On two cases of male dimorphism in dwarf spiders (Araneae: Linyphiidae)

Authors: Bosmans, Robert, and Oger, Pierre

Source: Arachnologische Mitteilungen: Arachnology Letters, 55(1) : 52-56

Published By: Arachnologische Gesellschaft e.V.

URL: https://doi.org/10.30963/aramit5509
On two cases of male dimorphism in dwarf spiders (Araneae: Linyphiidae)

Robert Bosmans & Pierre Oger

Abstract. Diplocephaulus cristasus (Blackwall, 1833) is confirmed as a dimorphic species, having two morphs: cristasus and foraminifer. This view was first proposed by Georgescu (1969), but not supported in the literature. Diplocephaulus foraminifer (O. Pickard-Cambridge, 1875), D. bicephalus (Simon, 1884), D. rectilobus (Simon, 1884), D. foraminifer thyrsiger (Simon, 1884) and D. arvernus (Denis, 1948) are here considered junior synonyms of D. cristasus (Blackwall, 1833). Diplocephaulus bicephalus belongs to the morph cristasus, D. rectilobus, D. thyrsiger and D. arvernus to the morph foraminifer. A lectotype (♂) is designated for Diplocephaulus bicephalus Simon, 1884; the paratype female of D. bicephalus was incorrectly identified and actually belongs to Dicymbium nigrum (Blackwall, 1834). Savignia harmsi Wunderlich, 1980 is another dimorphic species, with the two strongly differing male morphs: typica and cor.

Keywords: Araneae, dimorphic Linyphiidae, Diplocephaulus, Savignia

For a long time, dimorphic erigonid spiders were not recognised as such and considered separate species. Only when morph differences were small, for example in the size of the cephalic tubercle or the post-ocular sulci, were these sometimes considered variations. Holm (1979: p. 269) wrote about Pelcopsis mengei (Simon, 1884): “The males occur in two different forms, the one which is the most frequent, with a high cephalic lobe and large sulcal orifice, the other with lower lobe and with much smaller orifice. … As no intermediate forms have been found and moreover, the two types of males have quite similar palpal tubiae and bulbs and are found together, the males of P. mengei seem to be dimorphic.” Similarly, Bosmans & Abrous (1992) considered the specimens of Pelcopsis oranensis (Simon, 1884) with small and large postocular sulci, but having identical palpal tubiae and bulbs, as morphs of the same species. Diplocephaulus marijaii Bosmans, 2010 from Spain is another species occurring in two morphs (Bosmans et al. 2010). The decision to recognise species as being dimorphic is not easy or consequent. Roberts (1987) proposed Troxochrus scalariculus (Westring, 1851) and T. cirrifrons (O. Pickard-Cambridge, 1871) to be one, dimorphic species, but this is not followed in the World Spider Catalog (2018) where they are considered two separate species. On the contrary, when the same author (Roberts 1987) proposed Diplocephaulus connatus Bertkau, 1889 and D. jacksoni (O. Pickard-Cambridge, 1904) to be forms of the same species, this opinion was accepted in the World Spider Catalog (2018).

The best documented case of dimorphic linyphiid spiders is that of Oedothorax gibbosus (Blackwall, 1841) and O. tuberosus (Blackwall, 1841) having very different cephalic tubercles and because of that considered separate species in older identification books (e.g., Locket & Millidge 1953, Wiehle 1960, Palmgren 1976). After a detailed study of the male palps of several Oedothorax species, Bosmans (1985) concluded that all palpal sclerites of O. gibbosus and O. tuberosus were completely identical and the two species names were synonymized. De Keer & Maelfait (1988) provided further evidence from breeding experiments. They reared spiderlings from the same egg sac and obtained both forms. In our opinion, when palpal sclerites are identical, specimens should be treated as belonging to the same species.

The aim of the present paper is to discuss two more cases of male dimorphism in Linyphiidae.

Material and methods

The material studied was collected by the authors or loaned from museum collections. Species were examined by mean of a Nikon SMZ1270 stereo microscope. Details of male palps and female epigynes were studied with an Olympus CH-2 microscope with a drawing tube. Left palps are illustrated.

Male palps were detached and transferred to glycerol for examination under the microscope. Female epigynes were excised using sharpened needles. These were then transferred to clove oil for examination under the microscope. Later, palps and epigynes were returned to 70% ethanol.

Abbreviations: CAR-S = Personal collection of Antony Russell-Smith (UK), CPO = Personal collection of Pierre Oger (Belgium), CRB = Personal collection of Robert Bosmans (Belgium), CSD = Personal collection of Samuel Danflos (France), MNHN = Muséum National d’Histoire naturelle, Paris, France (curator: C. Rollard).

A forgotten case of dimorphism

Males and females of Diplocephaulus cristasus (Blackwall, 1833) were first described by Blackwall (1833) from England as Walckenaeria c. Subsequently, O. Pickard-Cambridge (1875) described Erigone foraminifera Pickard-Cambridge, 1875 from France. Differences between the two species were based on differently shaped cephalic lobes. Pickard-Cambridge (1875: p. 208) stated that “E. foraminifera is also allied to E.
Male dimorphism in Linyphiidae

Georgescu (1969) was the first author to propose that *D. cristatus*, *D. foraminifer*, *D. bicephalus*, *D. rectilobus* and *D. thyrsiger* all belong to the same species, occurring in two morphs: *cristatus* and *foraminifer*. She also included *Diplocephalus crassilobus* (Simon, 1884) in that list, but the conformation of the male palp of the latter species is completely different (cf., Milridge 1979, Pesarini 1996). The suggestion by Georgescu has not been followed and in the World Spider Catalog (2018), these names are currently listed as separate species. We have been able to re-examine the material of all these *Diplocephalus* species, including the types of *D. bicephalus* and *D. rectilobus*, and can confirm Georgescu’s proposal.

Fig. 1: a-c. *Diplocephalus cristatus* (Blackwall, 1833) (Belgium), d-f. *D. rectilobus* (Simon, 1884) (the holotype), g-i. *D. foraminifer* (O. Pickard-Cambridge, 1875) (Greece), j-l. *D. bicephalus* (Simon, 1884) (the lectotype), m, o: *D. arvernus* Denis, 1948 (from Denis 1948, figs 1-8); n. *D. foraminifer* (O. Pickard-Cambridge, 1875) (from Deltshiev, 1985, fig. 7); a, d, j, m. Male prosoma, lateral view; b, e, h, k, n. Male palp, lateral view; c, f, i, l, o. Male palpal tibia, dorsal view.

cristata, but the very different form of the caput and its cleft … will distinguish it at once”.

Later, Simon (1884, 1926) also gave considerable importance to the shape of cephalic lobes in describing several (sub) species in the genus *Prosoponcus*: *P. bicephalus* Simon, 1884, *P. rectilobus* Simon, 1884 and *P. thyrsiger* Simon, 1884. None of these species was matched to a female, except for *P. bicephalus*; yet the female of the latter species appeared to be that of *Dicymbium nigrum* (Blackwall, 1834). Denis (1948) added one more species to this species group, *D. arvernus*, from France, Auvergne. He stated that this species was closely related to *D. foraminifer*, but slightly differed in the shape of cephalic lobe.
Diplocephalus cristatus (Blackwall, 1833) (Figs 1a–n, 2a–f)

Walckenaeria cristatus Blackwall, 1833: 107 (♀); the type from England, Manchester, Cheetham, not examined.

Erigone foraminifera O. Pickard-Cambridge, 1875: 207, pl. 28, fig. 15 (♀); the type from France, Hautes-Alpes, Col de Natoya; not examined.

Prosoponcus foraminifer; Simon 1884: 572, 382-383, figs 672, 673.

Prosoponcus bicephalus Simon, 1884: 575, figs 388, 389 (♂).

Diplocephalus arvernus Denis, 1948: 238, figs 1–8 (♂); not examined. N. Syn.

Type material. Lectotype ♂ of Diplocephalus bicephalus Simon, 1884 (designated here) from France, Pyrénées-Orientales, between Prats-de-Mollo and La-Preste, Coll. Simon 4914 AR 12084 (MNHN); 2 ♀ paralecotypes of D. bicephalus belonging to Dicymbum nigrum (Blackwall, 1834). – Holotype ♂ of Prosoponcus rectiloba Simon, 1884 from France, Haute-Savoie, Les Contamines, Coll. Simon 25107 AR12085 (MNHN); examined.

Further material examined. BELGIUM: Antwerpen: Mol, 7 ♂♂ (morph cristatus), 6 ♀♀, 15 vi.1973, R. Bosmans leg. (CRB). – FRANCE: Savoie: St-Julien-Molin-Molettes, 1 ♂ (morph foraminifer), in litter, 28.x.2014, P. Dubois leg. (CPO). Haute-Garonne, Le Plan, 1 ♂ (morph foraminifer), 9.v.2015, Samuel Danflous leg. (CSD). – GREECE: Ionian Islands: Lefkada: Nidri, 2 ♂♂ (morph foraminifer), 1 ♀, under rocks below waterfall, 26.v.1993, A. Russel-Smith leg. (CAR-S). – SPAIN: Cantabria: Lebeña, 1 ♂ (morph foraminifer) 1 ♀, 16.vii.1985, R. Bosmans leg. (CRB).

Comments on the type material
The only material of Diplocephalus bicephalus (originally as Prosoponcus b.) that is available in MNHN is the male,

Prosoponcus thyrsiger Simon, 1884: 574, figs 386-387 (descr. ♂); not examined. N. Syn.

Prosoponcus rectiloba Simon, 1884: 573, figs 384-385 (♂); examined. N. Syn.

Diplocephalus rectilobus Simon 1926: 377, 495.

Diplocephalus bicephalus; Simon 1926: 495, figs 672-673 (♂ only, ♀ = Dicymbum nigrum).

Diplocephalus foraminifer; Simon 1926: 377, 495, figs 667-668.

Diplocephalus foraminifer thyrsiger; Simon 1926: 378, 495, figs 669-671.

Diplocephalus arvernus Denis, 1948: 238, figs 1–8 (♂); not examined. N. Syn.

Type material. Lectotype ♂ of Diplocephalus bicephalus Simon, 1884 (designated here) from France, Pyrénées-Orientales, between Prats-de-Mollo and La-Preste, Coll. Simon 4914 AR 12084 (MNHN); 2 ♀ paralecotypes of D. bicephalus belonging to Dicymbum nigrum (Blackwall, 1834). – Holotype ♂ of Prosoponcus rectiloba Simon, 1884 from France, Haute-Savoie, Les Contamines, Coll. Simon 25107 AR12085 (MNHN); examined.

Further material examined. BELGIUM: Antwerpen: Mol, 7 ♂♂ (morph cristatus), 6 ♀♀, 15 vi.1973, R. Bosmans leg. (CRB). – FRANCE: Savoie: St-Julien-Molin-Molettes, 1 ♂ (morph foraminifer), in litter, 28.x.2014, P. Dubois leg. (CPO). Haute-Garonne, Le Plan, 1 ♂ (morph foraminifer), 9.v.2015, Samuel Danflous leg. (CSD). – GREECE: Ionian Islands: Lefkada: Nidri, 2 ♂♂ (morph foraminifer), 1 ♀, under rocks below waterfall, 26.v.1993, A. Russel-Smith leg. (CAR-S). – SPAIN: Cantabria: Lebeña, 1 ♂ (morph foraminifer) 1 ♀, 16.vii.1985, R. Bosmans leg. (CRB).

Comments on the type material
The only material of Diplocephalus bicephalus (originally as Prosoponcus b.) that is available in MNHN is the male,
which is therefore designated as the lectotype. The two accompanying females belong to *Dicymbium nigrum* (Blackwall, 1834), and Simon’s figure 674 (Simon 1884) obviously shows the epigyne of this species. The only material of *Prosoponcus rectilobus* available in the MNHNP is the male holotype.

Comments on the synonymy

We first became interested in the *Diplocephalus cristatus* complex, while studying specimens collected by Antony Russell-Smith from Lefkada, Greece (Fig 2). A number of males and females were collected from near a spring and they are illustrated in Fig 2. Having tried to identify these specimens, we found out that their palps and epigynes were completely similar to those of the common European species *D. cristatus*, but the males had very different cephalic lobes. Further research showed a clear match with *D. foraminifer* and *D. arvernus*, as illustrated by Deltchev (1985), Denis (1948) and Georgescu (1969) – compare above the section “A forgotten case of dimorphism”.

Figs 1b-c, e-f, h-i, k-l and n, o show the male palps and palpal tibiae of respectively *D. cristatus*, *D. rectilobus*, *D. foraminifer* and *D. arvernus*. Detailed examinations of all palpal sclerites and palpal tibiae revealed no differences. Simon (1926: p. 495) already wrote about *D. rectilobus* in a footnote: “Peut-être une forme ou variété de *D. cristatus*”. Thus, in our opinion, the males of *D. cristatus* occur in two morphs: viz., Figs 1a, d show the morph *cristatus* with a low cephalic lobe, and Figs 1g, j, m and 2a show the morph *foraminifer* with a high cephalic lobe.

Distribution and habitat

Specimens of *Diplocephalus morph cristatus* occur all over Europe (Nentwig et al. 2017). On the contrary, the morph *foraminifer* has a much smaller distribution: northern Spain, southern France, Switzerland and northern Italy in the western part of Europe, and Bosnia and Herzegovina, Macedonia, Montenegro, Bulgaria, Serbia and Romania in the eastern part (Nentwig et al. 2017).

The morph *cristatus* occurs in a variety of habitats: “in grass, straw, moss, etc.” (Locket & Millidge 1953), “auf offenen Flächen, an Waldrändern, in Gärten” (Heimer & Nentwig 1991). The morph *foraminifer* occurs in a much narrower range of specialized habitats. These spiders are frequently found under stones at high altitudes in the Cantabrian Range, the Pyrénées, the Massif Central and the Alps (Simon 1884, 1926, Bomsans & de Keer 1985, Denis 1953, 1955, Hänggi & Stäubli 2012, Müller 1985). At lower altitudes, these spiders occur in more restricted habitats such as caves, near springs and rivulets and in scree and cracks (Denis 1934, Georgescu 1969, Deltchev 1985), rarely in deciduous woodlands (Grbic & Savic 2010).
A new case of male dimorphism: *Savignia harmsi* Wunderlich, 1980 (Figs 3a–d, 4a–d, 5a–g)

Savignia harmsi Wunderlich, 1980: 332, figs 45–51 (dscr. fig. 3).

Material examined. SPAIN: Granada: Baza, 5 km S of Játiva, pitfalls in dry riverbed, 12.xi.1990, L. Zarcos coll. (CRB).

Comments. At first glance, the five studied males appear to belong to different species, because their prosomas have very different shapes (Figs 4a–c, 5a–c). However, their palp conformation is identical (cf. Figs 3e and 3d). The first morph (Fig. 4a–b) has a nose-like projection carrying the anterior median eyes, like in *Savignia frontata* Blackwall, 1833. Apparently, because of this resemblance Wunderlich (1980) placed the species in the genus *Savignia*. The second morph (Fig. 4c–d) has a completely different cephalic lobe in the form of a large, rounded lobe, heart-shaped in the anterior view (Fig. 4d). For this morph, the name *cor* (Latin for heart) is herein proposed. If this morph was found first, the species would probably have been described in *Diplocephalus*.

Distribution. *S. harmsi* was described from both sexes from Spain, in the province of Malaga (Wunderlich 1980). It was recollected from the neighbouring province of Granada. It was not yet recorded since the original description (Morano et al. 2014).

Acknowledgements

Christine Rollard (MNHN) and the individual collectors mentioned in ‘Material and methods’ are sincerely thanked for allowing us to study the material of *Diplocephalus* species under their care. Thanks also to Laura Zarcos for providing the specimens of *Savignia harmsi*. Finally, we wish to thank Antony Russell-Smith and an anonymous referee for their critical comments on the manuscript which helped us to improve it.

References

Blackwall J 1833 Characters of some undescribed genera and species of Araneidae. – London and Edinburgh Philosophical Magazine and Journal of Science (3) 3: 104–112, 187–197, 344–352, 436–443

Bosmans R 1985 Études sur les Linyphiidae nord-africains II. Le genre *Oedothorax* Bertkau en Afrique du Nord, avec une révision de caractères diagnostiques des mâles des espèces ouest-paléarctiques. – *Biologisch Jaarboek Dodonaea* 53: 53–75

Bosmans R & Abrous O 1992 Studies on North African Linyphiidae VI. The genera *Pelecopsis* Simon, *Trichoptera* Kulczyński and *Oedua* gen. n. (Araneidae: Linyphiidae). – Bulletin of the British Arachnological Society 9: 65–85

Bosmans R & Keer R de 1985 Catalogue des Araignées des Pyrénées. – Bulletin de la Société d’Histoire Naturelle de Toulouse 90: 142–156

Grbic G & Savic D 2010 Contribution to the knowledge of the spider fauna (Arachnida, Araneae) on the Fruska Gora Mt. – Acta Entomologica Cracoviensia 14: 203–215

Holm Å 1979 A taxonomic study of European and East African species of the genera *Pelecopsis* and *Trichoptera* (Araneae, Linyphiidae), with descriptions of a new genus and two new species of *Pelecopsis* from Kenya. 1. – Zoologica Scripta 8: 255–278 – doi: 10.1111/j.1463-6409.1979.tb00638.x

Keer R de & Macfaijt J-P 1988 *Oedothorax gibbosus* (Blackwall) and *Oedothorax tuberosus* (Blackwall): one species. – Newsletter of the British Arachnological Society 53: 3

Lockter GH & Millidge AF 1953 British spiders. Vol. II. Ray Society, London. 449 pp.

Millidge AF 1979 Some erigonine spiders from southern Europe. – Bulletin of the British Arachnological Society 4: 316–328

Morano E Carrillo J & Cardoso P 2014 Iberian spider catalogue (v3.1). – Internet: http://www.cnonor.org/iberia (15.xii.2017)

Müller H-G 1985 Faunistischen Notizien über Spinnen aus der Provence und der französischer Alpen (Arachnida: Araneida). – Neue Entomologische Nachrichten 17: 43–51

Nentwig W, Blick T, Gloor D, Hänggi H & Kropf C 2017 *araneae.unibc.ch* – doi: 10.24436/1 (15.xii.2017)

Palmgren P 1976 Die Spinnenfauna Finnlands und Ostfennoskan- diens. VII. Linyphiidae. – Fauna Fennica 29: 1–126

Pesarini C 1996 Note su alcuni Erigonidae italiani, con descrizione di una nuova specie – (Araneae). – Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 135: 413–429

Pickard-Cambridge O 1875 On some new species of *Erigone*. – Proceedings of the Zoological Society of London 43: 190–224, 323–335, Pl. XXII–XXIX, XLIV

Roberts MJ 1987 The spiders of Great Britain and Ireland, Volume 2: Linyphiidae and check list. Harley Books, Colchester. 204 pp.

Simon E 1884 Les arachnides de France. Tome cinquième, deuxième et troisième partie. – Roret, Paris. pp. 180–885

Simon E 1926 Les arachnides de France. Synopsis générale et catal- ogue des espèces françaises de l’ordre des Araneae. Tome VI. 2e partie. – Roret, Paris. pp. 309–532

Simon E 1934 Chasses arachnologiques dans les Pyrénées-Orientales (Région de Banyuls-sur-Mer et Vallespir). – Bulletin de la Société d’Histoire Naturelle de Toulouse 65 (4, 1933): 529–591

Denis J 1948 Araignées de France. II. Araignées des Monts Dore. – Revue Française d’Entomologie 15: 236–249

Denis J 1953 Araignées des environs du Marcadau et du Vignemal (Hautes-Pyrénées). – Bulletin de la Société d’Histoire Naturelle de Toulouse 88: 83–112

Denis J 1955 Recherches d’araignées dans les Pyrénées Centrales (de Barèges à Gavarnie). – Bulletin de la Société d’Histoire naturelle de Toulouse 90: 142–156

Georgescu M 1969 Contribution à l’étude des espèces appartenant au genre *Diplocephalus* Bertkau (Micriphantidae). – Acta Zoologica Cracoviensia 14: 203–215

Heimer S & Nentwig W 1991 Spinnen Mitteleuropas. Parey, Berlin. 543 pp.

Holm Å 1979 A taxonomic study of European and East African species of the genera *Pelecopsis* and *Trichoptera* (Araneae, Linyphiidae), with descriptions of a new genus and two new species of *Pelecopsis* from Kenya. 1. – Zoologica Scripta 8: 255–278 – doi: 10.1111/j.1463-6409.1979.tb00638.x

Keer R de & Maclfaif J-P 1988 *Oedothorax gibbosus* (Blackwall) and *Oedothorax tuberosus* (Blackwall): one species. – Newsletter of the British Arachnological Society 53: 3

Lockter GH & Millidge AF 1953 British spiders. Vol. II. Ray Society, London. 449 pp.

Palmgren P 1976 Die Spinnenfauna Finnlands und Ostfennoskan- diens. VII. Linyphiidae. – Fauna Fennica 29: 1–126

Pesarini C 1996 Note su alcuni Erigonidae italiani, con descrizione di una nuova specie – (Araneae). – Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 135: 413–429

Pickard-Cambridge O 1875 On some new species of *Erigone*. – Proceedings of the Zoological Society of London 43: 190–224, 323–335, Pl. XXII–XXIX, XLIV

Roberts MJ 1987 The spiders of Great Britain and Ireland, Volume 2: Linyphiidae and check list. Harley Books, Colchester. 204 pp.

Simon E 1884 Les arachnides de France. Tome cinquième, deuxième et troisième partie. – Roret, Paris. pp. 180–885

Simon E 1926 Les arachnides de France. Synopsis générale et cata- logue des espèces françaises de l’ordre des Araneae. Tome VI. 2e partie. – Roret, Paris. pp. 309–532

Wiehle H 1960 Spinnentiere oder Arachnoidae (Araneae). XI. Micryphantidae–Zwergspinnen. – Die Tierwelt Deutschlands 47: i–xi, 1–620

World Spider Catalog. 2018 World Spider Catalog, version 19.0. Natural History Museum, Bern. – Internet: http://wsc.nmbe. ch – doi: 10.24436/2 (31.1.2018)

Wunderlich J 1980 Linyphiidae aus Süd-Europa und Nord-Afrika (Arachnida: Araneae). – Verhandlungen des Naturwissenschaft- lichen Vereins in Hamburg (N.F.) 23: 319–337