Effect of Pulsed Electromagnetic Field on MMP-9 and TIMP-1 Levels in Chondrosarcoma Cells Stimulated with IL-1β

Serife Gokce Caliskan¹, Mehmet Dincer Bilgin², Leyla Didem Kozaci³*

Abstract

Chondrosarcoma, the second most common type of bone malignancy, is characterized by distant metastasis and local invasion. Previous studies have shown that treatment by pulsed electromagnetic field (PEMF) has beneficial effects on various cancer cells. In this study, we investigated the effects of PEMF applied for 3 and 7 days on the matrix metalloproteinase (MMP) levels in chondrosarcoma SW1353 cells stimulated with two different doses of IL-1β. SW1353 cells were treated with (0.5 and 5 ng/ml) IL-1β and PEMF exposure was applied either 3 or 7 days. MMP-9 and TIMP-1 levels were measured in conditioned media by enzyme-linked immunosorbent assay. The results were relative to protein levels. Statistical analyses were performed using one-way analysis of variance (ANOVA). P<0.05 was considered significant. PEMF treatment significantly decreased MMP-9 protein levels in human chondrosarcoma cells stimulated with 0.5 ng/ml IL-1β at day 7, whereas it did not show any effect on cells stimulated with 5 ng/ml IL-1β. There was no significant change in TIMP-1 protein levels either by IL-1β stimulation or by PEMF treatment. The results of this study showed that PEMF treatment suppressed IL-1β-mediated upregulation of MMP-9 protein levels in a dual effect manner. This finding may offer new perspectives in the therapy of bone cancer.

Keywords: Pulsed electromagnetic field - bone cancer - chondrocytes - matrix metalloproteinase

Introduction

Chondrosarcoma is one of the tumours of bone and soft tissue known as sarcomas and it is composed of cells derived from transformed cells that produce cartilage. It has a poor response to current therapeutic approaches such as chemotherapeutic drugs and radiotherapy (Tang and Tsai 2012). Therefore in the field of oncology new innocuous approaches are needed such as pulsed electromagnetic field (PEMF) exposure which may decrease the chondrosarcoma cells’ evolution and metastasize ability.

Cancer cell invasion and metastasis processes involve degradation of extracellular matrix (ECM) and the breakdown of ECM by proteinases (Roomi et al., 2013a; Shang et al., 2014). One family of proteases which take a role in tumour invasion and metastasis is matrix metalloproteinases (MMPs) (Wang et al., 2014). Matrix metalloproteinases (MMPs) are a multigenomic endopeptidase family composed of collagenases (MMP-1, -8, -13), gelatinases (MMP-2, -9), stromelysins (MMP-3, -7, -10, -11) and membrane type MMP (MMP-1, -2, -3, -4) (Daniel et al., 2001). Proteolytic activities of MMPs are inhibited by tissue inhibitors of matrix metalloproteinases (TIMPs). It is known that the balance between MMP and TIMP levels is a critical determinant of proteolytic degradation. Numerous clinical and experimental studies have demonstrated that elevated levels of MMPs are associated with tumour growth, cancer progression and metastasis (Nelson et al., 2000; Benassi et al., 2001; Wang et al., 2014; Yadav et al., 2014; Zhu et al., 2014). Also MMPs play important roles in pathological diseases such as arthritis and vascular diseases (Zitka et al., 2010). In cancer the production of MMP is stimulated by inflammatory mediators and the activity of MMP under different stimulators has been reported (Pei et al., 2006; Lim et al., 2011; Lee et al., 2012).

In recent years the beneficial effects of PEMF on various cancer cells has been demonstrated in several studies (Kaszuba-Zwoinska et al., 2010; Vincenzi et al., 2012; Crocetti et al., 2013). On the other hand, there also has been found by several authors that PEMF has no significant effects on cancer cells (Zhao et al., 2008; Zhang et al., 2011). Despite recent successes of PEMF the results are still not conclusive and even conflicting.

It is known that biophysical forces like PEMF lead to cellular induction and modify some physiological parameters such as proliferation (Chang et al., 2010) and the ECM components’ synthesis (De Mattei et al., 2001; Ciombor et al., 2002). Furthermore, various studies reported the effect of PEMF on MMP activity in osteosarcoma cells (Zhang et al., 2011), and THP-1 cells.
Serife Gokce Caliskan et al.
(Patruno et al., 2012). To our knowledge, there are no reports in the literature on the effect of PEMF on MMP-9 and TIMP-1 levels for chondrosarcoma cell lines.

In this study, we investigated the effects of PEMF applied for 3 or 7 days on the MMP-9 and tissue inhibitor of metalloproteinases-1 (TIMP-1) production in chondrosarcoma cells stimulated with low and high doses of IL-1β.

Materials and Methods

Cell culture

The SW1353 human chondrosarcoma cell line was grown in Dulbecco’s Modified Eagle’s Medium (DMEM) (Gibco, Carlslbad, CA) supplemented with %10 fetal bovine serum (FBS, Biological Industries, USA), 2 mM L-Glutamine (Biological Industries, USA) and %0.1 Penicillin Streptomycin (Biological Industries, USA) and incubated with %5 CO2 at 37°C. Chondrocytes were seeded at 2 x 10^5 cells/well in two 24-well tissue culture plates (Costar, Cambridge, MA, USA) named PEMF group and Control group. Recombinant human IL-1β (Millipore, Billerica, MA) was used in two different doses (0.5 ng/ml and 5 ng/ml) to stimulate SW1353 cells. The negative control wells were neither stimulated with IL-1β nor treated with PEMF.

PEMF exposure

Following 24 hours culturing period, PEMF group was exposed to PEMF for 30 minutes in north-south direction each day, for either 3 or 7 days. During this period the control plate was maintained at identical conditions except PEMF exposure. At the end of the culture period culture media in wells were harvested and stored at -20°C for enzyme-linked immunosorbent assays (ELISA).

PEMF exposure conditions

A pair of Helmholtz coil placed opposite to each other was used to generate PEMF and powered by a pulse generator (Igea, Carpi, Italy). The pulse duration of the signal was 1.3 ms and the frequency 75 Hz, yielding duty cycle of 1/10. The intensity of the magnetic field was 2.3 mT and the induced electrical field was 2 mV. The maximum electric field was estimated to be 0.02 mV/cm. Intensities of magnetic fields were measured by using a digital Gauss/Teslameter (Model 7030, F.W. BELL, Syrus, Orlanda, USA).

Analysis of MMP-9 and TIMP-1 production in IL-1β-stimulated SW1353 Cells

MMP-9 and TIMP-1 levels in culture media were measured by using highly sensitive enzyme-linked immunosorbent assay kits (for MMP-9 detection, RayBiotech Inc. Norcross, GA, USA. inter-assay: CV<10%, intra-assay: CV<12%, sensitivity: 10 pg/ml; for TIMP-1 detection Bender MedSystems GmbH, Vienna Austria, inter-assay: CV<3.9%, intra-assay: CV<4.9%, sensitivity: 10 pg/ml) according to manufacturer’s instructions. MMP-9 and TIMP-1 concentrations in media were normalized to the total protein content and expressed as pg/mg protein.

Statistical analysis

Data were expressed as Means±SEM. Statistical analyses were performed using one-way analysis of variance (ANOVA) with post hoc Tukey tests, cross-comparing all study groups. p<0.05 was considered significant.

Results

In order to investigate the effect of PEMF on MMP-9 and TIMP-1 protein levels produced by human chondrocytes, medium was harvested and subjected to ELISA. IL-1β caused a significant increase in MMP-9 levels starting from day 3. This increase was further emphasised at day 7 (Figure 1). At day 3, PEMF caused a decrease in MMP-9 levels in cultures treated with low dose of IL-1β but not with the higher dose of 5ng/ml. No statistically significant change was observed for MMP-9 levels in both IL-1β treated and control groups at day 3 following PEMF application. At day 7, MMP-9 levels were significantly up-regulated both for low and high doses of IL-1β (p<0.01). A significant decrease was observed with PEMF treatment in low dose IL-1β group (0.5 ng/ml; p<0.01). On the other hand when higher dose of IL-1β was given (5ng/ml) PEMF caused an increase
MMP-9 can degrade type IV collagen, a major component of extracellular matrix and thus helps tumour invasion and metastasis. It has been reported that increased levels of MMPs and low levels of TIMPs are associated with the aggressive behaviour of sarcomas (Benassi et al., 2001; Roebuck et al., 2005). Therefore to investigate the alteration of MMP levels for cancer tumour cells under different conditions has a great interest. Development of new therapies capable of reducing or inhibiting the activities of MMPs could potentially lead to an inhibition in tumour invasion and metastasis.

The effects of mechanical stimulations on MMP-9 gene expression and protein levels have been already investigated by the application of ultrasound on prostate cancer cells (Wei et al., 2014) and shear stress on breast cancer cells (Zhao et al., 2014). To our knowledge, this is the first study showing the effects of PEMF treatment on MMP-9 activity in SW1353 human chondrosarcoma cell line.

In recent years low frequency PEMF has been shown to have anabolic effects on chondrocytes with respect to cell differentiation (Ciombor et al., 2002), cell proliferation (De Mattei et al., 2001) and matrix synthesis (De Mattei et al., 2003). Furthermore the effects of PEMF on MMP activities were investigated for many different cells and organ systems. Patruno, et al (2011) reported that electromagnetic field exposure on THP-1 cancer cells caused a weak increase in MMP-2 and -9 activities. We investigated the effects of PEMF in MMP-9 production in human chondrosarcoma cells. Our results indicated a significant inhibitory effect of PEMF exposure on MMP-9 levels for chondrosarcoma cells stimulated with low dose IL-1β. However Zhang et al. (2011) indicated that PEMF exposure had no effect on MMP-9 activity of osteosarcoma cells. One reason for these different results may be the different magnetic field intensities, duration and amplitude values and different types of cells exposed to PEMF in these studies. To our knowledge this study is the first investigation for the effects of PEMF on MMP-9 production in chondrosarcoma cells.

It has been shown that cytokines such as IL-1β not only down-regulate the synthesis of major ECM components by inhibiting anabolic activities of chondrocytes (Shi et al., 2004) but also stimulates chondrocytes to release several proteolytic enzymes, among which are matrix metalloproteinases: MMP-1 (Gebauer et al., 2005), MMP-3 (Baker et al., 2012), MMP-9 (Lu et al., 2011), MMP-13 (Klatt et al., 2006). In this study stimulation with IL-1β was performed to increase the level of MMP-9 since IL-1β is considered as a key catabolic stimulant for the production of MMP. The effects of IL-1β with different doses have been described in the scientific literature for cartilage and chondrocytes, among which are matrix metalloproteinases: MMP-1 (Gebauer et al., 2005), MMP-3 (Baker et al., 2012), MMP-9 (Lu et al., 2011), MMP-13 (Klatt et al., 2006). In this study stimulation with IL-1β was performed to increase the level of MMP-9 since IL-1β is considered as a key catabolic stimulant for the production of MMP. The effects of IL-1β with different doses have been described in the scientific literature for cartilage and chondrocytes, respectively. Lu, et al (2011) and Roomi, et al (2013b) reported that the expression of MMP-9 increases with respect to the increasing dose of IL-1β. Ongaro, et al (2011b) also reported that IL-1β induced a dose-response reduction on proteoglycan synthesis after 7 days treatment. In our study we showed a dose-dependent change in MMP-9 levels when stimulated by IL-1β. Our findings are in agreement with the studies which show an increase in MMP-9 and MMP-13 levels when stimulated with 5 ng/
be a promising therapeutic approach for cancer because of the mechanism of PEMF effects. The PEMF stimulation might be performed to verify the effects and to enlighten the role of MMP in cartilage destruction and are suitable for the microarray analyses experimental model to study the role of MMP in cartilage destruction and are suitable for the microarray analyses. We acknowledge several limitations in this study. The experiment was performed using a human chondrosarcoma cell line (SW1353), whereas the use of a primary human chondrocyte cell culture might better replicate what happens in humans in vivo. We chose the SW1353 cell line since these cells show a phenotype similar to that of normal human chondrocytes. They provide a reproducible experimental model to study the role of MMP in cartilage destruction and are suitable for the microarray analyses. In conclusion, our study confirmed, for the first time, the effect of PEMF on MMP-9 and TIMP-1 levels in human chondrosarcoma cells. Further studies are planned to be performed to verify the effects and to enlighten the mechanism of PEMF effects. The PEMF stimulation might be a promising therapeutic approach for cancer because of its action on chondrocyte metabolism.

Acknowledgements

Authors gratefully acknowledge assistance provided by Adu Bilem.

References

Akhtar N, Miller MJS, Haqqi TM (2011). Effect of a Herbal-Leucine mix on the IL-1β-induced cartilage degradation and inflammatory gene expression in human chondrocytes. *BMC Complement Altern Med.*, 11, 66.

Baker JF, Walsh PM, Byrne DP, et al (2012). Pravastatin suppresses matrix metalloproteinase expression and activity in human articular chondrocytes stimulated by interleukin-1β. *J Orthop Traumatol*, 13, 119-23.

Benassi MS, Gamberi G, Magagnoli G, et al (2001). Metalloproteinase expression and prognosis in soft tissue sarcomas. *Ann Oncol*, 12, 75-80.

Bervill SL, Briant PL, Levenston ME, et al (2009). Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. *Osteoarthr Cartil*, 17, 980-7.

Bobacz K, Graninger WB, Amoyo L, et al (2006). Effect of pulsed electromagnetic fields on proteoglycan biosynthesis of articular cartilage is age dependent. *Ann Rheum Dis*, 65, 949-51.

Chang CH, Loo ST, Liu HL, et al (2010). Can low frequency electromagnetic field help cartilage tissue engineering? *J Biomed Mater Res A*, 92, 843-851.

Ciombor DM, Lester G, Aaron RK, et al (2002). Low frequency EMF regulates chondrocyte differentiation and expression of matrix proteins. *J Orthop Res*, 20, 40-50.

Crocetti S, Beyer C, Schade G, et al (2013). Low intensity and frequency pulsed electromagnetic fields selectively impair breast cancer cell viability. *PLOS One*, 8, 72944.

Daniel C, Duffield J, Brunner T, et al (2001). Matrix metalloproteinase inhibitors cause cell cycle arrest and apoptosis in glomemal mesangial cells. *J Pharmacol Exp Ther*, 297, 57-68.

De Mattei M, Caruso A, Pezzetti F, et al (2001). Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. *Connect Tissue Res*, 42, 269-279.

De Mattei M, Pasello M, Pellati A, et al (2003). Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants. *Connect Tissue Res*, 44, 154-9.

Dunn SL, Wilkinson JM, Crawford A, et al (2013). Cannabinoid WIN-55,212-2 mesylate inhibits interleukin-1β induced matrix metalloproteinase and tissue inhibitor of matrix metalloproteinase expression in human chondrocytes. *Osteoarthr Cartil*.

Fioravanti A, Nerucci F, Collodel G, et al (2002). Biochemical and morphological study of human articular chondrocytes cultivated in the presence of pulsed signal therapy. *Ann Rheum Dis*, 61, 1032-3.

Gebauer M, Saas J, Sohler F, et al (2005). Comparison of the chondrosarcoma cell line SW1353 with primary human adult articular chondrocytes with regard to their gene expression profile and reactivity to IL-1beta. *Osteoarthr Cartil*, 13, 697-708.

Kaszuba-Zwoinska J, Wojcik K, Bereta M, et al (2010). Pulsating electromagnetic field stimulation prevents cell death of Poromycin treated U937 cell line. *J Physiol Pharmacol*, 61, 201-5.

Klatt AR, Klinger G, Neumüller O, et al (2012). Pravastatin suppresses matrix metalloproteinase expression and activity in human articular chondrocytes stimulated by interleukin-1β. *J Orthop Traumatol*, 13, 119-23.
Lee S G, Lee EJ, Park WD, et al (2012). Anti-inflammatory and anti-osteoarthritis effects of fermented Achyranthes japonica Nakai. *Ethnopharmacol.,* 142, 634-41.

Lim H, Park H, Kim HP (2011). Effects of flavonoids on matrix metalloproteinase-13 expression of interleukin-1β-treated articular chondrocytes and their cellular mechanisms: Inhibition of c-Fos/ATF-1 and JAK/STAT signaling pathways. *J. Biochem. Sci.,* 6, 221-31.

Lu YC, Jayakumar T, Duann YF, et al (2011). Chondroprotective role of sesamol by inhibiting MMP expression via retaining NF-κB signaling in activated SW1353 cells. *J Agric Food Chem.,* 59, 4960-78.

Nelson AR, Fingleton B, Rothenberg ML, et al (2000). Matrix metalloproteinases: biologic activity and clinical implications. *J Clin Oncol.,* 18, 1135-49.

Ongaro A, Pellati A, Masieri FF, et al (2011). Chondroprotective effects of pulsed electromagnetic fields on human cartilage explants. *Bioelectromagnetics,* 32, 453-51.

Patruno A, Pesce M, Marrone A, et al (2012). Activity of matrix metalloproteinases (MMP) and the tissue inhibitor of MMP (TIMP) in cancer cells. *J Cell Physiol.,* 227, 2767-74.

Pei Y, Harvey A, Yu XP, et al (2006). Differential regulation of cytokine-induced MMP-1 and MMP-13 expression by p38 kinase inhibitors in human chondrosarcoma cells: potential role of Runx2 in mediating p38 effects. *Osteoarthr Cartil.,* 14, 749-58.

Qiu LB, Zhou Y, Wang Q, et al (2011). Synthetic gelatinases inhibitor attenuates electrocorticic blood-induced blood-brain barrier disruption by inhibiting gelatinases-mediated ZO-1 degradation in rats. *Toxicology,* 285, 31-8.

Roebuck MM, Helliwell TR, Chaudhry IH, et al (2005). Matrix metalloproteinase expression is related to angiogenesis and histologic grade in spindle cell soft tissue neoplasms of the extremities. *Am J Clin Path.,* 123, 405-14.

Roomi MW, Kalinovsky T, Niedzwiecki A, et al (2013a). In vitro modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in adult human sarcoma cell lines. *Int J Oncol.,* 43, 39-49.

Roomi MW, Kalinovsky T, Monterrey J, et al (2013b). In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors. *Int J Oncol.,* 43, 1787-98.

Sadoghi P, Leitner A, Dorotka R, et al (2013). Effect of pulsed electromagnetic fields on the bioactivity of human osteoarthritic chondrocytes. *Orthopedics,* 36, 360-5.

Shang HS, Chang JB, Lin JH, et al (2014). Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro. *Molecules,* 19, 16588-608.

Shi J, Schmitt-Talbot E, Di Mattia DA, et al (2004). The differential effects of IL-1 and TNF-alpha on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells. *Inflamm Res.,* 53, 377-89.

Tang CH, Tsai CC (2012). CCL2 increases MMP-9 expression and cell motility in human chondrosarcoma cells via the Ros/Raf/MEK/ERK/NF-KB signaling pathway. *Biochem Pharmacol.,* 83, 335-44.

Trindade MC, Shida J, Ikenoue T, et al (2004). Intermittent hydrostatic pressure inhibits matrix metalloproteinase and pro-inflammatory mediator release from human osteoarthritic chondrocytes in vitro. *Osteoarthr Cartil.,* 12, 729-35.

Vincenti MP, Brinckerhoff CE (2001). Early response genes induced in chondrocytes stimulated with the inflammatory cytokine interleukin-1beta. *Arthritis Res.,* 3, 381-8.

Vincenzi F, Targa M, Corciulo C, et al (2012). The anti-tumor effect of A3 adenosine receptors is potentiated by pulsed electromagnetic fields in cultured neural cancer cells. *PLOS One,* 39317.