Collateral impact of community-directed treatment with ivermectin (CDTI) for onchocerciasis on parasitological indicators of Loa loa infection

Hugues C Nana Djeunga (nanadjeunga@crfilmt.org)
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)
https://orcid.org/0000-0002-4496-6048

Cédric G Lenou-Nanga
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Cyrille Donfo-Azafack
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Linda Djune-Yemeli
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Floribert Fossuo-Thotchum
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

André Domche
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Arsel V Litchou-Tchuinang
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Jean G Bopda
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Thérèse Nkoa
Ministry of Public Health

Joseph Kamgno
Centre for Research on Filariasis and other Tropical Diseases (CRFilMT)

Research

Keywords: Onchocerciasis, CDTI, Loiasis, Collateral Impact, Cameroon

DOI: https://doi.org/10.21203/rs.3.rs-36949/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Ivermectin (IVM) is a broad spectrum endectocide whose initial indication was onchocerciasis. IVM-based preventive chemotherapies (PC), so-called Community-Directed Treatment with Ivermectin (CDTI), have led to the interruption of transmission of onchocerciasis in some foci. Although loiasis is not among its indications, IVM also exhibits antiparasitic activity against *Loa loa*. Because of the geographic overlap of onchocerciasis and loiasis in Central Africa, one would have expected similar trend for loiasis in co-endemic settings. Surprisingly, a recent study revealed that *L. loa* entomological indices remained almost unchanged after 13 years of CDTI to fight onchocerciasis. This study then aimed to assess whether parasitological indicators of *L. loa* infection follow the same trends than the previously described entomological indices. A cross-sectional study was conducted in six communities of the Yabassi Health District where CDTI have been implemented since ~20 years to fight onchocerciasis. All volunteers aged ≥5 years underwent daytime calibrated thick blood smears to search for *L. loa* microfilariae (mf), then prevalence and intensity of infection were compared to baseline data.

Results

A total of 376 individuals (55.9% female), aged 5 to 89 years old, were enrolled in this study. The prevalence of loiasis was 3.7% (95% CI: 2.2–6.2), significantly lower than its baseline (12.4%; 95% CI: 10.1–15.2) (Chi-Square = 21.4; df = 1; *p* < 0.0001). Similarly, the microfilarial density was significantly low (Mean = 1.8 mf/mL; SD = 13.6; max = 73,600) compared to baseline (Mean = 839.3 mf/mL; SD = 6447.1; max = 130,840) (Wilcoxon *W* = 179904.5; *p* < 0.0001).

Conclusions

This study revealed that the prevalence and intensity of *L. loa* infection were significantly low compared to their baselines, indicating a significant impact of IVM-based PC on this filarial disease. However, transmission is still ongoing, and heavily infected individuals are still found in communities, supporting why some individuals are still experiencing severe adverse events despite >2 decades of CDTI in this Health District.

Background

Loiasis or African eye worm is a vector-borne disease caused by a parasitic nematode, *Loa loa*, transmitted by a tabanid belonging to the genus *Chrysops* that colonizes forested areas of West and Central Africa, considered as high-risk for loiasis, where over 14 million people currently reside [1–2]. Infection with *L. loa* manifests itself in human populations by pruritus and two main clinical signs, the migration of adult worms under the bulbar conjunctiva, and migratory edema among which, the Calabar
swelling. Apart from these clinical signs which are considered benign though representing only nuisance for infected individuals, several studies have reported an association of *L. loa* infection with renal, cardiac, ocular and neurological complications [3], as well as excess mortality [4], thus giving a broader picture to the burden of loiasis [5]. Given the up to known accepted benign nature of this disease, no control program currently exists to fight this filarial disease.

Although no control program to fight loiasis currently exists, a number of anthelminthics, including IVM, are known to be active against *L. loa* [3]. Indeed, IVM has been registered in 1987 for human onchocerciasis control, and in the late 1990s, in combination with albendazole (ALB), for lymphatic filariasis elimination [6–9]. The community-directed treatment with ivermectin (CDTI) was adopted in 1997 by the African Programme for Onchocerciasis Control (APOC) as its core strategy to fight onchocerciasis [10–12]. These control efforts have led to substantial reductions in the prevalence of infection, and it is now accepted that transmission of river blindness can be interrupted by mass IVM administration solely [13–17].

In central and west Africa, there is a considerable overlap in the distribution areas of onchocerciasis and loiasis [1; 18–19]. Since IVM was proven to be highly effective against loiasis, it is most likely that the post-CDTI impact observed with onchocerciasis [20–21] will be similar with loiasis in co-endemic settings, as a collateral benefit of the long-term use of IVM and / or drug combinations (IVM and ALB). To date, data on the impact of CDTI on *L. loa* transmission are unfortunately scanty and those available are controversial. While some exhibited a significant decrease in the prevalence and intensity of *L. Loa* infection both in human and vector populations [22–23], others support ongoing transmission with higher or substantially unchanged entomological indices despite 15 years of annual CDTI [24]. In this context of scarcity and controversy in available data, the present study aimed to assess the long-term collateral impact of CDTI against onchocerciasis on prevalence and intensity of *L. loa* infection.

Methods

Study area and population

This study was carried out in the Yabassi Health District, located in the Nkam Division (Littoral Region, Cameroon), at 100 km north-east from Douala, the economic capital of Cameroon. According to the health population denominator, the population of the Yabassi Health District was estimated at 14,532 inhabitants in 2017 [25]. The altitude of the area varies from 10 to 800 m, and the vegetation is mainly dense humid forest. Because of the intense hydrographic network (Nkam, Dibamba, Makombé ...) and the dense vegetation cover maintained by abundant precipitation, the relative humidity is high, thus favoring the development of the chrysops, vectors of *L. loa*. Agriculture is the main activity, interesting at least 60% of inhabitants.

Baseline data and history of CDTI
Prior to the implementation of CDTI, baseline data of loiasis infection was collected in the study area in 2000. A total of 637 individuals were examined for loiasis, revealing an overall prevalence of 12.4% (95% CI: 10.1% – 15.2%) and a mean microfilarial density of 839.3 (standard deviation (SD): 6,447.1) mf/mL (Table 1) (Kamgno, Unpublished data). According to the National Onchocerciasis Control Program (NOCP), CDTI was launched in the Yabassi Health District in 1999 and since then, implemented at a yearly basis. At the outset of this study in 2018, up to 20 rounds of IVM mass administration had already been organized in this Health District, with therapeutic coverages globally higher than 65%.

Variables	Baseline (Year 2000)	Follow-up (Year 2018)	% difference		
	N examined	N infected (%)	N examined	N infected (%)	
Genders					
Female	282	50 (17.7)	210	8 (4.8)	-72.9
Male	355	29 (8.2)	166	6 (2.9)	-64.6
Age groups					
[5–20[45	1 (2.2)	147	2 (1.4)	-36.4
[20–35[126	15 (11.9)	48	2 (4.2)	-64.7
[35–50[153	21 (13.7)	68	3 (4.4)	-67.9
[50–90[313	42 (13.4)	113	7 (6.2)	-53.7
Communities					
Longtoka Health Area					
Longtoka	114	13 (11.4)	59	2 (3.4)	-70.1
Ndogpo	39	3 (7.7)	58	5 (8.6)	11.7
Nkogmalan	84	14 (16.7)	45	2 (4.4)	-73.6
Yabassi Centre Health Area					
Bodiman	81	6 (7.4)	73	1 (1.4)	-81.0
Ndogbele	207	30 (14.5)	102	4 (3.9)	-73.1
Yabassi	112	13 (11.6)	39	0 (0.0)	-100
Overall	637	79 (12.4)	376	14 (3.7)	-70.2

N: number of participants
A cross-sectional survey was carried out in six communities of the Yabassi Health District in 2018. All individuals both males and females, aged ≥ 5 years old, either permanent residents or who had already lived for at least five years in the selected communities were eligible for the survey. The objectives and schedule of the study were clearly explained to all eligible individuals and those who agreed to participate in this study signed an informed consent form. All volunteers underwent a parasitological examination to search for *L. loa* microfilariae, a clinical examination to investigate clinical signs attributable to loiasis, and the history of CDTI as well as the migration of population was assessed to complement parasitological and clinical data.

Clinical examination

During the medical consultation, all volunteers were interviewed about pruritus and a clinical examination was carried out to search for clinical signs of the disease (Calabar swelling, migration of adult worm under the bulbar conjunctiva). Subsequently, the history of the subconjunctival migration of the adult worm and Calabar swelling was assessed using a questionnaire adapted to the proven Rapid Assessment Procedure for Loiasis (RAPLOA) [26]. Briefly, participants were asked two questions: "Have you ever experienced or noticed worms moving along the white of the lower part of your eye?" to assess the experience of eye worm, and "Have you ever experienced swellings under the skin which changed position and disappeared?" to investigate the experience of Calabar swellings. Investigators presented pictures of these striking clinical signs to participants and were assisted by local guides to ease communication with villagers, especially illiterates.

Parasitological examination

A parasitological examination consisting of a calibrated thick blood smear was performed from capillary blood sampling from the fingertip, about 10 months after the latest round of CDTI. This sampling was carried out by qualified personnel, under aseptic conditions using sterile and disposable materials, and between 10:00 AM and 4:00 PM to take into account the diurnal periodicity of *L. loa* microfilariae [27]. Slides were examined under a light microscope at low magnification (x10 or x40) by trained laboratory technicians. *L. loa* microfilaria were identified and counted and the results were expressed in microfilariae per mL of blood (mf/mL) [28].

History of migration and adherence to mass treatment

All enrollees were asked if they were natives or not of the visited community, and if non-natives, they were questioned on the number of years they had already spent in the community as well as on the communities visited before settling in the targeted community. In addition, compliance to the CDTI for the past 5 years was assessed by asking each participant whether he had swallowed IVM tablets during these treatment campaigns. A sample of the IVM tablets was presented to each of participant so that the answers did not relate to other mass campaigns.

Data analysis
Data analysis was performed using the software R v3.5.2 (The R foundation for Statistical Computing, Vienna, Austria). Indeed, all relevant data for loiasis were entered using a purpose-built Microsoft Access database and subsequently exported into R software for statistical analyses. Microfilaremia and clinical signs prevalence were expressed as the percentage of infected or affected individuals among the total number of individuals examined. The intensity of infection was computed as the arithmetic mean microfilarial count, and the sampling fluctuations estimated using standard deviation (SD). Chi-square and McNemar tests were used to compare loiasis prevalence between genders, age groups and communities of residence of participants. Mean intensities of infection were compared between genders, age groups and communities using Mann-Whitney and Kruskal-Wallis tests, and between years 2000 (baseline) and 2018 (follow-up) using the Wilcoxon ranked test. The threshold for significance was set at 5%.

Results

A total of 376 individuals accepted to participate in this survey and were examined for loiasis microfilaremia and attributable clinical signs. The sex ratio (Male/Female) was female biased (0.8) (Chi-square = 10.3; df = 1; \(p = 0.0013 \)), and age of participants ranged from 5 to 90 years old (Median age: 32 years old; Interquartile range (IQR) = 15–53 years old) (Table 1).

Prevalence and intensity of Loa loa infection

The prevalence of *L. loa* infection was 3.7% (95% CI: 2.0% – 6.2%) in the six communities of the Yabassi Health District, varying from 0.0% (95% CI: 0.0% – 3.3%) to 8.6% (95% CI: 3.7% – 18.6%) across communities (Table 1). *Loa Loa* infection rates were similar between communities (Chi-square = 6.611; df = 5; \(p = 0.297 \)), genders (Chi-square = 0.001; df = 1; \(p = 0.920 \)) and age groups (Chi-square = 4.33; df = 3; \(p = 0.228 \)). The mean microfilarial density was 1.8 mf/mL (13.6) in the Yabassi Health District (Table 1) and was similar between communities (chi-squared = 7.164; df = 5, \(p = 0.209 \)) and across age groups (\(p = 0.4454 \)). An increasing trend was observed in the microfilarial densities among positive cases according to age of enrollees (\(r = 0.12; p = 0.023 \))

Clinical signs attributable to loiasis

None of the individuals examined presented with either Calabar swelling or migration of adult worm under the bulbar conjunctiva. Only a few participants (6.1%) declared suffering from pruritus. Although similar across age groups (\(p = 0.293 \)) and between genders (\(p = 0.779 \)), the proportion of enrollees suffering from pruritus was significantly lower in the community Yabassi compared to the other communities (Fisher exact test: \(p = 0.03289 \)).

Adherence to ivermectin yearly mass distributions

Among the interviewees, 61.2% declared that they have taken IVM every year during the past five years (and were considered as fully compliers), but up to 14.4% reported never swallowed IVM during the past
five years (and were considered as systematic non compliers). The proportions of fully compliers (individuals who swallowed IVM during the last five rounds of treatment) were significantly higher in communities Nkogmalan, Yabassi and Ndogpo (p < 0.04), but inversely the proportions of systematic non compliers were significantly lower in these communities (Supplementary file: Table S1).

18-years trends in prevalence and intensity of Loa loa infection

A significant decrease was observed in the overall prevalence of loiasis, shifting from 12.4% (95% CI: 9.9% – 15.2%) in 2000 (baseline) to 3.7% (95% CI: 2.1% – 6.3%) in 2018 (post-IVM follow-up visit) (p < 0.001). The percentage difference was globally relatively high (-70.2%, indicative of a reduction in infection rates), ranging from 11.7% (slight increase) in the Ndogpo community to -100% (total clearance) in the Yabassi Community (Table 1). The percentage reductions in *L. loa* infection rates were higher among females (-72.9%) and lower among the youngest enrollees (-36.4%) (Table 1).

Likewise infection rates, a significant decrease in microfilarial densities, from 839.3 mf/mL (SD: 6447.1) to 1.8 mf/mL (SD: 13.6) (Wilcoxon W = 179904.5; p < 0.0001), was observed in the Yabassi Health District between 2000 (baseline) and 2018 (post-ivermectin follow-up visit), respectively (Table 2). The overall percentage reduction was very high (-99.8%), ranging from −70.9% in Ndogpo community to -100% in the community Yabassi. These percentage differences were similar among genders (-99.9%), but significantly low among the youngest individuals (-31.8%) compared to their elder counterparts (<-99.4%) (Table 2).
Table 2
Trends in *Loa loa* microfilarial densities between baseline (year 2000) and post-CDTI follow-up (year 2018)

Variables	Baseline (Year 2000)	Follow up (Year 2018)	% reduction		
	N examined	Microfilarial density (SD)	N examined	Microfilarial density (SD)	
Gender					
Female	282	1517.0 (9410.3)	210	1.7 (10.0)	-99.9
Male	355	301 (1930.2)	166	1.9 (15.9)	-99.9
Age groups					
[5–20[45	0.44 (3.0)	147	0.3 (2.3)	-31.8
[20–35[126	1975.5 (12737.5)	48	0.4 (2.9)	-99.9
[35–50[153	610.5 (4169.1)	68	3.8 (20.8)	-99.4
[50–90[313	614.3 (3249.4)	113	3.2 (18.4)	-99.5
Communities					
Longtoka Health Area					
Longtoka	114	754.0 (4223.1)	59	1.4 (8.2)	-99.8
Ndogpo	39	17.9 (91.2)	58	5.2 (22.7)	-70.9
Nkogmalan	84	1091.4 (3963.0)	45	0.9 (4.2)	-99.9
Yabassi Centre Health Area					
Bodiman	81	2.7 (12.6)	73	0.3 (2.3)	-88.9
Ndogbele	207	1449.2 (10342.2)	102	2.4 (18.4)	-99.8
Yabassi	112	500.7 (2851.9)	39	0.0 (0.0)	-100.0
Overall	637	839.3 (6447.1)	376	1.8 (13.6)	-99.8

N: number of participants; SD: standard deviation; microfilarial density was expressed as the number of microfilariae per milliliter of blood (mf/mL)
Discussion

The objective of this study was to assess the impact of 18 years of IVM-based preventive chemotherapy (PC) on the prevalence and intensity of *L. loa* infection in the Yabassi Health District in the Littoral Region, Cameroon.

The Yabassi Health District belongs to the Littoral CDTI project, and treatments with ivermectin have been initiated in that area since the years 2000s to fight onchocerciasis. Indeed, IVM is a macrocyclic lactone acting by killing almost 70–80% *L. loa* microfilariae within the first three days after a single dose of the drug, a total clearance being observed within 4–5 days in some individuals [29–30]. In addition to its principal effect (microfilaricidal), IVM also prevents for about three months the release of new microfilariae by adult female worms, so-called embryostatic effect. However, ivermectin is not adulticidal, though some macrofilaricidal efficacy has been described in the treatment of *O. volvulus* - a filarial parasite closely related to *L. loa* - after repeated doses of IVM [31]. Since *L. loa* adult worms are lifelong (lifespan estimated up to 15–17 years) [32], repeated treatments with IVM are likely needed to interrupt the transmission of this filarial disease, the number of rounds of treatment remaining unknown. The long-term (18 years) implementation of CDTI in the Yabassi Health District likely explain the marked decrease observed in both prevalence and intensity of *L. loa* infection as was already observed elsewhere in Cameroon [23].

The percentage differences were more important for infection rates (-70.2%) compared to intensity of infection (-99.8%), likely indicative of the fact that adult worms are life-long and producing microfilariae for their whole life. As such, repeated doses of IVM will reduce the productivity of adult worms and therefore the microfilarial densities, but prevalence will remain almost unchanged, especially during the first years/rounds of treatments. This can also support why percentage differences are also low among the youngest individuals. The impact of IVM on parasitological indicators of *Loa loa* infection (prevalence and microfilarial density) was also found to be highly variable among communities (Tables 1 and 2), likely related to adherence to treatments. Indeed, communities where the highest percentage reductions in *Loa loa* prevalence and microfilarial densities were found exhibited higher proportion of fully compliers and lower proportions of permanent non compliers.

None of the patients interviewed remembered having experienced Calabar swelling and migration of adult worm under the bulbar conjunctiva, which are the most common clinical signs of loiasis used for rapid mapping of loiasis [26]. Indeed, it has been previously demonstrated that apart its direct effect on parasites, IVM exhibits a beneficial effect on the clinical manifestations of loiasis, by for example preventing the reappearance of Calabar swelling for several months [33]. This likely suggests that these enrollees might have experienced these clinical signs very long time ago and might be victims of memory bias. Only few participants declared suffering from pruritus; although this can be likely due to the low level of *L. loa* microfilarial densities observed in the framework of this study, it is important to mention that this clinical manifestation is shared with other filarial diseases, and Yabassi Health District is known to be endemic to onchocerciasis [34].
Despite the significantly high decreasing trends observed both in rates and intensities of infections, the transmission of the disease was still ongoing even though the endemicity level was quite low. This slight persistence of the disease can be explained by the presence in the communities of systematic non-compliers, who can disseminate the disease and contribute to the persistence of the infection if infected, especially in a context where the chrysops vectors of *L. loa* are known to be highly competent [24; 35]. Importantly, some enrollees exhibited very high *L. loa* microfilarial densities and are therefore at risk of developing severe adverse events (SAEs) if treated with IVM. This suggests that despite multiple rounds of IVM, the risk of developing SAEs is still present, especially among those individuals receiving IVM for their first time or who have interrupted treatment for a while, whatever the reason. Onchocerciasis and Lymphatic Filariasis control or elimination programs should consider testing for loiasis before administering IVM to all those involving in CDTI for their first time, and this can be made possible by the recently developed “Test and Not Treat” procedure [36–37].

Conclusions

The present study shows a significant impact of long-term IVM-based preventive chemotherapies (CDTI) on *L. Loa* infection endemicity levels. Although the *L. loa* microfilarial prevalence and densities were quite low, an important proportion of systematic non-compliers and heavily infected individuals were recorded, suggesting that the risk for occurrence of SAEs remains possible despite almost two decades of CDTI, raising the interest on the identification of these at risk individuals before IVM administration.

Abbreviations

ALB
albendazole
CDTI
community-directed treatment with ivermectin
CI
confidence interval
IVM
ivermectin
mf/mL
microfilariae per milliliter of blood
mf
microfilariae
PC
preventive chemotherapy
SAE
severe adverse event
SD
Declarations

Ethics approval and consent to participate

This study has been approved by the Institutional Review Board (IRB) of the Faculty of Medicine and Biomedical Sciences of the University of Yaoundé I (N°0097/UY1/FMSB/VDRC/CSF). After approval of the local administrative and traditional authorities, the objectives and schedules of the study were first explained to community leaders and to all eligible individuals. Written agreements were obtained from those who agreed to participate, under the discretion of community leaders. The approval of parents or legal guardians of minors was necessary before any procedure. An individual code (barcode) was attributed to each participant for anonymous data analysis.

Consent for publication

Not applicable.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article and its additional files.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by the European & Developing Countries Clinical Trials Partnership (EDCTP2) programme supported by the European Union (grant number 1045-CANTAM2)

Authors’ contribution

HCND conceived the study, designed the experiments, performed the statistical analyses and prepared the first draft of the manuscript. CGLN participated in study design and field data collection, performed the statistical analyses and prepared the first draft of the manuscript. CDA participated in study design and field data collection and helped to draft the manuscript. LDY participated in study design and field data collection and helped to draft the manuscript. FFT participated in study design and helped to draft the manuscript. AD participated to field data collection and help to draft the manuscript. AVLT participated to field data collection and help to draft the manuscript. JB participated to field data collection and help to draft the manuscript. TN conceived and designed the experiments and helped to draft the manuscript. JK conceived and coordinated the study, designed the experiments and helped to draft the manuscript. All authors read and approved the final manuscript.
Acknowledgements

The authors are grateful to the population of the Yabassi Health District who willingly accepted to participate in this study, and to the local authorities for their assistance during the implementation of this study.

Authors’ information

CDA and LDY are MPH and PhD students, respectively, and JK is member of the Central Africa Clinical Research Network (CANTAM2) Venture, supported by the European and Developing Countries Clinical Trial Partnership (EDCTP2) Program.

References

1. Zoure H, Wanji S, Noma M, Amazigo U, Diggle P, et al. The Geographic Distribution of Loa loa in Africa: Results of Large-Scale Implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis. 2011;5(6):e1210.
2. Metzger WG, Mordmüller B. Loa loa—does it deserve to be neglected? Lancet Infect Dis. 2014;14:353–7.
3. Kamgno J, Nana-Djeunga HC, Kouam-Kenmogne M. Loiasis. In: Gyapong J, Boatin B, editors. Neglected tropical diseases-sub-Saharan Africa, neglected tropical diseases. Switzerland: Springer International Publishing; 2016. pp. 135–57.
4. Chesnais CB, Takougang I, Paguele M, Pion SD, Boussinesq M. Excess mortality associated with loiasis: a retrospective population-based cohort study. Lancet Infect Dis. 2017;17(1):108–16.
5. Fischer PU. Filarial infection deserves attention as neglected tropical disease. Lancet Infect Dis. 2017;17:12–3.
6. Omura S, Crump A. The life and times of ivermectin - a success story. Nat Rev Microbiol. 2004;2:984–9.
7. Boussinesq M. Ivermectine Med Trop. 2005;65:69–79.
8. Geary TG. Ivermectin 20 years on: maturation of a wonder drug. Trends Parasitol. 2005;21:530–2.
9. Omura S. Ivermectin: 25 years and still going strong. International Journal of Antimicrobial Agents. 2008; 91–98.
10. Dadzie KY. Onchocerciasis control: the APOC strategy. Afr Health. 1997;19:13–5.
11. Homeida M, Braide E, Elhassan E, Amazigo UV, Liese B, et al. APOC’s strategy of community-directed treatment with ivermectin (CDTi) and its potential for providing additional health services to the poorest populations. Ann Trop Med Parasitol. 2002;96(Suppl 1):93–104.
12. Amazigo U. The African Programme for Onchocerciasis Control (APOC). Ann Trop Med Parasitol. 2008;102(Suppl 1):19–22.
13. Diawara L, Traoré MO, Badji A, Bissan Y, Doumbia K, et al. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis. 2009;3:7.

14. Traore MO, Sarr MD, Badji A, et al. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PLoS Negl Trop Dis. 2012;6:9.

15. Tekle AH, Elhassan E, Isiyaku S, Amazigo UV, Bush S, Noma M, et al. Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control. Parasites & Vectors. 2012; 5:28.

16. Tekle AH, Zoré HG, Noma M, et al. Progress towards onchocerciasis elimination in the participating countries of the African Programme for Onchocerciasis Control: epidemiological evaluation results. Infect Dis Poverty. 2016;5(1):66.

17. Zarroug IM, Hashim K, ElMubark WA, et al. The First Confirmed Elimination of an Onchocerciasis Focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg. 2016;95(5):1037–40.

18. Zoré HG, Noma M, Tekle AH, et al. The geographic distribution of onchocerciasis in the 20 participating countries of the African Programme for Onchocerciasis Control: (2) pre-control endemicity levels and estimated number infected. Parasites Vectors. 2014;7:326.

19. Cano J, Basáñez MG, O’Hanlon SJ, et al. Identifying co-endemic areas for major filarial infections in sub-Saharan Africa: seeking synergies and preventing severe adverse events during mass drug administration campaigns. Parasit Vectors. 2018;11(1):70.

20. de Vlas SJ. Health Impact Assessment of APOC-Update 2011. The Netherlands.D: Department of Public Health, Erasmus MC, University Medical Center Rotterdam; 2011. p. 19301709.

21. Coffeng LE, Stolk WA, Zoré HGM, Veerman JL, Agblewonu KB, et al. African Programme for Onchocerciasis Control 1995–2015: updated health impact estimates based on new disability weights. PLOS Negl Trop Dis. 2014;8(6):e2759.

22. Chippaux JP, Bouchite B, Boussinesq M, Ranque S, Baldet T, et al. Impact of repeated large scale ivermectin treatments on the transmission of Loa loa. Trans R Soc Trop Med Hyg. 1998;92(4):454–8.

23. Wanji S, Chounna Ndongmo WP, Fombad FF, Kengne-Ouaf JA, Njouendou AJ, Longang Tchounkeu YF, et al. Impact of repeated annual community directed treatment with ivermectin on loiasis parasitological indicators in Cameroon: Implications for onchocerciasis and lymphatic filariasis elimination in areas co-endemic with Loa loa in Africa. PLoS Negl Trop Dis. 2020;12:9.

24. Kouam MK, Tchatchueng-Mbougua JB, Demanou M, Boussinesq M, Pion SD, Kamgnou J. Impact of repeated ivermectin treatments against onchocerciasis on the transmission of loiasis: an entomologic evaluation in central Cameroon. Parasit Vectors. 2013;6(1):283.

25. World Health Organization. Health population denominators 2017 – Cameroon. Yaounde, Cameroon, World Health Organ 2017; 98p.
26. Takougang I, Meremikwu M, Wandji S, Yenshu EV, Aripko B, et al. Rapid assessment method for prevalence and intensity of Loa loa infection. Bull World Health Organ. 2002;80:11.

27. Kamgno J, Pion SD, Mackenzie CD, Thylefors B, Boussinesq M. Loa loa microfilarial periodicity in ivermectin-treated patients: comparison between those developing and those free of serious adverse events. Am J Trop Med Hyg. 2009;81(6):1056–61.

28. WHO. Basic laboratory methods in medical parasitology. World Health Organization. 1991; 69 pp.

29. Kamgno J, Gardon J, Boussinesq M. Analysis of the prevention of post-ivermectin Loa loa encephalopathy by administration of initial low dose. Med Trop (Mars). 2000;60(3):275–7.

30. Pion SD, Tchatchueng-Mbougua JB, Chesnais CB, et al. Effect of a Single Standard Dose (150–200 µg/kg) of Ivermectin on Loa loa Microfilaraemia: Systematic Review and Meta-analysis. Open Forum Infect Dis. 2019;6(4):ofz019.

31. Walker M, Pion SDS, Fang H, et al. Macrolaricidal Efficacy of Repeated Doses of Ivermectin for the Treatment of River Blindness. Clin Infect Dis. 2017;65(12):2026–34.

32. Eveland LK, Yermakov V, Kenney M. Loa loa infection without microfilaraemia. Trans Royal Soc Trop Med Hyg. 1975;69:354–5.

33. Hovette P, Debonne JM, Touze JE, Gaxotte P, Imbert P, et al. Efficacy of ivermectin treatment of Loa loa filariasis patients without microfilaraemias. Ann Trop Med Parasitol. 1994;88(1):93–4.

34. Kamga GR, Dissak-Delon FN, Nana-Djeunga HC, et al. Still mesoendemic onchocerciasis in two Cameroonian community-directed treatment with ivermectin projects despite more than 15 years of mass treatment. Parasit Vectors. 2016;9(1):581.

35. Wanji S, Tendongfor N, Esum ME, Enyong P. Chrysops silacea biting densities and transmission potential in an endemic area of human loiasis in south-west Cameroon. Trop Med Int Health. 2002;7(4):371–7.

36. Kamgno J, Pion SD, Chesnais CB, et al. A Test-and-Not-Treat Strategy for Onchocerciasis in Loa loa-Endemic Areas. N Engl J Med. 2017;377(21):2044–52.

37. Boussinesq M, Fobi G, Kuesel AC. Alternative treatment strategies to accelerate the elimination of onchocerciasis. Int Health. 2018;10(1):40–8.

Figures
Figure 1

Trends in Loa loa microfilarial densities between 2000 (baseline) and 2018 (follow-up). For a better visualization of the plot, microfilaremia densities from 26 individuals (Median: 8,980 mf/mL; Mean: 19,020 mf/mL; Max: 130,840 mf/mL) in 2000 (baseline) and one individual (73,600 mf/mL) in 2018 (follow up) have been considered as “outliers” and removed from the plotting.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.jpg
- CoverLetter.docx
- S1Table.docx