Evolution and predictive factors of thyroid disorder due to interferon alpha in the treatment of hepatitis C

Moana Gelu-Simeon, Aurore Burlaud, Jacques Young, Gilles Pelletier, Catherine Buffet

AIM: To study predictive factors of thyroid dysfunction associated with interferon-alpha (IFNα) therapy in chronic hepatitis C (CHC) and to describe its long-term evolution in a large population without previous thyroid dysfunction.

METHODS: We performed a follow-up of thyroid function and detection of thyroid antibodies in 301 patients treated for CHC with IFNα from 1999 to 2004.

RESULTS: Thyroid disorder developed in 30/301 (10%) patients with a mean delay of 6 ± 3.75 mo: 13 patients had hyperthyroidism, 11 had hypothyroidism, and 6 had biphasic evolution. During a mean follow-up of 41.59 ± 15.39 mo, 9 patients with hyperthyroidism, 3 with hypothyroidism, and 4 with biphasic evolution recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form. Low fibrosis was found to be a predictive factor of dysthyroidism. Thyroid disorder recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form. Low fibrosis was found to be a predictive factor of dysthyroidism. Thyroid disorder recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form. Low fibrosis was found to be a predictive factor of dysthyroidism. Thyroid disorder recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form. Low fibrosis was found to be a predictive factor of dysthyroidism. Thyroid disorder recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form.

CONCLUSION: In this monocentric population of CHC, dysthyroidism, especially hyperthyroidism, developed in 10% of patients. Low fibrosis was found to be a predictive factor of dysthyroidism. Thyroid disorder recovered in 16/30 patients (53%) and recovery was better in the non-autoimmune form.

© 2009 The WJG Press and Baishideng. All rights reserved.

Key words: Chronic hepatitis C; Interferon alpha; Predictive factors; Thyroid disorder

INTRODUCTION

Three alpha interferons and two peg-interferons are currently commercially available for the treatment of chronic hepatitis C (CHC). Since 2001, peg-interferons have been used in association with ribavirin[1,2], and they have become the reference treatment for CHC since the French consensus conference in 2002[3]. In the presence or absence of ribavirin, interferon-alpha (IFNα) has a well-known side effect profile. Some side effects are common, such as pseudo-flu syndrome, headaches, myalgia, fever, wasting, leucopenia or thrombocytopenia. Indeed, clinicians often reduce the dose or sometimes discontinue IFNα in those patients who develop thyroid dysfunction, thus possibly compromising the therapeutic response to this treatment. In 1995, Preziati et al[4] reported that 9.3% of patients with CHC receiving IFNα developed thyroid dysfunction. During the treatment of CHC, IFNα-induced thyroid dysfunction appears in 3% to 15% of cases[5-9], with various clinical presentations. In previous
studies, the number of patients included was insufficient in certain cases[6,7,14], and other studies did not exclude patients with a past history of dysthyroidism[4,8,9,12,14]. However, the long-term course and the risk factors of thyroid disorder are not well understood[6,7,14].

In this single-center study we report on a large population of patients without previous thyroid dysfunction who underwent IFNα treatment for CHC. Our objectives were to describe the prevalence and long-term course of thyroid disorder in this population and to assess the factors that are predictive of dysthyroidism.

MATERIALS AND METHODS

Patients

We studied all patients with CHC, treated with IFNα from January, 1999 to May, 2004 at the Department of Hepatology and Gastroenterology at Bicêtre Hospital (Kremlin-Bicêtre, France). Patients with human immunodeficiency virus or hepatitis B virus co-infection, hemophiliacs and patients with a past history of thyroid disorder were systematically excluded. Before 2002, a liver biopsy was performed in each patient in order to evaluate inflammatory activity and the stage of liver fibrosis measured by the Metavir score[15]. Since 2002, liver biopsy was performed only in patients with genotype 1, 4 or 5. Patients received standard interferon alpha (2a), 3 MU subcutaneously thrice weekly, peg-interferon alpha (2b) (Viraferon pegα, Schering Plough, NJ, USA) 1.5 μg per kilogram of body weight subcutaneously once weekly or peg-interferon alpha (2a) (Pegasys®, Hoffmann-La Roche, Ltd, Switzerland) 180 μg subcutaneously once weekly, with or without 800 mg to 1200 mg of ribavirin per day. Thyroid-stimulating hormone (TSH) was measured before and every eight weeks during the antiviral treatment. Therapeutic follow-up of thyroid disorder was then performed until June, 2006. Thyroid peroxidase antibodies (TPOAb), thyroglobulin antibodies (TgAb) and thyroid-stimulating hormone receptor antibodies (TSHRAb) were measured before the start of antiviral treatment and after the diagnosis of thyroid disorder as necessary.

Methods

The diagnosis of CHC was based on positive hepatitis C virus antibodies assessed by a second or third generation enzyme immunoassay. Hepatitis C virus RNA was measured by polymerase chain reaction amplification of viral RNA from serum. Viral genotypes were determined using a hybridization technique (INNO-LIPA HCV, Innogenetics, Gent, Belgium). The serum levels of TSH were measured using the AutoDELFIA™ TSH Ultra assay (sensitivity 0.03 MIU/L, total analytical variation < 5%) from Wallacoy, Turku, Finland. The normal TSH range in our laboratory was 0.3-4.0 MIU/L. The serum levels of TPOAb, TgAb and TSHRAB were measured using radioimmunoassays or radioimmunometric assays. The normal ranges in our laboratory were TPOAb < 50 IU/L, TgAb < 60 IU/L and TSHRAb < 5 IU/L.

Thyroid dysfunction was diagnosed when TSH level was either < 0.3 MIU/L (hyperthyroidism) or > 4.0 MIU/L (hypothyroidism) by two successive tests. Thyroid ultrasonography or thyroid scintigraphy was performed according to the clinical judgement of the endocrinologist. We have previously found three profiles of dysthyroidism: hyperthyroidism, hypothyroidism and a short hyper-followed by long hypothyroidism classically named biphasic evolution[4,8,9,12,13].

Statistical analysis

The predictive values of the following factors were analyzed: patients age at onset of the antiviral treatment, gender, mode of contamination, viral load and genotype, grade of histological fibrosis, type and duration of the antiviral therapy, TSH levels and the presence of TgAb, TPOAb or TSHRAb before the antiviral treatment.

Descriptive statistics were obtained using the Kruskal-Wallis test as appropriate, followed by a multivariate logistic regression analysis. A two-tailed P value < 0.05 was considered significant. Data analysis was performed using the EPI-Info Statistical Package (version 3.2.2).

RESULTS

Characteristics of the study population

The main characteristics of the 301 studied patients are shown in Table 1. Genotype status was known in 224 (74%) of 301 patients, as it was not known for the patients treated before 2002. The stage of fibrosis based on the Metavir score was obtained for 94% of patients. Patients with genotype 2 or 3 treated after 2002 did not have systematic evaluation of fibrosis before antiviral treatment. 247 (87%) of the patients who had a biopsy, had moderate or severe fibrosis (equal to or more than F2). In the inclusion period, from 1999 to 2004, there was heterogeneity in the antiviral treatment. However, the majority (60.4%) of the study population received

Table 1 Characteristics of the study population

Characteristics	Total group (n = 301)
Age (yr)	48.27 ± 11.79
Gender (% M/F)	57.5/42.5
TPOAb (% positive)	1/95
TgAb (% positive)	8/227
TSHRAb (% positive)	1/95

ND: Not determined. 1 mean ± SD.

Gelu-Simeon M et al. Thyroid disorder in chronic hepatitis C 329

www.wjgnet.com
Normalisation

Mean delay (mo)

α

continued the antiviral treatment for only one month

another died before the end of follow up, 1 patient

discontinuation of antiviral treatment. Among them,

discontinued in hyperthyroidism (69%) than in

because hyperthyroidism occurred at the end of antiviral
treatment and the type of hyperthyroidism could not
be classified in 1 patient. Hypothyroidism that needed
discontinuation of antiviral treatment was more
frequently autoimmune hypothyroidism with TSH >
50 MIU/L except in 3 patients (1 with not classified with
hypothyroidism and 2 with moderate elevation of TSH).
Concerning therapeutic normalisation, no difference
was observed regarding the discontinuation of antiviral
treatment (56.6% vs 50.0%, NS). Treatment for thyroid
disease was administered to 14 symptomatic patients
(5 patients received carbimazole and 9 levothyroxine).

Prevalence of positive thyroid antibodies before antiviral
treatment

Amongst the patients tested for TPOAb (n = 229),
TgAb (n = 227) and TSHRAb (n = 94) before antiviral
treatment, 12 (5%) were found to be positive for
TPOAb (> 60 IU/L), 8 (3%) positive for TgAb (> 60 IU/L),
and only 1 (1%) for TSHRAb (> 5 IU/L).
None of these patients had thyroid disorder before
the introduction of IFNα. 7/12 patients with positive
TPOAb and 4/8 patients with positive TgAb developed
thyroid disorder during the antiviral treatment. The
patients who had positive pretherapeutic TSHRAb did
not develop Graves’ disease. Regarding the presence
of autoantibodies, IFNα induced-thyroid disease was
classified as “autoimmune form” and “non-autoimmune
form” similar to Mandac et al[18]. The autoimmune
form was defined by the development of thyroid
antibodies with or without clinical disease, including
both autoimmune hypothyroidism and Graves’ disease.
The non-autoimmune form was defined by destructive
thyroiditis or hypothyroidism with negative thyroid
antibodies. We observed that patient recovery was
significantly better in the non-autoimmune form than in
the autoimmune form (33.3% vs 66.7%, P = 0.02).

Prediction of thyroid dysfunction

As shown in Table 3, we initially performed a
univariate analysis using eight covariates (age, gender,
contamination mode, genotype, stage of histological
fibrosis, type of antiviral treatment [monotherapy with
standard IFNα or peg-interferon versus combination
of standard IFNα or peg-interferon with ribavirin] and
duration, positive autoantibodies before the antiviral
duration.
treatment: TPOAb, TgAb and TSHRAb). Four covariates were associated with dysthyroidism (gender, stage of histological fibrosis, positive TPOAb and TgAb).

Secondly, in a multivariate logistic regression analysis of predictive factors of dysthyroidism using those four covariates, one predictive factor was found. The index of fibrosis was significantly less for patients with dysthyroidism than for patients without dysthyroidism. The stage of fibrosis was less than 2 units (mild fibrosis) in 30.0% of patients with dysthyroidism vs 10.3% of patients without dysthyroidism (OR, 0.56; 95% IC, 0.33-0.97; P = 0.039). There was a non significant trend towards positive TPOAb before antiviral treatment for patients with dysthyroidism. Amongst patients with positive TPOAb before antiviral treatment, 7 (26.9%) developed dysthyroidism vs 5 (2.5%) who did not (OR, 5.31; 95% IC, 0.80-35.16; P = 0.083).

DISCUSSION

The prevalence of thyroid dysfunction during IFNα therapy for CHC was 10% in our series. Amongst the 301 patients with CHC, hyperthyroidism was more frequent (13/30) than hypothyroidism or biphasic evolution. The mean follow-up of thyroid disorder in our study was 41.59 ± 15.39 mo, 53% of patients recovered from thyroid disease without a difference regarding the discontinuation of antiviral treatment. Mild fibrosis was found to be an independent predictive factor of dysthyroidism during antiviral treatment.

Our single center study included a large population of 301 patients with CHC and we performed a long term follow-up of these patients, not only during the antiviral treatment, but also after treatment, to detect dysthyroidism in patients who had no previous thyroid dysfunction. Although the patient data were retrospective, the follow-up data were partly prospective. This may explain some of the heterogeneity in the type of antiviral treatment used. In addition, the conditions under which the antiviral treatment was stopped when dysthyroidism developed were not well defined. We evaluated the presence of positive thyroid antibodies using the same methods in all patients, and an investigative work-up of the pathology was performed for each case of thyroid dysfunction.

The prevalence of hyperthyroidism found in our study (43% vs 37% hypothyroidism) is unusual. Previous studies have reported more hypothyroidism (two out of the three cases) than hyperthyroidism (one out of the three cases)\(^\text{[11]}\) with the exception of Benelhadj et al\(^\text{[9]}\) and Hsieh et al\(^\text{[10]}\). Hsieh et al\(^\text{[10]}\) explained this difference as being related to the patient's eating habits, yet our study population was not particularly exposed to an increased risk of dysthyroidism due to eating habits. Benelhadj et al\(^\text{[9]}\) did not explain this difference as only 6 patients developed thyroid dysfunction. The discrepancy may be partly explained by the findings of several other studies including silent thyroiditis developing into hypothyroidism or biphasic evolution whereas this disease usually begins with hyperthyroidism. Furthermore, in our series, hyperthyroidism cases included 30% (4/13) with Graves’ disease, which is in the same range as a previously published series\(^\text{[20]}\).

In accordance with the presence of at least one thyroid antibody, we classified thyroid disorder, as autoimmune and non-autoimmune, which seemed to be predictive of the evolution of dysthyroidism. In this study we should have based the autoimmune form on at least one positive thyroid antibody rather than consider each positive antibody separately. Three of the four cases of Graves’ disease developed following IFNα therapy and did not recover after the end of the antiviral therapy. This suggests that IFNα triggered the development of Graves’ disease in predisposed individuals\(^\text{[21]}\). In silent thyroiditis, which is a non-autoimmune IFNα-induced thyroiditis, four patients recovered without
the addition of specific treatment when interferon was discontinued and one recovered without discontinuing antiviral treatment. This suggests that the autoimmune mechanism is more deleterious in IFNα-induced thyroid disease. Among the eleven hypothyroidism patients, therapeutic normalisation was obtained in 3 (27%) within 10.67 ± 4.04 mo. Also, the patients who developed autoimmune forms of hypothyroidism, such as autoimmune hypothyroidism, did not recover after cessation of IFNα treatment and systematically needed T4 replacement during the follow-up.

In the multivariate analysis, one factor was significantly correlated with the development of dysthyroidism during antiviral treatment: the stage of fibrosis below the F2 Metavir score. However, patients treated with IFNα had more severe fibrosis (82% of patients with a stage of fibrosis equal to or above F2). Perhaps this was correlated to the variability in the autoimmune response to hepatitis C virus infection, however, this predictive factor will require further study. Surprisingly, the presence of TPOAb before the introduction of antiviral treatment was not significant in the multivariate model whereas it was in the univariate analysis; this may have been due to the small number of patients with positive antibodies. Kabbaj et al., found three predictive factors for dysthyroidism in a univariate analysis: female gender, positive anti TPO antibodies before antiviral treatment and TSH before antiviral treatment (even if it was still in the normal ranges). We do not understand why the variable “stage of fibrosis under F2” is mentioned in the statistical analysis because only patients with fibrosis equal or more than F2 were treated. Kee et al., found that only female gender was predictive of dysthyroidism in a multivariate model. Thyroid microsomal antibody was found to be predictive of thyroid disease in a case-control study. There were no significant differences between thyroid dysfunction patients in the case-control study with respect to liver inflammation and fibrosis grade, however, the authors used the Knodell score which does not distinguish activity and fibrosis.

Some practical guidelines may be drawn from this study: the TPOAb state should be determined in patients before introducing IFNα and a regular follow-up of TSH every two mo or less is needed in patients with a risk of dysthyroidism (low fibrosis, female gender, positive TPOAb). Finally, two distinct mechanisms are described in the development of thyroid disorder during IFNα therapy: autoimmune and non-autoimmune-induced thyroid dysfunction. With regard to our results, the autoimmune form seems to have more severe consequences and longer evolution, which indicates the importance of early detection, in order to adapt the follow-up of thyroid function and therapy without discontinuing the antiviral treatment, since the discontinuation of antiviral treatment seems to have no predictive value on the evolution of dysthyroidism.

ACKNOWLEDGMENTS

The authors thank Dr. Frédérique Moati for her cordial welcome in the Department of Nuclear Medicine of Bicêtre Hospital, Dr. Béatrice Ducot for assistance in statistical analysis and Dr. Léonardo Amaral for reviewing the English language.

REFERENCES

1 Manns MP, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, Goodman ZD, Koury K, Ling M, Albrecht JK. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 2001; 358: 958-965
2 Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G, Goncales FL Jr, Haussinger D, Diago M, Carosi G, Dhumeaux D, Craxi A, Lin A, Hoffman J, Yu J. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002; 347: 975-982
3 Consensus conference. Treatment of hepatitis C. Gastroenterol Clin Biol 2002; 26 Spec No 2: B303-B320
4 Prezziati D, La Rosa L, Covini G, Marcelli R, Ressacii S, Persani L, Del Nino E, Meroni PL, Colombo M, Beek-Pecco P. Autoimmunity and thyroid function in patients with chronic active hepatitis treated with recombinant interferon alpha-2a. Eur J Endocrinol 1995; 132: 587-593
5 Benelhadj S, Marcellin P, Castelau C, Colas-Linhart N, Benhamou JP, Erlinger S, Bok B. Incidence of dysthyroidism during interferon therapy in chronic hepatitis C. Horm Res
Long-term outcome of interferon-alpha-induced thyroid autoimmunity and prognostic influence of thyroid autoantibody pattern at the end of treatment. J Clin Endocrinol Metab 2001; 86: 1925-1929

Thyroid dysfunction during treatment of chronic hepatitis C with interferon alpha: no association with either interferon dosage or efficacy of therapy. J Intern Med 2002; 251: 400-406

Thyroid autoimmune disorders in patients with chronic hepatitis C before and during interferon-alpha therapy. Clin Endocrinol (Oxf) 1996; 44: 635-642

Natural history of dysthyroidism during interferon treatment of chronic hepatitis C] Ann Endocrinol (Paris) 1996; 44: 635-642

Multiple changes in thyroid function in patients with chronic active HCV hepatitis treated with recombinant interferon-alpha. Hepatology 1997; 26: 206-210

Monocouxy C, Leymarie F, Delemer B, Levy S, Bernard-Chabert B, Bouche O, Jolly D, Diebold MD, Cadiot G, Thiefin G. Risk factors and long-term course of thyroid dysfunction during antiviral treatments in 221 patients with chronic hepatitis C. Gastroenterol Clin Biol 2005; 29: 339-345

An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996; 24: 289-293

Thyroid dysfunction during treatment of chronic hepatitis C with interferon alpha: a three-stage evolution from silent thyroiditis towards Graves' disease. Eur J Endocrinol 2006; 154: 367-372

Dysthyroidism in patients treated with interferon alpha] Presse Med 1994; 23: 1659-1663

Monocouxy C, Leymarie F, Delemer B, Levy S, Bernard-Chabert B, Lukas-Croisier C, Delemer B. Interferon-alpha-induced hyperthyroidism: a three-stage evolution from silent thyroiditis towards Graves' disease. Eur J Endocrinol 2006; 154: 367-372

The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 2006; 43: 661-672

Hepatitis C virus infection and thyroid diseases] Rev Med Interne 1999; 20: 766-773

Clinical review 169: Interferon-alpha-related thyroid disease: pathophysiological, epidemiological, and clinical aspects. J Clin Endocrinol Metab 2004; 89: 3656-3661

Interferon-alpha related thyroid disease: pathophysiological, epidemiological, and clinical aspects. J Clin Endocrinol Metab 2004; 89: 3656-3661

Thyroid disorders during interferon alpha therapy in 625 patients with chronic hepatitis C: a prospective cohort study. Ann Endocrinol (Paris) 2006; 67: 343-347

Thyroid dysfunction in patients with chronic hepatitis C receiving a combined therapy of interferon and ribavirin: incidence, associated factors and prognosis. J Gastroenterol Hepatol 2006; 21: 319-326

Clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 2006; 43: 661-672

Thyroid dysfunction during treatment of chronic hepatitis C with interferon alpha: a three-stage evolution from silent thyroiditis towards Graves' disease. Eur J Endocrinol 2006; 154: 367-372

The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 2006; 43: 661-672

Thyroid disorders during interferon alpha therapy in 625 patients with chronic hepatitis C: a prospective cohort study. Ann Endocrinol (Paris) 2006; 67: 343-347

Thyroid dysfunction in patients with chronic hepatitis C receiving a combined therapy of interferon and ribavirin: incidence, associated factors and prognosis. J Gastroenterol Hepatol 2006; 21: 319-326

S- Editor Cheng JX L- Editor Webster JR E- Editor Lin YP

www.wjgnet.com