Toward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical Trials

Ting Ye
Department of Biostatistics
University of Washington

Joint work with Jun Shao, Yanyao Yi, Qingyuan Zhao
Outline

• Covariate adjustment at the design and analysis stages
• Adjustment using linear working models
• Time-to-event outcomes
• Summary

Important: All the results in this talk hold without assuming the models are correct!
Why adjusting for covariates?

EMA (2015) guideline

“Balance of treatment groups with respect to one or more specific prognostic covariates can enhance the credibility of the results of the trial”

FDA (2021) guidance

“Incorporating prognostic baseline factors in the primary statistical analysis of clinical trial data can result in a more efficient use of data to demonstrate and quantify the effects of treatment with minimal impact on bias or the Type I error rate”

➢ At the design stage:
 covariate-adaptive randomization
 • balance across baseline covariates to gain credibility and efficiency

➢ At the analysis stage:
 model-assisted approach
 • more efficient use of data under the same assumption required by the unadjusted analysis
Design stage: covariate-adaptive randomization

Simple Randomization (SR):
Treatment assignments are completely random

Covariate-Adaptative Randomization (CAR, also known as restricted randomization):
Balance treatment assignments across discrete baseline covariates (stratification variables)

- Example: Pocock-Simon’s minimization, stratified urn design, stratified biased coin, stratified permuted-block randomization

![Randomization Diagram](image-url)
Covariate adjustment in the analysis stage is a statistical method with high potential to improve precision for many trials.

- **Pre-planned** adjustment for baseline variables when estimating the treatment effect.
- **Target parameter** is the same as when using unadjusted method (e.g., difference in means).
- **Goal** is to avoid making any model assumption beyond what’s assumed for the unadjusted method, i.e., robustness to model misspecification (FDA 2021).

(e.g., Koch et al. 1998; Yang and Tsiatis, 2001; Rubin and van der Laan, 2008; Tsiatis, 2008; Lin, 2013; Bugni, 2018; Ye and Shao, 2020; Ye et al. 2022)
Example: analysis of covariance (ANCOVA)

- Primary endpoint Y: continuous or binary
- Target parameter: $E(Y|A = 1) - E(Y|A = 0)$
- Estimator: $\hat{\theta}$ from fitting a linear model $E(Y|A, X) = \alpha + \theta A + \beta X$

- When the linear model is incorrect:
 - $\hat{\theta}$ still correctly estimates $E(Y|A = 1) - E(Y|A = 0)$
 - However, $\hat{\theta}$ can be less precise than simple mean difference $\bar{Y}_1 - \bar{Y}_0$

- Variance estimation should be robust to model misspecification

- Variance estimation should account for CAR (FDA, 2021)
Proposal: analysis of heterogeneous covariance (ANHECOVA)

- Primary endpoint Y: continuous or binary
- Target parameter: $E(Y|A = 1) - E(Y|A = 0)$
- Estimator: $\hat{\theta}$ from fitting a linear model $E(Y|A, X) = \alpha + \theta A + \beta X + \gamma A(X - \bar{X})$, with X including indicators of all strata used in CAR

- When the linear model is incorrect:
 - $\hat{\theta}$ still correctly estimates $E(Y|A = 1) - E(Y|A = 0)$
 - $\hat{\theta}$ is never less precise and often more precise than $\bar{Y}_1 - \bar{Y}_0$

- Variance estimation is (not only) robust to model misspecification
- Variance estimation is (but also) robust to CAR

Ye, Shao, Yi, Zhao (2022). Toward Better Practice of Covariate Adjustment in Analyzing Randomized Clinical trials. JASA
Time-to-event outcomes (Log-rank Test)

- Primary endpoint: time-to-event
- Null Hypothesis $H_0: \lambda_0(t) = \lambda_1(t)$
- Test statistics: **Log-rank test**

- Does NOT adjust for any covariate
- **Conservative** under CAR

Ye and Shao (2020). Robust Tests for Treatment Effect in Survival Analysis under Covariate-Adaptive Randomization. JRSSB
Time-to-event outcomes (Ye-Shao’s Robust Log-rank Test)

- Primary endpoint: time-to-event
- Null Hypothesis $H_0: \lambda_0(t) = \lambda_1(t)$
- Test statistics: Ye-Shao’s Robust log-rank test

- Does NOT adjust for any covariate
- Correct under CAR
 - but NOT universally applicable

Ye and Shao (2020). Robust Tests for Treatment Effect in Survival Analysis under Covariate-Adaptive Randomization. JRSSB
Time-to-event outcomes
(Stratified Log-rank test)

- Primary endpoint: time-to-event
- Null Hypothesis $H_0: \lambda_{0z}(t) = \lambda_{1z}(t)$
- Test statistics: **Stratified Log-rank test**

- Adjust for discrete covariate
- **Correct** under CAR
 - universally applicable
- Can be **less powerful** than Ye-Shao’s Robust Log-rank Test

Ye and Shao (2020). Robust Tests for Treatment Effect in Survival Analysis under Covariate-Adaptive Randomization. JRSSB
Time-to-event outcomes (Covariate-adjusted Log-rank test)

- Primary endpoint: time-to-event
- Null Hypothesis $H_0: \lambda_0(t) = \lambda_1(t)$
- Test statistics: **Covariate-Adjusted Log-rank test** (apply ANHECOVA to Log-rank test)

- Adjust for any covariate
- **Correct** under CAR
 - universally applicable
 - **Universal Applicability**

- **Never less powerful and often more powerful** than Ye-Shao’s Robust Log-rank Test
 - **Guaranteed Power Gain**

Ye, Shao, Yi (2022+). Covariate-Adjusted Log-Rank Test: Guaranteed Efficiency Gain and Universal Applicability. arXiv:2201.11948
Application to ACTG175 (Hammer et al. 1996)

- **Population**: Adults infected with HIV type 1 whose CD4 cell counts were 200-500 per cubic millimeter
- **Primary endpoint**: composite event (≥ 50% decline in CD4 cell count, an AIDS-defining event, or death)
- **Stratified permuted block randomization**: equal allocation and three strata: 0 week, 1-52 weeks, and ≥ 52 weeks of prior antiretroviral therapy.
- **Treatments**: Zidovudine (control) and Didanosine (treated).
- **Covariates for adjustment**: baseline CD4 cell count and number of days receiving prior antiretroviral therapy.
Application to ACTG175 (Hammer et al. 1996)

- **Population**: Adults infected with HIV type 1 whose CD4 cell counts were 200-500 per cubic millimeter
- **Primary endpoint**: composite event (≥ 50% decline in CD4 cell count, an AIDS-defining event, or death)
- **Stratified permuted block randomization**: equal allocation and three strata: 0 week, 1-52 weeks, and ≥ 52 weeks of prior antiretroviral therapy.
- **Treatments**: Zidovudine (control) and Didanosine (treated).
- **Covariates for adjustment**: baseline CD4 cell count and number of days receiving prior antiretroviral therapy.

	All patients	Sub-group		
		0 wk	1-52 wks	≥ 52 wks
Number of patients	1,093	461	198	434
Log-rank test	4.62	2.31	0.53	4.46
Two-sided p-value	<0.001	0.064	1	<0.001
(adjusted for sub-group analysis)				
Covariate-adjusted log-rank test	4.95	2.40	0.49	4.90
Two-sided p-value	<0.001	0.049	1	<0.001
(adjusted for sub-group analysis)				
Summary – ANHECOVA and three considerations

❖ **ANHECOVA**: a general covariate adjustment strategy
 • Adjust for indicators of all strata used in CAR and all treatment-by-covariate interactions

1. **Guaranteed Precision Gain**
 • ANHECOVA does no harm

2. **Robust Variance Estimation**
 • We recommend using variance estimators that are robust to model misspecification

3. **Universal Applicability**
 • Variance estimator for ANHECOVA can be universally used under SR and all CAR

R package [RobinCar] is available on GitHub.
Acknowledgments

• Overall support for the HIV Prevention Trials Network (HPTN) is provided by the National Institute of Allergy and Infectious Diseases (NIAID), Office of the Director (OD), National Institutes of Health (NIH), National Institute on Drug Abuse (NIDA), the National Institute of Mental Health (NIMH), and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) under Award Numbers UM1AI068619-15 (HPTN Leadership and Operations Center), UM1AI068617-15 (HPTN Statistical and Data Management Center), and UM1AI068613-15 (HPTN Laboratory Center).

• The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.