Mannosylated Polycations Target CD206+ Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination

Federica Bellato, Sara Feola, Gloria Dalla Verde, Greta Bellio, Marco Pirazzini, Stefano Salmaso, Paolo Caliceti, Vincenzo Cerullo, and Francesca Mastrotto*

ABSTRACT: Immunotherapy is deemed one of the most powerful therapeutic approaches to treat cancer. However, limited response and tumor specificity are still major challenges to address. Herein, mannosylated polycations targeting mannose receptor are developed as vectors for plasmid DNA (pDNA)-based vaccines to improve selective delivery of genetic material to antigen-presenting cells and enhance immune cell activation. Three diblock glycopolycations (M15A12, M29A25, and M58A45) and two triblock copolymers (M29A29B9 and M62A52B32) are generated by using mannose (M), agmatine (A), and butyl (B) derivatives to target CD206, complex nucleic acids, and favor the endosomal escape, respectively. All glycopolycations efficiently complex pDNA at N/P ratios <5, protecting the pDNA from degradation in a physiological milieu. M58A45 and M62A52B32 complexed with plasmid encoding for antigenic ovalbumin (pOVA) trigger the immune activation of cultured dendritic cells, which present the SIINFEKL antigenic peptide via specific major histocompatibility complex-I. Importantly, administration of M58A45/pOVA elicits SIINFEKL-specific T-cell response in C56BL/6 mice bearing the melanoma tumor model B16-OVA, well in line with a reduction in tumor growth. These results qualify mannosylation as an efficient strategy to target immune cells in cancer vaccination and emphasize the potential of these glycopolycations as effective delivery vehicles for nucleic acids.

1. INTRODUCTION
In recent years, the progress in understanding the basic mechanisms of the immune system and its correlation with cancer has paved the way for immunotherapy as a treatment option alternative to traditional chemotherapy. Immunotherapy marks a completely different way of treating cancer by targeting the immune system rather than the tumor itself. In this context, vaccines based on tumor neoantigens or tumor-associated antigens (TAAs) have attracted increasing attention for their ability to elicit durable antitumor immune response and tumor regression.

The past decade has witnessed the rise of novel vaccination technologies based on the use of DNA or RNA, which are taken up, translated, and exposed on the membrane of transfected cells to elicit specific immune responses. Compared to the cognate antigen-based vaccines, RNA or DNA vaccines are easier to produce, more stable and safer to handle, and very cost-effective. Most importantly, their ability to provide a more natural presentation of the antigen to the immune system yields better T-cell responses, thereby eliciting stronger immunizations. Moreover, the presentation of antigens encoded by DNA-based vaccines is mediated by both class I and class II major histocompatibility complex (MHC) molecules, thus eliciting both CD4+ and CD8+ responses (i.e., humoral and cytotoxic).

The efficacy, adaptability, and scalable production of DNA/RNA vaccines have been recently demonstrated in the COVID-19 pandemic, and the rising importance of DNA-based vaccines for cancer treatment is supported by the large number of ongoing clinical trials. Importantly, DNA/RNA vaccines...
RNA vaccination strongly relies on pharmaceutical technologies, which protect nucleic acids in body fluids from degradation while improving their delivery, intracellular accumulation, and release into target cells. Indeed, as a large and negatively charged biomacromolecule, plasmid DNA (pDNA) must overcome multiple barriers; first, it must be internalized by cells, second, it should escape from the endosomal/lysosomal degradation pathway, and finally it should enter the nucleus. Moreover, insufficient gene expression and low immune system activation limit DNA vaccine application. While effective for conventional vaccination against infectious diseases, such as COVID-19, unfortunately, the success of DNA and RNA vaccines is still limited in the case of tumor therapeutic immunization.

Several types of carriers have been developed, including viral-, lipid-, and polymer-based, which come with both advantages and limitations. Virus-based genetic vaccines hold safety issues, and, additionally, antiviral immune response neutralizes the vector, thus limiting repeated vaccinations. Polymers, instead, carry peculiar features making them particularly attractive. Especially, the possibility to generate polymers with customizable cationic moieties and to attach specific molecular tags allows efficient complexation of negatively charged nucleic acids, including pDNA, and the selective targeting of the carriers toward specific cell types.

The C-type lectin mannose receptor (MR, CD206) being expressed on the surface of antigen-presenting cells (APCs), including macrophages and immature dendritic cells (DCs), has been recognized as an important target for the delivery of anti-cancer vaccines. CD206 specifically binds and internalizes a variety of glycosylated molecules, displaying a particular affinity for mannose and fucose. For this reason, CD206 plays a cardinal role in the innate and adaptive immune responses by recognizing membrane glycans and glycoproteins expressed in the outer membrane of pathogens such as bacteria and viruses. CD206 undergoes continuous cycles of endocytosis and membrane recycling, also favored by multiple rounds of ligand-induced internalization and pH-sensitive ligand dissociation. Accordingly, CD206 represents a very convenient target for cancer vaccination because it is expressed in cells specialized in antigen presentation and it is easily targetable by tagging DNA/RNA carriers with simple and biocompatible carbohydrates.

The modification of carriers with mannose tags have been proved to be a valuable strategy for a fast, selective, and efficient delivery of imaging, diagnostic, and therapeutic agents to macrophages or DCs via CD206, as indicated by diagnostic tools already approved and marketed. Zhou et al. generated micelles co-assembling pH-sensitive poly(ethylene glycol)-block-poly(2-(diisopropyl amino) ethyl methacrylate) and 1,2-epoxytetradecane alkylated oligoethyleneimine 800 and coated them with the mannose ligand to form an acid-activatable micellar nanoparticle for the delivery of a neoantigen (i.e., OVA as model antigen) and a STING agonist, 5,6-dimethylxanthene-4-acetic acid (DMXAA) to DCs. Similarly, the group of Satchi-Fainaro and Florindo showed that mannosylated poly lactic-co-glycolic acid nanoparticles efficiently deliver melanoma-associated antigens and toll-like receptor agonists to DCs. Furthermore, the presence of mannose is expected to enhance the nuclear delivery due to the presence of lectins on the nuclear membrane, which strongly suggests that sugar residues could act as a nuclear targeting signal and may further improve the efficacy of nucleic acid processing.

In this work, we generated diblock (M15A15, M25A25, and M26A46) and triblock (M62A62B62) cationic copolymer libraries for the delivery of pDNA to APCs via reversible addition fragmentation chain transfer (RAFT) polymerization. The polymers were designed with a mannosylated (M) block to actively and selectively target CD206 expressed on DCs and a polycationic agmatinyl block (A) to condense nucleic acids. In addition, a triblock library was engineered by elongating the polymer with a butyl-based hydrophobic block (B) to ideally enhance the endosomal escape properties and the transfection efficiency (TE) of this family of carriers through its membrane disruption property.

Copolymers efficiently complexed model pDNA forming glycopolyplexes (GPPs) of toroid, rod, or globular shapes. Additionally, M82A82B82, M58A58B58, and M40A40B40 were able to prevent pDNA degradation in physiological conditions forming stable complexes which required a high concentration of competing anions to induce pDNA release. M62A45, M43A5B7, and M42A5B6-based GPPs efficiently transfected Chinese hamster ovary cells, either wild type (CHO) or transformed to express CD206 (CHO-CD206). M40A45 and M42A5B3 assembled with the model antigen plasmid coding for ovalbumin (pOVA) efficiently immune-activated immortalized DCs, with different outcomes depending on the copolymer used. Importantly, M58A58/pOVA GPPs significantly controlled tumor growth in vivo in CS6BL/6 mice bearing the melanoma tumor model B16-OVA, in which tumor-specific T-cell activation was observed, suggesting the great potential of mannosylated glycopolyplexes for cancer therapeutic vaccination.

2. EXPERIMENTAL SECTION

2.1. Materials. Acryloyl chloride, agmatine sulfate, carbon disulfide, ethanethiol, 4,4′-azobis(cyanopentanoic acid), N-hydroxysulfhydryl acrylamide, n-butyl acrylate, 2,2′-azobisis[2-(imidazolin-2-yl)propene]dihydrochloride, 1,4-dioxane, deuterated solvents, low-molecular weight agarose, glycerol, xylene cyanol FF, thiazolyl blue tetrazolium bromide, silica gel (60 Å, particle size 35–75 μm), Triton X-100, linear 25 kDa polyethyleneimine (PEI25kDa), analytical grade solvents, salts, cell culture media, and reagents for cell culture were obtained from Sigma-Aldrich (St. Louis, MO, USA), Fisher Scientific (Hampton, New Hampshire, USA), or Gibco ThermoFisher Scientific (Waltham, MA, USA). Butyl acrylate was purified from a phenolic inhibitor hydroquinone monomethyl ether (MEHQ) before use. α-Mannose pentacacetate was purchased from Apollo Scientific (Stockport, UK). GelRed nucleic acid staining solution 10,000X in water was purchased from Biotium (Fremont, CA, USA). Purified anti-mouse CD16/32, FITC anti-mouse CD11c, PerCP anti-mouse CD86, PE anti-mouse H-2Kb-bound SIINFEKL, PerCP/Cy5.5 anti-mouse CD3ε, and APC anti-mouse CD4 were supplied by BioLegend (San Diego, California, USA). FITC anti-mouse CD8 and R-PE Pro5 MHC pentamer H-2Kb SIINFEKL were obtained from Proimmune (Magdalen Centre, Oxford, UK). Mouse interferon (IFN)-γ Single-Color Enzymatic ELISPOT assay kit was purchased from ImmunoSpot (Cleveland, OH, USA).

Enhanced green fluorescence protein (pEGFP)-N3 was supplied from Addgene (Watertown, MA, USA) and amplified in XL1 blue cells. CMV-promoted pOVA was supplied by GeneScript (Leiden, Netherlands) and amplified by Escherichia coli bacterial cell transformation using One Shot TOP10 chemically competent E. coli (Invitrogen, Carlsbad, USA) and purified with a NucleoBond Xtra Midi kit (Macherey-Nagel GmbH, Düren, Germany). pDNA concentration and purity were measured on a NanoDrop One Midi kit (Macherey-Nagel GmbH, Düren, Germany).
and M₄₅B₄ triblock copolymers were synthesized by fast RAFT polymerization using different CTA/monomer feed ratios and sequentially polymerizing 2-mannopyranosyloxyethyl acrylamide (M) and agmatine acrylamide (A). Triblock copolymers were further chain-extended with butyl acrylate (B). To successfully perform the polymerization reaction, phenolic inhibitor MEHQ was removed from butyl acrylate, as described by Sandler and co-workers.25,26

The general polymerization procedure is here described for M₄₅A₃B₄.

2.3. M₄₅A₂. Agmatine acrylamide (82.9 mg, 0.45 mmol) was dissolved in 147 μL of filtered MilliQ water in a separate tube and then transferred to the reaction vessel containing the macro-CTA M₄₅ (theoretical M₄₅/A molar ratio 1:64). The polymerization procedure was performed as described above until agmatine acrylamide conversion was >90%; otherwise, a second addition of the VA-044 initiator was made until conversion percentage was reached. Polymerization was monitored by 1H NMR analysis of samples withdrawn from the reaction mixture and analyzing the disappearance of the vinylic proton signals (5.56, 6.06, and 6.23 ppm) as compared to the anomeric and hydroxyl protons (4.37–4.99 ppm) of M₄₅ macro-CTA set as reference integrals at time 0.

Conversion = 81%; M₄₅th = 27.02 kDa; DPth = 114; M₄₅(GPC, aqueous) = 37.2 kDa; Dₚ(GPC, aqueous) = 1.2.

1H NMR (400 MHz, DMSO-d₆, δ): 0.94–2.35 (bm, 9H, CH₂CH₃ polymer backbone + N–CH₂–CH₂–CH₂–CH₂–aminoguanine); 2.96–3.87 (m, 6H, CH–OH sugar + CH–CH₂ sugar); 4.37–5.06 (m, 5H, 4X C–OH sugar + 1X O–CH₃ amionic); and 6.88–8.11 (bm, 5H, NHsugar + NHaminoguanine + NHNNHN₂ γamidol group).

2.3.3. M₄₅A₂B₃. Finally, butyl acrylate (31.6 μL, 28.3 mg, 225 μmol) was added to the reaction vessel and polymerization (theoretical M₄₅A₂/B molar ratio 1:32) was restarted following the conditions already described until butyl acrylate conversion reached at least 90%. The polymerization was monitored by 1H NMR analysis of samples withdrawn from the reaction mixture by checking the disappearance of vinylic protons at 5.93, 6.17, and 6.32 ppm as compared to the anomic and hydroxyl protons (4.37–4.99 ppm) of M₄₅ macro-CTA set as reference integrals at time 0, and the chemical shift of the methylene protons from 4.10 ppm in the monomer to 3.90 ppm in the polymer. Then, the solution was diluted with deionized (DI) water and transferred into 3.5 kDa molecular-weight cutoff (MWCO) dialysis membrane and dialyzed against 5 L of DI water for 48 h with at least five water exchanges. The solution was then freeze-dried, and the polymer was recovered as a white powder (161.46 mg, 5.38 μmol, 68.45%). All polymerization intermediates and the purified M₄₅A₃B₃ triblock copolymer were characterized by 1H NMR and GPC.

Conversion = 100%; M₄₅th = 31.12 kDa; DPth = 146; M₄₅(GPC, aqueous) = 38.4 kDa; Dₚ(GPC, aqueous) = 1.07.

1H NMR (400 MHz, DMSO-d₆, δ): 0.87 (t, J = 7.2 Hz, 3H, CH₃γγγ); 1.16–1.68 (bm, 25H, CH₂CH₃ polymer backbone N–CH₂–CH₂–CH₂–CH₂–aminoguanine O–CH₂–CH₂–CH₂–CH₂–butyl); 2.99–4.09 (m, 14H, O–CH₂–CH₂–CH₂–CH₂–butyl + CH–OH sugar + CH–CH₂ sugar); 4.42–4.94 (m, 4H, 4X C–OH sugar + 1X O–CH₃ amionic); and 7.43 (br s, 1H, NH).

2.4. Electrophoretic Mobility Shift Assay. GPPs were formulated by simple mixing of pEGFP-N3 (0.69 μL, 100 ng, 0.0342 pmol) or pOVA (1 μL, 100 ng, 0.0246 pmol) solutions in MilliQ water with increasing amounts of polymer to achieve different nitrogen to phosphate (N/P) molar ratios (0, 1, 2.5, 5, 10, 15, and 20).
20). The mixtures were incubated for 1 h at room temperature and then analyzed by 1% agarose gel electrophoresis at 100 V for 45 min using Tris–ammonium–ethylene diaminetetraacetic acid (EDTA) (TAE, 40 mM Tris base, 40 mM acetic acid, 1 mM EDTA) as a running buffer. The bands corresponding to pDNA were visualized under ultraviolet light after staining by immersing the gel for 30 min in 70 mL of MilliQ water containing 14 μL of 10,000× GelRed nucleic acid gel staining. The gels were imaged using a Perkin Elmer UV-Transilluminator Geliance 600 Imaging System, using Image Lab image acquisition and analysis software as the imaging system (Bio-Rad Laboratories, Headquarters, CA).

2.5. Heparin Displacement Assay. Displacement of pDNA by the polymer solutions was evaluated by agarose gel. Copolymer/pEGFP complexes containing 100 ng of pDNA and prepared at the N/P ratios of 5 for M4A3 and M8A3 and for 2.5 for M6A4, M8A3B6 and M4A3B15 were incubated for 15 min at 37 °C with increasing concentration of heparin (0.15–10 IU mL−1) and loaded into a 1% agarose gel. The conditions used for gel preparation, running, and visualization were as described in “Electrophoretic Mobility Shift Assay”.

2.6. Particle Size and Zeta Potential Analyses. The mean particle diameter of the GPPs and PDI were assessed by dynamic light scattering (DLS) using the Zetasizer Nano ZS (Malvern, UK) at a constant scattering angle of 173 and 25 °C. Copolymer/pEGFP complex suspensions were prepared as described in paragraph 2.3 of “Electrophoretic Mobility Shift Assay” at the N/P ratio of 5 for M4A3 and M8A3 and at the N/P ratio of 2.5 for M6A4, M8A3B6 and M4A3B15. The final pDNA concentration was fixed at 5 μg mL−1 for all formulations. Samples were incubated at room temperature for 1 h and then diluted to the final volume of 50 μL with 10 mM phosphate and 154 mM NaCl, pH 7.4 (PBS) and analyzed. Free copolymer solutions were analyzed at the same concentration.

The zeta potential (ZP) measurements of both free polymers and complexes were performed by laser doppler electrophoresis at a fixed polymer concentration of 0.1 mg mL−1 in 5 mM HEPES, pH 7.4 at 37 °C and at the same N/P ratios reported above.

2.7. Transmission Electron Microscopy. GPP morphology was evaluated in a negative staining mode by transmission electron microscopy (TEM, Tecnai G2 microscope (FEI)), using 1% w/v aqueous uranyl acetate staining. Samples were prepared in PBS at a final polymer concentration of 0.25 mg mL−1 and at the same N/P ratios used for the DLS analysis. Samples were deposited on a small holey carbon-coated support grid (400 mesh), and the solvent was allowed to dry at room temperature. The average diameter of GPPs and the percentage of spherical, rod-, or toroid-shaped complexes were evaluated by ImageJ software v.1.51 by measuring 50 individual GPPs.

2.8. GPP Physical and Chemical Stability in Physiological Conditions. GPPs were prepared by mixing 3.45 μL of 145 ng μL−1 pEGFP aqueous solution (500.25 ng, 0.171 pmol) with 0.5 mg mL−1 M4A3 (4.43 μL, 22.1 μg, 89.9 pmol copolymer, N/P 2.5), M8A3B6 (4.13 μL, 2.06 μg, 139.5 pmol, N/P 2.5), or M4A3B15 (4.84 μL, 2.42 μg, 77.8 pmol copolymer, N/P 2.5) aqueous solution. Samples were equilibrated at room temperature for 1 h and then diluted to 100 μL with PBS supplemented with 10% v/v FBS and incubated at 37 °C. GPP aliquots (10 μL) were withdrawn at scheduled intervals (0, 1, 3, 6, and 24 h) and (i) analyzed by agarose gel electrophoresis to assess GPP physical stability or (ii) incubated for 5 min with 1.5 μL of a 10% w/v solution of sodium dodecyl sulfate (SDS) and loaded into agarose gel to assess pDNA chemical stability within the complexes. The conditions used for gel preparation, running, and visualization were as described in “Electrophoretic Mobility Shift Assay”.

2.9. Cell Culture. All cell lines were grown at 37 °C in a humidified atmosphere of 5% CO2, CHO (wild type) and CHO-C2D206* (Mannose receptor-expressing CHO cells) cell lines were kindly donated by Prof. Luisa Martinez-Pomares (Faculty of Medicine & Health Sciences, University of Nottingham) and routinely cultivated in Ham’s F12/Dulbecco modified eagle’s medium (DMEM/F12) supplemented with 10% FBS, 2 mM l-glutamine, 100 U/mL penicillin, and 100 μg mL−1 streptomycin (DMEM/F12 complete medium). CHO-C2D206* cells were grown in the presence of 0.6 mg mL−1 of genetin to maintain clone selection. DC2.4 cells were kindly donated by Prof. Luisa Martinez-Pomares (Faculty of Medicine & Health Sciences, University of Nottingham) and cultivated in Roswell Park Memorial Institute (RPMI) medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg mL−1 streptomycin, 1% non-essential amino acid (NEAA), and 50 μM β-mercaptoethanol (RPMI complete medium). JAWS II murine DCs were purchased from ATCC (Manassas, VA, USA) and grown in α-minimal essential medium (MEM) supplemented with 20% FBS, 4 mM L-glutamine, 100 U mL−1 penicillin, and 100 μg mL−1 streptomycin. Genetin at a concentration of 5 mg mL−1 was added to maintain clone selection. The mouse melanoma cell line B16-F1 was kindly provided by Prof. Véronique Prétat (Université Catholique de Louvain, Louvain Drug Research Institute, Brussels, Belgium), and cells were cultivated using MEM supplemented with 10% FBS, 1% NEAA, 100 U mL−1 penicillin, and 100 μg mL−1 streptomycin. For cell experiments, GPPs were prepared in Opti-MEM added with 2 mM l-glutamine, 100 U mL−1 penicillin, and 100 μg mL−1 streptomycin (Opti-MEM). All biological assays were performed at the N/P ratio of 5 for M4A3/pEGFP and M8A3B6/pEGFP GPPs and at the N/P ratio of 2.5 for M8A3B6/pEGFP, M4A3B15/pEGFP, and M4A3B15/pEGFP GPPs.

2.9.1. In Vitro Transfection Efficiency. GPPs were formulated as described in “Electrophoretic Mobility Shift Assay” and then diluted in Opti-MEM at 2.5 μg mL−1 pEGFP concentration.

2.9.1.1. Flow Cytometry. CHO and CHO-C2D206* (1.5 × 104 cells well−1) or DC2.4 (2.5 × 104 cells well−1) cells were seeded in 48-well plates and were grown for 24 h. Then, the medium was replaced with 200 μL of GPP suspension in Opti-MEM and the cells were incubated for 6 h at 37 °C with 200 μL of GPPs and then washed 2 × with 100 μL of PBS and further incubated for 24 h post-transfection (24 hpt) in complete DMEM/F12 and RPMI for the CHO/CHO-C2D206* and DC2.4 cell lines, respectively. Afterward, the medium was discarded, and the wells were rinsed 2 × with 100 μL of PBS. Cells were detached by trypsin treatment (150 μL, 0.06% w/v solution in PBS) diluted 1:1 with PBS, fixed by addition of 100 μL of a 4% v/v paraformaldehyde (PFA) solution in PBS and stored in the dark at 4 °C until analysis. Cells were analyzed by a FACSCanto II (BD, Franklin Lakes, USA) flow cytometer and at least 1 × 104 events per sample were recorded. The mean fluorescence intensity and the percentage of positive cells were detected on the FITC channel (488 nm laser, 530/30 filter). Untreated cells for each cell line served as negative controls. Data were analyzed using Flowing software v.2.5.1.

2.9.1.2. Confocal Microscopy. DC2.4 cells were seeded at a density of 3 × 104 cells well−1 on a 24-well plate containing glass dishes and were grown overnight. Cells were incubated for 6 h at 37 °C with 400 μL of GPPs, then washed 2 × with 400 μL of PBS and further incubated for 24 h. Afterward, cells were rinsed 2 × with 400 μL of PBS, fixed by incubation for 15 min with a 4% PFA solution in PBS at room temperature and rinsed 3 × with 400 μL of PBS. Nuclei were stained by incubating samples with 300 μL of a 4.5 μg mL−1 DAPI solution in PBS for 10 min at room temperature. Finally, glass dishes were gently rinsed 3 × with 300 μL of PBS and once with MilliQ water before being mounted on microscope slides using Mowiol aqueous mounting media.

Cells were imaged with a Zeiss confocal laser-scanning microscope (LSM 800, Zeiss, Jena, Germany) using an immersion lens with 63× magnification, with λex at 353 nm for nuclei detection and λem at 488 nm for EGFP detection. The images were then processed with ZEN2.3 blue edition software (Carl Zeiss Microscopy GmbH, Jena, Germany).

2.10. Activation of JAWS II Cells In Vitro by pOVA-Loaded GPPs and Antigen Presentation Assay. Murine DC line JAWS II...
Scheme 1. Schematic Illustration of GPP Formulation and Mechanism of Antitumoral Activity Elicited by the Developed Nanomedicine after Internalization by DCs

was seeded at a density of \(5 \times 10^5\) cells well\(^{-1}\) in a 12-well plate and was grown for 24 h in complete α-MEM. Then, the medium was discarded, cells were rinsed \(2 \times\) with 1 mL of PBS and incubated for 6 h at \(37^\circ\)C with 800 μL of \(M_\text{siA}^{\text{A}5}/\text{pOVA}, M_\text{siA}^{\text{A}5}/\text{pOVA},\) and \(M_\text{siA}^{\text{A}5}/\text{pOVA} GPPs\) formulated in Opti-MEM at 2.5 N/P ratio and 2.5 μg mL\(^{-1}\) ovalbumin-encoding plasmid (pOVA). PEI_{25kDa}/pOVA complexes at 10 N/P ratio were used as the control. Afterward, cells were rinsed with 500 μL of PBS, further incubated for 24 hpt in complete α-MEM and finally washed once with 500 μL of PBS before detachment by incubation with 500 μL of 25 mM EDTA solution for 5 min at \(37^\circ\)C. Cell suspensions were collected, centrifuged, transferred to a V-bottom 96-well plate, and incubated for 10 min at \(4^\circ\)C with 40 μL of Fe-receptor blocking solution (1:20 dilution in PBS of anti-mouse CD11c, BioLegend) followed by incubation with FITC anti-mouse CD11c (1:50 dilution, 1 μL per sample, BioLegend), PerCP anti-mouse CD86 (1:40 dilution, 1.25 μL per sample, BioLegend), and PE anti-mouse H-2K\(^\text{b}\) bound-SIINFEKL (1:50 dilution, 1 μL per sample, BioLegend) antibodies solutions for 30 min at \(4^\circ\)C. Finally, cells were centrifuged at 1500 rpm for 5 min, and the cell pellet was washed \(2 \times\) with 100 μL of PBS, fixed by incubation with 100 μL of a 4% PFA solution in PBS at \(4^\circ\)C for 10 min, rinsed \(2 \times\) with 100 μL of PBS, and resuspended in 180 μL of PBS. Unlabeled samples for each condition and untreated samples were also prepared as controls. Cells were analyzed with BD LSRFortessa II flow cytometer acquiring at least 1 × 10\(^6\) events per sample. Data were analyzed with FlowJo software v10.2 (Becton, Dickinson and Company, Ashland, OR, USA).

2.1.1. In Vivo Therapeutic Vaccination Studies

All animal protocols were reviewed and approved by the experimental animal committee of the University of Helsinki (Helsinki, Finland) and the Provincial Government of Southern Finland (license number EAVT/11895/2019). 4–6 weeks old female C57BL/6JOLA-Hsd immune-competent mice were purchased from Envigo (Horst, The Netherlands), used at 6–10 weeks of age, and housed in ventilated cages in clinically controlled rooms. The animals had free access to water and food, and the animal body weight was constantly monitored. All treatments were performed under isoflurane anesthesia. The treatment effect on tumor growth was evaluated by measuring the tumor volume every other day using an electronic caliper. Tumor volume was calculated according to the formula (1)

\[
\text{volume} = \frac{\text{length} \times \text{width}^2}{2} \quad (1)
\]

Body weights were assessed after tumor volume measurements.

C57BL/6 mice were divided into two groups. One group was subcutaneously injected with \(3 \times 10^5\) B16-OVA melanoma cells (B16-OVA tumor-bearing mice) and the other group with \(1 \times 10^5\) B16-F1 melanoma cells (B16-F1 tumor-bearing mice) in both flanks. Six groups of four mice per group were defined either for B16-OVA-bearing mice or for B16-F1-bearing mice: Group 1 (Mock, untreated group), Group 2 (pOVA, subcutaneous injection of pOVA), Group 3 (\(M_\text{siA}^{\text{A}5}/\text{pEGFP}, \text{subcutaneous injection of } M_\text{siA}^{\text{A}5}/\text{pEGFP GPPs})\), Group 4 (\(M_\text{siA}^{\text{A}5}/\text{pEGFP}, \text{subcutaneous injection of } M_\text{siA}^{\text{A}5}/\text{pEGFP GPPs})\), Group 5 (\(M_\text{siA}^{\text{A}5}/\text{pOVA}, \text{subcutaneous injection of } M_\text{siA}^{\text{A}5}/\text{pOVA GPPs})\), and Group 6 (\(M_\text{siA}^{\text{A}5}/\text{pOVA}, \text{subcutaneous injection of } M_\text{siA}^{\text{A}5}/\text{pOVA GPPs})\). All GPPs were prepared at an N/P ratio of 2.5 in PBS as described previously. Each mouse was subcutaneously injected at day 2, 6, 10, and 16 post tumor implantation with 100 μL containing 25 μg of pDNA for the treated groups or with PBS for the control group (Mock). The tumor progression was monitored every other day using an electronic caliper. The animals were sacrificed 21 days after tumor implantation and tumors and spleen were collected for immunological analysis.

2.1.1.1. Immunological Analysis of Tumor Samples

B16-OVA and B16-F1 tumors from C57BL/6 mice were smashed, filtered through a 70 μm cell strainer, and cultured overnight in RPMI medium supplemented with 20% FBS. Four random tumor samples from each group were selected for tumor T-cell staining, plated in a V-bottom 96-well plate, and incubated for 10 min at \(4^\circ\)C with 40 μL of Fe-receptor blocking solution (1:20 dilution in PBS of anti-mouse CD16/32, BioLegend) followed by incubation with FITC anti-mouse CD11c (1:50 dilution, 1 μL per sample, BioLegend), PerCP anti-mouse CD86 (1:40 dilution, 1.25 μL per sample, BioLegend), and PE anti-mouse H-2K\(^\text{b}\) bound-SIINFEKL (1:50 dilution, 1 μL per sample, BioLegend) antibodies solutions for 30 min at \(4^\circ\)C. Finally, cells were centrifuged at 1500 rpm for 5 min, and the cell pellet was washed \(2 \times\) with 100 μL of PBS, fixed by incubation with 100 μL of a 4% PFA solution in PBS at \(4^\circ\)C for 10 min, rinsed \(2 \times\) with 100 μL of PBS, and resuspended in 180 μL of PBS. Unlabeled samples for each condition and untreated samples were also prepared as controls. Cells were analyzed with BD LSRFortessa II flow cytometer acquiring at least 1 × 10\(^6\) events per sample. Data were analyzed with FlowJo software v10.2 (Becton, Dickinson and Company, Ashland, OR, USA).

2.1.1.2. IFN-γ ELISpot Assay

IFN-γ ELISpot assays were performed using a commercially available mouse ELISpot reagent set (ImmuNoSpot, Bonn Germany) and 20 ng/μL of each peptide was tested in vitro. In brief, spleens harvested from C57BL/6 mice bearing B16-OVA and B16-F1 tumors were smashed, filtered through a 70 μm cell strainer, and cultured overnight in RPMI medium supplemented with 20% FBS. Splenocytes from each group were pooled together and treated for 5 min at room temperature with ACK buffer (155 mM ammonium chloride, 10 mM potassium bicarbonate, 0.1 mM EDTA) (red blood cells lysis buffer). Then, the splenocytes were centrifuged at 1200 rpm for 5 min, and the cell pellet was resuspended in CTL-
3. RESULTS AND DISCUSSION

2.12. Statistical Analysis. Data are presented as mean ± s.d. for in vitro assays and as mean ± s.e.m. for ex vivo and in vivo assays. Statistical analyses were performed by using one-way or two-way analysis of variance followed by Tukey’s Multiple Comparison test. All statistical analysis were performed using GraphPad Prism (v7.0, 2018, GraphPad Software, San Diego, CA, USA). P < 0.05 was considered statistically significant.

3. RESULTS AND DISCUSSION

3.1. Synthesis and Characterization of Di- and Triblock Copolymers. With this work, we envisaged the design of a series of novel glycopolycations to efficiently complex and deliver pDNA-encoding TAA to APCs for eliciting an antitumoral immune response (Scheme 1).

Small libraries of diblock (MₙAₙ) and triblock (MₙAₙBₙ) copolymers constituted by (i) a hydrophilic mannosylated block (M—green in Scheme 1) and (ii) a positively charged agmatine-based block (A—orange in Scheme 1) and elongated with (iii) a hydrophobic butyl-based fragment (B—pink in Scheme 1) were generated via “fast” RAFT polymerization. Both MₙAₙ and MₙAₙBₙ were designed to self-assemble into polyplexes when mixed with pDNA (Scheme 1). The (M) block forms a hydrophilic outer shell that enhances colloidal stability and exposes a mannose-based antenna to selectively target CD206⁺ DCs. The (A) block constitutes a polycationic arginyl-like segment for nucleic acid condensation through the guanidine group (pKₐ 12.5), which was devised to maximize the nuclear penetration of the carrier compared to other polycations, as observed by Kim and co-workers. Moreover, the length of the spacer between the polymer backbone and the guanidine group might additionally favor the nuclear disposition, as reported by Huang et al. The platform was then further developed by elongating the diblock copolymer with a hydrophobic portion (B) to foster the endosomal escape and improve the TE of this novel vehicles. Butyl-based monomers indeed can directly interact with the endosomal membrane exerting destabilizing properties, thus promoting cargo migration to the cytoplasm.

The 4-cyano-4-(ethyloxycarbonylsulfanyl)pentanoic acid used as CTA was synthesized in a two-step reaction as described by Truong et al., while N-mannopyranosylethyl acrylamide (M) and agmatine acrylamide (A) monomers were synthesized according to established procedures already reported by our group and further optimized. The characterization of CTA and monomers is reported in the Supporting Information (Schemes S1–S3, Figures S1–S4). Of note, we adopted a “fast” RAFT polymerization technique, which yielded polymers with low dispersity (D) and predetermined molecular weight (Table 1), and allowed to sequentially polymerize different monomers without the need of intermediate steps of polymer isolation, as it pushes monomer conversion to a very high percentage while maintaining the chain-end fidelity (Scheme 2).

To examine the effect of copolymer size and the additional presence of a hydrophobic block on pDNA complexation, pDNA protection from degradation, and TE, we generated copolymers with variable lengths (theoretical degree of polymerization (DP) in the 32–128 range for diblock copolymers) but similar M/A monomer ratios (Scheme 2, conditions a,b). Glycopolycations with DP of 64 and 128 were further elongated with the (B) hydrophobic butyl acrylate monomer (Scheme 2, conditions a–c), aiming at improving the endosomal escape properties of the new glycopolycations. The synthetic strategy was thought to yield polymers with molecular weights in the 6–30 kDa range (Table 1), below the threshold of renal filtration (30–50 kDa for natural polysaccharides and polyethylene glycol) to avoid body accumulation. Molecular weights measured by gel permeation chromatography (GPC) slightly deviated from the
theoretical values probably due to their different hydrodynamic volume compared to the pullulan standard used for the calibration. The 1H NMR spectra of di- and triblock copolymers after purification and lyophilization are reported in the Supporting Information (Figures S6–S10).

3.2. GPP Formulation and Characterization. The ability of $M_{A_1}A_2B_3$ and $M_{A_1}A_2B_3$ block copolymers to condensate nucleic acids was examined using model pDNA, either encoding for pEGFP or for chicken ovalbumin (pOVA). The copolymer condensation capacity and the size of the formed complexes with therapeutic nucleic acid are key parameters affecting the interaction with cells and the TE, which in turn dictate the therapeutic outcomes. pEGFP or pOVA were mixed with diblock or triblock copolymers at increasing N/P ratios (1–20 range). The electrophoretic mobility shift assays (EMSA) indicated a strong binding of pEGFP for all copolymers (Figure 1A). However, $M_{58}A_{45}$, which has the highest DP among the diblock copolymers, and $M_{29}A_{29}B_9$ and $M_{62}A_{52}B_{32}$ triblock copolymers were the most efficient and complexed pEGFP at a relatively low N/P value of 2.5. Differently, $M_{15}A_{12}$ and $M_{29}A_{25}B_9$ diblock copolymers, which have a lower DP, required at least an N/P ratio of 5 to properly condense the pDNA. Similar results were obtained when $M_{58}A_{45}$, $M_{29}A_{29}B_9$, and $M_{62}A_{52}B_{32}$ were complexed with pOVA (Figure S18), where an N/P ratio in the 1–2.5 range was sufficient to fully condense the nucleic acid for the triblock.
copolymers. Altogether, these results indicate that for diblock, there is an inverse relationship between copolymer size and N/P ratio, that is, the higher the molecular weight, the lower the N/P ratio required for full pDNA complexation, as expected from previous reports. Moreover, they also suggest that the addition of the third hydrophobic block might represent a strategy to enhance the pDNA binding capacity of diblock copolymers. A critical parameter for polyplexes is their rate of DNA unpackaging, that is, the tendency of the complexed nucleic acids to be released from the polymers. This feature must be tightly balanced to avoid either a premature segregation in body fluids before cell entry or a poorly efficient intracellular DNA discharge, both leading to inefficient gene transfer. To examine this property, we mixed our copolymers with increasing amounts of heparin sulfate, a polyanionic molecule present in blood that competes with pDNA for binding to the polycationic moieties of the carriers. Concentrations in the 1−2 IU mL−1 range, which are roughly 10 times higher than the physiological concentration of heparin found in blood, were required to induce initial pEGFP displacement for all our GPPs in physiological conditions after administration. At the same time, these results also suggest that the addition of a different diblock copolymer to M12A12/pEGFP complexes formed large aggregates due to inter-polyplex association. Of note, the preponderant morphology of GPPs could shift from elongated toroid (ring shape) or rod to globular, depending on the length of the cationic block (e.g., from M32A52B32/pEGFP to M62A32B32/pEGFP). Conversely, M62A32B32/pEGFP GPPs were characterized by bunch-like shapes, whereas M12A12/pEGFP complexes formed large aggregates due to inter-polyplex association. Of note, the preponderant morphology of GPPs could shift from elongated toroid (ring shape) or rod to globular, depending on the length of the cationic block (e.g., from M32A52B32/pEGFP to M62A32B32/pEGFP). As described by Osada, TEM analysis of M32A45/pEGFP, M32A52B9/pEGFP, and M32A52B9/pEGFP further demonstrated that copolymers with longer cationic blocks tend to form rods with shorter lengths as the N/P ratio increases from 2.5 to 5, possibly depending on a different pDNA folding in the presence of an excess of polycation chains (Figure S13).
Figure 3. Evaluation of pEGFP TE via flow cytometry (A–E). EGFP positive cells percentage (A,C) and mean fluorescence intensity (B,D) of CHO and CHO-CD206+ (A,B) and DC2.4 (C,D) cells after 6 h incubation with pEGFP, PEI125kDa/pEGFP at 10 N/P ratio, M15A12/pEGFP and M30A35/pEGFP GPPs formulated at the N/P ratio of 5, and M29A25/pEGFP, M62A32B32/pEGFP, and M58A45B13/pEGFP GPPs formulated at the N/P ratio of 2.5, and additional 24 h post-transfection incubation (2.5 μg mL−1 pEGFP concentration). Untreated (Ctrl) and pEGFP-treated cells were used as control. MFI (A.U.): mean fluorescence intensity (arbitrary unit). Data are presented as mean ± s.d. of three independent experiments performed in duplicates (except pEGFP, M15A12/pEGFP, and M30A35/pEGFP GPPs for which N = 1). Statistic symbols indicate *: sample vs Ctrl; #: sample vs pEGFP; #: sample vs PEI25 kDa/pEGFP. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
We thus tested the integrity of pDNA by gel electrophoresis after incubation of M₅₈A₄₅/pEGFP, M₃₉A₂₉B₂₀/pEGFP, and M₃₉A₂₉B₂₀/pEGFP at the N/P ratio of 2.5. Separate channels for the zoomed images and all copolymer/pEGFP complexes are available in the Supporting Information (Figure S17). Staining: DAPI—nuclei (blue), EGFP (green). Scale bars: 50 μm (full images) and 10 μm (zoomed images).

Given that our GPPs were considered for subcutaneous (s.c.) administration, their nano- to micrometric size could favor DC uptake at the injection site and ensuing transport for lymph node homing, where antigen presentation occurs, as expected for large-sized particles (500–2000 nm).³³

3.3. GPP Stability. In order to deliver an intact cargo to target cells, GPPs have to protect the loaded nucleic acids from degradation by nucleases present within the interstitial fluids.⁴⁴ We thus tested the integrity of pDNA by gel electrophoresis after incubation of M₅₈A₄₅/pEGFP, M₃₉A₂₉B₂₀/pEGFP, and M₃₉A₂₉B₂₀/pEGFP GPPs in PBS supplemented with 10% v/v FBS at 37 °C up to 24 h. We restricted our analysis to these three GPPs as they were then used for the following in vivo studies. As shown in Figure 2A, all of them were stable, and no pDNA release was observed throughout the 24 h. Conversely, GPPs displayed dissimilar protection of pDNA from fragmentation. Especially, M₅₈A₄₅/pEGFP was the most efficient and maintained the plasmid in the supercoiled form (Figure 2B(b)) preserving pDNA from the activity of serum nucleases. M₃₉A₂₉B₂₀/pEGFP and M₃₉A₂₉B₂₀/pEGFP showed instead a time-dependent partial linearization (Figure 2B(a)), suggestive of a progressive plasmid attack by nucleases, which was more marked for the copolymer with the lower DP (Figure 2B). Taken together, these results indicate that M₅₈A₄₅/pEGFP heterocomplexes are endowed with high stability and protect pDNA from degradation.

At the same time, naked pEGFP showed expected degradation over time, with the progressive appearance of linearized (Figure 2B(a)), open circular (Figure 2B(c)), and eventually nicked DNA (Figure 2B(d)), as a result of serum nuclease activity.

3.4. Mannosylation Enhances pDNA Transfection in CD206-Expressing Cells. We next devised a series of experiments to test the ability of GPPs to mediate pDNA transfection in living cells using pEGFP as model cargo, monitoring EGFP fluorescence by flow cytometry and confocal microscopy. In addition, to examine the contribution of the mannosylated block as a targeting agent, we used CHO cells, that do not constitutively express the mannose receptor, and CHO-CD206⁺, stably expressing the mannose receptor, that together represent a very convenient system to discern the receptor-mediated versus the unspecific internalization of our mannosylated GPPs. Initial experiments were performed using pEGFP as model cargo and monitoring EGFP fluorescence by flow cytometry and confocal microscopy to assess cell transfection.

Wild type and CHO-CD206⁺ cells were incubated for 6 h with the GPPs complexed with 2.5 μg mL⁻¹ pEGFP at the N/P ratio determined before. These formulations were found to be biocompatible and did not cause cell death (Figure S5). The TE was evaluated after 24 h post-incubation with GPPs. While M₅₈A₄₅/pEGFP and M₃₉A₂₉/pEGFP GPPs mediated a negligible transfection rate comparable to that by nude pEGFP, the diblock M₅₈A₄₅ and the triblock GPPs produced efficient cell transfection, which resulted in comparable or even higher rate than that mediated by the standard cationic transfection agent, 25 kDa linear polyethyleneimine (PEI₁₂₅₀⁺) (Figure 3A, light green). Importantly, the percentage of fluorescent cells treated with these three GPPs was much higher in CD206⁺ cells (Figure 3A, dark green), where the rate of transfection was tangibly exceeding that of PEI₁₂₅₀⁺/pEGFP complexes formulated at the optimum N/P ratio of 10, as determined by EMSA and DLS analysis (Figure S14). Comparable results were obtained using DC2.4 (Figure 3B) and JAWSII (Figure S15) immortalized DCs, which express constitutively the CD206 receptor. Importantly, M₅₈A₄₅ and triblock-based GPPs also led to an increased intensity of EGFP fluorescence (mean fluorescence intensity, MFI) specifically in CHO-CD206⁺ cells (Figure 3C). This difference was particularly marked in the case of M₅₈A₄₅/pEGFP GPP (MFI of 401.55 ± 65.66 in CHO versus 1169.73 ± 35.68 in CHO-CD206⁺) and was clearly visible by confocal microscopy (Figure S16). On the contrary,
no significant difference in EGFP MFI was observed in the two cell lines upon incubation with PEI_{1.25/30}/pOVA that lacks a CD206 targeting function. Altogether, these results indicate that the active targeting of CD206 mediated by the mannosylated outer block of our GPPs not only increased the percentage of transfected CHO-CD206⁺ cells but also enhanced their transfection yield, that is, the number of EGFP per cells. This was confirmed in DC2.4 cells where M₆₂A₃₂B₁₂/pEGFP GPP boosted EGFP fluorescence (Figure 3D).

A visual demonstration of the cell percentage and fluorescence intensity found in DC2.4 after pEGFP transfection with the different carriers is shown by the dot plots of Figure 3E, which was also assessed by confocal microscopy, confirming the cytosolic expression of EGFP (Figures 4 and S17). Considering that the cell-exogenous pDNA requires to be imported into the nucleus for its ensuing translation, it is tempting to speculate that the increased transfection rate of pEGFP complexed with our copolymer as compared to standard PEI, may be promoted, at least in part, by the (A) block containing residues of agmatine, which have been reported to favor nuclear entry. 30

Percentage of transfection of JAWS II cells was in line with the results in CHO-CD206⁺ and DC2.4 cells (Figure S15), suggesting that transfection by diblock and triblock GPPs occurs via a mechanism of active targeting in general to CD206 expressing cells.

An important consideration emerging from these experiments is that the hydrophobic (B) block positively impacts on the TE, as indicated by the fact that M₂₉A₄₅ diblock does not mediate pEGFP transfection in contrast to the homologous M₃₂A₃₂B₉ triblock copolymer bearing a butyl portion. This could be ascribed to the membrane disruption properties attributed to the hydrophobic block. 25

Recently, Riley and co-workers highlighted the unsatisfactory results achieved by DNA vaccines in clinical trials mainly due to the nuclear delivery barriers 25 and the unsatisfied need of novel and more effective delivery platforms. In this scenario, M₄₅A₄₅/pEGFP, M₃₂A₃₂B₉/pEGFP, and M₆₂A₃₂B₁₂/pEGFP GPPs outperforming the PEI_{1.25/30}/pEGFP complex in protein expression can be pointed as a promising platform.

3.5. M₄₅A₄₅ and M₆₂A₃₂B₁₂ Copolymers Mediate pOVA Transfection and Antigen Presentation in Model DCs.

To examine the activity of M₄₅A₄₅, M₃₂A₃₂B₉, and M₆₂A₃₂B₁₂ copolymers as vaccine carriers, GPPs were formulated with a plasmid encoding for chicken ovalbumin (pOVA), a model antigen-bearing immunodominant CD8⁺ (OVA_{257–264}) and CD4⁺ (OVA_{323–339}) epitopes allowing to characterize T-cell responses.

M₄₅A₄₅/pOVA, M₃₂A₃₂B₉/pOVA, and M₆₂A₃₂B₁₂/pOVA GPPs were formulated at N/P ratio of 2.5, which efficiently retained pOVA, as assessed by an agarose gel retardation assay (Figure S18). Thereafter, we added the GPPs to cultured JAWS II DCs, which express high levels of the lineage DC marker CD11c (Figure S19) and assessed their activation by monitoring the membrane expression of CD86, a co-stimulatory molecule essential to induce T-cell stimulation. While naked pOVA did not cause any activation of JAWS cells, M₄₅A₄₅/pOVA and M₆₂A₃₂B₁₂/pOVA GPPs significantly increased the percentage of CD86 expressing cells (Figure 5A). Of note, this effect was specifically due to pOVA transfection rather than to unspecific cell activation, as shown by the absence of effects using the carriers alone (no plasmid). Importantly, the PEI_{1.25/30}/pOVA complex failed to induce
CD86 expression in any cells (Figure 5A), emphasizing the ability of our mannosylated carriers to trigger a specific immune response compared to a carrier with broad, yet unspecific, activity. Furthermore, \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) also enhanced the relative amount of CD86 expression (Figure 5B), confirming previous results on superior transfection efficacy of butyl-bearing polymers. Consistent with the higher percentage of transfected cells, \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) and \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \) GPPs also displayed a higher percentage of cells presenting the ovalbumin-specific antigenic epitope “SIINFEKL” onto MHC class I (Figure 5C). Once again, this result was accompanied by a significant increase in the amount of membrane-exposed peptides with better results for \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \) as compared to \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \), while the carrier alone and PEI\(_{25kDa}/\text{pOVA} \) did not elicit any SIINFEKL expression (Figure 5D), corroborating the results obtained with CD86.

3.6. Nanovaccines Immuno-Mediated Tumor Growth Inhibition. Building up on our positive results of targeted transfection and successful antigen presentation in cultured DCs, we decided to test our GPPs in vivo on tumor-bearing mice to evaluate their potential as carriers for cancer vaccination and immunotherapy. To this aim, we took advantage of a murine tumor model based on the implant in mice of syngeneic B16 melanoma cells engineered to express chicken ovalbumin (B16-OVA). After inoculation on the mouse flank, B16-OVA grew rapidly and originated a tumor made of cells expressing OVA in their plasma membrane, thus providing a convenient model to assess the immunization efficacy of our GPPs loaded with pOVA and, at the same time, to track the tumor-specific T-cell activation and response.

Consistent with the higher percentage of transfected cells, \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) and \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \) GPPs displayed a higher percentage of cells presenting the ovalbumin-specific antigenic epitope “SIINFEKL” onto MHC class I (Figure 5C). Our results show that \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) mediated potent pEGFP transfection but its performance on DC activation was modest and comparable to that of PEI\(_{25kDa}/\text{pOVA} \), suggesting that it does not represent a good candidate for in vivo testing. On the contrary, despite lower pEGFP transfection, \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) and \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \) carriers elicited conspicuous activation of DCs by pOVA transfection, thus showing the potential to stimulate a tumor-specific T-cell response in vivo. Accordingly, \(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) and \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \)-based GPPs were selected for the next in vivo studies.

\(\text{M}_{58}\text{A}_{45}/\text{pOVA} \) and \(\text{M}_{42}\text{A}_{32}/\text{pOVA} \) GPPs (N/P ratio of 2.5) were subcutaneously injected into B16-OVA tumor-bearing mice at day 2, 6, 10, and 16 after tumor implantation (Figure 6A). As a control, tumor-bearing mice were also treated with either naked pOVA or \(\text{M}_{58}\text{A}_{45}/\text{pEGFP} \) or \(\text{M}_{42}\text{A}_{32}/\text{pEGFP} \) GPPs, while the same treatments were
Additionally, applied to B16-F1 tumor-bearing mice that did not express the OVA antigen.

Tumors were monitored for 21 days and eventually harvested, dissociated, and analyzed for T-cell infiltration. Figure 6B indicates that the M$_{62}$A$_{45}$/pOVA combination slowed down tumor growth, showing a 3.2-fold reduction in tumor growth as compared to that in animals treated with naked pOVA. Crucially, this effect is attributable to the efficient delivery of the pDNA encoding ovalbumin, as demonstrated either by the non-statistically significant effect of pEGFP-loaded polyplexes (negative control, Figure S20) or by the failure of M$_{62}$A$_{45}$/pOVA in controlling the growth of tumors induced by the inoculation of control B16-F1 melanoma cells not expressing OVA in their plasma membrane (Figure S21A).

Importantly, notwithstanding the several administrations of our complexes, treated animals did not lose weight throughout the time of treatment (Figure S22), supporting the biocompatibility and safety of our copolymers under tested conditions.

At the end of the experiment, B16-OVA tumors and spleens were collected to perform immunological analysis on the specific activation of T-cells in response to the different treatments. In agreement with the reduced tumor volume, we found a higher infiltration of CD4$^+$ (Figure 6C) and CD8$^+$ T-cells (Figure 6D) upon immunization with M$_{62}$A$_{45}$/pOVA as compared to other treatments. Importantly, CD8$^+$ cells collected from M$_{62}$A$_{45}$/pOVA-treated mice were able to recognize the SIINFEKL-MHC I complex (Figure 6E), while this was not observed for the other treatments (2.43% of SIINFEKL-MHC I positive T-cells for M$_{68}$A$_{45}$/pOVA as compared to 0.66 and 0.3% of SIINFEKL reactive T-cells for pOVA and M$_{68}$A$_{45}$/PEGFP treatment conditions, respectively). This result indicates that M$_{62}$A$_{45}$/pOVA was able to mediate specific T-cell activation against the OVA antigenic epitope and suggests that the reduction in tumor volume could derive from a cytotoxic immune response developed against the tumor cells expressing the model antigen OVA in their plasma membrane. Consistently, the group treated with the M$_{62}$A$_{45}$/pOVA GPP also showed the highest level of IFN-γ production by splenic T-cells after re-stimulation with the SIINFEKL peptide (Figure 6F). Of note, considering that IFN-γ plays a key role in the upregulation of MHC class I and expression of co-stimulator molecules (e.g., CD86, CD40, and CD80) in DCs, thereby potentiating CD8$^+$ cytotoxicity against tumor cells, these results are consistent and provide a further explanation for the strong CD8$^+$ response stimulated by M$_{62}$A$_{45}$/pOVA.

As expected, B16-F1 tumor-bearing mice displayed no specific activation of T-cells, with both low levels of tumor infiltration and specific response in splenic T-cells following re-stimulation with the SIINFEKL peptide (Figure S21B).

Altogether, our data qualify the M$_{62}$A$_{45}$ copolymer as a suitable candidate for the development of novel nanovaccine platforms. Remarkably, our results were obtained with the use of M$_{62}$A$_{45}$ polyplexes without any adjuvants, which are expected to further potentiate the immune reaction to the transfected antigens and thus escalate the antitumor activity.

According to the in vitro data, we were surprised by the lack of activity in vivo of the M$_{62}$A$_{45}$B$_{12}$/pOVA GPP. This discrepancy could be in part explained by the lower ability of M$_{62}$A$_{45}$B$_{12}$ to selectively target CD206-expressing cell performance compared to that of M$_{68}$A$_{45}$ (Figure 3A,C), which could have been insufficient to achieve the appropriate interaction with DCs after in vivo administration. Moreover, displacement and stability studies (Figures 1B,2B) indicated a higher stability for M$_{68}$A$_{45}$-based GPP compared to all triblock copolymers, including M$_{62}$A$_{45}$B$_{12}$, which also resulted in superior protection of nucleic acids by favoring pDNA supercoiling. Possibly, this could have prevented pOVA degradation by nucleases in vivo (Figure 2B).

In addition, the diverse size and morphology displayed by the two GPPs, with M$_{68}$A$_{45}$/pDNA forming rod-like particles and M$_{62}$A$_{45}$B$_{12}$/pDNA assembling in bunch-like shape, may have differently affected their penetration and diffusion into the tissue as well as their cell association, as already reported by several groups.

4. CONCLUSIONS

Nanovaccines for cancer immunotherapy have been widely used with promising results in the research setting, but clinical translation still remains a challenge, which is in part due to inefficient delivery vehicles. Thus, engineering of novel nanomaterials is actually needed to move forward novel strategies and overcome the many hurdles for cancer vaccination in vivo.

Here, two families of novel mannosylated polycations, diblock M$_{62}$A$_{45}$ and triblock M$_{62}$A$_{45}$B$_{12}$ copolymers were synthesized by RAFT polymerization. Mannose was adopted as a targeting block to improve delivery to APCs through CD206, and agmatine was used as a condensing agent for nucleic acids. In triblock copolymers, a butyl acrylate portion was added with the aim of favoring endosomal membrane disruption and boost transfection.

All copolymers stably complexed pDNA (i.e., pEGFP and pOVA) by electrostatic interactions at relatively low N/P ratios, in the 1–5 range, forming toroid-, rod-, and spherical-shaped GPPs, depending on the copolymer length and composition. Transfection studies with copolymer/pEGFP complexes on cell cultures revealed a higher transfection performance for M$_{68}$A$_{45}$, M$_{62}$A$_{45}$B$_{9}$, and M$_{62}$A$_{45}$B$_{12}$, highlighting their potential as candidates for in vivo testing. This suggests that for diblock copolymers, a molecular weight threshold applies to achieve transfection, while in the presence of a butyl acrylate portion, this phenomenon was not observed. Considering the results on EGFP expression, it can be postulated that the presence of the hydrophobic segment in the triblock copolymer may facilitate the translocation of the genetic material into the cytoplasm and its accumulation in the nucleus.

M$_{62}$A$_{45}$B$_{9}$-based GPP was able to transfect cells, while the corresponding M$_{68}$A$_{45}$ diblock copolymer lacking the butyl segment did not efficiently mediate the internalization and translation of pEGFP. Similarly, the M$_{62}$A$_{45}$B$_{12}$/pEGFP complex showed higher TE when compared to the butyl-free counterpart M$_{68}$A$_{45}$/pEGFP and also PEI$_{25kDa}$/pEGFP. Further studies are warranted to elucidate their specific intracellular trafficking and transfection mechanisms.

M$_{62}$A$_{45}$ diblock GPPs maintained higher selectivity toward CD206-expressing cells, indicating that preferential accumulation and antigen expression in CD206$^+$-APCs can be achieved via mannosylation.

In vitro activation studies with ovalbumin-encoding plasmid on JAWS II cells indicated that M$_{62}$A$_{45}$B$_{12}$ was not suitable for promoting DC activation and antigen cross-presentation, while
M₃S₅A₅₃/pOVA and M₂S₅A₃/pOVA showed superior performances than PEI₁₂₅₀₀₃/pOVA. In vivo experiments on tumors deriving from inoculation of B16-OVA melanoma cells revealed that M₃S₅A₅₃/pOVA polyplexes elicited a robust and specific antitumor T-cell immunity and slowed down tumor growth.

The described work outlines an easy production of a cancer nanovaccine platform with facile preparation yet efficient nucleic acid incorporation. Future studies will come to evaluate the versatility of these delivery platforms to pack pDNA or mRNA for multiple antigens within single carriers and in combination with appropriate vaccine adjuvants, thus promoting a wide spectrum of antitumor T-cell responses for improved tumor immunotherapy.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/10.1021/acs.biomac.2c00993.

Experimental methods; synthesis of CTA and monomers; GPC cell viability studies; [CTA]/[VA-044] ratios and number of VA-044 sequential additions required for each polymerization step; NMR spectra of glycopolymers; DLS and zeta potential data of free glycopolymers and pEGFP-loaded GPPs; TEM images of GPPs and agarose gel; and DLS analyses of PEI₁₂₅₀₀₃/pEGFP polyplexes; flow cytometry data for pEGFP GPPs’ TE on JAWS II cells; confocal microscopy images of CHO/CHO-CD206 + and DC2.4.2 cell transfection; gel retardation assay of pOVA-GPPs; CD11c expression on JAWS II cells under various treatment conditions; B16-OVA tumor growth for mock GPPs; B16–F1 melanoma growth and INF-γ ELISPOT results; body weight of B16-OVA or B16–F1 tumor-bearing mice; and size and PDI values of glycopolymer/pEGFP complexes (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Francesca Mastrotto — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; orcid.org/0000-0002-4999-5490; Email: francesca.mastrotto@unipd.it

Authors
Federica Bellato — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
Sara Feola — Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, 00790 Helsinki, Finland; ICAN Digital Precision Cancer Medicine Flagship, FI-00014 Helsinki, Finland; orcid.org/0000-0002-4012-4310
Gloria Dalla Verde — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
Greta Bellio — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
Marco Pirazzini — Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; orcid.org/0000-0003-4127-254X

Stefano Salmaso — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
Paolo Caliceti — Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; orcid.org/0000-0002-2222-9944
Vincenzo Cerullo — Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, 00790 Helsinki, Finland; ICAN Digital Precision Cancer Medicine Flagship, FI-00014 Helsinki, Finland

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.biomac.2c00993

Author Contributions
The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest. The data that support the findings of this study are available from the corresponding author upon reasonable request.

■ ACKNOWLEDGMENTS

This work was supported by STARS Starting grants (STARS StG) (grant no. MAST_STARS18_02 and CUP C91118001190005) and PRIDJ (grant no. MAST_SID17_01, CUP C93C17002300005).

■ REFERENCES

(1) (a) Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. (b) Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: from T-cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. (c) Blass, E.; Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021, 18, 215–229.
(2) (a) Couzin-Frankel, J. Cancer Immunotherapy. Science 2013, 342, 1432–1433. (b) Gonzalez, H.; Hagerling, C.; Weber, Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. (c) Hiam-Galves, K. J.; Allen, B. M.; Spits, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359. (d) Corhay, A. Does the Immune System Naturally Protect Against Cancer? Front. Immunol. 2014, 5, 197.
(3) (a) Liu, C.-C.; Yang, H.; Zhang, R.; Zhao, J.-J.; Hao, D.-J. Tumour-associated antigens and their anti-cancer applications. Eur. J. Cancer Care 2017, 26, No. e12446. (b) Smith, C. C.; Selitsky, S. R.; Chai, S.; Armistead, P. M.; Vincent, B. G.; Serody, J. S. Alternative tumour-specific antigens. Nat. Rev. Cancer 2019, 19, 465–478. (c) Buonaguro, L.; Petrizzo, A.; Tornesello, M. L.; Buonaguro, F. M. Translating Tumor Antigens into Cancer Vaccines. Clin. Vaccine Immunol. 2011, 18, 23–34. (d) Jiang, T.; Shi, T.; Zhang, H.; Hu, J.; Song, Y.; Wei, J.; Ren, S.; Zhou, C. Tumor neoantigens: from basic research to clinical applications. J. Hematol. Oncol. 2019, 12, 93.
(4) (a) Saxena, M.; van der Burg, S. H.; Mielef, C. J. M.; Bhardwaj, N. Therapeutic cancer vaccines. Nat. Rev. Cancer 2021, 21, 360–378. (b) Fang, Y.; Mo, F.; Shou, J.; Wang, H.; Luo, K.; Zhang, S.; Han, N.; Li, H.; Ye, S.; Zhou, Z.; Chen, R.; Chen, L.; Liu, L.; Wang, H.; Pan, H.; Chen, S. A Pan-cancer Clinical Study of Personalized Neoantigen Vaccine Monotherapy in Treating Patients with Various Types of Advanced Solid Tumors. Clin. Cancer Res. 2020, 26, 4511–4520. (c) Hollingsworth, R. E.; Jansen, K. Turning the corner on therapeutic cancer vaccines. npj Vaccines 2019, 4, 7.
(5) (a) Grabbe, S.; Haas, H.; Diken, M.; Kranz, L. M.; Langguth, P.; Sahin, U. Translating nanoparticle-penpersonalized cancer vaccines
into clinical applications: case study with RNA-lipoplexes for the
treatment of melanoma. Nanomedicine 2016, 11, 2723–2734.
(b) Sahin, U.; Türeci, O. Personalized vaccines for cancer
immunotherapy. Science 2018, 359, 1355–1360.
(6) (a) Liu, M. A. A Comparison of Plasmid DNA and mRNA as
Vaccine Technologies. Vaccines 2019, 7, 37. (b) Qin, F.; Xia, F.;
Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to
Nucleic Acid Vaccines in the Prevention and Treatment of Infectious
Diseases and Cancers: From Basic Principles to Current Applications.
Front. Cell Dev. Immunother. 2021, 9, 637776.
(7) (a) Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA
vaccines - a new era in vaccinology. Nat. Rev. Drug Discovery 2018, 17,
261–279. (b) Hobenriek, D.; Bros, M. DNA Vaccines-How Far From
Clinical Use? Int. J. Mol. Sci. 2018, 19, 3605. (c) Hassett, K. J.;
Benenato, K. E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.;
Himansu, S.; Detertling, J.; Geilich, B. M.; Ketova, T.; Mihai, C.; Lynn,
A.; McFadyen, I.; Moore, M. J.; Senn, J. J.; Stanton, M. G.; Almarsson,
O.; Ciaramella, G.; Brito, L. A. Optimization of Lipid Nanoparticles
for Intramuscular Administration of mRNA Vaccines. Mol. Ther.
Nucleic Acids 2019, 15, 1–11.
(8) (a) Lopes, A.; Vandermeulen, G.; Prêté, V. Cancer DNA vaccines:
current preclinical and clinical developments and future
perspectives. J. Exp. Clin. Cancer Res. 2019, 38, 146. (b) Tacken,
P. J.; de Vries, I. J. M.; Torensma, R.; Fidgord, C. G. Dendrit-cell
immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev.
Immunol. 2007, 7, 790–802.
(9) (a) Shin, M. D.; Shukla, S.; Chung, Y. H.; Beiss, V.; Chan, S. K.;
Ortega-Rivera, O. A.; Wirth, D. M.; Chen, A.; Sack, M.; Pokorski, J.
K.; Steinmetz, N. F. COVID-19 vaccine development and a potential
nanomaterial path forward. Nat. Nanotechnol. 2020, 15, 646–655.
(b) Chaudhary, N.; Weissman, D.; Whitehead, K. A. mRNA vaccines
for infectious diseases: principles, delivery and clinical translation.
Nat. Rev. Drug Discovery 2021, 20, 817–838.
(10) Yang, B.; Jeang, J.; Yang, A.; Wu, T. C.; Hung, C. F. DNA
vaccine for cancer immunotherapy. Hum. Vaccines Immunother. 2014,
10, 3153–3164.
(11) (a) Jones, C. H.; Chen, C.-K.; Ravikrishnan, A.; Rane, S.;
Pleifer, B. A. Overcoming nonviral gene delivery barriers: perspective
and future. Mol. Pharm. 2013, 10, 4082–4098. (b) Howell, D.;
Krieser, R. J.; Eastman, A.; Barry, M. A. Deoxyribonuclease II is a
lysosomal barrier to transfection. Mol. Ther. 2003, 8, 957–963.
(c) Putnam, D. Polymers for gene delivery across length scales. Nat.
Mater. 2006, 5, 195–202.
(12) Bergmann-Leitner, E. S.; Leitner, W. W. Danger, death
dna Vaccines. Microb. Infect. 2004, 6, 319–327.
(13) Suchak, J. J.; Williams, J. A.; Schmaljohn, C. S. Advancements
in DNA vaccine vectors, non-mechanical delivery methods, and
molecular adjuvants to increase immunogenicity. Hum. Vaccines
Immunother. 2017, 13, 2837–2848.
(14) Thomas, C. E.; Ehhardt, A.; Kay, M. A. Progress and problems
with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003,
4, 346–358.
(15) (a) Guevara, M. L.; Persano, S.; Persano, F. Lipid-Based
Vectors for Therapeutic mRNA-Based Anti-Cancer Vaccines. Curr.
Pharm. Des. 2019, 25, 1443–1454. (b) Guevara, M. L.; Persano, F.;
Persano, S. Advances in Lipid Nanoparticles for mRNA-Based Cancer
Immunotherapy. Front. Chem. 2020, 8, 589959. (c) Pack, D. W.;
Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development
of polymers for gene delivery. Nat. Rev. Drug Discovery 2005, 4, 581–
593. (d) Loczenski Rose, V.; Mastrotto, F.; Mantovani, G.
Phosphonion polymers for gene delivery. Polym. Chem. 2017, 8,
353–360.
(16) (a) Rui, Y.; Wilson, D. R.; Sanders, K.; Green, J. J. Reducible
Branched Ester-Amine Quadrupolymers (rBEAQLs) Codelivering
Plasmid DNA and RNA Oligonucleotides Enable CRISPR/Cas9
Genome Editing. ACS Appl. Mater. Interfaces 2019, 11, 10472–10480.
(b) Mastorakos, P.; Zhang, C.; Song, E.; Kim, Y. E.; Park, H. W.;
Berry, S.; Choi, W. K.; Hanes, J.; Suk, J. S. Biodegradable brain-
penetrating DNA nanocomplexes and their use to treat malignant
brain tumors. J. Controlled Release 2017, 262, 37–46. (c) Zhou, L.;
Hou, B.; Wang, D.; Sun, F.; Song, R.; Shao, Q.; Wang, H.; Yu, H.; Li,
Y. Engineering Polymeric Prodrug Nanoplatform for Vaccination
Immunotherapy of Cancer. Nano Lett. 2020, 20, 4393–4402.
(d) Connoti, J.; Scomparin, A.; Peres, C.; Yeini, E.; Pozzi, S.;
Matos, A. J.; Kleinier, R.; Moura, L. I. F.; Zupaniči, E.; Viana, A. S.;
Doron, H.; Gois, P. M. P.; Erez, N.; Jung, S.; Satchi-Fainaro, R.;
Florindo, H. F. Immunization with mannosylated nanovaccines and
inhibition of the immune-suppressing microenvironment sensitizes
melanoma to immune checkpoint modulators. Nat. Nanotechnol.
2019, 14, 891–901.
(17) (a) Reis e Sousa, C.; Stahl, P. D.; Austyn, J. M. Phagocytosis
of antigens by Langerhans cells in vitro. J. Exp. Med. 1993, 178, 509–
519. (b) Hossain, M. K.; Wall, K. A. Use of Dendritic Cell Receptors as
Targets for Enhancing Anti-Cancer Immune Responses. Cancers
2019, 24, 418.
(18) (a) Martinez-Pomares, L. The mannose receptor. J. Leukoc.
Biol. 2012, 92, 1177–1186. (b) Sallusto, F.; Cella, M.; Danieli, C.;
Lanzavecchia, A. Dendritic cells use macrophagocytosis and the
mannose receptor to concentrate macromolecules in the major
histocompatibility complex class II compartment: downregulation by
cytokines and bacterial products. J. Exp. Med. 1995, 182, 389–400.
(19) Pontow, S. E.; Kery, V.; Stahl, P. D. Mannose Receptor. Int.
Rev. Cytol. 1992, 137, 221–244.
(20) Surazi, D. S.; O’Malley, J.; Blumberg, B. 99mTc-
Tilmanocept: A Novel Molecular Agent for Lymphatic Mapping and
Sentinel Lymph Node Localization. J. Nucl. Med. Technol. 2015,
43, 87–91.
(21) Sève, A.-P.; Hubert, J.; Bouvier, D.; Bourgeois, C.; Midoux, P.;
Roche, A.-C.; Monsigny, M. Analysis of sugar-binding sites in
mammanal cell nuclei by quantitative flow microfluorometry. Proc.
Natl. Acad. Sci. U.S.A. 1986, 83, 5997–6001.
(22) Moad, G.; Rizzardo, E.; Thang, S. H. Radical addition-
fragmentation chemistry in polymer synthesis. Polymer 2008, 49,
1079–1131.
(23) Keler, T.; Ramakrishna, V.; Fanger, M. W. Mannose receptor-
targeted vaccines. Expt Opin. Biol. Ther. 2004, 4, 1953–1962.
(24) Manganelli, M. J.; Cheng, C.; Convertine, A. J.; Bryers, J. D.;
Stayton, P. S. Diblock copolymers with tunable pH transitions for
gene delivery. Biomaterials 2012, 33, 2301–2309.
(25) Sandler, S. R.; Kao, W.; Bonesteel, J.-A.; Pearce, E. M.
Introduction. In Polymer Synthesis and Characterization; Sandler,
S. R., Kao, W., Bonesteel, J.-A., Pearce, E. M., Eds.; Academic Press:
San Diego, 1993, 1–91.
(26) Moad, G.; Rizzardo, E.; Thang, S. H. Radical addition-
fragmentation chemistry in polymer synthesis. Polymer 2008, 49,
1079–1131.
Condensates Elicited by Cationic Block Polyelectrolytes

aqueous size-exclusion chromatography.

interferons as regulators of human antigen presenting cell functions. Toxins 2014, 6, 1696–1723. (b) Jorgovanovic, D.; Song, M.; Wang, L.; Zhang, Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark. Res. 2020, 8, 49.

emulsion polymerization.

bioconjugates for gene delivery by Poly(ethylene glycol)-protein conjugates. Bioconjugate Chem. 2022, 23, 5148–5163.

N.; van Nostrum, C. F.; Schoenmakers, P. J.; Hennink, W. E. Molar-

Poly(ethylene glycol)-protein conjugates. Bioconjugate Chem. 2020, 31, 4887–4897.

polyethyleneimine. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7297–7301.

Bioconjugate Chem. 2019, 12, 595–603.

and Uptake of Nanoparticles in 3D Tumor Spheroids. Biomacromolecules 2013, 14, 1415–1425.

Adv. Drug Deliv. Rev. 2003, 55, 1261–1277.

comm. 2009, 42, 1141–1151. (c) Caliceti, P.; Veronese, F. M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv. Drug Deliv. Rev. 2003, 55, 349–354.

Oligo-guanidyl targeted Biomacromolecules 2018, 19, 310–317. (c) Zhang, D.; Wei, L.; Zhong, M.; Xiao, L.; Li, H.-W.; Wang, J. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem. Sci. 2018, 9, 5260–5269.

Biomacromolecules 2001, 2, 141–147. (b) Fox, M. E.; Szoka, F. C.; Gellert, P. R.; Stolnik, S.; Grabowska, A.; Garnett, M. C. Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Biomacromolecules 2019, 30, 1371–1384. (b) Ridolfo, R.; Tavakoli, S.; Junnuthula, V.; Williams, D. S.; Urtti, A.; van Hest, J. C. M. Exploring the Impact of Morphology on the Properties of Biodegradable Nanoparticles and Their Diffusion in Complex Biological Medium. Biomacromolecules 2021, 22, 126–133. (c) Zhang, D.; Wei, L.; Zhong, M.; Xiao, L.; Li, H.-W.; Wang, J. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem. Sci. 2018, 9, 5260–5269.

Materials: design, synthesis, characterization, and applications, edited by M. Chergui, John Wiley & Sons, Inc., Hoboken, NJ, 2011, pp. 17–46. (b) Beauchamp, L.; Neri, F.; Papadimitriou, C.; Rosenthal, J.; Echtenkamp, E.; Colognato, H.; Reth, M. Delivery of RNA- and DNA-based therapeutics by dendritic molecular transporters. Trends in Biotechnology 2009, 27, 354–360. (b) Huang, K.; Voss, B.; Kumar, D.; Hamm, H. E.; Harth, E. Nanodendrimer Molecular Transporters Provide Control of Delivery to Intracellular Compartments. Bioconjugate Chem. 2007, 18, 403–409. (23) Truong, N. P.; Dussert, M. V.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem. 2015, 6, 3865–3874.

5163 https://doi.org/10.1021/acs.biomac.2c00993 Biomacromolecules 2022, 23, 5148–5163