Expression patterns and action analysis of genes associated with physiological responses during rat liver regeneration: Cellular immune response

Lian-Xing Zhang, Li-Feng Zhao, An-Shi Zhang, Xiao-Guang Chen, Cun-Shuan Xu

INTRODUCTION

After antigenic stimulus, antigens are processed and presented to lymphocytes by antigen-presenting cells, and lymphocytes are activated to proliferate and differentiate into effector cells that eliminate antigens. This process is called immune response which is the self-protective mechanism of organisms developed during a long evolutionary history, closely associated with high animal survival. Usually, the immunoreactions are classified into cellular and humoral immune responses according to different effectors. The cellular immune response performs in brief as following: firstly the antigens were specifically recognized and presented by T-cells, then the effector cells, including T-cells, macrophages, work by clearing the antigens. Injured cells and cell remnants caused by partial hepatectomy (PH) are harmful to the organism, and wound areas are also susceptible to infection with antigen and xenobiotics. Whether the cellular immune system plays a part in this process is worthy of an in-depth study.

In addition, PH also activates the remnant hepatocytes to enter into the cell cycle to compensate for the lost liver mass, which is called liver regeneration (LR). Usually, based on the cellular physiological activities, the process...
is classified into 4 phases: initiation (0.5-4 h after PH), transition from G₀ to G₁ (4-6 h after PH), cell proliferation (6-66 h after PH), cell differentiation and structure-function reorganization (66-168 h after PH)\[11\]. According to a time course, it is divided into 4 phases: forepart (0.5-4 h after PH), prophase (6-12 h after PH), metaphase (16-66 h after PH), and anaphase (72-168 h after PH)\[12\], in which many physiological and biochemical events, such as cell activation, de-differentiation, proliferation and its regulation, re-differentiation, reorganization of structure-function\[13\], are involved and regulated by many factors such as cellular immune response\[14\]. The relevance between cellular immune and liver regeneration has been studied at the transcriptional level\[12,15,16\]. The expression changes of genes in regenerating liver after PH can be detected by rat genome 230 2.0 array\[17,18\] containing 213 genes participating in the cellular immune response. A total of 127 genes have been identified to be associated with LR\[19\]. Their expression changes, patterns and action were primarily analyzed in the present study.

MATERIALS AND METHODS

Regenerating liver preparation

Healthy SD rats weighing 200-250 g were obtained from the Animal Center of Henan Normal University. The rats were randomly divided into groups, 6 rats in each group (male: female = 1:1). PH was performed as previously described\[15\], the left and middle lobes of liver were removed. The rats were killed by cervical vertebra dislocation at 0.5, 1, 2, 4, 6, 8, 12, 16, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 96, 120, 144 and 168 h after PH and the regenerating livers were observed at corresponding time points. The livers were rinsed 3 times in PBS at 4°C, 100-200 mg was taken from the middle parts of the right lobe. Six samples were collected from each group, mixed into 1-2 g (0.1-0.2 g × 6) liver tissue, and stored at -80°C. The sham-operation (SO) groups underwent the same PH without removal of liver lobes. The animal protection laws of China were strictly followed.

RNA isolation and purification

Total RNA was isolated from frozen livers according to the manual of the Trizol kit (Invitrogen)\[20\] and purified the guide for the RNeasy mini kit (Qiagen)\[21\]. Agarose electrophoresis (180V, 0.5 h) showed that the total RNA samples had a 2:1 ratio of 28S to 18S rRNA intensities. Total RNA concentration and purity were estimated by optical density measurements at 260/280 nm\[22\].

cDNA, cRNA synthesis and purification

Total RNA (1-8 μg) was used as a template for cDNA synthesis. cDNA and cRNA synthesis was proceeded as previously described\[17\]. cRNA labeled with biotin was synthesized using 12 μL synthesized cDNA as a template, and cDNA and cRNA were purified\[17\]. Measurement of concentration, purity and quality of cDNA and cRNA was conducted as previously reported\[23\].

cRNA fragmentation and microarray detection

Fifteen μL (1 μg/μL) cRNA incubated with 5 × fragmentation buffer at 94°C for 35 min was digested into 35-200 bp fragments. The hybridization buffer was added to the prehybridized rat genome 230 2.0 microarray produced by Affymetrix, and then hybridization was carried out for 16 h at 45°C on a rotary mixer at 60 rpm. The microarray was washed and stained by GeneChip fluidics station 450 (Affymetrix Inc., USA). The chips were scanned with GeneChip Scan 3000 (Affymetrix Inc., USA), and the signal values of gene expression were observed\[18\].

Microarray data analysis

The normalized signal values, signal detections (P, A, M) and experiment/control (R) were obtained by quantifying and normalizing the signal values using GCOS1.2\[20\].

Normalisation of microarray data

To minimize errors in microarray analysis, each analysis was performed 3 times by rat genome 230 2.0 array. Results with a maximal total ratio (Rm) and an average of three housekeeping genes β-actin, hexokinase and glyceraldehyde-3-phosphate dehydrogenase approaching to 1.0 (Rh) were taken as a reference. Modified data were generated by applying a correction factor (Rm/Rh) multiplying the ratio of each gene in Rh at each time point. To remove spurious gene expression changes resulting from errors in microarray analysis, the gene expression profiles at 0-4 h, 6-12 h and 12-24 h after PH were reorganized by a normalization analysis program (NAP) software according to the cell cycle progression of regenerating hepatocytes. Data statistics and cluster analysis were done using GeneMath, GeneSpring, Microsoft Excel software\[18,23,24\].

Identification of genes associated with liver regeneration

First, nomenclature of the cellular immune response was adopted from the GENEONTOLOGY database (www.geneontology.org) and inputted into the cellular immune response at NCBI (www.ncbi.nlm.nih.gov) and RGD (rgd.mcw.edu) to identify the rat, mouse and human genes associated with the activities mentioned above. According to the maps of biological pathways embodied by GENMAPP (www.genmapp.org), KEGG (www.genome.jp/kegg/), BIOCARTA (www.biocarta.com/index.asp), genes associated with blood coagulation were collated. The results of this analysis were codified and compared with those obtained in humans and mice in order to identify human and mouse genes which are different from those of rats. Comparing these genes with the analysis output of the rat genome 230 2.0 array, genes showing more than twofold change in expression level as meaningful expression changes\[8\], were referred to as rat homologous genes or rat specific genes associated with cellular immune response. Genes displaying reproducible results in three independent analyses with the chip and more than twofold change in expression level at least at one time point during LR with a significant difference (P ≤ 0.01< 0.05) or an extremely significant difference (P ≤ 0.01) between PH and sham operation (SO), were referred to as genes associated with LR.
RESULTS

Expression changes of genes associated with cellular immune response during liver regeneration

According to the data from databases at NCBI, GENMAPP, KEGG, BIOCARTA and RGD, 468 genes were involved in the cellular immune response, of which 213 were contained in the rat genome 230 2.0 array. The expression of 127 genes displayed meaningful changes at least at one time point after PH, showing significant or extremely significant differences in expression compared with those after PH and SO, and reproducible results detected by three analyses of rat genome 230 2.0 array, suggesting that the genes were associated with I.R. Ranges of the expression of up-regulated and down-regulated genes were respectively 2-37 fold and 2-10 fold of the control (Table 1). Up-regulated, down-regulated and up-/down-regulated expressions were observed in 41, 41 and 45 genes, respectively during I.R. The up- and down-regulated expression times were 419 and 274, respectively (Figure 1A). At the initial phase (0.5-4 h after PH), 32 genes displayed up-regulated expression, 19 down-regulated expression, and 2 up-/down-regulated expression. At the transition phase from G0 to G1 (4-6 h after PH), 29 genes showed up-regulated expression, and 11 down-regulated expression. At the cell proliferation phase (6-66 h after PH), 43 genes exhibited up-regulated expression, 44 down-regulated expression, and 29 up-/down-regulated expression. At the cell differentiation and structure-functional reorganization phase (66-168 h after PH), expression was up-regulated in 49 genes, down-regulated in 46 genes, and up-/down-regulated in 15 (Figure 1B).

Initial expression time of genes associated with cellular immune response during liver regeneration

At each time point of I.R, the number of initially up-regulated and down-regulated as well as the total number of up-regulated and down-regulated genes were 15 and 10, respectively during LR. The up- and down-regulated expression times were 419 and 274, respectively (Figure 1A). At the initial phase (0.5-4 h after PH), 32 genes displayed up-regulated expression, 19 down-regulated expression, and 2 up-/down-regulated expression. At the transition phase from G0 to G1 (4-6 h after PH), 29 genes showed up-regulated expression, and 11 down-regulated expression. At the cell proliferation phase (6-66 h after PH), 43 genes exhibited up-regulated expression, 44 down-regulated expression, and 29 up-/down-regulated expression. At the cell differentiation and structure-functional reorganization phase (66-168 h after PH), expression was up-regulated in 49 genes, down-regulated in 46 genes, and up-/down-regulated in 15 (Figure 1B).

Table 1 Expression of 127 cellular immune response-associated genes during rat liver regeneration

Gene abbr.	Associated with others	Fold difference	Gene abbr.	Associated with others	Fold difference	Gene abbr.	Associated with others	Fold difference	Gene abbr.	Associated with others	Fold difference
1 Antigen processing, presentation	Igflr	0.4	Tlr4	3	0.5	Cadd45g	8.0, 0.4				
Cd58d	3	4.0, 0.4	Traf3	3	3.2	Ilirf2	3.2, 0.1				
Cd50	3	2.7	Traf6f12	0.3	Il2	2	3.5, 0.3				
Cd8	3	0.2	Traf3s3	2.9	Il4	2	2.6, 0.1				
Cd8f	0.3	Il2	3	3.5, 0.3	Traf1	0.4	Inha	0.2			
Ccrl1	6.8, 0.4	Il4	3	2.6, 0.1	Uspf1	2.0, 0.5	Itgb1	1	2.6		
Itgb1	3	2.6	Il6	6.1, 0.3	Uspf2	3.3	Kirc2	2	2.3, 0.4		
Lgals3bp	3	10.6	Irf1	0.3	Vipr1	2.3	Kirc1	0.4			
Prkra	4.2, 0.1	Itgam	0.3	Xtp1	4.3, 0.3	Lgals3bp	1	10.6			
Tap1	3	2.2	Ithb2	0.5	Zap70	0.4	Lsp1	0.5			
Tlr2	3	10.6	Kdr	2.4, 0.4	Tnfrsf4	3	2.3, 0.3				
Adm	8.0	Mnda	5.3, 0.5								
Tert	3	4.0, 0.3	Map3k7	0.5	Ager	2	0.4	Nrf1	3.7, 0.2		
Akt1	3.9	Mapk8	19.7, 0.5	App	6.4	Oxil	9.1, 0.1				
Apoe	0.1	Mmp9	9.5, 0.5	Atr2b	0.3	Ptn	4.2				
Arhgdib	13.0	Myd88	2.1	Bcl10	2.3	Psa2q4a	2.0				
B7th3	3.5	Nfatc1	0.3	Bdnf	2.6, 0.4	Pplar	13.9				
Bcl2	0.3	NkB1	2.3, 0.4	Ccrl	2.3, 0.3	Philippep3	36.8, 0.5				
Bcl2l1	2.1, 0.4	Plo2x7	2.5, 0.4	Cfrl	2.6, 0.4	Pfrf	0.2				
Bmi1	2.0	Pwrr	0.3	Ccl17	0.1	Pten	0.5				
Btk	2.0	Plau	3.0, 0.4	Ccr1	27.9, 0.4	Ptprc	3	3.0, 0.1			
Card11	2.3, 0.2	Ppbb	2.1, 0.1	Ccr6	4.3, 0.3	Rela	2	0.5			
Cd244	3	0.3	Prkca	4.6	Cdc44	2	0.3	Sdc16a1	3.2		
Cd80	3.0, 0.3	Prkch	3.0, 0.4	Cdc3d	4.0, 0.4	Sod2	5.6				
Cfd	2.6	Prme2	4.0	Cdc3e	1	2.7	Snp	4.0, 0.2			
Cgfrg	0.4	Ptg2	2.1, 0.1	Cdc3g	1	0.2	Spp1	2.7, 0.5			
Chuk	0.3	Ptckb	3.6	Cfl	2.5	Tap1	1	2.2			
Cxcl12	0.2	Ptprc	3	3.0, 0.1	Cbr1	3.8, 0.5	Terb	2	0.2		
Ddx58	11.8	Rela	0.5	Csf2	1	0.3	Terg	2	0.3		
Erbb2	0.1	Rhog	0.5	Ctgf	13.9	Tfl	0.1				
F3	2.0, 0.2	Soc1	2.4, 0.5	Ctn	0.4	Tgfb2	2.9, 0.5				
Fgfr1	2.6	Soc3	2.5, 0.1	Cclk	10.3	Trl4	2	0.5			
Pyn	0.3	Spn	40.2	Cdc44r1	6.8, 0.4	Tnf	2	3.2			
Glim	6.0, 0.4	Tcrb	0.2	E2f1	21.2	Tnfrsf4	1	2.3, 0.3			
Gzmb	7.5	Terg	0.3	Ebf3	0.2	Umod	30.0, 0.4				
Icam1	3.0	Tert	5.3, 0.3	F2	0.3	Zfp348	2.5				
Ifng	6.5	Tgfb1	4.0	Fosl1	2.3						

1Reported genes associated with liver regeneration; Associated with others: involved in other process of cellular immune response.
expression frequency (Initial and total expression profiles of 127 cellular immune response-regulated, 10 up-/down-regulated genes, respectively up-regulated, 41 down-regulated, 14 predominantly down-regulated). The similarity in expression: 41 up-regulated, 21 predominantly up-regulated genes; white bars: down-regulated genes; blank bars: initial expressing genes in which up-regulated are predominant in the forepart and prophase and down-regulated genes in the metaphase, whereas very few genes in the anaphase; dotted bars: total expressing genes in which some genes are up-regulated and others are down-regulated during the whole LR. The up- and down-regulated expression times were 419, 274, respectively. The ones between biases have meaningless alteration. The expression of 88 up-regulated, down-regulated expression under bias are 419, 274, respectively.

A total of 127 genes were categorized into 21 patterns associated with cellular immune response during liver regeneration. Detection data of rat genome 230 2.0 array were analyzed by H-clustering. Red represents up-regulated genes chiefly associated with antigen processing and presentation; green represents down-regulated genes mainly associated with antigen elimination; black represents the genes whose expressions are meaningless. The upper and right trees showing the expression similarity cluster and time series cluster respectively, by which these genes can be classified into 5 and 14 groups, respectively.

Expression similarity and time relevance clusters of 127 cellular immune response-associated genes during liver regeneration

According to the time relevance, they were classified into 14 groups (0.5 and 144 h, 1 and 2 h, 4 and 6 h, 8 h, 12 and 16 h, 18 and 48 h, 24 and 30 h, 36 h, 42 h, 54 h, 60 and 66 h, 72 and 96 h, 120 h, 168 h). The up- and down-regulated expression times were 21 and 7, 64 and 22, 42 and 8, 72 and 16, 32 and 9, 37 and 34, 62 and 49, 69 and 55, 54 and 28, 57 and 32, 41 and 35, 27 and 25, 20 and 16, 16 and 20, respectively (Figure 3). The up-regulated expression genes were chiefly associated with antigen processing and presentation, and the down-regulated genes were significantly associated with antigen elimination.

Expression patterns of genes associated with cellular immune response during liver regeneration

A total of 127 genes were categorized into 21 patterns according to the changes in their expression: 11 up-regulated genes at one time point (i.e. 4, 18, 30, 48, 54, 96, 120 h) after PH (Figure 4A); 5 up-regulated genes at two

8 h; 3, 0 and 17, 2 at 12 h; 6, 7 and 21, 9 at 16 h; 11, 15 and 27, 26 at 18 h; 1, 3 and 21, 19 at 24 h; 2, 2 and 18, 8 at 30 h; 0, 1 and 15, 17 at 36 h; 0, 3 and 16, 8 at 42 h; 4, 0 and 34, 20 at 48 h; 1, 1 and 20, 20 at 54 h; 0, 2 and 18, 18 at 60 h; 0, 0 and 18, 14 at 66 h; 1, 1 and 12, 14 at 72 h; 2, 1 and 22, 9 at 96 h; 1, 1 and 17, 21 at 120 h; 0, 0 and 12, 12 at 144 h; 0, 0 and 15, 12 at 168 h (Figure 2). Generally, gene expression changes occurred during the whole LR. The up- and down-regulated expression times were 419 and 274, respectively. The initially up-regulated genes were predominant in the forepart and prophase and the down-regulated genes were predominant in the metaphase, whereas only a few of down-regulated genes were found in the anaphase.

Expression similarity and time relevance of genes

A total of 127 genes could be characterized based on their similarity in expression: 41 up-regulated, 21 predominantly up-regulated, 41 down-regulated, 14 predominantly down-regulated, 10 up-/down-regulated genes, respectively.
time points (i.e. 12 and 60 h, 18 and 54 h, 24 and 48 h, 30 and 42 h, 72 and 120 h) (Figure 4B); 2 up-regulated genes at three time points (Figure 4C); 3 up-regulated genes at four time points (Figure 4D); 4 up-regulated genes at two time points (Figure 4E); 4 up-regulated genes at two time points/one phase (Figure 4F); 3 up-regulated genes at multiple time points/phases (Figure 4G); 13 down-regulated genes at one time point (i.e. 16, 18, 24, 30, 36, 42, 60, 96, 120, 168 h) (Figure 4H); 4 down-regulated genes at two time points (i.e. 12 and 60 h, 18 and 54 h, 30 and 96 h, 42 and 60 h) (Figure 4I); 4 down-regulated genes at four time points (Figure 4J); 4 down-regulated genes at three time points (Figure 4K); 14 down-regulated genes at three time points/one phase (Figure 4L); 14 down-regulated genes at two time points (Figure 4M); 5 down-regulated genes at multiple time points/one phase (Figure 4N); 21 down-regulated genes at multiple time points/phases (Figure 4O); 14 predominantly down-regulated genes (Figure 4P); 10 similarly up-/down-regulated genes (Figure 4Q).

DISCUSSION

Cellular immune response is a self-protection mechanism formed during the long-term evolutionary processes, closely associated with higher animal. Of the proteins associated with antigen processing and presentation, five proteins including toll-like receptor 2 (TLR2) can activate the immune response by recognizing many kinds of pathogens[25]. Five proteins including lectin galactoside-binding soluble 3 binding protein (LGALS3BP) activate antigen presenting cells[26]. Transporter 1 ATP-binding cassette subfamily B (TAP1) speeds up antigen translocation[27]. The meaningful expression profiles of the genes encoding the above proteins are identical or similar at some time points while different at other time points, indicating that they may co-regulate antigen processing and presentation. In the present study, *th2* and *lgals3bp* were all up-regulated at multiple time points, reaching their peaks that were both 10.6 fold of the control respectively at 168 h and 48 h after PH. It is suggested that these genes play a
key role in antigen processing and presentation during LR. Of the proteins associated with T-cell activation and proliferation, 6 proteins including granzyme B (GZMB) can activate T-cells [28], 4 proteins including transforming growth factor beta 1 (TGFB1) can activate CD4+ T cells [29], 10 proteins including Rho GDP dissociation inhibitor beta (ARHGDIIB) increase connection between antigen presenting cells and T-cells by promoting T-cell proliferation [30]. 16 proteins including protein kinase C alpha (PRKCA) increase cytokine synthesis and expression of IFNγ and IgG [31], apolipoprotein E (APOE) facilitates endocytosis [32], 6 proteins including T-cell receptor beta chain (TCRB) activate the T-cell-dependent signaling pathway [33], 5 proteins including DEAD (Asp-Glu-Ala-Asp) box 58 (DDX58) promote the immunologic response [34]; intercellular adhesion molecule 1 (ICAM1) facilitates leucocyte transport [35]; interferon-gamma (IFN-γ) interacts with IL-12 and TNFs to augment immunological competence [36]; insulin-like growth factor I receptor (IGFIR) conducts signals of autoimmune inflammation [37]; integrin beta 2 (ITGB2) promotes leucocyte adherence and phagocytosis [38]; 4 proteins including Fyn proto-oncogene (FYN) suppress the Th2-mediated immune response [39]; 7 proteins including kit oncogene (KIT) inhibit T lymphocyte proliferation [40]; vasoactive intestinal peptide receptor 1 (VIPR1) combines T-cell to enhance HIV infection [41]. In the present study, the meaningful expression profiles of the genes encoding the above proteins were identical or similar at some time points while different at other time points, indicating that they may co-regulate T-cell activation and proliferation. gemb expression was up-regulated at 0.5-8, 36, 48-66 and 168 h and reached 7.5 fold at 48 h after PH. arkbil expression was up-regulated at 16, 42 and 96 h and reached 13 fold at 96 h after PH. prkca expression was up-regulated at 16, 30, 42 and 96 h and reached 4.6 fold at 96 h after PH. ddc58 expression was up-regulated at 1, 16, 30 and 42-48 h, reached 11.8 fold at 42 h after PH. ifng expression was up-regulated at 1-6, 18-24, 36, 48-66 and 144-168 h and reached 6.5 fold at 4 h after PH, indicating that they are crucial in T-cell activation and proliferation during LR.

Of the proteins associated with antigen elimination, profilin 1 (PFN1) accelerates antibody processing and modification [42]; 9 proteins including E2F transcription factor 1 (E2F1) and pancreatic lipase-related protein 2 (PNLIPRP2) increase immune response by speeding up the activities of lymphocytes and cytokines [43,44]; zinc finger protein 148 (ZFP148) accelerates the differentiation of monocytes into macrophages by inhibiting the activity of integrin CD11b [45]; complement factor H (CFH) promotes complement activation [46]; cathepsin κ (CTSK) promotes immunologic response via bactericidal action [47]; 6 proteins including superoxide dismutase 2 (SOD2) inhibit tumor cell proliferation and migration [48]; lymphocyte specific 1 (LSP1) and uromodulin (UMOD) suppress chemotaxis of macrophages and neutrophils [49,50]; chemokine receptor 1 (CCR1) conducts signals of inflammatory response [51]; 3 proteins including connective tissue growth factor (CTGF) accelerate wound repair by increasing expression of chemotactic factors [52]; transforming growth factor beta 2 (TGF2B) combines IL-10 to suppress immunologic response induced by bacterial infection [53]; myeloid cell nuclear differentiation antigen (MND) blocks combination of ligands and receptors [54]; 8 proteins including adrenomedullin (ADM) control the activity of effector lymphocytes and cytokines [55]; plasminogen activator urokinase receptor (PLAUR) promotes cancer cell spread [56]. The meaningful expression profiles of the genes encoding these proteins are identical or similar at some time points while different at other time points, indicating that they may co-regulate antigen elimination.

In the present study, eisk expression was up-regulated at 1, 18-24, 48 and 66-168 h and reached its peak at 72 h, which was 10.3 times that of the control and is basically in line with the result reported by Dransfeld [57]. e2f1 expression was up-regulated at 18-30, 54-72 and 120 h, and reached its peak at 24 h, which was 21.2 times that of the control. pulrp2 expression was up-regulated at 12-18 and 36 h, and reached its peak at 36 h, which was 36.8 fold that of the control. sod2 expression was up-regulated at 0.5, 4-24 and 48 h, and reached its peak at 12 h, which was 5.6 times that of the control. adpm expression was up-regulated at 0.5-8, 18-24, 36, 54 and 72 h and reached its peak at 1 h, which was 10.7 fold that of the control. adpm expression was up-regulated at 0.5-24, 36, 48-72 and 168 h, and reached its peak at 54 h, which was 8-fold that of the control. plaur expression was up-regulated at 1, 6, 18-24, 48, 72 and 120 h, and reached its peak at 6 h, which was 13.9 times that of the control. These findings suggest that the seven genes are of importance in antigen elimination during liver regeneration.

In conclusion, the expression changes of cellular immune response-associated genes after rat partial hepatectomy can be investigated by high-throughput gene expression analysis. Cellular immune response is enhanced during liver regeneration. Rat genome 230 2.0 array is a useful tool for analyzing the response at the transcriptional level. However, DNA→mRNA→protein→function is influenced by many factors including protein interaction. So we will further analyze the results using such techniques as Northern blotting, protein chip, RNA interference, protein-interaction etc.

REFERENCES

1. Chen C, Kong AN. Dietary cancer-chemopreventive compounds: from signaling and gene expression to pharmacological effects. Trends Pharmacol Sci 2005; 26: 318-326
2. Leclerc V, Reichhart JM. The immune response of Drosophila melanogaster. Immunol Rev 2004; 198: 59-71
3. Ludwig B, Kraus FB, Allwinn R, Keim S, Doerr HW, Buxbaum S. Loss of varicella zoster virus antibodies despite detectable cell mediated immunity after vaccination. Infection 2006; 34: 222-226
4. Artym J, Zimecki M, Kurszyko J, Kruzel ML. Lactoferrin accelerates reconstitution of the humoral and cellular immune response during chemotherapy-induced immunosuppression and bone marrow transplant in mice. Stem Cells Dev 2005; 14: 548-555
5. Kolodziej H, Kiderlen AF. Antileishmanial activity and immune modulatory effects of tannins and related compounds on Leishmania parasites RAW 264.7 cells. Phytochemistry 2005; 66: 2056-2071
6. Terui K, Ozaki M. The role of STAT3 in liver regeneration. Drugs Today (Barc) 2005; 41: 461-469
7 Estes DM, Turaga PS, Sievers KM, Teale JM. Characterization of an unusual cell type (CD4+ CD3-) expanded by helminth infection and related to the parasite stress response. J Immunol 1995; 155: 1854-1866
8 Lucht JM, Mauch-Mani B, Steiner HY, Metraux JP, Ryals J, Hohn B. Pathogen stress increases somatic recombination frequency in Arabidopsis. Nat Genet 2002; 30: 311-314
9 Higgins GM, Anderson R M. Experimental pathology of the liver: restoration of the liver of the white rat following partial surgical removal. J Arch Pathol 1931; 12: 186-222
10 Michalopoulos GK, DeFrances M. Liver regeneration. Adv Biochem Exp Biol 2005; 93: 101-134
11 Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004; 5: 836-847
12 Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 2006; 43: S45-S53
13 Xu CS, Zhao LF, Yang KJ, Zhang JB. The origin and function of liver stem cells. Acta Biologica Experimentalis Sinica 2004; 37: 72-77
14 Dalalas E, Newsome PN, Harrison DJ, Plevris JN. Hematopoietic stem cell trafficking in liver injury. FASEB J 2005; 19: 1225-1231
15 Dransfeld O, Gehrmann T, Köhrer K, Kircheis G, Holneicher H, Gehrmann T, Köhrer K, Kircheis G, Holneicher K, Kirchen CJ, Köhrer K, Kircheis G, Holneicher K. The 90K protein increases major histocompatibility complex expression. J Immunol 2001; 166: 6004-6011
16 Gambarov SS, Iudina NV. [Effect of partial hepatectomy on the induction of cells inhibiting development of humoral immune response]. Vestn Ross Akad Med Nauk 2006; 25: 707-710
17 Li L, Roden J, Shapiro BE, Wold BJ, Bhatia S, Forman SJ, Bhatia R. Reproducibility, fidelity, and discriminant validity of mRNA amplification for microarray analysis from primary hematopoietic cells. J Mol Diagn 2005; 7: 48-56
18 Hood L. Leroy Hood expounds the principles, and future and system of bioengineers. Drug Discov Today 2005; 8: 436-438
19 Yue H, Eastman PS, Wang BB, Minor J, Doctolero MH, Nuttall RL, Stack R, Beckman JW, Montgomery JR, Vainio M, Johnston RJ. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res 2001; 29: E41-E41
20 Knepp JH, Geahr MA, Forman MS, Valsamakis A. Comparison of automated and manual nucleic acid extraction methods for detection of enterovirus RNA. J Clin Microbiol 2003; 41: 3532-3536
21 Nuyts S, Van Mellaert L, Lambin P, Anne J. Efficient isolation of total RNA from Clostridium without DNA contamination. J Microbiol Methods 2001; 44: 235-238
22 Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli. Genetics 1998; 149: 1633-1648
23 Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863-14868
24 Werner T. Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression data array. Pharmacogenomics 2001; 2: 25-36
25 Lee YJ, Lee DH, Cho CK, Bae S, Jhon GJ, Lee SJ, Soh JW, Lee YS. HSP25 inhibits protein kinase C delta-mediated cell death through direct interaction. J Biol Chem 2005; 280: 18108-18119
26 Grassadonia A, Tinari N, Fiorentino B, Suzuki K, Nakazato M, De Tursi M, Giuliani C, Napolitano G, Singer DS, Iacobelli S, Kohn LD. The 90K protein increases major histocompatibility complex class I expression and is regulated by hormones, gamma-interferon, and double-strand polynucleotides. Endocrinology 2004; 145: 4728-4736
27 Bouhle H, Knittler MR. The distinct nucleotide binding states of the transporter associated with antigen processing (TAP) are regulated by the nonhomologous C-terminal tails of TAP1 and TAP2. Eur J Biochem 2003; 270: 4531-4546
28 Grossman WJ, Verbsky JW, Töllefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granulocytes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004; 104: 2840-2848
29 Rudner LA, Lin JT, Park IK, Cates JM, Dyer DA, Franz DM, French MA, Duncan EM, White HD, Gorham JD. Nocroinflammatory liver disease in BALB/c background, TGF-beta 1-deficient mice requires CD4+ T-cells. J Immunol 2003; 170: 4785-4792
30 Groyisman M, Hornstein I, Alcover A, Katzav S. Eval and LGD-2 regulators of Rho GTPases, function cooperatively as signal transducers in T cell antigen receptor-induced pathways. J Biol Chem 2002; 277: 50121-50130
31 Pfeilhofer C, Gruber T, Letschka T, Nitzsch-Nikolaiconi C, Herrman-Kleiter N, Braun U, Leitges M, Baier G. Defective IgG2a/2b class switching in PKC alpha-/- mice. J Immunol 2006; 176: 6004-6011
32 Yokoyama Y, Kuramitsu Y, Takashima M, Iizuka N, Terai S, Oka M, Nakamura K, Okita K, Sakaida I. Protein level of apolipoprotein E increased in human hepatocellular carcinoma. Int J Oncol 2006; 28: 625-631
33 Collette A, Bagot S, Ferrandez ME, Cazeneuve PA, Six A, Pied S. A profound alteration of blood TCRB repertoire allows prediction of cerebral malaria. J Immunol 2004; 173: 4568-4575
34 Imaiizu T, Hatakeyama M, Yamashita K, Yoshida H, Ishikawa A, Taima K, Sato M, Moriki F, Wakabayashi K. Interferon-gamma induces retinoic acid-inducible gene-1 in endothelial cells. Endothelium 2004; 11: 169-173
35 Mullins RF, Skeie JM, Malone EA, Kuehn MH. Macular and peripheral distribution of ICAM-1 in the human chorionicapillaris and retina. Mol Vis 2006; 12: 224-235
36 Qiu G, Wang C, Smith R, Harrison K, Yin K. Role of IFN-gamma in bacterial containment in a model of intra-abdominal sepsis. Shock 2001; 16: 425-429
37 Mustafa W, Mustafa A, Elbakri N, Link H, Adem A. Reduced levels of insulin-like growth factor-1 receptor (IGF-1R) suppress cellular signaling in experimental autoimmune encephalomyelitis (EAE). J Recept Signal Transduct Res 2001; 21: 47-54
38 Schwacha MG, Chaudry IH, Alexander M. Regulation of macrophage IL-10 production postinjury via beta2 integrin signaling and the p38 MAP kinase pathway. Shock 2003; 20: 529-535
39 Tamura T, Igarashi O, Hino A, Yamane H, Aizawa S, Kato T, Naruichi H. Impairment in the expression and activity of Fyn during differentiation of naive CD4+ T cells into the Th2 subset. J Immunol 2001; 167: 1962-1969
40 Beck C, Schreiber K, Schreiber H, Rowley DA. C-kit+ FcR+ myelocytes are increased in cancer and prevent the proliferation of fully cytolytic T cells in the presence of immune serum. Eur J Immunol 2003; 33: 19-28
41 Branch DR, Valenta LJ, Yousefi S, Sakac D, Singla R, Bali M, Sahai BM, Ma XZ. VPAC1 is a cellular estrogen receptor expressed on T cells that actively facilitates productive HIV-1 infection. AIDS 2002; 16: 309-319
42 Skare P, Kreivi JP, Bergström A, Karlsson R. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 2003; 286: 12-21
43 Salom C, Eymun B, Macheau O, Chafero L, Plumas B, Brambilla C, Brambilla E, Gazzetti S. E2F1 induces apoptosis and sensitizes human lung adenocarcinoma cells to death-receptor-mediated apoptosis through specific downregulation of c-FLIP(short). Cell Death Differ 2006; 13: 260-272
44 Lowe ME, Kaplan MH, Jackson-Grusby L, D’Agostino D, Grusby MJ. Decreased neonatal dietary fat absorption and T cell cytotoxicity in pancreatic lipase-related protein 2-deficient mice. J Biol Chem 1998; 273: 31215-31221
45 Park H, Shelley CS, Aarnoat MA. The zinc finger transcription factor ZFP-89 is a repressor of the human beta 2-integrin CD11b gene. Blood 2003; 101: 894-902
46 Endo M, Fuke Y, Tamano M, Hidaka M, Ohsawa I, Fujita T, Ohi H. Glomerular deposition and urinary excretion of complement factor H in idiopathic membranous nephropathy. Nephron Clin Pract 2004; 97: c147-c153
47 Kos J, Sekimik A, Premuz A, Zavasnik Bergant V, Langerholc
profile in human cells and tissues. Exp Cell Res 2005; 306: 103-113

48 Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P. Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 2005; 280: 39485-39492

49 Jongstra-Bilen J, Misener VL, Wang C, Ginzberg H, Auerbach A, Joyner AL, Downey GP, Jongstra J. LSP1 modulates leukocyte populations in resting and inflamed peritoneum. Blood 2000; 96: 1827-1835

50 Wimmer T, Cohen G, Saemann MD, Hörl WH. Effects of Tamm-Horsfall protein on polymorphonuclear leukocyte function. Nephrol Dial Transplant 2004; 19: 2192-2197

51 Lu P, Nakamoto Y, Nemoto-Sasaki Y, Fujii C, Wang H, Hashii M, Ohmoto Y, Kaneko S, Kobayashi K, Mukaida N. Potential interaction between CCR1 and its ligand, CCL3, induced by endogenously produced interleukin-1 in human hepatomas. Am J Pathol 2003; 162: 1249-1258

52 Friedrichsen S, Heuer H, Christ S, Winckler M, Brauer D, Bauer K, Raivich G. CTGF expression during mouse embryonic development. Cell Tissue Res 2005; 312: 175-188

53 Bonecini-Almeida MG, Ho JL, Boéchat N, Huard RC, Chitale S, Doo H, Geng J, Rego L, Lazzarini LC, Kritski AL, Johnson WD Jr, McCaffrey TA, Silva JR. Down-modulation of lung immune responses by interleukin-10 and transforming growth factor beta (TGF-beta) and analysis of TGF-beta receptors I and II in active tuberculosis. Infect Immun 2004; 72: 2628-2634

54 Briggs RC, Shults KE, Flye LA, McClintock-Treep SA, Jagasia MH, Goodman SA, Boulos FI, Jacobberger JW, Stelzer GT, Head DR. Dysregulated myeloid nuclear differentiation antigen expression in myelodysplastic syndromes: evidence for a role in apoptosis. Cancer Res 2006; 66: 4645-4651

55 Gonzalez-Rey E, Cherny A, Varela N, Robledo G, Delgado M. Urocortin and adrenomedullin prevent lethal endotoxemia by down-regulating the inflammatory response. Am J Pathol 2006; 168: 1921-1930

56 Sawai H, Okada Y, Funahashi H, Matsuo Y, Takahashi H, Takeyama H, Manabe T. Interleukin-1alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6beta1-integrin and urokinase plasminogen activator receptor expression. BMC Cell Biol 2006; 7: 8

S- Editor Wang GP L- Editor Wang XL E- Editor Ma WH