The Stokes Paradox in Inhomogeneous Elastostatics

Adele Ferone1 · Remigio Russo1 · Alfonsina Tartaglione1

Received: 24 September 2018 / Published online: 24 August 2020
© Springer Nature B.V. 2020

Abstract We prove that the displacement problem of inhomogeneous elastostatics in a two-dimensional exterior Lipschitz domain has a unique solution with finite Dirichlet integral u, vanishing uniformly at infinity if and only if the boundary datum satisfies a suitable compatibility condition (Stokes paradox). Moreover, we prove that it is unique under the sharp condition $u = o(\log r)$ and decays uniformly at infinity with a rate depending on the elasticities. In particular, if these last ones tend to a homogeneous state at large distance, then $u = O(r^{-\alpha})$, for every $\alpha < 1$.

Keywords Inhomogeneous elasticity · Two–dimensional exterior domains · Existence and uniqueness theorems · Stokes paradox

Mathematics Subject Classification (2010) Primary 74B05 · 35J47 · 35J57 · Secondary 45A05

1 Introduction

Let Ω be an exterior Lipschitz domain of \mathbb{R}^2. The displacement problem of plane elastostatics in exterior domains is to find a solution to the equations

\[
\begin{align*}
\text{div } C [\nabla u] &= 0 \quad \text{in } \Omega, \\
u &= \hat{u} \quad \text{on } \partial\Omega, \\
\lim_{r \to +\infty} u(x) &= 0,
\end{align*}
\]

(1)

1 Department of Mathematics and Physics, University of Campania “Luigi Vanvitelli”, Caserta, Italy
where \mathbf{u} is the (unknown) displacement field, $\hat{\mathbf{u}}$ is an (assigned) boundary displacement, $\mathbf{C} = [C_{ijkl}]$ is the (assigned) elasticity tensor, i.e., a map from $\Omega \times \text{Lin} \to \text{Sym}$, linear on Sym and vanishing in $\Omega \times \text{Skw}$. We shall assume \mathbf{C} to be symmetric, i.e., $C_{ijkl} = C_{klij}$ and positive definite, i.e.,

$$
\mu_0 |E|^2 \leq \mathbf{E} \cdot \mathbf{C} [\mathbf{E}] \leq \mu_\varepsilon |E|^2, \quad \forall \mathbf{E} \in \text{Sym}, \quad \text{a.e. in } \Omega.
$$

By appealing to the principle of virtual work and taking into account that $\mathbf{\varphi} \in C^\infty_0 (\Omega)$ is an admissible (or virtual) displacement, we say that $\mathbf{u} \in W^{1,2}_\text{loc} (\Omega)$ is a weak solution (variational solution for $q = 2$) to (1) if

$$
\int_{\Omega} \nabla \mathbf{\varphi} \cdot \mathbf{C} [\nabla \mathbf{u}] = 0, \quad \forall \mathbf{\varphi} \in C^\infty_0 (\Omega).
$$

A weak solution to (1) is a weak solution to (1) which satisfies the boundary condition in the sense of the trace in Sobolev’s spaces and tends to zero at infinity in a generalized sense. If $\mathbf{u} \in W^{1,q}_\text{loc} (\Omega)$ is a weak solution to (1) the traction field on the boundary

$$
\mathbf{s} (\mathbf{u}) = \mathbf{C} [\nabla \mathbf{u}] n
$$

exists as a well defined field of $W^{-1/q,q} (\partial \Omega)$ and for $q = 2$ the following generalized work and energy relation [9] holds

$$
\int_{\Omega_R} \nabla \mathbf{u} \cdot \mathbf{C} [\nabla \mathbf{u}] = \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{s} (\mathbf{u}) + \int_{\partial S_R} \mathbf{u} \cdot \mathbf{s} (\mathbf{u}),
$$

for every R such that $S_R \supset \bar{\Omega}^c$, where with abuse of notation by $\int_{\Sigma} \mathbf{u} \cdot \mathbf{s} (\mathbf{u})$ we mean the value of the functional $\mathbf{s} (\mathbf{u}) \in W^{-1/2,2} (\Sigma)$ at $\mathbf{u} \in W^{1/2,2} (\Sigma)$ and n is the unit outward (with respect to Ω) normal to $\partial \Omega$. It will be clear from the context when we shall refer to an ordinary integral or to a functional.

It is a routine to show that under assumption (2), (1) has a unique solution $\mathbf{u} \in D^{1,2} (\Omega)$, we shall call D–solution (for the notation see at the end of this section). Moreover, it exhibits more regularity provided \mathbf{C}, $\partial \Omega$ and $\hat{\mathbf{u}}$ are more regular. In particular, the following well–known theorem holds [8, 12].

Theorem 1 Let Ω be an exterior Lipschitz domain of \mathbb{R}^2 and let \mathbf{C} satisfy (2). If $\hat{\mathbf{u}} \in W^{1/2,2} (\partial \Omega)$, then (1) has a unique D–solution \mathbf{u} which is locally Hölder continuous in Ω. Moreover, if Ω is of class C^k, $\mathbf{C} \in C^{k-1}_\text{loc} (\bar{\Omega})$ and $\hat{\mathbf{u}} \in W^{k-1/q,q} (\partial \Omega)$ ($k \geq 1$, $q \in (1, +\infty)$), then $\mathbf{u} \in W^{k,q}_\text{loc} (\bar{\Omega})$.

The main problem left open by Theorem 1 is to establish the behavior of the variational solution at large distance: does \mathbf{u} converge to a constant vector at infinity and, if so, does (or under what conditions and in what sense) \mathbf{u} satisfy (1)? For constant \mathbf{C} (homogeneous elasticity) the situation is well understood (see, e.g., [18, 20]), at least in its negative information. Indeed, a solution to (1) is expressed by a simple layer potential

$$
\mathbf{u} (x) = \mathbf{v} (\mathbf{\psi} (x)) + \kappa,
$$

1For constant \mathbf{C} (homogeneous elasticity) it is sufficient to assume that \mathbf{C} is strongly elliptic, i.e., there is $\lambda_0 > 0$ such that $\lambda_0 |a|^2 |b|^2 \leq a \cdot \mathbf{C} [a \otimes b] b$, for all $a, b \in \mathbb{R}^2$. Springer
The Stokes Paradox in Inhomogeneous Elastostatics

for some \(\psi \in W^{-1/2,2}(\partial \Omega) \), where

\[
v[\psi](x) = \int_{\partial \Omega} U(x - y) \psi(y) ds_y
\]

is the simple layer with density \(\psi \) such that

\[
\int_{\partial \Omega} \psi = 0
\]

is the simple layer with density \(\psi \) such that

\[
\int_{\partial \Omega} \psi = 0
\]

and

\[
U(x - y) = \Phi_0 \log |x - y| + \Phi(x - y),
\]

with \(\Phi_0 \in \text{Lin} \) and \(\Phi : \mathbb{R}^2 \setminus \{0\} \to \text{Lin} \) homogeneous of degree zero, is the fundamental solution to equations (1) (see, e.g., [10]). The space \(C = \{ \psi \in L^2(\partial \Omega) : v[\psi]_{|\partial \Omega} = \text{constant} \} \) has dimension two and if \(\{ \psi_1, \psi_2 \} \) is a basis of \(C \), then \(\int_{\partial \Omega} \psi_1, \int_{\partial \Omega} \psi_2 \) is a basis of \(\mathbb{R}^2 \); (3) assures that \(u - \kappa = O(r^{-1}) \), where the constant vector \(\kappa \) is determined by the relation

\[
\int_{\partial \Omega} (\hat{u} - \kappa) \cdot \psi' = 0 \quad \forall \psi' \in C.
\]

Hence it follows

Theorem 2 Let \(\Omega \) be an exterior Lipschitz domain of \(\mathbb{R}^2 \) and let \(C \) be constant and strongly elliptic. If \(\hat{u} \in W^{1/2,2}(\partial \Omega) \), then (1) has a unique \(D \)–solution, analytic in \(\Omega \), if and only if

\[
\int_{\partial \Omega} \hat{u} \cdot \psi' = 0, \quad \forall \psi' \in C \iff \int_{\partial \Omega} s(u) = 0. \tag{4}
\]

Moreover, \(u \) is unique in the class

\[
\{ u \in W^{1,2}_{\text{loc}}(\Omega) : u = o(\log r) \}
\]

and modulo a field \(v[\psi'] - v[\psi']_{|\partial \Omega}, \psi' \in C \), in the class

\[
\{ u \in W^{1,2}_{\text{loc}}(\Omega) : u = o(r) \}.
\]

An immediate consequence of (4) is nonexistence of a solution to (1) corresponding to a constant boundary datum. This phenomenon for the Stokes’ equations

\[
\mu \Delta u - \nabla p = 0,
\]

\[
\text{div } u = 0,
\]

is popular as Stokes paradox and goes back to the pioneering work of G.G. Stokes (1851) on the study of the (slow) translational motions of a ball in an incompressible viscous fluid of viscosity \(\mu \) (see [7] and Ch. V of [6]). Clearly, as it stands, Stokes paradox can be read only as a negative result, unless we are able to find an analytic expression of the densities of \(C \). As far as we know, this is possible only for the ellipse of equation \(f(\xi) = 1 \). Indeed, in this case it is known that \(C = \text{spn}\{ e_1/|\nabla f|, e_2/|\nabla f| \} \) (see, e.g., [23]) and Theorem 2 reads
Theorem 3 Let Ω be the exterior of an ellipse of equation $f(\xi) = 1$ and let C be constant and strongly elliptic. If $\hat{u} \in W^{1/2,2}(\partial \Omega)$, then (1) has a unique solution expressed by a simple layer potential, with a density $\psi \in W^{-1/2,2}(\partial \Omega)$ satisfying (3), if and only if
\[
\int_{\partial \Omega} \frac{\hat{u}}{\sqrt{|\nabla f|}} = 0.
\]

The situation is not so clear in inhomogeneous elasticity. In fact, in such a case it is not known whether u converges at infinity and even the definition of the space C needs to be clarified.

The purpose of this paper is to show that results similar to those stated in Theorem 2 hold in inhomogeneous elasticity, at least in its negative meaning.

By \mathcal{M} we shall denote the linear space of variational solutions to
\[
\text{div } C[\nabla h] = 0 \quad \text{in } \Omega,
\]
\[
h = 0 \quad \text{on } \partial \Omega,
\]
\[
h \in BMO.
\]

We say that C is regular at infinity if there is a constant elasticity tensor C_0 such that
\[
\lim_{|x| \to +\infty} C(x) = C_0.
\]

The following theorem holds.

Theorem 4 (Stokes Paradox of inhomogeneous elastostatics) Let Ω be an exterior Lipschitz domain of \mathbb{R}^2 and let C satisfy (2). It holds:

(i) $\dim \mathcal{M} = 2$ and if $\{h_1, h_2\}$ is a basis of \mathcal{M}, then $\int_{\partial \Omega} s(h_1), \int_{\partial \Omega} s(h_2)$ is a basis of \mathbb{R}^2.

(ii) If $\hat{u} \in W^{1/2,2}(\partial \Omega)$, then system (1) has a unique D–solution u if and only if
\[
\int_{\partial \Omega} \hat{u} \cdot s(h) = 0, \quad \forall h \in \mathcal{M}.
\]

(iii) u is unique in the class (5) and modulo a field $h \in \mathcal{M}$ in the class
\[
\{u \in W_{loc}^{1,2}(\Omega) : u = o(r^{\gamma/2})\},
\]
where
\[
\gamma = \frac{\mu_0}{\mu_0 + 2\mu_e}
\]
(iv) there is a positive α depending on the elasticities such that
\[
u = O(r^{-\alpha})
\]
Moreover, if C is regular at infinity then (8) holds for all $\alpha < 1$.

Clearly, (i)–(ii) imply in particular that if \hat{u} is constant, then (1) has no solution in $D^{1,2}(\Omega)$. Similar results have been recently proved for the Stokes system in [19] (Stokes paradox).
Remark 1 (5) is a sharp uniqueness class. As far as we are aware, the largest uniqueness class known was \(\{ u \in W^{1,2}_\text{loc}(\Omega) : u = O(\log^{(1+\beta)/2} r) \} \), with \(\beta > 1 \) depending on \(\partial \Omega \) (see [21]).

Also, for more particular tensor \(\mathbf{C} \) we prove

Theorem 5 Let \(\Omega \) be an exterior Lipschitz domain of \(\mathbb{R}^2 \) and let \(\mathbf{C} : \Omega \times \text{Lin} \to \text{Lin} \) satisfy

\[
\lambda |\mathbf{E}|^2 \leq \mathbf{E} : \mathbf{C}[\mathbf{E}] \leq \Lambda |\mathbf{E}|^2, \quad \forall \mathbf{E} \in \text{Lin}.
\]

A variational solution to the system

\[
\begin{align*}
\text{div} \mathbf{C}[\nabla u] &= 0 \quad \text{in } \Omega, \\
u &= \hat{u} \quad \text{on } \partial \Omega,
\end{align*}
\]

is unique in the class

\[
\{ u : u = o(r^{1/\sqrt{L}}) \} / \mathcal{M}, \quad L = \Lambda / \lambda,
\]

and if \(u \) belongs to \(D^{1,2}(\mathcal{L}S_{R_0}) \), then

\[
u - u_0 = O(r^{-1/\sqrt{L}}),
\]

for all positive \(\varepsilon \), where \(u_0 \) is the constant vector defined by

\[
\int_{\partial \Omega} (\hat{u} - u_0) \cdot s(h) = 0, \quad \forall h \in \mathcal{M}.
\]

Theorems 4, 5 are proved in Sect. 3. In Sect. 2 we collect the main tools we shall need to prove them and in Sect. 4, by means of a counter-example, we observe that the exponent in (10) is sharp: uniqueness fails in the class defined by (10) with \(O \) instead of \(o \).

Notation Unless otherwise specified, we will essentially use the notation of the classical monograph [9] of M.E. Gurtin. In indicial notation (\(\text{div} \mathbf{C}[\nabla u] \)) \(i = \partial_j (C_{ijhk} \partial_k u_h) \). Lin is the space of second–order tensors (linear maps from \(\mathbb{R}^2 \) into itself) and Sym, Skw are the spaces of the symmetric and skew elements of Lin respectively. As is customary, if \(\mathbf{E} \in \text{Lin} \) and \(\mathbf{v} \in \mathbb{R}^2 \), \(\mathbf{E} \mathbf{v} \) is the vector with components \(E_{ij} v_j \) and \(\hat{\mathbf{v}} \), \(\tilde{\mathbf{v}} \) denote respectively the symmetric and skew parts of \(\nabla \mathbf{u} \). \(\Omega = \mathbb{R}^2 \setminus \overline{\Omega'} \), with \(\Omega' \) bounded; \((o, (e_i))_{i=1,2}, o \in \Omega' \), is the standard orthonormal reference frame; \(x = x - o, r = |x|, S_R = \{ x \in \mathbb{R}^2 : r < R \} , T_R = S_R \setminus S_{2R}, \Omega_R = \Omega \cap S_R ; R_0 \) is a large positive constant such that \(S_{R_0} \supset \overline{\Omega'} ; e_r = x/r \), for all \(x \neq o \). \(W^{k,q}(\Omega) \) \((k \in \mathbb{N}_0, q \in (1, +\infty))\) denotes the ordinary Sobolev’s space [8]; \(W^{k,q}_\text{loc}(\Omega) \) and \(W^{k,q}_\text{loc}(\overline{\Omega}) \) are the spaces of all \(\varphi \in W^{k,q}(K) \) such that \(\varphi \in W^{k,q}_\text{loc}(K) \) for every compact \(K \subset \Omega \) and \(K \subset \overline{\Omega} \) respectively. \(W^{1,q}_\text{loc}(\partial \Omega) \) is the trace space of \(D^{1,q}(\Omega) = \{ \varphi \in L^{1,q}_\text{loc}(\Omega) : ||\nabla \varphi||_{L^q(\Omega)} < +\infty \} \) \((q > 1)\) and \(W^{−1,q}_\text{loc}(\partial \Omega) \) is its dual space. \(BMO = \text{BMO}(\mathbb{R}^2) = \{ \varphi \in L^1_\text{loc}(\mathbb{R}^2) : \sup_{K \in \mathbb{R}_2} \frac{1}{|K|} \int_{SR} |\varphi - \varphi_{SR}| < +\infty \} \). \(H^1(\mathbb{R}^2) \) is the Hardy space. As is usual, if \(f(x) \) and \(\phi(r) \) are functions defined in a neighborhood of infinity \(\mathcal{L}S_{R_0} \), then \(f(x) = o(\phi(r)) \) and \(f(x) = O(\phi(r)) \) mean respectively that \(\lim_{r \to +\infty} f/\phi = 0 \) and \(f/\phi \) is bounded in \(\mathcal{L}S_{R_0} \). To alleviate notation, we do not distinguish between scalar, vector and second–order tensor space functions; \(c \) will denote a positive constant whose numerical value is not essential to our purposes; also we let \(c(\varepsilon) \) denote a positive function of \(\varepsilon > 0 \) such that \(\lim_{\varepsilon \to 0^+} c(\varepsilon) = 0 \).
2 Preliminary Results

Let us collect the main tools we shall need to prove Theorem 4 and 5 and that have some interest in themselves. By \(\mathcal{I} \) we shall denote the exterior of a ball \(S_{R_0} \supseteq \mathbb{C} \Omega \).

Lemma 1 ([5, 12]) Let \(u \in D^{1,q}(\mathcal{I}), q \in (1, +\infty) \). If \(q > 2 \) then \(u/r \in L^q(\mathcal{I}) \) and if \(q < 2 \), then there is a constant vector \(u_0 \) such that
\[
\int_{\mathcal{I}} \frac{|u - u_0|^q}{r^q} \leq c \int_{\mathcal{I}} |\nabla u|^q \quad \text{Hardy's inequality.}
\]
Moreover, if \(u \in D^{1,q}(\mathcal{I}) \) for all \(q \) in a neighborhood of 2, then \(u = u_0 + o(1) \).

The following classical result is due to N.G. Meyers [13].

Lemma 2 Let \(\Omega, C \) and \(\hat{u} \) satisfy the hypotheses of Theorem 1 and let \(u \) be the D–solution to system \((1)_{1,2}\). Then, there exists \(\bar{q} > 2 \) depending on \(C \) such that
\[
|u|_{W^{1,q}_{\text{loc}}(\Omega)} \leq c \quad \forall q \in (1, \bar{q}).
\]

Lemma 3 If \(u \) is a variational solution to \((1)_{1}\) in \(S_R \), then for all \(0 < \rho < R \leq \tilde{R} \),
\[
\int_{S_{\rho}} |\nabla u|^2 \leq c \left(\frac{\rho}{R} \right)^{\gamma} \int_{S_R} |\nabla u|^2, \quad \gamma = \frac{\mu_0}{\mu_0 + 2\mu_e}.
\]

Proof Assume first that \(u \) is regular. Taking into account that
\[
|\hat{\nabla} u|^2 - |\tilde{\nabla} u|^2 = \nabla u \cdot \nabla u^\top = \text{div}[(\nabla u)u - (\text{div} u)1]u + |\text{div} u|^2,
\]
a simple computation yields
\[
\mu_0 G(R) = \mu_0 \int_{S_R} |\nabla u|^2 \leq \mu_0 \int_{S_R} (|\nabla u|^2 + |\text{div} u|^2)
\]
\[
= -\mu_0 \int_{\partial S_R} e_R \cdot [\nabla u - (\text{div} u)1]u + 2\mu_0 \int_{S_R} |\hat{\nabla} u|^2 \leq 2 \int_{\partial S_R} u \cdot C[\nabla u]e_R - \mu_0 \int_{\partial S_R} e_R \cdot [\nabla u - (\text{div} u)1]u.
\]

\[\text{It is worth recalling that for } q = 2 \text{ Hardy’s inequality takes the form}
\]
\[
\int_{\mathcal{I}} \frac{|u|^2}{r^2 \log^2 r} \leq 4 \int_{\mathcal{I}} |\nabla u|^2 + \frac{2 \pi}{\log R_0} \int_{0}^{2\pi} |u|^2(R_0, \theta).
\]

\[\text{By virtue of } [14] \text{ } \bar{q} \text{ cannot be too large.}\]
Since
\[
\int_{0}^{2\pi} \left[(\nabla u)^\top e_R - (\text{div } u)e_R \right](R, \theta) d\theta = 0,
\]
\[
\int_{0}^{2\pi} C[\nabla u]e_R(R, \theta) d\theta = 0,
\]
by Schwarz’s inequality, Wirtinger’s inequality and bearing in mind that
\[|\nabla u - (\text{div } u)1| = |\nabla u|,\]
and taking into account that by the basic calculus
\[
G'(R) = \int_{\partial S_R} |\nabla u|^2, \]
(13) yields
\[
\gamma G(R) \leq R G'(R).
\]
Hence (11) follows by a simple integration. The above argument applies to a variational solution by a classical approximation argument (see, e.g., footnote 1 in [14]).

Remark 2 If \(u\) is a variational solution to (1), vanishing on \(\partial \Omega\) and such that \(\int_{\partial \Omega} s(u) = 0\), then by repeating the steps in the proof of Lemma 3, it follows
\[
\int_{\Omega_R} |\nabla u|^2 \leq c \left(\frac{\rho}{R} \right)^{\gamma} \int_{\Omega} |\nabla u|^2.
\]

Lemma 4 If \(u\) is a variational solution to
\[
\text{div } C[\nabla u] + f = 0 \quad \text{in } \Omega,
\]
with \(f\) having compact support, then
\[
\int_{\Omega_R} |\nabla u|^2 \leq c \left\{ \frac{1}{R^2} \int_{\Omega} |u|^2 + \sigma(u) \right\},
\]
(16)
where\footnote{By abuse of notation, when f is a distribution the last integral is understood as a duality pairing.}
\[
\sigma(u) = 2 \int_{\partial\Omega} u \cdot s(u) - \mu_0 \int_{\Omega} n \cdot (\nabla u - (\text{div} u)1) + 2 \int_{\Omega} f \cdot u.
\]

Proof Let
\[
g_R(r) = \begin{cases}
0, & r > 2R, \\
1, & r < R, \\
R^{-1}(2R - r), & r \in [R, 2R].
\end{cases}
\] (17)
with $S_R \supset \text{supp} f$. A standard calculation similar to (13) yields
\[
\mu_0 \int_{\Omega} g_R^2 (|\nabla u|^2 + |\text{div} u|^2) \leq 2 \int_{\Omega} g_R \nabla g_R \cdot (\mu_0(\nabla u - (\text{div} u)1) - 2C[\nabla u])u
\]
\[+ 2 \int_{\partial\Omega} u \cdot s(u) - \mu_0 \int_{\partial\Omega} n \cdot (\nabla u - (\text{div} u)1) + 2 \int_{\Omega} f \cdot u.
\] (18)
By a simple application of Cauchy’s inequality (18) implies
\[
\int_{\Omega} g_R^2 |\nabla u|^2 \leq c \left(\int_{\Omega} |\nabla g_R|^2 |u|^2 + \sigma(u) \right).
\]
Hence (16) follows by the properties of the function g_R. \hfill \Box

Remark 3 Under the stronger assumption u is a D-solution, we can repeat the previous argument to obtain instead of (16) the following inequality
\[
\int_{\subset S_R} |\nabla u|^2 \, dx \leq \frac{c}{R^2} \int_{T_R} |u|^2.
\] (19)
In such case instead of the function g_R we have to consider the function
\[
\eta_R(r) = \begin{cases}
0, & r < R, \\
1, & r > 2R, \\
R^{-1}(r - R), & r \in [R, 2R].
\end{cases}
\] (20)
and the thesis follows similarly.

Lemma 5 Let u be a variational solution to (1) such that
\[
\int_{\partial\Omega} s(u) = 0.
\] (21)
If
\[
u(x) = o(r^{\gamma/2}),
\] (22)
then $\nabla u \in L^2(\Omega)$ and

$$\int_{\Omega} \nabla u \cdot C[\nabla u] = \int_{\partial \Omega} u \cdot s(u).$$ (23)

Proof Let $\eta_{\tilde{R}}$ be the function defined in (20). The field

$$v = \eta_{\tilde{R}} u$$ (24)

is a variational solution to

$$\text{div} \ C[\nabla v] + f = 0 \quad \text{in } \mathbb{R}^2,$$ (25)

with

$$f_i = -C_{ijhk} \partial_k u_h \partial_j \eta_{\tilde{R}} - \partial_j (C_{ijhk} \partial_k u_h \partial_j \eta_{\tilde{R}}).$$ (26)

Let v_1 and v_2 be the variational solutions to the systems

$$\text{div} \ C[\nabla v_1] = 0 \quad \text{in } S_R,$$

$$v_1 = v \quad \text{on } \partial S_R,$$ (27)

and

$$\text{div} \ C[\nabla v_2] + f = 0 \quad \text{in } S_R,$$

$$v_2 = 0 \quad \text{on } \partial S_R,$$ (28)

respectively, with $R > 2 \tilde{R}$. By (11)

$$\int_{\tilde{S}_R} |\nabla v_1|^2 \leq c \int_{\tilde{S}_R} \gamma |\nabla v_1|^2.$$ (29)

A simple computation and the first Korn inequality

$$\|\nabla v_2\|_{L^2(S_R)} \leq \sqrt{2}\|\hat{\nabla} v_2\|_{L^2(S_R)}$$

yield

$$\mu_0 \int_{S_R} |\nabla v_2|^2 \leq 2 \int_{\tilde{T}_R} \partial_j v_{2i} C_{ijhk} \partial_k u_h \partial_j \eta_{\tilde{R}} - 2 \int_{\tilde{T}_R} v_{2i} C_{ijhk} \partial_k u_h \partial_j \eta_{\tilde{R}} = J_1 + J_2.$$

By Schwarz’s inequality

$$|J_1|^2 \leq c \int_{S_R} |\nabla v_2|^2 \int_{\tilde{T}_R} |u|^2 \leq c \int_{S_R} |\nabla v_2|^2,$$

and since by (21) $\int_{\tilde{T}_R} C_{ijhk} \partial_k u_h \partial_j \eta_{\tilde{R}} = 0$,

$$|J_2|^2 \leq c \int_{\tilde{T}_R} \left| \frac{1}{|\tilde{T}_R|} \int_{\tilde{T}_R} v_2 \right|^2 \int_{\tilde{T}_R} |C[\nabla u]|^2 \leq c \int_{S_R} |\nabla v_2|^2.$$
Hence

\[\int_{S_R} |\nabla v_2|^2 \leq c_0. \]

By uniqueness \(v = v_1 + v_2 \) in \(S_R \). Therefore, putting together (29), (30), using the inequality \(|a + b|^2 \leq 2|a|^2 + 2|b|^2 \) and Lemma 4, we get

\[
\int_{S_\rho} |\nabla v|^2 \leq 2 \int_{S_\rho} (|\nabla v_1|^2 + |\nabla v_2|^2) \leq c \left(\frac{\rho}{R} \right)^{\gamma} \int_{S_R} |\nabla v_1|^2 + c_0
\]

\[
\leq c \left(\frac{\rho}{R} \right)^{\gamma} \int_{S_R} |\nabla v|^2 + c_0 \leq c(\rho) R^{2 + \gamma} \int_{\mathcal{T}_R} |u|^2 + c.
\]

Hence, taking into account (22), letting \(R \to +\infty \), we obtain \(\nabla u \in L^2(\Omega) \).

Let consider now the function (17). Multiplying (1) \text{1} scalarly by \(g_R u \) and integrating by parts, we get

\[\int_{\Omega} g_R \nabla u \cdot \mathbf{C}[\nabla u] = \int_{\partial \Omega} u \cdot s(u) - \int_{\mathcal{T}_R} \nabla g_R \cdot \mathbf{C}[\nabla u] u. \]

From (21) it follows that \(\int_{\mathcal{T}_R} \mathbf{C}[\nabla u] e_r = 0 \), so that by applying Schwarz’s inequality and Poincaré’s inequality

\[\left| \int_{\Omega} \nabla g_R \cdot \mathbf{C}[\nabla u] u \right| \leq \frac{c}{R} \left(\int_{\mathcal{T}_R} |u - u_{\mathcal{T}_R}|^2 \right)^{1/2} \left(\int_{\mathcal{T}_R} |\nabla u|^2 \right)^{1/2} \leq c \int_{\mathcal{T}_R} |\nabla u|^2. \]

Therefore, (23) follows from (32) by letting \(R \to +\infty \) and taking into account the properties of \(g_R \) and that \(\nabla u \in L^2(\Omega) \). \(\square \)

\textbf{Remark 4} In the previous Lemma we proved, in particular, that a variational solution which satisfies (21) and (22) is a \(D \)-solution. Another sufficient condition to have a \(D \)-solution is to assume (21) and \(u \in D^{1,q}(S_{R_0}) \), for some \(q \in \left(2, \frac{4}{2 - \gamma} \right) \). Indeed, by reasoning as in (31) and applying Hölder’s inequality we obtain

\[\int_{S_\rho} |\nabla v|^2 \leq c \left(\frac{\rho}{R} \right)^{\gamma} \int_{S_R} |\nabla v|^2 + c_0 \leq c(\rho) R^{2 - 2q} \left(\int_{S_{R_0}} |\nabla v|^q \right)^{2/q} + c_0. \]

Then we get \(\nabla u \in L^2(\Omega) \) on letting \(R \to +\infty \).

\textbf{Remark 5} From Lemma 5 it follows that up to a constant the homogeneous traction problem

\[
\begin{align*}
\text{div } \mathbf{C}[\nabla u] &= 0 \quad \text{in } \Omega, \\
s(u) &= 0 \quad \text{on } \partial \Omega, \\
u(x) &= o(r^{\gamma/2}),
\end{align*}
\]

has only the trivial solution.
Lemma 6 A D–solution u to (1) satisfies (21) and for all $R > \rho \gg R_0$,
\[
\int_{\mathcal{S}_R} |\nabla u|^2 \leq c \left(\frac{\rho}{R} \right)^\gamma \int_{\mathcal{S}_\rho} |\nabla u|^2.
\] (33)

Proof As in the proof of Lemma 3, it is sufficient to assume u regular. Multiplying (1) by the function (17) and integrating over Ω, we have
\[
\int_{\partial \Omega} s(u) = \int_{\mathcal{T}_R} \mathbf{C}[\nabla u] \nabla \mathbf{g}_R.
\]
Hence (21) follows taking into account that by Schwarz’s inequality
\[
\left| \int_{\partial \Omega} s(u) \right| = \left| \int_{\mathcal{T}_R} \mathbf{C}[\nabla u] \nabla \mathbf{g}_R \right| \leq \frac{1}{R} \left\{ \int_{\mathcal{T}_R} |\nabla u|^2 \right\}^{1/2} \left\{ \int_{\mathcal{T}_R} \right\}^{1/2} \leq c \| \nabla u \|_{L^2(\mathcal{T}_R)},
\]
and letting $R \to +\infty$.

A standard computation similar to (13) yields, for $\varrho > R$,
\[
\mu_0 \int_{\mathcal{S}_R} g_\varrho (|\nabla u|^2 + |\text{div} u|^2) \leq -\int_{\partial \mathcal{S}_\varrho} \mathbf{e}_R \cdot [2\mathbf{C}[\nabla u] - \mu_0(\nabla u - (\text{div} u) \mathbf{1})] u + \frac{1}{\varrho} \int_{\mathcal{T}_\varrho} \mathbf{e}_\varrho \cdot [2\mathbf{C}[\nabla u] - \mu_0(\nabla u - (\text{div} u) \mathbf{1})] u.
\]
Hence, since by (14), Schwarz’s inequality and Wirtinger’s inequality
\[
\left| \frac{1}{\varrho} \int_{\mathcal{T}_\varrho} \mathbf{e}_\varrho \cdot [2\mathbf{C}[\nabla u] - \mu_0(\nabla u - (\text{div} u) \mathbf{1})] u \right| \leq c \| \nabla u \|_{L^2(\mathcal{T}_\varrho)}^2,
\]
letting $\varrho \to +\infty$, it follows
\[
\mu_0 \int_{\mathcal{S}_R} (|\nabla u|^2 + |\text{div} u|^2) \leq -\int_{\partial \mathcal{S}_R} \mathbf{e}_R \cdot [2\mathbf{C}[\nabla u] - \mu_0(\nabla u - (\text{div} u) \mathbf{1})] u. \] (34)

Now proceeding as we did in the proof of Lemma 3, (34) yields
\[
\gamma Q(R) = \gamma \int_{\mathcal{S}_R} |\nabla u|^2 \leq R \int_{\partial \mathcal{S}_R} |\nabla u|^2. \] (35)

Since by the basic calculus
\[
Q'(R) = -\int_{\partial \mathcal{S}_R} |\nabla u|^2,
\]
(33) follows from (35) by a simple integration. \qed
Lemma 7 There is $\epsilon = \epsilon(\gamma) > 0$ such that every D-solution u to $(1)_1$ belongs to $D^{1,q}(\mathcal{I})$ for all $q \in (2 - \epsilon, 2 + \epsilon)$. Moreover, if C is regular at infinity, then $u \in D^{1,q}(\mathcal{I})$ for all $q \in (1, +\infty)$.

Proof To prove the lemma we follow a standard argument (see, e.g., [1] p. 92). Let $\eta_{\bar{R}}$ be the function defined by (20). The field $v = \eta_{\bar{R}}u$ is a variational solution to
\[\text{div } C_0[\nabla v] + \text{div}(C - C_0)[\nabla v] + f = 0 \quad \text{in } \mathbb{R}^2, \]
where f is defined by (26) and C_0 is a constant elasticity tensor. Let $U(x - y)$ be the fundamental solution to the operator $\text{div } C_0[\nabla \cdot]$, the integral transform
\[Q[v](x) = \nabla \int_{\mathbb{R}^2} U(x - y)(C - C_0)[\nabla v](y)dy \]
maps $D^{1,q}$ into itself for every $q \in (1, +\infty)$. Set
\[v_f(x) = \int_{\mathbb{R}^2} U(x - y)f(y)dy \in D^{1,q}(\mathbb{R}^2), \quad \forall q \in (1, +\infty), \]
and consider the integral equation in $D^{1,q}$
\[v'(x) = v_f(x) + Q[v](x). \quad (36) \]
Choose
\[C_{0,ijkh} = \mu_0 \delta_{ih} \delta_{jk}. \]
Since [1]
\[\|Q[v]\|_{D^{1,q}} \leq c(q) \frac{\mu_0 - \mu_e}{\mu_e} \|v\|_{D^{1,q}} \]
and
\[\lim_{q \to 2} c(q) = 1, \]
there is $\epsilon > 0$ such that (36) is a contraction in $D^{1,q}$, $q \in (2 - \epsilon, 2 + \epsilon)$. Therefore it has a unique fixed point which must coincide with v; but $v = u$ at large distance and so $u \in D^{1,q}(\mathcal{I})$. If C is regular at infinity, then, choosing \bar{R} large as we want, we can make $|C(x) - C_0|$ arbitrarily small and, as a consequence, $\|Q[v]\|_{D^{1,q}} \leq \beta \|v\|_{D^{1,q}}$, for every small positive β and this is sufficient to conclude the proof. \qed

Extend C to the whole of \mathbb{R}^2 by setting $C = \tilde{C}$ in $\mathring{\Omega}$ (say), with \tilde{C} constant and positive definite. Clearly, the new elasticity tensor (we denote by the same symbol) satisfies (2) (almost everywhere) in \mathbb{R}^2.

The Hölder regularity of variational solutions to $(1)_1$ is sufficient to prove the unique existence of a fundamental (or Green) function $G(x, y)$ to $(1)_1$ in \mathbb{R}^2 (see [2, 4, 11, 22]), which satisfies
\[\varphi(x) = \int_{\mathbb{R}^2} \nabla \varphi(y) \cdot C[\nabla G(x, y)]dy, \]
for all $\varphi \in C_0^\infty(\mathbb{R}^2)$. It is a variational solution to (1) in x [resp. in y] in every domain not containing y [resp. x]. Moreover, $G(x, y) = G^T(y, x)$ and for $f \in \mathcal{H}^1(\mathbb{R}^2)$ the field

$$u(x) = \int_{\mathbb{R}^2} G(x, y) f(y) \, da_y \in D^{1,2}(\mathbb{R}^2) \cap C^{0,\mu}_{\text{loc}}(\mathbb{R}^2)$$

is the unique variational solution to

$$\text{div} \mathbf{C}[\nabla u] + f = 0 \quad \text{in} \ \mathbb{R}^2. \quad (37)$$

$G(x, \cdot)$ belongs to the John–Nirenberg space $BMO(\mathbb{R}^2)$ (see, e.g., [8]) and has a logarithm singularity at x and at infinity. Set $w(x) = G(x, o) e$, with e constant vector. Let us show that $\nabla w/ \in L^2(\partial \mathbb{S}_R^0)$ and $\nabla w/ \in L^q(\partial \mathbb{S}_R^0)$ for all q in a right neighborhood of 2. Indeed, if $w \in D^{1,2}(\mathbb{S}_R^0)$, then, by applying (19) and Hölder’s inequality, we get

$$\int_{\mathbb{S}_R} |\nabla w|^2 \leq C R^{-4/q} \left\{ \int_{\mathbb{S}_R} |w|^q \right\}^{2/q}, \quad q > 2.$$

Therefore, from (33) it follows

$$\int_{\mathbb{S}_R} |\nabla w|^2 \leq \frac{c_p \gamma^{-4/q}}{R^\gamma} \int_{\mathbb{S}_R} |w|^q.$$

Hence, choosing $q > 4/\gamma$, letting $\rho \to 0$ and taking into account that $w \in L^q_{\text{loc}}(\mathbb{R}^2)$, we have the contradiction $\nabla w = 0$. The field $v = \eta_R w$ is a solution to (37) where η_R and f are defined by (20), (26), respectively. By well–known estimates [22] and (16) for large R, we have

$$\left(\int_{\mathbb{S}_R} |\nabla v|^q \right) \frac{1}{q} \leq c \left\{ R^{-1+2/q} \left(\int_{\mathbb{S}_R} |\nabla v|^2 \right) \right\}^{\frac{1}{2}} + c_f \right\}$$

$$\leq c \left\{ R^{-2+2/q} \left(\int_{\mathbb{S}_R} |w|^2 \right) + c_f \right\},$$

for $q \in (2, \bar{q})$, where $\bar{q} > 2$ is given in Lemma 2 and c_f is a constant depending on f.

Hence, letting $R \to +\infty$ and bearing in mind the behavior of w at large distance, it follows that $\nabla w \in L^q(\partial \mathbb{S}_R^0)$. Collecting the above results we can say that the fundamental function satisfies:

(i) $G(x, y) \notin D^{1,2}(\mathbb{S}_R(x))$ for all $R > 0$;

(ii) $G(x, y) \in D^{1,q}(\mathbb{S}_R(x))$, for all $q \in (2, \bar{q})$, with $\bar{q} > 2$ depending on \mathbf{C}.

\circ Springer
3 Proof of Theorems 4, 5

Proof of Theorem 4 (i) – If \(h(\neq 0) \in \mathcal{M} \), then \(\int_{\partial \Omega} s(h) \neq 0 \), otherwise, bearing in mind that \(h \in BMO \), Caccioppoli’s inequality writes

\[
\int_{S_{R/2}} |\nabla h|^2 \leq \frac{c}{R^2} \int_{S_R} \left| h - \frac{1}{|S_R|} \int_{S_R} h \right|^2 \leq c,
\]

for some \(c \) independent of \(R \). Hence \(h \) should be a \(D \)-solution and so by uniqueness \(h = 0 \).

Let \(u_i \in D^{1,2}(\Omega) \) \((i = 1, 2)\) be the solutions to (1)1,2 with \(\hat{u}_i = -G(x, o)e_i \) and set \(h_i = u_i + G(x, o)e_i \). If \(\alpha_i h_i = 0 \), then \(\alpha_i G(x, o)e_i \in D^{1,2}(\Omega) \) and this is possible if and only if \(\alpha_i e_i = 0 \), i.e. \(\alpha_i = 0 \) and the system \(\{h_1, h_2\} \) is linearly independent. Therefore \(\dim \mathcal{M} \geq 2 \). Clearly, for every \(\{h_1, h_2, h_3\} \subset \mathcal{M} \) the system \(\{\int_{\partial \Omega} s(h_i)\}_{i \in \{1, 2, 3\}} \) is linearly dependent.

Hence it follows that \(h = 0 \), with \(h = \alpha_i h_i \). Since this implies that \(h = 0 \), we conclude that \(\dim \mathcal{M} = 2 \). It is obvious that if \(\{h_1, h_2\} \) is a basis of \(\mathcal{M} \), then \(\{\int_{\partial \Omega} s(h_1), \int_{\partial \Omega} s(h_2)\} \) is a basis of \(\mathbb{R}^2 \).

(ii) – Multiply (1)1 scalarly by \(g_R h \), with \(h \in \mathcal{M} \). Integrating by parts we get

\[
\int_{\partial \Omega} (\hat{u} - u_0) \cdot s(h) = -\frac{1}{R} \int_{T_R} (u - u_0) \cdot C[\nabla h]e_R + \frac{1}{R} \int_{T_R} h \cdot C[\nabla u]e_R.
\]

Choosing \(s(< 2) \) very close to 2 we have

\[
\frac{1}{R} \int_{T_R} (u - u_0) \cdot C[\nabla h]e_R \leq c \left\{ \int_{T_R} \frac{|u - u_0|^1}{r^s} \right\}^{1/s} \left\{ \int_{\Omega} |\nabla h|^s \right\}^{1/s'}
\]

\[
\frac{1}{R} \int_{T_R} h \cdot C[\nabla u]e_R \leq c \left\{ \int_{T_R} \frac{|h|^s}{r^{s'}} \right\}^{1/s'} \left\{ \int_{\Omega} |\nabla u|^s \right\}^{1/s}.
\]

Therefore, letting \(R \to +\infty \) in (38), in virtue of Lemma 1 and 7 and the properties of \(G \), we see that

\[
\int_{\partial \Omega} (\hat{u} - u_0) \cdot s(h) = 0, \quad \forall h \in \mathcal{M}.
\]

Hence it follows that \(u_0 = 0 \) if and only if \(\hat{u} \) satisfies (7).

(iii) – If \(u = o(r^{\gamma / 2}) \) is a nonzero variational solution to (1)1, vanishing on \(\partial \Omega \), then there are scalars \(\alpha_1 \) and \(\alpha_2 \) such that

\[
\int_{\partial \Omega} s(u) = \alpha_1 \int_{\partial \Omega} s(h_1) + \alpha_2 \int_{\partial \Omega} s(h_2).
\]
where \(\{ h_1, h_2 \} \) is a basis of \(\mathfrak{M} \). Therefore, by (15) and (16) the field \(v = u - \alpha_1 h_1 - \alpha_2 h_2 \) satisfies
\[
\int_{\Omega} |\nabla v|^2 \leq \frac{c \rho^\gamma}{R^{2+\gamma}} \int_{T_R} |v|^2.
\]
Hence, letting \(R \to +\infty \), it follows that \(u \in \mathfrak{M} \). Clearly, if \(u(x) = o(\log r) \), then \(u = 0 \).

(iv) – Let \(R < |x| < 2R, R \gg R_0 \), let \(\mathcal{A} \) be a neighborhood of \(x \). By Hölder’s inequality and Sobolev’s inequality
\[
\int_{\mathcal{A}} |u|^2 \leq c \left\{ \int_{\mathcal{A}} |u|^{2q/(2-q)} \right\}^{(2-q)/q} \leq c \left\{ \int_{\mathcal{C}_{SR}} |\nabla u|^q \right\}^{2/q},
\]
for \(q \in (2 - \epsilon(\gamma), 2) \). Hence by the classical convexity inequality
\[
\| \nabla u \|_{L^q(\mathcal{C}_{SR})} \leq \| \nabla u \|^\theta_{L^q(\mathcal{C}_{SR})} \| \nabla u \|^{1-\theta}_{L^2(\mathcal{C}_{SR})},
\]
with \(2 - \epsilon(\gamma) < s < q, \theta = s(2-q)/q(2-s) \), taking into account Lemma 6 and 7, it follows
\[
\int_{\mathcal{A}} |u|^2 \leq c R^{(\theta-1)\gamma}.
\]
Putting together (33) and (39), we have
\[
\int_{\mathcal{A}} |u|^2 + \frac{1}{\rho^{2+\gamma}} \int_{\mathcal{S}_{\rho}(x)} |u - u_{S\rho}(x)|^2 \leq c R^{(\theta-1)\gamma}.
\]
Hence (8) follows taking into account well–known results of S. Campanato (see, e.g., [8] Theorem 2.9) and that \(\theta \to 0 \) for \(q \to 2 \).

Let now \(\mathbf{C} \) satisfy (6) and let \(u', u'' \) be the variational solutions to the systems
\[
\text{div } \mathbf{C}_0[\nabla u'] = 0 \quad \text{in } S_R(x),
\]
\[
u' = u \quad \text{on } \partial S_R(x),
\]
and
\[
\text{div } \mathbf{C}_0[\nabla u''] + \text{div} (\mathbf{C} - \mathbf{C}_0)[\nabla u] = 0 \quad \text{in } S_R(x),
\]
\[
u'' = 0 \quad \text{on } \partial S_R(x),
\]
respectively. Applying Poincaré’s and Caccioppoli’s inequalities we have
\[
\int_{S_R(x)} |u''|^2 \leq R^2 \int_{S_R(x)} |\nabla u''|^2 \leq c(\epsilon) R^2 \int_{S_R(x)} |\nabla u|^2 \leq c(\epsilon) \int_{T_R(x)} |u|^2.
\]
Hence, taking into account that
\[
\int_{S_{\rho}(x)} |u'|^2 \leq c \left(\rho^\gamma \right)^2 \int_{S_{\rho}(x)} |u'|^2,
\]
it follows [1] (see also [17] where the contact problem [16] is examined)

\[\int_{S_{\rho}(x)} |u|^2 \leq c \left(\frac{\rho}{R} \right)^{2-\epsilon} \int_{S_R(x)} |u|^2. \]

(40)

Putting together (40) and Hölder’s inequality

\[\int_{S_R(x)} |u|^2 \leq c R^{2(s-2)/s} \left\{ \int_{S_R(x)} |u|^s \right\}^{2/s}, \]

for \(s > 2 \), we get

\[\int_{S_{\rho}(x)} |u|^2 + \frac{1}{\rho^{4-\epsilon}} \int_{S_{\rho}(x)} |u - u_{S_{\rho}(x)}|^2 \leq \frac{c}{R^{2-\epsilon}} \int_{S_R(x)} |\nabla u|^2 \]

\[+c R^{\epsilon-2+2(s-2)/s} \left\{ \int_{S_R(x)} |u|^s \right\}^{2/s}. \]

(41)

Since we can choose \(s(> 2) \) near to 2 as we want, (41) yields

\[|u(x)| \leq \frac{c}{|x|^{1-\epsilon}}, \]

for all positive \(\epsilon \).

□

Proof of Theorem 5 If \(\mathbf{C} \) satisfies the stronger assumption (9), by the argument in [15] one shows that a variational solution to \(\text{div} \mathbf{C}[\nabla u] = 0 \) in \(S_R(x) \) satisfies

\[\int_{S_{\rho}(x)} |\nabla u|^2 \leq c \left(\frac{\rho}{R} \right)^{2/\sqrt{L}} \int_{S_R(x)} |\nabla u|^2, \]

for every \(\rho \in (0, R] \) and the Lemmas hold with \(\gamma \) replaced by \(2/\sqrt{L} \). Hence the desired results follow by repeating the steps in the proof of Theorem 4.

□

4 A Counter–Example

The following slight modification of a famous counter–example by E. De Giorgi [3] assures that the uniqueness class in Theorem 5 and the rates of decay are sharp.

Let \(\tilde{\mathbf{C}} \) be the symmetric elasticity tensor defined by

\[\tilde{\mathbf{C}}[\mathbf{L}] = \text{sym} \mathbf{L} + 4\xi^{-2}(e_r \otimes e_r)(e_r \cdot Le_r), \quad \xi \neq 0, \ \mathbf{L} \in \text{Lin}. \]

Clearly, \(\tilde{\mathbf{C}} \) is bounded on \(\mathbb{R}^2 \) and \(C^\infty \) on \(\mathbb{R}^2 \setminus \{0\} \). Since

\[\mathbf{L} \cdot \tilde{\mathbf{C}}[\mathbf{L}] = 4\xi^{-2}|e_r \cdot Le_r|^2 + |\mathbf{L}|^2, \quad \forall \mathbf{L} \in \text{Sym}, \]

\[\hat{\mathbf{C}}[\mathbf{L}] = \text{sym} \mathbf{L} + 4\xi^{-2}(e_r \otimes e_r)(e_r \cdot Le_r), \quad \xi \neq 0, \ \mathbf{L} \in \text{Lin}. \]
\(\tilde{C} \) satisfies (2) with \(\mu_0 = 1 \) and \(\mu_e = 1 + 4\xi^{-2} \). A simple computation \cite{DeGiorgi68} shows that the equation

\[
\text{div} \tilde{C}[\nabla u] = 0
\]

admits the family of solutions

\[
u' = (c_1r^\epsilon + c_2r^{-\epsilon})e_r,
\]

with

\[
\epsilon = \frac{|\xi|}{\sqrt{4 + \xi^2}}.
\]

for every \(c_1, c_2 \in \mathbb{R} \). Of course, for \(c_1 = 1, c_2 = -1 \), \(u' = 0 \) on \(\partial S_1 \) and \(u' \in D^{1,q}(\tilde{C}S_1) \) for \(q > 2/(1-\epsilon) \), \(u' \notin D^{1,q}(\tilde{C}S_1) \) for \(q \leq 2/(1-\epsilon) \) so that, in particular, bearing in mind the properties of \(G \), \(u' \notin M \). For differential systems satisfying the stronger assumption (9) the above example shows that the decay \(u - u_0 = o(r^{1/\sqrt{L}}) \) is optimal for \(D \)-solutions and the class \(\{ u : u = o(r^{1/\sqrt{L}}) \} \) is borderline for uniqueness of the variational solution to the Dirichlet problem up to a field of \(M \).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Campanato, S.: Sistemi ellittici in forma di divergenza. Regolarità all’interno. Scuola Norm. Sup., Pisa (1980), quaderni
2. Chanillo, S., Li, Y.Y.: Continuity of solutions of uniformly elliptic equations in \(\mathbb{R}^2 \). Manuscr. Math. 77, 415–433 (1992)
3. De Giorgi, E.: Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. UMI (4) 1, 135–137 (1968), English transl.: Ennio De Giorgi. Selected papers, Springer (2006)
4. Dong, H., Kim, S.: Green’s matrices of second order elliptic systems with measurable coefficients in two dimensional domains. Trans. Am. Math. Soc. 361, 3303–3323 (2009)
5. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady–State Problems, 2nd edn. Springer, New York (2011)
7. Galdi, G.P., Simader, C.G.: Existence, uniqueness and \(L^n \) estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal. 112, 291–318 (1990)
8. Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Bologna (1994). English translation - Direct methods in the calculus of variations, 2004
9. Gurtin, M.E.: The linear theory of elasticity. In: Truesedell, C. (ed.) Handbuch der Physik, vol. V1a/2. Springer, Berlin (1972)
10. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York (1955)
11. Kenig, C.E., Ni, W.M.: On the elliptic equation \(Lu - k + K \exp[2u] = 0 \). Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 12, 191–224 (1985)
12. Kondrat’ev, V.A., Oleinik, O.A.: Boundary value problems for a system in elasticity theory in unbounded domains. Korn inequalities. Usp. Mat. Nauk 43, 55–98 (1988) (Russian). English translation in Russ. Math. Surv. 43, 65–119 (1988)
13. Meyers, N.G.: An \(L^n \)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 17, 189–206 (1963)
14. Piccinini, L., Spagnolo, S.: On the Hölder continuity of solutions of second order elliptic equations in two variables. Ann. Sc. Norm. Super. Pisa (III) 26, 391–402 (1972), available on line at http://www.numdam.org
15. Piccinini, L., Spagnolo, S.: Una valutazione della regolarità delle soluzioni di sistemi ellittici variazionali in due variabili. Ann. Sc. Norm. Super. Pisa (III) 27, 417–429 (1973), available on line at http://www.numdam.org

16. Russo, A., Tartaglione, A.: On the contact problem of classical elasticity. J. Elast. 99(1), 19–38 (2010)

17. Russo, A., Tartaglione, A.: Strong uniqueness theorems and the Phragmèn-Lindelöf principle in nonhomogeneous elastostatics. J. Elast. 102(2), 133–149 (2011)

18. Russo, R.: On Stokes’ problem. In: Rannacher, R., Sequeira, A. (eds.) Advances in Mathematical Fluid Mechanics, pp. 473–512. Springer, Berlin (2010)

19. Russo, R., Tartaglione, A.: The plane exterior boundary-value problem for nonhomogeneous fluids. J. Math. Fluid Mech. 22(1), 14 (2020)

20. Russo, R., Simader, C.G.: On the exterior two–dimensional Dirichlet problem for elliptic equations. Ric. Mat. 58, 315–328 (2009)

21. Tartaglione, A.: On existence, uniqueness and the maximum modulus theorem in plane linear elastostatics for exterior domains. Ann. Univ. Ferrara 47(1), 89–106 (2001)

22. Taylor, J.L., Kim, S., Brown, R.M.: The Green function for elliptic systems in two dimensions. Commun. Partial Differ. Equ. 38, 1574–1600 (2013)

23. Vassiliev, V.A.: Applied Picard–Lefschetz Theory. Mathematical Surveys and Monographs AMS, vol. 97 (2002)