Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Medical issues associated with commercial flights

Danielle Silverman, Mark Gendreau

Almost 2 billion people travel aboard commercial airlines every year. Health-care providers and travellers need to be aware of the potential health risks associated with air travel. Environmental and physiological changes that occur during routine commercial flights lead to mild hypoxia and gas expansion, which can exacerbate chronic medical conditions or incite acute in-flight medical events. The association between venous thromboembolism and long-haul flights, cosmic-radiation exposure, jet lag, and cabin-air quality are growing health-care issues associated with air travel. In-flight medical events are increasingly frequent because a growing number of individuals with pre-existing medical conditions travel by air. Resources including basic and advanced medical kits, automated external defibrillators, and telemedical ground support are available onboard to assist flight crew and volunteering physicians in the management of in-flight medical emergencies.

Introduction

Fitness for air travel is a growing issue because many passengers are unaware of health implications associated with commercial air travel. Almost 2 billion people travel by air every year;12 and physicians are now expected to identify individuals unfit for air travel and give them advice. More than 95% of individuals with health problems who have to travel by air would like to receive more medical advice from their physician.7 Also, the age of travellers is increasing and long-haul aircrafts—such as the Airbus A380 and Boeing 777 LR—are now capable of extending flight times to 18–20 h; therefore, an increasing number of travellers with various underlying medical conditions could face environmental and physiological changes associated with the flight. Here, we review the health issues associated with commercial air travel.

Cabin pressure

Cabin pressure can affect the health and wellbeing of passengers in many ways, including hypobaric hypoxia affecting those with pre-existing respiratory conditions and heart failure, and gas expansion within body cavities and medical devices.

Although commercial flights usually cruise at altitudes of 7010–12 498 m above sea level, the passenger cabin is pressurised to an altitude of 1524–2438 m. Most regulatory governmental agencies require the cabin altitude not to exceed 2438 m.14 Most healthy individuals tolerate this cabin pressure; however, a study of adult volunteers simulating a 20-h flight showed that the frequency of reported complaints associated with acute mountain sickness (fatigue, headache, lightheadedness, and nausea) increased with increasing altitude and peaked at 2438 m, with most symptoms becoming apparent after 3–9 h of exposure.3 Cabin pressurisation to 2438 m reduces the atmospheric pressure of the cabin, resulting in a concomitant decrease of arterial oxygen partial pressure (PaO₂) from 95 mm Hg to 60 mm Hg at the maximum cabin altitude of 2438 m.3 In healthy passengers, these pressures lead to a 3–4% decrease in systemic oxyhaemoglobin saturation (the corresponding PaO₂ value remains within the flat portion of the oxyhaemoglobin dissociation curve) (figure).15 However, many passengers with pre-existing cardiac, pulmonary, and haematological conditions have a reduced baseline PaO₂; so reduced cabin pressure leads to further reduction of oxygen saturation, which lowers further with increasing flight times (figure).8,9 The decreased oxygen saturation can exacerbate medical conditions.7,14 For example, a recent prospective observational study showed that 18% of passengers with chronic obstructive pulmonary disease have at least mild respiratory distress during a flight.11

Several methods are available to assess the need for in-flight oxygen (panel 1). Oxygen supplementation is recommended for passengers with either a resting oxygen saturation of 92% or lower (PaO₂ ≤67 mm Hg) or if the expected in-flight PaO₂ is less than 50–55 mm Hg.9 Guidelines from the British Thoracic Society (BTS) suggest hypoxic-challenge testing in individuals with resting oxygen saturations of 92–95% at sea level who have additional risk factors, such as hypercapnia or abnormal spirometry. The Aerospace Medical Association (AsMa) guidelines suggest sea-level blood gas determination or pulmonary-function testing with hypoxic-challenge testing as the gold standard, and recommend in-flight oxygen for individuals with a

Search strategy and selection criteria

We searched Medline for peer-reviewed publications over the past 10 years written in English, with the keywords “air travel”, together with “hypoxia”, “surgery”, “cosmic radiation”, “jet lag”, “venous thromboembolism”, “infectious diseases”, “pandemic”, and “in-flight medical emergencies”. Titles, abstracts, or both, of all articles were reviewed to assess relevance. We reviewed governmental reports from the UK Department of Transport Civil Aviation Authority, UK House of Lords, US Federal Aviation Administration, and documents published by the British Thoracic Society, Aerospace Medical Association, WHO, US Institute of Medicine, and the International Commission on Radiological Protection. We also searched the above keywords with the Google search engine.
The aircraft passenger cabin is normally pressurised to an altitude of 1524–2438 m. This reduced pressure within the passenger cabin results in lower systemic PaO₂ and decreased oxyhaemoglobin. For most healthy passengers, this results in a decrease in the arterial partial pressure oxygen tension from 95 mm Hg (12.7 kPa) to about 53 mm Hg or oxyhaemoglobin saturation of approximately 84% at a cabin altitude of 2438 m (B). This passenger should be prescribed oxygen for air travel. PaO₂=arterial oxygen partial pressure. FEV₁=forced expiratory effort in 1 second.

Figure: Effect of cabin altitude on oxyhaemoglobin

Panel 1: Assessment of in-flight PaO₂

Hypoxic-challenge test (hypoxia altitude simulation test):
The maximum cabin altitude of 2438 m can be simulated at sea level with a gas mixture containing 15% oxygen in nitrogen. Individuals breathe the hypoxic gas mixture for 20 min while oxygen saturation is monitored. Arterial blood gases are also measured before and at the end of the test. An individual needs in-flight oxygen if PaO₂ falls below 50 mm Hg or if the oxygen saturation measured via pulse oximetry falls below 85%.

Predictive Dillard equations:
PaO₂ at altitude can be estimated with several published predictive equations, which use values of ground-level PaO₂ and lung-function measurements to predict in-flight PaO₂:

- In-flight PaO₂=0.453×ground-level PaO₂ (mm Hg)+0.386 (FEV₁% predicted)+2.44
- In-flight PaO₂=0.519×ground-level PaO₂ (mmHg)+11.85×FEV₁ (L)−1.760

FEV₁=forced expiratory effort in 1 second.

Air travel and venous thromboembolism risk

The relation between long-haul flights (>8 h) and increased risk of venous thromboembolism has generated great interest in both medical publications and the media. Overall, studies show an association between venous thromboembolism and long-haul air travel, with risk up to four-fold, depending on study methods. Risk peaks when flight duration is more than 8 h; a population-based study showed that risk started to increase when flight duration exceeded 4 h. Business-class versus economy-class travel has no effect on venous thromboembolism incidence. A systematic review of publications on air-travel venous thromboembolism calculated a pooled odds ratio (OR)
of 1.59 (95% CI 1.04–2.43) from case–control studies7,18–41 and a relative risk of 2.93 (95% CI 1.5–5.5) from several prospective controlled cohort studies.18,42 These results are consistent with those of the population-based (MEGA) study (OR 1.7, 95% CI 1.0–3.1).19 Another population-based study of 9000 business travellers followed for 4–4 years showed an absolute risk for venous thromboembolism of one every 4656 flights (incidence rate ratio 3.2, 95% CI 1.5–5.5).33 Risk increased with increasing number of flights during the first 2 weeks after a flight and when other traditional risk factors for venous thromboembolism were present. Several factors—such as immobility, dehydration, hypobaric hypoxia—and individual risk factors (obesity, malignancy, recent surgery, and history of hypercoagulable states) explain why the risk of venous thromboembolism increases with air travel.43–46

Immobilisation has been linked to 75% of air-travel cases of venous thromboembolism, with the long-flight thrombosis study (LONFLIT) showing the greatest frequency of venous thromboembolism occurring in non-aisle seating where passengers tend to move less.24–30 Dehydration can increase risk of venous thromboembolism due to haemoconcentration and hyperviscosity, potentially leading to hypercoagulable states.31 Several studies have provided evidence of dehydration or increased lower-limb oedema in healthy people during long-simulated flights.31,32 Hypobaric-chamber studies have not consistently shown that the mild hypobaric hypoxic changes during a flight lead to increased activation of coagulation in healthy individuals with no thrombophilia compared with that in individuals seated and not moving at ground level.33–36

Thrombophilia or oral contraceptive use substantially increase the risk of developing venous thromboembolism.23,32,30 In the MEGA study,32 factor V Leiden increased this risk by 14 times (OR 13.6, 95% CI 1.8–5.6).33 Risk increased with increasing number of flights (incidence rate ratio 3.2, 95% CI 1.5–5.5), and thrombophilia or use of oral contraceptives substantially increased this risk by 14 times (OR 13.6, 95% CI 1.8–5.6).33

Recommendations to reduce the risk of developing venous thromboembolism during air travel are based more on common sense than on evidence and include: being well hydrated, reducing alcohol and caffeine consumption, changing positions or walking throughout the cabin, and doing periodic calf-muscle exercises to reduce venous stasis. Use of graduated compression stockings with an ankle pressure of 17–30 mm Hg can reduce risk during air travel, as shown by a meta-analysis, in which only two of 1237 individuals who wore compression stockings had venous thrombosis compared with 46 of 1245 individuals who did not wear them.34 Compression stockings therefore are recommended for travellers prone to immobility.35–37

Anticoagulant thromboprophylaxis in the context of air travel is growing but no formal guidelines exist. One survey done by thrombosis and haemostasis professionals showed major differences in the use of prophylactic measures for air travel.38 Many clinicians seem to recommend aspirin before air travel for individuals at moderate risk of venous thromboembolism. However, because of scarce evidence showing substantial benefit, aspirin is not recommended alone as prophylaxis for any air traveller.39–41,55 Although randomised trials have shown benefit of low-molecular-weight heparin as thromboprophylaxis for air travellers who are at moderate risk for venous thromboembolism and do not take routine anticoagulant drugs,42,56 its routine use in circumstances other than those for air travellers at high risk of venous thromboembolism remains controversial.

Over-all, use of physical and pharmacological thromboprophylaxis should be based on an individual risk assessment. The table summarises evidence-based guidelines updated in 2008 by the American College of Chest Physicians conference on antithrombotic and thrombolytic therapy.

Cosmic-radiation exposure

Cosmic radiation comes from outside the solar system and from particles released during solar flares. Intensity of radiation depends on the year (due to solar cycles), altitude, latitude, and length of exposure. Because many types of cancer might be linked to cosmic radiation—especially breast cancer, skin cancer, and melanoma—effects of radiation on flight crews and frequent air-travellers are of concern.30,51

In 1991, the International Commission on Radiological Protection (ICRP) declared cosmic radiation an occupational risk for flight crews, which led to exposure monitoring and guidelines to reduce crew annual exposure to 20 mSv, which is more than double the exposure of most crews.39–42 Ground-radiation exposure

Table: Risk of venous thromboembolism prophylaxis in air travellers

Risk of Venous Thromboembolism Prophylaxis	Definition	Recommendations	Quality of Evidence
Low risk	Flight time less than 8 h or distance less than 5000 km	Avoid constrictive clothing around waist and lower extremities; avoid dehydration; move about cabin several times or do calf-stretching exercises	Grade 1C
Moderate-risk	Flight time more than 8 h or distance more than 5000 km, and: obesity, large varicose veins, pregnancy, hormone-replacement therapy, tobacco use or oral contraceptives, or relative immobility	Low-risk measures and: wear properly fitted below-knee compression stockings providing 15–30 mm Hg of pressure at the ankle; aisle seating	Grade 1C and grade 2B
High risk	Flight time more than 8 h or distance more than 5000 km, and: history of previous venous thromboembolism; hypercoagulable state (eg, factor V Leiden); major surgery 6 weeks before air travel (including hip or knee arthroplasty); known malignancy	Moderate-risk measures and: low-molecular-weight heparin injected before departure in individuals who are not on warfarin	Grade 1C and grade 2B

Data are based on references 38, 40, 41, 51–53, and 57. Grade 1C is a strong recommendation, but existing evidence is of low quality and benefits clearly outweigh risk or burden. Grade 2B is a weak recommendation derived from moderate-quality evidence, and benefits of therapy are balanced with risk and burden.52

www.thelancet.com Vol 373 June 12, 2009 2069

Panel 2: Treatments of jet lag

Agomelatine73
- New dual melatonin-receptor and serotonin 5-HT2C receptor agonist
- Efficacious for symptoms of depression and sleep–wakefulness disorders
- Not tested for jet lag, but could be more useful for individuals having westward-travel jet lag, who commonly show symptoms of depression

Benztropine82,84,85
- Some reported efficacy in sleep quality (eg, temazepam)
- Some reported efficacy in other circadian-rhythm or sleep parameters

Caffeine82,86
- Poorly studied
- Might increase night-time awakenings
- Slow-release caffeine showed faster re-entrainment (measured physiologically)

Melatonin73,83,87
- Slow-release caffeine showed faster re-entrainment (measured physiologically)
- Might increase night-time awakenings
- Poorly studied

Caff erase82,86
- Some reported efficacy in other circadian-rhythm or sleep parameters

Agomelatine73
- New dual melatonin-receptor and serotonin 5-HT2C receptor agonist
- Efficacious for symptoms of depression and sleep–wakefulness disorders
- Not tested for jet lag, but could be more useful for individuals having westward-travel jet lag, who commonly show symptoms of depression

Benztropine82,84,85
- Some reported efficacy in sleep quality (eg, temazepam)
- Some reported efficacy in other circadian-rhythm or sleep parameters

Caffeine82,86
- Poorly studied
- Might increase night-time awakenings
- Slow-release caffeine showed faster re-entrainment (measured physiologically)

Melatonin73,83,87
- Slow-release caffeine showed faster re-entrainment (measured physiologically)
- Might increase night-time awakenings
- Poorly studied

Caff erase82,86
- Some reported efficacy in other circadian-rhythm or sleep parameters

Jet lag
Jet lag is a temporary circadian-rhythm disorder associated with long-haul flights, characterised by daytime fatigue, sleep–wake disturbances, decreased appetite, constipation, and reduced psychomotor coordination and cognitive skills.73–75 Jet lag is due to desynchronisation between the body’s internal clock mechanism, residing within the suprachiasmatic nucleus of the hypothalamus,74–80 and the new light–dark cycle caused by abrupt time-zone changes.72,73,77–79 The degree and severity of jet lag is influenced by both flight direction and number of time zones crossed.72,80 Westward travel lengthens the traveller’s day, thereby causing a phase delay in the circadian rhythm, whereas eastward travel shortens the day and causes a phase advance.72,73,80 Travellers have greater difficulty falling asleep after an eastward travel than after a westward travel because of the internal clock’s natural tendency to resist shortening the 24-h day cycle.72,80–83

Re-entrainment (synchronisation) typically takes one day for every time zone crossed westward or 1.5 days for every time zone crossed eastward.72,73,80,83

Panel 2 lists various therapies available to keep jet lag to a minimum. Exogenous melatonin is the gold standard treatment for jet-lag symptoms.72,83,80,89 When taken in the evening, melatonin phase advances the circadian clock, whereas early morning administration phase delays the circadian rhythm.72,80 Various treatment regimens have been recommended, but a Cochrane meta-analysis of ten trials concluded that taking 0.5–5 mg of melatonin at the desired destination bedtime is effective for reducing or preventing jet lag.89
Use of bright-light exposure to adjust circadian rhythm has shown conflicting results and its benefit depends on...
combination with other therapies, such as bedtime adjustment or melatonin. Simulation studies showed a benefit of gradually advancing the sleep cycle by going to sleep 1 h earlier than usual every day for 3 days before travelling eastward, combined with morning bright-light exposure, in an attempt to phase advance the circadian rhythm. For westward travel, one small randomised controlled study of 20 individuals combined bedtime adjustment with timed bright-light versus dim-light exposure after westward travel, and showed larger phase delays in the bright-light group than in the dim-light group (2.59 h vs 1.5 h, p <0.02), but no significant difference in sleep efficiency or self-reported symptoms of jet lag.

Infectious diseases and air travel

Air travellers spend long periods in enclosed spaces, which facilitates the spread of infectious diseases. Since 1946, several outbreaks of serious infectious diseases have been reported aboard commercial airlines, including influenza, measles, severe acute respiratory syndrome (SARS), tuberculosis, food poisoning, viral enteritis, and smallpox. Although less-serious outbreaks—such as the common cold or some viral syndromes—have not been reported, they can occur. Lack of reporting is likely to be the result of incubating periods of many infections being longer than the flight. One prospective questionnaire study of air travellers going from San Francisco to Denver during the winter months showed an upper-respiratory tract infection frequency of 3–20% depending on the reporting methods. PCR assays to study atypical bacteria and respiratory viruses in 155 air travellers showed that not many travellers had the same viral profile and no association existed between any pathogen and a particular airport, suggesting that travellers acquired their viruses before rather than during the flight.

Most commercial aircrafts re-circulate up to 50% of the cabin air and use high-efficiency particulate air filters. One study showed no significant difference in self-reported infection rates in aircrafts that use these filters compared with those in aircrafts that use a single-pass cabin ventilation system. Risk of onboard transmission of infection is mainly restricted to individuals with either close personal contact or seated within two rows of an index passenger. However, on Air China flight 112, 22 passengers and crew member developed probable onboard severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. The 2002–03 SARS epidemic indicated that commercial air travel has an effect on infectious-disease spread. WHO estimates that 6–5 passengers per million who travelled aboard commercial flights originating from regions of active transmission during the outbreak were symptomatic with probable SARS. Overall, 40 flights carried 37 probable SARS-CoV source cases during the outbreak, resulting in 29 probable onboard secondary cases.

Whether reducing the number of flights during a large-scale epidemic or pandemic would slow the spread of an infectious-disease outbreak remains unclear. An observational study, however, showed that the peak date of the US influenza season was delayed 13 days after the terrorist attacks of Sept 11, 2001, consistent with a greatly reduced number of flights during that time. This, together with other modelling studies, suggests that flight limitations might slow the spread of pandemic influenza by several weeks, thereby providing time for mass vaccination of the population and contingency plan setup.

In-flight medical events

Calculation of the exact incidence of in-flight medical events for commercial air travel has always been difficult,
Panel 4: Response to in-flight medical events

- Be prepared to show medical credential (eg, licence) or answer questions about degree or training
- Act within your abilities
- Obtain consent from the affected passenger. Assume implied consent when passenger is incapacitated or unresponsive
- Do not fear litigation. Although physicians have been deposed, no litigation has ever been brought forward against a responding physician
- Request and establish communication with the airline’s ground medical support for advice and consultation regardless of how minor or serious the in-flight medical event is
- Request the enhanced emergency medical kit (many airlines will initially only offer the basic first-aid kit) but do not open it unless needed. Each kit has a placard listing the contents of the kit
- Recommend diversion of the aircraft if you believe it is needed. Recommendation to divert the aircraft should be considered if a passenger has chest pain, shortness of breath, severe abdominal pain that does not improve with initial treatment interventions, cardiac arrest, acute coronary syndrome, severe dyspnoea, stroke, refractory seizure, severe agitation, or if a passenger is persistently unresponsive
- Never officially pronounce a passenger dead, even if you assess that resuscitation is futile and cease treatment, especially on international flights

Panel 5: Guidelines for initial management of in-flight medical events

Acute abdominal pain
- Administer antiacid if appropriate
- Request cabin altitude reduction to increase cabin pressure, which will increase oxygenation and decrease gas expansion
- Administer paracetamol or ibuprofen to relieve discomfort. Some medical kits contain morphine, which can be used in cases of extreme pain
- A parenteral or oral antiemetic drug if available in the medical kit might help in cases of persistent vomiting

Acute agitation or misconduct
- Attempt to de-escalate the situation. Look for medical causes, such as hypoxia or hypoglycaemia
- Offer or administer benzodiazepine, if available and indicated (be aware for possible oversedative effect, if passenger is already taking other substances)
- If physical restraint is needed, it should be undertaken by 4–5 individuals. The restrained individual should be placed in the left lateral recumbent position
- Appropriately monitor patient if chemical or physical restraints are used. Be aware of high risk of complications (hypoxia, metabolic acidosis, and sudden death) because of fighting against restraints coupled with recent extreme exertion by the agitated passenger

Acute allergic reaction and anaphylaxis
- Administer diphenhydramine 12.5 mg po, im, or iv (paediatric); 25–50 mg po, im, or iv(adult) for both simple allergic reactions and anaphylaxis
- Administer epinephrine 0.01 mL/kg/dose in 1000 solution im or sc every 5–20 min as needed up to three doses (paediatric), or 0.3–0.5 mL 1 in 1000 solution im or sc every 5–20 min as needed up to three doses (adults) in the presence of severe generalised urticaria, angio-oedema, stridor, or bronchospasm
- Establish iv access and administer fluids in presence of anaphylaxis if possible

(Continues on next page)
not to take complete control of the situation. The captain of the aircraft has the ultimate authority (panel 4). In case of violent or unruly passengers, volunteering physicians might need to assist in chemical or physical restraint. If chemical restraint is used, physicians should consider that passengers could have ingested alcohol or other substances that might cause oversedation or other effects. Panel 5 lists general guidelines for the initial management of common in-flight medical events.

Medical fitness for air travel
Airlines have the right to refuse passengers who are unfit to fly for medical reasons. Many conditions contraindicate air travel and passengers who cannot tolerate hypoxia or pressure changes should not fly (panel 6). Passengers should be able to walk a distance of 50 m and climb one flight of stairs without angina or severe dyspnoea. If a passenger needs oxygen, he or she requires physician documentation stating fitness to travel at 2438 m. Passengers bringing needles and syringes into the cabin should possess documentation of need and carry the medication that requires that equipment with pharmacy-labelled identification. Some passengers might also need a qualified medical escort, such as passengers whose fitness to travel is in doubt due to possible exacerbation or instability of chronic disease or passengers who have organ failure requiring transplantation. Many air carriers have limited transport of passengers on stretchers or those unable to sit upright in a seat. Numerous air ambulance services and clinics offer physician-assisted or nurse-assisted escorts for commercial air flights, and physicians or passengers can call airlines for assistance.

Controversies and future directions
Passenger health and wellbeing during commercial air travel continues to evolve. Cabin air quality remains an issue, and it has been linked to passenger and flight crew complaints of dry eyes, stuffy nose, and skin irritation, as well as headaches, lightheadedness, and confusion. Peer-reviewed studies on the effect of vapourised organic compounds, such as tricresyl phosphate, that have led to reported cases of crew and passenger incapacitation are needed. These compounds are the result of vapourised jet oils that can mix with air entering the aircraft cabin. Several research groups, such as the cabin air-quality reference group and the Australian civil aviation safety authority, are addressing knowledge gaps on health effects of cabin air, including the role of vapourised organic compounds.

The American society of heating, refrigerating, and air conditioning engineers—an industry leader in developing indoor air-quality standards—set, for the first time, new air-quality standards in commercial aircrafts. The new standards also address chemical, physical, and biological contaminants that affect cabin air quality. How these standards will be adopted by aviation and governmental regulatory agencies remains unclear. At present, no regulations by the CAA, FAA, or JAA exist requiring use, certification, or maintenance of high-efficiency particulate air. New aircrafts, such as the Airbus A380 and Boeing 787, are being designed to operate at cabin altitude of 1829 m compared with the current altitude of 2438 m, in addition to having improved cabin air quality and passenger seating. These changes will improve passenger wellbeing and comfort.

How individuals with compromised cardiac and pulmonary function can endure long air travel needs to be assessed, and current screening guidelines should undergo re-assessment. Furthermore, absence of a
Panel 6: Contraindications to commercial air travel

Cardiac and pulmonary disorders
- Myocardial infarction 7–10 days before air travel
- Unstable angina
- Coronary artery bypass graft 10–14 days before air travel
- Decompensated heart failure
- Uncontrolled dysrhythmia
- Contagious pulmonary infections
- Baseline sea-level PaO₂<67–70 mm Hg without supplemental oxygen
- Obstructive/restrictive lung-disease exacerbation
- Large pleural effusion
- Pneumothorax 3 weeks before air travel (7–14 days with medical escort)

Neurological disorders
- Stroke 5–10 days before air travel
- Uncontrolled seizures or 24-h after grand-mal seizure

Surgical interventions
- Any gastrointestinal, thoracic, ear, nose, and throat, and neurological surgical procedure 10–14 days before air travel
- Uncomplicated appendectomy or laparoscopic surgery 5 days before air travel

Pregnancy
- From 36th week of pregnancy (from 32nd weeks for multiple gestation) up to 7 days after delivery. Doctor certification needed after 28 weeks of pregnancy
- Complicated pregnancy

Paediatrics
- First week of life

Miscellaneous
- Unlikely to survive flight
- Severe contagious illness
- Sickle-cell disease exacerbation 10 days before air travel
- Severe anaemia (haemoglobin <8·5g/dL) unless due to chronic disease
- Aggressive unpredictable behaviour or acute psychosis
- Severe sinusitis
- Decompression syndrome 3–7 days before air travel

The list is based on references 10 and 120–123.

globally accepted guidelines, and major differences in the use of prophylactic measures by clinicians for air-travel-related thrombosis emphasise the need for additional studies on interventions and clear guidelines on prevention of air-travel-related venous thrombosis.

The molecular basis for circadian-rhythm disorders has been recently clarified and future clinical application might lead to new treatments for jet lag.

The risk that commercial aircrafts are vehicles of influenza pandemic spread is real and opportunities exist to keep the risk to a minimum. The international air-transport association, in partnership with WHO and other stakeholders, have established guidelines for aviation-industry operations during pandemic influenza outbreaks to keep commercial air-travel spread to a minimum. These include communication of the risk to the population, establishment of national passenger exit screening from outbreak regions, and increasing airline preparedness (in-flight illness and aircraft cleaning).

In-flight medical events are projected to increase and AsMa encourages the creation of a database, but many air carriers are reluctant to participate. Commercial space travel is projected to start within the next decade and aerospacemedical societies have set up subcommittees to address the unique medical conditions associated with civilian space travel.

In the modern travel era, clear understanding of the medical consequences of commercial flights has become increasingly important. Individuals need to be aware of the possible medical complications of air travel, and physicians should identify people at potential risk from air travel and advise them of any necessary treatments to travel safely.

Conflict of interest statement
We declare that we have no conflict of interest.

References
1 Mangili A, Gendreau MA. Transmission of infectious diseases during commercial air travel. Lancet 2003; 362: 989–96.
2 Seccombe LM, Peters MJ. Oxygen supplementation for chronic obstructive pulmonary disease patients during air travel. Curr Opin Pulm Med 2006; 12: 140–44.
3 Burnett JC. Long- and short-haul travel by air: issues for people with diabetes on insulin. J Travel Med 2006; 13: 255–60.
4 Cavin cruising altitudes for regular transport aircraft. Aviat Space Environ Med 2008; 79: 433–39.
5 Toff WD, Jones CI, Ford I, et al. Effect of hypobaric hypoxia, simulating conditions during long-haul air travel, on coagulation, fibrinolysis, platelet function, and endothelial activation. JAMA 2006; 295: 2251–61.
6 Gendreau MA, Deljohn C. Responding to medical events during commercial airline flights. N Engl J Med 2002; 346: 1067–73.
7 Muhm JM, Rock PB, McMullin DL, et al. Effect of aircraft-cabin altitude on passenger discomfort. N Engl J Med 2007; 357: 18–27.
8 Humphreys S, Deyermond R, Bari J, Stevenson M, Fee JP. The effect of high altitude commercial air travel on oxygen saturation. Anaesthesia 2005; 60: 458–60.
9 Managing passengers with respiratory disease planning air travel: British Thoracic Society recommendations. Thorax 2002; 57: 289–304.
10 Medical Guidelines for Airline Travel, 2nd edn. Aviat Space Environ Med 2003; 74 (suppl): A1–19.
11 Coker RK, Shiner RJ, Partridge MR. Is air travel safe for those with lung disease? Eur Respir J 2007; 30: 1057–63.
12 Dine CJ, Kreider ME. Hypoxia altitude simulation test. Chest 2008; 133: 3002–05.
13 Dillard TA, Berg BW, Rajagopal KR, Dooley JW, Mehm WJ. Hypoxemia during air travel in patients with chronic obstructive pulmonary disease. Ann Intern Med 1989; 111: 362–67.
14 Dillard TA, Moeores LK, Bilello KL, Phillips YY. The preflight evaluation. A comparison of the hypoxia inhalation test with hypobaric exposure. Chest 1995; 107: 352–57.
15 Akero A, Christensen CC, Edvardsen A, Skjonsberg OH. Hypoxemia in chronic obstructive pulmonary disease patients during a commercial flight. Eur Respir J 2005; 25: 725–30.
16 Martin SE, Bradley JM, Buick JB, Bradbury I, Elborn JS. Flight assessment in patients with respiratory disease: hypoxic challenge testing in predictive equations. QJM 2007; 100: 361–67.
65 Rafnsson V, Tulinius H, Jonasson JG, Hrafnsdottir J. Risk of breast cancer in female flight attendants: a population-based study. (Iceland). Cancer Causes Control 2001; 12: 95–101.
66 Reynolds P, Cone J, Layefsky M, Goldberg DE, Hurley S. Cancer incidence in California flight attendants (United States). Cancer Causes Control 2002; 13: 137–24.
67 Rafnsson V, Sulem P, Tulinius H, Hrafnsdottir J. Breast cancer risk in airline cabin attendants: a nested case-control study in Iceland. Occup Environ Med 2003; 60: 807–09.
68 Kojo K, Pulkki R, Arvinen A. Breast cancer risk among Finnish cabin attendants: a nested case-control study. Occup Environ Med 2005; 62: 488–93.
69 Nicholas JS CK, Duke FE, Friedberg W, O'Brien K. Gallactic cosmic radiation exposure of pregnant aircrew members II. US Department of Transportation, Federal Aviation Administration, Office of Aviation Medicine, 2000.
70 Chen J, Lewis BJ, Bennett LG, Green AR, Tracy BL. Estimated neutron dose to embryo and foetus during commercial flight. Radiat Prot Dosimetry 2005; 114: 475–80.
71 Morgenenthaler TI, Lee-Chiong T, Alessi C, et al. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 2007; 30: 1499–51.
72 Waterhouse J, Reilly T, Atkinson G, Edwards B. Jet lag: trends and coping strategies. Lanceet 2007; 369: 1197–219.
73 Srinivasan V, Spence DW, Pandi-Perumal SR, Trakht I, Cardinali DP. Jet lag: therapeutic use of melatonin and possible application of melatonin analogs. Travel Med Infect Dis 2008; 6: 17–28.
74 Saad AA, Schlaepfer JD, Smith E. A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 1984; 302: 371–79.
75 Saper CB, Lu J, Chou TC, Gooley J. The hypothalamic integrator for circadian rhythms. Trends Neurosci 2005; 28: 152–57.
76 Dubocovich ML, Melatonin and circadian rhythm regulation. Sleep Med 2007; 8 (suppl 3): 34–42.
77 Berzon DM, Dunn FA, Takahashi JS, Koeppe RA. Melatonin effects on sleep and circadian rhythms. Proc Natl Acad Sci USA 2009; 106: 19479–84.
78 Wright KP Jr, Hughes RJ, Kronauer RE, Dijk DJ, Carsieri CA. Intrinsic near-24-h pacemaker period determines limits of circadian entrainment to a weak synchronizer in humans. Proc Natl Acad Sci USA 2001; 98: 16237–24.
79 Gershon PH, Kronauer RE, Graeber RC. Phase shifting two coupled circadian pacemakers: implications for jet lag. Am J Physiol 1985; 249: R704–19.
80 Deacon S, Arendt J. Adapting to phase shifts I. An experimental model for jet lag and shift work. Physiol Behav 1996; 59: 663–73.
81 Revell VL, Eastman CI. How to trick mother nature into letting you fly around or stay up all night. J Biol Rhythms 2005; 20: 353–65.
82 Sack RL, Auckley D, Auger RR, et al. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 2007; 30: 1460–83.
83 Herxheimer A, Petrie KJ, Melatonin for preventing and treating jet lag. Cochrane Database Syst Rev 2001; CD001520.
84 Donaldson E, KennaWy JJ. Effects of temazepam on sleep, performance, and rhythmic 6-sulphatoxymelatonin and cortisol excitation after transmeridian travel. Aviat Space Environ Med 1991; 62: 654–60.
85 Reilly T, Atkinson G, Budgett R. Effect of low-dose temazepam on physiological variables and performance tests following a westerly flight across five time zones. Int J Sports Med 2001; 22: 166–74.
86 Lagarde D, Charpous B, Billaudi PF, Ramonet L, Chaffaut F, French J. Evaluation of pharmacological aids on physical performance after a transmeridian flight. Med Sci Sports Exerc 2003; 35: 628–34.
87 Revell VL, Burgess HJ, Gasda CJ, Smith MR, Fogg LF, Eastman CI. Advanced human circadian rhythms with afternoon melatonin and morning intermittent bright light. J Clin Endocrinol Metab 2006; 91: 54–59.
88 Tiberge M. Time zone change syndrome. In: Sleep: physiology, investigations and medicine. M Billiard, ed. New York, NY: Springer Publishing, 2003.
89 Lewy AJ, Ahmed S, Jackson JM, Sack RL. Melatonin shifts human circadian rhythms according to a phase-response curve. Chronobiol Int 1992; 9: 380–92.
90 Arendt J, Skene DJ. Melatonin as a chronobiotic. Sleep Med Rev 2005; 9: 25–39.
91 Lahiri T, Terttunen J, Lenppakari S, Lonqvist J, Partonen T. Field trial of timed bright light exposure for jet lag among airline cabin crew. Int J Circumpolar Health 2007; 66: 365–69.
92 Burgess HJ, Crowley SJ, Gazda CJ, Fogg LF, Eastman CI. Preflight adjustment to eastward travel: 3 days of advancing sleep with and without morning bright light. J Biol Rhythms 2003; 18: 318–28.
93 Boulouz Z, Macchi MM, Sturchler MP, et al. Light visor treatment for jet lag after westward travel across six time zones. Aviat Space Environ Med 2003; 74: 953–60.
94 Moser MR, Benda TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. An outbreak of influenza aboard a commercial airliner. Am J Epidemiol 1979; 119: 1–6.
95 Marsden AG. Outbreak of influenza-like illness [corrected] related to air travel. Med J Aust 2003; 179: 372–73.
96 Amornkul PN, Takashashi H, Bogard AK, Nakata M, Harpaz R, Effer PV. Low risk of measles transmission after exposure on an international air flight. J Infect Dis 2004; 189 (suppl 1): S81–85.
97 Olsen SJ, Chang HL, Cheung TY, et al. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med 2003; 349: 2416–22.
98 Wilder-Smith A, Leong HN. A case of in-flight transmission of severe acute respiratory syndrome (SARS). SARS serology positive. J Travel Med 2004; 11: 110.
99 McFarland JW, Hickman C, Osterholm M, MacDonald KL. Exposure to Mycobacterium tuberculosis during air travel. Lancet 1993; 342: 152–12.
100 Exposure of passengers and flight crew to Mycobacterium tuberculosis on commercial aircraft, 1992–1995. MMWR Morb Mortal Wkly Rep 1995; 44: 137–40.
101 Tauxe RV, Tormey MP, Musella L, Hartnett-Bean NT, Blake PA. Salmonellosis outbreak on transatlantic flights: foodborne illness on aircraft: 1974–1984. Am J Epidemiol 1987; 125: 150–52.
102 McCorman R, Edwards PJ, Kelly MJ, Miller BC, Rooney PJ, Moore JE. Food-poisoning and commercial air travel. Travel Med Infect Dis 2007; 5: 276–86.
103 Widdowson MA, Glass R, Monroe S, et al. Probable transmission of norovirus on an airplane. JAMA 2005; 293: 1859–60.
104 Centers for Disease Control and Prevention. International notes-smallpox-Stockholm. MMWR Morb Mortal Wkly Rep 1963; 12: 56.
105 Zitter JN, Mazonsdon PD, Miller DP, Hulley SB, Balmes JR. Aircraft cabin air recirculation and symptoms of the common cold. JAMA 2002; 288: 483–86.
106 Luna LK, Panning M, Grywena K, Pfefferle S, Drosten C. Spectrum of viruses and atypical bacteria in intercontinental air travelers with symptoms of acute respiratory infection. J Infect Dis 2007; 195: 675–79.
107 WHO. Tuberculosis and air travel: guidelines for prevention and control. 2nd edn. WHO/HTM/TB/2006.363. Geneva: World Health Organization, 2006.
108 WHO. Department of Communicable disease Surveillance and Response. Consensus document on the epidemiology of severe respiratory distress syndrome (SARS). WHO/CDS/CSR/2003.11. Geneva: World Health Organization, 2003.
109 Germann TC, Kadai K, Longini IM Jr, Macken CA. Mitigation strategies for pandemic influenza in the United States. Proc Natl Acad Sci USA 2006; 103: 5935–40.
110 Cooper BS, Pitman RJ, Edmunds WJ, Gay NJ. Delaying the international spread of pandemic influenza. PLoS Med 2006; 3: e212.
111 Brownstein JS, Wolfe CJ, Mandl KD. Empirical evidence for the effect of airline travel on inter-regional influenza spread in the United States. PLoS Med 2006; 3: e601.
112 Cocks R, Liew M. Commercial aviation in-flight emergencies and the physician. Emerg Med Australas 2007; 19: 1–8.
113 Tomk A. Cabin fever. BMJ 2008; 336: 584–86.
114 DeJohn CA, Wolbrink AM, Veronneau SJ, Larcher JG, Smith DW, Garrett JS. An evaluation of in-flight medical care in the U.S. *Aviat Space Environ Med* 2002; 73: 580–86.

115 Thibeault C, Evans A. Emergency medical kit for commercial airlines: an update. *Aviat Space Environ Med* 2007; 78: 1179–71.

116 Pierson K, Power Y, Marcus A, Dahlberg A. Airline passenger misconduct: management implications for physicians. *Aviat Space Environ Med* 2007; 78: 361–67.

117 Dowdall N. “Is there a doctor on the aircraft?” Top 10 in-flight medical emergencies. *BMJ* 2000; 321: 1336–37.

118 Wyatt J, Illingworth RN, Clancy M, Munro PT, Robertson CE. Oxford Handbook of Accident and Emergency Medicine. 2nd ed. Oxford: Oxford University Press, 2005.

119 Jorge A, Ponsal B, Peixoto H, Lima M. Preflight medical clearance of ill and incapacitated passengers: 3-year retrospective study of experience with a European airline. *J Travel Med* 2005; 12: 306–11.

120 Zahger D, Leibowitz D, Tabb IK, Weiss AT. Long-distance air travel soon after an acute coronary syndrome: a prospective evaluation of a triage protocol. *Am Heart J* 2000; 140: 241–42.

121 World Health Organization. International travel and health. Situation as of 1 January 2005. Geneva, 2005. http://whqlibdoc.who.int/publications/2005/9241580364.pdf (accessed Oct 12, 2008).

122 Roby H, Lee A, Hopkins A. Safety of air travel following acute myocardial infarction. *Aviat Space Environ Med* 2002; 73: 91–96.

123 International Air Transport Association. Medical Manual 1st ed. International Air Transport Association, Montreal, Canada, 2004. http://www.iata.org/NR/donlyres/F38C6572-2215-411D-B17E-B128FC83696/0/medical_manual_june2004_edition_updated_nov07.pdf (accessed Oct 12, 2008).

124 Aviation Consumer Protection Division. Fact sheet: steps taken to ensure new security requirements preserve and respect the civil rights of people with disabilities. Washington, DC: Department of Transportation, 2001. http://www.dot.gov/airconsumer/Civil%20Rights%20Fact%20Sheet.htm (accessed Oct 12, 2008).

125 Teichman PG, Donchin Y, Kot RJ. International aeromedical evacuation. *N Engl J Med* 2007; 356: 262–70.

126 Lindgren T, Norback D. Health and perception of cabin air quality among Swedish commercial airline crew. *Indoor Air* 2005; 15 (suppl 10): 65–72.

127 Evans A, Finkelstein S, Singh J, Thibeault C. Pandemic influenza: a note on international planning to reduce the risk from air transport. *Aviat Space Environ Med* 2006; 77: 974–76.

128 ICAO. Guidelines for states concerning the management of communicable disease posing a serious public health risk. International Civil Aviation Organization, Montreal Canada, 5 July 2007 http://www.icao.int/icao/en/med/guidelines.htm (accessed Oct 12, 2008).