Construction of Lumps with nontrivial interaction

P. G. Estévez
Facultad de Ciencias. Universidad de Salamanca.
Salamanca, 37008, Salamanca. Spain.
e-mail: pilar@usal.ess

Abstract
We develop a method based upon the Singular Manifold Method that yields an iterative and analytic procedure to construct solutions for a Bogoyavlenskii-Kadomtsev-Petviashvili equation. This method allows us to construct a rich collection of lump solutions with a nontrivial evolution behavior.

1 Introduction
In recent years, it has been proven in several papers [1], [2], [3] that the KPI equation contains a whole manifold of smooth rationally decaying “lump” configurations associated with higher-order pole meromorphic eigenfunctions. These configurations have an interesting dynamics and the lumps may scatter in a nontrivial way. Furthermore, algorithmic methods, based upon the Painlevé property, have been developed in order to construct lump-type solutions for different equations such as a 2 + 1 NLS (Nonlinear Schrödinger equation) [4], [5] equation and the KPI (Kadomtsev-Petviashvili equation) and GDLW (Generalized Dispersive Wave Equation) equations [6].

The present contribution is related to the construction of lump solutions for the 2 + 1 dimensional equation [7]
\[(4u_x t + u_{xxx} + 8u_x u_y + 4u_x u_y)_x + \sigma u_{yy} = 0, \quad \sigma = \pm 1 \] (1)
which represents a modification of the Calogero-Bogoyavlenskii-Schiff (CBS) equation [8], [9], [10]:
\[4u_x t + u_{xxx} + 8u_x u_y + 4u_x u_y = 0. \]

Equation (1) has often been called the Bogoyavlenskii-Kadomtsev-Petviashvili (KP-B) equation [11].

As in the case of the KP equation, there are two versions of (1), depending upon the sign of \(\sigma \). Here we restrict ourselves to the minus sign. Therefore:
\[(4u_x t + u_{xxx} + 8u_x u_y + 4u_x u_y)_x - u_{yyy} = 0 \] (2)
or
\[4u_x t + u_{xxx} + 8u_x u_y + 4u_x u_y = \omega_{yy}, \quad u_y = \omega_x. \] (3)

We refer to (3) as KP-BI in what follows.

In Section 2 we summarize the results that the singular method provides for KP-BI. These results are not essentially new because they were obtained by the author in [11] for the KP-BII version of the equation. Section 3 is devoted to the construction of rational solitons.
2 The Singular Manifold Method for KP-BI

It has been proven that (3) has the Painlevé property [7]. Therefore, the singular manifold method can be applied to it. In this section we adapt previous results obtained in [11] for KP-BII to KP-BI. This is why we are only present the main results with no detailed explanation since this has been shown in our earlier paper.

2.1 The singular Manifold Method

This method [12] requires the truncation of the Painlevé series for the fields \(u \) and \(\omega \) of (3) in the following form:

\[
\begin{align*}
 u^{[1]} &= u^{[0]} + \frac{\phi_x^{[0]}}{\phi^{[0]}}, \\
 \omega^{[1]} &= \omega^{[0]} + \frac{\phi_y^{[0]}}{\phi^{[0]}},
\end{align*}
\]

where \(\phi^{[0]}(x,y,t) \) is the singular manifold and \(u^{[i]}, \omega^{[i]} \) \((i = 0,1) \) are solutions of (3). This means that (4) can be considered as an auto-Bäcklund transformation. The substitution of (4) in (3) yields a polynomial in negative powers of \(\phi^{[0]} \) that can be handled with MAPLE. The result (see [11]) is that we can express the seed solution \(u^{[0]}, \omega^{[0]} \) in terms of the singular manifold as follows:

\[
\begin{align*}
 u_x^{[0]} &= \frac{1}{4} \left(-v_x - \frac{v^2}{2} - z_y + \frac{z_x}{2} \right), \\
 u_y^{[0]} &= \omega_x^{[0]} = \frac{1}{4} \left(-r - 2v_y + 2z_x z_y \right),
\end{align*}
\]

where \(v, r \) and \(z \) are related to the singular manifold \(\phi \) through the following definitions

\[
\begin{align*}
 v &= \frac{\phi_x^{[0]}}{\phi^{[0]}}, \quad r = \frac{\phi_t^{[0]}}{\phi^{[0]}}, \quad z_x = \frac{\phi_y^{[0]}}{\phi^{[0]}},
\end{align*}
\]

Furthermore, the singular manifold \(\phi^{[0]} \) satisfies the equation

\[
s_y + r_x - z_{yy} - z_x z_{xy} - 2z_y z_{xx} = 0
\]

where \(s = v_x - \frac{v^2}{2} \) is the Schwartzian derivative.

2.2 Lax pair

Equations (5) can be linearized through the following definition of \(\psi^{[0]}(x,y,t) \), \(\chi^{[0]}(x,y,t) \) functions.

\[
\begin{align*}
 v &= \frac{\psi_x^{[0]}}{\psi^{[0]}} + \frac{\chi^{[0]}}{\chi^{[0]}}, \\
 z_x &= i \left(\frac{\psi_x^{[0]}}{\psi^{[0]}} \frac{\chi_x^{[0]}}{\chi^{[0]}} \right).
\end{align*}
\]
When one combines (5), (6) and (7), the following Lax pair arises:

\[
\psi^{[0]}_{xx} = -i\psi^{[0]}_y - 2u^{[0]}_x \psi^{[0]}_x
\]
\[
\psi^{[0]}_t = 2i\psi^{[0]}_{yy} - 4u^{[0]}_y \psi^{[0]}_x + (2u^{[0]}_{xy} + 2i\omega^{[0]}_y) \psi^{[0]}
\] (9)
together with its complex conjugate

\[
\chi^{[0]}_{xx} = i\chi^{[0]}_y - 2u^{[0]}_x \chi^{[0]}
\]
\[
\chi^{[0]}_t = -2i\chi^{[0]}_{yy} - 4u^{[0]}_y \chi^{[0]} + (2u^{[0]}_{xy} - 2i\omega^{[0]}_y) \chi^{[0]}.
\] (10)

In terms of \(\chi^{[0]}\) and \(\psi^{[0]}\), the derivatives of \(\phi^{[0]}\) are:

\[
v = \frac{\phi^{[0]}_x}{\phi^{[0]}_y} = \frac{\psi^{[0]}_x}{\chi^{[0]}} + \frac{\chi^{[0]}_x}{\chi^{[0]}} \Rightarrow \phi^{[0]}_y = \psi^{[0]} \chi^{[0]},
\]
\[
r = \frac{\phi^{[0]}_y}{\phi^{[0]}_x} = -4u^{[0]}_y + 2\psi^{[0]}_y \psi^{[0]}_x + 2\chi^{[0]}_y \psi^{[0]}_x - 2\psi^{[0]}_y \psi^{[0]}_x - 2\chi^{[0]}_y \chi^{[0]},
\] (11)
which allows us to write \(d\phi^{[0]}\) as:

\[
d\phi^{[0]} = \psi^{[0]} \chi^{[0]} dx + i \left(\chi^{[0]} \psi^{[0]} - \psi^{[0]} \chi^{[0]} \right) dy +
\]
\[
+ \left(-4u^{[0]}_y \psi^{[0]} \chi^{[0]} + 2\psi^{[0]}_y \chi^{[0]} + 2\psi^{[0]}_x \chi^{[0]} - 2\psi^{[0]}_y \chi^{[0]} - 2\psi^{[0]}_x \chi^{[0]} \right) dt.\] (12)

It is easy to check that the condition of the exact derivative in (12) is satisfied by the Lax pairs (9) and (10).

2.3 Darboux transformations

Let \((\psi_1^{[0]} , \chi_1^{[0]}), (\psi_2^{[0]} , \chi_2^{[0]})\) be two pairs of eigenfunctions of the Lax pair (9)-(10) corresponding to the seed solution \(u^{[0]}\), \(\omega^{[0]}\)

\[
\psi^{[0]}_{j,xx} = -i\psi^{[0]}_{j,y} - 2u^{[0]}_x \psi^{[0]}_x
\]
\[
\psi^{[0]}_{j,t} = 2i\psi^{[0]}_{j,yy} - 4u^{[0]}_y \psi^{[0]}_x + (2u^{[0]}_{xy} + 2i\omega^{[0]}_y) \psi^{[0]}
\] (13)

\[
\chi^{[0]}_{j,xx} = i\chi^{[0]}_{j,y} - 2u^{[0]}_x \chi^{[0]}
\]
\[
\chi^{[0]}_{j,t} = -2i\chi^{[0]}_{j,yy} - 4u^{[0]}_y \chi^{[0]} + (2u^{[0]}_{xy} - 2i\omega^{[0]}_y) \chi^{[0]}
\] (14)
where \(j = 1, 2\). These Lax pairs can be considered as nonlinear equations between the fields and the eigenfunction (11). This means that the Painlevé expansion of the fields

\[
u^{[1]} = u^{[0]} + \frac{\phi^{[0]}_1 x}{\phi^{[0]}_1 y}
\]
\[
\omega^{[1]} = \omega^{[0]} + \frac{\phi^{[0]}_1 y}{\phi^{[0]}_1 x}
\] (15)
should be accompanied by an expansion of the eigenfunctions and the singular manifold itself. These expansions are

\[
\psi_2^{[1]} = \psi_2^{[0]} - \psi_1^{[0]} \frac{\Omega_{1,2}}{\phi_1^{[0]}}, \\
\chi_2^{[1]} = \chi_2^{[0]} - \chi_1^{[0]} \frac{\Omega_{2,1}}{\phi_2^{[0]}}, \\
\phi_2^{[1]} = \phi_2^{[0]} - \frac{\Omega_{1,2}\Omega_{2,1}}{\phi_1^{[0]}},
\]

(16)

Substitution of (16) in (13-14) yields

\[
d\Omega_{i,j} = \psi_1^{[0]} \chi_1^{[0]} dx + i \left(\chi_1^{[0]} \psi_{j,x}^{[0]} - \psi_1^{[0]} \chi_{j,x}^{[0]} \right) dy + \left(-4u_y^0 \psi_1^{[0]} \chi_j^{[0]} + 4\psi_{j,y}^{[0]} \chi_1^{[0]} + 2\psi_{j,y}^{[0]} \chi_{j,x}^{[0]} - 2\chi_{1,y}^{[0]} \psi_{j,y}^{[0]} - 2\chi_{1,x}^{[0]} \psi_{j,x}^{[0]} \right) dt.
\]

(17)

Direct comparison of (12) and (17) affords \(\phi_1^{[0]} = \Omega_{i,j} \). Therefore, knowledge of the two seed eigenfunctions \((\psi_j^{[0]}, \chi_j^{[0]}), j = 1, 2 \), allows us to compute the matrix elements \(\Omega_{i,j} \), which yields the Darboux transformation (15-16).

2.4 Iteration: \(\tau \)-functions

According to the above results, \(\phi_2^{[1]} \) is a singular manifold for the iterated fields \(u^{[1]}, \omega^{[1]} \). Therefore, the Painlevé expansion for these iterated fields can be written as

\[
u^{[2]} = u^{[1]} + \phi_{2,x}^{[1]} \phi_2^{[1]}, \\
\omega^{[2]} = \omega^{[1]} + \phi_{2,y}^{[1]} \phi_2^{[1]},
\]

(18)

which combined with (15) is:

\[
u^{[2]} = u^{[0]} + \frac{(\tau_{1,2})_x}{\tau_{1,2}}, \\
\omega^{[2]} = \omega^{[0]} + \frac{(\tau_{1,2})_y}{\tau_{1,2}},
\]

(19)

where \(\tau_{1,2} = \phi_2^{[1]} \phi_1^{[0]} \), which according to (15) allows us to write it as

\[
\tau_{1,2} = \phi_2^{[0]} \phi_1^{[0]} - \Omega_{1,2} \Omega_{2,1} = \det(\Omega_{i,j}).
\]

(20)

3 Lumps

The iteration method described above can be started from the most trivial initial solution \(u^{[0]} = \omega^{[0]} = 0 \). In this case, the lax pair, is:

\[
\psi_{j,x}^{[0]} = -i\psi_{j,y}^{[0]}, \\
\psi_{j,y}^{[0]} = 2i\psi_{j,y}^{[0]}, \\
\chi_j^{[0]} = i\chi_j^{[0]}, \\
\chi_{j,x}^{[0]} = -2i\chi_{j,yy}^{[0]},
\]

(21)
It is trivial to prove that equations (21) have the following solutions

\[
\psi_1^{[0]} = P_m(x, y, t; k) \exp \{ Q_0(x, y, t; k) \}, \\
\chi_1^{[0]} = P_n(x, y, t; k) \exp \{- Q_0(x, y, t; k) \}, \\
\psi_2^{[0]} = \left(\chi_1^{[0]} \right)^*, \\
\chi_2^{[0]} = \left(\psi_1^{[0]} \right)^* ,
\]

(22)

where \(m, n \) are arbitrary integers and \(k \) an arbitrary complex constant.

\[
Q_0(x, y, t; k) = k x + i k^2 y + 2i k^4 t \Rightarrow (Q_0(x, y, t; k))^* = k^* x - i(k^*)^2 y - 2i(k^*)^4 t
\]

(23)

and \(P_j(x, y, t; k) \) is defined as:

\[
P_j(x, y, t; k) \exp \{ Q_0(x, y, t; k) \} = \frac{\partial^j \left(P_{j-1}(x, y, t; k) \exp \{ Q_0(x, y, t; k) \} \right)}{\partial k^j}, \quad P_0 = 1.
\]

(24)

These solutions are characterized by two integers, \(n \) and \(m \) that provide a rich collection of different solutions corresponding to the same wave number \(k \). Thus in our opinion, all of them should be considered as one-soliton solutions despite the different behaviors shown by the solutions corresponding to the different combinations of \(n \) and \(m \). We now present some of these cases.
3.1 Lump (0,0): \(n = 0, \quad m = 0 \)

The eigenfunctions (22) are:

\[
\begin{align*}
\psi_{1}^{[0]} &= \exp [Q_{0}(x, y, t, k)], \\
\chi_{1}^{[0]} &= \exp [-Q_{0}(x, y, t, k)], \\
\psi_{2}^{[0]} &= \exp [-Q_{0}^{*}(x, y, t, k)], \\
\chi_{2}^{[0]} &= \exp [Q_{0}^{*}(x, y, t, k)].
\end{align*}
\]

The matrix elements (17) can be integrated as:

\[
\begin{align*}
\phi_{1}^{[0]} &= \Omega_{1,1} = x + 2iky - 8ik^{3}t, \\
\phi_{2}^{[0]} &= \Omega_{2,2} = x - 2ik^{*}y + 8i(k^{*})^{3}t, \\
\Omega_{1,2} &= -\frac{1}{k + k^{*}} \exp [-Q_{0}(x, y, t, k)] \exp [-Q_{0}^{*}(x, y, t, k)], \\
\Omega_{2,1} &= \frac{1}{k + k^{*}} \exp [Q_{0}(x, y, t, k)] \exp [Q_{0}^{*}(x, y, t, k)].
\end{align*}
\]

Therefore, the \(\tau \)-function (23) is the positive defined expression

\[
\tau_{1,2} = X_{1}^{2} + Y_{1}^{2} + \frac{1}{4a_{0}^{2}},
\]

where

\[
\begin{align*}
&k = a_{0} + ib_{0}, \\
&X_{1} = x - 2b_{0}y + 8b_{0} (3a_{0}^{2} - b_{0}^{2}) t, \\
&Y_{1} = 2a_{0} (y + 4(3a_{0}^{2} - b_{0}^{2})t).
\end{align*}
\]

The profile of this solution is shown in Figure 1. It represents a lump (static in the variables \(X_{1}, Y_{1} \)) of height \(8a_{0}^{2} \).

3.2 Lump (1,0): \(n = 1, \quad m = 0 \)

The eigenfunctions (22) are:

\[
\begin{align*}
\psi_{1}^{[0]} &= P_{1}(x, y, t; k) \exp [Q_{0}(x, y, t, k)], \\
\chi_{1}^{[0]} &= \exp [-Q_{0}(x, y, t, k)], \\
\psi_{2}^{[0]} &= \exp [-Q_{0}^{*}(x, y, t, k)], \\
\chi_{2}^{[0]} &= \{P_{1}(x, y, t; k)\}^{*} \exp [Q_{0}^{*}(x, y, t, k)],
\end{align*}
\]

where according to (24) we have:

\[
P_{1}(x, y, t; k) = x + 2iky - 8ik^{3}t.
\]
In this case, the matrix elements (17) are:

\[
\phi_{1}^{[0]} = \frac{x^2}{2} + iy + 2ixyk - 2y^2k^2 - 12itk^2 - 8ixtk^3 + 16ytk^4 - 32tk^6 =
\]

\[
= \frac{X_1^2 - Y_1^2}{2} + i\frac{2a_0X_1Y_1 + Y_1 - 16a_0^2t}{2a_0},
\]

\[
\phi_{2}^{[0]} = \left(\phi_{1}^{[0]}\right)^*,
\]

\[
\Omega_{1,2} = \frac{1}{2a_0} \exp \left[-Q_0(x, y, t; k)\right] \exp \left[-Q_0^*(x, y, t; k)\right],
\]

\[
\Omega_{2,1} = \frac{1 - 2a_0X_1 + 2a_0^2(X_1^2 + Y_1^2)}{4a_0^4} \exp \left[Q_0(x, y, t; k)\right] \exp \left[Q_0^*(x, y, t; k)\right].
\]

Therefore, the \(\tau\)-function (20) is the positive defined expression

\[
\tau_{1,2} = \left(\frac{X_1^2 - Y_1^2}{2}\right)^2 + \left(\frac{2a_0X_1Y_1 + Y_1 - 16a_0^2t}{2a_0}\right)^2 + \left(\frac{X_1 - \frac{1}{2a_0}}{2a_0}\right)^2 + \left(\frac{Y_1}{2a_0}\right)^2 + \frac{1}{16a_0^4}.
\]

The profile of this solution is shown in Figure 2. If we wish to show its behavior when \(t \to \pm\infty\), we need to look along the lines

\[
X_1 = \hat{X}_1 + c_1 t^{1/2}
\]

\[
Y_1 = \hat{Y}_1 + c_2 t^{1/2}
\]

such that (32), when \(t \to \pm\infty\), is different from 0

- For \(t < 0\), the possibilities are \(c_1 = \pm 2a_0\sqrt{-2}, \ c_2 = -c_1\) which yields two lumps approaching with opposite velocities along the lines

\[
X_1 = \hat{X}_1 \pm 2a_0(-2t)^{1/2}
\]

\[
Y_1 = \hat{Y}_1 \pm 2a_0(-2t)^{1/2},
\]

and the limit of \(\tau_{1,2}\) along these lines is

\[
\tau_{1,2} = \left(\hat{X}_1 + \frac{1}{4a_0}\right)^2 + \left(\hat{Y}_1 - \frac{1}{4a_0}\right)^2 + \frac{1}{4a_0^4}.
\]

- For \(t > 0\), the possibilities are \(c_1 = \pm 2a_0\sqrt{2}, \ c_2 = c_1\) which yields two lumps with opposite velocities along the lines

\[
X_1 = \hat{X}_1 \pm 2a_0(2t)^{1/2}
\]

\[
Y_1 = \hat{Y}_1 \pm 2a_0(2t)^{1/2},
\]

and the limit of \(\tau_{1,2}\) along these lines is

\[
\tau_{1,2} = \left(\hat{X}_1 + \frac{1}{4a_0}\right)^2 + \left(\hat{Y}_1 + \frac{1}{4a_0}\right)^2 + \frac{1}{4a_0^4}.
\]
3.3 Lump (1,1): \(n = 1, \quad m = 1 \)

The eigenfunctions (22) are:

\[
\begin{align*}
\psi_1^{[0]} &= P_1(x, y, t; k) \exp [Q_0(x, y, t; k)], \\
\chi_1^{[0]} &= P_1(x, y, t; k) \exp [-Q_0(x, y, t; k)], \\
\psi_2^{[0]} &= \{P_1(x, y, t; k)\}^* \exp [-Q_0^*(x, y, t; k)], \\
\chi_2^{[0]} &= \{P_1(x, y, t; k)\}^* \exp [Q_0^*(x, y, t; k)].
\end{align*}
\] (38)

This yields the following matrix elements according to (17):

\[
\begin{align*}
\phi_1^{[0]} &= X_1 \left(\frac{X_1^2 - 3Y_1^2}{3} \right) + i \left(\frac{X_1^2Y_1 - Y_1^3}{3} + 8a_0 t \right), \\
\phi_2^{[0]} &= (\phi_1^{[0]})^*, \\
\Omega_{1,2} &= -\frac{1 + 2a_0X_1 + 2a_0^2 (X_1^2 + Y_1^2)}{4a_0^3} \exp [-Q_0(x, y, t; k)] \exp [-Q_0^*(x, y, t; k)], \\
\Omega_{2,1} &= \frac{1 - 2a_0X_1 + 2a_0^2 (X_1^2 + Y_1^2)}{4a_0^3} \exp [Q_0(x, y, t; k)] \exp [Q_0^*(x, y, t; k)].
\end{align*}
\] (39)
Therefore, the τ-funcion (20) is the positive defined expression

$$
\tau_{1,2} = \left(\frac{X_1 (X_1^2 - 3Y_1^2)}{3} \right)^2 + \left(X_1^2 Y_1 - \frac{Y_1^3}{3} + 8a_0 t \right)^2 + \left(\frac{X_1^2 + Y_1^2}{2a_0} \right)^2 + \left(\frac{Y_1}{2a_0^2} \right)^2 + \frac{1}{16a_0^2}. \quad (40)
$$

The profile of this solution is shown in Figure 3. The asymptotic behavior of this solution can be obtained by considering the transformation

$$
X_1 = \hat{X}_1 + c_1 t^\frac{1}{2},
Y_1 = \hat{Y}_1 + c_2 t^\frac{1}{2}. \quad (41)
$$

There are three possible solutions for c_i. For all of them $\tau_{1,2}$ is

$$
\tau_{1,2} \rightarrow X_1^2 + Y_1^2 + \frac{1}{4a_0^2}. \quad (42)
$$

- $c_1 = 0, c_2 = 2(3a_0)^{\frac{1}{2}}$. This corresponds to a lump moving along the line

$$
X_1 = \hat{X}_1, \quad Y_1 = \hat{Y}_1 + 2(3a_0)^{\frac{1}{2}}. \quad (43)
$$

- $c_1 = -\sqrt{3}(3a_0)^{\frac{1}{2}}, c_2 = (-3a_0)^{\frac{1}{2}}$. This corresponds to a lump moving along the line

$$
X_1 = \hat{X}_1 - \sqrt{3}(-3a_0)^{\frac{1}{2}}, \quad Y_1 = \hat{Y}_1 + (-3a_0)^{\frac{1}{2}}. \quad (44)
$$
\(c_1 = \sqrt{3}(-3a_0)^{\frac{1}{3}}, c_2 = 2(3a_0)^{\frac{1}{3}} \). This corresponds to a lump moving along the line
\[
X_1 = \hat{X}_1 + \sqrt{3}(-3a_0t)^{\frac{1}{3}} \\
Y_1 = \hat{Y}_1 + (-3a_0t)^{\frac{1}{3}}.
\]

(45)

4 Conclusions

The Singular Manifold Method allows us to derive an iterative method to construct lump solutions characterized by two integers whose different combinations yield a rich possibilities of nontrivial self-interactions between the components of the solution.

Acknowledgements

This research has been supported in part by the DGICYT under project FIS2009-07880.

References

[1] Fokas A. S. and Ablowitz M. J., On the inverse scattering of the time dependent Schrödinger equation and the associated Kadomtsev-Petviashili equation, Stud. Appl. Math. 69 (1983), 211-228
[2] Villarroel J. and Ablowitz M. J., On the discrete spectrum of the nonstationary Schrödinger equation and multipole lumps of the Kadomtsev-Petviashvili I equation, Comm. Math. Phys. 207 (1999), 1-42
[3] Ablowitz M. J., Chakravarty S., Trubatch A. D. and Villarroel J., A novel class of solutions of the non-stationary Schrödinger and the Kadomtsev-Petviashvili I equations, Phys. Lett. A 267 (2000), 132-146
[4] Estévez P. G., Prada J. and Villarroel V., On an algorithmic construction of lump solutions in a 2 + 1 integrable equation, J. Phys. A: Math. and Gen. 40 (2007), 7213-7231.
[5] Villarroel J., Prada J. and Estévez P. G., Dynamics of lumps solutions in a 2 + 1 NLS equation Stud. Appl. Math. 122 (2009), 395-410.
[6] Estévez P. G. and Prada J., Lump solutions for PDE’s: Algorithmic construction and classification J. Nonlinear Math. Phys. 15 (2008), 166-175.
[7] Yu S. J., Toda K. and Fukuyama T., N-soliton solutions to a (2 + 1)-dimensional integrable equation J. Phys. A: Math. and Gen. 31 (1988), 10181-10186.
[8] Calogero F., A Method to Generate Solvable Nonlinear Evolution Equation, lett. Nuovo Cimento 14 (1975), 443-448.
[9] Bogoyavlenskii O., Breaking solitons in 2 + 1-dimensional integrable equations, Russian Math. Surveys 45 (1990), 1-89.
[10] Schiff J., Painlevé Transcendents, Their Asymptotics and Physical Applications, Plenum, New York, (1992).
[11] Estévez P. G. and Hernández G. A., Non-isospectral problem in 2 + 1 dimensions, J. Phys. A: Math. and Gen. 33 (2000), 2131-2143.
[12] Weiss J., The Painlevé property for partial differential equations. II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative, J. Math. Phys. 24 (2000), 1405-1413.