Greater fuel efficiency is potentially preferable to reducing NO$_x$ emissions for aviation’s climate impacts

Agnieszka Skowron$^{1,✉}$, David S. Lee1, Rubén Rodríguez De León1, Ling L. Lim1 & Bethan Owen1

Aviation emissions of nitrogen oxides (NO$_x$) alter the composition of the atmosphere, perturbing the greenhouse gases ozone and methane, resulting in positive and negative radiative forcing effects, respectively. In 1981, the International Civil Aviation Organization adopted a first certification standard for the regulation of aircraft engine NO$_x$ emissions with subsequent increases in stringency in 1992, 1998, 2004 and 2010 to offset the growth of the environmental impact of air transport, the main motivation being to improve local air quality with the assumed co-benefit of reducing NO$_x$ emissions at altitude and therefore their climate impacts. Increased stringency is an ongoing topic of discussion and more stringent standards are usually associated with their beneficial environmental impact. Here we show that this is not necessarily the right direction with respect to reducing the climate impacts of aviation (as opposed to local air quality impacts) because of the tradeoff effects between reducing NO$_x$ emissions and increased fuel usage, along with a revised understanding of the radiative forcing effects of methane. Moreover, the predicted lower surface air pollution levels in the future will be beneficial for reducing the climate impact of aviation NO$_x$ emissions. Thus, further efforts leading to greater fuel efficiency, and therefore lower CO$_2$ emissions, may be preferable to reducing NO$_x$ emissions in terms of aviation’s climate impacts.
Emission standards for aircraft NOx are set by the Committee on Aviation Environmental Protection of the International Civil Aviation Organisation (ICAO-CAEP). In the past, aircraft NOx emissions standards have been set to protect local air quality and have been assumed to have co-benefits for climate protection, as aircraft NOx results in an overall warming effect at present1,2. Emissions of NOx whether from aviation or other sources, result in the short-term formation of ozone (O3) (a warming) and the long-term destruction, via hydroxyl (OH) production, of small amounts (~a few percent) of ambient methane (CH4) (a cooling)3. In addition, the methane reduction results in a long-term reduction in O3 (cooling)3 and a long-term reduction in H2O in the stratosphere (cooling)3 from reduced oxidation of methane4. The net balance of these components ranges from positive for aviation NOx to negative for shipping and surface NOx4,5.

The general scientific advice given to the ICAO-CAEP to date has been to reduce emissions of both NOx and CO2. However, reducing both is problematic because of a technological trade-off between aviation NOx and CO27–9. Furthermore, one has to be very careful trading short-lived climate forcers against long-lived greenhouse gases, e.g., the reduction of NOx emissions might result in a fuel penalty that in fact can lead to a net climate disbenefit10. Here, we present a new analysis of future aviation emission scenarios and the balance of NOx from surface and aircraft sources, that makes this recommendation uncertain in terms of climate benefits and we suggest that the scientific evidence for reducing aircraft NOx needs to be revisited.

At subsonic aircraft cruise altitudes of 8–12 km, the atmosphere is sensitive to aircraft NOx emissions where O3 production is four times more efficient than near the ground11 and the aviation net NOx effect also depends on the state of the atmosphere into which NOx is emitted12. Changes in emissions of any surface source that take place as a result of various air quality and climate policies may have impacts on background conditions, and consequently might have an impact on the climate effect of aviation NOx emissions, which is not independent of background conditions. The changes in the tropospheric composition and global radiative forcing (RF) for various scenarios of anthropogenic O3 precursor emissions have been widely explored13–15. However, the impact of changing surface emissions on aircraft NOx climate effects has been virtually left out of discussions and sensitivity experiments can only be found in one study5. This present study aims to fill this gap and start the discussion on how future anthropogenic background emissions can affect the aviation climate impact.

Using a suitable three-dimensional chemistry transport model (CTM) of the global atmosphere (MOZART3)16,17, we examine the changes in the tropospheric composition and the net RF from aviation NOx emissions for 30% reductions in the most recent present-day inventories available (2006) of O3 precursor emissions (NOx, carbon monoxide - CO, non-methane volatile organic compounds - NMVOC) and for a future (2050) range of Representative Concentration Pathways (RCP) scenarios together with ICAO-CAEP aviation emission projections (see Methods for details of models used and simulations). These simulations allow an analysis of the relative benefits to reducing aviation impacts from reducing aviation and background NOx emissions.

Results

Aviation net NOx radiative forcing in 2050. The resulting RFs (Table 1) highlight that an aviation net NOx RF can vary greatly depending on the background condition, and both anthropogenic surface and aircraft emissions affect the aviation net NOx RF. At present, all scenarios predict increased aircraft NOx emissions in the year 2050 that reach 2.17 Tg(N) year−1 for the low air-traffic growth and optimistic technology development and 5.59 Tg(N) year−1 for high air-traffic growth and low technology development: which compared with the year 2006, 0.71 Tg(N) year−1, are significant increases. In contrast, reductions of surface O3 precursor emissions are projected under each of the applied RCP scenarios for the year 2050, for which the cleanest background is predicted under RCP 2.6. The total aircraft net NOx RF in 2006 is 3.5 mW m−2 and it increases to between 5.8 and 12.5 mW m−2 in 2050 for low- and high-growth scenarios, respectively; within each RCP scenario, the net aviation NOx RF can differ by ~23%, depending on background conditions. The largest aviation net NOx RF is observed under RCP 8.5 and the smallest for RCP 2.6 (for equal aviation NOx emissions). This significant increase in the aviation net NOx RF for 2050 is driven mainly by an intense rise of aviation NOx emissions; however, reduced surface emissions resulting in a cleaner background atmosphere in the year 2050 to some extent mitigates the aviation impact (Fig. 1). For instance, if the anthropogenic surface emissions were kept constant at present levels, the 2050 aircraft net NOx RF of the high air-traffic growth would be 17.5 mW m−2, that is 48% greater than under the 2050 RCP 2.6 and 28% greater than under 2050 RCP 8.5 background conditions.

This observed increase of aviation net NOx RFs in the future is in agreement with other studies that have explored the climate impact from aviation NOx emissions in 2050. Global CTMs and chemistry-climate models (CCMs) using 2050 aviation emissions derived from the Aviation Environmental Design Tool (AEDT) and the RCP 4.5 background scenario have been employed18–20. Unger et al.19 calculated that both the positive short-term O3 and negative CH4 RFs in 2050 increased by ~80% for the AEDT Base scenario (4.0 Tg(N) year−1), whereas Khodayari et al.20 estimated
The 2050 short-term O$_3$ RF to be 48–75% greater than in 2006, and the 2050 CH$_4$ RF increased by 57–80%. From these studies, the available 2050 short-term O$_3$ RF ranged from 30 to 162 mW m$^{-2}$ and the CH$_4$ RF varied from −36 to −72 mW m$^{-2}$ (all estimates are for AEDT-Base and RCP 4.5 scenarios)18,21. The 90.7 and −48.6 mW m$^{-2}$ calculated in this study with the RCP 4.5 background emissions are in line with estimates found in the literature. The existing spread in the calculated aviation NO$_x$-induced effects is the result of both differences in the projections of aircraft emissions and the inter-model differences. The latter difference raises an important level of uncertainty3, for which the differences in model chemistry schemes and the treatment of physical processes play an important role. Also, due to the inclusion of more feedback processes and coupled interactions (particularly aerosol and cloud coupling processes), different responses between the offline models (CTMs) and the fully coupled models (CCMs) can be observed18. However, based on the reported net NO$_x$ RFs available in the literature any systematic differences between CTMs and CCMs cannot be identified (Supplementary Fig. 1 and Supplementary Note 2).

The impact of surface emissions on aviation net NO$_x$ radiative forcing. Not only does the overall reduction of background emissions (i.e. different RCP scenarios) change the aircraft impact (same aircraft emissions), but also the mix of these reductions can have an impact. This is demonstrated by reducing individual precursors by −30% (NO$_x$, CO, NMVOC), and all together (ALL), which changes the oxidative capacity of the atmosphere (Fig. 2). Figure 2 illustrates that a reduction of background NO$_x$ emissions (alone) leads to a significant decrease in hydroxyl radical (OH) concentrations, while the reduction of CO and NMVOC emissions (individually) increases OH concentrations as their oxidation process becomes limited, leading to a reduced production of hydroperoxy radicals (HO$_2$). As a result of the above, the reduction in surface NO$_x$ emissions increases CH$_4$ lifetime and decreases the concentration of tropospheric O$_3$, while the reductions of CO and NMVOC cause the decrease of both tropospheric O$_3$ and CH$_4$, an observation that is consistent with other studies2,22. These dependencies are observed not only near the ground but also in the upper troposphere–lower stratosphere (UTLS) region, where most of aviation emissions occur; therefore, affecting aviation effects (Supplementary Fig. 2). In general, reducing surface emissions of NO$_x$, CO and NMVOC individually decreases the net aviation NO$_x$ RF by up to 43%, the most effective being a reduction in surface NO$_x$ emissions alone, and the least effective being a reduction in CO, which results in a reduction of aviation net NO$_x$ RF of 14% (Table 1). A simultaneous reduction of all surface emissions by 30% decreases the aviation net NO$_x$ RF by 37% (for the same aircraft emissions). The reduction of surface NO$_x$ has the greatest potential in affecting the aviation net NO$_x$ RF; any 1% change of surface NO$_x$ emissions, modifies aircraft net NO$_x$ RF by −1.5% (this estimate is inventory-dependant and here it varies from 1.4% to 1.6% for REACT4C 2006 data and high NO$_x$ 2050 scenario, respectively).

There is a well-known increase in O$_3$ production (per unit of emitted N) as background NO$_x$ levels decrease and this is what we observe here as well. However, we also calculate a strong dependence of aircraft CH$_4$ lifetime reduction on surface emissions that becomes more efficient with decreasing NO$_x$. So, for a cleaner NO$_x$ background the positive short-term O$_3$ RF increases, as expected, but the associated CH$_4$ RF (and all the CH$_4$-induced RFs) reduction increases even more, explaining why the net NO$_x$ RF decreases, rather than increasing3 for a cleaner NO$_x$ background. This strong CH$_4$ response is possibly triggered by increased CH$_4$ lifetime due to reduced oxidative capacity

Table 1 Aircraft NO$_x$ radiative forcing (RF, mW m$^{-2}$) for different background and aircraft emission scenarios in 2006 and 2050. Net NO$_x$ RF is a sum of a short-term O$_3$ (sO$_3$), CH$_4$, CH$_4$-induced O$_3$ (lO$_3$) and SWV.

Emissions	Background	Aircraft	RF, mW m$^{-2}$				
			sO$_3$	CH$_4$	IO$_3$	SWV	Net NO$_x$
2006 IPCC AR5	Base	REACT4C	14.8	−6.9	−3.4	−1.0	3.5
	−30% NO$_x$		17.7	−9.5	−4.8	−1.4	2.0
	−30% CO		14.1	−6.7	−0.4	−1.0	3.0
	−30% NMVOC		13.9	−6.7	−0.4	−1.0	2.8
	−30% ALL		16.2	−8.5	−4.3	−1.3	2.2
2050 RCP 8.5	Low NO$_x$	High Tech	45.9	−23.4	−11.7	−3.5	7.2
RCP 4.5			43.7	−22.6	−11.3	−3.4	6.4
RCP 2.6			40.6	−21.1	−10.5	−3.2	5.8
RCP 8.5	High NO$_x$	Low Tech	96.3	−50.8	−25.4	−7.6	12.5
RCP 4.5			90.7	−48.6	−24.3	−7.3	10.6
RCP 2.6			83.9	−45.3	−22.7	−6.8	9.2

Fig. 2 The oxidative capacity of the troposphere under different background conditions. By reducing emissions of individual precursors by 30% (NO$_x$, CO, NMVOC), and all together (ALL) changes the concentrations of hydroxyl radical and hydroperoxyl. The oxidative capacity of the atmosphere to a great extent controls the abundance of most trace gas species, hence affecting CH$_4$ lifetime and concentration of O$_3$ (see text for details). Values are averaged globally within the vertical domain extending from surface to 100 hPa and modelled by MOZART-3 CTM.
The 30% reduction of surface NO\textsubscript{x} increases the positive short-term O\textsubscript{3} RF by 16%; however, the magnitude of the negative long-term CH\textsubscript{4} RF increases even more, by 28%. Thus, less background NO\textsubscript{x} reduces the net NO\textsubscript{x} effect from aviation (for the same aviation NO\textsubscript{x} emissions). Moreover, it turns out that decreasing surface NO\textsubscript{x} emissions plays a larger role in reducing the aviation net NO\textsubscript{x} RF than decreasing aircraft NO\textsubscript{x} emissions (Fig. 3) in percentage terms. Figure 3 shows a steeper slope in the reduction of net NO\textsubscript{x} RF from percentage changes in surface emissions than from aviation emissions themselves. For example, in order to reduce the global climate impact of aviation NO\textsubscript{x} by 1 mW m-2, a 17% reduction in present levels of surface NO\textsubscript{x} emissions is needed; in the case of aviation NO\textsubscript{x}, it requires the reduction of emissions by 35%. Reducing aviation NO\textsubscript{x} emissions by such a large amount (35%) for, e.g. a 1 W m-2 net NO\textsubscript{x} RF reduction could be quite technologically challenging and have a strong risk of increasing aircraft CO\textsubscript{2} emissions with a potentially perverse total RF outcome\cite{10}. If a scenario is envisaged of falling surface NO\textsubscript{x} emissions, reducing aircraft NO\textsubscript{x} emissions at the expense of either missed opportunities to reduce CO\textsubscript{2} emissions or even actually increasing CO\textsubscript{2} emissions could be exactly the wrong thing to do and induce perverse climate outcomes.

Table 2 The recalculated aircraft NO\textsubscript{x} radiative forcing (RF) from Table 1 using a revised simplified expression for the RF of CH\textsubscript{4} as presented by Etminan et al\cite{23}.

Emissions	Background	Aircraft	RF, mW m-2	sO\textsubscript{3}	CH\textsubscript{4}	IO\textsubscript{3}	SWV	Net NO\textsubscript{x}
2006 IPCC AR5	Base	REACT4C	sO\textsubscript{3}	-8.4	-4.2	-1.3	0.9	
-30% NO\textsubscript{x}	14.8	-17.7	-5.9	-1.8	-1.6			
-30% CO	14.1	-8.2	-4.1	-1.2	0.5			
-30%NMVOC	13.9	-8.3	-4.1	-1.2	0.3			
-30% ALL	16.2	-10.5	-5.2	-1.6	-1.1			
2050	RCP 8.5	Low NO\textsubscript{x}, High Tech	45.9	-28.7	-14.3	-4.3	-1.4	
RCP 4.5	43.7	-27.8	-13.9	-4.2	-2.3			
RCP 2.6	40.6	-26.0	-13.0	-3.9	-2.4			
RCP 8.5	96.3	-6.2	-31.1	-9.3	-6.3			
RCP 4.5	90.7	-59.9	-29.9	-9.0	-8.1			
RCP 2.6	83.9	-56.0	-28.0	-8.4	-8.5			

Discussion

The short-term O\textsubscript{3} RF is very sensitive to changes in all explored changes in surface precursor emissions (NO\textsubscript{x}, CO and NMVOC). The long-term CH\textsubscript{4} RF is mainly affected by the reduction in surface NO\textsubscript{x} emissions and it changes very little in the case of the reductions of surface CO and NMVOC alone (probably due to the decrease in OH consumption by CO). This is in agreement with responses from other sensitivity tests performed with UCI CTM by Holmes et al\cite{3}, with the difference that our short-term aviation O\textsubscript{3} RF is not as responsive to surface CO emissions as those modelled with the UCI CTM. In addition, after accounting for the long-term negative RFs that were not given in their 2011 paper (long-term O\textsubscript{3} and reductions in stratospheric water vapour, SWV), they also observe that the reduction in surface NO\textsubscript{x} emissions decreases the RF from aviation NO\textsubscript{x} a 42% reduction in the aviation net NO\textsubscript{x} RF resulting from a halving of surface NO\textsubscript{x} emissions (C. D. Holmes, personal communication, October 19, 2018), which is in reasonable agreement with the sensitivity shown here. In general, to a great extent, the long-term CH\textsubscript{4}-mediated effects drive the response of aviation net NO\textsubscript{x} RF resulting from modified NO\textsubscript{x} emissions. Taking into account that these long-term RFs are fully parametrised as well as the fact that the CH\textsubscript{4}/O\textsubscript{3} ratio is very model specific\cite{4} make the impact of surface NO\textsubscript{x} emissions on aircraft net NO\textsubscript{x} RF relatively more uncertain than the impact of other O\textsubscript{3} precursor emissions. For example, if the new CH\textsubscript{4} RF simplified expression that accounts for short-wave forcing is used\cite{23}, reduction in surface NO\textsubscript{x} emissions not only decreases the aviation net NO\textsubscript{x} RF but also changes its sign from positive to negative. Table 2 gives the recalculated aviation RF numbers from Table 1 using a simplified expression for RF of CH\textsubscript{4} as presented by Etminan et al\cite{23}. The improved understanding of CH\textsubscript{4} RF has a significant impact on aviation estimates as it increases the negative CH\textsubscript{4} RF from aviation NO\textsubscript{x} emissions by ~20%, which substantially reduces the aircraft net NO\textsubscript{x} RFs (Table 2). Moreover, the revision to the CH\textsubscript{4} term provides a perspective that as aviation NO\textsubscript{x} emissions are reduced
Climate change is considered to affect tropospheric chemistry. The modified oxidizing capacity is expected to influence methane lifetime such that in a wetter and warmer climate it might either shorten or increase\cite{26, 27} depending on the scenario. Also, on one hand, the increased water vapour might lead to increased O$_3$ destruction in the tropics, whereas on the other, enhanced stratosphere–troposphere exchange could increase the net O$_3$ flux to the troposphere\cite{28, 29}. The impact of the physical aspects of climate change on tropospheric composition is complex and is still highly uncertain. The inclusion of an interactive climate in the experiments might affect the results presented in this study. However, it is not expected that the current findings would become irrelevant, since it is the emission scenarios that to a great extent affect the future evolution of tropospheric chemistry\cite{29, 30}.

The decreases in surface O$_3$ precursor emissions over present-day values presented in RCP dataset are consistent with most other future emission scenarios that consider even more extensive air quality legislation, e.g. ECLIPSE (Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants) or SSPs (Shared Socioeconomic Pathways) databases. This is in stark contrast to aviation emissions, for which strong growth is predicted and the global civil fleet may more than double within the next 20 years, from ~21,000 aircraft in 2018 to ~48,000 aircraft in 2037\cite{31}. Whilst there is a possibility for the net NO$_x$ RF to be weakened due to a cleaner background, this is not as simple for an aviation CO$_2$ RF. CO$_2$ accumulates in the atmosphere due to its fractional millennial timescale which means that its climate effect is determined by the cumulative emissions over time. As a consequence, the RF in 2018 from aircraft CO$_2$ emissions is around twice greater than that from aircraft NO$_x$ emissions\cite{32}. However, what is even more important is the difference in the nature of their responses (Supplementary Fig. 3). At present, the temperature response from a unit emission of aircraft NO$_x$ is the strongest in the year of emission and it diminishes thereafter. Moreover, after around 15 years it changes the sign from positive (warming) to negative (cooling) to disappear after around 60 years. On the contrary, the emission of CO$_2$ leads to a uniform positive (warming) temperature response from increased atmospheric levels of this gas and after a 100 years, the unit emission emitted in the year 1 still provides a significant positive signal (as modelled by the simple climate model, LinClim, see Methods).

There are various measures to reduce fuel demand (and therefore CO$_2$ emissions) such as market-based measures or stricter aircraft CO$_2$ emission standards; the latter, as it is associated with trade-off between aviation CO$_2$ and NO$_x$ might raise some dilemmas. In view of the low impact of reducing aviation NO$_x$ any potential trade-offs with CO$_2$ should not be risked and also any potential savings in CO$_2$ should not be forsaken in the pursuit of lower NO$_x$ in terms of climate protection\cite{10}. We acknowledge the necessity to reduce aircraft NO$_x$ emissions for local air quality benefits; the source apportionment in any given location is likely to be unique, depending on volume of air traffic and other local sources. However, the aircraft-related emissions of NO$_x$ are of clear importance for many locations. From a climate benefit point of view, we suggest that any vision of more stringent NO$_x$ regulations needs to be revisited, as it might be more worthwhile to concentrate more on CO$_2$ reductions at the cost of NO$_x$, not vice versa, especially in the light of necessary forthcoming decarbonisation to avoid an\cite{33} increase of 1.5°. Coherent comparative assessments that would consider both climate and air quality impacts are needed. There are just a few studies that try to tackle this issue\cite{34–36} and none that would consider these aspects under changing background conditions.

The CO$_2$ emissions still provide the majority of the long-term warming (if not the instantaneous RF) from aviation, and a smaller change in its emission affects the total forcing much more
than an equivalent change in NOX emission. The mitigation of non-CO2 effects is scientifically uncertain and trading against CO2 could produce perverse outcomes, the climate benefits from any reduction of aviation CO2 emissions are indisputable.

Methods

Chemistry transport model and emission data. The model for ozone and related chemical tracers, version 3 (MOZART-3) was used for this study. This is a 3D CTM that has been evaluated by Kimmin et al.8 and used for an extensive range of different applications, including studies dealing with the impact of aircraft NOx emissions on atmospheric composition.9,10

MOZART-3 accounts for advection based on the flux-form semi-Lagrangian scheme,11 shallow and mid-level convection,12 deep convective routine,13 boundary layer exchanges,14 or wet and dry depositions.15 MOZART-3 reproduces detailed chemical and physical processes from the troposphere through the stratosphere, including gas-phase, photolytic and heterogeneous reactions. The kinetic and photochemical data are based on the NASA/JPL evaluation.

The model configuration used in this study includes a horizontal resolution of T42 (2.8° × 2.8°) and 60 hybrid layers, from the surface to 0.1 hPa. The transport of chemical compounds is driven by the meteorological fields from the European Centre for Medium Range Weather Forecast (ECMWF), 6-h reanalysis ERA-Interim data for the year 2006.16 This meteorological conditions were used for all runs, including the 2050 simulations.

The aviation NOx emissions for the years 2006 and 2050 were determined based on the REACT4C base case dataset (CAEP/8 movements)17 and ICAO-CAEP-49 emission projections, respectively. Emissions of aircraft NOx were calculated to be 0.71 Tg(N) year−1 in 2006 and 2.17 Tg(N) year−1 in the 2050 low air-traffic growth and optimistic technology-development scenario and 5.59 Tg(N) year−1 in the 2050 high air-traffic growth and low technology-development scenario. The 2050 aviation scenarios were chosen to represent the highest and lowest projected range of possible aircraft NOx scenarios. The 2050 aviation scenarios were chosen to represent the highest and lowest projected range of possible aircraft NOx emissions in 2050 from data derived from the ICAO-CAEP trends work.18 First, three aviation traffic demand forecasts out to 2040 are produced (a low, central and high traffic-demand scenario) these demand scenarios are then translated by ICAO-CAEP to fleet scenarios, fuel efficiency scenarios are then superimposed upon the fleet scenarios to produce a range of technology and operational improvement scenarios ranging from a technology freeze, through to low, moderate, advanced and optimistic improvement scenarios.

Extrapolation of the fuel burn 2040 results out to 2050 is also undertaken and reported in the CAEO-CAP. Further to the fuel efficiency and transport assumptions, two separate NOx scenarios were developed by ICAO-CAEP resulting in the derivation of two future 2050 fleetwide NOx emission indices (EINOx in terms of grams of NOx per kilogram of fuel burned): a high and a low EINOx. In this study the high and low EINOx values for the future fleet are applied to the range of estimates of fuel burn in 2050 to calculate a corresponding range of NOx emission estimates in 2050. The range of NOx estimates in 2050 varies from the low NOx scenario of 2.17 Tg(N) year−1 (low EINOx, the low traffic demand with the more efficient optimistic fuel burn scenario, i.e. low fuel burn estimate) and the high NOx scenario of 5.59 Tg(N) year−1 (high EINOx, the high traffic demand demand forecast and the low fuel burn case) to the low NOx scenario of 1.05 Tg(N) year−1 (high EINOx, the high traffic demand forecast and the low fuel burn case). The present-day surface (non-aviation) emissions (base) represent year 2005. The anthropogenic and biomass burning emissions were taken from IPCC AR419 and the biogenic emissions were taken from POET20,21. Four different cases were investigated: global reduction of surface NOx emissions (−30% NOx), global reduction of surface CO emissions (−30% NMVOC emissions (−30% NMVOC) and global reduction of ALL these species simultaneously (−30% NOx, CO, NMVOC). Other all sources of emissions, including aircraft NOx emissions, were held constant for each experimental case. The 2050 gridded surface emissions (anthropogenic and biomass burning) were determined by Integrated Assessment Models (IAMs) for the three Representative Concentration Pathways (RCPs): a high mitigation scenario that forecast the smallest impact to climate (RCP 2.6), business-as-usual scenario (RCP 4.5) and high climate impact scenario (RCP 8.5). Concentrations of long-lived chemical species and greenhouse gases were based on the RCP emissions, converted to concentrations by Massman et al.20 Natural emissions (e.g. isotopy exchange, lightning and soil NOx, or oceanic emissions of CO) were not specified in these future scenarios; thus, they were not modified here and were kept the same for all the simulations. The parametrisation of NOx emissions from lightning was defined as a function of the location of convective cloud top heights22,23 and their global source were calculated to be 4.7 Tg(N) year−1.

The series of sensitivity experiments were performed in order to have a broad perspective on how aircraft and background emissions might affect net NOx climate impact. The detailed list of simulations exploited in this study shows Supplementary Table 1.

Radiative forcing calculations. The Edwards-Slingo radiative transfer model (RTM) was used for the calculation of the forcing associated with aviation NOx-induced O3 and CH4-induced O3. The monthly fields from MOZART-3 were converted into mass mixing ratios and interpolated onto RTM vertical and horizontal resolution. The applied RTM is an offline version of the UK Met Office Unified Model and it calculates the radiative fluxes and heating rates based on the δ-Eddington of the two-stream equations in both, the long-wave (9 bands) and short-wave (6 bands) spectral regions. Cloud treatment is based on averaged International Satellite Cloud Climatology Project (ISCCP) D2 data.27 Climatological fields of temperature and specific humidity are based on ERA-Interim data.28 In terms of the 2050 RF calculations, the concentrations of long-lived species were modified according to specific RCP scenarios29 and were consistent with MOZART-3 set up. The CH4 concentrations change is assumed to be in equilibrium with the OH change due to the aircraft NOx perturbation from constant emissions.30 Since CH4 mixing ratios were prescribed as a lower boundary condition and the simulations were not long enough, the steady-state CH4 concentration ([CH4]ss) was calculated to be 0.71 Tg(N) year−1 in 2006 and 2.17 Tg(N) year−1 in the 2050 low EINOx scenario of 2.17 Tg(N) year−1 (low EINOx, the high traffic demand case it is 12.02 year). The cj are the components of climate sensitivity and dj are the processes of the long-term accumulation vs short-term disappearing, respectively.

\[
\left[\text{CH}_4\right]_{\text{ss}} = \left[\text{CH}_4\right]_0 + \left(1 + 1.4 \Delta \text{EINOx}/\text{ref}\right)
\]

A factor of 1.4 was used to reflect the CH4 feedback on its own lifetime.30 Here τ is the lifetime of CH4, expressed with CH4 in the unperturbed simulation, δτ the change in CH4 lifetime between the unperturbed simulation and the NOx-perturbed simulation and \([\text{CH}_4]_{\text{ss}}\) the CH4 mixing ratio in the unperturbed simulation.

This steady-state CH4 aircraft response was further used for the CH4 RF calculations using, as in IPCC AR5,31 a simplified expression (Eqs. 2 and 3) originally defined in Myhre et al.40

\[
\Delta F = 0.036 \left(\frac{m}{M} - \frac{\mu}{M} \right) - \left(\text{f}(M, N_f) - \text{f}(M, N_f)\right)
\]

where \([\text{M} = \text{N}]\) is the nitrogen in ppm, \([\text{M} = \text{CH}_4\text{ppw and sub} \text{script \[\text{f}\]} denotes unperturbed concentrations.

Long-term O3 caused by CH4 changes was calculated according to IPCC AR5,32 as 50% of the CH4 RF. Modified CH4 also affects SWV and give an additional RF of 19% of CH4 RF.33

The recalculated aviation RF estimates presented in Table 2 are based on the same methodology as original values shown in Table 1 and as described above. The only differences comes from the application of the new simplified expression for RF of CH4 as shown in Eq. 4 that replaces the old expression presented in Eqs. 2 and 3:

\[
\Delta F = \left|a \times \bar{M} + b \times N_0 \right| 0.043 \times (\sqrt{\bar{M} - \sqrt{N}_0})
\]

In order to observe the temperature response from a unit emissions of aircraft NOx, the methodology presented by Aamas et al.62 have been applied and Absolute Global Temperature change Potentials (AGTP) have been calculated based on steady-state CTM/RTM results (base case). The forcing for NOx is assumed to be a result of a pulse that lasts for 1 year followed by an exponential decay of the resulting radiative forcing from the end of the pulse onwards. The NOx effect is the sum of the short-term O3 effect, CH4 (with SWV) effect and CH4-induced O3 effect, and there is a perturbation from the forcing for t > 1 (this determines the temperature response of the emissions that occur in the first year) and from the forcing for t ≥ 1 (this determines the temperature response of atmospheric perturbation lasting past one year). Thus, the total AGTP, (provided that the time horizon \((H) \geq 1\)) is the sum of AGTP\(_{NOx}\)\((H)\) and AGTP\(_{NOx}\)\((H)\):

\[
\text{AGTP}_{\text{NOx}}(H) = \sum_{t=1}^{H} \left[\left(1 - \frac{H}{t}\right) \exp \left(-\frac{H}{t}\right) - \exp \left(-\frac{H}{t}\right)\right]
\]

\[
\text{AGTP}_{\text{NOx}}(H) = \sum_{t=1}^{H} \left[\left(1 - \frac{H}{t}\right) \exp \left(-\frac{H}{t}\right) - \exp \left(-\frac{H}{t}\right)\right]
\]

The superscript SS indicates steady-state, \(r\) is the lifetime and \(H\) is the short-lived lifetime (\(r\)) for short-lived O3 (here it is 0.267) whilst the primary-mode lifetime (\(r+H\)) characterizes CH4-induced O3 (for the MOZART-3’s base case it is 12.02 year). The \(c_i\) are the components of climate sensitivity and \(d_i\) are the corresponding time scales and these values are taken from Boucher and Reddy.63

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20771-3 | www.nature.com/naturecommunications 6
In order to observe the temperature response from a unit emission of aircraft CO₂, a simple climate model (SCM), LinClim was utilised. LinClim is a linear climate response model that has been customised specifically to aviation. It uses a single impulse response function that is calibrated against more sophisticated parent model. Aviation fuel data are used to calculate CO₂ emissions that is then applied in the linear response function from Hasselmann et al. in order to derive CO₂ concentrations. The carbon cycle in LinClim is based on the Maier-Reimer and Hasselmann model and the CO₂ RF is calculated using the function applied in IPCC AR4. The temperature response formulation is based on the method presented by Hasselmann et al. The calculated temperature response is also dependent on the climate sensitivity parameter and the lifetime of the temperature perturbation that are tuned to LinClim’s parent General Circulation Model (GCM), here it is ECHAM4.

Here the LinClim was used to calculate the temperature response from a pulse/unit emission of aviation CO₂ over the long time period. The background scenario was chosen by RCP 8.5 as its global emissions are the closest to the current levels of CO₂ in the atmosphere. The amount of aircraft NOx that is produced from the fuel burned is described by the emission index (EINOx). The current EINOx is 15.14 g(NOx)/kg(fuel) and it has been applied here. Knowing that for every 1 kg of fuel used, 3.16 kg of CO₂ is emitted, the 1 Tg of emitted N is equivalent to 217 Tg fuel and therefore, 868 Tg of emitted CO₂. This emission was released as a pulse in the year 1 and the consequent CO₂ temperature response was observed for the following 100 years.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

All data discussed in the manuscript and Supplementary Information are presented in Source Data. All data generated for this study (2006 and 2050 CTM and RTM simulations) are available on request from the corresponding author. Source data are provided with this paper.

Code availability

The modelling data have been post-processed using IDL 8.1.1, and all the scripts are available on request from the corresponding author.

Received: 9 October 2019; Accepted: 10 December 2020;
Published online: 25 January 2021

References

1. IPCC. Aviation and the global atmosphere. In Intergovernmental Panel on Climate Change Special Report (eds Penner, J. E. et al.) (Cambridge University Press, Cambridge, UK, 1999).
2. Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).
3. Holmes, C. D., Prather, M. J. & Vinken, G. C. M. The climate impact of ship emissions on atmospheric ozone and methane. Geophys. Res. Lett. 40, 6004–6009 (2013).
4. Unger, N., Zhao, Y. & Dang, H. Mid-21st century chemical forcing of climate by the civil aviation sector. Geophys. Res. Lett. 40, 641–645 (2013).
5. Khodayari, A., Olsen, S. C. & Wiebeles, D. J. Evaluation of aviation NOx induced radiative forcings for 2005 and 2050. Atmos. Environ. 91, 95–103 (2014).
6. Brasseur, G. P. et al. Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCCI) Phase II. B. Am. Meteorol. Soc. 97, 561–583 (2016).
7. Akimoto, H. et al. SLCP co-control approach in East Asia: tropospheric ozone reduction strategy by simultaneous reduction of NOx/NMHC and methane. Atmos. Environ. 122, 588–595 (2015).
8. Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane, and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).
9. Unger, N. Global climate impact of civil aviation for standard and desulfurized jet fuel. Geophys. Res. Lett. 38, 1–6 (2011).
10. Pitari, G. D. et al. Impact of coupled NOx/aerosol aircraft emissions on ozone photochemistry and radiative forcing. Atmosphere 6, 751–782 (2015).
11. Zheng, G., Morgemstern, O., Braesicke, P. & Pyle, J. A. Impact of stratospheric ozone recovery on tropospheric ozone and its budget. Geophys. Res. Lett. 37, L09805 (2010).
12. Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).
13. Young, P. J. et al. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 2063–2090 (2013).
14. Johnson, C. E., Collins, W. J., Stevenson, D. S. & Derwent, R. G. Relative roles of climate and emissions changes on future tropospheric oxidant concentrations. J. Geophys. Res. 104(D15), 18631–18645 (1999).
15. Liao, H., Chen, W. T. & Seinfeld, J. H. Role of climate change in global predictions of future tropospheric ozone and aerosols. J. Geophys. Res. 111, D12304 (2006).
16. Airbus. 2018. Global Market Forecast 2018–2037 (Airbus, France, 2018).
17. Holmes, C. D., Prather, M. J. & Vinken, G. C. M. The climate impact of ship emissions on atmospheric ozone and methane. Geophys. Res. Lett. 40, 641–645 (2013).
18. IPCC. 2018. Global warming of 1.5 °C. In An IPCC Special Report (eds Masson-Delmotte, V. et al.) (Cambridge University Press, UK, 2018).
19. Durbiam, C. S., Wolfe, P. J. & Waite, I. A. Estimating the climate and air quality benefits of aviation fuel and emissions reductions. Atmos. Environ. 45, 2750–2759 (2011).
20. Mahashabde, A. et al. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci. 47, 15–52 (2011).
21. Grobler, C. et al. Marginal climate and air quality costs of aviation emissions. Environ. Res. Lett. 14, 114031 (2019).
22. Liu, Y. et al. Atmospheric tracers during the 2003–2004 stratospheric warming event and impact of ozone intrusions in the troposphere. Atmos. Chem. Phys. 9, 2157–2170 (2009).
23. Wiebeles, D. J. et al. Three-dimensional model evaluation of the ozone depletion potentials for n-propyl bromide, trichloroethylene and perchloroethylene. Atmos. Chem. Phys. 11, 2371–238 (2011).
24. Seide, O. A. et al. Aircraft emissions mitigation by changing route altitude: a multi-model estimate of aircraft NOx emission impact on O3 photochemistry. Atmos. Chem. Phys. 95, 468–479 (2019).
25. Skowron, A., Lee, D. S. & De Leon, R. R. Variation of radiative forcings and global warming potentials from regional aviation NOx emissions. Atmos. Environ. 104, 69–78 (2015).
26. Lin, S. J. & Rood, R. B. A fast flux form semi-Lagrangian transport scheme on the sphere. Monthly Weather Rev. 124, 2046–2079 (1996).
27. Hack, J. P. Parameterization of moist convection in the NCM community climate model (CCM2). J. Geophys. Res. 99, 5551–5568 (1999).

7
43. Zhang, G. J. & McFarlane, N. A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmosphere-Ocean 33, 407–446 (1995).
44. Holstag, A. & Bourliere, B. A. Local versus nonlocal boundary-layer diffusion in a global climate model. J. Clim. 6, 1825–1842 (1993).
45. Brasseur, G. P. et al. European scientific assessment of the atmospheric effects of aircraft emissions. Atmos. Environ. 32, 2329–2418 (1998).
46. Muller, J.-F. Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J. Geophys. Res. 97, 3787–3804 (1992).
47. Sander, S. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies – Evaluation Number 15. Technical report, National Aeronautics and Space Administration (NASA) (Jet Propulsion Laboratory (JPL)), California Institute of Technology, Pasadena, CA, 2006.
48. Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).
49. ICAO CAEP Environmental Report 2016; Montreal, Canada, 2016. Available at https://www.icao.int/environmental-protection/Pages/env2016.aspx. Accessed date 18 Feb 2018.
50. Lamarque, J.-F. et al. Historical (1850 – 2000) grided anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010).
51. Granier, C. et al. POET, a database of surface emissions of ozone precursors, 2005. Available at http://eccad.sedoo.fr/fr/eccad_extract_interface/SSF. Accessed date 10 Dec 2010.
52. van Vuure, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
53. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
54. Pyle, C., Penner, J. & Prather, M. NOx from lightning, part 1: global distribution based on lightning physics. J. Geophys. Res. 102(D5), 5929–5941 (1997).
55. Pickering, K. E., Wang, Y., Tao, W.-K., Price, C. & Müller, J.-F. Vertical distributions of lightning NOx, for use in regional and global chemical transport models. J. Geophys. Res. 103(D23), 31203–31216 (1998).
56. Edwards, J. M. & Slingo, A. Studies with a general circulation model. parameterization of cumulus convection in the Canadian climate centre ISCCP. Atmos. Environ. 32, 2329–2418 (1998).
57. Pickering, K. E., Wang, Y., Tao, W.-K., Price, C. & Müller, J.-F. Sensitivity study of optimal CO2 emission paths using a simplified structural integrated assessment model (SIAM). Clim. Change 37, 345–386 (1997).
58. Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO2 in the ocean – an inorganic ocean-circulation carbon cycle model. Clim. Dyn. 2, 63–90 (1987).
59. Hasselmann, K., Sausen, R., Maier-Reimer, E. & Voss, R. On the cold start problem in transit simulations with coupled atmosphere-ocean models. Clim. Dyn. 9, 53–61 (1993).

Acknowledgements
This work was supported by the United Kingdom Department for Transport and the European Union’s Horizon 2020 Research and Innovation Action ACACIA under grant agreement No 875036.

Author contributions
D.S.L conceived of the research, A.S. led the study, R.R.L., L.L.L and B.O. provided input data, A.S. performed the model simulations and generated all the figures and tables, A.S. and D.S.L. interpreted the results and drafted the manuscript with support from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20771-3.

Correspondence and requests for materials should be addressed to A.S.

Peer review information Nature Communications thanks François Garnier, Donald Wuebbles and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.