Plastid Genome Comparative and Phylogenetic Analyses of the Key Genera in Fagaceae: Highlighting the Effect of Codon Composition Bias in Phylogenetic Inference

Yanci Yang¹, Juan Zhu², Li Feng³, Tao Zhou³, Guoqing Bai¹-⁴, Jia Yang¹ and Guifang Zhao¹*

¹ Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China, ² Middle School of Xi’an Electronic Science and Technology, Xi’an, China, ³ School of Pharmacy, Xi’an Jiaotong University, Xi’an, China, ⁴ Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province, Xi’an, China

Fagaceae is one of the largest and economically important taxa within Fagales. Considering the incongruence among inferences from plastid and nuclear genes in the previous Fagaceae phylogeny studies, we assess the performance of plastid phylogenomics in this complex family. We sequenced and assembled four complete plastid genomes (Fagus engleriana, Quercus spinosa, Quercus aquifolioides, and Quercus glauca) using reference-guided assembly approach. All of the other 12 published plastid genomes in Fagaceae were retrieved for genomic analyses (including repeats, sequence divergence and codon usage) and phylogenetic inference. The genomic analyses reveal that plastid genomes in Fagaceae are conserved. Comparing the phylogenetic relationships of the key genera in Fagaceae inferred from different codon positions and gene function datasets, we found that the first two codon sites dataset recovered nearly all relationships and received high support. Thus, the result suggested that codon composition bias had great influence on Fagaceae phylogenetic inference. Our study not only provides basic understanding of Fagaceae plastid genomes, but also illuminates the effectiveness of plastid phylogenomics in resolving relationships of this intractable family.

Keywords: Fagaceae, plastid genome, topological incongruence, codon composition bias, phylogenomics

INTRODUCTION

Due to the rapid development of next-generation sequencing (NGS) technology, genomic data have been increasingly used to explore plant phylogeny. With respect to genomic complexity, sequencing cost, analysis methods and the degree of recombination of different genomes (organelle genomes and nuclear genome), the plastid genome presents obvious advantages (e.g., generally recombination-free, uniparental inheritance, highly conserved structure) (Birky et al., 1983; Jansen and Ruhlman, 2012). Recently, the use of plastid genomes in plant phylogenetic analyses is expanding and great progress has been achieved (Jansen et al., 2007; Moore et al., 2007, 2010; Parks et al., 2009; Barrett et al., 2013, 2016; Nikiforova et al., 2013; Ma et al., 2014; Carbonell-Caballero et al., 2015). It is widely accepted that plastids are derived from an endosymbiotic
event (Keeling, 2010, and references therein). Most angiosperm plastid genomes have a typical quadripartite structure, with two copies of inverted repeat regions (IR) separating the small and large single copy regions (SSC and LSC, respectively) (Jansen et al., 2005; Jansen and Ruhlman, 2012). Although the structure of the plastid genome is generally highly conserved, different levels of genomic upheaval (such as gene or IR losses, large-scale rearrangements) have been detected in Campanulaceae, Fabaceae, Geraniaceae, Oleaceae and many other families (Cosner et al., 2004; Lee et al., 2007; Cai et al., 2008; Guisinger et al., 2010, 2011; Martin et al., 2014).

Fagaceae is a diverse and ecologically dominant group throughout the Northern Hemisphere, which consists of 10 genera and ca. 900 species (Manos et al., 2001, 2008; Oh and Manos, 2008). In Fagaceae, the genus Quercus is species-rich (approximately 500 species worldwide) and has received substantial attention in phylogeny and biogeography studies compared with other genera (e.g., Manos et al., 1999; Cavender-Bares et al., 2004; Zeng et al., 2011; Gugger and Cavender-Bares, 2013). With many meaningful evolutionary topics to explore, Fagaceae is among the best studied woody plant families. For example, extensive hybridization resulting in perplexing taxonomy; rich fossil record for macroevolutionary studies; highly disparate fruit forms for studies of dispersal mode; and phylogenetic relationships of this species-rich family.

Previously, molecular phylogenies obtained from nuclear data appeared more plausible than those from plastid data (Manos et al., 2001; Denk and Grimm, 2010; Hubert et al., 2014), owing to their congruence with morphological evidence, including the fossil record (e.g., Denk and Grimm, 2009; Grimmelsson et al., 2015, 2016). Notably, combining two nuclear loci (ITS and CRC) with data from three plastid regions (trnK-matK/trnK, atpB-rbcL and ndhF) failed to resolve all oaks as one clade (Manos et al., 2008). Moreover, the same phenomenon was observed in Simeone et al. (2016) and Vitelli et al. (2017) that only used three plastid markers (both used plastid regions: rbcL, trnK/matK, and trnH-psbA). However, when using two nuclear loci (ITS and CRC) alone, they clarified the relationships of Fagaceae, in particular, oaks were supported as monophyletic (Oh and Manos, 2008). The phenomenon that plastid data and nuclear data generate conflicting (incongruent) phylogenies has also been observed in other plant groups, such as Senecioneae, Helichrysum and Neotropical Catasetinae (Pelsers et al., 2010; Galbany-Casals et al., 2014; Pérez-Escobar et al., 2015). Topological incongruence may result from different genetic backgrounds (maternal or biparental inheritance) and substitution rates of plastid and nucleus (Tepe et al., 2011). Moreover, biological processes, such as chloroplast capture (by hybridization or introgression) and incomplete lineage sorting may also be responsible for the phenomenon (Stegemann et al., 2012; Pérez-Escobar et al., 2015).

In general, improvements in tree resolution of Fagaceae had been offered in the previous molecular studies. Nuclear markers, used in Fagaceae phylogeny inference, yielded relatively low support for the monophyletic genus Quercus (MP and ML bootstrap support values were 60 and 52, respectively) (Oh and Manos, 2008). Considering the performances of the few molecular markers in Fagaceae phylogenetic inferences and the ability of plastid phylogenomics (high resolution and strong support) in the earlier studies, we explore whether plastid genome-scale data have the ability to infer strongly supported phylogenetic relationships for Fagaceae, especially for the monophyletic genus Quercus.

MATERIALS AND METHODS

Taxon Sampling and Plant Material

In total, 16 plastid genomes belonging to the key genera of Fagaceae are analyzed in this study, including four newly generated plastid genomes (F. engleriana, Q. glauca, Q. spinosa, and Q. aquifoloides) and all of the published plastid genomes in Fagaceae. The other 12 species are Trigonobalanus doichangensis, Quercus rubra (Alexander and Woeste, 2014), Quercus baronii (Yang et al., 2017), Quercus aliena, Quercus aliena var. acuteserrata, Quercus variabilis, Quercus dolicholepis (Yang et al., 2016), Quercus edithiae, Castanopsis echinocarpa, Lithocarpus balansae, Castanea mollissima (Jansen et al., 2011), and Castanea pumila var. pumila (Dane et al., 2015). The collecting and GenBank accession information for the analyzed taxa are listed in Table 1.

DNA Extraction, Illumina Sequencing, Assembly, and Annotation

Total genomic DNA was extracted for the four species from silica-dried leaf material following the modified CTAB method (Doyle, 1987). The paired-end (PE) library was constructed using TruSeq DNA sample preparation kits. Sequencing was completed on an Illumina Hiseq 2500 platform with the average read length of 125 bp, yielding at least 2 GB clean data for each species. All of the above work were conducted by Biomarker Technologies Inc. (Beijing, China). Firstly, all of the raw reads were trimmed using NGS QC Toolkit v.2.3.3 with the default parameters set (Patel and Jain, 2012). Reference-guided assembly was then used to reconstruct the plastid genomes with the programs MIRA 4.0.2 (Chevreux et al., 2004) and MITObim v1.7 (Hahn et al., 2013). In the process, plastid genomes of Q. rubra (JX970937), Q. aliena (KU240007), and C. mollissima (HQ336406) were used as reference genomes. The complete plastid genomes were annotated using the program DOGMA (Wyman et al., 2004), and then manually corrected by comparing them with the complete plastid genomes of the other published Fagaceae species in GENEIOUS R8 (Biomatters Ltd., Auckland, New Zealand).

Codon Usage Bias Analysis

The protein-coding genes (CDS) were extracted from plastid genomes with the following constraints: (1) the presence of proper initial (ATG) and termination codons (TAA, TGA and TAG); (2) CDS length was greater than 300 bp to avoid sampling bias (Wright, 1990). Finally, 53 common CDS for each plastome were analyzed.

The GC content of the complete plastid genomes and 53 common analyzed CDS (GC\(_g\) and GC\(_c\), as well as GC contents of the first, second, and third codon positions of analyzed CDS (GC\(_1\), GC\(_2\) and GC\(_3\)), respectively) were calculated by GENEIOUS R8. Relative synonymous codon usage (RSCU) is
TABLE 1 | Accessions in this study with taxonomic, collection locality, Illumina read, and coverage information.

Species	Genus	Collection locality	GenBank number	Assembly reads	Mean coverage
Quercus rubra	Group Lobatae, Quercus	/	JX970937	/	/
Quercus aliena	Group Quercus, Quercus	/	KU240007	/	/
Quercus aliena var. acuteserrata	Group Quercus, Quercus	/	KU240008	/	/
Quercus baronii	Group Ilex, Quercus	/	KT963087	/	/
Quercus dolicholepis	Group Ilex, Quercus	/	KU24010	/	/
Quercus variabilis	Group Ceris, Quercus	/	KU240009	/	/
Quercus aquifolioides	Group Ilex, Quercus	/	KX911971	788,550	616x
Quercus spinosa	Group Ilex, Quercus	/	KX911972	766,767	591x
Quercus glauca	Group Cyclobalanopsis, Quercus	/	KX852399	427,422	329 x
Quercus edithiae	Group Cyclobalanopsis, Quercus	/	KU382355	/	/
Castanea mollissima	Castanea	/	HQ336406	/	/
Castanea pumila var. pumila	Castanea	/	KM860048	/	/
Castanopsis echinocarpa	Castanopsis	/	KJ001129	/	/
Lithocarpus trilobatus	Lithocarpus	/	KP299291	/	/
Trigonobalanus doichangensis	Trigonobalanus	/	KF990556	/	/
Fagus engleri	Fagus	Wuhan Botanical Garden, Shanghai, China	KX852398	362,613	281x

the ratio of the observed frequency of a codon to the expected frequency and is a good indicator of codon usage bias (Sharp and Li, 1986). When synonymous codons are used less frequently than expected, RSCU value is less than 1, otherwise the value is greater than 1 (Gupta et al., 2004). The above work was completed by MEGA 5.0 (Tamura et al., 2011).

Repeat Elements Analysis

REPuter (Kurtz et al., 2001) was used to identify dispersed and palindromic repeats within plastid genomes. We focused on the repeats having a minimal size of 30 bp and 90% or greater similarity between the two repeat copies. The maximum distance between palindromic repeats is 3 Kb. Tandem repeats (>10 bp in length) were detected using online program Tandem Repeats Finder (TRF) (Benson, 1999) with default parameters. The minimum alignment score and maximum period size set as 80 and 500, respectively. All of the above parameters were set based on some related plastid studies (Huang et al., 2013, 2014; Rousseau-Gueutin et al., 2015). All found repeats were manually verified and the redundant results were removed. In Yang et al. (2016), all three types of repeats had been identified in *Q. dolicholepis*, *Q. variabilis*, *Q. aliena*, *Q. aliena* var. acuteserrata and *Q. baronii*, which were processed in the same way as this study. Therefore, repeat elements were detected only in the other 11 plastid genomes.

Sequence Divergence Analysis

Sequence divergence was evaluated for protein-coding sequences by calculating pairwise distance between each two species. Pairwise distances were calculated using MEGA 5.0 with K2p evolution model (Kimura, 1980). A visual alignment of complete plastid genomes was generated in mVISTA (Frazer et al., 2004).

Phylogenetic Analysis

To evaluate the effect of codon composition bias and gene function on phylogenetic estimation, we respectively constructed the aligned matrices of shared protein-coding genes, codon positions 1 + 2, codon position 3, and 5 functional categories of protein-coding genes (Chang et al., 2006; Liu et al., 2012) for the Fagaceae phylogeny. All of the above analyzed matrices were obtained from 76 shared protein-coding genes. The extraction of different positions of codon was conducted by MEGA 5.0. *Populus trichocarpa* (EF489041) (Tuskan et al., 2006) and *Theobroma cacao* (HQ244500) were chosen as outgroups. Sequence alignment was performed using MAFFT (Katoh and Standley, 2013) in GENEIOUS R8 with the default parameters set.

All phylogenetic analyses were performed using maximum likelihood (ML) methods and Bayesian inference (BI), which were conducted using RAxML v7.2.8 (Stamatakis, 2006) and MrBayes v3.1.2 (Ronquist and Huelsenbeck, 2003), respectively. The ML tree was inferred with GTR+G model and 1000 rapid bootstrap replicates. The best-fitting model for BI analyses was determined using Modeltest 3.7 (Posada and Crandall, 1998) based on the Akaike information criterion (AIC). Two independent Markov chain Monte Carlo (MCMC) runs were performed for 2 million generations with sampling every 100 generations, and the first 25% of the trees were discarded as burn-in.

RESULTS

Plastid Assembly, Genome Characteristics, and Codon Usage Bias

Four plastids (*F. engleri*, *Q. spinosa*, *Q. aquifolioides*, and *Q. glauca*) were generated in the current study. Illumina
sequencing produced large data sets. 362,613 (F. engleriana) to 788,550 (Q. aquifolioides) reads were assembled to generate the plastid genomes, ranging from 281 × to 616 × coverage (Table 1). These plastid genomes possess the typical quadripartite structure, ranging from 158,346 bp (F. engleriana) to 161,225 bp (Q. aquifolioides) (Table 2). Except F. engleriana, the other three plastid genomes share identical gene content and gene order, encoding a total of 134 genes, including 86 protein-coding genes (CDS), 40 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes (Table 2). Fagus engleriana encodes a total of 131 genes, containing the same numbers of tRNA and rRNA genes except for three lost protein-coding genes (rps16, infA, and rpl22) compared with the other three species.

A comparison of the major characteristics of all available Fagaceae plastid genomes is shown in Table 2. F. engleriana has the smallest plastid genome (158,346 bp), whereas Q. rubra has the largest (161,304 bp). The number of encoded genes varies from 128 (T. doichangensis) to 137 (Q. rubra). In particular, the number of tRNA genes in Q. edithiae from 128 (the largest (161,304 bp). The number of encoded genes varies except for three lost protein-coding genes (Table 2). Gene differences are provided in Supplemental Data (Table S1). There exist pseudogenes in Q. edithiae, C. mollissima and C. pumila var. pumila. The IR/SC boundary regions in Fagaceae show slight differences (Figure 1). For example, the extended length of ycf1 into SSC region range from 0 (T. doichangensis) to 144 bp (L. balansae).

Overall, GC content levels of different species are very close in the same region (such as CDS, different codon positions; Table 3). Both the genome-wide GC content (GCw) (about 36.8%) and CDS GC content (GCc) (about 38.6%) indicate that the plastid genome is AT-rich. Within the analyzed CDS, the mean values of GC content for the first, second and third codon positions of 16 Fagaceae species are 46.4, 38.4, and 31.0%, respectively.

For the analyzed CDS, the frequency of codon usage in each species is summarized in Table S2. Codon usage bias is fairly similar across Fagaceae. In all species, the most and least prevalent amino acids always are leucine (approximately 10.5%) and cysteine (approximately 1.2%), respectively. Moreover, except Met and Trp that are encoded by only one codon, all the other amino acids show that some codons appear to be used more frequently than others. For example, synonymous codons UUA, UUG, CUU, CUC, CUA and CUG encode leucine and the corresponding RSCU values for these six codons in F. engleriana are 1.83, 1.24, 1.31, 0.40, 0.82, and 0.40, respectively, as expected from the low GC content of CDS.

Repeat Elements

A total of 440 repeat elements are identified for these three repeat types in the 16 complete plastid genomes (Table 4). The numbers of tandem, dispersed, and palindromic repeats are 145, 199 and 96, respectively. IR regions have the most repeats (220, 50.0%), followed with LSC (170, 38.6%) and SSC (50, 11.4%). From another point of view, the majority of repeats are located in intergenic spacer regions (234, 53.2%), and the minority are found in introns (89, 20.2%). Ratios of number of repeat bases to number of bases in the region (number of repeat bases / number of bases in the region) for different region comparisons show that IR regions and introns host the highest ratios (1.66 and 1.88%, respectively). Only a few genes (e.g., ycf1, ycf2, atpF, psaA, psaB, and some tRNA genes) possess repeat elements. All dispersed and palindromic repeats occur in a narrower size (30–40 bp), except for a 72 bp dispersed repeat in Q. edithiae. Regarding the tandem repeats, shorter repeats are common (< 40 bp), whereas only 5

Table 2 Characteristics of Fagaceae plastid genomes.

Species	Genome size (bp)	LSC (bp)	SSC (bp)	IR (bp)	Number of genes	Pseudo gene	Number of protein-coding genes	Number of tRNA genes	Number of rRNA genes
Quercus rubra	161,304	90,541	19,025	51,738	137	/	89	40	8
Quercus aliena	161,150	90,444	19,054	51,652	134	/	86	40	8
Quercus aliena var. acuteserrata	161,153	90,457	19,044	51,652	134	/	86	40	8
Quercus baronii	161,072	90,341	19,045	51,686	134	/	86	40	8
Quercus dolicholepis	161,237	90,461	19,048	51,728	134	/	86	40	8
Quercus variabilis	161,077	90,387	19,056	51,634	134	/	86	40	8
Quercus aquifolioides*	161,225	90,535	19,000	51,690	134	/	86	40	8
Quercus spinose*	161,156	90,441	18,997	51,718	134	/	86	40	8
Quercus glauca*	160,798	90,229	18,907	51,662	134	/	86	40	8
Quercus edithiae	160,988	90,352	18,954	51,682	128	rpl22, ycf1, ycf2	87	30	8
Castanea mollissima	160,799	90,432	18,995	51,372	130	rpl22, ycf1	83	37	8
Castanea pumila var. pumila	160,603	90,249	18,976	51,378	131	rpl22	83	39	8
Castanopsis echinocarpa	160,847	90,394	18,995	51,258	132	/	84	40	8
Lithocarpus balansae	161,020	90,596	19,160	51,264	134	/	87	39	8
Trigonobalanus doichangensis	159,938	89,374	19,292	51,272	128	/	81	39	8
Fagus engleriana*	158,346	87,667	18,895	51,784	131	/	83	40	8

*The 4 newly generated plastid genomes were marked in *.

Frontiers in Plant Science | www.frontiersin.org 4 February 2018 | Volume 9 | Article 82
FIGURE 1 | The comparison of the LSC, IR, and SSC border regions among the Fagaceae plastid genomes. Numbers above the gene features mean the distance from the end of gene to the boundary region. These features are not to scale.
longer repeats (> 40 bp) are detected (4 in Q. edithiae and 1 in F. engleriana). Moreover, the majority of 10–20 bp tandem repeats and 21–30 bp tandem repeats are found in introns and genes, respectively. Overall, number and distribution of repeat elements are conserved across these Fagaceae species (Table S3).

Sequence Divergence

With Q. rubra as a reference, the alignment of 16 complete plastid genomes is performed using mVISTA (Figure 2). Overall, sequence divergence is low across the Fagaceae plastid genomes.

Table 3 | GC content of sequences in Fagaceae plastid genomes.

Species	Number of analyzed CDS	GCg (%)	GCC (%)	GC1 (%)	GC2 (%)	GC3 (%)
Quercus rubra	53	36.8	38.6	46.3	38.3	31.0
Quercus aliena	53	36.8	38.6	46.4	38.4	30.9
Quercus aliena var. acuteserrata	53	36.8	38.6	46.4	38.4	30.9
Quercus baronii	53	36.8	38.6	46.4	38.4	30.9
Quercus dolicholepis	53	36.8	38.6	46.4	38.4	30.9
Quercus variabilis	53	36.8	38.6	46.4	38.4	30.9
Quercus aquifoloides	53	36.8	38.6	46.4	38.4	30.9
Quercus spinosa	53	36.8	38.6	46.4	38.3	30.9
Quercus glauca	53	36.9	38.6	46.5	38.3	31.0
Quercus edithiae	53	36.9	38.6	46.5	38.3	31.0
Castanopsis mollissima	53	36.8	38.5	46.4	38.3	30.9
Castanopsis pumila var. pumila	53	36.8	38.5	46.3	38.3	30.9
Castanopsis echinocarpa	53	36.7	38.6	46.4	38.4	31.0
Lithocarpus balansae	53	36.7	38.5	46.3	38.3	30.9
Trigonobalanus doichangensis	53	37.0	38.8	46.6	38.5	31.3
Fagus engleriana	53	37.1	38.5	46.5	38.3	30.8

GCg: GC content of whole genome; GCC: GC content of 53 analyzed CDS; GC1, GC2, GC3: GC content at first, second and third codon positions, respectively.

Fagaceae Phylogeny

Different analysis methods (BI and ML analyses) yield largely identical phylogenetic trees from each dataset (76 shared protein-coding genes, codon positions 1 + 2, codon position 3, and five functional categories of protein-coding genes (Table S3)). The aligned length and used model of each dataset are shown in Table 4. The aligned sequences of the first three datasets are shown in Supplemental Data Sheet 1.

Support is generally high for almost all relationships inferred from these common protein-coding genes (the support values have a range of 72/0.99–100/1.0, except for a node with 56/0.93 support) (Figure 3). F. engleriana is in the basal position, followed by T. doichangensis. Lithocarpus balansae is sister to a clade of (Castanopsis echinocarpa, C. mollissima, Castanea pumila var. pumila). It is noteworthy that species in the
genus *Quercus* do not form a clade. The 3rd codon site dataset and five functional groups of protein-coding genes datasets exhibit partly congruent versions compared with the above topology (Figures S1–S6). Differences mainly include the positions of groups in *Quercus* and the corresponding nodes obtain weak-to-moderate support (support values are
generally < 50/0.50). Moreover, the topologies of species in a group (such as in *Quercus*) or in a genus (such as *Castanea*) are identical in almost all analyses and receive strong support.

Notably, phylogenetic relationships derived from the first two codon sites dataset are completely recovered with generally strong support and all oaks form a clade with high support (86% bootstrap values and 1.0 posterior probabilities) (Figure 4). These *Quercus* species are divided into two clades. The first clade split into two sub-clades: one shows that *Q. rubra* is sister to *Q. aliena* and *Q. aliena* var. *acuteserrata*; the other shows that *Q. baronii* appears to be more closely related to *Q. dolicholepis* than to *Q. variabilis*. The second clade is composed of group *Cyclobalanopsis* (according to Denk and Grimm, 2010) (*Q. glauca* and *Q. edithiae*) and species *Q. spinosa* and *Q. aquifolioides*. Overall, the topology of other clades (genus *Fagus*, *Trigonobalanus*, *Lithocarpus*, and *Castanopsis*) is nearly identical to those based on two nuclear loci (ITS and CRC) (Oh and Manos, 2008), except for the placement of *Castanea* as sister to *Quercus* vs. *Castanopsis*.

DISCUSSION

Plastid Sequence Evolution

In general, the size, gene content and gene order are similar among the plastid genomes, which reveal that plastid genomes are highly conserved in Fagaceae. Moreover, gene loss occurs in Fagaceae (Table S1). From the result of alignment, we find that the lost protein-coding genes are caused by annotation error in most cases (e.g., the lost protein-coding genes *ycf1*, *rpl2*, *rpl22*, *petG*). Firstly, the sequences that encode the lost genes not only possess proper initial and termination codons, but also present highly conserved content compared with other species. Furthermore, the protein-coding gene loss only occurs in one or two species, whereas the corresponding protein-coding genes always exist in the other species.

IR contraction and expansion is a common evolutionary phenomenon (Kim and Lee, 2004; Hansen et al., 2007; Wang et al., 2008; Davis and Soreng, 2010; Huang et al., 2014) and may cause variation in length of angiosperm plastid genome (Kim and Lee, 2004). The slight differences of IR/SC boundary regions in Fagaceae may be the result of IR contraction/expansion. Moreover, the minor IR boundary shifts of Fagaceae plastomes have neither triggered the transfer of genes between SC regions and IR regions or the gain/loss of genes, which have been detected in some plant lineages (Zhu et al., 2015, and references therein).

Codon usage bias is an important evolutionary phenomenon. GC content is the major factor in shaping the biased codon usage and could play an important role during the evolution of genomic structure (e.g., thermostability and modulation of replication, transcription and translation) (Sueoka and Kawanishi, 2000; Bellgard et al., 2001, and references therein). The observation of GC content level indicates that plastid genome in Fagaceae are AT-rich and there is a strong bias toward A/T at the third codon position, which are consistent with previous plastid genome studies (e.g., Shimada and Sugiu, 1991; Clegg et al., 1994; Tangphatsornruang et al., 2009; Delannoy et al., 2011). The presence of translation-preferred codons may be the result of both natural selection and mutation preference during the plastid genome evolutionary process. Variations in codon bias are highly similar in all analyzed species, which also suggests that Fagaceae plastid genomes are highly conserved.

Larger and more complex repeat sequences may play an important role in the rearrangement of plastid genomes and sequence divergence (Timme et al., 2007; Weng et al., 2013); therefore, we investigated the numbers and distributions of tandem, dispersed, and palindromic repeats. We find that repeats in different species are usually located in the same genes (*ycf1* and *ycf2*), or genes with similar functions (e.g., *psaB/psaA*, *trnS-GCU/trnS-UAGA*, *trnG-GCC/trnG-UCC*, and *trnS-UAGA/trnS-GGA*). Moreover, longer repeats are rare in Fagaceae plastomes (6 of the 440 repeats are longer than 40 bp) compared with some other plant lineages (Zhang et al., 2011; Huang et al., 2014; Cai et al., 2015).

Table 5 | List of the 76 common protein-coding genes divided into five functional groups.

Protein-coding gene category	Genes
Gene expression	*rps2*, *rps14*, *rps4*, *rps18*, *rps12*, *rps11*, *rps8*, *rps3*, *rps19*, *rps7*, *rps15*, *rps7*, *rpl33*, *rpl20*, *rpl36*, *rpl14*, *rpl16*, *rpl2*, *rpl23* (*2*), *rpoC2*, *rpoC1*, *rpoB*, *rpoA*
Photosynthetic apparatus	*psbA*, *psbK*, *psbL*, *psbM*, *psbD*, *psbC*, *psbI*, *psbl*, *psbF*, *psbE*, *psbB*, *psbT*, *psbN*, *psbH*, *psaB*, *psaA*, *psal*, *psaJ*, *psaC*, *petN*, *petA*, *petL*, *petB*, *petD*, *ycf3*, *ycf4*, *accD*
Photosynthetic metabolism	*atpA*, *atpF*, *atpH*, *atpL*, *atpE*, *atpB*, *rbcL*, *ndhJ*, *ndhK*, *ndhC*, *ndhB* (*2*), *ndhF*, *ndhD*, *ndhE*, *ndhG*, *ndhl*, *ndhA*, *ndhH*
Miscellaneous	*matK*, *cemA*, *clpP*, *ccsA*
Unknown	*ycf2* (*2*)

Numbers in parentheses indicate the genes duplicated in the IR regions.

Table 6 | Sites and models in ML and BI analyses for each dataset.

Dataset	Number of sites	Model in ML	Model in BI
76 common protein-coding genes	72,235	GTR+G	GTR+G
Codon positions 1 + 2	48,176	GTR+G	TVM+G
Codon position 3	24,353	GTR+G	GTR+G
Gene expression	18,856	GTR+G	GTR+G
Photosynthetic apparatus	16,970	GTR+G	GTR+G
Photosynthetic metabolism	18,817	GTR+G	TVM+G
Miscellaneous	3,786	GTR+G	TVM+G
Unknown	13,914	GTR+G	GTR
Overall, low genetic divergence occurs in Fagaceae. *Fagus* represents an early diverged group in Fagaceae (Manos et al., 2001), which may result in relatively high genetic divergence between *F. engleriana* and other species. The infrageneric divergence in *Quercus* is comparable to that of inter-generic differentiation in Fagaceae, which was also observed in the studies of Simeone et al. (2016) and Vitelli et al. (2017). As a widely distributed genus, the relatively high inter-specific variation in *Quercus* may be related to the local adaptation to different environments. Recently, adaptive genetic variation of several climate-associated genes in oaks have been detected (Sork et al., 2015; Rellstab et al., 2016).

Fagaceae Phylogeny and The Effects of Codon Composition Bias and Gene Function

The phylogenetic tree based on the 76 shared protein-coding genes receives generally strong support. The closer relationships among genera *Lithocarpus*, *Castanopsis*, and *Castanea* in this study support the taxonomic treatment of insect-pollinated subfamily Castaneoideae, including *Chrysolepis*, *Lithocarpus*, *Castanopsis*, and *Castanea* (Nixon, 1989; Oh and Manos, 2008). Notably, genus *Quercus* has always been resolved as monophyletic in the previous nuclear phylogenies (Oh and Manos, 2008; Denk and Grimm, 2010; Hubert et al., 2014), however, infragenetic groups of *Quercus* do not form one clade in this study (Figure 3). This phenomenon was also observed in previous molecular phylogenies (e.g., Manos et al., 2008; Simeone et al., 2016). In sum, resemblance between nuclear gene tree and plastid tree of genus *Quercus* is lost. Beside the possible reasons mentioned in the introduction (e.g., chloroplast capture, incomplete lineage sorting, and different evolutionary histories of plastid and nucleus), the complex evolutionary history of oaks (Jiménez et al., 2004; Grivet et al., 2006) may also be taken into account.

While the 76 common protein-coding genes dataset generates a highly supported phylogeny, the inference may be an artifact when considering the topology of the genus *Quercus* as inferred from nuclear genes and pollen morphology (Oh and Manos, 2008; Denk and Grimm, 2009, 2010). Thus, we further evaluated the impact of codon composition bias and gene function, which
may have influence on topological structure. Phylogenetic trees derived from the third codon position and five functional categories of protein-coding genes not only fail to resolve all oaks as one clade, but also show conflicting relationships in some clades (with weak-to-moderate support). For the third codon position, so much change has occurred at these sites as they are near neutral (Sueoka, 1988). Thus, the biased inference may be attributed to less historically accurate information provided by these sites (Cox et al., 2014). From the results of the phylogenetic trees based on different gene function datasets, we concluded that a relatively small number of plastid genes did not provide sufficient phylogenetic signal to explore the relationships in this complex and long-lived woody plants. In other words, gene function is not the determining factor that influences Fagaceae phylogenetic inference. Moreover, we also used RY recoding (A and G = R, C and T = Y) to analyze the 76 shared protein-coding genes. However, the recovered tree was not better than the trees obtained on the original dataset or with codon positions 1+2. In particular, the genus Quercus was not monophyletic (data not shown).

Using the first two codon sites dataset, relationships are completely recovered with generally strong support and all oaks form one clade, which is compatible with the more plausible nuclear phylogeny (Oh and Manos, 2008). The first and second codon positions are subject to functional constraints against non-synonymous mutation, because mutations at these positions usually lead to amino acid change. For many phylogenetic analyses, it is common to eliminate the third codon position considering the effect of composition bias (Goremykin et al., 2003; Gibson et al., 2005; Cox et al., 2014). In the phylogenetic tree generated from the dataset considering only the first and second codon sites, F. engleriana is the first to diverge, followed by T. doichangensis, which indicates that they are early-diverging taxa in Fagaceae. This is in agreement with the recent discovery of the oldest known Fagus remains from ca. 60 Ma old sedimentary rocks of western Greenland (Grímsson et al., 2016). Although the phylogenetic tree yields a sister relationship between genus Castanea and genus Quercus, the support values of the node are poor (56% bootstrap value). Thus, we do not conclude that Castanea appears to be more closely related to Quercus than to Castanopsis. Overall, all of the relationships among these genera are nearly identical to those inferred from nuclear data (Oh and Manos, 2008; Denk and Grimm, 2010). In the genus Quercus, based on pollen characteristics and nuclear markers, six major intrageneric groups (Cyclobalanopsis, Cerris, Ilex, Lobatae, Protobalanus, and Quercus) have been identified (Oh and Manos, 2008; Denk and Grimm, 2009, 2010; Hubert et al., 2014). Relationships among Q. rubra, Q. aliena, Q. aliena var. acuteserrata, Q. baronii, Q. dolicholepis, and Q. variabilis in the current study are identical to that in Yang et al. (2016), which were inferred from complete plastid genome sequences and different plastid genome regions (LSC+SSC+IRB, LSC+SSC, LSC, SSC). However, the positions of Q. spinosa and Q. aquifolioides were either unresolved or poorly supported in Yang et al. (2016). Herein, the two species always form a well-supported monophyletic clade and then cluster with group Cyclobalanopsis. Q. baronii, Q. dolicholepis, Q. spinosa and Q. aquifolioides are regarded as members of group Ilex in earlier studies (Denk and Grimm, 2009, 2010; Simeone et al., 2013; Denk and Tekleva, 2014; Hubert et al., 2014), while they do not cluster together in this phylogenetic tree. Q. baronii and Q. dolicholepis appear more closely related to Q. variabilis, which belongs to group Cerris. Based on nuclear genes or plastid markers, Asian species (e.g., Q. pseudosemicarpifolia, Q. semecarpifolia, Q. franchetii sampled from China) in group Ilex were always embedded in group Cerris (Simeone et al., 2013, 2016; Hubert et al., 2014). It is possible that incomplete lineage sorting and introgression cause this scenario. In another cluster, Q. rubra shows closer relationship to Q. aliena and Q. aliena var. acuteserrata (sampled from China). Group Lobatae occurs in New World only and group Quercus occurs both in the Old and New World; the ancestral area of these two groups is North America with dispersal to Asia and then Europe, which may contribute to the widespread distribution of group Quercus (Manos and Stanford, 2001). Previous molecular studies demonstrated that there was generally low genetic differentiation between North American and Eurasian members of group Quercus (Manos et al., 2001; Denk and Grimm, 2010). There were generally closer relationships among New World groups (Lobatae, Protobalanus, and Quercus) based on pollen characteristics and molecular markers, as we found in our study. Certainly, it would be necessary to sample more species to explore the phylogenetic relationships of Quercus in future.

AUTHOR CONTRIBUTIONS

YY and GZ: designed the experiments; YY, JZ, LF, TZ, GB, and JY: performed the experiments and analyzed the data; YY: wrote the paper; All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

We thank Min Deng, Jia Li at Chenshan Botanical Garden and Haijia Chu at Wuhan Botanical Garden for assistance collecting materials. This work was financially supported by the National Natural Science Foundation of China (31770229).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00082/full#supplementary-material

Figure S1 | Fagaceae phylogeny based on ML and BI analyses of the third codon position of protein-coding genes. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.

Figure S2 | Fagaceae phylogeny based on ML and BI analyses of genes belonging to gene expression functional category. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.

Figure S3 | Fagaceae phylogeny based on ML and BI analyses of genes belonging to photosynthetic apparatus functional category. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.
Figure S4 | Fagaceae phylogeny based on ML and BI analyses of genes belonging to photosynthetic metabolism functional category. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.

Figure S5 | Fagaceae phylogeny based on ML and BI analyses of genes belonging to miscellaneous functional category. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.

Figure S6 | Fagaceae phylogeny based on ML and BI analyses of genes belonging to unknown functional category. ML topology shown with bootstrap support values and posterior probability values listed at each node. Dash denotes nodes contradicted by the BI trees with posterior probability values < 0.50.

REFERENCES

Alexander, L. W., and Woeste, K. E. (2014). Pyrosequencing of the northern red oak (Quercus rubra L.) chloroplast genome reveals high quality polymorphisms for population management. Tree Genet. Genomes 10, 803–812. doi: 10.1007/s11295-013-0681-1

Barrett, C. F., Baker, W. J., Comer, J. R., Conran, J. G., Lahmeyer, S. C., Leebens-Mack, J. H., et al. (2016). Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol. 209, 855–870. doi: 10.1111/nph.13617

Barrett, C. F., Davis, J. I., Leebens-Mack, J., Conran, J. G., and Stevenson, D. W. (2013). Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics 29, 65–87. doi: 10.1111/j.1096-0031.2012.04188.x

Bellard, M., Schibeci, D., Trifonov, E., and Gojobori, T. (2001). Early detection of G + C differences in bacterial species inferred from the comparative analysis of the two completely sequenced Helicobacter pylori strains. J. Mol. Evol. 53, 465–468. doi: 10.1007/s002390010236

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucl. Acids Res. 27, 573. doi: 10.1093/nar/27.2.573

Birky, C. W., Maruyama, T., and Fuerst, P. (1983). An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103, 513–527.

Cai, J., Ma, P. F., Li, H. T., and Li, D. Z. (2015). Complete plastid genome sequencing of four Tilia species (Malvaceae): a comparative analysis and phylogenetic implications. PLoS ONE 10:e0142705. doi: 10.1371/journal.pone.0142705

Cai, Z., Guisinger, M., Kim, H. G., Ruck, E., Blazier, J. C., McMurtry, V., et al. (2008). Extensive reorganization of the plastid genome in Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol. Biol. Evol. 25, 2015–2035. doi: 10.1093/molbev/msn082

Cavender-Bares, J., Ackerly, D. D., Baum, D. A., and Bazzaz, F. A. (2004). Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843. doi: 10.1086/386375

Chang, C. C., Lin, H. C., Lin, I. P., Chow, T. Y., Chen, H. H., Chen, W. H., et al. (2006). The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol. Biol. Evol. 23, 279–291. doi: 10.1093/molbev/msi029

Chevreux, B., Pfisterer, T., Drescher, B., Driesel, A. J., Müller, W. E., Wetter, T., et al. (2004). Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res. 14, 1147–1159. doi: 10.1101/gr.197404

Clegg, M. T., Gaut, B. S., Learn, G. H., and Morton, B. R. (1994). Rates and patterns of chloroplast DNA evolution. Proc. Natl. Acad. Sci. U.S.A. 91, 6795–6801. doi: 10.1073/pnas.91.15.6795

Table S1 | Gene differences compared with Quercus baronii.

Table S2 | Summary of average relative synonymous codon usage (RSCU) of the codon usage in the Fagaceae cp genomes. AA, Amino acid; Fe, F. engleriana; Td, T. dochiangensis; Qr, Q. rubra; Qe, Q. spinosa; Qa, Q. aquifoliacae; Qb, Q. baronii; Qal, Q. alena; Qala, Q. alena var. acutesequare; Qv, Q. variabilis; Qd, Q. dolchophloeis; Qg, Q. glauca; Qe, Q. edithiae; Ce, C. echinocarpa; Lb, L. balansae; Cm, C. mollissima; Cp, C. pumila var. pumila.

Table S3 | Repeats distribution.

Table S4 | Protein-coding sequence divergence (K2p) in Fagaceae.
 signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 25, 5907–5924. doi: 10.1111/mec.13889

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Rousseau-Gueutin, M., Bellot, S., Martin, G. E., Boutte, J., Chelaifa, H., Lima, O., et al. (2015). The chloroplast genome of the hexaploid Spartina maritima (Poaceae, Chloridoideae): comparative analyses and molecular dating. 93, 5–16. doi: 10.1016/j.ympev.2015.06.013

Sharp, P. M., and Li, W. H. (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24, 28–38. doi: 10.1007/BF02999498

Shimada, H., and Suguiro, M. (1991). Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucl. Acids Res. 19, 983–995. doi: 10.1093/nar/19.5.983

Simeone, M. C., Grimm, G. W., Papini, A., Vessella, F., Cardoni, S., and Tordoni, E., et al. (2016). Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4:e1897. doi: 10.7717/peerj.1897

Simeone, M. C., Piredda, R., Papini, A., Vessella, F., and Schirone, B. (2013). Application of plastid and nuclear markers to DNA barcoding of Euro-Mediterranean oaks (Quercus, Fagaceae): problems, prospects and phylogenetic implications. Bot. J. Linn. Soc. 172, 478–499. doi: 10.1111/bot.12059

Sork, V. L., Squire, K., Gugger, P. F., Steele, S. E., Levy, E. D., and Eckert, A., J. (2015). Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobate. Am. J. Bot. 103, 33–46. doi: 10.3732/ajb.1500162

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Stegemann, S., Keuthe, M., Greiner, S., and Bock, R. (2012). Horizontal transfer of chloroplast genomes between plant species. Proc. Natl. Acad. Sci. U.S.A. 109, 2434–2438. doi: 10.1073/pnas.1114076109

Sueoka, N. (1988). Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. U.S.A. 85, 2653–2657. doi: 10.1073/pnas.85.8.2653

Sueoka, N., and Kawanishi, Y. (2000). DNA G+C content of the third codon position and codon usage biases of human genes. Gene 261, 53–62. doi: 10.1016/S0378-1119(00)00480-7

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. doi: 10.1093/molbev/msr121

Tangkhatsornruang, S., Sangsiranuk, D., Chanprasert, J., Uthaipisaranwong, P., Yoocha, T., Jomchai, N., et al. (2009). The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res. 17, 11–22. doi: 10.1093/dnares/dsp025

Tepe, E. J., Farruggia, F. T., and Bohs, L. (2011). A 10-gene phylogeny of Solanum section Herpestichum (Solanaceae) and a comparison of phylogenetic methods. Am. J. Bot. 98, 1356–1365. doi: 10.3732/ajb.1000516

Timme, R. E., Kuehl, J. V., Roof, J. L., and Jansen, R. K. (2007). A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am. J. Bot. 94, 302–312. doi: 10.3732/ajb.94.3.302

Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., and Hellsten, U., et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604. doi: 10.1126/science.1128691

Vitelli, M., Vessella, F., Cardoni, S., Pollegioni, P., Denk, T., and Grimm, G. W., et al. (2017). Phylogeographic structuring of plastome diversity in Mediterranean oaks (Quercus Group Ilex, Fagaceae). Tree Genet. Genomes 13:3. doi: 10.1007/s11295-016-1086-8

Wang, R. J., Cheng, C. L., Chang, C. C., Wu, C. L., Su, T. M., and Chaw, S. M. (2008). Dynamics and evolution of the inverted repeat-long single copy junctions in the chloroplast genomes of monocots. BMC Evol. Biol. 8:36. doi: 10.1186/1471-2148-8-36

Weng, M. L., Blazier, J. C., Govindu, M., and Jansen, R. K. (2013). Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats and nucleotide substitution rates. Mol. Biol. Evol. 31, 645–659. doi: 10.1093/molbev/msb257

Wright, F. (1990). The effective number of codons’ used in a gene. Gene 87, 23–29. doi: 10.1016/0378-1119(90)90491-9

Wyman, S. K., Jansen, R. K., and Boone, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255. doi: 10.1093/bioinformatics/bth352

Yang, Y., Zhou, T., Duan, D., Yang, J., Feng, L., and Zhao, G. (2016). Comparative analysis of the complete chloroplast genomes of five Quercus Species. Front. Plant Sci. 7:959. doi: 10.3389/fpls.2016.00959

Yang, Y. C., Zhou, T., Yang, J., Meng, X., Zha, J., and Zhao, G. (2017). The complete chloroplast genome of Quercus baronii (Quercus, L.). Mitochond. DNA 28, 290–291. doi: 10.3109/19401736.2015.1118084

Zeng, Y. F., Liao, W. J., Petit, R. J., and Zhang, D. Y. (2011). Geographic variation in the structure of oak hybrid zones provides insights into the dynamics of speciation. Mol. Ecol. 20, 4995–5011. doi: 10.1111/j.1365-294X.2011.05354.x

Zhang, Y. J., Ma, P. F., and Li, D. Z. (2011). High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS ONE 6:e20596. doi: 10.1371/journal.pone.0020596

Zhu, A., Guo, W., Gupta, S., Fan, W., and Mower, J. P. (2015). Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol. 209, 1747–1756. doi: 10.1111/nph.13743

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Yang, Zhu, Feng, Zhou, Bai, Yang and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.