Three Species of the Bemisia tabaci (Hemiptera: Aleyrodidae) Complex in the Republic of Korea; Detection by an Extensive Field Survey Combined with a Phylogenetic Analysis

Authors: Lee, Wonhoon, Lee, Seol-Mae, Kim, Chang-Seok, Choi, Hong-Soo, Akimoto, Shin-Ichi, et. al.

Source: Florida Entomologist, 97(1) : 155-161

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.097.0121
THREE SPECIES OF THE BEMISIA TABACI (HEMIPTERA: ALEYRODIDAE) COMPLEX IN THE REPUBLIC OF KOREA; DETECTION BY AN EXTENSIVE FIELD SURVEY COMBINED WITH A PHYLOGENETIC ANALYSIS

WONHOO LEE1, SEO-MAE LEE1, CHANG-SEOK KIM1, HONG-SOO CHOI1, SHIN-ICHI AKIMOTO2, KYEONG-YEOLL LEE3 AND GWAN-SEOK LEE3

1Crop Protection Division, Dept. of Agricultural Biology, National Academy of Agricultural Science, RDA, Gyeonggi-do, 441-707, Korea
2Laboratory of Systematic Entomology, Department of Ecology and Systematics, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, 060-8589, Japan
3School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea

*Corresponding author; E-mail: gslee12@korea.kr

ABSTRACT

Field surveys for the Bemisia tabaci complex were conducted from 2009 to 2013 in Korea, and the results were compared with published data of the B. tabaci complex. Three species, MED, MEAM1, and JpL, were collected from several provinces. The MED was mainly collected in greenhouses, displacing the earlier invasive species, MEAM1, and the JpL species was collected in the field. JpL is newly confirmed as a unique species of B. tabaci species complex in Korea and Japan.

Key Words: biotype B, haplotype, JpL, MEAM1, MED, JpL, molecular identification

RESUMEN

Se realizó un sondeo de campo sobre el complejo de Bemisia tabaci desde el 2009 hasta el 2013 en Corea, y se comparó los resultados con los datos publicados del complejo de B. tabaci. Se recolectaron tres especies, MED, MEAM1 y JPL de varias provincias. Se recogió la MED principalmente en invernaderos, la MEAM1 que reemplazó la que se invadió anteriormente y la especie JPL que fue recolectada en el campo. La JPL es recién confirmada como una especie única del complejo de B. tabaci en Corea y Japón.

Palabras Clave: biotipo B, haplotipo, JPL, MEAM1, MED, JpL, identificación molecular
to understand the current status of the \textit{B. tabaci} complex in Korea.

Recently, the number of invasive alien species has continuously increased in Korea because of increased global trade and developments in transportation (Hong et al. 2012). Thus, possibly, other species of the \textit{B. tabaci} complex may have invaded Korea. Currently there are 6 species in Japan (\textit{Asia I}, \textit{Aisa II}, \textit{China}, \textit{JpL}, MED and \textit{MEAM1}) (Ueda et al. 2008), and 14 species in China (\textit{Asia I}, \textit{Asia II 1-4}, \textit{Asia II 6-7}, \textit{Asia II 9-10}, \textit{China I-3}, MED, and \textit{MEAM1}) (Hu et al. 2011). It is necessary to determine the distribution of other species (excluding \textit{MED} and \textit{MEAM1}) of the \textit{B. tabaci} complex in Korea. Thus, in this study, we examined the distribution and diversity of the \textit{B. tabaci} complex through a large-scale survey.

Sampling was conducted from Dec 2009 to Jul 2013 throughout 7 provinces of Korea: Gyeonggi-do (GG), Jeollanam-do (JN), Chungcheongbuk-do (CB), Chungcheongnam-do (CN), Gyeongsangnam-do (GN), Gyeongsangbuk-do (GB), and Jeju-do (JJ). Adults, nymphs, and eggs were collected from vegetables, ornamental plants and weeds, and from urban as well as agricultural landscapes. Collection details, geographical locations, host plants and dates of collection are summarized in Table 1. A total of 276 whitefly adults, nymphs, and/or eggs were collected, and individual samples were preserved in 99% ethanol. Voucher specimens are deposited in the collection of the Institute of Insect Sciences at the National Academy of Agricultural Science, Korea.

Genomic DNA extraction was performed using DNEasy® Blood & Tissue Kit (QIAGEN Inc., Dusseldorf, Germany), according to the manufacturer’s protocol. Each sample for extraction consisted of a single individual from the same colony. PCR amplification was conducted with one primer set, C1-J-2195 (5'-TIGATTTTTTGGTACATCCAAGTG-3') and TL2-N-3014 (5'-TCGAATGCACATATCGGATATA-3') (Simon et al. 1994), using AccuPower® PCR PreMix (Bi-oneer, Seoul, Korea) with the following thermal cycle parameters for 20 amplification reactions: initial denaturation for 5 min at 94 °C, followed by 34 cycles of 1 min each at 94 °C, 1 min at 52 °C, and 1 min at 72 °C, with a final extension for 5 min at 72 °C. PCR products were visualized on agarose gels after electrophoresis. Single bands were purified using a QIAquick PCR purification kit (QIAGEN, Dusseldorf, Germany). PCR products were sequenced in both directions by ABI 3730xl sequencer (Applied Biosystems). Resulting chromatograms were evaluated for miscalls and ambiguities and assembled into contigs in SeqManTMPro (version 7.1.0, 2006; DNASTarInc., Madison, Wisconsin, USA). The sequences were visually checked individually for protein coding frame-shifts to avoid pseudogenes (Zhang & Hewitt 1996). Consensus files were aligned using Clustal X 1.83 (Thompson et al. 1997). All sequences are deposited in the GenBank (accession numbers given in Table 1). These sequences are not unique to previously reported \textit{COI} sequences of \textit{B. tabaci}.

For identifying samples, a neighbor-joining tree was constructed based on 47 new but not unique \textit{COI} sequences together with 212 \textit{COI} sequences of \textit{B. tabaci} (including 31 species) from the GenBank (http://www.ncbi.nlm.nih.gov/genbank/) and 4 \textit{COI} sequences of \textit{B. aitripex}, \textit{B. subdecipiens}, and \textit{B. afer}, as an outgroup. Alignments of nucleotide sequences were performed using CLUSTALX with default conditions. A neighbor-joining (NJ) analysis was conducted for the combined data set, in MEGA 5.0 (Tamura et al. 2011). Intra-specific genetic divergences were calculated by using a K2P distance model (Kimura 1980) of MEGA 5.0.

In the NJ tree, the 47 \textit{COI} sequences were categorized into 3 species, \textit{MED}, \textit{MEAM1}, and \textit{JpL} (Fig. 1). Among the 47 \textit{COI} sequences, 29 \textit{COI} sequences belonged to the \textit{MED} species, with no genetic variations, while the 17 \textit{COI} sequences belonged to the \textit{JpL} species, in which divergences ranged from 0.0% to 0.2%. The one remaining \textit{COI} sequence was referred to as \textit{MEAM1}. Among the 33 reported haplotype of \textit{MED} (Fig. 1), the 29 \textit{COI} sequences from Korea were identical to \textit{COI} sequences reported from China, Croatia, Taiwan (Dinsdale et al. 2010), France (Dalmon et al. 2008), Greece (Tsagkarakou et al. 2007), Japan (Ueda 2006; Boykin et al. 2007), North America (Mckenzie et al. 2012), Spain, U.S.A. (Shatters et al. 2009), and Uganda (Sseruwagi et al. 2005). Among the 5 haplotypes of \textit{JpL} (Fig. 1), the 17 \textit{COI} sequences from Korea were identical to either of 2 types, AB308114 and AB308116 of Japan (Ueda et al. 2008), and among the 28 haplotypes of \textit{MEAM1} (Fig. 1), the one \textit{COI} sequence was identical to the \textit{COI} sequence from USA, Spain, Australia, China, Colombia, Dominican Republic, France, Guadeloupe, India, Italy, Sicily, Saudi Arabia (Dinsdale et al. 2010), Israel (Hsieh et al. 2006), Reunion (Delatte et al. 2006), and Argentina (Viscarret et al. 2003).

From the large scale sampling, we observed that \textit{MED} is widely distributed across Korea, being found in 7 of the country’s 9 provinces, GG, GB, GN, JJ, JN, CB, CN. Also \textit{JpL} was detected from GG, JJ, and JB (Fig. 2A). On the other hand, \textit{MEAM1} was only detected in GG. We compared our results with prior research papers (Lee et al. 2000; Lee et al. 2005; Park et al. 2010; Lee et al. 2012) and confirmed that there has been a considerable change in the relative abundance of \textit{MEAM1} and \textit{MED} (Fig. 2) in that \textit{MED} has been displacing the earlier invader, \textit{MEAM1}. The displacement of an earlier invasive \textit{B. tabaci} race by a new invasive race has been reported in several countries such as China (Liu et al. 2007) and Aus-
Table 1. Collection of *Bemisia tabaci* samples in the Republic of Korea from 2009 to 2013.

Region	Host plant	Collection sites	Collection date	Status	No. of collection	Voucher number	Species	Accession number
JJ, Jeju-si	Lamium amplexicaule	greenhouse	2009-12-08	Adult	4	091208GS-C1	MED	KF468455
JJ, Jeju-si	Conyza sumatranseis	near greenhouse	2009-12-08	Adult	2	091208GS-C10	MED	KF468456
JJ, Jeju-si	Lycopersicon esculentum	greenhouse	2009-12-08	Adult	15	091208GS-C12	MED	KF468457
JJ, Jeju-si	Lamium amplexicaule	near greenhouse	2009-12-08	Adult	5	091208GS-C14	MED	KF468458
JJ, Jeju-si	Conyza sumatranseis	outdoors	2010-01-27	3rd nymph	17	100127GS-C15	MED	KF468459
JJ, Jeju-si	Malva pusilla	near greenhouse	2009-12-08	Adult	1	091208GS-C18	MED	KF468460
JJ, Jeju-si	Lamium amplexicaule	near greenhouse	2009-12-08	Adult	5	091208GS-C19	MED	KF468461
JJ, Jeju-si	Lycopersicon esculentum	greenhouse	2009-12-08	Adult	4	091208GS-C2	MED	KF468462
JJ, Jeju-si	Leonurus sibiricus	near greenhouse	2009-12-08	Adult	4	091208GS-C20	MED	KF468463
JJ, Jeju-si	Conyza sumatranseis	greenhouse	2009-12-08	Adult	5	091210GS-C22	MED	KF468464
JJ, Jeju-si	Lycopersicon esculentum	greenhouse	2009-12-08	Adult	5	091208GS-C3	MED	KF468465
JJ, Jeju-si	Conyza sumatranseis	greenhouse	2009-12-08	Adult	4	091208GS-C4	MED	KF468466
JJ, Jeju-si	Veronica persica	near greenhouse	2009-12-08	Adult	1	091208GS-C6	MED	KF468467
JJ, Jeju-si	Lycopersicon esculentum	greenhouse	2009-12-08	Adult	5	091208GS-C7	MED	KF468468
JJ, Jeju-si	Malva pusilla	near greenhouse	2009-12-08	Adult	1	091208GS-C8	MED	KF468469
JJ, Jeju-si	Lactuca indica var. laciniata	greenhouse	2009-12-08	Adult	2	091208GS-C9	MED	KF468470
GN, Hapcheon-gun	Lycopersicon esculentum	greenhouse	2010-06-29	Adult	8	100629GS-B1	MED	KF468471
GN, Uiryeong-gun	Lycopersicon esculentum	greenhouse	2010-06-30	Adult	8	100630GS-B12	MED	KF468472
GB, Gyeongju-si	Lycopersicon esculentum	greenhouse	2010-07-01	Adult	8	100701GS-B5	MED	KF468473
GB, Andong-si	Lycopersicon esculentum	greenhouse	2010-07-02	Adult	12	100702GS-B6	MED	KF468474
GN, Damyang-gun	Lycopersicon esculentum	greenhouse	2010-10-01	Adult	12	101001GS-D1	MED	KF468475
CB, Okcheon-gun	Lycopersicon esculentum	greenhouse	2010-10-25	Adult	6	101025GS-D7	MED	KF468476
JB, Iksan	Lonicera japonica	outdoors	2012-06-04	4th nymph	1	120604GS-434	JpL	KF468477
JB, Iksan	Lonicera japonica	outdoors	2012-06-04	nymph	11	121024GS-435	JpL	KF468478
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-24	Adult	1	121024GS-710	JpL	KF468479
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-24	Adult	1	121024GS-711	JpL	KF468480
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-24	3rd nymph	4	121024GS-719	JpL	KF468481
JJ, Jeju-si	Perilla frutescens var. japonica	outdoors	2012-10-24	Adult	2	121024GS-723	MED	KF468482
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-25	3rd nymph	2	121025GS-755	MED	KF468483
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-25	3rd nymph	1	121025GS-771	JpL	KF468484
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-25	3rd nymph	1	121025GS-757	MED	KF468485
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-25	4th nymph	1	121025GS-760	JpL	KF468486
JJ, Jeju-si	Lonicera japonica	outdoors	2012-10-25	4th nymph	1	121025GS-761	MED	KF468487

Mediterranean and Middle East-Asia Minor 1
Table 1. (Continued) Collection of *Bemisia tabaci* samples in the Republic of Korea from 2009 to 2013.

Region	Host plant	Collection sites	Collection date	Status	No. of collection	Voucher number	Species	Accession number
JJ, Jeju-si	*Lonicera japonica*	outdoors	2012-10-24	Egg	3	121024GS-763	JpL	KF468488
JJ, Jeju-si	*Lonicera japonica*	outdoors	2012-10-24	Egg	3	121024GS-764	JpL	KF468489
CB, Goesan-gun	*Lonicera japonica*	outdoors	2012-10-19	4th nymph	1	121019GS-770	JpL	KF468490
GG, Ansan-si	*Lactuca indica var. laciniata*	outdoors	2012-09-26	4th nymph	2	120926GS-663	JpL	KF468491
GG, Namyangju-si	*Lonicera japonica*	outdoors	2012-09-27	4th nymph	6	120927GS-665	JpL	KF468492
GG, Namyangju-si	*Lonicera japonica*	outdoors	2012-09-27	3rd nymph	2	120927GS-669	JpL	KF468493
GG, Namyangju-si	*Lonicera japonica*	outdoors	2012-09-27	1st nymph	2	120927GS-671	JpL	KF468494
GG, Namyangju-si	*Lonicera japonica*	outdoors	2012-09-27	4th nymph	2	120927GS-673	JpL	KF468495
GG, Namyangju-si	*Lonicera japonica*	outdoors	2012-09-27	2nd nymph	8	120927GS-677	JpL	KF468496
GG, Goyang-si,	*Euphorbia milii var. splendens*	greenhouse	2013-07-04	Adult	23	130704GS-001	MeAM1	KF468497
CN, Buyeo-gun	*Lycopersicon esculentum*	greenhouse	2013-07-11	Adult	15	130711GS-002	MED	KF468498
CN, Cheongyang-gun	*Duranta erecta*	greenhouse	2013-07-11	Adult	30	130711GS-003	MED	KF468499
GG, Yongin-si	*Lycopersicon esculentum*	greenhouse	2013-07-18	Adult	12	130718GS-004	MED	KF468500
GG, Suwon-si	*Lycopersicon esculentum*	greenhouse	2013-07-19	Adult	7	130719GS-005	MED	KF468501

Mediterranean and Middle East-Asia Minor 1
Fig. 1. Neighbor-joining tree based on 259 COI sequences of *Bemisia tabaci*.
Florida entomologist (De Barro et al. 2011). JpL had been reported only in Japan only until now (Ueda et al. 2008). In this survey, JpL was recorded in Korea for the first time. In Japan (Ueda et al. 2008) and Korea (in this study), most of the JpL samples were collected on the Japanese honeysuckle, Lonicera japonica Thunb. (Dipsacales: Caprifoliaceae). This is a native plant in temperate eastern Asia regions including Japan and Korea (Williams et al. 2001), suggesting that JpL may be mainly distributed in the East Asian region.

Recently, Lee et al. (2010) reported that the Korean MED had the same tRNA sequence as those from Iran (AF247525) and Nigeria (AF247526), suggesting that this species was introduced either from Africa or the Near East to Korea. However, because these are unpublished sequences, this finding is not conclusive. In this study, we observed that the 29 COI sequences of the MED species from Korea were identical to those from wide areas of the world (including China, Croatia, France, Greece, Japan, North America, Spain, Taiwan, U.S.A., and Uganda), indicating that the place of the origin of this putative species is unsettled.

This study was supported by a grant of the Research Program for Agricultural Science & Technology Development (Project No. PJ008946), National Academy of Agricultural Science, Suwon, Korea. A grant was also supported by the Ministry of Food, Agriculture, Forestry and Fisheries.

Fig. 2. Distribution of 3 species of the Bemisia tabaci complex in Korea from 2000 to 2013. A, Mediterranean, Middle East-Asia Minor 1, and JpL from 2009 to 2013. B, Mediterranean from 2005 to 2012. C, Middle East-Asia Minor 1 from 2000 to 2012.

REFERENCES CITED

Boykin, L. M., Shatters Jr., R. G., Rosell, R. C., McKenzie, C. L., Bagnall, R. A., Bagnall, R. A., De Barro, P., and Frohlich, D. R. 2007. Global relationships of Bemisia tabaci (Hemiptera: Aleyrodidae) revealed using Bayesian analysis of mitochondrial COI DNA sequences. Mol. Phylogenet. Evol. 44: 1306-1319.

Brown, J., Frohlich, D., and Rosell, R. 1995. The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a species complex? Annu. Rev. Entomol. 40: 511-534.

Brown, J. K. 2000. Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Res. 71: 233-260.

Byrne, D. N., and Bellows Jr., T. S. 1991. Whitefly biology. Annu. Rev. Entomol. 36: 431–457.

Chu, D., Jiang, T., Liu, G. X., Jiang, D. F., Tao, Y. L., Fan, Z. X., Zhou, H. X., and Bi, Y. P. 2007. Biotype status and distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) in Shandong province of China based on mitochondrial DNA markers. Environ. Entomol. 36: 1290-1295.

Dalmon, A., Halkett, F., Granier, M., Delatte, H., and Peterschmitt, M. 2008. Genetic structure of the invasive pest Bemisia tabaci: evidence of limited but persistent genetic differentiation in glasshouse populations. Heredity. 100:316-325.

De Barro, P. J., Driver, F., Trueeman, J. W., and Curran, J. 2000. Phylogenetic relationships of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Mol. Phylogenet. Evol. 16: 29-36.
DE BARRO, P. J., LIU, S. S., BOYKIN, L. M., AND DINSDALE, A. B. 2011. Bemisia tabaci: a statement of species status. Annu. Rev. Entomol. 56: 1-19.

DELATTE, H., DAVID, P., GRANIER, M., LETT, J. M., GOLDBACH, R., PETERSCHMITT, M., AND REYNAUD, B. 2006. Microsatellites reveal extensive geographical, ecological and genetic contacts between invasive and indigenous whitefly biotypes in an insular environment. Genet. Res. 87: 109-124.

DINSDALE, A., COOK, L., RIGINOS, C., BUCKLEY, Y. M., AND DE BARRO, P. 2010. Refined Global Analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodidae) Mitochondrial Cytochrome Oxidase I to Identify Species Level Genetic Boundaries. Ann. Entomol. Soc. America 103: 196-208.

HONG, K. J., LEE, J. -H., LEE, G. -S., AND LEE, S. 2012. The status quo of invasive alien insect species and plant quarantine in Korea. J. Asia Pacific Entomol. 15: 521-532.

HSIEH, C. H., WANG, C. H., AND KO, C. C. 2006. Analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) species complex and distribution in eastern Asia based on mitochondrial DNA markers. Ann. Entomol. Soc. America 99: 768-775.

HU, J., DE BARRO, P., ZHAO, H., WANG, J., NARDI, F., AND LARANJA, J. S. 2011. An extensive field survey combined with a phylogenetic analysis reveals rapid and widespread invasion of two alien whiteflies in China. PLoS One 6: e16061.

KIMURA, M. 1980 A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.

LEE, H., SONG, W., KWAK, H. R., KIM, J. D., PARK J., AHN, C. K., KIM, D. H., LEE, K. Y., LEE, S., AND CHOI, H. S. 2010 Phylogenetic analysis and inflow route of tomato yellow leaf curl virus (TYLCSV) and Bemisia tabaci in Korea. Mol. Cells 30: 467-476.

LEE, M. -L., AND PAUL, J. D. B. 2000. Characterization of Different Biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) in South Korea Based on 16S Ribosomal RNA Sequences. Korean J. Entomolology 30: 125-130.

LEE, M., KANG, S., LEE, S., LEE, H.-S., CHOI, J.-Y., LEE, G.-S., KIM, W.-Y., LEE, S.-W., KIM, S.-G., AND UHM, K.-B. 2005 Occurrence of the B- and Q-biotypes of Bemisia tabaci in Korea. Korean J. Appl. Entomol. 44: 169-175.

LEE, W., PARK, J., LEE, G. S., LEE, S., AND AKIMOTO, S., 2013 Taxonomic status of the Bemisia tabaci Complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS One 8: e63817.

LEE, Y.-S., KIM, J.-Y., HONG, S.-S., PARK, J., AND PARK, H.-H. 2012. Occurrence of sweet-potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) and its response to insecticide in Gyeongsang Province. Korean J. Appl. Entomol. 12: 377-382.

LIU, S.-S., BARRO, P. J. D., XU, J., LUAN, J.-B., ZANG L.-S., RUAN, Y.-M., AND WANG, F.-H. 2007. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318: 1769-1772.

MCKENZIE, C. L., BETHKE, J. A., BYRNE, F. J., CHAMBERLIN, J. R., DENNEHY, T. J., DICKEY, A. M., GILREIN, D., HALL, P. M., LUDWIG, S., OETTING, R. D., OSBORENE, L. S., SCHMALE, L., AND SHATTERS, R. G., JR. 2012. Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) biotypes in North America after the Q invasion. J. Econ. Entomol. 105: 753-766.

PARK, J., JAHAN, S. M. H., SONG, W.-G., LEE, H., LEE, Y.-S., CHOI, H.-S., LEE, K. -S., KIM, C.-S., LEE, S., AND LEE, K.-Y. 2012. Identification of biotypes and secondary endosymbionts of Bemisia tabaci in Korea and relationships with the occurrence of TYLCV disease. J. Asia Pacific Entomol. 15: 186-191.

SHATTERS, R. G., JR., POWELL, C. A., BOYKIN, L. M., LIANGSHENG H., AND MCKENZIE, C. L. 2009. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers. J. Econ. Entomol. 102: 750-758.

SIMON, C., FRATI, F., BECKENBACH, A., CRESPI, B., LUI, H., AND FLOOK, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequenc- es and a compilation of conserved polymerase chain reaction “primers”. Ann. Entomol. Soc. America 87: 651-701.

SSERUWAGI, P., LEGG, J. P., MARUTHI, M. N., COLVIN, J., REY, M. E. C., AND BROWN, J. K. 2005. Genetic diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) populations and presence of the B biotype and a non-B biotype that can induce silverleaf symptoms in squash, in Uganda. Ann. Appl. Biol. 147: 253-265.

TAMURA, K., PETERSON, D., PETERSON, N., STECHER, G., NEI, M., AND KUMAR, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum like-lihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

THOMPSON, J. D., GIBSON, T. J., PLEWNIAK, F., JEANMOUGIN, F., AND HIGGINS, D. G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.

TSAGKARAKOU, A., TSAGENOPoulos, C. S., GORMAN, K., LAGNEL, J., AND BEDFORD, I. D. 2007. Biotype status and genetic polymorphism of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) in Greece: mitochondrial DNA and microsatellites. Bull. Entomol. Res. 97: 29-40.

UEDA, S. 2006 First report of the Q biotype of Bemisia tabaci in Japan by mitochondrial cytochrome oxidase I sequence analysis. Phytoparasitica 34: 405-411.

UEDA, S., KITAMURA, T., KLIJIMA, K., HONDA, K.-I., AND KANMIYA, K. 2008. Distribution and molecular characterization of distinct Asian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in Japan. J. Appl. Entomol. 132: 355-366.

VISCARRET, M. M., TORRES-JEREZ, I., AGOSTINI DE MANERO, E., LOPEZ, S. N., BOTTO, E. E., AND BROWN, J. K. 2003. Mitochondrial DNA Evidence for a distinct New World group of Bemisia tabaci (Gennadius) (Hemiptera:Aleyrodidae) indigenous to Argentina and Bolivia, and presence of the Old World B Biotype in Argentina. Ann. Entomol. Soc. America 96: 65-79.

WILLIAMS, P. A., TIMMINS, S. M., AND SMITH, J. M. B. 2001. The biology of Australian weeds. 38. Lonicera japonica Thunb. Plant Prot. Q. 16: 90-116.

ZHANG, D.-X., AND HEWITT, G. M. (1996) Nuclear integrations: challenges for mitochondrial DNA markers. Trends Ecol. Evol. 11: 247-251.