Title:

A systematic screen of breast cancer patients’ exomes for retrotransposon insertions reveals disease associated genes

Authors:
Sylvia De Brakeleer, Jacques De Grève and Erik Teugels*

Affiliation:
Laboratory of Molecular and Medical Oncology
Vrije Universiteit Brussel
Laarbeeklaan 103, 1090 Brussels
Belgium

Email addresses:
Sylvia De Brakeleer sylvia.debrakeleer@gmail.com
Jacques De Grève Jacques.DeGreve@uzbrussel.be
Erik Teugels eteugels@vub.be

*corresponding author
ABSTRACT

Background: Retrotransposons are genetic elements that jump within the genome via an RNA intermediate. Although they had a strong impact on human genome evolution, only a very tiny fraction of them can be reactivated nowadays, most often with neutral or detrimental consequences. The pathological outcomes associated with such genetic alterations are poorly investigated in the clinic, merely due to their difficult detection.

Results: We developed a strategy to detect rare retrotransposition mediated insertions in Whole Exome Sequencing data from 65 familial breast cancer patients. When restricting our search to high confidence retrotransposition events occurring in less than 10% of the samples, we identified only ten different Alu elements, two L1 elements, one SVA and two processed pseudogenes. Only two of these insertions occurred within protein coding sequences and interestingly, several of the targeted genes have been previously linked to cancer, in three cases even to increased breast cancer risk (GHR, DMBT1 and NEK10). When investigating the molecular consequences of four Alu insertions at the mRNA level, we found that the element present in the 3’UTR of GHR repressed expression of the corresponding allele. Moreover, the analysis of a near exonic Alu insertion in PTPN14 (a mediator of P53 tumor suppressor activity) revealed that this gene was imprinted and that the presence of an intronic Alu element can lead to loss of imprinting.

Conclusions: Our data underline the relevance of incorporating the search for uncommon retrotransposition events in Next Generation Sequencing pipelines when analyzing patients with a suspected genetic disease.
KEYWORDS: retrotransposition, Alu, L1, pseudogene, breast cancer predisposition, exome, GHR, PTPN14, ZNF442, C1orf194

BACKGROUND

More than 50% of the human genome is built up with sequences that originated from the activity of transposable elements[1], mainly retrotransposons which are able to move to new locations in the genome via an RNA intermediate using the copy/paste principle[2-4]. L1 retrotransposons belong to the LINE (long interspersed element) superfamily and are the only transposons still active in human. Full length L1 elements (~6kb long) code for the proteins necessary for retrotransposition, including a reverse transcriptase. Although L1 sequences represent about 17% of the human genome, only a very small fraction of them (80-100 copies) retained their transposition capacity[5, 6]. Alu and SVA retrotransposons (about 300 and 1400bp long respectively) are SINEs (short interspersed elements) and do not code for proteins. Rather, they are fully dependent on L1 retrotransposition and parasitize its propagation system. Accidentally, cellular RNA can also misuse the L1 retrotransposition machinery resulting in the generation of processed pseudogenes[7]. The CpG rich sequences present in L1 promoters, Alu and SVA elements are sites for DNA methylation and heterochromatin formation, causing epigenetic silencing[8]. Interestingly, the vast majority of evolutionary stabilized Alu insertions are located in gene-rich regions. They are often embedded in sequences encoding pre-mRNAs or mature mRNAs, usually as part of their introns or UTRs were they can potentially contribute to transcriptome variation[9].
In 1985 the first de novo Alu element insertion was reported in a B cell lymphoma[10]. Three years later, Kazazian et al.[11] reported a Haemophilia A causing L1 element insertion in germline DNA. In a review article published in 2016[6], the list of retrotransposons associated with human diseases counts 124 entries. Obviously, the number of disease causing retrotransposition events identified in human[12] is increasing steadily, but the attention these mutations receive in the clinic is still very poor when compared to classical mutational events (nucleotide substitutions and small insertions/deletions). When searching for breast cancer (BC) predisposing mutations in high risk families, we previously identified one Alu insertion in exon 11 of BRCA1 and one Alu insertion in exon 3 of the BRCA2 gene[13], this last one appeared later on to be a recurrent founder mutation restricted to the Portuguese population[14]. When Next Generation Sequencing tools were introduced in the diagnostic field, only few labs adapted their IN SILICO pipeline to allow the identification of pathogenic retrotransposition events in the genes they analyze[15, 16]. In the present work, we developed a strategy allowing the detection of uncommon retrotransposition events in Whole Exome Sequencing (WES) data using BAM files generated from a cohort of familial breast cancer patients previously used to identify more classical cancer predisposing mutations[17]. In a second step, we investigated the molecular consequences generated by 5 candidate pathogenic Alu insertions revealed during our screen, and highlight the relevance of screening for rare retrotransposition events in the clinical context.

RESULTS

IN SILICO screen for retrotransposition mediated insertions

Because of their shared mechanisms of transposition using an RNA molecule as intermediate, retrotransposons all bear a long polyA tail at their 3’ extremity. Also, their specific mechanism for insertion into the target DNA results in the duplication of a short sequence at the position where the retrotransposon has integrated. This duplicated sequence (called Target Site Duplication or TSD) is usually between 4 and 20 nucleotides long and flanks the retrotransposon specific sequences. We exploited those two characteristics to identify retrotransposon insertions not present in the human reference genome (hg19) using WES data generated with the SeqCap EZ Exome v3.0 kit from Roche. Paired-end sequencing usually generates read pairs that perfectly map in close proximity on a reference genome. However, the presence of a non-reference retrotransposon insertion will result in read pairs that do not map closely (Figure1). We selected these discordantly mapped read pairs by applying the open-source RetroSeq software[18] on the BAM files previously obtained from 65 BC patients[17] (positive BRCA1 control included), with a first additional restriction that one read of the discordantly mapped read pairs must harbor a long polyA stretch. On average, we obtained 987 candidate insertions for each patient. When introducing additional filtering steps (using an Excel program) to remove false positives and frequently occurring non reference polymorphic insertions, we ended with a list counting only 32 different candidate polyA containing insertion sites for the pooled 65 patients (Additional file 1). A detailed description of our detection strategy and its application on a positive control sample is presented in the Method section, wherein we also compare two widely used exome enrichment kits.

High confident retrotransposition mediated insertions
When performing a manual selection (using the Integrative Genomics Viewer: IGV[19]) for the presence of a TSD on the 32 polyA containing insertions we had identified, we ended up with 18 high confidence candidates retrotransposon insertions (Table 1). The further characterization of these retrotransposition mediated insertions (12 Alu, 2 L1, 1 SVA and 3 pseudogenes, see Table 1) was made possible by the presence of a stretch of nucleotides (maximum ~50bp long) in a fraction of the aligned read pairs that do not match with the reference sequence, but corresponded the 5’ extremity of the inserted sequence. These sequences could be identified using available web tools (see Methods). A representative screenshot showing the outcome of an IGV analysis of the genomic region wherein the Alu element integrated into the BRCA1 gene of our positive control sample is presented in Figure 2. Only 2 out of the 18 retrotransposon mediated events occurred within protein coding regions (Alu element in ZNF442 and UQCR10 transcript in C1orf194, see Table 1) which might be surprising since WES probes are expected to be specifically designed towards exonic sequences. Indeed, according to the kit provider (Roche) only protein coding parts of the transcripts are targeted, but for exons that are smaller than 100 bp, the target region is extended to 100 bp. Nevertheless, we expect that the large majority of retrotransposition mediated insertions occurring in the well covered protein coding regions will be picked up with our screen, their low incidence being in agreement with the literature[5, 20, 21]. Conversely, we are convinced that a significant fraction of the polymorphic retrotransposons located in the vicinity of protein coding regions (regions often poorly or not covered at all by WES) is missed with our WES based approach, although the large majority of identified insertions (15/17, positive control excluded) are located in intronic, 3’UTR, promoter or even intergenic sequences. As a sufficient coverage at sequencing is essential to allow the identification of polymorphic retrotransposons in the non-coding regions, we wanted to estimate
the number of false negative carriers of such highly confident retrotransposition mediated
insertions among the 65 samples we investigated. Therefore, all samples were rescreened for the
presence of the 18 IN SILICO identified insertion types using IGV (see Table 1). All insertions
identified with the IN SILICO pipeline could be confirmed with IGV analysis (no false
positives). As expected, IGV inspection revealed higher rates of carriers for 9 insertions (Table
1). In two cases, insertion carriership was even observed in 50% of the samples, with IGV and
IN SILICO data discrepancies being well explainable by the low coverage at sequencing. Of
note, about half of the high confident retrotransposon insertions we identified are reported in the
database of retrotransposon insertion polymorphisms in human (dbRIP, see Table 1).

Retrotransposon insertions in non-coding regions can affect allelic expression

To investigate the potential consequences of Alu insertions located in non-coding gene regions at
the molecular level[22], we collected blood samples from available carriers (and non-carriers for
control) and extracted the corresponding RNA material. Since allele specific expression levels
can be monitored by Sanger sequencing only when the Alu carrier is also heterozygous for a
coding SNP in the same gene, the number of suitable insAlu carriers among the 65 investigated
patients was not always sufficient and additional familial BC patients were genotyped using
mutation specific hemi-nested PCRs (Table 2). Sufficient blood samples could be collected to
initiate the analysis of 5 Alu targeted genes (GHR, GSTA5, NEK10, PTPN14 and UPF2).
Sequence analyses of the cDNA regions flanking the allele discriminating SNPs revealed that the
intrinsic Alu insertions in UPF2 and NEK10 do not result in an obvious decrease or increase of
the mRNA levels generated from the retrotransposon targeted allele (Figure 3). In sharp contrast,
the Alu insertion in the 3’UTR of GHR clearly resulted in allele silencing (Figure 4A) suggesting
that this Alu sequence may contain sites for microRNA directed degradation, a mechanism previously proposed to explain the occurrence of evolutionary stabilized Alu derived microRNA binding sites in the 3’UTRs of specific gene[23]. Conversely, the two available carriers of the intronic Alu insertion in \textit{PTPN14} seem to express both alleles equally well but among the three non-carriers, one expresses virtually only one allele while the two others show a reduced expression of this same allele (Figure 4B). Partial or near absolute mono-allelic expression of \textit{PTPN14} is in agreement with a study listing this gene as a high-confidence imprinted human gene candidate with maternal expression[24]. On the other hand, the apparent loss of imprinting (LOI) observed in the Alu carriers suggests that the integration of one single Alu element into the gene sequence of the imprinted allele would be sufficient to fully reactivate this allele, which matches with earlier observations reporting a sharp inflection in SINE content at transitions from imprinted to non-imprinted genomic regions[25]. Unfortunately, differential expression of the \textit{GSTA5} Alu containing allele (insertion occurred in the promoter region) could not be investigated due to the very low expression level of \textit{GSTA5} in leucocytes compared to \textit{GSTA1} and \textit{GSTA2} (see GeneCards.org), three homologues that are hard to discriminate when using PCR based assays (only GSTA1 and/or GSTA2 sequences could be detected after Sanger sequencing even by using gene discriminating primers for PCR, results not shown).

PolyA containing insertions without identifiable TSD

In addition to the 18 high confident retrotransposition mediated insertions for which we could identify a TSD (described above), our IN SILICO pipeline also identified 14 candidate insertion sites for which a TSD could not be deduced using IGV (see Additional file 1 and Table 3). A summary of each of the targeted gene’s function is presented in Additional file 2 (see also Table
4 for PubMed hits). A lower coverage at sequencing most probably explains the problematic discovery and characterization of these polyA containing insertions. However, for eight of them we found parts of retrotransposon sequences (7x Alu, 1x L1) by analyzing the mates of the discordantly mapped mate pairs (Table 3). In addition, 7 out of these 14 expected retrotransposition events map at the same genomic position as do elements reported in the database for Retrotransposition Insertion Polymorphisms in Humans (dbRIP[26]). Consequently 10 out of the 14 polyA containing insertions can be linked to a retrotransposon, making them still strong candidate retrotransposon insertion sites with potential pathological consequences (Table 3). The high rate of confirmed retrotransposon mediated insertions observed among the candidate polyA containing insertions we identified (28 out of 32) is a good indicator for the high specificity of the followed screening strategy.

DISCUSSION

De novo retrotransposition events occurring within protein coding regions are expected to be very rare as they would strongly affect protein integrity, most often in a detrimental manner [5, 20, 21]. Our results fully match with these earlier observations as the only rare polymorphic retrotransposon that inserted exome wide into a coding sequence among our 65 patients (positive BRCA1 control excluded) was an Alu element into the ZNF442 gene (a short summary of the function of all genes targeted with a high confident retransposon mediated insertion is presented in Additional file 3). A mutation specific PCR screen (see Table 2) detected this variant in only one out of 710 familial BC patients. Since this patient has North African roots, we cannot
exclude that the mutation is more prevalent in that region. ZNF442 has been poorly investigated
till now (see outcomes of PubMed searches for the different targeted genes in Table 5) although
the gene has been reported as a good candidate driver gene for the neoplastic process of breast
and colorectal cancer[27]. The second identified retrotransposition mediated event that destroys
protein integrity is the UQCR10 transcript inserting into the C1orf194 coding sequence (creating
a UQCR10 processed pseudogene). This polymorphic insertion has been previously observed[7,
28] and was present in 7 of our 65 samples. The mutant allele is unable to produce normal
C1orf194 protein, but we cannot exclude that the UQCR10 pseudogene is expressed as a
recombinant mRNA leading to overproduction of UQCR10 protein since a near full length
UQCR10 transcript (from c.-15 till polyA tail) inserted in the 5’ coding region (c.58_70) of the
C1orf194 gene in the same orientation (Table 1). Little is known about these two genes, but none
has been linked to breast cancer yet. Interestingly, two seemingly dominant heterozygous
missense mutations in C1orf194 were recently associated with Charcot-Marie-Tooth disease[29],
the most common form of inherited peripheral neuropathy. The authors reported a Ca^{2+}
regulatory function for C1orf194 and therefore suggested that this gene (and consequently any
mutated form at it) may also be associated with other neurodegenerative disorders characterized
by altered Ca^{2+} homeostasis.

The large majority of high confident retrotransposon insertions we could identify were located in
non-coding regions (15 out of 17). However, such regions are not the primary targets when
performing WES and consequently their coverage at sequencing will often be (very) low, or they
will not be covered at all. Therefore, we believe much more intronic (near exonic) and UTR
located polymorphic retrotransposons escaped our attention, the 15 ones reported herein
representing the tip of an iceberg. The majority of the identified retrotransposon insertions incorporated into intronic sequences, close to the intron-exon boundaries. The genes targeted by these retrotransposition events can be linked to several biochemical processes (Additional file 3) that might be involved in breast cancer development: they can have a tyrosine kinase activity (NEK10[30, 31]), a Tyrosine phosphatase activity (PTPN14[32]), being involved in the ubiquitination process (UBA6[33]), in the posttranscriptional methylation of internal adenosine residues in eukaryotic mRNAs (METTL3[34, 35]), in the regulation of the nonsense mediated decay pathway (UPF2[36]), have a suppressive role in osteosarcoma progression (TMIGD3[37]) or are considered as candidate tumor suppressor gene for different cancer types (DMBT1[38-40]). Interestingly, four of the five intronic Alu insertions occurred in antisense orientation, suggesting that these insertions might contribute to the generation of alternative transcript forms[41]. We also identified two retrotransposon insertions in 3’UTR gene regions (in GHR and HSD17B12), one in the promoter of GSTA5 (a glutathione S transferase catalyzing the conjugation of reduced form of glutathione to xenobiotic substances for the purpose of detoxification) and three in intergenic regions (in one case with nearest gene linked to BC: MIF-ASI[42]). More convincing for their role in breast cancer predisposition is that 3 retrotransposons inserted into a gene that had been previously associated to breast cancer risk (GHR[43-45], DMBTI[46-48] and NEK10[49, 50]). The potential cancer risk associated to these particular mutations should be confirmed by investigating a much higher number of BC cases and controls. Furthermore, we could successfully investigate the consequences of four different Alu element insertions in non-coding gene regions at the molecular level by determining the relative expression level of the wild type versus mutant allele in leucocytes. Analysis of the Alu insertions in NEK10 and UPF2 did not reveal a marked decrease or increase of the mRNA levels
generated from the retrotransposon targeted alleles. Nevertheless, a pathogenic (or protective)
contribution by these mutated alleles cannot be excluded yet, as they may for instance generate
splicing alterations that cannot be detected with the performed test or may result in cell type
specific effects not observed in leucocytes. Moreover, the recently revealed mechanism of onco-
exaptation[51, 52] whereby cryptic regulatory elements within transposons can be epigenetically
reactivated in precancerous cells may also drive cancer risk. In sharp contrast, the Alu insertion
in the 3' UTR of GHR clearly resulted in allele silencing. Since several association studies
indicated that GHR is implicated in breast cancer predisposition[43-45], it is tempting to
designate the Alu insertion in GHR as (one of) the causal mutation(s) for the reported cancer risk
modulation. The interpretation of the data obtained when investigating the Alu insertion in
PTPN14 was more challenging since (near) mono allelic expression was already observed in the
three patients that did not carry the germline Alu insertion in PTPN14. Fortunately, literature
digging revealed a table wherein PTPN14 was listed as a high-confidence imprinted human gene
candidate with maternal expression[24]. The LOI observed in our two Alu carriers suggests that
the integration of one single Alu element into the imprinted PTPN14 gene allele would be
sufficient to fully reactivate this allele[25]. The observed LOI also suggest that both patients
inherited the mutated PTPN14 allele from their father (could not be verified) and that in case the
mutated allele is maternally inherited, LOI will not be observed. Since PTPN14 was recently
identified as a mediator of the tumor suppressor activity of p53 and regularly mutated in
cancer[32], its imprinted nature and the loss of imprinting (LOI) induced by particular mutations
are two elements that contribute additional levels of complexity to the molecular mechanism
leading to cancer when the PTPN14 gene is involved.
CONCLUSIONS

Our study indicates that raw WES data obtained from clinical samples (whose availability is exponentially growing) hide a manageable number of retrotransposition mediated polymorphic mutations that can be dug up when using appropriate IN SILICO tools. A significant fraction of these mutations will affect gene function, even when located outside protein coding regions, and consequently may be (one of) the pathogenic factor(s) responsible for a patient’s disease. Our investigation was restricted to 65 non BRCA1/2 familial BC patients, but much more patients should be analyzed (in future genome wide) to obtain a broader view of all possible retrotransposon mediated insertions involved in the disease, and to determine their respective molecular and pathogenic consequences. Moreover, transposon mediated insertions resulting in modified breast cancer risk may also generate other clinical phenotypes. For example, the growth hormone receptor (which is encoded by the GHR gene) is expressed in a broad range of tissues and involved in fundamental biological processes such as growth promotion, metabolism, cell division and regeneration[53], the most typical clinical syndrome associated to GHR deficiency being dwarfism (Laron syndrome). Accordingly, the clinical consequences associated to the presence of an Alu insertion in the 3’UTR of GHR (which leads to allele silencing) are most probably not limited to breast cancer risk. As pathogenic retrotransposon insertions are not limited to the familial BC syndrome, the described mutation screen (or an alternative version of it, e.g. for the analysis of WES data obtained with the exome capture kit from Agilent) should be applied for all diseases with a suspected genetic etiology. Indeed, screening patients with a specific genetic disease will enrich for insertions in genes involved in that disease (in preparation). Centralized databases registering all identified polymorphic retrotransposition events should be further expanded[7, 26, 54], with inclusion of population specific allele
frequencies, as is the case for classical variations. In order to identify good candidate pathogenic Alu element insertions, Payer et al.[55] used the outputs of GWAS studies to restrict their search to genomic loci previously implicated in disease risk. Conversely, our data indicate that microchips should be developed allowing genome wide genotyping for the presence of this particular type of polymorphic insertions, in order to perform retrotransposition specific GWAS’s for a multitude of diseases or traits. Finally, the genome wide identification and investigation of polymorphic retrotransposon insertions in clinical samples will not only lead to a better understanding of diseases, but will also contribute to elucidate more basic genetic mechanisms such as gene imprinting, and will help to evaluate the impact that de novo retrotransposition mediated insertions still have on human genome evolution.

METHODS

Patient Material

A WES study using the SeqCap EZ Exome v3.0 kit from Roche has previously been performed using blood samples from probands of 65 unrelated high risk BC families with the aim to identify classical cancer predisposing mutations (protein truncating SNPs and Indels, and splice site mutations)[17]. All patients were recruited at the UZ-Brussel hospital and met the requirements for a diagnostic \textit{BRCA1} and \textit{BRCA2} mutation analysis. All except one (the positive control: c.1739_1740insAlu in \textit{BRCA1}[13]) were negative for a pathogenic \textit{BRCA1} or \textit{BRCA2} mutation. A large subset of these 65 patients (57) belongs to families with at least two first
degree blood relatives with BC. The FastQ files generated during this previous study were reused for the present study. The genomic DNA from the positive control was resubmitted for WES analysis using the SureSelect Human All Exon V6 kit from Agilent (performed by BGI Genomics Co, China) to compare both WES approaches. In addition, blood samples obtained from 710 probands from independent non BRCA1/2 BC families (including the 65 probands used for the WES analysis) were used for a PCR based genomic screen to identify additional carriers of Alu element insertions in case insufficient samples were available for RNA analysis.

Strategy for retrotransposon detection using WES-BAM files

Binary alignment files (BAM files) are outputs (binary versions) of a short read aligner (e.g. BWA[56]) that can map the read pairs generated during the sequencing process (paired-end sequencing) towards a reference sequence, for instance the reference human genome (hg19). In particular circumstances, these read pairs are discordantly mapped while generated from the same small genomic fragment, meaning that the mate reads map at very different positions on the reference genome.

To trace retrotransposon insertions not present in the human reference sequence we used, in a first try-out, the open-source RetroSeq software described by Keane et al.[18] as this software can be run on virtually any computer[57]. This software needs as input a BAM file (we used the WES BAM file generated with a positive control sample harboring the c.1739_1740insAlu mutation in *BRCA1*; the library was prepared using the exome capture kit SeqCap EZ Exome v3.0 from Roche), a reference genome (hg19) and a library of mobile element sequences. RetroSeq operates in two phases, the first being the discovery phase where discordantly mapped (and one end mapped) mate pairs are screened for the presence of a mobile element and in the
affirmative assigned to a particular type of mobile element. In the second phase (calling phase),
the sequence of the anchoring mate read is used to localize the polymorphic mobile element on
the reference genome. Unfortunately, when applying RetroSeq on our positive control sample we
could not detect the Alu insertion in $BRCA1$. RetroSeq is primarily designed to identify non
reference mobile elements in Whole Genome Sequencing data, while companies that design kits
for exome enrichment try to avoid the capture of nucleotide fragment harboring repetitive
sequences. To circumvent this obstacle, we decide in a first step to search not for mobile
elements but for polyA stretches (settings: minimum 80 nucleotides long; 90% ID) within the
discordantly mapped reads of each patient data set using the first module of the RetroSeq
software (discovery phase). Among the discordantly mapped read pairs traceable in BAM files
we expect to find those generated from genomic DNA fragments that contain both non reference
retrotransposon sequences and exon (flanking) sequences (see Figure 1). By selecting
discordantly mapped reads containing a long polyA stretch in one of the paired reads, we will
only retain the junctions at the 3' end of the retrotransposon. The location of the mate of each
polyA containing read identified during the discovery phase is recorded in a BED file by the
RetroSeq program (together with additional information). This file can be recovered as a .tab file
for further analysis (see Additional file 4 for the .tab file generated with the positive control
sample saved in Excel).

If coverage is sufficient, several anchor reads (the mates of the polyA containing reads) are
expected to align in the same genomic region. Clusters of such reads are subsequently generated
when they occur within a 300 bp long genomic interval and a maximum inter read distance of
200 bp. In a next step, each cluster is represented by the anchor read expected to be closest to the
integration site (TSD in case of retrotransposons) while the number of reads within each cluster
is recorded in a separate column (duplicate reads are removed). To perform these cluster
calculation steps, the patient specific .tab file generated by RetroSeq is saved in Excel format,
non-relevant information is first deleted and the remaining data are pasted in the first sheet of a
preformatted Excel file (provided as Additional file 5). The detailed procedure for cluster
calculation is described in next section. We considered clusters with three or more anchor reads
as potential candidate insertion sites and retained them for further investigation. When applying
this detection strategy to our 65 BC patients, we obtained on average 987 such clusters for each
individual. The positive control sample (see Additional file 6) shows 641 clusters with three or
more units, with a clear cluster of 17 units at the level of the Alu insertion site in \textit{BRCA1} (TSD is
at chr17:41245809-41245825).

To identify and in a second step discard the clusters (genomic regions) picked up in a large
fraction of individuals (e.g. false positives resulting from technical artefacts, or highly recurrent
polymorphic insertions not present in the reference genome), the Excel outputs obtained from
each BC patient were pooled (keeping patient ID tracked) and clusters were again generated.
Candidate genomic insertion sites detected in more than 10\% of the samples (corresponding to
clusters with more than 6 units for the BC cohort) were identified and subtracted from the patient
specific output data. After this filtering step, on average 9 clusters with 5 or more reads are
obtained for each individual. Visual inspection using the IGV software revealed that the majority
of the remaining candidate insertion sites are generated by the presence of a polyA stretch in the
reference sequence that resulted in DNA polymerase slippage during the NGS process.
Consequently, these candidate genomic insertion sites were manually tracked and listed, and
used for subsequent filtering. Additional file 7 provides a preformatted Excel file to perform the
combined filtering steps. After filtering, only half of the BC patient samples presented a
candidate insertion event (31/65). One patient presented 4 such events (Additional file 1). To minimize the possibility that these candidate insertion sites would be missed in a subset of individuals because of poorer coverage, all genomic positions identified as insertional target sites during the first screening round in any individual (positions deduced from the presence of a cluster with minimum 5 anchor reads) were re-screened for the presence of a smaller cluster (3 or 4 reads) in all individuals (Additional file 1, columns M & N). Further IGV inspection allowed the identification of a TSD in a significant fraction (18/32) of the obtained candidate insertion sites, strongly suggesting that a retrotransposition event had occurred at those genomic locations (Additional file 1, column K). For validation purposes, the presence or absence of each of these 18 insertions was verified in each of the 65 patients using IGV (Table 1). The recovery rates obtained IN SILICO and manually using IGV matched very well except for two insertions (the SET transcript in DPP10 and an Alu element in HSD17B12), the discrepancies being explainable by the poor coverage at sequencing. For the identification of the inserted sequences, we used the Dfam database of repetitive DNA families[58] (https://dfam.org/home) and the Basic Local Alignment Search Tool (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Additional file 1, column I).

As only small stretches of nucleotides (about 50 bp long) from the 5’ end of the inserted sequences can be deduced from the WES generated data, it was not possible to further define the sub-family of the identified retrotransposons.

A screenshot showing read visualization by IGV of the region were the Alu insertion occurred in the positive control sample (BRCA1) when using the SeqCap EZ Exome v3.0 kit from Roche for exome capture is presented in Figure 2. A corresponding screenshot showing read visualization when using the SureSelect Human All Exon V6 kit from Agilent is presented in Figure 5. Note that very few discordantly mapped reads are observed when using the Agilent kit, indicating that
the detection strategy we described here above is unable to detect retrotransposon insertions
downloaded with the WES BAM files generated with this kit, although several other identifiers of an
Alu insertion are clearly present and useful for the development of an adapted in silico
pipeline.

Procedure for cluster calculation starting with the data obtained from RetroSeq:

Save the RetroSeq generated tab. file in Excel format and delete the 2 last columns (the .tab file
generated with the positive control sample is provided as “Additional file 4”).

Remove all lines not referring to an autosome or to chX (all samples are from females).

Sort (A>Z) according to sign in last (6th) column.

Select/copy all filled cells and paste in Sheet 1 (“calculate cluster”) of the preformatted Excel file
for cluster calculation (Additional file 5).

In this Sheet 1, select for “TRUE” in column I (OR) and select/copy all filled cells in columns A
to J.

Paste the data in Sheet 2 (“simplify cluster”), and in column A, order by “color”. Delete the
total rows corresponding to the cells with pink background (this will remove duplicates).

In column O (chr), deselect “blank” and select/copy all informative cells in columns O to U.

Paste these data in Sheet 3 (“all clusters”), and deselect “2” in column G (to keep clusters with
minimum 3 reads).
Select/copy all filled cells and paste in Sheet 4 (annotation list, use the first column for sample ID). The positive control sample will generate 641 clusters (see Additional file 6).

Procedure to filter out the clusters of secondary interest (false positives or clusters highly recurrent among patients):

Based on the data we obtained from our 65 samples, we generated a table (first sheet of Additional file 7) listing (a) all clusters with minimal 3 reads that were observed in 6 or more of our patients (= clusters present ~10% or more of the samples) and (b) all clusters that resulted from the presence of a polyA stretch in the reference sequence. This table was subsequently used to identify and discard the less relevant clusters from the patient specific cluster lists (as described above). This list is provided with the only intension to familiarize with the described procedure. The content of this list can depend on the type and number of samples used for its generation (type of disease, ethnicity…) but also on the followed wet and dry bench procedures.

Select/copy all filled cells of Sheet 4 (annotation list) obtained from a patient specific cluster calculation (see above).

Open Sheet 1 (comm65>=6 + sample) of the preformatted Excel file for cluster filtering (Additional file 7) and paste the data (in column A) down the preexisting list.

Apply Sort (A>Z) on column C (start) and thereafter on column B (chr).

Select/copy the generated dataset and paste in Sheet 2 (calculate cluster_com65>=6).
Select for “0” in column L (“cluster”), for “FALSE” in column K (“OR”) and for “sampleID” in column A.

Select/copy/paste clusters with five or more reads to the “results” Sheet 3.

The obtained candidate insertion sites (represented by each of the generated clusters in Sheet 3) can be manually validated by IGV inspection of the corresponding BAM files at the indicated positions.

Hemi-nested PCR’s for genomic validation and screen

All uncommon Alu element insertions identified with high confidence (presence of a TSD) within or close to exonic gene sequences or promoter sequences (7 in total, see Table 1) were validated by a 2 step PCR. During the first step, and starting with an input of 6.25 ng genomic DNA, primers flanking the suspected integration site are used to generate a 200-300 bp long PCR fragment. This fragment is used as template (after 2000x dilution) for the second step of the hemi-nested PCR wherein one primer of the first step PCR is used in combination with an Alu specific primer. The first step of the nested PCR should work for all genomic DNA samples. The second step will work only when the patient is carrier of the targeted Alu insertion and the appropriate primer combination is used. Both PCR steps were run on a real-time PCR instrument (LightCycler 480 II from Roche). DNA samples from Alu carriers (and negative controls) according to our WES screen were used for validation. During the first step, an amplification with reproducible Ct and melting curve was observed with all samples while during the second step only samples with an Alu insertion gave an amplification signal (with reproducible Ct and melting curve). The obtained PCR fragments were further evaluated by agarose gel
electrophoresis and all showed the expected size. The primers used for PCR amplification are shown in Table 6. The Alu specific primer (Alu/Rev) is located in a well conserved region and points to the 5’ extremity of the transposon. Consequently, this primer will never allow amplification of the 3’ extremity (polyA tail) of the transposon. The choice of the second primer for the second step of the PCR will depend on the orientation of the Alu element compared to the orientation of the targeted gene (see Table 1, 2nd column). In order to identify additional carriers of the Alu insertions characterized during the raw WES data screen, the same nested PCRs were performed on genomic DNA from 710 familial BC patients (Table 2).

Genotyping at polymorphic sites

To investigate whether an Alu element that integrated into the non-coding regions of a gene affects expression levels of the targeted allele, a polymorphic site allowing allelic discrimination at the cDNA level must first be identified. This was done by IGV inspection of the BAM files from patients that had revealed a polymorphic Alu insertion during our screen (Additional file 1). To increase the number of samples that could be enrolled in the allele expression study, the patients whose genomic DNA revealed an interesting Alu insertion upon mutation specific PCR analysis were genotyped for the corresponding polymorphic site. PCR primers are presented in Table 7. Heterozygosity was determined by High Resolution Melting Curve Analysis.

RNA isolation, cDNA synthesis and RT-PCR

RNA isolation was performed using the RNeasy Mini kit (Qiagen) with additional DNase step using manufacturer’s protocol. cDNAs were prepared using Superscript II reverse transcriptase
(Life Sciences) using hexamer random primers and qPCR was performed using the SybrGreen Master kit (Roche) on a LightCycler 480 II. Primers are presented in Table 8.

Sequencing

Purified PCR fragments were Sanger sequenced by the VIB Genetic Service Facility, from the University of Antwerp.
DECLARATIONS

Ethics approval and consent to participate: Patient recruitment and blood sampling were performed according to the ethical procedures approved by the institutional ethics committee of the UZ Brussel. For the concerned cases, peripheral blood was collected after obtaining a written informed consent for a broad genomic analysis covering also incidental findings in genes predictive for other diseases.

Consent for publication: Not applicable

Availability of data and materials: a dataset allowing the reproduction of the outputs for a positive control is provided as “additional file”. Additional datasets are available on reasonable request.

Competing interests: the authors declare that they have no competing interests

Funding: financial support from “Kom Op Tegen Kanker” is acknowledged

Authors’ contribution: SDB and ET conceived the project, designed and performed the experiments, interpreted the data and wrote the manuscript. JDG is responsible for patient recruitment and counselling. All authors reviewed and approved the manuscript.
Acknowledgements: not applicable

Authors’ information (optional): not applicable
REFERENCES

1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al: Initial sequencing and analysis of the human genome. Nature 2001, 409:860-921.

2. Jurka J: Evolutionary impact of human Alu repetitive elements. Curr Opin Genet Dev 2004, 14:603-608.

3. Cordaux R, Batzer MA: The impact of retrotransposons on human genome evolution. Nat Rev Genet 2009, 10:691-703.

4. Kazazian HH, Moran JV: Mobile DNA in Health and Disease. N Engl J Med 2017, 377:361-370.

5. Rishishwar L, Wang L, Wang J, Yi SV, Lachance J, Jordan IK: Evidence for positive selection on recent human transposable element insertions. Gene 2018, 675:69-79.

6. Hancks DC, Kazazian HH: Roles for retrotransposon insertions in human disease. Mob DNA 2016, 7:9.

7. Ewing AD, Ballinger TJ, Earl D, Harris CC, Ding L, Wilson RK, Haussler D, Platform BIGSaAPa: Retrotransposition of gene transcripts leads to structural variation in mammalian genomes. Genome Biol 2013, 14:R22.

8. Yoder JA, Walsh CP, Bestor TH: Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 1997, 13:335-340.

9. Daniel C, Behm M, Öhman M: The role of Alu elements in the cis-regulation of RNA processing. Cell Mol Life Sci 2015, 72:4063-4076.

10. Kazazian HH, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE: Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988, 332:164-166.

11. Payer LM, Burns KH: Transposable elements in human genetic disease. Nat Rev Genet 2019, 20:760-772.

12. Teugels E, De Brakelere S, Goelen G, Lissens W, Sermijn E, De Grève J: De novo Alu element insertions targeted to a sequence common to the BRCA1 and BRCA2 genes. Hum Mutat 2005, 26:284.

13. Peixoto A, Santos C, Pinheiro M, Pinto P, Soares MJ, Rocha P, Gusmão L, Amorim A, van der Hout A, Gerdes AM, et al: International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation. Breast Cancer Res Treat 2011, 127:671-679.

14. Shahi RB, De Brakelere S, Caljon B, Pauwels I, Bonduelle M, Joris S, Fontaine C, Vanhoeyj M, Van Dooren S, Teugels E, De Grève J: Identification of candidate cancer predisposing variants by performing whole-exome sequencing on index patients from BRCA1 and BRCA2-negative breast cancer families. BMC Cancer 2019, 19:313.
19. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29:24-26.

20. Stewart C, Kural D, Strömberg MP, Walker JA, Konkel MK, Stütz AM, Urban AE, Grubert F, Lam HY, Lee WP, et al: A comprehensive map of mobile element insertion polymorphisms in humans. PLoS Genet 2011, 7:e1002236.

21. Witherspoon DJ, Zhang Y, Xing J, Watkins WS, Ha H, Batzer MA, Jorde LB: Mobile element scanning (ME-Scan) identifies thousands of novel Alu insertions in diverse human populations. Genome Res 2013, 23:1170-1181.

22. Chen LL, Yang L: ALUternative Regulation for Gene Expression. Trends Cell Biol 2017, 27:480-490.

23. Spengler RM, Oakley CK, Davidson BL: Functional microRNAs and target sites are created by lineage-specific transposition. Hum Mol Genet 2014, 23:1783-1793.

24. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ: Computational and experimental identification of novel human imprinted genes. Genome Res 2007, 17:1723-1730.

25. Greally JM: Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc Natl Acad Sci U S A 2002, 99:327-332.

26. Wang J, Song L, Grover D, Azrak S, Batzer MA, Liang P: dbRIP: a highly integrated database of retrotransposon insertion polymorphisms in humans. Hum Mutat 2006, 27:323-329.

27. Sun SC, Ma D, Li MY, Zhang RX, Huang C, Huang HJ, Xie YZ, Wang ZJ, Liu J, Cai DC, et al: Mutations in C1orf194, encoding a calcium regulator, cause dominant Charcot-Marie-Tooth disease. Brain 2019, 142:2215-2229.

28. van de Kooij B, Creixell P, van Vlimmeren A, Joughin BA, Miller CJ, Haider N, Simpson CD, Linding R, Stambolic V, Turk BE, Yaffe MB: Comprehensive substrate specificity profiling of the human Nek kinome reveals unexpected signaling outputs. Elife 2019, 8.

29. Liu X, Sun L, Gursel DB, Cheng C, Huang S, Rademaker AW, Khan SA, Yin J, Kiyokawa H: The non-canonical ubiquitin activating enzyme UBA6 suppresses epithelial-mesenchymal transition of mammary epithelial cells. Oncotarget 2017, 8:87480-87493.

30. Ranjan A, Iyer SV, Iwakuma T, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM, et al: A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 2017, 32:460-473.e466.

31. Liu X, Sun L, Gursel DB, Cheng C, Huang S, Rademaker AW, Khan SA, Yin J, Kiyokawa H: The non-canonical ubiquitin activating enzyme UBA6 suppresses epithelial-mesenchymal transition of mammary epithelial cells. Oncotarget 2017, 8:87480-87493.

32. Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W, Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 2018, 415:11-19.

33. Gupta P, Li YR: Upf proteins: highly conserved factors involved in nonsense mRNA mediated decay. Mol Biol Rep 2018, 45:39-55.

34. Ranjan A, Iyer SV, Iwakuma T: Suppressive roles of A3AR and TMIGD3 i1 in osteosarcoma malignancy. Cell Cycle 2017, 16:903-904.
38. Mollenhauer J, Wiemann S, Scheurlen W, Korn B, Hayashi Y, Wilgenbus KK, von Deimling A,
Poustka A: DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3-26.1 is
deleted in malignant brain tumours. Nat Genet 1997, 17:32-39.
39. Wu W, Kemp BL, Proctor ML, Gazdar AF, Minna JD, Hong WK, Mao L: Expression of DMBT1, a
candidate tumor suppressor gene, is frequently lost in lung cancer. Cancer Res 1999, 59:1846-
1851.
40. Braidotti P, Nuñiforo PG, Mollenhauer J, Poustka A, Pellegrini C, Moro A, Bulfamante G, Coggi G,
Bosari S, Pietra GG: DMBT1 expression is down-regulated in breast cancer. BMC Cancer 2004,
4:46.
41. Sorek R, Ast G, Graur D: Alu-containing exons are alternatively spliced. Genome Res 2002,
12:1060-1067.
42. Ding J, Wu W, Yang J, Wu M: Long non-coding RNA MIF-AS1 promotes breast cancer cell
proliferation, migration and EMT process through regulating miR-1249-3p/HOXB8 axis. Pathol
Res Pract 2019, 215:152376.
43. Wagner K, Hemminki K, Grzybowska E, Bermejo JL, Butkiewicz D, Pamula J, Pekala W, Försti A:
Polymorphisms in the growth hormone receptor: a case-control study in breast cancer. Int J
Cancer 2006, 118:2903-2906.
44. Blackburn AC, Hill LZ, Roberts AL, Wang J, Aud D, Jung J, Nikolcheva T, Allard J, Peltz G, Otis CN,
et al: Genetic mapping in mice identifies DMBT1 as a candidate modifier of mammary tumors
and breast cancer risk. Am J Pathol 2007, 170:2030-2041.
45. Ahmed S, Thomas G, Ghoussaini M, Healey CS, Humphreys MK, Platte R, Morrison J, Maranian
M, Pooley KA, Luben R, et al: Newly discovered breast cancer susceptibility loci on 3p24 and
17q23.2. Nat Genet 2009, 41:585-590.
46. Decker B, Allen J, Lucarini C, Pooley KA, Shah M, Bolla MK, Wang Q, Ahmed S, Baynes C, Conroy
DM, et al: Targeted Resequencing of the Coding Sequence of 38 Genes Near Breast Cancer
GWAS Loci in a Large Case-Control Study. Cancer Epidemiol Biomarkers Prev 2019, 28:822-825.
47. Babaian A, Mager DL: Endogenous retroviral promoter exaptation in human cancer. Mob DNA
2016, 7:24.
48. Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC, Godoy PM, Zhang D, Li D, Xing X, Kim S, et al:
Transposable elements drive widespread expression of oncogenes in human cancers. Nat
Genet 2019, 51:611-617.
49. Guevara-Aguirre J, Guevara A, Palacios I, Pérez M, Prócel P, Terán E: GH and GHR signaling in
human disease. Growth Horm IGF Res 2018, 38:34-38.
50. Mir AA, Philippe C, Cristofari G: euL1db: the European database of L1HS retrotransposon
insertions in humans. Nucleic Acids Res 2015, 43:D43-47.
55. Payer LM, Steranka JP, Yang WR, Kryatova M, Medabalimi S, Ardeljan D, Liu C, Boeke JD, Avramopoulos D, Burns KH: Structural variants caused by \textit{Alu} insertions are associated with risks for many human diseases. \textit{Proc Natl Acad Sci U S A} 2017, \textbf{114}:E3984-E3992.

56. Li H: Toward better understanding of artifacts in variant calling from high-coverage samples. \textit{Bioinformatics} 2014, \textbf{30}:2843-2851.

57. Rishishwar L, Mariño-Ramírez L, Jordan IK: Benchmarking computational tools for polymorphic transposable element detection. \textit{Brief Bioinform} 2017, \textbf{18}:908-918.

58. Hubley R, Finn RD, Clements J, Eddy SR, Jones TA, Bao W, Smit AF, Wheeler TJ: The \textit{Dfam} database of repetitive DNA families. \textit{Nucleic Acids Res} 2016, \textbf{44}:D81-89.

to be added to ref35 (bold): …role of RNA \textit{m6A} Methylation in Cancer.

(not accepted by EndNote)
FIGURES (titles and legends)

Figure 1
Title: Schematic representation of the “discordantly mapped read pairs” used for the detection of polymorphic retrotransposons
Legend: After genome fragmentation (broken arrows), size selected DNA fragments are sequenced from both ends (paired-end sequencing). DNA fragments having one breakpoint in a gene and the other breakpoint in a retrotransposon not included in the reference human genome will generate read pairs (grey filled arrows) that do not map at nearby positions on the reference genome after alignment. The discordantly mapped read pairs obtained by analysis of the full exome of a patient (traceable in the corresponding BAM file) are further selected for the presence of a long polyA stretch in one of the mate reads. An additional landmark for retrotransposition is the presence of a target site duplication (TSD) flanking the transposon.

Figure 2
Title: Screenshots of IGV outputs visualizing the Alu element insertion in the positive control sample
Legend: The screenshots are restricted to the genomic region where the Alu element insertion occurred (c.1739_1740insAlu in BRCA1) in the positive control sample. The BAM file used for IGV visualization was generated from WES data obtained with the exome capture kit SeqCap EZ
Exome v3.0 from Roche. Group alignment is by chromosome of mate. Note the presence of a high number of reads (22) whose mate reads are located on another chromosome (encircled and labelled “A”). All those BRCA1 specific reads point in the same direction, the 3’ extremity of the Alu insertion that ends with a long polyA stretch (3 of these 22 reads already end with a small polyA stretch). Consequently, the mates of these 22 reads have a high probability to contain a long polyA stretch and to be picked up with our detection strategy. Five such discordantly mapped read pairs are sufficient to retain this particular genomic region as a candidate insertion site. Note also that a number of correctly mapped read pairs (labelled “B” and “C”) start with a sequence that do not correspond to the BRCA1 sequence. The reads labelled “B” confirm the presence (and position) of a polyA stretch adjacent to the BRCA1 sequence, while the reads labelled “C” allow the identification of the inserted sequence most upstream of the polyA stretch, in this case an Alu element. Inserted retrotransposon sequences can be identified making use of the Dfam [58] database (https://dfam.org/home), processed pseudogenes with BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Finally, and characteristic for retrotransposition events, the inserted element is flanked by a short repeated sequence (TSD, 17bp long in this case) as is indicated with label “D”. Often, a sharp increase of the coverage at the level of the TSD is observed (less pronounced in this example, see label “E”).

Figure 3

Title: Alu element insertions in UPF2 and NEK10 do not induce allelic up or down regulation
Legend: Sanger sequencing experiments were performed on RNA material obtained from blood leucocytes. The chromatograms show a nucleotide region containing a polymorphic position (a SNP, indicated by an arrow) for which all tested samples were heterozygous at the genomic level. (A) In addition to be heterozygous for c.1539A>C (rs11595168), all 5 samples were also heterozygous for the Alu insertion in the intronic region of UPF2 (c.3408+98_111insAlu). The c.1539C allele is very rare and was not detected among available control samples. (B) In addition to be heterozygous for c.1674A>G (rs674303), 1 of the 4 samples was also heterozygous for the Alu insertion in the intronic region of NEK10 (c.26+891_908insAlu).

Figure 4

Title: Alu element insertions in GHR and PTPN10 modulate allelic expression

Legend: Sanger sequencing experiments performed on RNA material obtained from blood leucocytes. The chromatograms show a nucleotide region containing a polymorphic position (arrow) for which the tested samples were heterozygous at the genomic level. (A) In addition to be heterozygous for c.558A>G (rs2397118), 3 of the 5 samples were also heterozygous for the Alu insertion in the 3’UTR of GHR (c.*+413_+422insAlu). Allele silencing is observed in all Alu mutation carriers. (B) In addition to be heterozygous for c.978A>G (rs7550799), 2 of the 5 samples were also heterozygous for the Alu insertion in the intronic region of PTPN14 (c.10066+35_+44insAlu). Note that the two Alu mutation carriers express both alleles well, while one control sample (sample PTPN14_ctrl1) expresses almost exclusively the G allele, the 2 other control samples showing a deficit in the G allele.
Figure 5

Title: IGV visualization of the control Alu insertion using BAM file generated with the Agilent kit

Legend: Screenshots of IGV outputs restricted to the genomic region where the Alu element insertion occurred (c.1739_1740insAlu in \textit{BRCA1}) in the positive control sample. The BAM file used for IGV visualization was generated from WES data obtained with the SureSelect Human All Exon V6 kit (exome capture kit) from Agilent. Group alignment is by chromosome of mate. Note that this exome capture kit generates much less discordantly mapped read pairs than the kit from Roche (2 versus 22, compare with Figure 2). Accordingly, the required number (five) of discordantly mapped read pairs containing a long polyA track will not be reached and the insertion will not be revealed with our detection strategy. Note that all other characteristics observed for a retrotransposon insertion when using the exome capture kit from Roche (see Figure 2) are also observed when using the kit from Agilent.
Table 1: List with the 18 high confidence retrotransposition mediated insertions detected in 65 familial BC patients

Targeted gene (region)	Location TSD (RefSeq); orientation of the insertion compared to the targeted gene	Transposed sequence	5' extremity of the transposed sequence*	# carriers cl_5P	# carriers cl_3P	# carriers IGV*	reported in dbRIP?
BRCA1 (exon)	c.1723_1739 (NM_007294.3); sense	Alu	1_42 of Alu/H6	3	3	5	yes
GSTAS (promoter)	c.1_3 Kb up transcription start (NM_153609.1); antisense	Alu	1_59 of Alu/H6	4	4	4	yes
METTL3 (intron)	+456_+69 (NM_019852.5); antisense	Alu	1_58 of Alu/H6	1	1	1	no
NEXI0 (intron)	c.26_891 +906 (CCDS757713); antisense	Alu	2_53 of Alu/H6	1	1	3	no
PTNP14 (intron)	c.100_664+35_44 (NM_005461.5); sense	Alu	1_57 of Alu/H6	3	4	4	no
UPF2 (intron)	c.348_98_+111 (NM_000599.2); antisense	Alu	2_53 of Alu/H6	3	3	3	no
ZNF442 (exon)	c.1402_1413 (NM_030824.3); antisense	Alu	1_47 of Alu/H6	2	1	1	no
TIMG03 (intron)	c.458_623 .. 638 (NM_020683.7); antisense	Alu	2_55 of Alu/H6	1	4	7	yes
Intergenic closest gene at 10Kb (GNIP42)		Alu	1_57 of Alu/H6	2	2	2	no
Intergenic 2 genes at 30Kb (MIFF & GSTT2B)		Alu	1_57 of Alu/H6	1	5	5	yes
HSD17B12 (3'UTR)	c.462_465 (NM_016143.3); antisense	Alu	1_46 of Alu/H6	4	4	29	yes
Intergenic closest gene at 838 (GCVS)		L5	2247_2296 of LCP3_off2	1	4	5	no
DMRT1 (intron)	c.1429_448 .. 463 (NM_0012739.2); antisense	L5	4_54 of LHS5	1	1	1	no
UB2 (promoter)	c.1097_147 .. 25 (NM_08227.6); sense	SVA	751_778 of SVA_F	1	1	1	no
Clorf104 (exon)	c.58_70 (NM_00122961.1); sense	UGCR1B	starts at c.15 (NM_013387.4)	1	4	7	Pseudogene
PSMA7 (intron)	c.614_95 .. 107 (NM_002792.4); antisense	MRPL50	starts at c.7 (NM_019051.3)	1	1	1	Pseudogene
DPP10 (intron)	c.442_70581 .. 70596 (NM_00131907.1); antisense	SET	starts at c.19 (NM_0013131)	1	4	35	Pseudogene

Strong candidate integration sites are retained when generated by clusters counting at least 5 polyA containing discordantly mapped read pairs, when present in less than 10% of the samples, and when a TSD is deductible upon IGV inspection in at least one patient. a indicates the number of nucleotides available to identify retrotransposition type (using the Dfam database [58]). As only about 50 nucleotides are available for transposon identification, it was not possible to define subclasses. b indicates the number of patients (out of 65) who carry the mutation based on clusters counting at least 5 discordantly mapped read pairs. c indicates the number of patients who carry the same mutation based on clusters counting at least 3 discordantly mapped read pairs. d indicates the number of patients harboring the same mutation based upon IGV inspection. Note that for two insertions (SET in DPP10 and Alu in HSD17B12) a much higher number of carriers is revealed upon IGV inspection. This discrepancy results from the poor coverage at sequencing. e indicates the Alu insertions for which a genomic hemi-nested PCR has been developed and applied for validation (see Methods).
Table 2: Results from insAлу genotyping experiments performed on 710 non related familial BC patients

Alu targeted gene	# carriers out of 710
UPF2	107
PTPN14	10
GHR	17
ZNF442	1
METTL3	1

The primers used for mutation specific PCR amplification are presented in Table 6.

Table 3: List with the 14 polyA associated insertions for which a TSD could not be defined.

Targeted gene (region)	Insertion type	Position of insertion in cDNA (RefSeq)	Position of insertion in hg19	Retrotransposon sequence in mate?	# carriers cl_5	# carriers cl_3	reported in dbRIP?
ANAPC16 (3′UTR)	polyA	c.*+387 (NM_001242546.1)	chr10:73993271	no	2	2	yes (Alu)
ARHGAP1 (intron)	polyA	c.317+71 (NM_004308)	chr11:46709653	yes (Alu)	1	1	no
ALH (intron)	polyA	c.599-122 (NM_001668)	chr9:94058481	yes (L1)	1	4	yes (L1)
CLEC1B (intron)	polyA	c.438+306 (NM_016509)	chr12:10149139	no	1	2	no
DHR51 (intron)	polyA	c.374+111 (NM_138452)	chr11:24765604	yes (Alu)	1	1	no
DYNC2H1 (intron)	polyA	c.6139+43 (NM_001377)	chr11:103048592	yes (Alu)	1	1	yes (Alu)
ETF1 (3′UTR)	polyA	c.*+2210 (NM_004730)	chr5:137841784	no	1	1	no
GCTN1 (3′UTR)	polyA	c.*+2545 (NM_001490)	chr9:79121129	yes (Alu)	1	1	no
GSAP (intron)	polyA	c.1491+495 (NM_017439)	chr7:76980766	yes (Alu)	1	1	yes (Alu)
MEOX2 (intron)	polyA	c.690+95 (NM_205924)	chr7:15666276	yes (Alu)	1	1	yes (Alu)
MIER1 (3′UTR)	polyA	c.*+1193 (NM_020948)	chr16:67453349	no	1	1	no
USP38 (intron)	polyA	c.1210-89 (NM_032557)	chr4:144217097	yes (Alu)	1	1	yes (Alu)
intergenic	polyA	UNC0251 at 46kb	chr6:114017537	no	3	4	no
intergenic	polyA	SPN1 at 6.1kb	chr9:91099726	no	1	3	yes (Alu)

Note that for 8 of the 14 polyA containing insertion sites, a partial retrotransposon sequence could be traced in the mate of at least one discordantly mapped read upon IGV inspection (5th column). Screening the database for Retrotransposition Insertion Polymorphisms in Human (dbRIP) at the corresponding positions confirmed the presence of a retrotransposon at 7 of the 14 positions (8th column).
Table 4: Number of hits obtained in PubMed when searching for the polyA targeted genes.

PubMed domain	title	title/abstract	title/abstract	title/abstract
Search terms used	"all gene names"	"all gene names"	"all gene names" AND "cancer"	"all gene names" AND "breast cancer"
gene (synonyms)				
ANAPC16 (APC16, C10orf104, CENP-27, FLI31728, hA570G20.3)	5	5	0	0
ARHGAP1 (CDC42GAP, shoGAP, p50rhoGAP)	31	93	15	4
ARH				
CLEC1B (CLEC2)	9	49	6	0
DHRF1 (FL15430, MSG20204, SDR19C1)	1	4	1	0
DYNCH2H1 (DHC1b, DHC2, DYNCH2, DYNH1B, DHC1b, DHC2, DYNH1B, DHC1b)	26	86	4	0
ETF1 (ETF2, ERF1, ETF, SUP45L1, TB3-1)	185	845	21	5
GCNT1 (C2GNT, NAGCT2, NAGCT2)	8	124	35	1
GSAP (LOC54103, G22A)	6	31	1	0
MED1 (MED1, MED2)	85	254	22	1
MIER1 (KIAA1610, MI-ER1, NMI-ER1)	10	15	2	2
USP38 (HP43.8KD, KIAA1891)	6	10	3	1
intergenic: LINCO2951 at 46b	0	0	0	0
intergenic: SPIN1 at 6kb (SPIN, TDRD24)	18	34	14	4

This table shows the number of hits obtained in PubMed when using as search term a specific gene or its synonym (= "all gene names") in combination with "cancer" or "breast cancer" and when restricting the search to particular domains (title or abstract). Gene names generating excessive number of false positive hits were removed (strike-through). Search was performed on 14/01/2020.
Table 5: Number of hits obtained in PubMed when searching for high confidence targeted genes.

Pubmed domain	title	title/abstract	title/abstract	title/abstract
gene (synonyms)*	"all gene names"	"all gene names"	"all gene names" AND "cancer"	"all gene names" AND "breast cancer"
BRCA1 (BRCC1, FANCIL, PPP1RS5, RNF53); positive control	6503	14198	11505	7402
GHR (GHBP)	208	2416	129	35
GSTA5	2	29	7	2
METTL3 (AISA, MT-A70, Spoa)	80	251	65	6
NEK10 (FLJ32685)	1	17	11	8
PTPN14 (PTEZ)	33	98	37	6
UPF2 (DKFZP434D222, KIAA1408, REN12, smg-3)	32	189	5	0
ZNF442 (FLJ14356)	0	0	0	0
TMIGD2 (A0026)	2	2	1	0
intergenic: GPR42 at 10 kb (FFAR3L, GPR41L, GPR42P)	2	4	0	0
intergenic: MIF-AS1 at 30 kb (LOC284889, MIF-AS)	4	5	2	1
intergenic: GSTT2B at 30kb (GSTT2P)	2	8	2	0
intergenic: CLSV1 at 85kb (C1orf122L, CRALBPL, MGC34646, RLB1L1)	2	7	1	0
DMBT1 (GP340, Gp-340, SALSA, hensin, muclin, vomeroglandin)	166	389	68	7
UBA6 (FLJ10808, UBE1L2)	14	32	5	1
C1orf194	1	2	0	0
PSMA7 (G6, HSAAC, RCE-1, XAPC7)	19	60	18	0
UQCR10 (HSPC051, QCRR, UCCR7.2, UCRC) transcript in C1orf194	3	35	4	0
MRPL50 (FL20493, MRP-150) transcript in PSMA7	0	2	0	0

This table shows the number of hits obtained in PubMed when using as search term a specific gene or its synonym (= "all gene names") in combination with "cancer" or "breast cancer" and when restricting the search to specific domains (title or abstract). *gene names generating excessive number of false positive hits were removed (strikethrough). Search was performed on 13/01/2020.
Table 6: Primers used for the detection of 7 Alu element insertions in genomic DNA

Primer name	Primer sequence	wt fragment size (bp)
PTPN14/Gen/F1	GTGTGGTGAGCACTACTCGG	
PTPN14/Gen/R1	CTGACAGCCTAGGCCCCAC	205
GHR/Gen/F1	AAATCAAGTGGCTTTTCCGG	
GHR/Gen/R1	AAGGGGCTTACACCACCTGC	275
GSTA5/Gen/F1	TGGTTATACAGGGTGTTGGCA	
GSTA5/Gen/R1	TAGTCTACACAGGACGACA	286
NEX10/DNA/F1	AATGTCAGCTACCTAGCG	
NEX10/DNA/R1	AGGACATTCTCTTACCTTCTT	240
UPF2/E17/F	GGAATAGAAGCCAGAAGAGA	
UPF2/E17/R	GGCCAAGACCTTTCTAGTATGA	272
METTL3/Gen/F1	CCTGTCTGCTGACAAACACTG	
METTL3/Gen/R1	AGGGGATATCACAACAGATCCA	249
ZNF442/Gen/F1	GCCCTCCATATTTACCTTC	220
ZNF442/Gen/R1	TTTCAGCAAGTGAAGTCCTTCT	
Alu/Rev	TTTTATAGAGACGGGGTTTCT	

Table 7: Primers used for genotyping at polymorphic positions (for RNA study)

Primer name	Primer sequence	fragment size (bp)	SNP
PTPN14/ex11/F	CTTCCCTGTCCTGCTGCTT	298	rs7550799
PTPN14/ex11/R	CAAGGAGGCAAAACGGGGT	187	rs6179
GHR/ex6/F	CAACCATCTGCTCTACCTGT	183	c.978A>G; p.Arg326=
GHR/ex6/R1	AGGGTGTGCTACCTGCTT	241	c.558A>G; p.Gly186=
GHR/ex6/R1	GGGTGGTTTCTCATAGACCTCAT	222	c.1674A>G; p.Gly558=
NEX10/ex20/F	AGGTAGAAGAAGCATAAGTAGCT	227	rs674303
NEX10/ex20/R2	TGGACAAAGACGACACACT	203	c.1674A>G; p.Gly558=
UPF2/ex6/R1	AAGGGGTCGCTCTGCTGCTT	274	c.1539A>C; p.Ser513=

Table 8: Primers used for cDNA amplification (and Sanger sequencing)

Primer name	Primer sequence	fragment size (bp)
PTPN14/RNA/F1	GTTGTTGTCGACACGACAC	308
PTPN14/RNA/R1	AGTTGACGCTGTCGAGCTAC	241
GHR/RNA/S1	ATGGCCCTACCTGAGCTTTA	386
GHR/RNA/R1	TGGATCTACAGGGGACTTGA	203
GSTA5/RNA/F1	GTCGACGCTGAAATAGAGTT	203
GSTA5/RNA/R1	AGGACCTCTCTCATGCTTCTT	250
NEK10/RNA/F2	TTACGTCTGCTGTGATCT	241
NEK10/RNA/R2	TTTTGCCACGCACTTCTGTT	240
UPF2/RNA/F1	GTGCTGGCTTCTCTCCTTCTC	220
UPF2/RNA/R1	TTTTGCCACGCACTTCTGTT	240
Additional file 1 (Excel file)

Title: Strong candidates retrotransposon mediated insertion sites

Description: This table lists all strong candidate insertion sites detected with the RetroSeq software (minimum 5 discordantly mapped read pairs pointing to the same genomic location) and further filtered using Excel software to remove false positives and insertions occurring in more than 10% of the investigated patient samples.

Additional file 2 (Word file)

Title: Retrotransposon targeted genes with no TSD identified

Description: For each gene presumably targeted by a retrotransposition event that could not be confirmed by the presence of a TSD, a short description is given. The gene/protein descriptions provided by “Entrez Gene Summary” (https://www.ncbi.nlm.nih.gov/gene), by “GeneCards Summary” (https://www.genecards.org) and by “UniProtKB/Swiss-Prot Summary” (https://uniprot.org) are presented, when available.

Additional file 3 (Word file)

Title: Retrotransposon targeted genes with TSD identified
Description: For each gene targeted by a retrotransposition event that could be confirmed by the presence of a TSD, a short description is given. The gene/protein descriptions provided by “Entrez Gene Summary” (https://www.ncbi.nlm.nih.gov/gene), by “GeneCards Summary” (https://www.genecards.org) and by “UniProtKB/Swiss-Prot Summary” (https://uniprot.org) are presented, when available.

Additional file 4 (Excel file)

Title: RetroSeq generated list of anchor reads when using the positive control sample

Description: This table lists all discordantly mapped read pairs (19.674 in total) selected by the RetroSeq software when analyzing the positive control sample (patient harboring the c.1739_1740insAlu mutation in BRCA1). The input BAM file was generated using the exome capture kit SeqCap EZ Exome v3.0 from Roche for library preparation. To be selected, one read of the discordantly mapped read pair must contain a long polyA stretch, while the position of the mate of this read on the reference genome is used for ordering the RefSeq selected read pairs.

Additional file 5 (Excel file)

Title: Excel file for cluster calculation

Description: This pre-formatted Excel file can be used to extract potential retrotransposon insertion sites from lists generated with the RetroSeq software (e.g. the list presented in Additional file 4)
Additional file 6 (Excel file)

Title: Output of cluster calculation for the positive control sample

Description: This table lists all potential retrotransposon integration sites observed in the positive control sample (641 in total). Integration sites are retained only when 3 or more anchor reads cluster in the same genomic interval (max 300bp long).

Additional file 7 (Excel file)

Title: Excel file for cluster filtering

Description: This pre-formatted Excel file allows further filtering of the potential retrotransposon integration sites (output of Additional file 5). Highly recurrent integration sites (occurring in more than 10% of the investigated population) or false positives are removed during this filtering step.
Discordantly mapped read pairs

DNA breakpoints (after fragmentation)
Figure 3
Figure 4

A

GHR

rs2397118

insAlu_1

insAlu_2

insAlu_3

ctrl_1

ctrl_2

B

PTPN14

rs7550799

insAlu_1

insAlu_2

ctrl_1

ctrl_2

ctrl_3

Figure 4
