Affinity maturation is required for pathogenic monovalent IgG4 autoantibody development in myasthenia gravis

Miriam L. Fichtner1,2*, Casey Vien1,4†, Rachel L. Redler3, Ljuvica Kolich3, Ruoyi Jiang2, Kazushiro Takata1,2, Panos Stathopoulos1,2, Pablo A. Suarez1,2, Richard J. Nowak3, Steven J. Burden3, Damian C. Ekiert1,3**, and Kevin C. O’Connor1,2,4**

Pathogenic muscle-specific tyrosine kinase (MuSK)-specific IgG4 autoantibodies in autoimmune myasthenia gravis (MG) are functionally monovalent as a result of Fab-arm exchange. The development of these unique autoantibodies is not well understood. We examined MG patient-derived monoclonal autoantibodies (mAbs), their corresponding germline-encoded unmutated common ancestors (UCAs), and monovalent antigen-binding fragments (Fabs) to investigate how affinity maturation contributes to binding and immunopathology. Mature mAbs, UCA mAbs, and mature monovalent Fabs bound to MuSK and demonstrated pathogenic capacity. However, monovalent UCA Fabs bound to MuSK but did not have measurable pathogenic capacity. Affinity of the UCA Fabs for MuSK was 100-fold lower than the subnanomolar affinity of the mature Fabs. Crystal structures of two Fabs revealed how mutations acquired during affinity maturation may contribute to increased MuSK-binding affinity. These findings indicate that the autoantigen drives autoimmunity in MuSK MG through the accumulation of somatic mutations such that monovalent IgG4 Fab-arm-exchanged autoantibodies reach a high-affinity threshold required for pathogenic capacity.

Introduction

Myasthenia gravis (MG) is a chronic autoimmune disorder affecting neuromuscular transmission (Gilhus, 2016; Vincent, 2002). The disease is caused by pathogenic autoantibodies that target components of the neuromuscular junction. Given that the immunopathogenesis is directly governed by known autoantibody–autoantigen combinations, MG can serve as an archetype for B cell–mediated autoimmune disease. MG disease subsets are classified by autoantibody specificity; autoantibodies to the acetylcholine receptor (AChR; Vincent et al., 2000) are found in most patients, followed by autoantibodies to muscle-specific tyrosine kinase (MuSK) in other patients (Hoch et al., 2001). The clinical presentation among the subtypes is often similar, but the underlying immunopathology is decidedly divergent. The MuSK subtype highlights this distinction, as the autoantibodies in MuSK MG are primarily IgG4 (Niks et al., 2008), a subclass that does not share key properties found in the other subclasses. The most intriguing feature of human IgG4 antibodies is their unique ability to participate in antigen-binding fragment (Fab)–arm exchange, such that a monospecific IgG4 antibody exchanges a heavy- and light-chain pair with another IgG4 antibody to become bispecific (van der Neut Kolfschoten et al., 2007). Consequently, IgG4 antibodies are asymmetric antibodies with two different antigen-combining sites and therefore possess monovalent specificities. Serum IgG4 autoantibodies that have undergone Fab-arm exchange (and are thus monovalent) contribute to the pathology of MuSK MG (Koneczny et al., 2017). Although divalent MuSK monoclonal antibodies (mAbs) demonstrate pathogenic capacity using in vitro AChR clustering assays, they are not as effective as their monovalent counterparts (Huijbers et al., 2019). In addition, the divalent autoantibodies stimulate the phosphorylation of MuSK, whereas their monovalent counterparts, such as IgG4 autoantibodies in MuSK MG patient serum or monovalent Fabs, inhibit the phosphorylation of MuSK (Huijbers et al., 2013, 2019; Takata et al., 2019). The difference between the divalent and monovalent autoantibodies is likely due to the dual activity of the divalent antibodies, as they can dimerize MuSK, stimulate transphosphorylation (Herbst and Burden, 2000), and at the...
same time inhibit binding of low-density lipoprotein receptor–related protein 4 to MuSK.

During the course of a developing immune response to an exogenous antigen, B cells produce antibodies with increased affinity as they proceed through the process of affinity maturation (Neuberger, 2002; Rajewsky, 1996; Sarvas and Mäkelä, 1970). The successively greater antibody affinities accumulate as a direct result of clonal selection and the somatic hypermutation (SHM) process. B cell responses to self-antigen in most human autoimmune diseases appear to be products of this affinity maturation process. Autoantibodies with pathogenic capacity, isolated from patients with neuromyelitis optica, pemphigus vulgaris, or AChR MG, are characterized by the hallmarks of this process, including the accumulation of somatic mutations (Bennett et al., 2009; Di Zenzo et al., 2012; Graus et al., 1997). Recently, cloned autoantibodies that target MuSK were isolated from patients with MG (Huijbers et al., 2019; Stathopoulos et al., 2017; Takata et al., 2019). These autoantibodies show the hallmarks of affinity maturation, including accumulated somatic mutations. Given that IgG4 antibodies are often the product of a response to chronic exposure to exogenous antigens (Alberse et al., 2009), such as allergens, it is not clear whether these autoantibodies are produced by B cells that were driven through the affinity maturation process by the autoantigen, MuSK. Moreover, given that IgG4 MuSK MG autoantibodies are functionally monovalent, as a consequence of Fab-arm exchange, the binding does not benefit from the accumulated strength of multiple affinities (avidity) that divalent antibodies use to their advantage. Thus, the affinity threshold for functional binding and pathogenic capacity may be higher than that of other autoantibodies and may consequently be highly dependent on affinity maturation.

We sought to further understand whether a self-antigen was driving the autoimmune response in MuSK MG. In particular, we determined how the SHM process contributes to MuSK autoantibody binding and pathogenic capacity in the context of both divalent and monovalent binding. We performed these experiments by examining a set of MuSK MG-derived human recombinant mAbs. These mAbs were reverted to their unmutated common ancestors (UCAs) by replacing all of the identifiable acquired somatic mutations with germline-encoded residues. They were expressed and evaluated as divalent mAbs or monovalent Fabs, the latter of which allowed us to directly test the properties of Fab-arm–exchanged products. We found that both mature and germline-encoded mAbs bound to MuSK and displayed pathogenic capacity. The mature monovalent Fabs also bound to MuSK and demonstrated pathogenic capacity. However, the germline-encoded Fabs bound to MuSK, but did not demonstrate measurable pathogenic capacity. The mature Fabs possessed very high affinity for MuSK, while the affinities of the germline-encoded Fabs were ~100-fold less than the mature Fabs. Crystal structures of two Fabs revealed that acquired somatic mutations in the mature Fabs increase the negative charge of the antigen-binding region, likely contributing to increased binding affinity to potential positively charged epitopes on MuSK. Taken together, these findings indicate that the autoantigen MuSK drives the autoimmune response in MuSK MG. They furthermore demonstrate that IgG4 Fab-arm-exchanged MusK autoantibodies require high-affinity binding to reach pathogenic capacity, establishing a particularly critical role for somatic mutations in these unique monovalent autoantibodies.

Results

UCAs of MuSK mAbs bind to the autoantigen MuSK

We previously isolated single B cells that expressed MuSK autoantibodies from two MuSK MG patients. From these single B cells, we produced human recombinant mAbs (MuSK1A, MuSK1B, and MuSK3-28) that bound to MuSK and demonstrated pathogenic capacity (Table S1; Stathopoulos et al., 2017; Takata et al., 2019). Here, we sought to investigate how affinity maturation contributed to MuSK binding. To this end, we reverted the mAbs to their putative germline configuration. Amino acid residue changes, arising from the SHM process, in the heavy and light variable region gene segments, including the templated regions of the CDR3s, were identified and mutated back to the UCA sequence configuration (Fig. 1 A). While somatic mutations in the untemplated regions of the CDR3 cannot be addressed, our experimental approach offered the best possible approximation of the germline configuration. The mutations were introduced in a stepwise manner; thus, we generated a series of mAbs in which only individual regions (complementarity-determining regions [CDRs] and framework regions [FRs]) or combinations of regions were changed to the germline configuration. This series of partially reverted mAbs (intermediate reversions) provided the opportunity for us to evaluate how different somatic mutations affected antigen binding. The mature mAbs, the intermediate reversions and the UCAs were tested for their ability to bind to MuSK using a live cell-based assay (CBA).

We compared the mature mAbs to their UCA counterparts (Fig. 1, B and C). These mAbs, as well as negative and positive control mAbs, were tested over a range of concentrations (10–0.02 μg/ml; Fig. 1 C). The mean fluorescence intensity (MFI) of MuSK antigen–transfected cells was subtracted from the MFI of nontransfected cells (ΔMFI). The UCAs of MuSK1A and MuSK1B antibodies and their mature counterparts bound to MuSK similarly; all four mAbs showing positive binding at concentrations as low as 0.02 μg/ml. The UCA of autoantibody MuSK3-28 showed diminished binding over this concentration range compared with its mature counterpart and was weakly positive from 10 to 0.2 μg/ml, while the mature mAb remained positive from 10 to 0.02 μg/ml.

Given that the UCA of mAb MuSK3-28 demonstrated diminished binding to MuSK, we next explored the binding of the intermediate reversion mAbs to evaluate how SHMs in the individual CDRs and FRs contributed to binding. We tested the intermediate reversions mAbs of MuSK1A, MuSK1B, and MuSK3-28, together with both negative and positive control mAbs over a range of mAb concentrations (10–0.02 μg/ml). Consistent with the results of the UCA binding, all intermediate constructs tested for MuSK1A bound MuSK similar to the mature mAb (Fig. S1 A). A number of the intermediates for MuSK1B showed a minor decrease in binding to MuSK. However, the
binding remained 1,639–2,183-fold above background at the concentration of 1.25 µg/ml, which we previously used to distinguish between binders and nonbinders (Fig. S1 B; Takata et al., 2019). Conversely, intermediate constructs for mAb MuSK3-28 showed more pronounced changes in binding. The largest cause for diminished binding of MuSK3-28 could be attributed to a reversion of the H CDR1 and H CDR2 domain together with the H FR1, located close to the H CDR1 region of the...
heavy chain. The \(\Delta MFI \) of the mature mAb was 7,824, while the H CDR1 + CDR2 + FRI reversion was 75 (104-fold decrease) at 1.25
\(\mu \)g/ml (Fig. S1 C), which was similar to the UCA. Other
reversions with either H CDR1 and H CDR2 alone or in combina-
tion with the H FR2 region did not show a substantial impact on
binding.

We included a non-MuSK MG mAb to serve as a control. We
reverted mAb 637 (a MG patient–derived recombinant mono-
clonal that recognizes AChR; Graus et al., 1997) back to the germline-encoded UCA sequence. A CBA specific for AChR was
used to assess the binding to the AChR. The heavy chain CDR2
region germline reversion of mAb 637 showed diminished
binding compared with the mature mAb 637 (Fig. S1 D). These
results were reproducible over a broad range of concentrations.

In summary, these findings demonstrate that UCA counterparts
of the three MuSK mAbs all bind to MuSK.

The autoantibody light chains contribute to MuSK binding, and
the UCAs bind to the same MuSK domain and are not
 polyspecific

We subsequently investigated whether the MuSK mAb light
chains contribute to binding or if the binding is heavy chain
dependent only. Therefore, all three mature MuSK mAb heavy
chains were paired with nonendogenous light chains that were
not originally paired with the heavy chain and tested for binding
to MuSK by CBA. All of the mAbs with light chain swaps showed
significantly diminished binding (P value range, 0.01–0.0001)
comparable with the endogenous pair (Fig. S1, E–G). The three
mature mAbs (MuSK1A, MuSK1B, and MuSK3–28) recognized an
epitope present in the Ig2-like domain of MuSK (Takata et al.,
2019). We tested whether the UCA antibodies recognize the
same epitope as their mature counterparts using several var-
derations with the VH and CH1 domains, as well as several nearby turns be-
multiple conformations within this region.

Crystal structures of MuSK1A and MuSK1B Fabs
To understand the structural basis for how affinity maturation
contributes to MuSK binding, we obtained crystals of MuSK1A and
and MuSK1B to 1.8 \(\AA \) and 1.75 \(\AA \), respectively (Fig. 2, A and B; and
Table S2). The overall structures of both MuSK1A and
MuSK1B were comparable to a number of Fabs with high CDR amino acid
sequence similarity found in the Protein Data Bank (PDB; Fig.
S5). Compared with these sequence-related Fabs, MuSK1A and
and MuSK1B differed most significantly in the heavy and light CDR3
loops, consistent with these loops being the sites of greatest
diversification in most antibodies. For both MuSK1A and
and MuSK1B, the mutations away from the UCA sequence were
distributed throughout the Fab variable domains, with ∼40–50%
of the mutations clustered in the CDR loops and the remainder
scattered throughout the FRs (Fig. 2, C and D). In the crystal
structure for MuSK1B, we observed blurred electron density in
the vicinity of the heavy chain “elbow” region, which connects
the variable (VH) and constant (CH1) domains of an antibody.
Blurred electron density was observed for the linker between
the VH and CH1 domains, as well as several nearby turns be-
tween strands of the VH domain regions. The lower quality of
electron density in this local area likely indicated flexibility or
multiple conformations within this region.

Immunoglobulins can contain glycans within the variable
region (van de Bovenkamp et al., 2016). Consensus amino acid
motifs (N-X-S/T) for N-linked glycosylation sites can either be
present within the germline sequence or acquired during the
SHM process. Enrichment of Fab glycans has been observed in

| Table 1. \(K_D \) values of mature and UCA Fabs MuSK1A, MuSK1B, and
MuSK3–28
\(K_D \) of mature Fab (nM)
ancestor Fab (nM)
MuSK1A
MuSK1B
MuSK3–28

30 times higher affinity than Fab MuSK3–28 (\(K_D = 12 \) nM; Fig. S4,
A, C, and E). The UCAs of all three mature Fabs had a lower
affinity for MuSK than the mature Fabs (Table 1). The affinity of
UCA Fab MuSK1A for MuSK dropped 76-fold (\(K_D = 31 \) nM); the
affinity of UCA Fab MuSK1B dropped 120-fold (\(K_D = 53 \) nM); the
affinity of UCA Fab MuSK3–28 decreased by 73-fold (\(K_D = 870
\) nM; Fig. S4, B, D, and F). The dissociation rates were faster for
the UCA Fabs of MuSK1A and MuSK1B compared with their
mature counterparts (Table 2). The comparison of the UCA and
mature Fab of MuSK3–28 (Table 2) showed a slower association
rate and similar dissociation rate. Overall, the increased affinity
of the mature MuSK3–28 Fab was mainly the consequence of a
faster association rate, while the increased affinity of MuSK1A
and MuSK1B was largely due to reduced dissociation rates. In
summary, the binding kinetics of the UCA and mature Fabs
show altered association or dissociation rates that contribute to
an ∼100-fold change in affinity.

The UCA mAbs have lower affinity for MuSK than their
mature counterparts

We next sought to measure the affinities of the antibodies to
quantify and compare the strength of the antigen interaction
between the mature MuSK mAbs and their UCAs. We produced
monovalent Fabs to measure affinity, rather than avidity, and
evaluate the functional monoclonality of Fab-arm–exchanged
IgG4. All three mature Fabs displayed high affinity (equilib-
rium dissociation constant; \(K_D \)) for MuSK. Fab MuSK1A (\(K_D =
0.41 \) nM) and Fab MuSK1B (\(K_D = 0.44 \) nM) bound to MuSK with

Development of monovalent IgG4 autoantibodies
autoimmunity (Koers et al., 2019; van de Bovenkamp et al., 2018). While conserved N-linked glycosylation sites are present in the antibody Fc regions, glycosylation of the variable domains is less common. Based upon their amino acid sequences, during affinity maturation, all three mature MuSK mAbs (Fig. 1 A) were predicted to acquire or retain glycosylation sites within the variable regions (Blom et al., 2004), either in the heavy (MuSK1A and 3-28) or light chain (MuSK1B). The UCA of MuSK1B had an additional N-linked glycosylation site within the heavy chain that was lost during affinity maturation (Fig. 1 A).

Our electron density maps provided unambiguous experimental evidence that N81 of MuSK1A heavy chain and N20 of MuSK1B light chain were modified by N-linked glycosylation (Fig. 2, E and F). Carbohydrate residues could be modeled into additional electron density in MuSK1A at residue N81 of the heavy chain (Fig. 2 E), including the first two N-acetylglucosamine residues and a β-D-mannose. In our mature MuSK1B structure, we were able to model the first N-acetylglucosamine residues (Fig. 2 F).

We next sought to understand how affinity maturation could play a role in MusK MG pathogenesis. Interestingly, the mature MuSK1A light chain and, to a lesser extent, mature MuSK1A heavy chain CDR loops were largely negatively charged (Fig. 2 G), while the germline sequence in the CDR regions may have more neutral or additional positive charge (Fig. 2 H). For example, G28D in L CDR1, Y101D in H CDR3, or K30N in L CDR1 might make this region more negatively charged, while K52M in L CDR2 might serve to neutralize positive charge present in the UCA sequence. Similarly, the mature MuSK1B CDR loops were largely negatively charged (Fig. 2 G), while sequence-related Fabs to the UCAs tend to be largely positively charged (Fig. 2 H); hence, the mutations from the UCA to the mature Fab might serve to increase the negative charge of the CDR regions. For example, the mutations S51D in L CDR2, and G32D and S57N, respectively, in H CDR1 and H CDR2, might all increase the negativity of the antigen-binding site. Notably, the MuSK Ig1-like domain is predominantly negative, while the MuSK Ig2-like domain is highly positively charged (Fig. 2 I; Stiegler et al., 2006). As the MuSK1A and MuSK1B epitopes have been mapped at the domain level to the MusK Ig2-like domain (Takata et al., 2019), this might suggest that MuSK1A and MuSK1B likely bind to one or both of the basic patches on the Ig2-like domain of MusK. In summary, these collective structural data indicate that the MuSK1A and MuSK1B Fabs share common structural features with Fabs of similar composition and include occupied variable region glycosylation sites. These findings further suggest that acquired mutations may strengthen the binding affinity for the basic patches on the MusK Ig2-like domain by altering the electrostatic interactions at the antigen–antibody interface.

The pathogenicity of the MuSK autoantibodies is dependent on both affinity and valency

We next sought to evaluate how the amino acid changes resulting from SHM contributed to pathogenicity. We previously demonstrated that all three mature mAbs are pathogenic when tested using an established in vitro AChR clustering assay (Takata et al., 2019). Accordingly, we investigated whether the UCA counterparts of the mature mAbs disrupt AChR clustering in C2C12 myotubes. In addition to the divergent mAbs, we tested whether the amino acid substitutions from SHM had an impact on pathogenicity by testing the mature and UCA monovalent Fabs, which emulated Fab-arm–exchange products.

C2C12 myotubes were incubated with agrin, the neuronal ligand that stimulates AChR clustering, together with MuSK mAbs, MuSK Fabs, and control antibodies. AChR clusters were visualized and the mean number of AChR clusters quantified. The number of AChR clusters that formed in response to agrin alone was assigned a value of 100%, and the number of AChR clusters that formed in the presence of the antibodies was expressed relative to this value. The UCA of MuSK1A reduced the number of AChR clusters by 67.1% (P < 0.0001) and the UCA of MuSK1B by 73.0% (P < 0.0001; Fig. 3 A and B). Although mature MuSK3-28 reduced the number of AChR clusters by 47.9% (P < 0.001), the UCA of MuSK3-28, unlike the other UCAs, failed to diminish the number of AChR clusters that formed in response to agrin (percentage of agrin effect, 98.3; Fig. 3 B). The Fabs from the mature MusK1A (percentage of agrin effect, 1.4) and MuSK1B antibodies (percentage of agrin effect, 1.5) reduced AChR clustering to near-background values (P < 0.0001; Fig. 3 B). The UCA Fabs of MuSK1A and MuSK1B, however, had modest pathogenic capacity (AChR clustering was reduced by ~20% by each of them; Fig. 3 B). In contrast, the Fabs from mature and UCA MuSK3-28 failed to inhibit agrin-induced AChR clustering (Fig. 3 B). We next evaluated further whether the UCA and mature Fabs inhibit AChR clustering differently by comparing them directly to each other. The Fab of MuSK1A inhibited AChR clustering by 98.6%, while the UCA Fab of MuSK1A by inhibited AChR clustering by 22.1% (Welch’s t test, P = 0.0071). Similarly, the Fab of MuSK1B inhibited AChR clustering by 98.5%, while the UCA Fab of MuSK1B inhibited AChR clustering by 18.9% (Welch’s t test, P = 0.0136). In summary, the UCA of MusK1A and MusK1B mAbs demonstrated pathogenic capacity, but the UCA of the lower-affinity mAb MuSK3-28 did not. However, in the monovalent configuration, which emulates Fab-arm exchange, only the mature, high-affinity MusK1A and MusK1B antibodies were able to significantly disrupt agrin-induced AChR clustering, thus demonstrating pathogenetic capacity.
Discussion

To further understand the mechanisms underlying autoimmune MG pathology, we recently identified and isolated a set of B cells from MuSK MG patients. Whole recombinant human mAbs from these cells were expressed, and then their specificity and pathogenic capacity was confirmed (Stathopoulos et al., 2017; Takata et al., 2019). In the current study, we used these mAbs to investigate the evolution of the autoantibody response in MuSK MG. We reverted the identifiable somatic mutations of the mAbs back to their putative germline configuration, thus generating UCAs. We also expressed whole IgG and their Fabs so that we could test the contribution of somatic mutations to both monovalent and divalent binding, thus emulating the products of Fab-arm exchange from IgG4 antibodies. With this array of autoantibody constructs, we tested binding to the autoantigen, pathogenic capacity, and the affinity between the autoantibody and the cognate self-antigen. We found that the UCAs of MuSK autoantibodies can demonstrate strong binding to MuSK, suggesting that MuSK may drive SHM. The endogenous heavy and light chain combination was required for this binding. The binding was not a product of polyclonality, and the UCAs recognized the same domain on MuSK as the mature mAbs. The UCAs of two mAbs displayed pathogenic capacity similar to what was observed with mature mAbs, but only when they were presented to the antigen as dimeric mAbs and not as monovalent Fabs. Affinity measurements demonstrated that the SHM...
process was a critical requirement for the pathogenic capacity of the monovalent Fabs. Structural data indicated that somatic mutations, which led to a large increase in binding affinity, also resulted in an increasingly negatively charged antigen-binding surface on both MuSK1A and MuSK1B. Due to the largely positively charged surface of MuSK Ig2-like domain, it is tempting to speculate that this charge complementarity contributed to the increased binding affinity. Interestingly, a reversion mutation for A25D near HCDR1 in the FR1 of MuSK3-28 largely abolished MuSK3-28 binding to MuSK in our CBA. Homology modeling of MuSK3-28 suggests that introducing this negatively charged residue during affinity maturation, which is buried in the FR region, could alter the conformation of the HCDR1 loop and may partially explain the difference in the association rate observed between the mature and UCA MuSK3-28 Fab. These collective data suggest that MuSK MG pathology occurs when a high-affinity threshold is reached by a functionally monovalent Fab-arm–exchanged IgG4.

The remarkably high affinity of these MuSK autoantibodies offers additional insight into the mechanisms of immunopathology. The affinity has only been described for a small number of pathogenic human autoantibodies; in contrast to many reported avidity measurements or estimates of avidity, which are derived from divalent mAbs. The association and dissociation rates need to be separately measured to calculate the true affinity or avidity. Measuring binding over a broad range of concentrations can give an estimate of the binding to an antigen, and as such is often used as an affinity/avidity estimate. An AChR mAb bound with an estimated avidity in the sub-nanomolar range (Saxena et al., 2017) and mAbs binding AQP4, derived from patients with neuromyelitis optica, have estimated avidities covering a broad range, from 24 nM to 559 nM (Cotzomi et al., 2019). The affinity measurements of a human mAb against respiratory syncytial virus (Fab19) and several reversion intermediates, together with the germline-encoded Fab, showed that SHM increased affinity and resulted in a faster association rate that was associated with an increase in antiviral
neutralizing activity (Bates et al., 2013); similar findings were described when analyzing the kinetics of antibody binding in mice (Foote and Milstein, 1991). Two of the mAbs described here have affinities for MuSK in the subnanomolar range, which was driven by a remarkably slow dissociation rate. Germline versions displayed lower affinity, which was associated with diminished pathogenicity. Thus, once these autoantibodies have engaged MuSK at the neuromuscular synapse, they may remain bound to MuSK for an extended period of time, which may be a key property of their pathology.

B cells expressing autoreactive B cell receptors (BCR) are normally eliminated from the maturing repertoire by mechanisms present at two distinct checkpoints along the B cell development pathway, thereby reducing the development of immune responses against self-antigens (Meffre and O’Connor, 2019; Wardemann et al., 2003). A number of autoimmune diseases (Cotzoli et al., 2019), including both AChR and MuSK MG (Lee et al., 2016), include defective B cell tolerance checkpoints. Consequently, in the presence of faulty counter-selection, the naive repertoire includes a higher proportion of polyreactive/self-reactive B cells than found in healthy (non-autoimmune) individuals and this reservoir of polyreactive/self-reactive naive B cells may include those that bind to MuSK and thus serve as precursors to those that secrete pathogenic autoantibodies. Alternatively, B cells that escape tolerance checkpoints can be maintained in a state of clonal ignorance to protect against the development of autoimmunity; failure of clonal ignorance mechanisms may contribute to the development of autoimmunity (Aplin et al., 2003; Hannum et al., 1996; Liu et al., 2007; Pillai et al., 2011; Shlomchik et al., 1993). Given that the putative naive B cells, which were represented by the UCAs, demonstrated such high affinity for self-antigen, it is reasonable to consider that they may be clonally ignorant. Such clonally ignorant B cells can become activated without initially binding to self-antigen and then mature and generate strongly self-reactive clones that secrete pathogenic autoantibodies, such as those shown in our study.

Given that the self-antigen MuSK bound to the putative germline-encoded mAbs (experimentally approximating the BCR of naive B cell clones), it is not unreasonable to speculate that MuSK may be both initiating and driving the autoimmune response. This finding is unusual, as similar investigations of germline-encoded human mAbs demonstrate a remarkable lack of autoantigen binding that is, conversely, robust in their mature counterparts. Unmutated revertants of mAbs from patients with pemphigus vulgaris and systemic lupus erythematosus do not bind self-antigen (Di Zenzo et al., 2012; Mietzner et al., 2008; Wellmann et al., 2005). Similar patterns were found with unmutated revertants of anti-cytokine autoantibodies in autoimmune regulator (AIRE)–deficient patients (Meyer et al., 2016) and pulmonary alveolar proteinosis patients (Piccoli et al., 2015). These findings contrast with those acquired with antibodies that demonstrate binding activity. These scenarios, however, must be carefully considered, as there are some limited examples of binding by germline-reverted autoantibodies (Cho et al., 2019; Wenke et al., 2019). These collective findings may point toward the limitations of the approaches available to measure antibody–antigen interactions, including ELISAs and live CBAs, neither of which may be sufficiently sensitive to measure low-affinity interactions or accurately emulate the antigen/autoantigen binding to the BCR of naive B cells in situ, such as lymphoid tissue.

Our study is, of course, not without limitations. First, the process of producing UCA versions of mature antibodies is not absolute without having the germline B cell clone in hand. We made every effort to identify the somatic mutations harbored within the CDR3 region, including reverting the D-gene segment and using a statistical model that evaluated proposed germline configurations (Gaeta et al., 2007). Although not absolute, our reversions are as thorough as experimentally possible and thus provide the best approximate representation of the true germline BCR. However, it is possible that the UCAs do not accurately represent naive B cells from which the pathogenic clones emerged. Thus, we cannot be certain that naive B cells have the capacity to bind to MuSK and initiate the autoimmune response. The ex vivo isolation and characterization of rare circulating MuSK-reactive naive B cells from MG patients would be required to demonstrate that the naive repertoire harbors such autoreactive precursors. Second, we recognize that our study focused on MuSK MG and thus urge caution in generalizing our findings to include properties of IgG4 beyond this disease. Third, while the properties of the MuSK mAbs we studied were quite consistent in terms of their pathogenic capacity and UCA binding, the study of additional mAbs will be required to determine whether these characteristics are common among MuSK autoantibodies. Finally, while our data clearly demonstrate that AChR clustering was completely inhibited with the mature monovalent Fab (MuSK1A and MuSK1B), but not inhibited with the corresponding UCA Fab, we recognize that our measurements of clustering did not include a range of mAb concentrations. Finer quantitative differences may be revealed by testing these mAbs as such.

The collective findings of this study offer new insights into the speculative mechanism of pathogenic autoantibody production in MuSK MG. The consequence of tolerance checkpoint defects and clonal ignorance is the generation of a naive B cell repertoire populated with clones that circumvented counter-selection and thus may include precursors of autoantibody-producing clones. The results of the current study suggest that the MuSK MG naive B cell repertoire may include clones capable of binding to MuSK with high affinity. We suggest that such clones may not have escaped counterselection in the presence of well-functioning B cell tolerance checkpoints or intact clonal ignorance mechanisms. Thus, these autoreactive naive B cells may initially bind to either exogenous antigens or self-antigens and participate in initiating B cell differentiation toward memory B cells and antibody-secreting cells that directly contribute to disease; alternatively, it is also possible that MuSK-specific memory B cells/antibody-secreting cells are the product of naive
B cells that do not bind to MuSK. Our study further suggests that affinity maturation may be driven by MuSK. At the stage of autoantibody production, somatic mutations are required to generate autoantibodies of extraordinarily high avidity. Fab-arm exchange then takes place, and functionally monovalent autoantibodies, which have exceeded a high-affinity threshold, bind to MuSK at the neuromuscular synapse and cause disease. Based on this model, the targeting of high-affinity antigen-specific B cells, autoantibodies, or the Fab-arm-exchange process may represent feasible therapeutic strategies for MuSK MG treatment.

Materials and methods
Autoantibody variable region site-directed mutagenesis
To identify the base changes that arose through affinity maturation process, the sequences of the MuSK mAbs were aligned against the 2018-02-24 germline reference set with IMGT/HighV-QUEST v1.6.0 (the international ImMunoGeneTics information system; Alamyar et al., 2012). We reverted the identifiable changes back to the germline-encoded UCA sequence in a step-by-step manner using the Q5 Site-Directed Mutagenesis Kit (New England BioLabs) according to the manufacturer’s instructions. The primers were designed with NEBaseChanger, and 12.5 ng of plasmid was used for each individual PCR reaction (C1000 Touch Thermal Cycler; Bio-Rad). The plasmids were transformed into NEB 5-α competent Escherichia coli (New England BioLabs). Plasmid DNA was then isolated with the QIAprep Spin Miniprep Kit (Qiagen) and sequenced to confirm the presence of mutations.

Recombinant expression of MuSK, human mAbs, and Fabs
For crystallography, MuSK1A was expressed in Sf9 cells using the baculovirus expression system. The heavy and light chain variable domains of MuSK1A were fused to a standard human IgG1 heavy and light chain constant domain and cloned into pFastBacDual to create pBE1719. A C-terminal 6xHis-Tag was included in the heavy chain for subsequent use in purification. Sf9 cells were grown in suspension in SF-900 II media for 3 d before harvesting. Clarified Sf9 supernatants were filtered and MuSK1A was purified by successive affinity and size-exclusion chromatography (Superdex 200 Increase 10/300 GL column) on an AKTA pure system in 20 mM Tris, pH 8.0, and 150 mM NaCl. Both the variable and constant domains of the heavy chain of MuSK1B were cloned into a vector containing human IgG3 constant region and subsequently cloned into the pcDNA3.4-TOPO vector for protein expression for crystallography of MuSK1B. The variable domain of the heavy chain of MuSK1B was fused to a standard human IgG1 CH1 constant domain and cloned into the pcDNA3.4-TOPO vector to create pBE1779 for protein expression for crystallography of MuSK1B. The mAbs were produced as previously described (Takata et al., 2019). Briefly, HEK293A were transfected with equal amounts of the heavy and the corresponding light chain plasmid using linear polyethylenimine (catalog no. 23966; Polysciences). The media was changed after 24 h to basal media (50% DMEM 12430, 50% RPMI 1640, 1% antibiotic/antimycotic, 1% Na-pyruvate, and 1% Nutridoma). After 6 d, the supernatant was harvested and Protein G Sepharose 4 Fast Flow beads (GE Healthcare Life Sciences) were used for antibody purification. For expression of mAbs using the human IgG3 constant region, a vector containing human IgG3 was purchased from Addgene (pVITRO1-102.1F10-IgG3/λ) and then cloned into a vector for recombinant IgG expression that we previously engineered (Ray et al., 2012).

Affinity measurements
Fab binding to MuSK was measured by biolayer interferometry using an Octet RED96 system (Fortebio). Biotinylated ectoMuSK was immobilized on streptavidin coated sensors and incubated with varying concentrations of purified Fabs. During the experiment, the reaction plate was maintained at 30°C and shaken at 1,000 rpm. Data were fit using the Octet System data analysis software. After subtraction of signal from a reference sensor loaded with ectoMuSK and incubated with buffer, response curves were aligned at the equilibration step. Interstep correction was applied to align association and dissociation curves, and a Savitzky–Golay filter was applied to remove high-frequency noise. Processed association and dissociation curves were fit
globally using a 1:1 binding model to obtain kinetic constants for each Fab.

Live cell-based autoantibody assay

HEK293T (ATCC CRL3216) cells were transfected with either full-length MuSK-GFP (kindly provided by Drs. David Beeson, Angela Vincent, and Patrick Waters; University of Oxford, Oxford, UK), different ectodomain variants of MuSK-GFP (previously described in Takata et al., 2019) or the AChR domains (2xa, β, α, and ε) together with Rapsyn-GFP (kindly provided by Drs. David Beeson, Angela Vincent, and Patrick Waters). On the day of the CBA, the antibodies were added to the transfected cells in either a dilution series (10–0.02 µg/ml) or at a concentration of 10, 1, or 0.1 µg/ml. For the epitope determination assay, all constructs were measured at 10 µg/ml. The binding of each mAb was detected with Alexa Fluor–conjugated AffiniPure Rabbit Anti–Human IgG, Fcγ (309–605–008; JacksonImmunoResearch) on a BDLSRFortessa (BD Biosciences). FlowJo software was used for analysis.

Crystallization and structure determination

Gel filtration fractions containing purified MuSKIA were concentrated to 10 mg/ml. MuSKIA crystals were grown at 18°C by vapor diffusion and after ~4 d grew from drops consisting of 100 nl protein plus 100 nl of a reservoir solution consisting of 20% wt/vol polyethylene glycol (PEG) 6K (6K Precipitant) and 0.1 M Bicine 8.5 pH (Buffer) from the JCSG Core I (Qiagen) screen. Reservoir solution was supplemented with 15% ethylene glycol for cryoprotection. Gel filtration fractions containing purified MuSKIB were concentrated to 10 mg/ml. MuSKIB crystals grew after 1 d at 18°C by vapor diffusion from drops consisting of 100 nl protein plus 100 nl of a reservoir solution consisting of 0.085 M Hepes, pH 7.5, 17% PEG 4K, 8.5% isopropyl alcohol, and 15% glycerol from the JCSG Core II (Qiagen) screen. Reservoir solution was supplemented with 5% glycerol for cryoprotection. For both MuSKIA and MuSKIB, native diffraction data were previously established concentration of 1 µg/ml (6.7 nM) together with agrin or alone (Takata et al., 2019). After the induction of AChR clustering, AChRs were visualized through the application of 1 µg/ml Alexa Fluor 647–labeled α-bungarotoxin (Invitrogen) for 1 h at 37°C. After staining, cells were washed twice with medium (5 min at 37°C) and fixed with 3% paraformaldehyde–dearomatized for 20 min at room temperature. Duplicate wells, for each condition, were used to perform technical replicates; between four and eight randomly chosen visual fields were captured for every condition. AChR clusters were counted using Imagej software, and the mean of the clusters per visual field, per condition was calculated. Each experiment was performed independently, at least three times, to produce biological replicates. AChR clusters were normalized for the effect of agrin in each experiment. Reported results are from experiments in which a minimum threefold effect of agrin-induced clustering over the baseline was observed.

Statistics

Statistical significance was assessed with Prism Software (GraphPad version 8.0) by multiple-comparison ANOVA with Dunnett’s correction for AChR clustering in the C2C12 assay as well as for the light chain contribution to binding. Welch’s t test was used to evaluate the statistical difference in inhibiting AChR clustering between UCA and corresponding mature Fabs.
Online supplemental material

Fig. S1 shows the results from testing the intermediates of MuSK1A, MuSK1B, and MuSK3-28 mAbs with the MuSK CBA and the data from the mutagenesis analysis of AChR-specific mAb 637 with an AChR CBA. Fig. S2 shows the results of the MuSK domain binding of all three mAbs and their UCA counterparts with a CBA expressing several MuSK-GFP domain variants. Fig. S3 shows the reactivity of the mature and UCA mAbs against LPS, dsDNA, and insulin as tested by ELISA. Fig. S4 shows the biolayer interferometry curves related to the affinity measurements of the mature and UCA Fabs to MuSK. Fig. S5 compares the structure of the MuSK1A and MuSK1B Fabs to sequence-related Fabs. Table S1 shows the molecular characteristics of the MuSK-specific mAbs MuSK1A, MuSK1B, and MuSK3-28. Table S2 provides additional crystallographic data and refinement statistics.

Acknowledgments

The authors thank Karen Boss for providing editorial assistance.

Author contributions: This study was originally conceived, initiated, and directed by K.C. O’Connor. M.L. Fichtner led the laboratory work at Yale, designing, executing, and interpreting experiments associated with the mutagenesis, mAb expression, C2C12 assay, and the CBA and directed P.A. Suarez in performing and validating the mutagenesis and expressing the mAb variants. P. Stathopoulos provided assistance with experimental design and data interpretation associated with the C2C12 assay and CBAs. D.C. Ekiet and C. Vieni planned, designed, and executed the crystal structures. C. Vieni, L. Kolich, and R.L. Redler produced the Fabs and executed the affinity measurements. K. Takata helped design and execute the mutagenesis and CBAs. P.A. Suarez assisted with C2C12 measurements. R. Jiang executed the bioinformatic analyses. D.C. Ekiet and S.J. Burden provided key contributions to the overall project scope and experimental design and directed the laboratory work at New York University. R.J. Nowak provided the clinical specimens from which the mAb were derived and provided insight on the clinical and therapeutic relevance of the findings. The manuscript was initially drafted by M.L. Fichtner and K.C. O’Connor. The graphical abstract was created with BioRender.com by M.L. Fichtner. All authors contributed to the editing and revising of the manuscript.

Disclosures: M.L. Fichtner reported grants from Grifols outside the submitted work. P. Stathopoulos reported grants from Onassis Foundation outside the submitted work. R.J. Nowak reported no conflicts directly related to this work. R.J. Nowak had received research support from Alexion, argenx, Ra Pharma, Momenta, Genentech, Immunovant, and Viela Bio related to the conduct of clinical trials for myasthenia gravis. K.C. O’Connor reported grants from Ra Pharma and personal fees from Alexion outside the submitted work; and received research support from Ra Pharma and is a consultant and equity shareholder of Cabaletta Bio. K.C. O’Connor is the recipient of a sponsored research subaward from the University of Pennsylvania, the primary financial sponsor of which is Cabaletta Bio. No other disclosures were reported.

Submitted: 17 March 2020
Revised: 4 June 2020
Accepted: 16 July 2020

References

Aalberse, R.C., S.O. Stapel, J. Schuurman, and T. Rispens. 2009. Immunoglobulin G4: an odd antibody. Clin. Exp. Allergy. 39:469–477. https://doi.org/10.1111/j.1365-2222.2009.03207.x
Afonine, P.V., R.W. Grosse-Kunstleve, P.D. Adams, and A. urzhumtsev. 2013. Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallogr. D Biol. Crystallogr. 69:625–634. https://doi.org/10.1107/S0907498413008362
Afonine, P.V., B.K. Poon, R.J. Read, O.V. Sobolev, T.C. Terwilliger, A. urzhumtsev, and P.D. Adams. 2018. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74:531–544. https://doi.org/10.1107/S2059798318006551
Alamyar, E., P. Duroux, M.P. Lefranc, and V. Giudicelli. 2012. IMGT(®) tools for the nucleotide analysis of immunoglobulin (Ig) and T cell receptor (TR) V-(D)-J repertoire, polymorphisms, and Ig mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882:569–594. https://doi.org/10.1007/978-1-61779-842-9_32
Aplin, B.D., C.L. Keech, A.L. de Kauwe, T.P. Gordon, D. Cavell, and J. McChuskey. 2003. Tolerance through indirection: autoantibody B cells to the nuclear antigen La show no evidence of tolerance in a transgenic model. J. Immunol. 171:5890–5900. https://doi.org/10.4049/jimmunol.17115890
Bates, J.T., C.J. Keefer, T.J. Utley, B.E. Correia, W.R. Schief, and J.E. Crowe, Jr. 2013. Reversion of somatic mutations of the respiratory syncytial virus-specific human monoclonal antibody Fab19 reveal a direct relationship between association rate and neutralizing potency. J. Immunol. 190:3723–3739. https://doi.org/10.4049/jimmunol.1202964
Bennett, J.L., C. Lam, S.R. Kalluri, P. Saikali, K. Bautista, C. Dupree, M. Glogowska, D. Case, J.P. Antel, G.P. Owens, et al. 2009. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann. Neurol. 66:617–629. https://doi.org/10.1002/ana.21802
Blom, N., T. Sicheritz-Pontén, R. Gupta, S. Gammeltoft, and S. Brunak. 2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 4:1633–1649. https://doi.org/10.1002/pmic.200300771
Bonsignori, M., E. Scott, K. Wliebe, D. Easterhoff, S.M. Alam, K.K. Hwang, M. Cooper, S.M. Xia, R. Zhang, D.C. Montefiori, et al. 2018. Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity. 49:1162–1174.e8. https://doi.org/10.1016/j.immuni.2018.10.015
Cho, A., A.L. Caldara, N.A. Ram, Z. Menne, R.C. Kauffman, M. Affer, A. Llovet, C. Norwood, A. Scanlan, G. Mantus, et al. 2019. Single-Cell Analysis Suggests That Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep. 28:909–922.e2. https://doi.org/10.1016/j.celrep.2019.06.066
Corti, D., A.L. Sugutan, Jr., D. Pinna, C. Silacci, B.M. Fernandez-Rodriguez, F. Vanzetta, C. Santos, C.J. Luke, F.J. Torres-Velez, N.J. Temperton, et al. 2010. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J. Clin. Invest. 120:1663–1673. https://doi.org/10.1172/JCI41902
Corti, D., J. Voss, S.J. Gamblin, G. Codoni, A. Macagno, D. Jarrossay, S.G. Vachiery, D. Pinna, A. Minola, F. Vanzetta, et al. 2011. A neutralizing
antibody selected from plasma cells that binds to group 1 and 2 influenza A hemagglutinins. Science. 333:850–856. https://doi.org/10.1126/science.1205469

Cotzomi, E., P. Stathopoulos, C.S. Lee, A.M. Ritchie, J.N. Sollys, F.R. Delmotte, T. Oe, J. Sng, R. Jiang, A.K. Ma, et al. 2019. Early B cell tolerance defects in neumyelitis optica optica favour anti-AQP4 autoantibody production. Brain. 142:1598–1615. https://doi.org/10.1093/brain/awz2106

Di Zenzo, G., G. Di Lullo, D. Corti, V. Calabresi, A. Sinistro, F. Vanzetta, B. Didonato, G. Gianchini, M. Herdt, R. Eming, et al. 2012. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. J. Clin. Invest. 122:3781–3790. https://doi.org/10.1172/JCI64143

Emaley, P., B. Lokhm, W.G. Scott, and K. Cowtan. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66:486–501. https://doi.org/10.1107/S0907498410007493

Foote, J., and C. Milstein. 1991. Kinetic maturation of an immune response. Nature. 352:530–532. https://doi.org/10.1038/352530a0

Gaeta, B.A., H.R. Malming, K.J. Jackson, M.E. Bain, P. Wilson, and A.M. Colliebschner, D., P.V. Afonine, M.L. Baker, G. Bunkóczi, V.B. Chen, T.I. Croll, B. Cotzomi, E., P. Stathopoulos, C.S. Lee, A.M. Ritchie, J.N. Soltys, F.R. Delmotte, A.J. McCoy, et al. 2019. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75:861–877. https://doi.org/10.1107/S205979831901471

Liu, J.T., J.L. Wysocki, and T.E. Jorgensen. 2007. Autoantibogen-T cell antigen receptor interactions that regulate expression of B cell antigen receptor. J. Immunol. 178:5035–5047. https://doi.org/10.4049/jimmunol.178.8.5035

McCoy, A.J., R.W. Grosse-Kunstleve, P.D. Adams, M.D. Winn, L.C. Storoni, and R.J. Read. 2007. Phaser crystallographic software. J. Appl. Cryst. 40: 658–674. https://doi.org/10.1107/S0021889807012206

Meffre, E., and K.C. O’Connor. 2019. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 292:90–101. https://doi.org/10.1111/imr.12821

Meyer, S., M. Woodward, C. Hertel, P. Vlaicu, Y. Haque, J. Kärner, A. Macagno, S.C. Onooha, D. Fishman, H. Peterson, et al; APECED patient collaborative. 2016. AIRE-Deficient Patients Harbor Unique High- Affinity Disease-Ameliorating Autoantibodies. Cell. 166:582–595. https://doi.org/10.1016/j.cell.2016.06.024

Mietzner, B., M. Tauri, J. Scheid, K. Velinzon, T. Tiller, K. Abraham, J.B. Gonzalez, V. Pascual, D. Stichweth, H. Wardemann, et al. 2008. Auto- reactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyclonal precursors. Proc. Natl. Acad. Sci. USA. 105:9727–9732. https://doi.org/10.1073/pnas.0803644105

Neuberger, M.S. 2002. Novartis Medal Lecture. Antibodies: a paradigm for the evolution of molecular recognition. Bioch. Soc. Trans. 30:341–350. https://doi.org/10.1042/bst030341

Nils, E.H., Y. Leeuwen, M.I. Leite, F.W. Dekker, A.R. Wintzen, P.W. Wirtz, A. Vincent, M.J. van Tol, C.M. Jol-van der Zijde, and J.J. Verschuuren. 2008. Clinical fluctuations in MuSK myasthenia gravis are related to antigen-specific IgG4 instead of IgG1. J. Neuroimmunol. 195:151–156. https://doi.org/10.1016/j.jneuroim.2008.01.013

Pappas, L., M. Foglertini, L. Piccoli, N.L. Kallewaard, F. Turri, C. Silacci, B. Fernandez-Rodriguez, G. Agatic, I. Giacchetti-Sasselli, G. Pellacani, et al. 2014. Rapid development of broadly influenza neutralizing anti- bodies through redundant mutations. Nature. 516:418–422. https://doi.org/10.1038/nature13764

Piccoli, L., I. Campo, C.S. Fregni, B.M. Rodriguez, A. Minola, F. Sallusto, M. Luissetti, D. Corti, and A. Lanza vecchia. 2015. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6:7875. https://doi.org/10.1038/ncomms8375

Pilla, S., H. Matttoo, and A. Carliapp. 2011. B cells and autoimmunity. Curr. Opin. Immunol. 23:721–731. https://doi.org/10.1016/j.coi.2011.07.010

Rajewsky, K. 1996. Clonal selection and learning in the antibody system. Nature. 381:751–758. https://doi.org/10.1038/381751a0

Ray, K.A., A.A. Amato, E.M. Bradshaw, K.I. Felice, D.B. DiCapua, J.M. Goldstein, I.E. Lundberg, R.J. Nowak, H.L. Ploegh, E. Sponeer, et al. 2012. Auto- antibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis. PLoS One. 7 e46709. https://doi.org/10.1371/journal.pone.0046709

Sarvas, H., and O. Makela. 1970. Haptenated bacteriophage in the assay of antibodies to blood group substances. Vox Sang. 14:32–41. https://doi.org/10.1111/j.1872-8012.1970.tb04215.x

Schwartz, S. 1999. Assume-it-all bacteriophages: a family of phages that complement the antibody system. Curr. Opin. Immunol. 11:776–782. https://doi.org/10.1016/S0952-7915(99)00033-7

Seng, J., B. Ayoglu, J.W. Chen, J.-N. Schickel, E.M.N. Ferre, S. Glauzy, N. Miettinen, A.L. Stiegler, A.L., S.J. Burden, and S.R. Hubbard. 2006. Crystal structure of the myasthenia gravis in inclusion body myositis. J. Mol. Biol. 364:422–433. https://doi.org/10.1016/j.jmb.2006.09.019

Fichtner et al. Development of monovalent IgG4 autoantibodies

Journal of Experimental Medicine

doi:10.1371/journal.10.20200513

12 of 13

https://doi.org/10.1084/jem.20200513
Takata, K., P. Stathopoulos, M. Cao, M. Mané-Damas, M.L. Fichtner, E.S. Benotti, L. Jacobson, P. Waters, S.R. Irani, P. Martínez-Martínez, et al. 2019. Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight. 4. e127167. https://doi.org/10.1172/jci.insight.127167

van de Bovenkamp, F.S., L. Hafkenscheid, T. Rispens, and Y. Rombouts. 2016. The Emerging Importance of IgG Fab Glycosylation in Immunity. J. Immunol. 196:1435–1441. https://doi.org/10.4049/jimmunol.1502136

van de Bovenkamp, F.S., N.I.L. Derksen, P. Ooijevaar-de Heer, K.A. van Schie, S. Kruijthof, M.A. Berkowska, C.E. van der Schoot, H. Ijspeert, M. van der Burg, A. Gils, et al. 2018. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl. Acad. Sci. USA. 115:1901–1906. https://doi.org/10.1073/pnas.1711720115

van der Neut Kolfschoten, M., J. Schuurman, M. Losen, W.K. Bleeker, P. Martinez-Martínez, E. Vermeulen, T.H. den Bleker, L. Wiegman, T. Vink, L.A. Aarden, et al. 2007. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 317:1554–1557. https://doi.org/10.1126/science.1144603

Vincent, A.. 2002. Unravelling the pathogenesis of myasthenia gravis. Nat. Rev. Immunol. 2:797–804. https://doi.org/10.1038/nri1916

Vincent, A., D. Beeson, and B. Lang. 2000. Molecular targets for autoimmune and genetic disorders of neuromuscular transmission. Eur. J. Biochem. 267:6717–6728. https://doi.org/10.1046/j.1432-1033.2000.01785.x

Wardemann, H., S. Yurasov, A. Schaefer, J.W. Young, E. Meffre, and M.C. Nussenzweig. 2003. Predominant autoantibody production by early human B cell precursors. Science. 301:1374–1377. https://doi.org/10.1126/science.1086907

Wellmann, U., M. Letz, M. Herrmann, S. Angermüller, J.R. Kalden, and T.H. Winkler. 2005. The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl. Acad. Sci. USA. 102:9258–9263. https://doi.org/10.1073/pnas.0500132102

Williams, C.J., J.J. Headd, N.W. Moriarty, M.G. Prisant, L.L. Videau, L.N. Deis, V. Verma, D.A. Keedy, B.J. Hintze, V.B. Chen, et al. 2018. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27:293–315. https://doi.org/10.1002/pro.3330

Zwart PH, R. W. Grosse-Kunstleve, P.D. Adams. 2005. Xtriage and Fest: automatic assessment of x-ray data and substructure structure factor estimation. CCP4 Newsletter. 43:99–107.
Supplemental material

Figure S1. Intermediates of MuSK1A, MuSK1B, and MuSK3-28 bind to the MuSK autoantigen and the light chains make contributions to binding. MuSK-specific mAbs were tested for surface binding to MuSK on MuSK-GFP–transfected human embryonic kidney (HEK) cells, and AChR-specific mAbs were tested for surface binding to AChR on AChR Rapsyn-GFP–transfected HEK cells. The mutated regions of each intermediate construct are indicated by adding either the heavy (H) or light (L) chain to the name of the construct, together with the regions that were mutated.

(A–D) Binding to MuSK (A–C) and AChR (D) was tested over 10 twofold serial dilutions of MuSK1A (A), MuSK1B (B), MuSK 3–28 (C), and AChR-specific mAb 637 (D) ranging from 10 to 0.02 µg/ml. Humanized MuSK mAb 4A3 was used as the positive control and AChR-specific mAb 637 as the negative control. The ΔMFI was calculated by subtracting the signal from nontransfected cells from the signal of transfected cells. Each data point or bar graph represents the mean value from two (A–D) to three (E and F) independent experiments, and error bars represent SDs. Values greater than the mean + four SDs of the negative mAb at 1.25 µg/ml (indicated by the horizontal dotted line) were considered positive. Statistical differences are shown when significant (multiple-comparisons ANOVA against the pooled results of the endogenous heavy- and light-chain combination with Dunnett’s correction; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001).
Figure S2. **Mature MuSK mAbs and their UCA counterparts bind to the same MuSK domain.** The MuSK mAbs and the UCA were tested for domain binding and recognition with a CBA expressing MuSK-GFP domain variants. **(A)** Illustration of the full-length MuSK receptor. **(B and C)** The ectodomain of MuSK consists of several different Ig-like domains and a frizzled domain. Different mutations of the MuSK protein consisting of a domain deletion or specific domain-only construct were tested for binding by the mAbs. Humanized MuSK mAb 4A3 was used as the positive control and AChR-specific mAb 637 as the negative control. Results for each mAb are shown. The ΔMFI was calculated by subtracting the signal from nontransfected cells from the signal of transfected cells. Each bar graph represents the mean value from three independent experiments. Bars represent means and error bars represent SDs. Values greater than the mean + four SDs of the negative mAb 637, indicated by horizontal dotted lines, were considered positive.

Figure S3. **Mature and UCA MuSK mAbs are not polyreactive.** The reactivity of the mature and UCA mAbs against LPS (A), dsDNA (B) and insulin (C) was tested by ELISA. ED38, a mAb cloned from a VpreB + L + peripheral B cell, was used as a positive control and shown by the dotted line curves. Each data point represents the mean value of two independent experiments, and the error bars represent SDs. Solid line curves represent MuSK mAbs and the UCAs. Dotted horizontal red lines mark the positive reactivity cutoff at OD405 0.5.
Figure S4. The affinity of the MuSK mAb UCAs is lower than that of the mature counterpart. Affinity of the mature and UCA Fabs to MuSK was determined by biolayer interferometry. A serial dilution series of the Fabs (900–1 nM) were used to determine the binding affinity with the captured MuSK. (A–F) Affinity measurements of the mature antibodies (A, C, and E) and their UCA counterparts (B, D, and F). The x axis depicts the time in seconds. The y axis depicts the wavelength shift detected by biolayer interferometry, which is proportional to material bound (nanoMolar). The K_D values are shown for each measurement.
Table S1 and Table S2 are provided online as Word files. Table S1 shows molecular characteristics of musk-binding human recombinant mAbs. Table S2 shows crystallographic data collection and refinement statistics for MuSK1A and MuSK1B.