Research article

ABC transporter FtsABCD of *Streptococcus pyogenes* mediates uptake of ferric ferrichrome

Tracey S Hanks, Mengyao Liu, Michael J McClure and Benfang Lei*

Address: Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana 59717, USA

Email: Tracey S Hanks - thanks@montana.edu; Mengyao Liu - mliu@montana.edu; Michael J McClure - mikemcclure53@hotmail.com; Benfang Lei* - blei@montana.edu

* Corresponding author

Abstract

Background: The *Streptococcus pyogenes* or Group A *Streptococcus* (GAS) genome encodes three ABC transporters, namely, FtsABCD, MtsABC, and HtsABC, which share homology with iron transporters. MtsABC and HtsABC are believed to take up ferric (Fe^{3+}) and manganese ions and heme, respectively, while the specificity of FtsABCD is unknown.

Results: Recombinant FtsB, the lipoprotein component of FtsABCD, was found to bind Fe^{3+} ferrichrome in a 1:1 stoichiometry. To investigate whether FtsABCD transports Fe^{3+} ferrichrome, GAS isogenic strains defective in lipoprotein gene *ftsB* and permease gene *ftsC* were generated, and the effects of the mutations on uptake of Fe^{3+} ferrichrome were examined using radioactive ^{55}Fe^{3+} ferrichrome. FtsB was produced in the wild-type strain but not in the *ftsB* mutant, confirming the *ftsB* inactivation. While wild-type GAS took up 3.6 × 10^4 Fe^{3+} ferrichrome molecules per bacterium per min at room temperature, the *ftsB* and *ftsC* mutants did not have a detectable rate of Fe^{3+} ferrichrome uptake. The inactivation of *ftsB* or *ftsC* also decreased ^{55}Fe^{3+} ferrichrome uptake by >90% under growth conditions in the case of limited uptake time. Complementation of the *ftsB* mutant with a plasmid carrying the *ftsB* gene restored FtsB production and ^{55}Fe^{3+} ferrichrome association at higher levels compared with the parent strain. The inactivation of *mtsA* and *htsA* and Fe-restricted conditions enhanced the production of FtsB and Fe^{3+} ferrichrome uptake.

Conclusion: The FtsB protein bound Fe^{3+} ferrichrome, and inactivation of *ftsB* or *ftsC*, but not *htsA* or *mtsA*, diminished Fe^{3+} ferrichrome uptake, indicating that FtsABCD, but not HtsABC and MtsABC, is the transporter that takes up Fe^{3+} ferrichrome in GAS. Fe acquisition systems are virulence factors in many bacterial pathogens and are attractive vaccine candidates. The elucidation of the FtsABCD specificity advances the understanding of Fe acquisition processes in GAS and may help evaluating the GAS Fe acquisition systems as vaccine candidates.

Background

Ferric iron (Fe^{3+}), the stable iron form in an oxidative environment, has extremely low solubility in water under physiological conditions, and mammalian hosts thus do not have sufficient free Fe^{3+} to support bacterial growth [1]. The major sources of iron in vivo for bacteria are host heme-proteins and other iron complexes [1,2]. Many bacterial pathogens secrete low-molecular-weight iron chelators called siderophores to assimilate iron from host environments [3]. Ferrisiderophores formed are then
transported across the cytoplasmic membrane by specific ATP-binding cassette (ABC) type transporters. ABC transporters consist of a solute-binding protein, a membrane protein (permease) encoded by one or two genes, and an ATPase [4]. The solute-binding proteins are located in the periplasmic space in Gram-negative bacteria and are lipoproteins in Gram-positive organisms. Siderophores can be divided into several types based on chemical structures [3]. Ferrichrome [5] belongs to the hydroxamate type. Streptococcus pyogenes or Group A Streptococcus (GAS) is an important Gram-positive human pathogen causing both invasive and non-invasive infections [6]. Non-invasive infections, including pharyngitis, and post-infection sequelae, such as acute rheumatic fever, rheumatic heart disease, and glomerulonephritis, result in substantial morbidity and economic loss globally. Invasive GAS infections, such as necrotizing fasciitis and streptococcal toxic shock syndrome, are associated with high mortality.

Figure 1

Binding of Fe^{3+} ferrichrome to FtsB. (A) Co-migration of Fe^{3+} ferrichrome with FtsB. FtsB (0.3 ml of 0.18 mM) was incubated with 0.9 mM Fe^{3+} ferrichrome for 20 min at room temperature, loaded onto a Sephadex G-25 column (1.5 × 18 cm), and eluted with 20 mM Tris-HCl buffer, pH 8.0. Eluant was collected as fractions of 0.7 ml. A_{280} and A_{425} of each fraction were used to monitor FtsA and Fe^{3+} ferrichrome, respectively. (B) MtsA, as a control, did not bind Fe^{3+} ferrichrome. The experiment was performed under the conditions as those in panel A. (C) The absorption spectra of the protein peaks (fraction 9) in panel A (solid curve) and panel B (short dashed curve) and free Fe^{3+} ferrichrome (long dashed curve). The three samples contained 46 µM FtsB, 45 µM MtsA, and 100 µM Fe^{3+} ferrichrome, respectively. (D) Co-migration of partially ^{55}Fe-labeled Fe^{3+} ferrichrome with FtsB. Fe^{3+} ferrichrome contained radioactive ^{55}Fe at 1.1% of total Fe^{3+}. A_{280} and ^{55}Fe radioactivity of each fraction are presented.
Iron acquisition processes in GAS are poorly understood, although progress has recently been made by us [10-11] and other groups [12-14]. GAS genomes [15-17] encode three ABC transporters, namely, HtsABC [9-11] or SiaABC [12], MtsABC [13,14], and one encoded by spy0386 [18] (designated FtsABCD), which are homologues of ABC transporters involved in iron acquisition. HtsABC and the cell-surface protein Shp [9-12] are believed to make up the machinery for heme acquisition. The lipoprotein component MtsA of MtsABC binds Fe\[^{3+}\], Zn\[^{2+}\], and Cu\[^{2+}\] [13], and MtsABC is important for acquisition of Mn\[^{2+}\] and Fe\[^{3+}\] [14]. The transcription of ftsABCD is up-regulated under iron-restricted conditions [18]. However, recombinant FtsB was heme-free and did not contain Fe, Mn, or Zn [10]. The specificity of FtsABCD is thus not known. It is not known whether GAS can use ferrisiderophores such as ferrichrome (Fe\[^{3+}\] ferrichrome) as an iron source.

We found that recombinant FtsB bound Fe\[^{3+}\] ferrichrome, suggesting that FtsABCD is involved in the acquisition of Fe\[^{3+}\] ferrichrome. To test this hypothesis, GAS isogenic strains defective in lipoprotein gene ftsC were generated, and the ftsB and ftsC inactivation dramatically decreased the uptake of Fe\[^{3+}\] ferrichrome, indicating that FtsABCD is the transporter that takes up Fe\[^{3+}\] ferrichrome in GAS.

Results

Binding of Fe\[^{3+}\] ferrichrome by FtsB

The specificity of an ABC transporter is believed to depend on the binding specificity of its soluble binding protein. Purified recombinant FtsB did not contain free metal ions, suggesting that FtsABCD does not target free metal ions [10]. To test whether FtsABCD targets ferrisiderophores, the ability of FtsB to bind Fe\[^{3+}\] ferrichrome was examined by gel filtration. FtsB was incubated with excess Fe\[^{3+}\] ferrichrome and separated from free Fe\[^{3+}\] ferrichrome by chromatography on a Sephadex G-25 column. Fe\[^{3+}\] ferrichrome has an absorption peak at 425 nm and its elution profile was monitored by measuring A\[^{425}\] of each fraction. The elution profile displayed two A\[^{425}\] peaks (Fig. 1A). One co-migrated with the FtsB peak, which was localized by A\[^{280}\] and the other corresponded to free Fe\[^{3+}\] ferrichrome (Fig. 1A). When FtsB was replaced with MtsA in a control experiment, there was only one A\[^{425}\] peak corresponding to free Fe\[^{3+}\] ferrichrome, and no absorbance at 425 nm was associated with the protein peak (Fig. 1B). To check whether the species associated with FtsB was Fe\[^{3+}\] ferrichrome, the absorption spectra of the FtsB and MtsA peaks and free Fe\[^{3+}\] ferrichrome were compared. In addition to the protein absorption peak at A\[^{280}\], the FtsB sample had an absorption peak at 425 nm which was identical to that of free Fe\[^{3+}\] ferrichrome (Fig. 1C). As expected, the MtsA sample only had the protein peak (Fig. 1C). These results indicate that FtsB, but not MtsA, bound Fe\[^{3+}\] ferrichrome. The FtsB sample was found to have 1.08 Fe\[^{3+}\] ferrichrome per FtsB molecule on the basis of protein content and extinction coefficient of Fe\[^{3+}\] ferrichrome at 425 nm, indicating a 1:1 binding stoichiometry.

If FtsB binds Fe\[^{3+}\] ferrichrome, Fe\[^{3+}\] should co-migrate with the protein on the G-25 column. To test this idea, Fe\[^{3+}\] ferrichrome containing 1.1% ⁵⁵Fe\[^{3+}\] of total Fe\[^{3+}\] was used to repeat the gel filtration experiment, and ⁵⁵Fe\[^{3+}\] radioactivity was monitored. As expected, one of two ⁵⁵Fe\[^{3+}\] peaks co-migrated with the FtsB peak, and the other peak corresponded to free Fe\[^{3+}\] ferrichrome (Fig. 1D). On the basis of ⁵⁵Fe\[^{3+}\] percentage of total iron and specific activity and protein content, the FtsB peak fraction contained 37 μM FtsB and 36 μM Fe, consistent with the 1:1 binding stoichiometry determined above. These results confirmed that FtsB binds Fe\[^{3+}\] ferrichrome in a 1:1 molar ratio.

Effects of ftsB, ftsC, mtsA, and htsA inactivation on Fe\[^{3+}\] ferrichrome uptake

The binding results described above suggest that FtsABCD can acquire Fe\[^{3+}\] ferrichrome. To test this hypothesis, ftsB, ftsC, and mtsA (control) were first inactivated by insertion inactivation (Fig. 2). Inactivation was confirmed by PCR (Fig. 2C) and DNA sequencing. Western blotting analysis detected FtsB (Fig. 2D) and MtsA (Fig. 2E) in the wild-type strain but not in the corresponding mutant strain. These results indicate that ftsB and mtsA were indeed inactivated. The ftsB, ftsC, mtsA, and htsA mutants (construction of the htsA mutant will be described elsewhere) and parent strains were compared in the uptake of ⁵⁵Fe\[^{3+}\] ferrichrome. Pilot experiments indicated that the wild-type strain could take up ⁵⁵Fe\[^{3+}\] ferrichrome at both room temperature (24 °C) and 37 °C. The uptake was thus performed at room temperature for convenience. GAS cells harvested from exponential growth phase were incubated with 0.16 μM ⁵⁵Fe\[^{3+}\] ferrichrome at room temperature for 1 h, and ⁵⁵Fe\[^{3+}\] radioactivity associated with bacteria was determined. The ftsB and ftsC inactivation diminished the uptake of Fe\[^{3+}\] ferrichrome (Fig. 3), while the mtsA and htsA inactivation did not abolish but enhanced the uptake. To further examine the uptake of Fe\[^{3+}\] ferrichrome, ⁵⁵Fe\[^{3+}\] radioactivity taken up by bacteria as a function of incubation time was determined. ⁵⁵Fe\[^{3+}\] radioactivity with wild-type GAS increased linearly with time up to 30 min with a slope of 153 cpm/min (Fig. 4). The value of the slope could be translated into an uptake...
Figure 2
Insertional inactivation of ftsB, ftsC, and mtsA. (A) Schematic showing the arrangement of ftsABCD genes and their neighbors in the MGAS5005 genome. The ftsA, ftsB, and ftsCD genes encode ATP-binding protein, lipoprotein, and permease, respectively. The numbers above the other arrows are the spy numbers assigned to the corresponding open reading frames in the M1 genome sequence (15). (B) Schematic for insertional gene inactivation. The paired solid or dotted arrows under the mutant genome indicate the locations of primers used to confirm the disruption of the gene using PCR and DNA sequencing. (C) PCR confirmation of insertional inactivation of ftsB, ftsC, and mtsA. The picture shows agarose gel analysis of PCR reactions using mutant (lanes labeled by 1) or wild type (lanes labeled by 2) genomic DNA as template and primers at the locations indicated by the solid arrows under the mutant genome in panel B. (D) Western blot showing the absence of FtsB in the ftsB mutant strain (lane 2) and the presence of FtsB in the wild-type (lane 1) and ftsB/pCMVftsB (lane 3) strains. Proteins from 5×10^8 wild-type cells, 5×10^8 ftsB mutant cells, and 4×10^6 ftsB/pCMVftsB were probed with FtsB-specific mouse antiserum. The amount of ftsB/pCMVftsB cells used was 1/125 of that of the wild-type cells. (E) Western blot showing the presence of MtsA in the wild-type strain (lane1) and the absence of MtsA in the mtsA mutant strain (lane 2). Proteins from 6×10^8 wild-type cells and 3×10^8 mtsA mutant cells were probed with MtsA-specific mouse antiserum.
rate of 3.6 \times 10^4 \text{Fe}^{3+} \text{ferichrome} \text{molecules per min per wild-type GAS bacterium}. In contrast, the \text{ftsB} and \text{ftsC} mutants did not have a detectable rate of \text{Fe}^{3+} \text{ferichrome} uptake (Fig. 4). The rate of uptake in the \text{mtsA} mutant was 2.6 times as that in the parent strain (Fig. 4). These results indicate that \text{FtsABCD}, not \text{MtsABC} and \text{HtsABC}, mediates the uptake of \text{Fe}^{3+} \text{ferichrome}.

Complementation

To test whether the effect of the \text{ftsB} inactivation on the uptake of \text{Fe}^{3+} \text{ferichrome} was due to the absence of \text{FtsB}, a complementing strain, \text{ftsB _mutant/pCMV/ftsB}, was constructed to carry plasmid \text{pCMV/ftsB} with the \text{ftsB} gene. The intensity of \text{FtsB} band of the complemented strain in Western blotting analysis in Fig. 2D was 7/10 of that of the wild-type strain, and the amount of the complemented strain cells used was 1/125 of that of the wild-type cells, indicating that \text{FtsB} was produced in \text{ftsB _mutant/pCMV/ftsB} at a level as 88 times as that in the wild-type strain. Wild-type, \text{ftsB _mutant}, and \text{ftsB _mutant/pCMV/ftsB} cells harvested in the exponential growth phase were incubated with 0.16 \mu M \text{55Fe}^{3+} \text{ferichrome} at 24°C for 1 h, and \text{55Fe}^{3+} \text{radioactivity} associated with the bacteria was determined. \text{55Fe}^{3+} \text{radioactivity} of \text{ftsB _mutant/pCMV/ftsB} was 1.9 and 207 times higher than those of the wild-type and \text{ftsB _mutant} cells, respectively (Fig. 5), suggesting that in trans expression of \text{ftsB} in the \text{ftsB _mutant} restored the association of \text{Fe}^{3+} \text{ferichrome}. The results support that \text{FtsABCD} targets \text{Fe}^{3+} \text{ferichrome}.

Effect of \text{Fe}^{3+} \text{ferichrome} on GAS growth

Since \text{FtsABCD} is involved in the uptake of \text{Fe}^{3+} \text{ferichrome}, \text{Fe}^{3+} \text{ferichrome} should be an iron source of GAS. This idea was tested by comparing GAS growth curves in \text{THY} treated with Chelex 100 to remove metal ions and supplemented with \text{MgCl}_2 (\text{DTHYMg}) in the absence and presence of \text{Fe}^{3+} \text{ferichrome}. The growth curve in the presence of 10 \mu M \text{Fe}^{3+} \text{ferichrome} shifted to the left by about 40 min compared with that in the absence of \text{Fe}^{3+} \text{ferichrome} under otherwise identical conditions. This small but repeatable stimulatory effect suggests that GAS can use \text{Fe}^{3+} \text{ferichrome} as an iron source. \text{Fe}^{3+} \text{ferichrome} had similar stimulatory effect on the growth of the mutants as that on the growth of the wild type strain, suggesting that either residual uptake of \text{Fe}^{3+} \text{ferichrome} in the \text{ftsB} and \text{ftsC} mutants were enough to induce the stimulatory effect or an additional process was involved in the uptake of the iron extracted from \text{Fe}^{3+} \text{ferichrome} under the growth conditions.

Effects of \text{ftsB} and \text{ftsC} inactivations on the uptake of \text{Fe}^{3+} \text{ferichrome under growth conditions

To examine why the stimulatory growth effect of \text{Fe}^{3+} \text{ferichrome} was still observed in the \text{ftsB} and \text{ftsC} mutants, \text{55Fe}^{3+} \text{ferichrome} uptake was examined under growth conditions. \text{55Fe}^{3+} \text{ferichrome} was added into the cultures of wild-type, \text{ftsB}, and \text{ftsC} strains at mid-exponential growth phase, and, 30 min later, \text{55Fe}^{3+} \text{activity} associated with bacteria was determined. \text{55Fe}^{3+} \text{radioactivity} of \text{ftsB} and \text{ftsC} mutant cells were only 7.5% and 5.3% of that of wild-type cells, respectively (Fig. 6A), indicating that the \text{ftsB} and \text{ftsC} inactivation also dramatically diminished uptake of \text{Fe}^{3+} \text{ferichrome} under growth conditions. However, \text{55Fe}^{3+} \text{radioactivity} of \text{ftsB} and \text{ftsC} cells grown for 3 h after the addition of \text{55Fe}^{3+} \text{ferichrome} were about 50% of that of wild-type cells (Fig. 6B). These results suggest that there could be an additional acquisition process which could assimilate \text{55Fe}^{3+} from its ferichrome complex.

Effects of \text{mtsA} and \text{htsA} inactivation and \text{Fe}-restricted conditions on \text{Fe}^{3+} \text{ferichrome uptake and \text{FtsB} production

To further examine the factors to affect \text{Fe}^{3+} \text{ferichrome} uptake, the effects of \text{mtsA} and \text{htsA} inactivation and \text{Fe}-restricted conditions on \text{FtsB} production and \text{Fe}^{3+} \text{ferichrome} uptake were investigated. Inactivation of \text{htsA} and \text{mtsA} increased \text{55Fe}^{3+} \text{ferichrome} uptake by more than 100% (Fig. 7A). Wild-type, \text{htsA}, and \text{mtsA} mutant cells...
Discussion

Evidences from this study indicate that FtsABCD is the transporter that takes up Fe3+ ferrichrome in GAS. The evidences include the binding of Fe3+ ferrichrome to FtsB, the effect of the insertional disruption of ftsB or ftsC on uptake of 55Fe3+ ferrichrome, and the non-involvement of MtsABC and HtsABC in Fe3+ ferrichrome uptake. Complementation data of the ftsB mutant with the ftsB gene expressed in trans indicated that the effect of ftsB inactivation was due to the lack of FtsB. MtsABC [13,14] and HtsABC [9-12] target free Fe3+ and heme, respectively. The specificity of the FtsABCD transporter elucidated in this study resolved the last piece of the puzzle regarding the roles of ABC transporters in Fe acquisition in GAS.

Uptake time was critical to the effects of ftsB and ftsC inactivation on 55Fe3+ activity associated with bacteria under growth conditions. The inactivation had a dramatic effect (>90% decrease in 55Fe3+ activity compared with wild-type strain) when uptake was performed for only 30 min. This decrease was reduced to about 50% when uptake was performed for 3 h. Although the reasons for this reduction are not known, the reduction is unlikely due to the existence of another transporter for Fe3+ ferrichrome. The other uptake results are not consistent with the existence of another Fe3+ ferrichrome transporter. Another possible reason is that 55Fe3+ ferrichrome exchanged its 55Fe3+ with another ferric complex in THY, resulting in a non-ferric complex. The reduction is unlikely due to the existence of another transporter for Fe3+ ferrichrome. The other uptake results are not consistent with the existence of another Fe3+ ferrichrome transporter. Another possible reason is that 55Fe3+ ferrichrome exchanged its 55Fe3+ with another ferric complex in THY, resulting in a non-ferric complex.

The transcription of ftsABCD is up-regulated under Fe-reduced conditions [18]. Consistent with this observation, Fe-restricted conditions enhanced the production of FtsB and uptake of Fe3+ ferrichrome, further supporting the role of FtsABCD in Fe acquisition. Inactivation of htsA and mtsA also enhanced FtsB production and Fe3+ ferrichrome uptake. Apparently, all the three ABC transporters contributed to Fe3+ acquisition in GAS grown in THY, and inactivation of either mtsA or htsA might result in lower intracellular Fe levels and, in turn, enhanced the expression of ftsABCD. The results also suggest that the expression of ftsABCD, htsABC, and mtsABC is coordinately regulated.

Some Enterococcus faecium clinical strains do not produce siderophores but can acquire iron using exogenous siderophores produced by other bacteria living in the same habitats [19]. GAS is not known to produce siderophores, and GAS genomes [15-17] do not have genes encoding homologues of siderphore-production systems. We could not detect siderophore production in GAS under iron-restricted conditions. Therefore, GAS may...
In summary, we found that FtsB bound Fe$^{3+}$ ferrichrome complexes should be available.

Invasive infections because exogenous ferric siderophore is the Fe source, and FtsABCD could be important in non-invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidates. For examples, HtsABC could be more active in GAS will facilitate determination of their relative importance in invasive GAS infection since heme should be more important in various infections and choose appropriate animal infection models to evaluate their efficacy as vaccine candidat

Methods

Materials

Iron chelating agent 2,2'-dipyridyl was obtained from Aldrich. Sephadex G-25, iron-free ferrichrome A from Ustilago sphaerogena, Chelex 100, and other chemicals were purchased from Sigma (St. Louis, MO). 55Fe$^{3+}$-labeled ferric chloride was purchased from RI Consultants LLC (Hudson, NH). Purified recombinant FtsB (Spy0385) and MtsA were prepared as described previously [10,31].

Mouse antisera

Five female outbred CD-1 Swiss mice (4- to 6-week-old) (Charles River Laboratories, Wilmington, MA) were immunized subcutaneously with 50 µg of recombinant FtsB, MtsA, or PGK suspended in 200 µL of saline emulsified in 44 µL of monophosphoryl lipid A-synthetic trehalose dicorynomycolate adjuvant (Corixa, Hamilton, MT). Mice were boosted at weeks 2 and 4. Immune sera were collected 5 days after the second boost.

Bacterial strains and growth

Serotype M1 GAS strain MGAS5005 has been described previously [32]. MGAS5005 and its isogenic mutants were grown routinely at 37°C in 5% CO$_2$ in Todd-Hewitt broth (Difco Laboratories, Detroit, MI) supplemented with 0.2% yeast extract (THY). Spectinomycin (150 mg/L) was added into THY for mutant strains. Iron-restricted conditions were achieved by adding 0.3 mM 2,2'-dipyridyl into THY and by treating THY with the chelating resin Chelex 100 and supplementing it with 0.4 mM MgCl$_2$ (DTHYMg). Tryptose agar with 5% sheep blood (Becton Dickinson, Cockeysville, MD) and THY agar were used as solid media.

Binding of Fe$^{3+}$ ferrichrome to FtsB

Gel filtration was used to detect the binding of Fe$^{3+}$ ferrichrome to FtsB. FtsB (0.3 ml of 0.18 mM) was incubated with 0.9 mM Fe$^{3+}$ ferrichrome for 20 min at room temperature, loaded onto a Sephadex G-25 column (1.5 × 18 cm), and eluted with 20 mM Tris-HCl buffer, pH 8.0. Eluant was collected as fractions of 0.7 ml. The absorbance of each fraction attributable to protein and Fe$^{3+}$ ferrichrome was measured. MtsA as a negative control was similarly tested for the binding of Fe$^{3+}$ ferrichrome. The experiment was repeated with Fe$^{3+}$ ferrichrome in which 1.1% of total Fe$^{3+}$ was 55Fe, and A$_{280}$ and 55Fe$^{3+}$ radioactivity of each fraction were measured. 55Fe$^{3+}$ radioactivity was measured using a window of 0–6 keV with a Packard 1500 Tri-Carb Liquid Scintillation Analyzer.

GAS isogenic mutants

MGAS5005 isogenic mutants defective in $ftsC$, $ftsB$, or $mtsA$ were generated by insertional inactivation (Fig. 2). An internal ~400-bp fragment of each gene was PCR-amplified using MGAS5005 genomic DNA as template and the primers listed in Table 1. The PCR products were digested with NcoI and ligated to pFWaad at the NcoI site to yield suicide plasmids. The orientation of the fragments was determined by DNA sequencing, and the suicide plasmids in which the orientation of the fragments was opposite to that of the aad gene were chosen for generating the mutants. To obtain pFWaad, the spectinomycin-resistant gene aad [33] was amplified with primers 5'–AGTGTC-GACTATAACTAATAACGTAACGTG–3' and 5'–ACCATGGGAATTCTATAATTTTTTTAATCTGTTATTTA–3'.
and cloned into pFW14 [34] at the SalI and NcoI restriction sites.

Each suicide plasmid was introduced into MGAS5005 by electroporation at 1.8 kV and 400 Ω. One ml of THY was added into the sample immediately after electroporation. The sample was incubated at 37°C for 2 h and plated on THY agar plates supplemented with 150 mg of spectinomycin per liter to select insertional mutants. The plates were incubated in 5% CO2 at 37°C for two days, and the colonies obtained were screened by PCR analysis using the primers listed in Table 1. Gene interruptions were then confirmed by sequencing the PCR products.

Construction of ftsB-complementing plasmid pCMVftsB
Plasmid pRS525 [35] was modified to replace the spectinomycin-resistant gene with the chloramphenicol-resistance gene. A 2545-bp fragment without the spectinomycin-resistant gene was amplified from pRS525 with primers 5’-TCGTTGCCATCC AAGCTTCCACGATG-3’ and 5’-AAGAATTCCTGAGATGATAATG-3’. The fragment containing the chloramphenicol-resistant gene was amplified from pFW14 [23] with primers 5’-GGATTCCCGAGATGATAATG-3’ and 5’-GTCGAGATCCTGAGATGATAATG-3’. The PCR products were digested with BamHI and EcoRI and ligated together to yield plasmid pCMV. A DNA fragment containing ftsB and its ribosome-binding site was amplified from MGAS5005 using primers 5’-CGGATCCATAACATATTCTTAGCGAATATG-3’ and 5’-AGGGATCCTGATTATTTCCACTTGATAAGATTG-3’. The PCR product was digested with BamHI and ligated into pCMV at the BamHI site, yielding pCMV/ftsB containing ftsB. The cloned gene was sequenced to rule out spurious mutations and confirm the desired orientation. The resulting pCMV/ftsB was introduced into the ftsB mutant by electroporation, and the complement strain (designated ftsB/pCMV/ftsB) was selected by spectinomycin and chloramphenicol and confirmed for the existence of pCMV/ftsB by colony PCR using primers 5’-CAATTTCACACAGGAAACAGC-3’ (pCMV-specific) and 5’-AGGGATCCTGATTATTTCCACTTGATAAGATTG-3’ (ftsB-specific).

Uptake of Fe3+ ferrichrome by GAS
Fe3+ ferrichrome uptake by GAS was monitored using radioactive 55Fe3+ ferrichrome under non-growth and growth conditions. Under the non-growth conditions, wild-type MGAS5005 and its ftsB, ftsC or mtsA mutant strains were harvested from the mid-exponential growth phase (OD600 of 0.4) by centrifugation. The bacterial pellets were washed with 10 ml of THY and resuspended in 1 ml of THY. To prepare 55Fe3+ ferrichrome working solution, 4.7 nmole 55FeCl3 was incubated with 14.1 nmole Fe-free ferrichrome A in 50 µL of Tris-HCl at 10 min, and the complex was diluted with 22 ml of THY. The 1-ml bacterial suspensions were mixed with 3 ml of the 55Fe3+ ferrichrome solution (final Fe3+ ferrichrome concentration 0.16 µM) to initiate the uptake process and rotated in a 10-ml tube from end to end at room temperature. A triplet of 0.2 ml samples were taken from each mixture at the indicated times, and bacteria were immediately pelleted and washed twice with 0.4 ml of THY. For uptake under growth conditions, 0.16 µM 55Fe3+ ferrichrome was added into the cultures of wild-type, ftsB, and ftsC strains at early exponential or mid-exponential growth phase. A triplet of 1-ml culture samples were taken at the indicated times after the 55Fe3+ ferrichrome addition and treated as described above. The pellets obtained were resuspended in 0.2 ml of THY and mixed with 3 ml of scintillation liq-
Figure 7
Effects of Fe-restricted conditions and mtsA and htsA inactivation on Fe\(^{3+}\) ferrichrome uptake and FtsB production. (A). \(^{55}\text{Fe}^{3+}\) radioactivity uptake by wild-type (wt), ftsB, ftsC, mtsA, and htsA mutant strains grown in THY in the absence (solid bars) or presence (slashed bars) of 0.3 mM 2,2'-dipyridyl. The experiment was performed as in Fig. 3. (B) Western blots showing the relative levels of FtsB and PGK as a control in the strains grown under the same conditions as in panel A. Proteins from \(1 \times 10^8\) bacteria of each strain were probed with mouse anti-FtsB and anti-PGK antisera. The relative levels of FtsB and PGK were obtained by dividing the intensity of each band by the intensity of the FtsB or PGK band of the wild-type strain.
uid. 55Fe$^{3+}$ radioactivity associated with the bacteria was measured as described above.

FtsB and MtsA production

Production of FtsB or MtsA in wild-type and mutant strains was monitored by Western blotting analysis. To prepare samples for the analysis, bacteria were harvested from cultures at the indicated volumes in exponential phase. The bacterial pellets were washed twice with 1.3 ml of PBS, resuspended in 100 µl of PBS, and treated with 200 units of mutanolysin at 37°C for 2 h. The samples were briefly sonicated and mixed with equal volume of 2x SDS-PAGE loading buffer. Proteins in 10 µl of the samples were resolved by SDS-PAGE and transferred to nitrocellulose membranes. The proteins were detected by Western blotting using specific mouse antiserum as previously described [36].

Other procedures and measurements

Chromosomal DNA was isolated with the Puregene DNA isolation kit (Gentra Systems, Minneapolis, MN). Sequence data were obtained with an ABI 310 automated DNA sequencer (Applied Biosystems, Inc., Foster City, CA). Absorbance and optical spectra were obtained with a SPECTRAmax 384 Plus spectrophotometer (Molecular Devices, Sunnyvale, CA). Protein concentrations were determined with the modified Lowry protein assay kit (Sigma, St. Louis, MO) with bovine serum albumin as a standard. Intensities of the bands in Western blotting analysis were determined using an Alphalmager 2000 Documentation & Analysis System (Alpha Innotech Corp.).

Authors’ contributions

TSH carried out the ferric ferrichrome binding assay and the characterization of the GAS isogenic mutants and participated in writing the Methods section. ML generated the GAS isogenic mutants. MJM constructed the plasmid for complementing the ftsB mutant. BL designed the study and drafted the manuscript.

Acknowledgements

This work was supported in part by grants P20 RR-16455 and P20 RR-020185 from the National Center for Research Resources, K22AI057347 from National Institutes of Health, and the Montana State University Agricultural Experimental Station. We thank Dr. Kevin McIver for providing plasmid pJRS525.

References

1. Weinberg ED: Cellular iron metabolism in health and disease. *Drug Metab Dis* 1990, 22:532-579.
2. Otto BR, Verweij-van Vuith AMJJ, MacLaren DM: Transferrins and heme-compounds as iron sources for pathogenic bacteria. *Acta Microbiol* 1992, 18:217-233.
3. Neilands JB: Microbial iron compounds. *Ann Rev Biochem* 1981, 50:715-731.
4. Higgins CF: ABC transporters: From microorganisms to man. *Annu Rev Cell Biol* 1992, 8:67-113.
5. Ecker DJ, Passavant CW, Emery T: Role of two siderophores in *Ustilago sphaerogena*: Regulation of biosynthesis and uptake mechanisms. *Biochim Biophys Acta* 1982, 720:242-249.
6. Cunningham MW: Pathogenesis of group A streptococcal infections. *Clin Microbiol* Rev 2000, 13:470-511.
7. Francis RT JR, Booth JW, Becker RR: Uptake of iron from hemo- globin and the haptoglobin-hemoglobin complex by hemo- lytic bacteria. *Int J Biochem* 1985, 17:767-773.
8. Eichenbaum Z, Muller E, Morse SA, Scott JR: Acquisition of iron from host proteins by group A Streptococcus. *Infect Immun* 1996, 64:5428-5429.
9. Lei B, Liu M, Smoot LM, Menning HM, Voyich JM, Kala SV, DeLeo FR, Musser JM: Identification and characterization of a novel heme-associated cell-surface protein made by *Streptococcus pyogenes*. *Infect Immun* 2002, 70:4494-4500.
10. Lei B, Liu M, Voyich JM, Prater CI, Kala SV, DeLeo FR, Musser JM: Identification and Characterization of HtsA, A Second Heme-Binding Protein Made by *Streptococcus pyogenes*. *Infect Immun* 2003, 71:5962-5969.
11. Liu M, Lei B: Heme transfer from streptococcal cell-surface protein Shp to HtsA of transporter HtsABC. *Infect Immun* 2005, 73:5086-5092.
12. Bates CS, Montanez GE, Woods CR, Vincent RM, Eichenbaum Z: Identification and characterization of a *Streptococcus pyogenes* operon involved in binding of hemoproteins and acquisi- tion of iron. *Infect Immun* 2003, 71:1042-1055.
13. Janulczyk R, Pallon J, Bjorck L: Identification and characterization of a Streptococcus pyogenes ABC transporter with multiple specificity for metal cations. *Mol Microbiol* 1999, 34:596-606.

14. Janulczyk R, Ricci S, Bjorck L: MtsABC is important for manganese and iron transport, oxidative stress resistance, and virulence of *Streptococcus pyogenes*. *Infect Immun* 2003, 71:2656-2664.

15. Ferreretti JJ, McShan WM, Ajdic D, Savic DJ, Savic G, Lyon K, Primeaux C, Sezate S, Suvorov AN, Kenton S, Lai HS, Lin SP, Qian Y, Jia HG, Najar FZ, Ren Q, Zhu H, Song L, White J, Yuan X, Clifton SW, Roe BA, McLaughlin R: Complete genome sequence of an M1 strain of *Streptococcus pyogenes*. *Proc Natl Acad Sci USA* 2001, 98:4658-4663.

16. Smoot JC, Barbarin KD, Van Gompel JJ, Smoot LM, Chaussée MS, Sylva GL, Sturdevant DE, Mackie SM, Porcella SF, Parkins LD, Beres SB, Campbell DS, Smith TM, Zhang Q, Kapur V, Daly JA, Vasey LG, Musser JM: Genome sequence of a serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. *Proc Natl Acad Sci USA* 2002, 99:4668-4673.

17. Beres SB, Sylva GL, Barbarin KD, Lei B, Hoff JS, Mannarella ND, Liu M, Smoot JC, Porcella SF, Parkins LD, McCormick JK, Leung DYM, Schlievert PM, Musser JM: Genome sequence of a serotype M1 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. *Proc Natl Acad Sci USA* 2002, 99:10078-10083.

18. Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Miglacci CA, Sylva GL, Musser JM: Global differential gene expression in response to growth temperature alteration in group A *Streptococcus*. *Proc Natl Acad Sci USA* 2001, 98:10416-10421.

19. Szarapinska-Kwaszewska J, Mikucki J: Utilization of exogenous siderophores by enterococci. *Med Dosw Mikrobiol* 2001, 53:233-243.

20. Viswanathan VK, Edelstein PH, Pope CD, Cianciotto NP: The *Legionella pneumophila* igaAB locus is required for iron assimilation, intracellular infection, and virulence. *Infect Immun* 2000, 68:1069-1079.

21. Velayudhan J, Hughes NJ, McColm AA, Bagshaw D, Clayton CL, Andrews SC, Kelly DJ: Iron acquisition and virulence in *Helicobacter pylori*: a major role for FeoB, a high affinity ferrous iron transporter. *Mol Microbiol* 2000, 37:274-286.

22. Takase H, Nitanai H, Hoshino K, Otani T: Complete genome sequence of an M1 strain of *Streptococcus pyogenes*. *Infect Immun* 2003, 71:62 http://www.biomedcentral.com/1471-2180/5/62