ULTRASTRUCTURE AND ADENOSINE TRIPHOSPHATASE ACTIVITY OF RED AND WHITE MUSCLE FIBERS OF THE CAUDAL REGION OF A FISH, *SALMO GAIRDNERI*

ASISH C. NAG

From the Department of Zoology, University of Alberta, Edmonton, Canada. Dr. Nag's present address is the Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

ABSTRACT

Electron microscopy, together with quantitation using a tracing device linked to a digital computer, reveals that the red and white muscle fibers of *Salmo gairdneri* differ in diameter, organization of myofibrils, dimensions of myofilaments, volumes and surface areas of T system and sarcoplasmic reticulum, morphology of mitochondria, and content of mitochondria, lipid, and glycogen. Biochemical studies show that the ATPase activity of white fibers is three times that of the red fibers. Actomyosin content of red fibers is higher than that of the white fibers. The functional significance of these differences between two fiber types is discussed.

INTRODUCTION

The caudal musculature of *Salmo gairdneri*, the rainbow trout, consists of eight muscles which are capable of delicate organized movements (28). The caudal musculature is derived from the caudal myomeses, each of which consists of two types of muscle fibers: red and white. The two types of fibers form separate portions of the caudal musculature, easily recognized by their color. Lorenzini (26) first found red and white muscle fibers in the elasmobranches among vertebrates. The red color of fish muscle fiber is attributed to the high myoglobin content and highly developed vascular bed of the fibers.

References to electron microscope study of red and white muscle fibers of fish are scanty (4, 6, 12, 13, 30, 31, 39). Most offer descriptions of limited aspects of the cytology of either one or both types of fibers.

Three different suggestions have been put forward to account for the functions of red and white muscle fibers of fish. One expresses the idea that only red muscle fibers are active during slow swimming, whereas white muscle fibers are active during rapid swimming (2, 7, 8, 14, 18, 38, 41). The second suggestion is that the main purpose of the red muscle fibers is not muscular work, but that of carrying out synthetic processes similar to those taking place in the liver (9, 44). The third suggestion is that red muscle fibers are used in rapid swimming and white in slow continuous swimming (5, 6, 10, 15). It is interesting to note that even workers studying the electrophysiological properties of red and white fibers in fish have come to divergent conclusions (5, 8, 18, 38, 41).

The purpose of the present study is to investigate and evaluate ultrastructural differences between red and white muscle fibers of the rainbow trout in relation to swimming behavior, by detailed examination of their ultrastructure and adenosine triphosphatase (ATPase) activity.

MATERIALS AND METHODS

The rainbow trout was chosen as the species to be examined because information about the metabolism
and swimming behavior is available. Fifty specimens averaging about 50 cm fork length were used for electron microscopy.

Microscope Methods

Six fixation procedures were used: (a) 3-6% glutaraldehyde, buffered at pH 7.3, with 0.1 M phosphate, for 2 and 24 hr, and after several hours of washing in buffer, postfixation in 1% osmium tetroxide, buffered with 0.1 M phosphate at pH 7.3, for 1.5 hr; (b) 3-6% glutaraldehyde in salmonid physiological solution (pH 7.3) (19) for 2 and 24 hr. Muscle bundles were rinsed for several hours in physiological solution and postfixed in 1% osmium tetroxide in the physiological solution for 1.5 hr; (c) 5% glutaraldehyde plus 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2) (21), for 2 and 24 hr, rinsing in phosphate buffer for several hours, and postfixation in 1% osmium tetroxide in 0.1 M phosphate buffer (pH 7.3) for 1-2 hr. Sometimes half strength of this fixative was used; (d) 2% potassium permanganate in the physiological solution, for 2 and 24 hr for glycogen (40); (e) 1% osmium tetroxide in the physiological solution (pH 7.3) for 1-2 hr; (f) 1% osmium tetroxide in 0.1 M cacodylate buffer containing 2 mM CaCl2, pH 7.3-7.4, for 1-2 hr. The figure legends indicate which fixation method was used in each case.

Rest length of muscle bundles was determined by fixing them *in situ*, maintaining their length in the body. Muscle bundles were then tied to toothpicks at their ends so as to hold them at their rest lengths until after washing in buffer and physiological solution. In case of double fixation, first fixation, and buffer and physiological solution rinses were done at room temperature. Just before the second fixation, bundles of about 1 mm in length and 0.5 mm in thickness were cut from a portion of the muscle, midway between the two ends. The postfixation, all single fixations, and dehydration were done at 0°C. After dehydration in absolute ethanol at room temperature, followed by propylene oxide, the material was embedded in Araldite 502. Sections were cut on a Sorvall-Porter-Blum microtome with glass or diamond knives, and stained with 10% uranyl acetate solution in absolute methanol, followed by 0.2% lead citrate solution in distilled water. In the study of glycogen a saturated aqueous solution of lead hydroxide was used. All sections were examined with a Philips EM 100 or 200 or GEM-100B operated at 60 kv, using 25 or 60 µ diameter objective aperture. All electron micrographs for measurements were taken after accurately calibrating the magnification of the microscope used. The relative weights of the red and white muscles in different sections of the body of the fish were determined. Four transverse slices of about 12 mm in thickness each were taken from different sections of the body; the red and white muscle fibers were stripped out carefully from one side of each slice under a dissecting microscope, except for muscles of the caudal peduncle. In the caudal peduncle, stripping involved the superficial flexor muscles only, because the connective tissue separation of fiber types was best developed there. Since it was difficult to avoid contamination of the white muscle fibers in stripping out the red muscle fibers from other caudal muscles, such muscles were excluded from weighing. The stripped muscle was weighed on an analytical balance.

The diameters of red and white muscle fibers were measured from light photomicrographs taken from 1 µ thick sections of Araldite-embedded materials. Since the cross-sectional outlines of muscle fibers are not perfectly circular, the mean of two measurements of the longest and shortest axes of the fiber was taken in each case.

All measurements were taken in red and white fibers fixed by the same method and lying at comparable depths within the block of tissue.

The dimensions of myofilaments were measured on electron micrographs by Micro Comparator Fine scale (6581-M10; Arthur H. Thomas Co., Philadelphia, Pa.).

Six caudal muscles (two superficial flexors, two deep flexors, hypochondral longitudinal, and interradial) were used for the study of ultrastructure of red and white muscle fibers. Since results showed that the ultrastructure did not differ from muscle to muscle, electron micrographs of fibers from only the superficial flexors are used in illustrations.

Biochemical Methods

Live rainbow trout were used for all these experiments. The fish were an average of 32.5 cm in length. All operations were conducted at 0°C and as rapidly as possible. The fish were decapitated, then skinned. Red muscle was carefully excised from the superficial dorsal and ventral flexor muscles, and from the myomeres of the epaxial and hypaxial muscles. White muscle was taken after excision of red muscle. Each excised muscle sample was cut into small pieces which were homogenized in a tissue grinder. The homogenate was slowly stirred with 3 volumes of an extractant made up to 0.6 M KCl, 0.01 M Na2CO3, and 0.04 NaHCO3 at pH 8.0 for periods of 5-15 min, and then allowed to stand for 5 hr at 0°C. The mixture was then diluted 10 times with deionized water and the actomyosin was allowed to precipitate overnight. The precipitate was centrifuged in an International Refrigerated Centrifuge (Model PR-6) (International Equipment Company, Needham Heights, Mass.) at 3000 g for 10 min. The precipitate was collected and dissolved in 0.6 M KCl and filtered. The connective tissue elements were discarded and actomyosin was
collected and diluted 10 times with deionized water and was allowed to precipitate for 5 hr. The precipitate was centrifuged at 3000 g for 10 min and the resulting supernatant was discarded and the precipitate was collected. The precipitate was again dissolved in 0.6 M KCl and centrifuged as before and the precipitate was collected. This step was repeated once more. The precipitate thus obtained was dissolved in 0.6 M KCl and centrifuged as before and the precipitate was collected. The precipitate was again dissolved in 0.6 M KCl and centrifuged at 3000 g for 10 min and the resulting supernatant was discarded and the precipitate was collected. This step was repeated once more. The precipitate was again dissolved in 0.6 M KCl and centrifuged at 3000 g for 10 min and the resulting supernatant was discarded and the precipitate was collected.

Protein concentrations of actomyosin were determined by the method of Lowry et al. (27). ATPase activity determinations were made in pH-stat (Radiometer TTT1, Radiometer Co., Copenhagen, Denmark) according to the method of Kay and Brahms (22), by following the proton liberation during ATP hydrolysis. The assays were carried out at pH 8.0 and 10°C, in a medium containing 2 \(\times 10^{-3} \) M \(\text{MgCl}_2 \), 0.05 M KCl, and 2 \(\times 10^{-3} \) M ATP. The maintenance of a lower temperature in the enzymatic assay was for the cold water fish used. Such fish were kept in an aquarium, at about 10°C. Enzyme was added to the medium and equilibrated for short periods before the enzymatic assay was begun. Rates of dephosphorylation (micromoles of P04 per g of enzyme per second) were inferred from the slopes of the titrigraph obtained. ATPase activity measurements were made in each case with two distinct preparations of enzymatically active actomyosin.

OBSERVATIONS

Relative Proportion of Red and White Muscle Fibers

Table I gives information about the relative amounts of red and white muscle fibers in different sections of the body. The mean of ten measurements from ten specimens averaging 22.5 cm in length are given in the table.

Section	Red muscle	White muscle
Superficial dorsal flexor	26 (4.1)	60 (17.8)
Superficial ventral flexor	26 (5.2)	56 (23.7)
Hypochordal longitudinal	26 (3.2)	57 (14.1)
Deep dorsal flexor	24 (5.1)	50 (12.7)
Deep ventral flexor	27 (3.2)	52 (18.6)
Interradial	30 (3.3)	61 (20.8)

The mean diameter of white muscle fibers is more than two times that of red muscle fibers. This difference in mean diameter between two types of fiber is found to be statistically significant (\(P < 0.005 \)). The figure for each muscle is an average of 50 measurements and the standard deviation of each is given in parentheses.

Diameter of Red and White Muscle Fibers

Table II shows different diameters of red and white muscle fibers.

Fiber Type	Caudal musculature	Red muscle	White muscle
Superficial dorsal flexor	26 (4.1)	60 (17.8)	
Superficial ventral flexor	26 (5.2)	56 (23.7)	
Hypochordal longitudinal	26 (3.2)	57 (14.1)	
Deep dorsal flexor	24 (5.1)	50 (12.7)	
Deep ventral flexor	27 (3.2)	52 (18.6)	
Interradial	30 (3.3)	61 (20.8)	

Results from the caudal peduncle include superficial flexor muscles only.

Form of the Myofibrils

The organization of myofibrils of red and white muscle fibers is best understood from examination of transverse and longitudinal sections at low magnification. In transverse sections (Fig. 1) some of the myofibrils of the red muscle fiber are often confluent and form a more or less continuous mass of myofilaments in which isolated areas of sarcoplasm containing sarcoplasmic reticulum, mitochondria, lipid droplets, and glycogen particles are found. Other discrete myofibrillar fascicles average 1 \(\mu \) across. Since the fusion of myofibrils is not extensive in a well oriented cross-section, the organization of myofibrils of the red muscle fibers does not resemble true Felderstruktur (24, 25) which has been demonstrated in tonus fibers by electron microscopy (17, 32, 36). Longitudinal sections of the red muscle fibers show (Fig. 2) that most of the myofibrils may run as independent units. Mitochondria and lipid droplets can be seen between the myofibrils.

The myofibrils of the white muscle fibers are usually distinct. In transverse sections myofibrils are ribbon-shaped and aligned along the radii of...
Figure 1 Electron micrograph of a portion of a red fiber of the superficial dorsal flexor muscle in transverse section. Some of the myofibrils are confluent, forming a more or less continuous mass of myofilaments (mf) with isolated areas of sarcoplasm containing sarcoplasmic reticulum (sr), mitochondria (m), and lipid droplets (l). (Fixation method a). × 26,400.

the fiber (Fig. 3). They measure on the average 3 µ in their wider dimension, except for the inner fibrils which are smaller and fill up the central core of sarcoplasm of the fiber. The sarcoplasmic area between the myofibrils is occupied mainly by sarcoplasmic reticulum and glycogen particles. The peripheral zone of sarcoplasm of the fiber is occupied by nuclei, sparse mitochondria, and glycogen.
FIGURE 2 Electron micrograph of a portion of a red fiber of the superficial dorsal flexor muscle in longitudinal section. Myofilaments (mf) are grouped in independent myofibrils. Note abundance of mitochondria (m), g, glycogen particles. l, lipid droplet. sr, sarcoplasmic reticulum. (Fixation method b). × 15,600.

Arrangement and Dimensions of Actin and Myosin Filaments

The arrangement of myofilaments in red and white muscle fibers is found to be hexagonal. The mean diameters of actin and myosin filaments of red muscle fibers are not the same as those of white muscle fibers under fixation method b. The average diameters of actin and myosin filaments of red and white fibers are 80 Å and 75 Å (sd for red muscle 11.6 and white muscle 11.0) and 180 Å and 175 Å (sd for red muscle 8.8 and white muscle 9.2), respectively.

SARCOPLASMIC RETICULUM

The Triads

The triads are located in most of the Z line regions of both red and white muscle fibers (Fig. 5). The transverse tubules of white and red muscle fibers are seen to branch and interconnect with one another among the myofibrils (Fig. 3). This interconnection is also found in the sarcoplasm beneath the sarcolemma but outside the myofibrils in white muscle fibers (Fig. 6). A continuous transverse tubule is seen in both fibers, so it is concluded that the transverse tubules are continuous most or all of the way across the fiber at each Z line in both.
Figure 3 A portion of a white fiber of the superficial dorsal flexor muscle in transverse section. Radially arranged myofibrils with T system (t) which shows branching and interconnection among the myofibrils. The arrows show whorls of membranes within the mitochondria (m). Two of the whorls (lower) are poorly preserved. mf, myofilaments. (Fixation method b). × 36,000.

Types of fiber. The average dimension of a transverse tubule parallel to the red muscle fiber axis is 240 Å, while in the white muscle fiber it is 320 Å. In the red muscle fiber the space between the terminal cisterna and the transverse tubule averages about 100 Å. The cisternae average about 0.11 μ in the longitudinal direction. In the white muscle fiber the space between the terminal cisterna and the transverse tubule is about 120 Å. The cisternae average about 0.13 μ in the longitudinal direction.
In both fibers the terminal cisternae appear not to have lateral continuity at the Z line (Fig. 7) (34).

Longitudinal Reticulum

The relative abundance of sarcoplasmic reticulum in red and white muscle fibers is better understood from examination of low power electron micrographs. Longitudinal sarcotubules of the reticulum are abundant in both red and white fibers (Fig. 5). The longitudinal sarcotubules in both fibers fuse to form continuous collars around the myofilaments near the center of the A band. These collars are found to contain a number of openings which are best seen in face views of the sarcoplasmic reticulum. This type of collar is referred to as a "fenestrated collar" by Peachey (34) in frog muscle.

Volume of Transverse Tubules and Sarcoplasmic Reticulum

Since it has been shown that high and low capacitances of muscle fibers are related to large and small transverse tubule areas respectively (1, 11, 33, 34), and that high and low rates of calcium release and uptake during contraction and relaxation of myofilaments are related to large and small sarcoplasmic reticulum areas respectively (20, 42, 43), it is of interest to estimate the total transverse tubule and sarcoplasmic reticulum volumes and surface areas from electron micrographs of red and white fish muscles.

The volumes of transverse tubules and sarcoplasmic reticulum were estimated from measurements on electron micrographs and were expressed as fractions of the fiber volume. The mean triad width (W_t) was measured on transverse and longitudinal sections. The mean dimension of triad parallel to the fiber axis (L_t) was obtained from longitudinal sections. The mean length (L_s) of interfibrillar space per unit fiber cross-sectional area was measured using a tracing device linked to a digital computer (35). Total number of transverse tubular networks per cm fiber length is $1/S$, where S is the mean sarcomere length. These data are given in...
FIGURE 5 Red fiber of the superficial ventral flexor muscle showing the relative abundance of T system (t) and sarcoplasmic reticulum (sr). The frequent interruptions in the contact between terminal cisternae (tc) and sarcoplasmic reticulum and in the continuity of the latter in red fibers occurred in all fixation procedures used. (Fixation method c). X 26,400.
table III. The total fractional volume of transverse tubules (ρ_t) per fiber volume is given by

$$\rho_t = W_t \cdot L_t \cdot L_A/S.$$

The surface area to fiber volume ratio for the transverse tubules is

$$\xi = 2L_A (W_t + L_t)/S.$$

The volume of terminal cisternae relative to the fiber volume (ρ_c) can be obtained in the same way, by substituting L_c, the mean longitudinal dimension of the terminal cisternae, for L_t, and by allowing for two terminal cisternae per sarcomere.

$$\rho_c = 2W_tL_cL_A/S.$$

The surface area to fiber volume ratio for the terminal cisternae is

$$\xi = 4L_A(W_t + L_c)/S.$$

Since the structure of the longitudinal tubules and fenestrated collar are rather irregular, they were approximated by a simple model consisting of straight tubules running between the two ter-
terminal cisternae. If there are N of these tubules per unit length of interfibrillar space in the transverse plane, and if these tubules have a mean diameter of $2r$, then surface and volume parameters will be given by

$$
\rho_l = N \pi r^2 L_A (S - 2L_c)/S
$$

$$
\xi = 2N \pi r L_A (S - 2L_c)/S.
$$

The measured parameters and the calculated volumes and surface areas are given in Tables III and IV. The first two columns give values expressed as volume or surface area per cm3 of fiber volume. The last three columns are related to a cm2 of fiber surface, and are calculated by multiplying by (A_F/P_F), using the mean fiber areas (A_F) and fiber perimeters (P_F) measured in cross-sections, as given below Table III.

Z Line

The Z line of red muscle fibers seems to have more dense material than that of the white fiber (Figs. 8, 9). The structure of Z line in both fibers seems to be better explained in terms of interconnection of the opposing sets of actin filaments (23).

Other Organelles and Inclusions of the Red and White Muscle Fibers

Nucleus: The nuclei of both types of fibers are situated peripherally beneath the sarcolemma.
This pattern of distribution of nuclei in white muscle fibers is different from that of the dogfish. By light microscopy Bone (8) showed that the nuclei of the white muscle fibers are scattered throughout the sarcoplasm of the fiber.

MITOCHONDRIA: The ratio of mitochondria in red and white fibers is about 7:3 by number. The electron microscope study shows that most of the mitochondria of the red muscle fibers are larger in size than those of the white muscle fibers and the number of cristae of red muscle mitochondria appears to be higher than that of white muscle fibers (Figs. 7, 10).

Sometimes mitochondria are found to contain whorls of membranes (Figs. 3, 6).

LIPID AND GLYCOGEN: The red muscle fibers are rich in lipid and relatively low in glycogen, whereas white fibers have little lipid and much glycogen. Glycogen content of the white muscle fibers appears to be reduced to a considerable extent after

TABLE III

Dimensions of Transverse Tubules and Sarcoplasmic Reticulum of Red and White Muscle Fibers

Compartments	Fiber	Mean width (W)	Mean dimension in longitudinal direction (Lt or Lc)	Mean diameter (2r)	Length of interfibrillar space/unit fiber area (Ls)	Number/unit interfibrillar distances (Nl)
Transverse tubule	White	0.19	0.03	--	1.07	--
	Red	0.15	0.02	--	0.72	--
Terminal cisternae	White	0.19	0.13	--	1.07	--
	Red	0.15	0.11	--	0.72	--
Longitudinal tubule	White	--	--	0.20	1.07	3.63
	Red	--	--	0.12	0.72	5.21

White fiber $A_p = 34 \times 10^2 \mu^2$; $P_p = 294 \mu$. White fiber $S = 1.3 \mu$.

Red fiber $A_p = 0.86 \times 10^5 \mu^2$; $P_p = 116 \mu$. Red fiber $S = 1.5 \mu$.

TABLE IV

Volumes and Surface Areas of Transverse Tubules and Sarcoplasmic Reticulum of Red and White Muscle Fibers

Compartments	Fiber	Volume of compartment/volume of fiber cm^{-1}	Surface area of compartment/volume of fiber cm^{-1}	Surface to volume ratio for fibers	Volume per cm2 fiber surface cm^{-1}	Total area per cm2 fiber surface cm
Transverse tubule	White	0.004	0.36 $\times 10^4$	1.45 $\times 10^{-3}$	0.68 $\times 10^{-4}$	5.26
	Red	0.001	0.16 $\times 10^4$	0.737 $\times 10^{-3}$	0.10 $\times 10^{-4}$	1.26
Terminal cisternae	White	0.040	0.52 $\times 10^4$	1.45 $\times 10^{-2}$	0.59 $\times 10^{-4}$	15.30
	Red	0.015	0.24 $\times 10^4$	0.737 $\times 10^{-3}$	0.11 $\times 10^{-4}$	3.67
Longitudinal tubule	White	0.097	0.19 $\times 10^5$	1.45 $\times 10^{-3}$	0.14 $\times 10^{-4}$	28.39
	Red	0.036	0.12 $\times 10^5$	0.737 $\times 10^{-3}$	0.26 $\times 10^{-4}$	8.90
Total SR	White	0.137	2.42 $\times 10^4$	0.694 $\times 10^{-4}$	43.69	
	Red	0.051	1.44 $\times 10^4$	0.37 $\times 10^{-4}$	12.57	
strenuous exercise of 15 min, which is brought about by continuous chasing of the fish in a fish tank. The detailed results of this study will be published elsewhere.

ATPase Activities of Red and White Muscle Fibers

Biochemical analysis of ATPase activity shows that red and white muscle fibers are significantly different. Actomyosin extracts also show differences between the types of fibers (Table V).

It is evident from the data of Table V that actomyosin of white muscle fibers has an average ATPase activity three times that of actomyosin of red fibers, although red muscle actomyosin content is greater than that of white. Gergely et al. (16) found in rabbits that “the ATPase activity of myofibrils from red muscles is considerably lower than that of white myofibrils.”
DISCUSSION

Role of the Red and White Muscle Fibers in Relation to Swimming Behavior

The higher concentration of red muscle fibers in the caudal peduncle than in the rest of the body is quite significant, knowing that this region together with the caudal fin acts as a main locomotory organ of this fish. The continuous energy requirement in this region is probably relatively higher than that of the rest of the body and it is probably mainly supplied by the red muscle fibers. The data on lipid, glycogen, and mitochondria of the two types of muscle fibers along with enzymatic activities (29), suggest that these distinctive muscle fibers probably utilize different metabolites for their energy. The red muscle fibers probably utilize fat, and the white muscle fibers utilize glycogen. This will be discussed in detail elsewhere.

Actomyosin of the white muscle fibers has an average of three times the ATPase activity of the actomyosin of the red muscle fibers, which can be compared to the ATPase activity of myosin of rabbit’s fast (extensor digitorum longus) and slow (soleus) muscles given by Barany et al. (3). Since it has been widely accepted that the hydrolysis of ATP by actomyosin is directly involved as the energy supply in the process of contraction, and that the rate of contraction of a given type of muscle fiber is proportional to the rate of ATP hydrolysis...
Table V

| Protein Concentrations and ATPase Activities of the Red and White Muscle Fibers |
|---------------------------------|---------------------------------|---------------------------------|
| | Actomyosin concentration (%) | ATPase activity (µmoles of P0₄/g/sec) |
| | of wet wt. tissue | |
| Red muscle | | |
| Sample 1 | 0.66 | 0.75 |
| Sample 2 | 0.62 | 0.72 |
| White muscle | | |
| Sample 1 | 0.55 | 2.4 |
| Sample 2 | 0.59 | 2.1 |

As seen in Table IV, the transverse tubular system in white muscle fibers occupies 0.4 per cent of the fiber volume whereas in the red muscle fibers it occupies 0.1 per cent. The value for white muscle fiber comes close to the value of 0.3 per cent measured in frog sartorius fibers (34). The terminal cisternae in white muscle fiber occupy 4 per cent of the fiber volume, while in the red muscle fiber they occupy 1.5 per cent. The longitudinal tubules together with fenestrated collar occupy 9.7 per cent of the white muscle fiber volume, while in the red muscle fiber this value is 3.6 per cent. The value for sarcoplasmic reticulum of white muscle fibers comes close to the value of 13 per cent measured in frog sartorius fibers (34). The total volume of the membrane-limited compartments of transverse tubules and sarcoplasmic reticulum in white muscle fiber is 14.1 per cent, while in the red muscle fiber it is 5.2 per cent. These results indicate that the total volume of membrane-limited compartments of the white muscle fiber is about 2.7 times that of the red muscle fiber.

Rainbow trout belongs to a group called “stayers” which includes fishes which show sustained swimming. It appears that the red muscle fibers with their high lipid content take a role in sustained swimming, while white fibers with their glycogen content are used in strenuous swimming or activities where a burst of speed is necessary. The study of ontogeny of red and white muscle fibers reveals that as the embryo hatches and assumes free swimming activities, red muscle fibers become distinguishable. It appears that the red muscle fibers assume their function in swimming activities of the fish, which requires more energy than its activities before hatching. The details of this study will be published elsewhere.

T System

Previous authors (17, 32, 36), working on the fine structure of physiologically known fast and slow muscle fibers of frog and garter snake, showed clear-cut differences in the quantity of triads and sarcoplasmic reticulum between two types of muscle fibers. The T system and sarcoplasmic reticulum are found to be abundant in fast muscle fibers, whereas in the slow muscle fibers the T system and sarcoplasmic reticulum are poorly developed (32, 36). It has been shown further (1, 33, 34) that frog’s slow muscle fibers have a relatively low capacitance and a small transverse tubule area and fast fibers have a high capacitance with a large transverse tubule area.
ence of transverse tubules in all Z line areas does not necessarily imply that they are similar quantitatively in surface areas. Other factors, such as dimensions of the tubules, fibril size, and fiber surface to volume ratio must be taken into account in estimating relative transverse tubule and fiber surface areas. When we did this, we obtained values in rather good agreement with the capacitance data.

Sarcoplasmic Reticulum

Estimates of volumes and surface areas presented here show that there is more sarcoplasmic reticulum in white fibers than in red fibers. It has been found in recent years that the rate of calcium uptake during contraction of myofilaments probably depends on the specific calcium binding or transporting activity of the membranes of sarcoplasmic reticulum and on the surface area of sarcoplasmic reticulum relative to sarcoplasmic volume. So in a fast muscle it is not unusual to find sarcoplasmic reticulum with a very large surface area, and conversely with the slow muscle. Van der Kloot (43) has calculated changes in calcium ion concentration of a hypothetical 1 µm myofibril as a function of time and of the amount of surrounding sarcoplasmic reticulum, using assumptions about the rate of calcium uptake from his previous experiments (42). In the case where the collar of sarcoplasmic reticulum was assumed to be 0.2 µ thick, a 20% change in calcium concentration took approximately 2.5 times as long as it did when sarcoplasmic reticulum was assumed to be 0.4 µ thick, and almost four times as long as when the collar of sarcoplasmic reticulum was taken to be 1 µ thick. These calculations suggest that an increase in the size of sarcoplasmic reticulum does have a pronounced effect on the rate at which the value of concentration of calcium ion within the myofibril falls. The examination of volumes and surface areas of sarcoplasmic reticulum of the red (5.1 per cent of the fiber volume; 12.6 cm² area per cm² of outer surface) and white (13.7 per cent of the fiber volume; 43.7 cm² area per cm² of outer surface) muscle fibers, in the light of Van der Kloot’s results, suggests that the rate of fall of the concentration of calcium ion in the myofibril of the red muscle fiber is slower than that of the white muscle fiber.

I gratefully acknowledge the advice and encouragement of Dr. J. R. NURSALL throughout the course of this study. I am greatly indebted to Dr. Lee D. Peachey for his advice and help in useful discussion of this work, in carrying out a part of this work in his laboratory, and in critically reviewing the manuscript. The advice of Dr. C. M. Kay in useful discussion of this work, and in carrying out a part of this work in his laboratory is gratefully acknowledged.

This study and the early writing of the manuscript were supported by the National Research Council of Canada Operating Grant A2071 to Dr. J. R. NURSALL. The writing of the final manuscript and its publication were supported by a grant from the National Science Foundation (GB-6975X) to Dr. Lee D. Peachey.

Received for publication 10 February 1972, and in revised form 5 June 1972.

BIBLIOGRAPHY

1. **ADRIAN, R. H., and L. D. PEACHEY.** 1965. The membrane capacity of frog twitch and slow muscle fibers. J. Physiol. (Lond.). 181:324.
2. **ARLOING, S., and A. LAVOCAT.** 1875. Recherches sur l'anatomie et la physiologie des muscles striés pales et foncés. Mem. Acad. Sci. Inscriptions Belles-Lett. Toulouse. 7:177.
3. **BARANY, M., M. BARANY, T. RECKARD, and V. VOLPE.** 1965. Myosin of fast and slow muscles of the rabbit. Arch. Biochem. Biophys. 109:185.
4. **BERGMAN, R. A.** 1964 a. The structure of the dorsal fin musculature of the marine teleosts, *Hippocampus hudsonius* and *H. zosterae*. Bull. Johns Hopkins Hosp. 114:325.
5. **BERGMAN, R. A.** 1964 b. Mechanical properties of the dorsal fin musculature of the marine teleost, *Hippocampus hudsonius*. Bull. Johns Hopkins Hosp. 114:344.
6. **BERGMAN, R. A.** 1967. Motor nerve endings of twitch muscle fibers in *Hippocampus hudsonius*. J. Cell Biol. 32:751.
7. **BODDEKE, R., E. J. SLIJPER, and VAN DER STELT.** 1959. Histological characteristics of the body-musculature of fishes in connexion with their mode of life. Proc. K. Ned. Akad. Wet. Ser. C. Biol. Med. Sci. 62:576.
8. **Bone, Q.** 1966. On the function of the two types of myocardial muscle fiber in *Zostera marina*. J. Mar. Biol. Assoc. U. K. 46:321.
9. **BRAEKKAN, O. R.** 1956. Function of the red muscle in fish. J. Fish. Res. Board Canada. 20:45.
10. **ButtKUS, H.** 1963. Red and white muscle of fish in relation to rigor mortis. J. Fish. Res. Board Canada. 20:45.
11. **EISENBERG, R. S.** 1967. The equivalent circuit of single crab muscle fibers as determined by impedance measurements with intracellular electrodes. J. Gen. Physiol. 50(6):1785.
12. **FAWCETT, D. W., and J. P. REVEL.** 1961. The sarcoplasmic reticulum of a fast-acting fish muscle. J. Biophys. Biochem. Cytol. 10:69.
13. **FRANZINI-ARMSTRONG, C., and K. R. PORTER.** 1964. Sarcolemmal invaginations constituting...
14. **George, J. C.** 1962. A histophysiological study of the red and white muscles of the mackerel. *Am. Midl. Nat.* 68:1487.

15. **Gerbertzoff, M. A.** 1956. Contribution à la morphologie comparée des appareils cholinesterasiques myo-néural et musculo-tendineux des vertébrés. *Ann. Histochim.* 1:145.

16. **Gergely, J., D. Praday, A. F. Scholtz, J. C. Stedel, F. A. Stræter, and M. M. Thompson.** 1965. Comparative studies on white and red muscle. *Molecular Biology of Muscular Contraction.* S. Ebashi, F. Oosawa, T. Sekine, and Y. Tonowasa, editors. Igaku Shoin Ltd., Tokyo. 145.

17. **Hess, A.** 1960. The structure of extrafusal muscle fibers in the frog and their innervation studied by the cholinesterase technique. *Am. J. Anat.* 107:129.

18. **Hidaka, T., and N. Toida.** 1969. Biophysical and mechanical properties of red and white muscle fibers in fish. *J. Physiol. (Lond.)* 201:49.

19. **Hoar, W. S., and C. P. Hickman.** 1967. A laboratory companion for general and comparative physiology. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

20. **Hoyle, G.** 1970. How is muscle turned on and off? *Sci. Am.* 222(4):85.

21. **Karnovsky, M. J.** 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. *J. Cell Biol.* 27:137 (Abstr.)

22. **Kay, C. M., and J. Brahm.** 1963. The influence of ethylene glycol on the enzymatic adenosine triphosphatase activity and molecular conformation of fibrous muscle proteins. *J. Biol. Chem.* 238 (9):2945.

23. **Knappes, G. G., and F. Carlser.** 1962. The ultrastructure of the Z disc in skeletal muscle. *J. Cell Biol.* 13:323.

24. **Krüger, P.** 1952. Tetanus and Tonus der quergestreiften Skeletmuskender Wirbeltiere und des Mannes. Geest and Portig, editors. Akademische Verlagsgesellschaft, Leipzig.

25. **Krüger, P., F. DusPiva, and F. Fürlinger.** 1933. Tetanus and Tonus der skeletmuskeln des Frosches, ein histologische reizphysiologische und chemische untersuchung. *Pflügers Arch. Gesamte Physiol.* 231:750.

26. **Lorenzini, S.** 1678. ‘Osservazioni intorno alle Torpedini’. Onofri, Firenze.

27. **Lowry, D. H., N. J. Rosebrough, A. Lewis Farr, and R. J. Randall.** 1951. Protein measurement with the folin phenol reagent. *J. Biol. Chem.* 193:265.

28. **Nag, A. C.** 1967. Functional morphology of the caudal region of certain clupeiform and perciform fishes with reference to the taxonomy. *J. Morphol.* 123:529.

29. **Nag, A. C.** 1972. Structural organization and histochemical properties of red and white muscle fibers of the trunk region of the rainbow trout. *Am. Zool.* In press.

30. **Nakajima, Y.** 1962. Fine structure of red and white muscle fibers and their neuromuscular junction of the snake fish. Fifth International Congress for Electron Microscopy. 2:110.

31. **Nemihara, H.** 1967. Studies on the fine structure of red and white fin muscle of the fish (*Carassius auratus*). *Arch. Histol. Jap.* 28(4):425.

32. **Page, S. G.** 1965. A comparison of the fine structures of frog slow and twitch muscle fibers. *J. Cell Biol.* 26:477.

33. **Peachey, L. D.** 1965 a. Transverse tubules in excitation-contraction coupling. *Fed. Proc.* 27:112.

34. **Peachey, L. D.** 1965 b. The sarcoplasmic reticulum and transverse tubules of the frog’s sartorius.

35. **Peachey, L. D.** 1971. Simple computer-assisted morphometric analysis. Abstracts of Papers, Eleventh Annual Meeting, The American Society for Cell Biology. 220.

36. **Peachey, L. D., and A. F. Huxley.** 1962. Structural identification of twitch and slow striated muscle of the frog. *J. Cell Biol.* 13:177.

37. **Peachey, L. D., and R. H. Adrian.** 1972. Electrical properties of the transverse tubular system. *In Structure and function of muscle.* G. H. Bourne, editor. Academic Press Inc., New York. In press.

38. **Rayner, M. D., and M. J. Keenan.** 1967. Role of red and white muscles in the swimming of the skipjack tuna. *Nature (Lond.)* 214(5086):392.

39. **Regé, J. F.** 1961. The fine structure of neuromuscular junctions and the sarcoplasmic reticulum of extrinsic eye muscles of *Fundulus heteroclitus*. *J. Biophys. Biochem. Cytol.* 10:111.

40. **Regé, J. F.** 1964. Electron microscopy of glycogen. *J. Cell Biol.* 12:104.

41. **Takeuchi, A.** 1959. Neuromuscular transmission of fish skeletal muscles investigated with intra-cellular microelectrode. *J. Cell. Comp. Physiol.* 34:210.

42. **Van der Kloo, W. G.** 1966. The exchange of radioactive cations by somatic and cardiac muscles of the crayfish. *Comp. Biochem. Physiol.* 17:1019.

43. **Van der Kloo, W. G.** 1969. Calculated effects of SR thickness on sarcoplasmic calcium concentrations. Addendum by M. Mendelson. 1969. *J. Cell Biol.* 42:562.

44. **Wittenberger, C., and I. V. Djabuc.** 1965. Effort metabolism of lateral muscles in carp. *J. Fish. Res. Board Canada.* 22(1):1397.