SUPPLEMENTARY INFORMATION

Microhomology-assisted scarless genome editing in human iPSCs

Shin-II Kim, Tomoko Matsumoto, Harunobu Kagawa, Michiko Nakamura, Ryoko Hirohata, Ayano Ueno, Maki Ohishi, Tetsushi Sakuma, Tomoyoshi Soga, Takashi Yamamoto, and Knut Woltjen

This file includes:

 Supplementary Figures 1-19
 Supplementary Tables 1-10
 Supplementary References
Supplementary Figure 1. Purine biosynthesis pathways and metabolic selection.

De novo synthesis and salvage pathways in purine metabolism. Hypoxanthine phosphorybosyltransferase (HPRT) catalyzes both the conversion of guanine to guanine monophosphate (GMP), and hypoxanthine to inosine monophosphate (IMP). With complete or partial HPRT deficiency, guanine and hypoxanthine metabolites are expected to accumulate. Xanthine oxidase (XO) converts hypoxanthine into uric acid. Unlike most mammals, humans lack uric acid oxidase (UOX) and do not enzymatically convert uric acid into allantoin, leading to hyperuricemia. Adenine phosphoybosyltransferase (APRT) catalyzes the conversion of adenine to adenine monophosphate (AMP), and prevents accumulation of 2,8-dihydroxyadenine (2,8-DHA). At high concentrations, 2,8-DHA forms crystals resulting in kidney stones, and in severe cases can cause kidney failure and urolithiasis.

Metabolic selection for HPRT activity and inactivity is carried out using media containing hypoxanthine, aminopterin, and thymidine (HAT), or 6-thioguanine (6-TG), respectively. Blocking dihydrofolate reductase (DHFR) activity with aminopterin prevents *de novo* synthesis and forces cells to rely wholly on hypoxanthine salvage by HPRT. On the other hand, active HPRT incorporates 6-TG into DNA synthesis and cell signaling pathways, leading to cytotoxicity. Metabolic selection for APRT inactivity is carried out using 2’6’-diaminopurine (DAP), a purine analogue toxic to cells competent for adenine salvage. As APRT is solely responsible for salvage of adenine, counter-selection for its activity is possible by blocking *de novo* synthesis of IMP with azaserine, or the conversion of IMP to AMP with alanosine.

Additional abbreviations: ADP, ATP, adenine di-, triphosphate; GDP, GTP, guanine di-, triphosphate; PRPP, 5-Phospho-D-ribose 1-diphosphate; THF, tetrahydrofolate; TMP, thymidine monophosphate; UMP, uracil monophosphate.

Figure adapted from http://www.lesch-nyhan.org/en/definition/biochemistry/hprt with permission from J.E. Visser, MD, PhD and H.A. Jinnah, MD, PhD.
Supplementary Figure 2. Spectrum of NC-TALEN-induced mutations in human female iPSC clones.

Sequence of HPRT1 alleles from 409B2 (female) iPSC clones transfected with HPRT1 B NC-TALENs and enriched by 6-TG selection on SNL feeders. PCR amplicons of the target site were TA-cloned and at least 8 bacterial colonies from each transformation were PCR-amplified to determine individual alleles by Sanger sequencing. Clones are labeled numerically and alleles alphabetically. iPSC clones with more than two alleles likely represent mosaic populations. Upper case letters represent TALEN binding sites (Fig. 1a). Inserted bases are in italics. Deletion or insertion sizes are indicated on the right. REF, parental 409B2 iPSC reference genomic sequence; NORM, non-mutant allele for the region examined by sequencing.
Supplementary Figure 3. Updated TALEN architecture improves *HPRT1* cleavage activity.

a. SSA assay comparing the relative activities of *HPRT1* TALENs assembled using a PthXo1-based TALE scaffold (NC-TALEN) to an AvrBs3-based +136/+63 scaffold (Avr-TALEN). Error bars show s.e.m. (n = 3).

b. TALEN activity in 1383D6 human male iPSCs as measured by 6-TG^R colony formation, indicating *HPRT1* disruption. Spontaneous colony formation in the absence of nuclease was not noted. For the assay, 3 µg of each nuclease plasmid was transfected into 1 x 10⁶ cells by electroporation, followed by plating at a density of 4.5 x 10⁵ cells per 60 mm dish. iPSCs were selected and stained as described in the Methods.
Supplementary Figure 4. TIDE analysis of indel formation at the *HPRT1_B* TALEN target site.

a. Schematic of the genomic PCR assay used to analyze the locus targeted by *HPRT1_B* TALENs. For TIDE analysis, the breakpoint was arbitrarily positioned at the beginning of the spacer as indicated (black arrow).
b. Sequence trace files of the original 1383D6 iPSCs, and 6-TG^R population following transfection with TALENs. The position of the breakpoint used for TIDE analysis is shown (black arrow). An ambiguous A/T base is noted upstream of the predicted breakpoint (red arrow).

c. Aberrant sequence plot determined by the online TIDE software. Arrows are as in Panel b.

d. Spectrum of indels in the 6-TG^R iPSC population as predicted by TIDE. Deletions are more common than insertions, with a clear bias towards 17 bp deletions. The data in Panel c and d was reproduced across independent experiments (n = 3).

e. Sequence trace files of the original H1 ESCs, and 6-TG^R population following transfection with TALENs. The position of the breakpoint used for TIDE analysis is shown (black arrow). An ambiguous A/T base is noted upstream of the predicted breakpoint (red arrow).

f. Aberrant sequence plot determined by the online TIDE software. Arrows are as in Panel e.

g. Spectrum of indels in the 6-TG^R ESC population as predicted by TIDE. As with 1383D6 iPSCs, deletions are more common than insertions, with a clear bias towards 17 bp deletions (n = 1).
Supplementary Figure 5. Spectrum of Avr-TALEN-induced mutations in human male iPSCs clones.

Sequence of HPRT1 alleles types detected in a series of individual clones derived from 1383D6 iPSC clones transfected with HPRT1_B Avr-TALENs and enriched by 6-TG selection under feeder-free conditions. PCR amplicons of the target site were directly Sanger sequenced. Mixed sequences were not included in the analysis. Clones are labeled numerically. Upper case letters represent HPRT1_B Avr-TALEN binding sites. Inserted bases are in italics. Modified bases are underlined. Deletion or insertion sizes are indicated on the right. Apart from Δ17, the most common deletion was Δ46 (3/31 deletions), where the deletion boundaries were positioned within T-rich sequences following a predicted ‘GATT’ microhomology. The Δ77 mutation occurred at another short tandem repeat ‘CTGA’, again indicative of MMEJ. REF, parental 1383D6 iPSC reference genomic sequence.
Supplementary Figure 6. Drug sensitivities of 1383D6 parental and HPRT1 knockout iPSC clones.

Crystal violet staining of representative HPRT1 knockout clonal iPSC lines following treatment with 6-TG or HAT media for 3 days. Resistance and sensitivity correlates with the status of the HPRT1 locus, as determined by PCR genotyping and sequencing (Supplementary Fig. 5). Parental 1383D6 iPSCs are included as a control.
Supplementary Figure 7. Screening eGFP sgRNAs for cleavage activity.

a. Diagram of the sgRNA and Cas9 expression vector pX330, and the associated pGL4-SSA target plasmids used for the plasmid cleavage assay. The three eGFP protospacer sequences are shown.

b. Relative nuclease activities as determined by luciferase expression. pGL4-SSA plasmids were transfected individually with or without the concordant pX-eGFP nuclease plasmid. Error bars show s.e.m. (n = 3).

c. A transgene disruption assay was designed to assess genomic cleavage activity in iPSCs. 317-A4 iPSCs are heterozygous for a constitutively expressed CAG::eGFP reporter transgene targeted to the AAVS1 locus. Relative positions of the three sgRNAs are shown. Microscopy and FACS analysis for GFP expression 5 days after nuclease transfection was used to compare the activities of the three sgRNAs. The most potent sgRNA, eGFP1, is referred to as ‘ps1’ in the Results. White arrows indicate GFP negative regions. Scale bar, 200 μm.
Supplementary Figure 8. Targeting the HPRT1 locus with cassettes flanked by imperfect microhomology.

a. Southern blotting results for 96 iPSC clones targeted with either unilaterally or bilaterally mutant µH, and probed with either transgene (mCherry, top) or genomic (HPRT-B, bottom) probes. The predicted 6.9 kbp (normal) and 9.8 kbp (targeted) band sizes shown in Fig. 2b are indicated. Selected clones (033-U-45 and 033-B-43) are indicated with an asterisk. 1383D6 iPSCs are included as a control.

b. Sequence trace file of a majority iPSC clone where DSBR following cassette excision is a result of error-free NHEJ. Note direct fusion of the ends predicted to be formed by CRISPR-Cas9-induced DSBs. A minority of these clones included random indels from error-prone NHEJ. Clone proportions are indicated in Table 1.

c. RFLP assay by AflII digestion of PCR amplicons from MhAX iPSC clones engineered with unilateral or bilateral homology, indicating the presence of the engineered Silent (S) mutation in all clones tested. Clones labelled with ‘M’ were found to also contain the Munich mutation by sequencing. 1383D6 iPSCs are included as a negative control for cleavage.
Supplementary Figure 9. Metabolic phenotyping confirms purine salvage defects in HPRT_{Munich} iPSCs.

a. Reversal of 6-TG and HAT drug sensitivities during engineering of the HPRT_I locus as shown by crystal violet staining of iPSC colonies only occurs for clones with a Silent mutation (035-C1), while clone 035-D12 remains sensitive to both drugs. Original 1383D6 and unilateral parent clone 033-U-45 are included as controls. FACS analysis for mCherry is shown on the right.

b. Growth curve analysis of parental and engineered iPSCs in the presence of HAT selective pressure. HPRT_{Munich} iPSCs show a reduced sensitivity to HAT compared to knockouts (Δ17) or targeted parental clone 033-U-45. The growth of iPSCs with Silent mutations are indistinguishable from 1383D6. Note that the behavior of individual clones with similarly engineered
genotypes were highly comparable. Morphology of iPSCs colonies after 24 hrs of HAT selection is shown below. Image data is representative of two independent experiments. Error bars show s.e.m. (n = 3). Scale bar, 200 µm.

c. Western blot analysis of HPRT protein levels in parental and engineered iPSC clones. Knockout lines Δ17 and 033-U-45 produce no HPRT protein. Expression levels in HPRT_{Munich} and HPRT_{Silent} control clones are comparable to normal 1383D6 iPSCs. ACTIN is used as a loading control.

d. CE-MS metabolite assay of spent media from parental and engineered iPSCs. Hypoxanthine and guanine accumulate as a result of HPRT deficiency, while a partial metabolic defect is observed for HPRT_{Munich} cells. HPRT_{Silent} control iPSCs behave similarly to 1383D6. As expected, thymidine levels are not correlated with HPRT1 genotype (control). For clones 035-D1 and 035-B2, guanine was detected in only 1 of 3 samples. N.D., not detected. Error bars show s.e.m. (n = 3).
Supplementary Figure 10. Targeting HPRT1 with a μ11 MhAX cassette.

a. Schematic overview of gene targeting to generate clones for the HPRT1 chromosomal excision assay. Left and right donor vector homology arms overlap, generating an 11 bp tandem μH (blue) flanking the positive/negative selection marker (red). Synonymous mutations disrupting the endogenous μA3 sequence are shown in red. A diphtheria toxin (DTA) negative selection marker driven by the MC1 promoter was included in the donor backbone, but was found to be ineffective (see Panel b, bottom right). Gene targeting was stimulated with AvrHPRT1_B TALENs (yellow bolt). The remaining elements are as described in Fig. 2a.

b. Detailed schematic of HPRT1 gene targeting and MMEJ resolution. Labelling is consistent with Fig. 2b. Southern blot verification of targeted clones using the mCherry probe (bottom right), where an asterisk (*) denotes clones used for subsequent assays (Fig. 3 and Supplementary Fig. 12) while “x” indicates clones with random integration.
Supplementary Figure 11. Targeting HPRT1 with a μ29 MhAX cassette.

a. Schematic overview of gene targeting to generate clones for the HPRT1 chromosomal excision assay. Left and right donor vector homology arms overlap, generating a 29 bp tandem μH (blue) flanking the positive/negative selection marker (red). Synonymous mutations disrupting the endogenous μ5A3 sequence are shown in red. Gene targeting was stimulated with AvrHPRT1_B TALENs (yellow bolt). The remaining elements are as described in Fig. 2a.

b. Detailed schematic of HPRT1 gene targeting and MMEJ resolution. Labelling is consistent with Fig. 2b. Southern blot verification of targeted clones using the mCherry and HPRT-B probes (bottom right), where an asterisk (*) denotes clones used for subsequent assays (Fig. 3, Table 2 and Supplementary Fig. 12) while “x” indicates clones with random integration.
Supplementary Figure 12. Effect of protospacer inversion on MMEJ repair.

a. FACS for mCh^{-neg} cells following transfection of targeted iPSC clones (differing in µH length) with pX-ps1 to stimulate cassette excision. µ29 excision data is representative of three independent clones.

b. FACS analysis for mCh^{-neg} cells following transfection of targeted iPSC clones (inverted protospacers) with pX-ps1. Parental 1383D6 iPSCs are included as a control. Clones for this assay were generated using gene targeting as outlined in Supplementary Fig. 11, except with inverted ps1 protospacers in the case of ps1-rev.

c. Sanger sequencing of excised populations shown in Panel b with and without HAT selection. With HAT selection, the predominance of indel-free sequences bearing engineered synonymous mutations indicates that the population is biased towards MMEJ repair, irrespective of the ps1 protospacer orientation. µH regions (blue) and synonymous mutations (red) are indicated.
Supplementary Figure 13. Validation of APRT sgRNAs.

a. Schematic of the human APRT locus and strategy for engineering the APRT*J mutation. Detail is shown for exon 5 (orange) including the splice junction, CRISPR-Cas9 target sites 1 through 4 (green), and selected µ32 microhomology (blue). APRT codons are numbered above. Chromosome positions refer to H. sapiens GRCh38. Bases targeted for MhAX editing are shown in blue (silent) or red (APRT*J). SA, splice acceptor.

b. T7EI assay results revealing the activity of sgRNAs 1 through 4 in HEK293T cells. n.c., negative control without nuclease transfection.

c. PuroR iPSC colony numbers resulting from APRT gene targeting stimulated with sgRNAs 1 through 4. One million 1383D6 iPSCs were electroporated with 3 µg of APRT-2A-puroΔTK donor vector only (n.c.), or the donor plus 1 µg of the appropriate sgRNA expression vector and plated on two 60 mm dishes (5 x 10⁵ cells each). Colony numbers are the total from two dishes.
Supplementary Figure 14. Flow cytometry analysis of *APRT* gene targeting and excision.

FACS for mChneg cells following transfection with pX-ps1 to stimulate cassette excision. As expected, excision rates are lower for homozygously targeted clones.
Supplementary Figure 15. Metabolic phenotyping confirms altered enzyme function in mono- and biallyleically modified APRT*J iPSCs.

a. Sequence trace files of iPSC clones biallyleically engineered with APRT*J and/or Silent mutations following scarless MMEJ cassette excision. Both types of clones were isolated from the same targeted iPSC (052-2-11). Inclusion of the neighboring heterozygous SNP (rs8191489) in the PCR amplicon ensures analysis of both alleles.

b. Crystal violet staining of iPSC culture dishes following treatment with DMSO (left), or DAP (right) for a period of 2 d. Scale bar, 500 µm.
Supplementary Figure 16. TIDE analysis of biallelically repaired iPSC clones.

a. Representative TIDE analysis for biallelic repair of the APRT locus by MMEJ (Silent/Silent, Silent/APRT*J, APRT*J/APRT*J) or perfect NHEJ (Δ46/Δ46).
b. Representative TIDE analysis for biallelic repair of the APRT locus by two different DSBR mechanisms; MMEJ resulting in deposition of a Silent point mutation on one allele, and NHEJ resulting in a random indel on the other.

c. Representative TIDE analysis for biallelic repair of the APRT locus by two different DSBR mechanisms; MMEJ resulting in deposition of APRT*J & Silent point mutations on one allele (APRT*J), and NHEJ resulting in a random indel on the other. Genotypes listed in Panels a-c were verified by sequence alignment to the reference human genome.
Supplementary Figure 17. RFLP assay for the *APRT* Silent mutation.

a. Schematic of the parental and edited *APRT* alleles, and the resulting RFLP generated by the Silent mutation.

b. Gel electrophoresis following Acc65I digestion of PCR amplicons from excised hetero- or homozygously targeted iPSC clones, indicating the presence of the engineered Silent mutation. 1383D6 iPSCs are included as a negative control for cleavage.
Supplementary Figure 18. FACS-based isolation of edited HPRT\textsubscript{Munich} iPSCs.

Representative FACS plots for the isolation of iPSCs edited at the \textit{HPRT}1 locus. The donor vector, allele, and additional features are as described in Fig. 2a and b.
Supplementary Figure 19. Uncropped Southern blot images.

a. Complete images for Southern blot genotyping data shown in Fig. 2d.
b. Complete images for Southern blot genotyping data shown in Fig. 4c and f.
Supplementary Table 1. Characteristics of engineered microhomologies used in this study

Purpose	Name	Mutation	Pos.	Laterality	pH Sequence *	Len.	GC (%)	PAM +1	Het.
HPRT-	µSW3	T	5'	uni	GACTGAGA	9	44	n/a	8
Native		A	3'		GACTGAGA	9	44	n/a	8
HPRT	µ13	Munich,	5', 3'	bi	aAAGATATTGT	13	23	T	7, 6
Munich		Silent			aAAGATATTGT	13	23	T	5
MMEJ	µ5	none	5', 3'	bi	CGAGG	5	40	C	7
Assay						10	50	C	7
(Plasmid)	µ10	syn	5', 3'	bi	CGAGCTAAGAGA	15	53	C	7
µ15	syn	5', 3'	bi			20	45	C	5
µ20	syn	5', 3'	bi			30	35	C	5
µ30	syn	5', 3'	bi			40	30	C	6, 7
µ50	syn	5', 3'	bi			50	32	C	7
MMEJ	µ11	syn	5', 3'	bi	TGACTGAGAT	11	36	T	7, 6
Assay		(external)				29	34	T	7, 6
(HPRT)	µ29	syn	5', 3'	bi	TGACTGAGATTTCACAGG	29	34	A	14, 12
APRT*J	µV25	APRT*J	5'	uni	GAACCAAGAAGCGTCGGTGAGACTGTCGGGC	32	66	A	7

* Lower-case characters indicate mutations. Pos., position; Len., length; Het., heterology; Syn, synonymous mutation; uni, unilateral; bi, bilateral.

Supplementary Table 2. HPRT allele spectrum following FACS enrichment

Samples Analyzed	Normal Allele	NHEJ	MMEJ			
MMEJ	Non-targeted	NHEJ (Perfect)	Silent ONLY	Munich & Silent	Fidelity (%)	
90	0	1	84 (36)	2	3	5.6
Supplementary Table 3. Plasmids used in this study

Purpose	Plasmid ID #	Plasmids
TALENs	KW228	PB-CAG-dNC-HPRT1_L-GFP
	KW229	PB-CAG-dNC-HPRT1_R-mCh
	TY026	CAG-Avr-HPRT-LEFT
	TY027	CAG-Avr-HPRT-RIGHT
	KW532	pX-EGFP-g1 (alias: pX-ps1)
	KW533	pX-EGFP-g2
	KW534	pX-EGFP-g3
	KW817	pX-APRT-sgl1
	KW818	pX-APRT-sg2
	KW819	pX-APRT-sg3
	KW820	pX-APRT-sg4
CRISPR/Cas9		
	KW253	pX-EGFP-g1
	KW254	pX-EGFP-g2
	KW257	pX-EGFP-g3
	KW258	pX-APRT-sgl1
	KW259	pX-APRT-sg2
	KW260	pX-APRT-sg3
HPRT Donor Vectors		
	KW1033	pbG-HPRT-a29-EGFP1-PdTKmCh
	KW1034	pbG-HPRT-a29-EGFP1rev-PdTKmCh
APRT Donor Vectors		
	KW999	pAAVS1-PdTK-CAG-mCh-[uBglII]
SSA assay (luciferase)		
	KW206	pGL4-AAVS1
	KW850	pGL4-SSA-eGFP1
	KW859	pGL4-SSA-eGFP2
	KW862	pGL4-SSA-eGFP3
MMEJ assay (luciferase)		
	KW855	pGL4K-MMEJ-eGFP1-µ0
	KW856	pGL4K-MMEJ-eGFP1-µ5
	KW857	pGL4K-MMEJ-eGFP1-µ10
	KW858	pGL4K-MMEJ-eGFP1-µ15
	KW875	pGL4K-MMEJ-eGFP1-µ20
	KW876	pGL4K-MMEJ-eGFP1-µ30
Luciferase Assay Controls		
	KW208	pGL4-CMV-luc2
	Promega E6921	pGL4_74_hRlucTK
Supplementary Table 4. Primers used for donor vector construction in this study

Gene	Purpose	Primer ID#	Primer Name	Sequence	Product Size (bp)
		dna450	hHPRT-Fo	GTGCAGTGCAGCAGACAATGAT	1253
		dna411	hHPRT1Cel-Rev2	ATTTGTCAACCTAGCTCCAAAGG	
		dina1649	HPRT-Ifs	CTCATATGGGTGCAGCGGGGAGAGCCATGCGG	3717
		dina1644	HPRT-Ifas	ACTTCCTGTGCGCTCGGGGACAGGCTTGGCC	
		dina1714	Munich-IF-R (common)	ATTTGTCAAACCTAGCTCCAAAGG	
		dina1713	Munich-IF-F (unilateral)	ACTTCATGGGTGCAGCGGGGACAGGCTTGGCC	
		dina1715	Munich-flank-IF-F (bilateral)	ACTTCATGGGTGCAGCGGGGACAGGCTTGGCC	
		dna1649	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1644	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1714	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1713	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1715	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1649	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1644	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1714	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1713	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1715	InFusion	GGGGACAGGCTTGGCCGTAAGAT	
		dna1642	2TA-pdtk-Fo	GAGGCAGAGGAAGCTTCTTACAT	1930
		dna1643	2TA-pdtk-Rev	GAGGCAGAGGAAGCTTCTTACAT	
		dna2167	HPRTCommon-Acc-A	GCGAATTGGTGCAGTGACACGAGAATG	
		dna2169	u29-eGFP1-B	TCCGCTGCCAGATCTGGCCAGCGCCAGCTTGGCC	946
		dna2171	u29-eGFP1rev-B	TCCGCTGCCAGATCTGGCCAGCGCCAGCTTGGCC	
		dna2170	u29-eGFP1-C	TCCGCTGCCAGATCTGGCCAGCGCCAGCTTGGCC	
		dna2172	u29-eGFP1rev-C	TCCGCTGCCAGATCTGGCCAGCGCCAGCTTGGCC	442
		dna2168	HPRTCommon-Acc-D	CATCATGCGGCGTACCATTTGCTACCTAACAT	
		dna1692	hAPRT-HAF	ACTCCCTGTACCTTACCTGGA	1255
		dna1695	hAPRT-HAR	ACTCCCTGTACCTTACCTGGA	
		dna2163	APRT-Acc51-J-A	GGGAATGGTGTAAGCTCCCTGTACATTACCTGG	825
		dna2164	APRT-J-Acc-B	GGGAATGGTGTAAGCTCCCTGTACATTACCTGG	
		dna2165	APRT-Acc-C	GGGAATGGTGTAAGCTCCCTGTACATTACCTGG	
		dna2166	APRT-Acc51-D	GGGAATGGTGTAAGCTCCCTGTACATTACCTGG	570

Operational sequences in MhAX InFusion primers are annotated as follows: underline, InFusion homology; italics, ps1 (eGFP1) protospacer; bold italics, PAM; double underline, microhomology; lowercase, mutations.
Supplementary Table 5. Primers used for sgRNA construction in this study

Target	sgRNA	Primer ID#	Primer Name	Sequence
eGFP	-1	dna1045	EGFP-gRNA1-Fo	caccgGGGCACGCGACAGCTTGCCGG
		dna1046	EGFP-gRNA1-Rev	anaACCGGCAAGGTGCCTGCGCCGc
eGFP	-2	dna1047	EGFP-gRNA2-Fo	caccgATGCCGGTCTCTCTGCTG
		dna1048	EGFP-gRNA2-Rev	anaACAGCATGAGAGGGAAGCAT
eGFP	-3	dna1049	EGFP-gRNA3-Fo	caccgGTCGTGTCAGATGACATT
		dna1050	EGFP-gRNA3-Rev	anaACGAATGTCATCTGCACACC
APRT	-sg1	dna1678	APRT-Xs1	caccgAGGCAGCGTTCATGGTTC
		dna1679	APRT-Xas1	anaACGGAAGCATGCCGCTG
APRT	-sg2	dna1680	APRT-Xs2	caccgAGCGCGTTCATGGTTCG
		dna1681	APRT-Xas2	anaACAGGAAGCATGACGCTG
APRT	-sg3	dna1682	APRT-Xs3	caccgAGCGCGTTCATGGTTC
		dna1683	APRT-Xas3	anaACAGGAAGCATGACGCTG
APRT	-sg4	dna1684	APRT-Xs4	caccgAGCTACAGCGAAGG
		dna1685	APRT-Xas4	anaACGAAGCTGTCATGAGCTG
Sequence validation	dna790	U6-fwd	GAGGGCCTATTTCCCATGATTCC	

Lower-case characters indicate overhangs for BbsI cloning and 5’-G.
Supplementary Table 6. Primers used for luciferase vector construction in this study

Assay	Purpose	Primer ID#	Primer Name	Sequence	
SSA	SSA-AAVS1	dna199	AAVS1-SSAfo	gtagGATATCGTCCCTCCCAACAGGCGGACCTAGGGGACAGATTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA	SSA-AAVS1	dna200	AAVS1-SSArev	cgctGACCGGACGAGTGGGTACAGGACAGAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-1	SSA-eGFP-1	dna1804	eGFP1-SSAas	gtagGACCGGACGAGTGGGTACAGGACAGAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-2	SSA-eGFP-2	dna1805	eGFP1-SSAas	cgctGACCGGACGAGTGGGTACAGGACAGAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-3	SSA-eGFP-3	dna1806	eGFP2-SSAas	gtagGATATCGTCCCTCCCAACAGGCGGACCTAGGGGACAGATTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-3	SSA-eGFP-3	dna1807	eGFP2-SSAas	cgctGACCGGACGAGTGGGTACAGGACAGAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-3	SSA-eGFP-3	dna1808	eGFP3-SSAas	gtagGATATCGTCCCTCCCAACAGGCGGACCTAGGGGACAGATTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-3	SSA-eGFP-3	dna1809	eGFP3-SSAas	cgctGACCGGACGAGTGGGTACAGGACAGAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
SSA-eGFP-3	SSA-eGFP-3	Sequence validation	dna197	SSAseq-Fo	CTCAGCAAGGAGGTAGGTGAGG
SSA-eGFP-3	SSA-eGFP-3	dna198	SSAseq-Rev	TGATGTCGTAATCGTCCCTGAC	
ccdB Cassette (µH 0-30 bp)	ccdB Cassette	dna1842	CamccdB-F	GCGGCCGCGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
ccdB Cassette (µH 0-30 bp)	ccdB Cassette	dna1843	CamccdB-R	AGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
Common (µH 0-30 bp)	Common	dna1828	luc2-eGFP1-uH-F	CGATGCGATGCGGACGAGCAGCTGGCCGGTG	
MMEJ	MMEJ	dna1821	luc2-eGFP1-u0-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
MMEJ	MMEJ	dna1822	luc2-eGFP1-u5-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
MMEJ	MMEJ	dna1823	luc2-eGFP1-u10-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
MMEJ	MMEJ	dna1824	luc2-eGFP1-u20-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
MMEJ	MMEJ	dna1825	luc2-eGFP1-u30-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
MMEJ	MMEJ	dna1827	luc2-eGFP1-u40-R	CCGTGGCGGAAATTCGAGTCCGACCTGCAAGATCGGTCGATG	
pGLK-CMV-luc2 (µH 40, 50 bp)	pGLK-CMV-luc2	dna1848	luc2-uH-F2	CGAGGCTAAAGTGCGTTCGACGCGGAGCAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
MMEJ	MMEJ	dna1847	luc2-u40plus-R2	CGAGGCTAAAGTGCGTTCGACGCGGAGCAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
Common (µH 40, 50 bp)	Common	dna1844	eGFP1-CamccdB-R	ACCCGGCGAGTCCGACGCGGAGCAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
MMEJ	MMEJ	dna1845	eGFP1-CamccdB-u40-F	ACCCGGCGAGTCCGACGCGGAGCAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	
MMEJ	MMEJ	dna1846	eGFP1-CamccdB-u50-F	ACCCGGCGAGTCCGACGCGGAGCAGTTGGTACAGAAAGAGCCCAAGGTCGAATGCCGCAAGCCGAAACAGAAGACTG	

Lower-case characters indicate overhangs for BsaI cloning in SSA primers, and silent mutations in MMEJ primers. Operational sequences in MMEJ Assay primers are annotated as follows: underline, InFusion homology; italics, eGFP1 protospacer; bold italics, PAM; double underline, microhomology. For µ40 and µ50 assembly, InFusion sites were within the engineered microhomology.
Supplementary Table 7. Primers used for genotyping in this study

Gene	PCR Reaction	Primer ID#	Primer Name	Sequence	Product Size (bp)
HPRT		dna309	hHPRT1Cel-Fo	TTTCTGTAAGACTGAAGCCTTGGCTCT	305
		dna310	hHPRT1Cel-Rev	ACTCTACTGAACCAAGTTAGAAGAAAGG	
		dna1720	hHPRT-5int-8F	GAAGTTAATGACTAAAGGTTGTG	619
		dna411	hHPRT1Cel-Rev2	ATTTGCCAACCTAGCTCAAGG	
	Primers used for mutation analysis	dna319	HPRT1-LaF	GTGGAATTTCGGTGCAAGGGAAGAG	1158
		dna804	AAVS1geno81-2	GAGCTCATGAGCCGGAGTCTC	
	5’ end	dna319	HPRT1-LaF	GTGGAATTTCGGTGCAAGGGAAGAG	1868
		dna383	HPRT1-RaR2	AGGCGATGTCTACAAAGATGGCACGG	
	Spanning (non-targeted allele)	dna930	TKseq	CCGCGACCTGGTGCATGAC	
		dna383	HPRT1-RaR2	AGGCGATGTCTACAAAGATGGCACGG	
	3’ end (KW668)	dna116	rBgSp1b	ATGAAAGGGTGGCTATAAAGAGGTAGCT	876
		dna1865	hAPRT-HAR2	GCTTGCTCCCTAGAAGATG	
APRT		dna1711	hAPRT-T7F5	GTGCTGATGATCTGCTG	461
	T7E1, Acc65I RFLP	dna1712	hAPRT-T7R5	TGCCCAAGGCTAGTATTTCC	
		dna1728	hAPRT-e1e2-F2	CTTCGGCGCAGGTAGCC	2287
	5’ end	dna804	T2A-purof	GAGCCCTAGGCGCCGGATCT	
		dna1796	SNP-rs3826074-F	TCCTCCATTCTCATCTCCCTA	4020
	Spanning (non-targeted allele)	dna1865	hAPRT-HAR2	GCTTGCTCCCTAGAAGATG	
	3’ end	dna116	rBgSp1b	ATGAAAGGGTGGCTATAAAGAGGTAGCT	
		dna1865	hAPRT-HAR2	GCTTGCTCCCTAGAAGATG	

Supplementary Table 8. Primers used for sequencing in this study

Template	Application	Primer ID#	Primer Name	Sequence
HPRT	Targeted 5’ arm junctions	dna319	HPR1T1-LaF	GTGGAATTTCGGTGCAAGGGAAGAGG
		dna1733	HPR1-seq2	CTTTTGCTCCATAGTTTCTC
		dna309	hHPRT1Cel-Fo	TTTCTGTAAGACTGAAGCCTTGGCTCT
	Targeted 3’ arm junctions	dna116	rBgSp1b	ATGAAAGGGTGGCTATAAAGAGGTAGCT
		dna117	rBgSp2c	CCCAGTCATAGCTGCTCCCTTCTCTCTTAT
APRT	Targeted 5’ arm junctions	dna1726	hAPRT-5int-1R	AGATCATCACAGACGACCAC
		dna1725	hAPRT-3int-10F	GGAATAATACGGCCCTTGGGCC
	Targeted 3’ arm junctions	dna116	rBgSp1b	ATGAAAGGGTGGCTATAAAGAGGTAGCT
		dna1711	hAPRT-T7F5	GTGCTGATGATCTGCTG
	Spanning, Targeted 5’ arm junctions	dna1692	APRT-HAF	ACTCCTGTCATCTACCTACAAAGG
TOPO	Universal PCR and sequencing	T3	ATTAACCCCTACATTAAGGGGA	
Products		T7	TAATACGACTCACTATAGGG	
Supplementary Table 9. Primers used for exon genotyping in this study

Gene	Exon no.	ENSEMBL exon ID	Length	Fwd Primer	Amplicon Size	
				Name	Sequence	
HPRT	1	ENSE00001913528	186	dna1871	CAGGGGACCCCTGGAATAGGA	536
					GTCAGCTAAGGCCGACCGCC	
	2	ENSE00003489858	107	dna1873	TAGTAGAAGCCGGATTTCTACC	466
					AGAAGACGTGCTGTTTTGGA	
	3	ENSE00003623041	184	dna1875	TTGGTGTGGAAAGTTTAATGACTTGA	385
					ATCTCAGCTGAAACAGTTTGAATG	
	4	ENSE00003674574	66	dna1877	TCTAGTACATTCAATTCAGAAACCT	339
					ATTGAGTAAGACACACTTTACT	
	5	ENSE00003522510	18	dna1879	AGCAGATGGGCCTTTGTTTAC	252
					TGCTTACTTATGGATGTT	
	6	ENSE00003576599	83	dna1881	GGCCAGATGATATAGATTCCA	332
					TAGCAGATGGAAACACTTTTAA	
	7, 8	ENSE00003676328,	47, 77	dna1883	TGCTGCCCTTCTCTAGTAACT	651
		ENSE00003495603			GGCGGTTGCGGGGTTAC	
	9	ENSE00001904310	639	dna1885	TGTGATAGACTACTCTGTTT	1019
					CGGACAAACCTTTACTTCC	
APRT	1 + 2	ENSE00002586104,	125,	dna1728	CTTCCGGCAGAGAGATGCC	640
		ENSE0001503918	107	dna1729	CTCATATCAACACCTTCCTCC	
	3, 4, 5	ENSE00001503917,	134,	dna1740	CATGGGGAGAGGAGGT	1255
		ENSE00003473485,	79, 143	dna1741	TGTGATAGACTACTCTGTTT	
		ENSE00002584924			CGGACAAACCTTTACTTCC	

Supplementary Table 10. Primers used for Southern blot probe preparation in this study

Gene	Probe	Primer ID#	Primer Name	Sequence	Product Size (bp)
HPRT	HPRT-B (5' External)	dna1718	hHPRT-5ext-4F	GCTGAGGATTTGGAAGGTT	475
		dna1719	hHPRT-5ext-4R	GCCGACACATCAATGCAAGC	
APRT	APRT (5' Internal)	dna1692	hAPRT-HAF	ACTCTGTACCTACCTGTA	496
		dna1726	hAPRT-5m-1R	AGATCACACGAGAAGCAC	
Common	mCherry	dna1737	mCh-probeF	GGTCTATGACGGCTCAAAGG	505
		dna062	UniFruitR	TTACTTGTACAGCTCGATCC	
Supplementary References

1. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nature protocols 8, 2281-2308 (2013).

2. Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature biotechnology 31, 822-826 (2013).

3. Oceguera-Yanez, F. et al. Engineering the AAVS1 locus for consistent and scalable transgene expression in human iPSCs and their differentiated derivatives. Methods 101, 43-55 (2016).