Abstract

Cardiovascular Disease (CVD) is the main problems of morbidity and mortality in the current lifestyle. The prediction of heart disease is the most complicated task in the field of medical sciences. Data mining techniques have been widely applied in bioinformatics to analyze biomedical data. Today, the field of medicine has come a long way to treat patients with various types of diseases. Heart disease is one of the most threatening diseases that cannot be seen with the naked eye. Poor and incorrect clinical decisions result in the death of a patient who cannot be authorized. Today the health sector contains a large amount of health data, which contain hidden information. Advanced data extraction techniques and computer-generated information are used for predicting heart disease at an earlier stage. In this paper, classification techniques such as Deep Belief Network (DBN) and Fuzzy Deep Belief Network (FDBN) are proposed and analyzed on the cardiovascular disease dataset. The performance of these techniques is evaluated using evaluation parameter such as accuracy and error rate. From the experimental results, it is proved that the accuracy of the Fuzzy Deep Belief network is superior to the Deep Belief network. Further the analysis of the experiment also showed that the FDBN
system is one of the best classification models in efficiently predicting cardiovascular diseases with the lowest error rate and maximum accuracy.

References

1. Chaitrali S. Dangare and Sulabha S. Apte, “A Data Mining Approach for Prediction of Heart Disease using Neural Networks”, International Journal of Computer Engineering and Technology, Vol. 3, No. 3, pp. 23-29, 2012.
2. M. Anbarasi, E. Anupriya and N. Iyengar, “Enhanced Prediction of Heart Disease with Feature Subset Selection using Genetic Algorithm”, International Journal of Engineering Science and Technology, Vol. 2, No. 10, pp. 5370-5376, 2010.
3. Milan Kumari and S. Godara, “Comparative Study of Data Mining Classification Methods in Cardiovascular Disease Prediction”, International Journal of Computer Science and Technology, Vol. 2, No. 2, pp. 304-308, 2011.
4. N. Aditya Sundar, P. Pushpa Latha, M. Rama Chandra, “Performance Analysis of Classification Data Mining Techniques over Heart Disease Data Base”, International Journal of Engineering Science and Advanced Technology, Vol. 2, No. 3, pp. 470-478, 2013.
5. T. John Peter and K. Somasundaram, “Study and Development of Novel Feature Selection Framework for Heart Disease Prediction”, International Journal of Scientific and Research Publications, Vol. 2, No. 10, pp. 1-7, 2012.
6. Mai Shouman, Tim Turner and Rob Stocker “Applying K-Nearest Neighbour in Diagnosing Heart Disease Patients”, Proceedings of International Conference on Knowledge Discovery, pp. 23-29, 2012.
7. Nidhi Bhatla and Kiran Jyoti, “An Analysis of Heart Disease Prediction using Different Data Mining Techniques”, International Journal of Engineering Research and Technology, Vol. 1, No. 8, pp. 1-4, 2012.
8. A. Pethalakshmi and A. Anushya, “Effective Features Selection via Futuristic Genetic on Heart Data”, International Journal of Computational Intelligence and Informatics, Vol. 2, No. 1, pp. 23-27, 2012.
9. Abhishek Taneja, “Heart Disease Prediction System using Data Mining Techniques”, Oriental Scientific Publishing, 2013.
10. R. Chitra and V. Seenivasagam, “Heart Disease Prediction System using Supervised Learning Classifier”, Bonfiring International Journal of Software Engineering and Soft Computing, Vol. 3, No. 1, pp. 1-7, 2013.
11. Shamsher Bahadur Patel, Pramod Kumar Yadav and D.P. Shukla, “Predict the Diagnosis of Heart Disease Patients using Classification Mining Techniques”, IOSR Journal of Agriculture and Veterinary Science, Vol. 4, No. 2, pp. 61-64, 2014.
12. Vikas Chaurasia and Saurabh Pal, “Early Prediction of Heart Diseases using Data Mining Techniques”, Caribbean Journal of Science and Technology, Vol. 1, pp. 208-217, 2013.
13. Nilakshi P. Waghulde and Nilima P. Patil, “Genetic Neural Approach for Heart Disease Prediction”, International Journal of Advanced Computer Research, Vol. 4, No. 3, pp. 331-338, 2014.
14. R. Chitra and V. Seenivasagam, “Review of Heart Disease Prediction System using Data Mining and Hybrid Intelligent Techniques”, ICTACT Journal on Soft Computing, Vol. 3, No. 4, pp. 605-609, 2013.
15. Rupali R. Patil, “Heart Disease Prediction System using Naive Bayes and
Jelinek-Mercer Smoothing”, International Journal of Advanced Research in Computer and Communication Engineering, Vol. 3, No. 5, pp. 515-523, 2014.

16. B. Venkatalakshmi and M.V. Shivsankar, “Heart Disease Diagnosis using Predictive Data mining”, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 3, No. 3, pp. 223-229, 2014.

17. Andrea D. Souza, “Heart Disease Prediction using Data Mining Techniques”, International Journal of Research in Engineering and Science, Vol. 3, No. 3, pp. 74-77, 2015.

18. Moloud Adbar et al., “Comparing Performance of Data Mining algorithms in Prediction Heart Diseases”, International Journal of Electrical and Computer Engineering, Vol. 5, No. 6, pp. 1569-1576, 2015.

19. Jaymin Patel, Teja Upadhyay and Samir Patel, “Heart Disease Prediction using Machine Learning and Data Mining Techniques”, International Journal of Computer Science and Communication, Vol. 7, No. 1, pp. 129-137, 2016.

20. K. Rajalakshmi and K. Nirmala, “Heart Disease Prediction with Map Reduce by using Weighted Association Classifier and K-Means”, Indian Journal of Science and Technology, Vol. 9, No. 19, pp. 231-237, 2016.

21. S. Suganya and P. Tamil Selvi, “A Proficient Heart Disease Prediction Method using Fuzzy-Cart Algorithm”, International Journal of Scientific Engineering and Applied Science, Vol. 2, No. 1, pp. 1-6, 2016.

22. Rishabh Wadhawan, “Prediction of Coronary Heart Disease using Apriori algorithm with Data Mining Classification”, International Journal of Research in Science and Technology, Vol. 3, No. 1, pp. 1-15, 2018.

23. Herculano-Houzel, Suzana and Lent, Roberto. Isotropic Fractionator: A simple, rapid method for the Quantification of Total Cell and Neuron Numbers in the Brain. In: The Journal of Neuroscience. 9 March 2005, 25(10): 2518-2521. ISSN: 0270-6474, 2005.

24. Guyon, Isabelle. A Scaling Law for the Validation Set Training Set Size Ratio. In: AT&T Bell Laboraties, 1997.

25. Hinton, G. E. Training products of experts by minimizing contrastive divergence. In: Neural Computation, 2002, 14(8):1711-1800.

Index Terms

Computer Science
Artificial Intelligence

Keywords

Heart Disease Prediction System, Deep Belief Network, Fuzzy Deep Belief Network classification algorithm.