Validation of a velocity-based algorithm to quantify saccades during walking and turning in mild traumatic brain injury and healthy controls

Samuel Stuart1,2,*, Lucy Parrington1,2, Douglas Martini1,2, Bryana Popa1,3, Peter C Fino4 and Laurie A King1,2

1 Department of Neurology, Oregon Health and Science University, Portland, OR, United States of America
2 Veterans Affairs Portland Health Care System, Portland, OR, United States of America
3 School of Public Health, Portland State University, Portland, OR, United States of America
4 Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, United States of America
5 Author to whom any correspondence should be addressed.

E-mail: stuarts@ohsu.edu

Keywords: eye-tracking, mild traumatic brain injury, saccades, algorithm, validation

Abstract

Objective: Saccadic (fast) eye movements are a routine aspect of neurological examination and are a potential biomarker of mild traumatic brain injury (mTBI). Objective measurement of saccades has become a prominent focus of mTBI research, as eye movements may be a useful assessment tool for deficits in neural structures or processes. However, saccadic measurement within mobile infrared (IR) eye-tracker raw data requires a valid algorithm. The objective of this study was to validate a velocity-based algorithm for saccade detection in IR eye-tracking raw data during walking (straight ahead and while turning) in people with mTBI and healthy controls.

Approach: Eye-tracking via a mobile IR Tobii Pro Glasses 2 eye-tracker (100 Hz) was performed in people with mTBI (n = 10) and healthy controls (n = 10). Participants completed two walking tasks: straight walking (walking back and forth for 1 min over a 10 m distance), and walking and turning (turns course included 45°, 90° and 135° turns). Five trials per subject, for one-hundred total trials, were completed. A previously reported velocity-based saccade detection algorithm was adapted and validated by assessing agreement between algorithm saccade detections and the number of correct saccade detections determined from manual video inspection (ground truth reference).

Main results: Compared with video inspection, the IR algorithm detected ~97% (n = 4888) and ~95% (n = 3699) of saccades made by people with mTBI and controls, respectively, with excellent agreement to the ground truth (intra-class correlation coefficient2,1 = .979 to .999).

Significance: This study provides a simple yet highly robust algorithm for the processing of mobile eye-tracker raw data in mTBI and controls. Future studies may consider validating this algorithm with other IR eye-trackers and populations.

Introduction

Neurological clinical examinations routinely involve eye-movement assessments of patients that focus on saccadic (fast eye-movements) and fixation (pauses on area of interest) movements (DiCesare et al 2017). Eye-movements, particularly saccades, provide an understanding of the visual, cognitive and motor deficits that accompany ageing (Munoz et al 1998) and neurological injuries or illnesses (Vidal et al 2012, Stuart et al 2016a, 2017, 2018) such as mild traumatic brain injury (mTBI). Indeed, the presence of eye movement deficits in acquired brain injury (of which mTBI is a sub-group) is reportedly as high as 90% (Ciuffreda et al 2007, Hunt et al 2016), and objective measurement of eye movements for the detection of deficits with mTBI has been a focus of many current research studies (Pearson et al 2007, Maruta et al 2010, Johnson et al 2015, Snegireva et al 2018). Hence, measurement of eye-movements in mTBI via non-invasive technology has become increasingly popular over recent years (Maruta and Ghajar 2014, Stuart et al 2014a, Ventura et al 2016), likely due to the ease of application and the insight it may give into the extensive network of brain regions that are involved in eye-
movement control (Baluch and Itti 2011). Individuals with mTBI may suffer deficits in a multitude of neural structures and processing centers that impact visual capabilities (Master et al. 2016), such as deficits in visual attention, visual working memory, visual discrimination, and selective (or choice) attention (Drew et al. 2007, Cripps et al. 2015). Understanding eye-movement abnormalities in mTBI compared with healthy controls using eye-tracking technology may therefore inform underlying mechanisms involved in patient symptoms and deficits. Examining eye movements in mTBI during complex dynamic tasks that involve real-word challenges, such as dual tasking (i.e. carrying out two tasks simultaneously) or turning, could be particularly useful to understand how mTBI-related deficits may affect functional capabilities in everyday life. This makes robust eye-tracking a possible biomarker of mTBI-related deficits (Ventura et al. 2015) and a useful mTBI assessment tool (Marinides et al. 2015) that could be deployed in a variety of environments including the clinic or field side assessments.

Eye-tracking is not novel to research, but recent advances in micro-technology have allowed a shift from high resolution static (200–1000 Hz) to dynamic mobile (30–100 Hz) eye-tracking devices that facilitate the study of eye-movements during real-world tasks (i.e. walking, turning, obstacle crossing etc) (Hayhoe and Ballard 2005, Franchak and Adolph 2010, Stuart et al. 2017, 2018, Tong et al. 2017). Mobile infra-red (IR) eye-trackers have been developed, and are the predominant method used within research to monitor eye-movements (Stuart et al. 2014a). During dynamic tasks, research is often focused on the analysis of saccades and fixations with common outcomes including; number and duration of fixations; and number, duration, velocity, and amplitude (i.e. distance) of saccades. Such outcomes are not typically available from the manufacturer provided ‘black-box’ mobile eye-tracker software (i.e. Tobii Pro Analyzer, Dikablis D-Lab etc) or open source software (Cornelissen et al. 2002, Li et al. 2005, Li et al. 2006). These ‘black-box’ software packages do not allow researchers to access data processing methods and limit outcome use and understanding. Therefore, custom-made algorithms are required to provide robust saccadic and fixation data from raw coordinate data provided by mobile eye-tracking devices. Developed algorithms are largely transferable across eye-tracker hardware, but may need to be adapted with technological advancement of eye-trackers or the output that they provide.

There are currently several different algorithm methods to extract desired eye movement outcomes (for an overview see; (Salvucci and Goldberg 2000, Duchowski 2007, Holmqvist et al. 2011)). However, there is currently no gold-standard methodology for saccade detection (Stuart et al. 2019). Due to saccade and fixation speed profiles, velocity-based (i.e. pupil coordinate frame-to-frame velocities) identification of these eye-movements is a simple method to understand and implement (Stuart et al. 2019). For example, saccades have high velocities (i.e. a 5° saccade typically has a velocity >240° s⁻¹) and fixations consist of low velocities (i.e. <30–300° s⁻¹ depending on task), therefore discrimination between these features is relatively easy and robust (Duchowski 2007, Holmqvist et al. 2011). This process has been applied to dynamic eye-tracking data analysis to extract saccadic and fixation outcomes (Stuart et al. 2014b, 2016b, 2016c, 2017, 2018).

Robust velocity-based algorithms for dynamic (i.e. walking) monocular eye-tracker (Dikablis, 50 Hz, Ergoneers) data analysis have been developed and validated in older adults and people with Parkinson’s disease (Stuart et al. 2014b). While, the application of such saccade detection algorithms to mobile eye-tracker data collected from people with mTBI has not yet been examined, it is a necessary step to ensure robust data analysis (Holmqvist et al. 2011). Similarly, technological advancements in mobile eye-tracking devices may require such algorithms to be adapted to appropriately derive metrics (Nystrom and Holmqvist 2010). For example, new eye-trackers with higher sampling frequency (i.e. 100 Hz) high-definition cameras (e.g. 1080 HD) may require different algorithm settings (e.g. pixel to degree conversion ratios etc) (Weigle and Banks 2008), and may capture greater levels of noise that need to be accounted for to avoid temporal sampling errors (Andersson et al. 2010).

The overall aim of this study was to validate a saccade detection algorithm for analyzing data from a binocular mobile eye-tracker during walking (straight and with increasing complexity via turning and dual-task) in individuals with mTBI and healthy controls. To achieve this aim we adapted a previously reported saccade detection algorithm (Stuart et al. 2014b) to analyze data from a Tobii Pro Glasses 2 (100 Hz, 1080 HD cameras, Tobii Inc.) mobile eye-tracker and compared outcomes to manual video observation by an expert rater, in line with previous studies (Stuart et al. 2014b, 2016c).

Methods
Participants
Data were collected within an ongoing study ‘Rehabilitation of Complex TBI with Sensory Integration Balance Deficits: Can Early Initiation of Rehabilitation with Wearable Sensor Technology Improve Outcomes?’ (ClinicalTrials.gov identifier: NCT03479541). All experimental procedures were approved by an Oregon Health & Science University (OHSU) and Veterans Affairs Portland Health Care System (VAPORHCS) joint institutional review board, with written informed consent obtained from participants prior to all testing. This study involved recording eye-movement data while walking straight and while turning in people with an acute
mTBI and healthy controls. Data from twenty subjects ($n = 10$ mTBI and $n = 10$ controls) was analyzed, specific participant inclusion and exclusion criteria is detailed below. Participant demographic data are presented within table 1; subjects were well matched for age, gender, height and mass. Visual acuity (LogMAR at 4 m) and contrast sensitivity (Mars Perceptrix at 50 cm) were assessed using standard eye charts.

Stage of mTBI was based upon previous work that has defined $0–7$ d post-mTBI to be the immediate period, $1–6$ weeks the acute period, $7–12$ weeks the post-acute period, and >12 weeks to be the chronic period (the Management of Concussion Mild Traumatic Brain Injury Working Group 2016). All mTBI diagnoses were confirmed by a physician and were defined with the following criteria: no CT scan (or a normal CT scan if obtained), no loss of consciousness exceeding 30 min, no alteration of consciousness/mental state up to 24 h post-injury, and no post-traumatic amnesia that exceeded one day (Woodson 2015, the Management of Concussion Mild Traumatic Brain Injury Working Group 2016).

Inclusion criteria:

1. A diagnosis of mTBI within 12 weeks; the mechanism of injury was not restricted, so may include whiplash if subjects passed a cervical screen.
2. Aged between 18–60 years old.
3. SCAT5 symptom evaluation sub-score ≥ 1 for balance, dizziness nausea, headache or vision AND a minimum total score of 15.
4. No or minimal cognitive impairment, i.e. having ≤ 9 on the Short Blessed Test (Fuld et al 1978).

Exclusion criteria:

1. Other musculoskeletal, neurological, or sensory deficits that could explain dysfunction.
2. Moderate to severe substance-use disorder within the past month (American Psychiatric Association 2013).
3. Severe pain during an initial clinical evaluation ($\geq 7/10$ subjective rating).
4. Current pregnancy.
5. Unable to abstain from medications that might impair balance 24 h before testing.
6. Contraindications to rehabilitation such as unstable c-spine.
7. Active participation in physical therapy for their concussion, however participants could be undertaking other forms of treatment for their symptoms such as massage, acupuncture, and counseling.

Equipment

Infra-red (IR) mobile eye-tracker

A head-mounted infra-red Tobii Pro Glasses 2 (100 Hz, Tobii Technology Inc., VA, USA) mobile eye-tracking system was used to record participant eye-movements during the walking tasks. Importantly, a 100 Hz eye-tracking system allows for detection of saccades and their characteristics (Andersson et al 2010). Participant pupils were recorded binocularly by means of infrared illumination, which provided the gaze coordinates (x, y). The IR method allowed for the detection of the blackness of the pupil, which was recorded via four IR eye cameras for each eye.

Video

The IR eye-tracker used a dual camera view system, with a video recording from an eye camera and a field of view camera (1080 HD, 50 Hz, figure 2). The eye-tracker was calibrated prior to data collection using the manufacturer’s single point calibration method, which overlaid the eye and field video outputs with a cross-hair
provided on the video to represent pupil location. Coordinate \((x, y)\) data were derived from the cross-hair (red circle, figure 2) location and were used to derive eye-movements.

Experimental procedure

Participants were asked to walk down a 10 m straight corridor back and forth for 1 min, under single and dual-task. Participants also completed a walking-while-turning course (eight laps) over a similar course to our previously developed turning course (with repeated 45°, 90° and 135° turns) (Fino et al 2018), under single and dual-task, and while fast walking (four laps) (figure 1). The dual-task involved walking while completing a secondary auditory Stroop task, which has been detailed elsewhere (Morgan and Brandt 1989). In brief, this test involved participants having to respond (speak the word high or low) as fast as possible to different pitches of the words ‘HIGH’ or ‘LOW’ that were played over a digital recording via headphones. Both congruent (e.g. word high is said in a high pitch, or word low is said in a low pitch) and incongruent (e.g. word high is said in a low pitch, or word low is said in a high pitch) stimuli were used, where the pitch of the word was reported rather than the spoken word by the voice recording.

Feature selection and extraction

Video inspection

Videos were manually analyzed similar to previous work (Pedrotti et al 2011, Stuart et al 2014b, 2016c). In order to compare eye-tracker algorithm results, all high-definition field camera videos (figure 2) from each participant \((n = 20)\) during the dynamic walking trials were visually inspected by a single expert rater examiner (SS) frame-by-frame (100 videos in total). The visual inspection involved recording the number of saccades (fast eye-movements >5°) seen within each video, which was then compared to the IR eye-tracker algorithm output.

Detection of visual events via algorithm

In order to analyze data from the Tobii Pro Glasses 2 mobile eye-tracker, we adapted a previously validated algorithm (Stuart et al 2014b). It was not appropriate to directly apply the algorithm to this new technology since sampling rate, pixel conversion ratios and data output were not the same as the those used by older eye-tracking devices. The entire algorithm is presented in figure 3 and the following details the algorithm stages.

Stage 1: Pre-processing

(a) Moving median filter

Due to the eye-tracker sampling frequency (100 Hz), we adapted the previous algorithm (Stuart et al 2014b) by filtering the raw eye-tracker signal using a moving median filter to remove high frequency noise introduced by artifacts, such as head movement or device slippages. This filter was chosen to preserve the edge steepness of the saccades, retain signal amplitudes and not introduce any artificial signal changes (Juhola 1991).

(b) Distance, velocity and acceleration

A velocity-based algorithm was used to derive all eye movement characteristics of interest. Following raw data filtering, the first step of this algorithm was to calculate the point-to-point position change of the \(x\) and \(y\) coordinates for each frame of the raw data. Distance (1) was calculated in pixels, which was the difference in pixels from time point 1 (t1) to time point 2 (t2), with Time equal to 10 ms. Velocities (2) and accelerations (3) were calculated as the change in distance and change in velocity from one frame (or time point) to the next.

\[
\text{Distance} = \sqrt{(x_{t1} - x_{t2})^2 + (y_{t1} - y_{t2})^2}
\]
Stage 2: Convert data from pixels to degrees

(a) Conversion of pixels to degrees

Eye movements are typically measured and reported in degrees of movement, however raw eye tracker co-ordinate \((x, y)\) data was obtained in pixels. Therefore eye-movement pixel data were converted to degrees, calculated using the pixel to degree conversion ratio of 1:0.05 (table 2).

Stage 3: Event detection

(a) Velocity and acceleration thresholds

Following calculation of the velocities and accelerations for each frame in the raw eye-tracker data the algorithm then classified each point based on fixed thresholds. Although in line with previous recommendations (Nystrom and Holmqvist 2010), these thresholds can be manually changed depending upon the task (i.e. lower thresholds could be used for static tasks). In order to remove irrelevant artifacts in eye-tracker data (i.e. blinks or flickers) and to standardize detected visual events (i.e. saccades or fixations) fixed velocity and acceleration thresholds were used, which are explained below.

(b) Removal of data caused by blinks and flickers

Data were further filtered using set criteria for blinks and flickers, which were based upon the co-ordinate data and the frame-by-frame velocity changes of the data. Blinks (closing the eye) were classified as any eye-tracker data frames that had co-ordinates that had missing data (i.e. \(x, y = 0, 0\) or blank space). Flickers were classified as any frame that had a velocity change of \(>1000\) °s\(^{-1}\) or acceleration \(>100000\) °s\(^{-2}\), as it is not physiologically possible to move the eye faster than these thresholds (Boghen et al 1974, Bahill et al 1981). These artifacts or missing data were removed and gaps were linearly interpolated.

(c) Detection of a saccade

Each point in the raw eye-tracker data that had a velocity greater than \(240\) °s\(^{-1}\) (~5° distance) and acceleration greater than \(3000\) °s\(^{-2}\) was classified as a saccade. In line with previous dynamic eye-tacker algorithms (Stuart et al 2014b, 2016c), the current algorithm used a threshold above a 5° distance in order to avoid vestibular ocular reflexes (VOR) (due to VOR-related eye-movements typically being less than 5° during walking (Pozzo et al 1990, Demer and Viirre 1996)) and to ensure that only purposeful eye movement data was included.

We adapted the previous algorithm (Stuart et al 2014b) by ensuring that saccades that were <10 frames (100 ms) apart were joined, as they were likely part of the same eye-movement (i.e. catch-up

\[
\text{Velocity} = \frac{\text{Distance}}{\text{Time}}
\]

\[
\text{Acceleration} = \frac{\left(\text{Velocity}_{t1} - \text{Velocity}_{t2}\right)}{\text{Time}}
\]
saccades). Saccade distance and duration were calculated from the grouped saccades. Saccades had to have durations < 10 frames (100 ms) as saccades are not known to occur with durations longer than this threshold.

(d) Detect of a fixation

Fixations were a secondary outcome of the algorithm, and were classified as points in the eye-tracker data that had a velocity less than 240 °/s and acceleration less than 3000 °/s² in the same manner as the saccades. Following joining of adjacent fixation frames, fixations also had to have durations that were > 10 frames (100 ms) and frames not meeting this criteria were discarded.

Stage 4: Quantifying saccades and fixations

The final stage of the algorithm was to calculate the outcomes of the visual events (i.e. saccades and fixations). We extracted the following features from the data: Saccade number, frequency, velocity, acceleration, duration and distance; and Fixation number, frequency, duration and timing.
Data and statistical analysis
The mobile eye-tracker algorithm was implemented within MATLAB® (2017b, Mathworks, Natick, MA, USA). Mobile eye-tracker algorithm outcomes were compared to manual video analysis by an expert rater (gold-standard or ground truth reference) in line with previous research studies (Pedrotti et al 2011, Stuart et al 2014b, 2016c). Between-group comparisons were not performed, as this was not the focus of the study. Saccade detection (number) was evaluated during dynamic walking tasks, including straight walking and walking with turns. Detection performance was performed with respect to the following criteria.

- Correct detection: IR algorithm saccade or fixation detection was marked as correct if it was found in the corresponding video.
- Undetected: IR algorithm saccade detection was marked as undetected if the saccade was found in the corresponding video, but not in the algorithm output.
- Spurious: IR algorithm saccade detection was marked as spurious if it was in the algorithm output but not in the corresponding video.

Data were analyzed using SPSS (v25, IBM Inc, IL, USA). Normal data distribution was determined using Kolomogrov–Smirnov tests. Absolute agreement between methodologies was assessed using intra-class correlations (ICC2,1). ICCs were interpreted as; poor <0.5, moderate 0.50–0.75, good 0.75–0.90 and excellent >0.90 (Field 2009). Bland–Altman plot analysis provided mean differences and limits of agreement between methodologies.

Results
Results from the video inspection and IR algorithm output during the various walking trials are displayed in tables 3 and 4. Overall, the IR algorithm correctly detected ~97% (n = 4888) and ~95% (n = 3699) of the saccades detected via video inspection for the mTBI and control groups, respectively. There were generally low levels of undetected saccades (~2%–3%) and spurious saccade detections (~2%–3%) within the IR algorithm output compared to the video inspection.

Agreement results shown in table 3 indicated that the IR algorithm detected saccades while walking with excellent (ICC2,1 .979 to .999) agreement to the video inspection across both mTBI and control groups. On average, there was also little difference between the IR algorithm output and video inspection (Mean difference −2.1 to 0.9), with no significant differences and relatively small limits of agreement (LoA% 4 to 14.5).

Discussion
To the best of our knowledge, this is the first study to adapt and validate an algorithm to detect saccades from raw mobile IR eye-tracking data obtained during walking and turning in people with acute mTBI and controls. This is fundamental for accurate and automated evaluation of mobile eye-tracking data. Similar to previous work (Pedrotti et al 2011, Stuart et al 2014b, 2016c), we compared the IR algorithm output to frame-by-frame manual video inspection by an expert rater to establish the validity of the adapted algorithm.

Evaluation of automated algorithms for eye movement examination is vital to ensure that clinical decisions based on outputs are accurate and based upon robust methods. In line with previous eye-tracking algorithms (Stuart et al 2014b, 2016c), a velocity-based threshold method was used to detect saccades within the IR eye-tracker signal. Velocity-based algorithms for saccade detection are relatively easy to implement and can therefore be used by those unfamiliar with algorithm development (e.g. clinicians or novice researchers). This study suggests that despite its relative simplicity the algorithm was robust in its ability to detect saccades from mobile IR eye-tracker data.

Robustness of algorithm
To determine IR algorithm robustness, participants with mTBI and healthy control participants performed the same walking tasks, and data were analyzed using the same fixed algorithm settings that were then compared to visual inspection. Under these conditions the IR algorithm proved to be robust, overall correctly detecting
8587 (~96%) saccades made by the mTBI and control participants during the walks (100 trials in total), with relatively small (~2%–3%) undetected or spurious saccades. This level of accuracy via a velocity-based algorithm is similar to previous dispersion-based approaches (Komogortsev et al 2010, Tafaj et al 2012, Andersson et al 2016). Agreement between the ground truth video inspection and IR algorithm methodologies was also excellent across groups and walking conditions. This demonstrated that the IR algorithm was capable of robustly detecting saccades during walking in people with mTBI and controls, with similar performance for both groups.

The algorithm presented in this study performed better than the previously validated mobile algorithm (Stuart et al 2014b). Specifically, correct saccade detection performance of the previous algorithm was 85%, but the current adapted algorithm improved performance to ~96% correct saccade detection. This improved performance may be due to a number of factors including algorithm adaption and advancement of eye-tracker technology.

Adaption of the previous algorithm (Stuart et al 2014b) was performed to develop the current IR algorithm (figure 3) that was implemented within this study to analyze the raw data from the latest mobile eye-tracking technology (Tobii Pro Glasses 2, 100 Hz, binocular 1080 HD camera). Specifically, a moving median filter was applied to the raw data to remove any noise before further analysis (Juhola 1991) and saccades were grouped if they were <10 frames (100 ms) apart (i.e. if saccades were not separated by a fixation then they were grouped), which allowed more accurate saccade classification.

Technological advancements have allowed mobile eye-trackers to progress to devices with higher sampling rates (100 Hz, with a 50 Hz eye-camera) and better resolution (1080 HD field camera) than previous studies that have been limited to sampling rates that may only just detect saccades (50 Hz) (Stuart et al 2014b, 2016c). It is plausible that these advancements have allowed greater accuracy in determining eye movement velocities (Andersson et al 2010) and have provided better material for visual inspection, resulting in improved algorithm and ground truth video inspection outcomes. For example, ~14% of saccades were undetected and ~3% were spurious in the previous hardware/algorithm combination (Stuart et al 2014b), whereas the current hardware/IR

Table 3. Average saccade characteristics and algorithm validity.

Saccade number	Video (50 Hz)	IR (100 Hz)	Mean difference	p	LoA%	ICC (2,1)	
mTBI (n = 10)	Walk − ST	789	783	0.6	0.658	8.1	.993 (.973 to .998)
	Walk − DT	673	671	−0.1	0.875	8.1	.994 (.976 to .999)
	Turn − ST	1664	1667	0.3	0.901	14.5	.993 (.973 to .998)
	Turn − DT	1366	1359	−0.7	0.539	6.8	.999 (.997 to 1.000)
	Turn − FW	592	585	−0.7	0.596	7.9	.990 (.960 to .997)
Controls (n = 10)	Walk − ST	856	847	0.9	0.193	4.0	.999 (.996 to 1.000)
	Walk − DT	731	722	−0.5	0.518	5.8	.995 (.980 to .999)
	Turn − ST	1205	1198	0.7	0.764	14.0	.996 (.985 to .999)
	Turn − DT	648	627	−2.1	0.226	10.0	.979 (.920 to .995)
	Turn − FW	505	504	−0.1	0.940	8.0	.983 (.932 to .996)

(mTBI = mild traumatic brain injury, ST = single task, DT = dual task, FW = fast walk, LoA% = limits of agreement).

Table 4. Overall algorithm saccade (number) detection performance.

Saccade number	Video (50 Hz) versus IR (100 Hz)					
	Walk − ST	Walk − DT	Turn − ST	Turn − DT	Turn − FW	Overall
mTBI (n = 10)	Correct detection n (%) 749 (95.7)	649 (96.7)	1610 (96.6)	1332 (98.0)	548 (93.7)	4888 (96.5)
	Undetected n (%) 20 (2.6)	17 (2.5)	27 (1.6)	17 (1.3)	22 (3.8)	103 (2.0)
	Spurious detection n (%) 14 (1.8)	15 (2.2)	30 (1.8)	10 (0.7)	15 (2.6)	84 (1.5)
Controls (n = 10)	Correct detection n (%) 828 (97.8)	687 (95.2)	1135 (94.7)	580 (92.5)	469 (93.1)	3699 (94.9)
	Undetected n (%) 14 (1.7)	22 (3.1)	35 (2.9)	13 (2.1)	17 (3.4)	101 (2.6)
	Spurious detection n (%) 5 (0.6)	13 (1.8)	28 (2.3)	34 (5.4)	18 (3.6)	98 (2.5)

(mTBI = mild traumatic brain injury, ST = single task, DT = dual task, FW = fast walk).

8587 (~96%) saccades made by the mTBI and control participants during the walks (100 trials in total), with relatively small (~2%–3%) undetected or spurious saccades. This level of accuracy via a velocity-based algorithm is similar to previous dispersion-based approaches (Komogortsev et al 2010, Tafaj et al 2012, Andersson et al 2016). Agreement between the ground truth video inspection and IR algorithm methodologies was also excellent across groups and walking conditions. This demonstrated that the IR algorithm was capable of robustly detecting saccades during walking in people with mTBI and controls, with similar performance for both groups.

The algorithm presented in this study performed better than the previously validated mobile algorithm (Stuart et al 2014b). Specifically, correct saccade detection performance of the previous algorithm was 85%, but the current adapted algorithm improved performance to ~96% correct saccade detection. This improved performance may be due to a number of factors including algorithm adaption and advancement of eye-tracker technology.

Adaption of the previous algorithm (Stuart et al 2014b) was performed to develop the current IR algorithm (figure 3) that was implemented within this study to analyze the raw data from the latest mobile eye-tracking technology (Tobii Pro Glasses 2, 100 Hz, binocular 1080 HD camera). Specifically, a moving median filter was applied to the raw data to remove any noise before further analysis (Juhola 1991) and saccades were grouped if they were <10 frames (100 ms) apart (i.e. if saccades were not separated by a fixation then they were grouped), which allowed more accurate saccade classification.

Technological advancements have allowed mobile eye-trackers to progress to devices with higher sampling rates (100 Hz, with a 50 Hz eye-camera) and better resolution (1080 HD field camera) than previous studies that have been limited to sampling rates that may only just detect saccades (50 Hz) (Stuart et al 2014b, 2016c). It is plausible that these advancements have allowed greater accuracy in determining eye movement velocities (Andersson et al 2010) and have provided better material for visual inspection, resulting in improved algorithm and ground truth video inspection outcomes. For example, ~14% of saccades were undetected and ~3% were spurious in the previous hardware/algorithm combination (Stuart et al 2014b), whereas the current hardware/IR
algorithm combination reduced this to ~2%–3% undetected or spurious saccade detections. Spurious saccade detection was similar to the previous methods (Stuart et al 2014b, 2016c), which is likely due to the use of video inspection as a ground truth (Pedrotti et al 2011), as video inspection may have missed some saccades that were present within the IR algorithm output. For example; video inspection is limited by issues with incorrect saccade detection due to poor pupil tracking that is caused by eye-lashes, eye-lids or dark/light lighting conditions which cause flickers or absent pupil (cross-hair) location. Such anomalies are automatically ruled out in the IR algorithm, however they can be difficult to spot upon video inspection unless they are particularly fast or large (Pedrotti et al 2011).

Future algorithm applications

The robust algorithm that this article presents and validates could be used with current or future mobile eye-tracking technology, such as the Tobii Pro Glasses 2 system, to examine laboratory or real-world eye-movements in mTBI compared to controls. It is vital that algorithms to derive saccadic features are robust and valid, as the outcomes may be used to inform future clinical practice or interventions for mTBI. With our comprehensive algorithm validation and description, both novice and expert researchers could apply this methodology within future studies, which may allow some standardization of the methodology used to derive saccadic characteristics across studies. Future work is needed that uses robust algorithms to examine saccadic eye movement features during walking and turning in mTBI compared to controls, which may provide an understanding of mTBI-related deficits and their influence on daily function.

Limitations

In line with previous work (Stuart et al 2014b, 2016c) this study was limited by the fixed velocity threshold (>240° s⁻¹, ~5° distance) that may rule out smaller eye movements within the IR eye-tracker signal. We used this threshold as previously validated algorithms (both IR and EOG eye-trackers) have used the same setting in order to rule out interference from vestibular ocular reflexes (VOR). However, this is an adaptable threshold so future studies could change this based on the task undertaken (i.e. smaller for static tasks). Additionally, this study only examined saccadic detection validity, and we did not specifically assess other saccadic outcomes (e.g. saccade durations, amplitude etc) which future studies could examine with validated methodologies (Stuart et al 2016b).

Conclusions

This study adapted a velocity-based algorithm for saccade detection and measurement in IR eye-tracker data, and validated the algorithm during walking tasks in people with a previous mTBI and healthy controls. The algorithm can accurately detect saccades in IR eye-tracker data and was found to be valid against the ground truth manual video inspection during the various walking conditions in both groups.

Acknowledgments

This work was supported by the Assistant Secretary of Defense for Health Affairs under Award No. W81XWH-17-1-0424. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. Samuel Stuart is supported in part by a Postdoctoral Fellowship (Grant No. PF-FBS-1898 from the Parkinson’s Foundation).

ORCID iDs

Samuel Stuart https://orcid.org/0000-0001-6846-9372

References

American Psychiatric Association 2013 Diagnostic and Statistical Manual of Mental Disorders 5th edn (Arlington, VA: American Psychiatric Publishing) (https://doi.org/10.1176/appi.books.9780890425596)
Andersson R, Larsson L, Holmqvist K, Stridh M and Nyström M 2016 One algorithm to rule them all? An evaluation and discussion of ten eye movement event-detection algorithms Behav. Res. Methods 49 36–37
Andersson R, Nyström M and Holmqvist K 2010 Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more J. Eye Mov. Res. 3 11–12
Bahill A, Brockenbrough A and Troost B 1981 Variability and development of a normative data base for saccadic eye movements Investigative Ophthalmol. Vis. Sci. 21 116–25
Baluch F and Itti L 2011 Mechanisms of top-down attention Trends Neurosci. 34 210–24
Boghen D, Troost B, Daroff R, Dell’ Osso L and Birkett J 1974 Velocity characteristics of normal human saccades Investigative Ophthalmol. Vis. Sci. 13 619–23
Ciuffreda K J, Kapoor N, Rutner D, Suchoff I B, Han M and Craig S 2007 Occurrence of oculomotor dysfunctions in acquired brain injury: a retrospective analysis Optometry 78 155–61
Cornellissen F W, Peters E M and Palmer J 2002 The eyelink toolbox: eye tracking with MATLAB and the psychophysics toolbox Behav. Res. Methods Instrum. Comput. 34 613–7
Cripps A, Livingston S C, Yang J, Mattacola C, Van Meter E, Kitzman P and McKeon P 2015 Visuo-motor processing impairments following concussion in athletes J. Athl. Enhanc. 4
Demer J L and Viirre E S 1996 Visual-vestibular interaction during standing, walking, and running J. Vestib. Res. 6 295–313
DiCesare CA, Kiefer A W, Nalepka P and Myer G D 2017 Quantification and analysis of saccadic and smooth pursuit eye movements and fixations to detect oculomotor deficits Behav. Res. Methods 49 258–66
Drew A S, Langan J, Halterman C, Ostering L R, Chou L S and van Donkelaar P 2007 Attentional disengagement dysfunction following mTBI assessed with the gap saccade task Neurosci. Lett. 417 61–5
Duchowski A T 2007 The eyelink toolbox: eye tracking with MATLAB and the psychophysics toolbox Methods Instrum. Comput. 34 613–7
Fino P C, Parrington L, Walls M, Sippel E, Hullar T E, Chesnutt J C and King L A 2018 Abnormal turning and its association with self-reported symptoms in chronic mild traumatic brain injury J. Neurotrauma 35 1167–77
Franchak J M and Adolph K E 2010 Visually guided navigation: Head-mounted eye-tracking of natural locomotion in children and adults Vis. Res. 50 2766–74
Fuld P A 1978 Psychological testing in the differential diagnostic of the dementias Alzheimer’s Disease: Senile Dementia and Related Disorders ed R Katzman et al (New York, NY: Raven Press) pp 185–93
Hayhoe M and Ballard D 2005 Eye movements in natural behavior Trends Cogn. Sci. 9 188–94
Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H and Van de Weijer J 2011 Eye Tracking: a Comprehensive Guide to Methods and Measures (Oxford: Oxford University Press)
Hunt A W, Mah K, Reed N, Engel I and Keightley M 2016 Oculomotor-based vision assessment in mild traumatic brain injury: a systematic review Head Trauma Rehabil. 31 252–62
Johnson B, Hallett M and Slobounov S 2015 Follow-up evaluation of oculomotor performance with fMRI in the subacute phase of concussion Neurology 85 1163–6
Juhola M 1991 Median filtering is appropriate to signals of saccadic eye movements Comput. Biol. Med. 21 43–9
Komogortsev O V, Gobert D V, Jayarathna S, Koh D H and Gowda S M 2010 Standardization of automated analyses of oculomotor fixation and saccadic behaviors IEEE Trans. Biomed. Eng. 57 2635–45
Li D, Babcock J and Parkhurst D J 2006 Openeyes: a low-cost head-mounted eye-tracking solution Proc. 2006 Symp. on Eye Tracking Research & Applications (ACM)
Li D, Winfield D and Parkhurst D J 2005 Starburst: a hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR’05)—Workshops (San Diego, CA, USA: IEEE)
Maruta J and Ghajar J 2014 Detecting eye movement abnormalities from concussion Concussion ed A Niranjan, L D Lunsford (Basel: Karger Publishers) vol 4 pp 226–33
Morgan A L and Brandt J F 1989 An auditory Stroop effect for pitch, loudness, and time Brain Lang. 36 592–603
Munoz D, Broughton J, Goldring J and Armstrong I 1998 Age-related performance of human subjects on saccadic eye movement tasks Exp. Brain Res. 121 391–400
Nystrom M and Holmqvist K 2010 An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data Behav. Res. Methods 42 188–204
Pearson B, Armitage K, Horner C and Carpenter R 2007 Saccadometry: the possible application of latency distribution measurement for monitoring concussion Br. J. Sports Med. 41 610–2
Pedrotti M, Lei S, Dzaack J and Rötting M 2011 A data-driven algorithm for offline pupil signal preprocessing and eyeblink detection in low-speed eye-tracking protocols Behav. Res. Methods 43 372–83
Pozzo T, Berthoz A and Lefort I 1990 Head stabilization during various locomotor tasks in humans Exp. Brain Res. 82 97–106
Salvucci D D and Goldberg I H 2000 Identifying fixations and saccades in eye-tracking protocols Proc. Eye Tracking Research and Applications Symposium (Santa Barbara, CA, USA: IEEE Computer Society) pp 5739–42
Snegireva N, Derman W, Patriocio J and Welman K E 2018 Eye tracking technology in sports-related concussion: a systematic review and meta-analysis Physiol. Meas. 39 12TR01
Stuart S, Alcock L, Galna B, Lord S and Rochester I 2014a The measurement of visual sampling during real-world activity in Parkinson’s disease and healthy controls: a structured literature review J. Neurosci. Methods 222 175–88
Stuart S, Alcock L, Godfrey A, Lord S, Rochester I and Galna B 2016b Accuracy and re-test reliability of mobile eye-tracking in Parkinson’s disease and older adults Med. Eng. Phys. 38 308–15
Stuart S, Galna B, Delicato I S, Lord S and Rochester I 2017 Direct and indirect effects of attention and visual function on gait impairment in Parkinson’s disease: influence of task and turning Eur. J. Neurosci. 46 1703–16
Stuart S, Galna B, Lord S, Rochester I and Godfrey A 2014b Quantifying saccades while walking: validity of a novel velocity-based algorithm for mobile eye tracking Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society: Annual Conf. 2014 (Chicago, IL, USA: IEEE) pp 5739–42
Stuart S, Hickey A, Galna B, Lord S, Rochester I and Godfrey A 2016c iTrack: instrumented mobile electrooculography (EOG) eye-tracking in older adults and Parkinson’s disease Physiol. Meas. 38 N16–N31
Stuart S, Hickey A, Vitorio R, Welman K, Foo S, Keen D and Godfrey A 2019 Eye-tracker algorithms to detect saccades during static and dynamic tasks: a structured review Physiol. Meas. 40 02TR01
Stuart S, Lord S, Galna B and Rochester I 2018 Saccade frequency response to visual cues during gait in Parkinson’s disease: the selective role of attention Eur. J. Neurosci. 47 769–78
Stuart S, Lord S, Hill E and Rochester L 2016a Gait in Parkinson’s disease: a visuo-cognitive challenge Neurosci. Biobehav. Rev. 62 76–88
Tafaj E, Kasenici G, Rosendset W and Bogdan M 2012 Bayesian online clustering of eye movement data 7th Eye Tracking Research and Applications Symp. ETRA 2012 (Santa Barbara, CA) (https://doi.org/10.1145/2168556.2166617)
The Management of Concussion Mild Traumatic Brain Injury Working Group 2016 Management of concussion-mild traumatic brain injury (mTBI) VA/DoD Clinical Practice Guidelines (https://www.healthquality.va.gov/guidelines/rehab/mtbi/)

Tong M H, Zohar O and Hayhoe M M 2017 Control of gaze while walking: Task structure, reward, and uncertainty J. Vis. 17 28

Ventura R E, Balcer L J, Galetta S L and Rucker J C 2016 Ocular motor assessment in concussion: current status and future directions J. Neurol. Sci. 361 79–86

Ventura R E, Jancuska J M, Balcer L J and Galetta S L 2015 Diagnostic tests for concussion: is vision part of the puzzle? J. Neuro-Ophthalmol. 35 73–81

Vidal M, Turner J, Bulling A and Gellersen H 2012 Wearable eye tracking for mental health monitoring Comput. Commun. 35 1306–11

Weigle C and Banks D C 2008 Analysis of eye-tracking experiments performed on a Tobii T60 Proc. SPIE 6809 680903

Woodson J 2015 Traumatic brain injury: updated definition and reporting US Military Health System Report (https://health.mil/Reference-Center/Policies/2015/04/06/TraumaticBrain-Injury-Updated-Definition-and-Reporting)