Performance Improvement of ZSI Based PMS Motor Drive System for Electric Vehicles

1B Karunamoorthy 2J Ramprabu,

Department of electrical and Electronics Engineering, Kumaraguru college of Technology, Coimbatore, India
2Assistant professor II, Department of electrical and Electronics Engineering, Kumaraguru college of Technology, Coimbatore, India
jrameee@gmail.com

Abstract. In traction system the choice of motor is very important, multipurpose motors are available in the market. By considering the motor parameter like high power to weight ratio, high torque to current ratio with that high efficiency and robustness. Owing all the advantages the motor chosen is PMSM (Permanent magnet synchronous motor) for the variable speed modern drive which is most widely used in EV’s (Electric vehicle and in Hybrid electric vehicle). Without weakening the field by controlling the DC-link voltage the PMSM machine can run at high speed by implementing ZSI to the drive system. Z source inverter working principle and modulation method is discussed in this study. By considering the Limitation of Maximum voltage and available line current a new Vector control scheme is developed for PMSM drive voltage boosting. At last the proposed system implementation effectiveness and reliability is tested by several simulation and experimental results.

1. INTRODUCTION

Increase in population is proportionally increased in internal combustion engine Automobile. This leads demand in natural resources and drastic increase in the price of petroleum products. By concerning the global problem all the IC engines should be replaced with Electric Motor which turns our attention to the research area Electric Vehicle (EV). The EV’s are Eco friendly and no emission to the environment. In Idle speed it will not consume energy and also it will not produce any sound at the time of running.

A drive system is necessary for the Electric vehicle to control the speed from stand still to the maximum speed to propel the vehicle. Multiple motor and their drive system are available in market out of which Permanent magnet synchronous motor is very popular and attractive because of their reliability, high power density and efficiency [5][6][10]. To operate the motor in high-speed region, field weakening control scheme is utilized since the PMSM machine have a short constant-power region due to their limited field weakening capability [5], still it requires some more current to reduce the magnetic flux of the machine. In reference [6][11], De-Link voltage is changed with boost converter connected in series with the PWM inverter for the rated speed of PMSM drive system. Z source inverter existing PWM technique total harmonic distortion is bigger due to unsymmetrical shoot through is discussed in [1]. Different modulation strategies impedance source network to generate DC to AC voltage is discussed in [2], MPC model predictive control discuss about the fast torque control of PMSM machine [4], Fuzzy logic based vector control led PMSM machine speed control using DS1103 discussed in this paper [3].
A competitive alternative topology is introduced in single stage power converter and Z-source inverter due to the defects in tradition voltage inverter because of the complexity of the circuit and and control, the two stage system requires more space and proposed single stage ZSI is discussed in [7] [8] [12]. Both the buck and boost capabilities advantages adopted in the different applications are discussed in [7] and the same is discussed with Ac induction motor drive in [12]. A birectional Z source inverter with the steady state operating principle and voltage boosting modified vector control scheme of permanent magnet synchronous motor drive is presented in the paper.

Z source inverter both direction topologies has discussed in [20]. The discontinuous induction current causes unstable and un controllable ZSI, it can be overcome by operating the ZSI in Low load power factor or with small inductance [28], The system bidirectional power flow is discussed in [21]. The proposed circuit ZSI is used to feed current to PMSM machine as current fed Z-source DC/DC converter under the condition of reverse power flow. The complicated operation and increase in number of switches and their mode of operation are compared to [20]. Z source inverter, Pulse width modulation traditional inverter and DC/DC boosted PWM inverter are compared in [22] [29]. As per the comparison the ZSI Conversion efficiency of inverter and motor system efficiency is better when compared to the earlier two existing inverter system. In this survey PMSM drive system is controlled by Bi-directional Z source inverter as a single stage converter instead of a two stage converter (DC/DC converter bidirectional and VSI).

2. BIDIRECTIONAL Z-SOURCE INVERTER

The proposed drive system is shown in the figure which consists of Permanent magnet synchronous motor connected with conventional voltage source inverter with a impedance network. The power to the circuit is fed by the Battery pack connected to it. The bidirectional power flow system ability is enabled by introducing switch S7. A PN junction diode is connected Anti parallel to S7 which eliminates the discontinuous inductor current caused by undesirable mode of operation. To achieve the required property two similar inductors and capacitors are connected in specific manner as shown in Fig.1

![Bidirectional ZSI for PMSM drive](image)

To maintain the output voltage the active states should be kept as same and partially replace the traditional zero states or the zero state to be shoot-through entirely based on voltage level required to boost base on our need. Each operating state characteristics are described separately as shown below

From the equivalent circuit based on symmetry we have

\[V_{c1} = V_{c3} = V_{c2}, \quad v_{l2} = v_{l1} = v_{l3} \]
2.1 Bidirectional ZSI PWM control strategy

Traditional voltage source converter uses various Pulse width modulation control methods at present. Traditional PWM methods will not use the shoot through state so to control the ZSI DC boost PWM methods need to be modified. The method we require is controllability in wide range AC output voltage and less harmonic. A technique that bridges PWM and Space vector control is space vector pulse width modulation (SVPWM) technique. Four PWM control methods are existing, Maximum constant boost control method is discussed in [23]. Simple boost control method is discussed in [15], Modified space vector control method discussed in [31] and maximum boost control method is discussed in [30]. In this paper for attaining variable speed application shoot through is control by using MSVPWM method.

While inverter is operated in shoot through state switch S7 has to be kept in OFF in the mode analysis of ZSI. Switch position remains in ON state when the inverter is operated in its non-shoot through states. Boost capacitor is used in non shoot through state when inverter is operated in regenerating mode. In the different mode of operation whenever reverse current is monitored the switch S7 is closed permanently since because the battery receives constant reverse current.

3. PMSM DRIVE SYSTEM DESIGN

3.1 Current and Voltage Range

The rotor reference frame steady state voltage equation of PMSM is,

\[T_e = P \left[i_{sq} \lambda_{pm} + i_{sq} (L_d - L_q) i_{sd} \right] \]

\[\frac{v_{sd}}{v_{sq}} = \begin{bmatrix} L_d P + R & -L_q \omega_e \\ L_q P + R & L_q P \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \begin{bmatrix} 0 \\ \lambda_{pm} \omega_e \end{bmatrix} \]

Where, d- and q-axis current are the \(i_{sd} \) and \(i_{sq} \) currents; d- and q-axis voltages are \(v_{sd} \) and \(v_{sq} \) voltages; d- and q-axis inductances are the \(L_d \) and \(L_q \) Stator resistance is the R; Electrical angular frequency is \(\omega_e \); number of pole pairs is P and electromagnetic torque \(T_e \) d/dt is the derivative operator of p; flux linkage is PM respectively.

\(v_{s max} \) maximum available voltage and \(i_{s max} \) maximum line current amplitude of the motor with that we can get the following equation

\[v_{sq}^2 + v_{sd}^2 \leq v_{s max}^2 \] \((4) \)

\[i_{sq}^2 + i_{sd}^2 \leq i_{s max}^2 \] \((5) \)

In high speed operation by neglecting the armature resistance drop, in steady state the derivative operator P becomes zero by substituting (4) and (5) into (2), With that we can obtain an voltage constraint equivalent as follow,
\[(i_{sq}L_q)^2 + (\lambda_{pm} + L_d i_{sd})^2 \leq \frac{v_{e,max}^2}{\omega_e}\]

(6)

3.2 Maximum Torque per Ampere Operation (MTPA)

Motor parameters depend on the MTPA trajectories; MTPA operation can be done and IPM motor has a saliency \((L_q, L_d)\) With the reluctance torque

The following equation obtains the operating point as follows. The operating point can be obtained by the following equations simplified is,

\[i_{sq} \leq \sqrt{i_{s,max}^2 - i_{sd}^2} \]

(7)

\[i_{sd} = -i_{sq} \frac{(L_q - L_d)}{\lambda_{pm}} \]

(8)

3.3 Current Range of the Battery

To run a motor above its rated speed with constant power and also to operate below rated speed with the same power when current of the battery is limited. When motor draws the rated current that value corresponds to the DC-link Current. \(I_{BT,max}\)\([32-35]\)

Current value is limited by considering the parameters and characteristics of the battery. The below equation defines the maximum torque output of the machine.

\[T_{max} = \frac{I_{BT,max} V_{in}}{\eta \omega_e} \]

(9)

Constant torque can be achieved only if the current of the battery is not limited; if the current of the battery is limited then \(I_{DC}\) DC-Link current is as follows

\[I_{DC} = I_{BT,max} \eta \frac{V_{in}}{V_{DC}} \]

(10)

Therefore the VDC DC-link voltage increases as the \(I_{DC}\) decreases. In other words, current \(I_{BT,max}\) for the constant battery the current limited circle shrinks as the speed increases.

4. CONTROL DESIGN
Fig.3 Control scheme PMSM with Bi-directional ZSI

Fig. 4 Functional diagrams a) i_{sq} current calculator b) voltage command generator DC-link

Fig.3 show the functional diagram of i_{sq} bound calculator. The q-axis current is the output maximum amplitude and rotor speed is the input parameter. Maximum line current of the motor is limited using speed PI controller in the zero d-axis control modes such that current of the battery will not exceed the limit. Fig. 4(b). Shows the command block of the DC-link, ω_r rotor speed is less than the rated speed ω_b Z source inverter will operate without the DC-link voltage command and boost which are equal to the applied input voltage. In the high speed operation the rated input voltage should apply higher. Feedback signal cannot be selected because of the DC-link voltage in the shoot through state of Z source inverter. The duty ratio D_o shoot through time by controlling it V_c capacitor voltage of the Z-source can be increased. So in this paper, V_c is selected as feedback signal to control V_{dc} indirectly. In order to overcome the nonlinear problem between V_{dc} and V_c, a linear capacitor voltage controller [9] is adopted. The task of shoot through controller in Fig.3 is to generate D_o.

5. SIMULATION RESULTS

Saber software is used to take the simulation result. Bidirectional ZSI based proposed PMSM drive system for an electric vehicle by considering the PMSM parameters like, battery, Z-source network, Transmission system are listed in the Table 1.

Component	Parameter	Value
Transmission system	Ratio	1:2
	Efficiency	0.91
PMSM	rated speed	51 rad/s
	rated torque	339 Nm
	d-axis inductance (L_d)	9 mH
	q-axis inductance (L_q)	8.5 mH
	flux of field	0.7 Wb
	rated output power	17 kW
	armature resistance (R)	0.4375 ohm
	pole number	8
Battery	rated capacity	100 A h
	rated voltage (EBT)	410 V
The electric vehicle proposed drive system dynamics and effectiveness are simulated extensively through saber. The table 1 list all the parameters. The different operating mode of the system is detail shown in Fig. 5. ZSI driven PMSM characteristics and simulation results are shown in Fig.7. The rated torque is achieved in the time interval of 0.4-3.9 s in the acceleration mode. 3.9-4.2s time interval requires to reach the rated speed in cruise mode. 4.2-11s requires to decrease in torque in acceleration mode. 11-12s, time interval to reach the maximum speed in cruise control mode. 12-18s required to reach maximum speed to rated speed in regenerative braking mode. 20-23.5s time intervals required for regenerative braking mode with the rated torque. 18-20s time intervals with the rated speed requires in cruise operation mode. Here, a dip is observed in the battery current and the q-axis current waveforms at 3.9 s. This is because the vehicle’s resistance decreasing significantly during the time interval (3.9-4.2 s), where the vehicle is in cruise operation mode. The shoot-through time duty ratio, boost factor, DC-link voltage and capacitor voltage of PMSM driven by ZSI against speed characteristics presented in Fig. 7.

Vehicle	aerodynamic drag coefficient	0.3
	gross mass	990 kg
	rolling resistance coefficient	0.015
	radius of wheels	0.288
	frontal area	1.7 m²

| Z-source network | Capacitor | 300 µF |
| Z-source network | inductor | 36.5 µH |
Fig. 7 (a) speed characteristics vs shoot-through and Boost factor time duty ratio (b) speed characteristics vs capacitor voltage versus and DC-link voltage and

Fig. 5 - 7, one finds the following mentioned below,

▪ Above the rated speed the d-axis current kept zero. Hence there is no additional current required to reduce the flux of the motor.

▪ Since i_{BT} is negative bidirectional power flow is possible in regenerative braking mode.

▪ Input voltage and DC-link voltage are equal at rated speed while ZSI working in non-shoot through mode.

Using the table 1 parameters the bidirectional Z source inverter prototype for PMSM drive is designed and implemented in the laboratory set up. For the switching frequency generation the TMS320F2808 board has chosen to generate 10KHZ system frequency for testing the proposed control methods and realization. Code generation is done with code composer studio for the real time control. DAC 12 bit resolution is used to find the wave forms and inspect in oscilloscope. System functional block is shown in the Fig.7. Laboratory setup is shown in Fig.8. Bidirectional ZSI switches (S1–S7) and intelligent power module PM800HSA120 is used. Fig. 9 shows the d-axis current, stator current, speed command and motor speed, DC-link voltage and battery voltage; motor speed and capacitor voltage short-through time duty ratio; respectively, which are quite consistent with the simulation results.
Fig. 9 Experimental result of characteristics for PMSM driven by ZSI (a) motor speed and Speed command (b) current d-axis (c) capacitor voltage, motor speed and Short-through time duty ratio (d) battery voltage, Stator current, DC-link voltage and

6. CONCLUSION
The bidirectional Z source inverter is presented in the paper. The main focus is to increase the speed range of permanent magnet synchronous motor by reducing the amplitude of the current in the high speed region, this is achieved by gating simultaneously both the lower and upper switches of the same phase leg, when the speed of the machine goes higher than the rated speed. The shoot through of the circuit no longer disturbs the system and hence the reliability goes higher. It is a stable low cost single stage highly efficient system. The experimental result is compared with the simulated result and the simulated results were validated. In the proposed system the D-axis current is totally eliminated in the constant power region, obviously in the flux weakening operation the copper loss of the motor will be reduced.

REFERENCES
[1]. Sitharthan R, Geethanjali M and Pandy TKS 2016 Adaptive protection scheme for smart microgrid with electronically coupled distributed generations Alexandria Engineering Journal 55(3) 2539-2550
[2]. Fathima AH, and Palanisamy K 2014 Battery energy storage applications in wind integrated systems—a review IEEE International Conference on Smart Electric Grid 1-8
[3]. Prabaharan N and Palanisamy K 2015 Investigation of single-phase reduced switch count asymmetric multilevel inverter using advanced pulse width modulation technique International Journal of Renewable Energy Research 5(3) 879-890.
[4]. Jerin ARA, Kaliannan P and Subramaniam U 2017 Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer. ISA transactions 70 465-474
[5]. Sitharthan, R, Sundarabalan CK, Devabalaji KR, Nataraj SK and Karthikeyan M 2018 Improved fault ride through capability of DFIG-wind turbines using customized dynamic voltage restorer Sustainable cities and society 39 114-125
[6]. Prabaharan N and Palanisamy K 2016 A single-phase grid connected hybrid multilevel inverter for interfacing photo-voltaic system Energy Procedia 103 250-255
[7]. Palanisamy K, Mishra JS, Raglend IJ and Kothari DP 2010 Instantaneous power theory based unified power quality conditioner (UPQC) IEEE Joint International Conference on Power Electronics, Drives and Energy Systems 1-5
[8] Sitharthan R and Geethanjali M 2017 An adaptive Elman neural network with C-PSO learning algorithm-based pitch angle controller for DFIG based WECS Journal of Vibration and Control 23(5) 716-730

[9] Sitharthan R and Geethanjali M 2015 Application of the superconducting fault current limiter strategy to improve the fault ride-through capability of a doubly-fed induction generator–based wind energy conversion system Simulation 91(12) 1081-1087

[10] Sitharthan R, Karthikeyan M, Sundar DS and Rajasekaran S 2020 Adaptive hybrid intelligent MPPT controller to approximate effectual wind speed and optimal rotor speed of variable speed wind turbine ISA transactions 96 479-489

[11] Sitharthan R, Devabalaji KR and Jees A 2017 An Levenberg–Marquardt trained feed-forward back-propagation based intelligent pitch angle controller for wind generation system Renewable Energy Focus 22 24-32

[12] Sitharthan R, Sundarabalalan CK, Devabalaji KR, Yuvaraj T and Mohamed Imran A 2019 Automated power management strategy for wind power generation system using pitch angle controller Measurement and Control 52(3–4) 169-182

[13] Sundar DS, Umamaheswari C, Sridarshini T, Karthikeyan M, Sitharthan R, Raja AS and Carrasco MF 2019 Compact four-port circulator based on 2D photonic crystals with a 90° rotation of the light wave for photonic integrated circuits applications Laser Physics 29(6) 066201

[14] Sitharthan R, Parthasarathy T, Sheeba Rani S and Ramya KC 2019. An improved radial basis function neural network control strategy-based maximum power point tracking controller for wind power generation system Transactions of the Institute of Measurement and Control 41(11) 3158-3170

[15] Rajesh M and Gnanasekar JM 2017 Path observation based physical routing protocol for wireless ad hoc networks Wireless Personal Communications 97(1) 1267-1289

[16] Palanisamy K, Varghese LJ, Raglend U and Kothari DP 2009. Comparison of intelligent techniques to solve economic load dispatch problem with line flow constraints IEEE International Advance Computing Conference 446-452

[17] Sitharthan R, Ponnusamy M, Karthikeyan M and Sundar DS 2019 Analysis on smart material suitable for autogenous microelectronic application Materials Research Express 6(10) 105709

[18] Rajaram R, Palanisamy K, Ramasamy S and Ramanathan P 2014 Selective harmonic elimination in PWM inverter using fire fly and fireworks algorithm International Journal of Innovative Research in Advanced Engineering 1(8) 55-62

[19] Sitharthan R, Swaminathan JN and Parthasarathy T 2018 March. Exploration of wind energy in India: A short review IEEE National Power Engineering Conference 1-5

[20] Karthikeyan M, Sitharthan R, Ali T and Roy B 2020 Compact multiband CPW fed monopole antenna with square ring and T-shaped strips Microwave and Optical Technology Letters 62(2) 926-932

[21] Sundar D Sridarshini T, Sitharthan R, Madurakavi Karthikeyan, Sivanantha Raja A, and Marcos Flores Carrasco 2019 Performance investigation of 16/32-channel DWDM PON and long-reach PON systems using an ASE noise source In Advances in Optoelectronic Technology and Industry Development: Proceedings of the 12th International Symposium on Photonics and Optoelectronics 93

[22] Sitharthan R and Geethanjali M 2014 Wind Energy Utilization in India: A Review Middle-East J. Sci. Res. 22 796-801 doi:10.5829/idosi.mejsr.2014.22.06.21944

[23] Sitharthan R and Geethanjali M 2014 ANFIS based wind speed sensor-less MPPT controller for variable speed wind energy conversion systems Australian Journal of Basic and Applied Sciences 814-23

[24] Jerin ARA, Kaliannan P, Subramaniam U and El Moursi MS 2018 Review on FRT solutions for improving transient stability in DFIG-WTs IET Renewable Power Generation 12(15) 1786-1799

[25] Prabaharan N, Jerin ARA, Palanisamy K and Umashankar S 2017 Integration of single-phase reduced switch multilevel inverter topology for grid connected photovoltaic system Energy Procedia 138 1177-1183

[26] Ramesh Kumar K, Indragandhi V, Palanisamy K and Arunkumari T 2017 Model predictive current control of single phase shunt active power filter Energy Procedia 117 658-665

[27] Fathima AH and Palanisamy K 2016 Energy storage systems for energy management of renewables in distributed generation systems Energy Management of Distributed Generation Systems 157

[28] Rajesh M 2020 Streamlining Radio Network Organizing Enlargement Towards Microcellular Frameworks Wireless Personal Communications 1-13

[29] Subbiah B, Obaidat MS, Sridam S, Manoharn R and Chandrasekar SK 2020 Selection of intermediate routes for secure data communication systems using graph theory application and grey wolf optimisation algorithm in MANETs IET Networks doi:10.1049/iet-net.2020.0051
[30]. Singh RR and Chelliah TR 2017 Enforcement of cost-effective energy conservation on single-fed asynchronous machine using a novel switching strategy *Energy* 126 179-191

[31]. Amalorpavaraj RAJ, Palanisamy K, Umashankar S and Thirumoorthy AD 2016 Power quality improvement of grid connected wind farms through voltage restoration using dynamic voltage restorer *International Journal of Renewable Energy Research* 6(1) 53-60

[32]. Singh RR, Chelliah TR, Khare D and Ramesh US 2016 November. Energy saving strategy on electric propulsion system integrated with doubly fed asynchronous motors *IEEE Power India International Conference* 1-6

[33]. Singh RR, Mohan H and Chelliah TR 2016 November. Performance of doubly fed machines influenced to electrical perturbation in pumped storage plant-a comparative electromechanical analysis *IEEE 7th India International Conference on Power Electronics* 1-6

[34]. Sumithra M, Abraham A, Rajesh M and Nithiyanandam N 2019 Mining social media content to predict peer trust level in social networks *International Journal of Engineering and Advanced Technology* 6S3 1959-1964

[35]. Venkatesh K, Ali MJS, Nithiyanandam N and Rajesh M 2019 Challenges and Research Disputes and Tools in Big Data Analytics *International Journal of Engineering and Advanced Technology* 6S3 1949-1952