Anaplastic large cell lymphoma, with 1,25(OH)2D3-mediated hypercalcemia: A case report

Masaki Mitobe,1) Keisuke Kawamoto,1) Takaharu Suzuki,1) Maiko Kiryu,1) Ayako Nanba,1) Tatsuya Suwabe,1) Tomoyuki Tanaka,1) Kyoko Fuse,1) Yasuhiro Shibasaki,1) Masayoshi Masuko,1) Hiroaki Miyoshi,2) Koichi Ohshima,2) Hirohito Sone,1) and Jun Takizawa1)

Hypercalcemia due to malignant tumors including malignant lymphomas is relatively common. Among cancer patients with hypercalcemia, humoral hypercalcemia of malignancy is the most common and accounts for about 80% of all cases with hypercalcemia. 1,25-dihydroxyvitamin D3(1,25(OH)2D3)-mediated hypercalcemia is relatively rare. Although malignant lymphoma has also been reported to cause 1,25(OH)2D3-mediated hypercalcemia, it is not known whether there is any association between 1,25(OH)2D3-mediated hypercalcemia and any specific histological type of malignant lymphoma. We herein report a case of an anaplastic large cell lymphoma (ALCL), anaplastic lymphoma kinase (ALK) -negative with 1,25(OH)2D3-mediated hypercalcemia, which has never been previously reported. An 80-year-old Japanese man was admitted to our department due to acute exacerbation of hypercalcemia. He was diagnosed with ALCL, ALK-negative. Serum 1,25(OH)2D3 level was high and seemed to be associated with the lymphoma because the serum calcium and 1,25(OH)2D3 levels improved in response to chemotherapy. Histological findings showed that many CD68 positive macrophages were observed in the microenvironment of tumor cells. Lymphoma cells or tumor microenvironmental cells may produce 1,25(OH)2D3 because several previous reports showed the source of 1,25(OH)2D3 can be either lymphoma or tumor microenvironmental cells. Moreover, because 1,25(OH)2D3-mediated hypercalcemia has been reported regardless of the specific histological type of lymphoma, tumor microenvironmental cells may be involved in this condition. However, we could not identify the source of 1,25(OH)2D3 in this case. The association between 1,25(OH)2D3 production and prognosis in malignant lymphomas is yet unknown; further studies are needed to elucidate the clinical characteristics of malignant lymphoma with 1,25(OH)2D3-mediated hypercalcemia.

Keywords: 1,25-dihydroxyvitamin D3, hypercalcemia, anaplastic large cell lymphoma

INTRODUCTION

Hypercalcemia due to malignancy is relatively common and occurs in approximately 20-30 percent patients with cancer.1 The pathogenesis of hypercalcemia due to malignancy is classified into three categories: humoral hypercalcemia of malignancy (HHM) due to parathyroid hormone related protein (PTHrP) secreted by tumor, local osteolytic hypercalcemia (LOH) caused by bone invasion, and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-mediated hypercalcemia.2,3 Among these categories, HHM is the most common, accounting for about 80% of all cases with hypercalcemia.4 Although multiple myeloma and adult T-cell leukemia/lymphoma are common hematological malignancies that cause hypercalcemia, malignant lymphoma can also be a cause of hypercalcemia.5 In a previous report, approximately 5% patients with Hodgkin lymphomas (HL) and 13% patients with non-Hodgkin lymphomas (NHL) showed hypercalcemia.6 1,25(OH)2D3-mediated hypercalcemia was reported to be the most frequent in HL cases; almost all cases of hypercalcemia due to HL showed high serum 1,25(OH)2D3 level.6 On the other hand, HHM has been frequently observed in NHL cases;7 one study observed high serum 1,25(OH)2D3 levels only in one third of NHL cases with hypercalcemia.8 In addition, the association between specific histological type of NHL and 1,25(OH)2D3 has not been confirmed, and cases of anaplastic large cell lymphoma (ALCL) with 1,25(OH)2D3-mediated hypercalcemia has not been reported.

We herein report a case of hypercalcemia due to ALCL,
ALK-negative, which seems to be producing 1,25(OH)₂D₃.

CASE REPORT

The patient was an 80-year-old Japanese man with a past medical history of hypertension, dyslipidemia, and acute myocardial infarction (percutaneous coronary intervention was performed 4 years ago). He presented with right cervical lymphadenopathy and cervical pain 1 month before admission and visited a local clinic. He was administered cefcapene pivoxil and prednisolone; however, the symptoms did not improve. Three days before admission, he was referred to our hospital; his blood test showed the following results: corrected serum calcium level, 13.0 mg/dL; C-reactive protein (CRP) level, 6.87 mg/dL; and lactate dehydrogenase (LDH) level, 1453 IU/L. Serum calcium level increased rapidly to 14.0 mg/dL in 3 days and he was hospitalized urgently.

On admission, his consciousness was lucid, body temperature was 36.9°C, blood pressure was 116/77 mmHg, pulse rate was 66/min, and oxygen saturation was 94% on room air. Eye examination showed no anemia or jaundice. Head and neck examination revealed right mandibular and cervical lymphadenopathies, sized 10-20 mm, with tenderness. No other palpable superficial lymph nodes were found. Breath and heart sounds were normal. Abdominal examination showed no hepatosplenomegaly. Pitting edema was confirmed in the lower extremities. His general condition was poor, and Eastern Cooperative Oncology Group Performance Status (ECOG-PS) was 4. B symptoms (fever, night sweats, poor appetite) were not observed.

In the laboratory data (Table 1), blood examination revealed that 1,25(OH)₂D₃ level was high, 25-hydroxyvitamin D₃ level was normal, intact parathyroid hormone level was low, PTHrP was not detected, calcitonin level was normal, and angiotensin-converting enzyme level was low. Serum monoclonal protein and urine Bence-Jones protein were not detected. Human T-cell Leukemia Virus type 1 antibody and QuantiFERON® tests were negative.

Computed tomography (CT) showed lymphadenopathies in the right neck, right supraclavicular, superior mediastinal, and right axillary nodes, and under the tracheal branch and pancreas head. Evident neoplastic bone lesions were not found (Figure 1).

On the 1st hospital day, we started massive saline infusion, furosemide, and calcitonin derivative to improve hypercalcemia. Cervical lymph node biopsy was performed on the 5th hospital day. Hematoyxlin-eosin staining showed large abnormal lymphocytes in the lymph node. Immunohistochemistry revealed that tumor cells were CD3 negative, CD20 negative, CD4 positive, CD8 negative, CD30 positive, ALK negative, TIA-1 positive, PAX5 negative, CD68 negative, AE1/AE3 negative, and Granzyme B negative. In addition, CD68-positive cells, which were considered to be macrophage- or monocyte-like cells, were observed in the microenvironment of tumor cells (Figure 2). Chromosomal abnormalities could not be detected from G-banding because enough metaphase cells were not obtained. Bone marrow biopsy showed no tumor invasion. Based on the above findings, he was diagnosed with ALCL, ALK-negative (Clinical stage: IIIA, International Prognostic Index (IPI); high-risk).

Although the most common chemotherapy regimen for ALCL, ALK-negative is CHOP therapy (cyclophosphamide, doxorubicin, vincristine, prednisolone). We investigated the cause of hypercalcemia after admission.

Table 1. Laboratory data on admission

RBC	476×10⁴ /μL	γ-GTP	45 IU/L	IgG	1036 mg/dL
Hb	14.4 g/dL	ALP	275 IU/L	IgA	155 mg/dL
Hct	43.3 %	ChE	189 mg/dL	IgM	142 mg/dL
WBC	5680 /μL	T-Bil	0.6 mg/dL	αPTT	33.0 sec
Neut	80.8 %	BUN	26 mg/dL	PT-INR	1.04
Lym	8.8 %	Cre	1.1 mg/dL	HTLV-1 antibody	(-)
Eos	1.6 %	Na	138 mEq/L	QuantiFERON test	(-)
Bas	0.7 %	K	4.6 mEq/L	Serum M-protein	(-)
Mon	8.1 %	Cl	99 mEq/L	Urine BJP	(-)
Pt	21.6×10⁵ /μL	Ca	14 mg/dL	1,25(OH)₂D₃	227 (20-60) pg/mL
TP	7.1 g/dL	I-P	4.6 mg/dL	25(OH)D₃	16.1 (≤5.15) ng/mL
Alb	3.2 g/dL	CRP	10.16 mg/dL	intact PTH	<3.00 (5-15) pg/mL
AST	217 IU/L	sIL-2R	8685 IU/mL	PTHrP	<1.00 (<1.1) pmol/L
ALT	40 IU/L	Ferritin	690 ng/mL	Calcitonin	2.0 (≤5.15) pg/mL
LDH	1549 IU/L	β2MG	2.0 mg/L	ACE	23.3 (6.6-21.4) IU/L

Mean±SD

RBC: red blood cell, Hb: hemoglobin, Hct: hematocrit, WBC: white blood cell, Neut: neutrophil, Lym: lymphocyte, Eos: eosinophil, Bas: basophil, Mon: monocyte, PLt: platelet, TP: total protein, Alb: albumin, AST: aspartate transaminase, ALT: alanine transaminase, LDH: lactate dehydrogenase, γ-GTP: γ-glutamyl transpeptidase, ALP: alkaline phosphatase, ChE: cholinesterase, T-Bil: total bilirubin, BUN: blood urea nitrogen, Cre: creatinine, I-P: inorganic phosphate, CRP: C-reactive protein, sIL-2R: soluble interleukin-2-receptor, β2MG: β2-microglobulin, APTT: activated partial thromboplastin time, PT-INR: prothrombin time-international normalized ratio, HTLV-1: human T-lymphotropic virus type 1, M-protein: monoclonal protein, BJP: Bence-Jones protein, 1,25(OH)₂D₃: 1,25-dihydroxyvitamin D₃, 25(OH)D₃: 25-hydroxyvitamin D₃, PTH: parathyroid hormone, PTHrP: parathyroid hormone related protein, ACE: angiotensin-converting enzyme.
Fig. 1. Systemic computed tomography (CT) scan images on admission. Systemic CT scan showed lymphadenopathies at (A) right neck, right supraclavicular, superior mediastinal, and right axillary lymph nodes; (B) under tracheal branch; and (C) under tracheal branch. Evident neoplastic bone lesions were not found.

Fig. 2. Pathological images of cervical lymph node biopsy on the 5th hospital day. Hematoxylin-eosin (HE) staining showed large atypical lymphocytes growing in the tissue. Immunostaining revealed that tumor cells were CD3(-), CD20(-), CD4(+), CD8(-), CD30(+), ALK(-), TIA-1(+), PAX5(-), CD68(-), AE1/AE3(-) and Granzyme B(-). CD68-positive histiocytes were observed around the tumor cells.
doxorubicin, vincristine, and prednisolone), we selected THP-COP (thera-rubicin, cyclophosphamide, vincristine, and prednisolone) because the patient had a past medical history of acute myocardial infarction. On the 8th hospital day, ECOG-PS was noted to be very poor; therefore, we started 50% dose of THP-COP. At the end of the 1st cycle of THP-COP, CT showed 70% tumor reduction and we confirmed partial response (PR). His general condition was improving, and his corrected serum calcium and 1,25(OH)₂D₃ returned to the normal range, along with decreases in LDH and soluble interleukin-2 receptor (sIL2-R) levels (Figure 3). On the 28th hospital day, we started the 2nd cycle with a 75% dose of THP-COP. Complete response (CR) with 90% tumor reduction was confirmed by CT at the end of the cycle. On the 48th hospital day, we started the 3rd cycle with 75% dose of THP-COP. On the 51st hospital day, he was discharged because he was able to receive outpatient chemotherapy. His corrected serum calcium level was 9.7 mg/dL and 1,25(OH)₂D₃ level was 31.8 ng/dL. Until the 6th and final cycle of THP-COP, CR was maintained, and corrected serum calcium and 1,25(OH)₂D₃ levels did not increase again. We confirmed complete metabolic response by ¹⁸F-fluorodeoxyglucose positron emission tomography at the end of the 6th cycle (Figure 4). At the latest follow-up 10 months, he has maintained CR.

DISCUSSION

This case showed 1,25(OH)₂D₃-mediated hypercalcemia because serum 1,25(OH)₂D₃ level was high, and multiple myeloma, hyperparathyroidism, medullary thyroid cancer, LOH, or granulomatous disease such as sarcoidosis or tuberculosis were not considered. Response to the treatment for ALCL, ALK-negative (tumor reduction and decreases of LDH and sIL2-R) was correlated to normalizations of corrected serum calcium and 1,25(OH)₂D₃ levels, and they had not increase again in the remission phase (Figure 3). Moreover, as in the previous reports of malignant lymphomas with 1,25(OH)₂D₃-mediated hypercalcemia, responses to treatment for malignant lymphomas were correlated to normalizations of corrected serum calcium and 1,25(OH)₂D₃ levels (Table 2). Responses to treatment for malignant lymphomas were correlated to normalizations of corrected serum calcium and 1,25(OH)₂D₃ levels (Table 2).

25-hydroxyvitamin D₃-1α-hydroxylase (CYP27B1) have been reported to be associated with 1,25(OH)₂D₃ production. CYP27B1 acts primarily on the renal proximal tubules; however, it is also expressed in many extra-renal tissues including macrophages. Expression of CYP27B1 has been also reported in various malignant tumors such as colon cancer, breast cancer, and prostate cancer. In these cancers...
with hypercalcemia, the regulation of CYP27B1 by 1,25(OH)2D3 within a negative feedback loop is believed to be lost in malignant cells because of the gene mutation.19 On the other hand, in granulomatous diseases such as sarcoidosis and tuberculosis, hypercalcemia is induced by the hyperactivity of CYP27B1 in the macrophages in granuloma. This is associated with cytokines such as interferon-γ, tumor necrosis factor-α and interleukin-1,2,15.20-22 In this case, inflammatory reaction involving the elevation of CRP level was observed. Therefore, it can be concluded that macrophages and cytokines might be associated with hypercalcemia.

In previous reports of malignant lymphomas with 1,25(OH)2D3 production (Table 2), two cases expressed CYP27B1. One was expressed in lymphoma cells8 and the other in the macrophages around lymphoma cells.13 As mentioned above, there are two theories as to the pathogenesis of 1,25(OH)2D3 production in lymphoma: CYP27B1 mutation in tumor cells, and CYP27B1 hyperactivity in macrophages around tumor cells; these cases suggest that both theories are possible. The letter theory is possibly associated with cytokines produced by the lymphoma. It is currently unknown whether it is the tumor cells or the tumor microenvironment that produce 1,25(OH)2D3. In our case, ALCL cells or tumor microenvironment were assumed to produce 1,25(OH)2D3 because histiocytes and macrophages were confirmed in the tumor microenvironmental cells (Figure 2). However, we could not identify 1,25(OH)2D3 production in either lymphoma or tumor microenvironmental cells.

Though we could not provide any evidence of a direct relationship between lymphoma and 1,25(OH)2D3 production, we assumed that the lymphoma was associated with 1,25(OH)2D3 levels. The tumor itself, like other malignancies or macrophage-like granulomatous diseases seems to produce 1,25(OH)2D3 because both have been reported previously in malignant lymphoma.8,13

In conclusion, although 1,25-dihydroxyvitamin D3-producing cells in ALCL, ALK-negative could not be directly identified, we demonstrated a case of hypercalcemia.
Year	Previous reports	Onset age	Sex	Classification of the lymphoma	Primary site	Treatment	1,25(OH)2D3 (pg/mL)	Serum calcium (mg/dL)	Treatment response or outcome		
2018	Nakayama S, et al.	78	M	DLBCL (non-GCB)	Nasal cavity	R-CHOP	81.7	59.2	10.4	8.8	CR
2018	Chams S, et al.	83	M	AITL	NA	Untreated	85.4	NA	11.7	NA	Death (PD)
2016	Abaroa-Salvatierra A, et al.	81	M	DLBCL	Adrenal	R-CVP	90	NA	14	NA	Death (PD)
2016	Mir SA, et al.	65	M	DLBCL	Adrenal	R-CHOP	213.4	NA	14.2	8.9	CR
2006	Gupta R, et al.	79	F	Hodgkin lymphoma	Axillary LN	Chemotherapy	248	Normal	21.0	10.7	CR
2003	Hewison M, et al.	75	M	Large intermediate grade BCL	Spleen	Splenectomy	140	20*	12.7	Normal	NA
1999	Adams JS, et al.	29	M	BCL (small non-cleaved)	NA	Hydroxychloroquine†	96*	70*	11.9*	11.5*	NA
1998	Moore JJ, et al.	48	M	DLBCL (T-cell rich)	Para-vertebral	CHOP, BMT	206	Decreased	15.2	Decreased	Death (BMT related)
1991	Scheinman SI, et al.	58	M	angiocentric lymphoma	NA	CHOP	170	Normal	15.1	Normal	CR
1988	Mercier RJ, et al.	40	M	Hodgkin lymphoma	NA	BCVPP	248	21.6	14	Normal	CR
1986	Schaefer K, et al.	74	F	Hodgkin lymphoma	NA	Prednisolone	105*	40*	14.2	8.5*	NA

Table 2. Previous reports of malignant lymphoma with 1,25(OH)2D3-mediated hypercalcemia

DLBCL: diffuse large B-cell lymphoma; GCB: germinal center B-cell-like; AITL: angioimmunoblastic T-cell lymphoma; BCL: B-cell lymphoma; NA: not available; LN: lymph node; R: rituximab; CHOP: cyclophosphamide(CPA), doxorubicin, vincristine(VCR), prednisolone(PSL); CVP: CPA, VCR, PSL; BMT: bone marrow transplantation; BCVPP: carmustine, CPA, vincristine, procarbazine, PSL; Tx: treatment; †: hydroxychloroquine is reported to reduce serum calcium level in sarcoidosis; *: read from figure (value is not stated); CR: complete response; CYP27B1: 25-hydroxyvitamin D3-1α-hydroxylase.
due to the production 1,25(OH)2D3 by ALCL, ALK-negative. To our knowledge, this is the first report of ALCL with 1,25(OH)2D3-mediated hypercalcemia. Further studies and more cases will be needed to investigate the exact pathogenesis of 1,25(OH)2D3 production.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

REFERENCES
1 Stewart AF. Clinical practice. Hypercalcemia associated with cancer. N Engl J Med. 2005; 352 : 373-379.
2 Seymour JF, Gagel RF. Calcitriol: the major humoral mediator of hypercalcemia in Hodgkin’s disease and non-Hodgkin’s lymphomas. Blood. 1993; 82 : 1383-1394.
3 Mirrakhimov AE. Hypercalcemia of malignancy: An update on pathogenesis and management. N Am J Med Sci. 2015; 7 : 483-493.
4 Ratcliffe WA, Ratcliffe JG, Hutchesson AC, Bundred NJ. Role of assays for parathyroid-hormone-related protein in investigation of hypercalcemia. Lancet. 1992; 339 : 164-167.
5 Grauer A. Hypercalcemia associated with hematologic malignancies. Recent Results Cancer Res. 1994; 137 : 114-121.
6 Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms, diagnosis, and treatment. Endocr Rev. 2016; 37 : 521-547.
7 Ikeda K, Ohno H, Hane M, et al. Development of a sensitive two-site immunoradiometric assay for parathyroid hormone-related peptide: evidence for elevated levels in plasma from patients with adult T-cell leukemia/lymphoma and B-cell lymphoma. J Clin Endocrinol Metab. 1994; 79 : 1322-1327.
8 Nakayama S, Matsuda M. 25-Hydroxyvitamin D-1α-hydroxylase- and multiple cytokine-producing diffuse large B-cell lymphoma. J Clin Endocrinol Metab. 1994; 79 : 1322-1327.
9 Chams S, Hajj Hussein I, El Sayegh S, Chams N, Zakaria K. Hypercalcemia as a rare presentation of angioimmunoblastic T cell lymphoma: a case report. J Med Case Rep. 2018; 12 : 101.
10 Abaroa-Salvatierra A, Shaikh B, Deshmukh M, Alweis R, Patel A. Calcitriol-mediated hypercalcemia in a patient with bilateral adrenal non-Hodgkin’s B-cell lymphoma case report. J Community Hosp Intern Med Perspect. 2016; 6 : 30381.
11 Mir SA, Masoodi SR, Wani AI, Nisar Ahmad SN, Hameed I. Calcitriol-mediated Reversible Hypercalcemia in a Patient with Primary Adrenal Lymphoma. Malays J Med Sci. 2016; 23 : 118-122.
12 Gupta R, Neal JM. Hypercalcemia due to vitamin D-secreting hodgkin’s lymphoma exacerbated by oral calcium supplementation. Endocr Pract. 2006; 12 : 227-229.
13 Hewison M, Kantorovich V, Likir HR, et al. Vitamin D-mediated hypercalcemia in lymphoma: evidence for hormone production by tumor-adjacent macrophages. J Bone Miner Res. 2003; 18 : 579-582.
14 Adams JS, Kantorovich V. Inability of short-term, low-dose hydroxychloroquine to resolve vitamin D-mediated hypercalce- mia in patients with B-cell lymphoma. J Clin Endocrinol Metab. 1999; 84 : 799-801.
15 Moore JJ, Isbister JP, Clifton-Bligh P, Eckstein RP. Calcitriol mediated hypercalcemia in a T cell rich B cell lymphoma. Aust N Z J Med. 1998; 28 : 479-480.
16 Scheinman SJ, Kelberman MW, Tatum AH, Zammoff KW. Hypercalcemia with excess serum 1,25 dihydroxyvitamin D in lymphomatoid granulomatosis/angiocentri lymphoma. Am J Med Sci. 1991; 301 : 178-181.
17 Mercier RJ, Thompson JM, Harman GS, Messerschmidt GL. Recurrent hypercalcemia and elevated 1,25-dihydroxyvitamin D levels in hodgkin’s disease. Am J Med. 1988; 84 : 165-168.
18 Schaefer K, Sauge J, Pauls A, von Herrath D. Hypercalcemia and elevated serum 1,25-dihydroxyvitamin D3 in a patient with hodgkin’s lymphoma. Klin Wochenschr. 1986; 64 : 89-91.
19 Höbaus J, Thiem U, Hummel DM, Kallay E. Role of calcium, vitamin D, and the extrarenal vitamin D hydroxylases in carci- nogenesis. Anticancer Agents Med Chem. 2013; 13 : 20-35.
20 Adams JS, Hewison M. Extrarenal expression of the 25-hydroxyvitamin D-1-hydroxylase. Arch Biochem Biophys. 2012; 523 : 95-102.
21 Dusso AS, Kamimura S, Galliemi M, et al. gamma-Interferon- induced resistance to 1,25-(OH)2 D3 in human monocytes and macrophages: a mechanism for the hypercalcemia of various granulomatoses. J Clin Endocrinol Metab. 1997; 82 : 2222-2232.
22 Bikle DD, Patzek S, Wang Y. Physiologic and pathophysiologic roles of extra renal CYP27b1: case report and review. Bone Rep. 2018; 8 : 255-267.