Test Result of Time-Of-Propagation Cherenkov Counter

Takayoshi Ohshima

Physics Department, Nagoya University
Chikusa, Furo, Nagoya 464-8602, Japan

A new concept concerning Cherenkov detector for particle identification by means of measuring both the Time-of-Propagation (TOP) and horizontal emission angle (Φ) of Cherenkov photons is described here. Some R&D works are also reported.

1 Introduction

Measurement of Cherenkov ring image requires two-dimensional photon information such as x and y coordinates as RICH and DIRC do. With the use of a quartz bar as a Cherenkov radiator and also a light-guide like the DIRC counter, a combination of Time-Of-Propagation (TOP) of Cherenkov photons to a bar-end and their emission angles at the bar-end also provide the ring image information. Here we briefly describe the principle of such a device, named TOP-counter, (its detail is cited in ) and explain some results of its R&D works. The specific aspect of this counter is its compactness relying upon a horizontal focussing approach described below. We intend to develop this counter in a bid to upgrade the BELLE pid detector.

Figure 1 illustrates a side view of Cherenkov photons propagating a quartz bar. TOP is inversely proportional to z(quartz-axis direction)-component of the light-velocity, which produces TOP differences of, for instance, about 100 ps or more for normal incident 4 GeV/c K and π at 2 m long propagation. The TOP difference is a function of photon’s horizontal (x-z plane) emission angle (Φ). Time measurement for a single photon with a 100 ps resolution provides 1 σ separation, and therefore expected number of 30 photons in this case give us, briefly speaking, a factor of \(\sqrt{30}\) times higher separation. Furthermore, a detection of backward-going (BW) photons reflected at the other-end as seen in the figure enhances, in principle, the separation by another factor of \(\sqrt{2}\) for normal incident particle. As is easily noticed, the TOP measurement inevitably includes also the Time-Of-Flight (TOF) from an interaction-point to the TOP counter both of whose difference between K and π could have the same sign with each other in most of the cases. Adding the TOF information therefore helps the separation, as a result, TOP is hereafter defined as TOP+TOF.

In order to estimate the achievable separability of TOP counter, we optimized its parameters as illustrated in Fig. 2 where the butterfly-shaped horizontal focussing mirror with an arc radius of 250 mm was designed to have the Φ-aperture of ±45° and dispersion of dΦ/dx=0.5°/1 mm. Root-mean-square of the focussed accuracy is \(\Delta x \approx \pm 0.4\) mm. The bar and mirrors are made of synthetic optical quartz with refractive index (n) of 1.47 at \(\lambda=390\) nm. These counters are supposed to be placed at 1 m radially away from the interaction point of KEKB-BELLE to form a cylindrical structure.

---

1Talk given at the 7th International Conference on Instrumentation for Colliding Beam Physics, INSTR99, November 15-19, 1999, Hamamatsu, Japan.
2 Expected separability

There are three dominant contributions to TOP measurement: (1) Chromatic effect of Cherenkov lights, (2) aberration effect of the focussing mirror and (3) transit time spread (TTS) of photomultiplier tube (PMT). Since BELLE-CDC (Central Drift Chamber) [4] provides precise enough track information such as position, angle and momentum for particles, track relating ambiguity is about 10 ps which is much smaller than the above three contributions. As a necessary item to be considered, TDC start-signal is assumed to have a 25 ps uncertainty in the calculation.

It is worth mentioning that the quartz bar-thickness produces a harmless effect on the measurement, since the variation of a sum of a particle’s travel time in a quartz bar up to Cherenkov radiation point and the photon propagation time to the bar-end is about 20 ps or less for particles of any incident angle. Consequently, this contribution is also minute comparing to the others. The width of the crystal bar, on the other hand, is effectualy nullified, in principle, due to the horizontal focus, and in practice, within the achievable focussing accuracy. This is the reason to choose the horizontal instead of the vertical focus, otherwise the ring image would grow dim by a finite size of the bar-width. Resultantly, both the finite sizes of thickness and width now can be disregarded, therefore we do not need any lengthy image projection to nullify the bar cross-section.

A PMT (Hamamatsu, R5900U-00-L16: linear-arry 16-anodes) is used for R&D works without magnetic field (B). Its specific parameters are: Surface area of 30×30 mm², sensitive area of 16×15 mm²,
the anode size of 0.8 mm-wide with 1.0 mm-pitch and 15 mm-long, quantum efficiency QE of 20-25%,
gain of $2\times10^6$, risetime of 0.6 ns, and TTS of $\sigma=70-80$ ps. Specific modification of L16 and development
of a PMT (R6135MOD-L24: Fine-mesh 24-anodes) operable under a magnetic field are being proceeded
in cooperation with Hamamatsu Co. For the latter PMT, a position resolution of better than 0.5 mm is
achieved under $B>0.2$ TG and TTS of $\sigma=130$ ps is currently realized under $B<0.6$ TG.

Calculated TOP differences between 4 GeV/c $K$ and $\pi$ and the above-mentioned three contributions
are illustrated for two cases in Fig. 3 where TTS is set as 80 ps to include other small uncertainties such
as the start-signal. When the particle incident polar angle ($\theta_{inc}$) gets around or smaller than 40°,
TOP difference reverses its sign against the TOF difference, as seen in Fig. 3(b), and the separability power
reduces a bit. While the expected number of detectable forward-going (FW) photons is at an average 35
and 115 at (a) and (b), respectively, only the early arrived photons at the individual anodes are taken
into account for the time measurement. When the BW photons are also regarded for detection, they
come more than 15 ns later than FW photons which are widely separated enough for measurement to
take place and for distinguishing between each other.

As a sample of simulation study, Fig. 3(a) shows a Log-Likelihood distribution in a case of the FW
photon detection for 4 GeV/c $K$ and $\pi$ with $\theta_{inc}=90^\circ$. Resulted separability is $S=\sqrt{2\Delta \ln L}=5.7$. Overall
expected $\pi/K$ separability is shown in Fig. 3(b) in the case of Belle configuration. High momentum
limit is indicated by a thick line for the pions in $B \to \pi\pi$ decay. It is found that $S>5$ is achieved at any
barrel region of $\theta_{inc}=30^\circ$-$130^\circ$.
3 Beam Test

A test counter of 1 m long quartz bar was constructed with the structure as described in Fig. 2 but an absorptive filter, instead of a reflection mirror, for BW photons at the bar-end is prepared. Six L16 PMTs (96 anode channels in total) were attached at the mirror. Since the photoelectron detection efficiency of L16 PMT is about 1/2 and an effective mirror surface coverage by six PMTs with our configuration is approximately 40%, the total photon detection efficiency, besides PMTs’ QE, is nearly 20%. The above photon insensitive area, most of which is the structural space of PMT, would reflect the photons and resultanty hit other wrong anodes. To avoid this phenomena, absorptive filters were inserted in front of such areas. Measurement was performed using $\pi^-$ beam at KEK-PS.

First, beam was tuned to normally hit the counter at $L=0.02$ m. Recorded data are shown in Fig. 5. Single photon peak is clearly seen in ADC spectrum. Besides Cherenkov photons, two small contributions of knock-on electrons and reflected photons are found on TDC spectrum. Resultant time resolution over all 96 channels is about $\sigma=85$ ps, as plotted in Fig. 6. Since the chromatic contribution can be ignored at this configuration, the resulted resolution is dominated by TTS of L16 PMT.

Next, beam position was moved to $L=1$ m and three different momenta of 1.1, 2 and 4 GeV/c were set. Expected number of fired anodes was around 6, while we observed 6.3 at an average including both the contributions from the knock-on electron and reflected photons for individual three different momenta. Cherenkov ring image is clearly observed as a function of $\Phi$-angle, as seen in Fig. 7. In order to extract the
resolution in this case, a simple tricky analysis had to be applied, because the beam divergence defined by trigger counters were not sufficiently small enough as expected at the BELLE detector system to make its contribution ineffectual. That is, the triggered samples are required to have a signal at a certain channel, for example, 27th channel, within the first 150 ps part of the measured raw time distribution of 350 ps (FWHM). This bias would restrict the beam divergence somehow but not explicitly. Thus obtained resolutions are plotted in Fig. 6: Fairly good agreement with the expectation can be seen. The parabolic rise of the calculated resolution at large Φ is due to the aberration effect of the mirror rather than the chromatic contribution of the Cherenkov light at L=1 m case.

4 Summary

TOP counter is quite compact and has high separability. Due to the horizontal focussing and thin radiator thickness, the size of quartz bar’s cross-section can be disregarded so that it does not need a large standoff projection space such as DIRC. It is still at an early R&D stage and needs more essential studies as mentioned below.

First, confirmation of basic TOP behavior, especially the performance at L= 1 m or longer distances, should be done using tracking chambers at next beam test.

Increasing the detected number of photons is the most important issue and two approaches for enlarging the sensitive area are being examined: One way is to use a light-guide, and the other way is to develop L16 PMT. When a way to succesfully collect sufficient number of photons is established, TOP counter can be used as a real detector under certain experimental condition such as, for instance, fixed target experiment with no magnetic field. It needs much less space comparing to Gas Cherenkov counter, and can be configured to make the counter normal to incident particles so that the separability is enhanced by detecting both the FW and BW photons.
Figure 6: Measured time-resolutions for normal incident 2 GeV/c π’s. Open circles are obtained at $L=0.02$ m. The closed circles are obtained at $L=1$ m as described in the text and the curve is the expected one based on the measurement of $L=0.02$ m.

In order to utilize the TOP counter as the next BELLE pid detector, the second most important issue is to develop a single photon and position sensitive, high time-resolving detector operational under a magnetic field of 1.5 TG. R&D work of L24 PMT is being earnestly proceeded so that a successful outcome can be within our grasp in the near future.

This work is supported by Grant-in-Aid for Scientific Reasearch on Priority Areas (Physics of CP violation) from the Ministry of Education, Science, and Culture of Japan.

References

[1] For instance, see, J. Va’vra, in this Proceedings.

[2] B. Ratcliff, in this Proceedings.

[3] M. Akatsu, M. Aoki, K. Fujimoto, Y. Higashino, M. Hirose, K. Inami, A. Ishikawa, T. Matsumoto, K. Misono, I. Nagai, T. Ohshima, A. Sugi, A. Sugiyama, S. Suzuki, M. Tomoto, and H. Okuno (KEK, Tsukuba), DPNU-99-08, Mar 1999. 19pp; e-Print Archive: physics/9904009.

[4] For the description on KEK-B factory and BELLE detector, for instance, see J. Haba, Nucl. Instrum. Methods A368 (1995) 74; T. Nozaki, Nucl. Phys. B(Proc. Suppl.) 50 (1996) 288.
Figure 7: Cherenkov ring image measured by TOP counter for normal incident 4 GeV/c π's at $L=1$ m.