Impact of temperature and material variation on mechanical properties of parts fabricated with fused deposition modeling (FDM) additive manufacturing

M. Hossein Sehhat1 · Ali Mahdianikhotbesara2 · Farzad Yadegari3

Received: 25 January 2022 / Accepted: 9 March 2022 / Published online: 21 March 2022 © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Additive manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature variations on the moon or other planets, which cause changes in parts’ strengths and may fail their operation. Therefore, the correlation between operational temperature and mechanical properties of AM fabricated parts should be evaluated. In this study, three different types of polymers, including polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used in the fused deposition modeling (FDM) process to fabricate several parts. The mechanical properties of produced parts were then investigated at various temperatures to generate knowledge on the correlation between temperature and type of material. When varying the operational temperature during tensile tests, the material’s glass transition temperature was found influential in determining the kind of material failure. ABS showed the best mechanical properties among the materials used at all temperatures due to its highest glass transition temperatures. The statistical analysis results indicated the temperature as the significant factor on tensile strength while the type of material was not a significant factor.

Keywords Fused deposition modeling · Design of experiments (DOE) · JMP · Mechanical properties · PLA · PETG · ABS · Additive manufacturing

1 Introduction

The advent of additive manufacturing (AM) has revolutionized the part production methods [1]. While in conventional manufacturing methods, the raw material should undergo several different manufacturing steps, such as forming, machining, welding, etc. [2–5]. AM can produce the components in a layer-based single-step fabrication process [6] with desirable mechanical properties [7–10]. Depending on the format of material feedstock, which can be powder, foil, paste, etc., the material feeding method to the AM process can be different [11, 12]. In powder-based AM methods, powder spreadability dominates the material feeding process to the AM system [13–16], while in the laser foil printing (LFP) and fused deposition modeling (FDM) processes, the ability to laminate a metal sheet or extrude a polymer material to the AM system, respectively, is a role-player [17–19].

The AM and its related developments, defects, and downsides have been studied in the literature in recent past years. A novel technique for analyzing the in situ 3D transient thermal variations in powder-bed AM processes was developed by Kundakcioglu et al. [20, 21]. This advanced model could track the material phases, porosity, and thermal properties, especially instantaneous transient temperature fields following time variations and laser path. This model can be beneficial in the fabrication of conductive tracks, resistors, electrodes, and heating elements using AM methods; such parts were produced by printing selectively distributed conductive and insulating locations per layer [22]; using the
direct ink writing AM process, complex-geometry parts were printed with a feedstock mixture of carboxymethyl cellulose and graphite particles. Some solutions to avoid the defect of staircase effects on the shell and solid components were proposed in [23]; they printed the material in a varied intra-layer thicknesses by utilizing an advanced multi-axis path planning model; the implemented efficient toolpaths aided in adjusting the form of the top surface and keeping a high-quality part. In another work by the same group [24], a non-planar helical slicing method was developed to create a single continuous 3D tool path (compared with 2.5D planar methods) to eliminate seam defects. The developed system benefited from a simplified extruder control without extra movements. In addition, a novel slicing method of the CAD model was used to fabricate spherical parts [25]; conventionally, the CAD model is sliced into planes, and the proposed method innovatively cuts the CAD model into spherical shells, where the tool paths are guided to deposit the spherical layers. In addition to these defects, a disadvantage of AM is the high waste of material for the production of complex-geometry parts composed of large overhangs, where filling the space between the overhang and the build plate is required. While conventional in situ printing of support structures was useful in fabricating the parts with desirable dimensional accuracy, their removal post-processing was a waste of time and material. A solution to this downside was proposed in [26–28], where an already produced reusable modular support considerably decreased the need for printing the in situ support structures, reduced the material usage, and shortened the fabrication time. The modular support can be fabricated using the AM methods to meet the required complexity in their geometries [29].

In the FDM process, following the part geometry data, the nozzle extrudes the polymer filament onto the build plate for the first part’s layer [30, 31]. Then, either the extruder or build plate moves to create the gap for the next layer. After that, the extruder prints the next layer on the previous layer. The final part is fabricated by repetition of this process [32]. The FDM process parameters are build orientation, layer thickness, raster angle, extrusion temperature, and infill density [33]. These process parameters should be adjusted in a way that each printed track could be bounded adequately to the side tracks and previous printed layer [34, 35].

One of the important applications of AM is in space exploration since it provides the benefit of part fabrication in just a single step [36]. Also, the rapid production of spare parts for exploration robots on the moon or other planets is another advantage of AM deployment for space exploration purposes [37]. Several components of the robot’s bodies should be fabricated lightweight but high strength to both use low amount of energy and properly perform the tasks. Polymers can be used to fabricate parts with lightweights, although the environmental conditions can considerably influence their mechanical properties [10, 38]. The tensile properties, for instance, can be significantly affected by the variation in temperature [39]. At high temperatures, the material may behave like a ductile material, while at low temperatures, the same material may show brittle performance [40, 41]. Thus, for designing the components that operate in extreme thermal conditions, the relation between type of material, environmental conditions, and mechanical properties should be evaluated. Even the surface coating can have significant effects, as found in the work by Abdulwahab et al. [42], where the impact of spray coating on the PLA parts fabricated by FDM was studied; although the coating did not improve the tensile strengths, it considerably increased the samples’ elongation. In this study, the relation between thermal operational conditions and mechanical properties has been investigated. The parts were fabricated with three types of polymer, including polyethylene terephthalate glycol (PETG), polylactic acid (PLA), and acrylonitrile butadiene styrene (ABS). The parts were produced using the FDM method. The statistical analysis was conducted on the results to determine the significant factors and their influence on mechanical properties [43–48].

2 Materials and methods

Filaments of three thermoplastic materials, PETG, PLA, and ABS with filament diameter 1.75 mm were provided, and their properties are shown in Table 1. The tensile coupons were loaded into the tensile testing machine, where they were pulled to breaking. Upon completing these tests, the results were analyzed, and material properties such as ultimate tensile strength (UTS) and modulus of elasticity (E) were determined. Tests were conducted according to ASTM D638 [49, 50], except when modified in a few key areas. The tensile coupons were modified to promote consistent fracturing in the neck of the sample. Coupon neck widths were decreased from the ASTM standard, and the fillet from the grip to the neck was increased in both length and diameter. The modification stemmed from other research, showing this type of modification to improve the behavior of 3D-printed tensile coupons under test [51]. The tensile testing machine used was an Instron 5969 outfitted with a 10 kN load cell [52, 53]. The strain rate used was 5 1/min, which is the minimum speed

Material	Glass transition temperature (°F)	Ultimate tensile strength (psi)
PETG	176	7079
PLA	140	7964
ABS	221	5872
recommended in ASTM D638. The jaws utilized for this experiment were flat jaws with a maximum capacity of 50 kN. The jaws were tightened until snug; then, an additional ¼ turn was added to make sure the samples did not slip during the test. The machine set-up can be seen in Fig. 1.

The tensile test samples were fabricated using a Prusa i3 printer. The used process parameters were 100% infill density (to eliminate interactions with infill patterns), 0.2 mm layer thickness, 30 mm/s printing speed, and 0.5 mm nozzle diameter. The samples were printed at a 45° angle on the print bed to ensure a majority of the layers were printed along the length of the part instead of at 45°. Finally, to prevent the crack propagation from the start or stop of the printer at the layer transition, it was made sure that the start and stop of each layer did not lie within the neck of the coupon. All of these specifications were kept constant for all of the samples. Figure 2 shows an instance of a printed tensile coupon of PLA.

The temperature was varied at three different levels of 40, 65, and 170 °F to assess its impact on mechanical properties. For providing the 170 °F (hot) operational temperature, the samples were immersed in hot water at 170 °F until they reached a steady-state temperature of 170 °F. These samples were then rapidly removed out of hot water with warm pliers and inserted into the tensile testing machine. A heat gun was used to create a warm environment around the sample and keep it at steady-state temperature to limit heat transfer. For providing the 40 °F (cold) operational temperature, the cold samples were brought down to 40 °F while soaking in an ice-bath. To prevent moisture absorption into the material, samples were placed into a plastic bag before being soaked in the ice-bath. These samples were then removed from the cooler with cold pliers and inserted into the tensile testing machine. The temperature was verified with a FLIR thermal imaging camera during each test, an instance of which is shown in Fig. 3. For the room temperature samples, the room temperature was gathered before and during the testing to verify that it was kept constant; the lab’s temperature was constant at 65 °F throughout the test.

3 Results and discussion

3.1 PETG

In order to determine the stress and strain of the various samples, the width, thickness, and gauge length of the tensile coupons were recorded. The gauge length of the tensile testing machine was set to 3.9 inches to keep it consistent among all materials and temperatures tested. The thickness, width, and the obtained UTS of the hot PETG samples are shown in Table 2.

![Fig. 1](image1.png) An instance of tensile testing setup used for characterization of mechanical properties

![Fig. 2](image2.png) An instance of a printed tensile coupon of PLA

![Fig. 3](image3.png) FLIR images of a hot (170 °F), and cold (40 °F) tensile samples

| Table 2 Dimensions and tensile strengths of hot PETG test coupons |
|---|---|---|
| Sample no | Width (in) | Thickness (in) | UTS (psi) |
| 1 | 0.245 | 0.195 | 2619 |
| 2 | 0.247 | 0.199 | 2373 |
| 3 | 0.246 | 0.199 | 1776 |
| 4 | 0.245 | 0.194 | 2175 |
| 5 | 0.243 | 0.193 | 2127 |
The hot PETG samples after the tensile testing are shown in Fig. 4. The hot PETG samples were tested until the UTS was reached, except sample no. 5 that went out of control and was fully separated. The PETG material behaved as a ductile material at the raised temperature (170 °F). The samples show the necking phenomenon same as ductile materials. Since 170 °F is roughly 5% less than the glass transition temperature of PETG, which is 176 °F, the inaccuracies of heating the samples with the heat gun could have led to the material passing the glass transition temperature. This resulted in the samples elongating more than the rest of the samples tested in this experiment. This finding suggests that the material behavior is in the glass transition state as it is neither brittle nor rubbery.

The thickness, width, and the obtained UTS of the cold PETG samples are shown in Table 3. The cold PETG samples as seen in Fig. 5 were tested until fracture. The samples acted as a brittle material because the samples’ temperature (40 °F) was 88% less than the glass transition temperature (176 °F). This indicated that the material behaved in the glassy state.

The thickness, width, and the obtained UTS of the room temperature PETG samples are shown in Table 4. The room temperature PETG samples, as shown in Fig. 6, resulted in a brittle fracture. This is because the material was still below the glass transition temperature in the glassy state.

The stress–strain graphs were developed with the results obtained from the tensile testing machine. The 5 samples of each temperature were averaged and plotted on the graph seen in Fig. 7. The stiffness can also be qualitatively observed, where a steeper stress–strain curve slope indicates a stiffer material. The summary of the mean UTS and E of PETG at different temperatures is shown in Table 5.

3.2 PLA

The hot PLA test did not conclude with any useful data within the scope of this experiment. The PLA’s glass transition temperature is 140 °F, which is roughly 20% lower than the 170 °F temperature used in this experiment. This made the PLA samples within the rubbery state of the material. The first test of hot PLA samples took less than the preload force to make it yield. The stress–strain curve of these samples would have been a graph with a constant zero result.

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.250	0.190	6408
2	0.249	0.195	6222
3	0.249	0.197	6628
4	0.250	0.197	6486
5	0.249	0.192	6706

Table 4 Dimensions and tensile strengths of room temperature PETG test coupons

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.251	0.200	6741
2	0.251	0.200	6567
3	0.249	0.198	6066
4	0.251	0.198	6363
5	0.251	0.200	6626
The thickness, width, and UTS of the cold PLA samples can be seen in Table 6. The cold PLA samples as shown in Fig. 8 were tested until fracture. The samples acted as a brittle material since the samples’ temperature was 72% less than the glass transition temperature, indicating that they perform in the glassy state.

The thickness, width, and UTS of the room temperature PLA samples can be seen in Table 7. The room temperature PLA samples as shown in Fig. 9 resulted in brittle fracture, i.e., these samples were still in the glassy state at roughly 46% of the glass transition temperature.

The stress–strain graphs were developed with the results obtained from the tensile testing machine. The 5 samples of each temperature were averaged and plotted on the graph shown in Fig. 10.

The summary of the mean UTS and E of PLA at different temperatures is shown in Table 8.

Table 6: Dimensions and tensile strengths of cold PLA test coupons

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.243	0.207	7664
2	0.242	0.206	7751
3	0.249	0.210	7734
4	0.243	0.207	7888
5	0.243	0.210	7832

Table 7: Dimensions and tensile strengths of room temperature PLA test coupons

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.242	0.207	7209
2	0.243	0.207	7241
3	0.243	0.207	7218
4	0.242	0.207	7166
5	0.244	0.208	7335
The International Journal of Advanced Manufacturing Technology (2022) 120:4791–4801

3.3 ABS

All ABS samples were successfully tested until fracture. The ABS tensile coupons exhibited signs of brittle failure at all temperatures. Out of all the materials tested, the failure mode of ABS was the most consistent across the tested temperature range. Due to its high glass transition temperature (221 °F), the ABS samples remained closer to the glassy state while being tested at high temperatures. The thickness, width, and UTS of the hot ABS samples can be seen in Table 9. Hot temperature samples showed some signs of necking, shown in Fig. 11, as lighter-colored regions of stretched material near the fracture, but mostly exhibited signs of brittle fracture.

The thickness, width, and UTS of the cold ABS samples can be seen in Table 10. The cold ABS samples as shown in Fig. 12 were tested until fracture. The samples acted as a brittle material because the deployed temperature was 82% less than the glass transition temperature, indicating that the material was in the glassy state.

The thickness, width, and UTS of the room temperature ABS samples can be seen in Table 11. The room temperature ABS samples as seen in Fig. 13 resulted in brittle fractures as these samples were still in the glassy state at roughly 29% of the glass transition temperature.

The stress–strain graphs were developed with the results obtained from the tensile testing machine. The 5 samples of each temperature were averaged and plotted on the graph shown in Fig. 14.

The summary of the mean UTS and E of ABS at different temperatures is shown in Table 12.

3.4 Statistical analysis

The powerful statistical commercial software of JMP was used to conduct statistical analysis to evaluate the results. The data collected was analyzed using factorial statistical design. The 2-variable factors are type of material and temperature. The type of material has 3 levels of PETG, PLA, and ABS, and the temperature has 3 levels of 170, 65, and 40 °F. The response variable was considered as UTS. The design of experiment can be denoted as a 32 factorial, with 9 different test combinations. Each test condition was replicated 5 times, i.e., total of 45 tensile tests were performed. The data used for analysis is provided in Table 13, which shows the UTS for various materials and temperatures. By performing analysis of variance (ANOVA) on this data, the combination of best material and temperature will be statistically determined, by considering that the higher strength and modulus is desired.

![Fig. 10 The stress–strain curve for PLA samples at different temperatures](image)

![Fig. 11 Hot (170 °F) ABS samples after tensile testing](image)

![Table 8 Summary of mechanical properties for PLA samples](image)

Test temperature (°F)	Average UTS (psi)	Average E (psi)
40	7761	431.666
65	7225	463.336

![Table 9 Dimensions and tensile strengths of hot ABS test coupons](image)

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.236	0.202	2473
2	0.234	0.202	2271
3	0.235	0.202	2508
4	0.236	0.203	2445
5	0.235	0.202	2508
The results of a two-way ANOVA with significance level 5% are shown in Table 14. The P-value for this experiment was found 0.002. Thus, it is concluded that the UTS results of combinations of material and temperature are statistically significant different.

The results of main effect tests and their interaction are shown in Table 15. Considering the significance level of 5%, the interaction term was not statistically significant (P-value 0.1903). Considering the main effects, the type of material was not a significant factor (P-value 0.5556) while the temperature was a significant factor (P-value 0.0001). The temperature variable contributed significantly to the change in ultimate strength. The material of the sample had less effect on the change in strength, particularly at room temperature. This can also be noted by the behavior of the confidence curves; the confidence curve crosses the horizontal residual line in Fig. 15, so the effect of temperature is significant. The confidence curves do not display this behavior in Figs. 16 and 17, so the effects of material and interaction term (temperature-material) are not significant.

The International Journal of Advanced Manufacturing Technology (2022) 120:4791–4801

Table 10 Dimensions and tensile strengths of cold ABS test coupons

Sample no	Width (in)	Thickness (in)	UTS (psi)
1	0.246	0.201	5473
2	0.248	0.203	5760
3	0.245	0.199	5624
4	0.238	0.199	5183
5	0.247	0.200	5422

4 Conclusion

In this study, the impact of temperature on mechanical properties of polymers fabricated with fused deposition modeling (FDM) was investigated. Three types of thermoplastic polymers, including polylactic acid (PLA),
Table 12 Summary of mechanical properties for ABS samples

Test temperature (°F)	Average UTS (psi)	Average E (psi)
40	5473	357,714
65	4902	369,968
170	2415	261,100

Table 13 Test combinations for statistical analysis

Temperature (°F)	Material	UTS (psi)
170	PETG	2619
170	PETG	2373
170	PETG	1776
170	PETG	2175
170	PETG	2127
40	PETG	6408
40	PETG	6222
40	PETG	6628
40	PETG	6486
40	PETG	6706
65	PETG	6741
65	PETG	6567
65	PETG	6066
65	PETG	6363
65	PETG	6626
170	PLA	0
40	PLA	7664
40	PLA	7751
40	PLA	7734
40	PLA	7888
40	PLA	7832
65	PLA	7209
65	PLA	7241
65	PLA	7218
65	PLA	7166
65	PLA	7335
170	ABS	2473
170	ABS	2271
170	ABS	2508
170	ABS	2445
170	ABS	2508
40	ABS	5473
40	ABS	5760
40	ABS	5624
40	ABS	5183
40	ABS	5422
65	ABS	4497
65	ABS	5010
65	ABS	4988
65	ABS	5031
65	ABS	5258

Table 14 Results of ANOVA generated by JMP software

Source	DF	Sum of squares	Mean square	F ratio
Model	5	105,616,419	21,123,284	4.6579
Error	39	176,862,039	4,534,924.1	
C. total	44	282,478,458	0.0020*	

Table 15 The results of main effect tests and their interaction

Effect tests	Source	Nparm	DF	Sum of squares	F ratio	Prob > F
Temperature	1	1	84,497,989	18.6327	0.0001*	
Material	2	2	5,410,872	0.5966	0.5556	
Temperature × material	2	2	15,707,559	1.7318	0.1903	

Fig. 15 The confidence curve for effect of temperature on UTS

Fig. 16 The confidence curve for effect of material on UTS
polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used to fabricate tensile coupons. The tensile tests were performed at three temperatures of 40, 65, and 170 °F. The JMP program was used to statistically analyze the results. It was found that the temperature was the significant factor while neither the type of material nor the interaction term (temperature-material) had any significant effects on tensile strengths. At elevated temperatures, ABS maintained greater strength and stiffness than PLA and PETG. At lower temperatures, ABS is not as strong by either measure; however, parts can be designed to account for the lower yield strength and stiffness, while it is significantly more difficult to design a part to handle the effects of extreme temperature.

Availability of data and material The raw/processed data required to reproduce these findings will be made available on request.

Declarations

Ethics approval The manuscript contains original ideas which have never been published before in other journals.

Consent to participate This study is not a human transplantation study. No consent needed for this paper.

Consent for publication The authors declare their consent for publication.

Competing interests The authors declare no competing interests.

References

1. Nezhadifar PD, Thompson S, Saharan A, Phan N, Shamsaei N (2021) Fatigue and failure analysis of an additively manufactured contemporary aluminum alloy, in: Miner Met Mater Ser Springer Science and Business Media Deutschland GmbH 212–219. https://doi.org/10.1007/978-3-030-65396-5_31
2. Mahdianikhoobesara A, Sehhat MH, Hadad M (2021) Experimental study on micro-fraction stir welding of dissimilar butt joints between Al 1050 and pure copper. Metallogro Microstruct Anal 2021:1–16. https://doi.org/10.1007/S13632-021-00771-5
3. Sehhat MH, Mahdianikhoobesara A, Hadad M (2022) Formability investigation for perforated steel sheets, SAE. Int J Mater Manuf 15. https://doi.org/10.4271/05-15-00012
4. Yadegari F, Sehhat MH, Mahdianikhoobesara A (2022) A numerical study of automotive body panel draw dies defects using finite element simulation. https://doi.org/10.21203/RS.3.3-1300589/V1
5. Mahdianikhoobesara A, Sehhat MH, Hadad M (2022) A numerical and experimental study into thermal behavior of micro friction stir welded joints of Al 1050 and copper sheets. Adv Mater Res 1–15
6. Sehhat MH, Behdani B, Hung C-H, Mahdianikhoobesara A (2021) Development of an empirical model on melt pool variation in laser foil printing additive manufacturing process using statistical analysis. Metallogro Microstruct Anal 2021:1–8. https://doi.org/10.1007/S13632-021-00795-X
7. Muhammad M, Nezhadifar PD, Thompson S, Saharan A, Phan N, Shamsaei N (2021) A comparative investigation on the microstructure and mechanical properties of additively manufactured aluminum alloys. Int J Fatigue 146:106165. https://doi.org/10.1016/J.IJFATIGUE.2021.106165
8. Ghadimi H, Jirandehi AP, Nemati S, Guo S (2021) Small-sized specimen design with the provision for high-frequency bending-fatigue testing. Fatigue Fract Eng Mater Struct. https://doi.org/10.1111/FEF.13589
9. Jirandehi AP, Khonsari MM (2021) On the determination of cyclic plastic strain energy with the provision for microplasticity. Int J Fatigue 142:105966. https://doi.org/10.1016/J.IJFATIGUE.2020.105966
10. Sehhat MH, Sutton AT, Hung C-H, Newkirk JW, Leu MC (2021) Investigation of mechanical properties of parts fabricated with gas- and water-atomized 304L stainless steel powder in the laser powder bed fusion process. JOM 2021:1–8. https://doi.org/10.1007/S11837-021-05029-7
11. Moghadasi M, Du W, Li M, Pei Z, Ma C (2020) Ceramic binder jetting additive manufacturing: Effects of particle size on feedstock powder and final part properties. Ceram Int 46:16966–16972. https://doi.org/10.1016/J.CERAMINT.2020.03.280
12. Hung CH, Chen WT, Sehhat MH, Leu MC (2020) The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing. Int J Adv Manuf Technol 1–11. https://doi.org/10.1007/s00170-020-06402-7
13. Sehhat MH (2021) Ali Mahdianikhoobesara. Powder spreading in laser-powder bed fusion process 23:89. https://doi.org/10.1007/s10035-021-01162-x
14. Lui T, Lough CS, Sehhat H, Huang J, Kinzel EC, Leu MC (2021) In-situ thermographic inspection for laser powder bed fusion, in: 2021 Int Solid Free Fabr Symp. University of Texas at Austin
15. Sehhat MH, Chandler J, Yates Z (2021) A review on ICP powder plasma spheroidization process parameters. Int J Refract Met Hard Mater 105764. https://doi.org/10.1016/J.IJRHM.2021.105764
16. Sehhat MH, Sutton AT, Hung CH, Brown B, O’Malley RJ, Park I, Leu MC (2022) Plasma spheroidization of gas-atomized 304L stainless steel powder for laser powder bed fusion process. Mater Sci Add Manuf 1(1):1. https://doi.org/10.18063/msam.v1i11.1
17. Hung C-H, Turk T, Sehhat MH, Leu MC (2022) Development and experimental study of an automated laser-foil-printing additive manufacturing system. Rapid Prototyp J ahead-of-print. https://doi.org/10.1108/RPJ-10-2021-0269
18. Turk T, Hung C-H, Hossein Sehat M, Leu MC. Methods of automating the laser-foil-printing additive manufacturing process, in: (2021) Int. University of Texas at Austin, Solid Free. Fabr. Symp., p 2021

19. Behdani B, Senter M, Mason L, Leu M, Park J (2020) Numerical study on the temperature-dependent viscosity effect on the strand shape in extrusion-based additive manufacturing. J Manuf Process 4:46. https://doi.org/10.3390/JMP4020046

20. Kandakcioglu E, Lazoglu I, Rawal S (2015) Transient thermal modeling of laser-based additive manufacturing for 3D freeform structures. Int J Adv Manuf Technol 85(85):493–501. https://doi.org/10.1007/S00170-015-7932-2

21. Kandakcioglu E, Lazoglu I, Poyraz Ö, Yasa E, Ciciçoğlu N (2018) Thermal and molten pool model in selective laser melting process of Inconel 625. Int J Adv Manuf Technol 95(95):3977–3984. https://doi.org/10.1007/S00170-017-1489-1

22. Khan SA, Lazoglu I (2019) Development of additively manufacturable and electrically conductive graphite–polymer composites. Prog Addit Manuf 52(5):153–162. https://doi.org/10.1007/S40964-019-00102-9

23. Isa MA, Lazoglu I (2019) Five-axis additive manufacturing of freeform models through buildup of transition layers. https://doi.org/10.1006/jmsy.2018.12.002

24. Yigit IE, Lazoglu I, Lazoglu I (2019) Helical slicing method for material extrusion-based robotic additive manufacturing 5-axis. Additive Manufacturing System View project Development of An Open-Architecture Rapid Prototyping System View project Helical slicing method for material extrusion-based robotic additive manufacturing 4:225–232. https://doi.org/10.1007/s40964-019-00090-w

25. Yigit IE, Lazoglu I (2020) Spherical slicing method and its application on robotic additive manufacturing. Prog Addit Manuf 54(5):387–394. https://doi.org/10.1007/S40964-020-0032-3

26. Yigit IE, Isa M, Lazoglu I (2018) Additive manufacturing with modular support structures. https://doi.org/10.26153/TSW/17208

27. Isa MA, Yigit IE, Lazoglu I (2018) Analysis of build direction in deposition-based additive manufacturing of overhang structures. https://doi.org/10.26153/TSW/17156

28. Yigit IE, Lazoglu I (2019) Dynamic build bed for additive manufacturing. https://doi.org/10.26153/TSW/17381

29. Yigit IE, Khan SA, Lazoglu I (2018) Robotic additive manufacturing of tooling for composite structures. Int 8th International Conference on Machine Design and Production (UMTIK), Eskisehir, Turkey

30. Bellahmoune C, Li L, Sun Q, Gu P (2004) Modeling of bond formation between polymer filaments in the fused deposition modeling process. J Manuf Process 6:170–178. https://doi.org/10.1016/S1526-7007(04)70071-7

31. Sehat MH, Mahdianikhhtesbasa A, Yadegari F (2021) Verification of stress transformation in anisotropic material additively manufactured by fused deposition modeling (FDM). https://doi.org/10.21203/RS.3-8-S-1107949/V1

32. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:766–776. https://doi.org/10.1016/J.MATDES.2015.06.053

33. Singari RM, Arora PK, Prayitno G, Imaduddin F, Arifin Z (2021) Recent progress of fused deposition modeling (FDM) 3D printing: constructions, parameters and processings. IOP Conf Ser Mater Sci Eng 1096:012045. https://doi.org/10.1088/1757-899X/1096/1/012045

34. Schöppner V, Bągiska A, Paderborn K (2011) Mechanical properties of fused deposition modeling parts manufactured with ULTEM® ast:9085 Design and Optimization of Wave-Dispersion Screws View project Mechanical properties of fused deposition modeling parts manufactured with Ultem® 9085

35. Vicente CMS, Martins TS, Leite M, Ribeiro A, Reis L (2020) Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polym Adv Technol 31:501–507. https://doi.org/10.1002/PAT.4787

36. Elhajjar R, Gill T (2016) Studies into Additive Manufacturing for In-Space Manufacturing. Stud Into Addit Manuf In-Sp Manuf. https://doi.org/10.4271/SRP-001

37. Crokete R, Petersen D, Cooper K (2008) Fused deposition modeling in microgravity

38. Shoefner ML, Lozano K, Rodríguez-Macías FJ, Barrera EV (2003) Nanofiber-reinforced polymers prepared by fused deposition modeling. J Appl Polym Sci 89:3081–3090. https://doi.org/10.1002/APP.12496

39. Zhou Y, Nyberg T, Xiong G, Liu D (2016) Temperature analysis in the fused deposition modeling process, Proc. - 2016 3rd Int Conf Inf Sci Control Eng ICISCSE 678–682. https://doi.org/10.1109/ICISCSE.2016.150

40. Şerban DA, Weber G, Marşav covid19 V, Hufnach W (2013) Tensile properties of semi-crystalline thermoplastics: effects of temperature and strain rates. Polym Test 32:413–425. https://doi.org/10.1016/J.POLYMERTESTING.2012.12.002

41. Sehat MH, Mahdianikhhtesbasa A, Yadegari F (2021) Experimental validation of conductive heat transfer theory: thermal resistivity and system effects. Comput Res Prog Appl Sci Eng 1016/J.

42. Abdulwahab M, Bijanzad A, Khan SA, Lazoglu I (2021) Effects of polyurea coating on the elastoplastic behavior of additively manufactured PLA specimens. Prog Addit Manuf 2022:1–8. https://doi.org/10.1007/S40964-021-0042-X

43. Gorji NE, O’Connor R, Brabazon D (2021) XPS, SEM, AFM, and nano-indentation characterization for powder recycling within additive manufacturing process, in: IOP Conf Ser Mater Sci Eng IOP Publishing 12025

44. Gupta P, Kumari S, Gupta A, Sinha AK, Jindal P (2021) Effect of heat treatment on mechanical properties of 3D printed polyactic acid parts. Mater Test 63:73–78. https://doi.org/10.1515/mt-2020-0010

45. Wojtyła S, Klama P, Baran T (2017) Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg 14:D80–D85

46. Ćwikła G, Grabowik C, Kalinowski K, Paprocka I, Ociepka P (2017) The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts, in: IOP Conf Ser Mater Sci Eng IOP Publishing 1203

47. Tsai M-H, Lai C-J, Wang S-H, Zeng Y-S, Hsieh C-H, Pan C-Y, Huang W-C (2021) Effect of printing parameters on the thermal and mechanical properties of 3D-printed pla and petg, using fused deposition modeling. Polymers (Basel) 13:1758

48. Grabowik C, Kalinowski K, Ćwikła G, Paprocka I, Kogut P (2017) Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method, in: MATEC Web Conf. EDP Sciences 4017

49. ASTM D638 - 14 (2017) Standard Test Method for Tensile Properties of Plastics. https://www.astm.org/Standards/D638. Accessed 12 Nov 2021

50. Samykano M, Selvamani SK, Kadirgama K et al (2019) Mechanical property of FDM printed ABS: influence of printing parameters. Int J Adv Manuf Technol 102:2779–2796. https://doi.org/10.1007/s00170-019-05313-0

51. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer. Rapid Prototyp J 21:604–617. https://doi.org/10.1108/RPJ-09-2014-0135/FULL/ XML

52. Soltaniejad M, Soltaniejad M, Moshizai MK, Sadeghi V, Jahanbakhsh P (2021) Environmental-friendly mortar produced...
with treated and untreated coal wastes as cement replacement materials. Clean Technol Environ Policy 1:1–18. https://doi.org/10.1007/S10098-021-02204-X

53. Jahanbakhsh P, Saberi KF, Soltaninejad M, Hashemi SH (2022) Laboratory investigation of modified roller compacted concrete pavement (RCCP) containing macro synthetic fibers. Int J Pavement Res Technol. https://doi.org/10.1007/s42947-022-00161-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.