Fractional derivatives of some special functions using ABR and ABC derivatives

Prabha R.¹ & Kiruthika S.²
¹ Department of Science and Humanities, Ahalia School of Engineering and Technology, Palakkad, India.
² Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India.
E-mail: s.kiruthika@cb.amrita.edu

Abstract
In this paper, we present the Atangana Baleanu fractional derivatives of some special functions such as trigonometric, exponential and hyperbolic functions. The AB fractional derivatives are calculated using the formula for RL derivatives and are calculated for all functions which belong to \(L^1[a,b]\). The importance of these derivatives comes from the fact that certain dissipative phenomena cannot be explained using classical fractional operators.

Keywords: Atangana Baleanu fractional derivatives, Mittag Leffler kernel, Normalisation function

1. Introduction
Fractional calculus is an emerging field of research in the past two decades with expeditious development and continuous extension which has its origin 3 centuries ago. The classical calculus gives prominence on finding the solutions of linear differential equations [25, 19] whereas the fractional calculus gives importance for finding the solutions of nonlinear differential equations which are used to solve differential equations of non-integer order and applied in the field of confined ground water modelling [2, 17, 18], optimization theory [1, 6] and so on. Fractional calculus is applied and practised in many research fields, especially in medicine where it is used for the control of diseases like dengue, tuberculosis, ebola, hepatitis, blood flow [24] and in physics for stability, image processing [23, 14, 16, 13]. The contributors in the field of fractional calculus include Riemann Liouville, Caputo, Abel, etc. Out of all, Niels Henrick Abel made a tremendous contribution to the field of fractional calculus.
Fractional derivatives of some special functions using ABR and ABC derivatives

in generalization of the tautochrone problem for finding the solution of curve along which a bead can move down with the least time of descent [4]. The nonlocal property of the fractional derivatives having memory effect attracted the interests of researchers to design various modelling problems which cannot be accomplished using derivatives of integer order [12, 9].

Several definitions for fractional derivatives are derived in a manner that the classical derivatives are substituted and used in different fields of research. During the initial stages, researchers used classical fractional operators defined using a singular kernel which is not capable of solving complicated problems of real dynamics. Thus, a new class of fractional derivatives using non-singular kernel is introduced for modelling problems [5, 6, 11, 8] which include Caputo Fabrizio derivatives having exponential kernel and Atangana Baleanu derivatives having Mittag Leffler kernel. These derivatives with non-singular kernels have captured the attention of many scientists not only in mathematics but also in economics, social sciences, data science and so on. Their importance is mainly focused in the AB model of fractional calculus [3, 21, 14], in mechanisms of biological systems for the treatment of cancer and so on. One such method is chemotherapy which has got many side effects such as vomiting, hair loss, and many serious health issues. Hence a mathematical model using these fractional derivatives with non-singular kernel has been employed to optimize the drug content so that the chemotherapy side effects are minimized. This motivated us to derive the derivatives of these special functions.

In this paper, we derive the ABR, ABC derivatives of some special functions using the Maclaurin’s series expansion and these derivatives are obtained using the Riemann Liouville integral of the power function of various orders. The paper is structured as follows: In section 2, we have given the definitions, results and formulae used. We present the ABR and ABC derivatives of trigonometric, exponential and hyperbolic functions in sections 3, 4 and 5 respectively and the conclusion is given in section 6.

2. Preliminaries

Definition 2.1. [10] The Atangana Baleanu Riemann Liouville derivative of order \(\alpha, 0 < \alpha < 1 \), is given by

\[
ABR \ D^\alpha_a f(t) = \frac{B(\alpha)}{1 - \alpha} \frac{d}{dt} \int_a^t f(x) E_\alpha\left(-\frac{\alpha}{1 - \alpha}(t - x)^\alpha \right) dx.
\]

Definition 2.2. [10] The Atangana Baleanu Caputo derivative of order \(\alpha, 0 < \alpha < 1 \), is given by

\[
ABC \ D^\alpha_a f(t) = \frac{B(\alpha)}{1 - \alpha} \int_a^t f'(x) E_\alpha\left(-\frac{\alpha}{1 - \alpha}(t - x)^\alpha \right) dx.
\]
Fractional derivatives of some special functions using ABR and ABC derivatives

In the above definitions, the Mittag Leffler function in one parameter is given by

$$E_\alpha(z) = \sum_{k=0}^{\infty} \frac{(z)^k}{\Gamma(\alpha k + 1)}$$

We have used the definitions of ABR and ABC fractional derivatives of order α, $0 < \alpha < 1$, using Mittag Leffler kernel [15, 7] needed to establish our results and studied the existence of fractional derivatives for the trigonometric, exponential and hyperbolic functions which are useful in solving the differential equations of the same kind. The normalisation function $B(\alpha)$ can be chosen according to our wish to satisfy certain properties [7, 10]. So, throughout this paper, in the derivation of ABR and ABC derivatives of the special functions, we take $a = 0$, $\alpha = \frac{1}{2}$, $B\left(\frac{1}{2}\right) = 1$ and the RL integral [12, 20] of the power function of order $\frac{k}{2} + 1$. Also the final results of ABR and ABC derivatives of special functions are obtained as a sum of Mittag-Leffler functions in two parameters [19] which plays a vital role in fractional calculus, as gamma function does in the ordinary calculus.

3. ABR and ABC derivatives of sine and cosine functions

3.1. ABR derivative of sine function

$$ABR D_{0+}^{\frac{1}{2}} \sin t = B\left(\frac{1}{2}\right) \frac{d}{dt} \int_0^t \sin x E_{\frac{1}{2}} \left(\frac{-\frac{1}{2}(t-x)^{\frac{1}{2}}}{1-\frac{1}{2}}\right) dx$$

$$= 2B\left(\frac{1}{2}\right) \frac{d}{dt} \int_0^t \sin x E_{\frac{1}{2}} \left(-\left(t-x\right)^{\frac{1}{2}}\right) dx$$

$$= 2 \frac{d}{dt} \int_0^t \sin x E_{\frac{1}{2}} \left(-(t-x)^{\frac{1}{2}}\right) dx$$

$$= 2 \frac{1}{\Gamma\left(\frac{1}{2} + 1\right)} \frac{d}{dt} \int_0^t \sin x \sum_{k=0}^{\infty} (-1)^k (t-x)^{\frac{k}{2}} dx$$

$$= 2 \frac{1}{\Gamma\left(\frac{1}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \int_0^t \sin x (t-x)^{\frac{k}{2}} dx$$

$$= 2 \frac{1}{\Gamma\left(\frac{1}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \left\{ \int_0^t x(t-x)^{\frac{k}{2}} - \int_0^t \frac{t^3}{3!}(t-x)^{\frac{k}{2}} + \int_0^t \frac{t^5}{5!}(t-x)^{\frac{k}{2}} - \cdots \right\} dx$$

$$= 2 \sum_{k=1}^{\infty} (-1)^{k-1}(t)^{(2k-1)}E_{\frac{1}{2},2k}(-t)\frac{1}{2}.$$
3.2. ABC derivative of sine function

\[\text{ABC } D_{0+}^{\frac{1}{2}} \sin t = \frac{B\left(\frac{1}{2}\right)}{1 - \frac{t}{2}} \int_0^t \cos x \ E_{\frac{1}{2}} \left(\frac{1}{2}(t-x)^{\frac{1}{2}}\right) dx \]

\[= 2B\left(\frac{1}{2}\right) \int_0^t \cos x \ E_{\frac{1}{2}} \left(- (t-x)^{\frac{1}{2}}\right) dx \]

\[= 2 \int_0^t \cos x \ E_{\frac{1}{2}} \left(- (t-x)^{\frac{1}{2}}\right) dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \int_0^t \cos x \sum_{k=0}^{\infty} (-1)^k (t-x)^{\frac{k}{2}} dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \int_0^t \cos x (t-x)^{\frac{k}{2}} dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \left\{ \int_0^t 1(t-x)^{\frac{k}{2}} - \int_0^t x^2 2^{\frac{k}{2}}(t-x)^{\frac{k}{2}} + \int_0^t x^4 4^{\frac{k}{2}}(t-x)^{\frac{k}{2}} - \cdots \right\} dx \]

\[= 2 \sum_{k=1}^{\infty} (-1)^{k-1} t^{(2k-1)} E_{\frac{1}{2}2k}(t)^{\frac{k}{2}}. \]

3.3. ABR derivative of cosine function

\[\text{ABR } D_{0+}^{\frac{1}{2}} \cos t = \frac{B\left(\frac{1}{2}\right)}{1 - \frac{1}{2}} \frac{d}{dt} \int_0^t \cos x \ E_{\frac{1}{2}} \left(\frac{1}{2}(t-x)^{\frac{1}{2}}\right) dx \]

\[= 2B\left(\frac{1}{2}\right) \frac{d}{dt} \int_0^t \cos x \ E_{\frac{1}{2}} \left(- (t-x)^{\frac{1}{2}}\right) dx \]

\[= 2 \frac{d}{dt} \int_0^t \cos x \ E_{\frac{1}{2}} \left(- (t-x)^{\frac{1}{2}}\right) dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \frac{d}{dt} \int_0^t \cos x \sum_{k=0}^{\infty} (-1)^k (t-x)^{\frac{k}{2}} dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \int_0^t \cos x (t-x)^{\frac{k}{2}} dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \left\{ \int_0^t 1(t-x)^{\frac{k}{2}} - \int_0^t x^2 2^{\frac{k}{2}}(t-x)^{\frac{k}{2}} + \int_0^t x^4 4^{\frac{k}{2}}(t-x)^{\frac{k}{2}} - \cdots \right\} dx \]

\[= 2 \sum_{k=1}^{\infty} (-t)^{k-1} E_{\frac{1}{2}2k-1}(t)^{\frac{k}{2}}. \]
Fractional derivatives of some special functions using ABR and ABC derivatives

3.4. ABC derivative of cosine function

\[\text{ABC} D_{0+}^\alpha \cos t = B\left(\frac{1}{2}\right) \int_0^t \sin x E_{\frac{1}{2}}\left(-\frac{1}{2}(t-x)^{\frac{1}{2}}\right) \, dx \]

\[= 2B\left(\frac{1}{2}\right) \int_0^t \sin x E_{\frac{1}{2}}\left(-x^{\frac{3}{2}}\right) \, dx \]

\[= 2 \int_0^t \sin x E_{\frac{1}{2}}\left(-x^{\frac{3}{2}}\right) \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \int_0^t \sin x \sum_{k=0}^{\infty} (-1)^k x^{\frac{k}{2}} \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \int_0^t \sin x(t-x)^{\frac{k}{2}} \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \left\{ \int_0^t -x(t-x)^{\frac{k}{2}} + \int_0^t x^3(t-x)^{\frac{k}{2}} - \int_0^t \frac{x^5}{5!}(t-x)^{\frac{k}{2}} + \cdots \right\} \, dx \]

\[= 2 \sum_{k=1}^{\infty} (-1)^k (t)^{\frac{k}{2}} E_{\frac{1}{2}k+1}(-t)^{\frac{1}{2}}. \]

4. ABR and ABC derivatives of Exponential function

4.1. ABR derivative of the Exponential function

\[\text{ABR} D_{0+}^\alpha e^t = B\left(\frac{1}{2}\right) \frac{d}{dt} \int_0^t e^x E_{\frac{1}{2}}\left(-\frac{1}{2}(t-x)^{\frac{1}{2}}\right) \, dx \]

\[= 2 \frac{d}{dt} \int_0^t e^x E_{\frac{1}{2}}\left(-x^{\frac{3}{2}}\right) \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \frac{d}{dt} \int_0^t e^x \sum_{k=0}^{\infty} (-1)^k x^{\frac{k}{2}} \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \int_0^t e^x(t-x)^{\frac{k}{2}} \, dx \]

\[= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \int_0^t (1 + x^{\frac{3}{2}} + \frac{x^2}{2!} + \cdots)(t-x)^{\frac{k}{2}} \, dx \]

\[= 2 \sum_{k=1}^{\infty} t^{k-1} E_{\frac{1}{2}k}(-t)^{\frac{1}{2}}. \]
Fractional derivatives of some special functions using ABR and ABC derivatives

4.2. ABC derivative of the Exponential function

\[
\text{ABC} D_{0+}^\frac{1}{2} e^t = \frac{B(\frac{1}{2})}{1 - \frac{1}{2}} \int_0^t e^x E_\frac{1}{2} \left(\frac{-\frac{1}{2}}{1 - \frac{1}{2}} (t - x) \right) dx \\
= 2B\left(\frac{1}{2}\right) \int_0^t e^x E_\frac{1}{2} \left(-(t - x) \right) dx \\
= \int_0^t e^x E_\frac{1}{2} \left(-(t - x) \right) dx \\
= 2 \int_0^t e^x \sum_{k=0}^{\infty} (-1)^k (t - x)^{\frac{k}{2}} dx \\
= 2 \sum_{k=0}^{\infty} (-1)^k \int_0^t e^x \left(1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots \right) (t - x)^{\frac{k}{2}} dx \\
= 2 \sum_{k=1}^{\infty} t^k E_{\frac{1}{2},k+1}(t)^{\frac{k}{2}}.
\]

5. ABR and ABC derivatives of the Hyperbolic functions

5.1. ABR derivative of hyperbolic sine function

\[
\text{ABR} D_{0+}^\frac{1}{2} \sinh t = \frac{B(\frac{1}{2})}{1 - \frac{1}{2}} \frac{d}{dt} \int_0^t \sinh x \ E_\frac{1}{2} \left(\frac{-\frac{1}{2}}{1 - \frac{1}{2}} (t - x) \right) dx \\
= 2 \int_0^t \sinh x \ E_\frac{1}{2} \left(-(t - x) \right) dx \\
= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \frac{d}{dt} \sum_{k=0}^{\infty} (-1)^k (t - x)^{\frac{k}{2}} dx \\
= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \sinh x (t - x)^{\frac{k}{2}} dx \\
= 2 \frac{1}{\Gamma\left(\frac{k}{2} + 1\right)} \sum_{k=0}^{\infty} (-1)^k \frac{d}{dt} \int_0^t \left(x + \frac{x^3}{3!} + \cdots \right) (t - x)^{\frac{k}{2}} dx \\
= 2 \sum_{k=1}^{\infty} (t)^{(2k-1)} E_{\frac{1}{2},k+1}(t)^{\frac{k}{2}}.
\]
5.2. ABR derivative of hyperbolic cosine function

\[\text{ABR} D^\frac{1}{2}_{0+} \cosh t = \frac{B(\frac{1}{2})}{1 - \frac{1}{2}} \frac{d}{dt} \int_0^t \cosh x \ E_\frac{1}{2} \left(\frac{-x(t-x)^\frac{1}{2}}{1 - \frac{1}{2}} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]

5.3. ABC derivative of hyperbolic sine function

\[\text{ABC} D^\frac{1}{2}_{0+} \sinh t = \frac{B(\frac{1}{2})}{1 - \frac{1}{2}} \frac{d}{dt} \int_0^t \cosh x \ E_\frac{1}{2} \left(\frac{-x(t-x)^\frac{1}{2}}{1 - \frac{1}{2}} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]

\[= 2 \int_0^t \cosh x \ E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \]
Fractional derivatives of some special functions using ABR and ABC derivatives

5.4. ABC derivative of hyperbolic cosine function

\[
\text{ABC} D^\frac{1}{2}_0 \cosht = B(\frac{1}{2}) \int_0^t \sinh x E_\frac{1}{2} \left(-\frac{1}{2} (t-x)^\frac{1}{2} \right) dx \\
= 2 \int_0^t \sinh x E_\frac{1}{2} \left(-(t-x)^\frac{1}{2} \right) dx \\
= 2 \Gamma(\frac{1}{2} + 1) \int_0^t \sinh x \sum_{k=0}^\infty (-1)^k (t-x)^\frac{k}{2} dx \\
= 2 \Gamma(\frac{1}{2} + 1) \sum_{k=0}^\infty (-1)^k \int_0^t \sinh x (t-x)^\frac{k}{2} dx \\
= 2 \Gamma(\frac{1}{2} + 1) \sum_{k=0}^\infty (-1)^k \left\{ \int_0^t x (t-x)^\frac{k}{2} + \int_0^t x^3 (t-x)^\frac{k}{2} + \int_0^t x^5 (t-x)^\frac{k}{2} + \cdots \right\} dx \\
= 2 \Gamma(\frac{1}{2} + 1) \sum_{k=0}^\infty (-1)^k \left\{ \int_0^t x (t-x)^\frac{k}{2} + \int_0^t x^3 (t-x)^\frac{k}{2} + \int_0^t x^5 (t-x)^\frac{k}{2} + \cdots \right\} dx \\
= 2 \Gamma(\frac{1}{2} + 1) \sum_{k=0}^\infty (-1)^k \left\{ \int_0^t x (t-x)^\frac{k}{2} + \int_0^t x^3 (t-x)^\frac{k}{2} + \int_0^t x^5 (t-x)^\frac{k}{2} + \cdots \right\} dx \\
= 2 \sum_{k=1}^\infty (t)^{2k} E_{\frac{1}{2},2k+1}(t)^{\frac{1}{2}}.
\]

6. Conclusion

The ABR and ABC derivatives are used for solving differential equations using numerical methods and Laplace transforms which are applied in the modelling problems of physics, chaos theory and various other fields [17, 18]. The Atangana Baleanu derivatives are also evaluated for many other functions [1, 3, 22, 7] such as power function, product of two functions etc. in which these derivatives satisfy the product rule, chain rule, semigroup property and so on. The results established in this paper can be extended to different orders and these describe a foundation for the theory of AB differintegrals.

References

[1] Alqahtani.R.T 2016 Atangana Baleanu derivative with fractional order applied to the model of groundwater with an unconfined acquifier J.Nonlinear Sci. Appl 9 3647-3654.
[2] Abdeljawad.T and Baleanu.D 2011 Fractional differences and integration by parts J.Comput.Anal.Appl 13 574-582.
[3] Abdeljawad.T and Baleanu.D 2016 Discrete fractional differences with non singular discrete Mittag Leffler Kernels Advances in difference Equations 232 1-18.
[4] Abdeljawad.T and Baleanu.D 2017 Integration by parts and its applications of a new non local fractional derivative with Mittag Leffler nonsingular kernel J.Nonlinear Sci. Appl 10 1098-1107.
Fractional derivatives of some special functions using ABR and ABC derivatives

[5] Abdeljawad, T. and Baleanu, D. 2017 On fractional derivatives with exponential kernel and their discrete versions Rep. Math. Phys. 80 11-27.
[6] Abdeljawad, T. and Baleanu, D. 2018 Advances in difference Equations pp 468.
[7] Atangana, A. and Baleanu, D. 2016 New fractional derivatives with nonlocal and nonsingular kernel Theory and Application to heat transfer model Therm Sci 20 763-769.
[8] Caputo, M. and Fabrizio, M. 2015 A new definition of fractional derivative without singular kernel Progr. Fract. Differ. Appl. 1 73-85.
[9] Evans, L. C. 2010 Partial differential equations American Mathematical Society.
[10] Fernandez, A. and Baleanu, D. 2018 On some new properties of fractional derivatives with Mittag-Leffler kernel Common Nonlinear Sci Numer. Simulat. 59 444-462.
[11] Fernandez, A. and Baleanu, D. 2018 The mean value theorem and Taylors’ theorem for fractional derivatives with Mittag-Leffler Kernel, Advances in difference Equations 86.
[12] Haubold, H. J., Mathai, A. M. and Saxena, R. K. 2011 Mittag-Leffler Functions and their Applications Journal Of Applied Mathematics pp 51.
[13] Hiller, R. 2000 Applications of Fractional Calculus in Physics World Scientific, Singapore.
[14] Kilbas, A. A. 2005 Fractional Calculus and Applied Analysis 8 113–126.
[15] Kilbas, A. A., Saigo, M., Saxena, K. 2004 Generalized Mittag-Leffler function and generalized fractional calculus operators Integral Transforms Spec. Funct. 15 31–49.
[16] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations Elsevier, Amsterdam, 2006.
[17] Mehdinejadiani, B., Jafari, H. and Baleanu, D. 2013 Derivation of a fractional Boussinesq equation for modelling unconfined groundwater Eur. Phys. J. Spec. Top. 222 1805–1812.
[18] Mehdinejadiani, B., Naseri, A. A., Jafari, H., Ghanbarzadeh, A., Baleanu, D. 2013 A Mathematical model for simulation of a water table profile between two parallel subsurface drains using fractional derivative Comput. Math. Appl. 66 785–794.
[19] Miller, K. S. and Ross, B. 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
[20] Podlubny, I. 1999 Fractional Differential Equations, Academic Press, New York.
[21] Prabhakar, T. R. 1971 A singular integral equation with a generalized Mittag-Leffler function in the kernel Yokohama Math. J. 19 7-15.
[22] Samko, S. G., Kilbas, A. A. and Marichev, O. I. 1993 Fractional Integrals and Derivatives; Theory and Applications, Gordon and Breach, Amsterdam.
[23] Vinodkumar, A., Senthilkumar, T., Li, X. 2018 Robust exponential stability results for uncertain infinite delay differential systems with random impulsive moments, Advances in Difference Equations.
[24] Ali, F., Yousof, S., Khan, I., Sheikh NA 2019 A new idea of Atangana Baleanu fractional derivatives to blood flow with magnetics particles in a circular cylinder, Journal of Magnetism And Magnetic Materials 486 165282.
[25] Gao, W., Ghanbari, B., Boskunos, H. M. 2019 New Numerical simulations for some real world problems with Atangana Baleanu fractional derivative Chaos, solitons and fractals 128 34–43.