不凍タンパク質の実用化への取り組み

石井 寛崇*, 井上 敏文

不凍タンパク質は氷結晶に吸着し、その成長を抑制する機能を有するユニークなタンパク質である。我々は氷結晶の粗大が冷凍食品の品質低下の原因となることから不凍タンパク質の応用化を目的に、大量生産技術の開発と用途開発を進めてきた。しかし、効果が期待できる冷凍食品が限定されることに加え、製造コストの課題が残った。その後、方針を変更し、社外への市場調査を実施したところ、新たな応用分野への可能性が見えてきた。利用者の要望に対応した製品の開発を進めた結果、2016年に研究用不凍タンパク質試薬としての販売を開始した。現在まで、その製造販売を行いながら、各分野の課題解決に向けた取り組みを進めている。

キーワード：不凍タンパク質、冷凍食品、氷結晶、試薬、魚、大量生産

Efforts toward commercialization of antifreeze proteins

Hirotaka ISHI* and Toshifumi INOUE

Antifreeze proteins adsorb to ice crystals and have the function of suppressing their growth. To apply antifreeze proteins to frozen foods where the coarsening of ice crystals leads to the deterioration of quality, we advance mass production technology. However, there were not many cases where the quality of frozen foods was improved by adding the antifreeze protein we developed. So, we changed the direction of development and conducted market research. Our market research revealed new possibilities for utilizing antifreeze proteins. We promoted the development of products that meet the needs of users and began sales as research reagents in 2016. Currently, we are working to address user problems, while manufacturing and selling research reagents.

Keywords：Antifreeze protein, frozen food, ice crystal, reagent, fish, mass production

1 はじめに

1.1 食品冷凍の歴史

冷凍とは、物質の物理的、化学的な変化を用いて低温を作り出し、それにより他の物品から熱を取り出す操作を定義されている。日本で初めて冷蔵庫を建設したのは中原孝太であり、1899年に鳥取県米子町で魚を冷凍している。1920年には、欧米を視察した葛原猪平が北海道森町に冷蔵庫を建設し、冷凍魚の生産を行った。これが日本における食品凍結事業の始まりであり、この場所（現在、株式会社ニチレイの子会社のニチレイフーズの森工場）が日本冷凍食品業発祥の地とされている。

株式会社ニチレイ（ニチレイ）は戦時下の1942年、水産統制令に基づいて発足した国策会社「帝国水産統制株式会社」を前身とする。戦後の荒廃の中、当時の幹部は瀕死の食糧経済を立て直すことが使命であると認識し、1945年12月に民間企業「日本冷蔵株式会社」として再出発した。日本冷蔵株式会社は冷凍魚の取り扱いと製氷・冷蔵事業をベースとして、漁業や食品流通に不可欠な「冷力」によって食料増産に寄与することを責務と据えていた。食品の品質を保存料を使わずに長期保存できる冷凍食品の可能性にいち早く注目し、パイオニアとして冷凍食品事業に乗り出し、当時のかかった課題解決に向けた取り組みを進めている。食品凍結事業の歴史であり、この場所（現在、株式会社ニチレイの子会社のニチレイフーズの森工場）が日本冷凍食品業発祥の地とされている。

株式会社ニチレイ（ニチレイ）は戦時下の1942年、水産統制令に基づいて発足した国策会社「帝国水産統制株式会社」を前身とする。戦後の荒廃の中、当時の幹部は瀕死の食糧経済を立て直すことが使命であると認識し、1945年12月に民間企業「日本冷蔵株式会社」として再出発した。日本冷蔵株式会社は冷凍魚の取り扱いと製氷・冷蔵事業をベースとして、漁業や食品流通に不可欠な「冷力」によって食料増産に寄与することを責務と据えていた。食品の品質を保存料を使わずに長期保存できる冷凍食品の可能性にいち早く注目し、パイオニアとして冷凍食品事業に乗り出し、当時のかかった課題解決に向けた取り組みを進めている。
凍結が行われている。凍結時の品質変化のさらなる抑制に向け、新たな凍結装置の開発が進められているが、エネルギー負荷や設備費用、運用面の課題があり、装置からのアプローチだけでは限界がある。そのため、凍結前の加工処理技術が注目されている。一般的には、食品中の水分量の制御や食品中の自由水を減らすといったことが行われており、その他、凍結保護物質を食品に添加し、氷結晶による影響を受けることを試みている。多くの加工食品ではこれらの加工処理が有効であるが、野菜や水産物、畜肉といった素材本来の状態を維持したい場合には、味や食感が大きく変わる恐れのある加工処理が行えないという課題がある。

1.3 不凍タンパク質について
不凍タンパク質は、氷結晶に吸着し、その成長を抑える機能を有するタンパク質である。寒冷地に生息する一部の生物が体内に蓄え、体が凍結するような低温に耐えて生存するために備わったものである。1969 年に米国イリノイ大学 Arthur DeVries 教授により南極海に棲む魚の血清から発見されて以来、学術的に関心がもたれており、これまでに魚や昆虫、植物、菌類などから発見されている。一般に、不凍タンパク質の濃度が高くなるにつれて氷結晶の成長抑制効果が高まり、無数の小さい氷結晶が生成した凍結物になる。原料の違いでアミノ酸組成や立体構造が少しずつ異なるさまざまな種類があり、吸着する氷結晶の結晶面もそれぞれ異なる。そのため、不凍タンパク質の濃度や種類によって、生成する氷結晶の大きさや形状は多様なものとなる。

1.4 不凍タンパク質の産業応用に向けた共同研究
不凍タンパク質が氷結晶の成長を抑制する効果は極めて高く、同様の性能をもつ物質が他にないため、氷結晶の粗大化が品質に影響するアイスクリームや氷菓、冷凍食品、フリーズドライ製品などへの応用が当初から期待されていた。ニチレイでは冷凍食品の製造過程において、凍結時や冷凍保管時の品質変化を抑える技術開発を進めており、そのどちらにも効果が期待できる不凍タンパク質に注目し効果を確認したいと考えていた。

半世紀前から不凍タンパク質は発見されていたにもかかわらず、なかなか実用化されなかった大きな理由として、その希少性にあった。特に魚類では南極の魚からしか取りたいと想定されており、アメリカの会社が1990年代半ばから極地の魚類由来の不凍タンパク質を高額 ($)10/mg で販売していた。しかし、これが実用化されるためには、タンパク質の構造解析や機能解析が必要である。不凍タンパク質を入手できる魚類や菌類に注目していた。我々は、このような状況を鑑みて、食品の凍結解凍後の品質保持が期待できる不凍タンパク質の探索と立地性、効果的な使用方法の検討について産総研と共同で取り組むことにした（表1）。

産業応用に向けたシナリオを図1に示す。産総研では既に100種類以上の生物で効果の確認を終えており、数種類の生物が不凍タンパク質をもつことを確認していた。産総研ではその構造解析や機能解析を進めていることから、ニチレイでは見ついている不凍タンパク質について、食品で効果が期待できる不凍タンパク質の探索と動力を見出すことを計画した。
大量調製については、産総研がグラム量の不凍タンパク質を精製する技術を確立していたことから、ニチレイでは数百グラムから数十キログラムの生産ができるパイロットスケールでの生産ができる設備の構築と数トン以上の商業模に対応できる原料の探索、及びスケールアップでの効率的な精製法の検討を実施し、大量調製法の確立を目指すことになった。さらに、不凍タンパク質の用途開発をさまざまな食品で進めていくながら、実際の製造や流通を見越し、添加方法や加工工程における失活のリスク、効果の持続性について検証を進めていくこととした。

これらの取り組みを進めていくことで、将来、不凍タンパク質の生産体制を確保し、多くの冷凍食品へ不凍タンパク質が利用されるというシナリオを描いた。

2.2 食品への効果検証
当初は数多くの不凍タンパク質の中で、ラボスケールでの精製が簡便な魚類の不凍タンパク質を使って食品への効果を検証した。これまでの研究文では数 µg/ml の濃度でも食品への効果は観察されるという結果があがっていたからである。しかし食品への効果を見るには、見た目や食感で差を実感しなければならない。それには高い濃度が必要で、食品内部に十分な量の不凍タンパク質が存在していないければならない。そのため不凍タンパク質の濃度を 1000 倍に高めて試験を行ったところ、効果を発揮し、寒天ゲルの凍結解凍後の品質は有意に向上した。ただし、この検証だけでは結論を下すべきではなく、既報の論文に囚われたままでは、不凍タンパク質の食品への効果は“なし”と判断していたかもしれない。先行研究をすべて鵜呑みにすることの危険性を思い知らされた。今回であれば、実施濃度で効果がないのであれば、

産業技術総合研究所の役割	ニチレイの役割
基礎研究	応用研究
不凍タンパク質の分子機能の解明	食品への効果検証
各不凍タンパク質の遺伝子解析と分子構造解析	不凍タンパク質の大量調製法の確立
生化学・物理化学的性質の解明	用途開発、新たな利用用途の探索

図1 不凍タンパク質の産業応用（冷凍食品への実用化）へのシナリオ
単純に濃度を高くすればよいだけのことである。とはいえ、不凍タンパク質がグラム量ではなく、もっと大量にあれば、状況は少し違ったかもしれない。この時期、ニチレイでの不凍タンパク質の調製法が十分に確立されていなかったことが単純な検討に時間を使いすぎた一因として考えられる。

2.3 大量調製の検討
氷結晶の成長を抑制する効果が高く、寒天ゲルへの添加試験で凍結耐性の付与効果が認められた魚を原料とする大量調製法の技術開発の検討を進めた。魚類は原料をキロ以上で確保でき、性能が高い不凍タンパク質が得られるため、魚類を優先して検討を開始した。

2.3.1 原料の選定
魚類の不凍タンパク質は大きく4種類（不凍糖タンパク質、I型、II型、III型）に分類され、いずれも氷結晶の成長を抑制する効果は有するが、性質はさまざまである。原料選択の指標としては、収率・収量の高さや抽出精製の簡便さ、精製した不凍タンパク質の性能を最も重視した。その他、原料コストや調達の持続可能性、漁獲場所、漁獲時期なども考慮している。国内外を問わず、魚や水産加工の残渣を含む多くの原料を入手し、漁獲時期の違いを考慮した検討を進めていたため、原料の選定には多大な時間を費やした。これが魚類でなければ、場所や時期による品質変化は少なかったかもしれないが、なるべく性能が高い不凍タンパク質を大量に分取することを重要視していたため、このような結果となった。しかし、多くの原料の検討を行ったことにより、実用化に向けた最適な原料の知見が深まった。

2.3.2 精製法の検討
当初、氷結晶の成長を抑制する効果の高いIII型不凍タンパク質の原料からパイロットスケールでの効率的な精製法の確立を進めていた。しかし、III型不凍タンパク質は熱に弱く、食品向けの製品で製造には適さない。そこで耐熱性を考慮して不凍糖タンパク質とI型不凍タンパク質の原料を用いて精製法の検討を進めていった。粉末、抽出、分離、分画、濃縮、乾燥のそれぞれで最適条件を検討した。粉末、分離、分画の工程は自己消化による分解や生菌数の増加を避けるために低温での作業を進めていたが、魚類には脂肪や他のタンパク質が多く含まれており、ろ過分離の際に脂質の析出やタンパク質の凝集による膜の目詰まりを起こすことが度々生じた。また、原料からの収率が1%以下であり、残渣が多く出るため、残渣に不凍タンパク質が含まれないように、高い収率で効率良く不凍タンパク質を回収できる膜の選定や溶媒の選定が大きなポイントであった。設備投資予算がほとんどなかったため、満足のいく最適解ではなかったが、なんとかパイロットスケールで製造できる手法は開発できた。

2.4 用途開発のための食品利用における知見の蓄積
添加濃度を高めることで、寒天ゲル、アイスクリーム、餃子、豆腐と多くの食品で効果が見られるようになった。しかし、冷凍耐性が弱く、冷凍食品に多く利用される野菜や水産品、畜肉ではなんとか効果が見られなかった。この原因として、当初は内部への浸透性の問題と考えていた。餃子や豆腐などでは漬漬時間を延長することで、氷結晶の成長が抑えられることが顕微鏡で確認していたからである。しかし、前述した食品では浸漬時間を延ばし、圧力を利用して浸透性を高めても、大きな改善が見られなかった。

当時は細胞レベルでの検証は行っておらず、細胞の冷凍保存の知見もなかった。そのため、細胞膜や細胞壁が浸透性の邪魔をするのではないかと考えていた。しかし、前述した食品では浸漬時間を延ばし、圧力を利用して浸透性を高めても、大きな改善が見られなかった。当時は細胞レベルでの検証は行っておらず、細胞の冷凍保存の知見もなかった。その後、不凍タンパク質が細胞膜に吸着することや、細胞保存の知見が蓄積されるに従って、効果が出ない理由が次第にわかった。結局、不凍タンパク質は凍る前の水にしっかり吸着しないと、効果を示さないのである。細胞がある食品では、組織や細胞の隔たりで不凍タンパク質の動きは制限され、十分な吸着が期待されにくい。そのため、浸漬処理だけでは、野菜や水産品、畜肉の冷凍耐性を高めることが難しいと考えた。

3 製品化に向けた活動
冷凍食品への実用化を目指し、不凍タンパク質の大量調製や用途開発を進めてきたが、野菜や水産品、畜肉への冷凍耐性の付与が困難であったことや、精製した不凍タンパク質を安価な冷凍加工食品にわざわざ添加しても品質を差別化したいかなかった。そのため当初のシナリオは変更を迫られていた。検討の結果、パイロットスケールで製造した不凍タンパク質を社外へ提供し、別の用途を探することにした。社外への不凍タンパク質の提供を考えした産業応用へのシナリオを図2に示す。不凍タンパク質は添加濃度を高めれば実感できる効果を発揮するため、付加価値が高い用途利用でであれば、応用が望まれる推奼がもたらされた。そのような用途に向けた不凍タンパク質の提供が進めば、大量生産によるコストメリットが生まれ、ニチレイにおける利用も促進するというシナリオを描いた。

3.1 不凍タンパク質の試供品の取り組み
先に述べたように、不凍タンパク質で冷凍耐性を付与できる食品は限られている。既存の冷凍加工食品は水分量の制御などでの冷凍耐性を高めているため、不凍タンパク質の添加による大きな品質向上は望めない。また、多くの糖類のように冷凍耐性を付与する素材が安価に出回っている

Synthesiology Vol.12 No.2 (2019) − 87 −
ため、効果に特別な優位性がない限り、精製した不凍タンパク質は採用されない。このような現状のため、食品以外へ幅広く用途開発を行う必要性に迫られ、社外に向けて不凍タンパク質の提供を進めることに着手した。実際には2009年にニチレイのホームページで不凍タンパク質の試供品提供の告知を行い、物質移動合意書（MTA）を締結して精製製品の提供をおこなった。提供社数は数十社を超えた。この取り組みを通じて、応用の可能性がある分野がいくつか見えてきた。一方で、精製製品だけの提供では、実用化へ繋げる検討がほとんど進まない分野もあり、さらなるサンプルを準備する必要に迫られた。

3.2 不凍タンパク質試薬の製品化に向けて

試供品の取り組みの中で高純度の不凍タンパク質の提供と生産規模で利用可能な安価なサンプル品の提供の要望をいただいた。高純度の精製法は、産総研が既に確立していたことから、その手順を参考に製造を進めていった。しかし、同じ方法で製造しているにも関わらず、高純度の不凍タンパク質が十分に得られないという課題に直面した。試薬として製品化するためには、製品が一定以上の品質をクリアしていること、性能にばらつきがないことが最低条件であることから、電気泳動やタンパク質質量を精製段階で行い、精製製品を少しずつ増えながら収量と品質の確認を進めた。最終的には、より改良した方法で高純度の不凍タンパク質を安定的に得ることができるようにになった。前述のばらつきは使用する機器や試薬のわずかな違いから生じたものと考えているが、同じ方法を別の場所で再現する難しさを知る機会となった。

3.3 社外への不凍タンパク質の提供を考慮した産業応用へのシナリオ

不凍タンパク質の製品化にあたっては、そのノウハウが全くないこともあり、手探りで進めるを得なかった。既存の製品化手法が新物に適用される場合、すべて自分達が手掛ける必要がある。しかし、社内だけでは十分でなかったアンケートを踏まえて、社外への不凍タンパク質の提供を考慮した産業応用へのシナリオを構築することに着手した。実際には、2016年9月にニチレイのホームページで研究用試薬（図3）の販売を開始した。販売開始当初には、不凍タンパク質発売のお知らせに関するブレスリリースをおこない、幾つかの報道関係者にも取材をいただいた。現在の不凍タンパク質製品の一覧を表2に示す。魚類不凍タンパク質と知られている不凍糖タンパク質、I型不凍タンパク質、II型不凍タンパク質、およびIII型不凍タンパク質の4種類を扱っている。いずれも低温域に生息する魚（不凍糖タンパク質：タラ科、I型不凍タンパク質：カレイ科、II型不凍タンパク質：カジカ亜目、III型不凍タンパク質：ゲンゲ科）から抽出精製を行っている。製品は純度が90％以上の「高度精製品」を対象としているが、一般家庭や地域の研究者を主な対象先としている。また、社外機関との協力においても、不凍タンパク質の提供の必要性に迫られた。
4.2 試薬販売の取り組みの実績
不凍タンパク質の問い合わせは2019年5月現在で数百件に及び、販売実績は100件以上となっている。問い合わせ内容は食品や医療、工業、そして研究目的で多岐にわたり、海外からの問い合わせもいただいた。

試薬の販売を通じて、社外の方と接する機会が増えていく。そこで、冷凍やその周辺の課題をヒアリングしたり、新しい技術情報について議論している。課題の多くは現在販売している不凍タンパク質だけで解決できないことも多い。しかし、食品と分野が異なっていても解決したい内容は似通っていることも多く、ニチレイが保有する他の冷凍技術も活用していくことで、将来的には、ほとんどすべての課題に対して解決策を提案できると考えている。

また、不凍タンパク質の取り組みを通じて、ニチレイでは多くの冷凍技術や鮮度保持技術の知見を増やすことができた。加えて、2017年には国際ナノテクノロジー総合展・技術会議にて、「ライフナノテクノロジー賞」を受賞した。これらの成果は、社内外におけるニチレイの冷凍技術の開発の取り組みを広く認知させることに役立った。

5 今後の課題、展望
2016年に魚類不凍タンパク質製品の販売を開始し、現在に至るまでに多々の方々にその効果を実感していただいている。また、試薬販売をきっかけに不凍タンパク質の認知度は徐々に高まってきていると感じている。一方で、販売してから3年弱経過しているが、実用化へと繋がった実績は十分ではない。

しかし、この不凍タンパク質は将来的に広く実用化されるものと確信している。現在、細胞保存の分野では、大学や研究機関と共同でさまざまな細胞を使った評価を進めていく。また、寒冷地での凍結制御や製品製造時の凍結制御の課題に対し、各企業と取り組みを進めている。食品においても、ニチレイでは検討していなかった食材で効果が見られ、相手先企業からは食品向けに利用できるのであればすぐにでも使いたいという声をいただいている。原料や製造法においても、当初は食品向けと決めていたために除外していた原料や製造方法を今では再検討している。その結果、従来では見られない性能を発揮できる不凍タンパク質が見つかりつつあり、現在はその大量調製に向けた取り組みを進めている。性能が高い不凍タンパク質の作用メカニズムの解明を行うことで、より効果的な不凍タンパク質を人工的に製造することもできるかもしれない。それが可能になれば製造コストの課題もクリアできると確信している。

不凍タンパク質の作用はppmオーダーでの効果が見られる。
不凍タンパク質の研究開発を継続できている。今後は大学や研究機関との共同研究に限らず、企業間での連携も強化し、世の中の課題を不凍タンパク質の取り組みを発展させながら解決していきたい。

謝辞
本取り組みを進めるにあたり、共同研究を含め種々ご協力いただきました国立研究開発法人産業技術総合研究所津田栄博士にこの場を借りて御礼申し上げます。

参考文献
[1] 田中正太郎、小橋川敬博、三浦和紀、西宮佳志、三浦愛、津田栄: 不凍タンパク質、生物物理, 43 (3), 130–135 (2003).
[2] 西宮佳志、近藤英昌、坂下真実、三浦愛、津田栄: 不凍タンパク質機能と応用、化学と生物, 48 (6), 381–388 (2010).
[3] 西宮佳志、三黒安弘、平野悠、近藤英昌、三浦愛、津田栄: 不凍タンパク質の大量精製と新たな応用開拓、Synthesiology, 1 (1), 7–14 (2008).

執筆者略歴
石井 寛崇 (いしい ひろたか)
株式会社ニチレイ 技術戦略企画部 基盤研究グループ。明治薬科大学大学院薬学研究科薬学専攻修了。2004年株式会社ニチレイ入社。入社以来、不凍タンパク質の探索、大量精製法の確立、用途開発に取り組んできた。不凍タンパク質薬剤の製品化に向けて奔走し、販売開始後は、試薬の製造から販売まで一貫して担当している。現在、新製品の開発や実用化に向けての取り組みを行っている。この論文では、食品への効果検証、試薬の製品化の取り組み、論文の執筆を担当した。

井上 敏文 (いのう え としふみ)
株式会社ニチレイ 技術戦略企画部 基盤研究グループ。九州大学大学院農学研究院食品製品工学専攻修士。1995年株式会社ニチレイ入社。不凍タンパク質の可能性を見出し、不凍タンパク質の取り組みの初期から関わっている。効果検証、原料探索、大量調製、用途開発などを主に担当した。この論文では、食品への効果検証、大量調製の検討、試供品の取り組みを担当した。
思います。不凍タンパク質の細胞保護効果は、既存の細胞保護剤とは異なる作用で働いていると考えています。作用メカニズムの解明が進むことで、実用化の推進が期待できます。当社では効果が期待できる不凍タンパク質の開発を進め、作用メカニズムの解明については外部との連携しながら進めていきたいと考えています。