Implementation and validation of CHF-models in the two-phase porous-media code TWOPORFLOW

Veronica Jauregui Chavez, Uwe Imke, Victor Hugo Sanchez-Espinoza *

Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

ARTICLE INFO

Keywords:
TWOPORFLOW
Critical Heat Flux
BBT
Critical power
Porosity

ABSTRACT

The local deterioration of the heat transfer at certain elevation of the fuel rods of a water-cooled reactor may occur either in case of dry-out of the liquid film (in case of BWR) or due to Departure from Nucleate Boiling (DNB, in case of PWR). Under such local conditions, a sudden cladding temperature escalation may take place challenging the integrity of the cladding material i.e., of a safety barrier. For a reliable evaluation of the safety features of a nuclear reactor under nominal or accidental conditions, the use of validated numerical tools using relevant experimental data is mandatory. In this paper, the implementation of different correlations (Biasi, Bowring, and Groeneveld Look-Up Table) for the prediction of the Critical Heat Flux (CHF) in TWOPORFLOW as well as its validation is presented and discussed. Based on the performed investigations it can be stated that the implemented correlations predict the CHF-value and their location of appearance in acceptable agreement to the measured data.

1. Introduction

The local deterioration of the heat transfer at certain elevation of the fuel rods of a water-cooled reactor may occur either in case of dry-out of the liquid film (in case of BWR) or due to Departure from Nucleate Boiling (DNB, in case of PWR). Under such local conditions, a sudden cladding temperature escalation may take place challenging the integrity of the cladding material i.e., of a safety barrier. For a reliable evaluation of the safety features of a nuclear reactor under nominal or accidental conditions, the use of validated numerical tools using relevant experimental data is mandatory.

System thermal hydraulic codes like TRACE (USNRC, 2013), RELAP5 (INL, 2018), ATHLET (Austregesilo et al., 2016), CATHARE (Priea et al., 2020) and thermal hydraulic subchannel codes such as COBRA-TF (Saliko and Avramova, 2015), Subchanflow (Sánchez-Espinoza et al., 2010), VIPRE (Y. Sung, P. Schuhen and A. Meliksettian, 1999), FLICA (Toumi et al., 2000), are widely used for the analysis of the LWRs core under nominal and accidental conditions either as stand-alone or coupled to neutron physics solvers. Considering that, the development of two-phase CFD-tools is still not mature and that the coarse-mesh system thermal hydraulic codes have some model deficiencies, investigations at KIT are focused on the development of the porous-media two-phase 3D code TWOPORFLOW (Jimenez et al., 2014) to fill the gap. It solves a system of six conservation equations for a 3D Cartesian mesh for a two-phase flow based on the porous-media approach using the implicit continuous Eulerian (ICE) method (Imke, 2004). Similar developments are followed in Finland, see PORFLO (Ilvonen et al., 2010), and South Korea CUPID (Jeong et al., 2010). This kind of codes appear as a promising alternative, which is more accurate than 1D or 3D coarse mesh codes and at the same time, it requires much less computational resources than CFD-tools.

The source code and data structure of TWOPORFLOW is continuously improved. The physical models like turbulent viscosity, turbulent heat transport, and void drift for 3D simulations of reactor cores were added (Jauregui Chavez et al., 2018). Models related to the pre-CHF heat transfer are validated using void fraction test data (PSBT NUPEC (Jauregui Chavez et al., 2018)) in the frame of a doctoral thesis.

Abbreviations: BBT, BWR Full-size Fine-mesh Bundle Test benchmark; BWR, Boiling Water Reactor; CFD, Computational Fluid Dynamics; CHF, Critical Heat Flux; CHFR, Critical Heat Flux Ratio; CNLV, Central Nuclear Laguna Verde (Nuclear Power Plant Laguna Verde); CNTH, Coupled Nuclear Thermal Hydraulics; COBRA-TF, Coolant Boiling in Rod Arrays-Two Fluids; DNB, Departure of Nucleate Boiling; DNBTR, Department of Nuclear Boiling Ratio; ICE, Implicit Continuous Eulerian; KAERI, Korea Atomic Energy Research Institute; KTH, Royal Institute of Technology in Stockholm; LUT, Look-Up-Table; LWR, Light Water Reactor; MCHFR, Minimum Critical Heat Flux Ratio; MDNBR, Minimum Departure of Nucleate Boiling Ratio; NPP, Nuclear Power Plant; NUPEC, Nuclear Power Engineering Corporation Japan; PWR, Pressurized Water Reactor; rms, Root-mean-square.

E-mail address: victor.sanchez@kit.edu (V. Hugo Sanchez-Espinoza).

https://doi.org/10.1016/j.nucengdes.2021.111631
Received 1 October 2021; Received in revised form 15 December 2021; Accepted 20 December 2021
Available online 4 January 2022
0029-5493/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The accurate prediction of the critical heat flux of reactor cores is very important when performing safety evaluations. This paper starts with the phenomenology description of the CHF-phenomena in Section 2. A brief presentation of the implemented correlations and their validity range of applications is provided in Section 3. The prediction capabilities of TWOPORFLOW using the CHF-correlations is discussed in Section 4 (40 Becker tube tests (Becker et al., May 1983), 151 steady state and 2 transient tests from the NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) (Utsuno et al., 2006). Section 5 summarizes the main conclusions and presents the outlook.

2. Phenomenology of critical heat flux

The CHF is a local physical phenomenon leading to a substantial deterioration of the heat-transfer coefficient (Todreas and Kazimi, 1993). In PWR, the Departure of Nucleate Boiling (DNB) is characterized by the appearance of a vapor film caused by an increased heat flux resulting in lowering the heat transfer coefficient. In BWR, the Dry-out is characterized by the local evaporation of the liquid annular film, Fig. 1, with similar consequences as the DNB.

The CHF phenomenon depends strongly on geometry (pipes, annular flow, rod bundles etc.) and is a very complicated process (Yang et al., 2021). In the present paper, it is described by a more general empirical approach to cover a wide application.

For the used code, the detection of local phenomena is limited by the relative coarse mesh of the porous media model.

The parameter defining the safety margins in nuclear reactors is the ratio between the critical heat flux and the actual calculated heat flux (Todreas and Kazimi, 1993):

$$CHFR = \frac{q^{cr}}{q}$$

(1)

The minimum value of CHFR (MCHFR or MDNBR) should not be less than for example 1.3 to assure the integrity of the cladding. The specific value depends on the reactor type and the degree of conservatism in the evaluation.

3. CHF correlations implemented in TWOPORFLOW

Three different CHF-correlations namely the Biasi, Bowring, and Groeneveld Look-Up Table were implemented. They were chosen due to their broad application range not connected to a specific reactor type. In addition, an iterative procedure for the prediction of the surface temperature at CHF conditions was programmed. The physical parameter application ranges are summarized in Table 1.

3.1. The Biasi correlation

The CHF Biasi correlation (Biasi et al., 1967) was developed for round ducts and uniform heating with a root-mean-square (rms) error of 7.26% in 4551 data points. 85.5% of the data points are within ±10% absolute deviation. The following equations are used:

$$Q^{cr} = \left(15.048 \times 10^3\right) (100 D_h)^{-0.86} \rho H(P)(1-x),$$

(2)
where \(H(P) \) and \(F(P) \) are functions of the pressure:

\[
H(P) = -1.159 + 0.149P + 0.010P^2 + 9P(10 + P^2)^{-1}.
\]

\[
F(P) = 0.7249 + 0.099P - 0.032P^2.
\]

\(n \) is a coefficient dependent of the hydraulic diameter and defined as:

\[
n = \begin{cases}
0.4, & D_H \geq 0.01m \\
0.6, & D_H < 0.01m
\end{cases}
\]

3.2. Bowring correlation

The Bowring correlation (Bowring, 1972) was developed also for round tubes with a uniform axial heat flux. The RMS error in this correlation is around 7% for 3800 data points. A wide range of application in terms of pressure and mass flux characterizes it. The correlation is described by the following equations:

\[
q^{\prime \prime}_{cr} = \frac{A - B h_x x}{C},
\]

where:

\[
A = \frac{2.317 \left(\frac{n_0 h_x}{G} \right) F_1}{1 + 0.0143F_1 D_H^4 G}
\]

\[
B = \frac{D_H G}{4}
\]

and:

\[
C = \frac{0.077F_1 D_H G}{1 + 0.347F_1 \left(\frac{D_H}{h_x} \right)}
\]

\(F_1 \) to \(F_4 \) as well as \(n \) are functions of the reduced pressure:

\[
p_r = 0.145P.
\]

\(P \) is the pressure given in MPa. The value of \(n \) is calculated as:

\[
n = 2 - 5p_r.
\]

The \(F \) coefficients depend on pressure. For \(p_r \) below 0.98 and 1.02 they are set to one. For \(p_r < 0.98MPa \) we have:

\[
F_1 = p_r^{1.942} \exp\left(20.89(1 - p_r)\right) + 0.917
\]

\[
F_2 = \frac{p_r^{1.368} \exp\left(2.444(1 - p_r) + 0.309 \right)}{1.395}
\]

\[
F_3 = \frac{p_r^{1.023} \exp\left(16.658(1 - p_r)\right)}{1.667} + 0.667
\]

and:

\[
F_4 = F_3 p_r^{1.649}.
\]

For \(p_r > 1.02MPa \) we have:

\[
F_1 = p_r^{0.386} \exp\left(0.648(1 - p_r)\right)
\]

\[
F_2 = \frac{F_1}{p_r^{0.446} \exp\left(0.245(1 - p_r)\right)}
\]

3.3. The Groeneveld Look-Up-Table

The 2006 Groeneveld Look-Up-Table (LUT) (Groeneveld et al., 2006) is a normalized database for the CHF-prediction depending on various parameters. It contains around 25 000 data points taken from correlations derived from different experiments, and extrapolations. The RMS error at constant inlet flow conditions is 5.86%. The Groeneveld CHF-models used in TWOPORFLOW are given hereafter:

\[
q^{\prime \prime}_{cr} = q^{\prime \prime}_{LUT} K_{factor}.
\]

For values of equilibrium quality below \(0.5 \), a linear extrapolation is made.

\[
q^{\prime \prime}_{cr} = \frac{q_{0.5} + (q_{0.5} - q_{0.5})(x + 0.5) - 0.1}{K_{factor}}
\]

where \(K_1 \) is a correction factor for the hydraulic diameter taken from (Groeneveld et al., 2005):

\[
K_1 = \begin{cases}
0.008 \left(\frac{D_H}{D_H} \right)^{1/2}, & D_H < 0.025m \\
0.57, & D_H > 0.025m
\end{cases}
\]

\(P_{factor} \) is calculated if the pressure is larger than 21 MPa else it is set to one.

\[
P_{factor} = 1.546P^* - 1.6108P^{*2} + 1.7818P^{*3} - 0.7199P^{*4},
\]

where the non-dimensional pressure is defined as:

\[
P^* = \frac{P_r - P}{F_{cr} - F_k} P_k = 21MPa
\]

4. Validation of the TWOPORFLOW code using selected CHF-experiments

4.1. The Becker CHF tests at steady state conditions

In total 14 exercises of a set of experiments done by Becker (Becker et al., May 1983) at the Royal Institute of Technology (KTH) in Stockholm were used for code validation. The test section is uniformly heated along 7000 mm. The temperature measurements were made with thermocouples positioned every 20 cm starting from the bottom up to 3 m
Above it, the measurements were made every 10 cm. The tube is characterized by a hydraulic diameter of 0.01 m. Details about the tests can be found in (Becker et al., May 1983). Hereafter, the boundary conditions of the tests are listed.

- Pressure: ~7 MPa, Flow: 496 – 3035 kg/m²s, Power: 0.0662 – 0.186 MW and Inlet temperature: ~275 °C.

The TWOPORFLOW-model of the test is a one-dimensional pipe. TWOPORFLOW-simulations are carried out using the three different CHF models. It is worth to mention that an experimental error in the heat flux of the order of 1% is reported. Fig. 2 shows the comparison of the CHF predicted by the code with the different correlations and the measured data as function of the mass flux for the different tests. It can be observed that the CHF predicted with the correlations of Bowring and Groeneveld are close to the experimental data for all mass flow rates. The accuracy of the CHF predicted by the Biasi-correlation is dependent on the mass flux: the over-prediction increases with increasing mass fluxes (lower qualities) in most cases. In summary, Biasi shows a CHF standard deviation from the experimental data of 9.19%, Bowring 1.30% and Groeneveld 1.43%. The higher deviations of the Biasi predictions are in the lower steam quality region.

![Fig. 3. Lateral distribution BFBT.](image)

![Fig. 4. Axial distribution BFBT.](image)

Table 2: BFBT Assembly types C2A, C2B, C3: key parameters

Test assembly	C2A	C2B	C3
Simulated fuel assembly type	High burn-up 8x8		
Number of heated rods	60		
Heated rods outer diameter (mm)	12.3		
Heated rods pitch (mm)	16.2		
Axial heated length (mm)	3708		
Number of water rods	1		
Water rods outer diameter (mm)	34		
Number of spacers	7		
Spacer pressure loss coefficients	1.2		
Axial power shape	Cosine	Cosine	Inlet-peak
4.2. The BFBT CHF tests at steady state conditions

The BFBT critical power tests series includes around 111 experiments for a test section consisting of a bundle with 8×8 pin arrangement and a central water rod. The axial heated length is 3708 mm. Three different assemblies C2A, C3, and CB2 are used for the tests. C2A and C3 have radial power distribution similar to the one of the beginning of the reactor cycle, Fig. 3 A, while C2B has a radial power distribution characteristic of a middle of cycle, Fig. 3 B. In addition, C2A and C2B have a cosine axial power shape (Fig. 4 A) while C3 has an inlet-peak power shape, Fig. 4 B.

All different bundles have seven spacer grids distributed along the height with a pressure loss coefficient of 1.2. More details of the geometry are shown in Table 2.

The critical power tests were performed by step-wise increase of the bundle power. During this heat-up phase, the individual thermocouple signals of the heater rods measuring the local cladding temperature are monitored. The accuracy of the temperature measurements of the thermocouples is 1.5 °C and the accuracy of the power measurements is about 1.5%. The critical power was reached when the peak rod surface temperature became 14 °C higher than the one measured at steady-state test conditions. This criterion was chosen by the BFBT experimental team. Dry-out was observed at the rods with the peak power located at the peripheral row adjacent to the channel box. The boiling transition was always observed just upstream of the spacer grids.

Fig. 5 shows the radial and axial thermocouple positions. Each thermocouple position is identified as follows: Rod Number – Axial location – Circumferential angle. Measurements are located in the rods 1, 2, 4, 5, 7, 8, 9, 12, 15, 16, 25, 31, 45, 52, 53, 54, 59, and 60, at different axial locations A (3521 mm), B (3009 mm), C (2497 mm), D (1985 mm), and different rotational angles, being sometimes more than one thermocouple for fuel rod. In TWOPORFLOW, it is not possible to calculate the circumferential CHF position on the rod surface. Due to the porous-media approach in TWOPORFLOW, such details cannot be resolved. For that reason, in this study the measured temperatures are compared with the local average temperatures predicted for the rods in the sub-channel, where CHF appears.

All tests for the assembly types C2A, C2B, and C3 were performed for a pressure of 7.2 MPa and the following boundary conditions. More details can be found in (Utsuno et al., 2006).

Assembly C2A:
- Mass flux: 293 – 1930 kg/m2/s, Power: 3.2 – 10 MW, Inlet temperature: 262 – 283 °C

Assembly C2B:
Mass flux: 290 – 1904 kg/m2s, Power: 3.45 – 10.7 MW, Inlet temperature: 262 – 283 °C

Assembly C3:

Mass flux: 292 – 1909 kg/m2s, Power: 3.31 – 10.2 MW, Inlet temperature: 263 – 283 °C

4.3. TWOPORFLOW model of BFBT test Bundle

The different fuel BFBT-assemblies are modeled in TWOPORFLOW using a rod centered approach. It results in 8 × 8 X-Y-cell arrangement axially subdivided in 24 equidistant cells of 154.5 mm. The pins and water rods are characterized in the porous-media approach by a porosity of 0.57 and 0.17 in axial direction, respectively, Fig. 6. In radial direction, the porosity amounts 0.63. The heat transfer area-density (140.86 m$^{-1}$) is calculated from the outer radius of the fuel rods. The hydraulic diameters in axial direction (0.009 m corners, 0.016 m edges, 0.011 m inner sub-channels, 0.007 m water rods) and in lateral direction (0.010 m water rods and 0.021 m rest of sub-channels) are used to calculate local pressure loss and heat transfer. The heat conduction within the fuel rod is described by a radial 1-D heat conduction equation. The fuel pellet is subdivided into eight radial nodes. The cladding is represented by two radial nodes. No gap is presented in the fuel rod simulators.

All steady state BFBT critical power tests were analyzed by TWOPORFLOW using the models described before.

In Figs. 7–9 the deviation (Simulated – Experimental CHF) of the CHF predicted by TWOPORFLOW from the measured data is plotted in dependence on the mass flux for the different BFBT-assemblies C2A, C2B, and C3.

In Fig. 7 it can be observed that the Bowning correlation over-predicts the CHF for all tests. For mass fluxes lower than 600 kg/m2s the over-prediction is lower than 5.11%. For mass fluxes from 880 to 1930 kg/m2s the over-predictions increase up to a range of 4.96 to 11.85 %. CHF predicted by the Biasi and Groeneveld correlations show a similar trend. Both correlations under-predict the measured CHF for...
mass fluxes lower than 600 kg/m2s, where the deviation lies between 0.02 and 6.32 %. For mass fluxes between 880 to 1930 kg/m2s Biasi over-predicts the CHF by 0.07 to 6.44 % and Groeneveld by 1.66 to 10.82 %.

In Fig. 8, it can be observed that the Biasi correlation over-predicts the CHF in all the cases with mass fluxes from 580 to 1930 kg/m2s in a range of 1.63 to 11.55% and for mass fluxes ~300 kg/m2s the differences are in a range of 0 to an under-prediction of 1.91%. Bowring over-predicts all the cases from 300 to 1320 kg/m2s in a range of 4.45 to 17.26%. The cases with mass flux ~1610 kg/m2s have differences in a range of ±2% and for higher mass fluxes the under-predictions are in a range of 0.48 to 6.26 %. Groeneveld LUT has a similar behavior as Bowring with over-prediction in all the cases from 580 to 1320 kg/m2s. For mass fluxes ~ 300 kg/m2s the differences are in a range of 0 to an under-prediction of 7.38%, Bowring from 0 to a under-prediction of 1.24%, and Groeneveld a under-prediction from 3.46 to 7.38%.

Considering all tests, Table 3 gives the standard CHF-deviations of the three correlations (Biasi, Bowring, and Groeneveld) predicted for the three different assembly-types (C2A, C2B, C3).

Calculation method	CHF standard deviation [%]
Assembly C2A	1.89 3.33 2.54
Assembly C2B	2.70 5.18 4.65
Assembly C3	2.44 4.70 3.25

Based on these results, it can be concluded that the three correlations are comparable, but the Biasi and Groeneveld are superior to the Bowring for the majority of the investigated fuel assembly types.

In Fig. 9, it can be observed that the Biasi correlation over-predicts the CHF from mass fluxes from 580 to 1930 kg/m2s in a range of 1.63 to 11.55% and for mass fluxes ~300 kg/m2s the differences are in a range of 0 to an under-prediction of 1.91%. Bowring in the range of 7.65 to 12.23%, and Groeneveld in the range of 4.39 to 14.39%. For lower fluxes Bowing presents a range from 0 to a under-prediction of 7.38%, Bowing from 0 to a under-prediction of 1.24%, and Groeneveld a under-prediction from 3.46 to 7.38%.

Considering all tests, Table 3 gives the standard CHF-deviations of the three correlations (Biasi, Bowring, and Groeneveld) predicted for the three different assembly-types (C2A, C2B, C3).

Calculation method	Assembly C2A	Assembly C2B	Assembly C3
Biasi	1.89	3.33	2.54
Bowring	2.70	5.18	4.65
Groeneveld	2.44	4.70	3.25

In case of the recirculation pump trip, the mass flow rate is reduced after 22 s, increasing the void fraction and as consequence of it, the moderation decreases as well as the fission power. Afterwards, the mass

4.4. BFBT transient CHF tests

In (Utsuno et al., 2006) not only steady state but also two transient CHF-test were performed in the frame of the BFBT benchmark Phase II Exercise 3. For this purpose, two transient tests with boundary conditions representing BWR-transients such as the turbine trip without bypass and the recirculation pump trip were performed. These experimental data are used for the validation of the CHF-models implemented in TWOPOPFLOW.

4.4.1. Tests boundary conditions

In the turbine trip without by-pass, the rapid closure of the turbine isolation valve leads to the propagation of a pressure wave from the main steam line to the core, and this in turn leads to the collapse of the void, a higher coolant density and, in consequence, the neutron moderation improves leading to a power increase. Key parameters of the test are the following: outlet pressure: 7.1 MPa, Inlet mass flow rate: 42 t/h, Inlet temperature: 276.7 °C for assembly type C2A and 275.5 °C for assembly type C3, and Bundle power: 8.5 MW. In Fig. 10, the change in time of the boundary conditions normalized to one are shown, which are used for the simulations with TWOPOPFLOW.

Fig. 9. Deviation of the predicted CHF using the Biasi, Bowring, and Groeneveld LUT from the measured one depending on the mass flux for Assembly C2B.

Fig. 10. Normalized turbine trip without bypass boundary conditions (transient starts at 22 s).
flow stabilizes at one third of the nominal value. The Recirculation pump trip is characterized by the following parameters: Outlet pressure: 7.2 MPa, Inlet mass flow rate: 46.2 t/h, Inlet temperature: 278.1 °C for assembly type C2A and 277.4 °C assembly type C3, Bundle power: 8.5 MW. The normalized boundary conditions of the recirculation pump trip are shown in Fig. 11.

In (Utsuno et al., 2006) is indicated that the accuracy of the temperature and power measurements is similar to the ones of the steady state tests i.e., 1.5 °C and 1.5%, respectively.

4.4.2. BFBT model description in TWOFORFLOW

The assemblies C2A and C3 were discretized by TWOFORFLOW using the rod centered approach. As result, 8x8 cells exist in radial X-Y-plane while in axial direction 48 cells of 77.25 mm each are considered. The additional parameters such as porosity, hydraulic diameter, heat transfer area-density, and pin radial nodes for the heat conduction are the same as the ones for simulation of the steady state tests.

4.4.3. Simulation of the BFBT turbine trip without bypass test

The transient CHF-test have been simulated with TWOFORFLOW using three correlations: Biasi, Bowring and Groeneveld. In the test, CHF is reached at 23 s, at the top of the spacers. In Table 4, the comparison of the CHF predicted by TWOFORFLOW with different correlations with the experimental data is shown for the two assembly types (C2A, C3). There, the time for appearance of CHF is also indicated.

The predictions of all correlations are close to the measured CHF-value for both assembly types C2A and C3. In Fig. 12, the evolution of the cladding temperature in X-Y-cell 53 of assembly C3 (Fig. 5) predicted by TWOFORFLOW with three different CHF-correlations is compared with the test data. According to the test, the CHF appears in cell 53 at around 23 s of transient (see red circle in Fig. 12). There, the rapid increase of the cladding temperature due to the heat transfer deterioration (transition boiling, film boiling) can be observed. The gradient of the temperature escalation predicted by the three correlations is similar to the measured one. Nevertheless, the shape, and the time for the strong reduction of the cladding temperature differ from the measured ones. All the three correlations behave in similar manner. The final value of the cladding temperature is the same one of the test. This CHF-phenomenon are challenging for TWOFORFLOW and also for other codes such as COBRA-TF (Burns and Aumiller, 2007). TWOFORFLOW uses a simple interpolation for the transitions boiling curve between the critical heat flux point and the start of pure film boiling. In addition, there is no specific model for rewetting of the hot surface. The timing of the cladding temperature decrease is not described satisfactorily. In addition, TWOFORFLOW over-estimates the maximal cladding temperature by around 20 K.

Table 4

Assembly	Experimental CHF [MW/m²]	Time [s]	Biasi CHF [MW/m²]	Time [s]	Bowring CHF [MW/m²]	Time [s]	Groeneveld CHF [MW/m²]	Time [s]
C2A	1.19	23	1.21	23.06	1.23	23.26	1.20	23.02
C3	1.23	23	1.24	22.96	1.25	23.16	1.24	22.94

Fig. 11. Normalized recirculation pump trip boundary conditions (transient starts at 22 s).

Fig. 12. Comparison of the cladding temperature predicted by TWOFORFLOW for three CHF-correlations during the turbine trip without by-pass test assembly type C3 at the elevation of 2497 mm.
4.4.4. Simulation of the BFBT recirculation pump trip test

Table 5 summarizes the comparison of the CHF measured in the two assemblies C2A and C3 with the CHF predicted by TWOPORFLOW for three CHF-correlations. It can be observed that the timing of appearance of CHF is reasonably well captured by the simulations. TWOPORFLOW always under-predicts the measured CHF using the three correlations. For the C2A assembly, the Biasi and Groeneveld correlations are closer to the data followed by Bowring. In case of the C3 assembly, the Biasi correlation predicts the CHF closer to the data, followed by Groeneveld and Bowring.

Fig. 13 represents the comparison of the cladding temperature evolution of the cell 31 predicted by TWOPORFLOW with different CHF-correlations in the BFBT benchmark for assembly type C3.

Table 5

Assembly	Experimental	Biasi	Bowring	Groeneveld				
	CHF [MW/m²]	Time [s]	CHF [MW/m²]	Time [s]	CHF [MW/m²]	Time [s]	CHF [MW/m²]	Time [s]
C2A	0.75	23	0.74	23.16	0.73	23.74	0.74	23.18
C3	0.67	23	0.64	23.58	0.61	23.98	0.63	23.60

Fig. 13. Comparison of evolution of the local (i.e., 2497 mm elevation) cladding temperature of the rod located at cell 31 (Fig. 5) predicted by TWOPORFLOW with different CHF-correlations in the BFBT benchmark for assembly type C3.

5. Conclusions and outlook

The prediction capability of TWOPORFLOW using three CHF-correlations is validated based on the Becker experiments and the BFBT CHF data provided by the benchmark.

For the Becker CHF steady state experiments (tubes) TWOPORFLOW shows the larger deviations using the Biasi correlation 9.19%. The Bowring correlation, on the other hand, presented the most accurate results with deviations of 1.30%. Groeneveld LUT shows similar results than the Bowring correlation with deviation of 1.43%. In the case of the BFBT CHF steady state tests, for assembly C2A the correlations present standard deviations of less than 2.5%. In the case of assembly C2B and C3 the averaged CHF deviations are less than 5%. In the case of BFBT transient tests, the deviation from the measured data observed for all used correlations is less than 2 % for assembly C2A and less than 9% for assembly C3. The axial appearance is inside the given deviation in all the cases. In the case of access to more actual CHF experimental data, a broader validation process will be performed.

Based on the encouraging validation work, the TWOPORFLOW code will be applied to simulate both stationary and accidental conditions of BWR-core representing each fuel assembly as a computational node in radial direction. As next steps, the coupling of TWOPORFLOW with diffusion and transport neutronics solvers such as PARCS (Downar et al., 2018) and PARAFISH (Van Criekingen et al., 2011) is foreseen for the safety related investigations.

CRediT authorship contribution statement

Veronica Jauregui Chavez: Writing – original draft, Methodology, Data curation, Visualization. Uwe Imke: Writing – review & editing, Data curation. Victor Hugo Sanchez-Espinoza: Conceptualization, Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments

This work was performed at the Institute for Neutron Physics and Reactor Technology (INR) of the Karlsruhe Institute of Technology (KIT) as part of a doctoral thesis. The authors would like to thank the HGF Program NUSAfe at KIT, the German Academic Exchange Service (DAAD) and the Mexican National Commission of Science and Technology (CONACYT) for the financial support.

References

H. Austregesilo, C. Bals, A. Hora, G. Lerchl, P. Romstedt, P. Schröder, and P. Schnell, “ATHLET Mod 3.1 Cycle A, models and methods, Rev. 4,” Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, 2016.

K. Becker, C. Ling, S. Hedder and G. Strand, “An Experimental Investigation of Post-Dryout Heat Transfer,” Department of Nuclear Reactor Engineering, Royal Institute of Technology, Stockholm, Sweden, May 1983.

Biasi, A., Clerici, G.C., Garriba, S., Sala, R., Tozzi, 1967. Studies on Burnout Part 3 – A (DAAD) and the Mexican National Commission of Science and Technology, Stockholm, Sweden, May 1983.

R. W. Bowring, “A simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range of 0.7-17 MN/m² (100-2500 PSIA),” Winfried Atomic Energy Establishment. AEGW-R-789, England, 1972.

Burns, J.C., Amiiller, D.L., 2007. COBRA-IE Evaluation by simulation of the NUPEC BWR full-size fine-mesh bundle tests (BFBT) (B-T-3653; TRN: US0801807). Bettis Atomic Power Laboratory (BAPL), West Mifflin, USA.

Y. Choi, S. K. Moon, S. Y. C. J. K. Park, D. H. Hwang and W. P. Baek, “Extension of a critical heat flux correlation to a triangular arrayed 3-pin rod bundle,” in The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Paper 200, Pittsburgh, USA, 2012.

Downar, T., Xu, Y., Seker, V., Hudson, N., 2018. PARCS v3.0 U.S. NRC Core Neutronics Simulator. Theory Manual. University of Michigan, Washington.

R. Præ, P. Fillion, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.

K. Y. Choi, S. K. Moon, S. Y. C. J. K. Park, D. H. Hwang and W. P. Baek, “Extension of a critical heat flux correlation to a triangular arrayed 3-pin rod bundle,” in The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Paper 200, Pittsburgh, USA, 2012.

D. C. Groeneveld, L. Leung, Y. Guo, A. Vasic, M. El Nakla, S. Peng, J. Yang and S. Cheng, “Look-up Tables for Predicting CHF and Film Boiling Heat Transfer: Past, Present and Future,” Nuclear Technology, pp. 87-104, 2005.

Jeong, J.J., Yoon, H.Y., Park, I.K., Cho, H.K., 2010. The CUPID Code Development and Assessment Strategy. Nuclear Engineering and Technology 42 (6), 636-655.

Kim, B., Park, S., Kim, K., Lim, J., Nahm, K., 2018. Systematic process to determine DNBR limit of CHF correlation with repetitive cross-validation technique. J. Nucl. Sci. Technol. 55 (9), 1034-1042.

V. Sanchez-Espinoza, U. Imke and V. Sanchez-Espinoza, “TwoPhaseFLOW: A two-phase flow porous media code, main features and validation with BWR-relevant bundle experiments,” Nuclear Engineering and Design, pp. 181-188, 338 2018.

R. Præ, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.

K. Y. Choi, S. K. Moon, S. Y. C. J. K. Park, D. H. Hwang and W. P. Baek, “Extension of a critical heat flux correlation to a triangular arrayed 3-pin rod bundle,” in The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Paper 200, Pittsburgh, USA, 2012.

R. Præs, P. Fillion, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.

K. Y. Choi, S. K. Moon, S. Y. C. J. K. Park, D. H. Hwang and W. P. Baek, “Extension of a critical heat flux correlation to a triangular arrayed 3-pin rod bundle,” in The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Paper 200, Pittsburgh, USA, 2012.

R. Præs, P. Fillion, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.

K. Y. Choi, S. K. Moon, S. Y. C. J. K. Park, D. H. Hwang and W. P. Baek, “Extension of a critical heat flux correlation to a triangular arrayed 3-pin rod bundle,” in The 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-12), Paper 200, Pittsburgh, USA, 2012.

R. Præs, P. Fillion, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.

R. Præs, P. Fillion, L. Matteo, G. Mauger and A. Mekkas, “CATHARE-3 V2.1: The new industrial version of the CATHARE code,” in Advances in Thermal Hydraulics, Palaiseau, France, 2020.