THE GLYCOSYL PHOSPHATIDYLINOSITOL-LINKED
FcyRIII_{PMN} MEDIATES TRANSMEMBRANE SIGNALING
EVENTS DISTINCT FROM FcyRII

BY ROBERT P. KIMBERLY, JON W. AHLSTROM,
MICHAEL E. CLICK, AND JEFFREY C. EDBERG

From The Hospital for Special Surgery, Cornell University Medical College,
New York, New York 10021

The recent recognition that FcyRIII (CD16) expressed on polymorphonuclear leukocytes (FcyRIII_{PMN}) is a glycosyl-phosphatidylinositol (GPI) anchored molecule (1-3) has heightened interest in the functional roles of human Fcy receptors (FcyR). The potential for rapid lateral mobility within the membrane (4, 5) and the lack of an obvious mechanism to couple with guanine nucleotide-binding regulatory proteins or cytoskeletal structures have fostered the concept of FcyRIII_{PMN} as a binding molecule serving to present ligand to FcyRII for subsequent transmembrane signaling (1, 6, 7). In contrast, the other human FcyRs (FcyRI, FcyRII, and the isoform of FcyRIII on NK cells) are transmembrane proteins (8-14), each with the capacity for signal transduction independent of other types of FcyRs (15-21).

Two lines of evidence, however, suggest that FcyRIII_{PMN} is also a functionally active molecule independent of FcyRII. First, PMN can lyse chicken E opsonized with anti-FcyRIII heteroantibodies (22-24). Second, while phagocytosis of IgG-opsonized E (EA) by PMN may involve both FcyRII and FcyRIII_{PMN}, internalization of Con A-opsonized E requires the obligatory participation of FcyRIII_{PMN} and is independent of Con A-mediated engagement of FcyRII (25, 26). To explore the capacity of FcyRIII_{PMN} to generate intracellular signaling events that would indicate a functional role extending beyond simple ligand binding, we have analyzed cytosolic calcium and membrane potential changes elicited by FcyR-specific mAbs (27, 28). Our data indicate that multivalent, but not univalent, ligation of FcyRIII_{PMN} causes a rapid increase in cytosolic calcium that is derived from intracellular stores. This signal...
is insensitive to pertussis and cholera toxins. Ligation of FcγRII with mAb does not elicit a similar change in intracellular calcium. This inability is not merely a reflection of the lower receptor density of FcγRII, since FcγRIIPMN reduced to a similar density level by PI-PLC, still signals effectively. These data indicate that FcγRIIPMN, a GPI-anchored molecule, actively mediates transmembrane signaling events distinct from FcγRII. Ligand-dependent collaboration of FcγRIIPMN with FcγRII is not required.

Materials and Methods

Preparation of PMN. Peripheral blood, obtained from healthy volunteers, was drawn into heparinized plastic syringes. PMN were separated by two-step discontinuous density gradient centrifugation on Ficoll-Hypaque (density = 1.078 and 1.119 g/ml) (25, 26). The PMN layer was harvested and washed once in PBS at 25°C. Contaminating erythrocytes were lysed by a 10-s exposure to distilled water (Ultrascientific, Inc., Chicago, IL) followed by 0.18% saline. Cells were resuspended in PBS at 10^7 cells/ml for loading with pertinent fluorescent probes. By microscopic examination >95% of the cells were PMN with >99% viability. Separations were completed within 90 min and all experimental procedures were completed within 4–5 h of phlebotomy.

Reagents and Buffers. All buffers and solutions were made with distilled water. PBS (125 mM NaCl, 10 mM PO_4) was made with 5 mM KCl and 5 mM glucose. PBS with calcium and magnesium included 1.65 mM MgCl_2 and 1.0 mM CaCl_2. Sheath fluid for flow cytometry was distilled water with 154 mM NaCl, 1.5 mM MgCl_2, and 1.0 mM CaCl_2. Reagents were used at ambient temperature (25°C); 5 min before analysis, each sample was warmed to and maintained at 37°C (29, 30).

The chemotactic peptide, FMLP (Sigma Chemical Co., St. Louis, MO), was dissolved in ACS grade DMSO (Fisher Scientific, Pittsburgh, PA) for a stock concentration of 10^{-3} M and stored in sterile, pyrogen-free containers at −20°C. Before each experiment an aliquot of the 10^{-3} M stock was thawed and diluted with PBS to a working concentration of 10^{-5} M. For experiments with Vibrio cholerae toxin (CT) and Bordetella pertussis toxin (PT) (Sigma Chemical Co.), cells were preincubated at 37°C for 120 min with either CT (0.5 to 2.5 μg/ml with 20 mM dithiothreitol) or PT (125 ng/ml to 500 ng/ml) (19, 31, 32). Indo-1 and DiOC_5 (Molecular Probes, Junction City, OR), fluorochromes for the measurement of intracellular calcium and membrane potential, respectively, were used as described below. BAPTA-acetoxyethyl ester (Molecular Probes), a nonfluorogenic calcium chelator, was prepared as a 2 mM stock solution in DMSO. For chelation of intracellular calcium, cells were preincubated with 10 μM BAPTA at 37°C for 30 min.

Aggregated IgG, prepared by heat aggregation of chromatographically purified 7S human IgG from Cohn fraction II (Miles Biochemicals, Elkhart, IN), was sized by column chromatography with AcA22 (LKB, Rockville, MD) and stored in aliquots at −70°C. Goat F(ab')_2 anti-mouse IgG (GAM), free of intact IgG by silver stain analysis of SDS-PAGE analytical gels, was obtained from Tago Immunochemicals (Burlingame, CA). F(ab')_2 GAM directly conjugated to FITC was used to confirm specific binding of this reagent to mouse mAb on the cell surface.

Monoclonal Antibodies. 3G8, a murine IgG1 mAb recognizing human FcγRIII (CD16) (33), was prepared in bulk culture and purified by ion-exchange and size-exclusion chromatography (Damon Biotechnology, Needham Heights, MA). Fab fragments were prepared by digestion with papain-Sepharose (Pierce Biochemical Co., Rockford, IL) and were purified by passage over protein A-Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ) at pH 8.3 and by molecular sieve chromatography with a column of TSK 3000 (LKB). Proteins were >98% pure. Fab fragment preparations contained no detectable intact IgG or heavy chains, as judged by silver stain of SDS-PAGE analytical gels.

mAb IV.3, a murine IgG2b recognizing human FcγRII (CD32) (34), was obtained as purified IgG and Fab fragments from Medarex, Inc., West Lebanon, NH. Fab fragments contained no detectable intact Ig or heavy chains as judged by silver stain of SDS-PAGE.
mAb preparations were sterile and contained no detectable endotoxin as determined by the limulus amoebocyte assay (Associates of Cape Cod, Woods Hole, MA). In selected experiments, mAb CIKM5, a murine IgGI also recognizing CD32 (35), was used as an intact Ig.

Indo-I Fluorescence. Indo-1, a calcium binding fluorescent dye whose spectral properties change with binding of free Ca$^{2+}$ (36), was used to measure changes in intracellular calcium concentrations ([Ca$^{2+}$]). PMN were incubated for 15 minutes at 37°C with 5 μM indo-1 acetoxymethyl ester. After loading, the cells were washed once with PBS and maintained at room temperature in the dark. Five minutes prior to analysis the cells were warmed to 37°C in PBS with Ca$^{2+}$ and Mg$^{2+}$ and adjusted to a concentration of 1 x 106 cells/ml (29, 30). For selected experiments designed to test the influence of indo-1 loading conditions on assay sensitivity, PMN were incubated with varying concentrations of indo-1 acetoxymethyl ester ranging from 0.1 μM to 10 μM. Loading conditions were otherwise identical.

DiOC$_5$ Fluorescence. The lipophilic, cationic cyanine dye DiOC$_5$ was used to measure changes in membrane potential (29, 37, 38). Just prior to stimulation, cells were suspended at a final concentration of 106 cells/ml in PBS containing Ca$^{2+}$ and Mg$^{2+}$ and incubated for 5 min at 37°C with 20 nM DiOC$_5$. Cells were then analyzed directly on the flow cytometer.

Measurement of [Ca$^{2+}$] and Membrane Potential. Four and five color flow cytometry was performed with a dual laser Cytofluorograf IIS with a 2151 computer (Becton Dickinson Immunocytometry Systems, Westwood, MA). Constant stirring was maintained throughout each experiment. Excitation at 488 nm for measurement of forward and right angle light scattering and for measurement of DiOC$_5$ fluorescence was provided by a Lexel 75 argon ion laser. Ultraviolet excitation at 350-360 nm for measurement of indo-1 fluorescence was provided by a Coherent 90K krypton ion laser. Peak indo-1 fluorescence emissions at 405 and 490 nm were monitored after passing through violet (395 ± 20) and blue (500 ± 20) band pass filters, respectively, as previously described (39). Physical separation of the two different incident laser beams was used to distinguish the 488-nm emission line of the argon laser from the blue emission of indo-1. DiOC$_5$ fluorescence emission was collected at >560 nm for five color analysis. Initial studies with DiOC$_5$ alone showed a linear relationship between fluorescence simultaneously collected at 510-530 nm and at >560 nm. All signals were analyzed in linear fluorescence units. The indo-1 ratio of violet to blue fluorescence was calculated in real time for each cell, multiplied by a constant to allow appropriate scaling, and displayed as a function of time. At the beginning of each experiment, the blue and violet PMTs were adjusted to provide a baseline display ratio of 10 on a scale of 1-100. The maximum ratio was determined after addition of 10 μg/ml ionomycin (Calbiochem-Behring Corp., La Jolla, CA).

For calibration of the indo-1 signal as [Ca$^{2+}$]; in nM, the four calibration parameters (Rmin, Rmax, Sb2, and Sf2) (36) were determined in a series of experiments on an SLM 8000 spectrofluorometer with excitation measured at 355 nm and emission measured simultaneously at 405 nm and 490 nm (SLM-Aminco, Urbana, IL). Since early time points (<10 s) were missed on the Cytofluorograf due to sample addition and mixing, the injection port on the SLM was used to facilitate analysis of these early points. All experiments were performed with constant stirring, and the mixing time was typically 2-3 s. The SLM 8000 was also used in parallel with the Cytofluorograf to analyze the influence of varying indo-1-AM loading concentrations on sensitivity for detection of changes in [Ca$^{2+}$]. Sensitivity was comparable for PMN loaded with indo-1 ranging from 1 to 10 μM and stimulated with both threshold and maximal stimuli. Loading with concentrations of 0.1 and 0.5 μM necessitated increased gains on the PMTs, but the sensitivity for detection of changes in [Ca$^{2+}$] remained comparable for both the Cytofluorograf and the SLM 8000 measurements.

Immuno,fluorescent Flow Cytometry. Cells (2.5-5 x 105), in PBS/1% FCS, were incubated with saturating doses of anti-FcyRIII mAb (3G8), anti-FcyRII mAb (IV.3), or the murine myeloma proteins MOPC21 (mIgGI) and UPC 10 (mIgG2a) as controls, for 30 min at 4°C. After washing, cells were stained with saturating amounts of FITC-conjugated rabbit anti-mouse IgG (Fab)$_2$ (Organon Technica, Malvern, PA) fragments. Additional controls included autofluorescence and staining of the cells with the FITC-conjugated rabbit anti-mouse IgG (Fab)$_2$ fragment alone. Cell-associated immunofluorescence was assayed by quantitative flow cytometry using an internal standard for each study (13, 26).
PI-PLC Digestion. For treatment of PMN with phosphatidylinositol-specific phospholipase C (PI-PLC), a functional concentration of enzyme from *Bacillus thuringiensis* sufficient to cleave 0.39 μmol of PI/min/ml was added to the cells in PBS and incubated for 1 h at 37°C (13).

Data Analysis. Flow cytometry data were collected in real time and expressed as a fluorescence ratio for indo-1 and as absolute fluorescence for DiOC₅ as illustrated in Fig. 1. These data were then computer-analyzed to determine time-dependent mean fluorescence ratio (R, indo-1) and mean fluorescence (F, DiOC₅). Changes in these values, relative to the prestimulus baseline (R₀ and F₀), were calculated for indo-1 (R/R₀) and for DiOC₅ (F/F₀) (Figs. 2-6). In addition, the percentage of cells responding to a stimulus was determined by selecting an arbitrary R value to give 5% responding cells in the baseline period (indo-1). The percentage of cells exceeding that value after stimulation was then calculated in a time-dependent fashion. For DiOC₅ fluorescence, the threshold value varied because of the broad distribu-

![Figure 1](attachment:image.png)

Figure 1. Stimulation of PMN with FMLP and mAb 3G8. PMN were loaded with the appropriate fluorochromes and stimulated with 10⁻⁷ M FMLP or saturating levels of mAb 3G8. (A) The real-time, simultaneous measurement of time-dependent changes in [Ca²⁺]_i with indo-1 (left) and in membrane potential with DiOC₅ (right) elicited by 10⁻⁷ M FMLP. The arrows indicate the addition of FMLP. (B) The same parameters after stimulation by 10 μg/ml of mAb 3G8. The arrows indicate the addition of mAb 3G8. Computer analysis of these three-dimensional cytograms allowed the quantitation of mean fluorescence and of percentage of cells responding (cf., Figs. 2-6).
tion of fluorescence in the baseline state. Absolute values of [Ca\(^{2+}\)] were determined from calibration experiments performed on the SLM 8000 spectrofluorometer as outlined above. Mean values are represented with the standard deviation as an index of dispersion.

Results

Stimulation of PMN by Chemotactic Peptide Receptors. Stimulation of freshly explanted human PMN by chemotactic peptides elicits a rapid increase in intracellular calcium levels and a change in membrane potential (29, 30). To provide a comparison for FcyRIII\(_{PMN}\)-induced responses, we analyzed the PMN response to FMLP by four- and five-color flow cytometry. Changes in membrane potential were monitored with DiOC\(_5\), and simultaneous changes in intracellular calcium were measured by the ratio of fluorescence emission of indo-1 (Fig. 1A). Membrane potential changes showed a dose-response with hyperpolarization induced by FMLP at \(10^{-11}\) to \(10^{-9}\) M and increasing depolarization induced by FMLP at \(10^{-8}\) to \(10^{-6}\) M. The mean F/F\(_0\) for DiOC\(_5\) at maximal membrane depolarization with FMLP \(10^{-7}\) M was 0.32 ± 0.07 (Fig. 1A; \(n = 12\)). The magnitude of the increase in [Ca\(^{2+}\)] also showed a dose-response relationship with the maximal change achieved by FMLP \(10^{-7}\) M. The peak intracellular Ca\(^{2+}\) response (R/R\(_0\)) was 4.1 ± 0.9 (\(n = 6\)) and was evident within 10 s after stimulation. The maximal membrane depolarization was not reached until 60-120 s after stimulation with \(10^{-7}\) M FMLP. The initial [Ca\(^{2+}\); change was unaffected by chelation of extracellular Ca\(^{2+}\) with 10 mM EGTA.

Transmembrane Signaling Initiated by FcyRIII\(_{PMN}\). To explore the capacity of FcyRIII\(_{PMN}\), a GPI-anchored molecule, to elicit similar early cell activation signals, we used the anti-FcyRIII (CD16) mAb 3G8 that binds the receptor in or near the ligand binding site. At 5-10 \(\mu\)g/ml, a rapid increase [Ca\(^{2+}\)] was induced by mAb 3G8 followed by modest membrane depolarization (Fig. 1B). Both the cytosolic Ca\(^{2+}\) response and the membrane depolarization showed a dose-response behavior over two logs of mAb concentration (0.1-10 \(\mu\)g/ml; Fig. 2A). Discrete, responding subpopulations were not identified (Figs. 1B and 2A [lower frames]), and smaller mean changes in the indo-1 signal represented smaller changes in [Ca\(^{2+}\)] on an individual cell basis. Peak response was achieved at a final concentration of 5-10 \(\mu\)g/ml. Concentrations of 50 \(\mu\)g/ml gave responses identical to 5-10 \(\mu\)g/ml. As with FMLP, some variability among donors in the [Ca\(^{2+}\)] response elicited by 3G8 was noted (Figs. 2A and B). On average, the peak R/R\(_0\) was 3.6 ± 1.1 (\(n = 25\)). In parallel studies on the spectrofluorometer this response represented a change in calculated [Ca\(^{2+}\)] from a baseline level of 112 ± 16 nM (\(n = 5\)) to 257 nM (range: 167-417 nM; \(n = 5\)).

Because the membrane potential changes elicited by mAb 3G8 were modest, we focused on [Ca\(^{2+}\)] to define the properties of the cellular response induced by FcyRIII\(_{PMN}\). The change in [Ca\(^{2+}\)] was abolished by preloading cells with the nonfluorogenic Ca\(^{2+}\) chelator, BAPTA (data not shown), but was unaffected by chelation of extracellular Ca\(^{2+}\) with 10 mM EGTA (Fig. 2B). These observations indicate that the indo-1 fluorescence reflected a true [Ca\(^{2+}\)] signal and that the change in [Ca\(^{2+}\)] was derived from intracellular stores.

Multivalent Crosslinking of FcyRIII\(_{PMN}\) Is Required. To examine whether univalent ligation of FcyRIII\(_{PMN}\) by 3G8 Fab fragments, like univalent ligation of the chemotactic peptide receptor by FMLP, could elicit a [Ca\(^{2+}\)] response, we added 3G8
Figure 2: Simultaneous measurement of PMN activity by FcγRII and mAb 3G8. (A) The decrease in [Ca2+]i (upper left frame) and the percent of cells responding are shown in the lower frames. As with PMA-induced calcium mobilization, 100 μM mAb 3G8 did not alter the change in [Ca2+]i elicited by mAb 3G8 (n = 3).

(B) The fluorescence ratio (R/R0) for indo-1 and mean absolute fluorescence (F/F0) for DIOC3 are presented in the upper frames.
Fab to indo-1-loaded cells. Fab concentrations from 2.5 to 10 µg/ml showed no stimulation despite final concentrations of anti-receptor Fab exceeding the concentration necessary for saturation binding (Fig. 3 A; n = 1 [2.5 µg/ml], 4 [5 µg/ml], and 3 [10 µg/ml]). Addition of F(ab’)_2 GAM, 50 µg/ml, to cells previously opsonized with 10 µg/ml 3G8 Fab, however, elicited an increase in [Ca^{2+}]_i comparable to intact 3G8 (Fig. 3 B). These data indicate that univalent ligation of FcγRIII_{PMN} is insufficient but that crosslinking of FcγRIII_{PMN} alone is able to elicit the calcium response.

Interestingly, the crosslinking event did not make cells refractory to further stimulation by the same receptors. In two different experimental designs, FcγRIII_{PMN}, crosslinked initially with 3G8 IgG ranging in concentration from 5 to 50 µg/ml and subsequently with F(ab’)_2 GAM, elicited a change in [Ca^{2+}]_i that was not significantly different from the initial 3G8 IgG response. First, after addition of mAb 3G8 to PMN in suspension, repetitive signaling could be demonstrated with the

\[[\text{Ca}^{2+}]_i \]

Figure 3. Crosslinking of FcγRIII_{PMN}. (A) Univalent ligation of FcγRIII_{PMN} with 3G8 Fab, 10 µg/ml, did not elicit a [Ca^{2+}]_i flux (n = 3, [10 µg/ml]). (B) When the 3G8 Fab were crosslinked by F(ab’)_2 GAM, a calcium flux occurred. Cells were opsonized with 3G8 Fab (10 µg/ml), washed once, and then analyzed with the addition of F(ab’)_2 GAM. F(ab’)_2 GAM, 1-10 µg/ml, gave no response (n = 3), while F(ab’)_2 GAM, 25 µg/ml, was variable (n = 3). F(ab’)_2 GAM, 50 µg/ml, gave a consistent response comparable to that for 3G8 IgG (n = 3). (C) 3G8 IgG (5 µg/ml) was added to cells, the response analyzed, and then F(ab’)_2 GAM, 5 µg/ml, was added as soon as R/R approached baseline (n = 6). (D) The [Ca^{2+}]_i response to crosslinking of 3G8 IgG (10 µg/ml) with GAM (25 µg/ml) after one wash of 3G8-opsonized cells (n = 4). Low concentrations of GAM (1-5 µg/ml) gave smaller responses, as did very high concentrations (100 µg/ml). For these studies, binding of F(ab’)_2 GAM was confirmed in selected experiments by using a FITC-conjugated preparation and monitoring cell-associated immunofluorescence in five-parameter analysis.
further addition of F(ab')2 GAM (Fig. 3 C). Similarly, PMN, preincubated with mAb 3G8 and washed once before addition of F(ab')2 GAM, responded to receptor crosslinking with a change in [Ca2+]i (Fig. 3 D). The intensity of the calcium response varied with the final concentration of GAM. For cells preopsonized with mAb 3G8, F(ab')2 GAM 10–25 μg/ml was effective while cells preopsonized with 3G8 Fab required crosslinking with F(ab')2 GAM 25–50 μg/ml.

The FcγRIII-induced [Ca2+]i Signal Is Pertussis Toxin Insensitive. In PMN, FMLP induces the breakdown of PIP2 with the generation of diacylglycerol and IP by coupling with PT sensitive G proteins (40, 41). IP are recognized as mediators of the mobilization of calcium from intracellular stores (reviewed in reference 42). Accordingly, we looked at the toxin sensitivity of the [Ca2+]i signal elicited by both FMLP and FcγRIIIPMN. Preincubation of PMN with 125 ng/ml and 500 ng/ml PT significantly reduced the FMLP-induced [Ca2+]i response, while the FcγRIIIPMN-induced signal showed no change (Fig. 4). Cholera toxin (2.5 μg/ml) had no effect on the [Ca2+]i changes elicited by either stimulus (data not shown; n = 3).

Crosslinking of FcyRII Does Not Elicit a Comparable Change in [Ca2+]i. The experiments with 3G8 Fab and F(ab')2 GAM demonstrated that participation of FcγRII (potentially engaged via the Fc piece of 3G8 IgG) is not necessary for generation of an intracellular calcium response. However, since mAb ligation of both human FcγRII and its murine homologue induces a change in [Ca2+]i in monocytes, U937 cells (15, 16), and peritoneal macrophages (28), we considered the possibility that FcγRII in PMN might function in a comparable fashion. Using the anti-FcγRII mAb IV.3, we were unable to induce a calcium response with either univalent Fab fragments (Fig. 5 A) or with IV.3 Fab, crosslinked with F(ab')2 GAM (Fig. 5 B). Intact IV.3 IgG at concentrations ranging from 0.1 μg/ml through saturation to 20 μg/ml was unable to induce a consistent change in [Ca2+]i (Fig. 5 C). Of note, however, in 2 of 14 separate experiments with IV.3 IgG a small change in the indo-1 ratio was observed (Fig. 5 C). Further experiments with the anti-FcγRII mAb CIKM5, known to induce a change in [Ca2+]i in monocytes, also showed small [Ca2+]i responses (R/Ro = 1.3 with 10 μg/ml; n = 3).

While IV.3 Fab crosslinked by F(ab')2 GAM were unable to generate a change

![Figure 4](https://example.com/figure4.png)

Figure 4. Comparative sensitivity to pertussis toxin. (A) The effect of PT on the [Ca2+]i response to FMLP. For FMLP, PT (125 ng/ml) reduced the [Ca2+]i response with an even greater effect at 500 ng/ml. (B) PT had no effect on the [Ca2+]i response elicited by mAb 3G8.
Changes in \([\text{Ca}^{2+}]_i\) with mAb IV.3. (A) Univalent ligation of FcyRII with IV.3 Fab, 10 µg/ml, did not elicit a \([\text{Ca}^{2+}]_i\) flux \((n = 3)\). Nor did a calcium flux occur when the IV.3 Fab \((10 \mu g/ml)\) were crosslinked by F(ab')2 GAM \((25 \text{ and } 50 \mu g/ml)\). (B) Cells were opsonized with IV.3 Fab, washed once, and then analyzed with the addition of F(ab')2 GAM. F(ab')2 GAM, 25-50 µg/ml gave little or no response \((n = 6)\). (C) IV.3 IgG \((5-20, \mu g/ml)\) was added to cells but no consistent response was evident \(\text{(see text)}\). The 20 µg/ml IV.3 represents the maximal \([\text{Ca}^{2+}]_i\) response seen with IV.3. The mAb 3G8 response on the same day is included for comparison. (D) The \([\text{Ca}^{2+}]_i\) response to crosslinking of IV.3 IgG \((10 \mu g/ml)\) with F(ab')2 GAM \((25 \mu g/ml)\) after one wash of IV.3-opsonized cells \((n = 3)\). The response is comparable to the 3G8 response.

in \([\text{Ca}^{2+}]_i\), IV.3 IgG crosslinked by the same reagent gave a rapid calcium response \(\text{(Fig. 5 D)}\) comparable to that elicited by 3G8 IgG. Both IV.3 Fab and IV.3 IgG bound to the PMN equally, as judged by quantitative flow cytometry. Thus, the effectiveness of GAM with IV.3 IgG may reflect the formation of heterotypic clusters of both FcyRIII engaged by the Fab end of IV.3 and FcyRIII\textsubscript{PMN} engaged by the Fc region. Interestingly, aggregated human IgG generated a change in \([\text{Ca}^{2+}]_i\), comparable to crosslinked 3G8 Fab, 3G8 IgG and crosslinked IV.3 IgG \(\text{(data not shown)}\). Thus, both ligand and mAb induced similar \([\text{Ca}^{2+}]_i\) fluxes, but ligand was unable to distinguish between FcyRIII\textsubscript{PMN} signaling and synergistic signaling of FcyRIII\textsubscript{PMN} and FcyRII through heterotypic clusters.

FcyRIII\textsubscript{PMN} Signals Effectively at Reduced Receptor Density. Since PMN express approximately 150-200,000 copies of FcyRIII\textsubscript{PMN} per cell but only 40-60,000 copies of FcyRII per cell, we explored the possibility that the higher receptor number of FcyRIII\textsubscript{PMN} might explain the differential ability of the two FcyR on PMN to initiate a change in \([\text{Ca}^{2+}]_i\). We incubated PMN with PI-PLC to decrease the number
of FcγRIIIPMN on the cell surface. As measured by flow cytometry, FcγRIIIPMN density was reduced by ~70% to a level similar to that of FcγRII (Fig. 6 A). PI-PLC treatment did not alter PMN responsiveness to FMLP (Fig. 6 B). Similarly, cross-linking of FcγRIIIPMN with 3G8 IgG still elicited a rapid change in [Ca²⁺], that was indistinguishable from control samples (Fig. 6 B, bottom). Since PI-PLC treated and control cells showed identical response characteristics over a three log dose range of mAb 3G8 (0.05–50 μg/ml; n = 11), differences in receptor density cannot explain the different signaling properties of FcγRIIIPMN and FcγRII.

Discussion

The potential for rapid lateral mobility in the cell membrane and lack of an obvious signal transducing structure for the GPI-anchored form of FcγRIII expressed

![Figure 6](image-url)

Figure 6. Reduced FcγRIIIPMN density does not alter the change in [Ca²⁺]. (A) After incubation of cells with PI-PLC, FcγRIIIPMN density is reduced to a level similar to FcγRII. Histogram d is mAb 3G8 fluorescence before PI-PLC; histogram c is 3G8 following PI-PLC. Histogram b shows that FcγRII (mAb IV.3) was unchanged by PI-PLC. Histogram a is the isotype control. (B) PI-PLC digestion did not alter the [Ca²⁺] response to FMLP (top). Similarly, the bottom panel shows that the response to 3G8, 1.0 μg/ml, was unchanged. A three log dose range of mAb 3G8 (0.05–50 μg/ml) was used for stimulation. No differences were detectable at any dose.
in PMN has raised the possibility that FcγRIII \(_{\text{PMN}}\) may serve only as a focusing molecule for ligand. The ability of various GPI-anchored molecules to mediate transmembrane signaling in T cells (43–48), however, prompted us to investigate the signaling properties of this receptor as a functionally active molecule in a non-T cell system. Using resting PMN, we have shown that oligovalent, but not univalent, ligation leads to a rapid increase in \([\text{Ca}^{2+}]_i\) derived from intracellular stores through a PT and CT insensitive process. This capacity to initiate changes in \([\text{Ca}^{2+}]_i\) is distinct from that of FcγRII and is not simply a reflection of the relative difference in cell surface density of the two FcγRs. The transmembrane signaling event initiated by FcγRIII \(_{\text{PMN}}\) requires the engagement of only FcγRIII \(_{\text{PMN}}\) by crosslinked Fab fragments. These data indicate that FcγRIII \(_{\text{PMN}}\) is not merely a focusing molecule for FcγRII but rather an active participant in integrated cell processes.

The mechanism of signal generation after ligation of FcγRIII \(_{\text{PMN}}\) differs from that used by the FMLP receptor in several significant ways. Univalent ligation of the FMLP receptor leads to both the generation of IP \(_3\) and a rapid initial increase in \([\text{Ca}^{2+}]_i\) derived from intracellular stores. Membrane depolarization is maximal at 2–3 min after stimulation and is followed by a transmembrane calcium flux and a secondary increase in cytosolic calcium (29, 30, 49, 50). These FMLP-induced changes are inhibitable by preincubation with PT (40, 41, 51–53). In contrast, univalent ligation of the FcγRIII \(_{\text{PMN}}\) ligand binding site by mAb 3G8 does not elicit any change in \([\text{Ca}^{2+}]_i\). Multivalent crosslinking of the receptor leads to a change in \([\text{Ca}^{2+}]_i\) derived from intracellular stores that is not sensitive to PT. While PT and CT insensitivity does not exclude the involvement of G proteins, it does suggest a receptor coupling pathway distinct from the FMLP receptor as well as from FcγRII, both of which are PT sensitive (19, 40, 41, 51–53). If G proteins are activated by FcγRIII \(_{\text{PMN}}\), perhaps through another surface molecule, the rapidity of the response would suggest that FcγRIII \(_{\text{PMN}}\) and this other molecule co-exist in close physical association.

Transmembrane signaling and stimulation of cell proliferation have been demonstrated for other GPI-linked proteins, most notably in T cells (43–48). With both Thy-1 and TAP there is a requirement for coexpression of the T cell antigen receptor complex (CD3-TCR), implying the need for an additional molecular species for signal transduction (54–57). Since shared binding of antigen with CD3-TCR is not required for activation (43–47), a non-ligand-dependent interaction between Thy-1 (TAP) and some shared component(s) of the CD3-TCR may be important. For example, the \(\gamma\)-chain of the TCR has been proposed as a more general signal-transducing molecule (58). Interestingly, the \(\zeta\)-chain has homology to the FcεRI \(\gamma\)-chain which associates with the murine homologue of the transmembrane form of human FcγRIII (59). Given the incomplete removal of FcγRIII \(_{\text{PMN}}\) with PI-PLC treatment (1–3, 13, 14) and the lack of a decrement in the \([\text{Ca}^{2+}]_i\) signal, it is tempting to speculate that there may be a signal-transducing subpopulation of FcγRIII \(_{\text{PMN}}\) that is associated with another integral membrane protein, such as the \(\gamma\)-chain of FcεRI, and that is thereby relatively PI-PLC resistant. However, incomplete removal of many different GPI-anchored molecules by PI-PLC has been observed by many investigators (reviewed in references 60, 61), and recent data in the Qa-2 system, a GPI-anchored class I molecule on murine T cells, suggests that it is the GPI anchor per se that is essential for signal transduction (48).
No matter what molecular mechanism mediates signal transduction by FcyRIIIPMN, the absence of a [Ca\(^{2+}\)] signal elicited by crosslinking of FcyRII alone with IV.3 Fab fragments and F(ab')2 GAM highlights the potential for different roles served by FcyRII and FcyRIIIPMN. For example, PMN have the capacity to use several different pathways for FcyR-mediated phagocytosis. With resting PMN, EA phagocytosis is [Ca\(^{2+}\)]-dependent and PT-insensitive like the anti-FcyRIII mAb-initiated [Ca\(^{2+}\)] signal (31, 62). In contrast, activated PMN have both PT-sensitive and insensitive components of EA phagocytosis, and many FcyRII-initiated processes, such as the generation of reactive oxygen intermediates and enzyme release by PMN and EA phagocytosis by monocytes, are also PT sensitive (19, 32). Thus, it may be possible that resting PMN primarily use a single signal transduction pathway while activated PMN use several receptor and/or signal transduction systems for phagocytosis. Of note, the occurrence of rapid [Ca\(^{2+}\)] responses with crosslinking of IV.3 IgG and the presumed formation of heterotypic clusters of both FcyRII (engaged by Fab) and FcyRIIIPMN (engaged by the Fc region) suggest that synergism between the two receptors may be important in PMN function.

The role of the [Ca\(^{2+}\)] signal per se, generated by FcyRIIIPMN, may be as a "priming" or "triggering" event that serves in conjunction with other events generated through FcyRIIIPMN or other surface molecules. The general model of a rapid change in [Ca\(^{2+}\)], as a "priming" event is applicable to a number of receptor systems. For example, in PMN, superoxide anion generation seems to require both an initial rapid change in [Ca\(^{2+}\)] and a more sustained signal (63). By analogy, the intracellular calcium signal elicited by FcyRIIIPMN might serve as a triggering event for interaction with another membrane molecule such as CR3 of the \(\beta 2\) integrin family, that can influence phagocytosis by FcyRs in PMN (64). A physical interaction between the FcyR and certain domains of CR3 may occur after engagement of the FcyR by ligand, and CR3 may couple with the cytoskeleton to assist in FcyR phagocytosis. Since FcyR and CR3 probably do not coexist in a multimolecular receptor complex, it is possible that, as a consequence of engagement of FcyR by ligand, a transmembrane signal and/or conformational change in the receptor initiates the collaboration between FcyR and CR3. If applied preferentially to FcyRIIIPMN, this model might explain the different roles for both [Ca\(^{2+}\)] transients (62, 65) and PT-sensitive G proteins in EA phagocytosis by resting PMN and monocytes (31).

The full range of cell functions initiated by ligation of FcyRIIIPMN is not clearly established. Evidence that both FcyRII and FcyRIIIPMN contribute to the generation of reactive oxygen metabolites has been presented (19, 34, 66). Given the PMN's capacity to use different pathways for the same function (31) and to alter its biology depending on the state of activation and/or adherence (67–69), interaction between receptor systems can be anticipated. However, it is clear that FcyRIIIPMN, a GPI-anchored molecule, can mediate transmembrane signaling independent of ligand-mediated engagement of FcyRII. Analysis of the different transmembrane signals initiated by FcyRIIIPMN and FcyRII in PMN and initiated by FcyRIII on PMN and on NK cells may provide important insights into structure–function relationships in human FcyR.
Summary

To investigate the ability of FcγRIIIpMN, the GPI-anchored isoform of FcγRIII (CD16) in polymorphonuclear leukocytes (PMN), to mediate transmembrane signaling events, we measured changes in membrane potential with DiOC5 and in intracellular calcium with indo-1. FcγR were ligated by anti-FcγRIII mAb 3G8 (IgG and Fab), anti-FcγRIII mAb IV3 (IgG and Fab), and human IgG aggregates. Cell bound mAbs were also crosslinked by goat F(ab')2 anti-mouse IgG. 3G8 IgG elicited a rapid change in [Ca2+]i, which was unaffected by EGTA, Vibrio cholerae toxin (CT), or Bordetella pertussis toxin (PT), and was abolished by BAPTA. Univalent receptor binding with 3G8 Fab gave no response but crosslinking with F(ab')2 GAM gave a rapid [Ca2+]i response. Neither IV3 Fab, IV3 IgG, nor crosslinking of IV3 Fab elicited a calcium signal. PI-PLC-treated PMN with the density of FcγRIIIpMN reduced to that of FcγRII showed an unattenuated change in [Ca2+]i with a 3G8 stimulus. The effects of IgG aggregates paralleled those of 3G8 mAb. These data indicate that multivalent ligation of FcγRIIIpMN initiates an increase in [Ca2+]i, derived from intracellular stores, that is distinct from both the FMLP- and FcγRII-induced responses. Ligand-dependent interaction with FcγRII is not required. Since FcγRIIIpMN can internalize the FcγRIII-specific probe Con A-opsonized E and lyse anti-FcγRIII heteroantibody-opsonized chick E, this GPI-anchored molecule mediates both signal transduction and integrated cell responses.

We greatly appreciate the advice of Dr. Elisabeth Simons in establishing the fluorescent techniques for indo-1 and DiOC5. We thank Dr. Peter Rabinovitch for the computer software (Auto-indo) for indo-1 analysis, Dr. Martin Low for the gift of PI-PLC, Dr. G. R. Pilkington for mAb CIKM5, Dr. Edward Gershey for redistilled water, Dr. Jane Salmon and Ms. P. B. Redecha for critical review of the manuscript, Mr. Carl Triscari for assistance with flow cytometry, and Dr. Charles L. Christian for his continued support.

Received for publication 26 September 1989 and in revised form 4 December 1989.

References

1. Selvaraj, P., W. F. Rosse, R. J. Silber, and T. A. Springer. 1988. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature (Lond.). 333:565.
2. Simmons, D., and B. Seed. 1988. The Fcγ receptor of natural killer cells is a phospholipid-linked membrane protein. Nature (Lond.). 333:568.
3. Huizinga, T. W. J., C. E. van der Schoot, C. Jost, R. Klassen, M. Kleijer, A. E. G. Kr. von dem Borne, D. Roos, and P. A. T. Tetteroo. 1988. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature (Lond.). 333:667.
4. Ishihara, A., Y. Hou, and K. Jacobson. 1987. The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts. Proc. Natl. Acad. Sci. USA. 84:1290.
5. Ferguson, M. A. J., and A. F. Williams. 1988. Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures. Annu. Rev. Biochem. 57:285.
6. Hogg, N. 1988. Structure and function of Fc receptors. Immunol. Today. 9:185.
7. Mellman, I. 1988. Relationships between structure and function in the Fc receptor family. Curr. Opin. Immunol. 1:16.
8. Allen, J. M., and B. Seed. 1989. Isolation and expression of functional high-affinity Fc receptor complementary DNAs. Science (Wash. DC). 243:378.
9. Stuart, S. G., M. L. Trounstone, D. J. T. Vaux, T. Koch, C. L. Martens, I. Mellman, and K. W. Moore. 1987. Isolation and expression of cDNA clones encoding a human receptor for IgG (FcyRII). J. Exp. Med. 166:1668.
10. Stengelin, S., I. Stamenkovic, and B. Seed. 1988. Isolation of cDNAs for two distinct human Fc receptors by ligand affinity cloning. EMBO (Eur. Mol. Biol. Organ.) J. 7:1053.
11. Hibbs, M. L., L. Bonadona, B. M. Scott, I. F. C. McKenzie, and P. M. Hogarth. 1988. Molecular cloning of a human immunoglobulin G Fc receptor. Proc. Natl. Acad. Sci. USA. 85:2240.
12. Scallon, B. J., E. Scigliano, V. H. Freedman, M. C. Miedel, Y.-C. E. Pan, J. C. Unkeless, and J. P. Kochan. 1989. A human immunoglobulin G receptor exists in both polypeptide-anchored and phosphatidylinositol-glycan-anchored forms. Proc. Natl. Acad. Sci. USA. 86:5079.
13. Edberg, J. C., P. B. Re伊cha, J. E. Salmon, and R. P. Kimberly. 1989. Human FcyRIII (CD16). Isoforms with distinct allelic expression, extracellular domains and membrane linkages on PMN and NK cells. J. Immunol. 143:1642.
14. Ravez, J. V., and B. Perussia. 1989. Alternative membrane forms of FcyRIII (CD16) on human NK cells and neutrophils: cell type-specific expression of two genes that differ in single nucleotide substitutions. J. Exp. Med. 170:481.
15. MacIntyre, E. A., P. J. Roberts, R. Abdul-Gaffar, K. O'Flynn, G. R. Pilkington, F. Farace, J. Morgan, and D. C. Linch. 1988. Mechanism of human monocyte activation via the 40-kDa Fc receptor for IgG. J. Immunol. 141:4333.
16. MacIntyre, E. A., P. J. Roberts, M. Jones, C. E. Van der Schoot, E. J. Favaloro, N. Tidman, and D. C. Linch. 1989. Activation of human monocytes occurs on cross-linking monocytic antigens to an Fc receptor. J. Immunol. 142:2377.
17. Tosi, M. F., and M. Berger. 1988. Functional differences between the 40 kDa and 50 to 70 kDa IgG Fc receptors on human neutrophils revealed by elastase treatment and antireceptor antibodies. J. Immunol. 141:2097.
18. Huizinga, T. W. J., F. van Kemenade, L. Koenderman, K. M. Dolman, A. E. G. van der Born, P. A. T. Tetteroo, and D. Roos. 1989. The 40-kDa Fc receptor (FcyRII) on human neutrophils is essential for the IgG-induced respiratory burst and IgG-induced phagocytosis. J. Immunol. 142:2365.
19. Feister, A. J., B. Browder, H. E. Willis, T. Mohanakumar, and S. Ruddy. 1988. Pertussis toxin inhibits human neutrophil responses mediated by the 42-kilodalton IgG Fc receptor. J. Immunol. 141:228.
20. MacIntyre, E. A., D. W. Wallace, K. O'Flynn, R. Abdul-Gaffar, and P. A. T. Tetteroo. 1989. Binding of monoclonal antibody to CD16 causes calcium mobilization in large granular lymphocytes but inhibits NK killing. Immunology. 65:459.
21. Cassatella, M. A., L. Ane伊on, M. C. Cuturi, P. Griskey, G. Trinchieri, and B. Perussia. 1989. FcyR (CD16) interaction with ligand induces Ca2+ mobilization and phosphoinositide turnover in human natural killer cells. J. Exp. Med. 169:549.
22. Fanger, M. W., L. Shen, R. F. Graziano, and P. M. Guyre. 1989. Cytotoxicity mediated by human Fc receptors for IgG. Immunol. Today. 10:92.
23. Shen, L., P. M. Guyre, and M. W. Fanger. 1987. Polymorphonuclear leukocyte function triggered through the high affinity Fc receptor for monomeric IgG. J. Immunol. 139:534.
24. Graziano, R. F., R. J. Looney, L. Shen, and M. W. Fanger. 1989. FcyR-mediated killing by eosinophils. J. Immunol. 142:230.
25. Salmon, J. E., S. Kapur, and R. P. Kimberly. 1987. Opsonin-independent ligation of Fc receptors. The 3G8-bearing receptors on neutrophils mediate the phagocytosis of concanavalin A-treated erythrocytes and non-opsonized Escherichia coli. J. Exp. Med. 166:1798.
26. Kimberly, R. P., N. J. Tappe, L. T. Merriam, P. B. Redecha, J. C. Edberg, S. Schwartzman, and J. E. Valinsky. 1989. Carbohydrates on human Fcy receptors: Interdependence of the classical IgG and nonclassical lectin binding sites on human FcyRIII expressed on neutrophils. J. Immunol. 142:3923.

27. Young, J. D.-E., J. C. Unkeless, H. R. Korchak, and Z. A. Cohn. 1983. Macrophage membrane potential changes associated with γ2b/γ1 Fc receptor-ligand binding. Proc. Natl. Acad. Sci. USA. 80:1357.

28. Young, J. D.-E., S. S. Ko, and Z. A. Cohn. 1984. The increase in intracellular free calcium associated with IgGγ2b/γ1 Fc receptor-ligand interactions: role in phagocytosis. Proc. Natl. Acad. Sci. USA. 81:5430.

29. Lazzari, K. G., P. J. Proto, and E. R. Simons. 1986. Simultaneous measurement of stimulus-induced changes in cytoplasmic Ca²⁺ and in membrane potential of human neutrophils. J. Biol. Chem. 261:9710.

30. Sullivan, R., D. A. Melnick, H. L. Malech, T. Meshulam, E. R. Simons, K. G. Lazzari, P. J. Proto, A. S. Gadenne, J. L. Leavitt, and J. D. Griffin. 1987. The effects of phorbol myristate acetate and chemotactic peptide on transmembrane potentials and cytosolic free calcium in mature granulocytes evolve sequentially as the cells differentiate. J. Biol. Chem. 262:1274.

31. Gresham, H. D., L. T. Clement, J. E. Volanakis, and E. J. Brown. 1987. Cholera toxin and pertussis toxin regulate the Fc-receptor-mediated phagocytic response of human neutrophils in a manner analogous to regulation by monoclonal antibody IC2. J. Immunol. 139:4159.

32. Brown, E. J., A. M. Newell, and H. D. Gresham. 1987. Molecular regulation of phagocyte function. Evidence for involvement of a guanosine triphosphate-binding protein in opsonin-mediated phagocytosis by monocytes. J. Immunol. 139:3777.

33. Fleit, H. B., S. D. Wright, and J. C. Unkeless. 1982. Human neutrophil Fcy receptor distribution and structure. Proc. Natl. Acad. Sci. USA. 79:3275.

34. Looney, R. J., D. H. Ryan, K. Takahashi, H. B. Fleit, H. J. Cohen, G. N. Abraham, and C. L. Anderson. 1986. Identification of a second class of IgG Fc receptors on human neutrophils. A 40 kilodalton molecule also found on eosinophils. J. Exp. Med. 163:826.

35. Pilkington, G. R., N. Kraft, V. Murdolo, G. T. H. Lee, S. V. Hunter, R. C. Atkins, and D. G. Jose. 1984. Serological typing of acute leukaemia using the monoclonal antibodies PHM 1,2,3,5, CIKM5, and the rabbit antisera RARC2a(Ad) and RAALLP50. In Leucocyte Typing: Human Leucocyte Differentiation Antigens. Bernard, A., L. Boumsell, J. Dausset, C. Milstein, and S. F. Schlossman, editors. Springer Verlag, Berlin. 588-595.

36. Grynkiewicz, G., M. Poenie, and R. Y. Tsien. 1985. A new generation of Ca²⁺ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440.

37. Seligmann, B. E., and J. I. Gallin. 1983. Comparison of indirect probes of membrane potential utilized in studies of human neutrophils. J. Cell. Physiol. 115:190.

38. Fletcher, M. P., and B. E. Seligmann. 1985. Monitoring human neutrophil granule secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential. J. Leukocyte Biol. 37:431.

39. Rabinovitch, P. S., C. H. June, A. Grossmann, and J. A. Ledbetter. 1986. Heterogeneity among T cell in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. J. Immunol. 137:952.

40. Smith, C. D., B. C. Lane, I. Kusaka, M. W. Vergheese, and R. Snyderman. 1985. Chemotactic receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. J. Biol. Chem. 260:5875.

41. Smith, C. D., C. C. Cox, and R. Snyderman. 1986. Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science (Wash. DC): 232:97.
42. Putney, J. W., Jr., H. Takemura, A. R. Hughes, D. A. Horstman, and O. Thastrup. 1989. How do inositol phosphates regulate calcium signaling? FASEB (Fed. Am. Soc. Exp. Biol.) 3:1899.
43. Kroczek, R. A., K. C. Gunter, R. N. Germain, and E. M. Shevach. 1986. Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes. Nature (Lond.). 322:181.
44. Gunter, K. C., R. A. Kroczek, E. M. Shevach, and R. N. Germain. 1986. Functional expression of the murine Thy-1.2 gene in transfected human T cells. J. Exp. Med. 163:285.
45. Rock, K. L., E. T. Yeh, C. F. Gramm, S. I. Haber, H. Reiser, and B. Benacerraf. 1986. TAP, a novel T cell-activating protein involved in the stimulation of MHC-restricted T lymphocytes. J. Exp. Med. 163:315.
46. Malek, T. R., G. Ortega, C. Chan, R. A. Kroczek, and E. M. Shevach. 1986. Role of Ly-6 in lymphocyte activation. II. Induction of T cell activation by monoclonal anti-Ly-6 antibodies. J. Exp. Med. 164:709.
47. Yeh, E. T., H. Reiser, J. Daly, and K. L. Rock. 1987. Stimulation of T cells via the TAP molecule, a member in a family of activating proteins encoded in the Ly-6 locus. J. Immunol. 138:91.
48. Robinson, P. J., M. Millrain, J. Antoniou, E. Simpson, and A. L. Mellor. 1989. A glycosphingolipid anchor is required for Qa-2-mediated T cell activation. Nature (Lond.) 342:85.
49. Korchak, H. M., K. Vienne, L. E. Rutherford, C. Wilkenfeld, M. C. Finkelstein, and G. Weissman. 1984. Stimulus response coupling in the human neutrophil. II. Temporal analysis of changes in cytosolic calcium and calcium efflux. J. Biol. Chem. 259:4076.
50. Truett, A. P., III, M. W. Vergheese, S. B. Dillon, and R. Snyderman. 1988. Calcium influx stimulates a second pathway for sustained diacylglycerol production in leukocytes activated by chemoattractants. Proc. Natl. Acad. Sci. USA. 85:1549.
51. Krause, K.-H., W. Schlegel, C. B. Woolheim, T. Andersson, F. A. Waldvogel, and D. P. Lew. 1985. Chemotactic peptide activation of human neutrophils and HL60 cells: pertussis toxin reveals correlation between inositol triphosphate generation, Ca2+ transients and cellular activation. J. Clin. Invest. 76:1348.
52. Vergheese, M. W., C. D. Smith, and R. Snyderman. 1985. Potential role of guanine regulatory G protein in chemoattractant receptor mediated phosphoinositide metabolism, calcium mobilization and cellular responses by leukocytes. Biochem. Biophys. Res. Commun. 127:450.
53. Brandt, S. J., R. W. Dougherty, E. G. Lapetina, and J. E. Niedel. 1985. Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc. Natl. Acad. Sci. USA. 82:3277.
54. Gunter, K. C., R. N. Germain, R. A. Kroczek, T. Saito, W. M. Yokoyama, C. Chan, A. Weiss, and E. M. Shevach. 1987. Thy-1-mediated T cell activation requires co-expression of CD3/Ti complex. Nature (Lond.). 326:505.
55. Sussman, J. J., T. Saito, E. M. Shevach, R. N. Germain, and J. D. Ashwell. 1988. Thy-1 and Ly-6-mediated lymphokine production and growth inhibition of a T cell hybridoma require co-expression of the T cell antigen receptor complex. J. Immunol. 140:2520.
56. Bamezai, A., H. Reiser, and K. L. Rock. 1988. T cell receptor/CD3 negative variants are unresponsive to stimulation through the Ly-6 encoded molecule, TAP. J. Immunol. 141:1423.
57. Yeh, E. T., H. Reiser, A. Bamezai, and K. L. Rock. 1988. TAP transcription and phosphatidylinositol linkage mutants are defective in activation through the T cell receptor. Cell. 52:665.
58. Anderson, P., M. Caligiuri, J. Ritz, and S. F. Schlossman. 1989. CD3-negative natural killer cells express TCR as part of a novel molecular complex. Nature (Lond.). 341:159.
59. Ra, C.; M.-H. E. Jouvina, U. Blank, and J. P. Kinet. 1989. A macrophage Fc\textgamma receptor
and the mast cell receptor for IgE share an identical subunit. *Nature (Lond.)* 341:752.

60. Low, M. G. 1987. Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. *Biochem. J.* 244:1.

61. Cross, G. A. M. 1987. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. *Cell.* 48:179.

62. Lew, D. P., T. Andersson, J. Hed, F. DiVirgilio, T. Pozzan, and O. Stendahl. 1985. Ca$^{2+}$-dependent and Ca$^{2+}$-independent phagocytosis in human neutrophils. *Nature (Lond.)* 315:509.

63. Reibman, J., H. M. Korchak, L. B. Vosshall, K. A. Haines, A. M. Rich, and G. Weissman. 1988. Changes in diacylglycerol labeling, cell shape and protein phosphorylation distinguish "triggering" from "activation" of human neutrophils. *J. Biol. Chem.* 263:6322.

64. Brown, E. J., J. F. Bohnsack, and H. D. Gresham. 1988. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen. *J. Clin. Invest.* 81:365.

65. DiVirgilio, F., B. C. Meyer, S. Greenberg, and S. C. Silverstein. 1988. Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low Ca$^{2+}$ levels. *J. Cell Biol.* 106:657.

66. Willis, H. E., B. Browder, A. J. Feister, T. Mohanakumar, and S. Ruddy. 1988. Monoclonal antibody to human IgG Fc receptors. Cross-linking of receptors induces lysosomal enzyme release and superoxide generation by neutrophils. *J. Immunol.* 140:234.

67. Nathan, C. F. 1987. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. *J. Clin. Invest.* 80:1550.

68. Nathan, C. F. 1989. Respiratory burst in adherent human neutrophils: triggering by colony-stimulating factors CSF-GM and CSF-G. *Blood.* 73:301.

69. Wright, S. D., and B. C. Meyer. 1986. Phorbolesters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes. *J. Immunol.* 136:1759.