EFFECT OF ADJUNCTIVE USE OF LOCAL SIMVASTATIN AND CHITOSAN BASED SIMVASTATIN ON GCF LEVELS OF NETRIN-1 AND ITS RECEPTOR UNC5B IN PERIODONTITIS

Sarah Yasser¹, Azza A. El Baiomy², May Mohamed Bilal³, Farid Badria⁴, Mohamed Mahmoud Anees⁵ and Jalil M. Youssef⁶

1. BDS, Faculty of Dentistry, Mansoura University, Egypt.
2. Professor of Clinical Pathology, Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Egypt.
3. Assistant Professor of Oral Medicine and Periodontology, Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry; Mansoura University; Staff Member in Sinai University, Egypt.
4. Professor of Pharmacognosy, Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University.
5. Associate Professor of Oral Medicine and Periodontology, Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Egypt.
6. Professor of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Department of Oral Medicine, Periodontology, Diagnosis and Oral Radiology, Faculty of Dentistry, Mansoura University, Egypt.

Background: Netrin was believed to have a regulating role on the inflammatory reaction via its receptor UNC5B. Thus, it takes apart in bone destructive diseases. Periodontitis represent a localized inflammatory bone destructive disease, so Netrin-1 could be involved in anti-inflammatory regulation of periodontitis. However, to the best of our knowledge, few studies were available in the literature assessing the role of Netrin-1 in periodontal health and disease.

Aim: The present study was designed to assess GCF Netrin-1 and its receptor UNC5B levels in health and disease of periodontal tissues and evaluate effect of using simvastatin gel 1.2% as well as chitosan based simvastatin gel 1.2% as an adjunct to SRP on their levels.

Patients and methods: The study design included 10 periodontally healthy subjects in addition to 45 systemically healthy stage II periodontitis patients divided equally into three groups and treated by: SRP, SRP+simvastatin gel 1.2% and SRP-chitosan-based simvastatin gel 1.2% (positive control & two study groups respectively). At baseline periodontal parameters were recorded and GCF sampling was performed for all participants and after treatment for periodontitis patients. Netrin-1 and its receptor UNC5B levels were assessed by enzyme-linked immunosorbent assay.

Results: Periodontal indices at baseline in periodontitis groups showed significant improvement after treatment compared to its values at baseline. In both study groups, all periodontal parameters were significantly higher versus positive control group. At baseline, GCF levels of netrin-1 and its receptor UNC5B were significantly lower in...
periodontitis patients versus healthy controls baseline and increased significantly after receiving different treatment modalities. **Conclusion:** Local simvastatin gel 1.2% or chitosan based simvastatin gel 1.2% as adjunct with SRP is effective in management of stage II periodontitis. Netrin-1 promotes inflammation resolution in periodontitis.

Introduction:

The pathogenesis of periodontitis is inflammatory, originated by bacteria of the oral biofilm. The damage of periodontal tissue is deteriorated by persistent inflammation and dysbiosis. The therapeutic scaling and root planing (SRP) success is limited in cases involving severe periodontitis and inaccessible areas. Thus, various supplementary pharmaceutical therapy such as anti-inflammatory drugs, antibiotics, bisphosphonates and statins enhances the therapeutic outcome.

Statins are lipid-lowering drugs. This pharmacologic group also possess pleiotropic effects due to their antibacterial, anti-inflammatory, immunomodulatory and antioxidative properties. This group also have anabolic effects on the bone by enhancing bone morphogenetic protein-2 expression, thus promoting the differentiation and activation of osteoblasts. Therefore regarding their advantageous properties, statins are presented as helpful agents for enhancement of periodontal therapy outcome.

Chitosan is the deacetylated form of chitin. It is a linear polymer of N-acetyl-D-glucosamine and deacetylated glucosamine that shares some properties of hyaluronic acid and glycosaminoglycan. Chitosan interferes with dental biofilm by interactions between its positive charged free amino groups and the anionic parts of the bacterial cell wall, thus inhibiting bacterial aggregation.

Gingival crevicular fluid is considered a critical diagnostic measure in periodontitis. Its significance arise from its proteins and peptides contents which arise from the host inflamed tissues. The GCF biomarkers incorporate host derived enzymes such as elastase, matrix metalloproteinases, aspartateaminotransferase and betaglucuronidase. Inflammatory mediators and products such as prostaglandin E2, interferon-α, substance-P, tumor necrosis factor-α, cytokines and monocyte chemoattractant protein are present in GCF. It also, includes bone turnover markers such as alkaline phosphatase, cathepsin B, osteocalcin and collagen.

Netrins described in human kind are a class of extracellular, laminin-like proteins, including netrin-1, netrin-3, and netrin-4, and dual glycosylphosphatidylinositol-attached membrane peptides (Netrin G1 and G2). Netrin-1 is specified as a neuroimmune guidance cue throughout developing the nervous system. This molecule performs a critical task in guiding axons to its objective through engagement with one of its main receptor uncoordinated (UNC) 5 family members: UNC5A, UNC5B, UNC5C, and UNC5D. Over the past decade, netrin-1 has been involved in various physiological responses and additional functions ranging from angiogenesis to inflammation and UNC5B is the only netrin-1 receptor which is mainly expressed in the vascular system such as, human monocytes, granulocytes, and lymphocytes.

The participation of the nervous system to inflammation is more than vasodilatation and immune-cell recruitment. Some neuropeptides are synthesized and released from inflammatory cells in cases of pathological conditions, where they act on a local level by means of receptors on other neurons or immune cells. The action, differentiation and survival of nerve cells can be regulated by cytokines and other products of immune cells. Existence of communication between the neurological and immune systems is suggested by the identification of GCF neuropeptide and its receptors on immune cells, which may lead to regulation of the inflammatory response. Thus the nervous system is considered as an essential regulator of inflammation in periodontal diseases. Therefore the aim of this study was to evaluate of the effect of local gel application (simvastatin gel 1.2% and chitosan based simvastatin gel 1.2%) on the level of GCF netrin-1 and UNC5B in treatment of stage II periodontitis.
Patients and Methods:

This research was approved by the Dental Research Ethics Committee, Faculty of Dentistry, Mansoura University (A14071221). Verbal information and written consents were performed for all participants in the present study. Fifty-five systemically healthy individuals, were selected from the Periodontology Clinic, Faculty of Dentistry, Mansoura University after comprehensive medical and dental histories.

The study individuals included 45 patients with periodontitis (mean age 37 ± 7.9) and 10 periodontally clinically healthy controls (mean age 42.5 ± 9.3). The patients were selected according to stage and extent of periodontitis following the new classification scheme. Stage II generalized periodontitis patients were included in the study; interdental CAL=3-4 mm at site of greatest loss; PPD ≤ 5 mm and radiographic bone loss involving the coronal third of root (15-33 %). Periodontally healthy individuals had no pockets, no radiographic bone loss, good and gingival index<1.

Included patients were over 20 years age and had at least 20 natural teeth (excluding third molar). The patients were excluded if they were smokers or with history of smoking; had any diagnosed medical illness that could affect the periodontal condition; subjected to antibiotics, nonsteroidal anti-inflammatory or any other drugs; pregnant or lactating, having serum CRP >5 mg/L, received periodontal treatment or requiring endodontic or orthodontic therapy.

Study Design and treatment phases:

The study design included four groups consisting of two control and two study groups. The control groups were classified into Group I, comprised 10 periodontally healthy individuals as a negative control, and Group II comprised 15 periodontitis patients managed by SRP only as a positive control. Whereas, the study groups were Group III comprised 15 periodontitis patients treated by SRP followed by local delivery of simvastatin gel 1.2 %, and Group IV comprised 15 periodontitis patients treated by SRP followed by local delivery of chitosan based simvastatin gel 1.2 %. All periodontitis patients were not informed about which group they belong to as it was performed by another masked examiner.

Clinical indices; including PI, GI, PPD and CAL were recorded for the four groups at baseline and six weeks after treatment for the three periodontitis groups by the same examiner. Concerning PI and GI, the mean score of each tooth was obtained by summation of the four scores per tooth and calculating one-fourth. The index score for each subject was obtained by summation of the index scores per selected teeth (stage II periodontitis) and division of their sum by the number of teeth examined. For both PPD and CAL, measured at six sites per tooth using a manual periodontal probe (Unc15, Hu-Friedy). The mean score of each tooth was obtained by summation of the six scores per tooth and calculating one-sixth. The index score of the person was obtained by adding scores per teeth and division of the sum by the number of examined teeth.

The nonsurgical periodontal treatment, for periodontitis patients in groups II, III and IV, included meticulous full mouth SRP using ultrasonic scaler (Cavitron select, Dentsply) and hand specific Gracey curettes (Gracey curettes, Hu-Friedy). This step was repeated weekly if indicated and good oral hygiene measures were clarified to the patients throughout the study period.

Additionally, the selected periodontal pockets in patients in group III were additionally injected with simvastatin gel 1.2% using plastic syringe with a needle of a flexible large gauge to facilitate easy and effective gel application. The injection started from the base of the pocket top word slowly to ensure that the gel reached the pocket depth. Whereas, in group I patients, pockets were injected with chitosan based simvastatin gel 1.2% in the same manner. Patients in these groups received the same oral hygiene measures instructions starting from 24 hrs after gel application which was repeated once weekly for six weeks. The gel was prepared in the Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University in September 2020 using Carbopol-940, hydroxypropyl methylcellulose, simvastatin, chitosan and triethanolamine (Sigma –Aldrich, St. Louis, USA) in addition to propylene glycol and sodium benzoate (EL Nasr Company, Egypt).

Collection of Gingival crevicular fluid (GCF)

Prior to sample collection, the supragingival plaque was carefully removed and teeth cleaned from any debris or blood by washing with water spray. The selected sites to be sampled were isolated with cotton rolls and gently air dried. One GCF sample was obtained from all participants at baseline. Another GCF sample was obtained after
treatment in periodontitis patients. GCF samples contaminated with blood were discarded. GCF samples were then placed into sterile Eppendorf tubes containing 100 µl phosphate buffer pH 7.4 and stored immediately at -80°C till time of analysis. Netrin 1 and Netrin-1 receptor UNC5B were assayed by sandwich ELISA supplied by Bioassay technology laboratory (China) according to manufacturer instructions.

Results:-
The current study was a randomized clinical trial carried out on fifty-five individuals (38 females and 17 males). Study subjects were age and gender matched. The age of the selected individuals ranged from 35 to 50 years with mean age 37±7.9, 41.5±6, 42.5±9.3 and 42.5±10.6 in groups I, II, III and IV, respectively. No untoward side effects were recorded by patients, from using either simvastatin gel 1.2% chitosan based simvastatin gel 1.2%, during the whole period of the study.

Table (1):- Comparison of the clinical parameters in the studied periodontitis groups at baseline and after six weeks:

Clinical Parameters	Group II	Group III	Group IV	P value	
PI	T0	2.49±0.18	2.53±0.23	2.32±0.22	0.036
	T1	0.83±0.12	0.79±0.14	0.78±0.12	
Comparison of Groups at T1	P1=0.808	P2=0.714	P3=0.984		
GI	T0	1.76±0.18	1.79±0.15	1.78±0.14	0.884
	T1	1.16±0.20	0.37±0.07	0.36±0.06	
Comparison of Groups at T1	P1<0.001*	P2<0.001*	P3=0.979		
PPD	T0	3.54±0.24	3.5±0.25	3.42±0.23	0.455
	T1	2.51±0.20	1.71±0.20	1.69±0.20	
Comparison of Groups at T1	P1<0.001*	P2<0.001*	P3=0.983		
CAL	T0	2.67±0.23	2.65±0.32	2.73±0.21	0.713
	T1	2.27±0.20	1.48±0.23	1.45±0.19	
Comparison of Groups at T1	P1<0.001*	P2<0.001*	P3=0.910		

PI: Plaque Index, GI: Gingival Index, PD: Probing Pocket Depth, CAL: Clinical Attachment Level. T0: baseline, T1: after six weeks. P: p value
P1: comparison of group II with group III, P2: comparison of group II with group IV, P3: comparison of group III with group IV.
*: Statistically significant difference at P < 0.05

Regarding the clinical parameters, the mean values and standard deviations of these parameters in the treated groups of periodontitis patients were shown in table (1). There were no statistically significant differences in these parameters between the treated groups of periodontitis patients at baseline, except in the PI.

Additionally, there was no statistically significant difference in the PI between the different treated groups six weeks later. On the other hand, inter-groups comparisons of GI, PPD and CAL showed statistically significant differences between group II and each of group III (P1) and group IV (P2) at P values < 0.001. However, there were no statistically significant differences in GI, PPD and CAL between groups III and IV after treatment.

Table (2):- GCF levels of Netrin-1 in all studied groups at baseline and after six weeks.

Netrin-1	Group I	Group II	Group III	Group IV		
Mean±SD						
T0	28.5±1.05	12.3±0.65	12.3±0.67	12.3±0.79		
T1	28.5±1.05	21.6±0.72	23.4±0.84	26.4±1.27		
P value	P1	P2	P3	P4	P5	P6
T0	<0.001*	<0.001*	<0.001*	1	1	1
The mean values and standard deviations of the GCF levels of netrin-1 in all studied groups at baseline and after six weeks were shown in Table (2). The level of netrin-1 was higher in group I of healthy subjects than other groups of periodontitis patients at the baseline. In those patients, the GCF concentrations of Netrin-1 were increased after receiving different treatment modalities according to their groups, however, its level was significantly less than those of the healthy subjects.

Inter-group comparisons before and after treatments were also shown in Table (1). There were statistically significant differences between group I and each of group II (P1), group III (P2), and group IV (P3) at P value ≤ 0.001 before and after treatments. Regarding the groups of periodontitis patients, there were no statistical significant differences between patients of group II and those of either group III (P4) or group IV (P5) at baseline (P value = 1). Moreover, there was no statistically significant difference was present between patients of group III and those of group IV (P6 = 1) before the treatment.

However, there was a statistically significant difference between patients of group II treated by SRP and those of group III who received adjunctive local 1.2% simvastatin gel at P = 0.004. Additionally, the concentrations of GCF Netrin-1 was statistically higher in patients of group IV who received chitosan based 1.2% simvastatin gel than those of group II (P5) and group III (P6) at P < 0.001.

Considering Netrin-1 receptor UNC5B, healthy subjects had significantly higher GCF levels than the other groups of periodontitis patients before treatment at P value ≤ 0.001, as shown in Table (3). Furthering, no significant difference was present between the healthy subjects of group I and patients of group IV (P3 = 0.961). After six weeks of treatment, the level of UNC5B was increased in all treated groups regardless of the treatment received. Group I level was significant higher versus both group II (P1 = 0.018) and group III (P2 = 0.046). Meanwhile, no significant difference was present between group II (SRP) and group III (SRP + simvastatin gell.2%) at P4 = 0.915. Group IV (SRP +chitosan basedsimvastatin gell.2%) was significantly higher versus each of group II (P5 = 0.017) and group III (P6 = 0.047). On the other hand, no significant difference was present between the healthy subjects of group I and patients of group IV (P3 = 0.961).
Statistically significant differences were found regarding intra-group comparisons of the Netrin-1 and Netrin-1 receptor UNC5B concentrations and also all the clinical parameters in each of group II, III and IV at the base line and after six weeks of treatment (data not shown).

There was no significant correlation between the levels of netrin-1 and netrin-1 receptor with all the clinical parameters before and after treatment in group II. However, there was a significant positive correlation between the total concentration of netrin-1 and PPD at base line in group III. Regarding group IV, there were a significant negative correlation between netrin-1 receptor amount and PI before treatment and a significant positive correlation between netrin-1 concentration and GI after treatment. Furthermore, there were significant negative correlations between levels of netrin-1 and each of the GI, PPD and CAL after treatment and also between levels of netrin-1 receptor and the GI only six weeks later (data not shown).

Discussion:

Initial periodontal therapy, including subgingival debridement is considered an important clinical impact. However, SRP is not free of limitations. Therefore, local and systemic adjunct therapies were tested. However, better compliance, less side effects and hazard of developing bacterial resistance to medications were reported with local treatment in comparison with drugs used systemically.

Regarding the values of PI, GI, PPD and CAL at baseline, no significant difference was found between positive control (SRP) and study groups (SRP+1.2%simvastatin&SRP+chitosan based 1.2%simvastatin) except in the PI. After six weeks of SRP, positive control and both study groups showed significant improvement in all periodontal parameters, compared to its values at baseline while there was no statistically significant difference in the PI between the different treated groups with repeated oral hygiene measures motivation. Meanwhile, all periodontal parameters of both study groups were improved significantly versus positive control group while there was no significant difference was found between both study groups.

Furthermore, our results were in consistence with the study performed by Colombo et al. They reported that SRP with repeated oral hygiene measures motivation, resulted in significant improvement of periodontal parameters. Moreover, it came on the same line with the meta-analysis and systematic review performed by Ambrósio et al., Shah et al., Bertl et al. and Khoder el al. They reported better enhancement in periodontal parameters of study group after locally applied statins as adjunct to SRP versus control group treated by SRP only.

Plaque control and SRP, result in an enormous depletion of periodontal burden and reestablishment of a healthy compatible microbiota which clinically reflected by improvement in the clinical periodontal parameters. Furthermore, the superior results of both study groups could be illustrated by the fact that statins influence the severity of periodontitis. It suppresses adhesion and extravasation of leukocytes in inflamed locations resulting in declining co-stimulation of T cells and reducing IL-1β, IL-6 and TNF-α. It also has anti-inflammatory effect and inhibit major histocompatibility complex class II (MHC-II) molecules, which are involved in the activation of T-lymphocytes and antigen presentation.

Despite the non-significant difference, the superiority in the therapeutic outcomes noted among group IV than those of group III could be explained by the additional benefit obtained from using chitosan as base for SMV which exhibits excellent tissue wetting properties, biocompatibility, biodegradability, hemostatic activity, in addition to the antimicrobial action, especially toward *Porphyromonas gingivalis* and *Aggregatibacter actinomycetemcomitans*. It intensifies the recovery of connective tissue, angiogenesis, and bone formation. Also it promotes the productivity of platelet derived growth factor and transforming growth factor β1 and inhibits the overproduction of prostaglandin E2.

Regarding netrin-1and netrin-1 receptor UNC5B in GCF at baseline, there was a noticed reduction in periodontitis patients compared to controls, where no statistically significant difference was present between the three periodontitis groups. However, the level of netrin-1and netrin-1 receptor UNC5B were significantly increased after treatment in all treated periodontitis groups, but still significantly less than those of healthy subjects. Meanwhile, Netrin-1level was statistically higher in group IV (SRP+chitosan based simvastatin gel1.2%) than both group III(SRP+simvastatin gel1.2%) and group II(SRP) and it was statistically higher in group III than group II. Regarding Netrin-1 receptor UNC5B after treatment, its level was significantly higher in group I (healthy) and group IV (SRP+chitosan based simvastatin gel1.2%) versus both of group II (SRP) and group III.
SRP+simvastatin gel1.2%). On the other hand, no statistically significant difference was present between groups I & IV and between groups II &III. The present study results confirmed a previous study results performed by some research team members (in press).

Tadagavadi et al. and Ly et al., explained these results be by the ability of netrin-1 to suppress the leukocytes migration through UNC5B receptor mediated increase in cAMP and inhibition of chemotaxis in vivo and in vitro. Their results were also in agreement with Rosenberger et al., Mirakaj et al. and Mirakaj et al. They reported that netrin-1 administration to mice suppressed inflammation by suppression of the production of inflammatory cytokines and chemokines. Besides, a study performed by Ranganathan et al. also reported that netrin-1 regulate the inflammatory response of neutrophils & macrophages through suppression of COX2 mediated PGE2 production.

The results of the present study were in contrary to Gunpinar et al. results regarding the GCF levels of netrin-1; they assessed samples of serum, whole saliva and GCF taken from systemically healthy, nonsmoking 20 periodontitis and 20 periodontally healthy subjects at baseline and four weeks after non-surgical periodontal therapy. Meanwhile came in agreement with their results regarding the serum and saliva levels of netrin-1 at both baseline as well as post treatment. However, the lack of agreement in both GCF sample results could be due to the difference in the laboratory techniques used, sampling sizes collected, study populations status and severity and the short time of follow up, while the agreement between their results regarding serum sample and our GCF sample could be theoretically explained by the fact that main serum is the source of GCF.

However, to the best of our knowledge, few studies assessing the role of netrin-1 and its receptors in periodontitis populations were available, so the conflict between Gunpinar et al. results and our results require more controlled clinical trials to clarify the pathway that is regulated by Netrin-1/UNC5B axis and elucidate its potential for diagnosis and treatment of periodontal disease.

References:

1. KinaneDF, StathopoulosPG, and PapapanouPN: Periodontal diseases. Nature Reviews Disease Primers2017;3:17038.
2. CekiciA, KantarcıA, HasturkH, vanDykeTE: Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000.2004;64(1):57–80.
3. OlsenI, LambrisJD, HajishengallisG. Porphyromonas gingivalis disturbs host–commensal homeostasis by changing complement function. Journal of Oral Microbiology2017;9(1):1340085.
4. CobbCM: Clinical significance of non-surgical periodontal therapy: an evidence-based perspective of scaling and root planning. Journal of Periodontal Therapy2002;29(2):22–32.
5. AgossaK, MorandDN, TenenbaumH, DavideauJL, and HuckO: Systemic application of anti-inflammatory agents in periodontal treatment. Clinical Anti-Inflammatory & Anti-Allergy Drugs2016;2(1):3–13.
6. AkramZ, AbduljabbarT, KellesarianSV, Abu HassanMI, JavedF, VohraF: Efficacy of bisphosphonate as an adjunct to nonsurgical periodontal therapy in the management of periodontal disease: a systematic review. British Journal of Clinical Pharmacology2017;83(3):444–454.
7. AlshammariA, PatelJ, Al-HashemiJ, Cai B, Panek J, Huck O, Amar S: Kava-241 reduced periodontal destruction in a collagen antibody primed Porphyromonas gingivalis model of periodontitis. Journal of Clinical Periodontology2017;44(11):1123–1132.
8. GokhaleSR, PadhyeAM: Future prospects of systemic host modulatory agents in periodontal therapy. British Dental Journal2013;214(9):467–471.
9. Martin-CabezasR, DavideauJL, TenenbaumH, HuckO: Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. Journal of Clinical Periodontology2016;43(6):520–530.
10. EstanislauIMG, TerceiroIRC, LisboaMRP, Teles P deB, Carvalho R de SC, Martins RS, MoreiraMMSM: Pleiotropic effects of statins on the treatment of chronic periodontitis - a systematic review. British Journal of Clinical Pharmacology2015;79(6):877–885.
11. MargaritisM, SannaF, and AntoniadesC: Statins and oxidative stress in the cardiovascular system. Current Pharmaceutical Design2017;23(46):7040–7047.
12. SakodaK, YamamotoM, NegishiY, LiaoJK, NodeK, IzumiY: Simvastatin decreases IL-6 and IL-8 production in epithelial cells. Journal of Dental Research2006;85(6):520–523.
13. WhitakerE. J. and AlshammariA. Bacteriostatic effect of simvastatin on selected oral streptococci in vitro, Contemporary Clinical Dentistry2017;8(1):59–63.
14. Zeiser R. Immune modulatory effects of statins. Immunology 2018;154(1):69–75.
15. Zhou H, Xie Y, Baloch Z, Shi Q, Huo Q, and Ma T. The effect of atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor (HMG-CoA), on the prevention of osteoporosis in ovariectomized rabbits. Journal of Bone and Mineral Metabolism 2017;35(3):245–254.
16. Cicek A, Ilarslan Y, Erman B. Statins and IL-1β, IL-10, and MPO levels in gingival crevicular fluid: preliminary results. Inflammation 2016;39(4):1547–1557.
17. Pradeep A, Garg V, Kanoriya D, and Singh A. 1.2% rosuvastatin versus 1.2% atorvastatin gel local drug delivery and redelivery in treatment of intrabony defects in chronic periodontitis: a randomized placebo-controlled clinical trial. Journal of Periodontology 2016;87(7):756–762.
18. Suh JK, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–2598.
19. Ikinci G, Senel S, Akinçibay H, et al. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm. 2002;235(1-2):121–127.
20. Liljemark WF, Bloomquist CG, Germaine GR. Effect of bacterial aggregation on the adherence of oral streptococci to hydroxyapatite. Infect Immun. 1981;31(3):935–941.
21. AlRowis R, AlMoharib HS, AlMubarak A, Bhaskardoss J, Preethanath RS, Anil S. Oral fluid-based biomarkers in periodontal disease – Part 2. Gingival crevicular fluid. J Int Oral Health JIOH. 2014;6(5):126.
22. Kinney JS, Ramseyer CA, Giannobile WV. Oral Fluid-Based Biomarkers of Alveolar Bone Loss in Periodontitis. Ann N Y Acad Sci. 2007 Mar 1;1098(1):230–51.
23. Ranganathan P, Jayakumar C, Navakkasattusas S, Li DY, Kim IM, Ramesh G. UNC5B receptor deletion exacerbates tissue injury in response to AKI. Journal of the American Society of Nephrology 2014;25(2):239–249.
24. Dun XY, Parkinson D: Role of Netrin-1 signaling in nerve regeneration. International Journal of Molecular Sciences 2017;18:3;491.
25. Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science. 1996;274(5290):1123–1133.
26. Barallobre MJ, Pascual M, Del Rio JA, Soriano E. The Netrin family of guidance factors: emphasis on Netrin-1 signalling. Brain Res Brain Res Rev. 2005;49(1):22–47.
27. Lin Z, Jin J, Bai W, Li J, Shan X. Netrin-1 prevents the attachment of monocytes to endothelial cells via an anti-inflammatory effect. Mol Immunol. 2018;103:166–172.
28. Metwali A, Blum AM, Ferraris L, Klein JS, Fiocchi C, Weinstock JV. Eosinophils within the healthy or inflamed human intestine produce substance P and vasoactive intestinal peptide. J Neuroimmunol. 1994;52:69–78.
29. Hoyle CHV. Neuropeptides, essential data. Chichester, UK: John Wiley & Sons Ltd; 1996.
30. Oprea A, Kress M. Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci. 2000;20:6289–6293.
31. Hartung HP, Wolters K, Toyka KV. Substance P: binding properties and studies on cellular responses in guinea pig macrophages. J Immunol. 1986;136:3856–3863.
32. McGillis JP, Humphreys S, Reid S. Characterization of functional calcitonin gene-related peptide receptors on rat lymphocytes. J Immunol. 1991;147:3482–3489.
33. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–859.
34. Caton JG, Armitage G, Berghlund T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions – introduction and key changes from the 1999 classification. J Periodontol. 2018;89(Suppl 1):S1–S8.
35. Papapanou PN, Sanz M, Buduneli N, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Periodontol. 2018;89(Suppl1):S173–S182.
36. Makino A, Yamada S, Okuda K, Kato T. Nicotine involved in periodontal disease through influence on cytokine levels. FEMS Immunol Med Microbiol. 2008;52(2):282–286.
37. Manouchehr-Pour M, Spagnuolo PJ, Rodman HM, Bissada NF. Comparison of neutrophil chemotactic response in diabetic patients with mild and severe periodontal disease. J Periodontol. 1981;52(8):410–415.
38. Slots Jø, Ting M. Systemic antibiotics in the treatment of periodontal disease. Periodontol 2000. 2002;28(1):106–176.
39. Lieff S, Boggess KA, Murtha AP, Jared H, Madianos PN, Moss K, et al. The oral conditions and pregnancy study: periodontal status of a cohort of pregnant women. J Periodontol. 2004;75(1):116–126.
40. Gunjiganur Vemanaradhy G, Emani S, Mehta DS, Bhandari S. Effect of 1.2% of simvastatin gel as a local drug delivery system on Gingival Crevicular Fluid interleukin-6 & interleukin-8 levels in non surgical treatment of chronic periodontitis patients. Arch Oral Biol. 2017 Oct;82:55-61.
41. Silness J, Löe H. Periodontal disease in pregnancy II. Correlation between oral hygiene and periodontal condition. Acta odontologica Scandinavica. 1964;22(1):121-35.
42. O'Leary T. The periodontal screening examination. The Journal of Periodontology. 1967;38(6P2):617-24.
43. Ramfjord SP. The periodontal disease index (PDI). The Journal of Periodontology. 1967;38(6P2):602-10.
44. Beck JD, Elter JR. Analysis strategies for longitudinal attachment loss data. Community Dentistry and Oral Epidemiology. 2000;28(1):1-9.
45. Kunimatsu K, Mataka S, Tanaka H, Mine N, Kiyoki M, Hosoda K, et al. A cross-sectional study on osteocalcin levels in gingival crevicular fluid from periodontal patients. J Periodontol. 1993;64(9):865-869.
46. Badersten A, Nilvéus R, Egelberg J. Effect of nonsurgical periodontal therapy. I. Moderately advanced periodontitis. Journal of Clinical Periodontology. 1981;8:57-72.
47. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. Journal of Clinical Periodontology. 2018;45(Suppl 20):S149-S161.
48. Graziani F, Karapetsa D, Alonso B, Herrera D. Nonsurgical and surgical treatment of periodontitis: How many options for one disease? Periodontol 2000. 2015;79(6):877-885.
49. Rams TE, Slots J. Local delivery of antimicrobial agents in the periodontal pocket. Periodontology 1996;10:139–159.
50. Colombo APV, Teles RP, Torres MC, Rosalém Jr W, Mendes MCS, Souto RM, et al. Effects of non-surgical mechanical therapy on the subgingival microbiota of Brazilians with untreated chronic periodontitis: 9-month results. J Periodontol. 2005;76(5):778–784.
51. Ambrósio LMB, Rovai ES, Sendyk DI, Holzhausen M, Pannuti CM. Does the adjunctive use of statins provide additional benefits to nonsurgical periodontal treatment? A systematic review and meta-analysis. J Periodontal Res. 2018;53(1):12-21.
52. Shah M, Muley P, Muley A. Are statins worthy for treatment of periodontitis? A systematic review and meta-analysis. Adv Hum Biol. 2017;7(1):8.
53. Berti K, Parllaku A, Pandis N, Buhlin K, Klinge B, Stavropoulos A. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy-A systematic review and meta-analysis. J Dent. 2017;67:18-28.
54. Khoder MM, Girgis GNS, Anees MM, Youssef JM. The effectiveness of local atorvastatin in the treatment of moderate periodontitis. Int. J. Adv. Res. 7(11), 818–825.
55. Liao JK, Laufs U. Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol. 2005;45:89.
56. Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J Dent Res. 2006;85(6):520–523.
57. Fentoğlu Ö, Kirzıoğlu FY, Özdem M, Kocak H, Sütçü R, Sert T. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. Oral Dis. 2012;18(3):299–306.
58. Suresh S, Narayana S, Jayakumar P, Sudhakar U, Pramod V, others. Evaluation of anti-inflammatory effect of statins in chronic periodontitis. Indian J Pharmacol. 2013;45(4):391.
59. Estanislau IMG, Terceiro IRC, Lisboa MRP, Teles P de B, Carvalho R de S, Martins RS, et al. Pleiotropic effects of statins on the treatment of chronic periodontitis—a systematic review. Br J Clin Pharmacol. 2015;79(6):877–885.
60. Saxlin T, Suominen-Taipale L, Kuuttila M, Alha P, Ylöstalo P. Dual effect of statin medication on the periodontium. J Clin Periodontol. 2009;36(12):997–1003.
61. Needleman IG, Smales FC. In vitro assessment of bioadhesion for periodontal and buccal drug delivery. Biomaterials. 1995;16(8):617-624.
62. Felt O, Buri P, Gurny R: Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm. 1998;24(11):979-993.
63. Ong SY, Wu J, Mochhala SM, et al. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29(32):4323-4332.
64. Ikinci G, Senel S, Akincibay H, et al. Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm. 2002;235(1-2):121-127.
65. Choi BK, Kim KY, Yoo YJ, et al. In vitro antimicrobial activity of a chitoooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int J Antimicrob Agents. 2001;18(6):553-557.
66. Muzzarelli R, Biagini G, Pugnaloni A, Filippini O, Baldassarre V, Castaldini C, Rizzoli C: Reconstruction of parodontal tissue with chitosan. Biomaterials. 1989;10(9):598-603.
67. Park JS, Choi SH, Moon IS, et al. Eight-week histological analysis on the effect of chitosan on surgically created one-wall intrabony defects in beagle dogs. J Clin Periodontol. 2003;30(5):443-453.
68. Nishimura K, Nishimura S, Nishi N, et al. Immunological activity of chitin and its derivatives. Vaccine. 1984;2(1):93-99.
69. The Ministry of Science and Technology of the People’s Republic of China. Regulations for the Administration of Affairs Concerning Experimental Animals. 1988-10-31.
70. Aksungur P, Sungur A, Unal S, et al. Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release. 2004;98(2):269-279.
71. Tadagavadi RK, Wang W, Ramesh G. Netrin.1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010; 185:3750–3758.
72. Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, Kinane TB. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA. 2005; 102:14729–14734.
73. Rosenberger P, Schwab JM, Mirakaj V, Masekowsky E, Mager A, Morote-Garcia JC, Unertl K, Eltzschig HK. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol. 2009; 10:195–202.
74. Mirakaj V, Thix CA, Laucher S, Mielke C, Morote-Garcia JC, Schmit MA, Henes J, Unertl KE, Köhler D, Rosenberger P. Netrin.1 Dampens Pulmonary Inflammation during Acute Lung Injury. Am.J.Respir.Crit.Care Med. 2010; 181:815–824.
75. Mirakaj V, Gatidou D, Pötzsch C, König K, Rosenberger P. Netrin-1 Signaling Dampens Inflammatory Peritonitis. J Immunol. 2011; 186:549–555.
76. Ranganathan P V, Jayakumar C, Mohamed R, Dong Z, and Ramesh G. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2 mediated PGE2 production. Kidney Int. 2013 June ; 83(6): 1087–1098.
77. Gunpinar S, Meraci B, Dundar N. Netrin-1 and its receptor Unc5b as markers of periodontal disease. J Periodontal Res. 2020 Apr;55(2):267-276.