Active transportation to school in Canadian youth: should injury be a concern?

Kathleen Gropp,1 Ian Janssen,1,2 William Pickett1,3

ABSTRACT
Active transportation to school provides a means for youth to incorporate physical activity into their daily routines, and this has obvious benefits for child health. Studies of active transportation have rarely focused on the negative health effects in terms of injury. This cross-sectional study is based on the 2009/10 Canadian Health Behaviour in School-Aged Children survey. A sample of children aged 11–15 years (n=20,076) was studied. Multi-level logistic regression was used to examine associations between walking or bicycling to school and related injury. Regular active transportation to school at larger distances (approximately >1.6 km; 1.0 miles) was associated with higher relative odds of active transportation injury (OR: 1.52; 95% CI 1.08 to 2.15), with a suggestion of a dose–response relationship between longer travel distances and injury (p=0.02). Physical activity interventions for youth should encourage participation in active transportation to school, while also recognising the potential for unintentional injury.

Active transportation is the engagement in physical activity specifically for travel and includes activities such as walking and bicycling.1 This mode of transportation provides the means by which children and youth can incorporate physical activity into their daily routines. Indeed, children and youth who walk or bicycle to school have higher overall levels of physical activity, better cardiorespiratory fitness levels and a healthier body composition.2–4 Studies of active transportation in youth have focused on its positive contributions to the maintenance of a healthy body weight and overall physical activity (for a recent synopsis, see Lee et al);4 however, negative effects of active transportation are also possible. One concern is the occurrence of unintentional injury. Injury is the leading cause of death in Canadian children, accounting for more deaths than all other causes combined.3 Negative side effects of active transportation to school have not been thoroughly examined in populations of young people.

The objective of this brief report was therefore to evaluate regular active transportation to school and its effects on injury in a large and contemporary national sample of Canadian youth. No a priori hypotheses were assumed. The study base was the 2009/10 Health Behaviour in School-Aged Children study.

METHODS
Overview of study design and measures
Health Behaviour in School-Aged Children is a general health survey of preadolescent and adolescent children conducted in affiliation with WHO.5 In Canada, Cycle 6 of this survey (2009/10) involved administration of both student- (n=26,078) and school-level administrator (n=436) questionnaires. We combined these data with environmental measures describing school neighbourhoods that were obtained using geographic information systems.

Participants
The survey involved a systematic multi-stage cluster sample design that involved students and schools from 11 of 13 Canadian territories and provinces.6 The sample available for the current analysis was 19,576 students with complete data (weighted sample 20076) from 419 schools. Implicit or explicit consent to participate was obtained from school boards, individual schools, parents/guardians and students, as per local jurisdictional requirements. The study protocol was approved by the General Research Ethics Board of Queen’s University (study approval number: GEDUC-450-09).

Key measures
Based upon a standard self-report module, reports of active transportation injuries were identified for all participants for a 12-month period prior to survey administration.6 Injuries that required medical attention and which occurred: (1) in the ‘street/road/parking lot’ or while (2) ‘biking/cycling’ or ‘walking/running (not for a sports team or exercise)’ were operationally defined as active transportation injuries.

Three levels of active transportation to school were identified: (1) youth who did not regularly engage in active transportation; (2) youth who regularly engaged and lived near their school; and (3) youth who regularly engaged but lived far from school. Participants who reported that their usual mode of transportation to school was ‘bus, train, streetcar, subway, or boat/ferry’ or ‘car, motorcycle, or moped’ were placed in category 1. Students who reported regular active transportation (by walking or bicycling) with travel times either <5 min for cycling or <15 min for walking were placed in category 2. Those reporting greater lengths of time for walking or bicycling were placed in category 3. Participants who answered ‘other’ were excluded.

Both individual- and area-level variables were considered as potential confounders. Potential individual-level confounders were gender, age, ethnicity, perceived family socioeconomic status, perceived residential neighbourhood safety and participation in organised sports. Potential area-level confounders describing the school neighbourhood were: urban/rural geographic status, average...
precipitation levels as reported by Environment Canada, summary measures of total road lengths, street or road connectivity, speed limits in the 1 km buffer surrounding each school, and Canada Census of Population estimates of median household incomes for 2006 (PCensus for MapPoint; Tetrad Computer Applications Inc., Vancouver, BC, Canada).

Analysis
Statistical analyses were performed using SAS V9.2 (SAS Inc.). An initial descriptive analysis was used to characterise the study sample using proportions and measures of central tendency. Modelling was then performed. Examination of the clustered and nested structure of the data revealed an intraclass correlation of 2.6% (0.026) at the school-level. We therefore modelled effects at individual- and school-levels while accounting for this clustering. Multi-level logistic regression modelling was used with random intercepts permitted for each school. Standardised weights (mean=1.00) were calculated and applied to account for the fact that children from different provinces and territories, school board types, languages of instruction, and urban/rural geographic status had different probabilities of entering the sample.

Following bivariate analyses, multi-level models were built as follows: (1) the active transportation variable and all individual-level factors were entered as risk factors (Multivariate Model 1); (2) backwards selection methods were performed using a change in estimate of >10% for retention of individual-level variables; then area-level variables were added to the retained individual-level factors (Multivariate Model 2); and (3) backwards selection was reperformed for the final model, using the same change-in-estimate approach (Multivariate Model 3). Conservatively, any covariate whose removal from the model caused a change in the estimate greater than 10% or was statistically significant (p<0.05) was retained in Model 3. Finally, the modelling process was repeated for two specific active transportation injury outcomes: (1) walking or running injuries and (2) cycling injuries. A priori, the study was powered to identify an OR of 1.2 with >80% power (α=0.05) for the main analysis.

RESULTS
A weighted sample of 20 076 students from 419 schools with complete data was available for analysis. About a third (33.6%) of the sample engaged in active transportation to school and 357 (1.8% of the sample) incurred an active transportation injury (table 1). Of these injuries, 68.9% occurred while cycling, 31.1% occurred while walking or running, 45.1% required medical treatment (eg, placement of a cast or stitches) and 40.6% caused the participant to miss at least 1 day of school or usual extra-curricular activities. Approximately one injury was reported for every 2900 h of exposure to active transportation.

Table 1 Description of sample demographics, engagement in active transportation and the occurrence of active transportation injuries (N=20 076)

Demographic characteristics	Weighted N	% Engaged in active transportation	p Value
Gender			
Male	9531	36.4	<0.0001
Female	10 545	31.0	
Age			
11–13	11 671	39.1	<0.0001
14–15	8405	27.2	
Ethnicity			
White only	14 315	31.1	
White and other	974	36.6	0.95
Aboriginal	1120	38.5	0.22
Other	3667	40.8	0.004
Family socioeconomic status			
Well-off	11 490	32.5	<0.0001
Average	6771	34.1	
Not well-off	1815	38.0	

Active transportation injuries	N	% of population	% of active transportation injuries
Total injuries	357	1.8	
Gender			
Male	183	1.9	
Female	174	1.7	
Age group			
11–12	234	2.0	
13–15	123	1.5	
Activity at time of injury			
Walking/running	111	31.1	
Cycling	246	68.9	
Required medical treatment	161	45.1	
Loss of 1+ days of activity	145	40.6	

DISCUSSION
The most important finding from this study was that as young people engaged in active transportation for longer distances, their risks for active transportation injury increased irrespective of their mode of active transportation.

Many health promotion interventions aim to increase participation in active transportation to school due to its inherent benefits to health. However, these same interventions do not necessarily consider the negative outcomes of active transportation to school such as injury. Our findings therefore contribute to a more comprehensive understanding of this public health issue and associated health promotion messages.

This analysis has limitations. It is difficult to establish temporality in our observed effects due to the cross-sectional design. Our use of self-reported measures of injury and active transportation may have contributed to non-differential misclassification leading to bias of the ORs towards no effect. For example, it is quite possible that some of the events that were classified as active transportation injuries were actually recreational. Our lack of detailed information about some relevant contextual factors (eg, bicycle helmet laws, cycling infrastructure, pedestrian guards and crossings) are a further limitation, and the analysis also does not account for the timing of injuries and whether they were experienced outside of school commuting times. Finally, there is the possibility of selection bias due to differences in the weights applied to account for the clustering of the study data.
Injury Prevention 2013;19:64–67. doi:10.1136/injuryprev-2012-040335

What is already known on the subject

► Engagement in active transportation to school represents one possible strategy of promoting physical activity in groups of young people.
► While the positive effects of active transportation are obvious, possible negative effects of such practices in terms of unintentional injury have rarely been examined.

What this study adds

► This national study of young people from across Canada aimed to understand the effects of engagement in active transportation to school on the risks for related injury.
► Modest increases in risk for active transportation injury were evident, rising in accordance to distance travelled to school.
► Injury does represent one possible negative consequence of what in general is a positive behaviour for the health of young people.

Table 2 Results of multi-level logistic regression analysis examining potential risks for active transportation injury associated with engagement in active transportation to school (N=20 076)

Injury type: active transportation level	N	% Injured	Bivariate model, OR (95% CI)	Model 1*, OR (95% CI)	Model 2‡, OR (95% CI)	Model 3§, OR (95% CI)
Active transportation injuries						
No	13 488	1.5	1.00	1.00	1.00	1.00
Yes: short distance	5049	2.1	1.17 (0.92 to 1.50)	1.13 (0.88 to 1.45)	1.12 (0.87 to 1.44)	1.13 (0.88 to 1.44)
Yes: long distance	1539	2.7	1.56 (1.10 to 2.21)	1.53 (1.08 to 2.17)	1.55 (1.09 to 2.20)	1.52 (1.08 to 2.15)
Walking/running injuries						
No	13 488	0.4	1.00	1.00	1.00	1.00
Yes: short distance	5049	0.8	1.54 (1.01 to 2.35)	1.59 (1.04 to 2.44)	1.52 (0.99 to 2.34)	1.49 (0.98 to 2.29)
Yes: long distance	1539	0.8	1.47 (0.78 to 2.70)	1.52 (0.80 to 2.88)	1.44 (0.76 to 2.73)	1.43 (0.78 to 2.70)
Bicycling injuries						
No	13 488	1.1	1.00	1.00	1.00	1.00
Yes: short distance	5049	1.3	1.02 (0.76 to 1.39)	0.95 (0.70 to 1.29)	0.95 (0.70 to 1.31)	0.98 (0.72 to 1.33)
Yes: long distance	1539	1.9	1.59 (1.05 to 2.40)	1.49 (0.98 to 2.25)	1.59 (1.05 to 2.41)	1.55 (1.03 to 2.35)

*Adjusted for individual-level variables (gender, age, ethnicity, family socioeconomic status, perceived neighbourhood safety and participation in organised sport).
‡Adjusted for retained individual-level variables (age) and area-level variables (urban/rural geographic status, street connectivity, speed limit surrounding school, % roads with speed limit ≤60 km/h, total length of roads, school neighbourhood median family income, total rain and total snow).
§Adjusted for retained individual (age) and area-level (urban/rural geographic status) variables.

CONCLUSION

The relationship between active transportation to school and active transportation injury was examined in a nationally representative sample of Canadian youth using multi-level analytical methods. We found a dose–response relationship between active transportation to school and active transportation injury across increasing travel distances. We suggest that new and existing interventions promoting active transportation to school should further incorporate injury control strategies in order to continue encouraging physical activity in the safest possible manner.

Acknowledgements The authors would like to thank Andrei Rosu for the coordination of geographic information systems data collection. The principal investigators of the 2010 Canadian Health Behaviour in School-Aged Children study were William Pickett and John Freeman, and Matthew King was the national coordinator. The Health Behaviour in School-Aged Children study is coordinated internationally by Candace Currie (University of St. Andrews). Each of the authors contributed to the conception of the study, its design, the analysis and interpretation of the data. KG drafted the article, with extensive critical revisions for intellectual content provided by WP and IJ. WP and IJ participated in the acquisition of the data. All authors have provided the final approval of the manuscript for publication. Each of the authors has met the listed criteria for authorship.

Funding HBSC is a WHO/European Region collaborative study and was funded in Canada by the Public Health Agency of Canada and Health Canada (Contract: 4500267124). This particular analysis was funded by an operating grant from the
Canadian Institutes of Health Research (MOP 97962), and a second operating grant cofunded by the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada (FCR 101415). KG was supported by the Empire Life Fellowship and the Ontario Neurotrauma Foundation. IJ was supported by a tier 2 Canada research chair.

Competing interests None.

Ethics approval Ethics approval was provided by the General Research Ethics Board, Queen’s University and Health Sciences REB, Queen’s University.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement All data from this study are available from the authors upon request.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES
1. Sallis JF, Frank LD, Saelens BE, et al. Active transportation and physical activity: opportunities for collaboration on transportation and public health research. Transport Res A-Pol 2004;38:249–88.
2. Dollman J, Lewis NR. Active transport to school as part of a broader habit of walking and cycling among South Australian youth. Pediatr Exerc Sci 2007;19:436–43.
3. Lubans DR, Boreham CA, Kelly P, et al. The relationship between active travel to school and health-related fitness in children and adolescents: a systematic review. Int J Behav Nutr Phys Act 2011; http://www.ijbnpa.org/content/8/1/5 (accessed 22 Dec 2011).
4. Lee MC, Orenstein MR, Richardson MJ. Systematic review of active commuting to school and children’s physical activity and weight. J Phys Act Health 2006;5:920–49.
5. Health Protection Branch, Health Canada. Canadian Injury Data. Ottawa, ON: Health Canada, 1999.11. http://publications.gc.ca/collections/Collections/H47-71-199E.pdf (accessed 22 Dec 2011).
6. Griebler R, Molitch M, Samdal O, et al. Health Behaviour in School-Aged Children (HBSC) Study Protocol: Background, Methodology and Mandatory Items for the 2009/10 Survey. Edinburgh: Child and Adolescent Health Research Unit; Vienna: Ludwig Boltzmann Institute of Health Promotion Research, 2010.
7. Meckredy G, Janssen I, Pickett W. Neighbourhood street connectivity and injury in youth: a national study of built environments in Canada. Inj Prev 2012;18:81–7.
8. Snijders TAB, Bosker RJ. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling. London: SAGE Publications, 1999:224–5.
9. Greenland S, Rothman KJ. Introduction to categorical statistics. In: Rothman KJ, Greenland S, Lash T, eds. Modern Epidemiology. 3rd edn. Philadelphia PA: Lippincott, Williams, and Wilkins, 2008:261–3.
10. Webb P, Bain C, Frazzo S. Essential Epidemiology: An Introduction for Students and Health Professionals. Cambridge, UK: Cambridge University Press, 2005:108.
11. Chilton P, Everson KR, Vaughn A, et al. A systematic review of interventions for promoting active transportation to school. Int J Behav Nutr Phys Act 2011; http://www.ijbnpa.org/content/8/1/5 (accessed 22 Dec 2011).
12. Pedestrian and Bicycle Information Center. Starting a Walking School Bus. 2005. http://www.walkingschoolbus.org (accessed 22 Dec 2011).
13. Boreham MG, Anderson CL, Day K, et al. Evaluation of the California Safe Routes to School Legislation: urban form changes and children’s active transportation to school. Am J Prev Med 2008;28(Suppl 2):134–40.

CMAJ calls for ski helmet regulation
An editorial in the CMAJ calls for proper regulation of ski and snowboard helmets. It notes that 9%–19% of all ski or snowboard injuries involve the head but unlike hockey helmets, those for skiers are not required to meet Canadian Standard Association specifications. These standards are more rigorous than European or American standards.

Editor: Why Health Canada should have a fundamentally different view of the need for hockey helmets to conform to standards but not these helmets is truly a mystery.

Another attempt to escape responsibility
A minivan crashed into a school in rural Alberta injuring three children, one of whom died. The driver was charged with dangerous driving, resisting arrest and being in possession of a controlled substance (marijuana). The driver claims he was having a seizure.