BPE and computer-extracted parenchymal enhancement for breast cancer risk, response monitoring, and prognosis

Bas H.M. van der Velden, PhD
Image Sciences Institute, University Medical Center Utrecht, The Netherlands
bvelden2@umcutrecht.nl

INTRODUCTION

Functional behavior of breast cancer – representing underlying biology – can be analyzed using MRI [1,2]. The most widely used breast MR imaging protocol is dynamic contrast-enhanced T_1-weighted imaging [3]. The cancer enhances on dynamic contrast-enhanced MR imaging because the contrast agent leaks from the leaky vessels into the interstitial space. The contrast agent subsequently leaks back into the vascular space, creating a washout effect [4].

The normal parenchymal tissue of the breast can also enhance after contrast injection. This enhancement generally increases over time [5]. Typically, a radiologist assesses this background parenchymal enhancement (BPE) using the Breast Imaging Reporting and Data System (BI-RADS) [6]. According to the BI-RADS, BPE refers to the volume of enhancement and the intensity of enhancement and is divided in four incremental categories: minimal, mild, moderate, and marked.

Researchers have developed semi-automatic and automatic methods to extract properties of BPE from MR images. For clarity, in this syllabus the BI-RADS definition will be referred to as BPE, whereas the computer-extracted properties will not.

Both BPE and computer-extracted parenchymal enhancement properties have been linked to screening and diagnosis, hormone status and age, risk of development of breast cancer, response monitoring, and prognosis.

BACKGROUND PARENCHYMAL ENHANCEMENT

Giess et al. gave an exhaustive overview of the appearance of BPE [5]. BPE has been shown to be lower in older and in postmenopausal women and patients [7–10].

In screening, MR images with high levels of BPE were more likely to receive an abnormal interpretation, which might lead to recommendations for further testing [11–13]. Increased BPE has also been associated with inaccurate tumor size estimation and inaccurate tumor staging [14,15].

High BPE shows potential as a biomarker for risk assessment of developing breast cancer [16–20]. However, in women without a BRCA mutation, this appeared to be confounded by age [8]. In patients in whom a cancer is detected, those with low BPE had a higher grade tumor which is more likely to be progesterone negative [21].

BPE generally decreases after systemic treatment of breast cancer. This decrease in BPE was found for anti-hormonal therapy [9,22–25], chemotherapy [7,25], and radiation therapy [9].

A substantial agreement was found between BPE assessment on dynamic contrast-enhanced MRI and its counterpart on contrast-enhanced mammography [9]. BPE also correlated with uptake of 99mTc-methoxy isobutyl isonitrile in the breast [26]. BPE did, however, not appear to be related to 18F-fludeoxyglucose uptake on positron emission tomography [27].
Computer-extracted parenchymal enhancement

Computer-extracted features of parenchymal enhancement are typically generated using the following workflow: The parenchymal tissue is segmented on the MR images after which features are calculated using these segmented voxels.

In semi-automatic methods, several approaches exist. Examples include manual delineation of parenchymal tissue on the MR images by an expert and growing of parenchymal tissue segmentations from user-selected seed points. In automatic methods, computer algorithms perform all the steps necessary to get to a parenchymal tissue segmentation (Figure 1).

Once the parenchymal tissue is segmented, numerous features can be calculated. Some common features include the percent enhancement, the signal enhancement ratio, or texture features.

Analogous to BPE, these computer-extracted features can serve as biomarker for the risk of developing breast cancer. They often are used, however, as biomarkers for different tasks such as tumor recurrence, response to treatment, or patient survival. Examples of these biomarkers and their applications can be found in Table 1.

Example: CPE as biomarker of survival

An example of such a biomarker from our group is contralateral parenchymal enhancement (CPE) [28]. In a cohort of 398 patients with estrogen receptor (ER)-positive/HER2-negative breast cancer from the Netherlands Cancer Institute in Amsterdam, we found that patients who have high enhancement in the parenchyma of the contralateral breast (i.e. high CPE) have a significantly better survival than patients with low CPE. This was independent of potential confounding variables such as patient age and tumor pathology markers [28].

The CPE biomarker was validated in an independent cohort of 302 patients with ER-positive/HER2-negative breast cancer from the Memorial Sloan Kettering Cancer Center in New York [29].

In patients considered to be at high-risk by molecular assays such as the 70-gene signature and the 21-gene recurrence score, CPE could identify a group of patients at relatively low risk [30].

Outlook

BPE and computer extracted features of parenchymal enhancement show substantial potential as biomarkers for breast cancer of diagnosis, response monitoring, prognosis, and many other clinically relevant tasks. There are, however, still several opportunities to further progress the field, especially for the computer-extracted biomarkers. Before these can be used at large scale, some issues should be addressed.

The computer-extracted biomarkers should be made agnostic to deviations to MR imaging vendors and protocols, since imaging parameters could influence the biomarkers. Image analysis methods must produce similar results across vendors and protocols. Recent advances in machine learning and most notably deep learning show potential for this. For example, in a recent MICCAI challenge on brain white matter lesion segmentation, deep learning algorithms showed excellent performance on images from scanners that the algorithms were not trained on (http://wmh.isi.uu.nl).

The biology of these computer-extracted biomarkers should be better understood, e.g. by analyzing radiogenomic or radioproteomic datasets. These ‘multi-omic’ datasets can even be used for better prediction of disease outcome. An example of this approach combined MR imaging features of tumor and parenchyma with genomic data to find multidimensional clusters related to patient survival [31].
Figure 1: Example of an automatic image analysis pipeline for calculation of parenchymal enhancement features. A: Transversal pre-contrast breast MRI scan. B: The breast area is automatically segmented. C: The parenchymal tissue in each breast is segmented. D: The enhancement of the parenchymal tissue between the pre-contrast scan and the first post-contrast scan. On these voxels, features are typically calculated.

Table 1: Examples of computer-extracted parenchymal enhancement biomarkers. NB This list is not meant to be exhaustive.

Authors	Year	Parenchyma features	Clinical endpoint
Aghaei et al.	2015	Bilateral PE	Complete response scored on RECIST
Fan et al.	2017	Bilateral PE	Complete response scored on RECIST
Hattangadi et al.	2008	SER surrounding the tumor	Disease-free survival after NAC
Jones et al.	2013	PE surrounding the tumor	Disease-free survival after NAC
Kim et al.	2013	SER surrounding the tumor	Ipsilateral breast tumor recurrence
Knuttel et al.	2016	SER surrounding the tumor	Extensive ductal carcinoma in situ
Luo et al.	2017	Functional Tumor Volume, SER, PE	DCIS recurrence after treatment
Nabavizadeh et al.	2011	PE surrounding the tumor	Microvessel density, genomic changes
van der Velden et al.	2015	Contralateral PE	Overall and disease-free survival
van der Velden et al.	2018	Contralateral PE	Overall and disease-free survival validation
van der Velden et al.	2017	Contralateral PE	Complementary value to 70-GS and 21-GRS
Wang et al.	2015	Density, enhancement, texture	Triple-negative status tumor
Wu et al.	2015	FGT volume and PE	Breast cancer risk after RRSO
Wu et al.	2016	Wash-in slope variance and SER	Breast cancer risk
You et al.	2017	Contralateral PE change	Pathological complete remission after NAC

70-GS = 70-gene signature, 21-GRS = 21-gene recurrence score, DCIS = ductal carcinoma in situ, FGT = fibroglandular tissue, NAC = neoadjuvant chemotherapy, PE = percent enhancement, RECIST = response evaluation criteria in solid tumors, RRSO = risk-reducing salpingo-oophorectomy, SER = signal enhancement ratio
CONCLUSION

BPE and computer extracted features of parenchymal enhancement show potential as biomarkers for clinically relevant tasks.

REFERENCES

[1] L. J. Esserman, A. S. Kumar, A. F. Herrera, J. Leung, A. Au, Y.-Y. Chen, D. H. Moore, D. F. Chen, J. Hellawell, D. Wolverten, et al., “Magnetic resonance imaging captures the biology of ductal carcinoma in situ,” Journal of Clinical Oncology, vol. 24, no. 28, p. 4603, 2006.

[2] C. K. Kuhl, “Current status of breast MR imaging part 2. clinical applications,” Radiology, vol. 244, no. 3, pp. 672–691, 2007.

[3] C. K. Kuhl, “The current status of breast MR imaging part 1. choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology, vol. 244, no. 2, pp. 356–378, 2007.

[4] N. M. Hylton, “Dynamic contrast-enhanced magnetic resonance imaging as an imaging biomarker,” Journal of Clinical Oncology, vol. 24, no. 20, pp. 3293–3298, 2006.

[5] C. S. Giess, E. D. Yeh, S. Raza, and R. L. Birdwell, “Background parenchymal enhancement at breast MR imaging: normal patterns, diagnostic challenges, and potential for false-positive and false-negative interpretation,” Radiographics, vol. 34, pp. 234–47, 1 2014.

[6] E. A. Morris, C. E. Comstock, and C. H. Lee, ACR BI-RADS Magnetic Resonance Imaging. American College of Radiology, Reston, VA, 2013.

[7] J. H. Chen, H. Yu, M. Lin, R. S. Mehta, and M. Y. Su, “Background parenchymal enhancement in the contralateral normal breast of patients undergoing neoadjuvant chemotherapy measured by DCE-MRI,” Magnetic Resonance Imaging, vol. 31, no. 9, pp. 1465–1471, 2013.

[8] B. Bennani-Baiti, M. Dietzel, and P. A. Baltzer, “MRI background parenchymal enhancement is not associated with breast cancer,” PLOS ONE, vol. 11, p. e0158573, 7 2016.

[9] J. Sogani, E. A. Morris, J. B. Kaplan, D. D’Alessio, D. Goldman, C. S. Moskowitz, and M. S. Jochelson, “Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and breast MR imaging,” Radiology, vol. 282, pp. 63–73, 1 2017.

[10] C. You, Y. Gu, W. Peng, J. Li, X. Shen, G. Liu, and W. Peng, “Decreased background parenchymal enhancement of the contralateral breast after two cycles of neoadjuvant chemotherapy is associated with tumor response in HER2-positive breast cancer,” Acta Radiologica, vol. 59, pp. 806–812, 7 2018.

[11] N. M. Hambly, L. Liberman, D. D. Dershaw, S. Brennan, and E. A. Morris, “Background parenchymal enhancement on baseline screening breast MRI: Impact on biopsy rate and short-interval follow-up,” American Journal of Roentgenology, vol. 196, no. 1, pp. 218–224, 2011.

[12] W. B. DeMartini, F. Liu, S. Peacock, P. R. Eby, R. L. Gutierrez, and C. D. Lehman, “Background parenchymal enhancement on breast MRI: Impact on diagnostic performance,” American Journal of Roentgenology, vol. 198, no. 4, pp. 373–380, 2012.

[13] K. M. Ray, K. Kerlikowske, I. V. Lobach, M. B. Hofmann, H. I. Greenwood, V. A. Arasu, N. M. Hylton, and B. N. Joe, “Effect of background parenchymal enhancement on breast MR imaging interpretive performance in community-based practices,” Radiology, vol. 286, pp. 822–829, 3 2018.

[14] T. Uematsu, M. Kasami, and J. Watanabe, “Does the degree of background enhancement in breast MRI affect the detection and staging of breast cancer?,” European Radiology, vol. 21, pp. 2261–2267, 11 2011.

[15] J. E. Baek, S. H. Kim, and A. W. Lee, “Background parenchymal enhancement in breast MRIs of breast cancer patients: impact on tumor size estimation,” European Journal of Radiology, vol. 83, pp. 1356–62, 8 2014.

[16] V. King, J. D. Brooks, J. L. Bernstein, A. S. Reiner, M. C. Pike, and E. a. Morris, “Background parenchymal enhancement at breast MR imaging and breast cancer risk,” Radiology, vol. 260, no. 1, pp. 50–60, 2011.

[17] M. J. DeLeo, S. M. Domchek, D. Kontos, E. Conant, J. Chen, and S. Weinstein, “Breast MRI fibroglandular volume and parenchymal enhancement in BRCA1 and BRCA2 mutation carriers before and immediately after risk-reducing salpingo-oophorectomy,” AJR. American Journal of Roentgenology, vol. 204, pp. 669–73, 3 2015.

[18] B. N. Dontchos, H. Rahbar, S. C. Partridge, L. A. Korde, D. L. Lam, J. R. Scheel, S. Peacock, and C. D. Lehman, “Are qualitative assessments of background parenchymal enhancement related to amount of fibroglandular tissue on MR images, and mammographic density associated with breast cancer risk?,” Radiology, vol. 276, pp. 371–80, 8 2015.

[19] M. Telegrafo, L. Rella, A. A. Stabile Ianora, G. Angelelli, and M. Moschetta, “Breast MRI background parenchymal enhancement (BPE) correlates with the risk of breast cancer,” Magnetic Resonance Imaging, vol. 34, no. 2, pp. 173–176, 2016.

[20] A. Melsaether, A. C. Pujara, K. Elias, K. Pysarenko, A. Gudi, K. Dodelzon, J. S. Babb, Y. Gao, and L. Moyer, “Background parenchymal enhancement over exam time in patients with and without breast cancer,” Journal of Magnetic Resonance Imaging, vol. 45, pp. 74–83, 1 2017.

[21] S. Vreemann, A. Gubern-Mérida, C. Borelli, P. Bult, N. Karssemeijer, and R. M. Mann, “The correlation
of background parenchymal enhancement in the contralateral breast with patient and tumor characteristics of MRI-screen detected breast cancers,” PLOS ONE, vol. 13, p. e0191399, 1 2018.

[22] V. King, S. B. Goldfarb, J. D. Brooks, J. S. Sung, B. F. Nulsen, J. E. Jozeftara, M. C. Pike, M. N. Dickler, and E. A. Morris, “effect of aromatase inhibitors on background parenchymal enhancement and amount of fibroglandular tissue at breast MR imaging,” Radiology, vol. 264, pp. 670–676, 9 2012.

[23] V. King, J. Kaplan, M. C. Pike, L. Liberman, D. David Dershaw, C. H. Lee, J. D. Brooks, and E. A. Morris, “Impact of Tamoxifen on amount of fibroglanular tissue, background parenchymal enhancement, and cysts on breast magnetic resonance imaging,” The Breast Journal, vol. 18, pp. 527–534, 11 2012.

[24] N. A. Mousa, R. Eiada, P. Crystal, D. Nayot, and R. F. Casper, “The effect of acute aromatase inhibition on breast parenchymal enhancement in magnetic resonance imaging: a prospective pilot clinical trial,” Menopause (New York, N.Y.), vol. 19, pp. 420–5, 4 2012.

[25] E. J. Kim, B. J. Kang, S. H. Kim, I. K. Youn, J. E. Baek, and H. S. Lee, “Diagnostic performance of and breast tissue changes at early breast MR imaging surveillance in women after breast conservation therapy,” Radiology, vol. 284, pp. 656–666, 9 2017.

[26] H.-J. Yoon, Y. Kim, J. E. Lee, and B. S. Kim, “Background 99mTc-methoxyisobutylisonitrile uptake of breast-specific gamma imaging in relation to background parenchymal enhancement in magnetic resonance imaging,” European Radiology, vol. 25, pp. 32–40, 1 2015.

[27] H. R. Koo, W. K. Moon, I. K. Chun, J. S. Eo, J. X. Jeyanth, J. M. Chang, N. Cho, and K. W. Kang, “Background 18F-FDG uptake in positron emission mammography (PEM): Correlation with mammographic density and background parenchymal enhancement in breast MRI,” European Journal of Radiology, vol. 82, pp. 1738–1742, 10 2013.

[28] B. H. M. van der Velden, I. Dmitriev, C. E. Loo, R. M. Pijnappel, and K. G. A. Gilhuijs, “Association between parenchymal enhancement of the contralateral breast in dynamic contrast-enhanced MR imaging and outcome of patients with unilateral invasive breast cancer,” Radiology, vol. 276, no. 3, pp. 675–85, 2015.

[29] B. H. M. van der Velden, E. J. Sutton, L. A. Carbonaro, R. M. Pijnappel, E. A. Morris, and K. G. A. Gilhuijs, “Contralateral parenchymal enhancement on dynamic contrast-enhanced MRI reproduces as a biomarker of survival in ER-positive/HER2-negative breast cancer patients,” European Radiology, pp. 1–12, 5 2018.

[30] B. H. M. van der Velden, S. G. Elias, T. Bismeijer, C. E. Loo, M. A. Viergever, L. F. A. Wessels, and K. G. A. Gilhuijs, “Complementary value of contralateral parenchymal enhancement on DCE-MRI to prognostic models and molecular assays in high-risk ER+/HER2- breast cancer,” Clinical Cancer Research, vol. 23, pp. 6505–6515, 8 2017.

[31] J. Wu, Y. Cui, X. Sun, G. Cao, B. Li, D. M. Ikeda, A. W. Kurian, and R. Li, “Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways,” Clinical Cancer Research, vol. 23, pp. 3334–3342, 7 2017.

[32] F. Aghaei, M. Tan, A. B. Hollingsworth, W. Qian, H. Liu, and B. Zheng, “Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy,” Medical Physics, vol. 42, pp. 6520–6528, 10 2015.

[33] M. Fan, G. Wu, H. Cheng, J. Zhang, G. Shao, and L. Li, “Radiomic analysis of DCE-MRI for prediction of response to neoadjuvant chemotherapy in breast cancer patients,” European Journal of Radiology, vol. 94, pp. 140–147, 9 2017.

[34] J. Hattangiadi, C. Park, J. Rembert, C. Klifa, J. Hwang, J. Gibbs, and N. Hylton, “Breast stromal enhancement on MRI is associated with response to neoadjuvant chemotherapy,” American Journal of Roentgenology, vol. 190, no. 6, pp. 1630–1636, 2008.

[35] E. F. Jones, S. P. Sinha, D. C. Newitt, C. Klifa, J. Kormak, C. C. Park, and N. M. Hylton, “MRI enhancement in stromal tissue surrounding breast tumors: association with recurrence free survival following neoadjuvant chemotherapy,” PLOS ONE, vol. 8, no. 5, 2013.

[36] M. Y. Kim, N. Cho, H. R. Koo, B. L. Yun, M. S. Bae, E. K. Chie, and W. K. Moon, “Predicting local recurrence following breast-conserving treatment: parenchymal signal enhancement ratio (SER) around the tumor on preoperative MRI,” Acta Radiologica, vol. 54, pp. 731–738, 9 2013.

[37] F. M. Knuttel, B. H. M. van der Velden, C. E. Loo, S. G. Elias, J. Wesseling, M. A. A. J. Van Den Bosch, and K. G. A. Gilhuijs, “Prediction model for extensive ductal carcinoma in situ around early-stage invasive breast cancer,” Investigative Radiology, vol. 51, pp. 462–8, 7 2016.

[38] J. Luo, B. S. Johnston, A. E. Kitsch, D. S. Hippe, L. A. Korde, S. Javid, J. M. Lee, S. Peacock, C. D. Lehman, S. C. Partridge, and H. Rahbar, “Ductal carcinoma in situ: quantitative preoperative breast MR imaging features associated with recurrence after treatment,” Radiology, vol. 285, pp. 788–797, 12 2017.

[39] N. Nabavizadeh, C. Klifa, D. Newitt, Y. Lu, Y.-Y. Chen, H. Hsu, C. Fisher, T. Tokayasu, A. B. Olshen, P. Spellman, J. W. Gray, N. Hylton, and C. C. Park, “Topographic enhancement mapping of the cancer-associated breast stroma using breast MRI,” Integrative Biology, vol. 3, no. 4, pp. 490–6, 2011.

[40] J. Wang, F. Kato, N. Oyama-Manabe, R. Li, Y. Cui, K. K. Tha, H. Yamashita, K. Kudo, and H. Shirato, “Identifying triple-negative breast cancer using background parenchymal enhancement heterogeneity on
dynamic contrast-enhanced MRI: a pilot radiomics study,” *PLOS ONE*, vol. 10, p. e0143308, 11 2015.

[41] S. Wu, S. P. Weinstein, M. J. DeLeo, E. F. Conant, J. Chen, S. M. Domchek, and D. Kontos, “Quantitative assessment of background parenchymal enhancement in breast MRI predicts response to risk-reducing salpingo-oophorectomy: preliminary evaluation in a cohort of BRCA1/2 mutation carriers,” *Breast Cancer Research*, vol. 17, p. 67, 12 2015.

[42] S. Wu, W. A. Berg, M. L. Zuley, B. F. Kurland, R. C. Jankowitz, R. Nishikawa, D. Gur, and J. H. Sumkin, “Breast MRI contrast enhancement kinetics of normal parenchyma correlate with presence of breast cancer,” *Breast Cancer Research*, vol. 18, p. 76, 7 2016.

[43] C. You, W. Peng, W. Zhi, M. He, G. Liu, L. Xie, L. Jiang, X. Hu, X. Shen, and Y. Gu, “Association between background parenchymal enhancement and pathologic complete remission throughout the neoadjuvant chemotherapy in breast cancer patients,” *Translational Oncology*, vol. 10, pp. 786–792, 10 2017.