Large deviations for metastable states of Markov processes with absorbing states with applications to population models in stable or randomly switching environment

Cécile Monthus*

Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France
E-mail: cecile.monthus@cea.fr

Received 13 July 2021
Accepted for publication 16 December 2021
Published 12 January 2022

Abstract. The large deviations at level 2.5 are applied to Markov processes with absorbing states in order to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their empirical time-averaged density and of their time-averaged empirical flows over a large time-window T. The standard spectral problem for the slowest relaxation mode can be recovered from the full optimization of the extinction rate over all these empirical observables and the equivalence can be understood via the Doob generator of the process conditioned to survive up to time T. The large deviation properties of any time-additive observable of the Markov trajectory before extinction can be derived from the level 2.5 via the decomposition of the time-additive observable in terms of the empirical density and the empirical flows. This general formalism is described for continuous-time Markov chains, with applications to population birth–death model in a stable or in a switching environment, and for diffusion processes in dimension d.

Keywords: absorbing states, large deviations in non-equilibrium systems, metastable states, stochastic processes

*Author to whom any correspondence should be addressed.
Large deviations for metastable states of Markov processes with absorbing states

Contents

1. Introduction ... 3

2. Reminder on the spectral analysis of the slowest relaxation mode 4
 2.1. Markov jump process with an absorbing state at configuration \(x = 0 \) 5
 2.2. Slowest relaxation mode with its decay rate \(\zeta_1 \), its right eigenvector \(|r_1\rangle \) and its left eigenvector \(\langle l_1| \) 6
 2.3. Probability \(P_{\text{end}}(x, x_0) \) to be in the living configuration \(x \) at time \(t \) if surviving up to time \(t \) .. 7
 2.4. Probability \(P_{\text{interior}}(x) \) to be in configuration \(x \) at the interior time \(1 \ll \tau \ll t \) if surviving up to time \(t \) .. 8
 2.5. Perturbation theory with respect to the absorbing rates \(w_0, y \) towards the dead configuration \(x = 0 \) .. 9
 2.5.1. Properties of the unperturbed Markov matrix \(w(0) \) 9
 2.5.2. Degenerate perturbation theory for the unperturbed Markov matrix \(w(0) \) .. 9
 2.5.3. First-order contribution to the slowest relaxation rate \(\zeta_1 \) 10

3. Large deviations at various levels for metastable quasi-stationary states ... 11
 3.1. Reminder on the large deviations at level 2.5 for the time-averaged density and the time-averaged flows ... 12
 3.2. Probability \(P_T^{2.5}[\text{living}\{\rho(.)\}; q(.,.)] \) to remain living up to \(T \) with given empirical density and empirical flows .. 13
 3.3. Probability \(P_T^{2}[\text{living}\{\rho(.)\}] \) to remain living up to \(T \) with given empirical density ... 14
 3.4. Link with the slowest relaxation mode via the probability \(P_T^{\text{living}} \propto e^{-T\zeta_1} \) to remain living up to \(T \) ... 14
 3.4.1. Link with the estimation of \(\zeta_1^{\text{pert}} \) obtained via the perturbation theory in the absorbing rates \(w_{0,y} \) .. 15
 3.4.2. Equivalence between the exact optimization of equation (58) and the spectral problem of section .. 15
 3.5. Large deviations for general time-additive observables of the trajectory \(x(0 \leq t \leq T) \) before extinction ... 18
 3.6. Generalization: large deviations at level 2.5 for a set \(A \) of absorbing configurations \(a \in A \) .. 19
 3.7. Application to other types of metastable states 19

4. Large deviations at various levels for population birth–death models 19
 4.1. Birth–death model for the discrete population \(n \) in the configuration space \(\Omega = 0, 1, 2, \ldots, N \) ... 20
 4.2. Spectral analysis of the slowest relaxation mode of section 20

https://doi.org/10.1088/1742-5468/ac4519 2
1. Introduction

Stochastic processes with absorbing states have attracted a lot of interest in various fields, in particular to understand the properties of non-equilibrium phase transitions (see the review [1] and references therein) and to characterize the metastable quasi-stationary states that may survive during a very large time before extinction [2–9]. In
the field of stochastic populations models, the dynamical large deviations properties before extinction have been much studied recently via the WKB method [10–21].

The goal of the present paper is to offer another perspective on the large deviations properties of metastable quasi-stationary states: the explicit extinction rate of metastable states will be computed in terms of their empirical time-averaged density and of their time-averaged empirical flows over a large time-window T via the applications of the large deviations at level 2.5 to Markov processes with absorbing states. Indeed, the initial classification of large deviations into three nested levels (see the reviews [22–24] and references therein), with level 1 for empirical observables, level 2 for the empirical density, and level 3 for the empirical process, has been more recently supplemented by the level 2.5 concerning the joint distribution of the empirical density and of the empirical flows. The rate functions at level 2.5 are explicit for various types of Markov processes, including discrete-time Markov chains [24–29], continuous-time Markov jump processes [25, 28–48] and diffusion processes [28, 29, 33, 34, 37, 49–51]. As a consequence, the explicit level 2.5 can be considered as a starting point from which many other large deviations properties can be derived via contraction. In particular, the level 2 for the empirical density alone can be obtained via the optimization of the level 2.5 over the empirical flows, so that the level 2 will be closed only if this contraction can be implemented explicitly. More generally, the level 2.5 can be contracted to obtain the large deviations properties of any time-additive observable of the dynamical trajectory involving both the configuration and the flows. The link with the studies of general time-additive observables via deformed Markov operators [37, 51–91] can be then understood via the corresponding conditioned process obtained from the generalization of Doob’s h-transform.

The paper is organized as follows. In section 2, we introduce the notations for the Markov jump processes with absorbing states considered in the main text, and we recall the spectral analysis of the slowest relaxation mode before extinction, as well as the Doob generator of the process conditioned to survive. In section 3, we apply the large deviations at level 2.5 to metastable quasi-stationary states in order to obtain their extinction rate as a function of their empirical time-averaged density and of their empirical time-averaged flows; we discuss the contractions towards the lower levels, and in particular we describe the link with the standard spectral analysis of section 2. This general framework is then illustrated with the applications to the birth–death model in a stable environment in section 4 and in a switching environment in section 5. Our conclusions are summarized in section 6. Appendix A is devoted to diffusion processes in dimension d with absorbing states, in order to explain the appropriate adaptations that are needed with respect to the formalism explained in the main text for Markov jump processes.

2. Reminder on the spectral analysis of the slowest relaxation mode

In this section, we recall the standard spectral analysis of the slowest relaxation mode for Markov jump processes with absorbing states [2–9] that will be useful to understand the large deviations properties described in section 3.
2.1. Markov jump process with an absorbing state at configuration $x = 0$

In the main text of this paper, we consider a Markov chain in continuous-time t for a discrete space Ω of configurations, with a single absorbing state that will be called the dead configuration $x = 0$, while $\Omega^* = \{ x \in \Omega, x \neq 0 \}$ represents the set of living configurations. The generator w of the Markov chain is a matrix of size $\Omega \times \Omega$, where the off-diagonal $x \neq y$ matrix element $w_{x,y} \geq 0$ represents the transition rate from configuration y to configuration x, while the diagonal element $w_{x,x}$ is negative and is fixed by the conservation of probability to be

$$w_{x,x} \equiv -\sum_{y \neq x} w_{y,x} \tag{1}$$

The master equation for the probability $P_t(x)$ to be in configuration x at time t reads

$$\partial_t P_t(x) = \sum_y w_{x,y} P_t(y) = \sum_{y \neq x} [w_{x,y} P_t(y) - w_{y,x} P_t(x)] \tag{2}$$

The absorbing character of the dead configuration $x = 0$ means that all the rates out of $x = 0$ vanish

$$w_{y,0} = 0 \tag{3}$$

so that the master equation of equation (2) for the dead configuration $x = 0$ reduces to the incoming flows from the living configurations $y \neq 0$ with non-vanishing absorbing rates $w_{0,y} > 0$

$$\partial_t P_t(0) = \sum_{y \neq 0} w_{0,y} P_t(y) \tag{4}$$

As a consequence, the dynamics will converge for large time $t \to + \infty$ towards the dead configuration $x = 0$

$$P_{t=+\infty}(x) = \delta_{x,0} \tag{5}$$

Equations (1) and (5) mean that the highest eigenvalue of the Markov matrix w is zero

$$0 = \langle l_0 \vert w \rangle = \sum_x l_0(x) w_{x,y}$$

$$0 = w \vert r_0 \rangle = \sum_y w_{x,y} r_0(y) \tag{6}$$

where the positive left eigenvector is constant over the whole space Ω of configurations

$$l_0(x) = 1 \tag{7}$$

while the positive right eigenvector is the trivial steady state of equation (5)

$$r_0(y) = \delta_{y,0} \tag{8}$$

https://doi.org/10.1088/1742-5468/ac4519
with the normalization
\[1 = \langle l_0 | r_0 \rangle = \sum_x l_0(x) r_0(x) = 1 \quad (9) \]

2.2. Slowest relaxation mode with its decay rate \(\zeta_1 \), its right eigenvector \(|r_1 \rangle \) and its left eigenvector \(\langle l_1 | \)

We are interested in models where the next eigenvalue \((\zeta_1) < 0 \) of the Markov matrix \(w \) is very close to zero, with its right eigenvector \(|r_1 \rangle \) and its left eigenvector \(\langle l_1 | \)
\[
\langle l_1 | w = -\zeta_1 \langle l_1 | \quad (10)
\]

This slowest relaxation mode will govern the convergence towards the absorbing state of equation (5)
\[
e^{w t} \simeq t \to +\infty \langle r_0 | e^{w t} | l_0 \rangle + e^{-\zeta_1 t} \langle r_1 | e^{w t} | l_1 \rangle \quad (11)
\]
i.e. for the probability \(P_t(x, x_0) \) to be at configuration \(x \) at time \(t \) when starting at configuration \(x_0 \) at time \(t = 0 \)
\[
P_t(x, x_0) \equiv \langle x | e^{w t} | x_0 \rangle \simeq r_0(x) l_0(x_0) + e^{-\zeta_1 t} r_1(x) l_1(x_0) = \delta_{x, 0} + e^{-\zeta_1 t} r_1(x) l_1(x_0) \quad (12)
\]
Let us write more explicitly the projections of the eigenvalue equation (10) onto the dead configuration \(x = 0 \)
\[
-\zeta_1 r_1(0) = \sum_y w_{0,y} r_1(y) = \sum_{y \neq 0} w_{0,y} r_1(y)
\]
\[
-\zeta_1 l_1(0) = \sum_x l_1(x) w_{x,0} = 0 \quad (13)
\]
and the projection onto the living configurations of \(\Omega^* \) using equations (3) and (13)
\[
-\zeta_1 r_1(x) = \sum_y w_{x,y} r_1(y) = \sum_{y \neq 0} w_{x,y} r_1(y) \quad \text{for } x \neq 0
\]
\[
-\zeta_1 l_1(y) = \sum_x l_1(x) w_{x,y} = \sum_{x \neq 0} l_1(x) w_{x,y} \quad \text{for } y \neq 0 \quad (14)
\]
as well as the orthogonality conditions with the eigenvectors of equations (7) and (8)
\[
0 = \langle l_0 | r_1 \rangle = \sum_x l_0(x) r_1(x) = \sum_x r_1(x) = r_1(0) + \sum_{x \neq 0} r_1(x)
\]
\[
0 = \langle l_1 | r_0 \rangle = \sum_x l_1(x) r_0(x) = l_1(0) \quad (15)
\]
Large deviations for metastable states of Markov processes with absorbing states

and the normalization
\[1 = \langle l_1 | r_1 \rangle = \sum_x l_1(x) r_1(x) = \sum_{x \neq 0} l_1(x) r_1(x) \] (16)

Let us now summarize the two important properties of the previous discussion:

(a) the right eigenvector \(r_1(.) \) and the left eigenvector \(l_1(.) \) satisfy the closed eigenvalues equation (14) on the set \(\Omega^* \) of living configurations with the normalization of equation (16). Since \((-\zeta_1) < 0 \) is the highest eigenvalue of Markov matrix \(w \) on the set \(\Omega^* \) of living configurations, one obtains via the Perron–Frobenius that the eigenvectors \(r_1 \) and \(l_1 \) are positive on \(\Omega^* \)
\[r_1(x) > 0 \quad \text{for} \quad x \neq 0 \]
\[l_1(x) > 0 \quad \text{for} \quad x \neq 0 \] (17)

(b) For the dead configuration \(x = 0 \), the left eigenvector vanishes \(l_1(0) = 0 \) (equations (13) and (15)), while the right eigenvector \(r_1(0) \) is negative and can be computed in terms of the components \(r_1(x) \) on living configurations via equations (13) and (15)
\[r_1(0) = -\frac{1}{\zeta_1} \sum_{y \neq 0} w_{0,y} r_1(y) < 0 \]
\[r_1(0) = -\sum_{x \neq 0} r_1(x) < 0 \] (18)

As a consequence, one can eliminate \(r_1(0) \) to obtain the following consistency equation between the eigenvalue \(\zeta_1 \) and the right eigenvector \(r_1(x) \) for living configurations \(x \neq 0 \)
\[\zeta_1 = \frac{\sum_{y \neq 0} w_{0,y} r_1(y)}{\sum_{x \neq 0} r_1(x)} \] (19)

2.3. Probability \(P^\text{end}_t(x,x_0) \) to be in the living configuration \(x \) at time \(t \) if surviving up to time \(t \)

The probability \(S_t(x_0) \) to be surviving at time \(t \) when starting at configuration \(x_0 \) at time \(t = 0 \) can be computed from equation (12)
\[S_t(x_0) = \sum_{x \neq 0} P_t(x,x_0) \sim t^{-\zeta_1} \left[\sum_{x \neq 0} r_1(x) \right] l_1(x_0) \] (20)

So the probability \(P^\text{end}_t(x,x_0) \) to be in the living configuration \(x \neq 0 \) at time \(t \) if surviving up to time \(t \)
\[P^\text{end}_t(x,x_0) = \frac{P_t(x,x_0)}{S_t(x_0)} \sim t^{-\zeta_1} \frac{r_1(x)}{\sum_{x' \neq 0} r_1(x')} \equiv \pi^\text{end}_t(x) \] (21)
is actually independent of the time t and of the initial condition x_0: the probability distribution $\pi^{\text{end}}(x)$ normalized on the set Ω^* of living configurations thus only involves the right eigenvector $r_1(\cdot)$ of the slowest relaxation mode.

2.4. Probability $P_{\tau}^{\text{interior}}(x)$ to be in configuration x at the interior time $1 \ll \tau \ll t$ if surviving up to time t

If the process survives up to time t, the probability $P_{\tau}^{\text{interior}}(x)$ to be in the living configuration x at the interior time τ satisfying $1 \ll \tau \ll t$ can be evaluated using the asymptotic form of the propagator of equation (12) for both time-intervals $\tau \gg 1$ and $(t - \tau) \gg 1$

$$P_{\tau}^{\text{interior}}(x) = \frac{P_{t-\tau}(x, x)P_{\tau}(x, x)}{\sum_{x' \neq 0} P_{t-\tau}(x, x')P_{\tau}(x', x)} \approx \frac{e^{-\zeta_1(t-\tau)}r_1(x)l_1(x)e^{-\zeta_1\tau}r_1(x)l_1(x)}{\sum_{x' \neq 0} e^{-\zeta_1(t-\tau)}r_1(x)l_1(x')e^{-\zeta_1\tau}r_1(x')l_1(x)}$$

$$\approx \frac{l_1(x)r_1(x)}{\sum_{x' \neq 0} l_1(x')r_1(x')} = l_1(x)r_1(x) \equiv \pi^{\text{interior}}(x) \quad \text{(22)}$$

where we have used the normalization of equation (16) to obtain the final result. Since the probability $P_{\tau}^{\text{interior}}(x, x_0)$ of equation (22) is independent of τ as long as it is in the interior of the time-interval $1 \ll \tau \ll t$, it is interesting to construct the Doob Markov generator \hat{w} on the set Ω^* of living configurations that has $\pi^{\text{interior}}(x)$ as true steady state, i.e. its highest eigenvalue zero should be associated to the positive left and right eigenvectors

$$\hat{l}_0(x) = 1$$

$$\hat{r}_0(x) = \pi^{\text{interior}}(x) = l_1(x)r_1(x) \quad \text{(23)}$$

The explicit form of the Doob generator \hat{w} involves the eigenvalue $(-\zeta_1)$ and the positive left eigenvector $l_1(\cdot)$ on Ω^*

$$\hat{w}_{x,y} = l_1(x)w_{x,y} \frac{1}{l_1(y)} + \zeta_1 \delta_{x,y} \quad \text{(24)}$$

The eigenvalues equations can be checked using equation (14)

$$\sum_{y \neq 0} \hat{w}_{x,y}\hat{r}_0(y) = \sum_{y \neq 0} \left[l_1(x)w_{x,y} \frac{1}{l_1(y)} + \zeta_1 \delta_{x,y} \right] l_1(y)r_1(y) = l_1(x) \left[\sum_{y \neq 0} w_{x,y}r_1(y) \right] + \zeta_1 l_1(x)r_1(x) = 0$$

$$\sum_{x \neq 0} \hat{l}_0(x)\hat{w}_{x,y} = \sum_{x \neq 0} \left[l_1(x)w_{x,y} \frac{1}{l_1(y)} + \zeta_1 \delta_{x,y} \right] = \left[\sum_{x \neq 0} l_1(x)w_{x,y} \right] \frac{1}{l_1(y)} + \zeta_1 = 0 \quad \text{(25)}$$
2.5. Perturbation theory with respect to the absorbing rates \(w_{0,y} \) towards the dead configuration \(x = 0 \)

Since the spectral problem for the slowest relaxation mode cannot be explicitly solved in many models of interest, it is useful to consider the simplest possible approximation, namely the perturbation theory with respect to the absorbing rates \(w_{0,y} \) towards the dead configuration \(x = 0 \).

2.5.1. Properties of the unperturbed Markov matrix \(w^{(0)} \). Let us decompose the full Markov matrix \(w \) into the two contributions

\[
w = w^{(0)} + \epsilon w^{(1)}
\]

where the contribution containing all the absorbing rates \(w_{0,y} \) towards the dead configuration \(x = 0 \)

\[
\epsilon w^{(1)} = \sum_{y \neq 0} (|0\rangle - |y\rangle) w_{0,y}\langle y|
\]

will be considered as a perturbation of order \(\epsilon \) with respect to the complementary contribution containing all the other transition rates \(w_{x,y} \) within the set \(\Omega^* \) of living configurations

\[
w^{(0)} = \sum_{x \neq 0} \sum_{y \neq 0} (|x\rangle - |y\rangle) w_{x,y}\langle y|
\]

This unperturbed Markov matrix \(w^{(0)} \) conserve the probability on \(\Omega^* \). For the Markov matrix \(w^{(0)} \) on the full configuration space \(\Omega \), the eigenvalue 0 is thus doubly degenerate, with the two left trivial eigenvectors

\[
l^{\text{dead}}_0(x) = \delta_{x,0} \\
l^{\text{living}}_0(x) = 1 - \delta_{x,0}
\]

The corresponding right eigenvectors are

\[
r^{\text{dead}}_0(x) = \delta_{x,0} \\
r^{\text{living}}_0(x) = (1 - \delta_{x,0})\pi^*(x)
\]

where \(\pi^*(x) \) is the normalized steady state of Markov matrix \(w^{(0)} \) on \(\Omega^* \).

2.5.2. Degenerate perturbation theory for the unperturbed Markov matrix \(w^{(0)} \). The goal is to compute the leading contribution for the non-vanishing eigenvalue \((-\zeta_1(\epsilon)) < 0 \) for \(\epsilon > 0 \) of the full matrix \(w \) that vanishes for \(\epsilon = 0 \)

\[
\zeta_1(\epsilon) = 0 + \epsilon \zeta_1^{(1)} + O(\epsilon^2)
\]
with the corresponding expansions for the right and left eigenvectors

$$|r_1(\epsilon)\rangle = |r_1^{(0)}\rangle + \epsilon |r_1^{(1)}\rangle + O(\epsilon^2)$$

$$\langle l_1(\epsilon)| = \langle l_1^{(0)}| + \epsilon \langle l_1^{(1)}| + O(\epsilon^2)$$

(32)

that should satisfy the orthonormalization relations

$$0 = \langle l_0|r_1(\epsilon)\rangle = \langle l_0|r_1^{(0)}\rangle + \epsilon \langle l_0|r_1^{(1)}\rangle + O(\epsilon^2)$$

$$0 = \langle l_1(\epsilon)|r_0\rangle = \langle l_1^{(0)}|r_0\rangle + \epsilon \langle l_1^{(1)}|r_0\rangle + O(\epsilon^2)$$

$$1 = \langle l_1(\epsilon)|r_1(\epsilon)\rangle = \langle l_1^{(0)}|r_1^{(0)}\rangle + \epsilon \left(\langle l_1^{(0)}|r_1^{(1)}\rangle + \langle l_1^{(1)}|r_1^{(0)}\rangle\right) + O(\epsilon^2)$$

(33)

Since the eigenvalue $\zeta_0^{(0)} = 0$ of the unperturbed matrix $w^{(0)}$ is doubly degenerate, one needs to apply the degenerate perturbation theory familiar from quantum mechanics, where the first task is the diagonalization of the perturbation $(\epsilon w^{(1)})$ within the two-dimensional degenerate subspace of $w^{(0)}$. However here, we know that $\zeta_0 = 0$ is an exact isolated eigenvalue for the full Markov matrix w for $\epsilon > 0$, where the corresponding trivial left eigenvector $l_0(x) = 1$ of equation (7) is the simple linear combination of the two left trivial eigenvectors of equation (29)

$$\langle l_0| = \langle l_0^{\text{dead}}| + \langle l_0^{\text{living}}|$$

(34)

while the corresponding right eigenvector $r_0(x) = \delta_{x,0}$ of equation (8) simply coincide with one of the two right eigenvectors of equation (30)

$$|r_0\rangle = |r_0^{\text{dead}}\rangle$$

(35)

At order 0, the eigenvectors $|r_1^{(0)}\rangle$ and $\langle l_1^{(0)}|$ of equation (32) belong to the two-dimensional degenerate subspace of $w^{(0)}$ and can be thus rewritten as linear combinations of the corresponding unperturbed eigenvectors. The orthonormalization conditions of equation (33) for $\epsilon = 0$

$$0 = \langle l_0|r_1^{(0)}\rangle$$

$$0 = \langle l_1^{(0)}|r_0\rangle$$

$$1 = \langle l_1^{(0)}|r_1^{(0)}\rangle$$

(36)

leads to the linear combinations

$$|r_1^{(0)}\rangle = -|r_0^{\text{dead}}\rangle + |r_0^{\text{living}}\rangle$$

$$\langle l_1^{(0)}| = \langle l_0^{\text{living}}|$$

(37)

2.5.3. First-order contribution to the slowest relaxation rate ζ_1. Using the series expansion of equations (31) and (32), the eigenvalue equation for $\zeta_1(\epsilon)$ reads for the right
Large deviations for metastable states of Markov processes with absorbing states

eigenvector $|r_1(\epsilon)\rangle$

$$0 = (w + \zeta_1(\epsilon)) |r_1(\epsilon)\rangle = \left(w^{(0)} + \epsilon w^{(1)} + \cdots \right) |r_1(\epsilon)\rangle = \epsilon \left[w^{(0)} |r_1^{(1)}\rangle + \left(w^{(1)} + \zeta_1^{(1)} \right) |r_1^{(0)}\rangle \right] + O(\epsilon^2)$$

(38)

and for the left eigenvector $\langle l_1(\epsilon) |$

$$0 = \langle l_1(\epsilon) | (w + \zeta_1(\epsilon)) = \left(\langle l_1^{(0)} | + \epsilon \langle l_1^{(1)} | + \cdots \right) \left(w^{(0)} + \epsilon w^{(1)} + \epsilon \zeta_1^{(1)} + \cdots \right)$$

$$= \epsilon \left[\langle l_1^{(1)} | w^{(0)} + \langle l_1^{(0)} | \left(w^{(1)} + \zeta_1^{(1)} \right) \right] + O(\epsilon^2)$$

(39)

The standard choice that respects the normalization of equation (33) at order ϵ is given by the orthogonality conditions for the first-order corrections of the eigenvectors with respect to the unperturbed eigenvectors

$$0 = \langle l_1^{(0)} | r_1^{(1)} \rangle$$

$$0 = \langle l_1^{(1)} | r_1^{(0)} \rangle$$

(40)

Then the eigenvalue equation (38) for the right eigenvector at order ϵ can be projected onto the left eigenvector $\langle l_1^{(0)} |$ satisfying $\langle l_1^{(0)} | w^{(0)} = 0$ and $\langle l_1^{(0)} | r_1^{(0)} \rangle = 1$ to obtain the first-order correction for the eigenvalue

$$\zeta_1^{(1)} = -\langle l_1^{(0)} | w^{(1)} | r_1^{(0)} \rangle$$

(41)

Equivalently, the eigenvalue equation (39) for the left eigenvector at order ϵ can be projected onto the right eigenvector $|r_1^{(0)}\rangle$ satisfying $w^{(0)} |r_1^{(0)}\rangle = 0$ to obtain again equation (41).

Putting everything together, this degenerate perturbation theory yields that the leading contribution for the slowest relaxation rate can be evaluated from the matrix elements of the perturbation $\epsilon w^{(1)}$ of equation (27) for the left and right eigenvectors of equation (37)

$$\zeta_{\text{per}}^{(1)} = \epsilon \zeta_1^{(1)} = -\langle l_1^{(0)} | \epsilon w^{(1)} | r_1^{(0)} \rangle = \sum_{y \neq 0} \langle l_0^{\text{living}} | (\epsilon |0\rangle + |y\rangle) w_{0,y} \langle y |$$

$$\times \left(-|r_0^{\text{dead}}\rangle + |r_0^{\text{living}}\rangle \right) = \sum_{y \neq 0} \langle l_0^{\text{living}} | y \rangle w_{0,y} \pi^\ast (y) = \sum_{y \neq 0} w_{0,y} \pi^\ast (y)$$

(42)

This final result has thus a very simple physical meaning in terms of the absorbing flows $w_{0,y} \pi^\ast (y)$ into the dead configuration $x = 0$ computed with the normalized steady-state $\pi^\ast (y)$ of the unperturbed Markov matrix $w^{(0)}$ of equation (28) on the set Ω^\ast of living configurations. As a consequence, even when the absorbing rates $w_{0,y}$ are not particularly small, the perturbative estimation $\zeta_{\text{per}}^{(1)}$ of equation (42) will be small if the steady state $\pi^\ast (y)$ is small on the sites $y \neq 0$ that are directly connected to the absorbing site at $x = 0$ via positive rates $w_{0,y} > 0$.

https://doi.org/10.1088/1742-5468/ac4519
3. Large deviations at various levels for metastable quasi-stationary states

In this section, the goal is to analyze the extinction rate of metastable states in terms of their empirical time-averaged properties over a large time-window T.

3.1. Reminder on the large deviations at level 2.5 for the time-averaged density and the time-averaged flows

For a very long dynamical trajectory $x(0 \leq t \leq T)$ of the Markov jump process satisfying a master equation of the form of equation (2), the empirical time-averaged density

$$\rho_T(x) \equiv \frac{1}{T} \int_0^T dt \delta_{x(t),x}$$

measures the histogram of the various configurations x seen during the dynamical trajectory $x(0 \leq t \leq T)$, while the empirical time-averaged flows

$$q_T(x, y) \equiv \frac{1}{T} \sum_{t \in [0, T] : x(t^+) \neq x(t^-(t^-)} \delta_{x(t^+),x} \delta_{x(t^-),y}$$

measure the density of jumps from one configuration y to another configuration x. The joint probability to see the empirical density $\rho(x)$ and the empirical flows $q(x, y)$ follows the large deviation form for large T [25, 28–48]

$$P_T^{[2.5]}[\rho(\.); q(\.\), \rho(\.\), q(\.\])] \propto C_{2.5}[\rho(\.); q(\.\), e^{-TI_{2.5}[\rho(\.); q(\.\))]}

where the prefactor

$$C_{2.5}[\rho(\.); q(\.\), = \delta \left(\sum_x \rho(x) - 1 \right) \prod_x \delta \left(\sum_{y \neq x} (q(x, y) - q(y, x)) \right)$$

contains the constitutive constraints that the empirical observables should satisfy: the density $\rho(\.)$ should be normalized, while the flows $q(\.\), \rho(\.\), should satisfy the stationarity constraints: for any configuration x, the total incoming flow $\sum_{y \neq x} q(x, y)$ into the configuration x should be equal to the total outgoing flow $\sum_{y \neq x} q(y, x)$ out of the configuration x. As stressed in the Introduction, the rate function $I_{2.5}[\rho(\.); q(\.\), at level 2.5 can be written explicitly for any continuous-time Markov chain in terms of its generator w [25, 28–48]

$$I_{2.5}[\rho(\.); q(\.\) = \sum_x \sum_{y \neq x} \left[q(x, y) \ln \left(\frac{q(x, y)}{w_{x,y} \rho(y)} \right) - q(x, y) + w_{x,y} \rho(y) \right]$$

This rate function characterizes how rare it is for large T to see some empirical density $\rho(\.)$ and some empirical flows $q(\.\), that are different from the steady state and its corresponding steady flows that would make the rate function vanish. As a consequence, the large deviations at level 2.5 can be directly applied to Markov jump processes with absorbing states in order to analyze the extinction rate of metastable states as explained below.

https://doi.org/10.1088/1742-5468/ac4519
3.2. Probability $P^{[2.5]_{\text{living}}}_{T}[\rho(\cdot);q(\cdot,\cdot)]$ to remain living up to T with given empirical density and empirical flows

The probability to remain confined in the set Ω^* of living configurations during the whole time-window T can be directly obtained from the level 2.5 of equation (45)

$$P^{[2.5]_{\text{living}}}_{T}[\rho(\cdot);q(\cdot,\cdot)] \propto C^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)]e^{-T^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)]}$$

as a function of the empirical density $\rho(\cdot)$ and the empirical flows $q(\cdot,\cdot)$ defined on Ω^*, i.e. the empirical density should vanish on the dead configuration $x = 0$, and all the empirical absorbing flows $q(0,y)$ should also vanish

$$\rho(0) = 0$$
$$q(0,y) = 0 \quad \text{for any } y \neq 0$$

So the constraints obtained from equation (46) become

$$C^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)] = \delta(\rho(0)) \delta \left(\sum_{x \neq 0} \rho(x) - 1 \right) \left[\prod_{y \neq 0} \delta(q(0,y)) \right]$$

while the rate function obtained from equation (47) reads

$$I^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)] = \sum_{y \neq 0} w_{0,y} \rho(y) + \sum_{x \neq 0} \sum_{y \neq 0 \neq y \neq x} q(x,y) \ln \left(\frac{q(x,y)}{w_{x,y} \rho(y)} \right) - q(x,y) + w_{x,y} \rho(y)$$

In conclusion, the rate function $I^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)]$ represents the extinction rate of a metastable state localized on the set Ω^* of living configurations as a function of its empirical density $\rho(\cdot)$ and of its empirical flows $q(\cdot,\cdot)$.

Using equation (1) to rewrite for any $y \neq 0$

$$w_{0,y} + \sum_{x \neq 0} w_{x,y} = \sum_{x \neq y} w_{x,y} = -w_{y,y}$$

one obtains the alternative expression for the level 2.5 rate function of equation (51)

$$I^{\text{living}}_{2.5}[\rho(\cdot);q(\cdot,\cdot)] = -\sum_{y \neq 0} w_{y,y} \rho(y) + \sum_{x \neq 0} \sum_{y \neq 0 \neq y \neq x} q(x,y) \ln \left(\frac{q(x,y)}{w_{x,y} \rho(y)} \right) - q(x,y)$$

https://doi.org/10.1088/1742-5468/ac4519
3.3. Probability $P_T^{[2]\text{living}}[\rho(.)]$ to remain living up to T with given empirical density

If one wishes to compute the extinction rate of a metastable state as a function of its empirical density $\rho(.)$ alone, one needs to integrate the joint probability of equation (48) over all the possible empirical flows $q(.,.)$

$$P_T^{[2]\text{living}}[\rho(.)] = \int Dq(.,.) P_T^{[2.5]\text{living}}[\rho(.) ; q(.,.)]$$

$$\propto \int Dq(.,.) \prod_{y \neq 0} \delta (q(0, y))$$

$$\times \prod_{x \neq 0} \delta (\rho(0)) \delta \left(\sum_{y \neq 0} (q(x, y) - q(y, x)) \right) e^{-T \int_{1.5}^{2} P^{\text{living}}[\rho(.)]}$$

So the extinction rate $I_2^{\text{living}}[\rho(.)]$ at level 2 as a function of the empirical density $\rho(.)$ alone corresponds to the optimization of the extinction rate $I_{2.5}^{\text{living}}[\rho(.) ; q(.,.)]$ at level 2.5 over the empirical flows $q(.,.)$ satisfying the stationarity constraints.

3.4. Link with the slowest relaxation mode via the probability $P_T^{\text{living}} \propto e^{-T \zeta_1}$ to remain living up to T

The probability P_T^{living} to remain living up to T that involves the slowest decay rate ζ_1 discussed in section 2

$$P_T^{\text{living}} \propto e^{-T \zeta_1}$$

(55)

can also be computed via the integration the level 2 of equation (54) over the empirical density $\rho(.)$

$$P_T^{\text{living}} = \int D\rho(.) P_T^{[2]\text{living}}[\rho(.)] \propto \int D\rho(.) \delta (\rho(0)) \delta \left(\sum_{x \neq 0} \rho(x) - 1 \right) e^{-T \int_{2}^{2.5} P^{\text{living}}[\rho(.)]}$$

(56)

By consistency, the slowest decay rate ζ_1 should thus correspond to the optimization of the extinction rate $I_2^{\text{living}}[\rho(.)]$ at level 2 over the empirical density $\rho(.)$ satisfying the normalization constraint

$$\zeta_1 = \min_{\rho(., \cdot) \sum_{x \neq 0} \rho(x) = 1} \left(I_2^{\text{living}}[\rho(.)] \right)$$

(57)

https://doi.org/10.1088/1742-5468/ac4519
When the extinction rate $I_{\text{living}}[\rho(.)]$ at level 2 cannot be explicitly obtained via the contraction of equation (54), one can always return to the explicit level 2.5 of equation (48) that should be integrated over both the empirical density and the empirical flows to obtain

$$F_T^{\text{living}} = \int \mathcal{D}\rho(.) \int \mathcal{D}q(.,:) F_T^{2.5|\text{living}}[\rho(.) ; q(.,:)]$$

$$\propto \int \mathcal{D}\rho(.) \delta(\rho(0)) \delta \left(\sum_{x \neq 0} \rho(x) - 1 \right) \int \mathcal{D}q(.,:) \left[\prod_{y \neq 0} \delta(q(0,y)) \right]$$

$$\times \left[\prod_{x \neq 0} \delta \left(\sum_{y \neq 0 \not= x} (q(x,y) - q(y,x)) \right) \right] e^{-T \sum_{y \neq 0} \rho(y) \frac{w_{0,y} \pi^*(y)}{\rho(y)}}$$

So the slowest decay rate ζ_1 corresponds to the optimization of the explicit extinction rate $I_{\text{living}}^{2.5}[\rho(.) ; q(.,:)]$ at level 2.5 over the empirical density $\rho(.)$ satisfying the normalization constraint and over the empirical flows $q(.,:)$ satisfying the stationarity constraints. Let us now explain in more details the links with properties discussed in section 2.

3.4.1. Link with the estimation of ζ_1^{per} obtained via the perturbation theory in the absorbing rates $w_{0,y}$. The rate function $I_{2.5|\text{living}}[\rho(.) ; q(.,:)]$ of equation (51) allows to recover directly the perturbative estimation of the slowest relaxation rate ζ_1^{per} of equation (42) as follows: when the empirical density $\rho(y)$ coincides with the steady state $\pi^*(y)$ of the unperturbed Markov matrix $w^{(0)}$ on Ω^*, and when the empirical flows $q(x,y)$ coincide with the associated steady flows $w_{x,y} \pi^*(y)$ on Ω^*, then all the constraints of equation (50) are satisfied, while the second term of the rate function of equation (51) vanishes, so that equation (48) reduces to

$$F_T^{\text{living}}[\rho(y) = \pi^*(y) ; q(x,y) = w_{x,y} \pi^*(y)] \propto e^{-T \sum_{y \neq 0} w_{0,y} \pi^*(y)} = e^{-T \zeta_1^{\text{per}}}$$

and one recovers directly the perturbative estimation ζ_1^{per} of equation (42).

3.4.2. Equivalence between the exact optimization of equation (58) and the spectral problem of section 2. Let us now consider the exact optimization problem of equation (58). In the integral, it is convenient to make the change of variables from the empirical flows $q(x,y)$ to the empirical transition rates $W(x,y)$ on Ω^*

$$W(x,y) \equiv \frac{q(x,y)}{\rho(y)} \quad \text{for} \quad x \neq y$$

The integral of equation (58) can be then rewritten using the rate function of equation (53) as
Large deviations for metastable states of Markov processes with absorbing states

\[P_T^{\text{living}} \propto \int \mathcal{D}\rho(.)\delta(\rho(0)) \delta \left(\sum_{y \neq 0} \rho(y) - 1 \right) \int \mathcal{D}W(.) \left[\prod_{y \neq 0} \delta(\rho(y)) \right] \]

\[\times \left[\prod_{x \neq 0} \delta \left(\sum_{y \neq 0 \atop y \neq x} (W(x, y)\rho(y) - W(y, x)\rho(x)) \right) \right] \]

\[-T \sum_{y \neq 0} \rho(y) \left(-w_{y,y}^* + \sum_{x \neq 0 \atop x \neq y} \left[W(x, y) \ln \left(\frac{W(x, y)}{w_{x,y}^*} \right) - W(x, y) \right] \right) \]

\[\times e^{-T \sum_{y \neq 0} \rho(y) \left(-w_{y,y}^* + \sum_{x \neq 0 \atop x \neq y} \left[W(x, y) \ln \left(\frac{W(x, y)}{w_{x,y}^*} \right) - W(x, y) \right] \right)} \]

(61)

In order to optimize the functional in the exponential of equation (61) in the presence of the constraints, it is convenient to introduce the following Lagrangian with the Lagrange multipliers \((\omega, \nu(.)\))

\[\mathcal{L}(\rho(.); W(. , .)) = \sum_{y \neq 0} \rho(y) \left(-w_{y,y}^* + \sum_{x \neq 0 \atop x \neq y} \left[W(x, y) \ln \left(\frac{W(x, y)}{w_{x,y}^*} \right) - W(x, y) \right] \right) \]

\[-\omega \left(\sum_{y \neq 0} \rho(y) - 1 \right) - \sum_{x \neq 0} \nu(x) \left(\sum_{y \neq 0 \atop y \neq x} (W(x, y)\rho(y) - W(y, x)\rho(x)) \right) \]

(62)

that can be rewritten more compactly as

\[\mathcal{L}(\rho(.); W(. , .)) = \omega + \sum_{y \neq 0} \rho(y) \left(-\omega - w_{y,y}^* + \sum_{x \neq 0 \atop x \neq y} \left[W(x, y) \ln \left(\frac{W(x, y)}{w_{x,y}^*e^{\nu(x)} - \nu(y)} \right) - W(x, y) \right] \right) \]

(63)

The optimization of this Lagrangian with respect to empirical transition rate \(W(x, y)\) on \(\Omega^*\) for \(x \neq y\)

\[0 = \frac{\partial \mathcal{L}(\rho(.); W(. , .))}{\partial W(x, y)} = \rho(y) \ln \left(\frac{W(x, y)}{w_{x,y}^*e^{\nu(x)} - \nu(y)} \right) \]

(64)

yields the optimal values

\[W_{\text{opt}}(x, y) = e^{\nu(x)}w_{x,y}e^{-\nu(y)} \]

(65)
The optimization of the Lagrangian of equation (63) with respect to the empirical density $\rho(y)$ yields with the optimal transition rates obtained in equation (65)

$$0 = \frac{\partial L(\cdot; W_{\text{opt}}(\cdot, \cdot))}{\partial \rho(y)}$$

$$= -\omega - w_{y,y} + \sum_{x \neq 0, x \neq y} W_{\text{opt}}(x, y) \ln \left(\frac{W_{\text{opt}}(x, y)}{w_{x,y} e^{\nu(x) - \nu(y)}} \right) - W_{\text{opt}}(x, y)$$

$$= -\omega - w_{y,y} - \sum_{x \neq 0, x \neq y} e^{\nu(y)} w_{x,y} e^{-\nu(y)} = -\omega - \sum_{x \neq 0} e^{\nu(y)} w_{x,y} e^{-\nu(y)} \quad (66)$$

The optimal value of the Lagrangian of equation (63) that determines the slowest relaxation rate ζ_1 of equation (56) reduces to the Lagrange multiplier ω

$$\zeta_1 = L_{\text{opt}} = \omega \quad (67)$$

The optimization equation (66) can be rewritten as the eigenvalue equation

$$-\zeta_1 e^{\nu(y)} = \sum_{x \neq 0} e^{\nu(x)} w_{x,y} \quad (68)$$

so that $e^{\nu(x)}$ should correspond to the positive left eigenvector $l_1(\cdot)$ of the matrix w on Ω^* associated to the eigenvalue $(-\zeta_1)$

$$e^{\nu(x)} = l_1(x) \quad (69)$$

The optimal transition rates of equation (65) should satisfy the stationarity constraint for any $x \neq 0$

$$0 = \sum_{y \neq y, y \neq x} \left(W_{\text{opt}}(x, y) \rho(y) - W_{\text{opt}}(y, x) \rho(x) \right)$$

$$= \left[\sum_{y \neq 0} e^{\nu(y)} w_{x,y} e^{-\nu(y)} \rho(y) - w_{x,x} \rho(x) \right] - \left[\sum_{y \neq 0} e^{\nu(y)} w_{y,x} e^{-\nu(x)} \rho(x) - w_{x,x} \rho(x) \right]$$

$$= e^{\nu(x)} \sum_{y \neq 0} w_{x,y} e^{-\nu(y)} \rho(y) - \sum_{y \neq 0} e^{\nu(y)} w_{y,x} e^{-\nu(x)} \rho(x) \quad (70)$$

that can be rewritten using equation (68) for the last parenthesis as the eigenvalue equation

$$-\zeta_1 e^{-\nu(x)} \rho(x) = \sum_{y \neq 0} w_{x,y} e^{-\nu(y)} \rho(y) \quad (71)$$

https://doi.org/10.1088/1742-5468/ac4519

J. Stat. Mech. (2022) 013206
Large deviations for metastable states of Markov processes with absorbing states

So $e^{-\nu(x)}\rho(x)$ should be the positive right eigenvector $r_1(.)$ of the matrix w on Ω^* associated to the eigenvalue $(-\zeta_1)$

$$r_1(x) = e^{-\nu(x)}\rho(x) = \frac{\rho(x)}{l_1(x)}$$

(72)

As a consequence, the optimal empirical density $\rho_{\text{opt}}(x)$ coincides with the interior probability distribution $\pi_{\text{interior}}(x)$ of equation (22)

$$\rho_{\text{opt}}(x) = l_1(x)r_1(x) = \pi_{\text{interior}}(x)$$

(73)

Finally, the optimal empirical transition rates of equation (65) on Ω^* for $x \neq y$ involves the left eigenvector of equation (69)

$$W_{\text{opt}}(x, y) = e^{-\nu(x)}w_{x,y}e^{-\nu(y)} = l_1(x)w_{x,y}\frac{1}{l_1(y)} = \omega_{x,y} \text{ for } x \neq y$$

(74)

and corresponds to the off-diagonal matrix elements of the Doob generator of equation (24).

In conclusion, the exact optimization of the explicit rate function $I_{2.5}^{\text{living}}[\rho(\cdot); q(\cdot, \cdot)]$ at level 2.5 over the empirical density and the empirical flows with their constraints is equivalent to the spectral analysis described in the previous section, as it should for consistency.

3.5. Large deviations for general time-additive observables of the trajectory $x(0 \leq t \leq T)$ before extinction

As mentioned in the introduction, the large deviations at level 2.5 allows to derive the large deviations of any time-additive observable of the Markov trajectory using their decomposition in terms of empirical observables. Indeed, the empirical density $\rho(.)$ allows to reconstruct any time-additive observable A_T that involves some function α_x of the configuration x

$$A_T \equiv \frac{1}{T} \int_0^T dt \alpha_{x(t)} = \sum_x \alpha_x \rho_x$$

(75)

while the empirical flows $q(\cdot, \cdot)$ allows to reconstruct any time-additive observable B_T that involves some function $\beta_{x,y}$

$$B_T \equiv \frac{1}{T} \sum_{t: x(t^-) \neq x(t^+)} \beta_{x(t^-), x(t^+)} = \sum_y \sum_{x \neq y} \beta_{x,y} q_{x,y}$$

(76)

As a consequence, the large deviations at level 2.5 for $P_T^{[2.5] \text{living}}[\rho(\cdot); q(\cdot, \cdot)]$ of equation (48) allows to analyze the large deviations of any time-additive observable of the form $(A_T + B_T)$ for Markov trajectories living up to time T.

https://doi.org/10.1088/1742-5468/ac4519
3.6. Generalization: large deviations at level 2.5 for a set \(A \) of absorbing configurations

Up to now, we have only considered the case of a single absorbing configuration \(x = 0 \) for simplicity, but it is clear that the large deviations at level 2.5 for \(P_T^{[2.5]_{\text{living}}} [\rho(\cdot); q(\cdot, \cdot)] \) of equation (48) can be directly generalized to the case of a set \(A \) of absorbing configurations \(a \in A \) as follows. The constraints of equation (50) become

\[
C_{2.5}^{\text{living}} [\rho(\cdot); q(\cdot, \cdot)] = \prod_{a \in A} \delta (\rho(a)) \delta \left(\sum_{x \in A} \rho(x) - 1 \right) \prod_{a \in A, y \notin A} \delta (q(a, y)) \times \prod_{x \notin A} \delta \left(\sum_{y \notin A \land y \neq x} (q(x, y) - q(y, x)) \right)
\]

while the rate function obtained from equation (51) is given by

\[
J_{2.5}^{\text{living}} [\rho(\cdot); q(\cdot, \cdot)] = \sum_{a \in A} \sum_{y \notin A} w_{a,y} \rho(y) + \sum_{x \notin A} \sum_{y \notin A, y \neq x} \left[q(x, y) \ln \left(\frac{q(x, y)}{w_{x,y} \rho(y)} \right) - q(x, y) + w_{x,y} \rho(y) \right]
\]

3.7. Application to other types of metastable states

In this paper, we have chosen to focus on Markov processes with absorbing states. However, the case of long-lived metastable states before the relaxation towards the Boltzmann equilibrium or some other steady state has also attracted a lot of interest for many classical stochastic dynamics [92–101] (see also [102, 103] for the notion of metastability in open quantum systems). As a consequence, it is interesting to mention here that the large deviations at level 2.5 for \(P_T^{[2.5]_{\text{living}}} [\rho(\cdot); q(\cdot, \cdot)] \) of equation (48) with the constraints of equation (77) and the rate function of equation (78) can be also directly applied to other types of metastability: the set \(A \) of absorbing states should be then chosen as the outer boundary of the domain where the metastable state of interest lives.

4. Large deviations at various levels for population birth–death models

In this section, the goal is to apply the general formalism described in the two previous sections to the birth–death model which is one of the simplest stochastic model for the continuous-time dynamics of a discrete population \(n \).
4.1. Birth–death model for the discrete population \(n \) in the configuration space \(\Omega = \{0, 1, 2, \ldots, N\} \)

The Markov generator is parametrized by the birth rates \(b_m \) and the death rates \(d_m \)

\[
w_{n,m} = [\delta_{n,m+1} - \delta_{n,m}] b_m + [\delta_{n,m-1} - \delta_{n,m}] d_m
\]

with the following boundary conditions:

(a) the dead state \(n = 0 \) is an absorbing state from which there is no escape

\[
b_0 = 0 = d_0
\]

(b) the maximal state \(n = N \) is characterized by the vanishing birth rate

\[
b_N = 0
\]

so that it is not possible to reach the state \(n = N + 1 \). One may also consider that there is no maximal population \(N \rightarrow +\infty \).

So the master equation (2) reads

\[
\partial_t P_t(n) = \sum_m w_{n,m} P_t(m) = b_{n-1} P_t(n-1) + d_{n+1} P_t(n+1) - (b_n + d_n) P_t(n)
\]

For the dead configuration \(n = 0 \) with the vanishing rates of equation (80), the dynamics reduces to the incoming flow from the neighboring site \(n = 1 \)

\[
\partial_t P_t(0) = d_1 P_t(1)
\]

In various applications, many different choices for the dependence in \(n \) of the birth rates \(b_n \) and of the death rates \(d_n \) are relevant. As a consequence, it is interesting to discuss the general case with arbitrary birth and death rates.

4.2. Spectral analysis of the slowest relaxation mode of section 2

For the present birth–death model, the eigenvalues equations of equation (14) on \(\Omega^* = \{1, 2, \ldots, N\} \) for the slowest relaxation mode read for the right eigenvector \(r(.) \) in the bulk \(n = 2, \ldots, N - 1 \)

\[
-\zeta_1 r_1(n) = b_{n-1} r_1(n-1) + d_{n+1} r_1(n+1) - (b_n + d_n) r_1(n)
\]

with the boundary equations for \(n = 1 \) and \(n = N \)

\[
-\zeta_1 r_1(1) = d_2 r_1(2) - (b_1 + d_1) r_1(1)
\]

\[
-\zeta_1 r_1(N) = b_{N-1} r_1(N-1) - d_N r_1(N)
\]

For the left eigenvector \(l_1(.) \), the eigenvalues equations read in the bulk \(n = 2, \ldots, N - 1 \)

\[
-\zeta_1 l_1(m) = [l_1(m+1) - l_1(m)] b_m + [l_1(m-1) - l_1(m)] d_m
\]
with the boundary equations for $n = 1$ and $n = N$

$$-\zeta_1 l_1(1) = [l_1(2) - l_1(1)] b_1 + [0 - l_1(1)] d_1$$

$$-\zeta_1 l_1(N) = [l_1(N - 1) - l_1(N)] d_N$$

(87)

For arbitrary birth rates b_n and death rates d_n, the solution of this spectral problem requires the introduction of orthogonal polynomials (see [2] and references therein), so that there is no simple explicit closed expression of the extinction rate ζ_1 as a function of all the birth and death rates of the model. However as described below, the extinction rate can be written explicitly in terms of the empirical observables of the metastable state, both at level 2.5 and at level 2.

4.3. Probability $P_{T}^{2.5\text{living}}[\rho(\cdot);q(\cdot,\cdot)]$ to remain living up to T with given empirical density and empirical flows

For a very long dynamical trajectory $n(0 \leq t \leq T)$ of the population in the birth–death process of equation (82), the empirical observables are the empirical time-averaged density of the population n

$$\rho_T(n) \equiv \frac{1}{T} \int_0^T dt \delta_{n(t),n}$$

(88)

and the empirical time-averaged flows between population n and population $n \pm 1$

$$q_T(n \pm 1, n) \equiv \frac{1}{T} \sum_{t \in [0,T] | n(t) \neq n(t^-)} \delta_{n(t^+),n \pm 1} \delta_{x(t^-),n}$$

(89)

The probability to remain confined in the set $\Omega^* = \{1, 2, \ldots, N\}$ of living configurations with giving empirical observables $[\rho(\cdot); q(\cdot,\cdot)]$ follows the large deviation form of equation (48)

$$P_{T}^{2.5\text{living}}[\rho(\cdot);q(\cdot,\cdot)] \propto C_{T \rightarrow +\infty}^{\text{living}}[\rho(\cdot);q(\cdot,\cdot)] e^{-T^{\text{living}}_{2.5}[\rho(\cdot),q(\cdot,\cdot)]}$$

(90)

with the constraints obtained from equation (50)

$$C_{2.5}^{\text{living}}[\rho(\cdot);q(\cdot,\cdot)] = \delta(\rho(0)) \delta \left(\sum_{n=1}^N \rho(n) - 1 \right) \delta(q(0,1)) \delta(q(1,2) - q(2,1))$$

$$\times \delta(q(N,N-1) - q(N-1,N))$$

$$\times \prod_{n=2}^{N-1} \delta(q(n,n+1) + q(n,n-1) - q(n+1,n) - q(n-1,n))$$

(91)
while the rate function of equation (51) reads

\[
I_{2.5}^{\text{living}}[\rho(.); q(. .)] = d_1\rho(1) + \sum_{n=1}^{N-1} \left[q(n+1, n) \ln \left(\frac{q(n + 1, n)}{b_n\rho(n)} \right) - q(n + 1, n) + b_n\rho(n) \right]
+ \sum_{n=1}^{N-1} \left[q(n, n + 1) \ln \left(\frac{q(n, n + 1)}{d_{n+1}\rho(n + 1)} \right) - q(n, n + 1) + d_{n+1}\rho(n + 1) \right]
\]

(92)

The stationarity constraints of equation (91) for the empirical flows means that the total current \([q(n, n + 1) - q(n+1, n)]\) on the link between \(n\) and \((n + 1)\) cannot depend on \(n\) and should vanish as a consequence of the boundary conditions at \(n = 1\) and \(n = N\)

\[
0 = q(2, 1) - q(1, 2) = \ldots = q(n + 1, n) - q(n, n + 1) = \ldots = q(N, N - 1) - q(N - 1, N)
\]

(93)

It is thus convenient to replace the two flows on each link by the new function \(q_s\) of their middle-point \((n + 1/2)\)

\[
q(n, n + 1) = q(n + 1, n) = q_s(n + 1/2)
\]

(94)
in order to rewrite the level 2.5 of equation (90) where the only remaining constraints involve the empirical density \(\rho(.)\)

\[
P_T^{[2.5] \text{living}}[\rho(.); q_s(.)] \propto \delta(\rho(0)) \delta \left(\sum_{n=1}^{N} \rho(n) - 1 \right) e^{-TI_{2.5}^{\text{living}}[\rho(.); q_s(.)]}
\]

(95)

while the corresponding rate function obtained from equation (92) reads

\[
I_{2.5}^{\text{living}}[\rho(.); q_s(.)] = d_1\rho(1) + \sum_{n=1}^{N-1} \left[q_s(n + 1/2) \ln \left(\frac{q_s^2(n + 1/2)}{b_n\rho(n)d_{n+1}\rho(n + 1)} \right) - 2q_s(n + 1/2) + b_n\rho(n) + d_{n+1}\rho(n + 1) \right]
\]

(96)

4.4. Probability \(P_T^{[2] \text{living}}[\rho(.)]\) to remain living up to \(T\) with given empirical density

For the present model, the contraction explained around equation (54) can be explicitly computed as follows. For a given empirical density \(\rho(.)\), the optimization of the rate function of equation (96) with respect to the link flow \(q_s(n + 1/2)\)
Large deviations for metastable states of Markov processes with absorbing states

\[0 = \frac{\partial I_{2.5}^{\text{living}}[\rho(.) ; q_s(.)]}{\partial q_s(n + 1/2)} = \ln \left(\frac{q_s^2(n + 1/2)}{b_n \rho(n) d_{n+1} \rho(n + 1)} \right) \]

(97)

yields the optimal value

\[q_s^{\text{opt}}(n + 1/2) = \sqrt{b_n \rho(n) d_{n+1} \rho(n + 1)} \]

(98)

So the probability to remain living during \(T \) with the empirical density \(\rho(.) \) follows the large deviation form of equation (54)

\[P_T^{2\text{living}}[\rho(.)] \sim_{T \to +\infty} \delta(\rho(0)) \delta\left(\sum_{n=1}^{N} \rho(n) - 1 \right) e^{-T I_2^{\text{living}}[\rho(.)]} \]

(99)

where the rate function \(I_2^{\text{living}}[\rho(.)] \) at level 2 is obtained from the optimal value of the rate function at the level 2.5 of equation (96)

\[I_2^{\text{living}}[\rho(.)] = I_{2.5}[\rho(.) ; q_s^{\text{opt}}(.)] \]

\[= d_1 \rho(1) + \sum_{n=1}^{N-1} \left[b_n \rho(n) + d_{n+1} \rho(n + 1) - 2 \sqrt{b_n \rho(n) d_{n+1} \rho(n + 1)} \right] \]

(100)

\[= d_1 \rho(1) + \sum_{n=1}^{N-1} \left(\sqrt{b_n \rho(n)} - \sqrt{d_{n+1} \rho(n + 1)} \right)^2 \]

(101)

4.5. Probability \(P_T^{\text{living}} \propto_{T \to +\infty} e^{-T \zeta_1} \) to remain living up to \(T \)

As explained in the subsection 3.4.2 for the general case, the exact optimization procedure to obtain \(\zeta_1 \) governing the probability to remain living up to \(T \)

\[P_T^{\text{living}} \propto_{T \to +\infty} e^{-T \zeta_1} \]

(102)

via the contraction of the level 2.5 is equivalent to the spectral problem of subsection 4.2 for the slowest relaxation mode.

As explained in the subsection 3.4.1, the estimation of \(\zeta_1^{\text{per}} \) obtained via the perturbation theory in the absorbing rate \(d_1 \) can be recovered from the level 2.5 via the procedure explained before equation (59). Here we can obtain it directly from level 2 of equation (99) as follows. One just needs to require that all of the bulk contributions of the rate function \(I_2^{\text{living}}[\rho(.)] \) of equation (101) vanish

\[\sqrt{b_n \rho_s(n)} - \sqrt{d_{n+1} \rho_s(n + 1)} = 0 \quad \text{for } n = 1, 2, \ldots, N - 1 \]

(103)

The solution of this recurrence reads

\[\rho_s(n) = \rho_s(1) \left(\prod_{j=1}^{n-1} \frac{b_j}{d_{j+1}} \right) \]

(104)
where \(\rho_*(1) \) is determined by the normalization

\[
1 = \sum_{n=1}^{N} \rho_*(n) = \rho_*(1) \left[1 + \sum_{n=2}^{N} \prod_{j=1}^{n-1} \frac{b_j}{d_{j+1}} \right] = \rho_*(1) \left[1 + \frac{b_1}{d_2} + \frac{b_1b_2}{d_2d_3} + \cdots + \frac{b_1b_2\ldots b_{N-1}}{d_2d_3\ldots d_N} \right] (105)
\]

So the leading contribution for the slowest relaxation rate reduces to the flow entering the absorbing state \(x = 0 \) from the neighboring site \(y = 1 \)

\[
\zeta_1^{\text{per}} = d_1 \rho_*(1) = \frac{d_1}{1 + \sum_{n=2}^{N} \prod_{j=1}^{n-1} \frac{b_j}{d_{j+1}}} (106)
\]

As mentioned after equation (42), this perturbative estimation will be small even if the absorbing rate \(d_1 \) is not particularly small, as long as the empirical density \(\rho_*(1) \) is small for population \(n = 1 \), i.e. as long as the denominator of equation (106) involving all the other rates of the model is large.

5. Large deviations for the birth–death model in a switching environment

Since population stochastic models in a randomly switching environment have attracted a lot of interest recently [104–106], this section is devoted to a simple birth–death model in an environment that can switch between two possible states \(\sigma = \pm 1 \).

5.1. Birth–death model in an environment switching between two possible states \(\sigma = \pm 1 \)

The two possible states \(\sigma = \pm 1 \) of the environment determine the dynamics for the population \(n \) as follows. In the positive environment \(\sigma = +1 \), only births are possible with positive birth rates \(b_n > 0 \) for population \(n = 1, \ldots, N - 1 \). In the negative environment \(\sigma = -1 \), only deaths are possible with positive death rates \(d_n > 0 \) for \(n = 1, 2, \ldots, N \).

At population \(n = 1, \ldots, N \), the environment state \(\sigma \) can switch to the opposite value \((-\sigma)\) with the switching rate \(\gamma_\sigma \) that may depend on the value \(n \) of the population if one wishes to describe some influence of the population on the environment. The dynamics for the joint distribution \(P_\sigma^\tau(n) \) to be at population \(n = 1, 2, \ldots, N \) and in the environment \(\sigma = \pm \) is described by the master equations

\[
\partial_t P_\sigma^\tau(n) = b_{n-1}P_\sigma^\tau(n-1) - b_nP_\sigma^\tau(n) - \gamma_\sigma^+ P_\sigma^\tau^+(n) + \gamma_\sigma^- P_\sigma^\tau^-(n)
\]

\[
\partial_t P_\sigma^\tau^-(n) = d_{n+1}P_\sigma^\tau^-(n+1) - d_nP_\sigma^\tau^-(n) + \gamma_\sigma^+ P_\sigma^\tau^+(n) - \gamma_\sigma^- P_\sigma^\tau^-(n)
\]

while the dynamics of the dead configuration \(n = 0 \) only involves the absorbing flow governed by the death rate \(d_1 \)

\[
\partial_t P_\tau(0) = d_1 P_\tau^-(1)
\]
5.2. Probability $P_T^{[2,5]\text{living}}[\rho(\cdot); q(\cdot, \cdot)]$ to remain living up to T with given empirical density and empirical flows

For the dynamics of equation (107), the probability at level 2.5 of equation (48)

$$P_T^{[2,5]\text{living}}[\rho^\pm(\cdot); j^\pm(\cdot); q^\pm(\cdot)] \propto C_{2,5}^{\text{living}}[\rho^\pm(\cdot); j^\pm(\cdot); q^\pm(\cdot)]$$

$$\times e^{-T L_{2,5}^{\text{living}}[\rho^\pm(\cdot); j^\pm(\cdot); q^\pm(\cdot)]}$$

involves the following empirical time-averaged observables $[\rho^\pm(\cdot); j^\pm(\cdot); q^\pm(\cdot)]$ for a long trajectory $[n(0 \leq t \leq T); \sigma(0 \leq t \leq T)]$:

(a) The empirical densities of the population n and of the environment $\sigma = \pm 1$

$$\rho^\sigma(n) \equiv \frac{1}{T} \int_0^T dt \delta_{\sigma(t), \sigma} \delta_{n(t), n}$$

satisfy the global normalization on the set of living configurations

$$\sum_{n=1}^N [\rho^+(n) + \rho^-(n)] = 1$$

(b) The empirical current between populations n and $(n + 1)$ in the environment $\sigma = +$

$$j^+(n + 1/2) \equiv \frac{1}{T} \sum_{t \in [0, T]; n(t^+) \neq n(t^-)} \delta_{\sigma(t), +} \delta_{n(t^+), n+1} \delta_{n(t^-), n}$$

and the empirical current between populations n and $(n - 1)$ in the environment $\sigma = -$

$$j^-(n - 1/2) \equiv \frac{1}{T} \sum_{t \in [0, T]; n(t^+) \neq n(t^-)} \delta_{\sigma(t), -} \delta_{n(t^+), n-1} \delta_{n(t^-), n}$$

are labelled by their middle-point $(n \pm 1/2)$ to simplify the notations.

(c) At population n, the switching events between the two states $\sigma = \pm 1$ of the environment are described by the empirical switching flows

$$q^+(n) \equiv \frac{1}{T} \sum_{t \in [0, T]; \sigma(t^+) = - \neq \sigma(t^-) = +} \delta_{n(t), n}$$

$$q^-(n) \equiv \frac{1}{T} \sum_{t \in [0, T]; \sigma(t^+) = + \neq \sigma(t^-) = -} \delta_{n(t), n}$$

The stationarity conditions mean that the total flow into the state (n, σ) should be balanced by the total flow out of the state (n, σ). These conditions read for population $n = 2, \ldots, N - 1$ and the two possible states $\sigma = \pm 1$ of the environment

$$0 = j^+(n - 1/2) - j^+(n + 1/2) - q^+(n) + q^-(n)$$

$$0 = j^-(n + 1/2) - j^-(n - 1/2) + q^+(n) - q^-(n)$$

https://doi.org/10.1088/1742-5468/ac4519
with the boundary equations for $n = 1$ and $n = N$ correspond to $j^+(1/2) = 0 = j^+(N + 1/2)$. The sum of the two equations (115) yields that the total empirical current $[j^+(n + 1/2) - j^-(n + 1/2)]$ vanishes for all n

\[
0 = j^+(3/2) - j^-(3/2) = \ldots = j^+(n + 1/2) - j^-(n + 1/2) = \ldots = j^+(N - 1/2) - J^-(N - 1/2)
\] (116)

As a consequence, it is possible to eliminate all the empirical negative currents in terms of the empirical positive currents

\[
j^-(n + 1/2) = j^+(n + 1/2)
\] (117)

while the remaining stationarity conditions involving the empirical switching flows $q^\pm(n)$ read

\[
q^-(n) - q^+(n) = j^+(n + 1/2) - j^+(n - 1/2)
\] (118)

In summary, the large deviations of equation (109) can be written without the empirical negative current $j^-(\cdot)$ with the following constraints

\[
C_{2.5}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); q^\pm(\cdot)] = \delta \left(\sum_{n=1}^{N} [\rho^+(n) + \rho^-(n)] - 1 \right)
\times \prod_{n=1}^{N} [q^-(n) - q^+(n) - j^+(n + 1/2) + j^+(n - 1/2)]
\] (119)

and the following rate function at level 2.5

\[
I_{2.5}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); q^\pm(\cdot)]
= d_1 \rho^-(1) + \sum_{n=1}^{N-1} \left[j^+(n + 1/2) \ln \left(\frac{j^+(n + 1/2)}{b_n \rho^+(n)} \right) - j^+(n + 1/2) + b_n \rho^+(n) \right]
+ \sum_{n=1}^{N-1} \left[j^+(n + 1/2) \ln \left(\frac{j^+(n + 1/2)}{d_{n+1} \rho^-(n + 1)} \right) - j^+(n + 1/2) + d_{n+1} \rho^-(n + 1) \right]
+ \sum_{n=1}^{N} \left[q^+(n) \ln \left(\frac{q^+(n)}{\gamma^+_n \rho^+(n)} \right) - q^+(n) + \gamma^+_n \rho^+(n) \right]
+ \sum_{n=1}^{N} \left[q^-(n) \ln \left(\frac{q^-(n)}{\gamma^-_n \rho^-(n)} \right) - q^-(n) + \gamma^-_n \rho^-(n) \right]
\] (120)
5.3. Explicit contraction over the switching activity $a(n)$ to obtain the intermediate level

It is convenient to replace the two switching flows $q^\pm(n)$ by the switching activity $a(n)$ and the switching current $i(n)$ representing their symmetric and antisymmetric parts

\[a(n) \equiv q^+(n) + q^-(n) \]
\[i(n) \equiv q^+(n) - q^-(n) \]

(121)

i.e.

\[q^+(n) = \frac{a(n) + i(n)}{2} \]
\[q^-(n) = \frac{a(n) - i(n)}{2} \]

(122)

The constraints of equation (119) involve the switching current $i(n)$ but not the switching activity $a(n)$

\[C^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot); a(\cdot)] = \delta \left(\sum_{n=1}^{N} [\rho^+(n) + \rho^-(n)] - 1 \right) \]
\[\times \prod_{n=1}^{N} \delta [j^+(n+1) - j^+(n+1/2) - i(n)] \]

(123)

As a consequence, as in many other Markov jump processes [31, 38, 39, 41, 45], the rate function obtained from equation (120)

\[I_{2.5}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot); a(\cdot)] \]
\[= d_1 \rho^-(1) + \sum_{n=1}^{N-1} \left[j^+(n+1/2) \ln \left(\frac{[j^+(n+1/2)]^2}{b_n \rho^+(n) d_{n+1} \rho^-(n+1)} \right) \right. \]
\[\left. - 2 j^+(n+1/2) + b_n \rho^+(n) + d_{n+1} \rho^-(n+1) \right] \]
\[+ \sum_{n=1}^{N} \left[\frac{a(n) + i(n)}{2} \ln \left(\frac{a(n) + i(n)}{2 \gamma_n^+ \rho^+(n)} \right) \right. \]
\[\left. + \frac{a(n) - i(n)}{2} \ln \left(\frac{a(n) - i(n)}{2 \gamma_n^- \rho^-(n)} \right) \right] - a(n) + \gamma_n^+ \rho^+(n) + \gamma_n^- \rho^-(n) \]

(124)

can be optimized over the switching activity $a(n)$

\[0 = \frac{\partial I_{2.5}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot); a(\cdot)]}{\partial a(n)} = \frac{1}{2} \ln \left(\frac{a^2(n) - i^2(n)}{4 \gamma_n^+ \rho^+(n) \gamma_n^- \rho^-(n)} \right) \]

(125)
in order to obtain the optimal value \(a^{\text{opt}}(n) \) as a function of the other empirical observables

\[
a^{\text{opt}}(n) = \sqrt{\frac{i^2(n)}{4} + 4\gamma_n^+ \rho^+(n) \gamma_n^- \rho^-(n)}
\]

(126)

Plugging this optimal value into the rate function at level 2.5 of equation (124) yields the rate function at level 2.25

\[
I_{2.25}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot); a^{\text{opt}}(\cdot)] = I_{2.5}^{\text{living}}[\rho^\pm(\cdot); J^-(\cdot); i(\cdot); a^{\text{opt}}(\cdot)] = d_1 \rho^-(1)
\]

\[
+ \sum_{n=1}^{N-1} \left[j^+(n + 1/2) \ln \left(\frac{[j^+(n + 1/2)]^2}{b_n \rho^+(n) d_{n+1} \rho^-(n + 1)} \right) - 2j^+(n + 1/2) + b_n \rho^+(n) + d_{n+1} \rho^-(n + 1) \right]
\]

\[
+ \sum_{n=1}^{N} \left[i(n) \ln \left(\frac{\sqrt{i^2(n) + 4\gamma_n^+ \rho^+(n) \gamma_n^- \rho^-(n) + i(n)}}{2\gamma_n^+ \rho^+(n)} \right) + \gamma_n^+ \rho^+(n) + \gamma_n^- \rho^-(n) - \sqrt{i^2(n) + 4\gamma_n^+ \rho^+(n) \gamma_n^- \rho^-(n)} \right]
\]

(127)

that will govern the probability to remain living up to \(T \) with the empirical observables \([\rho^\pm(\cdot); j^+(\cdot); i(\cdot)]\)

\[
P_T^{[2.25]^{\text{living}}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot)] \propto e^{-TI_{2.25}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot); i(\cdot)]}
\]

\[
\times \delta \left(\sum_{n=1}^{N} [\rho^+(n) + \rho^-(n)] - 1 \right)
\]

\[
\times \prod_{n=1}^{N} \delta [j^+(n - 1/2) - j^+(n + 1/2) - i(n)]
\]

(128)

One can now use the last constraint to eliminate the switching currents \(i(n) = \lfloor j^+(n - 1/2) - j^+(n + 1/2) \rfloor \) and one obtains that the probability to remain living up to \(T \) with the empirical observables \([\rho^\pm(\cdot); j^+(\cdot)]\) only involves the normalization constraint for the empirical density

\[
P_T^{[2.25]^{\text{living}}}[\rho^\pm(\cdot); j^+(\cdot)] \propto \delta \left(\sum_{n=1}^{N} [\rho^+(n) + \rho^-(n)] - 1 \right) e^{-TI_{2.25}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot)]}
\]

(129)

while the corresponding rate function reads

\[
https://doi.org/10.1088/1742-5468/ac4519
\]

J. Stat. Mech. (2022) 013206

28
Large deviations for metastable states of Markov processes with absorbing states

\[I_{2.25}^{\text{living}}(\rho^\pm(\cdot); j^+(\cdot)) = d_1 \rho^- (1) + \sum_{n=1}^{N-1} j^+(n+1/2) \ln \left(\frac{[j^+(n+1/2)]^2}{b_n \rho^+(n) d_{n+1} \rho^-(n+1)} \right) \]

\[- 2j^+(n + 1/2) + b_n \rho^+(n) + d_{n+1} \rho^-(n+1) \]

\[\times \ln \left(\sqrt{[j^+(n-1/2) - j^+(n + 1/2)]^2 + 4\gamma^+ \rho^+(n) \gamma^- \rho^-(n) + [j^+(n-1/2) - j^+(n + 1/2)]^2} \right) \]

\[+ \sum_{n=1}^{N} \gamma_n^+ \rho^+(n) + \gamma_n^- \rho^-(n) - \sqrt{[j^+(n-1/2) - j^+(n + 1/2)]^2 + 4\gamma_n^+ \rho^+(n) \gamma_n^- \rho^-(n)} \]

(130)

To obtain the probability to remain living up to \(T \) with the empirical densities \([\rho^\pm(\cdot)]\) only, one needs to integrate equation (129) over the empirical current \(j^+(\cdot) \)

\[P_T^{\text{living}}[\rho^\pm(\cdot)] \propto \delta \left(\sum_{n=1}^{N} \rho^+(n) + \rho^-(n) \right) \int D j^+(\cdot) e^{-T I_{2.25}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot)]} \]

\[\propto \delta \left(\sum_{n=1}^{N} \rho^+(n) + \rho^-(n) \right) e^{-T I_{2}^{\text{living}}[\rho^\pm(\cdot)]} \]

(131)

The optimization of the rate function \(I_{2.25}^{\text{living}}[\rho^\pm(\cdot); j^+(\cdot)] \) at level 2.25 of equation (130) over the current \(j^+(\cdot) \) needed to obtain the rate function \(I_{2}^{\text{living}}[\rho^\pm(\cdot)] \) at level 2 is somewhat heavy and will not be discussed further.

As a final remark, let us mention that the continuous-space analog of the birth–death model in a switching environment of equation (107) corresponds to the run-and-tumble process with space-dependent velocities \(v_\pm(x) \) and space-dependent switching rates \(\gamma_\pm(x) \): their large deviations properties at various levels studied recently for the case without absorption [44] are somewhat simpler in the continuous model because the empirical currents \(j^\pm(x) \) are then completely determined by the empirical densities \(\rho^\pm(x) \) as a consequence of the deterministic motion at velocities \(v_\pm(x) \) when the environment is state (±).

5.4. Probability \(P_T^{\text{living}} \) to remain living up to \(T \)

As explained in the subsection 3.4.2, the exact optimization procedure to obtain \(\zeta_1 \) via the contraction of the level 2.5 is equivalent to the spectral problem for the slowest relaxation mode described in section 2. So here we will only discuss how the estimation of \(\zeta_1^{\text{pert}} \) of the perturbation theory in the absorbing rate \(d^-_1 \) can be obtained directly from the level 2.5 via the procedure explained before equation (59). To obtain the steady state on the set \(\Omega^* \) of living configurations, one requires thevanishing of all the bulk contributions of the rate function at level 2.5 of equation (120)

https://doi.org/10.1088/1742-5468/ac4519
Large deviations for metastable states of Markov processes with absorbing states

\[j^+(n + 1/2) = b_n \rho^+_s(n) \quad \text{for } n = 1, \ldots, N - 1 \]

\[j^+(n + 1/2) = d_{n+1} \rho^-_s(n + 1) \quad \text{for } n = 1, \ldots, N - 1 \]

\[q^+_s(n) = \gamma^-_s \rho^+_s(n) \quad \text{for } n = 1, \ldots, N \]

\[q^-_s(n) = \gamma^-_s \rho^-_s(n) \quad \text{for } n = 1, \ldots, N \]

and the satisfaction of all the constraints of equation (119)

\[1 = \sum_{n=1}^{N} [\rho^+_s(n) + \rho^-_s(n)] \]

\[0 = q^-_s(n) - q^+_s(n) - j^+_s(n + 1/2) + j^-_s(n - 1/2) \quad \text{for } n = 2, \ldots, N - 1 \]

\[0 = q^-_s(1) - q^+_s(1) - j^+_s(3/2) \]

\[0 = q^-_s(N) - q^+_s(N) + j^+_s(N - 1/2) \] (132)

One can use the two first equations of equation (132) to rewrite the densities \(\rho^\pm_s(.) \) in terms of the positive steady current \(j^+_s(.) \)

\[\rho^+_s(n) = \frac{j^+_s(n + 1/2)}{b_n} \quad \text{for } n = 1, 2, \ldots, N - 1 \]

\[\rho^-_s(n) = \frac{j^+_s(n - 1/2)}{d_n} \quad \text{for } n = 2, 2, \ldots, N \] (134)

Plugging the two last equations of equation (132) for \(n = 1 \) and \(n = N \) into the two last equations of equation (133) allow to compute the two missing densities

\[\rho^-_s(1) = j^+_s(3/2) \frac{1 + \frac{\gamma^-_1}{b_1}}{\gamma^-_1} \]

\[\rho^+_s(N) = j^+_s(N - 1/2) \frac{1 + \frac{\gamma^-_N}{d_N}}{\gamma^-_N} \] (135)

Plugging the two last equations of equation (132) for \(n = 2, \ldots, N - 1 \) into the second equation of equation (133) allows to compute the empirical current \(j^+_s(n + 1/2) \) on all the links

\[j^+_s(n + 1/2) = j^+_s(n - 1/2) \left[\frac{1 + \frac{\gamma^-_n}{d_n}}{1 + \frac{\gamma^-_n}{b_n}} \right] \]

\[= \ldots = j^+_s(3/2) \prod_{j=2}^{n} \left[\frac{1 + \frac{\gamma^-_j}{d_j}}{1 + \frac{\gamma^-_j}{b_j}} \right] \quad \text{for } n = 2, \ldots, N - 1 \] (136)
in terms of $j^+_s(3/2)$ that should now be computed from the normalization of the total density

$$1 = \sum_{n=1}^{N-1} \rho^+_s(n) + \rho^+_s(N) + \rho^-_s(1) + \sum_{n=2}^N \rho^-_s(n)$$

$$= j^+_s(3/2) \frac{1 + \frac{2\gamma_2}{\gamma_1}}{\gamma_1} + \sum_{n=1}^{N-1} \left[\frac{1}{b_n} + \frac{1}{d_{n+1}} \right] j^+_s(n + 1/2) + j^+_s(N - 1/2) \frac{1 + \frac{2\gamma_2}{\gamma_N}}{\gamma_N}$$

$$= j^+_s(3/2) \left[\frac{1 + \frac{2\gamma_2}{\gamma_1}}{\gamma_1} + \frac{1}{b_1^2} + \frac{1}{d_2} \right] + \sum_{n=2}^{N-2} \left[\frac{1}{b_n} + \frac{1}{d_{n+1}} \right] j^+_s(n + 1/2)$$

$$+ j^+_s(N - 1/2) \left[\frac{1}{b_{N-1}} + \frac{1}{d_N} + \frac{1 + \frac{2\gamma_2}{\gamma_N}}{\gamma_N} \right]$$

(137)

The solution of equation (136) leads to the final result for $j^+_s(3/2)$

$$\frac{1}{j^+_s(3/2)} = \left(\frac{1 + \frac{2\gamma_2}{\gamma_1}}{\gamma_1} + \frac{1}{b_1^2} + \frac{1}{d_2} \right) + \sum_{n=2}^{N-2} \left[\frac{1}{b_n} + \frac{1}{d_{n+1}} \right] \prod_{j=2}^{n} \left[\frac{1 + \frac{\gamma_2}{d_j} + \frac{1}{b_j}}{1 + \frac{\gamma_2}{b_j}} \right]$$

$$+ \left(\frac{1}{b_{N-1}} + \frac{1}{d_N} + \frac{1 + \frac{2\gamma_2}{\gamma_N}}{\gamma_N} \right) \prod_{j=2}^{N-1} \left[\frac{1 + \frac{\gamma_2}{d_j} + \frac{1}{b_j}}{1 + \frac{\gamma_2}{b_j}} \right]$$

(138)

So the perturbative evaluation for the slowest relaxation rate involves the probability $\rho^-_s(1)$ of equation (135)

$$\zeta^\text{per}_1 = d^-_1 \rho^-_s(1) = \frac{d^-_1}{\gamma_1} \left(1 + \frac{\gamma^+_2}{b_1^2} \right) j^+_s(3/2)$$

(139)

where $j^+_s(3/2)$ has been written in equation (138) in terms of all the rates of the model. This perturbative estimation ζ^per_1 will be small even if the absorbing rate d^-_1 is not particularly small, if the empirical current $j^+_s(3/2)$ is small, i.e. if its inverse $\frac{1}{j^+_s(3/2)}$ written in equation (138) is large.

6. Conclusion

In this paper, we have applied the large deviations at level 2.5 to Markov processes with absorbing states in order to obtain the explicit extinction rate of metastable quasi-stationary states in terms of their empirical time-averaged density and of their empirical time-averaged flows over a large time-window T. The case of Markov jump processes has been analyzed in detail in the main text, while the adaptation to diffusion processes in dimension d is described in appendix A. In both cases, we have explained how the
full optimization of the extinction rate at level 2.5 over all empirical observables allows
to recover the standard spectral problem for the slowest relaxation mode and we have
discussed the link with the Doob generator of the process conditioned to survive up to
time T. Finally, this general formalism has been illustrated with the application to the
population birth–death model in a stable or in a switching environment.

Our main conclusion is thus that the large deviations at level 2.5 that have been
introduced to characterize the possible dynamical fluctuations of non-equilibrium steady
states of Markov processes directly provide the appropriate framework to analyze the
fluctuations properties of metastable quasi-stationary states.

Appendix A. Adaptation to diffusion processes in dimension d with absorbing states

In this appendix, we consider diffusion processes described by the Fokker–Planck
dynamics with drift $\vec{v}(\vec{x})$ and diffusion coefficient $D(\vec{x})$

$$\frac{\partial P_t(\vec{x})}{\partial t} = -\nabla \cdot \left[P_t(\vec{x})\vec{v}(\vec{x}) - D(\vec{x})\nabla P_t(\vec{x}) \right] \equiv FP_t(\vec{x})$$

(A1)
on the set of living configurations $\vec{x} \notin A$, while A represent the set of absorbing states.
The goal is to describe how the analysis of the main text concerning Markov jump pro-
cesses should be adapted when the Markov matrix w is replaced by the Fokker–Planck
differential operator F of equation (A1).

A.1. Reminder on the spectral analysis of the slowest relaxation mode before extinction

The eigenvalues equation (14) on the set of living configurations $\vec{x} \notin A$ have to be
adapted as follows: the equation for the positive right eigenvector $r_1(\vec{x})$ for $\vec{x} \notin A$ involves
the Fokker–Planck generator F of equation (A1)

$$-\zeta_1 r_1(\vec{x}) = Fr_1(\vec{x}) = -\nabla \cdot [r_1(\vec{x})\vec{v}(\vec{x})] + \nabla \cdot \left[D(\vec{x})\nabla r_1(\vec{x}) \right]$$

(A2)

while the equation for the positive left eigenvector $l_1(\vec{x})$ for $\vec{x} \notin A$ involves the adjoint
operator F^\dagger

$$-\zeta_1 l_1(\vec{x}) = F^\dagger l_1(\vec{x}) = \vec{v}(\vec{x})\cdot \nabla l_1(\vec{x}) + \nabla \cdot \left[D(\vec{x})\nabla l_1(\vec{x}) \right]$$

(A3)

The Doob generator that has the probability distribution of equation (22)

$$\pi_{\text{interior}}(\vec{x}) = l_1(\vec{x})r_1(\vec{x})$$

(A4)
as steady state is the generalization of equation (24) given by the differential operator

$$\hat{F} = l_1(\cdot)\frac{1}{l_1(\cdot)} + \zeta_1$$

(A5)

One obtains that the process conditioned to survive satisfy the modified Fokker–Planck
dynamics

$$\frac{\partial \hat{P}_t(\vec{x})}{\partial t} = \hat{F}\hat{P}_t(\vec{x}) = -\nabla \cdot \left[\hat{P}_t(\vec{x})\vec{u}(\vec{x}) - D(\vec{x})\nabla \hat{P}_t(\vec{x}) \right]$$

(A6)

https://doi.org/10.1088/1742-5468/ac4519
Large deviations for metastable states of Markov processes with absorbing states

where the only change with respect to the initial dynamics of equation (A1) is that the initial drift \(\vec{v}(\vec{x}) \) has been replaced by the effective drift

\[
\vec{u}(\vec{x}) \equiv \vec{v}(\vec{x}) + 2D(\vec{x}) \frac{\nabla l_1(\vec{x})}{l_1(\vec{x})}
\]

(A7)

Since the left eigenvector \(l_1(\vec{x}) \) vanishes on \(A \) while it is positive for \(x \notin A \), this effective drift \(\vec{u}(\vec{x}) \) becomes very large near the surface of \(A \) and prevents the conditioned process to reach \(A \).

For more details about this spectral analysis of the slowest mode and the corresponding conditioned Doob process for diffusion processes in dimensions \(d = 1, 2, 3 \) with explicit examples, we refer to the recent works \([107, 108]\) and references therein.

A.2. Large deviations at various levels for metastable quasi-stationary states

A.1.1. Reminder on the large deviations at level 2.5 for the time-averaged density and the time-averaged current. For a very long dynamical trajectory \(\vec{x}(0 \leq t \leq T) \) of the Fokker–Planck dynamics of equation (A1), the joint distribution of the empirical density

\[
\rho(\vec{x}) \equiv \frac{1}{T} \int_0^T dt \delta^{(d)}(\vec{x}(t) - \vec{x})
\]

(A8)

and of the empirical current \(\vec{j}(\vec{x}) \)

\[
\vec{j}(\vec{x}) \equiv \frac{1}{T} \int_0^T dt \frac{d\vec{x}(t)}{dt} \delta^{(d)}(\vec{x}(t) - \vec{x})
\]

(A9)

satisfy the large deviation form \([28, 29, 33, 34, 37, 49–51]\)

\[
P_T^{2.5}[\rho(\cdot), \vec{j}(\cdot)] \sim C_{2.5}[\rho(\cdot), \vec{j}(\cdot)]e^{-TI_{2.5}[\rho(\cdot), \vec{j}(\cdot)]}
\]

(A10)

where the constitutive constraints

\[
C_{2.5}[\rho(\cdot), \vec{j}(\cdot)] = \delta \left(\int d^d\vec{x} \rho(\vec{x}) - 1 \right) \left[\prod_{\vec{x} \in A} \delta \left(\nabla \cdot \vec{j}(\vec{x}) \right) \right]
\]

(A11)

contains the normalization of the empirical density \(\rho(\cdot) \) and the stationarity constraint given by the divergence-free property for the empirical current \(\vec{j}(\cdot) \), while the rate function is explicit for any Fokker–Planck dynamics in terms of the drift \(\vec{v}(\vec{x}) \) and of the diffusion coefficient \(D(\vec{x}) \)

\[
I_{2.5}[\rho(\cdot), \vec{j}(\cdot)] = \int \frac{d^d\vec{x}}{4D(\vec{x})\rho(\vec{x})} \left[\vec{j}(\vec{x}) - \rho(\vec{x})\vec{v}(\vec{x}) + D(\vec{x})\nabla\rho(\vec{x}) \right]^2
\]

(A12)

A.1.2. Probability \(P_T^{2.5}[\text{living}]^{\rho(\cdot), \vec{j}(\cdot)} \) to remain living up to \(T \) with given empirical density and empirical current. To obtain from equation (A10) the probability to remain living up to time \(T \) with given empirical observables, one needs to impose that the empirical density vanishes on the set \(A \) of absorbing sites

\[
\rho(\vec{x}) = 0 \quad \text{for} \quad \vec{x} \in A
\]

(A13)

https://doi.org/10.1088/1742-5468/ac4519 33
and that the empirical current entering the set A of absorbing states vanishes, i.e. using the normal vector \vec{n}_A to the surface ∂A of A

$$\vec{j}(\vec{x}).\vec{n}_A = 0 \quad \text{for} \quad \vec{x} \in \partial A \tag{A14}$$

So the probability $P_T^{2.5}[\rho(\cdot); \vec{j}(\cdot)]$ to remain living up to T with given empirical density and empirical current

$$P_T^{2.5}[\rho(\cdot), \vec{j}(\cdot)] \simeq C_{2.5}^{\text{living}}[\rho(\cdot), \vec{j}(\cdot)]e^{-TI_{2.5}^{\text{living}}[\rho(\cdot), \vec{j}(\cdot)]} \tag{A15}$$

involve the constraints

$$C_{2.5}^{\text{living}}[\rho(\cdot), \vec{j}(\cdot)] = \left[\prod_{\vec{x} \notin A} \delta(\rho(\vec{x})) \right] \left[\prod_{\vec{x} \in \partial A} \delta\left(\vec{j}(\vec{x}).\vec{n}_A\right) \right] \delta\left(\int_{\vec{x} \notin A} d^d\vec{x} \rho(\vec{x}) - 1\right) \times \left[\prod_{\vec{x} \notin A} \delta\left(\vec{v}.\vec{j}(\vec{x})\right) \right] \tag{A16}$$

and the rate function

$$I_{2.5}^{\text{living}}[\rho(\cdot), \vec{j}(\cdot)] = \int_{\vec{x} \notin A} \frac{d^d\vec{x}}{4D(\vec{x})\rho(\vec{x})} \left[\vec{j}(\vec{x}) - \rho(\vec{x})\vec{v}(\vec{x}) + D(\vec{x})\vec{\nabla}\rho(\vec{x}) \right]^2 \tag{A17}$$

A.1.3. Equivalence between the exact optimization of the level 2.5 and the spectral problem of subsection A.1. As in equation $\tag{58}$, the probability $P_T^{\text{living}} \propto e^{-T\zeta_1}$ to remain living up to T that involves the slowest relaxation mode ζ_1 discussed in subsection A.1 can be also computed via the integration of the level 2.5 of equation $\tag{A15}$ over the empirical density $\rho(\cdot)$ and the empirical current $\vec{j}(\cdot)$

$$P_T^{\text{living}} = \int D\rho(\cdot) \int D\vec{j}(\cdot) P_T^{2.5}[\rho(\cdot); \vec{j}(\cdot)] \tag{A18}$$

In order to solve this optimization problem, let us introduce the following Lagrangian for $\vec{x} \notin A$ with the Lagrange multipliers $(\omega, \nu(\cdot))$ to take into account the constraints of normalization and stationarity

$$\mathcal{L}[\rho(\cdot), \vec{j}(\cdot)] = \int_{\vec{x} \notin A} \frac{d^d\vec{x}}{4D(\vec{x})\rho(\vec{x})} \left[\vec{j}(\vec{x}) - \rho(\vec{x})\vec{v}(\vec{x}) + D(\vec{x})\vec{\nabla}\rho(\vec{x}) \right]^2$$

$$- \omega \left(\int_{\vec{x} \notin A} d^d\vec{x} \rho(\vec{x}) - 1 \right) + \int_{\vec{x} \notin A} d^d\vec{x} \nu(\vec{x})\vec{\nabla}\vec{j}(\vec{x})$$

$$= \int_{\vec{x} \notin A} \frac{d^d\vec{x}}{4D(\vec{x})\rho(\vec{x})} \left[\vec{j}(\vec{x}) - \rho(\vec{x})\vec{v}(\vec{x}) + D(\vec{x})\vec{\nabla}\rho(\vec{x}) \right]^2$$

$$- \omega \left(\int_{\vec{x} \notin A} d^d\vec{x} \rho(\vec{x}) - 1 \right) - \int_{\vec{x} \notin A} d^d\vec{x} \vec{j}(\vec{x}).\vec{\nabla}\nu(\vec{x}) \tag{A19}$$

While the optimization can be written with these variables (see $\tag{51}$ for instance), it is technically simpler (as in the analog equation $\tag{60}$ for Markov jump processes) to
replace the empirical current $\vec{j}(\vec{x})$ by the effective empirical drift $\vec{u}(\vec{x})$ computed from the empirical current and the empirical density

$$\vec{u}(\vec{x}) \equiv \frac{\vec{j}(\vec{x}) + D(\vec{x})\nabla \rho(\vec{x})}{\rho(\vec{x})} \quad (A20)$$

After some integration by parts for the last term to eliminate the gradient of the empirical density, the Lagrangian of equation (A19) translates into

$$\tilde{L}[\rho(.), \vec{u}(.)] = \omega + \int_{\vec{x} \in A} d^d\vec{x} \rho(\vec{x}) \left[\frac{[\vec{u}(\vec{x}) - \vec{v}(\vec{x})]^2}{4D(\vec{x})} - \omega - \vec{u}(\vec{x}).\nabla \nu(\vec{x}) - \nabla \left(D(\vec{x})\nabla \nu(\vec{x}) \right) \right] \quad (A21)$$

The optimization with respect to the optimal drift $u(\vec{x})$ leads to the optimal value

$$\vec{u}^{\text{opt}}(\vec{x}) = \vec{v}(\vec{x}) + 2D(\vec{x})\nabla \nu(\vec{x}) \quad (A22)$$

The optimization of the Lagrangian with respect to the empirical density $\rho(\vec{x})$ yields for this optimal drift the following closed equation for the Lagrange multiplier $\nu(.)$

$$-\omega = - \frac{[\vec{u}^{\text{opt}}(\vec{x}) - \vec{v}(\vec{x})]^2}{4D(\vec{x})} + \vec{u}^{\text{opt}}(\vec{x}).\nabla \nu(\vec{x}) + \nabla \left(D(\vec{x})\nabla \nu(\vec{x}) \right)$$

$$= D(\vec{x}) \left[\nabla \nu(\vec{x}) \right]^2 + \vec{v}(\vec{x}).\nabla \nu(\vec{x}) + \nabla \left(D(\vec{x})\nabla \nu(\vec{x}) \right) \quad (A23)$$

The optimal value of the Lagrangian of equation (A21) that determines the slowest relaxation rate ζ_1 reduces to the Lagrange multiplier ω

$$\zeta_1 = \tilde{L}^{\text{opt}} = \omega \quad (A24)$$

The comparison of the optimal drift of equation (A22) and the Doob drift of equation (A7) leads to the change of variables

$$\nabla \nu(\vec{x}) = \frac{\nabla l_1(\vec{x})}{l_1(\vec{x})} \quad (A25)$$

that transforms indeed equation (A23) into the spectral eigenvalue equation of equation (A3) for the left eigenvector $l_1(.)$.

A.1.4. Large deviations for general time-additive observables of the trajectory $\vec{x}(0 \leq t \leq T)$ before extinction. As explained in subsection 3.5 for Markov jump processes, the large deviations at level 2.5 allows to derive the large deviations of any time-additive observable of the Markov trajectory using their decomposition in terms of empirical observables. Here the empirical density $\rho(.)$ allows to reconstruct any time-additive observable A_T that involves some function $\alpha(\vec{x})$

$$A_T \equiv \frac{1}{T} \int_0^T dt \alpha(\vec{x}(t)) = \int d^d\vec{x} \alpha(\vec{x}) \rho(\vec{x}) \quad (A26)$$
J. Stat. Mech. (2022) 013206

Large deviations for metastable states of Markov processes with absorbing states

while the empirical current $\vec{j}(\cdot)$ allows to reconstruct any time-additive observable B_T that involves some function $\vec{\beta}(\vec{x})$

$$B_T \equiv \frac{1}{T} \int_0^T dt \frac{d\vec{x}(t)}{dt} .\vec{\beta}(\vec{x}(t)) = \int d^d\vec{x} \vec{j}(\vec{x}) .\vec{\beta}(\vec{x})$$ \hspace{1cm} (A27)

As a consequence, the large deviations at level 2.5 for $P_T^{[2.5]\text{living}}[\rho(\cdot);\vec{j}(\cdot)]$ of equation (A15) allows to analyze the large deviations of any time-additive observable of the form $(A_T + B_T)$ for trajectories living up to time T.

A.3. Application to the continuous-space analog of the birth–death model of section 4

When the discrete population n of the birth–death Markov jump process of equation (82) is replaced by the continuous variable x, one is led to consider the Fokker–Planck dynamics with drift $v(x)$ and diffusion coefficient $D(x)$ for $x > 0$

$$\partial_t P_t(x) = -\partial_x [P_t(x)v(x) - D(x)\partial_x P_t(x)]$$ \hspace{1cm} (A28)

with absorption at the origin $x = 0$, and reflecting boundary condition at the other boundary $x = N$. Again, for the spectral analysis of the slowest mode and the corresponding conditioned Doob process with explicit examples, we refer to the recent works [107, 108] and references therein.

For this one-dimensional interval $x \in [0, N]$, the current divergence-free constraint $\partial_x j(x) = 0$ and the boundary conditions of zero current at the two boundary $x = 0$ and $x = N$ yield that the empirical current identically vanishes $j(x) = 0$. So the level 2.5 of equation (A15) directly reduces to the level 2 involving only the empirical density $\rho(\cdot)$

$$P_T^{[2]\text{living}}[\rho(\cdot)] \underset{T \rightarrow +\infty}{\sim} \delta(\rho(0)) \delta \left(\int_0^N dx \rho(x) - 1 \right) e^{-I_T^{\text{living}}[\rho(\cdot)]}$$ \hspace{1cm} (A29)

where the constitutive constraints impose the normalization of the empirical density $\rho(x)$ on $[0, N]$ and its vanishing $\rho(0) = 0$ at the origin $x = 0$, while the rate function obtained from equation (A12)

$$I_T^{\text{living}}[\rho(\cdot)] = \int_0^N dx \frac{\rho(x)v(x)}{4D(x)\rho(x)} [\rho(x)v(x) - D(x)\rho'(x)]^2$$ \hspace{1cm} (A30)

represents the extinction rate of a metastable state as a function of its empirical density $\rho(x)$. Equation (A30) is the analog of equation (101) concerning the discrete birth–death model.

References

[1] Hinrichsen H 2000 Adv. Phys. 49 815
[2] van Doorn E A 1991 Adv. Appl. Probab. 23 683

https://doi.org/10.1088/1742-5468/ac4519
Large deviations for metastable states of Markov processes with absorbing states

[3] Dickman R and Vidigal R 2002 J. Phys. A: Math. Gen. 35 1147
[4] Deroulers C and Monasson R 2004 Phys. Rev. E 69 016126
[5] Méleard S and Villemonais D 2012 Probab. Surv. 9 340
[6] van Doorn E A and Pollett P K 2013 Eur. J. Oper. Res. 230 1
[7] Pollett P K 2015 Quasi-stationary distributions: a bibliography (https://people.smp.uq.edu.au/PhilipPollett/papers/qsd/qsd.pdf)
[8] Méleard S and Bansaye V 2015 Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior (Berlin: Springer)
[9] Chazottes J R, Collet P and Meleard S 2016 Probab. Theory Relat. Fields 164 285–332
[10] Assaf M and Meerson B 2006 Phys. Rev. E 74 041115
[11] Assaf M and Meerson B 2006 Phys. Rev. Lett. 97 200602
[12] Kamenev A and Meerson B 2007 Phys. Rev. E 75 016126
[13] Assaf M, Kamenev A and Meerson B 2008 Phys. Rev. E 78 041123
[14] Meerson B and Sasorov P V 2009 Phys. Rev. E 80 041130
[15] Assaf M, Kamenev A and Meerson B 2009 Phys. Rev. E 80 011127
[16] Assaf M and Meerson B 2010 Phys. Rev. E 81 021116
[17] Assaf M, Kamenev A and Meerson B 2010 J. Stat. Mech. P07018
Large deviations for metastable states of Markov processes with absorbing states

[57] Lecomte V 2007 Thermodynamique des histoires et fluctuations hors d’équilibre PhD Thesis Université Paris 7
[58] Lecomte V, Appert-Rolland C and van Wijland F 2005 Phys. Rev. Lett. 95 010601
[59] Lecomte V, Appert-Rolland C and van Wijland F 2007 J. Stat. Phys. 127 51–106
[60] Lecomte V, Appert-Rolland C and van Wijland F 2007 C. R. Phys. 8 609
[61] Garrahan J P, Jack R L, Lecomte V, Pitard E, van Duijvendijk K and van Wijland F 2007 Phys. Rev. Lett. 98 195702
[62] Garrahan J P, Jack R L, Lecomte V, Pitard E, van Duijvendijk K and van Wijland F 2009 J. Phys. A: Math. Theor. 42 075007
[63] van Duijvendijk K, Jack R L and van Wijland F 2010 Phys. Rev. E 81 011110
[64] Jack R L and Sollich P 2010 Prog. Theor. Phys. Suppl. 184 304
[65] Simon D 2009 J. Stat. Mech. P07017
[66] Popkov V, Schütz G M and Simon D 2010 J. Stat. Mech. P10007
[67] Simon D 2011 J. Stat. Phys. 142 931
[68] Popkov V and Schütz G M 2011 J. Stat. Phys. 142 627
[69] Delitaly V and Schütz G M 2013 J. Stat. Phys. 152 93
[70] Hirschberg O, Mukaned D and Schütz G M 2015 J. Stat. Mech. P11023
[71] Schütz G M 2015 From Particle Systems to Partial Differential Equations II (Springer Proceedings in Mathematics and Statistics) vol 129 ed P Goncalves and A J Soares (Berlin: Springer) pp 371–93
[72] Chétrite R and Touchette H 2013 Phys. Rev. Lett. 111 120601
[73] Chétrite R and Touchette H 2015 Ann. Henri Poincaré 16 2005
[74] Chétrite R and Touchette H 2015 J. Stat. Mech. P12001
[75] Nyawo P T and Touchette H 2016 Phys. Rev. E 94 032101
[76] Touchette H 2018 Physica A 504 5
[77] Angeletti F and Touchette H 2016 J. Math. Phys. 57 023303
[78] Nyawo P T and Touchette H 2018 Europhys. Lett. 116 50009
[79] Garrahan J P 2018 Physica A 504 130
[80] Roldan E and Vivo P 2019 Phys. Rev. E 100 042108
[81] Lazarescu A, Cossetto T, Falasco G and Esposito M 2019 J. Chem. Phys. 151 064117
[82] Derrida B and Sadhu T 2019 J. Stat. Phys. 176 773
[83] Derrida B and Sadhu T 2019 J. Stat. Phys. 177 121
[84] Proesmans K and Derrida B 2019 J. Stat. Mech. 032301
[85] Tiziri-Escamilla N, Lecomte V and Bertin E 2019 J. Stat. Mech. 013201
[86] du Buissson J and Touchette H 2020 Phys. Rev. E 102 012148
[87] Mallmin E, du Buissson J and Touchette H 2021 J. Phys. A: Math. Theor. 54 295001
[88] Carollo F, Garrahan J P, Lesanovsky I and Perez-Espigares C 2018 Phys. Rev. A 98 010103
[89] Carollo F, Jack R L and Garrahan J P 2019 Phys. Rev. Lett. 122 130605
[90] Carollo F, Garrahan J P and Jack R L 2021 J. Stat. Phys. 184 13
[91] Monthus C 2021 J. Stat. Mech. 063001
[92] Lapolla A, Hartich D and Godec A 2020 Phys. Rev. Res. 2 043084
[93] Gaveau B and Schulman L S 1996 J. Math. Phys. 37 3897
[94] Gaveau B, Lesne A and Schulman L S 1999 Phys. Lett. A 258 222
[95] Gaveau B and Schulman L S 2006 Phys. Rev. E 73 036124
[96] Bovier A, Eckhoff M, Gayrard V and Klein M 2002 Commun. Math. Phys. 228 219
[97] Monthus C and Le Doussal P 2002 Phys. Rev. E 65 066129
[98] Monthus C and Garel T 2009 J. Stat. Mech. P12017
[99] Monthus C and Garel T 2013 J. Stat. Mech. P02037
[100] Monthus C and Garel T 2013 J. Stat. Mech. P02023
[101] Monthus C and Garel T 2014 Phys. Rev. B 89 014408
[102] Monthus C 2014 J. Stat. Mech. P08009
[103] Macieszczak K, Guš M, Lesanovsky I and Garrahan J P 2016 Phys. Rev. Lett. 116 240404
[104] Macieszczak K, Rose D C, Lesanovsky I and Garrahan J P 2021 Phys. Rev. Res. 3 033047
[105] Wienand K, Frey E and Mobilia M 2017 Phys. Rev. Lett. 119 158301
[106] Wienand K, Frey E and Mobilia M 2018 J. R. Soc. Interface 15 20180343
[107] Taitelbaum A, West R, Assaf M and Mobilia M 2020 Phys. Rev. Lett. 125 048105
[108] Garbaczewski P 2017 Phys. Rev. E 96 032104
[109] Mazzolo A 2018 J. Stat. Mech. 073204

https://doi.org/10.1088/1742-5468/ac4519