The 12-th roots of the discriminant of an elliptic curve and the torsion points

Kohei Fukuda, Sho Yoshikawa

Abstract
Given an elliptic curve over a field of characteristic different from 2,3, its discriminant defines a μ_{12}-torsor over the field. In this paper, we give an explicit description of this μ_{12}-torsor in terms of the 3-torsion points and of the 4-torsion points on the given elliptic curve. As an application, we generalize a result of Coates on the 12-th root of the discriminant of an elliptic curve.

1 Introduction
Let E be an elliptic curve over a field K. Then, the discriminant Δ_E of E is defined to be a value in $K^\times/(K^\times)^{12}$, which depends only on the isomorphism class of E.

To study Δ_E, it suffices to consider $\Delta_E \mod (K^\times)^n$ for $n = 3, 4$ separately, because $K^\times/(K^\times)^{12} \cong K^\times/(K^\times)^3 \times K^\times/(K^\times)^4$. In the rest of this introduction, we suppose that $n = 3, 4$ and that K be a field of characteristic prime to n. Then, we may focus on the μ_n-torsor $\mu_n \sqrt[12]{\Delta_E}$ over K consisting of n-th roots of Δ_E since $\Delta_E \mod (K^\times)^n$ corresponds to the μ_n-torsor $\mu_n \sqrt[12]{\Delta_E}$ via the isomorphism $K^\times/(K^\times)^n \cong H^1(K, \mu_n)$ from Kummer theory.

The goal of this paper is to give an explicit description of the μ_n-torsor $\mu_n \sqrt[12]{\Delta_E}$ out of E. More precisely, we construct a $\wedge^2 E[n]$-torsor $T_n(E[n])$ over K and define a canonical isomorphism w_n from $T_n(E[n])$ to the μ_n-torsor $\mu_n \sqrt[12]{\Delta_E}$ over K such that the following diagram is commutative:

$$
\begin{array}{ccc}
\wedge^2 E[n] \times T_n(E[n]) & \xrightarrow{\text{action}} & T_n(E[n]) \\
\downarrow e_n \times w_n & & \downarrow \quad w_n \\
\mu_n \times \mu_n \sqrt[12]{\Delta_E} & \xrightarrow{\text{action}} & \mu_n \sqrt[12]{\Delta_E},
\end{array}
$$

where e_n is the Weil pairing normalized as in Remark 2.8 and Remark 2.10.

We now describe the organization of this paper.
In Section 2, we give a brief review of several results on elliptic curves. The results on Tate curves and modular curves will be crucial in the proof of our main theorem.

Sections 3 and 4 give a preparation for stating our main theorem. Our first task is to construct a $\wedge^2 E[n]$-torsor $T_n(E[n])$, which are explained in Section 3 as we mentioned above. Since this construction only uses the fact $E[n] \cong (\mathbb{Z}/(n))^2$, Section 3 deals with an abstract free $\mathbb{Z}/(n)$-module of rank 2. The second task is to construct a bijection $w_n : T_n(E[n]) \to \mu_n \sqrt[12]{\Delta_E}$, which is done
in Section 4. Also, we give a simple description of the action of $\Lambda^2 E[n]$ on $T_n(E[n])$ when E is a Tate curve. The constructions of w_n are based on [4] and [7].

Next, integrating the results of the previous two sections, we proceed to the main part of this paper; in Section 5, we give the precise statement of the main theorem and prove it. In its proof, using the modular curves of level 3 and 4, we reduce a claim on general elliptic curves to a claim on a single Tate curve. As such an elliptic curve, we choose the Tate curve over a Laurent series field $\mathbb{Q}(\!(q)\!)$. This choice enables us to compute concretely both the map $w_n : T_n(E[n]) \to \mu_n \sqrt{\Delta_E}$ and the Weil pairing for the Tate curve.

In the last section, we give a consequence of our main theorem extending the result of Coates [2] in the following sense:

Corollary 6.1. Let E and E' be elliptic curves over K of characteristic $\text{char}(K) \neq 2, 3$, and $\varphi : E \to E'$ be an isogeny over K. If $d = \text{deg} \varphi$ is prime to 12, then we have $\Delta_E = (\Delta_{E'})^d$ in $K^\times/(K^\times)^{12}$.

Acknowledgment

The authors wish to express their hearty gratitude to their advisor, Professor Takeshi Saito. He not only gave them a lot of suggestive advice, but also patiently encouraged them when they were in trouble with their study. Also, the authors sincerely appreciate Professor J.-P. Serre, because originally he suggested the theme of this paper to Professor Saito. This work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

Convention and Terminology

Let $\varphi : G \to H$ be a homomorphism of groups and $f : X \to Y$ be a map, where X (resp. Y) is a G-set (resp. H-set). We say that f is compatible with φ if for any $x \in X$ and $g \in G$ we have $f(g \cdot x) = \varphi(g) \cdot f(x)$.

Also, we often denote by ω (resp. i) a primitive cubic (resp. 4th) root of unity.

2 Review on elliptic curves

In this section, we review some results on elliptic curves we need in this paper. We omit all the proofs of these results, and only give references.

2.1 Elliptic curves

Definition 2.1. Let S be a scheme. An elliptic curve over S is a pair (E, O) such that E is a proper smooth scheme over S whose geometric fibers are connected algebraic curves of genus 1, and that O is a section of $E \to S$.

If there is no risk of confusion, we omit to write O and simply call E an elliptic curve. It is well-known as the Abel-Jacobi theorem (THEOREM 2.1.2, [3]) that every elliptic curve (E, O) admits a structure of a commutative group scheme with O the unit section. For each positive integer N, we denote by $E[N]$ the N-torsion subgroup scheme of E.
Remark 2.2. If N is invertible on S, then $E[N]$ is a finite étale commutative group scheme. If, in addition, S is a spectrum of a field K, then we often identify the finite étale commutative group scheme $E[N]$ over K with the associated $G_K = \text{Gal}(\overline{K}/K)$-module $E[N](\overline{K})$.

Definition 2.3. For a Weierstrass equation over a ring A of the form
\[
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,
\]
we define $b_i \in A \ (i = 2, 4, 6, 8)$ by
\[
\begin{align*}
b_2 &= a_1^2 + 4a_2, \\
b_4 &= a_3^2 + 4a_6, \\
b_6 &= 2a_4 + a_1a_3, \\
b_8 &= a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 + a_4^2,
\end{align*}
\]
and define the discriminant Δ of the Weierstrass equation by
\[
\Delta := 9b_2b_4b_6 - b_2^2b_8 - 8b_3^4 - 27b_6^2.
\]

The following theorem actually characterizes the definition of elliptic curves.

Theorem 2.4. Let E/S be an elliptic curve. Then there exists an affine covering \{${U_i}$\} of S such that, for each $i \in I$, E_{U_i}/U_i is given by a Weierstrass equation over $\Gamma(U_i, \mathcal{O})$ with the discriminant invertible on $\Gamma(U_i, \mathcal{O})$.

Proof. See (2.2), [3] \hfill \blacksquare

Remark 2.5. (1) It is well-known (for example, see [8]) that, for a Weierstrass equation, the only change of variables fixing $[0 : 1 : 0]$ and preserving the general Weierstrass form is
\[
\begin{align*}
x &= u^2X + r, \\
y &= u^3Y + sX + t,
\end{align*}
\]
with $u \in A^\times$ and $r, s, t \in A$. Let b_i and Δ (b_i' and Δ', respectively) be the constants defined in Definition 2.1 for the Weierstrass equation with coordinates (x, y) ((X, Y), respectively). Then the above change of variable gives the following formula:
\[
\begin{align*}
u^2b_2' &= b_2 + 12r, \\
u^4b_4' &= b_4 + rb_2 + 6r^2, \\
u^{12}\Delta' &= \Delta. \\
\end{align*}
\]

(2) Suppose that 2 is invertible on a ring A. Then, any Weierstrass equation can be made into the form
\[
y^2 = x^3 + a_2x^2 + a_4x + a_6
\]
over A, and
\[
x = u^2X + r, \quad y = u^3Y \quad (u \in A^\times, r \in A)
\]
is the only change of variables fixing the point $[0 : 1 : 0]$ and preserving such a Weierstrass form.
Let E be an elliptic curve over a field K. Take a Weierstrass equation for E and consider its discriminant Δ. The Remark 2.5 (1) implies that the image of Δ in $K^\times/(K^\times)^{12}$ only depends on E. We denote it by $\Delta_E \in K^\times/(K^\times)^{12}$, and call it the discriminant of E.

2.2 The modular curve of level $r \geq 3$

In the following, we recall the representability of a moduli problem on elliptic curves. This result will be used in the proof of our main theorem to reduce Proposition 5.1 to the Tate curve case (Lemma 4.12).

Theorem 2.6. For a positive integer r, let $M(r) : \text{Sch}/\mathbb{Z}[1/r] \to \text{Sets}$ be a functor defined as follows; for a scheme S over $\mathbb{Z}[1/r]$, $M(r)(S)$ is the set of isomorphism classes of the pair (E, α), where E is an elliptic curve over S and $\alpha : (\mathbb{Z}/(r))^2 \xrightarrow{\sim} E[r]$ is an isomorphism of group schemes over S.

1. If $r = 1$, then the morphism $j : M \to \mathcal{A}\mathbb{Z}_1$ taking the j-invariant makes $\mathcal{A}\mathbb{Z}_1$ into the coarse moduli of $M := M(1)$.
2. If $r \geq 3$, then $M(r)$ has the fine moduli $Y(r)$, which is a connected smooth curve over $\mathbb{Z}[1/r]$.

Proof. See Corollary 8.40, [5] for (1) and Lemma 8.37, [5] for (2). \hfill \square

In this paper, we call $Y(r)$ the modular curve of level r.

2.3 Weil pairing

Next, we recall the Weil pairing of an elliptic curve. We make explicit the sign convention of the pairing, which is an important point in our result.

Theorem 2.7. Let N be a positive integer. For any elliptic curve E/S, there exists a canonical bilinear pairing

$$ e_N : E[N] \times E[N] \to \mu_N, $$

which is alternating and induces a self-duality of $E[N]$. The construction of this pairing is functorial in the sense that it defines a morphism of functors

$$ M(N) \to \mu_N. $$

$$ [(E/S, (P, Q))] \mapsto e_N(P, Q) $$

Proof. See (2.8), [3]. \hfill \square

Remark 2.8. There are two choices of the sign of e_N. We choose e_N so that it satisfies the following equality: for any elliptic curve $E \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ ($\tau \in \mathcal{H}$) over \mathbb{C}, we have

$$ e_N \left(\frac{1}{N}, \frac{\tau}{N} \right) = \exp \left(\frac{2\pi i}{N} \right). $$

We call the pairing of such a choice the normalized Weil pairing.
2.4 The Tate curve

Finally, we recall some properties of the Tate curves. The main references on this topic are [6] and [8].

Let \((K, v)\) be a complete discrete valuation field. We fix an element \(q \in K^\times\) satisfying \(v(q) > 0\). Consider the elliptic curve (called the Tate curve) over \(K\) defined by the following Weierstrass equation:

\[
E_q : y^2 + xy = x^3 + \left(-5 \sum_{n \geq 1} \frac{n^3 q^n}{1 - q^n}\right) x + \left(-\frac{1}{12} \sum_{n \geq 1} \frac{(7n^5 + 5n^3)q^n}{1 - q^n}\right).
\]

The discriminant \(\Delta\) of this Weierstrass equation is given by

\[
\Delta = q \prod_{m \geq 1} (1 - q^m)^{24}. \tag{2.3}
\]

The curve \(E_q\) has the following important properties:

Theorem 2.9. Let the notation be as above. Let \(u\) be an indeterminate, and \(x = x(u, q)\) and \(y = y(u, q)\) be the two power series in \(\mathbb{Z}[u, u^{-1}][][q]\) defined by

\[
x(u, q) := \sum_{n \in \mathbb{Z}} \frac{q^n u}{(1 - q^n u)^2} - 2 \sum_{n \geq 1} \frac{nq^n}{1 - q^n} \tag{2.4}
\]

\[
y(u, q) := \sum_{n \in \mathbb{Z}} \frac{q^{2n} u^2}{(1 - q^n u)^3} + \sum_{n \geq 1} \frac{nq^n}{1 - q^n}. \tag{2.5}
\]

1. Then the map

 \[
 \mathbb{K}^\times/q^\mathbb{Z} \longrightarrow E_q(K)
 \]

 \[
 u \mapsto (x(u, q), y(u, q))
 \]

 is an isomorphism of abelian groups.

 More generally, the map

 \[
 \bar{\mathbb{K}}^\times/q^\mathbb{Z} \longrightarrow E_q(\bar{K})
 \]

 \[
 u \mapsto (x(u, q), y(u, q))
 \]

 makes sense and is an isomorphism of \(G_{\mathbb{K}}\)-modules.

2. For each positive integer \(N\) prime to the characteristic of \(K\), there exists a canonical exact sequence

 \[
 0 \to \mu_N(\bar{K}) \to E_q[N](\bar{K}) \to \mathbb{Z}/(N) \to 0 \tag{2.6}
 \]

 of \(G_{\mathbb{K}}\)-modules.

Remark 2.10. Let us consider here the Tate curve \(E_q\) over \(K = \mathbb{Q}((q))\). Then, the exact sequence (2.5) does not split as \(G_{\mathbb{K}}\)-modules. However, consider the base change of \(E_q/K\) by the injection

\[
K \longrightarrow L := \mathbb{Q}(\zeta_N)((z))
\]

\[
q \mapsto z^N.
\]
Then, we have the isomorphism of GL-modules

$$
\mathbb{Z}/(N) \xrightarrow{\cong} \mu_{N,L}(\mathbb{L})
$$

$$
1 \mapsto \zeta_N.
$$

We also obtain the canonical section

$$
\mathbb{Z}/(N) \longrightarrow E_{q,L}[N](\mathbb{L}).
$$

$$
1 \mapsto z
$$

of the homomorphism $E_{q,L}[N](\mathbb{L}) \to \mathbb{Z}/(N)$ in the exact sequence (2.5). Therefore, the exact sequence splits and gives a canonical identification

$$
E_{q,L}[N] \cong \mu_{N,L} \times \mathbb{Z}/(N)
$$

$$
\cong \mathbb{Z}/(N) \times \mathbb{Z}/(N).
$$

Under this identification, it is known that the normalized Weil pairing e_N sends each $((a,b), (c,d)) \in (\mathbb{Z}/(N) \times \mathbb{Z}/(N))^2$ to ζ_N^{-ad-bc}; that is, $e_N(\zeta_N, z) = \zeta_N$. (See [1, VII, 1, 16].)

3 Construction of torsors

Our description of the 12-th roots of the discriminant of an elliptic curve by the torsion points consists of the following two parts: one needs some geometric properties of elliptic curves, and the other only needs a bit knowledge of linear algebra. In this section, we explain the linear-algebraic part. Throughout this section, we assume that $n = 3, 4$, and let V denote a free $\mathbb{Z}/(n)$-module of rank 2. Our tasks here are to construct a set $T_n(V)$, which will later describe $\mu_n \sqrt{\Delta_E}$ when $V = E[n]$, and to define a simply transitive action of $\Lambda^2 V$ on $T_n(V)$.

3.1 The construction of $T_3(V)$

Here, V is a 2-dimensional vector space over \mathbb{F}_3. We construct a set $T_3(V)$ attached to V. We write $\mathbb{P}(V) := (V \setminus \{0\})/\{\pm 1\}$ for the projective line associated with V, and \overrightarrow{P} for the image of a point $P \in V \setminus \{0\}$ in $\mathbb{P}(V)$. Note that $\# \mathbb{P}(V) = 4$.

Definition 3.1. We define a set $T_3(V)$ by

$$
T_3(V) = \{\{X, Y\} | X \sqcup Y = \mathbb{P}(V), \#X = \#Y = 2\}.
$$

That is, this is the set of 2-2 partitions of $\mathbb{P}(V)$.

For a basis (P, Q) of V, we write $[P, Q] \in T_3(V)$ for $\{\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{P+Q}, \overrightarrow{P-Q}\}$. Since $\mathbb{P}(V) = \{\overrightarrow{P}, \overrightarrow{Q}, \overrightarrow{P+Q}, \overrightarrow{P-Q}\}$, the set $T_3(V)$ consists of 3 elements $[P, Q]$, $[P, P+Q]$, and $[P, P-Q]$.

Remark 3.2. For the later use, note that $T_3(V)$ has canonically a simply transitive action of the alternating group $\mathcal{A}(\text{Aut}(T_3(V)))$.

3.2 The construction of $T_4(V)$

In this subsection, we define a set $T_4(V)$ for a free $\mathbb{Z}/(4)$-module V of rank 2. Our construction of $T_4(V)$ for $n = 4$ is motivated by the definition of w_4 in Subsection 4.2.

Denote $V[2] = \ker(2 \times : V \to V)$ and define a set $S_4(V)$ by

$$S_4(V) = \{(P, Q, R) \in V^3 \mid \{2P, 2Q, 2R\} = V[2] \setminus 0\}.$$

For each $\sigma \in S_3$, define an involution $[\sigma]$ of $S_4(V)$ by $[\sigma](P_1, P_2, P_3) := (P'_1, P'_2, P'_3)$ with

$$P'_{\sigma(1)} = P_{\sigma(1)}, \quad P'_{\sigma(2)} = P_{\sigma(2)} + 2P_{\sigma(1)}, \quad \text{and} \quad P'_{\sigma(3)} = P_{\sigma(3)}.$$

Since $[\sigma]$'s commute with each other, we obtain an action of F_2^3 on $S_4(V)$. Combining this action with a canonical action of S_3 on $S_4(V)$ by permutations, we obtain an action of $G := S_3 \times F_2^3$ on $S_4(V)$. Here, the left action of S_3 on F_2^3 defining the semidirect product is given by $\tau \cdot [\sigma] = [\tau \sigma]$ for $\sigma, \tau \in S_3$. Let N be the kernel of the composite

$$r : F_2^3 \to F_2^3 \to \{\pm 1\},$$

where the first map is the restriction to \mathfrak{A}_3 and the second map is the one sending $\sum a_\sigma[\sigma]$ to $(-1)^{\sum a_\sigma}$. Since the action of S_3 on F_2^3 defining the semidirect product induces an action of \mathfrak{A}_3 on N, we obtain $H := \mathfrak{A}_3 \rtimes N \triangleleft G$.

Definition 3.3. Under the above setting, define the set $T_4(V)$ by the quotient

$$T_4(V) := H \setminus S_4(V).$$

The equivalence class of $(P, Q, R) \in S_4(V)$ is denoted by $[P, Q, R] \in T_4(V)$.

Note that $T_4(V)$ has an action of $G/H = S_3/\mathfrak{A}_3 \times \{\pm 1\}$.

Remark 3.4.

1. The element $-1 \in G/H$ acts on $T_4(V)$ by

$$[P, Q, R] \mapsto -[P, Q, R] := [-P, -Q, -R].$$

Indeed, $-1 = r(\sum_{\sigma \in S_3}[\sigma])$ and

$$\sum_{\sigma \in S_3} [\sigma](P, Q, R) = (P + 2Q + 2R, Q + 2R + 2P, R + 2P + 2Q)$$

$$= (-P, -Q, -R)$$

in $S_4(V)$.

2. Define a set $S_2(V[2])$ by

$$S_2(V[2]) = \{(A, B, C) \in V[2]^3 \mid \{A, B, C\} = V[2] \setminus 0\}$$

equipped with the canonical action by S_3. Consider the quotient

$$T_2(V[2]) := \mathfrak{A}_3 \setminus S_2(V)$$

by the cyclic permutations; that is, it is the set of the cyclic orders on $V[2] \setminus 0$. The equivalence class of an element $(A, B, C) \in S_2(V[2])$ is denoted by
Remark 3.7. Let assertion follows from this and G/H

\[(12)\]

\[\text{Proof.}\]

By Lemma 3.11, the action of C which is a contradiction. This shows (1) since $\#X = 4$.

Lemma 3.8. Let $C \in T_2(V[2])$. The map

\[\tilde{\pi} : S_4(V) \rightarrow S_2(V[2])\]

\[(P, Q, R) \mapsto (2P, 2Q, 2R)\]

is compatible with $\text{pr}_1 : G \rightarrow \mathfrak{S}_3$. Hence, it induces a map

\[\pi : T_4(V) \rightarrow T_2(V[2]),\]

which is compatible with $\text{pr}_1 : G/H \rightarrow \mathfrak{S}_3/\mathfrak{A}_3$. Thus $\mathfrak{S}_3/\mathfrak{A}_3 \subset G/H$ switches the fibers of π and $\{\pm 1\} = \ker(\text{pr}_1) \subset G/H$ preserves each fiber of π.

Lemma 3.5. The action of G on $S_4(V)$ is simply transitive.

Proof. We use the notation in Remark 3.4. Since the action of \mathfrak{S}_3 on $S_2(V)$ is simply transitive and $\tilde{\pi}$ is compatible with $\text{pr}_1 : G \rightarrow \mathfrak{S}_3$, it is enough to prove that $\mathbb{F}_2^{\mathfrak{S}_3} = \ker(\text{pr}_1)$ acts on each fiber of $\tilde{\pi}$ simply transitively.

To prove this, let us fix an element $(A_1, A_2, A_3) \in S_4(V)$ and consider its fiber F of $\tilde{\pi}$. We make an identification $f : \mathbb{F}_2^{\mathfrak{S}_3} \xrightarrow{\sim} V[2]^3$ by sending $[\sigma]$ to (A_1, A_2, A_3) with $A_1^\sigma(2) = A_2^\sigma(1)$ and $A_1^\sigma(1) = A_2^\sigma(3) = 0$. If we define an action of $V[2]^3$ on F by the componentwise addition, then the action $\mathbb{F}_2^{\mathfrak{S}_3}$ on F is identified via f with the action $V[2]^3$ on it, which obviously acts simply and transitively on F. \[\square\]

Corollary 3.6. We have $\#T_4(V) = 4$.

Proof. By Lemma 3.11, the action of G/H on $T_4(V)$ is simply transitive. Our assertion follows from this and $\#G/H = 4$. \[\square\]

Remark 3.7. Let $[P, Q, R] \in T_4(V)$. Since $G/H = \mathfrak{A}_3 \times \{\pm 1\}$ is generated by $(12, 1)$ and $(id, -1)$, we see that

\[T_4(V) = (G/H) \cdot [P, Q, R]\]

\[= \{\pm [P, Q, R], \pm [Q, P, R]\}.\]

We use the following lemma and remark in the next subsection to define an action of $\mathbb{A}^2 \times V$ on $T_4(V)$.

Lemma 3.8. Let X be a set consisting of 4 elements. Denote by S_1 the set of cyclic subgroup of order 4 in $\text{Aut}(X)$, and by S_2 the set of elements in $\text{Aut}(X)$ of order 2 with no fixed points on X.

1. For any $C \in S_1$, the action of C on X is simply transitive. In particular, the order 2 element τ in C belongs to S_2.

2. Mapping each $C \in S_1$ to its element of order 2 defines a bijection $d : S_1 \xrightarrow{\sim} S_2$. For any $\tau \in S_2$, we denote $d^{-1}(\tau)$ by $B(\tau)$.

Proof. (1) Considering the orbit decomposition of X by C, we see that the action of C on X is transitive; if not, any element of C must be of order 1 or 2, which is a contradiction. This shows (1) since $\#C = \#X = 4$.

(2) By (1), we can define the map d. Note that $\text{Aut}(X)$ acts transitively on both S_1 and S_2 by conjugation, and that d commutes with these actions. Also, $\#S_1 = \#S_2 = 3$, since there are 6 elements of order 4 in $\text{Aut}(X)$ and each $C \in S_1$ has two generators, and since S_2 is identified with the set of 2-2 partitions via the orbit decompositions. These shows that d is bijective. \[\square\]
3.3 The action of $\bigwedge^2 V$ on $T_n(V)$

For each basis (P, Q) of V, we denote by $\varphi_{P, Q} \in \text{SL}(V)$ the map determined by $\varphi_{P, Q}(P) = P$ and $\varphi_{P, Q}(Q) = P + Q$.

Lemma 3.9. There exists a unique surjective homomorphism $\varphi : \bigwedge^2 V \twoheadrightarrow \text{SL}(V)^{ab}$ such that, for any basis (P, Q) of V, φ maps $P \wedge Q$ to $\varphi_{P, Q} \in \text{SL}(V)^{ab}$.

Proof. For a basis (P, Q) of V, mapping a generator $P \wedge Q$ of $\bigwedge^2 V$ to $\varphi_{P, Q} \in \text{SL}(V)^{ab}$ defines a homomorphism $\varphi : \bigwedge^2 V \rightarrow \text{SL}(V)^{ab}$. To see that φ is independent of the choice of (P, Q), we claim that, for $u \in \text{GL}(V)$, we have $\varphi_{P, Q}^{\det u} \equiv \varphi_{uP, uQ}$ in $\text{SL}(V)^{ab}$. Let v be an element of $\text{GL}(V)$ given by $v(P) = P$ and $v(Q) = (\det u)Q$. Then, we have $\varphi_{P, Q}^{\det u} = \varphi_{P, (\det u)Q} = v \varphi_{P, Q} v^{-1}$. Also, $\varphi_{uP, uQ} = u \varphi_{P, Q} u^{-1}$. Since $u^{-1}v \in \text{SL}(V)$, the claim follows.

By the above claim, we see that φ is surjective as follows. Because $\text{SL}(V)$ is generated by all the elements $\varphi_{uP, uQ} = u \varphi_{P, Q} u^{-1}$ with $u \in \text{GL}(V)$, the claim shows that $\text{SL}(V)^{ab}$ is generated by $\varphi_{P, Q}^{-1} 1$, and thus by $\varphi(P \wedge Q) = \varphi_{P, Q}$.

We let $\text{SL}(V)$ canonically act on $T_n(V)$ and consider the corresponding homomorphism $\tilde{\psi} : \text{SL}(V) \twoheadrightarrow \text{Aut}(T_n(V))$.

Proposition 3.10. (1) Let C denote the subgroup $\mathfrak{A}(\text{Aut}(T_3(V)))$ (resp. $C(-1)$ as in Lemma 3.8) of $\text{Aut}(T_n(V))$ for $n = 3$ (resp. $n = 4$). Then, the map ψ induces an isomorphism

$$\psi : \text{SL}(V)^{ab} \cong C.$$

(2) The surjective map $\varphi : \bigwedge^2 V \rightarrow \text{SL}(V)^{ab}$ in Lemma 3.9 is an isomorphism.

Proof. (1) (2) We first prove that the map $\tilde{\psi}$ induces a surjective homomorphism

$$\psi : \text{SL}(V)^{ab} \rightarrow C.$$

Since $\text{SL}(V)$ is generated by the elements $\varphi_{X,Y}$ for all bases (X, Y) of V, it suffices to show that, for a basis (P, Q) of V, ψ maps $\varphi_{P, Q}$ to a generator of C.

For $n = 3$, this follows because $T_3(V) = \{[P, Q], [P, P + Q], [P, 2P + Q]\}$ and $\varphi_{P, Q}(P, P + Q) = [P, (i + 1)P + Q]$.

We next consider the case $n = 4$. Since $\varphi_{P, Q}^{-1}[P, Q, P + Q] = [P, Q + 2P, (P + Q) + 2P] = ([\text{id}] + [23])[P, Q, P + Q] = -[P, Q, P + Q]$, we see that $\psi(\varphi_{P, Q})$ is of order 4. Further, by Lemma 3.8, $\psi(\varphi_{P, Q}^2)$ is of order 2 with no fixed points, which implies that $\varphi_{P, Q}^2 \in \text{SL}(V)^{ab}$ must be $[Q, P, P + Q]$. Therefore, $\tilde{\psi}(\varphi_{P, Q}^2) = -1$ and $C(-1)$ is generated by $\varphi_{P, Q}$.

The surjective maps ψ and φ are actually bijective because $\# \bigwedge^2 V = \# C(=4)$.

We now define an action of $\bigwedge^2 V$ on $T_n(V)$ by the composition

$$\psi \circ \varphi : \bigwedge^2 V \twoheadrightarrow \text{SL}(V)^{ab} \cong C \subset \text{Aut}(T_n(V)).$$

Corollary 3.11. The action of $\bigwedge^2 V$ on $T_n(V)$ is simply transitive.
Proof. This follows from Remark 3.2, Lemma 3.8 (1), and Proposition 3.10. \(\square\)

Next, we see that the action \(\bigwedge^2 V \cong T_n(V)\) has a simple description when \(V\) is moreover accompanied with an extension

\[
0 \to L \to V \xrightarrow{p} \mathbb{Z}/(n) \to 0
\]

(3.1) of \(\mathbb{Z}/(n)\). We observe the following:

1. Denote \(p^{-1}(1)\) by \(T\). Then, mapping each \(P \in L\) to \(P \wedge Q\) with \(Q \in T\) defines an isomorphism \(\epsilon : L \xrightarrow{\cong} \bigwedge^2 V\), which is independent of the choice of \(Q \in T\).

2. Corresponding to the above extension, we let \(L\) act on \(V\) by an injective homomorphism \(\tilde{\varphi} : L \hookrightarrow \text{SL}(V)\) defined by \(\tilde{\varphi}(P)(Q) := Q + p(Q)P\) for \(P \in L\) and \(Q \in V\). Note that, if we define a subgroup \(M\) of \(\text{SL}(V)\) by

\[
M = \{ \sigma \in \text{SL}(V) : \sigma(P) = P \text{ for all } P \in L \},
\]

then \(\tilde{\varphi}\) induces an isomorphism \(\tilde{\varphi} : L \xrightarrow{\cong} M\), whose inverse \(f : M \to L\) is obviously given by

\[
f(\sigma) = \sigma(Q) - Q\]

with any \(Q \in T\). We also remark that the action \(L \cong M \acts V\) preserves \(T\), which coincides with the canonical action by translations; in particular, this action of \(L\) on \(T\) is obviously simply transitive.

Example 3.12. (1) If \(V = E[n]\) for a Tate curve \(E\), then we have a canonical extension (2.6) in Theorem 2.9.

(2) If we fix a basis \((P, Q)\) of \(V\), then we have an extension

\[
0 \to \langle P \rangle \to V \xrightarrow{p} \mathbb{Z}/(n) \to 0,
\]

(3.2) where \(p : V \to \mathbb{Z}/(n)\) is given by \(p(P) = 0\) and \(p(Q) = 1\).

Remark 3.13. (1) Any extension (3.1) can becomes of the form (3.2) by taking a basis \((P, Q)\) with \(P\) a generator of \(L\) and \(Q \in T\).

(2) For any extension (3.1), the following diagram is commutative:

\[
\begin{array}{ccc}
L & \xrightarrow{\epsilon} & \bigwedge^2 V \\
\downarrow \varphi & & \downarrow \varphi \\
M & \xrightarrow{\text{quotient}} & \text{SL}(V)_{\text{ab}}
\end{array}
\]

To see this, we may assume that (3.1) is of the form (3.2) by (1). Then, we obtain \(\varphi(P)(Q) = \varphi_{P,Q}\) and \(\epsilon(P) = P \wedge Q\) so that \(\varphi(\epsilon(P)) = \varphi_{P,Q} \in \text{SL}(V)_{\text{ab}}\).

For the given extension (3.1), we define a map \(\tau : T \to T_n(V)\) by \(\tau(Q) = [P, Q]\) (resp. \(\tau(Q) = \left[Q, P, -(P + Q)\right]\) for \(n = 3\) (resp. \(n = 4\)) with \(P\) a generator of \(L\).

Lemma 3.14. (1) The map \(\tau\) is independent of the choice of \(P\).

(2) The map \(\tau\) is compatible with \(\epsilon : L \xrightarrow{\cong} \bigwedge^2 V\).

(3) The map \(\tau\) is bijective.
Proof. (1) The other generator of \(L \) is \(-P\) for both cases \(n = 3 \) and \(n = 4 \). If \(n = 3 \), then it defines the same point in \(\mathbb{P}(V) \) as \(P \). If \(n = 4 \), then we see that
\[
[Q, -P, -(P + Q)] = ([123] + [id] + [13])[Q, P, -(P + Q)] = [Q, P, -(P + Q)]
\]
for \(Q \in T \). These prove (1).

(2) First, note that \(\tau \) is tautologically compatible with \(\tilde{\varphi} : L \to \text{SL}(V) \). By Proposition 3.10 (1), it is compatible with the composite map \(L \xrightarrow{\tilde{\varphi}} \text{SL}(V) \to \text{SL}(V)^{ab} \), which coincides with the composite map \(L \xrightarrow{\varphi} \bigwedge^2 V \xrightarrow{\tilde{\varphi}} \text{SL}(V)^{ab} \) by Remark 3.13 (2). Thus (2) follows, since the action of \(\bigwedge^2 V \) on \(T_n(V) \) is defined via \(\varphi : \bigwedge^2 V \xrightarrow{\tilde{\varphi}} \text{SL}(V)^{ab} \).

Remark 3.15. We can also deduce Corollary 3.11 from Lemma 3.14 as follows. Fix an extension \([3.1]\). By Lemma \([3.14]\), we identify the action \(\bigwedge^2 V \rhd T_n(V) \) with the action \(L \rhd T \), which is obviously simply transitive.

4 A bijection \(w_n : T_n(E[n]) \to \mu_n \sqrt{\Delta_E} \)

Here, let \(n \) be 3 or 4, and \(E \) be an elliptic curve given by a Weierstrass equation over a field \(K \) of characteristic prime to \(n \). We apply the construction in Section 3 to \(V = E[n] \), and construct a bijection \(w_n : T_n(E[n]) \to \mu_n \sqrt{\Delta_E} \).

4.1 The case \(n = 3 \)

The result in this section is based on 5.5, [7]. Fix a Weierstrass equation
\[
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 \tag{4.1}
\]
for \(E \), and denote its discriminant by \(\Delta \). Let \(b_i \) \((i = 2, 4, 6, 8)\) be the constants defined in Definition 2.3. For a point \(P \) on \(E \), we denote by \((x_P, y_P)\) its coordinate in terms of this Weierstrass equation, and by \(\Delta \) the discriminant of it. If \(P \) is a point of order 3, then \(P \) satisfies \(x_P = x_{-P} = x_{2P} \). Since
\[
x_{2P} = \frac{x_P^4 - b_4x_P^2 - 2b_6x_P - b_8}{4x_P^3 + b_2x_P^2 + 2b_4x_P + b_6}
\]

(III, 2.3, [8]), the \(x \)-coordinate of any point of order 3 is a solution of the equation
\[
x = \frac{x^4 - b_4x^2 - 2b_6x - b_8}{4x^3 + b_2x^2 + 2b_4x + b_6};
\]
that is,
\[
x^4 + \frac{b_2}{3}x^3 + b_4x^2 + b_6x + \frac{b_8}{3} = 0. \tag{4.2}
\]
For \(\{X, Y\} \in T_3(E[3]) \), let \(x_1 \) and \(x_2 \) be the \(x \)-coordinates of the elements in \(X \), and \(x_3 \) and \(x_4 \) be the \(x \)-coordinates of the elements in \(Y \). Using this, we define
\[
w_3(\{X, Y\}) := b_4 - 3(x_1x_2 + x_3x_4),
\]
which is obviously \(G_K \)-equivariant.

Lemma 4.1. Let the notation be as above. Then,
\[
T^3 - \Delta = \prod (T - w_3(\{X, Y\})),
\]
where the product is taken over \(T_3(E[3]) \). In other words, \(w_3 \) defines a bijection \(w_3 : T_3(E[3]) \to \mu_3 \sqrt{\Delta_E} \).

Proof. We first show our assertion when \(E \) is defined over a field \(K \) and (4.1) is of the Deuring normal form
\[
y^2 + \alpha xy + y = x^3 \quad (\alpha \in \bar{K}, \alpha^3 \neq 27).
\]
In this case, we have
\[
b_2 = \alpha^2, b_4 = \alpha, b_6 = 1, b_8 = 0, \text{ and } \Delta = \alpha^3 - 27.
\]
Then, (4.2) is
\[
X^4 + \frac{1}{3}\alpha^2 X^3 + \alpha X^2 + X = 0,
\]
and the solutions of (4.4) are just the \(x \)-coordinates \(x_1, \ldots, x_4 \) of \(E[3] \); one of which is 0, say \(x_4 = 0 \). It follows that
\[
X^3 + \frac{1}{3}\alpha^2 X^2 + \alpha X + 1 = (X - x_1)(X - x_2)(X - x_3).
\]
Note that, under our present assumption, (4.3) becomes
\[
T^3 - (\alpha^3 - 27) = \prod_{1 \leq i < j \leq 3} (T - \alpha + 3x_ix_j).
\]
Replacing \(Y = T - \alpha \) reduces the problem to showing that
\[
Y^3 + 3\alpha Y^2 + 3\alpha^2 Y + 27 = (Y + 3x_1x_2)(Y + 3x_2x_3)(Y + 3x_1x_3).
\]
This is true from the following computation: Setting \(X = 3/Y \) in (4.5) and using \(x_1x_2x_3 = -1 \), we see that (4.5) becomes
\[
\frac{1}{Y^3}(27 + 3\alpha^2 Y + 3\alpha Y^2 + Y^3) = \frac{1}{Y^3}(3 - x_1Y)(3 - x_2Y)(3 - x_3Y)
\]
\[
= -\frac{x_1x_2x_3}{Y^3}(-3x_1^{-1} + Y)(-3x_2^{-1} + Y)(-3x_3^{-1} + Y)
\]
\[
= \frac{1}{Y^3}(3x_2x_3 + Y)(3x_1x_3 + Y)(3x_1x_2 + Y),
\]
which is none other than (4.6).

Next, we prove the general case. Suppose we are given two Weierstrass equations for \(E \) over \(K \) with coordinates \((x, y) \) and \((x', y') \). We use the notation in Remark 2.5. (1). By (2.1) and (2.3), we obtain
\[
b_4 - 3(x_1x_j + x_kx_l) = u^4(b'_4 - 3(x'_1x'_j + x'_kx'_l)).
\]
By (2.3) and (4.7), it follows that (4.3) for \((x, y)\) is equivalent to (4.3) for \((x', y')\). Then, the assertion follows from the fact that any elliptic curve over \(K\) has a Weierstrass equation of the Deuring normal form over \(\bar{K}\). (This requires \(\text{char}(K) \neq 3\). For the detail, see Proposition 1.3, Appendix A, [8].)

Let us check how the map \(w_3\) changes if we take another Weierstrass equation for \(E\). Let the notation be as in Remark 2.5 (1), and denote by \(w'_3\) the map as above for another Weierstrass equation for \(E\) with the coordinate \((x', y')\).

Lemma 4.2. We have \(w_3 = u^4w'_3\).

Proof. Let \((P, Q)\) be a basis of \(E[3]\). Then \(x_P, x_Q, x_{P+Q},\) and \(x_{P-Q}\) are all distinct, and they must satisfy the above equation. Considering the coefficients of \(x^3\) in (4.2), we obtain

\[
x_P + x_Q + x_{P+Q} + x_{P-Q} = -\frac{b_2}{3}.
\]

Using this equality and the relations in Remark 2.5 (1), we obtain \(w_3([P, Q]) = u^4w'_3([P, Q])\). \(\square\)

Lemma 4.2 and \(\Delta = u^{12}\Delta'\) imply that the diagram

\[
\begin{array}{ccc}
T_3(E[3]) & \xrightarrow{w_3} & \mu_3 \sqrt{\Delta} \\
\downarrow & & \downarrow \\
\mu_3 \sqrt{\Delta} & \xrightarrow{u^4} & \mu_3 \sqrt{\Delta'}
\end{array}
\]

is commutative. Since the vertical map \(u^4\) is an isomorphism of \(\mu_3\)-torsors over \(k\), we identify \(w_3\) and \(w'_3\), and we consider them as a map from \(T_3(E[3])\) to the \(\mu_3\)-torsor \(\mu_3 \sqrt{\Delta_E}\). We denote this map again by \(w_3\).

Remark 4.3. The construction of \(T_3(E[3])\) and \(w_3\) are easily generalized to the case that \(E\) is an elliptic curve over a scheme \(S\) with 3 invertible. This is done by considering the locally constant étale sheaf \(E[3]\) over \(S\) and by étale descent.

4.2 The case \(n = 4\)

Since \(K\) is of characteristic prime to 2, we can take a Weierstrass equation for \(E\) of the form

\[
y^2 = x^3 + a_2x^2 + a_4x + a_6.
\]

In this subsection, we only consider Weierstrass equations of this form. In order to write a 4-th root of \(\Delta_E\) in terms of \(E[4]\), first we prove the following lemma.

(See also [4, §11].)

Lemma 4.4. Let the notation be as above. Let \(A \in E\) be a point of order 2, and \(P\) and \(P'\) be points of \(E\) satisfying \(2P = 2P' = A\) and \(P \neq \pm P'\). Then we have

\[
\left(\frac{y_P - y_{P'}}{x_P - x_{P'}}\right)^2 = x_A - x_{P-P'}.
\]
Proof. Denote B and C for the points of order 2 on E other than A. Then, note that
\[x^3 + a_2x^2 + a_4x + a_6 = (x - x_A)(x - x_B)(x - x_C), \]
and in particular we have $x_A + x_B + x_C = -a_2$. Since $P + P' + (-P - P') = O$, the three points P, P', and $-P - P'$ are colinear. So the solutions for the equation
\[\left(\frac{y_P - y_{P'}}{x_P - x_{P'}} \right) (x - x_P) + y_P \right)^2 = x^3 + a_2x^2 + a_4x + a_6 \]
are exactly $x_P, x_{P'},$ and $x_{-P - P'}(= x_{P + P'})$. Considering the coefficients of x^2, we have
\[x_P + x_{P'} + x_{P + P'} = \left(\frac{y_P - y_{P'}}{x_P - x_{P'}} \right)^2 - a_2. \tag{4.8} \]
On the other hand, we show
\[x_P + x_{P'} = 2x_A. \tag{4.9} \]
To prove (4.9), let T be a 4-division point of E with $2T = A$. Then the same argument as above shows that
\[2x_T + x_A = \left(\frac{y_T - y_A}{x_T - x_A} \right)^2 - a_2. \tag{4.10} \]
Combining (4.10) with
\[(y_T - y_A)^2 = y_T^2 = (x_T - x_A)(x_T - x_B)(x_T - x_C), \]
we have the following quadratic equation for x_T:
\[x_T^2 - (-a_2 + x_A - x_B - x_C)x_T - (x_A^2 + a_2x_A + x_Bx_C) = 0. \]
Since the solutions for this equation are exactly x_P and $x_{P'}$, we obtain
\[x_P + x_{P'} = -a_2 + x_A - x_B - x_C \]
\[= 2x_A, \]
and hence (4.9) follows.

Now, combining (4.8) and (4.9), we obtain
\[x_A + (x_A + x_{P + P'}) = \left(\frac{y_P - y_{P'}}{x_P - x_{P'}} \right)^2 - a_2. \tag{4.11} \]
Since
\[\{A, P + P', P - P'\} = E[2] \setminus O, \]
we have
\[x_A + x_{P + P'} + x_{P - P'} = -a_2. \tag{4.12} \]
Then, (4.11) and (4.12) show the lemma. \square

An immediate corollary of Lemma 4.4 is the following:
Corollary 4.5. For \((P, Q, R) \in S_4(E[4])\), set
\[P' = P + 2Q, Q' = Q + 2R, R' = R + 2P. \]
Then
\[\tilde{w}_4(P, Q, R) := \frac{y_P - y_{P'}}{x_P - x_{P'}} - \frac{y_Q - y_{Q'}}{x_Q - x_{Q'}} - \frac{y_R - y_{R'}}{x_R - x_{R'}} \]
is a 4-th root of \(\Delta\), and the map \(\tilde{w}_4 : S_4(E[4]) \to \mu_4 \sqrt[4]{\Delta}\) makes the following diagram commutative:
\[
\begin{array}{ccc}
S_4(E[4]) & \xrightarrow{\tilde{w}_4} & \mu_4 \sqrt[4]{\Delta} \\
\downarrow \pi & & \downarrow \text{squaring} \\
S_2(E[2]) & \xrightarrow{\tilde{w}_2} & \pm \sqrt[4]{\Delta},
\end{array}
\]
where \(\tilde{w}_2 : S_2(E[2]) \to \pm \sqrt[4]{\Delta}\) is a canonical bijection given by
\[\tilde{w}_2(A, B, C) := 4(x_A - x_B)(x_B - x_C)(x_C - x_A). \]

Remark 4.6. Let the notation be as in Corollary 4.5. Then, we see that
\[\tilde{w}_4(-P, Q, R) = -\tilde{w}_4(P, Q, R) \]
\[\tilde{w}_4(P', Q, R) = \tilde{w}_4(P, Q, R) \]
for \((P, Q, R) \in S_4(E[4])\). We also have the analogous properties for \(Q\) and \(R\).

Suppose that we are given two Weierstrass equations defining \(E\) with co-ordinates \((x, y)\) and \((x', y')\). Denote the above maps by \(w_4\) and \(w_4'\), and their discriminants by \(\Delta_4\) and \(\Delta'_4\), respectively.

Lemma 4.7. We have \(\tilde{w}_4 = u^3 \tilde{w}_4'\).

Proof. This is obvious from Remark 2.5 (2). \(\square\)

Lemma 4.7 and \(u^{12} \Delta' = \Delta\) give the following commutative diagram:

\[
\begin{array}{ccc}
S_4(E[4]) & \xrightarrow{\tilde{w}_4} & \mu_4 \sqrt[4]{\Delta} \\
& \downarrow u^3 \times & \\
& \mu_4 \sqrt[4]{\Delta} \\
\end{array}
\]

By the same reason explained at the end of the last subsection, we identify \(\tilde{w}_4\) and \(\tilde{w}_4'\), and we consider them as a map from \(S_4(E[4])\) to the \(\mu_4\)-torsor \(\mu_4 \sqrt[4]{\Delta_E}\). Denote this map simply by \(\tilde{w}_4\).

Lemma 4.8. The map \(\tilde{w}_4 : S_4(E[4]) \to \mu_4 \sqrt[4]{\Delta_E}\) factors through the quotient \(T_4(E[4])\).
Proof. We use the notation in Subsection 3.3 and Corollary 4.5. It is obvious that \(\tilde{w}_4 \) is invariant under the action of \(\mathfrak{S}_3 \). We claim that for each \((P, Q, R) \in S_4(E[4])\) we have

\[
\tilde{w}_4([\sigma](P, Q, R)) = \begin{cases}
-\tilde{w}_4(P, Q, R) & \text{(if } \sigma \in \mathfrak{S}_3 \text{ is even)} \\
\tilde{w}_4(P, Q, R) & \text{(if } \sigma \in \mathfrak{S}_3 \text{ is odd)}.
\end{cases}
\] (4.13)

Since every \([\sigma]\) for even (resp. odd) \(\sigma\) is conjugate to \([id]\) (resp. to \([(12)]\) by an element in \(\mathfrak{A}_3 \subset \text{Aut}(S(E[4]))\), it is enough to check the claim for \([id]\) and \([(12)]\). In these cases, we see that

\[
\tilde{w}_4([id](P, Q, R)) = \tilde{w}_4(P, -Q', R) = -\tilde{w}_4(P, Q, R) \\
\tilde{w}_4([(12)](P, Q, R)) = \tilde{w}_4(P', Q, R) = \tilde{w}_4(P, Q, R)
\]

by Remark 4.6.

Lemma 4.8 gives us a map

\[
w_4 : T_4(E[4]) \longrightarrow \mu_4 \sqrt[4]{\Delta_E} \\
[P, Q, R] \mapsto \tilde{w}_4(P, Q, R)
\]

induced from \(\tilde{w}_4\), which is \(G_K\)-equivariant as in the case \(n = 3\).

Remark 4.9. The commutative diagram in Corollary 4.5 induces a commutative diagram

\[
\begin{array}{ccc}
T_4(E[4]) & \xrightarrow{w_4} & \mu_4 \sqrt[4]{\Delta} \\
\downarrow \pi & & \downarrow \text{squaring} \\
T_2(E[2]) & \xrightarrow{w_2} & \pm \sqrt[2]{\Delta}
\end{array}
\]

of \(G_K\)-sets. Here, \(w_2\) is the map induced from \(\tilde{w}_2\). By Remark 4.6 \(w_4\) is compatible with \(pr_2 : G/H \rightarrow \{\pm 1\}\).

Corollary 4.10. The map \(w_4 : T_4(E[4]) \rightarrow \mu_4 \sqrt[4]{\Delta_E}\) is bijective.

Proof. Fix an element \(X \in T_4(E[4])\). Since \(w_4\) is compatible with \(pr_2 : G/H \rightarrow \{\pm 1\}\),

\[
w_4(T_4(E[4])) = w_4((G/H) \cdot X) = \{\pm w_4(X), \pm w(\sigma X)\}
\]

for any odd permutation \(\sigma \in \mathfrak{S}_3\). The commutativity of the diagram in Remark 4.11 shows that \(\pm w_4(X)\) and \(\pm w(\sigma X)\) belong to distinct fibers of the squaring map \(\mu_4 \sqrt[4]{\Delta} \rightarrow \pm \sqrt[4]{\Delta}\). Thus, we obtain \(#w_4(T_4(E[4])) = 4\) and hence \(w_4\) is bijective.

Remark 4.11. For the same reason as in Remark 4.3 we can define \(T_4(E[4])\) and \(w_4\) for an elliptic curve over a scheme on which \(4\) is invertible.

16
4.3 The Tate curve case

Let $E = E_q$ be the Tate curve over the field $K = \mathbb{Q}((q))$ of Laurent series. By Theorem [2.9] (1), $E[n]$ is canonically an extension of $\mathbb{Z}/(n)$ in the category of G_K-modules:

$$0 \to \mu_n \to E[n] \to \mathbb{Z}/(n) \to 0.$$

For this extension, we use the notations and results in Subsection 3.3 by setting $V = E[n]$. In our Tate curve case, we identify

$$L = \mu_n,$$

$$T = \mu_n \sqrt[2]{q},$$

$$\epsilon = e_n^{-1} : L \xrightarrow{\sim} \bigwedge^2 E[n],$$

the last equality of which is due to Remark [2.10].

Note that the action of G_K on $E[n]$ gives rise to an isomorphism

$$g : \text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n)) \xrightarrow{\sim} M.$$

We also remark that the composite map $f \circ g : \text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n)) \xrightarrow{\sim} M \xrightarrow{\sim} L = \mu_n$ is the Kummer character h_1 mapping $\sigma \in \text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n))$ to $\sigma(\sqrt[2]{q})/\sqrt[2]{q}$.

Proposition 4.12. The composition $w_n \circ \tau : T \to \mu_n \sqrt[2]{\Delta_E}$ is an isomorphism of $L = \mu_n$-torsors over K.

Proof. It is obvious from the constructions that $w_n \circ \tau$ is G_K-equivariant. We show that it is also μ_n-equivariant. By definition, the action of L on T is identified with the action of M on T via the isomorphism $\tilde{\phi} : L \xrightarrow{\sim} M$, which is also identified with the action of $\text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n))$ on T via $g : \text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n)) \xrightarrow{\sim} M$. On the other hand, the action of G_K on $\mu_n \sqrt[2]{\Delta}$ induces an action of $\text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n))$ on $\mu_n \sqrt[2]{\Delta}$, which is identified with a canonical action of μ_n on $\mu_n \sqrt[2]{\Delta}$ via the Kummer character $h_2 : \text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n)) \xrightarrow{\sim} \mu_n$ mapping σ to $\sigma(\sqrt[2]{\Delta})/\sqrt[2]{\Delta}$. Since $w_n \circ \tau$ is G_K-equivariant, it is also $\text{Gal}(K(\mu_n, \sqrt[2]{q})/K(\mu_n))$-equivariant. These arguments imply that the map $w_n \circ \tau : T \to \mu_n \sqrt[2]{\Delta_E}$ is compatible with $h_2 \circ (f \circ g)^{-1} = h_2 \circ h_1^{-1} : L \to \mu_n$, which is the identity map since $\sqrt[2]{\Delta}/\sqrt[2]{q} \in K(\mu_n)^\times$ by (2.3). Therefore, $w_n \circ \tau$ is $L = \mu_n$-equivariant. \(\square \)

Corollary 4.13. The map w_n is compatible with the normalized Weil pairing ϵ_n.

Proof. This immediately follows from Corollary [3.14] (2) (3), Proposition [4.12] and $\epsilon_n = \epsilon^{-1}$. \(\square \)

Next we consider the following canonical isomorphism

$$\delta : T \to \mu_n \sqrt[2]{\Delta_E}$$

$$z \mapsto z \prod_{m \geq 1} (1 - q^m)^{2q/n}$$

of $L = \mu_n$-torsors over K.

17
Proposition 4.14. We have $w_4 \circ \tau = \delta$.

Proof. By Proposition 4.12, the composite map $\sigma := (w_n \circ \tau) \circ \delta^{-1}$ is an automorphism of the μ_n-torsor $\mu_n \sqrt{\Delta_E}$ over K, and hence σ belongs to $\mu_n(K) \subset \text{Aut}(\mu_n \sqrt{\Delta_E})$. Because $\mu_n(K) = \{1\}, \{\pm 1\}$ for $n = 3, 4$ respectively, the assertion for $n = 3$ is proved, but there remains a possibility of $w_4 \circ \tau = -\delta$.

To determine the sign of σ for $n = 4$, we check that the first coefficient of $w_4(\tau(z))$, which belongs to $\mathbb{Q}(i)((z))$, coincides with that of $\delta(z) = z \prod_{m>1}(1-\varphi^m)^6$; that is, τ. Note that, if $(P, Q, R) = \tau(z) = (z, i(z)^{-1})$ and if P', Q', R' are as in Corollary 4.13 then we obtain $(P', Q', R') = (-z, -iz^2, -iz)$.

Change variables of E as

$$X = x \quad \text{and} \quad Y = y + \frac{1}{2}x$$

to make the Weierstrass equation of E into the form

$$Y^2 = X^3 + A_2X^2 + A_4X + A_6.$$

Then, it follows from Theorem 2.9 that

$$K^x/\mathbb{Q} \xrightarrow{\sim} \left\{ \text{\bar{K}-valued points on } y^2 + xy = x^3 + a_4x + a_6 \right\} \xrightarrow{\sim} \left\{ \text{\bar{K}-valued points on } Y^2 = X^3 + A_2X^2 + A_4X + A_6 \right\}$$

with

$$u \quad \mapsto \quad (x(u, q), y(u, q)) \quad \mapsto \quad (x(u, q), y(u, q) + \frac{1}{2}x(u, q))$$

We have

$$x(u) := x(u, z^4) = f(u) + \sum_{n \geq 1} \frac{z^{4n}u}{(1 - z^{4n}u)^2} + \frac{z^{4n}u^{-1}}{(1 - z^{4n}u^{-1})^2} - 2z^{4n}u \quad \text{mod } z^3,$$

where $f(u) = \frac{u}{(1 - u)} \equiv u + 2u^2 \quad \text{mod } z^3$. Also, set

$$Y(u) := y(u, z^4) + \frac{1}{2}x(u, z^4) = \frac{1}{2} \sum_{n \in \mathbb{Z}} \frac{z^{4n}u(1 + z^{4n}u)}{(1 - z^{4n}u)^2} - 1 \left(\frac{1}{z^{4n}u^{-1} - 1} \right)^3 - \frac{z^{4n}u(1 + z^{4n}u)}{(1 - z^{4n}u)^3},$$

where $g(u) = u(1 + u)/2(1 - u)^3 \equiv \frac{1}{2}u + 2u^2 \quad \text{mod } z^3$. Note that the second term of $x(u)$ and $Y(u)$ is congruent to 0 (mod z^3) whenever the degree of $u \in \mathbb{Q}(i)((z))$ in z is of 0, ±1, ±2, and that $f(u) = f(u^{-1})$ and $g(u) = -g(u^{-1})$. Then, the computation goes as follows:

$$w_4([z, i, iz]) = 2 \frac{Y(z) - Y(-z)}{x(z) - x(-z)} \cdot \frac{Y(i) - Y(-iz^2)}{x(i) - x(-iz^2)} \cdot \frac{Y(i(z^{-1}) - Y(-iz)}{x((iz)^{-1}) - x(-iz)}$$

$$\equiv 2 \left(\frac{g(z) - g(-z)}{f(z) - f(-z)} \cdot \frac{g(i) - g(-iz^2)}{f(i) - f(-iz^2)} \cdot \frac{g((iz)^{-1}) - g(-iz)}{f((iz)^{-1}) - f(-iz)} \right) \quad \text{mod } z^3. \quad (4.14)$$

For each factor in the right hand side of (4.14), we see that

$$\frac{g(z) - g(-z)}{f(z) - f(-z)} \equiv \frac{z}{2z} \quad \text{mod } z^2$$

$$\equiv \frac{1}{2} \quad \text{mod } z^2,$$
\[
g(i) - g(-iz^2) \equiv g(i) \pmod{z^2}
\]
\[
f(i) - f(-iz^2) \equiv \frac{i}{2} \pmod{z^2},
\]
and
\[
g((iz)^{-1}) - g(-iz) = -g(iz) - g(-iz)
\]
\[
f((iz)^{-1}) - f(-iz) \equiv \frac{2z}{i} \pmod{z^2}.
\]
Therefore,
\[
w_4([z, i, (iz)^{-1}]) \equiv 2 \cdot \frac{1}{2} \cdot \frac{i}{2} \cdot \frac{2z}{i} \pmod{z^2}
\]
\[
\equiv z \pmod{z^2}.
\]
Therefore, we have \(w_4([z, i, (iz)^{-1}]) = z \prod_{m \geq 1}(1 - q^m)^6\).

5 The main theorem

Combining the results of the previous two sections, we now state our main theorem. In the following statement, we consider \(T_n(E[n])\) as a \(\mu_n\)-torsor via the action of \(\bigwedge^2 V\) on \(T_n(E[n])\) by the identification \(e_n : \bigwedge^2 V \cong \mu_n\) with \(e_n\) the normalized Weil pairing.

Theorem 5.1. Let \(n\) be 3 or 4.

1. The family of maps

\[
(w_n : T_n(E[n]) \longrightarrow \mu_n \sqrt{\Delta_E})_{E/S}
\]

defined in Section 3 with \(E\) an elliptic curve over a scheme \(S\) on which \(n\) is invertible satisfies the following properties:

(a) Each map \(w_n\) is an isomorphism of \(\mu_n\)-torsors over \(S\).

(b) The maps \(w_n\)'s are compatible with arbitrary base change.

(c) If \(E = E_q\) is the Tate curve over \(K = \mathbb{Q}((q))\), then the map \(w_n\) coincides with \(\delta \circ \tau^{-1}\).

(2) If \(n = 3\), then there exists a unique family of maps \((T_3(E[3]) \cong \mu_3 \sqrt{\Delta_E})_{E/S}\) satisfying (a) and (b) with \(E\) an elliptic curve over a scheme \(S\) with 3 invertible. Hence it coincides with \((w_3 : T_3(E[3]) \rightarrow \mu_3 \sqrt{\Delta_E})_{E/S}\) and automatically satisfies the property (c).

(3) If \(n = 4\), then \((w_4)_{E/S}\) and \((-w_4)_{E/S}\) are the only families of maps \(T_n(E[4]) \rightarrow \mu_4 \sqrt{\Delta_E}\) satisfying (a) and (b) with \(E\) an elliptic curve over a scheme \(S\) with 4 invertible. Also, \((w_4)_{E/S}\) is the only family which satisfies the properties (a), (b), and (c).

Proof. (1) Since (b) is obvious from our construction of \(w_n\) and (c) follows from Proposition 4.14, we have only to show (a) for \(w_n\). To do this, we may assume that \(E[n]\) (and hence \(\mu_n\)) is constant over \(S\). Let \(e_n\) be the conjugation

\[
\text{Aut}(T_n(E[n])) \cong \text{Aut}(\mu_n \sqrt{\Delta_E})
\]
by \(w_n \). We consider \(\Lambda^2 E[n] \) as a subgroup of \(\text{Aut}(T_n(E[12])) \) by (3.1) and (3.3). We also consider \(\mu_n \) as a subgroup of \(\text{Aut}(\mu_n \sqrt{\Delta_E}) \) by the canonical action of \(\mu_n \) on \(\mu_n \sqrt{\Delta_E} \). For the proof, we first show the following lemma:

Lemma 5.2. (1) The restriction of the map \(c_n \) to \(\Lambda^2 E[n] \) induces an isomorphism \(c'_n : \Lambda^2 E[n] \to \mu_n \).

(2) The isomorphism \(c'_n : \Lambda^2 E[n] \to \mu_n \) is the unique map with which \(w_n \) is compatible.

Proof. (1) If \(n = 3 \), then the claim follows from the fact that \(\text{Aut}(T_3(E[3])) \cong \text{Aut}(\mu_3 \sqrt{\Delta_E}) \cong \mathfrak{S}_3 \) has the unique subgroup of order 3; the alternating group.

If \(n = 4 \), by Proposition 3.10, we have \(\Lambda^2 E[4] = C(-1) \subset \text{Aut}(T_4(E[4])) \) and \(\mu_4 = C(-1) \subset \text{Aut}(\mu_4 \sqrt{\Delta_E}) \). Thus, it suffices to check that \(c_4 \) maps \(-1 \in \text{Aut}(T_4(E[4]))\) to \(-1 \in \text{Aut}(\mu_4 \sqrt{\Delta_E})\); that is, \(w_4(-X) = -w_4(X) \) for \(X \in T_4(E[4]) \). This follows from Remark 4.6.

(2) The compatibility is obvious from the definition, and the uniqueness follows because \(\mu_n \to \text{Aut}(\mu_n \sqrt{\Delta_E}) \) is injective.

We continue the proof of the theorem. To show the claim (1), we check that \(e_n = e'_n \).

Denote \(A := \Gamma(Y(n), O) \) and let \((E_0/A, (P_0, Q_0)) \) be the universal object of \(\mathcal{M}(n) \) (see Theorem 2.4). Then the point \(e'_n(P_0 \land Q_0) \in \mu_n(A) \) defines a morphism \(Y(n) \to \mu_n = \text{Spec}[X, 1/n](X^n - 1) \) of schemes over \(\mathbb{Z}[1/n] \), which we also denote by \(e'_n \). This morphism satisfies the following property: If \(E_0 \) is a field and \(x = (E_0/K, (P, Q)) \in Y(n)(K), \) then \(e'_n(x) = e'_n(P \land Q) \). In the same way, the point \(e_n(P_0 \land Q_0) \in \mu_n(A) \) also defines a morphism \(e_n : Y(n) \to \mu_n \) of schemes over \(\mathbb{Z}[1/n] \), which satisfies \(e_n(x) = e_n(P \land Q) \) for any \(x \) as above.

Since \(Y(n) \) is connected by Theorem 2.6, the morphism \(e_n/e'_n : Y(n) \to \mu_n \) factors through a connected component \(U \) of the scheme \(\mu_n \) over \(\mathbb{Z}[1/n] \).

Corollary 1.13 and Lemma 5.2 (2) imply that \(c_n/e'_n(E_{2^m}, (\zeta_n, z)) = 1 \) for the Tate curve \(E_{2^m}/\mathbb{Q}(\zeta_n)((z)) \). Therefore, \(U \) must be the connected component \(\mu_1 = \text{Spec}[X, 1/n]/(X - 1) \) of \(\mu_n \). This completes the proof of (1).

(2), (3) Suppose that we are given two maps \(W_i : T_n(E[12]) \to \mu_n \sqrt{\Delta_E} \) for each elliptic curve \(E/S \) which satisfy the condition (a) and (b) in the theorem. Then \(W_1/W_2 \) defines a morphism \(W : \mathcal{M} \to \mu_n \) of functors \(\text{Sch}/\mathbb{Z}[1/n] \to \text{Sets} \), where \(\mathcal{M} \) is the functor defined in Theorem 2.6 (1). By Theorem 2.6 (1), there exists a unique morphism \(W' : \mathbb{A}^1_{\mathbb{Z}[1/n]} \to \mu_n \) of schemes over \(\mathbb{Z}[1/n] \) satisfying \(W' \circ j = W : \mathcal{M} \to \mu_n \), where \(j : \mathcal{M} \to \mathbb{A}^1_{\mathbb{Z}[1/n]} \) is given by taking the \(j \) invariant. The morphism \(W' \) corresponds to an element of \(\mu_n(\mathbb{Z}[1/n], j) = 1, \{ \pm 1 \} \) for \(n = 3, 4 \), respectively. This proves the assertions.

Remark 5.3. When \(\text{char}(k) \nmid 12 \), we define \(T_{12}(E[12]) = T_3(E[3]) \times T_4(E[4]). \) Then, \(T_{12}(E[12]) \) admits an action of \(\Lambda^2 E[12] \cong \Lambda^2 E[3] \times \Lambda^2 E[4] \), and Theorem 5.1 for \(n = 3, 4 \) immediately gives the analogous result for \(n = 12 \).
6 An isogeny of an elliptic curve and the 12-th roots of its discriminant

The following corollary gives a variant of a Coates’ result [2, appendix]. The original result assumed that the characteristic of the base field is 0.

Corollary 6.1. Let E and E' be elliptic curves over a field K of characteristic $\text{char}(K) \neq 2, 3$, and $\varphi : E \to E'$ be an isogeny over K. If $d = \deg \varphi$ is prime to 12, then we have $\Delta_E = (\Delta_{E'})^d$ in $K^\times/(K^\times)^{12}$.

Proof. By Theorem 5.1, we have the following commutative diagram:

$$
\begin{array}{ccc}
\mu_{12} \times \mu_{12} \sqrt[12]{\Delta_E} & \longrightarrow & \mu_{12} \sqrt[12]{\Delta_E} \\
\downarrow e_{12} \times w_{12} & & \downarrow w_{12} \\
\wedge^2 E[12] \times T(E[12]) & \longrightarrow & T(E[12]) \\
\downarrow \wedge^2 \varphi \times T \varphi & & \downarrow T \varphi \\
\wedge^2 E'[12] \times T(E'[12]) & \longrightarrow & T(E'[12]) \\
\downarrow e_{12} \times w_{12}' & & \downarrow w_{12}' \\
\mu_{12} \times \mu_{12} \sqrt[12]{\Delta_{E'}} & \longrightarrow & \mu_{12} \sqrt[12]{\Delta_{E'}} \\
\downarrow (\cdot)^{12} \times (\cdot)^{12} & & \downarrow (\cdot)^{12} \\
\mu_{12} \times \mu_{12} \sqrt[12]{\Delta_{E'}} & \longrightarrow & \mu_{12} \sqrt[12]{\Delta_{E'}}.
\end{array}
$$

Here, $(\cdot)^{12}$ denotes the 12-th power map, and the horizontal maps are the action map. Also, the vertical maps in the above diagram are all bijective and G_K-equivariant. Since $e_{12} \circ \wedge^2 \varphi \circ e_{12}^{-1} = (\cdot)^d : \mu_{12} \to \mu_{12}$ (for example, see [8, III, Proposition 8.2]) and $d^2 \equiv 1 \pmod{12}$, the outside rectangle in the above diagram becomes

$$
\begin{array}{ccc}
\mu_{12} \times \mu_{12} \sqrt[12]{\Delta_E} & \longrightarrow & \mu_{12} \sqrt[12]{\Delta_E} \\
\downarrow \sigma \times 1 & & \downarrow (\cdot)^{12} \circ w_{12} \circ T \varphi \circ w_{12}^{-1} \\
\mu_{12} \times \mu_{12} \sqrt[12]{\Delta_{E'}} & \longrightarrow & \mu_{12} \sqrt[12]{\Delta_{E'}}.
\end{array}
$$

This implies that $\mu_{12} \sqrt[12]{\Delta_E}$ and $\mu_{12} \sqrt[12]{\Delta_{E'}}$ are isomorphic as μ_{12}-torsors over K. Hence the assertion holds. \qed

References

[1] P.Deligne, M.Rapoport, Les schemas de modules de courbes elliptiques, Modular functions of one variables, II (Proc Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 143-316. Lecture Notes in Math., Vol.349, Springer, Berlin, 1973.

[2] J.Coates, Elliptic curves with complex multiplication and Iwasawa theory, Bulletin of the LMS 23(1991) 321-350.
[3] N. Katz, B. Mazur, Arithmetic Moduli of Elliptic Curves, Annals of Math. studies, Princeton Univ. Press 151 (1994).

[4] S. Lang, H. Trotter, Frobenius Distributions in \(GL_2 \)-Extensions, Lecture Notes in Math. 504 (Springer-Verlag, 1976).

[5] T. Saito, Fermat’s Last Theorem (in Japanese), Iwanami-shoten (2009).

[6] J.-P. Serre, Abelian \(\ell \)-adic representations and Elliptic curves, Benjamin (1968).

[7] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math., 15(1972), 259-331.

[8] J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math., Springer (1986), 106.