The Dual Role of Bone Morphogenetic Proteins in Cancer

Duc-Hiep Bach,1 Hyen Joo Park,1 and Sang Kook Lee1

1College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea

Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.

Bone morphogenetic proteins (BMPs), originally disclosed as an osteogenic factor in 1965,1 are considered a unique extracellular multifunctional signaling cytokine and represent part of the transforming growth factor-β (TGF-β) superfamily.2 The identification of BMPs has increasingly attracted much attention due to their functions not only in embryonic and postnatal development but also in tumor development and dissemination.3 These roles of BMPs are also highly correlated to various aspects of carcinogenesis, such as angiogenesis, epithelial-mesenchymal transition (EMT), and cancer stem cells. There are several reviews demonstrating the backbone of the BMP signaling pathways.4,5 In summary, BMP ligands bind to their receptors, including type I and type II, to form a heterotetrameric complex, which then activates the phosphorylation, recruitment, translocation, and gene expression of small mothers against decapentaplegics (SMADs) in cells.6 These interactions between BMPs and their antagonists or receptors significantly support the identification of the aggressiveness of primary tumors and establish a mechanism for cancer cell metastasis.

Additionally, various tumor microenvironment factors that strongly affect tumorigenesis interact with BMPs, such as microRNAs (miRNAs), mutations, or drug treatment. miRNAs, small molecules of approximately 18–25 nucleotides in length, can modulate gene expression through translational repression, and their critical roles in cancer progression and osteogenesis were recently manifested.7-8 The molecular mechanisms involved in the negative regulation of BMP activity by miRNAs are also evident. The purpose of this review is to provide a comprehensive understanding of BMPs in modulating cancer progression and their dynamic interactions with tumor microenvironment factors.

Biological Actions of BMPs and Their Involvement in Cancer Antagonists, Ligands, and Receptors

BMP action is closely associated with certain classes of molecules that were recently characterized as BMP antagonists. These BMP antagonists may be broadly divided into three classes: ligand antagonists, which directly bind to BMPs; BMP pro-regions, which complex back with mature BMPs; and receptor antagonists, which prevent BMPs from occupying receptors, thus prohibiting BMPs from binding to their cognate receptors.9,10 Similar to their targets, they possess a signal peptide for secretion and putative N-linked glycosylation sites.9 Although BMP antagonists often exert biological functions as inhibitors of BMP action, in some cases, they function as activators of BMPs during distinct phases of development. Among the various BMP antagonists (Table 1; Figure 1),11-15 Noggin, which was originally isolated from the aquatic frog genus Xenopus16 and is encoded by the NOG gene, has received much attention due to its biological functions in cancer. Sharov et al.17 indicated that Noggin stimulates skin tumorigenesis via Wnt and sonic hedgehog (Shh) signaling pathways in K14-Noggin mice. Noggin was also identified as a specific breast cancer bone metastasis-supporting gene that enhances the metastatic ability of breast cancer cell lines, therefore promoting the tumor-initiating ability of 1833 and SKBR3 cells.18 Similar to Noggin, Gremlin 1 is also a BMP antagonist. Gremlin 1 knockdown suppresses cancer stem cell (CSC) proliferation and tumor development in CSC models.17 This function of Gremlin 1 is believed to be highly associated with stimulating cell cycle progression in CSCs via p21.17 Additionally, Gremlin 1 was investigated as the gene most consistently expressed at a higher level in basal cell carcinoma (BCC) tumor stromal cells compared to those from non-tumor skin.18 Sneddon et al.18 also reported that Gremlin 1 can stimulate tumor cell proliferation. In contrast, overexpression of Noggin leads to decreased tumor size and reduced bone loss.
comparing to control animals in prostate cancer (PC) cells implanted with tibias. Busch et al. reported that Noggin suppresses an EMT-like transition of melanoma cells and inhibits invasive growth of murine B16-F1 cells in the optic cup of the chick embryo. Similarly, Cyr-Depauw et al. found that inducible reduction of ShcA expression impairs mammary tumor development, and this stable reduction in the ShcA level enhances Chordin-like 1 (Chrdl1) in vivo. They also suggested that Chrdl1 blocks breast cancer cell migration and

Components Involved	Cancer Cell/Model	Related Targets/Pathways	Roles	References
Antagonists				
Noggin	K14-Noggin mice	Wnt, Shh	reduces tumor size and decreases bone loss compared to untreated control animals	19
	tumor cells	–	promotes skin tumorigenesis	15
	blood vessels	BMP4	suppresses BMP4 induction of vascular endothelial growth factor receptor (VEGFR)-2	87
	tumor cells	–	Noggin silencing suppresses the growth of PC-3/F/Luc cells in bone xenografts	88
	tumor cells	BMP7	ectopic Noggin expression rescues tumorigenicity of Adenoviral (Ad)/BMP7-infected melanoma cells	89
	B16-F1 cells/chick embryo	BMP2	suppresses the invasive growth of murine B16-F1 melanoma cells	20
Follistatin	Inhibin-deficient mice	–	acts as a modulator of gonadal tumor progression and the activin-stimulated wasting syndrome	90
Gremlin 1	basal cell carcinoma tumors	BMP4	most consistently expressed at a higher level in BCC tumor stromal cells compared to non-tumor skin	18
	tumor cells	BMP2, p21	promotes proliferation and tumor growth by non-stem glioma cells	17
Drm/Gremlin	chick embryo CAM implants	BMP4	interacts directly with target endothelial cells	91
DMH1	primary mammary tumor	SMAD1/5/8, inhibitor of DNA-binding (ID)1, Ecad	alters tumor-associated fibroblasts	92
Receptors				
BMPR2	tumor cells	SMAD1/5/8, pRb, Cyclin B	BMPRII expression is associated with clinicopathological features of chondrosarcomas	93
	MMTV.PyVmT mice	cytokines, growth factors	BMPRII suppression inhibits chondrosarcoma tumor growth	94
BMPRIA and BMPPIB	BMPRIA BMPPIB double-mutant mice	SMAD1/5	ovarian tumor development was observed in BMPRIA BMPPIB dknockout (dko) mice but not in BMPRIA cKO or BMPPIB cKO mice	95
BMPRIA	Muc5ac	BMP signaling via BMPRIA inhibits tumorigenesis at gastric junctional zones	28	
BMPRIA	K19-C2mE mice	PGE2	BMP suppression and prostaglandin E2 (PGE2) induction lead to gastric hamartoma development independent of the Wnt/β-catenin pathway	96
BMPRIB	invasive ductal carcinoma (IDC) patients	–	low expression of BMPRIB shows poor prognosis of breast cancer and is sensitive to taxane-anticycline chemotherapy	97
BMPRIB	breast tissue samples	–	reduced expression of BMPRIB increases the proliferation of breast cancer cells	98
BMPRIB	estrogen receptor (ER)-stratified breast tumors	miR-125b	BMPRIB transcript is a direct target of miR-125b, which differentially modulates the C/T allele variants of rs1434536	99
BMPRIA	KO mice	EMT-like changes	BMPRIA acts as a tumor promoter in human breast cancer	27

Table 1. BMP Components in Various Cancers

www.moleculartherapy.org

Review
invasion by regulating BMP-stimulated matrix metalloproteinases (MMP)2 and MMP9 enzymatic activity.21

Furthermore, BMPs are considered multifunctional cytokines belonging to the TGF-β superfamily. Like other members of the TGF-β superfamily, BMPs can bind and form heteromeric complexes with two types of serine/threonine kinase receptors (type I and type II) on the cell surface, both of which are required for signal transduction.22–24 Therefore, they modulate tumor growth, differentiation, or apoptosis in a variety of cancers (Tables 1 and 2; Figure 2).25,26 Pickup et al.27 recently found that deletion of the BMP receptor type IA (BMPR1A) impairs mammary tumor formation and metastasis in conditional knockout mice, suggesting that BMPR1A acts as a tumor promoter in human breast cancer. However, Bleuming et al.28 demonstrated that the squamous columnar and gastrointestinal junctional zones in mice are epithelial areas that enhance oncogenesis; nevertheless, these areas are inhibited by the BMPR1A signaling pathway.

BMPs: Tumor Suppressors or Oncogenes?

At present, there is a greater understanding of the critical functions of BMPs in cancer. BMP4 was reported to stimulate breast cancer cell invasion and promote bone remodeling.29 Clinically, Paez-Pereda et al.30 described the role of BMP4 in tumorigenesis with the stimulation of tumor formation. In contrast, emerging studies have suggested that BMPs exhibit tumor-suppressive functions in cancer development. Ye et al.31 suggested that BMP10 suppressed the growth and aggressiveness of PC cells by inducing apoptosis via a SMAD-independent pathway, which was correlated to the modulation of extracellular signal-regulated kinase (ERK)1/2 and X-linked inhibitor of apoptosis protein (XIAP). Cao et al.32 also reported that BMP4 suppresses breast cancer metastasis by inhibiting myeloid-derived suppressor cell activity in mice. They also suggested that BMP4 decreases granulocyte-colony stimulating factor (G-CSF) secretion via the suppression of nuclear factor-kB (NF-kB) activity.32 Taken together, the wealth of conflicting studies indicated that the same ligand may work differently depending on the cancer type, and it seems that multiple members in the BMP family should not be tested as simply equals.33 Furthermore, the same BMP ligand within the same cancer type is likely to work differently, depending on the study. Therefore, conclusions based on simply one cell line may be too straightforward, so diverse cancer cell lines or different types of tumors should be used; the suitable consensus is that multiple BMPs and their involvement might act as both tumor promoters and oncogenes in cancer development (Figure 3).34–39 Although there is no definitive correlation between BMPs and the development of tumorigenesis, a large number of studies indicate a positive effect of BMPs on cancer development. Therefore, BMPs should be paid careful attention for cancer patient treatment.

Aberrance of BMPs and Their Implications in Cancer

There is increasing evidence that BMP proteins and BMP signaling components are novel biomarkers with significant therapeutic implications for cancer treatment even though the expression of specific BMPs remains controversial. Among the various cancers summarized in Table 3, prostate and breast cancers have been commonly used to study BMP signaling due to the unique features of their metastasis to bone tissues. Horvath et al.40 suggested that BMP2 may act as a marker of poor prognosis due to its significant decrease in PC compared to benign prostate tissue. Furthermore, Morrissey et al.41 found that BMP7 protein is expressed at higher levels in PC bone
Table 2. Bone Morphogenetic Protein Ligands in Various Cancers

Tumor Type	Cell Type/Model	BMPs and Their Involvement	Related Targets or Pathways	Expression and Functions	References
Lung cancer	A549/nude mice	BMP2	ID-1, SMAD1/5	highly overexpressed in human NSCLC compared to normal lung tissue or benign lung tumors	100,101
			Noggin, SMAD1/5/8, ERK-1/2	enhances the angiogenic response in developing tumors	102
	150 patients and 69 healthy volunteers	BMP2	–	a significantly higher level of serum BMP-2 was observed relative to the control group	103
	A549/nude mice	BMP4	p-ERK, VEGF, SMAD1	BMP4-treated cells exhibit significantly smaller xenograft tumors compared to untreated cells	104
	lung tissues	BMP2 and BMP4	miR-200, JAG2	knockdown of BMP4 suppresses metastasis and tumorigenesis	105
	lung cancer patients	BMP2 and BMP4	–	significantly higher in lung cancer samples than in adjacent normal lung tissues	106
	A549/nude mice	BMP3B	c-Myc	re-expressing of BMP3B caused tumors to grow significantly slower than those not expressing BMP3B	107
	lung cancer patients	BMP3b and BMP6	mutation of K-ras codon 12	BMP3b and BMP6 genes are common targets of epigenetic inactivation in NSCLC	108
	lung tissues	BMP7	SMAD1	higher BMP7 expression may be an indicator of bone metastasis	109
	A549/mouse	Spp24	BMP2	BMP7 expression is associated with lymph node involvement in patients with lung cancer	110
	MDA-MB-231/nude mice	BMP7	–	stable overexpression of BMP7 suppresses de novo formation and progression of osteolytic bone metastases	34
	primary tumor specimens	BMP4 and BMP7	–	BMP4 and BMP7 are the most frequently expressed and display the highest expression levels	111-113
Breast cancer	MDA-MB-231 cells and pre-adipocytes, adipocytes/Nude mice	BMP9	signal transducer and activator of transcription (STAT)3, ERK-1/2, Akt	inhibits the growth and metastasis of breast cancer cells	114
	MDA-MB-231/mouse xenograft model	BMP4	–	suppresses breast tumor growth and decreases leptin expression in pre-adipocytes/adipocytes	115
	BALB/c mice	BMP4	NF-κB	causes a trend toward metastasis formation, especially in bone	32
	tumor patients	BMP12	–	BMP12 expression is decreased in breast tumors and is associated with a poor prognosis	117
Adrenocortical carcinoma	tumors	BMP2 and BMP5	Akt	expression of BMP2 and BMP5 is lower in ACC and adrenocortical tumor cell lines	118

Continued on next page
Tumor	Cell Type/Model	BMPs and Their Involvement	Related Targets or Pathways	Expression and Functions	References
Medulloblastoma (MB)	xenograft model	BMP2	p38, apoptosis	BMP2 mediates retinoid-stimulated apoptosis	82
mice MB	Medulloblastoma (MB)	BMP4	Atoh1, Shh	BMPs are potent inhibitors of MB	119
tissue MB	Medulloblastoma (MB)	BMP7	Myc	BMP4 inhibits mouse MB proliferation in vivo	120
primary tumors		BMP3		BMP3 is downregulated in 50 of 56 primary tumors	121
colorectal tumors		BMP4	PI3K/Akt	recombinant BMP4 induces apoptosis and differentiation of chemoresistant colorectal cancer stem cells (CRC-SCs)	122
HCT16/xenograft tumor model		BMP2		activates the canonical and non-canonical BMP signaling pathways	123
mouse model of gastric	BMP signaling	PGE2		forced expression of BMP2 stimulates a significantly induced level of apoptosis	125
tumorigenesis					124
serum from patients	BMP2	ERK-1/2, Akt, EMT		BMP suppression appears to contribute to gastric cancer development	126
cancer patients					127
mice		DNA damage			128
mice infected with					129
Helicobacter spp.					130
MDA-PCa-119b/tumor		BMP4	cytokines: Interleukin (IL)-8, GRO, C-C motif chemokine ligand (CCL)2	BMP4 mediates osteogenesis in the progression of PC in bone	131
Prostate cancer (PC)	human PC tissue	BMP7	SMAD1/4/5, E-cadherin, vimentin	acts as a potential inhibitor of PC bone metastasis in vivo	132
PC patients		BMP7		BMP7 induces reversible senescence in PC	133
cancer cases		BMP6	ID-1, MMP activation	associated with increased ID-1 protein level and a more invasive phenotype	134
epithelial tumor cells		SMAD		related to stromal features and shorter postsurgical overall survival in pancreatic ductal adenocarcinomas	135
Pancreatic cancer	PANC-1 cells/ xenograft tumor model	BMP2	Spp24	BMP2 dramatically promotes tumor growth	136
				secreted phosphoprotein (Spp24) abolishes the effect of BMP-2 and induces tumor shrinkage when used alone	137

(Continued on next page)
and soft tissue metastasis compared to primary PC. They also suggested that BMP7 signaling may be associated with clinical disease progression.41 Ye et al.42 previously reported that the upregulation of BMP7 in prostate tumors may be correlated with hepatocyte growth factor (HGF) or scatter factor (SF) (HGF/SF) in an in vivo murine tumor model. Ma et al.43 indicated that the expression of BMP2, BMPR1B, and BMPR2 is low in epithelial ovarian cancer tissue and suggested that these variations or loss of expression may elicit poor prognosis for ovarian cancer patients. Taken together, the aberrance of BMPs and their involvement in cancer have been implicated in various solid tumors and disease-specific bone metastasis.

BMPs and Their Components with Mutations in Cancer

Previous studies have shown that heterozygous mutations in BMPR2 were correlated to human familial and idiopathic pulmonary arterial hypertension, and decreased BMPR2 expression has been found in the lung tissues of all patients with pulmonary hypertension tested.44–46 Kraunz et al.47 found that the co-inactivation of BMP3b and BMP6 is highly associated with the mutation of k-ras (codon 12) in lung cancer, and these genes are common targets of epigenetic inactivation in non-small-cell lung cancer (NSCLC). Furthermore, BMP signaling may also be inactivated by a germline mutation of BMPR1A in the colon cancer predisposition syndrome, juvenile polyposis (JP).48,49 Recently, Voorneveld et al.50 provided evidence that p53 mutation can affect the activity of BMP signaling, thereby modulating Wnt signaling activity despite adenomatous polyposis coli (APC)/β-catenin mutations. Inactivation of activin signaling via mutations in activin type II (ACVR2) was also found in the majority of colon tumors with microsatellite instability.51,52 Therefore, the activity of BMPs and their involvement may be altered by changes in gene expression and mutations in cancer.

Negative Modulation of BMPs by miRNAs

miRNAs are short, non-coding RNAs of 18–25 nucleotides in length that play a significant role in numerous tumorigenic processes.7 Braig et al.15 determined the molecular mechanisms leading to the overexpression of BMP4 in melanoma cells compared to normal melanocytes and identified miR-196a as a BMP4-negative regulator that directly suppresses BMP4 in malignant melanoma. Similarly, by profiling miRNAs during BMP2-stimulated osteogenesis of C2L12 mesenchymal cells, Li et al.54 characterized two representative miRNAs and showed that miR-133 directly targets Runx2, an early BMP response gene essential for bone formation, and that miR-135 may also target SMAD5, a key transducer of the BMP2 osteogenic signal. Rai et al.55 employed unbiased genome-wide approaches in diffuse large B cell lymphoma and found that miR-155 directly targets the BMP-responsive transcriptional factor, SMAD5. miR-155 overexpression suppressed SMAD5 expression and disrupted its activity.56 In 100 hepatocellular carcinoma tissues, Li et al.56 found that miR-148a directly inhibited the expression level of activin A receptor type 1 (ACVR1), a key receptor in the BMP signaling pathway. They also determined that this miRNA is related to cancer development and metastasis via the ACVR1/BMP/Wnt...
In primary mouse keratinocytes following BMP4 treatment, Ahmed et al. identified miR-21, which is significantly suppressed by BMP4. They also found that miR-21 regulates two groups of BMP4 target genes, including tissue inhibitors of metalloproteinases (TIMP)1, TIMP3, and programmed cell death (PDCD)4. In primary keratinocytes and HaCaT cells, miR-21 can also prevent the inhibitory effects of BMP4 on cell migration and proliferation. Consistent with this observation, Qin et al. also showed that bone morphogenetic protein receptor II (BMPRII) is a direct target of miR-21 in PC3 and LnCap PC cells. Together, these studies indicate the existence of an additional level of complexity in the modulation of the BMP pathway.

BMPs and Drug Resistance in Cancer

Cancer cell chemoresistance is considered as a major impediment in medical oncology. Emerging studies indicated that drug resistance of cancer cells is able to be related to various factors such as epigenetics, miRNAs, and cytokines. Such a phenomenon has been indicated for the superfamily member TGF-β, which is suggested as an emerging player in drug resistance. BMPs and their components have also been implicated to various different drug resistance of cancer. Indeed, Wang et al. recently demonstrated that the resistance of lung squamous cell carcinoma patients with epidermal growth factor receptor (EGFR) mutations to EGFR tyrosine kinase inhibitors (EGFR-TKIs) was, in part, due to activation of the BMP-BMPR-SMAD1/5 signaling pathway. Subsequently, the combined treatment of these cancer cells together with inhibitors specific to BMPR may overcome the resistance to EGFR-TKIs. Xian et al. enrolled 938 patients with stage III or IV NSCLC and reported that patients with high-level expression of BMP4 had a significantly higher chance of being resistant to chemotherapy than those with low BMP4 expression. Du et al. reported that knockdown of BMP2 increased chemo-resistance of the MCF-7 breast cancer cell line. Similarly, Liu et al. also suggested that hypermethylation contributed to the regulation of BMP6 during the acquisition of drug resistance in breast cancer cells. BMP6 was recently indicated to induce castration resistance in breast cancer cells. However, employing the HH inhibitor, IPI-926, prevented the resistance to chemotherapy in breast cancer cells. Choi et al. also demonstrated that treatment with BMP2 in vivo leads to increased tumor growth and chemotherapy resistance. Octamer-binding transcription factor (Oct) and nestin, stem cell markers that promote cell survival, are highly associated with resistance to chemotherapeutic agents, suggesting that the failure of cancer treatment and BMP signaling is a growth stimulator in cancer cells expressing Oct4 or nestin. Lan- genfeld et al. employed DMH2, a small molecule BMP inhibitor, and found that DMH2 also significantly suppressed cell growth of nestin/GFP- or Oct4/GFP-expressing cells. Similarly, Coffman et al. found that human ovarian carcinoma-associated mesenchymal stem cells (CA-MSCs) promote chemotherapy resistance of ovarian cancer by stimulating the BMP4/Hedgehog (HH) signaling pathway. However, employing the HH inhibitor, IPI-926, prevented...
CA-MSC-mediated increases in chemotherapy resistance and tumor growth.72

Conversely, Persano et al.73 reported that BMP2-based treatment increased the temozolomide response in hypoxic drug-resistant glioblastoma multiforme (GBM)-derived cells. Eramo et al.74 indicated that chemotherapy resistance is one of the leading reasons for poor GBM among the most aggressive tumor types. However, Tate et al.75 found that a BMP7 variant may reduce tumor growth and stem cell marker expression in subcutaneous and orthotopic glioblastoma stem-like xenografts. Lian et al.76 also demonstrated that knockdown of BMP6 in breast cancer cells increased chemoresistance to doxorubicin by upregulating multiple drug resistance (MDR)-1/P-glycoprotein expression and activating the ERK signaling pathway.
Overall, BMPs and their involvements highly related to drug resistance of cancer cells and employing BMP family inhibitors may promisingly enhance efficiency of cancer treatment.

Bioactive Compounds Targeting the BMP Pathway

Natural compounds have been employed to cancer treatment for thousands of years and therefore, targeting BMPs with dietary natural-product-derived compounds is considered one of several therapeutic strategies in preventing cancer progression. To illustrate, Craft et al. demonstrated that genistein, a component of soybean, therapeutically induces reversion to a low-motility phenotype in aggressive endoglin-deficient human PC cells by activating anaplastic lymphoma kinase (ALK2)-SMAD1 endoglin-associated signaling. Hallahan et al. indicated that retinoid treatment may abrogate tumor growth in medulloblastoma xenografts. Using specific retinoid receptor agonists and gene expression arrays, they identified BMP2 as a candidate mediator of retinoid activity. Retinoid-stimulated expression of BMP2 is subsequently important and sufficient for apoptosis of retinoid-responsive cells, and the expression level of BMP2 by retinoid-sensitive cells is sufficient to promote apoptosis in surrounding retinoid-resistant cells. Kodach et al. also reported that statins, which induce apoptosis in colorectal cancer (CRC) cells via stimulation of BMP2, may only be effective in SMAD4-expressing CRCs and have adverse effects in SMAD4-negative tumors. Subsequently, based on these possible effects of statins on bone tissue, Chen et al. found that simvastatin induces osteoblast viability and differentiation via the RAS/SMAD/ERK/BMP2 signaling pathway.

Additionally, by employing in silico screening, Ahmed et al. attempted to identify new low-molecular-weight drug-like compounds with high theoretical scores to bind to Noggin to suppress the BMP-Noggin interaction. Sanvitale et al. also identified a new small molecule inhibitor of BMP signaling, K02288, a highly selective 2-aminopyridine-based inhibitor with in vitro activity against ALK2 at lower concentrations, similar to the current lead compound, LDN-193189, by screening a panel of 250 recombinant human kinases. In conclusion, the identifying bioactive compounds that specifically target BMPs and their involvements will provide the promising for high-through screening in a range of in vitro and in vivo models of disease where BMP functions are implicated. The progression of this study will drive toward clinical trials for new potential inhibitors of BMPs and their involvements in cancer treatment.

Conclusions

From the data described in the present review, it is necessary to understand the roles of BMPs and their functions in tumor growth so that the pleiotropic effects of BMPs can be manipulated by antagonists, small molecular inhibitors, miRNAs, or bioactive compounds. Altered expression of BMPs has been detected in many types of cancers and can be used as a marker of good prognosis in cancer treatment. However, the specific regulatory factors responsible for the dual behaviors of BMPs in cancer remain unclear. Further studies on a larger number of cancers are needed to investigate the molecular events involved in BMP signaling and their functions in tumorigenesis and metastasis. This review also supports the general conclusion that BMPs are a double-edged sword in cancer biology, as they can serve as tumor suppressors or tumor promoters depending on the type of cell or tissue in the microenvironment, epigenetic background of the patient, or stage of tumor growth.

Table 3. Expression of BMPs and Their Involvement in Cancer

Cancer Type	Cell Type/Model	BMPs and/or Their Related Components	Expression	Functions	References
Bladder cancer	patient specimens	BMP2, BMP7	decreased	low expression of BMP2 and BMP7 is highly correlated to a shorter time to recurrence	135
	human tissues	BMPR1A, BMPR1B, BMPR2	decreased	the levels of expression of BMP are not indicative of tumor stage	137
Prostate cancer	human tissues	BMP2	decreased	BMPs often lose their expression during the progression of prostate cancer	40
	human tissues	BMP2	decreased	BMP2 is downregulated in prostate cancer compared to benign prostate tissue	40
	human tissues	BMP2	increased	tumors with high BMP-2 expression have higher rates of local failure compared to other tumors with low expression	138
	human tissues	BMP2	increased	associated with tumor invasion and progression in papillary thyroid carcinoma	139
	patient tissues	BMP4	increased	patients with cancer-associated anemia (CRA) have high expression of BMP6	140
	anemia/patients	BMP6	increased	negatively related to s-Hemojuvelin (HJV)	141
Blood	tissues	BMP12	decreased	associated with a poor prognosis	135
	tissues	BMP12	decreased	the expression of BMP7 in metastatic and primary melanomas is strongly expressed compared to weak expression in normal nevi	141
Melanoma cancer	tissues	BMP7	increased		141
REFERENCES

1. Urist, M.R. (1965). Bone: formation by autoinduction. Science 150, 893–899.
2. Guo, X., and Wang, X.F. (2009). Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 19, 71–88.
3. Hardwick, J.C., Kodach, L.L., Offerhaus, G.J., and van den Brink, G.R. (2008). Bone morphogenetic protein signalling in colorectal cancer. Nat. Rev. Cancer 8, 806–812.
4. Rahman, M.S., Akhtar, N., Jamil, H.M., Banik, R.S., and Asaduzzaman, S.M. (2015). Bone morphogenetic antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc. Natl. Acad. Sci. USA 103, 14842–14847.
5. Vink, M.S., Petrigliano, F.A., Liu, N.Q., Chatzioannou, A.F., Stout, D., Kang, C.O., Dougall, W.C., and Lieberman, J.R. (2009). Influence of simultaneous targeting of the bone morphogenetic protein pathway and RANK/RANKL axis in osteolytic prostate cancer lesion in bone. Bone 44, 160–167.
6. Buijs, S., Cross, S.S., Brown, N.J., Hamdy, F.C., and Robson, C.N. (2008). BMP-6 over-expression in prostate cancer is associated with increased Id-1 protein and a more invasive phenotype. J. Pathol. 214, 394–404.
7. Hu, F., Meng, X., Tong, Q., Liang, J., Xiang, R., Zhu, T., and Yang, S. (2013). BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochim. Biophys. Acta 1832, 2379–2390.
38. Huang, P., Chen, A., He, W., Li, Z., Zhang, G., Liu, Z., Liu, G., Liu, X., He, S., Xiao, G., et al. (2017). BMP-2 induces EMT and breast cancer stemness through Rb and CD44. Cell Death Dis. 3, 17039.

39. Wang, L., Park, P., Zhang, H., La Marca, F., Claesson, A., Than, K., Rahman, S., and Lin, C.Y. (2012). BMP-2 inhibits tumor growth of human renal cell carcinoma and induces bone formation. Int. J. Cancer 131, 1941–1950.

40. Horvath, L.G., Henshall, S.M., Kench, J.G., Turner, J.J., Golovsky, D., Brenner, P.C., O’Neill, G.F., Kooner, R., Stricker, P.D., Grygiel, J.J., and Sutherland, R.L. (2004). Loss of BMP2, Smad8, and Smad4 expression in prostate cancer progression. Prostate 59, 234–242.

41. Morrissey, C., Brown, L.G., Pitts, T.E.M., Vessella, R.L., and Corey, E. (2010). Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Int. J. Biochem. Cell Biol. 42, 192–205.

42. Ye, L., Lewis-Russell, J.M., Sanders, A.J., Kynaston, H., and Jiang, W.G. (2008). HGF/SF up-regulates the expression of bone morphogenetic protein 7 in prostate cancer cells. Urol. Oncol. 26, 190–197.

43. Ma, Y., Ma, L., Guo, Q., and Zhang, S. (2010). Expression of bone morphogenetic protein-2 and its receptors in epithelial ovarian cancer and their influence on the prognosis of ovarian cancer patients. J. Exp. Clin. Cancer Res. 29, 85.

44. Atkinson, C., Stewart, S., Upton, P.D., Machado, R., Thomson, J.R., Trembath, R.C., et al. (2001). Germline mutations of BMP2, encoding a TGF-beta receptor, cause Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause neoplasia. Am. J. Hum. Genet. 69, 353–358.

45. Kraunz, K.S., Nelson, H.H., Liu, M., Wiencke, J.K., and Kelsey, K.T. (2005). Interaction between the bone morphogenetic proteins and Ras/MAP-kinase signaling pathways in lung cancer. Br. J. Cancer 93, 949–952.

46. Howe, J.R., Bair, J.L., Sayed, M.G., Anderson, M.E., Mitros, P.A., Petersen, G.M., Velezizcu, Y.E., Traverso, G., and Vogelstein, B. (2001). Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat. Genet. 28, 184–187.

47. Zhou, X.P., Woodford-Richens, K., Lehtonen, R., Kurose, K., Aldred, M., Hampel, H., Launonen, V., Verti, P., Salskova, R., et al. (2001). Germline mutations in BMPRIA/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am. J. Hum. Genet. 69, 704–711.

51. Voorneveld, P.W., Kodach, L.L., Jacobs, R.J., van Noesel, C.J., Peppelenbosch, M.P., Korkmaz, K.S., Molenkamp, I., Dekker, E., Morreau, H., van Pelt, G.W., et al. (2015). The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. Br. J. Cancer 112, 122–130.

52. Hempen, P.M., Zhang, L., Bansal, R.K., Iacobuzio-Donahue, C.A., Murphy, K.M., Maitra, A., Vogelstein, B., Whitehead, R.H., Markowitz, S.D., Willson, J.K., et al. (2003). Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers. Cancer Res. 63, 994–999.

53. Jung, B., Doctoler, R.T., Tajima, A., Nguyen, A.K., Keku, T., Sandler, R.S., and Carethers, J.M. (2004). Loss of activin receptor type 2 protein expression in microsatellite unstable colon cancers. Gastroenterology 126, 654–659.

54. Braig, S., Mueller, D.W., Rothhammer, T., and Bosserhoff, A.K. (2010). MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell. Mol. Life Sci. 67, 3533–3548.

55. Li, Z., Hassan, M.Q., Volinia, S., van Wijnen, A.J., Stein, J.L., Croce, C.M., Lian, J.B., and Stein, G.S. (2008). A microRNA signature for a BMP-2-induced osteoblast lineage commitment program. Proc. Natl. Acad. Sci. USA 105, 13906–13911.
74. Eramo, A., Ricci-Vitiani, L., Zeuner, A., Pallini, R., Lotti, F., Sette, G., Pilozzi, E., Larocca, L.M., Peschle, C., and De Maria, R. (2006). Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13, 1238–1241.

75. Tate, C.M., Pallini, R., Ricci-Vitiani, L., Dowless, M., Shiyano, T., D’Alessandria, G.Q., Morgante, L., Giannetti, S., Larocca, L.M., di Martino, S., et al. (2012). A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ. 19, 1644–1654.

76. Lian, W.J., Liu, G., Liu, Y.J., Zhao, Z.W., Yi, T., and Zhou, H.Y. (2013). Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol. Rep. 30, 193–200.

77. Bach, D.H., Kim, S.H., Hong, J.Y., Park, H.J., Oh, D.C., and Lee, S.K. (2015). Salternamide A suppresses hypoxia-induced accumulation of HIF-1α and induces apoptosis in human colorectal cancer cells. Mar. Drugs 13, 6962–6976.

78. Craft, C.S., Xu, L., Romero, D., Vary, C.P.H., and Bergan, R.C. (2008). Genistein inhibited retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat. Med. 14, 2733–2738.

79. Nobili, S., Lippi, D., Wittert, E., Donnini, M., Bausi, L., Mini, E., and Capaccioli, S. (2009). Natural compounds for cancer treatment and prevention. Pharmacol. Res. 59, 365–378.

80. Um, S., Bach, D.-H., Shin, B., Ahn, C.-H., Kim, S.-H., Bang, H.-S., Oh, K.B., Lee, S.K., Shin, J., and Oh, D.C. (2016). Naphthoquinone-oxidole aldehydes, coprinoids A and B, from a gut associated bacterium in the dung beetle, Copris tripartitus. Org. Lett. 18, 5792–5795.

81. Cipriano, S.C., Chen, L., Kumar, T.R., and Matzuk, M.M. (2010). Granulosa cell-expressed BMPR1A and its constituents by inhibition of the Wnt/β-catenin signaling pathway. Phytomedicine 34, 136–142.

82. Hallaham, A.R., Pritchard, J.I., Chandraratna, R.A., Ellenbogen, R.G., Geyer, J.R., Kim, W.K., Bach, D.-H., Ryu, H.W., Oh, J., Park, H.J., Hong, J.-Y., Song, H.H., Eum, S., Bach, T.T., and Lee, S.K. (2017). Cytotoxic activities of Tectaldium dongnaiense and its constituents by inhibition of the Wnt/β-catenin signaling pathway. Phytotherapy 34, 1272–1278.

83. Halverson, R.P., Strand, A.D., Tapscott, S.J., and Olson, J.M. (2003). BMP-2 mediates antiproliferative actions in the bone morphogenetic proteins. J. Mol. Graph. Model. 22, 235–242.

84. Hallahan, A.R., Pritchard, J.I., Chandraratna, R.A., Ellenbogen, R.G., Geyer, J.R., Overland, P.R., Strand, A.D., Tapscott, S.J., and Olson, J.M. (2003). BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat. Med. 9, 1093–1098.

85. Kodach, L.L., Bleumling, S.A., Peppelembosch, M.P., Hommes, D.W., van den Brink, G.R., and Hardwick, J.C.H. (2007). The effect of statins in colorectal cancer is mediated through the bone morphogenetic protein pathway. Gastroenterology 133, 1272–1281.

86. Chen, P.-Y., Sun, J.-S., Tsang, Y.-H., Chen, M.-H., Weng, P.-W., and Lin, F.-H. (2010). Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr. Res. 30, 191–199.

87. Ahmed, S., Metpally, R.P., Sangadala, S., and Reddy, R.V. (2010). Virtual screening and selection of drug-like compounds to block noggin interaction with bone morphogenetic proteins. J. Mol. Graph. Model. 28, 670–682.

88. Sanvitale, C.E., Kerr, G., Chaikuad, A., Ramel, M.C., Mohedas, A.H., Reichert, S., Wang, Y., Trifritt, J.T., Cuny, G.D., et al. (2013). A new class of small molecule inhibitor of BMP signaling. PloS One 8, e62721.

89. Nimmagadda, S., Geetha Loganathan, P., Huang, R., ScaI, M., Schmidt, C., and Christ, B. (2005). BMP4 and noggin control embryonic blood vessel formation by antagonistic regulation of VEGFR-2 (Quk) expression. Dev. Biol. 280, 100–110.

90. Secondini, C., Wetterwald, A., Schwaninger, R., Thalhammer, G.N., and Cecchini, M.G. (2011). The role of the BMP signaling antagonist noggin in the development of prostate cancer osteolytic bone metastasis. PLoS ONE 6, e16078.

91. Hsu, M.Y., Rovinsky, S.A., Lai, C.Y., Qasem, S., Liu, X., How, J., Engelhardt, J.F., and Murphy, G.F. (2008). Aggressive melanoma cells escape from BMP7-mediated autocrine growth inhibition through coordinated Noggin upregulation. Lab. Invest. 88, 842–855.

92. Cipriano, S.C., Chen, L., Kumar, T.R., and Matzuk, M.M. (2000). Follistatin is a modulator of gonadal tumor progression and the activin-induced wasting syndrome in inhibin-deficient mice. Endocrinology 141, 2319–2327.

93. Stabile, H., Mitola, S., Mononi, E., Belleri, M., Nicolli, S., Coltrini, D., Peri, F., Pessi, A., Orsatti, L., Talamo, F., et al. (2007). Bone morphogenic protein antagonist Drm1/gremil is a novel proangiogenic factor. Blood 109, 1834–1840.
phosphophoryn 24 kD) on the growth of human lung cancer cells. J. Orthop. Res. 29, 1712–1718.

111. Alamro, E.L., Rauta, J., Kauraniemi, P., Karhu, R., Kuukasjärvi, T., and Kallioniemi, A. (2006). Bone morphogenetic protein 7 is widely overexpressed in primary breast cancer. Genes Chromosomes Cancer 45, 411–419.

112. Bobinac, D., Marić, I., Zorić, S., Spanjol, J., Dordiš, G., Mustač, E., and Fuckar, Z. (2005). Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat. Med. J. 46, 389–396.

113. Davies, S.R., Watkins, G., Douglas-Jones, A., Mansel, R.E., and Jiang, W.G. (2008). Alarmo, E.L., Kuukasjärvi, T., Karhu, R., and Kallioniemi, A. (2007). A comprehensive expression survey of bone morphogenetic proteins 1 to 7 in human breast cancer, expression pattern and clinical/prognostic relevance. J. Exp. Ther. Oncol. 7, 327–338.

114. Alamro, E.L., Kuukasjärvi, T., Karhu, R., and Kallioniemi, A. (2007). A comprehensive expression survey of bone morphogenetic proteins in breast cancer highlights the importance of BMP4 and BMP7. Breast Cancer Res. Treat. 103, 239–246.

115. Wang, T., Zhang, W., Wang, K., Wang, J., Jiang, Y., Xia, J., Gou, L., Liu, M., Zhou, H., He, T., and Zhang, Y. (2017). Inhibitory effects of BMP9 on breast cancer cells by regulating their interaction with pre-adipocytes/adipocytes. Oncotarget 8, 35890–35901.

116. Ampuja, M., Alamro, E.L., Owens, P., Havunen, R., Gorska, A.E., Moses, H.L., and Kallioniemi, A. (2016). The impact of bone morphogenetic protein 4 (BMP4) on breast cancer metastasis in a mouse xenograft model. Cancer Lett. 375, 238–244.

117. Li, J., Ye, L., Parr, C., Douglas-Jones, A., Kynaston, H.G., Mansel, R.E., and Jiang, W.G. (2009). The afferent expression of bone morphogenetic protein 12 (BMP12) in human breast cancer and its potential prognostic value. Gene Ther. Mol. Biol. 13, 186–193.

118. Johnsen, L.K., Kappler, R., Auernhammer, C.J., and Beuschlein, F. (2009). Bone morphogenetic proteins 2 and 5 are down-regulated in adrenocortical carcinoma and modulate adrenal cell proliferation and steroidogenesis. Cancer Res. 69, 5784–5792.

119. Zhao, H., Ayrault, O., Zindy, F., Kim, J.H., and Roussel, M.F. (2008). Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenetic proteins suppresses medulloblastoma development. Genes Dev. 22, 722–727.

120. Fiachetti, G., Castelletti, D., Zoller, S., Schramm, A., Schroder, C., Nagaishi, M., Stearn, D., Mittelbronn, M., Eggert, A., Westerman, F., et al. (2011). Bone morphogenetic protein-7 is a MYC target with prosurvival functions medulloblastoma development. Oncogene 30, 2823–2835.

121. Loh, K., Chia, J.A., Greco, S., Sozzi, S.J., Buttenshaw, R.L., Bond, C.E., Simms, L.A., Pike, T., Young, J.P., Jass, J.R., et al. (2008). Bone morphogenetic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosomes Cancer 47, 449–460.

122. Lombardo, Y., Scopelliti, A., Cammareri, P., Todaro, M., Jovino, F., Ricci-Vitiani, L., Guleotta, G., Dieli, F., de Maria, R., and Stassi, G. (2011). Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140, 297–309.

123. Zhang, Y., Chen, X., Qiao, M., Zhang, B.Q., Wang, N., Zhang, Z., Liao, Z., Zeng, L., Deng, Y., Deng, F., et al. (2014). Bone morphogenetic protein 2 inhibits the proliferation and growth of human colorectal cancer cells. Oncol. Rep. 32, 1013–1020.

124. Oshima, H., Oguma, K., Du, Y.C., and Oshima, M. (2009). Prostaglandin E2, Wnt, and BMP in gastric tumor mouse models. Cancer Sci. 100, 1779–1785.

125. Park, Y., Kim, J.W., Kim, D.S., Kim, E.B., Park, S.I., Park, J.Y., Choi, W.S., Song, J.G., Seo, H.Y., Oh, S.C., et al. (2008). The Bone Morphogenesis Protein-2 (BMP-2) is associated with progression to metastatic disease in gastric cancer. Cancer Res. Treat. 40, 127–132.

126. Yang, Y., Yang, C., and Zhang, J. (2015). C23 protein mediates bone morphogenetic protein-2-mediated EMT via up-regulation of Erk1/2 and Akt in gastric cancer. Med. Oncol. 32, 76.