Clinical relevance of atrial septal aneurysm and patent foramen ovale with migraine

Lu He, Ge-Sheng Cheng, Ya-Juan Du, Yu-Shun Zhang

Lu He, Ge-Sheng Cheng, Ya-Juan Du, Yu-Shun Zhang, Department of Structural Heart Disease, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an 710061, Shaanxi Province, China.

ORCID number: Lu He (0000-0003-0149-0606); Ge-Sheng Cheng (0000-0002-4605-2696); Ya-Juan Du (0000-0003-3985-1649); Yu-Shun Zhang (0000-0002-6395-2768).

Author contributions: He L and Zhang YS contributed to conceptualizing and designing the paper; Cheng GS and Du YJ contributed to data analysis and interpretation; He L drafted the article; Cheng GS contributed to critical revision of the article; all authors approved the article.

Institutional review board statement: The study was approved by the ethics committee of Xi'an Jiaotong University Medical College First Affiliated Hospital (Xi'an, China).

Clinical trial registration statement: The clinical trial is registered in ClinicalTrials.gov, using identifier NCT02777359. Details can be found at https://clinicaltrials.gov/ct2/show/NCT02777359?term=NCT02777359&rank=1.

Informed consent statement: All patients gave informed consent.

Conflict-of-interest statement: No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

STROBE Statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Corresponding author to: Yu-Shun Zhang, MD, PhD, Doctor, Department of Structural Heart Disease, Xi'an Jiaotong University Medical College First Affiliated Hospital, 277 Yanta West Road, Xi'an 710061, Shaanxi Province, China. zys2889@sina.com

Telephone: +86-29-85324078
Fax: +86-29-85324078

Received: July 24, 2018
Peer-review started: July 24, 2018
First decision: October 8, 2018
Revised: October 14, 2018
Accepted: November 7, 2018
Article in press: November 7, 2018
Published online: December 6, 2018

Abstract

AIM
To test the potential association between atrial septal aneurysm (ASA) and migraine in patent foramen ovale (PFO) closure patients through an observational, single-center, case-controlled study.

METHODS
We studied a total of 450 migraineurs who had right-to-left shunts and underwent PFO closure in a retrospective single-center non-randomized registry from February 2012 to October 2016 on the condition that they were aged 18-45 years old. Migraine was diagnosed according to the International Classification of Headache Disorders, 3rd edition and evaluated using the Headache Impact Test-6 (HIT-6). All patients underwent preoperative transesophageal echocardiography, contrast transthoracic echocardiography, and computed tomography or magnetic resonance imaging imaging
examinations, with subsequent fluoroscopy-guided PFO closure. Based on whether they have ASA or not, the patients were divided into two groups: A (PFO with ASA, \(n = 80 \)) and B (PFO without ASA, \(n = 370 \)). Baseline characteristics and procedural and follow-up data were reviewed.

RESULTS

Compared to group B, group A had an increased frequency of ischemic lesions (11.3% vs 6.2%, \(P = 0.038 \)) and migraine with aura (32.5% vs 21.1%, \(P = 0.040 \)). The PFO size was significantly larger in group A (\(P = 0.007 \)). There was no significant difference in HIT-6 scores between the two groups before and at the one-year follow-up after the PFO closure [61 (9) vs 63 (9), \(P = 0.227 \); 36 (13) vs 36 (10), \(P = 0.706 \)].

CONCLUSION

Despite its small sample size, our study suggests that the prevalence of ASA in PFO with migraine patients is associated with ischemic stroke, larger PFO size, and migraine with aura.

Key words: Patent foramen ovale; Migraine; Atrial septal aneurysm; Contrast transthoracic echocardiography; Right-to-left shunt; Transesophageal echocardiography

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The aim of this study was to test the potential association between atrial septal aneurysm (ASA) and migraine in patent foramen ovale (PFO) closure patients. A total of 450 migraineurs who had right-to-left shunts and underwent PFO closure on the condition that they were aged 18-45 years old were observed. Compared to the PFO without ASA patients, the PFO with ASA patients had an increased frequency of ischemic lesions and migraine with aura. The PFO size was significantly larger in PFO with ASA patients. There was no significant difference in Headache Impact Test-6 scores between the two groups before and at the one-year follow-up after the procedure.

He L, Cheng GS, Du YJ, Zhang YS. Clinical relevance of atrial septal aneurysm and patent foramen ovale with migraine. World J Clin Cases 2018; 6(15): 916-921 Available from: URL: http://www.wjgnet.com/2307-8960/full/v6/i15/916.htm DOI: http://dx.doi.org/10.12998/wjcc.v6.i15.916

INTRODUCTION

Migraine is common, with an estimated prevalence of 8%-12% in the general population (18% of women and 6% of men), and has been acknowledged as one of the most important causes of disability burdens\(^4\). Patent foramen ovale (PFO) is a remnant of the fetal anatomy with a slit-like interatrial opening that is present in approximately 27% of the general population\(^5\). Although not all migraineurs have a PFO, and not all PFO patients have migraine, interestingly, PFO is more prevalent in migraineurs (approximately 48% in migraineurs with aura, 23% in migraineurs without aura, and only 20% in controls)\(^3\). The pathophysiological mechanisms between PFO and migraine remain entirely unknown. Anecdotally, the closure of a PFO for nonmigraine indications has been shown to ameliorate pre-existing migraine in numerous retrospective series published after 2000\(^4\)-\(^8\). Therefore, the hypothesis of the right-to-left shunts (RLS) of chemical or physical triggers for migraine has been proposed.

Atrial septal aneurysm (ASA) is redundant septal primum tissue with excessive mobility of the fossa ovalis. The prevalence of ASA is approximately 2%-3% in the general population. An ASA increases the likelihood of the presence of a PFO, whereas the incidence of ASA in PFO patients is significantly higher than that of the general population\(^9\). With the continuous deeper study of PFO, ASA has been identified as an independent risk factor for cryptogenic stroke in PFO patients\(^10,11\). Patients with migraine appear to be at risk for silent stroke, which might be related to the presence of a PFO. However, the association of ASA and migraine in PFO patients remains unknown.

MATERIALS AND METHODS

Study population

In a retrospective single-center non-randomized registry from February 2012 to October 2016, we enrolled 450 patients diagnosed with migraine who had RLS and underwent transcatheter PFO closure at the First Affiliated Hospital of Xi’an Jiaotong University on the condition that they were aged 18-45 years old. All patients underwent preoperative contrast transthoracic echocardiography (cTTE), transesophageal echocardiography (TEE), and computed tomography (CT) or magnetic resonance imaging (MRI) examinations, with subsequent fluoroscopy-guided PFO closure. According to the International Classification of Headache Disorders 3rd edition, migraine was diagnosed by two neurologists\(^12\), and evaluated by Headache Impact Test-6 (HIT-6) scores.

The patients gave their informed written consent to the procedures. The local ethics committee approved this study. Based on whether they had an ASA or not, the patients were divided into two groups: A (PFO with ASA, \(n = 80 \)) and B (PFO without ASA, \(n = 370 \)). Baseline characteristics and procedural and follow-up data were reviewed.

Echocardiography

All patients had a diagnostic cTTE and TEE study performed prior to the procedure. An ultrasound system with a 2-4 MHz transducer was used to perform cTTE and a 4-7 MHz transducer was used to perform TEE.
As reported by Agmon et al[9], an ASA was defined if the excursion of the septum primum into the left/right atrium exceeded 10 mm or the total excursion distance was more than 15 mm. The apical four-chamber view was generally selected when performing cTTE. The presence of RLS was identified when micro-bubbles were seen in the left atrium within the first three cardiac cycles after contrast appearance in the right atrium during normal respiration or the Valsalva maneuver. The severity of the RLS was semi-quantified into a four-level scale[13].

PFO closure

The procedure was performed under 2% lidocaine local anesthesia. All the operations were performed by the same interventional cardiologist and first assistant. The right femoral vein was accessed and intravenous heparin (80-100 IU/kg) was administered. The device implantation was guided only by fluoroscopy. The device size was determined according to the surgeon’s preference. The Amplatzer PFO occluder (St. Jude Medical, Golden Valley, MN, United States) and the Cardi-O-Fix PFO occluder (Starway Medical Technology Inc., Beijing) were used during the study period. The occluder type included 18/18 mm, 18/25 mm, 30/30 mm, and 25/35 mm.

Follow-up

After the procedure, low-molecular-weight heparin (10 U/kg·h) was administered for 48 h. Aspirin 100 mg/d for 6 mo and clopidogrel 50-75 mg/d for 3 mo were administered to all patients following device implantation. All patients were followed at 1, 3, 6, and 12 mo post-procedure and yearly thereafter. The HIT-6 score was recorded to evaluate the severity of migraine. Transthoracic echocardiography (TTE) was performed to confirm early residual shunting and device embolization within 24 h following the procedure. cTTE was performed at 3 mo after the procedure to observe residual RLS. If there was no residual RLS, cTTE was not required in future follow-up examinations. If the RLS remained, cTTE was performed at 180-d follow-up after the procedure. All patients were followed after device implantation through questionnaires made by phone calls or office visits. For patients with symptoms of palpitation, Holter monitoring was performed to confirm the presence or absence of atrial fibrillation. Follow-up was completed in Oct 2017.

Statistical analysis

Data analyses were performed using SPSS version 24.0 (Statistical Package for Social Sciences, version 24.0, for Windows, SPSS, Chicago, IL, United States). Summary statistics for normally distributed quantitative variables are expressed as the mean ± SD. Differences in means for continuous variables were compared using Student’s t-test. For non-normally distributed variables, we used the median and interquartile range (IQR). Differences in medians for non-normally distributed variables were compared using a Mann-Whitney U test. Categorical data are summarized as ratios and percentages. Chi-square tests or Fisher’s exact tests were used for two-group comparisons. A P-value < 0.05 was considered statistically significant.

RESULTS

Patient characteristics

In total, 450 participants (group A: PFO with ASA, n = 80; group B: PFO without ASA, n = 370) were included in the study. The baseline characteristics of the two groups are listed in Table 1. There were no significant differences regarding age, weight, gender, hypertension, diabetes mellitus, hyperlipidemia, history of smoking, or baseline HIT-6 scores between the two groups (P > 0.05).

Compared with group B, group A exhibited an increased frequency of ischemic brain lesions, as observed with MRI/CT (11.3% vs 6.2%, P = 0.038). Migraine with aura was found to be more prevalent in group A (32.5% vs 21.1%, P = 0.040). The PFO size ranged from 1.0-9.3 mm (median 2.6 mm) in group A and 0.7-9.3 mm (median 2.1 mm) in group B. The PFO size was significantly larger in patients with ASA compared those without (P = 0.007).

Procedural characteristics

The Amplatzer PFO occluder was used in 146 patients (32.4%), and the Cardi-O-Fix PFO occluder was used in 304 patients (67.6%). Technical success was defined as the delivery and release of the device and was achieved in all patients. Procedural success, defined as implantation without in-hospital serious adverse events, was also achieved in all patients. Procedural complications included two arteriovenous fistulae, two false aneurysms, and one inguinal hematoma. There were no procedure-related deaths, strokes, or transient ischemic attacks (TIAs).

Follow-up

The mean follow-up period was 3 (2) years. Residual RLS was detected by cTTE in two (2.5%) cases 180 days after the procedure in group A, while there was no residual RLS detected by cTTE 180 days after the procedure in group B. No patients experienced TIAs or stroke after the procedure. Two (0.44%) cases of paroxysmal atrial fibrillation occurred (at 2 wk and 3 mo after the procedure). One reverted spontaneously to a sinus rhythm, and the other underwent pharmacological conversion to a sinus rhythm. No cases of occluder translocation, occlude erosion, pericardial effusion, or puncture site bleeding was found in our study.

We compared HIT-6 scores at different time points during the follow-up period after the procedure. At 3 mo after closure, the average HIT-6 scores were 41 (15) in group A and 40 (15) in group B. At 6 mo after closure,
Table 1 Baseline characteristics, n (%)

	Group A (n = 80)	Group B (n = 370)	Sig (P)
Age, yr, median (IQR)	34 (12)	34 (13)	0.968
Weight, kg, median (IQR)	60 (13)	59 (15)	0.549
Women	62 (77.5)	259 (70)	0.227
Hypertension	4 (5.0)	11 (3.0)	0.567
Diabetes mellitus	1 (1.25)	2 (0.5)	1.000
Hyperlipidemia	5 (6.3)	31 (8.4)	0.663
History of smoking	14 (17.5)	82 (22.3)	0.440
Ischemic lesions	11 (11.3)	23 (6.2)	0.038
Migraine with aura	26 (32.5)	78 (21.1)	0.040

CT: Computed tomography; MRI: Magnetic resonance imaging; IQR: Interquartile range.

Figure 1 Comparison of migraine relief between two groups at different time points during the follow-up period. PFO: Patent foramen ovale; ASA: Atrial septal aneurysm; HIT-6: Headache Impact Test-6.

the average HIT-6 scores were 38 (11) in group A and 40 (10) in group B. At 12 mo after closure, the average HIT-6 scores were 36 (13) in group A and 36 (10) in group B; the average HIT-6 scores at baseline were 61 (9) and 63 (9) for group A and group B, respectively (Figure 1). At the one-year follow-up after the PFO closure, there was no significant difference in HIT-6 scores between the two groups (P = 0.706).

DISCUSSION

Since 1998, when Del Sette et al. found that 41% of a migraine group and 16% of a control group had PFO-RLS, the relationship between migraine and PFO has been extensively studied. Unfortunately, the current literature remains discordant as to whether a link exists between PFO and migraine. Some observational studies have shown that PFO and migraine are closely related. For most migraine patients with a PFO, migraine can be greatly alleviated after PFO closure. However, other studies found no association between migraine and the presence of a PFO.

The reasons for the inconsistent results of the above research might be explained in different ways. First, many observational studies include different types of migraine populations, mainly cryptogenic stroke patients with migraine, while other studies with the opposite opinion mostly exclude these patients with pathological PFO. Second, one of the factors that is most strongly associated with the occurrence of a cryptogenic stroke is the presence of a combination of a PFO with an ASA, and the incidence of migraine in these patients is also significantly higher. Therefore, we hypothesized that the link between a PFO and migraine might be an ASA.

The main findings of our study suggest that the prevalence of ASA and migraine in PFO patients is associated with silent stroke, severe RLS, and migraine with aura. The incidence of ASA in the normal population is 1%-2.2% when determined by autopsy and 1%-4.9% when determined by TEE. The incidence of ASA in cryptogenic stroke and TIAs is approximately 7.9%, which is significantly higher than that of the general population. In 50%-89% of patients with an ASA, a PFO is also seen, and the PFO size is also larger when accompanied by an ASA. The association between ASA and PFO has emerged as a factor that can potentially increase the risk of stroke occurrence or relapse. Because of the unknown mechanisms of migraine itself, the pathogenesis of silent stroke in migraine patients is also in the hypothesis stage. Previous studies showed that the possibility of stroke was significantly increased in patients with PFO combined with ASA, while a paradoxical embolism was considered to be the main mechanism of stroke. Overall et al. found that the risk of stroke was 4.96 times higher in patients with PFO with ASA compared with the normal population. Compared with the control group, the odds ratio for stroke was 6.14 in patients younger than 55 years old; and in patients with a simple PFO, the odds ratio for stroke was 3.10; if patients had a PFO with an ASA, the odds ratio for stroke was as high as 15.59. A prospective cohort study by Mas et al. found that the possibility of recurrent stroke or TIAs in simple PFO patients was 6% under 300 mg/d aspirin condition; if an ASA was combined with a PFO, the incidence increased to 15.6%. After 4 years of follow-up, the relative risk of recurrent stroke or TIA was 5.6 in simple PFO patients and 19.2 in PFO with ASA patients. Therefore, an ASA can increase the possibility of paradoxical embolisms in PFO patients. When a PFO is combined with ASA, the presence of an ASA can lead to increased PFO channel opening frequency and a wider opening. In addition, the presence of an ASA...
ARTICLE HIGHLIGHTS

Research background
The relationship between patent foramen ovale (PFO) with atrial septal aneurysm (ASA) and migraine remains controversial. We examined this association through an observational, single-center, case-controlled study.

Research motivation
A PFO with ASA has been identified as a risk factor for ischemic stroke. Patients with migraine with aura appear to be at risk for silent brain infarction, which might be related to the presence of a PFO. However, the association between ASA and migraine in PFO closure patients has rarely been reported. Therefore, in addition to clarifying the relationship between PFO, ASA, and migraine, this study aims to provide guidance for the choice of migraine patients who can benefit more from PFO closure.

Research objectives
The research objective of this study was to test the potential association between ASA and migraine in PFO closure patients. Because ASA is a structural abnormality, our findings also verify the role of ASA in migraine with PFO patients. Further PFO and migraine studies should focus on the specific intracranial structural abnormality.

Research methods
We retrospectively analyzed 450 migraineurs who had right-to-left shunts and underwent PFO closure from February 2012 to October 2016. The patients were classified into two groups according to whether they had ASA or not: the PFO with ASA group and the PFO without ASA group. This study is a single-center, non-randomized, case-controlled study.

Research results
Our research found that the PFO with ASA patients had an increased frequency of ischemic lesions and migraine with aura. The PFO size was significantly larger in PFO with ASA patients. However, there was no significant difference in the Headache Impact Test-6 scores between the PFO with ASA and without ASA groups before and after the PFO closure. Given its nature, the present study shares all of the limitations of case-controlled studies. In our study, the mean follow-up time was only 1 years. Although the effect of PFO closure on migraine usually appears within this time frame, the results may have been affected. The small sample size is another limitation of this study.

Research conclusions
This single-center, case-controlled study cohort, despite its small sample size, suggests that the prevalence of ASA with migraine in PFO patients is associated with ischemic stroke, larger PFO size, and migraine with aura.

REFERENCES
1. Lipton RB, Liberman JN, Kolodner KB, Bigal ME, Dowson A, Stewart WF. Migraine headache disability and health-related quality-of-life: a population-based case-control study from England. Cephalalgia 2003; 23: 441-450 [PMID: 12807523 DOI:
He L et al. PFO with ASA is important in migraine

10.1046/j.1468-2982.2003.00546.x

2 Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc 1984; 59: 17-20 [PMID: 6994427 DOI: 10.1016/0025-6196(84)90036-x]

3 Anzola GP, Magoni M, Guindani M, Rozzini L, Dalla Volta G. Potential source of cerebral embolism in migraine with aura: a transcranial Doppler study. Neurology 1999; 52: 1622-1625 [PMID: 10331688 DOI: 10.1212/wnl.52.12.1622]

4 Wilmshurst PT, Nightingale S, Walsh KP, Morrison WL. Effect on migraine of closure of cardiac right-to-left shunts to prevent recurrence of decompression illness or stroke or for haemodynamic reasons. Lancet 2000; 356: 1648-1651 [PMID: 11089825 DOI: 10.1016/s0140-6736(00)03160-3]

5 Khessali H, Mojadidi MK, Gevorgyan R, Levinson R, Tobis J. The effect of patent foramen ovale closure on visual aura without headache or typical aura with migraine headache. JACC Cardiovasc Interv 2012; 5: 682-687 [PMID: 22721665 DOI: 10.1016/j.jci.2012.03.013]

6 Morandi E, Anzola GP, Angelis S, Melzi G, Onorato E. Transcatheter closure of patent foramen ovale: a new migraine treatment? J Inter Med Res 2003; 16: 39-42 [PMID: 12664816 DOI: 10.1046/j.1468-2983.2003.00880.x]

7 Anzola GP, Frisoni GB, Morandi E, Casilli F, Onorato E. Shunt-associated migraine responds favorably to atrial septal repair: a case-control study. Stroke 2006; 37: 430-434 [PMID: 16373630 DOI: 10.1161/01.STR.0000081743.73416.d5]

8 Wahl A, Praz F, Tai T, Findling O, Walpoth N, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978; 102: 62-65 [PMID: 579665]

9 Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Atrial septal aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll Cardiol 1991; 18: 1223-1229 [PMID: 19186699 DOI: 10.1016/0735-1097(91)90539-1]

10 Overell JR, Bone I, Lees KR. Interatrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology 2000; 55: 1172-1179 [PMID: 11071496 DOI: 10.1212/wnl.55.8.1172]

11 Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia 2018; 38: 1-211 [PMID: 29368949 DOI: 10.1177/0331070617738202]

12 Zhao E, Wei Y, Zhang Y, Zhai N, Zhao P, Liu B. A Comparison of Transcranial Echocardiographic and Transcranial Doppler With Contrast Agent for Detection of Patent Foramen Ovale With or Without the Valsalva Maneuver. Medicine (Baltimore) 2015; 94: e1397 [PMID: 26512622 DOI: 10.1097/MD.0000000000001937]

13 Del Sette M, Angeli S, Leandri M, Ferriero G, Bruzzone GL, Finocchi C, Gandolfo C. Migraine with aura and right-to-left shunt on transcranial Doppler: a case-control study. Cerebrovasc Dis 1998; 8: 327-330 [PMID: 9774740 DOI: 10.1159/000015875]

14 Reisman M, Christofferson RD, Jesurum J, Olsen JV, Spencer MP, Krabill KA, Diehl L, Aurora S, Gray WA. Migraine headache relief after transcatheter closure of patent foramen ovale. J Am Coll Cardiol 2005; 45: 493-495 [PMID: 15708692 DOI: 10.1016/j.jacc.2004.10.055]

15 Rigatelli G, Dell’avvocata F, Cardiolo P, Giordan M, Braggion G, Aggio S, L’erario R, Chinaglia M. Improving migraine by means of primary transcatheter patent foramen ovale closure: long-term follow-up. Am J Cardiol Cardiovasc Dis 2012; 2: 89-95 [PMID: 22720197]

16 Rundek T, Elkind MS, Di Tullio MR, Carrera E, Jin Z, Sacco RL, Homma S. Patent foramen ovale and migraine: a cross-sectional study from the Northern Manhattan Study (NOMAS). Circulation 2008; 118: 1419-1424 [PMID: 18794393 DOI: 10.1161/CIRCULATIONAHA.108.771303]

17 Garg P, Servoss SJ, WU JC, Bajwa ZH, Selim MH, Dineen A, Kuntz RE, Cook EF, Mauri L. Lack of association between migraine headache and patent foramen ovale: results of a case-control study. Circulation 2010; 121: 1406-1412 [PMID: 20231534 DOI: 10.1161/CIRCULATIONAHA.109.895110]

18 Tobis J. Management of patients with refractory migraine and PFO: Is MIST I relevant? Catheter Cardiovasc Interv 2008; 72: 60-64 [PMID: 18383146 DOI: 10.1002/cdi.21504]

19 Etminan M, Takkouche B, Isorna FC, Samii A. Risk of ischaemic stroke in people with migraine: systematic review and meta-analysis of observational studies. BMJ 2005; 330: 63 [PMID: 15596418 DOI: 10.1136/bmj.38302.504063.8F]

20 Silver MD, Dorsey JS. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978: 102: 62-65 [PMID: 579665]

21 Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Atrial septal aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll Cardiol 1991; 18: 1223-1229 [PMID: 19186699 DOI: 10.1016/0735-1097(91)90539-1]

22 Mas JL, Arquizan C, Lamy C, Zuber M, Cabanes L, Derumeaux G, Praz F, Tai T, Findling O, Walpoth N, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978: 102: 62-65 [PMID: 579665]

23 Silver MD, Dorsey JS. Aneurysms of the septum primum in adults. Arch Pathol Lab Med 1978: 102: 62-65 [PMID: 579665]
