INTRODUCTION

Health-seeking behaviors refer to acts during which an individual makes decisions and/or takes direct action to ensure or promote a healthy life or prevent or address disease. Demonstrating proper health-seeking behaviors is especially important for patients with illnesses because, if diagnosis of acute disease is delayed due to not visiting the medical facility at the appropriate time, it might adversely affect the course of the disease. Chronic diseases such as hypertension, cerebrovascular disease, type 2 diabetes, and asthma are specifically known to cause problems throughout the course of the disease if proper health-seeking behaviors are not undertaken. Additionally, the existence of these health-seeking behaviors is very important for management of complications that may occur after surgery.

The variables reported to affect health-seeking behaviors include environmental factors (e.g., the health care system, the distance between the medical facility and the patient’s residence, the patient’s physical ability to visit medical facilities); socio-economic factors (e.g., patient insurance status, level of household income, level of education, family structure); and cultural factors.

It is also important to demonstrate proper health-seeking behaviors in the case of depression because visiting the clinic at the appropriate time could help prevent a suicide attempt. Depression may also influence health-seeking behaviors; however, the results to indicate a definitive connection are still controversial. Ramirez-Avila et al. found that depressed patients with HIV were less likely to visit the hospital and to not...
participate in follow-up screening tests. Bunde and Martin23 also concluded that depression in patients with myocardial infarction might aggravate the course of disease by decreasing the health-seeking behaviors of these patients. In addition, other researchers found a correlation between fewer dental check-ups and depression in the elderly.24 In a study of stroke patients, it was reported that depressive symptoms decreased health-seeking behaviors.25 In contrast to these, however, Nagai20 found that depression increased actual health-seeking behaviors, even though it decreased the severity of health-seeking intention.

Despite these investigations, there have been no studies conducted on the effects of depression on health-seeking behaviors based on large-scale demographic data. Thus, the purpose of this current study was to investigate the effects of depression on health-seeking behaviors using the large epidemiological study data of the Korea National Health and Nutrition Examination Survey (KNHANES).

METHODS

Study participants

This study analysed the data from the sixth KNHANES (2014, 2016) and seventh KNHANES (2018). The KNHANES is a large-scale national survey conducted for the purposes of comprehensively understanding the health and food consumption status of the Korean population, developing health policies for South Korea, and informing plans for the improvement of quality of life. This survey was performed with the approval of the Research Ethics Review Committee of the Disease Control Division (IRB No. 2013-12EXP-03-5C and 2018-01-03-P-A).

Among the 23,692 participants who enrolled in the KNHANES, 18,093 participated in the survey. Participants who were aged 19 years and older were invited to participate in a health interview that included the administration of a Patient Health Questionnaire-9 (PHQ-9); in total, participants meeting the age criterion completed the interview. During the survey, PHQ-9 was conducted once every two years, so data were collected on a two-year basis. Figure 1 shows the detailed selection criteria for the participants.

Research data

The KNHANES was performed by stratified, clustered, and systematic sampling, not by simple randomization. Two-level hierarchical clustering was used in KNHANES. Primary Sampling Units (PSUs) were extracted from 303,180 geographically defined PSUs to represent 192 basic administrative areas and housing types in the first phase. Each PSU included an average of 60 households; from each PSU, 20 households were extracted by applying systematic sampling system with intra-stratifi-

![Flowchart of enrolled participants.](image)
used the self-administered questionnaire, PHQ-9. This questionnaire is a valid screening tool for depression and also can be used to examine the severity of depression. We defined depression when the PHQ-9 total score was 5 or more, in accordance with the validation study of PHQ-9 conducted on a sample of the Korean population.\(^{28}\)

In addition, participants were classified into three groups based on age: specifically, those aged 19 years to 44 years, those aged 45 years to 64 years, and those aged 65 years or older. Residence area was divided into urban and rural, while the degree of education was divided into four stages: elementary school graduation, junior high school graduation, high school graduation, and university graduation. Household income level was calculated as the square root of monthly household income/number of household members. We designated participants who responded "yes" to the inquiry "I was diagnosed by a doctor" as the medical disease-affected group.

Analysis

Since the data from KNHANES were collected using stratified, clustered, and systematic sampling, analysis methods for complex samples were used while following the guidelines of KNHANES analysis, which were published by the Korea Centers for Disease Control and Prevention.\(^{29}\)

To identify the characteristics of the participants and the entire Korean population, complex sample frequency analysis was used. We also used complex sample crosstab analysis with the chi-square test to determine the difference between depressed and normal controls except the comparison for age, which we compared using an unpaired t-test. A complex sample logistic regression model was used to examine the relationship between depression and health-seeking behaviors. Gender and age, which would affect the association between depression and health-seeking behaviors were adjusted for in this analysis. The independent variables also included environmental factors such as residence area and limitation of activity; socioeconomic factors such as household income level, type of family structure (whether he/she lives alone), and education level; and medical illnesses such as arthritis, asthma, cerebrovascular disease, coronary artery disease, diabetes, dyslipidemia, hypertension, pulmonary tuberculosis, and thyroid disease. Among the young participants aged between 19 and 44 years, only nine individuals had cerebrovascular disease and coronary artery disease. As such, the number of patients was too small to adjust for these two diseases at this age range, so we excluded these two illnesses from covariates in the analysis for the youngest group.

For the analysis of the frequency of complex sample cross-over analysis and complex sample logistic regression analysis, the planning variables were the Kstrata as a stratification variable, the PSU as a cluster variable, and weight (Wt_itvex). The collected data were analysed using Stata MP 16 (StataCorp LLC, College Station, TX, USA) program. In order to understand the general characteristics of the group, we used complex sample frequency analysis.

RESULTS

General characteristics of the subjects

Among participants of the KNHANES, were selected for inclusion in the present study after excluding persons aged less than 19 years and persons who did not respond to the PHQ-9 questionnaire. The final adults comprised men and women (Figure 1).

Table 1 shows the general characteristics of the subjects. Their mean age was 45.7 (44.8–46.6) years: 46.0 (45.2–46.9) years in the control group and 44.7 (43.2–46.2) years in the depressed group. Fifty-one percent of the subjects were female, and the proportion of women in the control group was 47.4% versus 63.8% in the depressed group. Among all of the subjects, 11.8% displayed decreased health-seeking behaviors; 8.0% (1,126 persons) in the control group and 25.1% (1,007 persons) in the depressed group.

Furthermore, there were significant differences in the control group and the depressed group in terms of age, gender, monthly household income, educational level, limitation of mobility, living alone, and decreased health-seeking behaviors (p<0.01 for all). Differences were also found with respect to incidence of arthritis (p<0.01), asthma (p<0.01), cardiovascular accidents (p=0.02), coronary artery disease (p=0.01), and dyslipidemia (p<0.01).

Association between depressive symptoms and health-seeking behaviors

Table 2 shows the relationship between depressive symptoms and decreased health-seeking behaviors by complex sample logistic regression analysis. The analysis was conducted in the following order: 1) unadjusted; 2) adjusted for age and gender; 3) adjusted for age and gender as well as residence, monthly household income level, education level, limitation of mobility, type of family structure (i.e., whether he/she lives alone); and 4) the aforementioned items and the presence of any of nine medical illnesses comprising arthritis, asthma, cerebrovascular disease, coronary artery disease, diabetes, dyslipidemia, hypertension, pulmonary tuberculosis, and thyroid disease.

In Model 1, which was unadjusted, the probability of depressed people having decreased health-seeking behaviors was significantly higher than in the control group (odds ratio [OR]: 3.92; 95% confidence interval [CI]: 3.09–4.96). Model 2 also showed the same tendency (OR: 3.66; 95% CI: 2.89–4.62).
Table 1. Subject characteristics categorized by total Patient Health Questionnaire-9 score

Overall (N=18,093)	PHQ-9 score <5 (N=14,081)	PHQ-9 score ≥5 (N=4,012)	p-value*	
Age, years	45.7 (0.9)	46.0 (0.8)	44.7 (1.3)	0.01
Age group				
19–44 years	6,785 (37.5)	4,487 (24.8)	2,298 (12.7)	
45–64 years	6,550 (36.2)	4,668 (25.8)	1,882 (10.4)	
≥60 years	4,758 (26.3)	3,040 (16.8)	1,719 (9.5)	
Gender				
Male	8,865 (49.0)	7,407 (52.6)	1,453 (36.2)	<0.001
Female	9,227 (51.0)	6,674 (47.4)	2,559 (63.8)	
Residence				
Urban	15,234 (84.2)	11,828 (84.0)	3,358 (83.7)	
Rural	2,859 (15.8)	2,253 (16.0)	614 (15.3)	
Monthly household income				
Low	2,551 (14.1)	1,676 (11.9)	875 (21.8)	<0.01
Lower-middle	4,487 (24.8)	3,379 (24.0)	1,119 (27.9)	
Upper-middle	5,591 (30.9)	4,562 (32.4)	1,023 (25.5)	
High	5,464 (30.2)	4,464 (31.7)	995 (24.8)	
Educational level				
Pre-middle school	2,913 (16.1)	2,042 (14.5)	879 (21.9)	<0.001
Middle school	1,701 (9.4)	1,338 (9.5)	349 (8.7)	
High school	6,948 (38.4)	5,435 (38.6)	1,509 (37.6)	
College	6,550 (36.2)	5,266 (37.4)	1,276 (31.8)	
Limitation of mobility				
Yes	1,158 (6.4)	549 (3.9)	602 (15.0)	<0.001
No	16,935 (93.6)	13,532 (96.1)	3,410 (85.0)	
Living alone				
Yes	1,411 (7.8)	915 (6.5)	510 (12.7)	<0.001
No	16,681 (92.2)	13,166 (93.5)	3,502 (87.3)	
Health-seeking behaviors				
Not decreased	15,958 (88.2)	12,955 (92.0)	3,005 (74.9)	<0.001
Decreased	2,135 (11.8)	1,126 (8.0)	1,007 (25.1)	
Arthritis				
Yes	1,538 (8.5)	1,028 (7.3)	522 (13.0)	<0.01
No	16,555 (91.5)	13,053 (92.7)	3,490 (87.0)	
Asthma				
Yes	548 (3.0)	338 (2.4)	193 (4.8)	<0.01
No	17,545 (97)	13,743 (97.6)	3,819 (95.2)	
Cerebrovascular accidents				
Yes	289 (1.6)	183 (1.3)	104 (2.4)	0.02
No	17,804 (98.4)	13,898 (98.7)	3,908 (97.6)	
Coronary artery disease				
Yes	289 (1.6)	183 (1.3)	104 (2.6)	0.01
No	17,804 (98.4)	13,898 (98.7)	3,908 (97.4)	
Diabetes mellitus				
Yes	1,158 (6.4)	859 (6.1)	289 (7.2)	0.40
No	16,935 (93.6)	13,222 (95.9)	3,723 (92.8)	
Dyslipidemia				
Yes	1,918 (10.6)	1,380 (9.8)	546 (13.6)	<0.01
No	16,175 (89.4)	12,701 (90.2)	3,466 (86.4)	
Table 1. Subject characteristics categorized by total Patient Health Questionnaire-9 score (continued)

PHQ-9 score <5 (N=14,081)	PHQ-9 score ≥5 (N=4,012)	p-value*	
Hypertension			
Yes	2,267 (16.1)	642 (16.0)	0.93
No	11,814 (83.9)	3,370 (84.0)	
Pulmonary tuberculosis			
Yes	479 (3.4)	181 (4.5)	0.09
No	13,602 (96.6)	3,831 (85.5)	
Thyroid disease			
Yes	366 (2.6)	128 (3.2)	0.28
No	13,715 (97.4)	3,884 (96.8)	

Data are presented as number (%). Percent values in parentheses are percentages of the whole Korean population, which were obtained from participants using complex sample frequency analysis. p-values were compared with chi-square test using complex sample crosstab analysis except for age. *p-values were compared with unpaired t-test for continuous variables and chi-square test for categorical variables. PHQ-9, Patient Health Questionnaire-9

Table 2. Association between decreased health-seeking behaviors and depressive symptoms

OR	SE	t	p	95% CI
Model 1	3.92	0.47	<0.0001	3.09–4.96
Model 2	3.66	0.43	<0.0001	2.89–4.62
Model 3	3.36	0.40	0.0001	2.66–4.25
Model 4	3.11	0.38	<0.0001	2.44–3.96

Model 1: unadjusted. Model 2: adjusted for age and gender. Model 3: adjusted for age, gender, residence, monthly household income level, education level, limitation of mobility, and type of family structure. Model 4: adjusted for age, gender, residence, monthly household income level, education level, limitation of mobility, type of family structure, and nine medical illnesses. OR, odds ratio; SE, standard error; CI, confidence interval.

Model 3, which was controlled for socio-economic factors of monthly household income level, education level, and type of family structure as well as environmental factors of residence and limitation of mobility, the results were consistent (OR: 3.36; 95% CI: 2.66–4.25). Finally, Model 4, which was adjusted for all independent variables (i.e., age, gender, residence, monthly household income level, education level, limitation of mobility, type of family structure, and presence of any of nine medical illnesses) showed an OR of 3.11 (95% CI: 2.44–3.96), which was consistent with the other results.

Comparison by gender and age group

Table 3 shows the results after adjusting for all independent variables according to gender and age, respectively. The results of the analysis by gender showed that both males and females were significantly more likely to demonstrate decreased health-seeking behaviors in the depression group (Table 3). In addition, when all independent variables were controlled (Model 4), the OR was 2.63 for males and 2.49 for females; that is, health-seeking behaviors were more highly reduced in conjunction with depression in men than in women.

As part of this study, the study subjects were divided into three groups according to age; 19 years to 44 years, 45 years to 64 years, and 65 years or older. After that, all independent variables were controlled (Model 4), and the results indicated that all three age groups were significantly more likely to have decreased health-seeking behaviors when depressed.

The OR was 3.07 for the youngest group and 2.93 and 2.65 for the middle-aged group and the elderly group, respectively. It was suggested that depressive symptoms were most likely to be associated with decreased health-seeking behaviors in the youngest group and least associated in the old-aged group.

DISCUSSION

The aim of this study was to examine the effects of depressive symptoms on health-seeking behaviors using the large epidemiologic data of the KNHANES. We aimed to clarify whether depressive symptoms could affect health-seeking behaviors as well as environmental factors, socioeconomic factors, and cultural factors, which are previously known to have effects on health-seeking behaviors in patients who have medical illnesses. We also aimed to examine the effects of depressive symptoms on the health-seeking behaviors of patients as well as the effects on the progression and prognosis of illnesses affecting the patients.

According to the results of this study, people with a PHQ-9 total score of 5 or higher were more likely to display decreased health-seeking behaviors. That is, there was a high possibility that people with depressive symptoms were not as likely to visit the clinic for one year. The same tendency was observed when controlling for socioeconomic and environmental factors, as well as gender and age. That is, depressive symptoms would still negatively impact health-seeking behaviors even if adjusting for environmental factors, socioeconomic factors, and medical illnesses as covariates.
Depression is characterized by the following symptoms: psychomotor retardation and fatigue, loss of volition, and loss of interest. Therefore, people with depressive symptoms may neglect to take care of themselves, visit the hospital, or receive appropriate treatment when needed. It is also known that depression causes cognitive distortion and negative problem orientation, which can affect patients' awareness of their medical problems and their demonstration of health-seeking behaviors.

When we examined the relationship between decreased health-seeking behaviors and depression by gender, it was found that males were more likely to have decreased health-seeking behaviors than females.

Males and females differ in their symptoms and coping styles when they have depression; for example, males are more likely to be impulsive and show risk-taking behaviors like alcohol and drug use when they are depressed. In the Confucian culture of Korea, which values masculinity, depressed males are also less likely to seek help or to visit doctors than females because they may think that it is not masculine. Depressed females, in contrast, tend to be more agitated than males and to avoid problems. In other words, when a woman is aware of her health problems, she tries to solve them more actively.

These gender differences in depressive symptoms and coping strategies could help explain the results of this study, which showed that males with depressive symptoms were more likely to show decreased health-seeking behaviors than females.

We also examined the relationship between depression and health-seeking behaviors by dividing the study cohort into three groups according to age. In this study, it was less likely that the middle-aged group (aged 45–64 years) would show decreased health-seeking behaviors in comparison with the young group (aged 19–44 years) and the elderly group (aged ≥65 years). However, the youngest group (aged 19–44 years) is more likely to have decreased health-seeking behaviors than the other age groups when they have depression. It is known that middle-aged people have less somatic symptoms than other age groups such as adolescents and early adults.

Previous study has also shown that younger individuals with depression mainly suffer from cognitive distortion and negative problem orientation. Therefore, the middle-aged group would show weaker associations with decreased health-seeking behaviors and depression versus the youngest age groups. In other words, even when there is depression in middle-aged groups, the behavior of visiting hospitals when recognizing pain is higher than that of other subgroups. However, the youngest group could be hypothesized to be more likely to have distorted cognition about their health status and to demonstrate decreased health-seeking behaviors; that is, the youngest group would be more likely to not visit doctors despite their needs versus older groups.

In addition, in contrast to the trend of a decrease in OR with an increase in the number of adjusted covariates observed in other age groups, the OR was found to be increased in the elderly when medical illnesses were controlled, as compared with when they were not controlled. This could be explained by the characteristics of the elderly, as they are more likely to have medical problems than other age groups. The elderly are more likely to visit the hospital due to their medical conditions and thus have a lower possibility of having decreased health-seeking behaviors. Also, it is known that when patients are depressed, older age groups complain of more anxiety and hypochondriasis. Therefore, it seemed that decreased health seeking behaviors were less strongly associated with depressive symptoms when the presence of medical illness.

If the patient demonstrates decreased health-seeking behaviors despite the need for medical attention, environmental factors, socio-economic factors, and cultural factors are often considered. However, according to our study, it is also necessary to consider whether a psychiatric disorder such as depression is causing patients not to visit their doctors. Especially in males or in 19- to 44-year-old adults, if the person did not visit the clinic despite the need (i.e., shows decreased health-seeking behaviors) then the clinician would suspect whether he/she might
be depressed and consider performing simple screening tests such as the PHQ-9.

However, it is important to note that this study had several limitations. First, since it has a cross-sectional design, it was hard to investigate causation between depression and health-seeking behaviors. Second, the validity of the questionnaire for health-seeking behaviors was not fully verified, and there was only one related question in this study; therefore, while it was possible to determine decreased health-seeking behaviors, it was difficult to determine increased health-seeking behaviors. In addition, those individuals who answered “yes” to the item, “Have you ever been unable to go to the clinic (except for dentistry) during the previous year?” were classified as those with decreased health-seeking behaviors. However, to clarify those who answered “yes” to this item actually displaying health-seeking behaviors, additional items might be needed. This item of the questionnaire did not distinguish between actual health-seeking behaviors, health information-seeking behaviors, and health-seeking intentions. Third, to determine the impact of accessibility on health-seeking behaviors, the distance between the medical facility and the residence of the participant should be treated as an independent variable. In this study, however, there was no corresponding item among the questionnaires that was used for KNHANES, and the residences of the participants were simply divided into urban and rural. Fourth, although the characteristics of different diseases could affect health-seeking behaviors in various ways, the diseases of the participants were not considered. Fifth, although it was suspected that various psychiatric disorders besides depression may affect health-seeking behaviors, they could not be included in the study because there was no questionnaire about other diseases such as anxiety disorder or somatization disorder.

Nevertheless, this study used the large-scale epidemiological study data of the sixth and seventh KNHANES, which could represent South Korea’s whole population, and has the advantage of controlling medical illnesses as well as environmental factors and socio-cultural factors. Notably, South Korea’s health systems are the same across the country. South Korea is also composed of a single ethnic group, and there are no significant cultural differences between regions and races. Therefore, it could be assumed that all participants share similar cultural taboos, preferences, and stigma. That is, the effects of cultural and systemic factors known to affect health-seeking behaviors would be minimized in South Korea. These are the strengths of this study.

In conclusion, we found a significant association between health-seeking behaviors and depressive symptoms in a large Korean population. These results suggest that individuals with decreased health-seeking behaviors would be encouraged to evaluate for depressive symptoms. Future prospective studies are needed to clarify the causal relationship between depressive symptoms and health-seeking behaviors with a questionnaire consisting of more validated and detailed items.

Availability of Data and Material
The datasets generated or analyzed during the current study are available in the Korea National Health and Nutrition Examination Survey (KNHANES) repository, https://knhanes.kdca.go.kr/knhanes/main.do.

Conflicts of Interest
The authors have no potential conflicts of interest to disclose.

Author Contributions
Conceptualization: Hyungsook Hong, Tae-Suk Kim. Data curation: Jihye Oh, Hyungsook Hong. Formal analysis: Jihye Oh, Hyungsook Hong. Funding acquisition: Tae-Suk Kim. Investigation: Jihoon Oh, Tae-Suk Kim. Methodology: all authors. Project administration: Jihye Oh. Resources: Jihye Oh. Software: Jihye Oh. Supervision: Tae-Suk Kim. Validation: Jihye Oh, Hyungsook Hong. Visualization: Jihye Oh, Hyungsook Hong. Writing—original draft: Jihye Oh, Hyungsook Hong. Writing—review & editing: Jihye Oh.

ORCID iDs
Jihye Oh https://orcid.org/0000-0002-6865-3935
Hyungsook Hong https://orcid.org/0000-0002-2668-3546
Jihoon Oh https://orcid.org/0000-0003-1114-976X
Tae-Suk Kim https://orcid.org/0000-0002-2488-2904

Funding Statement
None

REFERENCES
1. Poortaghi S, Raiesifar A, Bozorgzad P, Golzari SJ, Parvizy S, Rafii F. Evolutionary concept analysis of health seeking behavior in nursing: a systematic review. BMC Health Serv Res 2015;15:523.
2. Jurcev-Savicevic A, Kardum G. Health-care seeking behaviour for tuberculosis symptoms in Croatia. Eur J Public Health 2012;22:573-577.
3. Ukwaja KN, Alobu I, Nweke CO, Onyewene EC. Healthcare-seeking behavior, treatment delays and its determinants among pulmonary tuberculosis patients in rural Nigeria: a cross-sectional study. BMC Health Serv Res 2013;13:25.
4. Kitko L, Hipucye JE. Factors that influence health-seeking behaviors of patients experiencing acute stroke. J Neurosci Nurs Dec 2008;40:333-340.
5. Jo JK, Kim KS, Nam JW, Choi BY, Moon HS. Sociodemographic factors related to lower urinary tract symptoms in men: a Korean Community Health Survey. Int Neurourol J 2017;21:143-151.
6. Walters P, Schofield P, Howard L, Ashworth M, Tylee A. The relationship between asthma and depression in primary care patients: a historical cohort and nested case control study. PLoS One 2011;6:e20730.
7. Chinnakali P, Mohan B, Upadhyay RP, Singh AK, Srivastava R, Yadav K. Hypertension in the elderly: prevalence and health seeking behavior. N Am J Med Sci 2012;4:558-562.
8. Vennmans LM, Gorter KJ, Hak E, Rutten GE. Short-term effects of an educational program on health-seeking behavior for infections in patients with type 2 diabetes: a randomized controlled intervention trial in primary care. Diabetes Care 2008;31:402-407.
9. Sherman KA, Kilby CJ, Elder E, Ridner SH. Factors associated with professional healthcare advice seeking in women at risk for developing breast cancer-related lymphedema. Patient Educ Couns 2018;101:445-451.
10. Shaikh BT, Hatcher J. Health seeking behaviour and health service utilization in Pakistan: challenging the policy makers. J Public Health (Oxf)
Increased Health-Seeking Behaviors in Depression

10. Beiersmann C, Sanou A, Wladarsch E, De Allegri M, Kouryate B, Muller O. Malaria in rural Burkina Faso: local illness concepts, patterns of traditional treatment and influence on health-seeking behaviour. Malar J 2007;6:106.

11. Sepehri A, Moshiri S, Simpson W, Sarma S. Taking account of context: how important are household characteristics in explaining adult health-seeking behaviour? The case of Vietnam. Health Policy Plan 2008;23:397–407.

12. Pandey KR, Jha AK, Dhungana R, Lamsal R. Health seeking behaviour of parents for children with pneumonia. JNMA J Nepal Med Assoc 2009;48:131-134.

13. Galdas PM, Cheater F, Marshall P. Men and health help-seeking behaviour: literature review. J Adv Nurs 2005;49:616-623.

14. Yamashiro G, Matsuoka JK. Help-seeking among Asian and Pacific Americans: a multiperspective analysis. Soc Work 1997;42:176-186.

15. Ando S, Kasai M, Hasegawa Y, Hirakawa H, Asukai N. Psychosocial factors associated with suicidal ideation in clinical patients with depression. J Affect Disord 2013;151:561-565.

16. Neilson EK, Mar MY, Torchalla I, Werker GR, Laing A, Krausz M. Help-seeking experiences of youth with suicidal ideations. J Patient Exp 2014;1:22-27.

17. Liefland L, Roberts DL, Ford R, Stevens BJ. Depressive symptoms among help-seeking Latinas in a disadvantaged, urban, northeastern community mental health center. Community Ment Health J 2014;50:331-335.

18. Huang ZJ, Wong FY, Ronzio CR, Yu SM. Depressive symptomatology and mental health help-seeking patterns of U.S.- and foreign-born mothers. Matern Child Health J 2007;11:257-267.

19. Nagai S. Predictors of help-seeking behavior: distinction between help-seeking intentions and help-seeking behavior. Jpn Psychol Res 2015;57:313-322.

20. Klemenc-Ketis Z, Kersnik J. Health seeking behaviour in general population with psychological symptoms. Psychiatr Danub 2012;24:181-186.

21. Ramirez-Avila L, Regan S, Giddy J, Chetty S, Ross D, Katz JN, et al. Depressive symptoms and their impact on health-seeking behaviors in newly-diagnosed HIV-infected patients in Durban, South Africa. AIDS Behav 2012;16:2226-2235.

22. Bunde J, Martin R. Depression and prehospital delay in the context of myocardial infarction. Psychosom Med 2006;68:51-57.

23. Ávila GA, Martins AB, d'Avila OP, Neves M, Hilgert JB, Hugo FN. Association between depressive symptoms and dental care-seeking behavior among elderly Brazilian people. Rev Odont UNESP 2016;45:132-138.

24. Kim MK, Lee HR, Kwon JY, Oh HS. Influencing and mediating factors in health behaviors among stroke patients. Korean J Adult Nurs 2013;25:610-621.

25. Chung CE. Complex sample design effects and inference for Korea National Health and Nutrition Examination Survey data. Korean J Nutr 2012;45:600-612.