QUADRATIC TWISTS OF GENUS ONE CURVES AND DIOPHANTINE QUINTUPLES

MATIJA KAZALICKI

Abstract. Motivated by the theory of Diophantine m-tuples, we study rational points on quadratic twists $H^d : dy^2 = (x^2 + 6x - 18)(-x^2 + 2x + 2)$, where $|d|$ is a prime. If we denote by $S(X) = \{ d \in \mathbb{Z} : H^d(\mathbb{Q}) \neq \emptyset, |d| \text{ is a prime and } |d| < X \}$, then, by assuming some standard conjectures about the ranks of elliptic curves in the family of quadratic twists, we prove that as $X \to \infty$

$$\frac{43}{256} + o(1) \leq \frac{\#S(X)}{2\pi(X)} \leq \frac{46}{256} + o(1).$$

1. Introduction

For an integer d, a set of m distinct nonzero rational numbers with the property that the product of any two of its distinct elements plus d is a square is called a rational Diophantine m-tuple with the property $D(d)$ or $D(d)$-m-tuple. The $D(1)$-m-tuples (with rational elements) are called simply rational Diophantine m-tuples and have been studied since ancient times, starting with Diophantus, Fermat, and Euler.

It is not known how large can a rational Diophantine tuple be. Dujella, Kazalicki, Mikić, and Szikszai [DKMS17] proved that there are infinitely many rational Diophantine sextuples, while no example of a rational Diophantine septuple is known. Also, no example of rational $D(d)$-sextuple is known if d is not a perfect square. For more information on Diophantine m-tuples see the survey article [Duj16].

We are interested in the following question.

Question. Does there exist a rational $D(d)$-quintuple for every $d \in \mathbb{Z}$?

Dujella and Fuchs [DF12] proved that there are infinitely many squarefree integers d's for which there are infinitely many rational $D(d)$-quintuples, and Dražić [Dra22] (improving the similar result from [DF12]) proved, assuming the Parity conjecture for the quadratic twists of several explicitly given elliptic curves, that for at least 99.5% of squarefree integers d there are infinitely many rational $D(d)$-quintuples.

Following an idea from [DF12], we start with a $D(\frac{16}{9} x^2(x^2 - x - 3)(x^2 + 2x - 12))$-quintuple in $\mathbb{Z}[x]$

$$\left\{ \frac{1}{3}(x^2 + 6x - 18)(-x^2 + 2x + 2), \frac{1}{3}x^2(x + 5)(-x + 3), (x - 2)(5x + 6), \frac{1}{3}(x^2 + 4x - 6)(-x^2 + 4x + 6), 4x^2 \right\}$$

found by Dujella [Duj99] (and used to prove that there are infinitely many $D(-1)$-quintuples in [Duj02]). Note that for rational $u \neq 0$, if $\{a, b, c, d, e\}$ is $D(qu^2)$-quintuple, then $\{\frac{b}{u}, \frac{c}{u}, \frac{d}{u}, \frac{e}{u}\}$ is $D(q)$-quintuple. In particular, for squarefree integer d, if

$$dy^2 = (x^2 - x - 3)(x^2 + 2x - 12)$$

for some $x, y \in \mathbb{Q}$ then by dividing the elements of quintuple above with $\frac{4}{9}xy$ we obtain $D(d)$-quintuple. Thus, if the equation above has infinitely many solution, we may conclude that there are infinitely many $D(d)$-quintuples.

2010 Mathematics Subject Classification. 14H52, 11G05.

Key words and phrases. elliptic curves, quadratic twists, Selmer groups.
Consider the genus one quartic \[H : \quad y^2 = (x^2 - x - 3)(x^2 + 2x - 12). \]
For a squarefree integer \(d \), we denote by \(H^d : dy^2 = f(x) \) the quadratic twist of \(H \) with respect to \(\mathbb{Q}(\sqrt{d}) \). Quartic \(H \), as a (singular) genus one curve with a rational point at infinity, is birationally equivalent to the elliptic curve \(E / \mathbb{Q} \)
\[E : y^2 = (x - 9)(x - 8)(x + 18). \]
Likewise, we denote by \(E^d \) the quadratic twist of \(E \) by \(\mathbb{Q}(\sqrt{d}) \). Thus \(H^d(\mathbb{Q}) \neq \emptyset \) implies that \(H^d \) is birationally equivalent to \(E^d \). Since, by Proposition 3.4, \(H^d(\mathbb{Q}) \neq \emptyset \) implies that \(H^d(\mathbb{Q}) \) is infinite and consequently that there are infinitely many \(D(d) \)-quintuples, we are led to the study of squarefree integers \(d \) for which \(H^d(\mathbb{Q}) \neq \emptyset \).

In this paper we will focus on twists by \(\mathbb{Q}(\sqrt{d}) \) where \(|d| \) is a prime. Let
\[S = \{ d \in \mathbb{Z} : H^d(\mathbb{Q}) \neq \emptyset \text{ and } |d| \text{ is a prime} \}. \]

Question. What is asymptotically the size of set \(S(X) = \{ d \in S : |d| < X \} \) as \(X \to \infty \)?

Surprisingly, and in contrast with the analogous problem for the quadratic twists of elliptic curves, not much is known about this question.

Çiperian and Ozman gave a criterion for the set of rational points of the quadratic twist of quartic to be non-empty in terms of the image of the global trace map \(tr_{\mathbb{Q}(\sqrt{d})/\mathbb{Q}} \) on an elliptic curve (see Section 2 of [cO15]), but in general, no estimates for the size of set \(S(X) \) are known.

For a squarefree \(d \), the quartic \(H^d \), as a \(2 \)-covering of \(E^d \), represents an element of \(Sel^2(E^d) \), the \(2 \)-Selmer group of \(E^d \), provided that \(H^d \) is everywhere locally solvable (i.e. \(H^d(\mathbb{Q}_v) \neq \emptyset \) for all places \(v \) – we write ELS for short). For the interpretation of Selmer group elements as 2-coverings of \(E \) see Section 1.2 of [Sto12].

If \(|d| = p \) is a prime, then Proposition 2.4 implies that \(H^d \) is ELS if and only if \(\left(\frac{p}{d} \right) = 1 \) or \(p = 13 \). Thus, for such \(d \), \(H^d(\mathbb{Q}) = \emptyset \) if and only if \(H^d \) represents a nontrivial element in \(III(E^d)[2] \) (where \(III(E^d) \) denotes the Tate-Shafarevich group of \(E^d \)), or more precisely, if and only if the image of \(H^d \) under the map \(\iota : Sel^2(E^d) \to III(E^d)[2] \) from the exact sequence
\[
0 \to E^d(\mathbb{Q})/2E^d(\mathbb{Q}) \to Sel^2(E^d) \to III(E^d)[2] \to 0
\]
is nonzero. In this case, we say that \(H^d \) represents the element of order two in \(III(E^d) \).

Our main tool for studying the image of \(H^d \) in \(III(E^d)[2] \) is the Cassels-Tate pairing on \(III(E^d) \) with values in \(\mathbb{Q}/\mathbb{Z} \), or more precisely, its extension to a pairing on 2-Selmer group by
\[
\langle \cdot , \cdot \rangle_{CT} : Sel^2(E^d) \times Sel^2(E^d) \to \mathbb{Z}/2\mathbb{Z} = \{0, 1\}.
\]
This pairing is bilinear, alternating, and non-degenerate on \(III(E^d)[2]/2III(E^d)[4] \), or equivalently, on \(Sel^2(E^d)/2Sel^4(E^d) \) (see Section 1). In particular, \(dim_{\mathbb{F}_2} III(E^d)[2]/2III(E^d)[4] \) is even, thus equal to 0 or 2 if \(|d| \) is a prime (see Proposition 3.1). Thus, if we find a class \(L \in Sel^2(E^d) \) such that \(\langle H^d, L \rangle_{CT} = 1 \), we can conclude that \(\iota(H^d) \neq 0 \), and, hence, that \(H^d \) represents the element of order two in \(III(E^d) \). If \(III(E^d)[2] \) is nontrivial and \(III(E^d)[2] = 2III(E^d)[4] \) (see Proposition 3.9), then we can not obtain any information about \(H^d \) using this method.

For estimating the asymptotic behaviour of \(\# S(X) \) as \(X \to \infty \) we will assume the following “standard” conjectures.

Conjecture 1. 100% of quadratic twists \(E^d \) where \(|d| \) is a prime have rank 0 or 1.

Note that this conjecture is now a theorem under the BSD conjecture if we let \(d \) range over all squarefree integers (see Smith [Smi22a,Smi22b]).
Conjecture 2 (The parity conjecture). For all $d \in \mathbb{Z}$ where $|d|$ is prime,

$$(-1)^{\text{rank}(E^d)} = w(E^d),$$

where $w(E^d)$ is the root number of the elliptic curve E^d.

It follows from Proposition 3.3 that the contribution of d’s ($|d|$ is a prime) for which the root number $w(E^d)$ is equal to 1 to the $\#S(X)$ is negligible since by Conjecture 1 100% of the curves E^d will have rank 0 or 1 and by Conjecture 2 that rank is even, hence zero.

On the other hand, in the case $w(E^d) = -1$, if $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) = 3$ (see Proposition 3.3 for the description of $\text{Sel}^{(2)}(E^d)$) then by Conjecture 2 $\text{rank}(E^d) = 1$ so $\text{III}(E^d)[2]$ is trivial (note that E^d has full rational two torsion, hence $\dim_{\mathbb{F}_2} \text{III}(E^d)[2] = \dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) - \text{rank}(E^d) - 2 = 0$).

Hence the only interesting case (in which we expect $\text{III}(E^d)[2]$ generically to be nontrivial) is when $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) = 5$ or equivalently (see Proposition 3.1) when $d \in T = T^+ \cup T^-$ where

$$T^+ = \{d > 0 : |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{3}\right) = 1, d \equiv 1 \pmod{8} \},$$

$$T^- = \{d < 0 : |d| \text{ is prime}, \left(\frac{d}{13}\right) = 1, \left(\frac{d}{2}\right) \cdot \left(\frac{d}{3}\right) = -1, d \equiv 5, 7 \pmod{8} \}.$$

Define

$$H_1 : y^2 = 4x^4 - 56x^2 + 169 \in \text{Sel}^{(2)}(E),$$

$$H_2 : y^2 = 18x^4 - 24x^3 - 32x^2 + 40x + 34 \in \text{Sel}^{(2)}(E),$$

$$F_1 : y^2 = 11x^4 + 12x^3 + 56x^2 + 24x + 68 \in \text{Sel}^{(2)}(E^{-1}),$$

$$F_2 : y^2 = x^4 + 56x^2 + 676 \in \text{Sel}^{(2)}(E^{-1}).$$

We show in Proposition 3.1 that if $d \in T$, $\text{Sel}^{(2)}(E^d)$ is generated by the image of the two torsion $E^d[2]$ under the Kummer map, H^d, and by the quadratic twists of those classes in (1.2) which land in $\text{Sel}^{(2)}(E^d)$. Hence for such d’s $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) = 5$. Proposition 2.3 describes when these twists of quartics in (1.2) are ELS. Note that this simple explicit description of $\text{Sel}^{(2)}(E^d)$ (see Proposition 3.1) is the main reason why we considered only quadratic twists by d where $|d|$ is prime. In general for squarefree d, $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d)$ is unbounded.

Assuming the parity conjecture for E^d, where $d \in T$, we can deduce that $\dim_{\mathbb{F}_2} \text{III}(E^d)[2] = 0$ or 2. Assume further that $\text{III}(E^d)[2] \neq 2\text{III}(E^d)[4]$. The non-degeneracy of the Cassels-Tate pairing implies that for d such that $\iota(H^d) \neq 0$ there exists class $L \in \text{Sel}^{(2)}(E^d)$ (also with $\iota(L) \neq 0$) for which $\langle H^d, L \rangle_{CT} = 1$. The following theorem then follows easily from Section 4 Proposition 3.1 and the previous discussion.

Theorem 1.1. Let $d \in T$ such that $\text{III}(E^d)[2] \neq 2\text{III}(E^d)[4]$. Assuming the parity conjecture for E^d, the following is true.

a) If $d < 0$ and $d \equiv 1 \pmod{4}$ then $\langle H^d, F_1^{-d} \rangle_{CT} = 1$. In particular, $\iota(H^d) \neq 0 \in \text{III}(E^d)[2]$.

b) If $d < 0$ and $d \equiv 3 \pmod{4}$ then $\iota(H^d) \neq 0$ if and only if $\langle H^d, F_2^{-d} \rangle_{CT} = 1$.
c) If $d > 0$ then $\iota(H^d) \neq 0$ if and only if $\langle H^d, H_1^d \rangle_{CT} = 1$ or $\langle H^d, H_2^d \rangle_{CT} = 1$.

It remains to explain how to compute the Cassels-Tate pairing of the quadratic twists of quartics. To each pair (A, B) of quartics from Table 1 (see (1.2)), by the work of Smith (see Theorem 3.2. in [Sm16]), we can associate the governing field $L_{A,B}$ such that the value of pairing $\langle A^d, B^d \rangle_{CT}$ is determined by $(A, B)_{CT}$ and the splitting behaviour of d in $L_{A,B}$. For example, for $d \in T$, it follows that $\langle H^d, H_2^d \rangle_{CT} = 0$ if and only if d splits completely in
$L = \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{13})(\sqrt{4 + 2\sqrt{13}})$. For complete description of governing fields see Table 1 and Section 4. Section 4 and Proposition 3.9 imply the following corollary of Theorem 1.1.

$(A^d, B^d)_{CT}$	$K_{A,B}$	$\alpha_{A,B}$
$(H^d, H^d_1)_{CT}$	$\mathbb{Q}(\sqrt{3}, \sqrt{13})$	$4 + \sqrt{13}$
$(H^d, H^d_2)_{CT}$	$\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{13})$	$4 + 2\sqrt{13}$
$(H^{-d}, F^{-d}_1)_{CT}$	$\mathbb{Q}(\sqrt{-2}, \sqrt{13})$	-1
$(H^{-d}, F^{-d}_2)_{CT}$	$\mathbb{Q}(\sqrt{13}, \sqrt{-1}, \sqrt{-3})$	$3(1 + \sqrt{13})(3 + \sqrt{13})$
$(H^{-d}, F^{-d}_3)_{CT}$	$\mathbb{Q}(\sqrt{3}, \sqrt{-1}, \sqrt{2})$	$8(1 + \sqrt{3})(4 + 2\sqrt{3})$
$(H^{-d}, F^{-d}_4)_{CT}$	$\mathbb{Q}(\sqrt{3}, \sqrt{-1}, \sqrt{2})$	$8(1 + \sqrt{3})(4 + 2\sqrt{3})$

Table 1. For $d = p > 0$ which splits completely in $K_{A,B}$ (and in the case $(H^d, H^d_1)_{CT}$ we in addition require $p \equiv 1 \pmod{4}$), we have $(A^d, B^d)_{CT} = 0$ if and only if d splits completely in field $L_{A,B} = K_{A,B}(\sqrt{\alpha_{A,B}})$.

Corollary 1.2. Let $d \in T$. Assuming the parity conjecture for E^d, if d does not split completely in $L_{H_1, H_2} = L_{F_1, F_2}$ and

a) $d = -p < 0$ with $p \equiv 1 \pmod{4}$ and p splits completely in L_{H^{-1}, F_2}, or

b) $d = p > 0$ and p splits completely in L_{H, H_1} and L_{H, H_2},

then $H^d(\mathbb{Q}) \neq \emptyset$. Hence, for such d there exists infinitely many $D(d)$-quintuples.

Remark 1.3. As we already noted, if for $d = \pm p$ we have that $(\frac{d}{13}) = 1$ and $(\frac{d}{2}) \cdot (\frac{d}{5}) \cdot (\frac{d}{13}) = 1$ (hence $w(E^d) = -1$ by Proposition 3.4), but if $d \not\equiv T$ (hence $\dim_{\mathbb{F}_2}\text{Sel}^{(2)}(E^d) = 3$), then by Conjecture 1.1 $\text{III}(E^d)$ [2] is trivial, and $H^d(\mathbb{Q}) \neq \emptyset$, so there exists infinitely many $D(d)$-quintuples.

Example 1.4. The set of $d \in T, |d| < 3000$, for which Corollary 1.2 implies that $H^d(\mathbb{Q}) \neq \emptyset$ is equal to

$$\{-2857, -2833, -1993, -601, -337, -313, 1993, 2833, 2857\}.$$

For $d = -313$, we find a point $(-2107/1202, 389073/1444804) \in H^{-313}(\mathbb{Q})$ which produces a $D(-313)$-quintuple

$$\{81062614477261, 15660515591, 9009021853, 28246175292437, 2532614 \}.$$

Remark 1.5. Results about infinite number of $D(d)$-quintuples obtained as above from $d \in T$ where $d < 0$ are new, they are not covered in [Dra22].

Using Chebotarev’s density theorem to determine the factorization of primes in governing fields, we obtain the following bounds for $S(X)$.

Corollary 1.6. Assuming Conjecture 1.1, we have that as $X \to \infty$

$$C_1 + o(1) \leq \frac{\#S(X)}{2\pi(X)} \leq C_2 + o(1),$$

where $C_1 = \frac{\sqrt{\pi}}{\pi} = \frac{43}{290}$ and $C_2 = \frac{46}{290}$.

Remark 1.7. We can rephrase the result above by saying that the classes $H^d \in \text{Sel}^{(2)}(E^d)$, for $d \in T$, are “equidistributed” in the quotient $\text{Sel}^{(2)}(E^d)/\kappa(E^d[2]) - \{0\}$ with respect to the image of rational points $E^d(\mathbb{Q})$ (rank is generically 1) under the Kummer map $\kappa : E^d(\mathbb{Q})/2E^d(\mathbb{Q}) \to \text{Sel}^{(2)}(E^d)$, since we have that the probability for $H^d \in \kappa(E^d(\mathbb{Q}))/\kappa(E^d[2]) \subset \text{Sel}^{(2)}(E^d)/\kappa(E^d[2])$ is $1/7$. Recall that by Proposition 3.4 H^d is never an element of $\kappa(E^d[2])$ (thus $1/7$ and not $1/8$ is the “right” answer).
By Proposition 2.3 and Conjecture 1 the density of d’s ($|d|$ is a prime) for which $\III(E^d)[2]$ is nontrivial and $\III(E^d)[2] = 2\III(E^d)[4]$ is $\frac{3}{2\pi^2}$, so with this method we can not bridge the gap between C_1 and C_2.

2. Local properties

Proposition 2.1. For a square-free $d \in \mathbb{Z}$, the quartic H^d is everywhere locally solvable if and only if for all primes $p | d$ we have $\left(\frac{d}{p} \right) = 1$ or $p = 13$.

Proof. Assume that H^d is ELS. It follows that for every prime $p | d$, $p \neq 13$, the equation $(x^2 - x - 3)(x^2 + 2x - 12) = 0$ has a solution in \mathbb{F}_p, which implies that $\left(\frac{p}{13} \right) = 1$ since the discriminant of quadratic factors is 13 and $4 \cdot 13$ respectively.

Conversely assume that for all primes $p | d$ we have $\left(\frac{d}{p} \right) = 0$ or 1. Obviously, $H^d(\mathbb{R}) \neq \emptyset$. If $p | d$, then by assumption there is a solution $(x^2 - x - 3)(x^2 + 2x - 12) = 0$ in \mathbb{F}_p which lifts by Hensel lemma to $H^d(\mathbb{Q}_p)$. If $p \nmid 2 \cdot 3 \cdot 13d$, then H^d has a good mod p reduction since 2, 3 and 13 are only primes dividing discriminant of $(x^2 - x - 3)(x^2 + 2x - 12)$. It follows that H^d/\mathbb{F}_p is a genus one curve, hence $H^d(\mathbb{F}_p) \neq \emptyset$, thus by Hensel’s lemma $H^d(\mathbb{Q}_p) \neq \emptyset$. It remains to consider cases $p = 2, 3, 13$ and $p \nmid d$. Here reductions mod 2, 3 and 13 of H^d are geometrically irreducible genus zero curve, so it follows that $H^d(\mathbb{F}_p) \neq \emptyset$, and consequently $H^d(\mathbb{Q}_p) \neq \emptyset$ for $p = 2, 3, 13$. \hfill \square

Remark 2.2. Novak [Nov22] showed (assuming GRH) that asymptotically the number of square-free d’s, $0 < d < x$, for which H^d is ELS is equal to

$$\frac{2\sqrt{273}}{13} \pi^{-3/2} \prod_p \left(1 + \frac{1}{p} \right)^{\left(\frac{p}{13} \right)/2} \frac{x}{\sqrt{\log x}}.$$

Similarly, the following proposition describes local solvability of quartics from (1.2).

Proposition 2.3. Let p be a prime and $d = \pm p$.

a) H^d_1 is everywhere locally solvable if and only if $d \equiv 1 \pmod{12}$ or $d = -3$.

b) H^d_2 is everywhere locally solvable if and only if $d > 0$ and $d \equiv 1 \pmod{8}$.

c) F^d_1 is everywhere locally solvable if and only if $d > 0$ and $d \equiv 1, 3 \pmod{8}$.

d) F^d_2 is everywhere locally solvable if and only if $d > 0$ and $d \equiv 1 \pmod{12}$.

The following proposition computes the root number of E^d.

Proposition 2.4. For $d = \pm p$ where $p \neq 2, 3, 13$ is a prime, the root number $w(E^d)$ is equal to -1 if and only if

$$\left(\frac{p}{2} \right) \cdot \left(\frac{p}{3} \right) \cdot \left(\frac{p}{13} \right) = 1.$$

Here $\left(\frac{p}{d} \right)$ is the Kronecker symbol for odd d defined by

$$\left(\frac{d}{2} \right) = \begin{cases} 1, & \text{if } |d| \equiv 1, 7 \pmod{8} \\ -1, & \text{if } |d| \equiv 3, 5 \pmod{8}. \end{cases}$$

Proof. Theorem 1.1. in [Des20] implies that

$$w(E^d) = -w_2(E^d)w_3(E^d)w_{13}(E^d)\left(\frac{-1}{p} \right),$$

where $w_p(E^d)$ is a local root number at p of E^d. Since E^d has multiplicative reduction at 13, Proposition 2 in [Roh92] implies that $w_{13}(E^d) = -\left(\frac{b}{13} \right)$ where $b = 64108800d^3$, thus $w_{13} = -\left(\frac{b}{13} \right)$ (since $w_{13}(E^d) = -1$ if and only if the reduction is split multiplicative). Likewise, for $p \neq 3,
Proposition 3.1. For prime $p \neq 2, 3, 13$, let $d = \pm p$ be such that $\left(\frac{d}{13}\right) = 1$ and $w(d) = -1$.

a) If $d \in T$ (i.e. $d \equiv 1 \pmod{8}$ if $d > 0$ or $d \equiv 5, 7 \pmod{8}$ if $d < 0$), then $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) = 5$. More precisely, if $d > 0$, then $\text{Sel}^{(2)}(E^d)$ is generated by torsion classes, H^d, H^d_1 and H^d_2. If $d < 0$, then $\text{Sel}^{(2)}(E^d)$ is generated by torsion classes, H^d, F^{-1}_1, and F^{-d}_2 if $d \equiv 7 \pmod{8}$ or H^d_1 if $d \equiv 5 \pmod{8}$.

b) If $d \notin T$, then we have that $\dim_{\mathbb{F}_2} \text{Sel}^{(2)}(E^d) = 3$.

Since E has full 2-torsion over \mathbb{Q}, each class in $H^1(\mathbb{Q}, E[2])$ can be identified with an element of $(\mathbb{Q}^2/\mathbb{Q}^2)^3$ in the following way. Denote by $P_1 = (8,0)$, $P_2 = (-18,0)$ and $P_3 = (9,0)$ nontrivial elements in $E[2]$, by $e_2 : E[2] \times E[2] \to \mu_2$ the Weil pairing (hence $e_2(P_i, P_j) = -1$ if and only if $i \neq j$), and by $\omega : E[2] \to \text{Hom}(E[2], \mu_2^*)$, $T \mapsto (P_i \mapsto e_2(T, P_i))$ the group homomorphism induced by e_2. For each class $F \in H^1(\mathbb{Q}, E[2])$, we denote by $\omega_*(F)$ the pushforward of ω from $H^1(\mathbb{Q}, E[2])$ to $H^1(\mathbb{Q}, \mu_2^3) \cong (\mathbb{Q}^2/\mathbb{Q}^2)^3$ where the last isomorphism is given by the Kummer map sending $\alpha \in \mathbb{Q}^2/\mathbb{Q}^2$ to $\xi \in H^1(\mathbb{Q}, \mu_2)$ such that $\xi(\sigma) = \frac{x^2}{\sqrt{\sigma}}$ for every $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. One has that $\omega_*(F) = (a_1, a_2, a_3)$ is equivalent to $F(\sigma) = \chi_{a_1}(\sigma)P_1 + \chi_{a_2}(\sigma)P_2$, for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, and $a_1, a_2, a_3 \in \mathbb{Q}^2$, where, for $a \in \mathbb{Q}$. Here, we denote by χ_a the nontrivial character of $\mathbb{Q}(\sqrt{a})$ with values in $\mathbb{Z}/2\mathbb{Z}$ (if $\mathbb{Q}(\sqrt{a}) = \mathbb{Q}$ then χ_a is trivial). It follows that F is defined over $\mathbb{Q}(\sqrt{a_1}, \sqrt{a_2})$.

We start with the following standard lemma.

Lemma 3.2. For elliptic curve $\tilde{E} : y^2 = (x - a_1)(x - a_2)(x - a_3)$, where $a_1, a_2, a_3 \in \mathbb{Q}$, let F be a quartic $y^2 = g(x)$, $g(x) \in \mathbb{Z}[x]$, isomorphic (over $\overline{\mathbb{Q}}$) to \tilde{E}, which represents an element in $H^1(\mathbb{Q}, \tilde{E}[2])$ (the quartic is not necessarily everywhere solvable, i.e. the element of the 2-Selmer group). For $d \in \mathbb{Z}$ let E^d be the quadratic twist of F, thus representing the element in $H^1(\mathbb{Q}, E^d[2])$. After identifying $H^1(\mathbb{Q}, \tilde{E}[2]) \cong H^1(\mathbb{Q}, E^d[2])$, we have

$$\omega_*(F) = \omega_*(F^d).$$

Proof. The claim follows directly from the interpretation of the map ω_* in terms of two-descent theory. If $\omega_*(F) = (q_1, q_2, q_3)$, then F is isomorphic (over \mathbb{Q}) to the curve

$$q_1 y^2 = x - a_1, \quad q_2 y^2 = x - a_2, \quad q_3 y^2 = x - a_3,$$

while its twist over $\mathbb{Q}(\sqrt{d})$ is given by

$$q_1 y^2 = x - da_1, \quad q_2 y^2 = x - da_2, \quad q_3 y^2 = x - da_3,$$

where the isomorphism $F \to F^d$ maps $(x, y_1, y_2, y_3) \mapsto (dx, \sqrt{dy_1}, \sqrt{dy_2}, \sqrt{dy_3})$. Since E^d is isomorphic to $y^2 = (x - da_1)(x - da_2)(x - da_3)$, we recognize from the above that $\omega_*(F^d) = (q_1, q_2, q_3)$ (we identified $(a_i, 0)$ with $(da_i, 0)$), and the claim follows. □

3. Structure of $\text{Sel}^{(2)}(E^d)$

In this section we describe the structure of $\text{Sel}^{(2)}(E^d)$ in the case when $|d|$ is prime. We prove the following proposition.
For the proof of Proposition 3.1, we need to introduce three more quartics.

\[H_3 : y^2 = 25x^4 + 48x^3 - 114x^2 - 144x + 225 \in Sel(E^3), \]
\[F_3 : y^2 = -71x^4 - 336x^3 - 538x^2 - 336x - 71 \in Sel^2(E^{-1}), \]
\[F_4 : y^2 = -5x^4 + 76x^3 - 168x^2 - 296x - 92 \in Sel^2(E^{-3}). \]

Recall that quadratic twist \(E^d \) has the Weierstrass model \(E^d : y^2 = (x - 8d)(x - 9d)(x + 18d). \)

Next, we prove linear independence of classes needed for the proof of Proposition 3.1.

Lemma 3.3. For \(d \in \mathbb{Z}, \) \([d] \) prime, and \([d] \neq \{2, 3, 13\}, \) denote by \(Q_1 = (8d, 0) \) and \(Q_2 = (-18d, 0) \) elements in \(E^d[2] \) which correspond to \(P_1 \) and \(P_2 \) under the natural isomorphism \(E[2] \cong E^d[2], \) and by \(\kappa : E^d(Q)/2E^d(Q) \to Sel^2(E^d) \subset H^1(Q, E^d[2]) \) the Kummer map. We have that

\[\omega_\ast(H^d) = (13, 13, 1), \omega_\ast(\kappa(Q_1)) = (26d, -26d, -d), \omega_\ast(\kappa(Q_2)) = (78, -26d, -3d), \]
\[\omega_\ast(H_1^d) = (3, 1, 3), \omega_\ast(H_2^d) = (2, -2, -1), \omega_\ast(H_3^d) = (6, -6, 1), \]
\[\omega_\ast(F_1^d) = (-2, -2, 1), \omega_\ast(F_2^d) = (-3, -1, 3), \omega_\ast(F_3^d) = (6, 2, 3), \omega_\ast(F_4^d) = (6, 6, 1). \]

Moreover,

a) if \(d > 0, \) the classes \(\omega_\ast(F), \) for \(F \in \{\kappa(Q_1), \kappa(Q_2), H^d, H_1^d, H_2^d, H_3^d, F_3^d\} \) are (multiplicatively) independent in \((\mathbb{Q}^\times/\mathbb{Q}^\times)^3 \) and locally solvable at infinity.

b) if \(d < 0, \) the classes \(\omega_\ast(F), \) for \(F \in \{\kappa(Q_1), \kappa(Q_2), H^d, H_1^d, F_1^d, F_3^d, F_4^d\} \) are (multiplicatively) independent in \((\mathbb{Q}^\times/\mathbb{Q}^\times)^3 \), and locally solvable at infinity.

Proof. Using Magma [BCP97], we can easily compute the values of \(\omega_\ast(F^d) \) for quartics \(F \) from 1.2 as they don't depend on \(d \) by Lemma 3.2.

We can also compute classes of torsion points explicitly. For example, for \(Q_1 = (8d, 0) \in E^d(Q), \) one can check that \(2R_1 = Q_1, \) where \(R_1 = (\frac{1}{2}d^2 - \frac{9d}{2}, \frac{1}{4}d^3 - \frac{29d}{2}), \) with \(r^4 - 50br^2 + 35d^2 = 0. \)

Here \(Q(r) = Q(\sqrt{-d}, \sqrt{-26}), \) and by inspection one obtains that \(R_1 - R_1 = \chi_{26d}(\sigma)Q_1 + \chi_{-26}(\sigma)Q_2, \) thus \(\omega_\ast(\kappa(Q_1)) = (26d, -26d, -d). \) Similarly, one computes \(\omega_\ast(\kappa(Q_2)). \)

The existence of real points on quartic (which determine local solvability at infinity) can be checked for each quartic separately.

If \(d > 0, \) it is not hard to see that the classes will be independent unless \(d \) is divisible only by 2, 3 and 13. In particular, for squarefree \(d, \) we compute that this happens for \(\{1, 2, 3, 6, 13, 26, 39, 78\}, \) thus the claim in a) follows. The claim in b) is proved in a similar way.

We have the following proposition as a consequence of the previous lemma.

Proposition 3.4. If \(d \in \mathbb{Z} \) is square free integer such that \(H^d(Q) \neq \emptyset, \) then \(H^d(Q) \) is infinite.

Proof. Assume that for some \(d \in \mathbb{Z}, \) \(H^d(Q) \neq \emptyset \) and \(H^d(Q) \) is finite. It follows that the rank of Mordell-Weil group of \(E^d(Q) \) is zero, hence \(H^d \) as an element of 2-Selmer group \(Sel^2(E^d) \) is in the image of the two torsion \(E^d[2] \) under the map \(E^d(Q)/2E^d(Q) \to Sel^2(E^d) \) from 1.1. More precisely, there is a point of order 4, \(Q \in E^d[4], \) such that \(H^d \) corresponds to the cocycle \(\sigma \mapsto Q^\sigma - Q. \) It follows from Lemma 3.3 that the image of this cocycle is of order 2 which implies that \(Q \) is defined over quadratic field. There are only finitely many \(d's \) that have a point of order 4 defined over quadratic field. Note that if \(x_0 \) is an \(x \)-coordinate of point of order 4 on \(E \) (it is defined over quadratic field), then \(d \cdot x_0 \) is an \(x \)-coordinate of point of order 4 on \(E^d. \) Moreover, if \(E_d : y^2 = f_d(x) = (x - 8d)(x - 9d)(x + 18d), \) then \(f_d(dx_0) = d^5 \cdot f_1(x_0) \) is a square in \(Q(x_0) \) if and only if \(d \cdot f_1(x_0) \) is a square. One can check that this is the case if and only if \(d = \{-26, -3, -1, 1, 3, 26\}. \) The proposition follows after verifying the claim for these special cases.

\qed
To obtain an upper bound for the size of 2-Selmer group, we will use the method and terminology from the paper of Mazur and Rubin [MR10][Section 3] (see also [Kra81,BD10]).

Definition 3.5. Suppose \tilde{E} is an elliptic curve over \mathbb{Q}. For every place v of \mathbb{Q}, let $H_f(Q_v, \tilde{E}[2])$ denote the image of the Kummer map

$$\tilde{E}(Q_v)/2\tilde{E}(Q_v) \to H^1(Q_v, \tilde{E}[2]).$$

The 2-Selmer group $\text{Sel}^{(2)}(\tilde{E})$ is the \mathbb{F}_2-vector space defined by the exactness of the sequence

$$0 \to \text{Sel}^{(2)}(\tilde{E}) \to H^1(Q, \tilde{E}[2]) \to \bigoplus_v H^1(Q_v, \tilde{E}[2])/H^1_f(Q_v, \tilde{E}[2]).$$

We say that 2-Selmer group $\text{Sel}^{(2)}(\tilde{E})$ is cut out by the local conditions $H_f(Q_v, \tilde{E}[2]).$

The following lemma describes the size of local conditions.

Lemma 3.6. Let v be a finite rational place and d an odd squarefree integer. We have

$$\dim_{\mathbb{F}_2} H^1_f(Q_v, E^d[2]) = \begin{cases} 2 & \text{if } v \neq 2 \\ 3 & \text{if } v = 2. \end{cases}$$

Proof. By Lemma 2.2 in [MR10], if $v \nmid 2\infty$, then $\dim_{\mathbb{F}_2} H^1_f(Q_v, E^d[2]) = \dim_{\mathbb{F}_2} E^d(Q_v)[2] = 2$.

Following [Sil01 Chapter 4.], denote by \mathcal{F} the formal group associated to the elliptic curve E^d/Q_2, and by $\mathcal{F}(2\mathbb{Z}_2)$ the group associated to that formal group. Theorem 6.4. b) in [Sil01] implies that $\mathcal{F}(4\mathbb{Z}_2)$ is isomorphic (via formal logarithm map) to the additive group $\mathbb{G}_a(4\mathbb{Z}_2)$ which implies that $\mathcal{F}(4\mathbb{Z}_2)/2\mathcal{F}(4\mathbb{Z}_2) \cong \mathbb{Z}/2\mathbb{Z}$. On the other hand, since $\mathcal{F}(x,y) = x + y - a_1xy - a_2x^2y + xy^2 + \cdots$, where a_1 and a_2 are the usual Weierstrass coefficients of E^d, it follows that $[2](x) = 2x + O(x^3)$ (as $a_1 = 0$), thus $2\mathcal{F}(2\mathbb{Z}_2) = \mathcal{F}(4\mathbb{Z}_2)$. In particular, $\mathcal{F}(2\mathbb{Z}_2)/2\mathcal{F}(2\mathbb{Z}_2) \cong \mathbb{Z}/2\mathbb{Z}$.

If we denote by $E^d(Q_2)$ the subgroup of points in $E^d(Q_2)$ which reduce to the point at infinity modulo two, then it is well known that $E^d(Q_2) \cong \mathcal{F}(2\mathbb{Z}_2)$. Moreover, $E^d_0(Q_2)/E^d_0(Q_2)$, where $E^d_0(Q_2)$ is the subgroup of points of nonsingular reduction, is generated by two torsion point with odd x coordinate. Finally, $E^d(Q_2)/E^d_0(Q_2)$ is generated by the point of order two with even x coordinate (Tamagawa number of E^d is two), and we have that $E^d(Q_2)/2E^d(Q_2) \cong (\mathbb{Z}/2\mathbb{Z})^3$, so the claim follows. \hfill \square

There is a natural identification of Galois modules $E[2] \cong E^d[2]$ - which is crucial for our argument. We identify point $(a,0) \in E(\mathbb{Q})$ with $(8a,0) \in E^d(\mathbb{Q})$ for $a \in \{8,9,-18\}$. It allows us to view $\text{Sel}^{(2)}(E^d)$ as a subspace of the $H^1(Q, E[2])$, but defined by the different sets of local conditions $H^1_f(Q_v, E^d[2]) \subset H^1(Q_v, E[2]).$

Definition 3.7. If \tilde{T} is a finite set of places of \mathbb{Q}, define relaxed 2-Selmer group S^T by the exactness of

$$0 \to S^{\tilde{T}} \to H^1(Q, E[2]) \to \bigoplus_{v \not\in \tilde{T}} H^1(Q_v, E[2])/H^1_f(Q_v, E[2]),$$

where the second arrow is induced by the sum of localization maps $H^1(Q, E[2]) \to H^1(Q_v, E[2]).$

By definition $\text{Sel}^{(2)}(E) \subset S^{\tilde{T}}$ for any \tilde{T}. We will choose \tilde{T} such that $\text{Sel}^{(2)}(E^\dagger) \subset S^{\tilde{T}}$ holds as well. For that we will need the following criteria for equality of local conditions after twist (see Lemma 2.10 and Lemma 2.11 in [MR10]).

Lemma 3.8. Let \tilde{E}/\mathbb{Q} be an elliptic curve. Let v be a place of \mathbb{Q} and d a squarefree integer. If at least one of the following conditions holds

a) v splits in $\mathbb{Q}(\sqrt{d})$,

b) v is a prime of good reduction of \tilde{E} and v is unramified in $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$,
then $H^1_f(Q_v, \tilde{E}[2]) = H^1_f(Q_v, \tilde{E}^d[2])$. Moreover, if \tilde{E} has good reduction at v, and v is ramified in $\mathbb{Q}(\sqrt{d})/\mathbb{Q}$, then

$$H^1_f(Q_v, \tilde{E}[2]) \cap H^1_f(Q_v, \tilde{E}^d[2]) = 0.$$

Since primes of bad reduction of E^d are $\{2, 3, 13, p\}$, and since 13 splits in $\mathbb{Q}(\sqrt{d})$, it follows from Lemma 3.3 that local conditions $H^1_f(Q_v, E^d[2])$ and $H^1_f(Q_v, E[2])$ are equal outside the set $T = \{2, 3, p, \infty\}$.

Proof of Proposition 3.4 Lower bound for the $\operatorname{dim}_F \operatorname{Sel}^d(E^d)$ in both cases follows from Lemma 3.3 and Proposition 2.3. Note that if $d > 0$, classes F_1^{-d} and F_2^{-d} are ELS if $d < 0$ and $d \equiv 7 \pmod{8}$, and classes F_1^{-d} and H_1^{-d} are ELS if $d < 0$ and $d \equiv 5 \pmod{8}$.

For the upper bound we first consider the case $d \in T$. From the definition of T it follows that for $|d| > 3$ primes 2 and 3 split in $\mathbb{Q}(\sqrt{d})$, thus Lemma 3.3 implies that local conditions $H^1_f(Q_v, E^d[2])$ and $H^1_f(Q_v, E[2])$ differ only at $v = p$ (and possibly at $v = \infty$ if $d < 0$ - note that if $d > 0$ elliptic curves E and E^d are isomorphic over \mathbb{R}).

Assume that $d > 0$ and set $T = \{p\}$. Define a strict 2-Selmer group $S_T := S_T(E)$ by the exactness of

$$0 \rightarrow S_T \rightarrow T^T \rightarrow \bigoplus_{v \in T} H^1(Q_v, E[2]),$$

where the second arrow is the sum of the localization maps.

From the construction, it follows that $S_T \subset \operatorname{Sel}^d(E^d) \subset T^T$, and $S_T \subset \operatorname{Sel}^d(E) \subset T^T$. We will show that $S_T = \operatorname{Sel}^d(E)$. One can compute that $E(\mathbb{Q})$ is generated by 2-torsion points

$$S_1 = (18, 0), S_2 = (8, 0) \text{ and point } S_3 = (45/4, -117/8) \text{ of infinite order, and that } \operatorname{Sel}^d(E) \text{ is generated by the } \kappa(S_i), i = 1, 2, 3, \text{ where } \kappa : E(\mathbb{Q})/2E(\mathbb{Q}) \rightarrow \operatorname{Sel}^d(E) \text{ is the Kummer map }$$

- thus $\operatorname{dim}_F \operatorname{Sel}^d(E^d) = 3$. It is enough to show that the image of the $\kappa(S_i)$ in $H^1(Q_p, E[2])$ is trivial. Choose $Q_i \in E(\mathbb{Q})$ such that $2Q_i = S_i$. The fields of definitions K_i of points Q_i are $K_1 = \mathbb{Q}(\alpha_1)$ where $\alpha_1^4 + 106\alpha_1^2 + 1 = 0$, $K_2 = \mathbb{Q}(\alpha_2)$ where $\alpha_2^4 - 50\alpha_2^2 + 729 = 0$ and $K_3 = \mathbb{Q}(\alpha_3)$ where $\alpha_3^3 - 3\alpha_3 - 43/4 = 0$. It happens that p splits completely in all the fields, hence the claim follows.

Lemma 3.2 in [MR10] implies that $\dim_F \mathcal{S}^T - \dim_F \mathcal{S}_T = \dim_F H^1(Q_p, E[2])$. By Lemma 3.6 and inclusion $\operatorname{Sel}^d(E^d) \subset \mathcal{S}_T$, it follows $\dim_F \operatorname{Sel}^d(E^d) \leq 3 + 2 = 5$, and the claim follows.

The case $d < 0$ is analogous - to get the equality of local conditions at $v = \infty$ one replaces E with E^{-1}, and then proceeds as in the $d > 0$ case.

Now assume that $d \notin T$. Consider the case $d < 0$. In the case $d > 0$ one repeats the same argument with E^{-1} replaced by E. Primes 2 and 3 do not need to split in $\mathbb{Q}(\sqrt{d})$ any more, hence we set $T = \{2, 3, p\}$ and $\mathcal{S}^T := \mathcal{S}^T(E^{-1})$ and $\mathcal{S}_T := \mathcal{S}_T(E^{-1})$ (we replaced E with E^{-1} in definitions to ensure the equality of local conditions at $v = \infty$). Lemma 3.2 in [MR10] and Lemma 3.6 imply that $\dim_F \mathcal{S}^T = \dim_F \mathcal{S}_T = \dim_F H^1_f(Q_2, E^{-1}[2]) + \dim_F H^1_f(Q_3, E^{-1}[2]) + \dim_F H^1_f(Q_p, E^{-1}[2]) = 3 + 2 + 2 = 7$. Since $\mathcal{S}_T \subset \operatorname{Sel}^d(E^{-1})$, if we show that the image of each class in $\operatorname{Sel}^d(E^{-1})$ (which is generated by H^{-1}, F_1 and F_3) under the localization $\operatorname{loc}_2 : \operatorname{Sel}^d(E^{-1}) \rightarrow H^1(Q_2, E^{-1}[2])$ is different than zero, then it follows that $\mathcal{S}_T = 0$. One can check that, for any $P \in E^{-1}(\mathbb{Q})/2E^{-1}(\mathbb{Q})$ and $Q \in E^{-1}(\mathbb{Q})$ such that $2Q = P$, 2 is ramified in the field of definition of Q, hence the localization of $\kappa(P)$ at $v = 2$ is nontrivial, and $\mathcal{S}_T = 0$. It follows that $\dim_F \mathcal{S}_T = 7$.

Lemma 3.3 b) provides us with the generators of \mathcal{S}_T once we show that the torsion classes together with classes $H, F_1, H_1, F_2, F_4 \in H^1(Q, E)$ satisfy local conditions $H^1_f(Q_v, E^{-1}[2])$ for v outside the set T. Equivalently, one can check that the quartics $H^{-1}, F_1, H_1^{-1}, F_2$ and F_4^2 (as two covers of E^{-1}) are locally solvable outside the set T. Local solvability at the finite
places outside the set \(\{2, 3, 13\} \) follows immediately from the Hensel lemma argument (as in the proof of Proposition \ref{prop:1}) since these are the bad primes of \(E^{-1} \), while solvability at \(v = \infty \) (i.e. existence of the real points on quadratic twists) follows from the observation that polynomials of degree 4 defining \(H \) and \(H_1 \) have real roots. The local solvability at \(v = 13 \) follows from the fact that \(\left(\frac{p}{13} \right) = 1 \), which implies that \(p \) is a square in \(\mathbb{Q}_{13} \), thus quadratic twist by \(\mathbb{Q}(\sqrt{7}) \) or \(\mathbb{Q}(\sqrt{-d}) \) of any quartic from Lemma \ref{lem:3} (b) is isomorphic over \(\mathbb{Q}_{13} \) to that quartic. Hence, we only need to check that \(F_1^d \) is locally solvable at \(v = 13 \) which is checked readily.

We will prove that \(\dim_{F_2} \text{Sel}^2(E^d) \leq 4 \), which will imply that \(\dim_{F_2} \text{Sel}^2(E^d) = 3 \) since \(\dim_{F_2} \text{Sel}^2(E^d) \) is odd (by \cite{DDI10} \((-1)^{\dim_{F_2} \text{Sel}^2(E^d)} = w(E^d) = -1 \)) and greater or equal to 3 (since \(H^d \) and the torsion classes of \(E^d \) are linearly independent in \(\text{Sel}^2(E^d) \)). Essentially, for each class in \(S^T \) (generators are given by Lemma \ref{lem:3} (b)), we will check if it satisfies the local conditions \(H_1^T(\mathbb{Q}_v, E^d[2]) \).

Observe that the local condition at \(v = p \), \(H_1^T(\mathbb{Q}_p, E^d[2]) \), for \(p \neq \{2, 3, 13\} \) is determined with the image of 2-torsion \(\chi(P_1)(\sigma) = \chi_3(\sigma)P_1 + \chi_d(\sigma)P_3, \chi(P_2) = \chi_{-13d}(\sigma)P_1 + \chi_2(\sigma)P_3 \) (since the elements are independent and dimension of the local condition is 2). As the remaining generators of \(S^T \), \(H : \sigma \mapsto \chi_1(\sigma)P_3, F_1 : \sigma \mapsto \chi_2(\sigma)P_3, H_1 : \sigma \mapsto \chi_3(\sigma)P_1, F_3 : \sigma \mapsto \chi_6(\sigma)P_3 \) and \(F_2 + H_1 \equiv \chi_{-1}(\sigma)P_2 \) do not depend on \(d \) (here \(\chi_9 \) denotes the nontrivial character of \(\mathbb{Q}(\sqrt{7}) \)), the local condition at \(v = p \) can be satisfied by some class from the subspace generated by \(H, H_1, F_1, F_4 \) and \(F_2 \) only if the localization of that class at \(v = p \) is trivial. If \(p = 5 \) (mod 8), then \(-1, 3 \) are squares in \(\mathbb{Q}_p \) while \(2 \) and \(3 \) are not, thus \(H, F_2 + H_1 \) and \(F_4 \) generate the subspace of \(S^T \) with required property, while if \(p = 7 \) (mod 8), then \(13 \) are squares in \(\mathbb{Q}_p \) while \(-1 \) and \(3 \) are not, thus \(H, F_1 + F_4 \) and \(F_1 + F_2 + H_1 \) generate the subspace of \(S^T \) consisting of elements whose localization at \(v = p \) is trivial.

Next, to rule out remaining classes, focus on the local condition at \(v = 3 \). If \(p = 5 \) (mod 8), then \(d \) is a square in \(\mathbb{Q}_3 \), and the classes \(\text{loc}_3 \chi(P_1)(\sigma) = \chi_3(\sigma)P_1 \) and \(\text{loc}_3 \chi(P_2)(\sigma) = \chi_{-1}(\sigma)P_1 \) linearly independent, thus they generate 2-dimensional \(F_2 \)-vector space \(H_1^T(\mathbb{Q}_3, E^d[2]) \). Since, \(\text{loc}_3(F_1)(\sigma) = \chi_6(\sigma)P_3 = \chi_{-3}(\sigma)P_3 \not\in H_1^T(\mathbb{Q}_3, E^d[2]) \), we conclude that in this case \(\dim_{F_2} \text{Sel}^2(E^d) \leq 4 \), hence equal to 3.

If \(p = 7 \) (mod 8), then \(\text{loc}_3 \chi(P_1)(\sigma) = \chi_3(\sigma)P_1 + \chi_{-1}(\sigma)P_3 \) and \(\text{loc}_3 \chi(P_2)(\sigma) = 0 \) generate a 1-dimensional subspace of the 2-dimensional vector space \(H_1^T(\mathbb{Q}_3, E^d[2]) \). Note that not all the localisations of the classes of interest \(\text{loc}_3(F_1 + F_4)(\sigma) = \chi_{-3}(\sigma)P_3 \) and \(\text{loc}_3(F_1 + F_2 + H_1)(\sigma) = \chi_{-1}(\sigma)P_3 \) can lie in \(H_1^T(\mathbb{Q}_3, E^d[2]) \) (since the subspace they generated does not contain \(\text{loc}_3 \chi(P_1)(\sigma) \)), hence \(\dim_{F_2} \text{Sel}^2(E^d) \leq 4 \), and the claim follows.

The following proposition follows immediately from the explicit description of \(\text{Sel}^2(E^d) \) given in Proposition \ref{prop:1}.

Proposition 3.9. Let \(d \in T \) (hence \(\dim_{F_2} \text{Sel}^2(E^d) = 5 \)). We have that \(\text{III}(E^d)[2] = 2\text{III}(E^d)[4] \) if and only if

a) \(\langle H_1^T H_1^d \rangle_{CT} = 0 \) and \(\langle H^d, H_1^d \rangle_{CT} = 0 \) for \(i = 1, 2 \) if \(d > 0 \),

b) \(\langle F^{-d}_i, F_2^{-d} \rangle_{CT} = 0 \) and \(\langle H^d, F_i^{-d} \rangle_{CT} = 0 \) for \(i = 1, 2 \) if \(d < 0 \) and \(d \equiv 7 \) (mod 8),

Proof. If \(\text{III}(E^d)[2] = 2\text{III}(E^d)[4] \), then the Cassels-Tate pairing on \(\text{Sel}^2(E^d) \) is trivial (since it is non-degenerate on \(\text{III}(E^d)[2]/2\text{III}(E^d)[4] \)), hence the claim follows. Similarly, if a),b) hold, then Proposition \ref{prop:1} implies the Cassels-Tate pairing on \(\text{Sel}^2(E^d) \) is trivial, hence \(\text{III}(E^d)[2] = 2\text{III}(E^d)[4] \). Note that in the case \(d < 0 \) and \(d \equiv 5 \) (mod 8), we always have \(\langle H^d, F_1^{-d} \rangle_{CT} = 1 \) (see Theorem \ref{thm:1}b)), hence \(\text{III}(E^d)[2] \neq 2\text{III}(E^d)[4] \). \(\square \)
4. Cassels-Tate pairing and governing fields

Our main tool for studying Cassels-Tate pairing of quadratic twists of elements of 2-Selmer groups is the following specialisation of the theorem of Smith (see Section 3 in [Smi16]).

Theorem 4.1 (Smith). Let \tilde{E} be an elliptic curve over \mathbb{Q} with full 2-torsion over \mathbb{Q}. Let $F, F' \in H^1(\mathbb{Q}, \tilde{E}[2])$, and let K be the minimal field over which F and F' are trivial. Next, let S be any set of places of \mathbb{Q} which contains all places of bad reduction of \tilde{E}, the archimedean place and 2. Take D to be the set of pairs (d_1, d_2) of elements in \mathbb{Q}^\times such that d_1/d_2 is square at all places of S, and F_{d_1} and F_{d_2} are elements of 2-Selmer group of \tilde{E}_{d_1} and \tilde{E}_{d_2} respectively.

If $F \cup F'$ is alternating (as defined in Section 3 of [Smi16]), then $(F_{d_1}, F_{d_1})_{CT} = (F_{d_2}, F_{d_2})_{CT}$ for all $(d_1, d_2) \in D$. Otherwise, there is a quadratic extension L of K that is ramified only at primes in S such that

$$(F_{d_1}, F_{d_1})_{CT} = (F_{d_2}, F_{d_2})_{CT} + \left\lceil \frac{L/K}{d} \right\rceil,$$

for all $(d_1, d_2) \in D$, where the Galois group $\text{Gal}(L/K)$ is identified with $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$. Here d is any ideal of K coprime to the conductor of L/K that has norm in $\mathbb{Q}^\times/\mathbb{Q}^\times$ equal to (d_1/d_2). Such d exists for all $(d_1, d_2) \in D$. We denote by $\left\lceil \cdot \right\rceil$ the Artin symbol.

Remark 4.2. We will call field L from the statement of Theorem 4.1 a governing field of F and F'. It needs not to be unique.

Next, we compute the governing fields of some pairs of classes defined by quartics from (1.2) (see Table 1).

In general, following Section 3.1. in [Smi16], for $F, F' \in H^1(\mathbb{Q}, E[2])$ let $\omega_s(F) = (a_1, a_2, a_3)$ and $\omega_s(F') = (a'_1, a'_2, a'_3)$. For every place v we have the following relation of Hilbert symbols $(a_1, a'_1)_v, (a_2, a'_2)_v, (a_3, a'_3)_v = 1$. We can choose $b \in \mathbb{Q}^\times$ such that $(a_1, ba'_1)_v = (a_2, ba'_2)_v = (a_3, ba'_3)_v = 1$ which implies that we can find $x_i, y_i, z_i \in \mathbb{Q}^\times$ such that $x_i^2 - a_i y_i^2 = ba'_i z_i^2$ for $i = 1, 2, 3$. We can further scale x_i, y_i and z_i by a common factor so that the field

$$L_{F,F'} = K_{F,F'} \left(\sqrt{(x_1 + y_1\sqrt{a_1})(x_2 + y_2\sqrt{a_2})(x_3 + y_3\sqrt{a_3})} \right)$$

avoids ramification at places unramified in the common field of definition

$$K_{F,F'} := \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_1}, \sqrt{a_2}).$$

Lemma 4.3 (Smith). If $F \cup F'$ is not alternating and $\deg K_{F,F'}/\mathbb{Q} = 16$, then $L_{F,F'}$ is a governing field of F and F'. Although in our case $\deg K_{F,F'}/\mathbb{Q}$ is either four or eight, we can still compute governing fields using the following lemma which follows from the proof of Proposition 2.1. in [Smi16].

Lemma 4.4. For integers a and b such that ab is not a perfect square let $L_{a,b}/\mathbb{Q}(\sqrt{a}, \sqrt{b})$ be quadratic extension such that $L_{a,b}/\mathbb{Q}$ is Galois with Galois group isomorphic to dihedral group D_8. There exist a map

$$\gamma_{a,b} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \xrightarrow{\text{res}} \text{Gal}(L_{a,b}/\mathbb{Q}) \to \mu_2$$

which satisfies $d\gamma_{a,b} = \chi_a \cup \chi_b \in H^2(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mu_2)$. Here $\mu_2 = \{\pm 1\}$ and the cup product $\chi_a \cup \chi_b$ is induced by the natural bilinear map $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ (hence for $\sigma, \tau \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ we have that $(\chi_a \cup \chi_b)(\sigma, \tau) = -1$ if and only if $\sqrt{a} = -\sqrt{a}$ and $\sqrt{b} = -\sqrt{b}$).
4.1. $L_{H^{-1}, F_2} = Q(\sqrt{13}, \sqrt{-1}, \sqrt{-3})(\sqrt{3(1 + \sqrt{13}) (3 + \sqrt{13})})$. It follows from Lemma 3.3 that $H^{-1}(\sigma) = \chi_{13}(\sigma) P_1 + \chi_{13}(\sigma) P_2$ and $F_2(\sigma) = \chi_{-3}(\sigma) P_1 + \chi_{-1}(\sigma) P_2$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. If we define the cup product $\cup : H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), E[2]) \times H^1(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), E[2]) \to H^2(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}), \mu_2)$ using the Weil pairing $e_2 : E[2] \times E[2] \to \mu_2$, it follows that $H^{-1} \cup F_2 = \chi_{13} \cup \chi_{-1} \cdot \chi_{13} \cup \chi_{-3} = \chi_{13} \cup \chi_{3}$. The field L_{H, F_2} has a property that it contains subfield $L/\mathbb{Q}(\sqrt{13}, \sqrt{3})$ such that L/\mathbb{Q} is D_8 extension. Lemma 4.4 implies that there exists a map $\Gamma : \text{Gal}(\mathbb{Q}) \to \mu_2$ defined over L_{H, F_2} such that $d\Gamma = \chi_{13} \cup \chi_{3} = H^{-1} \cup F_2$. One can check that $L_{H, F_2}/\mathbb{Q}$ is unramified outside the set $\{2, 3, 13\}$ of primes of bad reduction of E, hence it follows from the proof of Theorem 3.2 in [Sm16] that L_{H, F_2} is governing field of H^{-1} and F_2. The choice of field L_{H^{-1}, F_2} is particularly nice since it is easy to check that for prime p the Cassels-Tate pairing $\langle H^{-p}, F_2^{p}\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{H^{-1}, F_2}, provided that H^{-p} and F_2^p define an element in $\text{Sel}^{(2)}(E^{-p})$. It follows from Proposition 2.3 that H^{-p} and F_2^p are ELS if and only if $p = 13$ or p splits completely in the field of definition $K_{H^{-1}, F_2} = Q(\sqrt{13}, \sqrt{-1}, \sqrt{-3})$.

4.2. $L_{H_1, H_2} = Q(\sqrt{3}, \sqrt{-1}, \sqrt{2})(\sqrt{8(1 + \sqrt{3})(4 + 2\sqrt{3})})$. It follows from Lemma 3.3 that $H_1(\sigma) = \chi_{13}(\sigma) P_1$ and $H_2(\sigma) = \chi_{-1}(\sigma) P_1 + \chi_{-2}(\sigma) P_2$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, thus $H_1 \cup H_2 = \chi_{13} \cup \chi_{-1}$. Since L_{H_1, H_2} is unramified outside the set $\{2, 3, 13\}$ and since L_{H_1, H_2} contains a degree two extension $L/\mathbb{Q}(\sqrt{3}, \sqrt{-2})$ such that L/\mathbb{Q} is Galois with Galois group D_8, same as in 4.1 we can conclude that L_{H_1, H_2} is governing field of H_1 and H_2. Moreover, for p prime such that H_1^p and H_2^p define an element in $\text{Sel}^{(2)}(E^p)$ (or equivalently for prime p which splits completely in $K_{H_1, H_2} = Q(\sqrt{3}, \sqrt{-1}, \sqrt{2})$), we have that $\langle H_1^p, H_2^p\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{H_1, H_2}.

4.3. $L_{F_1, F_2} = Q(\sqrt{3}, \sqrt{-1}, \sqrt{2})(\sqrt{8(1 + \sqrt{3})(4 + 2\sqrt{3})})$. Here conclusion is the same as in 4.2 for p prime such that F_1^p and F_2^p define an element in $\text{Sel}^{(2)}(E^{-p})$ (or equivalently for prime p which splits completely in $K_{F_1, F_2} = Q(\sqrt{3}, \sqrt{-1}, \sqrt{2})$), we have that $\langle F_1^p, F_2^p\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{F_1, F_2}.

4.4. $L_{H, H_2} = Q(\sqrt{-1}, \sqrt{2}, \sqrt{13})(\sqrt{4 + 2\sqrt{13}})$. Lemma 3.3 implies that $H(\sigma) = \chi_{13}(\sigma) P_1$ and $H(\sigma) = \chi_{-1}(\sigma) P_1 + \chi_{-2}(\sigma) P_2$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, thus $H \cup H_2 = \chi_{13} \cup \chi_{-1}$. Since L_{H, H_2} is unramified outside the set $\{2, 3, 13\}$ and since L_{H, H_2} contains a degree two extension $L/\mathbb{Q}(\sqrt{-1}, \sqrt{13})$ such that L/\mathbb{Q} is Galois with Galois group D_8, same as in 4.1 we can conclude that L_{H, H_2} is governing field of H and H_2. Also, for p prime such that H^p and H_2^p define an element in $\text{Sel}^{(2)}(E^p)$ (or equivalently for prime p which splits completely in $K_{H, H_2} = Q(\sqrt{13}, \sqrt{-1}, \sqrt{2})$), we have that $\langle H^p, H_2^p\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{H, H_2}.

4.5. $L_{H, H_1} = Q(\sqrt{3}, \sqrt{13})(\sqrt{4 + \sqrt{13}})$. Lemma 3.3 implies that $H(\sigma) = \chi_{13}(\sigma) P_1$ and $H(\sigma) = \chi_{3}(\sigma) P_1$ for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, thus $H \cup H_1 = \chi_{13} \cup \chi_{3}$. Since L_{H, H_1} is unramified outside the set $\{2, 3, 13\}$ and since $L_{H, H_1}/\mathbb{Q}$ is D_8 extension same as in 4.1 we conclude that L_{H, H_1} is governing field of H and H_1. Also, for p prime such that H^p and H_1^p define an element in $\text{Sel}^{(2)}(E^p)$, we have that $\langle H^p, H_1^p\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{H, H_1}. Note that H^p and H_1^p are ELS if and only if $p = 13$ or p splits completely in $K_{H, H_1} = Q(\sqrt{13}, \sqrt{-1}, \sqrt{-3})$ and $p \equiv 1$ (mod 4).

4.6. $L_{H^{-1}, F_1} = Q(\sqrt{-2}, \sqrt{13})(\sqrt{-1})$. It follows from Lemma 3.3 that for all $\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ we have that $H^{-1}(\sigma) = \chi_{13}(\sigma) P_1 + \chi_{13}(\sigma) P_2 = \chi_{-3}(\sigma) P_3$ and $F_1(\sigma) = \chi_{-2}(\sigma) P_1 + \chi_{-2}(\sigma) P_2 = \chi_{-2}(\sigma) P_3$, thus $e_2(H^{-1}(\sigma), F_1(\sigma)) = 1$. Therefore $H^{-1} \cup F_1$ is alternating (see Lemma 4.1 in [Sm16]) and $\langle H^{-d_1}, F_1^{d_1}\rangle_{CT} = \langle H^{-d_2}, F_1^{d_2}\rangle_{CT}$ for all pairs $(d_1, d_2) \in \mathcal{D}$ from Theorem 4.1. For p prime such that H^{-p} and F_1^p define an element in $\text{Sel}^{(2)}(E^{-p})$, we can check by computing set \mathcal{D} that $\langle H^{-p}, F_1^p\rangle_{CT}$ is equal to 0 if and only if p splits completely in L_{H^{-1}, F_1}. Note that H^{-p}
and F'_1 are ELS if and only if p splits completely in $K_{H^{-1},F_1} = \mathbb{Q}(\sqrt{13}, \sqrt{-2})$, thus, as before, the splitting behaviour of p in L_{H^{-1},F_1} determines Cassels-Tate pairing even though L_{H^{-1},F_1} is not a governing field of H^{-1} and F_1.

5. Proofs of Main Results

Proof of Theorem 1.7 From Section 4 (see also Table 1), we see that the governing field of the pair (H^{-1}, F_1) is $L_{H^{-1},F_1} = \mathbb{Q}(\sqrt{-2}, \sqrt{13})(\sqrt{-1})$. In particular,

$$\langle H^d, F_1^{-d}\rangle_{CT} = \begin{cases} 0 & \text{if } |d| \text{ splits completely in } L_{H^{-1},F_1}, \\ 1 & \text{otherwise}. \end{cases}$$

For $d < 0$, it follows from the description of set T that $\langle H^d, F_1^{-d}\rangle_{CT} = 1$ if $d \equiv 1 \pmod{4}$ and $\langle H^d, F_1^{-d}\rangle_{CT} = 0$ if $d \equiv 3 \pmod{4}$. Hence a) follows. For b), assume that $d \equiv 3 \pmod{4}$ and $\varepsilon(H^d) \neq 0$. As argued in the introduction, there is $L \in \text{Sel}^{(2)}(E^d)$ such that $\langle H^d, L\rangle_{CT} = 1$. Since $\langle H^d, F_1^{-d}\rangle_{CT} = 0$, from the bilinearity of the Cassels-Tate pairing it follows that $\langle H^d, F_2^{-d}\rangle_{CT} = 1$ (as F_2 is remaining generator of $\text{Sel}^{(2)}(E^d)$). The other implication in b) is obvious. C) is proved similarly. The only difference here is that in $d > 0$ case, $\text{Sel}^{(2)}(E^d)$ is, in addition to torsion classes, generated by H^d, H_1^d, and H_2^d.

Proof of Corollary 1.6 First we count the contribution to $S(X)$ of $d = \pm p$ for which $d \notin T$. It follows from Conjectures 1 and 2 and Propositions 3.4 and 3.1 that the only significant case is when $w(E^d) = -1$ (assuming H^d is ELS) in which case $\text{III}(E^d)[2]$ is trivial. It follows from Propositions 2.1, 2.3 and 3.1 that this is equivalent to $\left(\frac{d}{13}\right) = 1$, $\left(\frac{d}{7}\right) \cdot \left(\frac{d}{11}\right) = \text{sgn}(d)$ and $d \equiv 0 \pmod{8}$ if $d > 0$ or $d \equiv 6 \pmod{8}$ if $d < 0$. Thus if

$$d \equiv 29, 35, 53, 55, 77, 79, 101, 103, 107, 127, 131, 155, 173, 179, 199, 251, 269, 295 \pmod{8 \cdot 3 \cdot 13}$$

when $d > 0$ or if $d < 0$ and

$$d \equiv 5, 17, 43, 113, 139, 185, 209, 211, 233, 235, 257, 259, 283 \pmod{8 \cdot 3 \cdot 13},$$

then $H^d(\mathbb{Q}) \neq \emptyset$. There are 18 residue classes in the first case, and 12 in the second, thus by Dirichlet’s theorem on arithmetic progressions, the contribution to C_1 is $\frac{30}{25(8 \cdot 3 \cdot 13)} = \frac{5}{32}$.

Next, consider the case $d > 0$, $d \in T$ and $\text{III}(E^d)[2] \neq 2\text{III}(E^d)[4]$. Corollary 1.2 together with Proposition 5.9 implies that in this case $H^d(\mathbb{Q}) \neq \emptyset$ if and only if d does not split completely in L_{H, H_1} and L_{H, H_2}. One can check that the assumption $d > 0$ and $d \in T$ is equivalent to the requirement that d splits completely in K_{H, H_1} and K_{H, H_2}, thus we need to find a density of d’s such that d splits completely in composition $K = L_{H, H_1} L_{H, H_2} K_{H_1, H_2}$ but not in its degree two extension $L = L_{H, H_1} L_{H, H_2} L_{H_1, H_2}$. By Chebotarev density theorem the density of such d’s is $\frac{1}{\deg K} \cdot \frac{1}{2}$. From Table 1 we see that K_{H_1, H_2} is contained in $L_{H, H_1} L_{H, H_2}$. Moreover, one can check that $\deg L_{H, H_1} L_{H, H_2} = 64$, thus in this case the contribution to C_1 is equal to $\frac{1}{2} \cdot \frac{1}{128}$ (we have extra $\frac{1}{2}$ since C_1 is a lower bound for $\frac{S(X)}{2\pi(X)}$ and not $\frac{S(X)}{\pi(X)}$).

Finally, consider the case $d < 0$, $d \in T$ and $\text{III}(E^d)[2] \neq 2\text{III}(E^d)[4]$. Corollary 1.2 together with Proposition 5.9 implies that $H^d(\mathbb{Q}) \neq \emptyset$ if and only if $d = -p$, where $p \equiv 1 \pmod{4}$, does not split completely in L_{F_1, F_2} and splits completely in L_{H^{-1}, F_2}. One can check that assumption $p \equiv 1 \pmod{4}$ and $-p \in T$ is equivalent to p splits completely in K_{H^{-1}, F_2} (we see in Table 1 that $Q(\sqrt{-T}) \subset K_{H^{-1}, F_2}$). As in the previous case, we need to compute the density of primes which split completely in composition $L_{H^{-1}, F_2} K_{F_1, F_2}$, but not in its degree two extension $L_{H^{-1}, F_2} L_{F_1, F_2}$. Since $\deg L_{H^{-1}, F_2} K_{F_1, F_2} = 32$, in this case the contribution to C_1 is equal to $\frac{1}{2} \cdot \frac{1}{64}$. Hence it follows that $C_1 = \frac{5}{32} + \frac{1}{256} + \frac{1}{128} = \frac{63}{256}$.

To compute the upper bound C_2, we need to find the density of the remaining case, $d \in T$ and $\text{III}(E^d)[2] = 2\text{III}(E^d)[4]$, in which our method does not provide us an answer. If $d > 0$, by Proposition 3.9, it is enough to compute the density of primes p which splits completely in L_{H,H_1, H_2} and L_{H,H_2}. From Table I, we see that the composition of these three fields have degree 128, hence by Chebotarev density theorem the density of primes with this splitting property is $1/128$, hence contribution to $C_2 - C_1$ is $1/256$.

If $d < 0$ and $d \equiv 7 \pmod{8}$, then p must split completely in L_{F_1,F_2}, L_{H,F_2} and $K = \mathbb{Q}(\sqrt{-2}, \sqrt{13})$ (see Table I), and furthermore it must either split completely in $L = \mathbb{Q}(\sqrt{-2}, \sqrt{13})(\sqrt{4 + 2\sqrt{13}})$ or none of its factors in K splits further in L (note that L/\mathbb{Q} is not Galois extension). One can check that this condition is equivalent for p to split completely in composition $L_{F_1,F_2}L_{H,F_2}$ which is of degree 64, hence the density of such primes is $1/64$, and contribution to $C_2 - C_1$ is equal to $1/128$. Hence $C_2 = C_1 + 1/256 + 1/128 = 46/256$. □

6. Future work

This paper left us with some interesting questions which may be addressed in the future projects:

a) What information can be obtained about $H^d(\mathbb{Q})$ in the case when $\text{III}(E^d)[2] = 2\text{III}(E^d)[4]$?

b) What can one say about $H^d(\mathbb{Q}) \neq \emptyset$ for some larger class of d’s? The main reason why we considered only d’s for which $|d|$ is prime is that in this case we can control the 2-Selmer group of quadratic twists E^d - we have explicit generators. This might also be the case, for example, for the set of d’s which are the products of two primes.

c) Can one obtain similar results for the quartics other that H? It seems this could be within the reach of this method provided that, as in b), we have explicit description of 2-Selmer groups of quadratic twists.

Acknowledgments

The author was supported by the Croatian Science Foundation under the project no. IP-2018-01-1313, and by the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).

References

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

[BD10] George Boxer and Peter Diao. 2-Selmer groups of quadratic twists of elliptic curves. Proc. Amer. Math. Soc., 138(6):1969–1978, 2010.

[CO15] Mirela Çiperian and Ekin Ozman. Local to global trace questions and twists of genus one curves. Proc. Amer. Math. Soc., 143(9):3815–3826, 2015.

[DD10] Tim Dokchitser and Vladimir Dokchitser. On the Birch-Swinnerton-Dyer quotients modulo squares. Ann. of Math. (2), 172(1):567–596, 2010.

[Des20] Julie Desjardins. Root number of twists of an elliptic curve. J. Théor. Nombres Bordeaux, 32(1):73–101, 2020.

[DF12] Andrej Dujella and Clemens Fuchs. On a problem of Diophantus for rationals. J. Number Theory, 132(10):2075–2083, 2012.

[DKMS17] Andrej Dujella, Matija Kazalicki, Miljen Mikić, and Márton Szikszai. There are infinitely many rational Diophantine sextuples. Int. Math. Res. Not. IMRN, (2):490–508, 2017.

[Dra22] Goran Dražić. Rational $D(q)$-quintuples. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 116(1):Paper No. 9, 18, 2022.
QUADRATIC TWISTS OF GENUS ONE CURVES AND DIOPHANTINE QUINTUPLES

[Duj99] Andrej Dujella. An extension of an old problem of Diophantus and Euler. Fibonacci Quart., 37(4):312–314, 1999.

[Duj02] Andrej Dujella. An extension of an old problem of Diophantus and Euler. II. Fibonacci Quart., 40(2):118–123, 2002.

[Duj16] Andrej Dujella. What is . . . a Diophantine m-tuple? Notices Amer. Math. Soc., 63(7):772–774, 2016.

[Hal98] Emmanuel Halberstadt. Signes locaux des courbes elliptiques en 2 et 3. C. R. Acad. Sci. Paris Sér. I Math., 326(9):1047–1052, 1998.

[Kra81] Kenneth Kramer. Arithmetic of elliptic curves upon quadratic extension. Trans. Amer. Math. Soc., 264(1):121–135, 1981.

[MR10] B. Mazur and K. Rubin. Ranks of twists of elliptic curves and Hilbert’s tenth problem. Invent. Math., 181(3):541–575, 2010.

[Nov22] Lukas Novak. Lokalna rješivost kvadratnih zavrtaja krivulja genusa 1. Diplomski rad, 2022.

[Roh93] David E. Rohrlich. Variation of the root number in families of elliptic curves. Compositio Math., 87(2):119–151, 1993.

[Sil09] Joseph H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics. Springer, Dordrecht, second edition, 2009.

[Smi16] Alexander Smith. Governing fields and statistics for 4-Selmer groups and 8-class groups. arXiv:1607.07860, 2016.

[Smi22a] Alexander Smith. The distribution of ℓ^∞-Selmer groups in degree ℓ twist families. arXiv:2207.05674, 2022.

[Smi22b] Alexander Smith. The distribution of fixed point Selmer groups in twist families. arXiv:2207.05143, 2022.

[Sto12] Michael Stoll. Descent on elliptic curves. In Explicit methods in number theory, volume 36 of Panor. Synthèses, pages 51–80. Soc. Math. France, Paris, 2012.

Email address: matija.kazalicki@math.hr