Nutritional value, Ethnomedicine, Phytochemistry and pharmacology of Vigna radiata (L.) R. Wilczek

Anum Kalim, Mehreen Zaheer, Maaz Uddin Ahmed Siddiqui, Salman Ahmed and Muhammad Mohtasheemul Hassan

DOI: https://doi.org/10.22271/phyto.2021.v10.i2a.13821

Abstract
Vigna radiata (L.) R. Wilczek commonly known as Mung bean is one of the most important pulse crops, grown from tropical to sub-tropical areas around the world. Mung bean is reported to help in preventing the loss of nails and hairs, and also reduces the risk of hypercholesterolemia, coronary heart disease and decreases the absorption of toxic substances. Flavonoids and phenols are reported from this plant. Antioxidant, antidiabetic and hypocholesterolemic activities are also shown by Vigna radiata.

Keywords: Vigna radiata, Ethnomedicine, Phytochemistry, pharmacology

Introduction
Vigna radiata (L.) R. Wilczek, commonly known as Mung bean is widely grown in south and south-east Asia. More than 80% of the Mung bean is produced in South Asia [1]. Vigna radiata is one of the most important pulse crops, grown from tropical to sub-tropical areas around the world [2].

The sprouts and seeds of Mung beans are used as fresh salad vegetable or common food in Bangladesh, India, South East Asia and also in western countries. Mung beans contain balanced nutrients, including dietary fiber, protein, oligosaccharides, and significant amounts of bioactive phytochemicals [3, 4]. Polyphenols in Mung bean are important sources of lipid metabolism accommodation, anti-inflammatory, antioxidant, antimicrobial, antiseptic, antihypertensive and antidiabetic effects [5].

Fig 1: Vigna radiata seeds
Table 1: Name of *Vigna radiata* in different languages [6, 8].

Languages	Names
Bengali	Mug, Mung
Burmese	Pe-Di-Sein, Pe-Di
Chinese	Lù Dou, Luhk Dâu, Qing Xiao Dou
Czech	Fazol zlatý, Mungo fazole, Vigna Zlatá
Danish	Mung-Bønne
Dutch	Mungboon
Estonian	Munguba
English	Mung bean, Green gram, Chinese Mung Bean, Golden gram, Indian Mung bean, Golden-Seeded Mung bean, Burmese Mung bean, Jerusalem Pea, Celera bean, Mung Dahl, Moong bean
Finnish	Mungopapu
French	Haricot mungo, Mungo, Ambérique, Haricot doré
German	Mungbohne, Jerusalembohne
Hindi	Maash daal
Ibanag	Balataong
Jupagao	Balatang Balatong
Indonesia	Kacang Djong, Arta Ijo
Italian	Fagiolino Aureo, Fagiolino Verde
Japanese	Fundou, Bundou, Ryokutou, Yaenari
Laotian	Thwàx Ngo, Thwàx Khìew
Malay	Cerupayar
Manipuri	Kacang Hijau
Marati	Mung-Hawai
Nepali	Mung, Udid
Oriya	Muga
Persian	Maash
Polish	Fasolka mung, Fasola Złota, Ola Mung
Portuguese	Feijão-da-china, Feijão-mungo
Punjabi	Moongi
Russian	Mash, Mas,’ Fasol’ Vidov, Fasol
Sinhalese	Bu Me, Mun
Spanish	Frijol mungo, Judía mungo, Poroto chino
Swahili	Mchorroko, Mchooko
Swedish	Mungbōna
Tagalog	Munggo, Balatong
Tamil	Pasippayaru, Pasipayar
Telugu	Pacha Pesalu, Pacha-Pesalu
Thai	Thua Khieo, Thuaa Khiaao
Urdu	Maash daal
Vietnamese	Dâu Xanh

Table 2: Taxonomy [7, 9, 10].

Kingdom	Plantae
Subkingdom	Tracheobionta
Super Division	Spermatophyta
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Rosidae
Order	Fabales
Family	Papilionaceae
Subfamily	Faboideae
Tribe	Phaseolae
Sub tribe	Phaseolinae
Genus	Vigna
Species	*radiata*

Synonym(s): *Azukia radiata* (L.) Ohwi, *Phaseolus abyssinicus* Savi, *Phaseolus aureus* Roxb., *Phaseolus radiatus* L., *Phaseolus sublobatus* Roxb., *Phaseolus trinervis* Wight & Arn.

Plant: Annual, erect to semi-erect, slightly pubescent herb up to 1.3 m tall.

Stem: Pubescent, hairs brown, stiff spreading.

Leaves: Leaf trifoliolate, petiole 5-21 cm long, leaflet 5-16 cm long, 3-12 cm broad, elliptic, rhomboid or ovate, the lateral somewhat oblique, entire or 2-3-lobed, acuminate, glabrous or bristly pilose on both surfaces, petiolule 3-6 mm long; stipules 1-1.8 cm long, petulate.

Inflorescence: Inflorescence axillary, many flowered, peduncle 2.5-9.3 cm long, bracts 4-5 mm long, pedicel 2-3 mm long, bracteoles 4-7 mm long. Calyx tube 3-4 mm long, glabrous, teeth 1.5-4 mm long, ciliate, the upper pair almost united. Corolla greenish yellow. Vexillum 1.2 cm long. Flower Bisexual, papilionaceous.

Fruit: Fruit 4-9 cm long, linear-cylindrical, 5-6 mm broad somewhat constricted between the seeds, pubescent, hairs spreading.
Macroscopy of seeds \[11\].

Hilum is at or almost at the level of seed coat and very short aril is present. Funicle present. Macrosclerids cylindrical with conical lumen.

Nutritional value

Mung beans is a pulse or food legume crop. It is mainly used as dried seeds and occasionally as forage or green pods or as vegetable. Dried seeds are eaten whole or split, cooked, fermented or milled and ground into flour. Confections, curries, soups, porridge and alcoholic beverages can also be made from Mung bean \[13\]. Seeds contain about 20 – 24% protein in which albumin (25%) and globulin (60%) are the main storage proteins \[13, 14\].

Mung bean protein is also rich in essential amino acids and contain aromatic amino acids, leucine, isoleucine and valine. However, it is slightly deficient in lysine, threonine, tryptophan and total sulfur amino acids \[15\]. Mung beans also contain carbohydrate content as 50 – 60%. Starch is the major carbohydrate and therefore, mung bean is typically used in making starchy noodles. Beside this, trypsin inhibitors, hemagglutinin, tannins and phytic acid are also present in Mung bean, which are essential for enhancing the strength of bones and teeth. Mung bean rich in lecithin which reduces the liver fat and promotes digestion and eliminating toxins. Minerals like calcium and potassium are also reported in Mung bean, which are essential for the growth of bones and teeth.

Table 3: Nutritional value of seeds \[8\].

Nutrient	Amount (mg/100g)
Energy	347 kcal/100g
Carbohydrates	62.62g/100g
Proteins	23.86g/100g
Ash	3.32g/100g
Total dietary fibers	16.3g/100g
Total sugars	6.60g/100g
Fats	1.15g/100g
Lipids (g/100g)	
Total saturated fatty acids	0.348
Total mono unsaturated fatty acids	0.161
Total poly unsaturated fatty acids	0.384
Micro-minerals (mg/100g)	
Copper	0.941
Iron	6.74
Manganese	1.035
Selenium	8.2
Zinc	2.68
Macro-minerals (mg/100g)	
Calcium	132
Magnesium	189
Phosphorus	367
Potassium	1246
Sodium	15
Vitamin A (Beta Carotene)	68
Vitamin B1 (Thiamin)	0.621
Vitamin B2 (Riboflavin)	0.233
Vitamin B3 (Niacin)	2.251
Vitamin B12 (Pantothenic acid)	1.910
Vitamin B6 (Pyridoxine)	0.382
Vitamin B9 (Folate)	625
Vitamin C (Ascorbic acid)	4.8
Vitamin E (alpha-tocopherol)	0.51
Vitamin K (Phylloquinone)	9.0

Ethnomedicine

Mung bean is reported to help in preventing the loss of nails and hairs, and also reduces the risk of hypercholesterolemia, coronary heart disease, decreases the absorption of toxic substances and prevent cancer \[16\]. People in China are using Mung bean as medicine for more than 2000 years for detoxification activities, gastrointestinal problems, refresh mentality, skin moisture, decreasing the stroke of heat and other related problems with summer heat \[9\].

Table 4: Different traditional medicinal preparations of Vigna radiata \[17\].

Medicaments	Indication
Soup	Fever, ascites, cough.
Cold infusion	Polydypsia, emesis.
Decoction	Bacterial skin infection.
Ghee preparation	Diseases of teeth.
Conclusion
Medicinal uses, phytochemistry and pharmacology of Vigna radiata presented in this review could be helpful for future studies and research. The plant has good future prospective for the discovery of new molecules and pharmacological activities.

References
1. Degefa I. General Characteristics and Genetic Improvement Mung bean (Vigna radiata L.) in Ethiopia: Review Article International Journal of Agriculture Innovations and Research 2016;5(2):232-237.
2. Umata H. Evaluation of adaptability of mung bean varieties in moisture stress of eastern Harerghe zone. Agricultural Research and Technology 2018;3(2):001-004.
3. Tang D, et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 2014;8:4.
4. Min L. Research advance in chemical composition and pharmacological action of mung bean. Shanghai J Trad Chin Med 2001;5:18.

Table 5: Phytochemistry [8, 18, 22].

Polyphenol class	Polyphenol sub-class	Compounds
Anthocyanins	Delphinidin ; Delphinidin 3-α-glucoside	
Chalcones	2',4',4'-trihydroxychalcone	
Dihydrochalcones	Phloretin	
Dihydroflavonols	Dihydroquercetin	
Flavanones	Eriodictyol ; Hesperetin ; Neohesperidin ; Naringin ; Naringenin ; Naringenin 7-α-glucoside ; Neohesperidin ; 5,7-dihydroxyflavone ; Eriodictyol 7-α-glucoside	
Flavones	Apigenin ; Apigenin 7-α-glucoside ; Apigenin 6-c-glucoside ; Hypolaetin ; Luteolin ; Vitexin ; Isovitexin.	
Isoflavonoids	Kaempferol ; Kaempferol 3-α-rutinoside ; Kaempferitrin ; Quercetin ; Quercetin 3-α-glucoside ; Quercetin 3-α-rutinoside ; Myricetin ; Rhamnetin ; Rutin	
Phenolic acids	4-Hydroxybenzoic acid ; Caffeic acid ; Ellagic acid ; Ellagic acid glucoside ; Gallic acid ; Gentisic acid ; Protocatechuic acid ; Vanillic acid	
Hydroxycinnamic acids	3-p-coumaric acid ; Chlorogenic acid ; Ferulic acid ; Feruloyl glucose ; Sitosterol ferulate ; Syringic acid	
Hydroxycoumarins	Scopolin ; Scopoletin	
Hydroxyphenylpropene	Rhododendrin	
Coumestan		

Table 6: Pharmacology

Part	Extract	Pharmacological activity
Seed	Aqueous	Anti-fungal [33], anti-hyperglycemic [24].
Ethanol		Anti-inflammatory [25, 26].
Methanol		Anti-microbial [27].
Ethyl acetate		Antioxidant and anti-proliferative [28].
Seed sprout and seed coat	Ethanol	Antidiabetic [29].
Methanol and ethyl acetate	Aqueous	Antiseptic [30].
Seed sprout	Aqueous	Whitening cosmecutical ingredient [31].
Methanol		Anti-hypertensive [32].
Seed coat	Aqueous	Estrogenic effect [33].
Leaf	Methanol	Anti-septic [34].
Compounds		Anti-inflammatory [35].
Proteins, polypeptides, polysaccharides		Antioxidant
Enzymes, peptides		Antimicrobial
Phytoesterol		Lipid metabolism
Proteins, amino acids		Antihypertensive
Polyphenols		Antidiabetic, antioxidant, antimicrobial, anti-inflammatory, antitumor, antiseptic

5. Kahraman A, et al. Mung Bean [Vigna radiata (L.) Wilczek] as Human Food. International Journal of Agriculture and Economic Development 2014;2(2):9-17.
6. Heuzé V, et al. Mung bean (Vigna radiata). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/235 Last updated on July 3, 2015;10:04. 2015.
7. Mogotsi K. Vigna radiata (L.) R. Wilczek in PROTA 1: Cereals and pulses/Céréales et légumes secs. [CD-Rom]. M. Brink and G. Belay, Editors 2006, PROTA: Wageningen, Netherlands.
8. Ganesan K, Xu B. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness 2018;7(1):11-33.
9. USDA. Plant Database : Vigna radiata (L.) R. Wilczek mung bean 2018. [cited 2018 January 26, 11:40EST]; Available from: https://plants.usda.gov/core/profile?symbol=VIRA4.
10. Ali SI. Papilionaceae, in Flora of Pakistan, E. Nasir and S.I. Ali, Editors. Department of Botany, University of Karachi 1973.
11. Patel JD. Comparative seed coat anatomy of some Indian edible pulses. Phyton 1976;17:287-299.
12. Lambrides C, Godwin I. Mungbean, in Pulses, sugar and tuber crops. Springer 2007. p. 69-90.
13. Wang SY, et al. A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean. Peptides 2004:25(8):1235-1242.
14. Kudre TG, Benjakul S, Kishimura H. Comparative study on chemical compositions and properties of protein isolates from mung bean, black bean and bambara groundnut. Journal of the Science of Food and Agriculture 2013;93(10):2429-2436.
15. Mubarak A. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food chemistry 2005;89(4):489-495.
16. Asfaw Z, et al. Mungbean (Vigna radiata (L.) Wilczek) (Fabaceae) Landrace Diversity in Ethiopia. Addis Ababa University 2015.
17. Kavya N, et al. Nutritional and therapeutic uses of mudga [Vigna radiata (L.) R. Wilczek]; A potential interventional dietary component. International Journal of Research in Ayurveda and Pharmacy 2014;5(2):238-241.
18. Lin X, W Li. The research of mung bean SOD oral liquid. Food Sci 1997;18:25-26.
19. Kruewan KL, Tongyonk K. Kangsadalampai, Antimutagenic and co-mutagenic activities of some legume seeds and their seed coats. Journal of Medicinal Plants Research 2012;6(22):3845-3851.
20. Prokudina E, et al. Rapid UPLC–ESI–MS/MS method for the analysis of isoflavonoids and other phenylpropanoids. Journal of Food Composition and Analysis 2012;26(1-2):36-42.
21. Wang M, et al. Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Genetic Resources 2008;6(1):62-69.
22. Li H, et al. Identification of the flavonoids in mungbean (Phaseolus radiatus L.) soup and their antioxidant activities. Food chemistry 2012;135(4):2942-2946.
23. Ye X, TB Ng. A chitinase with antifungal activity from the mung bean. Protein Expression and Purification, 2005;40(2):230-236.
24. Yeap SK, et al. Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan-Induced-diabetic mice. Journal of Biomedicine and Biotechnology 2012, 7.
25. Lee SJ, et al. Effect of mung bean ethanol extract on pro-inflammatory cytokines in LPS stimulated macrophages. Food Science and Biotechnology 2011;20(2):519-524.
26. Kang I, et al. Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-Ay diabese mouse model. Journal of Medicinal Food 2015;18(8):841-849.
27. Senthilkumar S, Sivakumar T. Studies on the greengram (Vigna radiata L.) sprout assisted synthesis of silver nanoparticles and their antimicrobial activities. International Journal of Nanomaterials and Biostructures 2014;4(3):52-57.
28. Kim DK, et al. Total polyphenols, antioxidant and antiproliferative activities of different extracts in mungbean seeds and sprouts. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 2012;67(1):71-75.
29. Yao Y, et al. Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry 2008;56(19):8869-8873.
30. Tang D, et al. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 2014;8(1):4.
31. Jeong YM, et al. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis. Food Science and Biotechnology 2016;25(2):567-573.
32. Hsu GSW, et al. Antihypertensive effect of mung bean sprout extracts in spontaneously hypertensive rats. Journal of Food Biochemistry 2011;35(1):278-288.
33. Battu G, et al. A phytopharmacological review on Vigna species. Pharanest 2011;2:62-67.
34. Zhu S, et al. It is not just folklore: The aqueous extract of mung bean coat is protective against sepsis. Evidence-based Complementary and Alternative Medicine : eCAM 2012, 498467.
35. Nishanthi M, et al. Evaluation of in-vitro anti-inflammatory activity of methanolic leaf extract of Vigna radiata (L.) Wileze. International Journal of Pharmacological Screening Methods 2012;2(2):88-91.