Sex and gender matter to biology

Aaron Frank and Deborah Clegg (Cedars-Sinai Medical Center, USA)

Flip through a few TV channels or browse the Internet for a bit and you will be quickly reminded that, in our day and age, everyone is thinking about ‘sex’. Biologists think about sex too – albeit more in the biological sense than the act itself. The problem is they don’t think enough about it. Indeed, though most animals display marked differences in sexual anatomy and reproductive function, sex is regularly overlooked in biomedical research at both the clinical and basic science levels.

Over 25 years ago, The National Institutes of Health recognized this as problematic; exclusion of women from large clinical trials blunted their ability to detect sex differences in the safety and efficacy of therapeutic drugs. In 2001, the Institute of Medicine echoed these concerns, calling for expansion of research into sex differences at the biochemical and cellular levels.

Despite this, investigators still regularly ignore the sex of cell lines studied in vitro, as well as failing to include both sexes in animal studies. In this article, we briefly discuss the nature of sex differences and highlight their importance to future basic and translational research.

Sex hormones

Many studies of sex differences have focused on how sex hormones directly affect health and metabolism. For instance, when sex is factored into estimates of disease risk, it is well established that premenopausal women are relatively protected from diseases associated with the Metabolic syndrome, such as cardiovascular disease (CVD), compared with similarly aged men. After menopause, however, the prevalence of CVD in women increases to levels comparable to or even greater than similarly aged men. Reproductive-aged women with low oestrogen, as well as women who experience early menopause, are also at increased risk of CVD.

These observations led to the generally accepted conclusion that the action of sex hormones and oestrogens in particular, protect against Metabolic syndrome and confer a ‘sex advantage’ to women.

Testosterone has also been investigated with respect to modulating CVD risk, but with conflicting results. Low testosterone levels in middle-aged men are associated with insulin resistance and metabolic syndrome, and also predict cardiovascular events and mortality. However, studies of testosterone therapy in men and women report both beneficial and adverse consequences in terms of CVD events. For example, in the Cardiovascular Risk in Young Finns Study, higher levels of testosterone in younger men (24–45 years old) were associated with lower levels of triglycerides, insulin and systolic blood pressure, as well as higher levels of high-density lipoprotein cholesterol. For women, however, elevations in testosterone, as seen in polycystic ovarian syndrome, are associated with insulin resistance and CVD risk.

Testosterone can be converted to oestrogens by the enzyme aromatase, and the majority of circulating oestrogens in men are derived through ‘aromatization’. Finkelstein et al. found that blocking the aromatization of testosterone to oestrogens actually increased adiposity and reduced sexual function in men. A related study demonstrated that men with the lowest plasma oestradiol concentrations had the highest death rates from CVD over a 3-year period. Conversely, men in the mid-range of oestradiol had the lowest rates, and men with the highest oestradiol levels had a greater incidence of atherosclerosis, diabetes, obesity and stroke. Clearly, oestrogens exert important metabolic effects in men; however, the weight of the evidence suggests that the exact dosing and mechanisms by which oestrogens promote optimal health differ between men and women, and points to an underlying sex difference in how non-reproductive tissues respond to sex hormones. This notion is relevant to both animal and in vitro studies insofar as exposure to sex
hormones or sex hormone mimetics (for example, oestrogenic compounds in animal feed or cell culture media) could substantially impact research questions that are not expressly designed to detect sex-based effects. Strict characterization and control of the hormonal milieu is, therefore, essential in all experimental designs.

Sex chromosomes

While sex hormones are established players in the study of sex-based differences, the contribution of sex chromosomes to gene regulation and disease risk is a less well-studied area of interest. The X and Y sex chromosomes initially evolved from a pair of similarly sized autosomes. Over time, the Y chromosome lost the ability to exchange genetic information with the X chromosome and began to evolve independently. Today, the human Y chromosome contains only 3% of the genes it once shared with the X chromosome. It is present exclusively in men and was once thought to solely govern the expression of male reproductive traits. However, genes conserved on the Y chromosome are also expressed in cells throughout the body and are involved in autosomal gene regulation. For example, single-nucleotide polymorphisms on the Y chromosome are correlated with risk factors associated with CVD, independently of sex hormones. Still, the Y chromosome has mostly been excluded from the larger genome-wide association studies (GWAS) due to the enduring belief that it is a ‘genetic wasteland’.

Women, on the other hand, have two X chromosomes and, therefore, possess two copies of every X-linked gene. To compensate for the fact that men have only one X chromosome, one female X chromosome is randomly ‘inactivated,’ allowing for adjustments in the dosage of X-linked genes between the sexes. X-inactivation occurs early in female development, making females more vulnerable than males to genetic or environmental perturbations during embryonic development. Moreover, different different cell types silence X chromosomes in different patterns, providing a mechanism of natural variation at the cellular and tissue levels. Despite this, the X chromosome has also been ‘ignored’ in the analyses of GWAS data, with only 33% of the reported studies from 2010 to 2011 factoring in the X chromosome.

Sex hormones and chromosomes in the transgender population

Integral to the study of sex in humans is an understanding of how biological ‘sex’ differs from the closely related, but distinct, concept of ‘gender.’ ‘Sex’ comprises biological traits encoded in DNA, such as chromosomes, while ‘gender’ refers to the social behaviours, expectations, and expressions of men and women. While sex informs gender, it does not dictate it. For approximately 700,000 people in the United States, gender does not match biological sex. This estimate of the ‘transgender’ population might actually be low; one account claims a prevalence of over ~1.4 million. Despite this sizable number, the transgender community represents one of the most underserved and understudied populations in healthcare.

Transgender patients may opt for interventions designed to bring their biological sex into congruence with their gender identity. Cross sex hormone therapy (CSHT) and sex re-assignment surgery (SRS) represent two established therapeutic approaches. In CSHT, patients receive exogenous sex hormones in order to induce the appearance of sexual characteristics consistent with their gender identity while suppressing endogenous hormone levels and secondary sex characteristics associated with their biological sex. Within the first 6 months of CSHT,
changes in men transitioning to women (transwomen) include breast growth, decreased testicular volume and decreased spontaneous erections. Women transitioning to men (transmen) experience changes in body fat distribution, muscle mass and hair growth. Critically, since the chromosomal configurations remain unchanged despite CSHT or SRS, studies of transgender populations provide unique opportunities to investigate which metabolic responses are irreversibly sex-differentiated at the sex chromosomal level, which are determined by the prevailing milieu of sex steroids and how chromosomal sex interacts with sex steroids to affect sexually dimorphic biological processes. To this end, we have recently investigated the role of sex hormones and their influence on insulin sensitivity and hepatic steatosis in a population of transwomen with and without testes (Nelson et al., in press, Transgender Health, 2016). Despite receiving similar oestrogen therapies, markers of metabolic health improved in transwomen who elected to have their testes removed compared with transwomen with testes. Furthermore, transwomen with the highest plasma testosterone concentrations also had the highest incidence of hepatic steatosis and insulin resistance (Nelson et al., in press, Transgender Health, 2016). These data suggest that suppression of naturally produced testosterone in transwomen improves insulin sensitivity and reduces hepatic steatosis. These are important considerations not only for future studies of the influence of sex hormones and chromosomes on metabolism, but also possible future transgender care guidelines.

How sex hormones and sex chromosomes impact metabolic phenotypes and disease risk is an area of much-needed research. Future investigations will require integration of endocrinology with molecular genetics methods to alter hormone action in a cell type-specific manner and manipulate the copy number and expression of X and Y genes to probe the constitutive genetic differences in the complete genome of XX and XY cells, tissues and whole organisms. In doing so, investigators will gain a deeper understanding of how sex fundamentally influences biology.

Future directions

Here, we have discussed the importance of sex and gender in biology research. In order to increase the fidelity of experimental models, clinical and basic researchers must ensure that both sexes are adequately represented in their experimental designs, and that their analyses account for sex-based and, if appropriate, gender-based effects. Sex hormones play a key role in the manifestation of sex differences and must be rigorously characterized and controlled during experimental design. Furthermore, the ability of sex chromosomes to influence metabolic gene regulation needs to be further explored. Statements such as ‘there are no sex differences’ will need to be strongly defended following rigorous characterization of the impact of sex hormones and chromosomal sex.

In conclusion, understanding how sex and gender impact biology is critical for the development of more powerful biological models, and ultimately, to the development of truly personalized medicine.
Aaron Frank manages the Clegg Laboratory in the Diabetes and Obesity Research Institute at Cedars-Sinai Medical Center in Los Angeles. Born and raised in Dallas, TX, Aaron graduated from UT Southwestern Medical Center with a Master's Degree in Clinical Nutrition and is also a Registered Dietitian. He now applies his knowledge of nutrition to basic metabolic research, focusing on the influence of oestrogens and their receptors in the phenomenon of adipose tissue browning. Aaron also has an abiding interest in sex-based differences in metabolism, and hopes to extend the Clegg Lab's sex-based research methodology and findings to the world of clinical dietetics. Outside the lab, nutrition and athletics play a big part in Aaron's life. When not culturing adipocytes, look for him either chopping vegetables or wrestling on the Brazilian Jiu-Jitsu mats. Email: Aaron.Frank@cshs.org.

Deborah Clegg, PhD, is a Professor in the Departments of Internal Medicine and Biomedical Sciences at Cedars-Sinai Medical Center. After earning her bachelor's in Nutrition from Oregon State University, Dr Clegg earned her MBA from Boston University and her PhD in Nutrition from the University of Georgia. She completed a post-doctoral fellowship with the Obesity Research Center at the University of Cincinnati. Dr. Clegg’s laboratory focuses on understanding the impact of sex hormones on energy homeostasis, metabolic function, and adipose tissue distribution. Dr. Clegg has published over 120 articles in peer-reviewed journals including The New England Journal of Medicine, Cell Metabolism and Diabetes. She also serves as a reviewer for several journals and has been invited to lecture on her areas of expertise at both the international and national level. Email: deborah.Clegg@cshs.org.

References

1. Institute of Medicine Forum on N, Nervous System D. The National Academies Collection: Reports funded by National Institutes of Health. Sex Differences and Implications for Translational Neuroscience Research: Workshop Summary. Washington (DC): National Academies Press (US).

2. Institute of Medicine Committee on Understanding the Biology of S, Gender D. Exploring the Biological Contributions to Human Health: Does Sex Matter? In Wizemann, T.M. and Pardue, M.L., eds. Exploring the Biological Contributions to Human Health: Does Sex Matter? Washington (DC): National Academies Press (US).

3. Skafar, D.F., Xu, R., Morales, J., Ram., J. and Sowers, J.R. (1997) Female sex hormones and cardiovascular disease in women. The Journal of Clinical Endocrinology & Metabolism 82, 3913–3918

4. Ober, C., Loisel, D.A. and Gilad, Y. (2008) Sex-specific genetic architecture of human disease. Nature reviews. Genetics 9, 911–922

5. Swerdlow, A.J., Hermon, C., Jacobs, P.A., et al. (2001) Mortality and cancer incidence in persons with numerical sex chromosome abnormalities: a cohort study. Annals of Human Genetics 65, 177–188

6. Schwarcz, M.D. and Frishman, W.H. (2010) Testosterone and coronary artery disease. Cardiology in Review 18, 251–257

7. Firtser, S., Juonala, M., Magnusson, C.G., et al. (2012) Relation of total and free testosterone and sex hormone-binding globulin with cardiovascular risk factors in men aged 24–45 years. The Cardiovascular Risk in Young Finns Study. Atherosclerosis 222, 257–262

8. Dokras, A. (2013) Cardiovascular disease risk in women with PCOS. Steroid 78, 773–776

9. Finkelstein, J.S., Lee, H., Burnett-Bowie, S.A., et al. (2013) Gonadal steroids and body composition, strength, and sexual function in men. The New England Journal of Medicine 369, 1011–1022

10. Jankowska, E.A., Rozentrypt, P., Ponikowska, B., et al. (2009) Circulating estradiol and mortality in men with systolic chronic heart failure. Jama. 301, 1892–1901

11. Bellott, D.W., Hughes, J.F., Skaltsky, H., et al. (2014) Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499

12. Charchar, F.J., Bloomer, L.D., Barnes, T.A., et al. (2012) Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet 379, 915–922

13. Marshall Grave, J.A. (2002) The rise and fall of SRY. Trends in Genetics:TIG. 18, 259–264

14. Deng, X., Berlutch, J.B., Nguyen, D.K. and Distech, C.M. (2014) X chromosome regulation: diverse patterns in development, tissues and disease. Nature Reviews. Genetics 15, 365–378

15. Che, X., Watkins, R., Delot, E., et al. (2008) Sex difference in neural tube defects in p53-null mice is caused by differences in the complement of X not Y genes. Developmental Neurobiology 68, 265–273

16. Wu, H., Lu, J., Yu. H., et al. (2014) Cellular resolution maps of X chromosome inactivation: implications for neural development, function, and disease. Neuron 81, 103–119

17. Wise, A.L., Gyi, L, and Manolio, T.A. (2013) eXclusion: toward integrating the X chromosome in genome-wide association analyses. American Journal of Human Genetics 92, 643–647

18. Gates, G.J. (2011) How many people are lesbian, gay, bisexual, and transgender? Los Angeles, CA: The Williams Institute

19. Flores, A.H.J.G.G.B.T. (2016) How many adults identify as transgender in the United States. Los Angeles, CA: The Williams Institute

20. Hembree, W.C., Cohen-Kettenis, P., Delemarre-van de Waal, H.A., et al. (2009) Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism 94, 3132–3154