a_n as follows:

$$a = \sum_{n=0}^{b'-1} a_n 2^n b'$$ (77)

If we now use FFT’s for b' numbers to compute the convolution of two numbers a and b, we get the previously unwanted second term (from eq. 68):

$$c'_n = b' \sum_{k,l} (\delta_{k+l-n,0} + \delta_{k+l-n,N}) a_k b_l$$ (78)

The final result of the FFT-multiply then becomes:

$$c = \sum_n 2^n b' \sum_{k,l} (\delta_{k+l-n,0} + \delta_{k+l-n,N}) a_k b_l$$ (79)

The actual product of a and b is

$$c = \sum_n 2^n b' \sum_{k,l} \delta_{k+l-n,0} a_k b_l$$ (80)

modulo $M = 2^{2l} + 1$ it becomes very similar (same up to a sign) to what we got using FFT-multiply:

$$c \mod (2^{2l} + 1) = \sum_n 2^n b' \sum_{k,l} (\delta_{k+l-n,0} - \delta_{k+l-n,N}) a_k b_l$$ (81)

FFT-multiply can actually be modified to get just that change of sign. For this we need a square root ψ of ω'. Then consider
\[c'_n = \sum_m (\omega')^{-n-m} \sum_k (\omega')^{m-k} \psi^k a_k \sum_l (\omega')^{m-l} \psi^l b_l\]
(82)

\[= \sum_k \sum_l b'(\delta_{k+l,n} + \delta_{k+l,n+b'})\psi^{k+l} a_k b_l\]
(83)

\[= \psi^n \sum_k \sum_l b'(\delta_{k+l,n} - \delta_{k+l,n+b'}) a_k b_l\]
(84)

Thus by doing \(a_n \rightarrow \psi^n a_n\) and \(b_n \rightarrow \psi^n b_n\) we get \(c_n \psi^n\). We will choose \(\omega'\) a small even power of 2 so that \(\psi\) is a small power of 2. These operations (which are always done modulo \(M'\)) are rather easy. How to do them reversibly is described at the end of the appendix about how to compute reversibly the FFT. From there it should be clear that their cost can be neglected.

I will chose the modulus \(M' = 2^{2^k} + 1\) so \(\omega' = 16\) (and thus \(\psi = 4\)). Again we have to consider separately two cases (where \(k' = \log_2(2\tilde{l})\)):

\[k' \text{ even: } \quad \tilde{l'} = 2^{k'} \quad \text{and} \quad \psi' = 2^{k'}\]
(85)

\[k' \text{ odd: } \quad \tilde{l'} = 2^{k'-1} \quad \text{and} \quad \psi' = 2^{k'-1}\]
(86)

For \(k'\) odd the modulus \(M'\) is safely large, so there won’t be any problem with the result getting truncated by computing the remainder \(mod M'\).

For \(k'\) even the modulus is not large enough. We can fix this problem by also making an FFT-multiply with the modulus \(2^{2^k} + 1\) and using the Chinese remainder theorem to recover the correct result. The computational cost for this should be negligible. Here I just give a short outline without derivations. So say we are looking for a non-negative number \(x\) which is smaller than \((2^{2n}+1)(2^n+1)\) and we are given \(x' = x \mod (2^n+1)\) and \(x'' = x \mod (2^{2n}+1)\). Then:

\[x = x'' + (2^{2n} + 1) \left((2^{n-1}(x' - x'')) \mod (2^n + 1)\right)\]
(87)

where I have used that

\[(-(2^{2n}+1)) \mod (2^n+1) = 2^{n-1}\]
(88)

To see how to compute \(x\) in reversible computation without leaving much “garbage” qubits around, see again the end of the appendix about how to compute the FFT reversibly.

6.4 How to compute the FFT in reversible computation

6.4.1 Introduction

Here I show how to carry out the basic operations of the FFT. In principle every one of these steps is reversible and it thus seems that the FFT-algorithm
is particularly well suited for reversible computation. Here we consider the FFT over the ring of integers modulo a modulus of the form $M = 2^n + 1$ and with the primitive root ω a small power of 2. The basic FFT-operations acting on 2 registers are then of the form:

\[
a, b \rightarrow (a + b) \mod (2^n + 1), \ (a - b)2^m \mod (2^n + 1) = M
\]

(89)

where a, b are non-negative and smaller than $2^n + 1$. It is easy to see how this operation could be reversed, as 2 has a multiplicative inverse modulo any odd modulus. Thus we could use the standard tricks (eqs. 2, 5) of reversible computation to get rid of garbage and input, but usually one can find more efficient “shortcuts” which is what we will try here. Actually I haven’t found an efficient way of doing it without leaving anything but the result (RHS of eq. 89) around, so I propose a scheme which leaves 2 or 3 qubits of garbage around. This is no problem as it doesn’t take up much space, but I would have expected to find a more elegant solution. So everybody interested is invited to try to do better. Note that any FFT we perform will soon afterwards be undone, so then the garbage qubits will also go away.

The way to attack the problem is to decompose it into several steps each of which is in itself reversible. We have the following 3 steps:

1. step: $a, b \rightarrow a, b + a \rightarrow 2a - (b + a), b + a$

(90)

2. step: $a + b, a - b \rightarrow (a + b) \mod M, \ (a - b) \mod M$

(91)

3. step: $(a - b) \mod M \rightarrow (a - b)2^m \mod M$

(92)

The 1. step consists of additions of 2 “quantum” numbers, which is no big problem. The 2. step consists of conditionally subtracting M from $a + b$ and conditionally adding M to $a - b$. The problem here is how to uncompute the conditional bits. The 3. step looks rather simple as this operation is easy in conventional computation, but here I haven’t managed to find an efficient scheme without leaving garbage around.

6.4.2 “quantum”+ “quantum” addition: $a, b \rightarrow a, b + a$

The 1. step above consists of 2 such operations. A subtraction is essentially the same using the complement technique. One would expect that an addition of a “quantum” number to another “quantum” number would use more Toffoli gates than the previously described addition of a fixed “classical” number to a quantum number, but this is not so.\footnote{please remember that this FFT has nothing to do with the QFFT which Fourier transforms amplitudes}

Note that one of the “quantum” numbers has to stay around as otherwise the operation would not be reversible.

\footnote{I admit that after deciding to only count Toffoli gates I was tempted to minimize their number, which may not be quite clean}
So let’s do $a, b \rightarrow a, b + a$. Thus we add a to the b-register. Again we temporarily need carry qubits (which are initially set to 0). I denote by c_i the carry which comes from the $(i-1)^{st}$ binary place but has the same place value as a_i and b_i. For every binary place there are 2 operations, one to compute the next carry c_i from a_i, b_i, and c_i and one to compute the sum bit:

$$c_{i+1} = (a_i + b_i + c_i \geq 2) \quad b_i \rightarrow a_i \oplus b_i \oplus c_i \quad (93)$$

where the parenthesis means a logical expression and \oplus is addition modulo 2 (or XOR). For some reason I prefer to first calculate the sum bit. Then we have:

$$b_i \rightarrow a_i \oplus b_i \oplus c_i \quad c_{i+1} = (a_i + b_i + c_i \geq 2) \quad (94)$$

The following sequence of quantum gates accomplishes this:

To check the correctness of this sequence and of the above formulas I recommend considering separately the case $a_i = 0$ and $a_i = 1$. The first 2 gates (from the left) compute the sum and the rest is for the carry. After having computed the sum we must run everything backwards to uncompute the carries. But because we don’t want to uncompute the sum, we then leave away the 2 leftmost gates.

6.4.3 computing the modulus

Here we want to do:

$$a + b, \quad a - b \rightarrow \underbrace{(a + b) \mod M}_{\Sigma = a + b - f_+ M} = (a - b) \mod M \quad = \Delta = a - b + f_- M \quad (95)$$

Note that f_+ and f_- are either 0 or 1. We will have to compute these 2 conditional bits:

$$f_+ = (a + b \geq M) \quad f_- = (a - b < 0) \quad (96)$$

Actually we begin by subtracting M from $a + b$ and add it again if we have obtained a negative number, but of course f_+ will remain around. As we use complement notation for negative numbers, f_- is trivial to obtain. Then we make a conditional addition to get $a - b + f_- M$.

33
So now we have the result and would like to get rid of the conditional bits. To do this is equivalent to computing those bits from the result \(\Sigma, \Delta \). As \(M \) is odd it is easy to obtain the XOR of the two bits. This can be seen as follows:

\[
\Sigma + \Delta = a + b - f_+ M + a - b + f_- M = 2a + (f_- - f_+)^2 M \quad (97)
\]

Thus if this sum is even we know that \(f_+ = f_- \) and vice versa. This we read off simply from the lowest significance bits of \(\Sigma \) and \(\Delta \). So now we can reduce the garbage to 1 qubit. To get rid of this remaining bit seems to be more costly and I propose not to do it. Nevertheless I show how it could be done. We have to consider two cases:

\[
f_+ = f_- = f : \quad \Delta - \Sigma = 2fM + 2b \quad \text{so} \quad f = (\Delta > \Sigma) \\
1 - f_+ = f_- = f : \quad \Sigma + \Delta = 2a + (1 - 2f)M \quad \text{so} \quad f = (\Sigma + \Delta \geq M)
\]

Note that because we are doing this in quantum parallelism we have to compute always both expressions. This is quite costly and thus I prefer to leave a garbage qubit around.

6.4.4 computing \(x \cdot 2^n \mod (2^n + 1) \)

Here \(x = (a - b) \mod (2^n + 1) \) and let \(y = x2^m \). For this modulus we can relatively easily compute the remainder of any \(y \) by decomposing it into blocks \(y_i \) of \(n \) bits:

\[
y \mod (2^n + 1) = \sum y_i 2^i \cdot n \mod (2^n + 1) = \sum y_i (-1)^i \mod (2^n + 1) \quad (98)
\]

For our \(y \) we have only 2 terms in the sum. The potentially non-zero bits in these two blocks overlap in exactly 1 bit, as \(y \) has \(n + 1 \) potential non-zero bits. When we compute the sum \(\sum x_i 2^i \cdot n \) we will have to leave around one of these 2 bits. One of those bits is the \((n+1)^{st}\) bit of \(x \) and this is the one I propose to leave around. After this we still may have to add \(2^n + 1 \) if the sum is negative to get the correct remainder. I also propose to leave around the associated control qubit as I haven’t found an easy way to uncompute it.

6.4.5 assessment of total cost

\[
a, b \rightarrow a, a + b \quad 2n \quad (99)
\]
\[
a, a + b \rightarrow 2a - (a + b), a + b \quad 2n \quad (100)
\]
\[
a + b \rightarrow (a + b \geq M), (a + b) \mod M \quad 3n \quad (101)
\]
\[
a - b \rightarrow (a - b < 0), (a - b) \mod M \quad 3n \quad (102)
\]
\[
\Sigma + \Delta \overset{?}{=} \text{odd} \quad \text{mod } M \quad O(1)(103)
\]
\[
(a - b) \mod M \rightarrow (a - b)2^m \mod M, \ 2 \text{ garbage qubits} \quad 3n \quad (104)
\]

34
The first 2 lines are (unconditional) “q+q” additions. Uncomputing the carries doubles the number of Toffoli gates from \(n \) to \(2n \). The next 2 lines are essentially conditional addition of the “c+q” type, the same we use in the standard algorithm. The cost of the last line comes from the conditional addition of \(M \). So the total number of Toffoli gates per elementary FFT-operation is:

\[
T = 13n
\]

(105)

For an FFT with \(b \) numbers this has to be multiplied by \(\log_2(b) \cdot b/2 \), as there are \(\log_2(b) \) levels and on each level \(b/2 \) elementary operations are carried out.

6.4.6 parallelizing this

For large \(n \) we want to parallelize the additions in the above scheme, furthermore for large \(n \) we can make substantial simplifications which will only lead to a small “algorithmic” error rate. Without such improvements the first level FFT in my proposed 2-level FFT-multiply scheme would dominate the overall execution time. I have estimated that for the range of \(L \) we consider, an error rate per elementary FFT-operation of about \(2^{-40} \) still leads to a tolerable overall error rate. As on the first level FFT \(n \) will be larger than 40 we can make simplifications based on the special form of the modulus \(M = 2^n + 1 \). First we can assume that all numbers modulo \(2^n + 1 \) are actually smaller than \(2^n \). Note that this will also reduce the garbage from 3 to 2 bits, as we can assume that the other one is zero (it’s the \((n+1)\)th bit of \(x \)).

In the above list of costs of the individual operations the three lines with cost \(3n \) can be simplified as they essentially involve an addition or subtraction of \(M = 2^n + 1 \). Note that the condition bit \(a + b \geq M \) is replaced by \(a + b \geq 2^n \) which is trivial to compute. Also adding or subtracting \(2^n \) is simple. Adding or subtracting 1 costs a bit more. To keep the error rate low enough, we need to extend the addition to the 40 least significant bits. Because it is a conditional addition this costs \(3 \cdot 40 \) Toffoli gates. Also the second and third lines can actually be done simultaneously.

What remains are the first two lines which are “q+q” type additions. It turns out that my scheme for parallelizing “c+q” type additions works just as well for “q+q” additions. From there we get \(T = 13n \) and \(T_p = 150 \) per addition, where \(T \) is the total number of Toffoli gates and \(T_p \) is the number of sequential Toffoli gates, thus essentially the time measured in units of Toffoli execution times.

Taking all this together we get for the parallelized and simplified version of the elementary FFT-operation:

\[
T = 2 \cdot 13n + 3 \cdot 40 \cdot 3 = 26(n + 14)
\]

(106)

\[
T_p = 2 \cdot 150 + 2 \cdot 40 \cdot 3 = 540
\]

(107)

exercise for the ambitious reader

8this is due to the uniformly distributed random number assumptions, which, I admit, I’m not very confident about in this case
References

[1] J.I. Cirac and P. Zoller
Quantum Computations with Cold Trapped Ions
Physical Review Letters, Volume 74, Number 200 (May 1995), page 4091

[2] J. I. Cirac et al., “Quantum state transfer and entanglement distribution among distant nodes in a quantum network”, quant-ph/9611017

[3] Ch. Monroe and J. Bollinger
Atomic physics in ion traps
Physics World, March 1997

[4] P. Shor,
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
In Proc. 35th Annual Symposium on Foundations of Computer Science. IEEE Press, pp 124-134, Nov. 1994. quant-ph/9508027
also SIAM J. Computing 26 (1997) 1484

[5] P. Shor, Fault-Tolerant Quantum Computation.
in 37th Symposium on Foundations of Computing, IEEE Computer Society Press, 1996, pp. 56-65 quant-ph/9605011

[6] E. Knill, R. Laflamme and W. Zurek,
Accuracy Threshold for Quantum Computation, quant-ph/9610011

[7] D. Aharonov, M. Ben-Or,
Fault-Tolerant Quantum Computation With Constant Error quant-ph/9611025

[8] N.A. Gershenfeld and I.L. Chuang,
Bulk Spin-Resonance Quantum Computer.
Science 275, 350 (1997)

[9] D. Coppersmith, IBM Research Report RC 19642 (1994)

[10] R. B. Griffiths and C. Niu, Phys. Rev. Lett. 76, 3228 (1996)

[11] C. Miquel, J.P. Paz and R. Perazzo, Phys. Rev. A 54, 2605 (1996); V. Vedral, A. Barenco and A. Ekert, Phys. Rev. A 54, 139 (1996); D. Beckman, A. N. Chari, S. Devabhaktuni, J. Preskill, Phys. Rev. A 54, 1034; E. Knill, Private communication.

[12] Daniel Gottesman,
“A Theory of Fault-Tolerant Quantum Computation” quant-ph/9702029. Journal-ref: Phys.Rev. A57 (1998) 127
[13] A. Schönhage, V. Strassen,
“Schnelle Multiplikation grosser Zahlen”
Computing 7, 281-292 (1971)

[14] Textbook by Aho, Hopcroft, Ullman
“The Design and Analysis of Computer Algorithms”, p. 264
Addison-Wesley 1974

[15] Textbook by D. Knuth, “The Art of Computer Programming”
Addison-Wesley, 1981