A Note on Bipartite Subgraphs and Triangle-independent Sets

Honghai Xu
Department of Mathematical Sciences
Clemson University
Clemson, SC 29634
honghax@g.clemson.edu

Abstract

Let $\alpha_1(G)$ denote the maximum size of an edge set that contains at most one edge from each triangle of G. Let $\tau_B(G)$ denote the minimum size of an edge set whose deletion makes G bipartite. It was conjectured by Lehel and independently by Puleo that $\alpha_1(G) + \tau_B(G) \leq n^2/4$ for every n-vertex graph G. Puleo showed that $\alpha_1(G) + \tau_B(G) \leq 5n^2/16$ for every n-vertex graph G. In this note, we improve the bound by showing that $\alpha_1(G) + \tau_B(G) \leq 4403n^2/15000$ for every n-vertex graph G.

Keywords: Bipartite subgraph, Triangle-independent set

1 Introduction

Let G be a simple undirected graph. A triangle-independent set in G is an edge set that contains at most one edge from each triangle of G. We let $\alpha_1(G)$ denote the maximum size of a triangle-independent set in G. On the other hand, a triangle edge cover in G is an edge set that contains at least one edge from each triangle of G. We let $\tau_1(G)$ denote the minimum size of a triangle edge cover in G.

Erdős, Gallai, and Tuza made the following conjecture:

Conjecture 1 (Erdős-Gallai-Tuza [10]) For every n-vertex graph G, $\alpha_1(G) + \tau_1(G) \leq n^2/4$.

1
Note that the equality holds for the graphs K_n and $K_{n/2,n/2}$, where n is even. Indeed, $\alpha_1(K_n) = n/2$ and $\tau_1(K_n) = \binom{n}{2} - n^2/4$ (by Mantel’s theorem [12]), while $\alpha_1(K_{n/2,n/2}) = n^2/4$ and $\tau_1(K_{n/2,n/2}) = 0$. In both cases, $\alpha_1(G) + \tau_1(G) = n^2/4$.

More generally, let $G_1 \lor \ldots \lor G_t$ denote the graph obtained from the disjoint union $G_1 + \ldots + G_t$ by adding all edges between vertices from different G_i. Puleo (see [14, 13]) showed that the equality holds for any graph of the form $K_{r_1,r_1} \lor \ldots \lor K_{r_t,r_t}$.

Conjecture 1 was originally stated only for triangular graphs, which are graphs where every edge lies in a triangle (see [10, 17]). However, later it was stated for general graphs (see [8, 17]). It was proved by Puleo [13] that these two forms of the conjecture are equivalent.

A related parameter, denoted by $\tau_B(G)$, is the minimum size of an edge set in G whose deletion makes G bipartite. Clearly $\tau_B(G) \geq \tau_1(G)$. Erdős [6] asked which graphs satisfy $\tau_B(G) = \tau_1(G)$. Bondy, Shen, Thomassé, and Thomassen [3] proved that $\tau_B(G) = \tau_1(G)$ when $\delta(G) \geq 0.85 |V(G)|$, and later Balogh, Keevash, and Sudakov [2] proved that $\tau_B(G) = \tau_1(G)$ when $\delta(G) \geq 0.79 |V(G)|$.

The following conjecture, which is stronger than Conjecture 1, was proposed by Lehel (see [17]) and independently by Puleo [14].

Conjecture 2 ([14]) For every n-vertex graph G, $\alpha_1(G) + \tau_B(G) \leq n^2/4$.

Puleo [14, 13] obtained many interesting results towards Conjectures 1 and 2. Conjecture 2 was verified for triangle-free graphs and for graphs that have no induced subgraph isomorphic to K_{4^-} (the graph obtained from K_4 by deleting an edge) [13]. For general graphs, Puleo [14] showed the following upper bound:

Theorem 1 ([14]) For every n-vertex graph G, $\alpha_1(G) + \tau_B(G) \leq 5n^2/16$.

The main purpose of this note is to provide an improved bound towards Conjecture 2. We prove that $\alpha_1(G) + \tau_B(G) \leq 4403n^2/15000$ for every n-vertex graph G. We use ideas from [13], [14], [15], and [11].
We shall use the following notation and terminology. For shorthand, we let $f_B(G) = \alpha_1(G) + \tau_B(G)$. We let $n(G)$, $e(G)$, and $t(G)$ denote the number of vertices, edges, and triangles in G, respectively. When there is no confusion involved, we simply write n, e, and t. We let $d(v)$ denote the degree of a vertex v, and $\omega(G)$ denote the clique number of G. When $S \subseteq V(G)$, we write $G[S]$ for the subgraph of G induced by S, \overline{S} for the set $V(G) - S$, and $[S, \overline{S}]$ for the set of all edges with one endpoint in S and the other endpoint in \overline{S}. We use the term minimal counterexample to refer to a vertex-minimal counterexample, that is, a graph G such that the property in question holds for every proper induced subgraph of G but does not hold for G.

The rest of the paper is organized as follows. In the next section, we investigate the structure of a minimal counterexample to $f_B(G) \leq cn(G)^2$ where $c > 1/4$. We show that the clique number of such a counterexample is bounded by a function of c. Thus, to prove that $f_B(G) \leq cn(G)^2$, we only need to prove it for graphs with small clique number. Then in Section 3 we present a quick proof of $f_B(G) \leq 3n(G)^2/10$, which improves Theorem 1. In Section 4 we give some estimates of $\tau_B(G)$ for K_6-free graphs. In particular, we show that every n-vertex K_6-free graph can be made bipartite by deleting at most $17n^2/100$ edges. In Section 5 we prove our main result.

2 $f_B(G)$ and clique number

We need the following lemma from [13].

Lemma 1 ([13]) Let G be a graph, and let A be a triangle-independent set of edges in G. If S is a nonempty proper subset of $V(G)$, then

$$f_B(G) \leq f_B(G[S]) + f_B(G[\overline{S}]) + \frac{1}{2} |[S, \overline{S}]| + |[S, \overline{S}] \cap A|.$$

In [13], Puleo used Lemma 1 to prove some conclusions on the structure of a minimal counterexample G to Conjecture 2. By slightly extending his argument, we show the following:
Lemma 2 For any constant $c > 1/4$, if G is a minimal counterexample to $f_B(G) \leq cn(G)^2$, then $\omega(G) < 1/(4c - 1)$.

Proof. Let G be a minimal counterexample to $f_B(G) \leq cn(G)^2$. We may assume $n(G) \geq 5$, since it is easy to verify that $f_B(G) \leq n(G)^2/4 \leq cn(G)^2$ when $n(G) \leq 4$. Let K be the largest clique in G, and let $k = |K| = \omega(G)$. Since $f_B(G) \leq n(G)^2/4 \leq cn(G)^2$ when G is complete, we may assume $1 \leq k \leq n(G) - 1$.

For simplicity, write n for $n(G)$. Let A be any triangle-independent set in G, and for every $v \in V(G)$, let $N_A(v) = \{ w \in V(G) : vw \in A \}$. Since A is triangle-independent, $|N_A(v) \cap K| \leq 1$ for each $v \in K$. It follows that $|[K,K] \cap A| \leq n-k$.

By Lemma 1 and the minimality of G, we have

$$cn^2 < f_B(G) \leq f_B(G[K]) + f_B(G[\overline{K}]) + \frac{1}{2} |[K,K]| + |[K,K] \cap A| \leq \frac{k^2}{4} + c(n-k)^2 + \frac{1}{2} |[K,K]| + n-k.$$

Thus, $|[K,K]| > -(2c + \frac{1}{2})k^2 + 4cnk + 2k - 2n$. However, since K is the largest clique of G, $|[K,K]| \leq (n-k)(k-1)$. Hence, we have

$$(n-k)(k-1) > -(2c + \frac{1}{2})k^2 + 4cnk + 2k - 2n.$$

The above inequality simplifies to $(\frac{1}{2} - 2c)k^2 + k < (1 - (4c - 1)k)n$. Assume to the contrary that $k \geq 1/(4c - 1)$. Then $(1 - (4c - 1)k)n \leq (1 - (4c - 1)k)k$. It follows that $(\frac{1}{2} - 2c)k^2 + k < (1 - (4c - 1)k)k$. That is, $c < 1/4$, a contradiction.

\[\square\]

3 A first improvement

In this section we present a quick proof of $f_B(G) \leq 3n(G)^2/10$. We first show that the conclusion holds for K_5-free graphs, and then use Lemma 2 to prove that it holds for all graphs.
For a graph G, let $b(G)$ denote the largest size of a vertex set B such that B induces a bipartite subgraph of G. Puleo [14] proved the following bound for $\alpha_1(G)$:

Lemma 3 ([14]) For every n-vertex graph G, $\alpha_1(G) \leq nb(G)/4$.

Now we consider $\tau_B(G)$. A well-known result by Erdős [4] says that $\tau_B(G) \leq e/2$ for every graph G with e edges. Puleo [14] proved the following bound for $\tau_B(G)$:

Lemma 4 ([14]) For every n-vertex graph G, $\tau_B(G) \leq (n^2 - b(G)^2)/4$.

When G is a K_5-free graph, $\tau_B(G)$ can be bounded as follows:

Lemma 5 For every n-vertex K_5-free graph G,

$$\tau_B(G) \leq \frac{b(G)(n - b(G))}{2} + \frac{3(n - b(G))^2}{16}.$$

Proof. Let B denote the vertex set of a largest bipartite induced subgraph of G. Since $G[B]$ is K_5-free, by Turán’s theorem [16] it has at most $3(n - b(G))^2/8$ edges. Therefore $G[B]$ can be made bipartite by deleting at most $3(n - b(G))^2/16$ edges. The conclusion follows by considering the two different ways to join the partite sets of a largest bipartite subgraph in $G[B]$ with the partite sets of $G[B]$. □

Now we can give the following bound for $f_B(G)$ when G is K_5-free.

Theorem 2 For every n-vertex K_5-free graph G, $f_B(G) \leq 3n^2/10$.

Proof. By Lemma 3 and Lemma 5 we have

$$f_B(G) = \alpha_1(G) + \tau_B(G) \leq \frac{nb(G)}{4} + \frac{b(G)(n - b(G))}{2} + \frac{3(n - b(G))^2}{16}$$

$$= \frac{1}{16} (-5b(G)^2 + 6nb(G) + 3n^2)$$

$$= g(b(G)),$$
where $g(x) = (-5x^2 + 6nx + 3n^2)/16$. Since $g(x)$ achieves its maximum at $x = 3n/5$, we have $f_B(G) \leq g(3n/5) = 3n^2/10$.

By using Theorem 2 and Lemma 2 we show $f_B(G) \leq 3n^2/10$, which improves Theorem 1.

Theorem 3 *For every n-vertex graph G, $f_B(G) \leq 3n^2/10$.***

Proof. It is easy to verify the conclusion for small n. Assume to the contrary that G is a minimal counterexample. By Theorem 2, $\omega(G) \geq 5$. However, by Lemma 2 we have $\omega(G) < 1/(4 \times 3/10 - 1) = 5$, a contradiction. \square

4 $\tau_B(G)$ for K_6-free graphs

To improve our bound for $f_B(G)$, we consider $\tau_B(G)$ for K_6-free graphs. Similar questions have been investigated by various researchers. Erdős [5] conjectured that every n-vertex triangle-free graph can be made bipartite by deleting at most $n^2/25$ edges. Erdős, Faudree, Pach and Spencer [9] proved that it is enough to delete $(1/18 - \epsilon)n^2$ edges to make a n-vertex triangle-free graph bipartite. Erdős (see e.g., [2]) also conjectured that it is enough to delete at most $(1 + o(1))n^2/9$ edges to make any n-vertex K_4-free graph bipartite. This was confirmed by Sudakov [15] in the following strong form:

Theorem 4 ([15]) *Every n-vertex K_4-free graph can be made bipartite by deleting at most $n^2/9$ edges. Moreover, equality holds if and only if G is a complete 3-partite graph with parts of size $n/3$.***

Furthermore, Sudakov [15] made the following conjecture on $\tau_B(G)$ for K_r-free graphs where $r \geq 5$:
Conjecture 3 (15) Let G be a n-vertex K_r-free graph where $r \geq 5$. Then

$$\tau_B(G) \leq \begin{cases}
\frac{r-3}{4(r-1)}n^2, & \text{if } r \text{ is odd} \\
\frac{(r-2)^2}{4(r-1)}n^2, & \text{if } r \text{ is even}
\end{cases}$$

This conjecture seems to be very difficult. The original paper of Sudakov [15] pointed out that some of the ideas there can be used to make a progress on the conjecture for even r.

Our focus in this section is to give some estimates on $\tau_B(G)$ for K_6-free graphs. We first consider bounds on $\tau_B(G)$ for K_5-free graphs, and then use the bounds that we obtain to prove bounds on $\tau_B(G)$ for K_6-free graphs. The key ideas that we use come from [15] and [11]. We start with the following well-known fact.

Lemma 6 (see, e.g., Lemma 2.1 of [1]) Let G be a (at most) $2m$-partite graph with e edges. Then $\tau_B(G) \leq (m-1)e/(2m-1)$.

We also need the following theorem from [11], which is a sharpening of Turán’s theorem. It helps us to deal with the case that the graph is dense:

Theorem 5 (11) Every n-vertex K_{p+1}-free graph G with $e(T_{n,p}) - k$ edges contains a (at most) p-partite subgraph with at least $e(G) - k$ edges, where $T_{n,p}$ is the complete p-partite graph of order n having the maximum number of edges.

Corollary 1 Let G be a graph on n vertices with e edges.

(a) If G is K_5-free, then $\tau_B(G) \leq n^2/4 - e/3$;
(b) If G is K_6-free, then $\tau_B(G) \leq 6n^2/25 - e/5$.

Proof. Suppose G is K_5-free. Let H be a 4-partite subgraph of G having the maximum number of edges. By Theorem 3 $e(H) \geq 2e - 3n^2/8$. By Lemma 6, H can be made bipartite by deleting at most $e(H)/3$ edges. Thus,

$$\tau_B(G) \leq e - e(H) + \frac{e(H)}{3} = e - \frac{2e(H)}{3} \leq e - \frac{2}{3} \left(2e - \frac{3n^2}{8}\right) = \frac{n^2}{4} - \frac{e}{3}.$$
This proves (a).

Suppose G is K_6-free. Let H be a 5-partite subgraph of G having the maximum number of edges. By Theorem 5, $e(H) \geq 2e - 2n^2/5$. By Lemma 6, H can be made bipartite by deleting at most $2e(H)/5$ edges. Thus,

$$
\tau_B(G) \leq e - e(H) + \frac{2e(H)}{5} = e - \frac{3e(H)}{5} \leq e - \frac{3}{5} \left(2e - \frac{2n^2}{5} \right) = \frac{6n^2}{25} - \frac{e}{5}.
$$

This proves (b). □

Lemma 7 (see Lemma 2.3 of [15]) Let G be a graph on n vertices with e edges and t triangles. Then $\tau_B(G) \leq e + \left(6t - \sum_v d^2(v) \right) / n$.

Our next step is to apply some of the ideas and techniques from [15] to prove a bound on $\tau_B(G)$ for K_5-free graphs.

Lemma 8 Let G be a K_5-free graph on n vertices with e edges and t triangles. Then $\tau_B(G) \leq e/2 + \left(2 \sum_v d^2(v) - 27t \right) / (18n)$.

Proof. Let v be a vertex of G and let e_v denote the number of edges spanned by the neighborhood $N(v)$. The induced subgraph $G[N(v)]$ is K_4-free, since G is K_5-free. By Theorem 4, $G[N(v)]$ can be made bipartite by deleting at most $d^2(v)/9$ edges. Let A and B be the resulting partite sets of $G[N(v)]$. We obtain a bipartite subgraph of G by placing the vertices in $G - N(v)$ into the partite sets A and B randomly and independently with probability $1/2$, and deleting all edges within the partite sets. For each edge in $G - G[N(v)]$, it is deleted with probability $1/2$. By linearity of expectation, $\tau_B(G) \leq (e - e_v)/2 + d^2(v)/9$. By averaging over all vertices v, we have

$$
\tau_B(G) \leq \frac{e}{2} + \frac{1}{9n} \sum_v d^2(v) - \frac{1}{2n} \sum_v e_v = \frac{e}{2} + \frac{1}{18n} \left(2 \sum_v d^2(v) - 27t \right),
$$

where we have used the fact that $\sum_v e_v = 3t$. □

Now we can bound $\tau_B(G)$ for K_5-free graphs in terms of $n(G)$ only.
Theorem 6 For every n-vertex K_5-free graph G, $\tau_B(G) \leq 29n^2/200$.

Proof. By Lemma 7 and Lemma 8 we have $\tau_B(G) \leq e + \left(6t - \sum_v d^2(v)\right)/n$ and $\tau_B(G) \leq e/2 + (2\sum_v d^2(v) - 27t)/(18n)$. Multiplying the first inequality by $1/5$ and the second inequality by $4/5$, and adding them together, we have

$$\tau_B(G) \leq \frac{3e}{5} - \frac{1}{9n} \sum_v d^2(v) \leq \frac{3e}{5} - \frac{1}{9n^2} \left(\sum_v d(v)\right)^2 \leq \frac{3e}{5} - \frac{4e^2}{9n^2},$$

where we have used the Cauchy-Schwartz inequality and the fact that $\sum_v d_v = 2e$.

First consider the case when $e \leq 63n^2/200$. Note that the function $g(x) = 3x/5 - 4x^2/9$ is increasing in the interval $x \leq 63/200$. So we have

$$\tau_B(G) \leq g(e/n^2)n^2 \leq g(63/200)n^2 = \frac{1449n^2}{10000} < \frac{29n^2}{200}.$$

Next consider the case when $e > 63n^2/200$. By Corollary 1 (a) we have

$$\tau_B(G) \leq \frac{n^2}{4} - \frac{e}{3} < \frac{n^2}{4} - \frac{21n^2}{200} = \frac{29n^2}{200}.$$

\square

Remark. Since a K_5-free graph has at most $3n^2/8$ edges, it is enough to delete at most $3n^2/16$ edges to make it bipartite. Although the bound in Theorem 6 is better than that, it probably can be improved substantially. Indeed Conjecture 3 says that it suffices to delete $n^2/8$ edges to make a K_5-free graph bipartite. It seems that some new ideas or tools are needed to improve the estimate above.

Next we use the bounds we obtained to prove bounds on $\tau_B(G)$ for K_6-free graphs. The approach is nearly identical to that used for K_5-free graphs.

Lemma 9 Let G be a K_6-free graph on n vertices with e edges and t triangles. Then $\tau_B(G) \leq e/2 + (29\sum_v d^2(v) - 300t)/(200n)$.

9
Proof. Let \(v \) be a vertex of \(G \) and let \(e_v \) denote the number of edges spanned by the neighborhood \(N(v) \). The induced subgraph \(G[N(v)] \) is \(K_5 \)-free, since \(G \) is \(K_6 \)-free. By Theorem 6, \(G[N(v)] \) can be made bipartite by deleting at most \(29d^2(v)/200 \) edges. Thus \(\tau_B(G) \leq (e - e_v)/2 + 29d^2(v)/200 \). By averaging over all vertices \(v \), we have

\[
\tau_B(G) \leq \frac{e}{2} + \frac{29}{200n} \sum_v d^2(v) - \frac{1}{2n} \sum_v e_v = \frac{e}{2} + \frac{1}{200n} \left(29 \sum_v d^2(v) - 300t \right),
\]

where we have used the fact \(\sum_v e_v = 3t \).

\[\square\]

Theorem 7 For every \(n \)-vertex \(K_6 \)-free graph \(G \), \(\tau_B(G) \leq 17n^2/100 \).

Proof. By Lemma 7 and Lemma 9 we have

\[
\tau_B(G) \leq e + \left(6t - \sum_v d^2(v) \right)/n \text{ and } \tau_B(G) \leq e/2 + (29 \sum_v d^2(v) - 300t)/(200n).
\]

Multiplying the first inequality by 1/5 and the second inequality by 4/5, and adding them together, we have

\[
\tau_B(G) \leq \frac{3e}{5} - \frac{21}{250n} \sum_v d^2(v)
\]

\[
\leq \frac{3e}{5} - \frac{21}{250n^2} \left(\sum_v d(v) \right)^2
\]

\[
\leq \frac{3e}{5} - \frac{42e^2}{125n^2},
\]

where we have used the Cauchy-Schwartz inequality and the fact that \(\sum_v d_v = 2e \).

First consider the case when \(e \leq 35n^2/100 \). Note that the function \(g(x) = 3x/5 - 42x^2/125 \) is increasing in the interval \(x \leq 35/100 \). So we have

\[
\tau_B(G) \leq g(e/n^2)n^2 \leq g(35/100)n^2 = \frac{4221n^2}{25000} < \frac{17n^2}{100}.
\]

Next consider the case when \(e > 35n^2/100 \). By Corollary 1(b) we have

\[
\tau_B(G) \leq \frac{6n^2}{25} - \frac{e}{5} < \frac{6n^2}{25} - \frac{7n^2}{100} = \frac{17n^2}{100}.
\]

\[\square\]
Remark. The bound above is also probably not tight. Conjecture 3 says that it enough to delete at most $16n^2/100$ edges to make a K_6-free graph bipartite. Nevertheless, it still suffices for our purpose.

To prove our main result, we also need bounds on $\tau_B(G)$ for K_6-free graphs in terms of n, e, and $b(G)$. Let B be the vertex set of a largest bipartite induced subgraph of G. By a similar argument to that used in Lemma 5, we have that $\tau_B(G) \leq b(G)\frac{(n - b(G))}{2} + 17\frac{n - b(G)^2}{100}$. However this is a very rough estimate. Indeed, if $|[B, \overline{B}]| = b(G)(n - b(G))$, then since G is K_6-free, $G[B]$ cannot have many edges and so it could be made bipartite by deleting less than $17(n - b(G))^2/100$ edges. To refine our argument, we need the following lemma.

Lemma 10 Let G be a K_6-free graph on n vertices, and let S be a vertex set that induces a K_5-free subgraph of G. If $|S| \geq 49n/50$, then $\tau_B(G) \leq 3n^2/20$.

Proof. First note that $\tau_B(G) \leq \tau_B(G[S]) + \tau_B(G[\overline{S}]) + \frac{1}{2} |[S, \overline{S}]|$, which follows by considering the two different ways to join the partite sets of a largest bipartite subgraph in $G[S]$ with those of one in $G[\overline{S}]$. Let $s = |S|$. Since $G[S]$ is K_5-free, by Theorem 6 we have $\tau_B(G[S]) \leq 29s^2/200$. Since $G[\overline{S}]$ is K_6-free, by Theorem 7 we have $\tau_B(G[\overline{S}]) \leq 17(n - s)^2/100$. Thus,

$$
\tau_B(G) \leq \frac{29s^2}{200} \frac{1 + 17(n-s)^2}{100} \frac{2}{2} + s(n-s)
= \frac{1}{200} (-37s^2 + 32ns + 34n^2).
$$

The function $g(s) = (-37s^2 + 32ns + 34n^2)/200$ is decreasing in the interval $s \geq 49n/50$. Thus, if $s \geq 49n/50$, then $\tau_B(G) \leq g(49n/50) = 74563n^2/500000 < 3n^2/20$. □

We finish this section by the following corollary.

Corollary 2 Let G be a K_6-free graph on n vertices with e edges. Then

(a) $\tau_B(G) \leq \max \left(\frac{-7b(G)^2 + 4nb(G) + 3n^2}{20}, \frac{-32b(G)^2 + 15nb(G) + 17n^2}{100} \right)$.

11
(b) \[
\tau_B(G) \leq \frac{e}{3} + \frac{17(n - b(G))^2}{150}.
\]

Proof. Let B be the vertex set of a largest bipartite induced subgraph of G.

We first prove (a). Note that by considering the two different ways to join the partite sets of a largest bipartite subgraph in $G[B]$ with the partite sets of $G[B]$, we have \[
\tau_B(G) \leq \tau_B(G[B]) + \frac{1}{2} |B, \overline{B}|. \]
There are two possible cases:

If there is a vertex $v \in B$ that has at least \(49(n - b(G))/50\) neighbors in $G[B]$, then since G is K_6-free, those neighbors of v in $G[B]$ must induce a K_5-free subgraph of $G[B]$. By Lemma 10, $G[B]$ can be made bipartite by deleting at most \(3(n - b(G))^2/20\) edges. Thus, we have

\[
\tau_B(G) \leq \frac{3(n - b(G))^2}{20} + \frac{b(G)(n - b(G))}{2} = \frac{-7b(G)^2 + 4nb(G) + 3n^2}{20}.
\]

If every vertex $v \in B$ has at most \(49(n - b(G))/50\) neighbors in $G[B]$, then \(|B, \overline{B}| < 49b(G)(n - b(G))/50\). Since $G[B]$ is K_6-free, by Theorem 7 we have \(\tau_B(G[B]) \leq 17(n - b(G))^2/100\). It follows that

\[
\tau_B(G) \leq \frac{17(n - b(G))^2}{100} + \frac{49b(G)(n - b(G))}{100} = \frac{-32b(G)^2 + 15nb(G) + 17n^2}{100}.
\]

This proves (a).

We next prove (b). Note that we can make G 4-partite by deleting $\tau_B(G[B])$ edges in $G[B]$. By Lemma 10, we can make the resulting 4-partite graph bipartite by deleting at most \((e - \tau_B(G[B]))/3\) edges. It follows that

\[
\tau_B(G) \leq \tau_B(G[B]) + \frac{e - \tau_B(G[B])}{3} \leq \frac{e}{3} + \frac{2\tau_B(G[B])}{3} \leq \frac{e}{3} + \frac{17(n - b(G))^2}{150}.
\]

This proves (b). \square
5 Main Result

In this section we prove $f_B(G) \leq 4403n(G)^2/15000$. We first show that the conclusion holds for K_6-free graphs, and then use Lemma 2 to prove that it holds for all graphs.

We need the following lemma from [14].

Lemma 11 ([14]) For every graph G on n vertices with e edges, $\alpha_1(G) \leq n^2/2 - e$.

Theorem 8 For every n-vertex K_6-free graph G, $f_B(G) \leq 4403n^2/15000$.

Proof. There are three possible cases:

Case 1: $b(G) \leq 49n/100$. By Lemma 3 and Theorem 7, we have

$$f_B(G) = \alpha_1(G) + \tau_B(G) \leq \frac{nb(G)}{4} + \frac{17n^2}{100} \leq \frac{49n^2}{400} + \frac{17n^2}{100} = \frac{117n^2}{400} < \frac{4403n^2}{15000}.$$

Case 2: $49n/100 < b(G) \leq 7n/10$.

By Lemma 3 and Corollary 2 (b), we have

$$f_B(G) = \alpha_1(G) + \tau_B(G) \leq \frac{nb(G)}{4} + \frac{17(n - b(G))^2}{150} + \frac{e}{3}. \tag{1}$$

By Lemma 11 and Corollary 2 (b), we have

$$f_B(G) = \alpha_1(G) + \tau_B(G) \leq \frac{n^2}{2} - e + \frac{17(n - b(G))^2}{150} + \frac{e}{3}$$

$$= \frac{n^2}{2} + \frac{17(n - b(G))^2}{150} - \frac{2e}{3}. \tag{2}$$

Multiplying inequality (1) by $2/3$ and inequality (2) by $1/3$, and adding them together, we have

$$f_B(G) \leq \frac{nb(G)}{6} + \frac{n^2}{6} + \frac{17(n - b(G))^2}{150} = \frac{1}{150} \left(17b(G)^2 - 9nb(G) + 42n^2\right).$$
Since the function \(g(x) = \frac{(17x^2 - 9nx + 42n^2)}{150} \) is increasing in the interval \(49n/100 < x \leq 7n/10 \), it follows that \(f_B(G) \leq g\left(\frac{7n}{10}\right) = \frac{4403n^2}{15000} \).

Case 3: \(b(G) > 7n/10 \). It is easy to verify that \(\frac{(-7b(G)^2 + 4nb(G) + 3n^2)}{20} \geq \frac{(-32b(G)^2 + 15nb(G) + 17n^2)}{100} \) in this case. So by Corollary 2 (a), we have \(\tau_B(G) \leq \frac{(-7b(G)^2 + 4nb(G) + 3n^2)}{20} \). Again, by Lemma 3 we have \(\alpha_1(G) \leq nb(G)/4 \). Thus,

\[
f_B(G) = \alpha_1(G) + \tau_B(G) \\
\leq \frac{nb(G)}{4} + \frac{-7b(G)^2 + 4nb(G) + 3n^2}{20} \\
= \frac{1}{20} \left(-7b(G)^2 + 9nb(G) + 3n^2\right).
\]

The function \(h(x) = \frac{(-7x^2 + 9nx + 3n^2)}{20} \) is decreasing in the interval \(x \geq 7n/10 \). So in this case we have

\[
f_B(G) \leq h\left(\frac{7n}{10}\right) = \frac{587n^2}{2000} < \frac{4403n^2}{15000}.
\]

\(\square\)

Theorem 9 For every \(n \)-vertex graph \(G \), \(f_B(G) \leq \frac{4403n^2}{15000} \).

Proof. It is easy to verify the conclusion for small \(n \). Now assume to the contrary that \(G \) is a minimal counterexample. By Theorem 8, \(\omega(G) \geq 6 \). However, by Lemma 2 we have \(\omega(G) < 1/(4 \times \frac{4403}{15000} - 1) = \frac{3750}{653} < 6 \), a contradiction. \(\square\)

6 Acknowledgements

The author would like to thank Wayne Goddard for making many helpful comments and suggestions. He also would like to thank Gregory Puleo for pointing out an error in an earlier version of the paper.
References

[1] Noga Alon. Bipartite subgraphs. *Combinatorica*, 16(3):301–311, 1996.

[2] József Balogh, Peter Keevash, and Benny Sudakov. On the minimal degree implying equality of the largest triangle-free and bipartite subgraphs. *J. Combin. Theory Ser. B*, 96(6):919–932, 2006.

[3] Adrian Bondy, Jian Shen, Stéphan Thomassé, and Carsten Thomassen. Density conditions for triangles in multipartite graphs. *Combinatorica*, 26(2):121–131, 2006.

[4] Paul Erdős. On some extremal problems in graph theory. *Israel J. Math.*, 3(2):113–116, 1965.

[5] Paul Erdős. Problems and results in graph theory and combinatorial analysis. In *Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975)*, *Congr. Numer. XV*, pages 169–192, 1976.

[6] Paul Erdős. On some problems in graph theory, combinatorial analysis and combinatorial number theory. In *Graph theory and combinatorics (Cambridge, 1983)*, pages 1–17. Academic Press, London, 1984.

[7] Paul Erdős. Some of my old and new combinatorial problems. In *Paths, flows, and VLSI-layout (Bonn, 1988)*, volume 9 of *Algorithms Combin.*, pages 35–45. Springer, Berlin, 1990.

[8] Paul Erdős. A selection of problems and results in combinatorics. *Combin. Probab. Comput.*, 8(1-2):1–6, 1999. Recent trends in combinatorics (Mátraháza, 1995).

[9] Paul Erdős, Ralph Faudree, János Pach, and Joel Spencer. How to make a graph bipartite. *J. Combin. Theory Ser. B*, 45(1):86–98, 1988.

[10] Paul Erdős, Tibor Gallai, and Zsolt Tuza. Covering and independence in triangle structures. *Discrete Math.*, 150(1-3):89–101, 1996. Selected papers
in honour of Paul Erdős on the occasion of his 80th birthday (Keszthely, 1993).

[11] Zoltán Füredi. A proof of the stability of extremal graphs, simonovits’ stability from szemerédi’s regularity. *J. Combin. Theory Ser. B*, 115:66–71, 2015.

[12] Willem Mantel. Problem 28. *Wiskundige Opgaven*, 10(60-61):320, 1907.

[13] Gregory J. Puleo. Extremal aspects of the Erdős–Gallai–Tuza conjecture. *Discrete Math.*, 338(8):1394–1397, 2015.

[14] Gregory J. Puleo. On a conjecture of Erdős, Gallai, and Tuza. *J. Graph Theory*, 80:12–17, 2015.

[15] Benny Sudakov. Making a K_4-free graph bipartite. *Combinatorica*, 27(4):509–518, 2007.

[16] Paul Turán. Eine Extremalaufgabe aus der Graphentheorie. *Mat. Fiz. Lapok*, 48:436–452, 1941.

[17] Zsolt Tuza. Unsolved combinatorial problems part I. *BRICS Lecture Series*, (LS-01-1):30–30, 2001.