A NEW MONTENEGROSPEUM SPECIES FROM SOUTH CROATIA (MOLLUSCA: GASTROPODA: HYDROBIIDAE)

JOZEF GREGO1, PETER GLOER2, ALEKSANDRA RYSIEWSKA3, SEBASTIAN HOFMAN4, ANDRZEJ FALNIOWSKI1*

1Horná Mičiná, SK-97401 Banská Bystrica, Slovakia (e-mail: jozef.grego@gmail.com)
2Biodiversity Research Laboratory, Schulstrasse 3, D-25491 Hetlingen, Germany (e-mail: gloer@malaco.de)
3Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland (e-mail: andrzej.falniowski@uj.edu.pl)
4Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
*corresponding author

ABSTRACT: The extremely rich stygobiont malacofauna of the Balkans is still poorly studied, and the systematics is based mostly on shells whose characters are often misleading. An interesting stygobiont gastropod species was found in several springs feeding the Cetina River in the SW. part of Sinj Basin in Croatia. Its shell resembled the ones of moitessieriid genera Paladilhiopsis, Bythiospeum, or Iglica. Analyses of COI and H3 markers placed it close to the hydrobid Montenegrospeum bogici Pesic et Gloer, 2012 from central Montenegro. It is congeneric but molecularly and morphologically distinct. The new species is described herein as Montenegrospeum sketi n. sp.

KEY WORDS: cytochrome oxidase COI, histone H3, molecular phylogeny and species distinctness, shell, stygobiont, gastropod, Balkans

INTRODUCTION

The extremely rich stygobiont malacofauna of the Balkans is still poorly known, and the systematics is based mostly on shells whose characters are often misleading. Bythiospeum bogici was described by Pešić & Gloer (2012) in the genus Bythiospeum Bourguignon, 1882 from subterranean waters of the spring Taban, in the central part of Montenegro near Podgorica. The description was based on empty shells only. Later Pešić & Gloer (2013) obtained live specimens and described their soft parts: lack of eyes and pigment, and penis with a lobe at its medial part. They placed B. bogici in a new monotypic genus: Montenegrospeum Pešić et Gloer, 2013. The species is known from its type locality only (Pešić & Gloer 2013). Later, applying molecular markers (mitochondrial cytochrome oxidase subunit I, COI and nuclear 18SrDNA), it was shown that Montenegrospeum did not belong to the Moitessieriidae, but to the Hydrobiidae Troschel, 1857, subfamily Sadlerianinae Radoman, 1973, with Dalmatinella Radoman, 1973 as the sister taxon (Falniowski et al. 2014). This was also confirmed by morphological data (Falniowski et al. 2014): female reproductive organs with two seminal receptacles (rs, and rs; Radoman 1973, 1983), and penis with a lobe on the left side of its median part (Pešić & Gloer 2013), also similar to the ones characteristic of several genera of the Sadlerianinae (Szarowska 2006). Recently a few localities were found in Croatia with Montenegrospeum-like empty shells and a few live specimens became available for molecular studies. All those localities represented karst habitats. The aim of this paper is to establish the systematic position of the new species, and to describe it as Montenegrospeum sketi n. sp., applying shell morphology and molecular markers.
MATERIAL AND METHODS

The studied material was obtained by sieving sandy sediments of karstic springs using microhabitat preferences and sampling method according to Grego et al. 2017a (Fig. 1).

Three live specimens were collected at two localities (Fig. 1):
1. (1G6) – Izvor Ruda-Begusa, Ruda, sand at the stream bottom below the spring lake, 13 km ESE of Sinj, Split district, Croatia, 43°40'06.6"N, 16°47'45.6"E, leg. JOZEF GREGO, 17.03.2017 (Figs 2, 3).
2. (1G7) – Izvor Grab, Grabska Mlinica, 12 km SE of Sinj, Split district, Croatia, 43°38'27.4"N, 16°46'13"E, leg. JOZEF GREGO, 16.03.2017 (Fig. 4).

Empty shells were found at another three localities (Fig. 1):
1a. Izvor Ruda-Begusa, cave just above the spring zone, sieved from muddy sediment at the cave bottom, 13 km ESE of Sinj, Split district, Croatia, 43°40'06.6"N, 16°47'45.6"E, leg. JOZEF GREGO, 17.03.2017 (the locality is very close to the spring zone of the type locality). Many aperture fragments and one empty intact shell were collected (Fig. 5).
3. Vrelo Kosinac on the left side of the road to Gala, sandy sediment at the spring zone. Sinjski Obrovac, Split district, Croatia 43°43'48.4"N, 16°42'03.9"E, leg. JOZEF GREGO, 17.03.2017 (only one empty adult shell).
4. Spring Mali Rumin 100 m above the old watermill, sandy sediment at the millstream, Rumin 6 km NW of Sinjski Obrovac, Split district, Croatia, 43°46'49.8"N, 16°38'55.5"E, leg. JOZEF GREGO, 17.03.2017 (only one empty juvenile shell probably representing the species).
5. Type locality of Montenegrospeum bogici, after Pešić & Glöer (2012).

The gastropods were sieved and extracted from sandy sediments, and fixed in 70–80% ethanol. The live specimens were transferred to 80% analytical ethanol. The shells were photographed with a CANON EOS 50D digital camera, under a NIKON SMZ18 microscope with dark field and with a digital camera system Leica R8 (Leitz Photar 21 mm objective with Novoflex bellows), ImageJ scientific image analysing software (Schneider et al. 2012) was used for taking measurements together with direct measurement with eye-piece micrometer.

DNA was extracted from foot tissue using a Sherlock extraction kit (A&A Biotechnology) and dissolved in 20 ml of tris-EDTA buffer. For details of PCR conditions, primers used and sequencing see Szarowska et al. (2016). The sequences were initially aligned in the MUSCLE (Edgar 2004) programme in MEGA 6 (Tamura et al. 2013) and then checked in Bioedit 7.1.3.0 (Hall 1999). The saturation test (Xia 2000, Xia et al. 2003) was performed using DAMBE (Xia 2013). In the phylogenetic analysis additional sequences from GenBank were used.

Fig. 1. Localities of the studied Montenegrospeum in Croatia (1–4) and Montenegro (5): 1 – Izvor Ruda-Begusa, Ruda, Split district, locus typicus of M. sketi n. sp.; 1A – cave near Izvor Begusa, Ruda, Split district; 2 – Izvor Grab, Grabska Mlinica, Split district; 3 – Izvor Kosinac, Sinjski Bobrova Split district; 4 – Izvor Mali Rumin, Rumin, Split district; 5 – Izvor Taban, Podgorica, locus typicus of M. bogici (Pešić et Glöer, 2012)
as a reference (Table 1). The data were analysed using approaches based on the Bayesian inference and maximum likelihood (ML). We applied the GTR model, whose parameters were estimated by RaxML (Stamatakis 2014).

The Bayesian analyses were run using MrBayes v. 3.2.3 (Ronquist et al. 2012) with the default priors. The GTR model was best fitted to our data. Two simultaneous analyses were performed, each of which lasted 10,000,000 generations, with one cold chain and three heated chains, starting from random trees and sampling the trees every 1,000 generations. The first 25% of the trees were discarded as burn-in. The analyses were summarised as a 50% majority-rule tree. The ML approach was applied with RAxML v. 8.0.24 (Stamatakis 2014). One thousand searches were initiated with starting trees obtained using the randomized stepwise addition maximum parsimony method. The tree with the highest likelihood score was regarded as the best representation.
Table 1. Data obtained from the GenBank Nucleotide database. Names of taxa used for phylogenetic analyses with their accession numbers and references are provided.

Species	COI	H3	References
Agrafia wiktoria Szarowska et Falniowski, 2011	JF906762		Szarowska & Falniowski (2011)
Alzoniella finalina Giusti et Bodon, 1984	AF367650		Wilke et al. (2001)
Anagastina zetavialis (Radoman, 1973)	EF070616		Szarowska (2006)
Avenonia brevis berengueri (Draparnaud, 1805)	AF367638		Wilke et al. (2001)
Belgrandiella zermanica Radoman, 1973	KT218511		Falniowski & Beran (2015)
Bidynia tentaculata (Linnaeus, 1758)	AF367643		Wilke et al. (2001)
Bythinella austriaa (von Frauenfeld, 1857)	JQ639858		Falniowski et al. (2012b)
Bythinella micherdzinskii Falniowski, 1980	JQ639854		Falniowski et al. (2012b)
Dalmatiellina fluviatilis Radoman, 1973	KC344541		Falniowski & Szarowska (2013)
Daphniola lousii Falniowski et Szarowska, 2000	KM887915		Szarowska et al. (2014a)
Emmeronia expansilabris Bourguignat, 1880	KC810060		Szarowska & Falniowski (2013a)
Fissuria boui Boeters, 1981	AF367654		Wilke et al. (2001)
Graziana alpestris (Frauenfeld, 1863)	JQ639858		Falniowski et al. (2012b)
Grossuana codreanui (Grossu, 1946)	EF061919		Szarowska et al. (2007)
Hauffenia michleri Kuščer, 1932			Ryušewska et al. (2016)
Heleobia dobrogica (Grossu et Negrea, 1989)	EU938131		Falniowski et al. (2008)
Horatia klecakiana Bourguignat 1887	KJ159128		Szarowska et al. (2014b)
Hydrobia acuta (Draparnaud, 1805)	AF278808		Wilke et al. (2000)
Islamia zermanica Kuscer, 1932	JX073651		Falniowski et al. (2014b)
Kerkia kusceri (Bole, 1961)			Ryušewska et al. (2017)
Lithoglyphus prasinus (Küster, 1852)	JX073651		Falniowski & Szarowska (2012)
Littorina litora (Linnaeus, 1758)	F644330		Layton et al. (2014)
Marstoniopsis insubrica (Küster, 1853)	AF322408		Ryušewska & Wilke (2001)
Moitesseria cf. puteana	AF367635		Wilke et al. (2001)
Montenegrospeum bogici (Pešić et Glöer, 2012)	KM875510		Falniowski et al. (2014)
Montenegrospeum sketi Grego et Glöer, 2018	MG880216	MG880219	This paper
Onobops jacksoni (Bartsch, 1953)	AF367645		Wilke et al. (2001)
Perringia ulvae (Pennant, 1777)	AF118302		Wilke & Davis (2000)
Pontobelgrandiella sp.	AF449213		Ryušewska et al. (2016)
Pseudamnicola sp.			Grego et al. (2017b)
Radonuniola curta (Küster, 1853)	K011814		Szarowska et al. (2012a)
Sadleriana fluminensis (Küster, 1853)	KF193067		Szarowska & Falniowski (2013b)
Salenhydrobia ferrerii Wilke, 2003	AF367631		Wilke (2003)
Semanisula dalmatica Radoman, 1974	AF367631		Wilke et al. (2001)
Tanouisia zrmanjae (Brusina, 1866)	KU041812		Beran et al. (2015)
Truncatella pulchella Pfeiffer, 1839	AF253085		Davis et al. (1998)
Truncatella scalaris (Michaud, 1830)	JK970621		Wilke et al. (2013)
Ecrobia maritima (Milaschewitsch, 1916)	KJ462000		Szarowska & Falniowski (2014a)

of the phylogeny. Bootstrap support was calculated with 1,000 replicates and summarised in the best ML tree. RAxML analyses were performed using the free computational resource CIPRES Science Gateway (Miller et al. 2010). Abbreviations: CNHM – Croatian Natural History Museum, Zagreb; HNHM – Hungarian Natural History Museum, Budapest; H – shell height; W – shell width; BH – height of body whorl; BW – width of body whorl; AH – aperture height; AW – aperture width; LT – locus typicus.
MOLECULAR PART – RESULTS AND DISCUSSION

The sequences were obtained from two specimens (Figs 6, 7). The saturation tests revealed no saturation. The ML tree (Fig. 8) computed for the COI (442 bp, GenBank Accession numbers MG880216-MG880217) clearly showed close relationships of both specimens with *M. bogici* (bootstrap support 100%), and the position of the genus within the Hydrobiidae Troschel, 1857, subfamily Sadlerianinae. However, the bootstrap supports of deeper nodes were small which is typical of COI (e.g. Szarowska 2006). In the tree computed for COI but including only the genera of the Sadlerianinae (Fig. 9) bootstrap 68% (very close to 70% usually accepted as significant enough, although there are no strict rules) supported *Tanousia* Bourguignat in Servain, 1881, as potential sister clade of *Montenegrospeum*, and 90% bootstrap supported (Bayesian probability 0.98) the *Montenegrospeum/Tanousia* and *Dalmatinella* clade.

The p-distance between *M. sketi* and *M. bogici* calculated for COI was 0.011. The relative range of genotypic differentiation, measured as simple p-distance (or, often, K2P distance which is not justified, but the values are only somewhat higher than the ones of p-distance), most often calculated for mitochondrial COI (commonly used in phylogenetic studies: Davis et al. 1998), was used (e.g. Bigchain et al. 2007). It must be stressed, however, that the given values of the distances between closely related but still distinct species may characterise a group of rather closely related species, but may be too low in another group, since there is no general rule defining the threshold value: in some genera the interspecies distances are higher, in some other they are smaller (e.g. Wilke & Davis 2000, Wilke 2003, Falniowski et al. 2007, 2009, Szarowska et al. 2007, Falniowski & Szarowska 2012, 2013, 2015, Szarowska & Falniowski 2013a, b, 2014a, b, Szarowska & Falniowski 2014b). The p-distance between *M. sketi* and *M. bogici* was close to the threshold value between the intra- and interspecies distances in most of the Truncatelloidea.

In the ML tree computed for histone H3 (308 bp, GenBank Accession numbers MG880218-MG880220) (Fig. 10) *Belgrandiella* Wagner, 1927 was the sister clade of *Montenegrospeum*, bootstrap-support 78%, clearly within the Sadlerianinae. The sister-clade relationship between *M. bogici* and *M. sketi* was 100% supported. The p-distance was 0.010, which is relatively high for this locus (e.g. Szarowska et al. 2016). For each of the presented sets of taxa the Bayesian trees presented identical topologies as in the ML trees, only the Bayesian probabilities, shown in the trees, were not always correlated with the bootstrap supports.

SYSTEMATIC PART (BY J. Grego & P. Glöer)

Family: Hydrobiidae Stimpson, 1865

Genus: *Montenegrospeum* Pešić et Glöer, 2013

Type species: *Montenegrospeum bogici* (Pešić et Glöer, 2012)

Montenegrospeum sketi n. sp. (Figs 11, 12)

Diagnosis: The new species differs from the only other known representative of the genus, *Montenegrospeum bogici* Pešić et Glöer, 2012 (Figs 13, 14), in its more elongated conical shell shape, slightly more inflated whorls, more prominent umbilicus as well as in the different aperture situated more to the right from the columellar axis. The lateral profile of the lip is more forward protruding at its lower end and more sinuated in *M. bogici*. The proportionally smaller aperture of the new species is less produced at the lower part of the shell outline and its margin is less reflected.

Type locality: Croatia, Split district, Ruda, Izvor Ruda-Begusa 13 km ESE of Sinj, sand at the stream bottom below the spring lake, 43°40′06.6″N, 16°47′45.6″E.

Type material: Holotype: CNHM11394 from type locality, leg. JOZEF GREGO, 17.03.2017, Paratypes:
Fig. 8. Maximum likelihood tree of selected Truncatelloidea, computed for COI; bootstrap supports given if >50%, and Bayesian probabilities if >0.80.

same data (HNHM102778/1; coll. GREGO/10; coll. GLÖER/1); Croatia, Split district, Grabska Milnica, Izvor Grab, 12 km SE of Sinj, 43°38′27.4″N, 16°46′13″E, leg. JOZEF GREGO, 16.03.2017 (CNHM11395/1, coll. GREGO/7); Croatia, Split district, Sinjski Obrovac, Vrelo Kosinac, on the left side of road to Gala, sandy sediment at the spring zone, 43°43′48.4″N, 16°42′03.9″E, leg. JOZEF GREGO, 17.03.2017 (coll. GREGO/1).

Other material: Ruda, Izvor Ruda-Begusa, 13 km ESE of Sinj, Split district, Croatia, Cave right above the spring zone, sieved from muddy sediment at the cave bottom, 43°40′06.6″N, 16°47′45.6″E, leg. JOZEF GREGO, 17.03.2017 (1 whole specimen, and several aperture fragments in coll. GREGO); Sinjski Obrovac, spring Mali Rumin 100 m above the old watermill, sandy sediment at the millstream, Rumin 6 km NW of Sinjski Obrovac, Split district, Croatia, 43°46′49.8″N, 16°38′55.5″E, leg. JOZEF GREGO, 17.03.2017 (1 juvenile shell in coll. GREGO).

Etymology: Named in honour of prof. Boris Sket, University of Ljubljana, Slovenia, a well-known expert in biospeleology who contributed much to the knowledge of subterranean invertebrates of the Alps and Dinarides.
Description: The milky white semi-translucent shell has five convex inflated whorls separated by a deep suture. It is elongated-conical with smooth surface and aperture slightly protruding against the body whorl and its left margin not protruding beyond the columellar axis. The aperture is oval, vertically elongated and attached to the body whorl by a tiny furrow; the peristome slightly outward expanded in some specimens. The umbilicus is tiny and opened. The lateral profile of the lip margin very slightly sinuated and almost parallel with the columellar axis.

Measurements:
- Holotype of *M. sketi* sp. n.: H 2.53 mm; W 1.12 mm; BH 1.38 mm; BW 0.95 mm; AH 0.78 mm; AW 0.67 mm; H/W 2.26; AH/AW 1.16; W/BW 1.18; H/BH 1.83; H/AH 3.24; W/AW 1.67.
- Holotype of *M. bogici*: H 2.33 mm; W 1.10 mm; BH 1.26 mm; BW 0.88 mm; AH 0.82 mm; AW 0.75 mm; H/W 2.12; AH/AW 1.09; W/BW 1.25; H/BH 1.85; H/AH 2.84; W/AW 1.47.

Habitat: The species is a true subterranean freshwater gastropod inhabiting the cave systems unstudied.
so far, and adjacent submerged spring debris in the NE part of the Sinj Basin. Empty shells and a few live specimens were found washed out in the sand of the spring zone close to the spring outlets. An empty shell and many fragments were found in the muddy sediment inside the spring in the cave above the Ruda-Beguša spring zone, which indicates its troglobiont origin. All the known localities are remarkable and large karstic springs at the left tributary of the Cetina River draining SW edge of Livansko Polje (Basin) and Buško Jezero (Dam) in Bosnia, towards the Cetina River in Croatia, through unexplored cave passages under the Dinaric Alps (Kamešnica Massif) consisting of Triassic and Jurassic limestones. As most of the source sinkholes in Livansko Polje are under high anthropogenic pressure: agriculture, farming, waste disposal and drainage channels of Buško Jezero Dam with the power plant in Rumin, we consider the new species to be threatened by groundwater pollution and possible habitat alternations.

Distribution: So far known from four large karst spring at the SE border of the Sinj Basin at the left tributary of the Cetina River in Croatia (Fig. 1).

Remarks: As stated above, the molecular markers confirm a very close relationship of the new species to *M. bogici* from Taban Spring near Podgorica (Montenegro). The different shell morphology confirms its position as an independent taxon separated from the type species by the distance of over 230 km. Finding the new species indicates that the genus *Montenegrospeum* may be more widespread over the Dinarides than originally supposed.

ACKNOWLEDGEMENTS

We thank the members of the Slovak Speleological Society: GABRIEL JAKAB (Plešivec) and BRANISLAV ŠMIDÁ (Bratislava) supporting the collection of the type material during our field trip to Bosnia in March 2017. The study was supported by a grant from the National Science Centre (2017/25/B/NZ8/01372) to ANDRZEJ FALNIOWSKI.

REFERENCES

BERAN L., HOFMAN S., FALNIOWSKI A. 2015. *Tanousia zraniae* (Brusina, 1866) (Caenogastropoda: Truncatelloidea: Hydrobiidae): a living fossil. Folia Malacol. 23: 263–271. https://doi.org/10.12657/folmal.023.022

BERAN L., OSIKOWSKI A., HOFMAN S., FALNIOWSKI A. 2016. *Islamia zermanica* (Radoman, 1973) (Caenogastropoda: Hydrobiidae): morphological and molecular distinctness. Folia Malacol. 24: 25–30. https://doi.org/10.12657/folmal.024.004

BICHAIN J. M., GAUBERT P., SAMADI S., BOISSELIER-DUBAYLE M. C. 2007. A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus *Bythinella* Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae). Mol. Phylogenet. Evol. 45: 927–941. https://doi.org/10.1016/j.ympev.2007.07.018

DAVIS G. M., WILKE T., SPOLSKY C., QIU C. P., QIU D. C., XIA M. Y., ZHANG Y., ROSENBERG G. 1998. Cytochrome oxidase I-based phylogenetic relationships among
the Pomatiopsidae, Hydrobiidae, Rissoidea and Truncatellidae (Gastropoda: Caenogastropoda: Rissoacea). Malacologia 40: 251–266.

EDGAR R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

FALNIOWSKI A., BERAN L. 2015. Belgrandiella A. J. Wagner, 1928 (Caenogastropoda: Truncatelloidea: Hydrobiidae): how many endemics? Folia Malacol. 23: 187–191. https://doi.org/10.12657/folmal.023.015

FALNIOWSKI A., PEŠIĆ V., GLÖER P. 2014. Montenegropeuma. PEŠIC V., GLOER P. 2013. A new species of Moitessieridae? Folia Malacol. 22: 263–268. https://doi.org/10.12657/folmal.022.023

FALNIOWSKI A., SZAROWSKA M. 2012. Phylogenetic position of Boleana umbilicata (Kučer, 1932) (Caenogastropoda: Rissooidea). Folia Malacol. 20: 265–270. https://doi.org/10.12657/folmal.021.0002-2

FALNIOWSKI A., SZAROWSKA M. 2013. Phylogenetic relationships of Dalmatinella flavilittus Radin, 1973 (Caenogastropoda: Rissooidea). Folia Malacol. 21: 1–7. https://doi.org/10.12657/folmal.020.101.001

FALNIOWSKI A., SZAROWSKA M. 2015. Species distinctness of Hauffenia michleri (Kučer, 1932) (Caenogastropoda: Truncatelloidea: Hydrobiidae). Folia Malacol. 23: 193–195. https://doi.org/10.12657/folmal.023.016

FALNIOWSKI A., SZAROWSKA M., GLÖER P., PEŠIĆ V. 2012a. Molecules vs. morphology in the taxonomy of the Radomaniova/Grossuana group of Balkan Rissooidea (Mollusca: Caenogastropoda). J. Conchol. 41: 19–36.

FALNIOWSKI A., SZAROWSKA M., GLÖER P., PEŠIĆ V., GEORGIEV D., HORSK M., ŠIRBU I. 2012b. Radiation in Bythinella (Mollusca: Gastropoda: Rissooidea) in the Balkans. Folia Malacol. 20: 1–9. https://doi.org/10.12657/folmal.023.0002-2

FALNIOWSKI A., SZAROWSKA M., ŠIRBU I. 2009. Bythinella Moquin-Tandon, 1856 (Gastropoda: Hydrobiidae): shell biometry, mtDNA, and the Pliocene flooding. J. Nat. Hist. 41: 2301–2311. https://doi.org/10.1080/00222930701630737

FALNIOWSKI A., SZAROWSKA M., ŠIRBU I. 2008. Hyalina borealis (Grossu & Negrea, 1985) (Caenogastropoda: Bythinellidae): shell biometry, mtDNA, and the Pliocene flooding. J. Nat. Hist. 43: 2955–2973. https://doi.org/10.1080/00222930903359636

FALNIOWSKI A., SZAROWSKA M., ŠIRBU I., HILLEBRAND A., BACIU M. 2008. Helobia dobrogea (Grossu & Negrea, 1989) (Gastropoda: Rissooidea: Cochliopidae) and the estimated time of its isolation in a continental analogue of hydrothermal vents. Molluscan Res. 28: 165–170. http://www.mapress.com/mr/content/v28/2008f/n3p170.pdf

FALNIOWSKI A., WILKE T. 2001. The genus Marstoniopsis (Gastropoda: Rissooidea): intra- and intergeneric phylogenetic relationships. J. Mollus. Stud. 67: 483–488. https://doi.org/10.1093/mollus/67.4.483

GREGO J., GLÖER P., ERÖSS Z. P., FEHÉR Z. 2017a. Six new subterranean freshwater gastropod species from northern Albania and Kosovo (Mollusca, Gastropoda, Moitessieridae and Hydrobiidae). Subterr. Biol. 23: 85–107. https://doi.org/10.3897/subtiol.23.14930

GREGO J., HOFMAN S., MUMLADZE L., FALNIOWSKI A. 2017b. Agraia Szarowska et Falniowski, 2011 (Caenogastropoda: Hydrobiidae) in the Caucasus. Folia Malacol. 25: 237–247. https://doi.org/10.12657/folmal.025.025

HALL T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98.

LAYTON K. K., MARTEL A. L., HEBERT P. D. 2014. Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9 (4), E95003 (2014). https://doi.org/10.1371/journal.pone.0095003

MILLER M. A., PEEFIER W., SCHWARTZ T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov., New Orleans, LA: 1–8. https://doi.org/10.1109/GCE.2010.5676129

NERETINA T. V. 2014. Littorina littorea isolate C histrone H3 (H3) gene, partial cds – KP113574 unpublished. Available from https://www.ncbi.nlm.nih.gov/nuccore/KP113574 (accessed 18 November 2017)

PEŠIĆ V., GLÖER P. 2012. A new species of Bythiopsispeuma. BOURGUIGNAT, 1882 (Hydrobiidae, Gastropoda) from Montenegro. Biol. Nyscana 3: 17–20.

PEŠIĆ V., GLÖER P. 2013. Montenegropeuma, a new genus of hydrobiid snails (Gastropoda: Rissooidea) from Montenegro. Acta Zool. Bulg. 65: 565–566.

RADOMAN P. 1973. New classification of fresh and brackish water Prosobranchia from the Balkans and Asia Minor. Posebna Izdanja, Prirodni. Mus. Beograd 32: 1–30.

RADOMAN P. 1983. Hydrobioida a superfamily of Prosobranchia (Gastropoda). I. Systematics. Serbian Academy of Sciences and Arts, Monographs 547, Department of Sciences 57: 1–256.

RONQUIST F., TESLENKO M., VAN DER MARK 2012. Radiation in Bythinella (Mollusca: Gastropoda: Rissooidea) in the Balkans. Folia Malacol. 20: 1–9. https://doi.org/10.12657/folmal.023.0002-2

RYSEWSKA A., GEORGIEV D., OSIJKOWSKI A., HOFMAN S., FALNIOWSKI A. 2016. Pontobelgrandiella Radoman, 1973 (Caenogastropoda: Hydrobiidae): A recent invader of subterranean waters? J. Conchol. 42: 1–11.

RYSEWSKA A., PREVORČNIK S., OSIJKOWSKI A., HOFMAN S., BERAN L., FALNIOWSKI A. 2017. Phylogenetic relationships in Kerkia and introgression between Hauffenia and Kerkia (Caenogastropoda: Hydrobiidae). J. Zool. Syst. Evol. Res. 55: 106–117. https://doi.org/10.1111/jzs.12159

SCHNEIDER C. A., RASBAND W. S., ELICEIRI K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089

STAMATAKIS A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylog-
