Physiologically relevant miRNAs in mammalian oocytes are rare and highly abundant.

Shubhangini Kataruka, Veronika Kinterova, Filip Horvat, Marcos Iuri Roos Kulmann, Jiri Kanka, and Petr Svoboda
DOI: 10.15252/embr.202153514

Corresponding author(s): Petr Svoboda (svobodap@img.cas.cz)

Review Timeline:

Event	Date
Submission Date	7th Aug 21
Editorial Decision	2nd Sep 21
Revision Received	21st Oct 21
Editorial Decision	9th Nov 21
Revision Received	14th Nov 21
Accepted	16th Nov 21

Editor: Esther Schnapp

Transaction Report:

(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, letters and reports are not edited. Depending on transfer agreements, referee reports obtained elsewhere may or may not be included in this compilation. Referee reports are anonymous unless the Referee chooses to sign their reports.)
Dear Petr,

Thank you for the submission of your manuscript to EMBO reports. We have now received the full set of enclosed referee reports on it.

As you will see, all referees acknowledge that the findings are interesting and novel. They only have some more minor suggestions for how the study could be improved and strengthened, and I think that all should be addressed. Please let me know in case you disagree so that we can discuss this further.

I would thus like to invite you to revise your manuscript with the understanding that the referee concerns must be fully addressed and their suggestions taken on board. Please address all referee concerns in a complete point-by-point response. Acceptance of the manuscript will depend on a positive outcome of a second round of review. It is EMBO reports policy to allow a single round of major revision only and acceptance or rejection of the manuscript will therefore depend on the completeness of your responses included in the next, final version of the manuscript.

Revised manuscripts should be submitted within three months of a request for revision; they will otherwise be treated as new submissions. Please contact us if a 3-months time frame is not sufficient for the revisions so that we can discuss this further. You can either publish the study as a short report or as a full article. For short reports, the revised manuscript should not exceed 27,000 characters (including spaces but excluding materials & methods and references) and 5 main plus 5 expanded view figures. The results and discussion sections must further be combined, which will help to shorten the manuscript text by eliminating some redundancy that is inevitable when discussing the same experiments twice. For a normal article there are no length limitations, but it should have more than 5 main figures and the results and discussion sections must be separate. In both cases, the entire materials and methods must be included in the main manuscript file.

Regarding data quantification, please specify the number "n" for how many independent experiments were performed, the bars and error bars (e.g. SEM, SD) and the test used to calculate p-values in the respective figure legends. This information must be provided in the figure legends. Please also include scale bars in all microscopy images.

IMPORTANT NOTE: we perform an initial quality control of all revised manuscripts before re-review. Your manuscript will FAIL this control and the handling will be DELAYED if the following APPLIES:

1) A data availability section providing access to data deposited in public databases is missing. If you have not deposited any data, please add a sentence to the data availability section that explains that.

2) Your manuscript contains statistics and error bars based on n=2. Please use scatter blots in these cases. No statistics should be calculated if n=2.

When submitting your revised manuscript, please carefully review the instructions that follow below. Failure to include requested items will delay the evaluation of your revision.

1) a .docx formatted version of the manuscript text (including legends for main figures, EV figures and tables). Please make sure that the changes are highlighted to be clearly visible.

2) individual production quality figure files as .eps, .tif, .jpg (one file per figure).
 See https://wol-prod-cdn.literatumonline.com/pb-assets/embo-site/EMBOPress_Figure_Guidelines_061115-1561436025777.pdf for more info on how to prepare your figures.

3) We replaced Supplementary Information with Expanded View (EV) Figures and Tables that are collapsible/expandable online. A maximum of 5 EV Figures can be typeset. EV Figures should be cited as "Figure EV1, Figure EV2" etc... in the text and their respective legends should be included in the main text after the legends of regular figures.

 - For the figures that you do NOT wish to display as Expanded View figures, they should be bundled together with their legends in a single PDF file called "Appendix", which should start with a short Table of Content. Appendix figures should be referred to in the main text as: "Appendix Figure S1, Appendix Figure S2" etc... See detailed instructions regarding expanded view here: <https://www.embopress.org/page/journal/14693178/authorguide#expandedview>

 - Additional Tables/Datasets should be labeled and referred to as Table EV1, Dataset EV1, etc. Legends have to be provided in a separate tab in case of .xls files. Alternatively, the legend can be supplied as a separate text file (README) and zipped together with the Table/Dataset file.

4) a .docx formatted letter INCLUDING the reviewers' reports and your detailed point-by-point responses to their comments. As part of the EMBO Press transparent editorial process, the point-by-point response is part of the Review Process File (RPF), which will be published alongside your paper.
5) A complete author checklist, which you can download from our author guidelines <https://www.embopress.org/page/journal/14693178/authorguide>. Please insert information in the checklist that is also reflected in the manuscript. The completed author checklist will also be part of the RPF.

6) Please note that all corresponding authors are required to supply an ORCID ID for their name upon submission of a revised manuscript (<https://orcid.org/>). Please find instructions on how to link your ORCID ID to your account in our manuscript tracking system in our Author guidelines <https://www.embopress.org/page/journal/14693178/authorguide#authorshipguidelines>

7) Before submitting your revision, primary datasets produced in this study need to be deposited in an appropriate public database (see <https://www.embopress.org/page/journal/14693178/authorguide#datadeposition>). Please remember to provide a reviewer password if the datasets are not yet public. The accession numbers and database should be listed in a formal "Data Availability" section placed after Materials & Method (see also <https://www.embopress.org/page/journal/14693178/authorguide#datadeposition>). Please note that the Data Availability Section is restricted to new primary data that are part of this study. * Note - All links should resolve to a page where the data can be accessed.*

If your study has not produced novel datasets, please mention this fact in the Data Availability Section.

8) We would also encourage you to include the source data for figure panels that show essential data. Numerical data should be provided as individual .xls or .csv files (including a tab describing the data). For blots or microscopy, uncropped images should be submitted (using a zip archive if multiple images need to be supplied for one panel). Additional information on source data and instruction on how to label the files are available at <https://www.embopress.org/page/journal/14693178/authorguide#sourcedata>.

9) Our journal also encourages inclusion of "data citations in the reference list" to directly cite datasets that were re-used and obtained from public databases. Data citations in the article text are distinct from normal bibliographical citations and should directly link to the database records from which the data can be accessed. In the main text, data citations are formatted as follows: "Data ref: Smith et al, 2001" or "Data ref: NCBI Sequence Read Archive PRJNA342805, 2017". In the Reference list, data citations must be labeled with "[DATASET]". A data reference must provide the database name, accession number/identifiers and a resolvable link to the landing page from which the data can be accessed at the end of the reference. Further instructions are available at <https://www.embopress.org/page/journal/14693178/authorguide#referencesformat>

We would also welcome the submission of cover suggestions, or motifs to be used by our Graphics Illustrator in designing a cover.

As part of the EMBO publication's Transparent Editorial Process, EMBO reports publishes online a Review Process File (RPF) to accompany accepted manuscripts. This File will be published in conjunction with your paper and will include the referee reports, your point-by-point response and all pertinent correspondence relating to the manuscript.

You are able to opt out of this by letting the editorial office know (emboreports@embo.org). If you do opt out, the Review Process File link will point to the following statement: "No Review Process File is available with this article, as the authors have chosen not to make the review process public in this case."

I look forward to seeing a revised version of your manuscript when it is ready. Please let me know if you have questions or comments regarding the revisions.

Best wishes,
Esther

Esther Schnapp, PhD
Senior Editor
EMBO reports

Referee #1:

In a very focused and clear manuscript, Kataruka et al demonstrate that endogenous miRNAs can be active in oocytes, provided they reach sufficient concentration. They describe two such cases, mir-10a in Bos taurus and mir-205 in sus scrofa. This is very significant as the same group made a very convincing case that in general miRNA levels are simply too low in oocytes to allow meaningful miRNA activity in oocytes. These two cases now show that also in mammals, biologically relevant miRNA activity can be present in oocytes, even though it appears to be rather species specific.

Beyond showing that miRNAs can be active, the authors also show that likely miRNA stability is an important aspect for these specific miRNAs to reach such high abundance. However, it could not be pin-pointed where the stability derives from.
In general, I have very little to ask for, regarding this work. The text is clear, and the results I think merit publication in EMBO Reports. There are a few minor aspects that should be addressed though.

1) In general, I could not find how many biological replicates were tested in each case, and what sort of statistics were used to assess significance. This has to be provided. Assuming that at least 3 biological replicates are represented, this is merely a textual issue.

2) The stability argument was tested with only one unstable miRNA as control. It would make a stronger case if multiple control miRNAs could be tested, and maybe also some that are relatively abundant, even if not so abundant as mir-205.

3) On page 11, the authors refer to Figure 3E, which should be Figure 4.

4) Figure 4B does not seem to have any error bars, and it is also unclear what exactly ‘relative amount’ means. Is all scaled against non-treated? If so, it would still be good to provide the data of the PCR cycles. How consistent were these amongst replicates? Personally, a Northern blot would also be appreciated here, but I do not know whether sufficient oocytes can be collected for that.

5) It would be nice if the authors could check for 3’ end uridylation, or adenylation, in relation to stability. Do Bt-mir-10b and Ss-mir-205 show differential properties, compared to non-abundant miRNAs?

Referee #2:

Most miRNAs are present at low concentrations in oocytes given the large growth in volume of these cells and the fact that miRNA production and turnover are not adjusted to offset that growth. The consequence of this low concentration is that most miRNAs are not functional in oocytes/zygotes. Here, the authors report the existence of two abundant miRNAs that manage to accumulate at high, functional levels in grown porcine and bovine oocytes. Whereas most miRNAs achieve concentrations quite below 0.5 nM, mir-205 reaches ~4.4 nM in porcine oocytes and mir-10b, ~0.5 nM in bovine oocytes. These represent clear outliers when comparing to other miRNAs and to all miRNAs from the mouse.

The authors do two types of experiments to assess whether these miRNAs are functional: the inject reporter miRNAs into oocytes that either contain binding sites for the respective miRNAs or not and this shows that reporters with binding sites are repressed in both porcine and bovine oocytes. In the second experiment, the authors inject a miRNA inhibitor for miR-205 in porcine oocytes and observe that some endogenous mRNAs that are predicted to bind to miR-205 are derepressed. Interestingly, the treatment of porcine embryos with the mir-205 inhibitor results in embryonic arrest, suggesting that this miRNA may play a role in embryogenesis.

Finally, the authors try to address whether mir-205 reaches higher concentrations than other miRNAs due to increased transcription rates or increased stability. The authors argue that transcription is not particularly high, but that higher stability of mir-205 is what makes it so highly abundant. However, I find this section biased:
- The authors base most of their arguments that transcription is not particularly high on abundance of lncRNAs that host the miRNAs. However, steady-state abundance of lncRNAs is not a good proxy for the transcriptional rate of the pri-miRNAs. Not only do we not know the stabilities of these different lncRNAs but also, given that the production of mir-205 and the lncRNA are mutually exclusive this means that there is a large fraction of transcript that is likely not contributing to lncRNA steady-state abundance.
- The steady state abundance is the combination of both the rates of transcription and decay. One of the main arguments for the authors to say that decay plays a bigger role is that there is another miRNA cluster that produces similar levels of host lncRNA but lower levels of mature miRNAs. This is has to be reinterpreted given my points above, but in addition, it is highly probably that there are other miRNAs that are as stable as mir-205 but have a lower transcription rate and therefore accumulate at lower levels. Relative to such a miRNA, it would be transcription that makes the difference.
- Of course it would be a different story if the authors could measure rates of production and decay across many/all miRNAs, then they could possibly make some of the statements they make. I realize this is an extremely challenging experiment in this system and I am not suggesting that the authors need to do these measurements. But then this whole section should in my opinion be rewritten.

In addition to the point above, I have one additional relatively minor request:
For miRNA quantification, the authors use a qPCR-based strategy. It is not stated in the methods but I presume the authors measured a titration series of a synthetic miRNA to be able to estimate copy numbers. It would be important to provide all this raw data as a supplementary table.

Minor points:
- Fig. 1A and Fig. 4 has a transparency issue on the axes
Referee #3:

Current evidence suggests that the number of binding sites in a cell for a specific miRNA exceeds the number of molecules of that miRNA. Moreover, functional miRNAs are generally present at nM or high pM intracellular concentration, i.e., several orders of magnitude greater than the KD for binding of the miRNA to seed-matched sequences in target RNAs. Consequently, miRNAs generally follow a stoichiometric binding regime, in which each additional molecule of miRNA linearly increases target site occupancy, with greater occupancy of high affinity sites (e.g., 7mer-A1 or 7mer-m8 sites) than of the more abundant low affinity sites (e.g., 5mer sites). In this manuscript, Svoboda and colleagues identify two miRNAs—one in pig and one in cow—that are present in oocytes at sufficiently high concentrations to repress target gene expression. These two miRNAs represent the first maternally provided, mammalian miRNAs with a clear function in oocytes. This manuscript makes an important contribution to the field, but requires minor revisions before publication.

Main Concerns

(1) Page 6 ff: The analysis of site occupancy based on miRNA and site abundance is more sophisticated than most miRNA studies, but is not formally correct. The concentration of sites in the transcriptome, not the concentration of mRNA molecules, is what matters for mRNA repression by miRNAs. A miRNA will be distributed among sites based on the concentration of each site type, the affinity of each site type, and the concentration of the miRNA. Thus, what matters for a reporter with four bulged sites is the affinity of such sites for the miRNA, including any cooperative interactions for closely spaced sites, the site concentration (\(4 \times \) the mRNA concentration), and the affinity and concentration of each of the various site types. For a miRNA to regulate the reporter, the number of endogenous sites must be less than the number of miRNA molecules (leaving sufficient miRNAs to bind the reporter) and/or the affinities of the reporter sites must be sufficiently greater than those of the endogenous sites. Ideally, a globally fitted mathematical model or a simulation should be used. At the very least, the simplifying assumptions need to be discussed in more detail.

(2) Page 7: miRBase provides target predictions using TargetScanVert, miRDB, or microrna.org. What does it mean for a target to be "the best predicted...in miRBase"? This was not described in the methods (or I missed it). The false-positive rates for these three algorithms are quite different; if the authors took, for example, the intersection of the three algorithms, the targets are unlikely to be higher confidence than using TargetScan alone.

(3) Figure 1C: is the qRT-PCR method used sensitive to the precision of the miRNA 3′ end or to non-templated nucleotide addition?

Minor Concerns

(1) It is important to stress for the reader that bulged sites, first used by Doench and Sharp, are a convenient tool for reporter assays, but do not exist in nature.

(2) Page 3: the first demonstration that the extent of complementarity determines whether a miRNA cleaves a target RNA ("RNAi") or binds via limited complementarity and recruits components of mRNA turnover pathways (miRNA-like) was Hutvagner et al. (Science 2002).

(3) RNA-seq data can easily provide absolute molecular abundance when synthetic spike-in oligos are used, e.g., Gainetdinov et al. (Mol Cell 2018).

(4) Page 12: how can the hypothesis of Piwecka et al. be consistent with the stoichiometric model which the authors use to interpret their findings? Piwecka et al. seemed to me to be proposing that the loss of abundant seed-matched binding sites for a miRNA led to reduced miRNA abundance and increase target levels. This is hard to reconcile with the conventional view of stoichiometric binding.
Referee #1:

In general, I have very little to ask for, regarding this work. The text is clear, and the results I think merit publication in EMBO Reports. There are a few minor aspects that should be addressed though.

1) In general, I could not find how many biological replicates were tested in each case, and what sort of statistics were used to assess significance. This has to be provided. Assuming that at least 3 biological replicates are represented, this is merely a textual issue.

Indeed, experiments were performed in at least biological triplicates. An exception in the first submission was quantification of ssc-miR-10b, which was done as a technical triplicate on one cDNA sample (Fig. 1C). For the revised version, this analysis was completed as a biological triplicate – that’s why the S.s. sample in Fig. 1C bar differs from the first submission.

2) The stability argument was tested with only one unstable miRNA as control. It would make a stronger case if multiple control miRNAs could be tested, and maybe also some that are relatively abundant, even if not so abundant as mir-205.

We added analysis of two additional miRNAs, which were relatively abundant in porcine oocytes (10^5), and we had primers from previous analyses – miR-22 and miR-10b. These data were added into Fig. 3A and as an extended view figure EV4A. Both miR-22 and miR-10b are relatively abundant in porcine oocytes and are also less stable than miR-205 but more stable than let-7. A future systematic quantitative analysis of all maternal miRNAs by small RNA-seq will clarify half-lives of maternal miRNAs in oocytes of different mammals but is beyond the scope of the current manuscript.

3) On page 11, the authors refer to Figure 3E, which should be Figure 4.

The error was corrected.

4) Figure 4B does not seem to have any error bars, and it is also unclear what exactly ‘relative amount’ means. Is all scaled against non-treated? If so, it would still be good to provide the data of the PCR cycles. How consistent were these amongst replicates? Personally, a Northern blot would also be appreciated here, but I do not know whether sufficient oocytes can be collected for that.

Error bars were added, we overlooked we did not insert them, we apologize for that. As mentioned in methods, oxidation experiments were performed three times, each time in a triplicate PCR, consistency of replicates was good and there was typically a 6-7 cycle difference. “Relative amount” meant scaling treated to non-treated samples, which were set to one. Regarding a Northern blot from oocytes, it is not feasible to analyze absence of 2’-OH modification by Northern blotting.

5) It would be nice if the authors could check for 3’ end uridylation, or adenylation, in relation to stability. Do Bt-mir-10b and Ss-mir-205 show differential properties, compared to non-abundant miRNAs?

We analyzed uridylation and adenylation and added these data to the results section. Analysis of non-templated additions of five most abundant miRNAs in murine, bovine and porcine oocytes suggests that
bta-miR-10b and *ssc-miR-205* do not have unique properties in terms of non-templated 3’ additions. These data are provided as a new panel Fig. 4D. The main non-templated addition to *bta-miR-10b* and *ssc-miR-205* miRNAs is monoadenylation. This modification is common among maternal miRNAs (DOI: 10.1126/sciadv.1501482).

Among the top five most abundant porcine miRNAs, *ssc-miR-205* has higher monoadenylation (16.4%) than the other miRNAs (2.6% to 5.9%). However, association of monoadenylation with the observed miR-205a stability and abundance is elusive - is monoadenylation contributing to stability of *ssc-miR-205* or is it observed at higher frequency because miR-205 is more stable? Furthermore, we observed monoadenylation in bovine and porcine oocytes where it did not correspond to miRNA abundance: 4.5% of *bta-miR-10b* exhibit monoadenylation while it is over 19% for *bta-miR-92a*, which has ~4x less RNA-sequence reads than *bta-miR-10b*. Finally, high heterogeneity of the 3’ adenylated miRNA fraction (ranging from a few % to over 50%) was reported for murine maternal miRNAs and there was no apparent correlation between miRNA abundance and 3’ adenylation (see the graph below with abundance-ranked miRNAs from DOI: 10.1126/sciadv.1501482).
Referee #2:

The authors argue that transcription is not particularly high, but that higher stability of mir-205 is what makes it so highly abundant. However, I find this section biased:

- The authors base most of their arguments that transcription is not particularly high on abundance of lncRNAs that host the miRNAs. However, steady-state abundance of lncRNAs is not a good proxy for the transcriptional rate of the pri-miRNAs. Not only do we not know the stabilities of these different lncRNAs but also, given that the production of mir-205 and the lncRNA are mutually exclusive this means that there is a large fraction of transcript that is likely not contributing to lncRNA steady-state abundance.

We agree, that available expression data cannot be conclusively interpreted. Our aim was to discuss possible interpretations and explain why we think available RNA-seq data do not provide strong evidence for uniquely high expression of \(\text{miR-205} \) in pig oocytes.

The spliced lncRNA from the miR-205 host gene has low abundance for a maternal transcript and the transcriptional landscape in the locus seems rather mundane considering exceptional abundance of \(\text{miR-205} \), which is two or more orders of magnitude more abundant than other miRNAs. Comparison with RNA-seq data from the same locus in bovine oocyte shows that porcine oocytes likely have more transcription in the locus. However, difference between mature miR-205 levels in bovine and porcine oocytes is two orders of magnitude while long RNA-seq data imply that the difference between spliced lncRNA host transcripts could be \(~20\) fold (Fig 3). Naturally, there could be several alternative explanations of these numbers. The bottom line is that none of the features of the porcine miR-205 locus suggests that it is adapted for exceptional \(\text{miR-205} \) expression. This makes it less likely that exceptionally high transcription rate of \(\text{miR-205} \) would be the sole cause of exceptionally high abundance of ssc-miR-205. At the same time, none of features of the ssc-miR-205 locus is conclusive to rule it out and each argument can be challenged. In any case, to address reviewer concerns (including the following points), we revised this part of the discussion to clarify the reasoning and separation of data from interpretation and hypothesizing.

- The steady state abundance is the combination of both the rates of transcription and decay. One of the main arguments for the authors to say that decay plays a bigger role is that there is another miRNA cluster that produces similar levels of host lncRNA but lower levels of mature miRNAs. This is has to be reinterpreted given my points above, but in addition, it is highly probably that there are other miRNAs that are as stable as mir-205 but have a lower transcriptional rate and therefore accumulate at lower levels. Relative to such a miRNA, it would be transcription that makes the difference.

We agree with reviewer’s points that both factors likely contribute to the high level of \(\text{miR-205} \). The text was revised to propose that transcription and other factors are likely responsible for high \(\text{miR-205} \) abundance in porcine oocytes.

We would like to point out that, in comparison to the traditional steady-state situation concerning transcript levels in somatic cells, transcripts in oocytes are generally highly stable while fully-grown GV oocytes become transcriptionally quiescent. Hence maternal transcript levels in fully-grown GV oocytes usually reflect accumulation of the bulk of the transcriptome during the growth phase (transcription and usually minimal mRNA decay) while culture of GV oocytes can reveal transcript turnover (only decay, no transcription).
-Of course it would be a different story if the authors could measure rates of production and decay across many/all miRNAs, then they could possibly make some of the statements they make. I realize this is an extremely challenging experiment in this system and I am not suggesting that the authors need to do these measurements. But then this whole section should in my opinion be rewritten.

We revised the criticized section. We agree that future analysis or rates of decay of all maternal mRNAs by RNA-seq will clarify the question of miRNA turnover rates but it is beyond the scope of the current work.

In addition to the point above, I have one additional relatively minor request:

For miRNA quantification, the authors use a qPCR-based strategy. It is not stated in the methods but I presume the authors measured a titration series of a synthetic miRNA to be able to estimate copy numbers. It would be important to provide all this raw data as a supplementary table.

For miRNA quantification, we used let-7 oligonucleotide-based calibration curve as described previously (doi: 10.1093/nar/gkaa543). In addition to the NAR manuscript, we produced an additional let-7-oligo-based calibration curve for transcripts > 1x10^6 molecules. To formally demonstrate that extremely high abundance of ssc-miR-205 is not an artifact of calibration/qPCR analysis, we generated also a calibration curve with miR-205 oligonucleotide and use that calibration curve for quantifying miR-205 amplification with the same primers (Figure EV1, new panels B (calibration curve) and new panel C (miR-205 estimates)). These new data also show exceptionally high miR-205 abundance, even higher when compared to the let-7-based calibration curve.

To address the reviewer’s question, we revised the manuscript and, in addition to RNA-seq data and let-7 calibration curves published previously, we add calibration curves for estimating highly abundant miRNAs (Figure EV1, panel B). We also provide reanalysis of miR-205 abundance with the miR-205 calibration curve (Fig. EV2, panel B), which suggests slightly higher miR-205 amount in porcine oocytes (close to 2x10^6 miRNA molecules per oocyte).

Minor points:
- Fig. 1A and Fig. 4 has a transparency issue on the axes

We revised description of axis labels in these figures.

- Line 216 refers to Fig. 3E but there is no such panel

This issue was corrected.
Referee #3:

Current evidence suggests that the number of binding sites in a cell for a specific miRNA exceeds the number of molecules of that miRNA. Moreover, functional miRNAs are generally present at nM or high pM intracellular concentration, i.e., several orders of magnitude greater than the KD for binding of the miRNA to seed-matched sequences in target RNAs. Consequently, miRNAs generally follow a stoichiometric binding regime, in which each additional molecule of miRNA linearly increases target site occupancy, with greater occupancy of high affinity sites (e.g., 7mer-A1 or 7mer-m8 sites) than of the more abundant low affinity sites (e.g., 5mer sites). In this manuscript, Svoboda and colleagues identify two miRNAs— one in pig and one in cow—that are present in oocytes at sufficiently high concentrations to repress target gene expression. These two miRNAs represent the first maternally provided, mammalian miRNAs with a clear function in oocytes. This manuscript makes an important contribution to the field, but requires minor revisions before publication.

Main Concerns

(1) Page 6 ff: The analysis of site occupancy based on miRNA and site abundance is more sophisticated than most miRNA studies, but is not formally correct. The concentration of sites in the transcriptome, not the concentration of mRNA molecules, is what matters for mRNA repression by miRNAs. A miRNA will be distributed among sites based on the concentration of each site type, the affinity of each site type, and the concentration of the miRNA. Thus, what matters for a reporter with four bulged sites is the affinity of such sites for the miRNA, including any cooperative interactions for closely spaced sites, the site concentration (4 × the mRNA concentration), and the affinity and concentration of each of the various site types. For a miRNA to regulate the reporter, the number of endogenous sites must be less than the number of miRNA molecules (leaving sufficient miRNAs to bind the reporter) and/or the affinities of the reporter sites must be sufficiently greater than those of the endogenous sites. Ideally, a globally fitted mathematical model or a simulation should be used. At the very least, the simplifying assumptions need to be discussed in more detail.

We agree that we simplified complexity of miRNA-mediated repression in order to highlight key features of the model system and experimental set ups. Our main point about concentration of mRNA molecules in the oocyte is that the oocyte has transcript density similar to that of somatic cells, i.e. what is usually presented as accumulation of maternal mRNAs can be also seen as maintenance of cytoplasmic mRNA concentration. Of course, cytoplasmic concentrations of binding sites would vary for each miRNA and cell type according to cell-specific gene expression patterns. However, it is safe to assume that, without a strong negative or positive selection, cytoplasmic concentrations of most miRNA binding sites would not show high fold (an order of magnitude) differences. For example, below are rank-sorted all hexamer frequencies calculated from RNA-seq data (i.e. taking into account also transcript abundance) from mouse ESCs and mouse and porcine oocytes. Highlighted are poly(A) motif and motifs complementary to seeds of miR-290 cluster (ESC-specific highly abundant family), miR-122, and miR-1. Most abundant motifs are mainly repetitive motifs and some A/U-rich motifs. Distribution of the bulk of the hexamers is in a range of low fold-changes suggesting that concentrations of miRNA binding sites in different cells would be generally proportional to mRNA content. Of course a refined analysis may identify statistically highly significant differences of binding site concentration between cell types, which would reflect adaptations of transcriptome composition in response to a highly abundant miRNA – however, this takes place at much finer scale than we are discussing in the paper where we consider two orders of magnitude
differences in volumes and common miRNA concentrations in oocytes and use reporters primarily to show that endogenous maternal miRNAs are able to repress them.

The argument about miRNA and mRNA concentrations we brought up on page 6 concerned orders of magnitude differences in concentrations of miRNAs and their targets and situations when repression of a reporter with bulged sites is not observed and when it is. Also, the comment on NanoLuc reporter amount was meant in the context of previous reporters, which required 10x higher amount of mRNAs for quantifying reporter activity. In any case, to address reviewer’s point, we revised the text to clarify generalizations.
(2) Page 7: miRBase provides target predictions using TargetScanVert, miRDB, or microrna.org. What does it mean for a target to be “the best predicted...in miRBase”? This was not described in the methods (or I missed it). The false-positive rates for these three algorithms are quite different; if the authors took, for example, the intersection of the three algorithms, the targets are unlikely to be higher confidence than using TargetScan alone.

We apologize for inadequate explanation. Target selection combined two strategies. For initial target testing, we selected two top-scoring mmu-miR-205 targets (prediction for ssc-miR-205 was not available) by TargetScanVert: Plcb1 and Rgs18 as porcine transcripts carried one conserved 8-mer binding site and additional 6-mers (Plcb1 had one and Rgs8 four in pig). However, Rgs8 transcript was not reliably detectable in porcine oocytes by qPCR and was excluded from the analysis. For remaining putative targets, we directly analyzed complementary seed sequences in 3’UTRs porcine transcripts and transcript abundancies in porcine oocytes. We used sequences of 3’UTRs of all ENSEMBL-annotated genes and counted presence of complementary sequences to ssc-mir-205 seeds (6mer UGAAGG, 7mer_m8 AUGAAGG, 8mer AUGAAGGA, and 7mer_1a UGAAGGA – similarly to other miRNA target prediction tools). From the top-scoring genes with most seed matches, we selected the additional four targets, which had low but well detectable expression in RNA-seq data from porcine oocytes (1-4 FPKM). The rationale for this criterion was real targets would be expected to have low expression. Each of the selected targets had 7-9 6mers and 2-4 7mers. We revised the methods section in the resubmitted manuscript to accurately describe putative target selection and properties of the putative targets.

(3) Figure 1C: is the qRT-PCR method used sensitive to the precision of the miRNA 3’ end or to non-templated nucleotide addition?

Non-templated additions should not affect qRT-PCR method as the prevailing non-templated nucleotide addition is monoadenylation and this would be indistinguishable from 3’ adenylation (see the added panel 4D), which is used in the protocol.

Minor Concerns

(1) It is important to stress for the reader that bulged sites, first used by Doench and Sharp, are a convenient tool for reporter assays, but do not exist in nature.

We revised the sentence referring to bulged reporters and determining the cleavage; reference to Doench, 2002 was added. The reference to Schmitter et al. was selected because in this publication targeted reporters were analyzed by 3’RACE and perfect reporters showed canonical RNAi-like cleavage in the middle of the perfect complementarity with a miRNA.

(2) Page 3: the first demonstration that the extent of complementarity determines whether a miRNA cleaves a target RNA (“RNAi) or binds via limited complementarity and recruits components of mRNA turnover pathways (miRNA-like) was Hutvagner et al. (Science 2002).

We added this reference, we kept Yekta et al. as they reported the first endogenous animal miRNA-mediated RNA-like cleavage.
(3) RNA-seq data can easily provide absolute molecular abundance when synthetic spike-in oligos are used, e.g., Gainetdinov et al. (Mol Cell 2018).

This is true in general, but it does not apply to the specific context of the statement to which this comment appears to refer to:

Since RNA-seq data provided only relative estimates of miRNA abundance, we used quantitative RT-PCR to determine copy numbers per oocyte (Fig. 1C)

We referred to published RNA-seq data from porcine and bovine oocytes, which were not spiked. Furthermore, even if those RNA-seq libraries would be spiked, qPCR validation of high abundance of specific miRNAs would be needed to rule out artifacts. Spike-in oligos allow to generate a calibration curve for RPM values but reliability of absolute molecular abundance of specific miRNAs depends on accurate conversion of the endogenous small RNA population into a sequencing library. Depending on the method used to produce the library, especially if it involves linker ligation to a small RNA, various artifacts concerning specific miRNAs may appear in the sequencing library, which cannot be remedied by the use of spikes.

(4) Page 12: how can the hypothesis of Piwecka et al. be consistent with the stoichiometric model which the authors use to interpret their findings? Piwecka et al. seemed to me to be proposing that the loss of abundant seed-matched binding sites for a miRNA led to reduced miRNA abundance and increase target levels. This is hard to reconcile with the conventional view of stoichiometric binding.

In our view, these could be two separated processes – we interpret Piwecka et al. work as an example of a miRNA-bound substrate, which can mediate miRNA accumulation. Cdr1 can be seen as a unique miRNA-binding substrate, which is resistant to miRNA-mediated decay and which enables miR-7 accumulation. Consequently, loss of Cdr1 results in reduced miR-7 levels and reduced repression of miR-7 targets.

A hypothetical target-mediated miRNA accumulation could be a unique evolutionary adaptation, which could explain why ssc-miR-205 accumulation is so selective. Since we observe miR-205-mediated repression in fully-grown oocytes, which demonstrates there’s enough available miR-205 to recognize and efficiently suppress the reporter, there could be two possible explanations – (i) the miRNA bound & stabilizing substrate would be present mainly during the growth phase or (ii) there is a favorable on/off rate of the miR-205 interaction with a miRNA bound substrate, which would result in increased ssc-miR-205 half-life and would help ssc-miR-205 accumulation. Oocytes represent a unique case for RNA metabolism where pol II transcripts have extended half-life and can be deadenylated without degradation.
Dear Petr,

Thank you for the submission of your revised manuscript. We have now received the enclosed reports from the referees, and I am happy to say that all support its publication now. The referees only still have a few minor comments that I would like you to incorporate before we can proceed with the official acceptance of your manuscript.

A few other editorial changes are also required:

- Please add a Data Availability Section (DAS) to the end of the MAterials and MEthods. If you have not deposited any data in public databases please add a sentence to the DAS that explains it.

- Fig EV3B callout is missing. Fig EV4 panel callouts are missing. Please add.

- The EV tables should be uploaded individually using the file type Expanded View.

- I attach to this email a related manuscript file with comments by our data editors. Please address all comments in the final manuscript file.

EMBO press papers are accompanied online by A) a short (1-2 sentences) summary of the findings and their significance, B) 2-3 bullet points highlighting key results and C) a synopsis image that is exactly 550 pixels wide and 200-600 pixels high (the height is variable). You can either show a model or key data in the synopsis image. Please note that text needs to be readable at the final size. Please send us this information along with the revised manuscript.

I look forward to seeing a final version of your manuscript as soon as possible. Please use this link to submit your revision:
https://embor.msubmit.net/cgi-bin/main.plex

Best wishes,
Esther

Esther Schnapp, PhD
Senior Editor
EMBO reports

Referee #1:

The authors have carefully addressed the raised issues. The manuscript can be accepted as is in my opinion. A very nice and interesting contribution to the miRNA and oogenesis fields.

Referee #2:

The authors have satisfactorily addressed my initial concerns.

A couple of minor points:
1. I am glad I asked about the calibration curves, because for every miRNA there should be a separate calibration curve. Given that the miRNA sequences and the primer sequences are different in each case, it is expected that the calibration curves will look different for different miRNAs.
2. With regards to a response to another reviewer, it is indeed possible to see 2'OH modification by Northern, following oxidation, beta elimination and high resolution PAGE.
3. The following sentence in p. 7 needs to be reworded:
 It is important that analysis of miRNAs in oocytes and zygotes would address and respect physiological concentrations of miRNAs and their targets as experimental conditions beyond physiological ranges would increase the risk of producing non-physiological artifacts.

Referee #3:

The revised manuscript is ready for publication!
One personal quibble: In their response to Reviewer 1, the authors write, "it is not feasible to analyze absence of 2'-OH modification by Northern blotting." There are many published examples of using Northern blots to determine the 2'-OH status of small RNA. One example is Figure 6A in Vagin et al. (Science 2006).
Referee #1:

The authors have carefully addressed the raised issues. The manuscript can be accepted as is in my opinion. A very nice and interesting contribution to the miRNA and oogenesis fields.

Thank you.

Referee #2:

The authors have satisfactorily addressed my initial concerns.

A couple of minor points:

1. I am glad I asked about the calibration curves, because for every miRNA there should be a separate calibration curve. Given that the miRNA sequences and the primer sequences are different in each case, it is expected that the calibration curves will look different for different miRNAs.

We agree that primer efficiency may differ in each case, and give a different calibration curve, so it was indeed important to demonstrate that miR-205 estimation using the let-7 oligonucleotide-based calibration was not an experimental artifact. At the same time, all three calibration curves for three different miRNA oligonucleotides that we produced for miRNA quantification experiments in oocytes were comparable and produced similar results.

2. With regards to a response to another reviewer, it is indeed possible to see 2'OH modification by Northern, following oxidation, beta elimination and high resolution PAGE.

Our comment regarding feasibility concerned availability of the slaughterhouse oocyte material needed for such an experiment, not the procedure itself. An oocyte may contain ~0.5 ng of total RNA (mouse oocyte estimate), for a northern for miR-205 and a control (which would be a much less abundant miRNA), we estimate we would need ~500-600 oocytes per lane, and a minimum of 1000 porcine oocytes per Northern blot, which is possible to obtain but not feasible considering the rarity of the material - collection of mouse oocytes can be scaled up, collection of porcine oocytes depends on the situation in the slaughterhouse and oocytes while several research groups need to share available oocytes.

3. The following sentence in p. 7 needs to be reworded: It is important that analysis of miRNAs in oocytes and zygotes would address and respect physiological concentrations of miRNAs and their targets as experimental conditions beyond physiological ranges would increase the risk of producing non-physiological artifacts.

The sentence was changed to: It is important that analysis of miRNAs would respect physiological concentrations of miRNAs and their targets in order to avoid artifacts generated by non-physiological ones.

Referee #3:

The revised manuscript is ready for publication!
One personal quibble: In their response to Reviewer 1, the authors write, "it is not feasible to analyze absence of 2’-OH modification by Northern blotting." There are many published examples of using Northern blots to determine the 2’-OH status of small RNA. One example is Figure 6A in Vagin et al. (Science 2006).

We are sorry, our statement did not mean that Northern blotting cannot be used to detect the 2’OH status of a miRNA, we meant technical issues with collecting material needed for such an experiment. In other words, the experiment is not an impossible one, but it was not feasible to perform it on porcine maternal miRNAs. In the Vagin et al. paper, they used 1-10 µg of total RNA from whole Drosophila ovaries. A mammalian oocyte contains ~0.5 ng of total RNA but the relative miRNA fraction in that amount is much smaller (~50x) than in total RNA from somatic mammalian cells. We estimate we would need 500-600 oocytes/lane as we used that for two Northerns from mouse oocytes in the past when we analyzed let-7 abundance. However, our porcine oocytes are obtained in limited amounts from a single slaughterhouse once a week (if and how many pigs they slaughter on that day), so the material is not as easily scaled up as oocytes from mice. While ssc-miR-205 might be detectable in 50 or so porcine oocytes, other miRNAs, which should be tested in parallel, are much less abundant – this is why we estimate we would need at least 500-600 oocytes per lane, which would make it 1000-1200 oocytes for a single Northern with two lanes (control and treated sample). That amount of oocytes would take about two months to collect if everything would go well, we would not need to run other experiments, and would not share the source of porcine oocytes with other laboratories.
Dear Petr,

I am very pleased to accept your manuscript for publication in the next available issue of EMBO reports. Thank you for your contribution to our journal.

At the end of this email I include important information about how to proceed. Please ensure that you take the time to read the information and complete and return the necessary forms to allow us to publish your manuscript as quickly as possible.

As part of the EMBO publication's Transparent Editorial Process, EMBO reports publishes online a Review Process File to accompany accepted manuscripts. As you are aware, this File will be published in conjunction with your paper and will include the referee reports, your point-by-point response and all pertinent correspondence relating to the manuscript.

If you do NOT want this File to be published, please inform the editorial office within 2 days, if you have not done so already, otherwise the File will be published by default [contact: emboreports@embo.org]. If you do opt out, the Review Process File link will point to the following statement: "No Review Process File is available with this article, as the authors have chosen not to make the review process public in this case." Please note that the author checklist will still be published even if you opt out of the transparent process.

Thank you again for your contribution to EMBO reports and congratulations on a successful publication. Please consider us again in the future for your most exciting work.

Best wishes,

Esther

Esther Schnapp, PhD
Senior Editor
EMBO reports

THINGS TO DO NOW:

You will receive proofs by e-mail approximately 2-3 weeks after all relevant files have been sent to our Production Office; you should return your corrections within 2 days of receiving the proofs.

Please inform us if there is likely to be any difficulty in reaching you at the above address at that time. Failure to meet our deadlines may result in a delay of publication, or publication without your corrections.

All further communications concerning your paper should quote reference number EMBOR-2021-53514V3 and be addressed to emboreports@wiley.com.

Should you be planning a Press Release on your article, please get in contact with emboreports@wiley.com as early as possible, in order to coordinate publication and release dates.
Corresponding Author Name: Petr Svoboda

Journal Submitted to: EMBO Reports

Manuscript Number:

Reporting Checklist For Life Sciences Articles (Rev. June 2017)

This checklist is used to ensure good reporting standards and to improve the reproducibility of published results. These guidelines are consistent with the Principles and Guidelines for Reporting Preclinical Research issued by the NIH in 2014. Please follow the journal’s authorship guidelines in preparing your manuscript.

A- Figures

1. Data

The data shown in figures should satisfy the following conditions:

- The data were obtained and processed according to the field’s best practice and are presented to reflect the results of the experiments in an accurate and unbiased manner.
- Figure panels include only data points, measurements or observations that can be compared to each other in a scientifically meaningful way.
- Graphs include clearly labeled error bars for independent experiments and sample sizes. Unless justified, error bars should not be shown for technical replicates.
- If in S, the individual data points from each experiment should be plotted and any statistical test employed should be justified.
- Source Data should be included to report the data underlying graphs. Please follow the guidelines set out in the authorship guidelines on Data Presentation.

2. Captions

Each figure caption should contain the following information, for each panel where they are relevant:

- A specification of the experimental system investigated (e.g. cell line, species name).
- The assay(s) and method(s) used to carry out the reported observations and measurements.
- An explicit mention of the biological and chemical entity(ies) that are being measured.
- An explicit mention of the biological and chemical entity(ies) that are altered/varied/perturbed in a controlled manner.
- The exact sample size (n) for each experimental group condition, given as a number, not a range.
- A description of the sample collection allowing the reader to understand whether the samples represent technical or biological replicates (including how many animals, litters, cultures, etc.).
- A statement of how many times the experiment shown was independently replicated in the laboratory.
- Definitions of statistical methods and measures:
 - Common tests, such as t-test (please specify whether paired vs. unpaired), simple χ² tests, Wilcoxon and Mann-Whitney tests, can be unambiguously identified by name only; more complex techniques should be described in the methods section.
 - Are tests one-sided or two-sided?
 - Are there adjustments for multiple comparisons?
 - Are exact statistical tests results, e.g., P values < x but not P values < y;
 - Definition of center values as median or average;
 - Definition of error bars as s.d. or s.e.m.

Any descriptions too long for the figure legend should be included in the methods section and/or with the source data.

B- Statistics and general methods

In the pink boxes below, please ensure that the answers to the following questions are reported in the manuscript itself. Every question should be answered. If the question is not relevant to your research, please write NA (non-applicable).

Please fill out these boxes. [Do not worry if you cannot see all your text once you press return]

1. How was the sample size chosen to ensure adequate power to detect a pre-specified effect size?

2. For animal studies, include a statement about sample size estimate even if no statistical methods were used.

3. Describe inclusion/exclusion criteria if samples or animals were excluded from the analysis. Were the criteria pre-established?

4. Were any steps taken to minimize the effects of subjective bias when allocating animals/samples to treatment (e.g., randomization procedure)? If yes, please describe.

5. For animal studies, include a statement about randomization even if no randomization was used.

6. Were any steps taken to minimize the effects of subjective bias during group allocation or/and when assessing results (e.g., binding of the investigator)? If yes please describe.

7. For animal studies, include a statement about blinding even if no blinding was done.

8. For every figure, are statistical tests justified as appropriate?

9. Do the data meet the assumptions of the tests (e.g., normal distribution)? Describe any methods used to assess it.

10. Is there an estimate of variation within each group of data?
C- Reagents

8. To show that antibodies were profiled for use in the system under study (assay and species), provide a citation, catalog number and/or clone number, supplementary information or reference to an antibody validation profile; e.g., Antibodypedia (see link list at top right), IDeBugger (see link list at top right).

No antibodies were used.

9. Identify the source of all cell lines and report if they were recently authenticated (e.g., by SRB profiling) and tested for mycoplasma contamination.

No cell lines were used.

D- Animal Models

10. We recommend consulting the ARRIVE guidelines (see link list at top right) (Fizelle et al., x1000912, 2010) to ensure that other relevant aspects of animal studies are adequately reported. See author guidelines, under ‘Reporting Guidelines’. See also: NIEHS (see link list at top right) and MIRC (see link list at top right) recommendations. Please confirm compliance.

Yes.

E- Human Subjects

11. Identify the committee(s) approving the study protocol.

Not applicable

12. Include a statement confirming that informed consent was obtained from all subjects and that the experiments conformed to the principles set out in the WMA Declaration of Helsinki and the Department of Health and Human Services Belmont Report.

Not applicable

13. For experiments involving live vertebrates, include a statement of compliance with ethical regulations and identify the committee(s) approving the experiments.

The use of slaughterhouse material for collection of oocytes and their in vitro culture does not require ethical committee approval according to the Czech law.

14. Report any restrictions on the availability (and/or on the use) of human data or samples.

Not applicable

15. Report the clinical trial registration number (at ClinicalTrials.gov or equivalent), where applicable.

Not applicable

16. For phase II and III randomized controlled trials, please refer to the CONSORT flow diagram (see link list at top right) and submit the CONSORT checklist (see link list at top right) with your submission. See author guidelines, under ‘Reporting Guidelines’. Please confirm you have submitted this list.

Not applicable

17. For tumor marker prognostic studies, we recommend that you follow the REMARK reporting guidelines (see link list at top right). See author guidelines, under ‘Reporting Guidelines’. Please confirm you have followed these guidelines.

Not applicable

F- Data Accessibility

18. Provide a “Data Availability” section at the end of the Materials & Methods, listing the accession codes for data generated in this study and deposited in a public database (e.g., RNA-Seq data: Gene Expression Omnibus GSE35962, Proteomics data: PRIDE P10009308 etc.) Please refer to our author guidelines for ‘Data Deposition’.

Data are provided in the manuscript, there were no data generated in the study, which would require deposition.

19. Data deposition in a public repository is mandatory for:
 a. Protein, DNA and RNA sequences
 b. Macromolecular structures
 c. Crystallographic data for small-molecules
 d. Functional genomics data
 e. Proteomics and molecular interactions

Data are provided in the manuscript, there were no data generated in the study, which would require deposition.

20. Access to human clinical and genomic datasets should be provided with as few restrictions as possible while respecting ethical obligations to the patients and relevant medical and legal issues. If practically possible and compatible with the individual consent agreement used in the study, such data should be deposited in one of the major public access-controlled repositories such as dbGAP (see link list at top right) or EGA (see link list at top right).

Not applicable

21. Computational models that are central and integral to a study should be shared without restrictions and provided in a machine-readable form. The relevant accession numbers or links should be provided. When possible, standardized format (SBML, CellML) should be used instead of scripts (e.g., MATLAB). Authors are strongly encouraged to follow the MIRIAM machine-readable form. The relevant accession numbers or links should be provided. When possible, standardized format (SBML, CellML) should be used instead of scripts (e.g., MATLAB). Authors are strongly encouraged to follow the MIRIAM machine-readable form.

Not applicable

G- Dual use research of concern

22. Could your study fall under dual use research restrictions? Please check biosecurity documents (see link list at top right) and list of select agents and toxins (APHIS/CDC) (see link list at top right). According to our biosecurity guidelines, provide a statement only if it could.

Not applicable