Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Stefano Scopa* and Dávid X Horváth

SISSA and INFN, Via Bonomea 265, 34136 Trieste, Italy
E-mail: sscopa@sissa.it and dahorva@sissa.it

Received 24 May 2022
Accepted for publication 18 August 2022
Published 22 August 2022

Abstract. We investigate the non-equilibrium dynamics of the symmetry-resolved Rényi entropies in a one-dimensional gas of non-interacting spinless fermions by means of quantum generalised hydrodynamics, which recently allowed to obtain very accurate results for the total entanglement in inhomogeneous quench settings. Although our discussion is valid for any quench setting accessible with quantum generalised hydrodynamics, we focus on the case of a quantum gas initially prepared in a bipartite fashion and subsequently let evolve unitarily with a hopping Hamiltonian. For this system, we characterise the symmetry-resolved Rényi entropies as function of time t and of the entangling position x along the inhomogeneous profile. We observe an asymptotic logarithmic growth of the charged moments at half system and an asymptotic restoration of equipartition of entropy among symmetry sectors with deviations which are proportional to the square of the inverse of the total entropy.

Keywords: entanglement entropies, quantum quenches, symmetries of integrable models, conformal field theory

Contents

1. Introduction ...2
2. The model, the quench and the hydrodynamic descriptions5

*Author to whom any correspondence should be addressed.
1. Introduction

Since the birth of quantum mechanics, the concept of entanglement has been at the core of any quantum theory. Its profound and sometimes subtle links to various aspects of physics, ranging from the connection to thermal entropy [1, 2] to the applications in the early Universe, e.g. [3–5], have been stimulating an enormous scientific activity in the last years. Nowadays, entanglement measures have become a commonly recognised (and very efficient) tool for the investigation and the understanding of quantum correlations. This is particularly true in low-dimensional quantum systems, which are notable for hosting strong quantum correlations, see e.g. [6–9] for recent reviews and e.g. [10–14] for some experimental tests. Alongside a still fascinating research on entanglement in exotic and/or out-of-equilibrium contexts, it has been initiated to formulate refined tools to go beyond the conventional entanglement measures and, in this way, obtain more information on such quantum correlations. An example is the so-called entanglement Hamiltonian, e.g. [15–26] (and more recently the negativity Hamiltonian [27]), which encodes in a single object the full description on the entanglement spectrum and on its topological properties, or the understanding of the structure of entanglement with respect to an internal symmetry of the model under analysis [14], which is the main character of this work. Despite the enormous success that the idea of the symmetry resolution of entanglement is experiencing, it was first applied to a concrete physical system only recently in [28] and put forward in a more general context even later in [29]. Typically, one considers models having $U(1)$ internal symmetry associated with the conservation of the particle number $\langle \hat{N} \rangle$, but the case of non-abelian symmetries has been also investigated, see [30]. Here, we focus on the usual case of an abelian internal symmetry by considering a pure quantum state $|\Psi\rangle$ such that

$$[\hat{\rho}, \hat{N}] = 0, \quad \hat{\rho} = |\Psi\rangle\langle\Psi|.$$

(1)
Since the particle number operator is made out of the sum of local densities, i.e. $\hat{N} = \sum_{j \in \mathbb{Z}} \hat{n}_j$, by taking any spatial bi-partition $A \cup \bar{A} \equiv [-\infty, \ell] \cup [\ell + 1, \infty]$ of the system with a cut at a certain position $\ell \in \mathbb{Z}$, one finds that

$$\hat{N} = \hat{N}_A \otimes 1_{\bar{A}} + 1_A \otimes \hat{N}_A,$$

(2)

where $\hat{N}_A = \sum_{j < \ell} \hat{n}_j$ and similarly for $\hat{N}_{\bar{A}}$. It is then easy to show [30] that the reduced density matrix $\hat{\rho}_A = \text{tr}_{\bar{A}}(\hat{\rho})$, still commutes with \hat{N}_A, that is,

$$[\hat{\rho}_A, \hat{N}_A] = 0.$$

(3)

Moreover, it is evident that since \hat{N} is a global conserved quantity $[\hat{N}, \hat{H}] = 0$, equation (3) remains valid during the course of time evolution as well, i.e.

$$[\hat{\rho}_A(t), \hat{N}_A] = 0.$$

(4)

The commutation relations (3) and (4) imply a block-diagonal structure of $\hat{\rho}_A$ in terms of the eigenvalues N of \hat{N}_A as

$$\hat{\rho}_A = \bigoplus_N \hat{\Pi}_N \hat{\rho}_A = \bigoplus_N \left[p(N) \hat{\rho}_A(N) \right]$$

(5)

where $p(N) = \text{tr}(\hat{\Pi}_N \hat{\rho}_A)$ is the probability of having N particles in the subsystem A. The symmetry-resolved Rényi entropy is then defined as usual

$$S_{n,N} = \frac{1}{1-n} \log \text{tr}(\hat{\rho}_A(N)^n),$$

(6)

via the symmetry-resolved reduced density matrix $\hat{\rho}_A(N)$. The calculation of $\hat{\rho}_A(N)$ is typically very challenging, due to the non-local action of the projector $\hat{\Pi}_N$ on the subspace with N particles, making the calculation of $S_{n,N}$ almost out-of-reach, if one tries to work it out directly from its definition. Nevertheless, it was noticed in [29] that an equivalent (and very convenient) formulation of the problem can be done by focusing on the so-called symmetry resolved charged moments using path-integral formalism or known lattice techniques. These quantities were already introduced before their connection to symmetry-resolved entropies were established [31–37], and in particular, are defined as

$$Z_n(\alpha) = \text{tr}\left[\hat{\rho}_A^n e^{i\alpha \hat{N}_A} \right],$$

(7)

implying that their computation is indeed feasible in the path integral formulation of the replicated model at the price of introducing an additional flux on one of the Riemann sheets. Equally importantly, one finds that
for the Fourier transform of the charged moments, aka the symmetry-resolved partition function, and hence the symmetry-resolved Rényi entropy (6) can be expressed as

$$S_{n,N} = \frac{1}{1-n} \log \left[\frac{Z_n(N)}{(Z_1(N))^n} \right].$$

Immediately after the introduction of these concepts in [28, 29], the symmetry resolution of entanglement has been investigated in a large variety of systems, including, e.g. 1 + 1 conformal field theories [28–30, 38–47], free [48, 49] and interacting integrable quantum field theories [50–52] and also holographic settings [53–55]. These studies are generically carried out in lattice models [28, 38–40, 56–67], but other systems exhibiting more exotic types of dynamics have been also considered [69–75]. Moreover, the interest for symmetry-resolved entanglement measures on the theoretical side is accompanied and consolidated by their experimental feasibility, see e.g. [76, 77].

In addition, the investigation of symmetry-resolution in out-of-equilibrium situations has also been initiated, although so far carried out only for very few cases, see [39, 62, 68, 76, 78–81]. The reason for this lack in literature is quite evident as the study of out-of-equilibrium entanglement is known to be often challenging and its possible symmetry-resolved counterpart is seen to be even harder to analyse. However, besides being interesting in its own right, probing the non-equilibrium properties of the symmetry-resolved entanglement could significantly help us thoroughly understand these quantities and the eventual physical systems they are associated with. With this scope, in this manuscript, we wish to connect the idea of symmetry resolution with the framework of quantum generalised hydrodynamics [82–89], which recently enabled to obtain very accurate predictions for the non-equilibrium dynamics of the total entropy in non-homogeneous quench settings.

More precisely, the aim of this work is twofold: on the one hand, we detail the exact asymptotic solution for a prototypical setting of non-homogeneous and out-of-equilibrium system, that is, a bi-partitioning quench protocol made with a one-dimensional gas of free spinless fermions, see e.g. [85–87, 89, 90] and section 2.1 below. To our best knowledge there are no similar studies about the symmetry-resolved entanglement of such inhomogeneous quench protocols. On the other hand, and most importantly, our discussion on symmetry resolution has a general validity and applies to any inhomogeneous quench protocol which is accessible by quantum generalised hydrodynamics.

Outline. In section 2.1, we briefly introduce the model and the quench protocol considered in this work. Similarly, section 2.2 is a short introduction to phase-space hydrodynamics, made by following the discussions in recent works (e.g. [84–87, 89, 90]) and that of previous studies on the quasi-classical evolution of the conserved charges (e.g. [91–100]). After preparing this ground, in section 2.3 we re-quantise the hydrodynamic solution at low energy in terms of a Luttinger liquid by following the recent literature on quantum generalised hydrodynamics, see e.g. [85, 88]. In section 3 we specialise to the calculation of symmetry resolved quantities and, in particular, we
detail the strategy of calculation of the charged moments in the quantum generalised hydrodynamic framework. Finally, section 4 contains the analysis of the symmetry-resolved partition function (8) and of the symmetry-resolved Rényi entropy (9) while section 5 summarise our work and our results. We provide a numerical check of our major results based on exact lattice calculations, whose implementation details are reported in appendix A.

2. The model, the quench and the hydrodynamic descriptions

2.1. Quantum model and quench protocol

In this work, we consider a one-dimensional gas of non-interacting spinless fermions on a semi-infinite lattice $j \in [-L, \infty]$ with nearest-neighbour hopping, whose Hamiltonian reads

$$\hat{H} = -\frac{1}{2} \sum_{j=-L}^{\infty} \left(\hat{c}_{j+1}^\dagger \hat{c}_j + \hat{c}_j^\dagger \hat{c}_{j+1} \right), \quad (10)$$

where \hat{c}_j^\dagger, \hat{c}_j are standard fermionic lattice operators satisfying canonical anticommutation relations $\{\hat{c}_i, \hat{c}_j^\dagger\} = \delta_{ij}$. The system is initially prepared in a state $|\Omega\rangle$ obtained as ground state of the trapped Hamiltonian

$$\hat{H}_{t<0} = -\frac{1}{2} \sum_{j=-L}^{\infty} \left(\hat{c}_j^\dagger \hat{c}_{j+1} + \hat{c}_{j+1}^\dagger \hat{c}_j + (V_j - \mu)\hat{c}_j^\dagger \hat{c}_j \right), \quad (11)$$

where μ is a chemical potential and V_j is a confining potential specified as

$$V_j = \begin{cases} 0 & \text{if } -L \leq j \leq -1; \\ +\infty & \text{otherwise}. \end{cases} \quad (12)$$

This setup can be equivalently interpreted as a quench protocol where the trap in equation (11) is suddenly released at $t = 0$ and the model is subsequently evolved with Hamiltonian (10). Notice that if we set $\mu = 0$ in equation (11), the ground state contains exactly $L/2$ particles (we assume L is even). This can be easily seen by diagonalising the Hamiltonian (11) with the potential (12) yielding

$$\hat{H}_{t<0} = -\sum_k \cos(k) \hat{\eta}_k^\dagger \hat{\eta}_k, \quad (13)$$

with Fourier modes of momentum $k = \pi q/(L + 1)$, $q = 1, \ldots, L$, given as

$$\hat{\eta}_k^\dagger = \sqrt{\frac{2}{L + 1}} \sum_{j=-L}^{-1} \sin(kj) \hat{c}_j^\dagger, \quad \{\hat{\eta}_k^\dagger, \hat{\eta}_{k'}\} = \delta_{kk'}. \quad (14)$$
Indeed, the single-particle energy \(-\cos(k)\) is negative for \(q = 1, \ldots, L/2\) and the ground state is obtained by acting on the fermion vacuum \(|0\rangle\) with such single-particle creation operators

\[
|\Omega\rangle \equiv |\{\rho = 1/2\}\rangle = \hat{n}_1^\dagger \hat{n}_2^\dagger \ldots \hat{n}_{L/2}^\dagger |0\rangle.
\]

(15)

Here, we introduced the notation \(|\{\rho = 1/2\}\rangle\) to emphasise that the ground state at \(\mu = 0\) is half-filled, that is, on average, every second site is occupied by a fermion. Together with the state in equation (15), we consider also the case of a fully-filled ground state, obtained by setting \(\mu < -1\) in equation (11) as

\[
|\Omega\rangle \equiv |\{\rho = 1\}\rangle = \hat{n}_1^\dagger \hat{n}_2^\dagger \ldots \hat{n}_L^\dagger |0\rangle.
\]

(16)

Both the variants of the initial states allow for an intuitive spin chain interpretation since the model in equation (11) is known to map to a spin-1/2 XX-chain

\[
\hat{H} = -\frac{1}{4} \sum_{j=-L}^{\infty} (\hat{\sigma}_j^x \hat{\sigma}_{j+1}^x + \hat{\sigma}_j^y \hat{\sigma}_{j+1}^y) + \frac{1}{2} \sum_{j=-L}^{\infty} (V_j - \mu) \hat{\sigma}_j^z + \text{constant}
\]

(17)

through the Jordan–Wigner transformation \([101]\)

\[
\hat{c}_j^\dagger = \exp \left(\frac{i\pi}{2} \sum_{\langle i,j \rangle} \hat{\sigma}_i^+ \hat{\sigma}_j^+ \right) \hat{\sigma}_j^+,
\]

(18)

where \(\hat{\sigma}_j^\pm = (\hat{\sigma}_j^x \pm i\hat{\sigma}_j^y)/2\) and \(\hat{\sigma}_j^a, a = x, y, z\), are spin-1/2 operators acting at site \(j\). In particular, the specific choice \(|\Omega\rangle \equiv |\{\rho = 1/2\}\rangle\) corresponds to the standard domain wall where the left and the right parts of the system display opposite value of magnetisation equal to \(+\frac{1}{2}\) and \(-\frac{1}{2}\) respectively, while \(|\Omega\rangle \equiv |\{\rho = 1\}\rangle\) is regarded as a zero-magnetisation ground state.

Hence, the quench dynamics takes place by switching off the initial potential \(V_j\) at time \(t = 0\). Consequently, the gas expands freely to the right side of the chain and develops a non-trivial profile of density around the junction at \(j = 0\), which enlarges with time. More precisely, in the hydrodynamic limit \(L \to \infty, t \to \infty, j \to \infty\) with \(t \leq L\) and \(j/t\) fixed (see subsection 2.2), a non-trivial density profile forms in the region \(-t \leq j \leq t\) according to \([91, 92]\)

\[
\rho(j,t) = \begin{cases}
\frac{1}{2\pi} \arccos \frac{j}{t} & \text{if } |\Omega\rangle = |\{\rho = 1/2\}\rangle \\
\frac{1}{\pi} \arccos \frac{j}{t} & \text{if } |\Omega\rangle = |\{\rho = 1\}\rangle
\end{cases}
\]

(19)

at times \(0 < t \leq L\).

As a result of the expansion of the gas, quantum correlations spread from the junction \(j = 0\) towards outer regions, leading to a growth of the entanglement with a non-homogeneous behaviour along the chain. In \([85, 98, 102]\) (resp. \([87, 89, 90]\)) such growth for the \(n\)-Rényi entropy, defined as

https://doi.org/10.1088/1742-5468/ac85eb
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

\[S_n(j, t) = \frac{1}{1-\alpha} \log \text{tr} (\hat{\rho}_A(t))^n, \]

(20)

and its limit \(n \to 1 \) where it reduces to the von Neumann entanglement entropy

\[S_1(j, t) = - \text{tr} \hat{\rho}_A(t) \log \hat{\rho}_A(t), \]

(21)

has been thoroughly studied for the reduced density matrix of the subsystem \(A = [j, +\infty] \) for the half-filled (resp. fully-filled) case. In this work, we compute and study the symmetry-resolved counterparts of the above quantities, that are

\[S_{n,N}(j, t) = \frac{1}{1-\alpha} \log \text{tr} (\hat{\rho}_A(t, N))^n \]

(22)

for the symmetry-resolved \(n \)-Rényi entropy and

\[S_{1,N}(j, t) = - \text{tr} \hat{\rho}_A(t, N) \log \hat{\rho}_A(t, N) \]

(23)

for the von Neumann entanglement. Here, \(\hat{\rho}_A(t, N) \) is defined via equation (5) by taking the hydrodynamic limit of the expanding quantum gas in equation (10), as further specified below.

2.2. Phase-space hydrodynamics

As a first step towards the calculation of the symmetry-resolved entanglement during the quench dynamics, we move to a hydrodynamic description of the problem. In this way, we eventually obtain a quasi-classical description of the time evolution from which asymptotically exact result for the conserved charges readily follows, see e.g. [91–96]. However, this machinery is not sufficient for the description of quantum effects such as entanglement at zero temperature. In fact, the latter are captured only after the re-introduction of large-scale quantum fluctuations on top of the phase-space hydrodynamics, as detailed in the next subsection.

The quasi-classical treatment consists of taking an appropriate hydrodynamic limit, i.e. considering the model at large space-time scales by sending \(L, j, t \to \infty \) keeping fixed the ratio \(j/t \). In such a limit, the model can be described in terms of fluid cells \(\Delta x \) labelled by \(x \) each containing a large number of particles \(\Delta x = [j, j + M] \) with \(M \gg 1 \). It follows that the Hamiltonian (10) can be rewritten as [85, 103]

\[\hat{H} = \frac{-1}{2} \int_{-L}^{\infty} dx \int_{0}^{\Delta x} dy \frac{\Delta x}{\Delta x} \left(\hat{c}_{x+y}^{\dagger} \hat{c}_{x+y+1} + \text{h.c.} \right) \]

(24)

and can be diagonalised in Fourier basis within each fluid cell as

\[\hat{H} = -\int_{-L}^{\infty} dx \int_{-\pi}^{\pi} \frac{dk}{2\pi} \cos k \hat{\eta}_{k,x}^{\dagger} \hat{\eta}_{k,x} \]

(25)
where
\[
\hat{c}^\dagger_{x+y} = \int_{-\pi}^{\pi} \frac{dk}{2\pi} e^{iky} \eta^\dagger_{k,x}, \quad \eta^\dagger_{k,x} = (\eta^\dagger_{k,x})^\dagger. \tag{26}
\]

The two variants of the initial state that we investigate fill the left part of the system with modes \(-\pi \rho_0 \leq k \leq \pi \rho_0\) (0 \leq \rho_0 \leq 1), leaving empty the right side. The specific choice \(\rho_0 = 1\) (resp., \(\rho_0 = 1/2\)) associated with \(|\{\rho = 1\}\rangle\) (\(|\{\rho = 1/2\}\rangle\)) corresponds to lhs of the system being entirely filled (half filled).

Crucially, both initial states are asymptotically described by a Wigner function which is, in our cases, equivalent to the local occupation function of the free particles and reads as
\[
W_0(x, k) = \begin{cases} 1, & \text{if } x \leq 0 \text{ and } -\pi \rho_0 \leq k \leq \pi \rho_0; \\ 0, & \text{otherwise.} \end{cases} \tag{27}
\]

Its evolution in phase-space is dictated by the Euler equation [82, 85]
\[
\partial_t W_t(x, k) + \sin k \partial_x W_t(x, k) = 0 \tag{28}
\]

with the simple solution
\[
W_t(x, k) = W_0(x - t \sin k, k), \tag{29}
\]
see also [104, 105] for details on the derivation. An important consequence of the above solution is that the dynamics at zero-temperature is characterised by the zero-entropy condition \(W_t = \{0, 1\}\) of the local macro-states at each time. It follows that one can focus only on the hydrodynamic evolution of local Fermi points \(k^\pm_F(x, t)\), satisfying the so-called zero-entropy GHD equation [106]
\[
(\partial_t + \sin k^\pm_F \partial_x)k^\pm_F = 0. \tag{30}
\]

The solution of equation (30) allows us to built the Fermi contour \(\Gamma_t\) as
\[
\Gamma_t = \{(x, k) : k^-_F(x, t) \leq k \leq k^+_F(x, t)\} \tag{31}
\]
and to re-construct the time-evolved Wigner function simply as
\[
W_t(x, k) = \begin{cases} 1, & \text{if } k^-_F(x, t) \leq k \leq k^+_F(x, t); \\ 0, & \text{otherwise.} \end{cases} \tag{32}
\]

Notice that the quench problem under analysis is characterised by a connected Fermi sea at each time [85, 86, 90, 100, 102], i.e. it displays only two local Fermi points \(k^-_F(x, t) \leq k^+_F(x, t)\) resulting in the Fermi contour of equation (31). The time-evolved Fermi contour \(\Gamma_t\) is a key quantity for our study, not only because it fully encodes the quasi-classical dynamics of the model, but also because it constitutes the background over which quantum fluctuations are re-introduced, as shortly presented.

https://doi.org/10.1088/1742-5468/ac85eb
As already mentioned, once the Fermi contour is determined, one has immediate access to the exact asymptotic profile of conserved charges densities q and currents j_q as

$$q(x, t) = \int_{k_F(x, t)}^{k_F^+(x, t)} \frac{dk}{2\pi} h_q(k),$$

$$j_q(x, t) = \int_{k_F(x, t)}^{k_F^+(x, t)} \frac{dk}{2\pi} \sin kh_q(k),$$

where $h_q(k)$ is the single-particle eigenvalue associated to the charge q (for instance: $h_1 \equiv 1$ for the particle density, $h_2 \equiv -\cos k$ for the energy density and so on).

For sake of concreteness, in the cases $\rho_0 = \{1, 1/2\}$, one finds the solutions for $0 \leq x/t \leq 1$

$$k_F^+(x, t) = \begin{cases} \{\pi - \arcsin(x/t) : \arcsin(x/t)\} & \text{if } \rho_0 = 1 \\ \{\pi/2 : \arcsin(x/t)\} & \text{if } \rho_0 = 1/2 \end{cases}$$

for the Fermi points, and

$$\rho(x, t) = \begin{cases} (\rho_0/\pi) \arccos(x/t), & \text{if } |x|/t \leq 1; \\ \rho_0, & \text{if } x/t < -1; \\ 0, & \text{otherwise} \end{cases}$$

for the density profile. Given a bi-partition of the system as

$$A \cup \bar{A} \quad \text{with } A = [-L, x],$$

we compute, for future convenience, the number of particles in A as function of the cutting point x and of time t

$$N_A(x, t) = \int_{-L}^{x} dy \rho(y, t) = \rho_0 N(x, t)$$

with scaling function

$$N(x, t) = \begin{cases} L - t/\pi \sqrt{1 - x^2/t^2} + (x/\pi) \arccos(x/t), & \text{if } |x|/t \leq 1; \\ (L + x), & \text{if } x/t < -1; \\ L, & \text{otherwise}. \end{cases}$$

At $x = 0$, we find simply

$$N(0, t) = L - t/\pi.$$

In figure 1, the semi-classical hydrodynamic results in equations (35) and (37) for the particle density $\rho(x, t)$ and number $N_A(x, t)$ are compared to exact numerical data obtained for the lattice model in equation (10), see appendix A for details on the numerical implementation.
2.3. Quantum fluctuating hydrodynamics

As we above mentioned, for the calculation of the entanglement entropy it is essential to restore the quantum fluctuations on top of the semi-classical hydrodynamic solution that we previously determined [82–85, 88]. A useful and successful way to do so is to incorporate only those quantum processes that are relevant at low-energy, which can be described in terms of a Luttinger liquid. Therefore, we introduce a large-scale density fluctuation field as

$$\delta \hat{\rho} = \frac{1}{2\pi} \partial_x \hat{\varphi}$$ (40)

and we expand the time-dependent fermionic operators in terms of the low-energy fields of the underlying Luttinger liquid

$$\hat{c}_x(t) \propto \exp \left[\frac{i}{2} (\hat{\varphi}_+ - \hat{\varphi}_-) \right] + \ldots$$

$$\hat{c}_y(t) \propto \exp \left[\frac{i}{2} (\hat{\varphi}_- - \hat{\varphi}_+) \right] + \ldots$$ (41)

retaining only the leading order terms, i.e. those with smallest scaling dimensions. The above identification is valid up to a non-universal amplitude and to a semi-classical phase that are unimportant for our scopes. It is customary and useful to denote the chiral components of $\hat{\varphi}$ as $\hat{\varphi} = \hat{\varphi}_+ + \hat{\varphi}_-$. The dynamics of these quantum fluctuations is then established by the following effective Hamiltonian [82, 83, 85, 86, 89, 90, 107–110]

$$\hat{H}[\Gamma] = \int_{\Gamma} \frac{d\theta}{2\pi} \mathcal{J}(\theta) \sin(k(\theta))(\partial_\theta \hat{\varphi}_a)^2$$ (42)

Figure 1. (a) Particle density $\rho(x, t)$ in equation (35) and (b) rescaled particle number $\mathcal{N}(x, t)$ of the subsystem $A = [-L, x]$ in equation (38) as function of the rescaled position at different instants of time. The symbols are numerical data obtained for a lattice of 300 sites while the full line is the hydrodynamic prediction.
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 2. Illustration of the Fermi contour \(\Gamma_t \) at \(t > 0 \) (left) and at \(t = 0 \) (right) for the cases \(\rho_0 = 1/2, 1 \). It is shown that a bi-partition \(A = [-L, x] \) at a time \(t > 0 \) can be encoded by the coordinates \(\theta_{1,2} \) along the Fermi contour, which are then mapped backward in time to the initial Fermi contour where they can be more easily parametrised, see [85] for details.

3. Total Rényi entropies and charged moments

The quantum fluctuating hydrodynamic framework enable us to exactly determine the non-equilibrium dynamics of both the total Rényi entropies (first computed in [85, 90]) and of the symmetry-resolved charged moments (cf equation (7)) in a similar fashion, as we now discuss.
In the original formulation, the essence of this computation for S_n is in fact the determination of the one-point function of a specific field, namely the branch-point twist field $\hat{T}_{n,\alpha}$, associated with the permutation symmetry of the n copies of the Luttinger liquid (42) in the replica approach, see e.g. [111–113] and the discussion below. Similarly, the extension to symmetry resolution requires the replacement of $\hat{T}_{n,\alpha}$ with the so-called composite (branch point) twist fields $\hat{T}_{n,\alpha}^\pm$, first introduced in [114, 115] and recently used for the calculation of charged moments [29]. This field can be regarded as the fusion of the standard branch point twist field $\hat{T}_{n,\alpha}$ with a $U(1)$ vertex field \hat{V}_α, that is,

$$\hat{T}_{n,\alpha} = \hat{T}_{n,\alpha} \times \hat{V}_\alpha.$$

(44)

The vertex operator is associated with the internal symmetry of the non-replicated model and corresponds to the insertion of the flux on one of the Riemann sheets. Notice that in absence of flux-insertions (i.e. setting $\alpha = 0$), the vertex field $\hat{V}_0 \equiv 1$ and we recover the usual twist field. With these considerations, we can relate the charged moments in equation (7) to the expectation value of the composite twist field as [29]

$$\log Z_{n,\alpha}(x, t) \equiv \log \text{tr} \left[\hat{\rho}_A e^{i n \hat{N}_A} \right] = \log \left[\varepsilon(x, t)^{2\Delta_{n,\alpha}} \langle \hat{T}_{n,\alpha}(x, t) \rangle \right] + i\alpha N_A(x, t)$$

$$= \log \left(\varepsilon(x, t)^{2\Delta_{n,\alpha}} \frac{\partial}{\partial x} \bigg|_{\theta=\theta_1}^{\Delta_{n,\alpha}} \frac{\partial}{\partial x} \bigg|_{\theta=\theta_2}^{\Delta_{n,\alpha}} \langle \hat{T}_{n,\alpha}^+(\theta_1) \hat{T}_{n,\alpha}^-(\theta_2) \rangle \right) + i\alpha N_A(x, t),$$

(45)

where $\hat{T}_{n,\alpha}^\pm$ are the chiral components of the composite (or standard if $\alpha = 0$) branch point twist field $\hat{T}_{n,\alpha}$ living at the boundary points $\theta_1, 2$ of subsystem A with scaling dimension

$$\Delta_{n,\alpha} = \frac{h_n}{2} + \frac{h_\alpha}{2n}$$

(46)

where

$$h_n = \frac{c}{12} (n - n^{-1}), \quad h_\alpha = \frac{\alpha^2}{(2\pi)^2}$$

(47)

are the scaling dimension of \hat{T}_n and \hat{V}_α respectively, and the central charge $c = 1$ for the free Fermi gas. The factor $\varepsilon(x, t)$ appearing in equation (45) is a short-distance regularisation, which also guarantees that the quantity in the rhs of equation (45) is dimensionless. As was already shown in [85–90], the expression of ε for a connected Fermi sea is

$$\varepsilon(x, t) = \frac{C_{n,\alpha}}{\sin \pi \rho(x, t)},$$

(48)

where $\rho(x, t)$ is the particle density in equation (35) and $C_{n,\alpha}$ is a known non-universal constant, see [116, 117] and the discussion below.
Equation (45) is the building block for the calculation of the total and of the symmetry-resolved entropies. For concreteness, we report below the explicit derivation for the saturated case \(\rho_0 = 1 \). The same logic applies then to the half-filled case \(\rho_0 = 1/2 \), with some additional technicalities for which we address the interested reader to [85].

For \(\rho_0 = 1 \), one finds that the coordinate \(\theta \) along the Fermi contour can be simply written as

\[
\theta \equiv k + \pi
\]

(49)

and, therefore, one obtains

\[
\theta_1 = 2\pi - \arcsin \frac{x}{t}; \quad \theta_2 = \pi + \arcsin \frac{x}{t},
\]

(50)

for the Fermi points. The Weyl factors in equation (45) associated with the change of coordinates read as

\[
\left| \frac{d\theta}{dx} \right|_{\theta=\theta_{1,2}} = \left(t \sqrt{1 - \frac{x^2}{t^2}} \right)^{-1}
\]

(51)

and the two-point correlation function is expressed as

\[
\langle \hat{\tau}_{n,\alpha}^+(\theta_1) \hat{\tau}_{n,\alpha}^-(\theta_2) \rangle = \left| 2 \sin \frac{\theta_1 - \theta_2}{2} \right|^{-2\Delta_{n,\alpha}} = \left(2 \sqrt{1 - \frac{x^2}{t^2}} \right)^{-2\Delta_{n,\alpha}}.
\]

(52)

Finally, using equation (35), we write the UV cutoff \(\varepsilon \) in equation (48) explicitly as

\[
\varepsilon(x, t) = \frac{C_{n,\alpha}}{\sqrt{1 - x^2/t^2}}.
\]

(53)

Putting all the elements together, one eventually obtains

\[
\log Z_{n,\alpha} = -2\Delta_{n,\alpha} \log \left[2t \left| 1 - \frac{x^2}{t^2} \right|^{3/2} \right] + i\alpha N_A(x, t) + \Upsilon_{n,\alpha},
\]

(54)

(with \(N_A \) given in (37)) which we rewrite as

\[
\log Z_{n,\alpha} = -2\Delta_{n,\alpha} \log \mathcal{L}(x, t) + i\alpha \rho_0 \mathcal{N}(x, t) + \Upsilon_{n,\alpha},
\]

(55)

in terms of the function \(\mathcal{L}(x, t) \), introduced for convenience. Indeed, it is possible to show that the structure in equation (55) for the charged moments holds also for the case \(\rho_0 = 1/2 \) and that the details of the specific quench protocol under consideration enters only through the definition of \(\mathcal{L}(x, t) \). From equation (54) and [85, 90], we find

https://doi.org/10.1088/1742-5468/ac85eb

J. Stat. Mech. (2022) 083104
that

\[\mathcal{L}(x, t) = \begin{cases}
2t \left| 1 - \frac{x^2}{t^2} \right|^{3/2}; & \text{if } \rho_0 = 1; \\
\frac{2L}{t^{3/2}} \left(\left| t - t \left(1 - \frac{x^2}{t^2} \right) \right| \right. & \\
\left. \sqrt{1 + \sqrt{1 - \frac{x^2}{t^2} - \text{sgn}(x) \sqrt{1 - \sqrt{1 - \frac{x^2}{t^2}}}} \right| \sin \frac{\pi(x - t)}{2L}; & \text{if } \rho_0 = 1/2.
\end{cases} \]

(56)

The additive constant \(\Upsilon_{n, \alpha} \) in equation (55) is related to \(C_{n, \alpha} \) in equation (53) as

\[\Upsilon_{n, \alpha} \equiv 2\Delta_{n, \alpha} \log \frac{C_{n, \alpha}}{2} \]

(57)

and it has been analytically determined in [56] exploiting the Fisher–Hartwig conjecture

\[\Upsilon_{n, \alpha} = \frac{i n}{2} \int_{-\infty}^{\infty} dw (\tanh(\pi w) - \tanh(\pi n w + i \alpha / 2)) \log \frac{\Gamma \left(\frac{1}{2} + i w \right)}{\Gamma \left(\frac{1}{2} - i w \right)} - 2\Delta_{n, \alpha} \log(2). \]

(58)

It is then customary to rewrite this constant as

\[\Upsilon_{n, \alpha} = \Upsilon_n + \alpha^2 \nu_n + e_{n, \alpha}, \]

(59)

with

\[\nu_n = -\frac{\log(2)}{4\pi^2 n} + \frac{in}{8} \int_{-\infty}^{\infty} dw (\tanh^3(\pi n w) - \tanh(\pi n w)) \log \frac{\Gamma \left(\frac{1}{2} + i w \right)}{\Gamma \left(\frac{1}{2} - i w \right)}, \]

(60)

and \(e_{n, \alpha} = O(\alpha^4) \) (cf [56]), such that the first term \(\Upsilon_n \equiv \Upsilon_{n, 0} \) reproduces the non-universal constant obtained in [116, 117] in the absence of fluxes \(\alpha = 0 \).

The total Rényi entropies are recovered from equation (45) by plugging the correct prefactor \(1/(1 - n) \) and by setting the flux \(\alpha = 0 \) [85, 90] i.e.

\[S_n(x, t) = \left. \frac{1}{1 - n} \log Z_{n, \alpha} \right|_{\alpha = 0} = \frac{n + 1}{12n} \log \mathcal{L}(x, t) + \frac{\Upsilon_n}{1 - n}. \]

(61)

Notice that the constant \(\Upsilon_n/(1 - n) \) is related to \(C_{n, 0} \) in (53) as

\[\frac{\Upsilon_n}{1 - n} = -\frac{n + 1}{12n} \log \frac{C_{n, 0}}{2}, \]

(62)
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 3. Total von Neumann entanglement entropy for (a) $\rho_0 = 1/2$ and (b) $\rho_0 = 1$. The solid line shows the analytical prediction in equation (61) provided by quantum fluctuating hydrodynamics while symbols show the numerical data obtained for a lattice of 300 sites. Although the two settings are characterised by the same semi-classical description (up to a rescaling), cf figure 1, the entanglement properties are very different. In both the cases (a) and (b), the hydrodynamic prediction is very accurate.

and gives for $n \to 1$

$$\lim_{n \to 1} \frac{\Upsilon_n}{1 - n} = \tilde{\Upsilon} + \frac{\log(2)/3}{2},$$

(63)

where $\tilde{\Upsilon} \approx 0.49502$ is the Korepin–Jin constant [117], consistently with the known results for the total entropy [85, 86, 118]. In figure 3, we show the exact numerical results for the total von Neumann entanglement entropy alongside with the hydrodynamic formula in equation (61) for the cases $\rho_0 = 1/2, 1$ respectively. The agreement of the hydrodynamic prediction with the data is remarkably good.

4. Symmetry-resolved Rényi entropies

We now move towards the calculation of the symmetry-resolved Rénnyi entropies, starting from the charged moments that we computed in the previous section.

First, let us write down explicitly the real part of the charged moments in equation (55)

$$\text{Re } \log Z_{n,\alpha}(x, t) = -2\Delta_{n,\alpha} \log \mathcal{L}(x, t) + \Upsilon_{n,\alpha}$$

(64)

which at half system and for large times becomes

$$\text{Re } \log Z_{n,\alpha}(0, t) \sim -2(2 - \rho_0)\Delta_{n,\alpha} \log t + \delta_{n,\alpha}(\rho_0)$$

(65)

https://doi.org/10.1088/1742-5468/ac85eb
Figure 4. Real part of the charged moments in equation (64) as function of the cutting position x for $n = 1$, different values of α (see plots legend) and at different times $t/L = 0.5, 0.67, 0.8$ from the left to rightmost panel. The top (bottom) row shows the results for a half (fully) filled initial state $\rho_0 = 1/2$ ($\rho_0 = 1$). In each plot, the symbols show the numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction in (64); the vertical axes mark the light cone position $|x| = t$.

with $\delta_{n,\alpha}(\rho_0) \equiv \Upsilon_{n,\alpha} - 2 \Delta_{n,\alpha} \log(2^{\rho_0})$, and it displays a logarithmic growth for both $\rho_0 = \{1, 1/2\}$, see figure 5. The imaginary part reads instead

$$\text{Im } \log Z_{n,\alpha}(x, t) = \alpha \rho_0 N(x, t),$$

and at half-system it decreases linearly in time

$$\text{Im } \log Z_{n,\alpha}(0, t) = \alpha \rho_0 (L - t/\pi).$$

In figures 4–6, the above predictions for $Z_{n,\alpha}$ given by quantum fluctuating hydrodynamics are tested against exact lattice calculations. In particular, figure 4 shows the real part of the charged moments as function of x at different t and α while figure 5 is an analysis of the logarithmic growth in equation (65) observed at half system. Finally, figure 6 contains the result for the imaginary part of $Z_{n,\alpha}$. In all cases, the hydrodynamic results are found in a very good agreement.

4.1. Fourier transform of the charged moments

The next step is to compute the Fourier transform of the charged moments yielding the symmetry-resolved partition function (8), which we denote by $Z_{n,N}(x, t)$ to stress the
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 5. Half system behaviour of the real part of the charged moments as function of time for different values of n and α (see plots legend) for (a) half-filled initial state $\rho_0 = 1/2$; (b) fully-filled initial state $\rho_0 = 1$. The analytical prediction in equation (65) (thick solid line) is compared with exact lattice calculations (symbols) obtained for a lattice of 300 sites.

space-time dependence. When explicitly written, one obtains for $Z_{n,N}$

\[
Z_{n,N}(x,t) = \int_{\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-iN\alpha} Z_{n,\alpha}(x,t)
\]

\[
= Z_{n,0}(x,t) \int_{\pi}^{\pi} \frac{d\alpha}{2\pi} e^{-i\alpha(N-N_A(x,t))} e^{-b_n(x,t)\alpha^2+e(n,\alpha)}
\]

(68)

where

\[
b_n(x,t) = \frac{1}{4\pi^2 n} \log \mathcal{L}(x,t) - \nu_n
\]

(69)

and

\[
Z_{n,0}(x,t) = \exp(-h_n \log \mathcal{L}(x,t) + \Upsilon_n).
\]

(70)

The computation of the integral in equation (68) is performed using the saddle-point (in our case equal to a quadratic order) approximation. In particular, this amounts to ignore the contribution of $\exp(e_{n,\alpha})$ (since $\exp(e_{n,\alpha}) = 1 + \mathcal{O}(\alpha^4)$, cf [56]) and hence obtaining

\[
Z_{n,N}(x,t) = \frac{Z_{n,0}(x,t)}{\sqrt{4\pi b_n(x,t)}} \exp\left(-\frac{(N-N_A(x,t))^2}{4b_n(x,t)}\right).
\]

(71)

It is useful to comment on the validity of this approximation, for which one can use the analogous argument of [51]. In our case, one can identify the small parameter ε of [51] with the inverse of $b_n(x,t)$, which indeed becomes small as time progresses. The comparison to [51] tells us that neglecting $\exp(e_{n,\alpha})$ is legitimate if $b_n(x,t) \gg 1$ and more

https://doi.org/10.1088/1742-5468/ac85eb
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 6. Imaginary part of the charged moments as function of time for different cutting position x (panels) and values of α, n (see plots legend). The hydrodynamic prediction in equation (67) is found in agreement with exact numerical data obtained for a system of size 300.

IMPORTANTLY,

\[(N - N_A(x, t))^2 \ll b_n(x, t),\]

that is, $(N - N_A(x, t))^2$ does not have to be large but can take small values if $b_n(x, t)$ is large. In figure 7, we show the probabilities $Z_{1,N}$ at half system as function of the charge imbalance $\Delta N \equiv N - N_A(x, t)$ at different times. Notice that, due to particle number conservation, the width $b_n(x, t)$ of the Gaussian in (71) is really small (for instance, the variance at half-system for large times is $b_n(0, t) \propto \mathcal{L}(0, t) \sim \log(t)$) and therefore the fluctuations with $|\Delta N| \gtrsim 2$ particles are strongly suppressed. In figure 8, $Z_{1,N}$ is visualised as function of x for different choices of N and t, and compared with exact lattice numerics.

4.2. Symmetry-resolved Rényi entropies

Finally, from the symmetry-resolved partition function in equation (71), the symmetry-resolved Rényi entropies are straightforwardly obtained as (cf equation (9))

\[
S_{n,N}(x, t) \equiv \frac{1}{1 - n} \log \left[\frac{Z_{n,N}(x, t)}{(Z_{1,N}(x, t))^n} \right] = S_n(x, t) + \frac{1}{1 - n} \left[\frac{n(N - N_A(x, t))^2}{4b_1(x, t)} - \frac{(N - N_A(x, t))^2}{4b_n(x, t)} \right] - \log(2\sqrt{\pi}) + \frac{1}{1 - n} \log \left[\frac{b_1(x, t)^{n/2}}{b_n(x, t)^{1/2}} \right].
\]
exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 7. Symmetry-resolved partition function in equation (68) at half system \((x=0)\) as function of \(\Delta N\), at \(n=1\) and at different times \(t/L=0.33, 0.8\) (see plots legend). In each plot, the symbols show the numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction in (71).

At this point, we wish to consider the analytic continuation of \(S_{n,N}\) in (73) for \(n\to 1\) and obtain a closed expression for the symmetry-resolved von Neumann entropy. To this end, we write the symmetry-resolved von Neumann entropy as

\[
S_{1,N}(x,t) = -\partial_n \left[\frac{Z_{1,0} Z_n}{Z_{1,N}} \right]_{n=1}
\]

and differentiate the quantity \(-Z_{n,N}/Z_{1,N}^n\) with respect to \(n\), exploiting the product form

\[
Z_{n,N} = Z_{n,0} g_{n,N}(x,t)
\]

Doing so, the analytic continuation of the symmetry-resolved von Neumann entropy takes the form

\[
S_{1,N}(x,t) = \log Z_{1,0} + \log g_{1,N} - \frac{g_{n,N} \partial_n Z_{n,0} + Z_{1,0} \partial_n g_{n,N}}{Z_{1,0} g_{1,N}}
\]

\[
= S_1(x,t) + \log g_{1,N}(x,t) - \frac{\partial_n g_{1,N}(x,t)}{g_{1,N}(x,t)}
\]

since \(Z_{1,0} \equiv 1\) by construction, even in the non-homogeneous quench setting under analysis. This means that the symmetry-resolved von Neumann entropy can eventually be expressed as

\[
S_{1,N}(x,t) = S_1(x,t) - \frac{(N - N_A(x,t))^2}{4b_1(x,t)} - \log [(4\pi b_1(x,t))^{1/2}]
\]

\[
- \frac{b'_1(x,t)}{4b_1(x,t)} \frac{(N - N_A(x,t))^2 - 2b_1(x,t)}{4b_1(x,t)^2}
\]

where \(b'_1(t,x)\) denotes the derivative of \(b_n\) with respect to \(n\) evaluated at \(n=1\), i.e.

\[
b'_1(x,t) \equiv \partial_n b_n(x,t)|_{n=1} = -(b_1(x,t) + \nu_1 + \nu'_1),
\]

https://doi.org/10.1088/1742-5468/ac85eb
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 8. Symmetry-resolved partition function in equation (68) as function of the cutting position x for $n = 1$, different values of $\Delta N = 0, \pm 1$ (see plots legend) and at different times $t/L = 0.5, 0.67, 0.8$ from the left to rightmost panel. The top (bottom) row showsthe results for a half (fully) filled initial state $\rho_0 = 1/2 (\rho_0 = 1)$. In each plot, the symbols show the numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction in (71); the vertical axes mark the light cone position $|x| = t$.

following directly from the definition of b_n in (69). We recall that ν_n is related to the non-universal constant appearing in equation (59). In figure 9, the result for the symmetry resolved von Neumann entropy in equation (76) is compared with exact lattice numerics. As for the charged moments in figure 4, we observe oscillations around the hydrodynamic result. In [40, 56], similar oscillations were detected and attributed to leading correction in the subsystem size. Including such subleading effects in our approach is non trivial and goes beyond our scopes. Nevertheless, it is remarkable that quantum generalised hydrodynamics is able to predict the functional behaviour of the symmetry-resolved quantities modulo oscillations.

From the analytic expressions of the symmetry-resolved von Neumann entropy in equation (76), one can easily investigate the limit $b_1(x, t) \to \infty$, which physically corresponds to a long time limit beyond the Euler scaling regime. Expanding equation (76) in such a $b_1(x, t) \to \infty$ limit, we find that

https://doi.org/10.1088/1742-5468/ac85eb
Figure 9. Symmetry-resolved von Neumann entropy in equation (76) as function of the cutting position x at different values of $\Delta N = 0, \pm 1$ (see plots legend) and at different times $t/L = 0.5, 0.67, 0.8$ from the left to rightmost panel. The top (bottom) row shows the results for a half (fully) filled initial state $\rho_0 = 1/2$ ($\rho_0 = 1$). In each plot, the symbols show the numerical data obtained for a lattice of 300 sites while the solid line is the analytical prediction in (76); the vertical axes mark the light cone position $|x| = t$. The additive constants are fitted with numerics at half system.

\[
S_{1,N}(x, t) = S_1(x, t) - \log\left[(4\pi b_1(x, t))^{1/2}\right] - \frac{1}{2} - \frac{2(\nu(1) + \nu'(1))}{4b_1(x, t)}
+ \frac{(\nu(1) + \nu'(1))(N - N_A(x, t))^2}{b_1(x, t)^2} + O(b_1(x, t)^{-3}),
\]

and we recall that the validity of the above expression requires that $\Delta N^2 \ll b_1(x, t)$, (notice that $\nu(1) + \nu'(1)$ differs from zero). Since $b_1(x, t) \propto S_1(x, t)$, we conclude that the equipartition of entanglement in the symmetry sectors is asymptotically restored according to

\[
\delta S_{1,N}(x, t) \sim \frac{(N - N_A(x, t))^2}{S_1(x, t)^2},
\]
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

Figure 10. Configurational $S^{(c)}$ and number $S^{(n)}$ entanglement entropy as function of the cutting position x at time $t/L = 0.67$, for different initial states $\rho_0 = 1, 1/2$ (see plots legend). The data are obtained for a system of 300 sites with exact lattice numerics, retaining only terms with $|\Delta N| \leq 2$ in equation (80). The sum of the two contributions (symbols) is found in remarkable agreement with the hydrodynamic prediction in equation (61) (solid line).

with a non-trivial prefactor that depends on non-universal quantities. We finally notice that the total von Neumann entropy profile in equation (61) can be recovered, for each position x and time t, as

$$ S_1(x, t) = \sum_N \mathcal{Z}_{1,N}(x, t) S_{1,N}(x, t) - \sum_N \mathcal{Z}_{1,N}(x, t) \log \mathcal{Z}_{1,N}(x, t) \equiv S^{(c)} + S^{(n)}. \quad (80) $$

The two terms appearing in the sum are known as configurational entanglement entropy $S^{(c)}$, measuring the total entropy due to each charge sector, and the number entropy $S^{(n)}$, which accounts for the entropy due to the charge fluctuations among different sectors, see e.g. [14]. In figure 10, we show these two contributions and we compare their sum to the hydrodynamic prediction in equation (61). Notice that the oscillations observed in $S^{(c)}$ and $S^{(n)}$ (coming from those of the charged moments, cf figure 4) nicely disappear once the two contributions are summed.

5. Summary and conclusions

We considered a one-dimensional gas of non-interacting fermions initially prepared in a bi-partite state $|\Omega\rangle$, characterised by the absence of particles on the right part ($j \geq 0$) and by a filling on the left part ($j < 0$) of the chain with density $\rho_0 = 1/2$ or 1. We subsequently let $|\Omega\rangle$ evolve unitarily with the hopping Hamiltonian in equation (10) and we studied the non-equilibrium dynamics after the quench in the Euler hydrodynamic limit of large space-time scales $j, t \rightarrow \infty$ at fixed j/t, see section 2.2 for details. For this prototypical model of inhomogeneous quench setting, the non-equilibrium dynamics of conserved charges has been determined long ago (see e.g. [91–96, 99]) and recently complemented by results on the dynamics of the total entanglement [85, 90] and on the entanglement Hamiltonian [87], obtained through quantum generalised hydrodynamics. In this manuscript, we eventually completed the study on entanglement providing a
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

careful analysis of the symmetry-resolved Rényi entropies as function of time and of the entangling position along the inhomogeneous system, see sections 3 and 4. We found that the charged moments at half system display a logarithmic growth in time (see equation (65) and figure 5) and that the symmetry-resolved von Neumann entropy is distributed among symmetry sectors with equal weights, up to corrections that scale as the inverse of the square of the total entanglement (see equation (79)). Our analytical results for symmetry resolved quantities are based on quantum generalised hydrodynamics and have been checked with numerical exact lattice calculations (see appendix A for details on the implementation), returning a very good agreement of the hydrodynamic prediction with data.

Beside the per se interest of our results for the initial bi-partite state, our work aims to connect two current branches of research on entanglement, that are, symmetry resolution and quantum generalised hydrodynamics. Indeed, our discussion in sections 3 and 4 has general validity and can be straightforwardly extended to the study of symmetry resolved quantities in any inhomogeneous quench setting that is accessible with quantum generalised hydrodynamics, opening the doors to several subsequent analysis. For instance, it would be interesting to consider the symmetry resolution in a quartic-to-quadratic quench protocol (see e.g. [119]), whose total entanglement has been calculated recently in [88] and realised in [120] with rubidium atom chips for an experimental test of the hydrodynamic results on conserved charges.

Acknowledgments

The authors acknowledge support from ERC under Consolidator Grant No. 771536 (NEMO). We are very thankful to Pasquale Calabrese for discussions on the project at various stages of its development and for valuable comments on the manuscript. We acknowledge Riccarda Bonsignori, Sara Murciano and Filiberto Ares for useful discussions and remarks on the manuscript.

Appendix A. Some details on the numerical implementation

In this section we consider the exact numerical calculation for free fermionic lattice Hamiltonian

$$\hat{H} = -\frac{1}{2} \sum_{j=-L}^{L-1} \left(\hat{c}_{j}^{\dagger} \hat{c}_{j+1} + \hat{c}_{j+1}^{\dagger} \hat{c}_{j} \right)$$

which differs from that in equation (10) for the presence of a right boundary. For this model, it is sufficient to determine the expression of the two-point correlation matrix

$$G(t) = \left[\langle \psi(t) | \hat{c}_{i}^{\dagger} \hat{c}_{j} | \psi(t) \rangle \right]_{i,j=-L}^{L-1}$$

from which other quantities becomes accessible exploiting Wick’s theorem. The latter is initially obtained as $G(0) = |\Omega\rangle \langle \Omega|$ by following the state preparation discussed in

https://doi.org/10.1088/1742-5468/ac85eb
section 2.1 and subsequently evolved in the post-quench eigenstate basis $\hat{H}\ket{w_n} = E_n\ket{w_n}$ of the Hamiltonian (A.1) as
\begin{equation}
G(t) = \sum_{n,m=-L}^{L-1} \ket{w_n} e^{-itE_n} \bra{w_n} \bra{\Omega} \ket{\Omega} e^{itE_m} \ket{w_m},
\end{equation}
see e.g. [85, 98] for more details. At this point, the density profile in equation (35) is given by
\begin{equation}
\rho(i,t) = G_{i,i}(t)
\end{equation}
and the number of particles N_A in a subsystem A (cf equation (37)) is obtained with a simple numerical integration. The next step is to build the correlation matrix restricted to the sub-system A as
\begin{equation}
G_A(t) = [G_{i,j}(t)]_{i,j \in A}
\end{equation}
and eventually to compute the set of its eigenvalues $\{\zeta_j\}_{j=1}^{\ell_A}$, with ℓ_A the number of sites contained in A. The von Neumann entanglement entropy is then obtained as [121–126]
\begin{equation}
S_1 = -\sum_{j=1}^{\ell_A} \zeta_j \log \zeta_j + (1 - \zeta_j) \log(1 - \zeta_j).
\end{equation}
Similarly, the charged moments can be expressed in terms of the eigenvalues $\{\zeta_j\}_{j=1}^{\ell_A}$ as [29]
\begin{equation}
\log Z_{n,\alpha} = \sum_{j=1}^{\ell_A} \log \left[\zeta_j^n e^{i\alpha} + (1 - \zeta_j)^n \right].
\end{equation}
From equation (A.7), the other quantities (such as symmetry-resolved partition functions and entropies) are obtained via simple numerical manipulations.

References

[1] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press)
[2] Calabrese P 2020 Entanglement spreading in non-equilibrium integrable systems SciPost Phys. Lect. Notes 20 1–33
[3] Boyanovsky D 2018 Imprint of entanglement entropy in the power spectrum of inflationary fluctuations Phys. Rev. D 98 023515
[4] Brahma S, Alaryani O and Brandenberger R 2020 Entanglement entropy of cosmological perturbations Phys. Rev. D 102 043529
[5] Martin J and Vennin V 2021 Real-space entanglement of quantum fields Phys. Rev. D 104 085012
[6] Amico L, Fazio R, Osterloh A and Vedral V 2008 Entanglement in many-body systems Rev. Mod. Phys. 80 517
[7] Calabrese P, Cardy J and Doyon B 2009 Entanglement entropy in extended quantum systems J. Phys. A: Math. Theor. 42 500301

https://doi.org/10.1088/1742-5468/ac85eb
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

[8] Eisert J, Cramer M and Plenio M B 2010 Colloquium: area laws for the entanglement entropy Rev. Mod. Phys. 82 277

[9] Laflorencie N 2016 Quantum entanglement in condensed matter systems Phys. Rep. 646 1

[10] Islam R, Ma R, Preiss P M, Eric Tai M, Lukin A, Rispoli M and Greiner M 2015 Measuring entanglement entropy in a quantum many-body system Nature 528 77

[11] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Quantum thermalization through entanglement in an isolated many-body system Science 353 794

[12] Elben A, Vermersch B, Dalmonte M, Cirac J I and Zoller P 2018 Rényi entropies from random quenches in atomic Hubbard and spin models Phys. Rev. Lett. 120 050406

[13] Brydges T, Elben A, Jurcevic P, Vermersch B, Maier C, Lanyon B P, Zoller P, Blatt R and Roos C F 2019 Probing Rényi entanglement entropy via randomized measurements Science 364 6437

[14] Lukin A, Rispoli M, Schittko R, Tai M E, Kaufman A M, Choi S, Khemani V, Leonard J and Greiner M 2019 Probing entanglement in a many-body localized system Science 364 6437

[15] Li H and Haldane F D M 2008 Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum Hall effect states Phys. Rev. Lett. 101 010504

[16] Eisler V and Peschel I 2017 Analytical results for the entanglement Hamiltonian of a free-fermion chain J. Phys. A: Math. Theor. 50 284003

[17] Eisler V and Peschel I 2018 Properties of the entanglement Hamiltonian for finite free-fermion chains J. Stat. Mech. 104001

[18] Eisler V, Tonni E and Peschel I 2019 On the continuum limit of the entanglement Hamiltonian J. Stat. Mech. 073101

[19] Cardy J and Tonni E 2016 Entanglement Hamiltonians in two dimensional conformal field theory J. Stat. Mech. 123103

[20] Wen X, Ryu S and Ludwig A 2018 Entanglement Hamiltonian evolution during thermalization in conformal field theory J. Stat. Mech. 113103

[21] Hislop P D and Longo R 1982 Modular structure of the local algebras associated with the free massless scalar field theory Commun. Math. Phys. 84 71

[22] Dalmonte M, Vermersch B and Zoller P 2018 Quantum simulation and spectroscopy of entanglement Hamiltonians Nat. Phys. 14 827

[23] Kokail C, Sundar B, Zache T V, Elben A, Vermersch B, Dalmonte M, van Bijnen R and Zoller P 2021 Quantum variational learning of the entanglement Hamiltonian Phys. Rev. Lett. 127 170501

[24] Kokail C, van Bijnen R, Elben A, Vermersch B and Zoller P 2021 Entanglement Hamiltonian tomography in quantum simulation Nat. Phys. 17 936

[25] Zache T V, Kokail C, Sundar B and Zoller P 2022 Entanglement spectroscopy and probing the Li-haldane conjecture in topological quantum matter Quantum 6 702

[26] Javerzat N and Tonni E 2022 On the continuum limit of the entanglement Hamiltonian of a sphere for the free massless scalar field J. High Energy Phys. JHEP(2022)086

[27] Murciano S, Vitale V, Dalmonte M and Calabrese P 2022 Negativity Hamiltonian: an operator characterization of mixed-state entanglement Phys. Rev. Lett. 128 140502

[28] Laflorencie N and Rachel S 2014 Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids J. Stat. Mech. P11013

[29] Goldstein M and Sela E 2018 Symmetry-resolved entanglement in many-body systems Phys. Rev. Lett. 120 200602

[30] Calabrese P, Dubail J and Murciano S 2021 Symmetry-resolved entanglement entropy in Wess–Zumino–Witten models J. High Energy Phys. JHEP10(2021)067

[31] Belin A, Hung L-Y, Maloney A, Matsura S, Myers R C and Sierens T 2013 Holographic charged Rényi entropies J. High Energy Phys. JHEP12(2013)059

[32] Caputa P, Mandal G and Sinha R 2013 Dynamical entanglement entropy with angular momentum and U(1) charge J. High Energy Phys. JHEP11(2013)052

[33] Caputa P, Nozaki M and Numasawa T 2016 Charged entanglement entropy of local operators Phys. Rev. D 93 105032

[34] Dowker J S 2016 Conformal weights of charged Rényi entropy twist operators for free scalar fields in arbitrary dimensions J. Phys. A: Math. Theor. 49 145401

[35] Dowker J S 2017 Charged Renyi entropies for free scalar fields J. Phys. A: Math. Theor. 50 165401

[36] Shapourian H, Shiozaki K and Ryu S 2017 Partial time-reversal transformation and entanglement negativity in fermionic systems Phys. Rev. B 95 165101
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

[37] Shapourian H, Ruggiero P, Ryu S and Calabrese P 2019 Twisted and untwisted negativity spectrum of free fermions SciPost Phys. 7 037
[38] Xavier J C, Alcaraz F C and Sierra G 2018 Equipartition of the entanglement entropy Phys. Rev. B 98 041106
[39] Feldman N and Goldstein M 2019 Dynamics of charge-resolved entanglement after a local quench Phys. Rev. B 100 235146
[40] Bonsignori R and Calabrese P 2021 Boundary effects on symmetry resolved entanglement J. Phys. A: Math. Theor. 54 015005
[41] Capizzi L, Ruggiero P and Calabrese P 2020 Symmetry resolved entanglement entropy of excited states in a CFT J. Stat. Mech. 073101
[42] Estienne B, Ikhef Y and Morin-Duchesne A 2021 Finite-size corrections in critical symmetry-resolved entanglement SciPost Phys. 10 054
[43] Murciano S, Bonsignori R and Calabrese P 2021 Symmetry decomposition of negativity of massless free fermions SciPost Phys. 10 111
[44] Chen H-H 2021 Symmetry decomposition of relative entropies in conformal field theory J. High Energy Phys. JHEP07(2021)084
[45] Capizzi L and Calabrese P 2021 Symmetry resolved relative entropies and distances in conformal field theory J. High Energy Phys. JHEP10(2021)195
[46] Ghasemi M 2022 Universal thermal corrections to symmetry-resolved entanglement entropy and full counting statistics (arXiv:2203.06708)
[47] Chen H-H 2022 Charged Rényi negativity of massless free bosons J. High Energy Phys. JHEP02(2022)117
[48] Murciano S, Di Giulio G and Calabrese P 2020 Entanglement and symmetry resolution in two dimensional free quantum field theories J. High Energy Phys. JHEP08(2020)073
[49] Horváth D X, Capizzi L and Calabrese P 2021 $U(1)$ symmetry resolved entanglement in free 1 + 1 dimensional field theories via form factor bootstrap J. High Energy Phys. JHEP05(2021)197
[50] Horváth D X and Calabrese P 2020 Symmetry resolved entanglement in integrable field theories via form factor bootstrap J. High Energy Phys. JHEP11(2020)131
[51] Horváth D X, Calabrese P and Castro-Alvaredo O A 2022 Branch point twist field form factors in the sine-Gordon model: I. Composite twist fields and symmetry resolved entanglement SciPost Phys. 12 088
[52] Capizzi L, Horváth D X, Calabrese P and Castro-Alvaredo O A 2022 Entanglement of the three-state Potts model via form factor bootstrap: total and symmetry resolved entropies J. High Energy Phys. JHEP05(2022)113
[53] Weisenberger K, Zhao S, Northe C and Meyer R 2021 Symmetry-resolved entanglement for excited states and two entangling intervals in AdS$_3$/CFT$_2$ J. High Energy Phys. JHEP12(2021)104
[54] Zhao S, Northe C and Meyer R 2021 Symmetry-resolved entanglement in AdS$_3$/CFT$_2$ coupled to $U(1)$ Chern–Simons theory J. High Energy Phys. JHEP07(2021)030
[55] Zhao S, Northe C, Weisenberger K and Meyer R 2022 Charged moments in W_3 higher spin holography J. High Energy Phys. JHEP05(2022)166
[56] Bonsignori R, Ruggiero P and Calabrese P 2019 Symmetry resolved entanglement in free fermionic systems J. Phys. A: Math. Theor. 52 475302
[57] Fraenkel S and Goldstein M 2020 Symmetry resolved entanglement: exact results in 1D and beyond J. Stat. Mech. 033106
[58] Barghathi H, Herdman C M and Del Maestro A 2018 Rényi generalization of the accessible entanglement entropy Phys. Rev. Lett. 121 150501
[59] Barghathi H, Casiano-Diaz E and Del Maestro A 2019 Operationally accessible entanglement of one dimensional spinless fermions Phys. Rev. A 100 022324
[60] Murciano S, Di Giulio G and Calabrese P 2020 Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach SciPost Phys. 8 046
[61] Calabrese P, Collura M, Di Giulio G and Murciano S 2020 Full counting statistics in the gapped XXZ spin chain Europhys. Lett. 129 60007
[62] Parez G, Bonsignori R and Calabrese P 2021 Quasiparticle dynamics of symmetry-resolved entanglement after a quench: examples of conformal field theories and free fermions Phys. Rev. B 103 L041104
[63] Tan M T and Ryu S 2020 Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization Phys. Rev. B 101 235169
[64] Murciano S, Ruggiero P and Calabrese P 2020 Symmetry resolved entanglement in two-dimensional systems via dimensional reduction J. Stat. Mech. 083102
[65] Ares F, Murciano S and Calabrese P 2022 Symmetry-resolved entanglement in a long-range free-fermion chain J. Stat. Mech. 063104
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

[66] Jones N G 2022 Symmetry-resolved entanglement entropy in critical free-fermion chains J. Stat. Mech. 063104
[67] Ma Z, Han C, Mei Y and Sela E 2022 Symmetric inseparability and number entanglement in charge-conserving mixed states Phys. Rev. A 105 042416
[68] Piroli L, Vernier E, Collura M and Calabrese P 2022 Thermodynamic symmetry resolved entanglement entropies in integrable systems (arXiv:2203.09158)
[69] Turkeshi X, Ruggiero P, Alba V and Calabrese P 2020 Entanglement equipartition in critical random spin chains Phys. Rev. B 102 014455
[70] Kiefer-Emmanouilidis M, Unanyan R, Fleischhauer M and Sirker J 2020 Evidence for unbounded growth of the number entropy in many-body localized phases Phys. Rev. Lett. 124 243601
[71] Kiefer-Emmanouilidis M, Unanyan R, Fleischhauer M and Sirker J 2021 Unlimited growth of particle fluctuations in many-body localized phases Ann. Phys., NY 435 168481
[72] Monkman K and Sirker J 2020 Operational entanglement of symmetry-protected topological edge states Phys. Rev. Research 2 043191
[73] Cornfeld E, Landau L A, Shtengel K and Sela E 2019 Entanglement spectroscopy of non-abelian anyons: reading off quantum dimensions of individual anyons Phys. Rev. B 99 115429
[74] Azses D and Sela E 2020 Symmetry-resolved entanglement in symmetry-protected topological phases Phys. Rev. B 102 235157
[75] Oblak B, Regnault N and Estienne B 2022 Equipartition of entanglement in quantum Hall states Phys. Rev. B 105 115131
[76] Neveu A et al 2021 Symmetry-resolved entanglement detection using partial transpose moments npj Quantum Inf. 7 152
[77] Vitale V et al 2022 Symmetry-resolved dynamical purification in synthetic quantum matter SciPost Phys. 12 106
[78] Fraenkel S and Goldstein M 2021 Entanglement measures in a nonequilibrium steady state: exact results in one dimension SciPost Phys. 11 085
[79] Parez G, Bonsignori R and Calabrese P 2021 Exact quench dynamics of symmetry resolved entanglement in a free fermion chain J. Stat. Mech. 093102
[80] Parez G, Bonsignori R and Calabrese P 2022 Dynamics of charge-imbalance-resolved entanglement negativity after a quench in a free-fermion model J. Stat. Mech. 053103
[81] Chen H-H 2022 Dynamics of charge imbalance resolved negativity after a global quench in free scalar field theory (arXiv:2205.09532)
[82] Ruggiero P, Brun Y and Dubail J 2019 Conformal field theory on top of a breathing one-dimensional gas of hard core bosons SciPost Phys. 6 051
[83] Ruggiero P, Calabrese P, Doyon B and Dubail J 2020 Quantum generalized hydrodynamics Phys. Rev. Lett. 124 140603
[84] Collura M, De Luca A, Calabrese P and Dubail J 2020 Domain wall melting in the spin-12 XXZ spin chain: emergent Luttinger liquid with a fractal quasiparticle charge Phys. Rev. B 102 180409
[85] Scopa S, Krajenbrink A, Calabrese P and Dubail J 2021 Exact entanglement growth of a one-dimensional hard-core quantum gas during a free expansion J. Phys. A: Math. Theor. 54 404002
[86] Scopa S, Calabrese P and Dubail J 2022 Exact hydrodynamic solution of a double domain wall melting in the spin-1/2 XXZ model SciPost Phys. 12 207
[87] Rottoli F, Scopa S and Calabrese P 2022 Entanglement Hamiltonian during a domain wall melting in the free Fermi chain J. Stat. Mech. 063103
[88] Ruggiero P, Calabrese P, Doyon B and Dubail J 2022 Quantum generalized hydrodynamics of the Tonks–Girardeau gas: density fluctuations and entanglement entropy J. Phys. A: Math. Theor. 55 024003
[89] Ares F, Scopa S and Wald S 2022 Entanglement dynamics of a hard-core quantum gas during a Joule expansion (arXiv:2204.01664)
[90] Dubail J, Stéphan J-M, Viti J and Calabrese P 2017 Conformal field theory for inhomogeneous one-dimensional quantum systems: the example of non-interacting Fermi gases SciPost Phys. 2 002
[91] Antal T, Ráca Z, Rákos A and Schütz G M 1999 Transport in the XX chain at zero temperature: emergence of flat magnetization profiles Phys. Rev. E 59 4912
[92] Antal T, Krapivsky P L and Rákos A 2008 Logarithmic current fluctuations in nonequilibrium quantum spin chains Phys. Rev. E 78 061115
[93] Karelson D 2002 Scaling behaviour of the relaxation in quantum chains Eur. Phys. J. B 27 147
[94] Rigol M and Muramatsu A 2004 Emergence of quasicondensates of hard-core bosons at finite momentum Phys. Rev. Lett. 93 230404
[95] Platini T and Karevski D 2005 Scaling and front dynamics in Ising quantum chains Eur. Phys. J. B 48 225

https://doi.org/10.1088/1742-5468/ac85eb
Exact hydrodynamic description of symmetry-resolved Rényi entropies after a quantum quench

[96] Platini T and Karevski D 2007 Relaxation in the XX quantum chain J. Phys. A: Math. Theor. 40 1711
[97] Eisler V, Karevski D, Platini T and Peschel I 2008 Entanglement evolution after connecting finite to infinite quantum chains J. Stat. Mech. P01023
[98] Alba V and Heidrich-Meisner F 2014 Entanglement spreading after a geometric quench in quantum spin chains Phys. Rev. B 90 075144
[99] Vidmar L, Ronzheimer J P, Schreiber M, Braun S, Hodgman S S, Langer S, Heidrich-Meisner F, Bloch I and Schneider U 2015 Dynamical quasicondensation of hard-core bosons at finite momenta Phys. Rev. Lett. 115 175301
[100] Allegra N, Dubail J, Stéphan J-M and Viti J 2016 Inhomogeneous field theory inside the arctic circle J. Stat. Mech. 053108
[101] Jordan P and Wigner E 1928 Über das Paulische Äquivalenzverbot Z. Phys. 47 631
[102] Gruber M and Eisler V 2019 Magnetization and entanglement after a geometric quench in the XXZ chain Phys. Rev. B 99 174403
[103] Wundenbaum P, Collura M and Karevski D 2013 Hydrodynamic description of hard-core bosons on a Galileo ramp Phys. Rev. A 87 023624
[104] Fagotti M 2017 Higher-order generalized hydrodynamics in one dimension: the noninteracting test Phys. Rev. B 96 220302
[105] Fagotti M 2020 Locally quasi-stationary states in noninteracting spin chains SciPost Phys. 8 048
[106] Doyon B, Dubail J, Konik R and Yoshimura T 2017 Large-scale description of interacting one-dimensional Bose gases: generalized hydrodynamics supersedes conventional hydrodynamics Phys. Rev. Lett. 119 195301
[107] Bone Y and Dubail J 2017 One-particle density matrix of trapped one-dimensional impenetrable bosons from conformal invariance SciPost Phys. 2 012
[108] Brun Y and Dubail J 2018 The inhomogeneous Gaussian free field, with application to ground state correlations of trapped 1D Bose gases SciPost Phys. 4 037
[109] Scopa S, Piroli L and Calabrese P 2020 One-particle density matrix of a trapped Lieb–Liniger anyonic gas J. Stat. Mech. 093103
[110] Bastianello A, Dubail J and Stéphan J-M 2020 Entanglement entropies of inhomogeneous Luttinger liquids J. Phys. A: Math. Theor. 53 23
[111] Calabrese P and Cardy J 2004 Entanglement entropy and quantum field theory J. Stat. Mech. P06002
[112] Cardy J L, Castro-Alvaredo O A and Doyon B 2008 Form factors of branch-point twist fields in quantum integrable models and entanglement entropy J. Stat. Phys. 130 129
[113] Calabrese P and Cardy J 2009 Entanglement entropy and conformal field theory J. Phys. A: Math. Theor. 42 504005
[114] Castro-Alvaredo O A, Doyon B and Levi E 2011 Arguments towards ac-theorem from branch-point twist fields J. Phys. A: Math. Theor. 44 492003
[115] Bianchini D, Castro-Alvaredo O, Doyon B, Levi E and Ravanini F 2015 Entanglement entropy of non-unitary conformal field theory J. Phys. A: Math. Theor. 48 04FT01
[116] Calabrese P and Essler F H L 2010 Universal corrections to scaling for block entanglement in spin-1/2 XX chains J. Stat. Mech. P08029
[117] Jin B-Q and Korepin V E 2004 Quantum spin chain, Toeplitz determinants and the Fisher–Hartwig conjecture J. Stat. Phys. 116 79
[118] Eisler V 2021 Entanglement spreading after local and extended excitations in a free-fermion chain J. Phys. A: Math. Theor. 54 424002
[119] Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton’s cradle Nature 440 900–3
[120] Schemmer M, Bouchoule I, Doyon B and Dubail J 2020 Generalized hydrodynamics on an atom chip Phys. Rev. Lett. 122 090601
[121] Peschel I 2012 Special review: entanglement in solvable many-particle models Braz. J. Phys. 42 267
[122] Peschel I, Kaulke M and Legrea O 1999 Density-matrix spectra for integrable models Ann. Phys. 8 153
[123] Chung M C and Peschel I 2001 Density-matrix spectra of solvable fermionic systems Phys. Rev. B 64 064412
[124] Peschel I 2003 Calculation of reduced density matrices from correlation functions J. Phys. A: Math. Gen. 36 L205
[125] Peschel I 2004 On the reduced density matrix for a chain of free electrons J. Stat. Mech. P06004
[126] Peschel I and Eisler V 2009 Reduced density matrices and entanglement entropy in free lattice models J. Phys. A: Math. Theor. 42 504003

https://doi.org/10.1088/1742-5468/ac85eb