An additional study of multi-muon events produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

T. Aaltonen,20 B. Álvarez González,8 S. Amerio,38 D. Amidei,29 A. Anastassov,33 A. Annovi,16 J. Antos,11 G. Apollinari,14 A. Apresyan,42 T. Arisawa,51 A. Artikov,12 W. Ashmanskas,14 B. Auerbach,54 F. Azfar,37 W. Badgett,14 A. Barbaro-Galtieri,24 V.E. Barnes,42 B.A. Barnett,22 P. Barria,$^{dd},^{40}$ P. Bartos,11 M. Bause,$^{bb},^{38}$ F. Bedeschi,40 D. Beecher,26 S. Behari,22 G. Bellettini,$^{cc},^{40}$ J. Bellinger,53 D. Benjamin,13 A. Beretvas,14 A. Bhatti,44 M. Binkley,a, A. Bodek,11 D. Bortoletto,42 J. Boudreau,41 A. Boveia,10 B. Brau,a, L. Brigliadori,$^{aa},^{5}$ A. Brisuda,11 C. Bromberg,30 E. Brucken,20 M. Bucciantonio,$^{cc},^{40}$ J. Budagov,12 H.S. Budd,43 S. Budd,21 K. Burkett,14 G. Chiarelli,40 G. Chlachidze,14 F. Chlebana,14 K. Cho,23 D. Chokheli,12 J.P. Chou,19 W.H. Chung,53 Y.S. Chung,43 C.I. Ciobanu,39 M.A. Ciocci,$^{dd},^{40}$ A. Clark,17 C. Clarke,52 G. Compostella,$^{bb},^{38}$ M.E. Convery,14 M. Corbo,39 M. Cordelli,16 C.A. Cox,6 D.J. Cox,6 F. Crescioli,$^{cc},^{40}$ C. Cuenca Almenar,54 J. Cuevas,$^{w},^{8}$ D. Dagenhart,14 N. d’Ascenzo,$^a,^{39}$ M. Datta,14 P. de Barbaro,43 S. De Cecco,45 M. Dell’Orso,$^{cc},^{40}$ L. Demortier,44 J. Deng,$^e,^{13}$ M. Deninno,5 F. Devoto,20 M. d’Errico,$^{bb},^{38}$ A. Di Canto,$^{cc},^{40}$ B. Di Ruzza,40 J.R. Dittmann,4 M. D’Onofrio,25 S. Donati,$^{cc},^{40}$ P. Dong,14 M. Dorigo,47 T. Dorigo,38 K. Ebina,51 A. Eppig,29 R. Erbacher,6 D. Errede,21 S. Errede,21 N. Ershaidatz,39 H.C. Fang,24 J.P. Fernandez,27 C. Ferrazza,$^{ee},^{40}$ R. Field,15 G. Flanagan,$^e,^{42}$ R. Forrest,6 M.J. Frank,4 M. Franklin,19 J.C. Freeman,14 Y. Funakoshi,51 I. Furic,15 M. Gallinaro,44 J. Galyardt,9 J.E. Garcia,17 A.F. Garfinkel,42 P. Garosi,$^{dd},^{40}$ H. Gerberich,21 E. Gerchtein,14 S. Giagu,$^{ff},^{45}$ V. Giakoumopoulou,3 P. Giannetti,40 K. Gibson,41 C.M. Ginsburg,14 N. Giokaris,3 P. Giromini,16 M. Giunta,40 G. Giurgiu,22 V. Glagolev,12 D. Glenzinski,14 M. Gold,32 N. Goldschmidt,15 A. Golossanov,14 G. Gomez,8 G. Gomez-Ceballos,28 M. Goncharov,28

a Deceased
J. Thome,9 V. Rusu,14 W.K. Sakumoto,43 Y. Sakurai,51 L. Santi,47 L. Sartori,40 K. Sato,48
V. Saveliev,39 A. Savoy-Navarro,39 P. Schlabach,14 E.E. Schmidt,14 M.P. Schmidt,54
M. Schmitt,33 T. Schwarz,6 L. Scodellaro,8 A. Scribano,40 F. Scuri,40 A. Sedov,42
S. Seidel,32 Y. Seiya,36 A. Semenov,12 F. Sforza,40 A. Sfyrla,21 S.Z. Shalhout,6
T. Shears,25 P.F. Shepard,41 M. Shimojima,48 S. Shiraishi,10 M. Shochet,10 I. Shreyber,31
A. Simonenko,12 A. Sissakian,12 K. Sliwa,49 J.R. Smith,6 F.D. Snider,14 A. Soha,14
S. Somalwar,46 P. Squillacioti,14 M. Stancari,14 M. Stanitzki,54 R. St. Denis,18
D. Stentz,33 J. Strologas,32 G.L. Sttrycker,29 Y. Sudo,48 A. Sukhanov,15 I. Suslov,12
K. Takemasa,48 Y. Takeuchi,48 J. Tang,10 M. Tecchio,29 P.K. Teng,1 J. Thom,14
J. Thome,9 G.A. Thompson,21 P. Ttito-Guzmán,27 S. Tkaczyk,14 S. Tokar,11 K. Tollefson,30
T. Tomura,48 S. Torre,16 D. Torretta,14 P. Totaro,38 M. Trovato,440 F. Ukegawa,48
S. Uozumi,23 A. Varganov,29 F. Vázquez,15 G. Velle,14 C. Vellidis,3 M. Vidal,27 I. Vila,8
R. Vilar,8 J. Vizán,8 M. Vogel,32 G. Volpi,40 R.L. Wagner,14 T. Wakisaka,36 R. Wallny,7
S.M. Wang,1 D. Waters,26 B. Whitehouse,49 A.B. Wicklund,2 E. Wicklund,14
S. Wilbur,10 J.S. Wilson,34 B.L. Winer,34 P. Wittich,14 S. Wolbers,14 H. Wolfe,34
T. Wright,29 X. Wu,17 Z. Wu,4 K. Yamamoto,36 J. Yamaoka,13 T. Yang,14 U.K. Yang,10
Y.C. Yang,23 W.-M. Yao,24 G.P. Yeh,14 K. Yim,14 J. Yoh,14 K. Yorita,51 T. Yoshida,36
G.B. Yu,13 I. Yu,23 S.S. Yu,14 J.C. Yun,14 A. Zanetti,47 Y. Zeng,13 and S. Zucchelli1a5

(CDF Collaboration1)

1 With visitors from aUniversity of MA Amherst, Amherst, MA 01003, USA, bIstituto Nazionale di Fisica
Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, cUniversity of CA Irvine, Irvine, CA
92697, USA, dUniversity of CA Santa Barbara, Santa Barbara, CA 93106, USA, eUniversity of CA Santa
Cruz, Santa Cruz, CA 95064, USA, fCERN.CH-1211 Geneva, Switzerland, gCornell University, Ithaca,
NY 14853, USA, hUniversity of Cyprus, Nicosia CY-1678, Cyprus, iUniversity College Dublin,
Dublin 4, Ireland, jUniversity of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, kUniversidad Iberoamer-
icana, Mexico D.F., Mexico, lIowa State University, Ames, IA 50011, USA, mUniversity of Iowa, Iowa
City, IA 52242, USA, nKinki University, Higashi-Osaka City, Japan 577-8502, oKansas State University,
Manhattan, KS 66506, USA, pUniversity of Manchester, Manchester M13 9PL, United Kingdom, qQueen
Mary, University of London, London, E1 4NS, United Kingdom, rUniversity of Melbourne, Victoria
3010, Australia, sMuons, Inc., Batavia, IL 60510, USA, tNagasaki Institute of Applied Science, Nagasaki,
Japan, uNational Research Nuclear University, Moscow, Russia, vUniversity of Notre Dame, Notre Dame,
IN 46556, USA, wUniversidad de Oviedo, E-33007 Oviedo, Spain, xTexas Tech University, Lubbock, TX
79609, USA, yUniversidad Tecnica Federico Santa Maria, 110v Valparaiso, Chile, zYarmouk University,
Irbid 211-63, Jordan, hhOn leave from J. Stefan Institute, Ljubljana, Slovenia,
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

Argonne National Laboratory, Argonne, Illinois 60439, USA

University of Athens, 157 71 Athens, Greece

Baylor University, Waco, Texas 76798, USA

Istituto Nazionale di Fisica Nucleare Bologna, University of Bologna, I-40127 Bologna, Italy

University of California, Davis, Davis, California 95616, USA

University of California, Los Angeles, Los Angeles, California 90024, USA

Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

Duke University, Durham, North Carolina 27708, USA

Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

University of Florida, Gainesville, Florida 32611, USA

Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

University of Geneva, CH-1211 Geneva 4, Switzerland

Glasgow University, Glasgow G12 8QQ, United Kingdom

Harvard University, Cambridge, Massachusetts 02138, USA

Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

University of Illinois, Urbana, Illinois 61801, USA

The Johns Hopkins University, Baltimore, Maryland 21218, USA

Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea; Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea; Korea Institute of Science and Technology Information,
Daejeon 305-806, Korea; Chonnam National University, Gwangju 500-757, Korea; Chonbuk National University, Jeonju 561-756, Korea

24 Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

25 University of Liverpool, Liverpool L69 7ZE, United Kingdom

26 University College London, London WC1E 6BT, United Kingdom

27 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, E-28040 Madrid, Spain

28 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

29 University of Michigan, Ann Arbor, Michigan 48109, USA

30 Michigan State University, East Lansing, Michigan 48824, USA

31 Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

32 University of New Mexico, Albuquerque, New Mexico 87131, USA

33 Northwestern University, Evanston, Illinois 60208, USA

34 The Ohio State University, Columbus, Ohio 43210, USA

35 Okayama University, Okayama 700-8530, Japan

36 Osaka City University, Osaka 588, Japan

37 University of Oxford, Oxford OX1 3RH, United Kingdom

38 Istituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento,

39 LPNHE, Université Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

40 Istituto Nazionale di Fisica Nucleare Pisa, University of Pisa, University of Siena and Scuola Normale Superiore, I-56127 Pisa, Italy

41 University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

42 Purdue University, West Lafayette, Indiana 47907, USA

43 University of Rochester, Rochester, New York 14627, USA

44 The Rockefeller University, New York, New York 10065, USA

45 Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Sapienza Università di Roma, I-00185 Roma, Italy

46 Rutgers University, Piscataway, New Jersey 08855, USA
Abstract

We present one additional study of multi-muon events produced at the Fermilab Tevatron collider and recorded by the CDF II detector. We use a data set acquired with a dedicated dimuon trigger and corresponding to an integrated luminosity of 3.9 fb$^{-1}$. We investigate the distribution of the azimuthal angle between the two trigger muons in events containing at least four additional muon candidates to test the compatibility of these events with originating from known QCD processes. We find that this distribution is markedly different from what is expected from such QCD processes and this observation strongly disfavours the possibility that multi-muon events result from an underestimate of the rate of misidentified muons in ordinary QCD events.

PACS numbers: 13.85.-t, 14.65.Fy, 13.20.Fc
This Letter reports on one additional test on the possible origin of multi-muon events observed at the Tevatron. These events were identified in a previous study [1] of a data set acquired with two central (|η| < 0.7) primary (or trigger) muons, each with transverse momentum \(p_T \geq 3 \text{ GeV}/c \), and with invariant mass larger than 5 GeV/c^2 and smaller than 80 GeV/c^2. That study shows that many long-standing inconsistencies between measured and predicted properties of the correlated \(b\bar{b} \) production and semileptonic decay at hadron colliders [2–5] could be explained by the presence of a relevant source of muons which appear to be mostly produced beyond the beam pipe of radius 1.5 cm (this contribution is whimsically referred to as ghost events because they were unnoticed or ignored by previous measurements). Within the large uncertainty of the prediction, mostly based on simulations, the observed rate of ghost events is found to be consistent with being produced by muons arising from in-flight-decays of pions and kaons, or punchthrough of hadronic prongs from \(K_S^0 \) or hyperon decays. However, a search in ghost events for additional muons with \(p_T \geq 2 \text{ GeV}/c \) and \(|\eta| \leq 1.1\) and contained in a \(\cos \theta \geq 0.8 \) cone around the direction of a primary muon selects a small but significant fraction of events with a large content of muon candidates that appears difficult to account for in terms of known sources with the present understanding of the CDF II detector, trigger, and event reconstruction.

A more recent study by the CDF collaboration [6] has improved the estimate of the contribution of ordinary sources to ghost events. This study addresses in particular the contribution from pion and kaon in-flight-decays. In 1426 pb^{-1} of data, there are 54437 ± 14171 ghost events and 12169 ± 1319 ghost events with three or more muons which cannot yet be accounted for with ordinary sources.

In this Letter, we investigate the distribution of the azimuthal angle (\(\delta \phi \)) between the two primary muons in events in which both primary muons are accompanied by at least one (or two) additional muon candidates in a \(\cos \theta \geq 0.8 \) cone around their direction, and compare it to those for all QCD sources known to produce dimuon events: \(b\bar{b}, c\bar{c}, \) and \(\Upsilon \) production or events in which one trigger muon is due to hadrons misidentified as muons (cosmic rays are removed from the data sample and the contribution of secondary interactions in the detector volume is negligible [1]). As discussed in Ref. [1], known QCD sources produce a handful of events with four and none with six muon candidates. However, if the unaccounted multi-muon events were generated by a gross underestimate of the number of additional muons mimicked by hadrons in ordinary QCD events, the \(\delta \phi \) distribution of primary muons in
multi-muon events would be similar to that of ordinary QCD events in which the large contribution of next-to-leading order (NLO) terms due to initial and final state radiation results in a broader $\delta \phi$ distribution than that predicted by the Born (LO) approximation. In fact, the $\delta \phi$ distribution of pairs of b hadrons or jets is traditionally used to determine the relative contribution of NLO to LO terms \[7\]. This type of comparison was also suggested by Ref. \[8\], in which the excess of multi-muon events is modeled with the decay of two colorless particles produced through the exchange of a heavy object. In such a hypothetical case, their deviation from the back-to-back configuration in the azimuthal angle ($\delta \phi = \pi$) is only caused by initial state radiation of the incoming quarks and is expected to be small.

The study presented here uses a dimuon data set corresponding to an integrated luminosity of 3.9 fb$^{-1}$ and selected with the same requirements used in Ref. \[1\]. High precision charged particle tracking is provided by a large central drift chamber surrounding a trio of silicon tracking devices composed of eight layers of silicon microstrip detectors ranging in radius from 1.5 to 28 cm in the pseudorapidity region $|\eta| < 1$ \[9\]. The tracking detectors are inside a 1.4 T solenoid which in turn is surrounded by electromagnetic and hadronic calorimeters. Outside the calorimeters, drift chambers in the region $|\eta| \leq 1.1$ provide muon identification. We search events for additional muons using tracks with $p_T \geq 2$ GeV/c and $|\eta| \leq 1.1$. The rate of additional muons mimicked by hadronic punchthrough is estimated with a probability per track derived by using kaons and pions from $D^\ast \pm \rightarrow \pi^\pm D^0$ with $D^0 \rightarrow K^+\pi^-$ decays \[1, 6, 10\]. The difference between observed additional muons and predicted misidentifications is referred to as real muons.

The $\delta \phi$ distribution for all 3.9 M events is shown in Fig. \[1\]. Figure \[2\] compares to the corresponding heavy flavor simulations the $\delta \phi$ distribution of trigger muons due to $b\bar{b}$ and $c\bar{c}$ production. This figure is reproduced from Ref. \[10\] that has measured $\sigma_{b\rightarrow \mu, \bar{b} \rightarrow \mu}$ and $\sigma_{c\rightarrow \mu, \bar{c} \rightarrow \mu}$ in a dimuon data set corresponding to a luminosity of 742 pb$^{-1}$. In the $b\bar{b}$ case, the distribution has an average of 2.5 with a rms deviation of 0.8 rad. The long and important tail extending to $\delta \phi = 0$ is due to NLO terms and the non-perturbative fragmentation function of b quarks. In $c\bar{c}$ events, because of the smaller quark mass, NLO terms are approximately a factor of three larger and the fragmentation function is much softer. Accordingly, the $\delta \phi$ distribution has a smaller average (2.4 rad) and a larger rms deviation (0.9 rad).

The azimuthal-angle distribution for primary muons produced by $\Upsilon(1S)$ decays is expected to be similar to those for heavy flavors because the final state contains a bleaching
FIG. 1: Distribution of the azimuthal angle $\delta \phi$ between the two trigger muons for all events.

gluon recoiling against the Υ meson. This distribution, shown in Fig. 3, is constructed using muon pairs with invariant mass in the range $9.28 - 9.6$ GeV/c^2. As in Ref. 10, the combinatorial background under the $\Upsilon(1S)$ signal is removed with a sideband subtraction technique. A similar $\delta \phi$ distribution is also expected for those cases in which one muon is mimicked by a track in the jet recoiling against a muon due to a heavy-quark semileptonic decay. Figure 3 shows the $\delta \phi$ distribution of primary muons when one of them is mimicked by pions produced by K^0_S decays. As in Ref. 6, we select $K^0_S \rightarrow \pi^+\pi^-$ with a $\pi \rightarrow \mu$ misidentification by combining primary muons with tracks of opposite charge and $p_T \geq 0.5$ GeV/c. We select pairs consistent to those arising from a common three-dimensional vertex. We also take advantage of the K^0_S long lifetime to suppress the combinatorial background. We further require that the distance between the K^0_S vertex and the event primary vertex, corrected by the K^0_S Lorentz boost, corresponds to $ct > 0.1$ cm. We select K^0_S candidates with invariant mass in the range $0.47 - 0.52$ GeV/c^2 (see Fig. 3 of Ref. 6), and remove the combinatorial background with a sideband subtraction technique.

In summary, the $\delta \phi$ distributions of primary muons produced by known QCD processes peak at $\delta \phi \simeq \pi$, and exhibit a significant tail extending to $\delta \phi = 0$. Depending on the production mechanism, the mean and rms deviation of these distributions are in the range of $2.4 - 2.5$ rad and $0.7 - 0.9$ rad, respectively.
FIG. 2: The distributions (●) of the azimuthal angle $\delta \phi$ between trigger muons due to (left) $b\bar{b}$ and (right) $c\bar{c}$ production are compared to the corresponding heavy flavor simulations (○). Distributions are normalized to unit area.

The $\delta \phi$ distributions in the subset of events in which each trigger muon is accompanied by at least one or at least two additional real muons are shown in Fig. 4. These $\delta \phi$ distributions, with mean of 2.9 rad and rms deviation of 0.2 rad and without any tail below $\delta \phi = 2.5$ rad, are different from those of primary muons due to all known QCD sources.

In conclusion, as mentioned earlier, within our present understanding of the CDF-detector response no known sources produce events in which each $\cos \theta \geq 0.8$ angular cone around a primary muon contain at least two additional real muons. Had the additional muons been produced by a subtle failure of our method to evaluate the fake-muon contribution, the resulting $\delta \phi$ distribution of primary muons would have been found consistent with those typical of ordinary QCD processes.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Korean Science and Engineering Foundation and the Korean Research
FIG. 3: Distribution of the azimuthal angle $\delta \phi$ between the two trigger muons produced by Υ decays (left) and for events (right) in which one primary muon is mimicked by a pion produced by an identified K^0_S decay. The combinatorial background underneath the Υ and K^0_S signals has been removed with a sideband subtraction method.

Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, Spain; the European Community’s Human Potential Programme; the Slovak R&D Agency; and the Academy of Finland.

[1] T. Aaltonen et al., Eur. Phys. J C 68, 109 (2010); doi: 10.1140/epjc/s10052-010-1336-0; arXiv:0810.5357.
[2] F. Abe et al., Phys. Rev. D 55, 2546 (1997).
[3] B. Abbott et al., Phys. Lett. B 487, 264 (2000).
[4] D. Acosta et al., Phys. Rev. D 69, 012002 (2004).
[5] G. Apollinari et al., Phys. Rev. D 72, 072002 (2005).
[6] T. Aaltonen et al., Eur. Phys. J. C71,1720 (2011).
FIG. 4: Distribution of the azimuthal angle $\delta \phi$ between the two trigger muons accompanied by at least (a) one or (b) two additional real muons in a 36.8° cone around their direction.

[7] D. Acosta et al., Phys. Rev. D 71, 092001 (2005); The ATLAS Collaboration, arXiv:1102.2696; The CMS Collaboration, arXiv:1102.3194.

[8] R. Barbieri et al., J. Phys. G 36, 115008 (2009).

[9] D. Acosta et al., Phys. Rev. D 71, 032001 (2005); R. Blair et al., Fermilab Report No. FERMILAB-Pub-96/390-E (1996); C. S. Hill et al., Nucl. Instrum. Methods Phys. Res., Sect. A 530, 1 (2004); S. Cabrera et al., Nucl. Instrum. Methods Phys. Res., Sect. A 494, 416 (2002); W. Ashmanskas et al., Nucl. Instrum. Methods Phys. Res., Sect. A 518, 532 (2004).

[10] T. Aaltonen et al., Phys. Rev. D 77, 072004 (2008).