A SIMPLE CLASS OF INFINITELY MANY ABSOLUTELY EXOTIC MANIFOLDS

SELMAN AKBULUT

Abstract. We show that the smooth 4-manifold M obtained by attaching a 2-handle to B^4 along a certain knot $K \subset \partial B^4$ admits infinitely many absolutely exotic copies M_n, $n = 0, 1, 2, \ldots$, such that each copy M_n is obtained by attaching 2-handle to a fixed compact smooth contractible manifold W along the iterates $f^n(c)$ of a knot $c \subset \partial W$ by a diffeomorphism $f : \partial W \to \partial W$. This generalizes the example in author’s 1991 paper, which corresponds to $n = 1$ case.

0. Construction

A relative exotic structure on a compact smooth 4-manifold M with boundary, is a self diffeomorphism $f : \partial M \to \partial M$, which extends to a self homeomorphism of M, but does not extend to a self diffeomorphism of M. If $F : M \to M$ a homeomorphism extending f, then the pullback smooth structure M_F provides a relative exotic copy of M. We say that N is an absolutely exotic copy of M, if it is homeomorphic but not diffeomorphic to M (no condition on the boundary). The technique introduced in [AR] turns relative exotic structures to absolute exotic structures. This is done by choosing an invertable cobordism H with $\partial H = H_- \sqcup H_+$ and $H_- \approx \partial M$, and then gluing H it to the boundary of M in two different ways. Then the manifolds $M' = M \cup_{f_1} H$ and $M'' = M \cup_{f_2} H$ become absolutely exotic copies of each other. Applying this construction to a cork W produces an absolutely exotic copy of W; and when W is an infinite order loose-cork ([A2]) then we get infinitely many absolutely exotic copies of W. This construction results a boundary H_+, which consists of hyperbolic manifolds glued along tori.

Ideally we want to produce small 4-manifolds with simple boundaries, admitting absolutely exotic copies (with the hope of capping boundaries to get small closed exotic manifolds). One such example is the cusp C^4 ([A3]) with a Seifert fibered space boundary, which is obtained by attaching a 2-handle to B^4 along the trefoil knot with 0-framing. Performing knot surgeries $C \sim C_K$ along the torus inside (by using different knots K) provides infinitely many absolutely exotic

1991 Mathematics Subject Classification. 58D27, 58A05, 57R65.
Partially supported by NSF grants DMS 0905917.
copies of C. An interesting open problem here is to find corks inside of C, such that twisting C along them induce the exotic copies C_K of C. Here we produce another example M^4, similar to C^4, which also has a Seifert fibered space boundary, and is obtained by attaching a 2-handle to B^4 along a slice knot with -2 framing. But from this we can construct infinitely many different exotic copies of M, each obtained by cork-twisting along an infinite order loose-cork $W \subset M$ ([A2]), rather than a knot surgery to M, as in the case of C above.

Theorem 1. The manifold M of Figure 1, which is obtained by attaching 2-handle to B^4 along the knot K of Figure 1 with -2 framing, admits infinitely many distinct absolutely exotic copies, and they can be detected twisting an infinite order loose-cork inside of M.

Proof. First of all by blowing up and down as in Figure 2, we see that ∂M can also be identified by $+2$ surgery to $(-4, 2)$ twist knot (stevedores knot). ∂M is the small Seifert fibered space $M(-2; 1/2, 3/4, 7/9)$ (e.g. [BW], [S], [T]), therefore its mapping class group is finite order.

Now, recall the infinite order loose-cork W of [A2], which is shown in Figure 3 (where two of its alternative handlebody pictures are given).
The order \(n \) diffeomorphism \(f_n : \partial W \to \partial W \) is obtained by a delta move along the curve \(\delta \subset \partial W \) (the dotted curve in the figure).

![Figure 3. W](image)

Now check that the handlebody pictures of Figure 4 describe the manifold \(M \) above (to see this cancel 1/2- handle pairs). The second picture of Figure 4 shows an imbedding \(W \subset M \). That is, \(M \) is obtained from \(W \) by attaching a 2-handle along the knot \(c \) with 0-framing.

![Figure 4. M](image)

Now apply \(\delta \)-moves to \(W \) inside \(M \), \(n \)-times (where \(\delta \) is chosen as in Figure 3), and call the resulting manifold \(M_n \) (which is the first picture of Figure 5). We claim \(\{M_n\} \) are exotic copies of \(M \) rel boundary. To see this attach 2-handles to \(M_n \) along the knots \(a \) and \(b \) of the picture.

Call the manifold obtained from \(M_n \) by attaching 2-handles along \(a \) and \(b \) with \(-1\) framings by \(S_n = M_n + a^{-1} + b^{-1} \). Now we proceed as in [A2] by handle slides, to show that \(S_n \) is the manifold obtained from the Stein manifold \(S \) of Figure 7 by the knot surgery using the twist knot \((-2, -n)\). Furthermore we can compactify \(S \) into some closed symplectic manifold \(Z \) with \(\delta_2^+(Z) > 1 \) (by [LM], [AO], or [A4] p.108).
This shows that manifolds \{M_n\} are exotic copies of \(M\) rel boundary, and they are obtained by iterating \(\delta\)-moves to \(f: \partial W \to \partial W\) inside \(W \subset M\). Since the mapping class group of the Seifert fibered space \(\partial M \cong M_n\) is finite [BO], by going to a subsequence we can assume that all \{M_n\} are absolutely exotic copies of each other.

Now we analyze what an \(n\)-iterate of the \(\delta\)-move does to \(M\), well it turns it into \(M_n\), and a close inspection shows that \(M_n\) is obtained from \(M\) by attaching 2-handle to \(W\) along the loop \(f^n(c)\) with 0-framing, as shown in Figure 8. Recall also, performing the \(\delta\)-move to \(W\) inside of \(M\), has the affect of attaching a cancelling pair of 2/3-handles to \(M\) and performing the diffeomorphism described in [AI] resulting \(M_n\).
Remark 1. Note the new features of Theorem [1] which can not be reached by the techniques of [AR], they are: (1) We don’t need to modify the boundary of M (by a homology cobordism) in order to construct its absolutely exotic copy. (2) The construction here produces infinitely many absolutely exotic copies of M. (3) M contains the tangent disc bundle of S^2 (an imbedded -2 sphere) and vice versa, so every smooth manifold which contains a -2 sphere contains a copy of M inside.

Acknowledgements: I thank Danny Ruberman for making suggestions and discussing some of the constructions of this paper with me.

References

[A1] S. Akbulut, An exotic 4-manifold, J. Differ. Geom. 33 (1991) 357–361.
[A2] S. Akbulut, On infinite order corks, PGGT 2016
[A3] S. Akbulut, A fake cusp and a fishtail. Turkish J. Math. 1 (1999) 19–31.
[A4] S. Akbulut 4-Manifolds, Oxford Graduate Texts in mathematics (2016) ISBN: 9780198784869
[AO] S. Akbulut and B. Ozbagci On the topology of compact Stein surfaces , Int. Math. Res. Notices 15 (2002) 769-782
[AR] S. Akbulut and D. Ruberman An absolutely exotic contractible 4-manifold. Commentarii Mathematici Helvetici, (2016) 91(1) 1-19
[BO] M. Boileau and J.-P. Otal Scindements de Heegaard et groupe des homotopies des petites varits de Seifert. Invent. Math.106 (1991), vol 1, 85 -107.
[BW] Mark Brittenham and Ying-Qing Wu The classification of exceptional Dehn surgeries on 2-bridge knots. Comm. Anal. Geom. 9 (2001), vol1, 97-113.
[S] N. Saveliev Invariants for homology 3-spheres, Encyclopaedia of Math. Sci vol. 140, Springer- Verlag ISBN 3-540-43796-7
[LM] P. Lisca and G. Mattic Tight contact structures and Seiberg-Witten invariants, Invent. Math. 129 (1997) 509-525.
[P] S. P. Plotnick Vanishing of Whitehead groups of Seifert manifolds with infinite fundamental groups, Comm. Math. Helv. 55 (1980) 654-667.
[T] B. Tosun Tight small Seifert fibered manifolds with $e_0 = -2$, https://arxiv.org/pdf/1510.06948.pdf
Department of Mathematics, Michigan State University, MI, 48824
E-mail address: akbulut@math.msu.edu