Supplementary Material

Reactions of quinine with 2-chloro-4,6-dimethoxy-1,3,5-triazine

Jarosław Sukiennik, a Katarzyna Kasperowicz-Frankowska, a Małgorzata Szczesio, b Justyna Fraczyk, a
Beata Kolesinska a and Zbigniew J. Kaminski a*

 a) Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland,
b) Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
Email: zbigniew.kaminski@p.lodz.pl

Table of Contents

1. Figure S1. Isolation of the main component 5 of the product mixture obtained by the reaction of quinine (1) and CDMT (2). HPLC data .. S2
2. Crystal structure data .. S3
3. Table S1. Structure refinement and experimental details .. S3
4. Table S2. Parameters of 1H MNR, 13C NMR and DEPT-135 spectra .. S4
5. Table S3. Parameters of COSY spectra .. S4
6. Table S4. Parameters of HSQC spectra .. S4
7. Figure S2. 13C NMR spectrum of the main product 5 formed in reaction of quinine with CDMT S5
8. Figure S3. DEPT-135 spectrum in CDCl3 of the main product 5 formed in reaction of quinine with CDMT S5
9. Figure S4. COSY spectrum of the main product 5 formed in reaction of quinine with CDMT S6
10. Figure S5. HSQC spectrum of fragment 3.30 – 5.00 ppm .. S7
11. Figure S6. Fragment 7.00-8.75 ppm of 1H NMR spectrum of product 5 ... S8
12. Figure S7. Fragment 5.00-5.80 ppm of 1H NMR spectrum of product 5 ... S8
13. Figure S8. Fragment 3.30 to 4.90 ppm of 1H NMR spectrum of product 5 .. S9
14. Figure S9. Fragment 1.20 to 2.50 ppm of 1H NMR spectrum of product 5 .. S9
15. Figure S10. Mass spectrum (ESI−) of the main product 5 formed in reaction of quinine with CDMT isolated after crystallization from ethyl acetate / n-heptane .. S10
16. Figure S11. IR spectrum of the main product 5 formed in reaction of quinine with CDMT isolated after crystallization from ethyl acetate / n-heptane ... S10
Figure S1. Isolation of the main component 5 from the product mixture obtained by the reaction of quinine (1) and CDMT (2). Panel a) after preparative chromatography; panel b) after recrystallization. Column Vydac C18 (250x4.6). Programme: 1) 0-5 min. isocratic acetonitrile / water 50 / 50%; 2) 5-35 min. gradient acetonitrile / water 50-97%; 3) 35-40 min. isocratic acetonitrile/water 97/3%; 4) 40-50 min. isocratic acetonitrile / water 50 / 50. Note shortening of R_t after recrystallization.
2. Crystal structure data

The intensity data was collected on the Bruker SMART APEX II CCD diffractometer equipped with a Cu Kα (1.54178 Å) radiation source. Crystal structure refinement was carried out with SHELX. Structure refinement details are summarized in Table S1. The molecular structure of compound 5 is shown in Figure 1. Program MERCURY was used for molecular graphics. CCDC: 2027177 contains the supplementary crystallographic data for this paper. The data is provided free of charge by The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Table S1. Structure refinement and experimental details

Crystal data	
Chemical formula	C_{30}H_{35}ClN_{8}O_{6}
M_r	639.11
Crystal system, space group	Orthorhombic, P2_12_12_1
Temperature (K)	100
a, b, c (Å)	7.7702 (2), 10.6624 (3), 38.4161 (10)
V (Å³)	3182.73 (15)
Z	4
Radiation type	Cu Kα
μ (mm⁻¹)	1.53
Crystal size (mm)	0.60 × 0.07 × 0.04

Data collection	
Diffractometer	Bruker SMART APEX CCD
T_{min}, T_{max}	0.643, 0.754
No. of measured, independent and observed [I > 2σ (I)] reflections	36943, 6330, 6186
R_{int}	0.025
(sin θ/λ)_{max} (Å⁻¹)	0.619
Refinement	
R[F^2 > 2σ (F^2)], wR(F^2); S	0.024, 0.065, 1.04
No. of reflections	6330
No. of parameters	411
Δρ_{max}, Δρ_{min} (e Å⁻³)	0.21, -0.19
Table S2. Parameters of 1H MNR, 13C NMR and DEPT-135 spectra

parameters	1H	13C	DEPT-135
Acquisition Time (sec)	2.2719	0.7864	0.7864
Frequency (MHz)	700.08	176.04	176.04
Nucleus	1H	13C	13C
Number of Transients	128	12288	8192
Original Points Count	32768	32768	32768
Points Count	32768	32768	32768
Receiver Gain	2050.00	2050.00	2050.00
SW(cyclical) (Hz)	14423.08	41666.67	41666.67
Solvent	CDCl$_3$	CDCl$_3$	CDCl$_3$
Spectrum Offset (Hz)	4308.0820	17607.8320	17600.0859
Sweep Width (Hz)	14422.64	41665.39	41665.39
Temperature (degree C)	27.000	27.100	27.000

Table S3. Parameters of COSY spectra

parameters	COSY
Acquisition Time (sec)	(0.2433, 0.0609)
Frequency (MHz)	(700.08, 700.08)
Nucleus	(1H, 1H)
Number of Transients	24
Original Points Count	(2048, 512)
Points Count	(2048, 1024)
Pulse Sequence	cosygppqf
Solvent	CDCl$_3$
Spectrum Offset (Hz)	COSY
Sweep Width (Hz)	(8413.40, 8392.81)
Temperature (degree C)	27.000

Table S3. Parameters of HSQC spectra

parameter	HSQC
Acquisition Time (sec)	(0.1217, 0.0171)
Frequency (MHz)	(700.08, 176.05)
Nucleus	(1H, 13C)
Number of Transients	32
Original Points Count	(1024, 512)
Points Count	(1024, 2048)
Pulse Sequence	hsqcedetgpsisp2.2.pp
Solvent	CHLOROFORM-d
Spectrum Offset (Hz)	HSQC
Sweep Width (Hz)	(8409.29, 29913.78)
Temperature (degree C)	27.200
Figure S2. 13C NMR spectrum of the main product 5 formed in reaction of quinine with CDMT.

Figure S3. DEPT-135 spectrum in CDCl$_3$ of the main product 5 formed in reaction of quinine with CDMT.
Figure S4. COSY spectrum of the main product 5 formed in reaction of quinine with CDMT.
Figure S5. HSQC spectrum of fragment 3.30 – 5.00 ppm.
Figure S6. Fragment 7.00-8.75 ppm of 1H NMR spectrum of product 5 formed in reaction of quinine with CDMT.

Figure S7. Fragment 5.00-5.80 ppm of 1H NMR spectrum of 5 formed in reaction of quinine with CDMT.
Figure S8. Fragment 3.30 to 4.90 ppm of 1H NMR spectrum of product 5 formed in reaction of quinine with CDMT.

Figure S9. Fragment 1.20 to 2.50 ppm of 1H NMR spectrum of product formed in reaction of quinine with CDMT.
Figure S10. Mass spectrum (ESI⁻) of the main product 5 formed in reaction of quinine with CDMT isolated after crystallization from ethyl acetate / n-heptane.

Figure S11. IR spectrum of the main product 5 formed in reaction of quinine with CDMT isolated after crystallization from ethyl acetate / n-heptane.