Leveraging sentence similarity in natural language generation: Improving beam search using range voting

Sebastian Borgeaud
University of Cambridge
sebastian.borgeaud@gmail.com

Guy Emerson
University of Cambridge
gete2@cam.ac.uk

Abstract

We propose a novel method for generating natural language sentences from probabilistic language models, selecting from a beam search using a range voting procedure. The proposed method could be applied to any language model, including both n-gram models and neural network models, and could be applied to any generation task. Instead of choosing the most likely output, our method chooses the most representative output, providing a solution to the common problem of short outputs being preferred over longer and more informative ones. We evaluate our method on an image captioning task, and find that the generated captions are longer and more diverse than those generated using standard beam search, with higher BLEU scores (particularly when the beam size is large), and better performance in a human evaluation.

1 Introduction

A language model specifies a probability distribution over sequences of words. In many applications, it is desirable to output a single sequence, rather than a distribution. A common approach is to choose the most likely sequence. However, for the probabilities to sum to 1, the probability of a sequence must tend to 0 as length increases. This leads to a long-recognised problem, that choosing the most likely sequence favours short sequences (Brown et al., 1995). This is problematic when the most likely sequence is not representative of the whole distribution. For example, in dialogue generation tasks, the most likely output can be “I don’t know”, even when most of the probability mass is assigned to long informative sequences. Cao and Clark (2017) call this the “boring output problem”.

For a real-valued distribution, we can choose a representative output by taking the mean. However, for a discrete distribution (such as over sequences), the mean is not well-defined. In this paper, we choose a representative output using tools from voting theory, which allows us to avoid the boring output problem. The basic idea is that, if the distribution assigns most of the probability mass to a group of similar sequences, we would like to generate one of these sequences – even if they have low probability as individual sequences, they have high probability as a group.

We evaluate our approach on an image captioning task (see Fig. 1 for an example). We find that our approach generates longer and more diverse captions, while achieving higher BLEU scores, and performing better in a human evaluation. This suggests that our approach mitigates the boring output problem.

2 Related work

To increase the length and diversity of a model’s outputs, some authors have proposed changes to the model architecture. In dialogue generation, Cao and Clark (2017) use a latent variable model to capture the possible ‘topics’ of a response.

Others have proposed changing the objective function. In dialogue generation, Li et al. (2016a) optimise mutual information instead of probability. In machine translation, Tu et al. (2017) modify an encoder-decoder model by adding a ‘reconstructor’ to predict the input based on the output.

However, modifying the model or the objective function depends on the particular task, and applying these techniques to an existing system requires retraining the model. In this paper, we focus on general-purpose methods which can be applied to any probabilistic model in any generation task. Existing methods include length normalisation (Wu et al., 2016; Freitag and Al-Onaizan, 2017) and diverse decoding (Li et al., 2016b; Li
and Jurafsky, 2016), which we discuss in §4.1.

![Figure 1: Image from the MSCOCO validation dataset and beam captions with probability (beam size $k=10$). See §3.1 for beam search, §4.1 for the model. Range voting with overlap similarity (see §3.2) selects “a black and white photo of a man sitting on a bench”.

3 Method

3.1 Beam search

When working with a distribution over sequences, it is not feasible to consider all possible sequences. Finding the most likely sequence can be computationally expensive – in fact, for an RNN it is undecidable (Chen et al., 2018). A common solution is to use beam search, which generates the sequence one token at a time, maintaining a list of the k most promising sequences at each time step (for example: Brown et al., 1995; Koehn, 2004a). Greedy search is the special case where $k = 1$.

Beam search introduces an extra hyper-parameter, the beam size k. Increasing k covers more of the search space, but increases the computational cost. It is tempting to assume that increasing k will produce better results, but empirically, the quality of the most likely sequence starts to decrease after k exceeds a certain threshold (Koehn and Knowles, 2017), which stems from the problem discussed in §1. Tuning the value of k to maximise performance can be challenging.

In the next section, we propose an alternative way to generate from a beam, which avoids the drop in performance as beam size increases. Rather than choosing the most likely sequence, we choose the most representative sequence.

3.2 Range voting

To formalise the idea of the most representative sequence, we propose to use a voting procedure. Although voting has been applied to ensembles of classifiers (for an overview, see: Kuncheva, 2004; Kuncheva and Rodríguez, 2014), we are not aware of work using voting to select from a distribution.

We can see each sequence as a candidate in an election, and the probability of a sequence as the proportion of votes for that candidate. From this perspective, the problem of probability mass being split across long sequences is the well-known problem of vote splitting. Suppose candidate i wins an election. Now suppose we run the election again, but add an additional candidate j, identical to i. A voting system is robust against vote splitting (and called independent of clones) if the winner must be i or j (Tideman, 1987).

A well-studied system which is independent of clones is range voting (Heckscher, 1892; Smith, 2000; Tideman, 2006; Lagerspetz, 2016). Each voter scores each candidate in the range $[0, 1]$, and the candidate with the highest total score wins.

In our setting, probability mass can be seen as the proportion of votes placing a candidate as first choice (see Fig. 1 for an example). For range voting, we need to augment the votes with scores for all other candidates. We propose to do this using a similarity measure. The final score for a sequence is given in (1), for a beam of sequences s_1, \cdots, s_k and a similarity measure sim.\footnote{An alternative way to understand this method is that each sequence acts as both voter and candidate. As a voter, each sequence is weighted by its probability.}

$$\text{score}(s_j) = \sum_{i=1}^{k} P(s_i) \cdot \text{sim}(s_i, s_j) \quad (1)$$

Defining semantic similarity between sentences is recognised as a hard problem (Achananuparp et al., 2008; Cer et al., 2017; Pawar and Mago, 2019). In this work, we focus on simple, domain-agnostic similarity measures which do not require additional training.

First, we consider similarity based on n-grams. For a sequence s, we write $\text{set}_n(s)$ for its set of n-grams, and $\text{bag}_n(s)$ for its bag of n-grams. We define two measures in (2–3). Both are asymmetric, to encourage informative sequences: if t contains s plus more information, $\text{sim}(s, t)$ should be high, but $\text{sim}(t, s)$ should be lower. This allows an informative sequence to gather more votes.

$$\text{precision}_n(s, t) = \frac{|\text{bag}_n(s) \cap \text{bag}_n(t)|}{|\text{bag}_n(s)|} \quad (2)$$

$$\text{overlap}_n(s, t) = \frac{|\text{set}_n(s) \cap \text{set}_n(t)|}{|\text{set}_n(s)|} \quad (3)$$

Second, inspired by Mueller and Thyagarajan (2016), we consider a similarity measure based on
the hidden states of the LSTM during generation (see §4.1). For each sequence, we find the average
LSTM hidden state, and then compute cosine similarity. We refer to this measure as lstm_states.

4 Experiments

We evaluate our method on the MSCOCO dataset (Lin et al., 2014), which consists of 82,783 training
images and 40,504 validation images, each annotated with 5 captions from human annotators.

4.1 Model and baselines

We use the ‘Show and Tell’ architecture of Vinyals et al. (2015). The task is framed as a supervised
learning problem: an encoder-decoder model is trained to maximise the probability of the annota-
tor captions given an input image. The encoder is a pretrained Inception V3 CNN (Szegedy et al.,
2016) from which we extract a feature vector from the final pooling layer (Ioffe and Szegedy, 2015).
The decoder is an LSTM (Hochreiter and Schmidhuber, 1997) with 512 hidden units, with dropout
\(p=0.3 \), initialising the hidden state using the encoder. The vocabulary consists of the 5000 most
common words in the training captions, for which embeddings of size 512 are learned from scratch.
We trained the model for 20 epochs with vanilla SGD, starting with a learning rate of 2.0, which is
halved every 8 epochs.

As well as comparing to standard beam search, we consider two existing baselines. Length nor-
malisation divides the log-probability by sequence length (Wu et al., 2016; Freitag and Al-Onaizan,
2017). Diverse decoding penalises expansions of the same initial sequence (Li et al., 2016b; Li and
Jurafsky, 2016). The other methods mentioned in §2 cannot be straightforwardly applied to this task.

4.2 BLEU scores

Table 1 shows BLEU scores (Papineni et al., 2002) on the MSCOCO validation set. For beam size
\(k=1 \), all methods reduce to greedy search.

The bigram similarity measures and the lstm_states measure improve BLEU scores for al-
most all beam sizes. In contrast, diverse decoding has almost no effect on BLEU, while length
normalisation performs worse than standard beam search. The best result is achieved by lstm_states
at \(k=100 \). This is significantly better than the best beam search result \((k=10) \), with \(p<0.001 \) for a
paired bootstrap test following Koehn (2004b).

Consistent with Ott et al. (2018) and Koehn and Knowles (2017), increasing \(k \) too much reduces
BLEU for standard beam search. However, this drop does not occur for our voting method.

4.3 Caption length

To analyse differences between methods, we first look at caption length, shown in Table 2. Stan-
dard beam search produces slightly longer captions as \(k \) increases up to 10. All n-gram mea-
ures generate longer captions than standard beam search, and length continues to increase as \(k \) goes
to 100. Length normalisation also increases caption length, but this is at the cost of BLEU score
(see §4.2). Diverse decoding does not increase caption length. The lstm_states measure produces
slightly shorter captions – as it is symmetric, it does not favour long sequences as the asymmetric
n-gram measures do (see §3.2).

4.4 Caption diversity

Second, we investigate the diversity of the generated captions by counting the number of distinct
captions, unigrams, and bigrams (see Table 3). This follows the approach of Li et al. (2016a),
Dhingra et al. (2017), and Xu et al. (2017, 2018).

For standard beam search, the number of distinct captions drops as \(k \) increases. Both baselines
weaken this effect, but the drop is still present. In contrast, range voting maintains caption diversity
as \(k \) increases, for all similarity measures.

Similarly, standard beam search sees a drop in the number of distinct unigrams and bigrams as
\(k \) increases, and the baselines do not seem to mitigate this. In contrast, the unigram measures
and the lstm_states measure maintain both uni-
gram diversity and bigram diversity as \(k \) increases, while the bigram measures partially maintain bi-
gram diversity.

4.5 Human evaluation

BLEU is known to be imperfect, and does not al-
ways match human judgements (Callison-Burch et al., 2006). While the n-gram similarity mea-
sures produce similar BLEU scores to standard beam search, they also produce longer captions.
A longer caption is potentially more informative. To investigate whether they are more informative
in way that is not reflected by BLEU, we took 500 validation images for human evaluation, compar-
ing the captions produced by standard beam search
Table 1: BLEU-1 and BLEU-4 scores obtained on the MSCOCO validation images.

Beam size k	BLEU-1	BLEU-4
1	0.6666	0.6797
2	0.6472	0.6510
10	0.6643	0.2539
100	0.2668	0.2693

Table 2: Average length of the generated captions.

Beam size k	Average caption length
1	8.41
2	8.71
10	9.12
100	9.15

We have evaluated our method on an image captioning task. Despite using simple similarity measures, we achieve an increase in BLEU score, an increase in caption length and diversity, and statistically significantly better performance in a human evaluation. Unlike standard beam search, performance of our method does not drop as beam size continues to increase, removing the sensitivity of results on this hyperparameter. Better similarity measures could further improve results.

Finally, our approach can be applied to any probabilistic language model, without any need for additional training. This opens up many other tasks, including machine translation, summarisation, dialogue systems, and question answering. If multiple outputs can be used (e.g. offering options to a user), our method can be extended to use reweighted range voting (Smith, 2005), a procedure which elects multiple candidates.

5 Conclusion

We have proposed a new method for generating natural language from a language model, by re-ranking a beam search. Instead of choosing the most likely sequence, we choose the most representative sequence, formalising representativeness using a similarity measure and range voting.

We have evaluated our method on an image captioning task. Despite using simple similarity measures, we achieve an increase in BLEU score, an increase in caption length and diversity, and statistically significantly better performance in a human evaluation. Unlike standard beam search, performance of our method does not drop as beam size continues to increase, removing the sensitivity of results on this hyperparameter. Better similarity measures could further improve results.

Finally, our approach can be applied to any probabilistic language model, without any need for additional training. This opens up many other tasks, including machine translation, summarisation, dialogue systems, and question answering. If multiple outputs can be used (e.g. offering options to a user), our method can be extended to use reweighted range voting (Smith, 2005), a procedure which elects multiple candidates.

References

Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. 2008. The evaluation of sentence similarity measures. In Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovery, pages 305–316. Springer.

Peter F Brown, John Cocke, Stephen A Della Pietra, Vincent J Della Pietra, Frederick Jelinek, Jennifer C Lai, and Robert L Mercer. 1995. Method and system for natural language translation. US Patent 5,477,451.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. 2006. Re-evaluation the role of BLEU in machine translation research. In Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics (EACL).

Kris Cao and Stephen Clark. 2017. Latent variable dialogue models and their diversity. In Proceedings of
Table 3: Number of distinct captions, unigrams and bigrams.

Beam size k	Distinct captions	Distinct unigrams	Distinct bigrams
	2	10	100
Standard beam search	9208	5488	4150
Length normalisation	9978	6418	5039
Diverse decoding	9942	6424	4403
overlap1	10727	8916	10808
precision1	10727	8902	10768
overlap2	9519	7958	9221
precision2	9522	7590	9248
lstm states	9208	7613	10133

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1–14.

Yining Chen, Sorcha Gilroy, Kevin Knight, and Jonathan May. 2018. Recurrent neural networks as weighted language recognizers. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 2261–2271.

Bhuwan Dhingra, Lihong Li, Xiujuan Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017. Towards end-to-end reinforcement learning of dialogue agents for information access. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 484–495. Association for Computational Linguistics.

John D Emerson and Gary A Simon. 1979. Another look at the sign test when ties are present: The problem of confidence intervals. The American Statistician, 33(3):140–142.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam search strategies for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 56–60.

Albert Gottlieb Hecksher. 1892. Bidrag til grundlæggelse af en afstemningslære. Om metod- erne ved udfindelse af stemmerlærde i parlamente (afstemning over ændringsforslag m.v.) ved valg og domstole. Ph.D. thesis, University of Copenhagen.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456.

Philipp Koehn. 2004a. Pharaoh: a beam search decoder for phrase-based statistical machine translation models. In Conference of the Association for Machine Translation in the Americas, pages 115–124. Springer.

Philipp Koehn. 2004b. Statistical significance tests for machine translation evaluation. In Proceedings of the 2004 conference on empirical methods in natural language processing (EMNLP), pages 388–395.

Philipp Koehn and Rebecca Knowles. 2017. Six challenges for neural machine translation. In First Workshop on Neural Machine Translation, pages 28–39. Association for Computational Linguistics.

Ludmila I. Kuncheva. 2004. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons.

Ludmila I. Kuncheva and Juan J Rodríguez. 2014. A weighted voting framework for classifiers ensembles. Knowledge and Information Systems, 38(2):259–275.

Eerik Lagerspetz. 2016. Social Choice and Democratic Values. Springer.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A diversity-promoting objective function for neural conversation models. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 110–119.

Jiwei Li and Dan Jurafsky. 2016. Mutual information and diverse decoding improve neural machine translation. arXiv preprint arXiv:1601.00372.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. A simple, fast diverse decoding algorithm for neural generation. arXiv preprint arXiv:1611.08562.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence similarity. In Proceedings of the 30th AAAI Conference on Artificial Intelligence.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. 2018. Analyzing uncertainty in neural machine translation. In Proceedings of the 35th International Conference on Machine Learning (ICML).

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318.

Atish Pawar and Vijay Mago. 2019. Challenging the boundaries of unsupervised learning for semantic similarity. IEEE Access, 7.

Warren D. Smith. 2000. Range voting.

Warren D. Smith. 2005. Reweighted range voting – new multiwinner voting method.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826.

Nicolaus Tideman. 1987. Independence of clones as a criterion for voting rules. Social Choice and Welfare, 4(3):185–206.

Nicolaus Tideman. 2006. Collective Decisions and Voting: The Potential for Public Choice. Routledge.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu, and Hang Li. 2017. Neural machine translation with reconstruction. In Proceedings of the 31st AAAI Conference on Artificial Intelligence.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell: A neural image caption generator. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3156–3164. Institute of Electrical and Electronics Engineers.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Klingner Jeff, Shah Apurva, Johnson Melvin, Liu Xiaobing, Kaiser Lukasz, Gouws Stephan, Kato Yoshikiyo, Kudo Taku, Kazawa Hideo, Stevens Keith, Kurian George, Patil Nishant, Wang Wei, Young Cliff, Smith Jason, Riesa Jason, Rudnick Alex, Vinyals Oriol, Corrado Greg, Hughes Macduff, and Dean Jeffrey. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation.

Xinnuo Xu, Ondřej Dušek, Ioannis Konstas, and Verena Rieser. 2018. Better conversations by modeling, filtering, and optimizing for coherence and diversity. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3981–3991.

Zhen Xu, Bingquan Liu, Baoxun Wang, SUN Chengjie, Xiaolong Wang, Zhuoran Wang, and Chao Qi. 2017. Neural response generation via GAN with an approximate embedding layer. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 617–626.