Modelling and control of a multi-stage interleaved DC–DC converter with coupled inductors for super-capacitor energy storage system

Dipankar De, Christian Klumpner, Chintanbhai Patel, Kulsangcharoen Ponggorn, Mohamed Rashed, Greg Asher

Department of Electrical and Electronics Engineering, University of Nottingham, Nottingham NG7 2RD, UK
E-mail: dipankar.de@nottingham.ac.uk

Abstract: Interleaved converters with coupled inductors are widely used to share load current in high power applications. It offers high equivalent switching frequency and reduced output current ripples using small size magnetic components. Owing to smaller common-mode inductance, control system can be designed to achieve fast dynamic response. This study proposes eight-channel interleaved DC/DC converter for interfacing super-capacitor energy storage system to a 400 V DC voltage bus. Multi-stage interleaving magnetic circuit with two-phase coupling inductor as a building block is proposed. A methodology is developed to construct the model of the multi-stage magnetic circuit from the basic two-phase coupled inductor model. The derived model is successfully used to evaluate the system power losses and to design the magnetic circuit parameters and its current controller to fulfil the DC/DC converter steady state and dynamic performance specifications. A 20 kW/four stage/8-channel DC/DC converter laboratory prototype has been built to connect a super-capacitor stack to 400 V DC voltage bus. Experimental investigation validates the modelling, the system losses calculations and the design specifications of the system.

1 Introduction

Paralleling of DC–DC converters (Fig. 1a) is the most common solution in high current applications. The channels can be operated synchronously or interleaved, the latter having the advantage that harmonic cancellation takes place on the output. Hence interleaved operation can reduce the switching frequency per channel and/or the smoothing inductance but at the expense of having high circulating currents caused by the existence of inter-channel differential-mode PWM voltage.

Regarding the smoothing inductors, there are two options:

- Using independent inductors [1–4]: The common-mode current ripple (which is a part share of the output current) and the differential mode current ripple (multi-channel circulating current) are equally attenuated.
- Using coupled inductors or inter-cell transformers: Although coupled inductor is one of the key building block in power application from the 1920s [5], its recent application is made by Čuk in buck–boost converter [6, 7]. In [8], Witulski has shown how a coupled inductor differs from normal inductor and transformer. More recently coupled inductors become more popular in interleaved parallel DC–DC application. Its application in hybrid vehicle [9], its performance analysis with soft switching technique [10], thermal behaviour study [11], parasitic ringing phenomenon in discontinuous mode of operation [12], its impact on improving efficiency and dynamic response of converters [13], associated closed-loop control techniques [14, 15] and optimisation and three-dimensional integration of coupled inductors to improve system power density [16–20] are well reported in the literature. In paralleled converters with coupled inductors, the mutual or magnetising inductance attenuates the inter-channel circulating currents, whereas only the leakage inductance attenuates the common mode (CM) current. This means that the design of the inter-cell inductance allows tuning of the magnetising and leakage inductance such that each ripple current component can be attenuated to obtain an optimised performance (current ripple) while minimising the stress (extra loss because of switching ripple) and inductor size.

Fig. 1b shows the topology of a two channel coupled inductor-based interleaved system. The coupled inductor consists of two windings whose mutual inductance \(L_{m1} \) is high. The total self-inductance of each winding is \(L_{S1} \). The high mutual inductance of the coupled inductor provides high impedance to the differential-mode (DM) PWM voltage component \((\nu_1 - \nu_2)\). Hence the DM switching frequency component is attenuated to a small value but the PWM CM, having a frequency of twice the switching frequency \(f_{sw} \), interacts only with the leakage inductance of the coupled inductor. If the inherent leakage inductance is not sufficient to limit the CM \(2f_{sw} \) current component, an
additional L_1 inductance rated for the current cumulated over two channels is required.

If a higher number of channel is required, there are few options:

- Implementing a complex inter-phase transformer with multiple windings [18] which is somewhat difficult to build and will always result in a very customised solution.
- Implementing a structure as in [16, 19], which consists of a number of two winding coupled inductors identical to the number of channels which is much easier to manufacture. The structure achieves some degree of symmetry by inserting in each channel the windings from two different inductors interconnected with the next/previous channel in a circular succession.
- Implementing a multi-stage structure [21, 22], with each stage consisting of two coupled inductor windings with the common point feeding one of the coupled windings of the next stage (see Figs. 1b–d). High dynamic performance and low switching current ripple in each channel current are the key advantage of the topology. Moreover, it provides the flexibility to extend the number of parallel channels without modifying the existing magnetics provided the total number of channels is equal to 2^k (k is an integer). In this paper, the structure will be analysed and modelled for the first time in the literature.

If the number of channels increases to four, a second stage of coupled inductors is necessary as shown in Fig. 1c, where L_{2c} provides the high impedance to the differential mode component, now having a frequency $2f_{sw}$. Unless the leakage inductance present in the two stages is insufficient, an extra inductance L_{l3} is added to limit the $4f_{sw}$ CM component. As the number of channel increases, the number of stages (and the associated leakage inductance contained in the coupled inductors) increases which decreases the value of the final stage inductance.

In this paper, an eight-channel interleaved converter consisting of three stages of coupled inductors (Fig. 1d) is proposed to implement a controllable interface between a super-capacitor stack and a voltage regulated DC bus. A detailed mathematical model of the multi-stage interleaved...
DC–DC converter is derived to enable both steady state and transient analysis of the system. The model is then used to determine the harmonic current components at various stages and to calculate the various losses in the system. Finally, the step response/dynamic performance of the controller and the efficiency of the system are experimentally verified.

The organisation of the paper is as follows. Section 2 describes the modelling of the state matrices of the magnetic structure. Section 3 presents the design of the magnetic components for an eight-channel/four-stage prototype and provides a comparison of the four-stage topology with the one-, two-, three-stage topologies in terms of peak-to-peak ripple content in each stages. The design of the current controller with additional feed-forward term is explained in Section 4. Sections 5 and 6, respectively, details harmonics analysis and loss calculation in the magnets. The experimental results and conclusion of the work are presented in Sections 7 and 8, respectively.

2 Modelling of the system

In this section, modelling of the multi-stage interleaved inductor structure is carried out, starting from a two-stage system and extending to the four-stage system.

2.1 Modelling of the two-stage interleaved system

The circuit diagram of the interleaved two-stage magnetics is shown in Fig. 1b where \(v_a \) and \(v_b \) are the inputs \([\text{the converter pole voltages with respect to the negative DC bus terminal ‘O’ in Fig. 1a}]\) and \(i_a, i_b \) and \(v_0 \) are the three state variables. The time domain waveform of \(v_0 \) is shown in Fig. 1e, where \(T \) is the switching period and ‘\(d \)’ is the operating duty ratio. \(v_0 \) will have similar shape but will be shifted by 180\(^\circ\). The dynamic equations can be written as

\[
\begin{bmatrix}
\frac{d i_a}{d t} \\
\frac{d i_b}{d t} \\
\frac{d v_0}{d t}
\end{bmatrix} =
\begin{bmatrix}
0 & 0 & -\frac{1}{\Sigma L_j} \\
0 & 0 & -\frac{1}{\Sigma L_j} \\
\frac{1}{C} & \frac{1}{C} & 0
\end{bmatrix}
\begin{bmatrix}
i_a \\
i_b \\
v_0
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
N_0 & N_1 \\
N_1 & N_0
\end{bmatrix}
\begin{bmatrix}
v_a \\
v_b
\end{bmatrix} \Rightarrow \frac{dx}{dt} = Ax + Bu
\] (1)

\[
N_0 = \frac{1}{2\Sigma L_j} + \frac{1}{2LT_1}
\]

\[
N_1 = \frac{1}{2\Sigma L_j} - \frac{1}{2LT_1}
\]

\[
\Sigma L_j = L_{i_1} + 2Li_2
\]

\[
LT_1 = LS_1 + L_{m_1}
\]

\[
x = [i_a, i_b, v_0]^T
\]

\[
U = [v_a, v_b, v_0]^T
\]

\(LS_1 \) is the self inductance of each winding in the coupled inductor \((L_{i_1} + L_{m_1})\) and \(L_{i_1} \) and \(L_{m_1} \) are the leakage and the mutual inductances. The state matrices \(A \) and \(B \) can be written as

\[
A = \begin{bmatrix}
0 & 0 & -\frac{1}{\Sigma L_j} \\
0 & 0 & -\frac{1}{\Sigma L_j} \\
\frac{1}{C} & \frac{1}{C} & 0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
N_0 & N_1 \\
N_1 & N_0
\end{bmatrix}
\]

(3)

As the system is linear the small signal model can be written as

\[
\dot{x} = Ax + V_dB[d_a, d_b]^T
\] (4)

where the quantities with hat indicate the linearised small signal quantities. \(d_a \) and \(d_b \) are the duty ratios of channel \(a \) and \(b \), respectively.

2.2 Modelling of the three- and four-stage interleaved system

These stages are considered in order to establish an awareness of the symmetries involved in the final evaluation. The state matrices for the three-stage system (Fig. 1c) can be obtained as

\[
A = \begin{bmatrix}
0 & 0 & 0 & -\frac{1}{\Sigma L_i} \\
0 & 0 & 0 & -\frac{1}{\Sigma L_i} \\
\frac{1}{C} & \frac{1}{C} & \frac{1}{C} & 0
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
N_0 & N_1 & N_2 & N_3 \\
N_1 & N_0 & N_2 & N_3 \\
N_2 & N_0 & N_1 & N_3 \\
N_2 & N_1 & N_0 & N_3
\end{bmatrix}
\]

(5)

\[
N_0 = \frac{1}{4\Sigma L_j} + \frac{1}{4(L_{i_1} + 2LT_2)} + \frac{1}{2LT_1}
\]

\[
N_1 = \frac{1}{4\Sigma L_j} + \frac{1}{4(L_{i_1} + 2LT_2)} - \frac{1}{2LT_1}
\]

\[
N_2 = \frac{1}{4\Sigma L_j} - \frac{1}{4(L_{i_1} + 2LT_2)}
\]

\(\Sigma L_j = L_{i_1} + 2Li_2 + 4L_{i_3} \)

\(LT_{1, i} = LS_{i_1} + L_{m_1} \) for \(i = 1, 2 \)

The state variables and input to the system are \(x = [i_a, i_b, i_c, i_d, v_0]^T \) and \(U = [v_a, v_b, v_c, v_d]^T \), respectively. Again the small
signal model can be written as

\[\dot{x} = A \dot{x} + V_{dc} B [\dot{d}_a \; \dot{d}_b \; \dot{d}_c \; \dot{d}_d]^T \] \hspace{1cm} (7)

If \(r_1, \; r_2, \; r_3 \) and \(r_4 \) are the resistances of the coils in the respective stages in the power circuit (Fig. 1d), the state matrices for the four-stage system can be derived as (see (8))

\[
B = \begin{bmatrix}
N_0 & N_1 & N_2 & N_3 & N_0 & N_1 & N_2 & N_3 \\
N_1 & N_0 & N_2 & N_3 & N_1 & N_0 & N_2 & N_3 \\
N_2 & N_1 & N_0 & N_3 & N_2 & N_1 & N_0 & N_3 \\
N_3 & N_2 & N_1 & N_0 & N_3 & N_2 & N_1 & N_0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\hspace{1cm} (9)
\]

\[
\begin{align*}
N_0 &= \frac{1}{8SL_i} + \frac{1}{8(L_{i1} + 2L_{i2} + 4L_{T1})} + \frac{1}{4(L_{i1} + 2L_{T1})} + \frac{1}{2L_{T1}} \\
N_1 &= \frac{1}{8SL_i} + \frac{1}{8(L_{i1} + 2L_{i2} + 4L_{T1})} + \frac{1}{4(L_{i1} + 2L_{T1})} - \frac{1}{2L_{T1}} \\
N_2 &= \frac{1}{8SL_i} + \frac{1}{8(L_{i1} + 2L_{i2} + 4L_{T1})} - \frac{1}{4(L_{i1} + 2L_{T1})} \\
N_3 &= \frac{1}{8SL_i} - \frac{1}{8(L_{i1} + 2L_{i2} + 4L_{T1})} \\
M_0 &= \frac{\Sigma r}{8SL_i} + \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} + \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} + \frac{r_1}{2L_{T1}} \\
M_1 &= \frac{\Sigma r}{8SL_i} + \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} + \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} - \frac{r_1}{2L_{T1}} \\
M_2 &= \frac{\Sigma r}{8SL_i} + \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} - \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} \\
M_3 &= \frac{\Sigma r}{8SL_i} - \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} - \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} \\
M_4 &= \frac{\Sigma r}{8SL_i} - \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} + \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} \\
M_5 &= \frac{\Sigma r}{8SL_i} - \frac{r_1 + 2r_2 + 4r_3}{8(L_{i1} + 2L_{i2} + 4L_{T1})} - \frac{r_1 + 2r_2}{4(L_{i1} + 2L_{T1})} \\
\end{align*}
\]

The state variables and input to the system are \(X = \{i_a \; i_b \; i_c \; i_d \; i_e \; i_f \; i_g \; i_h \} \) and \(U = \{v_a \; v_b \; v_c \; v_d \; v_e \; v_f \; v_g \; v_h \} \), respectively. The small signal model of the system is

\[\dot{x} = A \dot{x} + V_{dc} B [\dot{d}_a \; \dot{d}_b \; \dot{d}_c \; \dot{d}_d \; \dot{d}_e \; \dot{d}_f \; \dot{d}_g \; \dot{d}_h]^T \] \hspace{1cm} (11)

In the subsequent sections, the above model (8)–(11) will be used and/or approximated to design the magnetics, its current controller and to calculate the harmonic losses in it.

3 Design of the magnetics and comparison

3.1 Design of the magnetics for the four-stage structure

For the super-capacitor application there are eight channels in parallel to share the total current. In this section, the magnetic components for this topology are designed. The design is based on the restriction of equal maximum peak-to-peak circulating current ripple in the coupled stages (stage-1, stage-2 and stage-3) and the maximum peak-to-peak ripple in stage-4. From (8), (9) and Fig. 1d, ignoring the effect of resistances we can write

\[\frac{d\dot{i}_a}{dt} = \frac{d\dot{i}_b}{dt} = \frac{v_a - v_b}{L_{T1}} \] \hspace{1cm} (12)

If the circulating current in the first stage is separated,
\[I_{c1} = i_d = -i_h \text{ then (12) becomes} \]
\[\frac{dI_{c1}}{dt} = \frac{v_a - v_h}{2L_{T1}} \quad (13) \]

Similarly, the circulating current in stage-2 and stage-3 can be expressed as
\[\frac{dI_{c2}}{dt} = \frac{v_a + v_h - v_c - v_d}{2(L_{T1} + 2L_{T2})} \quad (14) \]
\[\frac{dI_{c3}}{dt} = \frac{v_a + v_h + v_c + v_d - v_e - v_f - v_g - v_h}{2(L_{T1} + 2L_{T1} + 4L_{T2})} \quad (15) \]

Again, the final stage current can be expressed from (8) and (9) as
\[\frac{dI_4}{dt} = \frac{v_a + v_b + v_c + v_d + v_e + v_f + v_g + v_h - 8v_0}{\Sigma L_t} \quad (16) \]

Now, for different duty ratios \(d \), the peak-to-peak ripple in the circulating currents \(\Delta I_{c1}, \Delta I_{c2}, \Delta I_{c3} \) and in the total current \(\Delta I_4 \) can be expressed as
\[\Delta I_{c1} = \frac{dT_s V_{dc}}{2L_{T1}}; \quad 0 < d \leq 0.5 \]
\[= \frac{(1 - d)T_s V_{dc}}{2L_{T1}}; \quad 0.5 < d \leq 1 \quad (17) \]
\[\Delta I_{c2} = \frac{d(T_s V_{dc})}{2(L_{T1} + 2L_{T2})}; \quad 0 < d \leq 0.25 \]
\[= \frac{(0.5 - d)T_s V_{dc}}{2(L_{T1} + 2L_{T2})}; \quad 0.25 < d \leq 0.5 \]
\[= \frac{(d - 0.5)T_s V_{dc}}{2(L_{T1} + 2L_{T2})}; \quad 0.5 < d \leq 0.75 \]
\[= \frac{(1 - d)T_s V_{dc}}{2(L_{T1} + 2L_{T2})}; \quad 0.75 < d \leq 1 \quad (18) \]
\[\Delta I_{c3} = \frac{d(T_s V_{dc})}{2(L_{T1} + 2L_{T1} + 4L_{T2})}; \quad 0 < d \leq 0.125 \]
\[= \frac{(0.25 - d)T_s V_{dc}}{2(L_{T1} + 2L_{T1} + 4L_{T2})}; \quad 0.125 < d \leq 0.25 \quad (19) \]
\[\Delta I_4 = (d - 8d^2) \frac{T_s V_{dc}}{\Sigma L_t}; \quad 0 < d \leq \frac{1}{16} \]
\[= \left[(0.125 - d) - 8 \left(0.125 - d^2 \right) \right] \frac{T_s V_{dc}}{\Sigma L_t}; \quad \frac{1}{16} < d \leq \frac{1}{8} \quad (20) \]

In the above equations, the pattern of \(\Delta I_3 \) and \(\Delta I_4 \) repeats for the remaining range of duty ratio (not shown). \(T_s \) is the switching period. The expression of maximum peak-to-peak ripple in each stage \((\Delta I_{c1\text{max}}, \Delta I_{c2\text{max}}, \Delta I_{c3\text{max}} \text{ and } \Delta I_{4\text{max}}) \) can easily be derived. With design constraint \(\Delta I_{c1\text{max}} = \Delta I_{c2\text{max}} = \Delta I_{c3\text{max}} = \Delta I_{4\text{max}} = \Delta I = 2A \), the inductance requirement in each stage can be evaluated as
\[L_{T1} = \frac{V_{dc} T_s}{4\Delta I_{c1\text{max}}}; \quad L_{T2} = \frac{V_{dc} T_s}{4\Delta I_{c2\text{max}}}; \quad L_{T3} = \frac{V_{dc} T_s}{32\Delta I_{c3\text{max}}}; \quad L_{T4} = \frac{V_{dc} T_s}{32\Delta I_{4\text{max}}} \quad (21) \]

In order to complete the inductor design, it is important to evaluate the currents that produce the maximum flux densities in the cores of each stage \((I_{1\text{rms}}, I_{2\text{rms}}, I_{3\text{rms}}, I_{4\text{rms}}) \) and the RMS winding currents through each stage \((I_{1\text{rms}}, I_{2\text{rms}}, I_{3\text{rms}}, I_{4\text{rms}}) \). The values of these currents at the worst case operating condition can be represented as
\[I_{1\text{rms}} = \frac{\Delta I_{c1\text{max}}}{2}; \quad I_{2\text{rms}} = \frac{\Delta I_{c2\text{max}}}{2}; \quad I_{3\text{rms}} = \frac{\Delta I_{c3\text{max}}}{2}; \quad I_{4\text{rms}} = I_z + \frac{\Delta I_{4\text{max}}}{2} \]
\[I_{4\text{rms}} = \sqrt{I_z^2 + \left(\frac{\Delta I_{4\text{max}}}{2\sqrt{3}} \right)^2} \quad (22) \]
\[I_{3\text{rms}} = \sqrt{\left(\frac{I_{3\text{rms}}}{2} \right)^2 + \left(\frac{\Delta I_{c3\text{max}}}{2\sqrt{3}} \right)^2} \]
\[I_{2\text{rms}} = \sqrt{\left(\frac{I_{2\text{rms}}}{2} \right)^2 + \left(\frac{\Delta I_{c2\text{max}}}{2\sqrt{3}} \right)^2} \]
\[I_{1\text{rms}} = \sqrt{\left(\frac{I_{1\text{rms}}}{2} \right)^2 + \left(\frac{\Delta I_{c1\text{max}}}{2\sqrt{3}} \right)^2} \quad (22) \]

where \(I_z \) is the cumulative DC current component. Finally, the area product of each inter-cell transformer (for the first three stages) and the inductor for the final stage can be obtained as
\[A_e A_w = \frac{L_{zTm}}{K_w B_{m} J} \quad (23) \]

where the inductance \(L = 4L_{m1}, \Delta L_{m1}, \Delta L_{m}, \Delta L_{1} \), the peak current \(I_m = I_{1\text{rms}}, I_{2\text{rms}}, I_{3\text{rms}}, I_{4\text{rms}} \) and the RMS current \(I_{1\text{rms}}, I_{2\text{rms}}, I_{3\text{rms}}, I_{4\text{rms}} \), respectively, for the stage-1, stage-2, stage-3 and stage-4 inductor design. \(A_e \) and \(A_w \) are the cross-section and window area of the core, \(K_w \) is the window fill factor, \(B_{m} \) and \(J \) are the peak flux density and current density, respectively. From (23) the magnetic cores are selected. The number of turns \((n_T) \) and air gap \((l_g) \) can be selected as follows
\[n_T = \frac{L_{1m}}{B_{m} A_e}; \quad l_g = \frac{\mu_0 n_T I_m}{B_{m}} \quad (24) \]
where μ_0 is the permeability of the air. The designed air gap needs to be tuned to obtain the desired inductance. The details of the inductor values (measured by high precision digital RLC meter PSM1735) are listed in Table 2 in the Appendix.

3.2 Comparison of one-, two-, three- and four-stage structure

In this section, the performance in terms of peak-to-peak ripple current in each channel winding of the various stages is compared of the one-, two-, three-, four-stage structures (shown in Fig. 2). For the one-stage case of Fig. 2a, there are eight separate inductors. The coefficient of the B matrix in (9) can be easily derived as, $N' = 1/(8L)$ and $N_1 = N_2 = N_3 = N_4 = 0$. Using the same methodology used in the last subsection for the four-stage topology, the peak-to-peak inductors current ripple (ΔI_1) and the peak-to-peak ripple in the cumulated current (ΔI_2) can be derived. Fig. 3a shows these peak-to-peak ripple currents with variation in duty ratio. Similarly, for the two-, three-, four-stage case, the same parameters are plotted with duty cycle in Figs. 3b–d, respectively. For the four-stage case the peak-to-peak ripple in each channel current can be obtained by

$$
\Delta I_1 = \Delta Ic_1 + \frac{\Delta Ic_2}{2} + \frac{\Delta Ic_3}{4} + \frac{\Delta I_4}{8}
$$

$$
\Delta I_2 = \Delta Ic_2 + \frac{\Delta Ic_3}{2} + \frac{\Delta I_4}{4}
$$

$$
\Delta I_3 = \Delta Ic_3 + \frac{\Delta I_4}{2}
$$

where ΔI_1, ΔI_2, ΔI_3 and ΔI_4 are the peak-to-peak ripple currents through consecutive stage windings. In Fig. 3, the values for various stage currents are calculated for the same peak-to-peak ripple in the cumulative current. It can be observed that with increasing number of stages the peak-to-peak ripple in all the stages decreases and the best performance is achieved with the four-stage case.

4 Controller design

The structure of the current controller is shown in Fig. 4a. The super-capacitor current reference I_{sc}^* is divided equally among eight channels as the reference i_a^* to i_h^* (Fig. 2). Each channel requires an individual PI controller to prevent saturation of the magnetics. The super-capacitor voltage is added as a feed-forward term where G is the gain of the modulator plus inverter. Fig. 4b shows the generalised block diagram of the controller plus plant after the feed-forward addition. The output of each PI controller (duty ratio signal) is passed through the control to total current transfer function $[\text{say, } (\frac{I_{sc}(s)}{D_A(s)})]$. The total current i_{sc} is obtained by summing the contributions from each channel. The channel currents can be obtained by multiplying F_a, F_b, ..., F_h with...
As \(W_a(s) = W_b(s) = \ldots = W_d(s) \), (28) reduces to

\[
\frac{I_{sc}(s)}{I_{sc}(s)} = \frac{W_a(s)}{1 + W_d(s)} \tag{29}
\]

Thus the control diagram is simplified to that of Fig. 4c where the delay of the controller is considered.

The open-loop control transfer function can be written as

\[
OL(s) = \frac{I_{sc}(s)}{I_{receree}(s)} = \frac{k_p(1 + sT_i)}{sT_d} \frac{V_{dc}}{s\Sigma L_i + \Sigma r} \tag{30}
\]

where \(e^{-sT_d} \) models the delay of the controller, \(k_p \) and \(T_i \) are the PI controller gain and time constant, respectively. The consideration of delay \(e^{-sT_d} \) imposes a limitation on the controller bandwidth and the stability of the system (as considered in [23]). Please note that \(W_a(s) \) and \(OL(s) \) are the same transfer function except that \(OL(s) \) considers the delay. At the crossover frequency \(\omega_c \), the open-loop system should have unity gain and a specified phase margin \(\phi_m \).

\[
\angle OL(j\omega) = -\pi + \phi_m
\]

\[
= \angle \left(\frac{k_p(1 + j\omega T_i)}{j\omega T_d} \frac{V_{dc}}{j\omega \Sigma L_i + \Sigma r} \right)
\]

\[
= \tan^{-1}(\omega_c T_i) - \frac{\pi}{3} - \omega_c T_d - \tan^{-1} \left(\frac{\omega_c \Sigma L_i}{\Sigma r} \right)
\]

\[
\angle OL(j\omega) \equiv \angle \frac{k_p V_{dc}}{\omega_c \Sigma L_i} - \frac{\omega_c \Sigma L_i}{V_{dc}} \tag{31}
\]

In (31) and (32), the approximations are justified as \(\omega_c \Sigma L_i \gg \Sigma r \). With \(\phi_m = 0 \), (31) and (32) can be solved for a given \(T_i \) [the value of Ti is given in Appendix (Table 3)]. \(k_p \) is turns out to be 0.0696 (\(k_{p_{\text{max}}} \)). This \(k_p \) corresponds to the absolute limit of stability. It can be observed from the Bode plot of \(OL(s) \) with \(k_p = \frac{75}{50} \text{ m}\Omega > k_{p_{\text{max}}} \) in Fig. 5a that the phase margin is negative. However, a slightly smaller value of \(k_p \) (\(k_p = 50 \text{ m}\Omega \)) provides stable operation but results in larger overshoots. A target phase margin \(\phi_m = 45^\circ \) can be achieved with \(k_p = 0.0258 \) [from (31) and (32)]. The observation can also be made from the Bode plot in Fig. 5a with \(k_p = 25 \text{ m}\Omega \). In order to verify the above observations a simulation model is studied in MATLAB. In the simulation, the plant of eight-channel four-stage topology in Fig. 1d and the controller in Fig. 4a are modelled and the equally phase shifted carriers are used to achieve proper ripple cancellation. A step change in the total current reference \(I_{sc} \) is made and the response is observed with different \(k_p \) values. In these simulation results, \(I_a, I_b, \ldots, I_h \) are the individual channel currents, \(V_{ca} \) is the output of one of the current controllers, \(I_{sc} \) is the combined total current.

1366
© The Institution of Engineering and Technology 2013
shows the simulation result with \(k_p = 25 \text{ m} \Omega\) which corresponds to a stable operating point. In steady state, \(V_{ca}\) is free from oscillation which is consistent with the damped response. Fig. 5c shows the transient response that corresponds to \(k_p = 50 \text{ m} \Omega\). Transiently, the current rises faster than that with \(k_p = 25 \text{ m} \Omega\) but experiences a slight oscillation at steady state. This is because of small the phase margin of the system. Although this operating point is stable, the small phase margin can cause a low-frequency oscillation in the inductor currents resulting in incomplete ripple cancellation and even saturation. Hence this operating point is not optimal in terms of magnetic component stress and leg current balancing. Finally with \(k_p = 75 \text{ m} \Omega\), the system goes unstable as seen in Fig. 5d. At this stage, the continuous operation of the controller is lost and it operates in a similar manner to a bang–bang controller.

Fig. 6a shows the Bode plot of the closed-loop transfer function of the system \((I_m(s))/I_{sc}(s))\). The measured closed-loop gains and phase shifts at various discrete frequencies are also shown in this figure. The measured values from simulation and experiment are quite close to the analytical values and a slight deviation will not be a serious issue as the designed phase margin (46.3°) and gain margin (9.1 dB) are quite high.

The step responses for different load variations are shown in Fig. 6b. Four different step responses are shown with \(-50 \text{ A} \rightarrow -20 \text{ A}, -50 \text{ A} \rightarrow 0 \text{ A}, -50 \text{ A} \rightarrow 20 \text{ A}\) and \(-50 \text{ A} \rightarrow 50 \text{ A} \) reference changes. The effect of parameter variation on stability is shown in Fig. 6c. \(\Sigma L_l\) and \(\Sigma r\) are varied ±20% to observed the effect on phase margin with the same designed value of the control parameters. It can be seen that there is no effect on the phase margin with resistance variations and a 20% decrease of inductance leads to a phase margin of 41° (which is still a good phase margin). In Fig. 6c, the system is still symmetric as the the variations in \(\Sigma L_l\) and \(\Sigma r\) are considered in symmetrical manner. However, in reality the variation may occur in one particular channel to make the system non-symmetric. In case of non-symmetrical system the mathematical description become extremely complicated hence computer programming can only handle such situation. A case study of non-symmetrical system is shown in Fig. 6d where it is assumed that channel-h leakage inductance is different (±20%) from the other channels. With this variation the eighth columns of matrices \(A\) and \(B\) [in (8) and (9)] obtain changed form their original values. It can be seen that the variations in the Bode plots of the open-loop system are very small and the phase margin is 45.8° with 20% smaller inductance.

5 Harmonics analysis

In this section, the harmonic components of the applied voltages \((v_a, v_b, v_c, v_d, v_e, v_f, v_g, v_h)\) are determined to obtain the expressions of the various current harmonics in different stages of the system.
5.1 Voltage harmonics

From Fig. 1e, $v_a(t)$ can be expressed as

$$v_a(t) = V_{dc}, \quad 0 < t \leq dT$$

$$a \quad dT < t \leq T$$ (33)

This ignores the switching time of the semiconductor devices and dead time interval between top and bottom devices. At steady state, $v_a(t)$ is periodic in nature and it can be separated into its Fourier content as

$$v_a(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \}$$ (34)

$$a_0 = \frac{1}{T} \int_0^T v_a(t) \, dt = dV_{dc}$$

$$a_n = \frac{2}{T} \int_0^T v_a(t) \cos(n\omega_0 t) \, dt = \frac{V_{dc}}{n\pi} \sin \left(2\pi n \frac{d}{T} \right)$$

$$b_n = \frac{2}{T} \int_0^T v_a(t) \sin(n\omega_0 t) \, dt = \frac{V_{dc}}{n\pi} \left[1 - \cos \left(2\pi n \frac{d}{T} \right) \right]$$ (35)

where $\omega_0 = (2\pi/T)$. All the components a_0, a_n, b_n are same for $v_b, v_c, v_d, v_e, v_f, v_g, v_h$. However, in the time domain expressions there will be a phase shift in (34) as follows

$$v_b(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos \left(n\omega_0 t + \frac{\pi}{2} \right) + b_n \sin \left(n\omega_0 t + \frac{\pi}{2} \right) \}$$

$$v_c(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos \left(n\omega_0 t + \frac{3\pi}{2} \right) + b_n \sin \left(n\omega_0 t + \frac{3\pi}{2} \right) \}$$

$$v_d(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos \left(n\omega_0 t + \frac{\pi}{4} \right) + b_n \sin \left(n\omega_0 t + \frac{\pi}{4} \right) \}$$

$$v_e(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos \left(n\omega_0 t + \frac{3\pi}{4} \right) + b_n \sin \left(n\omega_0 t + \frac{3\pi}{4} \right) \}$$

$$v_f(t) = a_0 + \sum_{n=1}^{\infty} \{ a_n \cos \left(n\omega_0 t + \frac{7\pi}{4} \right) + b_n \sin \left(n\omega_0 t + \frac{7\pi}{4} \right) \}$$ (36)
5.2 **Calculation of current harmonics**

From (8) and (9) ignoring the effect of resistances we can write

\[
\frac{di}{dt} = N_0 v_a + N_1 v_b + N_2 (v_c + v_d) + N_3 (v_e + v_f + v_g) - \frac{v_0}{\sum I_i}
\]

(37)

By integrating and replacing \(v_a, v_b, v_c, v_d, v_e, v_f, v_g, v_h\) by their Fourier coefficients

\[
i_i = I_0 + \sum N_i \left[a_i \sin(\pi n t) + b_i \cos(\pi n t) \right]
\]

(38)

where \(k = 0\) and \(N_e = N_0 + N_1 \cos(\pi n t) + 2N_2 \cos((\pi n t)(2)) + 4N_3 \cos((\pi n t)(4))\) and \(I_0\) is the DC component of the current. The other channel current expressions are similar except \(k = 1, (1/2), (1/4), (5/4), (3/4), (7/4)\) for expressions of \(i_0, i_1, i_{1/2}, i_{1/4}, i_{3/4}, i_{5/4}, i_{7/4}\), respectively.

Similarly the second-stage currents (see Fig. 1d) can be expressed as (see (39))

The third- and fourth-stage currents (see Fig. 1d) can be expressed as (see (40))

Equations (38)–(40) represent the time domain expressions of the current at various stages of the power circuit in terms of the individual Fourier coefficients. In next subsection, these expressions will be used to evaluate the RMS expressions of the currents in each stage.

5.3 **RMS expressions of the currents in terms of duty ratio 'd'**

The expressions of \(n\)th harmonics in the first-stage current can be expressed as

\[
I_{\text{rms}(n)} = K_n \sqrt{1 - \cos(2n\pi d)}
\]

(41)

where sub-script 1 \(\text{rms}(n)\) represents the RMS component of \(n\)th harmonics in the first stage. The similar expressions for the second, third and fourth stage can be written as

\[
I_{2\text{ms}(n)} = 2K_n \cos\left(\frac{n\pi}{2}\right) \sqrt{1 - \cos(2n\pi d)}
\]

\[
I_{3\text{ms}(n)} = 4K_n \cos\left(\frac{n\pi}{4}\right) \sqrt{1 - \cos(2n\pi d)}
\]

\[
I_{4\text{ms}(n)} = 8K_n \cos\left(\frac{n\pi}{8}\right) \sqrt{1 - \cos(2n\pi d)}
\]

(42)

These harmonics (upto eighth order for clarity) are plotted in Fig. 7 with the variations of the operating duty ratio. It is interesting to note that the harmonic cancellation in the respective stages of the magnetics. In stage-1, the switching frequency \(f_{\text{sw}}\) component is dominant. In stage-2, \(f_{\text{sw}}\) component is cancelled out and 2\(f_{\text{sw}}\) component dominates. Similarly in stage-3, \(f_{\text{sw}}\) and 2\(f_{\text{sw}}\) components are very small compared to 4\(f_{\text{sw}}\) component. Finally, in stage-4 the lower order harmonics are insignificant compared with eighth-order harmonics component. The magnitudes of the harmonics components beyond eighth order are very small and hence they are neglected in the calculation.

6 **Loss calculation in the magnetics**

The inductances and high frequency resistances of the implemented magnetics are given in Tables 2 and 5 in Appendix. The details of the core materials are listed in Table 4. These parameters are used in conjunction with the expressions derived in the previous section to calculate copper and core losses in the magnetics.

6.1 **Conduction loss**

In the first-stage conduction loss can be expressed as

\[
\text{Loss}_{\text{cond}} = 8 \left[I_0^2 r_{1(0)} + \sum_{n=1}^{8} I_{\text{rms}(n)}^2 r_{1(0)} \right]
\]

(43)

The factor 8 is due to the fact that there are 8 channels. In this
expression, the conduction loss because of DC currents is
\[I_0^2 r_{1(0)}. \]
Similarly the conduction losses in the other stages can be evaluated as
\[
\text{Loss}_{2\text{cond}} = \frac{4}{2} I_0^2 r_{2(0)} + \sum_{n=1}^{8} I_{2\text{rms}(n)}^2 r_{2(n)}
\]
\[
\text{Loss}_{3\text{cond}} = \frac{2}{4} I_0^2 r_{3(0)} + \sum_{n=1}^{8} I_{3\text{rms}(n)}^2 r_{3(n)}
\]
\[
\text{Loss}_{4\text{cond}} = \frac{8}{8} I_0^2 r_{4(0)} + \sum_{n=1}^{8} I_{4\text{rms}(n)}^2 r_{4(n)}
\]

Fig. 8a shows the variations of conduction loss in various stages because of high frequency currents. It is interesting to note that the conduction loss depends on operating duty ratio of the system.

6.2 Core loss

The core loss is dependent on the magnetising current that is responsible for flux in each stage. This magnetising current is nothing but the circulating current (as mentioned in Section 3). From (13), the nth component in the magnetising current in stage-1 can be written as
\[
I_{1m(n)} = \frac{V_{dc}}{L r_{1(0)}} \sin \left(\frac{n \pi}{2} \right) \sqrt{2 - 2 \cos (2n \pi d)}
\] (45)

Similarly, for the second and third stage the nth component of the magnetising current can be expressed as
\[
I_{2m(n)} = \frac{2 V_{dc}}{2 L r_{2(0)} + L_{1i}} \sin \left(\frac{n \pi}{2} \right) \sqrt{2 - 2 \cos (2n \pi d)}
\] (46)
\[
I_{3m(n)} = \frac{4 V_{dc}}{4 L r_{3(0)} + 2 L_{l2} + L_{1i}} \sin \left(\frac{n \pi}{4} \right) \sqrt{2 - 2 \cos (2n \pi d)}
\] (47)

For stage-4, as it is a normal inductor (not coupled)
\[
I_{4m(n)} = 8 K_n \cos \left(\frac{n \pi}{2} \right) \cos \left(\frac{n \pi}{4} \right) \sqrt{2 - 2 \cos (2n \pi d)}
\] (47)
The current harmonics in (45)–(47) are responsible for flux in the respective cores of the inductors in various stages and hence core losses. From the core manufacturing data sheet [24] the core loss in stage-1 can be evaluated as follows

\[\text{Loss}_{\text{iron}}^1 = 4M \sum_{n=1}^{8} \left(\frac{n f_{\text{sw}}}{1000} \right)^{1.51} \left(\frac{4L_{\text{m}} f_{\text{in(on)}}}{T_{\mu} A_{c}} \right)^{1.74} \]

(48)

where \(M \) is the mass of the core in kg; \(T_{\mu} \) is the number of turns that produces the main working flux in the core (stage-1); \(f_{\text{sw}} \) is the switching frequency; and \(A_{c} \) is the core cross-sectional area. The core losses for the other stages can be calculated in similar manner. These losses are plotted in Fig. 8b for various duty ratios. The high frequency losses (core loss + high frequency conduction loss) in the magnetics is plotted in Fig. 8c.

7 Experimental investigation

In order to validate the proposed converter model and the associated control algorithm an experimental prototype of a 20 kW four-stage/eight-channel interleaved DC–DC converter designed as a part of a super-capacitor interface system is tested under both transient and steady-state loading conditions. The photograph of the power circuit is shown in Fig. 9. The entire super-capacitor panel with power circuit and super-capacitor stack is shown in Fig. 9a. Fig. 9b is the zoomed view of the power circuit with various coupled inductor stages. The construction of one coupled inductor (second stage) is shown in Fig. 9c. A floating-point DSP-FPGA-based digital control platform (development platform C6713 DSK-based on Texas Instruments TMS320C6713 DSP + Actel Proasic3 A3P400-PQG208 FPGA board) able to perform very fast A/D conversion (eight inductor currents, DC bus and capacitor voltages) and generate sufficient PWM signals is used to implement the closed-loop control action as described in the previous section.

Fig. 10 shows the measured peak-to-peak current ripple against duty ratio (from 0.5 to 0.9). The calculated values for the relevant channel of different stages are shown. It can be observed that the measured values are very close to the predicted values (Fig. 3d) which validates the peak–peak ripple calculation of Section 3. Fig. 11a shows the system performing a 20 kW constant power charge/discharge cycling of the super-capacitor stack. The super-capacitor voltage \((V_{\text{sc}}) \) was set between 250 and 350 V and the DC-link voltage \((V_{\text{dc}}) \) is maintained at 400 V. The waveform of the cumulated interleaved converter current drawn from the super-capacitor stack shows a very small relative ripple which confirms that the design of the multi-stage smoothing filter was very effective. As the super-capacitor voltage is not fixed the operating duty cycle of the converter also changes with time. Hence, the direct measurement of efficiency at various power level is not straightforward and an alternative efficiency namely, round-trip efficiency [25] of the converter is evaluated. The round-trip efficiency accounts for the energy returned from an energy storage system relative to the energy that was put in. It is therefore a multiplication of the conversion efficiencies for charging and discharging [25]. The measured values of \(V_{\text{sc}}, I_{\text{sc}}, V_{\text{dc}} \) and \(I_{\text{dc}} \) are stored in a personal computer and then the energy in and energy out in...

Fig. 8 Calculated losses in the magnetics with duty ratio

a High frequency copper loss in the magnetic components
b Core loss in the magnetic components
c High frequency losses in the magnetic components
Fig. 9 Photograph of the experimental prototype

a Super-capacitor panel
b Zoomed power circuit
c Coupled inductor in second stage

Fig. 10 Comparison between calculated and measured ripple current

a Peak-to-peak ripple in stage-1 channel current
b Peak-to-peak ripple in stage-2 channel current
c Peak-to-peak ripple in stage-3 channel current
d Peak-to-peak ripple in stage-4 channel current
one charge/discharge cycle is calculated by integrating the instantaneous powers \(P_{\text{sc}} = V_{\text{sc}} \times I_{\text{sc}},\) \(P_{\text{dc}} = V_{\text{dc}} \times I_{\text{dc}}\). The round-trip efficiency of the super-capacitor stack and that of DC–DC converter plus super capacitor are shown in Fig. 11b for various power levels used for charge/discharge cycling. The round-trip efficiency of the DC–DC converter alone can be obtained from these efficiencies and shown in Fig. 11c with the calculated round-trip efficiency. The calculation of round-trip efficiency includes the high frequency losses in the magnetics (detailed in Section 6),

\[
\text{HF losses in magnetics} = 13\%
\]

Loss Type	Percentage
DC conduction loss in magnetic	38%
Semiconductor losses	41%
Stand-by losses	8%

the DC losses in the magnetics (DC resistances given in Table 5), semiconductor losses (calculated from the data

Table 1 Percentage contribution of various losses at full load

Loss Type	Percentage
HF losses in magnetics	13%
DC conduction loss in magnetic	38%
Semiconductor losses	41%
Stand-by losses	8%

Fig. 11 Comparison between calculated and measured round-trip efficiency

- **a** Super-capacitor charge discharge cycling at 20 kW, \(c_1: V_{\text{sc}}\) (100 V/div), \(c_2: I_{\text{sc}}\) (100 A/div), \(c_3: V_{\text{dc}}\) (200 V/div), \(c_4: I_{\text{dc}}\) (75 A/div) and time: 20 s/div
- **b** Measured round-trip efficiency of super-capacitor and super-capacitor + DC–DC converter
- **c** Evaluated and calculated round-trip efficiency of DC–DC converter

Fig. 12 Measured transient response with various controller gains

- **a** With \(k_p = 75\) m\(\Omega\); \(c_2\) and \(c_3\): \(I_a\) and \(I_b\) (5 A/div), \(c_4: I_{\text{sc}}\) (20 A/div) and time: 500 \(\mu\)s/div
- **b** With \(k_p = 50\) m\(\Omega\); \(c_2\) and \(c_3\): \(I_a\) and \(I_b\) (5 A/div), \(c_4: I_{\text{sc}}\) (20 A/div) and time: 200 \(\mu\)s/div
- **c** With \(k_p = 25\) m\(\Omega\); \(c_2\) and \(c_3\): \(I_a\) and \(I_b\) (5 A/div), \(c_4: I_{\text{sc}}\) (20 A/div) and time: 200 \(\mu\)s/div
- **d** Large step change with \(k_p = 25\) m\(\Omega\); \(c_2\) and \(c_3\): \(I_a\) and \(I_b\) (5 A/div), \(c_4: I_{\text{sc}}\) (50 A/div) and time: 200 \(\mu\)s/div
This may pose an additional stress on the magnetics and the noticed from Fig. 12 resulting from the true dynamics of the controller. It can be up of the PI controller that can affect the oscillation step change is chosen to avoid the saturation and anti-wind currents in channel-

with a rise time of 100 \(\mu \text{s} \) but with very stable output and small overshoot. Fig. 12 shows the transient response with a large current step \((-50 \text{ A} \rightarrow 50 \text{ A})\) with \(k_p = 25 \text{ m}\Omega \). It can be seen that the channel current sharing (in channel-\(a \) and channel-\(b \)) is quite accurate during transients and steady state.

8 Conclusion

This paper presents the modelling, the selection of multi-stage filter parameters, the controller design and the implementation of a multi-staged coupled inductor-based interleaved converter for high current DC–DC interface for a super-capacitor system. The multi-stage coupled inductor-based system is analysed and modelled to demonstrate the key advantages like high dynamic performance and low switching current ripple in each channel current. It improves the dynamic performance of the system as only leakage inductance is seen by the total current and a flexible choice of peak-to-peak ripple current can be done in each stage of the magnetics. The performance comparison with lower stage topologies for the same final stage peak-to-peak current ripple reveals that the four-stage topology provides the best performance in terms of peak-to-peak current ripple in all the stages. The closed-loop controller parameters are designed from this model to ensure stability and dynamic response. To enhance loss evaluation of the system the harmonics current components are analysed and the copper and core losses in the magnetics are calculated from the proposed model. The simulation and experimental results are presented to validate the design of the magnetic component and the closed-loop controller. A round-trip efficiency of \(\geq 96\% \) is achieved at the full load.

9 Acknowledgment

The project this report is based on was funded by E.ON as a part of E.ON International Research Initiative. Responsibility of the content of this publication lies with the author.

10 References

1 Lee, I.-O., Cho, S.-Y., Moon, G.-W.: ‘Interleaved buck converter having low switching losses and improved step down conversion ratio’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 3664–3675
2 Schmittler, A.C., Pappis, D., Rech, C., Campos, A., Costa, M.A.D.: ‘Generalized state-space model for the interleaved buck converter’. Proc. IEEE COBEP, 2011, pp. 451–457
3 Mao, H., Yao, L., Wang, C., Batarseh, I.: ‘Analysis of inductor current shaping in non-isolated and isolated multiphase dc–dc converters’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 3379–3388
4 Zumel, P., Fernández, C., de Castro, A., Garcia, O.: ‘Efficiency improvement in multiphase converter by changing dynamically the number of phases’, IEEE APEC, 2006, pp. 1–6
5 Balog, R.S., Krein, P.T.: ‘Coupled-Inductor filter: a basic filter building block’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 537–546
6 Čuk, S., Middlebrook, R.D.: ‘A new optimum topology switching dc-to-ac converter’. Proc. IEEE PESC, 1977, pp. 160–179
7 Čuk, S., Middlebrook, R.D.: ‘Coupled inductors and other detentions of a new optimum topology switching dc-to-ac converter’. Proc. IEEE IAS Annual Meeting, 1977, pp. 1110–1126
8 Witulski, A.F.: ‘Introduction to modeling of transformers and coupled inductors’, IEEE Trans. Power Electron., 1995, 10, (3), pp. 349–356
9 Chandrasekaran, S., Gökder, I.U.: ‘Integrated magnets for interleaved DC–DC boost converter for fuel cell powered vehicles’. Proc. IEEE PESC, 2004, pp. 356–361
10 Do, H.-L.: ‘Integrated boost converter with single magnetic component’, IET Power Electron., 2011, 4, (7), pp. 842–849
11 Lee, S.-Y., Pfäderer, A.G., van Wijk, J.D.: ‘Comparison of different designs of a 42 V/14 V DC/DC converter regarding losses and thermal aspects’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 520–530
12 Huang, X., Wang, X., Nergaard, T., Lai, J.S., Xu, X., Zhu, L.: ‘Parasitic ringing and design issues of digitally controlled high power interleaved boost converters’, IEEE Trans. Power Electron., 2004, 19, (5), pp. 1341–1352
13 Wong, P.L., Xu, P., Yang, B., Lee, F.C.: ‘Performance improvements of interleaving VRMs with coupled inductors’, IEEE Trans. Power Electron., 2001, 16, (4), pp. 499–507
14 Forsyth, A.J., Lopez, G.C.: ‘Sampled – data analysis of dual interleaved boost converter with interphase transformer’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 1338–1346
15 Nagaraja, H.N., Kastha, D., Patra, A.: ‘Design principles of a symmetrically coupled inductor structures for multiphase synchronous buck converters’, IEEE Trans. Ind. Electron., 2011, 58, (3), pp. 988–997
16 Labouré, E., Cunière, A., Meynard, T.A., Forest, F., Sarraute, E.: ‘A theoretical approach to interchangers, application to interleaved converters’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 464–474
17 Li, J., Sullivan, C.R., Schultz, A.: ‘Coupled inductor design optimization for fast response low voltage dc–dc converters’. Proc. IEEE APEC, 2002, vol. 2, pp. 817–823
18 Zamel, P., Garcia, O., Cobe, A.A., Uceda, J.: ‘Magnetic integration for interleaved converters’. Proc. IEEE APEC, 2003, vol. 2, pp. 1143–1149
19 Zamel, P., Garcia, O., Cobos, J.A., Uceda, J.: ‘Tight magnetic coupling in multiphase interleaved converters based on simple transformers’. Proc. IEEE APEC, 2005, vol. 1, pp. 385–391
20 Chen, Q., Xu, L., Ren, X., Cao, L., Ruan, X.: ‘A novel coupled inductor for interleaved converter’. Proc. IEEE APEC, 2010, pp. 920–927
21 Park, I.G., Kim, S.I.: ‘Modelling and analysis of multi-interphase transformers for connecting power converters in parallel’. Proc. IEEE PESC, 1997, vol. 2, pp. 1164–1170
22 Kulsangcharoen, P., Rashed, M., Klumppner, C., et al.: ‘Evaluation of a digitally controlled power electronic emulator for supercapacitor’. Proc. IET PEMD, 2012, pp. 1–6
23 Segaran, D., Holmes, D.G., McGrath, B.P.: ‘Enhanced load step response for a bidirectional dc–dc converter’, IEEE Trans. Power Electron., 2013, 28, (1), pp. 371–379
24 ‘Powerlite C-Cores’, available at http://www.hitachimetals.com/product/amorphous/powerliteinductorcores/documents/POWERLITE/
25 Kulsangcharoen, P., Klumppner, C., Rashed, M., Asher, G.: ‘A new duty cycle based efficiency estimation method for a super-capacitor stack under constant power operation’. Proc. IET PEMD, 2010, pp. 1–6
26 ‘Data sheet of FS30R06W1E3’, available at http://www.aldadatasheet.com/datasheet-pdf/pdf/39612/INFINION/FS30R06W1E3.html

11 Appendix

The details of the power circuit parameters are given in Table 2. The details of the control circuit parameters are
given in Table 3. The details of the material and physical construction of the magnetics are given in Table 4. The number of turns (in stage-1, stage-2 and stage-3) for each coil is half of the number of turns given in the table. Table 5 gives the details of the high frequency resistance (measured by high precision digital RLC meter PSM1735) and DC resistances (obtained by passing rated DC current and measuring voltage across it) of the various stages of the magnetics.

Table 3 Control circuit details

Attributes	Symbol	Value
current controller gain	\(k_p \)	25 mΩ
current controller time constant	\(T_i \)	250 μs
delay constant	\(T_d \)	33.3 μs

Table 4 Construction details of the magnetics

Stage	Core	Number of turns	Type of winding
1	AMCC100 (amorphous)	100	AWG17, 4 in parallel
2	AMCC100 (amorphous)	50	AWG17, 8 in parallel
3	AMCC100 (amorphous)	24	foil 65 x 0.127 mm, 2 in parallel
4	AMCC100 (amorphous)	5	AWG5

Table 5 Measured resistances at different frequencies

Resistances	DC	10 kHz	20 kHz	30 kHz	40 kHz	50 kHz	60 kHz	70 kHz	80 kHz
\(r_1 \)	58 mΩ	2.11 Ω	6.25 Ω	12.46 Ω	20.75 Ω	31.11 Ω	43.56 Ω	58.08 Ω	74.68 Ω
\(r_2 \)	31 mΩ	0.56 Ω	1.34 Ω	2.38 Ω	3.69 Ω	5.26 Ω	7.09 Ω	9.19 Ω	11.55 Ω
\(r_3 \)	14 mΩ	0.19 Ω	0.49 Ω	0.94 Ω	1.54 Ω	2.30 Ω	3.20 Ω	4.25 Ω	5.46 Ω
\(r_4 \)	8 mΩ	0.68 Ω	1.85 Ω	3.54 Ω	5.75 Ω	8.48 Ω	11.74 Ω	15.52 Ω	19.82 Ω