Linearly related polyominoes

Viviana Ene · Jürgen Herzog · Takayuki Hibi

Abstract We classify all convex polyomino ideals which are linearly related or have a linear resolution. Convex stack polyominoes whose ideals are extremal Gorenstein are also classified. In addition, we characterize, in combinatorial terms, the distributive lattices whose join-meet ideals are extremal Gorenstein or have a linear resolution.

Keywords Binomial ideals · Linear syzygies · Polyominoes

Mathematics Subject Classification 13C05 · 05E40 · 13P10

1 Introduction

The ideal of inner minors of a polyomino, a so-called polyomino ideal, is generated by certain subsets of 2-minors of an $m \times n$-matrix X of indeterminates. Such ideals have
first been studied by Qureshi in [17]. They include the two-sided ladder determinantal ideals of 2-minors which may also be viewed as the join-meet ideal of a planar distributive lattice. It is a challenging problem to understand the graded-free resolution of such ideals. In [7], Ene, Qureshi, and Rauf succeeded to compute the regularity of such joint-meet ideals. Sharpe [19,20] showed that the ideal $I_2(X)$ of all 2-minors of X is linearly related, which means that $I_2(X)$ has linear relations. Moreover, he described these relations explicitly and conjectured that also the ideals of t-minors $I_t(X)$ are generated by a certain type of linear relations. This conjecture was then proved by Kurano [13]. In the case that the base field over which $I_t(X)$ is defined contains the rational numbers, Lascoux [14] gives the explicit free resolution of all ideals of t-minors. Unfortunately, the resolution of $I_t(X)$ in general may depend on the characteristic of the base field. Indeed, Hashimoto [8] showed that for $2 \leq t \leq \min(m, n) - 3$, the second Betti number β_2 of $I_t(X)$ depends on the characteristic. On the other hand, using squarefree divisor complexes [2] as introduced by Bruns and the second author of this paper, it follows from [2, Theorem 1.3] that β_2 for $t = 2$ is independent of the characteristic.

In this paper, we use as a main tool squarefree divisor complexes to study the first syzygy module of a polyomino ideal. In particular, we classify all convex polyominoes which are linearly related; see Theorem 3.1. This is the main result of this paper. In the first section, we recall the concept of polyomino ideals and show that the polyomino ideal of a convex polyomino has a quadratic Gröbner basis. The second section of the paper is devoted to state and to prove Theorem 3.1. As mentioned before, the proof heavily depends on the theory of squarefree divisor complexes which allow to compute the multi-graded Betti numbers of a toric ideal. To apply this theory, one observes that the polyomino ideal of a convex polyomino may be naturally identified with a toric ideal. The crucial conclusion deduced from this observation, formulated in Corollary 3.5, is that the Betti numbers of a polyomino ideal is bounded below by the Betti numbers of the polyomino ideal of any induced subpolyomino. Corollary 3.5 allows to reduce the study of the relation of polyomino ideals to that of a finite number of polyominoes with a small number of cells which all can be analyzed by the use of a computer algebra system.

In the last section, we classify all convex polyominoes whose polyomino ideal has a linear resolution (Theorem 4.1) and all convex stack polyominoes whose polyomino ideal is extremal Gorenstein (Theorem 4.4). Since polyomino ideals overlap with join-meet ideals, it is of interest which of the ideals among the join-meet ideals have a linear resolution or are extremal Gorenstein. The answers are given in Theorem 4.2 and Theorem 4.5. It turns out that the classifications for both classes of ideals almost lead to the same result.

2 Polyominoes

In this section, we consider polyomino ideals. This class of ideals of 2-minors was introduced by Qureshi [17]. To this end, we consider on \mathbb{N}^2 the natural partial order defined as follows: $(i, j) \leq (k, l)$ if and only if $i \leq k$ and $j \leq l$. The set \mathbb{N}^2 together with this partial order is a distributive lattice.
If \(a, b \in \mathbb{N}^2 \) with \(a \leq b \), then the set \([a, b] = \{c \in \mathbb{N}^2 \mid a \leq c \leq b\} \) is an interval of \(\mathbb{N}^2 \). The interval \(C = [a, b] \) with \(b = a + (1, 1) \) is called a cell of \(\mathbb{N}^2 \). The elements of \(C \) are called the vertices of \(C \), and \(a \) is called the left lower corner of \(C \). The edges of the cell \(C \) are the sets \(\{a, a + (1, 0)\}, \{a, a + (0, 1)\}, \{(a + (1, 0), a + (1, 1))\}, \) and \(\{(a + (0, 1), a + (1, 1))\} \).

Let \(P \) be a finite collection of cells and \(C, D \in P \). Then \(C \) and \(D \) are connected, if there is a sequence of cells of \(P \) given by \(C = C_1, \ldots, C_m = D \) such that \(C_i \cap C_{i+1} \) is an edge of \(C_i \) for \(i = 1, \ldots, m - 1 \). If, in addition, \(C_i \neq C_j \) for all \(i \neq j \), then \(C \) is called a path (connecting \(C \) and \(D \)). The collection of cells \(P \) is called a polyomino if any two cells of \(P \) are connected; see Fig. 1.

The set of vertices of \(P \), denoted \(V(P) \), is the union of the vertices of all cells belonging to \(P \). Two polyominoes are called isomorphic if they are mapped to each other by a composition of translations, reflections, and rotations.

For example, the polyominoes displayed in Fig. 2 are isomorphic.

We call a polyomino \(P \) row convex, if for any two cells \(C, D \) of \(P \) with left lower corner \(a = (i, j) \) and \(b = (k, j) \), respectively, and such that \(k > i \), it follows that all cells with left lower corner \((l, j) \) with \(i \leq l \leq k \) belong to \(P \). Similarly, one defines column convex polyominoes. The polyomino \(P \) is called convex if it is row and column convex.

The polyomino displayed in Fig. 1 is not convex, while Fig. 3 shows a convex polyomino. Note that a convex polyomino is not convex in the common geometric sense.

Let \(P \) be a polyomino. We may assume that \([(1, 1), (m, n)] \) is the smallest interval containing \(V(P) \). Then \(P \) is called a stack polyomino if it is column convex and for \(i = 1, \ldots, m - 1 \), the cells \([(i, 1), (i + 1, 2)] \) belong to \(P \). Figure 4 displays stack polyominoes—the right polyomino is convex, and the left is not. The number of cells
of the bottom row is called the \textit{width} of \mathcal{P}, and the number of cells in a maximal column is called the \textit{height} of \mathcal{P}.

Now let \mathcal{P} be any collection of cells. We may assume that the vertices of all the cells of \mathcal{P} belong to the interval $[(1, 1), (m, n)]$. Fix a field K and let S be the polynomial ring over K in the variables x_{ij} with $(i, j) \in V(\mathcal{P})$. The \textit{ideal of inner minors} $I_{\mathcal{P}} \subset S$ of \mathcal{P} is the ideal generated by all 2-minors $x_{il}x_{kj} - x_{kl}x_{ij}$ for which $[(i, j), (k, l)] \subset V(\mathcal{P})$. Furthermore, we denote by $K[\mathcal{P}]$ the K-algebra $S/I_{\mathcal{P}}$. If \mathcal{P} happens to be a polyomino, then $I_{\mathcal{P}}$ will also be called a \textit{polyomino ideal}.

For example, the polyomino \mathcal{P} displayed in Fig. 3 may be embedded into the interval $[(1, 1), (4, 4)]$. Then, in these coordinates, $I_{\mathcal{P}}$ is generated by the 2-minors

\begin{align*}
x_{22}x_{31} - x_{32}x_{21}, & \quad x_{23}x_{31} - x_{33}x_{21}, \quad x_{24}x_{31} - x_{34}x_{21}, \quad x_{23}x_{32} - x_{33}x_{22}, \\
x_{24}x_{32} - x_{34}x_{22}, & \quad x_{24}x_{33} - x_{34}x_{23}, \quad x_{13}x_{22} - x_{12}x_{23}, \quad x_{13}x_{32} - x_{12}x_{33}, \\
x_{13}x_{42} - x_{12}x_{43}, & \quad x_{23}x_{42} - x_{22}x_{43}, \quad x_{33}x_{42} - x_{32}x_{43}.
\end{align*}

The following result has been shown by Qureshi in [17, Theorem 2.2].

\textbf{Theorem 2.1} \textit{Let \mathcal{P} be a convex polyomino. Then $K[\mathcal{P}]$ is a normal Cohen–Macaulay domain.}

The proof of this theorem is based on the fact that $I_{\mathcal{P}}$ may be viewed as a toric ideal as follows: with the assumptions and notation as introduced before, we may assume that $V(\mathcal{P}) \subset [(1, 1), (m, n)]$. Consider the K-algebra homomorphism $\varphi: S \to T$ with $\varphi(x_{ij}) = s_it_j$ for all $(i, j) \in V(\mathcal{P})$. Here, $T = K[s_1, \ldots, s_m, t_1, \ldots, t_n]$ is the polynomial ring over K in the variables s_i and t_j. Then, as observed by Qureshi, $I_{\mathcal{P}} = \text{Ker} \varphi$. It follows that $K[\mathcal{P}]$ may be identified with the edge ring of the bipartite graph $G_{\mathcal{P}}$ on the vertex set $\{s_1, \ldots, s_m\} \cup \{t_1, \ldots, t_n\}$ and edges $\{s_i, t_j\}$ with $(i, j) \in V(\mathcal{P})$.

\textcopyright Springer
In [16], it was proved that the toric ideal which defines the edge ring of a bipartite graph has a quadratic Gröbner basis if and only if each 2r-cycle with \(r \geq 3 \) has a chord. By what we explained before, a 2r-cycle, after identifying the vertices of \(\mathcal{P} \) with the edges of a bipartite graph, is nothing but a sequence of vertices \(a_1, \ldots, a_{2r} \) of \(\mathcal{P} \) with

\[
a_{2k-1} = (i_k, j_k) \quad \text{and} \quad a_{2k} = (i_{k+1}, j_k) \quad \text{for} \quad k = 1, \ldots, r
\]

such that \(i_{r+1} = i_1, i_k \neq i_\ell \) and \(j_k \neq j_\ell \) for all \(k, \ell \leq r \) and \(k \neq \ell \).

A typical such sequence of pairs of integers is the following:

\[
\begin{align*}
32244553 \\
11332244
\end{align*}
\]

Here, the first row is the sequence of the first component and the second row is the sequence of the second component of the vertices \(a_1 \). This pair of sequences represents an 8-cycle.

The following lemma will be useful for proving that \(I_\mathcal{P} \) has a quadratic Gröbner basis.

Lemma 2.2 Let \(r \geq 3 \) be an integer and \(f : [r + 1] \to \mathbb{Z} \) a function such that \(f(i) \neq f(j) \) for \(1 \leq i < j \leq r \) and \(f(r + 1) = f(1) \). Then there exist \(1 \leq s, t \leq r \) such that one has either \(f(s) < f(t) < f(s + 1) \) or \(f(s + 1) < f(t) < f(s) \).

Proof Let, say, \(f(1) < f(2) \). Since \(f(r + 1) = f(1) \), there is \(2 \leq q \leq r \) with

\[
f(1) < f(2) < \cdots < f(q) > f(q + 1).
\]

- Let \(q = r \). Then, since \(q = r \geq 3 \), one has \(f(1) = f(r + 1) < f(2) < f(r) \).
- Let \(q < r \) and \(f(q + 1) > f(1) \). Since \(f(q + 1) \neq f(1), f(2), \ldots, f(q) \), it follows that there is \(1 \leq s < q \) with \(f(s) < f(q) < f(s + 1) \).
- Let \(q < r \) and \(f(q + 1) < f(1) \). Then, one has \(f(q + 1) < f(1) < f(q) \).

The case of \(f(1) > f(2) \) can be discussed similarly. \(\square \)

Proposition 2.3 Let \(\mathcal{P} \) be a convex polyomino. Then \(I_\mathcal{P} \) has a quadratic Gröbner basis.

Proof According to [16], we have to show that each 2r–cycle in \(G_\mathcal{P} \) with \(r \geq 3 \) has a chord. Let \(a_1, \ldots, a_{2r} \) be a 2r–cycle with

\[
a_{2k-1} = (i_k, j_k) \quad \text{and} \quad a_{2k} = (i_{k+1}, j_k) \quad \text{for} \quad k = 1, \ldots, r
\]

such that \(i_{r+1} = i_1, i_k \neq i_\ell \) and \(j_k \neq j_\ell \) for all \(k, \ell \leq r \) and \(k \neq \ell \).

It follows from Lemma 2.2 that there exist integers \(s \) and \(t \) with \(1 \leq t, s \leq r \) and \(t \neq s, s + 1 \) such that either \(i_s < i_t < i_{s+1} \) or \(i_{s+1} < i_t < i_s \). Suppose that \(i_s < i_t < i_{s+1} \). Since \(a_{2s-1} = (i_s, j_s) \) and \(a_{2s} = (i_{s+1}, j_s) \) are vertices of \(\mathcal{P} \) and since \(\mathcal{P} \) is convex, it follows that \((i_t, j_s) \in \mathcal{P} \). This vertex corresponds to a chord of the cycle \(a_1, \ldots, a_{2r} \). Similarly, one argues if \(i_{s+1} < i_t < i_s \). \(\square \)
Remark 2.4 The quadratic Gröbner basis in the above proposition is obtained for a reverse lexicographic order induced by a suitable order of the variables in S. We refer the reader to [16] for more information.

We denote the graded Betti numbers of I_P by $\beta_{ij}(I_P)$.

Corollary 2.5 Let P be a convex polyomino. Then, $\beta_{1j}(I_P) = 0$ for $j > 4$.

Proof By Proposition 2.3, there exists a monomial order $<$ such that $\text{in}_<(I_P)$ is generated in degree 2. Therefore, it follows from [10, Corollary 4] that $\beta_{1j}(\text{in}_<(I_P)) = 0$ for $j > 4$. Since $\beta_{1j}(I_P) \leq \beta_{1j}(\text{in}_<(I_P))$ (see, for example, [9, Corollary 3.3.3]), the desired conclusion follows. \(\Box\)

3 The first syzygy module of a polyomino ideal

Let P be a convex polyomino and let f_1, \ldots, f_m be the minors generating I_P. In this section, we study the relation module $\text{Syz}_1(I_P)$ of I_P which is the kernel of the S-module homomorphism $\bigoplus_{i=1}^m Se_i \to I_P$ with $e_i \mapsto f_i$ for $i = 1, \ldots, m$. The graded module $\text{Syz}_1(I_P)$ has no generators in degree > 4, as we have seen in Corollary 2.5. On the other hand, unless P consists of a single cell, $\text{Syz}_1(I_P)$ has generators of degree 3 which arise from two cells sharing an edge. We say that I_P (or simply P) is linearly related if $\text{Syz}_1(I_P)$ is generated only in degree 3.

Let f_i and f_j be two distinct generators of I_P. Then, the Koszul relation $f_je_i - f_ie_j$ belongs to $\text{Syz}_1(I_P)$. We call f_i, f_j a Koszul relation pair if $f_je_i - f_ie_j$ is a minimal generator of $\text{Syz}_1(I_P)$.

The main result of this section is the following theorem. In the statement, we will refer to Fig. 5. For a convex polyomino P, we may assume that $[(1, 1), (m, n)]$ is the smallest interval with the property that $V(P) \subset [(1, 1), (m, n)]$. We refer to the elements $(1, 1), (m, 1), (1, n)$, and (m, n) as corners. The corners $(1, 1), (m, n)$, respectively, $(m, 1), (1, n)$, are called opposite corners.

In Fig. 5, the number i_1 is also allowed to be 1 in which case also $j_1 = 1$. In this case, the polyomino contains the corner $(1, 1)$. A similar convention applies to the
other corners. In Fig. 5, all for corners $(1, 1), (1, n), (m, 1),$ and (m, n) are missing from the polyomino.

Theorem 3.1 Let \mathcal{P} be a convex polyomino. The following conditions are equivalent:

(a) \mathcal{P} is linearly related;
(b) $I_{\mathcal{P}}$ admits no Koszul relation pairs;
(c) Let, as we may assume, $[(1, 1), (m, n)]$ be the smallest interval with the property that $V(\mathcal{P}) \subset [(1, 1), (m, n)]$. Then, \mathcal{P} has the shape as displayed in Fig. 5, and one of the following conditions hold:

(i) at most one of the corners does not belong to $V(\mathcal{P})$;
(ii) two of the corners do not belong to $V(\mathcal{P})$, but they are not opposite to each other. In other words, the missing corners are not the corners $(1, 1), (m, n), (m, 1), (1, n)$.
(iii) three of the corners do not belong to $V(\mathcal{P})$. If the missing corners are $(m, 1), (1, n)$ and (m, n) (which one may assume without loss of generality), then referring to Fig. 5 the following conditions must be satisfied: either $i_2 = m - 1$ and $j_4 \leq j_2$, or $j_2 = n - 1$ and $i_4 \leq i_2$.

The possible shapes of a linearly related polyomino given in Theorem 3.1 are illustrated in Fig. 6.

As an essential tool in the proof of this theorem, we recall the so-called squarefree divisor complex, as introduced in [9]. Let K be field, $H \subset \mathbb{N}^n$ an affine semigroup, and $K[H]$ the semigroup ring attached to it. Suppose that $h_1, \ldots, h_m \in \mathbb{N}^n$ is the unique minimal set of generators of H. We consider the polynomial ring $T = K[t_1, \ldots, t_n]$ in the variables t_1, \ldots, t_n. Then $K[H] = K[u_1, \ldots, u_m] \subset T$ where $u_i = \prod_{j=1}^{n} t_j^{h_i(j)}$ and where $h_i(j)$ denotes the jth component of the integer vector h_i. We choose a presentation $S = K[x_1, \ldots, x_m] \rightarrow K[H]$ with $x_i \mapsto u_i$ for $i = 1, \ldots, m$. The kernel I_H of this K-algebra homomorphism is called the toric ideal of H. We assign a \mathbb{Z}^n-grading to S by setting $\deg x_i = h_i$. Then, $K[H]$ as well as I_H become \mathbb{Z}^n-graded S-modules. Thus, $K[H]$ admits a minimal \mathbb{Z}^n-graded S-resolution F with $F_i = \bigoplus_{h \in H} S(-h)^{\beta_h(S)(K[H])}$. In the case that all u_i are monomials of the same degree, one can assign to $K[H]$ the structure of a standard graded K-algebra by setting $\deg u_i = 1$ for all i. The degree of h with respect to this standard grading will be denoted by $|h|$.

Given $h \in H$, we define the squarefree divisor complex Δ_h as follows: Δ_h is the simplicial complex whose faces $F = \{i_1, \ldots, i_k\}$ are the subsets of $[n]$ such that
$u_1 \cdots u_k$ divides $i_1^{h(1)} \cdots i_n^{h(n)}$ in $K[H]$. We denote by $\tilde{H}_i(\Gamma, K)$ the ith reduced simplicial homology of a simplicial complex Γ.

Proposition 3.2 (Bruns-Herzog [2]) With the notation and assumptions introduced, one has $\text{Tor}_i(K[H], K)_h \cong \tilde{H}_{i-1}(\Delta_h, K)$. In particular,

$$\beta_{ih}(K[H]) = \dim_K \tilde{H}_{i-1}(\Delta_h, K).$$

Let H' be a subsemigroup of H generated by a subset of the set of generators of H, and let S' be the polynomial ring over K on the variables x_i corresponding to the generators h_i of H'. Furthermore, let \mathbb{F}' be the \mathbb{Z}^n-graded free S'-resolution of $K[H']$. Then, since S is a flat S'-module, $\mathbb{F}' \otimes_{S'} S$ is a \mathbb{Z}^n-graded free S-resolution of $S/I'_H S$. The inclusion $K[H'] \to K[H]$ induces a \mathbb{Z}^n-graded complex homomorphism $\mathbb{F}' \otimes_{S'} S \to \mathbb{F}$. Tensoring this complex homomorphism with $K = S/m$, where m is the graded maximal ideal of S, we obtain the following sequence of isomorphisms and natural maps of \mathbb{Z}^n-graded K-modules

$$\text{Tor}_i^S(K[H'], K) \cong H_i((\mathbb{F}' \otimes_{S'} S) \otimes_S K) \to H_i(\mathbb{F} \otimes_S K) \cong \text{Tor}_i^S(K[H], K).$$

For later applications, we need the following statement.

Corollary 3.3 With the notation and assumptions introduced, let H' be a subsemigroup of H generated by a subset of the set of generators of H, and let h be an element of H' with the property that $h_i \in H'$ whenever $h - h_i \in H$. Then, the natural K-vector space homomorphism $\text{Tor}_i^S(K[H'], K)_h \to \text{Tor}_i^S(K[H], K)_h$ is an isomorphism for all i.

Proof Let Δ'_h be the squarefree divisor complex of h where h is viewed as an element of H'. Then, we obtain the following commutative diagram:

$$\begin{array}{ccc}
\text{Tor}_i(K[H'], K)_h & \longrightarrow & \text{Tor}_i(K[H], K)_h \\
\downarrow & & \downarrow \\
\tilde{H}_{i-1}(\Delta'_h, K) & \longrightarrow & \tilde{H}_{i-1}(\Delta_h, K).
\end{array}$$

The vertical maps are isomorphisms, and also the lower horizontal map is an isomorphism, simply because $\Delta'_h = \Delta_h$, due to assumptions on h. This yields the desired conclusion. \square

Let $H \subset \mathbb{N}^n$ be an affine semigroup generated by h_1, \ldots, h_m. An affine subsemigroup $H' \subset H$ generated by a subset of $\{h_1, \ldots, h_m\}$ will be called a homological pure subsemigroup of H if for all $h \in H'$ and all h_i with $h - h_i \in H$ it follows that $h_i \in H'$.

As an immediate consequence of Corollary 3.3, we obtain the following statement.
Corollary 3.4 Let H' be a homologically pure subsemigroup of H. Then

$$\text{Tor}_i^S(K[H'], K) \to \text{Tor}_i^S(K[H], K)$$

is injective for all i. In other words, if \mathbb{F}' is the minimal \mathbb{Z}^n-graded free S'-resolution of $K[H']$ and \mathbb{F} is the minimal \mathbb{Z}^n-graded free S-resolution of $K[H]$, then the complex homomorphism $\mathbb{F}' \otimes S \to \mathbb{F}$ induces an injective map $\mathbb{F}' \otimes K \to \mathbb{F} \otimes K$. In particular, any minimal set of generators of $\text{Syz}_i(K[H'])$ is part of a minimal set of generators of $\text{Syz}_i(K[H])$. Moreover, $\beta_{ij}(I_{H'}) \leq \beta_{ij}(I_H)$ for all i and j.

We fix a field K and let $\mathcal{P} \subset [(1, 1), (m, n)]$ be a convex polyomino. As we have seen before, $K[\mathcal{P}]$ is the K-subalgebra of the polynomial ring $T = K[s_1, \ldots, s_m, t_1, \ldots, t_n]$ generated by the monomials $u_{ij} = s_i t_j$ with $(i, j) \in V(\mathcal{P})$. Viewing $K[\mathcal{P}]$ as a semigroup ring $K[H]$, it is convenient to identify the semigroup elements with the monomial they represent.

Given sets $\{i_1, i_2, \ldots, i_s\}$ and $\{j_1, j_2, \ldots, j_t\}$ of integers with $i_k \in [m]$ and $j_k \in [n]$ for all k, we let H' be the subsemigroup of H generated by the elements $s_{i_k} t_{j_l}$ with $(i_k, j_l) \in V(\mathcal{P})$. Then H' is a homologically pure subsemigroup of H. Note that H' is also a combinatorially pure subsemigroup of H in the sense of [15].

A collection of cells \mathcal{P}' will be called a collection of cells of \mathcal{P} induced by the columns i_1, i_2, \ldots, i_s and the rows j_1, j_2, \ldots, j_t if the following holds: $(k, l) \in V(\mathcal{P}')$ if and only if $(i_k, j_l) \in V(\mathcal{P})$. The map $V(\mathcal{P}') \to V(\mathcal{P})$, $(k, l) \mapsto (i_k, j_l)$ identifies $I_{\mathcal{P}'}$ with the ideal contained in $I_{\mathcal{P}}$ generated by those 2-minors of $I_{\mathcal{P}}$ which only involve the variables x_{i_k, j_l}. In the following, we always identify $I_{\mathcal{P}'}$ with this subideal of $I_{\mathcal{P}}$.

If the induced collection of cells of \mathcal{P}' is a polyomino, we call it an induced polyomino. Any induced polyomino \mathcal{P}' of \mathcal{P} is again convex. In particular, $K[\mathcal{P}']$ is a domain.

Consider for example the polyomino \mathcal{P} on the left side of Fig. 7 with left lower corner $(1, 1)$. Then the induced polyomino \mathcal{P}' shown on the right side of Fig. 7 is induced by the columns 1, 3, 4 and the rows 1, 2, 3, 4.

Obviously, Corollary 3.4 implies the following statement.

Corollary 3.5 Let \mathcal{P}' be an induced collection of cells of \mathcal{P}. Then $\beta_{ij}(I_{\mathcal{P}'}) \leq \beta_{ij}(I_{\mathcal{P}})$ for all i and j, and each minimal relation of $I_{\mathcal{P}'}$ is also a minimal relation of $I_{\mathcal{P}}$.

We will now use Corollary 3.5 to isolate step by step the linearly related polyominoes.
Lemma 3.6 Suppose \(\mathcal{P} \) admits an induced collection of cells \(\mathcal{P}' \) isomorphic to one of those displayed in Fig. 8. Then \(I_\mathcal{P} \) has a Koszul relation pair.

Proof We may assume that \(V(\mathcal{P}') \subseteq [(1, 1), (4, 4)] \). Using CoCoA [3] or Singular [4] to compute \(\text{Syz}_1(I_{\mathcal{P}'}) \), we see that the minors \(f_a = [12|12] \) and \(f_b = [34|34] \) form a Koszul relation pair of \(I_{\mathcal{P}'} \). Thus the assertion follows from Corollary 3.5. \(\square \)

Corollary 3.7 Let \(\mathcal{P} \) be a convex polyomino, and let \([(1, 1), (m, n)] \) be the smallest interval with the property that \(V(\mathcal{P}) \subseteq [(1, 1), (m, n)] \). We assume that \(m, n \geq 4 \). If one of the vertices \((2, 2), (m - 1, 2), (m - 1, n - 1) \) or \((2, n - 1) \) does not belong to \(V(\mathcal{P}) \), then \(I_{\mathcal{P}} \) has a Koszul relation pair, and, hence, \(I_{\mathcal{P}} \) is not linearly related.

Proof We may assume that \((2, 2) \notin V(\mathcal{P}) \). Then the vertices of the interval \([(1, 1), (2, 2)] \) do not belong to \(V(\mathcal{P}) \). Since \([(1, 1), (m, n)] \) is the smallest interval containing \(V(\mathcal{P}) \), there exist, therefore, integers \(i \) and \(j \) with \(2 < i \leq m - 1 \) and \(2 < j \leq n - 1 \) such that the cells \([(i, 1), (i + 1, 2)] \) and \([(1, j), (2, j + 1)] \) belong to \(\mathcal{P} \). Then the collection of cells induced by the columns 1, 2, \(i, i + 1 \) and the rows 1, 2, \(j, j + 1 \) is isomorphic to one of the collections \(\mathcal{P}' \) of Fig. 8. Thus the assertion follows from Lemma 3.6 and Corollary 3.5. \(\square \)

Corollary 3.7 shows that the convex polyomino \(\mathcal{P} \) should contain all the vertices \((2, 2), (m - 1, 2), (m - 1, n - 1), \) and \((2, n - 1) \) in order to be linearly related. Thus a polyomino which is linearly related must have the shape as indicated in Fig. 5.

The convex polyomino displayed in Fig. 9, however, is not linearly related, though it has the shape as shown in Fig. 5. Thus there must still be other obstructions for a polyomino to be linearly related.

Now we proceed further in eliminating those polyominoes which are not linearly related.
Fig. 10 Two opposite corners missing

![image](image_url)

Fig. 11 Case \([i_3, i_4] \not\subset [i_1, i_2]\)

Lemma 3.8 Let \(\mathcal{P}\) be a convex polyomino, and let \((1, 1), (m, n)\) be the smallest interval with the property that \(V(\mathcal{P}) \subset [(1, 1), (m, n)]\). If \(\mathcal{P}\) misses only two opposite corners, say \((1, 1)\) and \((m, n)\), or \(\mathcal{P}\) misses all four corners \((1, 1), (1, n), (m, 1),\) and \((m, n)\), then \(I_{\mathcal{P}}\) admits a Koszul relation pair and hence is not linearly related.

Proof Let us first assume that \((1, 1)\) and \((m, n)\) do not belong to \(V(\mathcal{P})\), but \((1, n)\) and \((m, 1)\) belong to \(V(\mathcal{P})\). The collection of cells \(\mathcal{P}_1\) induced by the columns 1, 2, \(m - 1\), \(m\) and the rows 1, 2, \(n - 1\), \(n\) is shown in Fig. 10. All the light-colored cells, some of them or none of them are present according to whether or not all, some or none of the equations \(i_1 = 2, j_1 = 2, i_4 = m - 1,\) and \(j_4 = n - 1\) hold. For example, if \(i_1 = 2, j_1 \neq 2, i_4 = m - 1,\) and \(j_4 \neq n - 1\), then the light-colored cells \([(2, 1), (3, 2)],\) and \([(2, 3), (3, 4)]\) belong to \(\mathcal{P}_1\) and the other two light-colored cells do not belong to \(\mathcal{P}_1\).

It can easily be checked that the ideal \(I_{\mathcal{P}_1}\) displayed in Fig. 10 has a Koszul relation pair in all possible cases, and so does \(I_{\mathcal{P}}\) by Corollary 3.5.

Next, we assume that none of the four corners \((1, 1), (1, n), (m, 1),\) and \((m, n)\) belong to \(\mathcal{P}\). In the following arguments, we refer to Fig. 5. In the first case, suppose \([i_3, i_4] \subset [i_1, i_2]\) and \([j_3, j_4] \subset [j_1, j_2]\). Then the collection of cells induced by the columns 2, \(i_3, i_4, m - 1\) and the rows 1, \(j_3, j_4, n\) is the polyomino displayed in Fig. 3, which has a Koszul relation pair as can be verified by computer. Thus, \(\mathcal{P}\) has a Koszul relation pair. A similar argument applies if \([i_1, i_2] \subset [i_3, i_4]\) or \([j_1, j_2] \subset [j_3, j_4]\).

Next, assume that \([i_3, i_4] \not\subset [i_1, i_2]\) or \([j_3, j_4] \not\subset [j_1, j_2]\). By symmetry, we may discuss only \([i_3, i_4] \not\subset [i_1, i_2]\). Then we may assume that \(i_3 < i_1\) and \(i_4 < i_2\). We choose the columns \(i_1, i_2, i_3, i_4\) and the rows 1, 2, \(n - 1\), \(n\). Then the induced polyomino by these rows and columns is \(\mathcal{P}_1\) if \(i_1 < i_4, \mathcal{P}_2\) if \(i_4 = i_1\) and \(\mathcal{P}_3\) if \(i_4 < i_1\); see Fig. 11. In all three cases, the corresponding induced polyomino ideal has a Koszul relation pair, and hence so does \(I_{\mathcal{P}}\). \(\blacksquare\)
Lemma 3.9 Let \(P \) be a convex polyomino, and let \([1, 1], (m, n)\] be the smallest interval with the property that \(V(P) \subset [1, 1], (m, n)\). Suppose \(P \) misses three corners, say \((1, n), (m, 1), (m, n)\), and suppose that \(i_2 < m - 1 \) and \(j_2 < n - 1 \), or \(i_2 = m - 1 \) and \(j_2 < j_4 \), or \(j_2 = n - 1 \) and \(i_2 = i_4 \). Then \(I_P \) has a Koszul relation pair, and hence is not linearly related.

Proof We proceed as in the proofs of the previous lemmata. In the case that \(i_2 < m - 1 \) and \(j_2 < n - 1 \), we consider the collection of cells \(P' \) induced by the columns \(1, 2, m - 1 \) and the rows \(1, 2, n - 1 \). This collection of cells \(P' \) is depicted in Fig. 12. It is easily seen that \(I_{P'} \) is generated by a regular sequence of length 2, which is a Koszul relation pair. In the case that \(i_2 = m - 1 \) and \(j_2 < j_4 \), we choose the columns \(1, 2, m - 1, m \) and the rows \(1, 2, j_4 - 1, j_4 \). The polyomino \(P'' \) induced by this choice of rows and columns has two opposite missing corners; hence, by Lemma 3.8, it has a Koszul pair. The case \(j_2 = n - 1 \) and \(i_2 < i_4 \) is symmetric. In both cases, the induced polyomino ideal has a Koszul relation pair. Hence, in all three cases, \(I_P \) itself has a Koszul relation pair.

The following remark will be also useful for the proof of Theorem 3.1.

Remark 3.10 The polyominoes displayed in Figs. 13 and 14 are all linearly related. This fact can be checked using a computer algebra system.

Proof of Theorem 3.1 Implication \((a) \Rightarrow (b)\) is obvious. Implication \((b) \Rightarrow (c)\) follows by Corollary 3.7, Lemmas 3.8, and 3.9.

It remains to prove \((c) \Rightarrow (a)\). Let \(P \) be a convex polyomino which satisfies one of the conditions \((a)\)–\((c)\). We have to show that \(P \) is linearly related. By Corollary 2.5, we only need to prove that \(\beta_{14}(I_P) = 0 \). Viewing \(K[P] \) as a semigroup ring \(K[H] \), it follows that one has to check that \(\beta_{1h}(I_P) = 0 \) for all \(h \in H \) with \(|h| = 4 \). The main idea of this proof is to use Corollary 3.3.

Let \(h = h_1h_2h_3h_4 \in K[H] \) of degree 4 with \(h_q = s_iq \ell_q \) for \(1 \leq q \leq 4 \), and \(i = \min_q\{i_q\}, k = \max_q\{i_q\}, j = \min_q\{j_q\}, \ell = \max_q\{j_q\} \). Therefore, all the points \(h_q \) lie in the (possible degenerate) rectangle \(Q \) of vertices \((i, j), (k, j), (i, \ell), (k, \ell)\). If \(Q \) is degenerate, that is, all the vertices of \(Q \) are contained in a vertical or horizontal line segment in \(P \), then \(\beta_{1h}(I_P) = 0 \) since in this case the simplicial complex \(\Delta_h \) is just a simplex. Let us now consider \(Q \) non-degenerate. If all the vertices of \(Q \) belong to \(P \), then the rectangle \(Q \) is an induced subpolyomino of \(P \). Therefore, by Corollary 3.3, we have \(\beta_{1h}(I_P) = \beta_{1h}(I_Q) = 0 \), the latter equality being true since \(Q \) is linearly related.

Next, let us assume that some of the vertices of \(Q \) do not belong to \(P \). As \(P \) has one of the forms \((a)\)–\((c)\), it follows that at most three vertices of \(Q \) do not belong to \(P \). Consequently, we have to analyze the following cases.
Fig. 13 Linearly related polyominoes

Fig. 14 Linearly related polyominoes

Case 1. Exactly one vertex of Q does not belong to P. Without loss of generality, we may assume that $(k, \ell) \notin P$ which implies that $k = m$ and $\ell = n$. In this case, any relation in degree h of P is a relation of same degree of a polyomino isomorphic to one of those displayed in Fig. 13, which are linearly related by Remark 3.10. Thus, $\beta_{1h}(I_P) = 0$.

Case 2. Two vertices of Q do not belong to P. We may assume that the missing vertices from P are (i, ℓ) and (k, ℓ). Hence, we have $i = 1$, $k = m$, and $\ell = n$. In this case, any relation in degree h of P is a relation of same degree of a polyomino isomorphic to one of those displayed in Fig. 14a, b. By Remark 3.10, both polyominoes are linearly related, and thus $\beta_{1h}(I_P) = 0$.

Case 3. Finally, we assume that there are three vertices of Q which do not belong to P. We may assume that these vertices are (i, ℓ), (k, ℓ), and (k, j). In this case, any relation in degree h of P is a relation of same degree of the polyomino displayed in Fig. 14c which is linearly related as it follows by Remark 3.10. Therefore, we get again $\beta_{1h}(I_P) = 0$.

4 Polyomino ideals with linear resolution

In this final section, we classify all convex polyominoes which have a linear resolution and the convex stack polyominoes which are extremal Gorenstein.

Theorem 4.1 Let P be a convex polyomino. Then the following conditions are equivalent:

(a) I_P has a linear resolution;
(b) there exists a positive integer m such that P is isomorphic to the polyomino with cells $[(i, 1), (i + 1, 2)], i = 1, \ldots, m - 1$.

Springer
An example illustrating this theorem is pictured in Fig. 15.

Proof (b) ⇒ (a): If the polyomino is of the shape as described in (b), then $I_{\mathcal{P}}$ is just the ideal of 2-minors of a $2 \times m$-matrix. It is well-known that the ideal of 2-minors of such a matrix has a linear resolution. Indeed the Eagon-Northcott complex, whose chain maps are described by matrices with linear entries, provides a minimal-free resolution of the ideal of maximal minors of any matrix of indeterminates, see for example [6, Page 600].

(a) ⇒ (b): We may assume that $[(1, 1), (m, n)]$ is the smallest interval containing $V(\mathcal{P})$. We may further assume that $m \geq 4$ or $n \geq 4$. The few remaining cases can easily be checked with the computer. So let us assume that $m \geq 4$. Then we have to show that $n = 2$. Suppose that $n \geq 3$. We first assume that all the corners $(1, 1), (1, n), (m, 1)$, and (m, n) belong to $V(\mathcal{P})$. Then the polyomino \mathcal{P}' induced by the columns 1, 2, m and the rows 1, 2, n is the polyomino which is displayed on the right of Fig. 18. The ideal $I_{\mathcal{P}'}$ is a Gorenstein ideal, and hence it does not have a linear resolution. Therefore, by Corollary 3.5, the ideal $I_{\mathcal{P}}$ does not have a linear resolution as well, a contradiction.

Next, assume that one of the corners, say $(1, 1)$, is missing. Since $I_{\mathcal{P}}$ has a linear resolution, $I_{\mathcal{P}}$ is linearly related and, hence, has a shape as indicated in Fig. 5. Let i_1 and j_1 be the numbers as shown in Fig. 5, and let \mathcal{P}' the polyomino of \mathcal{P} induced by the columns 1, 2, 3 and the rows a, j_1, $j_1 + 1$ where $a = 1$ if $i_1 = 2$ and $a = 2$ if $i_1 > 2, j_1 > 2$. If $j_1 = 2$ and $i_1 > 2$, we let \mathcal{P}' be the polyomino induced by the columns 1, $i_1, i_1 + 1$ and the rows 1, 2, 3. In any case, \mathcal{P}' is isomorphic to that one displayed on the left of Fig. 18. Since $I_{\mathcal{P}'}$ is again a Gorenstein ideal, we conclude, as in the first case, that $I_{\mathcal{P}}$ does not have a linear resolution, a contradiction. □

As mentioned in the introduction, polyomino ideals overlap with join-meet ideals of planar lattices. In the next result we show that the join-meet ideal of any lattice has linear resolution if and only if it is a polyomino as described in Theorem 4.1. With methods different from those which are used in this paper, the classification of join-meet ideals with linear resolution was first given in [7, Corollary 10].

Let L be a finite distributive lattice [11, pp. 118]. A join-irreducible element of L is an element $\alpha \in L$ which is not the unique minimal element and which possesses the property that $\alpha \neq \beta \lor \gamma$ for all $\beta, \gamma \in L \setminus \{\alpha\}$. Let P be the set of join-irreducible elements of L. We regard P as a poset (partially ordered set) which inherits its ordering from that of L. A subset J of P is called an order ideal of P if $a \in J, b \in P$ together with $b \leq a$ imply $b \in J$. In particular, the empty set of P is an order ideal of P. Let $\mathcal{J}(P)$ denote the set of order ideals of P, ordered by inclusion. It then follows that $\mathcal{J}(P)$ is a distributive lattice. Moreover, Birkhoff’s fundamental structure theorem of finite distributive lattices [11, Proposition 37.13] guarantees that L coincides with $\mathcal{J}(P)$.

Let $L = \mathcal{J}(P)$ be a finite distributive lattice and $K[L] = K[x_\alpha : \alpha \in L]$ the polynomial ring in $|L|$ variables over K. The join-meet ideal I_L of L is the ideal of $K[L]$ which is generated by those binomials
where $\alpha, \beta \in L$ are incomparable in L. It is known [12] that I_L is a prime ideal and the quotient ring $K[L]/I_L$ is normal and Cohen–Macaulay. Moreover, $K[L]/I_L$ is Gorenstein if and only if P is pure. (A finite poset is pure if all maximal chains (totally ordered subset) of P have the same cardinality.)

Now, let $P = \{\xi_1, \ldots, \xi_d\}$ be a finite poset, where $i < j$ if $\xi_i < \xi_j$, and $L = J(P)$. A linear extension of P is a permutation $\pi = i_1 \cdots i_d$ of $[d] = \{1, \ldots, d\}$ such that $j < j'$ if $\xi_{i_j} < \xi_{i_{j'}}$. A descent of $\pi = i_1 \cdots i_d$ is an index j with $i_j > i_{j+1}$. Let $D(\pi)$ denote the set of descents of π. The h-vector of L is the sequence $h(L) = (h_0, h_1, \ldots, h_{d-1})$, where h_i is the number of permutations π of $[d]$ with $|D(\pi)| = i$. Thus, in particular, $h_0 = 1$. It follows from [1] that the Hilbert series of $K[L]/I_L$ is of the form

$$h_0 + h_1 \lambda + \cdots + h_{d-1} \lambda^{d-1} \over (1 - \lambda)^{d+1}.$$

We say that a finite distributive lattice $L = J(P)$ is simple if L has no elements α and β with $\beta < \alpha$ such that each element $\gamma \in L \setminus \{\alpha, \beta\}$ satisfies either $\gamma < \beta$ or $\gamma > \alpha$. In other words, L is simple if and only if P possesses no element ξ for which every $\mu \in P$ satisfies either $\mu \leq \xi$ or $\mu \geq \xi$. A clutter of P is a subset A of P with the property that no two elements belonging to A are comparable in P.

Theorem 4.2 Let $L = J(P)$ be a simple finite distributive lattice. Then the join-meet ideal I_L has a linear resolution if and only if L is of the form shown in Fig. 16.

Proof Since I_L is generated in degree 2, it follows that I_L has a linear resolution if and only if the regularity of $K[L]/I_L$ is equal to 1. We may assume that K is infinite. Since $K[L]/I_L$ is Cohen–Macaulay, we may divide by a regular sequence of linear forms to obtain a 0-dimensional K-algebra A with $\text{reg } A = \text{reg } K[L]/I_L$ whose h-vector coincides with that of $K[L]/I_L$. Since $\text{reg } A = \max\{i : A_i \neq 0\}$ (see for example [6, Exercise 20.18]), it follows that I_L has a linear resolution if and only if the h-vector of L is of the form $h(L) = (1, q, 0, \ldots, 0)$, where $q \geq 0$ is an integer. Clearly, if P is a finite poset of Fig. 16, then $|D(\pi)| \leq 1$ for each linear extension π of P. Thus I_L has a linear resolution.
Conversely, suppose that I_L has a linear resolution. In other words, one has $|D(\pi)| \leq 1$ for each linear extension π of P. Then P has no three-element clutter. Since $L = \mathcal{J}(P)$ is simple, it follows that P contains a two-element clutter. Hence Dilworth’s theorem [5] says that $P = C \cup C'$, where C and C' are chains of P with $C \cap C' = \emptyset$. Let $|C| \geq 2$ and $|C'| \geq 2$. Let $\xi \in C$ and $\mu \in C'$ be minimal elements of P. Let $\xi' \in C$ and $\mu' \in C'$ be maximal elements of P. Since $L = \mathcal{J}(P)$ is simple, it follows that $\xi \neq \mu$ and $\xi' \neq \mu'$. Thus there is a linear extension π of P with $|D(\pi)| \geq 2$. Thus I_L cannot have a linear resolution. Hence either $|C| = 1$ or $|C'| = 1$, as desired. □

A Gorenstein ideal can never have a linear resolution, unless it is a principal ideal. However, if the resolution is as much linear as possible, then it is called extremal Gorenstein. Since polyomino ideals are generated in degree 2 we restrict ourselves in the following definition of extremal Gorenstein ideals to graded ideals generated in degree 2.

Let S be a polynomial ring over a field, and $I \subset S$ a graded ideal which is not principal and is generated in degree 2. Following [18] we say that I is an extremal Gorenstein ideal if S/I is Gorenstein and if the shifts of the graded minimal free resolution are

$$-2 - p - 1, -2 - (p - 1), -2 - (p - 2), \ldots, -3, -2,$$

where p is the projective dimension of I.

With similar arguments as in the proof of Theorem 4.2, we see that I is an extremal Gorenstein ideal if and only if I is a Gorenstein ideal and $\mathrm{reg} \ S/I = 2$, and that this is the case if and only if S/I is Cohen–Macaulay and the h-vector of S/I is of the form

$$h(L) = (1, q, 1, 0, \ldots, 0),$$

where $q > 1$ is an integer.

In the following theorem we classify all convex stack polyominoes P for which I_P is extremal Gorenstein. Convex stack polyominoes have been considered in [17].

Let P be a convex stack polyomino. Removing the first k bottom rows of cells of P we obtain again a convex stack polyomino which we denote by P_k. We also set $P_0 = P$. Let h be the height of the polyomino, and let $1 \leq k_1 < k_2 < \cdots < k_r < h$ be the numbers with the property that $\text{width}(P_{k_i}) < \text{width}(P_{k_i-1})$. Furthermore, we set $k_0 = 1$. For example, for the convex stack polyomino in Fig. 4 we have $k_1 = 1$, $k_2 = 2$ and $k_3 = 3$.

With the terminology and notation introduced, the characterization of Gorenstein convex stack polyominoes is given in the following theorem.

Theorem 4.3 (Qureshi) Let P be a convex stack polyomino of height h. Then the following conditions are equivalent:

(a) I_P is a Gorenstein ideal.
(b) $\text{width}(P_{k_i}) = \text{height}(P_{k_i})$ for $i = 0, \ldots, r$.

Springer
According to this theorem, the convex stack polyomino displayed in Fig. 4 is not Gorenstein, because width$(\mathcal{P}_{k_0}) = 5$ and height$(\mathcal{P}_{k_0}) = 4$. An example of a Gorenstein stack polyomino is shown in Fig. 17.

Combining Theorem 4.3 with the results of Sect. 3, we obtain the following statement.

Theorem 4.4 Let $I_{\mathcal{P}}$ be a convex stack polyomino. Then $I_{\mathcal{P}}$ is extremal Gorenstein if and only if \mathcal{P} is isomorphic to one of the polyominoes in Fig. 18.

Proof It can be easily checked that $I_{\mathcal{P}}$ is extremal Gorenstein, if \mathcal{P} is isomorphic to one of the two polyominoes shown in Fig. 18.

Conversely, assume that $I_{\mathcal{P}}$ is extremal Gorenstein. Without loss of generality we may assume that $[(1, 1), (m, n)]$ is the smallest interval containing $V(\mathcal{P})$. Then Theorem 4.3 implies that $m = n$. Suppose first that $V(\mathcal{P}) = [(1, 1), (n, n)]$. Then, by [7, Theorem 4] of Ene, Qureshi and Rauf, it follows that the regularity of $I_{\mathcal{P}}$ is equal to n. Since $I_{\mathcal{P}}$ is extremal Gorenstein, its regularity is equal to 3. Thus $n = 3$.

Next, assume that $V(\mathcal{P})$ is properly contained in $[(1, 1), (n, n)]$. Since $I_{\mathcal{P}}$ is linearly related, Corollary 3.7 together with Theorem 4.3 imply that the top row of \mathcal{P} consists of only one cell and that $[(2, 1), (n - 1, n - 1)] \subset V(\mathcal{P})$. Let \mathcal{P}' be the polyomino induced by the rows 2, 3, ..., $n - 1$ and the columns 1, 2, ..., $n - 1$. Then \mathcal{P}' is the polyomino with $V(\mathcal{P}') = [(1, 1), (n - 2, n - 1)]$. By applying again [7, Theorem 4] it follows that reg $I'_{\mathcal{P}} = n - 2$. Corollary 3.5 then implies that reg $I'_{\mathcal{P}} \geq$ reg $I'_{\mathcal{P}'} = n - 2$, and since reg $I_{\mathcal{P}} = 3$ we deduce that $n \leq 5$. If $n = 5$, then $I'_{\mathcal{P}}$ is the ideal of 2-minors of a 3×4-matrix which has Betti numbers $\beta_{35} \neq 0$ and $\beta_{36} \neq 0$. Since \mathcal{P}' is an induced polyomino of \mathcal{P} and since $I_{\mathcal{P}}$ is extremal Gorenstein, Corollary 3.5 yields a contradiction.

For $n = 4$, there exist up to isomorphism three Gorenstein polyominoes, displayed in Fig. 19. They are all not extremal Gorenstein as can be easily checked with CoCoA or Singular. For $n = 3$ any Gorenstein polyomino is isomorphic to one of the two polyominoes shown in Fig. 18. This yields the desired conclusion. □
The following theorem shows that besides the two polyominoes listed in Theorem 4.4 whose polyomino ideal is extremal Gorenstein, there exist precisely two more join-meet ideals having this property.

Theorem 4.5 Let \(L = J(P) \) be a simple finite distributive lattice. Then the join-meet ideal \(I_L \) is an extremal Gorenstein ideal if and only if \(L \) is one of the lattices displayed in Fig. 20.

Proof Suppose that \(L = J(P) \) is simple and that \(K[L]/I_L \) is Gorenstein. It then follows that \(P \) is pure and there is no element \(\xi \in P \) for which every \(\mu \in P \) satisfies either \(\mu \leq \xi \) or \(\mu \geq \xi \). Since \(h(L) = (1, q, 1, 0, \ldots, 0) \), no 4-element clutter is contained in \(P \).

Suppose that a three-element clutter \(A \) is contained in \(P \). If none of the elements belonging to \(A \) is a minimal element of \(P \), then, since \(L = J(P) \) is simple, there exist at least two minimal elements. Hence there exists a linear extension \(\pi \) of \(P \) with \(|D(\pi)| \geq 3 \), a contradiction. Thus at least one of the elements belonging to \(A \) is a minimal element of \(P \). Similarly, at least one of the elements belonging to \(A \) is a maximal element. Let \(x \in A \) be an element which is both minimal and maximal, that is, \(x \) is a chain of length 0 in \(P \). Then, since \(P \) is pure, one has \(P = A \). Let \(A = \{\xi_1, \xi_2, \xi_3\} \) with \(A \neq P \), where \(\xi_1 \) is a minimal element and \(\xi_2 \) is a maximal element. Let \(\mu_1 \) be a maximal element with \(\xi_1 \prec \mu_1 \) and \(\mu_2 \) a minimal element with \(\mu_2 \prec \xi_2 \). Then neither \(\mu_1 \) nor \(\mu_2 \) belongs to \(A \). If \(\xi_3 \) is either minimal or maximal, then there exists a linear extension \(\pi \) of \(P \) with \(|D(\pi)| \geq 3 \), a contradiction. Hence \(\xi_3 \) can be neither minimal nor maximal. Then since \(P \) is pure, there exist \(v_1 \) with \(\xi_1 \prec v_1 \prec \mu_1 \) and \(v_2 \) with \(\mu_2 \prec v_2 \prec \xi_2 \) such that \(\{v_1, v_2, \xi_3\} \) is a three-element clutter. Hence there exists a linear extension \(\pi \) of \(P \) with \(|D(\pi)| \geq 4 \), a contradiction. Consequently, if \(P \) contains a three-element clutter \(A \), then \(P \) must coincide with \(A \). Moreover, if \(P \) is a three-element clutter, then \(h(L) = (1, 4, 1) \) and \(I_L \) is an extremal Gorenstein ideal.

\[\square \] Springer
Now, suppose that P contains no clutter A with $|A| \geq 3$. Let a chain C with $|C| \geq 3$ be contained in P. Let ξ, ξ' be the minimal elements of P and μ, μ' the maximal elements of P with $\xi < \mu$ and $\xi' < \mu'$. Since $L = \mathcal{J}(P)$ is simple and since P is pure, it follows that there exist maximal chains $\xi < v_1 < \cdots < v_r < \mu$ and $\xi' < v'_1 < \cdots < v'_r < \mu'$ such that $v_i \neq v'_i$ for $1 \leq i \leq r$. Then one has a linear extension π of P with $D(\pi) = 2 + r \geq 3$, a contradiction. Hence the cardinality of all maximal chains of P is at most 2. However, if the cardinality of all maximal chains of P is equal to 1, then $h(L) = (1, 1)$. Thus I_L cannot be an extremal Gorenstein ideal.

If the cardinality of all maximal chains of P is equal to 2, then P is one of the posets displayed in Fig. 21. For each of them the join-meet ideal I_L is an extremal Gorenstein ideal. □

Acknowledgments We would like to thank the referees for their valuable comments. Viviana Ene was supported by the Grant UEFISCDI, PN-II-ID-PCE- 2011-3-1023.

References

1. Björner, A., Garsia, A.M., Stanley, R.P.: An introduction to Cohen–Macaulay partially ordered sets. In: Rival, I. (ed.) Ordered Sets, pp. 583–615. Springer, Netherlands (1982)
2. Bruns, W., Herzog, J.: Semigroup rings and simplicial complexes. J. Pure Appl. Algebra 122, 185–208 (1997)
3. CoCoATeam, CoCoA: A System for Doing Computations in Commutative Algebra. http://cocoa.dima.unige.it
4. Decker, W., Greuel, G.-M., Pfüister, G., Schönemann, H.: Singular 3-1-6: A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2012)
5. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)
6. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, Berlin (1995)
7. Ene, V., Qureshi, A.A., Rauf, A.: Regularity of join-meet ideals of distributive lattices. Electron. J. Comb. 20(3), 20 (2013)
8. Hashimoto, M.: Determinantal ideals without minimal free resolutions. Nagoya Math. J. 118, 203–216 (1990)
9. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, Berlin (2010)
10. Herzog, J., Srinivasan, H.: A note on the subadditivity problem for maximal shifts in free resolutions. MSRI Proc. (to appear). http://arxiv.org/abs/1303:6214
11. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe, N.S.W, Australia (1992)
12. Hibi, T.: Distributive lattices, affine semigroup rings and algebras with straightening laws. In: Nagata, M., Matsumura, H. (eds.) Commutative Algebra and Combinatorics. Advanced Studies in Pure Mathematics, vol. 11. North-Holland, Amsterdam (1987)
13. Kurano, K.: The first syzygies of determinantal ideals. J. Algebra 124, 414–436 (1989)
14. Lascoux, A.: Syzygies des variétés determinantales. Adv. Math. 30, 202–237 (1978)
15. Ohsugi, H., Herzog, J., Hibi, T.: Combinatorial pure subrings. Osaka J. Math. 37, 745–757 (2000)
16. Ohsugi, H., Hibi, T.: Koszul bipartite graphs. Adv. Appl. Math. 22, 25–28 (1999)
17. Qureshi, A.: Ideals generated by 2-minors, collections of cells and stack polyominoes. J. Algebra 357, 279–303 (2012)
18. Schenzel, P.: Über die freien Auflösungen extremaler Cohen–Macaulay Ringe. J. Algebra 64, 93–101 (1980)
19. Sharpe, D.W.: On certain polynomial ideals defined by matrices. Q. J. Math. Oxford (2) 15, 155–175 (1964)
20. Sharpe, D.W.: The syzygies and semi-regularity of certain ideals defined by matrices. Proc. Lond. Math. Soc. 15, 645–679 (1965)