RAINBOW HAMILTON CYCLE IN HYPERGRAPH SYSTEMS

YANGYANG CHENG, JIE HAN, BIN WANG, GUANGHUI WANG, AND DONGLEI YANG

ABSTRACT. Rödl, Ruciński and Szemerédi proved that every n-vertex k-graph H, $k \geq 3$, $\gamma > 0$ and n is sufficiently large, with $\delta_{k-1}(H) \geq (1/2 + \gamma)n$ contains a tight Hamilton cycle, which can be seen as a generalization of Dirac’s theorem in hypergraphs. In this paper, we extend this result to the rainbow setting as follows. A k-graph system $H = \{H_i\}_{i \in [n]}$ is a family of not necessarily distinct k-graphs on the same n-vertex set V, a k-graph G on V is rainbow if $E(G) \subseteq \bigcup_{i \in [n]} E(H_i)$ and $|E(G) \cap E(H_i)| \leq 1$ for $i \in [n]$. Then we show that given $k \geq 3$, $\gamma > 0$, sufficiently large n and an n-vertex k-graph system $H = \{H_i\}_{i \in [n]}$, if $\delta_{k-1}(H_i) \geq (1/2 + \gamma)n$ for $i \in [n]$, then there exists a rainbow tight Hamilton cycle.

1. Introduction

1.1. Dirac-type problems. The problem of finding Hamilton cycles in graphs and hypergraphs is a central area with a profound history. One of the classical theorems in graph theory is the result of Dirac [17] which states that every n-vertex graph with minimum degree at least $n/2$, $n \geq 3$, contains a Hamilton cycle.

A k-uniform hypergraph (k-graph) $H = (V, E)$ consists of a vertex set V and an edge set $E \subseteq V^k$. Berge [8] defined a Hamilton cycle in an n-vertex hypergraph H as a cyclic ordering $v_1 \cdots v_n$ such that for $i \in [n]$, there exist distinct edges e_i of E with $\{v_i, v_{i+1}\} \subseteq e_i$. The degree of a vertex v in the hypergraph, is the number of edges containing v. Bermond et al. [9] studied the existence of Berge Hamilton cycles under the degree condition. In many applications, the notion of Berge Hamilton cycles appears to be not strong enough. Katona and Kierstead [26] defined another type of cycles in hypergraphs, which has been studied extensively.

A k-uniform tight Hamilton cycle $H = (V, E)$ can be seen as a cyclic ordering $v_1 \cdots v_n$ of V in such a way that $\{v_i, \ldots, v_{i+k-1}\} \in E$ for $i \in [n]$. In order to give the Dirac-type results, the definition of degree must be extended. For any $S \subseteq V(H)$, the degree of S in H, denoted by $\deg_H(S)$, is the number of edges containing S. For any integer $\ell \geq 0$, let $\delta_{\ell}(H) := \min\{\deg_H(S) : S \in \binom{V(H)}{\ell}\}$.

Throughout the rest of this paper, we refer to k-uniform tight Hamilton cycles as Hamilton cycles. Katona and Kierstead [26] gave a sufficient condition for finding a Hamilton cycle in a k-graph with minimum $(k-1)$-degree: every n-vertex k-graph H with $\delta_{k-1}(H) > (1 - 1/2k)n + 4 - k - 5/2k$ admits a Hamilton cycle. They conjectured that the bound on the minimum $(k-1)$-degree can be reduced to roughly $n/2$, which was confirmed asymptotically by Rödl, Ruciński and Szemerédi in [43, 44]. The same authors gave the exact version for $k = 3$ in [45].
Theorem 1.1 (\cite{44, 45}). Let \(k \geq 3, \gamma > 0 \) and \(H \) be an \(n \)-vertex \(k \)-graph, where \(n \) is sufficiently large. If \(\delta_{k-1}(H) \geq (1/2 + \gamma)n \) edges, then \(H \) contains a Hamilton cycle. Furthermore, when \(k = 3 \) it is enough to have \(\delta_2(H) \geq \lfloor n/2 \rfloor \).

For more problems and results on Dirac-type problems, we refer the readers to \cite{5, 6, 7, 12, 16, 21, 22, 23, 27, 29, 30, 32, 34, 41} and the recent surveys of Rödl and Ruciński \cite{42}, Simonovits and Szemerédi \cite{46} and Zhao \cite{47}.

1.2. A rainbow setting. The study of rainbow structures in graph systems has not received much attention until recently. Aharoni et al. \cite{1} conjectured a rainbow version of the Dirac’s theorem in graph systems: for \(|V| = n \geq 3 \) and \(G = \{G_i\}_{i \in [n]} \) on \(V \), if \(\delta(G_i) \geq n/2 \) for each \(i \in [n] \), then there exists a rainbow Hamilton cycle: a cycle with edge set \(\{e_1, \ldots, e_n\} \) such that \(e_i \in E(G_i) \) for \(i \in [n] \). This was recently verified asymptotically by Cheng, Wang and Zhao \cite{14}, and completely by Joos and Kim \cite{25}. In \cite{11}, Bradshaw, Halasz, and Stacho strengthened the Joos-Kim result by showing that given an \(n \)-vertex graph system \(G = \{G_i\}_{i \in [n]} \) and each \(G_i \) has minimum degree at least \(n/2 \), \(G \) has exponentially many rainbow Hamilton cycles. Similarly, a degree condition of Moon and Moser \cite{40} for Hamiltonicity in bipartite graphs has been generalized to the rainbow setting by Bradshaw in \cite{10}.

Other recent results on rainbow structures include works on matchings \cite{2, 19, 24, 28, 31, 35, 36, 37, 38}, factors \cite{13, 15, 39} and so on.

For convenience, we use \([i, j] \), \(i, j \in \mathbb{Z} \), to denote the set \(\{i, i+1, \ldots, j\} \). The set \([1, n] \) is denoted by \([n]\) in short.

Definition 1.2. Let \(m \) be an integer and \(H = \{H_i\}_{i \in [m]} \) be a \(k \)-graph system, where each \(H_i \) can be seen as the collection of edges with color \(i \). Then a \(k \)-graph \(G \) on \(V \) is rainbow if \(E(G) \subseteq \bigcup_{i \in [m]} E(H_i) \) and \(|E(G) \cap E(H_i)| \leq 1 \) for \(i \in [m] \).

The main goal of this paper is to give a sufficient condition forcing a rainbow Hamilton cycle in a \(k \)-graph system. For every \(k \geq 3, \gamma > 0 \), we say that an \(n \)-vertex \(k \)-graph system \(H = \{H_i\}_{i \in [n]} \) is a \((k, n, \gamma)\)-graph system if \(\delta_{k-1}(H_i) \geq (1/2 + \gamma)n \) for \(i \in [n] \).

Theorem 1.3. For every \(k \geq 3, \gamma > 0 \), there exists \(n_0 \) such that the following holds for \(n \geq n_0 \). A \((k, n, \gamma)\)-graph system \(H = \{H_i\}_{i \in [n]} \) admits a rainbow Hamilton cycle.

This result can be regarded as a generalization of Theorem 1.1 to the rainbow setting.

2. Notation and Proof Strategy

2.1. Notation. A tight-path \(P = v_1 v_2 \cdots v_t \) is a \(k \)-graph whose vertices can be ordered in such a way that each edge consists of \(k \) consecutive vertices and two consecutive edges intersect in exactly \(k-1 \) vertices. We say that \(P \) connects \((v_1, \ldots, v_{k-1})\) and \((v_t, \ldots, v_{t+k-2})\). The ordered \((k-1)\)-sets \((v_1, \ldots, v_{k-1})\) and \((v_t, \ldots, v_{t+k-2})\) are called the ends of \(P \). In this paper, tight paths are referred as paths for convenience.
Given a k-graph G and a k-graph system $H = \{H_i\}_{i \in [n]}$, we define $\{i : E(H_i) \cap E(G) \neq \emptyset\}$ as the color set $C(G)$ of G. We call $P = x_1 \cdots x_{2k-2}$ a path with color pattern (c_1,\ldots,c_{k-1}) if $\{x_i,\ldots,x_{i+k-1}\} \in E(H_{c_i})$ for $i \in [k-1]$. Recall that P is rainbow if $c_i \neq c_j$ for all $i,j \in [k-1]$.

Definition 2.1. Let $P = \{P_1,\ldots,P_m\}$ be a family of vertex-disjoint paths. If each path is rainbow and $C(P_i) \cap C(P_j) = \emptyset$ for distinct $i,j \in [m]$, then we call this family a rainbow family of paths. Denote $\bigcup_{i \in [m]} V(P_i)$ by $V(P)$.

We use by now a common hierarchical notation for constants, writing $x \ll y$ to mean that there is a fixed positive nondecreasing function on $(0,1]$ such that the subsequent statements hold for $x \leq f(y)$. While multiple constants appear in a hierarchy, they are chosen from right to left.

In this paper, we use the following concentration inequalities.

Proposition 2.2 ([4]). Suppose that X has the binomial distribution and $0 < a < 3/2$. Then $\Pr(|X - \mathbb{E}X| \geq a\mathbb{E}X) \leq 2e^{-a^2\mathbb{E}X/3}$.

Proposition 2.3 ([20]). Let $\binom{[N]}{r}$ be the set of r-subsets of $\{1,\ldots,N\}$ and let $h : \binom{[N]}{r} \to \mathbb{R}$ be given. Let C be a uniformly random element of $\binom{[N]}{r}$. Suppose that there exists $\alpha \geq 0$ such that

$$|h(A) - h(A')| \leq \alpha$$

for any $A, A' \in \binom{[N]}{r}$ with $|A \cap A'| = r - 1$. Then

$$\mathbb{E}e^{h(C)} = \exp(\mathbb{E}h(C) + a),$$

where a is a real constant such that $0 \leq a \leq \frac{1}{8} \min\{r, N - r\} \alpha^2$. Furthermore, for any real $t > 0$,

$$\Pr(|h(C) - \mathbb{E}h(C)| \geq t) \leq 2 \exp\left(-\frac{2t^2}{\min\{r, N - r\} \alpha^2}\right).$$

2.2. Proof strategy.

Let us briefly comment on the proofs. Our proof follows the popular absorption approach in this line of research, in which the job splits into several tasks (see Lemmas 2.4–2.6). Our contribution is on showing that these subtasks can be adapted into the rainbow setting. Similar as in [13], when dealing with structures with a finite number of colors, it is relatively straightforward to extend the arguments for single host k-graph to the rainbow setting, which is the case for Lemmas 2.4 and 2.5. In Lemma 2.4 we also have an innovation point where we use a new gadget for connecting a family of paths to a cycle, where we append the connectors given by Lemma 2.5 to the absorbing cycle.

On the other hand, Lemma 2.6 is proved by using the regularity method, which converts the problem to finding matching type structures in the reduced k-graphs. Note that a rainbow path cover uses almost n colors (so in contrast to the constructions of absorbers and connectors), which needs a different strategy. We use an auxiliary hypergraph first used in [38] where we add n new vertices for the set of colors.

We apply the weak regularity lemma [21] on this auxiliary hypergraph. Then it is proved that the reduced hypergraph contains an almost perfect matching, where we apply the results on matchings in [3, 13]. Finally the rainbow tight path cover is obtained by constructing long rainbow paths in the regular tuples, via a variant of hypergraph paths.
We state the following lemmas, whose proofs will be given later.

Lemma 2.4 (Absorbing lemma). For every \(k \geq 3, \gamma > 0 \) and \(\kappa := (3k - 3)^{-6}2^{1-2k}\gamma^{4k-4} \), there exists \(n_0 \) such that the following holds for \(n \geq n_0 \). Let \(H = \{H_i\}_{i \in [n]} \) be a \((k, n, \gamma)\)-graph system on \(V \). There exists a rainbow cycle \(A \) with at most \(n_0 \) vertices such that for any rainbow family of paths \(\mathcal{P} \) and any vertex set \(U \) in \(V \setminus V(A) \) with \(|\mathcal{P}|, |U| \leq \kappa n \), there exists a rainbow cycle \(A' \) with vertex set \(V(A) \cup U \cup V(\mathcal{P}) \) and \(C(A) \subseteq C(A') \).

In other words, Lemma 2.4 gives us a short rainbow cycle \(A \) such that every small subset of vertices and small rainbow family of paths can be absorbed into a long rainbow cycle. The following lemma ensures the existence of a rainbow path with constant length between any two disjoint ends.

Lemma 2.5 (Connecting lemma). For every \(k \geq 3, \gamma > 0 \) and \(c := [2k\gamma^{-2}] - (k - 1) \), there exists \(n_0 \) such that the following holds for \(n \geq n_0 \). Let \(H = \{H_i\}_{i \in [c]} \) be a \((k, n, \gamma)\)-graph system and \(u, v \) be two disjoint \((k - 1)\)-tuples of vertices. There exists a rainbow path \(P \) from \(u \) to \(v \) with at most \(c + k - 1 \) vertices.

Next, our next result constructs a rainbow family of paths, which almost covers all vertices of \(V \setminus V(A) \).

Lemma 2.6 (Path cover lemma). For every \(k \geq 3, \gamma, \delta > 0 \), there exist \(n_0 \) and \(L \) such that every \((k, n, \gamma)\)-graph system \(H = \{H_i\}_{i \in [n]} \) on \(V \), \(n \geq n_0 \), contains a rainbow family \(\mathcal{P} \) of at most \(L \) paths, covering at least \((1 - \delta)n \) vertices of \(V \).

2.3. Proof of Theorem 1.3.

For any \(k \geq 3 \) and \(\gamma > 0 \), let \(1/n \ll 1/L \ll \gamma \), \(\kappa := (3k - 3)^{-6}2^{1-2k}\gamma^{4k-4} \) and \(H \) be a \((k, n, \gamma)\)-graph system on \(V \).

Step 1. By Lemma 2.4, we obtain a rainbow absorbing cycle \(A \) with at most \(\gamma n/2 \) vertices such that the following property holds.

(Q) For any rainbow family of paths \(\mathcal{P} \) and any vertex set \(U \) in \(V \setminus V(A) \) with \(|\mathcal{P}|, |U| \leq \kappa n \), there exists a rainbow cycle \(A' \) with vertex set \(V(A) \cup U \cup V(\mathcal{P}) \) and \(C(A) \subseteq C(A') \).

Step 2. Set \(H' = \{H'_i\}_{i \in C} \) where \(C = [n]\setminus C(A), H'_i = H_i[V \setminus V(A)] \) for \(i \in C \) and \(n' = n - |V(A)| \). Note that \(H' \) is a \((k, n', \gamma/2)\)-graph system where \(n' > (1 - \gamma/2)n \). Applying Lemma 2.6 to \(H' \) with \(\delta = \kappa \), we obtain a rainbow family of paths \(\mathcal{P} = \{P_1, \ldots, P_p\} \), where \(p \leq L \leq \kappa n \), which covers all but at most \(\kappa n' \) vertices of \(V \setminus V(A) \). Denote the set of uncovered vertices by \(T \). Thus, \(|T| \leq \kappa n' \leq \kappa n \).

Step 3. Using property (Q), we obtain a long rainbow cycle with vertex set \(V(A) \cup T \cup V(\mathcal{P}) \), which is a rainbow Hamilton cycle in \(H \).

3. Rainbow Absorption Method

Given a vertex \(x \) and a color \(c \), we say that a path \(P \) is a rainbow absorber for \((x, c)\) in an \(n \)-vertex \(k \)-graph system if the following holds:

- \(x \notin V(P) \);
- \(P = x_1 \cdots x_{2k-2} \) is a rainbow path of length \(k - 1 \), whose color pattern is denoted by \((c_1, \ldots, c_{k-1})\);
* $x_1 \cdots x_{k-1} x_k \cdots x_{2k-2}$ is a rainbow path of length k, whose color pattern is denoted by $(c, c_1, \ldots, c_{k-1})$.

Figure 1. Absorber for (x, c) when $k = 3$

Given two disjoint $(k-1)$-tuples of vertices $u = (u_1, \ldots, u_{k-1})$, $v = (v_1, \ldots, v_{k-1})$ and a $(k-1)$-tuple (o_1, \ldots, o_{k-1}) of colors, we say that a path P is a *rainbow absorber* for $(u, v; o_1, \ldots, o_{k-1})$ in an n-vertex k-graph system if the following holds:

* $V(P) \cap \{u_1, \ldots, u_{k-1}\} = \emptyset, V(P) \cap \{v_1, \ldots, v_{k-1}\} = \emptyset$;
* $P = x_1 \cdots x_{2k-2}$ is a rainbow path of length $k-1$, whose color pattern is denoted by (c_1, \ldots, c_{k-1});
* $x_1 \cdots x_{k-1} u_1 \cdots u_{k-1}$ and $v_1 \cdots v_{k-1} x_k \cdots x_{2k-2}$ are rainbow paths of length $k-1$, whose color patterns are denoted by (c_1, \ldots, c_{k-1}), (o_1, \ldots, o_{k-1}) respectively.

Figure 2. Absorber for $((u_1, u_2), (v_1, v_2); o_1, o_2)$ when $k = 3$

Given a vertex $x \in V$ and a color $c \in \{1, 2, \ldots, n\}$, let $\mathcal{L}(x; c)$ be the set of rainbow absorbers for (x, c). Similarly, given two disjoint $(k-1)$-tuples u and v of V and a $(k-1)$-tuple (o_1, \ldots, o_{k-1}) of $\{1, 2, \ldots, n\}$, let $\mathcal{L}(u, v; o_1, \ldots, o_{k-1})$ be the set of rainbow absorbers for $(u, v; o_1, \ldots, o_{k-1})$. We need the following simple result.

Fact 3.1. Let S be a $(k-1)$-subset of V and $V_0 \subseteq V \setminus S$. For any $i \in \{1, 2, \ldots, n\}$, we have

$$|N_{\mathcal{H}_i}(S) \cap V_0| \geq |V_0| - \frac{1}{2} n + \gamma n + k - 1.$$
In particular, for two \((k - 1)\)-subsets of vertices \(S_1\) and \(S_2\), we obtain that for any \(i, j \in [n]\),

\[|N_{H_i}(S_1) \cap N_{H_j}(S_2)| \geq 2\gamma n + |S_1 \cap S_2|\]

Proof. We have \(|N_{H_i}(S) \cup V_0| \leq n - k + 1\) and thus

\[|N_{H_i}(S) \cap V_0| \geq |V_0| + |N_{H_i}(S)| - (n + k - 1) \geq |V_0| - \frac{1}{2}n + \gamma n + k - 1.\]

For the second statement, we apply the first one with \(S = S_1\) and \(V_0 = N_{H_i}(S_2) \setminus S_1\) and note that \(|V_0| \geq (\frac{1}{2} + \gamma)n - (k - 1 - |S_1 \cap S_2|)\). \(\Box\)

Proposition 3.2. For every \(k \geq 3, \gamma > 0\), there exists \(n_0\) such that the following holds for \(n \geq n_0\). Suppose \(H = \{H_1, \ldots, H_n\}\) is a \((k, n, \gamma)\)-graph system on \(V\), then \(|\mathcal{L}(x; c)| \geq 2^{2^k - 2}n^{3k-3}\) for every vertex \(x \in V\) and color \(c \in [n]\), \(|\mathcal{L}(u, v, o_1, \ldots, o_{k-1})| \geq 2^{1-k}\gamma 2^{k-2}n^{3k-3}\) for every two disjoint \((k - 1)\)-tuples \(u\) and \(v\) of \(V\) and a \((k - 1)\)-tuple \((o_1, \ldots, o_{k-1})\) of \([n]\).

Proof. Given \(k, \gamma\), we choose \(n\) such that \(1/n \ll \gamma/k\). Fixing vertex \(x \in V\) and color \(c \in [n]\), we construct a rainbow absorber \(P = x_1 \cdots x_{2^k-2}\) for \((x, c)\). We choose \((c_1, \ldots, c_{k-1})\) arbitrarily, so there are \((n - 1) \cdots (n - k + 1) \geq 2^{2^k - k}\n^{k-1}\) choices. Furthermore, \(x_1, \ldots, x_{k-2}\) can be chosen arbitrarily in \((n - 1) \cdots (n - k + 2) \geq 2^{2^k - k}\n^{k-2}\) ways. For \(x_{k-1}\), there are at least \((\frac{1}{2} + \gamma)n\) choices such that \(\{x_1, \ldots, x_{k-1}, x\} \in E(H_c)\). By Fact 3.1, there are at least \(2\gamma n + k - 2\) choices for \(x_j, j \in [k, 2k - 2]\), such that \(\{x_j \cdots x_{j+k-2}, x_j, x\} \in E(H_{c_j})\). For \(j \in [k+1, 2k-2]\), \(x_j\) should be different from \(x_1, \ldots, x_{j-k}\). Thus, the number of choices for each \(x_j\) is at least \(2\gamma n + k - 2 - (j - k) \geq 2\gamma n, j \in [k, 2k - 2]\), yielding together at least \(2^{1-k}\n^{k-1}2^{2-k}\n^{k-2}(\frac{1}{2} + \gamma)n(2\gamma n)^{k-1} \geq 2^{2^{k-1}-k}\n^{k-3}\) rainbow absorbers for \((x, c)\).

Given \(u = (u_1, \ldots, u_{k-1}), v = (v_1, \ldots, v_{k-1})\) and \((o_1, \ldots, o_{k-1})\), we construct a rainbow absorber \(P = x_1 \cdots x_{2^k-2}\) for \((u, v; o_1, \ldots, o_{k-1})\). There are \((n - k + 1) \cdots (n - 2k + 2) \geq 2^{1-k}\n^{k-1}\) choices for \((c_1, \ldots, c_{k-1})\). There are at least \((\frac{1}{2} + \gamma)n - (k - 1) \geq \gamma n\) choices for \(x_{k-1}\) such that \(\{u_1, \ldots, u_{k-1}, x_{k-1}\} \in E(H_{c_{k-1}})\) and \(x_{k-1}\) should be different from \(v_1, \ldots, v_{k-1}\). For \(x_i, i \in [k-2]\), there at least \((\frac{1}{2} + \gamma)n - (2k - 3) \geq \gamma n\) choices such that \(\{u_{k-i}, \ldots, u_{k-1}, x_{k-1}, \ldots, x_{i+1}, x_i\} \in E(H_{c_i})\), and it should be different from \(v_1, \ldots, v_{k-1}, u_1, \ldots, u_{k-1-i}\).

By Fact 3.1, there are at least \(2\gamma n\) choices for \(x_k\) such that \(\{x_1, \ldots, x_{k-1}, x_k\} \in E(H_{c_k})\) and it is different from \(u_1, \ldots, u_{k-1}\). For \(x_i, i \in [k + 1, 2k - 2]\), the number of choices is at least \(2\gamma n + k - 2 - (k - 1 + 2(i - k)) \geq \gamma n\), such that \(\{x_{i-(k-1)}, \ldots, x_i\} \in E(H_{c_{i-(k-1)}})\), \(\{v_{i-(k-1)}, \ldots, v_{k-1}, x_{i-(k-1)}, \ldots, x_i\} \in E(H_{o_{i-(k-1)}})\) and it should be different from \(u_1, \ldots, u_{k-1}, x_1, \ldots, x_{i-k}, v_1, v_{i-1}, v_{i-k}\). The inequality holds since \(1/n \ll \gamma/k\), thus, there are at least \(2^{1-k}\n^{k-1}(\gamma n)^{k-1} \geq 2^{2^{k-1}-k-2}\n^{k-3}\) rainbow absorbers for \((u, v; o_1, \ldots, o_{k-1})\). \(\Box\)

Lemma 3.3. For every \(k \geq 3, \gamma > 0, 0 < \zeta < 1\), there exists \(n_0\) such that the following holds for \(n \geq n_0\). Let \(H = \{H_1, \ldots, H_n\}\) be an \(n\)-vertex \(k\)-graph system on \(V\) and \(u, v\) be distinct \((k - 1)\)-tuples of \(V\). If \(|\mathcal{L}(x; c)| \geq \zeta n^{3k-3}\) for every vertex \(x \in V, c \in [n]\) and \(|\mathcal{L}(u, v; o_1, \ldots, o_{k-1})| \geq \zeta n^{3(k-3)}\) for all disjoint \((k - 1)\)-tuples \(u\) and \(v\) of \(V\) and \((k - 1)\)-tuple \((o_1, \ldots, o_{k-1})\) of \([n]\), then there exists a rainbow family of paths \(\mathcal{F}'\), where each path is of length \(k - 1\), satisfying the following properties.

\[|\mathcal{F}'| \leq (3k - 3)^{-3}\zeta n, \quad |\mathcal{F}' \cap \mathcal{L}(x; c)| \geq (3k - 3)^{-6}\zeta n,\]
\[|F' \cap L(u, v; o_1, \ldots, o_{k-1})| \geq (3k - 3)^{-6} \zeta^2 n, \]

for every vertex \(x \in V \), \(c \in [n] \), two disjoint \((k - 1)\)-tuples \(u \) and \(v \) of \(V \) and \((o_1, \ldots, o_{k-1}) \) of \([n]\).

Proof. Each rainbow path \(x_1 x_2 \cdots x_{2k-2} \) with color pattern \((c_1, \ldots, c_{k-1})\) can be considered as a \((3k - 3)\)-tuple \((x_1, x_2, \ldots, x_{2k-2}, c_1, \ldots, c_{k-1})\). Choose a family \(F \) of \((3k - 3)\)-tuples from \(\binom{V}{n} \times \binom{[n]}{k-1} \) by including each of the \(n^{n-1} \) possible \((3k - 3)\)-tuples independently at random with probability

\[
p = (3k - 3)^{-4} \zeta \left(\frac{n - (2k - 2)!}{n - (k - 1)!} \cdot \frac{(n - (k - 1))!}{n!} \right) \geq (3k - 3)^{-4} \zeta n^{-(3k-4)}.
\]

Note that \(|F|, |L(x, c) \cap F|, |L(u, v; o_1, \ldots, o_{k-1}) \cap F|\) are binomial random variables,

\[
\mathbb{E}|F| = p \frac{n! \cdot n!}{(n - (2k - 2))! \cdot (n - (k - 1))!} = (3k - 3)^{-4} \zeta n,
\]

\[
\mathbb{E}|L(x, c) \cap F| = p |L(x, c)| \geq (3k - 3)^{-4} \zeta^2 n,
\]

\[
\mathbb{E}|L(u, v; o_1, \ldots, o_{k-1}) \cap F| = p |L(u, v; o_1, \ldots, o_{k-1})| \geq (3k - 3)^{-4} \zeta^2 n,
\]

for every vertex \(x \in V \), \(c \in [n] \), two disjoint \((k - 1)\)-tuples \(u \) and \(v \) of \(V \) and \((o_1, \ldots, o_{k-1}) \) of \([n]\). By Proposition 3.2, with probability \(1 - o(1) \), the family \(F \) satisfies the following properties

\[
|F| \leq 2 \mathbb{E}|F| = 2(3k - 3)^{-4} \zeta n \leq (3k - 3)^{-3} \zeta n,
\]

\[
|L(x, c) \cap F| \geq 2^{-1} \mathbb{E}|L(x, c) \cap F| \geq 2^{-1}(3k - 3)^{-4} \zeta^2 n,
\]

\[
|L(u, v; o_1, \ldots, o_{k-1}) \cap F| \geq 2^{-1} \mathbb{E}|L(u, v; o_1, \ldots, o_{k-1})| \geq 2^{-1}(3k - 3)^{-4} \zeta^2 n,
\]

for every vertex \(x \in V \), \(c \in [n] \), two disjoint \((k - 1)\)-tuples \(u \) and \(v \) of \(V \) and \((o_1, \ldots, o_{k-1}) \) of \([n]\). We say that two \((3k - 3)\)-tuples \((x_1, x_2, \ldots, x_{2k-2}, c_1, \ldots, c_{k-1})\) and \((y_1, y_2, \ldots, y_{2k-2}, f_1, \ldots, f_{k-1})\) are intersecting if \(x_i = y_j \) for some \(i, j \in [2k - 2] \) or \(c_m = f_\ell \) for some \(m, \ell \in [k - 1] \). We can bound the expected number of pairs of \((3k - 3)\)-tuples in \(F \) that are intersecting from above by

\[
\frac{n! \cdot n!}{(n - (2k - 2))! \cdot (n - (k - 1))!} \left(\frac{3k - 3}{n - (2k - 2)!} \cdot \frac{(n - (k - 1))!}{n!} \right)^2 \cdot \frac{(n - 1)! \cdot n!}{(n - (2k - 2))! \cdot (n - (k - 1))!} \geq (3k - 3)^{-6} \zeta^2 n.
\]

Thus, using Markov’s inequality, we derive that with probability at least \(1/2 \), \(F \) contains at most \(2(3k - 3)^{-6} \zeta^2 n \) intersecting pairs of \((3k - 3)\)-tuples. Remove one \((3k - 3)\)-tuple from each intersecting pair in such a family \(F \) and remove the \((3k - 3)\)-tuples that are not absorbing paths for any \(x \in V \), \(c \in [n] \) or \((k - 1)\)-tuples \(u \) and \(v \) of \(V \) and \((o_1, \ldots, o_{k-1}) \) of \([n]\). We get a subfamily \(F' \) consisting of pairwise disjoint \((3k - 3)\)-tuples, which satisfies

\[
|L(x, c) \cap F'| \geq 2^{-1}(3k - 3)^{-4} \zeta^2 n - 2(3k - 3)^{-6} \zeta^2 n \geq (3k - 3)^{-6} \zeta^2 n,
\]

for any \(x \in V \), \(c \in [n] \), and a similar statement holds for \(|L(u, v; o_1, \ldots, o_{k-1}) \cap F'|\) for any two disjoint \((k - 1)\)-tuples \(u \) and \(v \) of \(V \) and a \((k - 1)\)-tuple \((o_1, \ldots, o_{k-1}) \) of \([n]\). Since each \((3k - 3)\)-tuple in \(F' \) is a rainbow absorber, \(F' \) is a rainbow family of paths, where each path is of length \(k - 1 \).

3.1. Proof of Lemma 2.4. Set \(\zeta := 2^{1-k} \gamma^{2k-2} \) and \(\kappa := 2^{-1}(3k - 3)^{-6} \zeta^2 \). Let \(H = \{ H_i \}_{i \in [n]} \) be a \((k, n, \gamma)\)-graph system on \(V \). By Proposition 3.2, we obtain \(|L(x, c)| \geq \zeta n^{3k-3} \) for every vertex \(x \in V \) and \(c \in [n] \), \(|L(u, v; o_1, \ldots, o_{k-1})| \geq \zeta n^{3k-3} \) for every two disjoint \((k - 1)\)-tuples \(u \) and \(v \)
of V and a $(k-1)$-tuple (o_1, \ldots, o_{k-1}) of $[n]$. By Lemma 3.3, there is a rainbow family of paths $\mathcal{F}' = \{P_1, \ldots, P_q\}$, where $q \leq (3k-3)^3\zeta n$ and $|V(P_i)| = 2k-2$ for $i \in [q]$, $|\mathcal{F}' \cap \mathcal{L}(x; e)| \geq 2\kappa n$ for every vertex $x \in V$, $c \in [n]$, $|\mathcal{F}' \cap \mathcal{L}(u, v; o_1, \ldots, o_{k-1})| \geq 2\kappa n$ for every two disjoint $(k-1)$-tuples u and v of V and (o_1, \ldots, o_{k-1}) of $[n]$.

Next, we describe our connecting process. Suppose we have connected P_1, \ldots, P_j into one path P, using each time at most $(1 - \gamma/k^2) + 1$ vertices from outside $V(\mathcal{F}')$, the next path from \mathcal{F}' to connect is P_{j+1}. Let $e = (u_1, \ldots, u_{k-1})$ and $f = (v_1, \ldots, v_{k-1})$ be one end of P and one end of P_{j+1} respectively. Let H'_i be the induced subgraph of H_i obtained by removing the vertices of $V(\mathcal{F}') \cup V(P)$ except e and f. The number of vertices removed is at most

$$|V(\mathcal{F}') \cup V(P)| \leq q(2k-2) + (q-1) \left(\left\lceil \frac{8k}{\gamma^2} \right\rceil - (2k-2)\right) < q \left\lceil \frac{8k}{\gamma^2} \right\rceil < \frac{\gamma n}{2},$$

where the last inequality holds since $q \leq (3k-3)^3\zeta n$ and $k \geq 3$.

We get a $(k, n', \gamma/2)$-graph system $H' = \{H'_i\}_{i \in C}$ where $C = [n] \setminus (C(P) \cup C(\mathcal{F}'))$ and $n' = |V(H')|$. Taking a $([8k\gamma^{-2}] - (k-1))$-subset C' of C, we apply Lemma 2.5 to $\{H'_i\}_{i \in C'}$, $e' = (u_{k-1}, \ldots, u_1)$ and $f' = (v_1, \ldots, v_1)$, obtaining a rainbow path P' connecting e' and f' such that $|V(P')| \leq [8k\gamma^{-2}]$. Thus, $P \cup P' \cup P_{j+1}$ forms a rainbow path in H.

After connecting all rainbow paths in \mathcal{F}', we obtain a rainbow $(k-1)$-cycle A with at most

$$q(2k-2) + q \left(\left\lceil \frac{8k}{\gamma^2} \right\rceil - (2k-2)\right) \leq \frac{\gamma n}{2}$$

vertices. Furthermore, by the property of rainbow absorbers, A can absorb a vertex set and a rainbow family of paths with sizes at most κn.

4. Rainbow Almost Path Cover

4.1. Proof Sketch. The main goal of this section is to find a rainbow family of paths in a (k, n, γ)-graph system $H = \{H_i\}_{i \in [n]}$ on V. We transform the initial problem in H into a new problem in an auxiliary hypergraph. To construct an auxiliary hypergraph, we use the following definition.

Definition 4.1. We call a hypergraph H a $(1, k)$-graph ($(1, k)$-partite), if $V(H)$ can be partitioned into V_1 and V_2 such that every edge contains exactly one vertex of V_1 and k vertices of V_2.

Given a partition of $V(H) = V_1 \cup V_2$, a $(1, k-1)$-subset S of $V(H)$ contains one vertex in V_1 and $k-1$ vertices in V_2. Let $\delta_{1,k-1}(H) := \min\{\deg_H(S) : S \text{ is a (1, k-1)-subset of } V(H)\}$.

Construct a (1, k)-graph. We construct an auxiliary hypergraph H^* with vertex set $[n] \cup V$ and edge set $E(H^*) = \{\{i\} \cup e : e \in E(H_i), i \in [n]\}$. Obviously, H^* is a $(1, k)$-graph and we have $\delta_{1,k-1}(H^*) \geq (1/2 + \gamma)n$.

Obtain a cluster hypergraph K. With an initial partition $[n] \cup V$, by a weak regularity lemma, we partition the $(1, k)$-graph H^* and obtain a cluster hypergraph K where $V(K) = \mathcal{I} \cup \mathcal{W}$, $|\mathcal{I}| = |\mathcal{W}| = t$, $\mathcal{I} = \{I_1, \ldots, I_t\}$ is an equitable partition of $[n]$ and \mathcal{W} is an equitable partition of V. Note that K is a $(1, k)$-graph. We will prove in Section 4.3 that K almost “inherits” the $(1, k-1)$-degree condition of H^*.

Obtain many matchings in K. We equally split \mathcal{I} into k parts $\mathcal{I}_i = \{I_{(i-1)t/k+1}, \ldots, I_{it/k}\}$ for
$i \in [k]$. Considering each $(1,k)$-graph F_i of K induced on $\mathcal{T}_i \cup \mathcal{W}$, we take a random partition of $\mathcal{T}_i \cup \mathcal{W}$. Most induced subgraphs of each F_i on these parts “inherit” the $(1,k-1)$-degree condition of H^*, which can be proved in Section 4.3. For each subgraph of F_i, which “inherits” the $(1,k-1)$-degree condition, $i \in [k]$, we use a combination of results in ([13] Theorem 1.7) and ([3] Theorem 1.2), obtaining many matchings in K.

Lemma 4.2 ([3, 13]). For every $\gamma > 0$, there exists $n_0 \in \mathbb{N}$, such that the following holds for $n \geq n_0$ and $k \mid n$. Every n-vertex k-graph system $H = \{H_i\}_{i \in [n/k]}$ with $\delta_{k-1}(H_i) \geq (1/2 + \gamma)n$ for each i admits a rainbow perfect matching.

That is, for every $\gamma > 0$, there exists $n_0 \in \mathbb{N}$, such that the following holds for $n \geq n_0$ and $k \mid n$. Every $(1,k)$-graph H on $[n/k] \cup V$ with $\delta_{1,k-1}(H) \geq (1/2 + \gamma)n$ admits a perfect matching, where $|V| = n$.

Embed the rainbow paths. Each matching in K can be blown up into a rainbow family of paths in H. We obtain a rainbow family of paths almost covering all vertices in Section 4.4.

4.2. Weak Regularity Lemma for Hypergraphs

A k-graph H is k-partite if there is a partition $V(H) = V_1 \cup \cdots \cup V_k$ such that every edge of H intersects each set V_i in precisely one vertex for $i \in [k]$. Given a k-partite k-graph H on $V_1 \cup \cdots \cup V_k$ and subsets $A_i \subseteq V_i$, $i \in [k]$, we define $e_H(A_1, \ldots, A_k)$ to be the number of edges in H with one vertex in each A_i and the density of H with respect to (A_1, \ldots, A_k) as

$$d_H(A_1, \ldots, A_k) = \frac{e_H(A_1, \ldots, A_k)}{|A_1| \cdots |A_k|}.$$

We say that a k-partite k-graph H is ε-regular if for all $A_i \subseteq V_i$ with $|A_i| \geq \varepsilon|V_i|$, $i \in [k]$, we have

$$d_H(A_1, \ldots, A_k) - d_H(V_1, \ldots, V_k) \leq \varepsilon.$$

We give a straightforward generalization of the graph regularity lemma.

Lemma 4.3 (Weak regularity lemma for hypergraphs [21]). For all $k \geq 2$, every $\varepsilon > 0$ and every integer t_0, there exist T_0 and n_0 such that the following holds. For every k-graph H on $n \geq n_0$ vertices there is, for some $t \in \mathbb{N}$ with $t_0 \leq t \leq T_0$, a partition $V(H) = V_0 \cup V_1 \cup \cdots \cup V_t$ such that $|V_0| \leq \varepsilon n$, $|V_1| = |V_2| = \cdots = |V_t|$ and for all but at most εt^k sets $\{i_1, \ldots, i_k\} \in \binom{[t]}{k}$, the induced k-partite k-graph $H[V_{i_1}, \ldots, V_{i_k}]$ is ε-regular.

The partition in Lemma 4.3 is called an ε-regular partition of H. For an ε-regular partition of H and $d \geq 0$, we refer to the sets V_i, $i \in [t]$ as clusters and define thecluster hypergraph $K = K(\varepsilon, d)$ with vertex set $[t]$ and $\{i_1, \ldots, i_k\} \in \binom{[t]}{k}$ being an edge if and only if $(V_{i_1}, \ldots, V_{i_k})$ is ε-regular and $d(V_{i_1}, \ldots, V_{i_k}) \geq d$.

Let H^* be a $(1,k)$-graph with $\delta_{1,k-1}(H^*) \geq (1/2+\gamma)n$. With an initial partition $[n] \cup V$ of $V(H^*)$, we apply Lemma 4.3 with ε, t_0, and obtain a partition $V(H^*) = V_0^* \cup I_1 \cup \cdots \cup I_{t_1} \cup W_1 \cup \cdots \cup W_{t_2}$ where $|I_i| = |W_j| = m$ for $i \in [t_1]$ and $j \in [t_2]$, $|V_0^*| \leq 2\varepsilon n$. By throwing at most $2\varepsilon n/m$ clusters into V_0^*, we rename it as V_0 if necessary. We have $V(H^*) = V_0 \cup I_1 \cup \cdots \cup I_t \cup W_1 \cup \cdots \cup W_t$, where each cluster keep the size, $|V_0| \leq 4\varepsilon n$, $I_i \subseteq [n]$ and $W_j \subseteq V$ for $i, j \in [t]$. Then the corresponding cluster hypergraph K is still a $(1,k)$-graph with partite sets $\{I_1, I_2, \ldots, I_t\}$ and $\{W_1, W_2, \ldots, W_t\}$. The
following proposition shows that the cluster hypergraph almost “inherits” the minimum degree property of the original hypergraph.

Proposition 4.4. For $0 < \varepsilon \leq \gamma^2/16$ and $t_0 \geq 3k/\gamma$, given a $(1,k)$-graph H with $\delta_{1,k-1}(H) \geq (1/2+\gamma)n$ and an ε-regular partition $V(H) = V_0 \cup V_1 \cup \ldots \cup V_t \cup \ldots \cup V_r$, let $K := K(\varepsilon, \gamma/6)$ be the cluster hypergraph. The number of $(1,k-1)$-subsets $S = \{I_{i_0}, W_{i_1}, \ldots, W_{i_k-1}\}$ of $V(K)$ violating $\deg_K(S) \geq (1/2 + \gamma/4)t$ is at most $k\sqrt{\varepsilon} t^k$ where $I_{i_0} \in \{I_1, \ldots, I_t\}$ and $W_{i_j} \in \{W_1, \ldots, W_t\}$ for $j \in [k-1]$.

Proof. Note that the cluster hypergraph $K(\varepsilon, \gamma/6)$ can be written as the intersection of two hypergraphs $D := D(\gamma/6)$ and $R := R(\varepsilon)$ both defined on the vertex set $\{I_1, \ldots, I_t, W_1, \ldots, W_t\}$ and

- D consists of all sets $\{I_{i_0}, W_{i_1}, \ldots, W_{i_k}\}$ such that $d(I_{i_0}, W_{i_1}, \ldots, W_{i_k}) \geq \gamma/6$,
- R consists of all sets $\{I_{i_0}, W_{i_1}, \ldots, W_{i_k}\}$ such that $(I_{i_0}, W_{i_1}, \ldots, W_{i_k})$ is ε-regular.

For any $(1,k-1)$-set S, we first show that

\[
\deg_D(S) \geq \left(\frac{1}{2} + \frac{\gamma}{2}\right)t.
\]

Note that $n/t \geq m := |W_i| = |I_j|$ for $i, j \in [t]$. We now consider the number z of edges in H which intersect each of $I_{i_0}, W_{i_1}, \ldots, W_{i_k}$ in exactly one vertex. From the condition on $\delta_{1,k-1}(H)$, we have

\[
z \geq m^k \left(\frac{1}{2} + \gamma\right) n - (k-1)m \geq tm^{k+1}\left(\frac{1}{2} + \frac{2\gamma}{3}\right),
\]

since $t \geq t_0 \geq 3k/\gamma$.

On the other hand, if (3) does not hold, then

\[
z < \left(\frac{1}{2} + \frac{\gamma}{2}\right) tm^{k+1} + t\frac{\gamma}{6} m^{k+1},
\]

a contradiction with (4).

Note that there are at most εt^{k+1} edges not belonging to R. Denote the set of such edges by \overline{R}. Let S be the family of all $(1,k-1)$-element subsets S for which $\deg_{\overline{R}}(S) > \sqrt{\varepsilon} t$. We have $|S| \leq k\sqrt{\varepsilon} t^k$. That is, all but at most $k\sqrt{\varepsilon} t^k$ sets S satisfy $\deg_{\overline{R}}(S) \geq (1 - \sqrt{\varepsilon})t$. This, together with (3) and $\varepsilon \leq \gamma^2/16$, implies the property. \qed

4.3. **Random Partition.** The following lemma shows that random subgraphs of a hypergraph typically “inherit” minimum degree conditions. It first appeared in [18].

Lemma 4.5 (Partition Lemma). Suppose that $k \geq 3$ and $\eta \ll 1/Q \ll \lambda, \gamma$, the following holds for $t \in QN$. If H is a $(1,k)$-graph on $[\frac{t}{k}] \cup V$ with $|V| = t$ where all but at most $\frac{\eta}{k}$ of the $(1,k-1)$-subsets of $V(H)$ have degree at least $(1/2 + \gamma)(t-k+1)$, then there is a partition $V(H) = S_1 \cup \cdots \cup S_{t/Q}$ such that all but at most $\lambda t/Q$ classes satisfy $\delta_{1,k-1}(H[S_i]) \geq (1/2 + \gamma/2)(Q-k+1)$ where each S_i consists of a Q/k-subset I_i of $\lceil t/k \rceil$ and a Q-subset V_i of V.

Proof. Partition $[t/k]$ into t/Q sets $I_1, \ldots, I_{t/Q}$ such that $|I_i| = Q/k$ for $i \in [t/Q]$ uniformly at random. We randomly order V as v_1, \ldots, v_t and then partition V into t/Q classes $V_1, \ldots, V_{t/Q}$
such that $V_i = \{v_{(i-1)Q+1}, \ldots, v_{iQ}\}$ for $i \in [t/Q]$. Let $S_i = I_i \cup V_i$ for $i \in [t/Q]$. Note that each V_i is a random subset of V. Let M^* be the collection of $(1, k - 1)$-subsets with degree less than $(1/2 + \gamma)(t - k + 1)$ in H. We will prove that for $i \in [t/Q]$ and every $(1, k - 1)$-subset S of S_i,

$$
\Pr \left[\deg_{H[S_i]}(S) < \left(\frac{1}{2} + \frac{\gamma}{2} \right) (Q - k + 1) \right] \leq \eta + e^{-\Omega(\gamma^2 Q)}.
$$

First note that the probability of the event $S \in M^*$, is at most η. Now let A_S be the event that S is not in M^*. The set $V_i \setminus S$ is a uniformly random set of V other than S. Let A denote the event that a vertex v in $V_i \setminus S$ is the neighbor of S. Note that

$$
\Pr[A|A_S] \geq \frac{(1/2 + \gamma)(t - k + 1)(t-k)}{(Q - (k - 1))(t - (k - 1))} = \frac{1}{2} + \gamma,
$$

then we have

$$
\mathbb{E} \left[\deg_{H[S_i]}(S) | A_S \right] \geq \left(\frac{1}{2} + \gamma \right) (Q - k + 1).
$$

Exchanging any element with an element outside $V_i \setminus S$ affects $\deg_{H[S_i]}(S)$ by at most 1. Fixing i, we use Proposition 2.3 with $S \notin M^*$, the probability that S has degree less than $(1/2 + \gamma/2)(Q - k + 1)$ in $H[S_i]$ is at most

$$
2 \exp \left(-2 \left(\frac{1}{2} \left(\frac{2}{Q} (Q - k + 1) \right)^2 \right) \right) = e^{-\Omega(\gamma^2 Q)}.
$$

We say that S_i is poor if some $(1, k - 1)$-tuple in the induced graph $H[S_i]$ has degree less than $(1/2 + \gamma/2)(Q - k + 1)$. Thus, $\Pr[S_i$ is poor$] \leq \frac{Q}{k} \left(\frac{Q}{k - 1} \right) (\eta + e^{-\Omega(\gamma^2 Q)})$ for $i \in [t/Q]$. Let X be the number of poor classes and by Markov’s inequality, we obtain

$$
\Pr \left[X \geq \frac{\lambda t}{Q} \right] \leq \frac{Q}{\lambda k} \left(\frac{Q}{k - 1} \right) (\eta + e^{-\Omega(\gamma^2 Q)})
$$

now we choose Q, η such that the following holds

$$
\frac{Q}{k} \left(\frac{Q}{k - 1} \right) (\eta + e^{-\Omega(\gamma^2 Q)}) < \lambda,
$$

thus, we have $\Pr[X \geq \frac{\lambda t}{Q}] < 1$. With positive probability, we get a partition $V(H^*) = S_1 \cup \cdots \cup S_{t/Q}$, where $S_i = I_i \cup V_i$, such that at least $(1 - \lambda)t/Q$ classes of them satisfy $\delta_{1,k-1}(H^*[S_i]) \geq (1/2 + \gamma/2)(Q - k + 1)$.

4.4. Path Embeddings. A $(0, k - 1)$-path P of length t in H is a $(k + 1)$-graph with vertex set $\{c_1, \ldots, c_t\} \cup \{v_1, \ldots, v_{t+k-1}\}$ where $\{c_1, \ldots, c_t\} \subseteq V_0$, $\{v_1, \ldots, v_{t+k-1}\} \subseteq V_1 \cup \cdots \cup V_k$ and edge set $\{e_1, \ldots, e_t\}$ such that $e_i = \{c_i, v_i, \ldots, v_{i+k-1}\}$.

Figure 3. A $(0, k - 1)$-path for $k = 3$ (the vertices with the same color are from the same part.)
Note that a rainbow path in a k-graph system is a $(0, k - 1)$-path in the auxiliary $(1, k)$-graph H^*. We call that a $(k - 1)$-subset S of $V(H)$ is legal if $|S \cap V_i| \leq 1$ for $i \in [k]$ and $|S \cap V_0| = 0$.

Lemma 4.6. Given $c, m > 0$ and $k \geq 2$, every $(k + 1)$-partite $(k + 1)$-graph H on $V_0 \cup V_1 \cup \cdots \cup V_k$ with at most m vertices in each part and with at least cm^{k+1} edges contains a $(0, k - 1)$-path of at least cm/k vertices.

Proof. There are at most $k \cdot m^{k-1}$ legal $(k - 1)$-subsets of $V(H)$. We proceed by iteratively deleting the edges as follows. If there is a legal $(k - 1)$-subset S, which is contained in less than cm^2/k edges in the current hypergraph, then all the edges containing S will be deleted. The process terminates at a nonempty hypergraph H_0 since less than $km^{k-1}(cm^2/k) = cm^{k+1}$ edges have been deleted in total. In H_0, every legal $(k - 1)$-subset has degree either zero or at least cm^2/k.

Let P be a longest $(0, k - 1)$-path in H_0 with vertex set $\{c_1, \ldots, c_t\} \cup \{v_1, \ldots, v_{t+k-1}\}$ for some integer t. We have $|V(P) \cap V_0| = t$ and $|V(P) \cap V_i| \leq t$ since each edge contains at most one vertex of V_i for $i \in [k]$. Consider $S_t = \{v_{t+1}, \ldots, v_{t+k-1}\}$, which is a legal $(k - 1)$-subset of $V(H)$. Furthermore, $\deg_{H_0}(S_t) \geq cm^2/k$ since S_t has positive degree. All the edges containing S_t must intersect $(V(P) \cap V_0) \cup (V(P) \cap V_j)$ by the maximality of P, where the index j is determined such that $S_t \cap V_j = \emptyset$. Thus, we have

$$
\frac{cm^2}{k} \leq |V(P) \cap V_0| \cdot |V_i| + |V(P) \cap V_i| \cdot |V_0| \leq 2tm,
$$

which implies $t \geq cm/(2k)$. Note that $|V(P)| = t + t + k - 1$ and thus $|V(P)| \geq cm/k$. □

The next result enables us to find a collection of vertex-disjoint long $(0, k - 1)$-paths which covers almost all vertices in V_0 in an ε-regular $(k + 1)$-partite $(k + 1)$-graph.

Lemma 4.7. Let $0 < \varepsilon < \alpha < 1$. Given an ε-regular $(k + 1)$-partite $(k + 1)$-graph H with density at least α and $V(H) = V_0 \cup \cdots \cup V_k$ where $|V_0| = m$ and $m/k \leq |V_i| \leq m$ for $i \in [k]$, m is sufficiently large, we obtain that H contains a family \mathcal{P} of vertex-disjoint $(0, k - 1)$-paths such that for each $P \in \mathcal{P}$, $|V(P)| \geq \varepsilon(\alpha - \varepsilon)m/k$ and $\sum_{P \in \mathcal{P}} |V(P) \cap V_0| \geq (1 - 2k\varepsilon)m$.

Proof. We call a $(0, k - 1)$-path P good if $|V(P)| \geq \varepsilon(\alpha - \varepsilon)m/k$. Let $\mathcal{P} = \{P_1, \ldots, P_p\}$ be a largest family of good, vertex-disjoint $(0, k - 1)$-paths and $|V(P_i) \cap V_0| = t_i$ for $i \in [p]$. Note that $|V(P_i) \cap V_j| = \lceil \frac{t_i + k - 1}{k} \rceil$ or $\lceil \frac{t_i + k - 1}{k} \rceil$ for $i \in [p]$ and $j \in [k]$. Suppose to the contrary that \mathcal{P} covers less than $(1 - 2k\varepsilon)m$ vertices of V_0 and let $W = V(H) - \bigcup_{P \in \mathcal{P}} V(P)$ be the set of vertices uncovered by \mathcal{P}. Then we have $|W \cap V_0| \geq 2k\varepsilon m$. Hence, by the observation that $|V(P_i) \cap V_j| \leq \lceil \frac{t_i + k - 1}{k} \rceil \leq \frac{t_i}{k} + 2$ for each $i \in [p], j \in [k]$ and the fact that $p = |\mathcal{P}| \leq (k + 1)m/\varepsilon(\alpha - \varepsilon)m/k = k(k + 1)(\varepsilon(\alpha - \varepsilon))^{-1}$, and m is sufficiently large, we have that

$$
|W \cap V_i| = |V_i| - |V_i \cap V(P)| \geq \frac{m}{k} - \sum_{i \in [p]} \left(\frac{t_i}{k} + 2\right) \geq \frac{m}{k} - \frac{(1 - 2k\varepsilon)m}{k} - 2p \geq \varepsilon m + 1.
$$

Let $W_i \subseteq W \cap V_i, i \in \{0, 1, \ldots, k\}$ be such that

$$
|W_0| = |W_1| = \cdots = |W_k| = \varepsilon m \geq \varepsilon |V_i|.
$$
Finally, let \hat{H} be the subhypergraph of H induced on the vertex set $W_0 \cup W_1 \cup \cdots \cup W_k$. By the maximality of \mathcal{P}, \hat{H} is a $(k+1)$-partite $(k+1)$-graph containing no $(0,k-1)$-path of order at least $\varepsilon(\alpha - \varepsilon)m/k$.

On the other hand, since H is ε-regular, we have

$$d_H(W_0, W_1, \ldots, W_k) \geq d_H(V_0, V_1, \ldots, V_k) - \varepsilon \geq \alpha - \varepsilon,$$

or equivalently,

$$|E(\hat{H})| \geq (\alpha - \varepsilon)(\varepsilon m)^{k+1},$$

and then Lemma 4.6 implies that there is a $(0,k-1)$-path in \hat{H} on at least $\varepsilon(\alpha - \varepsilon)m/k$ vertices, contrary to the maximality of \mathcal{P}.

\[\square\]

4.5. Proof of Lemma 2.6.

Proof. We choose the following parameters

$$1/n \ll 1/T_0 \ll \varepsilon, 1/t_0 \ll 1/Q \ll \lambda \ll \delta, \gamma.$$

Given a (k, n, γ)-graph system $H = \{H_i\}_{i \in [n]}$ on V, we construct a $(1, k)$-graph H^* with vertex set $[n] \cup V$ and edge set $\{i \cup e : e \in H_i, i \in [n]\}$. With an initial partition $[n] \cup V$ of $V(H^*)$, we apply Lemma 4.3 with ε, t_0 and obtain a partition $V(H^*) = V_0^* \cup I_1 \cup \cdots \cup I_t \cup W_1 \cup \cdots \cup W_t$ where $t_0 \leq t_1$, $t_2 \leq T_0$, $|I_i| = |W_j| = m$ for $i \in [t_1]$ and $j \in [t_2]$, $|V_0^*| \leq 2\varepsilon n$. By throwing at most $2\varepsilon n/m$ clusters into V_0^*, rename it as V_0 if necessary, we have $V(H^*) = V_0 \cup I_1 \cup \cdots \cup I_t \cup W_1 \cup \cdots \cup W_t$, where each cluster keeps the size, $|V_0| \leq 4\varepsilon n$. Let $U \subseteq [n]$ and $W_0 \subseteq V$ for $i, j \in [t]$. Let $L := [3kT_0/\varepsilon(\gamma/6 - \varepsilon)]$.

Let $K := K(\varepsilon, \gamma/6)$ be the $(1, k)$-partite cluster hypergraph on $U \cup W$ where $U = \{I_1, \ldots, I_t\}$ and $W = \{W_1, \ldots, W_t\}$. We get a family of $(1, k)$-graphs $F = \{F_1, \ldots, F_k\}$ where $F_i = K([\{I_i \cup \{j\}\}_{j \in [k]}])$.

For each $i \in [k]$, applying Proposition 4.4 and Lemma 4.5 on F_i with $\eta := k\sqrt{\varepsilon}$, we obtain a partition $V(F_i) = S_{i,1} \cup \cdots \cup S_{i,t/Q}$ such that all but at most λ/Q classes satisfy $\delta_{i,k-1}(F_i[S_{ij}]) \geq (1/2 + \gamma/2)(Q - k + 1)$. We say that S_{ij} is good if every $(1, k-1)$-tuple in the induced graph $F_i[S_{ij}]$ has degree at least $(1/2 + \gamma/2)(Q - k + 1)$. Denote by S_i the set of indices $j \in [t]$ such that S_{ij} is good. Applying Lemma 4.2 on each $F_i[S_{ij}]$ for $i \in [k]$, $\ell \in S_i$, we obtain perfect matching $M_{i,\ell}$ and let $M_i = \bigcup_{\ell \in S_i} M_{i,\ell}$, $M = \bigcup_{i \in [k]} M_i$. Note that each M_i is a matching in V_i. For each $W_j \in W$, let p_j be the number of edges in M that contain W_j, $j \in [t]$. Next, we do the following process.

Path Embedding Process:

Given $H^*, U = \{I_1, \ldots, I_t\}$, $W = \{W_1, \ldots, W_t\}$, M_1, \ldots, M_k, $W_j := W_j$ for $j \in [t]$ and $i := 1$.

Step 1. For each $e \in M_i$, let H_e be the subgraph of H^* induced on the corresponding clusters constituting the edge e, which can be denoted by $I_{e,1}, W_{j_1(e)}, \ldots, W_{j_t(e)}$ where $I_e \in U$.

Step 2. Applying Lemma 4.7 on each H_e, $e \in M_i$, we obtain a family P_e of vertex-disjoint $(0,k-1)$-paths that covers all but at most $2k\varepsilon m$ vertices in I_e.

Step 3. Let $P_i = \bigcup_{j \leq i} \bigcup_{e \in M_j} P_e$.

Step 4. Update W_j by deleting the vertices used in P_i for $j \in [t]$.

Step 5. Update $i := i + 1$ and do the same from Step 1 to Step 4. When $i = k + 1$, the process terminates.
After the process, we obtain $\mathcal{P} := \mathcal{P}_k$. It follows from the definition of p_j that the size of uncovered vertices of each W_j is

$$|W_j^*| = m - \sum_{W_j \in e, e \in M} |\mathcal{P}_e \cap W_j| \leq m - p_j \left(\frac{(1 - 2k\varepsilon)m + k - 1}{k}\right) \leq m - p_j \left(\frac{1 - 2k\varepsilon}{k}\right).$$

Note that $\sum_{j \in [t]} p_j \geq Q\left(\frac{1}{Q} - \frac{\lambda}{Q}\right)k$. We obtain that \mathcal{P} covers all but

$$|V_0| + \sum_{j \in [t]} |W_j^*| \leq 4\varepsilon n + \sum_{j \in [t]} \left(m - p_j \left(\frac{1 - 2k\varepsilon}{k}\right)\right) \leq (4k + 4)\varepsilon + \lambda n \leq \delta n$$

vertices of V. Moreover, since each path in \mathcal{P} has length at least $\varepsilon(\frac{n}{k} - (n - 1))$ and $t \leq T_0$, we have $|\mathcal{P}| < 2n/(\varepsilon(\frac{n}{k} - (n - 1))) < L$. Thus \mathcal{P} is as desired.

5. Concluding Remarks

The threshold for the minimum $(k - 1)$-degree condition in Theorem 1.3 asymptotically equals to the single host hypergraph version in Theorem 1.1. Inspired by a series of very recent successes on rainbow matchings [35, 36, 37, 38] and graph Hamiltonicity, we suspect an even closer relation of this two thresholds.
Conjecture 5.1. For any $\gamma > 0, k \geq 3$, there exists $n_0 \in \mathbb{N}$ such that the following holds. Suppose $H = \{H_i\}_{i \in [n]}$ is an n-vertex k-graph system on V such that $\delta_{k-1}(H_i) \geq \lfloor (n - k + 3)/2 \rfloor$, then H admits a rainbow Hamilton cycle.

On the other hand, the problem of giving the sufficient condition for the rainbow Hamilton ℓ-cycle, $\ell \in [k - 2]$, is still open.

6. Acknowledgement

This work was supported by the Natural Science Foundation of China (11871311, 11631014) and Youth Interdisciplinary Innovation Group of Shandong University.

References

[1] R. Aharoni, M. DeVos, DLMGS Hermosillo, A. Montejano, and R. Šámal. A rainbow version of Mantel’s theorem. Adv. Combin., 2, 12pp, 2020.
[2] R. Aharoni and D. Howard. Size conditions for the existence of rainbow matching. http://math.colgate.edu/ dmhoward/rsc.pdf.
[3] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov. Large matchings in uniform hypergraphs and the conjecture of Erdős and Samuels. J. Combin. Theory Ser. A, 119(6):1200–1215, 2012.
[4] N. Alon and J. Spencer. The probabilistic method. Wiley-Intersci. Ser. Discrete Math. Optim. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2008.
[5] S. Antoniuk, N. Kamčev, and A. Ruciński. Properly colored Hamilton cycles in Dirac-type hypergraphs. arXiv: 2006.16544v1.
[6] J. D. O. Bastos, G. O. Mota, M. Schacht, J. Schnitzen, and F. Schulenburg. Loose Hamiltonian cycles forced by $(k-2)$-degree - approximate version. SIAM J. Discrete Math., 31(4):2328–2347, 2017.
[7] J. D. O. Bastos, G. O. Mota, M. Schacht, J. Schnitzen, and F. Schulenburg. Loose Hamiltonian cycles forced by large $(k-2)$-degree - sharp version. Contrib. Discrete Math., 13(2):88–100, 2018.
[8] C. Berge. Nombres de coloration de l’hypergraphe h-parti complet. Ann. Mat. Pura Appl. (4), 103:3–9, 1975.
[9] J.-C. Bermond, A. Germa, M.-C. Heydemann, and D. Sotteau. Hypergraphes hamiltoniens. In Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq. Internat. CNRS, pages 39–43. CNRS, Paris, 1978.
[10] P. Bradshaw. Transversals and bipancyclicity in bipartite graph families. arXiv:2002.10014v5.
[11] P. Bradshaw, K. Halasz, and L. Stacho. From one to many rainbow Hamiltonian cycles. arXiv:2104.07020v1.
[12] E. Buß, H. Hán, and M. Schacht. Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs. J. Combin. Theory Ser. B, 114(6):658–678, 2013.
[13] Y. Cheng, J. Han, B. Wang, and G. Wang. Rainbow spanning structures in graph and hypergraph systems. arXiv: 2105.10219v1.
[14] Y. Cheng, G. Wang, and Y. Zhao. Rainbow pancyclicity in graph systems. Electron. J. Combin., 28(3), 2021.
[15] M. Coulson, P. Keevash, G. Perarnau, and L. Yepremyan. Rainbow factors in hypergraphs. J. Combin. Theory Ser. A, 172, 2020.
[16] A. Czygrinow and T. Molla. Tight co-degree condition for the existence of loose Hamilton cycles in 3-graphs. SIAM J. Discrete Math., 28(1):67–76, 2013.
[17] G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc., 3-2(1):69–81, 1952.
[18] A. Ferber and M. Kwan. Dirac-type theorems in random hypergraphs. arXiv: 2006.04370v1.
[19] P. Frankl and A. Kupavskii. Simple juntas for shifted families. Discrete Anal., pages Paper No. 14, 18, 2020.
[20] C. Greenhill, M. Isaev, M. Kwan, and B. D. Mckay. The average number of spanning trees in sparse graphs with given degrees. European J. Combin., 63:6–25, 2017.
[21] H. Hàn and M. Schacht. Dirac-type results for loose Hamilton cycles in uniform hypergraphs. *J. Combin. Theory Ser. B*, 100(3):332–346, 2010.

[22] J. Han and Y. Zhao. Minimum codegree threshold for Hamilton ℓ-cycles in k-uniform hypergraphs. *J. Combin. Theory Ser. B*, 132:194–223, 2015.

[23] J. Han and Y. Zhao. Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs. *J. Combin. Theory Ser. B*, 132:70–96, 2015.

[24] H. Huang, P. Loh, and B. Sudakov. The size of a hypergraph and its matching number. *Combin. Probab. Comput.*, 21(03):442–450, 2012.

[25] F. Joos and J. Kim. On a rainbow version of Dirac’s theorem. *Bull. London Math. Soc.*, 52(3):498–504, 2020.

[26] G. Katona and H. Kierstead. Hamiltonian chains in hypergraphs. *J. Graph Theory*, 30(3):205–212, 1999.

[27] P. Keevash, D. Kühn, R. Mycroft, and D. Osthus. Loose Hamilton cycles in hypergraphs. *Discrete Math.*, 311(7):544–559, 2010.

[28] P. Keevash, N. Lifshitz, E. Long, and D. Minzer. Global hypercontractivity and its applications. arXiv:2103.04604v1.

[29] D. Kühn, R. Mycroft, and D. Osthus. Hamilton ℓ-cycles in uniform hypergraphs. *J. Combin. Theory Ser. A*, 117(7):910–927, 2010.

[30] D. Kühn and D. Osthus. Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. *J. Combin. Theory Ser. B*, 96(6):767–821, 2006.

[31] A. Kupavskii. Rainbow version of the Erdős matching conjecture via concentration. arXiv:2104.0803v1.

[32] R. Lang and N. Sanhueza-Matamala. Minimum degree conditions for tight Hamilton cycles. arXiv:2005.05291.

[33] I. Levitt, G. N. Sárközy, and E. Szemerédi. How to avoid using the Regularity lemma: Pósa’s conjecture revisited. *Discrete Math.*, 310(3):630–641, 2010.

[34] G. Liu and X. Liu. Hamiltonian paths and cycles in some 4-uniform hypergraph. arXiv: 2104.05016v2.

[35] H. Lu, Y. Wang, and X. Yu. A better bound on the size of rainbow matchings. arXiv:2004.12561v3.

[36] H. Lu, Y. Wang, and X. Yu. Rainbow perfect matchings for 4-uniform hypergraphs. arXiv:2105.08688v1.

[37] H. Lu and X. Yu. On rainbow matchings for hypergraphs. *SIAM J. Discrete Math.*, 32(1):382–393, 2018.

[38] H. Lu, X. Yu, and X. Yuan. Rainbow matchings for 3-uniform hypergraphs. *J. Combin. Theory Ser. A*, 183, 2021.

[39] R. Montgomery, A. Müyesser, and Y. Pehova. Transversal factors and spanning trees. arXiv: 2107.04629v1.

[40] J. Moon and L. Moser. On Hamiltonian bipartite graphs. *Israel J. Math.*, 1(3):163–165, 1963.

[41] C. Reiher, V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi. Minimum vertex degree condition for tight Hamiltonian cycles in 3-uniform hypergraphs. *Proc. London Math. Soc.*, 119(2), 2019.

[42] V. Rödl and A. Ruciński. Dirac-type questions for hypergraphs—a survey (or more problems for endre to solve). *Bolyai Society Math. Studies*, 21:561–590, 2010.

[43] V. Rödl, A. Ruciński, and E. Szemerédi. A Dirac-type theorem for 3-uniform hypergraphs. *Combin., Prob. Comp.*, 15(1-2):229–251, 2006.

[44] V. Rödl, A. Ruciński, and E. Szemerédi. An approximate Dirac-type theorem for k-uniform hypergraphs. *Combinatorica(Budapest. 1981)*, 28(2):229–260, 2008.

[45] V. Rödl, A. Ruciński, and E. Szemerédi. Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs. *Adv. Math.*, 227(3):1225–1299, 2011.

[46] M. Simonovits and E. Szemerédi. Embedding graphs into larger graphs: results, methods, and problems. In *Building Bridges. II*, volume 28 of *Bolyai Soc. Math. Stud.*, pages 445–592. Springer, Berlin, 2019.

[47] Y. Zhao. Recent advances on Dirac-type problems for hypergraphs. In *Recent trends in combinatorics*, volume 159 of *IMA Vol. Math. Appl.*, pages 145–165. Springer, [Cham], 2016.
APPENDIX A. THE POSTPONED PROOFS

The idea of the proof is to grow tree-like structures (called cascades) from both designated ends e_1 and e_2 until they meet, forming the desired rainbow path. This method can be seen in [33, 44]. Before we describe the cascades, it is convenient to introduce the following notation. For two sequences of vertices

$$\omega_1 = (v_1, \ldots, v_r, w_1, \ldots, w_s) \text{ and } \omega_2 = (w_1, \ldots, w_s, u_1, \ldots, u_t)$$

where $r, t \geq 1, s \geq 0$ and all vertices are distinct, we define their concatenation as

$$\omega_1\omega_2 = (v_1, \ldots, v_r, w_1, \ldots, w_s, u_1, \ldots, u_t).$$

This operation can be iterated. For instance, if $\omega_1 = (w_1, \ldots, w_{k-2}), \omega_2 = (w_2, \ldots, w_{k-1})$ and $\omega_3 = (w_3, \ldots, w_k)$ where all w_i are distinct, then $\omega_1\omega_2\omega_3 = (w_1, \ldots, w_k)$. We could write $\omega_1\omega_2w_k$ instead of $\omega_1\omega_2\omega_3$. In this paper, an r-element sequence of distinct vertices of V will be referred as r-tuple. Let $e_0 = (v_1, \ldots, v_{k-1})$ be a given $(k-1)$-tuple of vertices. We will define the rainbow e_0-cascade as an auxiliary sequence of bipartite graphs $G_j, j = 1, 2, \ldots$ with bipartitions (A_{j-1}, A_j), whose vertices are $(k-2)$-tuples of the vertices of H and the edges correspond to some $(k-1)$-tuples of the vertices of H. Each node $f \in A_j$ belongs to two graphs G_j and G_{j+1}. Its neighbors in G_j belongs to A_{j-1}, while its neighbors in G_{j+1} belongs to A_{j+1}. For a node $f = (v_1, \ldots, v_{k-2})$ of the rainbow cascade, the vertex v_1 is called the prefix, while v_{k-2} is called the suffix of f.

We define the rainbow cascade recursively as follows. Let $f_0 = (v_2, \ldots, v_{k-1})$ and let $A_0 = \{f_0\}$. For every vertex $v \notin e_0$, we include the node $g = (v_3, \ldots, v_{k-1}, v)$ in the set A_1 if and only if $v_1f_0g = e_0v \in H_{c_1}$ for $c_1 \in [c]$. The graph G_1 is the star with center f_0 and the arms leading to all the nodes $g \in A_1$.

Further, let A_2 be the set of all $(k - 2)$-tuples h such that for some node $g \in A_1$ we have $f_0gh \in H_{c_2}$ where $c_2 \neq c_1$ and $c_2 \in [c]$. Note that each $h \in A_2$ is obtained from a node $g \in A_1$ by dropping the prefix of g and adding a new suffix u, we denote such node by g_u. The graph G_2 consists of all edges $\{g, h\}$ where $g \in A_1, h \in A_2$ and $f_0gh \in H_{c_2}$, it is equal to say G_2 consists of all edges $\{g, g_u\}$ where $f_0gu \in H_{c_2}$.

For $j = 3, \ldots, k - 2$, we similarly define

$$A_j = \{h : \exists f \in A_{j-2}, g \in A_{j-1} \text{ such that } \{f, g\} \in G_{j-1}, fgh \in H_{c_j} \text{ where } c_j \neq c_\ell \text{ for } \ell \in [j - 1]\}$$

and G_j as the bipartite graph with bipartition (A_{j-1}, A_j) and the edge set

$$\{\{g, h\} : \exists f \in A_{j-2} \text{ such that } \{f, g\} \in G_{j-1} \text{ and } fgh \in H_{c_j} \text{, where } c_j \neq c_\ell \text{ for } \ell \in [j - 1]\}.$$

In other words, A_j and G_j correspond to the sets of $(k - 2)$-tuples and $(k - 1)$-tuples of the vertices of V which can be reached from e_0 in j steps by a rainbow path.

First refinement. Having defined A_j and G_j for $j \leq k$, beginning with $j = k - 1$ we change the recursive mechanism by getting rid of the nodes in A_j with too small degree in G_j. We define auxiliary

$$A'_{k-1} = \{h : \exists f \in A_{k-3}, g \in A_{k-2} \text{ such that } \{f, g\} \in G_{k-2}, fgh \in H_{c_{k-1}} \text{ where } c_{k-1} \neq c_\ell \text{ for } \ell \in [k-2]\}$$
and G'_{k-1} as the bipartite graph with bipartition \((A_{k-2}, A'_{k-1})\) and the edge set

\[
\{\{g, h\} : \exists f \in A_{k-3} \text{ such that } \{f, g\} \in G_{k-2} \text{ and } fgh \in H_{c_{k-1}} \text{ where } c_{k-1} \neq c_\ell \text{ for } \ell \in [k-2]\}.
\]

Then let A_{k-1} be the subset of A'_{k-1} consisting of all nodes h with $\deg_{G'_{k-1}}(h) \geq \sqrt{n}$ and set $G_{k-1} = G'_{k-1}[A_{k-2} \cup A_{k-1}]$. For convenience, we set $A_j^j = A_j$ and $G_j' = G_j$ for all $j \leq k-2$.

Second refinement. For $j \geq k$, to form an edge $\{g, h\}$ of G_j we will now require not one but many nodes $f \in A_{j-2}$ to fulfill the above definition.

Set $m = \lceil n^{1/4} \rceil$. Having defined G_{j-1}, let $A_j' = \{h : \exists f_1, \ldots, f_m \in A_{j-2}, g \in A_{j-1} \text{ such that for all } i \in [m], \{f_i, g\} \in G_{j-1} \text{ and } f_ig \in H_{c_j} \text{ where } c_j \neq c_\ell \text{ for } \ell \in [j-1]\}$ and let G_j' be the bipartite graph with bipartition $\langle A_{j-1}, A_j' \rangle$ and the edge set $\{\{g, h\} : \exists f_1, \ldots, f_m \in A_{j-2} \text{ such that for all } i \in [m], \{f_i, g\} \in G_{j-1} \text{ and } f_ig \in H_{c_j} \text{ where } c_j \neq c_\ell \text{ for } \ell \in [j-1]\}$.

Finally, let A_j be the subset of A_j' consisting of all nodes h with $\deg_{G_j'}(h) \geq \sqrt{n}$ and let $G_j = G_j'[A_{j-1} \cup A_j]$. The sequence $(G_j, j = 1, 2, \ldots)$, will be called the rainbow e_0-cascade.

A.1. Properties of the cascade.

Claim A.1 ([44]). For every $j \geq k-1$ and every edge $\{g, h\}$ of G_j where $g = (w_1, \ldots, w_{k-2}) \in A_{j-1}, h = (w_2, \ldots, w_{k-1}) \in A_j$ and $(g \cup h) \cap e_0 = \emptyset$ and for every set of vertices $W \subset V \setminus (g \cup h \cup e_0)$ such that $j + |W| \leq n^{1/4}$, there is a rainbow $(j+k-1)$-path P in H which connects (w_{k-1}, \ldots, w_1) with $e_0 = (v_1, \ldots, v_{k-1})$ and $V(P) \cap W = \emptyset$.

Degrees. Recall that $G_j' = G_j$ for $j \leq k-2$. For a node $g \in A_j$, we set

\[
d^+(g) = \deg_{G'_{j+1}}(g) \text{ and } d^-(g) = \deg_{G_j}(g)
\]

for the forward and backward degree of g in the cascade. Note that in the definition of $d^+(g)$ we consider the forward degree before some small degree vertices of A'_{j+1} are removed. The reason is that we have no control over the effects of the removal on individual forward degrees. On the other hand, for all $f \in A_j$, $\deg_{G_j}(f) = \deg_{G_j'}(f)$, so the backward degree is unaffected unless the node is removed. It is trivial that $d^-(g), d^+(g) \leq n - k + 2$. Observe that $G_1 \cup \cdots \cup G_{k-2}$ is a tree, thus, $d^-(g) = 1$ for all $g \in A_j, j = 1, \ldots, k-2$. Recall that for $j \geq k-1$ the graph G_j is obtained from G_j' by removing nodes g with $\deg_{G_j'}(g) < \sqrt{n}$. Hence our construction guarantees that for all $g \in A_j, j \geq k-1$, we have $d^-(g) \geq \sqrt{n}$.

For all $j \leq k-2$ and all $g \in A_j$,

\[
d^+(g) \geq \left(\frac{1}{2} + \gamma\right)n,
\]

since there are at least $(\frac{1}{2} + \gamma)n$ vertices u such that $fgu \in H_{c_{j+1}}$ where f is the neighbor of g in A_{j-1}. Each such vertex u corresponds to a neighbor gu of g in A_{j+1}.

For $j \geq k$, the second refinement affects and no lower bound on $d^+(g)$ is obvious. However, the lower bound $d^-(g) \geq \sqrt{n}$ introduced by the first refinement maintains.

Growth. By inequality (7), for each $j \in [k-2]$, we have

\[
|G_j| = |A_j| \geq \left(\frac{1}{2} + \gamma\right)^j n^j,
\]
Call a node $f \in A_j$ small if $d^{-}(f) < \frac{1}{2}n$ and denote by S_j the subset of A_j consisting of the small nodes. Assume for simplicity that $1/e^2$ is an integer.

Claim A.2 ([44]). There exists an index j_0, $k - 1 \leq j_0 \leq k - 1 + (k - 1)/\gamma^2$ such that for all $j = j_0, \ldots, j_0 + k - 2$ we have $|S_j| \leq 2\gamma n^{k-2}$.

Claim A.3 ([44]). Let

$$k\gamma^{2-k} < 2^{-k}$$

and let j_0 be as in Claim A.2. Then $|A_{j_0+k-2} \setminus S_{j_0+k-2}| \geq (n - k + 2 - 2^{2-k}n)k^{-2}$.

A.2. The completion of the proof of Lemma 2.5. Let γ_0 satisfy the condition in Claim A.3, i.e. $\gamma_0 := \gamma^{2-k}$ and $k\gamma_0 < 2^{-k}$. Given two disjoint $(k - 1)$-tuples of vertices e_1 and e_2, we build the rainbow e_1-cascade and the rainbow e_2-cascade, with the sets of nodes denoted by A_j and B_j.

Let $j_1 = j_0 + k - 2$, where j_0 is the index guaranteed by Claim A.2 for the rainbow e_1-cascade. Then by Claim A.3, with sufficiently large n, by Bernoulli inequality, we have

$$|A_{j_1} \setminus S_{j_1}| \geq (n - 2\gamma_0 n)^{k-2} > (1 - 2k\gamma_0)n^{k-2}.$$

On the other hand by inequality (8) for $j = k - 2$, we have $|B_{k-2}| > 2^{2-k}n^{k-2}$,

$$|B_{k-2} \cap (A_{j_1} \setminus S_{j_1})| \geq (2^{2-k} - 2k\gamma_0)n^{k-2} \geq \left(\frac{n}{2}\right)^{k-2}.$$

Hence, there is a not small node $g = (u_1, \ldots, u_{k-2}) \in A_{j_1}$ such that $g \cap (e_1 \cup e_2) = \emptyset$ and $g' = (u_{k-2}, \ldots, u_1) \in B_{k-2}$.

Let $e_2 = (w_1, \ldots, w_{k-1})$, $S = \{u_1, \ldots, u_{k-2}, w_{k-1}\}$ and V_0 be the set of prefixes v of the neighbors $f \in A_{j_1-1}$ of g. By Fact 3.1, we have $|N_{H_{j_1}} \cap V_0| > \gamma n$, and thus, there is at least one vertex $v_0 \notin e_2$ such that $\{v_0, u_1, \ldots, u_{k-2}, w_{k-1}\} \in H_{c_{j_1}}$. Besides, $g' = (u_{k-2}, \ldots, u_1) \in B_{k-2}$, which guarantees that there is rainbow path $u_{k-2} \cdots u_1 w_{k-1} \cdots w_1$.

Let P_1 be a rainbow $(j_1 + k - 1)$-path from e_1 to $(u_{k-2}, \ldots, u_1, v_0)$ which avoids the vertices of e_2. The existence of P_1 follows from Claim A.1 with $W = e_2$. The path P obtained from P_1 by adding the segment (w_{k-1}, \ldots, w_1) and the “hook-up” edge $\{v_0, u_1, \ldots, u_{k-2}, w_{k-1}\}$, is the desired rainbow path connecting e_1 and e_2.

By the bound on j_0 established in Claim A.2 and since $\gamma \leq 1/2$,

$$|V(P)| = j_1 + 2(k - 1) = j_0 + 3k - 4 \leq \frac{k - 1}{\gamma^2} + 4k - 5 \leq \frac{2k}{\gamma^2}.$$
Figure 5. A rainbow path connects two \((k - 1)\)-tuples \(e_1\) and \(e_2\)