A Review Paper on Comparative study of Expansive Sub-Grade Stabilization using Industrial Wastes like Foundry Sand, Quarry Dust, Demolition Wastes and Rubber Scrap

Jeevanantham Venkatesh¹, Kavitha Chinnusamy¹, Sunil Murugesh²

Assistant Professor¹, Student², Department of Civil Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.

E-mail address: jeevanantham@bitsathy.ac.in, kavithac10013@bitsathy.ac.in, sunil.ce17@bitsathy.ac.in

Abstract: Searching for best stabilizer to overcome the problems in the place of Expansive soils are being a main concern still, not only to achieve the required soil’s engineering properties but also to meet the cost efficiency of the project undergone. The main objective of this paper was to review the materials and methods that have been adopted to stabilize the Expansive soil based on experimental studies. Investigation on various materials such as industrial granite waste, demolition waste and quarry dust and foundry waste sand. The effectiveness of these materials as soil stabilizer is observed with the experimental results only in terms of strength, based on California Bearing Ratio (CBR) tests and shear tests that have been conducted. The Engineering properties of the Expansive soil were increased comparatively and these materials have potential to be used as a soil stabilizer in construction practices and these are also economic.

Keywords: Expansive soil, soil stabilization, admixture, California Bearing Ratio (CBR) and Plasticity.

1. Introduction

Roadways are essential for advancement of financial exercises for growing country like India. Durability of road is largely influenced by the design and construction practices. Sub-grade is commonly comprised of locally accessible normal soils. Performance of the pavement is dependent on the Sub-grade soil characteristics. In case of filling, the soil must be identified based on the suitable properties in constrain with not imposing the transportation charges. Locally available soil may be chosen in order to make the transportation efficient. Sub-grade comprising of clay soil is highly inefficient in means of construction of flexible pavement. Since, the clay soil properties vary significantly when it gets contact with water. Clay soils when it gets into contact with water have a tendency to alter volume which may lead to the damaging of the flexible pavements. Whenever the expansive clayey spoils comes contact with water volume expansion & alternate shrinkage happens during the dry time.

Soil fails due to shear, crushing or excessive settlement may be considered as unsuitable soil for sub-grade in flexible pavement construction. In these cases replacing of the sub-grade soil is not advisable since it is uneconomical and impractical. Soil stabilization is a technique that has been used in such cases. Stabilization is technique of enhancing characteristics of native soil or granular material used
for construction of pavement layers. Suitable stabilization techniques are recommended to improve the behavior, where the filling materials or the existing soil doesn’t possess the specified properties.

Sub-grade can be stabilized with various techniques can be employed such as proportioning technique, cementing agents, modifying agents, moisture or waterproofing agents, heat treatment, water retaining agents, chemical stabilization and mechanical stabilization.

By Adding Non Hazardous inert industrial wastes like Foundry Sand, Quarry Dust, Demolition Wastes and Rubber Scrap into soil we can build feasible property in the soil [5][13]. Useful apply of discarded tyre scraps with distinctive properties like flexibility, strength, resilience is efficient in stabilizing soil. Even the environment nearby are safe against the usage the chopped rubber material in the Subgrade soil. Aquifer water quality parameters are not affected during the infiltration of rain water through Subgrade, the recent analysis proves that. The main principle of this technique is proportioning the admixture content and mechanical compaction.

The effects that may take place in the clayey sub-grade due to stabilization are as follows:

1. Strength achievement referred in terms of test values such as CBR or shear strength test value.
2. Reduction in Optimum Moisture content and cohesion.
3. The physical changes may be listed as density and stiffness due to the change in soil texture. The resulting textural changes lead to decrease in Plasticity Index.
4. Swelling and shrinkage effects of the base soil may be brought in control with the addition of stabilizer, since the placement of inert particles creates discontinuity in clayey medium. So, the mutual attraction (shrinkage) and repulsion (Swelling) between the clay particles goes down.
5. Adding of shredded rubber tyre varying the different proportion as well as the aspect ratio gives the control on soil property. This shredded rubber scraps introduces adhesion between the clay and scraps and increase the tensile capacity of soil at the weak planes even though rubber scraps are not lengthy considerably [12][16][17].

Sub-grade stabilization improves the structural integrity of flexible pavement in overall. Hence the unsuitable Expansive soil becomes feasible sub grade strata for flexible pavement after the additions of any one of the inert admixtures. Economical aspect in construction of the flexible pavement is also maintained [13].

Enhancement of Expansive sub-grade by applying lime, Portland cement, and diverse synthetic mixes is an effective method. On the other hand, consuming these additives could raise the total cost. However, using industrial by-products in the enhancement of poor soil is common as it preserves the environment and reduces the expense.

2. Literature Review:

2.1. Foundry Sand

2.1.1 Prashant Kumar et al. (2016): Effect of Foundry Sand on expansive soil was studied and experimented by Prashant Kumar, Prof. M.C.Paliwal, Prof. A.K.Jain; the approach has mainly concentrated on usage of Foundry sand as admixture. Foundry sand waste requires 10% OMC for the
maximum compaction this low water consumption reflects it is non cohesive. It can reduce the cohesion of virgin soil by adding of foundry waste which is a non-cohesive material [13]. By 20% and further addition of foundry sand waste shows an increase in angle of internal friction between the particles. The CBR value of the soil improved from 8.9 to 18.21 with increasing percentage of foundry waste. Shearing resistance angle of the soil increased from 22 to 28 by adding foundry waste. Finally it is observed that foundry waste sand is a very good material for strength improvement [3].

2.1.2. Amrullah Abdul Rahim Zai et al. (2020): Effect of Foundry Sand, Glass fiber and Fly ash on expansive soil was studied and experimented; Result shows that fine foundry sand can be selected for soil stabilization since it has high silica. Expansive soil shows MDD with 20% addition of foundry sand by weight. CBR value increases with the percentage addition of foundry sand and glass fiber. Glass fiber increases CBR and MDD with the peak influence show at (1.2 to 1.6) %. Optimal Maximum dry density achieved by addition of 40% of foundry sand and CBR value increase from (2.44% to 5.1%). it shows significantly increase with the utilization of foundry sand and fly ash in clayey soil [2].

2.2 Quarry Dust

2.2.1. U Arun Kumar, Kiran B. Biradar (2013): Effect of granite dust on expansive soil was studied and experimented; the approach has mainly concentrated on usage of waste materials as a soil stabilizer. In this study Quarry Dust was selected as a Stabilizer. Previous research has identified the granite dust manifest high shear strength [8][11]. Mixing the crusher stone dust with lime has reduced the swelling of the clay soil. Amongst the various properties, California Bearing Ratio (CBR) was the main concern as the study influences the sub-grade soil stabilizer. Quarry dust addition to the soil reduces the cohesion value, reduces the Liquid limit and plasticity index. OMC is reduced with increasing the percentage addition and MDD increased by 5.88% by adding 40% of Quarry dust. Higher CBR value also gained with 40% addition of QD in Expansive soil [19].

2.2.2. Naman Agarwal (2015): In this study researcher used stone dust as soil admixture to improve the characteristics of expansive soil. Basic strength tests and index properties were analyzed on virgin and treated soils in the laboratory on stone dust added expansive clays. Adding stone dust to Black Cotton soil decreases the OMC and increases Maximum Dry Density; addition of 30% stone dust in the soil shows optimum results. The CBR value increased by 50% of the sample concern [1].

2.2.3. Ahmed Salama Eltwat and Fares Tarhuni (2020): In their study on using granite industry dust as a soil admixture to improve the characteristics of expansive soil. Granite dust as powder added with varying percentage 4%, 8%, 12%, 16%, and 20%. Basic strength tests and index properties were analyzed on virgin and treated soils. Result shows that addition of granite dust increases the shear strength, CBR and Maximum dry density (Compaction property). 8% granite dust addition to the sample found as the optimal percentage in order to improve the CBR Value [18].

2.2.4. Ayushi D. Panchal: Researchers conducted the laboratory experiment on the virgin soil and observed 20.18% as shrinkage limit and 90% as swell index. While replacing the 10 % of Black cotton soil, liquid limit value reduced to 38 % from 54 %. Plasticity index reduced to 12.35% from 28.37% and the moisture content reduced to 20.32 %. Maximum improvement on CBR from 11.53% to 15.28% is achieved at 10% replacement of soil with quarry dust [10].
2.3. Demolition waste

2.3.1 Vivek S and Primal Kumar (2018): Researchers conducted the laboratory experiment on demolition waste added expansive soil. They have taken concrete debris, bricks and plastering pieces as the major additives from Trichy with size around 2.36mm. Building demolished waste is added as percentages from 5, 10, 15 and 20. They got good results with 5% of building demolished waste and 7.5% of water addition on MDD. They have done the same procedure on saw dust. With 15% of combustion of saw dust and 7.5% of water good maximum dry density was achieved [7].

2.3.2 Anand Kumar B.G.(2014): Various tests were conducted on demolished brick waste (DBW), virgin soil also on Soil-DBW mixes of various proportions to evaluate the basic properties. Optimum DBW content was found to be 40 % based on standard compaction test. California bearing ratio (CBR) and Unconfined compressive strength (UCS) values for 40% blending showed the highest values as compared to other proportions. It was observed that for virgin soil CBR values of 2.5 mm and 5 mm penetration were 2.69 and 2.43, and blending with optimum dosage of 40 % DBW resulted in CBR values of 2.5 mm and 5 mm penetration 13.86 and 13.10. These values clearly indicated that an increase of approximately over 400 % in CBR values with 40 % DBW mixed with cohesive soil as compared to virgin soil [4].

2.4. Rubber Tyre Scrap

2.4.1. Nilesh Agawane (2019): Shredded rubber tube in the proper aspect ratio (10mm in width and 20mm) are used to improve properties of expansive soil. Varying the addition percentage from 5%, 10%, and 15% the laboratory works had conducted on parent soil. With 10 percent addition of shredded rubber tubes CBR value increased from 7% to 7.73 %. But the 15% addition leads to the drawdown [9].

2.4.2. Sanjeev Singh (2017): A study was carried out by Sanjeev Singh on the effect of rubber tyre scrap as a stabilizing agent for the sub-grade layer in construction of pavement. Authors advised to use rubber tyre scrap as a stabilization material since it doesn’t has any adverse effect to the environment. Varying the percentage of shredded tyre scrap increase in UCC value is noted. Shredded tyre materials especially selected in the range in between the 425 microns to 600 microns. 18% of this material addition in soil improved the UCS value to 1.75kg/ cm². But it is observed by them that the varying the aspect ratio of the material added and increase in percentage addition leads to drop in strength properties [6].

3. Discussion:

Stability of sub grade soil is very important. Since the Flexible pavement design mainly dependent on the CBR Value of sub grade and the Traffic conditions (CSA – Cumulative Standard Axles) during the design life. If sub grade CBR Value is less, stabilization by adding the eco-friendly admixtures to existing soil is an applicable solution to improve the CBR value. It is noted that the CBR value improvement differ from each material, the CBR value is not always increased with the increase of these materials addition; there is an optimal limit. Achieving the possible target CBR or density may be set as primary control in proportioning the admixtures with respect to existing soil mass.
Mix in Place Method is the Easy and better option for the thorough mixing of admixture with the soil and need to be monitored on the pulverization of filling expansive soil.

3.1. Foundry sand
- A Low compressible cohesive soil can be improved as much as possible. We can double the value of CBR of the expansive soil with addition of 20% of Foundry sand by weight. So, target CBR can be achieved with respect to with proportioning of FS max of 20% (CBR initial value to double the value)
- Plasticity of soil has reduced considerably
- Cohesiveness of the mixed sample comes down by 50 kpa with addition of 20% of FS.
- 6 to 10 tonnes of Foundry sand has been produced every year in India

3.2. Quarry Dust
- For Highly Compressible soil, the optimal addition of QD is limited with 10%, beyond which CBR value comes down. At 10% addition in CH, 30% of CBR can be increased.
- For Low Compressible soil, when QD is added upto 30 % , the CBR value can be increased upto 50%
- 20 Mega tonnes of Quarry dust has been produced every year in India

3.3. Demolition Waste
- By adding the Brick wastes in CL soil, CBR improvement is possible upto 5 times the initial value with respect to the addition upto 60%
- 10 to 20 tonnes of Demolition waste has been produced every year in India

3.4. Shredded Rubber tyre Scrap
- When soil is mixed with 10% rubber its CBR value increases by 9% compared to virgin soil, which tends to be the maximum CBR value of all to mixtures.
- It was seen that when soil was mixed with 15% rubber the CBR value was found to be drastically decrease so the optimum dosage of shredded rubber in the soil must be around 10% of the total weight.

4. Conclusion:

There is a significant improvement in CBR Value of sub-grade due to addition of following materials like Foundry sand, granite dust, quarry dust, demolition wastes and shredded rubber tyre scrap is noted, if proper mixing and compaction is done. Proportioning of these materials need to be taken as shown in the discussion part. Unless these wastes are deposited in somewhere else, these can be economically added to meet the degree of improvement for Expansive soils. However these materials are helpful in improving the less potential expansive soils effectively and we cannot achieve high degree of improvement as obtained using the cementing materials like Cement, Lime, Bitumen & Flyash relatively [14][15]. It is my recommendation that it is better to produce PPC and Ash Bricks using Fly Ash rather than using it for soil stabilization. We shall encourage the use of inert wastes as mentioned in this review paper for expansive soil improvement. These materials are inert and don’t have any adverse effect on the environment and also economical.
References

[1] Agarwal N 2015 IOSR-JMCE, 12 (1) ; PP 61-64
[2] Zai ARR, Kamyab Gull and Amanpreet T 2020 IJERT 9(1), PP 344-348
[3] Prashant Kumar, Prof. M.C.Paliwal and Prof. A.K.Jain 2016 IJESRT; PP 300-308
[4] Anand Kumar B.G, Agrawal S and Ankur D 2014 Conference paper INACES, CIT Coimbatore
[5] Thirumalai R, Dr.S.Suresh Babu,V and et al. 2017 IRJET 4 (8) ; PP 226-229.
[6] Sanjeev Singh, Umesh D and Rubel S 2017 IRJET 4 (5); PP 3157-3161.
[7] Vivek S, Parimal Kumar, Vivek S, Kiran M and Mallikarjun 2018 IRJET 4 (6); PP 291-294.
[8] Prasad DSV, M Anjan Kumar and Prasada Raju DVR 2017 Conf. paper GeoNEst, IIT Guwahati.
[9] Nilesh A, Sagar P, Tanay J, Janardan I and Shweta M 2019 IJSR 10 (5) ; PP 71-74.
[10] Ayushi D, Panchal and et al. 2019 IJERT 8 (6); PP 995 – 998.
[11] Venkateswarlu H, Prasad DSV, Prasada Raju GVR 2015 IOSR-JMCE 12(6); PP 104-110
[12] Ghat Sandeep Hambirao 2014 IOSR-JMCE 11 (1); PP 20-27
[13] Johnson S 2019 IJEDR 7(1) ; PP 116–119.
[14] Razvi S. S. Sujahat, S. Adnan, K. Aasim, U. Ravi, and M. Saud 2007 IJIRSET 3297(5) PP. 428
[15] Indiramma P. and Ch. Sudharani 2014 IJETAE 4 (4); PP 1151 – 1157.
[16] Umar Jan, Vinod K. Sonthwal, Ajay Kumar Duggal and et. al 2015 IRJET 2(9) ; PP 741 - 744
[17] Jagtar Singh and Prof. Vinod Kumar Sonthwal 2017 IJIAS 9 (1) ; PP 01-06
[18] Ahmed Salama Eltwati, Fares Tarhuni and Alaa Elkaseh 2020 IJCR, 7 (16); PP 794-802
[19] Arun Kumar U, Kiran B. and Biradar 2013 IJRET 3 (8); PP 409-412