A novel KLF13 mutation underlying congenital patent ductus arteriosus and ventricular septal defect, as well as bicuspid aortic valve

PRADHAN ABHINA V1*, GAO-FENG ZHANG2*, CUI-MEI ZHAO3*, YING-JIA XU2, JUAN WANG1 and YI-QING YANG2,4,5

1Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120; 2Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240; 3Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065; 4Cardiovascular Research Laboratory; 5Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, P.R. China

Received December 21, 2021; Accepted February 11, 2022

DOI: 10.3892/etm.2022.11240

Correspondence to: Dr Juan Wang, Department of Cardiology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, P.R. China E-mail: wj57188@163.com

Dr Yi-Qing Yang, Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, 801 Heqing Road, Shanghai 200240, P.R. China E-mail: yangyiqing@fudan.edu.cn

*Contributed equally

Key words: congenital heart defect, molecular genetics, KLF13, transgene, biochemical assay

Abstract. Recently, mutations in the Kruppel-like factor 13 (KLF13) gene encoding a Kruppel-like transcription factor have been reported to cause congenital heart disease (CHD). However, due to pronounced genetic heterogeneity, the mutational spectrum of KLF13 in other cohorts of cases suffering from distinct types of CHD remain to be ascertained. In the present investigation, by Sanger sequencing of KLF13 in 316 unrelated cases affected by different forms of CHD, a new mutation in heterozygous status, NM_015995.3: c.430G>T; p.(Glu144*), was detected in an index patient affected with patent ductus arteriosus (PDA) and ventricular septal defect (VSD), as well as bicuspid aortic valve (BAV), with a mutation frequency of ~0.32%. Genetic investigation of the available family members of the proband demonstrated that the truncating mutation co-segregated with CHD. The nonsense mutation was not observed in 400 unrelated volunteers without CHD who were enrolled as control subjects. Quantitative biological measurements with dual luciferase reporters revealed that Glu144*-mutant KLF13 did not transactivate the downstream genes vascular endothelial growth factor A and natriuretic peptide A. In addition, the mutation abrogated the synergistic transcriptional activation between KLF13 and T-box transcription factor 5, a well-established CHD-causing gene. In conclusion, the present study indicates that genetically defective KLF13 contributes to familial PDA and VSD, as well as BAV, which expands the phenotypic spectrum linked to KLF13, and reveals a novel molecular pathogenesis of the disease, providing a new molecular target for the early prophylaxis and individualized treatment of CHD.

Introduction

Congenital heart disease (CHD), as a collective diagnosis for structural malformations of the heart and valves, as well as the endothoracic great blood vessels, occurring during embryonic development, represents the most common birth deformity in humans, with a prevalence of ~1% among live births worldwide (1,2). When minor cardiac structural anomalies are included, such as aneurysm of the atrial septum and bicuspid aortic valve (BAV), which is the most prevalent congenital cardiovascular anomaly with an incidence of 1-2% in the population, the overall prevalence of CHD may be as high as ~5% (2). Based on the occurrence of cardiac lesions in certain locations, CHD is clinically classified into >20 distinct subtypes, including ventricular septal defect (VSD), patent ductus arteriosus (PDA), transposition of the great arteries (TGA), double outlet of the right ventricle (DORV), tricuspid valve atresia (TVA), atrial septal defect (ASD), endocardial cushion defect, aortic stenosis, a right aortic arch, a single ventricle, tetralogy of Fallot, hypoplastic left heart and hypoplastic right heart (3-6). Irrespective of minor CHD that may resolve spontaneously (3), major CHD may contribute to diminished health-associated quality of life (7-9), decreased exercise performance (10-14), delayed neurodevelopment and brain injury (15-18), ischemic or hemorrhagic cerebral stroke (19-21), pulmonary arterial hypertension or Eisenmenger syndrome (22-24), viral pneumonia (25-27), infective endocarditis (28-30), acute myocardial infarction (31,32), chronic congestive heart failure (33-35), ventricular or supraventricular
arrhythmia (36-38) and death (39-42). Notably, CHD remains the most frequent etiology of newborn deaths caused by birth defects, with 21.8% of the neonates who succumb to various birth malformations having a cardiovascular abnormality (43). Although tremendous improvement in the outcomes of cardiac surgery and periprocedural intensive care has been achieved, which allows >90% of CHD-infants to survive into adulthood and reach fertile age, this results in an increasing adult population with CHD, and now the rising number of adult patients with CHD accounts for more than two-thirds of the overall CHD population (44). Moreover, the rates of late surgical complication and cardiac comorbidity, and even mortality, markedly increase in adults affected with CHD (45-47). Despite the clinical importance, the etiologies underpinning CHD in a considerable proportion of cases remain obscure.

In vertebrates, the heart is the first functional organ that develops during embryonic morphogenesis, and cardiac organogenesis undergoes an extremely complex biological process, which is precisely mediated by a sophisticated regulatory network, involving transcription factors, cardiac structural proteins, signaling transducers, epigenetic modifiers and microRNAs (48). Previous studies have demonstrated that both environmental risk factors and genetic defects may interfere with this finely controlled developmental process, giving rise to CHD (1,2,48-54). The well-recognized non-inheritable pathogenic factors for CHD include maternal viral infection, nutritional deficiency, obesity, diabetes and decreased physical activity, as well as exposure to toxic chemicals, therapeutic drugs and ionizing radiation during early pregnancy (48-51). However, accumulating evidence highlights the strong genetic basis underpinning CHD (1,2,52-54). Significant familial aggregation of CHD has been reported, with the risk of CHD recurrence in the first-degree offspring of an affected parent being between 3 and 19% depending on the distinct types of lesion (55). In addition to chromosomal alterations encompassing aneuploidies, microdeletions and microduplications, pathogenetic variations in >100 genes amply expressed in the developing heart, encompassing those encoding sarcomeric proteins, transcription factors, chromatin modifiers and signal-transducing molecules, have been determined to contribute to CHD (1,2,52,53,56-83). Of these reported CHD-causative genes, the majority code for cardiac core transcription factors, such as T-box transcription factor (TBX)1, TBX20, TBX5, NK2 homeobox 5, GATA binding protein (GATA)6, GATA4, GATA5, heart and neural crest (TBX)1, TBX20, TBX5, NK2 homeobox 5, GATA binding protein (GATA)6, GATA4, GATA5, heart and neural crest derivatives expressed (HAND)1 and HAND2 (84). However, the genetic components underpinning CHD in most cases are still unknown.

Notably, mutations in the Kruppel-like factor 13 (KLF13) gene, which codes for a Kruppel-like transcription factor crucial for proper cardiovascular morphogenesis, have recently been discovered to cause distinct types of CHD (66,67). Li et al (66) performed targeted sequencing analyses of the entire coding region of KLF13 in a cohort of 309 index patients suffering from CHD, and found two heterozygous KLF13 variants in 2 out of 309 CHD patients, including NM_015995.3: c.467G>A; p.(Ser156Asn) in one patient affected with TGA and NM_015995.3: c.487C>T; p.(Pro163Ser) in another patient with TVA, VSD and ASD. These two missense mutations were absent from 200 population-matched healthy controls. Biological assays elucidated that Ser156Asn-mutant KLF13 had enhanced transcriptional activation on the downstream target gene brain natriuretic peptide, alone or in synergy with TBX5, and a significantly enhanced ability to bind physically to TBX5, whereas the Pro163Ser variant showed a loss-of-function effect (66). Wang et al (67) performed whole-exome sequencing analyses in a family with a high incidence of CHD (DORV and VSD), and identified a new KLF13 variant, NM_015995.3: c.370G>T; p.(Glu124*). The nonsense heterozygous mutation was absent from 312 control individuals without CHD. Functional investigation unveiled that the Glu124* variation exerted a loss-of-function impact on its two target genes, actin α cardiac muscle 1 (ACTC1) and atrial natriuretic peptide, singly or synergistically with GATA4, as well as GATA6 (67). These investigations underscore the substantial genetic heterogeneity of CHD comprising a wide spectrum of cardiovascular structural malformations, which encourages exploration of the spectrum and prevalence of KLF13 variations in different cohorts of cases inflicted with various types of CHD. The aim of the current study was to analyze the spectrum and prevalence of KLF13 variations in another cohort of cases with various types of CHD.

Materials and methods

Recruitment and clinical evaluation of study participants. The present study participants comprised a new cohort of 316 index patients affected with different forms of CHD enrolled from the Chinese Han population between March 2018 and November 2020 at Tongji Hospital and East Hospital, Tongji University (Shanghai, China). Clinical diagnosis and classification of various types of CHD were made as described previously (3,67). The relatives of the probands were also recruited when available. Patients with known syndromic CHD or chromosomal anomaly were ruled out from this research. Patients were diagnosed with syndromic CHD if they manifested a distinct facial gestalt or had at least one reported extra-cardiac malformation (85). A total of 400 unrelated volunteers without CHD were enrolled as control individuals from the same geographic area, who were exactly matched with the cases for sex and ethnicity, as well as age. All research participants underwent a comprehensive clinical assessment, as described previously (67-69). This research was fulfilled in compliance with the tenets of the Declaration of Helsinki. The protocol applied to the current investigation was approved by the Medical Ethics Committee of Tongji Hospital, Tongji University School of Medicine [Shanghai, China; approval no. LL(H)-09-07]. Written informed consent was provided by the research participants or their parents prior to commencement of sample collection.

Genetic analysis of KLF13. A whole blood specimen was collected from each study participant in an EDTA-coated tube and stored in a refrigerator at -80°C. Genomic DNA was purified from blood leukocytes by utilizing DNA extraction reagent (Promega Corporation). The entire coding region, as well as splicing boundaries, of the KLF13 gene (NC_000005.10) were amplified via polymerase chain reaction (PCR) using a DNA polymerase kit (Qiagen GmbH) and the KLF13-specific oligonucleotide primers, as described previously (67): Forward
5'-CCATGCGCTCACTCTTGTTG
TCTGAGGCGGGCTGCT-3' for the first party of coding exon 1 (product size, 670 bp); forward, 5'-CGGACCTCAACCAGC
AAGCG-3' and reverse, 5'-CTCCGAGGCGCAAGGCCGC-3' for the second party of coding exon 1 (product size, 596 bp); and forward, 5'-GCATGGGAGGGGTTGTTGA-3' and reverse, 5'-TCGTGAAACGCTGCTACCCCT-3' for coding exon 2 (product size, 675 bp). Each mixture used for PCR was prepared in a 0.2-ml PCR tube with a final volume of 25 μl, containing 1X Buffer (Qiagen GmbH), 1X Q solution, a component of the HotStar Taq DNA Polymerase kit facilitating amplification of templates with a high-degree secondary structure or with a rich GC content by modifying the melting behavior of DNA (Qiagen GmbH), 0.2 mM dNTPs (Qiagen GmbH), 0.5 μM forward primer, 0.5 μM reverse primer, 0.02 U/μl HotStar Taq DNA Polymerase (Qiagen GmbH) and 0.1 μg genomic DNA. PCR was fulfilled on a 96-well thermocycler (Bio-Rad Laboratories, Inc.). The thermocycling conditions set for the PCR were as follows: Initial denaturation at 95°C for 15 min, followed by 36 cycles of denaturation at 94°C for 30 sec, annealing at 62°C for 30 sec and extension at 72°C for 1 min, with a final extension at 72°C for 7 min. PCR products were resolved by 1.5% agarose electrophoresis and visualized after ethidium bromide staining of gels. PCR-sequencing of extracted amplicons was conducted as described previously (69). For a validated KLF13 variation, the Human Gene Mutation Database (HGMD; http://www.hgmd.cf.ac.uk/ac/index.php), Single Nucleotide Polymorphism (SNP) database (https://www.ncbi.nlm.nih.gov/snp) and the Genome Aggregation Database (gnomAD; https://gnomad.broadinstitute.org) were retrieved to verify its novelty.

Construction of gene expression plasmid and site-directed mutagenesis. The wild-type KLF13-pcDNA3.1 plasmid (Invitrogen; Thermo Fisher Scientific, Inc.) was constructed as described previously (67). The mutation discovered in the current study was introduced into wild-type KLF13-pcDNA3.1 plasmid by site-targeted mutagenesis with a site-targeted mutagenesis kit (Stratagene; Agilent Technologies Inc.) with the following primers: Forward, 5'-CCC CGG GGG AGC GGC TAG CCC GGC
CTCAGAC-3' and reverse, 5'-GCTGAGGCGGCTAGC
CGCTCCGCCGGG-3'. The mutant-type KLF13-pcDNA3.1 was selected by DpnI (Takara Biotechnology Co., Ltd.) and was confirmed by sequencing analysis. The TBX5-pcDNA3.1 plasmid (Invitrogen; Thermo Fisher Scientific, Inc.) and the reporter plasmid of human natriuretic peptide precursor A-luciferase (NPPA-luc), which expresses firefly luciferase, have been described previously (68). The reporter plasmid of human vascular endothelial growth factor A (VEGFA)-luc, which expresses firefly luciferase, was generated as previously described (86).

Cell culture, expression plasmid transfection and reporter gene assay. NIH3T3 cells (Cell Bank of Type Culture Collection of the Chinese Academy of Sciences) were seeded onto a 24-well plate, and maintained in DMEM (Merck KGaA) containing 10% fetal bovine serum and 1% penicillin/streptomycin (both Thermo Fisher Scientific, Inc.), in an atmosphere of 5% CO2 at 37°C. NIH3T3 cells were transfected 24 h after plating with various expression plasmids, including empty pcDNA3.1, wild-type KLF13-pcDNA3.1 (KLF13), Glu144*-mutant KLF13-pcDNA3.1 (Glu144*), wild-type TBX5-pcDNA3.1 (TBX5), NPPA-luc and VEGFA-luc, utilizing the Lipofectamine® 3000 Transfection Reagent (Invitrogen; Thermo Fisher Scientific, Inc.) as described previously (67). The internal control plasmid pGL4.75 (Promega Corporation), which expresses Renilla luciferase, was co-transfected to balance transfection efficiency. The empty pcDNA3.1 plasmid (Invitrogen; Thermo Fisher Scientific, Inc.) was used as a negative control. Cells were collected at 48 h post-transfection, and lysed in 0.2 ml Reporter Lysis Buffer (Promega Corporation). The cellular lysates were used to measure the luciferase activities of firefly and Renilla on a luminometer (Promega Corporation), using a dual-luciferase assay kit (Promega Corporation). The activity of the target gene promoter was expressed as fold activation of firefly luciferase to Renilla luciferase. For each expression plasmid, three transfection experiments were performed in triplicate.

Statistical analysis. Data for promoter activity are presented as the mean ± standard deviation of the original results from three transfection experiments. Differences in promoter activities between two groups were compared with unpaired Student's t-test. When comparisons among multiple groups were made, one-way ANOVA with a Tukey-Kramer HSD post-hoc test was used. A two-sided P-value of <0.05 was used to indicate a statistically significant difference. The statistical software used for the analysis was SPSS version 17.0 for Windows (SPSS, Inc.).

Results

Clinical characteristic data of the studied patients. In this investigation, a cohort of 316 unrelated index patients suffering from various types of CHD (168 male cases and 148 female cases, with ages ranging from 1-49 years and a mean age of 21±9 years) was clinically investigated in contrast to a total of 400 unrelated individuals without CHD (212 male individuals and 188 female individuals, with ages ranging from 1-49 years and a mean age of 21±8 years). All the included patients with CHD had echocardiographic evidence, whereas the echocardiograms of the enrolled control subjects were normal, without evidence of cardiovascular structural abnormalities. Among the 316 unrelated index patients with CHD, 58 index patients reported a positive family history of CHD, while all 400 control subjects lacked a family history of CHD. No research participants had known environmental risk factors predisposing them to CHD, including maternal viral infection, nutritional deficiency, obesity, diabetes or exposure to toxic chemicals, therapeutic drugs and ionizing radiation during early pregnancy. Most of the patients underwent cardiac catheterization or surgery. The clinical features of the 316 index cases with CHD are summarized in Table I.

Detection of a new pathogenic KLF13 mutation. Via direct sequencing analysis of the entire coding region and splicing donors/acceptrs of KLF13 in 316 index patients with diverse forms of CHD, a heterozygous non-synonymous mutation, NM_015995.3: c.430G>T; p.(Glu144*), was detected in one index patient inflicted with CHD, comprising PDA and VSD, as well as BAV; this mutation therefore has a prevalence of ~0.32%
Table I. Demographic and clinical characteristics of the 316 patients affected with various forms of congenital heart disease.

Parameters	n or mean
Sex, n (%)	
Male	168 (53)
Female	148 (47)
Mean age (range), years	21±9 (1-49)
Distribution of distinct forms of CHD, n (%)	
VSD	73 (23)
ASD	57 (18)
PDA	38 (12)
TOF	32 (10)
DORV	16 (5)
VSD + PDA	28 (9)
VSD + ASD	22 (7)
DORV + VSD	16 (5)
TGA + VSD	16 (5)
ASD + PDA	9 (3)
TOF + ASD	6 (2)
PTA + VSD	3 (1)
Arrhythmias, n (%)	
AVB	16 (5)
FVPB	9 (3)
AF	7 (2)
PVT	3 (1)
Medical history, n (%)	
Cardiovascular surgery for CHD	177 (56)
Catheter-based treatment for CHD	101 (32)
Follow-up	38 (12)

CHD, congenital heart disease; VSD, ventricular septal defect; ASD, atrial septal defect; PDA, patent ductus arteriosus; DORV, double outlet of the right ventricle; TOF, tetralogy of Fallot; TGA, transposition of the great arteries; PTA, persistent truncus arteriosus; AVB, atrioventricular block; FVPB, frequent ventricular premature beat; AF, atrial fibrillation; PVT, paroxysmal ventricular tachycardia.

Transcriptional activation function of KLF13 is disabled by the mutation. As indicated in Fig. 2, wild-type KLF13 and Glu144*-mutant KLF13 (each 100 ng of expression plasmid) transactivated the NPPA promoter by ~16-fold and ~1-fold, respectively (wild-type KLF13 vs. Glu144*-mutant KLF13: t=9.99854, P=0.00056). When half the amount of wild-type KLF13 and Glu144*-mutant KLF13 (each 50 ng of expression plasmid) was utilized in combination to model the pathological state of mutation carriers (heterozygosity), the induced transcriptional activity was ~8-fold (wild-type KLF13 vs. wild-type KLF13 + Glu144*-mutant KLF13: t=5.31149, P=0.00604).

Synergistic transcriptional activation between KLF13 and TBX5 is nullified by the mutation. As indicated in Fig. 3, wild-type KLF13 and Glu144*-mutant KLF13 (each 100 ng of expression plasmid) transactivated the VEGFA promoter by ~9-fold and ~1-fold, respectively (wild-type KLF13 vs. Glu144*-mutant KLF13: t=9.90028, P=0.00058). In the presence of wild-type TBX5 (100 ng of expression plasmid), wild-type KLF13 and Glu144*-mutant KLF13 (each 100 ng of expression plasmid) transactivated the VEGFA promoter by ~36-fold and ~4 fold, respectively (wild-type KLF13 + wild-type TBX5 vs. Glu144*-mutant KLF13 + wild-type TBX5: t=16.2934, P=0.00008).

Discussion

In the present study, a new KLF13 mutation, NM_015995.3: c.430G>T; p.(Glu144*), was identified in one family suffering from PDA, BAV and VSD. The nonsense heterozygous mutation, which co-segregated with CHD in the whole family, was neither observed in 800 control chromosomes nor found in the databases of HGMD, SNP and gnomAD. Functional investigations demonstrated that the Glu144*-mutant KLF13 failed to transcriptionally activate the promoters of NPPA and VEGFA. Additionally, the mutation abrogated the synergistic transcriptional activation between KLF13 and TBX5, a well-established CHD-causative gene (68,69,84). These findings support the fact that genetically defective KLF13 confers an enhanced susceptibility to CHD, including PDA, BAV and VSD. Notably, the experiments performed in one NIH3T3 cell line only failed to control for cell-dependent effects, and it remains possible, in fact likely, that other cells may yield different results. Hence, it is very important that additional cells lines are used to examine the functional effect of Glu144*-mutant KLF13 to generalize the mechanism proposed on the basis of this work.

The KLF13 gene, which encodes a transcription factor with 288 amino acids, is located on human chromosome 15q13.3. As one member of the KLF family, the KLF13 protein harbors four critical structural domains encompassing a transactivation domain, which functions to transactivate downstream target genes, a transcriptional inhibition domain, which serves to transcriptionally inhibit downstream target genes, a nuclear localization signals responsible for nuclear localization, and three zinc-fingers required for binding to target gene promoters and interaction with other transcriptionally cooperative partners (67,87). Previous investigations have substantiated the ample expression of KLF13 in the hearts...
of both humans and vertebrates during embryonic development, and the pivotal effect of KLF13 on cardiovascular morphogenesis (66,67,86,88). Recent experimental studies have corroborated that KLF13 transactivates the expression

Figure 1. A new KLF13 mutation contributing to congenital heart disease. (A) Sequence electropherograms illustrating the KLF13 mutation in the heterozygous status (mutant) and its wild-type base in the homozygous status (wild-type). The arrow indicates the nucleotides where the mutation occurs. (B) Schematic representations exhibiting the structural domains of KLF13. (C) Pedigree structure of the family inflicted with congenital heart disease (+ represents a carrier of the KLF13 mutation and − represents a non-carrier). TAD, transcriptional activation domain; TID, transcriptional inhibitory domain; NLS, nuclear location signal; Zn, zinc finger.
of several downstream genes, encompassing NPPA, NPPB, VEGFA and ACTC1, separately or synergistically with TBX5, GATA4 and GATA6. Deleterious mutations in KLF13 and its downstream target genes VEGFA and ACTC1, as well as its transcriptionally cooperative partners TBX5, GATA4 and GATA6, have been discovered as genetic defects underpinning CHD in humans (66‑69,84,89‑91). In the current investigation, the mutation found in cases with familial CHD was anticipated to generate a truncated KLF13 protein losing most structural domains, and biochemical assays revealed that Glu144*‑mutant KLF13 had no transactivation on its downstream target genes. In addition, the mutation disrupted the synergistic transcriptional activation between KLF13 and TBX5. These results strongly indicate KLF13 haploinsufficiency as a molecular mechanism underpinning CHD in a subset of cases.

Notably, KLF13 variations have been reported to cause distinct types of congenital cardiovascular deformities in humans, including TGA, TVA, DORV, VSD and ASD (66,67). In the present study, the affected family members who carried an identified KLF13 mutation manifested PDA, BA V and VSD, therefore expanding the phenotypic spectrum ascribed to mutant KLF13 and highlighting the genetic heterogeneity of CHD.

Table II. Phenotypic profile and KLF13 mutation status of the family members affected with congenital heart disease.

Individual	Sex	Age, years	Cardiac phenotype	KLF13 mutation (p.Glu144*)
I‑1	M	75*	PDA, BA V, VSD	NA
II‑1	M	61	PDA, BA V	+/-
II‑7	M	53	PDA, BA V, VSD	+/-
III‑1	M	36	PDA, BA V	+/-
III‑6	F	30	PDA, BA V	+/-
III‑13	M	28	PDA, BA V, VSD	+/-
IV‑1	F	10	PDA, BA V	+/-

*aAge at death. M, male; F, female; PDA, patent ductus arteriosus; BA V, bicuspid aortic valve; VSD, ventricular septal defect; NA, not available; +/-, heterozygosity; KLF13, Kruppel‑like factor 13.
In conclusion, the present study causally links a new KLF13 mutation to CHD, and to the best of our knowledge, for the first time to PDA and BA V, which reveals a novel molecular pathogenesis underlying CHD, conducive to precise prophylaxis and personalized treatment of the affected patients.

Acknowledgements

Not applicable.

Funding

This study received financial support from the Basic Research Project of Shanghai, China (grant no. 20JC1418800), the Natural Science Foundation of Shanghai, China (grant no. 18ZR1431000) and the Natural Science Foundation of Minhang District, Shanghai, China (grant no. 2020MHZ083).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

JW and YQY designed the investigation, and made leading contributions to the writing of manuscript. PA, GFZ, CMZ, YJX, JW and YQY completed the genetic and biochemical studies. JW and YQY confirm the authenticity of all the raw data. All authors have read and approved the final version of manuscript.

Ethics approval and consent to participate

This investigation was approved by the Medical Ethics Committee of Tongji Hospital, Tongji University School of Medicine [Shanghai, China; approval no. LL(H)-09-07]. Written informed consent was collected from the study individuals or their parents prior to investigation.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Diab NS, Barish S, Dong W, Zhao S, Allington G, Yu X, Kahle KT, Brueckner M and Jin SC: Molecular genetics and complex inheritance of congenital heart disease. Genes (Basel) 12: 1020, 2021.
2. Martin LJ and Benson DW: Focused strategies for defining the genetic architecture of congenital heart defects. Genes (Basel) 12: 827, 2021.
3. Benjamin EJ, Munter P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AK, Cheng S, Das SR, et al: Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 139: e56-e528, 2019.
4. Skeffington KL, Bond AR, Bigotti MG, AbdulGhani S, Iacobazzi D, Kang SL, Heessom KJ, Wilson MC, Stoica S, Martin R, et al: Changes in inflammation and oxidative stress signaling pathways in coarcted aorta triggered by aortic arch and valve and growth in young children. Exp Ther Med 20: 48, 2020.
5. Dragomir C, Manea AM, Enatescu VR, Lacatusu AAM, Lacatusu A, Henry OL, Boia M and Ilie C: Left heart hypoplasia operated using double pulmonary arterial banding with double arterial duct stenting: A case report. Exp Ther Med 20: 193, 2020.
6. Hu C, Huang S, Wu F and Ding H: MicroRNA-219-5p participates in cyanotic congenital heart disease progression by regulating cardiomyocyte apoptosis. Exp Ther Med 21: 36, 2021.
7. Andonian CS, Freilinger S, Achenbach S, Ewert P, Gundlach U, Hoerer J, Kaemmerer H, Peper L, Weyand M, Achenbach RC, et al: ‘Well-being paradox’ revisited: cross-sectional study of quality of life in over 4000 adults with congenital heart disease. BJM Open 11: e049531, 2021.
8. Brudy L, Meyer M, Oberhoffer R, Ewert P and Müller J: More-me-better? physical activity and health-related quality of life in children with congenital heart disease. Am Heart J 241: 67‑83, 2021.
9. Moons P, Luyckx K, Thomet C, Budts W, Enomoto J, Sluman MA, Lu CW, Jackson JL, Khairy P, Cook SC, et al: Physical functioning, mental health, and quality of life in different congenital heart defects: Comparative analysis in 3538 patients from 15 countries. Can J Cardiol 37: 215‑223, 2021.
10. Hayama Y, Ohuchi H, Negishi J, Iwasa T, Sakaguchi H, Miyazaki A, Tsuda E and Kuroasaki K: Effect of stiffened and dilated ascending aorta on aerobic exercise capacity in repaired patients with complex congenital heart disease. Am J Cardiol 129: 87‑94, 2020.
11. Spiesshoefer J, Orwat S, Henke C, Kabitz HJ, Katsianos S, Borrelli C, Baumgartner H, Nofer JR, Spieker M, Bengel P, et al: Inspiratory muscle dysfunction and restrictive lung function impairment in congenital heart disease: Association with immune inflammatory response and exercise intolerance. Int J Cardiol 318: 45‑51, 2021.
12. Meyer M, Brudy L, García-Cuenillas L, Hager A, Ewert P, Oberhoffer R and Müller J: Current state of exercise interventions in patients with congenital heart disease: A systematic review. Heart 106: 333‑341, 2020.
13. Xu C, Su X, Ma S, Shu Y, Zhang Y, Hu Y and Mo X: Effects of exercise training in postoperative patients with congenital heart disease: A systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc 9: e013516, 2020.
14. Meyer M, Brudy L, Fuertes-Moure A, Hager A, Oberhoffer-Fritz R, Ewert P and Müller J: E‑health exercise intervention for pediatric patients with congenital heart disease: A randomized controlled trial. J Pediatr 233: 163‑168, 2021.
15. Asschenfeldt B, Evald L, Heiberg J, Salvig C, Östergaard L, Dalby RB, Eskildsen SF and Hjortdal VE: Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood. J Am Heart Assoc 9: e018543, 2020.
16. Kessler N, Feldmann M, Schlösser L, Rometsch S, Brugger P, Kottke R, Knirsch W, Okenius A, Greumtann M and Latal B: Structural brain abnormalities in adults with congenital heart disease: Prevalence and association with estimated intelligence quotient. Int J Cardiol 306: 61‑66, 2020.
17. Bönhtrone AF, Dimitrova R, Chew A, Kelly CJ, Cordero-Grande L, Carney O, Egloff A, Hughes E, Vecchiato K, Simpson J, et al: Individualized brain development and cognitive outcome in infants with congenital heart disease. Brain Commun 3: fca0046, 2021.
18. Gai J, Liang S, Sun Y, Liu Y, Chen C, Wang B, Zhong J, Yu Y and He S: Effect of perioperative amplitude-integrated encephalography on neurodevelopmental outcomes following infant heart surgery. Exp Ther Med 20: 2879‑2887, 2020.
19. Giang KW, Mandalenakis Z, Dellborg M, Lappas G, Eriksson P, Hansson PO and Rosengren A: Long‑term risk of hemorrhagic stroke in young patients with congenital heart disease. Stroke 49: 1155‑1162, 2018.
20. Giang KW, Fedchenco M, Dellborg M, Eriksson P and Mandalenakis Z: Burden of ischemic stroke in patients with congenital heart disease: a nationwide, case‑control study. J Am Heart Assoc 10: e020939, 2021.
21. Freisinger E, Gerß J, Marschall U, Reinecke H, Baumgartner H, Koeppé J and Diller GP: Current use and safety of novel oral anticoagulants in adults with congenital heart disease: Results of a nationwide analysis including more than 44 000 patients. Eur Heart J 41: 4168‑4177, 2020.
22. Diller GP, Körten MA, Bauer UM, Miera O, Tutarel O, Kaemmerer H, Berger F and Baumgartner H; German Competence Network for Congenital Heart Defects Investigators: Cystic fibrosis and therapy of Eisenmenger syndrome: Data of the German National Register for congenital heart defects. Eur Heart J 37: 1449-1455, 2016.

23. Kaemmerer H, Gorenflo M, Huscher D, Pittrow D, Apitz C, Baumgartner H, Berger F, Bruch L, Brunnermeier E, Budts W, et al: Pulmonary hypertension in adults with congenital heart disease: Real-world data from the International COMPERA-CHD Registry. J Clin Med 9: 1456, 2020.

24. Long L, Yao X, Yin X, Gao S, Zhou L and Liu H: Expression of serum miR-27b and miR-451 in patients with congenital heart disease associated pulmonary artery hypertension and risk factor analysis. Int J Cardiol 30: 3916-3927, 2020.

25. Diller GP, Enders D, Lammers AE, Orwat S, Schmidt R, Radke RM, Gruss J, De Torres Alba F, Kalisch-Smith JI, Ved N and Sparrow DB: Environmental risk factors for congenital heart disease. Eur Heart J 42: 1858-1865, 2021.

26. Diller GP and Baumgartner H: Endocarditis in adults with congenital heart disease: New answers-new questions. Eur Heart J 38: 2057-2059, 2017.

27. Tutarel O, Alonso-Gonzalez R, Montanaro C, Schiff R, Diller GP, Enders D, Lammers AE, Orwat S, Schmidt R, et al: Mortality and morbidity in patients with congenital heart disease hospitalised for viral pneumonia. Heart 107: 1069-1076, 2021.

28. Radke RM, Frenzel T, Baumgartner H and Diller GP: Adult congenital heart disease and the COVID-19 pandemic. Heart 106: 1302-1309, 2020.

29. Diller GP, Gatzoulis MA, Broberg CS, Abouhousn J, Brida M, Schwerrzmann M, Chessa M, Kovacs AH and Roos-Hesselink J: Congenital heart disease in adults: New insights. Eur Heart J 40: 1909-1919, 2019 in adults with congenital heart disease. A position paper from the ESC working group of adult congenital heart disease, and the International Society for Adult Congenital Heart Disease. Eur Heart J 42: 1858-1865, 2021.

30. Cahill TJ, Jewell PD, Denne L, Franklin RC, Frigiola A, Sakhi R, Kauling RM, Theuns DA, Szili-Torok T, Bhagwandien RE, et al: Causes of death in infants and children with congenital heart disease. Heart 107: 307-315, 2021.

31. Fedchenko M, Mandalenakis Z, Giang KW, Rosengren A, Pajukanta P, et al: Predicting sudden cardiac death with congenital heart disease (PREVENTION-ACHD). Heart Rhythm 18: 785-792, 2021.

32. Williams JL, Tokor RD, D’Ottavio A, Spears T, Chiswell K, Forresti N, Sang CJ, Paoliolo JA, Walsh MJ, Hoffman TM, et al: Atrial fibrillation in adults with congenital heart disease: a meta-analysis of the literature. Pediatr Cardiol 32: 307-315, 2021.

33. Uribarri A, Kempny A, Grübler MR, Uebing A, Swan L, et al: Congenital heart defects and skeletal malformations syndrome. Hum Mutat 42: 1738-1745, 2021.

34. Vehmeijer JT, Koyak Z, Leerink JM, Zwinderman AH, Harris L, et al: Predicting sudden cardiac death in adults with congenital heart disease: the PROMISE study on implaNTable cardioVentricular defibrillator therapy and adults with congenital heart disease: new answers—new questions. Eur Heart J 38: 2057-2059, 2017.

35. Wasmer K, Eckardt L, Baumgartner H and Köbe J: Therapy of supraventricular and ventricular arrhythmias in adults with congenital heart disease: New answers-new questions. Eur Heart J 38: 2057-2059, 2017.

36. Niwa K, Kaemmerer H and von Kodolitsch Y: Current diagnosis and management of late complications in adult congenital heart disease. Cardiovasc Diagn Ther 11: 478-480, 2021.

37. Kalisch-Smith JI, Ved N and Sparrow DB: Environmental risk factors for congenital heart disease. Cold Spring Harb Perspect Biol 12: a03724, 2020.

38. Zhou J, Xiong Y, Dong X, Wang H, Qian Y, Ma D and Li X: Genome-wide methylation analysis reveals differentially methylated CpG sites and altered expression of heart development-associated genes in fetuses with cardiac defects. Exp Ther Med 22: 1032, 2021.

39. Bigras JL: Cardiovascular risk factors in patients with congenital heart disease. Can J Cardiol 36: 1458-1466, 2020.

40. Helie E and Priest JR: Maternal obesity and diabetes mellitus as risk factors for congenital heart disease in the offspring. J Am Heart Assoc 9: e011541, 2020.

41. Saliba A, Figueiredo AC, Baronezza JE, Afiney JN, Pic-Taylor A, Oliveira SF and Mazzeu JF: Genetic and genomics in congenital heart disease: A clinical review. J Pediatr (Rio) 96: 279-288, 2020.

42. Shabana NA, Shahid SU and Irfan U: Genetic contribution to congenital heart disease (CHD). Pediatr Cardiol 41: 12-23, 2020.

43. Mendocar U, Yahalom J, Casero MC, Reinhard M, Yoshimura N, Nishida N, Peinado R, Oechslin EN, Robbers-Visser D, Groenink M, Garcia-Hamilton D, Peinado R, Dos-Subirà L, Pijuan-Domenech A, et al: Predicting sudden cardiac death in adults with congenital heart disease. Cardiovasc Diagn Ther 11: 1037-1045, 2020.

44. Arnaert S, De Meester P, Troest E, Droogene W, Van Aelst L, Van Cleemput J, Vos G, Gewillig M, Cools B, Moons P, et al: Heart failure related to adult congenital heart disease: Prevalence, outcome and risk factors. ESC Heart Fail 8: 87-99, 2020.

45. Goldstein SA, D’Ottavio A, Speakers T, Chiswell K, Hartman RJ, Krasuski RA, Kemper AR, Mayer RE, Hoffman TM, et al: Atrial arrhythmias and patient-reported outcomes in adults with congenital heart disease: An international study. Heart Rhythm 18: 793-800, 2021.

46. Wasmier K, Eckardt L, Baumgartner H and Köbe J: Therapy of supraventricular and ventricular arrhythmias in adults with congenital heart disease-narrative review. Cardiovasc Diagn Ther 11: 550-562, 2021.

47. Goldstein SA, D’Ottavio A, Speakers T, Chiswell K, Hartman RJ, Krasuski RA, Kemper AR, Mayer RE, Hoffman TM, et al: Atrial arrhythmias and patient-reported outcomes in adults with congenital heart disease. J Am Heart Assoc 9: e016400, 2020.

48. Li X: Genome-wide methylation analysis reveals differences in the genotypic spectrum of congenital NAD deficiency disorders. Exp Ther Med 20: 3196-3202, 2020.

49. Shabana NA, Shahid SU and Irfan U: Genetic contribution to congenital heart disease. Pediatr Cardiol 41: 12-23, 2020.

50. Bigras JL: Cardiovascular risk factors in patients with congenital heart disease. Can J Cardiol 36: 1458-1466, 2020.
60. Hsieh A, Morton SU, Willcox JAL, Gorham JM, Tai AC, Qi H, DePalma S, McKeen D, Griffin E, Manheimer KB, et al: EM-mosaic detects mosaic point mutations that contribute to congenital heart defects. Nat Genet 48: 1060‑1065, 2016.

61. Kolomenski J, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Brude CQ and Dain L: An update on genetic variants of the NKX2-5. Hum Mutat 41: 1178‑1308, 2020.

62. Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, Scheidecker S, Fradin M, Morrice-Picard F, Naudin S, et al: Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat 41: 2167‑2178, 2020.

63. Lin JJ, Feinstein TN, Jha A, McCleary JT, Xu J, Arrigo AB, Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, Scheidecker S, Fradin M, Morrice-Picard F, Naudin S, et al: Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat 41: 2167‑2178, 2020.

64. Sutani A, Shima H, Hijikata A, Hosokawa S, Katoh-Fukui Y, Lin JI, Feinstein TN, Jha A, McCleary JT, Xu J, Arrigo AB, Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, Scheidecker S, Fradin M, Morrice-Picard F, Naudin S, et al: Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat 41: 2167‑2178, 2020.

65. Le Fevre A, Baptista E, Ellard S, Overton T, Oliver A, Gradhand E and Scrr U: Compound heterozygous Pkd111 variants in a family with two fetuses affected by heterotaxy and complex Chd. Eur J Med Genet 63: 103626, 2020.

66. Hou C, Zheng J, Liu W, Xie L, Sun X, Zhang Y, Xu M, Li Y, Helm BM, Landis BJ and Ware SM: Genetic evaluation of inpatient neonatal and infantile congenital heart defects: New findings and review of the literature. Genes (Basel) 12: 1244, 2021.

67. Massadeh S, Albeladi M, Albesher N, Alhabshani F, Kampe KD, Chaikhoui F, Kabbani MS, Beetz C and Aalamey M: Novel autosomal recessive splice-altering variant in PRKDI is associated with congenital heart disease. Genes (Basel) 12: 612, 2021.