Title	Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13
Authors(s)	Misiak, Katarzyna, Casey, Eoin, Murphy, Cormac D.
Publication date	2011-05
Publication information	Misiak, Katarzyna, Eoin Casey, and Cormac D. Murphy. “Factors Influencing 4-Fluorobenzoate Degradation in Biofilm Cultures of Pseudomonas Knackmussii B13” 45, no. 11 (May, 2011).
Publisher	Elsevier
Item record/more information	http://hdl.handle.net/10197/2960
Publisher's statement	This is the author’s version of a work that was accepted for publication in Water Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Water Research Volume 45, Issue 11, May 2011, Pages 3512-3520 DOI: 10.1016/j.watres.2011.04.020
Publisher's version (DOI)	10.1016/j.watres.2011.04.020

Downloaded 2023-07-26T07:02:40Z

The UCD community has made this article openly available. Please share how this access benefits you. Your story matters! (@ucd_oa)

© Some rights reserved. For more information
Factors influencing 4-fluorobenzoate degradation in biofilm cultures of

Pseudomonas knackmussii B-13

Katarzyna Misiak, *1,3* Eoin Casey *1,3* and Cormac D. Murphy *2,3*

1School of Chemical and Bioprocess Engineering, 2School of Biomolecular and Biomedical Science, 3Centre for Synthesis and Chemical Biology, University College Dublin.

Corresponding Author: Eoin Casey.

Address: UCD School of Chemical and Bioprocess Engineering,

Engineering and Materials Science Centre,

University College Dublin,

Belfield,

Dublin 4,

Ireland.

Email: eoin.casey@ucd.ie

Telephone: +353 1 7161877

Fax: +353 1 7161177
Abstract

Membrane aerated biofilm reactors (MABRs) have potential in wastewater treatment as they permit simultaneous COD minimisation, nitrification and denitrification. Here we report on the application of the MABR to the removal of fluorinated xenobiotics from wastewater, employing a *Pseudomonas knackmussii* monoculture to degrade the model compound 4-fluorobenzoate. Growth of biofilm in the MABR using the fluorinated compound as the sole carbon source occurred in two distinct phases, with early rapid growth (up to 0.007 h\(^{-1}\)) followed by ten-fold slower growth after 200 h operation. Furthermore, the specific 4-fluorobenzoate degradation rate decreased from 1.2 g g\(^{-1}\)h\(^{-1}\) to 0.2 g g\(^{-1}\)h\(^{-1}\), indicating a diminishing effectiveness of the biofilm as thickness increased. In planktonic cultures stoichiometric conversion of substrate to the fluoride ion was observed, however in the MABR, approximately 85 % of the fluorine added was recovered as fluoride, suggesting accumulation of ‘fluorine’ in the biofilm might account for the decreasing efficiency. This was investigated by culturing the bacterium in a tubular biofilm reactor (TBR), revealing that there was significant fluoride accumulation within the biofilm (0.25 M), which might be responsible for inhibition of 4-fluorobenzoate degradation. This contention was supported by the observation of the inhibition of biofilm accumulation on glass coverslips in the presence of 40 mM fluoride. These experiments highlight the importance of fluoride ion accumulation on biofilm performance when applied to organofluorine remediation.

Keywords

biofilm, fluorobenzoate, fluoride, membrane, biodegradation
1 Introduction

The membrane aerated biofilm reactor (MABR), in which oxygen is supplied to the biofilm solely from a gas permeable substratum, shows significant potential as a technology for high-rate biological wastewater treatment. In the MABR, the biofilm is naturally immobilized on an oxygen permeable membrane. Oxygen diffuses through the membrane into the biofilm where oxidation of pollutants, supplied at the biofilm-liquid interface takes place. The oxygen supply rate can be controlled by the intra-membrane oxygen partial pressure and membrane surface area. Several investigators have reported performance advantages of MABRs for simultaneous COD oxidation, nitrification, and denitrification (Hibiya et al. 2003; Semmens et al. 2003; Timberlake et al. 1988; Yamagiwa et al. 1994), high oxygen utilisation efficiencies (Pankhania et al. 1994) and high specific organic reaction rates (Brindle et al. 1999; Ohandja and Stuckey 2006). Much of the recent research has focused on nitrogen removal (Downing and Nerenberg 2008; Lackner et al. 2008), however there is also interest in the use of the MABR for the aerobic treatment of xenobiotics. MABRs are viewed as particularly favourable in this context because bubbleless operation minimizes the air-stripping of compounds with high Henry’s law constants such as xylene (Debus and Wanner 1992) or acetonitrile (Li et al. 2008). The MABR is also of interest because the creation of and ease of manipulation of a defined oxic/anoxic micro-environment can be advantageous for the degradation of compounds with problematic intermediates such as perchloroethylene (Ohandja and Stuckey 2006).

In recent years the presence of fluorinated organic compounds in the environment has drastically increased as a result of the significant rise in the production of wide range of fluorinated pharmaceuticals and agrochemicals developed due to the unique and desirable properties of fluorine (Hansen et al. 2001; Muller et al. 2007). Environmentally-unfriendly incineration is the mainstay for the management of most fluorinated waste (dos Santos et al.
Thus alternative methods are required to treat post-production water contaminated with fluorinated compounds, and biological processes might be the most economically and ecologically sound option. Biofilm reactors are ideally suited to the biological treatment of xenobiotics. It has been shown that biofilms have a higher resistance to toxic compounds (Morton et al. 1998) and this attribute could be highly beneficial when treating fluorinated aromatic compounds as transformation intermediates are often toxic. Strains have been isolated from industrial environments that have degradation capabilities towards fluorinated compounds (Carvalho et al. 2005). One such species, isolated from a sewage treatment plant and shown to have the ability to degrade fluorinated aromatic compounds, is *Pseudomonas knackmussii*, also known as *Pseudomonas sp.* B13. The strain has been also reported to form biofilm (Nielsen et al. 2000) and with its degradation properties (Schreiber et al. 1980) is potentially an ideal microorganism for the removal of fluorinated aromatic compounds in wastewater treatment.

There are very few studies that have investigated the degradation of fluorinated compounds in biofilms, and none has investigated the degradation of fluorinated aromatic compounds in MABR system. Given the environmental significance of such compounds, we describe here investigations undertaken to evaluate the possible application of bacterial biofilms in the bioremediation of organofluorine-contaminated waste streams.

2 Materials and Methods

2.1 Medium and culture conditions

Pseudomonas knackmussii or *Pseudomonas sp.* B13 (DSM 6978) was obtained from the German Collection of Microorganisms and Cell Cultures (DSMZ, Germany). Brunners mineral medium (www.dsmz.de, medium 457) supplemented with the appropriate carbon source (10 mM) was the growth medium except for where stated otherwise.
2.2 Planktonic studies

The planktonic growth rates were determined in 250 mL conical flasks with a working volume of 50 mL and incubated at 30°C with shaking at 150 rpm. The flasks were inoculated with 1 mL of a 24 h-old culture adjusted, only if needed, to an optical density of 0.8 at 660 nm with PBS (phosphate buffered saline). All planktonic trials were performed in triplicate. Biomass was established by dry cell weight and colony forming units (CFU) measurements.

2.3 MABR

The MABR experiments were set-up as described previously by Heffernan et al. (2009b) with a modification of the sampling port (SI, Fig 4). The system operation was commenced by filling the reactor with 200 mL of medium and sterilisation of reactor by autoclaving at 121°C for 15 min in an Astel autoclave. Medium for the continuous phase of operation was sterilised separately by autoclaving at 121°C for 15 min in a 10 L carboy, which was subsequently connected aseptically to the reactor vessel. To prepare the inoculum; cells were first grown for 24 h in batch culture prior to reactor inoculation to obtain the exponential phase of growth; 10 mL of this culture was adjusted to a turbidity of approximately 0.8 at 660 nm in PBS and used to inoculate the reactor. Following inoculation the system was operated in batch mode for 48 h after which time the flow of medium was initiated at a flow rate of 40 mL h⁻¹ and maintained throughout the biofilm accumulation. Visible biofilm appeared within 48 h from commencing the feed. Experiments involving a change of the flow rate and pressure were performed after the biofilm had reached a steady state, which was established by thickness measurements. The reactor effluent was sampled with a 5 mL luer lock syringe attached to the circulation loop and analysed for pH, optical density (OD) and dissolved oxygen concentration (DO). The culture supernatant was also obtained by centrifuging the remaining liquid sample and stored at -20°C until analysis of the fluoride ion and other fluorometabolites were conducted.
2.4 Tubular Biofilm Reactor (TBR)

The TBR experiments were set-up with some modifications of the system described previously by Heffernan et al. (2009a). Silicone tubing was sourced from VWR and Altec. The system was equipped only with one sample port located at the downstream section of the 90 cm reactor tubing and an additional 300 mL Duran bottle was introduced as an inoculation tank containing 200 mL of medium (SI, Fig 5), which was sterilised and then inoculated with 5 mL of 24 h-old cells (OD = 0.8). Freshly inoculated medium was pumped through the system and after 48 h the feed was switched on and the first sample of culture supernatant was taken. TBR experiments with 10 mM of 4-fluorobenzoate as the carbon source were conducted for 216, 288, 360, 408, 432, and 504 h. Biofilm appeared within 96 h from the reactor inoculation. Samples were collected every 24 h during continuous culture using a luer lock syringe connected to the sampling port. DO, OD and pH were measured and the remaining liquid sample was centrifuged and the supernatant stored frozen until analysis of the fluoride ion and other fluorometabolites were conducted.

The initial investigation of free fluoride accumulation in TBR grown biofilm was performed in two experiments using medium containing 10 mM 4-fluorobenzoate as a carbon source. After 216 h operation of these two replicates was terminated and content of each reactor was harvested as three fractions: planktonic culture suspended in media (F1), sloughed off biofilm (F2) and mature biofilm (F3). F1 was obtained by draining the reactor tubing; F2 by washing cell content out with known volume of deionised water and F3 by pinching biofilm out and washing it out with known volume of deionised water. After each fraction was centrifuged, supernatants were examined for free fluoride ion concentration. Precipitated cells from each fraction were sonicated for 3 min (Ika Labortechnik U200S control) and centrifuged. Fluoride ion was measured in cell free extracts. Organic
fluorometabolites were extracted with ethyl acetate from cell extracts and detected by 19F NMR.

2.5 Biofilm thickness measurement

Biofilm thickness measurements in the MABR system were performed using the method described previously by Syron and Casey (2008b). The value obtained from the raw thickness was linearized (ζ) by using the equation $\zeta = (r_o + \delta) \ln\left(\frac{(r_o + \delta)(r_o^{-1})}{\delta}\right)$, where δ is the recorded thickness and r_o is the radius of the silicone tube; the biofilm accumulation rate was then calculated from this value.

Biofilm thickness in the TBR was established after each experiment was terminated and in a different manner than the online biofilm thickness measurement in the MABR system. Thickness analysis was performed using Able Image Analyser software (Mu Labs, Slovenia) on biofilm light microscopy images taken with an Olympus DP70 digital camera (4x magnification) by measuring the distance from the membrane to the biofilm liquid interface. The microscopy biofilm images were obtained after the reactor tubing (together with biofilm grown inside it) was cut and cryoembedded (embedded in freezing medium and frozen), the silicone tubing was removed and biofilm sample was sliced. The procedure was previously described by Heffernan et al. (2009a). From each section of the reactor six phase contrast images were analysed for thickness with 45 measurements taken from each image. These measurements were then averaged to give a final thickness.

2.6 Biofilm cultivation in six well plates

Glass cover slips were treated with UV light, place in individual wells of 6-well plates and immersed in 8 mL sterile medium containing either 4-fluorobenzote (10 mM), benzoate (10 mM) or benzoate (10 mM) plus sodium fluoride (40 mM). Subsequently, the medium was inoculated with 1 mL of 24 h-old culture (OD = 0.8 at 660 nm) and incubated on a rocking
platform at 30°C. Control wells contained medium that was not inoculated. At each sampling
time (10, 24, 34, 48, 58 and 72 h) cover slips were removed and washed with phosphate
buffered saline (PBS). The cover slips were stained with crystal violet and DAPI (4',6-
diamidino-2-phenylindole) and microscopically examined using an Olympus BX51
epifluorescence microscope. The area of biofilm coverage of each slide was calculated by
dividing the sum of all unit areas by the total area of a slide (141,050 μm²). The average
biofilm coverage represents the average value obtained from 6 images, where each image
represents separate slide taken from a well of a 6 well plate at each sampling time.

2.7 Substrate and product analysis

Free fluoride concentration was measured by Fluoride/Fluoride Combination Electrode
(Orion model 94-09) following the method described by Cooke (1972). The electrode was
calibrated using NaF standards (1 mM, 10 mM and, if needed, 100 mM) in a mixture of
H₂SO₄ (1 M) and KNO₃/trisodium citrate buffer (0.5 M). Sample preparation involved mixing
1 mL of supernatant (or cell extract) with 1 mL of H₂SO₄ (1 M) solution and 8 mL of a
KNO₃/trisodium citrate buffer (0.5 M).

4-Fluorobenzoate and benzoate concentrations were determined by High Pressure
Liquid Chromatography (HPLC) using a Varian ProStar system. Supernatant (10 μm) was
eluted from a reverse phase column C18 (4.6 x 150 mm, 5 μm column Thermo Hypersil)
using phosphoric acid (1g L⁻¹) and acetonitrile (60:40) as the eluent. The 254 nm wavelength
was monitored. The retention time under these conditions was 3.60 minutes for 4-
fluorobenzoate and 3.29 minutes for benzoate. 4-Fluorobenzoate was obtained from
Fluorochem (Derbyshire, UK) other chemicals and various media components were obtained
from a number of sources including BDH, Oxoid and Sigma-Aldrich.
Culture supernatants and extracts thereof were analysed by 19F nuclear magnetic resonance spectroscopy (19F NMR), using D$_2$O as a solvent. Resonances detecting free fluoride, 4-fluorobenzoate and 4-fluorocyclohexadiene-cis,cis-1,2-diol-1-carboxylate (4FDC) appear at δ -120, -110 and -116 ppm, respectively (Boersma et al. 2004; SI, Fig 6). All 19F NMR analyses were performed using a Varian 400 MHz spectrometer.

3 Results

3.1 Development of biofilm in MABR

P. knackmussii was adapted for growth on 4-fluorobenzoate by continuous subculturing in medium containing 10 mM of the fluorinated substrate, eventually reaching a growth rate of 0.22 h$^{-1}$. This adapted strain was employed in all planktonic studies and in the establishment of the biofilm cultures.

MABR experiments were conducted for 264 h (reactor I) and 600 h (reactors II and III), where 10 mM 4-fluorobenzoate was the sole source of carbon. Growth of the biofilm was assessed by measuring the thickness, and in the reactors II and III two distinct growth phases were observed: a period of relatively fast growth up to 200 h (0.004 and 0.007 h$^{-1}$, respectively) followed by a slower (factor 10x) growth phase (Fig 1A). Effluent from the reactors was collected every 24 hours and the concentrations of fluoride ion and 4-fluorobenzoate were measured, and used to calculate a specific utilisation rate (Fig 1B). Although the biofilm thickness increased throughout the period of operation, the concentration of 4-fluorobenzoate (Fig 1C) and fluoride ion in the effluent stabilised after approx. 100 h, thus the specific degradation rate decreased from 1.2 g g$^{-1}$h$^{-1}$ in the early stage of biofilm growth (<200 h) to 0.2 g g$^{-1}$h$^{-1}$ as the biofilm matured. Furthermore it was established during operation of reactor III, that there was no correlation between substrate degradation and oxygen supply; the highest specific utilisation rate was established at a
pressure of 1 bar pure oxygen but only during the initial biofilm growth. The first increase of oxygen pressure from 0.4 to 0.7 bar resulted in increase of DO found in spent media from 3 to 6 mg/L. After the oxygen pressure was again increased the DO decreased back to the previous level of 2-3 mg/L and did not change overall during the rest of experiment even when the oxygen pressure was regularly elevated and declined. Therefore, some other factor(s), such as the accumulation of a toxic compound within the biofilm, was the cause of the poor substrate degradation rate (Adebusoye et al. 2008; Baggi and Zangrossi 1999; Miguez et al. 1995). Approximately 85% of the fluorine initially added could be accounted for in terms of the fluoride ion and 4-fluorobenzoate; 19F NMR analysis of the effluent revealed only these metabolites (not shown), thus it is possible that a fluorinated intermediate, or fluoride ion, might accumulate in the biofilm. To investigate this, a TBR was employed because it facilitates recovery of biofilm for analysis of metabolites.

3.2 Characteristics of 4-fluorobenzoate degradation in TBR

P. knackmussii was grown in the TBR with 10 mM 4-fluorobenzoate as a source of carbon for experiments of 216-504 h duration and terminated when the system reached steady state based on unvarying and low OD values of the effluent. Initial attachment, microcolony formation, development of mature biofilm structure, sloughing events and biofilm recovery were observed to take place during each TBR experiment. Since each experiment was terminated at a different time it was possible to observe a relationship between cultivation time and biofilm thickness (Fig 2). The utilization of 4-fluorobenzoate was monitored by free fluoride and 4-fluorobenzoate measurements in the effluent, which together with biofilm dry cell weight measurements were used to calculate final specific utilisation rates.

The specific utilization decreased with biofilm increasing thickness, similar to what was observed in the MABR. A doubling of the thickness, from 25-50µm, resulted in a 4-fold decrease in the degradation rate (Fig 2). This difference is unlikely to be explained by
substrate or oxygen limitation given the low thickness of the TBR grown biofilms. Furthermore the total fluorine (fluoride ion plus 4-fluorobenzoate) recovered in culture supernatants was approximately 85% of the starting substrate concentration. 19F NMR analyses of the effluent demonstrated that these comprised the major fluorine components, although a very small signal at δ -116 ppm (4-fluorocyclohexadiene-cis,cis-1,2-diol-1-carboxylate) was also observed (SI, Fig 6).

Fluoride ion accumulation has been observed in oral biofilms (Engstrom et al. 2002; Watson et al. 2005) and it is a known enzyme inhibitor (Marquis et al. 2003; Nordstrom et al. 2009; Phan et al. 2002), thus the concentration of fluoride ion was determined in the biofilm. Three fractions of *Pseudomonas knackmussii* culture obtained from the two TBR experiments operated for 216 h were analysed; the planktonic cells collected along with spent medium (F1); the biofilm which detached after washing the TBR tubing with deionised water (F2); and the biofilm that was scraped off the TBR tubing (F3). In total, 0.095 mmol total fluoride ion was measured most of which was directly associated with the biofilm (Table 1). Fluoride ion was also measured in the biofilm extracts from TBR experiments that were conducted for 216-504 h. The amount of free fluoride as well as its total concentrations retained in the biofilm were found to increase with time, and consequently with thickness, from 0.14 to over 0.25 M (Fig 2). Mass balance calculated for those TBR experiments indicates that accumulation of fluoride ion does not account for all of the fluorine in the biofilm (Table 2). At least some of the fluorine is also present as 4-fluorobenzoate (SI, Fig 7), and the remainder may be in the form of polymeric substances arising from auto-oxidation of fluorocatechols, which are known intermediates of fluorobenzoate degradation, and are not typically observable by 19F NMR.
3.3 The effect of fluoride ion on planktonic growth rates and biofilm formation.

The effects of fluoride have been studied in a variety of microorganisms, but nothing is known about the effects of the ion in *P. knackmussii*, thus experiments were undertaken by supplementing the medium with sodium fluoride in planktonic batch growth trials and biofilm cultures. To compare and eliminate possible growth limitations occurring as a result of fluorinated substrate degradation, benzoate was used as an alternative sole source of carbon in some experiments. Growth and specific utilisation rates were calculated in planktonic cultures incubated with 10, 20 and 40 mM NaF, by measuring dry cell weight and CFU (Table 3). In all planktonic batch experiments all applied fluorine, as 4-fluorobenzoate, was recovered in the culture supernatant as free fluoride ion at the end of logarithmic phase. Growth rates decreased as the fluoride ion increased, and the differences in growth rates were much more marked when benzoate was the carbon source. Similarly the specific utilisation rates of the substrate decreased as the concentration of fluoride increased.

The effect of fluoride ion on biofilm development was investigated by culturing the bacterium in six-well plates containing a glass coverslip, with medium containing benzoate and supplemented with 40 mM sodium fluoride. This additional fluoride concentration was established to have a clear negative impact on *P. knackmussii* biofilm culture. Crystal violet staining followed by microscopy and image software analysis was used to calculate the proportion of area covered by biofilm in all 6-well plate experiments (Fig 3). The average percentage coverage area based on image analysis corresponded well to the observed visual result for each slide (SI Figs 1-3) and complemented the OD recorded for planktonic cells; as biofilm grew on the glass cover slide the amount of the biomass in suspension decreased. It is clear that in the presence of 40 mM fluoride ion there is a dramatic reduction in coverage area.
4 Discussion and conclusions

Organofluorine compounds are used in an extensive range of applications, and consequently are widespread in the environment (Key et al. 1997). Microorganisms have long been known to degrade organofluorine compounds (Murphy 2010) thus have considerable potential in bioremediation of polluted sites and waste streams. However, relatively few investigations have been conducted on the use of biofilms for organofluorine degradation (Emanuelsson et al. 2006; Osuna et al. 2008). The main objective of the present research was to assess the performance of continuously operated bench-scale biofilm reactors for biodegradation of fluorinated compounds. *Pseudomonas knackmussii* was used as a model organism since its utilisation abilities towards halogenated compounds is well studied (Dorn and Knackmuss 1978; Schmidt et al. 1980; Schreiber et al. 1980). The MABR was chosen as the main system for investigation, since high loading rates can be applied and high oxygen transfer efficiencies are achievable through bubbleless aeration. (Syron and Casey 2008a).

4.1 MABR performance

P. knackmussii planktonic and biofilm culture was shown to utilise 10 mM of 4-fluorobenzoate as a source of carbon. However, in the MABR the calculated specific 4-fluorobenzoate degradation rates unexpectedly declined with increasing biofilm thickness. A similar observation was made by Heffernan et al. (2009b) while investigating fluoroacetate degradation in *P. fluorescens* in MABR. Mathematical modelling suggested that the rate of fluoroacetate degradation was affected by oxygen limitation and fluoride ion accumulation, but in the present study increasing the intra-membrane oxygen pressure in the MABR did not affect the oxygen transfer rate. Furthermore, *P. knackmussii* biofilm cultivated in MABR on 4-fluorobenzoate did not achieve the thickness of *P. fluorescens* biofilm (1000 μm). Thus some other factor(s) causes the specific degradation rate to decline.
4.2 Free fluoride accumulation in biofilm continuous culture

There was a lower concentration of total fluorine (fluoride ion plus 4-fluorobenzoate) in the spent medium from the MABR experiments than in the starting medium, indicating that some ‘fluorine’ had accumulated in the biofilm. Thus a possible reason for declining degradation ability of biofilms in MABR was accumulation of free fluoride, which has been observed in dental plaques (Engstrom et al. 2002; Petersson et al. 2002; Twetman et al. 2003) but not previously reported in *P. knackmussii* biofilms. Since it is difficult to examine biofilm composition in the MABR system even after the experiment is terminated, biofilm grown in TBR was examined and high concentration of fluoride ion of up to 0.25 M were measured. Furthermore, accumulation of fluoride ion in the biofilm was determined to occur over time, and at such high concentrations might inhibit several key enzymes resulting in a diminished capability of the cells to degrade substrate.

4.3 Fluoride ion impact on planktonic and biofilm culture

Fluoride ion has been reported to impair transport mechanisms in bacteria (Marquis et al. 2003) and inhibit action of several enzymes (Belli et al. 1995; GuhaChowdhury et al. 1997; Phan et al. 2002; Todd and Hausinger 2000). Ochoa-Herrera et al. (2009) investigated the effect of fluoride on microorganisms associated with wastewater systems, including denitrifying bacteria, aerobic heterotrophs and methanogens, and found that the groups of organisms investigated varied in their sensitivity to the ion. Thus, it was necessary to verify the influence of free fluoride concentrations on the planktonic and biofilm growth of *P. knackmussii*. Fluoride concentrations of 20 mM inhibited the growth of the strain in planktonic culture, and the formation of biofilms on coverslips was severely affected by the presence of 40 mM fluoride, strongly suggesting that the fluoride that accumulated in the biofilm as a result of 4-fluorobenzoate degradation in the MABR and TBR systems was
responsible for the diminished degradation capacity, and highlights the problem of using such a system to remediate organofluorine-contaminated wastewater streams.

5. Conclusions

The biodegradation of 4-fluorobenzoate was investigated in planktonic and biofilm cultures using *Pseudomonas knackmussii*, a strain originally isolated from a wastewater treatment plant. It was established that the performance of the biofilm culture was comparable to planktonic culture. However, the specific utilisation of the substrate decreased with increasing biofilm thickness. The presence of fluoride ion, as the main product of 4-fluorobenzoate utilisation, was shown to be detrimental to planktonic growth and biofilm development. High concentrations (up to 0.25 M) of free fluoride were found to be retained within the biofilm and probably contributed to the decrease of the specific degradation rates. This work has broader implications for the use of biofilm-based wastewater treatment systems where organofluorine xenobiotics are to be degraded. Further investigation would be needed to establish the effect of fluoride accumulation on the degradation of organic matter in biofilm treatment processes for industrial wastewater.

Acknowledgment

The authors acknowledge a CSCB studentship to KM
References

Adebusoye SA, Picardal FW, Ilori MO, Amund OO. 2008. Influence of chlorobenzoic acids on the growth and degradation potentials of PCB-degrading microorganisms. World Journal of Microbiology & Biotechnology 24(7):1203-1208.

Baggi G, Zangrossi M. 1999. Degradation of chlorobenzoates in soil suspensions by indigenous populations and a specialized organism: interactions between growth and non-growth substrates. Fems Microbiology Ecology 29(4):311-318.

Belli WA, Buckley DH, Marquis RE. 1995. Weak Acid Effects and Fluoride Inhibition of Glycolysis by Streptococcus-Mutans Gs-5. Canadian Journal of Microbiology 41(9):785-791.

Boersma FGH, McRoberts WC, Cobb SL, Murphy CD. 2004. A F-19 NMR study of fluorobenzoate biodegradation by Sphingomonas sp HB-1. Fems Microbiology Letters 237(2):355-361.

Brindle K, Stephenson T, Semmens MJ. 1999. Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor. Water Environment Research 71(6):1197-1204.

Carvalho MF, Jorge RF, Pacheco CC, De Marco P, Castro PML. 2005. Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environmental Microbiology 7(2):294-298.

Cooke JA, 1972. Fluoride compounds in plants: their occurrence, distribution and effects. Ph.D. thesis, University of Newcastle-upon-Tyne, UK.
Debus O, Wanner O. 1992. Degradation of Xylene by a Biofilm Growing on a Gas-
Permeable Membrane. Water Science and Technology 26(3-4):607-616.

Dorn E, Knackmuss HJ. 1978. Chemical-Structure and Biodegradability of Halogenated
Aromatic-Compounds - 2 Catechol 1,2-Dioxygenases from a 3-Chlorobenzoate-
Grown Pseudomonad. Biochemical Journal 174(1):73-84.

dos Santos LMF, Spicq A, New AP, Lo Biundo G, Wolff JC, Edwards A. 2001. Aerobic
biotransformation of 4-fluorocinnamic acid to 4-fluorobenzoic acid. Biodegradation
12(1):23-29.

Downing LS, Nerenberg R. 2008. Total nitrogen removal in a hybrid, membrane-aerated
activated sludge process. Water Research 42(12):3697-3708

Emanuelsson MAE, Henriques IS, Jorge RMF, Castro PML. 2006. Biodegradation of 2-
fluorobenzoate in upflow fixed bed bioreactors operated with different growth support
materials. Journal of Chemical Technology and Biotechnology 81(9):1577-1585.

Engstrom K, Petersson LG, Twetman S. 2002. Fluoride concentration in supragingival dental
plaque after a single intake or habitual consumption of fluoridated milk. Acta
Odontologica Scandinavica 60(5):311-314.

GuhaChowdhury N, Clark AG, Sissons CH. 1997. Inhibition of purified enolases from oral
bacteria by fluoride. Oral Microbiology and Immunology 12(2):91-97.

Hansen KJ, Clemen LA, Ellefson ME, Johnson HO. 2001. Compound-specific, quantitative
characterization of organic: Fluorochemicals in biological matrices. Environmental
Science & Technology 35(4):766-770.

Heffernan B, Murphy CD, Casey E. 2009a. Comparison of Planktonic and Biofilm Cultures
of Pseudomonas fluorescens DSM 8341 Cells Grown on Fluoroacetate. Applied and
Environmental Microbiology 75(9):2899-2907.
Heffernan B, Murphy CD, Syron E, Casey E. 2009b. Treatment of Fluoroacetate by a Pseudomonas fluorescens Biofilm Grown in Membrane Aerated Biofilm Reactor. Environmental Science & Technology 43(17):6776-6785.

Hibiya K, Terada A, Tsuneda S, Hirata A. 2003. Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor. Journal of Biotechnology 100(1):23-32.

Key BD, Howell RD, Criddle CS. 1997. Fluorinated organics in the biosphere. Environmental Science & Technology 31(9):2445-2454.

Lackner S, Terada A, Smets BF. 2008. Heterotrophic activity compromises autotrophic nitrogen removal in membrane-aerated biofilms: Results of a modeling study. Water Research 42(4-5):1102-1112.

Li TG, Liu JX, Bai RB, Wong FS. 2008. Membrane-aerated Biofilm reactor for the treatment of acetonitrile wastewater. Environmental Science & Technology 42(6):2099-2104.

Marquis RE, Clock SA, Mota-Meira M. 2003. Fluoride and organic weak acids as modulators of microbial physiology. Fems Microbiology Reviews 26(5):493-510.

Miguez CB, Greer CW, Ingram JM, Macleod RA. 1995. Uptake of Benzoic-Acid and Chlorosubstituted Benzoic-Acids by Alcaligenes-Denitrificans Bri-3010 and Bri-6011. Applied and Environmental Microbiology 61(12):4152-4159.

Morton LHG, Greenway DLA, Gaylarde CC, Surman SB. 1998. Consideration of some implications of the resistance of biofilms to biocides. International Biodeterioration & Biodegradation 41(3-4):247-259.

Muller K, Faeh C, Diederich F. 2007. Fluorine in pharmaceuticals: Looking beyond intuition. Science 317(5846):1881-1886.

Murphy CD. 2010. Biodegradation and biotransformation of organofluorine compounds. Biotechnology Letters 32(3):351-359.
Nielsen AT, Tolker-Nielsen T, Barken KB, Molin S. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environmental Microbiology 2(1):59-68.

Nordstrom A, Mystikos C, Ramberg P, Birkhed D. 2009. Effect on de novo plaque formation of rinsing with toothpaste slurries and water solutions with a high fluoride concentration (5,000 ppm). European Journal of Oral Sciences 117(5):563-567.

Ochoa-Herrera V, Banihani Q, Leon G, Khatri C, Field JA, Sierra-Alvarez R. 2009. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Research 43(13):3177-3186.

Ohandja DG, Stuckey DC. 2006. Development of a membrane-aerated biofilm reactor to completely mineralise perchloroethylene in wastewaters. Journal of Chemical Technology and Biotechnology 81(11):1736-1744.

Osuna MB, Sipma J, Emanuelsson MAE, Carvalho MF, Castro PML. 2008. Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feeding. Water Research 42(14):3857-3869.

Pankhania M, Stephenson T, Semmens MJ. 1994. Hollow-Fiber Bioreactor for Waste-Water Treatment Using Bubbleless Membrane Aeration. Water Research 28(10):2233-2236.

Petersson LG, Arvidsson I, Lynch E, Engstrom K, Twetman S. 2002. Fluoride concentrations in saliva and dental plaque in young children after intake of fluoridated milk. Caries Research 36(1):40-43.

Phan TN, Nguyen PTM, Abranches J, Marquis RE. 2002. Fluoride and organic weak acids as respiration inhibitors for oral streptococci in acidified environments. Oral Microbiology and Immunology 17(2):119-124.
Schmidt E, Remberg G, Knackmuss HJ. 1980. Chemical-Structure and Biodegradability of Halogenated Aromatic-Compounds - Halogenated Muconic Acids as Intermediates. Biochemical Journal 192(1):331-337.

Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ. 1980. Critical Reactions in Fluorobenzoic Acid Degradation by Pseudomonas Sp B-13. Applied and Environmental Microbiology 39(1):58-67.

Semmens MJ, Dahm K, Shanahan J, Christianson A. 2003. COD and nitrogen removal by biofilms growing on gas permeable membranes. Water Research 37(18):4343-4350.

Syron E, Casey E. 2008a. Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements. Environmental Science & Technology 42(6):1833-1844.

Syron, E, Casey, E 2008b Model-based comparative performance analysis of membrane aerated biofilm reactor configurations. *Biotechnology and Bioengineering*, 99 (6):1361-1373

Timberlake DL, Strand SE, Williamson KJ. 1988. Combined Aerobic Heterotrophic Oxidation, Nitrification and Denitrification in a Permeable-Support Biofilm. Water Research 22(12):1513-1517.
Todd MJ, Hausinger RP. 2000. Fluoride inhibition of Klebsiella aerogenes urease: Mechanistic implications of a pseudo-uncompetitive, slow-binding inhibitor. Biochemistry 39(18):5389-5396.

Twetman S, Engstrom K, Petersson LG. 2003. Fluoride levels in plaque after a single or habitual intake of fluoridated milk. Journal of Dental Research 82:476-476.

Watson PS, Pontefract HA, Devine DA, Shore RC, Nattress BR, Kirkham J, Robinson C. 2005. Penetration of fluoride into natural plaque biofilms. Journal of Dental Research 84(5):451-455.

Yamagiwa K, Ohkawa A, Hirasa O. 1994. Simultaneous Organic-Carbon Removal and Nitrification by Biofilm Formed on Oxygen Enrichment Membrane. Journal of Chemical Engineering of Japan 27(5):638-643.
Figure legends

Figure 1 Linearised biofilm thickness measurements (Fig A) reveal two distinct stages (A and B) of biofilm development, which biomass accumulation is correlated with declining specific utilisation rates (Fig B) calculated as grams of utilized 4-fluorobenzoate by grams of dry cell weight per hour in MABRs I (−■−−), II (−□−−) and III (−○−−) operated with 10 mM 4-fluorobenzoate as a source of carbon. Substrate concentration measured in spent media supernatant is also shown (Fig C).

Figure 2 Data illustrating free fluoride accumulation increasing in time and its potential negative impact on utilization abilities of *P. knackmussii* biofilm cultivated on 10 mM 4-fluorobenzoate in TBR systems operated for 216, 288, 360, 408, 432 and 504 h. Biofilm thickness (□) obtained from image software analysis and free fluoride concentration (■) measured in biofilm cell free extract were established after each experiment was terminated. Final specific utilization rates (□) were calculated for each TBR experiment as a gram of substrate utilized by gram of dry cell weight per hour. Presented thickness (−−), fluoride ion concentration (−−−−−−) and final specific utilisation (−−−−) regression plots $r^2=0.85$, $r^2=0.6$ and $r^2=0.9$, respectively.

Figure 3 Average percentage coverage area data collected for 6-well plate experiments where media contained: 10 mM 4-fluorobenzoate (), 10 mM benzoate () and 10 mM benzoate as a sole source of carbon plus 40 mM sodium fluoride (), complemented with OD () recorded for sample supernatants and investigated substrate concentrations.
Fraction	Volume (mL)	Fluoride ion amount (mmol)		
		Culture supernatant	Cell extract	
F1	6.164	0.004	0.038	
F2	0.019	0.007	0.018	
F3	0.175	0.003	0.025	
Sum	6.359	0.014	0.081	

Table 1. Free fluoride amount measured in *Pseudomonas knackmussii* culture retrieved from TBR system operated for 216 h. Data shown as average of two replicate experiments.
TBR operation (h)	Amount of fluorine			
	As substrate (mmol)	In spent medium (mmol)	In biofilm (F3) (mmol)	Recovered (%)
216	13.5	11.4	0.025	85
312	27.9	23.1	0.020	83
360	35.1	27.9	0.040	80
408	42.3	34.5	0.036	82
504	56.2	46.4	0.054	83
Table 3. Specific growth rates based on CFU counts and specific utilization rates calculated as gram of utilised substrate by gram of dry cell weight of biomass per hour obtained in growth trials, where planktonic culture of *P. knackmussii* was grown on 10 mM 4-fluorobenzoate and benzoate as sole sources of carbon with 0, 10, 20 and 40 mM supplemental sodium fluoride. All trials were performed in triplicates.

Sodium fluoride (mM)	μ_{max} (h$^{-1}$)	q (g g$^{-1}$h$^{-1}$)	μ_{max} (h$^{-1}$)	q (g g$^{-1}$h$^{-1}$)
	4-Fluorobenzoate	Benzoate	4-Fluorobenzoate	Benzoate
0	0.26	2.37	0.60	2.21
10	0.22	1.49	0.30	0.92
20	0.21	1.38	0.29	0.81
40	0.18	1.34	0.17	0.43
SUPPLEMENTARY INFORMATION

Factors influencing 4-fluorobenzoate degradation in biofilm cultures of

Pseudomonas knackmussii B-13

Katarzyna Misiak, 1, 3 Eoin Casey *,1,3 and Cormac D. Murphy 2,3

1School of Chemical and Bioprocess Engineering, 2School of Biomolecular and Biomedical Science, 3Centre for Synthesis and Chemical Biology, University College Dublin.
In both, 4-fluorobenzoate and benzoate 6-well plate experiments (Figures 1 and 2), where no addition of fluoride ion was used, biofilm development preceded in similar timeframe and each stage of its growth was recorded. Images taken after 10 h of culture incubation present the initial cell attachment as scattered singular cells on the cover slip surface were visible (Figures 1A and 2A). The number of singular cells covering the glass surface was higher in the next sample taken after 24 h (Figures 1B and 2B) and biofilm microcolonies appeared after 34 h (Figures 1C and 2C). Subsequently larger microcolonies started to merge to form a relatively uniform microbial layer after 48 h (Figures 1D and 2D) and fully grown biofilm was formed after 58 h (Figures 1E and 2E). Mature biofilm develops as a highly dynamic structure and it is typical to observe localised regions of high cell density within the biofilm, these are indicated by more intense staining visible on image taken for 72 h sample (Figures 1F and 2F).

During the investigations of *P. knackmussii* biofilm formation in 6-well plates with 40 mM sodium fluoride addition and where 10 mM 4-benzoate was used as a sole source of carbon, the first three images (Figure 3A, B and C), corresponding to 10 h, 24 h and 34 h, respectively, show biofilm formation patterns (in terms of singular attachment and microcolonies) to be broadly similar to those observed for cultures grown on 4-fluorobenzoate or benzoate without any sodium fluoride supplements. Despite the fact that images recorded after 48 h showed a patchy biofilm structure, where microcolonies were well defined, singular attached cells were still noticeable (Figure 2D). Images obtained after 58 h and 72 h incubation demonstrate a significant change in biofilm formation pattern; biomass detachment and reorganization of the structure towards single cell attachment (Figures 3E and F). Thus percentage biofilm coverage increased but was four times lower than that observed in previous trials in which no supplemental fluoride was added. The decrease in percentage biofilm coverage can be attributed to detachment as confirmed by the increased OD in the suspension.
Supplemental figure 1 Light microscopy images of cover slips taken with 20 x magnification from a 6-well plate experiment, stained with crystal violet and sampled after 10 h (A), 24 h (B), 34 h (C), 48 h (D), 58 h (E) and 72 h (F) of incubation in 10 mM 4-fluorobenzoate as a sole source of carbon. The control experiments did not indicate any growth (not shown).
Supplemental figure 2 Light microscopy images of cover slips taken with 20 x magnification from a 6-well plate experiment, stained with crystal violet and sampled after 10 h (A), 24 h (B), 34 h (C), 48 h (D), 58 h (E) and 72 h (F) of incubation in 10 mM benzoate as a sole source of carbon. The control experiments did not indicate any growth (not shown).
Supplemental figure 3 Light microscopy images of cover slips taken with 20 x magnification from 6-well plate experiments, stained with crystal violet and sampled after 10 h (A), 24 h (B), 34 h (C), 48 h (D), 58 h (E) and 72 h (F) of incubation in 10 mM benzoate as sole source of carbon with 40 mM sodium fluoride addition. The control experiments did not indicate any growth (not shown).
Supplemental figure 4 Schematic of the membrane-aerated bioreactor (MABR).
Supplemental figure 5 Schematic of tubular biofilm reactor (TBR) illustrating the procedure for establishing the fluoride mass balance.
Supplemental figure 6. 19F NMR spectrum of culture supernatant showing resonances of 4-fluorobenzoate (δ -110 ppm), 4-fluorocyclohexadiene-cis,cis-$1,2$-diol-1-carboxylate (δ -116 ppm) and fluoride ion (δ -120 ppm).
Supplemental figure 7. 19F NMR spectrum of F3 cell free extract, showing the presence of 4-fluorobenzoate in the biofilm.