CASE REPORT

Corticosteroid-induced Kaposi’s Sarcoma Revealed by Severe Anemia: A Case Report and Literature Review

Go Endo and Naoyoshi Nagata

Abstract:
We herein report a case of gastrointestinal (GI) Kaposi’s sarcoma (KS) without cutaneous involvement in a 73-year-old man who had received immunosuppressive drugs for granulomatosis with polyangiitis. After one year of prednisolone use, he presented with tarry stool and severe anemia. Endoscopic and pathological examinations revealed bright-reddish protruding lesions with proliferating spindle cells positive for D2-40, CD34, and HHV-8, which are definitively diagnostic of GI-KS. Drug-induced KS without HIV infection or transplantation is extremely rare, and its clinical features remain unknown. Therefore, we conducted a literature review of steroid-induced KS.

Key words: Kaposi’s sarcoma, granulomatosis with polyangiitis, steroid, immunosuppression

(Intern Med 59: 625-631, 2020)
(DOI: 10.2169/internalmedicine.3394-19)

Introduction

Kaposi’s sarcoma (KS) is an angioproliferative disorder, the onset of which requires infection with human herpes virus 8 (HHV-8) (1). There are four presentations in which KS occurs: 1) the classic form, which typically presents in elderly persons of Mediterranean or Eastern European descent; 2) the endemic form, which has been described in indigenous peoples of Sub-Saharan Africa; 3) the iatrogenic form, which is associated with immunosuppressive drug therapy; and 4) the AIDS-associated form (2). The most common presentation is the AIDS-associated form (3), and iatrogenic KS is relatively rare. Steroids are the most widely used form of immunosuppressive therapy, but the typical background, management, and prognosis of patients with steroid-induced KS remain unknown. Furthermore, the management of steroid-induced KS may differ from that of other types of KS.

We herein report a case of gastrointestinal (GI)-KS who had received long-term steroid therapy for granulomatosis with polyangiitis. We also conducted a literature review of steroid-induced KS.

Case Report

The patient, a 73-year-old Mongolian man, had been diagnosed with granulomatosis with polyangiitis 1 year earlier. His treatment regimen consisted of high-dose cyclophosphamide 1,000 mg/month and systemic corticosteroids, intravenous methylprednisolone pulse followed by oral prednisolone 50 mg/day (Fig. 1). Remission was achieved, and cyclophosphamide was changed to azathioprine 50 mg/day, with prednisolone slowly tapered to 12 mg/day over 11 months (Fig. 1).

After 11 months of therapy, he was hospitalized for tarry stool. He had taken lansoprazole daily for 11 months and was not taking any nonsteroidal anti-inflammatory drugs (NSAIDs). On his initial presentation, his vital signs were stable, and gastrointestinal, cardiovascular, pulmonary, skin, and extremities examinations were normal. An HIV-RNA test, cytoplasmic-antineutrophil cytoplasmic antibody, and Helicobacter pylori antibody were negative. His hemoglobin concentration was 6.0 g/dL, so he received 6 units of red blood cell transfusion. The hemoglobin concentration then increased to 7.9 g/dL the next day and showed gradual improvement (Fig. 1).
Upper and lower GI endoscopy showed multiple bright-reddish protruding lesions with ulcers (Fig. 2). We found a total of 10 lesions in the stomach and 16 in the colon. No active bleeding was observed from any of the lesions. A biopsy of the lesions revealed the presence of proliferating spindle cells with vascular channels filled with blood cells on Hematoxylin and Eosin (H&E) staining (Fig. 3A). Immunohistochemical staining revealed the expression of the lymphatic vessel endothelial cell marker D2-40 (Fig. 3B) and the blood vessel endothelial cell marker CD34 (Fig. 3C). Some endothelial cells were also positive for HHV-8 LANA-1 (Fig. 3D).

A diagnosis of GI-KS was made based on the endoscopic and pathological findings. We considered that the development of GI-KS was associated with immunosuppression induced by steroid use and initiated treatment by withdrawal of prednisolone. Over the next 4 months, prednisolone was tapered to 6 mg/day. At five months after the diagnosis of GI-KS, repeat upper GI endoscopy showed that the ulcers and reddish lesions had become smaller, and marked improvement was noted after 13 months (Fig. 4). No clinical recurrence occurred during two years of follow-up.

Discussion

We identified several important clinical features in the present case. First, GI-KS can occur in isolation. KS manifests primarily as a cutaneous disorder, with visceral involvement (4). Nagata et al. reported that 75.8% of AIDS-associated GI-KS patient had cutaneous KS (5). Iatrogenic GI-KS without cutaneous lesions is considered rare. Second, GI-KS lesions were found in the esophagus, colon, and rectum, which was consistent with findings from a previous study (5, 6). Nagata et al. reported that GI-KS involvement was frequently found in the stomach, duodenum, colon, esophagus, and rectum, in order of increasing frequency (5), whereas Viazis et al. reported that GI-KS involvement was rarely found in the small intestine (6). We did not perform small intestinal endoscopy due to the invasiveness of the procedure and because an examination of the small intestine would not have altered the management or treatment in this case. Third, previous studies have shown distinctive endoscopic findings of GI-KS, such as reddish patches, a poly-poid appearance, submucosal tumor-like lesions, and ulcerative submucosal tumor (7), which were detected in our case and facilitated the diagnosis. Fourth, a biopsy of the stomach revealed the presence of proliferating spindle cells with vascular channels filled with red blood cells on H&E staining (Fig. 3A), which is pathologically characteristic of KS (8). This is seen as reddish mucosa on endoscopy (Fig. 2). We believe that the abundance of red blood cells indicated a small amount of continuous bleeding, which in turn led to the severe anemia. Fifth, GI-KS was induced by steroid use, which is a particularly important feature of this...
Figure 2. Endoscopic findings of upper and lower GI tract. A: Multiple reddish, flat lesions in the upper body of the stomach. B: Submucosal tumor-like lesion in the lower body of the stomach. C: Submucosal tumor-like lesion with ulceration in the antrum of the stomach. D: Reddish polypoid lesion in the descending colon. E: Submucosal tumor-like lesion with central ulcer in the sigmoid colon. F: Reddish submucosal tumor-like lesion in the ascending colon.

Figure 3. Histological findings of the biopsy specimen from the stomach. A: Low-power view showing a distinct proliferative lesion on Hematoxylin and Eosin staining and high-power view showing spindle cell proliferation with vascular channel formations filled with blood cells (×100, ×200). C: The vascular gaps are lined with endothelial cells when stained with D2-40 (×100). D: The vascular gaps are lined with endothelial cells when stained with CD34 (×100). E: Some endothelial cells are positive for HHV-8 (×100).
The characteristics, management, and prognosis of patients with steroid-induced KS remain unknown; thus, we reviewed the English-language literature in the MEDLINE database by searching with keywords “Kaposi’s sarcoma”, “steroid”, and “immunosuppression”. We excluded HIV-positive patients and post-transplantation patients and eventually identified 33 cases of iatrogenic KS due to systemic corticosteroid use (22 men, 11 women; mean age 56 years old, range 7-84 years old) (Table) (9-41). The underlying diseases included autoimmune disorders such as pemphigus vulgaris, bullous pemphigoid, rheumatoid arthritis, Behçet’s disease, ulcerative colitis, and Crohn’s disease. KS most frequently developed on the skin in 26 cases, followed by the GI tract in 11 cases. Of the 11 GI cases, isolated GI-KS accounted for 6 cases, all of which had ulcerative colitis or Crohn’s disease. The most commonly used steroid was prednisolone, and the amount of steroid used ranged from 2.5 to 80 mg/day. In 20 of 33 cases, discontinuation or tapering of the steroid dose was selected for treatment. Of these 20 cases, 14 (70%) showed improvement, while 6 (30%) did not. In our case, isolated GI-KS was induced by prednisolone that was being administered for the treatment of granulomatosis with polyangiitis. This is the first case of isolated GI-KS without inflammatory bowel disease. GI-KS was improved by tapering prednisolone to 6 mg/day.

In conclusion, KS can be seen in long-term steroid users even in the absence of HIV infection or transplantation. Steroids are the most widely used form of immunosuppressive therapy, and caution should be practiced in order to prevent the development of KS as an opportunistic infection. When patients on long-term steroid therapy present with overt GI bleeding and anemia, endoscopy with a biopsy seems to be essential for a definitive diagnosis.

The authors state that they have no Conflict of Interest (COI).

Financial Support
This study was supported, in part, by Grants-in-Aid for Research from the National Center for Global Health and Medicine (29-1017), and Grant-in-Aid for research on HIV/AIDS from the Health, Labour and Welfare Science Research Grants of Japan (19H81003).
Table: Summary of 33 Cases of Steroid-induced Kaposi’s Sarcoma.

No.	Reference	Age (y)	Sex	Underlying disease	Lesion	Immunosuppressive drug	Treatment	Outcome
1	(9)	49 M	Rectum	Colon	PSL (15-30 mg/d) AZA	Surgery	Improvement	
2	(10)	48 M	Rectum	Colon	Steroid AZA	Tapering of DEX Discontinuation of BOR and CPA	No improvement	Surgery
3	(11)	69 F	Skin	DEX CPA	Discontinuation of lenalidomide	Improvement		
4	(12)	36 M	Liver	PSL (60 mg/d) AZA	No improvement	Surgery		
5	(13)	66 F	GPA	PSL (25 mg/d) CPA	No improvement	Discontinuation of CPA		
6	(14)	84 M	DLBCL	Skin	R-CHOP (PSL 40 mg/m²)	Surgery	Improvement	
7	(15)	49 M	RA	MTX (17.5 mg/week)	No improvement	Surgery		
8	(16)	68 F	BP	PSL (1.0 mg/kg/d) AZA	Tapering of PSL (0.5 mg/kg/d)	Improvement		
9	(17)	60 M	PV	PSL (1.5 mg/kg/d) AZA	Tapering of PSL (240 mg/w)	Improvement		
10	(18)	54 M	CD	Steroid (20 mg/d) AZA	Tapering of PSL (15 mg/d)	Discontinuation of steroid and AZA	Improvement	
11	(19)	30 M	UC	Colon Steroid	Discontinuation of PSL and CPA	Improvement		
12	(20)	30 M	Membranous glomerulonephritis	Oral cavity PSL (30 mg/d) CPA (200 mg/d)	Improvement			
13	(21)	65 M	Knee pain	Skin Steroid (5-40 mg/d)	Discontinuation of steroid	Improvement		
14	(22)	57 F	RA	Skin Triamcinolone (4 mg/d) Lefunomide	Initiation of dextroanubic	Improvement		
15	(23)	7 F	Atopic dermatitis	Skin Occasional low doses of systemic steroid	Radiotherapy	Improvement		
16	(24)	65 M	UC Spondyloarthropathy	Skin PSL (5 mg/d)	Surgery	Improvement		
17	(25)	58 M	ITP	Skin PSL (80 mg/d)	Tapering of PSL (10 mg/d)	Improvement		
18	(26)	57 F	PV	Skin PSL/Ciclosporin	Tapering of PSL	Improvement		
19	(27)	62 M	UC	Colon Steroid (15 mg/d) AZA (100 mg/d)	Tapering of steroid Discontinuation of AZA	Improvement		
20	(28)	43 M	UC	Colon PSL Mesalazine	Surgery	Improvement		
21	(29)	75 F	Dermato-myoitis	Skin PSL CPA (0.75 mg/kg/d)	Tapering of PSL (12.5 mg/d) Monthly IVig	Discontinuation of CPA	Improvement	
22	(30)	70 M	PV	Skin PSL (30 mg/d) AZA	No improvement	Discontinuation of CPA IVig	Improvement	
23	(31)	49 M	UC	Colon Steroid (high dose)	Discontinuation of steroid None	Died		
24	(32)	46 M	GPA	Skin AZA CPA	Surgery	Improvement		
25	(33)	49 F	ATP	Skin PSL (16 mg/d)	Discontinuation of PSL	Improvement		
26	(34)	68 M	ITP	Skin PSL (15 mg/d)	Discontinuation of PSL	Improvement		
27	(35)	54 M	GPA	Skin PSL (50 mg/d) CPA (100 mg/d)	Tapering of PSL and CPA	Improvement		
28	(36)	87 F	BP	Skin PSL	Tapering of PSL (30 mg/d)	Died		
29	(37)	67 F	CD	Small intestine Colon	PSL (10 mg/d)	Surgery	Improvement	
30	(38)	29 M	Behçet’s disease	Skin/Lung Stomach Duodenum Colon	PSL (50 mg/d) CYA (5 mg/kg/d) AZA (150 mg/d)	Discontinuation of CYA and AZA Initiation of interferon	Improvement	
31	(39)	59 M	Focal glomerulosclerosis	Skin Stomach Duodenum Colon	CPA (100 mg/d) PSL (1 mg/kg/d) AZA (150 mg/d)	Discontinuation of CYA and AZA Initiation of interferon	Improvement	
32	(40)	72 M	Temporal arteritis	Skin	PSL (25 mg/d)	Implantation of PSL (5 mg/d) Radiation	Improvement	
33	(41)	78 M	Chronic respiratory failure	Skin	PSL (2.5 mg/d)	Declined all treatment	Improvement	

our case 73 M GPA Steroid (12 mg/d) AZA (50 mg/day) | Tapering of PSL (6 mg/d) | Improvement |

ATP: autoimmune thrombocytopenic purpura, AZA: azathioprine, BOR: bortezomib, BP: bullous pemphigoid, CD: Crohn’s disease, CPA: cyclophosphamide, CYA: cyclosporin, DEX: dexamethasone, DLBCL: diffuse large B-cell lymphoma, GPA: granulomatosis with polyangitis, IVig: intravenous immunoglobulin, ITP: idiopathic thrombocytopenic purpura, MM: multiple myeloma, MTX: methotrexate, PSL: prednisolone, PTX: paclitaxel, PV: pemphigus vulgaris, RA: rheumatoid arthritis, UC: ulcerative colitis
References

1. Antman K, Chang Y. Kaposi’s sarcoma. N Engl J Med 342: 1027-1038, 2000.
2. Martin RW 3rd, Hood AF, Farmer ER. Kaposi sarcoma. Medicine (Baltimore) 72: 245-261, 1993.
3. Thompson GB, Pemberton JH, Morris S, et al. Kaposi’s sarcoma of the colon in a young HIV-negative man with chronic ulcerative colitis. Report of a case. Dis Colon Rectum 32: 73-76, 1989.
4. Dezube BJ. Clinical presentation and natural history of AIDS-related Kaposi’s sarcoma. Hematol Oncol Clin North Am 10: 1023-1029, 1996.
5. Nagata N, Shimbo T, Yasaki H, et al. Predictive clinical factors in the diagnosis of gastrointestinal Kaposi’s sarcoma and its endoscopic severity. PLoS One 7: e46967, 2012.
6. Viazis N, Vlahogiannakos J, Georgiadis D, Rodias M, Noutsis C, Karamanolis DG. Classic Kaposi’s sarcoma and involvement of the small intestine as shown by capsule endoscopy. Endoscopy 40 (Suppl 2): E209, 2008.
7. Nagata N, Igarai T, Shimbo T, et al. Diagnostic value of endothelial markers and HHV-8 staining in gastrointestinal Kaposi sarcoma and its difference in endoscopic tumor staging. World J Gastroenterol 19: 3608-3614, 2013.
8. Nagata N, Sekine K, Igarai T, et al. False-negative results of endoscopic biopsy in the diagnosis of gastrointestinal Kaposi’s sarcoma in HIV-infected patients. Patholog Res Int 2012: 854146, 2012.
9. Shah N, Lidofsky S, Laskiewicz L. Colorectal Kaposi sarcoma in an immunosuppressed ulcerative colitis patient. J Gastrointest Surg 22: 1301-1302, 2018.
10. Dub E, Fine S. Human herpesvirus-8 positive iatrogenic Kaposi’s sarcoma in the setting of refractory ulcerative colitis. World J Clin Cases 5: 423-427, 2017.
11. Chavarot N, Lebbe C, Thervet E, Bouscary D, Karras A. Bortezomib does not prevent the occurrence of Kaposi’s sarcoma in patients with haematological malignancies: two case reports. Acta Derm Venereol 97: 1138-1139, 2017.
12. Cohen-Barak E, Sonnenscien D, Ziv M, Shani-Adir A, Rozenman D. Kaposi’s sarcoma in a patient with pemphigus vulgaris. Int J Dermatol 55: 85-88, 2016.
13. Saxena A, Netchiporouk E, Al-Rajaibi R, Billlick R, Rosdhy O. Iatrogenic Kaposi’s sarcoma after immunosuppressive treatment for granulomatosis with polyangiitis (Wegener’s). JAAD Case Rep 1: 71-73, 2015.
14. Ureshino H, Ando T, Kojima K, et al. Rituximab-containing chemotherapy (R-CHOP)-induced Kaposi’s sarcoma in an HIV-negative patient with diffuse large B cell lymphoma. Intern Med 54: 3205-3208, 2015.
15. Wu W, Li C, Lee RA, Hata T. The use of sirolimus to treat Kaposi’s sarcoma in an HIV-negative rheumatoid arthritis patient on disease-modifying drug therapies. Int J Dermatol 54: 1188-1190, 2015.
16. Wang T, Li C, Yang C, et al. Identification of human herpesvirus-8 in Kaposi’s sarcoma with bullous pemphigoid. Chin Med J (Engl) 127: 786-788, 2014.
17. Balighi K, Daneshpazhoosh M, Aghazadeh N, et al. Pemphigus vulgaris-associated Kaposi’s sarcoma: response to paclitaxel and review of the literature. J Eur Acad Dermatol Venereol 28: 987-994, 2014.
18. Kilincalp S, Akinci H, Hamamci M, Coskun Y, Yüksel I. Kaposi’s sarcoma developing in a HIV-negative Crohn’s disease patient shortly after azathioprine and corticosteroid treatment. J Crohns Colitis 8: 558-559, 2014.
19. Hamzaoui L, Kilani H, Bouassida M, et al. Iatrogenic colorectal Kaposi sarcoma complicating a refractory ulcerative colitis in a human immunodeficiency negative-virus patient. Pan Afr Med J 15: 154, 2013.
39. Zerbi S, Saruggia M, Brambilla L, Lodeville D, Buccianti G. Kaposi’s sarcoma in a patient with focal glomerulosclerosis. J Nephrol 14: 299-303, 2001.

40. Kroumpouzos G, Delaney T, Phillips TJ. Combined classic andiatrogenic Kaposi’s sarcoma. Corticosteroid withdrawal can result in remission. Postgrad Med 108: 103-106, 2000.

41. Kondo Y, Izumi T, Yanagawa T, Kanda H, Katano H, Sata T. Spontaneously regressed Kaposi’s sarcoma and human herpesvirus 8 infection in a human immunodeficiency virus-negative patient. Pathol Int 50: 340-346, 2000.

The Internal Medicine is an Open Access journal distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).