Gemini/GMOS Spectra of Globular Clusters in the Leo Group Elliptical NGC 3379

Michael Pierce1*, Michael A. Beasley2, Duncan A. Forbes1, Terry Bridges3, Karl Gebhardt4, Favio Raul Faifer5,6, Juan Carlos Forte5, Stephen E. Zepf7, Ray Sharples8, David A. Hanes3, Robert Proctor1

1 Centre for Astrophysics & Supercomputing, Swinburne University, Hawthorn, VIC 3122, Australia
2 Lick Observatory, University of California, Santa Cruz, CA 95064, USA
3 Department of Physics, Queen’s University, Kingston, ON K7L 3N6, Canada
4 Astronomy Department, University of Texas, Austin, TX 78712, USA
5 Facultad de Cs. Astronomicas y Geofisicas, UNLP, Paseo del Bosque 1900, La Plata, and CONICET, Argentina
6 IALP - CONICET, Argentina
7 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
8 Department of Physics, University of Durham, South Road, Durham DH1 3LE

20 March 2022

ABSTRACT

The Leo Group elliptical NGC 3379 is one of the few normal elliptical galaxies close enough to make possible observations of resolved stellar populations, deep globular cluster (GC) photometry and high signal-to-noise GC spectra. We have obtained Gemini/GMOS spectra for 22 GCs associated with NGC 3379. We derive ages, metallicities and \(\alpha\)-element abundance ratios from simple stellar population models using the multi-index \(\chi^2\) minimisation method of Proctor & Sansom (2002). All of these GCs are found to be consistent with old ages, i.e. \(\gtrsim 10\) Gyr, with a wide range of metallicities. This is comparable to the ages and metallicities Gregg et al. (2004) find for resolved stellar populations in the outer regions of this elliptical. A trend of decreasing \(\alpha\)-element abundance ratio with increasing metallicity is indicated.

The projected velocity dispersion of the GC system is consistent with being constant with radius. Non-parametric, isotropic models require a significant increase in the mass-to-light ratio at large radii. This result is in
contrast to that of Romanowsky et al. (2003) who find a decrease in the velocity dispersion profile as determined from planetary nebulae. Our constant dispersion requires a normal sized dark halo, although without anisotropic models we cannot rigorously determine the dark halo mass.

A two-sided χ^2 test over all radii, gives a 2σ difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). However, if we restrict our analysis to radii beyond one effective radius and test if the GC velocity dispersion is consistently higher, we determine a $>3\sigma$ difference between the mass models, and hence favor the conclusion that NGC 3379 does indeed have dark matter at large radii in its halo.

Key words: globular clusters: general – galaxies: individual: NGC 3379 – galaxies: star clusters – galaxies: kinematics and dynamics.

1 INTRODUCTION

The Globular Cluster (GC) systems of numerous elliptical galaxies have been well-studied photometrically (e.g. Gebhardt & Kissler-Patig 1999; Kundu & Whitmore 2001; Larsen et al. 2001). Since the discovery of the bimodal colour distribution of GCs in elliptical galaxies (see Harris 1999 for a review), several models have been proposed to explain how these GC systems are formed.

Ashman & Zepf (1992) propose that some, or all, of the high-metallicity GCs will be formed during gas-rich merger events and therefore be of a similar age to those mergers. For the case of a series of minor gaseous mergers, a roughly monotonic increase in metallicity is expected with decreasing age.

The multi-phase collapse model of Forbes, Brodie & Grillmair (1997) proposes that the majority of GCs are native to their galaxy and formed during two, or more, proto-galactic collapse phases. Red, metal-rich, GCs are expected to be 2–4 Gyrs younger than their blue, metal-poor counterparts according to the semi-analytic GC formation model of Beasley et al. (2002).

Cote, Marzke & West (1998), invoke tidal capture of GCs from dwarf galaxies to account for the blue GC population of large elliptical galaxies. A higher fraction of blue, metal-poor, GCs is expected compared with spirals of a similar luminosity. Assuming that blue GCs
form at the same time as their parent galaxy, “down-sizing” (Cowie et al. 1996; Kodama et al. 2005) suggests that blue GCs captured from dwarf galaxies should be younger than the native blue GCs.

Thus a key discriminant of the formation models is GC age. Unfortunately from photometry alone it is very difficult to determine the age and metallicity of individual GCs, due to the age-metallicity degeneracy (Brodie et al. 2005), therefore high quality spectra are required. The stellar population properties of individual GCs can be measured accurately with low-resolution integrated spectra of sufficient signal-to-noise (>30). The age-metallicity degeneracy can be broken by measuring spectral Lick indices (Worthey 1994), and comparing those indices to single stellar population (SSP) models. High signal-to-noise spectroscopic studies (i.e. those capable of determining ages for individual GCs) of elliptical galaxy GC systems are limited to around a dozen galaxies (e.g. NGC 1399 Forbes et al. 2001; NGC 1023 Larsen & Brodie 2002; NGC 1316 Goudfrooij et al. 2001; NGC 3610 Strader et al. 2003, 2004; NGC 2434, NGC 3379, NGC 3585, NGC 5846 and NGC 7192 Puzia et al. 2004; NGC 5128 Peng, Ford & Freeman 2004; NGC 4365 Brodie et al. 2005; NGC 1052 Pierce et al. 2005).

Except for Goudfrooij et al. and Peng et al., these works find the majority of GCs to be old (>10 Gyrs) with a small fraction of young GCs for some galaxies.

In this work we report the analysis of Gemini/GMOS spectra of a sample of GCs in NGC 3379. This is a typical, nearby (10.8±0.6 Mpc, Gregg et al. 2004) E0/1 elliptical galaxy. It is of intermediate luminosity (M_V=−21.06) with typical early-type colours, Mg_2 index and velocity dispersion (Davies et al. 1987) for its luminosity. There is no sign of any optical disturbance (Schweizer & Seitzer 1992). There is, however, a small nuclear dust ring at a radius of 1.5″ (van Dokkum & Franx 1995) and some ionized gas that extends to a radius of 8″ (Macchetto et al. 1996).

NGC 3379 is one of only a few elliptical galaxies to lie close enough that its stars can be resolved by the Hubble Space Telescope (HST). Resolved stellar population measurements using the HST NICMOS camera in the J and H bands have been made by Gregg et al. (2004). Measuring individual stellar magnitudes and colours to just below the Red Giant Branch (RGB) tip, they found the outer region stellar population to be old, with ages > 8 Gyr and a mean metallicity around solar. They noted similarities to the Galactic bulge. For the central region, Terlevich & Forbes (2002) used Lick indices to estimate an age of 9.3 Gyrs, [Fe/H]=+0.16 and [Mg/Fe]=+0.24. This suggests that radial age and metallicity variations are relatively small.
The U, B, R, I photometry of the GC system of this galaxy reveals the classic GC colour bimodality (Whitlock, Forbes & Beasley 2003). Whitlock et al. estimate a GC specific frequency of $S_N = 1.1 \pm 0.6$ which is low for an elliptical galaxy, although it is important to remember that NGC 3379 belongs to a relatively small group of galaxies (Leo) and therefore, a low S_N is not unexpected (Bridges 1992). The B,V,R photometry of Rhode & Zepf (2004) indicates a similarly low S_N of 1.2 ± 0.3 and that approximately 70% of NGC 3379 GCs are blue.

To derive GC ages and metallicities we measure Lick indices from our GMOS spectra. We then apply the multi-index χ^2-minimisation method of Proctor & Sansom (2002), which employs all the available Lick indices to break the age-metallicity degeneracy and simultaneously measure the α-element abundance ratios (see Proctor, Forbes & Beasley 2004 for an application to Galactic GCs and Pierce et al. 2005 for NGC 1052 GCs).

In addition to the measurement of line indices, integrated spectra of GCs allow the measurement of recession velocities, which confirm whether the GCs are indeed associated with the galaxy being studied. With a large enough sample of measured GC velocities it is possible to probe the gravitational potential and therefore the dark matter halo of a galaxy (e.g. Zepf et al. 2000; Cote et al. 2001; Cote et al. 2003; Peng et al. 2004; Richtler et al. 2004).

Measurements of planetary nebulae (PN) kinematics in NGC 3379 (Romanowsky et al. 2003) reveal a decreasing velocity dispersion profile at large radii. This suggested that NGC 3379 has a significantly lower mass-to-light ratio ($M/L = 7.1 \pm 0.6$ at $5 \, R_e$) than most large ellipticals, indicating a minimal Dark Matter (DM) halo. This result would appear to be in conflict with the standard Cold Dark Matter (CDM) galaxy formation picture in which all galaxies lie within significant DM halos. Here we use the measured velocities of our sample of GCs, as well as the GC data of Puzia et al. (2004), as an alternative data set to test this important claim.

In this paper we present our GMOS observations and data reduction of GC spectra in Section 2. An analysis of ages, metallicities and α-element abundance ratios derived from Lick indices is presented in Section 3. In Section 4 we focus on GC kinematics and the implications for the dark matter halo of NGC 3379. We discuss our results in Section 5 and present our conclusions in Section 6.
2 OBSERVATIONS AND DATA REDUCTION

The observations described below are part of Gemini program GN-2003A-Q-22. GC candidates were selected from Gemini North Multi-Object Spectrograph (GMOS; Hook et al. 2002) imaging, obtained during January 2003, for three fields around NGC 3379. The data reduction and GC candidate selection process is almost identical to that of Forbes et al. (2004) for NGC N4649, briefly, SExtractor (Bertin & Arnouts 1996) was used to select GC candidates based upon their Gemini zero point colours ($0.7 < g - i < 1.4$), magnitudes ($i < 24$) and structural properties (i.e. objects with stellarity index > 0.35). Interstellar reddening towards NGC 3379 is $E(B-V)=0.024$ mag and is not taken into consideration (Schlegel et al. 1998). Spectroscopy of NGC 3379 globular clusters were obtained with GMOS on the Gemini North telescope in the months of February and April 2003. GMOS masks for three fields were designed, but only the central field was observed within the time allocation. Seeing was typically ~ 0.9 arcsec.

The GMOS CCDs consist of 3 abutted 2048×4608 EEV chips with a plate scale of 0.0727 arcsec/pixel (un-binned). For our set-up, we binned $4 \times$ in the dispersion direction, yielding $1.84 \AA$ per binned pixel, giving a final resolution of $\text{FWHM} \sim 4 \AA$. The dispersion runs across the detectors in the GMOS instrument, resulting in two $\sim 20 \AA$ gaps in the dispersion direction of the spectra. The B600$_G$G5303 grating was used, with central wavelengths for successive exposures set alternately to 5000 Å and 5025 Å (in order to obtain full wavelength information across the gaps in the GMOS detectors). The effective wavelength range of each slit-let is a function of its position on the mask, but typically covered $3800 \AA - 6660 \AA$. A slit width of 1.0 arcsec was chosen to match the seeing and the minimum slit length was 6 arcsec, a compromise between maximising the number of slit-lets and allowing for reliable sky-subtraction. Exposures of 20×1800 s were taken, yielding a total of 10 hours on-source integration time. Bias frames, dome flat-fields and Copper-Argon (CuAr) arc exposures were taken as part of the Gemini baseline calibrations.

These data were reduced using the Gemini/GMOS packages in IRAF and a number of custom made scripts. From the CuAr arcs, wavelength solutions with typical residuals of $0.1 \AA$ were achieved. Objects and sky regions in the object spectra were manually identified in cross-sections of the two-dimensional images. The spectra were then extracted by tracing them in the dispersion direction. After some experimentation, optimal (variance) extraction was found to yield the best results since our data are over-sampled on the detector. In
some cases, objects were too faint to trace individually and we therefore co-added several 2-d images, taken adjacent in time, to act as a reference for the extractions. We verified beforehand that flexure was minimal between the reference images. Finally, the extracted spectra were median combined and weighted by their fluxes with cosmic ray rejection.

In the absence of any velocity standard stars, the recession velocities were measured by using four Bruzual & Charlot (2003) model stellar energy distributions (SEDs) for old ages with metallicities \([Fe/H] = -2.25, -1.64, -0.64 \) and \(-0.33\). The task FXCOR in IRAF was used and the average (weighted by the cross-correlation peak-height) was taken. Objects with recession velocities in the range \(900\pm400\ km/s\) are potentially associated with NGC 3379. These are presented in Table 1 and also used in our kinematic analysis in Section 4. There was one foreground star and one background galaxy out of the 24 spectra obtained. Our low contamination rate of 9\% is due to good imaging and colour selection. We note that the spectrum of g1420 shows emission lines, most notable 4959 and 5007 Å [OIII] which we assume are due to a planetary nebula (see Fig. 1). Minniti & Rejkuba (2002) report a similar discovery for a GC in NGC 5128 and provide a discussion of the implications. Another GC, g1426, shows unexplained emission features around \(\sim5000\ Å\).

A first-order flux calibration was carried out by normalising the spectra with a low-order polynomial. In order to measure Lick indices, we convolved our spectra with a wavelength-dependent Gaussian kernel to match the resolution of the Lick/IDS system (see Beasley et al. 2004b). Lick indices (Trager et al. 1998) were measured from our normalised spectra. Due to the variable wavelength ranges in these spectra, the same set of indices could not be measured for all spectra. However, all covered a wavelength range of 4500–5500 Å. Uncertainties in the indices were derived from the photon noise in the unfluxed spectra. No Lick standard stars were observed so we therefore cannot fully calibrate the GCs onto the Lick system. Consequently there are some systematic differences between some of the measured indices and those used in the SSP models. These issues are discussed further in Sections 3 and 5. Measured line indices and uncertainties are presented in Tables 2 and 3.

The final spectra have \(S/N = 18–58\ Å^{-1}\) at 5000 Å, giving errors in the H\(\beta\) index of 0.13–0.44 Å (we note that g1566 has an H\(\beta\) error of \(\pm0.065\ Å\) and \(S/N=118\), however this is not representative as this GC is \(\sim1.5\) mags brighter than any other).
Figure 1. Normalised GC spectra which have been offset by one unit. These spectra have not been de-redshifted. These sample spectra show the wavelength range that the majority of our spectra cover and display the range of S/N and metallicity present. The spectrum of g1426 shows emission features around 5000 Å and 5890 Å of unknown origin. The PN hosting GC, g1420, is also plotted and the emission due to 4959 and 5007 Å [OIII] lines can be seen redshifted to 4971 and 5019 Å.

3 AGES, METALLICITIES AND α-ELEMENT ABUNDANCE RATIOS

In this section we describe how we derive ages, metallicities and α-element abundances. The resulting values are listed in Table 4.

We apply the χ^2 multi-index fitting technique of Proctor & Sansom (2002) for this analysis. This method involves the comparison of the measured Lick indices with SSP models (its application to extra-galactic GCs is described fully in Pierce et al. 2005). The SSP models
Table 1. Confirmed Globular Clusters around NGC 3379. Cluster ID, coordinates, g magnitude, g–r and g–i colours are from our GMOS imaging and are instrumental magnitudes only. Heliocentric velocities are from the spectra presented in this work.

ID	R.A.	Dec.	g	g–r	g–i	V_{helio}
	(J2000)	(J2000)	(mag)	(mag)	(mag)	(km/s)
g1566	10:47:50.5	12:33:37.2	19.83	0.65	0.96	1071±18
g296	10:48:02.2	12:35:57.6	21.40	0.62	0.88	1022±52
g1940	10:47:48.2	12:35:45.3	21.42	0.74	0.90	875±25
g1550	10:47:53.6	12:34:54.6	21.47	0.71	1.09	1100±31
g2122	10:47:47.7	12:34:14.8	21.49	0.74	0.93	922±32
g1078	10:47:54.2	12:36:31.9	21.54	0.70	1.00	1000±24
g1420	10:47:50.7	12:35:32.3	21.54	0.62	0.90	764±38
g1540	10:47:53.5	12:35:04.9	21.68	0.58	0.83	790±41
g1617	10:47:50.4	12:33:47.8	21.88	0.62	0.96	650±37
g1588	10:47:49.7	12:34:10.2	22.32	0.60	1.10	546±45
g114	10:48:04.9	12:35:38.5	22.35	0.61	0.90	861±45
g1426	10:47:50.6	12:35:19.2	22.37	0.61	0.87	797±71
g1610	10:47:58.9	12:33:54.5	22.39	0.55	0.79	957±61
g1571	10:47:49.7	12:34:32.8	22.47	0.72	1.04	744±28
g1519	10:47:49.6	12:35:27.0	22.49	0.73	1.16	623±42
g1934	10:47:47.9	12:36:23.4	22.72	0.64	0.76	1004±65
g1580	10:47:54.2	12:34:21.6	22.84	0.71	1.09	1066±32
g219	10:48:01.8	12:37:22.0	23.04	0.57	0.85	868±95
g1893	10:47:45.1	12:37:53.0	23.26	0.86	1.21	804±43
g1630	10:47:50.5	12:36:11.8	23.65	0.77	1.21	1115±61
g1595	10:47:52.9	12:34:04.4	23.69	0.67	1.00	970±70
g230	10:48:01.2	12:37:06.9	23.93	0.80	1.28	1022±90

of Thomas, Maraston & Korn (2004; hereafter TMK04) were chosen because they present the only set of models that include the effect of α abundance ratios on the Balmer lines.

We compare the measured Lick indices to the TMK04 SSPs and obtain a minimum χ^2 fit. This fit is obtained using all the indices measured. Simultaneously a set of χ^2 minimisation fits are found with each of the indices omitted. From this set, we select the fit with the lowest total χ^2, remove the necessary index and repeat until a stable fit is achieved with no highly aberrant ($>3\sigma$) indices remaining. All GCs had some indices that were significant outliers to the fit and therefore removed during this process. For g1426 none of the indices potentially affected by the PN style emission lines are included in the final fit.

The molecular band indices Mg₁ and Mg₂ are systematically offset due to poor flux calibration and were excluded for all GCs (see Proctor et al. 2005). Similar to other GC
Table 2. Globular Cluster indices $\lambda < 4600$ Å. Central index values (first line) and errors (second line). Indices in brackets are removed during the fitting process. Missing values are due to limited wavelength coverage.

ID	H_δ_A (Å)	H_δ_F (Å)	CN_1 (mag)	CN_2 (mag)	Ca_{4227} (Å)	G band (Å)	H_γ_A (Å)	H_γ_F (Å)	Fe_{4383} (Å)	Ca_{4455} (Å)	Fe_{4531} (Å)
g1566	-----	-----	-----	-----	0.493	3.106	-0.962	0.896	2.365	0.591	2.008
g296	(4.054)	(3.555)	(0.02)	(0.038)	0.481	2.887	-0.409	1.019	0.707	0.794	0.856
g1940	-----	-----	-----	-----	0.069	0.117	0.119	0.073	0.167	0.084	0.124
g1550	-----	-----	-----	-----	3.256	0.437	1.207	0.514	2.532		
g2122	-----	-----	-----	-----	0.235	0.237	0.151	0.073	0.167	0.124	
g1078	0.865	1.694	(0.01)	(0.043)	0.588	3.866	-1.420	0.486	(1.280)	0.285	
g1420	-----	(1.278)	(0.019)	(0.049)	(1.089)	2.719	-0.457	(0.541)	0.763	0.504	
g1540	3.926	2.973	(-0.057)	(-0.053)	0.439	2.091	0.367	(1.201)	0.877	0.477	
g1617	-----	(0.724)	(-0.021)	(0.017)	(0.191)	3.743	-1.765	0.525	2.250	0.447	
g1558	-----	-----	-----	-----	1.192	4.292	(-4.894)	-0.283	3.098	0.837	
g114	(0.829)	2.917	(-0.079)	(-0.314)	2.070	1.935	0.551	0.648			
g1426	-----	(0.270)	(0.012)	(0.014)	(0.221)	0.382	0.357	0.218	0.534		
g1610	4.667	3.479	(-0.234)	(-0.232)	0.175	(-2.291)	-1.207	0.580	1.182	0.678	
g1571	(3.298)	(1.842)	(0.001)	(0.042)	0.859	(6.656)	(-8.418)	-1.715	6.113		
g1519	-----	(0.268)	(0.011)	(0.013)	(0.218)	0.342	0.351	0.230	0.521		
g1934	-----	-----	-----	-----	1.238	3.570	-2.920	0.183	3.012	0.952	
g1580	-1.848	(-1.852)	(0.177)	(0.129)	(-1.926)	3.971	-5.028	-0.634	5.124	2.185	
g219	(-4.486)	(0.019)	(0.037)	(0.188)	(2.267)	-1.395	4.035	(1.342)			
g1893	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
g1630	-----	(-5.925)	(0.150)	(0.121)	(3.212)	5.462	-8.396	-1.286	6.183	(-1.965)	

Table 2. Globular Cluster indices $\lambda < 4600$ Å. Central index values (first line) and errors (second line). Indices in brackets are removed during the fitting process. Missing values are due to limited wavelength coverage.
Table 3. Globular Cluster indices λ > 4600 Å. Central index values (first line) and errors (second line). Indices in brackets are removed during the fitting process. Missing values are due to limited wavelength coverage.

ID	C4668	Hβ	Fe5015	Mg1	Mg2	Mgβ	Fe5270	Fe5335	Fe5406	Fe5709	Fe5782
	(Å)	(Å)	(Å)	(mag)	(mag)	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)
g1566	1.994	2.692	(0.039)	(0.110)	1.895	1.668	(1.606)	0.832	0.467	0.242	
	(0.180)	0.065	0.139	(0.001)	(0.002)	0.064	0.070	(0.080)	0.059	0.044	0.042
g296	0.339	1.676	(-0.039)	(0.028)	(1.027)	1.194	0.819	(0.778)
	0.382	0.283	(0.003)	(0.003)	(0.130)	0.142	0.163	(0.119)
g1940	1.193	2.153	2.816	(0.008)	(0.093)	2.045	1.745	1.425	(1.250)	(0.772)	0.178
	0.362	0.131	0.279	(0.003)	(0.003)	0.128	0.142	0.163	0.118	0.089	0.085
g1550	3.430	3.697	(0.085)	(0.198)	2.810	2.206	1.687	1.354	0.727	0.391	
	(0.369)	0.139	0.287	(0.003)	(0.003)	0.133	0.143	0.163	0.118	0.089	0.085
g2122	2.411	1.670	3.940	(0.065)	(0.200)	2.953	2.387	(2.850)	1.546	0.590	(0.346)
Table 4. Derived Globular Cluster Properties. Age, [Fe/H], [E/Fe] and [Z/H] are derived from the χ^2 minimisation process, with errors derived by a Monte Carlo style method. [Fe/H]$_{BH}$ is derived according to the method of Brodie & Huchra (1990) from a reduced sample of indices.

ID	Age (Gyr)	[Fe/H]	[E/Fe]	[Z/H]	[Fe/H]$_{BH}$ (dex)
g1566	12.6±1.1	-1.17±0.05	0.15±0.05	-1.03±0.03	-1.15±0.06
g296	11.2±1.5	-1.82±0.11	0.71±0.10	-1.15±0.06	-1.84±0.26
g1940	11.9±2.1	-1.26±0.11	0.30±0.10	-0.98±0.06	-1.31±0.12
g1550	15.0±4.8	-0.69±0.11	0.15±0.07	-0.55±0.11	-0.52±0.18
g2122	15.0±2.0	-0.47±0.07	0.15±0.06	-0.33±0.04	-0.45±0.10
g1078	10.0±1.7	-1.05±0.09	0.24±0.09	-0.83±0.06	-1.17±0.06
g1420	10.0±1.4	-1.40±0.11	0.21±0.09	-1.20±0.06	-1.23±0.10
g1540	9.4±1.7	-2.09±0.18	0.68±0.17	-1.45±0.09	-1.64±0.04
g1617	11.2±1.9	-1.52±0.12	0.68±0.10	-0.88±0.08	-1.59±0.28
g1588	8.4±2.9	-0.57±0.14	0.15±0.09	-0.43±0.13	-0.33±0.16
g114	15.0±6.5	-1.14±0.16	-0.06±0.15	-1.20±0.14	-1.60±0.17
g1426	7.5±2.5	-1.58±0.13	0.80±0.07	-0.83±0.11	-2.37±0.44
g1610	10.6±2.1	-1.62±0.13	0.71±0.12	-0.95±0.09	-1.98±0.40
g1571	15.0±3.6	-0.10±0.08	-0.27±0.05	-0.35±0.08	-0.29±0.21
g1519	12.6±2.9	-0.72±0.13	-0.03±0.10	-0.75±0.09	-0.82±0.37
g1934	10.0±2.3	-2.31±0.31	0.65±0.29	-1.70±0.15	-2.27±0.21
g1580	9.4±2.5	-0.24±0.13	0.09±0.09	-0.15±0.09	-0.73±0.12
g219	12.6±1.8	-2.72±0.37	0.50±0.35	-2.25±0.13	-2.15±0.25
g1893	11.2±5.9	0.12±0.16	0.24±0.09	0.35±0.13	0.44±0.05
g1630	11.2±5.4	0.10±0.19	-0.24±0.08	-0.13±0.19	0.20±0.35
g1595	8.9±3.2	-3.00±0.49	0.80±0.41	-2.25±0.31	-2.08±0.42
g230	15.0±5.9	-1.52±0.30	-0.30±0.34	-1.80±0.23	-2.34±0.94

studies (e.g. Beasley et al. 2004a) we find the CN indices to be enhanced relative to the models and therefore they were also removed.

An index-index plot of Hγ_A vs Fe4383 is shown in Fig. 2. This pairing of indices was chosen as the combination of an age and a metallicity sensitive index that had the largest number of reliable points. This shows the majority of GCs lie near the 15 Gyr age line. Horizontal branch morphology is the apparent source of the offset to the left of the TMK04 15 Gyr age line seen in the majority of the low metallicity GCs (see Pierce et al. 2005 for a brief discussion on the effect of horizontal branch morphology on GC χ^2 fitting). TMK04 models in this regime posses a predominantly blue horizontal branch whereas the red horizontal branch models from Thomas, Maraston & Bender (2003) pass directly through these points. There are a couple of clear outliers for which one or both index values have
Figure 2. The indices H_{γ_A} vs Fe4383 are plotted against age-metallicity grids from TMK04. We show the grid for $\frac{[E/Fe]}{[Fe/H]}=+0.3$, with metallicity in 0.25 dex steps from from -2.25 (left) to $+0.5$ (right) and ages of 1, 2, 3, 5, 8, 12 and 15 Gyrs (top to bottom), the bold line is 15 Gyrs and the dashed line is the red horizontal branch 15 Gyr isochrone from Thomas, Maraston & Bender (2003). Filled circles are shown for GCs where both indices are included in the fits, if either index is excluded then an open circle is plotted. A large number of the GCs fall near the maximum age line for the Thomas, Maraston & Bender (2003) red horizontal branch SSPs.

Figure 3. GC age-metallicity relation. The plot shows that the observed GCs are consistent with an old age and a wide range of metallicities.

been excluded from the fitting process. However to derive values we use the results from the χ^2 fitting process.

From our quantitative χ^2 minimisation fits we find all of the GCs to be consistent with an old age ($\gtrsim10$ Gyrs) with a spread of metallicities from $[Fe/H] < -2$ to solar (Fig. 3). This is consistent with Fig. 2 and indeed the fitting procedure has identified clear outliers. The GC, g1426, with the youngest fit age of 7.5 Gyrs, is the GC with unexplained emission lines in its spectrum. It also has $[E/Fe]=+0.8$ which is at the maximum of the models. While none of the clearly affected indices were included in the fit, we suspect that the fit was still somewhat influenced by the emission source.

A test of SSP-derived metallicities is to compare them with those derived using the
Brodie & Huchra (1990; hereafter BH) method. We were unable to use the full sample of metal-sensitive indices due to the poor sensitivity at shorter wavelengths. We therefore measured the G band, Fe52, MgH and Mg$_2$ BH indices using the method outlined in their paper. We define a Brodie-Huchra metallicity as the average of the empirically calibrated metallicity from these 4 indices, where the error quoted is the standard deviation. This metallicity is referred to as [Fe/H]$_{BH}$ in Table 4. Fig. 4 shows that the BH metallicities closely match those derived by χ^2 fitting to SSPs. A gap in both metallicity measures occurs at [Fe/H] \sim −1. This is similar to that observed in the Milky Way GC system (Harris 1996), which is also composed of an old GC population. The outliers at low metallicity are at the limits of the SSP models for either [Fe/H] or [E/Fe].
Figure 6. A plot of α-element ratio vs metallicity. The four GCs with poorly determined metallicities and α-element abundance ratios (i.e. $[E/Fe]$ errors >0.3) are not shown. The plot indicates a correlation in the sense of increased enhancement with decreasing metallicity.

We compare the observed $g-i$ colours for the GCs with the predicted $g-i$ colours from the Bruzual & Charlot (2003) SSPs, with the ages and metallicities from TMK04 SSPs in Fig. 5 (thus there could be some systematic offsets due to model differences). The use of Bruzual & Charlot (2003) colour models is necessary because the TMK04 SSPs do not include g and i magnitudes. There are several outliers in the colour-colour plot, these include the low metallicity GCs mentioned previously as well as a few others that are at the SSP model maximum age. A Spearman Rank test gives the probability of correlation as 99.2%. Overall the figure gives us confidence in the SSP-derived parameters.

TMK04 estimate α-element abundance ratios using the parameter $[E/Fe]$. A definition of $[E/Fe]$ for the SSP models used can be found in Thomas et al. (2004). Briefly, it includes α-elements, such as O, Ne, Mg, Si, S, Ar, Ca and Ti plus two non-α-elements N and Na. The $[E/Fe]$ vs. $[Fe/H]$ plot presented in Fig. 6 shows decreasing α-element abundance ratio with increasing metallicity, including two solar metallicity GCs with sub-solar α-element abundance ratios. The source of this trend is confirmed by the index-index plots of Fig. 7, in which high-metallicity GCs generally have α-sensitive indices that are consistent with $[E/Fe]<+0.3$. The lower metallicity GCs have α-element sensitive indices that are predominantly stronger than $[E/Fe]=+0.3$.

4 GLOBULAR CLUSTER KINEMATICS

In this section we use our measured velocities for 22 GCs (see Table 1) to estimate the radial velocity dispersion and mass-to-light ratio for the halo of NGC 3379. Our sample is
Figure 7. The upper row shows the α-element sensitive Mgb index vs three different Iron indices (Fe4383, Fe4531 and Fe5270). The middle row shows C4668 vs the same Iron indices. All six have TMK04 12 Gyr isochrones plotted with [E/Fe]=+0.3 as solid and [E/Fe]=+0.0 as dashed lines. Filled symbols show where both indices are included in the fit, if either of the indices are not included in the final fit then open symbols are shown. For several plots one or two highly aberrant indices fall outside the range plotted. All six plots show that the α-sensitive indices are above the [E/Fe]=+0.3 dex model at low Iron sensitive index values and are below for high Iron values. The bottom row of plots show the index offset relative to the [E/Fe]=+0.3 dex model line, for included indices. Square symbols are Mgb and the circles C4668. A strong trend of decreasing α-element ratio with increasing Iron abundance is seen for both α-element sensitive indices relative to the [E/Fe]=+0.3 model expectation.

supplemented by measurements of 14 GC velocities from Puzia et al. (2004), who used the FORS instrument on the VLT.

The spatial distribution of the combined 36 GCs, in relation to NGC 3379 and NGC 3384, is shown in Fig. 8. From this figure, it can be seen that four of the GCs (from our GMOS sample) lie roughly half way between NGC 3379 and NGC 3384. As NGC 3379 is more luminous than NGC 3384 (M_V = -21.06 vs. -20.64), we might expect NGC 3379 to have the more populous GC system and indeed this seems to be the case (Whitlock, Forbes & Beasley 2003). The average velocity of the four GCs is 924 ± 46 km/s. The systemic velocity of NGC 3379 is 911 km/s. For NGC 3384, the systemic velocity is 704 km/s; however, NGC 3384 has a substantial rotation (it is an S0 galaxy). The rotation amplitude is about 200 km/s (Fisher 1997) and the side closest to NGC 3379 is redshifted. Any rotation in NGC 3379 GC system is below 2σ significance at all radii and the sample is consistent with
no rotation. In the unlikely situation of the NGC 3384 rotating disk extending to several effective radii, and that the four GCs in question are part of the NGC 3384 disk population, the expected mean velocity of NGC 3384 members would be essentially the same as that for NGC 3379. Therefore, the membership of these four GCs is not entirely clear. We run the dynamical models below, both including and excluding these 4 GCs, but our conclusions are not greatly affected either way.

Ideally, the best estimate of the mass-to-light (M/L) variation would come from models without assumptions about the distribution function. The state-of-the-art is to use orbit-based models (e.g., Gebhardt et al. 2003; Thomas et al. 2005). However, with only 36 clusters it is not practical to run these flexible models. For an estimate of the M/L variation at large radii, we instead employ isotropic models. While there are theoretical concerns for assuming isotropy at large radii, these models provide a comparative base to other studies.

For an isotropic model, we only require the second moment of the projected velocity distribution. The data on the inner parts of the galaxy come from Gebhardt et al. (2000) and Statler & Smecker-Hane (1999). For the velocity dispersion profile from the GC system we use a lowess estimator (explained in detail in Gebhardt et al. 1995). The lowess technique
effectively runs a radial window function through the data to estimate the velocity squared. It takes the velocity uncertainties into account directly. We have checked this estimator against a variety of dispersion estimates, including maximum likelihood, and find no significant differences.

Fig. 9 shows the line-of-sight velocity with projected radius for the individual GCs. This allows a comparison of our unsmoothed data with the lowess estimator velocity dispersion and the binned Romanowsky et al. (2003) PN data. The individual data point at R~150" with $|\Delta V|\sim400$ km/s has a relatively large velocity difference which increases the velocity dispersion at large radii. If we remove this one point, then the dispersion is reduced from 166 km/s to 125 km/s at the largest radii (which are the most uncertain). When compared to the PN dispersion, this results in a 3.5-σ difference as opposed to a 4-σ difference when the full sample is used. The technique we are using for the dispersion has some robustness to outliers built in already, which is why the change in statistical significance is not particularly strong.

The top panel in Fig. 10 plots the dispersion profile combining both the stellar and globular cluster data. In the overlap region the agreement in the dispersion estimates is
very good. The 68% confidence bands come from Monte Carlo simulations as detailed in Gebhardt et al. (1995).

We use non-parametric, isotropic models as outlined in Gebhardt & Fisher (1995). Given the surface brightness profile and velocity dispersion profile, the spherical Jeans equation can uniquely determine the mass density profile (and hence the M/L profile) assuming isotropy. Through the Abel deprojection, the surface brightness profile uniquely determines the luminosity density. Similarly, the surface brightness times the projected velocity dispersion determines the luminosity density times the internal (3-D) velocity dispersion. From the internal velocity dispersion, we can derive the mass profile and, hence the M/L profile. We employ a degree of smoothing since the Abel deprojection involves a derivative (Gebhardt et al. 1996).

The surface brightness profile for the kinematic tracer is important to characterize well for the dynamical analysis. We use the globular cluster number density profile from Rhode & Zepf (2004). Their data extend from 1.2′ to approximately 20′. The surface brightness profile for the stellar light comes from Gebhardt et al. (2000) which extends to 2.8′. Thus, there is significant overlap for comparison. In the overlap region, the stellar light is slightly steeper than the GC profile, and after 2.5′ the GC profile flattens significantly. For the dynamical analysis, one should use the GC profile only; however, in order to de-project properly, one requires the central profile which does not exist for the GCs. Thus, we have to rely somewhat on the stellar profile for the extrapolation inward. For the dynamical analysis, we use the GC profile from Rhode & Zepf into 1.2′, and then use the stellar profile interior to that. We have also tried a variety of profiles: using only the cluster profile with various central extrapolations, using only the stellar light profile, and using various extrapolations to larger radii. We find that there is essentially no effect from the large radii extrapolation. For the small radii extrapolation, the effect on the projected dispersion is dramatic at small radius but relatively insignificant at the radii where we have GC velocities. Thus, all of our tests suggest there is little effect on our overall results from the surface brightness profile.

The velocity dispersion and M/L ratio are plotted with galactocentric radius in Fig. 10. GC data, both including and excluding the four GCs potentially associated with NGC 3384, are shown. The heavy solid line in the upper panel in Fig. 10 is the expected isotropic velocity dispersion profile for a constant M/L ratio, which is consistent with the Romanowsky et al. (2003) PN data. In the bottom panel we plot the projected M/L profile, calculated by the lowess method and using the surface brightness profile characterization described above.
Both cases (including and excluding the four GCs) shows a rise in the M/L at large radii. This rise in M/L is stronger when the four GCs are excluded.

Finally, we remind the reader that the above results are based on only 36 GCs as kinematic tracers; clearly such an analysis should be repeated when larger samples become available.

5 DISCUSSION

The reliability of GC parameters derived from Lick indices and our χ^2 fitting method are affected by several factors, most importantly the stability of the fit when individual indices
are excluded. For some GCs it is not possible to find a stable fit that includes a large number of indices (>10). This is often the case for the low S/N GCs. The large index errors of low S/N GCs mean that, within 3σ, the indices can be consistent with a wide range of ages and metallicities. In this situation the fit can be driven by a single index which is outside the range spanned by the models, leading to a fit at the extreme of the SSP models. When this occurs the Monte Carlo determined errors are large, reflecting the lower accuracy of these parameters.

To examine the effects of these factors we tested the reliability of the χ² fit metallicities by comparing them to Brodie-Huchra metallicities. Fig. 4 shows the good agreement between the two metallicity measures, with some divergence below [Fe/H]=−2 dex. We then used g−i colour as a test of the derived age and metallicity. Model predictions for g−i from BC03, for our χ² fit ages and metallicities (derived using TMK04 SSPs), are plotted against the observed g−i colours in Fig. 5. We see reasonable agreement between the predicted and observed colours, with the outliers being those low S/N GCs that are at the limits of the models.

Having established the reliability of our χ² minimisation fits for age and metallicity, we find, all of the GCs are consistent with an old age (>∼10 Gyrs) within errors and a spread of metallicities is seen from [Fe/H]<−2 to solar (see Fig. 3). We see no discernible age structure.

We next consider the α-element abundance ratio parameter [E/Fe]. Due to the necessary exclusion of the Mg and CN indices (see Section 3), the only strongly α-element sensitive indices included in the fits are Mgb and C4668. However, all the plots of Mgb and C4668 against Fe sensitive indices (Fig. 7) display the same overall trend, of decreasing α-element ratio with increasing metallicity. This is highlighted by plotting the residuals of the model [E/Fe]=+0.3 line to these index pairings. This is also seen for [E/Fe] derived from the χ² fitting process (Fig. 6). A similar trend is apparent for GCs in NGC 1052 (See Fig. 9 of Pierce et al. 2005) and is also noted in Puzia (et al. 2005). This contrasts with the findings of Carney (1996) for Galactic GCs in which [α/Fe] is largely constant for GCs of all metallicities. However, the Puzia et al. (2005), NGC 3379 and NGC 1052 results are derived from TMK04 models. These models were constructed using the results of Trippico & Bell (1995) which included the effects of α-element variation on stars of solar-metallicity. The application of the Trippico & Bell (1995) models to GCs of [Fe/H]∼−2 may therefore play a part in generating the observed trend of high α-element ratios for GCs at low metallicity.
At such low metallicity we can see from Fig. 7 that the indices cannot offer much leverage to differentiate the [E/Fe] values.

However, we note that the α-element ratio trend extends up to the solar metallicity at which the Trippico & Bell (1995) models were calculated. Of particular interest are the two GCs with solar metallicity, $[\text{E/Fe}] \sim -0.25$ and ages greater than 10 Gyrs. While there is no obvious link, it is interesting to note that X-ray observations of hot gas in the centre of the NGC 5044 galaxy group reveal a similar abundance pattern, of a sub-solar α-element ratio at solar metallicity (Buote et al. 2003). A significant number of type Ia, rather than type II, supernovae are therefore necessary to produce enough Iron to explain this abundance pattern. Such a process must have occurred rapidly due to the old ages of the GCs.

From the measured recession velocities of our sample of 22 GCs, and 14 GCs from Puzia et al. (2004), we find evidence for a significant dark matter halo. This result does not depend on the inclusion of 4 GCs which may belong to NGC 3384. The PN data of Romanowsky et al. (2003) showed a decrease in velocity dispersion at large radii, suggesting a minimal DM halo. However, Dekel et al. (2005) recently showed that stellar orbits in the outer regions of merger-remnant elliptical galaxies are elongated and that declining PN velocity dispersions do not necessarily imply a dearth of dark matter. This demonstrates that the orbital properties of the kinematic tracers need to be well understood. For PN radial orbits need to be included, while for GCs isotropic models should be sufficient (see Cote et al. 2003), but caution is still required. Ignoring the differences between dynamical models, we still find the results from the two studies contradict each other.

A two-sided χ^2 test over all radii using all GCs, gives a 2σ difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). This would indicate borderline statistical difference between our mass model and the no-dark matter model of Romanowsky et al. .

To test the significance of the differences between the PN and GC data we have carried out a Monte Carlo simulation. At the radius of a given PN binned data point, we sample from a Gaussian distribution using a mean given by the GC Lowess dispersion estimate and the standard deviation from the 68% confidence band at that point. We draw another Gaussian from the PN value and its uncertainty. We then ask whether the new PN dispersion is smaller than the new GC dispersion at that point. For a single measurement, this is only a χ^2 test; however, generalizing for a range of radii, we determine whether each of the PN dispersions are smaller than each of the GC dispersions. This test is rather strict in the
sense that if any realisation shows one PN value above the GC value at that radius then
the difference is not considered. At small radii, the PN and GC dispersions are consistent,
whereas at large radii, the PN dispersions are lower.

We find that the PN dispersions are smaller than the GC dispersions at >97% confidence
beyond an effective radius. Since the PN dispersions are consistent with mass following light,
the GC dispersions suggest a need for a dark halo. Either the orbital properties of the two
tracers are different (Dekel et al. 2005), or one or both are hampered by low number statistics.

Two alternate observations suggest the presence of a dark matter halo around NGC 3379.
Chandra archival data for NGC 3379 indicate that a hot gaseous halo is present (Fukazawa et
al. 2006). The kinematics of the HI gas ring around the Leo Triplet of NGC 3379, NGC 3384
and NGC 3389 suggests a mass-to-light ratio of 27 which is consistent with a DM halo
(Schneider 1989).

One possible explanation for the difference between the PN data and the indication of a
normal DM halo, could be that NGC 3379 is a face-on S0 galaxy, as suggested by Capaccioli
et al. (1991). If a significant fraction of the PN belong to a disk, this would suppress the
line-of-sight velocity dispersion of the PN relative to that of the GCs which lie in a more
spherical halo.

6 CONCLUSIONS

We have obtained Gemini/GMOS spectra for 22 GCs around the elliptical galaxy NGC 3379.
We present ages, metallicities and α-abundance ratios that were derived by applying the
multi-index χ² minimisation method of Proctor & Sansom (2002) to the SSP models of
Thomas et al. (2004). Metallicity estimates, derived according to the method of Brodie &
Huchra (1990), agree closely with those from our χ² minimisation method. We also find
good agreement between the observed colours and those predicted from our χ² minimisation
method ages and metallicities. All the GCs are found to be consistent with old ages, i.e.
≥ 10 Gyr, with a wide range of metallicities. This is consistent with the resolved stellar
population work of Gregg et al. (2004) who found the galaxy stars in the outer regions to
be old. We find no evidence for a young GC sub-population.

The α-abundance ratios appear to decrease with increasing metallicity, however inter-
pretation of this trend is complex and requires further work.

Using the recession velocities of our 22 GCs and 14 GCs from Puzia et al. (2004), we
measure the projected velocity dispersion of the GC system and find that it is consistent with being constant with radius in the outer regions. With this velocity dispersion profile, NGC 3379 appears to posses a dark halo, although we cannot rigorously determine the dark halo mass. This is in contrast to the earlier claims of Romanowsky et al. (2003) of a minimal DM halo, based on planetary nebulae kinematics.

A two-sided χ^2 test over all radii using all GCs, gives a 2σ difference between the mass profile derived from our GCs compared to the PN-derived mass model of Romanowsky et al. (2003). This would indicate borderline statistical difference between our mass model and the no-dark matter model of Romanowsky et al. However, if we restrict our analysis to radii beyond one effective radius and test if the GC velocity dispersion is consistently higher, then we determine a $>3\sigma$ difference between the mass models, and hence favor the conclusion that NGC 3379 does indeed have dark matter at large radii in its halo.

7 NOTES ADDED IN PROOF

We emphasise that the mass model we compare to, and find discrepancy with, is an isotropic constant M/L model, which is the simplest interpretation of the PN data implying no DM. This is not the same as the preferred mass model presented in Romanowsky et al. (2003), which was an orbit model including some dark matter. For detailed comparison to such a model, the dynamical characteristics and projection effects for both the GCs and PN would need to be taken into account, which is beyond the scope of this work.

Our attention was drawn to the paper by Samurovic & Danziger (2005). Their analysis of the X-ray halo of NGC 3379 leads to predictions of both M/L and velocity dispersion with radius that are consistent with those from our GC analysis For example, see their Figs. 10 and 13 and their statement ”We note that beyond 120′′ (2.2 R_e) a discrepancy between PN estimates and X-ray estimate occurs”.

8 ACKNOWLEDGMENTS

We thank the Gemini support staff for help preparing the slit mask. We thank S. Brough, A. Romanowsky and S. Samurovic for useful comments. DF thanks the ARC for its financial support. SEZ acknowledges support for this work in part from the NSF grant AST-0406891 and from the Michigan State University Foundation. This research was supported in part
by a Discovery Grant awarded to DAH by the Natural Sciences and Engineering Research Council of Canada (NSERC).

These data were based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET-Agencia Nac. de Promocion Cientifica y Tecnologica (Argentina). The Gemini program ID is GN-2003A-Q22. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, Caltech, under contract with the National Aeronautics and Space Administration.

REFERENCES

Ashman, K. M., Zepf S. E., 1992, ApJ, 384, 50
Beasley, M.A., Baugh, C.M., Forbes, D.A., Sharples, R.M., Frenk, C.S., 2002, MNRAS, 333, 383
Beasley, M.A., Brodie, J.P., Strader, J., Forbes, D.A., Proctor, R.N., Barmby, P., Huchra, J.P., 2004a, AJ, 128, 1623
Beasley, M. A., Forbes, D.A., Brodie, J.P., Kissler-Patig, M., 2004b, MNRAS, 347, 1150
Bertin, E., Arnouts, S., 1996, A&AS, 117, 393
Bridges, T.J., 1992, PhD Thesis, Queens University, Kingston, Ontario
Bridges, T.J. et al., 2003, in Bridges, T., Forbes, D., eds., 25th IAU General Assembly, JD6, Extragalactic Globular Clusters and their Host Galaxies. Astron. Soc. Pac., San Francisco, in press (astro-ph/0310324)
Brodie, J.P., Huchra J.P., 1990, ApJ, 362, 503
Brodie, J.P., Strader, J., Denicolo, G., Beasley, M.A., Cenarro,. A.J., Larsen, S.S., Kuntschner, H., Forbes, D.A., 2005, AJ, 129, 2643
Bruzual, A.G., Charlot, S., 2003, MNRAS, 344, 1000
Buote, D.A., Lewis, A.D., Brighenti, F., Mathews, W.G., 2003, ApJ, 595, 151
Capaccioli, M., Held, E.V., Lorenz, H., Vietri, M., 1990, AJ, 99, 1813
Capaccioli, M., Vietri, M., Held, E.V., Lorenz, H., 1991, ApJ, 371, 535
Carney, B.W., 1996, PASP, 108, 900
Cote, P., Marzke, R. O., West, M. J., 1998, ApJ, 501, 554
Ct, P., McLaughlin, D.E., Hanes, D.A., Bridges, T.J., Geisler, D., Merritt, D., Hesser, J.E., Harris, G.L.H., Lee, M.G., 2001, ApJ, 559, 828
Cote, P., McLaughlin, D.E., Cohen, J.G., Blakeslee, J.P., 2003, ApJ, 591, 850
Cowie, L.L., Songaila, A., Hu, E.M, Cohen, J.G., 1996, AJ, 112, 839
Davies, R.L., Burstein, D., Dressler, A., Faber, S.M., Lynden-Bell, D., Terlevich, R.J., Wegner, G., 1987, ApJS, 64, 581
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H.G., Buta, R.J., Paturel, G., Fouque, P., 1991, Sky & Telescope, 82, 821
Dekel, A., Stoehr, F., Mamon, G.A., Cox, T.J., Primach, J.R., 2005, Nature, 437, 707
Fisher, D., 1997, AJ, 113, 950
Forbes, D. A., Brodie, J. P., Grillmair, C. J., 1997, AJ, 113, 1652
Forbes, D.A., Beasley, M.A., Brodie, J.P., Kissler-Patig, M., 2001, ApJ, 563, 143
Forbes, D.A., Faifer, F.R., Forte, J.C., Bridges, T., Beasley, M.A., Gebhardt, K., Hanes, D.A., Sharples, R., Zepf, S.E., 2004, MNRAS, 355, 608
Fukazawa, Y., Betoya-Nonesa J.G., Pu J., Ohto A., Kawano, N., 2006, to appear in ApJ 636 No.2, 10 January 2006, astro-ph/0509521
Gebhardt, K., Fischer, P., 1995, AJ, 109, 209
Gebhardt, K., Kissler-Patig, M., 1999, AJ, 118, 1526
Gebhardt, K., Pryor, C., Williams, T.B., Hesser, J.E., 1995, AJ, 110, 1699
Gebhardt, K., Richstone, D., Ajhar, E.A., Kormendy, J., Dressler, A., Faber, S. M., Grillmair, C., Tremaine, S., 1996, AJ, 112, 105
Gebhardt, K., et al., 2000, AJ, 119, 1157
Gebhardt, K. et al., 2003, ApJ, 583, 92
Goudfrooij, P., Mack, J., Kissler-Patig, M., Meylan, G., Minniti, D., 2001, MNRAS, 322, 643
Gregg, M.D., Ferguson, H.C., Minniti, D., Tanvir, N., Catchpole, R., 2004, AJ, 127, 1441
Harris, W. E., 1996, AJ, 112, 1487
Harris, W. E., 1999, Ap&SS, 267, 95
Hook, I., Allington-Smith, J.R., Beard, S., Crampton, D., Davies, R., Dickson, C.J., Ebbers, A., Fletcher, M., Jorgensen, I., Jean, I., Juneau, S., Murowinski, R., Nolan, R., Laidlaw, K., Leckie, B., Marshall, G.E., Purkins, T., Richardson, I., Roberts, S., Simons, D., Smith, M., Stilburn, J., Szeto, K., Tierney, C.J., Wolff, R., Wooff, R., 2002, SPIE, 4841, Power Telescopes and Instrumentation into the New Millennium
Kodama, T., et al., 2005, PASJ, 57, 309
Knapp, G.R., Kerr, F.J., Williams, B.A., 1978, ApJ, 222, 800
Kundu, A., Whitmore, B.C., 2001, AJ, 121, 2950
Kuntschner, H., Ziegler, B.L., Sharples, R.M., Worthey, G., Fricke, K.J., 2002, A&A, 395, 761
Larsen, S.S., Brodie, J.P., Huchra, J.P., Forbes, D.A., Grillmair, C.J., 2001, AJ, 121, 2974
Larsen, S.S., Brodie, J.P., 2002, AJ, 123, 1488
Macchetto, F., Pastoriza, M., Caon, N., Sparks, W.B., Giavalisco, M., Bender, R., Capaccioli, M., 1996, A&A, 120, 463
Minniti, D., Rejkuba, M., 2002, ApJ, 575, L59
Peng, E.W., Ford, H.C., Freeman, K.C., 2004, ApJ, 602, 705
Pierce, M.J., Brodie, J.P., Forbes, D.A., Beasley, M.A., Proctor, R.N., Strader, J., 2005, MNRAS, 358, 419
Proctor, R.N., Sansom, A.E., 2002, MNRAS, 333, 517
Proctor, R.N., Forbes, D.A., Beasley, M.A., 2004, MNRAS, 355, 1327
Proctor, R.N., Forbes, D.A., Forestell, A., Gebhardt, K., 2005, submitted MNRAS
Puzia, T.H., Kissler-Patig, M., Thomas, D., Maraston, C., Saglia, R.P., Bender, R., Richtlet, T., Goudfrooij, P., Hempel, M., 2004, A&A, 415, 123
Puzia, T.H., Kissler-Patig, M., Thomas, D., Maraston, C., Saglia, R.P., Bender, R., Goudfrooij, P., Hempel, M., 2005, A&A, 439, 997
Rhode, K.L., Zepf, S.E., 2004, AJ, 127, 302
Richtler, T., et al., 2004, AJ, 127, 2094
Romanowsky, A.J., Douglas, N.G., Arnaboldi, M., Kuijken, K., Merrifield, M.R., Napolitano, N.R., Capaccioli, M., Freeman, K.C., 2003, Science, 301, 1696
Samurovic, S., Danziger, I.J., 2005, MNRAS, 363, 769
Schlegel, D.J., Finkbeiner, D.P., Davis, M., 1998, ApJ, 500, 525
Schneider, S.E., 1989, ApJ, 343, 94
Schweizer F., Seitzer P., 1992, AJ, 104, 1039
Statler, T., Smecker-Hane, T., 1999, AJ, 117, 839
Strader, J., Brodie, J.P., Schweizer, F., Larsen, S.S., Seitzer, P., 2003, AJ, 125, 626
Strader, J., Brodie, J.P., Forbes, D.A., 2004, AJ, 127, 295
Terlevich, A.I., Forbes, D.A., 2002, MNRAS, 330, 547
Thomas, D., Maraston, C., Bender, R., 2003, MNRAS, 339, 897
Thomas, D., Maraston, C., Korn, A., 2004, MNRAS, 351, 19 (TMK04)
Thomas, J. et al., 2005, MNRAS, 360, 1355
Trager, S.C., Worthey, G., Faber, S.M., Burstein, D., Gonzalez, J.J., 1998, ApJS, 116, 1
Trager, S. C., Faber, S. M., Worthey, G., Gonzalez, J. J., 2000, AJ, 119, 1645
Tripicco, M.J., Bell, R.A., 1995, AJ, 110, 3035
van Dokkum, P.G., Franx, M., 1995, AJ, 110, 2027
Whitlock, S., Forbes, D.A., Beasley, M.A., 2003, MNRAS, 345, 949
Worthey, G., 1994, ApJS, 95, 107
Zepf, S.E., Beasley, M.A., Bridges, T.J., Hanes, D.A., Sharples, R.M., Ashman, K.M., Geisler, D., 2000, AJ, 120, 2928