Risks and benefits of oral anticoagulants for stroke prophylaxis in atrial fibrillation according to body mass index: Nationwide cohort study of primary care records in England

Yoko M. Nakao, a,b,c Kazuhiro Nakao, a,d Jianhua Wu, a,b,c Ramesh Nadarajah, a,b,d A. John Camm, e and Chris P. Gale a,b,d

a Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
b Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
c School of Dentistry, University of Leeds, Leeds, UK
d Department of Cardiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
e Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK

Summary

Background Direct oral anticoagulants (DOACs) are effective and safe alternatives to warfarin for stroke prophylaxis for atrial fibrillation (AF). Whether this extends to patients at the extremes of body mass index (BMI) is unclear.

Methods Using linked primary and secondary data, Jan 1, 2010 to Nov 30, 2018, we included CHA2DS2-VASc score ≥3 in women and ≥2 in men with AF treated with oral anticoagulants (OACs). Outcomes were ischaemic stroke, major bleeding and all-cause mortality by World Health Organisation BMI classification. Patients who received warfarin were propensity score matched (1:1 ratio) with those who received DOACs and the association of time-varying OAC exposure on outcomes quantified using Cox proportional hazards models.

Findings We included 29,135 (22,818 warfarin, 6317 DOAC); 585 (2.0%) underweight, 8427 (28.9%) normal weight, 10,705 (36.7%) overweight, 5910 (20.3%) class I obesity and 3508 (12.0%) class II/III obesity. Patients treated with DOACs were older and more comorbid. After 3.7 (SD 2.5) years follow up, there was no difference in risk of ischaemic stroke and major bleeding by BMI category between DOACs and warfarin. Normal weight, overweight and obese class I patients had higher risk of all-cause mortality when treated with DOACs compared with warfarin (HR: 1.45 [95% CI 1.24–1.69], p < 0.001; 1.41 [95% CI 1.19–1.66], p < 0.001; and 1.90 [95% CI 1.50–2.39], p < 0.001), an effect not observed after DOACs became the most common OAC prescription. Amongst underweight patients OAC exposure was associated with greater harm from bleeding than benefit from stroke prevention (benefit to harm ratio, 0.35 [95% CI 0.26–0.44]).

Interpretation In patients with AF in each BMI classification we found no difference in ischaemic stroke and bleeding risk for DOACs compared with warfarin. Underweight patients experienced divergent risk-benefit patterns from oral anticoagulation compared with other BMI categories.

Funding None.

Keywords: Atrial fibrillation; Direct oral anticoagulants; Body mass index; Stroke; Bleeding
Research in context

Evidence before this study
We searched Medline and Embase for reports published in English from inception to March 2022 with a combination of keywords and subject headings related to atrial fibrillation (AF), body mass index (BMI) and oral anticoagulants (warfarin, direct oral anticoagulants [DOACs]). We also reviewed reference lists of selected reports. Randomised controlled trials (RCTs) demonstrated that DOACs were safer and effective alternatives to warfarin for stroke prophylaxis for patients with AF. However, patients with very low or very high BMI constituted a small proportion of those recruited. The effect of DOACs is dependent on plasma concentration so the risks and benefits of DOACs may alter at the extremes of BMI. Observational studies have either not been generalizable, only examined one of the extremes of BMI, or had few patients at the extremes. Many authors have performed intention-to-treat analyses or switch-censored, and so have not captured the full extent of oral anticoagulant exposure. We found no European population-based study that provided a robust analysis of DOACs compared with warfarin across the range of BMI.

Added value of this study
Our study provides novel information on the risks and benefits of DOACs and warfarin for stroke prophylaxis for AF according to BMI strata in a large general population cohort in England. We demonstrate that between 2010 and 2018 warfarin prescription declined whilst DOAC prescription increased. Moreover, patients treated with DOACs were older and more comorbid than those treated with warfarin. We provide reassuring evidence that in routine clinical practice there is no difference in the risk of bleeding and risks of stroke between treatment with DOACs and treatment with warfarin in each BMI category, including at the extremes of BMI. We also provide evidence that patients who fail to persist with oral anticoagulation are at increased risk of ischaemic stroke and all-cause mortality. Finally, comparing the benefit of stroke prevention to harm from bleeding, we demonstrate that underweight patients experience a worse outcome profile to patients in other BMI categories.

Methods

Study design and setting
We conducted this population-based, retrospective cohort study using the Clinical Practice Research Datalink-GOLD (CPRD-GOLD). CPRD-GOLD contains anonymised patient data from about 7% of the UK population and is largely representative of the UK population in terms of age, sex and ethnicity. Primary care records from CPRD were linked to secondary care admission records from Hospital Episode Statistics Admitted Patient Care data (HES-APC) and cause-specific mortality from the Office for the National Statistics (ONS).

Ethics statement
This study based in part on data from the CPRD which has ethics approval from the Health Research Authority to support research using anonymised patient data. Scientific approval for this study was given by the CPRD Independent Scientific Advisory Committee (ref no: 19_076).
Study population
The study period was 1st January 2010 to 30th November 2018. We included patients aged 18 years or older with a new diagnosis of AF, defined as at least one clinical or referral event in CPRD-GOLD or International Classification of Diseases version 10 (ICD-10) code in HES-APC, and at least one prescription of OAC. We excluded patients without OAC prescription after AF diagnosis and patients in receipt of a prescription for an OAC in the 120 days before the first OAC prescription after AF diagnosis. We also excluded those with an error for their first OAC prescription date, those without follow-up after diagnosis of AF and those without any measurements of height and weight or implausible measurements (weight <30 kg or >300 kg, height <1 m or >2.5 m). BMI was calculated directly from the most recent weight and height record relative to the date that the patients were first prescribed an OAC (weight/height). Cases where BMI was recorded at the same time or soon after the first OAC prescription were included as OAC prescription itself does not promote weight management behaviour and thus it is unlikely to have a significant influence on BMI measurement. The end of follow-up was defined as the earliest of occurrence of an outcome, death, transfer out of a contributing practice, the last collection date of a contributing practice, or the study end date.

Exposure to anticoagulants
Exposure to OACs was defined as the receipt of prescription for an OAC after receiving a diagnosis of AF. The drug index date was the date of the first prescription of an OAC after the diagnosis of AF in the study period. Gaps in prescribing of <90 days were considered as on treatment because this a timeframe that reflects the typical maximum duration of an OAC prescription issued in UK primary care (Supplementary Figure S1). Exposure was modelled as a time-varying variable, allowing patients to switch between different OAC exposure groups during the follow-up period or to not persist with OACs. We defined non-persistence as the period when there was a gap in prescribing of an OAC for ≥90 days. This allowed an interpretation of the risk of not receiving OAC prescription in individuals at elevated risk of stroke. OACs included warfarin and the four DOACs—dabigatran, rivaroxaban, apixaban, and edoxaban. In the presence of overlap of two different medications (that is, a switch in therapy from warfarin to a DOAC or from a DOAC to warfarin), the overlapped portion was credited to the latter medication. Patients co-prescribed OACs and antiplatelets were included in the study cohort, and we adjusted for the use of antiplatelets in the multivariate analyses. The daily dose was categorised as standard (300 mg for dabigatran, 20 mg for rivaroxaban, 10 mg for apixaban, and 60 mg for edoxaban) or lower than the recommended daily dose.

Outcomes
The outcomes were ischaemic stroke, major bleeding and all-cause mortality after diagnosis of AF. Ischaemic stroke was based on CPRD, HES, and ONS codes. We included unclassified strokes within ischaemic strokes because ~87% of all strokes are ischaemic. Major bleeding included intracranial haemorrhage and gastrointestinal bleeding which led to a hospital admission or death, based on HES and ONS codes. The date of outcomes was the earliest record after entry into the study from primary care, hospital and mortality data records after index date of OAC prescription.

Covariates
Covariates included demographic and lifestyle variables (age at index date, sex, smoking status), deprivation (index of multiple deprivation [IMD] quintiles), comorbidities (heart failure, hypertension, diabetes mellitus, myocardial infarction, peripheral artery disease, stroke, transient ischaemic attack, chronic obstructive pulmonary disease [COPD], chronic kidney disease [CKD], gastrointestinal bleeding, cancer, dementia and depression), and current medications prescribed at the index date (angiotensin-converting enzyme inhibitor/angiotensin-receptor blocker, beta-blockers, amiodarone, statins, proton-pump inhibitors, corticosteroids, non-steroidal anti-inflammatory drugs and antiplatelets). Each covariate was chosen either because it is used as an indicator for prescribing a specific OAC or because it is associated with increased risk of ischaemic stroke or bleeding.

Statistical analysis
A primary analysis was conducted in patients with a CHA2DS2-VASc score ≥3 in women and ≥2 in men, because guidelines give a class I recommendation for OACs for such patients. We categorised BMI (underweight: <18.5 kg/m², normal range: 18.5–24.9 kg/m², overweight: 25.0–29.9 kg/m², obese class I 30.0–34.9 kg/m², obese class II/III: ≥35.0 kg/m²) according to the World Health Organisation (WHO) classification. Patients with missing ethnicity data were included in the white category. Patients with missing smoking data were included in the non-smoker category. We used propensity score matching with the covariates listed above to adjust for potential confounding from imbalances in clinical characteristics between patients treated with warfarin and DOACs in each BMI group. Propensity scores were estimated using logistic regression after excluding missing IMD data (n = 6) (Supplementary Table S4). Patients who received warfarin were matched in a 1:1 ratio with those who received DOACs using nearest neighbour matching without replacement with a calliper of 0.2 standard deviation (SD) (Supplementary Methods). Differences in
clinical characteristics were assessed using standardised differences. Baseline characteristics for patients, by BMI categories and OAC, were described as percentages or mean (SD) as appropriate.

We calculated incidence rates expressed as per 1000 person years of follow-up for outcomes. We used Kaplan–Meier curves to visualise the cumulative incidence in patients with and without OACs by BMI categories. We assessed the association of time-varying OAC exposure on the outcomes using Cox proportional hazards models stratified by BMI with adjustment for covariates. For ischaemic stroke and major bleeding informative censoring of survival time was taken into account for those who died as a competing risk using Fine and Gray’s proportional sub-hazards model, to estimate cause-specific hazard ratios (HRs) and 95% confidence intervals (CIs). We developed a predictive model to determine the benefit to harm ratio of OACs versus time without OACs (‘Off OACs’) considering that OACs might be accompanied by additional, clinically significant, serious adverse events, using a method similar to that of Phillips et al. (Supplementary Methods). We assessed the sensitivity of analytical method and inclusion criteria. To provide a more direct comparison to the methodology of previous studies we conducted analyses by intention-to-treat and switch-censoring. We also investigated whether results would be altered by 1) only using weight measured prior to the first OAC prescription (up to 3 years), 2) restricting the window period between prescriptions to 60 days, 3) excluding patients with a preceding interventional procedure for AF or stroke prophylaxis (e.g. ablation, left atrial appendage closure, surgical left atrial appendage removal), and 4) conducting multiple imputation of missing data. Finally, given that in 2010 warfarin was the most common OAC and from 2015 prescription rates for DOACs were higher, with patient characteristics differing by OAC type and over time, we ran a sensitivity analysis including only patients with a OAC index date from 1st January 2015 onwards.

We performed an analysis including patients with CHA2DS2-VASc score ≥2 in women and ≥1 in men, to understand if our findings extended to this group who are eligible for OACs but at lower stroke risk. We also performed an analysis stratified by standard dose and lower dose in the DOAC group.

Analyses were performed using Stata version 16 (Stata Corp., College Station, TX, USA). All statistical tests were two-sided with a p value <0.05 considered to be significant. Study findings are reported in accordance with the Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) recommendations.

Role of the funding source
None. All authors had full access to all the data in the study and accept responsibility to submit for publication.

Results
A total of 17,578,233 patients contributed data from 1st January 2010 to 30th November 2018. After application of inclusion and exclusion criteria 29,135 patients formed the analytical cohort before matching (Supplementary Figure S2). Of those patients, 22,818 were prescribed warfarin and 6317 were prescribed DOACs (dabigatran 579 [2.0%], rivaroxaban 2970 [9.8%], apixaban 2617 [9.0%], edoxaban 151 [0.5%]). The overall mean (SD) age was 77.6 (8.5) years, 13,148 patients (45.1%) were women and mean CHA2DS2-VASc score was 3.6 (1.3) in men and 4.6 (1.3) in women. According to the WHO classification of BMI, 585 (2.0%) patients were overweight, 8427 (28.9%) were normal weight, 10,705 (36.7%) were overweight, 5910 (20.3%) had class I obesity and 3508 (12.0%) had class II/III obesity.

Fig. 1 shows that overall 78.3% of patients were prescribed warfarin, but initial prescription of warfarin declined during the study period from 95.7% in 2012 to 5.9% in 2018 with a concurrent increase in prescription of DOACs. By the end of the study period, apixaban was the most frequently prescribed OAC across all BMI categories. Amongst those prescribed warfarin, 420 (1.8%) were underweight and 2724 (11.9%) had obesity class II/III; whilst amongst patients prescribed DOACs 165 (2.6%) were underweight and 784 (12.4%) had class II/III obesity. Patients prescribed DOACs were older (78.4 years vs. 77.5, p = 0.001) and more commonly women (46.4% vs. 44.8%, p = 0.024) compared with those treated with warfarin. They also less frequently had heart failure (19.7% vs. 26.2%, p < 0.001) and CKD (31.9% vs. 34.7%, p = 0.001) and more frequently had hypertension (83.7% vs. 81.1%, p < 0.001), diabetes mellitus (29.8% vs. 26.4%, p < 0.001), stroke (19.7% vs. 17.5%, p < 0.001), gastrointestinal bleeding (15.7% vs. 14.4%, p = 0.013), cancer (26.9% vs. 23.3%, p < 0.001), dementia (6.7% vs. 2.0%, p < 0.001) and depression (26.9% vs. 22.6%, p < 0.001) (Supplementary Table S2).

Before matching, patients with a higher BMI category tended to be younger, more commonly men, more frequently had heart failure, hypertension, diabetes mellitus, CKD and depression and less frequently had previous stroke, COPD, gastrointestinal bleeding, cancer and dementia (Supplementary Table S3). In the propensity score matched cohort of 6316 pairs, we found no major differences between the two groups (Table 1, Supplementary Table S5). The mean (SD) duration of follow up was 3.7 (2.5) years. The crude incidence rates of ischaemic stroke, major bleeding and all-cause mortality are presented in Table 2. In general, overweight patients had higher incidence rates for each outcome compared to other BMI categories. For the full study period, the incidence rates for ischaemic stroke and major bleeding were similar between patients treated with DOACs or warfarin across BMI categories, and for all-cause mortality were generally lower.
higher in patients taking DOACs. For patients who failed to persist with OACs (Off OACs), the incidence rates of ischaemic stroke and all-cause mortality were higher than those who persisted and this was consistent across all BMI categories. The cumulative event rate curves for each outcome are shown in Fig. 2.

Compared with warfarin there was no significant difference in risk of ischaemic stroke or bleeding by BMI category for patients prescribed DOACs (Table 3). For patients taking DOACs, the risk of all-cause mortality was not different to warfarin in underweight or obese class II/III patients, but was higher in patients who were normal weight, overweight, and obese class I (HR: normal weight 2.51 [95% CI 1.72–3.66], p < 0.001; overweight 2.41 [95% CI 1.62–3.57], p < 0.001; obese class I 2.05 [95% CI 1.16–3.62], p = 0.014), except at the extremes of BMI where wide CIs led to statistical non-significance (HR: underweight: 1.52 [95% CI 0.34–6.87], p = NS; obese class II/III: 1.94 [95% CI 0.83–4.51], p = NS). They were also associated with a higher risk of all-cause mortality (HR: underweight 1.80 [95% CI 1.09–2.99], p = 0.023; normal weight 2.47 [95% CI 2.08–2.92], p < 0.001; overweight 3.16 [95% CI 2.65–3.77], p < 0.001; obese class I 2.76 [95% CI 2.12–3.58], p < 0.001; obese class II/III 2.16 [95% CI 1.56–3.00], p < 0.001). In benefit to harm analysis we found that exposure to OACs, as opposed to time without OAC prescription, was associated with benefit (ratio >1.0, indicating positive net benefit) across individuals who were normal

The results were not altered in the intention-to-treat and switch-censored analyses, when weight measured up to 3 years prior to first OAC prescription was used, when multiple imputation was conducted for missing data, when patients with a preceding interventional AF-related procedure were excluded, and when the prescription period was shortened to 60 days (Supplementary Table S10). The analyses that incorporated AF patients with lower stroke risk (CHA2DS2-VASC score ≥2 in women and ≥1 in men) and stratified standard and lower dose of DOACs also agreed with the main analysis. However, when restricted to patients with an OAC index date from 1st January 2015 onwards, when DOACs became the most common anticoagulant prescription, there was no difference in the risk of all-cause mortality between DOACs and warfarin across normal weight, overweight, obese class I, and obese class II/III patients, with insufficient data for analysis of underweight patients.

Discussion
In this nationwide study of patients with AF at elevated risk of stroke, we found that the risk of major bleeding and ischaemic stroke were similar for warfarin and DOAC treatment across WHO BMI classifications. Although we found the risk of all-cause mortality was higher for patients prescribed DOACs in the early part of the study period, there was no difference once the use
BMI categories

	Underweight (<18.5 kg/m²)	Normal weight (18.5–24.9 kg/m²)	Overweight (25.0–29.9 kg/m²)	Obese class I (30.0–34.9 kg/m²)	Obese class II/III (≥35.0 kg/m²)
Warfarin					
No of patients		165	1842	2276	1249
Mean age (SD)	83.6 (6.7)	81.6 (6.8)	78.2 (7.6)	76.3 (8.0)	72.8 (8.9)
Women		115 (69.7%)	947 (51.4%)	957 (42.0%)	391 (49.9%)
Ethnicity (White)		163 (98.8%)	1818 (98.7%)	2201 (97.7%)	163 (98.8%)
DOACs					
No of patients		1842	2276	1249	784
Mean age (SD)	81.6 (6.8)	78.2 (7.6)	76.3 (8.0)	83.5 (8.0)	81.6 (8.2)
Women		1842 (51.4%)	947 (42.0%)	391 (49.9%)	936 (50.8%)
Ethnicity (White)		2276 (98.8%)	163 (98.8%)	163 (98.8%)	1815 (98.5%)

Baseline characteristics in patients with anticoagulants stratified by BMI and OAC type at the study entry after propensity score matching.

- **BMI** = body mass index; **SD** = standard deviation; **IMD** = index of multiple deprivation; **DOACs** = direct oral anticoagulants; **DM** = diabetes mellitus; **MI** = myocardial infarction; **OAC** = oral anticoagulant; **PAD** = peripheral artery disease; **TIA** = transient ischaemic attack; **COPD** = chronic obstructive pulmonary disease; **CKD** = chronic kidney disease; **GI** = gastrointestinal; **ACEI/ARB** = angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; **PPi** = proton pump inhibitors; **NSAIDs** = non-steroidal anti-inflammatory drugs.

Table 1: Baseline characteristics in patients with anticoagulants stratified by BMI and OAC type at the study entry after propensity score matching.

www.thelancet.com Vol 54 December, 2022
Whole*	Underweight (<18.5 kg/m²)	Normal weight (18.5-24.9 kg/m²)	Overweight (25.0-29.9 kg/m²)	Obese class I (30.0-34.9 kg/m²)	Obese class II/III (≥35.0 kg/m²)
Ischaemic stroke
Warfarin | 14.4 (12.6-16.3) | 16.4 (13.0-20.7) | 14.2 (11.5-17.5) | 12.1 (8.9-16.3) | 11.9 (8.1-17.7)
DOACs | 17.5 (15.1-20.3) | 22.9 (17.8-29.4) | 15.5 (11.9-20.1) | 13.3 (13.2-25.1) | 10.3 (6.0-17.8)
Off OACs | 37.1 (31.3-43.9) | 48.8 (37.3-63.9) | 38.6 (29.1-51.2) | 24.1 (15.2-38.2) | 22.8 (12.3-42.3)

Major bleeding
Warfarin | 20.6 (18.5-22.9) | 24.3 (20.0-29.4) | 19.8 (16.6-23.7) | 18.3 (14.3-23.5) | 17.3 (12.5-23.9)
DOACs | 27.3 (23.6-25.5) | 23.9 (18.7-30.6) | 20.2 (16.1-25.4) | 22.7 (17.0-30.6) | 21.7 (16.8-29.4)
Off OACs | 19.1 (15.0-24.4) | 20.1 (13.0-31.8) | 18.3 (11.9-28.0) | 18.3 (11.9-28.0) | 19.3 (9.7-38.6)

All-cause mortality
Warfarin | 592 (55.6-63.1) | 76.8 (69.0-85.5) | 50.9 (45.6-56.9) | 43.0 (36.7-50.4) | 583 (48.9-69.6)
DOACs | 88.6 (83.0-94.6) | 116.1 (104.0-127.9) | 76.7 (68.2-86.2) | 75.0 (64.2-87.6) | 58.6 (46.7-73.5)
Off OACs | 177.2 (164.1-191.3) | 224.5 (216.2-254.0) | 173.5 (152.1-198.0) | 126.5 (103.7-154.3) | 128.6 (99.4-166.4)

DOACs = direct oral anticoagulants; OACs = oral anticoagulants. “Off OACs” refers to patients who were prescribed oral anticoagulants (OACs) but did not persist with prescriptions. The number of events is shown in Supplementary Table S6.

*Whole refers to total patients after propensity-score matching by each body mass index categories (n = 12632).

Table 2: Incidence rates per 1000 person years and 95% confidence intervals of outcomes by body mass index categories.

We found that the use of DOACs was associated with an increased risk of ischaemic stroke across the BMI range. This is in contrast to the findings of a previous study, which reported a lower risk of stroke in underweight patients. However, our analysis highlights the complex nature of the relationship between BMI and stroke risk. Several factors, including increased risk of bleeding, increased risk of thrombosis, and increased risk of ischaemic stroke, contribute to this risk.

A Korean study, compared with patients in other BMI strata, showed a reduction in risk of ischaemic stroke. The authors attributed this finding to the lower incidence of thrombosis in underweight patients. However, our analysis shows that the incidence of ischaemic stroke is higher in underweight patients than in patients of normal weight.

In conclusion, the use of DOACs is associated with an increased risk of ischaemic stroke in underweight patients. Further research is needed to understand the underlying mechanisms and to develop strategies for risk reduction.

Articles
rivaroxaban and lower doses of apixaban between 2011 and 2016 was associated with an increased risk of all-cause mortality compared to warfarin. In our study patients prescribed DOACs rather than warfarin before 2015 were significantly older and had a higher prevalence of preceding stroke, dementia and concomitant antiplatelet use (Supplementary Table S9). Death in AF patients is most commonly as a result of diseases other than ischaemic stroke and bleeding, and a greater proportion of the older and more comorbid patients taking DOACs may have died from these causes while taking anticoagulation.

The strengths of this study include its sample size, a nationally representative population and the long duration of follow-up. The primary care records were linked to hospital and mortality data, so major outcomes were identified. We purposefully included patients with valvular heart disease, even though they were excluded from some observational studies, because a meta-analysis has shown that DOAC risks compared with warfarin were lower in patients with valvular heart disease.

Fig. 2: Kaplan–Meier survival curves for outcomes by BMI and OAC type. "Off OACs" refers to patients who were prescribed OACs but did not persist with prescriptions. OACs = oral anticoagulants; BMI = body mass index; DOACs = direct oral anticoagulants; CI = confidence interval.
warfarin were similar for patients with AF with and without valvular heart disease. Through implementation of propensity-score matching we ensured the DOAC and warfarin groups were well-balanced for covariates known to impact the risk of ischaemic stroke or bleeding. We accounted for mortality as a competing risk in the calculation of hazard ratios for stroke and bleeding and we modelled OAC exposure as a time-varying variable to more closely represent the risks and benefits of OACs in clinical practice. We confirmed the fidelity of our findings across different analytical methods.

Study limitations include its observational nature, meaning only statistical associations may be inferred, and that outcomes are based on clinical codes without further arbitration, which may lead to under- or over-estimation of incidence. Warfarin and DOACs had different time periods and reported associations may be confounded by drug indication. Our population was predominantly Caucasian and the ethnic composition of the cohort should be considered when these results are interpreted and generalised. Though we used prescription as a proxy of persistence with treatment, actual drug adherence could not be ascertained and we did not have information on why patients failed to persist with OAC prescription. Finally, we did not investigate the quality of warfarin treatment by time in therapeutic ratio (TTR), which has previously been estimated in routine UK clinical practice to be about 70%, with 25% of patients having a TTR of <65%. Nonetheless, the inclusion of patients with worse quality management of warfarin and off-label DOAC dosing enables a better understanding of the true risk and benefits of these medications in real-world practice.

In summary, this national primary care records study provides reassuring evidence that stroke and bleeding risk did not vary between DOACs and warfarin in patients with AF across all BMI classifications in routine clinical practice. Underweight patients were at elevated risk of adverse outcomes and were subject to divergent patterns of benefit and risk from oral anticoagulation compared to other BMI categories.

Contributors
YMN, KN, JW, and CPG conceived and designed the research question. YMN, KN, and JW prepared the data for analysis. YMN and KN analysed the data. All authors (YMN, KN, RN, AJC, and CPG) had access to the data. All authors (YMN, KN, JW, RN, AJC, and CPG) provided content and read and approved the final manuscript. All authors (YMN, KN, JW, RN, AJC, and CPG) declared no competing interests.

Data sharing statement
CPRD data governance does not allow us to distribute or make available patient data directly to other parties. The diagnostic code lists used in this study are available on reasonable request of the corresponding author.

Declaration of interests
YMN reports a study grant from Bayer. CPG reports personal fees from AstraZeneca, Amgen, Bayer, Boehringer-Ingelheim, Daiichi Sankyo, Vifor, Pharma, Menarini, Wondr Medical, Raisio Group and Oxford University Press. He has received educational and research grants from BMS, Abbott Inc., the British Heart Foundation, National Institute of Health Research, Horizon 2020, and from the European Society of Cardiology, outside the submitted work. AJC reports personal fees from Abbott, Bayer, Daiichi Sankyo, Pfizer, BMS, Sanofi, Medtronic, Boston Scientific and Menarini. All other authors declare no competing interests.
BMI categories	Underweight (<18.5 kg/m²)	Normal weight (18.5–34.9 kg/m²)	Obese class II/III (≥35.0 kg/m²)
	HR (95% CI)	p	HR (95% CI)
P	0.29	0.125	0.125
Off OACs	1.10 (0.07–2.00)	<0.001	1.26 (0.92–3.46)
DOACs	0.93	0.225	1.41 (0.28–7.26)
	0.84 (0.64–1.10)	<0.001	0.96 (0.75–1.24)
	0.70 (0.53–1.25)	<0.001	0.92 (0.70–1.23)
	1.40 (0.93–2.15)	<0.001	1.50 (0.93–2.43)
	1.80 (0.92–3.51)	<0.001	2.04 (1.21–3.39)

All-cause mortality

BMI categories	Underweight (<18.5 kg/m²)	Normal weight (18.5–34.9 kg/m²)	Obese class II/III (≥35.0 kg/m²)
	HR (95% CI)	p	HR (95% CI)
P	0.99	0.917	0.99
Off OACs	1.37 (0.91–2.05)	0.134	1.90 (1.30–2.79)
DOACs	1.29	0.265	1.76 (1.23–2.58)
	1.30	0.001	1.85 (1.29–2.63)
	1.53	<0.001	2.16 (1.54–3.01)
	1.80	<0.001	2.47 (1.88–3.24)

References
1. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.
2. National Institute for Health and Care Excellence. Atrial fibrillation: diagnosis and management NICE guideline (NG196). https://www.nice.org.uk/guidance/ng196/chapter/Recommendations#stroke-prevention; 2021. Accessed July 18, 2022.
3. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) the Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021;42(5):371–498.
4. Steffel J, Collins R, Antz M, et al. 2021 European Heart Rhythm Association practice guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. EP Europace. 2021;23(10):1612–1676.
5. Choo YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10.
6. Deitelzweig S, Keshlusian A, Kang A, et al. Effectiveness and safety of oral anticoagulants among NVAF patients with obesity: insights from the ARISTOPHANES study. J Clin Med. 2020;9(6):1633.
7. Peterson ED, Ashton V, Chen Y-W, Wu B, Mangla KK, Spyropoulos AC. Comparative effectiveness, safety, and costs of rivaroxaban and warfarin among morbidly obese patients with non-valvular atrial fibrillation. Circulation. 2018;138(Suppl_1):A16245-A.
8. Lee S-R, Choi E-K, Park CS, et al. Direct oral anticoagulants in patients with nonvalvular atrial fibrillation and low body weight. J Am Coll Cardiol. 2019;73(8):919–931.
9. Barakat AF, Jain S, Masri A, et al. Outcomes of direct oral anticoagulants in atrial fibrillation patients across different body mass index categories. Clin Electrophysiol. 2021;75(7):649–658.
10. Costa OS, Bayer-Westendorf J, Ashton V, et al. Effectiveness and safety of rivaroxaban versus warfarin in obese nonvalvular atrial fibrillation patients: analysis of electronic health record data. Curr Med Res Opin. 2020;36(7):1081–1088.
11. Banerjee A, Benedetto V, Gichuru P, et al. Adherence and persistence to direct oral anticoagulants in atrial fibrillation: a population-based study. Heart. 2020;106(2):119–126.
12. Herrett E, Gallagher AM, Bhaskaran K, et al. Data resource profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827–836.
13. Kumar S, de Lusignan S, McGovern A, et al. Ischaemic stroke, haemorrhage, and mortality in older patients with chronic kidney disease newly started on anticoagulation for atrial fibrillation: a population based study from UK primary care. BMJ. 2018;360:k1432.
14. Weir CB, Jan A. BMI classification percentiles and cut off points. 2019.
15. Vinogradova Y, Coupland C, Hill T, Hippisley-Cox J. Risks and benefits of direct oral anticoagulants versus warfarin in a real world setting: cohort study in primary care. BMJ. 2018;362:k2365.
16. Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94(446):496–509.
17. Phillips RA, Xu J, Peterson LE, Arnold RM, Diamond JA, Schussheim AE. Impact of cardiovascular risk on the relative benefit and harm of intensive treatment of hypertension. J Am Coll Cardiol. 2018;71(15):1601–1610.
18. Bhaskaran K, Forbes HJ, Douglas I, Leon DA, Smeeth L. Representativeness and optimal use of body mass index (BMI) in the UK Clinical Practice Research Datalink (CPRD). BMJ Open. 2013;3(9):e003389.
19 Liyanage H, Liaw S-T, de Lusignan S. REporting of studies Conducted using Observational Routinely collected Data (RECORD) statement: call for contributions from the clinical informatics community. *Inform Prim Care*. 2012;20(4):221–224.

20 Kyle Blankenship. Special reports: Xarelto. https://www.fiercepharma.com/special-report/top-20-drugs-by-global-sales-2019-xarelto#:~:text=With%20patent%20expiration%20coming%20in%2C%20the%20drug%20goes%20off%20patent; 2020. Accessed July 18, 2022.

21 Tittl L, Endig S, Marten S, Reitter A, Beyer-Westendorf I, Beyer-Westendorf J. Impact of BMI on clinical outcomes of NOAC therapy in daily care-results of the prospective Dresden NOAC Registry (NCT01588119). *Int J Cardiol*. 2018;262:85–91.

22 Berzani G, De Caterina R, Manu MC, Souza J, Pecen I, Kirchhof P. Impact of weight on clinical outcomes of edoxaban therapy in atrial fibrillation patients included in the ETNA-AF-Europe registry. *J Clin Med*. 2021;10(13):2879.

23 Rietman ML, Van Oostrom S, Picavet H, et al. The association between BMI and different frailty domains: a U-shaped curve? *J Nutr Health Aging*. 2018;22(1):8–15.

24 Hindricks G, Potpara T, Dagens N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). *Eur Heart J*. 2021;42(5):373–498.

25 Camm AJ, Amarenco P, Haas S, et al. XANTUS: a real-world, prospective, observational study of patients treated with rivaroxaban for stroke prevention in atrial fibrillation. *Eur Heart J*. 2016;37(14):1145–1153.

26 Sterne JA, Bodalia PN, Bryden PA, et al. Oral anticoagulants for primary prevention, treatment and secondary prevention of venous thromboembolic disease, and for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis and cost-effectiveness analysis. *Health Technol Assess*. 2017;21(0).

27 Harris DE, Thayer D, Wang T, et al. An observational study of international normalized ratio control according to NICE criteria in patients with non-valvular atrial fibrillation: the SAIL Warfarin Out of Range Descriptors Study (SWORDS). *Eur Heart J Cardiovasc Pharmacother*. 2021;7(1):40–49.