Multiplying the heterologous production of spinosad through tandem amplification of its biosynthetic gene cluster in *Streptomyces coelicolor*

Hong Li,1,2 Yuanyuan Pan1 and Gang Liu1,2,3,*

1State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
2University of Chinese Academy of Sciences, Beijing, 100049, China.
3The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100864, China.

Summary

Heterologous expression of the biosynthetic gene cluster (BGC) is important for studying the microbial natural products (NPs), especially for those kept in silent or poorly expressed in their original strains. Here, we cloned the spinosad BGC through the Cas9-Assisted Targeting of Chromosome segments and amplified it to five copies through a ZouA-dependent DNA amplification system in *Streptomyces coelicolor* M1146. The resulting strain produced 1253.9 ± 78.2 μg l⁻¹ of spinosad, which was about 224-fold compared with that of the parent strain carrying only one copy of the spinosad BGC. Moreover, we further increased spinosad to 1958.9 ± 73.5 μg l⁻¹ by the dynamic regulation of intracellular triacylglycerol degradation. Our study indicates that tandem amplification of the targeted gene cluster is particularly suitable to enhance the heterologous production of valuable NPs with efficiency and simplicity.

Introduction

Microorganisms in a variety of habitats possess great potentials in mining natural products (NPs), and have been recognised as excellent sources for discovering and developing pharmaceutical drugs (Newman and Cragg, 2012; Blunt et al., 2015; Katz and Baltz, 2016). With stepping into the post-genomic era, microbial DNA sequencing has revealed a huge number of biosynthetic gene clusters (BGCs) for NP production (Luzhetsky and Pelzer, 2007). However, most microbes are uncultivable or not amenable to genetic operability under the laboratory conditions (Rebets et al., 2014). To solve this problem, heterologous expression of the target BGCs in the genetically tractable host has been used (Yamanaka et al., 2014; Montiel et al., 2015; Huo et al., 2019). *Streptomyces* is the most important source of NPs and produces kinds of cellular intermediates of NPs with complex structures (Komatsu et al., 2013; Tan and Liu, 2017). Consequently, heterologous production of NPs is preferably performed in *Streptomyces* sp., especially in the strains with fully sequenced genome such as *Streptomyces coelicolor* (Jones et al., 2013; Zhang et al., 2013).

Many BGCs for NPs (Ripp, NRPS, PKS etc.) have been successfully expressed in *S. coelicolor* so far (Flinspach et al., 2010; Gomez-Escribano and Bibb, 2013; Ongley et al., 2013; Yamanaka et al., 2014). *S. coelicolor* M1146, which has been constructed by deleting four BGCs (act, red, cpk and cda) to remove the potential competition for acetyl-CoA, is considered as the super host for heterologous production of polyketides (Coze et al., 2013; Gomez-Escribano and Bibb, 2011, 2013; Nitta et al., 2021).

During fermentation process, *Streptomyces* undergoes a metabolic conversation from primary metabolism to secondary metabolism (Nieselt et al., 2010; Hwang et al., 2014). Since the intracellular triacylglycerol (TAG) metabolic process has been proven to direct carbon flux to polyketide biosynthesis at stationary phase, a strategy of TAG dynamic degradation (ddTAG) was used for mobilising the cellular TAG pool with selective control of time and strength to promote the precursor for the polyketide biosynthesis (Wang et al., 2019). Therefore, the ddTAG strategy used in *S. coelicolor* M1146 could further increase the polyketide production.

For heterologous production of NPs, direct cloning the target BGC is an imperative step. Thus, many kinds of methods have been developed such as RecE/T (Fu et al., 2012; Wang et al., 2016), TAR cloning (Larionov...
nosad biosynthesis including intramolecular cycloaddition, methylation (Matsushima et al., 2009; Li and Elledge, 2012). However, these techniques have limitations since they are dependent on the unique restriction sites flanking the targeted BGC. In 2015, a Cas9-Assisted Targeting of CHromosome segments (CATCH) technique was developed and used for one-step targeted cloning the near-arbitrary, large gene clusters up to 100 kb (Jiang et al., 2015; Jiang and Zhu, 2016). This technique facilitates BGC cloning and subsequent heterologous expression.

Since phylogenetic distance between the native producer and the heterologous host as well as the complex native regulation, the biosynthesis of NPs in heterologous host has extremely low efficiency or even no process (Martin et al., 2003; Komatsu et al., 2013; Galanie et al., 2015). This situation is detrimental to the heterologous expression of BGCs. Although the BGCs could be viewed as ‘production lines’ of NPs, it is usually hard to rationally and systematically identify the rate-limiting step in the biosynthetic pathway of NPs. A ZouA-dependent DNA amplification system (ZouA system) derived from Streptomyces kanamyceticus was applied for targeted amplifying the bacterial BGCs, and thus increasing the corresponding NP yield through multiplying the ‘production lines’ (Yanai and Murakami, 2006; Murakami et al., 2011; Zhou and Kim, 2014; Li et al., 2021). Consequently, this system could be used as a convenient strategy to enhance the heterologous production of NPs.

Spinosad, a novel insecticide with exceptional environmental safety, has been widely used in agriculture (Mertz and Yao, 1990; Sparks and Crouse, 2001). However, Saccharopolyspora spinosa ATCC49460 as the spinosad native producer is not amenable to genetic manipulation due to its genomic DNA with high-level methylation (Matsushima et al., 1994). Moreover, the spinosad biosynthesis including intramolecular cycloaddition, crossing-bridging, glycosylation and methylation is very complicated (Fig. S1). Of the biosynthetic genes, nineteen are clustered in a 74-kb region while the other four for the TDP-L-rhamnose biosynthesis are located in three different regions on the chromosome of Sa. spinosa (Madduri and Waldron, 2001; Waldron et al., 2001).

In this study, the heterologous production of spinosad in S. coelicolor was remarkably enhanced through amplifying its BGC by the ZouA system. With the ddTAG strategy, the heterologous production of spinosad in S. coelicolor was further increased to 1958.9 ± 73.5 μg l⁻¹ (347-fold enhancement). This approach (Fig. 1), especially the ZouA system is likewise expected to become a generally tool for efficient heterologous production of the valuable NPs.

Result and discussion

Direct cloning the spinosad BGC on a plasmid carrying the ZouA system

To amplify the spinosad gene cluster under the control of the ZouA system, a plasmid pLHH001 carrying the elements including zouA-RsA, kanR and RsB was constructed based on pSET152 (Kieser et al., 2000). Then, the TDP-L-rhamnose biosynthetic genes (gtt, gdh, kre and epi) with their native promoters were amplified respectively from Sa. spinose ATCC49460 and sequentially cloned into pLHH001 in the given order gtt-gdh-kre-epi (which was named as the TDP-L-rhamnose biosynthesis mini-cluster) to generate pLHH002 (Fig. 2). Two 500 bp DNA fragments from both sides of the spinosad BGC were amplified and each ended with 30 bp sequences overlapping with the target DNA. Both of them were cloned into pLHH002 to generate pLHH003, and a Swal site was designed between these two fragments. Finally, the 74.6-kb spinosad BGC was directly cloned by CATCH and inserted into the Swal site flanking the TDP-L-rhamnose biosynthesis mini-cluster in

Fig. 1. The conceptual diagram of enhancing the heterologous production of spinosad through tandem amplification of the spinosad BGC and dynamic regulation of the precursors. The BGC of NPs was directly cloned into the plasmid carrying the ZouA system and then was transferred into the heterologous host. Subsequently, the recombinant strains with the amplified BGC were acquired by the ZouA system. Finally, engineering of the primary metabolism was performed to supply the precursors to adapt to the multiple BGCs in the heterologous host for the efficient heterologous production of the valuable NPs.

© 2021 The Authors. *Microbial Biotechnology* published by Society for Applied Microbiology and John Wiley & Sons Ltd., *Microbial Biotechnology*, 15, 1550–1560
pLHH003 to yield pLHH004 (Fig. 2). The colonies on the LB agar were selected and verified by amplifying the target genes flanking the spinosad BGC. After isolated, the recombinant plasmid pLHH004 was confirmed by restriction analysis (Fig. S2). The schematic diagram of plasmid construction is shown in Fig. 2.

Tandem amplification of the spinosad BGC in S. coelicolor

For heterologous production of spinosad, *S. coelicolor* M1146 was chosen as the host strain. Since it has been reported that the ddTAG strategy could increase...
polyketide biosynthesis and SCO6196 was responsible for degradation of TAG in *S. coelicolor* (Wang et al., 2020), we transformed the plasmid pSET152-DT carrying the SCO6169 gene under the control of a cumate-inducible promoter into *S. coelicolor* M1146 to yield the chassis strain M1146-DT. Then, pLH004 carrying the complete spinosad BGC under the control of the ZouA system was transferred into M1146-DT to generate the recombinant strain IMSC001. M1146-DT and IMSC001 were verified by PCR respectively (Fig. S3).

To amplify the spinosad BGC through the ZouA system, the kanamycin selective enrichment was performed and subsequently the recombinant strain IMSC002, which carries multicopies of the spinosad BGCs was obtained through continuous passage. The schematic diagram of selective enrichment for generating the tandem repeats of spinosad BGC according to the mechanism of the ZouA system is shown in Fig. 3A. After kanamycin selective enrichment, the copy number of the spinosad BGC in IMSC001 and IMSC002 was determined by qPCR. Compared with IMSC001, which contains only one copy of the spinosad BGC, IMSC002 contains five copies of the spinosad BGCs (Fig. 3B).

Amplification of its BGC remarkably enhances the spinosad production in *S. coelicolor*

To test the spinosad production in *S. coelicolor*, fermentation of IMSC001 and IMSC002 was performed. The heterologous production of spinosad was analysed by high-resolution HPLC-MS. The production of spinosad was confirmed in the fermentation broth of IMSC001 and IMSC002 (Figs 4 and S4). As transcriptional level of the biosynthetic genes could indicate the biosynthetic level of spinosad, the transcriptions of all PKS genes (spnA–spnE), eight modification genes in the spinosad BGC and the TDP-α-rhamnose biosynthetic genes were analysed by RT-PCR after 8 days of fermentation (Fig. 5A and B). All detected genes were successfully transcribed in IMSC001 and IMSC002, indicating that the spinosad biosynthetic genes could be expressed in *S. coelicolor*. In consistence, IMSC001 produced a trace amount of spinosad consisting of only spinosyn D (5.6 ± 1.2 μg l⁻¹), while IMSC002 carrying five copies of the spinosad BGCs produced more spinosad consisting of spinosyn A and D up to 1253.9 ± 78.2 μg l⁻¹ (Fig. 5C and D). Under the congruent PCR conditions, the intensity of RT-PCR products indicated the transcriptional level of corresponding genes. In this study, all detected genes in IMSC001 were transcribed at a lower level, especially for *spnC, spnE, spnH, spnl, spnM* and *gdh* (Fig. 5B), possibly resulting in the low spinosad production. The transcriptional level of the spinosad biosynthetic genes in IMSC002 was significantly enhanced and the spinosad production was increased by 224-fold compared with that of IMSC001 (Fig. 5B–D). These results demonstrated that tandem amplification of the spinosad BGC by the ZouA system remarkably enhanced the spinosad production in *S. coelicolor*.

Low or undetectable production of the target NPs in the heterologous host is generally resulted from inadequate expression of the BGC. To sufficiently produce the target NPs, improving the expression of target BGC is required. It has been reported that transcriptional factor was decoyed through amplifying the *cis*-acting element to release the repressors from the regulatory region and the silent BGC was activated (Wang et al., 2019). Similarly, amplifying the spinosad BGC could de-repress the expression of the biosynthetic genes and thus significantly enhanced the spinosad production in IMSC002.
Although IMSC002 contains five copies of the BGCs, the transcriptional level of spinosad biosynthetic genes was not totally consistent with IMSC001, which contains single copy of spinosad BGC (Figs 3B and 5B). This result may be attributed to the complex regulation of spinosad biosynthesis and the variation of transcription of different genes in the spinosad BGC.

Generally, there are two methods for improving heterologous expression efficiency. One is to overexpress the genes for the rate-limiting steps based on analysis and identification of the rate-limiting steps of the NP biosynthesis pathway. This method is required for the complex analysis of multomics and the rate-limiting steps in the biosynthetic pathway. Another is to replace the native promoters by the strong promoters and reconstruct the BGC. This method is time-consuming and labour-intensive. Compared with above two methods, enhancing the spinosad heterologous production with tandem amplification of the BGC is simplicity and efficiency. However, the amplification efficiency of the ZouA system is dependent on the selective enrichment. As we know, the resistance of the recombinant strain against the antibiotics is not completely dependent on the expression of the resistance genes. When the antibiotic is used for the selective enrichment, the copy number of the amplified cluster could not continue to rise with the increase of the antibiotic concentration. Moreover, the genetic stability of recombinant strains obtained by ZouA system is also heavily dependent on selection pressures, which generally maintained by the high concentration of the corresponding antibiotics. Since it is impractical to add high concentration of antibiotics during fermentation in industry, the ZouA system has not been widely used in strain improvement. For the industrial application, the antibiotic selection marker could be replaced by the nutrition selection marker in the recombinant strains.

Improvement of the spinosad production through dynamic regulation of TAG degradation in *S. coelicolor*

Our study demonstrated that the BGC could be viewed as the ‘production line’ of NPs. The spinosad production has been remarkably enhanced through amplifying the spinosad BGC to five copies by the ZouA system. Meanwhile, the amplified ‘production lines’ need appropriate amount of ‘materials’ to efficiently produce the target NP.
It has been reported that the ddTAG strategy of mobilising the TAG pool with control of time and strength could supply appropriate precursors and increase the yield of polyketides such as actinorhodin, jadomycin B, oxytetracycline and avermectin significantly (Wang et al., 2020).

As spinosad is the polyketide compound, the ddTAG strategy could be used to regulate the supply of precursors in IMSC002 with selective control of time and strength. The ddTAG strategy and the brief illustration of mobilising TAGs to spinosad biosynthesis are illustrated in Fig. 6A. IMSC002 was chosen for fermentation to screen the optimal time and concentration of cumate which was used as inducer of the SCO6169 expression (Fig. S5). In the optimal conditions (adding 50 μM of cumate in the fermentation culture at 96 h), the spinosad production was increased to 1958.9 ± 73.5 μg l⁻¹ (Fig. 6B and C).

The production of NPs can be increased through overexpressing the rate-limiting biosynthetic genes. It has been reported that the heterologous production of spinosad was increased up to 1500 μg l⁻¹ in S. albus 1074 after step by step overexpressing three rate-limiting biosynthetic genes (Tan et al., 2017). Besides, the spinosad production in S. albus 1074 reached to 1100 μg l⁻¹.
when the whole spinosad gene cluster was reconstructed with the strong promoters (Song et al., 2019). However, both identification of the rate-limiting steps and reconstruction of the spinosad BGC are time consuming and tedious. In our study, tandem amplification of the BGC by the ZouA system in IMSC002 remarkably enhanced the spinosad production to 1253.9 ± 78.2 μg l⁻¹. Using the ddTAG strategy further enhanced its production up to 1958.9 ± 73.5 μg l⁻¹. Our study suggests that amplification of the BGC could be the simple and fast tool for heterologous production of the target NPs.

Concluding remarks

In summary, we applied a strategy of amplifying the spinosad BGC with the ZouA system in S. coelicolor and remarkably enhanced the heterologous production of spinosad. Based on our results, tandem amplification of the BGC by the ZouA system should be a simple and valuable tool for heterologous production of the target NPs in Streptomyces.

Experimental procedures

Bacteria, plasmids and culture conditions

The bacteria and plasmids used in this study are listed in Table S1. Escherichia coli and its derivatives were cultured at 37°C in the LB medium supplemented with 25 μg ml⁻¹ of chloramphenicol, 100 μg ml⁻¹ of kanamycin, 100 μg ml⁻¹ of apramycin, or 100 μg ml⁻¹ of ampicillin. Streptomyces coelicolor and its derivatives were cultured on the soybean flour-mannitol agar plates (2%
(W/V), soybean flour, 2% (W/V) mannitol and 2% (W/V) agar for sporulation and conjugation or the tryptone soy broth (TSB) for *Streptomyces coelicolor* growth and the genomic DNA extraction.

Construction of the plasmid carrying the ZouA system

The genomic DNA was isolated from *Sa. spinose* ATCC49460 and *S. kanamyceticus* CGMCC 4.1441, respectively, using the phenol-chloroform method (Pan et al., 2013). The integrative vector pSET152 was used for heterologous expression of the spinosad BGC in *Streptomyces* (Kieser et al., 2000). The elements of ZouA system including zouA-RsA and RsB were amplified by PCR using the genomic DNA of *S. kanamyceticus* CGMCC4.1441 as the template with the primers zouA-F/R and RsB-F/R respectively (Murakami et al., 2011). Then, a 963 bp fragment containing the kanamycin resistant gene (*kan*) from pUC119 was amplified with the primers *kan*-F/R. Subsequently, these fragments were inserted into pSET152 to generate the plasmid pLHH001 with a Swa site (ATTTAAAT) upstream of *kan* by Gibson Assembly (Gibson et al., 2009). The schematic diagram of pLHH001 construction is shown in Fig. 2.

Construction of the plasmid carrying the spinosad BGC

The TDP-L-rhamnose biosynthetic genes *glt, gdh-kre* and *epi* with their native promoters were amplified by PCR with the corresponding primers (Table S2). The amplified fragments were assembled in the specific *glt-gdh-kre-epi* sequence (collinear with their biosynthetic sequence) and sequentially inserted into the Swa site of pLHH001 to generate pLHH002 with the regenerative Swa site (Fig. 2).

The Cas9-Assisted Targeting of CHromosome segments (CATCH) was used for one-step targeted cloning of the spinosad BGC according to previous reports (Jiang et al., 2015; Jiang and Zhu, 2016). Briefly, a pair of sgRNAs targeting orfR1 and orfR15 (flanking both sides of the spinosad BGC) were designed through searching for the PAM sequence ‘NGG’ near the target region. The templates of sgRNAs in *in vitro* transcription were prepared by overlapping PCR with three primers including RX-sgP containing T7 promoter and target sequence, sgRNA-F and sgRNA-R containing crRNA-trcrRNA chimaera sequence of sgRNA (Table S2). The target sequences and the complete sequence of the sgRNA were shown in Fig. S2. The sgRNAs were transcribed in *in vitro* by T7 RNA polymerase as referred in the instruction (New England Biolabs, Beijing). To obtain the recombinant Cas9, the gene encoding the *Streptococcus pyogenes* Cas9 fused to 6× His-tag at the C terminus was cloned into pET28a and expressed in *E. coli* Rosetta strain after cultured in LB medium at 28°C overnight and induced with 0.5 mM IPTG. The recombinant Cas9 was purified with Ni-NTA column. *Sa. spinose* mycelia were embedded in the agarose gel plugs at a maximal concentration (the agarose gel with extremely viscous). The well-washed gel plugs were stored in the 1× wash buffer at 4°C and used for digesting the genome DNA with the purified Cas9. Two well-washed plugs were transferred into Cas9 cleavage mixture which contained 0.1 mg ml⁻¹ of Cas9 and 30 ng ml⁻¹ of the corresponding sgRNA, and incubated at 37°C for 2 h. After incubation, the gel plugs were melted and digested with the β-agarase I (New England Biolabs, Beijing, China), and purified by ethanol. Finally, the purified DNA was stored at 4°C for ligation. To construct pLHH003, two 500 bp DNA fragments from both sides of the spinosad BGC were amplified and each ended with 30 bp sequences overlapping with the target DNA. These two fragments were cloned into pLHH002, and a Swal site was designed between them. Then, pLHH003 was digested with Swal, and 1 µl of the linearised pLHH003 and 4 µl of the above purified DNA containing the spinosad BGC were added into 5 µl of 2× Gibson Mix. The ligation was performed at 50°C for 1 h. After ligation, the mixture was transferred into *E. coli* S17-1 and the positive clones were screened with PCR and restriction analysis. The positive clone was named pLHH004. The schematic diagram of pLHH004 construction is shown in Fig. 2. In pLHH004, the *kan* as the marker gene in the ZouA system was used for IMSC001 verification. IMSC001 was continuously transmitted for five generations in the TSB medium containing progressively concentrations of kanamycin (50–800 µg ml⁻¹). The diagram of selective enrichment experiment is shown in Fig. 3.

Fermentation and analysis of spinosad

The fermentation was performed according to previous report (Kieser et al., 2000). *S. coelicolor* M1146 and its derivatives carrying pLHH004 were inoculated in 30 ml seed medium (TSB) of 250-ml flasks and cultured at 30°C with shaking (220 rpm) for 4 days; 500 µl of the seed culture was then transferred into 50 ml of the fermentation medium (40 g l⁻¹ glucose, 10 g l⁻¹ glycerol, 30 g l⁻¹ soluble starch, 15 g l⁻¹ soytone, 10 g l⁻¹ beef extract, 6.5 g l⁻¹ peptone, 0.5 g l⁻¹ yeast extract, 1 g l⁻¹ MgSO₄, 2 g l⁻¹ NaCl, 2.4 g l⁻¹ CaCO₃) in 250-ml flasks and incubated at 30°C with shaking (220 rpm) for 12 days as reported (Tan et al., 2017; Song et al., 2019). One millilitre of the adsorber resin Amberlite XAD-16 was added into the fermentation culture after 10 days fermentation (Song et al., 2019). Treatment of the fermentation samples were performed as previously reported for HPLC-MS analysis (Song et al., 2019). HypersilGold AQ, C18, 5 µm, 4.6 × 250 mm (Thermo...
Scientific-CN, Pudong New Area, Shanghai, China) column was used and a calibrated curve was generated with the spinosad standard (CAS#131929-60-7; Shanghai yuanye Bio-technology, Songjiang District, Shanghai, China), analysis of the metabolites by HPLC-MS was performed as previously reported (Tan et al., 2017; Song et al., 2019).

RNA isolation and reverse transcription (RT)-PCR

Total RNA was extracted from IMSC001 and IMSC002 after 8 days of fermentation and RT-PCR were performed as previously reported (Tan et al., 2017). The primers used in RT-PCR were listed in Table S2.

Quantitative PCR

Absolutely quantifying the copy number of metE (GenBank accession no. AM397660.1) and spnF (GenBank accession no. AY007564.1) in the recombinant strains was performed by using Mastercycler® ep realplex equipment (Eppendorf, Germany) and SYBR® Premix Ex Taq™ II PCR kit (Takara, Dalian). As spnF in the spinosad BGC is located in the amplified region between the recombinant sites RsA and RsB while metE is a single copy gene, which is out of the region (Vockenhuber and Heuéis, 2015), the ratio of spnF to metE based on the absolute quantification demonstrates the copy number of the spinosad BGC in the recombinant strains. The quantitative PCR was performed as described previously (Li et al., 2021).

Statistical analysis

All error bars displayed in this study are standard deviations based on the averages of three independent measurements. The data were analysed using the two-tailed Student’s t test to demonstrate the differences in values.

Acknowledgments

We are grateful to Prof. Huarong Tan and Prof. Weishan Wang (Institute of Microbiology, Chinese Academy of Sciences) for providing E. coli ET12567/pUZ8002 and the plasmid pSET152-DT respectively. This work was supported by grants from the National Key Research and Development Program of China (No. 2021YFC2100600) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA28030000).

Conflict of interest

The authors declare that they have no competing interests.

Author contributions

H. Li and G. Liu designed the experiments and conceived the study; H. Li, performed the experiments; H. Li, G. Liu and Y. Pan analysed data; H. Li and G. Liu wrote the manuscript. All authors read and approved the final manuscript.

References

Blunt, J.W., Copp, B.R., Keyzers, R.A., Munro, M.H., and Prinsep, M.R. (2015) Marine natural products. Nat Prod Rep 32:116.

Coze, F., Gilard, F., Tcherkez, G., Virolle, M.J., and Guyonvarch, A. (2013) Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLOS One 8: e84151.

Filnschap, K., Westrich, L., Kaysser, L., Siebenberg, S., Gomez-Escribano, J.P., Bibb, M., et al. (2010) Heterologous expression of the biosynthetic gene clusters of coumermycin A1, chlorobiocin and caprazamycins in genetically modified Streptomyces coelicolor strains. Biopolymers 93: 823–832.

Fu, J., Bian, X., Hu, S., Wang, H., Huang, F., Seibert, P.M., et al. (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30: 440–446.

Galanie, S., Thodey, K., Trenchard, I.J., Interrante, M.F., and Smolke, C.D. (2015) Complete biosynthesis of opioïds in yeast. Science 349: 1095–1100.

Gibson, D.G., Young, L., Chuang, R., Venter, J.C., Hutchison, C.A. III, and Smith, H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345.

Gomez-Escribano, J.P., and Bibb, M.J. (2011) Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb Biotechnol 4: 207–215.

Gomez-Escribano, J.P., and Bibb, M.J. (2013) Heterologous expression of natural product biosynthetic gene clusters in Streptomyces coelicolor: from genome mining to manipulation of biosynthetic pathways. J Ind Microbiol Biotechnol 41: 425–431.

Huo, L., Hug, J.J., Fu, C., Bian, X., Zhang, Y., and Müller, R. (2019) Heterologous expression of bacterial natural product biosynthetic pathways. Nat Prod Rep 36: 1412–1436.

Hwang, K.S., Kim, H.U., Charusanti, P., Palsson, B.O., and Lee, S.Y. (2014) Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol Adv 32: 255–268.

Jiang, W., Zhao, X., Gabrieli, T., Lou, C., Ebenstein, Y., and Zhu, T. (2015) Cas9-Assisted Targeting of Chromosome-segments CATCH enables one-step targeted cloning of large gene clusters. Nat Commun 6: 8101–8108.

Jiang, W., and Zhu, T. (2016) Targeted isolation and cloning of 100-kb microbial genomic sequences by Cas9-assisted targeting of chromosome segments. Nat Protoc 11: 960–975.
Enhancing spinosad heterologous production

Newman, D.J., and Cragg, G.M. (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311–335.

Nieselt, K., Battke, F., Herbig, A., Bruheim, P., Wentzel, A., Jakobsen, O.M., et al. (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genom 11: 10.

Nitta, K., Breitling, R., Takano, E., Putri, S.P., and Fukusaki, E. (2021) Investigation of the effects of actinorhodin biosynthetic gene cluster expression and a rpoB point mutation on the metabolome of Streptomyces coelicolor M1146. J Biosci Bioeng 131: 525–536.

Ongley, S.E., Bian, X., Neilan, B.A., and Müller, R. (2013) Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep 30: 1121–1138.

Pan, Y., Lu, C., Dong, H., Yu, L., Liu, G., and Tan, H. (2013) Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Microb Cell Fact 12: 65–80.

Rebets, Y., Brotz, E., Tokovenko, B., and Luzhetsky, A. (2014) Actinomycetes biosynthetic potential: how to bridge in silico and in vivo? J Ind Microbiol Biotechnol 41: 387–402.

Song, C., Luan, J., Cui, Q., Duan, Q., Gao, Y., Li, R., et al. (2019) Enhanced heterologous spinosad production from a 79-kb synthetic multi-operand assembly. ACS Synth Biol 8: 137–147.

Sparks, T.C., Crouse, G.D., and Durst, G. (2001) Natural products as insecticides: the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Manag Sci 57: 896–905.

Tan, G.Y., Deng, K., Liu, X., Tao, H., Chang, Y., Chen, J., et al. (2017) Heterologous biosynthesis of spinosad: an omics-guided large polyketide synthase gene cluster reconstitution in Streptomyces. ACS Synth Biol 6: 995–1005.

Tan, G.Y., and Liu, T. (2017) Rational synthetic pathway refactoring of natural products biosynthesis in actinobacteria. Metab Eng 39: 228–236.

Vockenhuber, M.P., Heuens, N., and Suess, B. (2015) Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor. PLoS One 10: e0120147.

Waldron, C., Matsushima, P., Rostock, P.R., Broughton, M.C., Turner, J., Madduri, K., et al. (2001) Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa. Chem Biol 8: 487–499.

Wang, B., Guo, F., Dong, S., and Zhao, H. (2019) Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat Chem Biol 15: 111–114.

Wang, H., Li, Z., Jia, R., Hou, Y., Yin, J., Bian, X., et al. (2016) RecET direct cloning and Red/Tr recombination of biosynthetic gene clusters, large operons or single genes for heterologous expression. Nat Protoc 11: 1175–1190.

Wang, W., Li, S., Li, Z., Zhang, J., Fan, K., Tan, G., et al. (2020) Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces. Nat Biotechnol 38: 76–83.

Yamanaka, K., Reynolds, K.A., Kersten, R.D., Ryan, K.S., Gonzalez, D.J., Nizet, V., et al. (2014) Direct cloning and
refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci USA 111: 1957–1962.

Yanai, K., Murakami, T., and Bibb, M. (2006) Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci USA 103: 9661–9666.

Zhang, R., Xia, H., Xu, Q., Dang, F., and Qin, Z. (2013) Recombinational cloning the antibiotic biosynthetic gene clusters in linear plasmid SCP1 of Streptomyces coelicolor A3(2). FEMS Microbiol Lett 345: 39–48.

Zhou, T., Kim, B., and Zhong, J. (2014) Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 98: 7911–7922.

Supporting information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Fig. S1. The biosynthetic pathway of spinosad.

Fig. S2. Verification of the plasmid pLHH004 and the design of sgRNAs. (A) and (B) Amplification of the first gene spnE and the last gene spnS in the spinosad biosynthetic gene cluster by PCR. (C) Restriction analysis of pLHH004 by the HindIII digestion. (D) The plasmid map of pLHH004. The positive colonies are indicated with arrows. The PCR positive and restriction positive colonies (1, 4 and 7) were considered as the right recombinant strains. The primer sequences are listed in Table S2. (E) The sgRNAs were designed for targeting both sides of the spinosad biosynthetic gene cluster. The targeted sequences, cleavage sites and PAM sequences are highlighted.

Fig. S3. Verification of M1146-DT and IMSC001 by PCR. (A) Amplification of aac(3)IV from M1146-DT by PCR. (B) Amplification of kanR from IMSC001 by PCR. (C) Verification of the integrity of spinosad biosynthetic gene cluster in IMSC001 by PCR. Lanes 1–6 show the PCR products of gtt, gdh-kre, epi, spnE, spnB and spnS using the IMSC001 genomic DNA as template. The primers are listed in Table S2.

Fig. S4. Heterologous production of spinosad in IMSC001. (A) HPLC-MS analysis of the spinosad production in IMSC001. STD, the spinosad standard. (B) The MS fragmentation patterns of spinosyn A and spinosyn D produced in IMSC001. STD, the standard spinosyn A and spinosyn D are indicated. The fragment ion at m/z 732.5 and 746.5 are the characteristic spinosyn A and spinosyn D fragments respectively (Song et al., 2019).

Fig. S5. Determination of the optimal conditions for the spinosad production in IMSC002-DT. (A) The optimal time of induction with 30 μM cumate during spinosad production. (B) The optimal dosage of cumate for inducing the spinosad production after 4 days of fermentation.

Table S1. Strains and plasmids used in this study.

Table S2. Primers used in this study.