Dengue virus infection among renal transplant recipients in Singapore: a 15-year, single-centre retrospective review

Sophie Seine Xuan Tan, MBBS, Quan Yao Ho, MBBS, MRCP, Sobhana Thangaraju, MBBS, MRCP, Thuan Tong Tan, MBBS, PhD, Terence Kee, MBBS, MRCP, Shimin Jasmine Chung, MBBS (Hons), MRCP

1Department of Infectious Diseases, Singapore General Hospital, 2Department of Renal Medicine, Singapore General Hospital, SingHealth Duke-NUS Transplant Centre, Singapore

Abstract

Introduction: Dengue is a mosquito-borne viral infection endemic in Singapore. Its impact on renal transplantation is limited to small case series. We aimed to characterise the clinical presentation and outcomes of dengue infection among renal transplant recipients in Singapore.

Methods: We conducted a 15-year retrospective review of dengue in renal transplant patients treated at Singapore General Hospital between January 2005 and October 2019. The diagnosis of dengue was made if there were a compatible clinical syndrome and a positive dengue diagnostic assay (dengue non-structural 1 antigen, immunoglobulin M or reverse transcriptase-polymerase chain reaction).

Results: Of the 31 patients diagnosed with dengue, 18 (58.1%) were deceased donor recipients. The median age was 52 (interquartile range [IQR] 40–61) years; 16 (51.6%) were females. The median time to diagnosis was 99 (IQR 18–169) months from transplant. The most common clinical symptoms were fever (87.1%), myalgia (41.9%), gastrointestinal symptoms (38.7%) and headache (25.8%). Nineteen (61.3%) patients had dengue without warning signs, nine (29.0%) had dengue with warning signs, three (9.7%) had severe dengue and 30 (96.8%) were hospitalised. Seventeen (54.8%) patients had graft dysfunction, 16 (94.1%) of whom had recovery of graft function. One (3.2%) patient required dialysis and subsequently died. There were two cases of donor-derived infections (DDIs) with favourable outcomes.

Conclusion: Our experience with dengue in renal transplant recipients is concordant with published data. Although graft dysfunction is common, it is often transient with favourable outcomes. Outpatient management may be considered for mild infections. Although dengue DDIs are uncommon, more stringent donor screening may be considered in endemic regions.

Keywords: Dengue, renal transplant, Singapore

INTRODUCTION

Dengue is a mosquito-borne viral infection endemic in Singapore, and it is transmitted most commonly by the Aedes aegypti mosquito. Dengue virus (DENV) is a flavivirus with four distinct DENV serotypes (DENV-1–4), and infection with any of the serotypes can result in clinical manifestations ranging from dengue fever with or without warning signs to severe infections with plasma leakage, haemorrhage and organ impairment.[1] The Aedes mosquitoes are abundant in tropical countries,[2] and dengue is an ongoing problem in Singapore, with dengue outbreaks occurring in 5–6-year cycles.[3] In 2020, Singapore saw the highest number of dengue cases recorded, with 35,315 notified cases.[4]

Although dengue is relatively uncommon in renal transplantation[5,6] and published reports based on small case series have suggested favourable outcomes in renal transplant recipients, it is still important to understand its impact and clinical outcomes in our patients, given that dengue is endemic in Singapore and our renal transplant programme is growing. Since the inception of the renal transplant programme in
Singapore in 1970, the number of renal transplant recipients has increased over the years. In 2009, there were 359 renal transplant recipients per million population, and this increased to 400 per million population in 2018.[1] In this study, we aimed to characterise the clinical presentation and outcome of dengue infection in renal transplant recipients treated at a tertiary centre in Singapore and to corroborate our findings with international data, so as to further guide and improve our clinical management.

METHODS

We conducted a 15-year retrospective review of dengue infection in renal transplant patients treated at Singapore General Hospital between January 2005 and October 2019. The study was approved by the ethics committee of the institution (CIRB Ref: 2019/2764). All renal transplant patients who were on follow-up at our centre with dengue infection — as defined by a compatible syndrome and confirmatory laboratory tests (dengue non-structural 1 antigen, immunoglobulin M [IgM] or reverse transcriptase-polymerase chain reaction [RT-PCR] positive) — were included in the study. Renal transplant recipients with positive dengue diagnostic tests performed during the study period were identified using the SingHealth electronic health intelligence systems. Their medical records were reviewed by two investigators. Patients who had isolated positive dengue IgM serology without any clinical features of dengue were excluded from the study.

Patients were classified according to the World Health Organization (WHO) dengue classification 2009.[1] Patient demographics, transplant details, dengue clinical features, laboratory findings and clinical outcomes of dengue infections were extracted. Categorical variables were presented as absolute numbers with percentages, and continuous variables were presented as median values with interquartile ranges (IQR).

RESULTS

Thirty-one renal transplant patients were diagnosed with dengue during the study period. Patient demographics are presented in Table 1. The median age at the time of diagnosis was 52 (IQR 40–61) years, and 16 (51.6%) were females. The most common clinical symptoms were fever (87.1%), myalgia (41.9%), gastrointestinal symptoms (38.7%) and headache (25.8%); mucosal bleeding (9.7%), arthralgia (9.7%) and rash (6.5%) were uncommon. Based on the WHO 2009 dengue classification,[1] 19 (61.3%) patients had dengue without warning signs, nine (29.0%) had dengue with warning signs and three (9.7%) had severe dengue. Of the nine patients who had dengue with warning signs, two had pleural effusion, three had mucosal bleeding with epistaxis and haematuria, and the remaining four patients had lethargy with laboratory features of increased haematocrit with concurrent rapid decrease in platelet counts. Of the three patients with severe dengue, two had plasma leakage leading to shock or respiratory distress and one had multi-organ failure [Tables 2 and 3]. The median duration of clinical illness was 7 (IQR 6–7) days. Most of the patients were managed in the hospital; 30 (96.8%) patients were admitted. The median length of hospital stay was 8 (IQR 6–13) days. Majority (96.8%) of our patients were presumed to have primary infection, as dengue IgG serology was not routinely done. Only one patient in our series was tested for and had a negative dengue IgG serology, and this patient was confirmed to have primary dengue infection.

All patients were on immunosuppressive therapy at the time of dengue diagnosis, with a combination of prednisolone, mycophenolate mofetil (MMF)/mycophenolic acid (MYF) and tacrolimus being the most common immunosuppressive regimen. Of the 25 patients who were on antimetabolite immunosuppressant (MMF/MYF/azathioprine), 11 (44.0%) discontinued their immunosuppressant and five (20.0%) had reduced doses of immunosuppressant during the episode of dengue due to leucopenia, thrombocytopenia or deranged liver function tests. Of these 16 patients who had their doses discontinued or reduced, 11 (68.8%) were restarted back on full dose of antimetabolite immunosuppressant within 2 weeks of discharge, upon recovery of their cell counts. There were 26 patients who were on calcineurin inhibitors, of whom nine (34.6%) had their doses adjusted based on

Table 1. Patient demographics.
Characteristic
Age (yr)
Gender
Female
Male
Ethnicity
Chinese
Malay
Indian
Others
Type of kidney transplant
Deceased donor
Living donor
Immunosuppression therapy at the time of dengue diagnosis
Pred + MMF/MYF + FK
Pred + MMF/MYF + CsA
Pred + Aza + CsA
Pred + CsA
Pred + MMF/MYF + SIR
Pred + FK
Pred + Aza
Pred + ERL
Pred + Aza + SIR

Data presented as median (interquartile range). Aza: azathioprine, CsA: cyclosporine, ERL: everolimus, FK: tacrolimus, MMF: mycophenolate mofetil, MYF: mycophenolic acid, Pred: prednisolone, SIR: sirolimus.
Table 2. Clinical characteristics of all 31 kidney transplant patients with dengue infection.

Age (yr)/gender	Gender	Confirmatory lab method	Year of diagnosis	Time from transplant (mth)	Duration of clinical illness (day)	Clinical manifestations	Coinfection	WHO classification	Graft dysfunction	Outcome	
1 34/M	M	NS1 Neg RT-PCR	2005	89	5	Fever, headache, myalgia	Nil	DF	No	Recovered	
2 58/F	M	NS1 Neg RT-PCR	2005	108	9	Fever, headache	UTI	DF	Yes	Recovered	
3 50/F	M	NS1 Neg RT-PCR	2005	12	8	Fever	Nil	DF with WS	No	Recovered	
4 55/F	M	NS1 Neg RT-PCR	2005	2	8	Lethargy, haematuria	Nil	DF with WS	Yes	Recovered	
5 65/F	M	NS1 Neg RT-PCR	2006	186	7	Fever, vomiting, giddiness, dyspnoea	HAP	SD	Yes	Demised	
6 52/F	F	NS1 Neg RT-PCR	2008	269	7	Fever, myalgia, lethargy, vomiting, diarrhoea, rash, poor appetite	Nil	DF with WS	Yes	Recovered	
7 61/M	M	NS1 Neg RT-PCR	2008	101	7	Fever, dyspnoea, oliguria, abdominal pain	CAP	SD	Yes	Recovered	
8 61/F	M	NS1 Neg RT-PCR	2009	22	6	Fever, myalgia	UTI	DF	Yes	Recovered	
9 58/M	M	NS1 Neg RT-PCR	2009	169	5	Fever, diarrhoea	Nil	DF with WS	Yes	Recovered	
10 34/F	M	NS1 Neg RT-PCR	2011	31	6	Fever, diarrhoea, headache, lethargy	Nil	DF with WS	No	Recovered	
11 50/F	M	NS1 Neg RT-PCR	2011	92	8	Fever, myalgia, productive sputum	Nil	DF	Yes	Recovered	
12 36/F	M	NS1 Neg RT-PCR	2011	215	8	Fever, diarrhoea	GE	DF	Yes	Recovered	
13 57/F	M	NS1 Neg RT-PCR	2012	64	6	Fever, dysuria, vomiting	UTI, CMV reactivation	DF	Yes	Yes	Recovered
14 52/F	F	NS1 Neg RT-PCR	2013	50	8	Fever, myalgia, headache	Nil	DF	Yes	Recovered	
15 39/M	M	NS1 Neg RT-PCR	2013	61	7	Fever, back pain, arthralgia, headache, poor appetite	Nil	DF	No	Recovered	
16 37/M	M	NS1 Neg RT-PCR	2013	139	7	Fever, rash	Nil	DF	No	Recovered	
17 52/F	M	NS1 Neg RT-PCR	2014	99	6	Fever, myalgia, headache	UTI	DF	Yes	Recovered	
18 53/M	M	NS1 Neg RT-PCR	2014	99	7	Fever, diarrhoea, cough, epistaxis	CAP	DF with WS	Yes	Recovered	
19 60/F	M	NS1 Neg RT-PCR	2015	262	7	Fever, sore throat, blocked nose	Nil	DF	No	Recovered	
20 73/M	M	NS1 Neg RT-PCR	2015	328	7	Cough, myalgia, diarrhoea, lethargy, poor appetite	Nil	DF with WS	Yes	Recovered	
21 66/M	M	NS1 Neg RT-PCR	2015	108	6	Fever	Nil	DF	No	Recovered	
22 36/M	M	NS1 Neg RT-PCR	2015	2	5	Lethargy	URTI	DF	No	Recovered	
23 63/M	M	NS1 Neg RT-PCR	2017	193	7	Fever, myalgia, arthralgia, cough, headache, back pain	Nil	SD	Yes	Recovered	
24 62/M	M	NS1 Neg RT-PCR	2018	3	7	Fever, nausea, vomiting, lethargy, poor urine output	Nil	DF	Yes	Recovered	
25 40/M	M	NS1 Neg RT-PCR	2018	21	3	Fever, arthralgia, headache, myalgia	Nil	DF	Yes	Recovered	
26 60/F	M	NS1 Neg RT-PCR	2019	18	5	Fever, sore throat, cough, myalgia	URTI	DF	No	Recovered	
27 49/F	M	NS1 Neg RT-PCR	2019	199	7	Fever, vomiting, lower back pain	Nil	DF with WS	Yes	Recovered	
28 50/F	M	NS1 Neg RT-PCR	2019	72	2	Fever, myalgia, poor appetite	Nil	DF	Yes	Recovered	
29 53/F	M	NS1 Neg RT-PCR	2019	1	10	Fever, poor appetite	Nil	DF with WS	No	Recovered	
30 39/M	F	NS1 Neg RT-PCR	2019	0	10	Asymptomatic, leucopenia	Nil	DF	No	Recovered	
31 63/M	M	NS1 Neg RT-PCR	2019	9 days	5	Fever, thrombocytopenia, transaminitis	Nil	DF	No	Recovered	

CAP: community-acquired pneumonia, CMV: cytomegalovirus, DF: dengue fever, DF with WS: dengue fever with warning signs, F: female, GE: gastroenteritis, HAP: hospital-acquired pneumonia, IgM: immunoglobulin M, M: male, ND: not done, Neg: negative, NS1: non-structural 1, Pos: positive, RT-PCR: reverse transcriptase-polymerase chain reaction, SD: severe dengue, URTI: upper respiratory tract infection, UTI: urinary tract infection, WHO: World Health Organization.
Table 3. Clinical characteristics and laboratory parameters (N=31).

Characteristic	n (%)
Clinical manifestation	
Fever	27 (87.1)
Myalgia	13 (41.9)
Gastrointestinal symptoms	12 (38.7)
Headache	8 (25.8)
Mucosal bleeding	3 (9.7)
Arthralgia	3 (9.7)
Rash	2 (6.5)
Pleural effusion	4 (12.9)
Ascites	1 (3.2)
WHO 2009 dengue classification	
Dengue infection without warning sign	19 (61.3)
Dengue infection with warning sign	9 (29.0)
Severe dengue	3 (9.7)
Dengue confirmatory test	
Non-structural 1 antigen	13 (41.9)
Immunoglobulin M	12 (38.7)
Reverse transcriptase-polymerase chain reaction	19 (61.3)
Complete blood count	
Platelet count at diagnosis (×10^9/L) [Ref: 140–440]	126 (72–173)
Nadir platelet count (×10^9/L)	31 (17–90)
White cell count at diagnosis (×10^9/L) [Ref: 4.0–10.0]	5.2 (4.0–7.1)
Nadir white cell count (×10^9/L)	2.8 (1.8–4.0)
Lymphocyte count at diagnosis (×10^9/L) [Ref: 1.0–3.0]	0.8 (0.4–0.9)
Nadir lymphocyte count (×10^9/L)	0.5 (0.3–0.6)
Haematocrit at diagnosis (%) [Ref: 36–46]	41 (34–44)
Peak haematocrit (%)	41 (34–44)
Blood chemistry	
ALT at diagnosis (U/L) [Ref: 6–66]	32 (21–55)
ALT peak (U/L)	76 (24–118)
AST at diagnosis (U/L) [Ref: 12–42]	39 (29–101)
AST peak (U/L)	108 (42–172)
Cr at time of dengue diagnosis (μmol/L) [Ref: 37–75]	140 (102–212)
Cr at time of dengue resolution (μmol/L)	112 (82–152)

Data presented as median (interquartile range). Reference range is provided in square brackets. LT: alanine aminotransferase, AST: aspartate aminotransferase, Cr: creatinine, WHO: World Health Organization.

Most of the dengue infections were community acquired; the median time to diagnosis of dengue was 99 (IQR 18–169) months from transplant. Interestingly, two patients (Patients 30 and 31) had donor-derived dengue and developed the infection on day 10 and day 9 posttransplant, respectively [Table 2]. Both patients had received the kidneys from the same donor. Patient 31 had undergone an uncomplicated transplant surgery and was recovering well until he developed fever on the fifth postoperative day. He subsequently developed thrombocytopenia and was tested positive for dengue serotype 2 (DEN-2). Patient 30 was asymptomatic, but his laboratory tests revealed thrombocytopenia and leucopenia. Given that he received the kidney from the same donor, he was screened and tested positive for DEN-2 as well, raising the possibility that the dengue infections were donor derived. Investigations later revealed that both recipients had received the pair of kidneys from a donor who was aviraemic but had detectable dengue virus in the urine.

Laboratory findings are presented in Table 3. Seventeen (54.8%) patients had graft dysfunction, of whom ten (58.8%) had >20% but ≤50% rise in serum creatine from baseline and seven (41.2%) had >50% rise in serum creatine from baseline; 16/17 (94.1%) patients had full recovery of graft function. Only one (3.2%) required dialysis; this same patient later demised from hospital-acquired pneumonia. Dengue mortality rate was 3.2%.

DISCUSSION

This study identified 31 renal transplant patients who were diagnosed with dengue infection from January 2005 to October 2019. To our knowledge, this is one of the larger case series reported in Southeast Asia and the largest from Singapore, a country where dengue infection is endemic. Figure 1 shows the trend of dengue cases in Singapore and among renal transplant recipients in our institution from 2005 to 2019. In 2019, we saw the highest number of dengue infection in renal transplant recipients living in or travelling to the community, take precautionary measures to prevent mosquito bites and adopt practices to prevent mosquito breeding in their residences.
Dengue in renal transplant is largely a community-acquired infection, and our study found that its clinical course parallels that of the immunocompetent host,[5,10] with fever, myalgia, gastrointestinal symptoms and headache being the most common symptoms. Graft dysfunction is common (~54.8% of cases), but this is transient, with recovery of graft function seen in most of our patients (94.1%). Only one patient in our series required dialysis. This is concordant with other studies on renal transplant patients with dengue. Similar rates of graft dysfunction ranging between 55% and 77% were reported,[5,11,12] with majority of patients having full recovery of kidney function within 2 weeks after acute dengue. This, however, appears higher compared to the general population, where the incidence of acute kidney injury typically ranges from 1.2% to 29.6%.[13‑17] Nevertheless, we acknowledge that there are slight differences in the definitions used for graft dysfunction among various studies. Although graft dysfunction may be transient, it is still important that close monitoring and titration of fluid balances in the renal transplant patient with acute dengue infection is practised to ensure favourable outcomes and full recovery of kidney function. In addition, graft dysfunction can be considered a criterion for patient triage and admission.

The mortality rate of acute dengue infection in our renal transplant population is comparable to published data in the same population group; the mortality rates reported range from 0% to 7%.[12,18‑20] We reported one death (3.2%), which was attributed to hospital-acquired pneumonia and not directly related to dengue infection. However, it is important to note that the overall mortality from dengue in the renal transplant population is still higher than in the general population, where the mortality rates among hospitalised patients range from 0.17% to 0.77%.[21]

Cytomegalovirus (CMV) coinfection has been described in other studies, with a prevalence of 5%–66%.[12,22] A recent study by Fernandes et al.[11] showed that the subgroup of patients with dengue infection and CMV coinfection had worse thrombocytopenia, higher rate of acute graft dysfunction and longer hospitalisation time; however, there was no difference in graft loss and mortality rate. In our series, there was only one patient (3.1%) with CMV coinfection [Table 2]. This patient had CMV viraemia with no end-organ disease and was treated successfully with intravenous ganciclovir. She was on prednisolone, cyclosporine and azathioprine, with no recent change in her immunosuppressant doses before admission. Although our patient had graft dysfunction, her renal function recovered back to baseline upon discharge.

The management of immunosuppression in the setting of acute dengue infection remains an art, as there are currently no established guidelines on its use. In our study, we found that majority of physicians chose to suspend or reduce the dose of antimeabolite agents due to leucopenia, thrombocytopenia or deranged liver function test during the course of dengue. Of the 16 patients who had their antimeabolite immunosuppressants stopped or reduced, one patient subsequently developed biopsy-proven rejection 5 months after the dengue episode. She had acquired acute dengue infection within 1 month of transplantation, and her MYF dose was reduced in view of persistent viraemia. This highlights the challenges of titrating immunosuppression in renal transplant recipients with dengue infection, especially within the first 6 months of transplantation; dose reduction of immunosuppression for viral control may potentially place the patient at a higher risk of acute rejection. A large case series by Nasim et al.[12] showed that antimeabolite immunosuppressants had no effect on the severity and duration of thrombocytopenia or leucopenia. Thus, it may be safe and prudent for physicians to restart patients on...
their regular immunosuppressants soon after recovery from dengue to reduce the risk of graft rejection.

At our centre, most renal physicians chose to admit renal transplant patients infected with dengue: 30 (96.8%) patients were admitted. The median length of stay was 8 (IQR 6–13) days. This is in contrast to the practice in non-transplant patients, where dengue is increasingly managed in the community. As illustrated by Ang et al.,[21] the proportion of dengue cases hospitalised during three epidemic periods declined from 93.2% in 2004–2005 to 58.1% in 2007 and subsequently to 28.9% in 2013–2014, with no concomitant increase in adverse outcomes based on the case fatality rate. This practice of managing dengue in the community was in response to the Singapore Ministry of Health’s (MOH) periodic guidelines on the management of dengue during epidemics and refinement of the criteria for hospital referral and admission. However, this practice was not adopted in our renal transplant unit, where 96.8% of the patients were admitted and the majority (61.3%) did not have warning signs or severe dengue. This could be attributed to the more cautious approach when managing dengue in transplant recipients. Based on WHO’s recommendations[23] and our findings, renal transplant recipients with acute dengue may be considered for outpatient management with close follow-up. They include patients who (a) have no warning signs, (b) are able to maintain adequate oral hydration with satisfactory urine output, (c) have no signs of plasma leakage, and (d) show absence of graft dysfunction. Close follow-up to monitor blood counts and renal function is recommended. They should also be advised to have sufficient bed rest and hydration and to monitor for warning signs as defined by WHO. However, it would be prudent to admit patients with renal impairment or dengue with warning signs to maintain hydration and monitor for signs of plasma leakage.

Donor-derived infections (DDIs) with dengue are uncommon, with only a few cases reported in the literature. Although dengue is a vector-borne viral infection, acquisition of dengue through needle stick injury, as well as receipt of blood products, haematopoietic stem cell transplant and solid organ transplants has been described.[24-26] Interestingly, we found two cases of proven dengue DDIs in our series; both recipients had received their organs from the same donor. In Singapore, a dengue-endemic country, all solid organ donors and recipients are routinely screened for dengue in the blood by RT-PCR at the time of transplant. This practice has been instituted since 2016 (as per communication with the National Organ Transplant Unit [NOTU]). In this case, both donor and recipients had tested negative for dengue at the time of organ procurement. When both recipients later tested positive for dengue (based on clinical symptoms and laboratory findings), follow-up with NOTU revealed that the donor had developed acute dengue infection 2–3 weeks before organ harvest with serological conversion. Although the donor was aviraemic at the time of organ donation, dengue PCR was detected in her leftover urine sample, suggesting that she had prolonged shedding of DENV in the kidneys, resulting in DDIs.[27] Currently, there are no international recommendations for universal screening of urine dengue PCR in organ donors living in endemic regions. However, because of this incident case, the NOTU has since augmented the donor workup and revised its policy as of 8 April 2021 to routinely screen organ donors for dengue by testing both blood and urine for dengue RT-PCR. To date, there is no consensus on whether organs from dengue-infected donors can be used. Although donor-derived dengue was recognised early in patients 30 and 31 with favourable outcomes (no bleeding complications, no impact on graft dysfunction), complications arising from donor-derived dengue are not uncommon. Clinical symptoms for early dengue may be non-specific and diagnosis may be delayed if dengue was not suspected. In addition, severe cases of donor-derived dengue infections have also been reported; recipients may suffer severe bleeding complications (e.g., persistent haemorrhage from the operative site, haemorrhagic shock), develop major organ complications (including allograft dysfunction and loss) and potentially demise from the infection.[28,29]

In this study, a spectrum of dengue cases in the renal transplant population hospitalised with dengue has been described. This would inform the renal transplant community of the clinical manifestations of dengue in this unique population to aid clinical assessment, triaging and management. We acknowledge the limitations of this study due to its retrospective nature and potential recall bias. We also acknowledge that patients who had only mild symptoms or were asymptomatic may not have sought medical attention at our hospital and would not be captured in our database. Furthermore, information on dengue serotypes was not available for all patients, and therefore, its impact on clinical outcomes cannot be described.

In conclusion, the current study’s data on dengue infection in renal transplant population support published international data and further add confidence to the management of these patients in a dengue-endemic country. In addition, we provide recommendations on donor screening and considerations for patient triage to safely manage more patients in an outpatient setting. Management of immunosuppressants is important in this group of patients, and further studies are required to provide better guidance to renal transplant physicians.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: New edition. 2009. Available from: https://apps.who.int/iris/bitstream/handle/10665/44188/9789241547871_eng.
Tan, et al.: Dengue infection in renal transplant recipients

1. Rigau-Pérez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vornad AM. Dengue and dengue haemorrhagic fever. Lancet 1998;352:971-7.

2. Lee KS, Lai YL, Lo S, Barkham T, Aw P, Ooi PL, et al. Dengue virus surveillance for early warning, Singapore. Emerg Infect Dis 2010;16:847-9.

3. National Environment Agency, Singapore. Dengue surveillance data, Oct-Dec 2020. Available from: https://www.nea.gov.sg/docs/default-source-document-library/q4-2020-dengue-surveillance-data-(112kb).pdf. [Last accessed on 2021 Feb 24].

4. Pinsai S, Kiertiburanakul S, Watcharanan SP, Kantachuvessiri S, Boongird S, Brumhinent J. Epidemiology and outcomes of dengue in kidney transplant recipients: A 20-year retrospective analysis and comparative literature review. Clin Transplant 2019;33:e13458.

5. Weerakkody RM, Patrick JA, Sheriff MHR. Dengue fever in renal transplant patients: A systematic review of clinical course and outcome of dengue viral infection in live-related renal transplant recipients and patients with chronic kidney disease. Nephrology (Carlton) 2019;24:564-8.

6. Sim JXY, Gan ES, Tan HC, Choy MM, Wong HM, Tan BH, et al. Aviremic organ transplant dengue virus transmission – A case report. Am J Transplant 2021;21:1944-7.

7. Rajarethinam J, Ang LW, Ong J, Ycasas J, Hapuarachchi HC, Yap G, et al. Dengue in Singapore from 2004 to 2016: Cyclical epidemic patterns dominated by serotypes 1 and 2. Am J Trop Med Hyg 2018;99:204–10.

8. Health Promotion Board, Singapore. Singapore renal registry annual report 2018. Available from: https://www.nrdo.gov.sg/docs/default-document-library/singapore-renal-registry-annual-report-2018.pdf?sfvrsn=de5a657f_0. [Last accessed on 2021 Jan 03].

9. Sim JXY, Gan ES, Tan HC, Choy MM, Wong HM, Tan BH, et al. Acute kidney injury in dengue fever using Acute Kidney Injury Network criteria: A case report. Transpl Infect Dis 2013;15:516-25.

10. Loh DL, Prabhakaran K, Tambyah PA, Yap HK. Dengue infection causing acute kidney injury. Trop Med Surg 2016;4:211.

11. Naqvi R. Dengue infection causing acute kidney injury. Trop Med Surg 2016;4:211.

12. Mallhi TH, Khan AH, Adnan AS, Sarriff A, Khan YH, Gan SH. Short-term renal outcomes following acute kidney injury among dengue patients: A follow-up analysis from large prospective cohort. PLoS One 2018;13:e0192510.

13. Kuo MC, Lu PL, Chang JM, Lin MY, Tsai JJ, Chen YH, et al. Impact of renal failure on the outcome of dengue viral infection. Clin J Am Soc Nephrol 2008;3:1350-6.

14. Azevedo LS, Carvalho DBM, Matuck T, Alvarenga MF, Morgado L, Magalhães I, et al. Dengue in renal transplant patients: A retrospective analysis. Transplantation 2007;84:792-4.

15. Subbiah A, Bagchi S, Bhowsnik D, Mahajan S, Yadav RK, Chhabra Y, et al. Dengue fever in renal allograft recipients: Clinical course and outcome. Transpl Infect Dis 2018;20:e12875.

16. Thomas ETA, George J, Sruthi D, Vineetha NS, Gracious N. Clinical course of dengue and its impact on renal function in renal transplant recipients and patients with chronic kidney disease. Nephrology (Carlton) 2019;24:564-8.

17. Ang LW, Thein TL, Ng Y, Boudvville IC, Chia PY, Lee VJM, et al. A 15-year review of dengue hospitalizations in Singapore: Reducing admissions without adverse consequences, 2003 to 2017. PLoS Negl Trop Dis 2019;13:e0007389.

18. Renaud CJ, Manjit K, Pary S. Dengue has a benign presentation in renal transplant patients: A case series. Nephrology (Carlton) 2007;12:305-7.

19. World Health Organization & UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. Handbook for Clinical Management of Dengue. World Health Organization 2012. Available from: https://apps.who.int/iris/bitstream/handle/10665/76887/9789241504713_eng.pdf?sequence=1&isAllowed=y. [Last accessed on 2021 Jan 03].

20. Lanteri MC, Busch MP. Dengue in the context of “safe blood” and global epidemiology: To screen or not to screen? Transfusion 2012;52:1634-9.

21. Wagner D, de With K, Hufert F, Weidmann M, Breisinger S, et al. Nosocomial acquisition of dengue. Emerg Infect Dis 2004;10:1872-3.

22. Punzel M, Korukluoglu G, Caglayik DY, Menemenlioglu D, Bozdag SC, Tekgündüz E, et al. Dengue virus transmission by blood stem cell donor after travel to Sri Lanka, 2013. Emerg Infect Dis 2014;20:1366-9.

23. Hirayama T, Mizuno Y, Takeshita N, Kotaki A, Tajima S, Omatu T, et al. Detection of dengue virus genome in urine by real-time reverse transcriptase PCR: A laboratory diagnostic method useful after disappearance of the genome in serum. J Clin Microbiol 2012;50:2047-52.

24. Rosso F, Pineda JC, Sanz AM, Cedano JA, Morgado L, Caicedo LA. Transmission of dengue virus from deceased donors to solid organ transplant recipients: Case report and literature review. Braz J Infect Dis 2018;22:63-9.

25. Tan FLS, Loh DL, Prabhakaran K, Tambyah PA, Yap HK. Dengue haemorrhagic fever after living donor renal transplantation. Nephrol Dial Transplant 2005;20:447-8.