Cytotoxic Effects of Artemisia Dracunculus L. and Heracleum Persicum Desf. Extracts on Leishmania major and Leishmania infantum Promastigotes Using MTT Assay

Shahram Khademvatan¹, Kaveh Eskandari², Batool Sadeghi Nejad³, Sedigheh Yusef Naanai⁴

¹Cellular and Molecular Research Center, Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
²Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
³Abadan University of Medical Sciences, Abadan, Iran
⁴The Agricultural and Natural Resource Center, Ahvaz, Iran

*Corresponding Author:
Batool Sadeghi-Nejad, Abadan University of Medical Sciences, Abadan, Iran.
Tel: +989163206866; Email: batsad4@yahoo.com

Abstract

Background: Leishmaniasis is a parasitic disease that occurs in subtropical and tropical regions with approximately 350 million people worldwide and 2 million new cases annually. The annual increase in cutaneous leishmaniasis (CL) is observed, especially in endemic areas such as Iran. Since there is no effective vaccine, the detection of natural anti-leishmanial products is essential. The purpose of this study was to evaluate the in vitro anti-leishmanial activity of two herbal medicine including Artemisia dracunculus L. and Heracleum persicum Desf. (Golpar).

Materials and Methods: The extracts of selected plants were obtained by maceration, and in vitro anti-leishmanial activity was assayed on Leishmania major and Leishmania infantum promastigotes using colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay in comparison with glucantime as a reference.

Results: Based on the results, 50% inhibitory concentration (IC50) values of selected plants and glucantime solutions were determined at 24, 48, and 72 hours incubation. Further, the anti-leishmanial activity of the leaf extract of A. dracunculus with IC50 values of 1.85 and 3.5 µg/mL and the fruit extract of H. persicum with values of 31.32 and 11.7 µg/mL were evaluated against L. major and L. infantum promastigotes, respectively.

Conclusion: These results revealed anti-leishmania properties of the above-mentioned plants and the need to study the effects of these extracts on the leishmania genus in animal models and in vivo assay in the future.

Received March 29, 2021; Revised May 1, 2021; Accepted May 19, 2021

Background

Leishmaniasis with different clinical manifestations has been identified as one of the most common known skin diseases. The most common forms of leishmaniasis are cutaneous and visceral forms. The disease is occurring in 88 native countries, most of which are reported in developing countries. Cutaneous leishmaniasis (CL) is one of the most important endemic diseases in Iran and the second parasitic disease transmitted by arthropods after malaria in the urban and rural areas.

Although CL can be treated without treatment, it can cause serious problems. Therefore, low-cost and low-toxicity anti-leishmanial compounds are needed. On the other hand, the use of herbal medicines for the treatment of CL is recommended by the World Health Organization. Since the herbal medicine has fewer side effects and is also available and inexpensive, it is, therefore, necessary that the native plants of each region be identified as a rich source of anti-leishmanial drugs. “Tarkhun” (Artemisia dracunculus L.) belongs to the Asteraceae family. The genus Artemisia L. has 30 species in Iran. These species are annual herbs or small shrubs containing compounds such as artemisinin with the anti-parasitic properties. Furthermore, Artemisia species contain chemical compositions such as flavonoids, alkaloids, glycosides, coumarins, monoterpenes, sesquiterpenes, sesquiterpene lactones, sterols, and polycyclotenes which manifest antibiotic activity. Tarkhun is traditionally used as a flavoring agent in foods and for preparing different kinds of sauces. The Artemisia species possess biological activities such as insecticidal, antifungal, and cytotoxic, along with anti-inflammatory effects. Alizadeh Behbahani et al determined the antimicrobial properties of A. dracunculus extract, reporting high antimicrobial properties against...
Candida albicans with the inhibition zone of 14.70 mm, and all tested bacteria (except for Streptococcus pyogenes and Staphylococcus aureus) were more resistant than C. albicans. The previous studies reported the leishmanicidal properties of extract and their natural compounds of different Artemisia species. Another study reported the anti-leishmanial effects of Satureja hortensis (S. hortensis) and A. dracunculus extracts on L. major promastigotes. The results of this study showed the significant anti-leishmanial effects of these plants (P<0.05). Another herb selected in this study was Heracleum persicum Desf. (Family Apiaceae), an annual plant known as "Golpar" in Iran. In traditional Iranian medicine, H. persicum is used as an antiseptic hermel for carminative and pain relief. Although some researchers have worked on the antibacterial effects of H. persicum against some pathogenic microorganisms, to the best of the researchers' knowledge, no studies have been carried out on the effects of H. persicum extract on the growth of L. major and L. infantum promastigotes. Therefore, the aim of this study was to evaluate the anti-leishmanial activity of two hydroethanolic extracts of A. dracunculus and H. persicum with different concentrations (0.075-156 mg/mL) on L. major and L. infantum promastigotes.

Materials and Methods
Plant Materials
Two herbal medicines (i.e., A. dracunculus L. and H. persicum Desf.) were prepared from a local market in Ahvaz, Iran.

Extraction
To prepare the hydroethanolic extract, add 10 g of selected plant powder in 100 mL of ethanol alcohol 85% (Merck) solution and soak it on a rotary shaker for 72 hours, then filter through Whatman No. 1 and keep it in incubator 37°C until it is evaporated, and extraction should be kept in the refrigerator until the test.

Parasite Culture
Parasites L. major (MRHO/IR/75/ER) and L. infantum (MCAN/IR/96/LONDON 49) promastigotes strains were prepared from School of Health, Tehran University of Medical Sciences, Iran. Then they were kept in RPMI-1640 (Sigma, Chemical Company) medium and completed by 10% fetal calf serum Sigma, 100 IU/mL Penicillin, and 100 µg/mL Streptomycin. All promastigotes (10^6 parasites/mL) were incubated at 26°C for 24, 48, and 72 hours in fresh RPMI-1640.

Antileishmanial Evaluation
The antileishmanial activity of selected plants was carried out by MTT assay based on the reduction of the tetrazolium salt soluble to insoluble formazan crystal by the mitochondrial enzymes in viable parasites. For the preparation of MTT reagent (Sigma Chemical Company), 5 mg MTT powder was dissolved in 1 mL PBS sterile solution (5 mg/mL). Next, 96-well microplate was used for the MTT assay. After adding 100 µL 1x10^6 promastigotes per well, 10 µL ethanolic extracts of A. dracunculus leaf and H. persicum fruit in different increasing concentrations (0-156 µg/mL) and 20 µL MTT reagent were added per well to treat the parasites. Microplates were incubated in 25±1°C after 24, 48, and 72 hours, and promastigotes viability was tested using MTT assay. Then, optical density at wavelength 540 nm was measured using the ELISA reader device, and the IC_{50} was determined as well.

Statistical Analysis
In vitro anti-leishmanial activity was determined as IC_{50} (50% inhibitory concentration) by linear regression analysis. Data were described as the means ± SD. To compare the two groups, P-values were calculated using paired t-test of two student sequences. In all cases, P<0.05 was considered as statistically significant.

Results
Cytotoxic activity of A. dracunculus leaf and H. persicum fruit extracts were assayed by MTT colorimetric assay. Anti-leishmanial effects of the leaf extracts of A. dracunculus with 50% inhibitory concentrations (IC_{50} values) for the hydroethanolic extracts of A. dracunculus leaf at 24, 48, and 72 hours for L. major promastigotes and L. infantum promastigotes were 14.4, 4.2, and 1.85 µg/mL, as well as 10.5, 5.1, and 3.5 µg/mL, respectively. However, these values for H. persicum fruit extract at 24, 48, and 72 hours were found to be <156, 70.2, 31.32 µg/mL and <156, 33.5, 11.7 µg/mL for L. major promastigotes and L. major promastigotes, respectively. The results indicated that the hydroethanolic extracts of A. dracunculus leaf and H. persicum fruit had potent anti-leishmanial activity against the forms of L. major and L. infantum after 24, 48, and 72 hours of incubation (P<0.05) promastigotes in vitro. These results also revealed that the hydroethanolic extracts of A. dracunculus leaf extract had significantly (P<0.05) higher leishmanicidal effect on the promastigotes of L. major and L. infantum compared to the extract of H. persicum fruit since it exhibited lower IC_{50} values for the tested promastigotes. Table 1 and Figure 1 present the anti-leishmanial activity of the leaf extract of A. dracunculus against the forms of L. major and L. infantum promastigotes with various concentrations and at different hours (24, 48, and 72 hours). Likewise, Table 1 and Figure 2 illustrate the anti-leishmanial activity of the fruit extract of H. persicum on L. major and L. infantum promastigotes with different concentrations and at various hours (24, 48, and 72 hours). Glucantime drug also exhibited IC_{50} values of 40.2 and 18.5 µg/mL for L. major and L. infantum promastigotes after 72 hours.
of incubation, respectively. The comparison of means of the anti-leishmanial activity of A. dracunculus leaf, H. persicum fruit extracts, and glucantime drug against the forms of L. major and L. infantum promastigotes was found to be significant \((P<0.05)\) after 72 hours. \(P\) values for each plant and drug are presented in Table 2.

Discussion

Unfortunately, despite the significant prevalence of CL in Iran, there has not been a proper prevention, control, and treatment method yet.\(^{19}\) Nowadays, there are cheap and effective chemotherapeutic agents for the treatment of leishmaniasis, but the application of these chemical agents manifested drug resistance and side effects. Numerous studies were conducted on the effects of different species of Artemisia on L. major promastigote form.\(^{20,21}\) However, based on the previous literature, no studies have been carried out on the effects of A. dracunculus and H. persicum plant extracts on the in vitro growth of L. infantum promastigotes by MMT assay. In the present study, the hydroethanolic extracts of A. dracunculus and H. persicum significantly \((P<0.05)\) inhibited the growth of promastigotes forms of L. major and L. infantum. The results also revealed that the hydroethanolic extract of A. dracunculus was more sensitive to L. major compared to L. infantum promastigotes after 72 hours of incubation, while the hydroethanolic extract of H. persicum and glucantime drug as the control were more sensitive to L. infantum than L. major promastigotes after 72 hours of incubation. Previous study reported that the hydroethanolic extracts of A. dracunculus did not show anti-leishmanial efficacy against L. major promastigotes after 24 and 48 hours, but they could significantly reduce the number of promastigotes after 72 hours with an effect more than 50% at concentrations of 10 \(\mu\)g/mL \((P<0.01)\), 20 \(\mu\)g/mL \((P<0.001)\), and 25 \(\mu\)g/mL \((P<0.0001)\).\(^{20}\) There is no consistency between the results of the above-mentioned study and the present research after 24 and 48 hours. Furthermore, based on the findings of the present study,

Table 1. \(IC_{50}\) of A. dracunculus Leaf, H. persicum Fruit Extracts and Glucantime Against L. major and L. infantum Promastigotes After 24, 48, and 72 hours of Incubation

Compounds	24 h	48 h	72 h
H. persicum on L. major	<156	70.2	11.7
H. persicum on L. infantum	<156	33.5	5.5
A. dracunculus on L. major	14.4	4.2	1.85
A. dracunculus on L. infantum	10.3	5.1	3.5
Glucantime on L. major	104.45	61.4	40.2
Glucantime on L. infantum	99.7	45.6	18.5

Table 2. Results of Comparison of Paired Samples T test for Each Plant and Drug Against Tested Promastigotes After 72 Hours of Incubation

Plant and Drug	Mean ± SD	\(P\) Value (2-Tailed)
A. dracunculus - L. major, and L. infantum	40.91±29.80\(^a\)	0.001*
H. persicum, L. major, and L. infantum	64.58±27.00	0.001*
Glucantime - L. major, and L. infantum	60.15±34.36	0.008*

\(\text{Note: SD: Standard deviation.}\)

\(\text{a: µg/ml}\)

\(\text{* Significance level}<0.05.\)
the anti-leishmanial efficacy of the A. dracunculus extract was significantly higher than that of the H. percicum extract. Numerous phytochemical screening reported active ingredients in many Artemisia species, including monoterpenes, terpinene, monoterpenes, terpene lactones, flavonoids, coumarin, steroids, and polyacetylenes. It seems that higher anti-leishmanial activity of the A. dracunculus extract compared to the H. percicum extract is related to its compounds, and those anti-leishmanial properties have been already reported by Iranshahi et al. For example, Sadeghi-Nejad et al carried out anti-candida activity of the hydroalcoholic extracts of H. percicum fruit against pathogenic candida species such as C. albicans, Candida glabrata, and Candida tropicalis. The minimum inhibitory concentration values were 0.625-20 μg/mL, 0.625-40 μg/mL, and 5.0-20 μg/mL for C. albicans, C. glabrata, and C. tropicalis, respectively. The results of this study revealed that H. percicum fruit extract had the potential for anti-candida activity. However, to the best of our knowledge, no studies have been carried out on the effects of H. percicum extracts against the in vitro growth of L. major and L. infantum promastigotes yet. Hence, this study was carried out for the first time on the anti-leishmanial activity of the hydroethanolic extracts of the H. percicum fruit by MMT assay.

Conclusion
Further clinical research is needed to confirm the effective and safe medicinal plant therapy. It is necessary to find their active components and potential cytotoxicity effects for the replacement of safe drugs for leishmaniasis.

Authors’ Contribution
Sk: Study, concept, and design. KE: Performing all laboratory tests and data collection. BSN: Selection and extraction of the selected herbal medicine, manuscript writing, statistical analysis, and data interpretation. SYN: Preparation and authentication of the selected herbal medicine.

Conflict of Interest Disclosures
The authors declare that there was no conflict of interests to publish this study.

Ethical Approval
The protocol of this study was approved by the Ethics Committee of Abadan University of Medical Sciences, Abadan, Iran. The University Ethics Committee code number was 95U-1100.

Financial Support
This study was financially supported by Abadan University of Medical Sciences, Abadan, Iran.

References
1. Salehi G, Fata A, Mohaghegh MA, Mousavi-Bazzaz SM, Rafatpanah H, Movahedi A. Molecular identification of Leishmaniaspecies in Taybad district, Iran. Asian Pac J Trop Dis 2014; 4: S535-S539, doi.org/10.1016/S2222-1808/14/60672-1
2. Yaghooobi-Ershadi MR, Zahraei-Ramezani AR, Akhavan AA, Jalali-Zand AR. Rodent control operations against zoonotic cutaneous leishmaniasis in rural Iran. Ann Saud Med. 2005; 25(4): 309-12. doi: 10.3144/0252/4947.2005.309
3. Karami M, Doudi M, Setorki M. Assessing epidemiology of cutaneous leishmaniasis in Ishafan Iran. J Vector Borne Dis 2013; 50: 30–37.
4. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. leishmaniasis worldwide and global estimates of its incidence. Plos One 2012; 7(5): e53567. doi: 10.1371/journal.pone.0035671
5. Mishra BB, Kale RR, Singh RK, Tiwari VK. Alkaloids: Future prospective to combat leishmaniasis. Fitoterapia 2008; 80(2): 81-90. doi.org/10.1016/j.fitote.2008.10.009
6. Saki J, Khademvatan S, Pazvar N, Eskandari A, Tamoradi A, Nazari P. In vitro activity of Cordia myxa mucilage extract against Leishmania major and L. infantum promastigotes. Jundishapur J Microbiol 2015; 8 (3): e19640. doi:10.5812/jmm.19640
7. Lamidi M, DiGiorgio C, Delmas F, Favel A, Eyele Mve- Mba C, Rondi ML, et al. In vitro cytotoxic, antileishmanial and antifungal activities of ethnopharmacologically selected Gabonese plants. J Ethnopharmacol 2005; 102(2): 185-90. doi.org/10.1016/j.jep.2005.06.011
8. Alizadeh Bebabani B, Fakheri Shahidi F, Tabatabaei Yazdi F, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J Food Meas Charact 2017; 11 (2): 847–863.
9. Ayoughi FM, Barzegar M, Sahari MA, Naghdibadi H. Chemical Compositions of Essential Oils of Artemisia dracunculus L. and Endemic Matricaria chamomilla L. and an Evaluation of their Antioxidative Effects. J Agr Sci Tech 2011; 13: 79-88.
10. Emami SA, Zamani Taghizadeh Rabe S, Ahi A, Mahmoudi M, Tabasi N. Study the cytotoxic and pro-apoptotic activity of Artemisia Annu extracts. Pharmacologyonline 2009; 3: 1062-1069.
11. Mahmoudi M, Zamani Taghizadeh Rabe S Ahi A, Emami SA. Evaluation of the cytotoxic activity of different Artemisia Khorassanica samples on cancer cell lines. Pharmacologyonline 2009; 2: 778-786.
12. Zamani Taghizadeh Rabe S, Mahmoudi M, Ahi A, Emami SA. Antiproliferative effects of extracts from Iranian Artemisia species on cancer cell lines. Pharm Biol 2011; 49(9): 962-969. doi: 10.3109/13880209.2011.559251
13. Ganguly S, Bandyopadhyay S, Bera A, Chatterjee M. Antipromastigote activity of an ethanol extract of leaves of Artemisia indica. Indian J Pharmacol 2006;38:64-65. doi:10.4103/0253-7613.198539.
14. Mirzaei F, Balghi AF, Mohaghegh MA, Jaliani HZ, Faridinia R, Kalani. In vitro anti-leishmanial activity of Satureja hortensis and Artemisia dracunculus extracts on Leishmania major promastigotes. J Parasit Dis 2017; 41(4): 1162-1165.
15. Zargari A, Medicinal Plants. 4th ed. Tehran: Tehran University Publications. 1990:42-5.
16. Sadeghi-Nejad B, Badi J, Azizh M. Effect of aqueous Allium cepa and lxnora brachiata root extract on Leishmaniamajortromastigotes. Jundishapur J Nat Pharm Prod 2014; 9(2): e15442. doi:10.17795/jnpp-15442
17. Khademvatan S, Adibpour N, Eskandari A, Rezaee S, Hashemtabar M, Rahim F. In silico and in vitro comparative activity of novel experimental derivatives against Leishmania major and Leishmania infantum promastigotes. Exp Parasitol 2013; 135(2): 208–16. doi.org/10.1016/j.exppara.2013.07.004
18. Khademvatan S, Gharavi MJ, Rahim F, Saki J. Miltefosine-induced apoptotic cell death on Leishmania major and L. tropica strains. Korean J Parasitol 2011; 49(1): 17-23. doi: 10.3347/kjp.2011.49.1.17

19. Farahmand M, Nahrevanian H, Shirazi HA, et al. An overview of a diagnostic and epidemiologic reappraisal of cutaneous leishmaniasis in Iran. Braz J Infect Dis.2011;15(1):17–21. doi.org/10.1016/S1413-8670(11)70134-9

20. Rezaei R, Hazrati Tappeh K, Seyyedi S, Mikali P. The Anti-leishmanial Efficacy of Artemisia dracunculus Ethanolic Extract in Vitro and Its Effects on IFN-γ and IL-4 Response. Iran J Parasitol 2017; 12 (3): 398-407.

21. Azizi K, Shahidi-Hakak F, Asgari Q, Hatam GR, Fakourziba MR, Miri R, et al. In vitro efficacy of ethanolic extract of Artemisia absinthium (Asteraceae) against Leishmania major L. using cell sensitivity and flow cytometry assays. J Parasit Dis 2016; 40(3): 735-740. doi: 10.1007/s12639-014-0569-5

22. Iranshahi M, Emami SA, Mahmoud-Soltani M. Detection of sesquiterpene lactones in ten artemisia species population of Khorasan province. Iran J Basic Med Sci 2007; 10: 183-188. DOI: 10.1016/s0040-4039(00)90776-7

23. Kousha A and Bayat M. Antibacterial and Fungicidal activity of methanolic extracts of Heracleum persicum Desf.ex Fischer against some Aquatic and Terrestrial animal pathogens. Int J Pharmacol 2012; 8 (7): 652-656. Doi: 10.3923/ijp.2012.652.656

24. Sadeghi Nejad B, Rajabi M, Zarei Marnoudabadi A, Zarrin M. In Vitro Anti-Candida Activity of the Hydroalcoholic Extracts of H. persicum Fruit against Phatogenic Candida Species. Jundishapur J. Microbial 2014; 7(1): e8703. DOI: 10.5812/jjm.8703

25. Nazemi A, Hashemi M, Khataminezhad M, Purshamsian K. The first evaluation of antimicrobial activity of the aqueous and methanol extracts of H. persicum. Med Sci J of Islamic Azad Univ, Tehran Med Branch 2005; 15 (2): 91-94. doi: 10.1016/S0378-8741(03)00006-0