Effect of ghost pepper on cell proliferation, apoptosis, senescence and global proteomic profile in human renal adenocarcinoma cells

Venu Perla1, Marjan Nadimi1☯, Rishi Reddy1*, Gerald R. Hankins1‡*, Padma Nimmakayala1‡*, Robert T. Harris1, Jagan Valluri2, Cristian Sirbu3, Umesh K. Reddy1*

1 Gus R. Douglass Land-Grant Institute and Department of Biology, West Virginia State University, Institute, West Virginia, United States of America, 2 Department of Biological Sciences, One John Marshall Drive, Marshall University, Huntington, West Virginia, United States of America, 3 Center for Cancer Research, Charleston Area Medical Center, SE, Charleston, West Virginia, United States of America

☯ These authors contributed equally to this work.
‡ Co-corresponding authors
* ureddy@wvstateu.edu (UKR); ghankins@wvstateu.edu (GRH); padma@wvstateu.edu (PN)

Abstract

Chili peppers are an important constituent of many foods and contain medicinally valuable compounds, such as capsaicin and dihydrocapsaicin. As various dietary botanicals have anticancer properties, this study was aimed to examine the effect of Ghost pepper (Bhut Jolokia), one of the hottest chili peppers in the world, on cell proliferation, apoptosis, senescence and the global proteomic profile in human renal cell adenocarcinoma in vitro. 769-P human renal adenocarcinoma cells were cultured on RPMI-1640 media supplemented with fetal bovine serum (10%) and antibiotic-antimycotic solution (1%). Treatment stock solutions were prepared in ethanol. Cell proliferation was tested with phenol red-free media with capsaicin (0–400 μM), dihydrocapsaicin (0–400 μM), capsaicin + dihydrocapsaicin (5:1), and dry Ghost peppers (0–3 g L⁻¹) for 24, 48 and 72 h. Polycaspase and senescence associated β-galactosidase (SA-beta-gal) activities were tested with capsaicin (400 μM), dihydrocapsaicin (400 μM), capsaicin (400 μM) + dihydrocapsaicin (80 μM), and ghost pepper (3 g L⁻¹) treatments. Global proteomic profile of cells in control and ghost pepper treatment (3 g L⁻¹) was analyzed after 6 h by a shotgun proteomic approach using tandem mass spectrometry.

At 24 h after treatment (24 HAT), relative to control, cell proportion with capsaicin (400 μM), dihydrocapsaicin (0–400 μM), capsaicin + dihydrocapsaicin (5:1), and dry Ghost peppers (0–3 g L⁻¹) for 24, 48 and 72 h. Polycaspase and senescence associated-beta-galactosidase (SA-beta-gal) activities were tested with capsaicin (400 μM), dihydrocapsaicin (400 μM), capsaicin (400 μM) + dihydrocapsaicin (80 μM), and ghost pepper (3 g L⁻¹) treatments. Global proteomic profile of cells in control and ghost pepper treatment (3 g L⁻¹) was analyzed after 6 h by a shotgun proteomic approach using tandem mass spectrometry.

At 24 h after treatment (24 HAT), relative to control, cell proportion with capsaicin (400 μM), dihydrocapsaicin (400 μM), capsaicin (400 μM) + dihydrocapsaicin (80 μM), and ghost pepper (3 g L⁻¹) treatments was reduced to 36%, 18%, 33% and 20%, respectively, and further reduced at 48 and 72 HAT. All treatments triggered an early polycaspase response. SA-beta-gal activity was normal or suppressed with all treatments. About 68,220 protein isoforms were identified by shotgun proteomic approach. Among these, about 8.2% were significantly affected by ghost pepper. Ghost pepper regulated various proteins involved in intrinsic and extrinsic apoptotic pathways, Ras, Rb/E2F, p53, TGF-beta, WNT-beta catenin, and calcium induced cell death pathways. Ghost pepper also induced changes in proteins related to methylation, acetylation, genome stability, cell cycle check points, carbohydrate, protein and other metabolism and cellular mechanisms.
Ghost pepper exhibited antiproliferation activity by inducing apoptosis through a complex network of proteins in human renal cell adenocarcinoma in vitro.

Introduction

‘Ghost pepper’ (also called ‘Naga chilli’ or ‘Bhoot Jolokia’) (*Capsicum chinense*, Jacq.) is one of the hottest chili peppers in the world [1] (Fig 1A). It was officially recognized by the Guinness Book of World Records as the world’s hottest chili, with >1,000,000 Scoville heat units (SHUs), in 2006 [2]. In general, chili species and varieties contain about 1% capsaicin, but the content of capsaicin in ghost pepper ranges from 2% to 4% [3,4]. These higher capsaicin levels can reduce the cost of capsaicin extraction from this chili.

Capsaicinoids are responsible for the hot or burning sensation of chili [5]. About 80% to 90% of capsaicinoids in chili fruit is capsaicin and dihydrocapsaicin [6]. Pharmacological capsaicinoids are used for pain therapy, body temperature regulation, anti-obesity treatments, and anticancer, antioxidation, and antimicrobial therapy [1].

Cancer is the second leading cause of death in the United States. About 30% to 40% of cancers could be prevented by modifying diet, maintaining optimal body weight, and regular physical activity. About 20% of cancer-related deaths annually could be prevented by increasing the consumption of vegetables and fruit. Because of their safety, low toxicity, antioxidant properties, and general acceptance as dietary supplements, fruits and vegetables are being investigated for the prevention of cancer [7]. According to an estimate based on 2009–2011 data by the US National Cancer Institute, approximately 1.6% of men and women will have a diagnosis of kidney and renal pelvis cancer at some point during their lives. In 2011, an estimated 358,603 people in the United States were living with kidney and renal pelvis cancer. Estimated new cases and deaths due to kidney cancer in 2014 in the United States were 63,920 and 13,860, respectively [8].

Animal studies reveal that ingested capsaicin is rapidly absorbed from the stomach and small intestine in animals. Subcutaneous injection of capsaicin in rats increased the blood concentration and peak concentration was reached at about 5h. The highest capsaicin levels were noticed in the kidney tissues and the lowest in the liver [9,10]. In this context, dietary consumption of chili may be a natural choice for preventing kidney cancers among men and women.

During irreversible cell death, mitotic cells can permanently arrest the cell cycle (cellular senescence) or trigger cell death programs. Among these programs, apoptosis (self-killing) and autophagy (self-eating) are well known for cell death [11]. Growing evidence supports the role of apoptosis in capsaicin-mediated responses in various cancer cell lines [1,12]. However, role of capsaicinoids in cancer cell senescence is not clear. Furthermore, investigations on a few proteins in cancer cells have led to biased and incomplete conclusions. In this regard, the objective of this study was to understand the effect of ghost pepper on cell proliferation, apoptosis, senescence and the global proteomic profile in human renal cell adenocarcinoma in vitro.

Material and methods

Determination of capsaicin and dihydrocapsaicin in Ghost pepper by HPLC

Ghost pepper powder was obtained from Alamo City Pepper Products, San Antonio, TX. Capsaicin and dihydrocapsaicin in the commercial Ghost pepper powder was estimated by HPLC (Waters, Milford, MA) for making equimolar concentrations [13].
Cell culture

769-P human renal adenocarcinoma cells (CRL-1933; ATCC, Manassas, VA) were cultured in T75 or T25 flasks (Greiner, Monroe, NC) on RPMI-1640 media supplemented with 10% fetal bovine serum (FBS; ATCC) and 1% antibiotic-antimycotic solution (Gibco, Grand Island, NY) in a CO$_2$ incubator at 37˚C, 90% humidity, 5% CO$_2$ and 21% O$_2$. Cells at about 90% confluence were split (1:4 to 1:12) with 0.25% Trypsin/0.53 mM EDTA in Hank’s balanced salt solution (HBSS) without Ca$^{2+}$ and Mg$^{2+}$ (ATCC) for 10 min at 37˚C.

Treatments

Stock solutions of 50 mM capsaicin and 50 mM dihydrocapsaicin (Sigma-Aldrich, St Louis, MO) were prepared in ethanol, filter-sterilized and stored at -20˚C. Ghost pepper powder was mixed with ethanol (30% w/v), aqua-sonicated for 2 h in ice cold water, filter-sterilized, and used as a stock solution. RPMI-1640 media without phenol red (ATCC) was supplemented
with FBS (10%), L-glutamine (0.3 g L\(^{-1}\); Gibco) and antibiotic–antimycotic solution (1%) to prepare stock media for various assays. Equimolar concentrations of capsaicin (0–400 μM), dihydrocapsaicin (0–400μM), capsaicin (0–400 μM) + dihydrocapsaicin (0–80 μM) (5:1), and Ghost pepper (0–3 g L\(^{-1}\)) were estimated using HPLC and prepared with stock media before various assays. Corresponding controls were prepared by mixing similar volumes of ethanol (0–0.96%) with stock media.

Cell proliferation assay

Cell proliferation was measured with the CyQUANT cell proliferation assay kit by using a green fluorescent dye, CyQUANT GR dye, which exhibits strong fluorescence enhancement when binding to cellular nucleic acids (Life Technologies, Grand Island, NY). A total of 500 live cells were added to each well containing 200 μL culture media in a 96-well flat black-bottomed plate (Greiner, Monroe, NC). After 24H (hours after treatment), culture media was replaced with freshly prepared control or treatment media. At 24, 48 and 72H after treatment, media was gently removed, and plates were kept at -80˚C until further analysis. Before assay, plates were thawed for 0.5H at room temperature. In total, 200μL CyQuant GR solution (1x) was added in each well, mixed well with a multichannel pipette, and fluorescence was measured at 480/520 nm (ex/em) in a microplate reader (Synergy HT, BioTek Instruments, Winooski, VT).

Polycaspase assay

Apoptosis was detected with the FAM FLICA Polycaspase assay kit (ImmunoChemistry Technologies, Bloomington, MN) with the green fluorescent inhibitor probe FAM-VAD-FMK that labels active caspase enzymes in living cells. Cells were cultured on phenol red-free media in T25 flasks. Cells at about 90% confluence were tested with various treatments. Staurosporine (6μM) (ImmunoChemistry Technologies) was used as a positive control. At 0.5, 1, 2 and 4H, floating cells with media were collected in a 15-mL disposable centrifuge tube and centrifuged at 5000g for 5 min at room temperature. After discarding the supernatant, cells were mixed with 600 μL of 1x apoptosis wash buffer. Remaining adhered cells on the flask were lifted with trypsin, centrifuged, and mixed with the previously collected cell suspension after discarding the supernatant. FAM-FLICA poly caspase inhibitor reagent (1x) was mixed with 500 μL cell suspension and incubated at 37˚C for 1 h with intermittent shaking. During this incubation period, a portion of the remaining cells was used for counting the cells with a hemacytometer with trypan blue (0.04%). After incubation, 2mL wash buffer was added to cells, centrifuged, and supernatant was discarded. Again 2mL of wash buffer was added to cells and incubated at 37˚C for 10min to remove excess FAM-FLICA reagent. Cells were centrifuged and the supernatant was discarded. Finally, cells were suspended in 500μL wash buffer and kept on ice. In total, 100μL cell suspension was used for estimating poly-caspase activity in 96-well flat black-bottom plates. Fluorescence was measured in the microplate reader at 488/520nm (ex/em), and the measured RFU values were normalized to total number of cells.

SA-beta-gal assay

SA-beta-gal activity was measured with the 96-well cellular senescence assay kit (Cell Biolabs, San Diego, CA). With few exceptions, cell culture and treatment procedures were similar to polycaspase assay procedures. SA-beta-gal activity was measured at 0.5, 1 and 2H. Floating and adherent cells collected after treatment were washed with phosphate buffered saline (PBS), pooled, suspended in 400 μL cell lysis buffer (1x), and kept on ice for 10min. Then, cell suspension was dissolved by vortex. From this, 100 μL solution was frozen at -80˚C for about 1 h and
used it for CyQuant cell proliferation assay. From the remaining solution, 200μL was mixed with an equal amount of 2x reaction buffer containing SA-beta-gal substrate and incubated at 37°C for 1 h in the dark. After incubation, the solution was mixed by vortex, and a 200-μL solution was mixed with 800μL stop solution. From this, a 200-μL solution was used to determine SA-beta-gal activity in 96-well flat black-bottom plates. Fluorescence was measured in the microplate reader at 360/465 nm (ex/em), and RFU values were normalized to those obtained from CyQuant cell proliferation assay.

Shotgun proteomics

Global proteomic profile for control and Ghost pepper (3 g L⁻¹) treated cells at 6H were analyzed by a shotgun proteomic approach with tandem mass spectrometry. AT 6H, all the cells including floating cells were washed three times with PBS, flash frozen in liquid nitrogen and sent to BioProximity, LLC, Chantilly, VA on dry ice for shotgun proteomic analysis. Details of the proteomic analysis are given below:

Protein denaturation and digestion

Samples were prepared for digestion with the filter-assisted sample preparation method [14]. Briefly, samples were suspended in 8M urea, 50 mM Tris-HCl, pH 7.6, 3 mM DTT, sonicated briefly, and incubated in a Thermo-Mixer at 40 °C, 1000 RPM for 20 min. Samples were centrifuged and the supernatant was transferred to a 30-kD MWCO device (Millipore) and centrifuged at 13,000 g for 30 min. The buffer for the remaining sample was exchanged with 8M urea, 100 mM Tris-HCl, pH 7.6, then alkylated with 15mM iodoacetamide. The urea concentration was reduced to 2 M. Samples were digested overnight with trypsin at a ratio of enzyme to substrate of 1:100 at 37°C in a Thermo-Mixer at 1000 RPM. Digested peptides were collected by centrifugation.

Peptide desalting

A portion of the digested peptides, about 20μg, was desalted with use of C18 stop-and-go extraction (STAGE) tips [15]. Briefly, for each sample, a C18 STAGE tip was activated with methanol, and then conditioned with 60% acetonitrile and 0.5% acetic acid, followed by 2% acetonitrile and 0.5% acetic acid. Samples were loaded onto the tips and desalted with 0.5% acetic acid. Peptides were eluted with 60% acetonitrile, 0.5% acetic acid and lyophilized in a SpeedVac (Thermo Savant) to near dryness, approximately 2h.

Liquid chromatography-tandem mass spectrometry

Each digestion mixture was analyzed by ultra-HPLC-MS/MS. LC involved the Easy-nLC 1000 UHPLC system (Thermo). The mobile phase A was 97.5% MilliQ water, 2% acetonitrile, and 0.5% acetic acid and mobile phase B was 99.5% acetonitrile and 0.5% acetic acid. The 240-min LC gradient ran from 0% to 35% B over 210 min, then to 80% B for the remaining 30 min. Samples were loaded directly onto the column. The column was 50 cm x 75 μm ID and packed with 2 micron C18 media (Thermo Easy Spray PepMap). The LC was interfaced to a quadrupole-Orbitrap mass spectrometer (Q-Exactive, Thermo Fisher) via nano-electrospray ionization with a source via an integrated column heater (Thermo Easy Spray source). The column was heated to 50 °C. An electrospray voltage of 2.2 kV was applied. The mass spectrometer was programmed to acquire, by data-dependent acquisition, tandem mass spectra from the top 20 ions in the full scan from 400–1200 m/z. Dynamic exclusion was set at 15s, singly-charged ions were excluded, isolation width was 1.6 Da, full MS resolution was 70,000 and MS/MS
resolution 17,500. Normalized collision energy was set to 25, automatic gain control to 2e5, max fill MS to 20 MS, max fill MS/MS to 60 MS and underfill ratio to 0.1%.

Data processing and library searching

Mass spectrometer RAW data files were converted to MGF format by use of msconvert [16]. Detailed search parameters are printed in the search output XML files. Briefly, all searches required 10ppm precursor mass tolerance, 0.02 Da fragment mass tolerance, strict tryptic cleavage, 0 or 1 missed cleavages, fixed modification of cysteine alkylation, variable modification of methionine oxidation and expectation value scores ≤ 0.01. MGF files in the human sequence library were searched with use of X!Tandem [17] with both the native [18] and k-score [19] scoring algorithms and by OMSSA [20]. All searches were performed with Amazon Web Services-based cluster computed instances with the Proteome Cluster interface. XML output files were parsed and non-redundant protein sets were determined by use of Proteome Cluster [21]. MS1-based peak areas were calculated by use of XCMS [22]. Proteins were required to have ≥ 1 unique peptides across the analyzed samples with e-scores ≤ 0.001.

Statistical analysis

Unless otherwise mentioned, all the experiments were conducted with 4 replicates, and data are presented as mean ± SD. Statistical analysis was performed using SAS software (University Edition, Cary, NC) using BASE SAS, PROC IMPORT, PROC SORT, PROC TRANSPOSE, PROC GLM, PROC PRINT and SAS MACRO programs. Significant differences among means were determined using one-way analysis of variance (ANOVA) followed by Tukey’s honestly significant differences multiple-rank test at the p ≤ 0.05 significance level. Proteomic data was analyzed in Microsoft Excel software using paired Student’s t-test with two-tailed distribution.

Results

Ghost pepper powder contained a 5:1 ratio of capsaicin to dihydrocapsaicin

HPLC analysis revealed that commercially available ghost pepper powder contained 25.80 and 5.07 mg g⁻¹ dry weight (DW) capsaicin and dihydrocapsaicin, respectively. Furthermore, the ratio of capsaicin to dihydrocapsaicin was 5:1 in this Ghost pepper powder (Fig 1B).

Adenocarcinoma cell proliferation was affected by concentration and duration of treatment

The proportion of adenocarcinoma cells decreased with increasing concentration of Ghost pepper and capsaicinoid treatments at 24, 48 and 72H (Hours After Treatment) (Fig 2). At 24H (Hours After Treatment), capsaicin (400μM), dihydrocapsaicin (400μM), capsaicin (400μM) + dihydrocapsaicin (80μM), and ghost pepper (3 g L⁻¹) decreased the proportion to 36%, 18%, 33% and 20%, respectively, as compared with controls. At 48 and 72H, these values were further reduced to 5% to 15% and 6% to 8%, respectively. Various controls corresponding to different treatment combinations were tested for cell proliferation activity at 24 and 72H (Fig 3). Controls with culture media and different levels of ethanol (control-2 to control-9) did not affect cell proliferation as compared with culture media alone (control-1).

Apoptosis versus senescence

As compared with control(s), all treatments increased polycaspase activity in adenocarcinoma cells at 0.5H (Fig 4). This trend was continued up to 2H. At 4H, as compared to control, all
treatments except dihydrocapsaicin (400 μM) maintained high polycaspase activity. Peak poly-
caspase activity occurred with both dihydrocapsaicin (400 μM) and capsaicin (400 μM) +

Fig 2. Effect of ghost pepper on human renal adenocarcinoma cell proliferation. Percentage of cells at 24, 48 and 72 H with different concentrations of capsaicin (Cap), dihydrocapsaicin (DCap), Cap + DCap (5:1), and ghost pepper. Control (media without any treatment compound) is adjusted to 100%. Values are means ± SD; n = 4; *p ≤ 0.05 and **p ≤ 0.01 (as compared to control); ^p ≤ 0.05 and ^^p ≤ 0.01 (as compared to lowest concentration within each compound group).

https://doi.org/10.1371/journal.pone.0206183.g002
dihydrocapsaicin (80 μM) at 0.5H. As compared to control-1, peak polycaspase activity occurred with Ghost pepper (3 g L⁻¹) and capsaicin (400 μM) at 1 and 2H, respectively. Polycaspase activity rapidly decreased with dihydrocapsaicin followed by Ghost pepper at 4H. Overall, polycaspase activities began to decrease at 4H. Rapid, early, and late polycaspase response was noticed with dihydrocapsaicin, Ghost pepper and capsaicin, respectively. SA-beta-gal activity with capsaicin (400 μM) treatment was similar to control(s) activity at 0.5 and 1H and thereafter started to decline (Fig 5). Interestingly, the activity was significantly low in other treatments from 0.5 to 2H. Overall, SA-beta-gal activity started to decrease from 2H with all treatments. Dihydrocapsaicin (400μM) produced the lowest SA-beta-gal activity among all treatments at all treatment times.

Shotgun proteomics revealed a complex network of proteins involved in Ghost pepper-treated cells

By shotgun proteomic approach, we have identified over 10,000 protein groups in each, for about 20,000 protein groups across the control and ghost pepper treated samples which map to about 68,220 protein isoforms at 6H. All the identified proteins exhibited up to several fold difference between treatment and control. Among them, approximately 8.2% (5,577) protein isoforms in Ghost pepper treated cells were significantly different from control. A selective list of proteins that were significantly affected by ghost pepper treatment are presented in Table 1 with experimental evidence. Some of the identified proteins are directly or indirectly related to apoptotic (extrinsic and intrinsic), Ras, Rb/E2F, p53, TGF-beta, WNT-beta catenin, and calcium induced cell death pathways. Several other proteins involved in methylation, acetylation, genome stability, cell cycle checkpoint regulation, carbohydrate, protein and other metabolism and cellular mechanisms were also affected by ghost pepper treatment. Due to space constraints, key proteins and their roles in ghost pepper induced cell death are elaborated under discussion section. In summary, shotgun proteomic analysis revealed that each pathway or cellular mechanism that was affected by ghost pepper had selective upregulated as well as down
Effect of ghost pepper on human renal adenocarcinoma cells

![Graph showing polycaspase activity (RFU) over time with different treatments, including control and varying concentrations of ghost pepper and DCap.](image)

- **0.5H**: Control-1, Control-2, Control-3, Control (+ve) show no significant difference. Cap 400 μM, DCap 400 μM, 80 μM, Ghost Pepper 3.00 g/L show increased polycaspase activity.
- **1H**: Similar trend as 0.5H, with additional significance markers for DCap 400 μM and Ghost Pepper 3.00 g/L.
- **2H**: Control and Control (+ve) show no significant difference. Cap 400 μM, DCap 400 μM, 80 μM, Ghost Pepper 3.00 g/L show increased polycaspase activity.
- **4H**: Control and Control (+ve) show no significant difference. Cap 400 μM, DCap 400 μM, 80 μM, Ghost Pepper 3.00 g/L show increased polycaspase activity with additional significance markers for DCap 400 μM and Ghost Pepper 3.00 g/L.
regulated proteins in human renal cell adenocarcinoma at 6 H (see data in Dryad, doi:10.5061/dryad.d0s2gm0).

Discussion

In this study, we have examined the effect of ghost pepper (Bhut Jolokia), one of the hottest chili peppers in the world, on cell proliferation, apoptosis, senescence and the global proteomic profile in human renal cell adenocarcinoma in vitro. Results of these findings are discussed here in detail.

Ghost pepper and major capsaicinoids had similar effects on adenocarcinoma cell proliferation

Our HPLC analysis of commercial Ghost pepper powder revealed a ratio of 5:1 for major capsaicinoids in terms of capsaicin and dihydrocapsaicin (Fig 1). In general, the ratio of capsaicin to dihydrocapsaicin ranges from 1:1 to 2:1 in chilies [6] depending on the pepper source and method of extraction [10]. All our experiments were designed to reflect the ratio of capsaicin to dihydrocapsaicin in the purchased ghost pepper powder. The ratio of major capsaicinoids in the ethanol extracts of ghost pepper may not be exactly equal to the ratio estimated by HPLC. However, this ratio serves as a reference for cell culture experiments.

![Fig 4. Cellular polycaspase activity in human renal adenocarcinoma cells at 0.5, 1, 2 and 4 H. Control-1 contained culture media without ethanol. Control-2 and control-3 contained culture media with different levels of ethanol (0.80 and 0.96%, respectively). Control (+ve) contained staurosporine (6 μM). Control-2 was a corresponding control for capsaicin (Cap 400 μM), dihydrocapsaicin (DCap 400 μM), and Ghost pepper (3 g L⁻¹) treatments. Control-3 was a corresponding control for capsaicin + dihydrocapsaicin treatment (Cap 400 μM + DCap 80 μM) (5:1). Polycaspase activities were normalized with respective total number of cells. Values are means ± SD; n = 4; p ≤ 0.05 (•, •+, + or !); p ≤ 0.01 (**, ^, ++ or !!); * or ** as compared to control-1; ^ or ^^ as compared to cap 400 μM; + or ++ as compared to DCap 400 μM; ! or !! as compared to Cap 400 μM + DCap 80 μM.](https://doi.org/10.1371/journal.pone.0206183.g004)

![Fig 5. SA-beta-gal activity in human renal adenocarcinoma cells at 0.5, 1 and 2 H. Control-1 contained culture media without ethanol. Control-2 and control-3 contained culture media with different levels of ethanol (0.80 and 0.96%, respectively). Control-2 was a corresponding control for capsaicin (Cap 400 μM), dihydrocapsaicin (DCap 400 μM), and ghost pepper (3 g L⁻¹) treatments. Control-3 was a corresponding control for capsaicin + dihydrocapsaicin treatment (Cap 400 μM + DCap 80 μM) (5:1). SA-beta-gal activities were normalized with respective relative fluorescence unit (RFU) values obtained with CyQUANT cell proliferation assay. Values are mean ± SD; n = 4; p ≤ 0.05 (•, •+, + or !); p ≤ 0.01 (**, ^, ++ or !!); * or ** as compared to control-1; ^ or ^^ as compared to cap 400 μM; + or ++ as compared to DCap 400 μM; ! or !! as compared to Cap 400 μM + DCap 80 μM.](https://doi.org/10.1371/journal.pone.0206183.g005)
S. No.	Protein	Gene name	Description	Protein Intensity Values	Fold changee	p valuee	Experimental evidenced			
				Control (C)	Ghost Pepper (T)	(C/T)				
				Mean	SD	Mean	SD			
1	A0A024R374	CTSB	Cathepsin B, isoform CRA_a	385.36	20.01	210.87	77.26	1.83	0.038	UR, protein inferred from homology
2	C9LJ25	HSPD1	60 kDa heat shock protein, mitochondrial	611.49	212.73	1589.49	348.72	-2.60	0.036	
3	H0YF14	BCLAF1	Bcl-2-associated transcription factor 1	8.59	13.14	38.67	19.92	-4.50	0.028	UR, protein predicted
4	I3L276	HMOX2	Heme oxygenase 2	64.98	110.82	208.33	144.13	-3.21	0.031	UR, protein
5	O43715	TRIAP1	TP53-regulated inhibitor of apoptosis 1	49.04	19.75	1.00	0.00	49.04	0.052	
6	P04940	CAT	Catalase	37.92	55.59	236.27	118.47	-6.23	0.043	Protein
7	P06681	C2	Complement C2	1.00	0.00	3.14	0.09	-3.14	0.001	Protein
8	P19440	GGT1	Gamma-glutamyltranspeptidase 1	106.01	40.01	191.53	16.71	-1.81	0.032	Protein
9	P51398	DAP3	28S ribosomal protein S29, mitochondrial	73.78	59.58	277.07	55.12	-3.76	0.001	Protein
10	P60602	ROMO1	Reactive oxygen species modulator 1	1.75	1.29	41.46	2.47	-23.74	<0.001	
11	P99999	CYCS	Cytochrome c	127.48	29.51	26.14	21.19	4.88	0.041	Protein
12	Q12888	TP53BP1	Tumor suppressor p53-binding protein 1	65.68	64.28	342.75	76.21	-5.22	0.036	Protein
13	Q12933	TRAF2	TNF receptor-associated factor 2	18.41	15.87	43.61	15.48	-2.37	<0.001	Protein
14	Q4LDX3	JAK1	Janus kinase 1	56.37	22.82	242.90	33.34	-4.31	0.029	UR, transcript
15	Q5TCM1	SOD2	Superoxide dismutase [Mn], mitochondrial	85.17	35.32	533.48	75.31	-6.26	0.003	Protein
16	Q6LCB0	FADD	FADD protein	46.88	19.46	4.60	6.24	-10.19	0.049	Protein, predicted
17	Q8NC60	NOA1	Nitric oxide-associated protein 1	12.51	12.39	79.27	29.34	-6.33	0.022	Protein
18	Q96FV9	THOCI	THO complex subunit 1	25.48	21.26	108.04	26.14	-4.24	0.001	Protein
19	Q96G23	CERS2	Ceramide synthase 2	7.61	11.45	58.99	20.92	-7.75	0.013	Protein
20	Q99349	CNN2	Janus kinase 1	56.37	22.82	242.90	33.34	-4.31	0.029	Protein
21	Q9HBQ7	CTSL	Cathepsin L, isoform CRA_b	119.88	41.31	5.83	8.36	20.57	0.031	Protein
22	Q96NN9	CSK	Tyrosine-protein kinase CSK	29.24	17.70	57.75	24.52	-1.97	0.036	Protein
23	Q96FV9	MAPKAPK2	MAP kinase-activated protein kinase 2	27.68	24.48	143.12	33.62	-5.17	0.032	Protein
24	Q96NN9	SOD1	Superoxide dismutase-1	10.31	8.55	34.38	0.73	-3.34	0.040	Protein
25	Q96NN9	RAB5B	Ras-related protein Rab-5B	1.00	0.00	36.29	11.54	-36.29	0.034	Protein
26	Q96NN9	RASSF7	Ras association domain-containing protein 7	4.57	6.18	51.57	6.22	-11.29	<0.001	Protein
27	Q96NN9	RAP1B	Ras-related protein Rap-1b	64.63	12.98	158.16	15.86	-2.45	0.002	Protein
28	Q96NN9	B5BU32	Ras association domain-containing protein 5	5.13	4.10	83.20	22.88	-16.22	0.034	Protein

(Continued)
Table 1. (Continued)

S. No.	Protein	Gene name	Description	Protein Intensity Values*	Fold change$^\text{(C/T)}$	p value$^\text{p}$	Experimental evidence$^\text{e}$
41	Q14999	CUL7	Cullin-7	Mean SD	Mean SD		Protein
42	Q5VUP6	CCAR1	Cell division cycle and apoptosis regulator protein 1	36.96 32.65 288.28 56.87	-7.80 0.013		Protein
43	Q9UE85	PML	Promyelocytic leukemia gene protein	2.20 2.08 91.49 36.45	-41.58 0.046		UR, protein predicted
44	Q00632	MEN1	Menin	1.64 1.11 44.76 16.25	-27.24 0.043		Protein
45	O43219	TGFB1	Transforming growth factor-beta-induced protein ig-h3	2.53 2.65 102.06 32.07	-40.37 0.028		Protein
46	Q9NYJ8	TAB2	TGF-beta-activated kinase 1 and MAP3K7-binding protein 2	1.00 0.00 5.75 0.06	-5.75 <0.001		Protein
47	B4DGU4	CTNNB1	Catenin beta-1	232.42 60.04 383.84 50.49	-1.65 0.002		UR, protein
48	P35221	CTNNA1	Catenin alpha-1	1239.53 50.27 1050.70 87.86	1.18 0.025		Protein
49	Q9NQB3	TCF7L2	Transcription factor 7-like 2	1.00 0.00 3.06 0.02	-3.06 <0.001		Protein
50	Q3V361	CALM1	Calmodulin	735.69 97.72 297.04 49.00	2.48 0.012		Protein
51	H0Y9S7	ATP2C1	Calcium-transporting ATPase type 2C member 1	4.38 5.85 82.00 12.83	-18.72 0.012		UR, protein
52	Q13526	PIN1	Peptidyl-prolyl cis-trans isomerase NIMA-interacting	101.40 34.62 12.72 6.11	-5.75 <0.001		Protein
53	Q8IWX8	CHERP	Calcium homeostasis endoplasmic reticulum protein	45.89 13.40 228.61 7.60	-4.98 0.002		Protein
54	Q8NE86	MCU	Calcium uniporter protein, mitochondrial	51.21 48.90 222.46 38.65	-4.34 0.021		Protein
55	Q9H712	CARF	Calcium-responsive transcription factor	1.69 1.19 3.85 1.71	-2.28 0.019		Protein
56	Q9ULQ1	TPCN1	Two pore calcium channel protein 1	1.00 0.00 27.70 1.27	-27.70 0.001		Protein
57	Q9Y6Y1	CAMTA1	Calmodulin-binding transcription activator 1	7.99 3.45 4.43 4.03	1.81 0.049		Protein
58	Q16566	CAMK4	Calcium/calmodulin-dependent protein kinase type IV	1.00 0.00 2.91 0.21	-2.91 0.004		Protein
59	A6N6J7	JARD1C	JARD1C protein	8.63 13.22 24.33 11.86	-2.82 0.031		UR, transcript
60	F8WAX2	PCMT1	Protein-L-isoadsartate(D-aspartate) O-methyltransferase	21.35 4.97 1.00 0.00	21.35 0.019		Protein
61	H7C2I1	PRMT1	Protein arginine N-methyltransferase 1	415.06 80.67 836.76 116.95	-2.02 0.020		UR, protein
62	K7EMU8	DNM1T1	DNA (cytosine-5)-methyltransferase 1	6.38 9.31 28.80 9.81	-4.52 0.001		Protein
63	P22087	FBL	rRNA 2'-O-methyltransferase fibrillarin	472.15 13.49 910.54 78.17	-1.93 0.007		Protein
64	Q15047	SETDB1	Histone-lysine N-methyltransferase SETDB1	2.45 2.51 27.03 2.34	-11.03 0.006		Protein
65	Q672J1	WHSC1	Histone-lysine N-methyltransferase NSD2	16.83 25.92 93.37 51.46	-5.55 0.038		Protein
66	Q96KB0	MIAA	Bifunctional lysine-specific demethylase and histidyl-hydroxylase MINA	8.62 11.57 115.01 35.32	-13.34 0.045		Protein
67	Q9HB3	KMT2A	Histone-lysine N-methyltransferase 2A	19.02 6.52 6.08 5.04	3.13 0.004		Protein
68	Q9UI30	TRMT112	Multifunctional methyltransferase subunit TRM112-like protein	249.20 8.85 131.01 21.43	1.90 0.016		Protein
69	Q9Y483	MTF2	Metal-response element-binding transcription factor 2	3.73 3.31 21.39 3.64	-5.73 0.016		Protein
70	A1Z516	MDC1	Mediator of DNA damage checkpoint 1 variant 2	1.00 0.00 14.60 3.40	-14.60 0.020		UR, transcript
71	B4DTU4	LIG1	DNA ligase	59.25 13.36 364.20 85.60	-6.15 0.019		Protein
72	B7V7V7	CDC2L1	Cell division cycle 2-like 1 (PITSLRE proteins)	4.10 5.36 39.94 13.83	-9.75 0.049		UR, protein
73	H0Y9J8	RAD17	Cell cycle checkpoint protein RAD17	1.00 0.00 6.01 0.10	-6.01 <0.001		Protein

(Continued)
Table 1. (Continued)

S. No.	Protein	Gene name	Description	Protein Intensity Values	Fold change^δ	p value[^]	Experimental evidence^ε			
				Control (C)	Ghost Pepper (T)	(C/T)				
				Mean	SD	Mean	SD			
74	Q13042	CDC16	Cell division cycle protein 16 homolog	10.88	7.34	38.82	12.02	-3.57	0.040	Protein
75	Q15819	UBE2V2	Ubiquitin-conjugating enzyme E2 variant 2	352.73	88.39	3.05	2.23	115.67	0.020	Protein
76	Q16695	HIST3H3	Histone H3.1t	11.17	5.62	32.65	2.58	2.78	0.013	Protein
77	Q7Z2J1	ATRX	Transcriptional regulator ATRX	10.14	9.15	127.09	24.60	-12.53	0.028	Protein
78	Q8WWL7	CCNB3	G2/mitotic-specific cyclin-B3	10.14	9.15	127.09	24.60	-12.53	0.028	Protein
79	Q9H9Q9	CCAR2	Cell cycle and apoptosis regulator protein 2	365.06	34.83	609.51	58.77	-1.67	0.035	Protein
80	Q9NYB0	TERF2IP	Telomeric repeat-binding factor 2-interacting protein 1	19.33	13.11	77.75	13.83	-4.02	0.029	Protein
81	Q9UXJ4	ANAPC5	Anaphase-promoting complex subunit 5	18.67	17.87	128.20	22.18	-6.87	0.011	Protein
82	B4DHB3	Phosphoglycerate kinase	1176.88	352.46	362.35	135.41	3.25	0.028	UR, transcript	
83	B4DPM0	Pyruvate kinase	283.82	35.20	78.39	7.42	3.62	0.014	UR, transcript	
84	B4E2U0	6-phosphogluconate dehydrogenase, decarboxylating	290.03	65.21	123.93	54.62	2.34	0.002	UR, transcript	
85	E9PK47	PYGL	Alpha-1,4 glucan phosphorylase 1	107.81	11.36	34.67	6.25	3.11	0.015	Protein
86	F2Z393	TALDO1	Transaldolase	368.63	66.05	85.26	75.23	4.32	<0.001	Protein
87	H3BUH7	ALDOA	Fructose-bisphosphate aldolase A	624.56	31.44	181.07	28.45	3.45	0.001	Protein
88	H3BU13	PKM	Pyruvate kinase PKM	943.35	58.68	288.03	71.42	2.06	0.034	Protein
89	H3BR68	ALDOA	Fructose-bisphosphate aldolase A	2238.98	467.51	522.35	48.65	4.29	0.028	Protein
90	K7EM90	ENO1	Enolase	2210.71	635.82	1102.74	269.53	2.00	0.036	Protein
91	K7ENA0	GPI	Glucose-6-phosphate isomerase	368.63	66.05	85.26	75.23	4.32	<0.001	Protein
92	P09467	FBP1	Fructose-1,6-bisphosphatase 1	7.76	6.05	12.31	6.50	-1.59	0.020	Protein
93	P52209	PGD	6-phosphogluconate dehydrogenase, decarboxylating	377.41	54.26	187.45	41.03	2.01	0.010	Protein
94	Q6FI37	IDH1	Isocitrate dehydrogenase [NADP]	313.47	98.23	42.60	5.33	7.36	0.045	Protein
95	Q9UF08	AGL	Glycogen debranching enzyme	29.74	13.50	59.31	19.42	-1.99	0.018	Protein
96	U3KPS5	TP1	Triosephosphate isomerase	377.22	28.00	199.33	46.94	1.89	0.012	Protein
97	U3KPQ4	ENO2	Gamma-enolase	56.15	22.11	8.23	12.52	6.83	0.018	Protein
98	F8VS27	TSFM	Elongation factor Ts, mitochondrial	1.00	0.00	55.29	6.52	-55.29	0.005	Protein
99	P39023	RPL3	60S ribosomal protein L3	647.05	227.22	1161.78	211.18	-1.80	0.001	Protein
100	Q5639	EEF1A2	Elongation factor 1-alpha 2	3113.93	773.57	1862.76	488.17	1.67	0.017	Protein
101	Q6PI48	DARS2	Aspartate-tRNA ligase, mitochondrial	138.13	13.89	317.58	15.14	-2.30	<0.001	Protein
102	Q9Y3D9	MRPS23	28S ribosomal protein S23, mitochondrial	8.12	12.33	58.22	8.90	-7.17	0.003	Protein
103	D6RHI2	ELOVL6	Elongation of very long chain fatty acids protein	1.00	0.00	5.72	0.01	-5.72	<0.001	Protein
104	F8VQZ7	METAP2	Methionine aminopeptidase 2	139.59	53.31	6.09	8.81	22.93	0.044	Protein
105	P51648	ALDH3A2	Fatty aldehyde dehydrogenase	39.06	25.75	234.48	18.06	-6.00	0.012	Protein
106	Q02880	TOP2B	DNA topoisomerase 2-beta	77.70	7.32	272.66	6.13	-3.51	0.001	Protein
107	Q6ICD2	EIF3L	Eukaryotic translation initiation factor 3 subunit L	419.15	75.34	220.10	68.41	1.90	0.002	Protein

Footnotes:

- Area under the curve of peptide peak (no units).
- Fold change of a protein is a ratio of its expression in control and ghost pepper treated cells (n = 3). Negative (-) or positive (none) sign under 'fold change' column indicates over or under expression of that protein, respectively in ghost pepper treated cells as compared to control.
- Paired Student’s t-test with two-tailed distribution.
- Experimental evidence were obtained from Swiss-Prot website. UR = Unreviewed (protein sequence and functional information are not yet reviewed at Swiss-Prot website).

https://doi.org/10.1371/journal.pone.0206183.t001
Various concentrations of capsaicin, dihydrocapsaicin, capsaicin + dihydrocapsaicin and ghost pepper had the similar effect on adenocarcinoma cell proliferation (Fig 2). Therefore, ghost pepper could exert its effects on cell proliferation via capsaicin and dihydrocapsaicin. However, the role of other minor capsaicinoids of ghost pepper in anticancer properties cannot be ignored. The anticancer effects of capsaicin in vitro were previously found to be both dose- and time-dependent [23]. Bley et al. [12] found that the effects of capsaicin are in the low micromolar range and become maximal at approximately 200 to 300 μM. The duration of exposure enhances the potency of capsaicin and its stability under specific experimental conditions. Recent studies have confirmed and extended these observations to additional cell lines and to rodent in vivo xenograft tumor models [12]. Together, capsaicin and dihydrocapsaicin at 5:1 ratio did not show any additive or synergistic effects on cell proliferation compared to either compound alone. We are not sure of specific reasons for this kind of response in human renal adenocarcinoma cells. Data pertaining to cell proliferation in various controls indicate that ethanol, the solvent we used to dissolve capsaicinoids, did not significantly affect the proliferation of human adenocarcinoma cells in vitro (Fig 3).

Apoptosis versus senescence

Ghost pepper and its major capsaicinoids induced early polycaspase responses in human renal adenocarcinoma cells in vitro (Fig 4). The polycaspase FLICA probe, FAM-VAD-FMK, detects apoptosis by recognizing different types of activated caspases in a cell. On the other hand, SA-beta-gal is considered one of the markers of senescence in cells [24]. In this study, SA-beta-gal activity was normal or was downregulated with various treatments in human renal adenocarcinoma cells (Fig 5). The mechanism that directs whether a cell undergo apoptosis or senescence is unknown. These two processes seem to be exclusive [25]. Our results indicate that ghost pepper, capsaicin and dihydrocapsaicin induce apoptosis rather than senescence in human renal cell adenocarcinoma in vitro. Thus, the antiproliferative activity of the treatments we tested could be attributed to their ability to induce apoptosis with various caspasas. Capsaicin appears to induce apoptosis in more than 40 different cancer cell lines, mostly human cancer lines [12]. One or more of these mechanisms are probably responsible for the apoptosis we found. These mechanisms include inhibition of mitochondrial respiration; suppression of plasma membrane NADH-oxidoreductase; significant elevation of intracellular reactive oxygen species production; blocking cell cycle progression and triggering apoptosis by downregulating cyclin D1; and suppression of activation, nuclear translocation and/or DNA binding of STAT [1]. Other mechanisms proposed to play a role in anticancer activities of capsaicin include antioxidant activity, activation of peroxisome proliferator-activated receptor gamma, inhibition of angiogenesis, modulation of lipid metabolism, and/or inhibition of aromatase activity [12]. The mechanisms associated with anticancer activities of capsaicin are complex. Normal or noncancerous cells appear to be significantly less sensitive to the apoptotic or growth inhibitory effects of capsaicin than cancerous cells [12]. Earlier video microscopy studies revealed that dynamic morphologic changes in cell culture take place in less than 2h. An estimated duration of an apoptotic cell death is in between 6 and 24h in vivo. This duration is influenced by type of cells undergoing apoptosis [26].

Ghost pepper modulates a complex network of proteins

Data pertaining to global proteomic analysis further supports the results of cell proliferation and apoptosis (Table 1). Data suggests that ‘fold change’ of a protein does not alone explain any difference between control and treatment. For this reason, p value (≤ 0.05) was considered
along with fold change value to draw conclusion on a protein. Selective proteins that were significantly affected by ghost pepper are discussed below in detail.

Intrinsic and extrinsic apoptotic pathways

Proteins that were upregulated or down regulated by ghost pepper treatment in adenocarcinoma cells at 6 H appeared to be late-responsive and/or stably expressed proteins. In general, caspasess are activated by pro-apoptotic proteins released from mitochondria which ultimately induce apoptosis [27]. In the present study, polycaspases were induced at 0.5 H, and their expression started to decrease at 4 H (Fig 4). Similarly, cytochrome C (P99999; CYCS) [28] and FADD proteins (Q6LCB0; FADD) [29], which activate different caspases, were also decreased at 6 H in Ghost pepper treated cells as compared to control (Table 1). Apoptosis-inducing factor 3 (Q96NN9, AIFM3 or AIFL) when expressed heterologously induce apoptosis in a caspase-dependent manner [30]. Decreased AIFM3 levels in Ghost pepper treatment were also in harmony with caspase levels. Because of this dynamic nature, certain early-responsive proteins may or may not appear at a later time during Ghost-pepper treatment. Furthermore, visual observations under microscope at 6 H indicate that most of the cells exhibited symptoms of apoptosis in Ghost pepper treated cells (personal communications). To date, three pathways viz., extrinsic (death receptor pathway), intrinsic (mitochondrial pathway), and perforin/granzyme pathways, are established for apoptosis. All these three pathways have same terminal execution pathway which involves caspase-3, DNA fragmentation, cytoskeletal and nuclear protein degradation, protein cross linking, formation of apoptotic bodies, and removal of dead cells. The perforin/granzyme pathway of apoptosis is a non-caspase pathway involves single stranded DNA damage [31]. The intrinsic pathway is current target for tumor suppression studies [32], and it is initiated within the cell in response to DNA damage, severe cellular stress, or loss of survival factors in the cells [33]. Up regulation of reactive oxygen species modulator 1 (P60602; ROMO1), mitochondrial superoxide dismutase (Q5TCM1; SOD2), superoxide dismutase-1 (Q9J444; SOD-1), catalase (P04040; CAT), glutathione peroxidase (RAGNE4; GPX4), gamma-glutamyltranspeptidase 1 (P19440; GGT1), and heme oxygenase 2 (I3L276; HMOX2) in cells treated by ghost pepper indirectly suggests that these cells were under severe oxidative stress. Furthermore, over production of other stress response proteins viz., mitochondrial stress-70 protein (Q9UC56; HSPA9), and mitochondrial 60 kDa heat shock protein (C9JL25; HSPD1), also indicates cellular stress in ghost pepper treated cells. B-cell lymphoma 2 (Bcl-2) family of proteins regulate intrinsic pathway by controlling pro- and anti-apoptotic signals in the cell [33]. In the present study, Bcl-2 associated transcription factor 1 (H0YF14; BCLAF1) was significantly over expressed in ghost pepper treatment at 6 H. Bcl-2 associated transcription factor 1 protein is known to interact with several members of the Bcl-2 family of proteins and its overexpression induces apoptosis or cell cycle arrest [34]. Increased tumor suppressor p53-binding protein 1 (Q12888; TP53BP1) was probably involved in DNA-damage signaling pathways in ghost pepper treated cells [35]. As TP53-regulated inhibitor of apoptosis 1 (O43715; TRIAP1) was decreased in treated cells, its role in inhibiting activation of caspase-9 and prevention of apoptosis induction [36] was probably negatively affected by Ghost pepper at 6 H. However, tumor necrosis factor receptor superfamily member 12A (Q9NP84; TNFRSF12A) and TNF receptor-associated factor 2 (Q12933; TRAF2) were still expressed more in treated cells at 6 H. Both of these proteins’ roles were implicated in positive regulation of extrinsic apoptotic pathway [37]. Similarly, over expression of janus kinase 1 (Q4LDX3; JAK1) protein in treated cells indicates its role in ghost pepper induced early signaling events related to cytokine receptors [38]. Ceramide, a membrane sphingolipid metabolite, is synthesized de novo by ceramide synthase. It perpetuates cellular stress response and induces
apoptosis, terminal differentiation, or cell cycle arrest [39,40]. Ceramide induces apoptosis by activating caspases, especially caspase 3 [41], endonucleases that are responsible for DNA cleavage [42], and by regulating release of cytochrome C [41]. It also plays a role in G0/G1 cell cycle arrest through retinoblastoma gene product [41]. Over expressed ceramide synthase 2 (Q96G23; CERS2) might have played a role in apoptosis and/or cell cycle arrest through ceramide production in ghost pepper treated cells in the present study. Over expressed nitric oxide-associated protein 1 (Q8NC60; NOA1), a large mitochondrial GTPase, might have also supported apoptosis process in treated cells by interacting with complex I of the electron transport chain, and DAP3 (death-associated protein 3), a positive regulator of apoptosis [43]. These findings are further supported by over expression of mitochondrial 28S ribosomal protein S29 (P51398), another name for DAP3, in Ghost pepper treated cells. Furthermore, increased levels of THO complex subunit 1 (Q96FV9 or p84N5; THOC1) in ghost pepper treatment suggest that apoptotic pathway different from those activated by death domain-containing receptors or p53 was active in the treated cells [44].

Down regulation of calponin-2 (Q99439; CNN2) in Ghost pepper treated cells might be associated with morphological changes and detachment of cancer cells [45]. Furthermore, increased levels of the complement C2 of the innate immunity (P06681; C2) appears to be associated with clearance of immune complexes and apoptotic materials [46]. Lysosomal cell death (LCD) is mainly carried out by the lysosomal cathepsin proteases, and their inhibition do not give full proof protection from LCD [47]. Cathepsin mediated LCD is not appears to be a major event in Ghost pepper treated cells at 6 H. This is evident from down regulation of two cathepsins viz., cathepsin L, isoform CRA_b (Q9HBQ7; CTSL) and cathepsin B, isoform CRA_a (A0A024R374; CTSB) in the treated cells.

Ras pathway

Cell growth and proliferation are influenced by extracellular signals. Pathways of cell proliferation are generally initiated by activation of a receptor tyrosine kinase by a growth factor. The Ras pathway is considered as an important one among various cell proliferation pathways. Key components of the Ras pathway are a cascade of serine/threonine kinases, a mitogen–activated protein kinase (MAPK), and transcription factors like FOS and JUN [48]. In the present study, many kinases (tyrosine-protein kinase CSK, P41240, CSK; serine/threonine-protein kinase PLK, B2R841; serine/threonine-protein kinase Nek6, Q9HC98, NEK6; serine threonine kinase 39 isoform B, X5DP03, STK39; SRPK1; calcium/calmodulin-dependent protein kinase type IV, Q16566, CAMK4; protein kinase C alpha, B0LPH5, PRKCA; and MAP kinase-activated protein kinase 2, P49137, MAPKAPK2) were over expressed in Ghost pepper treatment (Table 1). A similar trend was observed in Ras specific proteins (RAB7, member RAS oncogene family-like 1 variant, Q53EX5; Ras association domain-containing protein 3, Q86WH2, RASSF3; Ras association domain-containing protein 7, H0YE10, RASSF7; Ras-related protein Rab-5B, F8VUA5, RAB5B; and Ras-related protein Rap-1b, F5H6R7, RAP1B) in ghost pepper treatment. These finding suggest that the machinery for cell proliferation was very much active while adenocarcinoma cells were undergoing apoptosis in ghost pepper treatment. However, cell proliferation data (Fig 2) confirms the dominant role of apoptosis over cell proliferation.

Rb/E2F pathway

Retinoblastoma (Rb) and p53 family of tumor suppressor genes are considered as some of the important targets for the treatment of drug resistant-cancer patients [49]. Control of Rb/E2F pathway, which regulates initiation of DNA replication, is disrupted in virtually all human
cancers. Thymidine kinase which is involved in nucleotide biosynthesis during initiation of DNA replication is under the control of E2F [50]. Increased thymidine kinase (B5BU32; TK1) level is an indication of disrupted Rb/E2F pathway and ongoing cell cycle activity in the dying Ghost pepper treated cells (Table 1). Retinoblastoma-binding protein 5 (Q15291; RBBP5) is another Rb related protein overexpressed in the treated cells. It is an important component required for the activity of methyltransferases involved in histone H3 Lys-4 methylation [51].

P53 pathway

Tumor suppressor p53 protein is a transcriptional regulator. It activates expression of several genes involved in cell death, cell cycle arrest, senescence and DNA-repair. Perhaps, it is inactivated in most cancers [52]. Over expressed ‘promyelocytic leukemia gene protein’ (Q9UE85; PML) might be an essential component of Ghost pepper induced stress or DNA damage-activated apoptotic pathways (Table 1). PML is known for its role in the pathogenesis of acute promyelocytic leukemia (APL). It is not only involved p53-dependent apoptosis but also in FAS and TNFα-induced apoptosis [53]. Furthermore, cytoplasmic PML is considered as a critical regulator of TGF-beta. Often, TGF-beta signaling is deregulated in cancer [54]. Over expression of ‘cell division cycle and apoptosis regulator protein 1’ (Q5VUP6; CCAR1 or CARP-1) might have a role in regulation of expression of key cell proliferation-inducing genes, and might have acted as a p53 coactivator. Expression of CARP-1 induces apoptosis but affected by expression of c-Myc or 14-3-3 [55]. Increased levels of cullin7 (Q14999; CUL7), a novel oncogene that promote cell proliferation and invasion by suppressing p53 expression [56], indicates its role against p53-dependent apoptosis ghost pepper treated cells.

TGF-Beta pathway

Transforming growth factor-beta (TGF-beta) signalling has either a tumour-suppressing or tumour-promoting function depending on cellular context [57]. A few TGF-beta pathway associated proteins were elevated in ghost pepper treatment. Among them, ‘TGF-beta-activated kinase 1 and MAP3K7-binding protein 2’ (Q9NY8; TAB2) is a novel adaptor protein known to stimulate TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway during the inflammation process (Table 1) [58]. Another TGF-beta pathway related protein was TGF-beta-induced protein ig-h3 (O43219; TGFBI). TGFBI silencing effectively reduces cell proliferation and elevates motility of melanoma cells in vitro [59]. Whereas, in mesothelioma and breast cancer cells, TGFBI suppress cell proliferation, delay G1-S phase transition, and induces death [60]. Another protein that influences TGF-beta pathway is menin (O00632; MEN1). Its suppression antagonizes TGF-beta mediated cell growth inhibition [61]. Its over expression probably having opposite role in ghost pepper treatment.

WNT-beta catenin pathway

In general, wnt signaling pathways offer less specificity for candidate drugs. These pathways include the Wnt/beta-catenin pathway, and beta-catenin-independent pathways (the planar cell polarity (PCP) pathway and Wnt/ Ca2+ pathway) [62]. Among them, transcription factor 7-like 2 (Q9NQB3; TCF7L2 or TCF-4); and catenin beta-1 (B4DGU4; CTNNB1) proteins were over expressed in ghost pepper treatment (Table 1). Perhaps, over expression of TCF-4 and CTNNB1 genes were associated with the activation of MAPK gene in breast cancer cell lines with different degrees of invasiveness [63]. Whereas, chondrocyte apoptosis in osteoarthritis was induced by elevated TCF-4 mRNA expression through NF-kB signaling [64]. On the other hand, a decreased expression levels of catenin alpha-1 (P35221; CTNNAI or Renal carcinoma antigen NY-REN-13) is commonly seen in gastric carcinoma patients [65].
Calcium induced cell death pathways

Calcium homeostasis is associated with apoptosis and autophagy through shared molecular effectors and signal routes [66]. In support of this, several calcium related proteins viz., calcium/calmodulin-dependent protein kinase type IV (Q16566; CAMK4); two pore calcium channel protein 1 (Q9ULQ1; TPCN1); calcium homeostasis endoplasmic reticulum protein (Q8IWX8; CHERP); calcium-transporting ATPase type 2C member 1 (H0Y9S7; ATP2C1); calcium-responsive transcription factor (Q9H712; CARF); and mitochondrial calcium uniporter protein (Q8NE86; MCU) were significantly increased by Ghost pepper treatment (Table 1). Role of Q16566 (CAMK4) in regulation of MAP kinase pathways and related transcription [67]; Q9ULQ1 (TPCN1 or TPC1) in ion channel regulation through the interaction of an anti-apoptotic Hax-1 protein [68]; Q8IWX8 (CHERP) in cell cycle arrest [69]; Ca^{2+}-ATPases (pumps), such as H0Y9S7 (ATP2C1), in regulation of Ca^{2+} to low levels in eukaryotic cells [70]; Q9H712 (CARF) in Ca^{2+} responsive transcription [71]; Q8NE86 (MCU) along with MICU1 in controlling Ca^{2+} uptake and related overload stress in mitochondria [72]; and calmodulin-binding transcription activator 1 (Q9Y6Y1; CAMTA1) in growth suppression [73] was already documented. Apart from CAMTA1, other proteins viz., calmodulin (G3V361; CALM1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Q13526; PIN1) were significantly reduced in Ghost pepper treatment at 6 H. Furthermore, PIN1’s involvement in DNA damage mediated signaling pathway [74], and CALM1’s participation in calcium-signaling (calcium/calmodulin pathway) [75] suggest that the role of these proteins in signaling in ghost pepper treated cells appears to be much earlier than 6 h. Ca^{2+} might have also influenced various protein kinases discussed earlier, proteases and endonucleases [66].

Methylation and acetylation

Food can influence gene expression by various epigenetic mechanisms that can affect DNA methyltransferase (DNMT), histone deacetylase (HDAC), histone acetyltransferase (HAT), or noncoding RNA expression. Diet can therefore regulate cellular longevity and carcinogenesis through these epigenetic mechanisms [76]. Several methyltransferases or related proteins viz., DNA (cytosine-5)-methyltransferase 1 (K7EMU8; DNMT1); histone-lysine N-methyltransferase SETDB1 (Q15047; SETDB1); histone-lysine N-methyltransferase NSD2 (Q672J1; WHSC1); rRNA 2’-O-methyltransferase fibrillarin (P22087; FBL); metal-response element-binding transcription factor 2 (Q9Y483; MTF2); protein arginine N-methyltransferase 1 (H7C2I1; PRMT1); menin (O00632; MEN1); and retinoblastoma-binding protein 5 (Q15291; RBBP5) were significantly increased in Ghost pepper treatment (Table 1). Similarly, demethylases or related proteins viz., JARID1C protein (A6N6J7; JARID1C) and bifunctional lysine-specific demethylase and histidyl-hydroxylation MINA (Q96KB0; MINA) were significantly increased in ghost pepper treated cells. On the other hand, some other methyltransferases or related proteins viz., histone-lysine N-methyltransferase 2A (Q9HBJ3; KMT2A); multifunctional methyltransferase subunit TRM112-like protein (Q9UI30; TRMT112); protein-L-isoaspartate (D-aspartate) O-methyltransferase (F8WAX2; PCMT1) were significantly decreased in Ghost pepper treatment. Majority of these proteins are involved in, chromatin regulation, transcription or transcription regulation [37]. Increased levels of Menin might have also directly repressed human telomere reverse transcriptase (hTERT), which is known to contribute to tumorigenesis [77] in ghost pepper treated cells.

Genome stability and cell cycle check point regulation

Telomere maintenance is active in many human cancers and in vitro immortalized cell lines by a telomerase-independent pathway called as the Alternative Lengthening of Telomeres.
(ALT) pathway. Loss of transcriptional regulator ATRX protein (Q7Z21; ATRX) and mutations in its gene are the hallmarks of ALT-immortalized cell lines [78]. Gain of ATRX protein in ghost pepper treated cells is an indication of negative effect of Ghost pepper on immortal behavior of adenocarcinoma cells (Table 1). However, data on SA-beta-gal suggests that these changes might not be sufficient to induce senescence in Ghost pepper treated human renal adenocarcinoma cells (Fig 5). However, increased levels of Menin (O00632), a protein involved in histone methylation, suggests that the activity of hTERT and related telomere maintenance might have suppressed in Ghost pepper treated cells [77]. On the other hand, over expressed telomeric repeat-binding factor 2-interacting protein 1 (Q9NYB0; TERF2IP or TRF2) and histone H3.1t (Q16695; HIST3H3) might have protected telomeres [37,79] to some extent in ghost pepper treated cells. These findings also suggest that there was a competition between maintenance and suppression of maintenance of telomeres in ghost pepper treated cells.

Cell cycle checkpoint protein RAD17 (H0Y9J8; RAD17) was increased in Ghost pepper treatment (Table 1). Increased levels of RAD17 are linked with breast [80] and lung carcinomas [81]. Cell cycle checkpoint activation in response to DNA damage engage RAD9-RAD1-HUS1 complex (9-1-1) at DNA damage sites by RAD17-RFC (replication factor C) complex [82]. Increased levels of cell division cycle 2-like 1 (PITSLRE proteins; B7ZVY7; CDC2L1) might be involved in phosphorylation and activation of downstream factors of death execution [83]. Several other cell cycle regulating proteins were also elevated by ghost pepper treatment. Among them, the role of cell division cycle and apoptosis regulator protein 1 (Q5VUP6; CCAR1) in apoptosis signaling [84]; G2/mitotic-specific cyclin-B3 (Q8WWL7; CCNB3) in blocking the mitotic cell cycle [85]; mediator of DNA damage checkpoint 1 variant 2 (A1Z5I6; MDC1) in cellular response to DNA double-strand breaks [86]; cell cycle and apoptosis regulator protein (Q9H9Q9; CCAR2 or DBC1) in p53-mediated apoptosis through specific inhibition of SIRT1, an NAD-dependent deacetylase [87]; anaphase-promoting complex subunit 5 (Q9UJX4; ANAPC5 or APC5) in controlling cell cycle through E2F1 ubiquitination [88]; cell division cycle protein 16 homolog (Q13042; CDC16 or APC6) in maintaining integrity of APC, an essential cell-cycle regulator [89]; and DNA ligase (B4DTU4; LIG1) in DNA repair [90] were already established. Furthermore, DNA repairing protein ubiquitin-conjugating enzyme E2 variant 2 (Q15819; UBE2V2 or MMS2) [91] was heavily knocked down in ghost pepper treatment.

Carbohydrate metabolism

Metabolic oncology is relatively a new field in cancer research and therapy [92]. Whether it is a normal or cancer cell, enough metabolic resources are required for replicative cell division to build mass of new cells. Glucose regulates cell cycle checkpoint occurs at G1/S boundary. This cell cycle inhibition occurs through phosphorylation of p53 by an intrinsic cell-regulator of the cell cycle, AMP-activated protein kinase (AMPK). AMPK synchronizes cell cycle with carbon source availability [93]. In other words, diminished glucose or carbohydrate metabolism is an indicator of dwindling proliferation of cells. In agreement with this, the levels of many proteins involved in carbohydrate metabolism viz., 6-phosphogluconate dehydrogenase, decarboxylating (B4E2U0); 6-phosphogluconate dehydrogenase-decarboxylating (P52209, PGD); triose phosphate isomerase (U3KPS5; TPI1); alpha-1,4 glucan phosphorylase (E9PK47; PYGL); transaldolase (F2Z393; TALDO1); isocitrate dehydrogenase [NADP] (Q6Fl37; IDH1); glucose-6-phosphate isomerase (K7ENA0; GPI); fructose-bisphosphate aldolase A (H3BR68; ALDOA); pyruvate kinase (B4DM0); pyruvate kinase PKM (H3BU13; PKM); gamma-enolase (U3KQP4; ENO2); phosphoglycerate kinase (B4DH3B); fructose-bisphosphate aldolase A (H3BUH7; ALDOA); and enolase (K7EM90; ENO1) were down regulated by Ghost pepper treatment (Table 1). Suppressed mitochondrial
glucose oxidation with simultaneously enhanced cytoplasmic glycolysis inhibits apoptosis, and provides proliferative advantage to cancer cells. This led to the development of new drugs for cancer treatment. These drugs target metabolic enzymes such as pyruvate kinase, pyruvate dehydrogenase kinase, isocitrate dehydrogenase, and lactate dehydrogenase [92]. Ghost pepper reduced the levels of pyruvate kinase (B4DPM0), pyruvate kinase PKM (H3BU13; PKM), and isocitrate dehydrogenase [NADP] (Q6FI37; IDH1). Furthermore, increased levels of fructose-1,6-bisphosphatase 1 (P09467; FBP1), an enzyme reverse a glycolysis reaction catalyzed by phosphofructokinase [94]; and simultaneously decreased levels glycolysis proteins viz., glucose-6-phosphate isomerase (K7ENA0; GPI); fructose-bisphosphate aldolase A (H3BR68; ALDOA); pyruvate kinase (B4DPM0); pyruvate kinase PKM (H3BU13; PKM); gamma-enolase (U3KQP4; ENO2); phosphoglycerate kinase (B4DHB3); fructose-bisphosphate aldolase A (H3BUH7; ALDOA); and enolase (K7EM90; ENO1), indicate that cytoplasmic glycolysis was also affected in ghost pepper treatment. These findings suggest that both the mitochondrial glucose oxidation and the cytoplasmic glycolysis were affected in the ghost pepper treated cells. A decrease in the activity of the anaphase-promoting complex/cyclosome–Cdh1, an ubiquitin ligase, activates both cell proliferation and glycolysis in normal as well as neoplastic cells [95]. In the present study, increased anaphase-promoting complex subunit 5 (Q9UJX4; ANAPC5) was probably involved in decreased cell proliferation and glycolysis in ghost pepper treated cells. SKP1/CUL-1/F-box protein–beta-transducin repeat-containing protein (SCF-beta-TrCP) control the transient appearance and metabolic activity of the glycolysis-promoting enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isomorph 3 (PFKFB3) [96]. Increased levels of glycogen debranching enzyme (Q9UF08; AGL) in Ghost pepper treated cells appears to be an important characteristic of cancer cell pathophysiology [97].

Protein and other metabolism

Several proteins of protein metabolism were also affected by Ghost pepper treatment. Decreased elongation factor 1-alpha 2 protein (Q05639; EEF1A2 or Statin-S1) (Table 1), a translation factor of protein synthesis, might have upregulated apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) in ghost pepper treatment. These findings are supported by a recent study on prostate cancer tissues. In these tissues, the levels of EEF1A2 and caspase3 were inversely correlated [98]. Proteins associated with protein biosynthesis (mitochondrial aspartate-tRNA ligase, Q6PI48; 56S ribosomal protein L3, P39023; RPL3; mitochondrial 28S ribosomal protein S23, Q9Y3D9; MRPS23; mitochondrial elongation factor Ts, F8VQ7; TSFM, etc.), fatty acid metabolism (elongation of very long chain fatty acids protein, D6WH12; ELOVL6; and fatty aldehyde dehydrogenase, P51648; ALDH3A2), DNA metabolism (DNA topoisomerase 2-beta, Q02880; TOP2B; thymidine kinase, B5BU32; TK1; and DNA ligase, B4DTU4; LIG1), were over expressed by ghost pepper treatment in the human kidney adenocarcinoma cells. On the other hand, some of the proteins related to protein biosynthesis (eukaryotic translation initiation factor 3 subunit L, Q6ICD2; EIF3L; elongation factor 1-alpha 2, Q05639; EEF1A2; and methionine aminopeptidase 2, F8VQ7; METAP2) were under expressed by ghost pepper treatment in human kidney adenocarcinoma cells. Perhaps, various metabolic checkpoints that dictate cell fate in response to metabolic fluctuations and cell death regulation were reviewed recently [99]. Proteins involved in other metabolism and cellular mechanisms were also affected by ghost pepper (see data in Dryad, doi:10.5061/dryad.d0s2gm0). These proteins are not discussed here due to space constraints.

Conclusions

Unlike common chili peppers, ghost pepper contains very high proportions of capsaicin and dihydrocapsaicin. Dose and time dependent reduction of human adenocarcinoma cell
proliferation was observed with capsaicin, dihydrocapsaicin and ghost pepper extract in vitro. Reduced cell proliferation with these treatments was ascribed to apoptosis rather than senescence. This was evident from upregulation of early polycaspase activities, and normal or suppressed senescence specific SA-beta-gal activity in the treated cells. In summary, global proteomic analysis revealed that ghost pepper induced apoptosis in human renal adenocarcinoma cells was mediated through intrinsic and extrinsic apoptotic pathways, Ras, Rb/E2F, p53, TGF-beta, WNT-beta catenin, and calcium induced cell death pathways. Broadly two types of protein responses were noticed within each pathway. One type of proteins over expressed while other type were down regulated by ghost pepper treatment. These imbalances favored apoptosis rather than cell proliferation in ghost pepper treatment. Besides these pathways, ghost pepper also induced changes in methylation, acetylation, genome stability, cell cycle check points, carbohydrate, protein and other metabolism. Several other proteins were also affected by ghost pepper in human renal adenocarcinoma cells (see data in Dryad, doi:10.5061/dryad.d0s2gm0). Further in depth studies are required before making any conclusion on ghost pepper for clinical applications. In future, we are planning to conduct similar experiments to understand toxic
effects of ghost pepper on normal human cells including normal human kidney cells. Furthermore, time-course experiments will help us to identify a short list of candidate proteins for apoptosis in ghost pepper treatment in future.

Acknowledgments
We are thankful to BioProximity, LLC, Chantilly, VA for shotgun proteomic analysis. This work was supported by USDA-NIFA (Contract No. 2017-38821-26432) and a grant from WV-INBRE Center for Natural Products Research (NIH), sub-award No. P1400846 and NIH Prime award No. 5P20GM103434-13.

Author Contributions
Conceptualization: Gerald R. Hankins, Padma Nimmakayala, Robert T. Harris, Jagan Valluri, Umesh K. Reddy.

Data curation: Venu Perla.

Formal analysis: Venu Perla, Marjan Nadimi, Rishi Reddy, Jagan Valluri, Umesh K. Reddy.

Funding acquisition: Padma Nimmakayala, Robert T. Harris, Jagan Valluri, Umesh K. Reddy.

Investigation: Venu Perla, Marjan Nadimi, Rishi Reddy, Padma Nimmakayala, Umesh K. Reddy.

Methodology: Venu Perla, Marjan Nadimi, Rishi Reddy, Robert T. Harris.

Project administration: Gerald R. Hankins, Padma Nimmakayala, Robert T. Harris, Umesh K. Reddy.

Resources: Gerald R. Hankins, Padma Nimmakayala, Umesh K. Reddy.

Supervision: Gerald R. Hankins, Padma Nimmakayala, Umesh K. Reddy.

Validation: Cristian Sirbu.

Visualization: Venu Perla.

Writing – original draft: Venu Perla.

Writing – review & editing: Gerald R. Hankins, Padma Nimmakayala, Jagan Valluri, Cristian Sirbu, Umesh K. Reddy.

References
1. Meghvansi M, Siddiqui S, Khan MH, Gupta V, Vaireale M, Gogoi H, et al. Naga chilli: a potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. Journal of ethnopharmacology. 2010; 132(1):1–14. https://doi.org/10.1016/j.jep.2010.08.034 PMID: 20728519
2. Guinness Book of World Records. Hottest Spice. 2006. www.guinnessworldrecords.com.
3. Mathur R, Dangi R, Dass S, Malhotra R. The hottest chilli variety in India. Current science. 2000; 79(3):287–8.
4. Sanatombi K, Sharma G. Capsaicin content and pungency of different Capsicum spp. cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2008; 36(2):89.
5. Hoffman PG, Lego MC, Galetto WG. Separation and quantitation of red pepper major heat principles by reverse-phase high-pressure liquid chromatography. Journal of Agricultural and Food Chemistry. 1983; 31(6):1326–30.
6. Govindarajan V, Sathyanarayana M. Capsicum—production, technology, chemistry, and quality. Part V. Impact on physiology, pharmacology, nutrition, and metabolism; structure, pungency, pain, and desensitization sequences. Critical Reviews in Food Science & Nutrition. 1991; 29(6):435–74.
7. Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. Journal of Clinical Oncology. 2009; 27(16):2712–25. https://doi.org/10.1200/JCO.2008.20.6235 PMID: 19414669

8. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D, Altekruse SF, et. al (eds). SEER Cancer Statistics Review, 1975–2011, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2011/, based on November 2013 SEER data submission, posted to the SEER web site, April 2014.

9. Wutka A, Palagani V, Barat S, Chen X, El Khatib M, Gölte J, et al. Capsaicin treatment attenuates cholangiocarcinoma carcinogenesis. PloS one. 2014; 9(4):e95605. https://doi.org/10.1371/journal.pone.0095605 PMID: 24748170

10. Johnson W. Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaiacin. International journal of toxicology. 2007; 26:3–106.

11. Vicencio JM, Galluzzi L, Tajeddine N, Ortiz C, Criollo A, Tasdemir E, et al. Senescence, apoptosis or autophagy? Gerontology. 2008; 54(2):92–9. https://doi.org/10.1159/000129697 PMID: 18451641

12. Reddy UK, Almeida A, Aburi VL, Alaparthi SB, Unsett D, Hankins G, et al. Identification of gene-specific polymorphisms and association with capsaiacin pathway metabolites in Capsicum annuum L. collections. PloS one. 2014; 9(1):e86393. https://doi.org/10.1371/journal.pone.0086393 PMID: 24475113

13. Bley K, Boorman G, Mohammad B, McKenzie D, Babbar S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaiacin. Toxicologic pathology. 2012; 40(6):847–73. https://doi.org/10.1177/0192623312444471 PMID: 22563012

14. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nature methods. 2009; 6(5):359–62. PMID: 19377485

15. Slotta DJ, McFarland MA, Markey SP. MassSieve: panning MS/MS peptide data for proteins. Proteomics. 2010; 10(16):3035–30. https://doi.org/10.1002/pmic.200900370 PMID: 20564260

16. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nature biotechnology. 2012; 30(10):918–20. doi: 10.1038/nbt.2377 PMID: 23051804

17. Bjornson RD, Carriero NJ, Colangelo C, Shifman M, Cheung K-H, Miller PL, et al. X!! Tandem, an improved method for running X! tandem in parallel on collections of commodity computers. The Journal of Proteome Research. 2007; 7(1):293–9. https://doi.org/10.1021/pr0701198 PMID: 17902638

18. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004; 20(9):1466–7. https://doi.org/10.1093/bioinformatics/bth092 PMID: 14976030

19. MacLean B, Eng JK, Beavis RC, McIntosh M. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics. 2006; 22(22):2830–2. https://doi.org/10.1093/bioinformatics/btl379 PMID: 16877754

20. Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, et al. Open mass spectrometry search algorithm. Journal of proteome research. 2004; 3(5):958–64. https://doi.org/10.1021/pr0499491 PMID: 15473683

21. Slotta DJ, McFarland MA, Markey SP. MassSieve: panning MS/MS peptide data for proteins. Proteomics. 2010; 10(16):3035–30. https://doi.org/10.1002/pmic.200900370 PMID: 20564260

22. Bley K, Boorman G, Mohammad B, McKenzie D, Babbar S. A comprehensive review of the carcinogenic and anticarcinogenic potential of capsaiacin. Toxicologic pathology. 2012; 40(6):847–73. https://doi.org/10.1177/0192623312444471 PMID: 22563012

23. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nature methods. 2009; 6(5):359–62. PMID: 19377485

24. Slotta DJ, McFarland MA, Markey SP. MassSieve: panning MS/MS peptide data for proteins. Proteomics. 2010; 10(16):3035–30. https://doi.org/10.1002/pmic.200900370 PMID: 20564260

25. Tautenhahn R, Boettcher C, Neumann S. Highly sensitive feature detection for high resolution LC/MS. BMC bioinformatics. 2008; 9(1):504.

26. Wu C-C, Lin J-P, Yang J-S, Chou S-T, Chen S-C, Lin Y-T, et al. Capsaicin induced cell cycle arrest and apoptosis in human esophagus epitheloid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis. 2006; 601(1):71–82.

27. Itahana K, Campisi J, Dimri GP. Methods to detect biomarkers of cellular senescence: the senescence-associated β-galactosidase assay. Biological Aging: Methods and Protocols. 2007. 21–31.

28. Campisi J, di Fagagna FdA. Cellular senescence: when bad things happen to good cells. Nature reviews Molecular cell biology. 2007; 8(9):729–40. https://doi.org/10.1038/nrm2233 PMID: 17667954

29. Saraste A, Pullki K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular research. 2000; 45(3):528–37. PMID: 10728374

30. Lessene G, Czabotar PE, Colman PM. BCL-2 family antagonists for cancer therapy. Nature reviews Drug discovery. 2008; 7(12):989–1000. https://doi.org/10.1038/nrd2658 PMID: 19043450

31. Ramzi CS CK. Robbins Pathologic Basis of Disease. Philadelphia: W.B Saunders Company; 1998. ISBN 0-7216-7335-X.
29. Chen G, Goeddel DV. TNF-R1 signaling: a beautiful pathway. Science. 2002; 296(5573):1634–5. https://doi.org/10.1126/science.1071924 PMID: 12040173

30. Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA. Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. Journal of Biological Chemistry. 2005; 280(20):19673–81. https://doi.org/10.1074/jbc.M409517200 PMID: 15764604

31. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007; 35(4):495–516. https://doi.org/10.1080/0192630701320337 PMID: 17562483

32. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011; 144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

33. Vogler M, Dinsdale D, Dyer MJ, Cohen GM. Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death & Differentiation. 2009; 16(3):360–7.

34. Elmore S. Apoptosis: a review of programmed cell death. Toxicologic pathology. 2007; 35(4):495–516. https://doi.org/10.1080/0192630701320337 PMID: 17562483

35. Rappold I, Iwabuchi K, Date T, Chen J. Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage–signaling pathways. The Journal of cell biology. 2001; 153(3):613–20. PMID: 11331310

36. UniProt Consortium. http://www.uniprot.org. Accessed during January and February, 2015.

37. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. cell. 1998; 93(3):373–83. PMID: 9590172

38. Grullich C, Sullards MC, Fuks Z, Merrill AH, Kolesnick R. CD95 (Fas/APO-1) signals ceramide generation independent of the effector stage of apoptosis. Journal of Biological Chemistry. 2000; 275(12):8650–6. PMID: 10740029

39. Doostzadeh-Cizeron J, Yin S, Goodrich DW. Apoptosis induced by the nuclear death domain protein p84N5 is associated with caspase-6 and NF-κB activation. Journal of Biological Chemistry. 2000; 275(33):25336–41. https://doi.org/10.1074/jbc.M000793200 PMID: 10840029

40. Verone AR, Duncan K, Godoy A, Yadav N, Bakin A, Koookchepour S, et al. Androgen-responsive serum response factor target genes regulate prostate cancer cell migration. Carcinogenesis. 2013; 34(8):1737–46. https://doi.org/10.1093/carcin/bgt126 PMID: 23576568

41. Mayilvayan KR. Complement genetics, deficiencies, and disease associations. Protein & cell. 2012; 3(7):487–96.

42. Aits S, Jäättelä M. Lysosomal cell death at a glance. The Company of Biologists Ltd; 2013.

43. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nature Reviews Cancer. 2002; 2(5):331–41. https://doi.org/10.1038/nrc795 PMID: 12044009

44. Lai D, Visser-Grieve S, Yang X. Tumour suppressor genes in chemotherapeutic drug response. Bioscience reports. 2012; 32(4):361–74. https://doi.org/10.1042/BSR20110125 PMID: 22762204

45. Nevins JR. The Rb/E2F pathway and cancer. Human molecular genetics. 2001; 10(7):699–703. PMID: 11257102

46. Avdic V, Zhang P, Lanouette S, Groulx A, Tremblay V, Brunzelle J, et al. Structural and biochemical insights into MLL1 core complex assembly. Structure. 2011; 19(1):101–8. https://doi.org/10.1016/j.str.2010.09.022 PMID: 21220120

47. Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Mutant p53 and MDM2 in Cancer: Springer; 2014. p. 337–58.
64. Ma B, Zhong L, van Blitterswijk CA, Post JN, Karperien M. T cell factor 4 is a pro-catabolic and apoptotic
65. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+
66. Zhou Y-N, Xu C-P, Chen Y, Han B, Yang S-M, Fang D-C.
67. Vijaya Kumar A, Salem Gassar E, Spillmann D, Stock C, Sen YP, Zhang T, et al. HS3ST2 modulates
68. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, et al. TAB2, a novel adaptor protein,
69. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nature Reviews Cancer.
70. Li B, Wen G, Zhao Y, Tong J, Hei TK. The role of TGFBI in mesothelioma and breast cancer: association with tumor suppression. BMC cancer. 2012; 12(1):239.
71. Kaji H, Canaff L, Lebrun J-J, Goltzman D, Hendy GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor β signaling. Proceedings of the National Academy of Sciences. 2001; 98(7):3837–42.
72. Zimmerman ZF, Moon RT, Chien AJ. Targeting Wnt pathways in disease. Cold Spring Harbor perspectives in biology. 2012; 4(11):a008086. https://doi.org/10.1101/cshperspect.a008086 PMID: 23019988
73. Vijaya Kumar A, Salem Gassar E, Spillmann D, Stock C, Sen YP, Zhang T, et al. HS3ST2 modulates breast cancer cell invasiveness via MAP kinase-and Tcf4 (Tcf7l2)-dependent regulation of protease and cadherin expression. International journal of cancer. 2014; 135(11):2579–92. https://doi.org/10.1002/ijc.28921 PMID: 24752740
74. Ma B, Zhong L, van Blitterswijk CA, Post JN, Karperien M. T cell factor 4 is a pro-catabolic and apoptotic factor in human articular chondrocytes by potentiating nuclear factor KB signaling. Journal of Biological Chemistry. 2013; 288(24):17552–6. https://doi.org/10.1074/jbc.M113.453985 PMID: 23603903
75. Zhou Y-N, Xu C-P, Chen Y, Han B, Yang S-M, Fang D-C. α-Catenin expression is decreased in patients with gastric carcinoma. World journal of gastroenterology: WJG. 2005; 11(22):3468. https://doi.org/10.3748/wjg.v11.i22.3468 PMID: 15948257
76. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008; 27(50):6407–18. https://doi.org/10.1038/onc.2008.308 PMID: 18955969
77. Enslen H, Tokumitsu H, Stork P, Davis RJ, Soderling TR. Regulation of mitogen-activated protein kinases by a calcium/calmodulin-dependent protein kinase cascade. Proceedings of the National Academy of Sciences. 1996; 93(20):10803–8.
78. Lam AK, Galiane A, Lai FA, Zissimosopoulos S. Hax-1 identified as a two-pore channel (TPC)-binding protein. FEBS letters. 2013; 587(23):3782–6. https://doi.org/10.1016/j.febslet.2013.10.031 PMID: 24188827
79. Lin-Moshier Y, Sebastian PJ, Higgins L, Sampson ND, Hewitt JE, Marchant JS. Re-evaluation of the role of calcium homeostasis endoplasmic reticulum calcium (CHERP) in cellular calcium signaling. Journal of Biological Chemistry. 2013; 288(1):355–67. https://doi.org/10.1074/jbc.M112.405761 PMID: 23148228
80. Brini M, Carafoli E. Calcium pumps in health and disease. Physiological reviews. 2009; 89(4):1341–78. https://doi.org/10.1152/physrev.00032.2008 PMID: 19789383
81. Tao X, West AE, Chen WG, Corfas G, Greenberg ME. A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron. 2002; 33(3):383–95. PMID: 11832226
82. Malliankaraman K, Doonan P, Cárdenas C, Chandramoorthy HC, Müller M, Miller R, et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca2+ uptake that regulates cell survival. cell. 2012; 151(3):630–44. https://doi.org/10.1016/j.cell.2012.10.011 PMID: 23101630
83. Henrich K-O, Bauer T, Schulte J, Ehemann V, Debuzber H, Gogolin S, et al. CAMTA1, a 1p36 tumor suppressor candidate, inhibits growth and activates differentiation programs in neuroblastoma cells. Cancer research. 2011; 71(8):3142–51. https://doi.org/10.1158/0008-5472.CAN-10-3014 PMID: 21385898
74. Phan RT, Saito M, Kitagawa Y, Means AR, Dalla-Favera R. Genotoxic stress regulates expression of the proto-oncogene Bcl6 in germinal center B cells. Nature immunology. 2007; 8(10):1132–9. https://doi.org/10.1038/ni1508 PMID: 17828269

75. Bazwinsky-Wutschke I, Mühlbauer E, Albrecht E, Peschke E. Calcium-signaling components in rat insulinoma β-cells (INS-1) and pancreatic islets are differentially influenced by melatonin. Journal of pineal research. 2014; 56(4):439–49. https://doi.org/10.1111/jpi.12135 PMID: 24650091

76. Daniel M, Tollesfors TO. Epigenetic linkage of aging, cancer and nutrition. Journal of Experimental Biology. 2015; 218(1):59–70.

77. Lin S-Y, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. cell. 2003; 113(7):881–9. PMID: 12837246

78. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J, De Lange T, et al. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLoS genetics. 2012; 8(7):e1002772. https://doi.org/10.1371/journal.pgen.1002772 PMID: 22829774

79. De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes & development. 2005; 19(18):2100–10.

80. Zhou Z, Jing C, Zhang L, Takeo F, Kim H, Huang Y, et al. Regulation of Rad17 protein turnover unveils an impact of Rad17-APC cascade in breast carcinogenesis and treatment. Journal of Biological Chemistry. 2013; 288(25):18134–45. https://doi.org/10.1074/jbc.M113.456962 PMID: 23637229

81. Wang X, Wang L, Callister MD, Putnam JB, Mao L, Li L. Human Rad17 is phosphorylated upon DNA damage and also overexpressed in primary non-small cell lung cancer tissues. Cancer research. 2001; 61(20):7417–21. PMID: 11063673

82. Nilda H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis. 2006; 21(1):3–9. https://doi.org/10.1039/mutage/Gei063 PMID: 16314342

83. Shi L, Nishiooka WK, Th'ng J, Bradbury EM, Litchfield DW, Greenberg AH. Premature p34cdc2 activation required for apoptosis. Science. 1994; 263(5150):1143–6. PMID: 8108732

84. Rishi AK, Zhang L, Boyanapalli M, Wali A, Mohammad RM, Yu Y, et al. Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437. Journal of Biological Chemistry. 2003; 278(35):33422–35. https://doi.org/10.1074/jbc.M303173200 PMID: 12815092

85. Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang X-Y, et al. Characterization and expression of mammalian cyclin b3, a prepaehytyene meiotic cyclin. Journal of Biological Chemistry. 2002; 277(44):41960–9. https://doi.org/10.1074/jbc.M203951200 PMID: 12185076

86. Eliezer Y, Argaman L, Kornowski M, Roniger M, Goldberg M. Interplay between the DNA damage proteins MDC1 and ATM in the regulation of the spindle assembly checkpoint. Journal of Biological Chemistry. 2014; 289(12):8182–93. https://doi.org/10.1074/jbc.M113.532739 PMID: 24509855

87. Zhao W, Kruse J-P, Tang Y, Jung SY, Qin J, Gu W. Negative regulation of the deacetylase SIRT1 by DBC1. Nature. 2008; 451(7178):587–90. https://doi.org/10.1038/nature06515 PMID: 18235502

88. Budhavaranu V, White E, Mahanic C, Chen L, Lin F-T, Lin W-C. Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation. Cell Cycle. 2012; 11(10):2030–8. https://doi.org/10.4161/cc.20643 PMID: 22504642

89. Wang J, Dye BT, Rajashankar KR, Kurinov I, Schulman BA. Insights into anaphase promoting complex TPR subdomain assembly from a CDC26–APC6 structure. Nature structural & molecular biology. 2009; 16(9):987–9.

90. Bazrgar M, Gourabi H, Yazdi PE, Vazirinasab H, Fakhr I, Hassani F, et al. DNA repair signalling pathway genes are overexpressed in poor-quality pre-implantation human embryos with complex aneuploidy. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2014; 175:152–6.

91. Xiao W, Broomfield S, Chow BL, Lin SL, Wei Y-F. The products of the yeast MMS2 and two human homologs (hMMS2 and CROC-1) define a structurally and functionally conserved Ubc-like protein family. Nucleic acids research. 1998; 26(17):587–90. https://doi.org/10.1093/nar/26.17.587 PMID: 9705497

92. Kinnaird A, Michelakis ED. Metabolic modulation of cancer: a new frontier with great translational potential. Journal of Molecular Medicine. 2015; 93(2):127–42. https://doi.org/10.1007/s00109-014-1250-2 PMID: 25586106

93. Jones RG, Pias DR, Kube K, Buzzae M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Molecular cell. 2005; 18(3):283–93. https://doi.org/10.1016/j.molcel.2005.03.027 PMID: 15866171

94. Marcus F, Gontero B, Harrsch PB, Rittenhouse J. Amino acid sequence homology among fructose-1, 6-bisphosphatases. Biochemical and biophysical research communications. 1986; 135(2):374–81. PMID: 3008716
95. Almeida A, Bolaños JP, Moncada S. E3 ubiquitin ligase APC/C-Cdh1 accounts for the Warburg effect by linking glycolysis to cell proliferation. Proceedings of the National Academy of Sciences. 2010; 107 (2):738–41.

96. Colombo SL, Palacios-Callender M, Frakich N, Carcamo S, Kovacs I, Tudzarova S, et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. Proceedings of the National Academy of Sciences. 2011; 108(52):21069–74.

97. Zois CE, Favaro E, Harris AL. Glycogen metabolism in cancer. Biochemical pharmacology. 2014; 92 (1):3–11. https://doi.org/10.1016/j.bcp.2014.09.001 PMID: 25219323

98. Sun Y, Du C, Wang B, Zhang Y, Liu X, Ren G. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochemical and biophysical research communications. 2014; 450 (1):1–6. https://doi.org/10.1016/j.bbrc.2014.05.045 PMID: 24853801

99. Green DR, Galluzzi L, Kroemer G. Metabolic control of cell death. Science. 2014; 345(6203):1250256. https://doi.org/10.1126/science.1250256 PMID: 25237106