A Novel Method for Efficient Electrochemical Treatment of Actual Dyeing Wastewater With Energy Saving

Jiachao Yao
Zhejiang Shuren University

Sini Lv
Zhejiang University of Technology

Zeyu Wang
Zhejiang Shuren University

Liyong Hu
Zhejiang University of Technology

Jun Chen (bec@zjut.edu.cn)
Zhejiang Shuren University https://orcid.org/0000-0003-2695-4673

Research Article

Keywords: Novel method, Parameter optimization, Removal efficiency, Energy saving, Box-Behnken design

DOI: https://doi.org/10.21203/rs.3.rs-746142/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
A novel method for efficient electrochemical treatment of actual dyeing wastewater with energy saving

Jiachao Yao¹, Sini Lv², Zeyu Wang³, Liyong Hu², Jun Chen¹*

¹ College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
² College of Environment, Zhejiang University of Technology, 310014 Hangzhou, China
³ Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China

*Corresponding author

E-mail address: bec@zjut.edu.cn
Abstract: Electro-oxidation is a promising technology for wastewater treatment with bio-refractory organic and nitrogen pollutants; however, the high energy-demanding hinders its wide application. In this study, a novel method by regulating the significant parameter during electro-oxidation process timely for actual dyeing wastewater treatment with energy saving was studied. Operating factors (i.e., flow rate, initial pH value, electrode distance, and current density) were investigated for chemical oxygen demand (COD) and ammonia removal, and results indicated that current density was the key factor which obviously influenced the electrochemical performance. Indirect oxidation by active chlorine was then confirmed as the main reaction pathway for pollutants oxidation, and the relationship between the current density and the generation of active chlorine was established, suggesting that a large part of the generated active chlorine was not utilized effectively. Subsequently, a novel method by variation of current density timely based on the reaction mechanism was proposed; results indicated that, with similar pollutant removal efficiency, energy consumption could be reduced from 31.6 kWh/m3 to 20.5 kWh/m3. Additionally, the novel system was further optimized by Box-Behnken design: COD and ammonia removal efficiencies could reach 71.8% and 100% respectively, and energy-demanding could be reduced by 45.6%.

Keywords: Novel method; Parameter optimization; Removal efficiency; Energy saving; Box-Behnken design
1. Introduction

Textile industry is a traditional pillar industry in developing countries and has greatly contributed to the development of economy (Tang et al., 2021). However, the dyeing wastewater from textile production usually contains large amounts of residual dyestuffs, additives and inorganic salts (Aghili et al., 2021). The incompletely treated dyeing wastewater will pose a direct hazard to environmental safety and public health due to its highly toxic, mutagenic, and carcinogenic compositions (Patel et al., 2021).

Biological treatment has been considered as one of the most cost-effective technologies for biodegradation of organic and nitrogen pollutants (Paz et al., 2017); but some non-biodegradable dyes impede biological activity, even causing the death of microorganism (Chen et al., 2019). Other techniques such as Fenton (Esteves et al., 2016), ozone oxidation (Xin et al., 2020), and membrane filtration (Cao et al., 2020), are also proposed for treating such wastewater; however, the potential secondary by-products hinder their wide applications (Bae et al., 2015; Yao et al., 2016a).

Nowadays, electro-oxidation has presented as a favorable approach for environmental remediation, especially for the treatment of bio-refractory wastewater (Meng et al., 2020; Chung et al., 2020). Ma et al. (2018) summarized that, compared with traditional physico-chemical methods, electro-oxidation is much suitable for the degradation of persistent color and pollutants from dyeing wastewater. Nippatla and Philip (2020) investigated the electrochemical performance for dyeing wastewater treatment; results indicated that 98.3% chemical oxygen demand (COD) removal
efficiency along with complete decolourization could be achieved under optimal conditions.

Although electro-oxidation has received great attention due to its advantages of environmental compatibility, easy handling, and no sludge production, it is a highly energy-demanding method which hinders its extensive application (Adeogun et al., 2021; Ozturk and Yilmaz, 2019). In recent decades, intensive attentions have focused on the electrode preparation (Xia et al., 2020), reactor design (Dória et al., 2020), multi-technology combination (Bustos-Terrones et al., 2021), and parameter operation (Aquino et al., 2014). Hamous et al. (2021) developed a carbon textiles electrode modified with Pt nanoparticles for electrochemical treatment of Orange G (OG) azo dyeing wastewater; results indicated that the removal efficiency of OG reached 91.8%, and energy saving could be up to 37.2%. Wang et al. (2020a) investigated the effects of frequency, pulse duty cycle, and current density on the electrochemical treatment of indigo carmine wastewater using a pulse power supply; after parameters operated, energy consumption of 35.5% was saved. In our previous work (Yao et al., 2021), a process control, namely stepping control of key parameter, was developed for the treatment of simulated wastewater with known contaminants by direct oxidation. Firstly, the degradation pathway of target pollutant was measured, i.e., intermediate products were detected. Then, the oxidation potentials of the target pollutant and its intermediate products were determined by the linear sweep voltammetry. Finally, stepping control of oxidation potential was performed timely to oxide the contaminants selectively based
on the degradation pathway of the target pollutant. The results indicated that pollutants could be efficiently removed, and energy saving could be up to 33.8%, i.e., it proved that operating key parameter regularly could achieve high contaminants removal and low energy consumption. However, the composition of actual wastewater is usually complex so that it is difficult to determine the type of pollutants (Ye et al., 2021; Liu et al., 2021). Thus, it is necessary to find a way to achieve non-selective oxidation of pollutants. Generally, in-situ electrochemical generation of excessive active radical is proposed as a promising method (Yang et al., 2019; Wang et al., 2020b). As reported by Díaz et al. (2011) and Wang et al. (2021), compared with the traditional method, pollutants elimination by the in-situ produced oxidants via parameter regulation seemed to be one of the most convenient methods to achieve the purpose. Though this method can promote the pollutant removal so as to save energy, a part of energy is still wasted on maintaining the active radical excess (da Costa et al., 2021). Herein, it’s time to propose an applicable way to regulate the formation of oxidants regularly for efficient electrochemical wastewater treatment and reduce its energy-demanding.

In this study, a novel method, i.e., regulating key parameter timely, was developed for the treatment of actual dyeing wastewater. Firstly, the effects of flow rate, initial pH value, electrode distance, and current density on COD and ammonia removal were investigated, and a significant parameter was determined. Secondly, the reaction mechanism of the electro-oxidation process was studied to confirm the types of the active radicals which provided contributions to the pollutant removal, and the
relationship between the significant parameter and the generation of the dominated active radical was established. Then, the novel method by regulating the selected significant parameter was operated and validated to evaluate its efficiency and energy consumption. Finally, Box-Behnken design was applied to optimize the novel system for maximizing pollutant removal and minimizing energy consumption.

2. Materials and methods

2.1 Wastewater characteristics

The actual dyeing wastewater was provided by a dyeing factory located in Shaoxing (Zhejiang, China). The main characteristics of the actual wastewater were as follows: the COD concentration was 285±20 mg/L; the ammonia concentration was 35±2 mg-N/L; the pH value was 8.0±0.1; and the concentration of chloride ion was 1530±26 mg/L.

2.2 Electro-oxidation experiments

Electro-oxidation experiments were carried out in a self-made electrochemical cell equipped with a Ti/PbO$_2$ anode and two Ti cathodes. The anode was placed in the middle of the two cathodes, and each electrode has an effective area of 9 cm2. A reservoir was connected with the electrochemical cell. During the experiments, the actual dyeing wastewater (250 mL) could be recirculated in the electrochemical system with a set flow rate by a peristaltic pump. An electrolysis time of 180 min was selected for each electro-oxidation experiment.

2.3 Analysis and calculation methods
COD and ammonia were measured by the dichromate method and Nessler reagent spectrophotometry, respectively. Active chlorine and chloramines were measured using the DPD standard method (Yao et al., 2021).

The current efficiency \(CE \) (%) was estimated as:

\[
CE = \frac{[COD]_0 - [COD]_t}{8It} FV + \frac{3([NH_4^+]_0 - [NH_4^+]_t)}{14It} FV
\]

(1)

where \([COD]_0/[NH_4^+]_0\) and \([COD]_t/[NH_4^+]_t\) are the COD/ammonia concentrations at time 0 and \(t \), respectively; \(I \) is the applied current; \(F \) is the Faraday constant (96 485 C/mol); \(\delta \) is the oxygen equivalent mass (g/eq); \(14 \) is the atomic mass of N; \(3 \) is the electron transfer number from ammonia to N\(_2\); \(V \) is the solution volume; \(t \) is the reaction time.

The energy consumption \(E \) (kWh/m\(^3\)) was calculated as follows:

\[
E = \frac{UIt}{V}
\]

(2)

where \(U \) is the voltage.

Response surface methodology based on Box-Behnken design (BBD) was selected as an experimental design to investigate the effect of significant parameter on pollutant removal and energy consumption. The three current densities were set as explanatory variables in BBD, and the pollutant removal and energy consumption were set as responses.

3. Results and discussion

3.1 Effect of the main parameters

The effect of flow rate, initial pH value, electrode distance, and current density on
electrochemical performance were investigated individually to determine the optimal conditions. **Fig. 1a** shows that, with the increase of flow rate, pollutant removal increased gradually at the beginning of the experiment, and then reached a maximum value with a flow rate of 150 mL/min. This finding implies that mass transfer limitation of pollutants existed at flow rate lower than 150 mL/min, and then reaction limitation hindered increasing pollutants degradation with further increase of flow rate (Huang et al., 2016). The effect of initial pH value is illustrated in **Fig. 1b.** The increase of initial pH value had a negative effect on COD removal. Such results might be related to the existence form of active chlorine, that is, HClO ($E^0=1.49$ V vs. SHE) mainly exists in the pH range from 3 to 8, and ClO$^-$ ($E^0=0.89$ V vs. SHE) at pH > 8 (Zou et al., 2017). Although excellent ammonia removal efficiency was also obtained in acidic condition, initial pH value of 9 was also favorable for ammonia removal; the explanation was connected with the direct electron transfer which had been reported in our previous work (Yao et al., 2016b). **Fig. 1c** displays that an apex existed for the COD and ammonia removal efficiencies at electrode distance of 1 cm. Shortening the electrode distance can not only increase the potential between the solution phase and the electrode, but also reduce the mass transfer resistance; however, too small distance may cause electrode breakdown or short circuit, resulting in reduction of electro-oxidation performance (Kahraman and Şimşek, 2020). Additionally, **Fig. 1d** indicates that there was always an upward trend for COD removal with the increase of current density. The same phenomenon was observed on ammonia oxidation: it was completely removed as
current density of 20 mA/cm² was applied. These results were consistent with other studies: high current density could accelerate the generation of active radicals and thus promote the pollutant removal (Li et al., 2020).

According to the results shown in Fig. 1, an inflection point always existed for the pollutant removal with flow rate, initial pH value, and electrode distance, that is, these parameters could be easily optimized. However, the optimization of current density would be further investigated combining reaction mechanism, current efficiency, energy consumption, etc.

3.2 Reaction mechanism

Based on the results of optimization process, current density was selected as the key factor to illustrate the oxidation mechanism during the electrochemical wastewater treatment. As reported by many scholars (Ken and Sinha, 2021; Iskurt et al., 2020), COD and ammonia are usually oxidized by direct (i.e., electron transfer) and indirect (mainly by hydroxyl radical and active chlorine) oxidation. In order to reveal the electrochemical performance of different oxidation pathways, several comparative experiments were carried out. In the first group, p-chlorobenzoic acid (pCBA), which could react with hydroxyl radicals (•OH) extremely fast but slowly by other oxidants and direct electro-oxidation, was selected as the scavenger to measure the function of •OH radicals (Yao et al., 2016b; Rosal et al., 2008). In the second group, Cl⁻ was removed in advance by the chemical precipitation to avoid the disturbance of active chlorine during the experiments. The third group combined the above mentioned
methods by utilizing the pCBA and silver ion to measure the electrochemical performance by electron transfer. In sight of this, a comparison of the oxidation pathways of COD/ammonia during the electro-oxidation process were investigated and the results are shown in Fig. 2.

Fig. 2a presents that the COD removal was contributed by electron transfer, •OH, and active chlorine. The order of dominance of these three pathways was active chlorine > •OH > electron transfer. Moreover, with the increase of current density, the function of active chlorine became more and more obvious, while the role of electron transfer decreased gradually. This phenomenon might be in connection with the chlorine evolution reaction (Eq. (3)): more electron was consumed to generate active chlorine. Additionally, similar results were observed for ammonia removal, as shown in Fig. 2b. All the results indicated that the COD and ammonia were mainly removed by active chlorine in this case.

\[2Cl^- \rightarrow Cl_2 + 2e^- \]

(3)

Because of the importance of active chlorine, the variations of its concentration with different current densities are measured and displayed in Fig. 3. The results indicated that the generation of active chlorine increased with electrolysis time, and it was positively correlated with current density. As the current density ranging from 10 mA/cm\(^2\) to 25 mA/cm\(^2\), the production of active chlorine increased exponentially. However, compared with the phenomenon in Fig. 2, the COD/ammonia removal rate contributed by active chlorine increased slowly with respect to the current density. Such
results suggested that the produced active chlorine was excessive, and a large part was not utilized effectively in the electro-oxidation process. Thus, it seems that a feasible way to enhance the electrochemical performance and reduce the energy consumption is to conduct the chlorine evolution reaction and improve the utilization ratio of active chlorine.

3.3 A novel method for wastewater treatment

Based on the above investigation, current density was undoubtedly determined as the key factor to achieve the aims of high efficiency and low energy consumption for wastewater treatment. A novel method by variation of current density (VCD) timely was conducted, that is, the current density was controlled and decreased from 20 to 15, and 10 mA/cm2 gradually for each electrolysis time of 60 min. As shown in Fig. 4a, the removal efficiencies of 73.0% and 100% were achieved in the VCD system for COD and ammonia, respectively, which were higher than the efficiencies obtained by current density of 15 mA/cm2 (66.3% COD; 97.4% ammonia) and close to 20 mA/cm2 (75.1% COD; 100% ammonia). Besides, the current efficiency of VCD was compared with the traditional electrochemical system as displayed in Fig. 4b. It indicated that the current efficiencies decreased from 34.6% to 25.6%, and 21.2% with the increase of current density from 10 mA/cm2 to 20 mA/cm2, respectively. Fortunately, 27.7% current efficiency was obtained by VCD. More significantly, the VCD system also had an advantage in energy saving: the energy consumption was calculated as 20.5 kWh/m3, which was approximately equal to the required energy with current density of 15
mA/cm2 (20.2 kWh/m3) and much lower than that of 20 mA/cm2 (31.6 kWh/m3).

The variation of active chlorine generation in electrolysis is shown in Fig. 5a. A linear relationship between the concentration of active chlorine and electrolysis time could be observed during the VCD, which was different with the situation in traditional electrochemical process (Fig. 3). It indicated that the stable growth of active chlorine concentration could ensure the efficient oxidation of pollutants, rather than to oxidize pollutants by generating excessive active chlorine, suggesting that the energy utilization efficiency could be greatly improved. Fig. 5b displays the concentration profiles of chloramines with different current densities in electrolysis. Fortunately, after 180 min electrolysis, the generated chloramine concentration in all cases was negligible, especially for current density of 20 mA/cm2 and VCD. Fig. 5c shows that the pH value decreased obviously in electrolysis as the current density increased, which was in accordance with the above results of chlorine evolution reaction (Eqs. (4) and (5)). For the VCD system, the pH variation was relatively stable compared with the traditional electrolysis.

$$Cl_2 + H_2O \rightarrow HClO + H^+ + Cl^-$$ \hspace{1cm} (4)

$$HClO \rightarrow ClO^- + H^+$$ \hspace{1cm} (5)

3.4 Optimization of the novel method using BBD

Box-Behnken design was selected to provide an advisable way to regulate the interactions between pollutant removal efficiency and energy consumption (Sharma and Simsek, 2020; Tak et al., 2015). Herein, three current densities (A, B, C) were chosen as the explanatory variables of BBD. The detailed levels of the current densities
are listed in Table S1, where the range for current density A is 15–20 mA/cm², for
current density B is 12.5–17.5 mA/cm², and for current density C is 10–15 mA/cm².
An electrolysis time of 60 min was arranged for each stage. And the current density was
set to decrease gradually from A to C. Besides, the above results indicated that ammonia
could be efficiently removed in this electrochemical system; thus, COD removal
efficiency was selected as the evaluation indicator of pollutant degradation.
Subsequently, seventeen runs of individual experiments with different current densities
were required to fit the three-factor BBD (Table S2). Moreover, normality of data was
estimated by means of normal probability plot (Fig. S1) which showed that residuals
generally fell near the straight line. Such results supported normal distribution and
confirmed the applicability of the model for well-fitting of the data. The response
contour diagrams for the interactive effect of three current densities on the
corresponding experimental results are shown in Fig. 6, and their related 3D surface
diagrams are shown in Fig. S2. For the effect of the current densities on the COD
removal, the A-B plot indicated that the contour values increased obviously when the
B increased, and it was also highly linked with A; the A-C plot showed that A is the
significant factor for the COD removal over C; besides, the B-C plot also depicted that
the increase of current density B was beneficial to the COD removal. When it came to
the impact on energy consumptions, similar results could be observed. Such results
obtained from the BBD were consistent with the phenomena as mentioned in Figs 1
and 4.
By regulating the effect of each explanatory variable in a reasonable operating range, the optimal operating parameters of A, B and C were predicted as 18.1, 14.7, and 11.6 mA/cm\(^2\), respectively. After optimization, the model values of the pollutant removal efficiencies and the energy consumptions were experimentally verified. Table 1 shows that the experimental results were in good agreement with the model results. As shown, actual removal efficiencies of 71.8% and 100% were obtained for COD and ammonia respectively, and energy consumption of 17.2 kWh/m\(^3\) was calculated. Compared with the traditional electrolysis (20 mA/cm\(^2\)), though the COD removal efficiency decreased slightly from 75.1% to 71.8%, the energy consumption was saved by 45.6%.

4. Conclusion

A novel method for efficient treatment of dyeing wastewater by electro-oxidation was investigated. Main factors, such as flow rate, initial pH value, electrode distance, and current density, were studied to reveal their impacts on the pollutant removal, and the results of electrochemical performance indicated that the current density was the dominant factor. The reaction mechanism was then explored, suggesting that COD and ammonia were mainly oxidized by active chlorine. Simultaneously, the relationship between the current density and active chlorine generation was established; results indicated that improving the utilization ratio of active chlorine was favorable for pollutant degradation and energy reducing. A novel method by variation of current density timely to conduct the chlorine evolution reaction was thus presented, suggesting
that energy-demanding could decrease from 31.6 kWh/m3 to 20.5 kWh/m3. Further
investigation of the interactive effect of current densities on energy saving was
predicted by BBD; results indicated that the energy efficiency could be enhanced: with
a high level of pollutant removal efficiency, the energy saving could be up to 45.6%.

Ethical Approval Not applicable

Consent to Participate Not applicable

Consent to Publish Not applicable

Authors Contributions

Jiachao Yao: formal analysis, investigation & writing;

Sini Lv: formal analysis & investigation;

Zeyu Wang: validation & data curation;

Liyong Hu: review & methodology;

Jun Chen: resources, writing & review

Funding

The authors are grateful for the financial support provided by the National Primary
Research & Development Plan (2018YFE0120300), National Natural Science
Foundation of China (NO.22011530015), and Zhejiang Shuren University Basic
Scientific Research Special Funds (NO.2021XZ002).

Competing Interests

The authors declare that they have no competing interests.
Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Reference

Adeogun AI, Bhagawati PB, Shivayogimath CB (2021) Pollutants removals and energy consumption in electrochemical cell for pulping processes wastewater treatment: Artificial neural network, response surface methodology and kinetic studies. J. Environ. Manage. 281, 111897.

Aghili F, Ghoreyshi AA, Van der Bruggen B, Rahimpour A (2021) Introducing gel-based UiO-66-NH₂ into polyamide matrix for preparation of new super hydrophilic membrane with superior performance in dyeing wastewater treatment. J. Environ. Chem. Eng. 9, 105484.

Aquino JM, Rocha-Filho RC, Ruotolo LAM, Bocchi N, Biagio SR (2014) Electrochemical degradation of a real textile wastewater using β-PbO₂ and DSA® anodes. Chem. Eng. J. 251: 138-145.

Bae W, Won H, Hwang B, de Toledo RA, Chung J, Kwon K, Shimc H (2015) Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment. J. Hazard. Mater. 287: 421-428.

Bustos-Terrones YA, Hermosillo-Nezárez JJ, Ramírez-Pereda B, Vacac M, Rangel-
Peraza JG, Bustos-Terrones V, Rojas-Valencia MN (2021) Removal of BB9 textile dye by biological, physical, chemical, and electrochemical treatments. J. Taiwan Inst. Chem. E. 121: 29-37.

Cao XL, Yan YN, Zhou FY, Sun SP (2020) Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J. Membrane Sci. 595, 117476.

Chen H, Liu YF, Xu XQ, Sun M, Jiang MJ, Xue G, Li X, Liu ZH (2019) How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater? Water Res. 148: 344-358.

Chung S, Chung J, Chung C (2020) Enhanced electrochemical oxidation process with hydrogen peroxide pretreatment for removal of high strength ammonia from semiconductor wastewater. J. Water Process Eng. 37, 101425.

da Costa AJM, Kronka MS, Cordeiro-Junior PJM, Fortunato GV, dos Santos AJ, Lanza MRV (2021) Treatment of Tebuthiuron in synthetic and real wastewater using electrochemical flow-by reactor. J. Electroanal. Chem. 882, 114978.

Díaz V, Ibáñez R, Gómez P, Urtiaga AM, Ortiz I (2011) Kinetics of electro-oxidation of ammonia-N, nitrites and COD from a recirculating aquaculture saline water system using BDD anodes. Water Res. 45: 125-134.

Dória AR, Pupo M, de Oliveira Santiago Santos G. da Silva Vilar D, Torres NH, Ferreira LFR, Cavalcanti EB, Eguiluz KIB, Salazar-Banda GR (2020) Electrochemical oxidation of indanthrene blue dye in a filter-press flow reactor and toxicity
analyses with Raphidocelis subcapitata and Lactuca sativa. Ecotox. Environ. Safe. 198, 110659.

Esteves BM, Rodrigues CSD, Boaventura RAR, Maldonado-Hódar FJ, Madeira LM (2016) Coupling of acrylic dyeing wastewater treatment by heterogeneous Fenton oxidation in a continuous stirred tank reactor with biological degradation in a sequential batch reactor. J. Environ. Manage. 166: 193-203.

Hamous H, Khenifi A, Orts F, Bonastre J, Cases F (2021) Carbon textiles electrodes modified with RGO and Pt nanoparticles used for electrochemical treatment of azo dye. J. Electroanal. Chem. 887, 115154.

Huang GL, Yao JC, Pan WL, Wang JD (2016) Industrial-scale application of the plunger flow electro-oxidation reactor in wastewater depth treatment. Environ. Sci. Pollut. Res. 23: 18288-18295.

Iskurt C, Keyikoglu R, Kobya M, Khataee A (2020) Treatment of coking wastewater by aeration assisted electrochemical oxidation process at controlled and uncontrolled initial pH conditions. Sep. Purif. Technol. 248, 117043.

Kahraman Ö, Şimşek İ (2020) Color removal from denim production facility wastewater by electrochemical treatment process and optimization with regression method. J. Clean. Prod. 267, 122168.

Ken DS, Sinha A (2021) Dimensionally stable anode (Ti/RuO₂) mediated electro-oxidation and multi-response optimization study for remediation of coke-oven wastewater. J. Environ. Chem. Eng. 9, 105025.
Li JX, Li M, Li D, Wen QX, Chen ZQ (2020) Electrochemical pretreatment of coal gasification wastewater with Bi-doped PbO$_2$ electrode: Preparation of anode, efficiency and mechanism. Chemosphere 248, 126021.

Liu LM, Chen Z, Zhang JW, Shan D, Wu Y, Bai LM, Wang BQ (2021) Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 42, 102122.

Ma XJ, Wang X, Yin XL, Kan XR, Wang ZY (2018) Electrochemical stripping of cotton fabrics dyed with Reactive Black 5 in water and wastewater. Chemosphere 206: 17-25.

Meng XS, Khoso SA, Jiang F, Zhang Y, Yue T, Gao JD, Lin SY, Liu RQ, Gao ZY, Chen P, Wang L, Han HS, Tang HH, Sun W, Hu YH (2020) Removal of chemical oxygen demand and ammonia nitrogen from lead smelting wastewater with high salts content using electrochemical oxidation combined with coagulation–flocculation treatment. Sep. Purif. Technol. 235, 116233.

Nippatla N, Philip L (2020) Electrochemical process employing scrap metal waste as electrodes for dye removal. J. Environ. Manage. 273, 111039.

Ozturk D, Yilmaz AE (2019) Treatment of slaughterhouse wastewater with the electrochemical oxidation process: Role of operating parameters on treatment efficiency and energy consumption. J. Water Process Eng. 31, 100834.

Patel D, Bapodra SL, Madamwar D, Desai C (2021) Electroactive bacterial community
augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater. Bioresource Technol. 332, 125088.

Paz A, Carballo J, Pérez MJ, Domínguez JM (2017) Biological treatment of model dyes and textile wastewaters. Chemosphere 181: 168-177.

Rosal R, Rodríguez A, Perdigón-Melón JA, Mezcua M, Hernando MD, Letón P, García-Calvo E, Agüera A, Fernández-Alba AR (2008) Removal of pharmaceuticals and kinetics of mineralization by O$_3$/H$_2$O$_2$ in a biotreated municipal wastewater. Water Res. 42: 3719-3728.

Sharma S, Simsek H (2020) Sugar beet industry process wastewater treatment using electrochemical methods and optimization of parameters using response surface methodology. Chemosphere 238, 124669.

Tak BY, Tak BS, Kim YJ, Park YJ, Yoon YH, Mina GH (2015) Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box–Behnken design (BBD). J. Ind. Eng. Chem. 28: 307-315.

Tang XM, Wang T, Zhang SX, Fang L, Zheng HL (2021) Enhanced performance of a novel flocculant containing rich fluorine groups in refractory dyeing wastewater treatment: Removal mechanisms. Sep. Purif. Technol. 263, 118411.

Wang JD, Yao JC, Wang L, Xue QW, Hu ZT, Pan BJ (2020) Multivariate optimization of the pulse electrochemical oxidation for treating recalcitrant dye wastewater. Sep. Purif. Technol. 230, 115851.
Wang K, Dai QB, Hu CG, Tong YX, Wang Y, Song SQ, Dai LM (2021) Earth-abundant metal-free carbon-based electrocatalysts for Zn-air batteries to power electrochemical generation of H₂O₂ for in-situ wastewater treatment. Chem. Eng. J. 416, 128338.

Wang YT, Xue YD, Zhang CH (2020) Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance. Sci. Total Environ. 172, 136501.

Xia YJ, Wang GQ, Guo LD, Dai QZ, Ma XJ (2020) Electrochemical oxidation of Acid Orange 7 azo dye using a PbO₂ electrode: Parameter optimization, reaction mechanism and toxicity evaluation. Chemosphere 241, 125010.

Xin YY, Zhou LY, Ma KK, Lee J, Qazi HIA, Li HP, Bao CY, Zhou YX (2020) Removal of bromoamine acid in dye wastewater by gas-liquid plasma: The role of ozone and hydroxyl radical. J. Water Process Eng. 37, 101457.

Yang Y, Qiao S, Zhou JT, Quan X (2019) A novel porous-carbon-based hollow fiber membrane with electrochemical reduction mediated by in-situ hydroxyl radical generation for fouling control and water treatment. Appl. Catal. B: Environ. 255, 117772.

Yao JC, Chen AN, Ye RH, Wang JD, Pan H, Xu DM, Chen J, Mei Y, Hrynsphan D, Savitskaya T (2021) Stepping control of electrochemical process for simultaneous removal of COD and ammonia with high efficiency and energy saving. J.
Yao JC, Wen DN, Shen JN, Wang JD (2016a) Zero discharge process for dyeing wastewater treatment. J. Water Process Eng. 11: 98-103.

Yao JC, Zhou MM, Wen DN, Xue QW, Wang JD (2016b) Electrochemical conversion of ammonia to nitrogen in non-chlorinated aqueous solution by controlling pH value. J. Electroanal. Chem. 776, 53-58.

Ye SS, Chen YX, Yao XL, Zhang JD (2021) Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere 273, 128503.

Zou JX, Peng XL, Li M, Xiong Y, Wang B, Dong F.Q, Wang B (2017) Electrochemical oxidation of COD from real textile wastewaters: Kinetic study and energy consumption. Chemosphere 171: 332-338.
Fig. 1. The effect of (a) flow rate, (b) initial pH value, (c) electrode distance, and (d) current density on COD/ammonia removal.
Fig. 2. Reaction mechanism for (a) COD and (b) ammonia oxidation with different current densities. (Flow rate of 150 mL/min, initial pH value of 6, electrode distance of 1 cm)
Fig. 3. The effect of current density on active chlorine generation. (Flow rate of 150 mL/min, initial pH value of 6, electrode distance of 1 cm)
Fig. 4. The effect of current density variation on (a) removal efficiency, (b) current efficiency, and (c) energy consumption. (Flow rate of 150 mL/min, initial pH value of 6, electrode distance of 1 cm)
Fig. 5. The variation of (a) active chlorine concentration, (b) chloramines concentration, and (c) pH value. (Flow rate of 150 mL/min, initial pH value of 6, electrode distance of 1 cm)
Fig. 6. Response contour diagrams of Box-Behnken designs for the variation of current density (A, B, and C) on the COD removal and energy consumption. The first and second row in the figure refer to the removal efficiency and energy consumption, respectively. The change of color from blue to red represents an increase of removal efficiency/energy consumption.
Table 1. The determination and verification of BBD for maximizing removal efficiency and minimizing energy-demanding.

Condition	A (mA/cm2)	B (mA/cm2)	C (mA/cm2)	COD removal (%)	Ammonia removal (%)	Energy consumption (kWh/m3)
Predicted	18.1	14.7	11.6	72%	/	17.1
Actual	18.1	14.7	11.6	71.8%	100%	17.2
Traditional	20	20	20	75.1%	100%	31.6
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Supportinginformation.docx