Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.)

Shi Liu1,2 · Zhongqi Gao1,2 · Xuezheng Wang1,2 · Feishi Luan1,2 · Zuyun Dai3 · Zhongzhou Yang3 · Qian Zhang4

Received: 24 June 2021 / Accepted: 25 September 2021 / Published online: 11 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Key message A gene controlling golden flesh trait in watermelon was discovered and fine mapped to a 39.08 Kb region on chromosome 1 through a forward genetic strategy, and Cla97C01G008760 (annotated as phytoene synthase protein, ClPsy1) was recognized as the most likely candidate gene.

Abstract Vitamin A deficiency is a worldwide public nutrition problem, and β-carotene is the precursor for vitamin A synthesis. Watermelon with golden flesh (gf, which occurs due to an accumulated abundance of β-carotene) is an important germplasm resource. In this study, a genetic analysis of segregated gf gene populations indicated that gf was controlled by a single recessive gene. BSA-seq (Bulked segregation analysis) and an initial linkage analysis placed the gf locus in a 290-Kb region on watermelon chromosome 1. Further fine mapping in a large population including over 1000 F2 plants narrowed this region to 39.08 Kb harboring two genes, Cla97C01G008760 and Cla97C01G008770, which encode phytoene synthase (ClPsy1) and GATA zinc finger domain-containing protein, respectively. Gene sequence alignment and expression analysis between parental lines revealed Cla97C01G008760 as the best possible candidate gene for the gf trait. Nonsynonymous SNP mutations in the first exon of ClPsy1 between parental lines co-segregated with the gf trait only among individuals in the genetic population and were not related to flesh color in natural watermelon panels. Promoter sequence analysis of 26 watermelon accessions revealed two SNPs in the cis-acting element sequences corresponding to MYB and MYC2 transcription factors. RNA-seq data and qRT-PCR verification showed that two MYBs exhibited expression trends similar to that of ClPsy1 in the parental lines and may regulate the ClPsy1 expression. Further research findings indicate that the gf trait is determined not only by ClPsy1 but also by CILCYB, CICRTISO and CINCED7, which play important roles in watermelon β-carotene accumulation.

Introduction

Watermelon (Citrullus lanatus L.) is a commercial Cucurbitaceae crop that is cultivated worldwide and consumed fresh. The flesh color of watermelon is an important trait for...
consumer demands and market requirements. The genetic diversity corresponding to multiple flesh colors (red, pink, orange, canary yellow, pale yellow, white and pale green) in watermelon is caused by genome domestication and human breeding selection (Guo et al. 2019). Carotenoids are the main pigments responsible for the watermelon flesh color. Specifically, lycopene is the key pigment responsible for red and pink flesh colors (Sun et al. 2018), whereas β-carotene, tetra-cis-lycopene, and ξ-carotene are responsible for an orange flesh color (Branham et al. 2017). In addition, violaxanthin and lutein are the two main pigments responsible for the formation of canary and pale-yellow flesh, and violaxanthin is significantly more abundant in canary yellow than pale-yellow watermelon (Yuan et al. 2015 and Fang et al. 2020). White-fleshed watermelon contains only small amounts of lutein and violaxanthin (Lv et al. 2015). Carotenoids, which are part of the human diet, serve as precursors of vitamin A and substrates for many nutrients and exhibit antioxidant activity. Although these compounds are indispensable for health, humans are incapable of de novo carotenoid synthesis (Rodriguez-Concepcion et al. 2018). The World Health Organization (WHO) estimates that approximately 190 million preschool children are deficient in vitamin A, and vitamin A deficiency is one of the major public health problems worldwide. β-Carotene is the precursor for vitamin A synthesis, and the consumption of horticultural crops containing high levels of β-carotene (golden flesh), carotenoids, which are part of the human diet, serve as precursors of vitamin A and substrates for many nutrients and exhibit antioxidant activity. Although these compounds are indispensable for health, humans are incapable of de novo carotenoid synthesis (Rodriguez-Concepcion et al. 2018). The World Health Organization (WHO) estimates that approximately 190 million preschool children are deficient in vitamin A, and vitamin A deficiency is one of the major public health problems worldwide. β-Carotene is the precursor for vitamin A synthesis, and the consumption of horticultural crops containing high levels of β-carotene (golden flesh), which constitute an important germplasm resource, is an effective strategy for preventing vitamin A deficiency.

Scholars began studying the inheritance of watermelon flesh color as early as 1937 (Porter, 1937). Canary yellow (C) is dominant over other colors (c) except white (Wf), which is epistatic to canary yellow (B) (Wehner, 2007). Coral red (Y) is more common than orange (y) and salmon yellow (y), and orange (yO) dominates salmon yellow (y). In addition, canary yellow (C) is epistatic to Y and influenced by an inhibitor of canary yellow (i-C), and a homozygous gene results in red flesh even in the presence of C (Henderson et al. 1998). Bang et al. (2010) reported that the py gene controls the formation of pale yellow-fleshed watermelon. To date, many scientists have summarized series of QTLs or genes related to watermelon flesh color. In 2003, two red flesh-related QTLs, which were detected in groups 2 and 8, were first reported (Hashizume et al. 2003). The biosynthesis of carotenoids has been well studied in plants (Sun et al. 2018) and reported in watermelon. qFC.1 is reportedly related to β-carotene in a 2.4-Mb region on chromosome 1 that contains SlPsy1 (Branham et al. 2017). The pale green flesh color is also regulated by the major effective QTL qfC10.1 located on chromosome 10, spanning an approximately 519-Kb region, and Cla97C10G185970, which is annotated as plastid lipid-associated protein, was identified as the most likely candidate gene (Pei et al. 2021). The red-flesh-color gene CILCYB (lycopene beta-cyclase) has been fine-mapped to chromosome 4 (Liu et al. 2015; Wang et al. 2019). Zhang and colleagues found that the CILCYB protein abundance, instead of the CILCYB transcript level, is negatively correlated with lycopene accumulation (Zhang et al. 2020). Genes located in the carotenoid metabolic pathway are not the only factors responsible for flesh color formation. Ycfr (a single dominant gene), which has been fine-mapped to an approximately 40-Kb region on chromosome 6, generates the scarlet red flesh color rather than the common red flesh color in watermelon. Four genes encoding glycin-rich cell wall structural proteins are regarded as candidate genes (Li et al. 2020b). CIPHT4;2 regulates chromoplast development, and the expression level of CIPHT4;2 in red-fleshed accessions was approximately tenfold higher than that in white-fleshed accessions. In addition, overexpression of CIPHT4;2 leads to high accumulation of carotenoids (Zhang et al. 2017).

The gf trait has been reported in some plants, such as cauliflower (Li et al. 2001), cassava (Welsch et al. 2010), melon (Tzuri et al. 2015), rice (Bai et al. 2016), wheat (Wang et al. 2014), potato (Mortimer et al. 2016), and banana (Paul et al. 2017) plants, and the Psy and Or genes are involved in the formation of this trait. SIPSy1 is related to carotenoid accumulation in ripening tomato fruits (Fantini et al. 2013), and the silencing of SIPSy1 in tomato using CRISPR/Cas9 changes the flesh color from red to yellow (Dahan-Meir et al. 2018). In watermelon and citrus, the types and expression patterns of Psy genes are similar to those found in tomato (Peng et al. 2013; Lv et al. 2015). Together with the DXS, LCYB, CHY, and ZEP genes, Psy always affects the gf trait at the transcriptional level (Pons et al. 2014; Zeng et al. 2015; Farre et al. 2016).

The chromoplast is the main location of carotenoid accumulation, and enhancing the metabolic capacity would be beneficial for gf trait formation. The Or gene is known to play a role in carotenoid generation and chromoplast differentiation and exhibits chaperone activity in regulating Psy at the posttranscriptional level (Welsch et al. 2018). Or can also increase carotenoid accumulation by inhibiting hydroxylase and degradative reactions (Chayut et al. 2017), and overexpression of the Or gene in the potato and white maize endosperm enhanced carotenoid synthesis by approximately sixfold and 32-fold, respectively (Li et al. 2012; Berman et al. 2017). Carotenoid contents cannot be enhanced by overexpression of the Or gene in tissues with abundant β-carotenoid accumulation (Shumskaya et al. 2012).

Although the Psy gene plays an important role in carotenoid synthesis in many plants, molecular markers developed based on the forward genetics results are more effective for applications in breeding. In watermelon, the gf trait remains poorly understood. The objectives of our study were to understand the genetic basis of the golden flesh color trait.
in watermelon and identify the genes responsible for this important trait in segregated populations. Suggestions for marker-assisted selection (MAS) for the golden flesh trait are also provided based on the results.

Materials and methods

Plant materials and phenotype evaluation

“Cream of Saskatchewan” (COS), with a pale-yellow flesh color, and the watermelon accession PI 192938 with the gf trait (orange flesh) were used as the parental materials to obtain the F₁, F₂, and backcross populations. COS was kindly provided by Angela R. Davis at the US Department of Agriculture, Agricultural Research Service, South Central Agricultural Research Laboratory, and PI 192938 was obtained from the US National Plant Germplasm System. All experimental materials were grown in a greenhouse at the Xiangyang Experimental Agricultural Farm of Northeast Agricultural University, Harbin, China, from 2018 to 2020. The F₂ populations were planted in 2018 and 2019 (93 and 297 plants, respectively) to verify the genetic segregation ratio and initial mapping, and BC₁P₁ (37 plants) and BC₁P₂ (84 plants) populations were planted in 2019 to further confirm their genetic inheritance. A total of 1003 F₂ individuals were planted in 2020 for recombinant selection and fine mapping. Fifteen days after planting, each plant was numbered with a tag, and young, disease-free leaves were sampled and freshly frozen for DNA extraction using the improved hexadecyl trimethyl ammonium bromide (CTAB) method. All plants were artificially pollinated, and the pollination date were recorded. At 35–40 days after pollination, the fruits were collected, crosscut, and photographed for flesh evaluation.

BSA-seq and initial mapping

Equal amounts of genomic DNA from 20 pale-yellow and 20 gf individuals were selected from 297 F₂ plants (in 2019) for flesh-color gene pool construction. The two gene pools and the genomic DNA of the parental lines were re-sequenced at the BGI Research Institute using the Illumina HiSeq Xten platform (with at least 20 × coverage genome sequencing depth for each sample) for BSA-seq analysis. The sequence data were aligned to the reference genome 97103 v2 (ftp://cucurbitgenomics.org/pub/cucurbit/genome/watermelon/97103/v2/) using Burrows-Wheeler Aligner (BWA, Li and Durbin, 2009) to obtain the snp.vcf file. The SNP sites were identified with SAMtools software (Li et al. 2009). Different homozygous sites in the two gene pools of the F₂ population were extracted to calculate the SNP variation frequency and analyze the regions significantly associated with the gf trait. Subsequently, 500 bp before and after the SNP site sequences were extracted from the resequencing data for molecular marker exploitation.

Candidate cleaved amplified polymorphic sequence (CAPS) loci were detected using SNP2CAPS software (Thiel et al. 2004) with the snp.vcf file. According to the BSA-seq results, CAPS loci were designed and evenly distributed in the initial chromosome region using nine restriction endonucleases (HincII, MspI, BsrI, MboI, TaqI, AluI, XhoI, DraI, and BsaHI) with Primer Premier v6.24. The protocols used for PCR amplification, mixing and enzyme digestion were previously described. SNP sites that could not be converted into CAPS markers were designated as Kompetitive Allele-Specific PCR (KASP) markers and genotyped at the Vegetable Research Center of the Beijing Academy of Agricultural and Forestry Sciences. Individuals with recessive traits in the F₂ population planted in 2019 were selected and genotyped for initial mapping.

Fine mapping and candidate gene sequence analysis

A total of 1003 F₂ individuals were sown in a greenhouse in the spring of 2020, and the two flanking markers in the initial mapping region were used for recombinant selection. All recombinants were transplanted to the greenhouse at the Xiangyang Experimental Agricultural Station of Northeast Agricultural University, Harbin, China, and self-pollinated to obtain F₂:3 families. The flesh colors of mature fruits were recorded, photographed, and genotyped using new markers developed from initial mapping segment to detect recombinant events to narrow the target region. The F₂:3 seeds of recombinants with dominant traits were planted, with 30 plants in each family, in the autumn of 2020. The genotypes of recombinants with dominant traits were confirmed according to flesh color segregation in the F₂:3 families. Recombinants from the initial mapping panel were also selected to facilitate fine mapping.

Candidate gene annotation in the fine-mapping region was performed with the reference genome (97103 v2). A coding sequence comparison was first performed with the resequencing data, and the results were further confirmed with the sequences from the gene cloning results to detect nonsynonymous SNPs and gene structure variations between COS and PI 192938. To examine the allele diversity of ClPsy1 among natural watermelon populations, resequencing data from 24 watermelon accessions (5 varieties re-sequenced in our previous study and 19 varieties with resequencing data acquired from Guo et al. 2013) were used to extract the sequences of ClPsy1 for comparison.
RNA-seq

Flesh samples of COS and PI 192938 were collected from the center areas of four parental fruits at 10, 18, 26, 34, and 42 days after pollination (DAP). The flesh tissues were immediately frozen in liquid nitrogen and stored at −80 °C for RNA extraction. Three out of five watermelon fruits with similar growth conditions were collected per sample. Flesh samples including three replicates at each stage were sent to Biomarker Technologies for RNA-seq with an Illumina HiSeq 2000 system. RNA-seq library construction and data analysis were performed according to the protocols described by Zhong et al. (2011) and Guo et al. (2013). Bowtie and Trapnell Langmead et al. (2009a, b) software was used for the identification of fragment mismatches and read alignment to the watermelon genome (Guo et al. 2013). The number of reads mapped to each watermelon gene model was obtained and then standardized to the number of reads per kilobase of transcript per million mapped reads (RPKM). The RNA-seq data of COS were sent to the NCBI database with the SRA number PRJNA587316, and the SRA number of the PI 192938 flesh RNA-seq data was PRJNA733842. Flesh tissue samples were collected from COS and PI 192938 at the same time.

Gene expression analysis

The RNA Simple Total RNA Kit (Tiangen, China) and ReverTra Ace qPCR RT Kit (TOYOBO, Osaka, Japan) were used for total RNA extraction and cDNA synthesis, respectively. Specific primers for candidate genes (Cla97C01G008760 and Cla97C01G008770), transcription factors (TFs; Cla97C10G196920, Cla97C02G046390 and Cla97C06G112130) and carotenoid metabolic pathway genes: CIZDS (Cla97C06G118930), CINCEDE7 (Cla97C07G132720), CICRTISO (Cla97C10G200950), CICHYB (Cla97C05G090480), CILCYB (Cla97C04G070940), CIPDS (Cla97C07G142100), CINCEDE1 (Cla97C01G024630), and CICHXE (Cla97C01G002480) were designed for gene expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR) (Table S1). SYBR Green Master Mix (Novogene, Beijing) was used to perform qRT-PCRs in the QTOOLER Real-Time PCR System (Analytik Jena, Germany) according to the manufacturer’s instructions. qRT-PCR amplification and mixing were performed as previously described. Each experiment was performed with three biological repetitions and three technical repetitions, and relative gene expression levels were determined using the 2ΔΔCT method (Bustin et al. 2009).

Promoter region cloning and candidate transcription factor prediction

The promoter region of CIPsy1 was cloned with genomic DNA from five watermelon accessions with different flesh colors, namely, COS, PI 192938, LSW-177 (red flesh), PI 635,597 (canary yellow flesh) and PI 186,490 (white flesh), using the primers listed in Table S1. Cis-elements in each promoter were predicted using PlantCare online software (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), and the five promoter sequences were compared to detect variations. SNPs or structural alterations located in cis-elements were selected as important loci. Re-sequencing data of 24 other watermelon accessions were also used to extract the sequences of the CIPsy1 promoter and thus detect the variation diversity. The RNA-seq data of COS and PI 192938 flesh tissues were used to preliminarily view the expression patterns of TFs that may bind with cis-elements located in the variation region. TFs exhibiting expression patterns similar to that of CIPsy1 between COS and PI 192938 were regarded as important factors for further verification.

Statistical analysis

Genetic analyses and evaluations of differences in gene expression were performed using SPSS v.21.0 software (SPSS Inc., Chicago, IL, USA). Prism 7.0 software was used (GraphPad Inc., La Jolla, CA, USA) for illustration preparation.

Results

The gf trait in watermelon is controlled by a simply inherited gene

The carotenoid composition and content in the mature flesh of COS and PI 192938 were analyzed by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in our previous study (Fang et al. 2020). β-Carotene and violaxanthin appeared to be the two pigments with major differences in content between the two parental materials, and the contents in PI 192938 (16.133 ± 0.952 μg/g) were approximately 53.2-fold higher than those in COS (0.033 ± 0.004 μg/g). Based on the flesh color associated with the two pigments, we speculated that the high accumulation of β-carotene in PI 192,938 may be the main reason for the gf trait (Fig. 1a). F2 individuals were also divided into gf and non-gf groups (pale yellow, canary yellow, and
gf mixed with canary yellow, Fig. 1c–e). According to these classification criteria, the COS × PI 192938-F2 population in 2018 (84 individuals in total) consisted of 17 gf and 67 non-gf plants and exhibited a 1:3 genetic ratio ($\chi^2 = 1.016$, $p = 0.313$), whereas in 2019, the 279 F2 individuals consisted of 74 gf and 205 non-gf plants, which was also consistent with the 1:3 genetic ratio ($\chi^2 = 0.345$, $p = 0.557$). In the backcross population generated from F1 and COS, none of the individuals exhibited the gf color. In the backcross population derived from F1 and PI 192938, 39 plants had the gf color, and 45 plants had a non-gf color, which corresponded to a ratio of 1:1 ($\chi^2 = 0.429$, $p = 0.513$, Table 1). Based on the above results, we concluded that the gf trait in watermelon flesh is controlled by a simply inherited gene and that pale-yellow flesh is dominant over the gf color.

BSA-seq and recombinant deletion of the gf locus in a 39-Kb region identified ClPsy1 as a candidate gene

After filtering low-quality and short reads, 125,549,810 and 60,739,330 clean read pairs with approximately 10.01 (28.76 × depth coverage) and 8.56 (22.87 × depth coverage) Gbp clean bases were obtained for COS and PI 192938, respectively, and the Q30 values were above 89.89%. In total, 86.50% and 92.48% of clean reads from COS and PI 192938, respectively, were successfully mapped to the reference genome, and 68,585,634 and 68,541,696 clean read pairs were generated from the gf pool (25.7 × depth coverage and 92.35% properly mapped ratio) and pale-yellow-flesh pool (25.88 × depth coverage and 93.16% properly mapped ratio), respectively, using the Illumina high-throughput sequencing platform. In total, 366,358 and 374,417 SNPs were identified between the reference genome and the two gene pools, respectively. The SNP index for each identified

Table 1 Segregation of golden flesh color in six generations from COS × PI 192938 cross over 2 years

Populations	Plants	Orange	Non-orange	Expected segregation ratio	P value of chi-square tests
PI 192938	15	15	0	N/A	N/A
COS	15	0	15	N/A	N/A
F1	15	0	15	N/A	N/A
2018 F2	84	17	67	1:3	0.313
2019 F2	279	74	205	1:3	0.557
2019 BC1P1	37	0	37	0:1	0.513
2019 BC1P2	84	39	45	1:1	0.563

N/A not applicable
SNP was calculated, and the average SNP index was computed at a 1-Mb interval using a 10-Kb sliding window. By combining the SNP index information from the gf-color pool and pale-yellow-flesh pool, the ΔSNP index was calculated and plotted against the genome positions. According to the ΔSNP index value, an obvious signal related to gf color was detected on chromosome 1, spanning approximately 2.99 Mb (from 8,912,000 to 11,900,000 bp, Fig. 2a).

A total of 30 CAPS and two KASP markers evenly distributed in BSA-seq chromosome segments were developed based on parental line resequencing data, and 10 markers (eight CAPS markers and two KASP markers) were used for initial mapping after polymorphism detection among COS, PI 192938 and their F1 generation. Individuals from 2019 with a recessive phenotype (gf trait) were selected for genotyping with the 10 polymorphic markers. The candidate region was narrowed to a physical distance of 290.214 Kb (from 9,272,322 to 9,562,536 bp) using 11 recessive-trait plants (including nine recombinants) between the CAPS markers Chr01_9272322 and Chr01_9562536 with one and two recombinants (Fig. 2b). To further precisely narrow the initial mapping region, a larger COS × PI 192938-F2 segregated population including 1003 individuals was subjected to genotyping of the primary flanking markers Chr01_9242322 and Chr01_9562536 in the spring of 2020. A total of 20 recombinants were selected for further fine mapping of the gf gene. Another nine polymorphic markers were developed to genotype the 20 recombinants. The target-trait genotype of the dormant recombinants was confirmed based on phenotypic segregation in their F3 families. Finally, the gf locus was delimited between the CAPS markers Chr01_9440282 and Chr01_9479366 (physical distance of approximately 39.08 Kb) with four and sixteen recombinants, respectively (Fig. 2c).

According to the watermelon reference genome, the 39.08-Kb region contained only two annotated candidate genes, Cla97C01G008760 and Cla97C01G008770. Cla97C01G008760 encodes a phytoene synthase protein (ClPsy1), and Cla97C01G008770 was annotated as a GATA zinc finger domain-containing protein. To identify the candidate gene for the gf locus, we first analyzed the genomic variations in the two candidate genes between the parental lines using re-sequencing data. The results identified no polymorphic sites in Cla97C01G008760, whereas one nonsynonymous SNP mutation, SNP9,448,870 (A → G, located in the first exon at the 9,448,870th bp position), was detected in the coding region of Cla97C01G008760 between COS and PI 192938. In COS, base A encodes glutamic acid (Glu), whereas in PI 192938, this base is mutated to G, resulting in an amino acid change from Glu to lysine (Lys). To further confirm the sequence variation, we cloned the coding regions of the two candidate genes in COS and PI 192,938, and this SNP mutation between the two parental lines was still found. We further developed this nonsynonymous SNP into the KASP marker Chr01_9448870 and genotyped F2 individuals from 2018 to 2019. According to the results, ClPsy1A/A exhibited the gf color, whereas ClPsy1G/A/G showed a non-gf color, which indicated that Chr01_9448870 co-segregated with the phenotype in all examined plants (Fig. 3a).

Although no variation in the Cla97C01G008770 gene sequence was found between COS and PI 192938, we found some polymorphic sites in the promoter region. To further confirm this hypothesis, we analyzed the gene expression patterns of the two candidate genes in COS and PI 192938 flesh tissues collected at different stages of flesh color formation. The results showed that the two parental lines exhibited similar expression trends across the five developmental stages (10, 18, 26, 34, and 42 DAP), and no significant difference in Cla97C01G008770 was found (Fig. 3b). For Cla97C01G008760 (ClPsy1), the two parental lines also showed similar expression patterns (the expression level was upregulated gradually during flesh maturation), but at 26 DAP, the allele of ClPsy1 in PI 192938 exhibited significantly higher expression than that in COS, and this observed increase continued until 42 DAP (mature stage, Fig. 3c). Our previous research also showed that 26 DAP may be an important developmental stage in flesh color formation (Fang et al. 2020). At this stage, the colored COS and PI 192938 watermelon flesh started to abundantly accumulate carotenoids. Hence, we hypothesized that ClPsy1 is the most likely candidate gene for the gf locus and is responsible for high β-carotene accumulation in watermelon.

Nucleotide variation in the ClPsy1 gene structure among natural watermelon accessions

To examine the allelic diversity of the ClPsy1 gene in natural watermelon groups, we examined the nucleotide variation of the ClPsy1 locus in 26 re-sequenced accessions with different flesh colors (red, orange, canary yellow, pale yellow, light green and white), including 18 C. lanatus, four C. mucosospermus and four C. amarus accessions (Fig. 4). SNP9,448,870 was still present, but this mutation was not correlated with flesh color among the different watermelon accessions and exhibited no obvious difference between the cultivated and wild-type watermelon groups. These results indicated that this site may not affect carotenoid accumulation. In addition to SNP9,448,870, another nonsynonymous SNP mutation, SNP9,448,438 (C → T, located in the first exon at the 9,448,438th bp position), was also detected. Interestingly, SNP9,448,438 existed only in the C. amarus group, resulting in an amino acid substitution from proline (Pro in
Fig. 2 BSA-seq analysis and fine mapping of the golden flesh color trait.

a BSA-seq results and chromosome region related to the golden flesh color trait.
b Initial mapping of the golden flesh color trait.
c Fine mapping of the golden flesh color trait and candidate genes in the fine-mapping region.
Fig. 3 Genotyping of individuals in the F2 generation and expression patterns of two candidate genes in COS and PI 192938. Genotyping results of the SNP at the 9,448,870th bp in the F2 generation. Gene expression patterns of the two parental materials at different flesh color formation stages.

Fig. 4 Nucleotide variation in the ClPsy1 gene structure among natural watermelon accessions. a Gene structure of ClPsy1. b Nucleotide variations and amino acid substitutions in the ClPsy1 gene among 26 watermelon accessions.
the *C. lanatus* and *C. mucosospermus* groups) to serine (Ser in the *C. amarus* group).

To analyze the reason for the low *ClPsy1* expression in COS, we cloned the 1996-bp promoter sequences from four cultivated watermelon varieties: COS, PI 192938, LSW-177 (red flesh) and PI 635,597 (canary yellow). The promoter sequences of 14 other cultivated watermelon accessions were extracted from genome re-sequencing data. Interestingly, a total of six SNPs (SNP342, SNP598, SNP898, SNP1257, SNP1634, and SNP1694) were detected in the COS promoter region compared with the other 17 watermelon accessions, which exhibited consistent promoter sequences. SNP598 and SNP1257 were located at the MYC- and MYB-binding sites, respectively, whereas the other four SNPs were not located in the sequences of any cis-acting elements (Fig. 5a).

Two CIMYBs may be important transcription factors regulating the expression level of *ClPsy1*

We then used the RNA-seq data of COS and PI 192938 flesh tissues (collected at 18, 26 and 42 DAP, data not shown in this manuscript) to obtain an overview of the expression patterns of all MYB and MYC TFs. A total of 65 MYB TFs with read per kilobase per million mapped reads (RPKM) values were detected, and only two MYB TFs (*Cla97C10G196920* and *Cla97C02G046390*) exhibited expression tendencies similar to that of *ClPsy1* in COS and PI 192938. An obvious significant difference in expression began at 26 DAP in PI 192938 compared with COS and continued at 42 DAP (mature stage). For all 22 MYC TFs, *Cla97C06G112130* (annotated as a MYC2 transcription factor) only showed an obvious significant difference in expression between COS and PI 192938 at 26 DAP. We further examined the expression levels of *Cla97C10G196920*, *Cla97C02G046390*, and *Cla97C06G112130* in COS and PI 192938 flesh tissues collected at five developmental stages by qRT-PCR to verify the expression patterns. The two MYBs showed the same tendency as the RNA-seq data. The MYC2 (*Cla97C06G112130*) exhibited obvious significant difference in expression at 26 and 34 DAP (Fig. 5b–d). LSW-177 was a red flesh-colored watermelon accession with the same gene-sequence and promoter-region genotype as PI 192938 in *ClPsy1*. The RNA-seq data between COS and LSW-177 (red flesh) flesh tissues (BioProject number PRJNA338036) were also used to analyze the expression levels of *Cla97C10G196920*, *Cla97C02G046390*, and *Cla97C06G112130*. The results showed that the three TFs also presented higher expression levels in LSW-177 than in COS (Fig. 6a–c). In watermelon fruit rinds, the expression levels of the three TFs were also clearly lower than those in the flesh of reference genome 97103 (red flesh), which indicated that these TFs may be expressed in tissues with high carotenoid accumulation according to the RNA-seq data of SRP012849 (Fig. 6d–f).
The conserved domains of Cla97C10G196920 (148 aa) and Cla97C02G046390 (110 aa) were extracted and compared to the Arabidopsis Information Resource (TAIR). The results showed that AtMYB21/AtMYB3, AtMYB24, AtMYB57, AtMYB59, and AtMYB48 were the first three (or two) homologs. Cla97C06G112130 has two conserved domains: the N terminus of the bHLH-MYC and R2R3-MYB TFs and the N terminus of a family of MYB and MYC transcription factors (156 aa). The other superfamily is the bHLH domain superfamily (70 aa), and AtMYC2 exhibited the highest homology. We speculated that the two ClMYB may be two important TFs regulating ClPsy1 expression due to variations in promoter-region binding sites between COS and PI 192938. Although MYB and MYC TFs have many functions, they have not been reported to play a role in flesh color formation in watermelon.

Gene expression and genotype variations in carotenoid pathway genes between COS and PI 192938 provide insight into gf trait formation in watermelon flesh

We examined the transcript abundances of ClPDS, ClZDS, ClCRTISO, ClLCYB, ClCHYB, and ClNCED7 in COS and PI 192938 flesh tissues collected at five developmental stages (10, 18, 26, 34, and 42 DAP) by qRT-PCR (Fig. 7a–f). ClPDS, ClZDS, and ClCRTISO exhibited the same expression trend between the two parental lines as ClPsy1. The transcript abundance of PI 192938 was always higher than that of COS throughout all developmental stages, particularly at 26 DAP. It has been reported that CILCYB regulates lycopene accumulation at the protein level (Zhang et al. 2020), and COS and PI 192938 have the same single-nucleotide mutation as red-fleshed watermelon accessions. The mutation of G^{G76th} to T^{G76th} altered the two hundred and twenty-sixth amino acid from valine (Val) to phenylalanine (Phe), whereas the mutation of G^{1305th} to C^{1305th} altered the 435th amino acid from lysine (Lys) to asparagine (Asp). This finding indicated that the ClLCYB protein may have the same function in COS and PI 192938. The lycopene content in the mature flesh of the two parental lines was quite low compared with that in a red-fleshed variety identified in our previous study (Fang et al. 2020). The expression level of CINCED-7 in both parental lines showed an increasing trend over time after pollination, and COS presented a significantly higher expression level than PI 192938, except at 26 DAP.
Sequence variations in genes encoding enzymes in each step of the carotenoid pathway were also analyzed between COS and PI 192938 using resequencing data. Three SNPs were found in the coding region of *ClZDS* in PI 192938 compared with that in COS, and two of these SNPs led to amino acid substitutions. Mutation of the one hundred and sixty-first base (G→A) resulted in a change of the fifty-fourth amino acid from serine (Ser) to asparagine (Asp), and mutation of the four hundred and eightieth amino acid (G→T) resulted in a change of the one hundred and sixtieth amino acid from lysine (Lys) to asparagine (Asp). Only one nonsynonymous residue was detected in *ClCRTISO*, in which mutation of the five hundred and twenty-sixth base (T→C) changed the one hundred and seventy-sixth amino acid from tyrosine (Tyr) to histidine (His). No variations were detected in the coding region of *ClPDS* or *ClNCED-7*.

According to the above results, we speculated the cause of the high β-carotene content shown in Fig. 8. High expression of *ClPsy1* in PI 192938 contributed to increased phytoene accumulation, and the abundance of phytoene may upregulate the expression of *ClPDS*, *ClZDS*, and *ClCRTISO* at each step of the carotenoid metabolism pathway to the result in the synthesis of higher amounts of zeta-carotene and tetra-cis-lycopene in PI 192938. Tetra-cis-lycopene could be isomerized by *ClCRTISO* to generate lycopene, which is the carotenoid upstream of β-carotene. The same genotype of the ClLCYB protein may have a similar cyclization effect in PI 192938 and COS, and nearly all lycopene can be cyclized into β-carotene. High expression of *ClCHYB* increased violaxanthin accumulation, whereas low expression of *CINCED-7* may prevent β-carotene metabolism in PI 192938. These factors may be the main reasons for the high...
accumulation of violaxanthin and \(\beta\)-carotene in PI 192938 and, thereby, its orange flesh color.

Discussion

Various patterns of \(CIPsy1\) regulation may exist among different watermelon accessions

The first committed and rate-controlling step is mediated by the phytoene synthase (Psy) protein, which catalyzes the conversion of two molecules of GGPP to phytoene (colorless) to produce the first carotenoid (Welsch et al. 2010; Giuliano et al. 2017). As an important gene in the carotenoid metabolic pathway, \(PsyI\) has been reported to function in color formation in carrot (Maass et al. 2009; Massimo et al. 2016; Iorizzo et al. 2016), banana (Paul et al. 2017), citrus (Lu et al. 2018), tomato (Xiong et al. 2019), and pepper (Jeong et al. 2019) plants. Compared with white and bitter wild-type watermelon, modern cultivated watermelon (\(C. lanatus\)) exhibits various flesh colors. \(CIPsy1\), which is located in a selective chromosome segment, may play an important role in watermelon flesh color formation during the domestication process (Guo et al. 2019). In this study, sequence variations in both coding and promoter regions were analyzed in 26 watermelon accessions belonging to three subspecies with different flesh colors. No representative mutations were found between the \(C. mucosospermus\) and \(C. lanatus\) groups. However, multiple variations were detected in the \(C. amarus\) group compared with the \(C. mucosospermus\) and \(C. lanatus\) groups. A low gene expression level of \(CIPsy1\) was also found in \(C. amarus\) (such as PI 296,341-FR, Guo et al. 2015). SNP9,448,438 was detected only in the \(C. amarus\) group, but whether this SNP mutation affects \(CIPsy1\) function needs further verification. Based on published RNA-seq data and previous research, white-fleshed \(C. mucosospermus\) (such as PI 186,490, Fang et al. 2020 and Wang et al. 2021) showed a significantly lower expression level than colored cultivated watermelon varieties, although the former presented the same genotype in coding and promoter regions as the colored accessions. This feature may be regulated by TFs or epigenetic factors, but further research is needed. Compared with other watermelon accessions, two SNP mutations in \(cis\)-acting element sites were found only in COS. Further qRT-PCR results implied that these two SNP mutations may be the main reason for the low \(CIPsy1\) expression level in COS.

Enzyme activity is also an important factor affecting \(CIPsy1\) gene function in carotenoid accumulation. The reduction in total carotenoids was consistent with the requirement of galactolipids for PSY protein activity in etiolated seedlings of Arabidopsis mutants (Fuji et al. 2018). In loquat (Eriobotrya japonica Lindl.), the mutant EJPSY2Ad lacking the C-terminal region (694-bp segment) in the fifth exon, thus exhibiting no corresponding catalytic activity, showed the absence of carotenoids and an inability to form white flesh (Fu et al. 2014). The aspartic acid-rich region (DXXXD) is an important functional domain of the PSY protein (Zhai et al. 2016). We also compared mutation locations among watermelon accessions with different flesh colors, but no SNPs were located in this domain region. Among the varieties belonging to the \(C. mucosospermus\) and \(C. lanatus\) groups, SNP9,448,879 was also uncorrelated with flesh color in the natural watermelon panel. These two lines of evidence may imply that the function of \(CIPsy1\) in flesh color formation is dependent on expression rather than differences in enzymatic activity. These results showed that the expression pattern of \(CIPsy1\) was regulated in different ways in different watermelon subspecies.

Regulatory factors in carotenoid accumulation and flesh color formation

The function of \(Psy\) is affected by many regulatory factors at both the transcriptional and protein translation levels. In tomato, ripening inhibitors (RINs) have been shown to regulate fruit carotenoid concentrations through their
interaction with the SIPsy1 promoter (Martel et al. 2011). B-box zinc-finger transcription factor (SIBBX20) can activate the expression of SIPsy1 by directly binding to a G-box motif in its promoter, leading to dark-green fruits and leaves and higher levels of carotenoids (Xiong et al. 2019). A transcriptomic analysis of AdMYB7-infiltrated N. benthamiana leaves showed up-regulation of NbPSY (Ampomah-Dwamena et al. 2019). Overexpression of CsMADS6 in citrus calli can increase the carotenoid content by directly binding to the CsPSY, CsPDS and CsCCD1 promoters (Lu et al. 2018). Two CIMYB TFs exhibited expression trends similar to that of CIPsy1 in COS and PI 192938 and were thus hypothesized to be regulatory factors of CIPsy1. Compared with the Arabidopsis genome, AtMYB21/AtMYB3, AtMYB24, AtMYB57, AtMYB48, and AtMYB59 showed high identity in conserved domains with the two CIMYBs (Cla97C10G196920 and Cla97C02G046390). With the exception of the two mutation sites, some other MYB binding sites were located in the promoter regions of COS and PI 192938, which could partly explain why obvious expression levels of Cla97C10G196920 and Cla97C02G046390 in COS could be detected at 26 DAP, even though the binding sites participated in the variation.

The MYB TF family is very large and functionally diverse in plants. MYB members have been reported to participate in carotenoid metabolism. Chili pepper fruits synthesize and accumulate carotenoid pigments, which are responsible for yellow, orange, and red fruit colors. CaCCS (capsanthin-capsorubin synthase), CaBCH (β-carotene hydroxylase), and CaPSY were clustered with six MYB-related genes (CaDIV1, CaDIV3, CaMYBR13, CaTRF2, CaMYBC1, and CaPHR9) and an atypical MYB (CaMYB5R) based on co-expression analysis (Arce-Rodriguez et al. 2021). The R2R3-MYB transcription factor CrMYB68 directly regulates the α- and β-branches in the carotenoid pathway in Citrus reticulata. Reduced expression of CrBCH2 and CrNCED5 is responsible for a delay in α- and β-carotene synthesis. The expression of these genes is negatively correlated with the expression of CrMYB68 in green fruits (Zhu et al. 2017). A co-expression network and transient expression analysis suggested a potential direct link between flavonoid and carotenoid biosynthesis pathway genes (PSY, ZDS and CYP97C) through MYB TF regulation in Primula vulgaris (Li et al. 2020a). SIMYB72 directly binds to the SIPSY, SIZISO, and SILCYB genes and regulates carotenoid biosynthesis in tomato. Down-regulation of SIMYB72 decreases the lycopene content and promotes β-carotene production and chromoplast development (Wu et al. 2020). CpMYB1 (MYB44-like) and CpMYB2 are transcriptional repressors that can bind to the CpPDS2, CpPDS4, and CpCHY-b promoters and suppress the activities of these genes in papaya (Fu et al. 2020).

In Medicago truncatula, an R2R3-MYB protein (WHITE PETAL1, WP1) functions as a transcriptional activator that modulates floral carotenoid pigmentation by directly regulating the expression of multiple carotenoid biosynthesis-related genes (Meng et al. 2019). Silencing of strigolactone (SL, carotenoid-derived phytohormone) biosynthesis-related genes results in up-regulation of MYC2 (Xu et al. 2019). To date, flesh color regulation by MYB or MYC2 TFs in watermelon has not been studied. The binding effect and regulatory mechanism of Cla97C10G196920 and Cla97C02G046390 need further verification and research.

The Or gene (encoding a plastid-targeted protein containing a cysteine-rich zinc finger domain) is another important gene for golden trait formation. In melon (Tzuri et al. 2015) and cauliflower (Li et al. 2001), the Or gene reportedly regulates β-carotene accumulation according to forward genetic research. CmOr exerts only a slight effect on CmPsy1 expression but strongly affects CmPsy1 protein levels and enzymatic activity in melon (Chayut et al. 2017). In Arabidopsis and sweet potato, the PSY protein is affected by OR/OR-like proteins (Zhou et al. 2015; Park et al. 2016). The AtOR protein enhances AtPSY protein stability and increases the enzymatically active proportion of AtPSY in Atclpc1 in Arabidopsis (Welsch et al. 2018).

Molecular breeding suggestions for golden-fleshed watermelon

This study provides the first report of the gf gene in watermelon. Although the Psy gene reportedly functions in gf trait formation in some plants, genetic evidence remains lacking. According to the results, abundant CIPsy1 transcripts may lead to a rich β-carotene content in PI 192938. Red-colored flesh always has a higher CIPsy1 expression level than flesh with other colors (Wang et al. 2016), beginning at the color-turning stage and ending at the mature stage. Interestingly, the CIPsy1 content in the red-fleshed watermelon accession LSW-177 was higher than that in PI 192938 (Fang et al. 2020), but the β-carotene content in LSW-177 flesh was significantly lower than that in mature PI 192938 flesh (2.605 ± 0.375 vs. 16.133 ± 0.952 μg/g), whereas the lycopene content in LSW-177 was significantly higher than that in PI 192938 (1.523 ± 0.199 vs. 25.950 ± 0.390 μg/g). This finding indicated that high CIPsy1 expression was not the only reason for β-carotene accumulation. The upstream gene of β-carotene is CILCYB, which encodes a cyclase that can catalyze the conversion from lycopene to β-carotene. Down-regulation of CILCYB protein causes lycopene accumulation, whereas overexpression of CILCYB protein in the red-fleshed line causes the flesh color to become orange (β-carotene) (Zhang et al. 2020). Among watermelon accessions, two nonsynonymous SNP sites generate three
haplotypes (\textit{CILCYB}^{\text{red}}, \textit{CILCYB}^{\text{white}}, and \textit{CILCYB}^{\text{yellow}}). COS and PI 192938 contained the same haplotype of \textit{CILCYB}^{\text{yellow}}, which indicated that the CILCYB protein had the same function in the two lines. In PI 192938, nearly all lycopene was cyclized into \(\beta\)-carotene to form gold flesh. This finding may indicate that \textit{CILCYB} is also an important gene for \(\beta\)-carotene accumulation and partly explains the accumulation of \(\beta\)-carotene observed in LSW-177, COS and PI 192938.

In tomato, the accumulation of \textit{tetracis-lycopene} (the upstream carotenoid of lycopene) can also lead to the formation of orange flesh by \textit{SICRTISO} (Jayaraj et al. 2021; Dahan-Meir et al. 2018). In watermelon, the genotype of \textit{CICRTISO} also co-segregates with an orange flesh color (Jin et al. 2019). Visual observation alone does not allow differentiation of the two types of carotenoids. Although they have the same color, \textit{tetracis-lycopene} is not converted into the precursor of vitamin A without \(\beta\)-cyclization. The golden trait considers not only the flesh color but also the physiological function of carotenoids. For the \(gf\) trait, the MAS process depends only on the expression level and genotype of \textit{ClPsy1}, and visual observation is not sufficient or accurate. The genotypes of \textit{ClPsy1}, \textit{CICRTISO} and \textit{CILCYB} should also be considered to confirm the carotenoid composition.

“Push” and “block” are the two main strategies for \(gf\) trait molecular breeding and bio-fortification (Watkins et al. 2020). The “push” strategy involves enhancing the metabolic flux of carotenoids synthesized upstream of \(\beta\)-carotene and is regarded as the most effective method. Overexpression of \textit{Psy} or 1-deoxy-D-xylulose-5-phosphate synthase (DXS) increases the total synthesized amounts of carotenoids or \(\beta\)-carotene, with cassava (Welsch et al. 2010), rice (Bai et al. 2016), wheat (Wang et al. 2014), potato (Mortimer et al. 2016), and banana (Paul et al. 2017) showing up to 100–1000-fold higher contents of total carotenoids. Silencing the expression of genes downstream of \(\beta\)-carotene to prevent the degradation of target products is another strategy for regulating the \(gf\) trait, and this method is called “block”. In potato, the inhibition of zeaxanthin epoxidase (\textit{ZEP}), lycopene epsilon-cyclase (\textit{LCYE}), and carotene hydroxylase (\textit{CHY}) led to approximately tenfold increases in zeaxanthin and \(\beta\)-carotene contents (Pons et al. 2014). “Push” and “Block” have always been used together to obtain better results; for example, overexpression of \textit{CrtB} (a homologous gene of \textit{Psy} in bacteria) accompanied by silencing of \textit{CHY} produced a large amount of \(\beta\)-carotene in the endosperm of wheat (Zeng et al. 2015). Significantly high accumulation of zeaxanthin could be induced by overexpression of \textit{Psy1} and silencing of \textit{LCYE} in the maize endosperm (Farre et al. 2016).

Acknowledgements This work was supported by funding from the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [Grant# UNPYSCT-201816]; the China Agriculture Research System [Grant No. CARS-25].

Author contribution statement SL designed the experiment, analyzed the data and wrote the manuscript. ZG performed the major experiments, with the help of SL. XW and FL revised the manuscript. ZD, ZY, and QZ provided some of the materials used in this study and participated in phenotypic data collection. SL and ZG contributed equally to this work. XW and SL are the co-corresponding authors.

Data availability All data pertinent to the reported work are provided in the manuscript or supplemental online materials.

Declarations

Conflict of interest The authors declare that there are no conflicts of interest.

References

Ampomah-Dwamena C, Thrimwithanna AH, Dejnoprat S, Lewis D, Espley RV, Allan AC (2019) A kiwi fruit (\textit{Actinidia deliciosa}) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytol 221(1):309–325

Arce-Rodriguez ML, Martinez O, Ochoa-Alejo N (2021) Genome-wide identification and analysis of the MYB transcription factor gene family in chili pepper (\textit{Capsicum spp.}). Int J Mol Sci 22(5):2229

Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P et al (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor product balance. Plant Biotechnol J 14(1):195–205

Bang H, Davis AR, Kim S, Leskovar DJ, King S (2010) Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc for Hortic Sci 135:362–368

Berman J, Zorrilla-López U, Medina V, Farre G, Sandmann G, Capell T et al (2017) The Arabidopsis \textit{ORANGE} (\textit{ATOR}) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools. Plant Cell Rep 36:933–945

Branham S, Vexler L, Meir A, Tzuri G, Friedman Z, Levi A et al (2017) Genetic mapping of a major codominant QTL associated with \(\beta\)-carotene accumulation in watermelon. Mol Breed 37:146

Bustin SA, Vandesompele J, Pfaffl MW (2009) Standardization of qPCR and RT-qPCR. Genet Eng Biotechnol N 29(14):40–43

Chayut N, Yuan H, Ohali S, Meir A, Sa’ar U, Tzuri G et al (2017) Distinct mechanisms of the orange protein in controlling carotenoid flux. Plant Physiol 173:376–389

Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A et al (2018) Efficient in planta gene targeting in tomato using geminivirus replicons and the CRISPR/Cas9 system. Plant J 95(1):5–16

Fang XF, Liu S, Gao P, Liu HY, Wang ZX, Luan FS et al (2020) (2020) Expression of \textit{CIPAP} and \textit{CIPSYL} in watermelon correlates with chloroplast differentiation, carotenoid accumulation, and flesh color formation. Sci Hortic 270:109437

Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G et al (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998

Farre G, Perez-Fons L, Decourcelle M, Breitenbach J, Hem S, Zhu CF et al (2016) Metabolic engineering of astaxanthin biosynthesis...
in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res 25:477–489

Fu CC, Chen HJ, Gao HY, Lu Y, Han C, Han YC (2020) Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis. J Sci Food Agr 100(12):4442–4448

Fu XM, Feng C, Wang CY, Yin XR, Lu PJ, Grierson D et al (2014) Involvement of multiple phytoene synthase genes in tissue and cultivar specific accumulation of carotenoids in loquat. J Exp Bot 65:4679–4689.

Fuji S, Kobayashi K, Nagata N, Masuda T, Wada H (2018) Digenalac-8-one is involved in carotenoid metabolism in fruits of wild and cultivated watermelon. Plant Physiol 177:1487–1497

Giuliano G (2017) Provitamin A biofortification of crop plants: a gold rush with many miners. Curr Opin Biotech 44:169–180

Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

Guo SG, Sun HH, Zhang HY, Liu JA, Ren Y, Gong GY et al (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10(6):e0130267

Li L, Ye J, Li HH, Shi QQ (2020a) Characterization of metabolites and transcripts involved in flower pigmentation in Primula vulgaris. Front Plant Sci 11:572517

Li N, Shang J, Wang JM, Zhou D, Li NN, Ma SW et al (2020b) Discovery of the genomic region and candidate genes of the scarlet red flesh color (Yscr) locus in watermelon (Citrullus lanatus L.). Front Plant Sci 11:116

Lv P, Li N, Liu H, Gu HH, Zhao WE (2015) Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Food Chem 174:52–59

Maass D, Arango A, Wust F, Beyer P, Welsch R et al (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4(7):e6373

Metcalf C, Vrebavlov J, Taufelmeyer P, Giovanni J (2011) The tomato MADS box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner. Plant Physiol 157:1568–1579

Meng YY, Wang ZY, Wang YQ, Wang CN, Zhu BT, Liu H et al (2019) The MYB activator WHITE PETAL1 associates with MtFT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell 31(11):2751–2767

Moritmer CL, Misawa N, Dureux L, Campbell B, Bramley PM, Taylor M et al (2016) Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Plant Biotechnol J 14(1):140–152

Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z et al (2016) Orange protein has a role in phytoene synthase stabilization in sweetpota. Sci Rep-UK 6:33563

Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniels J et al (2017) Golden bananas in the field: elevated fruit pro-vitamin a from the expression of a single banana tran. Plant Biotechnol J 15(4):520–532

Pei S, Liu Z, Wang XZ, Luan FS, Dai ZY, Yang ZZ et al (2021) Quantitative trait loci and candidate genes responsible for pale green flesh color in watermelon (Citrullus lanatus). Plant Breed 140(2):349–359

Peng G, Wang CY, Song S, Fu XM, Azam M, Grierson D et al (2013) The role of 1-deoxy-D-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol Biochem 71:67–76

Pons E, Aquezar B, Rodriguez A, Martorell P, Genoves S, Ramon D et al (2014) Metabolic engineering of beta-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12:17–27

Porter D (1937) Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10:489–509

Rodriguez-Concepcion M, Avalos J, Bonet M (2018) A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plant-tid localization of the key carotenoid enzyme phytoene synthase is altered by izosyme, allelic variation, and activity. Plant Cell 24:3725–3741

Sun TH, Yuan H, Cao HB, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74
Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):e5

Tzuri G, Zhou XJ, Chayut N, Yuan H, Portnoy V, Meir A et al (2015) A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279

Wang C, Zeng J, Li Y, Hu W, Chen L, Miao YJ et al (2014) Enrichment of provitamin a content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556

Wang CN, Luan FS, Liu HY, Davis AR, Zhang QA, Dai ZY et al (2021) Mapping and predicting a candidate gene for flesh color in watermelon. J Integr Agr. https://doi.org/10.1016/S2095-3119(20)63487-6

Wang CN, Qiao AH, Fang XF, Sun L, Gao P, Angela AR et al (2019) Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon (Citrus lanatus). Front Plant Sci 10:1240

Wang N, Liu S, Gao P, Luan FS, Davis AR (2016) Developmental changes in gene expression drive accumulation of lycopene and beta-carotene in watermelon. J Am Soc Horti Sci 141:1–10

Watkins JL, Pogson BJ (2020) Prospects for carotenoid biofortification targeting retention and catabolism. Trends in Plant Sci 25(5):501–512

Wehner T (2007) Gene list for watermelon. Cucurbit Genet Coop Rep 30:9–120

Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J et al (2010) Provitamin a accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

Welsch R, Zhou XJ, Yuan H, Alvarez D, Sun T, Schlossarek D et al (2018) Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol Plant 11:149–162

Wu MB, Xu X, Hu XW, Liu YD, Cao HH, Chan HE et al (2020) SIMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. New Phytol 183(3):854–868

Xiong C, Luo D, Lin AH, Zhang CL, Shan LB, He P et al (2019) A tomato B-box protein SIBBX20 modulates carotenoid biosynthesis by directly activating phytoene synthase 1, and is targeted for 26S proteasome-mediated degradation. New Phytol 221(1):279–294

Xu XC, Fang PP, Zhang H, Chi C, Song LX, Xia XJ et al (2019) Strigolactones positively regulate defense against root-knot nematodes in tomato. J Exp Bot 70(4):1325–1337

Yuan H, Zhang JX, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2:15036

Zeng J, Wang XT, Miao YJ, Wang C, Zang ML, Chen X et al (2015) Metabolic engineering of wheat provitamin a by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHyd). J Agr Food Chem 63:9083–9092

Zhai SN, Li GY, Sun YW, Song JM, Li JH, Song GQ et al (2016) Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol 16:228

Zhang J, Guo SG, Ren Y, Zhang HY, Gong GY, Zhou M et al (2017) High-level expression of a novel chromoplast phosphate transporter CIPHT4:2 is required for flesh color development in watermelon. New Phytol 213:1208–1221

Zhang J, Sun HH, Guo SG, Ren Y, Li MY, Wang JF et al (2020) Decreased protein abundance of lycopene β-cyclase contributes to red flesh in domesticated watermelon. Plant Physiol 183(3):1171–1183

Zhong S, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y et al (2011) High-throughput illumine strand-specific RNA sequencing library preparation. Cold Spring Harb Protocols 8: pdb-prot5652

Zhou XJ, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H et al (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. P Natl Acad Sci USA112:3558–3563

Zhu F, Luo T, Liu CY, Wang Y, Yang HB, Yang W et al (2017) An R2R3-MYB transcription factor represses the transformation of alpha- and beta-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol 216(1):178–192

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.