Understanding the dynamical mechanism of year-to-year incremental prediction by nonlinear time series prediction theory

Bi Shu-Tinga,c, Wang Peng-Feia,b, Pan Xin-Nongc,d and Li Chao-Fana

aCenter for Monsoon System Research (CMSR), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; bState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; cUniversity of Chinese Academy of Sciences, Beijing, China; dKey Laboratory for Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

ABSTRACT

Previous studies have shown that year-to-year incremental prediction (YIP) can obtain considerable skill in seasonal forecasts. This study analyzes the mathematical definition of YIP and derives its formula in the nonlinear time series prediction (NP) method. It is shown that the two methods are equivalent when the prediction time series is embedded in one-dimensional phase space. Compared to previous NP models, the new one introduces multiple external forcings in the form of year-to-year increments. The year-to-year increments have physical meaning, which is better than the NP model with empirically chosen parameters. The summer rainfall over the middle to lower reaches of the Yangtze River is analyzed to examine the prediction skill of the NP models. Results show that the NP model with year-to-year increments can reach a similar skill as the YIP model. When the embedded number of dimensions is increased to two, more accurate prediction can be obtained. Besides similar results, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. Moreover, by choosing different embedded dimensions, the NP model can reconstruct the dynamical curve into phase space with more than one dimension, which is an advantage of the NP model. The present study suggests that YIP has a robust dynamical foundation, besides its physical mechanism, and the modified NP model has the potential to increase the operational skill in short-term climate prediction.

1. Introduction

Short-term climate prediction is a hot but challenging scientific topic in current climate research. According to previous studies, the methods frequently used in short-term climate prediction include: the statistical approach, the hybrid statistical and dynamical approach, the numerical model approach, and the nonlinear time series prediction approach (hereafter NP). The latter is based on the phase-space reconstruction theorem (Casdagli 1989), which implicitly requires a stationary system. However, weather and climate systems are influenced by perturbations of driving forces; in other words, the atmosphere is essentially nonstationary in dynamic terms. Previous studies have indicated that the stationarity of atmospheric processes is changeable. For instance, Tsonis (1996) found that fluctuations around the global mean precipitation amount have increased significantly, which means that global precipitation was a nonstationary process over the past century. The cause of nonstationarity is the change in driving forces with time (Manuca and Savit 1996). This led Wang et al. (2011) to develop a new prediction model with such driving forces, which can improve the accuracy of prediction effectively when applied to the time series of a single climate variable.

However, most time series from the real world, especially those of processes typically related to climate, are too short. When we apply the NP method to such short...
time series, the model sometimes encounters a data ’bottleneck’. Researchers have thus proposed the ‘spatiotemporal series’ method, which attempts to utilize the information at different spatial positions to remedy the insufficiency in the length of the time series. For example, with a spatiotemporal artificial neural network system, Yang, Zhou, and Bian (2000) carried out a regional prediction experiment regarding the distribution of atmospheric ozone over China, and the accuracy of the prediction was beyond 43%. In addition, based on the spatiotemporal series method, Chen et al. (2003) improved the extended-range (monthly) dynamical prediction of the pentad zonal mean height and revealed that spatiotemporal series can effectively improve the ergodicity of single-variable time series. Wang, Yang, and Lü (2004) introduced the idea of spatiotemporal series to enhance the original NP method and, through the example of 500 hPa height over the Northern Hemisphere, found that it is valuable to apply this technique to regional climate prediction.

In short-term climate prediction, the predictands are traditional climate variable anomalies (Wang et al. 2012). As most regions in East Asia vary in connection to the tropospheric biennial oscillation (TBO), it may be easy to capture the interannual change if the prediction method takes the TBO into consideration. However, decadal change in the climate mean may lead to uncertainty in the prediction. To deal with this issue, Fan, Wang, and Choi (2008) proposed a new prediction scheme in their study of summer rainfall over the middle to lower reaches of the Yangtze River, named the year-to-year incremental prediction (YIP) method. Hereafter, we use YR to stand for the year-to-year increments of the Yangtze River (Nanjing, Hefei, Shanghai, Hangzhou, Anqing, Tunxi, Jiujiang, Hankou, Zhongxiang, Yueyang, Yichang, Changde, Ningbo, Quxian, Guixi, Nanchang, and Changsha) is selected to represent the summer rainfall over this region.

The present study employs monthly atmospheric variables from the NCEP–NCAR reanalysis data set, with a resolution of 2.5° × 2.5° (Kalnay et al. 1996).

2. Data and methods

Monthly precipitation data from 160 stations (1964–2006) in China provided by the China Meteorological Administration are used in this study. Following Chen and Zhao (2000), the mean precipitation of 17 stations during June–August over the middle to lower reaches of the Yangtze River can effectively improve the ergodicity of single-variable time series. Wang, Yang, and Zhou (2013). Assuming a non-stationary process with two series \(\{x_i\}_{i=1,2,\ldots,n} \) and \(\{c_i\}_{i=1,2,\ldots,m} \), the former variable is the system state and the latter is the driving force. By selecting a proper parameter \(\tau \), we can embed
2.3. Relationship between YIP and NP

Once the sample number N in YIP is large enough, we have
\(\Delta f = \frac{(f' - f^{i-1})}{C} \rightarrow 0 \) and then
\[
\Delta f = \frac{1}{N} \sum_{i=1}^{N} \left[(f' - f^{i-1}) - (f' - f^{i-1}) \right] \rightarrow (f' - f^{i-1}),
\]
where C is the expected value of \(f' - f^{i-1} \), and \(\Delta Y = c_1 \Delta f_1 + c_2 \Delta f_2 + c_3 \Delta f_3 + c_4 \Delta f_4 + c_5 \Delta f_5 + c_6 \Delta f_6 \) is equivalent to
\[
\frac{(Y' - Y^{i-1})}{C_Y} = c_1 \Delta f_1 + c_2 \Delta f_2 + c_3 \Delta f_3 + c_4 \Delta f_4 + c_5 \Delta f_5 + c_6 \Delta f_6.
\]

Let \(\Delta f_i \equiv C_i a_i \), and we have
\[
Y' = \frac{Y^{i-1} + c_1 a_1 + c_2 a_2 + c_3 a_3 + c_4 a_4 + c_5 a_5 + c_6 a_6}{C_Y}.
\]

This formula is analogue to the NP model (Equation (4)). This implies that they have some corresponding relationship. Equation (4) only considers one forcing originally, but we can expand it to multiple forcings and one variable system by way of Equation (6):
\[
x' = \psi(x^{j-1}, a_1', a_2', a_3', a_4', a_5', a_6') + \varepsilon_t.
\]

Here, \(\varepsilon_t \) is the fitting residual. The model only uses the value of one previous step during prediction, so it can be regarded as an NP model with \(m = 1 \) and \(\tau = 1 \) to predict one step ahead. Therefore, we can conclude that YIP and NP are equivalent when linear fitting is applied and \(N \) is large enough.

From the theoretical analysis, YIP could be considered as a special case of NP, so the YIP method can be applied to nonlinear modeling. YIP emphasizes the effect of quasi-biennial signals; thus, this method has explicit physical meaning compared with the NP method.

3. Hindcast and result

To reveal the equivalence of YIP and NP, and compare their performance, we apply the two methods to the following rainfall prediction experiments.

3.1. Precipitation prediction of YIP

Figure 1 shows the wavelet analysis of YR. It illustrates that there is a strong 2–5-yr period of YR variations in the period 1965–2006, so we can amplify the anomaly signal of the rainfall via YIP.

Fan, Wang, and Choi (2008) analyzed the correlation coefficients between the year-to-year increments of YR and the geopotential height field at 500 hPa in spring
and found that the Urals high and East Asian trough have a great influence on YR. So they defined two indices: the spring Eurasian circulation index (EUI) and the spring East Asian circulation index (EAI). The EUI is the area-averaged geopotential height at 500 hPa over the region (55°–60°N, 120°–150°E), and the correlation coefficient between the year-to-year increments of YR and the EUI is 0.41 during 1965–1996, reaching the 95% confidence level. The EAI is the area-averaged geopotential height at 500 hPa over the region (55°–60°N, 120°–150°E), and the correlation coefficient between the year-to-year increments of YR and the EAI is −0.44 during 1965–1996, reaching the 95% confidence level.

Figure 2 depicts the correlation coefficients between the year-to-year increments of YR and meridional wind shear between the 850 hPa and 200 hPa levels in March–May (MAM) (i.e. \(v_{850} \) minus \(v_{200} \)). As is shown in Figure 2, there is negative correlation in the region of (20°S–10°N, 120°–140°E), which is the place for the interaction of the monsoon and ENSO. Next, we define an index for meridional wind shear around Indo-Australia (WSI) using the area-averaged meridional wind shear over the region (20°S–10°N, 120°–140°E). The correlation coefficient between the year-to-year increments of YR and the WSI is −0.33 during 1965–1996, reaching the 90% confidence level.

Figure 3(a) reveals the correlation coefficients between the year-to-year increments of YR and sea level pressure in December–February (DJF). According to Figure 3(a), there is a remarkable negative-correlation area in the South Pacific. Therefore, we define a South Pacific sea level pressure index (SPI) using the area-averaged sea level pressure over the region (40°–30°S, 130°–110°W). The correlation coefficient between the year-to-year increments of YR and the SPI is −0.49 during 1965–1996, reaching the 99% confidence level. Figure 3(b) shows the correlation coefficients between the year-to-year increments of the SPI in DJF and the sea level pressure in June–August (JJA). The result indicates that the SPI in winter is linked to the western Pacific subtropical high in summer.

When analyzing the correlation coefficients between the year-to-year increments of YR and vorticity at 850 hPa, obvious positive coefficients are found in the region (30°–35°N, 115°–120°E) from spring to summer. Thus, we
negative YR increment, the model does not behave well, but it still produces a negative increment.

3.2. Precipitation prediction of NP

When using the NP method to build the prediction model, we utilize the same five factors and the former 32-yr precipitation data to reconstruct the phase trajectory, and then conduct one-step prediction in the latter 10 years to examine the performance. In the model, we choose the embedded dimensions as $m = 1$ and $m = 2$, respectively, and the time delay parameter as $\tau = 1$. The NP results are consistent with the observed values (Figure 5). In the middle to lower reaches of the Yangtze River, NP can capture the upward trend at the end of the twentieth century, and the downward trend after 2000. For the years with a large amount of precipitation, the predicted values are similar to observed, such as in 1997 and 1983. For the years with a fairly small amount of precipitation, the prediction model also behaves well, such as in 1972 and 1981. Overall, the YIP and NP methods predict similar results.

Though the correlation coefficient of the NP model ($m = 1$) in the building stage is smaller than that in YIP (Table 1), the correlation coefficient in the predicting stage is similar to YIP. We also apply the NP model with a higher number of embedded dimensions ($m = 2$) and find an increased correlation coefficient (Table 1).

To further evaluate the accuracy of precipitation prediction, we define two quantities: the percentage of relative error of prediction,

$$\text{Relative Error} = \frac{Y - Y_0}{Y_0} \times 100\%.$$ \hspace{1cm} (12)

And the average relative RMSE,
models all still have large prediction errors in 1999 and 2000. Generally, the NP method may obtain similar results to the YIP method. When we compare the results of two cases of the NP method, the precipitation mean-square error is a little lower when the number of embedded dimensions is set to two rather than one. The mean-square errors (1997–2006) of the three models (YIP, NP (m = 1) and NP (m = 2)) are 26.62%, 22.71%, and 22.30%, respectively.

4. Conclusion

The YIP method is based on the knowledge that the physical processes of the predictands and the climate variables have the characteristics of quasi-biennial variation. Therefore, we can use the preceding year's observational information as much as possible to improve the prediction results. Previous research has revealed that the YIP approach may improve the forecast skill (Wang et al. 2012). We analyze the mathematical definition of YIP and obtain its corresponding formula in the NP method. It proves that they are equivalent when the prediction time series is embedded in one-dimensional phase space. This theoretical result suggests that YIP also has robust mathematical and dynamical foundations, besides its physical mechanism.

We demonstrate the NP model with multiple external driving forces. The model is different from previous NP models in its application of year-to-year increments (Δf) as forcing factors. Hence, the quasi-biennial signals with explicit physical meaning are included, which is better than the NP model with empirically chosen parameters. In a certain sense, the two models are equivalent. Nevertheless, the NP method has more dynamical meaning, as it is based on the classical reconstruction theory. By choosing different embedded dimensions, the NP model

\[
\sqrt{\frac{\sum_{i}^{n} (y - y_0)^2}{N / \bar{y}_0}}
\]

(13)

Here, \(y\) is the simulated YR, \(y_0\) is the observation, and \(\bar{y}_0\) is the multi-year average precipitation from 1965 to 1996.

Table 2 depicts the percentage errors of prediction from 1997 to 2006. Most of the precipitation errors are smaller than 30%, except in 1999 and 2000. This indicates that all three models are efficient in predicting YR. However, these models still have large prediction errors in 1999 and 2000. Generally, the NP method may obtain similar results to the YIP method. When we compare the results of two cases of the NP method, the precipitation mean-square error is a little lower when the number of embedded dimensions is set to two rather than one. The mean-square errors (1997–2006) of the three models (YIP, NP (m = 1) and NP (m = 2)) are 26.62%, 22.71%, and 22.30%, respectively.

Figure 5. Observed and predicted summer precipitation over the middle to lower reaches of the Yangtze River from 1965 to 2006.

Table 1. Correlation coefficients between the prediction and observation in different models.

	Correlation in the building stage	Correlation in the predicting stage
NP (m = 2)	0.819	0.706
NP (m = 1)	0.588	0.565
YIP	0.742	0.561

Notes: NP, nonlinear time series prediction method; m, number of embedded dimensions; YIP, year-to-year incremental prediction method.

Table 2. Relative percentage error of prediction (%).

Year	YIP	NP (m = 1)	NP (m = 2)
1997	19.45	-11.39	11.25
1998	12.44	-22.01	24.13
1999	-38.94	-59.54	-29.87
2000	62.36	19.28	32.85
2001	-12.69	-1.74	2.22
2002	21.30	7.14	-14.18
2003	20.63	9.32	17.28
2004	-5.54	6.15	26.14
2005	1.86	4.66	-12.36
2006	8.56	20.55	30.85

Notes: NP, nonlinear time series prediction method; m, number of embedded dimensions; YIP, year-to-year incremental prediction method.

Here, \(y\) is the simulated YR, \(y_0\) is the observation, and \(\bar{y}_0\) is the multi-year average precipitation from 1965 to 1996.
can reconstruct the dynamical curve into phase space with a higher number of dimensions than one. In addition, the fitting residual of NP can be set to second-order polynomial precision, which is more convenient than the original linear regression of YIP, indicating the superiority of the NP model over the YIP model. We also notice that YIP and NP have some differences when the sample number N is not big enough, and these differences can decrease with an increase in N. The numerical results suggest that these differences are acceptable in practical prediction experiments.

We select the YR to test the prediction skill of the NP models. Five predictors are introduced into the YIP and NP models. Results show that the NP model with year-to-year increments of former signals can obtain similar skill as the YIP model. When we increase the number of embedded dimensions to two, more accurate prediction can be obtained. These results indicate that the NP model has the potential to increase the operational skill in short-term climate prediction.

Acknowledgments

Pengfei WANG acknowledges Prof. Geli WANG for providing the FORTRAN code of the nonlinear time series prediction.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Sciences Foundation of China [41375112, 41530426, 41575058]; the Key Technology Talent Program of the Chinese Academy of Sciences; the Public Science and Technology Research Funds Projects of Ocean [201505013].

References

Casdagli, M. 1989. "Nonlinear Prediction of Chaotic Time Series." *Physica D: Nonlinear Phenomena* 35 (3): 335–356. doi:10.1016/0167-2789(89)90074-2.

Chen, B. M., L. R. Ji, P. C. Yang, D. M. Zhang, and G. L. Wang. 2003. "An Approach to Improving the Dynamical Extended-range (Monthly Prediction)." *Chinese Science Bulletin* 48 (7): 696–703. doi:10.1007/BF03325658.

Chen, X. F., and Z. G. Zhao. 2000. "Climatic Analysis of Summer Precipitation." In *The Investigation of Flood Season Precipitation Prediction in China and its Application [in Chinese]*, 8–9. Beijing: Meteorological Press.

Fan, K. 2009. "Predicting Winter Surface Air Temperature in Northeast China." *Atmospheric and Oceanic Science Letters* 2 (1): 14–17. doi:10.1080/16742834.2009.11446770.

Fan, K., M. J. Lin, and Y. Z. Gao. 2009. "Forecasting the Summer Rainfall in North China Using the Year-to-year Increment Approach." *Science in China Series D: Earth Sciences* 52 (4): 532–539. doi:10.1007/s11430-009-0040-0.

Fan, K., and B. Q. Tian. 2013. "Prediction of Wintertime Heavy Snow Activity in Northeast China." *Chinese Science Bulletin* 58 (12): 1420–1426. doi:10.1007/s11434-012-5502-7.

Fan, K., and H. J. Wang. 2009. "A New Approach to Forecasting Typhoon Frequency over the Western North Pacific." *Weather and forecasting* 24 (4): 974–986. doi:10.1175/2009WAF2222194.1.

Fan, K., and H. J. Wang. 2010. "Seasonal Prediction of Summer Temperature over Northeast China Using a Year-to-year Incremental Approach." *Acta Meteorologica Sinica* 24 (3): 269–275.

Fan, K., H. J. Wang, and Y.-J. Choi. 2008. "A Physically-based Statistical Forecast Model for the Middle-lower Reaches of the Yangtze River Valley Summer Rainfall." *Chinese Science Bulletin* 53 (4): 602–609. doi:10.1007/s11434-008-0083-1.

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, et al. 1996. "The NCEP/NCAR 40-year Reanalysis Project." *Bulletin of the American Meteorological Society* 77: 437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

Manuca, R., and R. Savit. 1996. "Stationarity and Nonstationarity in Time Series Analysis." *Physica D: Nonlinear Phenomena* 99 (2–3): 134–161. doi:10.1016/S0167-2789(96)00139-X.

Tian, B., and K. Fan. 2015. "A Skillful Prediction Model for Winter NAO Based on Atlantic Sea Surface Temperature and Eurasian Snow Cover." *Weather and Forecasting* 30 (1): 197–205. doi:10.1175/WAF-D-14-00100.1.

Tsonis, A. 1996. "Widespread Increases in Low-frequency Variability of Precipitation over the Past Century." *Nature* 382 (6593): 700–702. doi:10.1038/382700a0.

Wang, H. J., K. Fan, X. M. Lang, J. Q. Sun, and L. J. Chen. 2012. *The New Theory. Method and Technology for the Short-term Climate Prediction in China [in Chinese]*, Beijing: Meteorological Press.

Wang, G. L., P. C. Yang, J. Bian, and X. J. Zhou. 2011. "A Novel Approach in Predicting Non-stationary Time Series by Combining External Forces." *Chinese Science Bulletin* 56 (22): 3053–3056. doi:10.1007/s11434-011-4638-1.

Wang, G. L., P. C. Yang, and D. R. Lü. 2004. "On Spatiotemporal Series Analysis and Its Application to Predict the Regional Short-term Climate Process." *Advances in Atmospheric Sciences* 21 (2): 296–299. doi:10.1007/BF02915717.

Wang, G. L., P. C. Yang, and X. J. Zhou. 2013. "Nonstationary Time Series Prediction by Incorporating External Forces." *Advances in Atmospheric Sciences* 30 (6): 1601–1607. doi:10.1007/s00376-013-2134-z.

Yang, P. C., X. J. Zhou, and J. C. Bian. 2000. "A Nonlinear Regional Prediction Experiment on a Short-range Climatic Process of the Atmospheric Ozone." *Journal of Geophysical Research Atmospheres* 105 (D10): 12253–12258. doi:10.1029/2000JD900098.