Molecular Determinants of Substrate Selectivity of a Pneumococcal Rgg-Regulated Peptidase-Containing ABC Transporter

Charles Y. Wang, Jennifer S. Medlin, Don R. Nguyen, W. Miguel Disbennett, Suzanne Dawid

ABSTRACT Peptidase-containing ABC transporters (PCATs) are a widely distributed family of transporters which secrete double-glycine (GG) peptides. In the opportunistic pathogen Streptococcus pneumoniae (pneumococcus), the PCATs ComAB and BlpAB have been shown to secrete quorum-sensing pheromones and bacteriocins related to the competence and pneumocin pathways. Here, we describe another pneumococcal PCAT, RtgAB, encoded by the rtg locus and found intact in 17% of strains. The Rgg/SHP-like quorum-sensing system RtgR/S, which uses a peptide pheromone with a distinctive Trp-X-Trp motif, regulates expression of the rtg locus and provides a competitive fitness advantage in a mouse model of nasopharyngeal colonization. RtgAB secretes a set of coregulated rtg GG peptides. ComAB and BlpAB, which share a substrate pool, do not secrete the rtg GG peptides. Similarly, RtgAB does not efficiently secrete ComAB/BlpAB substrates. We examined the molecular determinants of substrate selectivity between ComAB, BlpAB, and RtgAB and found that the GG peptide signal sequences contain all the information necessary to direct secretion through specific transporters. Secretion through ComAB and BlpAB depends largely on the identity of four conserved hydrophobic signal sequence residues previously implicated in substrate recognition by PCATs. In contrast, a motif situated at the N-terminal end of the signal sequence, found only in rtg GG peptides, directs secretion through RtgAB. These findings illustrate the complexity in predicting substrate-PCAT pairings by demonstrating specificity that is not dictated solely by signal sequence residues previously implicated in substrate recognition.

IMPORTANCE The export of peptides from the cell is a fundamental process carried out by all bacteria. One method of bacterial peptide export relies on a family of transporters called peptidase-containing ABC transporters (PCATs). PCATs export so-called GG peptides which carry out diverse functions, including cell-to-cell communication and interbacterial competition. In this work, we describe a PCAT-encoding genetic locus, rtg, in the pathogen Streptococcus pneumoniae (pneumococcus). The rtg locus is linked to increased competitive fitness advantage in a mouse model of nasopharyngeal colonization. We also describe how the rtg PCAT preferentially secretes a set of coregulated GG peptides but not GG peptides secreted by other pneumococcal PCATs. These findings illuminate a relatively understudied part of PCAT biology: how these transporters discriminate between different subsets of GG peptides. Ultimately, expanding our knowledge of PCATs will advance our understanding of the many microbial processes dependent on these transporters.

KEYWORDS ABC transporters, Streptococcus pneumoniae, bacteriocins, quorum sensing
Export of polypeptides from their site of synthesis in the cytoplasm to the extracellular space is a fundamental physiological function of all cells. The secretome, the collection of all non-membrane-associated proteins secreted from the cell, may comprise up to 20% of an organism’s total proteome (1). Bacteria have evolved many different strategies for exporting proteins and peptides (2). One such strategy is the secretion of peptides using a family of ATP-binding cassette (ABC) transporters called peptidase-containing ABC transporters (PCATs).

PCATs are ABC transporters that contain characteristic N-terminal peptidase domains (PEPs). PEP belongs to the family of C39 cysteine proteases and is responsible for the proteolytic processing of substrates during transport (3). In Gram-positive bacteria, PCATs function either alone or with a single additional accessory protein (4). The most common function of PCATs is to assist in the biosynthesis of bacteriocins: antimicrobial peptides produced by bacteria to kill or otherwise inhibit the proliferation of other, usually closely related, bacteria (5). Some PCATs also promote cell-to-cell communication by secreting the peptide pheromones of Gram-positive quorum-sensing systems (6–10). In short, PCATs are widely distributed peptide transporters which play key roles in shaping how bacteria interact with each other.

Oftentimes, expression of PCATs is under the control of quorum-sensing systems. These regulatory systems rely on cell-to-cell signaling to induce and coordinate the expression of their target genes under specific conditions. One such mode of PCAT regulation is the Rgg/SHP pathway (11). Rgg is a family of transcription regulators found in many Gram-positive bacteria. In the genus Streptococcus, Rgg-family regulators are sometimes associated with short hydrophobic peptides (SHPs) (12). SHPs are small peptides which are exported by the PptAB transporter (13, 14) and processed into mature pheromones. The Ami oligopeptide importer then internalizes the pheromones back into the cell, where they bind to and modulate the activity of Rgg-family regulators (12). Besides PCATs and bacteriocin production, Rgg/SHP systems have been found to regulate diverse processes such as carbohydrate utilization (15), tissue invasion (13, 16), capsule production (16, 17), and biofilm formation (17, 18). A related group of Rgg regulators, the ComRs, are associated with SHP-like pheromones called ComS or XIP (SigX-inducing peptide) and control competence activation in some streptococcal species (19, 20).

In the Gram-positive opportunistic pathogen Streptococcus pneumoniae (pneumococcus), the PCATs ComAB and BlpAB secrete quorum-sensing pheromones that control two important cellular pathways: genetic competence (the ability to take up and incorporate extracellular DNA into the genome) and production of the major family of pneumococcal bacteriocins (Blp bacteriocins, or pneumocins) (6, 7, 21, 22). ComAB and BlpAB secrete the same GG peptides, including the competence- and pneumocin-inducing pheromones and the pneumocins (23–25). Substrate sharing between ComAB and BlpAB affects competence and pneumocin regulation and influences when and with what effectiveness naturally occurring BlpAB* and BlpAB− strains can employ pneumocin-mediated killing (25, 26).

The functional implications of the shared ComAB/BlpAB substrate pool highlight the need to better understand how different PCATs select their substrates. PCAT substrates contain N-terminal signal sequences (also called leader peptides) which terminate in a Gly-Gly (sometimes also Gly-Ala or Gly-Ser) motif (3). For this reason, they are referred to as double-glycine (GG) peptides. During transport, PEP cleaves the peptide bond following the GG motif to remove the signal sequence from the C-terminal mature peptide fragment (cargo peptide). The signal sequences of GG peptides bind to PEP of PCATs through hydrophobic interactions involving three or four conserved residues in the signal sequences (27–29). These residues are located at positions −4, −7, −12, and −15 relative to the scissile bond. The GG motif allows the substrate to fit in the narrow entrance to the active site of PEP and is also required for binding and cleavage (28, 30, 31). Besides these conserved residues, the signal sequences of different GG peptides are fairly divergent. Mutagenesis studies of several different PCAT-substrate pairs have
largely failed to identify any contribution of these nonconserved residues to substrate-PEP binding \((27–29)\).

While substantial progress has been made in uncovering the mechanisms that allow PCATs to recognize GG peptides, comparatively little is known about how or if PCATs discriminate between different GG peptides. In addition to ComAB and BlpAB from pneumococcus, multiple PCATs have been shown to process and/or secrete multiple peptides with distinct signal sequences, sometimes even those from different strains or species \((28, 32–35)\). These data suggest that in general, PCATs are not particularly selective when it comes to choosing substrates.

In this work, we describe a previously uncharacterized locus in pneumococcus, \(rtg\), which encodes the PCAT RtgAB and several GG peptides. This locus is regulated by the Rgg/SHP-like system RtgR/S, which provides a competitive fitness advantage during nasopharyngeal colonization. We demonstrate that RtgAB secretes the \(rtg\) GG peptides but not ComAB/BlpAB substrates and that ComAB or BlpAB cannot efficiently secrete the \(rtg\) GG peptides. Finally, we investigate the signal sequence determinants that selectively direct peptides toward either RtgAB or ComAB/BlpAB and show that a unique N-terminal motif is required for secretion by RtgAB. These findings shed light on how PCATs can use signal sequence motifs beyond the previously described conserved hydrophobic residues to distinguish different GG peptides.

RESULTS

Identification of an uncharacterized pneumococcal PCAT-encoding locus. As part of an effort to catalog the PCAT repertoire of \(S. pneumoniae\), we searched pneumococcal genomes for putative PCAT genes that had not been previously described. One of the hits was \(CGSSp9BS68_07257\) (henceforth \(07257\)), a gene found in the clinical isolate Sp9-BS68 \((36)\) (Fig. 1A). Upstream of \(07257\) is a gene oriented in the opposite direction predicted to encode an Rgg-family transcription regulator \((12)\). We hypothesized that this regulator controls expression of \(07257\) and named the locus \(rtg\) (Rgg-regulated transporter of double-glycine peptides). We designated the transporter gene \(rtgA\) and the regulator gene \(rtgR\). \(rtgR\) marks one end of the locus and is separated from a partially disrupted arginine biosynthesis cluster \((37)\) by two transcription terminators. Downstream of \(rtgA\) are several genes arranged in a single operon. These include \(rtgB\), which encodes a putative ComB/BlpB-like transport accessory protein, and the GG peptide genes \(rtgG, rtgT, rtgW1,\) and \(rtgW2\). A transcription terminator separates the last gene, \(rtgD2\), from a disrupted putative endoRNase gene and \(pspA\). A different version of the \(rtg\) locus is found in the laboratory strain D39 (and its derivative, R6) but with a disrupted \(rtgA\) (Fig. 1A).

The Rgg/SHP-like pheromone pair \(RtgR/RtgS\) regulates \(rtg\). We found that \(rtg\) expression is inhibited in mid-exponential phase during growth in the peptide-rich medium THY (Todd-Hewitt broth plus 0.5% yeast extract) but highly upregulated in the peptide-poor media CDM+ (38) and RPMI (Fig. 1B). The start of \(rtg\) activation in both Sp9-B58 and D39 during growth in CDM+ occurs in early exponential phase at cell densities as low as an optical density at 620 nm \((OD_{620})\) of 0.01 (Fig. 1C). In contrast, \(rtg\) stays inactive in THY throughout the exponential and stationary phases. We concluded from these data that \(rtg\) is actively regulated, most likely by RtgR. Since Rgg regulators are often associated with peptide pheromones, we searched for and found an open reading frame (ORF) in Sp9-B568 between \(rtgR\) and \(rtgA\) predicted to encode a SHP-like pheromone. D39 has two copies of the candidate pheromone: one located between \(rtgR\) and \(rtgA\) and the other downstream of \(rtgB\). We named the only copy of the ORF in Sp9-B568 and the first copy in D39 (between \(rtgR\) and \(rtgA\)) \(rtgS1\) and the second copy in D39 \(rtgS2\) (Fig. 1A).

Having identified a putative Rgg/SHP-like regulatory system, we sought to define the contributions of RtgR and RtgS to \(rtg\) regulation through deleitional analysis. We monitored \(rtg\) activation in Sp9-B568 \(\Delta rtgS1, \Delta rtgR,\) and \(\Delta rtgS1 \Delta rtgR\) strains during growth in CDM+ and THY (Fig. 2A). None of the mutants showed signs of \(rtg\) activation in either medium, indicating that both RtgR and RtgS promote and are required for \(rtg\)
activation. In D39, \textit{rtgS1} encodes a peptide with a single amino acid change (S14L) compared to \textit{RtgS} from \textit{Sp9-BS68}, and \textit{rtgS2} encodes a peptide with a different single amino acid change (P27S) (Fig. 2B). We found that the D39 \textit{ΔrtgS1} and \textit{ΔrtgS1 ΔrtgS2} mutants failed to activate \textit{rtg} in CDM+H11001, while the \textit{ΔrtgS2} mutant was indistinguishable from the wild-type strain (Fig. 2C). This suggested that the P27S substitution in the \textit{rtgS2} product prevents it from activating \textit{rtg}, while the S14L substitution in the \textit{rtgS1} product does not appreciably affect signaling. Therefore, we classified the \textit{rtgS1} product in both \textit{Sp9-BS68} and D39 as type A pheromone (\textit{RtgSA}) and the \textit{rtgS2} product in D39 as type B (\textit{RtgSB}).

To confirm that RtgS is the specific pheromone inducer of \textit{rtg}, we performed dose-response assays using synthetic peptides corresponding to the C-terminal 8, 10, and 12 residues of \textit{RtgSA} (\textit{RtgSA-C8}, \textit{RtgSA-C10}, and \textit{RtgSA-C12}, respectively). All three synthetic peptides induced expression from the \textit{Sp9-BS68} \textit{P}_{\textit{rtgS1-luc}} promoter in both CDM+ and THY, though the curves for the latter were shifted to the right in a manner consistent with pure competitive inhibition (Fig. 2D; Table 1). We also confirmed that \textit{rtg} induction by synthetic RtgS requires RtgR (Fig. 2E). In D39, \textit{RtgSA-C10} induces \textit{rtg} similarly to \textit{Sp9-BS68}, whereas \textit{RtgS\textsubscript{Sp}-C10} acts as a partial agonist with a 55-fold larger 50% effective concentration (EC\textsubscript{50}) value than \textit{RtgSA-C10} (Fig. 2F; Table 1). Therefore,
the Pro-to-Ser substitution in RtgSa interferes with signaling at a step following pheromone secretion. Although partial agonists can act as competitive antagonists of full agonists, we did not observe an inhibitory phenotype associated with RtgSa during natural rtg activation (Fig. 2C), and competitive dose-response assays showed that RtgSa-C10 only antagonizes RtgSa-C10 at likely supraphysiological concentrations (≥256 nM) (Fig. 2G).

Next, we determined that, consistent with previously described Rgg/SHP systems, rtg activation requires both the Ami importer and the PptAB transporter (see Fig. S1A in the supplemental material). We also showed that response to exogenous RtgS treatment requires Ami but not PptAB (Fig. S1B), consistent with their respective roles as pheromone importer and exporter.
Finally, mutagenesis of the Sp9-BS68 rtgS1 promoter region revealed the presence of two nearly identical promoters, each contributing partially to rtgS1 expression (see Fig. S2A and B). We also identified an inverted repeat found in both promoters which is required for RtgS-induced expression and likely represents the RtgR binding site (Fig. S2A and C).

RtgAB secretes rtg-encoded GG peptides. Sp9-BS68 and D39 both harbor four putative GG peptides at the rtg locus (Fig. 1A). To determine whether RtgAB secretes the rtg GG peptides, we employed a HiBiT tag-based peptide secretion assay (25). We constructed autoinducing-deficient ΔrtgS1 ΔrtgS2 R6 strains which harbor HiBiT-tagged rtgC (from D39) or rtgG (from Sp9-BS68) placed downstream of rtgB in RtgAB− (native R6 rtgA pseudogene) and RtgAB+ (pseudogene-repaired) backgrounds. These strains were also ComAB− and BlpAB− in order to remove the possibility of peptide secretion through these other PCATs. Upon RtgS-C10 treatment in CDM+/H11001, levels of extracellular RtgC-HiBiT and RtgG-HiBiT in the RtgAB+ cultures increased 26- and 376-fold, respectively, compared to their levels in the RtgAB− cultures (Fig. 3). From these data, we conclude that RtgAB secretes the rtg GG peptides.

TABLE 1 RtgS dose-response parameters

Strain	Growth medium	Peptide	EC₅₀ (nM)ᵃ	Maximal response (10⁴ RLU·min⁻¹·OD₆₂₀⁻¹)ᵇ
Sp9-BS68^c	CDM+	RtgS₅₋₈-C8	2.53 ± 0.25	212.2 ± 9.4
		RtgS₅₋₁₀	1.63 ± 0.19	205.7 ± 9.1
		RtgS₅₋₁₂	3.51 ± 0.28	213.9 ± 8.0
	THY	RtgS₅₋₈-C8	184 ± 15	229.7 ± 8.6
		RtgS₅₋₁₀	47.4 ± 6.9	232.4 ± 14.3
		RtgS₅₋₁₂	315 ± 42	210.1 ± 13.1
D39^c	CDM+	RtgS₅₋₁₀	1.25 ± 0.30	75.1 ± 8.1
		RtgS₅₋₁₀	68.8 ± 11.5	212.1 ± 15.5

^aMoments ± SEs; derived from fitting data to Hill model.

^bΔrtgS1.

^cΔrtgS1 ΔrtgS2.

FIG 3 RtgAB secretes RtgC and RtgG. R6 ComAB−/BlpAB−/RtgAB− and ComAB−/BlpAB−/RtgAB+ strains expressing RtgC-HiBiT (A) or RtgG-HiBiT (B) were grown in CDM+ to an OD₆₂₀ of 0.05 and treated with 200 ng/ml CSP, 200 ng/ml BlpC, and 20 nM RtgS₅₋₁₀. CSP and BlpC were added to allow for comparison with ComAB− and BlpAB− strains in later experiments. Samples were taken every 30 min, and extracellular HiBiT signal was quantified. Data are presented as fold change values relative to the ComAB−/BlpAB−/RtgAB− control. Red dashed lines represent fold change = 1 (no difference versus the control). Plots show means ± SEs from 3 independent experiments. ***, P < 0.001 versus ComAB−/BlpAB−/RtgAB− by ANOVA with Tukey’s HSD.
The \(rtg\) locus exhibits extensive variation across different pneumococcal strains. To catalog the diversity found at \(rtg\), we conducted a survey of the locus in a collection of pneumococcal clinical isolates from Massachusetts, USA (39). After removing genomes in which \(rtg\) spans multiple contigs or when conserved genes flanking \(rtg\) could not be found, we were left with 318 of 616 strains, all of which encoded at least one \(rtg\) gene. We analyzed the \(rtg\) loci from these 318 strains and clustered them into 23 groups based on overall architecture (see Fig. S3A). Across all 318 loci, we found 24 unique \(rtg\) genes (Table 2), including eight putative GG peptides which share highly conserved signal sequences (Fig. S3B). Searching for these genes in the full collection revealed that 615 of 616 strains had some version of the \(rtg\) locus. Next, we analyzed the variation in \(RtgS\) among the 318 filtered strains. We found at least one copy of \(rtgS\) in each strain. Because duplication of \(rtgS\) is common, we assigned the name \(rtgS1\) to any copy located next to \(rtgR\) and the name \(rtgS2\) to any copy located next to \(rtgR^=\). Based on the identity of the penultimate residue in the translated peptide, which we have shown is important for signaling activity, we catalogued a total of three pheromone types: types A (Pro), B (Ser), and C (Leu). Only two other positions in the last 12 residues of \(RtgS\) showed variation: Ala/Val at position –10 from the C terminus and Ile/Val at position –8. The functional significance of these other polymorphisms is unknown. Finally, we analyzed each strain’s \(RtgAB\) status and found 5% of strains carry unambiguously intact \(rtgA\) and \(rtgB\). Another 12% carry intact \(rtgB\) and a version of \(rtgA\) with a start codon mutation (ATG > ATT) but that is otherwise intact. We determined

Table 2 Genes of the \(rtg\) locus

Gene	Product	Frequency (%)
\(rtgA\)	Intact Peptidase-containing ABC transporter	5.0
 	Start codon mutation only	14.5
 	Disrupted Peptidase-containing ABC transporter, truncated	59.1
\(rtgB\)	Intact Putative transport accessory protein	18.6
 	Disrupted Putative transport accessory protein, truncated	2.5
\(rtgC\)	GG peptide	15.1
\(rtgD\)	Hypothetical protein	99.7
\(rtgE\)	GG peptide	7.2
\(rtgG\)	GG peptide	4.1
\(rtgH\)	Hypothetical protein	40.6
\(rtgK\)	GG peptide	41.2
\(rtgL\)	Hypothetical protein	83.3
\(rtgM\)	GG peptide	59.7
\(rtgN\)	Hypothetical protein	82.4
\(rtgP\)	Putative integral membrane protein	83.3
\(rtgQ\)	Putative integral membrane protein	83.3
\(rtgR\)	Rgg-family transcription regulator	78.6
\(rtgR^=\)	Rgg-family transcription regulator, truncated	36.5
\(rtgS\) Type A	SHP-like pheromone, type A	42.5
Type B	SHP-like pheromone, type B	67.6
Type C	SHP-like pheromone, type C	0.6
\(rtgT\)	GG peptide	83.0
\(rtgU\)	Hypothetical protein	83.0
\(rtgV\)	GG peptide; probable fusion of \(RtgW\) and \(RtgZ\)	35.5
\(rtgW\)	GG peptide	83.0
\(rtgX\)	GyrI-like hypothetical protein	21.1
\(rtgY\)	Putative integral membrane protein	88.7
\(rtgZ\)	Putative integral membrane protein	99.7

*In 318 genomes from the Massachusetts collection with fully sequenced gapless \(rtg\) loci. May include pseudogenes unless stated otherwise.
that a strain with the ATG->ATT mutation still produces functional RtgAB, likely by using an alternative start site, and suffers only a minor reduction in secretion capacity compared to that of a strain with fully intact \textit{rtgA} (see Fig. S4). Therefore, 17% of strains encode a functional RtgAB.

Active RtgR/S provides a competitive fitness advantage during nasopharyngeal colonization. To determine the biological role of \textit{rtg}, we tested the effect of a regulatory deletion on colonization of the nasopharynx, the natural niche of pneumococcus. Despite similar levels of colonization between the wild-type and \(\Delta \text{rtgR} \Delta \text{rtgS1} \) strains in singly inoculated mice at 3 days postinoculation (Fig. 4A), the wild-type strain outcompeted the mutant in coinoculated mice (Fig. 4B). These data suggest that RtgR/S is active during nasopharyngeal colonization and show that active RtgR/S provides a fitness advantage over RtgR/S-inactive strains during cocolonization.

RtgAB and ComAB/BlpAB preferentially secrete different sets of peptides. The pneumococcal PCATs ComAB and BlpAB secrete the same diverse set of GG peptides (23–25). Therefore, we wondered if ComAB and BlpAB could also secrete the \textit{rtg} GG peptides and if RtgAB is similarly promiscuous and could secrete ComAB/BlpAB substrates. We repeated the RtgC-HiBiT and RtgG-HiBiT secretion assays with ComAB\(^+\) and BlpAB\(^+\) strains, using treatment with the \textit{com} and \textit{blp} pheromones competence-stimulating peptide (CSP) and BlpC, respectively, to induce their expression. ComAB and BlpAB secrete markedly reduced amounts of RtgC-HiBiT and RtgG-HiBiT compared to the amounts secreted by RtgAB (Fig. 5A and B). To determine if RtgAB could secrete a ComAB/BlpAB substrate, we assayed secretion of a HiBiT-tagged version of the BlpI bacteriocin driven by its native promoter. RtgAB secretes roughly 10-fold less BlpI-HiBiT than BlpAB (Fig. 5C). Therefore, RtgAB and ComAB/BlpAB do not efficiently cross-secrete each other’s substrates. Consistent with this, RtgAB\(^+\) strains do not show
differences in com or blp activation compared to that of RtgAB− strains during growth in CDM+ (see Fig. S5). Under these conditions, rtg is expected to turn on before com or blp in every strain background. Thus, even when RtgAB is highly expressed, it secretes too little CSP and BlpC to affect the timing of com and blp activation.

RtgAB and ComAB/BlpAB recognize their substrates through different signal sequence motifs. Given that we had found RtgAB and ComAB/BlpAB do not share the same substrate pool, we explored how the transporters discriminate between substrate and nonsubstrate GG peptides. We showed that the BlpI signal sequence (SSBlpI) prevents secretion of the RtgG cargo peptide through RtgAB (Fig. 6A). However, it did not promote secretion of RtgG through ComAB and BlpAB, suggesting an incompatibility between the cargo peptide and these two transporters. On the other hand, the RtgG signal sequence (SSRtgG) promotes secretion of the BlpI cargo peptide through RtgAB while preventing its secretion through ComAB and BlpAB (Fig. 6B).

To rule out the possibility of differences in peptide expression being solely responsible for the secretion differences, we also measured the amount of intracellular peptide in each assay (Fig. 6A and B; right-hand graphs). The signal sequence swaps affected intracellular peptide levels. However, these intracellular differences cannot account for the observed changes in secretion; higher intracellular levels did not correlate with more secretion, and while intracellular levels of the same peptide were relatively consistent across different strains (RtgAB+ versus ComAB− versus BlpAB−), secretion was not. Thus, the observed changes in secretion between the different peptides most likely reflect differences in peptide-transporter interactions.
In conclusion, while cargo peptide can dictate transporter compatibility in some cases, the signal sequences of GG peptides still contain all the necessary information to direct secretion of their own cargo peptides through the proper transporters. For all future assays, we used BlpI as the cargo peptide, since it can be secreted by all three transporters given the correct signal sequence.

Next, we searched for the specific signal sequence residues involved in transport selectivity. We found that secretion of peptide through ComAB/BlpAB depends on the identities of the residues at the conserved signal sequence positions -15, -12, -7, and -4. These positions were previously implicated in substrate recognition by PCATs (27, 28, 30). The combination of the four residues at these positions from SSBlpI (F/M/L/V) introduced into SSRtgG promote secretion through ComAB/BlpAB, although they were not strictly required for secretion in the context of SSBlpI (Fig. 7A). The complementary association did not hold for RtgAB-mediated secretion, in that the four residues from SSRtgG (Y/L/M/L) were neither necessary nor sufficient for secretion through RtgAB (Fig. 7A). Additionally, alanine substitutions at all four positions in SSRtgG only partially impeded secretion through RtgAB, but the same substitutions in SSBlpI prevented secretion through ComAB and BlpAB almost entirely (Fig. 7B).

A specific motif at the N-terminal ends of rtg GG peptide signal sequences promotes secretion through RtgAB. To identify the signal sequence residues that promote secretion through RtgAB, we turned our attention to the N-terminal ends of the signal sequences, which are conserved in rtg GG peptides but not in ComAB/BlpAB substrates. Residue swaps at positions -22 to -18 in SS_RtgG and SS_Blpl demonstrated that secretion through RtgAB, but not ComAB or BlpAB, depends on specific signal sequence residues in this region (Fig. 8A). The $(-18)M$ substitution in SS_RtgG modestly decreased secretion through RtgAB, and removal of all residues on the N-terminal side of this substitution further decreased secretion (Fig. 8B). Meanwhile, removal of the residues at the same positions from SS_Blpl did not change secretion through RtgAB (Fig. 8C). These data indicate that the residues in this region in SS_RtgG were selected to interact with RtgAB rather than to avoid steric clash. Alanine scanning mutagenesis of the -22 to -19 region of SS_RtgG revealed that secretion through RtgAB was not sensitive to mutation at any single site (see Fig. S6). These data can be explained by
multiple redundant residues mediating the interactions in this region or the interactions being tolerant to alanine substitution. We conclude that RtgAB recognizes rtg GG peptides through interactions involving the signal sequence residues in the H11002 to H11002 region. At the same time, RtgAB’s substrate recognition mechanism has evolved to be less reliant than that of ComAB or BlpAB on interactions with the hydrophobic signal sequence residues at positions H11002, H11002, H11002, and H11002.

DISCUSSION

In this work, we have characterized the PCAT-encoding locus rtg and shown it is regulated by the RtgR/S system. RtgR/RtgS belongs to a family of regulatory systems found in streptococci that includes the Rgg/SHP and ComR/S systems (12). Rgg/SHP and ComR/S circuits can act as either cell density-dependent quorum-sensing systems (12) or timing devices (40). Our data suggest RtgR/S behaves like the former (see Fig. S7 in the supplemental material). A purely intracellular signaling pathway has been reported for XIP in Streptococcus mutans (14, 41). Such a pathway is unlikely to exist for RtgR/S, since rtg autoinduction requires both PptAB and Ami (Fig. S1A). While the RtgS pheromone is similar to the previously described SHP and ComS/XIP pheromones, it also differs from these other pheromone classes in important ways. RtgS lacks the conserved aspartate or glutamate residue characteristic of SHPs and is divergently transcribed from its regulator unlike ComS (12). However, RtgS does contain a Trp-Gly-Trp motif near the C terminus which bears resemblance to the Trp-Trp motif found in some XIPs (12, 20). RtgR is phylogenetically closer to the ComRs than SHP-associated Rgg regulators but does not cluster with either group (12). Using a published list of Rgg regulators (12), we found two RtgR-like regulators associated with Trp-X-Trp (WxW)
motif-containing pheromones: SPD_1518 (Rgg1518) from S. pneumoniae D39 and SSA_2251 from Streptococcus sanguinis SK36 (predicted unprocessed pheromone sequences, MGFKKYLKNLPKNSGSFVMDNEELEIVSG and MKKIVYNLILLAVTSIVTTSVFP WWWLWW, respectively). Expression analysis of the pheromone operon associated with rgg1518 using PneumoExpress (42) revealed that the pheromone and genes SPD_1513 to SPD_1517 are specifically upregulated under the same conditions that result in upregulation of rtg. Therefore, the Rgg1518 system is likely functional. We propose that RtgR/S and other Rgg/WxW pheromone pairs constitute a distinct group of Rgg regulatory systems. We leave the work of characterizing the members of this group and the pathways they regulate to future studies.

We showed that in the RtgAB+ strain Sp9-BS68, the ability to activate the RtgR/S system confers a fitness advantage during competitive colonization of the nasopharynx. While 78% of strains are predicted to harbor a functional RtgR and therefore can respond to pheromone, only 17% of strains are RtgAB+. Most RtgAB− strains still harbor at least one rtg GG peptide but have no obvious means with which to secrete them, since they are not secreted by the other two PCATs commonly found in pneumococcus, ComAB and BlpAB. We have been unable to determine the function of the rtg GG peptides, but we speculate that they are bacteriocins. The reasons for this are that bacteriocin secretion is the most common function of PCATs and that five of the seven rtg GG peptide genes are always associated with downstream genes encoding hypothetical proteins that resemble bacteriocin immunity proteins (43). The fact that the Sp9-BS68 strain with a functional rtg locus demonstrated a competitive advantage over

![Graphs and tables showing secretion data for RtgAB+, ComAB+, and BlpAB+ strains expressing mutated pheromones]

FIG 8 A unique motif found at the N-terminal ends of the rtg GG peptides promotes secretion by RtgAB. (A) R6 ComAB+/BlpAB+/RtgAB+ and single-transporter-positive ComAB+, BlpAB+, and RtgAB− strains expressing BlpI or RtgG signal sequences with residue swaps at positions 22 to 18 (top, mutated positions are underlined) fused to BlpI-HiBiT cargo peptide were grown in CDM+ to an OD60 of 0.05 and treated with 200 ng/ml CSP, 200 ng/ml BlpC, and 20 nM RtgSA-C10. Samples were taken every 30 min, and extracellular HiBiT signal was quantified (left). Data are presented as fold change values relative to the ComAB+/BlpAB+/RtgAB+ control. Red dashed lines represent fold change = 1 (no difference versus the control). At the 120-min time point, intracellular peptide content was also quantified (right). Plots show means ± SEs from 3 independent experiments. R6 ComAB+/BlpAB+/RtgAB+ and RtgAB+ strains expressing mutated SSRtgG (B) or SSBlpI (C) (top, mutated positions are underlined) fused to BlpI-HiBiT cargo peptide were grown and treated with pheromone as in panel A. Extracellular (left) and intracellular (right) HiBiT signals were quantified at 60 min posttreatment. Plots show means ± SEs from 3 independent experiments. n.s., not significant; ***, P < 0.001 by ANOVA with Tukey’s HSD.
the ΔrtgR ΔrtgS1 strain during dual infection is consistent with the bacteriocin hypothesis, as the regulator mutant would be unable to upregulate immunity, although we cannot exclude that other rtgR-regulated factors play a role in this fitness advantage. Regardless of the specific function of the rtg GG peptides, the fact that most RtgAB− strains are still RtgR+ suggests that rtg retains a useful function that does not require secretion of these peptides. Further studies will be needed to determine the mechanism responsible for the RtgR/S-dependent competitive fitness advantage seen in colonization studies, the function of the rtg GG peptides, and the biological significance of active rtg loci with nonfunctional RtgAB.

The case of RtgAB and ComAB/BlpAB allowed us to study how two sets of PCATs which coexist in the same strain preferentially secrete different sets of peptides through slight differences in substrate recognition. Unlike ComAB and BlpAB, RtgAB recognizes its substrates partially using a motif located at the N-terminal ends of their signal sequences. This motif is located 18 residues away from the signal sequence cleavage site and is exclusively found in rtg GG peptides. Where data are available, previous studies of PCAT substrates have found that positions at the N terminus located farther than 18 residues from the cleavage site are either dispensable for recognition by PCATs (28, 30) or can be missing entirely (33, 44, 45). As far as we are aware, RtgAB is unique among PCATs in recognizing a signal sequence motif located so distantly from the cleavage site. Future efforts will be directed toward identifying the specific nature of the interaction between the N-terminal motif and RtgAB and the exact signal sequence residues involved.

The insights into the sequence determinants of PCAT substrate selectivity gained here illuminate a relatively understudied aspect of this class of transporters. They will also be useful in guiding future efforts to predict substrates for ComAB, BlpAB, RtgAB, and other PCATs. Some GG peptides are found without a closely associated or coregulated PCAT (18). In these cases, it would be helpful to have sequence-based approaches for assigning potential transporters to these “orphan” GG peptides. Moreover, for strains that harbor multiple PCATs, predicting if GG peptides can be secreted by PCATs that are not necessarily closely associated can guide mechanistic studies that lead to new insights into function and regulation, such as with ComAB and BlpAB substrates in pneumococcus. Our work lays the groundwork for identifying signal sequence motifs of GG peptides that are important for transporter selectivity. The next step will be to study the corresponding sequence and structural motifs in PCATs that contribute to this selectivity. In addition to bacteriocins and quorum sensing (3), GG peptides have now been linked to biofilm formation, colonization of host niches, and dissemination during infection (18, 46). Ultimately, the ability to predict and rationalize PCAT-GG peptide pairings will advance our understanding of a broad range of biologically significant microbial processes.

MATERIALS AND METHODS

Strains and growth conditions. All strains were derived from Sp9-BS68 (36), D39, or the R6 strain P654 (referred to as PSD100 in reference 47) (see Table S1 and methods in Text S1 in the supplemental material for details). The modified R6 strain was used for some in vitro assays because previous work demonstrating the blp-com connection was performed in this strain background. Pneumococcus was grown in either filter-sterilized THY (Todd Hewitt broth plus 0.5% yeast extract) or CDM+ (see methods in Text S1) (38) at 37°C. All media contained 5 μg/ml catalase. All CDM+ was supplemented with 0.5% (vol/vol) THY. Except where noted otherwise, pneumococcal cultures used for experiments were inoculated to an OD655 of 0.0015 from starter cultures grown in THY (pH 7.4) to an OD655 of 0.275 and frozen at −80°C in 13% glycerol. Starter cultures were pelleted at 6,000 × g for 5 min at room temperature and resuspended in the appropriate growth medium for the experiment before being used for inoculation. Antibiotics were used at the following concentrations: chloramphenicol, 2 μg/ml; gentamicin, 200 μg/ml; kanamycin, 500 μg/ml; spectinomycin, 200 μg/ml; streptomycin, 100 μg/ml.

Transformations. Transformation protocols were adapted from those described in reference 48. See methods in Text S1 and Table S1 for details and primers used for constructing transforming DNA products. Unmarked chromosomal mutations were created via Janus (49), Sweet Janus (50), or Janus2 (Text S1) exchange. Transformants were verified by Sanger sequencing.

Luciferase reporter time course assays. For com-blp activation assays only, starter cultures were grown in THY (pH 6.8) to an OD655 of 0.075 to prevent com-blp activation. Cells were grown in THY or CDM+ in a white, clear-bottom 96-well plate (655098; Greiner Bio-One), 200 μl per well. For assays using
firefly luciferase, the following concentrations of firefly luciferin (88294; Thermo Fisher Scientific) were added to the medium: 330 μM (single reporter and dual reporter, CDM-H9262), 165 μM (dual reporter, THY). For assays using NanoLuc luciferase, the following concentrations of Nano-Glo substrate (N1121; Promega) were added to the media: 1:5,000 (CDM-H9262), 1:10,000 (THY). The plate was incubated in a Synergy HTX plate reader set to read absorbance at 620 nm and luminescence every 5 min. For single reporter assays, no filter was used for luminescence readings. For dual reporter assays, 450/50 band-pass and 610 long-pass filters were used to isolate NanoLuc and red firefly luciferase signals, respectively. For D39 strains only, the plate was shaken before readings were taken. Promoter activities were calculated from luminescence and absorbance readings as described in reference 25. For locus activation assays, timings of activation events were calculated as described in the methods in Text S1 and compared using survival analysis. Differences between groups were assessed by log-rank tests using the FHtest package (v1.4) in R, and when appropriate, the Holm correction was applied for multiple comparisons.

RtgS dose-response assays. Cells expressing P_{rtgS}-luc reporters were grown in THY or CDM-H9262 containing 330 μM firefly luciferin. At an OD_{620} of 0.02, cultures were aliquoted into a white, clear-bottom 96-well plate (655098; Greiner Bio-One), 100 μl per well. Each well of the plate was prefilled with 100 μl sterile medium containing 0.5% (vol/vol) dimethyl sulfoxide (DMSO), 330 μM firefly luciferin, and appropriate concentrations of synthetic RtgS peptide (Genscript). The plate was then incubated in a Synergy HTX plate reader set to read absorbance at 620 nm and luminescence every 5 min. For D39 strains only, the plate was shaken before readings were taken. P_{rtgS} activity was calculated, and the response was defined as the maximum observed P_{rtgS} activity within 60 min (Sp9-BS68) or 120 min (D39) of treatment. When applicable, curves were fit to a Hill model using the nlst() function in R 3.5.1.

Peptide secretion assays. Cells were inoculated from starter cultures to an OD_{620} of 0.005 and grown in CDM-H9262. At an OD_{620} of 0.05, cells were treated with 200 ng/ml CSP1, 200 ng/ml BlpCR6, and 20 nM RtgS-C10. Samples were taken for HiBiT quantification at appropriate time points. For native Blp-BlpHiBiT assays only, clarified supernatants were obtained after centrifugation at 6,000 × g for 5 min at 4°C. For all other assays, cells were retained in the samples. HiBiT signal was quantified by mixing samples with HiBiT extracellular detection reagent (N2421; Promega) at a 1:1 ratio and reading luminescence with a Synergy HTX plate reader. Samples were also taken for quantification of intracellular peptide; for endpoint assays, they were taken concurrently with the extracellular samples, and for time course assays, they were taken at the last time point. Extracellular peptide was removed from these samples by proteinase K digestion, and then the cells were lysed and HiBiT signal was quantified as described above. Standards consisting of synthetic L10-HiBiT peptide (25) mixed with samples of a non-HiBiT-expressing strain were used to generate standard curves to use for calculating HiBiT-tagged peptide concentrations in experimental samples. See methods in Text S1 for more details. Differences between groups were assessed by analysis of variance (ANOVA) using the emmeans package (v1.2.3) in R.

Genomic analysis of rtg. Analysis of rtg was performed using the assembled genomes of the Massachusetts isolate collection (BioProject accession PRJEB2632). See methods in Text S1 for details.

Mouse colonization assays. Mouse colonization was performed as described in reference 25. Briefly, dual or single-strain mixtures of Sp9-BS68 were inoculated into the nasopharynx of 7-week-old female BALB/c mice (Taconic) with 1.0 × 10^{6} CFU/mouse in 10 μl of sterile phosphate-buffered saline (PBS). For dual inoculated mice, the ratio of the kanamycin-resistant strain to the spectinomycin-resistant strain was 0.25:1. Mice were euthanized with CO2 overdose after 72 h, and nasopharyngeal colonization was sampled by nasal wash. See methods in Text S1 for IACUC approval and details on how colonization density and competitive indices were calculated. Differences in colonization densities and competitive indices between groups were evaluated by the Mann-Whitney (2 groups) and Kruskal-Wallis (>2 groups) tests using the wilcox.test() and kruskal.test() functions in R 3.5.1.

Data availability. Sequences of Janus+ and Janus2 constructs were deposited in GenBank under accession numbers MN848328 and MN848329, respectively. The rtg locus from Sp9-BS68 including the new sequencing that allowed us to connect existing contigs and rtg gene designations established here was deposited as accession number MN848330.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1, PDF file, 0.3 MB.
FIG S1, PDF file, 0.6 MB.
FIG S2, PDF file, 0.5 MB.
FIG S3, PDF file, 0.8 MB.
FIG S4, PDF file, 0.4 MB.
FIG S5, PDF file, 0.5 MB.
FIG S6, PDF file, 0.4 MB.
FIG S7, PDF file, 0.5 MB.
TABLE S1, PDF file, 0.2 MB.

ACKNOWLEDGMENTS

This work was supported by funding from the National Institutes of Health T32 AI007528 (to C.Y.W.), R01 AI101285 (to S.D.), and R56 AI101285 (to S.D.).
REFERENCES

1. Economou A. 2002. Bacterial secretome: the assembly manual and operating instructions (review). Mol Membr Biol 19:159–169. https://doi.org/10.1080/09697680210152609.

2. Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Microbiol Spectr 4(MMBF-0012-2015). https://doi.org/10.1128/microbiolspec.VMBF-0012-2015.

3. Hävarstein LS, Diep DB, Nes IF. 1995. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240. https://doi.org/10.1111/j.1365-2958.1995.tb03315.x.

4. Gehlard S. 2012. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation. Mol Microbiol 86:1295–1317. https://doi.org/10.1111/mmi.12078.

5. Chikindas ML, Weeks R, Drider D, Chistyakova VA, Dicks LM. 2018. Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28. https://doi.org/10.1016/j.copbio.2017.07.011.

6. Hui FM, Zhou L, Morrison DA. 1995. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153:25–31. https://doi.org/10.1016/0378-1119(94)00841-f.

7. Son MR, Shchepetov M, Adrian PV, Madhi SA, de Gouveia L, von Gottberg A, Klugman KP, Weiser JN, Dawid S. 2011. Conserved mutations in the pneumococcal bacteriocin transporter gene, bpaA, result in a complex population consisting of producers and cheaters. mBio 2:e00179-11. https://doi.org/10.1128/mBio.00179-11.

8. Mendonca ML, Szamosi JC, Lacroix AM, Fontes ME, Bowdish DM, Surette MG. 2016. The s/l locus in Streptococcus anginosus group: interspecies competition and a hotspot of genetic diversity. Front Microbiol 7:2156. https://doi.org/10.3389/fmicb.2016.02156.

9. Petersen FC, Scheie AA. 2000. Genetic transformation in Streptococcus mutans requires a peptide secretion-like apparatus. Oral Microbiol Immunol 15:329–334. https://doi.org/10.1034/j.1399-302x.2000.150511.x.

10. Qi F, Chen T, Brown JS, Petersen FC. 2017. A quorum-sensing mechanism in streptococci. Mol Microbiol 80:1162–1179. https://doi.org/10.1111/mmi.13659.

11. Fontaine L, Brouy C, de Franh MH, Delplace B, Freamaux C, Honvath P, Boyaval P, Hols P. 2010. A novel pneumococquie quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444–1454. https://doi.org/10.1128/JB.01251-09.

12. Fleuchot B, Gitton C, Guillot A, Vidic J, Nicolas P, Besset C, Fontaine L, Leblond-Bourget N, Monnet V, Gardan R. 2011. Rgg proteins and their associated signaling peptide form a cell-to-cell communication system required for competence and a hotspot of genetic diversity. Front Cell Infect Microbiol 9:55. https://doi.org/10.3389/fcimb.2019.00055.

13. Kjos M, Miller E, Slager J, Lake FB, Gerice O, Roberts IS, Rosen DE, Veening JW. 2016. Expression of Streptococcus pneumoniae bacteriocins is induced by antibodies via regulatory interplay with the competence system. PLoS Pathog 12:e1005422. https://doi.org/10.1371/journal.ppat.1005422.

14. Wholey WV, Kochan TJ, Starkon DC, Dawid S. 2016. Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog 12:e1005413. https://doi.org/10.1371/journal.ppat.1005413.

15. Podbielski A, Gardes C, Flint N, Wagner C, Mitchell TJ, Keck W, Periselneris JN, Chen T, Brown JS, Petersen FC, Junges R, Salvadori G, Shekhar S, Åmdal HA, Sushida H, Ishibashi N, Zendo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Lin DY, Huang S, Chen J. 2015. Crystal structures of a polypeptide signal-producing ABC transporter ComA, a gene required with homology to two lactococcin A secretion genes. Gene 153:25–31. https://doi.org/10.1016/0378-1119(94)00841-f.

16. Zhi X, Abdullah IT, Gazioglu O, Manzoor I, Shafeeq S, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. 2018. Rgg-Shp regulators are important for competence, naso utilization and capsule synthesis. Sci Rep 8:6369. https://doi.org/10.1038/s41598-018-24910-1.

17. Denef-van’t Veer FC, van de Veerdonk FL, van der Bent S, van Duijff R, Van den Elsen P, Lücke A, Veening JW. 2016. Coordinated bacteriocin expression and competence in Streptococcus pneumoniae contributes to genetic adaptation through neighbor predation. PLoS Pathog 12:e1005413. https://doi.org/10.1371/journal.ppat.1005413.

18. Periselneris JN, Chen T, Brown JS, Petersen FC. 2017. A quorum-sensing mechanism in streptococci. Mol Microbiol 80:1162–1179. https://doi.org/10.1111/mmi.13659.

19. Dmitriev AV, McDowell EJ, deSaizieu A, Gardès C, Flint N, Kamber M, Mitchell TJ, Keck W, Amrein KE, Lange R. 2000. Microarray-based identification of a novel Streptococcus pneumoniae regulator controlled by an autoinduced peptide. J Bacteriol 182:4696–4703. https://doi.org/10.1128/JB.182.17.4696-4703.2000.

20. Mashburn-Warren L, Morrison DA, Federle MJ. 2010. A novel double-tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator. Mol Microbiol 78:589–606. https://doi.org/10.1111/j.1365-2958.2010.07361.x.

21. Wholey WV, Abu-Kheir M, Yu EA, Siddiqui S, Esmai O, Dawid S. 2019. Characterization of the competitive pneumococquie pneumococci of Streptococcus pneumoniae. Front Cell Infect Microbiol 9:55. https://doi.org/10.3389/fcimb.2019.00055.

22. Lin DY, Huang S, Chen J. 2015. Crystal structures of a polypeptide signal-producing ABC transporter ComA from Streptococcus. Biochemistry 47:2531–2538. https://doi.org/10.1021/bi502253n.

23. Bobeica SC, Dong S-H, Luo L, Mazo N, McLaughlin MI, Jiménez-Osés G, Nair SK, van der Donk WA. 2019. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double glycinine motif protease. Life Res Comp Med 30:1–5. https://doi.org/10.1016/j.lrecm.2019.04.038.

24. Nagao J, Morinaga Y, Islam MR, Asaduzzaman SM, Aso Y, Nakayama J, Sonomoto K. 2009. Mapping and identification of the region and secondary structure required for the maturation of the nucakin ISK-1 prepeptide. Peptides 30:1412–1420. https://doi.org/10.1016/j.peptides.2009.05.021.

25. Ishii S, Yano T, Kikukawa Y, Hayashi H. 2008. Substrate recognition mechanism of the peptidase domain of the quorum-sensing signal-producing ABC transporter ComA from Streptococcus. Biochemistry 47:2531–2538. https://doi.org/10.1021/bi502253n.

26. Lin DY, Huang S, Chen J. 2015. Crystal structures of a polypeptide processing and secretion transporter. Nature 523:425–430. https://doi.org/10.1038/nature14623.

27. Ishibashi N, Ishibashi H, Matsuda Y, Perez RH, Iwatsuki S, Zendjo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. 2014. Gene cluster responsible for secretion of and immunity to multiple bacteriocins, the NKR-3-s enterocins. Appl Environ Microbiol 80:6647–6655. https://doi.org/10.1128/AEM.02312-14.

28. Sushida H, Ishibashi N, Zendjo T, Wilaipun P, Leelawatcharamas V, Nakayama J, Sonomoto K. 2018. Evaluation of leader peptides that affect the secretory ability of a multiple bacteriocin transporter, EntK. J Biosci Bioeng 126:23–29. https://doi.org/10.1016/j.jbiosc.2018.01.015.

29. Ishibashi N, Zendjo T, Koga S, Shirigi Y, Sonomoto K. 2015. Molecular characterization of the genes involved in the secretion and immunity.
of lactococcin Q, a two-peptide bacteriocin produced by Lactococcus lactis QU 4. Microbiology 161:2069–2078. https://doi.org/10.1099/mic.0.000157.

35. Furgerson Ihnken LA, Chatterjee C, van der Donk WA. 2008. In vitro reconstitution and substrate specificity of a lantibiotic protease. Biochemistry 47:7352–7363. https://doi.org/10.1021/bi800278n.

36. Hiller NL, Janto B, Hogg JS, Poowell E, Keefe R, Ehrlich NE, Shen K, Hayes J, Barbadora K, Klimke W, Demovoy D, Tatrosova T, Parkhill J, Bentley SD, Post JC, Ehrlich GD, Hu FZ. 2007. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189:8186–8195. https://doi.org/10.1128/JB.00690-07.

37. Piet JR, Geldhoff M, van Schaik BD, Brouwer MC, Valls Seron M, Jakobs ME, Schipper K, Pannekoek Y, Zwinderman AH, van der Poll T, van Kampen AH, Baas F, van der Ende A, van de Beek D. 2014. Streptococcus pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal meningitis. J Infect Dis 209:1781–1791. https://doi.org/10.1093/infdis/jit818.

38. Marks LR, Reddinger RM, Hakansson AP. 2012. High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 3:e00200-12. https://doi.org/10.1128/mBio.00200-12.

39. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, Bentley SD, Hanage WP, Lipsitch M. 2013. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45:656–663. https://doi.org/10.1038/ng.2625.

40. Garden R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P, Monnet V. 2013. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J Bacteriol 195:1945–1955. https://doi.org/10.1128/JB.02196-12.

41. Underhill SAM, Shields RC, Kaspar JR, Haider M, Burne RA, Hagen SJ. 2017. Intracellular signaling by the comS system in Streptococcus mutans genetic competence. mSphere 3:e00444-18. https://doi.org/10.1128/mSphere.00444-18.

42. Aprianto R, Slager J, Holsappel S, Veening JW. 2018. High-resolution analysis of the pneumococcal transcriptome under a wide range of infection-relevant conditions. Nucleic Acids Res 46:9990–10006. https://doi.org/10.1093/nar/gky750.

43. Nes IF, Diep DB, Hävarstein LS, Brurberg MB, Eij sink V, Holo H. 1996. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeu wenhoek 70:113–128. https://doi.org/10.1007/bf00395929.

44. Birri DJ, Brede DA, Forberg T, Holo H, Nes IF. 2010. Molecular and genetic characterization of a novel bacteriocin locus in Enterococcus avium isolates from infants. Appl Environ Microbiol 76:483–492. https://doi.org/10.1128/AEM.01597-09.

45. Zendo T, Koga S, Shigeri Y, Nakayama J, Sonomoto K. 2006. Lactococcin Q, a novel two-peptide bacteriocin produced by Lactococcus lactis QU 4. Appl Environ Microbiol 72:3383–3389. https://doi.org/10.1128/AEM.72.5.3383-3389.2006.

46. Aggarwal SD, Eutsey R, West-Roberts J, Domenech A, Xu W, Abdullah IT, Mitchell AP, Veening JW, Yesilkaya H, Miller NL. 2018. Function of BriC peptide in the pneumococcal competence and virulence portfolio. PLoS Pathog 14:e1007328. https://doi.org/10.1371/journal.ppat.1007328.

47. Kochan TJ, Dawid S. 2013. The HtrA protease of Streptococcus pneumoniae controls density-dependent stimulation of the bacteriocin blp locus via disruption of pheromone secretion. J Bacteriol 195:1561–1572. https://doi.org/10.1128/JB.01964-12.

48. Dawid S, Sebert ME, Weiser JN. 2009. Bacteriocin activity of Streptococcus pneumoniae is controlled by the serine protease HtrA via posttranscriptional regulation. J Bacteriol 191:1509–1518. https://doi.org/10.1128/JB.01213-08.

49. Sung CK, Li H, Claverys JP, Morrison DA. 2001. An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67:5190–5196. https://doi.org/10.1128/AEM.67.11.5190-5196.2001.

50. Li Y, Thompson CM, Lipshitz M. 2014. A modified Janus cassette (Sweet Janus) to improve allelic replacement efficiency by high-stringency negative selection in Streptococcus pneumoniae. PLoS One 9:e100510. https://doi.org/10.1371/journal.pone.0100510.