Well-posedness, global existence and blow-up phenomena for an integrable multi-component Camassa-Holm system

Zeng Zhang\(^1\) Zhaoyang Yin\(^2\)

Department of Mathematics, Sun Yat-sen University, 510275, Guangzhou, P. R. China.

Abstract

This paper is concerned with a multi-component Camassa-Holm system, which has been proven to be integrable and has peakon solutions. This system includes many one-component and two-component Camassa-Holm type systems as special cases. In this paper, we first establish the local well-posedness and a continuation criterion for the system, then we present several global existence or blow-up results for two important integrable two-component subsystems. Our obtained results cover and improve recent results in [25, 36].

2010 Mathematics Subject Classification: 35G25, 35L05.

Keywords: Integrable multi-component Camassa-Holm system; Local well-posedness; Global existence; Blow-up.

Contents

1 Introduction 2

2 Preliminaries 4

\(^1\)Corresponding author. Email: zhangzeng53@163.com; Tel.: +8613725201644;

Address: No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China

\(^2\)Email: mczy@mail.sysu.edu.cn
3 Local well-posedness

3.1 Local existence and uniqueness

3.2 A continuation criterion

4 Global existence and blow-up phenomena for the two-component subsystems

4.1 $N = 1$, $H = -\frac{1}{2}(u - u_x)(v + v_x)$

4.1.1 A precise blow-up scenario

4.1.2 Global existence

4.1.3 Blow-up phenomena

4.2 $N = 1$, $H = -\frac{1}{2}(uv - u_xv_x)$

4.2.1 A precise blow-up scenario

4.2.2 Blow-up phenomena

1 Introduction

In this paper, we consider the following multi-component system proposed by Xia and Qiao in [34]:

\begin{equation}
\begin{aligned}
m_{jt} &= (m_j H)_x + m_j H + \frac{1}{(N+1)^2} \sum_{i=1}^{N}[m_i(u_j-u_{jx})(v_i+v_{ix}) + m_j(u_i-u_{ix})(v_i+v_{ix})], \\
n_{jt} &= (n_j H)_x - n_j H - \frac{1}{(N+1)^2} \sum_{i=1}^{N}[n_i(u_i-u_{ix})(v_j+v_{jx}) + n_j(u_i-u_{ix})(v_i+v_{ix})], \\
m_j &= u_j - u_{jxx}, n_j = v_j - v_{jxx}, 1 \leq j \leq N,
\end{aligned}
\end{equation}

where H is an arbitrary function of $u_j, v_j, 1 \leq j \leq N$, and their derivatives. The above 2N-component Camassa-Holm system is proved to be integrable in the sense of Lax pair and infinitely many conservation laws in [34], where its peakon solutions for the case $N = 2$ are also obtained.

Since H is an arbitrary function of $u_j, v_j, 1 \leq j \leq N$, and their derivatives, thus Eq. (1.1) is actually a large class of systems. As $N = 1$, $v_1 = 2$ and $H = -u_1$, Eq. (1.1) is reduced to the standard Camassa-Holm (CH) equation

\begin{equation}
m_t + um_x + 2u_xm = 0, \quad m = u - u_{xx},
\end{equation}

which was derived by Camassa and Holm [4] in 1993 as a model for the unidirectional propagation of shallow water waves over a flat bottom. The CH equation, also as a model for the propagation of axially symmetric waves in hyperelastic rods [17], has a bi-Hamiltonian structure [7, 22] and is completely integrable [4, 6]. One of the remarkable properties of the CH equation is the existence of peakons. One can refer to [4, 14, 15] for the existence of peakon solitons and multi-peakons. The Cauchy problem and initial boundary
problem of the CH equation has been studied extensively: local well-posedness \cite{8,11,18,26,31,19,20}, global strong solutions \cite{5,8,11,19,20}, blow-up solutions in finite time \cite{5,8,10,12,27,19,20} and global weak solutions \cite{3,9,13,35}.

As $N = 1$ and $H = -\frac{1}{2}(u_1 - u_1x)(v_1 + v_1x)$, Eq. (1.1) is reduced to the following system proposed by Song, Qu and Qiao in \cite{32}:

\begin{equation}
\begin{cases}
 m_t + \frac{1}{2}(u - u_x)(v + v_x)m_x = 0, \\
 n_t + \frac{1}{2}(u - u_x)(v + v_x)n_x = 0.
\end{cases}
\end{equation}

(1.3)

The above system is proved to be integrable not only in the sense of Lax-pair but also in the sense of geometry, namely, it describes pseudospherical surfaces \cite{32}. Besides, exact solutions to this system such as cuspons and W/M-shape solitons are also obtained in \cite{32}.

As $N = 1$ and $H = -\frac{1}{2}(u_1v_1 - u_1xv_1x)$, Eq. (1.1) is reduced to the following system proposed by Xia and Qiao in \cite{30,33}:

\begin{equation}
\begin{cases}
 m_t + \frac{1}{2}((uv - u_xv_x)m)_x - \frac{1}{2}(uv_x - vu_x)m = 0, \\
 n_t + \frac{1}{2}((uv - u_xv_x)n)_x + \frac{1}{2}(uv_x - vu_x)n = 0,
\end{cases}
\end{equation}

(1.4)

which describes a nontrivial one-parameter family of pseudo-spherical surfaces. In \cite{30,33}, the authors showed this system is integrable with Lax pair, bi-Hamiltonian structure, and infinitely many conservation laws. They also studied the peaked soliton and multi-peakon solutions to the system. Recently, Yan, Qiao and Yin \cite{36} studied the local well-posedness for the Cauchy problem of the system and derived a precise blow-up scenario and a blow-up result for the strong solutions to the system.

As $v = 2u$, both Eq. (1.3) and Eq. (1.4) are reduced to the following cubic Camassa-Holm equation

\begin{equation}
m_t + (m(u^2 - u_x^2))_x = 0, \quad m = u - u_{xx},
\end{equation}

(1.5)

which was proposed independently by Fokas \cite{21}, Fuchssteiner \cite{24}, Olver and Rosenau \cite{28}, and Qiao \cite{29} as an integrable peakon equations with cubic nonlinearity. Its Lax pair, peakon and soliton solutions, local well-posedness and blow-up phenomena have been studied in \cite{29,23,25}.

The aim of this paper is to establish the local well-posedness and a continuation criterion for the Cauchy problem of Eq. (1.1) in Besov spaces, and present several global existence or blow-up results for the two component subsystems: Eq. (1.3) and Eq. (1.4). Our obtained results cover and improve recent results in \cite{25,36}. Compared with the Camassa-Holm equation, one of the remarkable features of Eq. (1.1) is that it has higher-order nonlinearities. Thus, we have to estimate elaborately these higher-order nonlinear terms for the study of the local well-posedness and the continuation criterion of Eq. (1.1) in Besov spaces.
Besides, we derive that \(\|m(t)\|_{L^1} \) (\(\|n(t)\|_{L^1} \)) and \(\int_{\mathbb{R}} (mu_x)(t, x)dx = \int_{\mathbb{R}} (nu_x)(t, x)dx \) are conservation laws for Eq. (1.3) and Eq. (1.4), respectively. The above conservation laws, which have not been derived or used in the associated previous papers \[25, 36\], are useful and crucial in some blow-up results stated in the following fourth section.

The rest of our paper is then organized as follows. In Section 2, we recall the Littlewood-Paley decomposition and some basic properties of the Besov spaces. In Section 3, we establish the local well-posedness and provide a continuation criterion for Eq. (1.1). The last section is devoted to establishing several global existence or blow-up results for Eq. (1.3) and Eq. (1.4).

From now on we always assume that \(H = H(u_1, \cdots, u_N, v_1, \cdots, v_N, u_{1x}, \cdots, u_{1x}, v_{1x}, \cdots, v_{1x}) \) is a polynomial of degree \(l \), \(C > 0 \) stands for a generic constant, \(A \lesssim B \) denotes the relation \(A \leq CB \). Since all function spaces in this paper are over \(\mathbb{R} \), for simplicity, we drop \(\mathbb{R} \) in the notations of function spaces if there is no ambiguity.

2 Preliminaries

To begin with, we introduce the Littlewood-Paley decomposition.

Lemma 2.1. \[2\] Let \(\mathcal{C} = \{ \xi \in \mathbb{R}, \frac{1}{4} \leq |\xi| \leq \frac{5}{4} \} \) be an annulus. There exist radial functions \(\chi \) and \(\phi \) valued in the interval \([0, 1]\), belonging respectively to \(\mathcal{D}(B(0, \frac{1}{4})) \) and \(\mathcal{D}(\mathcal{C}) \), such that

\[
\forall \xi \in \mathbb{R}, \quad \chi(\xi) + \sum_{j \geq 0} \phi(2^{-j} \xi) = 1.
\]

The nonhomogeneous dyadic blocks \(\triangle_j \) and the nonhomogeneous low-frequency cut-off operator \(S_j \) are then defined as follows:

\[
\triangle_j u = 0 \quad \text{if} \quad j \leq -2, \quad \triangle_{-1} u = \chi(D) u,
\]

\[
\triangle_j u = \phi(2^{-j}D) u \quad \text{if} \quad j \geq 0, \quad S_j u = \sum_{j' \leq j-1} \triangle_{j'} u \quad \text{for} \quad j \in \mathbb{Z}.
\]

Definition 2.1. \[2\] Let \(s \in \mathbb{R} \) and \((p, r) \in [1, \infty]^2 \). The nonhomogeneous Besov space \(B^s_{p,r} \) consists of all \(u \in \mathcal{S}'(\mathbb{R}) \) such that

\[
\|u\|_{B^s_{p,r}} \overset{\text{def}}{=} \left(\sum_{j \in \mathbb{Z}} \left(2^{js} \|\triangle_j u\|_{L^p} \right)^r \right)^{1/r} < \infty.
\]

Let us give some classical properties of the Besov spaces.
Lemma 2.2. The set $B_{p,r}^s$ is a Banach space, and satisfies the Fatou property, namely, if $(u_n)_{n \in \mathbb{N}}$ is a bounded sequence of $B_{p,r}^s$, then an element u of $B_{p,r}^s$ and a subsequence $u_{\psi(n)}$ exist such that

$$\lim_{n \to \infty} u_{\psi(n)} = u \text{ in } S' \text{ and } \|u\|_{B_{p,r}^s} \leq C \liminf_{n \to \infty} \|u_{\psi(n)}\|_{B_{p,r}^s}.$$

Lemma 2.3. Let $m \in \mathbb{R}$ and f be an S^m-multiplier (i.e. $f : \mathbb{R} \to \mathbb{R}$ is smooth and satisfies that for each multi-index α, there exists a constant C_α such that $|\partial^\alpha f(x)| \leq C_\alpha (1 + |x|)^{m-|\alpha|}, \forall x \in \mathbb{R}$). Then the operator $F(D)$ is continuous from $B_{p,r}^s$ to $B_{p,r}^{s-m}$.

Lemma 2.4. [18] (i) For $s > 0$ and $1 \leq p, r \leq \infty$, there exists $C = C(d, s)$ such that

$$\|uv\|_{B_{p,r}^s} \leq C(\|u\|_{L^\infty}\|v\|_{B_{p,r}^s} + \|v\|_{L^\infty}\|u\|_{B_{p,r}^s}).$$

(ii) If $1 \leq p, r \leq \infty$, $s_1 \leq \frac{1}{p}$, $s_2 > \frac{1}{p}$, $s_2 \geq \frac{1}{p}$, if $r = 1$ and $s_1 + s_2 > \max\{0, \frac{2}{p} - 1\}$, there exists $C = C(s_1, s_2, p, r)$ such that

$$\|uv\|_{B_{p,r}^{s_1}} \leq C\|u\|_{B_{p,r}^{s_1}}\|v\|_{B_{p,r}^{s_2}}.$$

Lemma 2.5. [18] Let $1 \leq p \leq p_1 \leq \infty$, $1 \leq r \leq \infty$, $s > -\min\{\frac{1}{p_1}, 1 - \frac{1}{p}\}$. Assume $f_0 \in B_{p,r}^s$, $F \in L^1(0, T; B_{p,r}^s)$, $v \in L^p(0, T; B_{\infty, \infty}^{-M})$ for some $\rho > 1$ and $M > 0$, and

$$\frac{\partial}{\partial t}v \in L^1(0, T; B_{p_1, \infty}^{\frac{1}{p_1}} \cap L^\infty), \quad \text{if } s < 1 + \frac{1}{p_1},$$

$$\frac{\partial}{\partial t}v \in L^1(0, T; B_{p_1, r}^{s-1}), \quad \text{if } s > 1 + \frac{1}{p_1}, \text{ or } s = 1 + \frac{1}{p_1} \text{ and } r = 1.$$

Then the following transport equation

$$\begin{cases} \frac{\partial}{\partial t}f + v \cdot \nabla f = F \\ f|_{t=0} = f_0, \end{cases}$$

has a unique solution $f \in C([0, T]; B_{p,r}^s)$, if $r < \infty$, or $f \in L^\infty(0, T; B_{p,r}^s) \cap \left(\bigcap_{s' < s} C([0, T]; B_{p,r}^{s'}) \right)$, if $r = \infty$.

Moreover, the following inequality holds true:

$$\|f(t)\|_{B_{p,r}^s} \leq \|f_0\|_{B_{p,r}^s} + \int_0^t \|F(\tau)\|_{B_{p,r}^s} \, d\tau + C \int_0^t V_{p_1}'(\tau) \|f(\tau)\|_{B_{p,r}^s} \, d\tau$$

with

$$V_{p_1}'(t) = \begin{cases} \|\partial_x v(t)\|_{B_{p_1, \infty}^{\frac{1}{p_1}} \cap L^\infty}, & \text{if } s < 1 + \frac{1}{p_1}, \\ \|\partial_x v(t)\|_{B_{p_1, r}^{s-1}}, & \text{if } s > 1 + \frac{1}{p_1} \text{ or } s = 1 + \frac{1}{p_1}, \text{ } r = 1. \end{cases}$$
3 Local well-posedness

In this section, we study the local well-posedness for Eq. (1.1).

To begin with, noticing \((1 - \partial_x^2)^{-1} = \frac{1}{2} e^{-|x|} \ast\), we have the following inequalities which will be frequently used in the sequel:

\[
\|u\|_{B^s_{p,r}} = \|(1 - \partial_x^2)^{-1} m\|_{B^s_{p,r}} \approx \|m\|_{B^s_{p,r}^2}, \quad \forall \ s \in \mathbb{R}, \ 1 \leq p, r \leq \infty.
\]
\[
\|u\|_{L^\infty} = \frac{1}{2} e^{-|x|} \ast m\|_{L^\infty} \leq \|m\|_{L^\infty},
\]
\[
\|u_x\|_{L^\infty} = \frac{1}{2} (-\text{sign}(x) e^{-|x|}) \ast m\|_{L^\infty} \leq \|m\|_{L^\infty},
\]
\[
\|u_{xx}\|_{L^\infty} = \|u - m\|_{L^\infty} \leq 2 \|m\|_{L^\infty},
\]

where \(m = u - u_{xx}\).

We now rewrite Eq. (1.1) as follows:

\[
M_t = H(U, U_x)M_x + A(H, H_x)M + B(U, U_x)M,
\]
\[
M_{t=0} = M_0,
\]

where \(M = (m_1, \ldots, m_N, n_1, \ldots, n_N)^T, \ M_0 = (m_{10}, \ldots, m_{N0}, n_{10}, \ldots, n_{N0})^T, U = (u_1, \ldots, u_N, v_1, \ldots, v_N)^T, \ H = H(U, U_x)\) is a polynomial of degree \(l\), and

\[
A(H, H_x) = \begin{pmatrix}
H_x I_{N \times N} + H I_{N \times N} & 0 \\
0 & H_x I_{N \times N} - H I_{N \times N}
\end{pmatrix},
\]

\[
B(U, U_x) = \begin{pmatrix}
B_{11} & 0 \\
0 & B_{22}
\end{pmatrix}
\]

with

\[
B_{11} = \frac{1}{(N+1)^2} \begin{pmatrix}
(u_1 - u_{1x})(v_1 + v_{1x}) & \cdots & (u_1 - u_{1x})(v_N + v_{Nx}) \\
\vdots & \ddots & \vdots \\
(u_N - u_{Nx})(v_1 + v_{1x}) & \cdots & (u_N - u_{Nx})(v_N + v_{Nx})
\end{pmatrix} + \sum_{i=1}^{N} [(u_i - u_{ix})(v_i + v_{ix})] I_{N \times N},
\]

and

\[
B_{11} = -\frac{1}{(N+1)^2} \begin{pmatrix}
(u_1 - u_{1x})(v_1 + v_{1x}) & \cdots & (u_N - u_{Nx})(v_1 + v_{1x}) \\
\vdots & \ddots & \vdots \\
(u_1 - u_{1x})(v_N + v_{Nx}) & \cdots & (u_N - u_{Nx})(v_N + v_{Nx})
\end{pmatrix} - \sum_{i=1}^{N} [(u_i - u_{ix})(v_i + v_{ix})] I_{N \times N}.
\]
3.1. Local existence and uniqueness

Theorem 3.1. Let \(1 \leq p, r \leq \infty \), \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \), and \(M_0 \in B^s_{p,r} \). Then exists a time \(T > 0 \) such that Eq. (3.1) has a unique solution \(M \in L^\infty(0, T; B^s_{p,r}) \cap E^s_{p,r}(T) \) with

\[
E^s_{p,r}(T) \triangleq \begin{cases} \quad C([0, T]; B^s_{p,r}) \cap C^1([0, T]; B^{s-1}_{p,r}), & \text{if } r < \infty, \\ \quad \bigcap_{i < s} \left(C([0, T]; B^i_{p,r}) \cap C^1([0, T]; B^{i-1}_{p,r}) \right), & \text{if } r = \infty. \end{cases}
\]

The proof relies heavily on the following lemma.

Lemma 3.1. Let \(1 \leq p, r \leq \infty \) and \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \). Suppose that \(M^1 \) and \(M^2 \) are two solutions of the Eq. (3.1) with the initial data \(M^1_0, M^2_0 \in L^\infty(0, T; B^s_{p,r}) \cap C([0, T]; S^r) \). Let \(M^{12} = M^1 - M^2 \), \(U^{12} = U^1 - U^2 \), and \(q = \max\{1, 2\} \) (where \(l \) is the polynomial order of \(H \)). Then, for all \(t \in [0, T] \), we have

1. if \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \), but \(s \neq 2 + \frac{1}{p} \), then

\[
\| M^{12}(t) \|_{B^{s}_{p,r}} \leq \| M^1_0 \|_{B^{s}_{p,r}} e^{C \int_0^t (\| M^1(\tau) \|_{B^{s}_{p,r}}^q + \| M^2(\tau) \|_{B^{s}_{p,r}}^q + 1) \, d\tau};
\]

2. if \(s = 2 + \frac{1}{p} \), then

\[
\| M^{12}(t) \|_{B^{s}_{p,r}} \leq \| M^1_0 \|_{B^{s}_{p,r}}^\theta (\| M^1(t) \|_{B^{s}_{p,r}} + \| M^2(t) \|_{B^{s}_{p,r}})^{1-\theta} e^{\theta C \int_0^t (\| M^1(\tau) \|_{B^{s}_{p,r}}^q + \| M^2(\tau) \|_{B^{s}_{p,r}}^q + 1) \, d\tau},
\]

where \(\theta \in (0, 1) \).

Proof. Let \(H^i = H(U^i, U^i_x) \), \(A^i = A(H^i, H^i_x) \), \(B^i = B(U^i, U^i_x) \), \(i = 1, 2 \), and \(H^{12} = H^1 - H^2 \), \(A^{12} = A^1 - A^2 \), \(B^{12} = B^1 - B^2 \). It is obvious that \(M^{12} \) solves the following transport equation

\[
M^{12}_{t} - H^1 M^{12}_x = F_1 + F_2 + F_3
\]

where \(F_1 = H^{12} M^2_x F_2 = (A^1 + B^1) M^{12} \) and \(F_3 = (A^{12} + B^{12}) M^2 \).

We claim that for all \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \), we have

\[
\| uv \|_{B^{s}_{p,r}} \lesssim \| u \|_{B^{s}_{p,r}} \| v \|_{B^{s}_{p,r}}.
\]

Indeed, if \(s > 1 + \frac{1}{p} \), then \(B^{s-1}_{p,r} \) is an algebra. Thus we have

\[
\| uv \|_{B^{s}_{p,r}} \lesssim \| u \|_{B^{s-1}_{p,r}} \| v \|_{B^{s-1}_{p,r}} \lesssim \| u \|_{B^{s-1}_{p,r}} \| v \|_{B^{s}_{p,r}}.
\]

On the other hand, if \(\max\{1 - \frac{1}{p}, \frac{1}{p}\} < s \leq 1 + \frac{1}{p} \), then applying Lemma (ii) with \(s_1 = s - 1 \) and \(s_2 = s \) yields (3.4).
Therefore, for all \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \), noticing the fact that \(B^s_{p,r} \) is an algebra, one may infer the following inequalities:

\[
\| F_i \|_{B^{s-1}_{p,r}} \lesssim \| H^{12}_{B^{s-1}_{p,r}} \|_{B^{s}_{p,r}} M^{12}_{B^{s}_{p,r}} \\
\lesssim \left(\| U_{1}^{12}_{B^{s}_{p,r}} + \| U_{12}^{12}_{B^{s}_{p,r}} \| \right) \left(\| U_{1}^{1} + \| U_{1}^{1} + \| U_{2}^{1} + \| U_{2}^{1} \| \right) M^{2}_{B^{s}_{p,r}} \\
\lesssim \| M^{12}_{B^{s-1}_{p,r}} \| \left(\| M^{1}_{B^{s}_{p,r}} \| + \| M^{2}_{B^{s}_{p,r}} \| \right) + 1,
\]

\[
\| F_2 \|_{B^{s-1}_{p,r}} \lesssim \left(\| A^{1}_{B^{s}_{p,r}} + \| B^{1}_{B^{s}_{p,r}} \| \right) \left(\| M^{12}_{B^{s}_{p,r}} \| + \| M^{2}_{B^{s}_{p,r}} \| \right) + 1,
\]

\[
\| F_3 \|_{B^{s-1}_{p,r}} \lesssim \left(\| A^{12}_{B^{s}_{p,r}} + \| B^{12}_{B^{s}_{p,r}} \| \right) \left(\| M^{1}_{B^{s}_{p,r}} \| + \| M^{2}_{B^{s}_{p,r}} \| \right) + 1,
\]

with \(q = \max\{l, 2\} \).

Thus, for the case (1) \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \) and \(s \neq 2 + \frac{1}{p} \), using Lemma 2.5 with the above three inequalities and \(p_1 = p \) and

\[
V_{p_1}^{s}(t) = \| \partial_x H^{1}_{B^{s-2}_{p,r}} + \| \partial_x H^{1}_{B^{s}_{p,r}} \|_{L^{\infty}} \leq \| \partial_x H^{1}_{B^{s}_{p,r}} \|
\]

we have

\[
\| M^{12}_{B^{s}_{p,r}} \| \leq \| M^{12}_{B^{s-1}_{p,r}} \| + \int_{0}^{t} (F_1 + F_2 + F_3)(\tau) \| M^{12}_{B^{s-1}_{p,r}} \| d\tau + C \int_{0}^{t} V_{p_1}^{s}(\tau) \| M^{12}_{B^{s-1}_{p,r}} \| d\tau
\]

\[
\leq \| M^{12}_{B^{s-1}_{p,r}} \| + C \int_{0}^{t} \| M^{12}_{B^{s-1}_{p,r}} \| \left(\| M^{1}_{B^{s}_{p,r}} \| \right) \| M^{2}_{B^{s}_{p,r}} \| d\tau
\]

\[
\leq \| M^{12}_{B^{s-1}_{p,r}} \| + C \int_{0}^{t} \| M^{12}_{B^{s-1}_{p,r}} \| \left(\| M^{1}_{B^{s}_{p,r}} \| \right) \| M^{2}_{B^{s}_{p,r}} \| d\tau
\]

\[
\text{Hence, the Gronwall lemma gives the inequality.}
\]

For the critical case (2) \(s = 2 + \frac{1}{p} \), let us choose \(s_1 \in (\max\{1 - \frac{1}{p}, \frac{1}{p}\} - 1, s - 1) \), \(s_2 \in (s - 1, s) \). Then \(s = s_1 + (1 - \theta)s_2 \) with \(\theta = \frac{s_2 - 1}{s_2 - s_1} \in (0, 1) \). By using the interpolation inequality and the consequence
of the case (1), we get
\[
\|M^{12}(t)\|_{B_{p,r}^{-1}} \leq \|M^{12}(t)\|_{B_{p,r}^{0}}^{\theta} \|M^{12}(t)\|_{B_{p,r}^{1-\theta}}^{1-\theta} \\
\leq \left(\|M_{0}^{12}\|_{B_{p,r}^{0}} + \int M^{12}(t) \, dt\right)^{\theta} \|M^{1}(t)\|_{B_{p,r}^{2}}^{\theta} \|M^{2}(t)\|_{B_{p,r}^{2}}^{1-\theta} \\
\leq \|M_{0}^{12}\|_{B_{p,r}^{0}} \|M^{1}(t)\|_{B_{p,r}^{1}} + \|M^{2}(t)\|_{B_{p,r}^{1}}^{1-\theta} e^{\theta C \int_{0}^{1} \lambda_{2}^{0} \lambda_{1} \, dt},
\]
which completes the proof of the lemma.

Proof of Theorem 3.1. Since uniqueness in Theorem 3.1 is a straightforward corollary of Lemma 3.1, we need only to prove the existence of a solution to Eq.(3.1). We shall proceed as follows.

First step: constructing approximate solutions.

Starting from \(M^{0} = M_{0}\) we define by induction a sequence \((M^{n})_{n \in \mathbb{N}}\) by solving the following linear transport equation
\[
(3.6) \\
\begin{align*}
M_{t}^{n+1} - H^{n}M_{x}^{n+1} &= A^{n} M^{n} + B^{n} M^{n}, \\
M_{t=0}^{n+1} &= M_{0},
\end{align*}
\]
where \(M^{n} = (m_{1}^{n}, \ldots, m_{N}^{n}, n_{1}^{n}, \ldots, n_{N}^{n})^{T}, U^{n} = (u_{1}^{n}, \ldots, u_{N}^{n}, v_{1}^{n}, \ldots, v_{N}^{n})^{T}, H^{n} = H(U^{n}, U_{x}^{n}), A^{n} = A(H^{n}, H_{x}^{n}), B^{n} = B(U^{n}, U_{x}^{n}).
\]

Second step: uniform bounds.

Let \(q = \max\{l, 2\}\). The condition \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\}\) yields that \(B_{p,r}^{s}\) is an algebra. Thus, we have
\[
\|A^{n} M^{n} + B^{n} M^{n}\|_{B_{p,r}^{s}} \leq \left(\|A^{n}\|_{B_{p,r}^{s}} + \|B^{n}\|_{B_{p,r}^{s}}\right)\|M^{n}\|_{B_{p,r}^{s}}
\]
we get

\[
\|M^{n+1}(t)\|_{B^s_{p,r}} \leq \|M_0\|_{B^s_{p,r}} + C \int_0^t \left(1 + \|M^n(\tau)\|_{B^s_{p,r}}^q\right) \|M^n(\tau)\|_{B^s_{p,r}} d\tau \\
+ C \int_0^t \|\partial_x H^n(\tau)\|_{B^s_{p,r}} \|M^{n+1}(\tau)\|_{B^s_{p,r}} d\tau \\
\leq \|M_0\|_{B^s_{p,r}} + C \int_0^t \left(1 + \|M^n(\tau)\|_{B^s_{p,r}}^q\right) \|M^n(\tau)\|_{B^s_{p,r}} \|M^{n+1}(\tau)\|_{B^s_{p,r}} d\tau \\
+ C \int_0^t \left(\|U^n\|_{B^s_{p,r}}^q + \|U^n_x\|_{B^s_{p,r}}^q + \|U^n_x\|_{B^s_{p,r}}^q\right) \|M^{n+1}(\tau)\|_{B^s_{p,r}} d\tau \\
\leq \|M_0\|_{B^s_{p,r}} + C \int_0^t \left(\|M^n(\tau)\|_{B^s_{p,r}}^q + 1\right) \|M^{n+1}(\tau)\|_{B^s_{p,r}} d\tau.
\]

The Gronwall lemma yields that

\[
\|M^{n+1}(t)\|_{B^s_{p,r}} \leq \|M_0\|_{B^s_{p,r}} e^{\int_0^t \left(1 + \|M^n(\tau)\|_{B^s_{p,r}}^q\right) d\tau} \left(1 + \|M^n(\tau)\|_{B^s_{p,r}}\right) \|M^n(\tau)\|_{B^s_{p,r}} d\tau).
\]

Notice that \(f(t) = \frac{f_{\text{sol}}}{(1+f_0^2-f_0 e^{2CT})} \) is the solution to the following equation:

\[
f'(t) = e^{\int_0^t \left(1 + f^n(\tau)\right) d\tau} \left(f_0 + C \int_0^t e^{-\int_0^t \left(1 + f^n(\tau)\right) d\tau} \left(1 + f^n(\tau)\right) d\tau\right).
\]

We fix a \(T > 0 \) such that \(1 + \|M_0\|_{B^s_{p,r}}^q - \|M_0\|_{B^s_{p,r}}^q \ e^{2CT} > 0 \) and suppose that

\[
\forall \ t \in [0, T], \ \|M^n\|_{B^s_{p,r}} \leq \frac{\|M_0\|_{B^s_{p,r}} e^{2CT}}{(1 + \|M_0\|_{B^s_{p,r}}^q - \|M_0\|_{B^s_{p,r}}^q \ e^{2CT})}.
\]

Plugging the above inequality into (3.7) and using (3.8) yield

\[
\|M^{n+1}(t)\|_{B^s_{p,r}} \leq \|M_0\|_{B^s_{p,r}} e^{2CT}.
\]

Therefore, \((M^n)_{n \in \mathbb{N}} \) is bounded in \(L^\infty(0, T; B^s_{p,r}) \).

Third step: convergence.

Similar to the proof of (3.5), we have, for \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \) and \(s \neq 2 + \frac{1}{p} \),

\[
\|(M^{n+m+1} - M^{n+1})(t)\|_{B^s_{p,r}}^{-1} \leq \int_0^t \|(M^{n+m} - M^n)(\tau)\|_{B^s_{p,r}}^{-1} \|M^n(\tau)\|_{B^s_{p,r}}^q + \|M^{n+1}(\tau)\|_{B^s_{p,r}}^q + \|M^{n+m}(\tau)\|_{B^s_{p,r}}^q + 1 d\tau \\
+ C \int_0^t \|(M^{n+m+1} - M^{n+1})(\tau)\|_{B^s_{p,r}}^{-1} (\|M^{n+m}(\tau)\|_{B^s_{p,r}}^q + 1) d\tau.
\]
Taking advantage of the Gronwall inequality gives
\[
\| (M^{n+m+1} - M^{n+1})(t) \|_{B^{s-1}_{p,r}}^p \\
\leq C e^{\int_0^t (\| M^{n+m} \|_{B_{p,r}^s} + 1) dt'} \int_0^{t'} e^{-C \int_0^{t'} (\| M^{n+m} \|_{B_{p,r}^s} + 1) dt'} \| (M^{n+m} - M^n)(\tau) \|_{B^{s-1}_{p,r}}^p d\tau.
\]

Since \((M^n)_{n\in\mathbb{N}}\) is bounded in \(L^\infty(0, T; B^{s-1}_{p,r})\), we finally get a constant \(C_T\), independent of \(n\) and \(m\), such that
\[
\| (M^{n+m+1} - M^{n+1})(t) \|_{B^{s-1}_{p,r}}^p \leq C_T \int_0^t \| (M^{n+m} - M^n)(\tau) \|_{B^{s-1}_{p,r}} d\tau.
\]

Finally, arguing by induction, we arrive at
\[
\| (M^{n+m+1} - M^{n+1})(t) \|_{B^{s-1}_{p,r}}^p \leq \frac{(TC_T)^{n+1}}{(n+1)!} \| M^m - M^0 \|_{L^\infty(B^{s-1}_{p,r})} \leq C_T \frac{(TC_T)^{n+1}}{(n+1)!},
\]
which implies that \((M^n)_{n\in\mathbb{N}}\) is a Cauchy sequence in \(L^\infty(0, T; B^{s-1}_{p,r})\).

For the critical case \(s = 2 + \frac{1}{p}\), from the above argument, we get that \((M^n)_{n\in\mathbb{N}}\) is a Cauchy sequence in \(L^\infty(0, T; B^{s-1-\varepsilon}_{p,r})\) with sufficiently small \(\varepsilon\). Then applying the interpolation method with uniform bounds in \(L^\infty(0, T; B^{s}_{p,r})\) obtained in the second step, we show that \((M^n)_{n\in\mathbb{N}}\) is also a Cauchy sequence in \(L^\infty(0, T; B^{s-1}_{p,r})\) for the critical case.

Final step: conclusion.

Let \(M\) be the limit of the sequence \((M^n)_{n\in\mathbb{N}}\) in \(L^\infty(0, T; B^{s-1}_{p,r})\). According to the Fatou lemma \([7,2]\), \(M\) also belongs to \(L^\infty(0, T; B^{s}_{p,r})\). It is then easy to pass to the limit in Eq. \([3.4]\) and to conclude that \(M\) is a solution of Eq. \([3.4]\). Note that \(A(U, U_x)M + B(H, H_x)M\) of Eq. \([3.4]\) also belongs to \(L^\infty(0, T; B^{s}_{p,r})\).

According to Lemma \([2,5]\) we have \(M \in C([0, T]; B^{s}_{p,r})\) if \(r < \infty\), or \(M \in \left(\bigcap_{s' < s} C([0, T]; B^{s'}_{p,r}) \right)\), if \(r = \infty\).

Again using the equation, we see that \(M_t \in C([0, T]; B^{s-1}_{p,r})\) if \(r < \infty\), or \(M_t \in \left(\bigcap_{s' < s} C([0, T]; B^{s'-1}_{p,r}) \right)\), if \(r = \infty\). This completes the proof of Theorem \([3.1]\). \(\square\)

3.2. A continuation criterion

In this subsection, we state a continuation criterion for Eq. \([3.1]\).

Theorem 3.2. Let \(M_0 \in B^{s}_{p,r}\) with \(1 \leq p, r \leq \infty\), \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\}\), and \(T > 0\) be the maximal existence time of the corresponding solution \(M\) to Eq. \([3.1]\). If \(T\) is finite, then we have
\[
\int_0^T \| M(\tau) \|_{L^\infty}^q d\tau = \infty,
\]
where \(q = \max\{1, 2\} \ (l\ is\ the\ polynomial\ order\ of\ H)\).
We now consider the case $1 < p < \infty$.

Step 1. If $\sigma > 1$, then we claim that

\begin{equation}
\|M\|_{L^p_T(B_{\sigma,r}^-)} < \infty, \quad \text{and} \quad \int_0^T \|M(\tau)\|_{L^\infty}^p \, d\tau < \infty \Rightarrow \|M\|_{L^p_T(B_{\sigma,r}^-)} < \infty.
\end{equation}

In fact, by using (3.9) and Lemma 2.5 with $p_1 = \infty$ and

\[
V'_{p_1}(t) = \|\partial_x H\|_{B_{\sigma,r}^-} \leq \|\partial_x H\|_{B_{\sigma,r}^-} \leq \|U\|_{B_{\sigma,r}^-}^t + \|U_x\|_{B_{\sigma,r}^-}^t + \|U_{xx}\|_{B_{\sigma,r}^-}^t \leq \|M\|_{B_{\sigma,r}^-}^t,
\]

we have

\[
\|M(t)\|_{B_{\sigma,r}^-} \leq \|M_0\|_{B_{\sigma,r}^-} + C \int_0^t (\|M(\tau)\|_{L^\infty}^p + 1) \|M(\tau)\|_{B_{\sigma,r}^-}^p \, d\tau.
\]

Hence, the Gronwall lemma gives

\[
\|M(t)\|_{B_{\sigma,r}^-} + 1 \leq (\|M_0\|_{B_{\sigma,r}^-} + 1) e^{C \int_0^t (\|M(\tau)\|_{L^\infty}^p + 1) \|M(\tau)\|_{B_{\sigma,r}^-}^p \, d\tau},
\]

which implies

\[
\|M\|_{L^p_T(B_{\sigma,r}^-)} < \infty, \quad \text{and} \quad \int_0^T \|M(\tau)\|_{L^\infty}^p \, d\tau < \infty \Rightarrow \|M\|_{L^p_T(B_{\sigma,r}^-)} < \infty.
\]

If $\sigma - 1 + 1/p > 1$, then repeat the above process. Clearly, this process stops within a finite number of steps.

Our claim (3.10) is guaranteed.

Step 2. If $\sigma = 1$, then by using (3.9) and Lemma 2.5 with $p_1 = p$ and

\[
V'_{p_1}(t) = \|\partial_x H\|_{B_{\sigma,r}^-} \leq \|U\|_{B_{1,\infty}}^t + \|U_x\|_{B_{1,\infty}}^t + \|U_{xx}\|_{B_{1,\infty}}^t,
\]

we have

\[
\|M(t)\|_{B_{1,r}^-} \leq \|M_0\|_{B_{1,r}^-} + C \int_0^t (\|M(\tau)\|_{L^\infty}^p + 1) \|M(\tau)\|_{B_{1,r}^-}^p \, d\tau.
\]

Hence, the Gronwall lemma gives

\[
\|M(t)\|_{B_{1,r}^-} + 1 \leq (\|M_0\|_{B_{1,r}^-} + 1) e^{C \int_0^t (\|M(\tau)\|_{L^\infty}^p + 1) \|M(\tau)\|_{B_{1,r}^-}^p \, d\tau},
\]

which implies

\[
\|M\|_{L^p_T(B_{1,r}^-)} < \infty, \quad \text{and} \quad \int_0^T \|M(\tau)\|_{L^\infty}^p \, d\tau < \infty \Rightarrow \|M\|_{L^p_T(B_{1,r}^-)} < \infty.
\]
\[\|M\|_{L^p(B_{p,r})}^q \leq \|M\|_{B_{p,r}}^q + \|M\|_{L^\infty}^q \]

we have
\[\|M(t)\|_{B_{p,r}} \leq \|M_0\|_{B_{p,r}} + C \int_0^t (\|M(\tau)\|_{L^\infty}^q + 1) \|M(\tau)\|_{B_{p,r}}^q + 1) d\tau \\
+ C \int_0^t (\|M\|_{B_{p,r}}^q + \|M\|_{L^\infty}^q + 1) \|M(\tau)\|_{B_{p,r}} d\tau. \]

Hence, the Gronwall lemma gives
\[\|M(t)\|_{B_{p,r}} + 1 \leq (\|M_0\|_{B_{p,r}} + 1)e^{C \int_0^t (\|M(\tau)\|_{L^\infty}^q + 1) \|M(\tau)\|_{B_{p,r}}^q + 1) d\tau}, \]

which implies
\[(3.11) \quad \|M\|_{L^p(B_{p,r})}^q < \infty \text{ and } \int_0^T \|M(\tau)\|_{L^\infty}^q d\tau < \infty \Rightarrow \|M\|_{L^p(B_{p,r})} < \infty. \]

Step 3. If \(\sigma \in (0,1) \), applying Lemma 2.3 with \(p_1 = \infty \) and
\[V_{p_1}(t) = \|\partial_x H\|_{B_{\infty,\infty}} \leq \|\partial_x H\|_{L^\infty} \leq \|U\|_{L^\infty}^2 + \|U_x\|_{L^\infty}^2 + \|U_{xx}\|_{L^\infty} \leq \|M\|_{L^\infty}^2 + 1, \]

we have
\[\|M(t)\|_{B_{p,r}} \leq \|M_0\|_{B_{p,r}} + C \int_0^t (\|M(\tau)\|_{L^\infty}^q + 1) \|M(\tau)\|_{B_{p,r}}^q + 1) d\tau \\
+ C \int_0^t (\|M\|_{L^\infty}^q + 1) \|M(\tau)\|_{B_{p,r}} d\tau. \]

Hence, the Gronwall lemma gives
\[\|M(t)\|_{B_{p,r}} + 1 \leq (\|M_0\|_{B_{p,r}} + 1)e^{C \int_0^t (\|M(\tau)\|_{L^\infty}^q + 1) d\tau}, \]

which implies
\[(3.12) \quad \int_0^T \|M(\tau)\|_{L^\infty}^q d\tau < \infty \Rightarrow \|M\|_{L^p(B_{p,r})} < \infty. \]

Therefore, for all \(s > \max\{1 - \frac{1}{p}, \frac{1}{p_1}\} \), if \(T < \infty \), and \(\int_0^T \|M(\tau)\|_{L^\infty}^q d\tau < \infty \), then we have \(\lim sup_{t \to T} \|M(t)\|_{B_{p,r}} < \infty. \)

The cases \(p = 1 \) and \(p = \infty \) can be treated similarly. We also have for \(s > 1 \), if \(T < \infty \), and \(\int_0^T \|M(\tau)\|_{L^\infty}^q d\tau < \infty \), then \(\lim sup_{t \to T} \|M(t)\|_{B_{p,r}} < \infty. \) For the sake of simplicity, we omit the details here.\(^1\)

\(^1\)We present a simple flow chart. For \(p = \infty \), \(\sigma > 1 \), let \(\varepsilon \in (0,1) \). \(\|M\|_{B_{\infty,\infty}}^q \) \(\geq \|\partial_x H\|_{B_{\infty,\infty}}^q \) \(\geq \|M\|_{B_{\infty,\infty}}^q \) \(\geq \|\partial_x H\|_{B_{\infty,\infty}}^q \) \(\geq \|M\|_{L^\infty}^q \) \(\geq \|M\|_{L^\infty}^q \).

For \(p = 1 \), \(\sigma > 1 \), choose \(p_1 \) such that \(1 < p_1 < \infty \) and \(\sigma > 1 + \frac{1}{p_1} \). \(\|M\|_{B_{1,1}}^q \) \(\geq \|M\|_{B_{1,1}}^q \) \(\geq \|\partial_x H\|_{B_{1,1}}^q \) \(\geq \|M\|_{L^\infty}^q \) \(\geq \|M\|_{L^\infty}^q \).
Finally, if \(\limsup_{t \to T} \| M(t) \|_{B^p_{r,r}} < \infty \), then by Theorem 3.4 we can extend the solution \(M \) beyond \(T \), which is a contradiction with the assumption of \(T \). Then we must have \(\int_0^T \| M(\tau) \|^2_{L^\infty} d\tau = \infty \). This completes the proof of the theorem.

Combining Theorem 3.1 and Theorem 3.2 we readily obtain the following corollary.

Corollary 3.1. Let \(M_0 \in B^s_{p,r} \) with \(1 \leq p, r \leq \infty \) and \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}\} \) and \(T > 0 \) be the maximal existence time of the corresponding solution \(M \) to Eq. (3.1). Then the solution \(M \) blows up in finite time if and only if \(\limsup_{t \to T} \| M(t) \|_{L^\infty} = \infty \).

Remark 3.1. Apparently, for every \(s \in \mathbb{R} \), \(B^s_{2,2} = H^s \). Theorem 3.1, Theorem 3.2 and Corollary 3.1 hold true in the corresponding Sobolev spaces \(H^s \) with \(s > \frac{1}{2} \), which recovers the corresponding results in [36] and [25] as \(N = 1 \), \(H = -\frac{1}{2}(u_1v_1 - u_{1x}v_{1x}) \) and \(N = 1 \), \(H = -\frac{1}{2}(u_1v_1 - u_{1x}v_{1x}), v = 2u \), respectively.

Remark 3.2. We pointed out that if \(N = 1 \) and \(H = -\frac{1}{2}(u_1v_1 - u_{1x}v_{1x}) \), then Theorem 3.1 improves the corresponding result in [36], where \(s > \max\{1 - \frac{1}{p}, \frac{1}{p}, \frac{1}{2}\} \) but \(s \neq 1 + \frac{1}{p} \). Besides, Theorem 3.2, which works in Besov spaces, also improves the corresponding result in [36], where the corresponding blow-up scenario works only in Sobolev spaces.

4 Global existence and blow-up phenomena for the two-component subsystems

4.1 \(N = 1, H = -\frac{1}{2}(u - u_x)(v + v_x) \)

4.1.1 A precise blow-up scenario

As mentioned in the Introduction, for \(N = 1 \) and \(H = -\frac{1}{2}(u - u_x)(v + v_x) \), Eq. (1.1) is reduced to the following system:

\[
\begin{align*}
 m_t + \frac{1}{2}((u - u_x)(v + v_x)m)_x &= 0, \\
 n_t + \frac{1}{2}((u - u_x)(v + v_x)n)_x &= 0,
\end{align*}
\]

(4.1)

where \(m = u - u_{xx} \) and \(n = v - v_{xx} \).

Consider the following initial value problem

\[
\begin{align*}
 q_t(t, x) &= \frac{1}{2}(u - u_x)(v + v_x)(t, q), \quad t \in [0, T), \\
 q(0, x) &= x, \quad x \in \mathbb{R}.
\end{align*}
\]

(4.2)
Lemma 4.1. Let $m_0, n_0 \in H^s$ ($s > \frac{1}{2}$), and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.1). Then Eq. (4.2) has a unique solution $q \in C^1([0, T] \times \mathbb{R}; \mathbb{R})$. Moreover, the mapping $q(t, \cdot)$ ($t \in [0, T]$) is an increasing diffeomorphism of \mathbb{R}, with

\begin{equation}
q_x(t, x) = \exp\left(\int_0^t \frac{1}{2}(m(v + v_x) - n(u - u_x))(\tau, q(\tau, x))d\tau\right).
\end{equation}

Proof. According to Remark 3.1, we get that $m, n \in C([0, T]; H^s) \cap C^1([0, T]; H^{s-1})$ with $s > \frac{1}{2}$, from which we deduce that $\frac{1}{2}(u - u_x)(v + v_x)$ is bounded and Lipschitz continuous in the space variable x and of class C^1 in time variable t, then the classical ODE theory ensures that Eq. (4.2) has a unique solution $q \in C^1([0, T] \times \mathbb{R}; \mathbb{R})$. Differentiating Eq. (4.2) with respect to x gives

\begin{equation}
\begin{cases}
q_{xt}(t, x) = \frac{1}{2}(m(v + v_x) - n(u - u_x))(t, q_x(t, x)), \quad t \in [0, T), \\
q_x(0, x) = 1, \quad x \in \mathbb{R},
\end{cases}
\end{equation}

which leads to (4.3). So, the mapping $q(t, \cdot)$ ($t \in [0, T]$) is an increasing diffeomorphism of \mathbb{R}. \hfill \Box

Lemma 4.2. Let $m_0, n_0 \in H^s$ ($s > \frac{1}{2}$), and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.1). Then, we have for all $t \in [0, T)$,

\begin{align}
m(t, q(t, x))q_x(t, x) &= m_0(x), \\
n(t, q(t, x))q_x(t, x) &= n_0(x).
\end{align}

Proof. Combining Eq. (4.2), Lemma 4.1 and Eq. (4.1), we have

\[
\frac{d}{dt}(m(t, q(t, x))q_x(t, x)) = \left(m(t, q) + m_x(t, q)q(t, x)\right)q_x(t, x) + m(t, q)q_{xt}(t, x) \\
= \left(m(t, q) + \frac{1}{2}(u - u_x)(v + v_x)m_x(t, q)\right)q_x(t, x) = 0.
\]

Therefore, the Gronwall inequality yields (4.5). Similar arguments lead to (4.6). This completes the proof of the lemma. \hfill \Box

The following theorem shows a precise blow-up scenario for Eq. (4.1).

Theorem 4.1. Let $m_0, n_0 \in H^s$ ($s > \frac{1}{2}$), and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.1). Then the solution (m, n) blows up in finite time if and only if

\[
\liminf_{t \to T} \inf_{x \in \mathbb{R}} (m(v + v_x) - n(u - u_x))(t, x) = -\infty.
\]

Proof. Assume that the solution (m, n) blows up in finite time T and there exists a constant C such that

\[(m(v + v_x) - n(u - u_x))(t, x) \geq -C, \quad \forall (t, x) \in [0, T) \times \mathbb{R}.\]
By (4.3) and Lemma 4.2, we have that
\[\|m(t)\|_{L^\infty} + \|n(t)\|_{L^\infty} \leq (\|m_0\|_{L^\infty} + \|n_0\|_{L^\infty}) e^{Ct}, \quad \forall t \in [0, T), \]
which contradicts to Corollary 3.1.

On the other hand, if \(\lim \inf_{t \to T} \inf_{x \in \mathbb{R}} (m(v + v_x) - n(u - u_x))(t, x) = -\infty \), then we can get
\[\lim_{t \to T} \|m(t)\|_{L^\infty} = \infty \quad \text{or} \quad \lim_{t \to T} \|n(t)\|_{L^\infty} = \infty. \]
Thus according to Corollary 3.1, the solution \((m, n)\) blows up. This completes the proof of the theorem.

4.1.2 Global existence

We now give a global existence result.

Theorem 4.2. Let \(m_0, n_0 \in H^s \) \((s > \frac{1}{2})\). Assume that \(\text{supp } m_0 \subset [b, \infty) \), \(\text{supp } n_0 \subset (-\infty, a] \), with \(a \leq b \). Then the corresponding solution \((m, n)\) to Eq.(4.1) exists globally in time.

Proof. Note that, according to Lemma 4.1, the function \(q(t, x) \) is an increasing diffeomorphism of \(\mathbb{R} \) with \(q_x(t, x) > 0 \) with respect to time \(t \). Thus \(a \leq b \) implies \(q(t, a) \leq q(t, b) \). We infer from Lemma 4.1 and Lemma 4.2 that for all \(t \in [0, T) \), we have
\[
\begin{align*}
\text{(4.7)} & \qquad \begin{cases}
m(t, x) = 0, & \text{if } x < q(t, b),
n(t, x) = 0, & \text{if } x > q(t, a).
\end{cases}
\end{align*}
\]
Noticing
\[
\begin{align*}
u(t, x) & = e^{-x} \int_{-\infty}^{x} e^{y} m(t, y) dy,
v(t, x) + v_x(t, x) & = e^{x} \int_{x}^{\infty} e^{-y} n(t, y) dy,
\end{align*}
\]
we have
\[
\begin{align*}
\text{(4.8)} & \qquad \begin{cases} u(t, x) - u_x(t, x) = 0, & \text{if } x \leq q(t, b),
v(t, x) + v_x(t, x) = 0, & \text{if } x \geq q(t, a).
\end{cases}
\end{align*}
\]
Therefore, for Eq.(4.1), \((m(v + v_x) - n(u - u_x))(t, x) = 0 \) on \(\mathbb{R} \) for all \(t \in [0, T) \). Then Theorem 4.1 implies \(T = \infty \). This proves the solution \((m, n)\) exists globally in time.

4.1.3 Blow-up phenomena

As a straight corollary of Lemma 4.1-4.2 we have the following lemma.
Lemma 4.3. Let $m_0, n_0 \in H^s$ ($s > \frac{1}{2}$), and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.7). Assume further $m_0, n_0 \in L^1$. Then we have for all $t \in [0, T)$,

$$
\|m(t)\|_{L^1} = \|m_0\|_{L^1}, \|n(t)\|_{L^1} = \|n_0\|_{L^1}.
$$

Now we derive two useful conservation laws for Eq. (4.1).

Lemma 4.4. Let $m_0, n_0 \in H^s$ with $s > \frac{1}{2}$, and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.7). Then we have that for all $t \in [0, T)$,

$$
\begin{align*}
\int_R m(v + v_x)(t, x)dx &= \int_R m_0(v_0 + v_{0x})dx, \\
\int_R n(u - u_x)(t, x)dx &= \int_R n_0(u_0 - u_{0x})dx.
\end{align*}
$$

Proof. By Eq. (4.1), we have

$$
\begin{align*}
\frac{d}{dt} \int_R m(v + v_x)(t, x)dx &= \frac{d}{dt} \int_R n(u - u_x)(t, x)dx \\
&= \int_R ((v + v_x)m_t + (u - u_x)n_t)(t, x)dx \\
&= \frac{1}{2} \int_R (u - u_x)(v + v_x)(m(v_x + v_{xx}) + n(u_x - u_{xx})(t, x)dx \\
&= \frac{1}{2} \int_R (u - u_x)(v + v_x)(m(v + v_x) - n(u - u_x))(t, x)dx \\
&= \frac{1}{2} \int_R (u - u_x)(v + v_x)\partial_x ((u - u_x)(v + v_x))(t, x)dx = 0.
\end{align*}
$$

This completes the proof of the lemma.

Lemma 4.5. Let $m_0, n_0 \in H^s$ ($s > \frac{1}{2}$), and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.7). Assume that m_0 and n_0 do not change sign. Then there exists a constant $C = C(\|v_0 + 2v_{0x}\|_{L^1}, \|(u_0 - 2u_{0x})n_0\|_{L^1}, \|u_0\|_{H^1}, \|v_0\|_{H^1})$ such that

$$
(4.9) \quad |u_x(t, x)| \leq |u(t, x)|, \quad |v_x(t, x)| \leq |v(t, x)|,
$$

$$
(4.10) \quad \|u(t)\|_{H^1} + \|v(t)\|_{H^1} \leq Ce^{Ct}, \forall t \in [0, T).
$$

Proof. One can assume without loss of generality that $m_0 \geq 0, n_0 \geq 0$ for all $x \in \mathbb{R}$. Since $m_0 \geq 0$, (4.3) and (4.5) imply that

$$
(4.11) \quad m(t, x) \geq 0, \forall (t, x) \in [0, T) \times \mathbb{R}.
$$

Noticing

$$
u(t, x) = (1 - \partial_x^2)^{-1}m(t, x) = \frac{1}{2} \int_{\mathbb{R}} e^{-|x-y|}m(t, y)dy,$$
we obtain
\[u(t, x) = \frac{e^{-x}}{2} \int_{-\infty}^{x} e^{y} m(t, y)dy + \frac{e^{x}}{2} \int_{x}^{\infty} e^{-y} m(t, y)dy, \]
and
\[u_x(t, x) = -\frac{e^{-x}}{2} \int_{-\infty}^{x} e^{y} m(t, y)dy + \frac{e^{x}}{2} \int_{x}^{\infty} e^{-y} m(t, y)dy, \]
which lead to
\begin{align*}
(4.12) & \quad u(t, x) + u_x(t, x) = e^{x} \int_{x}^{\infty} e^{-y} m(t, y)dy \geq 0, \\
(4.13) & \quad u(t, x) - u_x(t, x) = e^{-x} \int_{-\infty}^{x} e^{y} m(t, y)dy \geq 0.
\end{align*}
From the above two inequalities, we have
\begin{equation}
(4.14) \quad |u_x(t, x)| \leq u(t, x), \quad \forall (t, x) \in [0, T) \times \mathbb{R}.
\end{equation}
Similar arguments lead to
\begin{align*}
(4.15) & \quad n(t, x) \geq 0, \quad \forall (t, x) \in [0, T) \times \mathbb{R}, \\
(4.16) & \quad v(t, x) + v_x(t, x) = e^{x} \int_{x}^{\infty} e^{-y} n(t, y)dy \geq 0, \\
(4.17) & \quad v(t, x) - v_x(t, x) = e^{-x} \int_{-\infty}^{x} e^{y} n(t, y)dy \geq 0, \\
(4.18) & \quad |v_x(t, x)| \leq v(t, x), \quad \forall (t, x) \in [0, T) \times \mathbb{R}.
\end{align*}
Using Eq. (4.11), we get
\begin{align*}
\frac{1}{2} \frac{d}{dt} (\|u(t)\|_{H^1}^2 + \|v(t)\|_{H^1}^2) &= \int_{\mathbb{R}} (m_t u + n_t v)(t, x)dx \\
&= \frac{1}{2} \int_{\mathbb{R}} ((u - u_x)(v + v_x)mu_x + (u - u_x)(v + v_x)nv_x)(t, x)dx \\
&\leq \frac{1}{2} \|((u - u_x)u_x)(t)\|_{L^\infty} \|(v + v_x)m(t)\|_{L^1} + \|((v + v_x)v_x)(t)\|_{L^\infty} \|((u - u_x)m(t))\|_{L^1}.
\end{align*}
Using (4.14) and (4.18), it yields that
\begin{align*}
\|((u - u_x)u_x)(t)\|_{L^\infty} &\leq 2 \|u(t)\|_{L^\infty}^2 \leq \|u(t)\|_{H^1}^2, \\
\|((v + v_x)v_x)(t)\|_{L^\infty} &\leq 2 \|v(t)\|_{L^\infty}^2 \leq \|v(t)\|_{H^1}^2.
\end{align*}
Using Lemma 4.4 with the fact that \(m, n, u - u_x, v + v_x \geq 0\), we obtain
\[\|((v + v_x)m)(t)\|_{L^1} = \|((v + v_x)m_0)\|_{L^1}. \]
\[\| (u - u_x) n \|_{L^1} = \| (u_0 - u_{0x}) n_0 \|_{L^1}, \]

Combining the above three relations, we deduce that
\[\frac{d}{dt} (\| u(t) \|_{L^1}^2 + \| v(t) \|_{H^1}^2) \leq \frac{1}{2} (\| (v_0 + v_{0x}) m_0 \|_{L^1} + \| (u_0 - u_{0x}) n_0 \|_{L^1}) (\| u(t) \|_{H^1}^2 + \| v(t) \|_{H^1}^2). \]

Gronwall’s inequality then yields the desired inequality (4.10). This completes the proof of the lemma. \(\square \)

Lemma 4.6. Let \(m_0, n_0 \in H^s (s > \frac{1}{2}) \), and let \(T > 0 \) be the maximal existence time of the corresponding solution \((m, n)\) to Eq. (4.1). Assume further \(m_0, n_0 \in L^1 \). Set \(Q(t, x) = \frac{1}{2} (u - u_x)(v + v_x)(t, x) \). Then there exists a constant \(C = C(\| m_0 \|_{L^1}, \| n_0 \|_{L^1}) \) such that for all \(t \in [0, T) \),
\[Q(t, x) + (Q(Q_x)) (t, x) + Q_x^2 (t, x) \leq C(|m| + |n|)(t, x). \]

Proof. It is easy to deduce from Eq. (4.1) that
\[Q_x^2 (t, x) + (Q(Q_x)) (t, x) + Q_x^2 (t, x) \]
\[= (-1 - \partial_x^2)^{-1} (Q_x v + \partial_x (Q_x v_x)) m - (1 - \partial_x^2)^{-1} (\partial_x (Q_x v) + (Q_x v_x)) m \]
\[+ (1 - \partial_x^2)^{-1} (Q_x u + \partial_x (Q_x u_x)) n - (1 - \partial_x^2)^{-1} (\partial_x (Q_x u) + (Q_x u_x)) n](t, x), \]

where \(Q_x = \frac{1}{2} (m v + v_x) - n(u - u_x) \). Applying Lemma 4.3, we arrive at
\[(1 - \partial_x^2)^{-1} (Q_x v + \partial_x (Q_x v_x)) (t, x) m(t, x) \]
\[\leq \| (1 - \partial_x^2)^{-1} (Q_x v + \partial_x (Q_x v_x)) (t) \|_{L^\infty} \| m(t, x) \| \]
\[\leq \frac{1}{2} e^{-|x|} \| (Q_x (v(t)) \|_{L^1} + \| Q_x (v_x (t)) \|_{L^1}) \| m(t, x) \| \]
\[\leq C \| Q_x (t) \|_{L^1} \| v(t) \|_{L^\infty} + \| v_x (t) \|_{L^\infty} \| m(t, x) \| \]
\[\leq C (\| m(t) \|_{L^1} + \| n(t) \|_{L^1}) (\| u(t) - u_x (t) \|_{L^\infty} + \| v(t) + v_x (t) \|_{L^\infty}) \| m(t) \|_{L^\infty} + \| v_x (t) \|_{L^\infty} \| m(t, x) \| \]
\[\leq C (\| m(t) \|_{L^1} + \| n(t) \|_{L^1}) e^{-|x|} \| (m(t)) \|_{L^1} + \| n(t) \|_{L^1}) e^{-|x|} \| (m(t)) \|_{L^1} + \| n(t) \|_{L^1} \| m(t, x) \| \]
\[\leq C \| m(t, x) \| \]

Following along almost the same lines as above yields
\[\| - (1 - \partial_x^2)^{-1} (\partial_x (Q_x v) + (Q_x v_x)) (t, x) m(t, x) \|_{L^\infty} \leq C |m(t, x)|, \]
\[\| (1 - \partial_x^2)^{-1} (Q_x u - \partial_x (Q_x u_x)) (t, x) n(t, x) - (1 - \partial_x^2)^{-1} (\partial_x (Q_x u) - (Q_x u_x)) (t, x) n(t, x) \|_{L^\infty} \leq C |n(t, x)|. \]

Combining the above inequalities completes the proof of the lemma. \(\square \)
Lemma 4.7. Let $m_0, n_0 \in H^s \ (s > \frac{1}{2})$, and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.17). Assume that m_0 and n_0 do not change sign. Set $Q(t, x) = \frac{1}{2}(u - u_x)(v + v_x)(t, x)$. Then there exists a constant $C = C(||(v_0 \ominus v_0x)m_0||_{L^1}, ||(u_0 - u_0x)n_0||_{L^1}, ||u_0||_{H^1}, ||v_0||_{H^1})$ such that

\[
Q_x(t, x) + (Q(Q_x))_x(t, x) + Q_x^2(t, x) \leq Ce^{Ct}(|m| + |n|)(t, x).
\]

Proof. Applying Lemma 4.5 to the first term on the right hand side of (4.20) yields

\[
(1 - \partial^2_x)^{-1}((Q_x v) + \partial_x(Q_x v_x))(t, x)m(t, x)
\]

\[
\leq\|(1 - \partial^2_x)^{-1}((Q_x v) + \partial_x(Q_x v_x))(t)\|_{L\infty}|m(t, x)|
\]

\[
=\left[\frac{1}{2}e^{-|x|} \star \left((m(v + v_x) - n(u - u_x))v \right) \right]_{L\infty}
\]

\[
+ \left[\frac{1}{2}(\text{sign}(x)e^{-|x|}) \star \left((m(v + v_x) - n(u - u_x))v \right) \right]_{L\infty}|m(t, x)|
\]

\[
\leq C(||u - u_x||_{L\infty} + ||v + v_x||_{L\infty})(||v||_{L\infty} + ||v_x||_{L\infty})(|e^{-|x|} \star m||_{L\infty} + ||e^{-|x|} \star n||_{L\infty})|m(t, x)|
\]

\[
= C(||u - u_x||_{L\infty} + ||v + v_x||_{L\infty})(||v||_{L\infty} + ||v_x||_{L\infty})(||u||_{L\infty} + ||v||_{L\infty})|m(t, x)|
\]

\[
\leq Ce^{Ct}|m|(t, x),
\]

where we have used the fact that m, n do not change sign. The left three terms can be treated in the same way. We have

\[
-(1 - \partial^2_x)^{-1}(\partial_x(Q_x v) + (Q_x v_x)m) + (1 - \partial^2_x)^{-1}((Q_x u) - \partial_x(Q_x u_x))n
\]

\[
- (1 - \partial^2_x)^{-1}(\partial_x(Q_x u) - (Q_x u_x))n|t, x) \leq Ce^{Ct}(|m| + |n|)(t, x).
\]

Plunging the above two inequalities into (4.20) completes the proof of the lemma.

Next, we present two blow-up results.

Theorem 4.3. Let $m_0, n_0 \in H^s \ (s > \frac{1}{2})$, and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.17). Set $Q(t, x) = \frac{1}{2}(u - u_x)(v + v_x)(t, x)$. Assume that m_0 and n_0 do not change sign, and that there exists some $x_0 \in \mathbb{R}$ such that $N(0, x_0) = |m(0, x_0)| + |n(0, x_0)| > 0$ and $Q_x(0, x) = \frac{1}{2}(m_0(v_0 + v_0x) - n_0(u_0 - u_0x))(x_0) \leq a_0$, where a_0 is the unique negative solution to the following equation

\[
1 + ag\left(-\frac{a}{N(0, x_0)} \right) + N(0, x_0) \int_0^{g\left(-\frac{a}{N(0, x_0)} \right)} f(s)ds = 0,
\]

with $f(x) = e^{Cx} - 1, \ x \geq 0, g(x) = \frac{1}{b} \log(x + 1), \ x \geq 0$.

Then the solution (m, n) blows up at a time $T_0 \leq g\left(-\frac{Q_x(0, x_0)}{N(0, x_0)} \right)$.

20
Proof. In view of Lemma 4.1, we obtain that

\[Q_{x}(t, x_0) + (Q_x(x))(t, x_0) + Q_x(t, x_0) \leq C e^{C t} (|m| + |n|)(t, x_0). \]

By Lemma 4.1 and Lemma 4.2, we have

\[
\frac{d}{dt} Q_x(t, q(t, x_0)) + Q_x(t, q(t, x_0)) \leq C e^{C t} (|m| + |n|)(t, q(t, x_0)) = C e^{C t} (|m_0(x_0)| + |n_0(x_0)|) q_x^{-1}(t, x_0)
\]

which yields

\[
CN(0, x_0) e^{C t} \exp \left(\int_0^t -Q_x(\tau, q(\tau, x_0))d\tau \right),
\]

form which it follows that

\[
\frac{d}{dt} (Q_x(t, q(t, x_0)) e^{\int_0^t Q_x(\tau, q(\tau, x_0))d\tau}) \leq CN(0, x_0) e^{C t}.
\]

Integrating from 0 to \(t \) yields

\[
\frac{d}{dt} \exp \left(\int_0^t Q_x(\tau, q(\tau, x_0))d\tau \right) = Q_x(t, q(t, x_0)) \exp \left(\int_0^t Q_x(\tau, q(\tau, x_0))d\tau \right) \leq N(0, x_0)(e^{C t} - 1) + Q_x(0, x_0).
\]

Integrating again from 0 to \(t \) yields

\[
(4.22) \quad (e^{\int_0^t \inf \{Q_x(\tau, x_0)\}d\tau} \leq \exp \left(\int_0^t Q_x(\tau, q(\tau, x_0))d\tau \right) \leq N(0, x_0) \int_0^t (e^{C s} - 1)ds + Q_x(0, x_0)t + 1.
\]

Next, we consider the following function

\[F(a, t) = 1 + at + N(0, x_0) \int_0^t f(s)ds, a \leq 0, \]

where \(f(x) = e^{C x} - 1, \ x \geq 0 \). It is easy to see that

\[
\min_{t \geq 0} F(a, t) = F(a, g(-\frac{a}{N(0, x_0)})) = 1 + ag(-\frac{a}{N(0, x_0)}) + N(0, x_0) \int_0^{g(-\frac{a}{N(0, x_0)})} f(s)ds \leq G(a),
\]

where \(g(x) = \frac{1}{C} \log(x + 1), \ x \geq 0, \) is the inverse function of \(f \). Differentiating \(G(a) \) with respect to \(a \), we obtain

\[
\frac{d}{da} G(a) = g(-\frac{a}{N(0, x_0)}) - g'(-\frac{a}{N(0, x_0)}) \frac{a}{N(0, x_0)} + g'(-\frac{a}{N(0, x_0)}) \frac{a}{N(0, x_0)} N(0, x_0) \frac{a}{N(0, x_0)}
\]

\[
= g(-\frac{a}{N(0, x_0)}) > 0, \ a < 0.
\]

Notice that

\[
\lim_{a \to -\infty} g(-\frac{a}{N(0, x_0)}) = +\infty.
\]

Thus, we deduce that

\[
\lim_{a \to -\infty} G(a) = -\infty,
\]

21
which, together with that fact that $G(0) = 1$ and the continuity of G, yields that there exists a unique $a_0 < 0$ satisfies $G(a_0) = 0$. Therefore, $G(a) \leq 0$ if $a \leq a_0$. Combining this with (4.22), if $Q_x(0, x_0) \leq a_0$, we may find a time $0 < T_0 \leq g(-\frac{Q_x(0, x_0)}{N(0, x_0)})$ such that

$$e^{\int_0^t \inf_{x \in \mathbb{R}} Q_x(\tau, x)\,d\tau} \to 0, \text{ as } t \to T_0,$$

which, implies that

$$\lim_{t \to T_0} \inf_{x \in \mathbb{R}} Q_x(t, x) \to -\infty, \text{ as } t \to T_0.$$

Therefore, in view of Theorem 3.11 we conclude that the solution (m, n) blows up at the time T_0.

Theorem 4.4. Let $m_0, n_0 \in H^s$ $(s > \frac{1}{2})$, and let $T > 0$ be the maximal existence time of the corresponding solution (m, n) to Eq. (4.1). Set $Q(t, x) = \frac{1}{2}(u - u_x)(v + v_x)(t, x)$. Assume that $m_0, n_0 \in L^1$, and that there exists some $a_0 \in \mathbb{R}$ such that $N(0, x_0) = |m_0(x_0)| + |n_0(x_0)| > 0$ and $Q_x(0, x_0) = \frac{1}{2}(m_0(v_x + v_0) - n_0(u_x - u_0))(x_0) \leq -(2CN(0, x_0))^\frac{1}{2}$. Then there exists a constant $C = C(\|m_0\|_{L^1}, \|n_0\|_{L^1})$ such that the solution (m, n) blows up at a time $T_0 \leq \frac{-Q_x(0, x_0)}{CN(0, x_0)}$.

Proof. In view of Lemma 4.6 we obtain that

$$Q_x(t, x) + (Q(Q_x)_x)(t, x) + Q_x^2(t, x) \leq C(|m| + |n|)(t, x).$$

By Lemma 4.1 and Lemma 4.2 we have

$$\frac{d}{dt}Q_x(t, q(t, x)) + Q_x^2(t, q(t, x)) \leq C(|m| + |n|)(t, q(t, x)) = C(|m_0(x)| + |n_0(x)|)q_x^{-1}(t, x)$$

$$= CN(0, x)\exp\left(\int_0^t -\frac{1}{2}(m(v - v_x) - n(u - u_x))(\tau, q(\tau, x))\,d\tau\right)$$

$$= CN(0, x)\exp\left(\int_0^t -Q_x(\tau, q(\tau, x))\,d\tau\right),$$

form which it follows that

$$\frac{d}{dt}(Q_x(t, q(t, x))\exp(\int_0^t Q_x(\tau, q(\tau, x))\,d\tau)) \leq CN(0, x).$$

Integrating from 0 to t yields

$$\frac{d}{dt}\exp(\int_0^t Q_x(\tau, q(\tau, x))\,d\tau) = Q_x(t, q(t, x))\exp(\int_0^t Q_x(\tau, q(\tau, x))\,d\tau) \leq CN(0, x)t + Q_x(0, x).$$

Integrating again from 0 to t yields

$$(e^{\int_0^t \inf_{x \in \mathbb{R}} Q_x(\tau, x)\,d\tau}) \exp(\int_0^t Q_x(\tau, q(\tau, x))\,d\tau) \leq \frac{1}{2}CN(0, x)t^2 + Q_x(0, x)t + 1.$$
Hence, if there exists some \(x_0 \in \mathbb{R} \) such that \(N(0, x_0) > 0 \) and \(Q_x(0, x_0) \leq -(2CN(0, x_0))^{1/2} \), then we may find a time \(0 < T_0 \leq -\frac{Q_x(0, x_0)}{CN(0, x_0)} \) such that

\[
e^{-\int_{t_0}^t \inf_{x \in \mathbb{R}} Q_x(\tau, x) d\tau} \to 0, \quad as \ t \to T_0,
\]

which implies that

\[
\lim \inf \inf_{t \to T} \inf_{x \in \mathbb{R}} Q_x(t, x) \to -\infty, \quad as \ t \to T_0.
\]

Therefore, in view of Theorem 4.1, we conclude that the solution \((m, n)\) blows up at the time \(T_0\). \(\square\)

Remark 4.1. We mention that, if \(v = 2u\), Theorem 4.3 is same as Theorem 5.2 and Theorem 5.3 in [25], while Theorem 4.4 represents a new blow-up result for Eq. (1.5).

4.2 \(N = 1, H = -\frac{1}{2}(uv - u_xv_x)\)

4.2.1 A precise blow-up scenario

For \(N = 1\) and \(H = -\frac{1}{2}(uv - u_xv_x)\), Eq. (4.23) is reduced to the following system:

\[
\begin{cases}
m_t + \frac{1}{2}((uv - u_xv_x)m)_x - \frac{1}{2}(uv_x - vu_x)m = 0, \\
n_t + \frac{1}{2}((uv - u_xv_x)n)_x + \frac{1}{2}(uv_x - vu_x)n = 0, \\
(m, n)|_{t=0} = (m_0, n_0),
\end{cases}
\]

(4.23)

where \(m = u - u_{xx}\) and \(n = v - v_{xx}\).

Along the same lines as the proof of Lemma 4.1-4.2 and Theorem 4.1, we can obtain the following results.

Lemma 4.8. Let \(m_{10}, m_{20} \in H^s (s > \frac{1}{2})\), and let \(T > 0\) be the maximal existence time of the corresponding solution \(M = (m_1, m_2)\) to Eq. (4.23). Then the following system

\[
q_t(t, x) = \frac{1}{2}(uv - u_xv_x)(t, q), \quad t \in [0, T),
\]

\[
q(0, x) = x, \quad x \in \mathbb{R}.
\]

(4.24)

has a unique solution \(q \in C^1([0, T] \times \mathbb{R}; \mathbb{R})\). Moreover, the mapping \(q(t, \cdot) \) \((t \in [0, T])\) is an increasing diffeomorphism of \(\mathbb{R}\), with

\[
q_x(t, x) = \exp\left(\int_0^t \frac{1}{2}(mv_x + nu_x)(\tau, q(\tau, x)) d\tau\right).
\]

(4.25)
Lemma 4.9. Let \(m_{10}, m_{20} \in H^s \) (s > \(\frac{1}{2} \)), and let \(T > 0 \) be the maximal existence time of the corresponding solution \(M = (m_1, m_2) \) to Eq. (4.17). Then, we have for all \(t \in [0, T) \),

\[
\begin{align*}
&4.2.2 \text{ Blow-up phenomena} \\
\text{Lemma 4.9.} \quad \text{Let} \quad m_{10}, m_{20} \in H^s \quad \text{(s > \(\frac{1}{2} \))}, \quad \text{and let} \quad T > 0 \quad \text{be the maximal existence time of the corresponding solution} \quad M = (m_1, m_2) \quad \text{to Eq. (4.17)}. \quad \text{Then, we have for all} \quad t \in [0, T),
\end{align*}
\]

\[
(4.26) \quad m(t, q(t, x))q_x(t, x) = m_0(x)\exp\left(\frac{1}{2} \int_0^t (uv_x - vu_x)(\tau, q(\tau, x))d\tau \right),
\]

\[
(4.27) \quad n(t, q(t, x))q_x(t, x) = n_0(x)\exp\left(-\frac{1}{2} \int_0^t (uv_x - vu_x)(\tau, q(\tau, x))d\tau \right).
\]

Theorem 4.5. Let \(m_0, n_0 \in H^s \) (s > \(\frac{1}{2} \)), and let \(T > 0 \) be the maximal existence time of the corresponding solution \((m, n) \) to Eq. (4.23). Then, the solution \((m, n) \) blows up in finite time if and only if

\[
\lim_{t \to T} \inf_{x \in \mathbb{R}} ((mv_x + nu_x))(t, x) = -\infty \quad \text{or} \quad \lim_{t \to T} \sup_{t \in \mathbb{R}} \|(uv_x - vu_x)(t, \cdot)\|_{L^\infty} = +\infty.
\]

4.2.2 Blow-up phenomena

Now we derive four useful conservation laws for Eq. (4.23).

Lemma 4.10. Let \(m_0, n_0 \in H^s \) with \(s > \frac{1}{2} \), and let \(T > 0 \) be the maximal existence time of the corresponding solution \((m, n) \) to Eq. (4.23). Then, we have for all \(t \in [0, T), \)

\[
\int_{\mathbb{R}} (mv_x)(t, x)dx = \int_{\mathbb{R}} m_0v_0dx, \quad \int_{\mathbb{R}} (nu_x)(t, x)dx = \int_{\mathbb{R}} n_0u_0dx,
\]

\[
\int_{\mathbb{R}} (mv)(t, x)dx = \int_{\mathbb{R}} m_0v_0dx, \quad \int_{\mathbb{R}} (nu)(t, x)dx = \int_{\mathbb{R}} n_0u_0dx.
\]

Proof. By Eq. (4.17), we have

\[
\begin{align*}
&\frac{d}{dt} \int_{\mathbb{R}} (mv_x)(t, x)dx = \frac{d}{dt} \int_{\mathbb{R}} (-nu_x)(t, x)dx \\
&= \int_{\mathbb{R}} (v_xm_t - u_xn_t)(t, x)dx \\
&= \frac{1}{2} \int_{\mathbb{R}} (uv_x - u_xv_x)(mv_x - nu_x - uv_x + vu_x)(v_xm + u_xn)dx \\
&= \frac{1}{2} \int_{\mathbb{R}} \partial_x((uv - u_xv_x)(uv_x - vu_x))(t, x)dx = 0,
\end{align*}
\]

and

\[
\begin{align*}
&\frac{d}{dt} \int_{\mathbb{R}} (mv)(t, x)dx = \frac{d}{dt} \int_{\mathbb{R}} (nu)(t, x)dx = \int_{\mathbb{R}} (m_tv + n_tu)(t, x)dx \\
&= \frac{1}{2} \int_{\mathbb{R}} ((uv - u_xv_x)(mv_x + nu_x) + (uv_x - vu_x)(mv - nu))(t, x)dx \\
&= \frac{1}{2} \int_{\mathbb{R}} ((uv - u_xv_x)\partial_x(uv - u_xv_x) - (uv_x - vu_x)\partial_x(uv_x - vu_x))(t, x)dx = 0.
\end{align*}
\]

This completes the proof of the lemma.
Lemma 4.11. Let \(m_0, n_0 \in H^s \) \((s > \frac{1}{2})\), and let \(T > 0 \) be the maximal existence time of the corresponding solution \((m, n)\) to Eq. (4.23). Assume that \(m_0 \) and \(n_0 \) do not change sign. Then there exists a constant

\[C = C(\|v_0 x m_0\|_{L^1}, \|v_0 m_0\|_{L^1}, \|u_0 x n_0\|_{L^1}, \|u_0 n_0\|_{L^1}, \|u_0\|_{H^1}, \|v_0\|_{H^1}) \]

such that

\begin{align*}
\|u(t)\|_{H^1} + \|v(t)\|_{H^1} &\leq C e^{Ct}, \forall t \in [0, T).
\end{align*}

Proof. Without loss of generality, we assume that \(m_0 \geq 0, n_0 \geq 0 \). Repeating the arguments that were used in Lemma 4.10, we get that the inequalities (4.11)-(4.18) still hold true here. Next, according to Lemma 4.10 with \(m, u + u x, n, v - v x \geq 0 \), we obtain

\begin{align*}
\| (mv_x)(t) \|_{L^1} &\leq \| (m(v - v x))(t) \|_{L^1} + \| (mv)(t) \|_{L^1} \\
&= \int_{\mathbb{R}} (m(v - v x))(t, x) dx + \int_{\mathbb{R}} (mv)(t, x) dx \\
&= 2 \int_{\mathbb{R}} (mv)(t, x) dx - \int_{\mathbb{R}} mv_v(t, x) dx \\
&\leq 2\| (m_0 v_0) \|_{L^1} + \| (m_0 v_0 x) \|_{L^1}.
\end{align*}

Finally, form Eq. (4.28), we have

\[\frac{1}{2} \frac{d}{dt} (\|u(t)\|_{H^1}^2 + \|v(t)\|_{H^1}^2) = \int_{\mathbb{R}} (m u + u x v)(t, x) dx \\
= \frac{1}{2} \int_{\mathbb{R}} ((uv - u_x v_x) m u_x + (w_v - v u_x) m u) \\
+ (u v - u_x v_x) n u_x - (w v - v u_x) n v)(t, x) dx \\
= \frac{1}{2} \int_{\mathbb{R}} (u^2 - u_x^2) v u_x + (u^2 - v_x^2) u x x)(t, x) dx \\
\leq \frac{1}{2} (\| (u^2 - u_x^2)(t) \|_{L^\infty} \| (mv)(t) \|_{L^1} + \| (v^2 - v_x^2)(t) \|_{L^\infty} \| (nu)(t) \|_{L^1} \\
\leq C (\| u(t) \|_{H^1}^2 + \| v(t) \|_{H^1}^2).
\]

Then the Gronwall lemma yields the desired inequality (4.29). This completes the proof of the lemma. \(\square \)

Theorem 4.6. Let \(m_0, n_0 \in H^s \) \((s > \frac{1}{2})\), and let \(T > 0 \) be the maximal existence time of the corresponding solution \((m, n)\) to Eq. (4.23). Set \(Q(t, x) = \frac{1}{2} (uv - u x v_x)(t, x) \). Assume that \(m_0, n_0 \) do not change sign, and that there exists some \(x_0 \in \mathbb{R} \) such that \(N(0, x_0) = |m(0, x_0)| + |n(0, x_0)| > 0 \) and \(Q_x(0, x_0) = \frac{1}{2} (m_0 v_{0x} + n_0 u_{0x})(x_0) \leq a_0 \), where \(a_0 \) is the unique negative solution to the following equation

\[1 + a g(-\frac{a}{N(0, x_0)}) + N(0, x_0) \int_0^{g(-\frac{a}{N(0, x_0)})} f(s) ds = 0, \]

with \(f(x) = \exp(e^{C_x} - 1), x \geq 0, g(x) = \frac{1}{e} \log \left(\log(x + 1) + 1 \right), x \geq 0. \)

Then the solution \((m, n)\) blows up at a time \(T_0 \leq g(-\frac{Q_x(0, x_0)}{N(0, x_0)}) \).
Proof. It follows from Eq. (4.23) that

\[
Q_{xt} + Q(Q_x)_x + Q_x^2 \\
= -(1 - \partial_x^2)^{-1} (\partial_x (Q_x u) + (Q_x u_x - u_x v_x) m) n \\
- (1 - \partial_x^2)^{-1} (\partial_x (Q_x v) + (Q_x v_x + u_x v_x) m) n \\
+ \frac{1}{2} (uv_x - vu_x) (mv_x - nu_x).
\]

Using Lemma 4.11 and following along the same lines as the proof of Lemma 4.7, we obtain that

\[
Q_{xt}(t,x_0) + (Q(0)_{x})_x(t,x_0) + Q_x^2(t,x_0) \leq Ce^{Ct}(|m| + |n|)(x_0).
\]

By Lemma 4.9 we get

\[
\frac{d}{dt} Q_x(t,q(t,x_0)) + Q_x^2(t,q(t,x_0)) \leq Ce^{Ct}(|m| + |n|)(t,q(t,x_0)) \\
\leq Ce^{Ct} N(0,x_0) \exp \left(\int_0^t - \frac{1}{2} (m(v + v_x) - n(u - u_x)) (\tau, q(\tau, x_0)) d\tau \right) \exp \left(\frac{1}{2} \int_0^t \| (uv_x - vu_x)(\tau) \|_{L^\infty} d\tau \right) \\
= Ce^{Ct} N(0,x_0) \exp \left(\int_0^t - Q_x(\tau, q(\tau, x_0)) d\tau \right) \exp \left(\frac{1}{2} \int_0^t \| (uv_x - vu_x)(\tau) \|_{L^\infty} d\tau \right).
\]

Again using Lemma 4.11 we have

\[
\exp \left(\frac{1}{2} \int_0^t \| (uv_x - vu_x)(\tau) \|_{L^\infty} d\tau \right) \leq \exp (C \int_0^t e^{C\tau} d\tau) = \exp(e^{Ct} - 1),
\]

from which it follows that

\[
\frac{d}{dt} (Q_x(t,q(t,x_0))) \exp \left(\int_0^t Q_x(\tau, q(\tau, x_0)) d\tau \right) \leq Ce^{Ct} \exp(e^{Ct} - 1) N(0,x_0).
\]

Integrating from 0 to t yields

\[
\frac{d}{dt} e^{\int_0^t Q_x(\tau, q(\tau, x_0)) d\tau} = e^{\int_0^t Q_x(\tau, q(\tau, x_0)) d\tau} Q_x(t,q(t,x_0)) \leq Q_x(0,x_0) + N(0,x_0) \int_0^t \exp(e^{C\tau} - 1) Ce^{C\tau} d\tau \\
= Q_x(0,x_0) + N(0,x_0)(\exp(e^{Ct} - 1) - 1).
\]

Integrating again from 0 to t yields

\[
(4.32) \quad (e^{\int_0^t Q_x(\tau, x_0) d\tau} \leq) e^{\int_0^t Q_x(\tau, q(\tau, x_0)) d\tau} \leq 1 + Q_x(0,x_0) t + N(0,x_0) \int_0^t (\exp(e^{C\tau} - 1) - 1) d\tau.
\]

Next, following along almost the same lines as in the proof of Lemma 4.8 with \(f(x) = \exp(e^{Cx} - 1), \) \(x \geq 0 \) and \(g(x) = C \log (\log(x + 1) + 1), \) \(x \geq 0, \) completes the proof of the theorem. \(\square \)

Remark 4.2. We mention that Theorem 4.6 is an improvement of Theorem 4.3 in [36]. Firstly, in [36] the authors assumed that \(\| u \|_{L^\infty}, \| v \|_{L^\infty} \leq Ce^{Ct}, \) while in our paper, \(\| u \|_{L^\infty}, \| v \|_{L^\infty} \leq Ce^{Ct} \) is ensured by Lemma 4.11. Secondly, in [36] \(x_0 \) is required to satisfy an additional restriction: \(Q_x(0,x_0) = \inf_{x \in \mathbb{R}} Q_x(0,x). \) Finally, \(a_0 \) in our result is more explicit and accurate than that in [36].

26
Acknowledgements. This work was partially supported by NNSFC (No.11271382), RFDP (No. 20120171110014), and the key project of Sun Yat-sen University.

References

[1] M. S. Alber, R. Camassa, D. D. Holm, Marsden and E. Jerrold, *The geometry of peaked solitons and billiard solutions of a class of integrable PDEs*, Letters in Mathematical Physics, **32**(2) (1994), 137-151.

[2] H. Bahouri, J.-Y. Chemin and R. Danchin, *Fourier Analysis and Nonlinear Partial Differential Equations*, Grundlehren der Mathematischen Wissenschaften, Vol. 343. New York: Springer-Verlag 2011.

[3] A. Bressan and A. Constantin, *Global conservative solutions of the Camassa-Holm equation*, Archive for Rational Mechanics and Analysis, **183**(2) (2007), 215-239.

[4] R. Camassa and D. D. Holm, *An integrable shallow water equation with peaked solitons*, Physical Review Letters, **71**(11) (1993), 1661-1664.

[5] A. Constantin, *Global existence of solutions and breaking waves for a shallow water equation: a geometric approach*, Annales de l’Institut Fourier, 50 (2000), 321-362.

[6] A. Constantin, *On the scattering problem for the Camassa-Holm equation*, Proceedings of The Royal Society of London. Series A, **457** (2001), 953-970.

[7] A. Constantin, *The hamiltonian structure of the Camassa-Holm equation*, Expositiones Mathematicae, **15**(1) (1997), 53-85.

[8] A. Constantin and J. Escher, *Global existence and blow-up for a shallow water equation*, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV, **26**(2) (1998), 303-328.

[9] A. Constantin and J. Escher, *Global weak solutions for a shallow water equation*, Indiana University Mathematics Journal, **47**(2) (1998), 1527-1545.

[10] A. Constantin and J. Escher, *Wave breaking for nonlinear nonlocal shallow water equations*, Acta Mathematica **181**(2) (1998), 229-243.
[11] A. Constantin and J. Escher, *Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation*, Communications on Pure and Applied Mathematics, 51(5) (1998), 475-504.

[12] A. Constantin and H. P. McKean, *A shallow water equation on the circle*, Communications on Pure and Applied Mathematics, 52(8) (1999), 949-982.

[13] A. Constantin and L. Molinet, *Global weak solutions for a shallow water equation*, Communications in Mathematical Physics 211(1) (2000), 45-61.

[14] A. Constantin, W. A. Strauss, *Stability of the Camassa-Holm solitons*, Journal of Nonlinear Science, 12(4) (2002), 415-422.

[15] A. Constantin, W. A. Strauss, *Stability of peakons*, Communications on Pure and Applied Mathematics, 53, (2000), 603-610.

[16] C. S. Cao, D. D. Holm and E. S. Titi, *Traveling wave solutions for a class of onedimensional nonlinear shallow water wave models*, Journal of Dynamics and Differential Equations, 16 (2004), 167-178.

[17] H. H. Dai, *Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod*, Acta Mechanica, 127(1-4) (1998), 193-207.

[18] R. Danchin, *A few remarks on the Camassa-Holm equation*, Differential Integral Equations, 14(8) (2001), 953-988.

[19] J. Escher and Z. Yin, *Initial boundary value problems for nonlinear dispersive wave equations*, Journal of Functional Analysis, 256(2) (2009), 479C508.

[20] J. Escher and Z. Yin, *Initial boundary value problems of the Camassa-Holm equation*, Communications in Partial Differential Equations, 33(1-3) (2008), 377C395.

[21] A. Fokas, *On a class of physically important integrable equations*, Physica D, 87(1-4) (1995), 145-150.

[22] A. Fokas and B. Fuchssteiner, *Symplectic structures, their Bäcklund transformation and hereditary symmetries*, Physica D, 4(1) (1981/82), 47-66.

[23] Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, *On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity*, Journal of Differential Equations, 255(7) (2013), 1905-1938.
[24] B. Fuchssteiner, *Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation*, Physica D, 95 (1996), 229-243.

[25] G. L. Gui, Y. Liu, P. J. Olver and C. Z. Qu, *Wave-breaking and peakons for a modified Camassa-Holm equation*, Communications in Mathematical Physics, 319(3) (2013), 731-759.

[26] Y. Li and P. Olver, *Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation*, Journal of Differential Equations, 162(1) (2000), 27-63.

[27] Y. Liu, *Global existence and blow-up solutions for a nonlinear shallow water equation*, Mathematische Annalen, 335(3) (2006), 717-735.

[28] P. J. Olver and P. Rosenau, *Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support*, Physical Review E, 53(2) (1996), 1900-1906.

[29] Z. J. Qiao, *A new integrable equation with cuspons and W/M-shape-peaks solitons*, Journal of mathematical physics, 47(11) (2006), 112701-112900.

[30] Z. J. Qiao and B. Q. Xia, *Integrable peakon systems with weak kink and kink-peakon interactional solutions*, Frontiers of Mathematics in China, 8(5) (2013), 1185-1196.

[31] G. Rodriguez-Blanco, *On the Cauchy problem for the Camassa-Holm equation*, Nonlinear Analysis, 46(3) (2001), 309-327.

[32] J. F. Song, C. Z. Qu and Z. J. Qiao, *A new integrable two-component system with cubic nonlinearity*, Journal of Mathematical Physics, 52(1) (2011), 013503.

[33] B. Q. Xia and Z. J. Qiao, *A new two-component integrable system with peakon and weak kink solutions*, Preprint arXiv: /1211.5727v3.pdf

[34] B. Q. Xia and Z. J. Qiao, *Integrable multi-component Camassa-Holm system*, Preprint arXiv: /1310.0268.pdf

[35] Z. Xin and P. Zhang, *On the weak solutions to a shallow water equation*, Communications on Pure and Applied Mathematics 53(11) (2000), 1411-1433.

[36] K. Yan, Z. Qiao, and Z. Yin, *Qualitative analysis for a new integrable two-component Camassa-Holm system with peakon and weak kink solutions*, to appear in Communications in Mathematical Physics, 2014.