Classification and stability of vacua in maximal gauged supergravity

Hideo Kodama
Theory Center, KEK, Tsukuba 305-0801, Japan;
Department of Particles and Nuclear Physics, The Graduate University for Advanced Studies,
Tsukuba 305-0801, Japan
Hideo.Kodama@kek.jp

Masato Nozawa
Theory Center, KEK, Tsukuba 305-0801, Japan
nozawam@post.kek.jp

ABSTRACT: This article presents a systematic study of critical points for the \(SL(8, \mathbb{R}) \)-type gauging in four dimensional maximal gauged supergravity. We determine all the possible vacua for which the origin of the moduli space becomes a critical point via \(SL(8, \mathbb{R}) \) transformations. We formulate a new tool which enables us to find analytically the mass spectrum of the corresponding vacua in terms of eigenvalues of the embedding tensor. When the cosmological constant is nonvanishing, it turns out that many vacua obtained by the dyonic embedding admit a single deformation parameter of the theory, in agreement with the results of the recent paper by Dall’Agata, Inverso and Trigiante [1]. Nevertheless, it is shown that the resulting mass spectrum is independent of the deformation parameter and can be classified according to the unbroken gauge symmetry at the vacua, rather than the underlying gauging. We also show that the generic Minkowski vacua exhibit instability.

KEYWORDS: dS vacua in string theory, Flux compactifications, Superstring Vacua
1. Introduction

The maximal supergravity has played a distinguished role in the development of string/M-theory. Although the maximal supergravity fails to describe our realistic chiral world, lots of attentions have been paid to this theory mainly due to the hope of ultraviolet finiteness. Thanks to the high degree of supersymmetry, the particle spectrum is unified into a single supermultiplet and there is no freedom to couple additional matter fields. The only known deformation of maximal supergravity is to gauge the theory by promoting the abelian gauge fields to the nonabelian ones. The gauging procedure gives rise to the scalar potential, as well as the fermionic mass terms. Recently the gauged supergravity theories have been intensively studied in the context of flux compactifications, the gauge/gravity duality and also the condensed matter physics applications.

The original $N = 8$ ungauged supergravity was constructed by Cremmer and Julia via a toroidal compactification of eleven dimensional supergravity [2]. de Wit and Nicolai provided the first example of maximal gauged supergravity by gauging 28 vector fields to have an SO(8) gauge invariance, based on the formalism of T-tensor [3]. This theory has a simple higher dimensional origin, since it is obtained by a dimensional reduction of eleven dimensional supergravity on a seven sphere [4]. Later on, some noncompact gaugings were found to be possible without giving rise to ghost [5]. Subsequently, these types of gaugings have provided a variety of nontrivial vacua. It is then important to explore which types of gaugings are consistently realizable. However, this is not an easy task since viability is sensitive to the choice of (possibly non-semisimple) gauge groups and their embeddings [6, 7]. Even if the consistent gauging is assigned, the extremalization of scalar potential is a formidable task in a general setting, since 70 scalar fields appear in the theory.

Thus, the vacuum hunting so far has been mainly focused upon the truncated sectors where only a few invariant scalars survive. This strategy has been active during the past 25 years [5, 8, 9, 10, 11, 12, 13, 14, 15]. In this traditional approach we need to choose the particular gauging, compute the scalar potential and then scan the moduli space of critical points of the potential. Specifically,
de Sitter (dS) extrema have been found for SO(4, 4) and SO(5, 3) gaugings by confining to the SO(p) × SO(q) invariant scalar. At these vacua spontaneous supersymmetry breakings occur, hence they may be relevant for the early stages of the universe. Although this approach offers a concise way to find vacua, it does not reveal more than the invariant scalars of specific subgroup. For example, despite the fact that all singlet scalars of SU(4)− ⊂ SO(8) invariant sector are stable, non-singlet scalars do indeed have instabilities [13]. It is therefore desirable to address the systematic survey of viable gaugings, scanning vacua and full stability thereof.

We have recently witnessed two progresses in this line of research. One is the development of a new computational tool to find vacua [16]. A dozen of new critical points have been discovered numerically. Remarkably it was worked out that some nonsupersymmetric vacua are perturbatively stable. These intensive works indicate the possibility of an abundant variety of vacua with potential phenomenological applications. For instance, the anti-de Sitter (AdS) vacua are expected to be dual to the nontrivial conformal fixed points in the dual field theory.

Another development is the formulation based on the embedding tensor [17, 18, 19]. The embedding tensor specifies how to embed the gauge group into the duality group. Using this formalism, all different gaugings can be described in a covariant manner and admissible gaugings can be characterized group-theoretically.

Under these circumstances, Dall’Agata and Inverso utilized the homogeneity of the scalar coset space to determine the complete mass spectrum of 70 scalar fields for some gaugings [20] (see [21] for an early study in half maximal supergravity). Instead of viewing the scalar potential as nonlinear functions of seventy scalar fields, it may be identified as a quadratic function of the embedding tensor. Since the scalar coset $E_{7(7)}/SU(8)$ is homogeneous, any point can be brought to the origin by the $E_{7(7)}$ isometry, which acts also on the embedding tensor. Hence the critical point of the scalar potential can be mapped to the origin, at the price of varying the embedding tensor. Namely we can explore the possible gaugings, critical points and their mass spectrum at the origin of the scalar manifold, where the governing equations can be analyzed algebraically. See e.g., [22, 23, 24] for some related works by this method.

The aim of this paper is to deepen our understanding of vacuum structure in maximal supergravity. We make a systematic study of vacua which can be moved to the origin of moduli space via SL(8, \mathbb{R}) transformations and address some issues unresolved in [20]. We give a new tool which enables us to trace analytically the vacuum stability without resorting numerics or annoying diagonalization of 70 × 70 mass matrices. We conclude that apart from the Minkowski vacua, the mass spectrum is determined by the residual gauge symmetry, rather than the gauging itself. In the meanwhile, the Minkowski vacua are shown to admit intricate mass spectra and possess instabilities in general.

This paper is organized as follows. In the next section we succinctly describe the embedding tensor formalism and fix our notations. Sections [3] and [4] are devoted to the discussion of vacuum classifications and mass spectra. Finally, we conclude with some future prospects in section [5].

2. Maximal gauged supergravity

In this section we will briefly discuss the gauging of maximal supergravity and fix our notations. In the maximal supergravity, the scalar manifold is described by the $E_{7(7)}/SU(8)$ nonlinear sigma model. The $E_{7(7)}$ acts on the coset representative as isometries, while acts on the gauge fields as global symmetries. We choose a subgroup of $E_{7(7)}$ and promote it to a local symmetry. In order to keep the supersymmetry, this deformation gives rise to a nontrivial scalar potential, by which 70 scalar fields may get stabilized by acquiring mass. For this purpose, the embedding tensor formalism is of help, since it allows one to trace all equations formally in an $E_{7(7)}$ covariant fashion. Refer to the original paper [13] for a more rigorous discussion.
2.1 Embedding tensor formalism

Since the gauge group is a subgroup of $E_{7(7)}$, its generators X_M can be expressed in terms of the generators, t_α, of $E_{7(7)}$ as

$$X_M = \Theta_M^\alpha t_\alpha,$$

where $\alpha = 1, \ldots, 133$ and $M = 1, \ldots, 56$. The gaugings are encoded into the real embedding tensor Θ_M^α belonging to the 56×133 representation of $E_{7(7)}$. It specifies which generators of the duality group to be chosen as generators of gauge group. A major advantage of adopting the embedding tensor is that it allows us to keep the entire formulation in a duality covariant way. In terms of X_M the symmetry can be made local by introducing gauge covariant derivative,

$$\partial_\mu \rightarrow D_\mu = \partial_\mu - g A_\mu M X_M,$$

where g is the coupling constant.

The embedding tensor must satisfy linear and quadratic constraints in order to ensure the consistent gaugings. The quadratic constraint equation requires that the embedding tensor should be invariant under the gauge group,

$$C_{MN}^\alpha := f_{\alpha \beta \gamma} \Theta_M^\beta \Theta_N^\gamma + (t_\beta)_{NP} \Theta_M^\beta \Theta_P^\alpha = 0,$$

where $f_{\alpha \beta \gamma}$ denotes the structure constants of $E_{7(7)}$, i.e., $[t_\alpha, t_\beta] = f_{\alpha \beta \gamma} t_\gamma$. Equation (2.3) implies the closure condition $[X_M, X_N] = -X_{MN} P X_P$ of the gauge algebra. It should be stressed that (2.3) involves a nontrivial information upon the symmetrization in (M, N).

In addition to the quadratic relation, the supersymmetry imposes the linear constraint upon the embedding tensor. The concrete form of this constraint depends on the spacetime dimensionality and supercharges. In the present case, the embedding tensor is subject to the following restriction [18, 19],

$$(t_\alpha)^M N \Theta_N^\alpha = 0, \quad (t_\beta t_\alpha)^M N \Theta_N^\beta = -\frac{1}{2} \Theta_M^\alpha.$$

Here and in what follows, the indices α, β, \ldots are raised and lowered by the $E_{7(7)}$ Cartan-Killing metric $\eta_{\alpha \beta} = \text{Tr}(t_\alpha t_\beta)$. Although the embedding tensor a priori takes values in the tensor product $56 \times 133 = 56 + 912 + 6480$, the above constraint amounts to requiring the embedding tensor to belonging to the 912 representation [18, 19]. From equation (2.3) one may derive $X_{(MN)} = X_{MN} M = 0$, namely, the gauge group must be unimodular. Each solution to the above set of constrains gives rise to a viable gauging.

In the present paper, we are interested in a gauge group embedded into the standard $\text{SL}(8, \mathbb{R})$ subgroup of $E_{7(7)}$. The branching rules into $\text{SL}(8, \mathbb{R})$ representations are

$$56 \rightarrow 28 + 28', \quad 133 \rightarrow 63 + 70, \quad 912 \rightarrow 36 + 420 + 36' + 420'. $$

Since the embedding tensor lives in 912 representation, the relevant branchings are given by

	28	28'
63	36 + 420	36' + 420'
70	420'	420

The representations 420 and 420' appear not only in representations arising from the adjoint representation 63 of $\text{SL}(8, \mathbb{R})$, but also in those coming from 70. Hence, for the embeddings in

[1] If one gauges the trombone symmetry, the 56 representations can be excited [25].
SL(8, R), the embedding tensor has to belong to 36 and/or 36', on which we will concentrate in the rest of the paper.

The scalar potential arises from the $O(g^2)$ corrections of supersymmetry transformations. In terms of X_M, it is given by

$$V = \frac{g^2}{672} \left(X_{MN}^R X_{PQ}^S M^{MP} M^{NQ} M_{RS} + 7 X_{MN}^Q X_{PQ}^N M^{MP} \right),$$

(2.7)

where M_{MN} is a real and symmetric matrix with the inverse M^{MN} and defined by

$$M = L \cdot T L, \quad M_{MN} = (M)_{MN}. \tag{2.8}$$

Here $L = L(\phi)$ is the coset representative in the Sp(56, \mathbb{R}) representation. From the higher dimensional point of view, the four dimensional scalar potential encodes the internal geometry and the flux contributions. For generic gaugings, the potential is unbounded both below and above, and fails to have any extrema.

For later convenience, let us recapitulate some coset representations. Cremmer and Julia introduced the Usp(56) representation, in which the diagonal element of $E_{7(7)}$ algebra is SU(8) \footnote{Cremmer and Julia (1979) introduced the Usp(56) representation, in which the diagonal element of $E_{7(7)}$ algebra is SU(8).}. In the Usp(56) representation the coset representatives take the form,

$$L(\phi)_{\underline{MN}} = \exp \left(\begin{array}{cc} 0 & \phi_{ijkl} \\ \phi_{ijkl}^* & 0 \end{array} \right), \quad \phi_{ijkl} = \phi_{ijkl}, \quad \phi_{ijkl}^* = \eta_{ijkl}, \tag{2.9}$$

where the underlined indices refer to $28 + 28$ of SU(8), and $\eta = \pm 1$ corresponds to the chirality of the spinor representation of SO(8) below. Here i, j, \ldots are 8 and $\bar{8}$ of SU(8), and are raised and lowered via complex conjugation, as usual. The change of basis can be done via gamma matrices in the real Weyl spinor representation of SO(8),

$$L_{\underline{MN}} = S_{\underline{P} \underline{Q}} L_{\underline{P} \underline{Q}} (S^{-1})_{\underline{M} \underline{N}}, \quad S_{\underline{M} \underline{N}} = \frac{i}{4\sqrt{2}} \begin{pmatrix} \Gamma_{ij}^{ab} & i\Gamma_{ij}^{ab} \\ \Gamma_{ij}^{ab} & -i\Gamma_{ij}^{ab} \end{pmatrix}, \tag{2.10}$$

where $(\Gamma_{ij})^{ab} = (\Gamma^{ab})_{ij} =: \Gamma^{ab}_{ij}$, and there is no need to distinguish their upper and lower indices. In particular, we denote by V to describe the coset representative in a mixed basis,

$$V^{\underline{MN}} = L_{\underline{M}} P (S^{-1})_{\underline{P}}, \tag{2.11}$$

\subsection{2.2 Mass matrix}

The seventy scalars parametrize the homogeneous (and moreover symmetric) coset space $E_{7(7)}/SU(8)$. The homogeneity means that every point on the (Riemannian) manifold can be mapped into any other point via a global transformation (isometry). In other words, the manifold admits the transitive group of motions.

What is important here is that the scalar potential is invariant under the simultaneous transformations of the coset representative and of the embedding tensor. Indeed, the potential depends on a single tensorial combination $L^{-1} \Theta$. To see this, let us define

$$\tilde{\Theta}_M^{\alpha} t_\alpha := (L^{-1})_M^N \Theta_N^{\alpha} L^{-1} t_\alpha L. \tag{2.12}$$

This is the analogue of T-tensor in the Sp(56, \mathbb{R}) representation. In terms of $\tilde{\Theta}_M^{\alpha}$, the potential (2.7) can be expressed as

$$V = \frac{g^2}{672} \tilde{\Theta}_M^{\alpha} \tilde{\Theta}_M^{\beta} (\delta_{\alpha\beta} + 7 \eta_{\alpha\beta}), \tag{2.13}$$

\[\text{Page } 4 \]
\[\text{Tr}(t_\alpha t^\dagger_\beta) = \delta_{\alpha\beta}, \quad \text{Tr}(t_\alpha t_\beta) = \eta_{\alpha\beta}. \] (2.14)

In this form, one notices that the potential depends (quadratically) only on \(\hat{\Theta}_{\alpha} \), as we desired to show. Since any point on the scalar manifold can be mapped to any other point, the optimal setup is to move the critical point to the origin, where \(L(O) = I_{56} \). At the origin, the extremum condition amounts to the quadratic conditions on \(\Theta_{\alpha} \).

To take the first variation of the potential, we first note that the coset representative can be written as

\[L = L(O) \exp (-\phi^\rho t_\rho) = L(O) \left[I_{56} - \phi^\rho t_\rho + \frac{1}{2} \phi^\rho \phi^\sigma t_\rho t_\sigma + \cdots \right], \] (2.15)

where indices \(\rho \) and \(\sigma \) refer exclusively to 70 noncompact elements of \(\mathfrak{e}_{7(7)} \) and \(\phi^\rho \) denotes the physical scalars. This implies that

\[\partial_\rho L = -Lt_\rho, \quad \partial_\sigma \partial_\rho L = Lt_\rho t_\sigma, \] (2.16)

hold at the origin \((\phi^\rho = 0) \). Using analogous relations for the derivatives of \(L^{-1} \), the first derivative of \(V \) is obtained as

\[\partial_\rho V = \frac{g^2}{336} \left[t_{\rho M} N^\alpha \Theta_{N}^\beta (5\eta_{\alpha\beta} + \Theta_{\alpha}^\alpha \Theta_{\beta}^\beta f_{\rho\beta}^\gamma \delta_{\gamma\delta}) \right]. \] (2.17)

At the origin, \(\partial_\rho V = 0 \) imposes a quadratic restriction upon \(\Theta_{\alpha} \), which should be combined to be solved with (2.13) and (2.14). It turns out that we can scan the critical points and underlying gaugings at the same time, as demonstrated in [20].

We can furthermore discuss the mass spectrum at the same time. The second derivatives of the potential at the origin can be similarly computed to give

\[\partial_\sigma \partial_\rho V = \frac{g^2}{336} \left[(t_{\rho M} t_\sigma) M^N \Theta_{M}^\alpha \Theta_{N}^\beta (5\eta_{\alpha\beta} + \Theta_{\alpha}^\alpha \Theta_{\beta}^\beta f_{\rho\beta}^\gamma \delta_{\gamma\delta}) \right] + \Theta_{\alpha}^\alpha \Theta_{\beta}^\beta (-f_{\alpha (\rho} f_{\sigma) \beta}^\gamma \delta_{\gamma\delta} + (f_{\rho f \sigma})^\gamma \delta_{\beta\gamma}) + 2(t_{\rho M} N^f \sigma_\gamma + t_\sigma M^N f_{\rho a}^\gamma) \delta_{\beta\gamma} \Theta_{\alpha}^\alpha \Theta_{\beta}^\beta \] (2.18)

In order to reduce (2.18) to a more tractable form, we rely on the observation \([T_{\alpha}, t_\beta] \in \mathfrak{e}_{7(7)}\), which suggests that there exist constants \(c_{\alpha\beta} \) such that \([T_{\alpha}, t_\beta] = c_{\alpha\beta} t_\gamma\). Applying the Jacobi identity to \((T_{\alpha}, t_\beta, t_\gamma)\), we have

\[c_{(\rho\sigma)} f_{\gamma(\alpha}^\delta \delta_{\beta)} = -c_{\beta\gamma\alpha}^\rho \eta_{\gamma\delta} - f_{\alpha (\rho} f_{\sigma)\beta}^\gamma \delta_{\gamma\delta}. \] (2.19)

Using this relation, a simple computation shows that (2.18) can be cast into

\[\partial_\rho \partial_\sigma V \big|_{\delta = 0} = (M^2)_{\rho\sigma} + \frac{1}{2} c_{(\rho\sigma)}^\gamma \partial_\gamma V, \] (2.20)

where \(M^2 \) describes the mass matrix at the extrema.

\[(M^2)_{\rho\sigma} := \frac{g^2}{168} \left[(s_{(\rho} s_{\sigma)} M^N \text{Tr}(X_M T X_N + 7 X_M X_N) + 2 (s_{(\rho} M^N \text{Tr}(s_{\sigma)} [X_M, T X_N])) - \text{Tr}[s_{(\rho}, X_M [s_{\sigma)}, T X_M])] \right], \] (2.21)

\[\text{We can find a basis of } \mathfrak{e}_{7(7)} \text{ in which } c_{(\alpha\beta)}^\gamma \text{ vanishes when both } \alpha \text{ and } \beta \text{ correspond to compact directions or to non-compact directions. However, in the other mixed cases, } c_{(\alpha\beta)}^\gamma \text{ does not vanish in general.} \]
\[s_\rho := \frac{1}{2} (T_\rho + T_\rho^T). \] (2.22)

Since (2.21) is evaluated at the origin, we can also view \(s_\rho \) as dynamical variables rather than constant \(56 \times 56 \) symmetric matrices. In the following discussion, we will treat \(s_\rho \) as linear fluctuations of 70 scalars around the origin of moduli space.

3. Electric gaugings

We first discuss the case in which the gauge group is contained in the \(\text{SL}(8, \mathbb{R}) \) electric frame. This is the simplest setup where the relation to the flux compactification is clear [26, 27, 28]. This type of gaugings corresponds to the \(\text{CSO}(p, q, r) \) gaugings.

Since the embedding tensor is described by the \(36' \) representation of \(\text{SL}(8, \mathbb{R}) \) [18] as

\[\Theta_{abcd} = \delta_{[a} \theta_{b]} \theta_{c]d}, \quad \theta_{ab} = \theta_{(ab)}, \quad a, b, \ldots = 1, \ldots, 8, \] (3.1)

the gauge structure constants \(X_M \) of \(\text{CSO}(p, q, r) \) are given by

\[X_M = (X_A, X^A) = (X_{[ab]}, 0), \quad X_{[ab]} = \begin{pmatrix} X_{[ab][cd]}^{[ef]} & 0 \\ 0 & X_{[ab][cd]}^{[ef]} \end{pmatrix}, \] (3.2)

where

\[X_{[ab][cd]}^{[ef]} = \delta_{[a} \theta_{b]} \theta_{c]d}, \quad X_{[ab]}^{[cd]} = -\delta_{[a} \theta_{b]} \theta_{c]d}. \] (3.3)

In this case the quadratic constraint is automatically satisfied. Thus any symmetric tensor \(\theta_{ab} \) defines a consistent gauging even if it is noninvertible.

From (2.7) and (3.1) the potential at the extrema is given by

\[V_c = \frac{1}{8} g^2 \left[\frac{1}{4} \text{Tr}(\theta^2) - \frac{1}{8} (\text{Tr} \theta)^2 \right]. \] (3.4)

In our present normalization, \(V_c \) is equivalent to the cosmological constant.

3.1 Vacua

In the electric gauging case, the origin of the scalar coset corresponds to the critical point if the following relation holds [20]

\[2\theta^2 - \theta \text{Tr} \theta = 2v I_8, \quad v := 4g^{-2} V_c. \] (3.5)

Note that the extremum condition is invariant under \(\theta \to P^{-1} \theta P \). Hence we can confine ourselves to the diagonal \(\theta \) by taking \(P \) as an orthogonal matrix. Since the \(8 \times 8 \) matrix \(\theta \) obeys a quadratic equation (3.5), its eigenvalues \(\lambda_i \) (\(i = 1, 2 \)) should satisfy

\[\lambda_i^2 - x \lambda_i - v = 0, \quad x := \frac{1}{2} \text{Tr} \theta. \] (3.6)

Let \(n_i (\sum n_i = 8) \) denote the degeneracy of eigenvalue \(\lambda_i \). Then the extremum condition translates into

\[\sum_i (n_i - 2) \lambda_i = 0. \] (3.7)
Since we have
\[V_c = -\frac{1}{4} g^2 \lambda_1 \lambda_2 , \tag{3.8} \]
the potential vanishes for \(n_1 = 2 \) or \(n_2 = 2 \), in which case the \(\theta \) tensor is noninvertible. One also finds that the potential is invariant under \(\lambda_i \rightarrow -\lambda_i \) and \(\lambda_1 \leftrightarrow \lambda_2 \), thereby these cases correspond to the same vacua.

It is observed that equations (3.4) and (3.7) are invariant under the rescaling \(\theta \rightarrow e^\alpha \theta \) with \(g \rightarrow e^{-\alpha} g (\alpha \in \mathbb{R}) \). Using this freedom, we are free to set \(\det \theta = \pm 1 \) for \(n_i \neq 2 \), whereas for \(n_1 = 2 \) (\(n_2 = 2 \)) we can choose \(\lambda_1 \) (\(\lambda_2 \)) to take any nonvanishing value. Under these conditions, it turns out that the extrema in the electric gaugings are exhausted by table 1 of reference [20].

3.2 Mass spectrum

We now move on to the main part of this paper and determine analytically the full mass spectrum of 70 scalars. Let \(s_\rho = (t_\rho + T t_\rho)/2 \) decompose into
\[s_\rho = \begin{pmatrix} s_\rho[ab][cd] & s_\rho[abcd] \\ s_\rho[abcd] & s_\rho[cd][ab] \end{pmatrix} , \tag{3.9} \]
where
\[s_\rho[ab][cd] = -s_\rho[cd][ab] = 2(S_\rho)[a[e \delta_b]d] , \quad (s_\rho)[abcd] = (s_\rho)[abcd] = (U_\rho)[abcd] . \tag{3.10} \]
Each of real tensors \((S, U)\) has 35 components and satisfies
\[S = T S , \quad \text{Tr}(S) = 0 , \quad U = * U . \tag{3.11} \]
Substituting (3.3) and (3.9) into (2.21), we are led to
\[M^2 = M^2_{(1)}(\theta) + M^2_{(2)}(\theta) , \tag{3.12} \]
with
\[M^2_{(1)}(\theta) = \frac{1}{8} g^2 \left[-\text{Tr}(\theta)\text{Tr}(S^2 \theta) - [\text{Tr}(\theta S)]^2 + 2\text{Tr}(S^2 \theta^2) + 2\text{Tr}(S \theta S \theta) \right] , \tag{3.13} \]
\[M^2_{(2)}(\theta) = \frac{1}{8} g^2 \left[-U^2_{[ab][cd]} \theta_{ac} \theta_{bd} + \frac{1}{24} U \cdot U \text{Tr}(\theta^2) \right] . \tag{3.14} \]
Here we have introduced the abbreviation
\[U \cdot U = U_{abcd} U_{abcd} , \quad (U^2)_{[ab][cd]} = U_{abef} U_{cdef} , \quad (U^2)_{ab} = U_{acde} U_{bcde} = \frac{1}{8} U \cdot U \delta_{ab} , \tag{3.15} \]
where the final expression follows from the self-duality of \(U \).

We now split the matrix \(S \) into \(n_1 \) and \(n_2 \) blocks
\[S = \begin{pmatrix} A_{11} & A_{12} \\ T A_{12} & A_{22} \end{pmatrix} , \quad \theta = \begin{pmatrix} \lambda_1 \mathbb{I}_{n_1} \\ \lambda_2 \mathbb{I}_{n_2} \end{pmatrix} , \tag{3.16} \]
and define
\[A_{11} = \frac{1}{n_1} \text{Tr}(A_{11}) \mathbb{I}_{n_1} + \hat{A}_1 , \quad A_{22} = -\frac{1}{n_2} \text{Tr}(A_{11}) \mathbb{I}_{n_2} + \hat{A}_2 , \tag{3.17} \]
where \(\hat{A}_1 \) and \(\hat{A}_2 \) are trace-free parts of \(A_{11} \) and \(A_{22} \), respectively.
In order to achieve the correct mass spectrum we need to canonically normalize the scalar kinetic function. According to (3.10), the fluctuations of scalar fields \(\delta \phi_{ijkl} \) are given by

\[
2S_{[a} \delta_{b]} + iU_{abcd} = \frac{1}{16} \Gamma_{ij}^{kl} \Gamma_{cd} \delta \phi_{ijkl} ,
\]

(3.18)

Then the scalar kinetic term reads

\[
\frac{1}{12} \mathcal{P}_{\mu ijkl} \mathcal{P}^{\nuijkl} = \frac{1}{12} |\partial_\mu \delta \phi_{ijkl}|^2 = \frac{1}{2} \text{Tr}((\partial S)^2) + \frac{1}{12} \partial U \cdot \partial U .
\]

(3.19)

It follows that

\[
\frac{1}{2} \text{Tr}((\partial S)^2) = \frac{1}{2} \left[\frac{8}{n_1n_2} (\partial \text{Tr} A_{11})^2 + \text{Tr}((\partial \hat{A}_1)^2) + \text{Tr}((\partial \hat{A}_2)^2) + 2 \text{Tr}(\partial^T A_{12} \partial A_{12}) \right] .
\]

(3.20)

With reference to (3.13) and (3.16), the mass matrix \(M_{(1)}^2 \) can be expressed in terms of fields \(\text{Tr}(A_{11}), \hat{A}_1, \hat{A}_2, A_{12} \). The canonical mass eigenvalues can be read off in such a way that each coefficient of these fields agrees with (3.20), thereby

\[
M_{(1)}^2 = \frac{8}{n_1n_2} m_{0(1,1)}^2 \text{Tr}(A_{11})^2 + m_{1(N_1,1)}^2 \text{Tr}(\hat{A}_1^2) + m_{2(1,N_2)}^2 \text{Tr}(\hat{A}_2^2) + 2 m_{s(n_1,n_2)}^2 \text{Tr}(T A_{12} A_{12}) ,
\]

(3.21)

where

\[
N_1 = \frac{1}{2} (n_1 - 1)(n_1 + 2) , \quad N_2 = \frac{1}{2} (n_2 - 1)(n_2 + 2) ,
\]

(3.22)

and

\[
m_{0(1,1)}^2 = \frac{g^2}{64} [2n_2(2 - n_1) \lambda_1^2 + 2n_1(2 - n_2) \lambda_2^2 - (n_1 - n_2)^2 \lambda_1 \lambda_2] ,
\]

(3.23a)

\[
m_{1(N_1,1)}^2 = \frac{g^2}{8} \lambda_1 [(4 - n_1) \lambda_1 - n_2 \lambda_2] ,
\]

(3.23b)

\[
m_{2(1,N_2)}^2 = \frac{g^2}{8} \lambda_2 [(4 - n_2) \lambda_2 - n_1 \lambda_1] ,
\]

(3.23c)

\[
m_{s(n_1,n_2)}^2 = \frac{g^2}{16} (\lambda_1 + \lambda_2) [(2 - n_1) \lambda_1 + (2 - n_2) \lambda_2] .
\]

(3.23d)

At the last equality we have used the stationary point condition (3.7). It follows that the \(A_{12} \) field is always massless. Boldface letters in the subscript denote the representations of \(\text{SO}(n_1) \times \text{SO}(n_2) \). This notation manifests multiplicities explicitly, i.e., \(m_{[k_1,k_2]}^2 \) represents the mass spectrum for fields with \(k_1,k_2 \) degeneracies. Note that fluctuations of \(\text{Tr}(A_{11}) \) and \(A_{12} \) exist for \(n_1n_2 > 0 \), while \(\hat{A}_1 \) (\(\hat{A}_2 \)) exists for \(n_1 > 1 \) (\(n_2 > 1 \)).

When \(n_1 \neq 2,6 \), the cosmological constant is nonvanishing. So we can normalize the mass spectra in a unit of the cosmological constant (3.8) and obtain a more comprehensive form

\[
m_{0(1,1)}^2 = -2 V_c , \quad m_{1(N_1,1)}^2 = \frac{4 V_c}{n_1 - 2} , \quad m_{2(1,N_2)}^2 = \frac{4 V_c}{n_2 - 2} .
\]

(3.24)

Whereas, for \(n_1 = 2 \) we have

\[
m_{0(1,1)}^2 = m_{2(1,20)}^2 = m_{s(2,6)}^2 = 0 , \quad m_{1(2,1)}^2 = \frac{1}{4} g^2 \lambda_1^2 .
\]

(3.25)

The \(n_1 = 6 \) case can be deduced similarly.
Let us turn to determine the mass spectrum of pseudoscalars U. We decompose the eight indices into n_1 and n_2 blocks,

$$S_1 = \{1, \ldots, n_1\}, \quad S_2 = \{n_1 + 1, \ldots, n_1 + n_2\}. \quad (3.26)$$

Let ℓ be a non-negative integer taking values in the range $0 \leq \ell \leq 4$, $0 \leq 4 - \ell \leq n_2$. Then the basis of antisymmetric four-form is labeled by pairs I_1, I_2, where $I_1 (I_2)$ is a set of $\ell (4 - \ell)$ indices belonging to $S_1 (S_2)$. For any four-form Z_{abcd}, we find

$$\theta^r \theta^s Z_{cdfr} = \frac{1}{12} \left[\ell (\ell - 1) \lambda_1^2 + 2 \ell (4 - \ell) \lambda_1 \lambda_2 + (4 - \ell) (3 - \ell) \lambda_2^2 \right] Z_{abcd}, \quad (3.27)$$

from which we are led to

$$(1 + \ast) \theta^r \theta^s U_{cdfr} = 2 \mu_\ell U_{abcd}, \quad (3.28)$$

where

$$\mu_\ell = \frac{1}{24} \left[\ell (\ell - 1) \lambda_1^2 + 2 \ell (4 - \ell) \lambda_1 \lambda_2 + (4 - \ell) (3 - \ell) \lambda_2^2 + (n_1 - \ell) (n_1 - \ell - 1) \lambda_1^2
+ 2 (n_1 - \ell) (4 - n_1 + \ell) \lambda_1 \lambda_2 + (4 - n_1 + \ell) (3 - n_1 + \ell) \lambda_2^2 \right]. \quad (3.29)$$

Then the fluctuation mode of U is labeled by a non-negative integer ℓ satisfying

$$n_1 \leq 2 \ell \leq \min(2n_1, 8). \quad (3.30)$$

Since the kinetic term of U is given by $(1/12) \partial U_{abcd} \partial U_{abcd}$, the normalized mass eigenvalue m_ℓ reads

$$M_{(2)}^2 = \frac{1}{6} m_\ell^2 U \cdot U, \quad (3.31)$$

where

$$m_\ell^2 = \frac{g^2}{32} \left[\left(n_1 - \ell (\ell - 1) - (n_1 - \ell) (n_1 - \ell - 1) \right) \lambda_1^2 - 2 \ell (4 - \ell) + (n_1 - \ell) (4 + \ell - n_1) \right] \lambda_1 \lambda_2
+ \left[n_2 - (4 - \ell) (3 - \ell) - (4 + \ell - n_1) (3 + \ell - n_1) \right] \lambda_2^2 \right], \quad (3.32)$$

with multiplicities

$$2\ell > n_1 : n_1 C_\ell \times s_n C_{4-\ell}, \quad 2\ell = n_1 : \frac{1}{2} n_1 C_{n_1/2} \times s_n C_{4-n_1/2}. \quad (3.33)$$

For $n_1 \neq 2, 6$, equation (3.32) simplifies in a unit of the cosmological constant to

$$m_\ell^2 = \frac{2 \left[2 \ell^2 - 2 n_1 \ell + (n_1 - 2)^2 \right]}{(n_1 - 6)(n_1 - 2)} V_c. \quad (3.34)$$

For $n_1 = 2$ i.e., $\lambda_2 = 0$, we have

$$m_{[\ell = 1]}^2 = m_{(2,20)}^2 = \frac{1}{16} g^2 \lambda^2, \quad m_{[\ell = 2]}^2 = m_{(1,15)}^2 = m_{[\ell = 2]}^2 = 0, \quad (3.35)$$

where we have denoted multiplicities and representations in the subscripts, and “+” stands for the self-duality. As argued in the next subsection, these massless modes have nothing to do with the Nambu-Goldstone bosons.

We are now in a position to discuss critical points and mass spectra in the electric gauging. Our classification exhaustively recovers the list of critical points found by Dall’Agata-Inverso [20].
which we summarize in table 3.2. Our analytic expressions of mass spectra are in perfect agreement with the reference [20], in which mass eigenvalues may have been obtained by diagonalization of 70 × 70 mass matrix. In our method it is obvious which parts of \(\phi_{ijkl} \) belong to scalars (\(S \) field) and pseudoscalars (\(U \) field). Moreover, our formulation makes it clear that the mass spectrum is simply specified group-theoretically by multiplicities. In particular, it immediately turns out that the dS vacua necessarily have unstable mode of \(m_2 = -2V_c \), arising from the trace part of \(n_1 \)-block [see (3.24)]. For SO(5, 3) and SO(4, 4) gaugings, this mode corresponds to the SO(5) × SO(3) and SO(4) × SO(4) invariant scalar, respectively [10, 11, 12].

With the exception of Minkowski vacua, we have normalized the mass eigenvalues by the cosmological constant. This normalization is intuitively clear since it measures the curvature of potential. Then, inspection of (3.24) and (3.34) reveals that the mass spectrum is determined only by the remaining gauge symmetry at the vacua (i.e., \(n_i \) only), rather than the gauging (actual value of \(\lambda \)). This statement will become more persuasive when we look into the dyonic case in the subsequent section, where several vacua of different gaugings can have the same mass spectra.

3.3 Spontaneous symmetry breaking

As we have seen above, some scalar fields turn out to be massless. In this section we discuss the Higgs mechanism for the SL(8, \(\mathbb{R} \)) electric vacua in order to identify Nambu-Goldstone directions.

Taking the mixed coset representative (2.11), we define

\[
Q_{Mij}^{kl} = i\Omega^{NP}\mathcal{V}_{Nij}X_{MP}\mathcal{Q}_{kl}, \quad P_{Mijkl} = i\Omega^{NP}\mathcal{V}_{Nij}X_{MP}\mathcal{Q}_{kl},
\]

where \(\Omega^{MN} = \begin{pmatrix} \mathbb{O} & \mathbb{I} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} \) is the standard metric of Sp(56, \(\mathbb{R} \)). These tensors satisfy

\[
P_{Mijkl} = \frac{n}{24} \epsilon_{ijklmnpq}P_{Mmnnpq}, \quad Q_{Mij}^{kl} = \delta^{[k}_i Q_{Mj]}^l, \quad Q_{Mij} = -Q_{Mji}, \quad Q_{Mii} = 0.
\]

In terms of the \(T \)-tensor\(^3\)

\[
T_{MN}^{LP} := \frac{1}{2}(\mathcal{V}^{-1})_M^{LP}\mathcal{V}_L^N X_{MN},
\]

\(P_M \) and \(Q_M \) are expressed as

\[
T_k^{ij} = \frac{3}{4}i\Omega^{MN}Q_{Mk}^{ij}\mathcal{V}^{MN}, \quad T_{kln}^{ij} = \frac{1}{2}i\Omega^{MN}P_{Mkln}\mathcal{V}^{MN}.
\]

\(^3\)Note that the prefactor 1/2 in (3.39) is necessary to derive (3.39). The original paper [19] seems to have a typo.
In this gauge, we obtain
\[V(ij) = \frac{1}{2} \left(\partial_i \phi^j - \partial_j \phi^i \right) + \text{higher order terms} \]
under the gauge transformation, where \(\phi^i \) are the Nambu-Goldstone bosons, which are responsible for the vector fields to acquire mass.

Let us introduce the SU(8) covariant derivative by
\[\mathcal{D}_\mu V^{ij} = \partial_\mu V^{ij} - \mathcal{Q}_{\mu k l}^{ij} V^{k l} - g A_\mu^P X_{PM}^N V^{N ij}, \]
where \(\mathcal{Q}_\mu \) is an SU(8) connection, satisfying
\[\mathcal{Q}_{\mu i j}^{k l} = \delta_{[i}^{[k} \mathcal{Q}_{\mu j]}^{l]}, \quad \mathcal{Q}_{\mu}^{j i} = -\mathcal{Q}_{\mu}^{i j}, \quad \mathcal{Q}_{\mu i}^{i} = 0. \]
The SU(8) covariant derivative is subjected to the restriction \(\Omega^{MN}_{\mu ij} \mathcal{D}_\mu V^{N kl} = 0 \), giving
\[\mathcal{Q}_{\mu i}^{j} = \frac{2}{3} \left(V_{\Lambda k l} \partial_\mu V^{\Lambda j k} - V^{\Lambda i j} \partial_\mu V_{\Lambda k l} \right) - g A_\mu^M Q_{M ij}^i. \]

Similarly, we can define an SU(8) covariant tensor
\[\mathcal{P}_{\mu i j k l} = i \Omega^{MN}_{\mu ij} \mathcal{D}_\mu V_{N kl}, \quad \mathcal{P}_{\mu i j k l} = \frac{\eta}{24} e_{ijklmnpq} \mathcal{P}_{mnpq}, \]
which specifies the scalar kinetic term \((3.19) \). Then it can be shown that
\[\mathcal{P}_{\mu i j k l} = i \left(V_{\Lambda i j} \partial_\mu V^{\Lambda k l} - V^{\Lambda i j} \partial_\mu V_{\Lambda k l} \right) - g A_\mu^M \mathcal{P}_{M i j k l}. \]

Let us now take a base point \(O \) in the moduli space of scalar manifold and employ the following coset representative
\[\mathcal{V} = \mathcal{V}(O) \exp \left(\begin{array}{c} 0 \\ \phi \\ 0 \end{array} \right) \], \quad \phi = (\phi_{ijkl}), \quad \bar{\phi} = \ast \phi = \eta(\phi^{ijkl}). \]
In this gauge, we obtain
\[\mathcal{Q}_{\mu i}^{j} = -g A_\mu^M Q_{M ij}^i, \quad \mathcal{P}_{\mu i j k l} = \partial_\mu \phi_{ijkl} - g A_\mu^M \mathcal{P}_{M i j k l}. \]
Under the gauge transformation, \(\mathcal{V} \) changes as
\[\delta \mathcal{V} = -g A^M X_M \mathcal{V} = -2ig A^M \mathcal{V} V_M^N \mathcal{T}_N, \]
which implies
\[\delta \phi_{ijkl} = -g A^M \mathcal{P}_{M i j k l}. \]

By the \(E_7(7) \) isometry, let \(O \) move to the extremum of the potential. It then follows that the broken gauge symmetry is described by the condition \(A^M \mathcal{P}_{M i j k l} \neq 0 \). We find that the corresponding \(\delta \phi_{ijkl} \) are the Nambu-Goldstone bosons, which are responsible for the vector fields to acquire mass.

Let us compute the mass matrix for the Nambu-Goldstone directions. We first note that \(\mathcal{P}_M \) and \(Q_M \) take the following forms at the origin,
\[\delta_{ijkl} = \frac{1}{16} \left(\Gamma_{ijkl} \right)_{cd} \delta_{bc}, \quad \mathcal{Q}_{ijkl} = \frac{1}{4} \left(\delta_{ijkl} \right)_{cd}. \]
where \(\left(\Gamma_{ijkl} \right)_{ab} = \Gamma_{ijkl}^{ab} \Gamma_{ab}^{cd} \). Converting back to the Sp(56, \(\mathbb{R} \)) representation via \((3.18) \), the scalar fluctuation \((3.48) \) can be expressed as
\[2S_{[a} \left[\delta \left[d \right] \right] ^{[i} \right] + iU_{abcd} = \frac{1}{16} \left(\Gamma_{ijkl} \right)_{cd} \delta_{ijkl} \propto \Gamma_{ab}^i \Gamma_{cd}^{kl} \left(\Gamma_{ijkl} \right)_{p[c} \delta_{d][f]} A^{[e} \right] \propto (\Lambda \theta - \theta \Lambda)^{[e} \left[a \delta^{d]}_{b]} \right], \]
where we have used
\[\Gamma_{ab}^i \Gamma_{cd}^{kl} \left(\Gamma_{ijkl} \right)_{pq} = 128 \left(\delta_{[a} \delta_{[b]} \delta_{[c]} \delta_{d]} + \delta_{[a} \delta_{[b]} \delta_{c]} \delta_{d]} + 32 \delta_{[a} \delta_{d]} \delta_{[c]} \delta_{b]} \right). \]
Therefore, the Nambu-Goldstone bosons are encoded only into the S field of the form,

$$S \propto \Lambda \theta - \theta \Lambda, \quad \Lambda = -T\Lambda, \quad U = 0. \quad (3.52)$$

Dividing Λ into n_1 and n_2 blocks

$$\Lambda = \begin{pmatrix} \Lambda_{11} & \Lambda_{12} \\ -T\Lambda_{12} & \Lambda_{22} \end{pmatrix}, \quad (3.53)$$

one can derive

$$S = -\left(\lambda_1 - \lambda_2\right) \left(\mathbb{O}_{n_1} \Lambda_{12} \mathbb{O}_{n_2}\right), \quad (3.54)$$

and

$$M_2^2(1) = -\frac{1}{8}g^2(\lambda_1 - \lambda_2)^2(\lambda_1 + \lambda_2)(n_1 - 2)\lambda_1 + (n_2 - 2)\lambda_2|\text{Tr}(T\Lambda_{12}\Lambda_{12})| = 0, \quad (3.55)$$

where we inserted the extremum condition $[3.7]$ at the last equality. Therefore, we conclude that A_{12} field corresponds to the Nambu-Goldstone bosons of the broken noncompact gauge symmetries. They would be absorbed as the longitudinal modes of gauge fields to getting massive.

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

$$\Theta_{abcd} = \delta_{[a}[\theta_{b]}d], \quad \Theta^{abc}d = \delta^{[a}[\xi^b]c, \quad (4.1)$$

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

$$X_{[ab]} = \begin{pmatrix} X_{[ab][cd]}^{[ef]} \\ 0 \end{pmatrix}, \quad X_{[ab]} = \begin{pmatrix} X_{[ab]}^{[cd][ef]} \\ 0 \end{pmatrix}, \quad (4.2)$$

where

$$X_{[ab][cd]}^{[ef]} = \delta_{[a}^{[e}\theta_{b]}^{[c}]\delta_{d]}^{f]}, \quad X_{[ab]}^{[cd]}{[ef]} = -\delta_{[a}^{[e}\theta_{b]}^{[c}]\delta_{d]}^{f]}, \quad X_{[ab]}^{[cd]}[ef] = -\delta_{[a}^{[e}\xi^b]^{[c}\delta_{d]}^{f]}, \quad X_{[ab]}^{[cd]}[ef] = \delta_{[a}^{[e}\xi_{b]}^{[c}\delta_{d]}^{f]. \quad (4.3)$$

The value of the potential at the origin gives the cosmological constant,

$$V_c = \frac{g^2}{8} \left[\frac{1}{4}\text{Tr}(\theta^2) - \frac{1}{8}\text{Tr}(\theta)^2 + \frac{1}{4}\text{Tr}(\xi^2) - \frac{1}{8}\text{Tr}(\xi)^2 \right]. \quad (4.4)$$

4.1 Vacua

The extremum condition boils down to $[20]$

$$2(\theta^2 - \xi^2) - (\theta\text{Tr}\theta - \xi\text{Tr}\xi) = 2aI_8, \quad (4.5)$$

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

$$\xi = c\theta^{-1} \quad (c \in \mathbb{R}), \quad \text{or} \quad \xi\theta = 0. \quad (4.6)$$

These cases will be discussed separately in the following.
(I) $\theta \propto \xi^{-1}$. We start with the discussion for the case in which both θ and ξ are invertible. Letting

$$x := \frac{1}{2} \text{Tr}(\theta), \quad y := \frac{1}{2} \text{Tr}(\theta^{-1}),$$

the stationary point condition (4.13) can be equivalently written as

$$\theta^4 - x\theta^3 - a\theta^2 + c^2y\theta - c^2I_8 = 0.$$ \hspace{1cm} (4.8)$$

Since equation (4.8) is invariant under the similarity transformation $\theta \to P\theta P^{-1}$, we can restrict to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling $\theta \to e^\alpha \theta$ with $c \to e^{2\alpha}c, g \to e^{-\alpha}g (\alpha \in \mathbb{R})$. Noticing that the embedding tensor arises together with the coupling constant, we can achieve $c = 1$ without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λ_i ($i = 1, \ldots, 4$) with degeneracy $n_i(\geq 0)$,

$$\theta = \lambda_1 I_{n_1} \oplus \lambda_2 I_{n_2} \oplus \lambda_3 I_{n_3} \oplus \lambda_4 I_{n_4}, \quad \sum_i n_i = 8.$$ \hspace{1cm} (4.9)

From (4.8) one can easily derive

$$x = \sum_i \lambda_i, \quad y = -\sum_{i < j < k} \lambda_i \lambda_j \lambda_k, \quad a = -\sum_i \lambda_i \lambda_j, \quad \prod_i \lambda_i = -1.$$ \hspace{1cm} (4.10)

Hence λ_i’s satisfying the following relation correspond to the critical point,

$$\sum_i (n_i - 2)\lambda_i = 0, \quad \sum_i \frac{n_i - 2}{\lambda_i} = 0, \quad \prod_i \lambda_i = -1.$$ \hspace{1cm} (4.11)

Substitution of (4.11) into (4.4) yields

$$V_c = \frac{g^2}{32} \sum_i (n_i - 2)(\lambda_i^2 + \lambda_i^{-2}).$$ \hspace{1cm} (4.12)

Therefore neither the ordering of λ_i nor the overall sign flip $\lambda_i \to -\lambda_i$ affect the scalar potential.

We are now going to classify all critical points satisfying (4.11). Letting us denote $p_i := n_i - 2, \sum_i p_i = 0$ and $-2 \leq p_i \leq 6$ must be satisfied. Hence there are 15 possible combinations of $\{p_i\}$, which can be categorized into the following 3 groups,

(i) $\{(4, -2, -2, 0), (3, -2, -1, 0), (2, -2, 0, 0), (2, -1, -1, 0), (1, -1, 2, 0), (1, -1, 0, 0), (0, 0, 0, 0)\}$,

(ii) $\{(2, -2, 1, -1), (1, -1, 1, -1), (2, -2, -2)\}$,

(iii) $\{(6, -2, -2, -2), (5, -1, -1, -2), (3, 1, -2, -2), (4, -2, -1, -1), (3, -1, -1, -1)\}$.

Since the ordering of p_i’s is irrelevant, we can take (i) $p_4 = 0$, (ii) $p_1 = -p_2$ with $p_3 = -p_4$ and (iii) $p_3 = p_4$, respectively without losing generality. In the following, we shall discuss separately these cases.

(i) $p_4 = 0$. Equation (4.11) implies that all cases belonging to this family can be identified as degenerate cases of $p_i = 0$ ($i = 1, \ldots, 4$). Hence the θ tensor can be written as

$$\theta = r I_2 \oplus s I_2 \oplus t I_2 \oplus \left(-\frac{1}{rst}\right) I_2, \quad \det \theta = 1,$$ \hspace{1cm} (4.13)

where r, s and t are real parameters. We find that the cosmological constant (4.12) vanishes and one of the eigenvalues must have opposite sign from others, since the overall sign flip has no effect.
Hence these vacua correspond to the SO(6, 2) gauging, which spontaneously breaks down to a compact group SO(2) × SO(2) × SO(2) × SO(2) at the vacua. The residual gauge symmetry would be enhanced to SO(4) × SO(2) × SO(2) for \(s = r \) and to SO(6) × SO(2) for \(r = s = t \).

As we have seen, these vacua are parametrized by 3 continuous parameters. It is noted that the determinant remains invariant \(\det \theta = \det \theta \) under the SL(8, \(\mathbb{R} \)) transformation \(\theta \to \theta = U^T \theta U \) (\(\det U = 1 \)). If \(\det \theta = \pm 1 \) had not been satisfied, it would correspond to the deformation of the theory. This is not the case now, since \(\det \theta = 1 \) is always satisfied. This is consistent with the fact that the moduli mass matrix vanishes exactly in the directions corresponding to the variation of these parameters, as we will see later.

(ii) \(p_1 = -p_2 \) and \(p_3 = -p_4(p_i \neq 0) \). In this case, \((n_1, n_2, n_3, n_4) = (4, 0, 3, 1), (3, 1, 3, 1), (4, 0, 4, 0)\) are relevant. Inserting \(\lambda_4 = -1/(\lambda_1 \lambda_2 \lambda_3) \) into the first two equations of \((4.11)\), we get two quadratic equations for \(\lambda_3 \),

\[
p_3 \lambda_1 \lambda_2 \lambda_3^2 + p_1 \lambda_1 \lambda_2 (\lambda_1 - \lambda_2) \lambda_3 + p_3 = 0, \quad p_3 \lambda_1 \lambda_2 \lambda_3^2 + p_1 (\lambda_1^{-1} - \lambda_2^{-1}) \lambda_3 + p_3 = 0.
\]

These equations imply \((\lambda_1 \lambda_2)^2 + 1)(\lambda_1 - \lambda_2) = 0\), giving \(\lambda_2 = \lambda_1, \pm i \lambda_1 \). In the \(\lambda_2 = \lambda_1 \) case, equation \((4.14)\) implies that \(\lambda \) cannot be all real, so that only the \((n_1, n_2, n_3, n_4) = (4, 0, 4, 0)\) case is possible. The \(\lambda_2 = \pm i/\lambda_1 \) case amounts to the permutations of eigenvalues for the \(\lambda_2 = \lambda_1 \) case. Hence, the \((4, 0, 3, 1), (3, 1, 3, 1)\) types have no fixed points and this class of solution corresponds to the SO(4, 4) dS vacua,

\[
\theta = \lambda \mathbb{I}_4 \oplus (-\lambda) \mathbb{I}_4, \quad V = \frac{g^2}{4} (\lambda^2 + \lambda^{-2}), \quad \det \theta = \lambda^8 > 0, \quad \lambda \in \mathbb{R}.
\]

At the vacua, the noncompact gauge symmetry is spontaneously broken to SO(4) × SO(4).

Up to this point, we are left with a single parameter \(\lambda \). Usually we set \(\det \theta = \pm 1 \), giving \(\lambda = 1 \) and \(V = g^2/2 \). Previous studies which did not employ the embedding tensor formalism have imposed this relation, so any particular attention has been paid to this freedom. However, it appears that this remaining freedom implies that we have a one-parameter family of SO(4, 4) deformed theories. This is in sharp contrast with the case (i), for which \(\det \theta = 1 \) is always fulfilled. Now \(\det \theta = \pm 1 \) is not satisfied, hence it cannot be transformed by the SL(8, \(\mathbb{R} \)) action to \(\det \theta = \pm 1 \), implying the deformation of the theory.

Although it is important to show which parameter region corresponds to the equivalent theories, this issue is in general difficult and beyond the scope of the present article.\(^4\) Hence, we will simply specify the allowed range of deformation parameter. However, as far as the stability issue is concerned, the mass spectrum is nevertheless insensitive to the deformation parameter as we will prove in the next subsection.

(iii) \(p_3 = p_4(\neq 0) \). We next discuss the \(p_3 = p_4 \) case, viz, \((n_1, n_2, n_3, n_4) = (8, 0, 0, 0), (7, 1, 0, 0), (5, 3, 0, 0), (6, 0, 1, 1)\) and \((5, 1, 1, 1)\). Inserting \(\lambda_4 = -1/(\lambda_1 \lambda_2 \lambda_3) \) into the first two equations of \((4.11)\), we get two quadratic equations for \(\lambda_3 \),

\[
p_3 \lambda_1 \lambda_2 \lambda_3^2 + \lambda_1 \lambda_2 (p_1 \lambda_1 + p_2 \lambda_2) \lambda_3 - p_3 = 0, \quad p_3 \lambda_1 \lambda_2 \lambda_3^2 - \left(\frac{p_1}{\lambda_1} + \frac{p_2}{\lambda_2} \right) \lambda_3 - p_3 = 0.
\]

Compatibility of these equations translates into a cubic equation for \(\lambda_2 \),

\[
p_2 \lambda_1^2 \lambda_2^3 + p_1 \lambda_1^3 \lambda_2^2 + p_1 \lambda_2 + p_2 \lambda_1 = 0.
\]

\(^4\)Recently it has been conjectured that the different theories may be distinguished according to the eigenvalues of tensor classifier constructed from a quartic invariant of \(E_{7(7)} \), in analogy with the black hole geometry \([4]\).
The solution of the above equation can be most conveniently parametrized as

\[\lambda_1 = \sqrt{- \frac{s(p_2s^2 + p_1)}{p_1s^2 + p_2}}, \quad \lambda_2 = \frac{s}{\lambda_1}, \]

where \(s(\neq 0, \pm \sqrt{-p_2/p_1}, \pm \sqrt{-p_1/p_2}) \) is a real parameter (it leads to the contradiction if \(s \) is complex). In this case, the cosmological constant (4.12) reduces to

\[V_c = -\frac{g^2p_1p_2(p_1 + p_2)(1 + s^2)^3}{16s(p_1s^2 + p_2)(p_2s^2 + p_1)}. \]

(4.19)

We now take a closer look at each vacuum.

(8,0,0,0): The \(\theta \) tensor and the potential are given by

\[\theta = \lambda \mathbb{I}_8, \quad V_c = -\frac{3g^2(1 + \lambda^4)}{4\lambda^2}. \]

(4.20)

\(\lambda \in \mathbb{R} \) is a deformation parameter. If we require \(\text{det} \theta = 1 \), we have \(\lambda = 1 \) as usual. This is the well-known maximally supersymmetric AdS vacua at which all (pseudo) scalars vanish.

(7,1,0,0): The \(\theta \) tensor and the potential are given by

\[\theta = \lambda \mathbb{I}_7 \oplus \frac{s}{\lambda} \mathbb{I}_1, \quad \lambda = \sqrt{s(s^2 - 5)}, \]

\[V = -\frac{5g^2(1 + s^2)^3}{4s(-5 + s^2)(-1 + 5s^2)}, \quad \text{det} \theta = \frac{s^4(-5 + s^2)^3}{(-1 + 5s^2)^3}. \]

(4.21)

\(s \) is a deformation parameter. When \(0 < s < 1/\sqrt{5}, \sqrt{5} < s \), we have \(\text{det} \theta > 0 \), producing AdS critical points of the \(\text{SO}(8) \) gauging. Whereas, the parameter region \(-\sqrt{5} < s < -1/\sqrt{5} (\text{det} \theta < 0) \) provides AdS critical points of the \(\text{SO}(7,1) \) gauging. If we require \(\text{det} \theta = \pm 1 \), the former case gives \(V_c = -25\sqrt{5}g^2/32 \) with \(s = \sqrt{5} \pm 2 \), and the latter case gives \(V_c = -5g^2/8 \) with \(s = -1 \). At these vacua, the gauge symmetries are spontaneously broken to \(\text{SO}(7) \).

(5,3,0,0): The \(\theta \) tensor and the potential are given by

\[\theta = \lambda \mathbb{I}_5 \oplus \frac{s}{\lambda} \mathbb{I}_3, \quad \lambda = \sqrt{s(3 + s^2)}, \]

\[V = -\frac{3g^2(1 + s^2)^3}{4s(3 + s^2)(1 + 3s^2)}, \quad \text{det} \theta = -\frac{s^4(3 + s^2)}{1 + 3s^2} < 0. \]

(4.22)

\(s(< 0) \) is a deformation parameter. This case yields the dS vacua of the \(\text{SO}(5,3) \) gauging with a residual gauge symmetry \(\text{SO}(5) \times \text{SO}(3) \). Assuming \(\text{det} \theta = -1 \), we have \(V_c = 3g^2/8 \) with \(s = -1 \).

(6,0,1,1): We have

\[\theta = \lambda \mathbb{I}_6 \oplus \lambda_+ \mathbb{I}_1 \oplus \lambda_- \mathbb{I}_1, \quad \lambda = \sqrt{s(s^2 - 2)}, \quad \lambda_\pm = \pm \sigma \frac{s(\sqrt{2s^2 + 3} + \sqrt{s})}{\sqrt{s(s^2 - 1)(s^2 - 2)}}, \]

\[V = -\frac{g^2(1 + s^2)^3}{4s(2s^2 - 1)(s^2 - 2)}, \quad \text{det} \theta = -\frac{s^2(-2 + s^2)^3}{(-1 + 2s^2)^3}, \]

(4.23)

where \(s \) is a deformation parameter, \(\sigma = -1 \) for \(0 < s < 1/\sqrt{2} \) and \(\sigma = 1 \) otherwise. For \(-\sqrt{2} < s < -(1/\sqrt{2}) \), we have \(\text{det} \theta > 0 \), whereby AdS vacua of the \(\text{SO}(8) \) gauging are realized. For \(s > \sqrt{2} \)
and $0 < s < 1/\sqrt{3}$, we have $\det \theta < 0$, corresponding to the AdS vacua of the SO(7, 1) gauging. In both cases the remaining gauge symmetry is SO(6). If we suppose $\det \theta = \pm 1$, $\det \theta = 1$ gives $V_c = -2g^2$ at $s = -1$, while $\det \theta = -1$ gives $V_c \sim -0.6896g^2$ at $s = [(7 + 3\sqrt{3} \pm \sqrt{72 + 42\sqrt{3}})/2]^{1/2}$. The last vacua seem new ones in the undeformed SO(7, 1) gauged supergravity.

(5,1,1,1): We have

$$\theta = \lambda \delta_5 + \frac{s}{\lambda} \lambda_+ \delta_1 + \lambda_- \delta_1,$$

$$V = -\frac{3g^2(1 + s^2)^3}{8s(3s^2 - 1)(s^2 - 3)}, \quad \det \theta = -\frac{s^2(-3 + s^2)^2}{(1 - 3s^2)^2} < 0. \quad (4.24)$$

$s(\neq 0, \pm 1/\sqrt{3}, \pm \sqrt{3})$ is a deformation parameter, $\sigma = -1$ for $0 < s < 1/\sqrt{3}$ and $\sigma = 1$ otherwise. This gives AdS critical points of the SO(7, 1) gauging. When $\det \theta = -1$ we have $V_c = -3g^2/4$ at $s = -1, 2 \pm \sqrt{3}$. However it turns out that these cases simply relabel the eigenvalues hence give the equivalent vacua.

(II) $\theta \xi = 0$. We shall next discuss the $\theta \xi = 0$ case, in which θ and ξ can be taken to be

$$\theta = \hat{\theta} \oplus O_{n_3 + n_4}, \quad \xi = O_{n_1 + n_2} \oplus \hat{\xi}, \quad \sum_i n_i = 8, \quad (4.25)$$

where $\hat{\theta}$ and $\hat{\xi}$ are $(n_1 + n_2) \times (n_1 + n_2)$ and $(n_3 + n_4) \times (n_3 + n_4)$ matrices, respectively. These tensors give decoupled quadratic equations,

$$2\hat{\theta}^2 - \hat{\theta} \text{Tr}(\hat{\theta}) = 2a I_{n_1 + n_2}, \quad -2\hat{\xi}^2 + \hat{\xi} \text{Tr}(\hat{\xi}) = 2a I_{n_3 + n_4}, \quad (4.26)$$

where a is a constant. So they can be simultaneously taken to be diagonal forms,

$$\theta = \begin{pmatrix} \lambda_1 I_{n_1} & & \\ & \lambda_2 I_{n_2} & \\ & & \end{pmatrix}_{O_{n_3 + n_4}}, \quad \xi = \begin{pmatrix} O_{n_1 + n_2} & & \\ & \kappa_3 I_{n_3} & \\ & & \kappa_4 I_{n_4} \end{pmatrix}. \quad (4.27)$$

The critical point condition (4.28) reduces to

$$\sum_{i=1}^2 (n_i - 2)\lambda_i = 0, \quad \sum_{i=3}^4 (n_i - 2)\kappa_i = 0, \quad \lambda_1 \lambda_2 = -\kappa_3 \kappa_4. \quad (4.28)$$

Using this condition, the potential is now given by

$$V_c = \frac{g^2}{32} \left[\sum_{i=1}^2 (n_i - 2)\lambda_i^2 + \sum_{i=3}^4 (n_i - 2)\kappa_i^2 \right]. \quad (4.29)$$

Since (4.28) is invariant under $\theta \rightarrow e^{i\alpha} \theta$, $\xi \rightarrow e^{i\alpha} \xi$ with $a \rightarrow e^{2i\alpha}a \ (\alpha \in \mathbb{R})$, only one of the eigenvalues can take any value we wish, since θ and ξ cannot be rescaled independently. Note also the invariance under $\theta \rightarrow -\theta$ and $\xi \rightarrow -\xi$, and $\theta \leftrightarrow \xi$. We will below examine the vacuum structure and the mass spectrum depending on if $n_i - 2$ is zero or not.

(i) $n_4 = 2$. In this case we can infer that the potential vanishes and the Minkowski vacua are realized. Taking the rescaling freedom into account, two kinds of gaugings are possible.
(a) One is the $\text{SO}(4) \times \text{SO}(2, 2) \rtimes T^{16}$ gauging, for which
\[
\theta = \begin{pmatrix}
 s \mathbb{I}_2 \\
 (1/s) \mathbb{I}_2 \\
 \mathbb{O}_4
\end{pmatrix}, \quad
\xi = \begin{pmatrix}
 \mathbb{O}_4 \\
 t \mathbb{I}_2 \\
 -(1/t) \mathbb{I}_2
\end{pmatrix},
\]
where s and t are real parameters. At the vacua the gauge symmetry is broken to $\text{SO}(2) \times \text{SO}(2) \times \text{SO}(2) \times \text{SO}(2)$.

(b) The other is the $\text{SO}(2) \times \text{SO}(2) \rtimes T^{20}$ gauging, for which
\[
\theta = \begin{pmatrix}
 \mathbb{I}_2 \\
 \mathbb{O}_6
\end{pmatrix}, \quad
\xi = \begin{pmatrix}
 \mathbb{O}_6 \\
 s \mathbb{I}_2
\end{pmatrix},
\]
where s is a real parameter. The residual gauge symmetry is $\text{SO}(2) \times \text{SO}(2)$.

(ii) $n_i \neq 2$. Assuming $n_i \neq 2$, we can obtain
\[
\lambda_2 = -\frac{n_1 - 2}{n_2 - 2} \lambda_1, \quad \kappa_3 = \sqrt{-\frac{(n_1 - 2)(n_4 - 2)}{(n_2 - 2)(n_3 - 2)}} \lambda_1, \quad \kappa_4 = -\frac{n_3 - 2}{n_4 - 2} \kappa_3.
\]
The possible values of $n_i (\neq 2)$ and the corresponding gaugings are given by
\begin{align*}
(7, 0, 1, 0) & : \text{SO}(7) \rtimes T^7, \\
(6, 1, 0, 1) & : \text{SO}(7) \rtimes T^7, \\
(6, 0, 1, 1) & : \text{SO}(6) \times \text{SO}(1, 1) \rtimes T^{12}, \\
(5, 1, 1, 1) & : \text{SO}(6) \times \text{SO}(1, 1) \times \text{T}^{12}.
\end{align*}
Otherwise, eigenvalues will be imaginary. The potential now reads
\[
V_c = \frac{g^2(n_1 - 2)}{16(n_2 - 2)}(n_1 + n_2 - 4)\lambda_1^2.
\]
One can easily verify that all vacua falling into this family correspond to AdS. Eliminating λ_1 by the rescaling freedom, no tunable parameters are left and we arrive at the following exhaustive list.

(7,0,1,0): We have $\text{SO}(7) \rtimes T^7$ gauging with
\[
\theta = \mathbb{I}_7 \oplus 0, \quad \xi = \mathbb{O}_7 \oplus (\sqrt{5}), \quad V_c = -\frac{15}{32} g^2.
\]
The gauge symmetry is broken to $\text{SO}(7)$.

(6,1,0,1): We have $\text{SO}(7) \rtimes T^7$ gauging with
\[
\theta = \mathbb{I}_6 \oplus 4 \oplus 0, \quad \xi = \mathbb{O}_7 \oplus (\sqrt{2}), \quad V_c = -\frac{3}{4} g^2.
\]
The gauge symmetry is broken to $\text{SO}(6)$.

(6,0,1,1): We have $\text{SO}(6) \times \text{SO}(1, 1) \rtimes T^{12}$ gauging with
\[
\theta = \mathbb{I}_6 \oplus \mathbb{O}_2, \quad \xi = \mathbb{O}_6 \oplus (\sqrt{2}) \oplus (-\sqrt{2}), \quad V_c = -\frac{1}{4} g^2.
\]
The gauge symmetry is broken to $\text{SO}(6)$.

(5,1,1,1): We have $\text{SO}(6) \times \text{SO}(1, 1) \rtimes T^{12}$ gauging with
\[
\theta = \mathbb{I}_5 \oplus (3) \oplus \mathbb{O}_2, \quad \xi = \mathbb{O}_6 \oplus (\sqrt{3}) \oplus (-\sqrt{3}), \quad V_c = -\frac{3}{8} g^2.
\]
The gauge symmetry is broken to $\text{SO}(5)$.
4.2 Mass spectrum

Inserting (3.9) and (4.2) into (2.21), we can show after a rather lengthy but straightforward computation that the mass spectra for S and U are the simple sum of θ and ξ terms,

\[
M_{(1)}^2 = M_{(3)}^2(\theta) + M_{(1)}^2(\xi), \quad M_{(2)}^2 = M_{(2)}^2(\theta) + M_{(2)}^2(\xi),
\]

where $M_{(i)}(\theta)$ is given by (3.13) and (3.14). When θ has a structure of n_1 and n_2 blocks only (i.e., $n_3 = n_4 = 0$), it turns out that equations (3.24) and (3.34) continue to hold in the dyonic case because $M_{(2)}^2$ and V_c enjoy the property that θ and ξ terms are decoupled, so that they sum up to give the same contributions.

We give general formulas applying to all dyonic cases. Following the same argument in the preceding section, we decompose θ and ξ into $n_1 + n_2 + n_3 + n_4$ blocks,

\[
\theta = \begin{pmatrix}
\lambda_1 \mathbb{I}_{n_1} & \\
\lambda_2 \mathbb{I}_{n_3} & \lambda_3 \mathbb{I}_{n_3} & \\
\lambda_4 \mathbb{I}_{n_4} &
\end{pmatrix}, \quad \xi = \begin{pmatrix}
\kappa_1 \mathbb{I}_{n_1} & \\
\kappa_2 \mathbb{I}_{n_2} & \kappa_3 \mathbb{I}_{n_3} & \\
\kappa_4 \mathbb{I}_{n_4} &
\end{pmatrix}.
\]

and correspondingly

\[
S = \begin{pmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
A_{21} & A_{22} & A_{23} & A_{24} \\
A_{31} & A_{32} & A_{33} & A_{34} \\
A_{41} & A_{42} & A_{43} & A_{44}
\end{pmatrix},
\]

where A_{ij} is an $n_i \times n_j$ matrix satisfying

\[
A_{ij} = T A_{ji}, \quad \sum_i n_i A_{ii} = 0.
\]

Denoting $A_{ii} = \hat{A}_i + (1/n_i)\text{Tr}(A_{ii})$, the mass matrix for S is given by

\[
M_{(1)}^2 = \sum_{i,j} \mu_{ij}^2 \text{Tr}(A_{ii})\text{Tr}(A_{jj}) + \sum_i m_i^2 \text{Tr}(\hat{A}_i^2) + 2 \sum_{i<j} m_{ij}^2 \text{Tr}(T A_{ij} A_{ij}),
\]

with

\[
\mu_{ij}^2 = \frac{g^2}{8} \left\{ \frac{1}{n_i} \left[4(\lambda_i^2 + \kappa_i^2) - \lambda_i \sum_k n_k \lambda_k - \kappa_i \sum_k n_k \kappa_k \right] \delta_{ij} - (\lambda_i \lambda_j + \kappa_i \kappa_j) \right\},
\]

\[
m_i^2 = \frac{g^2}{8} \left[4(\lambda_i^2 + \kappa_i^2) - \lambda_i \sum_j n_j \lambda_j - \kappa_i \sum_j n_j \kappa_j \right],
\]

\[
m_{ij}^2 = \frac{g^2}{8} \left[-\frac{1}{2}(\lambda_i + \lambda_j) \sum_k n_k \lambda_k + (\lambda_i + \lambda_j)^2 - \frac{1}{2}(\kappa_i + \kappa_j) \sum_k n_k \kappa_k + (\kappa_i + \kappa_j)^2 \right] = 0.
\]

In the last step, we have used the critical point conditions (4.11) and (4.28). Hence A_{ij} ($i < j$) field is always massless. Repeating the parallel argument in section 3.3, we can find that this direction corresponds to the Nambu-Goldstone bosons.

In order to achieve the canonical normalization of S, we have to eliminate $\text{Tr}(A_{44})$ by the condition $\text{Tr}(S) = 0$. After some simple algebra, we obtain the diagonal form,

\[
\frac{1}{2}(\partial \text{Tr}(S))^2 = \frac{1}{2} \left[4 \sum_{i=1}^4 (\partial \text{Tr}(\hat{A}_i))^2 + 2 \sum_{i<j} \text{Tr}(\partial A_{ij} \partial^T A_{ij}) + 3 \sum_{i=1}^3 (\partial a_i)^2 \right],
\]

\[
\frac{1}{2}(\partial \text{Tr}(S))^2 = \frac{1}{2} \left[4 \sum_{i=1}^4 (\partial \text{Tr}(\hat{A}_i))^2 + 2 \sum_{i<j} \text{Tr}(\partial A_{ij} \partial^T A_{ij}) + 3 \sum_{i=1}^3 (\partial a_i)^2 \right].
\]
where \(a_i \)'s are canonically normalized scalars and defined by

\[
\begin{align*}
a_1 &= \sqrt{n_1 + n_2 + n_3 + n_4} \text{Tr}(A_{11}), \\
a_2 &= \sqrt{n_2 + n_3 + n_4} \left[\text{Tr}(A_{22}) + \frac{n_2}{n_2 + n_3 + n_4} \text{Tr}(A_{11}) \right], \\
a_3 &= \sqrt{\frac{n_3 + n_4}{n_3 n_4}} \left(\text{Tr}(A_{33}) + \frac{n_3}{n_3 + n_4} \left(\text{Tr}(A_{11}) + \text{Tr}(A_{22}) \right) \right).
\end{align*}
\]

(4.46)

Note that \(a_3 \) should be absent when \(n_4 = 0 \). Since the mass term for \(\text{Tr}(\hat{A}_n^2) \) and \(a_i \) do not have illuminating expressions in general if we eliminate \(\text{Tr}(A_{44}) \), we examine these terms for each case. As it turns out, however, we see that the above choice (4.46) always leads to the diagonal mass matrix for the trace part.

Next, we shall determine the eigenvalue of \(U \). To this end, we classify the basis of self-dual 4-form \(U \) in terms of the degeneracy of eigenvalues \((\lambda_i, \kappa_i) \). Let us define

\[
\vec{\ell} := (\ell_1, \ldots, \ell_m), \quad \ell_i \leq n_i, \quad \sum_i \ell_i = 4 \quad m \leq 4,
\]

(4.47)

where \(\ell_i \)'s are nonnegative integers. The multiplicities belonging to the same \(\vec{\ell} \) are given by

\[
\begin{align*}
n_i C_{\ell_1} \times \cdots \times n_m C_{\ell_m} : & \quad \ell_1 > n_1/2 \quad \text{or} \quad \ell_1 = n_1/2, \ell_2 > n_2/2\quad \text{or} \ldots, \\
& \quad \ell_1 = n_1/2, \ell_2 = n_2/2, \ldots, \ell_m > n_m/2. \\
\frac{1}{2} n_i C_{n_1/2} \times \cdots \times n_m C_{n_m/2} : & \quad \ell_i = n_i/2 \quad (i = 1, \ldots, m).
\end{align*}
\]

(4.48)

We can easily verify

\[
(1 + *) (\theta^r_{[a} \theta^s_{b]} + \xi^r_{[a} \xi^s_{b]} U_{cd}] rs) = 2 \mu_\vec{e} U_{abcd},
\]

(4.49)

where

\[
\mu_\vec{e} = \frac{1}{24} \left[\left(\sum_i \ell_i \lambda_i \right)^2 + \left(\sum_i (n_i - \ell_i) \lambda_i \right)^2 + \left(\sum_i \ell_i \kappa_i \right)^2 + \left(\sum_i (n_i - \ell_i) \kappa_i \right)^2 - \sum_i n_i (\lambda_i^2 + \kappa_i^2) \right].
\]

(4.50)

Hence we obtain the mass eigenvalues

\[
M_{\vec{e}}^2 = \frac{1}{6} m_{[\vec{e}]U \cdot U,}
\]

(4.51)

with

\[
m_{[\vec{e}]}^2 = \frac{g^2}{32} \left[2 \sum_i n_i (\lambda_i^2 + \kappa_i^2) - \left(\sum_i \ell_i \lambda_i \right)^2 - \left(\sum_i (n_i - \ell_i) \lambda_i \right)^2 \right. \\
- \left. \left(\sum_i \ell_i \kappa_i \right)^2 - \left(\sum_i (n_i - \ell_i) \kappa_i \right)^2 \right],
\]

(4.52)

which is specified by nonnegative integers \(\ell_i \) satisfying

\[
0 \leq \ell_i \leq n_i, \quad \sum_i \ell_i = 4.
\]

(4.53)
Since the kinetic term for scalars is given by (8.19), m^2_{ℓ} denotes the canonical mass eigenvalues.

We are now armed with necessary tools to demonstrate mass spectra in the dyonic case.

(I) $\theta \propto \xi^{-1}$. Let us begin with the $\theta \propto \xi^{-1}$ case.

(i) $n_1 = 2$. This case corresponds to the Minkowski vacua of SO(6, 2) gauging, which spontaneously breaks down to SO(2) \times SO(2) \times SO(2) \times SO(2). Taking the θ tensor as \eqref{1.13}, equations \eqref{4.43} and \eqref{4.44} yield

$$m^2_{(1, 1, 1)(x \times 3)} = 0, \quad \begin{cases} m^2_{(x \times 24)} = 0 \quad : (2, 2, 1, 1) + \cdots, \\ 4st(r - s)(r - t)(1 + r^2 st), \quad : (2, 1, 1, 1) \\ 4rt(s - r)(s - t)(1 + rs^2 t), \quad : (1, 2, 1, 1) \\ 4s(r - t)(s - t)(1 + rst^2), \quad : (1, 1, 2, 1). \end{cases} \quad \text{(4.54)}$$

From \eqref{4.52}, the mass eigenvalues for pseudoscalars are given by

$$m^2_{(1, 1, 1, 1)(x \times 3)} = 0, \quad \begin{cases} t^2(r - s)^2(1 + r^2 s^2), \quad : (2, 2, 0, 0) + [2, 0, 2, 0] + [2, 0, 0, 2], \\ s^2(r - t)^2(1 + r^2 t^2), \quad : (2, 1, 2, 1) = [1, 2, 1, 0]_{\times 4} \\ r^2(s - t)^2(1 + s^2 t^2), \quad : (1, 2, 2, 1) = [2, 1, 0, 1]_{\times 4} \\ (1 + s^2 t^2)(1 + st^2), \quad : (2, 1, 1, 2) = [1, 2, 0, 1]_{\times 4} \\ (1 + s^2 r^2)(1 + st^2), \quad : (1, 1, 2, 2) = [2, 0, 1, 1]_{\times 4} \\ (1 + r^2 t^2)(1 + st^2), \quad : (1, 2, 1, 2) = [2, 1, 0, 1]_{\times 4} \\ (1 + s^2 t^2)(1 + r^2 s^2)(1 + t^2 r^2), \quad : (2, 2, 2, 2)^+ = [1, 1, 1, 1]_{\times 8}. \end{cases}$$

It is emphasized that mass eigenvalues for the pseudoscalars are always nonnegative, whereas those for scalars are not. This implies that vacua of generic SO(6, 2) gauging are unstable \cite{22}. In the special case where (r, s, t) are pairwise equal, all mass eigenvalues become nonnegative, corresponding to the stable Minkowski vacua found in \cite{20}.

(ii) $p_3 = p_4(\neq 0)$. This case corresponds to the SO(4, 4) dS vacua. From \eqref{5.23} and \eqref{3.32}, we obtain

$$m^2_{0\ell (1, 1)} = -2V_c, \quad m^2_{(1, 9)} = m^2_{(9, 1)} = 2V_c, \quad m^2_{(1, 1, 1, 1)(x \times 3)} = 0, \quad m^2_{(6, 6)^+} = m^2_{(1, 9)(x \times 18)} = 2V_c, \quad m^2_{(1, 1, 1)(x \times 7)} = m^2_{(4, 4)(x \times 16)} = m^2_{(4, 4)(x \times 16)} = 2V_c, \quad m^2_{(1, 1, 1)(x \times 2)} = m^2_{(1, 1, 1)(x \times 2)} = -2V_c. \quad \text{(4.56)}$$

The tachyonic modes emerge from the SO(4) \times SO(4) invariant sector. These spectra agree with the electric case.

(iii) $p_3 = -p_4(\neq 0)$. In this case the cosmological constant is nonvanishing. Using the expression \eqref{4.19}, the mass term \eqref{4.43} for S considerably simplifies to

$$\sum_{i, j} \mu^2_{ij} \text{Tr}(A_{ii})\text{Tr}(A_{jj}) = -2V_c \sum_{i=1}^3 a_i^2, \quad m^2_1 = \frac{4}{n_1 - 2} V_c. \quad \text{(4.57)}$$

where canonical scalars a_i were defined in \eqref{4.40}. As we already explained, A_{ij} ($i < j$) do not contribute to the mass term. In the case of dS vacua ($V_c > 0$), the scalars a_i are always tachyonic. The above equation exhibits that the mass spectrum is determined only by n_1, which controls the residual gauge symmetry. It also illustrates that the mass spectrum is completely independent of
the deformation parameter s when normalized by the cosmological constant. In other words the “slow-roll matrix” $\eta = \partial_\rho \partial_\sigma V / V$ does not depend on s, albeit the change of the value of potential. We can also find that the mass spectrum for U shares this property.

(8,0,0,0): This case corresponds to the maximally supersymmetric AdS vacua of the SO(8) gauging. The θ tensor and the potential are given by A_{12}. The formulas (3.23) and (3.32) yield
\begin{align}
m_{1(35)}^2 &= -\frac{2}{3}|V_c|, & m_{[\ell=4](35)}^2 &= -\frac{2}{3}|V_c|.
\end{align}
Since all of these mass eigenvalues are above the Breitenlohner-Freedman bound [29], the vacuum is stable as expected from supersymmetry.

(7,1,0,0): This gives AdS vacua of SO(8) and SO(7, 1) gaugings with an SO(7) residual gauge symmetry. The θ tensor and the potential are given by A_{12}. From (3.23) and (3.32), the mass spectrum now reads
\begin{align}
m_{0(1)}^2 &= 2|V_c|, & m_{1(27)}^2 &= -\frac{4}{5}|V_c|, & m_{[\ell=4](35)}^2 &= -\frac{2}{5}|V_c|.
\end{align}m_{s(7)}^2 = 0 correspond to the Nambu-Goldstone fields.

(5,3,0,0): This case corresponds to the SO(5, 3) gauging dS vacua with a residual gauge symmetry SO(5) × SO(3). The θ tensor and the potential are given by A_{12}. Equations (3.23) and (3.32) yield
\begin{align}
m_{0(1,1)}^2 &= -2V_c, & m_{1(14,1)}^2 &= \frac{4}{3}V_c, & m_{2(1,5)}^2 &= 4V_c,
n_{[\ell=3](x30)}^2 &= m_{2(10,3)}^2 = 2V_c, & m_{[\ell=4](x5)}^2 &= m_{(5,1)}^2 = -\frac{2}{3}V_c.
\end{align}m_{s(5,3)}^2 = 0 correspond to the Nambu-Goldstone fields.

Let us compare this with the result in [11, 12], where the SO(5) invariant scalars were analyzed. The corresponding potential was shown to be
\begin{equation}
V = \frac{g^2}{8} \left(\frac{u^3v^3}{w^3} + 10uvw - 2uvw^3 + \text{two cyclic perm.} - \frac{15}{uvw} \right),
\end{equation}
where u, v and w are SO(5) invariant (unnormalized) scalars. The dS vacuum $V_c = 2 \times 3^{1/4}g^2$ exists at $u = v = w = 3^{-1/4}$ (observe that the normalization of g is different from the present paper). From the expression of scalar kinetic term in reference [11, 12], one can find the canonically normalized scalars Φ_i ($i = 1, 2, 3$) as
\begin{align}
\Phi_1 &= \sqrt{\frac{5}{6}} \ln(uw), & \Phi_2 &= \frac{1}{\sqrt{6}} \ln \left(\frac{v^2}{uw} \right), & \Phi_3 &= \frac{1}{\sqrt{2}} \ln \left(\frac{w}{u} \right).
\end{align}
Then the mass eigenvalues are given by
\begin{align}
m_{\Phi_1}^2 &= -2V_c, & m_{\Phi_2}^2 = m_{\Phi_3}^2 &= 4V_c.
\end{align}
These spectra coincide with the result obtained above, where SO(5) invariant scalars descend from $\text{Tr}(A_{11})$ and $\text{Tr}(A_2^\ast)$.

(6,0,1,1): This case gives the AdS vacua of SO(8) and SO(7, 1) gaugings with the residual gauge symmetry SO(6). The θ tensor and the potential are given by A_{12}. Now the formula (4.57) can be applied to give
\begin{align}
m_{0(1)\times2}^2 &= 2|V_c|, & m_{1(20)}^2 &= -|V_c|, & m_{s(6)\times2}^2 &= m_{s(1)}^2 = 0.
\end{align}
For the U field, equation (4.52) yields
\[m_{[1,0,0]}^2(15) = 0, \quad m_{[3,1,0]}^2(20) = -\frac{1}{4}|V_c|. \] (4.65)

(5,1,1,1): We have the AdS critical point of SO(7,1) gauging with the residual gauge symmetry SO(5). The θ tensor and the potential are given by (4.23). Using (4.57) we obtain
\[m_{[0]}^2(1(\times 3)) = 2|V_c|, \quad m_{[1]}^2(14) = -\frac{4}{3}|V_c|, \quad m_{[2]}^2(5(\times 3)) = m_{[1]}^2(1(\times 3)) = 0. \] (4.66)

From (4.52), the mass eigenvalues for U are given by
\[m_{[3,0,1,0]}^2(10) = m_{[3,0,1,0]}^2(10) = m_{[3,0,1,0]}^2(10) = 0, \quad m_{[4,0,0,0]}^2(5) = \frac{2}{3}|V_c|. \] (4.67)

(II) $\theta \xi = 0$. We next turn to study the $\theta \xi = 0$ case.

(i-a) For the $SO(4) \times SO(2,2) \times T^{10}$ gauging with a residual symmetry $SO(4) \times SO(2) \times SO(2)$, θ and ξ are given by (4.30) and the Minkowski vacua are realized. The mass spectra are given by
\[m_{[0]}^2(11,11)(\times 3) = 0, \quad m_{[s]}^2(\times 24) = 0 : (2,2,1,1) + \cdots, \]
\[m_{[\ell]}^2 = \frac{g^2}{16s^2t^2} \times \left\{ \begin{array}{c} -4s^2t^2(1-s^2), : (2,1,1,1) \\ 4t^2(1-s^2), : (1,1,2,1) \\ 4s^2t^2(1+t^2), : (1,2,1,1) \\ 4s^2t^2, : (1,1,1,2) \end{array} \right\}. \] (4.68)

For the pseudoscalars, we have
\[m_{[1]}^2(11,11,1,1)(\times 3) = 0 : [2,2,0,0] + [2,0,2,0] + [2,0,0,2], \]
\[m_{[\ell]}^2 = \frac{g^2}{16s^2t^2} \times \left\{ \begin{array}{c} t^2(1+s^2t^2), : (1,2,1,1) = [2,1,1,0]_{(\times 4)} \\ (s^2 + t^2), : (1,2,1,2) = [2,1,0,1]_{(\times 4)} \\ s^2(1+s^2t^2), : (2,1,1,2) = [1,2,0,1]_{(\times 4)} \\ s^2t^2(s^2 + t^2), : (2,1,2,1) = [1,2,1,0]_{(\times 4)} \\ t^2(1-s^2)^2, : (2,2,1,1) = [1,1,2,0]_{(\times 4)} \\ s^2t^2(1+t^2), : (1,1,2,2) = [2,0,1,1]_{(\times 4)} \\ s^2t^2, : (1,1,1,2) \end{array} \right\}. \] (4.69)

The pseudoscalars are all stable, whereas the scalars are unstable unless $s = 1$.

(i-b) For the $SO(2) \times SO(2) \times T^{20}$ gauging with a residual symmetry $SO(2) \times SO(2)$, θ and ξ are given by (4.31) and the Minkowski vacua are realized. The mass spectra are
\[m_{[0]}^2(11)(\times 2) = 0, \quad m_{[\ell]}^2 = \frac{1}{4}g^2 \times \left\{ \begin{array}{c} 1 : (2,1) \\ s^2 : (1,2) \\ 0 : (1,1)_{(\times 9)} \end{array} \right\}, \]
\[m_{[\ell]}^2(\times 20) = 0 : (2,1)_{(\times 4)} + (1,2)_{(\times 4)} + (2,2), \] (4.70)

and
\[m_{[\ell]}^2(\times 7) = 0 : [2,2,0] + [2,0,2]_{(\times 6)}, \]
\[m_{[\ell]}^2 = \frac{1}{16}g^2 \times \left\{ \begin{array}{c} 1, : (2,1)_{(\times 4)} = [1,2,1]_{(\times 8)} \\ s^2, : (1,2)_{(\times 4)} = [2,1,0]_{(\times 8)} \\ (1+s^2), : (2,2)_{(\times 6)}^+ = [1,1,2]_{(\times 12)} \end{array} \right\}. \] (4.71)
Hence these vacua are stable.

(ii) $n_i \neq 2$. The AdS vacua are realized in this family. Using (4.46), (4.28) and (4.29) with $\lambda_3 = \lambda_4 = \kappa_1 = \kappa_2 = 0$, the mass spectrum of S is given by

$$M^2_{(1)} = |V_c| \left[-\sum_{i=1}^{4} \frac{4}{n_i} - \frac{2}{5} \text{Tr}(A_i^2) + 2 \sum_{i=1}^{3} a_i^2 \right].$$

It is gratifying that this expression accords precisely with (4.57), for which $\xi \propto \theta^{-1}$. A_{ij} are always massless irrespective of the gaugings. The above equation also confirms that the mass spectrum for S is only dependent on n_i’s, i.e., the residual gauge symmetry only. The same is true for the U field.

$(7,0,1,0)$: This corresponds to the $\text{SO}(7) \ltimes T^7$ gauging with an $\text{SO}(7)$ remaining symmetry, where θ and ξ are given by (4.35). We obtain

$$m^2_{0(1)} = 2|V_c|, \quad m^2_{(27)} = -\frac{4}{5}|V_c|, \quad m^2_{(7)} = 0,$$

and

$$m^2_{(4,0)(35)} = -\frac{2}{5}|V_c|.$$ \hspace{1cm} (4.74)

$(6,1,0,1)$: We have the $\text{SO}(7) \ltimes T^7$ gauging with an $\text{SO}(6)$ remaining symmetry, where θ and ξ are given by (4.36). We obtain

$$m^2_{0(1)(x2)} = 2|V_c|, \quad m^2_{(20)} = -|V_c|, \quad m^2_{(6)(x2)} = m^2_{(1)} = 0,$$

and

$$m^2_{(3,1,0)(20)} = -\frac{1}{4}|V_c|, \quad m^2_{(4,0,0)(15)} = 0.$$ \hspace{1cm} (4.76)

$(6,0,1,1)$: We have the $\text{SO}(6) \times \text{SO}(1,1) \ltimes T^{12}$ gauging with an $\text{SO}(6)$ remaining symmetry, where θ and ξ are given by (4.37). We obtain

$$m^2_{0(1)(x2)} = 2|V_c|, \quad m^2_{(20)} = -|V_c|, \quad m^2_{(6)(x2)} = m^2_{(1)} = 0,$$

for scalars and

$$m^2_{(3,1,0)(20)} = -\frac{1}{4}|V_c|, \quad m^2_{(4,0,0)(15)} = 0.$$ \hspace{1cm} (4.78)

$(5,1,1,1)$: We have the $\text{SO}(6) \times \text{SO}(1,1) \ltimes T^{12}$ gauging with an $\text{SO}(6)$ remaining symmetry, where θ and ξ are given by (4.38). We obtain

$$m^2_{0(1)(x3)} = 2|V_c|, \quad m^2_{(14)} = -\frac{4}{3}|V_c|, \quad m^2_{(5)(x3)} = m^2_{(1)(x3)} = 0,$$

and

$$m^2_{(3,1,0,0)(10)} = m^2_{(3,0,1,0)(10)} = m^2_{(3,0,0,1)(10)} = m^2_{(4,0,0,0)(5)} = 0, \quad m^2_{(4,0,0,0)(5)} = \frac{2}{3}|V_c|.$$ \hspace{1cm} (4.80)

We enumerate the result obtained in this section in table 4.2. Except for the maximally supersymmetric AdS vacua, supersymmetries are broken completely. One can inspect that at the nonsupersymmetric AdS vacua, the S field does not respect the Breitenlohner-Freedman bound, implying the linear instability of these vacua. For the Minkowski vacua, the mass spectrum for S is not necessarily positive, implying the instability.
Table 2: Mass spectrum for dyonic gaugings. Except for the Minkowski vacua, mass eigenvalues are normalized by the absolute value of cosmological constant. Supersymmetries are completely broken.

5. Concluding remarks

We have studied the critical points and their mass spectra in maximal gauged supergravity. Although the maximal supergravity is not entitled to a unified framework for gauge interactions, scanning vacua in this theory certainly serves as a foundation for the realistic construction of string vacua, due to the restrictive property of maximal supergravity. In particular, the result of this vacuum search can have significant implications to the construction of inflationary universe models on the base of string/M theory, because the maximal gauged supergravity may describe the gravity sector very well, including non-perturbative effects in the 10/11-dimensional framework. In addition it is also useful for the phenomenological applications to the condensed matter physics.

Utilizing the fact that the scalar fields parametrize the homogeneous space, we can analyze the 70 scalar mass spectrum at the origin of scalar space as argued in [20, 21]. Specializing to the cases in which the gauge group is embedded into the standard SL(8, R) subgroup of E_{7(7)}, we were able to enumerate all the possible vacua in this class corresponding to critical points that can be mapped to the origin by a transformation in the standard SL(8, R) group. We also developed a new formulation which allows us to obtain the analytic expression of mass spectra in terms of eigenvalues of the embedding tensor. We established an interesting structure about the moduli space of vacua: when the cosmological constant is nonvanishing, the mass spectrum is only sensitive to the residual gauge symmetry at the vacua. Namely, the mass spectra for the SL(8, R)-type gaugings have to coincide among the different theories as long as their residual gauge symmetries are identical. This resolved the issue which remained open in [20].

In some cases of dyonic gaugings, we are left with a deformation parameter s. It turns out that the mass spectrum is nevertheless insensitive to the parameter s in units of the cosmological constant. This means that SO(4, 4) and SO(5, 3) dS maxima do not provide sufficient e-foldings in the standard potential-driven inflation scenario even in the deformed theory, since the slow-roll parameter η is of order unity. We can also verify that the fraction of residual supersymmetries is not dependent on the deformation parameter, i.e., all vacua except the maximally supersymmetric AdS totally break supersymmetries.

We have also shown that the generic Minkowski vacua found in this paper do not have stable
mass spectra unless the remaining continuous parameters are finely tuned. This is consistent with the result in [23].

The obvious next step is to explore the vacuum classifications for gaugings contained in other subgroup of $E_{7(7)}$, such as $E_{6(6)}$ and $\text{SU}^*(8)$. We believe that the techniques developed in this paper could be used in other frames. It is interesting to see whether the characteristic features exposed here are universal, i.e., whether the mass spectrum is insensitive to the deformation parameter and only dependent on the residual gauge symmetry.

Another possible future work is to work out inflationary models in the maximal theory. As we have demonstrated systematically, gaugings contained in the $\text{SL}(8,\mathbb{R})$ frame fail to have stable dS vacua and the slow-roll condition is never satisfied. Even though a simple hill-top type inflation does not work, there remains a possibility for a realization of sufficient inflation around these dS saddle points with the aid of other fields. We have 35 scalars and 35 pseudoscalars, which may be able to realize quasi-dS phase if flux is turned on appropriately. We will report this issue elsewhere.

Acknowledgements

We thank all participants of the workshop ExDiP2012 “Superstring Cosmophysics,” in particular Gianguido Dall’Agata for valuable discussions. This work is supported in part by the MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 21111006 and the JSPS Grant-in-Aid for Scientific Research (A) (22244030).

References

[1] G. Dall’Agata, G. Inverso and M. Trigiante, Phys. Rev. Lett. 109, 201301 (2012) [arXiv:1209.0760 [hep-th]].
[2] E. Cremmer and B. Julia, Nucl. Phys. B 159, 141 (1979).
[3] B. de Wit and H. Nicolai, Phys. Lett. B 108, 285 (1982); Nucl. Phys. B 208, 323 (1982).
[4] B. de Wit and H. Nicolai, Nucl. Phys. B 281, 211 (1987).
[5] C. M. Hull, Phys. Rev. D 30, 760 (1984); Phys. Lett. B 142, 39 (1984); Phys. Lett. B 148, 297 (1984); Physica 15D, 230 (1985).
[6] F. Cordaro, P. Fre, L. Gualtieri, P. Termonia and M. Trigiante, Nucl. Phys. B 532, 245 (1998) [hep-th/9804056].
[7] C. M. Hull, Class. Quant. Grav. 20, 5407 (2003) [hep-th/0204156].
[8] N. P. Warner, Phys. Lett. B 128, 169 (1983); Nucl. Phys. B 231, 250 (1984).
[9] C. M. Hull and N. P. Warner, Nucl. Phys. B 253, 675 (1985).
[10] C. -h. Ahn and K. -s. Woo, Nucl. Phys. B 634, 141 (2002) [hep-th/0109010].
[11] C. -h. Ahn and K. -s. Woo, JHEP 0311, 014 (2003) [hep-th/0209128].
[12] R. Kallosh, A. D. Linde, S. Prokushkin and M. Shmakova, Phys. Rev. D 65, 105016 (2002) [hep-th/0110089].
[13] N. Bobev, N. Halmagyi, K. Pilch and N. P. Warner, Class. Quant. Grav. 27, 235013 (2010) [arXiv:1006.2546 [hep-th]].
[14] N. Bobev, A. Kundu, K. Pilch and N. P. Warner, JHEP 1203, 064 (2012) [arXiv:1110.3454 [hep-th]].
[15] T. Fischbacher, K. Pilch and N. P. Warner, arXiv:1010.4910 [hep-th].
[16] T. Fischbacher, JHEP 1009, 068 (2010) [arXiv:0912.1636 [hep-th]]; Comput. Phys. Commun. 183, 780 (2012) [arXiv:1007.0600 [hep-th]]; arXiv:1109.1424 [hep-th].
[17] H. Nicolai and H. Samtleben, Phys. Rev. Lett. 86, 1686 (2001) [hep-th/0010076].
[18] B. de Wit, H. Samtleben and M. Trigiante, Nucl. Phys. B 655, 93 (2003) [hep-th/0212239].
[19] B. de Wit, H. Samtleben and M. Trigiante, JHEP 0706, 049 (2007) [arXiv:0705.2101 [hep-th]].
[20] G. Dall’Agata and G. Inverso, Nucl. Phys. B 859, 70 (2012) [arXiv:1112.3345 [hep-th]].
[21] G. Dibitetto, A. Guarino and D. Roest, JHEP 1103, 137 (2011) [arXiv:1102.0239 [hep-th]].
[22] A. Borghese, R. Linares and D. Roest, JHEP 1207, 034 (2012) [arXiv:1112.3939 [hep-th]].
[23] G. Dall’Agata and F. Zwirner, arXiv:1205.4711 [hep-th].
[24] A. Borghese, A. Guarino and D. Roest, arXiv:1209.3003 [hep-th].
[25] A. Le Diffon, H. Samtleben and M. Trigiante, JHEP 1104, 079 (2011) [arXiv:1103.2785 [hep-th]].
[26] R. D’Auria, S. Ferrara and M. Trigiante, JHEP 0601, 081 (2006) [hep-th/0511158].
[27] G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Nucl. Phys. B 799, 80 (2008) [arXiv:0712.1026 [hep-th]].
[28] G. Dibitetto, A. Guarino and D. Roest, JHEP 1205, 056 (2012) [arXiv:1202.0770 [hep-th]].
[29] P. Breitenlohner and D. Z. Freedman, Phys. Lett. B 115, 197 (1982); Annals Phys. 144, 249 (1982).