SUPPLEMENTAL MATERIAL

Does Statin Increase the Risk of Intracerebral Hemorrhage in Stroke Survivors? A Meta-analysis and Trial Sequential Analysis

*Ru Jian Jonathan Teoh¹, *Chi-Jung Huang², Chi Peng Chan³, Li-Yin Chien¹, Chih-Ping Chung⁵, Shih-Hsien Sung⁷,⁸,⁹, Chen-Huan Chen⁸,⁹,¹⁰, Chern-En Chiang⁷,¹¹, Hao-Min Cheng²,⁸,⁹,¹⁰

¹ International Health Program, National Yang-Ming University, Taipei, Taiwan
² Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
³ Royal Infirmary of Edinburgh, NHS Lothian, EH164SA, United Kingdom
⁴ Institute of Community Health Care, National Yang-Ming University, Taipei, Taiwan
⁵ Department of Neurology, National Yang Ming University, Taipei, Taiwan
⁶ Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
⁷ Department of Medicine, National Yang-Ming University, Taipei, Taiwan
⁸ Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
⁹ Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan
¹⁰ Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
¹¹ General Clinical Research Center, Taipei Veterans General Hospital, Taipei, Taiwan

* Ru Jian Jonathan Teoh and Chi-Jung Huang contribute equally to the study

Corresponding Author:

Hao-Min Cheng

Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
No. 201, Sec. 2, Shih-Pai Road, Beitou District, Taipei, Taiwan 11217, R.O.C.

Tel.: (866)-2-28757434 #307

Fax: (886)-2-28757726

E-mail: hmcheng@vghtpe.gov.tw
Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	3
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	5-6
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	7
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	7
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	7, Table S2
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Figure S1
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	8
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	8
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	8
Table S1: PRISMA Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	8-9
RESULTS	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	10
Study selection	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	10, Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	10-11, Figure S2-S3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	11-12, Table 2, Figure 1
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	11-12
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	10-11, Figure S4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	11-13, Figure S5-S7

DISCUSSION

Section/topic	#	Checklist item	Reported on page #
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	14-17
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	17-18
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	19
FUNDING			
---	---	---	---
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	20

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org
Table S2. Search strategy of relevant literature

Three electronic databases, MEDLINE, Embase, and the Cochrane Library, were systematically searched without language restrictions.

1. MEDLINE, PreMEDLINE, and other related databases via PubMed search interface

Search ((((((((stroke) OR strokes) OR Stroke[MeSH Terms]) OR ischaemic stroke) OR ischemic stroke) OR hemorrhagic stroke) OR haemorrhagic stroke) OR fatal stroke) OR brain ischaemia) OR brain ischemia) OR brain haemorrhage) OR brain hemorrhage) OR cerebrovascular accident)) AND (((((((((statin) OR statins) OR hydroxymethylglutaryl coa reductase inhibitors[MeSH Terms]) OR HMG CoA reductase inhibitor) OR HMG-CoA *) OR simvastatin) OR atorvastatin) OR rosuvastatin) OR fluvastatin) OR lovastatin) OR pitavastatin) OR pravastatin) OR cerivastatin))) AND ((randomized controlled trial[pt] OR controlled clinical trial[pt] OR randomized[tiab] OR placebo[tiab] OR clinical trials as topic[mesh:noexp] OR randomly[tiab] OR trial[ti] NOT (animals[mh] NOT humans [mh]))) Filters: Randomized Controlled Trial; Humans

#1	MeSH descriptor: [Hydroxymethylglutaryl-CoA Reductase Inhibitors] explode all trees
#2	HMG-CoA *
#3	statin or statins
#4	simvastatin or atorvastatin or rosuvastatin or fluvastatin or lovastatin or pitavastatin or pravastatin or cerivastatin
2. Embase via Elsevier search interface

#5	#1 or #2 or #3 or #4
#1	'hydroxymethylglutaryl coenzyme a reductase inhibitor'/exp
#2	'statin'/exp OR 'statins'/exp
#3	'hmg coa':ab,ti
#4	'simvastatin'/exp OR 'atorvastatin'/exp OR 'rosuvastatin'/exp OR 'fluvastatin'/exp OR 'lovastatin'/exp OR 'pitavastatin'/exp OR 'pravastatin'/exp OR 'cerivastatin'/exp
#5	'hydroxymethylglutaryl-coa reductase inhibitor$' OR 'hmg-coa reductase inhibitor$' OR 'hydroxymethylglutaryl coenzyme a reductase inhibitor$'
#6	#1 OR #2 OR #3 OR #4 OR #5
#7	stroke:ab,ti OR strokes:ab,ti OR 'hemorrhagic stroke':ab,ti OR 'haemorrhagic stroke':ab,ti OR 'ischemic stroke':ab,ti OR 'ischaemic stroke':ab,ti OR 'fatal stroke':ab,ti OR 'brain ischemia':ab,ti OR 'brain hemorrhage':ab,ti OR 'brain ischaemia':ab,ti OR 'brain haemorrhage':ab,ti OR 'cerebrovascular accident':ab,ti
#8	'cerebrovascular accident'/exp
#9	#7 OR #8
#10	#6 AND #9
#11	'crossover procedure':de OR 'double-blind procedure':de OR 'randomized controlled trial':de OR 'single-blind procedure':de OR random*:de,ab,ti OR factorial*:de,ab,ti OR crossover*:de,ab,ti OR ((cross NEXT/1 over*):de,ab,ti) OR placebo*:de,ab,ti OR ((doubl* NEAR/1 blind*):de,ab,ti) OR ((singl* NEAR/1 blind*):de,ab,ti) OR assign*:de,ab,ti OR allocat*:de,ab,ti OR volunteer*:de,ab,ti
#12	#10 AND #11
#13	#10 AND #11 AND [randomized controlled trial]/lim
#14	#10 AND #11 AND [randomized controlled trial]/lim AND [humans]/lim

3. Cochrane Library via Wiley search interface

#6	MeSH descriptor: [Stroke] explode all trees
#7	stroke or strokes or "ischaemic stroke" or "ischemic stroke" or "haemorrhagic stroke" or "hemorrhagic stroke" or "brain ischaemia" or "brain ischemia" or "brain haemorrhage" or "brain hemorrhage" or "cerebrovascular accident"
#8	#6 or #7
#9	#5 and #8
Excluded reference	Reason for exclusion		
Min LQ, Shao S, Wu XN, et al. Anti-inflammatory and anti-thrombogenic effects of atorvastatin in acute ischemic stroke. *Neural Regeneration Research* 2013; 8: 2144-2154. Article. DOI: 10.3969/j.issn.1673-5374.2013.23.004.	Irrelevant outcome (C-reactive protein, fibrinogen, D-dimer)		
Zhou X, Chen J, Wang C, et al. Anti-inflammatory effects of simvastatin in patients with acute intracerebral hemorrhage in an intensive care unit. *Experimental and therapeutic medicine* 14(6), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/402/CN-01430402/frame.html https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5740808/pdf/etm-14-06-6193.pdf (2017).	Irrelevant outcome (Vasospasm, adverse effects, recurrent convulsions)		
Tseng M-Y, Czosnyka M, Richards H, et al. Biological effects of acute pravastatin therapy on cerebral vasospasm, delayed ischemic deficits, and outcome in patients following aneurysmal subarachnoid hemorrhage: a randomised controlled trial. *American association of neurological surgeons annual meeting* 2006, http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/272/CN-00603272/frame.html (2006).	Irrelevant outcome (Vasospasm, delayed ischemic neurological deficit)		
Tseng M, Hutchinson P, Turner C, et al. Biological effects of acute pravastatin treatment in patients after aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled trial. *Journal of neurosurgery* 107(6), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/734/CN-00621734/frame.html (2007).	Irrelevant outcome (Vasospasm, delayed ischemic neurological deficit, laboratory tests)		
Yusuf S, Lonn E, Pais P, et al. Blood-Pressure and Cholesterol Lowering in Persons without Cardiovascular Disease. *New england journal of medicine* 374(21), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/124/CN-01253124/frame.html (2016).	Non-target population (without cardiovascular disease)		
Amiri-Nikpour M, Farid V and Ahmadi-Salmasi B. Effect of atorvastatin on cerebral vasomotor reactivity in patients with ischemic stroke. *Journal of global pharma technology* 8(12), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/725/CN-01416725/frame.html (2016).	Irrelevant outcome (Breath holding index and Apnea Mean flow velocity)		
Source	Details	Relevant/Non-Target Population	
--------	---------	-------------------------------	
Zare M, Saadatnia M, Mousavi S, et al.	The effect of statin therapy in stroke outcome: a double blind clinical trial. *International journal of preventive medicine* 3(1), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/017/CN-00898017/frame.html (2012).	Irrelevant outcome (NIHSS score, BARTHEL index)	
Cao H, Sun C-K, Zhao J, et al.	Effect of statins on neurologic impairment and correlative parameters in serum in patients with cerebral infarction. *Chinese journal of clinical rehabilitation* 9(9), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/427/CN00569427/frame.html (2005).	Irrelevant outcome (NIHSS score, BARTHEL index)	
Nishiyama Y, Komaba Y, Ueda M, et al.	Effect of statins on plasma levels of asymmetric dimethylarginine in patients with noncardiogenic ischemic stroke. *Journal of cerebral blood flow and metabolism* 27 Suppl 1, http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/436/CN-00885436/frame.html (2007).	Irrelevant outcome (serum asymmetric dimethylarginine levels)	
Cao H, Sun C-K, Zhao J, et al.	Effect of statins on serum C reactive protein and blood lipids in patients with cerebral infarction: a randomized, double-blind, controlled trial. *Chinese journal of clinical rehabilitation* 9(21), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/541/CN-00557541/frame.html (2005).	Irrelevant outcome (C-reactive proteins, blood lipids)	
Tseng M, Czosnyka M, Richards H, et al.	Effects of acute treatment with statins on cerebral autoregulation in patients after aneurysmal subarachnoid hemorrhage. *Neurosurgical focus* 21(3), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/368/CN-00568368/frame.html (2006).	Irrelevant outcome (autoregulation, mean flow velocity in middle cerebral artery and transient hyperemic response test, delayed ischemic neurological deficit)	
The effects of cholesterol lowering with simvastatin on cause-specific mortality and on cancer incidence in 20,536 high-risk people: a randomised placebo-controlled trial [ISRCTN48489393]. *BMC medicine* 2005; 3: 6. 2005/03/18. DOI: 10.1186/1741-7015-3-6.	Non-target population (with vascular disease or diabetes)		
Author(s)	Title and Details	Notes	
----------	-------------------	-------	
Guo C.	Efficacy and safety of rosuvastatin in treatment of patients with ischemic stroke for secondary prevention of stroke. *Chinese journal of hospital pharmacy* [zhongguo yiyuan yaoxue zazhi] 32(3), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/141/CN00858141/frame.html (2012).	Irrelevant intervention (rosuvastatin, simvastatin, diet control); Irrelevant outcome (blood cholesterol level)	
Li X.	Efficacy of atorvastatin in preventing symptomatic cerebral vasospasm after subarachnoid hemorrhage. *China tropical medicine* 10(7), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/987/CN-00883987/frame.html (2010).	Irrelevant outcome (Mean flow velocity of middle cerebral artery, symptomatic cerebral vasospasm and cerebral vascular spasm, delayed cerebral infarction)	
Xie J and Zhang CG.	Effect of atorvastatin on blood lipid and its safety in preventing ischemic stroke. *Chinese Journal of New Drugs* 2010; 19: 956-958+969. Article.	Irrelevant outcome (Cholesterol levels, side effects)	
Jaschinski U, Scherer K, Lichtwarck M, et al.	Impact of treatment with pravastatin on delayed ischemic disease and mortality after aneurysmal subarachnoid hemorrhage. *Critical care (london, england)* 12 (supp 2), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/525/CN00690525/frame.html (2008).	No full text	
Lou M.	The Safety and Efficacy Study of High Dose Atorvastatin After Thrombolytic Treatment in Acute Ischemic Stroke (SEATIS). http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/852/CN-01445852/frame.html (2017).	No full text	
Wei-Guo T, Song-Bin H, Mao-Jun S, et al.	Therapeutic effect of simvastatin in ischemic stroke. *Journal of the neurological sciences* 238 (Suppl 1), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/184/CN-00604184/frame.html (2005).	No full text	
Vergouwen M, Vermeulen M, Meijers J, et al.	Biological effects of simvastatin in patients with aneurysmal subarachnoid hemorrhage. *Cerebrovascular diseases (basel, switzerland)* 25(Suppl 2), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/963/CN-00660963/frame.html (2008).	Duplicated cohort	
Authors	Title	Journal	PubMed Link
---------	-------	---------	-------------
Yakusevich V, Malygin A and Kabanov A.	Effect of simvastatin on the prognosis and the changes of the clinical status in patients with acute ischemic stroke. The results of the 12 month randomized, open comparative study.	Rational pharmacotherapy in cardiology 9(4).	http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/276/CN-00916276/frame.html (2013).
Matsumoto M.	Effects of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor upon carotid intima-media complex thickness in the post-ischemic patients with hyperlipidemia during the prospective study of J-STARS.	UMIN clinical trials registry (UMINCTR) (http://wwwuminacjp/ctr/), http://cochranelibrarywiley.com/o/cochrane/clcentral/articles/371/CN-00604371/frame.html (2005).	
Tseng M, Hutchinson P, Czosnyka M, et al.	Effects of acute pravastatin treatment on intensity of rescue therapy, length of inpatient stay, and 6-month outcome in patients after aneurysmal subarachnoid hemorrhage.	Stroke; a journal of cerebral circulation 38(5).	http://stroke.ahajournals.org/content/strokeaha/38/5/1545.full.pdf (2007).
Amarenco P, Goldstein L, Szarek M, et al.	Effects of intense low-density lipoprotein cholesterol reduction in patients with stroke or transient ischemic attack: the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial.	Stroke; a journal of cerebral circulation 38(12).	http://stroke.ahajournals.org/content/strokeaha/38/12/3198.full.pdf (2007).
Koga M, Toyoda K, Minematsu K, et al.	Long-term effect of pravastatin on carotid intima-media complex thickness: the J-Stars Echo study (Japan statin treatment against recurrent stroke).	Stroke; a journal of cerebral circulation 49(1).	http://stroke.ahajournals.org/content/strokeaha/49/1/107.full.pdf (2018).
Heo J, Song D, Nam H, et al. Randomized double-blind placebo-controlled trials of effects of rosuvastatin in preventing recurrence of ischemic stroke. *International journal of stroke* 10(Suppl 2), http://cochranelibrary-wiley.com/o/cochrane/clcentral/articles/686/CN-01101686/frame.html (2015).

Duplicated cohort
Records identified through database searching: 3126
PubMed: 534
EMBASE: 1135
CENTRAL: 1457

Records after duplicates removed (n = 1921)

Records after titles screening (n = 202)
(n =)

Records after abstracts screening (n = 41)
(n =)

Full-text articles assessed for eligibility (n = 41)

Records excluded after title screening (n = 1719)

Records excluded after abstract screening (n = 161)

Records excluded (n = 25)
15 does not meet inclusion criteria
7 duplicated cohorts
3 no full text

Additional records identified through backward snowballing (n = 1)

Trials included in meta-analysis (n = 17) (studies = 16)

Figure S1. Flow chart of literature selection
Figure S2. Risk-of-bias graph for the judgement on each methodological quality item that is presented as percentages across all included studies.
Bias Type
Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)
Other bias

Figure S3. Risk-of-bias summary for all judgements on risk of bias in all included studies

Publication bias

Ischemic Stroke

Egger’s regression asymmetry test
(P=0.34, intercept=0.38, 95% CI= -0.49 to 1.26)

Hemorrhagic Stroke

Egger’s regression asymmetry test
(P=0.46, intercept= -0.41, 95% CI= -1.64 to 0.82)
Myocardial infarction

Egger’s regression asymmetry test
(P=0.93, intercept=-0.03, 95% CI=-0.99 to 0.92)

Net clinical benefit

Egger’s regression asymmetry test
(P=0.11, intercept=0.43, 95% CI=-0.11 to 0.96)

Cardiovascular mortality

Egger’s regression asymmetry test
(P=0.23, intercept=-0.42, 95% CI=-1.14 to 0.31)

All-cause death

Egger’s regression asymmetry test
(P=0.23, intercept=-0.42, 95% CI=-1.14 to 0.31)
Figure S4. Funnel plots and Egger’s regression asymmetry test in assessing publication bias

(P=0.07, intercept= -0.58, 95% CI= -1.36 to 0.21)
Figure S5. Trial sequential analysis of ten trials reporting the effects of statin on the risk of hemorrhagic stroke in patients with previous stroke

The required information size was calculated based on α of 0.05 (two sided), β of 0.20, a control event rate of 2%, and other different conditions which assumes a range of relative risk increases (RRI of 20%, 30%, or 40%) and various degrees of heterogeneity adjustment (diversity of 0% [model variance based], 20%, 40%, or 60%). The cumulative Z curve (bold solid line) was constructed using a random-effects model. Horizontal dashed line at cumulative Z= -1.96 indicates a conventional level of statistical significance. Converged dot line and diverged dot line represent trial
sequential significance boundary and futility boundary, respectively. These monitoring boundaries were constructed based on the O’Brien-Fleming method.

Control event rate = 1.5%

RRI	Diversity	Required information size
20%	variance based	56609
20%	20%	70761
20%	40%	94348
20%	60%	141522
30%	variance based	26283
30%	20%	32853
30%	40%	43805
30%	60%	65707
40%	variance based	15416
40%	20%	19270
40%	40%	25693
40%	60%	38540

Figure S6. Trial sequential analysis of seven trials reporting the effects of statin on the risk of hemorrhagic stroke in patients with ischemic stroke
The required information size was calculated based on α of 0.05 (two sided), β of 0.20, a control event rate of 1.5%, and other different conditions which assumes a range of relative risk increases (RRI of 20%, 30%, or 40%) and various degrees of heterogeneity adjustment (diversity of 0% [model variance based], 20%, 40%, or 60%). The cumulative Z curve (bold solid line) was constructed using a random-effects model. Horizontal
dashed line at cumulative $Z = -1.96$ indicates a conventional level of statistical significance. Converged dot line and diverged dot line represent trial sequential significance boundary and futility boundary, respectively. These monitoring boundaries were constructed based on the O’Brien-Fleming method.
Subgroup analysis for hemorrhagic stroke	Trials (n)	Relative risk (95% CI)	P-Value for test for Subgroup differences	Heterogeneity Within Subgroups p-Value	
Sample size					
<200	5	0.95 (0.52-1.75)	0.15	1.17	0.88
>200	5	1.58 (1.15-2.16)		2.38	0.67
Jadad score					
<3	4	1.05 (0.52-2.14)	0.37	1.28	0.73
≥3	6	1.50 (1.10-2.03)		3.56	0.61
Events (n)					
<14	5	1.16 (0.60-2.24)	0.51	1.23	0.87
≥14	5	1.48 (1.09-2.02)		3.98	0.41
Allocation concealment					
No or not specified	5	1.57 (1.12-2.19)	0.29	2.34	0.67
Yes	5	1.13 (0.68-1.87)		2.16	0.71
Attrition bias					
No or not specified	4	2.05 (0.52-2.14)	0.37	1.28	0.73
Yes	6	1.50 (1.10-2.03)		3.56	0.61

Figure S7. Subgroup analyses relating to study designs across published studies