Anisotropic Stars in the Non-minimal $Y(R)F^2$ Gravity

Özcan SERTa, Fatma ÇELİKTAŞa, Muzaffer ADAKb

a Department of Mathematics, Pamukkale University, 20017 Denizli, Turkey

b Department of Physics, Pamukkale University, 20017 Denizli, Turkey

Abstract

We investigate anisotropic compact stars in the non-minimal $Y(R)F^2$ model of gravity which couples an arbitrary function of curvature scalar $Y(R)$ to the electromagnetic field invariant F^2. After we obtain exact anisotropic solutions to the field equations of the model, we apply the continuity conditions to the solutions at the boundary of the star. Then we find the mass, electric charge, and surface gravitational redshift by the parameters of the model and radius of the star.

I. INTRODUCTION

Compact stars are the best sources to test a theory of gravity under the extreme cases with strong fields. Although they are generally considered as isotropic, there are important reasons to take into account anisotropic compact stars which have different radial and tangential pressures. First of all, the anisotropic spherically symmetric compact stars can be more stable than the isotropic ones [1]. The core region of the compact stars with very high nuclear matter density becomes more realistic in the presence of anisotropic pressures [2, 3]. Moreover the phase transitions [4], pion condensations [5] and the type 3A superfluids [6] in the cooling neutron matter core can lead to anisotropic pressure distribution. Furthermore, the mixture of two perfect fluid can generate anisotropic fluid [7]. Anisotropy can be also sourced by the rotation of the star [8–10]. Additionally, strong magnetic fields may lead to anisotropic pressure components in the compact stars[11]. Some analytic solutions of anisotropic matter distribution were studied in Einsteinian Gravity [8–16]. Recently it was shown that the ”scalarization” can not arise without anisotropy and the anisotropy range can be determined by observations on binary pulsar in the Scalar-Tensor Gravity and General Relativity [10]. The anisotropic star solutions in R^2 gravity can shift the mass-radius curves to the region given by observations [17].
Additionally, the presence of a constant electric charge on the surface of compact stars may increase the stability [18] and protect them from collapsing [19] [20]. The charged fluids can be described by the minimally coupled Einstein-Maxwell field equations. An exact isotropic solution of the Einstein-Maxwell theory were found by Mak and Harko describing physical parameters of a quark star with the MIT bag equation of state under the existence of conformal motions [21]. Also, the upper and lower limits for the basic physical quantities such as mass-radius ratio, redshift were derived for charged compact stars [22] and for anisotropic stars [23]. A regular charged solution of the field equations which satisfy physical conditions was found in [24] and the constants of the solution were fixed in terms of mass, charge and radius [25]. Later the solutions were extended to the charged anisotropic fluids [26] [27]. Also, anisotropic charged fluid spheres are studied in D-dimensions [28].

Recently, the observational problems at astrophysical scales such as dark energy and dark matter [29] [36] have caused to search new modified theories of gravitation. Then, in the presence of electromagnetic fields, the Einstein-Maxwell theory can also be modified with the coupling in the form, \(Y(R)F^2 \) [37] [47]. Furthermore, the charged compact stars can be described by the non-minimal couplings [48] [49]. Therefore in this study, we investigate the anisotropic compact stars in the non-minimal \(Y(R)F^2 \) model and find a class of exact analytical solutions. Then we obtain the total mass, total charge and gravitational boundary redshift by the parameters of our model and the boundary radius of the star.

II. THE MODEL FOR ANISOTROPIC STARS

We will obtain the field equations of our model for the anisotropic stars by varying the action integral with respect to independent variables; the orthonormal co-frame 1-form \(e^a \), the Levi-Civita connection 1-form \(\omega_{ab} \), and the electromagnetic potential 1-form \(A \),

\[
I = \int_M \left\{ \frac{1}{2\kappa} R \ast 1 - \epsilon_0 Y(R)F \ast F + \frac{2}{c} A \ast J + L_{\text{mat}} + \lambda_a \ast T^a \right\}
\]

where \(\kappa \) is the coupling constant, \(\epsilon_0 \) is the permittivity of free space, \(\ast \) and \(\ast \) denote the exterior product and the Hodge map of the exterior algebra, respectively, \(R \) is the curvature scalar, \(Y(R) \) is a function of \(R \) representing the non-minimal coupling between gravity and electromagnetism, \(F \) is the electromagnetic 2-form, \(F = dA \), \(J \) is the electromagnetic current 3-form, \(L_{\text{mat}} \) is the
matter Lagrangian 4-form, \(T^a := de^a + \omega^a{}_b \wedge e^b \) is the torsion 2-form, \(\lambda_a \) Lagrange multiplier 2-form constraining torsion to zero and \(M \) is the differentiable four-dimensional manifold whose orientation is set by the choice \(*1 = e^0 \wedge e^1 \wedge e^2 \wedge e^3 \).

In this study, we use the SI units differently from the previous papers \[48\, 49\]. We write \(F = -E_ie^b + \frac{\epsilon}{2} \epsilon_{0ijk} B^k e^i_j \), where \(c \) is the light velocity, \(E_i \) is electric field and \(B_i \) is magnetic field under the assumption of the Levi-Civita symbol \(\epsilon_{0123} = +1 \). We adhere the following convention about the indices; \(a, b, c = 0, 1, 2, 3 \) and \(i, j, k = 1, 2, 3 \). We also define \(J = -c \rho e \star e^0 + J_i \star e^i \) where \(\rho_e \) is the charge density and \(J_i \) is the current density. We assume that the co-frame variation of the matter sector of the Lagrangian produces the following energy momentum 3-form

\[
\tau^{\text{mat}}_a := \frac{\partial L_{\text{mat}}}{\partial e^a} = (\rho c^2 + p_t) u_a \star u + p_t \star \epsilon_a + (p_r - p_t) v_a \star v
\]

where \(u = \delta_0^a e^a \) is a time-like 1-form, \(v = \delta_1^a e^a \) is a space-like 1-form, \(p_r \) is the radial component of pressure orthogonal to the transversal pressure \(p_t \), and \(\rho \) is the mass density for the anisotropic matter in the star. In this case it must be \(\kappa = 8\pi G/c^4 \) for the correct Newton limit. The non-minimal coupling function \(Y(R) \) is dimensionless. Consequently every term in our Lagrangian has the dimension of \(\text{(energy)}(\text{length}) \). Finally we notice that the dimension of \(\lambda_a \) must be energy because torsion has the dimension of \(\text{length} \).

After substituting the connection varied equation into the co-frame varied one, we obtain the modified Einstein equation for our model

\[
-\frac{1}{2\kappa} R^{bc} \wedge *e_{abc} = \epsilon_0 Y(\iota_a F \wedge *F - F \wedge \iota_a *F) + \epsilon_0 Y R F_{bc} F^{bc} \wedge R_a + \epsilon_0 D[\iota_b d(Y R F_{bc} F^{bc})] \wedge *e_{ab} + \tau^{\text{mat}}_a,
\]

where \(\iota \) denotes the interior product of the exterior algebra satisfying the duality relation, \(\iota_b \epsilon^a = \delta^a_b \), through the Kronecker delta, \(R^a{}_b := d\omega^a{}_b + \omega^a{}_c \wedge \omega^c{}_b \) is the Riemann curvature 2-form, \(R^a := \iota_b R^{ba} \) is the Ricci curvature 1-form, \(R := \iota_a R^a \) is the curvature scalar, \(Y_R := dY/dR \), \(e^{ab...} := e^a \wedge e^b \wedge \ldots \) and \(F_{bc} := \iota_c \iota_b F \). As the left hand side of the equation (3) constitutes the Einstein tensor, the right one is called the total energy momentum tensor for which the law of energy-momentum conservation is valid. For details one may consult Ref. \[48\].

The variation of the action according to the electromagnetic potential \(A \) yields the modified
Maxwell equation

$$\epsilon_0 d(*YF) = \frac{J}{c} .$$ \hspace{1cm} (4)

We have also noticed that the Maxwell 2-form is closed $dF = 0$ from the Poincaré lemma, since it is exact form $F = dA$. Thus, the two field equations (3) and (4) define our model and we will look for solutions to them under the condition

$$\epsilon_0 Y_{Rbc} F^{bc} = -\frac{k}{\kappa}$$ \hspace{1cm} (5)

which removes the potential instabilities from the higher order derivatives for the non-minimal theory. Here the non-zero k is a dimensionless constant. The case of $k = 0$ leads to $Y(R) = \text{constant}$ corresponding to the minimal Einstein-Maxwell theory which will be considered as the exterior vacuum solution with $R = 0$. We will see from solutions of the model that the total mass and total charge of the anisotropic star are critically dependent on the parameter k. The additional features of the constraint (5) may be found in [48]. We also notice that the trace of the modified Einstein equation (3), obtained by multiplying with $e^a \wedge$, produces an explicit relation between the Ricci curvature scalar, energy density and pressures

$$(1 - k)R = \kappa(\rho c^2 - p_r - 2p_t) .$$ \hspace{1cm} (6)

III. STATIC SPHERICALLY SYMMETRIC ANISOTROPIC SOLUTIONS

We propose the following metric for the static spherically symmetric spacetime and the Maxwell 2-form for the static electric field parallel to radial coordinate in (1+3) dimensions

$$ds^2 = -f^2(r)c^2 dt^2 + g^2(r) dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\phi^2 ,$$ \hspace{1cm} (7)

$$F = E(r) e^1 \wedge e^0 ,$$ \hspace{1cm} (8)

where f and g are the metric functions and E is the electric field in the radial direction which all three functions depend only on the radial coordinate r.

4
The integral of the electric current density 3-form J sourcing the electric field gives rise to the electric charge inside the volume V surrounded by the closed spherical surface ∂V with radius r

$$q(r) := \frac{1}{c} \int_V J = \epsilon_0 \int_V d(*Y F) = \epsilon_0 \int_{\partial V} *Y F = 4\pi \epsilon_0 c^2 Y E.$$ (9)

Here we used the Stoke’s theorem. The components of the modified Einstein equation (3) reads three coupled nonlinear differential equations

$$\frac{1}{\kappa} \left(\frac{2g'}{g^2 r} + \frac{g^2 - 1}{g^2 r^2} \right) = \epsilon_0 Y E^2 - \frac{k}{\kappa} \left(\frac{f''}{f g^2} - \frac{f' g'}{f g^3} + \frac{2f'}{f g^2 r} \right) + \rho c^2,$$ (10)

$$\frac{1}{\kappa} \left(-\frac{2f'}{f g^2 r} + \frac{g^2 - 1}{g^2 r^2} \right) = \epsilon_0 Y E^2 + \frac{k}{\kappa} \left(\frac{f''}{f g^2} + \frac{f' g'}{f g^3} + \frac{2g'}{g^2 r} \right) - p_r,$$ (11)

$$\frac{1}{\kappa} \left(\frac{f''}{f g^2} - \frac{f' g'}{f g^3} + \frac{f'}{f g^2 r} - \frac{g'}{g^3 r} \right) = \epsilon_0 Y E^2 - \frac{k}{\kappa} \left(-\frac{f'}{f g^2 r} + \frac{g'}{g^3 r} + \frac{g^2 - 1}{g^2 r^2} \right) + p_t,$$ (12)

where prime stands for derivative with respect to r. We obtain one more useful equation by taking the covariant exterior derivative of (3)

$$p'_r + \frac{f'(\rho c^2 + p_r)}{f} + \frac{2(p_r - p_t)}{r} = 2\epsilon_0 (YE)' E + \frac{4\epsilon_0 Y E^2}{r}.$$ (13)

In what follows we assume the linear equation of state in the star

$$p_r = \omega \rho c^2$$ (14)

where ω is a constant in the interval $0 < \omega \leq 1$. Finally we calculate the crucial constraint (5)

$$\frac{dY}{dR} = \frac{k}{2\epsilon_0 \kappa E^2},$$ (15)

where the Ricci curvature scalar is

$$R = \frac{2}{g^2} \left(-\frac{f''}{f} + \frac{f' g'}{f g} - \frac{2f'}{f r} + \frac{2g'}{gr} + \frac{g^2 - 1}{r^2} \right).$$ (16)

A. Exact solutions with conformal symmetry

We will look for solutions to these differential equations (10)–(15) assuming that the metric (7) admits a one-parameter group of conformal motions, since inside of stars can be described by using
this symmetry \[21,50,52\]. The symmetry is obtained by taking Lie derivative of the metric tensor \(g_{ab}\) with respect to the vector field \(\xi\),
\[
L_\xi g_{ab} = \phi_0 g(r) g_{ab},
\]
for the arbitrary metric function \(g(r)\) and the following metric function \(f(r)\)
\[
f^2(r) = a^2 r^2
\]
with arbitrary constants \(a\) and \(\phi_0\). Here we consider the metric function \(g(r)\)
\[
g^2(r) = \frac{3}{1 + b r^\alpha},
\]
inspired by \[21\], where \(b\) and \(\alpha\) are arbitrary parameters. With these choices, the curvature scalar \[16\] is calculated as
\[
R = -b(\alpha + 2)r^{\alpha - 2}.
\]
We notice that it must be \(\alpha > 2\) and \(b \neq 0\) in order for that the curvature scalar is nonzero and regular at the origin. If \(b = 0\), then the curvature scalar \(R\) becomes zero and this leads to constant \(Y(R)\) in which case the model reduces to the minimal Einstein-Maxwell theory.

Then the system of equations \[10\]-\[15\] has the following solutions for the metric functions \[17\], \[18\] and the anisotropic pressure \(p_r = \omega \rho c^2\)
\[
\rho(r) = \frac{(k + 1)[2 - br^\alpha(\alpha - 2)]}{3\kappa c^2 r^2(\omega + 1)},
\]
\[
p_t(r) = \frac{br^\alpha[(k + 1)(\alpha - 2) - X]}{3\kappa r^2(\omega + 1)} + \frac{(k + 1)(1 - \omega)}{3\kappa r^2(\omega + 1)},
\]
\[
E^2(r) = \frac{2\omega(k + 1)}{3\kappa c_0 c_0 r^2(\omega + 1)} \left[1 + \frac{X br^\alpha}{4\omega(k + 1)} \right]^{1 + \frac{3(k+1)(\alpha^2-4)}{\alpha X}},
\]
\[
Y(r) = c_0 \left[1 + \frac{X br^\alpha}{4\omega(k + 1)} \right]^{\frac{3(k+1)(\alpha^2-4)}{\alpha X}},
\]
where the composite function \(Y(R(r))\) have obtained in terms of \(r\) as \(Y(r)\) and we have defined
\[
X = k\omega(\alpha + 4) + \alpha(3k - 2\omega) - 2(\omega + 3)\).
After obtaining $r(R)$ from (19)

$$r = \left[\frac{-R}{b(\alpha + 2)} \right]^{1/(\alpha - 2)}$$

we rewrite explicitly the non-minimal coupling function in terms of R

$$Y(R) = c_0 \left[1 + \frac{bX}{4\omega(k + 1)} \left(\frac{-R}{\alpha b + 2b} \right)^{\alpha/(\alpha - 2)} \right]^{\frac{3k(\omega + 1)(\alpha^2 - 4)}{\alpha X}}.$$

(27)

Since the exterior vacuum region is described by Reissner-Nordström metric satisfying $R = 0$, the non-minimal coupling function becomes $Y(R) = c_0$. Therefore we can fix $c_0 = 1$ without loss of generality. Then the corresponding model becomes

$$L = \frac{1}{2\kappa^2} R * 1 - c_0 \left[1 + \frac{bX}{4\omega(k + 1)} \left(\frac{-R}{\alpha b + 2b} \right)^{\alpha/(\alpha - 2)} \right]^{\frac{3k(\omega + 1)(\alpha^2 - 4)}{\alpha X}} F \wedge * F + 2A \wedge J + L_{mat} + \lambda_a \wedge T^a.$$

(28)

admitting the interior metric

$$ds^2_{in} = -a^2 r^2 c^2 dt^2 + \frac{3}{1 + br^\alpha} dr^2 + r^2 d\Omega^2$$

(29)

and the Maxwell 2-form

$$F = -\frac{q(r)}{4\pi \epsilon_0 Y r^2} e^1 \wedge e^0$$

(30)

in the interior of star, where $q(r)$ is obtained from (9) as

$$q^2(r) = \frac{32\pi^2 \epsilon_0 \omega(k + 1) r^2}{3\kappa(\omega + 1)} \left[1 + \frac{Xbr^\alpha}{4\omega(k + 1)} \right]^{\frac{3k(\omega + 1)(\alpha^2 - 4)}{\alpha X}}.$$

(31)

On the other hand at the exterior, the model admit the Reissner-Nordström metric

$$ds^2_{out} = -\left(1 - \frac{2GM}{c^2 r} + \frac{\kappa Q^2}{(4\pi)^2 \epsilon_0 r^2} \right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2 r} + \frac{\kappa Q^2}{(4\pi)^2 \epsilon_0 r^2} \right)^{-1} dr^2 + r^2 d\Omega^2$$

(32)
and the Maxwell 2-form

\[F = \frac{Q}{4\pi\epsilon_0 r^2} e^1 \wedge e^0 \]

(33)

which represents the electric field in the radial direction, \(\vec{E} = iQ/4\pi\epsilon_0 r^2 \), where \(Q \) is the total electric charge of the star which is obtained by writing \(r = r_0 \) in (31). We will be able to determine some of the parameters from the matching and the continuity conditions, and the others from the observational data.

B. Matching conditions

We will match the interior metric (29) and the exterior metric (32) at the boundary of the star \(r = r_b \) for continuity of the gravitational potential,

\[a^2 r^2_b = 1 - \frac{2GM}{c^2 r_b} + \frac{\kappa Q^2}{(4\pi)^2 \epsilon_0 r_b^2}, \]

(34)

\[\frac{3}{1 + br^a_0} = \left(1 - \frac{2GM}{c^2 r_b} + \frac{\kappa Q^2}{(4\pi)^2 \epsilon_0 r_b^2} \right)^{-1}. \]

(35)

These equations are solved for \(a \) and \(b \) appeared in the interior metric functions

\[b = \frac{2r^2_b - 6GM r_b/c^2}{r^2_b + \alpha} \]

(36)

\[a^2 = \frac{1}{r^2_b} - \frac{2GM}{c^2 r^3_b} + \frac{\kappa Q^2}{(4\pi)^2 \epsilon_0 r_b^2}. \]

(37)

Vanishing of the radial pressure at the boundary, \(p_r(r_b) = \omega c^2 \rho(r_b) = 0 \) in (20), determines the parameter \(b \)

\[b = \frac{2}{(\alpha - 2)r^a_0}. \]

(38)

The behavior of the pressures and energy density is given in Fig. 1 in terms of the radial distance \(r \) for \(k = 1 \). Moreover the decreasing behavior of the quantities does not change for \(k \neq 1 \). We can

\footnote{Here we use the SI units differently from \cite{48, 49} in which leads to \(F = \frac{Q}{r^2} e^1 \wedge e^0 \) and \(\frac{\kappa Q^2}{r^2} \) term in the metric.}
FIG. 1: The radial (a) and tangential (b) pressures as a function of the radial distance r for $k = 1$, $\alpha = 4$, $r_b = 10 km$ and some different ω values. (The energy density $c^2 \rho$ is proportional to the radial pressure as $p_r = \omega c^2 \rho$)

obtain an upper bound of the parameter k using the non-negative tangential pressure $p_t(r)$ in (32). In order to obtain the bound we need to determine the interval of ω. Since the radial component of the sound velocity $\frac{dp_r}{d\rho}$ is non-negative and should not be bigger than the square of light velocity c^2 for the normal matter, the parameter ω takes values in the range $0 \leq \omega \leq 1$. We see from the Fig. 1b that the tangential pressure curves decrease for the increasing ω values and the minimum curve can be obtained from the case with $\omega = 1$. Then we obtain the following inequality from the first part of $p_t(r)$

$$(k + 1)(\alpha - 2) - X \geq 0 \quad (39)$$

which turns out to be

$$3(1 - k)(\alpha + 2) \geq 0 \quad (40)$$

for the case $\omega = 1$, that leads to the minimum $p_t(r)$ function. Thus the parameter k must be $k \leq 1$ for the non-negative tangential pressure. On the other hand, the total electric charge (43) must be
FIG. 2: The dimensionless quantity which is related with the total charge Q as a function of the parameter α for $\omega = 0.1$ (a) and $\omega = 0.3$ (b).

A real valued exponential function, then we obtain the inequality

$$1 + \frac{2X}{4\omega(k + 1)(\alpha - 2)} \geq 0$$ \hspace{1cm} (41)

which leads to $k \geq \frac{2}{\alpha}$. Thus k must take values in this range

$$\frac{2}{\alpha} < k \leq 1.$$ \hspace{1cm} (42)

and we find the maximum lower bound for the parameter k as $k > \frac{2}{3}$ for $\alpha > 3$ (which leads to positive gravitational redshift).

While the interior side of the star has the electrically charged matter distribution, the outer side is vacuity. Then the excitation 2-form $\mathcal{G} = YF$ in the interior becomes the Maxwell 2-form $\mathcal{G} = F$ at the exterior. Therefore the interior electric charge $q(r)$ which found from $\epsilon_0 cd * YF = J$ must be equal to the total electric charge Q obtained from $d * F = 0$ at the exterior. Thus the continuity
FIG. 3: The dimensionless quantity related with the total mass as a function of α for $\omega = 0.15$ (a) and $\omega = 0.5$ (b).

of the excitation 2-form at the boundary leads to $q(r_b) = Q$ as the last matching condition

$$Q^2 = \frac{32\pi^2 \epsilon_0 \omega (k + 1) r_b^2}{3\kappa (\omega + 1)} \left[1 + \frac{2X}{4\omega (k + 1) (\alpha - 2)} \right]^{1 - \frac{3k(\omega + 1)(\alpha^2 - 4)}{\alpha X}} \tag{43}$$

where we eliminated the parameter b via (38). The total electric charge is shown as a function of α in Fig. 2 for $\omega = 0.1$ (a) and $\omega = 0.3$ (b) taking some different k values. We see that the increasing k values increase the total charge values. The substitution of (38) to (36) allows us writing the total mass of the star in terms of its total charge

$$M = \left(\frac{\alpha - 3}{\alpha - 2} \right) \frac{c^2 r_b}{3G} + \frac{\kappa c^2 Q^2}{2(4\pi)^2 \epsilon_0 G r_b} \tag{44}.$$

Then from (43) the total mass becomes

$$M = \left(\frac{\alpha - 3}{\alpha - 2} \right) \frac{c^2 r_b}{3G} + \frac{c^2 r_b \omega (k + 1)}{3G (\omega + 1)} \left[1 + \frac{2X}{4\omega (k + 1) (\alpha - 2)} \right]^{1 - \frac{3k(\omega + 1)(\alpha^2 - 4)}{\alpha X}} \tag{45}.$$

We depict the graph of the total mass as a function of α in Fig. 3 for $\omega = 0.15$ (a) and $\omega = 0.5$ (b) taking some different k values.
Additionally, the gravitational surface redshift defined by \(z := \frac{1}{f(r_b)} - 1 \) is calculated as

\[
z = \sqrt{\frac{3(\alpha - 2)}{\alpha}} - 1 .
\]

(46)

We see that the gravitational redshift is independent of the parameters \(\omega \) and \(k \) then the limit \(\alpha \to \infty \) gives the upper bound for the redshift, \(z < 0.732 \). On the other hand, \(\alpha = 3 \) gives \(z = 0 \). Then \(\alpha \) must be \(\alpha > 3 \) for the observational requirements. Variation of the surface redshift is shown in Fig. 4.

\[\text{FIG. 4: The gravitational surface redshift versus the parameter } \alpha. \]

C. The Simple Model with \(\alpha = 4 \)

The model simplifies for \(\alpha = 4 \) as follows

\[
L = \frac{1}{2\kappa} R \ast 1 - \epsilon_0 \left[1 + \frac{X R^2}{144 b \omega (k + 1)} \right] - \frac{9k(\omega + 1)}{\lambda} F \wedge \ast F + 2A \wedge J + L_{\text{mat}} + \lambda_a \wedge T^a .
\]

(47)

where \(X = 8k\omega + 12k - 10\omega - 6 \) for \(\alpha = 4 \). Here we emphasize that the non-minimal function in this model can be expanded Maclaurin series as

\[
Y(R) = 1 - \frac{9k(\omega + 1)}{144 b \omega (k + 1)} R^2 + \mathcal{O}(R^4)
\]

(48)
for $|\frac{X R^2}{1+4\omega(k+1)}| < 1$. Then the model admits the interior metric with the energy density, tangential pressure and electric field from (20), (22), (23) and (29)

$$ds^2_{in} = -a^2r^2c^2dt^2 + \frac{3}{1 + br^4}dr^2 + r^2d\Omega^2 \quad (49)$$

$$\rho(r) = \frac{(k+1)[2-2br^4]}{3\kappa c^2 r^2(\omega+1)} , \quad (50)$$

$$p_t(r) = \frac{br^2[2(k+1) - X]}{3\kappa(\omega+1)} + \frac{(k+1)(1-\omega)}{3\kappa(\omega+1)r^2} , \quad (51)$$

$$E^2(r) = \frac{2\omega(k+1)}{3\kappa \epsilon_0 r^2(\omega+1)} \left[1 + \frac{Xbr^4}{4\omega(k+1)}\right]^{\frac{1}{2}} \frac{9k(\omega+1)}{X} . \quad (52)$$

In this case the model gives only one redshift which is $z = 0.225$ from (46), which describes various compact stars with different mass and charge for each different k and ω values.

D. The special case with $k = 1$

Now we focus on the case with $k = 1$ in which the equation of state must satisfy the special constraint, $\rho c^2 = p_r + 2p_t$ because of (6). Now we compute the associated quantities by using the equations (20), (22), (23)

$$\rho(r) = \frac{2[2 - br^\alpha(\alpha - 2)]}{3\kappa c^2 r^2(\omega+1)} , \quad (53)$$

$$p_t(r) = \frac{(1-\omega)[2 - br^\alpha(\alpha - 2)]}{3\kappa r^2(\omega+1)} , \quad (54)$$

$$E^2(r) = \frac{4\omega}{3\kappa \epsilon_0 r^2(\omega+1)} \left[1 + \frac{br^\alpha(3-\omega)(\alpha - 2)}{8\omega} \right]^{\frac{1}{2}} \frac{3(\omega+1)(\alpha+2)}{\alpha(\omega-3)} . \quad (55)$$

with the interior metric (29). The non-minimal coupling function (27) becomes explicitly

$$Y(R) = \left[1 + \frac{b(3-\omega)(\alpha - 2)}{8\omega} \left(\frac{-R}{\alpha b + 2b}\right)^{\alpha/(\alpha-2)} \right]^{3(\omega+1)(\alpha+2)}{\alpha(\omega-3)} . \quad (56)$$

We also calculate the total charge inside of the sphere with radius r eliminating b from (31)

$$q^2(r) = \frac{64\pi^2 \omega \epsilon_0 r^2}{3\kappa(\omega+1)} \left[1 + \frac{br^\alpha(3-\omega)(\alpha - 2)}{8\omega} \right]^{\frac{4\omega(\omega+6\omega+6)}{\alpha(\omega-3)^2}} . \quad (57)$$
FIG. 5: The dimensionless quantities related with the total electric charge Q (a) and the total mass M (b) as a function of α for some different ω values and $k = 1$.

We check that the charge is regular at the origin for $\alpha > 2$. Then we can find the the total charge and mass in terms of the boundary radius r_b, the parameters ω and α from (43) and (45).

\[
Q^2 = \frac{64\pi^2\epsilon_0 \omega r_b^2}{3\kappa(\omega + 1)} \left[1 + \frac{3 - \omega}{4\omega}\right]^{\frac{4\omega\kappa + 6\omega + 6}{\omega(\omega - 3)}},
\]

\[
M = \frac{(\alpha - 3)}{(\alpha - 2)} \frac{c^2 r_b}{3G} + \frac{2c^2 \omega r_b}{3G(\omega + 1)} \left[1 + \frac{3 - \omega}{4\omega}\right]^{\frac{4\omega\kappa + 6\omega + 6}{\omega(\omega - 3)}}.
\]

Variation of the total mass and electric charge as a function of the parameter α is shown in Fig. 5 for some different ω values. As we can see from the Figures that the increasing w values increase the total mass and electric charge. Then we can find upper bound for the total mass and charge by taking $w=1$ and $\alpha \to \infty$.

\[
\frac{GM}{c^2 r_b} = 0.48, \quad \frac{\kappa Q^2}{16\pi^2\epsilon_0 r_b^2} = 0.296
\]
TABLE I: The dimensionless parameter α, the dimensionless charge-radius ratio $\kappa^2 Q^2 / 16\pi^2 c_0 r_b^2$ and the surface redshift z obtained by using the observational mass M and the radius r_b for some neutron stars with $\omega = 0.2$ and $k = 1$.

Star	$\frac{M}{r_b}$ ($\frac{M_\odot}{\text{km}}$)	α	$\frac{\kappa^2 Q^2}{16\pi^2 c_0 r_b^2}$	z (redshift)
EXO 1745-248	1.44 [54]	3.940	0.054	0.215
4U 1820-30	1.58 [55]	5.035	0.067	0.345
4U1608-52	1.74 [56]	5.611	0.073	0.390

IV. CONCLUSION

We have studied spherically symmetric anisotropic solutions of the non-minimally coupled $Y(R)F^2$ theory. We have established the non-minimal model which admits the regular interior metric solutions satisfying conformal symmetry inside the star and Reissner-Nordstrom solution at the exterior assuming the linear equation of state between the radial pressure and energy density as $p_r = w \rho c^2$. We found that the pressures and energy density decrease with the radial distance r inside the star.

We matched the interior and exterior metric, and used the continuity conditions at the boundary of the star. Then we obtained such quantities as total mass, total charge and gravitational surface redshift in terms of the parameters of the model and the boundary radius of the star. We see that the parameter k can not be more than 1 for non-negative tangential pressure and can not be less than $\frac{2}{3}$ for the real valued total mass and electric charge. The total mass and electric charge increases with the increasing w values, while the gravitational redshift does not change. The total mass-boundary radius ratio has the upper bound $\frac{GM}{c^2 r_b} = 0.48$ which is greater than the Buchdahl bound [53] and the bounds given by [22] [48]. The gravitational redshift at the surface only depends on the parameter α and increases with increasing α values up to the limit $z = 0.732$, which is the same result obtained from the isotropic case with $k = 1$ [48]. We also investigated some sub cases
such as $\alpha = 4, k \neq 1$ and $\alpha > 3, k = 1$, which can be model of anisotropic stars.

[1] K. Dev and M. Gleiser Anisotropic Stars II : Stability, Gen.Rel.Grav. 35 1435-1457, 2003, arXiv:gr-qc/0303077
[2] R. Ruderman, Pulsars: structure and dynamics, A. Rev. Astr. Astrophys. 10, 427-476, 1972.
[3] V. Canuto and S. Chitre, Crystallization of dense neutron matter, Phys.Rev. D 9 15871613, 1974.
[4] A. I. Sokolov, Phase transitions in a superfluid neutron liquid, JETP 79, 1137-1140, 1980.
[5] R.F. Sawyer, Condensed π^- Phase in Neutron-Star Matter, Phys. Rev. Lett. 29, 382-385, 1972.
[6] R. Kippenhahm and A. Weigert, Stellar structure and evolution, Springer, 1990.
[7] P. Letelier, Anisotropic fluids with two perfect fluid components. Phys. Rev. D 22, 807-813, 1980.
[8] L. Herrera, N.O. Santos, Local anisotropy in self-gravitating systems. Phys. Rep. 286, 53-130, 1997.
[9] S.S. Bayin, Anisotropic fluid spheres in general relativity, Phys.Rev. D26 1262, 1982.
[10] H. O. Silva, C. F. B. Macedo, E. Berti, L. C. B. Crispino, Slowly Rotating Anisotropic Neutron Stars in General Relativity and Scalar-Tensor Theory, 2015, arXiv:1411.6286 [gr-qc].
[11] M. K. Mak and T. Harko, An Exact Anisotropic Quark Star Model, Chin. J. Astron. Astrophys. Vol. 2, No. 3, 248-259, 2002.
[12] R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativity. Astrophys. J. 188, 657-665, 1974.
[13] M. K. Mak, T. Harko, Anisotropic Stars in General Relativity, Proc.Roy.Soc.Lond. A459, 393-408, 2003.
[14] M. S. R. Delgaty, K. Lake, Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einsteins equations. Comput. Phys. Commun. 115, 395-415, 1998, arXiv:gr-qc/9809013.
[15] T. Harko and M.K. Mak, Anisotropic relativistic stellar models, Annalen der Physik, 11, 3-13, 2002, arXiv:gr-qc/0302104.
[16] M.K. Mak, P.N. Dobson Jr., T. Harko, Exact model for anisotropic relativistic stars, Int. J. Mod. Phys. D 11, 207-221, 2002.

[17] V. Folomeev, Anisotropic neutron stars in R^2 gravity, 2018, arXiv:1802.01801 [gr-qc].

[18] R. Stettner, On the stability of homogeneous, spherically symmetric, charged fluids in relativity, Ann. Phys. 80, 212, 1973.

[19] A. Krasinski, Inhomogeneous cosmological models, Cambridge University Press, 1997.

[20] R. Sharma, S. Mukherjee and S.D. Maharaj, General Solution for a Class of Static Charged Spheres. 33, 999, 2001.

[21] M. K. Mak, and T. Harko, Quark stars admitting a one-parameter group of conformal motions, Int. J. Mod. Phys. D, 13, 149, 2004, arXiv:gr-qc/0309069.

[22] M. K. Mak, Peter N. Dobson Jr., T. Harko, Maximum Mass-Radius Ratios for Charged Compact General Relativistic Objects, Europhys.Lett. 55 310-316, 2001, arXiv:gr-qc/0107011.

[23] C. G. Böhmer, T. Harko, Bounds on the basic physical parameters for anisotropic compact general relativistic objects, Class.Quant.Grav. 23:22, 6479-6491, 2006, arXiv:gr-qc/0609061.

[24] K. D. Krori, J. Barua, A singularity-free solution for a charged fluid sphere in general relativity, J. Phys. A: Math. Gen. 8, 508, 1975.

[25] G. J. G. Junevicus, An analysis of the Krori-Barua solution, J. Phys. A: Math. Gen. 9, 2069, 1976.

[26] V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Charged anisotropic matter with linear or nonlinear equation of state, Phys.Rev.D, 82:044052, 2010, arXiv:1004.2165 [gr-qc].

[27] F. Rahaman, S. Ray, A. K. Jafry, K. Chacravorty, Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state, Phys.Rev.D, 82:104055, 2010, arXiv:1007.1889 [physics.gen-ph].

[28] T. Harko, and M.K. Mak, Anisotropic charged fluid spheres in D space-time dimensions, J. Math. Phys. 41, 4752-4764, 2000.

[29] J. M. Overduin and P. S. Wesson, Dark Matter and Background Light, Physics Reports 402, 267, 2004, arXiv:astro-ph/0407207.

[30] H. Baer, K.-Y. Choi, J. E. Kim, and L. Roszkowski, Dark matter production in the early Universe: beyond the thermal WIMP paradigm, Physics Reports 555, 1, 2015, arXiv:1407.0017.

[31] A. G. Riess et al., Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant, Astron.J.116:1009-1038, 1998, arXiv:astro-ph/9805201.
[32] S. Perlmutter et al., Measurements of Omega and Lambda from 42 High-Redshift Supernovae, Astrophys.J.517:565-586, 1999, arXiv:astro-ph/9812133

[33] R. A. Knop et al., New Constraints on Ω_M, Ω_Λ, and w from an Independent Set of Eleven High-Redshift Supernovae Observed with HST, Astrophys.J.598:102, 2003, arXiv:astro-ph/0309368

[34] R. Amanullah et al., Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation, Astrophys.J. 716:712-738, 2010, arXiv:1004.1711 [astro-ph.CO]

[35] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata, A. G. Riess, and E. Rozo, Observational Probes of Cosmic Acceleration, Physics Reports 530, 87 , 2013, arXiv:1201.2434 [astro-ph.CO]

[36] D. J. Schwarz, C. J. Copi, D. Huterer and G. D. Starkman, CMB Anomalies after Planck, Class. Quant. Grav. 33 184001 ,2016, arXiv:1510.07929 [astro-ph.CO].

[37] M. Adak, Ö. Akarsu, T. Dereli, Ö. Sert, Anisotropic inflation with a non-minimally coupled electromagnetic field to gravity, JCAP 11 026 , 2017, arXiv:1611.03393 [gr-qc].

[38] T. Dereli, Ö. Sert, Non-minimal ln(R)F^2 Couplings of Electromagnetic Fields to Gravity: Static, Spherically Symmetric Solutions, Eur.Phys.J.C71:1589, 2011, arXiv:1102.3863 [gr-qc].

[39] Ö. Sert, Gravity and Electromagnetism with Y(R)F2-type Coupling and Magnetic Monopole Solutions, Eur. Phys. J. Plus 127: 152 , 2012, arXiv:1203.0898 [gr-qc].

[40] Ö. Sert, Electromagnetic Duality and New Solutions of the Non-minimally Coupled Y(R)-Maxwell Gravity, Mod. Phys. Lett. A, 2013, arXiv:1303.2436 [gr-qc].

[41] K. Bamba and S. D. Odintsov, Inflation and late-time cosmic acceleration in non-minimal Maxwell-F(R) gravity and the generation of large-scale magnetic fields, JCAP 0804:024, 2008, arXiv:0801.0954 [astro-ph].

[42] K. Bamba, S. Nojiri and S. D. Odintsov, Future of the universe in modified gravitational theories: Approaching to the finite-time future singularity, JCAP 0810:045, 2008, arXiv:0807.2575 [hep-th].

[43] Ö. Sert and M. Adak, An anisotropic cosmological solution to the Maxwell-Y(R) gravity, 2012, arXiv:1203.1531 [gr-qc].

[44] T. Dereli, Ö. Sert, Non-minimal R^βF^2-Coupled Electromagnetic Fields to Gravity and Static, Spherically Symmetric Solutions, Modern Physics Letters A, Volume 26, Issue 20, pp. 1487-1494, 2011, arXiv:1105.4579 [gr-qc].

[45] M. S. Turner and L. M. Widrow, Inflation-produced, large-scale magnetic fields, Phys. Rev.
D 37, 2743, 1988.

[46] F. D. Mazzitelli and F. M. Spedalieri, Scalar Electrodynamics and Primordial Magnetic Fields, Phys. Rev. D, 52 6694-6699, 1995, arXiv:astro-ph/9505140.

[47] L. Campanelli, P. Cea, G. L. Fogli and L. Tedesco, Inflation-Produced Magnetic Fields in $R^n F^2$ and IF^2 models, Phys. Rev. D77:123002, 2008, arXiv:0802.2630 [astro-ph].

[48] Ö. Sert, Radiation Fluid Stars in the Non-minimally Coupled Y(R)F2 Gravity, Eur. Phys. J. C 77, 97, 2017.

[49] Ö. Sert, Compact Stars in the Non-minimally Coupled Electromagnetic Fields to Gravity, Eur. Phys. J. C, 78: 241, 2018, arXiv:1801.07493 [gr-qc].

[50] L. Herrera, J. Ponce de Leon, Isotropic and anisotropic charged spheres admitting a one-parameter group of conformal motions, J. Math. Phys. 26, 2302, 1985.

[51] L. Herrera, J. Ponce de Leon, Anisotropic spheres admitting a oneparameter group of conformal motions, J. Math. Phys. 26, 2018, 1985.

[52] L. Herrera, J. Ponce de Leon, Perfect fluid spheres admitting a oneparameter group of conformal motions, J. Math. Phys. 26, 778, 1985.

[53] H.A. Buchdahl, Phys. Rev., 116 1027 (1959).

[54] F. Özel, T. Guver, and D. Psaltis, The Mass and Radius of the Neutron Star in EXO 1745-248, APJ 693:1775-1779, 2009, arXiv:0810.1521 [astro-ph].

[55] T. Guver, P. Wroblewski, L. Camarota, F. Özel, The Mass and Radius of the Neutron Star in 4U 1820-30, APJ, 719, 1807, 2010, arXiv:1002.3825 [astro-ph.HE].

[56] T. Guver, F. Özel, A. Cabrera-Lavers, and P. Wroblewski, The Distance, Mass, and Radius of the Neutron Star in 4U 1608-52, Astrophys. J. 712:964-973, 2010, arXiv:0811.3979 [astro-ph].