Personalized nutrition: A review of genotype-based nutritional supplementation

Feijie Wang¹, Jianheng Zheng¹, Junrui Cheng², Hong Zou³, Mingfeng Li¹, Bin Deng⁴, Rong Luo⁴, Feng Wang⁴, Dingqiang Huang⁴, Gang Li¹, Rao Zhang⁵, Xin Ding⁵, Yuan Li³, Jun Du*, Yuexin Yang* and Juntao Kan*¹

Nutritional disorders have become a major public health issue, requiring increased targeted approaches. Personalized nutrition adapted to individual needs has garnered dramatic attention as an effective way to improve nutritional balance and maintain health. With the rapidly evolving fields of genomics and nutrigenetics, accumulation of genetic variants has been indicated to alter the effects of nutritional supplementation, suggesting its indispensable role in the genotype-based personalized nutrition. Additionally, the metabolism of nutrients, such as lipids, especially omega-3 polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron, and calcium could be effectively improved with related genetic variants. This review focuses on existing literatures linking critical genetic variants to the nutrient and the ways in which these variants influence the outcomes of certain nutritional supplemenations. Although further studies are required in this direction, such evidence provides valuable insights for the guidance of appropriate interventions using genetic information, thus paving the way for the smooth transition of conventional generic approach to genotype-based personalized nutrition.

KEYWORDS

personalized nutrition, nutritional supplementation, nutrient, genotype, single nucleotide polymorphisms, nutrigenetics

Introduction

Nutrition disorders, such as obesity, cardiovascular disease, and diabetes, primarily driven by the unhealthy diet and/or lifestyle, are the leading cause of premature deaths worldwide (1). Adherence to dietary guidelines, with the recommended intake of specific nutrients, is necessary for health maintenance at the population level (2). However, this one-size-fits-all approach does not consider interindividual variations, which result
from varying responses to nutrients owing to different genetic predispositions, metabolic phenotypes, and microbial compositions. Therefore, personalized nutrition, which is adapted to individual needs, has been proposed to meet this challenge.

The concept of “personalized” or “precision” has been widely used since the Precision Medicine Initiative was launched in the United States in 2015 (3). Similar to precision medicine, personalized nutrition refers to the use of unique information about an individual to tailor nutritional interventions, including advice, products, and services, to assist them to gain improved health benefits than those derived using generic, population-based approaches. With the advances in “omics,” such as genomic, transcriptomic, proteomic, metabolomics, microbiome and data technology, personalized nutrition has gradually become a reality (4, 5). Among them, genomics has evolved to the post-genomic era, and genomic information has been widely used to tailor personalized nutrition for certain nutritional supplementations, yielding the interdisciplinary science called nutrigenetics. According to the International Society of Nutrigenetics/Nutrigenomics (ISNN), the future of personalized nutrition should include three levels: (1) conventional nutrition based on general guidelines for population groups by age, gender, and social determinants; (2) individualized nutrition that adds phenotypic information about the current nutritional status of individuals, and (3) genotype-directed nutrition based on rare or common gene variations (6). This statement highlights future efforts from general dietary guidelines to stratified and genotype-based personalized approaches.

Genotype-based nutritional intervention has been evidently useful for individuals with genetic defects and has helped them effectively improve their health (7), especially for individuals with rare genetic disorders such as phenylketonuria, galactosemia, and vitamin D-resistant rickets (8). Till date, with the aid of candidate-gene approaches or genome-wide association studies (GWAS), several single nucleotide polymorphisms (SNPs) have been identified to have influence over the absorption, distribution, metabolism, excretion, and signal transduction of macronutrients and micronutrients (9–12). In this regard, a few genotypes have been further highlighted to discriminate individuals based on sensitivity to certain nutritional interventions, expanding the understanding of the implementation of personalized nutrition (13–20).

In this review, we summarize the critical genotypes that influence the levels of macronutrients and micronutrients and provide the evidence that genotypes may interact with nutritional supplementation or diet to alter nutritional response or disease risk (Figure 1; Table 1). The aim of this review is to provide insights into the use of nutritional genotypes to guide individuals to determine appropriate nutritional supplementation and ultimately achieve optimal health benefits.

Genotype-based supplementation of macronutrients

Lipids and ApoE polymorphism

Lipids are an essential class of hydrophobic biomolecules that include phospholipids, sterols, and triglycerides (TG). They are involved in maintaining energy balance, sustaining vital processes, controlling food intake, and regulating growth and reproduction. However, intake of excessive lipids, such as TG and low-density lipoprotein cholesterol (LDL), may lead to an increased risk of metabolic diseases.

Apolipoprotein (ApoE), its three isoforms, namely ApoE2, ApoE3, and ApoE4 encoded by ε2, ε3, and ε4 haplotype, respectively, plays key roles in the transport of cholesterol and functioning of cholesterol and other lipids in the brain (Figure 2A). This haplotype system comprises two non-synonymous SNPs rs429358 (T/C) and rs7412 (T/C) in the exon of ApoE, where ε2 haplotype is represented by TT, ε3 represented by TC, and ε4 represented by CC. Furthermore, rs769449 exhibits strong linkage disequilibrium with rs429358 (21). The ε4 allele, contributing to impaired LDL binding, has been positively associated with an increased risk of numerous diseases, such as cardiovascular diseases (CVDs) and Alzheimer’s disease (AD). A study of 544 patients with hypertension or coronary heart disease indicated that ApoE ε4 carriers exhibited high total cholesterol, TG, and LDL levels (22). In addition, the ApoE ε4 allele has been reported as the strongest genetic risk factor for sporadic AD in genome-wide association meta-analyses (9).

Evidence suggests that the genotyping for ApoE may help develop a highly targeted approach to disease prevention. Adherence to Mediterranean diet, a well-known healthy dietary pattern, may lower AD related anatomical or clinical symptoms in individuals without ε4 genotype (23). In addition, long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) may have a protective role in individuals without ε4 (24, 25). On the contrary, the association of unfavorable diet with increased disease risk in ε4 carriers has been reported. Diets high in saturated fatty acids may increase AD risks by seven folds in ε4 carriers than in non-carriers (26). Moreover, compared to ε4 non-carriers, afternoon snacks with a high glycomic load have been significantly associated with cognitive decline in ε4 carriers (13). These studies suggested that ε4 carriers might require a diet containing healthier lipids to prevent AD onset.

Lipids and FTO polymorphism

Fat mass and obesity-associated gene (FTO), involved in the expression of fat deposition and metabolism-related hormones and genes, is the first gene associated with obesity. Furthermore, SNP rs9939609, as well as the proxy SNP rs1121980 of FTO
FIGURE 1
Overview of interactions of nutrients and genes involved in the nutritional metabolism, distribution, and signal transduction. Created with BioRender.com.

FIGURE 2
(A) Effect of ApoE recycling and aggregation on lipoprotein. Very low-density lipoprotein (VLDL) containing triglycerides (TG), apolipoprotein E (encoded by ApoE), apolipoprotein B-100 (encoded by ApoB-100) and cholesteryl ester (CE) that was synthesized in the liver and then secreted into the blood. The VLDL partially degreased by lipoprotein lipase (encoded by LPL) and converted to intermediate-density lipoprotein (IDL). On one hand, IDL was hydrolyzed into low-density lipoprotein (LDL) by triglyceride lipase (encoded by HTL). On the other hand, IDL and high-density lipoprotein (HDL) could mutual conversion by exchanging TG and CE with cholesteryl ester transfer protein (encoded by CETP). In addition, nascent VLDL could be formed by acquisition of ApoE and ApoC from HDL. (B) Overview of FADS1 and FADS2 genes in desaturation steps necessary for polyunsaturated fatty acid (PUFA) biosynthesis. For Omega-6 biosynthesis, linoleic acid (LA) was absorbed from diet and converted to γ-Linoleic acid, Dihomo-γ-Linoleic acid by fatty acid synthase 2 (encoded by FADS2) and the elongase of very long chain fatty acid (encoded by ELOVL5). Subsequently, the dihomo-γ-Linoleic acid was converted into long chain highly unsaturated PUFAs, including arachidonic acid (AA), 24:4n-6, 24:5n-6, 22:5n-6 and docosahexanoic acid (DHA) by FADS1, ELOVL2 and FADS2, respectively. Created with BioRender.com.
has been correlated with obesity and diabetes (27). Maha et al. showed that FTO rs9939609 A/A genotype was significantly associated with impaired fasting glucose and insulin resistance (28). In addition, higher serum leptin and lower high-density lipoprotein levels were observed in the homozygotes of the FTO rs9939609 risk genotype (AA) compared to those with the TT genotype in overweight adults (29), suggesting the need of precise interventions for these high-risk population. In fact, individuals genetically predisposed to obesity particularly benefit by regulating dietary intake (30, 31) or following personalized diet (32), suggesting a crucial role of FTO in personalized nutrition.

n-3 PUFA and FADS polymorphism

n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential for maintaining health by contributing to organ development, membrane fluidity, and inflammation status. EPA and DHA can be synthesized by desaturases and elongases through the PUFA biosynthetic pathway, wherein fatty acid desaturase (FADS) enzymes including FADS1 and FADS2, are rate-limiting step enzymes (33) (Figure 2B).

GWAS on serum n-3 and n-6 PUFA showed that FADS1/FADS2 strongly affected serum PUFA levels (8). Additionally, Szilvia et al. demonstrated that all haplotypes carrying the FADS1 rs174546 minor allele were associated with lower Δ-5 desaturases (D5D) activity, which has been associated with plasma long-chain PUFA and lipid levels in 1,144 European adolescents (34). Previous studies also indicated that the FADS1 rs174546 C/T allele was an important determinant of plasma TG concentrations (35). In addition, several other FADS1 SNPs have been significantly associated with PUFA levels, such as rs174537 (including three variants G/G, G/T, and T/T) and rs174547 (C/T) (36–38).

Cumulative evidence suggested that the link between PUFA intake and the risk of CVD could be altered using genetic differences in FADS (39). In a large cohort study, α-linoleic acid (ALA) intake was inversely associated with ischemic stroke in rs174546 TT genotype carriers with low D5D activity (14). Moreover, the findings that infants who received fish oil supplements exhibited significantly higher erythrocyte DHA levels were only noticed in homozygous for the minor rs174546 as well as other linkage disequilibrium SNPs (40). Nevertheless, more studies are required to employ FADS1 genotyping to personalized nutrition.

Glucose and TCF7L2 polymorphism

Glucose metabolic disorders may play an important role in the pathogenesis of diabetes, CVD, cerebrovascular diseases, and hypertension. SNPs in genes such as TCF7L2, GCKR, G6PC2, and ALOX5 play an important role altering in glucose metabolism (41–45). Among them, Transcription Factor-7-Like-2 (TCF7L2), which belongs to the T-cell factor/lymphoid enhancer factor (TCF/LEF) family, is the most common susceptibility gene for type 2 diabetes mellitus (T2DM) (46). Studies have further identified that TCF7L2 rs7903146 polymorphism was associated with glucose homeostasis and obesity-related parameters. A meta-analysis of 115,809 subjects indicated that TCF7L2 rs7903146 polymorphism was significantly associated with susceptibility to T2DM (47). It was also reported that TCF7L2 rs7903146 T allele was associated with elevated glycated-hemoglobin levels in healthy individuals (11). Moreover, Li et al. indicated significant associations between rs7903146 and body mass index or waist circumference and elevated blood glucose levels (48).

The interaction of TCF7L2 and diet on glucose homeostasis has been actively investigated. Lu et al. indicated that TCF7L2 rs7903146 polymorphism affected glucose tolerance and free fatty acid metabolism in adults. They also found that monounsaturated fatty acid concentrations and percentages were greater in females with the TT genotype than in those with the CC genotype in oral glucose tolerance test, and that TT carriers with high HOMA-IR exhibited significantly higher fasting free fatty acid concentrations, lower disposition index, and elevated glucose area under the curve than CC carriers (15). These results indicated that TCF7L2 SNP-based intervention can be helpful for regulating glucose levels using dietary intervention.

Genotype-based supplementation of micronutrients

Vitamin A and BCMO1 polymorphism

Vitamin A, a fat-soluble vitamin, is derived from two different sources: the preformed vitamin A from animal-based food, and carotenoids with provitamin A activity from plant-based products (49). The conversion of β-carotene from dietary carotenoids to retinal is the first step in the utilization of vitamin A (Figure 3) (50). Vitamin A plays an important role in maintaining visual function, promoting cell proliferation and differentiation, enhancing immune function, promoting body growth and bone metabolism, and improving hemoglobin levels. Vitamin A deficiency may cause dry eye, infectious diseases such as measles, malaria, diarrhea and respiratory infections, resulting in severe complications such as growth retardation, anemia and even death.

β-carotene 15,15'-monooxygenase 1 (BCMO1) is the most critical enzyme involved in retinoid metabolism (51). Leung et al. identified two common nonsynonymous SNPs (R267S; rs12934922; A379V: rs7501331) in the open reading frame of
Nutrition

Frontiers in Nutrition

Effect partially due to its low frequency (57), while female carriers with A379V

BCMO1 activity by 57%, whereas female carriers with A379V

BCMO1 variant was

children and adolescents showed that A379V TT variant was

subjects were daily provided with juices containing lycopene and

For example, in a 3-week cross-over intervention, 23 healthy

plasma and prostate tissue (54), respectively, in the conversion of beta-

carotene to retinol (55). Retinal was also reversible generation to vitamin A by

short-chain dehydrogenase/reductase (encoded by

DHRS/three.tnum). Subsequently, on one hand, RA will be combined with binding to cellular retinol binding

protein (CRBP/two.tnum) and then activate gene expression together with retinoid-X-receptor (RXR), retinoic acid receptor (RAR) and retinoic acid receptor element (RARE). On another hand, RA can diffuse from cell and degraded by cytochrome P450 26A1 (CYP26) enzyme. Created with BioRender.com.

BCMO1 with 42 and 24% variant allele frequencies, respectively (52). In vitro R267S + A379V double mutant exhibited reduced

BCMO1 activity by 57%, whereas female carriers with A379V

alone or both R267S and A379V variant alleles exhibited a

reduction of 32 and 69%, respectively, in the conversion of beta-

carotene to retinol (52). β-carotene-15,15-dioxygenase (encoded by BCMO1). Subsequently, on one hand, RA will be combined with binding to cellular retinol binding

protein 2 (CRBP2) and then activate gene expression together with retinoid-X-receptor (RXR), retinoic acid receptor (RAR) and retinoic acid receptor element (RARE). On another hand, RA can diffuse from cell and degraded by cytochrome P450 26A1 (CYP26) enzyme. Created with BioRender.com.

BCMO1 on transport, signaling and degradation of vitamin A metabolism. Retinol from diet is transported throughout the vasculature and oxidation by retinol dehydrogenase 10 (encoded by RHISO) and alcohol dehydrogenases (encoded by ADHs) into retinol and then oxidized into retinoic acid (RA) by aldehyde dehydrogenase 1A1, 1A2, and 1A3 (encoded by ALDH1A1-3). Retinal was also reversible generation to vitamin A by

short-chain dehydrogenase/reductase (encoded by DHRS3). β-carotene was another alternative pathway which converted to retinal by

β-carotene-15,15-dioxygenase (encoded by BCMO1). Subsequently, on one hand, RA will be combined with binding to cellular retinol binding

protein 2 (CRBP2) and then activate gene expression together with retinoid-X-receptor (RXR), retinoic acid receptor (RAR) and retinoic acid receptor element (RARE). On another hand, RA can diffuse from cell and degraded by cytochrome P450 26A1 (CYP26) enzyme. Created with BioRender.com.

Folic acid and MTHFR polymorphism

Vitamin 9, naturally occurring as folic acid, is synthesized by plants and microorganisms. It cannot be synthesized by humans
due to the lack of a complete folate biosynthetic pathway. Furthermore, as folic acid is involved in the biosynthesis of nucleotides, amino acids, and certain vitamins, humans must ingest and absorb folic acid derived from diet (55). Folate deficiency can cause many diseases in both young and old age (56), such as fetal pathologies, neural tube disease (57), anemia (58), and depression (59).

As 5,10-methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folic acid metabolism, its polymorphism can decrease enzyme activity by 60%, resulting in disorders associated with folate metabolism as well as a variety of other diseases (Figure 4). Till date, 14 rare mutations with severe enzymatic deficiencies and one mutation rs1801133 (C677T) with a milder enzymatic deficiency in MTHFR have been reported (60, 61). In addition, serum folic acid concentrations were lower in individuals with the MTHFR rs1801133 TT genotype than in individuals with the CC or CT genotypes (62). Moreover, the risk genotype of rs1801133 has been found to be associated with various diseases, including diabetes, CVDs, cancer, and vascular disorders (62, 63). Several studies have also revealed that MTHFR polymorphisms might be associated with the elevation levels of homocysteine, thus exacerbating CVD risk (64).

Studies on MTHFR have been successfully used to develop disease prevention strategies. In the China Stroke Primary Prevention Trial, the antihypertensive drug enalapril, in addition to folic acid supplementation, significantly reduced the risk of stroke in adults with hypertension, while MTHFR rs1801133 TT genotype did not benefit those with low baseline folic acid levels even upon folic acid supplementation, implying that higher dosage of folic acid is needed for individuals at risk of CVD with disadvantaged MTHFR genotype (17). Interestingly, riboflavin (vitamin B2), the co-factor for MTHFR in folate metabolism, has also been used to regulate blood pressure (65, 66) or homocysteine levels (67), but such
beneficial effects were only reported in the rs1801133 TT group, suggesting that vitamin B2 might compensate for the loss of MTHFR activity. In summary, these studies help improve the implementation of more precise and effective folic acid recommendations while considering MTHFR polymorphisms.

Vitamin D and GC polymorphism

Vitamin D is an important fat-soluble vitamin, which is primarily synthesized in the skin upon exposure to ultraviolet B radiation (UVB) in sun exposure. In the circulation, vitamin D and its products are transferred into the liver and kidneys by vitamin D binding proteins (VDBP, encoded by GC) (Figure 5). Vitamin D regulates the absorption of calcium and phosphorus, maintains the levels of blood calcium and phosphorus levels, and promotes normal bones and teeth development. However, the widespread distribution of VDBPs in the body indicates its unconventional role beyond calcium and phosphorus regulation, including regulation of cell proliferation and differentiation, synthesis, and secretion of cytokines and other hormones. Moreover, vitamin D is critical in preventing cancer, immune diseases, and diseases of the endocrine system.

Several VDBP polymorphisms have been identified to affect vitamin D levels that contribute to health outcomes (68), with the most common polymorphisms being rs4588 and rs7041 in GC, which may correlate with serum vitamin D levels (70, 71). Spyridon et al. demonstrated that mothers with the GC genotype for rs2298850 and rs4588 polymorphisms showed elevated 25(OH)D concentrations (72). Dong et al., also showed that GC SNPs including rs17467825, rs4588, rs2282679, rs2298850, and rs1155563, were significantly associated with maternal 25(OH)D concentrations (73). Furthermore, a recent study confirmed the rs4588 and rs7041 polymorphisms were more frequent in the T2DM patients, compared to the control group (74). These results showed that rs4588, rs7041, and other GC SNPs may be correlated with not only serum vitamin D status but also the risk of T2DM.

Ongoing studies have shown that genetic predisposition related to the vitamin D metabolic pathway could modify the response of 25(OH)D after vitamin D supplementation or UVB exposure. Nimitphong et al. (69) reported that GC rs4588 CC carriers exhibited an increase in 25(OH)D levels compared to those with risk genotypes CA or AA, upon daily vitamin D3 supplementation for 3 months; however, this interaction was not observed for vitamin D3 supplementation. Nonetheless, when more genes were included, the effects of genetic variants persisted. In addition, Nissen et al. indicated that carriers of all four risk alleles of GC rs4588 (A) and CYP2R1 rs2060793 (G) were the least benefitted from the consumption of vitamin D3-fortified food or UVB exposure (73). Moreover, in a larger randomized controlled trial, Yao et al. verified that the subjects with the risk genotype of GC exhibited a significantly lower increase in 25(OH)D response after 20-week vitamin D3 supplementation, and that the genetic factors, evaluated as genetic risk score encompassing four variants of GC, VDR and CYP2R1 genes exerted greater impact on 25(OH)D response than did non-genetic factors (75). Therefore, these studies suggested that genetic factors, perhaps more important than non-genetic factors, could provide valuable insights for appropriate vitamin D recommendations, as those with the risk genotype of GC and other vitamin D metabolism-related genes may require increased vitamin D consumption or UVB exposure.

Iron and TMPRSS6 polymorphism

Iron, as an essential trace element, regulates vital physiological processes in the body, including DNA synthesis, electron transport and oxygen transport. As iron homeostasis and metabolism are tightly regulated, iron surplus or deficiency can lead to various diseases (76).

Transmembrane protease serine 6 (TMPRSS6), which is responsible for iron absorption and recycling, is critical for iron homeostasis. GWAS have shown that TMPRSS6 variants were most associated with serum iron, soluble transferrin receptor, and hemoglobin levels (12). Specifically, the TMPRSS6 rs855791 T genotype with a non-synonymous amino
Nutrition	Gene	SNP	Common Allele	Risk Allele	Risk Genotype	Health issue	Studies for genotype-based personalized nutrition*	Ref
Lipid	ApoE	rs429358	T	C	c4: C/C	Cardiovascular and Alzheimer's Disease	(1) ApoE non-c4 → (Mediterranean diet → ↓ AD risk)	(18)
		rs7412	T	C			(2) ApoE non-c4 → (PUFA → ↓ cognitive decline)	(19, 20)
							(3) ApoE c4 → (Saturated fat → ↑ AD risk)	(21)
							(4) ApoE c4 → (High glycemic load snack → ↑ cognitive decline)	(11)
							(5) FTO rs1121980 (T) ↑ (Personalized intervention → weight loss)	(25–27)
n-3 PUFA	FADS1	rs174546	C	T	CT, TT	Obesity and appetite	(1) FADS1 rs174546 (TT) → (ALA → ↓ ischemic stroke)	(12)
							(2) FADS1 rs174546 (TT) → (DHA supplementation → ↑ erythrocyte DHA)	(35)
Glucose	TCF7L2	rs7903146	C	T	CT, TT	Diabetes and obesity	(1) TCF7L2 rs7903146 (TT) → (OGTT → ↑ plasma free fatty acid, glucose response)	(13)
Vitamin A	BCOMI	rs12934922	A	T	AT, TT	Dry eyes, delayed growth, and infectious diseases	(1) BCOMI rs12934922 (A/T) ↑ (dietary carotenoid → plasma β-carotene response)	(47)
							(2) BCOMI rs12934922 (T) ↓ (dietary carotenoid → plasma and prostate carotenoid response)	(14)
Folic acid	MTHFR	rs1801133	C	T	CT, TT	Fetal pathologies, neural tube disease, anemia, hypertension	(1) MTHFR rs1801133 (TT) ↓ (folic acid supplementation → ↓ stroke risk)	(15)
							(2) MTHFR rs1801133 (TT) → (Vitamin B2 supplementation → ↓ blood pressure)	(58, 59)
Vitamin D	GC	rs4588	C	A	CA, AC, AG, GG	Rickets, osteoporosis, diabetes mellitus, tuberculosis and chronic obstructive pulmonary disease	(1) GC rs4588 (A) + CYP2R1 rs10741657 (G) ↓ (UVB treatment or vitamin D3, fortified food → plasma 25(OH)D response)	(65)
	CYP2R1	rs10741657	A	G			(2) GC rs4588 (CC) ↑ (VD3 supplementation → plasma 25(OH)D response)	(67, 68)
Fe	TMPRSS6	rs855791	C	T	CT, TT	Iron-deficiency anemia, diabetes mellitus	(1) TMPRSS6 rs855791 (T) ↓ (iron supplementation → serum hemoglobin, iron and ferritin response)	(69)
Ca	CaSR	rs17251221	A	G	AG, GG	Nephrolithiasis, and Alzheimer's disease	Unknown	

* For simplicity, studies were expressed as "genotype(s) modify (diet → outcome)." For example, "BCO1-rs12934922 (A/T) ↑ (dietary carotenoid → plasma carotenoid response)" means that BCO1-rs12934922 (A/T) genotype showed stronger response to dietary carotenoid for plasma β-carotene, compared to its counterpart genotype. AD: Alzheimer's disease; PUFA: polyunsaturated fatty acid; ALA: α-linoleic acid; OGTT: oral glucose tolerance test.
The function of GC on vitamin D synthesis, transport, and metabolism. 7-dehydrocholesterol is converted to pre-vitamin D3 and then to vitamin D in the skin under ultraviolet radiation b (UVB) exposure. Vitamin D is also absorbed from diet and then transferred by binding with vitamin D binding protein (VDBP, encoded by GC) into liver to form 25(OH)D by 25-hydroxylase (encoded by CYP2R1), and then transferred into the kidney by VDBP which form the active metabolite 1,25(OH)2D by 1α-hydroxylase (encoded by CYP27B1). The latter is then transferred to targeted tissue to combine with binding to vitamin D receptor (VDR), and then activate gene expression together with retinoid-X-receptor (RXR) and vitamin D response element (VDRE). Created with BioRender.com.

Acid substitution (A736V) reduced the enzymatic activity of TMPRSS6. Furthermore, each copy of the minor alleles A and G of the rs855791 polymorphism decreased serum ferritin by 4.50 g/L and by 5.00 µg/L, respectively, in under-2-year-old children in Indonesia (77). Pei et al. also demonstrated that homozygotes with the TMPRSS6 rs855791 C genotype mitigated iron deficiency anemia in women at reproductive age, especially in those with menorrhagia (78). A recent study showed that the rs855791 polymorphism was significantly associated with decreased iron levels in the participants from Saudi Arabia (79). Moreover, Gan et al. revealed that the rs855791 and rs4820268 polymorphisms were both significantly associated with plasma ferritin, hemoglobin levels, iron overload risk, and T2DM risk in a Chinese population (80), suggesting the role of TMPRSS6 in iron homeostasis as well as disease risk.

Since not only iron deficiency, but also iron overload can exert adverse effects, it is critical to tailor personalized iron supplementation to ensure iron homeostasis. De Falco et.al. (81) indicated that for patients with persistent iron-deficiency anemia, carriers of the TMPS56 rs855791 risk allele (T) exhibited reduced serum iron changes upon oral iron supplementation. Nevertheless, further studies are warranted to investigate the effects of TMPRSS6 in the management of iron nutritional status.

Calcium and CaSR polymorphism

Calcium is one of the primary constituents of human body, and its active form is vital to maintain the integrity of cell membranes, regulate excitation of muscles, and monitor various functions of cells. Calcium deficiency is associated with diseases of a variety of tissues and systems, such as bone, endocrine, cardiovascular and cerebrovascular, nervous, digestive, urinary, reproductive, and nervous systems (82), all of which could be prevented with the use of calcium supplementation (83, 84).

Calcium-sensing receptors (CaSRs), members of the family of G protein-coupled receptors, are mainly located in the parathyroid gland and maintain the homeostasis of calcium by regulating the secretion of parathyroid hormone (85). A GWAS of 20,611 individuals of European ancestry showed that the rs17251221 polymorphism was associated with elevated serum calcium levels and accounted for 0.54% of the variance, and that the G allele of the same polymorphism was also associated with higher serum magnesium levels, lower serum phosphate levels, and lower bone mineral density in the lumbar spine (86). Another genome-wide meta-analysis on serum calcium revealed that a missense variant rs1801725 accounted for 1.26% of the variance in serum calcium levels, with the strongest association exhibited in individuals of European descent, whereas similar association was observed for rs17251221 in individuals of Indian Asian descent (87). However, to the best our knowledge, no studies have determined the effects of the interaction between the CaSR genotype and dietary intervention on calcium levels or health outcomes, thereby necessitating further investigation for the precise management of calcium levels.

Conclusion and prospect

With the rapidly progressing fields of nutrigenetics, accumulation of genetic variants has been identified to influence both macronutrient and micronutrient levels, as well as individual responses to dietary intake. Such variants are valuable to develop appropriate personalized dietary interventions, thus ensuring the transition of generic dietary guidelines to genotype-directed nutrition.
However, several challenges may hinder the widespread adoption of personalized nutrition. Firstly, nutrition-related diseases, such as CVDs and T2DM, are considered as polygenic in nature, and are thus influenced by multiple genes with small or medium effects. Therefore, polygenic risk scores of more than a few variants may provide more information to predict the outcome of personalized nutritional intervention (88). Secondly, diseases result from the interaction of genes and environmental factors. For example, individuals with genetic predisposition to obesity may have increased odds of weight gain compared to general population when they consume the same amount of sugar-sweetened beverages (89). In this regard, deep phenotyping using advanced "omics" technologies including epigenomics, transcriptomics, proteomics, metabolomics, and microbiome may help to discover the underlying gene-environment interactions and explain the missing hereditary (90, 91). Thirdly, "omics" technologies generate a large amount of data, requiring the use of advanced analytical methods such as machine learning (92, 93), which has been applied in multiple stages of personalized nutrition, including blood glucose monitoring (94), body weight management (95), disease risk assessment (96) and nutritional management (97). For example, by integrating blood biomarkers, diet, anthropometrics, and gut microbiota, a machine-learning algorithm could accurately predict the postprandial glycemic response, and therefore assisting in blood glucose homeostasis (4). Fourthly, the efficient implementation of personalized nutrition requires accurate intervention of health professionals and good compliance from individuals, thus requiring novel digital tools or tracking devices to bridge the gap between them (98).

In conclusion, genotype-based nutritional studies have highlighted the critical role of SNPs in the regulation of macronutrient and micronutrient levels, which are fundamental for health. Although further studies are required for the adequate implementation of personalized nutrition into healthcare research and practice, current evidence indicates the necessity of incorporating more genetic variants into personalized nutritional interventions to achieve improved nutrient levels and health outcomes and reduce the burdens of nutritional disorders on healthcare services.

Author contributions

JK, YY, YL, and JD designed the manuscript. FeiW, JZ, HZ, ML, BD, RL, FenW, DH, and GL performed the literature review. FeiW and JZ wrote the manuscript. JC, RZ, and XD revised the manuscript. All authors contributed to the article and approved the submitted version.

Conflict of interest

Authors HZ and YL are employed by Sequanta Technologies Co., Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Elia M. Defining, recognizing, and reporting malnutrition. Int J Low Extrem Wounds. (2017) 16:230–7. doi: 10.1177/1534734617733902
2. Cederholm T, Barazzoni R, Austin F, Ballmer P, Biolo G, Bischoff SC, et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin Nutr. (2017) 36:49–64. doi: 10.1016/j.clnu.2016.09.004
3. Yardley JE, Campbell MD. Moving toward precision medicine with diabetes, exercise and physical activity. Can J Diabetes. (2020) 44:679. doi: 10.1016/j.cjdi.2020.10.008
4. Zeevi D, Korem T, Zmora N, Izraely D, Rothschild D, Weinberger A, et al. Personalized nutrition by prediction of glycemic responses. Cell. (2015) 163:1079–94. doi: 10.1016/j.cell.2015.11.001
5. Kan J, Ni J, Xue K, Wang F, Zheng J, Cheng J, et al. Personalized nutrition intervention improves health status in overweight/obese Chinese adults: a randomized controlled trial. Front Nutr. (2022) 9:919882. doi: 10.3389/fnut.2022.919882
6. Ferguson LR, De Caterina R, Gorman U, Allayee H, Kohlmeyer M, Prasad C, et al. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1 - fields of precision nutrition. J Nutrigenet Nutrigenomics. (2016) 9:12–27. doi: 10.1159/000445350
7. Marcum JA. Nutrigenetics/nutrigenomics, personalized nutrition, and precision healthcare. Curr Nutr Rep. (2020) 9:338–45. doi: 10.1007/s13668-020-00327-z
8. de Toro-Martin J, Arsenaux BJ, Despres JP, Vohl MC. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients. (2017) 9:913. doi: 10.3390/nu9080913
9. Serrano-Pozo A, Das S, Hyman BT. Apoe and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. (2021) 20:68–80. doi: 10.1016/S1474-4422(20)30412-9
10. Coldtell O, Sorli JV, Assensio EM, Barragan R, Gonzalez JJ, Gimenez-Alba IM, et al. Genome-wide association study for serum Omega-3 and Omega-6 polyunsaturated fatty acids: exploratory analysis of the sex-specific effects and dietary modulation in mediterranean subjects with metabolic syndrome. Nutrients. (2020) 12:310. doi: 10.3390/nu12030310
11. Podboi ICR, Stephenson S, Pilic L, Graham CA, King A, Mavrommatis Y. Dietary intake and Tcf7l2 Rs7903146 T allele are associated with elevated
blood glucose levels in healthy individuals. *Lifestyle Genom.* (2021) 14:117–23. doi: 10.1159/000501823

12. Tanaka T, Roy CN, Yaw W, Matteini A, Semba RD, Arking D, et al. A Genome-wide association analysis of serum iron concentrations. *Blood.* (2010) 115:94–9. doi: 10.1182/blood-2009-07-232496

13. Gentreau M, Raymond M, Chay V, Samieri C, Artero S. High Glucosic load is associated with cognitive decline in apolipoprotein E E4 allele carriers. *Nutrients.* (2020) 12:3619. doi: 10.3390/nu1203619

14. Helstrand S, Ericson U, Guillaud B, Hedblad B, Orho-Melander M, Sonestedt E. Genetic variation in fads has little effect on the association between dietary pufo intake and cardiovascular disease. *J. Nutr.* (2014) 144:1356-63. doi: 10.3945/jn.114.192708

15. Lu J, Varghese RT, Zhou L, Vella A, Jensen MD. Glucose tolerance and free fatty acid metabolism in adults with variations in Tcf7l2 Rs790346. *Metabolism.* (2017) 68:55-63. doi: 10.1016/j.metabol.2016.11.018

16. Moran NE, Thomas-Ahner JM, Fleming IL, McElroy JP, Mehl R, Grainger EM, et al. Single nucleotide polymorphisms in beta-carotene oxygenase 1 are associated with plasma lycopene responses to a tomato- soy juice intervention in men with prostate cancer. *J. Nutr.* (2019) 149:381–97. doi: 10.1093/jn/nxy104

17. Hao V, Li J, Qin X, Huang Y, Wang X, Gottesman RE, et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the csppt randomized clinical trial. *JAMA.* (2015) 313:1235–35. doi: 10.1001/jama.2015.2274

18. Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, et al. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. *Genes Nutr.* (2017) 12:35. doi: 10.1007/s12263-016-0584-0

19. Keathley J, Garneau V, Zavala-Mora D, Heister RR, Gauthier E, Morin-Bernier J, et al. A systematic review and recommendations around frameworks for evaluating scientiﬁc validity in nutritional genomics. *Front Nutr.* (2021) 8:79215. doi: 10.3389/fnut.2021.789215

20. Parnell LD, Blokker BA, Dashti HS, Nesbitt PD, Cooper BE, Ma Y, et al. CardioGeneX, A catalog of gene-environment interactions for cardometabolic traits. *BioData Min.* (2014) 7:21. doi: 10.1186/2153-599X-7-21

21. Villeneuve S, Brisson D, Marchant NL, Gaudet D. The potential applications of apolipoprotein e in personalized medicine. *Front Aging Neurosci.* (2014) 6:154. doi: 10.3389/fnagi.2014.00154

22. Wang C, Yan W, Wang H, Zhu J, Chen H. Apo e polymorphism is associated with blood lipid and serum uric acid metabolism in hypertensive or coronary heart disease in a Chinese population. *Pharmacogenomics.* (2010) 20:1021–31. doi: 10.2217/ppg.09-10048

23. Martinez-Lapiscina EH, Galbete C, Corella D, Toledo E, Buil-Cosiales P, Salas-Salvado J, et al. Genotype patterns at Chu, Cri, piscam and apeo, cognition and Mediterranean diet: the predimed-navarra trial. *Nutrients.* (2014) 6:404. doi: 10.3390/nu6030404

24. Barberger-Gateau P, Samieri C, Feart C, Plourde M. Dietary Omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein e genotype. *Curr Alzheimer Res.* (2011) 8:479–91. doi: 10.2174/156720511796391926

25. Stonehouse CC, Podd A, Hill SR. Dha supplementation improved both memory and reaction time in healthy young adults: a randomized controlled trial. *Am J Clin Nutr.* (2013) 97:1134–43. doi: 10.3945/ajcn.112.053371

26. Krivpelio M, Rovio S, Ngandu T, Kareholt I, Eskelinen M, Winblad B, et al. Apolipoprotein E genotype and E4 allele affect fasting glucose metabolism in the Finnish diabetes prevention study. *Diab Res Clin Pract.* (2010) 89:126–35. doi: 10.1016/j.diabres.2010.05.010

27. Metelcovà T, Vankova M, Zamarrañol H, Hovhannisyan M, Stankova B, Tivricka E, et al. Fads1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. *Lipids.* (2021) 56:499–508. doi: 10.1007/s11745-021-0521-7

28. Wang Y, Tang Y, Ji Y, Xu W, Ullah N, Yu H, et al. Association between Fads1 Rs174547 and levels of long-chain pufa: a meta-analysis. *Br J Nutr.* (2021) 126:1121-9. doi: 10.1017/S0007114521000510

29. Keletsko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. Fads1 and Fads2 polymorphisms modulate fatty acid metabolism and dietary impact on energy. *Am J Clin Nutr.* (2019) 100:21–44. doi: 10.1093/ajcn/nqz086

30. Metelcovà T, Vankova M, Zamarrañol H, Hovhannisyan M, Stankova B, Tivricka E, et al. Fads1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. *Lipids.* (2021) 56:499–508. doi: 10.1007/s11745-021-0521-7

31. Wang Y, Tang Y, Ji Y, Xu W, Ullah N, Yu H, et al. Association between Fads1 Rs174547 and levels of long-chain pufa: a meta-analysis. *Br J Nutr.* (2021) 126:1121-9. doi: 10.1017/S0007114521000510

32. Mathias RA, Sergeant S, Ruczinski I, Tortorgong D, Hugenschmidt CE, Kubala M, et al. The impact of fads genetic variants on omega6 polyunsaturated fatty acid metabolism in African Americans. *BMC Genet.* (2011) 12:50. doi: 10.1186/1471-2156-12-50

33. Metelcovà T, Vankova M, Zamarrañol H, Hovhannisyan M, Stankova B, Tivricka E, et al. Fads1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. *Lipids.* (2021) 56:499–508. doi: 10.1007/s11745-021-0521-7
51. Li CC, Liu C, Fu M, Hu KQ, Azakia K, Takahashi S et al. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adipsin expression independent of carotenoid cleavage enzymes in mice. *Mol Nutr Food Res.* (2018) 62.e1700738. doi: 10.1002/mnfr.201700738

52. Leung WC, Hessel S, Meplan C, Flint J, Oberhauser V, Tournier E et al. Two common single nucleotide polymorphisms in the gene encoding Beta-Carote 15.15'-monooxygenase alter beta-carotene metabolism in female volunteers. *FASEB J.* (2009) 23:1043–53. doi: 10.1096/fj.08-121962

53. Zumaraa MPP, Arquiza J, Concepcion MA, Perlas L, Alcuı́d-Catala MN, Rodriguez M. Genotype effects on beta-carotene conversion to vitamin a: implications on reducing vitamin a deficiency in the Philippines. *Food Nutr Bull.* (2020) 43:23–34. doi: 10.1177/03795221110600229

54. Wang TT, Edwards AJ, Clevendon BA. Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15'-monooxygenase single nucleotide polymorphisms. *J Nutr Biochem.* (2013) 24:1538–46. doi: 10.1016/j.jnutbio.2013.01.001

55. Obeid R, Oeakle K, Rissmann A, Pietrzik K. Coletzko B. Folate status and health: challenges and opportunities. *J Perinat Med.* (2016) 44:261–8. doi: 10.1515/jpm-2014-0346

56. Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, et al. The concept of folic acid in health and disease. *Molecules.* (2021) 26:3731. doi: 10.3390/molecules26123731

57. Castano E, Pinunuri R, Hirsch S, Ronco AM. Folate and pregnancy, current concepts: it is required folic acid supplementation? *Rev Chil Pediatr.* (2017) 88:199–206. doi: 10.4067/S0370-41062017000200001

58. Achebe MM, Gafer-Gvili A. How I treat anemia in pregnancy: iron, cobalamin, and folate. *Blood.* (2012) 119:940–9. doi: 10.1182/blood-2012-08-472246

59. Khan R, Waqaas A, Bial A, Mustehsan ZH, Omar J, Rahman A. Association of maternal depression with diet: a systematic review. *Asian J Psychiatr.* (2020) 52:102098. doi: 10.1016/j.ajp.20201009

60. Goyette P, Christensen B, Rosenblatt DS, Rozen R. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (Mthfr) gene, and description of five novel mutations in Mthfr. *Am J Hum Genet.* (1996) 59:1268–75. doi: 10.1093/0921-8777(96)00037-7

61. Goyette P, Frost P, Rosenblatt DS, Ronen R. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. *Am J Hum Genet.* (1995) 56:1052–9

62. Li WX, Cheng F, Zhang AJ, Dai SX, Li GH, LV WW, et al. Folate deficiency and gene polymorphisms of mthfr, mtr and mtrr elevate the hyperhomocysteinemia risk. *Clin Lab.* (2017) 63:523–33. doi: 10.7754/Clin.Lab.2016.160917

63. Liew SC, Gupta ED. Methylenetetrahydrofolate reductase (Mthfr) C677T polymorphism: epidemiology, metabolism, and the associated diseases. *Int J Mol Sci.* (2013) 58:1–10. doi: 10.3390/ijms14030504

64. Raghuber S, Mathä TE. Methylenetetrahydrofolate (Mthfr), the one-carbon cycle, and cardiovascular risks. *Nutrients.* (2021) 13:4562. doi: 10.3390/nu13124562

65. Horigan G, McNulty H, Ward M, Strain JJ, Purvis J, Scott JM. Vitamin D binding protein genotypes after vitamin D(3) or D(2) supplementation. *J Intern Med.* (2010) 267:287–96. doi: 10.1111/j.1365-2796.2012.02587.x

66. He J, Dong H, Yang S, Guo Y, Yang S. Important roles of the Ca2+ receptor in the development of cardiovascular diseases. *Front Nutr.* (2021) 8:24991. doi: 10.3389/fnut.2021.824991

67. Kaprio J. Twins and the mystery of missing heritability: the contribution of gene-environment interactions. *J Intern Med.* (2012) 271:440–8. doi: 10.1111/j.1365-2796.2012.02587.x
92. Morgenstern JD, Rosella LC, Costa AP, Desouza RJ, Anderson LN. Perspective: big data and machine learning could help advance nutritional epidemiology. *Adv Nutri.* (2021) 12:621–31. doi: 10.1093/advances/nmt aa183

93. Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. *Biomark Res.* (2017) 5:2. doi: 10.1186/s40364-017-0082-y

94. Colmenar JM, Winkler SM, Kronberger G, Maqueda E, Hidalgo JL. Predicting glycerina in diabetic patients by evolutionary computation and continuous glucose monitoring. *ACM* (2016) 3:1393–400. doi: 10.1145/2908961.2931734

95. Montaez CAC, Fergus P, Montaez AC, Hussain A, Chalmers C. Deep Learning Classification of Polygenic Obesity using Genome Wide Association Study SNPs. In: 2018 International Joint Conference on Neural Networks (Rio de Janeiro: IJCNN) (2018).

96. Zhang SJ, Meng P, Zhang J, Jia P, Lin J, Wang X, et al. Machine learning models for genetic risk assessment of infants with non-syndromic orofacial cleft. *Genom Proteom Bioinf.* (2018) 16:354–64. doi: 10.1016/j.gpb.2018.07.005

97. Kan J, Li A, Zou H, Chen L, Du J, A. Machine learning based dose prediction of lutein supplements for individuals with eye fatigue. *Front Nutr.* (2020) 7:577923. doi: 10.3389/fnut.2020.577923

98. Eldridge AL, Piernas C, Illner AK, Gibney MJ, Gurinovic MA, de Vries JHM, et al. Evaluation of new technology-based tools for dietary intake assessment: an Ilsi Europe dietary intake and exposure task force evaluation. *Nutrients.* (2018) 11:55. doi: 10.3390/nu11010055