The essential conditions for developing high electrical conductivity capability in carbon nanofibers

S. Arbab1, A. Teimoury2, D. Adolphe3, B. Noroozi2 and P. Nourpanah4

1ATMT Research Institute, Department of Textile Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
2Department of Textile Engineering, University of Guilan, Rasht, Iran
3Université de Haute-Alsace - ENSISA - Laboratoire de Physique et Mécanique Textiles, Mulhouse CEDEX, France
4Department of Textile Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran

Corresponding author: shahram.arbab@aut.ac.ir

Abstract
Carbon nanofiber webs have high electrical and thermal conductivity, porosity, surface area and good mechanical properties promising great potential for different applications. In this paper, three types of chemically different polyacrylonitrile (PAN) copolymers were electrospun in various concentrations and nanofibers with average diameter between 220 and 530 nm were produced. After stabilization and carbonization of PAN nanofibers, carbon nanofibers with diameter in the range of 110 to 300 nm were produced. The effects of chemical composition and processing parameters on the formation of the sponge-bond interconnected morphology and electrical conductivity of the carbon nanofibers were studied. The results revealed that the progress of stabilization reactions higher than 98% is inappropriate, whereas the stabilization progress in the range of 87% was considered adequate for the development of a proper structure for obtaining high electrical conductivity during carbonization process. Formation of nanofiber mats in shape of a network interconnected sponge-like structure was believed to be necessary for obtaining much higher electrical conductivity (16.70 S/cm compared to 1.10 and 2.33 S/cm in the case of nanofiber mats without interconnections and sponge-like structure).

Keywords— Carbon nanofibers, Electrical conductivity, Morphology, PAN nanofibers, Stabilization.

I. INTRODUCTION

Carbon microfibers have been widely used for numerous applications particularly for the development of large load-bearing composites. Obtaining carbon fibers with smaller diameter is one of the important objectives in carbon fiber industry, because reduction of fiber diameter results in increased surface area per unit mass, which facilitates the stabilization of precursor fiber and prevents from formation of core-shell structures [1-3]. Carbon nanofibers are receiving increasing attention because of their large length to diameter ratio, high strength, elastic modulus, and relatively low density [1].

PAN copolymers are the best precursor for the production of carbon nanofibers [4-7]. Incorporation of comonomers into the PAN chains reduces the nitrile – nitrile interactions, increases the solubility of the polymer, facilitates the thermochemical reactions during oxidative stabilization by reducing the activation energy and the initiation temperature of the reactions. Moreover, the temperature range of exothermic reactions is broadened, which improves the uniformity and mechanical properties of precursor fibers and resulting carbon microfibers [2, 8-12]. During the stabilization, which is the most complicated and time-consuming process in the production of carbon nanofibers and carried out in air atmosphere in the temperature range of 200 – 350 °C, chemical and physical changes such as cyclization, dehydrogenation, oxidation, crosslinking and chain fragmentation take place. The linear structure of PAN is converted into an infusible ladder-like structure which can tolerate higher temperatures in carbonization process [1, 7, 10, 13, 14]. If PAN fibers are not properly stabilized, either obtaining carbon fibers will be impossible or the produced carbon fibers will have low quality [15]. High performance carbon
fibers are usually made from PAN copolymers. Acidic comonomers such as itaconic acid are used to decrease initiation temperature of the cyclization reactions in the stabilization process, whereas esteric comonomers such as methyl acrylate are used to improve solubility, spinning and stretchability of the fibers [2].

After stabilization, carbonization process is carried out in an inert atmosphere at temperatures as high as 800-2000 °C. During this process, structural changes including crosslinking, and integration of cyclized segments converts the ladder-like structure of the stabilized fibers to the graphitic structure of carbon fibers [9, 16]. A number of researchers showed that the conversion of disordered carbonaceous (turbostratic) structures to ordered graphitic structures as well as graphite crystal size are increased in carbon nanofibers carbonized at higher temperatures [17-20]. Electrical conductivity is one of the important properties of carbon nanofibers, which is usually lower than 20 S/cm [21]. Several factors can increase the electrical conductivity of carbon nanofibers, such as higher proportion of graphitic structure, higher chain orientation, more connection points between nanofibers, bigger size of graphitic crystallites, less structural defects (like holes and fractures) as well as increased compression between nanofibers [9, 17, 20, 22-24]. Some researchers showed that electrical conductivity of carbon nanofibers increases with temperature and duration of the carbonization process. They both result in a more graphitic and ordered structure and increased connections between carbon nanofibers [17, 22, 25, 26].

Less research has been done on the production of carbon nanofibers from various PAN copolymers with different chemical compositions. In this work, three types of PAN copolymers were used to obtain PAN nanofibers by electrospinning and stabilization and carbonization thermal treatments were employed to produce carbon nanofibers. Different analysis techniques including Differential Scanning Calorimetry (DSC), Field Emission Scanning Electron Microscope (FE-SEM) and electrical conductivity were used to investigate carbon nanofibers properties and the effect of processing parameters on PAN nanofibers during thermal treatments.

II. METHODS AND PROCEDURES

A. Materials

Three types of polyacrylonitrile copolymers with different chemical composition were used to produce PAN nanofibers (Table I). N, N-dimethylformamide solvent (99.5%, Merck) was used to prepare electrospinning solutions.

Polymer Code	Manufacturer company	Chemical composition	Monomer feed in polymerization reactor (%)	[n] (dL/g)	Mv (g/mol)
P1	Polycryl Co.	AN-MA-SMS	95-4.5-0.5	1.441	112452
P2	Courtaulds Co. Ltd	AN-MA-IA	95-4-1	2.216	202000
P3	Jilin Chemical Fiber Group, Co. Ltd	AN-MAA-AM	95-1.5-3.5	2.174	197000

P: PAN Copolymer, AN: Acrylonitrile, MA: Methyl Acrylate, IA: Itaconic Acid, MAA: Methacrylic Acid, AM: Acrylamide, SMS: Sodium Methallyl Sulfonate.

B. Nanofiber production

After preparation of the electrospinning solutions (10 wt%) from each copolymer, electrospinning process was carried out at room temperature with a positive high voltage of 11 kV, solution flow rate of 0.25 ml/h. The distance between the spinneret and the fixed metal collector was 15 cm. The electrospun PAN nanofibers were stabilized using two different procedures in air atmosphere from the room temperature to 300 °C with the heating rate of 5 °C/min, followed by holding the temperature at 300 °C for 90 minutes to allow the stabilization to complete. Then stabilized nanofibers were carbonized in pure nitrogen atmosphere at 1250 °C with the heating rate set at 40 °C/min and the samples were held at the final temperature for 5 minutes. Nomenclature of PAN nanofibers (PF), stabilized PAN nanofibers (SF) and carbon nanofibers (CNF) are listed in Table II.
TABLE II
NOMENCLATURE OF INITIAL PAN NANOFIBERS, STABILIZED PAN NANOFIBERS AND CARBON NANOFIBERS

Polymer Code	PAN nanofibers	Stabilized nanofibers	Carbon nanofibers
P₁	PF₁	SF₁	CNF₁
P₂	PF₂	SF₂	CNF₂
P₃	PF₃	SF₃	CNF₃

C. Characterization

Thermal behavior of PAN nanofibers (temperature range of 50-450 °C) and stabilized PAN nanofiber (temperature range of 50-600 °C) was studied using a Mettler To ledo DSC 802 in air and at a heating rate of 5 °C/min. In order to estimate the progress of the stabilization reactions, cyclization index (CI) was calculated using the following equation [27-31]:

\[
CI = \frac{\Delta H_{PF} - \Delta H_{SF}}{\Delta H_{PF}} \times 100
\]

(1)

Where \(\Delta H_{PF} \) and \(\Delta H_{SF} \) are the reactions enthalpy of initial PAN and stabilized PAN nanofibers, respectively.

A Hitachi U-4080 field-emission scanning electron microscope (FE-SEM) was employed in order to examine the surface morphology of PAN and carbon nanofibers. The average diameter of nanofibers was calculated using Image J software. Diameter measurements were done in 100 different points randomly selected in the micrographs of each sample. The average diameter ± standard deviation of each sample is presented [2, 32].

Electrical conductivity of carbon nanofiber webs was measured by standard four-point probe method using the Keithley 196 System DMM_2:

\[
\sigma = \frac{L}{R \times A}
\]

(2)

Where \(L \) is distance between two electrodes in “cm”, \(R \) is the web resistance in “Ω” and \(A \) is the area of carbon nanofibers sheet in “cm²”.

III. RESULTS

A. DSC study of PAN and stabilized nanofiber Webs

DSC curves of the initial and stabilized PAN nanofibers are shown in Fig. 1. The presence of acidic comonomers in PF₂ and PF₃ nanofibers leads to initiation of cyclization reactions through ionic mechanism [10, 33-36]. As a result, the exothermic peak becomes broader and its initiation temperature decreases compared to PF₁ nanofibers (Fig. 1). Unlike PF₂ and PF₃, PF₁ nanofiber does not contain acidic comonomers. Despite similar stabilization conditions, the progress of stabilization reactions in PF₁ nanofibers is approximately 87%, whereas the progress of stabilization reactions in PF₂ and PF₃ nanofibers containing acidic comonomers is more than 98%, demonstrating maximum progress of stabilization reactions in these fibers (Table III).

B. Morphology study of PAN and carbon nanofiber webs

Field emission scanning electron microscopy (FE-SEM) images of PAN and carbon nanofiber webs are shown in Fig. 2 and their statistical data are reported in Table III. The produced initial PAN nanofiber webs were uniform and bead-free.

TABLE III
CHARACTERIZATION OF PAN AND CARBON NANOFIBERS.

PAN nanofibers	Average diameter of PAN nanofibers (nm)	Cyclization Index (%)	Carbon nanofibers	Average diameter of carbon nanofibers (nm)	Electrical conductivity of carbon nanofibers (S/cm)
PF₁	233	87.25	CNF₁	110	16.90
PF₂	240	98.59	CNF₂	178	2.33
PF₃	529	99.17	CNF₃	312	1.10

In similar spinning conditions, the diameter of PF₁ nanofibers is lower than those of PF₂ and PF₃ nanofibers in various concentrations of electrospinning solution. This can be attributed to the lower molecular weight of PF₁ polymer compared to PF₂ and PF₃ (Table I). Lower diameter of PF₁ nanofibers may lead to a better diffusion of
oxygen into nanofiber structure during stabilization process. Oxygen has an important role in initiation and progress of stabilization reactions. Despite the absence of acidic comonomers in PF₁ nanofibers, better diffusion of oxygen results in proper oxidation of these nanofibers during stabilization process.

The morphology of CNF₁ nanofibers is completely different compared to CNF₂ and CNF₃ nanofibers. Most nanofiber strands in CNF₁ are merged and formed a sponge-like network structure. However, the morphology of CNF₂ and CNF₃ has not changed considerably. Only a number of fractures has been introduced in the structure due to the thermal treatment.

Fig. 1. DSC curves of PAN and stabilized PAN nanofibers. (a) PF₁ and SF₁, (b) PF₂ and SF₂, (c) PF₃ and SF₃.

C. Electrical conductivity of carbon nanofiber webs

Electrical conductivity of CNF₁ nanofiber webs is significantly higher than CNF₂ and CNF₃ nanofiber webs (Table III). The significantly higher electrical conductivity of CNF₁ nanofibers compared to CNF₂ and CNF₃ can be attributed to formation of connection points between nanofibers during thermal treatment, resulting in a sponge-like compact network structure of carbon nanofibers mats (Fig. 2).

The electrical conductivity of carbon nanofiber webs are mainly influenced from the compactness of structure and formation of connection points due to thermal treatment. The more compact nanofiber mats increases the probability of presence of connection points and enhancement of carbon nanofiber webs electrical conductivity. In CNF₁ nanofibers (Fig. 2), a number of nanofiber strands are merged together and a sponge-like network structure is created.
PF$_2$ and PF$_3$ nanofibers show higher progress in stabilization reactions due to the presence of acidic comonomers. However, the electrical conductivity of their carbon nanofibers is lower than CNF$_1$ nanofibers. Therefore, it can be concluded that obtaining proper carbon structure, specially higher electrical conductivity, requires an optimum stabilization process with optimum progress in stabilization reactions and formation of a sponge-like interconnected network of carbon nanofibers.

IV. CONCLUSION

Carbon nanofiber webs were produced from three different types of PAN precursor through the stabilization and carbonization of electrospun PAN nanofiber webs. The results showed that despite the common viewpoint in production technology of carbon fibers in micro scale, presence of acidic comonomers in the copolymer structure is not necessary for production of carbon fibers at nanoscale. The results revealed that progress of stabilization reactions higher than 98% is inappropriate, whereas the stabilization progress in the range of 87% leads to development of proper graphitic structure during carbonization process and formation of nanofiber mats in shape of an interconnected sponge-like network structure with much higher electrical conductivity. Therefore, it can be concluded that the formation of interconnected structure in carbon nanofiber web is essential for obtaining high electrical conductivity.

REFERENCES

[1] Arshad, S.N., Naraghi, M., and Chasiotis, I., Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon, 2011. 49(5): p. 1710-1719.

[2] Liu, J., He, L., Ma, S., Liang, J., Zhao, Y., and Fong, H., Effects of chemical composition and post-spinning stretching process on the morphological, structural, and thermo-chemical properties of electrospun polyacrylonitrile copolymer precursor nanofibers. Polymer, 2015. 61: p. 20-28.

[3] Ali, A.A. and El-Hamid, M.A., Electro-spinning optimization for precursor carbon nanofibers. Composites, 2006. 37(10): p. 1681-1687.

[4] Zhang, B., Kang, F., Tarascon, J.-M., and Kim, J.-K., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 2016. 76: p. 319-380.

[5] Kim, J.H., Ganapathy, H.S., Hong, S.-S., Gai, Y.-S., and Lim, K.T., Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process. The Journal of Supercritical Fluids, 2008. 47(1): p. 103-107.
Hou, H., Reneker, D.H., and Fong, H., 2015. Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers. Journal of Industrial and Engineering Chemistry, 2015. 21: p. 736-740.

Sabet, E.N., Nourpanah, P., and Arbab, S., 2014. Quantitative analysis of entropic stress effect on the structural rearrangement during pre-stabilization of PAN precursor fibers. Polymer, 2016. 90: p. 138-146.

Moini, P., 2005. Carbon fibers and their composites. Boca Raton, FL: CRC Press.

Liu, J., Zhou, P., Zhang, L., Ma, Z., Liang, J., and Fong, H., 2009. Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon, 2009. 47(4): p. 1087-1095.

Ouyang, Q., Cheng, L., Wang, H., and Li, K., 2008. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polymer Degradation and Stability, 2008. 93(8): p. 1415-1421.

Wangxi, Z., Jie, L., and Gang, W., Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 2003. 41(14): p. 2805-2812.

Zhang, L., Abouggy, A., Kellkar, A., Lai, C., and Fong, H., 2009. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. Journal of Materials Science, 2014. 49(2): p. 463-480.

Arbab, S., Mirbaha, H., Zeinolebadi, A., and Nourpanah, P., 2015. Indicators for evaluation of progress in thermal stabilization reactions of polyacrylonitrile fibers. Journal of Applied Polymer Science, 2014. 131(11): p. n/a-n/a.

Rafiei, S., Noroozi, B., Arbab, S., and Haghjoo, A., Characteristic assessment of stabilized polyacrylonitrile nanowebs for the production of activated carbon nano-sorbents. Chinese Journal of Polymer Science, 2014. 32(4): p. 449-457.

Simitzis, J.C. and Georgiou, P.C., 2007. Functional group changes of polyacrylonitrile fibres during their oxidative, carbonization and electrochemical treatment. Journal of Materials Science, 2015. 50(13): p. 4547-4564.

Rahaman, M.S.A., Ismail, A.F., and Mustafa, A., 2009. A review of heat treatment on polyacrylonitrile fiber. Polymer Degradation and Stability, 2007. 92(8): p. 1421-1432.

Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H., Reneker, D.H., and Fong, H., 2013. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009. 50(13): p. 3099-3106.

Zhou, Z., Liu, K., Lai, C., Zhang, L., Li, J., Hou, H., Reneker, D.H., and Fong, H., 2005. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 2010. 51(11): p. 2360-2367.

Zussman, E., Chen, X., Ding, W., Calabri, L., Dikin, D.A., Quintana, J.P., and Ruoff, R.S., 2010. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon, 2005. 43(10): p. 2175-2185.

Kim, C., Yang, K.S., Kojima, M., Yoshida, K., Kim, Y.J., Kim, Y.A., and Endo, M., 2006. Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries. Advanced Functional Materials, 2006. 16(18): p. 2393-2397.

Yang, Y., Simeon, F., Hatton, T.A., and Rutledge, G.C., 2011. Polyacrylonitrile-based electrospun carbon paper for electrode applications. Journal of Applied Polymer Science, 2011. 124(5): p. 3861-3870.

Wang, Y., Santiago-Aviles, J.J., Furlan, R., and Ramos, I., 2003. Poly(3-hydroxyalkanoate) nanofibers: Electrospinning for versatile nanostructures. IEEE Transactions On Nanotechnology, 2003. 2(1): p. 39-43.

Sharma, C.S., Katepalli, H., Sharma, A., and Madou, M., 2008. Fabrication and electrical conductivity of suspended carbon nanofiber arrays. Carbon, 2011. 49(5): p. 1727-1732.

Li, M., Han, G., and Yang, B., 2009. Fabrication of the catalytic electrodes for methanol oxidation on electrospinning-derived carbon fibrous mats. Electrochemistry Communications, 2008. 10(6): p. 880-883.

Hedin, N., Sobolev, V., Zhang, L., Zhu, Z., and Fong, H., 2011. Electrical properties of electrospun carbon nanofibers. Journal of Materials Science, 2011. 46(19): p. 6457-6456.

Ptitisky, S., Schechner, P., Bubis, E., Makarov, V., Zussman, E., and Cohen, Y., 2010. Anodes for glucose fuel cells based on carbonized nanofibers with embedded carbon nanotubes. Electrochimica Acta, 2010. 55(11): p. 3694-3702.

Arbab, S., Mirbaha, H., Zeinolebadi, A., and Nourpanah, P., 2014. Indicators for evaluation of progress in thermal stabilization reactions of polyacrylonitrile fibers. Journal of Applied Polymer Science, 2014. 131(11).

Qin, X.H., 2010. Structure and property of electrospinning PAN nanofibers by different preoxidation temperatures. Thermal Analysis and Calorimetry, 2010. 99(2): p. 571-575.

Tsai, J.S. and Hsu, H.-N., 2011. Determination of the aromatization index for oxidized polyacrylonitrile fibre by the differential scanning calorimetry method. Journal of materials science letters, 1992. 11(21): p. 1403-1405.

Tsai, J.S. and Lin, C.H., 2011. The effect of molecular weight on the cross section and properties of polyacrylonitrile precursor and resulting carbon fiber. Journal of applied polymer science, 1991. 42(11): p. 3045-3050.

Bang, Y., Lee, S., and Cho, H., 1998. Effect of methyl acrylate composition on the microstructure changes of high molecular weight polyacrylonitrile for heat treatment. Journal of applied polymer science, 1998. 68(13): p. 2205-2213.

Moon, S.C. and Farris, R.J., 2009. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns. Carbon, 2009. 47(12): p. 2829-2839.

Devastaa, R., Reghunadhan Nair, C.P., Sivadasan, P., Katherine, B.K., and Niran, K.N., 2003. Cyclization Reaction in Poly(acrylonitrile/Itaconic Acid) Copolymer: An Isothermal Differential Scanning Calorimetry Kinetic Study. Applied Polymer Science, 2003. 88(4): p. 915-920.

Arbab, S. and Zeinolebadi, A., 2013. A procedure for precise determination of thermal stabilization reactions in carbon fiber precursors. Polymer Degradation and Stability, 2013. 98(12): p. 2537-2545.

Arbab, S., Teimoury, A., Mirbaha, H., Adolphe, D.C., Noroozi, B., and Nourpanah, P., 2017. Optimum stabilization processing parameters for polyacrylonitrile-based carbon nanofibers and their difference with carbon (micro) fibers. Polymer Degradation and Stability, 2017.