Quantum Phase Transition in a Graphene Model

Simon Hands1, Costas Strouthos2

1 Department of Physics, Swansea University, Singleton Park, Swansea SA2 8PP, UK
2 Department of Mechanical Engineering, University of Cyprus, Nicosia 1678, Cyprus
E-mail: s.hands@swansea.ac.uk, strouthos@ucy.ac.cy

Abstract. We present results for the equation of state of a graphene-like model in an effort to understand the properties of its quantum phase transition. The N_f fermion species interact through a three dimensional instantaneous Coulomb potential. Since there are no reliable analytical tools that work for all values of N_f and the coupling constant g, we rely on Monte Carlo simulations to calculate the critical properties of the model near the phase transition. We consider the four-component formulation for the fermion fields, which arises naturally as the continuum limit of the staggered fermion construction in (2+1) dimensions. In the limit of infinitely strong Coulomb interaction, the system undergoes a quantum phase transition at a critical number of fermion species $N_{fc} \approx 4.7$. We also calculate the values of the critical exponents at the quantum phase transition.

1. Introduction

There has been considerable recent interest in graphene sparked by its discovery and subsequent experimental study. In brief, for a carbon monolayer having one mobile electron per atom, a simple tight-binding model shows that the spectrum of low-energy excitations exhibits a linear dispersion relation centred on zeroes located at the six corners of the first Brillouin zone (see e.g. [1]). Using a linear transformation among the fields at two independent zeroes it is possible to recast the Hamiltonian in Dirac form with $N_f = 2$ flavors of four-component spinor ψ, the counting of the massless degrees of freedom coming from 2 carbon atoms per unit cell \times 2 zeroes per zone \times 2 physical spin components per electron. Electron propagation in the graphene layer is thus relativistic, albeit at a speed $v_F \approx c/100$, which is still much faster than the speed of electrons in an ordinary conductor. The implications for the high mobility of the resulting charge carriers (which may be negatively-charged “particles” or positively-charged “holes” depending on doping) is the source of the current excitement. The stability of the zero-energy points is topological in origin, as emphasised by Creutz [2].

While the above considerations apply quite generally, a realistic model of graphene must incorporate interactions between charge carriers. One such model, due to Son [3], has N_f massless fermion flavors propagating in the plane, but interacting via an instantaneous 3d Coulomb interaction. In Euclidean metric and static gauge $\partial_0 A_0 = 0$ the action reads

$$S_1 = \sum_{a=1}^{N_f} \int dx_0 d^2 x (\psi_a \gamma_0 \partial_0 \psi_a + v_F \bar{\psi}_a \gamma_\mu \nabla^\mu \psi_a + iV \bar{\psi}_a \gamma_0 \psi_a) + \frac{1}{2e^2} \int dx_0 d^2 x (\partial_i V)^2,$$

where e is the electron charge, $V \equiv A_0$, and the 4×4 Dirac matrices satisfy $\{\gamma_\mu, \gamma_\nu\} = 2\delta_{\mu\nu}$, $\mu = 0, 1, 2, 3$. In our notation \vec{x} is a vector in the 2d plane while the index i runs over all three
spatial directions. In the large-N_f limit the dominant quantum correction $\Pi(p)$ comes from a vacuum polarisation fermion-antifermion loop and the resummed V propagator becomes

$$D_1(p) = \left(D_0^{-1}(p) - \Pi(p) \right)^{-1} = \left(\frac{2|\vec{p}|}{e^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p^2)^2} \right)^{-1},$$

(2)

where $p^2 = (p_0, \vec{p})^2 = p_0^2 + e^2 |\vec{p}|^2$, and $D_0(p)$ corresponds to the classical propagation of V. In either the strong coupling or large-N_f limits $D_1(p)$ is thus dominated by $\Pi(p)$, the relative importance of the original Coulomb interaction being governed by a parameter $\lambda \equiv |\Pi/D_0|_{p=0}$.

The chiral symmetry breaking, due to the spontaneous condensation of particle-hole pairs, is signalled by an order parameter $\langle \bar{\psi} \psi \rangle \neq 0$. Physically the most important outcome is the generation of a gap in the fermion spectrum, implying the model is an insulator. Son [3] postulates that this insulating phase exists in the corner of the phase diagram corresponding to large e^2 and small N_f, and in particular that the insulator-conductor phase transition taking place at $N_f = N_{f_c}$ in the strong-coupling limit $e^2 \rightarrow \infty$ is a novel quantum critical point. The value of N_{f_c}, and the issue of whether it is greater or less than the physical value $N_f = 2$, must be settled by a non-perturbative calculation. A recent estimate obtained by a renormalisation group treatment of radiatively-induced four-fermion contact interactions, is $N_{f_c} = 2.03$ [4].

The proposed physics is very reminiscent of the three dimensional Thirring model, which is analytically tractable at large N_f, but exhibits spontaneous chiral symmetry breaking at small N_f and strong coupling [5, 6]. Arguably the Thirring model is the simplest field theory of fermions requiring a computational solution: the location of the phase transition at $N_f = N_{f_c}$ in the strong coupling limit has recently been determined by lattice simulations to be $N_{f_c} = 6.6(1)$ [7]. The apparent similarity of the two systems has led us to propose a Thirring-like model pertinent to graphene, with Lagrangian

$$S_2 = \sum_{a=1}^{N_f} \int \! dx_0 d^2x \left[\bar{\psi}_a \gamma_\mu \partial_\mu \psi_a + i\bar{\psi}_a \gamma_0 \psi_a + \frac{1}{2g^2} V^2 \right].$$

(3)

As for (1) we assume a large-N_f limit to estimate the dominant vacuum polarisation correction; the resultant propagator for V is

$$D_2(p) = \left(\frac{1}{g^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p^2)^2} \right)^{-1}.$$

(4)

In the strong-coupling or large-N_f limits, D_2 coincides with D_1, implying that the fermion interactions are equivalent. It is also the case that $\lim_{p \rightarrow \infty} D_2(p) = \lim_{\lambda \rightarrow \infty} D_1(p)$. This last limit is important because critical behaviour in our model is governed by a UV-stable fixed point of the renormalisation group [5]. We thus expect predictions made with the model (3), and in particular critical behaviour such as the value of N_{f_c}, to be generally valid for Son’s model (1) in the limit of large λ.

2. Lattice Simulations

The lattice formulation of the model (3) studied in this paper is related to the lattice Thirring model studied in [5], except that in this case we used the compact formulation for the auxiliary boson field. The simulations were performed with the standard hybrid molecular dynamics algorithm. The novelty of [7] is that it is the first study of the Thirring model by lattice simulations in the strong-coupling limit $g^2 \rightarrow \infty$. Since we aim to repeat the strategy here we should discuss how this was done. First, note that the vacuum polarisation calculation leading
to the results (2,4) does not go through in quite the same way for the lattice regularised model; rather, there is an additive correction which is momentum independent and UV-divergent:

$$\Pi^{\text{latt}}(p) = \Pi^{\text{cont}}(p) + g^2 J(m),$$

where $J(m)$ comes from incomplete cancellation of a lattice tadpole diagram [5]. This extra divergence not present in the continuum treatments can be absorbed by a wavefunction renormalisation of V and a coupling constant renormalisation $g_R^2 = g^2 \frac{1}{1 - g^2 J(m)}$.

In the large-N_f limit we thus expect to find the strong coupling limit of the lattice model at $g_R^2 \to \infty$ implying $g^2 \to g^2_{\text{lim}}$. For $g^2 > g^2_{\text{lim}}$, $D^{\text{latt}}(p)$ becomes negative, and the lattice model no longer describes a unitary theory.

The action (3) has a chiral symmetry which is explicitly broken by a bare fermion mass term of the form $mn\bar{\psi}_a \psi_a$. Away from the large-N_f limit, where chiral symmetry may be spontaneously broken, there is no analytical criterion for identifying g^2_{lim}; however in this case a numerical calculation of $\langle \bar{\psi} \psi \rangle$ shows a clear peak at $g^2 = g^2_{\text{peak}}$, whose location is approximately independent of both volume and m, indicating an origin at the UV scale [7]. Fig. 1 exemplifies this behaviour in the lattice version of (3) with $N_f = 2$ on system volumes L^3: for $L \geq 24$ we identify $1/g^2_{\text{peak}} \approx 0.3$. Since for orthodox chiral symmetry breaking the magnitude of the condensate is expected to increase monotonically with the coupling strength, we interpret the peak as the point where unitarity violation sets in, i.e. $g^2_{\text{lim}} \approx g^2_{\text{peak}}$. We use simulations performed at $g^2 = g^2_{\text{lim}}$ to explore the strong coupling limit, and find clear evidence for a chiral symmetry restoring phase transition at a well-defined N_{f_c}. As shown in Fig. 2 $1/g^2_{\text{peak}}$ decreases as N_f increases from 2 to 4.75. Near $N_f \approx 4.75$ the curve reaches a minimum, followed by a very rapid increase at $N_f \approx 4.9$ implying a significant change in the strong coupling behavior of the model, which we associate with a phase transition that separates a chirally broken from a chirally symmetric phase.

Since our model has anisotropic interactions in the spatial and temporal directions the correlation lengths near the transition diverge with different exponents, ν_s in the spatial directions, and ν_t in the temporal direction. In this case a modified hyperscaling relation holds [8]:

$$\nu_t + (d - 1)\nu_s = \gamma + 2\beta.$$
We carefully monitored the finite size effects in the spatial directions by comparing the values of the condensate at \(m = 0.01 \), \(g_{\text{peak}}(N_f) \) extracted from simulations on \(16^2 \times 48 \) and \(24^2 \times 48 \) lattices. Our results show that finite \(L_s \) effects are negligible for \(L_s \geq 16 \). We fitted the data generated on several lattices with \(L_s = 16, L_t = 32, 48, 64 \) and \(m = 0.01, \ldots, 0.04 \) to the following RG-inspired equation of state [5]:

\[
m = A[(N_f - N_{f_c}) + CL_t^{-\nu t}](\bar{\psi}\psi)^p + B(\bar{\psi}\psi)^\delta,
\]

where \(p \equiv \delta - \beta^{-1} \). The results show clearly that the model undergoes a second order quantum phase transition and the values of the most significant parameters are: \(N_{f_c} = 4.7(3) \), \(\delta = 3.6(1) \), \(p = 0.82(2) \), and \(\nu_t = 2.6(8) \). The data and the fitted curves are shown in Fig. 3. The fitted value of \(N_{f_c} \) is close to the value of \(N_f \approx 4.9 \), where a rapid change in the \(1/g_{\text{peak}}^2 \) vs \(N_f \) occurs.

Summary

We presented results from a non-perturbative Monte Carlo study of a Thirring-like model pertinent to graphene. Our analysis of its equation of state at strong coupling reveals that the model undergoes a second order quantum phase transition at \(N_{f_c} \approx 4.7 \), which is greater than the physical \(N_f = 2 \) value. This result implies that freely suspended graphene may be an insulator for couplings \(g \) larger than some critical coupling \(g_c \). We are currently exploring this transition via simulations with \(N_f = 2 \).

References

[1] R. Jackiw and S. Y. Pi, Phys. Rev. Lett. 98 (2007) 266402.
[2] M. Creutz, JHEP 0804 (2008) 017
[3] D.T. Son, Phys. Rev. B 75 (2007) 235423
[4] J.E. Drut and D.T. Son, Phys. Rev. B 77 (2008) 075115
[5] L. Del Debbio, S.J. Hands and J.C. Mehegan, Nucl. Phys. B 502 (1997) 269
[6] L. Del Debbio and S.J. Hands, Nucl. Phys. B 552 (1999) 339; S.J. Hands and B. Lucini, Phys. Lett. B 461 (1999) 263
[7] S. Christofi, S.J. Hands and C. Strouthos, Phys. Rev. D 75 (2007) 101701
[8] K. Binder and J.-S. Wang, J. Stat. Phys. 55 (1989) 87