The host-pathogen interaction in Campylobacter jejuni infection of chickens: an understudied aspect that is crucial for effective control

Citation for published version:
Chintoan-Uta, C 2017, 'The host-pathogen interaction in Campylobacter jejuni infection of chickens: an understudied aspect that is crucial for effective control' Virulence, vol 8, no. 3, pp. 241-243. DOI: 10.1080/21505594.2016.1240860

Digital Object Identifier (DOI):
10.1080/21505594.2016.1240860

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Virulence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The host-pathogen interaction in *Campylobacter jejuni* infection of chickens: an understudied aspect that is crucial for effective control

Cosmin Chintoan-Uta

The Roslin Institute and Royal (Dick) School of Veterinary Studies, Easter Bush, Midlothian, EH25 9RG, UK. Email: Cosmin.Chintoan-Uta@roslin.ed.ac.uk.

Keywords

Campylobacter jejuni, invasion, chicken, innate immunity, cytokines.
Campylobacter jejuni is the main causative agent of food-borne diarrhoeal illness in the UK and most of the developed world. In addition, it is a significant cause of morbidity and mortality in infants in the developing world. It causes symptoms that range from mild, self-limiting disease to more severe haemorrhagic diarrhoeal disease that can last up to two weeks and in some cases even relapse. In addition, C. jejuni can also cause long-lasting sequelae, which include Guillane-Barré syndrome and reactive arthritis. In the UK alone, the total burden of campylobacteriosis is estimated to reach over 700,000 cases per year, at an estimated cost to the economy of £500 million. The main source of campylobacteriosis is the consumption of contaminated poultry which has been attributed to up to 80% of human infections. In the UK, a recent year-long survey estimated that, in 2014, an average of 70% of poultry carcases on retail were contaminated with Campylobacter. Even though it is the main zoonotic food-borne pathogen, the biology of C. jejuni and its interactions with the chicken’s immune system is not as well understood as other pathogens, such as E. coli and Salmonella. in chickens, Campylobacter resides in the intestinal mucus and invasion levels are low. Historically, C. jejuni was described as a commensal organism in chickens, as it does not cause overt clinical signs. However, C. jejuni can be isolated from the liver of infected chickens, which is the main cause of campylobacteriosis outbreaks in the UK; this internal organ infiltration is not typically considered commensal behaviour. The reasons behind C. jejuni’s biology of infection in chickens are still not well understood and the relative contributions of the chicken’s immune response to infection vs. the ability of Campylobacter to invade and to evade or subvert the immune response are still not well characterised.

In this issue of Virulence, Vaezirad et al. describe how treatment of chickens with glucocorticoids (GC), which induce generalised immunosuppression, influences the invasive behaviour of C. jejuni. The data suggest that C. jejuni has the intrinsic ability to translocate the intestinal barrier and disseminate to the liver. However, the chicken is able to mount an effective early innate immune response which appears to be partially responsible for limiting the amount of tissue and organ infiltration in chickens. This study demonstrated that, following GC treatment, both caecal colonisation levels and the invasion of C. jejuni into the liver were significantly increased when monitored daily during the first four days after infection. To my knowledge, this is the first publication to demonstrate an increased colonisation and invasion of C. jejuni within the liver following experimental immunosuppression in chickens.
To demonstrate the induction of an innate immune response following *C. jejuni* infection, Vaezirad and co-workers measured the induction of pro-inflammatory gene expression after infection. Following *C. jejuni* infection of non-GC treated chickens, statistically significant increases of various magnitude in the pro-inflammatory cytokines IL-8, IL-6, IL-1β and iNOS were observed in both the spleen and the liver at days 1 and 4 after infection. No increase in IFNβ was observed in these birds. GC treatment without *C. jejuni* infection was shown to induce significant decreases in the expression of these genes at various time-points in the caecum but no changes in expression of these genes were observed in the spleen. When the expression level of these genes was compared in GC-treated and non-treated chickens, both *C. jejuni* challenged, reductions in the expression of most of these gene were observed at both time-points and in both organs, suggesting effective suppression of the innate immune response mounted against *C. jejuni* infection. These results demonstrate that chickens are able to mount an effective early innate immune response against *C. jejuni* infection and that this response is ablated following immunosuppression with GC treatment. They also confirm that gene expression for the IL-8, IL-6 and IL-1β cytokines, which were observed to be significantly induced in chicken cell lines *in vitro*, is also induced *in vivo*. Gene expression during *Campylobacter* infection was compared to that induced by *Salmonella* Enteritidis and pathogen specific differences were observed.

The present study by Vaezirad *et al.* provides another experimental confirmation that *C. jejuni* is not merely a commensal organism in chickens. Previously, Bull *et al.* reported an association between *C. jejuni* positivity and an increase in the incidence of pododermatitis in commercial flocks. The causative link between *C. jejuni* infection and pododermatitis was later and for the first time proven experimentally by Humphrey *et al.*, who also revealed differences in the immune response to *Campylobacter* infection in different breeds of chickens. Humphrey *et al.* highlighted that increased IL-10 gene expression at 12 days post infection (dpi) resulted in reduced intestinal pathology and lower incidence of pododermatitis. Further, it has been shown that chickens can produce high levels of IL-10 early in infection with other pathogens. For example, Setta *et al.* described a significant induction of IL-10 at 4 dpi with *S. Enteritidis* (which colonises the intestines but does not invade significantly or cause clinical signs) but not after infection with *S. Gallinarum* or *S. Pullorum* (which cause typhoidal-like disease but do not colonise the intestines). In contrast, Shaughnessy *et al.* showed that, even though both activate TLR-4 to similar levels, *S. Typhimurium* (which, like *S. Enteritidis*, colonises the intestines but does not cause clinical signs) but not *C. jejuni*
infection induces a significant increase in the expression of IFNγ. Increased IFNγ gene expression has been correlated with a decrease in severity of clinical signs due to campylobacteriosis in humans, supporting the hypothesis that a Th1-polarised immune response has the primary role in acquired immunity to C. jejuni13. Taken together, these observations suggest that a finely balance induction of both IL-10 and IFNγ may be required for the clearance of bacterial intestinal pathogens in chickens. Given this, an insight into the expression of this cytokine early in infection with C. jejuni would be valuable information, a cytokine that the authors unfortunately did not look at in the present study. As a result, further work investigating the expression of both IL-10 and IFNγ along the course of C. jejuni infection is required to assess the role of these cytokines in this infection.

While this study adds a valuable insight into the biology of C. jejuni infection in chickens, the fine mechanistic details of the interaction of C. jejuni with the chicken immune response remain to be elucidated. To gain some insight into the mechanisms behind their observation, Vaezirad et al7 investigated the induction of iNOS in two macrophage cells lines in vivo following GC-treatment and C. jejuni stimulation. They demonstrated that iNOS gene expression was abolished in GC pre-treated cells compared to non-treated control cells. This observation suggests a role for macrophages in the defence against C. jejuni invasion in chickens. However, C. jejuni survival ability within these GC-treated macrophage cell lines was not assessed. Furthermore, these observations were not validated in vivo, possibly due to the lack of widely available tools. The use of recently developed tools such transgenic chickens that express fluorophores on the cells of the macrophage lineage14 and a C. jejuni 11169H strain that expresses GFP stably and to high levels from a chromosomal integration15 could facilitate a more precise study of interactions between C. jejuni and macrophages and other cells of the immune system in vivo.

Overall, the nature of the protective immune response required to avoid C. jejuni colonisation remains to be fully elucidated. Previous studies looked at a limited number of genes over a limited time-course using different breeds of chickens. As such, further studies investigating the expression of an increased number of immune genes, both early and late in the course of the same infection, in a single breed of chickens, are required to characterise host-pathogen interactions in more detail. These should be complemented by in vivo studies of changes in populations of immune cells during C. jejuni infection in order to determine whether changes that may be observed at the level of
gene expression are due to true changes in gene expression or local changes in cell populations. Such information could aid the rational development of control strategies such as vaccination. Vaccines have been proven to be protective by independent research groups 16,17,18, however, the nature of the protective immune response remains to be elucidated. Recently developed transgenic chickens that lack functional antibodies 19, would provide a valuable insight into the nature of protective immune response following vaccination.

In summary, while the data presented by Vaezirad et al7 represents a valuable addition to our understanding of the early host-pathogen interactions in \textit{Campylobacter} infection in chickens, there are still major gaps in our understanding of the interaction of \textit{C. jejuni} with the immune system of the chicken. Only with a more detailed study of these basic aspects we hope to rationally develop control strategies and even make effective vaccination feasible.

\textbf{Disclosure of interest:}

The author reports no conflict of interest.

\textbf{Acknowledgements}

Thanks go to Dr. Robin Cassady-Cain for proof-reading the manuscript. I am grateful to Dr. Eleftherios Mylonakis and the Virulence editorial team for support in publishing this comment.
References:

1. Young KT, David LM and Dirita VJ. 2007. *Campylobacter jejuni*: molecular biology and pathogenesis. *Nat Rev Microbiol.* 5: 665.

2. Zia S, Wareing D, Sutton C, Bolton E, Mitchell D and Goodacre JA. 2003. Health problems following *Campylobacter jejuni* enteritis in a Lancashire population. *Rheumatology.* 42:1083.

3. Department for the Environment, Food & Rural Affairs. 2015. Zoonoses Report 2014. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/488376/zoonoses-annual-report-2014.pdf

4. Tam CC and O’Brien SJ. 2016. Economic cost of *Campylobacter*, Norovirus and Rotavirus disease in the United Kingdom. PLoS One. e0138526

5. EFSA Panel on Biological Hazards (BIOHAZ). 2011. Scientific opinion on *Campylobacter* in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA J. 9:2105

6. Food Standards Agency. 2015. Cumulative results: first 12 months of retail survey on levels of *Campylobacter* on chicken. https://www.food.gov.uk/sites/default/files/full-campy-survey-report.pdf.

7. Vaezirad MM, Keestra-Gouder AM, de Zoete MR, Koene MG, Wagenaar JA, van Putten JP. 2016. Invasive behaviour of *Campylobacte jejuni* in immunosuppressed chickens. *Virulence.* 9:1.

8. Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA and Jones MA. 2005. *Campylobacter jejuni*-induced cytokine responses in avian cells. *Infect Immun.* 73:2094.

9. Bull SA, Thomas A, Humphrey T, Ellis-Iversen J, Cook AJ, Lovell R and Jorgensen F. 2008. Flock health indicators and *Campylobacter* spp. in commercial housed broilers reared in Great Britain. *Appl Environ Microbiol.* 74:5408.
10. Humphrey S, Chalonner G, Kemmett K, Davidson N, Williams N, Kipar A, Humphrey T and Wigley P. 2014. *Campylobacter jejuni* is not merely a commensal in commercial broiler chickens and affects bird welfare. *mBio*. 5: e01364.

11. Setta AM, Barrow PA, Kaiser P and Jones MA. 2012. Early immune dynamics following infection with *Salmonella enterica* serovars Enteritidis, Infantis, Pullorum and Gallinarum: cytokine and chemokine gene expression profile and cellular changes of chicken caecal tonsils. *CIMID*. 35: 397.

12. Shaugnessy RG, Meade KG, Cahalane S, Allan B, Reiman C, Callanan JJ, O’Farrelly C. 2009. Innate immune gene expression differentiates the early avian intestinal response between *Salmonella* and *Campylobacter*. *Vet Immunol Immunopathol*. 132: 191.

13. Tribble DR, Baqar S, Scott DA, Olinger MA, Trespalacios F, Rollins D, Walker RJ, Clements JD, Walz S, Gibbs P, Burg EF 3rd, Moran AP, Applebee L and Burgeois AL. 2010. Assessment of the duration of protection in *Campylobacter jejuni* experimental infection in humans. *Infect Immun*. 78: 1750.

14. Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, Gutowsak MW, Burt DW, Kaiser P, Hume DA and Sang HM. 2014. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. *Development*. 141: 3255.

15. Jervis AJ, Butler JA, Wren BW and Linton D. 2015. Chromosomal integration vectors allowing flexible expression of foreign genes in *Campylobacter jejuni*. *BMC Microbiol*. 15: 230.

16. Neal-McKinney JM, Samuelson DR, Eucker TP, Nissen MS, Crespo R and Konkel ME. 2014. Reducing *Campylobacter jejuni* colonisation of poultry via vaccination. *PLoS One*. 9: e114254.

17. Chintoan-Uta C, Cassady-Cain R, Al-Haideri H, Watson E, Kelly DJ., Smith DGE, Sparks NHC, Kaiser P and Stevens MP. 2015. Superoxide dismutase SodB is a protective antigen against *Campylobacter jejuni* colonisation in chickens. *Vaccine*. 33: 6206.
18. Nothaft H, Davis B, Lock YY, Perez-Munoz ME, Vinogradov E, Coros C and Szymanski CM. 2016. Engineering the *C. jejuni* N-glycan to create an effective chicken vaccine. *Nature Scientific Reports*. 6: 26511.

19. Schusser B, Yi H, Collarini EJ, Izquierdo SM, Harriman WD, Etches RJ and Lighton PA. 2013. Harnessing gene conversion in chicken B cells to create a human antibody sequence repertoire. *PLoS One*. 8: e80108.