Improvement shear properties of HMA using crumb rubber with different filler

Eman Abd Allateef¹ and Abd Alhaq Hadi Abd Ali²

¹Graduate student, Highway, and transportation department, Engineering College, University of Mustansiriyah, Iraq, Baghdad. Email:amonaemee@gmail.com
Corresponding Author
²Assistant Professor, Highway and transportation department, Engineering College, Mustansiriyah University, Iraq, Baghdad.
Email: abdulhaq1969@uomustansiriyah.edu.iq

Abstract Rutting is one of the big problems in hot-mix asphalt (HMA) pavements. The primary mechanism of HMA rutting is shear deformation, often caused by high stress in HMA layers during traffic loading, especially at high temperatures. Current HMA rutting tests are not necessarily designed to capture HMA shear properties such as shear strength, shear strain, and shear module. The present work explores the behavior of the shear strength properties of HMA modified with Crumb Tire Rubber (CTR) and two types of filler (brick and lime dust in comparison with passing sieving No.200 as control filler) by developing a Simple Punching Shear Test (SPST) under control of temperature and loading rate. A series of laboratory sample tests to formulate and set up the SPST protocol and the related test parameters, derive the SPST results from the analysis sample to capture the HMA shear parameters from the results, and comparatively evaluate the shear properties of HMA mixes. Results have shown that the SPST is relatively receptive to the form of modifier and filler. Using limestone dust as with (5%) CTR content increased higher shear strength, the rate of increase was about (44.44%) and (51.38%). Also 5% to 7% CTR content with lime dust filler lowering shear strain more than for brick dust filler.

Keywords: Shear strength; Asphalt Mixture, crumb tire rubber.

1. Introduction

Highways in Iraq or any other country are exposed to different types of stresses. These stresses will induce pavement deteriorations, which are not only produced from poor design and construction practices but may be caused by the inevitable wear and tear that occurs over a period of years [1]. Pavement structures categories into two group namely flexible and rigid pavement structures. Asphalt pavement exhibits three primaries distresses: rutting, fatigue cracking, and thermal cracking. Rutting is the plastic deformation of asphalt concrete or the underlying layers along the wheel path. Fatigue cracking includes alligator cracking, which is caused by repeated tension at the bottom of the asphalt layer, and longitudinal cracking, which results from the repeated tension/shear at the edge of the wheel. Thermal cracking is manifested in transverse cracks and is caused by low temperature contraction or repeated temperature cycles [2].

In recent years, the advance of technology in the field of asphalt paving materials has mainly focused on developing solutions to pavement distress such as permanent deformation, moisture damage, and
fatigue or low-temperature cracks, in order to extend the pavement durability. As a solution, pavement technologists have developed asphalt mix additives for mitigating those distresses in hot mix asphalt (HMA).

Several researches have been conducted to investigate the effectiveness of using modifier crumb rubber (CTR) at a different percentages to improve the behavior of asphalt binder and mixtures [3-11]. These researchers found that using (CTR) modifier for asphalt mixture will improve the properties of HMA such as rutting resistance, rheological properties, long fatigue life, an increase of Marshall Stiffness, indirect tensile strength and decrease of temperature susceptibility of mixtures, increased in flash point, the ductility, and viscosity while decreased the solubility.

For assessing the rutting or PD susceptibility of HMA in the laboratory, several testing methods such as the Hamburg Wheel Tracking Test (HWTT), Repeated Loading Permanent Deformation (RLPD), and Dynamic Modulus (DM) tests, are often used. In particular, the HWTT is routinely used in Texas for assessing HMA mixes’ susceptibility to rutting moisture damage (stripping). Whilst these tests have a fairly proven history of successfully identifying and screening HMA mixes that are prone to rutting, several rutting failures have recently occurred in the field with HMA mixes that performed acceptably in the laboratory[12]. These failures occurred mostly in high shear locations, in particular with slow moving (accelerating/ decelerating) traffic at controlled intersections, in areas of elevated temperatures, heavy/high traffic loading, and/or where lower asphalt-binder performance grades (PG) have been used.

Indeed, one of the contributing mechanisms of permanent deformation in HMA is the lateral movement, i.e., the shear failure of the HMA under traffic; as shown in Figure 1 [13]. To address this issue, several tests have been developed and explored in recent years for evaluating the shear resistance of HMA mixes in the laboratory.

![Figure 1. Mechanisms of Rutting in HMA Pavements [13].](image)

William 1987 [14], discussed efforts to improve the strength and durability of asphalt concrete by incorporating chemical additives in hydrocarbon asphalt cements. It was found manganese modifiers might improve the strength and reduce the deflection of full depth asphalt concrete.

Jimenez 1974 [15] and Wen et al. 2014 [16], carried out a cylindrical asphalt concrete specimen is compressed vertically through two steel punches placed concentrically on the top and bottom sides. It was conclude the failure modes of the two tests are quite different.

Chen et al. 2006 [16], study evaluated the uniaxial penetration test for its suitability to characterize the shear resistance of hot-mix asphalt mixtures at elevated temperatures. The results indicated that the uniaxial penetration test was able to provide consistent results for the mixtures selected.

Walubita et al. 2014 [17] develop SPST a supplementary and/or surrogate HMA rutting shear test to complement the existing tests, such as the HWTT, RLPD, DM test, etc. It was found the SPST was to be reasonably sensitive to test input parameters (e.g., loading rate and temperature) and HMA mix variables (e.g., asphalt-binder type and content), shear strain and the SSE index parameters did not show any definitive trend with changing test input parameters and HMA mix-design variables. In addition,
the shear resistance of the tested HMA mixes increased with test loading rate and decreased with test temperature and with asphalt-binder PG grading and decreased with asphalt-binder content (AC).

Faruk et al. 2015 [18], carried out new test method, namely the Simple Punching Shear Test (SPST), was developed as a supplementary and/or surrogate HMA rutting shear test to complement the existing rutting and PD tests. The results are analyzed in comparison and validation with the standard HWTT test and field performance. It has been shown that the SPST can be a useful tool for characterizing the HMA shear properties and has promising potential to be used as a surrogate rutting/shear test.

2. Research Objective

The research aims to

1. Enhance the performance of the existing HMA shear resistance and permanent deformation (PD)/rutting tests and to
2. Develop supplementary and/or surrogate rutting tests including applying developed a new HMA shear test and give additional guidance to designers on the SPST has promising potential in evaluating the HMA shear properties and can be practically used as a surrogate test method.

3. Experimental work

3.1 Asphalt cement

One type of asphalt cement with penetration grade (40-50) was used in this study as natural asphalt binder, provided from Al-Dura refinery south of Baghdad. Tests conducted on asphalt cement confirmed that its properties complied with the specification of State Corporation of Roads and Bridges (SCRB 2003, R9)[19]. Table (1) illustrate the physical properties of asphalt cement. From PI will find the asphalt cement used in this study sensitive to temperature.

Property	Result	Unit	SCRB Specification
Penetration, (25°C,100g,5 sec)	45	1/10mm	40-50
Softening Point temperature,	51	ºC	
(Ring & Ball) ASTM D36 / D36M			>100
Ductility (25°C,5cm/min) ASTM D113-17	132	cm	
Flash point (Cleave land open cup). ASTM D-92	292	ºC	Min232
Specific gravity, at 25 ºC ASTM D-70	1.04	-	(1.01 to 1.05)
PI	-1.19	-	

\[
PI = \frac{[1952 - 500 \log(pen25ºc) - 20(soft point)]}{[50 \log(pen25ºc) - soft point - 120]}
\]

3.2 Aggregate

The aggregate used in this work was crushed and obtained from Al-Nibaie quarry. The coarse and fine aggregates were sieved and recombined as shown in plate 1. The gradation of coarse aggregate for surface layer ranges between 3/4 in. (19.0 mm) and No.4 sieve (4.75 mm) while the gradation of fine aggregates ranges between passing 4.75mm (No.4) sieve and retains on 0.075mm (No.200) sieve, it consists of tough grains free of the amount of clay, loam or other deleterious substance as required (SCRB, R/9, 2003). Traditional tests were performed on the aggregate to evaluate their physical properties. The results together with the specification limits as set by the SCRB are summarized in Table
(2 and 3) chemical composition as shown in Table 4. Tests results show that the chosen aggregate met the SCRB specifications.

Table 2. Physical Properties of the Fine Aggregate

Property	ASTM Designation	Test Results
Bulk Specific Gravity (g/cm³)	(ASTM C128, 2001)	2.632
Apparent Specific Gravity (g/cm³)	(ASTM C128, 2001)	2.66
Water Absorption %	(ASTM C128, 2001)	0.54
Sand equivalent%	(ASTM D2419, 2002)	60

Plate 1. Aggregate

Table 3. Physical Properties of the Course Aggregate used in the study

Property	ASTM Designation	Test Result	SCRB Specification
Bulk Specific Gravity (g/cm³)	ASTM C127	2.64	-
Apparent Specific gravity (g/cm³)	(ASTM C127, 1997)	2.65	-
Percent Water Absorption	ASTM C127	0.5208	-
Percent Wear (Loss Angeles Abrasion)	(ASTM C131, 2003)	20.8	30 max.

Table 4. Chemical composition of the Aggregate *

Chemical Compound	Content %
SiO₂	82.52
CaO	5.93
MgO	0.78
SO₃	2.71
Al₂O₃	0.49
Fe₂O₃	0.68
Loss on Ignition	6.5
Total	99.61
Mineral composition

Quartz	80.1
Calcite	10.95

* (cite by National Center for Construction Laboratories and Research)

3.3 Filler

The filler is a non-plastic material passing sieve No.200 (0.075mm). Three types of non-conventional filler are used; the control mixes were prepared using material passing sieve No.200, limestone, and brick dust as mineral filler at different content.

3.3.1 Brick dust

Construction waste is generated during the construction of buildings and other facilities, and during renovation, renewal and maintenance of such buildings and facilities. This waste group includes concrete, bricks, tiles and other materials. In their study conclude that waste brick particles passing sieve No. 200 in size can be considered acceptable as replacement for filler. The brick parts obtained from landfill and rubble, then transformed to laboratory for washing and drying in oven and crushed manually then pulverizing by machine to ultrafine, and sieved on No. 200 to obtain a desired range of particle sizes that used as filler. Brick dust at a content of 7% by total weight of aggregate (1.5% by dry weight of aggregate as suggested by SCRB specification for surface layer) is added in a mixer immediately after the asphalt is introduced. Table 5 illustrates the basic physical and chemical properties of brick dust used for this study as shown in plate 2.

Table 5. Physical and chemical properties of brick dust

Property	Test Result
Specific Gravity	2.54
Specific surface (m²/Kg)	1900
% passing No. 200 sieve	95
% CaO	7.812
% SiO₂	54.46
% Al₂O₃	23.69
% Fe₂O₃	7.2
% MgO	0.20
% SO₃	0.12
% L. O. I.	5.89

* (cited by National Center for Construction Laboratories and Research)
3.3.2 Limestone dust

Limestone dust acquired from a lime factory in Kerbala governorate, south east of Baghdad. Limestone has been known to be a promising potential material for pavements due to its unique physical/chemical/mechanical characteristic. The use of limestone dust has been recommended by SRCB with 7% by total weight of aggregate (1.5% by dry weight of aggregate as suggested by SCRB specification for surface layer). Plate 3 shows the limestone dust used. Table 6 illustrates the basic physical and chemical properties of limestone dust used for this study.

![Plate 3. Limestone dust used.](image)

Table 6. Physical and chemical properties of limestone dust

Property	Test Result
Specific Gravity	2.45
Specific surface (m²/Kg)	390
% passing 75 μm	99
% CaO	50.7
% SiO₂	2.32
% Al₂O₃	3.1
% Fe₂O₃	0.1
% MgO	7.21
% SO₃	0.31
% L. O. I.	36.1

(by National Center for Construction Laboratories and Research)

3.4 Crumb Tire Rubber (CTR)

Crumb tire rubber in fine particles form (passing sieve No.50) was used in this study; it was made by scrap tires from a manufacturing plant of tire in Iraq, Babil Tire factory; Najaf, into small pieces as shown in Plate (6). Table (7) demonstrated the properties of tire rubber crumb as given by the tire industrial facility. Different percentages (5, 7, 10 %) by weight of asphalt cement were added.

Table 7. Tire Rubber Physical Properties

Property	Value	Specification
specific gravity	0.88	ASTM D6270-98
4. Simple Punching Shear Test (SPST)

The SPST was developed as a simple performance test to characterize HMA shear properties. In the SPST setup, a cylindrical HMA specimen is compressed vertically via a steel punch placed concentrically on the top of an opening at the base. The specimen fails along the diametrical plane due to the shear strain generated in the tangential direction. Plate 5 shows the manufactured mold of diameter 6 in. (150 mm), height 2.5 ± 0.1 in. (63.5 ± 2.5 mm), and base plate consisting of a 6.0 in. diameter cylindrical metal base with a 2.5 in. diameter concentric opening, the height of the loading Base is at least 2.5 in. to allow enough space for accommodating the dislodged parts of the HMA, loading head consisting of a 1.5 in. diameter cylindrical metal head to be attached to the loading shaft of the loading press and confined ring consisting of a cylindrical enclosure able to provide lateral confining, these component manufactured in workshop of technology institute. Table 8 present the SPST setup and the test parameters that were used in this study under controlled condition [loading rate 0.2 mm/s (0.50 inch/min), test temperatures 50 ± 2°C (122°F).

Table 8. The SPST Protocol

Property	Described
Mold	2.5" (63.5mm) thickness × 6.0" (152.4 mm) Ø
Base plate	6.0 in. diameter with a 2.5 in. diameter
	concentric opening, the height of the loading
	Base is at least 3 in.
Loading head	1.5" (38.1 mm)
Confined ring	6 in. (150 mm), and height 2.5 in. (63.5 mm)
Loading rate	0.2 mm/s (0.50 inch/min)
Temperature test	50 ± 2°C (122°F)
Test termination	2.49" (63.2 mm) vertical movement
Total test time	≤ 10 minutes

5. Mixing method

The first stage prepared samples with and without modified, the aggregate was sieved, washed, and dehydrated to a stable weight at 109°C. The combined aggregate is then heat to a temperature of (150-165°C) before blending with asphalt cement. The asphalt binder is heat to a temperature of (150°C) then added to the heated aggregate to achieve the desired amount, and mixed thoroughly by hand using a spatula for 2 minutes while all aggregate particles are painted with asphalt binder ASTM D1559-98. The preparation of modified asphalt with CTR was taken according to ASTM D6114-19 (standard
specification for asphalt-rubber binder). The second stage was determined the required quantity of the mix that taken so as to produce compacted asphalt mix specimens of 63.5 mm thickness and 152.4 mm in diameter as approximately (3300 gm) of aggregates and filler were required to produce the desired thickness. After mixing thoroughly the material was cast in the manufactured steel mold 152.4 mm in diameter and 63.5 mm thickness then cast the mixture was compacted by a hand compactor with 75 blows each face according to Marshall test requirements as shown in plate 6.

Plate 6. Specimen preparation before and after test.

6. Results and Analysis

The shear strength at failure calculates by dividing the peak shear load from load displacement response on the punching area of sample.

$$\tau_s = \frac{p_{\text{max}}}{\pi Dt}$$ \hspace{1cm} (1)

Where:
- τ_s: shear strength at failure (kN/m2)
- p_{max}: maximum load or failure load (kN)
- D: diameter of the punching (loading) head (mm)
- t: thickness of the sample (mm)

Figure (7) shows the effect of modifier content with different filler (brick dust and limestone dust) in comparing with passing No.200 as control filler on peak shear load and max. Shear strain that calculated from equation:

$$\gamma_s = \frac{d_{\text{pmax}}}{t}$$ \hspace{1cm} (2)

Where:
- γ_s: shear strain at failure (mm/mm) *103
- d_{pmax}: maximum displacement at failure load (mm)
- t: thickness of the sample (mm)

The SSE is defined as the total work required fracturing the HMA by a unit area or volume. The total required work is measured by the area under the load–displacement curve as calculated from equation below:

$$\text{SSE} = \frac{1}{A} \int_0^\infty (f_x) \, dx$$ \hspace{1cm} (3)

$$\text{SSE index} = \frac{\gamma_s}{\tau_s} \times 10^3$$ \hspace{1cm} (4)

Where:
- γ_s: shear strain energy
- τ_s: shear strength at failure (kN/m2)
- γ_s: shear strain at failure (mm/mm)
- A: the area under the shear load-displacement curve

Table (9) summarized the results of SPST test (shear strength and strain at failure).
It is observed from these results that the shear strength (τ_s) and shear strength energy (SSE) of cement asphalt samples modified by 5% CTR content with brick dust exhibited good correlation as compared with specification for SPST by TxDOT Designation: Tex-2XX-F while cement asphalt samples modified by modified 5% and 7% CTR with limestone filler exhibited good shear strength energy (SSE) as compared with specification for SPST by TxDOT Designation: Tex-2XX-F.

7. Conclusions

A series of experimental models have been tested to evaluate shear properties HMA modified with and without CTR modifier, also with filler brick dust, limestone dust and comparing with passing sieve No.200. The following conclusions are drawn from this study:

1. Peak shear strength increased by about (44.44%) for 5% CTR with brick dust filler then reduced as the CTR content increased, also peak shear strength increased by about (51.38%) for 5% CTR with lime in comparing both filler with passing sieve No.200.

2. Lower value of shear strain was obtained at 5% to 7% CTR content combined with lime dust filler rather than for brick dust filler.
3. The value of SSE increased as the modifier content (CTR) increased until reached content of 5-7% then decreased for two types of filler as comparing with passing No.200, and the effect of lime filler is similar with CTR while brick filler with 5%CTR shows high SEE.

4. Less shear resistant mixes lead to higher amount of energy was expended to impart shear failure to the mix and higher shear strength of a mix would indicate lower rutting susceptibility.

5. The modified cement asphalt using 5% CTR content with brick dust, and 5% and 7% CTR with limestone filler more benefits for HMA under SPST and exhibited good simulation with specification for SPST by TxDOT Designation: Tex-2XX-F.

6. Using CTR with lime stone dust and brick dust improves fatigue resistance for modified cement asphalt binder at different percent.

8. Acknowledgments

The authors would like to thanks Mustansiriyah University (https://uomustansiriyah.edu.iq/), Baghadda-Iraq for its support in the present work.

References

[1] Garber, N. J. and Hoel, L.A. (2002): "Traffic and Highway Engineering", Third Edition, PWS Publishing Company, London.

[2] Khattak, M. J., Baladi, G. Y. (2001) "Fatigue and permanent deformation models for polymer-modified asphalt mixtures", Journal of the Transportation Research Board 1767, pp. 135-145

[3] Roque, R., Birgisson, B., Drakos, C., & Sholar, G. (2005). "Guidelines for use of modified binders "No. UF Project No. 4910-4504-964-12.

[4] Baha, Vural Kok, Mehmet Yilamz, (2009)."The effects of using lime and SBS on moisture sensitivity resistance of hot mix asphalt". Construction and building materials: 23:1999-2006.

[5] Farag K. (2010)," Evaluation of Fatigue Resistance for Modified Asphalt Concrete Mixtures Based on Dissipated Energy Concept" M.Sc., thesis, Department of Civil Engineering and Geodesy Technische Universität Darmstadt.

[6] Abed A., Hamed M., and Namir G. (2011), "Rheological Properties Of Iraqi Asphalt Binders Measured Using Superpave System And Shell Software", Journal of Engineering, No. 4 Vol.17 August.

[7] Fengxia C. and Zhifei L., (2017), "Qualitative analysis of SBS modifier in asphalt pavements using field samples ", IOP Conference Series Materials Science and Engineering 207(1):012100 DOI: 10.1088/1757-899X/207/1/012100

[8] Naser A. (2018), "Experimental Studying the Effect of Adding Styrene Butadiene Styrene Polymer (Sbs) on the Mechanical Properties of Hot Mixture Asphalt" Journal of Engineering and Sustainable Development Vol. 22, No. 05, September.

[9] Josef Z., Monismith A., Coleri, E. and Harvey, J. (1996)"Report on new test method to determine shear properties of asphalt mixtures", 6th Eurasphalt and Eurobitume Congress, 1-3 June, Prague, Czech Republic.

[10] Xuancang W., Zhenyang W. and Minghui H. (2019), "Durability Evaluation Study for Crumb Rubber–Asphalt Pavement", Applied Science, vol. 9, 3434; doi:10.3390/app9163434.

[11] Ahmed Salama Eltwati, Amir Hossein and Danil Nasr (2020), "Effect of Crumb Rubber Particles on the Properties of Asphalt", Lecture Notes in Civil Engineering 59, https://doi.org/10.1007/978-981-15-1193-6_5

[12] Chen Z., HainianW., Zhanping Y., Junfeng G., and Muhammad I. (2019). "Performance Test on Styrene-Butadiene-Styrene (SBS) Modified Asphalt Based on the Different Evaluation Methods", Applied Science, vol. 9, 467; doi:10.3390/app9030467.

[13] Brown E., P.S. Kandhal, J. Zhang, (2001), "Performance Testing for Hot Mix Asphalt" National Center for Asphalt Technology, NCAT Report 01-05, Auburn, Alabama.

[14] william, H.; Al-Qadi, I.L., (1978) "Near-Surface Pavement Failure Under Multiaxial Stress State in Thick Asphalt Pavement". Transportation Research Record, Journal Transportation Research Board, 2154, 91–99.
[15] Jimenez R., (1974) "Testing for debonding of asphalt from aggregates", Transp. Res. Rec.: J. Transp. Res. Board 515 (1974). Washington, DC.

[16] Chen, X., H. Huang, and Z. Xu. (2006), "Uniaxial Penetration Testing for Shear Resistance of Hot-Mix Asphalt Mixtures" Transportation Research Record: Journal of the Transportation Research Board, No. 1970, Transportation Research Board of the National Academies, Washington, D.C.

[17] Walubita L., S. Lee, J. Zhang, A.N.M. Faruk, S. Nguyen, T. Scullion, (2013 and 2014), "HMA Shear Resistance, Permanent Deformation, and Rutting Tests for Texas Mixes” Year-1 Report, Technical Report FHWA/TX-13/0-6744-1, Texas A&M Transportation Institute, College Station, TX-77843, USA, 2013

[18] Faruk A., Sang I., Jun Z., Bhaven N and Lubinda F., (2015), “Measurement of HMA shear resistance potential in the lab: The Simple Punching Shear Test”, Construction and Building Materials, vol.99, pp.62–72.

[19] SCRB, (2003), Standard Specification for Roads and Bridges. State commission of roads and bridges Republic of Iraq, Ministry of Housing and Construction.