THE TOPOLOGICAL COMPLEXITY AND THE HOMOTOPY COFIBER OF THE DIAGONAL MAP FOR NON-ORIENTABLE SURFACES

ALEXANDER DRANISHNIKOV

(Communicated by Kevin Whyte)

Abstract. We show that the Lusternik-Schnirelmann category of the homotopy cofiber of the diagonal map of non-orientable surfaces equals three. Also, we prove that the topological complexity of non-orientable surfaces of genus \(g > 4 \) is four.

1. Introduction

The topological complexity \(TC(X) \) of a space \(X \) was defined by Farber [F] as an invariant that measures the navigation complexity of \(X \) regarded as the configuration space for a robot motion planning. By a slightly modified definition \(TC(X) \) is the minimal number \(k \) such that \(X \times X \) admits a cover by \(k+1 \) open sets \(U_0, \ldots, U_k \) such that over each \(U_i \) there is a continuous motion planning algorithm \(s_i : U_i \to PX \), i.e., a continuous map of \(U_i \) to the path space \(PX = X^{[0,1]} \) with \(s_i(x,y)(0) = x \) and \(s_i(x,y)(1) = y \) for all \((x,y) \in U_i \). Here we have defined the reduced topological complexity. The original (non-reduced) topological complexity is by one larger.

The topological complexity of an orientable surface of genus \(g \) was computed in [F]:

\[
TC(\Sigma g) = \begin{cases}
2, & \text{if } g = 0,1, \\
4, & \text{if } g > 1.
\end{cases}
\]

For the non-orientable surfaces of genus \(g > 1 \) the complete answer is still unknown. What was known are the bounds: \(3 \leq TC(N_g) \leq 4 \) and the equality \(TC(\mathbb{R}P^2) = 3 \). In this paper we show that \(TC(N_g) = 4 \) for \(g > 4 \).

The topological complexity is a numeric invariant of topological spaces similar to the Lusternik-Schnirelmann category. It is unclear if \(TC \) can be completely reduced to the LS-category. One attempt of such reduction ([GV2], [Dr2]) deals with the problem of whether the topological complexity \(TC(X) \) coincides with the Lusternik-Schnirelmann category \(\text{cat}(C_{\Delta X}) \) of the homotopy cofiber of the diagonal map \(\Delta : X \to X \times X, C_{\Delta X} = (X \times X)/\Delta X \). The coincidence of these two concepts was proven in [GV2] for a large class of spaces. Also in [GV1] the equality was proven for the weak in the sense of the Berstein and Hilton versions of \(TC \) and cat.
In this paper we prove that $\text{cat}(C_{\Delta N}) = 3$ for any non-orientable surface N. Thus, in view of the computation $TC(N_g) = 4$ for $g > 4$ we obtain counterexamples to the conjecture $TC(X) = \text{cat}(C_{\Delta X})$.

Since both computations are rather technical, at the end of the paper we present a short counterexample: Higman’s group. We show that $TC(BH) \neq \text{cat}(C_{\Delta BH})$ where $BH = K(H, 1)$ is the classifying space for Higman’s group H. The proof of that is short because the main difficulty there, the proof of the equality $TC(BH) = 4$, is hidden behind the reference [GLO].

2. Preliminaries

2.1. Category of spaces. By the definition the Lusternik-Schnirelmann category $\text{cat} X \leq k$ for a topological space X if there is a cover $X = U_0 \cup \cdots \cup U_k$ by $k + 1$ open subsets each of which is contractible in X.

Let $\pi = \pi_1(X)$. We recall that the cup product $\alpha \smile \beta$ of twisted cohomology classes $\alpha \in H^i(X; L)$ and $\beta \in H^j(X; M)$ takes value in $H^{i+j}(X; L \otimes M)$ where L and M are π-modules and $L \otimes M$ is the tensor product over \mathbb{Z} [Bro]. Then the cup-length of X, denoted as $c.l.(X)$, is defined as the maximal integer k such that $\alpha_1 \smile \cdots \smile \alpha_k \neq 0$ for some $\alpha_i \in H^{n_i}(X; L_i)$ with $n_i > 0$. The following inequalities give estimates on the LS-category [CLOT]:

2.1.1. Theorem. $c.l.(X) \leq \text{cat} X \leq \dim X$.

If X is k-connected, then $\text{cat} X \leq \dim X/(k + 1)$.

2.2. Category of maps. We recall that the LS-category of a map $f : Y \to X$ is the least integer k such that Y can be covered by $k + 1$ open sets U_0, \ldots, U_k such that the restrictions $f|_{U_i}$ are null-homotopic for all i.

The following two facts are proven in [Dr3] (Proposition 4.3 and Theorem 4.4):

2.2.1. Theorem. Let $u : X \to B\pi$ be a map classifying the universal covering of a CW complex X. Then the following are equivalent:

1. $\text{cat}(u) \leq k$;
2. u is homotopic to a map $f : X \to B\pi$ with $f(X) \subset B\pi^{(k)}$.

2.2.2. Theorem. Let X be an n-dimensional CW complex whose universal covering \tilde{X} is $(n - k)$-connected. Suppose that X admits a classifying map $u : X \to B\pi$ with $\text{cat} u \leq k$. Then $\text{cat} X \leq k$.

2.3. Inessential complexes. One can extend Gromov’s theory of inessential manifolds [Gr] to simplicial complexes and, in particular, to pseudo-manifolds. We call an n-dimensional complex X inessential if a map $u : X \to B\pi$ that classifies the universal covering of X can be deformed to the $(n - 1)$-dimensional skeleton. Otherwise it is called essential.

2.3.1. Proposition. An n-dimensional complex X is inessential if and only if $\text{cat} X \leq n - 1$.

Proof. Suppose that $\text{cat} X \leq n - 1$. Then $\text{cat}(u) \leq n - 1$ where $u : X \to B\pi$ is a classifying map. By Theorem 2.2.1 X is inessential.

If X is inessential, by Theorem 2.2.1 $\text{cat}(u) \leq n - 1$. We apply Theorem 2.2.2 to X with $k = n - 1$ to obtain that $\text{cat} X \leq n - 1$. □

Remark. Proposition 2.3.1 in the case when X is a closed manifold was proven in [KR].
2.4. Pseudo-manifolds. We recall that an \(n \)-dimensional pseudo-manifold is a simplicial complex \(X \) which is pure, non-branching and strongly connected. Pure means that \(X \) is the union of \(n \)-simplices. Non-branching means that there is a subpolyhedron \(S \subset X \) of dimension \(\leq n-2 \) such that \(X \setminus S \) is an \(n \)-manifold. Strongly connected means that every pair of \(n \)-simplices \(\sigma, \sigma' \) in \(X \) can be joined by a chain of simplices \(\sigma_0, \ldots, \sigma_m \) with \(\sigma_0 = \sigma, \sigma_m = \sigma' \), and \(\dim(\sigma_i \cap \sigma_{i-1}) = n-1 \) for \(i = 1, \ldots, m \). Note that every \(n \)-dimensional pseudo-manifold \(X \) admits a CW complex structure with one vertex and one \(n \)-dimensional cell.

A sheaf \(O_X \) on an \(n \)-dimensional pseudo-manifold \(X \) generated by the presheaf \(U \to H_n(X, X \setminus U) \) is called the orientation sheaf. We recall that in case of manifolds the orientation sheaf \(O_N \) on \(N \) is defined as the pull-back of the canonical \(\mathbb{Z} \)-bundle \(\mathcal{O} \) on \(\mathbb{R}P^\infty \) by the map \(w_1 : N \to \mathbb{R}P^\infty \) that represents the first Stiefel-Whitney class.

A pseudo-manifold \(X \) is locally orientable if \(O_X \) is locally constant with the stalks isomorphic to \(\mathbb{Z} \). For a locally orientable \(n \)-dimensional pseudo-manifold \(X \), \(H_n(X; O_X) = \mathbb{Z} \), and the \(n \)-dimensional cell (we may assume that it is unique) defines a generator of \(\mathbb{Z} \) called the fundamental class \([X]\) of \(X \).

2.4.1. Theorem. Let \(X \) be a locally orientable \(n \)-dimensional pseudo-manifold and let \(A \) be a \(\pi_1(X) \)-module. Then the cap product with \([X]\) defines an isomorphism
\[
[X] \cap : H^n(X; A) \to H_0(X; A \otimes \mathbb{Z})
\]
where \(\mathbb{Z} \) stands for the \(\pi_1(X) \)-module \(\mathbb{Z} \) defined by the orientation sheaf \(O_X \).

Proof. We note that in these dimensions the proof of the classical Poincaré Duality for locally oriented manifolds (\cite{Bred}) works for pseudo-manifolds as well. \qed

2.4.2. Proposition. Suppose that a map \(f : M \to B\pi \) of an \(n \)-dimensional locally orientable pseudo-manifold induces an epimorphism of the fundamental groups. Suppose that the orientation sheaf on \(M \) is the image under \(f^* \) of a sheaf on \(B\pi \). Then \(f \) can be deformed to the \((n-1)\)-skeleton \(B\pi^{(n-1)} \) if and only if \(f_*([M]) = 0 \) where \([M]\) is the fundamental class.

Proof. The ‘only if’ direction follows from the dimensional reason and the fact that \(f_* \) does not change under a homotopy.

Let \(f_*([M]) = 0 \). We show that the primary obstruction \(o_f \) for deformation of \(f \) to the \((n-1)\)-skeleton is trivial. Since \(o_f \) is the image of the primary obstruction \(o' \) to deformation of \(B\pi \) to \(B\pi^{(n-1)} \), it suffices to prove the equality \(f^*(o') = 0 \). Note that
\[
f_*([M] \cap f^*(o')) = f_*([M]) \cap o' = 0.
\]
Since \(f \) induces an epimorphism of the fundamental groups, it induces an isomorphism of 0-dimensional homology groups with any local coefficients. Hence, \([M] \cap f^*(o') = 0 \). Since in dimension 0 the Poincare Duality holds for locally orientable pseudo-manifolds, we obtain that \(f^*(o') = 0 \). \qed

2.5. Homology of projective space. We denote by \(\mathcal{O} \) the canonical local coefficient system on the projective space \(\mathbb{R}P^\infty \) with the fiber \(\mathbb{Z} \).

2.5.1. Proposition.
\[
H_i(\mathbb{R}P^\infty; \mathcal{O}) = \begin{cases}
\mathbb{Z}_2, & \text{if } i \text{ is even}, \\
0, & \text{if } i \text{ is odd}.
\end{cases}
\]
Proof. Let \(Z \) denote a \(\mathbb{Z}_2 \)-module \(Z \) with the non-trivial \(\mathbb{Z}_2 \)-action. We note that \(H_\ast(\mathbb{R}P^\infty; \mathcal{O}) = H_\ast(\mathbb{Z}_2, Z) \). If \(\mathbb{Z}_2 = \{1, t\} \), then the homology groups \(H_\ast(\mathbb{Z}_2, Z) \) are the homology of the chain complex \((\text{Bro})\):

\[
\cdots \xrightarrow{1-t} \mathbb{Z} \xrightarrow{1+t} \mathbb{Z} \xrightarrow{1-t} \mathbb{Z} \xrightarrow{1+t} \mathbb{Z} \xrightarrow{1-t} \mathbb{Z}
\]

which is the complex

\[
\cdots \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \xrightarrow{2} \mathbb{Z}.
\]

2.6. Schwarz genus. We recall that the Schwarz genus \(g(f) \) of a fibration \(f : E \to B \) is the minimal number \(k \) such that \(B \) can be covered by \(k \) open sets on which \(f \) admits a section \([\text{Sch}]\). Then cat \(X + 1 = g(c : * \to X) \) and \(\text{TC}(X) + 1 = g(\Delta : X \to X \times X) \) where the constant map \(c \) and the diagonal map \(\Delta \) are assumed to be represented by fibrations. Schwarz related the genus \(g(f) \) with the existence of a section of a special fibration constructed out of \(f \) by means of an operation that generalizes the Whitney sum.

Here is the construction: Given two maps \(f_1 : X_1 \to Y \) and \(f_2 : X_2 \to Y \), we define the fiberwise join of spaces \(X_1 \) and \(X_2 \) as

\[X_1 \ast_Y X_2 = \{tx_1 + (1-t)x_2 \mid f_1(x_1) = f_2(x_2)\} \]

and define the fiberwise join of \(f_1, f_2 \) as the map

\[f_1 \ast_Y f_2 : X_1 \ast_Y X_2 \to Y, \quad \text{with } (f_1 \ast_Y f_2)(tx_1 + (1-t)x_2) = f_1(x_1) = f_2(x_2). \]

The iterated \(n \) times fiberwise join product of a map \(f : E \to B \) is denoted as \(\ast^n_B : \ast^n_B E \to B \).

2.6.1. Theorem \([\text{Sch}, \text{Theorem 3}]\). For a fibration \(f : E \to B \) the Schwarz genus \(g(f) \leq n \) if and only if \(\ast^n_B f : \ast^n_B \to E \) admits a section.

Also Schwarz proved the following \([\text{Sch}]\):

2.6.2. Theorem. Let \(\beta \) be the primary obstruction to a section of a fibration \(f : E \to B \). Then \(\beta^n \) is the primary obstruction to a section of \(\ast^n_B f \).

Let \(p^X : PX \to X \times X \) be the end points map: \(p^X(\phi) = (\phi(0), \phi(1)) \in X \times X \). Here \(PX \) is the space of all paths \(\phi : [0, 1] \to X \) in \(X \). Clearly, \(p^X \) is a Serre path fibration that represents the diagonal map \(\Delta : X \to X \times X \). Let \(P_0 X \subset PX \) be the space of paths issued from a base point \(x_0 \), and let \(\tilde{p}^X : P_0 X \to X \) be defined as \(\tilde{p}^X(\phi) = \phi(1) \). Then \(\tilde{p}^X \) is a fiber representation for the map \(x_0 \to X \).

For \(n > 0 \) we denote by \(p_n^X = \ast^{n+1}_{X \times X} p^X \) and \(\Delta_n(X) = \ast^{n+1}_{X \times X} PX \). Thus, elements of \(\Delta_n(X) \) can be viewed as formal linear combinations \(\sum_{i=0}^n t_i \phi_i \) where \(\phi_i : [0, 1] \to X \) with \(\phi_1(0) = \cdots = \phi_n(0), \phi_1(1) = \cdots = \phi_n(1), \) \(t_i \geq 0 \), and \(\sum t_i = 1 \).

Similarly we use the notation \(\tilde{p}_n^X = \ast^{n+1}_{X} \tilde{p}^X \) and \(G_n(X) = *^n_X P_0 X \). The fibration \(\tilde{p}_n^X \) is called the \(n \)-th Ganea fibration. For these fibrations Theorem 2.6.1 produces the following

2.6.3. Theorem. For a CW-space \(X \),

(1) \(\text{TC}(X) \leq n \) if and only if there exists a section of \(p_n^X : \Delta_n(X) \to X \times X \);

(2) \(\text{cat} X \leq n \) if and only if there exists a section of \(\tilde{p}_n^X : G_n(X) \to X \).
We note that the fiber of both fibrations p^X and \tilde{p}^X is the loop space ΩX. The fiber $F_n = (p^X_n)^{-1}(x_0)$ of the fibration p^X_n is the join product $\Omega X \ast \cdots \ast \Omega X$ of $n + 1$ copies of the loop space ΩX on X. So, F_n is $(n - 1)$-connected.

A continuous map $f : X \to Y$ for any n defines the commutative diagram

$$
\begin{array}{c}
\Delta_n(X) \\
p_n^* \\
\downarrow \\
X \times X \\
\downarrow f \times f \\
Y \times Y.
\end{array}
$$

2.6.4. Corollary. If $TC(X) \leq n$, then for any $f : X \to Y$ the map $f \times f$ admits a lift with respect to p_n^X.

2.7. Berstein-Schwarz cohomology class. The Berstein-Schwarz class of a discrete group π is the first obstruction β_π to a lift of $B\pi = K(\pi,1)$ to the universal covering $E\pi$. Note that $\beta_\pi \in H^1(\pi, I(\pi))$ where $I(\pi)$ is the augmentation ideal of the group ring $\mathbb{Z}\pi$ [Bre, Sch].

2.7.1. Theorem (Universality [DR, Sch]). For any cohomology class $\alpha \in H^k(\pi, L)$ there is a homomorphism of π-modules $I(\pi)^k \to L$ such that the induced homomorphism for cohomology takes $(\beta_\pi)^k \in H^k(\pi; I(\pi)^k)$ to α where $I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi)$ and $(\beta_\pi)^k = \beta_\pi \sim \cdots \sim \beta_\pi$.

3. Computation of the LS-category of the cofiber

For $X = \mathbb{R}P^n$, $n > 1$, the equality $TC(X) = \text{cat}(C_{\Delta X})$ was established in [GV2]. Together with the computation $TC(\mathbb{R}P^2) = 3$ from [FTV] it gives the following

3.0.2. Theorem.

$$
\text{cat}(\mathbb{R}P^2 \times \mathbb{R}P^2 / \Delta \mathbb{R}P^2) = 3.
$$

The goal of this section is to extend this result to all non-orientable surfaces.

3.1. Kunneth formula for twisted coefficients. For sheaves \mathcal{A} and \mathcal{B} on X and Y we use the notation $\mathcal{A} \hat{\otimes} \mathcal{B}$ for $pr_X^* \mathcal{A} \otimes pr_Y^* \mathcal{B}$ where $pr_X : X \times Y \to X$ and $pr_Y : X \times Y \to Y$ are the projections. Similarly we use notation $\mathcal{A} \hat{\otimes} \mathcal{B}$ for the periodic product $pr_X^* \mathcal{A} \ast pr_Y^* \mathcal{B}$. We recall that in the case when $\mathcal{A} \hat{\otimes} \mathcal{B} = 0$ for locally nice spaces X and Y there is the Kunneth formula [Bre]

$$(*) \quad H_n(X \times Y; \mathcal{A} \hat{\otimes} \mathcal{B}) = \bigoplus_i H_i(X; \mathcal{A}) \otimes H_{n-i}(Y; \mathcal{B}) \oplus \bigoplus_i H_{i-1}(X; \mathcal{A}) \ast H_{n-i}(Y; \mathcal{B}).$$

Note that for the stalk at $(x, y) \in X \times Y$ we have $(\mathcal{A} \hat{\otimes} \mathcal{B})_{(x, y)} = \mathcal{A}_x \ast \mathcal{B}_y$. Thus, the Kunneth formula holds for local coefficients if one of the coefficient modules is torsion free as an abelian group.

3.2. Free abelian topological groups. Let $\mathbb{A}(N)$ denote the free abelian topological group generated by N (see [M, G] or [DFI]). Let $j : N \to \mathbb{A}(N)$ be the natural inclusion. By the Dold-Thom theorem [DT] (see also [DFI]), $\pi_i(\mathbb{A}(N)) = H_i(N)$ and $j_* : \pi_i(N) \to \pi_i(\mathbb{A}(N))$ is the Hurewicz homomorphism. Therefore, $\mathbb{A}(\mathbb{R}P^2)$ is homotopy equivalent to $\mathbb{R}P^\infty$. Moreover, for a non-orientable surface N of genus g the space $\mathbb{A}(N)$ is homotopy equivalent to $\mathbb{R}P^\infty \times T^{g-1}$ where $T^m = S^1 \times \cdots \times S^1$ denotes the m-dimensional torus.

Let \mathcal{O} be the twisted coefficient system on $\mathbb{A}(N)$ that comes from the canonical system \mathcal{O} on $\mathbb{R}P^\infty$ as the pull-back under the projection $\mathbb{R}P^\infty \times T^{g-1} \to \mathbb{R}P^\infty$.
3.2.1. **Proposition.** For any non-orientable surface N

$$H_2(A(N); \hat{O}) = \oplus\mathbb{Z}_2.$$

Proof. We replace $A(N)$ by a homotopy equivalent space $T^{g-1} \times \mathbb{R}P^\infty$. Note that $\hat{O} = \mathbb{Z} \otimes O$ where \mathbb{Z} is the trivial sheaf. Since $\mathbb{Z} \ast \mathbb{Z} = 0$ we obtain that $\mathbb{Z} \ast O = 0$ and we can apply the Künneth formula. Then by the Künneth formula for local coefficients,

$$H_2(A(N); \hat{O}) = H_0(T^{g-1}) \otimes H_2(\mathbb{R}P^\infty; O)$$

$$\oplus H_1(T^{g-1}) \otimes H_1(\mathbb{R}P^\infty; O)$$

$$\oplus H_2(T^{g-1}) \otimes H_0(\mathbb{R}P^\infty; O).$$

The periodic product part of the Künneth formula is trivial since the first factor has torsion free homology groups. Thus, taking into account Proposition 2.3.1 we obtain

$$H_2(A(N); \hat{O}) = H_2(\mathbb{R}P^\infty; O) \oplus (\mathbb{Z}_2 \otimes H_2(T^{g-1})) = \mathbb{Z}_2 \oplus H_2(T^{g-1}; \mathbb{Z}_2) = \oplus\mathbb{Z}_2.$$

□

For a topological abelian group A we denote by $\mu_A = \mu : A \times A \to A$ the continuous group homomorphism defined by the formula $\mu(a, b) = a - b$.

3.2.2. **Proposition.** Let $N = \mathbb{R}P^2$. Then the pull-back $(j \times j)^*\mu^*(O)$ is the \mathbb{Z}-orientation sheaf for the manifold $\mathbb{R}P^2 \times \mathbb{R}P^2$ where $\mu = \mu_{A(\mathbb{R}P^2)}$ and O is the canonical \mathbb{Z}-bundle over $A(\mathbb{R}P^2) = \mathbb{R}P^\infty$.

We make a forward reference to Corollary 3.3.3 for the proof.

3.2.3. **Proposition.** Let $a \in H_2(\mathbb{R}P^\infty; O)$ be a generator. Then $\mu_*(a \otimes a) = 0$ where $\mu = \mu_{A(\mathbb{R}P^2)}$.

Proof. Note that $\pi_1((\mathbb{R}P^2 \times \mathbb{R}P^2)/\Delta\mathbb{R}P^2) = \mathbb{Z}_2$ (see Proposition 3.4.1). Let

$$f : (\mathbb{R}P^2 \times \mathbb{R}P^2)/\Delta\mathbb{R}P^2 \to A(\mathbb{R}P^2)$$

be a map that induces an isomorphism of the fundamental groups. We claim that the map $\mu \circ (j \times j)$ is homotopic to $f \circ q$ where $q : \mathbb{R}P^2 \times \mathbb{R}P^2 \to (\mathbb{R}P^2 \times \mathbb{R}P^2)/\Delta\mathbb{R}P^2$ is the quotient map. This holds true since both maps induce the same homomorphism of the fundamental groups. In view of Theorem 3.0.2 and Proposition 2.3.1 the map f is homotopic to a map with the image in the 3-dimensional skeleton. Therefore, $f_*q_*(b \otimes b) = 0$ where b is a generator of $H_2(\mathbb{R}P^2; O_{\mathbb{R}P^2}) = \mathbb{Z}$. Note that $j_*(b) = a$. Then $\mu_*(a \otimes a) = \mu_*(j \times j)_*(b \otimes b) = f_*q_*(b \otimes b) = 0$. □

Let $N = N_g = \#_g \mathbb{R}P^2$ be a non-orientable surface of genus g. Let $\pi = \pi_1(N)$ and $G = Ab(\pi) = H_1(N) = \mathbb{Z}_2 \oplus \mathbb{Z}^{g-1}$. We recall that by the Dold-Thom theorem [DT], [Dr1] the space $A(N)$ is homotopy equivalent to $K(G, 1) \sim \mathbb{R}P^\infty \times T^{g-1}$.

3.2.4. **Proposition.** There is a homomorphism of topological abelian groups

$$h : A(N_g) \to A(\mathbb{R}P^2) \times T^{g-1}$$

which is a homotopy equivalence.
We consider two cases.

(1) If \(g \) is odd, then \(N_g = M_{(g-1)/2}\#\mathbb{R}P^2 \). We define \(f \) as the composition

\[
M_{(g-1)/2}\#\mathbb{R}P^2 \xrightarrow{q} M_{(g-1)/2} \vee \mathbb{R}P^2 \xrightarrow{\phi\vee j} T^{g-1} \vee \mathbb{A}(\mathbb{R}P^2) \xrightarrow{i} T^{g-1} \times \mathbb{A}(\mathbb{R}P^2)
\]

where \(q \) is collapsing of the separating circle in the connected sum, \(\phi \) is a map that induces isomorphism of 1-dimensional homology, and \(i \) is the inclusion. It is easy to check that \(f \) induces an isomorphism \(f_* : H_1(N_g) \to H_1(\mathbb{A}(\mathbb{R}P^2) \times T^{g-1}) \).

(2) If \(g \) is even, then \(N_g = M_{(g-2)/2}\#K \) where \(K \) is the Klein bottle. There is a homotopy equivalence \(s : \mathbb{A}(\mathbb{K}) \to S^1 \times \mathbb{A}(\mathbb{R}P^2) \). We define \(f \) as the composition

\[
M_{(g-2)/2}\#K \xrightarrow{q} M_{(g-1)/2} \vee K \xrightarrow{\phi\vee j} T^{g-2} \vee (S^1 \times \mathbb{A}(\mathbb{R}P^2)) \xrightarrow{i} T^{g-2} \times S^1 \times \mathbb{A}(\mathbb{R}P^2)
\]

where \(q \) is collapsing of the connecting circle, \(\phi \) is a map that induces isomorphism of 1-dimensional homology, and \(i \) is the inclusion. One can check that \(f \) induces an isomorphism \(f_* : H_1(N_g) \to H_1(\mathbb{A}(\mathbb{R}P^2) \times T^{g-1}) \). \(\square \)

3.2.5. **Proposition.** For abelian topological groups \(A \) and \(B \), \(\mu_{A\times B} = \mu_A \times \mu_B \).

Proof. For all \(a, a' \in A \) and \(b, b' \in B \) we have

\[
\mu_{A\times B}(a \times b, a' \times b') = (a - a') \times (b - b') = \mu_A(a) \times \mu_B(b) = (\mu_A \times \mu_B)(a \times b).
\]

\(\square \)

3.3. **Twisted fundamental class.** The pull-back of the canonical \(\mathbb{Z} \)-bundle \(\mathcal{O} \) over \(\mathbb{R}P^\infty \) under the projection \(\mathbb{R}P^\infty \times T^{g-1} \to \mathbb{R}P^\infty \) defines a local coefficient system \(\tilde{\mathcal{O}} \) on \(\mathbb{A}(N) \) with the fiber \(\mathbb{Z} \). On the \(G \)-module level the action of the fundamental group on \(\mathbb{Z} \) is generated by the projection homomorphism \(p : \mathbb{Z}_2 \oplus \mathbb{Z}^{g-1} \to \mathbb{Z}_2 \). We note that \(\mathcal{O}_N = j^*(\tilde{\mathcal{O}}) \).

For sheafs \(\mathcal{A} \) and \(\mathcal{B} \) on \(X \) and \(Y \) we use the notation \(\mathcal{A} \hat{\otimes} \mathcal{B} \) for \(pr_X^*\mathcal{A} \otimes pr_Y^*\mathcal{B} \) where \(pr_X : X \times Y \to X \) and \(pr_Y : X \times Y \to Y \) are the projections. We note that if \(\mathcal{O}_X \) and \(\mathcal{O}_Y \) are the orientation sheaf on manifolds \(X \) and \(Y \), then \(\mathcal{O}_X \hat{\otimes} \mathcal{O}_Y \) is the orientation sheaf on \(X \times Y \).

3.3.1. **Proposition.** The cross product \([N]\mathcal{O}_N \times [N]\mathcal{O}_N \) is a fundamental class for \(N \times N \).

Proof. Note that for the orientation sheaf \(\mathcal{O}_{N \times N} \) on the manifold \(N \times N \) we have \(H_4(N \times N; \mathcal{O}_{N \times N}) = \mathbb{Z} \). We note that \(\mathcal{O}_N \hat{\otimes} \mathcal{O}_N = 0 \). Then the Kunneth formula implies

\[
\mathbb{Z} = H_4(N \times N; \mathcal{O}_{N \times N}) = H_4(N \times N; \mathcal{O}_N \hat{\otimes} \mathcal{O}_N) = H_2(N; \mathcal{O}_N) \otimes H_2(N; \mathcal{O}_N) = \mathbb{Z} \otimes \mathbb{Z}.
\]

Thus \([N\mathcal{O}_N] \otimes [N\mathcal{O}_N] \) is a generator in \(H_4(N \times N; \mathcal{O}_{N \times N}) \). \(\square \)

3.3.2. **Proposition.** For \(\mu = \mu_{\mathbb{A}(N)} \),

\[
\mu^* \tilde{\mathcal{O}} = \tilde{\mathcal{O}} \hat{\otimes} \tilde{\mathcal{O}}.
\]
Proposition. 3.3.5. where α is well defined.

By the representation j is well defined.

Corollary. I

For a non-orientable surface N the homomorphism $\mu(N)_*\colon H_4(N \times N; O_{N \times N}) \to H_4(\mathbb{A}(N); \hat{O})$ is well defined and $\mu(N)_*([N \times N]_{O_{N \times N}}) = 0$ where $[N \times N]_{O_{N \times N}} \in H_4(N \times N; O_{N \times N})$ is the fundamental class.

Proof. By Corollary 3.3.3 $O_{N \times N} = (j \times j)^*\mu^*(\hat{O})$ and, hence, the homomorphism $\mu_*(j \times j)_* : H_4(N \times N; O_{N \times N}) \to H_4(\mathbb{A}(N); \hat{O})$ is well defined.

As before, we replace $\mathbb{A}(N)$ by $\mathbb{A}(\mathbb{R}P^2) \times T^{g-1}$.

By Proposition 3.3.1 the cross product $[N]_{O_N} \times [N]_{O_{N}} \in H_4(N \times N; O_N \hat{\otimes} O_N)$ is a fundamental class: $[N \times N]_{O_{N \times N}} = \pm [N]_{O_N} \times [N]_{O_{N}}$.

Since $O_N = j^*\hat{O}$, the homomorphism $j_* : H_2(N; O_N) \to H_2(\mathbb{A}(N); \hat{O})$ is well defined. In view of the Kunneth formula (see formula (*) in subsection 3.1) we obtain $j_*([N]_{O_N}) = a \otimes 1_B + A \otimes b \in (H_2(A(\mathbb{R}P^2); O_N) \otimes \mathbb{Z}) \otimes (\mathbb{Z}_2 \otimes H_2(T^{g-1})) = H_2(A(N); \hat{O})$.

Proof. Let $p : \mathbb{Z}_g \oplus \mathbb{Z}^{g-1} \to \mathbb{Z}_2$ be the projection. The sheaf on the left is defined by the representation $p\mu_* : \pi_1(\mathbb{A}(N) \times \mathbb{A}(N)) \to Aut(\mathbb{Z}) = \mathbb{Z}_2$. The sheaf on the right is defined by the representation $\alpha(p \times p) : \pi_1(\mathbb{A}(N)) \times \pi_1(\mathbb{A}(N)) \to \mathbb{Z}_2$

where $\alpha : \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2$, $\alpha(x, y) = x + y$, is the addition homomorphism. It is easy to check that these two coincide on the generating set $(\pi_1(\mathbb{A}(N)) \times 1) \cup (1 \times \pi_1(\mathbb{A}(N))) \subset \pi_1(\mathbb{A}(N) \times \mathbb{A}(N))$.

Hence, they coincide on $\pi_1(\mathbb{A}(N) \times \mathbb{A}(N))$. Therefore, these sheafs are equal.

3.3.4. Proposition. Let $I : \mathbb{A}(N) \to \mathbb{A}(N)$, $I(x) = -x$, be the taking inverse map. Then I fixes every local system M on $\mathbb{A}(N)$ and defines the identity homomorphism in homology $I_* : H_*(\mathbb{A}(N); M) \to H_*(\mathbb{A}(N); M)$.

Proof. In view of Proposition 3.2.3 it suffices to prove it for $\mathbb{A}(\mathbb{R}P^2) \times T^k$. Note that the inverse homomorphism $I : \mathbb{A}(\mathbb{R}P^2) \times T^k \to \mathbb{A}(\mathbb{R}P^2) \times T^k$ is the product of the inverse homomorphisms I^1 and I^2 for $\mathbb{A}(\mathbb{R}P^2)$ and T^k respectively. Also note that both $I^1 : \mathbb{A}(\mathbb{R}P^2) \to \mathbb{A}(\mathbb{R}P^2)$ and $I^2 : T^k \to T^k$ are homotopic to the identity. Thus, I defines the identity automorphism of the fundamental group and, hence, fixes M. Then the homomorphism $I_* : H_*(\mathbb{A}(N); M) \to H_*(\mathbb{A}(N); M)$ is defined and $I_* = 1$.

3.3.5. Proposition. For a non-orientable surface N the homomorphism $\mu(N)_*\colon H_4(N \times N; O_{N \times N}) \to H_4(\mathbb{A}(N); \hat{O})$ is well defined and

$\mu(N)_*([N \times N]_{O_{N \times N}}) = 0$ where $[N \times N]_{O_{N \times N}} \in H_4(N \times N; O_{N \times N})$ is the fundamental class.
with $a \in H_2(\mathbb{A}(\mathbb{R}P^2); \mathcal{O}) = H_2(\mathbb{R}P^\infty; \mathcal{O})$ being the generator, $b \in H_2(T^{9-1}; \mathbb{Z})$, and generators $1_A \in H_0(\mathbb{A}(\mathbb{R}P^2); \mathcal{O}) = \mathbb{Z}_2$ and $1_B \in H_0(T^{9-1}; \mathbb{Z}) = \mathbb{Z}$. Let $\bar{a} = a \otimes 1_B$ and $\bar{b} = 1_A \otimes b$.

We apply Proposition 3.2.5 with $\mu = \mu_\mathcal{H}(\mathbb{R}P^2) \times T^{9-1}$ and $[N] = [N]_{\mathcal{O}N}$ to obtain:

$$
\mu_* (j \times j)_* ([N] \times [N]) = \mu_* (j_* ([N]) \times j_* ([N]) = \mu_* (\bar{a} \times \bar{b} \times (\bar{a} + \bar{b}))
$$

$$
= \mu_* (\bar{a} \times \bar{a} + \bar{a} \times \bar{b} + \bar{b} \times \bar{a} + \bar{b} \times \bar{b}) = \mu_* (\bar{a} \times \bar{a} + \mu_* (\bar{a} \times \bar{b} + \bar{b} \times \bar{a}) + \mu_* (\bar{b} \times \bar{b})
$$

$$
= \mu_* (a \times a) \times 1_B + \mu_* (a \times 1_A) \times \mu_2 (1_B \times b) + \mu_1 (a \times a) \times \mu_2 (b \times 1_B) + 1_A \times \mu_2 (b)\times b)
$$

where $\mu^1 = \mu_\mathcal{H}(\mathbb{R}P^2)$ and $\mu^2 = \mu_{T^{9-1}}$. By Proposition 3.2.5 $\mu_*^1 (a \times a) \times 1_B = 0$.

We recall that a \mathbb{Z}-twisted homology class in a space X with a local system $\rho : E \to X$ is defined by a cycle in X with coefficients in the sections of ρ on (singular) simplices in X. One can assume that the sections are taken in the ± 1-subbundle of the \mathbb{Z}-bundle ρ. This implies that every homology class is represented by a continuous map $f : M \to X$ of a pseudo-manifold that admits a lift $f' : M \to E$ with value in the ± 1-subbundle of ρ.

One can show that the homology class $a \in H_2(\mathbb{A}(\mathbb{R}P^2); \mathcal{O})$ is realized by a map $f : S^2 \to \mathbb{A}(\mathbb{R}P^2)$ that admits a lift to the ± 1-subbundle of \mathcal{O}. The homology class $1_A \in H_0(\mathbb{A}(\mathbb{R}P^2); \mathcal{O})$ can be realized by the point representing the unit $0 \in \mathbb{A}(\mathbb{R}P^2)$. Then the class $\mu_*^1 (a \times 1_A)$ is realized by the same map

$$
f = \mu^1 (f, 0) : S^2 \to \mathbb{A}(\mathbb{R}P^2),$$

i.e., $\mu_*^1 (a \times 1_A) = a$, whereas the class $\mu_*^1 (1_A \times a)$ is realized by the composition $I \circ f$. By Proposition 3.3.3, $\mu_*^1 (1_A \times a) = I_* (a) = a$. Similarly, $\mu_*^2 (b \times 1_B) = b$, and $\mu_*^2 (1_B \times b) = I_* (b) = b$. Therefore, $\mu_* (\bar{a} \times \bar{b} + \bar{b} \times \bar{a}) = 2(a \times b)$ is divisible by 2.

Then by Proposition 3.2.4, $\mu_* (\bar{a} \times \bar{b} + \bar{b} \times \bar{a}) = 0$.

Next we show that $\mu_*^2 (b \times b) = 0$. In view of Proposition 3.2.4 it suffices to show that $\mu_*^2 (b \times b) = 0 \mod 2$. We recall that the Pontryagin product defines the structure of an exterior algebra on $H_*(T^r) = \Lambda [x_1, \ldots, x_r]$. Thus, $b = \sum_{i<j} \lambda_{ij} x_i \wedge x_j$. Then

$$
b \times b = \sum_{i<j, k<l} \lambda_{ij} \lambda_{kl} (x_i \wedge x_j) \times (x_k \wedge x_l).
$$

Let $\{i, j\} \cap \{k, l\} = \emptyset$. By the argument similar to the above using Propositions 3.2.5 and 3.3.4 we obtain that

$$
\mu_*^2 ((x_i \wedge x_j) \times (x_k \wedge x_l) + (x_k \wedge x_l) \times (x_i \wedge x_j))
$$

is divisible by 2.

If $|\{i, j, k, l\}| \leq 3$, then the problem can be reduced to a 3-torus. Then

$$
\mu_*^2 ((x_i \wedge x_j) \times (x_k \wedge x_l)) = 0
$$

by the dimensional reason.

3.4. Inessentiality of the cofiber.

3.4.1. Proposition. For a connected CW complex X the fundamental group $G = \pi_1 (X \times X / \Delta X)$ is isomorphic to the abelianization of $\pi_1 (X)$ and the induced homomorphism $\pi_1 (X \times x_0) \to \pi_1 ((X \times X) / \Delta X)$ is surjective.
Proof. Let \(q : X \times X \to (X \times X)/\Delta X \) be the quotient map. Since \(q \) has connected point preimages, it induces an epimorphism of the fundamental groups. Suppose that \(g = q_*(a, b), g \in G, (a, b) \in \pi_1(X) \times \pi_1(X) = \pi_1(X \times X) \). Then
\[
g = q_*(a, b) = q_*(b, b)q_*(b^{-1}a, 1) = eq_*(b^{-1}a, 1)
\]
where \(e \in G \) is the unit. This proves the second part.

Let \(g, h \in G \). By the second part of the proposition, \(g = q_*(a, 1) \) and \(h = q_*(1, b) \). Since \((a, 1)(1, b) = (a, b) = (1, b)(a, 1), \) we obtain \(gh = hg \). Thus, \(G \) is abelian. We show that \(\pi_1(X \times x_0) \to \pi_1((X \times X)/\Delta X) \) is the abelianization homomorphism.

Note that the kernel of \(q_* \) is the normal closure of the diagonal subgroup \(\Delta \pi_1(X) \) in \(\pi_1(X) \times \pi_1(X) \). Thus every element
\[
(x, 1) \in K = ker\{(\pi_1(X \times x_0) \to \pi_1((X \times X)/\Delta X))\}
\]
can be presented as the product
\[
(x, 1) = (a_1^{y_1}, a_1^{z_1})(a_2^{y_2}, a_2^{z_2}) \cdots (a_n^{y_n}, a_n^{z_n})
\]
for \(a_i, y_i, z_i \in \pi_1(X) \) where \(a^g = gag^{-1} \). This equality implies that
\[
(a_1^{-1})^{z_1}(a_2^{-1})^{z_2} \cdots (a_n^{-1})^{z_n} = 1.
\]
Then \(x = (a_1^{-1})^{z_1} \cdots (a_n^{-1})^{z_n}a_1^{y_1} \cdots a_n^{y_n} \) lies in the kernel of the abelianization map. Therefore, \(K \subset [\pi_1(X), \pi_1(X)] \). \(\-box \)

3.4.2. Proposition. For any \(g \) the pseudo-manifold \((N_g \times N_g)/\Delta N_g\) is locally orientable and inessential.

Proof. We use the notation \(N = N_g \). To check the local orientability it suffices to show that \(H_4(W, \partial W) = \mathbb{Z} \) for a regular neighborhood of the diagonal \(\Delta N \) in \(N \times N \). Since \(H_4(W) = H_3(W) = 0 \), the exact sequence of pair implies \(H_4(W, \partial W) = H_3(\partial W) \). Note that the boundary \(\partial W \) is homeomorphic to the total space of the spherical bundle for the tangent bundle on \(N \). The spectral sequence for this spherical bundle implies that
\[
H_3(\partial W) = E^2_{2,1} = H_2(N; \underline{H_1(S^1)})
\]
where the local system \(\underline{H_1(S^1)} \) is the orientation sheaf on \(N \). Thus, we obtain \(H_3(\partial W) = \mathbb{Z} \).

Next, we show that the map \(\mu \circ (j \times j) \) is homotopic to \(f \circ q \) where \(q : N \times N \to (N \times N)/\Delta N \) is the quotient map and \(f \) is a map classifying the universal covering for \((N \times N)/\Delta N \). Note that for the fundamental groups, \(ker(q_*) \) is the normal closure of the diagonal \(\Delta \pi \) in \(\pi \). Therefore, \((j \times j)_*(ker(q_*)) \subset \Delta(\text{Ab}(\pi)) = ker(\mu_*) \). Hence there is a homomorphism \(\phi : \text{Ab}(\pi) \to \text{Ab}(\pi) \) such that \(\mu_* \circ (j \times j)_* = \phi q_* \):
\[
\begin{array}{ccc}
\pi \times \pi & \xrightarrow{q} & \pi_1(N \times N/\Delta N) \\
\downarrow{(j \times j)_*} & & \downarrow{\phi} \\
\text{Ab}(\pi) \times \text{Ab}(\pi) & \xrightarrow{\mu_*} & \text{Ab}(\pi).
\end{array}
\]
By Proposition 3.4.1 \(\pi_1(N \times N/\Delta N) = \text{Ab}(\pi) = \mathbb{Z}g^{-1} \oplus \mathbb{Z}_2 \). Since \(\phi \) is surjective the homomorphism \(\phi \) is an isomorphism. The homomorphism \(\phi \) can be realized by a map \(f : (N \times N)/\Delta N \to \mathbb{A}(N) \). Since \(f \) induces an isomorphism of the fundamental groups \(f \) is a classifying map. Since the maps \(\mu \circ (j \times j) \) and \(f \circ q \) with
the target space $K(\text{Ab}(\pi), 1)$ induces isomorphisms of the fundamental groups, they are homotopic.

Finally, we note that the fundamental class of $(N \times N)/\Delta N$ is the image of that of $N \times N$. Then we apply Proposition 3.3.5 and Proposition 2.4.2. \hfill \Box

3.4.3. **Corollary.** $\text{cat}((N \times N)/\Delta N) \leq 3$.

Proof. We apply Proposition 2.3.1. \hfill \Box

3.4.4. **Theorem.** For a non-orientable surface of genus g,

$$\text{cat}((N_g \times N_g)/\Delta N_g) = 3.$$

Proof. We take $x \in H^1(N_g; \mathbb{Z}_2)$ such that $x^2 \neq 0$. Note that $(x \times 1 + 1 \times x)^2 = x^2 \times 1 + 1 \times x^2$ in $H^* (N_g \times N_g; \mathbb{Z}_2)$. Then

$$(x \times 1 + 1 \times x)^3 = (x^2 \times 1 + 1 \times x^2)(x \times 1 + 1 \times x) = x \times x^2 + x^2 \times x \neq 0.$$

The restriction of $x \times 1 + 1 \times x$ to the diagonal $\Delta N_g \subset N_g \times N_g$ equals

$$x \cup 1 + 1 \cup x = 2x$$

where \cup is the cup product. Since $2x = 0$ in $H^*(N_g; \mathbb{Z}_2)$, we obtain $x \times 1 + 1 \times x = q^*(y)$ for some $y \in H^*(N_g \times N_g)/\Delta N_g; \mathbb{Z}_2)$. Therefore, $y^3 \neq 0$ in $H^*((N_g \times N_g)/\Delta N_g; \mathbb{Z}_2)$. By the cup-length estimate (Theorem 2.1.1),

$$\text{cat}((N_g \times N_g)/\Delta N_g) \geq 3.$$

This together with Corollary 3.4.3 implies the required equality. \hfill \Box

4. **Topological complexity of non-orientable surfaces**

Let M be an orientable surface, $P = \mathbb{R}P^2$ be the projective plane, and let $q : M \vee P \to P$ denote the collapsing M map. We denote by $O' = (q \times q)^* O_{P \times P}$ the pull-back of the orientation sheaf on $P \times P$.

4.0.5. **Proposition.** The 4-dimensional homology group of $(M \vee P)^2$ with coefficients in O' equals

$$H_4((M \vee P)^2; O') = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}.$$

Moreover, the inclusions of manifolds $\xi_i : W_i \to (M \vee P)^2$, $i = 1, \ldots, 4$ induce isomorphisms $H_4(W_i; \xi^* O') \to H_4((M \vee P)^2; O')$ onto the summands where $W_1 = M^2$, $W_2 = P^2$, $W_3 = M \times P$, and $W_4 = P \times M$.

Proof. We note that from the Mayer-Vietoris exact sequence for the decomposition $(M \vee P)^2 = A \cup B$ with $A = M^2 \cup P^2$ and $B = (M \times P) \cup (P \times M),

\cdots \to H_4(A; O'|_A) \oplus H_4(B; O'|_B) \xrightarrow{\psi} H_4((M \vee P)^2; O') \to H_3(M \vee M \vee P \vee P; O'|_\ldots)$

and dimensional reasons it follows that ψ is an isomorphism. Note that the intersections $M^2 \cap P^2$ and $(M \times P) \cap (P \times M)$ in $(M \vee P)^2$ are singletons. Hence, $A = M^2 \vee P^2$ and $B = M \times P \vee P \times M$. Thus, ψ defines the required isomorphism. \hfill \Box

4.0.6. **Corollary.**

$$H_4((M \vee P)^2; O') = H_4(M^2) \oplus H_4(P^2; O_{P}) \oplus H_4(M \times P; O_{M \times P}) \oplus H_4(P \times M; O_{P \times M}).$$

Proof. The proof is a verification that the restriction of O' to each W_i, $i = 1, 2, 3, 4$, is the orientation sheaf. \hfill \Box
Let the map \(f : M \# P \to (M \# P)/S^1 = M \vee P \) be the collapsing of the connected sum circle. Note that the composition \(q \circ f \) with the above \(q \) takes the orientation sheaf \(\mathcal{O}_P \) to the orientation sheaf \(\mathcal{O}_{M \# P} \).

4.0.7. Proposition. \((f \times f)_*([([M \# P])^2]) = [M^2] + [P^2] + [M \times P] + [P \times M].\)

Proof. Let \(B \subset \xi(W_i) \) be a 4-ball. Then we claim that the homomorphism

\[
H_4((M \vee P)^2; \mathcal{O}') \to H^4((M \vee P)^2; (M \vee P)^2 \setminus \tilde{B}; \mathcal{O}') = H_4(B, \partial B) = \mathbb{Z}
\]

generated by the map of pairs and the excision is the projection of the direct sum \(H_4((M \vee P)^2; \mathcal{O}') = \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \) onto the \(i \)-th summand. This follows from the commutative diagram

\[
\begin{array}{ccc}
H_4((M \vee P)^2; \mathcal{O}') & \longrightarrow & H_4((M \vee P)^2; (M \vee P)^2 \setminus \tilde{B}; \mathcal{O}') \\
\uparrow \varepsilon_i & & \downarrow \\
H_4(W_i; \xi^* \mathcal{O}') & \longrightarrow & H_n(W_i, W_i \setminus \xi_i^{-1}(\tilde{B}); \xi^* \mathcal{O}') \\
\end{array}
\]

The commutative diagram

\[
\begin{array}{ccc}
H_4((M \# P)^2; \mathcal{O}_{(M \# P)^2}) & \longrightarrow & H_4((M \# P)^2; (M \# P)^2 \setminus \tilde{B}; \mathcal{O}_{(M \# P)^2}) \\
\downarrow \\
H_4((M \vee P)^2; \mathcal{O}') & \longrightarrow & H_4((M \vee P)^2; (M \vee P)^2 \setminus \tilde{B}; \mathcal{O}') \\
\end{array}
\]

shows that the projection of the image \(f_*([M \# P]) \) of the fundamental class onto the \(i \)-th summand, \(i = 1, 2, 3, 4 \), is a fundamental class.

The proof of the following proposition is straightforward.

4.0.8. Proposition. A retraction \(r : X \to A, A \subset X \), defines a fiberwise retraction \(\tilde{r} : (p^X)^{-1}(A) \to PA \). Moreover, for each \(k \) it defines a fiberwise retraction \(\tilde{r}_k : (p_k^X)^{-1}(A) \to \Delta_k(A) \) of the fiberwise joins:

\[
\begin{array}{ccc}
\Delta_k(X) & \longleftarrow & (p_k^X)^{-1}(A) \\
\downarrow p_k & & \downarrow p_k \\
X \times X & \longleftarrow & A \times A \\
\end{array}
\]

We denote

\[
g = (1 \vee j)^2 : (M \vee \mathbb{R}P^2)^2 \to (M \vee \mathbb{R}P^\infty)^2.
\]

It is easy to see that the sheaf \(\mathcal{O}' \) on \((M \vee \mathbb{R}P^\infty)^2\) is the pull-back under \(g \) of a sheaf \(\mathcal{O} \) on \((M \vee \mathbb{R}P^\infty)^2\) which comes from the pull-back of the tensor product \(\mathcal{O} \otimes \mathcal{O} \) of the canonical \(Z \)-bundles on \(\mathbb{R}P^\infty \).

4.0.9. Proposition. Let \(\kappa \in H^4((M \vee \mathbb{R}P^\infty)^2; \mathcal{F}) \) be the primary obstruction to a section of

\[
\tilde{p} = p_3^{M \vee \mathbb{R}P^\infty} : \Delta_3(M \vee \mathbb{R}P^\infty) \to (M \vee \mathbb{R}P^\infty)^2
\]

where \(M \) is an orientable surface of genus \(\geq 2 \). Then

1. \([M^2] \cap g^*(\kappa) \neq 0,
2. \([([\mathbb{R}P^2]^2] \cap g^*(\kappa) = 0, \) and
3. \(([M \times \mathbb{R}P^2] + [\mathbb{R}P^2 \times M]) \cap g^*(\kappa) = 0.\)
Proof. (1) Assume that $[M^2] \cap g^*(\kappa) = 0$. Then, $g_*([M^2]) \cap \kappa = 0$. This means that the map \tilde{p} admits a section over $M^2 \subset (M \vee \mathbb{R}P^\infty)^2$. The collapsing $\mathbb{R}P^\infty$ to a point defines a retraction $r : M \vee \mathbb{R}P^\infty \to M$. By Proposition 4.0.8, the retraction r defines a fiberwise retraction of $\tilde{p}^{-1}(M^2)$ onto $\Delta_3(M)$. This implies that $p_3^* : \Delta_3(M) \to M^2$ admits a section. Hence, by Theorem 2.6.3, $TC(M) \leq 3$. This contradicts to the fact that $TC(M) = 4$.

(2) Since $TC(\mathbb{R}P^2) = 3$, by Corollary 2.6.3, the map g restricted to $(\mathbb{R}P^2)^2$ admits a lift with respect to \bar{r}. Hence the primary obstruction σ' to such a lift is zero. Note that $\sigma' = (g^*\kappa)|_{(\mathbb{R}P^2)^2}$ is the restriction to $(\mathbb{R}P^2)^2$ of the image of κ under g^*. Hence,

$$[\mathbb{R}P^2] \cap g^*(\kappa) = [\mathbb{R}P^2] \cap (g^*\kappa)|_{(\mathbb{R}P^2)^2} = 0.$$

(3) Let $\sigma : (M \vee \mathbb{R}P^\infty)^2 \to (M \vee \mathbb{R}P^\infty)^2$ be the natural involution: $\sigma(x, y) = (y, x)$. We may assume that the map σ is cellular. It defines an involution $\bar{\sigma}$ on the path space $P(M \vee \mathbb{R}P^\infty)$ and involutions $\bar{\sigma}_k$ on the iterated fiberwise joins $\Delta_k(M \vee \mathbb{R}P^\infty)$.

Let $K = (M \vee \mathbb{R}P^\infty)^2$ be a σ-invariant CW complex structure with an invariant subcomplex $Q = (M \times \mathbb{R}P^\infty) \vee (\mathbb{R}P^\infty \times M)$. We claim that there is a section $s : K(3) \to \Delta_3(M \vee \mathbb{R}P^\infty)$ which is σ-equivariant on $Q(3)$. First we fix an invariant section at the wedge point

$$s(x_0, x_0) = c_{x_0} + 0 + 0 + 0 \in \Delta_3(M \vee \mathbb{R}P^\infty)$$

where c_{x_0} is the constant path at x_0. Then we define our section s on $Q(3)$ by induction on dimension of simplices. We note that $\sigma(e) \neq e$ for all cells in Q except the wedge vertex. Assume that an equivariant section s is defined on the i-skeleton $Q(i), i < 3$. Then for all distinct pairs of i-cells $e, \sigma(e)$ we do an extension of s to e and define it on $\sigma(e)$ to be $\bar{\sigma}_i s e$. Note that an extension of s to e exists since the fiber of \tilde{p} is 2-connected. Also, in view of the 2-connectedness of the fiber the section s on $Q(3)$ can be extended to $K(3)$.

Thus, we may assume that the restriction of the obstruction cocycle to Q is symmetric. Hence, for the obstruction cohomology class we obtain $(\sigma^*\kappa)|_Q = \sigma_0^*(\kappa|_Q) = \kappa|_Q$ where $\sigma_0 = \sigma|_Q$.

Let

$$q_0 : (M \times \mathbb{R}P^\infty) \vee (\mathbb{R}P^\infty \times M) \to M \times \mathbb{R}P^\infty$$

be the projection to the orbit space of the σ-action, i.e., the folding map. Let $\kappa' = P^\infty \times M_{\sigma}$. Then $\kappa|_Q = q_0^*(\kappa')$. Note that $\bar{\sigma}$ restricted to $(M \times \mathbb{R}P^\infty) \vee (\mathbb{R}P^\infty \times M)$ equals $g_0^* \bar{\sigma} |_{M \times \mathbb{R}P^\infty}$. Hence the homomorphism in homology $(q_0)_*$ is well defined. Since q_0 induces an epimorphism of the fundamental groups and takes both classes $g_*[M \times \mathbb{R}P^2]$ and $g_*[\mathbb{R}P^2 \times M]$ to $g_*[M \times \mathbb{R}P^2]$, we obtain

$$(q_0)_*([g_*[M \times \mathbb{R}P^2] + g_*[\mathbb{R}P^2 \times M]] \cap \kappa) = 2g_*[M \times \mathbb{R}P^2] \cap \kappa' = 0.$$

The last equality follows from the fact that $[\mathbb{R}P^2]$ has order 2 in $\mathbb{R}P^\infty$ (see Proposition 3.2.1).

Since q_0 induces an epimorphism of the fundamental groups, we obtain

$$((g_*[M \times \mathbb{R}P^2] + g_*[\mathbb{R}P^2 \times M]) \cap \kappa = 0.$$

Therefore, $([M \times \mathbb{R}P^2] + [\mathbb{R}P^2 \times M]) \cap g^*(\kappa) = 0$. \qed
Proof. First we recall that

\begin{equation}
\text{Theorem.}
\end{equation}

be presented explicitly (in terms of \(\beta\) where \(\alpha\) if necessary). Indeed, by Schwarz’ Theorem 2.6.2, with respect to \(f\), \(\alpha\) is well defined. Note that \(g_\ast([M^2]+([RP^2]^2)+[M \times RP^2]+[RP^2 \times M]) \cap \kappa \neq 0\). Since \(g_\ast\) is an isomorphism in dimension 0, we derive the result from Corollary 4.0.10. \(\square\)

4.0.11. Corollary.

\[g_\ast([M^2]+([RP^2]^2)+[M \times RP^2]+[RP^2 \times M]) \cap \kappa \neq 0. \]

Proof. First we consider the case when \(g\) is odd. Then \(N_g = M \# \# P^2\) for an orientable surface \(M\) of genus \(>1\). Let \(f : N_g = M \# \# P^2 \rightarrow M \vee P^2\) be a map that collapses the connected sum circle. Clearly, \(f\) induces an epimorphism of the fundamental groups. Note that the orientation sheaf \(\mathcal{O}_{N_g}\) is the pull-back \(\pi^\ast \mathcal{O}_{P^2}\) where \(\pi : M \vee P^2 \rightarrow P^2\) is the collapsing map.

We show that the map \(g \circ (f \times f) = (1 \vee j) f \times (1 \vee j) f\) does not admit a lift with respect to

\[\bar{p} = p_3^{M \vee P\infty} : \Delta_3(M \vee P^\infty) \rightarrow (M \vee P^\infty)^2. \]

Then, by Corollary 2.6.2, we obtain the inequality \(TC(N_g) \geq 4\).

The primary obstruction \(\pi\) to such a lift is the image \((f \times f)^\ast g^\ast(\kappa)\) of the primary obstruction to a section. Note that by Proposition 4.0.7 and Corollary 4.0.11, \(g_\ast(f \times f)_\ast([N^2_g] \cap o) = g_\ast(f \times f)_\ast([N^2_g] \cap \kappa) = g_\ast([M^2]+[P^2]+[M \times P]+[P \times M]) \cap \kappa \neq 0\) where \(P = P^2\). Therefore, \([N^2_g] \cap o \neq 0\). By the Poincaré duality (with local coefficients) we obtain that \(o \neq 0\).

When \(g > 4\) is even, \(N_g = M \# \# P^2 \# \# P^2\) for an orientable surface \(M\) of genus \(>1\). We consider the map \(f : N_g \rightarrow M \vee P^2\) which is the composition of the quotient map \(N_g \rightarrow M \vee P^2 \vee P^2\) and union of the folding map \(P^2 \vee P^2 \rightarrow P^2\) and the identity map on \(M\). For such \(f\) the orientation sheaf on \(N_g\) can be pushed forward and the above argument works. \(\square\)

1. Remark. Implicitly our proof of the inequality \(TC(N_g) \geq 4\) is based on the zero-divisors cup-length estimate as in [F]. Indeed, by Schwarz’ Theorem 2.6.2 \(\kappa = \beta^4\) where \(\beta \in H^1((M \vee P^\infty)^2; \mathcal{F}_0)\) is the primary obstruction for the section of the fibration

\[p_3^{M \vee P\infty} : P(M \vee P^\infty) \rightarrow (M \vee P^\infty)^2. \]

Therefore, the restriction of \(\beta\) to the diagonal equals zero. We have proved that \(\alpha^4 \neq 0\) for the element \(\alpha = (f \times f)^\ast g^\ast(\beta) \in H^1(N_g \times N_g; \mathcal{F}_0)\) which is trivial on the diagonal. The local coefficient system \(\mathcal{F}_0\) as well as a cocycle \(a\) representing \(\alpha\) can be presented explicitly (in terms of \(\pi_1(N_g)\)-modules and cross homomorphisms) as it was done in [C].

This is not surprising in view of Theorem 2.1, part (b) of Farber and Grant [FG].

2. Remark. The above technique can be pushed to get \(TC(N_4) = 4\) (see a version of this paper in ArXiv). The technique does not seem to be applicable to the Klein bottle nor to \(N_3 = P^2 \# P^2 \# P^2\).
5. Higman’s group

Higman introduced a group H generated by 4 elements a, b, c, d with the relations
\[a^{-1}ba = b^2, \quad b^{-1}cb = c^2, \quad c^{-1}dc = d^2, \quad d^{-1}ad = a^2.\]

Among others the group H has the following properties: It is acyclic and it has finite 2-dimensional Eilenberg-Maclane complex $K(H, 1)$.

5.0.13. Theorem. Let $K = K(H, 1)$ where H is Higman’s group. Then
\[2 = \text{cat}(C_{\Delta K}) < TC(K) = 4.\]

Proof. By Proposition 3.4.1 $\pi_1(C_{\Delta K}) = H_1(H) = 0$. Then by Theorem 2.1.1
\[\text{cat}(C_{\Delta K}) \leq (\dim C_{\Delta K})/2 = 2.\]

The equality $TC(K(H, 1)) = 4$ is a computation by Grant, Lupton and Oprea [GLO].

Acknowledgement

The author is thankful to Mark Grant and Jesus Gonzalez for pointing out mistakes in earlier versions of this paper.

References

[Be] Israel Berstein, *On the Lusternik-Schnirelmann category of Grassmannians*, Math. Proc. Cambridge Philos. Soc. **79** (1976), no. 1, 129–134. MR0400212

[Bre] Glen E. Bredon, *Sheaf theory*, 2nd ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997. MR1481706

[Bro] Kenneth S. Brown, *Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR1324339

[CLOT] Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanrè, *Lusternik-Schnirelmann category*, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR1990857

[C] A. E. Costa, *Topological complexity of configuration spaces*, Ph.D. Thesis, Durham University, 2010.

[DT] Albrecht Dold and René Thom, *Quasifaserungen und unendliche symmetrische Produkte* (German), Ann. of Math. (2) **67** (1958), 239–281. MR0097062

[Dr1] Alexander Dranishnikov, *Free abelian topological groups and collapsing maps*, Topology Appl. **159** (2012), no. 9, 2353–2356, DOI 10.1016/j.topol.2011.03.019. MR2921824

[Dr2] Alexander Dranishnikov, *Topological complexity of wedges and covering maps*, Proc. Amer. Math. Soc. **142** (2014), no. 12, 4365–4376, DOI 10.1090/S0002-9939-2014-12146-0. MR3267004

[Dr3] Alexander N. Dranishnikov, *The LS category of the product of lens spaces*, Algebr. Geom. Topol. **15** (2015), no. 5, 2985–3010. MR3426700

[DR] Alexander N. Dranishnikov and Yuli B. Rudyak, *On the Berstein-Svarc theorem in dimension 2*, Math. Proc. Cambridge Philos. Soc. **146** (2009), no. 2, 407–413, DOI 10.1017/S0305004108001904. MR2475974

[F] Michael Farber, *Invitation to topological robotics*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR2455573

[FG] Michael Farber and Mark Grant, *Topological complexity of configuration spaces*, Proc. Amer. Math. Soc. **137** (2009), no. 5, 1841–1847, DOI 10.1090/S0002-9939-08-09080-0. MR2470845

[FTY] Michael Farber, Sergei Tabachnikov, and Sergey Yuzvinsky, *Topological robotics: motion planning in projective spaces*, Int. Math. Res. Not. **34** (2003), 1853–1870, DOI 10.1155/S1073792803210035. MR1988783

[GV1] J. Garcia-Calcines and L. Vandembroucq, *Weak sectional category*, J. Lond. Math. Soc. (2) **82** (2010), no. 3, 621–642, DOI 10.1112/jlms/jdq048. MR2739059
[GV2] J. M. García Calcines and L. Vandembroucq, *Topological complexity and the homotopy cofibre of the diagonal map*, Math. Z. **274** (2013), no. 1-2, 145–165, DOI 10.1007/s00209-012-1061-5. MR3054321

[G] M. I. Graev, *Free topological groups* (Russian), Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279–324. MR0025474

[GLO] Mark Grant, Gregory Lupton, and John Oprea, *New lower bounds for the topological complexity of aspherical spaces*, Topology Appl. **189** (2015), 78–91, DOI 10.1016/j.topol.2015.04.005. MR3342573

[Gr] Misha Gromov, *Metric structures for Riemannian and non-Riemannian spaces*, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR1699320

[Hi] Graham Higman, *A finitely generated infinite simple group*, J. London Math. Soc. **26** (1951), 61–64. MR0038348

[KR] Mikhail G. Katz and Yuli B. Rudyak, *Lusternik-Schnirelmann category and systolic category of low-dimensional manifolds*, Comm. Pure Appl. Math. **59** (2006), no. 10, 1433–1456, DOI 10.1002/cpa.20146. MR2248895

[M] A. Markoff, *On free topological groups* (Russian, with English summary), Bull. Acad. Sci. URSS, Sér. Math. [Izvestia Akad. Nauk SSSR] **9** (1945), 3–64. MR0012301

[Sch] A. S. Švarc, *The genus of a fibered space* (Russian), Trudy Moskov. Mat. Obšč. **10** (1961), 217–272. MR0154284

Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, Florida 32611-8105

E-mail address: dranish@math.ufl.edu