ABSTRACT

Aims: The aim of this present study is to investigate antibacterial activity of extracts and/or essential oils of *Vitex negundo* L. leaves to an unknown pathogenic bacterium have been resistant to various groups of antibiotics.

Study Design: The study was design followed by previously studied and manuals of antimicrobial susceptibility test.

Methodology: For antimicrobial susceptibility test disks diffusion method were used according to the guideline of European Committee on Antimicrobial Susceptibility Testing followed by McFarland standards. Various groups of antibiotics were used for confirming resistant of this unknown pathogen. The zone of inhibition and MIC was compared and measures with National Committee for Clinical Laboratory Standards (NCCLS) guidelines and reference data of previously studied.

Results: According to NCCLS and data to our study revealed that UB201201 (unknown) was a
multidrug resistant bacterium. Molecular identification discloses the bacterium were *Bacillus cereus* group. All extracts of *Vitex negundo* L. leaves (ethanol, chloroform, ethyl acetate and hexane) and essential oils were responsible for antibacterial susceptibility with inhibition zone of 29±0.7, 9±0.5, 8±0.3, 12±0.7, and 25±0.2 mm respectively.

Conclusion: This study signifies ethanolic extract of *Vitex negundo* L. leaves as moderate antimicrobials and can be used for pharmaceutical and medicinal purpose. Therefore, isolation and identification of bioactive compounds from this plant will be an interest for human being.

Keywords: *Vitex negundo* L.; multidrug-resistant bacteria; *Bacillus cereus*; antimicrobial agents; antibiotics; bioassay.

1. INTRODUCTION

In recent years, the emergence of pathogenic microorganisms acquired resistance to a wide range of formerly efficacious antibiotics has become a major cause of concern both in hospital settings and in the community [1,2]. The antibiotic-resistant bacteria are germs that are not killed by commonly used antibiotics and when bacteria are exposed to the same antibiotics over and over, the bacteria can change and are no longer affected by the drug. Moreover, the risk of transferring antimicrobial drug resistance to nonresistant bacteria and the propagation of multidrug-resistant (MDR) bacteria from agricultural to clinical and/or community-associated settings are being debated by research, regulatory, and health authorities [3,4]. Despite emphasis being put in research of synthetic drugs, a certain interest in medicinal plants has been reborn, in part due to the fact that a lot of synthetic drugs are potentially toxic and are not free of side effects on the host [5]. Because of the side effects and the resistance that pathogenic microorganisms build against antibiotics, much attention has been paid to extracts and biologically active compounds isolated from plant species used in herbal medicine. *Vitex negundo* L. (Verbenaceae), is an important medicinal plant found throughout Bangladesh (known as Nishinda) using as an important source of natural drugs from ancient time (Ayurvedic and Unani Systems of Medicine) and a number of pharmacological and medicinal activities and properties have been attributed to it by several studies [6-44]. The aim of the present study is to investigate antibacterial activity of extracts and/or essential oils of *Vitex negundo* L. leaves to an unknown pathogenic bacterium have been resistant to various groups of antibiotics.

2. MATERIALS AND METHODS

2.1 Isolation of Bacteria and Antimicrobial Bioassay

Bacteria were isolated from an eighteen years diarrheal patient in Rajshahi Medical College Hospital, Rajshahi and subjected to pure culture by using nutrient agar media (Merck Ltd. Germany). The antibacterial activity of the test samples was tested by disc diffusion method according to Uropean Committee on Antimicrobial Susceptibility Testing (UCAST, Version 3, 2013) [45]. Bacterial strains grown on nutrient agar at 37°C for 24 hours were adjusted to the turbidity of the 0.5 McFarland standards (10^6 colony forming units/mL). Then, the standard inoculums were spread by sterile cotton on the surfaces of nutrient agar prepared for growth of the bacteria. The disks (6mm in diameter) were impregnated with 10 µL at various concentrations of the extracts and placed on the inoculated media. The petri dishes incubated overnight at 37°C for bacterial growth and inhibition zone were examined carefully. Commercial Ampicillin, Streptomycin, Trimethoprim, Ciprofloxacin, Azithromycin and Tetracycline discs were used as standard antibiotics. The antibacterial activity was determined by measuring the diameter of zone of inhibition by millimeter scale.

2.2 Collection and Extraction of Plant Material

The mature fresh plant leaves of *Vitex negundo* L. were collected from the region of kushthia, Bangladesh and washed properly with sterile distilled water and dried at room temperature. The dried powdered was prepared using blender machine. Shaded dry and crashed leaves (150 gm) were subjected to 1000 ml borosilicate glass vessel alone with methanol, chloroform, ethyl acetate and hexane (500 ml of each) as solvents. After 48h the extracts was filtrated and solvents
were then evaporated using rotary evaporator until a concentrated extract was obtained. Crude extracts were obtained kept at 4°C until further assay. Water distillation method was used for extraction of essential oil.

2.3 Molecular Identification of the Bacteria

2.3.1 16S rDNA extraction and amplification from isolated bacteria

For molecular analysis, DNA was extracted from isolated colonies by alkaline lysis. 200 μL of culture was suspended in an Eppendorf tube with 50 μL of lysis buffer (2.5 M 10% sodium dodecyl sulfate, 5 ml M NaOH, 92.5 ml MilliQ water). After 15 min at 95°C and the tube was centrifuged for 5 min at 13,000 x g, and the supernatant was transferred to a new tube to add 90 µL MilliQ water. Extracted DNAs were stored at -20°C for further molecular analyses. For amplification of 16SrDNA from cultural bacteria PCR was performed in a final volume of 25 μl containing buffer 10X, 1.0 unit of Taq DNA polymerase (Amersham Biosciences), 0.2 mM each of dNTPs, 200 nM of each primer 63F 5’CAGGCCCTAACACTGCAAGTC [46] and 1389R 5’ACGGGCCTGTTGTGTAACAG [47] and 50 ng template DNA. The thermal cycler (Bio Rad Cycler 170-8740) was programmed for the initial denaturation step (94°C) of 5 min, followed by 44 cycles of 1 min denaturation along with 1 min primer annealing (37°C) and 2 min primer extension (72°C), followed by the 7 min primer extension (72°C) step. The amplified DNA was visualized by gel electrophoresis. After amplification of 16S r DNA from isolated bacteria were sequenced by automated DNA sequencer.

2.3.2 16S rDNA sequence analysis and molecular characterization of bacteria

The 16S rDNA sequence of UB201201 was used for taxonomical identification and phylogeny analysis. In taxonomical terms, molecular characterizations of the concerned isolates by 16S rDNA sequencing focus on following facts [48] as: 1. Domain Name → Phylum Name → Class Name → Order Name → Family Name → Genus Name → Species Name → Strain Name/Number (Sub-Species level), 2. Retrieving Accession Number from EMBL/GenBank/Dbj, and 3. Phylogeny Analysis by Constructing Phylogenetic Tree. The bacterial 16S rDNA partial sequence generated in this study was deposited in the International Nucleotide Sequences Databases (INSD) in EMBL/GenBank/Dbj nucleotide sequence data libraries and its accession number, nomenclature and taxonomical identifications (Table 3) were obtained through the analysis of concerned sequences in the GenBank database, EMBL Nucleotide Sequence Databases, and DDBJ

3. RESULTS

3.1 Bacterial Susceptibility Tests

The bacterium was resistant to antibiotics testified by the patholgy lab Rajshahi Medical College Hospital and further test were done in Islamic University supported lab. Commercial Ampicillin, Streptomycin, Trimethoprim, Ciprofloxacin, Azithromycin and Tetracycline discs were used as standard antibiotics to test bacterial susceptibility (Table 1). Bacterial susceptibility test was also done by essential oil and different solvent extracts of Vitex negundo L. leaves (Table 2). The antibacterial activity was determined by measuring the diameter of zone of inhibition by millimeter scale.

3.2 Molecular Characterization of the Bacterium

The accession number, nomenclature and taxonomical identifications of UB 201201 were obtained through 16S rRNA gene analysis from International Nucleotide Sequence Databases (INSD) (Table 3) and Phylogeny.fr was used to construct Maximum-likelihood Phylogenetic Tree (Fig. 1). The molecular test identified it as Bacillus cereus strain mmm86 (AB709908.1) in Bacillus cereus group.

4. DISCUSSION AND CONCLUSION

The overuse of antibiotics has become a major problem for the emergence and dissemination of multi-drug resistant strains of several groups of microorganisms in Bangladesh. Both gram-positive and gram-negative bacteria pathogens have shown a remarkable ability to develop resistance to antimicrobial agents which have forced clinicians to seek alternative treatments for patients with serious gram-positive and gram-negative infections. Illnesses due to multidrug-resistant gram-negative microorganisms pose an
important clinical problem, resulting in significant morbidity and mortality worldwide [51,52]. In this study, the Table 1 shows that the bacterial strains UB201201 are multidrug resistant bacteria.

![Phylogenetic tree representing pathogenic bacteria of Bacillus cereus group](image)

Fig. 1. Phylogenetic tree representing pathogenic bacteria of Bacillus cereus group

The phylogenetic tree is shown in cladogram (ignoring branch lengths). Bootstrap values (100 replications), branch support values greater than 50% were considered significant while branches are collapsed having branch support value smaller than 50. E. coli is used as outgrowth. All bacteria shown here are close relatives of the UB201201 (most closely related to Bacillus cereus AB709908.1) and they are classified as under Bacillus cereus group except the E. coli.

Table 1. Bacterial susceptibility test against various antibiotics

Antibiotics samples	MIC (µg/ml)	Number of test sample (UB201201)	Average zone of Inhibition (mm)	Interpretation (%)	
β-Lactams					
Ampicillin	35	20	15	-	100%
Aminoglycosides					
Streptomycin	20	20	12	-	100%
Sulfonamides					
Trimethoprim	30	20	13	-	100%
Quinolones					
Ciprofloxacin	10	20	10	-	100%
Macrolide					
Azithromycin	5	20	14	-	100%
Tetracycline					
Tetracycline	20	20	17	45%	50%
Table 2. Antibacterial activities of various extracts of *Vitex negundo* L. leaves

Extracts	Zone of inhibition (mm)	Minimum Inhibitory Concentration (MIC)	Bacterial susceptibility
UB201201			
Ethanol	29±0.7	128 mg/ml	Susceptible
Chloroform	9±0.5	128 mg/ml	Susceptible
Ethyl Acetate	8±0.3	128 mg/ml	Susceptible
Hexane	12±0.7	256 mg/ml	Susceptible
Essential Oil	25±0.2	50 v/v	Susceptible

Table 3. Molecular characterization of the concerned bacterium

Features	UB 201201
Molecular Type	Genomic DNA
Topology	Linear
Gene	16S rRNA
Product	16S ribosomal RNA
Accession Number	AB709908.1
Identity/Similarity (%)	100
Closest Relatives	*Bacillus cereus*
Organism	*Bacillus cereus*
Strain	mmm86
Isolation Source	*Homo sapiens* 18 years old male patient
Taxonomic Division	PRO
Taxonomy EMBL	**Bacteria** → **Firmicutes** → **Bacillales** → **Bacillaceae** → **Bacillus cereus** group
Taxonomy Green Gene	**k_Bacteria** → **p_Firmicutes** → **c_Bacilli** → **o_Bacillales** → **f_Bacillaceae** → **g_Bacillus** → **s_Bacillus cereus**
Taxonomy SILVA	**Bacteria** → **Firmicute** → **Bacilli** → **Bacillales** → **Bacillace** → **Bacillus**
Taxon	Taxon:1396

The 16S rDNA partial sequences of the unknown bacterial strain UB201201 generated in the present study were deposited in the International Nucleotide Sequence Databases (INSD) and its accession numbers, nomenclature and taxonomical identification were obtained through the analysis of concerned sequences in the GenBank Database (Table 3). It is mentionable that the criteria for identification to the species level were defined as 16S rDNA sequence similarity of 99% with that of the prototype strain sequence in GenBank [53]. The similarity sequence scores of UB201201 in comparison to those sequences deposited in GenBank and/or EMBL Nucleotide Sequence Database were 100% suggesting that this is the close relative of *Bacillus cereus* and identified as *Bacillus cereus* strain mmm86 (AB709908.1). The taxonomical and nomenclatural identifications reported by Taxonomy EMBL classify *Bacillus cereus* strain mmm86 as Bacteria→ Firmicutes→ Bacillales→ Bacillaceae→ Bacillus→ *Bacillus*.
The phylogenetic analysis (Fig. 1) has shown, in comparison with sequences of pathogenic bacteria, that the *Bacillus cereus* strain mm86 is a pathogenic bacterium under *Bacillus cereus* group. In practical case, according to Vilas-Boas et al. [54], the *Bacillus cereus* group contains three species as *Bacillus cereus*, *Bacillus anthracis* and *Bacillus thuringiensis*, of them *Bacillus cereus* and *Bacillus anthracis* are important pathogens of mammals, including humans, and *Bacillus thuringiensis* is extensively used in the biological control of insects. The antibiotic susceptibility test of *Bacillus cereus* strain mm86 to various group of antibiotics shown in Table 1. The zones of inhibition were compared and measures with National Committee for Clinical Laboratory Standards (NCCLS) guidelines [55]. MIC value were also compared with the MIC range of reference value have been previously reported and confirm resistant to these antibiotics [56-58].

Bacillus cereus has emerged as one of the most virulent bacteria and the etiological agent of two distinct food poisoning syndromes [59], as the diarrhoeal-type and the emetic-type. *Bacillus cereus* infections occur mainly, though not exclusively, in persons predisposed by neoplastic disease, immunosuppression, alcoholism and other drug abuse, or some other underlying condition, and fatalities occasionally result. Reported conditions include bacteremia, septicemia, fulminant sepsis with hemolysis, meningitis, brain hemorrhage, ventricular shunt infections, infections associated with central venous catheters, endocarditis, pseudomembranous tracheobronchitis, endophthalmitis, pneumonia, periodontitis, empyema, pleurisy, lung abscess, brain abscess, osteomyelitis, salpingitis, urinary tract infection, dermatolymphangioadenitis associated with filarial lymphedema, and primary cutaneous infections [60,61]. It is a well-recognized agent of mastitis and abortion in cattle, and can cause these conditions in other livestock [62]. Nevertheless, there is limited information available with respect to its antimicrobial agent susceptibility. Published data suggest that *Bacillus cereus* isolates are susceptible in vitro to gentamicin, vancomycin, clindamycin, chloramphenicol, and erythromycin [63,64]. Resistant to penicillin, ampicillin, trimethoprim and cephalasporin have also been reported [65]. The most possible reason behind multidrug resistances of *Bacillus cereus* that it produces a broad spectrum β-lactamase which hydrolyzes β-lactam rings of antibiotics and another important fact is that they are spore-forming bacteria allowing them to survive in different types of adverse environments.

Vitex negundo L. possesses antibacterial activity against *Escherichia coli*, *Klebsiella aerogenes*, *Proteus vulgaris*, and *Pseudomonas aerogenes* [66]. The Methanol and/or ethanol extracts of *Vitex negundo* L. leaves have been reported to have prominent zone of inhibition against *Bacillus subtilis*, *Staphylococcus aureus*, *Microoccus pyogenes*, *Pseudomonas aeruginosa*, *E. coli*, *Bacillus subtilis*, *Bacillus megaterium*, *Salmonella typhi*, *Vibrio mimicus*, *C. albicans* etc [67-74]. In this study, we found that all extracts (ethanol, chloroform, ethyl acetate and hexane) and essential oils have antibacterial activities represents inhibition zone of 29±0.7, 9±0.5, 8±0.3, 12±0.7, and 25±0.2 mm respectively (Table 2). Among them ethanol extract reflect more bio-efficacy and antibacterial potency (inhibitory zone 29±0.7 mm) against the identified bacterium depicting that it contains such bioactive compounds and/or phytochemical constituents that can retard the bacterial growth or kill *Bacillus cereus* strain mm86. So, we can say that the extractability of bioactive compounds is greatly influenced by polar compounds. Thus, the ethanol extracts of *Vitex negundo* L. contains such bioactive compound(s) that have the ability to inhibit the growth or to kill the concerned multidrug resistant bacterium (*Bacillus cereus* strain mm86) and can be used for pharmaceutical and medicinal purpose. How extracts of *Vitex negundo* L. be responsible for antibacterial activity against multi-drug resistant bacterium is unclear but it may be due to the presence of some compounds like β-Caryophyllene, Ag (Silver) nanoparticles, betulinic acid etc. have been previously reported in several study [75-79]. Therefore, this study may be taken into consideration for future therapeutic and drug development purpose for which further research is needed.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

No conflicts of interest have been disclosed with the submission of this paper.
REFERENCES

1. Alanis AJ. Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res. 2005;36:697–705.
2. Heymann DL. Resistance to antinfective drugs and the threat to public health. Cell. 2006;124:671–675.
3. Mathew AG, Cissell R, Liamthong S. Antioxidant resistance in bacteria associated with food animals: A United States perspective of livestock production. Foodborne Pathog Dis. 2007;4:115–133.
4. McDermott PF, Zhao S, Wagner DD, Simjee S, Walker RD, White DG. The food safety perspective of antibiotic resistance. Anim Biotechnol. 2002;13:71–84.
5. Geddes AM. Prescribers’ needs for developed and third world In: Greenwood, F.O.O. Grady (Editor), the Scientific Basis of Antimicrobial Chemotherapy. Cambridge University Press, Cambridge. 1985;1:1–12.
6. Dharmasiri MG, Jayakody JRAC, Galhena G, Liyanage SSP, Ratnasooriya WD. Antiinflammatory and analgesic activities of mature fresh leaves of Vitex negundo. Journal Ethnopharmacol. 2003;87:199–206.
7. Azhar UH, Malik A, Khan MT, Anwar UH, Khan SB, Ahmad A, et al. Tyrosinase inhibitory lignans from the methanol extract of the roots of Vitex negundo Linn and their structure-activity relationship. Phytotherapy. 2006;13:255–260.
8. Jagetia GC, Baliga MS. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants In vitro: A preliminary study. J Med Food. 2004;7:343–348.
9. Alam MI, Gomes A. Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. Journal Ethnopharmacol. 2003;86:75–80.
10. Chandramu C, Manohar RD, Krupadanam DG, Dashavantha RV. Isolation characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phytother Res. 2003;17:129–134.
11. Munasinghe JTC, Seneviratne CK, Thabrew MI, Abeysekera AM. Antiradical and antilipoperoxidative effects of some plant extracts used by Sri Lankan traditional medical practitioners for cardioprotection. Phytother Res. 2001;15:519–523.
12. Au DT, Wu J, Jiang Z, Chen H, Lu G, Zhao Z. Ethnobotanical study of medicinal plants used by Hakka in Guangdong, China. Journal Ethnopharmacol. 2008;117:41–50.
13. Joshi AR, Joshi K. Indigenous knowledge and uses of medicinal plants by local communities of the kali gandaki watershed area, Nepal. Journal Ethnopharmacol. 2005;73:175–183.
14. Zabihullah Q, Rashid A, Akhtar N. Ethnobotanical survey of kotmanzary baba valley malakandmengcy, Pakistan. Pak J Pl Sci. 2006;12(2):115–121.
15. Hamayun M. Ethnobotanical studies of some useful shrubs and trees of district Buner NWFP Pakistan. Ethnobot Leaflets. 2005;9.
16. Jabeen A, Khan M, Ahmad M, Zafar M, Ahmad F. Indigenous uses of economically important flora of Margallah Hills National Park, Islamabad, Pakistan. African J Biotechnol. 2009;8:763–784.
17. Shah GM, Khan MA. Common medicinal folk recipes of Siran Valley, Mansehra, Pakistan. Ethnobotanical Leaflets. 2006;10:49–62.
18. Basavaraju R, Vennel Raj J, Bhiravamurthy PV. Medicinal plant resources of Puttaparthi mandal: Taxonomic overview and need for conservation. Ethnobot Leaflets. 2009;13:1382–1400.
19. Kotoky J, Das P. Medicinal plants used for liver diseases in some parts of Kamrup district of Assam, a north eastern state of India. Fitoterapia. 2008;79:384–387.
20. Sharma P, Chauhan N, Lal B. Observations on the traditional phytotherapy among the inhabitants of Parvati valley in western Himalaya, Indian. J Ethnopharmacol. 2004;92:167–176.
21. Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S. Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu, Indian. J Ethnopharmacol. 2008;115:302–312.
22. Ignacimuthu S, Ayyanar M, Sivaraman K. Ethnobotanical investigations among tribes in Madurai District of Tamil Nadu (India). Journal E Ethnomedicine. 2006;2:25–31.
23. Muthu C, Ayyanar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram District of Tamil Nadu, India. Journal E Ethnomedicine. 2006;2:43–52.
24. Lodhi A, Choudhary I, Malik A, Ahmad S. Chymotrypsin inhibition studies on the
lignans from Vitex negundo Linn. Journal En IntMnal Chemistry. 2008;23:400-405.

25. Umamaheswari M, Asok KK, Somasundaram A, Sivashanmugam T, Subhadra Devi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants. Journal Ethnopharmacol. 2007;109:547-551.

26. Hu Y, Zhang Q, Hou T, Xin H, Zheng H, Rahman K, et al. Estrogen-like activities in Vitex species from China determined by a cell based proliferation assay. Pharmazie. 2007;62:872-875.

27. Tandon V, Gupta RK. Histomorphological changes induced by Vitex negundo in albino rats. Indian J Pharmacol. 2004;36:176-177.

28. Diaz F, Chavez D, Lee D, Mi Q, Chai HB, Tan GT, et al. Cytotoxic flavone analogues of vitexicaparin, a constituent of the leaves of Vitex negundo. Journal N Products. 2003;66:865-867.

29. Sahare KN, Anandhravam V, Meshram VG, Meshram SU, Reddy MV, Turmam PM, et al. Anti-microflarial activity of methanolic extract of Vitex negundo and Aegle marmelos and their phytochemical analysis. Indian J Ext Biology. 2008;46:128-131.

30. Guleria S, Kumar A. Antifungal activity of some Himalayan medicinal plants using direct bioautography. Journal C Molar Biol. 2006;5:95-98.

31. Nathan SS, Kalaivani K, Murugan K. Behavioural responses and changes in biology of rice leaffolder folowing treatment with a combination of bacterial toxins and botanical insecticide. Chemosphere. 2006;64:1650-1658.

32. Nguyen PTJ, Tran H, Phan H, Dolecek TA, Farrar C, Tran J, et al. Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. Journal Ethnopharmacol. 2007;109:417-427.

33. Meena AK, Uttam S, Yadav AK, Singh B, Rao MM. Pharmacological and Phytochemical Evidences for the Extracts from Plants of the Genus Vitex. Int J Pharmacal Cical Res. 2010;2(1):01-09

34. Arora V, Lohar V, Sandeep S, Bhandari A. Vitex negundo a Chinese Chaste Tree. Int J Pharmacalins. 2011;1(5):9-20.

35. Ladda PL, Magdum CS. Vitex negundo Lin Ethnobotany, Phytochemistry and Pharmacology. Inte J Adv In Phar Biol Chem. 2012;1(1):111-120.

36. Farkaad AK, Normadiah MK, Mahmood AA, Wageeh AY. Effect of oral administration of ethanolic extract of Vitex negundo on thioacetamide induced nephrotoxicity in rats. BMC Compl Alter Med. 2013;13(294):2-8.

37. Talekar YP, Biswadeep D, Tania P, Deepali YT, Kishori GA, Pradeep BP. Wound healing potential of Vitex negundo Linn in experimental animals. Int J Pharm PharmSci. 2012;4(4):543-546.

38. Deepa M, Renuka DP, Dhanalakshmi KG. Molecular docking study of active phytocompounds from the methanolic leaf extract of methanolic leaf extract of methanolic leaf extract of Vitex negundo against cyclooxygenase-2. Bangladesh J Pharmacol. 2014;9:146-153.

39. Zulfiker AHM, Roy PP, Momin MAM, Khan MS, Bulbul IU, Ahmed T, et al. Investigation of Antioxidant and Antimicrobial Potential of Chloroform and Petroleum Ether Extracts of Selected Medicinal Plants of Bangladesh. British J Med & Mcal Rese. 2013;3(4):1418-1436.

40. Vishwanathan AS, Basavaraju R. A Review on Vitex negundo L: A Medicinally Important Plant. EJBS. 2010;3(1):30-42.

41. Ashok KBS, Saran G, Harshada R, Manoj B, Archana PG. Evaluation of anti-arthritis activity of Vitex negundo by in vitro protein denaturation method. J Traditional Med. 2014;1(1):0000001.

42. Ahuja SC, Siddharth A, Uma A. Nirgundi (Vitex negundo) Nature’s Gift to Mankind. Asian Agri History. 2015;19(1):5–32.

43. Aapaliya P, Sinha S, Sinha L, Malik V. Ethno-dentistry: Tapping the potential of indigenous plants for therapeutic dentistry. J Pharm Biomed Sci. 2015;05(01):31-38.

44. Mishra P, Saxena A, Saxena V. Phytochemical Investigation and Hypoglycemic effects of Vitex negundo. Research and Reviews. Journal of Pharmacology and Toxicological Studies. 2013;1(2):13-19.

45. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Antimicrobial susceptibility testing, EUCAST disk diffusion method. 2013;3:4-17.

46. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for
bacterial 16S rRNA. Appl Environ Microbiol. 1998;64(2):795-799.

47. Osborn AM, Moore ERB, Timmis KN. An evaluation of terminal-restriction fragment length polymorphism T-RFLP analysis for the study of microbial community structure and dynamics. Environ Microbiol. 2000;2:39-50.

48. Paul DV, George MG, Dorothy J, Noel RK, Wolfgang L, Fred AR, et al. Bergey's Manual of Systematic Bacteriology, 2nd Edition. The Firmicutes. 2009:3.

49. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search program. Nucleic Acids Res. 1997;25(17):3389–3402.

50. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36(13):465-469.

51. Hsueh PR, Teng LJ, Chen CY, Chen WH, Yu CJ, Ho SW. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a University Hospital, Taiwan. Emerg Infect Dis. 2002;8:827–832.

52. Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis. 2002;34:634–640.

53. Petti CA. Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis. 2007;44:1108–1114.

54. Vilas BGT, Perucá APS, Arantes OMN. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Canadian J Microbiol. 2007;53:673–687.

55. National Committee for Clinical Laboratory Standards (NCCLS). Manual of antimicrobial susceptibility testing. Tephen, JC. American Society for Microbiology; 2005. ISBN 1-55581-349-6.

56. Schlegelova J, Brychta J, Klímová E, Napravníková E, Babák V. The prevalence of and resistance to antimicrobial agents of Bacillus cereus isolates from foodstuffs. Vet Med Czech. 2003;48(11):331–338.

57. Vicki AL, Debra SK, Jenny G, Andrew CC, Philip TA, Jacqueline C. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using sensitrîte automated microbroth dilution and etest agar gradient diffusion methods. Journal A Chemotherapy. 2007;60:555–567.

58. Peter CBT, Nicky MS, Carlos IL, Marian NS, Felicia NS, Anatalio ER, et al. MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides from a range of clinical and environmental sources as determined by the etest. Journal C Microbiology. 2004;42(8):3626–3634.

59. Kramer JM, Gilbert RJ. Bacillus cereus gastroenteritis. InTu (Editor), Food Poisoning. Handbook of Natural Toxins. Marcel Dekker; New York. 1992;7:119–153.

60. Jensen GB, Hansen BM, Eilenberg J, Mahillon J. The hidden lifestyles of Bacillus cereus and relatives. Environ Microbiol. 2003;5:631–640.

61. Carlin F, Fricker MA, Pielat S, Heisterkamp R, Shaheen M, Sakínója SB, et al. Emetictoxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group. Int J Food Microbiol. 2006;109:132–138.

62. Blowey R, Edmondson P. Mastitis Control in Dairy Herds. An Illustrated and Practical Guide. Farming Press Books, Ipswich; 1995.

63. O' Day DM, Smith RS, Gregg CR, Turnbull PC, Head WS, Ives JA, et al. The problem of Bacillus species infection with special emphasis on the virulence of Bacillus cereus. Ophthalmol. 1981;88:833-838.

64. Shamsuddin D, Tuazon CU, Levy C, Curtin PC, Head WS, Ives JA, et al. The problem of Bacillus species infection with special emphasis on the virulence of Bacillus cereus. Ophthalmol. 1981;88:833-838.

65. Edward JB. Bacillus cereus volatile human pathogen. Clcal Microbiol Revs. 2010;3(2):382–398. DOI:10.1128/CMR.00073-09.

66. Samy RP, Ignacimuthu S, Sen A. Screening of 34 Indian medicinal plants for antibacterial properties. Journal Ethnopharm. 1998;62:173-182.

67. Gautam LN, Shrestha SL, Wagle P, Tamrakar BM. Chemical constituents from Vitex negundo of Nepalese origin. Scie World. 2008;6(6):27-32.

68. Chowdhury JA, Islam MS, Asifuzzaman SK, Islam MK. Antibacterial and cytotoxic activity screening of leaf extracts of Vitex
negundo (Family: Verbenaceae). J Pharm Sci & Res. 2009;1(4):103-108.

69. Rose CM, Catrine. Preliminary phytochemical screening and antibacterial activity on Vitex negundo. Int J Curr Pharm Res. 2011;3(2):99-101.

70. Sorifull MD, Most MA, Sarwar PMD, Jahangir AMD, Firoz AM. Antitumor and antibacterial activity of a crude methanol leaf extract of Vitex negundo L. Arch BiolSci Belgrade. 2013;65(1):229-238.

71. Sunita K, Jalaj N, Anuj G, Deepak KM. Antimicrobial activity of Vitex negundo against pathogenic bacteria. Journal of Pharmacy Research. 2014;8(2):91-92.

72. Malathi R, Cholarajan A, Karpagam K, Jaya KR, Muthukumaran P. Antimicrobial Studies on Selected Medicinal Plants (Coleus amboinicus, Phyla nodiflora and Vitex negundo). Asian J Pharm Tech. 2011;1(2):53-55.

73. Amir MK, Rizwana AQ, Syed AG, Faizan U. Antimicrobial activity of selected medicinal plants of Margalla Hills, Islamabad, Pakistan. J Med Pla Res. 2011;5(18):4665-4670.

74. Moanraj S, Vanathi P, Sowbanniga N, Saravanan D. Antimicrobial effectiveness of Vitex negundo Leaf extracts. Ind J Fibre Tex Res. 2012;37:389-392.

75. Khokra SL, Prakash O, Jain S, Aneja KR, Yogita D. Essential oil composition and antibacterial studies of Vitex negundo L extracts. Ind J Pharmacal Sce. 2008;70(4):522-526.

76. Taralkar SV, Chattopadhyay S. A HPLC Method for determination of ursolic acid and betulinic acids from their methanolic extracts of Vitex negundo Linn. J Anal Bioanal Techniq. 2012;3:3. Available:http://dx DOI.org/10.4172/2155-9872.1000134.

77. Jitendra M, Amla B, Abhijeet S, Madan MS. Phytotfabrication of nanoparticles through plant as nanofactories. Adv Nat Sci Nanosci Nanotechnol. 2014;5:043002. Doi: 10.1088/2043-6262/5/4/043002.

78. Youmie P. A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicl Res. 2014;30(3):169-178.

79. Mohsen Z, Azizah AH, Fatima AB, Mariana NSKS, Fatemeh J, Farah F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules. 2011;16:6667-6676.

© 2015 Mahfuz-Al-Mamun et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php?id=1084&id=13&aid=8955