Pharmacological Studies on Novel Triazino Quinolines

Namitha R.¹, G. Sathya Priyadarshini², Selvi G.²*

¹Department of Chemistry, RSM SNDP Yogam Arts and Science College, Koyilandy, Kozhikode, 673305, Kerala, India
²Department of Chemistry, PSGR Krishnammal College for Women, Peelamedu Coimbatore, 641004, Tamil Nadu, India

Received February 8, 2021; Revised July 15, 2021; Accepted August 22, 2021

Cite This Paper in the following Citation Styles

(a): [1] Namitha R., G. Sathya Priyadarshini., Selvi G. , "Pharmacological Studies on Novel Triazino Quinolines," Advances in Pharmacology and Pharmacy, Vol. 9, No. 4, pp. 81 - 86, 2021. DOI: 10.13189/app.2021.090401.

(b): Namitha R., G. Sathya Priyadarshini., Selvi G. (2021). Pharmacological Studies on Novel Triazino Quinolines. Advances in Pharmacology and Pharmacy, 9(4), 81 - 86. DOI: 10.13189/app.2021.090401.

Copyright©2021 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

Abstract Pharmacological importance of the nitrogen heterocycles is countless. The triazines are found to possess exceptional biological antitumor, anti-HIV, antiviral, antimalarial, antimicrobial, cytotoxic activities. The current investigation attempts to evaluate invitro antibacterial, antifungal, antioxidant potential, and cytotoxicity of newly synthesized substituted 4’-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one. The antimicrobial activity was done by Agar Well Diffusion Method and the MIC of the compound was found using the Broth dilution assay method. The compounds showed excellent antibacterial activity against selected bacterial strains, including Gram-positive S. aureus, S. pyogenes, and Gram-negative bacteria P. aeruginosa, E. coli, K. pneumoniae, Pseudomonas Sp with the zones of inhibition 9 to 19nm. The standard drug Ampicillin showed a maximum inhibitory zone 18 nm. Among all the screened compounds, sample exhibited good activity. Similarly, the compounds were screened for antifungal properties, which showed an excellent reduction in the growth of selected fungal strain for Candida albicans. The compounds were also screened for 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity. Cytotoxicity was done in Dalton’s Lymphoma Ascites (DLA) cells which were obtained from Amala Cancer Research Center. The tested compounds exhibited significant antioxidant activity in a concentration-dependent manner.

Keywords Antibacterial, Antifungal, Cytotoxicity, Triazine, Radical, Quinoline

1. Introduction

The compounds with quinoline moiety are well branded due to their extensive biological activity [1]. In particular, 8-hydroxyquinoline and its derivatives were established into antifungal clinical use and novel compounds of this type are still investigated [2-4]. The utility of quinoline derivatives in the areas of medicine [5] is well established. These compounds are found to possess various bioactivities such as anti-malarial [6-8], anti-bacterial [9-12], anti-fungal [13-15], and anti-cancer agents [16-19]. The literature survey revealed that synthetic quinoline and substituted quinoline derivatives are associated with a wide range of biological properties in curing a lot of diseases.

Over the last three decades, there has been a dramatic increase in the incidence of fungal infections. The Discovery of new drugs for the treatment of systemic mycoses is a major challenge in infectious disease research. There is an urgent need for new antifungal remedies with novel modes of action due to a decreased antifungal susceptibility of newly emerging fungi in the growing set of immune compromised patients [20-22].

It is well known that most of the heterocyclic compounds which have a compact structure possess antioxidant, properties [23-25].

1,2,4-Triazine derivatives have been reported to have a variety of pharmacological activities such as anti-HIV [26], anti-inflammatory[27], antifungal [28], analgesic[29], antimalarial [30], neuroprotective [31] and antimicrobial[32]. Moreover, the triazine scaffold is of great interest to medicinal chemists due to its cytotoxic effects [33-35].
Triazines have a unique position in pharmaceutical chemistry. Various 1,2,4-triazines with different substituents display various biological properties [36]. Various substituted 1,2,4-triazinone derivatives have great importance as biological agents in medicinal and agricultural fields [37-44]. This initiated constructing compounds containing both the quinoline and triazine ring systems in the same matrix to serve as a new scaffold for the synthesis of anti-inflammatory–antimicrobial agents.

2. Materials and Methods

Drugs

The compounds tested were prepared in our laboratory and their structures were characterized by FTIR, 1H-NMR and 13C-NMR spectral techniques.

![Chemical structure](image)

Figure 1. Substituted 4-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one 1a-f

Antimicrobial activity

Agar Well Diffusion Method

The agar well diffusion method [42] is used to determine growth inhibition.

The results were observed and recorded. It was compared with the standard antimicrobial agent ampicillin.

Minimum Inhibitory Concentration (MIC)

The minimum inhibitory concentration of the compounds was found using the broth dilution assay method (NCCLS, 1997). After incubation result was observed and tabulated.

Seven test tubes containing 1mL of sterile nutrient broth for bacterial species and Sabouraud’s dextrose broth for yeast and fungal species were prepared.

For assaying the drugs, the starting concentration is kept at 8 mg/mL in the first tubes containing 1mL of broth.

Tubes were vortex mixed thoroughly to make the initial standard concentration. This was serially diluted to other tubes and finally, 1mL is discarded from the seventh test tube. So, the dilution will be 8, 4, 2, 1, 0.5, 0.25, 0.125 mg/mL respectively. To all these test tubes, 0.1mL of the cultures of the target microorganism was added separately and incubated at 37°C for 24-48 hours.

After incubation, a loop full of samples from the test tubes was inoculated in the selective medium for the bacterial species and Sabouraud’s Dextrose Agar for yeast or fungal species and incubated for 24 hours at 37°C for 24 hours for bacteria and room temperature for yeast for 24 hours.

After incubation result was observed and recorded.

Antioxidant activity

2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay

The DPPH radical scavenging assay was determined according to Leong and Shui (2002). Methanol was used as both a blank and negative control. Results were observed and tabulated.

Cytotoxicity

Cell Line

Dalton’s Lymphoma Ascites (DLA) cells were obtained from Amala Cancer Research Center. The cells were maintained by transplanting every 2 weeks as Ascites in the peritoneal cavity of Swiss albino mice. The test compounds were studied for in vitro cytotoxicity using Dalton’s lymphoma ascites cells (DLA). The tumor cells aspirated from the peritoneal cavity of tumor-bearing mice were washed thrice with PBS or normal saline. Cell viability was determined by the trypsin blue exclusion method. Viable cell suspension (1x106 cells in 0.1mL) was added to tubes containing various concentrations of the test compounds and the volume was made up to 1mL using phosphate-buffered saline (PBS). The Control tube contained only cell suspension. These assay mixtures were incubated for 3 hours at 37°C. The further cell suspension was mixed with 0.1mL of 1% trypsin blue and kept for 2-3 minutes and loaded on a hemocytometer. Dead cells take up the blue color of trypsin blue while live cells do not take up the dye the chamber of stained and unstained color is counted separately.

\[
\% \text{ cytotoxicity} = \frac{\text{number of dead cells} \times \text{number of live cells+ number of dead cells}}{100}
\]

3. Results and Discussion

Antibacterial activity:

To check the biological activity of the compounds, the
series of the various substituted triazino quinolines were screened for antimicrobial activity against gram-positive bacteria. It was concluded from these results that the prepared compounds showed potential antibacterial activity against all the bacteria tested. From Table 1 it is evident that all the tested compounds showed inhibitory action in different concentrations against the corresponding standard drug. The MIC values of the substituted compounds are compared to other compounds.

Table 1. Antibacterial activity of the substituted 4'-methyl-1,2,4-triazinoquinolin-5-one

Organism	P. aeroginosa	E. coli	K. pneumoniae	S. aureus	S. Pyogens
Conc. in µL	1	1	1	1	1
Sample a	10	12	11	11	12
Sample b	10	12	12	12	11
Sample c	13	15	13	10	12
Sample d	11	13	12	9	11
Sample e	11	14	9	10	11
Sample f	16	10	17	19	13
Ampicillin	11 mm	18 mm	12 mm	12 mm	10 mm

The activity of all the synthesized compounds was calculated against the corresponding standard drug. The products showed various activities against all species of microorganisms which suggest that the variations in the structures affect the growth of the microorganisms. From Table 1 it is evident that all the tested compounds showed potential antibacterial activity against all the bacteria employed and 1,2,4-triazinoquinolin-5-one 1f is more active towards S. aureus, P. aeruginosa as well as S. Pyogen, E. coli, and S. pyogenes using broth dilution method. Among the substituted compounds, the MIC value for all the compounds was found to be 1µg/mL.

Table 2. Antifungal activity of the substituted 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one

Sample	C. Albicans Inhibition zone in mm
a	9
b	9
c	10
d	11
e	9
f	7

Antifungal studies were also done for the synthesized compounds against Candida albicans and tabulated in Table 2. The screening data of antifungal activity of these series of compounds show moderate to good antifungal activity. It infers that 4'-methyl-3-thioxo 1, 2, 4-triazinoquinolin-5-one 1e performed maximum inhibitory action against the fungi Candida albicans and the compound ‘-chloro-4’-methyl-3-thioxo 1, 2, 4-triazinoquinolin-5-one 1c exhibits no inhibition at lower concentration compared to the other compounds.

Table 3. MIC of the substituted 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one

Concentration in mg/mL	E. coli	P. aeroginosa	S. pyogenes	S. aureus
Sample a	NG	G	NG	G
Sample b	NG	G	NG	G
Sample c	NG	G	NG	G
Sample d	NG	G	NG	G
Sample e	NG	G	NG	G
Sample f	NG	G	NG	G

Table 4. DPPH radical scavenging activity of the substituted 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one 1a-f

Concentration ug/mL	Sample a	Sample b	Sample c	Sample d	Sample e	Sample f
250	84	86	79	76	72.5	85
500	85	93	86	72	74	86
DPPH radical scavenging Activity

When we compare the scavenging activity of substituted 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one, 4'8'-dimethyl-3-thioxo-1,2,4-triazinoquinolin-5-one 1b was found to be a good scavenger with the value of 93% inhibition.

Cytotoxicity results:

The cytotoxicity measurement is one of the most important indicators of in vitro biological evaluation system. Cytotoxicity of the selected triazino quinolines was studied in vitro using Dalton’s Lymphoma Ascites (DLA) cells 4-7. The compounds were tested at five different concentrations.

Table 5. Percentage cell death of substituted 4'-methyl-3-thioxo-1, 2, 4-triazinoquinolin-5-one

Percentage cell death (DLA)	1a	1b	1c	1d	1e	1f
200 µg	85	90	64	95	80	80
100 µg	75	75	46	80	62	68
50 µg	60	64	32	68	42	44
20 µg	35	48	14	52	35	30
10 µg	25	30	7	38	20	22
IC50	35µg	34µg	67µg	18µg	30µg	46µg

After 24 hours the results obtained were compared with that of control, percentage cell death and IC50 were calculated. Table 5 shows the percentage cell death for substituted 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one (1a-f). From the table, it is the LC50 values was found to be 35, 34, 67, 18, 30, 46 µg/mL, respectively. It is found that the value is maximum for 4'-methyl-3-thioxo-1,2,4-triazinoquinolin-5-one (1e). It was noticed that when we increased the drug concentration the percentage of cell death also increased.

4. Conclusion

The pharmacological studies such as invitro antibacterial, antifungal and, antioxidant potential, and cytotoxicity of newly synthesized triazino quinolines were carried out. Antibacterial studies were done against various gram-positive and gram-negative bacteria. S. Pyogens, S. aureus is the gram-positive bacteria, and E.coli, P. aeruginosa and, K. pneumoniae are the gram-negative bacteria used. Cytotoxicity was done in Dalton’s Lymphoma Ascites (DLA) cells were obtained from Amala Cancer Research Center. Antioxidant activity was done in 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay. Antimicrobial activity was done by Agar Well Diffusion Method and the MIC of the compound was found using the Broth dilution assay method. The tested compounds were found to have good antibacterial antifungal and antioxidant activities. Cytotoxicity of tested compounds was found to have potential activity. From the above results, we can conclude that triazino quinoline has potential health benefits.

REFERENCES

[1] Roth H.J., Fenner H., Arzneistoffe. 3rd Ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000; 51-114.
[2] Gershon H., Gershon M., Clarke, D.D, Synergistic Mixtures of Fungi toxic Monochloro and Dichloro-8-Quinolinols against Five Fungi. Mycopathologia. 2004; 15:131-135. DOI:10.1023/b:myco.0000038427.42852.6a
[3] Dardari, Z., Lemrani, M., Bahloul, A., Sebba, A., Hassar, M., Kitane, S., Berrada, M., Boudouma, Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5-(3-phenylisoxazolino)methyl]-8-hydroxyquinoline: preliminary study, M. Farmaco 2004, 59, 195-199. DOI: 10.1016/j.farmac.2003.11.001
[4] Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine Derivatives: Preparation and Biological Activity. Med. Chem. 2005; 1: 591-599. DOI: 10.2174/157340605774598108
[5] Foley M., Tilley L. Quinoline antimalarians: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther. 1998; 79: 55-87. DOI: 10.1016/s0163-7258(98)00012-6.
[6] Zhao., X Zhan, Electron transport semiconducting polymers in organic electronics. Chemical Society Reviews,m2011; 40: 3728-3743.
[7] Bilker O., Lindo V., Panico M., Etiene A.E., Paxton T., Dell A., Rogers M., Sinden R.E., Morris H.R, Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito, Nature, 1998; 392: 289-292. DOI: 10.1038/32667
[8] Roma G., Braccio M.D., Grossi G., Mattioli F., Ghia M, 1,8-Naphthyridine. IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino)[1,2,4]triazolo[4,3-a]1,8 naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem, 2000; 35: 1021-1035. DOI:10.1016/s0223-5234(00)01175-2
[9] Chen YL., Fang K.C., Sheu J.Y., Hsu SL., Tzeng CC, Synthesis and antibacterial evaluation of certain quinoline derivatives. J Med Chem. 2001; 44: 2374-2377. DOI: 10.1021/jm0100335
[10] Fang K.C., Chen Y.L., Sheu J.Y., Wang T.C., Tzeng C.C, Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives, J Med Chem. 2000; 43: 3809-3812. DOI:10.1021/jm000153x
[11] Chevalier J., Atifi S., Eyraud A., Mahamoud A., Barbe J, Pages J.M., New pyridoquinoline derivatives as potential
inhibitors of the fluoroquinolone efflux pump in resistant Enterobacter aerogenes strains. J. Med. Chem. 2001; 44: 4023-4026. DOI: 10.1021/jm010911z

[12] Phan L.T., Jian T., Chen Z., Qiu Y.L., Wang Z., Beach T., Polomeropoulos A., Or Y.S. Synthesis and antibacterial activity of a novel class of 4'-substituted 16-membered ring macroolides derived from tylosin. J. Med. Chem. 2004; 47: 2965-2968. DOI: 10.1021/jm034233n

[13] Benkovic S.J., Baker S.J., Alley M. R. K., Woo Y.H., Zhang Y. K., Akama T., Mao W., Baboval J.P., Rajagopalan T.R., Wall M., Kahng L. S., Tavassoli A., Shapiro L., Identification of Borinic Esters as Inhibitors of Bacterial Cell Growth and Bacterial Methyltransferases, CerM and MefH. J. Med. Chem. 2005; 48: 7468-7476. DOI: 0.1021/jm050676a

[14] Majzer-Maniecka K., Oleksyn B., Musiul R., Podeszwa B., Polanski J. Abstracts of Papers, Joint Meeting on Medicinal Chemistry, Vienna, Austria, June 20–23, 2005; In Sci. Pharm. 2005, 73 (Suppl. 1), 194.

[15] Vargas L. Y., Castelli M. V., Kouznetsov V. V., Urbina J. M., Lopez S. N., Sortino M., Enriz R. D., Ribas J. C., Zacchina S. A. In vitro antifungal activity of new series of homoumalamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers, Bioorg. Med. Chem. 2003; 11: 1531-1550. DOI: 10.1016/S0968-0802(02)00605-3

[16] Singh M., Singh M. P., Aboldepepe S. Y., In vitro studies with liposomal cryptolepine, Drug Dev. Ind. Pharm. 1996; 22: 377-381. DOI: 10.3109/036390496094690204

[17] Dassonneville L., Lansiaux A., Wattelet A., Wattez N., Mahieu C., Van Miert S., Pieters L., Bailly C., Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur. J. Pharmacol. 2000; 409: 9-18. DOI: 10.1016/S0014-2999(00)00805-0.

[18] Dassonneville L., Bonjean K., De Pauw-Gillet M.C., Colson P., Houssier C., Quetin-Leclercq J., Angenot L., Aboldepepe SY., Substituted indoloquinoliones as new antifungal agents. Bioorg Med Chem, 2002; 10:1337-1346. DOI: 10.1016/S0968-0802(01)00401-1

[19] Laurent Dassonneville., Karine Bonjean., Marie-Claire De Pauw-Gillet., Pierre Colson., Claude Houssier., Joelle Quetin-Leclercq., Luc Angenot., Christian Bailly., Stimulation of Topoisomerase II-Mediated DNA Cleavage by Three DNA-Intercalating Plant Alkaloids: Cryptolepine, Matadine, and Serpentine, Biochemistry, 1999; 38, 24: 7719-7726. DOI: 10.1021/bi990994t

[20] Rees J. R., Pinner R.W., Hajjhe R.A., Brandt ME, Reingold A.L., The epidemiological features of invasive mycotic infections in the San Francisco. Bay area, 1992–1993: results of population-based laboratory active surveillance. Clin Infect Dis., 1998; 27: 1138–47. DOI: https://www.jstor.org/stable/4481668

[21] Polak A. The past, present and future of antifungal combination therapy. Mycoses, 1999; 42:355-70.DOI: 10.1046/j.1439-0507.1999.00475.x

[22] Fostel J.M., Larrey P. A, Emerging novel antifungal agents, Drug Discovery Today. 2000; 5: 25-32. DOI: 10.1016/s1359-6446(99)01430-0

[23] Bhatlacharya A., Singh T., Verma V.K., Nakagama K. The role of certain substituted 2-amino-benzothiazolylbenzothio carbamides as additives in extreme pressure lubrication of steel bearing balls, Wear, 1990;136: 345-357.DOI: 10.1016/0043-1648(90)90156-5

[24] Davis R.H., Fang L.O., Horodysky A.G., US Patent 4908144, 1990.

[25] Karol, T.J.; Eur. Pat. Appl. EP 0209730.

[26] Tapan Kumar Maity, Subhash C. Mandal., Pulok K. Mukherjee., Saha K., Das J.,Pal M., Saha B. P, Studies on antiinflammatory effect of Cassia tora leaf extract (fam. Leguminosae), Phytother Res, 1998;12:221–4. DOI: 10.1002/(SICI)1099-1573(199805)12:3

[27] Zhan P., Li X., Li Z., Chen X., Tian Y., Chen W, Structure-based biosisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs, Bioorg Med Chem Lett, 2012; 22:7155-7162.

[28] Ashour H.M., Shaaban O.G., Rizk O.H., El-Askawy M, synthesis and biological evaluation of thieno[2'-3':4,5][1,2,4]triazido and thieno[2,3-d][1,2,4]triazolo[1,5-al]pyrimidines as anti-inflammatory and analgesic agents, Eur J Med Chem. 2013; 62:341-351. DOI: 10.1016/j.bmc.2012.09.062

[29] Sangshetti J.N., Shinde D.B, One pot synthesis and SAR of some novel 3-substituted 5,6-diphenyl-1,2,4-triazines as antifungal agents, Bioorg Med Chem, Let. 2010, 20, 742-745. DOI: 10.1016/j.bmc.2009.11.048

[30] El-Sayed Ali T, Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents, Eur J Med Chem. 2009,44, 4385-4392.

[31] Irannajad H., Aminii M., Khodagholi F., Ansari N., Tusi S.K., Sharifzadeh M, Synthesis and in vitro evaluation of novel 1,2,4-triazine derivatives as neuroprotective agents, Bioorg Med Chem 2010; 18: 4224-4230. DOI: 10.1016/j.bmc.2010.04.097.

[32] Shaikh B.M., Chobe S.S., Konda S.G., Khandare N.T., Chavan S.A., Dawane B.S., An efficient synthesis and in vitro antifungal activity of 1,2,4-triazin-6- (5H)-one derivatives, Der Chemica Sinica, 2010; 1: 86-91.

[33] Bakharev V., Gidaspov A., Yakunina Y.N., Bulychev Y.N, Synthesis and cytotoxic activity of trinitromethyl derivatives of 1, 3, 5-triazine, Pharm Chem J. 2008; 42: 241-244. DOI: 10.1007/s11094-008-0101-2

[34] Sztanke K., Rzymowska J., Niemczyk M., Tavassoli A., Bakharev V., Gidaspov A., Yakunina N., Bulychev Y. A.E, Synthesis, crystal structure and anticanercer activity of novel derivatives of ethyl 1-(4-oxo-8-aryl-4, 6, 7, 8-tetrahydroimidazo [2, 1-c][1,2,4] triazin-3- yl) formate, J Med Chem. 2006; 41: 539-547. DOI: 10.1021/jm050719x

[35] Gucky T., Frysova I., Slouka J., Haldvich M., Dzubak P., Cyclocondensation reaction of heterocyclic carbonyl compounds, Part XIII: Synthesis and cytotoxic activity of some 3, 7-diaryl-5-(3,4,5-trimethoxyphenyl) pyrazolo [4, 3-e][1,2,4] triazines, Eur J Med Chem. 2009; 44: 891-900. DOI: 10.1016/j.ejmech.2008.05.026
Pharmacological Studies on Novel Triazino Quinolines

[36] Abdel-Rahman, R.M. Chemistry of uncondensed 1,2,4-triazines: part ii-sulfur containing 5-oxo-1,2,4-triazin-3-yl moiety an overview, Phosphorus, Sulfur and Silicon, 2000; 166:315-357. DOI: 10.1080/10426500008076552

[37] Hamama W. S., El-Bana G. G., Shaaban S., Habib O. M. O., Zoobor, H. H, An Easy Access to Construct Some Fused 1,2,4-Triazines with Ring Junction Nitrogen Systems and Their Biological Evaluation, J. Heterocyclic Chem, 2017; 54:422-428. DOI: 10.1002/jhet.2599

[38] Irannejad H., Kebriaieezadeh A., Zarghi A., Montazer-Sadegh F., Shafiee A., Assadieskandar A., Amini M, Synthesis, docking simulation, biological evaluations and 3D-QSAR study of 5-Aryl-6-(4-methylsulfanyl)-3-(methylthio)-1,2,4-triazine as selective cyclooxygenase-2 inhibitors, Bioorg Med Chem 2013; 22:865-873. DOI: 10.1016/j.bmc.2013.12.002

[39] Majo V. J., Milak M. S., Mali J. P., Savenkova L., Simpson N. R., Mann J. J., Parsley R. V., Dileep Kumar J. S, Farmacoterapia, 1998; 53:395-399.

[40] Zein M. A., El-Shenawy A, An efficient synthesis of 1,2,4-triazine-6-one derivatives and their in vitro anticancer activity, Int J Pharm 2016; 12: 188-194. DOI: 10.3923/ijp.20160188.194

[41] Holla B. S., Sarojini B. K., Shridhara K., Antong, Synthesis of some new biologically active thiadiazolotriazinones—Part II,G.Farmacoterapia 1999; 54:149-151. DOI: 10.1016/s0014-827x(99)00008-7

[42] Deeb A., El-Marjah F., Hosny, Pyridazine derivatives and related compounds. Part 13: Synthesis and antimicrobial activity of some pyridazino[3',4':3,4]pyrazolo[5,1-c]-1,2,4-triazines, M. Bioorg Med Chem Lett, 2004; 14: 5013-5017.DOI: 10.1016/j.bmcl.2004.06.102

[43] El-Badawi M. A., El-Barbary A. A., Loksha Y. M., El-Daly M, Synthesis and Biological Evaluation of Some Novel N, N'-Bis-(1,2,4-Triazin-4-Yl)Dicarboxylic Acid Amides and Some Fused Rings with 1,2,4-Triazine Ring, Phosphorus Sulfur Silicon Rela. Elem 2002; 177: 587-596. DOI: 10.1080/104265002010276

[44] Oganisyan A. S., Grigoryan G. O., Noravyan A. S., Dzhagatspanyan I. A., Melikyan G. G, Synthesis and Neurotropic Activity of New Pyrano[4′,3′:4,5]thieno[2,3-c′:4,5″]pyrimido[2,3-c]-(1,2,4)triazines, Pharm Chem J, 2001; 35: 124-126. DOI: 10.1023/a:1010493426085