Spin excitonic and diffusive modes in superfluid Fermi liquids

E.E. Kolomeitsev1 and D.N. Voskresensky2,3

1University of Matej Bel, SK-97401 Banska Bystrica, Slovakia
2National Research Nuclear University "MEPhI", Kashirskoe sh. 31, Moscow 115409, Russia
3GSI, Helmholtzzentrum f"ur Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany

A role of a particle-particle p-wave spin interaction in Fermi liquids with s-wave pairing is studied. Depending on the sign of the interaction there arises either the new exciton collective mode below the pair-breaking threshold or the diffusive excitation mode above the threshold. The Landau parameters which control the interaction strength are evaluated for various systems: the dilute fermion gases, degenerate electron liquid, metals, atomic nuclei and neutron matter. The interaction removes also the square-root singularity in the phase space of pair breaking processes. It is shown how these effects influence the neutrino emissivity in the neutron Cooper-pair recombinations in neutron stars.

Processes with recombinations of Cooper pairs provide important information about interparticle interactions and the pairing mechanisms in different fermionic systems: ordinary superconductors, liquid 3He and 4He mixtures, cold atomic gases, atomic nuclei, neutron stars, and other systems. In superconductors, they are studied by absorption of infrared radiation or by the Raman scattering. In the cold fermion atom gas one can use the Stokes scattering to detect the onset of the pairing. Inverse pair breaking and formation (PBF) reactions constitute an important mechanism of the neutron star cooling. In these processes the energy is released in the form of neutrino-antineutrino pairs radiating off the star. Superburst ignition depth is sensitive to the value of the PBF emissivity in the inner neutron star crust. In the PBF processes are suggested to be responsible for the recently observed rapid cooling of the young neutron star in Cassiopeia A.

It was shown that a residual interaction of single particle excitations, which does not contribute to pairing, can bind them in a state orthogonal to the Cooper pair, generating collective excitation modes in superconductors. For superfluid 3He the similar mechanism was studied. Interactions in the same spin channel, in which the pairing occurs, were studied so far. The influence of the interaction in one spin channel on the pairing in another channel has not yet been considered.

In this Letter we study the effects of the p-wave interaction in the spin-one channel on excitations in a Fermi system with the spin-zero pairing. We calculate response induced by the external spin- and helicity-density sources and show that depending on the sign of an effective interaction there appears either a new excitation mode or a diffusive excitation mode. Then we evaluate the strength of this effective interaction for different Fermi systems and, as an example, calculate the neutrino emissivity in the PBF processes for the neutron star with the neutron pairing in 1S\textsubscript{0} state taking into account the effects of the new collective modes and correlations.

We use the Fermi-liquid theory approach extended to systems with pairing by Larkin and Migdal and by Leggett. For the processes induced by weak nucleon interactions this approach was adopted in Ref. \[15\]. Interactions in particle-particle (ξ) and particle-hole (ω) channels are essentially different. The interaction amplitude of two fermions with momenta \(p = p_0 \vec{n}\) and \(p' = p_0 \vec{n}'\) before and after the interaction in the \(\xi\)-channel is parameterized as \(\Gamma_\xi = \Gamma_0^\xi (\vec{n}, \vec{n}') (\sigma_2) (\sigma_2) + \Gamma_2^\xi (\vec{n}, \vec{n}') (\sigma_2) (\sigma_2)\) and in the ω-channel as \(\Gamma_\omega = \Gamma_0^\omega (\vec{n}, \vec{n}') (\sigma_2) (\sigma_2)\) . Here \(p_0\) stands for the Fermi momentum, \(\vec{n} = \vec{n}'\) are the unit vectors. The unit matrices 1 and 1’ and the Pauli matrices \(\sigma\) and \(\sigma'\) act in the nucleon spin space. Superscript “ω” indicates that the amplitude in this channel is taken for \(|q\vec{v}_F| < \omega < \epsilon_F, v_F\) is the Fermi velocity, \(\epsilon_F\) is the Fermi energy and \(q = (\omega, \vec{q})\) is the transferred 4-momentum. The coefficients of harmonic expansion of the scalar \(\Gamma_0^\xi,\omega\) and spin \(\Gamma_2^\xi,\omega\) amplitudes, the Landau parameters, should be either evaluated microscopically or extracted from analysis of the experimental data.

The singlet pairing in the Fermi liquid occurs owing to the attractive interaction, \(a^2 \rho \Gamma_0^\xi = f_0 < 0\). At zero temperature the pairing gap \(\Delta\) follows from equation \(-\lambda f_0 = \lambda_0/(a^2 \rho) = \ln(2 \epsilon_F/\Delta)\), where \(a\) is the pole residue and \(\rho\) is the density of states at the Fermi surface. This expression is naturally generalized for finite temperature \(T\), cf. Eq. (5) in the second paper of Ref. \[13\]. Since \(g_0^\xi = 0\) for the scattering of identical fermions, the spin interaction in the \(\xi\)-channel simplifies as \(a^2 \rho \Gamma_2^\xi (\vec{n}, \vec{n}') = g_2^\xi (\vec{n} \vec{n}')\). It is usually assumed that the higher Legendre harmonics are much smaller. Since we focus on the spin channel, the interaction \(\Gamma_0^\xi\) decouples and can be dropped. In the \(\omega\)-channel, \(a^2 \rho \Gamma_0^\omega = g_0^\omega + g_2^\omega (\vec{n} \vec{n})\) Contributions from the zeroth harmonics, \(g_0^\omega\), are accompanied by the factor \(v_0^2\), see Ref. \[15\], and for non-relativistic Fermi liquids under consideration (for \(v_0^2 \ll 1\) can be put zero. Thus we remain with only tree relevant Landau parameters \(f_0^\xi < 0, g_2^\xi\). Let us first put \(g_0^\omega\) zero and demonstrate the influence of the interaction in the \(\xi\)-spin-one channel, \(g_2^\xi\), on the pairing effects in the \(\xi\)-spin-zero channel. Then we recover de-
The brackets indicate the angular averaging $\langle \cdots \rangle_\bot = \frac{1}{4\pi} \int d\epsilon \cdots$. The loop functions $O(\vec{n}, q; \pm 1) = \frac{1}{2} \psi^2 \rho (\omega \pm z_\bot g r(\vec{n}, \omega, q) = A_0 (\vec{n}, q) A_0 (\vec{n}, q)^*$ with $z_\bot = (\omega \pm \vec{v} \cdot q)/(2\Delta)$, and the master function

$$g r(\vec{n}, \omega, q) = \Delta^2 \int_{-\infty}^{+\infty} \frac{d\epsilon_\rho}{\epsilon_\rho - \epsilon_{\pm}} \left[\frac{E_- F_-}{\omega^2 - E_-^2} - \frac{E_+ (1 - F_+)}{\omega^2 - E_+^2} \right],$$

where $E_{\pm} = \epsilon_\pm \pm \epsilon_0, F_\pm = f(\epsilon_+ - f(\epsilon_0), f(x) = 1/(exp(x/T) + 1)$ and $\epsilon_\pm = [(\sigma_\rho \pm \vec{v} \cdot q)^2 + \Delta^2]^{1/2}$. The solution of Eq. (11) is

$$\vec{n}, \omega, q) = \frac{- \frac{1}{2\Delta} \sigma_\rho^\prime \vec{T}_{A,0}(\vec{n}, q)^2}{\omega}\vec{P}_\perp,$$

where $\vec{T}_{A,0}(\vec{n}, q) = \frac{1}{2\Delta} \vec{T}_{A,0}(\vec{n}, q)^2 - \frac{1}{2\Delta} \vec{T}_{A,0}(\vec{n}, q)^2 [1 - (\vec{n}, \vec{n})^2]^2_{\vec{n}, \vec{n}}$, and the correlation factors

$$[\gamma_{\vec{n}}^2]^{-1} = \frac{1}{3} C_0 + \frac{(\sigma_\rho^2 + 4\Delta^2) g r(\vec{n})}{4\Delta^2 (\vec{n}, \vec{n})^2} [1 - (\vec{n}, \vec{n})^2]_{\vec{n}, \vec{n}},$$

$$[\gamma_{\vec{n}}^2]^{-1} = \frac{1}{3} C_0 + \frac{(\sigma_\rho^2 + 4\Delta^2) g r(\vec{n})}{4\Delta^2 (\vec{n}, \vec{n})^2} [1 - (\vec{n}, \vec{n})^2]_{\vec{n}, \vec{n}}$$

are controlled by one effective interaction parameter

$$C_0 = 3/\sigma_\rho^2 - 1/f_0, \quad (4)$$

The singlet pairing occurs for $f_{\sigma}^3 < 0$ and $3f_{\sigma}^3 < g_{\sigma}^3$. Then, if $g_{\sigma}^3 < 0$, we have $C_0 < 0$, otherwise the p-wave pairing is preferable. For $g_{\sigma}^3 > 0$ we have $C_0 > 0$.

The response of the Fermi system to the excitation (A) is determined by the symmetrical current-current correlator $\Pi_{\mu \nu}(q) = \frac{1}{2} \text{Tr} [\langle J_{\mu} \nu (\vec{n}, q) J_{\nu} (\vec{n}, q) \rangle]_\bot$ with the in-medium current $J^\mu (\vec{n}, q) = (\vec{\sigma} \chi_{A,1}(\vec{n}, q), \vec{\sigma} \chi_{A,0}(\vec{n}, q))$ expressed via the reduced current correlators derived in Eq. (13):

$$\chi_{A,0}(\vec{n}, q) = L(\vec{n}, q; -1) \tau_{A,0}(\vec{n}, q) + M(\vec{n}, q) \tau_{A,0}(\vec{n}, q),$$

$$\chi_{A,1}(\vec{n}, q) = L(\vec{n}, q; +1) \tau_{A,1}(\vec{n}, q) + M(\vec{n}, q) \tau_{A,1}(\vec{n}, q),$$

where $M(\vec{n}, q) = -\epsilon_0^2 + \sigma_\rho g r(\vec{n}, \omega, q)$, and $\frac{1}{2\Delta} (\vec{n}, \vec{n})^2 \sim (\Delta^2 - 1) g r(\vec{n}, \omega, q) - (\Delta^2 - 1/2) g r(\vec{n}, \omega, q)$. The temporal and spatial components of the tensor are $\Pi^{00} = (\vec{T}_{A,0} \chi_{A,0}(\vec{n}, q))_\bot$, and $\Pi^{ij} = \delta^{ij} (\vec{T}_{A,0} \chi_{A,0}(\vec{n}, q))_\bot$ with

$$\frac{1}{3} \sum_{\vec{n}} \Pi^{ii} = e^2 \rho \left[\frac{(\vec{v} \cdot q)^2}{\omega^2} g r(\vec{n}, \omega, q) + g r(\vec{n}, \omega, q) \right] \left[g r(\vec{n}, \omega, q) \right]_\bot ^{2},$$

$$\Pi^{00} = \frac{1}{2} \sum_{\vec{n}} \Pi^{ii} + e^2 \rho v^2 \left[g r(\vec{n}, \omega, q) \right]_\bot ^{2},$$

$$\frac{1}{3} \sum_{\vec{n}} \Pi^{ij} = e^2 \rho \left[\frac{(\vec{v} \cdot q)^2}{\omega^2} g r(\vec{n}, \omega, q) + g r(\vec{n}, \omega, q) \right] \left[g r(\vec{n}, \omega, q) \right]_\bot ^{2},$$

The mixed components are $\Pi^{00} = \Pi^{ii} = \frac{1}{2} \sum_{\vec{n}} \Pi^{ij}$. From Eq. (2) we see that the external perturbation can induce a singular response in the PBF amplitudes at the values ω and \vec{q} corresponding to the poles of the functions γ_{σ}^2 and γ_{π}^2. These poles determine the new transverse and longitudinal collective modes (spin excitons). For $\vec{q} = 0$, the longitudinal and transverse modes coincide and their frequency ω follows from the condition

$$C_0 + y^2 \vec{Q} g r(y) = 0, \quad y = \omega/(2 \Delta),$$

where $\vec{Q} g r(y) \equiv g r(0, 2 \Delta y - i0)$. Although the full inclusion of the g_{σ}^3-dependence is rather tedious, the modification of Eq. (2) is simply given by the replacement $\vec{Q} g r(y) \rightarrow \vec{Q} g r(y)/(1 + \frac{1}{4} g_{\sigma}^3 \vec{Q} g r(y))$. For $|C_0| > 1$ it induces the shift

$$C_0 \rightarrow C = C_0/(1 + C_0 g_{\sigma}^3)/3.$$ (7)

This relation interpolates between the limits $|C_0| \ll 3/|g_{\sigma}^3|$ when $C \approx C_0$, and $|C_0| \gg 3/|g_{\sigma}^3|$ when $|C_0| \approx (3/|g_{\sigma}^3])(1 - 3/|g_{\sigma}^3)|C_0|$. So, parameter C controls effects of residual interactions on the PBF processes.

In the long wave-length limit (for $\omega \gg |\vec{q}|$) from Eq. (9) we get $\Im \Pi^{ij}(q) = \frac{e^2 \rho v^2}{\omega^2} \Im \Pi^{00}(\omega)$. The response function, having for $y \sim 1$ the form

$$R(y, C) = \frac{\Im \Pi^{00}}{e^2 \rho v^2} = \frac{C^2 \vec{Q} g r(y)}{(C + y^2 \vec{Q} g r(y))^2 + y^2 \vec{Q} g r(y)^2) / 2y^2 \sqrt{y^2 - 1}}.$$ (8)
The Fermi-liquid approach was applied to the degenerate electron liquid in Ref. [19]. Using Table I and Table II of [19] we find $C = -2.54$, e.g., for a small value of the parameter $a_Bp_F = 0.032$, where a_B is the Bohr radius.

For alkali metals at zero pressure the first three ω-harmonics are calculated in Ref. [20]. Applying (9) we then find for sodium F_0^1(Na) = −0.11, g_1^1(Na) = −0.38 and g_1^2(Na) = −0.075. Here the p-wave pairing is realized, since $C_0 > 0$, but the value $|C_0|$ is very small. Bearing in mind large uncertainties in estimates of the ω-Landau parameters one cannot exclude that $C < 0$ at $|C| \ll 1$. In the latter case we would deal with very pronounced effects of the spin exciton mode. This case can also be realized, if one allows a variation of the pressure. Thus presence or absence of the new exciton mode could tell about the kind of pairing in the given system. For potassium F_0^1(K) = −0.56, g_1^1(K) = −0.89 and, using g_1^1(K) = −0.12, we obtain $C = -1.48$.

For the nucleon matter several harmonics of the ω-Landau parameters were evaluated in many works, e.g., see Refs. [17, 21]. The parameter f_0^1 related to the $1S_0$ pairing was also calculated, see [4]. Contrary, the g_1^1 parameter is poorly known. Using results [17, 21] we reconstruct g_1^1 and f_0^1 with the help of Eqs. (8) and evaluate then parameters C_0 and C. For the neutron matter the results are shown in Fig. 2 in dependence of the Fermi momentum. We see that estimations of C are very uncertain due to discrepancy in different estimates of the ω-Landau parameters. Presented results show that might be $|C| < 10–20$ at some densities in the range of the $1S_0$ pairing and even C might cross zero. Existence of regions where $C < 0$ implies a possibility to observe effects of the exciton modes.

Using the values of the ω-Landau parameters and their density dependence extracted from the atomic nuclear experiments [4, 22], we obtain $C \sim -10$ for $p_F \lesssim 1\text{fm}^{-1}$. Thus the exciton mode could manifest itself in the nuclear surface phenomena.

Now we apply Eq. (9) to calculate the neutrino emis-
sivity in the neutron star matter in the region of 1S_0 pairing. It is mainly determined by the neutron PBF process induced by the axial-vector current $\propto J^\mu$ \cite{13}; the vector current contribution is $O(v_d^2)$ and can be neglected \cite{15} \cite{22}. For one type of neutrino the emissivity then is given by \cite{15}

$$
\varepsilon_{\nu\bar{v}} = C \int_0^\infty d\omega \int_0^\infty \frac{d\varepsilon}{4\pi^2} \frac{g_\rho \varepsilon_\rho \Delta^2}{\exp(\omega/T) - 1},
$$

(10)

where according to Eq. (3) there can be two contributions to $\varepsilon_{\nu\bar{v}}$: one, for arbitrary C, from the pair-breaking continuum with the diffusive modes at $\omega > 2 \Delta$ and the other one, for negative C, from the spin-exciton mode with the frequency $\omega(\vec{q})$ at $0 < \omega(\vec{q} = 0) < 2 \Delta$. The later contribution is associated with the processes of breaking and formation of spin excitons. In the limit $|C| \to \infty$ the collective mode contribution vanishes as $\propto 1/|C|$ and we recover the result \cite{15} \cite{35}, which follows from (10) after the replacement $R(y, C) \to R(y, C \to \infty) \approx \sqrt{\bar{\Delta}(y)}$.

Effect of the finite value of C on the neutrino emissivity in the neutron PBF process is illustrated in Fig. 3 where we plot the ratio $\varepsilon_{\nu\bar{v}}/\varepsilon_{\nu\bar{v}}^{(0)}$ taking into account the standard temperature dependence of the 1S_0 pairing gap $\Delta(T) \approx 3.1T_c (1 - T/T_c)^{1/2}$ with T_c as the critical temperature. For $|C| \approx 5$--10, cf. Fig. 2 (right), the effect becomes pronounced for $T/T_c \lesssim 0.5$, yielding a suppression for $C > 0$ and an enhancement for $C < 0$. Thus in different density regions there may arise either an enhancement or a suppression of the PBF emissivity. Effect becomes even more pronounced for smaller values of $|C|$. In conclusion, we found that the spin p-wave interaction in the particle-particle channel can produce new spin excitonic and diffusive modes in the Fermi system along with the singlet pairing. This interaction leads also to smearing out of the threshold singularity in the Cooper-pair breaking reactions. We calculated the relevant coupling parameters for several Fermi systems. Spin excitons may exist in superconducting potassium, in rare fermion gases, and in the neutron matter. In atomic nuclei the new spin exciton mode may manifest in the surface layer. Modification of the neutrino emissivity due to presence of spin excitonic and diffusive modes may have an impact on the neutron star cooling.

We thank B. Friman for discussions. The work was partially supported by ESF Research Networking Programmes COMPSTAR and POLATOM, by the Alliance Program of the Helmholtz Association (HAS216/EMMI), and by VEGA grant.