Effects of Cardiac Surgery and Surgical Procedures on Neurocognitive Function in Patients with Congenital Heart Disease: A Systematic Review and Meta-analysis

Xiaoqi Su
Nanjing Children's Hospital

Cheng Xu
Nanjing Children's Hospital

Siyu Ma
Nanjing Children's Hospital

Yiwei Pu
Nanjing Children's Hospital

Zhiqi Wang
Nanjing Children's Hospital

Zhaocong Yang
Nanjing Children's Hospital

Xuming Mo (✉ mohsuming15@njmu.edu.cn)
Nanjing Children's Hospital: Nanjing Medical University Second Affiliated Hospital

Research

Keywords: congenital heart disease, meta-analysis, neurodevelopment, cardiac surgery

DOI: https://doi.org/10.21203/rs.3.rs-110592/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: To determine the neurodevelopmental function in patients with congenital heart disease (CHD) after cardiac surgery and the influence of surgical repair versus transcatheter repair on neurodevelopment.

Methods: We searched PUBMED, EMBASE and Cochrane Controlled Trials (Central) in September 2019 by using Medical Subject Headings. We extracted data using a customized data extraction sheet and employed standard methodological procedures as expected by Cochrane. We used a fixed-effect or random-effect model for meta-analysis.

Results: We included a total of seven articles. The assessed neurodevelopmental outcomes were the full intelligence quotient (full IQ), verbal intelligence quotient (verbal IQ) and performance intelligence quotient (performance IQ). The intelligence quotient was statistically significant after cardiac surgery compared with that of the normal control (full IQ: mean difference = -5.79 [95% CIs -10.14, -1.44], P = 0.009, I²=71%; verbal IQ: mean difference = -4.46 [95% CIs -7.99, -0.93], P = 0.01, I²=56%; performance IQ: mean difference = -7.13 [95% CIs -10.90, -3.35], P =0.0002, I²=64%). The neurodevelopment functions were no different after surgical repair versus transcatheter repair (full IQ: mean difference = 0.19 [95% CIs -4.10, 4.49], P = 0.93, I²=0%; verbal IQ: mean difference = 2.29 [95% CIs -1.60, 6.18], P = 0.25, I²=0%; performance IQ: mean difference = -2.49 [95% CIs -6.49, 1.52], P = 0.22, I²=0%).

Conclusion: We found that patients with CHD undergoing cardiac surgery may exhibit a negative effect on neurodevelopment, and there may be no difference in the effects of the two different surgical methods on neurodevelopment.

Introduction

Approximately 8.224 infants per thousand live births in the world are currently living with congenital heart disease (CHD), and this number continues to grow[1]. Surgery is the main treatment for most of these patients with CHD[2]. It can even be said that surgery is “the gold standard” for the treatment of patients with CHD. With the advancement of surgical techniques, whether simple CHD or complex CHD is present, the mortality rate of patients with CHD is gradually decreasing[3], and their survival rates have significantly improved. Along with social development and daily needs, we not only focus on the postoperative survival rate of patients but also shift the goal from survival rate to quality of life[4]. Moreover, studies on cardiac surgery in patients with CHD have shown that there is a great difference in the quality of life[5]. At present, most studies have revealed that some patients after surgery for CHD experience neurological dysfunction, including (but not limited to) deficits in cognition, movement, and executive function. However, the influence of neurological function in postoperative CHD patients and normal individuals is still unclear.

At present, neurodevelopment in patients with CHD is evaluated by scale and nonscale analyses, such as the Wechsler scale, the Bailey scale, the CNS Vital Signs[6], Leuven glucose control (LGC trial) [7] and so on, which are internationally recognized scales for evaluating neurodevelopment. Using a scale to evaluate neurodevelopment has several advantages. First, it is convenient and simple, which helps evaluators learn and use these tools. Second, the scale evaluation is comprehensive and professional because the score is calculated by software according to the formula. In addition, scales can be comprehensively evaluated, including the assessment of sports, language, communication, and social aspects. Moreover a scale can also focus on special assessments of neurodevelopment in major sports, fine sports, language, communication skills, self-care ability, and oral function. The disadvantage is that younger patients with CHD are less likely to cooperate and may induce errors. Currently, most studies tend to use a scale to assess neurodevelopment[8–11]. This study suggests that there are long-lasting cerebral changes in patients with CHD and that these changes are associated with functional outcome[12], which have adverse effects on executive function, memory, language, social interactions, and quality of life[13]. The possible reason for these effects is that the decrease in white matter microstructure leads to cognitive compromise in patients who have undergone cardiac surgery[14]. Compared with normal controls, the neurodevelopment of children with CHD is relatively delayed[6]. However, it has also been suggested that neurological cognition in patients with congenital heart surgery exhibits no effects compared with that in normal controls[6; 15; 16].

At present, cardiac surgery involves traditional thoracotomy and minimally invasive surgery, both of which have their own advantages and disadvantages. Traditional thoracotomy is suitable for all patients, the operation is safe and reliable, and the technology is mature. However, the amount of trauma is extensive. However, minimally invasive surgery has the advantages of low trauma, mild pain, a short recovery time, and less bleeding, which makes up for the shortcomings of traditional thoracotomy. However, minimally invasive surgery also has its own limitations. For example, the price is high, and the technical requirements for the surgeon are very high. It is difficult to estimate the operation time before surgery. In special cases, it is necessary to convert to intraoperative surgery, and the risk of surgery increases under special circumstances. On the basis of the abovementioned facts, we considered whether traditional surgery versus minimally invasive surgery has an impact on neurodevelopment. At the same time, we have also found that different congenital surgery procedures (surgical repair and transcatheter repair) may cause neurodevelopmental abnormalities[16–18]. However, these previous results are controversial.
Due to the previous two different conclusions, it is necessary to expand the sample size by meta-analysis to explore whether different surgical procedures (surgical repair and transcatheter repair) and postoperative procedures have a potential effect on neurodevelopment in patients with CHD. However, thus far, there has been no meta-analysis by scale to assess the neurodevelopment of patients with congenital surgery. These data are very important for determining whether these patients need early intervention after cardiac surgery. Therefore, we performed a systematic review and meta-analysis. Our aim was to investigate the neurocognitive function of postoperative patients with CHD. Furthermore, we also explored whether different surgical methods (surgical repair and transcatheter repair) have an effect on neurodevelopment.

Method

Literature search

The PubMed, EMBASE, and Cochrane Controlled Trials (Central) databases were searched using MeSH terms ("Heart Defects, Congenital") and ("Surgical Procedures, Operative") and ("Neuropsychological Tests"), respectively. The search strategy was in accord with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines[19]. There were no restrictions on the year of publication or the status of publication. The keyword terms are listed in Supplemental Table 1.

Selection of studies

EndNote X9 was used to manage the literature search records. To ensure high reliability between the authors, a pilot literature selection called prescreening was conducted. It was carried out by two independent investigators (X.Q.S. and C.X.), and any discrepancy was resolved by consensus with another reviewer (S.Y.M.). The title and abstract of each identified study were screened. If the abstract was incomplete, the full text was reviewed.

Data extraction and risk of bias assessment

Two investigators (X.Q.S. and C.X.) independently extracted data. In addition to the data on the evaluation indicators, which were mainly obtained from the Wechsler Intelligence Scale-IQ, we also extracted the following data: first author, publication year, country, sample, mean surgery age, surgical procedure, cardiopulmonary bypass time (CPB), aortic cross-clamp time, time of neurodevelopmental assessment, etc. Data are expressed as the mean ± standard deviation (SD) at the end of the study. If there was no mean ± SD, the data were converted according to the Cochrane Handbook version 5.1.0 (http://www.cochrane-handbook.org)[20].

We used "risk of bias" tables to list possible concerns over the potential for bias of each individual study, evaluating sequence generation; allocation sequence concealment; blinding of participants, personnel, and outcome assessors; incomplete outcome data; selective outcome reporting; and other potential sources of bias, according to “The Cochrane Collaboration's tool for assessing risk of bias”.

Statistical analysis

We used Review Manager software version 5.3 and Stata version 12.0 for this study. Probability values of \(p < 0.05 \) were considered to be significant.

We used \(I^2 \) statistics to assess the study with respect to heterogeneous effective measures. Values of \(I^2 \) equal to 25%, 50%, and 75% represent low heterogeneity, moderate heterogeneity, and high heterogeneity, respectively. A fixed-effect model was used when no heterogeneity or low heterogeneity was observed, and a random-effect model was used when moderate or high heterogeneity was detected. Subgroup analysis was based on basic severity to explore potential sources of heterogeneity. The hypothesis of publication bias was assessed using funnel plots. We performed Egger's test to assess the risk of publication bias for each outcome. The risk of bias of every included study was assessed according to the recommendation by the Cochrane Collaboration[21]. The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was used to evaluate the quality of the evidence for each outcome.

Results

Search results

We initially identified 592 studies. After reviewing the titles and abstracts, 30 studies were selected for further review. Next, 13 studies were excluded, including six cases of unreported data, four cases not satisfying the inclusion criteria, 1 case not showing the desired results, and 3 cases in non-English. We ultimately included seven studies[16; 17; 22-26]. Screening of the reference lists of included studies and referring articles did not yield additional articles. Figure 1 shows a flowchart for the selection of studies.
Characteristics of the included studies

A total of seven articles were included in our study (Table 1). The publication year ranged from 2004 to 2018, which was a relatively large time span. The evaluation indicators were all found on the Wechsler scale. 6 studies included the analysis of surgical intervention groups versus healthy control groups, 3 of which studies reported the evaluation of surgical groups versus catheter groups. One study examined thoracotomy groups and nonthoracic catheter groups. Among the 7 articles, two were about transposition of the great arteries (TGA), and one reported on left ventricular dysplasia. The remaining four articles were on ventricular septal defects, atrial septal defects, and unclassified congenital conditions. Three articles[22; 23; 25] reported the age of surgery in the neonatal period, the average age of the recruited participants ranging from 1 to 31 day, and the other four articles addressed childhood or adolescence, the average age of the recruited participants ranging from 3.91 to 16 years. The time span of neurodevelopment assessment in the articles was relatively large, ranging from 7 days to 6.9 years. A number of 6 studies presented the cardiopulmonary bypass time and reported the aortic cross-clamp time, and one study[22] did not mention these measurements.
Table 1
Characteristics of the Included Studies

Author, year	Location	CHD subtype	Sample size	Age at operation	Operation Procedures	CPB (min)	Cross-Clamp Time (min)	Age at evaluation	Outcome assessment
Karl, 2004[22]	America	TGA	74	NP	ASO	NP	NP	109.7±34.3 months	WPPSI-R, WISC
William, 2004[16]	America	ASD	41	between 5 and 20 years of age	Surgery and Transcatheter	46.5±37.6	30±27.4	7–18 days after surgery	WASI
Rijken, 2007a[17]	Netherlands	CHD	43	between 6 and 16 years	Surgery	201.7±120.4	109.4±69.9	1 year after intervention	WISC
Rijken, 2007b[17]	Netherlands	CHD	19	between 6 and 16 years	Catheterization	201±120.4	109.4±69.9	1 year after intervention	WISC
Sarajuuri, 2012a[23]	Finland	HLHS	23	7 (3–18) day	Norwood	177±85.2	44±37.8	At the age of 5 years	WPPSI-R
Sarajuuri, 2012b[23]	Finland	Other UVHs	13	2 (1–31) day	Norwood	175±48.1	44±40	At the age of 5 years	WPPSI-R
Guan, 2014a[24]	China	VSD	29	3.91±0.84 years	Surgery	73.6±26.1	36.4±11.5	6-13 years	WISC
Guan, 2014b[24]	China	VSD	35	4.22±1.57 years	Transcatheter	NP	NP	6-13 years	WISC
Heinrichs, 2013[25]	Germany	TGA	56	7.1±5.1 years	ASO	61.7 ± 14.1	65.4±7.4	16.9 years	HAWIE-R
Jin, 2018a[26]	China	VSD	29	3.91±0.84 years	Surgery	73.6±26.1	36.4±11.5	6-13 years	WISC
Jin, 2018b[26]	China	VSD	35	4.22±1.57 years	Transcatheter	NP	NP	6-13 years	WISC

CPB, cardiopulmonary bypass;
Age at operation, Age at evaluation, CPB (min), Cross-Clamp Time(min), mean±SD
VSD, ventricular septal defect;
ASD, Atrial septal defect;
TGA, transposition of the great arteries;
HLHS: hypoplastic left heart syndrome;
UVHs: univentricular heart defects;
ASO, arterial switch operation;
WPPSI-R, Wechsler Preschool and Primary Scale of Intelligence-Revised;
WISC, Wechsler Intelligence Scale for Children;
WASI, Wechsler Abbreviated Scale of Intelligence;
HAWIE-R, Hamburg-Wechsler intelligence test revised;
NP, not report.

Evaluation of postoperative neurocognitive function in patients with CHD.
A total of six studies (surgical group: n = 296, control group: n = 362) focused on intellectual outcomes, i.e., full IQ\verbal IQ\performance IQ. There was a strongly significant difference in intelligence between CHD patients after surgery intervention and healthy controls in our study results (Figure 2, full IQ: mean difference = -5.79 [95% CIs -10.14, -1.44], $P = 0.009$, $I^2=71\%$; verbal IQ: mean difference = -4.46 [95% CIs -7.99, -0.93], $P = 0.01$, $I^2=56\%$; performance IQ: mean difference = -7.13 [95% CIs -10.90, -3.35], $P = 0.0002$, $I^2=64\%$).

Effect of surgical methods on neurocognitive function

Four studies reported the effects of surgical repair and transcatheter repair on the intelligence of patients after congenital surgery, and there was no statistically significant difference in the postoperative intelligence with the two types of surgical procedures. (Figure 3, full IQ: mean difference = 0.19 [95% CIs -4.10, 4.49], $P = 0.93$, $I^2=0\%$; verbal IQ: mean difference = 2.29 [95% CIs -1.60, 6.18], $P = 0.25$, $I^2=0\%$; performance IQ: mean difference = -2.49 [95% CIs -6.49, 1.52], $P = 0.22$, $I^2=0\%$).

Subgroup analysis

The studies were divided into subgroups according to severity of disease. Articles on TGA and left ventricular dysplasia were considered severe groups, and the remaining publications comprised mild groups. We performed a subgroup analysis. The severe groups and the mild groups showed statistically significant findings compared with those of the respective control groups (Supplementary Figure 1).

Sensitivity analysis

After inclusion and exclusion of each study, a meta-analysis of the changes in the full IQ and performance IQ levels (the two heterogeneous outcomes) after heart surgery was conducted, and neither of the results was changed after performing the sensitivity analysis (Supplementary Figure 2). At the same time, about comparison of two surgical procedures on neurocognitive function in patients with CHD, the results did not change after inclusion and exclusion of each study (Supplementary Figure 3).

Publication bias

We performed Egger's test and graphed funnel plots (Supplementary Figure 4 and Supplementary Figure 5). The plots were symmetrical, suggesting no evidence of publication bias. In other words, no evidence of publication bias for the Webster Intelligence Scale was observed in the present study.

Risk of bias

Most trials were considered to have a low risk of bias. In cases where the published article was incomplete, we sought to study other information about the author, which resulted in a lower risk of bias in the overall assessment (Supplementary Figure 6).

Quality of evidence assessment

According to the GRADE guidelines\[27-35\], the quality of evidence for each outcome is listed in Supplementary Table 2 and Supplementary Table 3. Overall, the quality of evidence of mental development in patients with CHD was assessed as low and moderate.

Discussions

This is the first systematic review and meta-analysis of neurological development after congenital heart surgery and the effects of different surgical procedures (surgical repair and transcatheter repair) on neurodevelopment in patients with CHD. Our results show that the mental development of patients after congenital heart surgery is slow, although the other outcome measures are negative. Moreover, there was no significant difference in postoperative neurodevelopment (full IQ, verbal IQ and performance IQ) between the surgical methods.

Of the six articles on mental development in patients with CHD, two studies showed that the mental development and growth of patients after congenital heart surgery was delayed compared with the corresponding measures in healthy controls, and the remaining four studies showed that the mental development of patients after congenital heart surgery had no significance compared with healthy controls. The results of our meta-analysis are statistically significant. That is, the intellectual development of postoperative patients with CHD is slow, which is consistent with the conclusion of Karl 2004, Sarajuuri, 2012\[22; 23\]. However, the heterogeneity of the three outcome indicators (full IQ, verbal IQ and performance IQ) is more than 50\%, so we want to find the source of their heterogeneity. In this regard, we carried out subgroup analysis and
sensitivity analysis. We found that the CHD type in the patients in these three studies[22; 23; 25] was more serious compared to that of the patients enrolled in the other studies. Therefore, we performed a subgroup analysis based on the severity of disease in children with CHD. The analysis results of the severe group showed that the large heterogeneity, and the results of full IQ and verbal IQ were not statistically significant, but the performance IQ result were statistically significant. The analysis results of the mild group showed that there was no heterogeneity, and the results of full IQ and performance IQ were statistically significant. Further, we performed a sensitivity analysis. The results of the sensitivity analysis showed that when we did not include it in Heinrichs 2013[25], the heterogeneity decreased. After carefully reading Heinrichs’ study, we found that the cardiopulmonary bypass time of this study was shorter than the other three studies in severe group. As a result, we boldly speculate that the time of extracorporeal circulation also has a certain impact on brain development and neurocognitive function[36; 37], which may be due to insufficient blood supply to the brain during the long period of surgery. Therefore, we speculated that there was little influence over a short period of time but gradual deterioration after longer durations of circulatory arrest[38].

Four articles on surgical procedures were included in this paper, two of which showed no statistical significance[16; 17], and the other two articles did not perform a statistical analysis[24; 26]. The results of our meta-analysis showed no significant difference between surgical repair and transcatheter repair. We considered whether the condition of the patients with CHD in the included literature was relatively mild, and all cases involved atrial septal defect or ventricular septal defect[39], which may be the reason the results of the two surgical methods were consistent. Therefore, regardless of the type of surgical method (surgical repair or transcatheter repair), there was little effect on mental development. However, we believe that different surgical methods for severe CHD have an impact on mental development[18]. We need more research to clarify the effects of surgical methods on neurodevelopment. Additionally, for the results of the meta-analysis about surgical procedures, we also performed a sensitivity analysis. The results of the analysis did not change after the inclusion and exclusion of each study. In other words, our results are stable and reliable.

In addition, no publication bias was found in our study. With the GRADE approach, there was low-quality or unclear-quality evidence for each of the analyzed outcomes.

Our research has the following advantages. This study is unique in providing information on nerve development after cardiac surgery and differences between different operations (surgical repair and transcatheter repair) based on longitudinal follow-up, which is of great significance for whether early intervention is needed to promote neurodevelopment after such procedures. Our findings show that the mental development of patients with CHD is retarded after surgery, meaning that it is necessary to develop intellectual training programs to solve the problems we are facing.

The present meta-analysis also has potential limitations. First, our results show that neurological development is delayed after surgery and is either caused by the operation or existed before the operation. However, the mechanism is unknown. Second, regarding surgical repair and transcatheter repair, the number of articles included in the literature is small, the sample size is not large, there are no randomized controlled trials, which makes it unclear whether the results are affected. Third, the study only concerns intelligence assessment, and there are many aspects of neurodevelopment, such as motor language execution ability, which is not covered in the present study. Fourth, the time of the postoperative evaluation is different, and the version of the scale is inconsistent, which may have a potential impact. In addition, our study did not reveal whether the time of CPB and the time of carotid artery clipping have a certain influence on postoperative neurocognitive function. Finally, patients with CHD have different disease severities. Although we conducted a subgroup analysis, the sample size of the included studies was relatively small, which may have affected the reliability of the results obtained. Additional studies are needed in the future to evaluate these potential influences.

Conclusions

Our meta-analysis suggests that neurodevelopment is delayed for patients with CHD after surgery and is no different for patients with CHD between surgical repair and transcatheter repair. These findings suggest that patients with CHD need effective interventions to improve their neurodevelopment after surgery, which requires further exploration, including larger samples and well-designed prospective studies.

Declarations

Acknowledgments

None declared.

Authors’ contributions

Dr Cheng Xu and Prof Xuming Mo conceptualized and designed the study, and reviewed and revised the manuscript. Miss Xiaqi Su drafted the initial manuscript. Ms Siyu Ma and Miss Yiwei Pu designed the data collection instruments, collected data, carried out the initial analyses, and
reviewed and revised the manuscript. Dr Zhiqi Wang, Zhaocong Yang conceptualized and designed the study, coordinated and supervised data collection, and critically reviewed the manuscript for important intellectual content. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Funding

This work was supported by funding from the National Natural Science Foundation of China (81900281), the Maternal and Child Health Research Project of Jiangsu Province (F201755), the China Postdoctoral Science Foundation (2018M630585), the Key Project of Science and Technology Development Fund of Nanjing Medical University (2017NJMUZD060), the National Key Research and Development Program of China (2016YFC1101001, 2017YFC1308105), the Nanjing Medical University School Project (NMUC2018012A), and the Key Project supported by the Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK18139). Clinical Frontier Technology of Clinical Medicine of Jiangsu Provincial Science and Technology Department (BE2017608).

Availability of data and materials

Please contact the author for data requests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Consent for publication was obtained from the parents of the child.

Competing interests

The authors declare that there is no conflict of interest.

References

1. Liu Y, Chen S, Zuhlke L, Black GC, Choy MK, Li N, Keavney BD (2019) Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int J Epidemiol 48:455-463

2. Faraoni D, Zurakowski D, Vo D, Goobie SM, Yuki K, Brown ML, DiNardo JA (2016) Post-Operative Outcomes in Children With and Without Congenital Heart Disease Undergoing Noncardiac Surgery. J Am Coll Cardiol 67:793-801

3. Gilboa SM, Salemi JL, Nembhard WN, Fixler DE, Correa A (2010) Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 122:2254-2263

4. Wotherspoon JM, Eagleson KJ, Gilmore L, Auld B, Hirst A, Johnson S, Stocker C, Heussler H, Justo RN (2019) Neurodevelopmental and health-related quality-of-life outcomes in adolescence after surgery for congenital heart disease in infancy. Dev Med Child Neurol

5. Gerstle M, Beebe DW, Drotar D, Cassedy A, Marino BS (2016) Executive Functioning and School Performance among Pediatric Survivors of Complex Congenital Heart Disease. J Pediatr 173:154-159

6. Klouda L, Franklin WJ, Saraf A, Parekh DR, Schwartz DD (2017) Neurocognitive and executive functioning in adult survivors of congenital heart disease. Congenit Heart Dis 12:91-98

7. Sterken C, Lemiere J, Van den Berghe G, Mesotten D (2016) Neurocognitive Development After Pediatric Heart Surgery. Pediatrics 137

8. Claessens NHP, Algra SO, Ouwehand TL, Jansen NJG, Schappin R, Haas F, Eijsermans MJC, de Vries LS, Benders M, Utrecht CHDLSG (2018) Perioperative neonatal brain injury is associated with worse school-age neurodevelopment in children with critical congenital heart disease. Dev Med Child Neurol 60:1052-1058
9. Heye KN, Knirsch W, Latal B, Scheer I, Wetterling K, Hahn A, Akinturk H, Schranz D, Beck I, R OGT, Reich B (2018) Reduction of brain volumes after neonatal cardiopulmonary bypass surgery in single-ventricle congenital heart disease before Fontan completion. Pediatr Res 83:63-70

10. Rotermann I, Logoteta J, Falta J, Wegner P, Junge O, Dutschke R, Schewe J, Kramer HH, Hansen JH (2017) Neuro-developmental outcome in single-ventricle patients: is the Norwood procedure a risk factor? Eur J Cardiothorac Surg 52:558-564

11. Knirsch W, Mayer KN, Scheer I, Tuura R, Schranz D, Hahn A, Wetterling K, Beck I, Latal B, Reich B (2017) Structural cerebral abnormalities and neurodevelopmental status in single ventricle congenital heart disease before Fontan procedure. Eur J Cardiothorac Surg 51:740-746

12. von Rhein M, Buchmann A, Hagmann C, Huber R, Klaiver P, Knirsch W, Latal B (2014) Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain 137:268-276

13. Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW (2016) Brain in Congenital Heart Disease Across the Lifespan: The Cumulative Burden of Injury. Circulation 133:1951-1962

14. Rollins CK, Watson CG, Asaro LA, Wypij D, Vajapeyam S, Bellinger DC, DeMaso DR, Robertson RL, Jr., Newburger JW, Rivkin MJ (2014) White matter microstructure and cognition in adolescents with congenital heart disease. J Pediatr 165:936-944 e931-932

15. Visconti KJ, Bichell DR, Jonas RA, Newburger JW, Bellinger DC (1999) Developmental outcome after surgical versus interventional closure of secundum atrial septal defect in children. Circulation 100:II145-150

16. Mahle WT, Lundine K, Kanter KR, Forbess JM, Kirshbom P, Tosone SR, Vincent RN (2004) The short term effects of cardiopulmonary bypass on neurologic function in children and young adults. Eur J Cardiothorac Surg 26:920-925

17. van der Rijken R, Hulstijn-Dirkmaat G, Kraaimaat F, Nabuurs-Kohrman L, Nijveld A, Maassen B, Daniels O (2008) Open-heart surgery at school age does not affect neurocognitive functioning. Eur Heart J 29:2681-2688

18. Ohye RG, Schranz D, D’Udekem Y (2016) Current Therapy for Hypoplastic Left Heart Syndrome and Related Single Ventricle Lesions. Circulation 134:1265-1279

19. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

20. Higgins JPT GS Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [EB/OL]. . The Cochrane Collaboration 2011

21. Bandeira-Echtler E, Bergerhoff K, Richter B (2014) Levothyroxine or minimally invasive therapies for benign thyroid nodules. Cochrane Database Syst Rev:CD004098

22. Karl TR, Hall S, Ford G, Kelly EA, Brizard CP, Mee RB, Weintraub RG, Cochrane AD, Glidden D (2004) Arterial switch with full-flow cardiopulmonary bypass and limited circulatory arrest: neurodevelopmental outcome. J Thorac Cardiovasc Surg 127:213-222

23. Sarajuuri A, Jokinen E, Mildh L, Tujulin AM, Mattila I, Valanne L, Lonnqvist T (2012) Neurodevelopmental burden at age 5 years in patients with univentricular heart. Pediatrics 130:e1636-1646

24. Guan G, Liu H, Wang Y, Han B, Jin Y (2014) Behavioural and emotional outcomes in school-aged children after surgery or transcatheter closure treatment for ventricular septal defect. Cardiol Young 24:910-917

25. Heinrichs AK, Holschen A, Krings T, Messmer BJ, Schnitker R, Minkenberg R, Hovels-Gurich HH (2014) Neurologic and psycho-intellectual outcome related to structural brain imaging in adolescents and young adults after neonatal arterial switch operation for transposition of the great arteries. J Thorac Cardiovasc Surg 148:2190-2199

26. Jin Y, Liu J, Wang W, Wang Y, Yin Y, Xin X, Han B (2018) Neuropsychological development in school-aged children after surgery or transcatheter closure for ventricular septal defect. Neurol Sci 39:2053-2060

27. Guyatt G, Oxman AD, Akis EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schunemann HJ (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383-394

28. Guyatt GH, Oxman AD, Kunz R, Atkins D, Brozek J, Vist G, Alderson P, Glasziou P, Falck-Ytter Y, Schunemann HJ (2011) GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 64:395-400
29. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, Vist GE, Falck-Ytter Y, Meerpo.hl J, Norris S, Guyatt GH (2011) GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 64:401-406

30. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, Montori V, Akl EA, Djulbegovic B, Falck-Ytter Y, Norris SL, Williams JW, Jr., Atkins D, Meerpo.hl J, Schunemann HJ (2011) GRADE guidelines: 4. Rating the quality of evidence–study limitations (risk of bias). J Clin Epidemiol:64:407-415

31. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, Alonso-Coello P, Djulbegovic B, Akl EA, Falck-Ytter Y, Williams JW, Jr., Meerpo.hl J, Norris SL, Akl EA, Schunemann HJ (2011) GRADE guidelines: 5. Rating the quality of evidence–publication bias. J Clin Epidemiol 64:1277-1282

32. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW, Jr., Murad MH, Sinclair D, Falck-Ytter Y, Meerpo.hl J, Whittington C, Thorlund K, Andrews J, Schunemann HJ (2011) GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol 64:1283-1293

33. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, Norris S, Vist G, Dahm P, Shukla VK, Higgins J, Falck-Ytter Y, Schunemann HJ, Group GW (2011) GRADE guidelines: 7. Rating the quality of evidence–inconsistency. J Clin Epidemiol 64:1294-1302

34. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Falck-Ytter Y, Jaeschke R, Vist G, Akl EA, Post PN, Norris S, Meerpo.hl J, Shukla VK, Nasser M, Schunemann HJ, Group GW (2011) GRADE guidelines: 8. Rating the quality of evidence–indirectness. J Clin Epidemiol 64:1303-1310

35. Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, Atkins D, Kunz R, Brozek J, Montori V, Jaeschke R, Rind D, Dahm P, Meerpo.hl J, Vist G, Berliner E, Norris S, Falck-Ytter Y, urad MH, Schunemann HJ, Group GW (2011) GRADE guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol 64:1311-1316

36. Bellinger DC, Watson CG, Rivkin MJ, Robertson RL, Roberts AE, Stopp C, Dunbar-Masterson C, emson D, DeMaso DR, Wypij D, Newburger JW (2015) Neuropsychological Status and Structural Brain Imaging in Adolescents With Single Ventricle Who Underwent the Fontan Procedure. J Am Heart Assoc 4

37. Deighton CM, Gray J, Roberts DF, Bint AJ, Walker DJ (1992) P blood group phenotype, proteus antibody titres, and rheumatoid arthritis. Ann Rheum Dis 51:1242-1244

38. Wypij D, Newburger JW, Rappaport LA, duPlessis AJ, Jonas RA, Wernovsky G, Lin M, Bellinger DC (2003) The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 126:1397-1403

39. Sarrechia I, De Wolf D, Miatton M, Francois K, Gewillig M, Meyns B, Vingerhoets G (2015) Neurodevelopment and behavior after transcatheter versus surgical closure of secundum type atrial septal defect. J Pediatr 166:31-38