Compromised Energetics in the Adenylate Kinase AK1 Gene Knockout Heart under Metabolic Stress*

Rapid exchange of high energy carrying molecules between intracellular compartments is essential in sustaining cellular energetic homeostasis. Adenylate kinase (AK)-catalyzed transfer of adenine nucleotide-β- and γ-phosphoryls has been implicated in intracellular energy communication and nucleotide metabolism. To demonstrate the significance of this reaction in cardiac energetics, phosphotransfer dynamics were determined by [18O]phosphoryl oxygen analysis using 31P NMR and mass spectrometry. In hearts with a null mutation of the AK1 gene, which encodes the major AK isoform, total AK activity and β-phosphoryl transfer was reduced by 94% and 36%, respectively. This was associated with up-regulation of phosphoryl flux through remaining minor AK isoforms and the glycolytic phosphotransfer enzyme, 3-phosphoglycerate kinase. In the absence of metabolic stress, deletion of AK1 did not translate into gross abnormalities in nucleotide levels, γ-ATP turnover rate or creatine kinase-catalyzed phosphotransfer. However, under hypoxia AK1-deficient hearts, compared with the wild type, had a blunted AK-catalyzed phosphotransfer response, lowered intracellular ATP levels, increased P/ATP ratio, and suppressed generation of adenosine. Thus, although lack of AK1 phosphotransfer can be compensated in the absence of metabolic challenge, under hypoxia AK1-knockout hearts display compromised energetics and impaired cardioprotective signaling. This study, therefore, provides first direct evidence that AK1 is essential in maintaining myocardial energetic homeostasis, in particular under metabolic stress.

Adenylate kinase (AK)1 catalyzes reversible phosphotransfer, 2 ADP → AMP + ATP, and participates in de novo synthesis, regeneration and salvage of adenine nucleotides (1–5). AK is particularly abundant in tissues with high energy turnover, where it facilitates transfer of energy-rich β- and γ-phosphoryls and regulates vital ATP-dependent cellular processes (6–10).

In fact, AK may serve as an integral component of phosphotransfer networks, along with creatine kinase (CK) and glycolysis, effectively coupling ATP-generating with ATP-consuming or ATP-sensing intracellular sites (11–15).

In the heart, CK-catalyzed phosphotransfer is the major pathway that can transfer high energy phosphoryls derived from the γ-phosphoryl of ATP (10, 16–18). Although less active than CK, AK catalysis provides a unique mechanism for transfer and utilization of both γ- and β-phosphoryls in the ATP molecule (10, 15). In this way, AK-catalyzed phosphotransfer doubles the energetic potential of ATP and could provide an additional energetic source under conditions of increased energy demand (10, 19). However, due to lack of membrane-permeant and selective AK inhibitors, the biological importance of AK in heart muscle and its role in sustaining myocardial energetics under conditions of metabolic stress have not been established.

We have recently demonstrated that deletion of the AK1 gene, which encodes the major AK isoform, produces a phenotype with reduced skeletal muscle energetic economy despite multiple metabolic adaptations (20). Here, the contribution of AK1-catalyzed phosphotransfer to cardiac energetics was determined using AK1-deficient hearts. Cellular energetics and phosphotransfer kinetics, under normal and hypoxic conditions, were monitored using a newly developed technique based on [18O]phosphoryl labeling in conjunction with 31P NMR and mass spectrometry. In AK1-knockout hearts, we report a significantly compromised adenine nucleotide β-phosphoryl transfer. Although lack of AK1 appears to be compensated under normal conditions, under hypoxic stress AK1-deficient hearts have a reduced ability to sustain intracellular energetics and cardioprotective signaling. This study demonstrates that AK1-catalyzed phosphotransfer is essential in the maintenance of myocardial energetic homeostasis.

MATERIALS AND METHODS

AK1-knockout Mice—Gene-targeted mice were derived from mouse ES cells carrying a replacement mutation in the AK1 gene using established procedures (12, 13). Complete inactivation of AK1 expression was achieved by homologous DNA recombination, with a HygroB cassette vector used to replace the entire exon 3–5 region in the AK1 gene (Fig. 1A) as described in detail elsewhere (20). In this way, homozygous AK1-deficient (AK1−/−) mice were generated and their hearts compared with those of age-matched wild-type controls (50–50% C57BL/6 × 129/Ola mixed inbred background mice). The investigation conformed to the Guidelines for the Care and Use of Laboratory Animals of the Dutch Council and the National Institutes of Health, and was approved by the Institutional Animal Care and Use Committee at the Mayo Clinic.

Heart Isolation—Wild-type and AK1-knockout mice (40–50 g) were heparinized (250 units, administered intraperitoneally), and anesthetized with pentobarbital (100 mg/kg, administered intraperitoneally). Hearts were rapidly excised, washed from blood, and used immediately.
for [18O]phosphoryl labeling or freeze-clamped in liquid N for enzymatic analysis.

Western Blot and Zymogram Analysis—Homogenates from freshly excised hearts (10% w/v) were prepared in SETH buffer (250 mM sucrose, 2 mM EDTA, 10 mM Tris-HCl (pH 7.4)) at 4°C. Heart samples were diluted 1:1 in 30 mM Na3PO4 buffer (pH 7.4), containing 0.05% v/v Triton X-100, 0.3 mM dithiothreitol and a complete protease inhibitor mixture (Roche Molecular Biochemicals). For Western blot analysis, extracted proteins were separated on 10% SDS-polyacrylamide gels and proteins electrophoretically transferred into nitrocellulose membranes. AK1 and CK-M proteins were detected using anti-mouse AK1 and CK-M antibodies raised in rabbit against purified recombinant proteins produced in *Escherichia coli* (13). Immunocomplexes were visualized by chemiluminescence using goat anti-rabbit immunoglobulin G coupled to horseradish peroxidase. For zymogram analysis, extracts were centrifuged for 20 min at 11,000 × g, and aliquots (1–5 μl) applied to agarose gels. AK1 and CK isoenzymes were separated electrophoretically and stained for enzyme activity (13).

Phosphotransfer Rates—AK- and CK-catalyzed phosphotransfers were measured in intact cardiac muscle using the [18O]phosphoryl-labeling technique (10). This procedure is based on the incorporation of one 18O atom, provided from [18O]water, into inorganic phosphate (Pi) with each act of ATP hydrolysis and the distribution of [18O]-labeled phosphoryls among high energy phosphoryl-carrying molecules depending on the following reactions, shown in Scheme 1.

\[
\begin{align*}
\gamma\text{-ATP} + ^{18}\text{O} \text{H}_2\text{O} &\rightarrow ^{18}\text{O} \text{P} + \text{ADP} \\
^{18}\text{O} \text{P} + \text{ADP} &\rightarrow ^{18}\text{O} \gamma\text{-ATP} \\
^{18}\text{O} \gamma\text{-ATP} + \text{Cr} &\rightarrow ^{18}\text{O} \text{CrP} + \text{ADP} \\
^{18}\text{O} \gamma\text{-ATP} + \text{AMP} &\rightarrow ^{18}\text{O} \beta\text{-ADP} + \text{AMP} \rightarrow ^{18}\text{O} \beta\text{-ATP} + \text{AMP}
\end{align*}
\]

(Scheme 1)

Up to three 18O atoms can be incorporated into phosphoryls of γ-ATP, β-ATP, and creatine phosphate (CrP), while a maximum of four 18O atoms can be incorporated into Pi.

[18O]Phosphoryl Labeling—Isolated hearts were superfused with Krebs-Henseleit (KH) buffer (in mM: NaCl 137, CaCl2 2, MgCl2 1, EDTA 0.05, NaHPO4 1, HEPES 20, glucose 5, NaHCO3 24 (pH 7.45)) saturated with 95% O2, 5% CO2, and paced at a constant rate of 2 Hz using platinum electrodes. Under this condition, due to a small size and thin walls, hearts continuously beat and preserve intracellular adenine nucleotide ratios throughout the duration of experiments (Ref. 21; see also Fig. 2A). In control protocols, hearts were incubated for 3 min in KH buffer then transferred for an additional 3 min to a KH buffer supplemented with 20% of 18O-containing water. In hypoxia-simulated protocols, the mitochondrial cytochrome c oxidase inhibitor KCN (2 mM) was added to buffers. At the 6-min point, hearts were freeze-clamped, pulverized in mortar with liquid N, and extracted in a solution containing 600 mM HClO4 and 1 mM EDTA. Proteins were pelleted by centrifugation (15,000 × g, 10 min) and protein content determined with a D2 Protein Assay kit (Bio-Rad). Extracts were neutralized with 2 mM KHCO3 and used for determination of 18O labeling by 31P NMR spectroscopy and mass spectrometry.

31P NMR Spectroscopy—18O incorporation in γ-phosphoryl of ATP or phosphoryls of CrP was measured by 31P NMR spectroscopy. 18O incorporation induces an isotope shift in the 31P NMR spectrum and is used to study enzymatic reactions in vitro (22). Based on this principle, we here developed a novel approach to monitor phosphotransfer kinetics in intact heart muscle. Perchloric acid extracts were pre-cleaned with Chelex 100 resin (Sigma), supplemented with 2 mM EDTA and methylene diphosphonate. Samples, concentrated by vacuum-centrifugation to obtain higher NMR signals, were supplemented with deuterium water (10%). 31P NMR spectra were recorded at 202.5 MHz on a Bruker 11 T spectrometer (Avance) in 5-mm tubes at 5°C. In hearts superfused with regular, 18O-containing medium, CrP appears as a single peak in the NMR spectrum (Fig. 1B, left panel). In 18O-containing medium, CK-catalyzed incorporation of 18O into CrP results in the appearance of 18O and 18O phosphoryl species (Fig. 1B, right panel). Conversely, the CrP 31P NMR signal is split into three peaks corresponding to 18O, 18O1, and 18O2 phosphoryl species (Fig. 1B, right panel). At 20% of 18O-containing water, a fourth peak, corresponding to 18O3 phosphoryl species, was usually at the limit of detection. Isope shifts were also observed following incorporation of 18O into phosphoryls of γ-ATP.

Percentages of 18O, 18O1, 18O2, and 18O3 phosphoryl species in γ-ATP and CrP were proportional to the integrals of respective lines in the NMR spectrum. The cumulative percentage of phosphoryl oxygen replaced by 18O in γ-ATP and CrP was calculated as (%18O + %18O2 + %18O3) + 100. Percentage of 18O incorporation to 18O incorporation into CrP, β-ATP, or γ-ATP, 31P NMR ([18O]phosphoryl-labeling values for γ-ATP obtained by 31P NMR correlated well (r = 0.94) with those obtained by mass spectrometry. Although the 31P NMR ([18O]phosphoryl-labeling technique is faster than mass spectrometry, its lower sensitivity precludes reliable monitoring of slow 18O incorporation of β-ATP under our experimental conditions. Therefore, [18O]phosphoryl labeling of β-ATP was determined by mass spectrometry.

Mass Spectrometry—Incorporation of 18O into β-phosphoryls of ATP was determined by mass spectrometry using established procedures (10, 19). ATP from heart extracts was purified and quantified by high performance liquid chromatography (HPLC System Gold, Beckman) using a Mono Q HR 5/5 ion-exchange column (Amersham Pharmacia Biotech). Elution was accomplished using a linear gradient of triethylammonium bicarbonate buffer (pH 8.8) from 1 to 950 mM. The β-phosphoryl of ATP was transferred to glycerol by a combined catalytic action of AK and glycerokinase. Samples that contained phosphoryls of β-ATP, as glycerol 3-phosphate, were converted to a respective trimethylsilyl derivative using Tri-Si/BSA (Pierce) as the derivatization agent. Enrichment of phosphoryls in glycerol 3-phosphates was determined with a Hewlett-Packard 5973 gas chromatograph-mass spectrometer operated in the select ion-monitoring mode. Specifically, mass ions (m/z) of 357, 359, 361, and 363 that correspond to phosphoryl species of 18O0, 18O1, 18O2, and 18O3 were determined. The cumulative percentages of phosphoryl oxygen replaced by 18O in β-ATP were calculated as described above.

Metabolite Levels—Adenosine, AMP, ADP, and ATP were purified and quantified with HPLC (10). The levels of ATP, CrP, and P were determined using 31P NMR spectroscopy comparing respective peak areas with peak area of 250 nmol of methylene diphosphonate used as an internal standard (23).

Gene Activity—Frozen samples were powdered in liquid N with mortar and pestle and extracted with 150 mM NaCl, 60 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.2% Triton X-100, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml leupeptin, and 1 μg/ml aprotinin. Extracts were centrifuged (10 min, 8,000 × g, 4°C), and enzyme activities measured using coupled enzyme assays with a Beckman DU 7400 spectrophotometer at 340 nm. The activity of CK was measured with a commercial kit (47-20, Sigma). The activity of AK was measured in 100 mM potassium acetate, 10 mM HEPES (pH 7.5), 20 mM glucose, 4 mM MgCl2, 2 mM NADP+, 2 mM ADP, 2 mM EDTA, 2 mM diethiothreitol, 4.5 μM units hexokinase, and 2 units/ml glucose-6-phosphate dehydrogenase (10, 15). The activity of 3-phosphoglycerate kinase (PGK) was measured using a reaction mixture containing 50 mM imidazole buffer (pH 7.6), 2 mM MgCl2, 0.1 mM EDTA, 1 mM ATP, 5 mM 3-phosphoglycerate, 0.2 mM NADH, and 0.1 unit/ml 3-phosphoglycerate dehydrogenase. The reaction was started by addition of 40 μl of heart extract. Changes in absorbance were recorded at 340 nm.

Statistical Analysis—Data are expressed as mean ± S.E. The Student’s t test for unpaired samples was used for statistical analysis, and a difference at p < 0.05 was considered significant.

RESULTS

AK1-knockout Heart Energetics under Control Conditions—A targeted replacement mutation in the AK1 gene was engineered2 by positioning the HygroB selection cassette in lieu of the exon 3–5 segment of the AK1 gene, which normally encodes the ATP-binding domain of the protein (Fig. 1A). That the mutant AK1 allele was rendered dysfunctional was confirmed in heart muscle extracts, which demonstrate lack of AK1 mRNA, absence of AK1 protein (Fig. 2A, left panel), and loss of AK1-related enzymatic activity (Fig. 2A, right panel). No apparent up-regulation of CK isoforms (Fig. 2A, left panel) and related enzymatic activities (Fig. 2A, right panel) was detected following deletion of AK1.

In the wild-type mouse heart, total AK activity was 1180 ± 220 nmol of ATP·min⁻¹·mg of protein⁻¹ (Fig. 2B). In the AK1-knockout, total cardiac AK activity was dramatically reduced to 65 ± 2 nmol of ATP·min⁻¹·mg of protein⁻¹ (Fig. 2B).

AK1 Gene Knockout Heart under Metabolic Stress

41425
Thus, total AK activity in AK1-knockout hearts was diminished by more than 94% when compared with the wild-type. The remaining 6% of AK activity could be attributed to minor AK isoforms, such as AK2, still present in AK1-knockout hearts.\(^2\)

In fact, we observed a reduction in \(\beta\)-phosphoryl transfer by only 36% (see Fig. 4B), suggesting a marked compensatory up-regulation of phosphoryl flux through remaining minor AK isoforms.

Nucleotide levels in wild-type (\(n = 5\)) and AK1-knockout (\(n = 5\)) hearts were not significantly different (Fig. 3A). AMP was 4.9 ± 0.8 and 5.7 ± 0.7 nmol/mg of protein\(^{-1}\), ADP was 11.1 ± 0.8 and 10.9 ± 0.5 nmol/mg of protein\(^{-1}\), while ATP was 29.3 ± 1.6 and 26.2 ± 2.8 nmol/mg of protein\(^{-1}\), in the wild-type and AK1-knockout hearts, respectively. Moreover, the percentage of phosphoryl oxygens replaced by \(^{18}\)O in CrP, was essentially the same in wild-type (77 ± 3%; \(n = 4\)) and AK1-knockout (77 ± 4%; \(n = 4\)) hearts (Fig. 4A). However, the activity of the glycolytic phosphotransfer enzyme, PGK, was significantly increased from 370 ± 20 to 560 ± 60 nmol of 1,3-diphosphoglycerate/mg of protein\(^{-1}\), in wild-type (\(n = 4\)) and AK1-knockout (\(n = 3\)) hearts, respectively (\(p < 0.05\); Fig. 3D). Thus, under control conditions, deletion of the AK1 gene, which produces marked reduction in total myocardial AK activity, did not translate into abnormal nucleotide levels or ATP production. Moreover, in AK1-deficient hearts, there was no change in CK activity and CK-catalyzed phosphotransfer, but rather a compensatory increase in the activity of PGK, a key phosphotransfer enzyme in the glycolytic pathway (14).

Deficient Energetics in the AK1-knockout Heart under Hypoxic Stress—Available evidence indicates that AK-catalyzed phosphotransfer increases under metabolic stress (14, 19). Therefore, the absence of AK1, the major AK isoform in heart muscle of AK1-knockout mice. As a control, Western blot of the CK-M isofrom is also shown. Zymogram analysis (right panel) of heart homogenates shows abundant AK1, along with mitochondrial (CK-MIT), muscle type (CK-MM), and muscle brain type (CK-MB) creatine kinase isoenzyme activity. The brain type (CK-BB) is marginally expressed. Heart tissue from AK1-knockout mice lacks AK1 activity, but retains creatine kinase isoenzyme activities. B, total AK activity in extracts from wild-type (\(n = 4\)) and AK1-knockout (\(n = 3\)) hearts. AK activity was measured spectrophotometrically in the direction of ATP formation. Asterisk indicates significant difference between the two groups.
and AK1-knockout hearts (Fig. 4B), from 10 ± 0.4% to 25 ± 3.3% (p < 0.01; n = 4), and from 6.5 ± 0.2% to 11 ± 1.5% (p < 0.05; n = 4), respectively. Although AK-catalyzed phosphotransfer was activated by hypoxia, the increase was markedly lower in the AK1-knockout than wild-type, 67% and 147%, respectively (Fig. 4B). In addition, under hypoxia, ATP levels dropped to 22.1 ± 1.3 in the wild-type (n = 5), and even further, to 16.6 ± 1.9 nmol-mg of protein⁻¹, in AK1-knockout hearts (n = 5; Fig. 4C). Thus, under hypoxic stress, ATP levels are significantly lower in AK1-deficient compared with wild-type hearts (p < 0.05; Fig. 4C). Moreover, the P_i/ATP ratio, an index of cardiac energetic deficit, was significantly higher (4.0 ± 0.6 versus 2.6 ± 0.3; p < 0.05) in AK1-knockout (n = 5) compared with wild-type (n = 5) hearts. Thus, under hypoxic stress, a null mutation in the AK1 gene translates into a blunted increase in AK-catalyzed phosphotransfer and is associated with lower ATP levels and higher P_i/ATP ratio.

Adenosine is a potent trigger of cardioprotective processes in the heart under metabolic stress (28–29). Although adenosine significantly increased in wild-type hearts under hypoxia (from 3.2 ± 1.4 to 7.7 ± 1.5 nmol-mg protein⁻¹; p < 0.05), it remained essentially at base-line levels in AK1-knockout hearts exposed to the same hypoxic stress (from 4.2 ± 0.8 to 3.3 ± 0.6 nmol-mg of protein⁻¹; p > 0.05) (Fig. 5). Thus, deletion of the AK1 gene compromises the ability of cardiac muscle to generate a cardioprotective mediator under hypoxia.

FIG. 4. Reduced ability of AK1-knockout hearts to maintain cellular energetics in hypoxia. Hypoxia was induced by 2 mM KCN. A, percentage of creatine phosphate phosphoryl oxygens replaced with [18O], as an indicator of CK-catalyzed phosphotransfer, in wild-type (n = 4) and AK1-knockout (AK1-KO; n = 4) hearts under control (open) and hypoxic (filled) conditions. B, percentage of β-ATP phosphoryl oxygens replaced with 18O, as an indicator of AK-catalyzed phosphotransfer, in wild-type (n = 4) and AK1-knockout (n = 4) hearts under control (open) and hypoxic (filled) conditions. CK- and AK-catalyzed phosphotransfers were assessed by the [18O]phosphoryl labeling technique. C, ATP levels in wild-type (n = 5) and AK1-knockout (n = 5) hearts measured by 31P NMR under control (open) and hypoxic (filled) conditions. D, P_i/ATP ratio, an index of the energetic status, in wild-type (n = 5) and AK1-knockout (n = 5) hearts measured by 31P NMR under control (open) and hypoxic (filled) conditions. In hypoxia, ATP was significantly reduced while P_i/ATP ratio increased in AK1-KO compared with wild-type.

FIG. 3. AK1-knockout hearts have preserved nucleotide levels, ATP turnover, and CK activity, but increased PGK activity. A, HPLC chromatograms of nucleotide profiles in wild-type (WT; left panel) and AK1-knockout (AK1-KO; right panel) heart extracts under control conditions. B, percentage of γ-ATP phosphoryl oxygens replaced with [18O] in wild-type (n = 4) and AK1-KO hearts (n = 4) as an indicator of total ATP production. C, PGK activity in WT (n = 4) and AK1-KO (n = 3) hearts. PGK activity was measured spectrophotometrically in the direction of ATP formation. D, PKG activity in WT (n = 4) and AK1-KO (n = 3) hearts. PKG activity was measured spectrophotometrically in the direction of 1,3-diphosphoglycerate formation. Asterisk indicates significant difference between groups.

and AK1-knockout hearts (Fig. 4B), from 10 ± 0.4% to 25 ± 3.3% (p < 0.01; n = 4), and from 6.5 ± 0.2% to 11 ± 1.5% (p < 0.05; n = 4), respectively. Although AK-catalyzed phosphotransfer was activated by hypoxia, the increase was markedly lower in the AK1-knockout than wild-type, 67% and 147%, respectively (Fig. 4B). In addition, under hypoxia, ATP levels dropped to 22.1 ± 1.3 in the wild-type (n = 5), and even further, to 16.6 ± 1.9 nmol-mg of protein⁻¹, in AK1-knockout hearts (n = 5; Fig. 4C). Thus, under hypoxic stress, ATP levels are significantly lower in AK1-deficient compared with wild-type hearts (p < 0.05; Fig. 4C). Moreover, the P_i/ATP ratio, an index of cardiac energetic deficit, was significantly higher (4.0 ± 0.6 versus 2.6 ± 0.3; p < 0.05) in AK1-knockout (n = 5) compared with wild-type (n = 5) hearts. Thus, under hypoxic stress, a null mutation in the AK1 gene translates into a blunted increase in AK-catalyzed phosphotransfer and is associated with lower ATP levels and higher P_i/ATP ratio.

Adenosine is a potent trigger of cardioprotective processes in the heart under metabolic stress (28–29). Although adenosine significantly increased in wild-type hearts under hypoxia (from 3.2 ± 1.4 to 7.7 ± 1.5 nmol-mg protein⁻¹; p < 0.05), it remained essentially at base-line levels in AK1-knockout hearts exposed to the same hypoxic stress (from 4.2 ± 0.8 to 3.3 ± 0.6 nmol-mg of protein⁻¹; p > 0.05) (Fig. 5). Thus, deletion of the AK1 gene compromises the ability of cardiac muscle to generate a cardioprotective mediator under hypoxia.

DISCUSSION

Although AK was discovered half a century ago and implicated in the regulation of energy metabolism (2, 14, 30), the significance of this phosphotransfer enzyme in myocardial energetic homeostasis has not been established (10). Here, using the knockout approach to delete the AK1 gene, along with the [18O]phosphoryl oxygen exchange analysis to monitor cellular phosphotransfer dynamics, we provide direct evidence for a critical role of AK in sustaining cardiac energetics and promoting a cardioprotective response under hypoxic conditions.

Hearts from gene-targeted mice with a null mutation of the AK1 gene lacked AK1 protein expression, which was associated with a dramatic reduction in total cardiac AK activity. This corroborates the observed absence of AK1 gene products and AK1 activity in other tissues of these AK1-knockout mice.2
AK1 Gene Knockout Heart under Metabolic Stress

In summary, this study demonstrates that AK1 is an integral component of cardiac energetic homeostasis facilitating transduction of adenosine-nucleotide-associated signals into cellular response to metabolic stress. Although lack of AK1 is apparently compensated under normal conditions, absence of AK1 under hypoxic stress translates into pronounced energetic deficit associated with lowered ATP levels and depressed generation of adenosine, a major endogenous cardioprotective mediator. Thus, AK-catalyzed phosphotransfer could provide a previously unrecognized target in promoting cardiac tolerance to metabolic challenge.

REFERENCES

1. Klethi, J., and Mandel, P. (1968) *Nature* **218**, 467–468
2. Noda, L. H. (1973) in *The Enzymes* (Boyer, P. D., ed) pp. 279–305, Academic Press, New York
3. Schulz, G. E. (1987) *Cold Spring Harbor Symp. Quant. Biol.* **52**, 429–439
4. Tanabe, T., Yamada, M., Nomura, T., Kajii, T., and Nakawaka, A. (1993) *J. Biochem.* **113**, 200–207
5. Laterveer, P. D., Nicolay, K., and Kellerer, P. (1997) *Mol. Cell. Biochem.* **174**, 43–51
6. Zeleznikar, R. J., Heyman, R. A., Graeff, R. M., Walseh, T. F., Davis, S. M., Butts, E. A., and Goldberg, N. D. (1990) *J. Biol. Chem.* **265**, 300–311
7. Elvir-Mairena, J. R., Jovanovic, A., Gomez, L. A., Alekseev, A. E., and Terzic, A. (1996) *J. Biol. Chem.* **271**, 31963–31968
8. Olsen, L. K., Schroeder, W., Robertson, R. P., Goldberg, N. D., and Walseh, T. F. (1996) *J. Biol. Chem.* **271**, 16544–16552
9. Dzeja, P. P., and Terzic, A. (1994) *FASEB J.* **8**, 523–529
10. Dzeja, P. P., Vitkevicius, K. T., Redfield, M. M., Burnett, J. C., and Terzic, A. (1999) *Circ. Res.* **84**, 1137–1143
11. Bessman, S. P., and Geiger, P. J. (1981) *Science* **211**, 448–452
12. van Deursen, J., Heerschap, A., Oerlemans, F., Ruimbeek, W., Jap, P., ter Laak, H., Wieringa, B. (1993) *Cell* **74**, 621–631
13. Steeghs, K., Benders, A., Oerlemans, F., de Haan, A., Heerschap, A., Ruimbeek, W., Jost, C., van Deursen, J., Perryman, R., Pette, D., Bruckwilder, M., Koudijs, J., Jap, P., Veerkamp, J., and Wieringa, B. (1997) *Cell* **88**, 93–103
14. Dzeja, P. P., Zeleznikar, R. J., and Goldberg, N. D. (1998) *Mol. Cell. Biochem.* **184**, 169–182
15. Dzeja, P. P., Pucar, D., Redfield, M. M., Burnett, J. C., and Terzic, A. (1999) *Mol. Cell. Biochem.* **201**, 35–40
16. Sausa, R. W., Spindler, M., Tian, R., and Ingwall, J. S. (1998) *Circ. Res.* **82**, 353–363

Fig. 5. Blunted adenosine production in AK1-knockout hearts in hypoxia. Adenosine levels in wild-type (*n* = 5) and AK1-knockout (*n* = 5) heart extracts measured by HPLC are shown.

Condition	Adenosine nmol/mg protein
Wild-type	8.0
AK1-KO	2.0

In addition to an energetic function, AK has a distinct signaling role through generation of AMP and activation of AMP-dependent processes (9, 38, 39), including opening of ATP-sensitive potassium (KATP) channels (7) and adenosine production (40, 41). This is of significance in view of the role that these AK-catalysis dependent events play in protecting the myocardium under hypoxic insult (37). In fact, AK gene expression is induced by hypoxia (47), and agents that increase AK activity are beneficial in preserving tissue functions under hypoxic conditions (48). Therefore, the absence of hypoxia-induced adenosine production observed here in AK1-knockout hearts may reduce the ability of AK1-deficient heart muscle to withstand hypoxic injury. Moreover, reduced AK phosphotransfer in AK1-deficient hearts may further alter the behavior of KATP channels, which sense changes in cellular metabolism, and contribute to cellular protection (28, 42–46). In this way, the energetic disbalance of AK1-deficient hearts would be further aggravated by compromised cardioprotective signaling under metabolic stress.
