IMPACTS OF HUMIC ACIDS IN NUTRITION ON HAEMATOLOGICAL AND BIOCHEMICAL PARAMETERS OF BROWN HARES

Anton Kovacík1, Tomas Sladecký2, Rastislav Jurčík2, Martin Massanyi3, Eva Kovacíková4, Tomas Jambor1, Lukas Hleba4, Juraj Cubon4, Francesco Vizzarri5,6, Peter Massanyi3

Address(es): Ing. Anton Kovacík, Ph.D.,
1 Slovak University of Agriculture in Nitra, Faculty of Biotechnology and food Sciences, Institute of Applied Biology, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic, phone number: +421 37 641 4367, 2Research Institute for Animal Production Nitra, Institute of Small Farm Animals, Hlohovecká 2, 951 41 Lužianky, Slovak Republic, 3Slovak University of Agriculture in Nitra, AgroBioTech Research Centre, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic, 4Slovak University of Agriculture in Nitra, Faculty of Biotechnology and food Sciences, Institute of Applied Biology, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic, 5University of Bari Aldo Moro, Department of Agricultural and Environmental Science, Via G. Amendola 165/A, 70126 Bari, Italy.

*Corresponding author: anton.kovacik@uniag.sk
https://doi.org/10.5525/jmbfs.9549

ARTICLE INFO

Received 19. 9. 2022
Revised 11. 10. 2022
Accepted 18. 10. 2022
Published xx.xx.20xx

ABSTRACT

Humic substances are natural organic substances resulting from the decomposition of mainly plant but also animal residues. The objective of our study was to test if the humic acids can negatively/positively affect brown hares health status. As the main indicators for this evaluation, we chose haematological and biochemical blood tests. In this study, we used 24 brown hares (12 males and 12 females) in the age of 12-24 months. As part of the 6-month experiment, we planned three blood samplings (at the beginning of the experiment and then after three and six months). Animals were divided into three groups at the beginning of the experiment (n = 8/group): CG (control group, 0-11KKZ standard diet without additives), EG1 group (experimental group 1, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids), and EG2 group (experimental group 2, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids, enriched with green feed – clover-grass mixture). We found a statistically significant difference between the control group and the EG2 group in the RBC parameter (P < 0.05) after three months of consumption. We found a statistically significant decrease in urea levels in both experimental groups compared to the control group (P < 0.001), as well as a decrease in urea concentration in the EG2 group compared to the EG1 group (P < 0.01); decrease in cholesterol levels in the experimental groups compared to the control, and between EG1 and the control group, this decrease was statistically significant (P < 0.05); and we recorded a statistically significant increase of triglycerides in the EG2 group compared to the other groups (P < 0.01). Based on the obtained results, we can evaluate the use of 1% humic acid as a feed additive as safe for feeding hares.

Keywords: bioactive substances, health status, feed additives, biomarker, blood

INTRODUCTION

In recent times, the trend has been to use various organic compounds in animal feed that would otherwise be unused. They are mainly products considered to be by-products or waste products from various activities of industry and agriculture (Wadhwa et al., 2015; Alao et al., 2017; Kolláthová et al., 2020; Juráček et al., 2021; Socas-Rodríguez et al., 2021). Humic substances are natural organic substances resulting from the decomposition of mainly plant but also animal residues. Humic substances are subject to further decomposition with difficulty and are contained in large quantities in soil, peat, coal and some waters (Steelink, 1964; Hayes, 1997). Humic substances are mainly used for plant nutrition. Although it is not a classic type of fertilizer, humic enables an easier intake of nutrients, stimulates the formation of root hairs, thanks to which the plant absorbs water and nutrients better, supports photosynthesis and improves soil properties (Steelink, 1964; Jindo et al., 2017). They stimulate plant growth to a degree comparable to the phytohormone auxin (Scaglia et al., 2016).

The above-mentioned properties subsequently resulted in the possible use of humic acids in animal nutrition. First, these substances were tested mainly on poultry, where the use recorded quite decent results. Many studies talk about improved growth, carcass traits, higher and better-quality egg laying, or a positive effect on reproduction (Acić et al., 2007; Ozturk et al., 2012; Arafat et al., 2015; Arpášová et al., 2016). Relatively few studies have been conducted on mammals. Tests on rats, rams and pigs are known (Galig et al., 2010; Vucskits et al., 2010; Wang et al., 2020), and these studies focus more on the health side than economic interests and production. Several studies were carried out on freshwater fish, where the authors were interested in both economic characteristics and the health status of individuals after the application of certain concentrations of humic acids (Sharaf and Tag, 2011; Arif et al., 2019; Yılmaz et al., 2018). Basically, we can talk about studies that either deal with monitoring the impact of a natural bioactive substance on quality indicators as well as increasing the production of economically interesting parameters for breeders; or studies of this type are supplemented with selected individual health parameters, such as the body’s immune response, selected haematological or biochemical parameters, or markers of oxidative stress.

In general, it would be appropriate and necessary to determine the possible negative/positive effect of natural substances, where we include humic acids, on the health status of the individual in commonly used concentrations. The objective of our study was to test if the humic acids can negatively/positively affect wild animal (brown hares) health status. As the main indicators for this evaluation, we chose haematological and biochemical blood tests. We evaluated the subsequent analyses within individual samplings as well as by factorial ANOVA.

MATERIAL AND METHODS

Experimental design

In this study, we used 24 brown hares (12 males and 12 females) in the age of 12-24 months. All hares were fed a standard chow diet (0-11KKZ for rabbits and hares) on ad libitum basis to the beginning of the experiment. As part of the 6-month experiment, we planned three blood samplings (at the beginning of the experiment and then after three and six months). Animals were divided into three groups at the beginning of the experiment (n = 8/group): CG (control group, 0-11KKZ standard diet without additives), EG1 group (experimental group 1, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids), and EG2 group (experimental group 2, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids, enriched with green feed – clover-grass mixture). The composition of feed mixtures was: nitrogenous substances (175-180 g/kg), proteins (35-40 g/kg), fat (12-15 g/kg), crude fiber (40-50 g/kg), carbohydrates (55-60 g/kg), and water (35-40 g/kg). The composition of the feed mixtures included green feed (clover-grass mixture), which was enriched with humic acids (Humac Natur AFM, laboratory analysis). The diet was prepared and weighed, and the weekly weight of dry matter intake was recorded. The hares were fed twice a day at 08:00 a.m. and 16:00 p.m. in the form of ad libitum feedings. The feed volume was recorded daily, and the hares were weighed every week on the same day, which was the same as the day of food consumption. The hares were housed in groups of three in individual enclosures measuring 1.5 × 1.5 m and supplied with fresh water ad libitum. The hares were fed a standard chow diet (0-11KKZ for rabbits and hares) on ad libitum basis to the beginning of the experiment. As part of the 6-month experiment, we planned three blood samplings (at the beginning of the experiment and then after three and six months). Animals were divided into three groups at the beginning of the experiment (n = 8/group): CG (control group, 0-11KKZ standard diet without additives), EG1 group (experimental group 1, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids), and EG2 group (experimental group 2, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids, enriched with green feed – clover-grass mixture). The composition of feed mixtures was: nitrogenous substances (150-175 g/kg), crude fat (35-90 g/kg), crude fiber (160-170 g/kg), ash matter (60-90 g/kg), carbohydrates (55-60 g/kg), and water (35-40 g/kg). The hares were fed a standard chow diet (0-11KKZ for rabbits and hares) on ad libitum basis to the beginning of the experiment. As part of the 6-month experiment, we planned three blood samplings (at the beginning of the experiment and then after three and six months). Animals were divided into three groups at the beginning of the experiment (n = 8/group): CG (control group, 0-11KKZ standard diet without additives), EG1 group (experimental group 1, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids), and EG2 group (experimental group 2, received 0-10KK/D standard feed + 1% of Humac Natur AFM – humic acids, enriched with green feed – clover-grass mixture). The composition of feed mixtures was: nitrogenous substances (150-175 g/kg), crude fat (35-90 g/kg), crude fiber (160-170 g/kg), ash matter (60-90 g/kg), carbohydrates (55-60 g/kg), and water (35-40 g/kg).
lysine (9 g/kg), calcium (7.5-12 g/kg), sodium (1.5 g/kg), phosphorus (4.5-7.0 g/kg), vitamin A (6900-9800 IU/kg), vitamin D3 (1000-1870 IU/kg), iron (74-110 mg/kg), manganese (108-120 mg/kg), zinc (79-90 mg/kg), copper (14 mg/kg), selenium (0.25-0.25 mg/kg), iodine (1.1 mg/kg). The animals were housed in individual cages per pair. The dimensions of the cage: floor plan 2 x 1.8 m, height 1 m. The cage was divided into 3 parts. The front feeding part was 2 x 1 m in size, the two rear parts (asylum part) were 0.8 x 1 m in size. The structure of the cage was wooden, the floor was made of plastic grates and the roof was thermally insulated. The conditions of animal care, manipulations and use corresponded with the instructions of the Ethics Committee of the Slovak University of Agriculture in Nitra.

Blood sampling

All animals were healthy and in good health condition. We carried out the control sampling on March 13th, followed by the sampling on June 14th and the final sampling on September 18th. Blood samples were taken by a qualified veterinarian from *vena auricularis centralis* and placed into two tubes. Samples for biochemical assessment were placed into tubes without additive, and tubes containing EDTA as an anticoagulant, were used for the haematological analysis. Coagulated blood samples were centrifuged at 1006 x g for 20 min and obtained blood serum was stored at -20 °C until further analyses at the Institute of Applied Biology (SUA in Nitra).

Blood haematology and serum chemistry analysis

Haematology parameters (WBC - total white blood cell count, LYM - lymphocytes count, MID - cell population of middle dimensions including monocytes and eosinophils, GRA - granulocytes count, LYM % - lymphocyte percentage, MID % - cell population of middle dimensions including monocytes and eosinophils percentage, GRA % - granulocytes percentage, RBC - red blood cell count, HGB - haemoglobin, HCT - haematocrit, MCV - mean corpuscular volume, MCH - mean corpuscular haemoglobin, MCHC - mean corpuscular haemoglobin concentration, RDWc - red cell distribution width (%), PLT - platelet count, PCT % - platelet percentage, MPV - mean platelet volume, PDWC - platelet distribution width) were determined using the haematology analyser Abacus Junior VET (Diatron®, Wien, Austria) (Kovacik et al., 2017).

The blood serum parameters (Ca – calcium, P – phosphorus, Mg – magnesium, TP – total proteins, glucose, urea, AST – aspartate aminotransferase, ALT - alanine aminotransferase, Chol – cholesterol, TG – triglycerides) were measured using DiaSys commercial kits (Diagnostic Systems GmbH, Holzheim, Germany) using the Randox RX Monza (Randox Laboratories, Crumlin, UK) semi-automated chemistry analyser. The content of albumin (Alb) was measured using an ALB Biola Test (PLIVA-Lachema, Brno, Czech Republic) commercial kit using the Genios 10 (Thermo Fisher Scientific Inc., Waltham, MA, USA) spectrophotometer (Kovacik et al., 2019). The serum globulin (Glob) level was calculated by subtracting the serum albumin level from the total protein level. The albumin/globulin ratio was calculated using the follow formula: A/G ratio = Alb / (TP - Alb) (Kovacik et al., 2020).

Statistical analysis

The obtained data were subjected to statistical analysis using the STATGRAPHICS Centurion® (StatPoint Technologies, Inc., Warrenton, VA, USA). The data were checked for normality using a Kolmogorov-Smirnov normality test before the statistical analyses. The effect of the humic acids on the haematology and serum biochemistry parameters was analysed using the analyses of variance (ANOVA) followed by Tukey’s multiple comparison test (the means and standard errors are reported). All obtained data was also analysed using factorial ANOVA, with effects of the different diet (different gender), duration of administration and gender (P values are reported). The results of the analyses were considered significant at P < 0.05; P < 0.01 and P < 0.001.

RESULTS

The data obtained by blood and blood serum analyses after three months of the experiment are presented in Tables 1 and 2. Based on the statistical analysis, we found a statistically significant difference between the control group and the EG2 group in the RBC parameter (P < 0.05) for the haematological examination. During the biochemical examination, we noted a statistically significant increase in the cholesterol content in the EG2 group compared to the EG1 group (P < 0.05). No significant differences in other parameters were observed between the control and experimental groups. Data obtained by blood and blood serum analyses after six months of the experiment are presented in Tables 3 and 4. Based on the statistical analysis, we found no statistically significant difference between the control group and the experimental groups for the haematological parameters. In biochemical analyses, we noted several statistically significant differences. We recorded a statistically significant decrease in urea levels in both experimental groups compared to the control group (P < 0.001), as well as a decrease in urea concentration in the EG2 group compared to the EG1 group (P < 0.01). We noted a decrease in cholesterol levels in the experimental groups compared to the control, and between EG1 and the control group, this decrease was statistically significant (P < 0.05). Triglyceride levels were relatively balanced in the control and EG1 groups, but in the EG2 group we recorded a statistically significant increase compared to the other groups (P < 0.01). The other monitored markers were relatively balanced.

We then subjected the entire set of results obtained during the entire length of the experiment to a multifactor ANOVA. We used group, duration, and gender as main effects. We also observed statistical dependence for interactions between observed main effects. The results of this analysis are presented in Table 5. We recorded a statistically significant influence of the main effect “group” for RBC, PDWc, urea, ALT, cholesterol, and triglycerides. We recorded a statistically significant influence of the main characteristic “duration” for WBC, MID, GRA, MCH, MCHC, RDWc, PLT, PCTa, glucose, AST, ALT, and triglycerides. For the last main effect “gender”, we noted an influence on the parameters WBC, MID, GRA, LYM%, RBC, HGB, HCT, MCHC, RDWc, Ca, Mg, urea, TP, albumin, globulin, and A/G ratio. By analysing the interactions of the monitored main effects, we noted the impact on the parameters LYM%, GRA%, MCV, MCHC, RDWc, MPV, Mg, urea, TP, ALT, triglycerides, globulin, and A/G ratio, as presented in table 5.

Parameters	Control	EG1	EG2	P - value			
WBC (10^9 L⁻¹)	6.80	8.97	7.25	1.26	6.40	0.80	0.6304
LYM (10^9 L⁻¹)	1.30	0.23	0.96	0.56	1.42	0.80	0.2270
MID (10^9 L⁻¹)	0.63	0.11	0.59	0.09	0.41	0.06	0.2407
GRA (10^9 L⁻¹)	5.86	0.82	6.19	1.43	4.56	0.92	0.5476
LYM (%)	25.54	5.32	19.68	7.41	27.58	9.00	0.0945
MID (%)	8.85	0.92	8.43	1.23	6.99	1.12	0.4700
GRA (%)	65.60	2.38	71.88	8.03	65.42	9.84	0.1734
RBC (10^12 L⁻¹)	10.59*	0.25	10.06	0.37	9.36*	0.29	0.0339
HGB (g/L)	187.19	2.41	177.53	8.82	166.46	7.38	0.1215
HCT (%)	57.22	0.57	54.42	2.23	52.05	2.02	0.1469
MCV (fL)	54.18	1.11	54.06	1.10	55.53	0.85	0.5456
MCH (pg)	17.71	0.28	17.59	0.39	17.74	0.33	0.9492
MCHC (g/L)	327.10	2.33	325.46	4.01	319.54	4.27	0.3241
RDWc (%)	16.45	0.43	16.86	0.75	17.27	0.51	0.6143
PLT (10^12 L⁻¹)	566.82	75.96	520.58	63.24	680.36	67.21	0.2643
PCT (%)	0.40	0.05	0.37	0.05	0.47	0.04	0.4530
MPV (fL)	7.14	0.18	7.13	0.22	6.93	0.13	0.6813

Legend: bold values are significant; * the means within a row with #sign differ significantly (P < 0.05)
Table 2 The effect of humic acids diet on the serum chemistry parameters of the brown hares after three months of consumption

Parameters	Control (mg/L)	EG1 (mg/L)	EG2 (mg/L)	P - value
PDWc (%)	12.53	12.52	12.51	0.98056
PLT (10^9/L)	3.87	3.86	3.85	0.0954
MCH (pg)	34.90	34.89	34.88	0.0954
MCV (fL)	7.03	7.02	7.01	0.0954
HCT (%)	21.49	21.48	21.47	0.0954
HGB (g/L)	9.84	9.83	9.82	0.0954
A/G ratio	0.72	0.72	0.72	0.0954
Cholesterol (mmol/L)	2.17	2.16	2.15	0.0954
ALT (μkat/L)	0.13	0.12	0.11	0.0954
AST (μkat/L)	0.04	0.03	0.02	0.0954

Table 3 The effect of humic acids diet on the haematological parameters of the brown hares after six months of consumption

Parameters	Control (mg/L)	EG1 (mg/L)	EG2 (mg/L)	P - value
WBC (10^9/L)	10.39	10.38	10.37	0.0954
LYM (10^9/L)	25.07	25.06	25.05	0.0954
MID (10^9/L)	9.84	9.83	9.82	0.0954
GRA (10^9/L)	69.39	69.38	69.37	0.0954
RBC (10^12/L)	327.04	327.03	327.02	0.0954
HGB (g/L)	185.51	185.50	185.49	0.0954
HCT (%)	56.73	56.72	56.71	0.0954
MCV (fl)	54.67	54.66	54.65	0.0954
MCH (pg)	156.78	156.77	156.76	0.0954
MCHC (g/L)	511.06	511.05	511.04	0.0954
RDWc (%)	7.03	7.02	7.02	0.0954
PLT (10^9/L)	34.90	34.89	34.88	0.0954

Table 4 The effect of humic acids diet on the serum chemistry parameters of the brown hares after six months of consumption

Parameters	Control (mg/L)	EG1 (mg/L)	EG2 (mg/L)	P - value
Ca (mmol/L)	3.32	3.31	3.30	0.0954
Mg (mmol/L)	2.18	2.17	2.16	0.0954
Urea (mmol/L)	11.22	11.21	11.20	0.0954
TP (g/L)	55.99	55.98	55.97	0.0954
Glucose (mmol/L)	9.57	9.56	9.55	0.0954
AST (μkat/L)	1.73	1.72	1.71	0.0954
ALT (μkat/L)	0.47	0.46	0.45	0.0954
Cholesterol (mmol/L)	1.76	1.75	1.74	0.0954

DISCUSSION

Our basic intention was a strict evaluation of the health status of individuals after the application of 1% humic acids as a feed additive. The main and very important health assessment is a haematological blood test. In both sampling, we can talk about the minimal influence of humic acids on the haematological parameters of the tested animals. We recorded a change in only one parameter, namely a decrease in RBC in experimental group 2. However, this change was also within the physiologically normal range. Galip et al. (2010) tested humic acid supplemented diets (5 g/day and 10 g/day) during 22 days in rams. Their results have a similar tendency to ours in several haematological parameters, such as a decrease in lymphocyte content, a partial increase in granulocytes, a decrease in erythrocyte content, or an increase in mean corpuscular haemoglobin (with no significant effect on blood haematology, except significant effect on eosinophils level). Other studies where the haematological examination was carried out were mostly used on poultry, where the authors confirmed a significant influence again in a similar tendency; a decrease in haemoglobin, a decrease in the content of red blood cells, but in the case of white blood cells, the results were relatively uneven in the experimental groups (Arafat and Khan et al., 2017; Desilette et al., 2018; Mista et al., 2012) tested humic-fatty acid in New Zealand White rabbit. In this study, they monitored selected haematological and biochemical parameters of the animals after three and six weeks of application; experienced a statistically significant increase in RBC, HGB and HCT levels. Biochemical examination of blood can be associated with many metabolic and health disorders of an individual. In our case, we took blood samples after three and six months of use, i.e. after enough time to show the positive but also possible negative effects of the set diet for the animals. After three and six months of humic acid administration, we noted a decrease in cholesterol levels. A similar effect is described by the authors of several studies (Mista et al., 2012; Ozturk et al., 2012; Kovacík et al., 2020). In addition to pure humic acids, the authors also tested their combination with blueberry leaf powder (Kim et al., 2019). The result was again a decrease in total cholesterol in the experimental groups as well as an increase in high-density lipoprotein cholesterol (HDL) with a simultaneous decrease in low-density lipoprotein cholesterol (LDL), which is a significant positive finding. A possible protective effect of humic acids against classic toxicants was also described in several studies. Buchko et al. (2021) tested the possible protective effect of humic acids against chromium (Cr VI) in rats. Their results were quite interesting since this supplement initiated the normalization of haematological and biochemical parameters in exposed animals with a clear hepatoprotective and adaptogenic effect. The gastro protective effect of humic acids has been described in relation to induced ulcers (using ethanol and indomethacin) in rats (Sebitogu et al., 2022). The authors confirmed the anti-ulcer activity of humic acid by macroscopic and histological examination of the number and severity of ulcers, mucosal edema, epithelial abrasion of mucosal tissue, infiltration of inflammatory cells and bleeding; also, they confirmed the healing effect on gastric tissues with ulcers and damage to the gastric mucosa, as well as a decrease in the level of inflammatory cytokines. The use of this additive in reproduction of farmed brown hares has been tested by the Sládeček et al. (2018). Their results confirm the positive effects in this issue as well, as the ratio of live births and weaned leverets was higher than in the control group.

After an overall evaluation, we can talk about the possible safety of using this supplement in animal nutrition at presented concentration. When combining humic acid additions with clover-grass mixture (EG2), we recorded more contradictory results. Based on the evaluation of the results, we would not recommend such feeding. We can talk about a negative impact on haematological parameters (especially white blood cells) and cholesterol content, when combined standard feed + 1% of Humac Natur with green feeding. On the other hand, the group tested purely with humic acids showed a very good health status, and many previous studies on different species of animals refer to really positive effects from the stabilization of breeding, improvement of performance characteristics, as well as many proactive effects and improved reproductive characteristics.
Apášová, H., Kačániová, M., Pistová, V., Gálik, B., Fik, M., & Hleba, L. (2016). Effect of Probiotics and Humic Acid on Egg Production and Quality Parameters of Laying Hens. **Eggs: Scientific Papers: Animal Science & Biotechnologies/Lucrări Stiinţifice: Zootehnie si Biotecnologie,** (492).

Avci, M., Denek, N., & Kaplan, O. (2007). Effects of humic acid at different levels on growth performance, carcass yields and some biochemical parameters of quails. **Journal of Animal and Veterinary Advances.**

Buchko, O., Havyriáš, V., Pýlypetová, A., & Buchko, T. (2021). Effect of food supplement of humic origin on the hematological and biochemical parameters in the Cr (VI) exposed rats. **Journal of research in pharmacy (online),** 25(3), 271-276. https://dx.doi.org/10.29228/jrp.17

Disselth, A. R. P., Marume, U., & Mlambo, V. (2018). Humic acid and enzymes inclusion in canola-based diets generate different responses in growth performance, protein utilization dynamics, and hematobiochemical parameters in broiler chickens. **Poultry Science,** 97(8), 2745-2753. https://doi.org/10.3382/pys/peyq047

Gál, N., Polat, U., & Bircik, H. (2010). Effects of supplemental humic acid on ruminal fermentation and blood variables in rams. **Italian Journal of Animal Nutrition**, 9(4), e74. https://doi.org/10.4081/jian.2010.e74

Jindo, K., Martim, S. A., Navarro, E. C., Pérez-Alfocea, F., Hernández, T., García, C., ... & Canellas, L. P. (2012). Root growth promotion by humic acids from ecosystems. **Plant and Soil** (pp. 3-20). Woodhead Publishing. https://doi.org/10.1007/BF01855730-5.8.50005-7

Juráček, M., Vašeková, P., Massányi, P., Kováčik, A., Bíro, D., Šimko, M., ... & Canellas, L. P. (2012). Root growth promotion by humic acids from ecosystems. **Plant and Soil** (pp. 3-20). Woodhead Publishing. https://doi.org/10.1007/BF01855730-5.8.50005-7

Kins, K., Choo, J., Choi, Y., Ha, J., & Choi, J. (2019). Effects of humic acid and blueberry leaf powder supplementation in feeds on the productivity, blood and meat quality of finishing pigs. **Food science of animal resources,** 39(2), 276. https://doi.org/10.8513/kosa.2019.e22

Kováčik, A., Arvay, J., Túsimová, E., Harangozo, L., Ivra, E., Zbynovska, K., ... & Massanyi, P. (2017). Seasonal variations in the blood concentration of selected heavy metals in sheep and their effects on the biochemical and hematological
