Preparation and Characterization of Bio-Nitrogen-Doped Activated Carbon

xingping ZHANG (✉ m17697270592@163.com)
Qinghai Nationalities University

Haichao Li
Qinghai Nationalities University

Guangle Wang
Qinghai Nationalities University

Qingsong Ji
Qinghai Nationalities University

Tian Liang
Qinghai Nationalities University

Research Article

Keywords: Bio-nitrogen, Activated carbon, Blood, Chemical activation, Nitrogen containing functional groups

DOI: https://doi.org/10.21203/rs.3.rs-524484/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Blood (livestock blood) is a cheap and readily available biomass material with a relatively high protein content. In this study, bio-nitrogen doped activated carbon (BN-AC) was prepared by chemical activation method with nitrogen-rich pig blood as raw material and magnesium chloride as activator. The specific surface area of BN-AC is 283.719 m^2/g, and the pore volume is 0.128 cm^3/g. The optimum conditions for the preparation of BN-AC were as follows: the mass impregnation ratio of activator to blood powder was 2:1, the impregnation time was 12 h, and the activation temperature was 600 ^\circ C. The forms of biological nitrogen in activated carbon were studied by elemental analysis, Boehm titration, FTIR and XPS. The results showed that the total basicity of 0.720 mmol/g, and acidity of 0.313 mmol/g of the BN-AC. The surface of the precursor has only one Pyrrolic N, and the surface of BN-AC contains Pyridinic N, Pyrrolic N and Graphitic N, the N content of the precursor was successfully preserved. BN-AC has higher methylene blue and iodine adsorption values than ordinary activated carbon.

Introduction

Activated carbon (AC) is an important and unique functional carbon material with a high degree of microporosity, high surface area and pore structure (Lv et al. 2020; Li et al. 2020; Hernández-Barreto et al. 2020) AC is often used mainly as adsorbent of gases, vapors, and water-dissolved chemical substances (Gómez-Serrano et al. 2020) and also as catalyst and catalyst support (Mohammed et al. 2018) Traditional AC materials include wood (Nikolas et al. 2020), nut shells (Huang et al. 2014), and different types of coal (Song et al. 2020). These materials considered as waste fractions from industry or agricultural products and residues (Davide et al. 2018). Therefore, many efforts have recently been made to prepare AC from renewable, abundant, and low-cost biomass (Liu et al. 2020). There are mainly two strategies that can be used for preparing nitrogen-containing activated carbons (N-ACs). One uses nitrogen-containing carbon precursors to directly synthesize N-ACs, and these precursors include peony pollen (Liu et al. 2020), LSW (Han et al. 2020), etc. The other strategy involves the addition of nitrogen containing chemicals, melamine (Yang et al. 2020), polyimine (Alabadi et al. 2016), etc. during the carbonization process. Generally, N-ACs prepared by the former strategy have high nitrogen contents and can be economically employed in large-scale production by using cheap raw materials (Han et al. 2020).

Livestock blood is not only a serious waste, but also pollutes the environment. Due to the high rate of meat production in the European Union, especially for pork, a large amount of porcine blood can result theoretically resulting in 777,000 tons (Christian et al. 2019). Most blood is wasted and largely unexploited. Similar to other biomass materials, Pig blood is widely available in nature and has a high protein content, meaning more nitrogen content, and can be used as raw material for the preparation of nitrogen-containing activated carbon.

In this study, firstly, bio-nitrogen-doped activated carbon (BN-AC) with ideal performance was synthesized by direct carbonization and activation of magnesium chloride from waste animal blood with high protein content. Secondly, BN-AC was characterized by Boehm titration, FTIR, XPS, XRD and SEM. Finally, BN-AC
was compared with ordinary activated carbon to do methylene blue and iodine adsorption experiments. Bio-nitrogen-doped activated carbon is of great significance to environmental protection, waste utilization and preparation of special activated carbon.

Materials And Methods

Raw material and Reagents

The blood powders were obtained from Nanning City in Guangxi Province in China. It was dried in oven at 100°C for 24 h. The samples ready for carbonization. The commercial activated carbon without containing nitrogen was supplied by provided by Tianjin Damao Chemical Reagents. Magnesium chloride, bromocresol green, sodium bicarbonate, phenolphthalein, potassium hydrogen phthalate, anhydrous sodium carbonate, potassium dihydrogen phosphate, potassium iodide, soluble starch, sodium thiosulfate (all the above reagents are analytical pure, purchased from Tianjin Damao Chemical Reagent Factory, China); Ethanol, phenol, sodium hydroxide (analytical pure, purchased from Tianjin Obokai Chemical Co. Ltd., China); Methylene blue (biological dye, purchased from Beijing Chemical Works, China); Sodium dihydrogen phosphate (analytical pure, purchased from Beijing Hongxing Chemical Plant); Iodine (analytically pure, purchased from Shanghai Guangnuo Chemical Technology Co. Ltd., China).

Preparation of BN-AC

The blood powders were activated at a moderate temperature of 600°C for 5 h. The activation process involved adding a solution of 65 wt% Magnesium chloride (MgCl₂) to carbon in the ratio of 2:1 (blood powder/activator) to form a paste, impregnate for 24 hours. The content was heated until complete evaporation was achieved. A muffle furnace was used to conduct the treatment at a temperature of 600°C in the air atmosphere. The dried paste of the activated carbon was rinsed with distilled water at room temperature. The cleaned BN-AC particles were further dried at 105°C for 24 h to ensure that the particles were completely dry. The powdered bio-nitrogen doped activated carbon was obtained by grinding.

Characterizations of BN-AC

SEM is mainly composed of scanning electron microscope (JSM-5610LV) from Nippon Electronics Co. LTD, the amplification factor was 800–2200, Gold spraying under vacuum condition was observed. Specific surface area was measured by the Brunauer-Emmett-Teller (BET) method. Elementary Vario EL CUBE (Vario EL III) was used to analyze the elementary compositions of samples. Boehm titration method was used to further determine oxygen functional groups as follows; 200 mg of each BN-AC sample was mixed in 25 mL of one of the four reactants of 0.1 mol/L concentration (NaHCO₃, Na₂CO₃, NaOH or HCl). The mixtures were sonicated for 24 h, then filtered to remove the carbon. The excess of base and acid in solution was titrated with 0.1 mol/L HCl solution of 0.1 mol/L NaOH. The number of acidic and basic sites were calculated on the basis that NaOH neutralizes carboxylic, phenolic and
lactone groups, NaHCO$_3$ neutralizes only carboxylic, Na$_2$CO$_3$ neutralizes carboxyl and lactone and HCl neutralizes all the basic sites. The Infrared spectra of the blood powders and activated carbon samples were determined with the Fourier Transform Infrared Spectroscopy (FTIR, Llantrisant, UK) Dry samples of 0.071mm were sampled by potassium bromide tablet method. The scanning wave number ranged from 4000 to 400 cm$^{-1}$. X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi (Thermo Scientific, USA) with Al Kα X-ray (1486.6 eV) as an excitation source. The base pressure in the analysis room was about 3×10$^{-10}$ mbar. Iodine and methylene blue adsorption capacity of activated carbons were determined according to the Chinese GB/T 12496.8–2015 and GB/T 12496.10–1999 standards (for activated carbon), respectively.

Results And Discussion

By Elemental analysis

More than 80% of swine blood waste is protein. mainly containing C, N, O, H and other elements. The elemental analysis of precursor and BN-AC is shown in Table 1. According to Table 1, the carbon, nitrogen, oxygen and hydrogen content in the precursor were 49.443%, 11.846%, 26.014% and 12.697% respectively. The protein was unstable at high temperature. After the BN-AC was prepared from blood powder, the element content changed, and the proportion of nitrogen element retained by BN-AC was proportionately high. The presence of nitrogen content indicated that N was successfully doped in BN-AC sample. Due to the high nitrogen content in the protein of blood powder, a part of nitrogen was retained during the pyrolysis process, indicating that there may be some nitrogen-containing functional groups on the surface of BN-AC. There is a small amount of magnesium because BN-AC is prepared by impregnation 2:1 with magnesium chloride as the activator. Some magnesium ions enter into the structure of BN-AC in the activation process, which is not easy to clean, so they are deposited on the surface of BN-AC or in the pores.

Sample	C/dw%	N/dw%	O/dw%	H/dw%	Mg/dw%
precursor	49.443	11.846	26.014	12.697	-
BN-AC	54.625	18.244	15.833	9.282	2.016

From the elemental analysis of precursor: - indicates that the ingredient is not detected

By Boehm titration analysis

The surface chemistry of the functional groups in this study, which determines the acidity and basicity of the surface oxygen groups of the BN-AC. The Boehm titration results of BN-AC is shown in Table 2. Total basicity of 0.720 mmol/g, and acidity of 0.313 mmol/g of the BN-AC was obtained from the analysis. Thus, there was 2.3 times the number of basic groups as acidic groups. The content of acid and base
indicated that the surface of BN-AC contained acidic functional groups containing oxygen and alkaline functional groups containing nitrogen. With alkaline functional groups such as C = N, NH, amino, cycloamide, nitrile and pyrrole groups (Huang et al. 2020; Thue et al. 2017). The existence of basic functional groups is due to the fact that the precursor containing a large number of proteins as raw materials retains more nitrogen content.

Sample	Total amount of acid/mmol g⁻¹	The total amount of alkali/mmol g⁻¹	Carboxyl/ mmol g⁻¹	Ester base carbonyl/ mmol g⁻¹
BN-AC	0.313	0.720	0.357	0.175

By FTIR spectroscopy

Infrared spectra are generated by the transition of vibrational energy levels (accompanied by rotational energy levels) of molecules. It can be widely used in the characterization of the type and number of surface functional groups on activated carbon. The surface chemical properties of activated carbon are mainly determined by the type and number of surface functional groups, while the functional groups on the microporous surface of activated carbon are mostly oxygen-containing functional groups, such as carboxyl, phenolic hydroxyl, carbonyl, ester, ketone, ether, etc (Nina et al. 2020; Yousif Mohammed et al. 2018.).

For more investigation on the adsorbents surface properties, Fig. 2 shows the infrared spectrum curve of precursor and BN-AC. The precursor and BN-AC display a number of spectral features in the range of wavenumber between 4000 – 400 cm⁻¹. The BN-AC show that the characteristic broad band at ca 3415 cm⁻¹ can be assigned to N-H and/or O-H stretching vibration. The weak band at 1624 cm⁻¹ is attributed to the distinctive absorbance of C-H bonds of benzene rings as well as the C = N bonds from the carbon framework (Alabadi et al. 2016). The peaks at 1233 cm⁻¹ suggest the presence of the BN-AC stretching vibration. The broad peak of 1099 cm⁻¹ is associated with C-N stretching vibration. The FTIR analysis, therefore, confirms the existence of N-H and C-N species in the carbon samples. It still has some nitrogen-containing groups. -NO₂ symmetric stretching vibration at wave number 1387 cm⁻¹ of precursor (Tadepalli et al. 2021). The precursor and BN-AC had similar peaks, with significant differences at the peaks of 3415 cm⁻¹ and 1624 cm⁻¹, related to the O-H, N-H, NH₂, C = C, C = N, C-N (Wang et al. 2018) which is caused by the gradual increase of carbon net and the appearance of carbon-containing functional groups under the catalysis of magnesium chloride at the end of activation of precursor.

By XPS analysis
X-ray photoelectron spectroscopy (XPS) is an effective method for detecting surface chemical structure. XPS was used to qualitatively analyze the functional groups on the surface of activated carbon (Liu et al. 2020). Figure 3 (a) is the wide full XPS spectra of precursor and BN-AC. As seen from the graphs, characteristic peaks of C1s, O1s, N1s are found in precursor and BN-AC, witnessing that N have been successfully retain on BN-AC. The peaks located in 285.56, 399.26 and 532.35 eV are corresponding with C1s, N1s and O1s, respectively. The Mg1s peak appeared in raw material at 1 305.52 eV. The Mg1s peak appears because BN-AC is activated by magnesium chloride with a concentration of 65% as the activator. During the activation process, magnesium ions enter into the structure of BN-AC and are not easy to be cleaned, so they are deposited on the surface or pores of BN-AC. This is because at relatively high temperatures, the aromatic rings of nitrogen are partially stable at the edges of the graphite layer of the carbon material. With the further increase of temperature, nitrogen gradually enters into the skeleton of BN-AC and plays a dominant role (Yao et al. 2020).

As shown in Fig. 3 (c), there is only peaks that locate at 399.48 eV (pyrrolic N) in precursor. The N1s XPS spectra of BN-AC could be deconvoluted into three types of N-containing compounds, and results are depicted in Fig. 3 (b). The peaks of N1s located in 398.709 (pyridinic N), 399.45 (pyrrolic N) and 400.15 (graphitic N) (Yang et al. 2019), respectively in BN-AC. Compared with the N1s XPS spectra of precursor and BN-AC, it was found that the preparation of BN-AC from blood containing protein would increase the types and number of nitrogen-containing functional groups in BN-AC. Pyrrolic N is converted into three nitrogen-containing groups, namely 398.709 eV (pyridinic N), 399.45 eV (pyrrolic N) and 400.15 eV (graphitic N). The O1s XPS spectrum of the BN-AC shown exhibits three peaks in Fig. 3 (d). at 530.44 eV, 531.539 eV and 533.04 eV, corresponding to (C = O), (C-O) and (C-O-C). Figure 3 (e) shows high-resolution C1s XPS spectrum of BN-AC, which can be separated into two peaks at 284.662 eV(C-C) and 286.739 eV(C = N) (Oluwatosin et al. 2019).

Table 3 shows the binding energy and specific area of precursor and BN-AC. From Table 3, in the specific functional groups in BN-AC, the proportion of nitrogen-containing groups increased significantly. The N contents of pyrrolic N,pyridinic N and graphitic N increased by 42.5%, 31.03%, 5.14%. Using waste blood (containing a lot of protein) as raw material to prepare activated carbon will increase the types and quantity of nitrogen-containing functional groups in activated carbon. In the presence of precursor, which can act as a nitrogen source, in turn cause nitrogen content to increase. For this reason, the N content of the precursor was successfully preserved.
Table 3
Binding energy and proportion area of BN-AC and precursor functional groups

Functional groups	Precursor Binding Energy/eV	Precursor Accounted for area/%	BN-AC Binding Energy/eV	BN-AC Accounted for area/%
C-C	285.75	56.15	284.662	42.99
C = N	286.75	9.69	286.739	13.16
C-O-C	287.58	4.88	287.61	8.01
pyrrolic N	399.48	18.58	399.45	61.08
pyridinic N	-	-	398.709	31.03
graphitic N	-	-	400.15	5.14
C = O	531.76	3.15	530.44	25.49
C-O	531.059	74.30	531.539	63.20
C-O-C	533.26	3.70	533.04	11.32

- Indicates that the sample is not tested

Textural characterization

Surface area

The pore size of BN-AC is 1.688 nm, belonging to micropore (< 2 nm). The specific area of blood powder was 0.826 cm3/g, and the specific surface area of BN-AC and micropores were 283.719 m2/g and 135.036 m2/g, respectively. The precursor has almost no pore size and specific surface area, and the specific surface area increases by 343.5 times after activation with magnesium chloride solution to prepare BN-Ac. Table 4 shows that the waste blood containing protein can successfully prepare bio-nitrogen doped activated carbon.

Table 4. Specific surface area and pore structure parameters of precursor and BN-AC

Sample	S_{BET}/m2g$^{-1}$	S_{micro}/m2g$^{-1}$	V_{total}/cm3g$^{-1}$	V_{micro}/cm3g$^{-1}$	D/nm
precursor BN-AC	0.826	-	-	-	-
	283.720	135.036	0.289	0.128	1.688

S_{BET}, total specific surface area; S_{micro}, specific surface area of micropores; V_{total}, total pore volume; V_{micro}, micropore volume; -, is not tested.
By SEM analysis

The morphology including the porosity of the prepared BN-AC could be clearly observed from their SEM micrographs, as shown in Fig 1. Without any activation, BN-AC from blood(a) shows compact and smooth surface with little pores. On the surface of BN-AC (b) activated by magnesium chloride, there are small particles and unevenly distributed, and a small amount of floc structure with loose structure. The loose structure will make the microporous structure become developed. Results of SEM analysis indicate that BN-AC with different porosity have been successfully prepared.

Determination of adsorption performance

The methylene blue adsorption value represents the decolorization ability of the adsorbent, and the methylene blue adsorption value is also an important index for the characterization of the liquid adsorption performance of activated carbon. Iodine adsorption value indicates the developed degree of micropores greater than 1.0 nm of activated carbon, which is the performance of the adsorption capacity of activated carbon to small molecule impurities.

Table 5. Determination results of BN-AC adsorption values

Sample	Methylene blue adsorption value (mg/g)	Iodine adsorption value(mg/g)
precursor	0	0
BN-AC	600.00	734.95
Ordinary AC	450.00	680.24

Table 5 is the adsorption value measurement results of the precursor, BN-AC and ordinary activated carbon. The precursor has no adsorption property due to its small specific surface area. The methylene blue adsorption capacity of BN-AC is 600 mg/g, and the iodine adsorption capacity is 734.95 mg/g. The adsorption capacity of methylene blue on normal activated carbon is 450 mg/g, and the adsorption capacity of iodine is 680.24 mg/g. The methylene blue and iodine adsorption values of BN-AC were higher than those of ordinary AC, which indicated that the prepared bio-nitrogen doped activated carbon had potential adsorption properties.

Conclusions

Compared with ordinary activated carbon, the specific surface area of bio-nitrogen doped activated carbon is lower, but the methylene blue and iodine adsorption values of BN-AC were higher than those of ordinary AC. It may be that the nitrogen containing functional groups in BN-AC provide a favorable effect on the adsorption performance. The total alkalinity and total acidity of functional groups on the surface of BN-AC were 0.720 mmol/g and 0.313 mmol/g respectively. In the infrared spectrum, $N-H$, NH_2, $C=N$
functional groups exist at 3415 cm^{-1} and 1624 cm^{-1}. XPS analysis showed that the surface of the precursor has only one Pyrrolic N, and the surface of BN-AC contains Pyridinic N, Pyrrolic N and Graphitic N, the N content of the precursor was successfully preserved.

Declarations

Acknowledgments The author is very grateful to Professor Haichao Li of Qinghai Nationalities University for his continuous encouragement and support as well as his careful guidance and help. The first author thanks Mr. Guangle Wang for his help can be affirmed. The authors would like to thank Mr. Qingsong Ji and Mr. Tian Liang for their continued technical support throughout the review process. The authors thank all the anonymous reviewers and editors who have improved the quality of the revised manuscript through their valuable suggestions and comments.

Author contributions Xingping Zhang performed literature study, data analysis, making figures and tables and technical writing. Haichao Li supervised the the results and data analysis and performed the technical revisions of the manuscript. Guangle Wang, Qingsong Ji and Tian Liang were performed revisions of figures and tables. All authors read and approved the final manuscript.

Ethics approval Not applicable.

Consent to participate Not applicable

Consent to publish Not applicable

Competing interests Not applicable

Funding Natural Science Foundation of Qinghai Province (2019-ZJ-928).

Data availability and materials Not applicable

References

1. Alabadi A, Abbood H, Li QY, Jing N, Tan B (2016) Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO$_2$ Capture. Scientific reports 6:38614. https://doi.org/10.1038/srep38614

2. Christian S, Michael J, Wolfgang J (2019) A rapid UHPLC-MS/MS screening method for the detection of the addition of porcine blood plasma to emulsion-type pork sausages. Analytical and Bioanalytical Chemistry 411(25):6697-6709. https://doi.org/10.1007/s00216-019-02043-2

3. Davide B, Toni V, Henrik R, Ulla L (2018) Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes. Journal of Carbon Research 4(3). https://doi.org/10.3390/c4030041
4. Han WY, Wang HL, Xia KD, Chen SS, Yan PX, Deng TS, Zhu WB (2020) Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environment international 142:105846 https://doi.org/10.1016/J.ENVINT.2020.105846

5. Hernández-Barreto D, Rodriguez-Estupiñán J, Moreno-Piraján J, Ramírez R, Giraldo L (2020) Adsorption and Photocatalytic Study of Phenol Using Composites of Activated Carbon Prepared from Onion Leaves (Allium fistulosum) and Metallic Oxides (ZnO and TiO$_2$). Catalysts 10(5). https://doi.org/10.3390/catal10050574

6. Huang F, Gao LY, Wu RR, Wang H, Xiao RB (2020) Qualitative and quantitative characterization of adsorption mechanisms for Cd$^{2+}$ by silicon-rich biochar. Science of the Total Environment 731:139163. https://doi.org/10.1016/J.SCITOTENV.2020.139163

7. Huang JY, Qin M, Peng QP, Wen S, Zhang YX (2014) Experimental Study on the Preparation of Nutshell Activated Carbon and the Disposal of Catering Wastewater. Applied Mechanics and Materials 3547:530-533. https://doi.org/10.4028/www.scientific.net/AMM.675-677.530

8. Li B, Zhang L, Yin WZ, Lv SH, Li P, Zheng XY, Wu J (2021) Effective immobilization of hexavalent chromium from drinking water by nano-FeOOH coating activated carbon: Adsorption and reduction. Journal of Environmental Management 277:111386. https://doi.org/10.1016/J.JENVMAN.2020.111386

9. Liu YL, Cheng H, He YT (2020) Application and Mechanism of Sludge-Based Activated Carbon for Phenol and Cyanide Removal from Bio-Treated Effluent of Coking Wastewater. Processes 8(1). https://doi.org/10.3390/c4030041

10. Liu YM, An ZX, Wu MX, Yuan AB, Zhao HB, Zhang JJ, Xu JQ (2020) Peony pollen derived nitrogen-doped activated carbon for supercapacitor application. Chinese Chemical Letters 31(6):1644-1647. https://doi.org/10.1016/j.cclet.2019.08.005

11. Liu ZY, Sun Y, Xu XR, Meng XH, Qu JB, Wang Z, Liu CY, Qu B (2020) Preparation, characterization and application of activated carbon from corn cob by KOH activation for removal of Hg (II) from aqueous solution. Bioresource Technology 306:123154. https://doi.org/10.1016/j.biortech.2020.123154

12. Lv SL, Li CX, Mi JG, Meng H (2020) A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification. Applied Surface Science 510:145425. https://doi.org/10.1016/j.apsusc.2020.145425

13. Mohammed D, Tanweer A, Rokiah H, Norafizah S, Mohammad NA, Junita M, Othman S (2018) Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surfaces and Interfaces 11:1-13. https://doi.org/10.1016/j.surn.2018.02.001

14. Nikolas H, Hans-Peter S, Ralf K, Marc B, Gabriel S, Andreas M, Christa S. M, Thomas D. B. (2020) Wood-based activated biochar to eliminate organic micropollutants from biologically treated wastewater. Science of the Total Environment 730:138417 https://doi.org/10.1016/j.scitotenv.2020.138417
15. Nina P, Dirk S, Gareth J M. Infrared spectral analysis of low concentration magnetoactive polymers (2020) Journal of Applied Polymer Science 137(7). https://doi.org/10.1002/app.48366

16. Oluwatosin O, Kaushlendra S, Gloria O, Benjamin DA, Louis M, Edward S (2019) Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresource Technology Reports 8:100307. https://doi.org/10.1016/j.biteb.2019.100307

17. Song GR, Deng RQ, Yao Z, Chen HZ, Romero C, Lowe T, Driscoll G, Kreglow B, Schobert H, Baltrusaitis J (2020) Anthracite coal-based activated carbon for elemental Hg adsorption in simulated flue gas: Preparation and evaluation. Fuel 275:117921. https://doi.org/10.1016/j.fuel.2020.117921

18. Tadepalli M, Srinivasan A, Shekhar SH, Narasinga RT (2021) Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors. Journal of Energy Storage 34. https://doi.org/10.1016/J.EST.2020.102017

19. Thue PS, Lima EC, Sieliechi JM, Saucier C, Dias SL, Vaghetti JC, Rodembusch FS, Pavan FA (2017) Effects of first-row transition metals and impregnation ratios on the physicochemical properties of microwave-assisted activated carbons from wood biomass. Journal of Colloid and Interface Science 486:163-175. https://doi.org/10.1016/j.jcis.2016.09.070

20. Vicente Gómez-Serrano, Marta Adame-Pereira, María Alexandre-Franco, Carmen Fernández-González. Adsorption of bisphenol A by activated carbon developed from PET waste by KOH activation[J]. Environmental Science and Pollution Research,2020. 1-13. https://doi.org/10.1007/s11356-020-08428-6

21. Wang JF, Jin LJ, Zhou Y, Li Y, Hu HQ (2018) Effect of Ca(NO3)2 addition in coal on properties of activated carbon for methane decomposition to hydrogen. Fuel Processing Technology 176:85-90. https://doi.org/10.1016/j.fuproc.2018.03.012

22. Yang R, Li KX, Lv CC, Cen BQ, Wang L, Liang BL (2019) The excellent performance of nitrogen-doped porous carbon nanowires modified activated carbon as air cathode catalyst for microbial fuel cells. Journal of Solid State Electrochemistry 23(12):3437-3447. https://doi.org/10.1007/s10008-019-04403-5

23. Yang X, Wang Q, Lai JJ, Cai ZH, Lv JH, Chen XR, Chen YD, Zheng XY, Huang B, Lin GF (2020) Nitrogen-doped activated carbons via melamine-assisted NaOH/KOH/urea aqueous system for high performance supercapacitors. Materials Chemistry and Physics 250:123201. https://doi.org/10.1016/j.matchemphys.2020.123201

24. Yao MQ, Liang WY, Chen HL, Zhang XM (2020) Efficient Hydrogen Production from Formic Acid Using Nitrogen-Doped Activated Carbon Supported Pd. Catalysis Letters 1-8. https://doi.org/10.1007/s10562-020-03141-y

25. Yousif Mohammed S, Cafer S, Orhan B, Ömer Ş (2018) Preparation and Characterization of Activated Carbon from Sesame Seed Shells by Microwave and Conventional Heating with Zinc Chloride Activation. Analytical Letters 51(17):2731-2744. https://doi.org/10.1080/00032719.2018.1450415

Figures
Figure 1

SEM images of precursor (a) and BN-AC (b)

Figure 2

FTIR of precursor and BN-AC
Figure 3

X-ray photoelectron spectrograms of precursor and BN-AC (a) and fine spectrograms of BN-AC (b-e)