Local Orientation-Preserving Symmetry Preserving Operations on Polyhedra

Pieter Goetschalckx
Ghent University
Krijgslaan 281-S9
9000 Ghent, Belgium
pieter.goetschalckx@ugent.be

Kris Coolsaet
Ghent University
Krijgslaan 281-S9
9000 Ghent, Belgium
kris.coolsaet@ugent.be

Nico Van Cleemput
Ghent University
Krijgslaan 281-S9
9000 Ghent, Belgium
nico.vancleemput@gmail.com

Abstract

Unifying approaches by amongst others Archimedes, Kepler, Goldberg, Caspar and Klug, Coxeter, and Conway, and extending on a previous formalization of the concept of local symmetry preserving (lsp) operations, we introduce a formal definition of local operations on plane graphs that preserve orientation-preserving symmetries, but not necessarily orientation-reversing symmetries. This operations include, e.g., the chiral Goldberg and Conway operations as well as all lsp operations. We prove the soundness of our definition as well as introduce an invariant which can be used to systematically construct all such operations. We also show sufficient conditions for an operation to preserve the connectedness of the plane graph to which it is applied.

1 Introduction

Symmetry preserving operations on polyhedra have a long history – from Plato and Archimedes to Kepler [Kep19], Goldberg [Gol37], Caspar and Klug [CK62], Coxeter [Cox71], Conway [CBG08], and many others. Notwithstanding their utility, until recently we had no unified way of defining or describing these operations without resorting to ad-hoc descriptions and drawings. In [BGS17] the concept of local symmetry preserving operations on polyhedra (lsp operations for short) was
introduced. These replace each chamber in the barycentric subdivision of a polyhedron with the same patch, which results in a new polyhedron while preserving the original symmetries. This established a general framework in which the class of all lsp operations can be studied, without having to consider individual operations separately. It was shown that many of the most frequently used operations on polyhedra fit into this framework.

However, some notable operations were not included. Most Goldberg operations and some of the extended Conway operations – like snub (see Figure 1), gyro, propeller, etc. – are chiral, so they only preserve orientation-preserving symmetries. In order to also cover these, we can generalize lsp operations by decorating double chambers instead of single chambers, similar to what Goldberg did in [Gol37] for Goldberg operations. We call these local orientation-preserving symmetry preserving (losp) operations. In this paper, we formalize this approach for losp operations as [BGS17] did for lsp operations.

![Figure 1. The Conway operation snub applied to the cube, resulting in the Archimedean solid called snub cube.](image)

In the remainder of this section we introduce a combinatorial characterization of plane graphs and the concept of chamber systems. These allow us to define losp operations in Section 2. We prove that each losp operation can be represented by a double chamber patch, but in contrast to the single chamber patch of a lsp operation, this one is not necessarily unique. We introduce the double chamber decoration of an losp operation, which can be easily constructed from the double chamber patch but is independent of the chosen patch, and therefore unique for each losp operation. After some auxiliary results, we prove that the double chamber decoration is an invariant for equivalent losp operations. This makes it possible to identify a losp operation with its double chamber decoration. In Section 3 we give a combinatorial characterization of double chamber decorations independent of the corresponding losp operation, and identify the double chamber decorations of 2-connected and 3-connected losp operations. Such a characterization is one of the first steps towards constructing a generation algorithm for losp operation as was done in [GCC20] for lsp operations. Finally, we prove that 2-connected resp. 3-connected losp operations preserve 2-connectivity resp. 3-connectivity, which makes it possible to see 3-connected losp operations as operations on polyhedra.
1.1 Plane graphs and chamber systems

In this paper, we will consider a plane graph as a rotation system on the set of directed edges.

Definition 1.1. A plane graph G is a triple (E, σ, θ) where E is a set of directed edges, σ is a permutation of E and θ is a fixed-point-free involution of E.

This definition is equivalent to the more informal way of working with plane graphs. The permutation $\sigma(e)$ gives the next edge with the same source vertex as e in clockwise direction, and $\theta(e)$ gives the inverse edge of e. Note that the set of vertices is not explicitly defined, but can be retrieved as the set of orbits of $\langle \sigma \rangle$. The orbit corresponding to a vertex v is the set of edges with source v. The faces correspond to orbits of $\langle \sigma \theta \rangle$, i.e. the set of edges with the face to its left. The size of a face is the size of its corresponding orbit.

Every plane graph G has an associated chamber system C_G [DH87]. This chamber system is obtained by constructing a barycentric subdivision of G, i.e. subdividing each edge by one vertex in its center, adding one vertex in the center of each face, and adding edges from each center of a face to its vertices and centers of edges. In C_G, each vertex v has a type $t(v) \in \{0, 1, 2\}$, indicating the dimension of its corresponding structure in G. Each edge e has the type $t(e)$ of the opposite vertex in an adjacent triangle. A chamber system C_G is a plane triangulation.

We call a pair of chambers sharing a type-0 edge a double chamber. Each chamber of C_G is contained in exactly one double chamber.

![Figure 2. The chamber system of the cube. Edges of type 0 are thin red, edges of type 1 are green and edges of type 2 are bold black. The green and black lines form the boundaries of the double chambers. The types of vertices can be derived from the incident edges.](image-url)
1.2 Chiral operations

An example of the construction of a chiral Goldberg operation is given in Figure 3. A quadrangular double chamber patch v_1, v_0, v_2, v'_0 consisting of the triangles v_1, v_0, v_2 and its counterpart v_1, v'_0, v_2 is cut out of the hexagonal lattice H. Given a plane graph G with chamber system C_G, we can glue this patch into each double chamber of C_G. The result is a plane graph G' with the same orientation-preserving symmetries as G, but not necessarily the same orientation-reversing symmetries.

![Figure 3. The double chamber patch of a chiral Goldberg operation, with a simple path P in dashed lines.](image)

The symmetries of the hexagonal lattice ensure that after cutting and gluing the patch everything still fits together. But in order to have a combinatorial approach to the operations, we prefer to cut over a simple path P in C_H instead of cutting through edges and faces in arbitrary places. We will prove in Lemma 2.4 that it is always possible to find such a path.

It would be easy if we could split the double chamber patch into two separate triangles such that each triangle corresponds to the single chamber patch of an lsp operation [BGS17], and decorate each of the two types of chambers of C_G with one of these two patches. Unfortunately, this is not always possible. In Figure 4, such an example is given. This is a double chamber patch for the lopsp operations snub.

2 Lopsp operations

We define lopsp operations in a similar way to lsp operations, but instead of decorating each chamber with a single chamber patch, we will decorate double chambers.

Definition 2.1. Let T be a connected tiling of the Euclidean plane with chamber system C_T, and let v_0 and v_2 be points in the Euclidean plane such that v_0 is the
center of a rotation ρ_{v_0} by 120 degrees in clockwise direction that is a symmetry of T and v_2 is the center of a rotation ρ_{v_2} by 60 degrees in clockwise direction that is a symmetry of T.

We call (T, v_0, v_2) a local orientation-preserving symmetry preserving operation, lopsp operation for short.

Let $v'_0 = \rho_{v_2}(v_0)$. The rotation $\rho_{v_1} = \rho_{v_2} \circ \rho_{v_0}$ is a rotation by 180 degrees with center v_1, and $v'_0 = \rho_{v_1}(v_0)$.

In contrast to lsp operations, there is no obvious way to apply lopsp operations. We want to cut out the double chamber patch v_2, v_0, v_1, v'_0 and glue it into each double chamber, but the straight lines between these vertices do not always coincide with edges of C_T, and if we allow other cut-paths there are multiple possibilities (see Figure 5).

It is not difficult to imagine that no matter how we cut out this patch, the result after gluing them together will be the same. If we choose another path between v_1 and v_0 or between v_0 and v_2, we have to adapt the path between v_1 and v'_0 resp. v'_0 and v_2 accordingly, and the changes will cancel each other out when we glue the patches together. This suggests that if we identify the vertices and edges on the border v_1, v_0, v_2 of the patch with the vertices and edges on the
border v_1, v'_0, v_2, the result is a triangulation of the sphere invariant under the chosen path. In Figure 6 the resulting triangulation for the snub operation is given. We can even construct this triangulation without choosing a path.

![Figure 6](image)

Figure 6. The double chamber decoration of snub (see Figure 1), with the simple path corresponding to the double chamber patches of Figures 4 and 5 in dashed resp. dotted lines.

For $C_T = (E, \sigma, \theta)$, consider the quotient set $\overline{E} = E/\langle \rho_{v_0}, \rho_{v_2} \rangle$. With \overline{e} the equivalence class of e in \overline{E}, we define

$$
\overline{\sigma}(\overline{e}) = \sigma(e),
\overline{\theta}(\overline{e}) = \theta(e),
\overline{t}(\overline{e}) = t(e).
$$

Definition 2.2. The plane graph $(\overline{E}, \overline{\sigma}, \overline{\theta})$ described above together with labeling function $\overline{t}: \overline{E} \rightarrow \{0, 1, 2\}$ and special vertices v_0, v_1 and v_2 is called the double chamber decoration of the lops operation (T, v_0, v_2).

Since for all $e_1, e_2 \in E$ with $\overline{e_1} = \overline{e_2}$ there exists a symmetry $\rho \in \langle \rho_{v_0}, \rho_{v_2} \rangle$ with $\rho(\sigma(e)) = \sigma(\rho(e)), \rho(\theta(e)) = \theta(\rho(e))$ and $\rho(t(e)) = t(\rho(e))$ such that $\rho(e_1) = e_2$, it is easy to prove that $\overline{\sigma}, \overline{\theta}$ and \overline{t} are well-defined and $(\overline{E}, \overline{\sigma}, \overline{\theta})$ is indeed a plane graph. Although we defined the labeling function t only on edges, the types of vertices can be easily derived from the types of its incident edges.

Lemma 2.3. The double chamber decoration of a lops operation is a plane triangulation.

Proof. Since C_T is a triangulation, we know that $(\sigma\theta)^3(e) = e$ for all edges $e \in E$. It follows immediately that $(\overline{\sigma\theta})^3(\overline{e}) = \overline{e}$ for all edges $\overline{e} \in \overline{E}$. Since

$$
\overline{t}(\overline{\sigma\theta}(\overline{e})) = t(\sigma\theta(e)) \neq t(\theta(e)) = t(e) = \overline{t}(\overline{e}),
$$

it is impossible that $\overline{\sigma\theta}(\overline{e}) = \overline{e}$ or $(\overline{\sigma\theta})^2(\overline{e}) = \overline{e}$. Therefore, the size of each orbit of $\langle \overline{\sigma\theta} \rangle$ is 3, which means that all the faces are triangles. \qed
Now that we obtained the double chamber decoration D without choosing a cut-path, we can choose a path in D instead of C_T. This is easier to do, because we do not have to take the symmetries into account. We can always find a path along the edges of C_T, without crossing through edges or faces.

Lemma 2.4. If D is the double chamber decoration of a lopsop operation, there exists a simple path P between v_1 and v_2 through v_0.

Proof. Since D is a plane triangulation, it is 3-connected and therefore also 2-connected. It stays 2-connected if we temporarily add a vertex w with edges to v_1 and v_2. By Menger's theorem [Men27], there exist two disjoint paths between w and v_0. This is only possible if there are disjoint paths from v_1 to v_0 and from v_0 to v_2.

We apply a double chamber decoration D to a plane graph G by cutting D open along the simple path P from the lemma above, which is the subdivided patch v_1, v_0, v_2, v'_0 that we glue into each double chamber of G. Instead of cutting and gluing, we can describe this application combinatorially.

Denote the set of directed edges on the path from v_2 to v_0 by P_2, and their inverses by P_2'. Denote the set of directed edges on the path from v_1 to v_0 by P_1, and their inverses by P_1'.

There is a one-to-one correspondence between the directed edges of a plane graph $G = (E, \sigma, \theta)$ and the double chambers of C_G, where each edge e corresponds to the double chamber c_e immediately to its left. The operations $s_1(c_e) = c_{\theta(e)}$ and $s_2(c_e) = c_{\sigma^{-1}\theta(e)}$ correspond to traversing the cyclic order around vertices of type 1 resp. 2. We call the set of double chambers of G along with s_1 and s_2 the **double chamber system** of G.

Definition 2.5. Given a plane graph G with double chamber system C and a double chamber decoration $D = (E, \sigma, \theta)$ with simple path P satisfying Lemma 2.4, the
application of \((D, P)\) to \(G\) results in a plane graph \(D_P(G) = (E \times C, \sigma_P, \theta_P)\) with
\[\sigma_P((e, c)) = (\sigma(e), s_{P_e}(c)) \quad \text{and} \quad \theta_P((e, c)) = (\theta(e), s_{P_e}(c)) \]
where

\[
s_{P_e} = \begin{cases}
 s_2 & \text{if } e \in P_2 \\
 s_1^{-1} & \text{if } e \in P_1 \\
 s_2^{-1} & \text{if } e \in P_2' \\
 s_1 & \text{if } e \in P_1' \\
 1 & \text{else}
\end{cases}
\]

It is possible that there is more than one simple path that satisfies Lemma 2.4. We still have to prove that the result of the operation does not depend on the chosen path \(P\). We will do that in Theorem 2.7, but we first introduce some new terminology.

Given a double chamber decoration \(D\) with two simple paths \(P\) and \(Q\) satisfying Lemma 2.4, consider the subgraph of \(C_D\) consisting of all the edges in \(P\) and \(Q\) (see Figure 8 for an example). In order to avoid confusion, we will refer to the faces of this subgraph as \(\text{regions}\). With each directed edge \(e\) of \(C_D\), we associate exactly one region \(R_e\). If \(e\) is an edge in \(P\) or \(Q\) we choose the region at the left-hand side of \(e\), and for all other edges we choose the containing region. A \(\text{region path} R_0, \ldots, R_n\) is a sequence of regions such that for each \(i < n\) there exists an edge \(e_i \in Q \setminus P\) such that \(e_i\) is associated with \(R_i\) and \(\theta(e_i)\) is associated with \(R_{i+1}\). A region path corresponds to the operation \(r_1 \circ \cdots \circ r_n\) with \(r_i = s_{Q,e_i}\). Two region paths are called equivalent if they correspond to the same operation.

![Figure 8. The regions of the double chamber decoration of snub (see Figure 6) with two simple paths.](image)

Lemma 2.6. Given a double chamber decoration \(D\) with two simple paths \(P\) and \(Q\) satisfying Lemma 2.4, there exists a region \(R_{PQ}\) such that there is a region path between \(R_{PQ}\) and a region incident to \(v_2\) with an associated operation of the form
and a region path between R_{PQ} and a region incident to v_1 with an associated operation of the form s_1^1.

Proof. Choose a region path $R = R_0, \ldots, R_n$ with R_0 incident to v_1 and R_n incident to v_2 and associated operation $r = r_1 \cdots r_n$. Such a region path exists because P contains no cycles, so all regions are connected. If we add one vertex in each region and one vertex on each edge in Q, and an edge between a vertex in a region and a vertex on an edge if the edge is in the border of the region, this region path induces a path on these edges in a canonical way, and each operation r_i corresponds to an intersection of R and Q. An example is given in Figure 9.

![Figure 9. Examples of region paths](image)

We will prove that if r_i and r_j correspond to two intersections of R and Q_t with $t \in \{1, 2\}$ that are consecutive on Q_t, then $r_{i+1} \cdots r_{j-1}$ is the identity operation. For $j = i + 1$ this is obvious. Suppose $j > i + 1$. The subpath of Q_t between r_i and r_j together with the region path between r_i and r_j forms a closed cycle. If there is an intersection with Q_s in r_a with $a = i + 1$, there will be another intersection in r_b with $a < b < j$ and $r_b = r_a^{-1}$, as illustrated in Figure 9. We can assume by induction that $r_a \cdots r_b = r_a r_b = 1$. If $b < j - 1$, we can repeat this for $a = b + 1$ until $b = i + 1$ and thus $r_{i+1} \cdots r_{j-1} = 1$.

Take m so that $r_m \in \{s_1, s_1^{-1}\}$ and $r_i \in \{s_2, s_2^{-1}\}$ for all $i > m$. If Q_2 crosses R in r_a with $1 < a < m$ and $r_i \in \{s_1, s_1^{-1}\}$ for $i < a$, it will cross again in r_b with $a < b < m$, and $r_a \cdots r_b = 1$. We can repeat this as long as there is an $r_c \in \{s_2, s_2^{-1}\}$ with $b < c < m$, until $r_1 \cdots r_m = s_k^1$. Since $r_{m+1} \cdots r_n = s_l^1$, the region between r_m and r_{m+1} satisfies the conditions of R_{PQ}.

We are now ready to prove that the application of a double chamber decoration $D = (E, \sigma, \theta)$ to a graph G with double chamber system C is independent of the
chosen simple path P. In order to do that, we will construct an isomorphism between the plane graphs $D_P(G)$ and $D_Q(G)$, with Q another simple path satisfying Lemma 2.4. By choosing the region R_{PQ}, we fix canonical points $R_{PQ} \times C$ that will be invariant under this isomorphism.

Theorem 2.7. Given a plane graph G with double chamber system C and a double chamber decoration $D = (E, \sigma, \theta)$ with two simple paths P and Q satisfying Lemma 2.4, there exists an isomorphism between $D_P(G)$ and $D_Q(G)$.

Proof. Choose a region R_{PQ} satisfying Lemma 2.6 and consider the function

$$f : E \times C \to E \times C : (e, c) \mapsto (e, s_{PQ,e}(c))$$

with $s_{PQ,e}$ the operation associated with a region path from R_{PQ} to R_e. We will first prove that f is a homomorphism between $D_P(G)$ and $D_Q(G)$. Since

$$\sigma(f((e,c))) = \sigma((e, s_{PQ,e}(c))) = (\sigma(e), s_{Q,e}s_{PQ,e}(c))$$

$$f(\sigma((e,c))) = f((\sigma(e), s_{PQ,e}(c))) = (\sigma(e), s_{PQ,\sigma(e)}s_{PQ,e}(c)),$$

$$\theta(f((e,c))) = \theta((e, s_{PQ,e}(c))) = (\theta(e), s_{Q,e}s_{PQ,e}(c))$$

$$f(\theta((e,c))) = f((\theta(e), s_{PQ,e}(c))) = (\theta(e), s_{PQ,\theta(e)}s_{PQ,e}(c)),$$

we only have to prove that $s_{Q,e}s_{PQ,e} = s_{PQ,\sigma(e)}s_{PQ,e}$.

Consider the case $s_{PQ,e} = 1$. The operation $s_{PQ,\sigma(e)}$, corresponding to a region path from R_{PQ} to $R_{\sigma(e)}$, is equal to $s_{PQ,e}$ followed by the operation corresponding to the region path crossing e, which is $s_{Q,e}$. Therefore, $s_{PQ,\sigma(e)}s_{PQ,e} = s_{Q,e}s_{PQ,e}$.

If $s_{PQ,e} = s_1$, there is a region path from R_{PQ} to R_e consisting of a region path from R_{PQ} to a region R_1 incident to v_1, corresponding to operation s_1^1, followed by a region path from R_1 to R_e, corresponding to operation r. Since $e \in P_1$, the region path from R_1 to R_e can follow the left-hand side of P_1. The region path from R_{PQ} to $\sigma(e)$ starts with the same region path to R_1. We can now follow the region path along the right-hand side of P_1 to $R_{\sigma(e)}$, corresponding to operation r', after we go around v_1 which corresponds to operation s_1^{-1}. In Figure 10, we see that r' is equal to r followed by $s_{Q,e}$. Therefore,

$$s_{PQ,\sigma(e)}s_{PQ,e} = r's_1^{-1}s_1^1s_1 = s_{Q,e}r's_1^k = s_{Q,e}s_{PQ,e}.$$

For $s_{PQ,e}$ equal to s_1^{-1}, s_2 and s_2^{-1}, the proof is similar.

Suppose $f((e,c)) = f((e',c'))$, i.e. $(e, s_{PQ,e}(c)) = (e', s_{PQ,e}(c'))$. It follows immediately that $e = e'$, and since $s_{PQ,e}$ is a permutation we have that $c = c'$. Thus $(e,c) = (e',c')$ and f is injective. For each $(e,c) \in E \times C$, $f((e, s_{PQ,e}(c))) = (e,c)$, and thus f is surjective.

Since f is a bijective homomorphism, it is an isomorphism between $D_P(G)$ and $D_Q(G)$.

\[\Box\]
3 Double chamber decorations

In the previous section we constructed the double chamber decoration for a given lopsp operation. This double chamber decoration contains all the necessary information in order to apply the decoration to an embedded graph, but does not depend on the tiling \(T \) or the simple path \(P \) chosen to define and apply the lopsp operation. Since two lopsp operations are equivalent if and only if they have the same double chamber decoration, it is easier to work with the double chamber decorations directly instead of deriving them from lopsp operations. But in order to do that, we need a full characterization of these graphs. This is similar to what we did for lsp operations in [GCC20].

Theorem 3.1. A plane triangulation \(D \) with vertex set \(V \) and edge set \(E \), together with a labeling function \(t : V \cup E \rightarrow \{0, 1, 2\} \) and three special vertices \(v_0, v_1, v_2 \) is a double chamber decoration of a lopsp operation if and only if

1. for each edge \(e = (v, w) \), \(\{t(e), t(v), t(w)\} = \{0, 1, 2\} \)
2. for each vertex \(v \) with \(t(v) = i \), the types of the edges incident to \(v \) are alternating between \(j \) and \(k \) with \(\{i, j, k\} = \{0, 1, 2\} \)
3. for each vertex \(v \) different from \(v_0, v_1, v_2 \)

\[
\begin{align*}
 t(v) = 1 & \Rightarrow \ deg(v) = 4 \\
 t(v) \neq 1 & \Rightarrow \ deg(v) > 4
\end{align*}
\]

and

\[
\begin{align*}
 t(v_0), t(v_2) \neq 1 \\
 deg(v_0), deg(v_2) \geq 2 \\
 t(v_1) = 1 & \Rightarrow \ deg(v_1) = 2 \\
 t(v_1) \neq 1 & \Rightarrow \ deg(v_1) \geq 4
\end{align*}
\]

Proof. It is easy to verify that the double chamber decoration of a lopsp operation satisfies these properties.
Given a graph D that satisfies the properties, there exists a simple path P between v_1 and v_2 through v_0, since the proof of Lemma 2.4 holds for all plane triangulations. We can cut D open along this path to get a subdivided patch D', and glue this patch into each double chamber of the hexagonal lattice H. The result will be a chamber system C_T of a tiling T.

We will now prove that the type-2 subgraph of D', consisting of all type-2 edges, is connected. Let u and v be two vertices in the type-2 subgraph. Since every face of D' is a cycle, D' is 2-connected. Menger’s theorem \cite{Men27} gives us that there exist two vertex-disjoint paths between u and v. Since all faces of D' except for the outer face are triangles, these two paths form a cycle with only triangles on the inside. Since u is in the type-2 subgraph, it has type 0 or 1, and there is an edge (u, u') of type 2 on or in the cycle. If $u' \neq v$, we can do the same for vertices u' and v, and we can choose a cycle that contains less triangles than the previous one. By induction, there exists a path between u and v in the type-2 subgraph of D'.

Given vertices u and v in the type-2 subgraph of C_T, there exists a sequence of chambers C_0, \ldots, C_n of H such that two consecutive chambers C_i and C_{i+1} share one side, and u is contained in C_0 and v in C_n. Since there are at least two vertices on each side of D', and they are not both of type 2, at least one of them is in the type-2 subgraph of C_T. Thus, there is a type-2 path between u and v that passes through all chambers in the sequence C_0, \ldots, C_n, and the type-2 subgraph of C_T is connected. It follows immediately that T is connected too.

We can choose the vertices of one double chamber of C_H in T as v_0, v_1, v'_0 and v_2. Now (T, v_0, v_2) satisfies Definition 2.1 of a lops operation, and the double chamber decoration of this lops operation is D.

We call a lops operation and the corresponding double chamber decoration k-connected if it is derived from a k-connected tiling T. For the following results, we need a lemma from \cite{GCC20}, which we will repeat here without proof.

Lemma 3.2. A plane graph G is

1. 2-connected if and only if C_G contains no type-1 cycles of length 2.
2. 3-connected if and only if G is 2-connected and C_G contains no non-empty type-1 cycles of length 4.

Theorem 3.3. If G is a k-connected plane graph with $k \in \{1, 2, 3\}$ and O is a k-connected lops operation, then $O(G)$ is a k-connected plane graph.

Proof. Suppose O is derived from a tiling T as in Definition 2.1.

For $k = 1$, we know that T and G are connected, and it follows easily that $O(G)$ is connected too.

For $k = 2$, we will prove that $O(G)$ is 2-connected. A type-1 cycle of length 2 in $C_{O(G)}$ is either completely contained in an area that was one double chamber of C_G before it was subdivided by O, or it is split between two areas of adjacent double chambers. Both cases cannot appear, as for any double chamber (resp. any pair of
adjacent double chambers) of \(C_G \) there is an isomorphism between the area of this double chamber (resp. two double chambers) in \(C_{O(G)} \) and the corresponding area in \(T \), and \(T \) is connected and thus has no type-1 cycles of length 2. This implies that \(C_{O(G)} \) contains no type-1 cycles of length 2.

For \(k = 3 \), we will prove that \(O(G) \) is 3-connected. Consider a type-1 cycle \(C \) with edges \(e_1, \ldots, e_n \) in \(C_{O(G)} \). Let \(C_1, \ldots, C_m \) be a sequence of double chambers of \(C_G \) such that \(e_i \) is contained in the area of \(C_i \) for \(1 \leq i \leq n \). If \(C_i = C_{i+1} \), we can remove \(C_i \) from the sequence. This results in the reduced sequence \(C_1, \ldots, C_m \).

If \(C \) has length 2, then \(m \leq 2 \). Thus, the cycle is contained in one or two neighboring areas, and it should be present in the tiling \(T \) too, which is impossible.

If \(C \) has length 4, then \(m \leq 4 \). Thus, the cycle is contained in the areas of at most 4 double chambers of \(C_G \), and each double chamber has at least one vertex or edge in common with the previous and next one, but not the same for both of them.

We will now construct a type-1 cycle in \(C_G \) though these chambers. Depending on the position of the common elements in each double chamber, we choose type-1 edges of \(C_G \) as in Figure 11.

![Figure 11](image)

Figure 11. The thick red vertices and edges are the ones in common with the previous and next double chambers. The dashed green edges are part of the chosen cycle. The choice between (e) or (f) and (i) or (j) depends on the choice in the double chamber below (the cycle has to be connected).

This results in at most 4 edges that form a type-1 cycle or single edge \(C' \) in \(C_G \). In Figure 11 we choose two edges, but since \(v_0 \) and \(v'_0 \) are of the same type, the path between them on the cycle \(C \) has to be at least of length 2 too. If \(C' \) is a
type-1 cycle, it has to be empty since G is 3-connected. Thus, the situation is as in Figure 12.

The type-1 cycle C in $C_{O(G)}$ is completely contained in the areas of double chambers of C_G adjacent to C'. The only situation where this would not necessarily imply a type-1 cycle in C_T is when C is a cycle of length 4 surrounding a type-2 vertex. This implies that C passes though 3 or 4 areas corresponding to double chambers of C_G, as illustrated in Figure 12. There are at least two areas that contain only one edge of C. But since all the areas are isomorphic, it is easy to see that this is impossible.

![Figure 12. The type-1 cycle C' with adjacent double chambers.](image)

This theorem is particularly interesting for $k = 3$, for which it says that 3-connected lopsp operations are operations on polyhedra.

Acknowledgements

The authors wish to thank the anonymous referee whose suggestions greatly improved the presentation of this work.

References

[BGS17] G. Brinkmann, P Goetschalckx, and S. Schein. “Comparing the constructions of Goldberg, Fuller, Caspar, Klug and Coxeter, and a general approach to local symmetry-preserving operations”. In: *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* 473.2206 (2017).

[CBG08] J.H. Conway, H. Burgiel, and C. Goodman-Strauss. *The Symmetries of Things*. A K Peters, 2008, p. 426.

[CK62] D. L. D. Caspar and A. Klug. “Physical Principles in the Construction of Regular Viruses”. In: *Cold Spring Harbor Symposia on Quantitative Biology*. Vol. 27. 1962, pp. 1–24.
[Cox71] H.S.M. Coxeter. “Virus Macromolecules and Geodesic Domes”. In: J.C. Butcher. A Spectrum of Mathematics. essays presented to H.G. Forder. Ed. by J.C. Butcher. Auckland University Press, 1971, pp. 98–107.

[DH87] A.W.M. Dress and D. Huson. “On tilings of the plane”. In: Geometriae Dedicata 24.3 (1987), pp. 295–310.

[GCC20] P. Goetschalckx, K. Coolsaet, and N. Van Cleemput. “Generation of Local Symmetry Preserving Operations”. In: Ars Mathematica Contemporanea (2020). arXiv: 1908.11622.

[Gol37] M. Goldberg. “A Class of Multi-Symmetric Polyhedra”. In: Tohoku Mathematical Journal. First Series 43 (1937), pp. 104–108.

[Kep19] J. Kepler. Ioannis Keppleri Harmonices mundi libri V. Linz, 1619.

[Men27] K. Menger. “Zur allgemeinen Kurventheorie”. In: Fundamenta Mathematicae 10.1 (1927), pp. 96–115.