Neutrino Mixing and Leptogenesis in Type-II Seesaw Scenarios with Left-Right Symmetry

Wei Chao ∗, Shu Luo †, Zhi-zhong Xing ‡
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

We propose two Type-II seesaw scenarios for the neutrino mass matrix in the left-right symmetric model, in which the Higgs triplet Yukawa coupling matrix takes the appealing Friedberg-Lee texture. We show that the nearly tri-bimaximal neutrino mixing pattern, which is especially favored by current neutrino oscillation data, can be obtained from both scenarios. We also show that the cosmological baryon number asymmetry can naturally be interpreted in these two scenarios via the flavor-independent leptogenesis mechanism.

14.60.Lm, 14.60.Pq, 95.85.Ry
I. INTRODUCTION

Current solar [1], atmospheric [2], reactor [3] and accelerator [4] neutrino oscillation experiments have provided us with very convincing evidence that neutrinos have non-vanishing rest masses and their mixing involves two large angles ($\theta_{12} \sim 34^\circ$ and $\theta_{23} \sim 45^\circ$) and one small angle ($\theta_{13} < 10^\circ$). These important results indicate that the standard electroweak model, in which the gauge group is $SU(2)_L \times U(1)_Y$ and three neutrinos are massless Weyl particles, is actually incomplete. There are many possibilities of extending the standard model to accommodate massive neutrinos and to resolve or soften other potential problems of the model itself [5]. One of them, motivated by the conjecture that parity is a perfect symmetry at high-energy scales and is spontaneously broken at low-energy scales, is the left-right symmetric model [6]. The elegance of this model and its testability at the LHC and ILC experiments have recently been iterated [7].

The left-right symmetric model is based on the gauge group $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$, and thus it naturally contains both left-handed and right-handed neutrinos together with one Higgs bi-doublet Φ and two Higgs triplets $\Delta_{L,R}$. In addition to the left-right gauge symmetry, a discrete left-right symmetry may be introduced into the model by requiring its invariance under $l_L \leftrightarrow (l_R)^c$, $q_L \leftrightarrow (q_R)^c$, $\Delta_L \leftrightarrow \Delta_R$ and $\Phi \leftrightarrow \Phi^c$ [8]. The gauge-invariant Yukawa interactions between the fermion and Higgs sectors can be written as

$$-\mathcal{L}_Y = \overline{\tau}_L \Phi Y_q q_R + \overline{\tau}_L \Phi^c q_R q_R + \overline{\tau}_L \Phi Y_l l_R + \overline{\tau}_L \Phi^c l_R l_R$$

$$+ \frac{1}{2} \left[\overline{l}_L \tau_2 \Delta_L (l_L)^c + (l_R)^c \tau_2 \Delta_R \mathcal{F} l_R \right] + \text{h.c.},$$

where $\Phi \equiv \tau_2 \Phi^c \tau_2$ and $(l_{L,R})^c \equiv C l_{L,R}^T$ with C being the charge-conjugation matrix. As a consequence of the discrete left-right symmetry, $Y_{l,q}$ and $\bar{Y}_{l,q}$ are both symmetric matrices. Note that $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ is spontaneously broken into the standard-model gauge group $SU(2)_L \times U(1)_{Y}$ via the vacuum expectation value (vev) of Δ_R, and then the spontaneous electroweak symmetry breaking is accomplished through the vev of Φ. Given the vevs of Δ_L, Δ_R and Φ [6],

$$\langle \Delta_L \rangle = \begin{pmatrix} 0 & 0 \\ v_L & 0 \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix}, \quad \langle \Phi \rangle = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' e^{i\alpha} \end{pmatrix},$$

the up-type quark, down-type quark, charged lepton and Dirac neutrino mass matrices are

$$M_u = \kappa Y_q + \kappa' e^{-i\alpha} \bar{Y}_q,$$

$$M_d = \kappa \bar{Y}_q + \kappa' e^{+i\alpha} Y_q,$$

$$M_e = \kappa \bar{Y}_l + \kappa' e^{+i\alpha} Y_l,$$

$$M_D = \kappa Y_l + \kappa' e^{-i\alpha} \bar{Y}_l.$$
\[M_\nu \simeq M_L - M_D M_R^{-1} M_D^T = v_L \mathcal{F} - \frac{1}{v_R} M_D \mathcal{F}^{-1} M_D^T. \] (4)

The phenomenon of lepton flavor mixing, which has clearly shown up in both solar and atmospheric neutrino oscillations, arises from the mismatch between the diagonalizations of \(M_e \) and \(M_\nu \). On the other hand, it is possible to interpret the cosmological baryon number asymmetry \(\eta_B \equiv n_B/n_\gamma = (6.1 \pm 0.2) \times 10^{-10} \) \[10\] with the help of the thermal leptogenesis mechanism \[11\]: either through the out-of-equilibrium decay of the lightest right-handed Majorana neutrino, or via the out-of-equilibrium decay of one or more Higgs triplets \[12\], or due to both effects. The left-right symmetric model is therefore an intriguing playground to explore new physics beyond the standard model, at least in the neutrino sector.

However, it is a highly non-trivial task to simultaneously account for the cosmological baryon number asymmetry and current neutrino oscillation data in the left-right symmetric model. The reason is simply that the specific textures of \(M_e, M_D \) and \(\mathcal{F} \) are not fixed by the model itself. To get around this difficulty, one may impose certain flavor symmetries or empirical assumptions on those mass matrices such that their textures can be (partly) determined or constrained. Such a phenomenological strategy has been adopted in some recent attempts \[13,14\] to study neutrino mixing and leptogenesis based on the left-right symmetry, although not all of them are successful in fitting the updated observational \[10\] and experimental \[15\] data.

The purpose of this paper is to propose two novel and viable scenarios for \(M_D \) and \(\mathcal{F} \) in the flavor basis where \(M_e \) is diagonal, so as to simultaneously interpret the observed neutrino mixing pattern and the observed baryon number asymmetry of the Universe in the left-right symmetric model. A salient feature of both scenarios is that the Higgs triplet Yukawa coupling matrix takes the Friedberg-Lee (FL) texture \[16–18\],

\[\mathcal{F} = \begin{pmatrix} b + c & -b & -c \\ -b & a + b & -a \\ -c & -a & a + c \end{pmatrix} + dI, \] (5)

where \(I \) denotes the \(3 \times 3 \) identity matrix. Such a texture is phenomenologically appealing for two simple reasons: (1) \(\mathcal{F} \) can be diagonalized by a unitarity transformation whose form is very close to the interesting tri-bimaximal mixing pattern \[19\]; and (2) the inverse matrix of \(\mathcal{F} \), which appears in the seesaw formula, has a structure exactly parallel to \(\mathcal{F} \). It is therefore possible to obtain the nearly tri-bimaximal neutrino mixing matrix, which is particularly favored by current neutrino oscillation data, from the Type-II seesaw relation under a suitable condition. The complex phases of \(\mathcal{F} \) turn out to be the common source of CP violation for neutrino oscillations and baryogenesis via leptogenesis, if the Dirac neutrino mass matrix \(M_D \) is real. To be specific, we shall assume that \(M_D = M_e \) is diagonal and real in scenario (A), and \(M_D \) is real and has a similar FL texture in scenario (B). We are going to demonstrate that both scenarios are viable in the left-right symmetric model to account for the cosmological baryon number asymmetry and the neutrino mixing data.

The remaining part of this paper is organized as follows. In section II, we diagonalize the FL texture and describe the picture of leptogenesis as the preliminaries. Sections III and IV are devoted to the details of scenarios (A) and (B), respectively. The consequences of both scenarios on neutrino mixing and leptogenesis are also illustrated in these two sections. A summary of our main results is given in section V.
II. PRELIMINARIES

In this section, we first describe a generic diagonalization of the FL texture and then outline a couple of basic formulas to be used for the calculation of leptogenesis.

A. Diagonalization of \mathcal{F}

The symmetric matrix \mathcal{F} in Eq. (5) can be diagonalized by the transformation $U^\dagger \mathcal{F} U^* = \text{Diag}\{f_1, f_2, f_3\}$, where U is unitary and f_i (for $i = 1, 2, 3$) are real and positive. The special texture of \mathcal{F} guarantees U to take the form

$$U = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & \sin \theta e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta e^{i\delta} & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} e^{i\phi_1} & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix},$$

where the leading term is just the tri-bimaximal mixing pattern [19], and the parameters θ and δ are given by

$$\tan 2\theta = \frac{2 \sqrt{|A|^2 + |B|^2} |C|^2 + 2 \text{Re} (A^* B^* C^2)}{|B|^2 - |A|^2},$$
$$\tan \delta = -\frac{\text{Im} [a^* (b - c) + b^* c]}{\text{Re} [(a^* + d^*) (b - c)] + |b|^2 - |c|^2},$$

(7)

together with $A = 3(b + c)/2 + d$, $B = 2a + (b + c)/2 + d$ and $C = -\sqrt{3}(b - c)/2$ [17]. Furthermore, we obtain

$$f_1 = |A - C \tan \theta e^{-i\delta}|,$$
$$f_2 = |d|,$$
$$f_3 = |B + C \tan \theta e^{+i\delta}|;$$

(8)

and

$$\phi_1 = \frac{1}{2} \arg \left(A - C \tan \theta e^{-i\delta}\right),$$
$$\phi_2 = \frac{1}{2} \arg (d),$$
$$\phi_3 = \frac{1}{2} \arg \left(B + C \tan \theta e^{+i\delta}\right).$$

(9)

Without loss of generality, one may rotate away ϕ_3 through the redefinitions $\rho \equiv \phi_1 - \phi_3$ and $\sigma \equiv \phi_2 - \phi_3$. Then U contains three non-trivial phase parameters: δ, ρ and σ.

Since $M_L = v_L \mathcal{F}$ and $M_R = v_R \mathcal{F}$ hold in the left-right symmetric model, their mass eigenvalues can be given in terms of f_1, f_2 and f_3 obtained in Eq. (8). For example, three heavy right-handed Majorana neutrino masses are simply $M_i = v_R f_i$ (for $i = 1, 2, 3$).
B. Leptogenesis

For simplicity, let us assume that three heavy right-handed Majorana neutrinos have a normal mass hierarchy (i.e., $M_1 < M_2 < M_3$) and their masses are much smaller than the masses of Higgs triplets. In this case only the CP-violating asymmetry generated from the out-of-equilibrium decay of the lightest right-handed Majorana neutrino can survive and contribute to the thermal leptogenesis [11]. Such a CP-violating asymmetry, denoted as ε_1, arises from the interference between the tree-level and one-loop decay amplitudes. In the basis where M_R is diagonal and real, ε_1 is given by

$$
\varepsilon_1^{(1)} = \frac{1}{8\pi v^2} \sum_{j \neq 1} \text{Im} \left[\frac{\hat{M}_D^\dagger \hat{M}_D}{(\hat{M}_D^\dagger \hat{M}_D)_{11}} \right] \sqrt{x_j} \left[\frac{2 - x_j}{1 - x_j} - (1 + x_j) \ln \frac{x_j + 1}{x_j} \right],
$$

$$
\varepsilon_1^{(2)} = \frac{3}{16\pi v^2 M_1} \frac{\text{Im} \left[(\hat{M}_D^\dagger \hat{M}_L \hat{M}_D^\ast)_{11} \right]}{(\hat{M}_D^\dagger \hat{M}_D)_{11}},
$$

where $\varepsilon_1^{(1)}$ is the conventional CP-violating term, while $\varepsilon_1^{(2)}$ is due to the one-loop contribution induced by the Higgs triplets [20].

The CP-violating asymmetry ε_1 can give rise to a net lepton number asymmetry in the Universe, and the nonperturbative sphaleron interaction may partially convert this lepton number asymmetry into a net baryon number asymmetry [21],

$$
\eta_B \equiv \frac{n_B}{n_\gamma} \simeq -0.96 \times 10^{-2} \varepsilon_1 \kappa_1,
$$

where κ_1 is an efficiency factor measuring the washout effects associated with the out-of-equilibrium decay of the lightest right-handed Majorana neutrino. The value of κ_1 can be evaluated from the following analytical approximation [21]:

$$
\kappa^-(K_1) = -2e^{-2N(K_1)/3} \left[e^{2N(K_1)/3} - 1 \right],
$$

$$
\kappa^+(K_1) = \frac{2}{z_B(K_1) K_1} \left[1 - e^{-2z_B(K_1) K_1 N(K_1)/3} \right],
$$

where

$$
N(K_1) = \frac{N(K_1)}{1 + \sqrt{\frac{N(K_1)}{N_{eq}}}^2},
$$

$$
z_B(K_1) \simeq 1 + \frac{1}{2} \ln \left\{ 1 + \frac{\pi K_1^2}{1024} \ln \left(\frac{3125 \pi K_1^2}{1024} \right) \right\}.
$$

Here K_1 is the ratio of the total decay width of the lightest right-handed Majorana neutrino to the expansion rate of the Universe at temperature $T = M_1$ [21]. One usually expresses K_1 as $K_1 = \tilde{m}_1/m_\ast$, where $\tilde{m}_1 = (M_D^\dagger M_D)_{11}/M_1$ denotes the effective (seesaw) neutrino mass.
mass, and \(m_\nu \simeq 1.08 \times 10^{-3} \) eV stands for the equilibrium neutrino mass. In addition, \(\mathcal{N}(K_1) \) represents the number density of the lightest right-handed Majorana neutrino, which interpolates between the maximal number densities \(N_{eq} = 3/4 \) and \(N(K_1) = 9\pi K_1/16 \) for strong and weak washout regions, respectively.

Note that the formulas listed above are only valid for the flavor-independent leptogenesis mechanism. The flavor-dependent effects will become relevant if thermal leptogenesis takes place at temperatures below \(M_L \sim 10^{12} \) GeV [22,23]. We shall assume \(M_L > 10^{12} \) GeV for two phenomenological scenarios to be discussed in the subsequent sections, such that flavor effects on leptogenesis can be safely neglected.

III. SCENARIO (A)

Scenario (A) is based on three assumptions: (1) \(\kappa' \sim 0 \) in Eq. (3), such that \(M_\nu \simeq \kappa \tilde{Y}_\nu \) and \(M_D \simeq \kappa Y_\nu \) (with \(\kappa \simeq v \simeq 174 \) GeV) are both symmetric; (2) \(Y_\nu = \tilde{Y}_\nu \) is diagonal, or equivalently \(M_D = v \text{Diag}\{y_e, \mu, \tau\} = \text{Diag}\{m_e, m_\mu, m_\tau\} \); and (3) \(\mathcal{F} \) takes the FL texture as shown in Eq. (5). The first assumption is consistent with the general expectation \(\kappa' \ll \kappa \) in the left-right symmetric model [24], while the second and third ones are purely phenomenological. In these assumptions, the effective neutrino mass matrix \(M_\nu \) in Eq. (4) can be explicitly expressed as

\[
M_\nu = v_L \begin{pmatrix}
 b + c & -b & -c \\
 -b & a + b & -a \\
 -c & -a & a + c
\end{pmatrix} + dI - \frac{v^2}{v_R S} \begin{pmatrix}
 y_e^2 (\hat{\beta} + \hat{c}) & -y_e y_\mu \hat{b} & -y_e y_\tau \hat{c} \\
 -y_e y_\mu \hat{b} & y_\mu^2 (\hat{a} + \hat{b}) & -y_\mu y_\tau \hat{a} \\
 -y_e y_\tau \hat{c} & -y_\mu y_\tau \hat{a} & y_\tau^2 (\hat{a} + \hat{c})
\end{pmatrix} + \frac{1}{d} \begin{pmatrix}
 y_e^2 & 0 & 0 \\
 0 & y_\mu^2 & 0 \\
 0 & 0 & y_\tau^2
\end{pmatrix},
\]

where \(\hat{a}, \hat{b}, \hat{c} \) and \(S \) are simple functions of the parameters of \(\mathcal{F} \):

\[
S = d \left[d^2 + 2 (a + b + c) d + 3 (ab + bc + ac) \right],
\]

\[
\hat{a} = \frac{1}{S} [-ad - (ab + bc + ac)],
\]

\[
\hat{b} = \frac{1}{S} [-bd - (ab + bc + ac)],
\]

\[
\hat{c} = \frac{1}{S} [-cd - (ab + bc + ac)].
\]

Note that the vevs of the Higgs bi-doublet and triplets are related with one another through \(v_L v_R = \gamma v^2 \) in the left-right symmetric model [6], where \(\gamma \) depends on the Higgs potential of the model and is usually expected to be \(\mathcal{O}(1) \). Typically choosing \(v_L \sim 0.1 \) eV [13], we may simplify Eq. (14) and get an approximate expression of \(M_\nu \) as follows:

\[
M_\nu \simeq v_L \begin{pmatrix}
 b + c & -b & -c \\
 -b & a + b & -a \\
 -c & -a & a + c
\end{pmatrix} + dI - \Delta \begin{pmatrix}
 0 & 0 & 0 \\
 0 & r^2 & -r \\
 0 & -r & 1
\end{pmatrix},
\]

where \(\Delta = \text{Diag}\{\Delta_1, \Delta_2, \Delta_3\} \).
where \(r \approx y_\mu /y_\tau \) and \(\Delta \approx y_\tau^2(\hat{a} + d^{-1})/\gamma \). Because of \(y_\tau^2 \approx 10^{-4} \), the \(\Delta \)-term in Eq. (16) is strongly suppressed. It is therefore a good approximation to take \(M_\nu \approx M_L \) (i.e., only the first two terms on the right-hand side of Eq. (16) are kept). In this case, \(M_\nu \) has the FL texture and can be diagonalized by using the unitary matrix \(U \) given in Eq. (6). Three light (left-handed) Majorana neutrino masses turn out to be \(m_i = v_L f_i \) (for \(i = 1, 2, 3 \)), where \(f_i \) can be found from Eq. (8). Comparing \(m_i \) with the masses of three right-handed Majorana neutrinos \(M_i = v_R f_i \), we immediately arrive at \(M_i/m_i = v_R/v_L \) in scenario (A). Since \(M_1 < M_2 < M_3 \) has been required in discussing leptogenesis, \(m_1 < m_2 < m_3 \) must hold (i.e., the light Majorana neutrinos have a normal mass hierarchy). Furthermore, three neutrino mixing angles are given as

\[
\sin \theta_{12} = \frac{1}{\sqrt{2 + \cos 2\theta}},
\sin \theta_{23} = \frac{\sqrt{2 + \cos 2\theta - \sqrt{3} \sin 2\theta \cos \delta}}{\sqrt{2(2 + \cos 2\theta)}},
\sin \theta_{13} = \frac{2}{\sqrt{6}} \sin \theta \quad (17)
\]

in the standard parametrization [5]. The CP-violating phases of \(U \) have been presented in Eqs. (7) and (9), from which one may define \(\rho = \phi_1 - \phi_3 \) and \(\sigma = \phi_2 - \phi_3 \) as two independent Majorana phases [25]. In view of \(\theta_{13} < 10^\circ \) as constrained by a global analysis of current experimental data [15], we obtain \(\theta < 12.2^\circ \) from Eq. (17). The smallness of \(\theta \) implies that \(\sin \theta_{12} \approx 1/\sqrt{3} \) (or \(\theta_{12} \approx 35.3^\circ \)) and \(\sin \theta_{23} \approx 1/\sqrt{2} \) (or \(\theta_{23} \approx 45^\circ \)) are excellent approximations; i.e., \(U \) is a nearly tri-bimaximal neutrino mixing pattern and is strongly favored by the solar and atmospheric neutrino oscillation measurements.

Now let us consider leptogenesis in scenario (A). As one can see from Eq. (10), the CP-violating asymmetry \(\varepsilon_1 \) depends on the \((1, 1)\), \((1, 2)\) and \((1, 3)\) entries of \(\hat{M}_D \hat{M}_D \) as well as the \((1, 1)\) entry of \(\hat{M}_D^\dagger \hat{M}_L \hat{M}_D^\ast \), where \(\hat{M}_D = M_D U^\ast \) with \(U \) being determined in Eq. (6). A straightforward calculation yields

\[
(\hat{M}_D^\dagger \hat{M}_D)_{11} \approx m_\tau^2 \left(\frac{1}{3} - \frac{1}{6} \cos 2\theta - \frac{1}{2\sqrt{3}} \sin 2\theta \cos \delta \right),
(\hat{M}_D^\dagger \hat{M}_D)_{12} \approx m_\tau^2 \left(- \frac{1}{3\sqrt{2}} \cos \theta + \frac{1}{\sqrt{6}} \sin \theta e^{i\delta} \right) e^{i(\rho - \sigma)} ,
(\hat{M}_D^\dagger \hat{M}_D)_{13} \approx m_\tau^2 \left(\frac{1}{2\sqrt{3}} \cos^2 \theta - \frac{1}{6} \sin 2\theta e^{i\delta} - \frac{1}{2\sqrt{3}} \sin^2 \theta e^{2i\delta} \right) e^{i\rho} ; \quad (18)
\]

and

\[
(\hat{M}_D^\dagger \hat{M}_L \hat{M}_D^\ast)_{11} \approx m_\tau^2 e^{2i(\phi_1 + \phi_3)} \left[m_1 \left(\frac{1}{6} \cos^2 \theta - \frac{1}{2\sqrt{3}} \sin 2\theta e^{i\delta} + \frac{1}{2} \sin^2 \theta e^{2i\delta} \right)^2 e^{2i\rho}
+ m_2 \left(\frac{1}{3\sqrt{2}} \cos \theta - \frac{1}{\sqrt{6}} \sin \theta e^{i\delta} \right)^2 e^{2i\sigma}
+ m_3 \left(\frac{1}{2\sqrt{3}} \cos 2\theta + \frac{1}{12} \sin 2\theta e^{-i\delta} - \frac{1}{4} \sin 2\theta e^{i\delta} \right)^2 \right] , \quad (19)
\]
where the terms proportional to m_e^2 and those proportional to m_μ^2 have been omitted by taking account of $m_e^2 \ll m_\mu^2 \ll m_\tau^2$. Eqs. (18) and (19) allow us to calculate the CP-violating asymmetry ε_1 via Eq. (10) and the baryon number asymmetry η_B via Eqs. (11), (12) and (13) in scenario (A).

For simplicity, we only consider a special but interesting parameter space in our numerical analysis. We assume that a, b and c are real, d is complex and $b = c$ holds. The physical roles of different parameters in this simple example are rather clear: (1) real a, b and c result in the exact tri-bimaximal mixing [19]; (2) $m_2 \simeq v_L|d|$ fixes the mass scale and spectrum of three left-handed Majorana neutrinos; (3) the phase of d is the only source of CP violation which leads to non-vanishing ε_1 and η_B; and (4) the Δ-induced term in Eq. (16) is essentially negligible. We generate the input points of those free parameters by scanning their possible ranges according to a flat random number distribution. Hence the output points will be a clear reflection of the strong constraints, imposed by scenario (A) itself and by current neutrino oscillation data, on relevant parameters. The following experimental data have been taken into account in our calculations: $30^6 \leq \theta_{12} \leq 38^6$, $36^6 \leq \theta_{23} \leq 54^6$ and $\theta_{13} < 10^9$ as well as $\Delta m^2_{21} \equiv m_2^2 - m_1^2 = (7.2 \cdots 8.9) \times 10^{-5} \text{ eV}^2$ and $\Delta m^2_{32} \equiv m_3^2 - m_2^2 = \pm(2.1 \cdots 3.1) \times 10^{-3} \text{ eV}^2$ [15]. We numerically demonstrate that this scenario can successfully account for the cosmological baryon number asymmetry and have no conflict with the neutrino oscillation measurements. Some results are summarized below.

- In FIG. 1 we show the predicted values of η_B changing with M_1, the mass of the lightest right-handed Majorana neutrino. We find that the observationally-allowed range of η_B (i.e., $\eta_B = (6.1 \pm 0.2) \times 10^{-10}$ [10]) can be reproduced from the flavor-independent leptogenesis in the chosen parameter space with $4.9 \times 10^{12} \text{ GeV} \leq M_1 \leq 7.7 \times 10^{14} \text{ GeV}$. In particular, $M_1 \sim 10^{14} \text{ GeV}$ is most favored.

- Taking $M_1 = 10^{14} \text{ GeV}$ for example, we are able to fix $a = \pm(0.17 \cdots 0.33)$, $b = c = \pm(0.023 \cdots 0.037)$, $|d| = (0.085 \cdots 0.099)$ and $\text{arg}(d) = \pm(1.0^6 \cdots 18.3^6)$. The values of these parameters are not sensitive to the change of M_1 in its allowed range. It is worth remarking that the constraint on $|d|$ comes mainly from the choice $v_L \sim 0.1 \text{ eV}$ and the requirement $M_1 < M_2 < M_3$, which is equivalent to $m_1 < m_2 < m_3$. On the other hand, $\text{arg}(d)$ is restricted by both η_B and the neutrino oscillation data.

- Given $v_R = 10^{16} \text{ GeV}$ for instance, the mass spectrum of three light Majorana neutrinos is $m_1 = (0.55 \cdots 1.0) \times 10^{-3} \text{ eV}$, $m_2 = (8.5 \cdots 9.8) \times 10^{-3} \text{ eV}$ and $m_3 = (4.2 \cdots 5.8) \times 10^{-2} \text{ eV}$; and that of three heavy Majorana neutrinos is $M_1 = (0.55 \cdots 1.0) \times 10^{14} \text{ GeV}$, $M_2 = (8.5 \cdots 9.8) \times 10^{14} \text{ GeV}$ and $M_3 = (4.2 \cdots 5.8) \times 10^{15} \text{ GeV}$. The normal hierarchy of m_i implies that the effective mass of the neutrinoless double-beta decay $\langle m \rangle_{ee}$ must be at the $\mathcal{O}(10^{-3})$ eV level [15], which is far below the present experimental upper bound $\langle m \rangle_{ee} < 0.35 \text{ eV}$ [5].

Because of $b = c$ and the smallness of Δ taken in our numerical calculations, the neutrino mixing matrix is essentially the tri-bimaximal mixing pattern with a vanishingly small value of θ_{13}. Hence there is no observable effect of CP violation in neutrino oscillations. A detailed analysis of the FL texture with $b \neq c$ can be found in Ref. [17]. Here we make a numerical check about the possible influence of $b \neq c$ on η_B in scenario (A). We find that the result shown in FIG. 1 is actually not sensitive to the small difference between b and c. 8
IV. SCENARIO (B)

Scenario (B) is based on three assumptions: (1) $\kappa' \sim 0$ in Eq. (3), such that $M_e \simeq \kappa Y_t$ and $M_D \simeq \kappa Y'_t$ (with $\kappa \simeq v \simeq 174$ GeV) are both symmetric; (2) Y'_t is diagonal, but Y_t takes the FL texture and its parameters are all real; and (3) F takes the FL texture as given in Eq. (5). The first and second assumptions allow us to write out M_D as follows:

$$M_D = v \left[\begin{pmatrix} b' + c' & -b' & -c' \\ -b' & a' + b' & -a' \\ -c' & -a' & a' + c' \end{pmatrix} + d'I \right]. \quad (20)$$

As a', b', c' and d' are all assumed to be real, it is easy to diagonalize M_D by using the transformation $V^\dagger M_D V = \text{Diag}\{D_1, D_2, D_3\}$, where

$$V' = \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \end{pmatrix} \begin{pmatrix} \cos \theta' & 0 & \sin \theta' \\ 0 & 1 & 0 \\ -\sin \theta' & 0 & \cos \theta' \end{pmatrix}. \quad (21)$$

Similar to θ in Eq. (7), the rotation angle θ' can also be determined in terms of a', b', c' and d'. Taking account of Eqs. (5) and (20), we calculate the effective Majorana neutrino mass matrix M_ν by means of the Type-II seesaw formula in Eq. (4). We find that M_ν has the FL texture as F and M_D do:

$$M_\nu = v_L \left[\begin{pmatrix} \tilde{b} + \tilde{c} & -\tilde{b} & -\tilde{c} \\ -\tilde{b} & \tilde{a} + \tilde{b} & -\tilde{a} \\ -\tilde{c} & -\tilde{a} & \tilde{a} + \tilde{c} \end{pmatrix} + \tilde{d}I \right], \quad (22)$$

where

$$\tilde{a} = - \left\{ \gamma d \left[d^2 + 2(a + b + c)d + 3(bc + ab + ac) \right] \right\}^{-1} \left\{ a'd(a' + d') [3(b + c) + 2d] + d[a'b' (3c + d) + a'c' (3b + d) - b'c' (3a + d)] - d'd[b' (a - c) + c' (a - b)] \right\} + a, \quad (23)$$

$$\tilde{b} = - \left\{ \gamma d \left[d^2 + 2(a + b + c)d + 3(bc + ab + ac) \right] \right\}^{-1} \left\{ b'd (b' + d') [3(a + c) + 2d] + d[a'b' (3c + d) + b'c' (3a + d) - a'c' (3b + d)] - d'd[a' (b - c) + c' (b - a)] \right\} + b, \quad (23)$$

$$\tilde{c} = - \left\{ \gamma d \left[d^2 + 2(a + b + c)d + 3(bc + ab + ac) \right] \right\}^{-1} \left\{ c'd (c' + d') [3(a + b) + 2d] + d[a'c' (3b + d) + b'c' (3a + d) - a'b' (3c + d)] - d'd[a' (c - b) + b' (c - a)] \right\} + c, \quad (23)$$

$$\tilde{d} = - \frac{d'^2}{\gamma d} + d. \quad (23)$$

It is obvious that M_ν can be diagonalized by a unitary transformation $V(\tilde{\theta}, \tilde{\phi}_1, \tilde{\phi}_2, \tilde{\phi}_3)$ which has the same form as U given in Eq. (6). One may simply use Eqs. (7), (8) and (9) to determine the angle and phase parameters of V as well as three neutrino mass eigenvalues m_i, after the replacements $a \to \tilde{a}$, $b \to \tilde{b}$, $c \to \tilde{c}$, $d \to \tilde{d}$ are made.
We proceed to consider leptogenesis in scenario (B). A noteworthy feature of this scenario is that the $(1, 2)$ entry of $\hat{M}_D^\dagger M_D$ vanishes. The non-vanishing $(1, 1)$ and $(1, 3)$ elements of $\hat{M}_D^\dagger M_D$ together with the $(1, 1)$ element of $\hat{M}_D^\dagger M_L \hat{M}_D^*$ are given by

\[
\begin{aligned}
(\hat{M}_D^\dagger \hat{M}_D)_{11} &= D_1^2 \cos^2 (\theta - \theta') + D_3^2 \sin^2 (\theta - \theta') + (D_3^2 - D_1^2) \sin 2\theta \sin 2\theta' \sin^2 \frac{\delta}{2}, \\
(\hat{M}_D^\dagger \hat{M}_D)_{13} &= \frac{1}{2} (D_3^2 - D_1^2) \left[\sin 2\theta \cos 2\theta' - \sin 2\theta' \left(\cos^2 \theta - \sin^2 \theta e^{2i\delta} \right) \right] e^{i\phi};
\end{aligned}
\tag{24}
\]

and

\[
(\hat{M}_D^\dagger M_L \hat{M}_D^*)_{11} = m_1 T_1^2 + m_3 T_3^2,
\tag{25}
\]

where

\[
T_1 = \left[D_1 \left(\cos \theta \cos \theta' + \sin \theta \sin \theta' e^{-i\delta} \right)^2 + D_3 \left(\cos \theta \sin \theta' - \sin \theta \cos \theta' e^{i\delta} \right)^2 \right] e^{2i\phi_1},
\]

\[
T_3 = \frac{1}{2} \left[D_1 \left(- \cos 2\theta \sin 2\theta' + \sin 2\theta \cos 2\theta' e^{-i\delta} + \sin 2\theta' \cos 2\theta' e^{i\delta} \right) \right] e^{i(\phi_1 + \phi_3)}.
\tag{26}
\]

We remark that the CP-violating phases come from \mathcal{F}. In addition, Eq. (24) shows that the CP-violating asymmetry $\varepsilon_1^{(1)}$ directly depends on θ (from \mathcal{F}), θ' and $D_3^2 - D_1^2$ (from M_D). If these three quantities are very small, $\varepsilon_1^{(1)}$ will be strongly suppressed.

Now we carry out a numerical analysis of neutrino mixing and leptogenesis in scenario (B), just for the purpose of illustration. We assume that a, b and c are real but d is complex. Furthermore, we assume $a' = a$ and $b' = b = c' = c$ in order to simplify the calculations. The only source of CP violation is the phase of d, similar to the situation in scenario (A). It is easy to see that $b' = b = c' = c$ leads to $\theta = \theta' = 0$, and thus $\varepsilon_1^{(1)}$ vanishes. Non-zero η_B is attributed to non-zero $\varepsilon_1^{(2)}$ in this scenario. Our numerical results are consistent with both the observational data on η_B [10] and the experimental data on two neutrino mass-squared differences and three mixing angles [15]. Some comments are in order.

- In FIG. 2 we show the predicted values of η_B changing with M_1. We see that the observationally-allowed range of η_B can be reproduced from the flavor-independent leptogenesis in the chosen parameter space with 6×10^{12} GeV $\leq M_1 \leq 1 \times 10^{16}$ GeV, where higher values of M_1 have been cut off.

- Taking $M_1 = 10^{14}$ GeV for example, we arrive at the allowed regions for the parameters of \mathcal{F} and M_D: $a = \pm(0.20 \cdots 0.28)$, $b = c = \pm(0.026 \cdots 0.049)$, $|d| = (0.085 \cdots 0.097)$ and $\arg(d) = (0.23^\circ \cdots 5.7^\circ)$ together with $d' = (0 \cdots 0.3)$.

- As a consequence of $b' = b = c' = c$, the neutrino mixing matrix is exactly the tribimaximal mixing pattern with $\theta_{12} = 35.3^\circ$, $\theta_{23} = 45^\circ$ and $\theta_{13} = 0^\circ$. Hence there is no CP violation in neutrino oscillations. Given $v_R = 10^{17}$ GeV for instance, the mass spectra of light and heavy Majorana neutrinos are $m_1 = (5.8 \cdots 9.7) \times 10^{-4}$ eV, $m_2 = (8.5 \cdots 9.5) \times 10^{-3}$ eV, $m_3 = (4.2 \cdots 5.8) \times 10^{-2}$ eV and $M_1 = (5.8 \cdots 9.7) \times 10^{13}$ GeV, $M_2 = (8.8 \cdots 9.7) \times 10^{14}$ GeV, $M_3 = (4.3 \cdots 6.0) \times 10^{15}$ GeV, respectively.

Again, the normal hierarchy of m_i implies that the effective mass of the neutrinoless double-beta decay $\langle m \rangle_{ee}$ can only reach the $\mathcal{O}(10^{-3})$ eV level.
V. SUMMARY

We have proposed two viable Type-II seesaw scenarios for the neutrino mass matrix in the left-right symmetric model. The most salient feature of our scenarios is that the Higgs triplet Yukawa coupling matrix F takes the intriguing Friedberg-Lee texture. In the basis where the charged-lepton mass matrix M_e is diagonal, the Dirac neutrino mass matrix M_D has been assumed to be identical to M_e in scenario (A) and to take the FL texture in scenario (B). We have shown that the nearly tri-bimaximal neutrino mixing pattern, which is particularly favored by current neutrino oscillation data, can be naturally derived from both scenarios. Requiring the lightest right-handed Majorana neutrino mass M_1 to be above 10^{12} GeV, we have demonstrated the parameter space of each scenario in which the cosmological baryon number asymmetry can be interpreted via the flavor-independent leptogenesis mechanism.

It is worth emphasizing that some of the assumptions made for the above Type-II seesaw scenarios are just for the sake of simplicity. Hence they are not demanded in more general cases. For example, one may discuss the flavor-dependent thermal leptogenesis to account for the observed baryon number asymmetry of the Universe by allowing M_1 to be below 10^{12} GeV [23]. One may also allow all the parameters of F to be complex and independent, in order to generate an experimentally appreciable value for the smallest neutrino mixing angle θ_{13} and to give rise to the observable effect of CP violation in neutrino oscillations. In this sense we conclude that our scenarios, which are associated with the left-right gauge symmetry and its spontaneous breaking as well as the FL flavor symmetry and its explicit breaking, have very rich implications and consequences in neutrino phenomenology.

ACKNOWLEDGMENTS

One of us (Z.Z.X.) would like to thank A.H. Chan and C.H. Oh for warm hospitality at the National University of Singapore, where this paper was written. We are also grateful to H. Zhang and S. Zhou for useful discussions. Our research was supported in part by the National Nature Science Foundation of China.
REFERENCES

[1] SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002).
[2] For a review, see: C.K. Jung et al., Ann. Rev. Nucl. Part. Sci. 51, 451 (2001).
[3] KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003).
[4] K2K Collaboration, M.H. Ahn et al., Phys. Rev. Lett. 90, 041801 (2003).
[5] Particle Data Group, W.M. Yao et al., J. Phys. G 33, 1 (2006); and references therein.
[6] J.C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974); R.N. Mohapatra and J.C. Pati, Phys. Rev. D 11, 566 (1975); Phys. Rev. D 11, 2558 (1975); G. Senjanovic and R.N. Mohapatra, Phys. Rev. D 12, 1502 (1975).
[7] T.D. Lee, hep-ph/0605017; Chinese Phys. 15, 1009 (2006).
[8] E.Kh. Akhmedov and M. Frigerio, Phys. Rev. Lett. 96, 061802 (2006); JHEP 0701, 043 (2007).
[9] R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); J. Schechter and J.W.F. Valle, Phys. Rev. D 22, 2227 (1980); M. Magg and C. Wetterich, Phys. Lett. B 94, 61 (1980); G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B 181, 287 (1981).
[10] D.N. Spergel, et. al., astro-ph/0603449.
[11] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[12] See, e.g., E. Ma and U. Sarkar, Phys. Rev. Lett. 80, 5716 (1998); T. Hambye, E. Ma, and U. Sarkar, Nucl. Phys. B 602, 23 (2001); T. Hambye, M. Raidal, and A. Strumia, Phys. Lett. B 632, 667 (2006).
[13] A. Joshipura, E.A. Paschos and W. Rodejohann, Nucl. Phys. B 611, 227 (2001); JHEP 0108, 029 (2001).
[14] W. Rodejohann and K.R.S. Balaji, Phys. Rev. D 65, 093005 (2002); W. Rodejohann and Z.Z. Xing, Phys. Lett. B 601, 176 (2004); M. Frank, Phys. Rev. D 70, 036004 (2004); N. Sahu and S. Uma Sankar, Phys. Rev. D 71, 013006 (2005); Nucl. Phys. B 724, 329 (2005); M.C. Chen and K.T. Mahanthappa, Phys. Rev. D 71, 035001 (2005); N. Sahu and U. Sarkar, Phys. Rev. D 74, 093002 (2006); P. Hostiens, S. Lavignac and C.A. Savoy, Nucl. Phys. B 755 137 (2006); K.S. Babu, A. Bachri and H. Aissaoui, Nucl. Phys. B 738, 76 (2006); M.C. Chen and K.T. Mahanthappa, Phys. Rev. D 75, 015001 (2007); E. Akhmedov, M. Blennow, T. Hallgren, T. Konstandin and T. Ohlsson, hep-ph/0612194; Y. Wakabayashi, hep-ph/0702261; M. Lindner and W. Rodejohann, hep-ph/0703171.
[15] A. Strumia and F. Vissani, hep-ph/0606054.
[16] R. Friedberg and T.D. Lee, High Energy Phys. Nucl. Phys. 30, 591 (2006), hep-ph/0606071.
[17] Z.Z. Xing, H. Zhang, and S. Zhou, Phys. Lett. B 641, 189 (2006); S. Luo and Z.Z. Xing, Phys. Lett. B 646, 242 (2007).
[18] B. Hu, F. Wu, and Y.L. Wu, hep-ph/0612344.
[19] P.F. Harrison, D.H. Perkins, and W.G. Scott, Phys. Lett. B 530, 167 (2002); Z.Z. Xing, Phys. Lett. B 533, 85 (2002); P.F. Harrison and W.G. Scott, Phys. Lett. B 535, 163 (2002); X.G. He and A. Zee, Phys. Lett. B 560, 87 (2003).
[20] T. Hambye and G. Senjanovic, Phys. Lett. B 582, 73 (2004); S. Antusch and S.F. King, Phys. Lett. B 597, 199 (2004); P.H. Gu and X.J. Bi, Phys. Rev. D 70, 063511 (2004).
[21] W. Buchmuller, P. Di Bari, and M. Plumacher, Annals Phys. 315, 305 (2004); New. J. Phys. 6, 105 (2004); S. Blanchet and P. Di Bari, JCAP 0606, 023 (2006).

[22] See, e.g., R. Barbieri, P. Creminelli, A. Strumia, and N. Tetradis, Nucl. Phys. B 575, 61 (2000); T. Endoh, T. Morozumi, and Z.H. Xiong, Prog. Theor. Phys. 111, 123 (2004); T. Fujihara, S. Kaneko, S. Kang, D. Kimura, T. Morozumi, and M. Tanimoto, Phys. Rev. D 72, 016006 (2005); A. Pilaftsis and T.E.J. Underwood, Phys. Rev. D 72, 113001 (2005); O. Vives, Phys. Rev. D 73, 073006 (2006); A. Abada, S. Davidson, F.X. Josse-Michaux, M. Losada, and A. Riotto, JCAP 0604, 004 (2006); E. Nardi, Y. Nir, E. Roulet, and J. Racker, JHEP 0601, 164 (2006); A. Abada, S. Davidson, F.X. Josse-Michaux, M. Losada, and A. Riotto, hep-ph/0605281; S. Blanchet and P. Di Bari, hep-ph/0607330; S. Antusch, S.F. King, and A. Riotto, JCAP 0611, 011 (2006); S. Pascoli, S.T. Petcov, and A. Riotto, hep-ph/0609125; G.C. Branco, R. Gonzalez Felipe, and F.R. Joaquim, Phys. Lett. B 645, 432 (2007); S. Antusch and A.M. Teixeira, JCAP 0702, 024 (2007).

[23] S. Antusch, arXiv:0704.1591.

[24] See, e.g., R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Physics and Astrophysics, second edition (World Scientific, 1998); Y. Zhang, H. An, X. Ji, and R.N. Mohapatra, arXiv:0704.1662.

[25] H. Fritzsch and Z.Z. Xing, Phys. Lett. B 517, 363 (2001); Z.Z. Xing, Int. J. Mod. Phys. A 19, 1 (2004).
FIG. 1. Illustrative plot for η_B changing with M_1 in scenario (A). Here the dashed band stands for the observationally-allowed range of η_B.

FIG. 2. Illustrative plot for η_B changing with M_1 in scenario (B). Here the dashed band stands for the observationally-allowed range of η_B.