Microbial Changes Associated with IBD Mouse Model and Microbiota Transplantation Confers Colitis Symptom in Microbiota Deletion Mice

CURRENT STATUS: POSTED

Lijun Shang
China Agricultural University

Hongbin Liu
ShenZhen Institutes of Advanced Technology

Ziqi Dai
China Agricultural University

Jie Li
China Agricultural University

Meixia Chen
China Agricultural University

Xiangfang Zeng
China Agricultural University

Shiyan Qiao qiaoshiyan@cau.edu.cn Corresponding Author

DOI: 10.21203/rs.2.15951/v1

SUBJECT AREAS
Applied & Industrial Microbiology General Microbiology

KEYWORDS
Gut microbiota, dysbiosis, inflammation bowel disease, DSS, microbiota transplantation
Abstract

Background Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and Ulcerative colitis (UC), are chronic and relapsing inflammation occurring among the gastrointestinal tract. Available evidence suggests that host microbiome, as well as various components of the mucosal immune system, are implicated in the pathogenesis of IBD though the exact mechanism remains unknown. Advances in DNA sequencing technologies have provided new insights on the function identification of gut microbiota. In this study, we investigated the gut microbiota response to colitis and discussed the underlying mechanisms of this alteration in combination with latest research. The function of altered microbiota was investigated through microbiota transplantation technology.

Results Twenty-seven female C57BL/6J mice were fed DSS solution for 5 days and followed by 5 days normal drinking water. D 0 was considered as normal control while d 5 and d 10 were seen as disease progressive phase and recovery phase, respectively. Alpha diversity results showed that the detected microbiota composition differences among 3 phases were not due to the presence and/or absence of rare phylotypes. In IBD mouse model, community richness decreased but diversity did not change significantly. Besides, the strong negative correlation between phyla Firmicutes and Bacteroidetes decreased in IBD mouse model of which maybe one of the dysbiosis signatures. Furthermore, transplanting microbiota of IBD mouse model to antibiotic-induced microbiota depletion mice (Abx-mice) could induce inflammation similar to colitis. The proportion of the Lactobacillus, as well as other less abundant probiotic taxa, significantly increased in recovery phase, revealing the potential of these probiotic in IBD therapy.

Conclusions IBD could induce proportional changes of gut microbiota, and these changes are capable of conferring pathogenicity in Abx-mice. This study provides updated comprehensions of the commensal microbiota alteration.

Keywords Gut microbiota,
Background

The prevalence of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn’s disease (CD), remains high in Europe and continues to rise across the world [1, 2]. IBD is characterized by intestinal ulcers which accumulated within whole digestive tract and may occur in other extra-intestinal organs [3]. The specific etiology of IBD is complex and remains unclear, but it was generally agreed that genetics, epigenetics, gut microbiota and host immune system factors were involved. Previous studies reported that altered composition or balance of gut bacteria were important in initiation and progression of IBD. For example, changes in abundance of Firmicutes and Proteobacteria was correlated strongly with IBD [4].

There exist significant interactions between gut microbiota and the host in several ways such as dietary energy extraction, immune system development, vitamin production and drug metabolism [5, 6], thus involved in many diseases. IBD is one of the most frequently reported diseases [4, 7, 8]. Some pathogens, such as Vibrio cholerae and Clostridium perfringens, could secrete enzymes capable of utilizing mucus or disrupt tight junctions [9-11]. StcE, a member of E. coli metalloprotease, could assist pathogens to reach gut epithelium, disrupt colonic mucus and tight junctions thus contributing to IBD [12]. On the other hand, dysbiosis can lead to an imbalance in metabolites production that in turn may link to IBD pathogenesis [13]. The decrease of butyrate-producing species, such as Roseburia hominis and Faecalibacterium prausnitzii, play an important role in epithelial barrier integrity [14].

Rodent colitis models are important tools to investigate IBD pathogenesis and have contributed greatly to the identification of IBD pathogenesis process. DSS-induced IBD mouse model is one of the most widely used models due to its rapidity and reproducibility.
DSS is toxic to colonic epithelial cells and could destroy the mucosal barrier integrity [16, 17], allowing the entry of luminal bacteria into mucosa and the dissemination of proinflammatory intestinal contents into underlying tissue [18, 19]. Therefore, DSS-induced colitis might be mediated by gut microbiota dysbiosis and corresponding inflammatory response. Previous study using DSS-induced IBD mouse model, revealed the importance of IL-17F itself and IL-17F-induced Treg cells in protecting against colitis [20]. In other studies, germ-free mice showed a higher mortality rate than wild-type mice when given the same dose of DSS [21], and the depletion of microbiota induced by broad spectrum antibiotics also exacerbates DSS-induced colitis [22], further suggesting the important role of gut microbiota in maintaining gut health. Thus, we used a DSS-induced colitis model to further explore the interactions between gut microbiota and colon inflammation.

However, there is still no conclusion concerning how microbial dysbiosis is linked to the onset and development of IBD. Fecal microbiota transplantation (FMT) provides new option for manipulating gut microbiota, thus becoming an encouraging therapeutic approach for intestinal disease and a powerful tool for investigating mechanisms of microbiological related disease. Combining FMT and antibiotics contributed to the microbiological improvement of intestinal dysbiosis in UC patients [23]. Previous study found the microbiota could alleviate murine chronic intestinal inflammation through modulating immune cell functions in terms of FMT [24].

In our study, we established IBD mouse model by drinking DSS solution and eliminated cage effects by randomly selecting mice from multiple cages during samples collection. Colonic content samples were collected on d 0, d 5 and d 10 to investigate gut microbiota composition changes; colon tissues was assessed as research indicates that microbial abundance and diversity are directly related to the physiological state of the

4
gastrointestinal tract segment; combination of Abx-mice model and FMT manipulation may elucidate the relationship between altered gut microbiota composition and gut inflammation responses.

Results

Clinical Signs of IBD mouse model

After 5 days of DSS treatment, IBD mouse model showed significant decrease in body weight, and continued to decline for the next 5 days (Fig.1). Disease activity index began to rise significantly on the 3th day and peaked on d 8 (Fig.1). Colon length was decreased compared with the normal control (Fig.1). We also found an obvious edema, severely damaged mucosal structures and abundant inflammatory cell infiltration from H&E staining of distal colon tissue (Fig.2). Also, the inflammatory cytokine TNF-α in serum significantly increased (Fig.2). It was worth noting that, compared with d 5-model, the colon length of d 10-model significantly increased whereas the level of TNF-α in serum significantly decreased.

Gut microbiota altered in IBD mouse model

In addition to colitis development, the DSS altered the composition of the gut microbiota by 5 days administration. PCoA revealed clear clustering by DSS-treatment time point using both unweighted-unifrac and weighted-unifrac method (Fig.3). Compared with normal control, Sobs and Chao index decreased in IBD mice (Fig.4, S1). Nevertheless, the Simpson index did not change significantly (Fig.4).

We further analyzed changes in the relative abundance of specific phylotypes. The overall abundances of the dominant phyla *Firmicutes* (37.77% in normal control and 38.16% in d 5-model) and *Bacteroidetes* (58.36% in normal control and 47.37% in d 5-model) were not significantly affected by DSS treatment but taxa within these two phyla showed dramatic changes (Fig.5). However, after a 5-day recovery period, the phyla *Firmicutes* (76.92%)
significantly increased and *Bacteroidetes* (13.4%) significantly decreased (Fig.5). Results indicated that the proportions of phylum *Firmicutes* showed a negative relationship with phyla *Bacteroidetes* ($R^2 = 0.9883$, $P \leq 0.0001$) in normal control, and this correlation became weaker in IBD mouse model (Fig.6). To further identify the differences of key microbiota among groups, LEfSe analysis was performed (Table.S1 and Fig.S2).

Among phylum *Firmicutes*, the *Bacillales* in the normal control were more abundant than that of the IBD mice; d 5-model group increased the *Firmicutes-Erysipelotrichia-Erysipelotrichales-Erysipelotrichaceae-Turicibacter* and *Faecalibaculum* while increased *Firmicutes-Bacilli-Lactobacillales-Lactobacillaceae-Lactobacillus, Firmicutes-Bacilli-Lactobacillales-Enterococccae-Enterococcus, Firmicutes-Bacilli-Lactobacillales-Streptococcaceae-Streptococcus* and *Firmicutes- unclassified_Firmicutes* were observed in d 10-model, making phylum *Firmicutes* highly dominant in d 10-model.

In order to further show the proportion and relationship of different taxon in the three groups, we performed Ternary analysis (Fig.7). Three taxa within phyla *Bacteroidetes* were enriched in normal control: *Muribaculaceae* (82.7% in normal control, 13.3% in d 5-model and 3.93% in d 10-model), *Prevotellaceae* and *Muribaculum* (both 100% in normal control, absence in d 5-model and d 10-model); meanwhile, three taxa within phyla *Bacteroidetes* concentrated in d 5-model but significantly decreased in d 10-model: *Bacteroides* (70.7% in d 5-model, 12% in normal control and 17.3% in d 10-model), *Odoribacter* (89.8% in d 5-model, 5.31% in normal control and 4.85% in d 10-model) and *Escherichia-Shigella* (87.9% in d 5-model, 0.278% in normal control and 11.8% in d 10-model); four taxa within phyla *Firmicutes* concentrated in d 5-model but significantly decreased in d 10-model: *Turicibacter* (61.2% in d 5-model, 0.626% in normal control and 38.2% in d 10-model), *Faecalibaculum* (70.2% in d 5-model, 28.3% in normal control and 1.45% in d 10-model), *Ruminococcaceae* (91.2% in d 5-model, 7.13% in normal control and 1.63% in d 10-model)
and Clostridiales (80.9% in d 5-model, 3.65% in normal control and 15.5% in d 10-model); two taxa within phyla Firmicutes concentrated in d 10 model: Lactobacillus (62.8% in d 10-model, 29.9% in normal control and 7.35% in d 5-model) and Ruminococcus (100% in d 10-model, absence in d 5-model and normal control).

In addition to the bacteria concentrated in one phase mentioned above, the lower relative abundances taxa Clostridium and Bifidobacterium concentrated in d 5-model but decreased in d 10-model. Furthermore, the abundances of Mucispirillum, Helicobacter and Ruminiclostridium increased in both d 5 and d 10 mouse model (Fig.S3).

IBD mouse model colonic commensal microbiota contributed to colitis

Compared with vehicle-mice, colon length of FMT-mice decreased significantly (Fig.8, S4), and some colon samples of FMT-mice showed obvious blood and hygromata after microbiota transplantation (Fig.S4). However, body weight did not show significant difference and no obvious blood were observed in feces as well (data not shown). Similarly, mucosal epithelial damage and epithelial loss were observed in almost all FMT-mice, and we further found obvious inflammatory infiltration among a few of them (Fig.9).

Discussion

After 5 days of DSS treatment, significant weight loss, increased DAI and reduced colon length indicated IBD mouse model was successfully established. Compared with d 5-model, the increased colon length and decreased DAI indicated the transition from progression phase to recovery phase in d 10-model.

Further, we screened response of colon bacterial flora to the DSS-induced inflammation changes. As rodents are coprophagic, gut microbiota of mice in the same cage will progressively become homogeneous over time. In order to avoid this, mice were randomly selected from multiple cages each time for sample collection. Completely different gut microbiota of IBD mouse model among d 0, d 5 and d 10 indicated gut microbiota
alteration were accompanied by colitis initiation and recovery (Fig.3). Generally, commensal bacteria digested dietary fiber and produce short-chain fatty acids (SCFAs) therefore influencing gut epithelial cell and lymphocyte homeostasis and eventually contributed to the host intestine health. Germ-free mice have a higher mortality rate than wild-type mice when treated with DSS [25, 26], highlighting the important role of the flora in maintaining gut health.

However, the specific function of changed microbiota induced by inflammation remains unclear. To clarify this uncertainty, we transplant IBD mice colon bacterial flora to Abx-mice. As a result, FMT-mice showed symptoms similar to those of IBD mouse model while vehicle-mice remained healthy. This result implied that gut bacterial flora in IBD mouse shifts from normal commensal flora to harmful pathogenicity status and potentially elucidated the possible reason underlying the relapse of IBD.

We also analyzed the difference of microbiota composition between different phase of IBD mouse model and normal control. Both weighted and un-weighted unifrac PCoA separated these 3 group well (Fig.3), indicating that the detected community differences were not due to the presence and/or absence of rarer phylotypes. Also, the decrease of community richness was observed at both progressive phase and recovery phase (Fig.4, S1) but community diversity did not change significantly (Fig.4), suggesting the losses of particular taxa while some “new” taxa rise.

Human colonic microbiota is dominated by anaerobic members within phyla *Bacteroidetes* and *Firmicutes* [27]. The situation is the same for IBD mice, but the overall abundances of these two phyla and the taxa within them showed clear changes compared with normal control. The negative relationship between phylum *Firmicutes* and *Bacteroidetes* became weaker in d 5 and d 10-mouse model which may be an indicator of disordered microbiota flora in IBD mouse.
To be specific, there was a significant increase of phylum *Firmicutes* and a significant decrease of phylum *Bacteroidetes* in d10-model compared with normal control and d 5-model. Within phylum *Firmicutes*, *Lactobacillus* spp. and *Bifidobacterium* spp. have been widely used as probiotics. Unlike the low abundance of *Bifidobacterium*, the average percentage of *Lactobacillus* could reach up to 23.1%. In fact, this bacteria specie was the primary bacteria driving the calculated multivariate discrimination in the high level of phylum *Firmicutes* in d 10-model (Fig.S2). This result also indicated the abundance of *Lactobacillus* is negatively correlated with IBD pathogenesis. If this hypothesis is correct, the supplementation of *Lactobacillus* in IBD animals and patients might confer beneficial effects. Previous studies reported similar beneficial effects for protecting gut health of *Lactobacillus*. First, *Lactobacillus* could increase intestinal anti-inflammatory cytokine level and/or reduce the proinflammatory cytokines, thus altering the immune system [28-30]; it is worth noting that *Lactobacillus* could suppress TNF-α expression [31], which may explain the declined TNF-α in IBD mouse model on d 10 (Fig.2). Second, *Lactobacillus* directly competed with pathogenic bacteria therefore contributing to gut health [32, 33]. Though whether the change of *Lactobacillus* is the cause or consequence of the disease pathogenesis remains unclear, this understanding of the ecophysiology of the commensal and probiotic *Lactobacillus* in the dysbiosis disease states provide useful information for the successful treatment and prevention of chronic intestinal inflammation.

The second most abundant abundance bacteria, *Muribaculaceae*, changed in manner quite differently from *Lactobacillus*. The highest abundance was observed in normal control (82.7%) and nearly disappeared in IBD mouse. This phenomenon was similar to that observed in the context of feeding trials using high-calorie and/or carbohydrate-enriched diets [34-36]. This is probably the consequence of its ability to degrade particular types of polysaccharides: plant glycans, host glycans, and α-glucans [37, 38]. Also, the ability of
degrading dietary carbohydrates produces succinate, acetate, and propionate [37], which may lead *Muribaculaceae* to occupy overlapped niches as *Bacteroides* does. *Bacteroides* also specialize in the fermentation of polysaccharides [39], and members of *Bacteroides* are known to produce succinate, acetate, and propionate by polysaccharides fermentation [40-42]. It may explain why *Bacteroides* exhibit opposite abundance trends compared with *Muribaculaceae*. The abundance of *Bacteroides* was low in both normal control (12%) and IBD mouse model recovery phase (17.3%) but became concentrated in IBD mouse model progressive phase (70.7%). This phenomenon may attribute to the ability of *Bacteroides* to sense and adapt to gut environmental changes and stress. Firstly, species within *Bacteroides* could utilize host cell surface glycoproteins and glycolipids as nutrients source at sites of infection [43-50], therefore have a superb ability to access nutrients; on the other hand, *Bacteroides* could modulate its surface polysaccharides to an “on” or “off” position [51], thus avoiding the host immune response. These systems used by *Bacteroides* may explain its high abundance in the gut inflammatory environment. Previous study also reported *Bacteroides* species were found in most of anaerobic infections [52]. *Enterotoxigenic B. fragilis*, a member of *Bacteroides*, could secret B. fragilis enterotoxin [53] and induce cyclooxygenase 2 and fluid secretion in intestinal epithelial cells [54], thus may be associated with occurrence of colorectal cancer and IBD [55, 56].

Another notable change occurred at *Akkermansia*. It has been isolated in 2004 [57] and classified as mucin-utilizing bacteria [58]. However, recent studies indicated that *Akkermansia* may also exert positive regulation on intestinal mucosal thickness and intestinal barrier integrity [59, 60] and be praised as “the next generation of probiotics” [61]. With the deepening of research, *Akkermansia* was thought to act as both “friend and foe”, so it would be unwise to advocate the efficacy of *Akkermansia* until more research
and clinical data emerged. A research in China indicated that *Akkermansia* was positively correlated with the risk of Chinese type 2 diabetes [62]. Later, Ijssennagger et al found antibiotic treatment enhanced intestinal barrier function by eliminating sulphide-producing and mucus-degrading bacteria such as *Akkermansia* [63]. Besides, *Akkermansia* also triggers an excessive immune response that disrupts mucus secretion and damage intestinal barrier in IL-10⁻/⁻ mice [64]. In the present study, our data suggested *Akkermansia* was highly enriched in d 5-model (68.4%), and 5 days recovery phase led to normalization of *Akkermansia* bacteria in d 10-model (15.2%), resulting in similar levels to those found in normal control (16.4%). Given this plus results of clinal signs, we could speculate reasonably that the gut microbiota of d10-model tended to restore homeostasis since the *Akkermansia* was considered a marker of gut homeostasis and restoration of the mucus layer in the gut [65].

Though transplantation of colon microbiota of d 5-model to Abx-mice could induce symptoms similar to colitis, it was not enough to infer that *Akkermansia* played as “foe” role in d 5-model. We inclined that pathogenicity was induced by a consortium of microbiota. The presence of *Akkermansia* or any other bacteria alone is not enough to induce these effects. In contrast, the composition and relative abundance of several specific microbes play an important role. The source or underlying cause of the increase of *Akkermansia* is still unclear. Previous study indicated that acetate and/or lactate produced by *Bifidobacterium* could stimulated the growth of *Akkermansia* [66]. Consistent with this, *Bifidobacterium* showed the same trend as *Akkermansia* in our result which may partly explain this elevation.

This study does have limitation because the microbiota composition during self-recovery phase (or return to initial weight) was not measured or the key bacteria may be highlighted to great extent. Secondly, the pathogenicity of altered microbiota community
of IBD mouse model could be further interpreted if the microbiota composition in Abx-mice receiving FMT was monitored.

Conclusions

Overall, our study investigated the alterations of gut microbiota in IBD mouse model in combination with updated studies, and proved the changes conferred the pathogenic effect. Further studies are necessary to determine which species play a key role in pathopoiesis. Our results also provided hint to find keystone in terms of ternary plot of microbiota among treatments, such as analysis of one or one group microbiota enriched in d 5-model. *Lachnospiraceae* and *lactobacillus* may be of great importance during the recovery of IBD.

Methods

Animals

Six to eight-week-old female C57BL/6 mice used in present study were purchased from SPF (Beijing) Biotechnology Co., Ltd. Mice were housed under the same condition (specific pathogen-free conditions: temperature, 24 ± 1℃; lighting cycle, 12 h:12 h light/dark) and had free access to food and drinking water. Experiments on animals were performed in accordance with the Animal Care and Use Committee of China Agricultural University (Beijing, China).

Mouse models

8 weeks aged female C57BL/6J mice were provided with 5% DSS (36-50 kDa; MP Biomedicals) in drinking water ad libitum for 5 days to established DSS-induced IBD mouse model. Then they received normal drinking water for additional 5 days. The mice were euthanized by CO$_2$ asphyxiation on d 0 (as normal control mice, n = 9), d 5 (d 5-model, n = 9; donor mice for microbiota transplantation, n = 9) and d 10 (d 10-model, n = 9).
Blood, colon tissue and colonic contents were collected; body weight, stool consistency and degree of intestinal bleeding were measured daily. The scoring system displayed in table S2 was described by Wirtz S et.al [18].

For the antibiotic-induced microbiota depletion mouse model (Abx-mice), we used the method as described previously with slight modifications [20, 67-70]. In brief, 6 weeks aged female C57BL/6J mice were delivered with a cocktail containing ampicillin, neomycin, metronidazole and vancomycin (1 g/L, 1 g/L, 1 g/L and 500 mg/L, respectively and all were obtained from Sigma) in drinking water ad libitum for 2 weeks, then had a “rest” for 2 days to prepare for microbiota transplantation.

Microbiota transplantation

Colonic content samples were freshly collected from donor mice (IBD mouse model on d 5, n = 9) and homogenized in sterile PBS (50 mg/mL). Homogenates were passed through a 40 µm cell strainer and then centrifuged at 8500 rpm for 5 min. Precipitation was resuspended with the same volume of 10% glycerol/PBS solution and stored at -80°C until used for microbiota transplantations.

Five Abx-mice were orally intragastric administration with 200 µL suspension above once a day for 5 consecutive days (FMT-mice), while 5 mice were orally intragastric administration with the same volume of 10% glycerol/PBS vehicle as control (Vehicle-mice). Then mice were euthanized and colon samples were collected. Body weight, stool consistency and degree of intestinal bleeding were measured daily.

Elisa

Blood (collected on d 0, d 5 and d 10 of IBD mouse model) was centrifuged to obtain serum. The levels of TNF-α was determined using ELISA kits (SLCY Biotech, Beijing, China). The kit assays were carried out according to the protocol supplied by the manufacturer. The absorbance was read at 450 nm using a multimode microplate reader (iMark, BIORAD,
Histology

Colon sections were removed, the contents were gently extruded and then washed in saline, fixed in 4% paraformaldehyde and embedded in paraffin. After being cut into 4 μm thickness slices, tissue sections were stained with hematoxylin and eosin and then examined using a light microscope (Nikon Eclipse Ci, Japan). Photomicrographs were captured using a digital camera attached to the microscope (Nikon digital sight DS-Fi2, Japan). Histological damage was quantitatively assessed as described by Wirtz S et.al [18]. The sum of two sub-scores results in a combined score ranging from 0 (no changes) to 6 (widespread cellular infiltrates and extensive tissue damage). (Table S3)

Microbiota composition by 16S rRNA sequencing analysis

Colonic contents were collected from IBD mouse model on d 0, d 5 and d 10. Genomic DNA was extracted using the E.Z.N.A.® soil DNA Kit (Omega Bio-tek, Norcross, GA, U.S.). The V3-V4 hypervariable regions of the bacteria 16S rRNA gene were amplified with primers 338F (5’-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) by thermocycler PCR system (GeneAmp 9700, ABI, USA). Purified amplicons were pooled in equimolar and paired-end sequenced (2 × 300) on an Illumina MiSeq platform (Illumina, San Diego, USA). Random sampled of all sample effective sequences by the minimum number of effective sequences in the sample. Raw fastq files were demultiplexed, quality-filtered using QIIME (version 1.17). Operational taxonomic units (OTUs) were clustered with 97% similarity by UPARSE62 (version 7.1 http://drive5.com/uparse/) and chimeric sequences were identified and removed using UCHIME. The taxonomy of each sequence was analyzed by RDP Classifier (http://rdp.cme.msu.edu/) against the Silva (SSU115) 16S rRNA database with 70% confidence threshold [71].

Statistical analysis
Statistical analysis was performed using Prism software (GraphPad 7.0). Data were first checked for normal distribution and plotted in the figures as mean ± SD. For each figure, n = the number of independent biological replicates. No samples or animals were excluded from the analyses. Differences between two treatment groups were assessed using two-tailed, unpaired Student t test with 95% confidence level. Differences among > 2 groups with only one variable were assessed using one-way ANOVA with Tukey post hoc test. Taxonomic comparisons from 16S rDNA sequencing analysis were analyzed by Kruskal-Wallis H test with fdr post hoc test. Ternary Plot was made using GGTERN software (http://www.ggtern.com/). LEfSe was performed to discover bacteria indicator that distinguished the treatment-specific microbiota features, LDA value was used to estimate the effect size of each feature. A significance level (alpha) of 0.05 and an effect size threshold of 2 was used for all indicators discussed in this study.

Abbreviations

Inflammatory bowel disease: IBD; Operational taxonomic units: OTUs; Crohn’s disease: CD; Ulcerative colitis: UC; Fecal microbiota transplantation: FMT; short-chain fatty acids: SCFAs.

Declarations

Ethics approval

All care, maintenance, and experimental protocols were performed in accordance with the Animal Care and Use Committee of China Agricultural University (Beijing, China).

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analyzed during this study are included in this manuscript. The
datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by the following grants: National Key Research and Development Program of China (Grant number 2016YFD0501308), Agro-scientific Research in the Public Interest (Grant number 201403047) and Research and application of key technologies for enterobactercin new veterinary drug product development (Grant number Z171100001317017). These funding paid the experimental animals and material consumption used in present study.

Authors’ contributions

SYQ and XFZ conceived and designed the experiments. HBL provides help in the design of experiment. ZQD analyzed and interpreted the ELISA data, JL and MXC analyzed and interpreted colon histology photograph, LJS performed the experiments and wrote the article. All authors have read and approved the version to be published and agreed to be accountable for all aspects of this work.

Acknowledgements

Not applicable.

References

1. Choi CR, Al Bakir I, Ding NJ, Lee G, Askari A, Warusavitarne J, Moorghen M, Humphries A, Ignjatovic-Wilson A, Thomas-Gibson S, et al: Cumulative burden of inflammation predicts colorectal neoplasia risk in ulcerative colitis: a large single-centre study. GUT 2017:2017-314190.

2. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh
S, Wu JCY, Chan FKL, et al: Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet 2017, 390(10114):2769-2778.

3. Sands BE: From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. GASTROENTEROLOGY 2004, 126(6):1518-1532.

4. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, et al: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. GENOME BIOL 2012, 13(9):R79.

5. Cerf-Bensussan N, Gaboriau-Routhiau V: The immune system and the gut microbiota: friends or foes? NAT REV IMMUNOL 2010, 10(10):735-744.

6. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. NATURE 2010, 464(7285):59-65.

7. Martens EC, Neumann M, Desai MS: Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. NAT REV MICROBIOL 2018, 16(8):457-470.

8. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Philip Schumm L, Sharma Y, Anderson CA, et al: Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. NATURE 2012, 491(7422):119-124.

9. Silva AJ, Pham K, Benitez JA: Haemagglutinin/protease expression and mucin gel penetration in El Tor biotype Vibrio cholerae. MICROBIOLOGY+ 2003, 149(Pt 7):1883-1891.

10. Wu Z, Nybom P, Magnusson KE: Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-
associated proteins occludin and ZO-1. CELL MICROBIOL 2000, 2(1):11-17.

11. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y: Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. SCIENCE 2015, 347(6223):775-778.

12. Grys TE, Siegel MB, Lathem WW, Welch RA: The StcE protease contributes to intimate adherence of enterohemorrhagic Escherichia coli O157:H7 to host cells. INFECT IMMUN 2005, 73(3):1295-1303.

13. Li J, Butcher J, Mack D, Stintzi A: Functional impacts of the intestinal microbiome in the pathogenesis of inflammatory bowel disease. INFLAMM BOWEL DIS 2015, 21(1):139-153.

14. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, Ballet V, Claes K, Van Immerseel F, Verbeke K, et al: A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. GUT 2014, 63(8):1275-1283.

15. Eichele DD, Kharbanda KK: Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 2017, 23(33):6016-6029.

16. Randhawa PK, Singh K, Singh N, Jaggi AS: A review on chemical-induced inflammatory bowel disease models in rodents. Korean J Physiol Pharmacol 2014, 18(4):279-288.

17. Ni J, Chen SF, Hollander D: Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. GUT 1996, 39(2):234-241.

18. Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S, Neurath MF: Chemically induced mouse models of acute and chronic intestinal inflammation. NAT PROTOC 2017, 12(7):1295-1309.

19. Kim JJ, Shajib MS, Manocha MM, Khan WI: Investigating intestinal inflammation in
DSS-induced model of IBD. J Vis Exp 2012(60).

20. Tang C, Kakuta S, Shimizu K, Kadoki M, Kamiya T, Shimazu T, Kubo S, Saijo S, Ishigame H, Nakae S, et al: Suppression of IL-17F, but not of IL-17A, provides protection against colitis by inducing Treg cells through modification of the intestinal microbiota. NAT IMMUNOL 2018, 19(7):755-765.

21. Rath HC, Schultz M, Freitag R, Dieleman LA, Li F, Linde HJ, Scholmerich J, Sartor RB: Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. INFECT IMMUN 2001, 69(4):2277-2285.

22. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R: Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. CELL 2004, 118(2):229-241.

23. Ishikawa D, Sasaki T, Takahashi M, Kuwahara-Arai K, Haga K, Ito S, Okahara K, Nakajima A, Shibuya T, Osada T, et al: The Microbial Composition of Bacteroidetes Species in Ulcerative Colitis Is Effectively Improved by Combination Therapy with Fecal Microbiota Transplantation and Antibiotics. INFLAMM BOWEL DIS 2018.

24. Burrello C, Giuffrè MR, Macandog AD, Diaz-Basabe A, Cribiù FM, Lopez G, Borgo F, Nezi L, Caprioli F, Vecchi M, et al: Fecal Microbiota Transplantation Controls Murine Chronic Intestinal Inflammation by Modulating Immune Cell Functions and Gut Microbiota Composition. CELLS-BASEL 2019, 8(6):517.

25. Hernández-Chirlaque C, Aranda CJ, Ocón B, Capitán-Cañadas F, Ortega-González M, Carrero JJ, Suárez MD, Zarzuelo A, Sánchez De Medina F, Martínez-Augustin O: Germ-free and Antibiotic-treated Mice are Highly Susceptible to Epithelial Injury in DSS Colitis. Journal of Crohn's and Colitis 2016, 10(11):1324-1335.

26. Rath HC, Schultz M, Freitag R, Dieleman LA, Li F, Linde HJ, Scholmerich J, Sartor RB: Different subsets of enteric bacteria induce and perpetuate experimental colitis in
rats and mice. INFECT IMMUN 2001, 69(4):2277-2285.

27. Lozupone CA, Stombaugh JI, Gordon JL, Jansson JK, Knight R: Diversity, stability and resilience of the human gut microbiota. NATURE 2012, 489(7415):220-230.

28. Petrof EO, Kojima K, Ropeleski MJ, Musch MW, Tao Y, De Simone C, Chang EB: Probiotics inhibit nuclear factor-κB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. GASTROENTEROLOGY 2004, 127(5):1474-1487.

29. Tien MT, Girardin SE, Regnault B, Le Bourhis L, Dillies MA, Coppee JY, Bourdet-Sicard R, Sansonetti PJ, Pedron T: Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J IMMUNOL 2006, 176(2):1228-1237.

30. Møller PL, Paerregaard A, Gad M, Kristensen NN, Claesson MH: Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells. INFLAMM BOWEL DIS 2005, 11(9):814-819.

31. Lin YP, Thibodeaux CH, Pena JA, Ferry GD, Versalovic J: Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun. INFLAMM BOWEL DIS 2008, 14(8):1068-1083.

32. Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki JI: Adhesion of Lactic Acid Bacteria to Caco-2 Cells and Their Effect on Cytokine Secretion. MICROBIOL IMMUNOL 2002, 46(4):293-297.

33. Hu J, Ma L, Nie Y, Chen J, Zheng W, Wang X, Xie C, Zheng Z, Wang Z, Yang T, et al: A Microbiota-Derived Bacteriocin Targets the Host to Confer Diarrhea Resistance in Early-Weaned Piglets. CELL HOST MICROBE 2018, 24(6):817-832.

34. Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh YH, Kieffer D, Zaragoza J, Martin R, Slupsky C, et al: Microbiota, metabolome, and immune
alterations in obese mice fed a high-fat diet containing type 2 resistant starch. MOL NUTR FOOD RES 2017, 61(11).

35. Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, Bresciani A, Martinez I, Just S, Ziegler C, et al: The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. NAT MICROBIOL 2016, 1(10):16131.

36. Obanda D, Page R, Guice J, Raggio AM, Husseneder C, Marx B, Stout RW, Welsh DA, Taylor CM, Luo M, et al: CD Obesity-Prone Rats, but not Obesity-Resistant Rats, Robustly Ferment Resistant Starch Without Increased Weight or Fat Accretion. Obesity (Silver Spring) 2018, 26(3):570-577.

37. Ormerod KL, Wood DL, Lachner N, Gellatly SL, Daly JN, Parsons JD, Dal'Molin CG, Palfreyman RW, Nielsen LK, Cooper MA, et al: Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. MICROBIOME 2016, 4(1):36.

38. Lagkouvardos I, Lesker TR, Hitch T, Galvez E, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, et al: Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. MICROBIOME 2019, 7(1):28.

39. Wexler HM: Bacteroides: the Good, the Bad, and the Nitty-Gritty. CLIN MICROBIOL REV 2007, 20(4):593-621.

40. Macy JM, Ljungdahl LG, Gottschalk G: Pathway of succinate and propionate formation in Bacteroides fragilis. J BACTERIOL 1978, 134(1):84-91.

41. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F: From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. CELL 2016, 165(6):1332-1345.
42. Macfarlane S, Macfarlane GT: Regulation of short-chain fatty acid production. Proc Nutr Soc 2003, 62(1):67-72.

43. D'Elia JN, Salyers AA: Effect of regulatory protein levels on utilization of starch by Bacteroides thetaiotaomicron. J BACTERIOL 1996, 178(24):7180-7186.

44. Cho KH, Cho D, Wang GR, Salyers AA: New regulatory gene that contributes to control of Bacteroides thetaiotaomicron starch utilization genes. J BACTERIOL 2001, 183(24):7198-7205.

45. Cho KH, Salyers AA: Biochemical analysis of interactions between outer membrane proteins that contribute to starch utilization by Bacteroides thetaiotaomicron. J BACTERIOL 2001, 183(24):7224-7230.

46. D'Elia JN, Salyers AA: Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch. J BACTERIOL 1996, 178(24):7173-7179.

47. Reeves AR, D'Elia JN, Frias J, Salyers AA: A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J BACTERIOL 1996, 178(3):823-830.

48. Reeves AR, Wang GR, Salyers AA: Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron. J BACTERIOL 1997, 179(3):643-649.

49. Salyers AA, Pajeau M: Competitiveness of different polysaccharide utilization mutants of Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. Appl Environ Microbiol 1989, 55(10):2572-2578.

50. Shipman JA, Berleman JE, Salyers AA: Characterization of four outer membrane proteins involved in binding starch to the cell surface of Bacteroides thetaiotaomicron. J BACTERIOL 2000, 182(19):5365-5372.
51. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE: Extensive surface diversity of a commensal microorganism by multiple DNA inversions. NATURE 2001, 414(6863):555-558.

52. Goldstein EJ: Anaerobic bacteremia. CLIN INFECT DIS 1996, 23 Suppl 1:S97-S101.

53. Sears CL: The toxins of Bacteroides fragilis. TOXICON 2001, 39(11):1737-1746.

54. Kim JM, Lee JY, Yoon YM, Oh YK, Kang JS, Kim YJ, Kim KH: Bacteroides fragilis enterotoxin induces cyclooxygenase-2 and fluid secretion in intestinal epithelial cells through NF-kappaB activation. EUR J IMMUNOL 2006, 36(9):2446-2456.

55. Prindiville TP, Sheikh RA, Cohen SH, Tang YJ, Cantrell MC, Silva JJ: Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. EMERG INFECT DIS 2000, 6(2):171-174.

56. Basset C, Holton J, Bazeos A, Vaira D, Bloom S: Are Helicobacter species and enterotoxigenic Bacteroides fragilis involved in inflammatory bowel disease? Dig Dis Sci 2004, 49(9):1425-1432.

57. Derrien M, Vaughan EE, Plugge CM, de Vos WM: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004, 54(Pt 5):1469-1476.

58. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S: Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 2007, 73(23):7767-7770.

59. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, Gomis R, Claret M, Cani PD: Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 2015, 5:16643.
60. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C, Huhtinen H, de Vos WM, Satokari R: Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Appl Environ Microbiol 2015, 81(11):3655-3662.

61. Cani PD, de Vos WM: Next-Generation Beneficial Microbes: The Case of Akkermansia muciniphila. FRONT MICROBIOL 2017, 8.

62. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al: A metagenome-wide association study of gut microbiota in type 2 diabetes. NATURE 2012, 490(7418):55-60.

63. Ijssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SWC, Müller M, Kleerebezem M, van der Meer R: Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proceedings of the National Academy of Sciences 2015, 112(32):10038-10043.

64. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, Gewirtz AT: Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. NATURE 2015, 519(7541):92-96.

65. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, Chen Y, Ji L: Human gut microbiota changes reveal the progression of glucose intolerance. PLOS ONE 2013, 8(8):e71108.

66. Alard J, Lehrter V, Rhimi M, Mangin I, Peucelle V, Abraham A, Mariadassou M, Maguin E, Waligora-Dupriet A, Pot B, et al: Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. ENVIRON MICROBIOL 2016, 18(5):1484-1497.

67. Brown RL, Sequeira RP, Clarke TB: The microbiota protects against respiratory infection via GM-CSF signaling. NAT COMMUN 2017, 8(1).
68. Emal D, Rampanelli E, Stroo I, Butter LM, Teske Gj, Claessen N, Stokman G, Florquin S, Leemans JC, Dessing MC: Depletion of Gut Microbiota Protects against Renal Ischemia-Reperfusion Injury. J AM SOC NEPHROL 2017, 28(5):1450-1461.

69. Josefsdottir KS, Baldridge MT, Kadmon CS, King KY: Antibiotics impair murine hematopoiesis by depleting the intestinal microbiota. BLOOD 2017, 129(6):729-739.

70. Hagerbrand K, Westlund J, Yrlid U, Agace W, Johansson-Lindbom B: MyD88 Signaling Regulates Steady-State Migration of Intestinal CD103+ Dendritic Cells Independently of TNF-alpha and the Gut Microbiota. J IMMUNOL 2015, 195(6):2888-2899.

71. Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, et al: Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME journal 2013, 7(7):1344-1353.

Supplementary File Legends

Figure S1. Alpha diversity changes in the process of IBD mouse model.

Figure S2. The contribution of taxa on the difference between groups. The different color nodes represented the taxa that were significantly enriched in the corresponding groups and had significant effects on the differences between the groups; taxa that was not associated with differences between groups, or no significant differences between groups were annotated in yellow.

Figure S3. Taxonomic distributions of bacteria from 16S rDNA sequencing data.

Figure S4. The pictures of colon after FMT.

Table S1. The significant differently species determined based on the LEfSe method.

Table S2. Scoring system for calculating disease activity index (DAI).

Table S3. Scoring system for inflammation-associated histological changes in the colon.
Clinical signs of IBD mouse model. (A) Body weight changes (relative to original weight, set as 100%) and (B) DAI over the whole experimental period. D 0 to d 5, n=18; d 6 to d 10, n = 9. Data were analyzed by two-way ANOVA; (C) Length of the colon between ileocecal junction and the proximal rectum. Data were analyzed by one-way ANOVA, n = 9; (D) The representative pictures of colon. Data are means ± SD. *p < 0.05, **p < 0.01 compared with the normal control group; #p < 0.05 compared with the d 5-model group and the same below.
Inflammatory conditions of IBD mouse model. (A1) Representative images of the colon by H&E staining (40× 200×). The red arrow indicated morphological changes of mucous layer, and the black arrow indicated edema status in submucosa. (A2) Score of inflammation-associated histological changes in colon. (B) The concentration of TNF-α in serum. n = 9, Data are means ± SD and analyzed by one-way ANOVA.
Figure 3

Principal coordinate analysis by weighted-unifrac (A) and unweighted-unifrac method (B).

Figure 4

The changes of gut microbiota diversity. n = 9, Data are means ± SD and analyzed by one-way ANOVA.
Changes of microbial composition at the phylum level.

The correlation between relative abundances of phylum Firmicutes and Bacteroidetes. Statistical analyses were performed by Pearson’s correlation coefficient.
Ternary Plot of the process of IBD mouse model. The colored circles represented the phylum level classification of species to which the circles belong in the triangle chart; the circles in the triangle chart represented the genus level of species under a certain phylum level; and the circle size represented the average relative abundance of species.
Colon length after FMT. *n = 5,* Data are means ± SD and analyzed by Student's t-test. ***p < 0.0001.
Figure 9

Inflammatory conditions of the colon after FMT. (A) Representative images of the colon by H&E staining (40×200×). The red arrow indicated morphological changes of mucous layer, and the black arrow indicated edema status in submucosa. (B) Score of inflammation-associated histological changes in colon. n = 5, Data are means ± SD and analyzed by Student’s t-test.

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

- Figure S3.pdf
- Figure S4.pdf
- ARRIVE.docx
- Figure S1.pdf
- Figure S2.pdf
- Table S2.docx
- Table S3.docx
- Table S1.docx