E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Silva, Mariana, Paula A. Videira, and Robert Sackstein. 2018. “E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy.” Frontiers in Immunology 8 (1): 1878. doi:10.3389/fimmu.2017.01878. http://dx.doi.org/10.3389/fimmu.2017.01878.
Published Version	doi:10.3389/fimmu.2017.01878
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:35014904
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy

Mariana Silva1,2†, Paula A. Videira3,4*† and Robert Sackstein1,2,5*

1Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States, 2 Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States, 3 UCIIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal, 4 Professionals and Patient Associations International Network (CDG & Allies – PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal, 5 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States

The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.

Keywords: mononuclear phagocyte, HCELL, E-selectin ligand, cell migration, E-selectin, sialyl Lewis X

INTRODUCTION

The mononuclear phagocyte system (MPS) comprises monocytes, dendritic cells (DC), and tissue-resident macrophages. MPS cells have specialized phagocytic capabilities, and antigen processing and presenting functions, thereby initiating the immune response and linking innate and adaptive immune systems (1). In addition to their role as key sentinels and regulators of immunity,
mononuclear phagocytes are also involved in several pathologi-
cal inflammatory conditions, including autoimmune diseases,
infection, cancer, and abnormal wound healing processes (2).
To access inflammatory sites, circulating monocytes and DCs
must first engage the vascular endothelial barrier against the
prevailing forces of hemodynamic shear, a process that occurs
via adhesive interactions between vascular E-selectin and its
glycan counter-receptors (E-selectin ligands) on the circulating
cells (3). This initial contact results in tethering and slow
rolling of the cells along the endothelial surface at velocities
well below that of blood flow (4). E-selectin-mediated slow roll-
ing is a vital step in this cascade of events as it allows intimate
contact between MPS cells and the inflamed endothelium, and
the recognition of inflammatory molecules within the milieu
(3). Consequently, a greater knowledge of how E-selectin ligand
display is elaborated by different types of circulating mono-
cytes and DCs is key to understanding the physiological and
pathological events associated with the MPS. In this review, we
will provide information on the structural biology and opera-
tion of the wide variety of E-selectin-binding glycoconjugates
expressed by circulating MPS cells (i.e., blood monocyte and
non-tissue-resident DC populations) in light of their impact on
pathology and potential therapies. Furthermore, we will discuss
the molecular basis of the biosynthesis of these glycoconjugates,
and how such knowledge can frame novel strategies to inhibit
or enforce trafficking of MPS cells.

**MONONUCLEAR PHAGOCYTE FAMILY: HETEROGENEITY AND MIGRATORY
CAPABILITIES**

Monocytes

Monocytes constitute a heterogeneous cell population, compris-
ing approximately 5–10% of total peripheral blood leukocytes.
These cells arise from granulocyte–macrophage progenitors in
the bone marrow and are subsequently released into peripheral
blood, where they circulate for several days (5). At steady state
(i.e., without any inflammatory cue), monocytes can enter
non-lymphoid tissues, and there they either retain their blood
monocytic behavior (6), or generate the immediate precursors
of “monocyte-derived macrophages and DCs,” which constitute
a small portion of tissue-resident macrophage and DC popula-
tions (7–9). On the other hand, under inflammatory conditions,
monocytes transmigrate into injured tissues, where they then
directly mediate antimicrobial activity or, depending on the local
biochemical milieu, differentiate into inflammatory macrophages
or monocyte-derived DCs (moDCs) (10) (Figure 1). Circulating

FIGURE 1 | Proposed model for migration of human monocytes and dendritic cell (DC) progenitors into tissues in steady-state and inflammatory conditions. After differentiation in the bone marrow, precursors of DCs and monocytes enter the blood stream and are distributed to lymphoid organs (through high endothelial venules (HEV)) and to various peripheral tissues. In steady state, non-classical monocytes are preferentially recruited into the resting vasculature, where they patrol the endothelium and may contribute to the maintenance of tissue-resident macrophage and DC populations. Conventional DCs (cDCs) recirculate between peripheral tissues and lymphoid organs (migratory cDCs), participating in the induction of peripheral tolerance, or reside in the lymphoid organs (lymphoid-resident cDCs). By contrast, plasmacytoid DCs (pDCs) mostly populate lymphoid tissues (lymphoid-resident pDCs) and lack migratory ability under steady-state conditions. Upon inflammation, classical monocytes, cDCs, and pDCs are recruited to affected tissues. After antigen uptake and differentiation into fully functional mature DCs, monocyte-derived DCs (moDCs), and cDCs enter draining lymph nodes via afferent lymphatics. pDCs can only access reactive lymph nodes from the blood stream via HEVs.
monocytes, thus, function as a systemic reservoir of tissue-resident myeloid cells (11, 12).

There are three subsets of human monocytes, each of which display different functional and migratory abilities and can be distinguished based on their expression of specific chemokine receptors, CD14 [the lipopolysaccharide (LPS) receptor], and CD16 (FcγRIII) (13). “Classical” monocytes (CD14++CD16–), which account for about 90% of circulating monocytes in healthy individuals, express high levels of the C-C chemokine receptor type 2 (CCR2), display high phagocytic and myeloperoxidase activities, generate reactive oxygen species, and produce inflammatory cytokines, such as interleukin (IL)-1, TNF-α, IL-6, and tumor necrosis factor (TNF)-α (14). On the other hand, the “non-classical” monocytes (CD14++CD16+) comprise a population that exhibits low phagocytic and myeloperoxidase activities (15, 16). Importantly, while classical monocytes are recruited preferentially to distressed tissues (17), non-classical monocytes are recruited to non-inflamed areas, where they patrol the microvasculature via the CX3C chemokine receptor 1 (CX3CR1) and leukocyte function-associated antigen (LFA)-1, monitoring the luminal surface of resting endothelium for signs of tissue damage or infection (18–20). In addition, non-classical monocytes are mainly responsive to virus-associated signals, via toll-like receptors (TLRs) 7 and 8, whereas classical monocytes respond mostly to bacteria-associated signals (21). An intermediate subset of monocytes, characterized as CD14++CD16+, is viewed as being a transitional population between classical and non-classical monocyte subsets, displaying significant production of TNF-α and IL-1β, but low peroxidase activity (16, 22). While the migratory ability of the intermediate subset is controversial, they express the chemokine receptor CCR2, a feature supporting their ability to infiltrate sites of inflammation (23). Still, overall, the intermediate monocyte population reportedly displays weaker ability to migrate across resting endothelium compared to the other two monocytic subsets (24).

Dendritic Cells

Dendritic cells are the antigen-presenting cells par excellence, showing a unique capacity to initiate immune responses. These specialized antigen-presenting cells constitute a unique leukocyte population that display high morphological and functional heterogeneity (25). DCs can be originated from common myeloid or lymphoid precursors and are divided into two main groups: conventional DCs (cDCs) and plasmacytoid DCs (pDCs) (26). After being released into the bloodstream, they are distributed to lymphoid organs (lymph nodes, spleen, and thymus) and various peripheral tissues. DC function is intrinsically related to their anatomical localization, and, therefore, a stringent DC functional-anatomical classification needs to be defined (Figure 1). At steady state, DCs are found to be immature (as indicated by high phagocytic and endocytic capacity and low expression of MHC and costimulatory molecules) and can be classified as either migratory or lymphoid-resident DCs (27, 28).

Migratory DCs serve as immune sentinels screening peripheral tissues for signals of danger. They can also capture apoptotic cells or self-antigens in non-inflamed tissues and, after entering lymph nodes via afferent lymphatics, present these to T cells in the lymph nodes, thus playing a key role in antigen-mediated peripheral tolerance (29–31). On the other hand, lymphoid-resident DCs differentiate within lymphoid organs directly from blood DC precursors, and they function to continuously survey blood or lymph (27, 32). Both cDC and pDC hematopoietic progenitors contribute to the lymphoid-resident DC pool, whereas most migratory DCs arise from blood cDCs (33). Under infection or sterile inflammatory circumstances, both circulating cDCs and classical monocytes enter inflamed tissues, where they capture antigens and differentiate into highly functional mature DCs. The mature DCs migrate to the lymph nodes via the afferent lymph, initiating T cell-mediated immune responses.

In addition to cDCs and pDCs, a distinct subset of DCs are derived from monocytes (known as “moDCs”) which are considered to be “inflammatory DCs”; these cells prominently produce TNF-α, nitric oxide, and IL-23, and are potent inducers of TH17 cells (34–37). Interestingly, although pDCs are believed to be absent from peripheral tissues under steady-state conditions, a number of recent publications reported pDC extravasation into some inflamed tissues, where they secrete large amounts of type I interferon (38–42). In contrast to cDCs, pDCs do not enter reactive secondary lymphoid organs after trafficking from peripheral tissue via afferent lymphatics; instead, they apparently migrate directly from the bloodstream via high endothelial venules (HEVs) by an E-selectin–dependent mechanism (43–47).

Macrophages

Macrophages are a heterogeneous and versatile population of tissue-resident cells, mostly originating from self-renewing embryo-derived progenitors and from blood monocytes that have colonized tissues (48, 49). They exist virtually in every tissue throughout the body, where they survey for potential signs of infection/danger and perform phagocytic clearance of dying cells (50). In addition, macrophages play a role in adaptive immunity through antigen presentation and production of cytokines (51, 52).

There are two main macrophage subsets, the M1 and the M2 macrophages, with distinct responses to environmental signals. The M1 subset produces high amounts of pro-inflammatory cytokines and reactive oxygen and nitrogen species, thus playing a crucial role in Th1 polarization and promotion of cellular immunity. M2 macrophages are characterized by their ability to stimulate humoral immune responses, fight extracellular parasite infections, and promote tissue repair, angiogenesis, and tumor progression (53, 54). Whereas the major function of macrophages is to fight infections and kill target cells, they do not typically display hematogenous migration, nor leave sites of tissue injury (11, 55).

MPS Extravasation Cascade: The Multistep Model

Recruitment of circulating cells from blood to inflamed tissue involves a sequential and coordinated series of molecular actions mediated by adhesive interactions between circulating sentinels and endothelial cells in post-capillary venules (56). Here, we review the molecular effectors that regulate the initial phagocyte–endothelial binding interactions, which are essential for transendothelial migration of blood monocytes and DCs to sites of injury.
To initiate the extravasation process, circulating phagocytes establish low-affinity and reversible interactions (tethering) on target endothelial cells, achieving low velocity “rolling” adhesive interactions (Step 1, Figure 2). Rolling exposes these cells to chemokines that are immobilized by glycosaminoglycans on the endothelial surface, and, in turn, facilitates engagement of G-protein-coupled chemokine receptors (GPCRs) expressed on the mononuclear phagocyte cell surface (Step 2, Figure 2), with resultant G-protein-driven integrin activation (3, 57). Activated integrins on phagocytes, principally very late activation protein 4 and LFA-1, bind to their respective endothelial receptors vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 (ICAM-1), leading to firm adhesion of MPS cells on the endothelium (Step 3, Figure 2) (3, 57). The binding of activated integrins then allows diapedesis into the tissue (Step 4, Figure 2). Two distinct mechanisms enable diapedesis: (1) transient dismantling of endothelial junctions (paracellular migration) or (2) migration through individual endothelial cells (transcellular migration) (58, 59).

Although several cell-associated proteins are specialized at mediating the first step of cell migration, the selectins and their ligands are the most potent effectors of tethering and rolling adhesive interactions. These molecules are responsible for the initial low-affinity binding interactions of leukocytes on endothelial layer (60), a property related to the unique biophysics of lectin–carbohydrate interactions under fluid shear conditions.

SELECTINS AND THEIR GLYCOCONJUGATE LIGANDS

The Selectin Family

The selectins are a family of three carbohydrate-binding proteins that can be expressed on endothelial cells, leukocytes and platelets (Figure 3). Due to their requirement of calcium ions for binding, all three selectins, E-selectin (CD62E), P-selectin (CD62P), and L-selectin (CD62L), belong to the C-type lectin family (61). Selectins share a common structure of five different domains: an N-terminal carbohydrate recognition domain (CRD), an epidermal growth factor-like domain (EGF), a varying number of short consensus repeats that have homology to complement regulatory domains (“CRs” of which there are 2, 6, and 9 within L-, E-, and P-selectin, respectively), a transmembrane region, and a C-terminal cytoplasmatic domain (Figure 3) (62–64). While the CRD and EGF domains are highly homologous between the three selectins, the structure...
of the transmembrane and cytoplasmic portions, as well as the extracellular CR domains are not conserved across the selectins, resulting in structural diversity and varying molecular weights between selectins (61, 65).

Despite sharing common elements, the three selectins have different functions in diverse pathological and physiological processes and vary in their distribution and binding kinetics.

The biology of L-selectin was first elucidated by use of an in vitro assay in which suspensions of lymphocytes were over-laid onto lymph node sections (66). This assay then allowed for creation of mAb that could interrupt this binding, such as the mAb known as "MEL-14" described by Gallatin and coworkers (67) in 1983, and thereafter led investigators to cloning of this structure (62). L-selectin is highly expressed on hematopoietic stem cells and mature leukocytes, including all myeloid cells, subsets of natural killer cells, naïve T and B cells, and central memory T cells. When leukocytes are activated, cell surface levels of L-selectin are down-regulated by proteolytic cleavage via metalloprotease-dependent shedding of the extracellular domain (61, 68, 69).

P-selectin was described in 1984 by McEver and coworkers (70, 71) and Furie and coworkers (72) as a glycoprotein expressed on the cell surface of activated platelets. P-selectin is constitutively expressed by circulating platelets and endothelial cells, where it is stored in α-granules and Weibel–Palade bodies, respectively. Because it can be expressed on endothelial cells, P-selectin together with E-selectin (described below) are known as the "vascular selectins." Following pro-inflammatory stimulation by molecules such as thrombin or histamine, P-selectin is rapidly translocated from the granules to the cell surface by fusion of intracellular storage compartments with the plasma membrane.

In murine endothelial cells, inflammatory mediators, such as TNF-α, IL-1β, and LPS, induce P-selectin mRNA transcription, which requires the cooperative binding of the nuclear factor κ-light chain-enhancer of activated B cells (NF-κB) and activating transcription factor-2 (ATF-2) to their response elements within the P-selectin promoter (73–75). However, importantly, the promoter of P-selectin in humans and other primates lacks binding sites for NF-κB and ATF-2 (76). For this reason, in human endothelial cells, the only vascular selectin inducibly expressed by TNF-α, LPS, and IL-1β is E-selectin (77).

E-selectin was first reported by Bevilacqua and coworkers (63, 78) in 1980s as a leukocyte adhesion molecule on acti-vated endothelial cells. Skin and bone marrow microvessels express E-selectin constitutively (79), however, in other tissues, endothelial cells do not constitutively express E-selectin but its expression is strongly upregulated by inflammatory cytokines, such as TNF-α and IL-1β. These cytokines potently induce transient transcription (within hours of exposure) of E-selectin mRNA in both human and mouse endothelial cells (80). Cytokine-dependent activation of E-selectin is mediated by NF-κB binding to regulatory domains in the E-selectin promoter (81). Functionally, E-selectin slows leukocyte rolling to much lower velocities than do either L- or P-selectin, favoring subsequent leukocyte arrest (4, 82). This capacity, along with the inability of human endothelial cells to upregulate P-selectin in the presence of IL-1β and TNF-α, is why E-selectin is considered to be the most important selectin for cell trafficking to sites of inflammation in humans, and it plays a critical role in the recruitment of immune effectors to target inflammatory sites.

The Carbohydrate E-Selectin Ligands

E-selectin recognizes a range of structurally diverse glycan epitopes expressed by human leukocytes that typically contain α(1,3)-fucose (Fuc) and α(2,3)-sialic acid (Sia) modification(s) on a lactosamine backbone (consisting of galactose (Gal) linked to N-acetylgalactosamine (GlcNAc)), as shown in Figure 4 (79). The terminal tetrasaccharide known as sialyl Lewis X (sLeα—Siaα2-3Galβ1-4(Fucα1-3)GlcNAc) is the prototypical E-selectin-binding determinant (83–85). Some sLeα-variant structures can also exhibit E-selectin binding activity, namely an internally fucosylated sLeα-variant (VIM-2) and other polylactosamine structures, in which Fuc modifications occur at more than one GlcNAc residue along the polylactosamine chain (tri-fucosyl-sialyl Lewis αs and di-fucosyl-sialyl Lewis αs) (86–88). In addition, other glycan structures that are not natively expressed on leukocytes exhibit E-selectin binding activity, namely the sLeα isoform, sialyl Lewis α (sLeα—Siaα2-3Galβ1-3(Fucα1-4)GlcNAc) (89), some sulfated derivatives of Leα and Leβ (3′-sulfo-Leα and 3′-sulfo-Leβ, respectively) (90, 91), and a fucosylated glycoform of LacdiNac that displays a terminal N-acetylgalactosamine (GalNAc) instead of Sia (GalNAc-Lewis x) (92).

Glycosyltransferases Involved in the Biosynthesis of Selectin–Carbohydrate-Binding Determinants

E-selectin binding determinants are typically displayed at the end of O-glycans, N-glycans, or glycolipid precursor structures, and require the coordinated and sequential action of specific glycosyltransferases localized within the lumen of the Golgi apparatus. Assembly of sLeα is driven by the terminal addition of Sia to Gal (to GlcNAc) through the action of α(2,3)-sialyltransferases and α(1,3)-fucosyltransferases (FTs), respectively, on type 2 lactosamine (LacNAc) chains (i.e., Gal attached to GlcNAc through a β(1,4)-linkage) (Figure 4) (93, 94). The sialylated forms of Lewis antigens are synthesized by the action of the α(2,3)-sialyltransferases (ST3Gal isoenzymes). These enzymes transfer Sia residues to the Gal on the LacNAc chain, exclusively acting prior to fucosylation (95, 96). There are six members of the α(2,3)-sialyltransferase family (ST3Gal-I– ST3Gal-VI), but only ST3Gal-III, ST3Gal-IV, and ST3Gal-V are reported to sialylate lactosamine chains (97). Importantly, ST3Gal-III exhibits preference for type 1 lactosamine chain acceptors (wherein Gal is connected to GlcNAc through a β(1,3)-linkage), whereas ST3Gal-IV and ST3Gal-V preferentially act on type 2 polylactosamine chains (98–100). When Type 1 lactosamines are decorated with sia in α(2,3)-linkage to Gal and with Fuc in β(1,3)-linkage to GlcNAc, this tetrasaccharide is known as sialyl Lewis A (sLeα). So far, six human FTs have been found to catalyze the addition of Fuc at α(1,3) linkage to GlcNAc with a type 2 lactosamine—FTIII, FTIV, FTV, FTVI, FTVII, and FTIX. Each enzyme exhibits specificity for acceptor substrates and,
therefore, has the ability to generate distinct fucosylated structures (101, 102). Particularly, FTIII and FTV are unique in that they exhibit both α(1,3) and α(1,4) FT activity on both sialylated and unsialylated type 2 and type 1 lactosamines thereby creating (s)Le^a and (s)Le^b epitopes, respectively (103, 104). On the other hand, FTIV and FTVI fucosylate both sialylated and unsialylated type 2 lactosamine chains, with FTIV creating VIM-2 and Le^b (105, 106) and, modestly, sLe^a determinants (107, 108), and FTVI creating these structures as well as di-fucosyl-sLe^a (108–110). Uniquely, FTVII can only act on sialylated type 2 lactosamines, yielding sLe^a and di/tri-fucosyl-sLe^a-structures (111, 112), whereas FTIX is known to synthesize mostly Le^a (101, 106).

Most of the reports that assess the role of the different glycosyltransferases involved in selectin ligand biosynthesis in leukocytes have been performed using knock-out mouse models, with a small proportion of these studies using human leukocytes or human hematopoietic cell lines. Concerning the role of the α(2,3)-sialytransferases, murine studies suggest that ST3Gal-IV and ST3Gal-VI collaborate together in murine E-selectin ligand biosynthesis, with ST3Gal-IV having an important role in the regulation of E-selectin-dependent rolling velocity (113, 114). Interestingly, ST3Gal-III does not seem to contribute to the synthesis of murine E-selectin ligand moieties, since deficiency of this enzyme did not affect E-selectin ligand expression or activity on murine leukocytes (113). Surprisingly, ST3Gal-IV is reportedly the only human α(2,3)-sialyltransferase involved in the biosynthesis of E-selectin ligands in human myeloid leukocytes, since ST3Gal-IV-silenced HL-60 cells (a human promyelocytic cell line), and neutrophils derived from stable ST3Gal-IV knockdown hematopoietic stem cells fail to engage in tethering and rolling interactions on E-selectin-bearing
substrates (115). In case of α(1,3)-FTs, studies demonstrate that mostly FTVII, and to a lesser extent FTV, are the key murine α(1,3) FTs that mediate leukocyte selectin ligand biosynthesis. In fact, murine leukocytes lacking FTVII show poor adhesive contacts with E- and P-selectin, indicating that this FT plays a prominent role in murine E-selectin ligand biosynthesis (116, 117). However, others reported that FTV is crucial for slow murine leukocyte rolling velocity (118, 119). Importantly, E-selectin binding activity conferred by murine FTV, but not by FTVII, apparently occurs mainly on glycolipids rather than glycoproteins (120). Conversely, in human leukocytes, there is evidence that FTVII, FTV, and FTIX could each act in synthesis of E-selectin ligand determinants (121). Notably, the mouse genome encodes only FTV, FTVII, and FTIX (122), whereas primates possess an additional three FT gene products—FTIII, FTV, and FTIV. These additional FTs provide for a much wider capacity to create sLe^a; in addition, the expression of FTIII and FTV in primates uniquely drives creation of sLe^a determinants. Human circulating monocytes express all the α(1,3)-FTs, with the exception of FTV, heightening the potential for variability in glycoconjugates bearing sLe^a among human and mouse cells (123). Notably, sLe^a is not expressed on any primate leukocytes as these cells do not synthesize Type 1 lactosamines (3).

Other glycosyltransferases involved in the biosynthesis of sLe^a have also been studied for their relevance in generating functional selectin ligands (Figure 5). Regarding sLe^a presentation on O-glycans, one study reported that leukocytes from mice deficient in the enzyme required for initiation of O-glycosylation, ppGalNAcT-1, showed impaired recruitment during inflammation due to a significant reduction in E- and

Figure 5 Schematic representation of the biosynthetic pathways leading to glycoprotein synthesis: O-linked and N-linked glycosylation. The O-glycosylation process is characterized by a stepwise sugar addition that occurs in the Golgi apparatus and involves a broad array of enzymes. This synthesis is initiated by one of the N-acetylgalactosaminyltransferase (ppGalNAcT) family members, forming the Tn antigen. After the first sugar [N-acetylgalactosamine (GalNAc)] addition, Tn is typically elongated by Core 1 β(1,3)galactosyltransferase (Core1GalT or T synthase, whose Golgi expression requires the activity of its chaperone COSMC), creating the “Core 1” O-glycan (also known as “T antigen”). Core 1 is then further lengthened by C2GnT-I, which adds an N-acetylglucosamine (GlcNAc) to the GalNAc, forming the “Core 2” O-glycan structure. Alternatively, Core 1 sialylation, by ST3Gal-I or ST6GalNAc-II [forming sialyl-T (sT) or sialyl-6T (s6T) antigens, respectively] stops Core 2 formation. In contrast to O-glycosylation, the N-glycosylation process requires the production of an oligosaccharide precursor (GlcNAc2Man5) in the cytoplasmic face of the endoplasmic reticulum (ER) membrane. This glycan flipped in the ER lumen and is then transferred en block from a lipid donor to the Asn residue of a newly synthesized protein within the ER lumen, and then further processed in the Golgi compartment. Biosynthesis of hybrid and complex glycans is initiated by the action of MGAT-I, which adds a GlcNAc residue to the mannose (Man) present on the α(1,3)-arm of the Man5GlcNAc2 structure. Repetitive additions of galactose (Gal) and GlcNAc by β(1/4)GalT and β(1,3)GnT enzymes, respectively, can further elongate Core 2 O-glycan and hybrid- and complex-type N-glycan structures, creating the lactosaminy type 2 chains that serve as acceptors for terminal sialofucosylation reactions.
P-selectin ligand levels (124). Mice lacking the O-glycan core 1 β3galactosyltransferase (C1GalT-I) showed dramatic loss of leukocyte rolling on E-selectin and, consequently, these leukocytes did not transmigrate into inflamed tissues (125). Transgenic mouse studies, where the O-glycan core 2 β6-N-acetylglucosaminyltransferase-I (C2GnT-I) was knocked out, also showed reduced E-selectin and P-selectin binding activity of leukocytes under static and shear-based rolling assays, with impaired leukocyte recruitment to sites of inflammation (126–128). In agreement, in human moDCs, the downregulation of C2GnT-I, with concurrent upregulation of ST3Gal-I and GalNAc α(2,6)sialyltransferase (ST6GalNAc-II), results in a loss of the core 2 structures required for O-glycan display of sLeα (Figure 5) (129). Furthermore, studies using HL-60 cells have revealed that the ST6GalNAc-II overexpression abrogates sLeα cell surface display and reduces the number of adherent cells to E-selectin under flow conditions, reinforcing the notion that there exists a competition between ST6GalNAc-II and C2GnT-I for core 1 acceptors, affecting the biosynthesis of sLeα-bearing core 2-O-glycan structures (Figure 5) (130). Interestingly, in mice, knockout of one of the β(1,4)galactosyltransferases (of the family of five isoenzymes) involved in Type 2 lactosamine synthesis, β(1,4)galactosyltransferase-I (β(1,4)GalT-I), showed reduced inflammatory responses and impaired P-selectin binding activity; however, the contribution of this enzyme in the synthesis of E-selectin counter-receptors remains to be elucidated (131).

One study has recently evaluated the contributions of N-glycans, O-glycans and glycosphingolipids (GSLs) to E-selectin binding by human myeloid cells under physiological flow conditions (132). To address this issue, O-glycan and GSL synthesis was abolished by, respectively, knocking-out the core 1 Gal transferase chaperone, i.e., the C1GalT-I-specific Molecular Chaperone (COSMC), β1,2 GlcNAc-transferase (MGAT-I), and UDP-glucose ceramide glucosyltransferase (UGCG). Notably, these studies indicate that while O-glycans are indispensable for myeloid cell binding to L- and P-selectins, N-glycans play the major role in the initial myeloid cell recruitment into E-selectin-bearing substrates, with O-glycans playing a more modest role. In addition, both glycolipids and N-glycans are responsible for the slowing down of rolling velocities that precede firm arrest (132).

Most studies that have assessed biologic modulators of E-selectin ligands in leukocytes have been performed using human and murine T cells. An array of cytokines has been shown to regulate E-selectin ligand expression via upregulation or downregulation of specific glycosyltrasferases that control sLeα expression. Specifically, IL-2, IL-7, IL-15, and IL-12 increase the expression of glycosyltransferases involved in the biosynthesis of E-selectin ligand determinants, whereas IL-4 has the opposite effect (133). This selectin ligand upregulation in T cells in response to cytokine signaling was shown to be dependent on Th1 transcription factor T-bet (134) and on STAT4-mediated pathways (135). Interestingly, human myeloid cells treated with granulocyte-colony stimulating factor (G-CSF) show increased cell surface expression of E-selectin ligands associated with significant increases in gene expression of the glycosyltransferases ST3Gal-IV, FTIV, and FTVII (136).

E-SELECTIN LIGAND ACTIVITY DISPLAYED BY CIRCULATING MPS SUBSETS

Among the cells of MPS, human circulating monocytes and, to a lesser extent, human blood cDCs and moDCs are the most comprehensively analyzed group in terms of E-selectin ligand activity. In our studies, human classical monocytes (CD14+CD16−) showed significantly higher levels of sLeα determinants as compared to intermediate monocytes (CD14+CD16+), whereas non-classical monocytes (CD14+CD16++) were almost devoid of sLeα expression (123). Another study compared the trafficking capacity of human monocyte subsets by analyzing their ability to bind to activated endothelial monolayers, and commensurately, classical monocytes showed noticeably higher capability of adhering to reactive endothelium than did non-classical/intermediate monocytes (137). In agreement with human studies, murine classical monocytes (Ly-6C+) exhibit greater binding to E-selectin under flow conditions and express higher levels of the scaffolds that bear sLeα determinants compared to non-classical monocytes (Ly-6C-) (138, 139). This differential pattern of E-selectin ligand display is in agreement with the specific migratory requirements among the monocyte subsets: classical monocytes are typically recruited to inflamed lesions (138, 139), whereas non-classical monocytes migrate to non-inflamed endothelium (14) upon which they patrol healthy tissues in a LFA-1-dependent manner (19). Indeed, although the first observations of non-classical monocytes were made in non-inflamed skin blood vessels (19), these cells were further described in the microvasculature of kidney under steady-state conditions (20). The patrolling profile that these cells exhibit is independent of the activation state of the endothelium, since non-classical monocytes constitutively scavenges the luminal side of non-reactive endothelium (18). Therefore, their ability to bind to endothelium seems to be independent of E-selectin receptor/ligand interactions, but, instead, appears critically regulated by LFA-1 expression and its interaction with endothelial ICAM (19, 20). Notably, although selectins play a major role in the initial adhesive contacts with endothelium surfaces, integrins can also support tethering and rolling events under flow conditions, albeit with less potency than do selectins (140, 141).

Multiple adhesion molecules are involved in monocyte attachment to endothelium. While E-selectin receptor/ligand interactions prominently mediate Step 1 events in transmigration for all leukocytes, L-selectin-dependent binding interaction have also been observed to potently mediate human peripheral blood monocyte binding to activated vascular endothelium under shear stress (142–144). Thus, even though the majority of the reports indicates that initial monocyte adhesion to activated endothelial cells is most critically dependent on E-selectin receptor/ligand interactions (123, 145–150), distinct interactions were also reported by other authors. The differences have to do with differences in the leukocyte populations under study, variations in the assay conditions employed (i.e., shear stress levels employed, rotatory shear versus fluid shear conditions, temperature, etc.), differences in the adhesion metrics (i.e., number of adhered cells, number of rolling cells, rolling velocity measurements,
etc) altogether compounded by the innate biologic differences between mice and human cells, could alternatively emphasize the contribution(s) of other adhesion molecules.

Concerning DCs, human blood cDCs express high levels of sLe^e determinants, which allow them to tether and roll on E-selectin under flow conditions (151, 152). Importantly, in invivo intravital microscopy studies, human blood cDCs adoptively transferred into mice were observed to roll along resting murine skin endothelium and extravasate at sites of inflammation (151). Notably, human moDCs significantly express sLe^e, especially on O-glycan structures. Upon maturation of moDCs with the TLR4 ligand, LPS, sLe^e expression is downregulated due to decreased C2GnT-I expression and upregulation of ST6GalNAc-II and ST3Gal-I (129). Biologically, these observations suggest that sLe^e is less relevant for transendothelial migration of TLR4-induced-mature moDCs, or that maturation is a step that follows transendothelial migration. By contrast, IFN-γ-induced maturation of moDCs leads to an upregulation of C2GnT-I, resulting in increased expression of core 2 O-glycan substrates for sLe^e decoration (153). These features suggest that sLe^e-bearing core 1-derived (or core 2) O-glycans are required for human moDC migration and are modulated according to specific maturation stimuli. Human pDCs also express sLe^e, allowing their recruitment to some inflamed tissues (38, 39, 154) and to reactive lymph nodes (43), a process believed to be mediated by the expression of E-selectin in HEVs (45, 47).

GLYCOCONJUGATE STRUCTURES THAT DISPLAY E-SELECTIN LIGAND DETERMINANTS IN CIRCULATING MPS CELLS

Several diverse and structurally singular glycostructures with E-selectin binding activity have been identified on human classical monocytes or human blood DCs. Human classical monocytes greatly display sLe^e decorations on an array of protein scaffolds, consisting of P-selectin glycoprotein ligand-1 (PSGL-1), CD43 and CD44, and GSLs (123), whereas human circulating DCs appear to display sLe^e solely on PSGL-1 (129, 155).

Cutaneous Lymphocyte Antigen

The cutaneous lymphocyte antigen (CLA) is the E-selectin-reactive glycoform of PSGL-1. PSGL-1 is a transmembrane 240-kDa homodimeric, mucin-like glycoprotein expressed on leukocytes (and, reportedly, on some activated endothelial cells) that plays a crucial role in the homing of leukocytes into inflamed tissue (156, 157). E-selectin binding activity of PSGL-1 is conferred by sialylated and fucosylated core 2-based-O-glycans that are cluster-distributed along the stalk region of the PSGL-1 extracellular domain (158). A number of studies have identified PSGL-1 as one of the several scaffolds expressed by human classical monocytes displaying E-selectin-binding activity (123, 155). On the other hand, PSGL-1 is the only known scaffold that presents sLe^e determinants on human circulating cDCs (151, 155) and moDCs (129). Yet, Silva et al. observed that although PSGL-1 is essential for P- and L-selectin recognition by human moDCs under fluid shear conditions, it is not mandatory for tethering to E-selectin (153). Moreover, there are reports that extravasation of murine immature DC to inflamed tissues requires both E- and P-selectin, but not PSGL-1 (159). Together, these data suggest the expression of ligands for E-selectin in addition to CLA by human and murine DCs. Still, PSGL-1 is the dominant ligand for P- and L-selectin and is the only known glycoprotein that binds all three selectins (160, 161). Accordingly, circulating monocytes that have already bound to E-selectin on inflamed endothelium can also interact with L-selectin expressed by other circulating monocytes/DCs via PSGL-1 and support their secondary capture, potentiating mononuclear phagocyte recruitment to sites of inflammation (162).

Hematopoietic Cell E- and L-Selectin Ligand

HCELL is a sialofucosylated glycoform of CD44 that exhibits potent E-selectin (and L-selectin) binding activity. CD44 is a transmembrane protein that exists in a wide variety of protein isoforms due to alternative splicing and extensive post-translational modifications (with molecular weight ranging from 80 to 220 kDa). CD44 is expressed by most mammalian cells, where it serves as the principal receptor for hyaluronic acid and participates in a broad range of cellular activities, including lymphocyte activation, leukocyte trafficking, hematopoiesis, cell growth and survival, and tumor dissemination (163). Post-translational modifications along with extensive alternative splicing allow the formation of multiple protein isoforms, expressed in a tissue-specific manner (164, 165). The standard protein isoform of CD44 (CD44s or CD44H) is encoded by mRNA transcripts comprising exons 1–5 and 16–20 ("s1–s5 and s6–s10"). CD44s is ubiquitously expressed by mammalian cells and is the form most often displayed by hematopoietic-lineage cells. In addition to CD44s, non-hematopoietic cells characteristically display CD44 variant isoforms contain peptide products of variant exons (exons "v2–v10") in addition to the standard exon peptide products.

CD44 post-translational modifications include the addition of different glycan structures, namely glycosaminoglycans, and N- and O-glycan substitutions (166). While previous studies indicated that HCELL was only expressed by human hematopoietic stem and progenitor cells (HSPCs) (167, 168), some hematologic (167, 169) and solid malignancies (170), HCELL was recently reported to be expressed by classical human monocytes (123). Importantly, for human HSPCs, the sLe^e determinant is exclusively displayed on N-glycan lactosamines on CD44s, but classical monocytes express sLe^e on O-glycans of CD44s (123). Because of its ability to engage E- and L-selectin under relatively high fluid shear conditions (i.e., in excess of 20 dynes/cm² shear stress), HCELL is considered the most potent L- and E-selectin ligand expressed on mammalian cells (167, 171).

CD43E

CD43, also known as sialophorin or leukosialin, is a cell surface glycoprotein expressed by nearly all hematopoietic cells and is involved in several important processes, including cell development, activation, survival, and migration (172–176). Glycosylation
of CD43 molecules with either core 1 or core 2 O-glycan structures produces the ~115 and ~135 kDa glycoforms, respectively (177). Recently, we reported that human classical monocytes display E-selectin binding activity on CD43 (123). CD43 that displays sLe\(^\alpha\) and binds E-selectin is known as “CD43E” and this protein harbors sLe\(^\alpha\) on O-glycans (178).

Glycosphingolipids

In contrast to results in mouse leukocytes, reports using human cells have suggested that sialofucosylated determinants displayed on lipid scaffolds can mediate adhesion to E-selectin under static and flow conditions. In native human leukocytes and in the myelocytic leukemia cell line HL-60, the glycolipid structures that display ability to bind to E-selectin consist of sialylated lactosylceramides decorated with internal fucosylated GlcNAc structures (myeloglobins) (86, 87, 179). It has been reported that the disruption of myeloglycan biosynthesis via knockdown of ceramide glucosyltransferase (UGCG) in HL-60 cells disturbed stable cell rolling and impaired transmigration across inflamed endothelial cells (180). Finally, human classical monocytes treated with a broadly active protease did not show a complete abrogation of sLe\(^\alpha\) staining, suggesting that although the majority of sialofucosylated moieties required for E-selectin binding are preferentially expressed on proteins rather than lipids, a considerable amount of sialofucosylated determinants are present on glycolipids (123).

PATHOPHYSIOLOGICAL IMPORTANCE OF THE SELECTINS

Due to its crucial role in the transmigration of specific myeloid populations to sites of inflammation, the selectin/selectin–ligand axis is involved in the development of many acute and chronic inflammatory conditions (181, 182). In fact, cutaneous inflammatory disorders, such as allergic contact dermatitis (183), atopic dermatitis (184–188), and psoriasis (183, 184, 189–191), are known to be promoted by the upregulation of selectins on dermal microvasculature. Specifically, P- and E-selectins are upregulated in skin lesions of cutaneous inflammatory patients, which enables inflammatory mononuclear phagocyte infiltration with subsequent release of soluble cytotoxic mediators, T cell activation, and destruction of the dermal layer of skin (154, 192–194). Atherosclerosis is another chronic inflammatory disease in which the recruitment of monocytes into selectin-expressing endothelial beds constitutes a key inflammatory event in the pathogenesis of the disease (195). Both E- and P-selectins are expressed on human arterial luminal endothelial cells of atherosclerotic plaques (195, 196), and mouse studies have shown that E-selectin and/or P-selectin deficiency substantially reduces the formation of atherosclerotic plaques, suggesting an overlapping function of these two selectins in the development of atherosclerotic lesions (197, 198). Murine classical monocytes (Ly6C\(^{hi}\)) preferentially migrate into activated endothelium and infiltrate developing atheromas to become atherosclerotic macrophages, inflammatory DCs, or foam cells (139). Indeed, murine classical monocytes display high levels of PSGL-1 and higher binding affinity to E-/P-selectin expressing cells than do the non-classical patrolling monocytes, which might explain why they are preferentially recruited to sites of endothelial inflammation and thrombosis (138).

Inflammatory bowel disease (199–202), multiple sclerosis (203, 204), rheumatoid arthritis (205–207), and type 1 diabetes (208, 209) are other examples of inflammatory diseases in which upregulated E-/P-selectin expression in tissue microvasculature drives myeloid cell recruitment crucial for the development of the disease. Increased E-selectin expression and mononuclear phagocyte infiltration have been similarly observed in cases of transplantation rejection, including human renal (210, 211), lung (212–214), and cardiac (215–217) rejection and in acute graft versus host disease (218–221). Recruitment of inflammatory classical monocytes (222, 223) and pDCs (38, 41, 224) to tumor-cell-activated endothelium has also been reported to be dependent on E-selectin expression, which can lead to an inhibition of the tumor-specific immune defense response and induction of tolerance (225, 226). Some studies have also indicated that inflammatory monocytes license extravasation of tumor cells via the induction of E-selectin-dependent adhesive interactions (222).

THERAPEUTIC STRATEGIES TARGETING THE SELECTIN/SELECTIN–LIGAND AXIS

The critical role of selectins and their ligands in the pathogenesis of many inflammatory conditions makes them potential molecular targets for therapy and, therefore, several strategies have been developed to interfere with this biology (182, 227, 228). One strategy relies on the development of pan-selectin competitive inhibitors that inhibit leukocyte/endothelial cell interaction and, therefore, cell recruitment to affected inflammatory or metastatic tissues. One example is the molecule Bimosiamose (Encysive Pharmaceuticals), a sLe\(^\alpha\) mimetic that showed clinical efficacy in both asthma and psoriasis (229, 230). Other examples of pan-selectin inhibitors include sLe\(^\alpha\)-peptides (231), sLe\(^\alpha\)-bearing liposomes (232) or heparin oligosaccharides (233, 234). Also, GMI-127 and GMI-1271, E-selectin antagonists developed by GlycoMimetics based on the bioactive conformation of sLe\(^\alpha\) in the carbohydrate-binding domain of E-selectin, have been used in treatment of sickle cell crisis (ClinicalTrials.gov Identifier: NCT00911495) and as an adjuvant for chemotherapy of hematological malignancies, including multiple myeloma and acute myeloid leukemia (NCT0281822, NCT02306291). In addition, an alternative approach involves the inhibition of the selectin ligand synthesis, either by interfering with the expression of key glycosyltransferases involved in sLe\(^\alpha\) biosynthesis (235), or by using fluorinated analogs of Sia and/or Fuc residues (232, 236) that inhibit sLe\(^\alpha\) synthesis. Finally, competing antibodies that bind to vascular E- and P-selectins and/or to selectin ligands expressed on the leukocyte cell surface constitute alternative methods that have been explored to prevent inflammatory exacerbation (182, 228). Indeed, a soluble form of PSGL-1 linked to the Fc portion of human IgG1 (PSGL-1-Ig) has been shown to inhibit leukocyte rolling in several disease models in mice (237–240).

On the other hand, the disruption of the selectin–leukocyte interaction has been reported to trigger severe immune-deficiency
by disruption of immunosurveillance (241). Leukocyte adhesion deficiency Type II is a rare genetic disorder characterized by defective neutrophil and monocyte migration caused by a mutation in a GDP-Fuc transporter gene (242). This mutation leads to the formation of glycan which lacks fucosylation, resulting in impaired leukocyte rolling and consequent leukocytosis and recurrent infections (242, 243). To overcome deficient cellular rolling, our lab developed a FT-driven sLeX biosynthesis approach to enforce cell surface expression of E-selectin ligands while preserving cell viability, called glycosyltransferase-programmed stereosubstitution (GPS) (244, 245). This platform uses optimized reaction conditions, which enables the efficient α(1,3)-fucosylation of underfucosylated sialylated type 2 lactosamine acceptors (Siaα2-3Galβ1-4GlcNac), via a soluble α(1,3) FT, installing expression of sLeX (Siaα2-3Galβ1-4GlcNAc1-3Fuc) (3). GPS has been used to improve the recruitment of a variety of human and mouse cells into E-selectin-bearing endothelial beds, driving cell migration into bone marrow and inflammatory sites (123, 178, 208, 244, 246–248).

CONCLUDING REMARKS

Specific migratory routes and distinct localization in steady and inflammatory conditions of the different human MPS subsets suggests that they play differential roles in immunity. These cells are operational in multiple beneficial processes, including immediate antimicrobial host defense, activation of the adaptive immune system, and tissue healing processes. However, they may also contribute to the pathobiology of several inflammatory conditions. A better understanding of the molecular basis of glycosylation-dependent creation of E-selectin ligands could yield the development of novel therapeutic approaches for inflammatory diseases, or, alternatively, could yield enhanced ability to infiltrate sites where immunity is needed (e.g., tumors or infection). To our knowledge, only a limited number of studies have analyzed the functional and structural biology of the full spectrum of E-selectin ligands expressed by different circulating human MPS subsets. Future work will be required to address this issue and to elucidate how custom-modified expression of these homing receptors can be achieved to preferentially influence the specific migratory routes of the different subsets of circulating MPS cells.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

We thank Dr. Nandini Mondal and Kyle Martin for their helpful review of the manuscript.

FUNDING

This work was supported by the National Institutes of Health National Heart Lung Blood Institute grant PO1 HL107146 (Program of Excellence in Glycosciences) (RS), and by the Team Jobie Fund (RS) and the Faye Geronemus Leukemia Research Fund (RS). Include Fulbright Commission fellowship (to PAV).

REFERENCES

1. Haniffa M, Bigley V, Collin M. Human mononuclear phagocyte system reunited. *Semin Cell Dev Biol* (2015) 41:59–69. doi:10.1016/j.semcdb.2015.05.004
2. Chow A, Brown BD, Merad M. Studying the mononuclear phagocyte system in the molecular age. *Nat Rev Immunol* (2011) 11(11):788–98. doi:10.1038/nri3087
3. Sackstein R. Glycosyltransferase-programmed stereosubstitution (GPS) to create HCELL: engineering a roadmap for cell migration. *Immunol Rev* (2009) 230(1):51–74. doi:10.1111/j.1600-065X.2009.00792.x
4. Kunkel EJ, Ley K. Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. *Circ Res* (1996) 79(6):1196–204. doi:10.1161/01.RES.79.6.1196
5. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. *J Exp Med* (1968) 128(3):415–35. doi:10.1084/jem.128.3.415
6. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzter A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. *Immunity* (2013) 39(3):599–610. doi:10.1016/j.immuni.2013.08.007
7. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. *Immunity* (2014) 40(1):91–104. doi:10.1016/j.immuni.2013.11.019
8. Bain CC, Scott CL, Uronen-Hansson H, Guidonsson S, Jansson O, Grip O, et al. Resident and pro-inflammatory macrophages in the colon represent minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. *Immunity* (2013) 39(3):599–610. doi:10.1016/j.immuni.2013.08.007
9. Rivellier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from anti-inflammatory macrophages to inflammatory dendritic cells in the colon. *J Exp Med* (2012) 209(1):139–55. doi:10.1084/jem.20110387
10. Serbina NV, Jia T, Hohl TM, Pamer EG. Monocyte-mediated defense against microbial pathogens. *Annu Rev Immunol* (2008) 26:421–52. doi:10.1146/annurev.immunol.26.021607.090326
11. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. *Nat Rev Immunol* (2005) 5(12):953–64. doi:10.1038/nri1733
12. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. *Nat Rev Immunol* (2011) 11(1):762–74. doi:10.1038/nri3070
13. Stansfield BK, Ingram DA. Clinical significance of monocyte heterogeneity. *Clin Transl Med* (2015) 4:5. doi:10.1186/s40169-014-0040-3
14. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. *Immunity* (2003) 19(1):71–82. doi:10.1016/S1074-7613(03)00174-2
15. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, et al. Nomenclature of monocytes and dendritic cells in blood. *Blood* (2010) 116(16):e74–80. doi:10.1182/blood-2010-02-258558
16. Kratofil RM, Kubes P, Deniset JF. Monocyte conversion during inflammation and injury. *Arterioscler Thromb Vasc Biol* (2016) 37(1):35–42. doi:10.1161/ATVBAHA.116.308198
17. Ziegler-Heitbrock L, Hofer TP. Toward a refined definition of monocyte subsets. *Front Immunol* (2013) 4:23. doi:10.3389/fimmu.2013.00023
18. Thomas G, Hack R, Hedrick CC, Hanna RN. Nonclassical patrolling macrophage function in the vasculature. *Arterioscler Thromb Vasc Biol* (2015) 35(6):1306–16. doi:10.1161/ATVBAHA.114.304650
19. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. *Science* (2007) 317(5838):666–70. doi:10.1126/science.1142883
20. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizay-Barrena G, et al. Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell (2013) 153(2):362–75. doi:10.1016/j.cell.2013.03.010

21. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TL1R and TLK8 receptors. *Immunity* (2010) 33(3):375–86. doi:10.1016/j.immuni.2010.08.012

22. Yang J, Zhang L, Yu C, Yang XF, Wang H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. *Biomark Res* (2014) 21:1–11. doi:10.1186/2050-7712-2-1

23. Passos S, Carvalho LP, Costa RS, Novais FO, Magalhaes A, et al. Intermediate monocytes contribute to pathologic immune response in *Leishmania braziliensis* infections. *Infect Dis* (2015) 211(2):274–82. doi:10.1093/infdis/jiu439

24. Tolouei Semnani R, Moore V, Bennuru S, McDonald-Fleming R, Ganesan S, Cotton R, et al. Human monocyte subsets at homeostasis and their perturbation in numbers and function in filarial infection. *Infect Immun* (2014) 82(11):4438–46. doi:10.1128/IAI.01973-14

25. Lin KW, Jacke T, Jacek R. Dendritic cells heterogeneity and its role in cancer immunity. *J Cancer Res Ther* (2006) 2(2):35–40. doi:10.4103/0973-1482.1825847

26. Ishikawa F, Nito H, Iino T, Yoshida S, Saito N, Onohara S, et al. The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. *Blood* (2007) 110(10):3591–601. doi:10.1182/blood-2007-02-071613

27. Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. *Nat Rev Immunol* (2007) 7(1):19–30. doi:10.1038/nri1996

28. Boltjes A, van Wijk F. Human dendritic cell functional specialization in steady-state and inflammation. *Front Immunol* (2014) 5:131. doi:10.3389/fimmu.2014.00131

29. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. *Exp Med* (2001) 194(6):769–79. doi:10.1084/jem.194.6.769

30. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. *Exp Med* (2000) 191(3):435–44. doi:10.1084/jem.191.3.435

31. Matsuno K, Ezaki T, Kudo S, Uehara Y. A life stage of particle-laden rat dendritic cells. *Immunology* (2013) 140(3):368–77. doi:10.1111/j.1365-2567.2013.03010.x

32. Matsuno K, Ezaki T, Kudo S, Uehara Y. A life stage of particle-laden rat dendritic cells in vivo: their terminal division, active phagocytosis, and translocation from the liver to the draining lymph. *Exp Med* (1996) 183(4):1865–78. doi:10.1084/jem.183.4.1865

33. Crespo HJ, Lau JT, Videira PA. Dendritic cells: a spot on sialic Acid. *Front Immunol* (2013) 4:491. doi:10.3389/fimmu.2013.00491

34. Segura E, Valladares-Guimond J, Domnadea MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. *Exp Med* (2012) 209(4):653–60. doi:10.1084/jem.20111457

35. Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. *Trends Immunol* (2013) 34(9):440–5. doi:10.1016/j.it.2013.06.001

36. Segura E, Amigorena S. Identification of human inflammatory dendritic cells. *Oncoimmunology* (2013) 2(5):e23851. doi:10.4161/onci.23851

37. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNFα/IL10-degrading dendritic cells mediate innate immune defense against bacterial infection. *Immunity* (2003) 19(1):59–70. doi:10.1016/S1074-7613(03)00171-7

38. Mathan TS, Figg DG, Buschow SI. Human plasmacytoid dendritic cells from molecules to intercellular communication network. *Front Immunol* (2013) 4:372. doi:10.3389/fimmu.2013.00372

39. Salio M, Celli M, Vermi W, Fachetti F, Palmauskj MI, Smith CL, et al. Plasmacytoid dendritic cells prime IFN-γamma-secretin melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. *Eur J Immunol* (2003) 33(4):1052–62. doi:10.1002/eji.200332676

40. Hartmann E, Wollenberg B, Reifenberger S, Wagner M, Wielisch D, Mack R, et al. Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer. *Cancer Res* (2003) 63(19):4678–87.

41. Zou W, Machelon V, Coulomb-L’Hermin A, Borvak J, Nome F, Isaeva T, et al. Stromal-derived factor 1: an inducible receptor for neutrophils related to CD14. *Nat Med* (2001) 7(12):1339–46. doi:10.1038/nn1201-1339
complement regulatory proteins and lectins. Science (1989) 243(4895):1160–5. doi:10.1126/science.2466335

64. McEver RP, Clevenger RG, McEver RP. Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell (1989) 56(6):1033–44. doi:10.1016/0092-8674(89)90636-3

65. Lasky LA. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem (1995) 64:113–39. doi:10.1146/annurev.biochem.64.070195.000553

66. Stamper HB Jr, Woodruff JJ. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity for recirculating lymphocytes for high endothelial venules. J Exp Med (1976) 144(3):828–33. doi:10.1084/jem.144.3.828

67. Hsu-Lin S, Berman CL, Furie BC, August D, Furie B. A platelet membrane glycoprotein expressed during platelet activation and secretion. Studies using a platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol (1985) 101(3):880–6. doi:10.1083/jcb.101.3.880

68. Smalley DM, Ley K. L-selectin: mechanisms and physiological significance of ectodomain cleavage. J Cell Mol Med (2005) 9(2):255–66. doi:10.1111/j.1582-4934.2005.tb00354.x

69. Rosensig D. Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol (2004) 22:129–56. doi:10.1146/annurev.immunol.21.090501.080131

70. McEver RP, Martin MN. A monoclonal antibody to a membrane glycoprotein binds only to activated platelets. J Biol Chem (1984) 259(15):9799–804.

71. Sperandio M. Selectins and glycosyltransferases in leukocyte rolling in vivo. J Biol Chem (2006) 281(19):11058–67. doi:10.1074/jbc.M510531200

72. Pan J, Xia L, Yao L, McEver RP. Tumor necrosis factor-alpha- or lipopoly saccharide-induced expression of the murine P-selectin gene in endothelial cells involves novel kappab sites and a variant activating transcription factor/cAMP response element. J Biol Chem (1998) 273(16):10058–77. doi:10.1074/jbc.273.16.10058

73. Sperandio M. Selectins and glycosyltransferases in leucocyte rolling in vivo. FEBS J (2006) 273(19):4377–89. doi:10.1111/j.1742-4658.2006.05437.x

74. Pan J, Xia L, McEver RP. Comparison of promoters for the murine and human P-selectin genes suggests species-specific and conserved mechanisms for transcriptional regulation in endothelial cells. J Biol Chem (1998) 273(16):10058–67. doi:10.1074/jbc.273.16.10058

75. Yao L, Settai H, Xia L, Laszik Z, Taylor FB, McEver RP. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood (1999) 94(11):3820–8.

76. Bevlaquca MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leucocyte adhesion molecule. Proc Natl Acad Sci U S A (1987) 84(24):9238–42. doi:10.1073/pnas.84.24.9238

77. Sackstein R. Glycoengineering of HCELL, the human bone marrow homing antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol (2002) 49(2):303–11.

78. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Selectins and von Willebrand factor-C (VWF) GPA in the biology of leukocyte recruitment. Annu Rev Cell Biol (1992) 80(3):795–800.

79. Handa K, Stroud MR, Hakomori S. Sialosyl-fucosyl poly-LacNAc without sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-transfected cells. Glycobiology (1994) 4(2):221–5. doi:10.1093/glycob/4.2.221

80. Lowe JB. Glycan-dependent leucocyte adhesion and recruitment in inflammation. Curr Opin Cell Biol (2003) 15(3):531–8. doi:10.1016/j.ceb.2003.08.002

81. Lowe JB. Glycosylation in the control of selectin counter-receptor structure and function. Immunol Rev (2002) 186:19–36. doi:10.1034/j.1600-065X.2002.18603.x

82. Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol (2002) 49(2):303–11.

83. Harduin-Leapers A, Vallejo-Ruiz V, Krzewinski-Rocchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family. Biochemin (2001) 83(8):277–37. doi:10.1002/1093-0308(20010110)83:8<277::AID-BIC11>3.0.CO;2-K

84. Sasaki K, Watanabe E, Kawashima K, Sekine S, Dohi T, Oshima M, et al. Expression cloning of a novel Galbta (1,3/1,4)GNA alpha 2,3-sialyltransferase. J Biol Chem (1999) 274(17):11479–86. doi:10.1074/jbc.274.17.11479

85. Munro JM, Lo SK, Corless C, Robertson MJ, Lee NC, Barnhill RL, et al. Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Ann J Pathol (1992) 141(6):1397–408.

86. Munro JM, Lo SK, Corless C, Robertson MJ, Lee NC, Barnhill RL, et al. Expression of sialyl-Lewis X, an E-selectin ligand, in inflammation, immune processes, and lymphoid tissues. Ann J Pathol (1992) 141(6):1397–408. doi:10.1016/0003-2741(92)90260-y

87. Weston BW, Nair RP, Larsen RD, Lowe JB. Isolation of a novel human alpha (1,3) saccharide-induced expression of the murine P-selectin gene in endothelial cells involves novel kappab sites and a variant activating transcription factor/ cAMP response element. J Biol Chem (1998) 273(16):10058–77. doi:10.1074/jbc.273.16.10058

88. Sackstein R. Glycoengineering of HCELL, the human bone marrow homing antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol (2002) 49(2):303–11.

89. Bevilacqua MP, Pober JS, Mendrick DL, Cotran RS, Gimbrone MA. Identification of an inducible endothelial-leucocyte adhesion molecule. Proc Natl Acad Sci U S A (1987) 84(24):9238–42. doi:10.1073/pnas.84.24.9238

90. Sackstein R. Glycoengineering of HCELL, the human bone marrow homing antigen involved in adhesion and metastatic potential of cancer cells. Acta Biochim Pol (2002) 49(2):303–11.

91. Yuen CT, Bezouska K, O’Brien J, Stoll M, Lemoine R, Lubineau A, et al. Sulfated blood group Lewis(a) antigen involved in adhesion and metastatic potential of cancer cells. J Biol Chem (1999) 269(3):1395–8.

92. Yuen CT, Lawson AM, Chai W, Larkin M, Stoll MS, Stuart AC, et al. Novel sulfated ligands for the cell adhesion molecule E-selectin revealed by the neoglycolipid technology among O-linked oligosaccharidans on an ovarian cystadenoma glycoprotein. Biochemistry (2002) 31(8):926–31. doi:10.1016/bi00153a003

93. Handa K, Stroud MR, Hakomori S. Sialosyl-fucosyl poly-LacNAc without sialosyl-Lex epitope as the physiological myeloid cell ligand in E-selectin-transfected cells. Glycobiology (1994) 4(2):221–5. doi:10.1093/glycob/4.2.221
111. Britten CJ, van den Eijnden DH, McDowell W, Kelly VA, Witham SJ, Weston BW, Smith PL, Kelly RJ, Lowe JB. Molecular cloning of a fourth Maly P, Thall A, Petryniak B, Rogers CE, Smith PL, Marks RM, et al. The Edbrooke MR, et al. Acceptor specificity of the human leukocyte alpha3 homologous sequences that determine expression of the Lewis x, sialyl Lewis x, and difucosyl sialyl Lewis x epitopes. J Biol Chem (1992) 267(34):24575–84.

112. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, et al. Yim WH, Nussbaum C, Grusby MJ, Lichtman AH, et al. ST3Gal-4 is the primary sialyltransferase regulating the synthesis of P-selectin ligands. J Exp Med (2001) 194(5):601–15. doi:10.1084/jem.194.5.601

113. Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M, Priatel JJ, et al. Sialyltransferase specificity in selectin ligand formation. J Biol Chem (1994) 269(2):14730–7.

114. Yang WH, Nussbaum C, McGettrick HM, Ward LS, Harrison MJ, Apta B, et al. Chimen M, Yates CM, McGettrick HM, Ward LS, Harrison MJ, Apta B, et al. CRISPR-Cas9 to quantify the contributions of O-glycans, N-glycans and the biosynthesis of P-selectin glycoprotein ligand-1. J Exp Med (2018) 194(5):601–15. doi:10.1084/jem.194.5.601

115. Mondal N, Buffone A, Stolfa G, Antonopoulos A, Lau JT, Haslam SM, et al. ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-*, P-, and L-selectin ligands on human myeloid leukocytes. Blood (2015) 125(4):687–96. doi:10.1182/blood-2014-07-583590

116. Nakayama F, Nishihara S, Iwasaki H, Kudo T, Okubo R, Kaneko M, et al. CD15 expression in mature granulocytes is determined by alpha1,3-fucosyltransferase Fuc-TVII controls leukocyte trafficking. Proc Natl Acad Sci U S A (2009) 106(46):19491–6. doi:10.1073/pnas.0906074106

117. Smithson G, Rogers CE, Smith PL, Scheidegger EP, Petryniak B, Myers JT, et al. Initiation of protein O glycosylation by the polypeptide GalNAc-T1 in vascular biology and humoral immunity. Mol Cell Biol (2007) 27(24):8783–96. doi:10.1128/MCB.01204-07

118. Yago T, Fu J, McDaniel JM, Miner J, McElver RP, Xia L. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc Natl Acad Sci U S A (2010) 107(20):9204–9. doi:10.1073/pnas.1003110107

119. Silva M, Fung RKF, Donnelly CB, Videira PA, Sackstein R. Cell-specific variation in E-selectin ligand expression among human peripheral blood mononuclear cells: implications for immunosurveillance and pathobiology. J Immunol (2017) 199(8):3576–87. doi:10.4049/jimmunol.1601636

120. Tenno M, Obutso K, Hagen FK, Ditto D, Zarbock A, Schaerli P, et al. Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. J Immunol (2000) 167(8):4476–84. doi:10.4049/jimmunol.167.8.4476

121. Buffone A, Mondal N, Gupta R, McHugh KP, Lau JT, Neelamegham S. Silencing of alpha1,3-fucosyltransferases in human leukocytes reveals a role for FUT9 enzyme during E-selectin-mediated cell adhesion. J Biol Chem (2013) 288(3):1620–33. doi:10.1074/jbc.M112.009029

122. Kaneko M, Kudo T, Iwahashi I, Ikemura Y, Nishihara S, Nakagawa S, et al. Alpha1,3-fucosyltransferase IX (Fuc-TIX) is very highly conserved between human and mouse; molecular cloning, characterization and tissue distribution of human Fuc-TIX. FEBS Lett (1999) 452(3):237–42. doi:10.1016/S0014-5793(99)00640-7

123. Silva M, Fung RKF, Donnelly CB, Videira PA, Sackstein R. Cell-specific variation in E-selectin ligand expression among human peripheral blood mononuclear cells: implications for immunosurveillance and pathobiology. J Immunol (2017) 199(8):3576–87. doi:10.4049/jimmunol.1601636

124. Tenno M, Obutso K, Hagen FK, Ditto D, Zarbock A, Schaerli P, et al. Specialized contributions by alpha(1,3)-fucosyltransferase-IV and FucT-VII during leukocyte rolling in dermal microvessels. J Immunol (2000) 167(8):4476–84. doi:10.4049/jimmunol.167.8.4476
McEver RP, Moore KL, Cummings RD. Leukocyte trafficking mediated by selectin-carbohydrate interactions. *J Biol Chem* (1995) 270(19):11025–36. doi:10.1074/jbc.270.19.11025

Laszik Z, Zanen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. *Blood* (1996) 88(8):3010–21.

Moore KL, Eaton SE, Lyons DE, Lichenstein HS, Cummings RD, McEver RP. The P-selectin glycoprotein ligand from human neutrophils displays sialylated, fucosylated, O-linked poly-N-acetyllactosamine. *J Biol Chem* (1994) 269(37):23318–27.

Pendle GP, Robert C, Steinert M, Thanos R, Eytnner R, Borges E, et al. Immature mouse dendritic cells enter inflamed tissue, a process that requires E- and P-selectin, but not P-selectin glycoprotein ligand 1. *Blood* (2002) 99(3):946–56. doi:10.1182/blood.V99.3.946

Moore KL. Structure and function of P-selectin glycoprotein ligand-1. *Leuk Lymphoma* (1998) 29(1–2):1–15. doi:10.1080/10428199880953877

Somers WS, Tang J, Shaw GD, Camphausen RT. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to Sl(x) and P-selectin. *Cell* (2000) 103(3):467–79. doi:10.1016/S0092-8674(00)01380-0

Lim YC, Snapp K, Kansas GS, Camphausen R, Ding H, Luscinskas FW. Important contributions of P-selectin glycoprotein ligand-1-mediated secondary capture to human monocyte adhesion to P-selectin, E-selectin, and TNF-alpha-activated endothelium under flow in vitro. *J Immunol* (1998) 161(5):2301–8.

Pulido H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. *Nat Rev Mol Cell Biol* (2003) 4(1):33–45. doi:10.1038/nrm1004

Lesley J, Hyman R, Kincade PW. CD44 and its interaction with extracellular matrix. *Adv Immunol* (1993) 54:271–335. doi:10.1016/S0065-2776(08)60537-4

Goodson S, Urquidi V, Tarin D. CD44 cell adhesion molecules. *Mol Pathol* (1999) 52(4):189–96. doi:10.1136/mp.52.4.189

Sackstein R. The biology of CD44 and HCELL in hematopoiesis: the ‘step 2-bypass pathway’ and other emerging perspectives. *Carr Opin Hematol* (2011) 18(4):239–48. doi:10.1097/MOH.0b013e3283476140

Dimitroff CJ, Lee YJ, Rafii S, Fuhligirg BC, Sackstein R. CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. *J Cell Biol* (2001) 153(6):1277–86. doi:10.1083/jcb.153.6.1277

Sackstein R. The bone marrow is akin to: HCELL and the biology of hematopoietic stem cell homing. *J Invest Dermatol* (2004) 122(5):1061–9. doi:10.1111/j.0022-202X.2004.03931.x

Sackstein R, Dimitroff CJ. A hematopoietic cell L-selectin ligand that is distinct from PSGL-1 and displays N-glycan-dependent binding activity. *Blood* (2000) 96(8):2765–74.

Hatley WD, Burdick MM, Konstantopoulos K, Sackstein R. CD44 on LSI714T colon carcinoma cells possesses E-selectin ligand activity. *Cancer Res* (2005) 65(13):5812–7. doi:10.1158/0008-5472.CAN-04-4557

Burdick MM, Chu JT, Godar S, Sackstein R, HCELL is the major E- and L-selectin liganded expressed on LSI714T colon carcinoma cells. *J Biol Chem* (2006) 281(20):13899–905. doi:10.1074/jbc.M513617200

Stockton BM, Cheng G, Manjunath N, Ardmann B, von Andrian UH. Negative regulation of T cell homing by CD43. *Immunity* (1998) 8(3):373–81. doi:10.1016/S1074-7613(00)80542-7

McEvoy LM, Jutila MA, Tsao FS, Cooke JP, Butcher EC. Anti-CD43 inhibits monocyte-endothelial adhesion in inflammation and atherogenesis. *Blood* (1997) 90(9):3587–94.

Fanales-Belasio E, Zambruno G, Cavani A, Girolomoni G. Antibodies against slalorphin (CD43) enhance the capacity of dendritic cells to cluster and activate T lymphocytes. *J Immunol* (1997) 159(5):2203–11.

Hamad M, Mosley RL, Wang J, Klein JR. Stimulation via the CD43 coreceptor augments T cell proliferation during the early phase of antigen-induced activation. *Dev Comp Immunol* (1996) 20(1):77–82. doi:10.1016/0145-305X(95)00037-T

Mody PD, Cannon JL, Bandukwala HS, Blaine KM, Schilling AB, Swier K, et al. Signaling through CD43 regulates CD T-cell trafficking. *Blood* (2007) 110(9):2974–82. doi:10.1182/blood-2007-01-065276

Barran P, Fellinger W, Warren CE, Dennis JW, Zilenter HJ. Modification of CD43 and other lymphocyte O-glycoproteins by core 2 N-acetyllactosaminyltransferase. *Glycobiology* (1997) 7(1):129–36. doi:10.1093/glycob/7.1.129
178. Merzaban JS, Burdick MM, Gadhounm SZ, Dagia NM, Chu JT, Fulhbirgbc RC, et al. Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood (2011) 118(7):1747–83. doi:10.1182/blood-2010-11-320705
179. Tiemeyer M, Szwiderl SJ, Ishihara M, Moreland M, Schweinruber H, Hirtzer P, et al. Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A (1991) 88(4):1138–42. doi:10.1073/pnas.88.4.1138
180. Mondal N, Stolfa G, Antonopoulos A, Zhu Y, Wang SS, Buffone A Jr, et al. Glycosphingolipids on human myeloid cells stabilize E-selectin-dependent rolling in the multistep leukocyte adhesion cascade. Arterioscler Thromb Vasc Biol (2016) 36(4):718–27. doi:10.1161/ATVBAHA.115.306748
181. Angiarri S. Selectin-mediated leukocyte trafficking during the development of autoimmune disease. Autoimmun Rev (2015) 14(11):984–95. doi:10.1016/j.autrev.2015.06.006
182. Barthel SR, Gavino JD, Descheny L, Dimitrov CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets (2007) 11(11):1473–91. doi:10.1517/21428222.11.1473
183. Czech W, Schöpf E, Kapp A. Soluble E-selectin in sera of patients with atopic dermatitis and psoriasis – correlation with disease activity. Br J Dermatol (1996) 134(1):77–83. doi:10.1111/j.1365-2133.1996.tb06965.x
184. Hirai S, Kageshita T, Kimura T, Tsujisaki M, Okajima K, Imai K, et al. Soluble intercellular adhesion molecule-1 and soluble E-selectin levels in patients with atopic dermatitis. Br J Dermatol (1996) 134(4):657–61. doi:10.1111/j.1365-2133.1996.tb06965.x
185. Kowalzick L, Kleinheinz A, Neuber K, Weichenthal M, Köhler I, Ring J. Elevated serum levels of soluble adhesion molecules ICAM-1 and VCAM-1 by endothelial cells in psoriasis and contact dermatitis. Acta Derm Venereol Suppl (Stockh) (1994) 186:21–2.
186. Czech W, Schöpf E, Kapp A. Soluble E-selectin in sera of patients with atopic dermatitis and psoriasis – correlation with disease activity. Br J Dermatol (1996) 134(1):77–83. doi:10.1111/j.1365-2133.1996.tb06965.x
187. Kowalzick L, Kleinheinz A, Neuber K, Weichenthal M, Köhler I, Ring J. Elevated serum levels of soluble adhesion molecules ICAM-1 and VCAM-1 in patients with atopic dermatitis, psoriasis and contact dermatitis. Br J Dermatol (1996) 134(1):77–83. doi:10.1111/j.1365-2133.1996.tb06965.x
188. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, et al. Carbohydrate ligands for endothelial-leukocyte adhesion molecule 1. J Invest Dermatol (2002) 119(5):1096–102. doi:10.1046/j.1523-1747.2002.19515.x
189. Pooley N, Ghosh L, Sharon P. Up-regulation of E-selectin and intercellular adhesion molecule-1 differs between Crohn’s disease and ulcerative colitis. Dig Dis Sci (1993) 48(3):596–608. doi:10.1023/A:1088754109877
190. Rugvret J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut (1994) 35(5):669–74. doi:10.1136/gut.35.5.669
191. Zhao J, Gao Y, Cheng C, Yan M, Wang J. Upregulation of β1A-galactosyltransferase I in rat spinal cord with experimental autoimmune encephalomyelitis. J Mol Neurosci (2013) 49(3):437–45. doi:10.1007/s12031-012-9824-3
192. King JL, Dickendesser TL, Segal BM. Circulating Ig ly+αCα myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood (2009) 113(14):3190–7. doi:10.1182/blood-2008-07-168575
193. Chapman PT, Jamar F, Feelan ET, Peters AM, Haskard DO. Use of a radio-labeled monoclonal antibody against E-selectin for imaging of endothelial activation in rheumatoid arthritis. Arthritis Rheum (1996) 39(8):1371–5. doi:10.1002/art.1780390815
194. Ichikawa H, Nishihaya Y, Kita K, Ohno O, Imura S, Hirata S. Adhesion molecules in the lymphoid cell distribution in rheumatoid synovial membrane. Bull Hosp Jt Dis (1993) 53(2):23–8.
195. Kinne RW, Brauer R, Stuhlmueller B, Palombo-Kinne E, Burmester GR. Macrophages in rheumatoid arthritis. Arthritis Res (2000) 2(3):189–202. doi:10.1186/ar686
196. Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Haskard DO. Use of a radio-labeled monoclonal antibody against E-selectin for imaging of endothelial activation in inflammatory bowel disease. J Pathol (2011) 224(2):310–11. doi:10.1002/path.3723
197. Singh TP, Zhang HH, Borek I, Wolf P, Hedrick MN, Singh SP, et al. Monocyte-derived inflammatory Langerhans cells and dermal dendritic cells mediate psoriasis-like inflammation. Nat Commun (2016) 7:13581. doi:10.1038/ncomms15381
198. Steinhoff M, Steinhoff A, Homey B, Luger TA, Schneider SW. Role of vascular adhesion molecule-1 in psoriasis. J Allergy Clin Immunol (2006) 118(1):190–7. doi:10.1016/j.jaci.2006.04.025
199. Wollenberg A, Wagner M, Gunther S, Towarowski A, Tuma E, Moderer M, et al. Plasmacytoid dendritic cells: a new cutaneous dendritic cell subset with distinct role in inflammatory skin diseases. J Invest Dermatol (2002) 119(5):1096–102. doi:10.1046/j.1523-1747.2002.19515.x
200. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, et al. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and E-selectin in human atherosclerosis. J Pathol (1993) 171(3):223–9. doi:10.1002/path.171171031
201. Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Haskard DO. Use of a radio-labeled monoclonal antibody against E-selectin for imaging of endothelial activation in inflammatory bowel disease. J Pathol (2011) 224(2):310–11. doi:10.1002/path.3723
202. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation (1996) 93(4):672–82. doi:10.1161/01.CIR.93.4.672
203. Collins RG, Vellj R, Guevara NV, Hicks MJ, Chan L, Beaudet AL. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med (2000) 191(1):189–95. doi:10.1084/jem.191.1.189
204. Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. The combined role of P- and E-selectins in atherosclerosis. J Clin Invest (1998) 102(1):145–52. doi:10.1172/JCI3001
205. Abdi R, Moore R, Sakai S, Donnelly CB, Mounayar M, Haskard DO. Use of a radio-labeled monoclonal antibody against E-selectin for imaging of endothelial activation in inflammatory bowel disease. J Pathol (2011) 224(2):310–11. doi:10.1002/path.3723
216. Morel O, Olhmann P, Epalli E, Bakouboula B, Zobairi F, Jesel L, et al. Endothelial cell activation contributes to the release of procoagulant micro- particles during acute cardiac allograft rejection. J Heart Lung Transplant (2008) 27(1):38–45. doi:10.1016/j.health.2007.09.031

217. Salama M, Andrukhova O, Roedler S, Zuckermann A, Laufer G, Aharinejad S. Association of CD14+ monocyte-derived progenitor cells with cardiac allograft vasculopathy. J Thorac Cardiovasc Surg (2011) 142(5):1246–53. doi:10.1016/j.jvtcs.2011.07.032

218. Norton J, Sloane JP, al-Saffar N, Haskard DO. Vessel associated adhesion molecules in normal skin and acute graft-versus-host disease. J Clin Pathol (1991) 44(7):586–91. doi:10.1136/jcp.44.7.586

219. Norton J, Sloane JP, al-Saffar N, Haskard DO. Expression of adhesion mole- cules in human intestinal graft-versus-host disease. Clin Exp Immunol (1992) 87(2):231–6. doi:10.1111/j.1600-0625.1992.tb02980.x

220. Reddy P. Pathophysiology of acute graft-versus-host disease. Hematol Oncol (2003) 21(4):149–61. doi:10.1002/hon.716

221. Nishiwaki S, Terakura S, Ito M, Goto T, Seto A, Watanabe K, et al. Impact of macrophage infiltration of skin lesions on survival after allogeneic stem cell transplantation: a clue to refractory graft-versus-host disease. Blood (2009) 114(14):3113–6. doi:10.1182/blood-2009-03-209635

222. Hausselmann I, Roblek M, Prostyuk D, Huck V, Knopf A, Grasse S, et al. Monocyte induction of E-selectin-mediated endothelial activation releases VE-cadherin functions to promote tumor cell extravasation in the metastasis cascade. Cancer Res (2016) 76(18):5302–12. doi:10.1158/0008-5472.CAN-16-0784

223. Hoos A, Prostyuk D, Borsig L. Metastatic growth progression caused by PSGL-1-mediated recruitment of monocytes to metastatic sites. Cancer Res (2014) 74(3):695–704. doi:10.1158/0008-5472.CAN-13-0946

224. Schettini J, Mukherjee P. Physiological role of plasmacytoid dendritic cells and their potential use in cancer immunity. Clin Dev Immunol (2008) 2008:106321. doi:10.1155/2008/106321

225. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Fukunishi S, et al. Inactivation of tumor-specific CD8(+) CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol (2013) 91(9):545–55. doi:10.1038/icb.2013.38

226. Conrad C, Gregorio J, Wang YH, Ito T, Meller S, Hanabuchi S, et al. Plasmacytoid dendritic cells promote immunosuppression in ovarian cancer via ICOS costimulation of FoXP3(+) T-regulatory cells. Cancer Res (2012) 72(20):5240–9. doi:10.1158/0008-5472.CAN-12-2271

227. Ludwig RJ, Schön MP, Boehncke WH. P-selectin: a common therapeutic target for cardiovascular disorders, inflammation and tumour metastasis. Expert Opin Ther Targets (2007) 11(8):1103–17. doi:10.1517/14728222.11.8.1103

228. Pfefferke RG, Weichaupt C. Adhesion molecules in cutaneous immunity. JTCV (2006) 297(8):345–51. doi:10.1007/s00403-005-0626-0

229. Beeh KM, Beier J, Meyer M, Buhl R, Zahlten R, Wolff G. Bimosiamose, an inhibitor of selectin ligands by intracellular versus extracellular fucosylation differ- entially affects osteopetrosis of human mesenchymal stem cells. Stem Cells (2016) 34(10):2301–11. doi:10.1002/stem.2435

230. Friedrich M, Bock D, Philips S, Ludwig N, Sabat R, Wolk K, et al. Panel- selectin antagonism improves psoriasis manifestation in mice and man. Arch Dermatol Res (2006) 298(7):345–51. doi:10.1007/s00430-005-0626-0

231. Stahn R, Schäfer H, Kernchen F, Schreiber J. Multivalent sialyl Lewis x ligands screening for inhibitors of sialyl- and fucosyltransferases. Angew Chem Int Ed Engl (2011) 50(52):12534–7. doi:10.1002/anie.201105065

232. Scalci R, Hayward R, Armstead VE, Minchenko AG, Lefer AM. Effect of recombinant soluble P-selectin glycoprotein ligand-1 on leukocyte-endo- thelum interaction in vivo. Role in rat traumatic shock. Circ Res (1999) 84(1):93–102. doi:10.1161/01.RES.84.1.93

233. Hayward R, Campbell B, Shin YK, Scalci R, Lefer AM. Recombinant sol- able P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc Res (1999) 41(1):65–76. doi:10.1016/S0008-6363(98)00266-1

234. Merzaban JS, Imitola J, Starossom SC, Zhu B, Wang Y, Favaux Z, Moore FD, Hechtman HR. Endothelial selectin blockade attenuates lung permeability of experimental acid aspiration. Surgery (2000) 128(2):327–31. doi:10.1067/msy.2000. 108216

235. Hayward R, Lefer AM. Acute mesenteric ischemia and reperfusion: protective effects of recombinant soluble P-selectin glycoprotein ligand-1. Shock (1999) 12(3):201–7. doi:10.1097/00028322-199909000-00006

236. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, et al. Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med (1992) 327(25):1789–92. doi:10.1056/ NEJM199212233272505

237. Karsan A, Cornejo CJ, Winn RK, Schwartz BR, Way W, Lannir N, et al. Leukocyte adhesion deficiency type II is a generalized defect of de novo GDP-fucose biosynthesis. Endothelial cell fucosylation is not required for neutrophil rolling on human nonlymphoid endothelium. J Clin Invest (1999) 101(11):2438–45. doi:10.1172/JCI9505

238. Etzioni A, Harlan JM, Pollack S, Phillips LM, Gershoni-Baruch R, Paulson JC. Leukocyte adhesion deficiency (LAD II): A new adhesion defect due to absence of sialyl Lewis X, the ligand for selectins. Immunodeficiency (1999) 4(1–4):307–8.

239. Sackstein R, Merzaban JS, Cain DW, Dajog NM, Spencer JA, Lin CP, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med (2008) 14(2):181–7. doi:10.1038/nm1703

240. Sackstein R. Engineering cellular trafficking via glycosyltransferase- programmed substratification. Ann N Y Acad Sci (2012) 1253:193–200. doi:10.1111/j.1749-6632.2011.06421.x

241. Dykstra B, Lee J, Mortensen LJ, Yu H, Wu ZL, Lin CP, et al. Glycoengineering of E-selectin ligands by intracellular versus extracellular fucosylation differ- entially affects osteopetrosis of human mesenchymal stem cells. Stem Cells (2011) 29(12):2301–11. doi:10.1002/stem.2435

242. Pachon-Pena G, Donnelly C, Ruiz-Canada C, Katz A, Fernandez-Velez S, Vendrell J, et al. A glycovariant of human CD44 is characteristically expressed on human mesenchymal stem cells. Stem Cells (2017) 35(4):1080–92. doi:10.1002/stem.2549

243. Merzaban JS, Imitola J, Starossom SC, Zhu B, Wang Y, Lee J, et al. Cell surface glycan engineering of neural stem cells augments neurotopism and improves recovery in a murine model of multiple sclerosis. Glyobiology (2015) 25(12):1392–409. doi:10.1093/glycob/cwv046

Conflict of Interest Statement: According to the National Institutes of Health poli- cies and procedures, the Brigham and Women’s Hospital has assigned intellectual property rights regarding HCELL and GPS to the inventor (RS), who may benefit financially if the technology is licensed. RS’s ownership interests were reviewed and are managed by the Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies. All other authors declare no competing financial interests.

Copyright © 2018 Silva, Videira and Sackstein. This is an open-access article dis- tributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.