Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers

Francesco Montefusco¹*, Ozgur E. Akman², Orkun S. Soyer³, Declan G. Bates⁴

¹ Department of Information Engineering, University of Padova, Padova, Italy, ² College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom, ³ School of Life Sciences, University of Warwick, Coventry, United Kingdom, ⁴ School of Engineering, University of Warwick, Coventry, United Kingdom

* montefusco@dei.unipd.it

Abstract

Many of the most important potential applications of Synthetic Biology will require the ability to design and implement high performance feedback control systems that can accurately regulate the dynamics of multiple molecular species within the cell. Here, we argue that the use of design strategies based on combining ultrasensitive response dynamics with negative feedback represents a natural approach to this problem that fully exploits the strongly nonlinear nature of cellular information processing. We propose that such feedback mechanisms can explain the adaptive responses observed in one of the most widely studied biomolecular feedback systems—the yeast osmoregulatory response network. Based on our analysis of such system, we identify strong links with a well-known branch of mathematical systems theory from the field of Control Engineering, known as Sliding Mode Control. These insights allow us to develop design guidelines that can inform the construction of feedback controllers for synthetic biological systems.

Introduction

The development of appropriate design frameworks for the construction of synthetic feedback controllers is an important open problem in Synthetic Biology that has recently begun to attract significant attention from the Control Engineering research community [1–3]. A key requirement for any such framework is that it is consistent with the nature of biological information processing, in order that any resulting designs can be readily implemented via biomolecular circuitry. This represents a significant challenge, since (mainly for historical reasons) many of the implicit assumptions underlying control theory are based on consideration of dynamical properties that arise in the context of physical, rather than biological, systems. For example, the assumption that the dynamics of both the system to be controlled and the feedback controller can be well approximated by linear models is widely made in many branches of feedback control theory. This assumption is often valid for many physical systems (from...
motors to aircraft to power networks) because these systems have been purposefully designed by engineers to provide predominantly linear response dynamics, since this significantly simplifies their analysis and control.

This contrasts strongly with the situation in many biological contexts, where evolution often results in systems that display strongly nonlinear dynamics. A prime example of such nonlinear dynamics is represented by the phenomenon of ultrasensitivity, in which the gain of the system (ratio of output signal to input signal) changes from very low, to very high, and then back to very low as the magnitude of the input signal increases. The resulting sigmoidal shape of the system’s response (Fig 1) is a widely observed characteristic of many different biological systems [4, 5], and can be achieved via a variety of different molecular mechanisms, including dimerization of transcription factors [6], use of scaffolding proteins in MAPK systems [7], and branching in bacterial phosphorylation/de-phosphorylation cycles [8]. In addition to their nonlinear dynamics, all processes in nature are noisy. The functional roles of noise are many and diverse [9, 10]: on the one hand, noise can be an undesired property of the process, due to entropy-increasing effects that limit the fidelity and robustness of signaling pathways and, then, it is crucial to control and attenuate it; on the other hand, noise can be a surprising beneficial effect by increasing functional heterogeneity and thus diversity (accelerating, for instance, the pace of evolution) and, then, it becomes important to exploit and amplify it. In the last two decades the effects of feedback (ubiquitous in biology) on noise have been well investigated: two seminal works suggested negative feedback as a mechanism for attenuating the effect of noise [11, 12]. Further theoretical and experimental research has revealed a more intricate relation between negative feedback and noise, indicating that noise can be attenuated or amplified depending on the feedback strength [13–15].

![Ultrasensitive Negative Feedback Control](https://doi.org/10.1371/journal.pone.0161605.g001)

Fig 1. Steady-state input-output characteristics. Relationships for linear, Michaelian and ultrasensitive systems.
Interestingly, signalling systems implementing phosphorylation-dephosphorylation cycles in concert with negative feedback loops have been shown to exhibit adaptive characteristics, i.e. an initial response to a persistent external stimulus eventually returns to its pre-stimulus level [16–20]. This adaptive capability (referred to as “disturbance rejection” in control theory) is a key requirement for many feedback control systems, since it allows the system to robustly maintain specified levels of performance despite the inevitable presence of environmental fluctuations and disturbances.

In the following, we show that a control model that combines ultrasensitive responses with negative feedback, resulting in a control model we call ultrasensitive negative feedback (U_{NF}), provides a plausible explanation for the adaptive responses observed in one of the most widely studied biomolecular feedback systems—the yeast osmoregulatory response network [21–27]. Indeed, the yeast osmoregulation system implements the archetypical mitogen-activated protein kinase (MAPK) pathway, as well as a two-component signaling system, both of which control downstream gene expression. Both the two-component and MAPK cascades have been shown theoretically and experimentally to embed ultrasensitive dynamics [4, 5, 28–31], while gene expression dynamics are usually implemented as a Hill function (e.g. see [27]). Moreover, the presence of ultrasensitivity has also been suggested for the Fps1 glycerol channels determining the glycerol export rate [25, 27]. Thus, the presence of ultrasensitivity in the yeast osmoregulation system is broadly accepted. Therefore, these findings point to the possibility of U_{NF} based mechanisms that allow yeast to achieve adaptive responses. Subsequent analysis of such controller models reveals strong links with a particular class of nonlinear feedback controllers, known as Sliding Mode controllers, whose performance and robustness properties are well known to engineers [32–34]. Based on these insights, we develop design guidelines that could be exploited by Synthetic Biologists to inform the design of synthetic feedback control circuits for a wide variety of potential applications.

Methods

Osmoregulation as a feedback control system

The osmoregulation system can be naturally abstracted as a feedback control system comprised of two separate mechanisms that act to adjust glycerol production in order to keep the cell’s turgor pressure and volume constant in the face of environmental changes (Fig 2): 1) the regulation of the membrane protein Fps1 determining the glycerol export rate (the Fps1 channel, blue box of Fig 2B); 2) the activation of the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) signalling and the corresponding Hog1-dependent mechanisms that promote glycerol production (the series of the Hog1 activation system and the Hog1 mediated branch, red boxes of Fig 2B). Our model therefore consists of three main compartments: 1) a biophysical module describing how the cell volume and the turgor pressure are affected by varying extra–cellular osmolarity; 2) a control system comprised of two parallel mechanisms that determines the glycerol levels; 3) a glycerol module that determines the intra- and extra-cellular glycerol concentration and the corresponding biophysical properties of the system. The mathematical representations employed for each of these modules are described in the following sections.

The biophysical module. The biophysical model is based on the work presented in [22]. The system is modelled by considering the dependencies between cell volume V, the turgor pressure P_t, the intra–cellular osmotic pressure P_i and the extra–cellular osmotic pressure P_e. At any given time t, $P_t(t)$, $P_i(t)$ and $P_e(t)$ determine the flow of water across the cell membrane, which is proportional to $(P_t(t) – P_i(t) – P_e(t))$. Assuming that the cell volume is only affected
by the inflow and outflow of water, then the change in volume can be expressed as

\[
\frac{dV}{dt} = k_p(t)(P_i(t) - P_e(t) - P_t(t)),
\]

(1)

with \(k_p\) denoting a hydraulic water permeability constant. At equilibrium \((\text{equil.})\), i.e. constant volume and no net flow of water over the membrane, Eq (1) reduces to

\[
P_i = P_e + P_t.
\]

\((\text{equil.})\)

The only osmolyte considered explicitly in the model is glycerol \((\text{Gly})\); hence, ions and other small molecules that change upon osmotic shock \([35]\) are not considered. This assumption is motivated by experimental results from \([36]\), where the authors found that glycerol counter-balances approximately 80\% of applied NaCl in \textit{S. cerevisiae}. Therefore, the intra-cellular
osmotic pressure, according to van’t Hoff’s law, is expressed as

\[P_i(t) = \frac{s + Gly(t)}{V(t) - V_b}, \]

with \(s \) being the concentration of the sum of osmolytes (assumed constant) other than glycerol present in the cell, and \(V_b \) being the non-osmotic volume of the cell, subsuming non-polar cellular components, such as membranes. According to Eq (2), the intra-cellular osmotic pressure increases with the glycerol concentration, which can be used to control the turgor pressure of the cell.

The extra-cellular osmotic pressure is only modified by the input signal, \(u(t) \), for example the applied salt stress, and is then independent of changes in other variables. Hence

\[P_e(t) = P_{\text{equil}} + u(t), \]

where \(P_{\text{equil}} \) is the extra-cellular osmotic pressure at equilibrium (at \(t = 0 \), \(P_{\text{equil}} = P_e(0) = P_i(0) - P_i(0) \)).

The turgor pressure is linearly dependent on the volume according to [37], in the following manner:

\[P_i(t) = \epsilon \left(\frac{V(t)}{V(0)} - 1 \right) + P_i(0). \]

Here, \(V(0) \) is the initial volume, \(P_i(0) \) is the initial turgor pressure, and \(\epsilon \) is the volumetric elastic modulus. By expressing the volume at which \(P_i = 0 \) with the notation \(V^\circ = 0 \), Eq (4) can be rewritten as

\[P_i(t) = \begin{cases} P_i(0) \frac{V(t) - V^\circ}{V(0) - V^\circ}, & V(t) > V^\circ, \\ 0, & \text{otherwise}. \end{cases} \]

The controller modules. There are two branches of control in the model: the first represents the closure of Fps1 glycerol transporter channels as a reaction to osmotic shock, causing accumulation of glycerol and an increase in the intra-cellular osmotic pressure \(P_i \) [38]; the second the activation of the Hog1 protein and the corresponding Hog1-dependent mechanisms that promote glycerol production (such as the transcriptional activation of genes that encode enzymes involved in glycerol production and potential protein-protein interactions initiated by Hog1 in the cytoplasm or nucleus that lead to glycerol accumulation) [21, 24, 25].

The input signal, the error \(e(t) \), arriving at the two control branches, defined by

\[e(t) = P_i(0) - P_i(t) \]

is the difference between the initial and current turgor pressure.

The output of the Fps1 branch, \(u_{\text{Fps1}}(t) \), which corresponds to the response of the transporter channels, is given by

\[u_{\text{Fps1}}(t) = k_{\text{Fps1}} - \text{sgn}(e(t))k_{\text{Fps1}} \frac{|e(t)|^{n_{\text{Fps1}}}}{b_{\text{Fps1}}|e(t)|^{n_{\text{Fps1}}} + K_{\text{Fps1}}}, \]

where \(b_{\text{Fps1}} = 1 - \exp^{k_{\text{Fps1}}(1 - n_{\text{Fps1}})} \), \(K_{\text{Fps1}} = P_i(0)\exp^{k_{\text{Fps1}}(1 - n_{\text{Fps1}})} \), \(k_{\text{Fps1}} \) is a constant and \(n_{\text{Fps1}} \) is the exponent of the Hill function that determines the dynamics of the Fps1 controller. The function \(u_{\text{Fps1}} \) returns real values in the interval \([0, k_{\text{Fps1}}]\), where 0 corresponds to completely
closed and where k_{Fps1} is the glycerol permeability coefficient in a completely open Fps1 channel. Note that we use the sign and absolute value of the error to allow the controller to work in a symmetrical way for positive and negative values of the error.

To describe the dynamics of the Hog1 activation we use the following first order linear system, as done in [24]:

$$ \dot{u}_{HOG}(t) = b_{HOG} e(t) - a_{HOG} u_{HOG}(t) $$

(8)

Here b_{HOG} and a_{HOG} are constants, and u_{HOG} represents the activation of Hog1. We constrain b_{HOG} and a_{HOG} to assume similar values, to achieve linear dynamics between the error and the Hog1 activity as proposed by [24] based on which components of the system display adaptive dynamics.

To model the Hog1 mediated feedback control branch, using an U_{NF} controller, we implement a Hill-type function so that the output of this controller is given by

$$ v_{HOG}(t) = \begin{cases}
 k_{HOG} \frac{u_{HOG}(t)^n_{HOG}}{\beta_{HOG} u_{HOG}(t)^n_{HOG} + K_{HOG}}, & u_{HOG}(t) > 0, \\
 0, & \text{otherwise},
\end{cases} $$

(9)

where k_{HOG} is the gain of the controller, $\beta_{HOG} = 1 - e^{k_{HOG}(1 - n_{HOG})}$, $K_{HOG} = e^{k_{HOG}(1 - n_{HOG})}$ and k_{HOG} and n_{HOG} are constants. Note that the Hog1 mediated controller only works for positive values of the input and is switched off for negative values.

Eqs (7) and (9) allow the controllers to evolve from proportional ($n_{Fps1} = n_{HOG} = 1$) to ultrasensitive dynamics ($n_{Fps1}, n_{HOG} > 1$). Indeed, for $n_{Fps1} = n_{HOG} = 1$, the parameters $\beta_{Fps1} = 1 - e^{k_{Fps1}(1 - n_{Fps1})}$ and $\beta_{HOG} = 1 - e^{k_{HOG}(1 - n_{HOG})}$ become 0, $K_{Fps1} = P_i(0) e^{k_{Fps1}(1 - n_{Fps1})} = P_i(0)$ and $K_{HOG} = e^{k_{HOG}(1 - n_{HOG})}$ = 1, and thus we end up with the following proportional (P_{NF}) controllers:

$$ u_{Fps1}(t) = \begin{cases}
 k_{Fps1} \frac{P_i(0) - e(t)}{P_i(0)}, & e(t) \geq 0, \\
 k_{Fps1} \frac{P_i(0) + e(t)}{P_i(0)}, & e(t) < 0,
\end{cases} $$

(10)

$$ v_{HOG}(t) = \begin{cases}
 k_{HOG} \cdot u_{HOG}(t), & u_{HOG}(t) > 0, \\
 0, & \text{otherwise}.
\end{cases} $$

(11)

Finally, we consider the case where the Hog1 pathway implements an integrator as proposed in [24], where the authors hypothesised that, to achieve perfect adaptation, the system implements an integral feedback via a non-transcriptional pathway that requires the Hog1 activity. Then, the output of this channel is described by the following equation:

$$ v_{HOG}(t) = k_{HOG} \cdot \int_{t-T_m}^{t} u_{HOG}(\tau) d\tau, $$

(12)

where k_{HOG} is the gain of the channel and T_m is the time window of the integral. In the case of infinite integration time ($T_m = \infty$), the controller implements an ideal integrator (I_{NF}). I_{NF} takes into account the complete history of the process and produces an output value proportional to the integral of the error (over a potentially infinite integration period). If T_m is finite, the controller implements a finite integrator (FI_{NF}), which is able to store only a limited history of the error.
The glycerol module. The exchange of internal and external glycerol, u_{Diff}, over the Fps1 channel is modelled using Fick’s first law of diffusion as

$$u_{\text{Diff}}(t) = u_{\text{Fps1}}(t) \left(\frac{\text{Gly}(t)}{V(t)} - \frac{\text{Gly}_e(t)}{V_e} \right),$$

(13)

with V_e being the extra-cellular volume, Gly being the intra-cellular glycerol and Gly$_e$ being the glycerol in the extra-cellular compartment. The extra-cellular glycerol, depending only on the diffusion over the Fps1 channel, is described by

$$\frac{d\text{Gly}_e}{dt} = u_{\text{Diff}}(t).$$

(14)

Intra-cellular glycerol production, which is used to control the turgor pressure of the cell by changing the intra-cellular osmotic pressure (see Eq (2)), is expressed by combining the output of the two controllers described above:

$$\frac{d\text{Gly}}{dt} = v_{\text{HOG}}(t) - u_{\text{Diff}}(t).$$

(15)

Our model contains 20 parameters as reported in S1 Table. However, four of these are dependent parameters which do not need to be constrained.

Optimization of the parameters for different control schemes against experimental datasets

For each control scheme we use global optimization algorithms to optimize the model parameters to fit the available experimental data presented in [24], in particular the volume and the Hog1 responses to step shocks of 0.2, 0.4 and 0.6 M of NaCl. S2 Table reports the optimal model parameters obtained for each combination of dataset and control scheme. Optimisation problems were formulated by the square sum of the errors between the simulated responses (volume and Hog1) produced by the model to different osmotic stresses and the experimental data as follows:

$$\min_p J = \sum_j \sum_i (V_j(t_i) - \hat{V}_j(t_i, p))^2 + (u_{\text{HOG}}(t_i) - \hat{u}_{\text{HOG}}(t_i, p))^2,$$

(16)

where p is the set of model parameters, $V_j(t_i)$ and $u_{\text{HOG}}(t_i)$ are the experimental volume and Hog1 measurements, respectively, at time t_i for the j-th experiment (step shock with different amplitude) and $\hat{V}_j(t_i)$ and $\hat{u}_{\text{HOG}}(t_i, p)$ are the volume and Hog1 responses of the model, respectively, at time t_i for the j-th experiment.

Note that in our model we do not consider any growth mechanism; therefore, when the volume is completely recovered, i.e. $V_j(t_i) > 1$, the data points are assumed equal to 1 for our computations, as in [27]. For each control scheme, we optimize the control parameters and the main biophysical parameters (which are $V_P^0 = 0$, defining the volume at which the turgor pressure is zero, and k_{p1}, the water permeability coefficient). All the other parameters, which showed little effect when varied, are fixed as reported in S1 Table.

For the optimization, we use a hybrid Genetic Algorithm (GA) [39], that combines the most well-known type of evolutionary algorithm with a local gradient-based algorithm [40, 41] to ensure the computation of globally optimal solutions. Indeed, most optimization problems encountered in biology involve non-convex search spaces and thus any local optimization algorithm, which uses gradient information of the cost function to find the search direction for determining the optimum, may only provide a local, rather than a global solution, depending
on where in the search space the optimization starts. GA, in contrast, uses a heuristic search technique that mimics the process of natural selection and then requires only the calculation of the cost function. Therefore, due its stochastic nature, GA can be expected to have a much better chance of converging to a global optimum than a local optimization algorithm, and a hybrid GA makes the solution more robust. For the computation, we use the function `ga` from the MATLAB Global Optimization Toolbox [42] and `fmincon` from the MATLAB Optimization Toolbox [43], as the local algorithm. We repeat the hybrid GA algorithm five times and select the parameter set that gives the optimal value of the cost function J.

Availability of models and computer code

MATLAB code containing the files for generating the results presented in the main text and Supporting Information is provided as an additional S1 File.

Results

A model based on U_{NF} control explains experimental data on yeast osmoregulation

We focus on yeast osmoregulation as a model system to investigate the possible mechanisms for adaptive response dynamics. Several experimental studies have provided detailed data on the dynamics of the yeast osmoshock response, and have elucidated the molecular pathways involved [21, 24, 27]. In brief, yeast perceives a change in external osmolyte conditions (e.g. salt shock) as a drop in cell volume and turgor pressure, sensed through its membrane bound osmosensor, SLN1 (see Fig 2A).

SLN1 is part of a two-component signalling cascade that leads to activation of a mitogen-activated protein kinase (MAPK) cascade, which leads to the phosphorylation of the transcription factor Hog1 [21]. Phosphorylated Hog1 translocates to the nucleus and activates the expression of genes encoding enzymes involved in glycerol production. In addition, a drop in turgor pressure leads to the closing of the membrane bound glycerol channel Fps1. The resulting accumulation of glycerol inside the cell reinstates the turgor pressure and cell volume, and thus underpins the observed adaptive dynamics in cell volume. We model the described osmoregulatory network as a feedback control system, where the SLN1 receptor is seen as computing the difference (i.e. error) between the current and an ideal turgor pressure (where the latter corresponds to the steady state cell volume), while the Fps1 channel and the Hog1 pathway leading to glycerol activation are seen as feedback controllers that process the error and feed their response back to the system (see Fig 2B and Methods). The system to be controlled is considered to involve the cellular glycerol levels and their effect on turgor pressure and volume (see Methods). This model architecture allows us to investigate the effect of implementing different types of response dynamics for the two feedback controllers on the model’s ability to match the available experimental data on responses to osmotic shocks. Within the yeast osmoregulation system, the presence of ultrasensitivity has been either demonstrated or suggested in several parts of the system, e.g. the SLN1 two-component system preceding the MAPK cascade [44], the MAPK cascade terminating at Hog1 [5], the Fps1 glycerol channels [25, 27] and the mechanisms mediated by Hog1 that promote glycerol accumulation, such as the transcriptional activation of genes encoding enzymes involved in glycerol production and potential protein-protein interactions initiated by Hog1 in the cytoplasm or nucleus that lead to glycerol accumulation [24, 25]. To capture these observations, we develop a model that implements an U_{NF} controller for both the Fps1 and Hog1 mediated feedback systems, named U_{NF}- U_{NF} (Methods, Eqs (7) and (9)). Optimising the parameters of this model within biologically feasible ranges...
produces an excellent fit to datasets on yeast responses to stepwise osmotic shocks of various sizes (Fig 3 and Methods).

For the purposes of comparison, two canonical linear controllers, proportional negative feedback (P_{NF}) and integral negative feedback (I_{NF}), are also implemented in the model and

![Graph A](image1)

![Graph B](image2)

Fig 3. Best fit to osmoshocks for the $U_{NF}-U_{NF}$ model. Best fit to the experimental dataset for the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magnitude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the optimised model responses.

doi:10.1371/journal.pone.0161605.g003
we develop a model (named high (low) values (see

good fit to low (high) levels of osmoshock requires the integral control gain to be optimized to

both the Hog1 and Fps1 mediated feedback controllers implement a

dynamics must require an

controller for the Hog1 mediated branch

dynamics, unless the process it controls (in this case, the biophysical model of glycerol

accumulation and its effect on volume) implement an I_{NF} required for achieving adaptation as

shown through analytical results from control theory [45–48]. In particular, to see if P_{NF} control

alone can explain the observed data, we develop a model (named P_{NF}), which assumes that

both the Hog1 and Fps1 mediated feedback controllers implement a P_{NF} control (Methods, Eqs

(10) and (11)). By optimizing the model parameters so as to get the best possible fit to the exper-

imental data (see Methods), we find that this model provides a very poor fit, as shown in S1 Fig.

In particular, the large steady-state errors produced by this model, and the lack of adaptation,

clearly indicate that the controlled process itself does not contain an integrator. Stated biologi-

cally, the dynamics of glycerol accumulation itself and its connection to turgor pressure and vol-

ume cannot, on their own, explain the observed data. Then, we investigate the performance of a

model implementing an I_{NF} controller. Based on the hypothesis that the observed adaptive

dynamics must require an I_{NF} controller, a previous study placed this type of controller on the

Hog1 mediated feedback route [24]. This conclusion was based on the fact that the elements in

a control system placed before an I_{NF} controller must show adaptive dynamics, whilst those

placed after such a controller will not. In the case of the yeast osmoregulation system, glycerol

levels in the yeast osmoregulation do not adapt, while Hog1 levels do, and thus leading to the

proposal that the integral controller resides in the Hog1 mediated feedback path [24]. Therefore,

we develop a model (named P_{NF}) implementing a P_{NF} controller for the Fps1 channel and

an I_{NF} controller for the Hog1 mediated branch. We find that the P_{NF} can achieve a good fit

to all experimental data, when optimized (see S2 Fig). However, not all responses to different

osmoshock strengths are equally well captured with such a model. We find that achieving a bet-

ter fit to high levels of osmoshock reduced the fit to low levels and vice versa. In particular, a

good fit to low (high) levels of osmoshock requires the integral control gain to be optimized to

high (low) values (see S3 Fig). Increasing the gain of the integrator to achieve a faster response

and improve the fitting to the experimental data for low levels of osmoshock (such as the stress

input of 0.2 M of NaCl), however, results in a worse fitting to data for higher levels of

osmoshock and overshoot in the volume response, which is not observed experimentally (see

panel A in S3 Fig). When we consider an integral controller with a more biologically plausible

finite integration window, T_{m} (i.e. shorter memory, termed FI_{NF}), the difference between simu-
lated and experimental data for such a model (named P_{NF}-I_{NF}) becomes greater than that

achieved by P_{NF}-I_{NF} and, in particular, the fit to adaptation levels is much worse (see S4 Fig).

We also develop a model implementing U_{NF} controller for the Fps1 feedback channel and an

| Table 1. Different control schemes exploited for reproducing experimentally observed responses of yeast to different levels of osmoshock. |
|-------------|-----------------|-----------------|
| Control Models | Fps1 channel | Hog1 mediated branch |
| P_{NF}-I_{NF} | Proportional negative feedback (P_{NF}) | Proportional negative feedback (P_{NF}) |
| P_{NF}-I_{NF} | Proportional negative feedback (P_{NF}) | Integral negative feedback (I_{NF}) |
| P_{NF}-I_{NF} | Proportional negative feedback (P_{NF}) | Finite integral negative feedback (FI_{NF}) |
| U_{NF}-I_{NF} | Ultra-sensitive negative feedback (U_{NF}) | Integral negative feedback (I_{NF}) |
| U_{NF}-I_{NF} | Ultra-sensitive negative feedback (U_{NF}) | Finite integral negative feedback (FI_{NF}) |
| U_{NF}-I_{NF} | Ultra-sensitive negative feedback (U_{NF}) | Ultra-sensitive negative feedback (U_{NF}) |

Optimised against the same datasets (see Methods and S1 Appendix for the main properties of these controllers using a generic control scheme). Table 1 reports all the possible control schemes here exploited for explaining the experimental data.
Ultrasensitive Negative Feedback Control

U_{NF} or FI_{NF} controller for the Hog1 mediated feedback branch, named $U_{NF-I_{NF}}$ and $U_{NF-FI_{NF}}$, respectively (see S5 and S6 Figs). In all cases, however, the U_{NF}-U_{NF} model is seen to exhibit a significantly better match to the available experimental data. $S2$ Table reports the J values calculated using Eq (16), showing the corresponding model scores: a lower value of J indicates a better fit to the data, and U_{NF}-U_{NF} gets the lowest value. However, the loss function does not take into account the different number of parameters for each model without thereby penalizing models with a larger number of parameters (as U_{NF}-U_{NF}). Therefore, we also compute other standard scores as Akaike information criterion (AIC) [49], Bayesian information criterion (BIC) [50] and Akaike’s final prediction-error criterion (FPE) [51]. In general BIC tends to penalize complex models more heavily, on the other hand AIC and FPE tend to choose models which are too complex as the number of data goes to infinity. For all the scores (whose values are reported in $S2$ Table), the U_{NF}-U_{NF} model achieves the lowest values, further confirming that it is the model that is best capable of reproducing the multiple experimental datasets.

Note that our model, in line with all previous models [21–27], is based on the assumption of deterministic dynamics. Indeed, experimental studies have indicated that the noise levels in the system are low due to the abundance of Hog1 [24, 52–54], and then a deterministic model is well-suited for describing the osmoregulation system dynamics. However, we also investigate the effects of noise on controller performance for the U_{NF}-U_{NF} model, by adding normally distributed noise to the outputs of the two controllers (see S7 Fig): the results are in line with those obtained without noise (see Fig 3), the responses for the different inputs are robust to the effects of noise as the deviation between the simulated and experimental data is limited, and we can state that the deterministic solution of the U_{NF}-U_{NF} model represents the mean of stochastic simulations.

U_{NF} control provides a metabolically efficient means of achieving adaptation

To better understand the basis of the different degrees to which the P_{NF}, I_{NF} and U_{NF} control schemes are able to fit the data, we analyze the temporal outputs of different models (Fig 4). As expected, each control scheme responds to the osmohock by decreasing the Fps1 controller activity (corresponding to a closing of the Fps1 channel) and increasing the glycerol production mediated by the Hog1 controller (Fig 4A–4C). As glycerol accumulates and volume recovers, the error starts to decrease (Fig 4D) resulting in a decrease in the glycerol production mediated by the Hog1 controller (Fig 4B) and the re-opening of the Fps1 channel (Fig 4A). This eventually leads to the system reaching a new dynamical steady state. We find that a crucial aspect of each control scheme’s ability to capture the adaptation dynamics is the interplay between error-mediated changes in the glycerol production and export (i.e. Hog1 vs. Fps1 controller dynamics). When both the controllers incorporate linear dynamics (e.g. for the P_{NF}-P_{NF} and P_{NF}-I_{NF}, models, where the Fps1 channel implements P_{NF} and the Hog1 mediated branch implements P_{NF} or I_{NF} as proposed in [24], respectively), the Fps1 channel opens before the volume is completely recovered (Fig 4A, blue and green lines), triggering the leakage of glycerol out of the cell prematurely. Thus, higher Hog1 mediated glycerol production is required to increase the glycerol level and recover the cell volume. When both controllers implement U_{NF}, however, the strongly nonlinear controllers respond rapidly to the stress by immediately increasing the glycerol production (Fig 4B, red line) and the Fps1 channel remains partially closed until the error becomes less than a certain threshold.

U_{NF} controllers implement a quasi sliding mode control scheme

To better understand the ability of ultrasensitive negative feedback to produce adaptive dynamics, and to develop some general guidelines for the design of synthetic controllers based on this
approach, we analyse the performance of such a controller using a generic closed-loop feedback control model (see Fig 5). In this simplified system, the controller is employed to maintain a given process at a particular set-point when it is subject to a step disturbance (Fig 5A). The input of the controller is the error signal, \(e \), defined as the difference between the desired output, \(r \) (called the reference signal), and the actual output of the system, \(y \). Based on the error

\[e = r - y \]

The output of the controller affects the system to reduce the error, ultimately bringing the system's output close to the desired set-point. This process is iterative, with the controller continuously adjusting its output based on the error signal, ensuring stable and predictable performance under various conditions.
signal, the controller manipulates the input to the process, u, to reduce the effect of the disturbance, u_d, on the output y and therefore obtain the desired response. We also analyze the performance of individual P_{NF}, I_{NF}, F_{NF} using the generic closed-loop feedback control model and derive analytical expressions for the controller output (see S1 Appendix and S8 Fig). Inline with control theory, we show that for the P_{NF} controller, achieving an error value close to zero requires a very large gain resulting in very high output signals from the controller even for a very small disturbance (see panel A in S8 Fig). For the I_{NF} controller, the output of the process is equal to the reference signal at steady state given any step disturbance, i.e. the error is zero at steady state and the system achieves perfect adaptation (see panel B in S8 Fig). However, the time to reach the steady state varies with controller parameters, and making the integration
time window finite \((F_{\text{NF}})\) can destroy the ability of the integral controller to recover the original steady state value (see panels C–E in S8 Fig)).

An ultrasensitive controller \((U_{\text{NF}})\), where the error is processed through a system with ultrasensitive (sigmoidal dose-response) dynamics, before being fed into the process, can be modelled using a simple Hill-type function, so that the input from the controller back to the process can be represented by

\[
u(t) = \text{sgn}(e(t))k_p \cdot \frac{|e(t)|^n}{|e(t)|^n + K^n}.
\] (17)

Note that we use the sign and absolute value of the error to allow the controller to work in a symmetrical way for positive and negative values of the error.

For such a controller, an analytical expression for the system output cannot be derived. However, it is possible to show that the \(U_{\text{NF}}\) controller can achieve a steady state error value very close to zero. Indeed the steady state error can be visualized by plotting both sides of Eq (A25) in S1 Appendix as shown in Fig 5B and 5C: the intersections of the straight line \(a(r - e - a_{u_d})\) with \(\text{sgn}(e)bk \cdot \frac{|e|^n}{|e|^n + K^n}\), for different values of \(K\) and \(k_p\) by varying \(a_{u_d}\) (Fig 5C), correspond to the steady-states of the system. For the purposes of comparison, Fig 5B also shows the corresponding steady-states obtained with a proportional controller—these are given by the intersection of the straight lines \(a(r - e - a_{u_d})\) (dashed black line) and \(bk_p e\) (dash-dot green line). Note that for any value of \(n\), given a small value of \(K\) and without increasing the gain \(k_p\), the ultrasensitive controller can achieve a steady-state error value very close to zero, therefore, high values of \(n\) and \(k_p\) are not needed. In contrast, achieving similarly low levels of error with a proportional controller (dashed green line) would require increasing the gain towards infinity (a requirement that is never practically feasible). Moreover, \(U_{\text{NF}}\) provides a more tunable system, where both the maximal response and the point of high sensitivity can be adjusted by changing independent parameters (Fig 5C).

We now show how the ultrasensitive controller defined by Eq (17) implements an approximation of a well-known class of controllers, based on sliding mode control (SMC), a nonlinear technique for robust control system design [32–34]. Note first that as \(K\) goes to zero, Eq (17) assumes the following formula (see also Fig 6D):

\[
u(t) = k_p \text{sgn}(e(t)).
\] (18)

This kind of switching controller takes only two values, \(k_p\) and \(-k_p\), and has a discontinuity on the straight line \(e = 0\). The equation of the line, \(\sigma = e = r - y = 0\), is known in sliding mode control theory as the sliding manifold, where \(\sigma\) is the sliding variable. The typical dynamics in sliding mode control consist of a reaching phase, during which trajectories starting away from the sliding manifold \(\sigma = 0\) move towards it and reach it in finite time, followed by a sliding phase, during which the dynamics will be confined to the manifold \(\sigma = 0\). By setting opportune the gain \(k_p\) (for details see S1 Appendix), the control signal \(u\) defined by Eq (18), will therefore bring the error to zero in finite time and then maintain the condition \(\sigma = 0\) for all future time.

Fig 6A shows the performance of the closed loop system with a sliding mode controller described by Eq (18) for different values of \(k_p\). We assume that the system output is initially equal to the desired constant output, \(r = y(0) = y_0 = v_0 = 1\) \((L = 0\) in inequality (A33) in S1 Appendix). Then the control gain is only designed to compensate for the bounded disturbance \(u_d\) which is assumed to be a step disturbance applied at time \(t = 1\) with amplitude \(a_{u_d} = 0.2\). So setting \(k_p > a_{u_d}\) (see relation (A33) in S1 Appendix) (the parameter \(\sigma = 1\) is sufficient to reduce completely the effect of the disturbance \(u_d\) on the output \(y\) and to obtain the desired response...
Fig 6. Performance of the generic closed-loop feedback system using SMC, U_{NF}, and its approximation by the piecewise function u_{pw} (A-C).

Response dynamics obtained using: (A-B) SMC, a sliding mode controller ($u(t) = k_p \text{sgn}(e)$) for different values of the gain k_p and $y(0) = y_0$; (C) U_{NF}, its approximation by the piecewise function u_{pw} and the ideal SMC, with $k_p = 0.25$, $n = 2$ and different values of K. The parameters a, b and the constant reference signal r are set equal to 1. The system output is initially equal to the desired constant reference value $y(0) = y_0 = r$ (A and C), whereas $y(0) = y_0 = 0$.

(A) SMC with $y(0) = y_0 = r$

(B) SMC with $y(0) = y_0 = 0$

(C) U_{NF}, u_{pw} and SMC

(D) I-O relationships

output of the controller (u) vs input of the controller (e)
(B). A step disturbance, \(u_d \), with amplitude \(a_{u_d} = 0.2 \) (A and C), \(a_{u_d} = -0.2 \) (B), is applied at time \(t = 1 \). (D) Input-output (I-O) relationships for the \(U_{NF} \) controller (solid magenta plot), its approximation by the saturation function \(\text{sat}(m \cdot e) \) with \(m = n/(4K) \) (dashed blue plot), and the ideal SMC (i.e. the discontinuous nonlinearity \(\text{sgn}(e) \)—dashed-dotted green plot). When \(n = 2 \), then the saturation function \(\text{sat}(e/(2K)) \) is equal to the piecewise function \(u_{pw} \) that approximates \(U_{NF} \) (see Eqs (A38)–(A39) in S1 Appendix).

doi:10.1371/journal.pone.0161605.g006

(red dashed-dotted plot in Fig 6A). By contrast, if \(k_p < a_{u_d} \) the system is not able to attenuate the effects of the disturbance (blue plot in Fig 6A).

Fig 6B shows the performance when the output \(y(0) = y_0 = 0 \) is not initially equal to the desired value \(r = 1 \) and a step disturbance is applied at time \(t = 1 \) with amplitude \(a_{u_d} = -0.2 \). Then the control gain of the sliding mode controller is designed not only to compensate for the disturbance, but also to force the system to move toward the sliding manifold \((\sigma = e = 0) \) (in this case \(L > 1 \) in inequality (A33) in S1 Appendix). As shown in Fig 6B, if inequality (A33) in S1 Appendix is satisfied, then the system is able to move towards the sliding manifold \(\sigma = e = 0 \) and maintain it for all future time.

Fig 6A and 6B show that the output response exhibits a zigzag motion of small amplitude and high frequency in the sliding mode, a phenomenon known as *chattering*. For an ideal SMC, the switching frequency goes to infinity and the amplitude of the zigzag motion goes to zero—note, however, that such an infinitely fast switching frequency is not achievable in biological reality. In addition, theoretical issues like the existence and uniqueness of solutions and validity of the Lyapunov analysis (see S1 Appendix) have to be considered due to the discontinuous nonlinearity \(\text{sgn}(e) \) in the ideal SMC (see Eq (18)).

In engineering practice, therefore, these issues are usually avoided by using continuous/smooth approximations of the discontinuous SMC. Interestingly, the \(U_{NF} \) controller considered here is an example of such a smooth control function, which can be used to approximate the nonlinearity \(\text{sgn}(e) \). In this case, there is no ideal sliding mode in the closed-loop system of Fig 5A, since the sliding variable cannot be driven to zero in a finite time. However, for small values of \(K \), the closed-loop response of the system with an \(U_{NF} \) controller is close to that achieved by an ideal SMC (Fig 6C). Moreover, Eq (17) can be approximated by the following saturation nonlinearity with high slope

\[
\text{sat}(m \cdot e) = \begin{cases}
 m \cdot e, & |e| \leq 1/m, \\
 \text{sgn}(m \cdot e), & |e| > 1/m,
\end{cases}
\]

where \(m \) is the slope for the linear regime. Fig 6D shows the sigmoidal input-output relationship for the \(U_{NF} \) controller with \(K = 0.01, n = 2 \) and \(k_p = 1 \), together with its saturation function approximation and the discontinuous nonlinearity \(\text{sgn}(e) \). More generally, the \(U_{NF} \) controller can be approximated by a piecewise linear function [55] and, when \(K \) becomes small, the piecewise linear function is well-approximated by the corresponding saturation function (see Eqs (A37)–(A39) in S1 Appendix).

Fig 6C shows the output response of the closed-loop system for the \(U_{NF} \) controller with \(n = 2 \) and different values of \(K \), together with the response obtained using its approximated saturation function (defined by Eq (A39) in S1 Appendix) for the same set of \(K \) values, and the response given by the ideal SMC. As shown in the figure, only the ideal SMC is able to completely eliminate the effect of the disturbance. However, the results for the \(U_{NF} \) and its approximated controller are very similar and the effect of the disturbance on the output becomes negligible by decreasing the \(K \) value of the \(U_{NF} \) (i.e increasing the slope \(m = 1/(2K) \) of the saturation function).

Indeed, as shown in [33], the saturation control function of Eq (19) will force the trajectory of the closed-loop system to reach in finite time the set \(|e| < 1/m \), called the *boundary layer*,
and remain inside it thereafter. Therefore, the ideal discontinuous SMC is replaced by a
smooth/continuous controller, such that the error is not confined to the manifold \(e = 0 \), but lies
inside the boundary layer \(|e| < 1/m \). In the case of the \(U_{NF} \) controller, a good estimate of the
boundary layer is given by
\[
|e| < \frac{4K}{n}.
\]
(20)

Since the boundary layer specifies the maximum value of the error signal, relation Eq (20)
can be used as design guidelines to relate controller parameters (that need to be chosen by the
designer) to closed-loop performance. In the limit \(K \to 0 \ (m \to \infty) \), the dynamics of the \(U_{NF} \)
controller approach those of the ideal SMC. Thus, the \(U_{NF} \) controller of Eq (17) is an example
of a quasi sliding mode controller, for which a large set of supporting theoretical results and
computer-aided design tools exist in the engineering literature [34].

Discussion
As Synthetic Biologists strive to design and build ever more complex systems, it is imperative
to make progress in linking feedback control theory with the mechanistic realities underlying
cellular information processing. Ultrasensitivity and negative feedback are ubiquitous features
of biomolecular circuitry—when combined they offer the potential for achieving precise, fast
and robust control over biomolecular dynamics—and there is increasing evidence that such
ultrasensitive negative feedback is a core control strategy employed by natural biological con-
trol systems. Indeed, ultrasensitivity is observed to emerge via many different mechanisms
including covalent modification, dimerization and branching architectures [4, 6, 8]. The yeast
osmoregulation system implements the archetypical MAPK pathway, as well as a two-compo-
nent signalling system, both of which control downstream gene expression, and have been
shown theoretically and experimentally to embed ultrasensitive dynamics [4, 5, 28–31], while
gene expression dynamics are usually implemented as a Hill function (e.g. see [27]). Moreover,
the presence of ultrasensitivity has also been suggested for the Fps1 glycerol channels [25, 27].
Given such prevalence of ultrasensitivity in the osmosensing system, the findings presented
here suggest that \(U_{NF} \) could be an appropriate paradigm for understanding cellular adaptive
response dynamics. In the \(E. coli \) chemotaxis system, which also displays adaptive responses,
ultrasensitivity is observed at the level of receptors and in the interaction of the signalling pro-
teins with the motility apparatus [56, 57]. It is thus also possible that ultrasensitivity is imple-
mented within the chemotaxis signalling pathways [8] and might have underpinned an
evolutionary step in generating adaptive response dynamics [18, 58].

Moreover, we show that the \(U_{NF} \) controller can approximate a sliding mode controller,
whose strong robustness and performance properties are well understood amongst control the-
orists [32–34]. It has so far not been appreciated that ultrasensitivity, when combined with neg-
ative feedback, can implement a quasi sliding mode controller in order to generate adaptive
responses. Here, we explore this connection in detail and derive a direct relationship between
the key property of the quasi sliding-mode controller (the boundary layer specifying the maxi-
mum values of the error signal), and the biologically inspired parameters of the \(U_{NF} \) controller
(\(n \) and \(K \)) (see relation Eq (20)). Then, if the yeast osmoregulation system employs an \(U_{NF} \)
controller, our study shows that adaptation precision would depend on the parameters \(n \) and \(K \).
Thus, we could experimentally evaluate the presence/absence of an \(U_{NF} \) controller by measur-
ing changes in adaptation precision with regard to changes in parameters \(n \) and \(K \) describing
the sensitivity and threshold of the ultrasensitive response. Biologically, the values of these
parameters would depend on the kinetic rates and structure of the biochemical reactions
implementing ultrasensitivity in the yeast osmoregulation system, as discussed above. In
particular, it has been shown both theoretically and experimentally that the level of sensitivity (i.e. parameter n) and the level of signal threshold (i.e. parameter K) in MAPK signalling systems can be controlled by the concentration and kinetic properties of kinases and phosphatases [4], and the level of scaffolding proteins [59, 60]. Similarly, it is shown that two-component signalling cascades are able to implement ultrasensitivity, in a manner where both sensitivity and threshold level can be tuned by the concentration of the proteins involved [31, 44, 61]. Thus, experimentally altering the structure and protein concentrations of the MAPK and two-component signalling cascades in the yeast osmoregulation system would be expected to lead to alterations in the adaptation precision of the cell volume and Hog1 levels following an osmoshock if the system implements an U_{NF} controller.

In synthetic biology, where the aim is de novo engineering of system dynamics, then the U_{NF} controller provides a simple way for implementing adaptive response dynamics. The engineering of an U_{NF} controller can make use of several mechanisms for implementing ultrasensitivity, including those observed from dimerization of transcription factors [6], use of scaffolding proteins in MAPK systems [7], and branching in bacterial phosphorylation systems [8]. In the case of the ubiquitous phosphorylation-dephosphorylation cycles, several biochemical implementations have already been identified theoretically as implementing adaptive response dynamics [16, 18–20]. Therefore, by recognizing the important role of ultrasensitivity and negative feedback control in generating adaptive response dynamics in biological systems, and making connections between these biological realities and a branch of nonlinear control theory known as sliding mode control, we are able to generate analytical insights and quantitative design guidelines that provide a useful foundation for progressing the design and construction of robust synthetic feedback control systems.

Supporting Information

S1 File. A zipped folder containing the MATLAB code for generating the results presented in the main text and Supporting Information. (ZIP)

S1 Appendix. Performance analysis of P_{NF}, I_{NF}, FI_{NF} and U_{NF} controllers using a generic closed-loop feedback system. (PDF)

S1 Fig. Best fit to osmoshocks for the P_{NF}-P_{NF} model. Best fit to the experimental dataset for the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magnitude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the optimised model responses. (EPS)

S2 Fig. Best fit to osmoshocks for the P_{NF}-I_{NF} model. Best fit to the experimental dataset for the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magnitude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the optimised model responses. (EPS)

S3 Fig. Performance evaluation for the P_{NF}-I_{NF} controller by varying the value of the optimized integral control gain, k_{HOG}. (A) Volume and Hog1 responses to increasing the optimized value of k_{HOG}. (B) Volume and Hog1 responses to decreasing the optimized value of
In each panel the upper plots show the volume responses; the lower plots show the Hog1 responses to step osmoshocks of 0.2 (first column), 0.4 (second column) and 0.6 M (third column) of NaCl. In each plot the red circles represent the experimental data.

S4 Fig. Best fit to osmoshocks for the P_{NF}-FI_{NF} model. (A-F) Best fit to the experimental dataset, the cell volume (A, C, E) and the Hog1 (B, D, F) responses to three step osmoshocks of different magnitude, with different values of the integration time window, T_m ($T_m = 5$ min (A, B); $T_m = 10$ min (C, D); $T_m = 20$ min (E, F)). The experimental data for 0.2, 0.4 and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The correspondingly colored solid lines represent the optimized model responses.

S5 Fig. Best fit to osmoshocks for the U_{NF}-I_{NF} model. Best fit to the experimental dataset for the cell volume (A) and the Hog1 (B) responses to three step osmoshocks of different magnitude; the experimental data for 0.2, 0.4, and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The corresponding coloured solid lines represent the optimised model responses.

S6 Fig. Best fit to osmoshocks for the U_{NF}-FI_{NF} model. (A-F) Best fit to the experimental dataset, the cell volume (A, C, E) and the Hog1 (B, D, F) responses to three step osmoshocks of different magnitude, with different values of the integration time window, T_m ($T_m = 5$ min (A, B); $T_m = 10$ min (C, D); $T_m = 20$ min (E, F)). The experimental data for 0.2, 0.4 and 0.6 M of NaCl are indicated by black circles, red diamonds, and blue squares, respectively. The correspondingly colored solid lines represent the optimized model responses.

S7 Fig. Responses to different step osmoshocks by adding normally distributed noise to the controller outputs for the U_{NF}-U_{NF} model. (A) Volume and (B) Hog1 responses to three step osmoshocks of different magnitude. Black plots: simulated responses to a step osmoshock of 0.2 M of NaCl (grey circles—experimental data); red plots: simulated responses to a step of 0.4 M of NaCl (grey diamonds—experimental data); blue plots: simulated responses to a step of 0.6 M of NaCl (grey squares—experimental data). 1000 independent simulations are performed.

S8 Fig. Performance of the generic closed-loop feedback system for P_{NF}, I_{NF} and FI_{NF} controllers. Response dynamics obtained using: (A) P_{NF} for different values of the gain k_p; (B) I_{NF} for different values of the gain k_i (C-E) FI_{NF} with the time window $T_m = \tau$ and different values of the gain k_i (C); $T_m = 5\tau$ and different values of k_i (D); $k_i = 1$ and different values of T_m (E). The system output is initially equal to the desired constant reference value $y(0) = y_0 = r = 1$. A step disturbance, u_d, with amplitude $a_{u_d} = 0.2$ is applied at time $t = 1$.

S1 Table. Model parameters for the osmoregulation system.

S2 Table. Optimization of the model parameters for the different control schemes against multiple experimental datasets.
Author Contributions

Conceptualization: FM OSS DGB.
Data curation: FM.
Formal analysis: FM.
Funding acquisition: OEA OSS DGB.
Investigation: FM.
Methodology: FM.
Project administration: OSS.
Software: FM.
Supervision: OSS DGB.
Validation: FM.
Visualization: FM.
Writing - original draft: FM OEA OSS DGB.
Writing - review & editing: FM OEA OSS DGB.

References

1. Del Vecchio D. A control theoretic framework for modular analysis and design of biomolecular networks. Annual Reviews in Control. 2013; 37:333–345. doi: 10.1016/j.arcontrol.2013.09.011
2. Arpino JAJ, Hancock EJ, Anderson J, Barahona M, Stan GBV, Papachristodoulou A, et al. Tuning the dials of Synthetic Biology. Microbiology. 2013; 159(Pt 7):1236–1253. doi: 10.1099/mic.0.067975-0 PMID: 23704788
3. Oyarzún DA, Stan GBV. Synthetic gene circuits for metabolic control: design trade-offs and constraints. J R Soc Interface. 2012; doi: 10.1098/rsif.2012.0671 PMID: 23054953
4. Goldbeter A, Koshland DE. An amplified sensitivity arising from covalent modification in biological systems. PNAS. 1981; 78(11):6840–6844. doi: 10.1073/pnas.78.11.6840 PMID: 6947258
5. Huang CY, Ferrell JE. Ultrasensitivity in the mitogen-activated protein kinase cascade. PNAS. 1996; 93(19):10078–10083. doi: 10.1073/pnas.93.19.10078 PMID: 8816754
6. Buchler NE, Cross FR. Protein Sequestration Generates a Flexible Ultrasensitive Response in a Genetic Network. Mol Syst Biol. 2009; 5:272. doi: 10.1038/msb.2009.30 PMID: 19455136
7. O’Shaughnessy EC, Palani S, Collins JJ, Sarkar CA. Tunable signal processing in synthetic MAP kinase cascades. Cell. 2011; 144(1):119–131. doi: 10.1016/j.cell.2010.12.014 PMID: 21215374
8. Amin M, Porter SL, Soyer OS. Split histidine kinases enable ultrasensitivity and bistability in two-component signaling networks. PLoS Comput Biol. 2013; 9(3):e1002949. doi: 10.1371/journal.pcbi.1002949 PMID: 23505358
9. Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature. 2002; 420(6912):231–237. doi: 10.1038/nature01258 PMID: 12432408
10. Tsimring LS. Noise in biology. Rep Prog Phys. 2014; 77(2):026601. doi: 10.1088/0034-4885/77/2/026601 PMID: 24444693
11. Becskei A, Serrano L. Engineering stability in gene networks by autoregulation. Nature. 2000; 405(6786):590–593. doi: 10.1038/35014651 PMID: 10850721
12. Thattai M, van Oudenaarden A. Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A. 2001; 98(15):8614–8619. doi: 10.1073/pnas.151588598 PMID: 11438714
13. Singh A, Hespanha JP. Optimal feedback strength for noise suppression in autoregulatory gene networks. Biophys J. 2009; 96(10):4013–4023. doi: 10.1016/j.bpj.2009.02.064 PMID: 19450473
14. Bruggeman FJ, Blüthgen N, Westerhoff HV. Noise management by molecular networks. PLoS Comput Biol. 2009; 5(9):e1000506. doi: 10.1371/journal.pcbi.1000506 PMID: 19763166
Interplay between zero-order and multistep effects. J Biol Chem. 1984; 259(23):14441

noise filtering. PLoS Comput Biol. 2007; 3(12):e246. doi: 10.1371/journal.pcbi.0030246

Gomez-Uribe C, Verghese GC, Mirny LA. Operating regimes of signaling cycles: statics, dynamics, and feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1016/j.bpj.2007.02.016

Behar M, Hao N, Dohlman HG, Elston TC. Mathematical and computational analysis of adaptation via noise filtering. PLoS Comput Biol. 2007; 3(12):e246. doi: 10.1371/journal.pcbi.0030246

Gomez-Uribe C, Verghese GC, Mirny LA. Operating regimes of signaling cycles: statics, dynamics, and feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1016/j.bpj.2007.02.016

Behar M, Hao N, Dohlman HG, Elston TC. Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1016/j.bpj.2007.02.016

28. Gomez-Uribe C, Verghese GC, Mirny LA. Operating regimes of signaling cycles: statics, dynamics, and feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1016/j.bpj.2007.02.016

29. Gomez-Uribe C, Verghese GC, Mirny LA. Operating regimes of signaling cycles: statics, dynamics, and feedback inhibition in signal transduction pathways. Biophys J. 2007; 93(3):806–821. doi: 10.1016/j.bpj.2007.02.016

33. Sunder S, Singh AJ, Gill S, Singh B. Regulation of intracellular level of Na+, K+ and glycerol in Saccharomyces cerevisiae under osmotic stress. FEBS J. 2006; 273(5):895–899. doi: 10.1111/j.1742-4658.2006.05105.x PMID: 16478465

34. Schabes J, Adrover MA, Eriksson E, Pelet S, Petelzen-Kurdziel E, Klein D, et al. Biophysical properties of Saccharomyces cerevisiae and their relationship with HOG pathway activation. Eur Biophys J. 2010; 39(11):1547–1556. doi: 10.1007/s00249-010-0612-0 PMID: 20563574

35. Schabes J, Baltanas R, Bush A, Klipp E, Colman-Lemer R. Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast. Mol Syst Biol. 2012; 8:622. doi: 10.1038/msb.2012.53 PMID: 23149687

36. Goldbeter A, Koshland D Jr. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. J Biol Chem. 1984; 259(23):14441–14447. PMID: 6501300

37. Blüthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Hohmann S. A simple mathematical model of adaptation to high osmolarity in yeast. In Silico Biol. 2006; 6(3):193–214. PMID: 16922683

38. Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A. The frequency dependence of osmoadaptation in Saccharomyces cerevisiae. Science. 2008; 319(5862):482–484. doi: 10.1126/science.1151582

39. Tiwari A, Ray JCJ, Narula J, Igoshin OA. Bistable responses in bacterial genetic networks: designs and dynamical consequences. Math Biosci. 2011; 231(1):76–89. doi: 10.1016/j.mbs.2010.12.015 PMID: 21385588

40. Utvik LN. Sliding Modes in Control and Optimization. Springer-Verlag, 1992; 1992.

41. Khalil HK. Nonlinear Systems. Prentice-Hall, 2002.

42. Shtessel Y, Edwards C, Fridman L, Levant A. Sliding Mode Control and Observation. Springer, 2013.

43. Sunder S, Singh AJ, Gill S, Singh B. Regulation of intracellular level of Na+, K+ and glycerol in Saccharomyces cerevisiae under osmotic stress. Mol Cell Biochem. 1996; 158(2):121–126. doi: 10.1007/BF00225837 PMID: 8817473

44. Reed RH, Chudak JA, Foster R, Gadd GM. Osmotic significance of glycerol accumulation in yeast. Mol Microbiol. 1999; 31(4):1087–1104. doi: 10.1046/j.1365-2958.1999.01248.x PMID: 10096077

45. Lobo FG, Goldberg DE. Decision making in a hybrid genetic algorithm. IlliGAL Report No 96009. 1996
40. Goldberg DE. Genetic Algorithms in Search, Optimization and Machine Learning. Boston: Addison-Wesley; 1989.
41. Fleming PJ, Purshouse RC. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice. 2002; 10:1223–1241. doi:10.1016/S0967-0661(02)00081-3
42. MATLAB. Global Optimization Toolbox User’s Guide; 2004. The Mathworks, Inc.
43. MATLAB. Optimization Toolbox User’s Guide; 1990. The Mathworks, Inc.
44. Amin M, Kothamachu VB, Feliu E, Scharf BE, Porter SL, Soyer OS. Phosphate sink containing two-component signaling systems as tunable threshold devices. PLoS Comput Biol. 2014; 10:e1003890. doi:10.1371/journal.pcbi.1003890 PMID:25357192
45. Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Wiley; 1996.
46. Cosentino C, Bates DG. Feedback Control in Systems Biology. CRC Press (Taylor & Francis); 2011.
47. Dorf RC. Modern Control Systems. Prentice-Hall; 2000.
48. Franklin GF, Powell JD, Emani-Naeini A. Feedback control of dynamic systems. Addison-Wesley; 1994.
49. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974; 19:716–723. doi:10.1109/TAC.1974.1100705
50. Schwarz GE. Estimating the dimension of a model. Annals of Statistics. 1978; 6(2):461–464. doi:10.1214/aos/1176344136
51. Ljung L. System Identification: Theory for the User. Prentice Hall; 1999.
52. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of protein expression in yeast. Nature. 2003; 425(6959):737–741. doi:10.1038/nature02046 PMID:14562106
53. Newman JRS, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature. 2006; 441(7095):840–846. doi:10.1038/nature04785 PMID:16699522
54. de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, Fr ohlich F, et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature. 2008; 455(7217):1251–1254. doi:10.1038/nature07341 PMID:18820680
55. Shin YJ, Bleris L. Linear control theory for gene network modeling. PLoS One. 2010; 5(9):e12785. doi:10.1371/journal.pone.0012785 PMID:20862288
56. Cluzel P, Surette M, Leibler S. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science. 2000; 287(5458):1652–1655. doi:10.1126/science.287.5458.1652 PMID:10696740
57. Sourjik V, Berg HC. Receptor sensitivity in bacterial chemotaxis. Proc Natl Acad Sci U S A. 2002; 99(1):123–127. doi:10.1073/pnas.011589998 PMID:11742065
58. Fan S, Endres RG. A minimal model for metabolism-dependent chemotaxis in Rhodobacter sphaero- ides. Interface Focus. 2014; 4(6):20140002. doi:10.1098/rsfs.2014.0002 PMID:25485076
59. Bashor CJ, Helman NC, Yan S, Lim WA. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science. 2008; 319(5869):1539–1543. doi:10.1126/science.1151153 PMID:18339942
60. Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science. 2010; 328(5976):368–372. doi:10.1126/science.1182376 PMID:20395511
61. Kothamachu VB, Feliu E, Wiuf C, Cardelli L, Soyer OS. Phosphorelays provide tunable signal processing capabilities for the cell. PLoS Comput Biol. 2013; 9:e1003322. doi:10.1371/journal.pcbi.1003322 PMID:24244132
S1 Appendix
Ultrasensitive Negative Feedback Control: A Natural Approach for the Design of Synthetic Controllers

Francesco Montefusco†, Ozgur E. Akman†, Orkun S. Soyer‡ and Declan G. Bates§

List of contents

1. Generic control model
 1.1. Proportional control (P_{NF})
 1.2. Integral control with infinite (I_{NF}) vs. finite integration period (FI_{NF})
 1.3. Ultrasensitive control (U_{NF}) as a quasi sliding mode control

- Supporting References
1 Generic control model

Let us assume the closed-loop feedback control system of Fig. 5A of the main text, where the controller modifies the state of the process to obtain the desired output response. The input of the controller is the error signal, \(e \), defined as the difference between the desired output, \(r \) (called the reference signal), and the actual output of the system, \(y \). Based on the error signal, the controller manipulates the input to the process, \(u \), to reduce the effect of the disturbance, \(u_d \), on the output \(y \) and therefore obtain the desired response.

To simplify the analysis, the process is a first order linear system described with the following differential equation model

\[
\dot{v}(t) = -a(v(t) - v_0) + bu(t),
\]
(A1)

where \(v(t) \in \mathbb{R} \) is the output of the process in open loop without assuming any disturbance, \(a \) and \(b \) are positive scalars, \(u(t) \in \mathbb{R} \) is the input and \(v_0 \) is the equilibrium point for the process when the input is zero. The solution of Eq. (A1) is given by \(v(t) = b(1 - e^{-at})/a \) (assuming \(v(0) = v_0 = 0 \)). Therefore the important measures that characterise the response of the open loop system (without considering the feedback action of the controller \(C \)) are the steady state value, \(G = b/a \), or static gain, and the time constant \(\tau = 1/a \), that corresponds to the time taken for the output to reach 63\% of its final value \((v(1/a) = b(1 - e^{-1})/a = 0.63b/a = 0.63G) \). In the following we consider the case for \(v_0 = 0 \). The results are the same for \(v_0 \neq 0 \). Indeed, via the change of variable \(z = v - v_0 \), the system \(\dot{z}(t) = -az(t) + bu(t) \) is equivalent to system (A1).

Now, the output of the closed loop system is given by

\[
y(t) = v(t) + u_d(t),
\]
(A2)

where \(u_d(t) \), the additive disturbance on the output of the process, is a step signal at time \(t_d \) \((u_d(t) = 0 \) for \(t < t_d \) and \(u_d(t) = a_{u_d} \) for \(t \geq t_d \), with \(a_{u_d} \) the disturbance amplitude).

1.1 Proportional control \((P_{NF}) \)

Let us assume that the controller \(C \) produces an output value, \(u \), proportional to the current value of the error \(e \)

\[
u(t) = k_p e(t) = k_p(r(t) - y(t)),
\]

where \(k_p \) is a constant called the gain of the proportional controller.

The dynamics of the closed loop system (taking into account Eqs. (A1) and (A2)) are then described
by the following differential equation:

$$\dot{y}(t) = \dot{v}(t) + \dot{u}_d(t) = -av(t) + bk_p(r(t) - y(t)) + \dot{u}_d(t)$$

$$= -a(y(t) - u_d(t)) + bk_p(r(t) - y(t)) + \dot{u}_d(t). \quad (A3)$$

To solve this differential equation the Laplace operator is used, since it allows differential equations to be transformed into algebraic equations that are much easier to solve (see (1); in particular note that the derivative operator with respect to time corresponds to a multiplication by s in the s-domain, where s is the complex Laplace variable). Taking the Laplace transform of Eq. (A3) and assuming a zero initial condition gives

$$sY(s) = -a(Y(s) - U_d(s)) + bk_p(R(s) - Y(s)) + sU_d(s),$$

$$\implies (s + a + bk_p)Y(s) = bk_pR(s) + (s + a)U_d(s),$$

where $R(s)$, $Y(s)$ and $U_d(s)$ are the Laplace transforms of the reference, output and disturbance signals, respectively.

By applying the superposition principle (for a linear system the output response to two or more inputs is the sum of the responses which would have been caused by each input individually: see (1)), the transfer function W_{yr}, defined as the ratio of the Laplace transform of the output y and the desired output r with $u_d(t) = 0$, is given as

$$W_{yr}(s) = \frac{Y(s)}{R(s)} = \frac{bk_p}{s + a + bk_p}, \quad (A4)$$

and the transfer function W_{yu_d}, defined as the ratio of the Laplace transform of the output y and the disturbance u_d with $r(t) = 0$, is given as

$$W_{yu_d}(s) = \frac{Y(s)}{U_d(s)} = \frac{s + a}{s + a + bk_p}. \quad (A5)$$

Assuming that the desired signal is a constant, $r(t) = r$, and the disturbance is a step signal at time t_d ($u_d(t) = 0$ for $t < t_d$ and $u_d(t) = a_{u_d}$ for $t \geq t_d$, where a_{u_d} is the disturbance amplitude) the corresponding Laplace transforms are $R(s) = \frac{r}{s}$ and $U_d(s) = \frac{a_{u_d}e^{-t_ds}}{s}$. Then the Laplace transform of y, obtained by summing Eqs. (A4) and (A5), is given by

$$Y(s) = W_{yr}(s)R(s) + W_{yu_d}(s)U_d(s) = \frac{bk_p}{s + a + bk_p} \cdot \frac{r}{s} + \frac{s + a}{s + a + bk_p} \cdot \frac{a_{u_d}e^{-t_ds}}{s}. \quad (A6)$$
By applying the final-value theorem for Laplace transforms (2),

\[y_{ss} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s), \]

(A7)

where \(y_{ss} \) is the steady state value of the output, the input-output steady states are related via

\[
y_{ss} = \lim_{s \to 0} \left(sW_{yr}(s) \frac{r}{s} + sW_{yu_d}(s) \frac{a_{u_d} e^{-t_{ds}}}{s} \right) = W_{yr}(0) r + W_{yu_d}(0) a_{u_d} = \frac{b k_p}{a + b k_p} r + \frac{a}{a + b k_p} a_{u_d} = \frac{G k_p}{1 + G k_p} r + \frac{1}{1 + G k_p} a_{u_d}.
\]

(A8)

Note that the last term of Eq. (A8) is obtained by dividing numerator and denominator by \(a \). Therefore, if \(G k_p >> 1 \), the output \(y \) is able to track the desired reference signal \(r \) (i.e. \(y_{ss} \sim r \)) and the controller is able to attenuate the effects of the disturbance \(u_d \) on \(y \). In terms of the error, Eq. (A8) can be rewritten as

\[e_{ss} = r - y_{ss} = \frac{1}{1 + G k_p} r - \frac{1}{1 + G k_p} a_{u_d}. \]

(A9)

The dynamics of the closed-loop system are determined by the pole of the transfer functions \(W_{yr} \) and \(W_{yu_d} \) (the value \(p \) of \(s \) that nullifies the common denominator of Eqs. (A4) and (A5), i.e. \(s = p = -a - b k_p \)). The time constant \(\tau_c \) of the dynamics is given by

\[\tau_c = \frac{1}{p} = \frac{1}{a + b k_p} = \frac{\tau}{1 + G k_p}, \]

(A10)

where \(\tau = 1/a \) is the time constant of the open loop system. Thus, the output response becomes faster for high values of \(k_p \) than the response of the open loop system without the controller.

Panel A in S8 Fig shows the performance of the closed loop system with different values of \(k_p \). As expected from Eqs. (A8)–(A10), increasing the gain value \(k_p \) allows the system to attenuate the effects of the disturbance and achieve a faster response.

1.2 Integral control with infinite (I_{nf}) vs. finite integration period (FI_{nf})

In this section we consider the closed loop system of Fig. 5A of the main text with a constant reference signal \(r \), a step disturbance \(u_d \) of amplitude \(a_{u_d} \) and a controller implementing an integrator with an infinite or finite integration period.

It is well known that integral control with infinite integration period (I_{nf}) can be used to completely attenuate the effects of the disturbance \(u_d \) on the desired output \(y \) of the closed loop system.
of Fig. 5A of the main text: in fact, y is able to perfectly track any step reference signal, r, for any step disturbance, u_d (1). In this case the system is able to achieve an adaptive response. In general, in order to achieve an adaptive response to a reference signal corresponding to the n-th integral of a step function, where n is a positive integer, the feedback loop has to contain at least $n + 1$ integrators connected in series (2). Adaptive responses to step signals, where $n = 0$, require at least one integrator.

For such a system, the controller C produces an action which takes into account completely the history of the process with an output value, u, proportional to the integral of the error

$$u(t) = k_i \int_0^t e(\tau)d\tau = k_i \int_0^t (r(\tau) - y(\tau))d\tau,$$

where k_i is the gain of the integrator. The response of the closed loop system is obtained by solving the following integro-differential equation:

$$\dot{y}(t) = -a(y(t) - u_d(t)) + bk_i \int_0^t (r(\tau) - y(\tau))d\tau + \dot{u}_d(t). \quad (A11)$$

Taking the Laplace transform of Eq. (A11) and noting that the integral operator with respect to time corresponds to division by s in the s-domain (1) gives

$$sY(s) = -a(Y(s) - U_d(s)) + bk_i \left(\frac{R(s)}{s} - \frac{Y(s)}{s} \right) + sU_d(s),$$

where $R(s)$, $Y(s)$, $U_d(s)$ are the Laplace transforms of the reference, output, input and disturbance signals, respectively. It follows that the transfer functions, $W_{yr}(s)$ and $W_{yu_d}(s)$, are given by

$$W_{yr}(s) = \frac{Y(s)}{R(s)} = \frac{bk_i}{s^2 + as + bk_i}, \quad (A12)$$

$$W_{yu_d}(s) = \frac{Y(s)}{U_d(s)} = \frac{s(s + a)}{s^2 + as + bk_i}. \quad (A13)$$

By applying the final-value theorem, the input-output and error steady-states are related via

$$y_{ss} = W_{yr}(0)r + W_{yu_d}(0)u_d = \frac{bk_i}{bk_i} r + 0 = r, \quad (A14)$$

$$e_{ss} = r - y_{ss} = 0. \quad (A15)$$

Therefore the steady state output y_{ss} is equal to r for any value of the gain k_i. In other words, the integral feedback control allows the system to perfectly return to its steady state value (i.e. achieve
perfect adaptation) following any value of perturbation.

The gain k_i determines the time dynamics of the system, i.e. the time taken for the system to reach steady state following a perturbation. In particular, the poles of the two transfer functions $W_{yr}(s)$ and $W_{yu_d}(s)$ (the values of s that nullify the denominator of Eqs. (A12) and (A13)) determine the evolution of the system. The denominator of the two functions, $s^2 + as + bk_i$, can be rewritten in the standard form

$$s^2 + 2\zeta \omega_n s + \omega_n^2,$$

where $\omega_n = \sqrt{\frac{a}{2}ak_i} = \sqrt{Gk_i/\tau}$ is called the natural frequency of the system and $\zeta = \frac{a}{2\sqrt{Gk_i/\tau}} = \frac{1}{2\sqrt{Gk_i/\tau}}$ is called the damping factor (1). The natural frequency gives information on the speed of the system response; the damping factor combines the initial speed of the response and its accuracy defined in terms of overshoot and settling time. For $\zeta < 1$ the system is underdamped (presence of overshoot in the response) and as ζ decreases the system exhibits a faster response, but more oscillatory behaviour. For $\zeta > 1$ the system is overdamped (i.e. no overshoot phenomena) and as ζ increases the response becomes slower. For $\zeta = 1$ (critical damping) the system responds with the maximum speed without overshoot (1).

Panel B in S8 Fig shows the performance of I_{NF} with different values of k_i. The system perfectly adapts for any value of k_i, which determines the response dynamics: for small values of k_i the response is slow, whereas for higher values the system achieves faster responses but with more oscillatory behaviour.

So far we have assumed a controller implementing I_{NF}, an ideal integrator that is able to store the full history of the process. We now consider a form of integral feedback that implements a finite window for error integration (FI_{NF}). For FI_{NF}, the controller output signal u is given by

$$u(t) = k_i \int_{t-T_m}^{t} e(\tau)d\tau = k_i \int_{t-T_m}^{t} (r(\tau) - y(\tau))d\tau,$$

where T_m is the time window of the integral. The following integro-differential equation then describes the closed loop system:

$$\dot{y}(t) = -a(y(t) - u_d(t)) + bk_i \int_{t-T_m}^{t} (r(\tau) - y(\tau))d\tau + \dot{u}_d(t).$$

(A17)

Taking the Laplace transform of Eq. (A17) and remembering that time-shifting corresponds to expo-
nential multiplication in the Laplace domain gives

\[sY(s) = -a(Y(s) - U_d(s)) + bk_i \left(\frac{R(s)}{s} \left(1 - e^{-sT_m} \right) - \frac{Y(s)}{s} \left(1 - e^{-sT_m} \right) \right) + sU_d(s). \]

It follows that the transfer functions, \(W_{yr}(s) \) and \(W_{yu_d}(s) \), are given by

\[W_{yr}(s) = \frac{Y(s)}{R(s)} = \frac{bk_i(1 - e^{-sT_m})}{s^2 + as + bk_i(1 - e^{-sT_m})}, \tag{A18} \]
\[W_{yu_d}(s) = \frac{Y(s)}{U_d(s)} = \frac{s(s + a)}{s^2 + as + bk_i(1 - e^{-sT_m})}. \tag{A19} \]

By applying the final-value theorem, the input-output and error steady-states are related via

\[y_{ss} = \lim_{s \to 0} \left(sW_{yr}(s) \frac{r}{s} + sW_{yu_d}(s) \frac{a_{ud}e^{-T_m}}{s} \right) = \frac{bk_iT_m}{a + bk_iT_m} r + \frac{a}{a + bk_iT_m} a_{ud}, \]
\[e_{ss} = r - y_{ss} = \frac{1}{1 + Gk_iT_m} r - \frac{1}{1 + Gk_iT_m} a_{ud}. \tag{A20} \]

(Note that as \(s \to 0 \), the term \(e^{-sT_m} \) can be approximated by the first two terms of its Taylor series \((e^{-sT_m} \approx 1 - sT_m) \)).

Panel C in S8 Fig shows the performance of \(FI_{NF} \) with a time window \(T_m = \tau \) for different values of \(k_i \). The results are similar to those obtained from the proportional controller: increasing the gain \(k_i \) reduces the effect of the disturbance on the output, but the steady state never returns to the exact value prior to the perturbation. The controller acts similarly to an ideal integrator when its time window is sufficiently large compared to the dynamics of the process to be controlled: panel D in S8 Fig shows the performance of \(FI_{NF} \) with \(T_m = 5\tau \) for different values of \(k_i \). The control system tries to cancel the effect of the disturbance but the response is characterised by a more pronounced oscillatory behaviour which does not damp down, like the ideal integrator, due to the finite memory \(T_m \). Finally, panel E in S8 Fig shows the performance of \(FI_{NF} \) as the window time \(T_m \) is varied for a fixed gain \(k_i \) equal to 1. As shown previously, for small values of \(T_m \) the results are similar to those of the proportional control model, whereas for large values of \(T_m \) the system reduces the effect of the disturbance but generates an oscillatory response, which does not die out like in the case of \(I_{NF} \).
1.3 Ultrasensitive control (U_{NF}) as a quasi sliding mode control

Ultrasensitivity describes a particular form of sensitivity in biological systems, where the system does not respond to incoming signals outside of a certain regime, but responds in a highly sensitive manner within this regime. Ultrasensitivity is characterised by a sigmoidal input-output relationship and is shown to be a ubiquitous feature in several biological systems. Ultrasensitivity can be biochemically implemented through a variety of mechanisms such as phosphorylation cycles and cooperative binding (see (3, 4)) and can be described by a Hill-type function. It has been shown previously that ultrasensitivity, when implemented in a negative feedback loop, can lead to adaptive response dynamics (5).

Biochemical reactions that can implement ultrasensitivity in biological systems can take part in particular signalling and response pathways. To represent these systems using the control theory framework developed above, we imagine an ultrasensitive controller (U_{NF}). In this controller, the error is processed through an ultrasensitive (sigmoidal dose-response) dynamics, before being fed into the process. Thus, the input from the controller back to the process can be represented by

$$u(t) = \text{sgn}(e(t))k_p \cdot \frac{|e(t)|^n}{|e(t)|^n + K^n}.$$ \hfill (A22)

Note that we use the sign and absolute value of the error to allow the controller to work in a symmetrical way for positive and negative values of the error.

The dynamics of the closed loop system are therefore described by the following differential equation:

$$\dot{y}(t) = -a(y(t) - u_d(t)) + \text{sgn}(e(t))bk_p \cdot \frac{|e(t)|^n}{|e(t)|^n + K^n} + \dot{u}_d(t).$$ \hfill (A23)

Rewriting Eq. (A23) in terms of e and assuming a constant reference signal, $r(t) = r$ (note that $\dot{e}(t) = -\dot{y}(t)$), gives

$$\dot{e}(t) = a(r - e(t) - u_d(t)) - \text{sgn}(e(t))bk_p \cdot \frac{|e(t)|^n}{|e(t)|^n + K^n} - \dot{u}_d(t).$$ \hfill (A24)

The steady state error, e_{ss}, is the solution of the equation $\dot{e}(t) = 0$ which implies

$$a(r - e_{ss} - a_{ud}) = \text{sgn}(e_{ss})bk_p \cdot \frac{|e_{ss}|^n}{|e_{ss}|^n + K^n}.$$ \hfill (A25)

The solutions of Eq. (A25) can be visualised by plotting both sides of the equation, as shown in Fig. 5B of the main text: the intersections of the straight line $a(r - e - a_{ud})$ with $\text{sgn}(e)bk_p \cdot \frac{|e|^n}{|e|^n + K^n}$ correspond to the steady states of the system. We show that U_{NF} can achieve a steady-state error value very close to zero for any value of n, given a small value of K and without increasing the gain k_p (for more
From the control point of view, the ultrasensitive controller defined by Eq. (A22) is an approximation of a well-known class of controllers, based on sliding mode control (SMC), a nonlinear technique for robust control (see (6–8)). Indeed if K goes to zero, Eq. (A22) assumes the following formula (see also Fig. 6D of the main text):

$$u(t) = k_p \text{sgn}(e(t)).$$ \hfill (A26)

As explained in the main text, this kind of controller is a simple switching control that takes only two values, k_p and $-k_p$, and has a discontinuity on the straight line $e = 0$. The equation of the line, $\sigma \equiv e = r - y = 0$, may be interpreted as the sliding mode equation, called the sliding manifold, where σ is the sliding variable. The typical dynamics in sliding mode control consist of a reaching phase during which trajectories starting off the sliding manifold $\sigma = 0$ move towards it and reach it in finite time, followed by a sliding phase during which the dynamics will be confined to the manifold $\sigma = 0$. The control signal u, defined by Eq. (A26), is therefore designed to bring the error to zero in finite time and then maintain the condition $\sigma = 0$ for all future time. This task can be achieved by applying Lyapunov stability (1, 7, 8) to the σ-dynamics, defined as

$$\dot{\sigma}(t) = \dot{e}(t) = -\dot{y}(t) = a(y(t) - u_d(t)) - bu(t) - \dot{u}_d(t) = a(r - e(t) - u_d(t)) - bk_p sgn(e(t)) - \dot{u}_d(t).$$ \hfill (A27)

For the σ-dynamics, a candidate Lyapunov function is

$$V = \frac{1}{2} \sigma^2.$$ \hfill (A28)

In order for $\sigma = 0$ to be asymptotically stable, the following conditions need to be satisfied:

$$V(\sigma) > 0,$$ \hfill (A29)

$$\dot{V}(\sigma) < 0 \quad \text{for} \quad \sigma \neq 0.$$ \hfill (A30)

The condition (A29) is satisfied by Eq. (A28). The derivative of Eq. (A28) is computed as

$$\dot{V} = \sigma \dot{\sigma} = e \dot{e} = e (-\dot{y}) = e (a(y - u_d) - bu - \dot{u}_d) = e (a(r - e - u_d) - bk_p sgn(e) - \dot{u}_d).$$ \hfill (A31)

To attain the sliding manifold, $\dot{V} < 0$, σ and $\dot{\sigma}$ must always have opposite signs. Assuming that u_d
and $e(0)$ are bounded as below

$$\|u_d(t)\| < M \quad \text{and} \quad |e(0)| = |r - y(0)| < L,$$

(A32)

the product $\sigma \dot{\sigma}$ will be negative if the following inequality is satisfied:

$$k_p b \geq a M + a L \implies k_p \geq \frac{a}{b} M + \frac{a}{b} L.$$

(A33)

Therefore, the control gain k_p of the SMC controller is computed taking into account the relation (A33); the first term, $\frac{a}{b} M$, is designed to compensate for the bounded disturbance u_d, while the second term $\frac{a}{b} L$ is responsible for determining the reaching phase, when the trajectory is forced towards the sliding manifold.

Note that, if the controller can also make an action proportional to the output, then the inequality (A33) for the control gain k_p is only determined by the disturbance u_d, i.e. $k_p \geq \frac{a}{b} M$. In particular, if the input at the process given by the controller is

$$\bar{u}(t) = k_p \text{sgn}(e(t)) + \frac{a}{b} y(t),$$

(A34)

then Eq. (A31) becomes

$$\dot{V} = e (a(y - u_d) - b\bar{u} - \dot{u}_d) = e (ay - au_d - bk_p \text{sgn}(e) - ay - \dot{u}_d) = e (-au_d - bk_p \text{sgn}(e) - \dot{u}_d).$$

(A35)

Inequality (A33) thus becomes $k_p \geq \frac{a}{b} M$; the term $u_{eq} = ay/b$ is called equivalent control and is chosen to cancel the known term, ay, on the right-hand side of Eq. (A27). In the absence of the disturbance, taking $u = u_{eq}$ leads to $\dot{e} = 0$, allowing the sliding manifold $\sigma = e = 0$ to be maintained for all future time.

As shown in Fig 6 of the main text, the output response of the closed loop system with a SMC exhibits a zigzag motion of small amplitude and high frequency in the sliding mode (see the plot in the box of Fig. 6A). SMC is a high frequency switching control with a switching frequency inversely proportional to the time increment used in the simulation. Increasing the accuracy of the solution computed by the ODE solver reduces the zigzag motion, but due to the discrete-time nature of the computer simulation the output response continues to exhibit this effect, which is called chattering. For an ideal SMC, the switching frequency goes to infinity and the amplitude of the zigzag motion goes to zero.
In addition to the practical issue of chattering, theoretical issues like the existence and uniqueness of solutions and validity of the Lyapunov analysis have to be considered due to the discontinuous nonlinearity \(\text{sgn}(e) \) in the ideal SMC (see Eq. (A26)). These issues can be avoid by using continuous/smooth approximations of the discontinuous SMC and the \(U_{NF} \) controller is an example of a smooth control function, used to approximate the nonlinearity \(\text{sgn}(e) \). The designed \(U_{NF} \) control is technically not a sliding mode control and there is no ideal sliding mode in the closed-loop system (A23), since the sliding variable cannot be driven to zero in a finite time. However, for small values of \(K \), the results of \(U_{NF} \) are close to those achieved by an ideal SMC (see Fig S8C). As shown in the main text, Eq. (A22) can be approximated by the following saturation nonlinearity with high slope

\[
\text{sat}(m \cdot e) = \begin{cases}
 m \cdot e, & |e| \leq 1/m, \\
 \text{sgn}(m \cdot e), & |e| > 1/m,
\end{cases}
\]

(A36)

where \(m \) is the slope for the linear regime.

In wider terms, the \(U_{NF} \) controller can be approximated by a piecewise linear function (9) and, when \(K \) becomes small, the piecewise linear function is well-approximated by the corresponding saturation function. In particular, for \(n < 2 \), the following approximation is valid

\[
u = \text{sgn}(e) \cdot \frac{|e|^n}{|e|^n + K^n} \approx u_{pw} = \begin{cases}
 n/(2K) \cdot e, & |e| \leq K(2-n)/n, \\
 n/(4K) \cdot e - 1/4(2-n), & -K(2+n)/n < e \leq -K(2-n)/n, \\
 n/(4K) \cdot e + 1/4(2-n), & K(2-n)/n < e \leq K(2+n)/n, \\
 \text{sgn}(e), & |e| > K(2-n)/n,
\end{cases}
\]

(A37)

while for \(n \geq 2 \)

\[
u = \text{sgn}(e) \cdot \frac{|e|^n}{|e|^n + K^n} \approx u_{pw} = \begin{cases}
 0, & |e| \leq K(n-2)/n, \\
 n/(4K) \cdot e - 1/4(2-n), & -K(n+2)/n < e \leq -K(n-2)/n, \\
 n/(4K) \cdot e + 1/4(2-n), & K(n-2)/n < e \leq K(n+2)/n, \\
 \text{sgn}(e), & |e| > K(n+2)/n.
\end{cases}
\]

(A38)

For \(n = 2 \), the piecewise approximation \(u_{pw} \) (right-hand side of Eq. (A38)) is equal to the saturation function with \(m = n/(4K) = 1/(2K) \). In this case, the \(U_{NF} \) controller is thus well-approximated by
its saturation function:

\[u = \text{sgn}(e) \cdot \frac{|e|^2}{|e|^2 + K^2} \approx u_{pw} = \text{sat}(e/(2K)) = \begin{cases}
\frac{e}{(2K)}, & |e| \leq 2K, \\
\text{sgn}(e/(2K)), & |e| > 2K.
\end{cases} \]

(A39)

As shown in Fig 6C of the main text, the \(U_{NF} \) controller and its approximated saturation function are very similar and the effect of the disturbance on the output becomes negligible by decreasing the \(K \) value of the \(U_{NF} \) (i.e increasing the slope \(m = 1/(2K) \) of the saturation function for \(n = 2 \)) and the error lies inside the boundary layer \(|e| < 1/m \). Therefore, the ideal discontinuous SMC can be approximated by a smooth/continuous controller, such that the error is not confined to the manifold \(e = 0 \), but lies inside the boundary layer (7), that for the case of the \(U_{NF} \) controller, as reported in the main text, is given by

\[|e| < (4K)/n. \]

(A40)

In the limit \(K \to 0 \) (\(m \to \infty \)), the \(U_{NF} \) controller (the saturation function \(\text{sat}(ne/(4K)) \)) approaches the signum nonlinearity \(\text{sgn}(e) \) of the ideal SMC. This, finally, allows us to say that the \(U_{NF} \) controller of Eq. (A22) is an example of quasi sliding mode control (8).

Supporting References

1. Cosentino, C., and D. G. Bates, 2011. Feedback Control in Systems Biology. CRC Press (Taylor & Francis).

2. Skogestad, S., and I. Postlethwaite, 1996. Multivariable Feedback Control: Analysis and Design. Wiley.

3. Goldbeter, A., and D. E. Koshland, 1981. An amplified sensitivity arising from covalent modification in biological systems. *PNAS* 78:6840–6844.

4. Buchler, N. E., and F. R. Cross, 2009. Protein Sequestration Generates a Flexible Ultrasensitive Response in a Genetic Network. *Mol Syst Biol* 5:272.

5. Behar, M., N. Hao, H. G. Dohlman, and T. C. Elston, 2007. Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways. *Biophys J* 93:806–821. http://dx.doi.org/10.1529/biophysj.107.107516.

6. Utkin, V., 1992. Sliding Modes in Control and Optimization. Springer-Verlag, 1992.
7. Khalil, H., 2002. Nonlinear Systems. Prentice-Hall.

8. Shtessel, Y., C. Edwards, L. Fridman, and A. Levant, 2013. Sliding Mode Control and Observation. Springer.

9. Shin, Y.-J., and L. Bleris, 2010. Linear control theory for gene network modeling. *PLoS One* 5. http://dx.doi.org/10.1371/journal.pone.0012785.
A

Volume

- Exp. to 0.2 M of NaCl
- Model to 0.2 M of NaCl
- Model to 0.4 M of NaCl
- Exp. to 0.4 M of NaCl
- Exp. to 0.6 M of NaCl
- Model to 0.6 M of NaCl

B

Hog1 activity

- Exp. to 0.2 M of NaCl
- Model to 0.2 M of NaCl
- Model to 0.4 M of NaCl
- Exp. to 0.4 M of NaCl
- Exp. to 0.6 M of NaCl
- Model to 0.6 M of NaCl
PNF-INF performance

A

Salt Concentration	Volume	Hog1 activity
0.2 M of NaCl	![Graph](image1)	![Graph](image2)
0.4 M of NaCl	![Graph](image3)	![Graph](image4)
0.6 M of NaCl	![Graph](image5)	![Graph](image6)

Increasing the integral gain

B

Salt Concentration	Volume	Hog1 activity
0.2 M of NaCl	![Graph](image7)	![Graph](image8)
0.4 M of NaCl	![Graph](image9)	![Graph](image10)
0.6 M of NaCl	![Graph](image11)	![Graph](image12)

Decreasing the integral gain
A. $T_m = 5\text{ min}$

B. $T_m = 5\text{ min}$

C. $T_m = 10\text{ min}$

D. $T_m = 10\text{ min}$

E. $T_m = 20\text{ min}$

F. $T_m = 20\text{ min}$

- **Volume**
- **Hog1 activity**

Legend:
- ○ Exp. to 0.2 M of NaCl
- ● Model to 0.2 M of NaCl
- ● Exp. to 0.4 M of NaCl
- ○ Model to 0.4 M of NaCl
- □ Exp. to 0.6 M of NaCl
- ● Model to 0.6 M of NaCl

Experiments and Models:
- Exp. to 0.2 M of NaCl
- Model to 0.2 M of NaCl
- Exp. to 0.4 M of NaCl
- Model to 0.4 M of NaCl
- Exp. to 0.6 M of NaCl
- Model to 0.6 M of NaCl

Time intervals:
- $T_m = 5\text{ min}$
- $T_m = 10\text{ min}$
- $T_m = 20\text{ min}$
UNF-FINF

A. $T_m = 5$ min

B. $T_m = 5$ min

C. $T_m = 10$ min

D. $T_m = 10$ min

E. $T_m = 20$ min

F. $T_m = 20$ min

- Exp. to 0.2 M of NaCl
- Model to 0.2 M of NaCl
- Exp. to 0.4 M of NaCl
- Model to 0.4 M of NaCl
- Exp. to 0.6 M of NaCl
- Model to 0.6 M of NaCl

Time [min] vs. Volume

Hog1 activity

Time [min]
UNF-UNF with noise

A

- Hog1 activity
- Volume

B

- Exp. to 0.2 M of NaCl
- Model to 0.2 M of NaCl
- Exp. to 0.4 M of NaCl
- Model to 0.4 M of NaCl
- Exp. to 0.6 M of NaCl
- Model to 0.6 M of NaCl
The diagrams illustrate the response of different controllers to varying gains.

A. P controller

-

B. I controller

-

C. PI controller, \(T_m = \tau \)

-

D. PI controller, \(T_m = 5\tau \)

-

E. PI controller, \(k_i = 1 \)

-

-

The graphs show the output \(y \) over time for different gains \(k_p \) and \(k_i \).
Model parameters: all volumes are scaled such that the initial volume of the cell is 1. Both Gly and Glye represent numbers of molecules (mol scaled by $V(0)$).

Control Parameters	Bounds	References	
k_{Fps1}	Glycerol permeability coefficient in a completely open Fps1 channel	[0.1 1]	[21, 25, 27, 38]
a_{HOG}, b_{HOG}	Hog1 system parameters	[0 1] Osm$^{-1}$ min$^{-1}$	-
k_{HOG}	Hog1 control gain	[0 10]	-
n_{HOG}, n_{Fps1}	Hill exponents	[1 3]	[5]

Biophysical Parameters	Bounds	References	
$V^{P_t=0}$	V when $P_t = 0$	[0.5 0.99]	[22 and references therein, 26]
k_{p1}	Water permeability coefficient	[0.1 160] Osm$^{-1}$ min$^{-1}$	[22 and references therein]

Fixed Parameters	Bounds	Nominal Values	References	
T_m	Time memory	[0 ∞]	5, 10 and 20 min	-
$k_{e_{Fps1}}$	Exponential constant	-	10	-
$k_{e_{HOG}}$	Exponential constant	-	10	-
Gly(0)	Initial Gly	$[1.1 5] \times 10^{-4}$	2×10^{-4}	[22 and references therein]
$P_i(0)$	Initial P_i	[0.6 0.7]	0.636 Osm	[22 and references therein]
$P_c(0)$	Initial P_c	[0.24 0.25]	0.24 Osm	[22 and references therein]
V_e	External volume	$[0.5 5] \times 10^3$	4.79×10^3	[22 and references therein]
V_b	Non-osmotic volume	[0.31 0.46]	0.368	[22 and references therein]

Dependent parameters	Values	
$V(0)$	Initial V - relative volume	1
Glye(0)	Initial Glye	$(V_c G_{Ly}(0))/(V(0) - V_b)$
$P_t(0)$	Initial P_t	$P_t(0) - P_c(0)$
s	No. of osmolytes other than Gly	$P_t(0)(V(0) - V_b) - G_{Ly}(0)$
Optimized model parameters for PNF-PNF, PNF-PNF, PNF-INP, PNF-INP, and the corresponding scores obtained by fitting to multiple experimental datasets (volume and HOG responses to step shocks of 0.2, 0.4 and 0.6 M of NaCl). See S1 Table for the corresponding units.

Control scheme Optimized values

Eq (16) of the main text	Scores	AIC	BIC	FPE	Optimization values
J value defined by AIC					

Equations

\[P_{\text{NF}} - P_{\text{NF}} \]

\[P_{\text{NF}} - I_{\text{NF}} \]

\[P_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 5\))

\[P_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 10\))

\[P_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 20\))

\[U_{\text{NF}} - I_{\text{NF}} \]

\[U_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 5\))

\[U_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 10\))

\[U_{\text{NF}} - F_{\text{NF}} \] (\(T_m = 20\))

\[U_{\text{NF}} - U_{\text{NF}} \]