Clinical review: Goal-directed therapy - what is the evidence in surgical patients? The effect on different risk groups

Maurizio Cecconi*, Carlos Corredor, Nishkantha Arulkumaran, Gihan Abuella, Jonathan Ball, R Michael Grounds, Mark Hamilton and Andrew Rhodes

Abstract
Patients with limited cardiac reserve are less likely to survive and develop more complications following major surgery. By augmenting oxygen delivery index (DO2I) with a combination of intravenous fluids and inotropes (goal-directed therapy (GDT)), postoperative mortality and morbidity of high-risk patients may be reduced. However, although most studies suggest that GDT may improve outcome in high-risk surgical patients, it is still not widely practiced. We set out to test the hypothesis that GDT results in greatest benefit in terms of mortality and morbidity in patients with the highest risk of mortality and have undertaken a systematic review of the current literature to see if this is correct. We performed a systematic search of Medline, Embase and CENTRAL databases for randomized controlled trials (RCTs) and reviews of GDT in surgical patients. To minimize heterogeneity we excluded studies involving cardiac, trauma, and paediatric surgery. Extremely high risk, high risk and intermediate risks of mortality were defined as >20%, 5 to 20% and <5% mortality rates in the control arms of the trials, respectively. Meta-analyses were performed and Forest plots drawn using RevMan software. Data are presented as odd ratios (OR; 95% confidence intervals (CI), and P-values). A total of 32 RCTs including 2,808 patients were reviewed. All studies reported mortality. Five studies (including 300 patients) were excluded from assessment of complication rates as the number of patients with complications was not reported. The mortality benefit of GDT was confined to the extremely high-risk group (OR = 0.20, 95% CI 0.09 to 0.41; P < 0.0001). Complication rates were reduced in all subgroups (OR = 0.45, 95% CI 0.34 to 0.60; P < 0.00001). The morbidity benefit was greatest amongst patients in the extremely high-risk subgroup (OR = 0.27, 95% CI 0.15 to 0.51; P < 0.0001), followed by the intermediate risk subgroup (OR = 0.43, 95% CI 0.27 to 0.67; P = 0.0002), and the high-risk subgroup (OR 0.56, 95% CI 0.36 to 0.89; P = 0.01). Despite heterogeneity in trial quality and design, we found GDT to be beneficial in all high-risk patients undergoing major surgery. The mortality benefit of GDT was confined to the subgroup of patients at extremely high risk of death. The reduction of complication rates was seen across all subgroups of GDT patients.

Introduction
A significant number of patients who undergo major surgery suffer postoperative complications, many of which may be avoidable [1,2]. The associated health and financial loss is significant, especially considering patients who suffer from postoperative complications suffer long-term morbidity [3]. A significant proportion of patients undergoing surgery suffer from postoperative complications, and identification of this cohort of patients may enable appropriate preventative measures to be taken [4]. Perioperative goal-directed therapy (GDT) aims to match the increased oxygen demand incurred during major surgery, by flow-based haemodynamic monitoring and therapeutic interventions to achieve a predetermined haemodynamic endpoint. When carried out early, in the right patient cohort, and with a clearly defined protocol, GDT has been shown to reduce postoperative mortality and morbidity [5].

Despite this, postoperative GDT is not carried out widely, perhaps due to the lack of evidence for its benefit from large multicenter randomized clinical trials. Scepticism about GDT may exist for a number of reasons: many of the studies performed may be considered outdated; the high mortality rates in some of the studies performed are not representative of current clinical
practice; and pulmonary artery catheters (PACs) are used in many of the clinical trials but have been largely superseded by less invasive haemodynamic monitors. A recent meta-analysis has demonstrated that although studies prior to 2000 demonstrate a benefit in mortality, studies conducted after 2000 demonstrate a significant reduction in complication rates [5]. Furthermore, the reduction in complication rates is significant regardless of the type of haemodynamic monitor used.

We hypothesized that the benefits of GDT are greater in patients who are at higher risk of mortality. We defined risk by the mortality rate of the study population undergoing major surgery. We conducted this meta-analysis to determine if GDT in high-risk surgical patients undergoing major non-cardiac surgery improves postoperative mortality and morbidity, and if this was affected by the mortality risk among the population studied.

Methods

Eligibility criteria

We reported only randomized controlled trials, that reported morbidity (complications) and mortality as primary or secondary outcomes. GDT was defined as the term encompassing the use of haemodynamic monitoring and therapies aimed at manipulating haemodynamics during the perioperative period to achieve a predetermined haemodynamic endpoint(s). Studies with GDT started pre-emptively in the perioperative period (24 hours before, intraoperative or immediately after surgery) were included. The GDT must have an explicit protocol, defined as detailed step-by-step instructions for the clinician based on patient-specific haemodynamic data obtained from a haemodynamic monitor or surrogates (for example, lactate, oxygen extraction ratio), and predefined interventions carried out by the clinician in an attempt to achieve the goal(s). Interventions included fluid administration alone or fluids and inotropes together. As the use of inotropic agents was aimed at a specific haemodynamic goal(s) and titrated accordingly, fixed dose studies of inotropes were excluded. Only studies involving adult general surgical populations were included, and studies involving cardiac, trauma and paediatric surgery were excluded.

Information sources

A systematic literature search of MEDLINE (via Ovid), EMBASE (via Ovid) and the Cochrane Controlled Clinical trials register (CENTRAL, issue 4 of 2012) was conducted to identify suitable studies. Only articles written in English were considered. Date restrictions were not applied to the CENTRAL and MEDLINE searches. EMBASE was restricted to the years 2009 to 2012 [6]. The last search update was in April 2012.

Search strategy

We included the following search terms: goal-directed therapy, optimization, haemodynamic, goal oriented, goal targeted, cardiac output, cardiac index, oxygen delivery, oxygen consumption, cardiac volume, stroke volume, fluid therapy, fluid loading, fluid administration, optimization, supranormal, lactate and extraction ratio. Search terms were entered into the electronic databases using search strategy methods validated by the Cochrane collaboration (see Box 1 for search strategies used) [7]. In addition to searching electronic databases, previous review articles on the subject were hand-searched for further references.

Methodological quality of included studies

Methodological quality of included studies was assessed using criteria described by Jadad and colleagues [8]. The Jadad scale analyzes methods used for random assignment, blinding and flow of patients in clinical trials. The range of possible scores is 0 (lowest quality) to 5 (highest quality). Studies were not excluded based on Jadad scores.

Analysis of outcomes

Three investigators independently screened both the titles and abstracts to exclude non-pertinent studies. Relevant full text articles were then retrieved and analysed for eligibility against the pre-defined inclusion criteria. Information from selected studies was extracted using a standardized data collection form. Data were collected independently by three different investigators (GA, NA and CC) and discrepancies resolved by a fourth author (MC).

Hospital mortality was reported in all the included articles and was the primary outcome of our study. Morbidity, expressed as number of patients with complications, was the secondary outcome. Mortality risk groups were based on the definition of the high-risk surgical patient by Boyd and Jackson, such that patients whose risk of mortality was 5 to 19% and ≥20% were classified as high-risk and extremely high-risk, respectively [9]. We therefore performed subgroup analyses based on the control group mortality in each study. We created three subgroups based on the mortality rate of the control group. Mortality rates of 0 to 4.9%, 5 to 19.9%, and ≥20% were considered intermediate, high risk, and extremely high risk, respectively. Mortality and complications were analyzed according to the type of monitor used, type of interventions, the therapeutic goals, and the use of ‘supranormal’ physiological goals.

Statistical analysis

Dichotomous data outcomes were analysed using the Mantel-Haenszel random effects model and results
Box 1. Search strategies

1. MEDLINE database (OVID interface): the Cochrane highly sensitive search strategy was used:

- #1. randomized Controlled Trials as Topic/
- #2. randomized controlled trial/
- #3. random Allocation/
- #4. double Blind Method/
- #5. single Blind Method/
- #6. clinical trial/
- #7. controlled clinical trial.pt.
- #8. randomized controlled trial.pt.
- #9. multicenter study.pt.
- #10. clinical trial.pt.
- #11. exp Clinical Trials as topic/
- #12. or/1-11
- #13. (clinical adj trial$).tw.
- #14. ((singl$ or doubl$ or tripl$ or quadr$ or quint$) adj (blind$3 or mask$3)).tw.
- #15. randomly allocated.tw.
- #16. (allocated adj2 random$).tw.
- #17. or/13-16
- #18. case report.tw.
- #19. letter/
- #20. historical article/
- #21. or/19-21
- #22. 18 not 22
- #23. exp surgery/
- #24. surgery.tw.
- #25. surgery.mp.
- #26. 24 or 25 or 26
- #27. exp heart/ or heart.mp.) and output.mp.
- #28. exp heart output/ or heart output.mp.
- #29. goal directed
- #30. goal oriented
- #31. goal target
- #32. exp heart index/ or heart index.mp.
- #33. exp heart stroke volume/ or heart stroke volume.mp.
- #34. exp oxygen consumption/ or oxygen consumption.mp.
- #35. oxygen delivery.mp.
- #36. exp fluid therapy/
- #37. exp fluid therapy/
- #38. fluid administration.mp
- #39. fluid loading.mp.
- #40. hemodynamic.mp
- #41. supranormal.mp.
- #42. optimisation.mp.
- #43. optimization.mp.
- #44. exp lactate/
- #45. extraction ratio.mp
- #46. #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 or #36 or #37 or #38 or #39 or #40 or #41 or #42 or #43 or #44 or #45
- #47. #23 and #27 and #46

2. Embase (OVID interface): search restricted to the years 2009 to 2012:

- #1. surgery in Trials
- #2. surgical* in Trials
- #3. surgery* in Trials
- #4. #1 OR #2 OR #3
- #5. cardiac near output* in trials
- #6. cardiac near volume* in Trials
- #7. cardiac near index* in Trials
- #8. oxygen near delivery* in Trials
- #9. oxygen near consumption* in Trials
- #10. supranormal* in Trials
- #11. stroke near volume* in Trials
- #12. fluid near therapy* in Trials
- #13. fluid near administration* in Trials
- #14. fluid near loading* in Trials
- #15. extraction near ratio* in Trials
- #16. lactate* in Trials
- #17. goal near directed* in Trials
- #18. goal near oriented* in Trials
- #19. goal near target* in Trials
- #20. Hemodynamic near optimization* in trials
- #21. Haemodynamic near optimization* in trials
- #22. Optimization* in trials
- #23. Optimisation* in trials
- #24. #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23
- #25. #4 AND #24

3. Cochrane clinical trials database (CENTRAL):

- #1. surgery in Trials
- #2. surgical* in Trials
- #3. surgery* in Trials
- #4. #1 OR #2 OR #3
- #5. cardiac near output* in trials
- #6. cardiac near volume* in Trials
- #7. cardiac near index* in Trials
- #8. oxygen near delivery* in Trials
- #9. oxygen near consumption* in Trials
- #10. supranormal* in Trials
- #11. stroke near volume* in Trials
- #12. fluid near therapy* in Trials
- #13. fluid near administration* in Trials
- #14. fluid near loading* in Trials
- #15. extraction near ratio* in Trials
- #16. lactate* in Trials
- #17. goal near directed* in Trials
- #18. goal near oriented* in Trials
- #19. goal near target* in Trials
- #20. Hemodynamic near optimization* in trials
- #21. Haemodynamic near optimization* in trials
- #22. Optimization* in trials
- #23. Optimisation* in trials
- #24. #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22 OR #23
presented as an odds ratio (OR) with 95% confidence intervals (CI). The meta-analysis was carried out using review manager (‘Revman’) for MAC (version 5.1, Cochrane collaboration, Oxford, UK). Statistical heterogeneity was assessed using the I² methodology. When an I² value of >50% was present heterogeneity and inconsistency were considered significant, and when it was >75% these were considered highly significant [10]. All P-values were two-tailed and considered statistically significant if <0.05.

Results

Included trials
The search strategy used in this study produced 12,938 potential titles (Figure 1). After screening of titles and abstracts, 307 references were identified as relevant to perioperative GDT. After further screening of titles and abstracts against our inclusion criteria, 85 references were retrieved for full text analysis. Detailed full text evaluation excluded 13 studies, as they were not randomized controlled trials [11-23]. Analysis of the remaining 72 randomized controlled trials produced the following exclusions: studies focusing on fluid management strategies (that is, liberal versus restrictive) [24-33], use of ‘fixed dose’ inotropic agents not titrated to a predetermined goal [34-38], cardiac surgery [39-44], trauma [45-52], paediatric surgery [53] and critically ill medical populations [54-62]. A study not using protocols to direct application of GDT was also excluded [63]. The quality of the trials was analysed using the Jadad score. The median Jadad score was 3.

Description of studies
A total of 32 studies were included in the meta-analysis (Table 1) [64-95]. These 32 studies included a total of 2,808 patients, 1,438 in the GDT arm and 1,370 in the control treatment arm. Five studies included patients who were considered extremely high risk, 12 included patients who were high risk, and 15 included patients who were intermediate risk. The intermediate-risk, high-risk, and extremely high-risk mortality subgroups included 1,569, 924, and 315 patients, respectively. There were similar numbers of patients in the GDT and control arms. Twenty studies initiated GDT at start of surgery, whilst the other studies initiated GDT before or immediately after surgery.

Mortality
Three studies did not report any deaths in the control or intervention group. All 32 studies included mortality rates (Figure 2). Although there was an overall benefit on mortality (OR 0.52, 95% CI 0.36 to 0.74; P = 0.003), subgroup analyses revealed that mortality benefit was seen only in studies that included extremely high risk patients (OR 0.20, 95% CI 0.09 to 0.41; P = 0.0001) but not for the intermediate-risk patients (OR 0.83, 95% CI 0.41 to 1.69; P = 0.62). There was a trend towards a reduction in mortality in the high risk group (OR 0.65, 95% CI 0.39 to 1.07; P = 0.09; Figure 2). Further subgroup analyses of mortality as an endpoint revealed that mortality was reduced in the studies using a pulmonary artery catheter (OR 0.3, 95% CI 0.15 to 0.60; P = 0.0007), fluids and inotropes as opposed to fluids alone (OR 0.41, 95% CI 0.23 to 0.73; P = 0.002), cardiac index or oxygen delivery index as a goal (OR 0.36, 95% CI 0.21 to 0.36; P = 0.0003), and a supranormal resuscitation target (OR 0.27, 95% CI 0.15 to 0.47; P < 0.00001) (Table 2).

Morbidity
Twenty-seven studies (including 2,477 patients) reported the number of patients with postoperative complications. Meta-analysis of these studies revealed an overall significant reduction in complication rates (OR 0.45, 95% CI 0.34 to 0.60; P < 0.00001; Figure 3). Consistent with the mortality benefits, the reduction in morbidity was greatest in the extremely high-risk group (OR 0.27, 95% CI 0.15 to 0.51; P < 0.0001). However, there was also a significant morbidity benefit in the intermediate risk group (OR 0.43, 95% CI 0.27 to 0.67; P = 0.0002) and the high-risk groups (OR 0.56, 95% CI 0.36 to 0.89; P = 0.01) (Figure 3). The reduction in the number of patients suffering postoperative complications was seen across all subgroups, apart from studies that did not use the oxygen delivery index (DO₂; [ml/minute/m²], the cardiac index (CI; [ml/minute/m²]), stroke volume (SV; [ml]), or corrected flow time (FTc) as a goal (OR 0.48, 95% CI 0.22 to 1.04; P = 0.06), although this approached statistical significance (Table 3).

Discussion
We believe that GDT in high-risk surgical patients is likely to have the greatest benefit if carried out early, in the right patient cohort and with a clearly defined protocol. We performed this meta-analysis to test the hypothesis that patients with the highest perioperative risk gain the greatest benefits from GDT. Studies without clearly defined GDT protocols and studies that initiated GDT late in the postoperative course were therefore excluded from our meta-analysis. Studies were stratified into different risk groups based on the mortality rate of the control group in the study. Heterogeneity in the year of study, patient demographics, type and urgency of surgery, and health care facilities among the different studies are likely to account for the difference in mortality rates.

A reduction in mortality associated with GDT was seen only in the extremely high-risk group of patients (baseline mortality rate of >20%). A baseline mortality rate of >20%
is unusual in current practice [4,96]; in this sense it is interesting to note that two of five studies with a baseline mortality rate of >20% were carried out within the past decade. Neither of these studies demonstrated a survival benefit with GDT [80,97]. One of these studies demonstrated a reduction in complication rates [97], whilst the other demonstrated a trend towards a reduction in complication rates [80].

Supranormal physiological targets, targeting DO$_2$I or CI, the use of inotropes in addition to fluids, and the use of a PAC were also associated with an improvement in survival. As first demonstrated by Shoemaker and colleagues [19], a supranormal physiological target of global oxygen delivery to ameliorate the oxygen deficit incurred during major surgery is associated with a survival benefit. This is likely to explain the other associations with an improvement in morbidity across all risk groups. The combination of fluids and inotropes is more likely to achieve a supranormal physiological target, as opposed to fluids alone. All eight studies using the oesophageal doppler used fluids alone, reflected by the lack of mortality benefit with the use of FTc or SV as a target. The survival benefit associated with the use of PACs is unlikely to be due to the use of the PACs per se. The survival benefit associated with PAC use may be explained by a number of factors. These include the ability to measure and therefore achieve supranormal DO$_2$I, and the use of inotropes in addition to fluids in all studies using a PAC.

The reduction in the number of patients suffering postoperative complications was seen across all subgroups, apart from studies that did not use DO$_2$I, CI, SV, or FTc as a goal. However, there was a trend towards fewer complications among the GDT cohort in these studies. Goals used by these studies included lactate, pulse pressure variation, plethysmographic variability index,
Study	Year	Jadad score	Type of surgery	Number of patients	Number of patients control group	Type of monitor in GDT group	Interventions	Goals in GDT group	Goals in control group	Mortality GDT (%)	Mortality control (%)	Complications GDT (%)	Complications control (%)	
Bender et al. [64]	1997	1	Elective vascular/aortic	51	53	PAC	Fluid and inotropes	CI ≥ 2.8	PAWP 8-14 SVR <100	Standard care	1.96	1.9	13.73	13.21
Benes et al. [65]	2010	3	Elective abdominal	60	60	Flotrac	Fluid and inotropes	SVV <10% CI ≥ 2.5	Standard care	1.67	3.3	30	58.33	
Berlauk et al. [66]	1991	2	Peripheral vascular surgery	68	21	PAC	Fluid and inotropes	CI ≥ 2.8	PAWP 8-14 SVR <1100	Standard care	1.47	9.5	16.7	428
Bonazzi et al. [67]	2002	2	Elective vascular	50	50	PAC	Fluid and inotropes	CI ≥ 3.0	PAWP 10-18 SVR <1,450	Standard care	0	0	4	8
Boyd et al. [68]	1993	1	Abdominal/Vascular	53	54	PAC	Fluid and inotropes	MAP 80-110	PAWP 12-14 SVR <600	MAP 80-110 PAWP 12-14	5.66	22.2	NS	NS
Buettner et al. [69]	2008	2	Major abdominal or gynaecological	40	40	PICCO	Fluids	SPV <10% HCT >23%	Standard care	0	2.5	NS	NS	
Cecconi et al. [70]	2011	4	Total hip replacement	20	20	Flotrac	Fluid and inotropes	SV change	DOJ >600	Standard care	0	0	80	100
Challand et al. [71]	2012	5	Major open/ laparoscopic colorectal	89	90	OD	Fluids	SV change	DOJ >600	Standard care	5.62	4.4	33.71	28.89
Conway et al. [72]	2002	2	Major bowel resection	29	28	OD	Fluids	FHc >0.35	SV change	Standard care	0	3.6	17.24	32.14
Donati et al. [73]	2007	3	Elective major abdominal/aortic	68	67	CVC	Fluids	O2ER <2%	MAP >80 UO >0.5 CVP 8-12 Hb >10	Standard care	2.94	3	13.24	40.3
Forget et al. [74]	2010	2	Major intrabdominal	41	41	Masimo pulsoximeter	Fluids	PVI <13%	Standard care	4.88	0	78.05	100	

Continued overleaf
Study	Year	Jadad score	Type of surgery	Number of patients GDT group	Number of patients control group	Type of monitor in GDT group	Intervention type	Goals in GDT group	Goals in control group	Mortality GDT (%)	Mortality control (%)	Complications GDT (%)	Complications control (%)
Gan et al.	2002	5	Elective general, urological, gynaecologic	50	50	OD	Fluids	FTC > 0.35, SV change	Increase HR > 20% baseline, sBP < 90 or CVP < 20% baseline	0 0	42	76	
Harten et al.	2008	3	Emergency abdominal	14	15	Lidco	Fluids	PPV	Standard care	7.14	13.3	50	26.67
Jhanji et al.	2010	3	Major surgery	45	45	LiDCO	Fluids	SV	CVP standard care	11.11	13.3	57.58	66.67
Lobo et al.	2000	3	Major surgery	19	18	PAC	Fluid and inotropes	DOJ > 600	Standard care	15.79	50	31.58	66.67
Lobo et al.	2006	3	Major surgery	25	25	PAC	Fluid and inotropes	PWP 12-16, MAP 70-110, Hct > 30%, SaO2 > 94%, UO > 0.5, DOJ > 600	PAWP 12-16, MAP 70-110, Hct > 30%, SaO2 > 94%, UO > 0.5	8 28	16	52	
Lopes et al.	2007	2	Major surgery	17	16	IBP plus, Dixtal	Fluids	ΔPP < 10%	Standard care	11.76	31.3	41.18	75
Mayer et al.	2010	2	Major gastrointestinal surgery	30	30	Flotrac	Fluid and inotropes	CI > 2.5, SVV < 12%	CVP 8-12, MAP > 65, UO > 0.5	6.67	6.7	20	50
Noblett et al.	2006	5	Colorectal	51	52	OD	Fluids	FTC > 0.35, SV change	Standard care	0 1.9	1.96	15.38	
Pearse et al.	2005	3	Major surgery	62	60	LiDCO	Fluid and inotropes	DOJ > 600	SaO2 ≥ 94%, Hb > 8, Temp > 37°C, HR < 100 or < 20% above baseline, MAP 60-100, CI ≥ 2.5	11.29	15	43.55	68.33
Senagore et al.	2009	3	Elective lap colorectal	42	22	OD	Fluids	SV response	Standard care	2.38	4.7	NS	NS
Shoemaker et al.	1988	2	Major surgery	28	60	PAC	Fluid and inotropes	CI > 4.5, VO2 > 170, DOJ > 600	Standard care	3.57	30	28.5	50
Sinclair et al.	1997	2	Neck of femur repair	20	20	OD	Fluids	FTC > 0.35, SV change	Standard care	5 10	NS	NS	

Continued overleaf
Table 1. Continued

Study	Year	Jada score	Type of surgery	Number of patients	Number of patients	Type of monitor in GDT group	Intervention type	Goals in GDT group	Goals in GDT group	Mortality GDT (%)	Mortality control (%)	Complications GDT (%)	Complications control (%)
Szakmany et al.	2005	3	Major abdominal	20	20	PiCCO	Fluids	ITBV 850-950 ml/m²	CVP	9.09	5	NS	NS
Ueno et al. [88]	1998	2	Hepatic resection	16	18	PAC	Fluid and inotropes	CI >4.5, VO₂ >170, DO₂ >600	SpO₂ >95%	0	11.1	0	27.78
Valentine et al.	1998	3	Aortic	60	60	PAC	Fluid and inotropes	CI >2.8, PAWP 8-15, SVR >1100	SpO₂ >95%	5	1.7	25	16.67
Van Der Linden et al. [90]	2010	4	Vascular	40	17	LiDCO + CVC	Fluid and inotropes	CI >2.5, PAWP 8-15, SVR <1100	SpO₂ >95%	7.5	0	10	0
Venn et al. [91]	2002	3	Neck of femur repair	30	60	OD	Fluids	FTc >0.35, SV change	Standard care	10	6.9	34.4	72.4
Wakeling et al. [92]	2005	3	Colorectal	67	67	OD	Fluids	SV change	Standard care	0	1.5	35.82	56.72
Wenkui et al. [93]	2010	4	Elective GI Cancer	109	105	Lactate	Fluids	Lactate <1.6	Standard care	0.92	3.8	22.94	33.3
Wilson et al. [94]	1999	3	Major surgery	92	46	PAC	Fluid and inotropes	DO₂ >600	Standard care	3.26	17.4	41.3	60.87
Ziegler et al. [95]	1997	2	Vascular	32	40	PAC	Fluid and inotropes	PAOP >12	Standard care	9.38	5	25	27.5

CI, cardiac index (ml/minute/m²); CVP, central venous pressure (cmH₂O); CVC, central venous catheter; DO₂, oxygen delivery index (ml/minute/m²); FTc, corrected flow time; GDT, goal-directed therapy; Hb, haemoglobin (g/dl); Hct, haematocrit (%); HR, heart rate (beats/minute); ITBV, intrathoracic blood volume; VO₂, oxygen consumption (ml/minute); MAP, mean arterial pressure (mmHg); NS, not stated; O₂ER, oxygen extraction ratio (%); OD, oesophageal Doppler; PAC, pulmonary artery catheter; PAOP, pulmonary artery occlusion pressure (mmHg); PAWP, pulmonary artery wedge pressure (mmHg); PP, pulse pressure; PPV, pulse pressure variation; PVI, plethysmographic variability index; SAO₂, arterial oxygen saturation; SBP, systolic blood pressure (mmHg); SpO₂, oxygen saturation (%); SV, stroke volume (ml); SVR, systemic vascular resistance (dynes-s/cm⁵); SVV, stroke volume variation (%); UO, urine output (ml/kg/h); VO₂, oxygen consumption (ml/minute).
pulmonary artery occlusion pressure, oxygen extraction ratio, and intrathoracic blood volume \[73,74,76,80,87,93,95\]. Consistent with the trends seen with mortality, the reduction in complication rates was most profound in the extremely high-risk group of patients, protocols with supranormal physiological targets, targeting DO\(_{2}\)I or CI, and the use of inotropes in addition to fluids. In contrast to the benefits seen in mortality, however, the subgroup

Study or Subgroup	GDT protocol	Control	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI		
2.1.1 Mortality 0–4.9%						
Bender 1997	1	51	1	53	1.6%	1.04 [0.06, 17.08]
Benes 2010	1	60	2	60	2.1%	0.49 [0.04, 5.57]
Bonazzi 2002	0	50	0	50	Not estimable	
Buettner 2008	0	40	1	40	1.2%	0.33 [0.01, 8.22]
Cecconi 2011	0	20	0	20	Not estimable	
Challand 2012	5	89	4	90	7.0%	1.28 [0.33, 4.93]
Conway 2002	0	29	1	28	1.2%	0.31 [0.01, 7.95]
Donati 2007	2	68	2	67	3.2%	0.98 [0.13, 7.20]
Forget 2010	2	41	0	41	1.3%	5.25 [0.24, 112.88]
Can 2002	0	50	0	50	Not estimable	
Noblett 2006	0	51	1	52	1.2%	0.33 [0.01, 8.37]
Senagore 2009	1	42	0	22	1.2%	1.63 [0.06, 41.59]
Van der Linden 2010	3	40	0	17	1.4%	3.27 [0.16, 66.74]
Wakeling 2005	0	67	1	67	1.2%	0.33 [0.01, 8.21]
Wenkui 2010	1	109	4	105	2.6%	0.23 [0.03, 2.13]
Subtotal (95% CI)	807	762	25.3%	0.83 [0.41, 1.69]		
Total events	16	17				
Heterogeneity: Tau\(^2\) = 0.00; Chi\(^2\) = 5.54, df = 11 (P = 0.90); I\(^2\) = 0%						
Test for overall effect: Z = 0.50 (P = 0.62)						

2.1.2 Mortality >5–19.9%						
Berlau 1991	1	68	2	21	21%	0.14 [0.01, 1.65]
Harten 2008	1	14	2	15	2.0%	0.50 [0.04, 6.22]
Jhanji 2010	5	45	6	45	7.9%	0.81 [0.23, 2.88]
Mayer 2010	2	30	2	30	3.1%	1.00 [0.13, 7.60]
Peerse 2005	7	62	9	60	11.3%	0.72 [0.25, 2.08]
Sinclair 1997	1	20	2	20	2.1%	0.47 [0.04, 5.69]
Szakmany 2005	2	20	1	20	2.1%	2.11 [0.18, 25.35]
Ueno 1998	0	16	2	18	1.3%	0.20 [0.01, 4.49]
Valentine 1998	3	60	1	60	2.4%	3.11 [0.31, 30.73]
Venn 2002	3	30	8	60	6.4%	0.72 [0.18, 2.95]
Wilson 1999	3	92	8	46	6.6%	0.16 [0.04, 0.64]
Ziegler 1997	3	32	2	40	3.7%	1.97 [0.31, 12.54]
Subtotal (95% CI)	489	435	50.9%	0.65 [0.39, 1.07]		
Total events	31	45				
Heterogeneity: Tau\(^2\) = 0.00; Chi\(^2\) = 10.46, df = 11 (P = 0.49); I\(^2\) = 0%						
Test for overall effect: Z = 1.70 (P = 0.09)						

2.1.3 Mortality >20%						
Boyd 1993	3	53	12	54	7.2%	0.21 [0.06, 0.79]
Lobo 2000	3	19	9	18	5.3%	0.19 [0.04, 0.88]
Lobo 2006	2	25	7	25	4.4%	0.22 [0.04, 1.21]
Lopes 2007	2	17	5	16	3.8%	0.29 [0.05, 1.80]
Shoemaker 1988	1	28	18	60	3.0%	0.09 [0.01, 0.69]
Subtotal (95% CI)	142	173	23.7%	0.20 [0.09, 0.41]		
Total events	11	51				
Heterogeneity: Tau\(^2\) = 0.00; Chi\(^2\) = 0.86, df = 4 (P = 0.93); I\(^2\) = 0%						
Test for overall effect: Z = 4.38 (P < 0.0001)						

| **Total (95% CI)** | 1438 | 1370 | 100.0% | 0.52 [0.36, 0.74] |
| Total events | 58 | 113 | | |
| Heterogeneity: Tau\(^2\) = 0.00; Chi\(^2\) = 26.22, df = 28 (P = 0.56); I\(^2\) = 0% |
| Test for overall effect: Z = 3.59 (P = 0.0003) |
| Test for subgroup differences: Chi\(^2\) = 9.36, df = 2 (P = 0.009), I\(^2\) = 78.6% |

Figure 2. Effect of goal-directed therapy (GDT) in protocol group versus control group on mortality rate, grouped by control group mortality rates. CI, confidence interval; M–H, Mantel-Haenszel.
using the ‘other cardiac output monitors’ had a greater reduction in complication rate than the subgroup using the PAC. This may relate to the complexity and invasive nature of the PAC in comparison to less invasive cardiac output monitors [98-100].

There remains significant heterogeneity in complication rates among postoperative patients in different centres [4,96]. Although differences in patient demographics are not modifiable, optimal management of the high-risk surgical patient during the perioperative phase may improve overall outcomes. Despite a requirement for an increase in healthcare resources to offer early GDT to high-risk surgical patients, reductions in immediate postoperative complications translate to overall benefits in healthcare costs. Any perceived increase in resource allocation results in a lower patient mortality and morbidity, and therefore a financial saving [101]. Furthermore, reduction in immediate postoperative complications has far-reaching effects, with a potential beneficial effect on long-term survival [102].

This meta-analysis includes trials from 1988 to 2011. As surgical techniques, perioperative care, and patient selection have been refined over these years, the overall mortality of patients has reduced. As such, the applicability of historical trials to current day practice may not be valid. This has recently been evaluated in a meta-analysis of 29 perioperative GDT trials carried out between 1995 and 2008 [5]. There was an approximate halving of mortality rates in the control group every decade (29.5%, 13.5%, 7%). Despite a reduction in mortality rate, the morbidity rate remained constant, with approximately a third of patients experiencing postoperative complications. Perioperative GDT should therefore offer a reduction in complication rates in current practice.

We acknowledge that there is an element of subjectivity in our decision to include trials in this meta-analysis. Many studies were conducted in single centres with limited patient numbers, and not all studies conducted were of a high quality design. This is reflected by the median Jadad score of 3. The effect of study quality on outcomes of GDT trials has been analysed in a recent meta-analysis [5]. Most perioperative GDT trials were single-centre studies, and only a few were conducted in a double-blind manner. In contrast to the lower quality studies, the higher quality studies (defined as a Jadad score of at least 3) did not demonstrate any benefit in mortality reduction. However, the beneficial effect of reduction in perioperative complication rates was evident irrespective of trial quality.

One of the main limitations of this study is the lack of data on the volume and type of fluids given, and the dose of inotropes used due to variation and inconsistencies in

Risk group	Number of studies	Number of patients in GDT group	Mortality in GDT group (%)	Number of patients in control group	Mortality in control group (%)	Odds ratio	95% CI	P-value
Intermediate risk	15	807	16 (2.0)	762	17 (2.2)	0.83	0.41-1.69	0.62
High risk	12	489	31 (6.3)	435	45 (10.3)	0.65	0.39-1.07	0.09
Extremely high risk	5	142	11 (7.7)	173	51 (29.5)	0.2	0.09-0.41	<0.0001

Fluid/inotropes	Number of studies	Number of patients in GDT group	Mortality in GDT group (%)	Number of patients in control group	Mortality in control group (%)	Odds ratio	95% CI	P-value
Fluid	16	732	25 (3.4)	738	38 (5.1)	0.72	0.42-1.23	0.23
Fluid + inotrope	16	706	33 (4.7)	632	75 (11.9)	0.41	0.23-0.73	0.002

Goal	Number of studies	Number of patients in GDT group	Mortality in GDT group (%)	Number of patients in control group	Mortality in control group (%)	Odds ratio	95% CI	P-value
Supranormal	9	365	19 (5.2)	351	65 (18.5)	0.27	0.15-0.47	<0.00001
Normal	23	1073	39 (3.6)	1,019	48 (4.7)	0.80	0.51-1.27	0.35

Target	Number of studies	Number of patients in GDT group	Mortality in GDT group (%)	Number of patients in control group	Mortality in control group (%)	Odds ratio	95% CI	P-value
CI/DO2I	15	674	30 (4.5)	592	73 (12.3)	0.36	0.21-0.36	0.0003
FTc/SV	9	423	15 (3.5)	434	23 (5.3)	0.78	0.40-1.52	0.46
Other	8	341	13 (3.8)	344	17 (4.9)	0.78	0.35-1.72	0.54

Type of monitor	Number of studies	Number of patients in GDT group	Mortality in GDT group (%)	Number of patients in control group	Mortality in control group (%)	Odds ratio	95% CI	P-value
PAC	11	494	20 (4.0)	445	62 (13.9)	0.3	0.15-0.6	0.0007
ODM	8	378	10 (2.6)	389	17 (4.4)	0.77	0.35-1.69	0.51
Other	13	566	28 (4.9)	536	34 (6.3)	0.74	0.43-1.28	0.28

CI, cardiac index (ml/minute/m²); DO2I, oxygen delivery index (ml/minute/m²); FTc, corrected flow time; ODM, oesophageal doppler monitor; PAC, pulmonary artery catheter; SV, stroke volume (ml).
reporting. However, it must be emphasised that the absolute volume of fluids used per se is not as important as the way in which fluid is given. Fluid therapy must be titrated against a patient’s response to a fluid challenge, with the use of haemodynamic monitoring [103]. Such ‘goal-directed’ fluid therapy must also be given at the right time, as GDT is not beneficial after complications have already developed [104,105].

One of the other limitations is missing data on the number of patients with complications, due to variations in reporting of complications in the literature, with some studies reporting the number of complications as opposed to the number of patients with complications. Furthermore, we acknowledge that the definitions and coding of complications are likely to vary between studies. We have analysed data extracted from studies,
rather than data of individual patients. As some of the studies included were carried out several years ago, obtaining data on individual patients would not have been possible. Despite these limitations, the results remain consistent across many subgroups of patients, and are consistent with other recent meta-analyses, supporting our hypothesis [5,106] and the recent EUSOS study which showed a mortality of 4% [107]. The benefit in terms of reduction of complications of GDT in the intermediate risk group may have implications for the majority of the European surgical population.

Conclusion

Despite heterogeneity in trial quality and design, early GDT among high-risk surgical patients has a significant benefit in reducing rates of complications. There is also an associated reduction in mortality among patients at extremely high risk of perioperative death. GDT is of greatest benefit in patients with the highest risk of mortality.

Abbreviations

CI, cardiac index (ml/minute/m²); DO2I, oxygen delivery index (ml/minute/m²); FTc, corrected flow time; ODM, oesophageal doppler monitor; PAC, pulmonary artery catheter; SV, stroke volume (ml).

References

1. Cullinan M, Gray A, Hargraves C, Lansdown M, Martin J, Schubert M: Who Operates When? II. The 2003 Report of the National Confidential Enquiry into Peri-operative Deaths [http://www.ncepod.org.uk/2003wow.html]
2. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM: Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. *Anaesthesia* 2008, 63:695-700.
3. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ: Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. *Ano Surg* 2005, 242:326-341, discussion 341-323.
4. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED: Identification and characterisation of the high-risk surgical population in the United Kingdom. *Crit Care* 2006, 10:R81.
5. Hamilton MA, Cecconi M, Rhodes A: A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. *Anesth Analg* 2011, 112:1392-1402.

Table 3. Complications by subgroup analysis

Risk group	Number of patients in GDT group	Patients with complications in GDT group (%)	Number of patients in control group	Patients with complications in control group (%)	Odds ratio	95% CI	P-value	
Intermediate risk	13	727	194 (26.7)	698	288 (41.3)	0.43	0.27-0.67	0.0002
High risk	10	449	149 (33.2)	395	184 (46.6)	0.56	0.36-0.89	0.01
Extremely high risk	4	89	25 (28.1)	119	67 (56.3)	0.27	0.15-0.51	<0.0001
Fluid/inotropes								
Fluid	12	610	198 (32.5)	636	299 (47.0)	0.47	0.30-0.73	0.0007
Fluid + inotropes	15	653	170 (26.0)	578	240 (41.5)	0.44	0.30-0.64	<0.0001
Goal								
Supranormal	8	312	101 (32.4)	297	153 (51.5)	0.34	0.23-0.51	<0.0001
Normal	19	951	267 (28.1)	917	386 (42.1)	0.51	0.36-0.73	0.0002
Target								
CI/DO2I	14	621	162 (26.1)	538	229 (42.6)	0.41	0.28-0.61	<0.0001
FTc/SV	7	361	118 (32.7)	392	180 (45.9)	0.50	0.30-0.84	0.009
Other	6	281	88 (31.3)	284	130 (45.8)	0.48	0.22-0.40	0.06
Type of monitor								
PAC	10	441	99 (22.4)	391	129 (33.0)	0.49	0.30-0.80	0.005
ODM	6	316	92 (29.1)	347	150 (43.2)	0.46	0.25-0.86	0.01
Other	11	506	177 (35.0)	476	260 (54.6)	0.41	0.26-0.64	0.0001

CI, cardiac index (ml/minute/m²); DO2I, oxygen delivery index (ml/minute/m²); FTc, corrected flow time; GDT, goal-directed therapy; PAC, pulmonary artery catheter; SV, stroke volume (ml).
6. Lefebvre C, ME, Glavni A. Searching for studies. In Cochrane Handbook for Systematic Reviews of interventions Version 5.1.0 (updated September 2008). Edited by Higgins JPT, Green S. The Cochrane Collaboration. 2008.
7. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 (updated March 2011) [http://www.cochrane-handbook.org]. The Cochrane Collaboration, 2011.
8. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay H. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996, 17:1-12.
9. Boyd D, Jackson N. How is risk defined in high-risk surgical patient management? Crit Care 2005, 9:390-396.
10. Higgins JP, Thompson SG, Deeks J, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2003, 327:557-560.
11. Bundgaard-Nielsen M, Ruhnaus B, Secher NH, Kehlet H. Flow-related techniques for preoperative goal-directed fluid optimization. Br J Anaesth 2007, 98:38-44.
12. Donati A, Cornacchini O, Loggi S, Caporelli S, Conti G, Falcetta S, Alò F, Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, Constantin JM, Vallet
13. Higgins JP, Thompson SG, Deeks JJ, Altman DG: Measuring inconsistency in meta-analyses. BMJ 2003, 327:557-560.
14. Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A: Central venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 2005, 103:249-257.
15. O'Connell JB, Renlund DG, Robinson JA, Fowler MB, Oyer PE, Pifarre R, Grady
16. Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A: Central venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 2005, 103:249-257.
17. Fenwick E, Wilson J, Sculpher M, Claxton K: Stroke volume averaging for individualized goal-directed fluid therapy with oesophageal Doppler. Acta Anaesthesiol Scand 2009, 53:34-38.
18. Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, Constantin JM, Vallet: Central venous O2 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care 2010, 14:R193.
19. Jorgensen CC, Bundgaard-Nielsen M, Skovgaard LT, Secher NH, Kehlet H: Stroke volume averaging for individualized goal-directed fluid therapy with oesophageal Doppler. Acta Anaesthesiol Scand 2009, 53:34-38.
20. Holte K, Foss NB, Andersen J, Valentin L, Lund C, Bie P, Kehlet H: Liberal or restrictive fluid administration in fast-track colorectal surgery: a randomized, double-blind study. Br J Anaesth 2007, 99:500-508.
21. Holte K, Hahn RG, Ravl N, Bertelsen KG, Hansen S, Kehlet H: Influence of “liberal” versus “restrictive” intraoperative fluid administration on elimination of a postoperative fluid load. Anesthesiology 2007, 106:75-79.
22. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
23. Holte K, Kristensen BB, Valentin L, Foss NB, Husted H, Kehlet H: Liberal versus restrictive fluid management in knee arthroplasty: a randomized, double-blind study. Anesth Analg 2007, 105:465-474.
24. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
25. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
26. Holte K, Kristensen BB, Valentin L, Foss NB, Husted H, Kehlet H: Liberal versus restrictive fluid management in knee arthroplasty: a randomized, double-blind study. Anesth Analg 2007, 105:465-474.
27. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
28. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
29. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
30. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
31. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
32. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
33. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
34. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
35. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
36. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
37. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
38. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
39. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
40. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
41. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
42. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
43. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
44. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
45. Holte K, Klarin B, Christensen DS, Lund C, Nielsen KG, Bie P, Kehlet H: Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 2004, 240:892-899.
hetastarch coupled with an enhanced recovery program. Dis Colon Rectum 2009, 52:1935-1940.
85. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS: Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988, 94:1176-1186.
86. Sinclair S, James S, Singer M: Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 1997, 315:909-912.
87. Szakmany T, Toth I, Kovacs Z, Leiner T, Mikor A, Koszegi T, Molnar Z: Effects of volumetric vs. pressure-guided fluid therapy on postoperative inflammatory response: a prospective, randomized clinical trial. Intensive Care Med 2005, 31:656-663.
88. Ueno S, Tanabe G, Yamada H, Kusano C, Yoshidome S, Nanki K, Yamamoto S, Aikou T: Response of patients with cirrhosis who have undergone partial hepatectomy to treatment aimed at achieving supranormal oxygen delivery and consumption. Surgery 1998, 123:782-786.
89. Valentine RJ, Duke ML, Inman MH, Grayburn PA, Hagino RT, Kakish HB, Clagett GP: Effectiveness of pulmonary artery catheters in aortic surgery: a randomized trial. J Vasc Surg 1998, 27:203-211; discussion 211-202.
90. Van Der Linden PJ, Dierick A, Wilmin S, Bellens B, De Hert SG: A randomized controlled trial comparing an intraoperative goal-directed strategy with treatment policy of a deliberate perioperative increase in oxygen delivery in high-risk surgical patients. Intensive Care Med 1997, 23:85-90.
91. Venn R, Steel A, Richardson P, Poloniecki J, Grounds M, Newman P: Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 2002, 88:65-71.
92. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, Fleming SC: Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 2003, 90:634-642.
93. Wang X, Ling N, Janting G, Wei L, Shaoqiu T, Zhihua T, Tao G, Jianjuan Z, Fengchan X, Hu S, Weiming Z, Jie-Shou L: Restricted peri-operative fluid administration adjusted by serum lactate level improved outcome after major elective surgery for gastrointestinal malignancy. Surgery 2010, 147:542-552.
94. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E: Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 1999, 318:1099-1103.
95. Ziegler DW, Wright JG, Choban PS, Flanbaum L: A prospective randomized trial of preoperative “optimization” of cardiac function in patients undergoing elective peripheral vascular surgery. Surgery 1997, 122:584-592.
96. Ghafeni AA, Birkmeyer JD, Dmirk JB: Variation in hospital mortality associated with inpatient surgery. N Engl J Med 2009, 361:1368-1375.
97. Lobo SM, Lobo FR, Pellicani CA, Patini DS, Yamamoto AE, de Oliveira NE, Serrano P, Sanches HS, Spegneri MA, Queiroz MM, Christiano AC Jr, Saviero EF, Alvarez PA, Teixeira SP, Cunrath GS: Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN14244514]. Crit Care 2006, 10:R72.
98. Hofer CK, Cecconi M, Marx G, della Rocca G: Minimally invasive haemodynamic monitoring. Eur J Anaesthesiol 2009, 26:996-1002.
99. Connors AF Jr, Speroff T, Dawson NW, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaletti H, Broste S, Bellamy P, Lynn J, Knaus WA: The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996, 276:889-897.
100. Finfer S, Delaney A: Pulmonary artery catheters. BMJ 2006, 333:930-931.
101. Guest JR, Boyd O, Hart WM, Grounds RM, Bennett ED: A cost analysis of a treatment policy of a deliberate perioperative increase in oxygen delivery in high risk surgical patients. Intensive Care Med 1997, 23:85-90.
102. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, Bennett D, Grounds RM: Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med 2010, 36:1327-1332.
103. Cecconi M, Parsons AK, Rhodes A: What is a fluid challenge? Curr Opin Crit Care 2011, 17:290-295.
104. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R: A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 1995, 333:1025-1032.
105. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CI, Watson D: Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 1994, 330:1717-1722.
106. Gurgel ST, do Nascimento P Jr: Maintaining tissue perfusion in high-risk surgical patients: a systematic review of randomized clinical trials. Anesth Analg 2011, 112:1384-1391.
107. Pearse R, Moreno RP, Bauer P, Pelosi P, Metzner P, Spies C, Vallaert B, Vincent JL, Hoeft A, Rhodes A: Mortality after surgery in Europe: a 7 day cohort study. Lancet 2012, 380:1059-1065.

doi:10.1186/cc11823

Cite this article as: Cecconi M et al.: Clinical review: Goal-directed therapy - what is the evidence in surgical patients? The effect on different risk groups. Critical Care 2013, 17:209.