Multimode Brownian oscillators: Thermodynamics and heat transport

Xin-Hai Tong, Hong Gong, Yao Wanga Rui-Xue Xub and Yi Jing Yan

Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

(Dated: 29 March 2023)

In this work, we investigate the multimode Brownian oscillators in nonequilibrium scenarios with multiple reservoirs at different temperatures. For this purpose, an algebraic method is proposed. This approach directly gives the exact time–local equation of motion for reduced density operator, from which we can easily extract both the reduced system and hybrid bath dynamical informations. Two representative entangled system–bath quantities, the heat transport and the thermodynamics of quantum mixing, are studied. The heat current is obtained from both the algebraic method and the discrete imaginary–frequency method followed by the Meir–Wingreen’s formula. It is anticipated that the algebraic method developed in this work would constitute a crucial component for nonequilibrium statistical mechanics for open quantum systems.

I. INTRODUCTION

Open quantum systems play pivotal roles in diversified fields such as nuclear magnetic resonance1–3 condensed matter and material physics4–6 high energy physics7–9 quantum optics10–12 chemical and biological physics13–15 and nonlinear spectroscopy.16–20 In most of these studies, the system and its environment constitute a thermodynamic composite. Thermal effects dictate the system–environment entanglement, which is intimately related to the thermodynamic and transport properties.21–28 Practically, these properties are under focus in manipulating mesoscopic nanodevices.29–33

Among them, the real-time evolution of heavy quarkonium in the quark-gluon plasma was investigated by Miura \textit{et al}.9 by means of open quantum system theory. Their results provided novel comprehension on mechanism of dynamics of the relative motion of the quarkonium state over time influenced by quantum dissipation. When considering a point charge emitting radiation in an electromagnetic field, Hsiang \textit{et al}.34 pointed out the internal degrees of freedom of a moving atom can be modeled by a harmonic oscillator coupled to a scalar field. Following the same coupling ways as scalar electrodynamics, the pathologies of radiation reaction can be recast as non-Markovian dynamics of a Brownian oscillator in a supra-Ohmic environment. In terms of quantum decoherence and measurement, Anglin35 \textit{et al} introduced Brownian harmonic oscillator as one of their toy models to study universalities in the phenomenology of decoherence. An easy derivation of the short-time behavior of the Wigner function for an Ohmic Brownian oscillator was also given by them. All of their results introduced or did researches on Brownian oscillator (BO). The significance of this model can be never underestimated.

As a typical open quantum system, the BO is the simplest and exactly solvable model. It serves as an elementary example in various studies34,35 Among them, both application and theoretical aspects on various perturbative formulations. BO has been investigated widely in terms of real–time dynamics36,37 Ford36 \textit{et al} obtained an exact general solution in the form of an expression for the Wigner function at time t in terms of the initial Wigner function which is later applied to the motion of a Gaussian wave packet and to that of a pair of such wave packets. In thermodynamics37,38, Huang \textit{et al} investigated the thermodynamic quantities of the reduced BO system, finding that the steady state can be expressed as the Gibbs state with the renormalized system Hamiltonian. Most of these studies had mainly focused on the reduced system, but not the underlying hybrid bath properties. On the other hand, we develop the free-energy spectrum theory for thermodynamics of system–bath mixing that can be either fermionic or bosonic or combined27.

In this work, we develop an algebraic approach to obtain the equation of motion (EOM) for the multimode BO system, from which we can easily extract both the reduced system and hybrid bath dynamical informations. Besides, as two representative entangled system–bath quantities, we exploit the well-established EOM to study the heat transport and the thermodynamics of quantum mixing. To obtain the nonequilibrium correlation functions, we also develop the discrete imaginary–frequency (DIF) method.

The remainder of this paper is organized as follows. In Sec II we present the exact EOM of the multimode BO system via the algebraic approach. Especially, we emphasize how to extract the hybrid bath informations. Based on these formulations, in Sec III we investigate the heat current and thermodynamics. We finally summarize this paper in Sec IV. Throughout this paper we set $\hbar = 1$ and $\beta = 1/(k_B T_\alpha)$ with k_B being the Boltzmann constant and T_α the temperature of the α-reservoir.

II. EOM FOR MULTIMODE BO SYSTEM

In this section, we present the exact EOM of the multimode BO system via the algebraic approach.
A. EOM for coordinates and momentums

We introduce the multimode Brownian oscillator model. The total Hamiltonian reads

\[H_T = H_S + H_{SB} + h_b \]
\[= \sum_u \frac{\hat{P}_u^2}{2} + \frac{1}{2} \sum_{uv} V_{uv} \hat{Q}_u \hat{Q}_v - \sum_{\alpha u} \hat{Q}_u \hat{F}_{\alpha u} + \sum_{\alpha} h^B_{\alpha}. \]

(1)

Here, \(\{ \hat{P}_u \} \) and \(\{ \hat{Q}_u \} \) denote the mass–scaled momentums and coordinates of the system, respectively. The noninteracting reservoir of \(h_b = \sum_{\alpha} h^B_{\alpha} \) together with the random forces \(\{ \hat{F}_{\alpha u} \} \) constitute a Gaussian environment. The precurser to the conventional quantum Langevin equation can be obtained from the Hamiltonian of Eq. (1) as49–51

\[\hat{F}_{\alpha u}(t) = \hat{F}_{\alpha u}(t) + \sum_v \int_0^t d\tau \phi_{\alpha uv}(t - \tau) \hat{Q}_v(\tau) \]

(2)

where \(\hat{F}_{\alpha u}(t) \equiv e^{i\hat{H}_b t} \hat{F}_{\alpha u} e^{-i\hat{H}_b t} \) and

\[\phi_{\alpha uv}(t) \equiv \langle [\hat{F}_{\alpha u}(t), \hat{F}_{\alpha v}(0)] \rangle_b. \]

(3)

The average is defined as \(\langle (\cdot) \rangle_b \equiv \text{tr}_b[(\cdot) \rho^0_b] \) with \(\rho^0_b = \hat{\varnothing}_\alpha [e^{-\beta_h h_b^B} / \text{tr}_b(e^{-\beta_h h_b^B})] \). For later use, we introduce the hybrid bath correlation function

\[c_{\alpha uv} \equiv \langle [\hat{F}_{\alpha u}(t), \hat{F}_{\alpha v}(0)] \rangle_b. \]

(4)

Together with the time–reversal relation, we know that

\[\phi_{\alpha uv}(t) = i[c_{\alpha uv}(t) - c_{\alpha vu}(t)]. \]

The time evolutions of system coordinates and momentums can be resolved as48,49

\[\begin{bmatrix} \dot{\hat{Q}}(t) \\ \dot{\hat{P}}(t) \end{bmatrix} = \mathbf{T}(t) \begin{bmatrix} \hat{Q}(0) \\ \hat{P}(0) \end{bmatrix} + \sum_{\alpha} \int_0^t d\tau \mathbf{T}(t - \tau) \begin{bmatrix} 0 \\ \hat{F}_{\alpha}(\tau) \end{bmatrix}. \]

(5)

For compactness, we have introduced vectors and matrices, \(\hat{P} \equiv \{ \hat{P}_u \}, \hat{Q} \equiv \{ \hat{Q}_u \}, \hat{F}_{\alpha} \equiv \{ \hat{F}_{\alpha u} \} \), and

\[\mathbf{T}(t) = \begin{bmatrix} \chi_{QQ}(t) & \chi_{QP}(t) \\ -\chi_{PQ}(t) & \chi_{PP}(t) \end{bmatrix} = \begin{bmatrix} \chi(t) & \hat{\chi}(t) \\ \hat{\chi}(t) & \hat{\chi}(t) \end{bmatrix}. \]

(6)

Here,

\[\chi(t) \equiv \{ \chi_{uv}(t) = i \langle [Q_u(t), Q_v(0)] \rangle \} \]

(7)

with the average \(\langle (\cdot) \rangle \) over the total composite steady state. The time–local equation of motion is then obtained from Eq. (5) as

\[\begin{bmatrix} \dot{\hat{Q}}(t) \\ \dot{\hat{P}}(t) \end{bmatrix} = \mathbf{A}(t) \begin{bmatrix} \hat{Q}(t) \\ \hat{P}(t) \end{bmatrix} + \sum_{\alpha} \begin{bmatrix} 0 \\ \hat{F}_{\alpha \text{eff}}(t) \end{bmatrix}. \]

(8)

Here, the matrix \(\mathbf{A}(t) \) is the key quantity, reading

\[\mathbf{A}(t) = \mathbf{T}(t) \mathbf{T}^{-1}(t) = \begin{bmatrix} \mathbf{A}_{QQ}(t) & \mathbf{A}_{QP}(t) \\ \mathbf{A}_{PQ}(t) & \mathbf{A}_{PP}(t) \end{bmatrix} \]

(9)

with

\[\mathbf{A}_{QQ}(t) = \mathbf{0}, \]

\[\mathbf{A}_{QP}(t) = \mathbf{I}, \]

\[\mathbf{A}_{PQ}(t) = -\mathbf{\Omega}(t), \]

\[\mathbf{A}_{PP}(t) = -\mathbf{\Gamma}(t), \]

(10a–10d)

and

\[\mathbf{F}_{\alpha \text{eff}}(t) = \mathbf{F}_{\alpha u}(t) + \int_0^t d\tau \mathbf{\Omega}(t) \hat{\chi}(t - \tau) + \mathbf{\Gamma}(t) \hat{\chi}(t - \tau) \mathbf{F}_{\alpha u}(\tau). \]

(11)

In Eqs. (10) and (11),

\[\mathbf{\Omega} = \hat{\chi}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} - \hat{\chi}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1}, \]

\[\mathbf{\Gamma} = \hat{\chi}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} - \hat{\chi}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1}. \]

(12a–12b)

by using

\[\mathbf{T}^{-1}(t) = \begin{bmatrix} \hat{\chi}^{-1}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} & \hat{\chi}^{-1}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} \\ \hat{\chi}^{-1}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} & \hat{\chi}^{-1}(\hat{\chi}^{-1}\hat{\chi} - \hat{\chi})^{-1} \end{bmatrix}. \]

(13)

Detailed derivation is given in the Sec. A of the supporting materials (SM), where we also gives EOM of first and second order moments for later use.

B. EOM for reduced density operator

By applying Liouville-von Neumann equation to the total density operator, \(\hat{\rho}_s(t) = -i[H_s, \hat{\rho}_s(t)] \), we obtain for \(\hat{\rho}_s(t) = \text{tr}_b[\hat{\rho}_s(t)] \) the EOM as the following:

\[\dot{\hat{\rho}}_s(t) = -i \left[\sum_u \frac{\hat{P}_u^2}{2} + \frac{1}{2} \sum_{uv} V_{uv} \hat{Q}_u \hat{Q}_v, \rho_s(t) \right] \]
\[- i \sum_{\alpha u} [\hat{Q}_u, \mathcal{G}_{\alpha u}(t)] \]

(14)

where

\[\mathcal{G}_{\alpha u}(t) \equiv \text{tr}_b[\hat{F}_{\alpha u} \hat{\rho}_s(t)], \]

(15)

named as the hybrid density operator (HDO) in this work. Because of the Gaussian property of the current BO system, \(\mathcal{G}_{\alpha u} \) is of the form

\[\mathcal{G}_{\alpha u}(t) = \sum_v \left[\mathcal{G}_{\alpha uv}(t) + \mathcal{G}_{\alpha vu}(t) \right], \]

(16)

where

\[\mathcal{G}_{\alpha uv}(t) = \left[\Omega_{\alpha uv}(t) \hat{Q}_v^+ + \Gamma_{\alpha uv}(t) \hat{P}_v^+ \right] \rho_s(t), \]

\[\mathcal{G}_{\alpha vu}(t) = \left[\gamma_{\alpha uv}(t) \hat{Q}_v^0 - \gamma'_{\alpha uv}(t) \hat{P}_v^0 \right] \rho_s(t), \]

(17a–17b)

with

\[A^0 \hat{O} = \frac{1}{2} \{ \hat{A}, \hat{O} \} \quad \text{and} \quad A^0 \hat{O} \equiv -i[\hat{A}, \hat{O}]. \]

(18)
As seen in the Sec. B of SM, the time–dependent coefficients in Eq. (17a) can be obtained from the centers of phase-space wavepacket, whereas those in Eq. (17b) be from the variances. Here, we summarize the final results, reading

\[
\begin{bmatrix}
\Omega(t)
\gamma(t)
\end{bmatrix}^T = - \int_0^t d\tau \begin{bmatrix}
\phi(t-\tau)
0
\end{bmatrix}^T \mathbf{T}(\tau) \mathbf{T}^{-1}(t), \quad (19)
\]

and

\[
[\gamma(t) \gamma(t)] = \begin{bmatrix}
\Omega(t) & \Gamma(t)
\end{bmatrix} \begin{bmatrix}
[k_{00}^{(0)}(t)]^T
[k_{01}^{(0)}(t)]^T
[k_{11}^{(0)}(t)]^T
[k_{22}^{(0)}(t)]^T
\end{bmatrix}, \quad (20)
\]

where

\[
u(t) = \int_0^t d\tau \chi(t-\tau) \text{Re} c(t), \quad (21a)
\]

\[
k_{ij}^{(0)}(t) = \int_0^t d\tau \left[D_i \chi(t) D_j \chi^T(t) + D_i \nu(t) D_j \chi^T(t) \right], \quad (21b)
\]

with and a notation for derivative operator as \(D^m \rightarrow d^m/d\tau^m\). Detailed derivations are given in the SM.

C. Analysis at \(t = 0 \)

Emerged in the time–local EOM Eq. (5) below will be the time–local frequency and friction functions, \(\Omega(t) \) and \(\Gamma(t) \), defined via the transfer matrix, Eq. (9) and Eq. (10). And we have their explicit expression as Eq. (12). The initial values are \(\Omega(0) = V \) and \(\Gamma(0) = 0 \), which agree with the general picture of non–Markovian friction that takes effects only after a certain finite time.

First of all, we can prove that

\[
\begin{align*}
\Omega(t)\chi(t) + \Gamma(t)\dot{\chi}(t) &= -\ddot{\chi}(t), \quad (22a)
\Omega(t)\ddot{\chi}(t) + \Gamma(t)\dot{\chi}(t) &= -\dddot{\chi}(t), \quad (22b)
\end{align*}
\]

take the derivation of Eq. (22a) and substract Eq. (22b) from that we get

\[
\dot{\Omega}(t)\chi(t) + \dot{\Gamma}(t)\dot{\chi}(t) = 0. \quad (23)
\]

We first introduced various kinds of response functions togethered with \(\chi_{uv}(t) \),

\[
\chi_{\alpha u}(t) = i \langle \tilde{Q}_u(t), \tilde{F}_{\alpha u}(0) \rangle, \quad (24)
\]

\[
\chi_{\beta u}(t) = i \langle \tilde{F}_{\alpha u}(t), \tilde{F}_{\beta u}(0) \rangle, \quad (25)
\]

for the short–time behaviors of response functions, we have the following properties,

\[
\chi(0) = \dot{\chi}(0) = \ddot{\chi}(0) = 0, \quad \dot{\chi}(0) = \mathbf{I}, \quad \dddot{\chi}(0) = -V, \quad (26)
\]

\[
\dot{\chi}_{\alpha u}(0) = \ddot{\chi}_{\alpha u}(0) = \dddot{\chi}_{\alpha u}(0) = 0, \quad (27)
\]

\[
\dot{\chi}_{\beta u}(0) = \ddot{\chi}_{\beta u}(0) = 0, \quad \dot{\chi}_{\alpha u}(0) = \phi_{\alpha u}(0), \quad (28)
\]

while the short–time behaviors of \(\Omega(t) \) and \(\Gamma(t) \) can then be proved to be

\[
\Omega(0) = V, \quad \Gamma(0) = \dot{\chi}(0) = \dddot{\chi}(0) = 0, \quad (29)
\]

Detailed proofs and long–time behaviors of \(\gamma(t) \) and \(\gamma(t) \) can be found in the SM.

III. ENTANGLED SYSTEM–BATH PROPERTIES

A. Thermodynamics free energy

Turn to the thermodynamics free–energy change before and after the system–bath mixing. Here, only the single reservoir of temperature \(T \) is involved. In the previous work, we have proven that the free–energy change can be expressed as

\[
A_{\text{hyb}}(T) = -\frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \frac{\varphi(\omega)}{1 - e^{-\beta \omega}} - \frac{1\beta}{2} \vartheta(0) - \frac{1}{\beta} \sum_{n=1}^{\infty} \vartheta(\varpi_n), \quad (30)
\]

with \(\{\varpi_n = 2n\pi/\beta\} \) being the bosonic Matsubara frequencies. In Eq. (30), \(\varphi(\omega) \) and \(\vartheta(\varpi) > 0 \) are defined as

\[
\varphi(\omega) = \frac{1}{2} \text{Im} \int_0^1 d\lambda^2 \text{tr} [\tilde{\phi}(\omega) \tilde{\chi}(\omega; \lambda)], \quad (31)
\]

\[
\vartheta(\varpi) = \frac{1}{2} \int_0^1 d\lambda^2 \text{tr} [\tilde{\phi}(i\varpi) \tilde{\chi}(i\varpi; \lambda)], \quad (32)
\]

where

\[
\tilde{f}(\omega) \equiv \int_0^\infty dt e^{i\omega t} f(t), \quad (33)
\]

and \(\chi(t; \lambda) \) is defined when the system–bath interaction term, \(H_{\text{SN}} \) in Eq. (1), is multiplied by a mixing parameter, \(\lambda \in [0, 1] \), i.e., \(H_{\text{SN}} \rightarrow \lambda H_{\text{SN}} \). There exists the equal area relation, reading

\[
\int_0^\infty d\omega \vartheta(\omega) = \int_0^\infty d\omega \varphi(\omega). \quad (34)
\]

B. Heat transport

Consider the heat transport from the \(\alpha \)–reservoir to the local impurity system. The heat current operator reads

\[
\hat{J}_a \equiv -\frac{d h_a}{dt} = -i[H_T, h_a] = -\sum_u \hat{Q}_u \hat{F}_{\alpha u}. \quad (35)
\]
We can prove,
\[\langle J_\alpha(t) \rangle = -\sum_u \text{tr}_s \left[\hat{Q}_u \hat{\varrho}_{au}(t) \right] + \sum_u \text{tr}_s \left[\hat{P}_u \varrho_{au}(t) \right], \]
(36)

Alternatively, the heat current can be recast as
\[J_\alpha = -2 \text{Im} \int_0^\infty d\tau \text{tr} \left[\hat{c}_\alpha(\tau) C_{SS}(\tau) \right]. \]
(37)

This is the time–domain Meir–Wingreen’s formula. In the frequency domain, it reads
\[J_\alpha = -\frac{2}{\pi} \sum_{uv} \int_{-\infty}^{\infty} d\omega \frac{\omega}{\epsilon_{\beta}\omega - 1} J_{uv}^\alpha(\omega) C_{uv}(\omega), \]
(38)

where
\[J_{uv}^\alpha(\omega) = \frac{1}{2i} \int_{-\infty}^{\infty} dt \ e^{i\omega t} \phi_{uv}(t), \]
(39)

and
\[C_{uv}(\omega) = \frac{1}{2} \int_{-\infty}^{\infty} dt \ e^{i\omega t} \langle \hat{Q}_u(t) \hat{Q}_v(0) \rangle. \]
(40)

IV. NUMERICAL RESULTS

Introducing Meir–Wingreen’s formula to obtain heat current needs correlation function. Therefore we develop a so–called discrete imaginary–frequency method (DIF) method to obtain correlation function of the system. Besides, entanglement spectrum is also at hand with the help of entanglement thereon.

We start from expanding \(c_{\alpha uv}(t) \) as
\[c_{\alpha uv}(t) = \sum_k g_{\alpha uvk} e^{-\gamma_{ak} t}, \]
(41)

and from which we derive the following equations
\[\tilde{C}(\omega) = \left[V - \omega^2 I - \sum_\alpha \tilde{\phi}_\alpha(\omega) \right]^{-1} \left[\tilde{C}(0) - i\omega C(0) + \sum_\alpha \tilde{X}_\alpha(\omega) \right] \]
(42a)

\[\tilde{X}_\alpha(\omega) = -\sum_{k} \frac{2}{\gamma_{ak} - i\omega} \text{Im} \left[\tilde{C}(i\gamma_{ak}) g_{ak} \right]^\top, \]
(42b)

Let \(\omega = i\gamma_{ak} \) in Eq. (42b) we obtain following equations
\[\tilde{C}(i\gamma_{ak}) = \left[V + \gamma^2_{ak} I - \sum_\alpha \tilde{\phi}_\alpha(i\gamma_{ak}) \right]^{-1} \left[\tilde{C}(0) + \gamma_{ak} C(0) + \sum_\alpha \tilde{X}_\alpha(i\gamma_{ak}) \right] \]
(43a)

\[\tilde{X}_\alpha(i\gamma_{ak}) = -\sum_{k} \frac{2}{\gamma_{ak} - \gamma_{ak} + i\omega} \text{Im} \left[\tilde{C}(i\gamma_{ak}) g_{ak} \right]^\top, \]
(43b)

from the equations above we can solve \(\tilde{C}(i\gamma_{ak}) \) for all \(\alpha \) and \(k \), on top of which we obtain \(\tilde{X}_\alpha(\omega) \) from Eq. (43b) and henceforth \(\tilde{C}(\omega) \) can be directly gotten from Eq. (43a).

V. SUMMARY

To conclude, we develop the algebraic method to study multimode Brownian oscillators. The algebraic approach directly gives the exact time–local EOM for reduced density operator. Based on this approach, we can easily extract both the reduced system and hybrid bath dynamical informations. We exploit the EOM to study the heat transport and the thermodynamics of quantum mixing, two representative entangled system–bath quantities. It is anticipated that the method developed in this work would constitute a crucial component for nonequilibrium statistical mechanics for open quantum systems, e.g., the network of oscillators. And the DIF method we proposed furnish a basic step to systematically solve the correlation functions of anharmonic system.

ACKNOWLEDGMENTS

Support from the Ministry of Science and Technology of China (Grant No. 2021YFA1200103) and the National Natural Science Foundation of China (Grant Nos. 22103073 and 22173088) is gratefully acknowledged.

1. P. Reineker, Exciton Dynamics in Molecular Crystals and Aggregates: Stochastic Liouville Equation Approach: Coupled Coherent and Incoherent Motion, Optical Line Shapes, Magnetic Resonance Phenomena, Springer, Berlin, 1982.
2. C. P. Slichter, Principles of Magnetic Resonance, Springer Verlag, New York, 1982.
3. L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037 (2005).
4. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, New York, 1985.
5. C. F. Klingshirn, Semiconductor Optics, Springer-Verlag, Heidelberg, 1997.
6. I. Rammer, Quantum Transport Theory, Perseus Books, Reading, Mass., 1998.
7. Y. Akamatsu, “Heavy quark master equations in the Lindblad form at high temperatures,” Phys. Rev. D 91, 056002 (2015).
8. J.-P. Blaizot and M. A. Escobedo, “Quantum and classical dynamics of heavy quarks in a quark-gluon plasma,” J. High Energy Phys. 2018, 1 (2018).
9. T. Miura, Y. Akamatsu, M. Asakawa, and A. Rothkopf, “Quantum Brownian motion of a heavy quark pair in the quark-gluon plasma,” Phys. Rev. D 101, 034011 (2020).
10. M. O. Scully and M. S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997.
11. W. H. Louisell, Quantum Statistical Properties of Radiation, Wiley, New York, 1973.
12. P. Haken, Laser Theory, Springer, Berlin, 1970.
13. A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer and Reactions in Condensed Molecular Systems, Oxford University Press, New York, 2006.
14. C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin, “Efficient biologically inspired photocell enhanced by delocalized quantum states,” Phys. Rev. Lett. 111, 253601 (2013).
15. F. Fang, Z.-H. Chen, Y. Su, Z.-F. Zhu, Y. Wang, R.-X. Xu, and Y. J. Yan, “Coherent excitation energy transfer in model photosynthetic reaction center: Effects of non-Markovian quantum environment,” J. Chem. Phys. 157, 084119 (2022).
16. S. Mukamel, The Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York, 1995.
17. Y. R. Shen, The Principles of Nonlinear Optics, Wiley, New York, 1984.
S. Mukamel, “Reduced equations of motion for collisionless molecular multiphoton processes,” Adv. Chem. Phys. 47, 509 (1981).

Y. J. Yan and S. Mukamel, “Electronic dephasing, vibrational relaxation, and solvent friction in molecular nonlinear optical lineshapes,” J. Chem. Phys. 89, 5160 (1988).

Y. J. Yan and S. Mukamel, “Photon echoes of polyatomic molecules in condensed phases,” J. Chem. Phys. 94, 179 (1991).

Y. J. Yan, “Theory of open quantum systems with bath of elec-

trons and phonons and spins: Many-dissipaton density matrixes approach,” J. Chem. Phys. 140, 054105 (2014).

Y. J. Yan, Y. Zhang, and S. Mukamel, “Equilibrium and transient thermodynamics: A unified dissipaton theory based study,” J. Chem. Phys. 142, 024112 (2015).

J. S. Jin, S. K. Wang, X. Zheng, and Y. J. Yan, “Current noise spectra and mechanisms with dissipaton equation of motion theory,” J. Chem. Phys. 142, 234108 (2015).

Y. Wang, R. X. Xu, and Y. J. Yan, “Entangled system-and-environment dynamics: Phase-space dissipaton theory,” J. Chem. Phys. 152, 044102 (2020).

H. Gong, Y. Wang, H. D. Zhang, Q. Qiao, R. X. Xu, X. Zheng, and Y. J. Yan, “Nonperturbative spin-boson and spin-spin dynamics and nonlinear Fano interferences: A unified dissipaton theory based study,” J. Chem. Phys. 153, 154111 (2020).

H. Gong, Y. Wang, H. D. Zhang, R. X. Xu, X. Zheng, and Y. J. Yan, “Thermodynamic free-energy spectrum theory for open quantum systems,” J. Chem. Phys. 153, 214115 (2020).

H. Gong, Y. Wang, X. Zheng, R. X. Xu, and Y. J. Yan, “Nonequilibrium work distributions in quantum impurity system–bath mixing processes,” J. Chem. Phys. 157, 054109 (2022).

C. W. Gardiner and P. Zoller, Quantum Noise, Springer, Wellington, New Zealand, 2004, 3rd ed.

A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, “Introduction to quantum noise, measurement, and amplification,” Rev. Mod. Phys. 82, 1155 (2010).

A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLaughlin, X. Zhen, T. J. Green, and M. J. Biercuk, “Experimental noise filtering by quantum control,” Nat. Phys. 10, 825 (2014).

R. Harper, S. T. Flammia, and J. J. Wallman, “Efficient learning of quantum noise,” Nat. Phys. 16, 1184 (2020).

H. Koch, D. J. V. Harlingen, and J. Clarke, “Quantum noise theory for the dc SQUID,” Appl. Phys. Lett. 38, 380 (1981).

J.-T. Hsiang and B.-L. Hu, “Non-Markovian Abraham-Lorentz-Dirac equation: Radiation reaction without pathology,” Phys. Rev. D 106, 125018 (2022).

J. R. Anglin, J. P. Paz, and W. H. Zurek, “Deconstructing decoherence,” Phys. Rev. A 55, 4041 (1997).

H. Grabert, P. Schramm, and G. L. Ingold, “Quantum Brownian motion: The functional integral approach,” Phys. Rep. 168, 115 (1988).

U. Weiss, Quantum Dissipative Systems, World Scientific, Singa-

pore, 2021, 5th ed.

Y. J. Yan and R. X. Xu, “Quantum mechanics of dissipative systems,” Ann. Rev. Phys. Chem. 56, 187 (2005).

A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum Brownian motion,” Physica A 121, 587 (1983).

B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D 45, 2843 (1992).

R. Karrlein and H. Grabert, “Exact time evolution and master equations for the damped harmonic oscillator,” Phys. Rev. E 55, 153 (1997).

F. Haake and R. Reibold, “Strong damping and low-temperature anomalies for the harmonic oscillator,” Phys. Rev. A 32, 2462 (1985).

J. Halliwell and T. Yu, “Alternative derivation of the Hu-Paz- Zhang master equation of quantum Brownian motion,” Phys. Rev. D 53, 2012 (1996).

G. W. Ford and R. F. O’Connell, “Exact solution to the Hu-

Paz-Zhang master equation,” Phys. Rev. D 64, 105020 (2001).

W. G. Unruh and W. H. Zurek, “Reduction of a wave packet in quantum Brownian motion,” Phys. Rev. D 40, 1071 (1989).

R. X. Xu, B. L. Tian, J. Xu, and Y. J. Yan, “Exact dynamics of driven Brownian oscillators,” J. Chem. Phys. 130, 074107 (2009).

B. Gardas, S. Deffner, and A. Saxena, “Non-hermitian quantum thermodynamics,” Sci. Rep. 6, 1 (2016).

W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings,” Phys. Rev. Research 4, 023141 (2022).

P. L. Du, Y. Wang, R. X. Xu, H. D. Zhang, and Y. J. Yan, “System-bath entanglement theorem with Gaussian environments,” J. Chem. Phys. 152, 034102 (2020).

P. L. Du, Z. H. Chen, Y. Su, Y. Wang, R. X. Xu, and Y. J. Yan, “Nonequilibrium system–bath entanglement theorem versus heat transport,” Chem. J. Chin. Univ. 42, 2155 (2021).

Y. Wang, Z. H. Chen, R. X. Xu, X. Zheng, and Y. J. Yan, “A statistical quasi–particles thermofield theory with Gaussian environments: System–bath entanglement theorem for nonequilibrium correlation functions,” J. Chem. Phys. 157, 044012 (2022).
Supplementary materials on “Multimode Brownian oscillators: Thermodynamics and heat transport”

Xin-Hai Tong, Hong Gong, Yao Wang, Rui-Xue Xu, and YiJing Yan
Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
(Dated: March 29, 2023)

These supplementary materials on “Multimode Brownian oscillators: Thermodynamics and heat transport” contain (i) Detailed derivations of EOM for multimode BO system in Sec. II of the main text; (ii) Detailed derivations of coefficients of EOM for HDO; (iii) Asymptotic analysis; (iv) Theory of heat current, including analysis of equilibrium state and nonequilibrium steady state; (v) Detailed derivations of our DIF method.

I. DETAILED DERIVATIONS OF EOM FOR MULTIMODE BO SYSTEM

A. EOM for coordinates and momentums

In this subsection, we derive the time–local equation of motion, Eq. (8) of the main text, followed by EOM of first and second order moments. Let us start from Eq. (5) of the main text, the time–nonlocal EOM. Take the time derivative and we obtain

\[
\dot{\mathbf{Q}}(t) = \mathbf{T}(t) \dot{\mathbf{Q}}(0) + \hat{\mathbf{F}}_{\alpha}(t) + \sum_{\alpha} \int_{0}^{t} d\tau \mathbf{T}(t - \tau) \hat{\mathbf{F}}_{\alpha}(\tau),
\]

(S1)

by noting that \(T(0) = I \), the indetity matrix. Equation (5) also implies

\[
\mathbf{Q}(0) = \mathbf{T}^{-1}(t) \mathbf{Q}(t) + \sum_{\alpha} \int_{0}^{t} d\tau \mathbf{T}(t - \tau) \hat{\mathbf{F}}_{\alpha}(\tau),
\]

(S2)

Substituting Eq. (S2) into the first term on the r.h.s. of Eq. (S1), we obtain

\[
\dot{\mathbf{Q}}(t) = \mathbf{T}(t) \dot{\mathbf{Q}}(t) + \mathbf{F}_{\text{eff}}(\tau),
\]

(S3)

Here, we define

\[
\mathbf{F}_{\text{eff}}(t) = \sum_{\alpha} \int_{0}^{t} d\tau \mathbf{T}(t - \tau) \hat{\mathbf{F}}_{\alpha}(\tau),
\]

(S4)

and

\[
\mathbf{F}_{\text{eff}}(t) = \int_{0}^{t} d\tau \mathbf{T}(t - \tau) \hat{\mathbf{F}}_{\alpha}(\tau),
\]

(S5)

with \(\mathbf{F}(\tau, t) = \mathbf{T}(\tau) - \mathbf{F}_{\text{eff}}(\tau) \). We then obtain the time–local EOM, Eq. (8) of the main text. Equations (9)–(13) are further elaborations of the involved coefficients.

B. EOM of first and second order moments

In this subsection, the EOM of first and second order moments are derived from Eq. (8). For later use, we denote

\[
Q_u(t) \equiv \langle \hat{Q}_u(t) \rangle, \quad P_u(t) \equiv \langle \hat{P}_u(t) \rangle,
\]

(S6)
and

\[W^{QQ}_{uv} = \frac{1}{2}\langle \{ \delta \hat{Q}_u(t), \delta \hat{Q}_v(t) \} \rangle, \quad W^{PP}_{uv} = \frac{1}{2}\langle \{ \delta \hat{P}_u(t), \delta \hat{P}_v(t) \} \rangle, \quad W^{QP}_{uv} = \frac{1}{2}\langle \{ \delta \hat{Q}_u(t), \delta \hat{P}_v(t) \} \rangle, \]

where \(\delta \hat{Q}_u(t) \equiv \hat{Q}_u(t) - Q_u(t) \), \(\delta \hat{P}_u(t) \equiv \hat{P}_u(t) - P_u(t) \), and the average, \(\langle \cdots \rangle \), is taken over the initial state in the Heisenberg picture. In Eq. (S7), the second order central moments are symmetrized.

Equation (8) with Eqs. (9) and (10) directly gives

\[
\dot{Q}_u(t) = P_u(t), \quad \dot{P}_u(t) = -\sum_v \left[\Omega_{uv}(t)Q_v(t) + \Gamma_{uv}(t)P_v(t) \right] + \sum_\alpha \langle \hat{F}_{\alpha u}^{\text{eff}}(t) \rangle. \tag{S8a}
\]

We further adopt the so–called initial factorization ansatz:

\[
\rho_r(t_0) = \rho_{\text{bare}}(t_0) \otimes \prod_\alpha \rho_{\text{bare}}^{\text{bare}}(\beta), \quad t_0 = 0, \tag{S9}
\]

so that \(\langle F_{\alpha u}^{\text{bare}}(t) \rangle \equiv \text{tr}[F_{\alpha u}^{\text{bare}}(t)\rho_r(0)] = \langle F_{\alpha u}^{\text{bare}}(t) \rangle_B = 0 \) hence from Eq. (S5) we know In Eq. (S8b) \(\langle \hat{F}_{\alpha u}^{\text{eff}}(t) \rangle = 0 \) then we get

\[
\dot{Q}_u(t) = P_u(t), \quad \dot{P}_u(t) = -\sum_v \left[\Omega_{uv}(t)Q_v(t) + \Gamma_{uv}(t)P_v(t) \right]. \tag{S10a}
\]

Now we turn to second order moments

\[W^{QP}_{uv}(t) = \frac{d}{dt}\langle P_u(t)P_v(t) + P_v(t)P_u(t) \rangle \]

in the second equality we used Eq. (S10) and in the third equality we used definitions of second order moments Eq. (S7). By the same method we can also obtain EOM for other second order moments. Then we calculate

\[\dot{W}^{PP}_{uv}(t) = \frac{d}{dt}\langle P_u(t)P_v(t) + P_v(t)P_u(t) \rangle - \frac{d}{dt}\langle P_u(t)P_v(t) \rangle, \tag{S12}\]

first term reads

\[
\frac{d}{dt}\langle P_u(t)P_v(t) + P_v(t)P_u(t) \rangle = -\frac{1}{2} \left\{ \sum_{u'} \left[\Omega_{uu'}(t)Q_{u'}(t)P_{u'}(t) + \Gamma_{uu'}(t)P_{u'}(t)P_u(t) + \Omega_{uu'}(t)P_{u'}(t)Q_u(t) + \Gamma_{uu'}(t)Q_{u'}(t)P_u(t) \right] \\
- \sum_\alpha \left[\langle F_{\alpha u}^{\text{eff}}(t)P_u(t) \rangle + \langle P_u(t)F_{\alpha u}^{\text{eff}}(t) \rangle \right] \right\} + (u \leftrightarrow v), \tag{S13}\]

second term reads

\[\frac{d}{dt}\langle P_u(t)P_v(t) \rangle = -\sum_{u'} \left[\Omega_{uu'}(t)Q_{u'}(t)P_{u'}(t) + \Gamma_{uu'}(t)P_{u'}(t)P_u(t) \right] + (u \leftrightarrow v). \tag{S14}\]

Putting Eq. (S13) and Eq. (S14) into Eq. (S12) we obtain the final result

\[\frac{d}{dt}W^{PP}_{uv}(t) = -\sum_{u'} \left[\Omega_{uu'}(t)W^{QP}_{uu'}(t) + \Gamma_{uu'}(t)W^{PP}_{uu'}(t) \right] + \sum_\alpha \text{Re}\langle F_{\alpha u}^{\text{eff}}(t)P_v(t) \rangle + (u \leftrightarrow v). \tag{S15}\]

Finally we turn to \(W^{QP}_{uv}(t) \equiv W^{QP}_{uv}(t) \),

\[\dot{W}^{QP}_{uv}(t) = \frac{d}{dt} \left\{ \langle \hat{Q}_u(t)\hat{P}_v(t) + \hat{P}_v(t)\hat{Q}_u(t) \rangle - \frac{d}{dt} \langle \hat{Q}_u(t) \rangle \langle \hat{P}_v(t) \rangle \right\}, \tag{S16}\]
with
\[
\frac{d}{dt} \left(\langle \dot{Q}_u(t) \dot{P}_v(t) + \dot{P}_v(t) \dot{Q}_u(t) \rangle \right) = \frac{1}{2} \{ \{ \dot{P}_u(t), \dot{P}_v(t) \} \} + \sum_\alpha \frac{1}{2} \{ \{ \dot{Q}_u(t), \dot{F}_\alpha^{\text{eff}}(t) \} \}
\]
- \frac{1}{2} \sum_{u'} \left[\Omega_{uu'}(t) \{ \langle \dot{Q}_u(t), \dot{Q}_{u'}(t) \rangle + \Gamma_{uu'}(t) \langle \dot{Q}_u(t), \dot{P}_{u'}(t) \rangle \} \right],
\] (S17)
and
\[
\frac{d}{dt} \left[\dot{Q}_u(t) \dot{P}_v(t) \right] = \dot{P}_u(t) \dot{P}_v(t) - \dot{Q}_u(t) \sum_{u'} \left[\Omega_{uu'}(t) \dot{Q}_{u'}(t) + \Gamma_{uu'}(t) \dot{P}_{u'}(t) \right].
\] (S18)

Putting Eq. (S17) and Eq. (S18) into Eq. (S16) to get the result
\[
W^{QP}_{uv}(t) = W^{PP}_{uv}(t) - \sum_{u'} \left[\Omega_{uu'}(t) W^{QQ}_{uu'}(t) + \Gamma_{uu'}(t) W^{PQ}_{uu'}(t) \right] + \sum_\alpha \text{Re}(F^{\text{eff}}_{\alpha}(Q_u(t)))
\] (S19)
also
\[
W^{PQ}_{uv}(t) = W^{PP}_{uv}(t) - \sum_{u'} \left[\Omega_{uu'}(t) W^{QQ}_{uu'}(t) + \Gamma_{uu'}(t) W^{PQ}_{uu'}(t) \right] + \sum_\alpha \text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t)))
\] (S20)

C. Detailed derivation of \(\text{Re}(F^{\text{eff}}_{\alpha}(P_u(t)))\) and \(\text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t)))\)

Our aim is to recast \(\text{Re}(F^{\text{eff}}_{\alpha}(P_u(t)))\) and \(\text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t)))\) only using response and correlation function of system, bath and system–bath. Firstly we note that the definition of \(F^{\text{eff}}_{\alpha}(t)\) from Eq. (S4), Eq. (S5) and Eq. (6) from the main text that
\[
F^{\text{eff}}_{\alpha}(t) = \dot{F}_{\alpha}(t) + \int_0^t d\tau \left[\Omega(t) \chi(t - \tau) + \Gamma(t) \chi(t - \tau) + \chi(t - \tau) \right] \dot{F}_{\alpha}(t)
\]
\[
= \dot{F}_{\alpha}(t) + \int_0^t d\tau \left[\Omega(t) \chi(t - \tau) + \Gamma(t) \chi(t - \tau) + \chi(t - \tau) \right] \dot{F}_{\alpha}(t)
\]
\[
= \dot{F}_{\alpha}(t) + \int_0^t d\tau \pi(t - \tau, t) \dot{F}_{\alpha}(t),
\] (S21)
where we have denoted \(\chi(t) \equiv \{ \chi_{uu}(t) = i \langle [Q_u(t), Q_v(0)] \} \) and
\[
\pi(t - \tau, t) \equiv \Omega(t) \chi(t - \tau) + \Gamma(t) \chi(t - \tau) + \chi(t - \tau).
\] (S22)

By using time–nonlocal equation Eq. (5) in the main text we obtain
\[
\text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t))) = \sum_{u_1} \text{Re} \int_0^t d\tau \chi_{uv_1}(t - \tau) (F^{\text{eff}}_{\alpha}(t) \sum_{\beta} \dot{F}_{\beta u_1}(t))
\]
\[
= \sum_{u_1} \text{Re} \int_0^t d\tau \chi_{uv_1}(t - \tau) (F^{\text{eff}}_{\alpha}(t) \dot{F}_{\alpha u_1}(t)),
\] (S23)
Here we used \(\langle \dot{F}^{\text{eff}}_{\alpha}(t) \dot{Q}_v(0) \rangle = 0\) and \(\langle \dot{F}^{\text{eff}}_{\alpha}(t) \dot{Q}_v(0) \rangle = 0\) due to initial factorization ansatz. Put Eq. (S23) into Eq. (S22) we obtain
\[
\text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t))) = \sum_{u_1} \int_0^t d\tau \chi_{uv_1}(t - \tau) a_{uv_1}(t - \tau) + \sum_{u_1 \neq u_1} \int_0^t d\tau \chi_{uv_1}(t - \tau) \int_0^t d\tau_1 \pi_{uv_1}(t - \tau, t) a_{uv_1}(t - \tau_1)
\]
\[
= \sum_{u_1} \int_0^t d\tau \chi_{uv_1}(t - \tau) a_{uv_1}(t) + \sum_{u_1 \neq u_1} \int_0^t d\tau \int_0^t d\tau_1 \chi_{uv_1}(t) \pi_{uv_1}(t, \tau_1) a_{uv_1}(t - \tau_1),
\] (S24)
where we denote \(a_{uv}(t) \equiv \text{Re} c_{uv}(t)\) to simplify our formulas. Put Eq. (S22) into Eq. (S24) we can organize Eq. (S24) as
\[
\text{Re}(F^{\text{eff}}_{\alpha}(Q_v(t))) = \sum_{u_1} \int_0^t d\tau \chi_{uv_1}(t) a_{uv_1}(t) + \sum_{i} [\delta_{uv} A_{vv}(t) + \Gamma_{uv}(t) B_{vv}(t) + \Omega_{uv}(t)]
\] (S25)
Repeat this procedure to Re\{F_{\alpha u}(t)\tilde{\eta}(t)\} we obtain

\[
\text{Re}\{F_{\alpha u}(t)\tilde{\eta}(t)\} = \sum_{u_i} \int_0^t d\tau \chi_{u i}(\tau) a_{\alpha u i}(\tau) + \sum_{w} [\delta_{uw}A_{uw}(t) + \Gamma_{uw}(t)B_{uw}(t) + \Omega_{uw}(t)C_{uw}(t)]
\]

with

\[
A_{uw}(t) = \sum_{u_i} \int_0^t d\tau_1 \int_0^t d\tau_2 \chi_{u i}(\tau_1) a_{\alpha u i}(\tau_1 - \tau_2) \chi_{w i}(\tau_2)
\] \hspace{1cm} (S26a)

\[
B_{uw}(t) = \sum_{u_i} \int_0^t d\tau_1 \int_0^t d\tau_2 \chi_{u i}(\tau_1) a_{\alpha u i}(\tau_1 - \tau_2) \chi_{w i}(\tau_2)
\] \hspace{1cm} (S26b)

\[
C_{uw}(t) = \sum_{u_i} \int_0^t d\tau_1 \int_0^t d\tau_2 \chi_{u i}(\tau_1) a_{\alpha u i}(\tau_1 - \tau_2) \chi_{w i}(\tau_2).
\] \hspace{1cm} (S26c)

Both Eq. (S26) and Eq. (S28) have similar mathematical structures like

\[
T_{u i w}(t) \equiv \sum_{u_i} \int_0^t d\tau_1 \int_0^t d\tau_2 D_{i} \chi_{u i}(\tau_1) a_{\alpha u i}(\tau_1 - \tau_2) \chi_{w i}(\tau_2),
\] \hspace{1cm} (S29)

where \(D_{i} \rightarrow d^i/dt^i\) denotes derivative operator. Therefore we only need to deal with Eq. (S29). But before that we introduce a mathematical identity, for any function \(f_1(x), f_2(x)\) and \(S(x)\) and denote \(L(x) \equiv S(-x)\), we have

\[
\int_0^t d\tau_1 \int_0^t d\tau_2 f_1(\tau_1) S(\tau_1 - \tau_2) f_2(\tau_2) = \int_0^t d\tau_2 \int_0^{\tau_2} d\tau_1 f_1(\tau_1) S(\tau_1 - \tau_2) f_2(\tau_2) + (1 \leftrightarrow 2)
\]

\[
= \int_0^t d\tau_2 \int_0^{\tau_2} d\tau_1 f_1(\tau_1) S(\tau_1 - \tau_2) f_2(\tau_2) + (1 \leftrightarrow 2)
\]

\[
= \int_0^t d\tau_2 f_2(\tau_2) \int_0^{\tau_2} d\tau_1 f_1(\tau_1) L(\tau_2 - \tau_1) + (1 \leftrightarrow 2)
\]

\[
= \int_0^t d\tau f_2(\tau) [L \otimes f_1](\tau) + (1 \leftrightarrow 2)
\]

\[
= \int_0^t d\tau [f_1 \otimes L](\tau) f_2(\tau) + \int_0^t d\tau f_1(\tau) [L \otimes f_2](\tau),
\] \hspace{1cm} (S30)

\[
\int_0^t d\tau_1 \int_0^t d\tau_2 f_1(\tau_1) S(\tau_1 - \tau_2) f_2(\tau_2) = \int_0^t d\tau f_2(\tau) [S \otimes f_1](\tau) + \int_0^t d\tau f_1(\tau) [S \otimes f_2](\tau),
\] \hspace{1cm} (S31)

the \(\otimes\) operator stands for convolve:

\[
[f \otimes g](t) \equiv \int_0^t d\tau f(t - \tau) g(\tau) \equiv \int_0^t d\tau f(\tau) g(t - \tau).
\] \hspace{1cm} (S32)
We choose $S(t) = a_{uv}u_1(t)$ and thus $L(t) = a_{uv}u_1(-t) = a_{uv}u_1(t)$ in Eq. (S29) and we can recast Eq. (S29) as

$$T^{ij}_{vw}(t) = \sum_{u_1v_1} \int_0^t d\tau D_i \chi_{vu_1}(\tau) [a_{uv}u_1 \otimes D_j \chi_{wu_1}](\tau) + \int_0^t d\tau D_j \chi_{wu_1}(\tau) [a_{uv}u_1 \otimes D_i \chi_{vu_1}](\tau), \quad (S33)$$

for $(i, j) = (0, 0), (0, 1), (0, 1), (1, 0), (1, 2)$. For clarity we further denote (note that $a_{uv}(t)$ is symmetric.)

$$u_{\alpha uv}(t) = \sum_w [\chi_{uw} \otimes a_{\alpha uv}](t) = \sum_w [\chi_{uw} \otimes a_{\alpha uv}](t) = \sum_{w} \int_0^t d\tau \chi_{uw}(t - \tau)a_{uv}(\tau). \quad (S34)$$

It is obvious that

$$u_{\alpha uv}(t) = \sum_w \int_0^t d\tau \chi_{uw}(t - \tau)a_{uv}(\tau) = \sum_w \Delta_1 \chi_{uw} \otimes a_{uv}(t) \quad (S35)$$

and

$$u_{\alpha uv}(t) = a_{uv}(t) + \sum_{w} \int_0^t d\tau \chi_{uw}(t - \tau)a_{uv}(\tau) = a_{uv}(t) + \sum_w \Delta_2 \chi_{uw} \otimes a_{uv}(t) \quad (S36)$$

Eq. (S35), Eq. (S35) and Eq. (S36) can be organized into a compact form

$$D_i u_{\alpha uv}(t) = \delta_{i2}a_{uv}(t) + \sum_w \Delta_1 \chi_{uw} \otimes a_{uv}(t) \quad (S37)$$

substitute it into Eq. (S29) we get for $(i, j) = (0, 0), (0, 1), (0, 1), (0, 2), (1, 2)$

if $j \neq 2$ \quad $T^{ij}_{vw}(t) = \sum_{u_1} \int_0^t d\tau [D_i \chi_{vu_1}(\tau)D_j u_{\alpha uv_1}(\tau) + D_j \chi_{wu_1}(\tau)D_i u_{\alpha uv_1}(\tau)] \quad (S38a)$

if $j = 2$ \quad $T^{ij}_{vw}(t) = \sum_{u_1} \int_0^t d\tau [D_i \chi_{vu_1}(\tau)D_j u_{\alpha uv_1}(\tau) + D_j \chi_{wu_1}(\tau)D_i u_{\alpha uv_1}(\tau)] - \sum_{u_1} \int_0^t d\tau D_i \chi_{vu_1}(\tau)a_{uv_1}(\tau) \quad (S38b)$

note that the last term in Eq. (S38a) will cancel out the first term in both Eq. (S29) (when $i = 0$) and Eq. (S27) (when $i = 1$):

$$\sum_{u_1} \int_0^t d\tau D_i \chi_{vu_1}(\tau)a_{uv_1}(\tau) - \sum_{w} \delta_{uv} \sum_{u_1} \int_0^t d\tau D_i \chi_{vu_1}(\tau)a_{uv_1}(\tau)$$

$$= \sum_{u_1} \int_0^t d\tau D_i \chi_{vu_1}(\tau) [a_{uv_1}(\tau) - a_{uv_1}(\tau)]$$

$$= 0 \quad (S39)$$

since $\phi_{\alpha}(\omega)$ is symmetrical and from fluctuation-dissipation theorem

$$e^{(+)}_{\alpha uv}(\omega) = \frac{\phi^{(-)}_{\alpha uv}(\omega)}{1 - e^{-\beta_{\alpha uv}}} \quad (S40)$$

where $(-)$ denotes the anti-Hermitian part of the matrix while $(+)$ denotes the Hermitian part. We know $a_{uv}(t) = \text{Re} e^{(+)}_{\alpha uv}(\omega)$ is also symmetrical. After putting Eq. (S38) into Eq. (S29) and Eq. (S27) we will find

$$\text{Re} F^{\text{eff}}_{\alpha uv}(t) = \sum_{w} [\Omega_{uv}^{00} k_{\alpha uv}^{00}(t) + \Gamma_{uv}(t) k_{\alpha uv}^{01}(t) + \delta_{uv} k_{\alpha uv}^{02}(t)] \quad (S41a)$$

$$\text{Re} \dot{F}^{\text{eff}}_{\alpha uv}(t) = \sum_{w} [\Omega_{uv}^{10} k_{\alpha uv}^{10}(t) + \Gamma_{uv}(t) k_{\alpha uv}^{11}(t) + \delta_{uv} k_{\alpha uv}^{12}(t)] \quad (S41b)$$

with

$$k_{\alpha uv}^{ij}(t) = \sum_{u_1} \int_0^t d\tau [D_i \chi_{vu_1}(\tau)D_j u_{\alpha uv_1}(\tau) + D_j \chi_{wu_1}(\tau)D_i u_{\alpha uv_1}(\tau)] \quad (S42)$$
or in a matrix form

\[k^{ij}_\alpha(t) = \int_0^t d\tau \left[D_i \chi(\tau) \tilde{D}_j u^\tau_\alpha(\tau) + D_i u_\alpha(\tau) \bar{D}_j \chi^T(\tau) \right], \]
(S43)

and the final results read (here we introduce Eq. (S57) and Eq. (S61) to simplify notation.)

\[\begin{bmatrix} \gamma^\alpha_u(t) & \gamma^\alpha_v(t) \end{bmatrix} = \begin{bmatrix} \Omega(t) & \Gamma(t) \end{bmatrix} \begin{bmatrix} k^{u^00}_\alpha(t) & k^{u^01}_\alpha(t) & k^{u^10}_\alpha(t) & k^{u^11}_\alpha(t) & k^{u^20}_\alpha(t) & k^{u^21}_\alpha(t) & k^{u^30}_\alpha(t) & k^{u^31}_\alpha(t) & k^{u^32}_\alpha(t) & k^{u^33}_\alpha(t) \end{bmatrix}, \]
(S44)

from Eq. (S43) we know

\[\begin{bmatrix} k^{u^32}_\alpha(t) \end{bmatrix}^T = k^{u^23}_\alpha(t) \]
(S45)

II. COEFFICIENTS OF EOM OF HDO

A. First order moments, derivation of \(\Gamma_{\alpha uv} \) and \(\Omega_{\alpha uv} \)

We rederive the first and second order moments using EOM of HDO, Eq. motionrho, and compare the results with that from time–local EOM to obtain the coefficients. From Eq. (14), Eq. (17a) and Eq. (17b), we can obtain

\[\dot{Q}_u(t) = \text{tr} \left[Q_u \dot{\rho}_\beta(t) \right] \]

\[= \text{tr} \left(Q_u \left\{ -i \left[\sum_{u'v} \frac{\dot{P}_{u'}^2}{2} + \frac{1}{2} \sum_{u'v} V_{u'} \dot{Q}_{u'} \dot{Q}_{v'} \rho_{\beta}(t) \right] - i \sum_{u'v} \left[\dot{Q}_{u'} \rho_{\alpha u'}(t) \right] \right\} \right) \]

\[= -i \text{tr} \left(Q_u \left[\sum_{u'} \frac{\dot{P}_{u'}^2}{2} \rho_{\beta}(t) \right] \right) \]

\[= P_u(t), \]
(S46)

which agrees with time–local EOM. Note that \(\text{tr} \left[\dot{Q}_u \left[\dot{Q}_{v'} \rho_{\alpha uv}(t) \right] \right] = 0 \) for any \(u \) and \(v \). Then we calculate

\[\dot{P}_u(t) = \text{tr} \left[\dot{P}_u \dot{\rho}_\beta(t) \right] \]

\[= \text{tr} \left(\dot{P}_u - i \left[\sum_{u'v} \frac{\dot{P}_{u'}^2}{2} + \frac{1}{2} \sum_{u'v} V_{u'} \dot{Q}_{u'} \dot{Q}_{v'} \rho_{\beta}(t) \right] - i \sum_{u'v} \left[\dot{Q}_{u'} \rho_{\alpha u'}(t) \right] \right) \]

\[= - \sum_v \frac{1}{2} (V_{uv} + V_{vu}) Q_{v}(t) - \sum_{\alpha u'} \text{tr} \left[\Omega_{\alpha uv}(t) Q_{v} \rho_{\alpha '(t)} \right] - \sum_{\alpha v} \text{tr} \left[\Gamma_{\alpha uv}(t) P_{v} \rho_{\alpha v}(t) \right] \]

\[= - \sum_v \frac{1}{2} (V_{uv} + V_{vu}) Q_{v}(t) - \sum_{\alpha u} \Omega_{\alpha uv}(t) Q_{v}(t) - \sum_{\alpha v} \Gamma_{\alpha uv}(t) P_{v}(t), \]
(S47)

compare it with Eq. (S10b) we know that

\[\sum_\alpha \Omega_{\alpha uv}(t) = \Omega_{uv}(t) - \frac{1}{2} (V_{uv} + V_{vu}) \]
(S48a)

\[\sum_\alpha \Gamma_{\alpha uv}(t) = \Gamma_{uv}(t), \]
(S48b)

we can always make \(V \) matrix symmetry so that

\[\sum_\alpha \Omega_{\alpha uv}(t) = \Omega_{uv}(t) - V_{uv}, \]
(S49a)

\[\sum_\alpha \Gamma_{\alpha uv}(t) = \Gamma_{uv}(t). \]
(S49b)
B. Second order moments, derivation of $\gamma_{\alpha uv}$ and $\gamma_{\alpha' uv'}$

Again from Eq. (14), Eq. (17a) and Eq. (17b) we can obtain

$$
W_{uv}^{QQ}(t) = \frac{d}{dt} \left(\frac{\dot{Q}_u(t)\dot{Q}_v(t) + \dot{Q}_v(t)\dot{Q}_u(t)}{2} \right) - \frac{d}{dt} [Q_u(t)Q_v(t)]
$$

$$
= -i \text{tr} \left(\frac{\dot{Q}_u\dot{Q}_v + \dot{Q}_v\dot{Q}_u}{2} \left[\frac{1}{2} \left(\sum_{u'} \dot{P}_{u''}^2 + \sum_{u''} V_{u''} \dot{Q}_{u''} \dot{Q}_{u''} \right), \rho_5(t) \right] \right) - \frac{d}{dt} [Q_u(t)Q_v(t)]
$$

$$
= \frac{1}{2} \langle \dot{Q}_u(t)\dot{P}_v(t) + \dot{P}_u(t)\dot{Q}_v(t) \rangle - P_u(t)Q_v(t) + (u \leftrightarrow v)
$$

$$
= \frac{1}{2} \langle [\delta \dot{P}_u(t), \delta \dot{Q}_v(t)] \rangle + (u \leftrightarrow v),
$$

(S50)

which also agrees with Eq. (S51). Then we calculate

$$
W_{uv}^{PP}(t) = \frac{d}{dt} \left(\frac{\dot{P}_u(t)\dot{P}_v(t) + \dot{P}_v(t)\dot{P}_u(t)}{2} \right) - \frac{d}{dt} [P_u(t)P_v(t)]
$$

$$
= -i \text{tr} \left(\frac{\dot{P}_u\dot{P}_v + \dot{P}_v\dot{P}_u}{2} \left[\frac{1}{2} \left(\sum_{u'} \dot{P}_{u''}^2 + \sum_{u''} V_{u''} \dot{Q}_{u''} \dot{Q}_{u''} \right), \rho_5(t) \right] \right) - \frac{d}{dt} [P_u(t)P_v(t)],
$$

(S51)

which contains four terms and all of them needs tedious but trivial calculation, we only briefly show some key steps. First term from H_3 reads

$$
- i \text{tr} \left(\frac{\dot{P}_u\dot{P}_v + \dot{P}_v\dot{P}_u}{2} \left[\frac{1}{2} \left(\sum_{u'} \dot{P}_{u''}^2 + \sum_{u''} V_{u''} \dot{Q}_{u''} \dot{Q}_{u''} \right), \rho_5(t) \right] \right)
$$

$$
= \frac{1}{2} \sum_{u'} \langle V_{uu'} \dot{P}_v(t)\dot{Q}_u(t) + V_{vu'} \dot{P}_u(t)\dot{Q}_v(t) + V_{u'u} \dot{Q}_u(t)\dot{P}_v(t) + V_{v'u} \dot{Q}_v(t)\dot{P}_u(t) \rangle + \frac{1}{2} \sum_{u''} \langle [\dot{P}_{u''}(t), \dot{Q}_u(t)] + V_{uu''} (\dot{P}_u(t), \dot{Q}_u(t)) \rangle + (u \leftrightarrow v)
$$

$$
= \frac{1}{2} \sum_{u''} \langle [\dot{P}_{u''}(t), \dot{Q}_u(t)] \rangle + (u \leftrightarrow v),
$$

(S52)

note that $[P_u(t)P_v(t), Q_{u'}(t)Q_{v'}(t)] = -i[P_u(t)\delta_{u'v'} + \delta_{uv'} P_v(t)] Q_{v'}(t) + Q_{u'}(t)[P_u(t)\delta_{v'v} + \delta_{uv} P_v(t)]$. Second term:

$$
= -i \text{tr} \left(\frac{P_u P_v + P_v P_u}{2} \sum_{u'v'} [Q_{u''}(t), Q_{u'v'}^{(2)}(t)] \right)
$$

$$
= \sum_{u'v'} \langle \Omega_{u'v'}(t) \dot{P}_u(t) + \Omega_{uv'}(t) \dot{P}_v(t), \dot{Q}_v(t) \rangle - \frac{1}{4} \sum_{\alpha u'v'} \Gamma_{\alpha u'v'}(t) \langle \{ \dot{P}_u(t) \delta_{u'v'} + \delta_{uv'} \dot{P}_v(t) \}, \dot{P}_v(t) \rangle \rangle + (u \leftrightarrow v)
$$

$$
= \frac{1}{2} \sum_{\alpha u'v'} \Omega_{\alpha u v'}(t) \langle \{ \dot{P}_u(t), \dot{Q}_{u'}(t) \} \rangle - \frac{1}{2} \sum_{\alpha u v'} \Gamma_{\alpha u v'}(t) \langle \{ \dot{P}_u(t), \dot{P}_{u'}(t) \} \rangle + (u \leftrightarrow v),
$$

(S53)

The third term:

$$
= -i \text{tr} \left(\frac{\dot{P}_u\dot{P}_v + \dot{P}_v\dot{P}_u}{2} \sum_{u'v'} [\dot{Q}_{u''}(t), Q_{u''v'}^{(2)}] \right) = \frac{1}{2} \text{tr} \sum_{u'v'} \langle \dot{P}_{u''}(t) \delta_{uv} + \delta_{uv'} \dot{P}_v(t) \rangle \dot{Q}_{u''v'} \rangle \rho_5(t) \rangle + (u \leftrightarrow v)
$$

$$
= \sum_{\alpha} \gamma_{\alpha uv}(t) + (u \leftrightarrow v),
$$

(S54)

Sum them up, we get the final result for $\frac{d}{dt} \left(\frac{\dot{P}_u(t)\dot{P}_v(t) + \dot{P}_v(t)\dot{P}_u(t)}{2} \right)$

$$
\frac{d}{dt} \left(\frac{\dot{P}_u(t)\dot{P}_v(t) + \dot{P}_v(t)\dot{P}_u(t)}{2} \right) = -\frac{1}{2} \sum_{u'} \langle \Omega_{u'v'}(t) \{ \dot{P}_u(t), \dot{Q}_{u'}(t) \} \rangle - \frac{1}{2} \sum_{u'} \Gamma_{u'v'}(t) \{ \dot{P}_u(t), \dot{P}_{u'}(t) \} \rangle + \sum_{\alpha} \gamma_{\alpha uv}(t)
$$

+ (u \leftrightarrow v)

(S55)
we have used Eq. [S39a] here, substitute it into Eq. [S51] and using Eq. [S47] we can obtain

$$W_{uv}^{PP}(t) = - \sum_{u'} [\Omega_{uv'}(t)W_{u'v'}^{QP}(t) + \Gamma_{uv'}(t)W_{u'v'}^{PP}(t)] + \sum_{\alpha} \gamma_{\alpha uv}(t) + (u \leftrightarrow v).$$

(S56)

If we compare the expression Eq. (S56) with Eq. (S15) we will identify that

$$\gamma_{\alpha uv}(t) = \text{Re} \langle F_{\alpha uv}(t)P_v(t) \rangle.$$

(S57)

Similarly we deal with $W_{uv}^{QP}(t)$,

$$\dot{W}_{uv}^{QP}(t) = \frac{d}{dt} \langle \hat{Q}_u(t)\hat{P}_v(t) + \hat{P}_v(t)\hat{Q}_u(t) \rangle - \frac{d}{dt} [Q_u(t)P_v(t)],$$

(S58)

where

$$\frac{d}{dt} \langle \hat{P}_u(t)\hat{Q}_v(t) + \hat{Q}_v(t)\hat{P}_u(t) \rangle$$

$$= - i\text{tr} \left(\frac{\hat{P}_u\hat{Q}_v + \hat{Q}_v\hat{P}_u}{2} \right) - \frac{1}{2} \sum_{u',v'} \text{tr} \left(\sum_{\alpha} \Omega^{\alpha uv'}(t) \rho_{\alpha v'}(t) \right)$$

$$= \frac{1}{2} \left\langle \{ \hat{P}_u(t), \hat{P}_v(t) \} \right\rangle - \frac{1}{2} \sum_{u'} \left(V_{uv'} + V_{v'u} \right) \left\langle \hat{Q}_u(t)\hat{Q}_v(t) \right\rangle - \frac{1}{2} \sum_{\alpha} \Omega^{\alpha uv'}(t) \text{tr} \left(\hat{Q}_u(t)\hat{Q}_{\alpha v'}(t) \right)$$

$$= \frac{1}{2} \left\langle \{ \hat{P}_u(t), \hat{P}_v(t) \} \right\rangle - \frac{1}{2} \sum_{u'} \Omega_{uv'}(t) \left\langle \hat{Q}_u(t)\hat{Q}_{u'}(t) \right\rangle + \frac{1}{2} \sum_{\alpha} \gamma_{\alpha uv'}(t) \text{tr} \left(\hat{Q}_u(t)\hat{Q}_{\alpha v'}(t) \right)$$

(S59)

and use basic calculation to get

$$\dot{W}_{uv}^{QP}(t) = W_{uv}^{PP}(t) - \sum_{u'} \Omega_{uv'}(t)W_{u'v}^{QP}(t) + \sum_{\alpha} \gamma_{\alpha uv}(t) - \sum_{u'} \Gamma_{uv'}(t)W_{u'v}^{QP}(t)$$

(S60)

we can exam it term by term and compare it with the result of time-local EOM, Eq. [S15] to find they are equal and indentify that

$$\gamma_{\alpha uv}(t) = \text{Re} \langle F_{\alpha uv}(t)Q_v(t) \rangle,$$

(S61)

C. explicit expressions for $\Omega_{uv}(t)$ and $\Gamma_{uv}(t)$

In this part we will give a detailed equation for $\Gamma(t)$ and $\Omega(t)$ attributed to each baths, which will be very useful for numerical verification and building connection with nonequilibrium thermodynamics.

From Eq. (8) with Eq. (9) and Eq. (10) we can reformulate $T(t)$ matrix as

$$\chi^{QP}_{uv}(t) = \chi^{PP}_{uv}(t)$$

(S62a)

$$\chi^{QQ}_{uv}(t) = \chi^{PQ}_{uv}(t)$$

(S62b)

$$\chi^{PP}_{uv}(t) = - \sum_k V_{uk}\chi^{QP}_{kv}(t) + i\sum_{\alpha} \langle [\hat{F}_{\alpha u}(t), \hat{P}_v(t)] \rangle$$

(S62c)

$$\chi^{PQ}_{uv}(t) = - \sum_k V_{uk}\chi^{QQ}_{kv}(t) + i\sum_{\alpha} \langle [\hat{F}_{\alpha u}(t), \hat{Q}_v(t)] \rangle,$$

(S62d)

from Eq. (2) we easily get

$$\dot{\chi}^{PP}_{uv}(t) = - \sum_k V_{uk}\chi^{QP}_{kv}(t) + \sum_{\alpha k} \int_0^t d\tau \phi_{auk}(t-\tau)\chi^{QP}_{kv}(\tau)$$

(S63a)

$$\dot{\chi}^{PQ}_{uv}(t) = - \sum_k V_{uk}\chi^{QQ}_{kv}(t) + \sum_{\alpha k} \int_0^t d\tau \phi_{auk}(t-\tau)\chi^{QQ}_{kv}(\tau)$$

(S63b)
Thus we have
\[\dot{T}(t) = \left[\begin{array}{cc} 0 & I \\ -V & 0 \end{array} \right] \left[\begin{array}{cc} -\chi_{QP}(t) & \chi_{QQ}(t) \\ -\chi_{PP}(t) & \chi_{PQ}(t) \end{array} \right] + \sum_{a} \int_{0}^{t} d\tau \left[\begin{array}{cc} \tilde{\phi}_{a}(t-\tau) & 0 \\ 0 & \tilde{\chi}_{a} \end{array} \right] \left[\begin{array}{cc} 0 & -\chi_{QP}(t) \\ -\chi_{PP}(t) & \chi_{PQ}(t) \end{array} \right] \] (S64)
this means
\[\dot{T}(t) = \left[\begin{array}{cc} 0 & I \\ -V & 0 \end{array} \right] T(t) + \sum_{a} \int_{0}^{t} d\tau \left[\begin{array}{cc} \tilde{\phi}_{a}(t-\tau) & 0 \\ 0 & \tilde{\chi}_{a} \end{array} \right] T(\tau), \] (S65)
using Eq. (9) we can recast \(\Lambda(t) \) matrix as
\[\Lambda(t) = \left[\begin{array}{cc} 0 & I \\ -V & 0 \end{array} \right] + \sum_{a} \int_{0}^{t} d\tau \left[\begin{array}{cc} \tilde{\phi}_{a}(t-\tau) & 0 \\ 0 & \tilde{\chi}_{a} \end{array} \right] T(\tau)T^{-1}(t) \] (S66)
which from Eq. (10a)–Eq. (10d) and Eq. (S49) gives us
\[\left[\begin{array}{c} \Omega_{\alpha}(t) \\ \Gamma_{\alpha}(t) \end{array} \right] = -\int_{0}^{t} d\tau \left[\begin{array}{cc} \tilde{\phi}_{a}(t-\tau) & 0 \\ 0 & \tilde{\chi}_{a} \end{array} \right] T(\tau)T^{-1}(t), \] (S67)

III. ASYMPTOTIC ANALYSIS

Here are our building blocks of this section, namely we will convert any response function to \(\chi \)

\[
\chi^{PQ}(t) \equiv \dot{\chi}(t) \tag{S68a}
\]
\[
\chi^{PQ}(t) \equiv \ddot{\chi}(t) \tag{S68b}
\]
\[
\chi^{PP}(t) \equiv -\dddot{\chi}(t) \tag{S68c}
\]
\[
\chi^{PP}(t) \equiv -\dddot{\chi}(t) \tag{S68d}
\]
\[
\chi^{QP}(t) \equiv -\dot{\chi}(t) \tag{S68e}
\]

A. asymptotic behaviour of response function

Then we can move forward to get many useful result:
\[
\chi(0) = 0 \tag{S69}
\]
This is trivial
\[
\dot{\chi}(0) = I \tag{S70}
\]
This is because \(\chi_{uv}(0) = i\langle [\hat{Q}_{u}(0), \hat{Q}_{v}(0)] \rangle = i\langle [\hat{P}_{u}(0), \hat{Q}_{v}(0)] \rangle = \delta_{uv} \)
\[
\chi^{SB}_{\alpha}(0) = \chi^{BS}_{\alpha}(0) = 0 \tag{S71}
\]
Note that at \(t = 0, \hat{F}_{\alpha\nu}(0) \) they commutes with system operators.
\[
\ddot{\chi}(0) = 0 \tag{S72}
\]
We use \(\dot{\chi}(0) = -\Omega V \chi(0) + \Omega \chi^{BS}(0) = 0 \)
\[
\chi^{BS} = 0 \tag{S73}
\]
Also trivial
\[
\chi_{\alpha}^{SB}(0) = 0 \tag{S74}
\]
We know \(\chi_{\alpha uu}(0) = i\langle [\hat{Q}_u(0), \hat{F}_{\alpha u}(0)] \rangle = 0 \)
\[
\chi_{\alpha uu}(0) = 0,
\]
(S75)

We use \(\chi_{\alpha uu}(0) = -V \chi_{\alpha uu}(0) + \chi_{\alpha uu}(0) = 0 \) Then we turn to calculate \(\dddot{X}(0), \dddot{Y}(0), d\dddot{X}/d\dddot{t} \bigg|_{t=0} \)

First we have
\[
\dddot{Q}_u(t) = - \sum_v V_{uv} \dddot{Q}_v(t) + \sum_{\alpha} \dddot{F}_{\alpha uu}(t) \sum_{\alpha v} \phi_{\alpha uu}(0) \dddot{Q}_v(t) + \sum_{\alpha v} \int_0^t \ddot{\tau} \phi_{\alpha uv}(t - \tau) \dddot{Q}_v(\tau),
\]
(S76)

Note that \(\phi_{\alpha uu}(0) = 0 \) from Eq. (3), the last term vanishes and the second term will not contribute in following calculation
\[
\dddot{X}_{uu}(0) = i\langle - \sum_{v'} V_{uv'} \dddot{P}_{v'}(0), \dddot{Q}_u(0) \rangle = -V_{uu},
\]
(S77)

so that
\[
\dddot{X}(0) = -V,
\]
(S78)

then we know
\[
\dddot{Q}_u(0) = - \sum_{v'} V_{uv'} \dddot{Q}_{v'}(0) + \sum_{\alpha} \dddot{F}_{\alpha uu}(0) \dddot{Q}_u(0)
\]
(S79)

note that \(\dddot{Q}_u(0) = - \sum_{u'} V_{uu'} \dddot{Q}_{u'}(0) + \sum_{\alpha} \dddot{F}_{\alpha uu}(0) \dddot{Q}_u(0) \) so it will not commute We get
\[
\dddot{X}(0) = 0.
\]
(S80)

The \(d\dddot{X}/d\dddot{t} \bigg|_{t=0} \) is much more complex, First take derivative of Eq. (S79) we can calculate
\[
\left. \frac{d\dddot{X}_{uv}}{dt} \right|_{t=0} = \left\langle - \sum_{u'} V_{uv'} \dddot{Q}_{u'}(0) + \sum_{\alpha v} \phi_{\alpha uu'}(0) \dddot{Q}_{u'}(0) + \sum_{\alpha v} \dddot{\phi}_{\alpha uu'}(0) \dddot{Q}_{u'}(0) \right\rangle
\]
\[
= \sum_{v_{12}} V_{uv_1} V_{v_1 v_2} \chi_{v_2 v_2}(0) + \sum_{\alpha v} \phi_{\alpha uu_1}(0) \chi_{uv_1}(0)
\]
\[
= \sum_{v_1} V_{uv_1} V_{v_1 v} + \sum_{\alpha} \phi_{\alpha uv}(0),
\]
(S81)

so that
\[
\left. \frac{d\dddot{X}}{dt} \right|_{t=0} = V^2 + \sum_{\alpha} \dddot{\phi}(0)
\]
(S82)

then we come to the quantity \(\chi_{\alpha uu}(0) \) We get
\[
\dddot{F}_{\alpha uu}(0) = \dddot{F}_{\alpha uu}(0) + \sum_{u'} \phi_{\alpha uu'} Q_{u'}(0),
\]
(S83)

so that \(\chi_{\alpha uu}(0) = \dddot{\phi}_{\alpha}(0) = 0 \), obviously \(\chi_{\alpha uu}(0) = \dddot{\phi}_{\alpha}(0) \).

B. asymptotic behaviour of \(\Omega_{uv} \) and \(\Gamma_{uv} \)

In this subsection we omit \(t \) argument when necessary for clarity, from Eq. (10a)–Eq. (10d) and Eq. (13) we get
\[
\Omega(t) = -\ddot{\chi}(\dddot{X})^{-1}(-\dddot{X}) + \dddot{X}^{-1} - \dddot{X}(\dddot{X}^{-1} \dddot{X})^{-1}
\]
\[
= [\dddot{X}(\dddot{X}^{-1} \dddot{X})^{-1} - \dddot{X}(\dddot{X}^{-1} \dddot{X})^{-1}]
\]
(S84)
similarly
\[\Gamma(t) = \ddot{x}(\dot{x}x^{-1}\ddot{x} - x) - \ddot{x}(\dot{x}x^{-1}x) - \ddot{x}(\dot{x}x^{-1}x). \]
(S85)

Then we are easy to find that
\[\Omega(t)\dot{x} + \Gamma(t)\dot{x} = -\ddot{x}[(\ddot{x}x^{-1}\ddot{x} - x) - \ddot{x}(\dot{x}x^{-1}x) - \ddot{x}(\dot{x}x^{-1}x)]. \]
(S86)

If we rewrite
\[\Omega(t) = (\ddot{x} - \ddot{x}x^{-1}\ddot{x})(\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}x \]
\[\Gamma(t) = -\ddot{x}(\ddot{x} - \ddot{x}x^{-1}\ddot{x})(\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}, \]
(S87a)
(S87b)

We can get
\[\Omega(t)\dot{x} + \Gamma(t)\dot{x} = -\ddot{x} - (\ddot{x}x^{-1}\ddot{x})(\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}x - (\ddot{x}x^{-1}\ddot{x})(\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}\dot{x} \]
(S88)
collect them as:
\[\Omega(t)\dot{x} + \Gamma(t)\dot{x} = -\ddot{x} - (\ddot{x}x^{-1}\ddot{x})(\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}x + (\ddot{x} - \ddot{x}x^{-1}\ddot{x})^{-1}\dot{x} \]
(S89a)
(S89b)

Both of them are extremely dirty and tedious, we can use some tricks to make them much simpler, denote

\[\ddot{x}x^{-1} = a \]
(S90a)
\[\dot{x}x^{-1} = b \]
(S90b)
\[\dot{x}\dddot{x}^{-1} = c \]
(S90c)
\[\dddot{x}x^{-1} = ab^{-1} \]
(S90d)
\[\dot{x}\dddot{x}^{-1} = ba^{-1} \]
(S91a)
\[\ddot{x}x = ba^{-1} \]
(S91b)

so that
\[\Omega(t) + \Gamma(t)\dot{x}x^{-1} \]
\[= -(a - ba^{-1}ba^{-1}) - (ba^{-1} - ab^{-1}a^{-1})b \]
\[= -a - a(b^{-1}ab^{-1}(1 - ba^{-1}b)) - a(1 - b^{-1}ab^{-1}) \]
\[= -a \]
(S92)

We have used \((A + B)^{-1} = A^{-1} - A^{-1}(I + BA^{-1})^{-1}BA^{-1}\) for arbitrary matrices \(A\) and \(B\), also
\[\Omega(t) + \Gamma(t)(\dddot{x})^{-1} \]
\[= -c - (a - ba^{-1}ba^{-1})(ba^{-1} - ab^{-1}a^{-1})ab^{-1} \]
\[= -c - a(1 - ba^{-1}b)b - a(b^{-1}b(1 - b^{-1}ab^{-1}))^{-1} \]
\[= -c \]
(S93)

thus
\[\Omega(t)\dot{x} + \Gamma(t)(\dddot{x})^{-1} = -\dddot{x}(t) \]
(S94a)
\[\Omega(t)\dot{x} + \Gamma(t)(\dddot{x})^{-1} = -\dddot{x}(t) \]
(S94b)

which is much more simpler.

Our main aim is to move on to find zero-time behaviour of \(\Omega(t)\) and \(\Gamma(t)\) and get their derivatives. But inverse of matrix is not easy to calculate. So we should consider other ways.
We can obtain following expression by former results,

\[\chi(t) = It - \frac{1}{3!}Vt^3 + ct^5 + o(t^7) \] \hspace{1cm} (S95a)

\[\dot{\chi}(t) = I - \frac{1}{2}Vt^2 + 5ct^4 + o(t^6) \] \hspace{1cm} (S95b)

\[\ddot{\chi}(t) = -Vt + 20ct^3 + o(t^5) \] \hspace{1cm} (S95c)

\[\dddot{\chi}(t) = -V + 60ct^2 + o(t^2) \] \hspace{1cm} (S95d)

where \(c \equiv \frac{1}{5!}V^2 + \sum_{\alpha} \dot{\phi}_\alpha(0) \) and \(o(t^n) \) stands for infinitesimal of order \(t^n \) or higher. We know that \((A + B)^{-1} = A^{-1} - A^{-1}(I + BA^{-1})^{-1}BA^{-1}\) and for \(B = \epsilon = \) infinitesimal we have \((A + \epsilon)^{-1} \approx A^{-1} - A^{-1}\epsilon A^{-1}\) So

\[\chi^{-1}(t) = t^{-1} + \frac{1}{6}Vt - ct^3 + o(t^5) \] \hspace{1cm} (S96a)

\[\dot{\chi}^{-1}(t) = +\frac{1}{2}Vt^2 - 5ct^4 + o(t^6) \] \hspace{1cm} (S96b)

now it is time to get asymptotic expression for what we want, remember the expression for \(\Omega(t) \), Eq. (S87a) The first bracket reads:

\[-V + (60c - V^2)t^2 + o(t^4) \] \hspace{1cm} (S97)

inverse of the second bracket:

\[t + \frac{1}{6}t^3 + o(t^5) \] \hspace{1cm} (S98)

so the final result is:

\[\Omega(t) = \left[-V + (60c - V^2)t^2 + o(t^4) \right] \times \left[-It + \frac{1}{6}t^3 + o(t^5) \right] \times \left[It^{-1} - \frac{1}{3}Vt + (4c - \frac{1}{12}V^2)t^3 + o(t^5) \right] \] \hspace{1cm} (S99)

we can easily read off that:

\[\Omega(0) = V \] \hspace{1cm} (S100a)

\[\dot{\Omega}(0) = 0 \] \hspace{1cm} (S100b)

\[\ddot{\Omega}(0) = -\sum_{\alpha} \dot{\phi}_\alpha(0) \] \hspace{1cm} (S100c)

Using the same method, note that in Eq. (S87b), first term:

\[Vt - (60c + \frac{1}{6}V^2)t^3 + o(t^5) \] \hspace{1cm} (S101)

second term:

\[-Vt + (20c + \frac{1}{2}V^2)t^3 + o(t^5) \] \hspace{1cm} (S102)

So we can read off:

\[\Gamma(0) = 0 \] \hspace{1cm} (S103a)

\[\dot{\Gamma}(0) = 0 \] \hspace{1cm} (S103b)

\[\ddot{\Gamma}(0) = 0 \] \hspace{1cm} (S103c)

\[\dddot{\Gamma}(0) = 2\sum_{\alpha} \dot{\phi}_\alpha(0) \] \hspace{1cm} (S103d)

IV. HEAT CURRENT

A. derivation of heat current

In this section we give the derivation of heat current, first from the definition we have,

\[\dot{J}_\alpha(t) = -\sum_u Q_u(t) \dot{F}_{\alpha u}(t) \] \hspace{1cm} (S104)
so that

\[
\langle \hat{J}_\alpha(t) \rangle = - \sum_u \text{tr}_\Sigma \left[\hat{Q}_u(t) \hat{F}_{\alpha u}(t) \rho_{\pi} \right]
\]

\[
= -i \sum_u \text{tr}_\Sigma \left\{ \hat{Q}_u [H_T, \hat{F}_{\alpha u}] \rho_{\pi}(t) \right\}
\]

\[
= -i \sum_u \text{tr}_\Sigma \left\{ \rho_{\pi}(t) \hat{Q}_u [H_T, \hat{F}_{\alpha u}] \right\}
\]

\[
= -i \sum_u \text{tr}_\Sigma \left\{ \rho_{\pi}(t) \hat{Q}_u, H_T \right\} \hat{F}_{\alpha u} \right\} (S105)
\]

in the bracket

\[
\text{tr}_\Sigma \left\{ [\rho_{\pi}(t) \hat{Q}_u, H_T] \hat{F}_{\alpha u} \right\} = \text{tr}_\Sigma \left\{ [\rho_{\pi}(t), H_T] \hat{Q}_u \hat{F}_{\alpha u} \right\} + \text{tr}_\Sigma \left\{ \rho_{\pi}(t) [\hat{Q}_u, H_T] \hat{F}_{\alpha u} \right\}
\]

\[
= -i \text{tr}_\Sigma \left\{ \hat{Q}_u \text{tr}_\Sigma (\hat{F}_{\alpha u} \rho_{\pi}(t)) \right\} + i \text{tr}_\Sigma \left\{ \hat{Q}_u \text{tr}_\Sigma (\hat{F}_{\alpha u} \rho_{\pi}(t)) \right\}
\]

\[
= -i \text{tr}_\Sigma \left\{ \hat{Q}_u \rho_{\alpha u}(t) \right\} + i \text{tr}_\Sigma \left\{ \hat{Q}_u \rho_{\alpha u}(t) \right\}, (S106)
\]

therefore the heat current reads

\[
\langle \hat{J}_\alpha(t) \rangle = - \sum_u \text{tr}_\Sigma \left[\hat{Q}_u \rho_{\alpha u}(t) \right] + \sum_u \text{tr}_\Sigma \left[\hat{P}_u \rho_{\alpha u}(t) \right] (S107)
\]

where

\[
\rho_{\alpha u}(t) = \sum_v \left[\Omega_{\alpha u v}(t) \hat{Q}_v^\dagger + \Gamma_{\alpha u v}(t) \hat{P}_v^\dagger + \gamma_{\alpha u v}(t) \hat{Q}_v^\dagger - \gamma_{\alpha u v}'(t) \hat{P}_v^\dagger \right] \rho_{\pi}(t). (S108)
\]

The first term in Eq. (S107) is more complex so we firstly deal with the second term.

\[
\text{tr}_\Sigma \left[\hat{P}_u \rho_{\alpha u}(t) \right]
\]

\[
= \sum_v \left\{ \Omega_{\alpha u v}(t) \text{tr}_\Sigma \left[\hat{P}_u \rho_{\pi}(t) \right] + \Gamma_{\alpha u v}(t) \text{tr}_\Sigma \left[\hat{P}_u \rho_{\pi}(t) \right] + \gamma_{\alpha u v}(t) \text{tr}_\Sigma \left[\hat{P}_u \rho_{\pi}(t) \right] \right\}
\]

\[
= -i \text{tr}_\Sigma \left\{ \hat{Q}_u \rho_{\alpha u}(t) \right\} + i \text{tr}_\Sigma \left\{ \hat{Q}_u \rho_{\alpha u}(t) \right\}
\]

\[
= -i \sum_u \sum_v \left[\Omega_{\alpha u v}(t) \hat{Q}_v^\dagger + \Gamma_{\alpha u v}(t) \hat{P}_v^\dagger + \gamma_{\alpha u v}(t) \hat{Q}_v^\dagger - \gamma_{\alpha u v}'(t) \hat{P}_v^\dagger \right] \rho_{\pi}(t). (S109)
\]

so the second term gives us

\[
\sum_{u,v} \Omega_{\alpha u v}(t) [W_{uv}^{PQ} + P_u(t)Q_v(t)] + \sum_{u,v} \Gamma_{\alpha u v}(t) [W_{uv}^{PP} + P_u(t)P_v(t)] - \sum_u \gamma_{\alpha u u}(t). (S110)
\]

It is difficult to directly give expression of the first term in Eq. (S107). Let’s use a simple trick, denote

\[
H_\alpha(t) \equiv - \int_0^t d\tau \sum_u \text{tr}_\Sigma \left[\hat{Q}_u \rho_{\alpha u}(\tau) \right] = - \sum_u \text{tr}_\Sigma \left[\hat{Q}_u \rho_{\alpha u}(t) \right] + \text{constant}, (S111)
\]

once we obtain \(H_\alpha(t) \) we can take derivative of it to get \(J_\alpha(t) \). Put Eq. (S108) into Eq. (S111), we can obtain

\[
H_\alpha(t) = - \sum_u \sum_v \left[\Omega_{\alpha u v}(t) \hat{Q}_v^\dagger + \Gamma_{\alpha u v}(t) \hat{P}_v^\dagger + \gamma_{\alpha u v}(t) \hat{Q}_v^\dagger - \gamma_{\alpha u v}'(t) \hat{P}_v^\dagger \right] \rho_{\pi}(t)
\]

\[
= - \sum_u \sum_v \left[\Omega_{\alpha u v}(t) \hat{Q}_v^\dagger + \Gamma_{\alpha u v}(t) \hat{P}_v^\dagger + \gamma_{\alpha u v}(t) \hat{Q}_v^\dagger - \gamma_{\alpha u v}'(t) \hat{P}_v^\dagger \right] \rho_{\pi}(t)
\]

\[
= - \sum_u \sum_v \left[\Omega_{\alpha u v}(t) \hat{Q}_v^\dagger + \Gamma_{\alpha u v}(t) \hat{P}_v^\dagger + \gamma_{\alpha u v}(t) \hat{Q}_v^\dagger - \gamma_{\alpha u v}'(t) \hat{P}_v^\dagger \right] \rho_{\pi}(t) + \sum_u \gamma_{\alpha u u}(t). (S112)
\]
we can express $H_\alpha(t)$ in terms of first and second order moment functions

$$H_\alpha(t) = -\sum_{uv} \left\{ \Omega_{\alpha uv}(t) [W_{uv}^{QQ}(t) + Q_u(t)Q_v(t)] + \Gamma_{\alpha uv}(t) [W_{uv}^{QP}(t) + Q_u(t)P_v(t)] \right\} + \sum_u \gamma'_\alpha(t),$$ \hspace{1cm} (S113)

thus the

$$\langle \dot{J}_\alpha(t) \rangle = \frac{dH_\alpha(t)}{dt} + \sum_{uv} \Omega_{\alpha uv}(t) [W_{uv}^{PQ}(t) + P_u(t)Q_v(t)] + \sum_{uv} \Gamma_{\alpha uv}(t) [W_{uv}^{PP}(t) + P_u(t)P_v(t)] - \sum_u \gamma_{\alpha uu}(t).$$ \hspace{1cm} (S114)

B. analysis of nonequilibrium steady state

First we give expression of heat current at nonequilibrium steady state, which means we take the limit as t goes to infinity. The first term in Eq. (S114) will vanish. Since from Eq. (S10) we know $Q_u(\infty) = 0$ and $P_u(\infty) = 0$, in nonequilibrium steady state Eq. (S114) reduces to

$$\langle \dot{J}_\alpha(\infty) \rangle = \sum_{uv} \Omega_{\alpha uv}(\infty) W_{uv}^{QP}(\infty) + \sum_{uv} \Gamma_{\alpha uv}(\infty) W_{uv}^{PP}(\infty) - \sum_u \gamma_{\alpha uu}(\infty)$$

$$= \text{tr} \left[\Omega_{\alpha}(\infty) W_{\alpha}^{QP}(\infty) \right] + \text{tr} \left[\Gamma_{\alpha}(\infty) W_{\alpha}^{PP}(\infty) \right] - \text{tr} \left[\gamma_{\alpha}(\infty) \right]$$ \hspace{1cm} (S115)

to further simplify and analyze this result, we introduce covariance matrix as

$$W(t) \equiv \begin{bmatrix} W_{QQ}(t) & W_{QP}(t) \\ W_{PQ}(t) & W_{PP}(t) \end{bmatrix} = \frac{1}{2} \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\},$$ \hspace{1cm} (S116)

with

$$W_{PQ}(t) \equiv \left[W_{QQ}(t) \right]^T,$$ \hspace{1cm} (S117)

and from Eq. (8) in the main text we get

$$\begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} = \Lambda(t) \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} + \sum_\alpha \begin{bmatrix} 0 \\ \hat{F}_\alpha^{\text{eff}}(t) \end{bmatrix}.$$ \hspace{1cm} (S118)

Take derivative of both side of Eq. (S116) to get EOM for $W(t)$ matrix.

$$\dot{W}(t) = \frac{1}{2} \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\} + \frac{1}{2} \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\}$$

$$= \frac{1}{2} \Lambda(t) \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\} + \frac{1}{2} \sum_\alpha \left\{ \begin{bmatrix} 0 \\ \hat{F}_\alpha^{\text{eff}}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\}$$

$$+ \frac{1}{2} \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix}^T \right\} \Lambda^T(t) + \frac{1}{2} \sum_\alpha \left\{ \begin{bmatrix} \delta \hat{Q}(t) \\ \delta \hat{P}(t) \end{bmatrix} , \begin{bmatrix} 0 \\ \hat{F}_\alpha^{\text{eff}}(t) \end{bmatrix}^T \right\},$$ \hspace{1cm} (S119)

note that

$$\frac{1}{2} \left\{ \hat{F}_\alpha^{\text{eff}}(t), \delta \hat{Q}^T(t) \right\} = \text{Re} \left[\hat{F}_\alpha^{\text{eff}}(t) \delta \hat{Q}^T(t) \right] = \text{Re} \left[\hat{F}_\alpha^{\text{eff}}(t) \hat{Q}^T(t) \right] = \gamma_\alpha(t),$$ \hspace{1cm} (S120)

following this trick we can rewrite Eq. (S119) as

$$\dot{W}(t) = \Lambda(t)W(t) + W(t)\Lambda^T(t) + \sum_\alpha U_\alpha(t),$$ \hspace{1cm} (S121)

where

$$U_\alpha(t) = \begin{bmatrix} 0 & [\gamma'_\alpha(t)]^T \\ [\gamma'_\alpha(t)] & [\gamma_\alpha(t)]^T \end{bmatrix},$$ \hspace{1cm} (S122)
take the limit with \(t \) tending to infinity of both sides of Eq. (S121), we obtain

\[
A(\infty)W(\infty) + W(\infty)A^T(\infty) + \sum_\alpha U_\alpha(\infty) = 0,
\]

(S123)

with Eq. (S116) we can get useful relations at nonequilibrium steady state

\[
W^{PQ}(\infty) + W^{QP}(\infty) = 0
\]

(S124a)

\[
\sum_\alpha \gamma'_\alpha(\infty) = -W^{PP}(\infty) + \Omega(\infty)W^{QQ}(\infty) + \Gamma(t)W^{PQ}(\infty)
\]

(S124b)

\[
\sum_\alpha \left(\gamma_\alpha(\infty) + \left[\gamma_\alpha(\infty) \right]^T \right) = \Omega(\infty)W^{QQ}(\infty) + W^{PQ}(\infty)\Omega(\infty) + \Gamma(\infty)W^{PP}(\infty) + W^{PP}(\infty)\Gamma(\infty),
\]

(S124c)

take the trace of both sides of Eq. (S124c) we get

\[
\sum_\alpha \text{tr} \left[\gamma_\alpha(\infty) \right] = \text{tr} \left[\Gamma(\infty)W^{PP}(\infty) \right],
\]

(S125)

note that from Eq. (S117) and Eq. (S124a) we know both \(W^{PQ}(\infty) \) and \(W^{QP}(\infty) \) are antisymmetric matrix. With \(\Omega_\alpha(t) \) being symmetric we know \(\text{tr} \left[\Omega_\alpha(\infty)W^{QQ}(\infty) \right] = 0 \). Therefore Eq. (S115) can be simplified as

\[
\langle j^\alpha \rangle = \text{tr} \left[\Gamma_\alpha(\infty)W^{PP}(\infty) \right] - \text{tr} \left[\gamma_\alpha(\infty) \right],
\]

(S126)

From Eq. (S125) and Eq. (S129) we directly derive the conservation law of current,

\[
\sum_\alpha \langle j^\alpha \rangle = 0
\]

(S127)

C. analysis of equilibrium state

When the system is coupled with two reservoirs at the same temperature, namely

\[
\beta_\alpha = \beta \quad \text{for } \alpha = 1, 2
\]

(S128)

they will fall into equilibrium state. In the former theoretical derivation based on EOM of \(W(t) \), we have no chance to introduce the condition Eq. (S128). Here we will directly use Eq. (S44) to conduct asymptotic analysis of \(\gamma_\alpha \) and \(\gamma'_\alpha \) at equilibrium state with the help of fluctuation-dissipation theorem Eq. (S40):

First we consider

\[
k_{00}^{00}(t) = \tau_{00}^{00}(t)
\]

\[
= \sum_1 \int_0^t d\tau_2 \chi_{\nu_1}(\tau_1) a_{\alpha v_1 u_1} (\tau_1 - \tau_2) \chi_{\omega v_1}(\tau_2)
\]

\[
= \text{Re} \sum_1 \int_0^t d\tau_2 \chi_{\nu_1}(\tau_1) a_{\alpha v_1 u_1} (\tau_1 - \tau_2) \chi_{\omega v_1}(\tau_2)
\]

\[
= \text{Re} \frac{1}{\pi} \sum_1 \int_0^t d\tau_2 \chi_{\nu_1}(\tau_1) \int_{-\infty}^{\infty} d\omega \left(e^{-i\omega(\tau_1 - \tau_2)} \frac{\gamma_{\omega v_1 u_1}(-\omega)}{1 - e^{-\beta\omega}} \chi_{\omega v_1}(\tau_2) \right)
\]

\[
= \text{Re} \frac{1}{\pi} \sum_1 \int_{-\infty}^{\infty} d\omega \frac{\gamma_{\omega v_1 u_1}(-\omega)}{1 - e^{-\beta\omega}} \chi_{\omega v_1}(\tau_2) ,
\]

(S129)

therefore

\[
k_{00}^{00}(\infty) = \sum_1 \frac{1}{\pi} \text{Re} \int_{-\infty}^{\infty} d\omega \frac{\gamma_{\omega v_1 u_1}(-\omega)}{1 - e^{-\beta\omega}} \chi_{\omega v_1}(\tau_2).
\]

(S130)

Note that

\[
\chi(\omega) = \left[V - \sum_\alpha \phi_\alpha(\omega) - \omega I \right]^{-1},
\]

(S131)
we have
\[
2i\chi^{(-)}(\omega) = \chi(\omega) - \chi^\dagger(\omega)
\]
\[
= [V - \sum_\alpha \hat{\phi}_\alpha(\omega) - \omega I]^{-1} - [V - \sum_\alpha \hat{\phi}_\alpha^\dagger(\omega) - \omega I]^{-1}
\]
\[
= [V - \sum_\alpha \hat{\phi}_\alpha(\omega) - \omega I]^{-1} \left[\left(V - \sum_\alpha \hat{\phi}_\alpha(\omega) - \omega I \right) - \left(V - \sum_\alpha \hat{\phi}_\alpha(\omega) - \omega I \right) \right] [V - \sum_\alpha \hat{\phi}_\alpha^\dagger(\omega) - \omega I]^{-1}
\]
\[
= [V - \sum_\alpha \hat{\phi}_\alpha(\omega) - \omega I]^{-1} \left[\sum_\alpha \hat{\phi}_\alpha(\omega) - \sum_\alpha \hat{\phi}_\alpha^\dagger(\omega) \right] [V - \sum_\alpha \hat{\phi}_\alpha^\dagger(\omega) - \omega I]^{-1},
\]
(S132)
thus
\[
\chi^{(-)}(\omega) = \sum_\alpha \chi(\omega) \hat{\phi}_\alpha^{(-)}(\omega) \chi^\dagger(\omega)
\]
(S133)
put Eq. (S133) into Eq. (S130) and apply condition Eq. (S128) we obtain
\[
\sum_\alpha k^{00}_{\alpha uu}(\infty) = \frac{1}{\pi} \int_{-\infty}^{\infty} d\omega \frac{\chi^{(-)}(\omega)}{1 - e^{-i\omega}},
\]
with \(C_{uv}(t) \) being the correlation function of the system. Following the same trick, we turn to
\[
k^{01}_{\alpha uu}(t) = T^{01}_{\alpha uu}(t)
\]
\[
= \sum_{u_1 v_1} \int_0^t \int_0^t d\tau_1 d\tau_2 \chi_{uvu_1}(\tau_1) a_{\alpha uu_1}(\tau_1 - \tau_2) \hat{\chi}_{ww_1}(\tau_2)
\]
\[
= \Re \sum_{u_1 v_1} \int_0^t \int_0^t d\tau_1 d\tau_2 \chi_{uvu_1}(\tau_1) c_{\alpha uu_1}(\tau_1 - \tau_2) \hat{\chi}_{ww_1}(\tau_2)
\]
\[
= \Re \frac{1}{\pi} \sum_{u_1 v_1} \int_0^t \int_0^t d\tau_1 d\tau_2 \chi_{uvu_1}(\tau_1) \int_{-\infty}^{\infty} d\omega e^{-i\omega(\tau_1 - \tau_2)} \frac{\hat{\phi}_{\alpha uu_1}(\omega)}{1 - e^{-i\beta\omega}} \hat{\chi}_{ww_1}(\tau_2)
\]
\[
= \Re \frac{1}{\pi} \sum_{u_1 v_1} \int_{-\infty}^{\infty} d\omega \frac{\hat{\phi}_{\alpha uu_1}(\omega)}{1 - e^{-i\beta\omega}} \left(\int_0^t d\tau_1 \chi_{uvu_1}(\tau_1) e^{-i\omega \tau_1} \right) \left(\int_0^t d\tau_2 \chi_{ww_1}(\tau_2) e^{i\omega \tau_2} \right),
\]
(S135)
since
\[
\int_0^t d\tau_2 \chi_{ww_1}(\tau_2) e^{i\omega \tau_2} = -i\omega \int_0^t d\tau_2 \chi_{ww_1}(\tau_2) e^{i\omega \tau_2} = -i\omega \chi_{ww_1}(\omega),
\]
(S136)
we have
\[
k^{01}_{\alpha uu}(\infty) = \sum_{u_1 v_1} \frac{1}{\pi} \Re \int_{-\infty}^{\infty} d\omega - i\omega \frac{\hat{\phi}_{\alpha uu_1}(\omega)}{1 - e^{-i\beta\omega}} \chi_{ww_1}(\omega) \chi_{uvu_1}(\omega) = \sum_{u_1 v_1} \frac{1}{\pi} \Im \int_{-\infty}^{\infty} d\omega \omega \frac{\hat{\phi}_{\alpha uu_1}(\omega)}{1 - e^{-i\beta\omega}} \chi_{ww_1}(\omega) \chi_{uvu_1}(\omega),
\]
(S137)
however
\[
\sum_\alpha k^{01}_{\alpha uu}(\infty) = \frac{1}{\pi} \Re \int_{-\infty}^{\infty} d\omega \frac{-i\omega \chi^{(-)}(\omega)}{1 - e^{-i\beta\omega}} = \frac{1}{\pi} \Im \int_{-\infty}^{\infty} d\omega \frac{\omega \chi^{(-)}(\omega)}{1 - e^{-i\beta\omega}} = 0,
\]
(S138)
Therefore we know \(f(0) = \) symmetric, further \(\sum\)

\[
02 \sum\tau \chi_{uv1}(\tau_1) a_{uv1u1}(\tau_1 - \tau_2) \chi_{uv1}(\tau_2) + \sum\tau\chi_{uv1}(\tau) a_{uv1u1}(\tau)
\]

\[
= \text{Re} \sum\tau\tau \chi_{uv1}(\tau_1) c_{uv1u1}(\tau_1 - \tau_2) \chi_{uv1}(\tau_2) + \sum\tau\chi_{uv1}(\tau) a_{uv1u1w}(\tau)
\]

\[
= \text{Re} \sum\tau\tau \chi_{uv1}(\tau_1) \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \chi_{uv1}(\tau_2) + \sum\tau\chi_{uv1}(\tau) a_{uv1u1w}(\tau)
\]

\[
= \text{Re} \sum\tau\tau \chi_{uv1}(\tau_1) \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \left(\int d\tau_2 \chi_{uv1}(\tau_1) e^{-i\omega\tau_1} \right) \left(\int d\tau_2 \chi_{uv1}(\tau_2) e^{i\omega\tau_2} \right) + \sum\tau\chi_{uv1}(\tau) a_{uv1u1w}(\tau),
\]

(S139)

\[
\int dt_2 \chi_{uv1}(\tau_2) e^{i\omega\tau_2} = -\omega^2 \int dt_2 \chi_{uv1}(\tau_2) e^{i\omega\tau_2} - \delta_{uv1} = -\omega^2 \chi_{uv1}(\omega) - \delta_{uv1},
\]

(S140)

Substitute into Eq. (S139) we arrive at

\[
k_{uv1u1w}(\infty) = -\sum\tau\tau \frac{1}{\pi} \text{Re} \int d\omega \omega^2 \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \chi_{uv1}(\omega) \chi_{svw1}(\omega),
\]

(S141)

therefore

\[
\sum\alpha k_{uv1u1w}(\infty) = -\frac{1}{\pi} \text{Re} \int d\omega \omega^2 \frac{\chi_{uv1}(\omega)}{1 - e^{-\beta\omega}} = -\frac{1}{\pi} \text{Re} \int d\omega \omega^2 \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} = -\frac{1}{\pi} \text{Re} \int d\omega \frac{\chi_{uv1}(\omega)}{1 - e^{-\beta\omega}} = -W_{uv1w}(\omega),
\]

(S142)

Put Eq. (S133), Eq. (S138) and Eq. (S142) into Eq. (S44) we obtain

\[
\sum\alpha \gamma_{uv1}(\omega) = \sum\omega_e [\Omega_{uw}(\omega) W_{uv1w}(\omega)] - W_{uv1w}(\omega),
\]

(S143)

Comparing Eq. (S143) with Eq. (S124a) we notice that \(W_{uv1w}(\omega) \) will not contribute. Here we can prove that \(W_{uv1w}(\omega) = 0 \), from FDT we know

\[
W_{uv1w}(\omega) = \frac{1}{\pi} \text{Re} \int d\omega \frac{\chi_{uv1}(\omega)}{1 - e^{-\beta\omega}},
\]

(S144)

Since

\[
\chi_{uv1}(-\omega) = \chi_{uv1}(\omega) - \frac{i\omega\chi(\omega)}{2i} = -i\omega\chi(\omega) - (i\omega\chi(\omega))^T = -\omega\chi(\omega),
\]

(S145)

is symmetric, \(W_{uv1w}(\omega) \) is symmetric as well. But from EOM of \(W(t) \) we know \(W_{uv1w}(\omega) \) should be anti-symmetric. Therefore we know

\[
W_{uv1w}(\omega) = 0.
\]

(S146)

Repeat the same process to \(k_{uv1u1w}(t), k_{uv1u1w}(t) \) and \(k_{uv1u1w}(t) \), we summarize the results below

\[
k_{uv1u1w}(\infty) = -\sum\tau\tau \frac{1}{\pi} \text{Im} \int d\omega \omega \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \chi_{uv1}(\omega) \chi_{uv1}(\omega)
\]

(S147a)

\[
k_{uv1u1w}(\infty) = \sum\tau\tau \frac{1}{\pi} \text{Re} \int d\omega \omega^2 \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \chi_{uv1}(\omega) \chi_{uv1}(\omega)
\]

(S147b)

\[
k_{uv1u1w}(\infty) = \sum\tau\tau \frac{1}{\pi} \text{Im} \int d\omega \omega^2 \frac{\partial(-)_{uv1u1}(\omega)}{1 - e^{-\beta\omega}} \chi_{uv1}(\omega) \chi_{uv1}(\omega)
\]

(S147c)
similarly,
\[\sum_{\alpha} k^{10}_{\alpha\nu w} (\infty) = \sum_{\alpha} k^{12}_{\alpha\nu w} (\infty) = 0, \]
(S148)

for \(k^{11}_{\alpha\nu w} (\infty) \) we show the process
\[k^{11}_{\alpha\nu w}(t) = T^{11}_{\alpha\nu w}(t) \]
\[= \sum_{u v} \int_0^t d\tau_1 \int_0^t d\tau_2 \chi_{uv1} (\tau_1) a_{\alpha v1 u1} (\tau_1 - \tau_2) \chi_{w v1} (\tau_2) \]
\[= \text{Re} \sum_{u v} \int_0^t d\tau_1 \int_0^t d\tau_2 \chi_{uv1} (\tau_1) c_{\alpha v1 u1} (\tau_1 - \tau_2) \chi_{w v1} (\tau_2) \]
\[= \text{Re} \frac{1}{\pi} \sum_{u v} \int_{-\infty}^\infty d\omega \frac{\beta\omega}{1 - e^{-\beta\omega}} (\int_0^t d\tau_1 \chi_{uv1} (\tau_1) e^{-i\omega\tau_1}) \left(\int_0^t d\tau_2 \chi_{w v1} (\tau_2) e^{i\omega\tau_2} \right) \]
\[\rightarrow \text{Re} \frac{1}{\pi} \sum_{u v} \int_{-\infty}^\infty d\omega \frac{\beta\omega}{1 - e^{-\beta\omega}} (i\omega \chi^*_{uv1} (\omega)) \left(-i\omega \chi_{w v1} (\omega) \right), \]
(S149)

which recovers Eq. (S147B). We also have
\[\gamma_{\alpha w u} (eq) = \sum_w \Omega_{w u} (\infty) k^{10}_{\alpha w u} (\infty) + \Gamma_{w u} (\infty) k^{11}_{\alpha w u} (\infty) \]
\[+ k^{12}_{\alpha w u} (\infty) = \sum_w \Gamma_{w u} (\infty) k^{11}_{\alpha w u} (\infty) \]
(S150)

which lead to
\[\sum_{\alpha} k^{11}_{\alpha w u} (\infty) = \Gamma_{w u} (\infty) \]
(S151)

therefore
\[\sum_{\alpha} \gamma_{\alpha w u} (eq) = \sum_w \Gamma_{w u} (\infty) W^{PP}_{w v} (eq) \]
(S152)

and we obtain
\[\langle J^w_\alpha \rangle = \text{tr} \left[\Gamma_{\alpha} (\infty) W^{PP} (eq) \right] - \text{tr} \left[\gamma_{\alpha} (eq) \right] \]
\[= \text{tr} \left[\Gamma_{\alpha} (\infty) \sum_{\beta} k^{11}_{\beta\alpha} (eq) \right] - \text{tr} \left[\sum_{\beta} \Gamma_{\beta} (t) k^{11}_{\alpha\beta} (eq) \right] \]
(S153)

V. NUMERICAL ANALYSIS

Apart from algebraic method, we can also obtain steady state(or equilibrium state) heat current by classical Meir-Wingreen formula
\[J_{\alpha} (\infty) = \frac{2}{\pi} \int_{-\infty}^{\infty} d\omega \frac{\omega}{e^{\beta\omega} - 1} \text{tr} \left[\hat{\phi}_{\alpha}^{(-)} (\omega) C^{(+)} (\omega) \right] \]
(S154)

where \(C^{(+)} (\omega) \) is the Hermitian part of the spectrum of correlation functions of the system. In order to obtain correlation function we start from time–nonloacal method, by Eq. 1 and Eq. 2 in the main text we know.
\[\dot{Q}_w (t) = -\sum_v V_{wv} \dot{Q}_v (t) + \sum_{\alpha} \dot{F}_{\alpha w} (t) + \sum_{\alpha} \int_0^t d\tau \phi_{\alpha w u} (t - \tau) \dot{Q}_v (\tau), \]
(S155)
with $C_{uv} = \text{tr}_X [\hat{Q}_u(t)\hat{Q}_v(0)\rho_v^0]$ we obtain

$$\dot{C}_{uv}(t) = -\sum_v V_{uv}C_{uv}(t) + \sum_\alpha \left< \hat{F}_{\alpha u}(t)\hat{Q}_{w}(0) \right> + \sum_\alpha \int_0^t \text{d}\tau \phi_{\alpha uv}(t - \tau)C_{vw}(\tau)$$

$$= -\sum_v V_{uv}C_{vw}(t) + \sum_\alpha X_{\alpha uv}(t) + \sum_\alpha \int_0^t \text{d}\tau \phi_{\alpha uv}(t - \tau)C_{vw}(\tau)$$ \hspace{1cm} \text{(S156)}

here $X_{\alpha uv}(t) \equiv \left< \hat{F}_{\alpha uv}(t)\hat{Q}_v(0) \right>$ and from entanglement theorem

$$X_{\alpha uv}(t) = -2\sum_w \text{Im} \int_0^\infty \text{d}\tau c_{\alpha wu}(t + \tau)C_{vw}(\tau)\text{d}\tau$$ \hspace{1cm} \text{(S157)}$$

Equivalently

$$\dot{C}(t) = -VC(t) + \sum_\alpha X_\alpha(t) + \sum_\alpha \int_0^t \text{d}\tau \dot{\phi}_\alpha(t - \tau)C(\tau)$$ \hspace{1cm} \text{(S158a)}

$$X_\alpha(t) = -2\text{Im} \int_0^\infty \text{d}\tau c_\alpha^*(t + \tau)C^T(\tau)$$ \hspace{1cm} \text{(S158b)}

note that

$$\int_0^{\infty} \text{d}t \dot{C}(t)e^{i\omega t} = \dot{C}(t)e^{i\omega t}\bigg|_0^{\infty} - i\omega \int_0^{\infty} \text{d}t \dot{C}(t)e^{i\omega t}$$

$$= -\dot{C}(0) - i\omega \left[C(t)e^{i\omega t}\bigg|_0^{\infty} - i\omega \int_0^{\infty} \text{d}t C(t)e^{i\omega t} \right]$$

$$= -\dot{C}(0) + i\omega C(0) - \omega^2 \dot{C}(\omega)$$ \hspace{1cm} \text{(S159)}

therefore Eq. \text{(S156)} also leads to

$$\dot{C}(\omega) = \left[V - \omega^2 I - \sum_\alpha \dot{\phi}_\alpha(\omega) \right]^{-1} \left[\dot{C}(0) - i\omega C(0) + \sum_\alpha \dot{X}_\alpha(\omega) \right] .$$ \hspace{1cm} \text{(S160)}

Eq. \text{(S160)} is hard to solve directly so we introduce special method to deal with it. First we expand bath correlation functions $c_{\alpha uv}(t)$ into exponential function,

$$c_{\alpha uv}(t) = \sum_k g_{\alpha uvk}e^{-\gamma_{\alpha k} t} \rightarrow c_\alpha(t) = \sum_k g_{\alpha k}e^{-\gamma_{\alpha k} t}$$ \hspace{1cm} \text{(S161)}

in general $\gamma_{\alpha uvk}$ is independent from u, v so we denote it as $\gamma_{\alpha k}$. In this section, for simplicity we adopt Drude bath,

$$\dot{\phi}_\alpha(\omega) = \frac{i\gamma_{\alpha k} \eta_\alpha}{\omega + i\gamma_{\alpha}} .$$ \hspace{1cm} \text{(S162)}

with this function form of bath, it can be proven that $\{\gamma_{\alpha k}\}$ are always real, therefore many important expressions can be further simplified. Put Eq. \text{(S161)} into Eq. \text{(S157)} we can recast $X_\alpha(t)$ as

$$X_\alpha(t) = -2\text{Im} \int_0^{\infty} \text{d}\tau c_\alpha^*(t + \tau)C^T(\tau)$$

$$= -2\text{Im} \int_0^{\infty} \text{d}\tau \sum_k g_{\alpha k}^T e^{-\gamma_{\alpha k}(t + \tau)}C^T(\tau)$$

$$= -\sum_k e^{-\gamma_{\alpha k} t} \times 2\text{Im} g_{\alpha k}^T \int_0^{\infty} \text{d}\tau e^{-\gamma_{\alpha k} \tau}C^T(\tau)$$

$$= -\sum_k e^{-\gamma_{\alpha k} t} \times 2\text{Im} g_{\alpha k}^T \hat{C}(i\gamma_{\alpha k})$$

$$= -\sum_k e^{-\gamma_{\alpha k} t} \times 2\text{Im} \left[\hat{C}(i\gamma_{\alpha k})g_{\alpha k} \right]^T ,$$ \hspace{1cm} \text{(S163)}
here we formally define

\[\tilde{C}(i\gamma_{\alpha k}) \equiv \int_{0}^{\infty} \, d\tau \, e^{-\gamma_{\alpha k} \tau} C(\tau) \]

(S164)

from Eq. (S163) we get

\[\tilde{X}_\alpha(\omega) = -\int_{0}^{\infty} \, dt \, e^{i\omega t} X_\alpha(t) = -\sum_{k} \frac{2}{\gamma_{\alpha k} - i\omega} \text{Im} \left[\tilde{C}(i\gamma_{\alpha k}) g_{\alpha k} \right]^\top. \]

(S165)

Let \(\omega = i\gamma_{\alpha' k'} \) in Eq. (S165) and along with Eq. (S160) we obtain following equations

\[\tilde{X}_\alpha(i\gamma_{\alpha' k'}) = -\sum_{k} \frac{2}{\gamma_{\alpha' k'} + \gamma_{\alpha k}} \text{Im} \left[\tilde{C}(i\gamma_{\alpha k}) g_{\alpha k} \right]^\top \]

(S166a)

\[\tilde{C}(i\gamma_{\alpha' k'}) = \left[V + \gamma_{\alpha' k'}^2 I - \sum_{\alpha} \tilde{\phi}_\alpha(i\gamma_{\alpha' k'}) \right]^{-1} \left[\tilde{C}(0) + \gamma_{\alpha' k'} C(0) + \sum_{\alpha} \tilde{X}_\alpha(i\gamma_{\alpha' k'}) \right], \]

(S166b)

from the equations above we can solve \(\tilde{C}(i\gamma_{\alpha k}) \) for all \(\alpha \) and \(k \), on top of which we obtain \(\tilde{X}_\alpha(\omega) \). By Eq. (S160), we get the correlation functions for the system. Besides, the initial value of correlation functions can be evaluated from Eq. (S121)

\[\hat{C}_{uv}(0) \equiv \langle \hat{P}_u(\infty) \hat{Q}_v(\infty) \rangle = W_{uv}^{PQ}(\infty) - \frac{i}{2} \delta_{uv} \]

(S167a)

\[C_{uv}(0) \equiv \langle \hat{Q}_u(\infty) \hat{Q}_v(\infty) \rangle = W_{uv}^{QQ}(\infty), \]

(S167b)

here we used condition that \(\langle \hat{P}_u(\infty) \rangle = \langle \hat{Q}_u(\infty) \rangle = 0. \)