2MTF. I. THE TULLY–FISHER RELATION IN THE TWO MICRON ALL SKY SURVEY \(J, H, \) AND \(K \) BANDS

KAREN L. MASTERS\(^1\), CHRISTOPHER M. SPRINGOB\(^2,3\), AND JOHN P. HUCHRA\(^1\)

\(^1\) Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; kmasters@cfa.harvard.edu
\(^2\) Naval Research Laboratory, Remote Sensing Division Code 7213, 4555 Overlook Avenue, SW, Washington, DC 20375, USA
\(^3\) Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA

Received 2007 November 10; accepted 2008 March 9; published 2008 April 2

ABSTRACT

The Two Micron All-Sky Survey (2MASS) Tully–Fisher Survey (2MTF) aims to measure Tully–Fisher (TF) distances to all bright inclined spirals in the 2MASS Redshift Survey (2MRS). Essential to this project is a universal calibration of the TF relation in the 2MASS \(J \) (1.2 \(\mu \)m), \(H \) (1.6 \(\mu \)m), and \(K \) (2.2 \(\mu \)m) bands. We present the first bias-corrected or universal TF template in these bands. We find that the slope of the TF relation becomes steeper as the wavelength increases being close to \(L \propto v^4 \) in the \(K \) band and \(L \propto v^{3.6} \) in the \(J \) and \(H \) bands. We also investigate the dependence on galaxy morphology showing that in all three bands the relation is steeper for later-type spirals which also have a dimmer TF zero point than earlier-type spirals. We correct the final relation to that for Sc galaxies. Finally we study the scatter from the TF relation fitting for a width-dependent intrinsic scatter which is not found to vary significantly with wavelength.

Key words: distance scale – galaxies: clusters: general – galaxies: distances and redshifts – galaxies: fundamental parameters – infrared: galaxies

Online-only material: color figure

1. INTRODUCTION

The Two Micron All-Sky Survey (2MASS) Tully–Fisher Survey (2MTF) is making use of existing high-quality rotation widths, new \(H_i \) widths, and 2MASS photometry to measure Tully–Fisher (TF) distances for all bright inclined spirals in the 2MASS Redshift Survey (2MRS; Huchra et al. 2005). Previous peculiar-velocity surveys have struggled to meet their potential because of large errors on individual measurements, poor statistics, and uneven sky coverage. A survey based on 2MRS will provide both better statistics and greatly reduce the impact of the zone of avoidance (ZoA) providing a qualitatively better sample for velocity–density field reconstructions. A significant amount of new \(H_i \) observing (both at the Green Bank Telescope, and the Parkes Radio Telescope) has already been completed for the 2MTF project (K. L. Masters et al., in preparation; see Masters 2008 for more details).

The first step in constructing the 2MTF catalog is to have a universal calibration of the TF relation in the 2MASS \(J, H, \) and \(K \) bands. As discussed in Masters et al. (2006; hereafter M06), the estimation of proper bias corrections for deriving TF templates is essential, not only if the template is to be used as a basis for unbiased distance estimates to galaxies with a wide range of rotational widths, but also if the template is to be used as a constraint in theories of galaxy formation. A bias-corrected, or universal TF relation in the 2MASS \(J, H, \) and \(K \) bands does not currently exist. In this paper we provide such a TF template relation for use with 2MTF and in other applications. We also investigate the dependence of the near-IR TF relation with wavelength and galaxy morphology and study the extent of the TF relation. Finally we measure the intrinsic scatter of galaxies from the TF template relations as a function of galaxy rotation width. We finish by providing a recipe for deriving TF distances from data consisting of galaxy magnitudes, inclinations, and rotational widths. We parameterize quantities dependent on the Hubble constant with \(h = H_i / 100 \) \(\text{km s}^{-1} \text{Mpc}^{-1} \) where possible, and use \(H_i = 74 \) \(\text{km s}^{-1} \text{Mpc}^{-1} \) when we need to compare with \(H_i \) independent measurements (e.g., calibrations of the TF zero point from primary distance measures).

2. THE 2MASS TF TEMPLATE SAMPLE

The 2MTF template sample discussed here originated in a cross-match of the 2MASS Extended Source Catalog (XSC) with all galaxies with rotation widths either from the Cornell \(H_i \) digital archive (Springob et al. 2005), or from the database of optical rotation curves (ORCs) maintained by Martha Haynes and Riccardo Giovanelli at Cornell (see Catinella et al. 2005 for the most recent description of the ORCs). From this cross-match we pick galaxies in the vicinities of the 31 nearby clusters described in M06. In M06 the SFI++ sample (Springob et al. 2007) is used as a base for their related \(I \) band TF template sample. This “SFI++ template sample” was comprised of galaxies which, in addition to rotation widths from the above sources, have \(I \)-band photometry as described in Haynes et al. (1999a). Using the same set of clusters as in M06 will ease comparisons between the \(I \)-band template from M06 and the \(J-, H-, \) and \(K \)-band templates to be derived here. Using the terminology of M06 (and Giovanelli et al. 1997b; hereafter G97b) who describe an in sample in which all galaxies are clearly bona fide cluster members and a larger in+ sample which may include galaxies merely in the vicinity of the cluster, we consider mostly the in+ sample for these clusters.

Roughly 70% of the SFI++ template sample (M06) are found in this “2MTF template sample.” Some SFI++ galaxies have too low surface brightness in the near-IR (NIR) to be detected by 2MASS. This is especially a problem for the SFI++ since it was designed to be dominated by late-type spirals which tend to have a lower NIR surface brightness. Of the final 2MTF template sample, 65% are also in the SFI++ template sample (the remaining 35% have available rotation widths, are present in the 2MASS XSC and located near one of the “template clusters,” but do not have \(I \)-band photometry).
2.1. Rotation Widths

As described above, rotation widths are taken from the same source as the SFI++ template sample (M06), namely the HI digital archive published in Springob et al. (2005) supplemented by optical rotation curves (see, e.g., Catinella et al., 2005). The correction from ORC to HI width (measured at 50% of the peak — rms on a fit to the sides of the profile) is described in M06 and is applied, with the modification that the optical radius \(a_{\text{opt}}\), which is the radius containing 83% of the optical light, is estimated for galaxies for which only 2MASS photometry from the 2MASS parameter \(r_{\text{ext}}\)—the 2MASS XSC extrapolation or total radius. For galaxies with both 2MASS and I-band photometry we find \(a_{\text{opt}} = 0.56 a_{\text{ext}}\), with a scatter of 13°—this is the relation used to calculate \(a_{\text{opt}}\) for the 35% of the 2MTF sample which do not have available I-band photometry. The observed width must also be corrected for instrumental effects \((\Delta a)\), inclination, cosmological broadening, and the effect of turbulent motions \((\Delta v)\) in the disk:

\[
W_{\text{corr}} = \left[\frac{W_{\text{obs}} - \Delta a}{1 + \frac{\Delta a}{a_{\text{opt}}}} - \Delta v \right] \frac{1}{\sin i}.
\]

We use \(\Delta a = 6.5 \text{ km s}^{-1}\). The instrumental correction will depend on the details of the telescope used: see Springob et al. (2005) for more information on this.

2.2. Total Magnitudes and Inclinations

The 2MASS XSC photometric quantities are described in great detail in Cutri et al. (2006). The quantities of interest here are the total magnitudes in the \(J\), \(H\), and \(K\) bands (the extrapolated magnitudes are used), and the axial ratio. Inclinations are estimated from the deep I-band imaging taken as part of the SFI++ or SFI projects and described in Haynes et al. (1999a) for galaxies where this is available. In the 35% of galaxies for which no I-band imaging is available the J-band axial ratio (after correction for seeing as described in Masters et al. 2003) is used to estimate the inclination. We choose the J band over longer 2MASS bands (or the co-added image) in the hope that it best traces the inclination of the disk and is least affected by the bulge. We also use an intrinsic axial ratio of 0.2 for all types of spirals to mitigate the effect of the bulge on the most edge-on galaxies. For all SFI++ galaxies in the 2MASS XSC (i.e., not just galaxies used in this paper), an approximately one-to-one correlation is found between the J-band and J-band estimates of the inclination, with an rms scatter of \(\sim 8.5°\). There is a slight tendency for the J-band axial ratio to imply the galaxy is less inclined than the I-band measurement, which is especially prominent for the most face-on (i.e., lowest inclination) galaxies. We do not use any galaxies with J-band inclinations of less than 25°; galaxies with true inclinations this low would not make it into the SFI++ as they would not have been considered good candidates for TF distance measurement. There is no significant trend of the difference between the two measures of inclination with galaxy morphological type. By looking at the scatter in the axial ratio measured in the J band versus that measured in the I band we estimate that the error in the J-band axial ratio is \(\sim 0.1\), remaining approximately flat with decreasing ellipticity. This is the error we carry forward into the error on the rotation widths for galaxies in which J-band inclinations are used. By comparison the I-band axial ratio has a mean reported error of \(\pm 0.04\), increasing to \(\pm 0.06\) for the most face-on galaxies, and decreasing to less than \(\pm 0.02\) for the most inclined. The use of J-band axial ratios for 35% of the sample will obviously add some scatter into the final TF template.

Galactic extinction is estimated using the DIRBE dust map (Schlegel et al. 1998), while dust extinction internal to the galaxies themselves is estimated using the luminosity-dependent empirical relations found in Masters et al. (2003). A small K-correction is applied, also as described in Masters et al. (2003).

3. CONSTRUCTING A GLOBAL TEMPLATE

Many schools of thought exist on the best way to construct a TF template. In one method no attempt is made to correct for observational biases (e.g., Pizagno et al. 2007). The argument is that such corrections depend on various assumptions and so add an unmeasurable source of error into the template. Such templates must not be considered global in any sense and can only be compared to theory when mock catalogs with the same selection criteria are constructed. They also have the distinct disadvantage of introducing obvious biases into distances derived from TF. Another method (e.g., Theureau et al. 2007) attempts to construct an “unbiased” sample of galaxies so that no corrections are necessary—this has the disadvantage of requiring that a large part of the data be rejected from the template sample, and because the rejected galaxies lie preferentially at the low mass end of the relation this will also result in a TF template relation which is not completely universal since it will be fit only to the most massive spirals. It is possible to construct a bias-corrected or universal TF template in which observational sample biases are corrected using reasonable assumptions about the properties of the parent galaxy population. With the right assumptions this method is the only one which produces a universal or global TF relation which can be compared directly to theory and used without concern to derive TF distances. This is the approach we will take here.

A detailed description of all the relevant bias corrections which need to be applied to derive a universal TF relation has recently been published in M06; we refer the reader to that paper for more details. Both in M06 and this paper, the method used is based on that described in G97b. What follows is a list of all bias corrections, including details of how they have been modified to apply to 2MASS photometry and the template sample discussed here.

These corrections are applied after the magnitudes have been corrected for Galactic and internal extinction and the inclinations have been corrected for seeing; and after the HI widths have been corrected for instrumental broadening, the ORC widths corrected to the HI scale, and all widths have been corrected for inclination and cosmological broadening.

1. Incompleteness bias correction. In any given cluster we preferentially observe galaxies which are scattered above the TF slope (because they are brighter and therefore more likely to make it into the sample). This has the result of shallowing the TF slope, brightening the zero point and reducing the measured scatter. The correction we apply for this effect is derived following the method described in G97b and M06. It is derived from Monte Carlo simulations of the difference between the expected and observed magnitudes requiring an input TF relation, TF scatter, and spiral LF (which is used to estimate the completeness of the sample). We do the calculation only once, using as an input the TF relations and scatter uncorrected for this effect (but already corrected for the morphological dependence as described in #5 below). We
discuss below the impact of these assumptions on the size of the bias correction.

A luminosity function was calculated for late-type galaxies \((T \geq 0)\) in the \(K\) band by Kochanek et al. (2001). This LF includes SO/a galaxies \((T = 0)\) as well as later types, but they found that the LF parameters were insensitive to moving the boundary to include only Sa and later galaxies. They fit a Schechter function with \(M_K = -5 \log h = -22.98 \pm 0.06\) mag and \(\alpha = -0.92 \pm 0.10\). This is the luminosity function we use to calculate the incompleteness of the template sample. To each measure incompleteness for a cluster we fit a function of the form

\[
e(\gamma) = \frac{1}{e^{\gamma - \gamma_3/\eta} + 1}.
\]

The parameters of the fit to the \(K\)-band incompleteness function for each individual cluster sub-sample are given in Table 1. To convert the completeness to \(J\) and \(H\) bands we use a constant color estimates of \(J - K = 1.04\) and \(H - K = 0.28\) which are the average for all galaxies in the template sample. There are no large trends of \(H - K\) color with absolute magnitude and only a slight trend for \(J - K\) color to be smaller for dimmer galaxies (which could result in a very slight overestimation of the incompleteness in the \(J\)-band for the least luminous galaxies). This \(J - K\) color is a little redder than that measured for a complete sample of 2MASS galaxies (J. Huchra et al., in preparation) although the \(H - K\) color is consistent. Galaxies in the template sample are larger and more inclined that the average galaxy in 2MASS so even though this color is corrected for internal extinction as described in Masters et al. (2003) we expect them to be a little redder than average because this mean correction may still be a underestimate for the brightest most edge-on galaxies.

We use a bivariate fit to the full sample as our estimate of the universal TF relation. We do one round of the iteration: we use to calculate the bias corrections the initial relations (not corrected for incompleteness bias, but after the morphological correction discussed below is applied) which are

\[
M_K = -5 \log h = -22.228 - 8.919(\log W - 2.5),
M_H = -5 \log h = -21.954 - 8.289(\log W - 2.5),
M_J = -5 \log h = -21.198 - 8.030(\log W - 2.5).
\]

This can be compared with the final output in Table 2. The slopes here are shallower than the relation by \(\sim 1\) mag dex\(^{-1}\) in the \(K\) and \(J\) bands and 0.7 mag dex\(^{-1}\) in the \(H\) band. The zero points are brighter by \(\sim 0.2\) mag in the \(K\) and \(J\) bands and 0.1 mag in the \(H\) band. As shown in G97b and Masters (2005), changing the zero point and slope of the assumed UTF by these amounts will not change the magnitude of the derived bias correction significantly.

The assumed scatter we use is also the scatter from the initial relation (uncorrected for incompleteness bias but after correction for morphology) of

\[
\epsilon_{\text{int}, K} = 0.41 - 1.43(\log W - 2.5),
\epsilon_{\text{int}, H} = 0.43 - 1.26(\log W - 2.5),
\epsilon_{\text{int}, J} = 0.45 - 1.08(\log W - 2.5).
\]

(See Section 4 for an explanation of the derivation of this and the final output values.) It is this assumption which has the biggest effect on the magnitude of the calculated bias correction. However, the scatter from the final TF relation is only 0.05 mag smaller than this value (in all three bands), and this is not enough of a difference to significantly change the derived corrected for the incompleteness bias (as shown in G97b and Masters 2005).

The magnitude of the bias correction for a given galaxy depends on a combination of the absolute magnitude of the galaxy and the distance to the cluster in which the galaxy is located (in the nearer clusters the sample is obviously complete to a fainter absolute magnitude limit). In G97b and M06 the bias correction is shown separately for galaxies in each of the clusters used in the template. Here we instead show bias corrections for all galaxies in all clusters together (Figure 1).

2. Mean distances to cluster. This small fixed bias for all galaxies in a given cluster arises from the fact that the log of the average of the distance is not equal to the average of the log of the distance (which is what we implicitly fit for when using magnitudes). This bias is easy to calculate once a line of sight depth for each cluster has been estimated.
Cluster size: incompleteness.

We use as a size estimate 1 Abell radius for the in sample, 2 Abell radii for in+. This bias is almost always much less than 0.1 mag, and is given for each cluster in Table 1 (βsize).

3. Cluster size: incompleteness. In a given cluster we preferentially observe dimmer galaxies only in the closest parts of the cluster creating a small bias in the observed magnitudes which is easily corrected for using the completeness we have already calculated for each cluster and assumptions about the size of the cluster. This bias is very small (less than 0.1 mag) for most galaxies in the sample.

4. Edge of catalog bias and Malmquist bias. Following G97b and M06 we argue that both of these biases are negligible in the sample and therefore make no correction for them.

5. Morphological correction. We observe that the slope for earlier type spirals is shallower than for later types and that they have a brighter zero point. We correct to an “Sc” (type $T = 5$) relation in the K band using

$$
\Delta M_Sa = 0.19 - 3.16(\log W - 2.5): \quad T \leq 2
$$

$$
\Delta M_{SB} = 0.01 - 1.46(\log W - 2.5): \quad 3 \leq T \leq 4.
$$

In the H band we use

$$
\Delta M_Sa = 0.21 - 2.92(\log W - 2.5): \quad T \leq 2
$$

$$
\Delta M_{SB} = 0.01 - 1.26(\log W - 2.5): \quad 3 \leq T \leq 4.
$$

Notes.

Column 1 describes the sample used to fit to, Column 2 shows the total number of galaxies in that sample. Columns 3-8 show parameters for $M - 5 \log h = a + b(\log W - 2.5)$ using direct, inverse and bivariate fits. Also shown for the bivariate fits are the error on a and b (Columns 9 and 10), and the scatter calculated as the standard deviation (Column 11) and absolute deviation (Column 12). Inverse and bivariate fits are not reported for the sample divided by galaxy size since the artificial log W cut-off which is applied creates a large bias in those fits.

Table 2

Sample	N	Direct fit		Inverse fit		Bivariate fit						
	a_{df}	b_{df}	a_{inv}	b_{inv}	a_{bi}	b_{bi}	ϵ_a	ϵ_b	σ_D	σ_{ab}	K band	
No corrections	Full	888	-22.271	-6.548	-22.261	-10.032	-22.215	-7.254	0.019	0.110	0.571	0.401
Morphological correction only	Full	888	-22.312	-7.932	-22.250	-10.005	-22.228	-8.919	0.017	0.102	0.510	0.349
Bias correction only	Sa	101	-22.461	-5.473	-22.297	-7.565	-22.143	-6.954	0.048	0.239	0.463	0.337
	Sb	345	-22.132	-7.205	-22.227	-9.417	-22.034	-8.635	0.025	0.165	0.513	0.353
	Sc	442	-22.031	-8.329	-22.409	-11.530	-22.059	-10.092	0.022	0.175	0.579	0.427
	Full	888	-22.094	-7.296	-22.252	-10.011	-21.997	-8.647	0.015	0.093	0.551	0.398
All corrections	Full	888	-22.107	-8.849	-22.244	-9.996	-22.030	-10.017	0.015	0.098	0.523	0.372
	Low mass	303	-21.831	-8.280								
	High mass	374	-22.281	-8.058								
	a_{df}	b_{df}	a_{inv}	b_{inv}	a_{bi}	b_{bi}	ϵ_a	ϵ_b	σ_D	σ_{ab}	H band	
No corrections	Full	888	-21.990	-6.438	-21.981	-9.595	-21.943	-7.068	0.019	0.117	0.580	0.414
Morphological correction only	Full	888	-22.012	-7.608	-21.972	-9.580	-21.954	-8.289	0.018	0.114	0.542	0.382
Bias correction only	Sa	101	-22.196	-5.383	-22.004	-7.429	-21.996	-6.084	0.054	0.265	0.475	0.355
	Sb	345	-21.910	-6.833	-21.954	-9.100	-21.842	-7.803	0.027	0.165	0.526	0.365
	Sc	442	-21.836	-7.807	-22.119	-10.976	-21.847	-9.165	0.024	0.189	0.569	0.423
	Full	888	-21.879	-7.001	-21.975	-9.587	-21.812	-7.896	0.016	0.105	0.553	0.401
All corrections	Full	888	-21.893	-8.235	-21.967	-9.575	-21.833	-9.016	0.016	0.106	0.530	0.382
	Low mass	303	-21.612	-6.993								
	High mass	374	-21.972	-7.838								
	a_{df}	b_{df}	a_{inv}	b_{inv}	a_{bi}	b_{bi}	ϵ_a	ϵ_b	σ_D	σ_{ab}	J band	
No corrections	Full	888	-21.236	-6.343	-21.218	-9.448	-21.192	-6.905	0.020	0.133	0.613	0.446
Morphological correction only	Full	888	-21.252	-7.433	-21.208	-9.427	-21.198	-8.030	0.019	0.120	0.587	0.423
Bias correction only	Sa	101	-21.349	-5.604	-21.234	-7.347	-21.218	-6.093	0.056	0.297	0.494	0.363
	Sb	345	-21.064	-7.084	-21.188	-8.914	-21.016	-7.795	0.027	0.185	0.562	0.404
	Sc	442	-21.021	-8.244	-21.352	-10.831	-21.017	-9.228	0.026	0.202	0.625	0.476
	Full	888	-21.037	-7.408	-21.207	-9.425	-20.985	-8.104	0.017	0.117	0.597	0.444
All corrections	Full	888	-21.050	-8.428	-21.199	-9.411	-20.999	-9.070	0.017	0.116	0.578	0.426
	Low mass	303	-20.695	-6.588								
	High mass	374	-21.086	-8.289								
In the J band we use

$$\Delta M_{Sa} = 0.23 - 2.86(\log W - 2.5) : \ T \leq 2$$

$$\Delta M_{Sb} = 0.02 - 1.31(\log W - 2.5) : \ 3 \leq T \leq 4.$$

These values are as measured using the data for each sub-sample (separated by morphological type) before it has been corrected for sample incompleteness bias (above). The final fits to the sample separated by morphological type once the incompleteness bias correction has been applied are listed in Table 2, and shown for the K band in Figure 4. They are very similar to what is used here.

The variation of the TF relations with morphological type is found to have a similar magnitude in all three bands, and a similar dependence on the rotational width. The morphological dependence of the TF relation is discussed further in Section 3.2. The caveat to be added here is that if the incompleteness for earlier type spirals is greater than for the later types, then this variation in the TF relation may not be physical but rather the impact of an underestimate of the incompleteness correction for earlier type spirals. Naively, in the NIR we expect the selection criteria to be worse for late types; however, our selection function also takes into account the availability of rotation width data which selects against earlier type spirals. Without a reliable luminosity function (LF) separated by morphological types along the spiral sequence there is no way to tell if the change in slope is due to incompleteness, or telling us something physical about the different types of spirals. There is also a possibility that it is related to variations in the amount of internal extinction in different types of spirals as a function of their intrinsic size, although that effect is not large in the NIR (Masters et al. 2003). In any case the difference in the relations between spiral types should be corrected for to construct the final “universal” TF relation for Scs.

6. Cluster peculiar velocity. To combine all the individual cluster samples into a global TF relation, a peculiar velocity must be estimated for each cluster. We use the peculiar velocities derived in M06 which considered the same set of clusters as is used here. For more details on this step, we refer the reader to M06. Below we discuss further the impact this has on the zero point of the TF relation, and possible error introduced into the zero point by using a subset of the most distant clusters to define a zero point rest frame.

The global template TF relation is shown in Figure 2 for the $in+$ samples in all three bands. A summary of linear fits (direct, inverse and bivariate respectively considering errors in the magnitude direction, width direction and in both directions) to various subsets of the $in+$ sample is given in Table 2. In that table zero points (labeled a) are reported for $H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$. The slopes are labeled b. The last four columns of Table 2 list the error on the bivariate zero point and slope, and the standard deviation and absolute deviation of the points from the bivariate relation. We list results for three fitting methods to aid comparisons with other results (e.g., Section 3), but our preferred method is the bivariate fit which considers errors in both the magnitude and rotational width. Direct fits consider errors only in the magnitude and are the most affected by magnitude incompleteness in the sample. It is often suggested that using inverse fits completely removes the effects of incompleteness bias; however, since inclination-dependent corrections for both the magnitudes and widths create implicit cross-dependences in the final quantities, there will be some incompleteness bias still present in the inverse fits. Our preferred result (using the bivariate fit and all corrections described above) for the TF relation is then

$$M_K - 5 \log h = -22.030 - 10.017(\log W - 2.5),$$

$$M_H - 5 \log h = -21.833 - 9.016(\log W - 2.5),$$

$$M_J - 5 \log h = -20.999 - 9.070(\log W - 2.5).$$
In the fits both the observational errors and an estimate of the intrinsic error of the TF relation are used to weight points. We do not fit for the intrinsic scatter as the same time as the slope and zero point, but measure it after and iterate the fit and scatter measurement until convergence is reached.

The zero point derived for the TF relation from the “basket of clusters” method comes from an assumption that the net motion of a subset of the most distant clusters is zero in the CMB frame (the so-called “cluster reference frame”). We use in this paper the same zero-point calibration (in terms of the peculiar velocities of the clusters in the CMB frame) that was derived in M06 for the I-band TF relation. This zero point could have a systematic offset from the true zero point if there is a net motion of the cluster reference frame with respect to the CMB. The expected size of this possible offset was estimated in M06 under the assumption that the peculiar velocities of clusters are characterized by an rms 1D velocity dispersion with \(\sigma_v = 298 \pm 34 \text{ km s}^{-1} \) (as measured in M06). They use this dispersion to estimate the possible offset from the random peculiar velocities of clusters to be \(|\Delta M| \sim 0.03 \text{ mag} \). This would be an underestimate of the zero-point offset if there were coherent peculiar motions on the scale of the entire cluster sample. However as the sample extends to a distance of \(c\zeta = 10,000 \text{ km s}^{-1} \) and clusters are located all over the sky, a large effect from coherent peculiar velocities seems unlikely. In M06 a Cepheid calibration of the I-band TF relation was compared to the “basket of clusters” zero point and agreement is found for a Hubble constant of \(H_o = 74 \pm 2 \pm 6 \text{ (systematic)} \text{ km s}^{-1} \text{ Mpc}^{-1} \). The fact that this is identical to \(H_o = 74 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1} \) found by Sánchez et al. (2006) from a combination of WMAP and the 2dF galaxy redshift survey suggests that the “basket of clusters” zero point is not biased significantly by any bulk flows across the sample.

3.1. Wavelength Dependence

As found by numerous other authors (see Section 5 below for a discussion of some recent results in the NIR) the TF relation steepens as the wavelength of the band it is measured in increases. We find no significant evidence for wavelength dependence of the scatter (see Section 4 below). Figure 3 summarizes the trends of the slope and zero point with wavelength including both the relations reported in this paper for the \(J, H, \) and \(K \) bands as well as the I-band result from the related sample of M06.

We find that the slope of the TF relation is very close to the simple theoretical expectation of \(b = -10 \) \((L \propto v^6) \) in the \(K \) band, with \(L_K \propto v^{3.61\pm0.04} \). In the \(H \) band we find \(L_H \propto v^{3.61\pm0.04} \) and in the \(J \) band we find \(L_J \propto v^{3.63\pm0.05} \). For their related sample, and using the same method as in this paper M06 find that in the I-band \(L_I \propto v^{3.14\pm0.04} \).

The zero point of the TF relation also changes with band. This change as expected is consistent with the average colors found for galaxies in the template sample of \(J - K = 1.04 \) and \(H - K = 0.28 \), with \(a_J - a_K = 1.03 \) and \(a_H - a_K = 0.20 \).

3.2. Morphological Dependence

We find in all three 2MASS bands that the slope of the TF relation steepens as the sample changes from earlier-type to later-type spirals (see Figures 3 and 4). This is also as found in the I band for the related SFI++ template sample (M06). The amount the slope changes appears to be relatively independent of the band of the TF relation magnitudes. We find little evidence for a zero point change between Sb and Sc galaxies, but Sa galaxies do appear to have a zero point \(\sim 0.2 \text{ mag brighter than later type spirals in all three 2MASS bands.} \)

These findings are contrary to the commonly held idea that morphological variation of the TF relation disappear almost completely in the NIR (e.g., Noordermeer & Verheijen 2007). This conclusion was based on a lack of morphological dependence found by Aaronson & Mould (1983) and Peletier & Willner (1993) in the \(H \)-band TF relation, and was used to argue that the morphological dependence seen in the bluer bands could be attributed to differences in star-formation history between types of spirals. The clear (if small) morphological dependence we pick up is presumably a result of our much larger sample size, and indicates that the change in the TF relation cannot be totally accounted for by the details of star-formation history and instead may be related either to something more fundamental about the dynamics of disk galaxies along the Hubble sequence, or possibly to the dust content or metallicity of different types of spiral galaxies (although dust content is not seen to have a large impact in the NIR, Masters et al. 2003). In M06 we
interpreted the change in slope between different types of spirals
(if real and not an effect of varying incompleteness for different spiral
types) as possibly being due to the dark matter halos of
earlier-type spirals being less concentrated at a given rotation
velocity than later types. The large caveat here is that if the in-
completeness bias is significantly larger for Ss than later-type
spirals, the slope of the Sa relation may be artificially shallowed
and the zero point artificially brightened by the effects of this
bias. Naively, in the NIR we expect the selection criteria to be
worse for late types; however our selection function also takes
into account the availability of rotation width data which selects
against earlier types spirals, so either could be true. However it
should also be noted that much of the change in slope is driven
by massive Ss (and Sbs) which should be unaffected by the
incompleteness bias.

3.3. Luminosity Dependence

There is present in Figure 2 a hint that both at the very
high mass and very low mass ends of the TF relation galaxies
turn off slightly from the mean trend. We divide the full
sample into “luminosity classes” to study this further using
log W limits of log W < 2.4; log W > 2.5 which roughly
selects the lowest and highest mass thirds of the sample.
We fit the TF relation to these subsets; the results are in
Table 2. In this case we are adding in an artificial strict rotation
width limit so biasing both the inverse and bivariate fits. We
therefore report only the direct fit in Table 2. We see evidence
that at both the high- and low-mass ends of the relation there
is a slightly shallower slope; however, in both cases and in all
three bands this difference is very small.

Disentangling fully the luminosity dependence of the slope
and the morphological dependence will be difficult since as
illustrated in Figure 4 the log W distribution of the different
types of spirals is quite different with many more high mass
Sas compared to Scs. We note here that we look for luminosity
dependence after correcting for morphological type as described
in Section 3. Searching for a variation is also complicated by
the impact of the incompleteness bias correction. We assume a
linear TF relation to calculate the bias, which has a large effect
at the low-mass end of the relation. Separating a variation of the
TF at the low mass from this incompleteness bias is obviously
not trivial.

There have been several studies in the optical passbands of
the low-mass end of the TF relation including Kamapprar et al.
(2002) who describe a split in the dwarf extension of the TF
relation in the U, B, and R bands confirming findings by Pierini
(1999) in the B band. Hints of a deviation can also be seen in
the I-band TF presented in M06. Typically the deviation has been
seen to make the slope of the linear relation steeper for low-mass
galaxies, while here we see hints of it shallowing. However, in
other studies (which may have been more complete for low-mass
galaxies) there was no correction for incompleteness bias, which
is found to be quite large in our sample. The bias correction we
apply brightens all points at log W < 2.4 by up to a magnitude
or more (see Figure 1), so any conclusions we draw on the low-
mass end of the relation are highly dependent on the assumption
which went into the bias correction. The choice of rotation width
measure and turbulent motion corrections applied to the widths
also impact the small rotation width galaxies much more greatly.
We use rotation widths based on the width of the H1 line at
50% of the peak, and corrected for a turbulent motion using a
linear correction of 6.5 km s^{-1} as justified in Springob et al.
(2005).

At the high-mass end of the TF relation, Noordermeer &
Verheijen (2007) recently argue that very massive galaxies lie
systematically to the right of the mean K-band TF relation. This
the same as the trend we see here and which is also present in
the I-band relation of M06.

4. THE SCATTER IN THE TF RELATION

The scatter in the TF relation is important, both to understand
the errors on distances derived from TF, and as a constraint for
models of galaxy formation. As in G97b and M06, we observe that
the scatter in the TF relation increases with decreasing
rotation width. We therefore parameterize the scatter as
\[
\sigma = a + b(\log W - 2.5).
\]

In both G97b and M06 there is a discussion of the effect
incompleteness bias can have on the observed scatter. We find
that in this sample the bias on the scatter is fairly small, so we
neglect to correct for it. It should then be noted that the scatter
corrections quoted here are underestimates of the real scatter by
something on the order of 10% at the low-mass end of the relation.
At the high-mass end (above log W ~ 2.5 or W ~ 320 km s^{-1})
there is no longer any impact from incompleteness bias on the scatter.

The measured scatter (standard deviation) is shown for all
three 2MASS bands in Figure 5. A linear fit to the total scatter
gives
\[
\epsilon_{\text{obs},K} = 0.54 - 0.87(\log W - 2.5)
\]
\[
\epsilon_{\text{obs},H} = 0.54 - 0.89(\log W - 2.5)
\]
\[
\epsilon_{\text{obs},J} = 0.56 - 0.66(\log W - 2.5)
\]

(shown by the dash-dot lines in the figure). We estimate the total
measurement errors from the template sample as a function of
rotation width. These values are shown by the dotted lines in
Figure 5. The lower line at \(\sigma \sim 0.1 \) shows the measurement
error on the total magnitudes (in the respective bands) which at
all widths is the least important source of error. The middle line
shows a value of \(|b|\sigma_W \) which is the error on the measured
rotation widths expressed in magnitudes. Adding these two contributions in quadrature approximates the total measurement
error (this neglects the covariances between the two values
which arise from the inclination corrections). Using this estimate
of the total measurement error we also fit for an intrinsic scatter
which varies with rotational width finding:
\[
\epsilon_{\text{int},K} = 0.35 - 1.17(\log W - 2.5)
\]
\[
\epsilon_{\text{int},H} = 0.38 - 1.14(\log W - 2.5)
\]
\[
\epsilon_{\text{int},J} = 0.39 - 0.78(\log W - 2.5).
\]

These estimates of the intrinsic scatter in the TF relation are
shown by the dashed line in Figure 5; the solid line shows the
quadrature sum of this and the total measurement error. This
sum provides a better fit to the observed errors than the straight
line fit.

There is no significant evidence for a variation of the TF
scatter with band; however, there is a consistent increase in the
zero point and decrease in the variation with log W from the K to
the J band. We also find a larger total scatter than in the I-band
sample of M06 (which reports \(\epsilon_{\text{int},I} = 0.35 - 0.37(\log W - 2.5) \))
but this may be related to the larger errors on correcting the
widths for inclination by using 2MASS axial ratios. This may not
be totally accounted for in our estimate of the total measurement
error and certainly could add significant covariance between the
magnitude and width errors, so a direct comparison between the scatter measured here and that of M06 should be done carefully. In the sub-samples divided by morphological type we have not fit separately for the intrinsic scatter a function of log W. From Table 2 however we can compare the total scatter of the different subsets from their own TF relations. We find in all three bands a consistent increase of the total scatter from Sa to Sc galaxies. However, disentangling this effect from the luminosity dependence of the TF scatter will be tricky. There are many more low-mass Scs than SAs and we measure more intrinsic scatter at the low-mass end of the TF relation, so the average Sc should have a larger deviation from the mean TF relation than the average Sa. Whether the causal reason for this larger scatter at the low-mass end of the TF is the lower mass of the galaxies, or the increased number of later types is beyond the scope of this paper, but provides an interesting question for further study.

5. COMPARISON WITH OTHER TF RELATIONS

The first calibration of the TF relation in NIR bands was done by Aaronson et al. (1979). They found a slope of approximately $b = -9.5$ (or $L \propto v^{3.8}$) in the H band using samples of galaxies in the two nearby clusters, Virgo and Ursa Major. This result was similar to the naive expectation of $L \propto v^4$ which arises from a simple consideration of the dynamics of spiral disks and the assumption that M/L is constant (see Appendix C of Courteau et al. 2007 for a recent discussion of simple analytic predictions for the TF slope). Aaronson et al. (1979) also observed that the scatter was lower in the B band TF, paving the way for significant work using the NIR TF relation.

There has been quite a lot of work on deriving template TF relations in the NIR bands since this initial paper. Here we attempt to compare some of these derivations with what we find here. This comparison is not complete, and is biased towards recent calibrations of the NIR TF relations. As has been shown here (and in M06), both the slope and zero point of the TF relation vary with morphological types. If this dependence is not corrected for then samples with different morphological type distributions should show different TF relations. In particular, cluster samples may be more dominated by earlier-type spirals (so expected to have shallower TF slopes) than field samples. Also it is not yet common practice to correct for incompleteness bias when deriving TF relations. TF relations uncorrected for incompleteness bias should all be shallower than what we derive here (with no other differences in the sample make-up)—how much shallower they are will depend on the degree of incompleteness in the sample. Then there are hints that the TF relation slope varies with galaxy luminosity meaning that samples with different distribution of galaxy luminosities may also give different TF relations. With all these different factors to worry about it is clearly over simplistic to compare different calibrations directly. Nevertheless we provide such a direct comparison in Table 3, with brief comments about the different sample make-ups. In the remainder of this section we discuss each calibration in more detail.

Tully & Pierce (2000) derive TF relations in the B, R, I bands using samples of galaxies drawn from 5 nearby clusters (with distance calibrators for the zero point). In a companion paper Rothberg et al. (2000) used a similar sample to derive the K-band TF relation. These papers claim that using the inverse relation "nulls" any bias introduced by sample incompleteness

Figure 5. Total observed scatter in the TF relations in the (a) K band, (b) H band, and (c) J band. The dash-dot line shows a linear fit to the total scatter. Also plotted is the error budget for all galaxies in the dataset as a function of rotation width. The dotted lines show errors associated with the photometry and width measurement (multiplied by the TF slope to be expressed in magnitudes). This is added in quadrature to a width-dependent intrinsic scatter (shown by the dashed line—the sum is shown by the solid line) which is fit for.
(however as discussed in several places this is only true in the case that there is no covariance between luminosity and width errors which is difficult to achieve in practice because of inclination-dependent corrections) They find in the I band (for 155 galaxies) $M_I = -21.57 - 8.11$ (log $W - 2.5$), while in the K band ($N = 65$) they find $M_K = -23.17 - 8.78$ (log $W - 2.5$). This I-band relation is steeper than the bias-corrected relation of M06 ($N = 807$), although consistent with M06's inverse fit with no incompleteness bias correction of $M_I = 5 \log h = -20.89 - 8.341$ (log $W - 2.5$). Barth et al. (2000)’s K-band relation is much shallower than both our preferred K-band result and our inverse fit to the sample with no incompleteness bias correction applied of $M_K = 5 \log h = -22.250 - 10.005$ (log $W - 2.5$), which could be due to the relatively small K-band sample size or the effects of incompleteness. This relation is similar to our fit to Sb galaxies, so the difference could also be explained if the Barth et al. (2000) sample is dominated by Sb and earlier-type spirals. However, this is not the case; this sample actually has almost equal numbers of Sb and Sc galaxies (see their Table 1).

Verheijen (2001) derive B-, R-, I-, and K-band templates for a sample of galaxies in the Ursa Major cluster. They claim this sample ($N = 16$) is complete. They find $M_I = -21.51 \pm 0.83 - (9.6 \pm 0.4)$ (log $W - 2.5$) and $M_K = -23.05 \pm 0.95 - (10.6 \pm 0.4)$ (log $W - 2.5$). The K-band relation is very similar to that found in this paper. The I-band relation is much steeper than that found in M06 and G97b.

Macri (2001) provides a Cepheid calibration of the H and K-band TF templates using 19 galaxies with Cepheid distances, for the 20th magnitude per arcsecond squared isophotal magnitudes in 2MASS they find $M_K = -22.34 \pm 0.07 - 10.4 \pm 0.5$ (log $W - 2.5$) and $M_H = -22.01 \pm 0.02 - 10.5 \pm 0.4$ (log $W - 2.5$). As must be the case for a sample based on galaxies with primary distances the sample size is small, and since galaxies with Cepheid distances tend to lie preferentially at the high-mass end of the TF relation usually it is not a good idea to derive a slope from such a sample. The Macri (2001) K-band slope agrees with our result quite well, while the H-band slope is somewhat steeper.

Karachentsev et al. (2002) derive B, I, J, H, and K TF relations for the most edge-on spirals in 2MASS. The 346 galaxies used are field spirals (therefore likely dominated by late-type spirals) and are placed on the TF relation using absolute magnitudes derived with no correction for peculiar velocities. This could bias the slope as the impact of peculiar velocities is likely to be larger for galaxies at the low-width end of the relation since they are more likely to be nearby. There is also no attempt to correct for sample selection biases. Only the slopes are reported: in the NIR they find $s_J = -8.20 \pm 0.24$, $s_H = -8.71 \pm 0.25$, $s_K = -9.02 \pm 0.25$, shallower than we find in our bias-corrected work, as should be expected.

Theureau et al. (2007) use the “unbiased plateau” of field galaxies (as described in Theureau et al. 1998) to derive TF relations in the 2MASS J, H, and K bands. This method is iterative in that an input TF is used to derive distances to the galaxies from which an unbiased subset is used to construct a new input TF . . . and so on. They find (converted to the terminology used in this paper) $M_K = -23.5 - 6.6$ (log $W - 2.5$), with $\sigma = 0.45$; $N = 990$, $M_H = -23.2 - 6.4$ (log $W - 2.5$), with $\sigma = 0.47$, $N = 1166$ and $M_J = -22.7 - 6.3$ (log $W - 2.5$), with $\sigma = 0.46$, $N = 960$. A Hubble’s constant of $H_0 = 75$ km s$^{-1}$ Mpc$^{-1}$ is implicit in these zero points. We correct to $H_0 = 74$ km s$^{-1}$ Mpc$^{-1}$ for comparison with other work (see Table 3). The slopes of these relations are significantly shallower than we find in this paper for our Sc sample (and that are reported elsewhere in the literature). A possible explanation is that the difference is related to the luminosity distribution of the sample, in that the sample of Theureau et al. (2007) acts like a volume limited sample and is therefore dominated by massive spirals, while the samples in this paper, in Verheijen (2001), Tully & Pierce (2000), and in Karachentsev et al. (2002) have many more low-mass galaxies in them. If lower-mass galaxies exhibit a steeper TF relation than massive spirals this could
explain the difference between the measured slopes (Theureau 2007, private communication). This idea is backed up to some extent by our investigation of the luminosity dependence of the slope; however, these slopes are still significantly shallower than the direct fits to the most massive third of our sample, suggesting that this cannot be the full explanation for the difference. Also Figure 9 of Theureau et al. (2007) shows that the sample to which the TF relation is fit in that paper does not differ significantly in log \(W \) extent from our sample (note that Theureau et al. 2007 use log \(V = \log W - \log 2 \sim \log W - 0.3 \)), so it does not seem likely that this can explain the large difference in TF slope. What appears to be a more likely explanation for the difference in the slopes is the morphological make-up of the sample. A field sample like that in Theureau et al. (2007) might be expected to be dominated by the latest-type spirals; however the selection of only the brightest field galaxies should instead bias it to earlier types. In fact the Theureau et al. (2007) sample (or at least the galaxies with new H1 observations listed in their Table 3) is composed of more than half (64%) Sab and earlier types, (7 \(\leq \) 2), and only 19% Sbs, and 17% Scs and later. Comparing the slopes they find with our “Sa” TF relation the agreement becomes reasonably good.

Courteau et al. (2007) derive \(I \)- and \(K \)-band TF relations from a large dataset of both field and cluster spirals constructed from the combination of four smaller samples. In total they have 1303 galaxies which are placed on the \(J \)-band TF relation, only 360 of which (“the brightest SCI galaxies”) are used to derive the \(K \)-band relation. They find (converted to the terminology used here, and to \(H_0 = 74 \) km s\(^{-1}\) Mpc\(^{-1}\) \(M_I = -21.47 - 8.59(\log W - 2.5) \) and \(M_K = -21.99 - 9.29(\log W - 2.5) \)) fairly similar to the relations in M06 (for \(I \) band) and found here (for the \(K \) band). They also notice trends in the slope and zero point with both band and morphological type of the sample of the same we find in this paper (and was found in M06 for \(I \) band) but of a smaller size. The slope of their Sc \(I \)-band TF relation \((N = 505)\) is \(-9.19\) mag dex\(^{-1}\) while for SAs \((N = 117)\) they find a slope of \(-8.25\) mag dex\(^{-1}\). In the \(K \)-band they find for Scs \((N = 166)\) a slope of \(-9.80\) mag dex\(^{-1}\) and for SAs \((N = 56)\) a slope of \(-9.12\) mag dex\(^{-1}\).

It is interesting to ask if our own Milky Way lies on the TF relation we find in this paper. A previous study by Malhotra et al. (1996) showed that the Milky Way was within 1.5\(\sigma \) of the NIR TF relations of other nearby galaxies. The availability of photometrically accurate all-sky surveys in these bands (like 2MASS and DIRBE) means that it is easier (although still difficult) to estimate the total luminosity of the Milky Way in these bands to place it on the TF relation. The total luminosity of the Milky Way was estimated in the \(J \) and \(K \) bands from DIRBE data by Malhotra et al. (1996) as \(M_K = -24.06\) mag and \(M_J = -23.05\) mag. Recent estimates of the total rotation velocity of the Milky Way vary between \(v = 226 \pm 15\) km s\(^{-1}\) (Lepine et al. 2008) and \(v = 270\) km s\(^{-1}\) (Méndez et al. 1999). We therefore use \(W = 496 \pm 44\) km s\(^{-1}\), or \(\log W = 2.69 \pm 0.05 \) to cover both ends of the estimate. The best guess of the morphological type of the Milky Way is that it is an Sc or Sbc (Hodge 1983), meaning that it should lie on the Sc relations we derive above (see Equations (4)) with no correction for morphology. We find that for \(H_0 = 74\) km s\(^{-1}\) Mpc\(^{-1}\), the Milky Way is slightly underluminous, but consistent within the measured intrinsic scatter of both the \(J \)- and \(K \)-band TF relations, being \(0.32\) mag dimmer than the \(J \)-band TF relation, and \(0.53\) mag dimmer than the \(K \)-band TF relation. If the larger rotational speed is accurate the deviation from the TF relations would be greater, using the small end of the rotation speed estimates the Milky Way is entirely consistent with lying on the TF relation derived here.

6. SUMMARY AND DISCUSSION

The 2MASS Tully–Fisher Survey (2MTF) aims to measure Tully–Fisher (TF) distances to all bright inclined spirals in the 2MASS Redshift Survey (2MRS). Essential to this project is a universal calibration of the TF relation in the 2MASS \(J \) (1.2 \(\mu \)m), \(H \) (1.6 \(\mu \)m), and \(K \) (2.2 \(\mu \)m) bands. We present the first bias corrected (or universal) TF template in these bands. Previously published NIR TF relations have either ignored the issue of incompleteness bias affecting the slope and zero point derived, or have attempted to construct a complete sample from a cluster, or by using only part of their data.

As in earlier work, we find that the slope of the TF relation becomes steeper as the wavelength increases. We find that the slope is close to the simple theoretical expectation of \(L \propto v^4 \) in \(K \) bands, while it is slightly shallower at \(H \) and \(J \) band at \(L \propto v^{3.6} \). The change in zero point between bands in consistent with the mean colors of the galaxies in the template sample.

We investigate the dependence of the TF relation on galaxy morphology, showing that in all three bands the relation is steeper for later-type spirals which also have a dimmer TF zero point. We correct for this dependence in deriving a global TF relation for Sc galaxies in the NIR. We also investigate the luminosity dependence of the slope of the TF relation, finding hints that at both the highest and lowest masses the slope of the TF relation is shallower than the mean relation; however, this effect is not large.

We fit the TF relation using direct, inverse, and bivariate fits. We favor the bivariate fit which takes into account errors on both the width and magnitude measurements (we include the measured intrinsic scatter in the weighting of the fits) finding a TF template for Sc galaxies (but which can be applied to all spirals with a morphological correction) of

\[
\begin{align*}
M_K - 5 \log h &= -22.030 - 10.017(\log W - 2.5), \\
M_H - 5 \log h &= -21.833 - 9.016(\log W - 2.5), \\
M_J - 5 \log h &= -20.999 - 9.070(\log W - 2.5).
\end{align*}
\]

These relations are bases on 2MASS extrapolated magnitudes and rotation widths measured from the H1 line of galaxies at the 50% level of the (peak – rms) on a fit to the edges of the profile \(W_{6350} \); supplemental widths from optical rotation curves are corrected to the \(W_{6350} \) scale using the prescription described in M06 based on the work of Catinella et al. 2007). To measure a TF distance an observation of the inclination, \(i \), of the galaxy is also required to correct the observed Doppler broadened width to the full rotational width of the galaxy, and to correct the observed total magnitude for extinction from dust internal to the galaxy. One would measure the distance to a galaxy using the deviation of a galaxy from this TF relation (\(\Delta M \)) and its measured recessional velocity using

\[
d = \frac{v_{\text{CMB}}}{H_0} 10^{\frac{\Delta M}{5}},
\]

or (equivalently, but now independent of \(H_0 \)) the peculiar velocity in the CMB frame is

\[
v_{\text{pec, CMB}} = v_{\text{CMB}}(1 - \frac{\Delta W}{W}).
\]
Here $\Delta M = M_{\text{obs}} - M(W)$ is the difference between $M_X(W) - 5 \log h$ from the TF relations above (Equations (3), where $X = J, H, \text{or } K$ describes the band the magnitude is measured in) and the corrected absolute magnitude of the galaxy, calculated from the observed apparent magnitude using

$$M_{\text{corr}} - 5 \log h = m_{\text{obs}} - A_X - I_X + k_X - T_X - 5 \log v_{\text{CMB}} - 15.$$ \hfill (7)

The observed magnitude of a galaxy above, has a correction for extinction due to dust in our Galaxy (A_X), and internal to itself (I_X), as well as a cosmological K-correction (k_X). We use the prescription described in detail in Masters et al. (2003) to apply these corrections to the 2MASS extrapolated magnitudes. Also needed is a morphological type correction, $T_X(W)$ to correct for change in slope and zero point we see between different types of spirals. This correction depends on both the type, T and the rotational width of the galaxy and is described in Section 3. The observed width, W_{F50} must also be corrected for instrumental effects (Δ_x), inclination, cosmological broadening, and the effect of turbulent motions (Δ_σ) in the disk:

$$W_{\text{corr}} = \frac{W_{F50} - \Delta_x}{1 + \frac{\Delta_\sigma}{\sin i}},$$ \hfill (8)

The instrumental correction will depend on the details of the telescope used see Springob et al. (2005) for more information on this. Based on arguments in Springob et al. (2005) we use $\Delta_\sigma = 6.5$ km s$^{-1}$.

The scatter in the TF relation is important to understand, both to properly derive distance/peculiar-velocity errors derived from TF, and as a constraint to models of galaxy formation. We fit for an intrinsic TF scatter which varies with galaxy type, and as a constraint to models of galaxy formation.

This work would not have been possible without access to the HI Digital Archive, Optical Rotation Curve and I-band photometry databases at Cornell. We thank Martha Haynes, Riccardo Giovanelli, their students and collaborators for the many hours of work which have gone into the construction of these great resources. This work was supported by NSF grant AST-0406906 at CfA. C.M.S. was a postdoc at the Naval Research Laboratory for the duration of most of this work. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation.

REFERENCES

Aaronson, M., Huchra, J., & Mould, J. 1979, ApJ, 229, 1
Aaronson, M., & Mould, J. 1983, ApJ, 265, 1
Catinella, B., Haynes, M. P., & Giovanelli, R. 2005, AJ, 130, 1037
Catinella, B., Haynes, M. P., & Giovanelli, R. 2007, AJ, 134, 334
Courteau, S., Dutton, A. A., van den Bosch, F. C., MacArthur, L. A., Dekel, A., McGaugh, S. H., & Dalc, D. A. 2007, ApJ, 671, 203
Cutri, R. M., et al. 2006, Explanatory Supplement to the 2MASS All Sky Data Release and Extended Mission Products, http://www.ipac.caltech.edu/2mass/releases/allsky/doc/
Giovanelli, R., Haynes, M., Herter, T., Vogt, N. P., Wegner, G., Salzer, J. J., da Costa, L. N., & Freudling, W. 1997a, AJ, 113, 22
Giovanelli, R., Haynes, M., Herter, T., Vogt, N. P., Wegner, G., Salzer, J. J., da Costa, L. N., & Freudling, W. 1997b, AJ, 113, 53 (G97b)
Haynes, M. P., Giovanelli, R., Salzer, J. J., Wegner, G., Freundling, W., da-Costa, L. N., Herter, T., & Vogt, N. P. 1999a, AJ, 117, 1668
Hodge, P. W. 1983, PASP, 95, 721
Huchra, J., et al. 2005, in ASP Conf. Proc., Nearby Large-Scale Structures and the Zone of Avoidance, ed. A. Fairall, & P. Woudt (San Francisco, CA: ASP), 134
Kamapn, S. J., Fabricant, D. G., & Fransx, M. 2002, AJ, 123, 2358
Karachentsev, I. D., E. Mironova, S. N., Karachentseva, V. E., Kudrya, Y. N., & Jarrett, T. H. 2002, A&A, 396, 431
Kochanek, C. S., Paphe, M. A., Falco, E. E., Huchra, J. P., Mader, J., Jarrett, T. H., Chester, T., Cutri, R., & Schneider, S. E. 2001, ApJ, 560, 566
Lepine, J. R. D., Dias, W. S., & Mishurov, Y. 2008, MNRA, in press (arXiv:0708.1811)
Macri, L. M. 2001, Ph.D. Thesis, Harvard Univ.
Malhotra, S., Spergel, D. N., Rhoads, J. E., & Li, J. 1996, ApJ, 473, 687
Masters, K. L. 2005, Ph.D. Thesis, Cornell Univ.
Masters, K. L. 2008, in ASP Conf. Proc., Frontiers of Astrophysics: Celebration of NRAO 50th Anniversary Symposium, ed. A. Bridle, J. Condon, & G. Hunt (San Francisco, CA: ASP), in press (arXiv:0708.2913)
Masters, K. L., Giovanelli, R., & Haynes, M. P. 2003, AJ, 126, 158
Masters, K. L., Haynes, M. P., Giovanelli, R., & Springob, C. M. 2006, ApJ, 653, 861 (M06)
Mendez, R. A., Platais, I., Giraud, T. M., Kozhurina-Platais, V., & van Altena, W. F. 1999, ApJ, 524, L30
Noordermeer, E., & Verheijen, M. A. W. 2007, MNRAS, 381, 1463
Peletier, R. F., & Willner, S. P. 1993, ApJ, 418, 626
Pierini, D. 1999, A&A, 352, 49
Pizagno, J., et al. 2007, AJ, 134, 945
Rothberg, B., Saunders, W., Tully, R. B., & Witchalls, P. L. 2000, ApJ, 533, 781
Sánchez, A. G., Baugh, C. M., Percival, W. J., Peacock, J. A., Padilla, N. D., Cole, S., Frenk, C. S., & Norberg, P. 2006, MNRAS, 366, 189
Schlegel, D. J., Finkbeiner, D. P., & Davis, R. 1998, AJ, 500, 525
Springob, C. M., Haynes, M. H., Giovanelli, R., & Kent, B. 2005, ApJS, 160, 189
Springob, C. M., Masters, K. L., Haynes, M. H., Giovanelli, R., & Marinoni, C. 2007, ApJS, 172, 599
Theureau, G., Haukset, M. O., Coudreau, N., Hallet, N., & Martin, J.-M. 2005, A&A, 465, 71
Tully, R. B., Rauzy, S., Botteni, L., & Gouguenheim, L. 1998, A&A, 340, 21
Tully, R. B., & Pierce, M. J. 2000, ApJ, 533, 744
Verheijen, M. A. W. 2001, ApJ, 563, 694
ERRATUM: “2MTF. I. THE TULLY–FISHER RELATION IN THE TWO MICRON ALL SKY SURVEY J, H, AND K BANDS” (2008, AJ, 135, 1738)∗

KAREN L. MASTERS1, CHRISTOPHER M. SPRINGOB2,3, AND JOHN P. HUCHRA1

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; karen.masters@port.ac.uk
2 Department of Physics and Astronomy, Washington State University, Pullman, WA 99164, USA
3 Naval Research Laboratory, Remote Sensing Division Code 7213, 4555 Overlook Avenue, SW, Washington, DC 20375, USA

Received 2014 March 23; published 2014 April 16

A sign error was noticed (by Hong Tao) in the application of the internal extinction and k-corrections to magnitudes used in the published article. Both mistakes meant that the corrections were positive (i.e., dimming the magnitudes) rather than negative. The majority of reported magnitudes from that work are therefore dimmer than they should be. However, for a small number of very low luminosity galaxies the corrected magnitudes were brighter than they should be (the smallest correction was erroneously allowed to drop below zero).

The average magnitude error over all \(N = 888 \) galaxies of the sample is 0.34 mag in the J band, 0.18 mag in the H band, and 0.15 mag in the K band. We show the size of the errors for all galaxies in the sample in Figure 1. Unfortunately, because internal extinction depends on galaxy luminosity, the size of the error varies along the TF relation, so both the slope and the offset are subtly affected. This error propagated through the entire analysis of the published article, changing all quantitative results. We have rerun the entire analysis and publish corrected numbers and data tables for that work here.

There is no qualitative change in the TF morphological corrections (Section 3, point 5 in the published article). The updated values are small fractions of a magnitude different from the original values published. They are as follows.

\[\Delta M_{\text{Sa}} = 0.27 - 3.73(\log W - 2.5) : \quad T \leq 2 \]
\[\Delta M_{\text{Sb}} = 0.02 - 1.74(\log W - 2.5) : \quad 3 \leq T \leq 4, \]

\[\Delta M_{\text{Sa}} = 0.24 - 3.60(\log W - 2.5) : \quad T \leq 2 \]
\[\Delta M_{\text{Sb}} = 0.01 - 1.72(\log W - 2.5) : \quad 3 \leq T \leq 4, \]

\[\Delta M_{\text{Sa}} = 0.23 - 3.69(\log W - 2.5) : \quad T \leq 2 \]
\[\Delta M_{\text{Sb}} = 0.00 - 1.91(\log W - 2.5) : \quad 3 \leq T \leq 4. \]

Incompleteness bias corrections depend on the amount of incompleteness in a cluster sample, and the input TF and scatter. For the updated incompleteness functions, we use the shapes of the functions derived in the published article, but correct them by the average offset in magnitude (due to the error) for each individual cluster subsample.

Figure 1. Magnitude errors plotted as a function of rotation width. The offset can be larger for galaxies with large \(\log W \), which have larger internal extinction corrections if they are very inclined. For low luminosity (width) galaxies, the offset can be negative. The average error across the whole sample is shown as the dashed line.

∗ John P. Huchra passed away in 2010, before the errors resulting in the need for this erratum were discovered.
Erratum: 2008, AJ, 135, 1738

Table 1
TF Fit Parameters

Sample	N	Direct Fit	Inverse Fit	Bivariate Fit
		a_{dir}	b_{dir}	a_{inv}
		b_{inv}	b_{inv}	b_{biv}
		ϵ_a	ϵ_b	σ_{SD}
		σ_{abs}		
K band				
No corrections	888	-22.439	-6.650	-22.385
	101	-22.759	-5.104	-22.673
	345	-22.468	-6.631	-22.423
	442	-22.542	-7.612	-22.403
Morphological correction only	888	-22.485	-8.215	-22.424
Bias correction only	101	-22.537	-6.176	-22.476
	345	-22.229	-8.160	-22.395
	442	-22.300	-8.882	-22.608
Full	888	-22.201	-8.110	-22.426
All corrections	888	-22.278	-9.170	-22.418
Low mass	303	-21.989	-9.169	-22.188
High mass	374	-22.514	-8.099	-22.191
H band				
No corrections	888	-22.196	-6.790	-22.207
	101	-22.514	-5.158	-22.237
	345	-22.228	-6.626	-22.173
	442	-22.265	-7.469	-22.396
Morphological correction only	888	-22.227	-8.236	-22.198
Bias correction only	101	-21.349	-8.381	-21.608
	345	-21.976	-8.159	-22.167
	442	-22.012	-8.808	-22.386
Full	888	-21.992	-9.316	-22.191
All corrections	888	-21.992	-9.316	-21.951
Low mass	303	-21.690	-8.838	-21.648
High mass	374	-22.213	-8.219	-21.951
J band				
No corrections	888	-21.591	-6.794	-21.617
	101	-21.909	-5.081	-21.642
	345	-21.619	-6.531	-21.573
	442	-21.617	-7.301	-21.814
Morphological correction only	888	-21.625	-8.299	-21.608
Bias correction only	101	-21.349	-8.375	-21.608
	345	-21.374	-8.027	-21.566
	442	-21.372	-8.663	-21.805
Full	888	-21.384	-9.597	-21.601
All corrections	888	-21.384	-9.597	-21.370
Low mass	303	-21.069	-8.530	-21.570
High mass	374	-21.561	-8.554	-21.570

Notes. Column 1 describes the sample used to fit to, Column 2 shows the total number of galaxies in that sample. Columns 3–8 show parameters for $M - 5 \log h = a + b(\log W - 2.5)$ using direct, inverse, and bivariate fits. Also shown for the bivariate fits are the error on a and b (Columns 9 and 10), and the scatter calculated as the standard deviation (Column 11) and absolute deviation (Column 12). Inverse and bivariate fits are not reported for the sample divided by galaxy size since the artificial log W cutoff, which is applied, creates a large bias in those fits.
The input TF relations have been updated as follows (these are corrected with the galaxy morphology corrections as above).

\[
M_K - 5 \log h = -22.396 - 9.484(\log W - 2.5), \\
M_H - 5 \log h = -22.182 - 9.260(\log W - 2.5), \\
M_J - 5 \log h = -21.597 - 9.230(\log W - 2.5).
\]

The scatters we use are the scatters from the above relations, which are

\[
\epsilon_{\text{int}, K} = 0.42 - 1.63(\log W - 2.5), \\
\epsilon_{\text{int}, H} = 0.46 - 1.53(\log W - 2.5), \\
\epsilon_{\text{int}, J} = 0.47 - 1.39(\log W - 2.5).
\]

The magnitude of the bias correction for a given galaxy depends the absolute magnitude of the galaxy. As these in general have brightened, the incompleteness is slightly larger than previously, and most incompleteness bias corrections have increased very slightly. On average, the bias correction is larger by 0.02, 0.09, and 0.03 mag in the \(K\), \(H\), and \(J\) bands, respectively, with a slight trend for larger absolute changes in the correction for smaller width galaxies.

The small changes carry through to the final template as follows.

\[
M_K - 5 \log h = -22.188 \pm 0.015 - 10.74 \pm 0.10(\log W - 2.5), \\
M_H - 5 \log h = -21.951 \pm 0.017 - 10.65 \pm 0.11(\log W - 2.5), \\
M_J - 5 \log h = -21.370 \pm 0.018 - 10.61 \pm 0.12(\log W - 2.5).
\]

This results in a template which in the \(K\) band is both brighter by 0.15 mag and steeper by 0.7 mag dex\(^{-1}\). Both of these are statistically significant changes—at about the 5–7\(\sigma\) level. In the \(H\) band the change results in a 0.12 mag brightening of the zero point and a steepening of 1.6 mag dex\(^{-1}\). In the \(J\) band we see a 0.37 mag brightening of the zero point and a steepening of 1.5 mag dex\(^{-1}\).

An updated version of Table 2 from the published article, providing a summary of all TF fits to the corrected data, is provided below.

The new template results in only minor changes to the measured scatter. The updated observed scatter from the global TF in all three bands is shown below. These have zero points 0.01–0.04 mag larger than previously seen and also show a slightly steeper dependence on \(\log W\).

\[
\epsilon_{\text{obs}, K} = 0.56 - 0.92(\log W - 2.5), \\
\epsilon_{\text{obs}, H} = 0.58 - 0.96(\log W - 2.5), \\
\epsilon_{\text{obs}, J} = 0.60 - 0.80(\log W - 2.5).
\]

Once corrected for measurement errors, this results in an intrinsic scatter of

\[
\epsilon_{\text{int}, K} = 0.34 - 1.31(\log W - 2.5), \\
\epsilon_{\text{int}, H} = 0.38 - 1.28(\log W - 2.5), \\
\epsilon_{\text{int}, J} = 0.40 - 1.05(\log W - 2.5).
\]

We apologize for any inconvenience caused by this error. We thank Tao Hong for his careful work that allowed him to identify it.