Interventions That Affect Gastrointestinal Motility in Hospitalized Adult Patients

A Systematic Review and Meta-Analysis of Double-Blind Placebo-Controlled Randomized Trials

Varsha M. Asrani, MHSc, Harry D. Yoon, Robin D. Megill, BSc, John A. Windsor, MBChB, MD, and Maxim S. Petrov, MD, MPH, PhD

Abstract: Gastrointestinal (GI) dysmotility is a common complication in acute, critically ill, postoperative, and chronic patients that may lead to impaired nutrient delivery, poor clinical, and patient-reported outcomes. Several pharmacological and nonpharmacological interventions to treat GI dysmotility were investigated in dozens of clinical studies. However, they often yielded conflicting results, at least in part, because various (nonstandardized) definitions of GI dysmotility were used and methodological quality of studies was poor. While a universally accepted definition of GI dysmotility is yet to be developed, systematic analysis of data derived from double-blind placebo-controlled randomized trials may provide robust data on absolute and relative effectiveness of various interventions as the study outcome (GI motility) was assessed in the least biased manner.

To systematically review data from double-blind placebo-controlled randomized trials to determine and compare the effectiveness of interventions that affect GI motility.

Three electronic databases (MEDLINE, SCOPUS, and EMBASE) were searched. A random effects model was used for meta-analysis. The summary estimates were reported as mean difference (MD) with the corresponding 95% confidence interval (CI).

A total of 38 double-blind placebo-controlled randomized trials involving 2371 patients were eligible for inclusion in the systematic review. These studies investigated a total of 20 different interventions, of which 6 interventions were meta-analyzed. Of them, the use of dopamine receptor antagonists (MD, $-8.99; 95\%CI, -17.72$ to $-0.27; P = 0.04$) and macrolides (MD, $-26.04; 95\%CI, -51.25$ to $-0.82; P = 0.04$) significantly improved GI motility compared with the placebo group. The use of botulism toxin significantly impaired GI motility compared with the placebo group (MD, 5.31; 95% CI, -0.04 to 10.67; $P = 0.05$). Other interventions (dietary factors, probiotics, hormones) did not affect GI motility.

Based on the best available data and taking into account the safety profile of each class of intervention, dopamine receptor antagonists and macrolides significantly improve GI motility and are medications of choice in treating GI dysmotility.

(Abdominal Medicine 95(5):e2463)

Abbreviations: CI = confidence interval, GI = gastrointestinal, MD = mean difference, SD = standard deviation.

INTRODUCTION

Gastrointestinal (GI) dysmotility is a common occurrence in acute, critically ill, and postoperative patients. It represents a significant barrier to the achievement of adequate nutritional intake. Extensive physiological evidence supports the use of early enteral nutrition, but acute and critically ill patients receive only up to half of their estimated calorie requirement, often due to feeding intolerance.1–8 Limited enteral nutrition delivery may lead to deterioration of the gut mucosa and gut wall integrity. The resulting decreased intestinal permeability, coupled with bacterial overgrowth, leads to leaky gut and elevated systemic proinflammatory mediators with an increased incidence of systemic inflammatory response, bacterial translocation, and multiple organ dysfunction.9–12

GI dysmotility may develop due to a variety of causes including systemic inflammation, postoperative state, electrolyte abnormalities, and numerous pharmacological interventions that impair motility. In clinical practice, pharmacological interventions are of particular importance in preventing GI dysmotility. Furthermore, several pharmacological and nonpharmacological interventions to treat GI dysmotility have been studied, including but not limited to D2, D3 antagonists, macrolides, μ-opioid receptor antagonists, and probiotics. The outcomes of these studies are often conflicting and no consensus exists on which medications should be avoided to prevent GI dysmotility and which are the most effective to treat GI dysmotility.13–16 Part of the reason for this relates to the subjective and variable definitions for GI dysmotility.17 While an objective, reliable, and practical definition of GI motility is yet to be developed, validated, and ratified, it is possible to make progress toward management of GI motility based on the evidence from double-blind placebo-controlled randomized clinical trials.
trials. This is because double blinding ensures that estimates of the treatment effects are robust, regardless of a definition of GI motility used. The other common barrier is that the conventional paradigm in clinical practice and research traditionally focuses on a particular nosology and it has largely overlooked the importance of the gut as an organ in its own right. The emerging evidence from the gut origin of sepsis hypothesis, enhanced recovery after surgery paradigm, and “gut rousing” concept suggests that the presence of GI dysfunction impairs clinical outcomes, regardless of nosology.18–20 Hence, the gut should be afforded the same considerations as other vital organs such as heart, lungs, and kidneys. In particular, given approaches to management of cardiovascular, respiratory, and renal dysfunctions are rather generic (inotropes, mechanical ventilation, dialysis), it is argued that a truly effective treatment of GI dysfunction would be beneficial regardless of nosology. However, to date, no comprehensive comparison of interventions that truly (as proven in double-blind placebo-controlled randomized trials) affect GI function has been published.

The aim of this study was to systematically review data from double-blind placebo-controlled randomized trials to determine and compare the efficacy of various interventions that affect GI motility.

METHODS

Search Criteria and Study Identification

Electronic databases (MEDLINE, SCOPUS, and EMBASE) were searched for key words gastrointestinal (GI) motility, or gastric emptying, or gastrointestinal transit, or peristalsis, or ileus, or gastroparesis. The databases were screened for publications from the earliest available date until May 31, 2015. The study selection criteria were as follows:

The inclusion criteria were:

1. Study design: double-blind placebo-controlled randomized trials
2. Study population: adult in-hospital patients
3. Disease state: any
4. Intervention: any
5. Study outcome: gut motility, as defined by primary authors

Studies were excluded if they:

1. Focused on a specific age group
2. Enrolled patients of 1 sex only
3. Were published in non-English languages
4. Were conducted in healthy volunteers
5. Investigated a drug that is no longer available for patients

Data Extraction

Data were extracted and tabulated by 3 authors (VMA, HDY, RDM) using predesigned data collection forms on Microsoft Excel. These included baseline and demographic data such as author, publication year, study setting (country), study population, total number of patients, sex, and age. As part of the data extraction process, the most significant dose was considered when several different doses of treatment were tested. Where different patient subgroups were tested (and the overall average value was not provided), the subgroup with the most significant difference was included. Any inconsistencies in data collection were discussed with the senior author (MSP).

Methodological Quality

Methodological quality of included randomized controlled trials was assessed according to the Cochrane recommendations (The Nordic Cochrane Centre, The Cochrane Collaboration, 2008).21 These included systematic differences between groups (selection bias and performance bias), blinding of study participants and assessors, sequence allocation and concealment of allocated groups, validity of findings and data withdrawal, incomplete outcome data (attrition and detection bias), and differences between data reporting or unreported data. The risk of bias assessment was presented according to the Cochrane collaboration recommendations.21

Statistical Analysis

All data were presented as means ± standard deviation (SD). Data analysis and interpretation was done using Revman 5.3 (Revman, Version 5.3 for Windows; Copenhagen, Denmark; The Nordic Cochrane Centre, The Cochrane Collaboration, 2008).21 When original data were presented as standard error (SE), they were converted to SD using the formula \(SD = SE \times \sqrt{n} \) (n = the number of patients). Within each class of interventions, a meta-analysis was conducted, if required data from 2 or more studies had been reported. Furthermore, a sensitivity analysis constrained to a particular intervention was conducted, if appropriate. Heterogeneity was assessed using \(I^2 \) and \(X^2 \) tests, with a \(P < 0.05 \) considered to be significant for the latter. Regardless of the presence or absence of heterogeneity, a random effects model was used to provide the most conservative estimate. Pooled effects for classes of interventions were calculated as weighted mean difference (MD) with 95% confidence interval (CI). \(P \) value \(< 0.05 \) was considered to be statistically significant in all analyses.

Ethical approval was not necessary for a review of published trials.

RESULTS

Study Characteristics

A total of 4265 potentially relevant publications were screened, of which 39 studies22–60 were included in the systematic review (Figure 1). The baseline characteristics of these 39 studies are presented in Table 1. Interventions and GI motility endpoints used in these studies are presented in Table 2. The included studies investigated a total of 20 different interventions. The use of study interventions in 31 studies resulted in an improvement in GI motility while the use of study interventions in 8 studies resulted in an impaired GI motility (Table 2). Of the 39 studies, 25 studies met the criteria for inclusion in meta-analysis.22–26,28,29,31,33,37–40,42,43,46–49,51–55,59

These 25 studies recruited a total of 1339 patients which employed 6 interventions (D2, D3 antagonists, macrolides, dietary factors, probiotics, hormones, and botulism toxin). Figure 2 presents the methodological quality of the 25 trials included in meta-analysis. Figures 3 and 4 present assessment of publication bias for D2, D3 antagonists and macrolides, respectively.

D2, D3 Antagonists

A total of 5 studies including 198 patients employed a D2, D3 antagonist as the study intervention. GI motility was significantly improved in the intervention group compared to the placebo group (MD, −9.09; 95% CI, −18.03 to −0.15; \(P = 0.05 \)) (Figure 5). Three out of the 5 studies used Levosulpiride while
the other 2 studies used Metoclopramide and Itopride. There was a high statistical heterogeneity between the included studies ($I^2 = 81\%$). A sensitivity analysis limited to Levosulpride showed no significant improvement with the use of this intervention (MD, $-34.22\%; 95\%$ CI, -76.14 to $7.70; P = 0.11$).

Macrolides and Its Derivatives

A total of 4 studies including 251 patients employed a macrolide or its derivative as the study intervention. GI motility was significantly improved in the intervention group compared with the placebo group (MD, $-26.04\%; 95\%$ CI, -51.25 to $-0.82; P = 0.04$) (Figure 6). Three out of the 4 studies used Erythromycin while 1 study used clarithromycin (6-O-methyl erythromycin). There was a high statistical heterogeneity between the included studies ($I^2 = 88\%$). A sensitivity analysis limited to erythromycin showed no significant improvement with the use of this intervention group (MD, $-4.72\%; 95\%$ CI, -20.25 to $10.81; P = 0.55$).

Other Interventions

A total of 7 studies including 450 patients employed a GI hormone (ghrelin, cholecystokinin, melatonin, and octreotide) as the study intervention. GI motility in the GI hormones group showed no significant improvement compared with the placebo group (MD, $-7.22\%; 95\%$ CI, -15.37 to $0.92; P = 0.08$). There was a high statistical heterogeneity between the included studies ($I^2 = 80\%$).

A total of 3 studies including 169 patients employed probiotics as the study intervention. GI motility did not show a significant improvement in the intervention group compared...
There was a high statistical heterogeneity between the included studies ($I^2 = 90\%$).

A total of 4 studies including 227 patients employed a dietary factor (wheat bran, soy germ, and Iberogast) as the study intervention. GI motility showed no improvement in the intervention group compared with the placebo (MD, -1.05%; 95% CI, -3.06 to 1.04; $P = 0.10$). There was a low statistical heterogeneity between included studies ($I^2 = 29\%$).

Two studies including 44 patients employed botulism toxin as the study intervention. Gut motility was significantly impaired in the intervention group compared with the placebo group (MD, 5.31%; 95% CI, -0.04 to 10.67; $P = 0.05$). There was no statistical heterogeneity between the included studies ($I^2 = 0\%$).

DISCUSSION

This is the first systematic review of double-blind placebo-controlled randomized trials that evaluated the effect of pharmacological and nonpharmacological interventions on GI motility. Twenty interventions were included in the systematic review and 6 of them were meta-analyzed. The important finding of this study was that 2 classes of prokinetics (D2-D3 antagonists and macrolides) were effective in treatment of GI dysmotility, compared with the placebo group. Also, several

TABLE 1. Demographical Data and Study Population Characteristics

First Author	Year	Setting	Study Population	Total No. of Patients	Males	Females	Mean Age
Arienti V	1994	USA	Dyspepsia	30	11	19	47
Ariyasu H	2014	Japan	Systemic sclerosis with GI involvement	10	3	7	65.1
Arts J	2005	Belgium	Dyspepsia	24	3	21	43.5
Badiali D	1995	Italy	Constipation	24	2	22	40.5
Banani SJ	2008	Iran	Dyspepsia	63	27	36	39
Bharucha AE	2013	USA	Diabetic gastroparesis	30	8	22	49.5
Bonacini M	1993	USA	Postoperative ileus	77	23	54	41*
Bortolotti M	1999	Italy	Dyspepsia	16	6	10	28
Bouras EP	2001	USA	Constipation	38	4	34	41.2
Braden B	2009	Germany	Dyspepsia	86	26	60	47.2
Can N	1984	England	Irritable bowel syndrome	28	7	21	35
Cappello C	2013	Italy	Irritable bowel syndrome	64	23	41	38.7
Chapman M	2003	USA	Critical illness	12	6	6	57
Cheung RS	2014	Australia	Gastroesophageal reflux disease	223	98	125	36
Deng G	2013	USA	Colon cancer	90	52	38	57.5
Ejskjaer N	2013	USA	Diabetic gastroparesis	92	32	60	49.9
Foschi D	2008	Italy	Obesity	30	Not reported	43.2	
Frisell J	1985	Sweden	Postoperative ileus	57	20	37	52.3
Gui D	2006	Italy	Obesity	14	8	6	42
Harvey KP	2009	USA	Elective bowel surgery	22	12	10	62.5
Herzog T	2011	Germany	Postoperative ileus	107	51	56	64.5
Kollmar O	2008	Germany	Pancreaticoduodenectomy	67	41	26	62.2
Koskenpato J	2008	Finland	Dyspepsia	16	6	10	57
Lee CT	2014	USA	Postoperative radical cystectomy	280	223	57	65
Lu WZ	2009	Singapore	Irritable bowel syndrome	17	Not reported	41.2	
Mansi C	1995	Italy	Diabetic gastroparesis	40	14	26	45
McCallum RW	2013	Japan	Diabetic gastroparesis	201	56	145	53
Melga P	1997	Italy	Diabetic gastroparesis	40	17	23	44
Passaretti S	1989	Italy	Irritable bowel syndrome	40	16	24	39
Rogha M	2014	Iran	Irritable bowel syndrome	56	12	44	39.8
Setchell KDR	2013	USA	Diabetic gastroparesis	10	5	5	63.7
Smith AJ	2000	USA	Postoperative colon cancer	134	85	49	62.3
Stevens JE	2008	Australia	Diabetic gastroparesis	25	10	15	45.2*
Tack J	2005	Belgium	Idiopathic gastroparesis	6	1	5	49
Taghavi SA	2010	Iran	Constipation	60	13	47	38.9 ± 16.0
Vella A	2002	USA	Diabetic gastroparesis	12	9	3	46.9
Wu T	2013	Australia	Diabetic gastroparesis	12	9	3	66.2
Yoon JS	2014	South Korea	Irritable bowel syndrome	49	17	32	44.5
Zingg U	2008	Switzerland	Postoperative ileus	169	96	73	67

* Median age.
† Mean ± SD.
| Classification | First Author | Year | Intervention | Motility endpoint | Effect on GI motility |
|---------------|-------------|------|--------------|-------------------|----------------------|
| D₂ D₃ antagonists | Arienti V | 1994 | Levosulpiride | Gastric emptying time | Improved |
| | Banani SJ | 2008 | Metoclopramide | Gastric emptying time | Improved |
| | Mansi C | 1995 | Mosapride | Gastric half-emptying time | Improved |
| | Melga P | 1997 | Levosulpiride | Gastric emptying time | Improved |
| | Stevens JE | 2008 | Istopride | Gastric half-emptying time | Improved |
| Macrolides | Arts J | 2005 | Erythromycin | Gastric emptying time | Improved |
| | Bonacini M | 1993 | Erythromycin | Time to first bowel movement | Improved |
| | Bortolotti M | 1999 | Clarithromycin | Gastroduodenal motility | Improved |
| | Smith AJ | 2000 | Erythromycin | Time to passage of flatus | Improved |
| Homones | Ariyasu H | 2014 | Ghrelin | Gastric emptying time | Improved |
| | Ejskjaer N | 2013 | Ghrelin | Gastric half-emptying time | Improved |
| | Frisell J | 1985 | Cholecystokinin | Time to first bowel movement | Improved |
| | McCallum RW | 2013 | Ghrelin | Gastroparesis (GCSI/GSDD score) | Improved |
| | Tack J | 2005 | Ghrelin | Gastric half-emptying time | Improved |
| | Kollmar O | 2008 | Octreotide | Gastric half-emptying time | Improved |
| | Lu WZ | 2009 | Melatonin | Colonic transit time | Improved |
| Probiotics | Cappello C | 2013 | Probiotic | Colonic transit time | Improved |
| | Rogha M | 2014 | Probiotic | Abdominal pain and discomfort | Improved |
| | Yoon JS | 2014 | Probiotic | Stool frequency | Improved |
| Dietetic factors | Badioli D | 1995 | Wheat Bran | Gastrointestinal transit time | Improved |
| | Braden B | 2009 | STW 5 (Iberogast) | Gastric half-emptying time | Improved |
| | Herzog T | 2011 | Acetylcysteine [Choline citrate] | Time to first bowel movement | Improved |
| | Setchell KDR | 2013 | Soy germ paste | Gastric half-emptying time | Improved |
| Botulism Toxin | Foschi D | 2008 | Botulism toxin | Gastric half-emptying time | Improved |
| | Gui D | 2006 | Botulism toxin | Gastric emptying time | Improved |
| Other interventions | Bhancha AE | 2013 | Cholinesterase inhibitor [Pyridostigmine] | Colonic transit time | Improved |
| | Bours EP | 2001 | Prucalopride | Gastric half-emptying time | Improved |
| | Cann PA | 1984 | Pipendine derivative [Loperamide] | Gastric half-emptying time | Improved |
| | Chapman M | 2003 | Antibiotic [Cefazolin] | Gastric half-emptying time | Improved |
| | Choung RS | 2014 | Pumosetrag | Reflux events | Improved |
| | Deng G | 2013 | Acupuncture | Food tolerance and bowel movement | Improved |
| | Harvey KP | 2009 | Lidocaine | Time to first bowel movement | Improved |
| | Koskenpato J | 2008 | Gastric secretion inhibitor [Nizatidine] | Gastric emptying time | Improved |
| | Lee CT | 2014 | mu-opioid receptor antagonists [Alvimopan] | Food tolerance and bowel movement | Improved |
| | Passaretti S | 1989 | Cimetropium Bromide | Gastrointestinal transit time | Improved |
| | Taghavi SA | 2010 | Plant metabolite [Colchicine] | Slow transit constipations (KESS score) | Improved |
| | Vella A | 2002 | Amylin analogue [Pramlintide] | Gastric half-emptying time | Improved |
| | Wu T | 2013 | DPP-4 inhibitor [Sitagliptin] | Gastric half-emptying time | Improved |
| | Zingg U | 2008 | Derivative of diphenylmethane [Bisacodyl] | Time to food tolerance, flatus passed and bowel movement | Improved |

GCSI = Gastroparesis Cardinal Symptom Index, GI = gastrointestinal, GSDD = Daily Diary of Gastroparesis Symptoms Questionnaire, KESS = Knowles Eccersley Scott Symptom Score.
interventions impaired the GI motility, including the botulism toxin, an antibiotic (Cefazolin), a gastric secretion inhibitor (Nizatidine), an amylin analogue (Pramlintide), and a dipeptidyl peptidase-4 (DPP-4) inhibitor (Sitagliptin). These findings have important implications for routine clinical practice and future research on GI motility.

Prokinetics was the most investigated class of interventions, 2 of which were suitable for meta-analysis. The first class of prokinetics found to be effective in our meta-analysis is D2, D3 antagonists. Of the substantial amount of dopamine produced by the GI tract, spleen, and pancreas, nearly 46% of nonmetabolized dopamine is sourced by mucosa of the GI tract, which is partly represented by the non-neuronal cells of a dopaminergic paracrine system.61 The blockade of dopaminergic inhibitory transmission in the gut is considered the main mechanism of its prokinetic effect. In our meta-analysis, 2 of the 4 studies included patients with diabetic gastroparesis,47,49,54 showing an improvement in gastric motility with the administration of D2,D3 antagonists. In diabetic patients with gastroparesis, it is evident that the efficacy of treating gastric dysmotility is due to the selective antagonism of this prokinetic for dopamine antagonist receptors.47 However, reduction in gastric emptying time may potentially improve glycemic control, though it should also be acknowledged that acute changes in glycemic control may have an irreversible effect on gastric emptying with the effect being more marked in the presence of euglycemia. Although D2,D3 antagonists appear to be a safe therapeutic option to improve GI motility in chronic diabetic gastroparetic patients, it will be worth investigating its effect on GI motility in diabetic patients with poor glycemic control. In the remaining 2 studies, focused on dyspeptic patients, both classes of D2,D3 antagonists showed improved effects on GI motility and dyspepsia or gastro-oesophageal reflux events. These studies demonstrated that most symptoms of dysmotility are manifested with dyspepsia or reflux events, and the use of D2,D3 antagonists proves effective in patients who may experience a combination of both. Similar to serotonin receptor agonists, D2,D3 antagonists have adverse effects, especially the commonly used prokinetic Metoclopramide can cause dystonic reactions with long-term use13 and tachyphylaxis may occur after several days of administration.62 Although the drug proved to be beneficial in a heterogeneous group such as critically ill patients, its dosing needs adjustment based on the clinical status of patients to minimize its side effects, for example, in patients with renal failure.13

The other class of prokinetics found to be effective in this meta-analysis is macrolides. Three of the 4 studies administered erythromycin while 1 used Clarithromycin (a derivative of macrolides) as the study intervention. Two of the 4 included studies investigated Erythromycin in dyspeptic patients. These studies demonstrated that Erythromycin was effective in improving gastric emptying and interdigestive gastroduodenal motility.24,29 However, in patients with postoperative ileus, the drug was less effective in relieving postoperative symptoms or preventing the occurrence of paralytic ileus.28,53 Hence, it may be worth investigating the effect of various doses on GI motility.
in surgical and nonsurgical patients separately. Although several studies have shown that Erythromycin improves GI motility and improves early nutritional intake in severely injured or critically-ill patients, the duration of erythromycin use is limited by its antibacterial effect and desensitization to the therapeutic effects.

The present study has a number of limitations that need to be acknowledged. First, the included studies comprised several disease states and one might question the use of a meta-analysis approach. However, the main premise behind this study was that the presence of gut dysmotility worsens the outcomes of patients with all the diseases states included. Therefore, timely administration of apposite gut-directed interventions proved to be effective in robust double-blind placebo-controlled trials can preserve normal gut function or curtail gut dysmotility. This is not dissimilar to cardiovascular failure, which can occur in patients with various diseases, but is virtually invariably treated with inotropes. Second, the high statistical heterogeneity between the studies may be a possible limitation for the pooled effect. However, a random-effects model was used in all the analyses to obtain the most conservative estimate. Third, the meta-analysis did not take into account the dosage and route of administration of the studied drugs, which could have had an effect on GI motility, especially in chronic conditions such as diabetic gastroparesis. In addition, the form of administration (solution or tablet form) was not considered in this meta-analysis. It is possible that the effect of a prokinetic administered intravenously may differ from that in a tablet form. Fourth, very few studies evaluated the effect of combined interventions, which may prove to be more beneficial in treating GI dysmotility than an individual intervention. Fifth, the sample size of some individual trials was rather small. But this systematic literature review is a necessary step toward definitive clinical studies as it provides data on which to power them. And it was encouraging that, despite the small sample size, some of the results were statistically significant, which suggests that the effect size is likely to be clinically meaningful. The high heterogeneity between studies suggests that it is challenging to obtain a homogenous population particularly in critically-ill, surgical, or acute patients who may routinely receive prokinetics to treat gut dysmotility as the first line of treatment. Last, μ-opioid receptor antagonists have emerged as the new promising class of drugs that may improve GI motility, in particular opioid-induced bowel dysfunction, but only one of the clinical studies published to date met the strict eligibility criteria for inclusion in the present review.

In conclusion, this is the first systematic review of best quality studies that investigated interventions affecting GI motility. Dopamine receptor antagonists and macrolides significantly improve GI motility and are safe to use in clinical practice. The dose, route, and combination therapy of these prokinetics will need to be investigated in future studies. Considering the high statistical heterogeneity, the precise effect of these interventions should be investigated in homogenous groups of patients in future studies. Interventions such as botulism toxin, gastric secretion inhibitors, cephalosporin antibiotics, amylin analogues, and DPP-4 inhibitor significantly impair GI motility and should be used with caution in high-risk patients with dysmotility.

REFERENCES
1. Chapman MJ, Nguyen NQ, Deane AM. Gastrointestinal dysmotility: evidence and clinical management. Curr Opin Clin Nutr Metab Care. 2013;16:209–216.
2. Landzinski J, Kiser TH, Fish DN, et al. Gastric motility function in critically ill patients tolerant vs intolerant to gastric nutrition. JPEN. 2007;32:45–50.

3. Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: nutritional support in acute pancreatitis. Alim Pharmacol Ther. 2008;28:704–712.

4. Yeh DD, Fuentes E, Quraishi SA, et al. Adequate nutrition may get you home: effect of caloric/protein deficits on the discharge destination of critically ill surgical patients. JPEN J Parenter Enteral Nutr. 2016;40:37–44.

5. McKenzie SJ, Premkumar R, Askelund KJ, et al. The effect of enteral nutrition on adipokines in patients with acute pancreatitis. J Nutr Sci. 2015;4:e33.

6. Menteck H, Dupont H, Bucchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med. 2001;29:1955–1961.

7. Dvir D, Cohen J, Singer P. Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr. 2006;25:37–44.

8. Asrani VM, Chang WK, Dong Z, et al. Glutamine supplementation in acute pancreatitis: a meta-analysis of randomized controlled trials. Pancreatology. 2013;13:468–474.

9. Shimizu K, Oghura H, Asagara T, et al. Gastrointestinal dysmotility is associated with altered gut flora and septic mortality in patients with severe systemic inflammatory response syndrome: a preliminary study. Neurogastroenterol Motil. 2011;23:330–335.

10. Hill LT. Gut dysfunction in the critically ill: mechanisms and clinical implications. S Afr J Crit Care. 2013;29:11–15.

11. Ukleja A. Altered GI motility in critically ill patients: current understanding of pathophysiology, clinical impact, and diagnostic approach. Nutr Clin Pract. 2010;25:16–25.

12. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract: the “undrained abscess” of multiple organ failure. Ann Surg. 1993;218:111–119.

13. Kar P, Jones KL, Horowitz M, et al. Measurement of gastric emptying in the critically ill. Clin Nutr. 2014;33:57–64.

14. Nguyen T, Fenrette AJ, Johanson C, et al. Impaired gastrointestinal transit and its associated morbidity in the intensive care unit. J Crit Care. 2013;28:e511–e537.

15. Wu LM, Sankaran SJ, Plank LD, Windsor JA, Petrov MS. Meta-analysis of gut barrier dysfunction in patients with acute pancreatitis. Br J Surg. 2014;100:1644–1656.

16. Herbert MK, Holzer P. Standardized concept for the treatment of gastrointestinal dysmotility in critically ill patients: current status and future options. Clin Nutr. 2008;27:25–41.

17. Ma J, Pendharkar SA, O’Grady G, et al. Effect of nasogastric tube feeding vs nil per os on dysmotility in acute pancreatitis: results of a randomized controlled trial. Nutr Clin Pract. 2016;31:99–104.

18. Deitch EA, Xu D, Kaise VL. Role of the gut in the development of injury- and shock induced SIRS and MODS: the gut-lymph hypothesis, a review. Front Biosci. 2006;11:520–528.

19. Varadhan KK, Lobo DN, Ljungqvist O. Enhanced recovery after surgery: the future of improving surgical care. Crit Care Clin. 2010;26:527–547.

20. Petrov MS, Windsor JA. Nutritional management of acute pancreatitis: the concept of ‘gut rousing’. Curr Opin Clin Nutr Metab Care. 2013;16:557–565.

21. Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

22. Arienti V, Corazza GR, Sorge M, et al. The effects of levosulpiride on gastric and gall-bladder emptying in functional dyspepsia. Aliment Pharmacol Ther. 1994;8:631–638.

23. Aritayu H, Iwakura H, Yukawa N, et al. Clinical effects of ghrelin on gastrointestinal involvement in patients with systemic sclerosis. Endocr J. 2016;61:735–742.

24. Arts J, Caenepeel P, Verbeke K, Tack J. Influence of erythromycin on gastric emptying and meal related symptoms in functional dyspepsia with delayed gastric emptying. Gut. 2005;54:455–460.

25. Badalà D, Corazzazian E, Habib F, et al. Effect of wheat bran in treatment of chronic nonorganic constipation. Dig Dis Sci. 1995;40:349–356.

26. Banani SJ, Lankarani KB, Taghavi A, et al. Comparison of metoclopramide oral tablets and solution in treatment of dysmotility-like dyspepsia. Am J Health Syst Pharm. 2008;65:1057–1061.

27. Bharucha AE, Low P, Camilleri M, et al. A randomised controlled study of the effect of cholinesterase inhibition on colon function in patients with diabetes mellitus and constipation. Gut. 2013;62:708–715.

28. Bonacini M, Quaison S, Reynolds M, et al. Effect of intravenous erythromycin on postoperative ileus. Am J Gastroenterol. 1993;88:208–211.

29. Bortolotti M, Mari C, Brunelli F, et al. Effect of intravenous clarithromycin on interdigestive gastrointestinal motility of patients with functional dyspepsia and Helicobacter pylori gastritis. Dig Dis Sci. 1999;44:2439–2442.

30. Bouras EP, Camilleri M, Burton DD, et al. Prucalopride accelerates gastrointestinal and colonic transit in patients with constipation without a rectal evacuation disorder. Gastroenterology. 2001;120:354–360.

31. Braden B, Caspary W, Börner N, et al. Clinical effects of STW 5 (Iberogast®) are not based on acceleration of gastric emptying in patients with functional dyspepsia and gastroparesis. Neurogastroenterol Motil. 2009;21:632–725.

32. Cann PA, Read NW, Holdsworth CD, Barends D. Role of loperamide and placebo in management of irritable bowel syndrome (IBS). Dig Dis Sci. 1984;29:239–247.

33. Cappello C, Tremolaterra F, Pascale I, et al. A randomised clinical trial (RCT) of a symbiotic mixture in patients with irritable bowel syndrome (IBS): effects on symptoms, colonic transit and quality of life. Int J Colorectal Dis. 2013;28:349–358.

34. Chapman M, Fraser R, De Beaux I, et al. Cefazolin does not accelerate gastric emptying in the critically ill. Intensive Care Med. 2003;29:1169–1172.

35. Choung RS, Locke GR, Francis DD, et al. Novel partial 5HT3 antagonist pumosetrag reduces acid reflux events in uninvestigated GERD patients after a standard refluxogenic meal: a randomized, double-blind, placebo-controlled pharmacodynamic study. Neurogastroenterol Motil. 2014;26:13–20.

36. Deng G, Wong WD, Guillem J, et al. Phase II, phase II, controlled trial of anacupuncture for reduction of postcolectomy ileus. Ann Surg Oncol. 2013;20:1164–1169.

37. Eijkjaer N, Wo JM, Esfandiyari T, et al. A phase 2a, randomized, double-blind 28-day study of TZP-102 a ghrelin receptor agonist for diabetic gastroparesis. Neurogastroenterol Motil. 2013;25:e140–e150.

38. Foschi D, Lazzaroni M, Sangaletti O, et al. Effects of intramural antral injection on gastric emptying and weight reduction in obese patients: a pilot study. Int J Colorectal Dis. 2006;21:675–680.
41. Harvey KP, Adair JD, Isho M, Robinson R. Can intravenous lidocaine decrease post-surgical ileus and shorten hospital stay in elective bowel surgery? A pilot study and literature review. *Am J Surg*. 2009;198:231–236.

42. Herzog T, Lemmens HP, Arlt G, et al. Treatment of postoperative ileus with choline citrate: results of a prospective, randomised, placebo-controlled, double-blind multicentre trial. *Int J Colorectal Dis*. 2011;26:645–652.

43. Kollmar O, Moussavian MR, Richter S, et al. Gastrokinetic effect of levosulpiride and delayed gastric emptying after pancreaticoduodenectomy: results of a prospective randomized double-blind placebo-controlled trial. *Eur J Surg Oncol*. 2008;34:868–875.

44. Koskenpato J, Punkkinen JM, Kairemo K, Färkkilä M. Nizatidine and gastric emptying in functional dyspepsia. *Dig Dis Sci*. 2008;53:352–357.

45. Lee CT, Chang SS, Kamat AM, et al. Alvimopan accelerates gastrointestinal recovery after radical cystectomy: a multicenter randomized placebo-controlled trial. *Eur Urol*. 2014;66:265–272.

46. Lu WZ, Song GH, Gwee KA, Ho KY. The effects of melatonin on colonic transit time in normal controls and IBS patients. *Dig Dis Sci*. 2009;54:1087–1093.

47. Mansi C, Savarino V, Vigneri S, et al. Gastrokinetic effects of levosulpiride in dyspeptic patients with diabetic gastroparesis. *Am J Gastroenterol*. 1995;90:1989–1993.

48. McCallum RW, Lembo A, Esfandary T, et al. Phase 2b, randomized, double-blind 12-week studies of TZP-102, a ghrelin receptor agonist for diabetic gastroparesis. *Neurogastroenterol Motil*. 2013;25:e705–e717.

49. Melga P, Mansi C, Ciuchi E, et al. Chronic administration of levosulpiride and glycemic control in IDDM patients with gastroparesis. *Diabetes Care*. 1997;20:55–58.

50. Passaretti S, Guslandi M, Imbimbo BP, et al. Effects of cimetropium bromide on gastrointestinal transit time in patients with irritable bowel syndrome. *Aliment Pharmacol Ther*. 1989;3:267–276.

51. Rogha M, Esfahani MZ, Zargarzadeh AH. The efficacy of a symbiotic containing Bacillus Coagulans in treatment of irritable bowel syndrome: a randomized placebo-controlled trial. *Gastroenterol Hepatol Bed Bench*. 2014;7:156–163.

52. Setchell KD, Nardi E, Battezzati PM, et al. Novel soy germ pasta: a new and emerging treatment option for short-term treatment of slow transit constipation: a double-blind placebo-controlled clinical trial. *Int J Colorectal Dis*. 2010;25:389–394.

53. Vella A, Lee JS, Camilleri M, et al. Effects of pramlintide, an amylin analogue, on gastric emptying in type 1 and 2 diabetes mellitus. *Neurogastroenterol Motil*. 2002;14:123–131.

54. Wu T, Bound MJ, Zhao BR, et al. Effects of a D-xylene preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. *Diabetes Care*. 2013;36:1913–1918.

55. Yoon JS, Sohn W, Lee OY, et al. Effect of multispecies probiotics on irritable bowel syndrome: a randomized, double-blind, placebo-controlled trial. *J Gastroenterol Hepatol*. 2014;29:52–59.

56. Zingg U, Miskovic D, Pasternak I, et al. Effect of bisacodyl on postoperative bowel motility in elective colorectal surgery: a prospective, randomized trial. *Int J Colorectal Dis*. 2006;21:1175–1183.

57. Eisenhofer G, Aneman A, Friberg P, et al. Substantial production of dopamine in the human gastrointestinal tract. *J Clin Endocrinol Metab*. 1997;82:3864–3871.

58. Fraser RJL, Bryant L. Current and future therapeutic pro-kinetic therapy to improve enteral feeding intolerance in the ICU patient. *Nutr Clin Pract*. 2010;25:26–31.

59. Chapman MJ, Fraser RJ, Kluger MT, et al. Erythromycin improves gastric emptying in critically ill patients intolerant of nasogastric feeding. *Crit Care Med*. 2000;28:2334–2337.

60. Dive A, Miesse C, Galanti L, et al. Effect of erythromycin on gastric motility in mechanically ventilated critically ill patients: a double-blind, randomized, placebo-controlled study. *Crit Care Med*. 1995;23:1356–1362.

61. Berne J, Scott N, McAuley C, et al. Erythromycin reduces delayed gastric emptying in critically ill trauma patients: a randomized, controlled trial. *J Trauma*. 2002;53:422–425.

62. Galligan JJ, Vanner S. Basic and clinical pharmacology of new motility promoting agents. *Neurogastroenterol Motil*. 2005;17:643–653.

63. Bea Le, Hollenberg SM, Vincent JL, et al. Vasopressor and inotropic support in septic shock: an evidence-based review. *Crit Care Med*. 2004;32(11 Suppl):S455–S465.

64. Kastrup M, Markewitz A, Spies C, et al. Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. *Acta Anaesthesiol Scand*. 2004;51:347–358.

65. Deane AM, Fraser RJ, Chapman MJ. Prokinetic drugs for feed intolerance in critical illness: current and potential therapies. *Crit Care Resusc*. 2009;11:132–143.

66. Waseem S, Moshiree B, Dragano PV. Gastroparesis: current diagnostic challenges and management considerations. *World J Gastroenterol*. 2009;15:25–37.

67. Camilleri M. Opoid-induced constipation: challenges and therapeutic opportunities. *Am J Gastroenterol*. 2011;106:835–842.

68. Schiller LR. New and emerging treatment options for chronic constipation. *Rev Gastroenterol Disord*. 2004;4(Suppl 2):S43–S51.