Can Fly Photoreceptors Lead to Treatments for RhoP23H-Linked Retinitis Pigmentosa?

Lauren Aerni-Flessner, PhD; Mohammad Haeri, MD, PhD; Barry E. Knox, PhD
Francesca Pignoni, PhD
SUNY Eye Institute, Department of Ophthalmology and Department of Neuroscience and Physiology, and Center for Vision Research
SUNY Upstate Medical University, Syracuse, NY, USA

Over 1.7 million people worldwide suffer from blindness caused by retinitis pigmentosa (RP), a group of hereditary disorders that cause progressive loss of first rod and then cone photoreceptors. Mutations in rhodopsin (Rho) account for close to 30% of all autosomal dominant (ADRP) cases, and the most common mutation in North America, RhoP23H, involves a single amino acid change at position 23 at the N-terminal region of the protein.1,2

The molecular/cellular mechanism leading to rod cell death in RhoP23H-linked RP is still subject to debate. Current models include misregulation of stress pathways, involving endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR),3,7 or the disruption of membrane disks in the outer segment (see Figure 1 for current models).8-12 Studies in transected cells and transgenic animals show RhoP23H to be a misfolded protein that forms aberrant oligomers and aggregates, and is largely found within the cell body.3,13-15 Notwithstanding the many unanswered questions on the etiology of the disease, it is this accumulation of abnormal protein aggregates that is thought to eventually lead to photoreceptor cell death.3-6,8,10 Currently, there are no effective treatments for RP. Translational approaches focus on 1) removing the mutant protein by suppressing expression or enhancing degradation, 2) promoting cell survival by delivering neurotrophic factors, or 3) suppressing cell death.16,17

Several models that recapitulate aspects of RhoP23H pathology are used in these studies.11,15,18-21 Animal models (frog, rat, mouse, pig) offer platforms that are photoreceptor-cell-based and thus more relevant from a pathophysiological standpoint. In these systems, however, the large-scale approaches necessary

Figure 1. In healthy vertebrate photoreceptor cells (diagrammed on the left), wild type rhodopsin (WT RHO) is correctly folded and delivered to the membrane disks in the rod outer segment (OS). Very little, if any, rhodopsin is detected in the inner segment. Instead, improperly folded mutant rhodopsins (particularly Class II mutants4) are prone to forming oligomers and aggregates that are found largely in the cytoplasm but also in small amounts within the rod OS (diagrammed on the right). The pathogenic mechanism by which RhoP23H leads to cell death is still the subject of debate5-12. Experimental evidence suggests one of two possible sites of action: 1) within the cell body, by impairing the protein quality-control systems (ERAD and UPR), or 2) in the rod OS, by disrupting some critical function of the disks or the rod’s structural integrity.5-12

ERAD, endoplasmic reticulum-associated degradation; UPR, unfolded protein response
for genetic or pharmacological screens are either not feasible (frog, pig) or prohibitively expensive (mouse, rat). On the contrary, cell culture is ideally suited for large-scale studies. Nevertheless, heterologous cell types lack critical features of photoreceptor cells, including specialized cellular structures and the machinery to house and process enormous quantities of membranes (protein and lipids). For these reasons and the resulting Rho-induced toxicity, the cell culture model is significantly limited.

Invertebrate models have been extensively used in the study of disease mechanisms thanks to their low cost, robust conservation of key physiological processes, and availability of sophisticated tools for detailed analyses as well as large-scale approaches (for instance, in the study of human neurodegenerative diseases).²²⁻²⁵ Among them, Drosophila presents an extremely well studied visual system whose developmental origin relies on many of the same molecular factors as the vertebrate eye.²⁶ Yet, the fruit fly has been rarely utilized in the analysis of mammalian proteins linked to vision loss, largely because of the structural and functional distinctiveness of compound and camera eyes.

Is the Drosophila Model Relevant to the Metabolism of Mammalian Opsins?

There are striking differences between photoreceptor cells of flies and vertebrates, particularly in visual transduction and cellular structure (see comparison in Figure 2).²⁷ These differences obviously reflect a long history of independent evolution of light perception and vision in vertebrates versus invertebrates. For this reason, Drosophila has not been exploited as a host organism in the study of mammalian opsins. However, this should be reconsidered in light of new findings on the morphogenesis of the phototransduction compartments and the maturation, transport and degradation of opsins in flies and mouse photoreceptors.

Drosophila photoreceptor cells (aka R-cells) can produce bovine or murine Rhodopsin as stable proteins that can traffic correctly to the rhabdomere (Fig. 3A).²⁸ The bovine opsin

Figure 2. In *Drosophila*, rhodopsin (r-opsin) interacts with a G-protein (Gq) to activate phospholipase C (PLC) resulting in breakdown of phosphoinositide biphosphate (PIP2) and opening of ion channels (depolarization). In vertebrates, rhodopsin (c-opsin) interacts with a G-protein transduction to activate a phosphodiesterase (PDE) resulting in hydrolysis of guanosine 3,5-cyclic monophosphate (cGMP) and closure of ion channels (hyperpolarization).²⁷
has also been shown to be functional when presented with the appropriate G protein, Gt, Transducin.28 Moreover, a number of studies have uncovered similarities in the processing and transport of opsins. Transport of both the fly rhodopsin Rh1 and mammalian Rho involve the exocyst complex, Rab11 and myosins (V in flies and VIIA in mouse).29-33 In regards to Rhodopsin degradation, the ERAD effector valosin-containing protein (VCP) acts as a molecular chaperone for both fly and mammalian proteins.34,35 Additional evidence comes from the associations of factors required in R-cells with human eye diseases. Mutations in Crumbs homolog 1 (the vertebrate homologue of Crumbs, a critical cell polarity factor that also facilitates rhodopsin trafficking in fly photoreceptors) are associated with retinal degeneration in fly and mouse, and retinitis pigmentosa in humans.36,37 Multiple cases of Usher syndrome have been mapped to the region of the DENN/MADD domain containing 4A (DENND4A) locus, the human homologue of fly Crag, which plays an integral role in the trafficking of Rh1.38,39 Lastly, prominin, a factor recently implicated in the elaboration of phototransduction compartments in both rhabdomeric and ciliary photoreceptors, is linked to retinitis pigmentosa and Stargardt disease.40-42 As many genes involved in the processing of Rh1 and Rho have not been identified, additional factors in common between vertebrates and invertebrates will certainly emerge from further studies.

In addition, nearly all Rho-processing components have corresponding fly homologues that may also be active in processing of Rh1, or be recruited for production of Rho in R-cells. Interestingly, maturation of the mammalian protein does not require the Rh1-specific, endoplasmic reticulum (ER)-based chaperone NinaA (a cyclophillin),43 but does appear to depend on Nuf, a fly homologue of Rab11 family-interacting protein 3 (Fig. 3B), a critical factor for the transport of Rho from the trans-Golgi network in mouse rods.30 Further analysis of evolutionarily conserved and fly-specific
factors in our mRho-GFP model will shed light on the processing of mammalian rhodopsin in Drosophila photoreceptors.

Is Drosophila Relevant to the Study of the Mutant Rho?

To explore this question, we expressed mouse mutant Rho^{P23H} (mRho^{P23H}) in R-cells. In contrast to wild type mRho, the mutant opsin does not localize to the rhabdomere, displays lower protein stability, oligomerizes and forms abnormal intracellular foci (Figures 3C and 3D). In essence, mRho^{P23H} shows a pattern of phenotypic abnormalities in R-cells strikingly similar to the aberrant behavior of this protein in vertebrate photoreceptors.

Importantly, we can detect alterations in the localization and/or stability of this mutant rhodopsin by measuring changes in GFP-fluorescence. This is achieved by using Rho-eGFP fusions and detecting fluorescence in adult eyes or dissected retinas (live or fixed tissue) (Figures 3F-I and 3A-C, respectively). Hence, modifiers that increase stability, folding, and rhabdomeric localization of Rho^{P23H}-eGFP will lead to increased fluorescence, whereas modifiers that decrease rhabdomeric localization and/or protein stability will lead to decreased fluorescence. Thus, a fly model of mammalian Rho^{P23H} may address the present lack of photoreceptor-based models suitable for large-scale applications.

In conclusion, a screening platform for genetic and pharmacological modifiers of misfolded mammalian rhodopsin is now available in the powerful genetic Drosophila model. This provides an innovative, in vivo approach for the discovery of novel drugs or targets.

Conflicts of Interest

None.

REFERENCES

1. Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature 1990;343:364-366.
2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006;368:1795-1809.
3. Frederick JM, Krasnoperova NV, Hofmann K, Church-Kopish J, Rüther K, Howes K, et al. Mutant rhodopsin transgene expression on a null background. Invest Ophthalmol Vis Sci 2001;42:826-833.
4. Mendes HF, van der Spuy J, Chapple JP, Cheetham ME. Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 2005;11:177-185.
5. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science 2007;318:944-949.
6. Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorweez SM, Hauswirth WW, et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of Bip/Grp78. Proc Natl Acad Sci USA 2010;107:5961-5966.
7. Haeri M, Knox BE. Endoplasmic reticulum stress and unfolded protein response pathways: potential for treating age-related retinal degeneration. J Ophthalmic Vis Res 2012;7:45-59.
8. Liu X, Wu TH, Stowe S, Matsushita A, Arikawa K, Naash MI, et al. Defective phototransductive disk membrane morphogenesis in transgenic mice expressing opsin with a mutated N-terminal domain. J Cell Sci 1997;110:2589-2597.
9. Wu TH, Ting TD, Okajima TI, Pepperberg DR, Ho YK, Ripps H, et al. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa. Neuroscience 1998;87:709-717.
10. Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem 2011;286:10551-10567.
11. Haeri M, Knox BE. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. PLoS One 2012;7:e30101.
12. Price BA, Sandoval IM, Chan F, Nichols R, Roman-Sanchez R, Wensel, TG, et al. Rhodopsin gene expression determines rod outer segment size and rod cell resistance to a dominant-negative neurodegeneration mutant. PLoS One 2012;7:e49889.
13. Saliba RS, Munro PM, Luthert PJ, Cheetham ME. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci 2002;115:2907-2918.
14. Illing ME, Rajan RS, Bence NF, Kopito RR. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem 2002;277:34150-34160.

15. Tam BM, Moritz OL. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2006;47:3234-3241.

16. Jacobson SG Cideciyan AV. Treatment possibilities for retinitis pigmentosa. New Engl J Med 2010;363:1669-1671.

17. Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis 2012;18:2479-2496.

18. Olsson JE, Gordon JW, Pawlyk BS, Roof D, Hayes A, Molday RS, et al. Transgenic mice with a rhodopsin mutation (Pro23His): a mouse model of autosomal dominant retinitis pigmentosa. Neuron 1992;9:815-830.

19. Machida S, Kondo M, Jamison JA, Khan NW, Kononen LT, Sugawara T, et al. P23H rhodopsin transgenic rat: correlation of retinal function with histopathology. Invest Ophthalmol Vis Sci 2000;41:3200-3209.

20. Price BA, Sandoval IM, Chan F, Simons DL, Wu SM, Wensel TG, et al. Mislocalization and degradation of human P23H-rhodopsin-GFP in a knockin mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011;52:9728-9736.

21. Ross JW, Fernandez de Castro JP, Zhao J, Samuel M, Walters E, Rios C, et al. Generation of an inbred miniature pig model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 2012;53:501-507.

22. Lu B, Vogel H. Drosophila models of neurodegenerative diseases. Annu Rev Pathol 2009;4:315-342.

23. Hirth F. Drosophila melanogaster in the study of human neurodegeneration. CNS Neurol Disord Drug Targets 2010;9:504-523.

24. Cook T, Zelhof A, Mishra M, Nie J. 800 facets of retinal degeneration. Prog Mol Biol Transl Sci 2011;100:331-368.

25. Rincon-Limas DE, Jensen K, Fernandez-Funez P. Drosophila models of proteinopathies: the little fly that could. Curr Pharm Des 2012;18:1108-1122.

26. Wawersik S, Maas RL. Vertebrate eye development as modeled in Drosophila. Hum Mol Genet 2000;9:917-925.

27. Fain GL, Roger Hardie R, Laughlin SB. Phototransduction and the evolution of photoreceptors. Curr Biol 2010;20:R114-R124.

28. Ahmad ST, Natochin M, Barren B, Artemyev NO, O’Tousa JE. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells. Invest Ophthalmol Vis Sci 2006;47:3722-3728.

29. Beronja S, Laprise P, Papoulas O, Pellikka M, Sisson J, Tepass U. Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J Cell Biol 2005;169:635-646.

30. Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 2009;28:183-192.

31. Satoh AK, O’Tousa JE, Ozaki K, Ready DF. Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 2005;132:1487-1497.

32. Li BX, Satoh AK, Ready DF. Myosin V, Rab11, and dRip11 direct apical secretion and cellular morphogenesis in developing Drosophila photoreceptors. J Cell Biol 2007;77:659-669.

33. Wolfrum U, Schmitt A. Rhodopsin transport in the membrane of the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 2000;46:95-107.

34. Griciuc A, Aron L, Piccoli G, Ueffing M. Clearance of Rhodopsin (P23H) aggregates requires the ERAD effector VCP. Biochim Biophys Acta 2010;1803:424-434.

35. Griciuc A, Aron L, Roux MJ, Klein R, Giangrande A, Ueffing M. Inactivation of VCP/ter94 suppresses retinal pathology caused by misfolded rhodopsin in Drosophila. PLoS Genet 2010;6:e1001075.

36. den Hollander AJ, ten Brink JB, de Kok YJ, van Soest M, et al. Mutant prominin 1 found in patients with congenital cataract. Clin Genet 2009;78:388-397.

37. Pocha SM, Shevchenko A, Knust E. Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 2011;195:827-838.

38. Ahmed ZM, Riazuddin S, Khan SN, Friedman PL, Riazuddin S, Friedman TB. USH1H, a novel locus for type I Usher syndrome, maps to chromosome 15q22-23. Clin Genet 2009;75:86-91.

39. Dad S, Østergaard E, Thykjaer T, Albrectsen A, Ravn K, Rosenberg T, et al. Identification of a novel locus for a USH3 like syndrome combined with congenital cataract. Clin Genet 2010;76:388-397.

40. Yang Z, Chen Y, Lillo C, Chien J, Yu Z, Michaelides M, et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J Clin Invest 2008;118:2908-2916.
41. Nie J, Mahato S, Mustill W, Tipping C, Bhattacharya SS, Zelhof AC. Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev Biol 2012;371:312-320.

42. Gurudev N, Florek M, Corbeil D, Knust E. Prominent role of prominin in the retina. Adv Exp Med Biol 2013;777:55-71.

43. Baker E, Colley N, Zuker CS. The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. EMBO J 1994;13:4886-4895.

44. Pandey UB, Nichols CD. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 2011;63:411-436.