Evaluation of the effects of polishing systems on surface roughness and morphology of dental composite resin

Julie Wheeler, Sanjukta Deb and Brian J. Millar

Introduction
The use of composite resin materials in tooth restoration has increased dramatically in recent decades, with patients’ aesthetic demands, government directives and advancements in the material properties being some of the reasons behind this increase. A significant part of the successful use of these materials is the ability to recreate anatomically correct restorations that mimic the dental hard tissues.

Surface finish as measured by surface roughness of dental composite restorations plays a significant role in their clinical success. A smooth, natural appearance is gained from proper contouring, finishing and polishing, which is necessary for the oral health of the soft tissues and restoration’s marginal integrity. A rough surface negatively impacts on the restoration’s aesthetics, which makes it susceptible to exterior staining and also diminishes the amount of gloss, reducing the ability to reflect light. This in turn affects the perceived colour of the composite resin, and loss in aesthetics occurs due to staining.

The accumulation of plaque is affected by the surface properties of composite resin restorations, in particular the surface roughness. Composite resins are vulnerable to development of cariogenic biofilms, and an increase in surface roughness results in an increase in retention of microorganisms, resulting in faster colonisation and maturation of dental plaque. The attachment of proteins (predominantly gp340) and microbes contribute to an increase in virulence and in turn degradation of the restoration. Literature findings suggest that surface roughness of greater than 2 microns (μm) results in steep increases in biofilm formation, while a value lower than 0.2 μm is suggested to provide ideal surfaces for intraoral restorations. The effect of surface roughness is less dramatic in subgingival environments compared to supragingival, as there are more opportunities for the microorganisms to survive and there is less of an effect of the maturation of the biofilm. The salivary pellicle can also mask the effect that surface roughness has on biofilm formation, but is not thought to wholly counterbalance it.

Additionally, a rough surface can cause patient discomfort due to the sensitivity of the patient’s tongue to a perceived roughness, and 0.3 μm is thought to be the threshold at which patients will detect a difference.

Polishing composite improves aesthetics and reduces staining and plaque retention. Polishing can be carried out with two impregnated silicone tips. The use of additional pastes is not necessary.

Abstract
Objectives The aim of this in vitro study was to evaluate the effects of five different two-step diamond impregnated polishing systems (Sof-Lex Spiral, Venus Supra, Komet Spiral, CompoMaster and Shapeguard) on the surface roughness and morphology of a submicron hybrid composite resin material (Brilliant Everglow).

Materials and methods Two-hundred composite resin discs were prepared with 180 SiC paper to produce a uniform baseline surface. The samples were randomly assigned to one of five groups and polishing was completed by one operator. The arithmetic mean surface roughness (Ra) was measured using contact profilometry and the surfaces were examined under an SEM.

Results Statistical differences (p <0.05) were identified between the surface roughness remaining after use of the polishers. Diatech Shapeguard (0.22 μm, SD 0.08) and Komet Spiral (0.26 μm, SD 0.09) polishers yielded the lowest Ra values, while the CompoMaster polishing system led to the highest surface roughness values (0.55 μm, SD 0.19).

Conclusions Within the limits of this in vitro study of the efficacy of diamond impregnated two-step polishing systems, Diatech Shapeguard and Komet Spiral polishing systems produced the lowest surface roughness values. These polishing systems yielded acceptable surface roughness values with regards to oral health and patient comfort.

Clinical relevance Similarly designed polishing systems do not produce comparable surface roughness levels and clinicians should be aware of this when considering polishing protocols for composite restorations.
Table 1 Details of the materials

Material	Matrix	Abrasive	Manufacturer
Sof-Lex Spiral	Elastomer	Al₂O₃ and Diamond particles	3M ESPE, USA
Venus Supra	Urethane Polymer	Diamond particles	Heraeus Kulzer Germany
Komet Spiral	Synthetic Rubber	Diamond particles	Komet, Germany
CompoMaster	Synthetic Rubber	Diamond particles	Shofu INC, Japan
Diatech Shapeguard	Silicone	Diamond particles	Coltene, Switzerland

Table 2 Polishing protocols

Group	Surface treatment allocated to each group
A	Sof-Lex Spiral (Yellow) polisher followed by the 2nd (Pink) polisher for 10 seconds each with the speed set at 15,000 rpm
B	Venus Supra (Red) polisher followed by the 2nd (Grey) polisher for 10 seconds each with the speed set at 10,000 rpm
C	Komet Spiral Pink (94028F) polisher followed by the 2nd Grey polisher (94,028) polisher for 10 seconds each with the speed set at 6,000 rpm
D	CompoMaster Coarse (Yellow) polisher followed by the CompoMaster (Blue) polisher for 10 seconds each with the speed set at 10,000 rpm
E	Diatech Shapeguard Blue polisher followed by the Purple Polisher for 10 seconds each with the speed set at 10,000 rpm

Table 3 Surface roughness values (Ra μm)

Polishing system	N	Mean	Standard deviation	95% confidence interval for mean
		Lower bound	Upper bound	
Sof-Lex Spiral	40	0.35	0.13	0.31
				0.39
Venus Supra	40	0.42	0.07	0.40
				0.45
Komet Spiral	40	0.26	0.08	0.24
				0.29
CompoMaster	40	0.55	0.19	0.49
				0.61
Diatech Shapeguard	40	0.23	0.09	0.20
				0.25
Total	200	0.36	0.17	0.34
				0.39

Surface roughness contributes to exterior discolouration. There is a direct relationship between the surface roughness and surface discolouration; however, filler particle size, resin matrix composition (in particular, a low water absorption rate) and the gloss produced after finishing are concurrent influential factors.¹¹,¹²,¹³,¹⁴

Surface gloss is an important factor in producing aesthetic restorations. Differences between a high gloss restoration and enamel are less obvious because the colour of the reflected light is more predominant instead of the colour of the composite resin material and, conversely, low surface gloss can be detected between a restoration with a well-matched shade and adjacent enamel.¹⁵ There are many studies that correlate surface roughness and surface gloss.¹⁶,¹⁷,¹⁸ It is well accepted that an increase in surface roughness will generally decrease the amount of gloss. However, improvements in surface gloss may not be not linear to improvements in surface roughness,¹⁶,¹⁸ and varying filler particles play a significant role.¹⁹ There is limited evidence regarding the acceptable level of surface roughness to provide acceptable surface gloss results. Values below 1 μm have been shown to produce a smooth and glossy surface in vitro,²⁰ but there is a lack of a general consensus of required threshold levels.²¹ Clinicians are often bombarded with many choices when it comes to commercial resin composite restorative materials. Selection is dependent on many factors, from the physical properties and clinical efficacy; however, the surface finish is an important consideration which can influence aesthetics and oral function. There are many variables that can influence the immediate surface roughness of a dental material, such as the type of material, polishing system, force and timing of polishing, and polishing in wet or dry conditions; therefore, comparing the numerical data of various research can be difficult because of numerous factors that can influence the outcomes.

This study aims to evaluate any differences in the surface roughness of a composite resin material that may arise when polished by using five different polishing systems, in order to provide information to clinicians regarding the efficacy of these five different two-step polishing systems when using a sub-micron hybrid composite as an example. This study standardised as many variables as possible to allow a more accurate comparison of different polishing systems on one type of composite. The focus was on any potential differences in the polishing systems rather than the impact of the type of composite, hence a single composite was selected for the study. Contact profilometry was used to quantitatively analyse the surface roughness and scanning electron microscopy was used to visualise the surface topography produced by the polishing systems. The combined use of the scanning electron microscope (SEM) images can help the reader to understand the type of surface morphology that would be expected from different polishing systems based on their surface roughness results.

Methods

Five commercially available composite polishing systems were selected as shown in Table 1. All the polishing systems used were composed of either diamond or Al₂O₃, silicone impregnated two-step polishers. Everglow Brilliant (Coltene Whaledent, AG, Alstatten, Switzerland) is a commercially available submicron hybrid resin composite commonly used by clinicians, hence used in this study. Composite resin blocks of similar and uniform roughness were prepared by placing the composite in round silicone moulds, which were covered with a Mylar strip (Hawe Transparent Strip, Kerr Hawe, Switzerland), compressed between two glass slabs and light-cured (light intensity >800 mW/cm²) using a cordless LED curing light (Dentsply, Smartlite PS) for 20 seconds through each side. The composite blocks were 1 cm in diameter and 2 mm in thickness. These were polished in an automatic polisher using 180 grit paper.
for 25 seconds in wet conditions. The samples were numbered 1–200 using adhesive labels and randomised into five groups A–E.

In each group, the composite blocks were polished using light pressure in wet conditions using a slow-speed handpiece. The five groups received the polishing treatment shown in Table 2. The samples were polished for a total of 20 seconds each. After each polishing, the samples were rinsed under running cold water and allowed to dry for 24 hours before profilometry was completed.

A contact profilometer (Tesa Rugosurf 10 g Surface Roughness Gage) was used to measure the surface roughness of the composite blocks. The stylus was placed away from the edge of the composite block to avoid any areas that may not have been reached by the polisher. The cut-off length was 8 mm, the tracing length was 5 mm and a stylus speed of 0.1 mm/s was used to measure the surface roughness.

Statistical analysis was completed using SPSS software to calculate each group’s mean and standard deviation (SD). Following completion of the profilometry analysis, two samples from each group, which mirrored the group’s mean surface roughness values, were selected for scanning electron microscopy (JCM-6,000 PLUS NeoScope Benchtop SEM, JEOL USA, Inc) in order to compare the surface morphology and compare to the results of profilometry.

Results

The mean surface roughness and SD of each group are presented in Table 3. Visual examination of the normal Q-Q plots shown in Figure 1(a–e) found the data to be normally distributed and, therefore, a one-way analysis of variance test was completed to investigate whether there were any statistically significant differences between the means of the five independent groups.

The result was significant at $p < 0.05$ and demonstrates that there are differences between the groups and the null hypothesis can be rejected.

The post-hoc Tukey test investigated where the differences between groups lies and showed the following results:

- The Diatech Shapeguard and Komet Spiral groups had the lowest surface roughness values of 0.23 μm (SD 0.09) and 0.26 μm (SD 0.08), respectively, and were statistically different to all other groups but not each other.
- The Compomaster group had the highest surface roughness of 0.55 μm (SD 0.19) and was significantly different to all other groups.
- The Sof-Lex Spiral (0.33 μm, SD 0.13) and the Venus spiral (0.42 μm, SD 0.07) groups were significantly different to all groups except each other.

Two SEM images from each group are shown in Figures 2, 3, 4, 5 and 6 and illustrate the surface finish achieved after polishing. All images show varying degrees of white scratches or voids where filler particles have been plucked from the surfaces.
Discussion

The primary objective in this study was to assess whether the polishing systems yielded composite surfaces that differed in terms of the surface roughness. The polishers were of similar composition, a two-step polishing system using diamond impregnated silicone materials, and although all of the manufacturers did not provide information about the abrasiveness of the individual polishers, the expectation was that the polishers would provide similar surface polish and be measured as residual surface roughness. Therefore, the null hypothesis is that there are no differences between the polishing systems. After analysing the results of the study, the null hypothesis is rejected because there were significant differences found between various polishing systems. A secondary aim was to identify which polishing system generated the smoothest surface.

The Diatech Shapeguard polishers produced the lowest mean surface roughness of 0.22 μm (SD 0.08); however, this was not significantly different to Komet Spiral polishers, which produced a mean surface roughness of 0.26 μm (SD 0.08). Both these polishers had significantly lower surface roughness values compared to the other polishers. It can therefore be said that, within the limits of this study, these two polishing systems are the most effective when used on a submicron hybrid composite resin.

It has been demonstrated that filler particles only fall away when the surrounding resin has worn away. Therefore, in order to produce more uniform polishing, it is more ideal to increase the hardness of resin rather than filler particles. Additionally, Tjan and Chan recommended that the abrasive particles in the polishers should be harder than the composite resin filler particles, otherwise only the soft resin will be removed, leaving the filler particles protruding from the surface. Despite being similarly described by the manufacturers, the difference in results may be because of the way in which the abrasive particles are bound within the polishers' silicone matrix, or because the composition of the silicone matrix differs between systems and therefore influenced their polishing proficiency. Furthermore, if the polisher’s matrix wears at a similar rate to the polishing particles, they are less likely to extrude from the matrix and create deeper scratches in the composite resin.

The aim of the pre-polishing stage was to create a uniform baseline from which to begin the polishing, and to mimic clinical conditions and effectively focus on the effect of the polishing system. It has been shown that the mean surface roughness of composite resins can differ based on the polishing bur used, and a recent study reported that the mean surface roughness of a microhybrid composite resin was 2.82 μm after polishing with a fine diamond bur; however, it was 0.26 μm when using tungsten carbide. The 180 SiC paper that was utilised in this study produced a mean value of 1.5 μm. Kaizer et al. reports a wide range of surface roughness values for various SiC papers, but the values differ greatly and appear to be related to the various composite resin used rather than the abrasiveness of the paper.
mechanical properties of the composite resin. In this study, manufacturers’ guidelines on speed were followed for each type of polisher and this varied from 6,000–15,000 ppm as detailed in Table 2. However, this variation in speed could be a potential source of bias to the study. These guidelines on speed may be set arbitrarily and can often be difficult to follow in a clinical setting. Increased speeds can result in increased heat generation, which could in turn cause localised softening of the composite resin matrix and result in a smoothening effect. To counteract the potential increase in temperature, the samples in this were polished in wet conditions with the polisher being moved over the surface.

Although all data were considered normally distributed, both the Sof-Lex Spiral and Compomaster groups exhibited large standard deviations. Compared to the other groups, there is more variation in the surface roughness achieved by these polishers, which we would not expect when using the same type of composite resin. One reason for this may be the formation of scratches or grooves on a relatively smooth surface giving these outlying surface roughness values. Additionally, these outlying results could be a result of debris on the surface of the sample or a defect on the surface in one area.

Overall, the SEM images are consistent with the results of the profilometry testing. The samples that were chosen had a surface roughness that was very close to the mean of their group to ensure that a representative image could be achieved for each group. All of the images have a similar appearance with regards to the small voids in the surface of the composite resin, with the largest of these being approximately 5–10 μm in diameter. This is considerably larger than the filler particles that are used in this submicron hybrid composite resin. These larger voids may represent agglomerates of filler that have been plucked from the matrix during polishing.

The existing literature has many studies examining the surface roughness of various polishing systems, none of which looked concurrently at all of the polishers included in this study. However, Sof-Lex Spiral and Venus Supra polishers were examined in several studies.

Sof-Lex Spirals produced similar surface roughness values in this study when compared to the results of Pala et al. After a total of 40 seconds polishing, mean surface roughness values were 0.32 μm (SD 0.09) and 0.3 μm (SD 0.8) when tested on Majesty Posterior and Z550, two nanohybrid composite resins. However, this was not corroborated by another study by Kemaloglu et al. which reported a surface roughness mean of 0.21 μm (SD 0.01).

The mean surface roughness values of Venus Supra polishers in this study produced higher results when compared to another investigation by Say et al. with similar methodology, which reported surface roughness values of 0.147 μm (SD 0.04), 0.112 μm (SD 0.01) and 0.14 μm (SD 0.03) when applied to three nanohybrid composite resins. This is corroborated by another study which found similar surface roughness. The lower surface roughness reported in these two studies may be explained by the longer polishing time used (60 seconds in total), but there are other interplaying factors, such as the composite resin composition and force applied, that could affect the resulting surface roughness.

When considering the clinical relevance of this study, it is useful to consider a threshold value that a polishing system should produce to
ensure good aesthetics and oral health. Several authors suggest a threshold surface roughness value of 0.2 μm for intraoral materials with respect to biofilm formation.20

Both the Diatech Shapelguard and Komet Spiral groups were approximately at the threshold value of 0.2 μm after 20 seconds of polishing. Lu et al. reported that up until 0.07 μm, staining did not occur in a microfill composite resin, but this was not found in other types of composite resin where there was a positive linear relationship with surface roughness and staining.21 However, Karamen et al. did not find a difference in the amount of surface staining, with surface roughness values of between 0–09 μm to 0.13 μm.12 It is therefore difficult to extrapolate a threshold value that is necessary to achieve with regards to surface roughness and the ability to increase surface staining; however, all of the results found in this study are considerably greater than the results cited and, therefore, may be more likely to accumulate surface staining.

When considering patient comfort, the level of surface roughness detected by patients has been observed to be 0.3 μm. Diatech Shapelguard, Komet Spiral and Sof-Lex Spiral polishing systems produced surface roughness within acceptable limits of this result. Additionally, all of the polishing systems produced mean surface roughness below 1 μm, which has been reported by Chung to produce optically smooth composite resin surfaces well below this value.22

In vitro research cannot reproduce the dynamic oral environment and therefore there are other factors that can influence the amount of the immediate surface roughness of a finished restoration, namely the type of composite and polishing system, the force applied and the amount of time spent polishing.

This study examined a specific protocol and resin composite material. Care should be taken when extrapolating the results of this study and the findings should be limited, in particular, to resin composite materials with a similar filler particle size and geometry.

Conclusion

Within the limits of this in vitro analysis of the efficacy of these diamond impregnated two-step polishing systems, it appears that

1. Jones C S, Billington R W, Pearson G J. The in vivo perception of roughness of restorations. Br Dent J 2004; 196: 42–45.
2. Lu H, Roeder I, Lei L, Powers J. Effect of surface roughness on stain resistance of dental resin composites. J Esthet Rest Dent 2005; 17: 102–108.
3. Karaman E, Tuncer D, Ferat E, Ozdemir O S, Karahan S. Influence of different staining beverages on colour stability, surface roughness and microhardness of silorane and methacrylate-based composite resins. J Contemporary Dent Pract 2014; 15: 319–325.
4. Reis A F, Giannini M, Lovadino I R, Ambrosio G M. Effects of various finishing systems on the surface roughness and staining susceptibility of packable composite resins. Dent Mat 2003; 19: 12–18.
5. Barakah H M, Taher N M. Effect of polishing systems on stain susceptibility and surface roughness of nanocomposite resin material. J Prosthet Dent 2014; 112: 625–631.
6. O’Brien W J, Johnston W M, Fianan F, Lambert S. The surface roughness and gloss of composites. J Dent Res 1984; 63: 685–688.
7. Heinize T S, Forjanic M, Rousson V. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. Dent Mat 2006; 22: 146–165.
8. Pala K, Tekçe A, Tuncer S, Serim M E, Demirci M. Evaluation of the surface hardness, roughness, gloss and colour of composites after different finishing polishing treatments and thermocycling using a multitechne approach. Dent Mat 2016; 35: 278–289.
9. Antonsson S A, Yazici A R, Killinc E, Antonsson D E, Hardigan P C. Comparison of different finishing polishing systems on surface roughness and gloss of resin composites. J Dent 2011; DOI: 10.1016/j.jdent.2011.01.006.
10. Takanoash F, Kishikawa R, Ikeda M et al. Influence of abrasive particle size on surface properties of flowable composites. Dent Mat J 2008; 27: 780–786.
11. Chung K. Effects of finishing and polishing procedures on the surface texture of resin composites. Dent Mat 1994; 10: 325–330.
12. Kaizer M R, de Oliveira-Ogiali A, Cenci M S, Opdam N J M, Moraes R R. Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies. Dent Mat 2014; DOI: 10.1016/j.dental.2014.01.001.
13. Tjan A H L, Chan C A. The polishability of posterior composites. J Prosth Dent 1989; 61: 138–146.
14. Daud A, Grey G, Lynch C D, Wilson N H F, Blum I R. A randomised controlled study on the use of finishing and polishing systems on different resin composites using 3D contact profilometry and scanning electron microscopy. J Dent 2018; 71: 25–30.
15. Kemaloglu H, Karacolak G, Turkan L S. Can reduced-step polishers be as effective as multiple-step polishers in enhancing surface smoothness? J Esthet Restor Dent 2017; 29: 31–40.
16. Can Say E, Yurdagüven H, Yaman C B, Özer F. Surface roughness and morphology of resin composites polished with two-step polishing systems. Dent Mat J 2014; 33: 332–342.
17. Zach L, Cohen G. Pulp response to externally applied heat. Oral Surgery 1965; 19: 515–530.
18. Jones C S, Billington R W, Pearson G J. The effects of lubrication on the temperature rise and surface finish of amalgam and composite resin. J Dent 1997; 25: 30–36.
19. Lopes I A D, Monteiro P, Mendes J B, Gonçalves J M R, Caldeira F J F. The effect of different finishing and polishing techniques on surface roughness and gloss of two nanocomposites. Saudi Dent J 2018; 30: 197–207.
20. Teughels W, Van A N, Isabelle S, Marc Q. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Impl Res 2006; 17: 68–81.