Physical Randomness Extractors

Kai-Min Chung
Academia Sinica, Taiwan

Yaoyun Shi
University of Michigan

Xiaodi Wu
MIT/UC Berkeley

Presented in QIP’14 as plenary talk (joint with [MS’14])
Randomness

• Randomness is a vital resource
 – necessary in cryptography
 – pervasive in computer science
• How can we be sure a source is truly random?
 – Bias? Correlation?
 – and...
Randomness

• Randomness is a vital resource
 – necessary in cryptography
 – pervasive in computer science

What are the minimal assumptions for generating (almost) uniform randomness?
 – and...

![Cartoon: NINE NINE NINE NINE NINE and text: ARE YOU SURE THAT'S RANDOM? THAT'S THE PROBLEM WITH RANDOMNESS: YOU CAN NEVER BE SURE.]
Classical Answer—Randomness Extractors

- Extract pure randomness from “weak” sources.

Seeded Randomness Extractor

source

seed

≈uniform output

Ext
Classical Answer—Randomness Extractors

- Extract pure randomness from “weak” sources. Require:
 - sufficient min-entropy
 - at least two independent sources

\[\text{Ext} \approx \text{uniform output} \]

Two-source Randomness Extractor

source

source

Necessary!
Classical Answer—Randomness Extractors

• Extract pure randomness from “weak” sources. Require:
 – sufficient min-entropy
 – at least two independent sources

\[
\text{Ext} \approx \text{uniform output}
\]
Classical Answer—Randomness Extractors

- Extract pure randomness from “weak” sources. Require:
 - sufficient min-entropy
 - at least two independent sources

Can independence assumption be avoided?

$$\text{Ext} \approx \text{uniform output}$$
Our Proposal—Physical Randomness Extractors

• Requirements:
 – source has sufficient min-entropy
 – spatial separate devices

Necessary!
Our Proposal—
Physical Randomnessness Extractors

• Requirements:
 – source has sufficient min-entropy
 – spatial separate devices
Our Proposal—
Physical Randomness Extractors

• Requirements:
 – source has sufficient min-entropy
 – spatial separate devices

No independence assumption:
• allow source-device correlation
• only need random-to-device source, i.e., \(H_{\text{min}}(\text{source} | \text{devices}) > k_0 \)

No trust on devices
Completeness: if devices honest \(\Rightarrow \)
 accept w.h.p. & output \(\approx \) uniform
Soundness: if devices malicious \(\Rightarrow \)
 either reject w.h.p. or (output | accept) \(\approx \) uniform

Accept/Reject
Our Result—
Efficient Physical Randomness Extractor

• Extract arbitrary N bits of randomness using source with $O(1)$-bit entropy and $O(1)$ devices with 0.001 error in $\tilde{O}(N)$ time with additional features
Physics Answer—Quantum Random Number Generator

- Generate pure randomness by measuring q-bits in superposition.
Physics Answer—Quantum Random Number Generator

• Generate pure randomness by measuring q-bits in superposition. However...

• Noise
 – inherent
 – bias outcome
Physics Answer—Quantum Random Number Generator

• Generate pure randomness by measuring q-bits in superposition. However...

• Noise
 – inherent
 – bias outcome

• Adversary
 – no entropy against Adv!
Physics Answer—
Quantum Random Number Generator

Can we avoid trusting quantum devices?

Well, this is not new......

Device-independent Quantum Cryptography

The Central Rule: Trust classical operations only, without assumption on inner-working of super-classical devices.
Origins in the 90’s [Mayers-Yao’98]
Develop rapidly very recently!
Our Result—

Efficient Physical Randomness Extractor

• Extract arbitrary N bits of randomness using source with $O(1)$-bit entropy and $O(1)$ devices with 0.001 error in $\tilde{O}(N)$ time with additional features

• Prior to our work, only known how to extract a single bit from Santha-Vazirani (SV) source with non-constructive (thus inefficient) extractors [GMdlT+12]
Our Result—
Efficient Physical Randomness Extractor

• Extract arbitrary N bits of randomness using source with $O(1)$-bit entropy and $O(1)$ devices with 0.001 error in $\tilde{O}(N)$ time with additional features
 – Robustness: accept w.h.p. w.r.t. honest devices with $\Omega(1)$ noise rate.
 – Simplicity: very simple construction and analysis via composition
 • Our key composition lemma already found application for (unbounded) randomness expansion to simplify and improve [CY14]

Available on arXiv:1402.4797