TWO-LOOP AMPLITUDES FOR $e^+e^- \rightarrow q\bar{q}g$:
THE n_f-CONTRIBUTION

Sven Mocha, Peter Uwera and Stefan Weinzierlb

aInstitut für Theoretische Teilchenphysik, Universität Karlsruhe
76128 Karlsruhe, Germany

bDipartimento di Fisica, Università di Parma
INFN Gruppo Collegato di Parma, 43100 Parma, Italy

We discuss the calculation of the n_f-contributions to the two-loop amplitude for $e^+e^- \rightarrow q\bar{q}g$. The calculation uses an efficient method based on nested sums. The result is presented in terms of multiple polylogarithms with simple arguments, which allow for analytic continuation in a straightforward manner.

1. Introduction

Searches for new physics in particle physics rely to a large extend on our ability to constrain the parameters of the standard model. For instance, the strong coupling constant α_s can be measured by using the data for $e^+e^- \rightarrow 3$-jets. At present, the error on the extraction of α_s from this measurement is dominated by theoretical uncertainties [1], most prominently, by the truncation of the perturbative expansion at a fixed order.

The perturbative QCD calculation of $e^+e^- \rightarrow 3$-jets at next-to-next-to-leading order (NNLO) requires the tree-level amplitudes for $e^+e^- \rightarrow 5$ partons [2], the one-loop amplitudes for $e^+e^- \rightarrow 4$ partons [3, 4] as well as the two-loop amplitude for $e^+e^- \rightarrow q\bar{q}g$ together with the one-loop amplitude $e^+e^- \rightarrow q\bar{q}g$ to order ϵ^2 in the parameter of dimensional regularization.

The helicity averaged squared matrix elements at the two-loop level for $e^+e^- \rightarrow q\bar{q}g$ have recently been given [5]. In contrast, having the two-loop amplitude available, one keeps the full correlation between the incoming e^+e^- and the outgoing parton’s spins and momenta. Thus, one can study oriented event-shape observables. In addition, one has the option to investigate event-shape observables in polarized e^+e^--annihilation at a future linear e^+e^--collider TESLA.
2. Calculation

We are interested in the following reaction

\[e^+ + e^- \rightarrow q + g + \bar{q}, \quad (1) \]

which we consider in the form, \(0 \rightarrow q(p_1) + g(p_2) + \bar{q}(p_3) + e^-(p_4) + e^+(p_5), \)

with all particles in the final state, to be consistent with earlier work [3].

The kinematical invariants for this reaction are denoted by

\[s_{ij} = (p_i + p_j)^2, \quad s_{ijk} = (p_i + p_j + p_k)^2, \quad s = s_{123}, \quad (2) \]

and it is convenient to introduce the dimensionless quantities

\[x_1 = \frac{s_{12}}{s_{123}}, \quad x_2 = \frac{s_{23}}{s_{123}}. \quad (3) \]

Working in a helicity basis, it suffices to consider the pure photon exchange amplitude \(A_\gamma \) as it allows the reconstruction of the full amplitude with Z-boson exchange by adjusting the couplings. Furthermore, the complete information about \(A_\gamma \) is given by just one independent helicity amplitude, which we take to be \(A_\gamma(1^+, 2^+, 3^-, 4^+, 5^-) \). All other helicity configurations can be obtained from parity and charge conjugation.

We can write \(A_\gamma(1^+, 2^+, 3^-, 4^+, 5^-) \) in terms of coefficients \(c_2, c_4, c_6 \) and \(c_{12} \) for the various independent spinor structure as

\[A_\gamma(1^+, 2^+, 3^-, 4^+, 5^-) = \frac{i \sqrt{2}}{s^3} \left[\begin{array}{c} \langle 3 | \langle 5 | \langle 42 \left((1 - x_1) \left(c_2 + \frac{2}{x_2} c_6 - c_{12} \right) + (1 - x_2) \left(c_4 - c_{12} \right) + 2 c_{12} \right) \\
- \langle 31 | \langle 43 | \langle 35 \left(c_2 + \frac{2}{x_2} c_6 - c_{12} \right) + [41] \langle 15 \left(c_4 - c_{12} \right) \right] \right), \quad (4) \right. \]

where we have introduced the short-hand notation for spinors of definite helicity, \(|i \pm \rangle = |p_i \pm \rangle = u_\pm(p_i), \quad \langle i \pm | = \langle p_i \pm | = \bar{u}_\pm(p_i) = \bar{v}_\pm(p_i), \)

and for the spinor products \(\langle pq \rangle = \langle p - |q \rangle \) and \([pq] = \langle p + |q \rangle \).

The coefficients \(c_i \) depend on the \(x_1 \) and \(x_2 \) of eq.(3) and can be calculated in conventional dimensional regularization. To that end, we proceed as follows [6]-[8]. In a first step, with the help of Schwinger parameters [9], we map the tensor integrals to combinations of scalar integrals in various dimensions and with various powers \(\nu_i \) of the propagators. For every basic topology, these scalar integrals can be written as nested sums involving \(\Gamma \)-functions. The evaluation of the nested sums proceeds systematically with
the help of the algorithms of [6], which rely on the algebraic properties of the so called \(Z\)-sums,

\[
Z(n; m_1, \ldots, m_k; x_1, \ldots, x_k) = \sum_{n \geq i_1 > i_2 > \ldots > i_k > 0} \frac{x_1^{i_1}}{i_1^{m_1}} \ldots \frac{x_k^{i_k}}{i_k^{m_k}}.
\]

(5)

By means of recursion the algorithms allow to solve the nested sums in terms of a given basis in \(Z\)-sums to any order in \(\varepsilon\). \(Z\)-sums can be viewed as generalizations of harmonic sums [10] and an important subset of \(Z\)-sums are multiple polylogarithms [11],

\[
\text{Li}_{m_k, \ldots, m_1}(x_k, \ldots, x_1) = Z(\infty; m_1, \ldots, m_k; x_1, \ldots, x_k).
\]

(6)

All algorithms for this procedure have been implemented in FORM [12] and in the GiNaC framework [13, 14]. In this way, we could calculate all loop integrals contributing to the one- and two-loop virtual amplitudes very efficiently in terms of multiple polylogarithms.

The perturbative expansion in \(\alpha_s\) of the functions \(c_i\) is defined through

\[
c_i = \sqrt{4\pi\alpha_s} \left(c_i^{(0)} + \frac{\alpha_s}{2\pi} c_i^{(1)} + \left(\frac{\alpha_s}{2\pi} \right)^2 c_i^{(2)} + O(\alpha_s^3) \right).
\]

(7)

Then, after ultraviolet renormalization, the infrared pole structure of the renormalized coefficients \(c_i^{\text{ren}}\) agrees with the prediction made by Catani [15] using an infrared factorization formula. We use this formula to organize the finite part into terms arising from the expansion of the pole coefficients and a finite remainder,

\[
c_i^{(2),\text{fin}} = c_i^{(1),\text{ren}} - \left(I^{(1)}(\varepsilon)c_i^{(1),\text{ren}} - I^{(2)}(\varepsilon)c_i^{(0)} \right),
\]

for \(i = \{2, 4, 6, 12\}\), and with the one- and two-loop insertion operators \(I^{(1)}(\varepsilon)\) and \(I^{(2)}(\varepsilon)\) given in [15].

As an example, we present our result for \(n_fN\)-contribution to the finite part \(c_{12}^{(2),\text{fin}}\) at two loops,

\[
c_{12}^{(2),\text{fin}}(x_1, x_2) = n_f N \left(3 \ln(x_1) \left(\frac{\ln(x_1)}{(x_1 + x_2)^2} + \frac{1}{4} \frac{\ln(x_2)^2 - 2 \text{Li}_2(1-x_2)}{x_1(1-x_2)} \right) + \frac{\zeta(2)}{12(1-x_2)x_1} - \frac{1}{18} \frac{13x_1^2 + 36x_1 - 10x_1x_2 - 18x_2 + 31x_2^2}{(x_1 + x_2)^2x_1(1-x_2)} \ln(x_2) + \frac{x_1^2 - x_2^2 - 2x_1 + 4x_2}{(x_1 + x_2)^4} \text{R}_1(x_1, x_2) - \frac{1}{12} \frac{\text{R}(x_1, x_2)}{x_1(x_1 + x_2)^2} \left[5x_2 + 42x_1 + 5 \right] \right)
\]

(9)
\[-\frac{(1+x_1)^2}{1-x_2} - 4 \frac{1-3x_1+3x_1^2}{1-x_1-x_2} - 72 \frac{x_1^2}{x_1+x_2} \right] + \left[\frac{1}{12} \frac{x_1}{1-x_2} + \frac{6}{(x_1+x_2)^3} \right.
\left. - \frac{1+2x_1}{x_1(x_1+x_2)^2} \right] (\text{Li}_2(1-x_2) - \text{Li}_2(1-x_1)) - \frac{1}{(x_1+x_2)x_1} \]
\[-\frac{1}{2} \pi n_f N \frac{\ln(x_2)}{x_1(1-x_2)}.
\]

We have introduced the function \(R(x_1, x_2) \), which is well known from [16],

\[
R(x_1, x_2) = \left(\frac{1}{2} \ln(x_1) \ln(x_2) - \ln(x_1) \ln(1-x_1) + \frac{1}{2} \zeta(2) - \text{Li}_2(x_1) \right) + (x_1 \leftrightarrow x_2).
\]

In addition, it is convenient, to define the symmetric function \(R_1(x_1, x_2) \), which contains a particular combination of multiple polylogarithms [11],

\[
R_1(x_1, x_2) = \left(\ln(x_1) \text{Li}_{1,1} \left(\frac{x_1}{x_1+x_2}, x_1+x_2 \right) - \frac{1}{2} \zeta(2) \ln(1-x_1-x_2) \right) \]
\[
+ \text{Li}_3(x_1+x_2) - \ln(x_1) \text{Li}_2(x_1+x_2) - \frac{1}{2} \ln(x_1) \ln(x_2) \ln(1-x_1-x_2) \]
\[- \text{Li}_{1,2} \left(\frac{x_1}{x_1+x_2}, x_1+x_2 \right) - \text{Li}_{2,1} \left(\frac{x_1}{x_1+x_2}, x_1+x_2 \right) \right) + (x_1 \leftrightarrow x_2).
\]

We have made the following checks on our result. As remarked, the infrared poles agree with the structure predicted by Catani [15]. This provides a strong check of the complete pole structure of our result. In addition, we have tested various relations between the \(c_i \). For instance, the combination \(x_1 c_6 \) is symmetric under exchange of \(x_1 \) with \(x_2 \). Finally, we could compare with the result for the squared matrix elements, i.e. the interference of the two-loop amplitude with the Born amplitude, and the interference of the one-loop amplitude with itself. The results of [5] are given in terms of one- and two-dimensional harmonic polylogarithms, which form a subset of the multiple polylogarithms [11]. Thus, we have performed the comparison analytically and we agree with the results of [5].

3. Conclusions

Our result represents one contribution to the full next-to-next-to-leading order calculation of \(e^+ e^- \to 3\)-jets. It has been obtained by means of an efficient method based on nested sums and is expressed in terms of multiple polylogarithms with simple arguments. As a consequence, our result can be continued analytically and applies also to \((2+1)\)-jet production in deep-inelastic scattering or to the production of a massive vector boson in
hadron-hadron collisions. At the same time, it provides an important cross check on the results for the squared matrix elements [5] with a completely independent method.

After the results of section 2 had been presented at this conference, Garland et al. published results for the complete two-loop amplitude for $e^+e^- \to q\bar{q}g$. Our results are in agreement with ref. [17].

REFERENCES

[1] G. Dissertori, (2001), hep-ex/0105070.
[2] F. A. Berends, W. T. Giele, and H. Kuijf, Nucl. Phys. B321, 39 (1989); K. Hagiwara and D. Zeppenfeld, Nucl. Phys. B313, 560 (1989).
[3] Z. Bern, L. Dixon, D. A. Kosower, and S. Weinzierl, Nucl. Phys. B489, 3 (1997), hep-ph/9610370; Z. Bern, L. Dixon, and D. A. Kosower, Nucl. Phys. B513, 3 (1998), hep-ph/9708293.
[4] E. W. N. Glover and D. J. Miller, Phys. Lett. B396, 257 (1997), hep-ph/9609474; J. M. Campbell, E. W. N. Glover, and D. J. Miller, Phys. Lett. B409, 503 (1997), hep-ph/9706297.
[5] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis, and E. Remiddi, Nucl. Phys. B627, 107 (2002), hep-ph/0112081.
[6] S. Moch, P. Uwer, and S. Weinzierl, J. Math. Phys. 43, 3363 (2002), hep-ph/0110083.
[7] S. Moch, P. Uwer, and S. Weinzierl, published in Budapest 2001, hep2001/004, hep-ph/0110407.
[8] S. Moch, P. Uwer, and S. Weinzierl, hep-ph/0207043.
[9] O. V. Tarasov, Phys. Rev. D54, 6479 (1996), hep-th/9606018; Nucl. Phys. B502, 455 (1997), hep-ph/9703319; C. Anastasiou, E. W. N. Glover, and C. Oleari, Nucl. Phys. B575, 416 (2000), hep-ph/9912251.
[10] J. A. M. Vermaseren, Int. J. Mod. Phys. A14, 2037 (1999), hep-ph/9806280; J. Blümlein and S. Kurth, Phys. Rev. D60, 014018 (1999), hep-ph/9810241.
[11] A. B. Goncharov, Math. Res. Lett. 5, 497 (1998); J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisonek, math.CA/9910045; E. Remiddi and J. A. M. Vermaseren, Int. J. Mod. Phys. A15, 725 (2000), hep-ph/9905237.
[12] J. A. M. Vermaseren, (2000), math-ph/0010025.
[13] C. Bauer, A. Frink, and R. Kreckel, (2000), cs/0004015.
[14] S. Weinzierl, Comput. Phys. Commun. 145, 357 (2002), math-ph/0201011.
[15] S. Catani, Phys. Lett. B427, 161 (1998), hep-ph/9802439.
[16] R. K. Ellis, D. A. Ross, and A. E. Terrano, Nucl. Phys. B178, 421 (1981).
[17] L. W. Garland, T. Gehrmann, E. W. N. Glover, A. Koukoutsakis, and E. Remiddi, (2002), hep-ph/0206067.