NONEXISTENCE OF NONCONSTANT POSITIVE STEADY STATES OF A DIFFUSIVE PREDATOR-PREY MODEL

SHANSHAN CHEN

Department of Mathematics, Harbin Institute of Technology
Weihai, Shandong, 264209, China

(Communicated by Gergely Rost)

Abstract. In this paper, we investigate a diffusive predator-prey model with a general predator functional response. We show that there exist no nonconstant positive steady states when the interaction between the predator and prey is strong. This result implies that the global bifurcating branches of steady state solutions are bounded loops for a predator-prey model with Holling type III functional response.

1. Introduction. Since the pioneering work of Holling [9, 10], the predator functional responses, especially the Holling type II functional response, have been investigated extensively. For example, Yi et al. [33] studied the following predator-prey model

\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + ru \left(1 - \frac{u}{k}\right) - \frac{buv}{1 + au}, \quad x \in \Omega, \ t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v - dv + \frac{cuv}{1 + au}, \quad x \in \Omega, \ t > 0,
\end{align*}
\]

(1.1)

and the induced complex spatiotemporal patterns through bifurcations, such as spatially inhomogeneous periodic orbits and steady state solutions, were addressed. Here \(u(x,t)\) and \(v(x,t)\) are the densities of the prey and predator at time \(t\) and location \(x\) respectively, and \(d_1, d_2, r, d, k, b, c\) and \(\alpha\) are all positive constants. Then, Peng and Shi [19] showed that the global bifurcating branches of steady state solutions of system (1.1) are bounded loops. Du and Lou [5, 6] studied a slightly different model,

\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + u(a - u) - \frac{buv}{1 + mu}, \quad x \in \Omega, \ t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v + v(d - v) + \frac{cuv}{1 + mu}, \quad x \in \Omega, \ t > 0,
\end{align*}
\]

(1.2)

where the growth rate of the predator is logistic type, and the existence and nonexistence of the nonconstant steady states were investigated for large \(m\). We refer to [7, 8] for the bifurcations and pattern formations of model (1.2) with the spatial heterogeneity. Moreover, we point out that the corresponding ODE systems of models (1.1) and (1.2) are classical in mathematical biology, and they are usually

2000 Mathematics Subject Classification. Primary: 35K57; Secondary: 35B36.
Key words and phrases. Reaction-diffusion, nonexistence, steady state.

The authors are supported by the National Natural Science Foundation of China (No. 11771109).
attributed to Rosenzweig and MacArthur [22], see e.g. [25]. The dynamics of the ODE systems can be found in [4, 11, 12] and references therein.

Recently, Wang [27] studied the following nondimensionalized diffusive predator-prey model with Holling type III functional response and no flux boundary conditions,

\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + u (1 - u) - \frac{mu^2 v}{a^2 + u^2}, & x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v - dv + \frac{mu^2 v}{a^2 + u^2}, & x \in \Omega, t > 0, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0, & x \in \partial \Omega, t > 0, \\
u(x, 0) = u_0(x) \geq (\neq) 0, & v(x, 0) = v_0(x) \geq (\neq) 0, & x \in \Omega,
\end{align*}
\]

(1.3)

and the existence of spatially inhomogeneous periodic orbits and nonconstant steady state solutions were obtained by the bifurcation method and Leray-Schauder degree theory. The Hopf bifurcation of model (1.3) was also investigated in [26, 32]. We remark that there are also many results on the pattern formations for other diffusive predator-prey models and chemical reaction-diffusion models, see [1, 13, 17, 18, 20, 21, 23, 28, 29, 30, 31, 34] and references therein.

In this paper, we consider the following nondimensionalized diffusive predator-prey model [2, 27],

\[
\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + u (1 - u) - \frac{mu^r v}{a^r + u^r}, & x \in \Omega, t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v - dv + \frac{mu^r v}{a^r + u^r}, & x \in \Omega, t > 0, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0, & x \in \partial \Omega, t > 0, \\
u(x, 0) = u_0(x) \geq (\neq) 0, & v(x, 0) = v_0(x) \geq (\neq) 0, & x \in \Omega,
\end{align*}
\]

(2.1)

where \(u(x, t)\) and \(v(x, t)\) are the densities of the prey and predator at time \(t\) and location \(x\) respectively, \(d_1, d_2, m, d, r\) and \(a\) are all positive constants, \(\Omega\) is a bounded domain in \(\mathbb{R}^N (N \leq 3)\) with a smooth boundary \(\partial \Omega\), and \(m\) measures the interaction between the predator and prey. If \(r = 2\), then model (1.4) is reduced to (1.3). In Section 2, we prove that, for \(r > 1\), system (1.4) has no nonconstant positive steady states when \(m\) is sufficiently large. The method used here is motivated by [19], and we find that the result for the case of \(r = 1\) in [19] can be extended to the case of \(r > 1\) or a more general predator functional response, which satisfies Eq. (3.2). Moreover, our result supplements the results in [27] and implies that each global bifurcating branch of steady state solutions of model (1.3) obtained in [27] is a bounded loop, which connects at least two different bifurcation points, (see Section 3).

2. Main results. In this section, we consider the steady states of model (1.4) for large \(m\), which satisfy

\[
\begin{align*}
-d_1 \Delta u &= u (1 - u) - \frac{mu^r v}{a^r + u^r}, & x \in \Omega, \\
-d_2 \Delta v &= -dv + \frac{mu^r v}{a^r + u^r}, & x \in \Omega, \\
\frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} &= 0, & x \in \partial \Omega.
\end{align*}
\]

(2.1)
Let \(w = m^{\frac{1}{2}} u, z = m^{\frac{1}{2}} v \) and \(\rho = 1/m^{\frac{1}{2}} \). Then \(w \) and \(z \) satisfy

\[
\begin{aligned}
&-d_1 \Delta w = w (1 - \rho w) - \frac{w^r z}{a^r + \rho^r w^r}, \quad x \in \Omega, \\
&-d_2 \Delta z = - dz + \frac{w^r z}{a^r + \rho^r w^r}, \quad x \in \Omega, \\
&\partial_n w = \partial_n z = 0, \quad x \in \partial \Omega.
\end{aligned}
\]

(2.2)

To derive a priori estimates for the positive solutions of system (2.2), we first recall the following three well-known results. The first is a maximum principle from \([16]\).

Lemma 2.1 ([16]). Suppose that \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \), \(g \in C(\overline{\Omega} \times \mathbb{R}) \), and \(z \in C^2(\Omega) \cap C^1(\overline{\Omega}) \) satisfies

\[
\begin{aligned}
&\Delta z + g(x, z) \geq 0, \quad x \in \Omega, \\
&\partial_n z \leq 0, \quad x \in \partial \Omega.
\end{aligned}
\]

If \(z(x_0) = \max_{x \in \Omega} z \), then \(g(x_0, z(x_0)) \geq 0 \).

The second is from \([14]\).

Lemma 2.2 ([14]). If \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \), \(d \) is a nonnegative constant, and \(z \in W^{1,2}(\Omega) \) is a non-negative weak solution of the following inequalities

\[
\begin{aligned}
&-\Delta z + dz \geq 0, \quad x \in \Omega, \\
&\partial_n z \leq 0, \quad x \in \partial \Omega,
\end{aligned}
\]

then, for any \(q \in \left[1, \frac{N}{N-2}\right) \), there exists a positive constant \(C \), determined only by \(q, d \) and \(\Omega \), such that

\[
\|z\|_q \leq C \inf_{x \in \Omega} z.
\]

Finally, we cite a Harnack inequality from \([15, 20]\).

Lemma 2.3 ([15]). If \(\Omega \) is a bounded smooth domain in \(\mathbb{R}^N \), \(c(x) \in L^q(\Omega) \) for some \(q > N/2 \), and \(z \in W^{1,2}(\Omega) \) is a non-negative weak solution of the following problem

\[
\begin{aligned}
&\Delta z + c(x)z = 0, \quad x \in \Omega, \\
&\partial_n z = 0, \quad x \in \partial \Omega,
\end{aligned}
\]

then, there exists a positive constant \(C \), determined only by \(\|c(x)\|_q \), \(q \), and \(\Omega \), such that

\[
\sup_{x \in \Omega} z \leq C \inf_{x \in \Omega} z.
\]

Then, we have a priori estimate for the positive solutions of system (2.2).

Theorem 2.4. Assume that \(r > 1, d_1, d_2, d, a \) and \(\rho \) are all positive constants, \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) (\(N \leq 3 \)) with a smooth boundary \(\partial \Omega \), and \((w_\rho, z_\rho) \) is a positive solution of system (2.2). Then the following two statements are true.

(i) There exists \(\overline{C} > 0 \) such that

\[
\sup_{\rho > 0} \sup_{x \in \Omega} w_\rho, \sup_{\rho > 0} \sup_{x \in \Omega} z_\rho \leq \overline{C}.
\]

(2.3)
(ii) There exists $M > 0$ such that
\[
\inf_{0 < \rho < M} w_{\rho} > 0 \quad \text{and} \quad \inf_{0 < \rho < M} z_{\rho} > 0.
\]
Equation (2.4)

That is, there exists $C > 0$, which depends on M, such that $w_{\rho}, z_{\rho} \geq C$ for all $0 < \rho < M$ and $x \in \Omega$.

Proof. We first derive the existence of the upper bounds for $\{w_{\rho}\}_{\rho > 0}$ and $\{z_{\rho}\}_{\rho > 0}$. Since
\[
d_1 \Delta \rho w \leq \rho (1 - \rho w),
\]
it follows from Lemma 2.1 that $0 \leq \rho w_{\rho} \leq 1$ for all $\rho > 0$. Dividing the second equation of (2.2) by z_{ρ} and integrating the result over Ω, we get
\[
\int_{\Omega} \left(\frac{w_{\rho}}{\rho^n + \rho^r w_{\rho}^r} - d \right) dx = -d_2 \int_{\Omega} \Delta z_{\rho} dx = -d_2 \int_{\Omega} \frac{|\nabla z_{\rho}|^2}{z_{\rho}^2} \leq 0,
\]
which yields
\[
\int_{\Omega} w_{\rho} dx \leq d(a^n + 1)|\Omega| \quad \text{for all} \quad \rho > 0.
\]
Equation (2.5)

Then, integrating each equation of system (2.2) over Ω, we have
\[
d \int_{\Omega} z_{\rho} dx \leq \int_{\Omega} w_{\rho} dx \leq \left(\int_{\Omega} w_{\rho}^r dx \right)^{\frac{1}{r}} |\Omega|^{1 - \frac{1}{r}},
\]
which leads to
\[
\inf_{\Omega} z_{\rho} \leq (a^n + 1)^{\frac{1}{r}} d^{\frac{1}{r} - 1} \quad \text{for all} \quad \rho > 0.
\]
Equation (2.6)

By virtue of Lemma 2.2, we see that, for any $p \in [1, p^*)$, there exists a positive constant C_0, depending on p, such that
\[
\|z_{\rho}\|_{p} \leq C_0 \inf_{\Omega} z_{\rho} \quad \text{for all} \quad \rho > 0.
\]
Equation (2.7)

Here $p^* = \infty$ for $N = 1$ or 2, and $p^* = 3$ for $N = 3$. In the following, we denote C_0 by $C_0(p)$ to avoid confusion. Then, we claim that there exist $q > \frac{N}{2}$ and a positive constant C_1, depending on q, such that
\[
\|w_{\rho}^{r - 1} z_{\rho}\|_{q} \leq C_1 \quad \text{for all} \quad \rho > 0.
\]
Equation (2.8)

We first consider the case of $N = 1$ or 2. Due to Eqs. (2.5)-(2.7) and the Hölder inequality, we see that for any given $q \in \left(1, \frac{1}{r - 1}\right)$,
\[
\int_{\Omega} w_{\rho}^{(r - 1)q} z_{\rho} dx \leq \left(\int_{\Omega} w_{\rho}^{r} dx \right)^{\frac{1}{r - 1}q} \left(\int_{\Omega} \frac{rq}{\rho^n + \rho^r w_{\rho}^r} dx \right)^{1 - \frac{1}{r - 1}q}
\]
\[
\leq \left(\int_{\Omega} w_{\rho}^{r} dx \right)^{\frac{1}{r - 1}q} \left[C_0 \left(\frac{rq}{r - (r - 1)q} \right) \inf_{\Omega} z_{\rho} \right]^q
\]
\[
\leq \left(d(a^n + 1)|\Omega| \right)^{\frac{1}{r - 1}q} \left[C_0 \left(\frac{rq}{r - (r - 1)q} \right) (a^n + 1)^{\frac{1}{r}} d^{\frac{1}{r} - 1} \right]^q.
\]

Then, we consider the case of $N = 3$. Multiplying $w_{\rho}^{r - 1}$ to the first equation of (2.2) and integrating the result over Ω, we see from Eq. (2.5) that
\[
\int_{\Omega} w_{\rho}^{2r - 1} z_{\rho} dx \leq (a^n + 1) \int_{\Omega} w_{\rho}^{r} dx \leq d(a^n + 1)^2 |\Omega|.
\]
Equation (2.9)
Note that, for \(q \in \left(\frac{3}{2}, \frac{6r-3}{4r-3} \right) \),

\[
\frac{(r - 1)q}{2r - 1} < 1 \quad \text{and} \quad \frac{rq}{(2r - 1) - (r - 1)q} < 3.
\]

Then, by virtue of the Hölder inequality and Eqs. (2.6), (2.7) and (2.9), we obtain that, for any given \(q \in \left(\frac{3}{2}, \frac{6r-3}{4r-3} \right) \),

\[
\int_{\Omega} w_\rho^{(r-1)q} z_\rho^2 \, dx \leq \left(\int_{\Omega} w_\rho^{2r-1} z_\rho \, dx \right)^{\frac{(r-1)q}{2r-1}} \left(\int_{\Omega} z_\rho^{\frac{rq}{r - 1} - (r - 1)q} \, dx \right)^{1 - \frac{(r-1)q}{2r-1}}
\]

\[
\leq [d(a^r + 1)^{2|\Omega|}]^{\frac{(r-1)q}{2r-1}} \left[C_0 \left(\frac{rq}{(2r - 1) - (r - 1)q} \right) \inf_{\Omega} z \right]^{\frac{rq}{2r-1}}
\]

\[
\leq [d(a^r + 1)^{2|\Omega|}]^{\frac{(r-1)q}{2r-1}} \left[C_0 \left(\frac{rq}{(2r - 1) - (r - 1)q} \right) (a^r + 1)^{ \frac{1}{2} - \frac{1}{2} } \right]^{\frac{rq}{2r-1}}.
\]

Therefore, the claim is true and Eq. (2.8) holds. This, combined with Lemma 2.3, implies that there exists a positive constant \(C_2 \) such that

\[
\sup_{\Omega} w_\rho \leq C_2 \inf_{\Omega} w_\rho \quad \text{for all } \rho > 0. \tag{2.10}
\]

It follows from Eq. (2.5) that \(\inf_{\Omega} w_\rho \leq d^{\frac{1}{2}} (a^r + 1)^{ \frac{1}{2} } \) for all \(\rho > 0 \). Consequently, there exists a positive constant \(C_3 \) such that

\[
\sup_{\Omega} w_\rho \leq C_3 \quad \text{for all } \rho > 0. \tag{2.11}
\]

Again, by Lemma 2.3 and Eq. (2.11), we see that there exists a positive constant \(C_4 \) such that

\[
\sup_{\Omega} z_\rho \leq C_4 \inf_{\Omega} z_\rho \quad \text{for all } \rho > 0. \tag{2.12}
\]

Then, it follows from Eq. (2.6) that there exists a positive constant \(C_5 \) such that

\[
\sup_{\Omega} z_\rho \leq C_5 \quad \text{for all } \rho > 0. \tag{2.13}
\]

Choosing \(\mathcal{C} = \max\{C_3, C_5\} \), we see that Eq. (2.3) holds.

Now, we prove part \((ii)\). We first claim that there exists \(M_1 > 0 \) such that \(\inf_{0 < \rho < M_1} \inf_{x \in \Omega} w_\rho > 0 \). If it is not true, then there exists a sequence \(\{ \rho_k \}_{k=1}^\infty \) such that \(\lim_{k \to \infty} \rho_k = 0 \) and \(\lim_{k \to \infty} \inf_{x \in \Omega} w_{\rho_k} = 0 \). By Eq. (2.10), we obtain that \(w_{\rho_k} \to 0 \) uniformly on \(\overline{\Omega} \) as \(k \to \infty \), which yields

\[
\int_{\Omega} \left(d - \frac{w_{\rho_k}}{a^r + \rho_k^r w_{\rho_k}} \right) z_{\rho_k} \, dx > 0
\]

for sufficiently large \(k \). This is a contradiction, and the claim is proved. Then we claim that there exists \(M_2 > 0 \) such that \(\inf_{0 < \rho < M_2} \inf_{x \in \Omega} z_\rho > 0 \). To the contrary, there exists a sequence \(\{ \rho_j \}_{j=1}^\infty \) such that \(\lim_{j \to \infty} \rho_j = 0 \) and \(\lim_{j \to \infty} \inf_{x \in \Omega} z_{\rho_j} = 0 \), which also implies that \(z_{\rho_j} \to 0 \) uniformly on \(\overline{\Omega} \) as \(j \to \infty \) from Eq. (2.12). Noticing that \(\sup_{\rho > 0} \sup_{x \in \Omega} w_\rho \leq \mathcal{C} \), we have

\[
\int_{\Omega} w_{\rho_j} \left(1 - \rho_j w_{\rho_j} - \frac{w_{\rho_j}^{-1} z_{\rho_j}}{a^r + \rho_j^r w_{\rho_j}} \right) \, dx > 0
\]

for sufficiently large \(j \), which is a contradiction. Therefore, the claim is proved. Choosing \(M = \min\{M_1, M_2\} \), we see that Eq. (2.4) holds.
For $\rho = 0$, we have the following result on the steady states of system (2.2).

Theorem 2.5. Suppose that $r > 1$, $\rho = 0$, and d_1, d_2, d, and a are all positive constants. Then system (2.2) has a unique positive solution $(w_*, z_*) = (ad^\frac{1}{r}, ad^\frac{1}{r-1})$.

Proof. One can easily check that (w_*, z_*) is the unique constant positive steady state of system (2.2) for $\rho = 0$. Suppose that (w, z) is a positive steady state of system (2.2) for $\rho = 0$, and set
\[
V(w, z) = \int_\Omega \left\{ \frac{w^r - w_*^r}{w^r} \left[d_1 \Delta w + w \left(1 - \frac{w^{r-1}}{a^r}\right)\right] \right\} dx
+ \int_\Omega \left\{ \frac{z - z_*}{z} \left[d_2 \Delta z + z \left(-d + \frac{w^r}{a^r}\right)\right] \right\} dx.
\]
Clearly, $V(w, z) = 0$, and after a careful calculation, we also have
\[
V(w, z) = -\int_\Omega \left(r d_1 \frac{w_*^r |\nabla w|^2}{w^r+1} + d_2 \frac{z_* |\nabla z|^2}{z^2} \right) dx
+ \int_\Omega \left(w^r - w_*^r \right) \left(\frac{1}{w^{r-1}} - \frac{1}{w_*^{r-1}} \right) dx.
\]
which leads to $(w, z) = (w_*, z_*)$. This completes the proof. \hfill \Box

Now, based on Theorem 2.4 and 2.5, we have the following result on the nonexistence of nonconstant positive solutions of system (2.2) for small ρ (or equivalently, large m for system (2.1)).

Theorem 2.6. Assume that $r > 1$, d_1, d_2, d, and a are all positive constants, and Ω is a bounded domain in \mathbb{R}^N $(N \leq 3)$ with a smooth boundary $\partial \Omega$. Then there exists a positive constant $\rho_* = \rho_*(d_1, d_2, d, a, r)$ such that, for $\rho \in (0, \rho_*)$, system (2.2) has a unique constant positive solution and no nonconstant positive solutions.

Proof. We argue indirectly and assume that there exists $\{\rho_i\}_{i=1}^\infty$ such that
\[
\lim_{i \to \infty} \rho_i = 0,
\]
and system (2.2) has a nonconstant positive steady state $(w_i(x), z_i(x))$ for any $\rho = \rho_i$. As in [3, 19], by virtue of Theorems 2.4 and 2.5, the standard regularity theory, and the embedding theorems, we see that there exists a subsequence $\{i_k\}_{k=1}^\infty$ such that $(w_{i_k}(x), z_{i_k}(x)) \to (w_*, z_*)$ in $C^2(\overline{\Omega})$ as $k \to \infty$, where $(w_*, z_*) = (ad^\frac{1}{r}, ad^\frac{1}{r-1})$ is the unique positive solution of system (2.2) for $\rho = 0$. A direct calculation implies that all the eigenvalues of the linearized system at (w_*, z_*) are negative when $\rho = 0$. Then, it follows from the implicit function theorem that there exists $\rho_* > 0$ such that, for $\rho \in (0, \rho_*)$, system (2.2) has a unique positive solution in the neighborhood of (w_*, z_*) in $C^1(\overline{\Omega})$, which is constant and locally asymptotically stable for the corresponding parabolic system. Therefore, $(w_{i_k}(x), z_{i_k}(x))$ is constant for sufficiently large k, which is a contradiction. This completes the proof. \hfill \Box

Then we have the following result on the nonexistence of the nonconstant positive steady states of system (1.4) when the interaction between the predator and prey is strong.

Corollary 2.7. Assume that $r > 1$, d_1, d_2, d, and a are all positive constants, and Ω is a bounded domain in \mathbb{R}^N $(N \leq 3)$ with a smooth boundary $\partial \Omega$. Then there exists a positive constant $m_* = m_*(d_1, d_2, d, a, r)$ such that, for $m > m_*$, system
Nonexistence of nonconstant steady states

1.4 has a unique constant positive steady state and no nonconstant positive steady states.

3. Global bifurcations and generalization. In this section, we first give some remarks on the global bifurcations of steady state solutions for model (1.3). We recall from [27] that when $m > d$, system (1.3) has a unique constant positive equilibrium $(\lambda(m), v(\lambda(m)))$, where

$$\lambda(m) = \sqrt{\frac{a^2 d}{m - d}}, \quad v(\lambda(m)) = \frac{(1 - \lambda)(a^2 + \lambda)}{m \lambda},$$

and if the assumptions of Theorem 4.12 in [27] are satisfied, then there exists a sequence of steady state bifurcation points λ_i, $v(\lambda_i)$ such that λ_i is equivalent to m_i. We see that there also exists a sequence of steady state bifurcation points m_i. As in [19], by virtue of Corollary 2.7, Theorem 4.12 in [27] and the global bifurcation theorem in [24], we see that each global branch of steady state solutions bifurcating from $(m_i, \lambda_i, v(\lambda_i))$ is a bounded loop, which contains another $(m_j, \lambda_i, v(\lambda_j))$ for $j \neq i$. This result supplements Theorem 4.12 in [27].

Finally, we remark that the results in Section 2 can be extended to a more general diffusive predator-prey model,

\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + ru \left(1 - \frac{u}{k}\right) - mf(u)v, \quad x \in \Omega, \ t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v - dv + mf(u)v, \quad x \in \Omega, \ t > 0, \\
\partial_\nu u &= \partial_\nu v = 0, \quad x \in \partial \Omega, \ t > 0, \\
u(x, 0) &= u_0(x) \geq (\neq)0, \quad v(x, 0) = v_0(x) \geq (\neq)0, \quad x \in \Omega,
\end{align*}

where $f(u)$ satisfies

$$\lim_{u \to 0^+} \frac{f(u)}{u^r} = \alpha > 0 \quad \text{for some} \quad r \geq 1. \quad (3.2)$$

Actually, let

$$g(u) = \begin{cases} f(u) \quad &\text{if} \quad u > 0, \\ \alpha \quad &\text{if} \quad u = 0, \end{cases} \quad (3.3)$$

and then model (3.1) can be rewritten as follows:

\begin{align*}
\frac{\partial u}{\partial t} &= d_1 \Delta u + ru \left(1 - \frac{u}{k}\right) - mg(u)u^r v, \quad x \in \Omega, \ t > 0, \\
\frac{\partial v}{\partial t} &= d_2 \Delta v - dv + mg(u)u^r v, \quad x \in \Omega, \ t > 0, \\
\partial_\nu u &= \partial_\nu v = 0, \quad x \in \partial \Omega, \ t > 0, \\
u(x, 0) &= u_0(x) \geq (\neq)0, \quad v(x, 0) = v_0(x) \geq (\neq)0, \quad x \in \Omega.
\end{align*}

Therefore, if $g(u)$ is smooth, then we also have the similar result as system (1.4). That is, system (3.1) has no nonconstant positive steady states, when m is sufficiently large. Here we omit the details.

Acknowledgments. The authors thank two anonymous referees for very helpful comments which greatly improved the manuscript.
REFERENCES

[1] R. S. Cantrell and C. Cosner, A mathematical model for the propagation of a hantavirus in structured populations, *J. Math. Anal. Appl.*, **257** (2001), 206–222.

[2] K. Chaudhuri, Dynamic optimization of combined harvesting of a two species fishery, *Ecol. Model.*, **41** (1988), 17–25.

[3] S. Chen and J. Yu, Dynamics of a diffusive predator-prey system with a nonlinear growth rate for the predator, *J. Differential Equations*, **260** (2016), 7923–7939.

[4] K.-S. Cheng, Uniqueness of a limit cycle for a predator-prey system, *SIAM J. Math. Anal.*, **12** (1981), 541–548.

[5] Y. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model, *Trans. Amer. Math. Soc.*, **349** (1997), 2443–2475.

[6] Y. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, *Proc. Roy. Soc. Edinburgh Sect. A*, **131** (2001), 321–349.

[7] Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, *J. Differential Equations*, **229** (2006), 63–91.

[8] Y. Du and J. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, *Trans. Amer. Math. Soc.*, **359** (2007), 4557–4593.

[9] C. S. Holling, Some characteristics of simple types of predation and parasitism, *Can. Entomol.*, **91** (1959), 385–398.

[10] C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, *Mem. Entomol. Soc. Can.*, **45** (1965), 1–60.

[11] S.-B. Hsu and J. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, *Discrete Contin. Dyn. Syst. Ser. B*, **11** (2009), 893–911.

[12] Y. Kuang and H. I. Freedman, Relaxation oscillation profile of limit cycle in predator-prey system, *Math. Biosci.*, **88** (1988), 67–84.

[13] Y. Li and J. Wang, Spatiotemporal patterns of a predator-prey system with an Allee effect and Holling type III functional response, *Int. J. Bifurcat. Chaos*, **26** (2016), 1650088.

[14] G. M. Lieberman, Bounds for the steady-state Sel’kov model for arbitrary p in any number of dimensions, *SIAM J. Math. Anal.*, **36** (2005), 1400–1406.

[15] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, *J. Differential Equations*, **72** (1988), 1–27.

[16] Y. Lou and W.-M. Ni, Diffusion, self-diffusion and cross-diffusion, *J. Differential Equations*, **131** (1996), 79–131.

[17] Y. Lou, W.-M. Ni and S. Yotsutani, Pattern formation in a cross-diffusion system, *Discrete Cont. Dyn. Syst.*, **35** (2015), 1589–1607.

[18] P. Y. H. Pang and M. Wang, Non-constant positive steady states of a predator-prey system with non-monotonic functional response and diffusion, *Proc. London Math. Soc.*, **88** (2004), 135–157.

[19] R. Peng and J. Shi, Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case, *J. Differential Equations*, **247** (2009), 866–886.

[20] R. Peng, J. Shi and M. Wang, On stationary patterns of a reaction-diffusion model with autocatalysis and saturation law, *Nonlinearity*, **21** (2008), 1471–1488.

[21] R. Peng and M. Wang, Pattern formation in the Brusselator system, *J. Math. Anal. Appl.*, **309** (2005), 151–166.

[22] M. L. Rosenzweig and R. MacArthur, Graphical representation and stability conditions of predator-prey interactions, *Amer. Natur.*, **97** (1963), 209–223.

[23] H.-B. Shi and S. Ruan, Spatial, temporal and spatiotemporal patterns of diffusive predator-prey models with mutual interference, *IMA. J. Appl. Math.*, **80** (2015), 1534–1568.

[24] J. Shi and X. Wang, On global bifurcation for quasilinear elliptic systems on bounded domains, *J. Differential Equations*, **246** (2009), 2788–2812.

[25] P. Turchin, *Complex Population Dynamics: A Theoretical/Empirical Synthesis*, Princeton University Press, Princeton, 2003.

[26] A-Y. Wan, Z.-q. Song and L.-J. Zhang, Patterned solutions of a homogeneous diffusive predator-prey system of Holling type-III, *Acta Math. Appl. Sin. Engl. Ser.*, **4** (2016), 1073–1086.

[27] J. Wang, Spatiotemporal patterns of a homogeneous diffusive predator-prey system with Holling type III functional response, *To appear in J. Dyn. Diff. Equat.*, DOI: 10.1007/s10884-016-9517-7.
[28] J. Wang, J. Shi and J. Wei, Dynamics and pattern formation in a diffusive predator-prey system with strong Allee effect in prey, *J. Differential Equations*, **251** (2011), 1276–1304.

[29] J. Wang, J. Wei and J. Shi, Global bifurcation analysis and pattern formation in homogeneous diffusive predator-prey systems, *J. Differential Equations*, **260** (2016), 3495–3523.

[30] M. Wei, J. Wu and G. Guo, The effect of predator competition on positive solutions for a predator-prey model with diffusion, *Nonlinear Anal.*, **75** (2012), 5053–5068.

[31] W.-b. Yang, J.-H. Wu and H. Nie, Some uniqueness and multiplicity results for a predator-prey dynamics with a nonlinear growth rate, *Commun. Pure Appl. Anal.*, **14** (2015), 1183–1204.

[32] R. Yang and J. Wei, Stability and bifurcation analysis of a diffusive prey-predator system in Holling type III with a prey refuge, *Nonlinear Dyn.*, **79** (2015), 631–646.

[33] F. Yi, J. Wei and J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, *J. Differential Equations*, **246** (2009), 1944–1977.

[34] J. Zhou, Qualitative analysis of a modified Leslie-Gower predator-prey model with Growley-Martin functional responses, *Commun. Pure Appl. Anal.*, **14** (2015), 1127–1145.

Received January 2017; revised September 2017.

E-mail address: chens@hit.edu.cn