Field-effect modulation of conductance in VO$_2$ nanobeam transistors with HfO$_2$ as the gate dielectric

Shamashis Sengupta,¹(✉) Kevin Wang,² Kai Liu,² Ajay K. Bhat,¹ Sajal Dhara,¹ Junqiao Wu,² and Mandar M. Deshmukh¹

¹) Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
²) Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA

(Dated: 27 July 2011)

We study field-effect transistors realized from VO$_2$ nanobeams with HfO$_2$ as the gate dielectric. When heated up from low to high temperatures, VO$_2$ undergoes an insulator-to-metal transition. We observe a change in conductance (\sim 6 percent) of our devices induced by gate voltage when the system is in the insulating phase. The response is reversible and hysteretic, and the area of hysteresis loop becomes larger as the rate of gate sweep is slowed down. A phase lag exists between the response of the conductance and the gate voltage. This indicates the existence of a memory of the system and we discuss its possible origins.

PACS numbers: 71.30.+h,64.70.Nd,73.22.Gk

VO$_2$ undergoes an insulator-to-metal transition accompanied by a change in its crystal structure, the mechanism of which is still under debate. The transition temperature of a free crystal is 341 K. Its proximity to room temperature has motivated attempts at fabricating Mott field-effect transistors (FETs) to induce the phase transition by applying a gate voltage. Such experiments have so far been conducted on thin films of VO$_2$. Other interesting applications of VO$_2$ include memory metamaterials and memristors. Recently it has been realized that single-crystalline VO$_2$ nanobeams support single or ordered metal-insulator domains in the phase transition. This eliminates the random, percolative domain structures occurring in thin films, and allows intrinsic transition physics to be probed. In this letter, we report on electrostatic gating measurements on single crystalline VO$_2$ beams using HfO$_2$ as the gate dielectric. The devices have a hysteretic response and appear to possess a memory persisting over a large timescale (a few minutes). The field effect studies have been done at different temperatures in the insulating and metallic phases of the system.

The VO$_2$ beams were grown using the vapor transport technique. Electrodes were designed by electron beam lithography followed by etching in Ar plasma (for removal of organic residue) and sputtering of Cr/Au to make Ohmic contacts. Figs. 1(a) and 1(b) show the optical microscope and atomic force microscope (AFM) images of VO$_2$ devices. The local gate electrode in the middle (Fig. 1(a)) is fabricated by first depositing a 20 nm layer of HfO$_2$ by atomic layer deposition and then sputtering Cr/Au on top. The typical width of the beams is 0.3-1 µm, and the thickness is 300-600 nm. Fig. 1(c) shows the resistance of a VO$_2$ beam as a function of temperature (data from Device 1). Stress builds up in the system as it is heated, and the system breaks up into alternating insulator and metal domains. The metal domains first appear close to 341 K and on further heating, grow in size and number. The system becomes completely metallic at a much higher temperature. The temperature at which the system turns metallic varies from one device to another (380-400 K), and is dictated by the stress induced due to adhesion to the substrate. (The nanobeams are embedded in a 1.1 µm thick layer of SiO$_2$ grown on Si wafers.)

Two and four probe gating experiments were done inside an evacuated variable temperature probe station.
Both two and four probe resistances of the same devices were measured (at various temperatures in both the insulating and metallic phases) and found to be similar. This indicates that the contact resistance is negligible compared to the intrinsic resistance of VO$_2$. We have also confirmed that there is no leakage through the gate.

Fig. 1(d) shows the effect of gate voltage on the two-probe conductance of a VO$_2$ device (Device 2) at 370 K. The dc gate voltage is swept slowly in a cycle (of duration 20 mins) with limiting values of -2.5 and 2.5 V. (The source-drain current used was set at an ac frequency and monitored with a lock-in amplifier.) Arrows indicate the direction of gate voltage sweep. The response of the conductance becomes larger on making the rate of gate voltage sweep-rates. The cycle which is swept faster (red curve) in the direction of gate voltage sweep. The response of the conductance becomes larger on making the rate of gate voltage sweep-rates. The cycle which is swept faster (red curve) in the direction of gate voltage sweep-rate (Device 3) for two different cycle times: 10 mins (red) and 27 mins (blue). (Note: The former (red curve) is offset by -0.009 µS.)

No gating is observed in the full metallic state. We compute the normalized loop area as a function of temperature (close to the metallic transition) for Device 3 is plotted in Fig. 3(a). The most prominent hysteresis for our devices is usually obtained in the temperature range 340-370 K, which is the temperature window in which multiple domains exist along the beam. Also, it is shown in Fig. 3(b) how the normalized loop area varies over a wide range of temperatures (starting from room temperature) for Device 1.

Fig. 2(a) shows two probe conductance (G_{2P}) at 360 K for Device 3 at different gate voltage sweep-rates. The cycle which is swept slowly over 27 mins (blue curve) has a much larger hysteresis than the one which is swept faster (red curve) in 10 mins. The area of the loop is computed as $\sum G\Delta V_g$, where the summation extends over one cycle of gate voltage sweep. Another intriguing aspect is prominently seen in Figs. 1(d) and 2(a). As we increase V_g up from 0 V to higher positive values (see Fig. 1(d)), G increases. At the extreme value of 2.5 V, V_g is reversed backwards. However, G does not start reducing immediately. It goes on increasing for a while and starts to reduce only after a time lag. (Denoting time as t, we can say that $\frac{dG}{dt}$ does not change sign simultaneously with $\frac{dV_g}{dt}$.) This implies that the system wants to persist in the state of increasing conductance even though the gate voltage has reversed. This is a manifestation of the ‘memory’ or ‘inertia’ of the system. This memory effect is observed at the other extreme of gate voltage (-2.5 V) also. The gate voltage and resulting conductance (data from Device 3) are plotted simultaneously as a function of time in Figs. 2(c)-(e). (Each plot shows two consecutive cycles of gate voltage.) In all these curves, it is seen that the maximum (minimum) of conductance is shifted in time from the maximum (minimum) of gate voltage. This shift, or ‘phase lag’ between the input and output signals, is the signature of a persistent effect. Slower the rate of sweep, larger is the time-delay. It is 5.6 mins for the slowest scan with a 27 mins cycle (Fig. 2(e)).

The hysteresis is observed at temperatures at which the beam is in the insulating state, or there is a coexistence of metal and insulator domains. No gating is observed in the full metallic state. We compute the normalized loop area as a function of temperature (close to the metallic transition) for Device 3 is plotted in Fig. 3(a). The most prominent hysteresis for our devices is usually obtained in the temperature range 340-370 K, which is the temperature window in which multiple domains exist along the beam. Also, it is shown in Fig. 3(b) how the normalized loop area varies over a wide range of temperatures (starting from room temperature) for Device 1.

Fig. 3(c) shows the gate voltage response (as a time chart) for Device 4 at two temperatures. At 370 K, the gate effect (G_{2P} periodic with V_g) is observed. At 395 K, the VO$_2$ beam is closer to the full metallic transition and the gate effect has disappeared. However, there is a gradual variation of the conductance with time. This is the phenomenon of thermal ‘creep’ that we see in our devices. The conductance takes a long time to stabilize after the device is heated to a new temperature. This feature is noticed on all our devices and is illustrated in Fig. 3(d) (Device 5). The sample is heated up from 343 K, and it reaches the desired temperature of 351 K within 5 mins. However, even 15 minutes after that, the conductance of VO$_2$ has not stabilized. It goes on increasing at a slow rate. (The fractional change over the last 10 mins is 0.64 percent.) We define a quantity called ‘creep’ as the fractional change in conductance over a period of 10 mins after the sample has reached a new temperature. The variation with temperature of this quantity is plotted in
Persistent effects have been observed in earlier studies on VO$_2$ (in two terminal memristive device$^{[5]}$ and infrared response of gated VO$_2$ films$^{[15]}$). In our experiments, there is no gate leakage$^{[12]}$ and hence, heating can be ruled out as a possible cause behind the persistent effect. There is not much information in literature about mechanical relaxation in VO$_2$. It is probable that mechanical relaxation time in VO$_2$ is quite large. When heated to a new temperature, it would take a considerable period of time for the stress pattern and the relative domain sizes (and hence, conductance) to settle down. This explains the thermal ‘creep’. The VO$_2$ crystal has electric dipoles with antiferroelectric coupling$^{[13]}$. The coupling strength will depend upon the spatial separation between the lattice sites, thus providing a coupling between the dipolar arrangement and the strain state. Hence, the gate voltage will also affect the strain state, and relaxation of the dipolar arrangement will have a similar timescale as the mechanical relaxation. This may explain the slow processes leading to the time-delay in gate effects (Figs. 2(c)-(e)).

In summary, we have fabricated three terminal field effect devices from VO$_2$ nanobeams using HfO$_2$ as the dielectric. We observe gate effects in conductance and the response is hysteretic. The dependence of electrostatic gating effects on the sweep rate and a phase lag between the reversal of conductance and gate voltage indicates that our devices have an intrinsic memory with a large timescale of a few minutes. This is interesting from the point of view of probing the physical origin of persistent effect in the insulating phase of VO$_2$. Also, single crystalline nanobeams with a smaller thickness may exhibit more pronounced electrostatic gating effects and can have important implications in the design of Mott FETs and memory devices.

We thank S. Ramanathan and K. L. Narasimhan for discussions. We acknowledge the U. S. Department of Energy Early Career Award DE-0000395 (J. W.) and the Government of India and AOARD-104141 (M. M. D.).

References

1. V. Eyert, Ann. Phys. 11, 650 (2002)
2. C. N. Berglund and H. J. Guggenheim, Phys. Rev. 185, 1022 (1969)
3. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang and Y. S. Lim, New J. Phys. 6, 52 (2004)
4. G. Stefanovich, A. Pergament and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000)
5. G. P. Vasiliev, I. A. Serbinov and L. A. Ryabova, Sov. Tech. Phys. Lett. 3, 139 (1977)
6. D. Ruzmetov, G. Gopalakrishnan, C. Ko, V. Narayanamurti and S. Ramanathan, J. Appl. Phys. 107, 114516 (2010)
7. T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokser, S. Palit, D. R. Smith, M. Di Ventura and D. N. Basov, Science 325, 1518 (2009)
8. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventura and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009)
9. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang and H. Park, Nano Lett. 6, 2313 (2006)
[10] J. Cao, E. Ertekin, V. Srinivasan, S. Huang, W. Fan, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman and J. Wu, Nat. Nanotechnol. 4, 732 (2009)
[11] J. Wei, Z. Wang, W. Chen and D. H. Cobden, Nat. Nanotechnol. 4, 420 (2009)
[12] See Supplemental Material at http://www.tifr.res.in/~deshmukh/publications.htm.
[13] Y. V. Pershin and M. Di Ventra, Adv. Phys. 60, 145 (2011)
[14] J. Cao, W. Fan, K. Chen, N. Tamura, M. Kunz, V. Eyert and J. Wu, Phys. Rev. B 82, 241101(R) (2010)
[15] S. A. Dayeh, C. Soci, P. K. L. Yu, E. T. Yu and D. Wang, Appl. Phys. Lett. 90, 162112 (2007)
[16] T. Hanrath and B. A. Korgel, J. Phys. Chem. B 109, 5518 (2005)
[17] R. H. Kingston and A. L. McWhorter, Phys. Rev. 103, 534 (1956)
[18] M. M. Qazilbash, Z. Q. Li, V. Podzorov, M. Brehm, F. Keilmann, B. G. Chae, H. T. Kim and D. N. Basov, Appl. Phys. Lett. 92, 241906 (2008)