On the number of hyperbolic manifolds of complexity n

A. Magazinov, I. Shnurnikov*

Abstract

We consider hyperbolic manifolds with boundary, which admit an ideal triangulation with n ideal triangles and one edge. We improve the bound of the number of these manifolds, proving it to be at least subexponential.

Introduction

Let A_n be the set of connected graphs with n vertices without loops and multiple edges, so that the degree of each vertex is 4. Bollobas estimated the number $|A_n|$ using deep technique of random graphs:

$$|A_n| \geq e^{-\frac{15}{4}(4n)!}$$

In [2] Frigerio, Martelli and Petronio considered a class M_n of 3-dimensional oriented hyperbolic manifolds with boundaries as manifolds whose special spines (in Matveev’s sense [3]) have exactly one 2–dimensional cell and n vertices. They proved that the complexity of manifolds M_n equals n, that the manifolds could be supplied with hyperbolic metrics with geodesic boundaries, and that there is at least $O(\frac{n^2}{n})$ manifolds in M_n. The aim of the current work is to estimate the number of manifolds in M_n more precisely. It is enough to estimate the number of orientable special spines with n vertices and one two–dimensional cell, because such spines are thickened to non-homeomorphic manifolds.

Definition. A special spine is a finite connected two–dimensional cell complex, such that each vertex is incident to 4 edges (with multiplicities) and each edge is incident to three two–dimensional cells (with multiplicities). The regular neighborhood of the inner point of an edge is homeomorphic to a “book with 3 pages”, the regular neighborhood of a vertex is homeomorphic to a cone on the edges of tetrahedron. A special spine is orientable, if it could be immersed into an oriented manifold.

The main result of the present paper is the following

For $n \geq 8$ we have $|M_n| \geq |A_{n-3}|$.

This means that we improve the lower bound of the number $|M_n|$, proving that it is at least subexponential. It is also clear that $|M_n| \leq 18^n g(n)$, where $g(n)$ is the number of connected graphs with n vertices of degree 4 (maybe with loops and multiple edges).

Main part.

For $G \in A_n$ let $P(G)$ be a class of oriented special spines with singularity graph G and with minimal number of cells (among all oriented special spines with singularity graph G).

For a spine $S \in P(G)$ let us choose two cells (e_i, e_j) and count the number $v(e_i, e_j)$ of vertices, such that all incident to them edges belong to chosen cells. Let $t(S)$ be the maximum of $v(e_i, e_j)$ for all pairs of cells (e_i, e_j).

*NRI HSE
We shall consider a neighbourhood of G in a spine S with r two–dimensional cells as a graph G with r glued cylinders, were one circle of cylinder is mapped into G and the other is called the boundary line.

Lemma 1. Let $S \in P(G)$ Then every edge of G belong to at most 2 two–dimensional cells.

Proof. Let us suppose that an edge $e \in G$ belongs to 3 two–dimensional cells. We could cut the e at the middlepoint and cut the boundary lines, which pass near e. If we fix an orientation of e, then we obtain a cyclic order of boundary lines near e. We rotate the parts of boundary lines clockwise on the one part of e in such a way that a boundary line will glue with the next boundary line according to cyclic order. We glue rotated parts of boundary lines with unrotated ones. So we get a new oriented spine with the same singularity graph, and the number of cells decrease. It is a contradiction to $S \in P(G)$.

Lemma 2. Let $S \in P(G)$ and an edge $e \in G$ belongs to 2 two–dimensional cells. Then if we choose an orientation on the boundary lines of each two–dimensional cell, then two boundary lines along e, which belong to one two–dimensional cell, will have parallel orientation.

Proof. Let us suppose the contrary. Analogously to the proof of lemma 1 we cut the edge e in the middlepoint and cut the boundary lines. We rotate the parts of boundary lines clockwise on the one part of e in such a way that a boundary line will glue with the next boundary line according to cyclic order. We glue rotated parts of boundary lines with unrotated ones. So we get a new oriented spine with the same singularity graph, and the number of cells decrease. It is a contradiction to $S \in P(G)$.

Lemma 3. If $S \in P(G)$, then for every vertex $v \in G$ all incident to v edges belong to at most 2 two–dimensional cells.

Proof. Let us suppose the contrary. Let OA, OB, OC and OD be 4 edges incident to a vertex $O \in G$. Let OA belongs to 2 two–dimensional cells e_1 and e_2, and boundary line of one of them passes through AOC and boundary line of the other pass through AOB and AOD correspondingly.

If OB belongs to the cell e_2 only, then OC belongs to e_1 and e_2 and to at least one more two–dimensional cell by assumption. It is a contradiction to lemma 1.

If OB belongs to the cells e_1 and e_2, then OD belongs to e_1 and e_2 and to at least one more two–dimensional cell by assumption. It is a contradiction to lemma 1.

If OB belongs to e_2 and e_3, then we have the following cases:

1. e_3 contains COB
2. e_3 contains COB and DOB
3. e_3 contains DOB.

In the case (1) COD cannot belong to e_2, so the edge OD contradicts to lemma 2. In the case (2) COD belongs to e_3 and we have a contradiction to lemma 2 in either OC or OD. In the case (3) COD belongs to e_2. The point A divides boundary of e_2 into two segments α and β. If one of them (let it be α) contains both of boundary lines COD and COB, then we could rotate boundary lines along OA so that

1. we don’t change any cells except e_1 and e_2.
2. α and β become boundary lines of different cells e_1' and e_2'.

So OB or OD belongs to at least 3 cells e_1' and e_2' which contradicts to lemma 2. □

Now we introduce an operation of gluing an oriented spine T with one two–dimensional cell into a spine $S \in P(G)$.

Let us cut an edge $e \in G$ and consider 3 cutted boundary lines along e: l_1, l_2 and l_3. After we cut e we get pairs (l_1', l_1''), (l_2', l_2'') and (l_3', l_3'') of endpoints of l_1, l_2 and l_3. Let us consider an oriented spine T and cut an edge f of singularity graph T. Let m_1, m_2 and m_3 boundary lines along f. After we cut f we get pairs of endpoints (m_i', m_i'') for $i = 1, 2, 3$. Suppose (it is a significant assumption)
that if we travel from \((m'_1, m'_2, m'_3)\) along cutted \(m_1, m_2, m_3\) we will reach \((m''_1, m''_2, m''_3)\) (in another order, so the case \(m'_1 \rightarrow m'_2, m'_3 \rightarrow m'_4, m''_1 \rightarrow m''_3\) is forbidden). We will call such edges \(f\) cutable.

Then we could glue \(l'_i\) to \(m'_i\) and \(l''_i\) to \(m''_i\) and obtain a new spine \(S'\). The number of two-dimensional cells of \(S\) equals to the number of two-dimensional cells of \(S'\).

Lemma 4. There exists an oriented spine \(T\) with 3 vertices and one two-dimensional cell, so that there exist cutable edge \(f\).

Proof. Let the singularity graph contains vertices \(A, B, C\), loops \(l_1, l_6\) in vertices \(A\) and \(C\) and a pair of multiple oriented edges \(l_2, l_3\) from \(B\) to \(A\) and a pair of multiple edges \(l_4, l_5\) from \(B\) to \(C\). Let the boundary of two-dimensional cell passes along

\[l_4, l_5, l_2, l_3, l_1, l_2, l_5, l_1, l_1, l_3, l_4, l_6, l_6, l_5,\]

where by \(l^-_i\) we mean that boundary line passes along \(l_i\) in opposite direction. Then the edge \(l_6\) is cutable (note that \(l_4\) and \(l_5\) are not cutable).

Lemma 5. Let a graph \(G\) be a singularity graph of an oriented spine. Let \(G\) has a loop in a vertex \(A\) and edges \(BA\) and \(CA\). Let \(l_1, l_2\) and \(l_3\) be boundary lines passing near edge \(BA\). Let \(m_1, m_2\) and \(m_3\) be boundary lines passing near edge \(CA\). Let \(m_1, m_2\) and \(m_3\) be of different order, so the case \(l_1 \rightarrow l_2, l_3 \rightarrow l_1\) is forbidden. We will call such edges \(l\) cutable.

Proof. It follows from the definition of oriented spine.

Theorem 1. For every graph \(G \in A_n\) there exist a special oriented spine with singularity graph \(G\) and with at most 2 two-dimensional cells.

Proof. Let \(S \in P(G)\) be a spine with maximal number \(t(S)\) among all spines in \(P(G)\). If \(S\) has more then 2 two-dimensional cells, then it is easy to notice that it is possible to make a rotation along an edge so that \(t(S)\) will increase.

Theorem 2. For \(n \geq 8\) we have \(|M_n| \geq |A_{n-3}|\).

Proof. Let us consider an arbitrary graph \(G \in A_{n-3}\). Then there exist a special oriented spine \(S\) on the graph \(G\) with at most 2 two-dimensional cells. If \(S\) has one two-dimensional cell then we glue it with spine \(T\) from lemma 4. So we get a special oriented spine with \(n\) vertices and one two-dimensional cell. If \(S\) has two two-dimensional cells we find an edge \(e\) which belongs to different cells and we glue into \(e\) three loops consequently to obtain a special oriented spine with \(n\) vertices and one two-dimensional cell by lemma 5.

References

[1] B. Bollobas, Random graphs.

[2] Frigerio R., Martelli B., Petronio C. Complexity and Heegard genus of an infinite class of compact 3-manifolds // Pasific J. Math. — 2003. — 210. — C. 283–297. // arxiv: math.GT/0206156

[3] Matveev S. V. Algorithmic topology and classification of 3-manifolds. — ACM-monographs, vol. 9, Springer-Verlag Berlin Heidelberg, 2003.