Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis

Riccardo Dondi1 \hspace{1cm} Florian Sikora2

1\textit{Universita degli Studi di Bergamo} – Italy
2\textit{LAMSADE, Université Paris Dauphine, CNRS} – France

COCOA 2016
Finding Disjoint Paths on Edge-Colored Graphs: A Multivariate Complexity Analysis

Riccardo Dondi1 Florian Sikora2

1Universita degli Studi di Bergamo – Italy
2LAMSADE, Université Paris Dauphine, CNRS – France

COCOA 2016
Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability

Conclusion
Motivations

- Originates from **Social Network Analysis**.
- Computing the **connectivity between 2 nodes** is an important problem.
 - measurement of information flow,
 - cohesion group and centrality.
Motivations

- Originates from **Social Network Analysis**.
- Computing the **connectivity between 2 nodes** is an important problem.
 - measurement of information flow,
 - cohesion group and centrality.
- Different kind of relationship:
 - **Different colors on the edges**.
 - Integration of different type of information.
 - Different media.
 - Different protocol.
 - ...
MaxCDP

- Monochromatic disjoint paths between 2 nodes.
- Monochromatic: Information spread among relations of the same kind.
- Number: More connected.
- Length: Short paths are considered more significant.
- Vertex disjoint: Security, traffic congestion...

Introduce vertex disjoint and color-disjoint versions.

- How different relations in a network connect 2 vertices.

Co-author
Acting
Playing
T. Pratchett
S. Hawking
MaxCDP

- Max nb **monochromatic disjoint paths** between 2 nodes.
MaxCDP

- Max nb **monochromatic disjoint paths** between 2 nodes.
MaxCDP

- **Max nb** *monochromatic disjoint paths* between 2 nodes.
 - Monochromatic: Info. spread among relation of the same kind.
 - Number: More connected.
 - Length: short paths are considered more significant.
 - Vertex disjoint: security, traffic congestion...
MaxCDDP

- **Max nb** monochromatic disjoint paths between 2 nodes.
 - Monochromatic: Info. spread among relation of the same kind.
 - Number: More connected.
 - Length: Short paths are considered more significant.
 - Vertex disjoint: Security, traffic congestion...

- Introduce vertex disjoint and color-disjoint version.
 - How different relations in a network connects 2 vertices
MaxCDP: Known results

- Not approximable within with $c^{1-\varepsilon}$ [Dondi et al. 13],
 - but c-approximable [Wu 12].
- W[1]-hard w.r.t. number of paths [Dondi et al. 13].
 - Even not in XP (NP-C for 2 paths) [Gourves et al. 12].
MaxCDP: Known results

▲ Not approximable within with $c^{1-\varepsilon}$ [Dindi et al. 13],
 ▶ but c-approximable [Wu 12].
▲ $W[1]$-hard w.r.t. number of paths [Dondi et al. 13].
 ▶ Even not in XP (NP-C for 2 paths) [Gourves et al. 12].
▲ When the length of the paths are bounded by ℓ:
 ▶ Polynomial if $\ell < 4$, NP-C otherwise [Wu 12].
 ▶ FPT w.r.t. number of paths + ℓ [Dondi et al. 13].
 ▶ But no polynomial kernel [Golovach Thilikos 11]
Related problems

- 1 color:
 - 1 source-target: Polynomial (flow).
 - \(k\) sources-targets: NP-C but FPT for \(k\). [Robertson Seymour]
Fixed-Parameter Tractability

- Problem in FPT: any instance \((I, k)\) solved in \(f(k) \cdot |I|^c\).

- Examples:
 - Solution of size \(k\) in a \(n\)-vertices graph.
 - \(n\) voters for \(k\) candidates.
 - Requests of size \(k\) in a \(n\)-sized database.
 - ...

- Many ways to parameterize.
 - Solution size.
 - Structure of the input.
Fixed-Parameter Tractability

- Problem in FPT: any instance \((I, k)\) solved in \(f(k) \cdot |I|^c\).

- Examples:
 - Solution of size \(k\) in a \(n\)-vertices graph.
 - \(n\) voters for \(k\) candidates.
 - Requests of size \(k\) in a \(n\)-sized database.
 - ...

- Many way to parameterize.
 - Solution size.
Fixed-Parameter Tractability

- Problem in FPT: any instance \((I, k)\) solved in \(f(k) \cdot |I|^c\).

- Examples:
 - Solution of size \(k\) in a \(n\)-vertices graph.
 - \(n\) voters for \(k\) candidates.
 - Requests of size \(k\) in a \(n\)-sized database.
 - ...

- Many way to parameterize.
 - Solution size.
 - Structure of the input.
 - ...
Structural results MaxCDP

- Real-data is **not random** (e.g. small world phenomenon).
- Information on **the structure**.
- Use it in parameterized complexity.
Structural results MaxCDP

- Real-data is **not random** (e.g. small world phenomenon).
- Information on **the structure**.
- Use it in parameterized complexity.
Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability
MaxCDP w.r.t. Vertex Cover number

- Aim: $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.
MaxCDP w.r.t. Vertex Cover number

- **Aim:** $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.
MaxCDP w.r.t. Vertex Cover number

- **Aim:** $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.
- In any $s - t$ path (length > 3) of the solution:
 - A vertex in IS is adjacent to one in VC or s or t.
MaxCDP w.r.t. Vertex Cover number

- **Aim:** $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.

For all paths (s, v, t) (length 3): remove v.
- Only one path can use v in an optimal solution.

In any $s - t$ path (length > 3) of the solution:
- A vertex in IS is adjacent to one in VC or s or t.
 - Paths are of length at most 2τ.
 - At most τ different paths.
MaxCDP w.r.t. Vertex Cover number

- **Aim:** $f(\tau)n^{O(1)}$ exact algorithm.
- τ computed in FPT time.

- For all paths (s, v, t) (length 3): remove v.
 - Only one path can use v in an optimal solution.
- In any $s - t$ path (length > 3) of the solution:
 - A vertex in IS is adjacent to one in VC or s or t.
 - Paths are of length at most 2τ.
 - At most τ different paths.
 - Known FPT [Bonizzoni et al. 13].
MaxCDDP and Vertex Cover

▶ For MaxCDDP: cannot remove length 3 paths.
MaxCDDP and Vertex Cover

- For MaxCDDP: cannot remove length 3 paths.

- \((s, d, v, e, t) \cup (s, a, b, c, t)\) better than \((s, v, t)\).
Outline

Introduction

FPT Vertex Cover

Parameterized Inapproximability
Coping with the hardness

	Time	Solution Quality
FPT	![Face](image1.png)	![Face](image2.png)
Poly. Approx.	![Face](image3.png)	![Face](image4.png)
Coping with the hardness

Method	Time	Solution Quality
FPT	![Neutral](neutral.png)	![Happy](happy.png)
Poly. Approx.	![Happy](happy.png)	![Sad](sad.png)
FPT Approx.	![Happy](happy.png)	![Neutral](neutral.png)
FPT-Approximation

- A (minimization) problem is **fpt-ρ-approximable** if for any input (I, k):
 - If $\text{opt}(I) \leq k$, computes a solution of value bounded by $\rho(k) \cdot k$ in time $f(k)|I|^{O(1)}$,
 - Otherwise, output can be arbitrary.
Example: computing treewidth

	Time	Ratio
FPT	$2^{O(k^2)} \cdot n$	1
Poly. Approx.	$\text{poly}(n)$	$O(k\sqrt{\log k})$

[Bodlaender 96] [Feige et al. 05]
Example: computing treewidth

	Time	Ratio	Reference
FPT	$2^{O(k^2)} \cdot n$	1	[Bodlaender 96]
	![Sad Face]	![Happy Face]	
Poly. Approx.	$\text{poly}(n)$	$O(k \sqrt{\log k})$	[Feige et al. 05]
	![Happy Face]	![Sad Face]	
FPT Approx.	$2^{O(k)} \cdot n$	5	[Bodlaender et al. 13]
	![Happy Face]	![Happy Face]	
Threshold Set

\[
\begin{array}{ccc}
U & S & w(S_i) \\
1 & S_1 & 2 \\
2 & S_2 & 1 \\
3 & S_3 & 2 \\
4 & & \\
\end{array}
\]
Threshold Set

A maximum solution: \(T = \{1, 2\} \subseteq U \)
Threshold Set

A maximum solution: $T = \{1, 2\} \subseteq U$

- **Independent Set** when $U = V$, $S = E$, weights all 1.
Threshold Set

A maximum solution: \(T = \{1, 2\} \subseteq U \)

- **INDEPENDENT SET** when \(U = V, S = E \), weights all 1.
- No fpt cost \(\rho \)-approximation, for any \(\rho \) function (unless FPT=W[1]) [Marx 2013].
Reduction from Threshold Set

U

\[1\]
\[2\]
\[3\]
\[4\]

\[s\]

\[u_1\]
\[u_2\]
\[u_3\]
\[u_4\]

A maximum solution:

$T = \{1, 2\} \subseteq U$

MaxCDP (and MaxCDDP due to the s_i) are not $\text{fpt-}\rho$-approximable, for any function ρ (unless $\text{FPT}=\text{W}[1]$).
Reduction from Threshold Set

\[U \quad S \quad w(S_i) \]

1 \quad \(S_1\) \quad 2

2

3

4

\(u_2\)

\(u_3\)

\(u_4\)

\(u_1\)

\(S_1\)

\(S_1\)

\(S_1\)

\(S_2\)

\(\text{Reduction with one-to-one correspondence between solutions.}\)

\(\text{MaxCDP (and MaxCDDP du to the } s_i \text{) are not fpt-} \rho \text{-approximable, for any function } \rho \text{ unless FPT=W[1].}\)
Reduction from Threshold Set

1	S₁	2
2	S₂	1
3	S₃	2
4	S²₁	
	S²₂	
	S₃	
	S¹₁	
	S¹₂	
	S¹₃	
	t	

Reduction with one-to-one correspondence between solutions.
MaxCDP (and MaxCDDP due to the s_i) are not fpt-\(\rho\)-approximable, for any function \(\rho\) (unless FPT=W[1]).
Reduction from Threshold Set

\[U \quad S \quad w(S_i) \]

1. \(S_1 \quad 2 \)
2. \(S_2 \quad 1 \)
3. \(S_3 \quad 2 \)

Reduction with one-to-one correspondence between solutions.

MaxCDP (and MaxCDDP due to the \(s_i \)) are not \(\text{fpt-} \rho \)-approximable, for any function \(\rho \) unless \(\text{FPT=W[1]} \).
Reduction from Threshold Set

\[
\begin{align*}
U & \quad S & w(S_i) \\
1 & \quad S_1 & 2 \\
2 & \quad S_2 & 1 \\
3 & \quad S_3 & 2 \\
4 & & \\
\end{align*}
\]

Reduction with one-to-one correspondence between solutions.

\[
\text{MaxCDP (and MaxCDDP due to the} \quad s_i \quad \text{are not FPT-}\rho\text{-approximable, for any function} \quad \rho \quad \text{unless FPT=\text{W}[1].}
\]
Reduction from Threshold Set

U S \(w(S_i) \)

\begin{align*}
1 & \quad S_1 & 2 \\
2 & \quad S_2 & 1 \\
3 & \quad S_3 & 2 \\
4 & \\
\end{align*}

A maximum solution: \(T = \{1, 2\} \subseteq U \)
Reduction from Threshold Set

\[U \quad S \quad w(S_i) \]

\[\begin{array}{ccc}
1 & S_1 & 2 \\
2 & S_2 & 1 \\
3 & S_3 & 2 \\
4 \\
\end{array} \]

A maximum solution: \(T = \{1, 2\} \subseteq U \)

▶ Reduction with one-to-one correspondence between solutions.

▶ MaxCDP (and MaxCDDP due to the \(s_i \)) are not
fpt-\(\rho \)-approximable, for any function \(\rho \) (unless FPT=W[1]).
Open questions

- Complexity on **special class** of graphs? (planar + 2 colors ?)
- Parameterized complexity w.r.t. **feedback vertex set**? (XP ? FPT ?)
- Fine grained complexity lower bounds?
谢谢