Massless particles in five and higher dimensions

Sergei M. Kuzenko and Alec E. Pindur

Department of Physics M013, The University of Western Australia
35 Stirling Highway, Perth W.A. 6009, Australia

Email: sergei.kuzenko@uwa.edu.au, 21504287@student.uwa.edu.au

Abstract

We describe a five-dimensional analogue of Wigner’s operator equation $\mathcal{W}_a = \lambda P_a$, where \mathcal{W}_a is the Pauli-Lubanski vector, P_a the energy-momentum operator, and λ the helicity of a massless particle. Higher dimensional generalisations are also given.
1 Introduction

The unitary representations of the Poincaré group in four dimensions were classified by Wigner in 1939 [1], see [2] for a recent review. Our modern understanding of elementary particles is based on this classification.

Unitary representations of the Poincaré group $\text{ISO}_0(d-1,1)$ in higher dimensions, $d > 4$, have been studied in the literature, see, e.g., [3]. However, there still remain some aspects that are not fully understood, see, e.g., [4] for a recent discussion. In this note we analyse the irreducible massless representations of $\text{ISO}_0(4,1)$ with a finite (discrete) spin.

We recall that the Poincaré algebra $\text{iso}(d-1,1)$ in d dimensions is characterised by the commutation relations\footnote{We make use of the mostly plus Minkowski metric η_{ab} and normalise the Levi-Civita tensor $\varepsilon_{a_1...a_d}$ by $\varepsilon_{01...d-1} = 1.$}

\begin{align}
\left[P_a, P_b \right] &= 0 \ , \\
\left[J_{ab}, P_c \right] &= i\eta_{ac} P_b - i\eta_{bc} P_a \\
\left[J_{ab}, J_{cd} \right] &= i\eta_{ac} J_{bd} - i\eta_{bd} J_{ac} - i\eta_{bc} J_{ad} .
\end{align}

In any unitary representation of (the universal covering group of) the Poincaré group, the energy-momentum operator P_a and the Lorentz generators J_{ab} are Hermitian. For every dimension d, the operator $P^a P_a$ is a Casimir operator. Other Casimir operators are dimension dependent.

In four dimensions, the second Casimir operator is $\mathbb{W}^a \mathbb{W}_a$, where

\begin{equation}
\mathbb{W}^a = \frac{1}{2} \varepsilon^{abcd} J_{bc} P_d
\end{equation}

is the Pauli-Lubanski vector. Using the commutation relations (1.1), it follows that the Pauli-Lubanski vector is translationally invariant,

\begin{equation}
\left[P_a, \mathbb{W}_b \right] = 0
\end{equation}

and possesses the following properties:

\begin{align}
\mathbb{W}^a P_a &= 0 \\
\left[J_{ab}, \mathbb{W}_c \right] &= i\eta_{ac} \mathbb{W}_b - i\eta_{bc} \mathbb{W}_a \\
\left[\mathbb{W}_a, \mathbb{W}_b \right] &= i\varepsilon_{abcd} \mathbb{W}^c P^d .
\end{align}
The irreducible massive representations are characterised by the conditions

\[P^a P_a = -m^2 \mathbb{1}, \quad m^2 > 0, \quad \text{sign} P^0 > 0, \quad (1.4a) \]

\[\mathbb{W}^a \mathbb{W}_a = m^2 s(s + 1) \mathbb{1}, \quad (1.4b) \]

where the quantum number \(s \) is called spin. Its possible values in different representations are \(s = 0, 1/2, 1, 3/2, \ldots \). The massless representations are characterised by the condition \(P^a P_a = 0 \). For the physically interesting massless representations, it holds that

\[\mathbb{W}_a = \lambda P_a, \quad (1.5) \]

where the parameter \(\lambda \) determines the representation and is called the helicity. Its possible values are \(0, \pm \frac{1}{2}, \pm 1, \) and so on. The parameter \(|\lambda| \) is called the spin of a massless particle.

In this paper we present a generalisation of Wigner’s equation \((1.5) \) to five and higher dimensions.

2 Unitary representations of \(\text{ISO}_0(4, 1) \)

The five-dimensional analogue of \((1.2) \) is the Pauli-Lubanski tensor

\[\mathbb{W}^{ab} = \frac{1}{2} \varepsilon^{abcde} J_{cd} P_e. \quad (2.1) \]

It is translationally invariant,

\[[\mathbb{W}_{ab}, P_c] = 0, \quad (2.2) \]

and possesses the following properties:

\[\mathbb{W}_{ab} P^b = 0, \quad (2.3a) \]

\[[\mathbb{W}_{ab}, J_{cd}] = i \eta_{ac} \mathbb{W}_{bd} - i \eta_{ad} \mathbb{W}_{bc} - i \eta_{bd} \mathbb{W}_{ac} + i \eta_{bc} \mathbb{W}_{ad}, \quad (2.3b) \]

\[[\mathbb{W}_{ab}, \mathbb{W}_{cd}] = i \varepsilon_{acdef} \mathbb{W}_{b} f P^g - i \varepsilon_{bcdef} \mathbb{W}_{a} f P^g. \quad (2.3c) \]

Making use of \(\mathbb{W}_{ab} \) allows one to construct two Casimir operators, which are

\[\mathbb{W}_{ab} \mathbb{W}^{ab}, \quad \mathbb{H} := \mathbb{W}^{ab} J_{ab}. \quad (2.4) \]
2.1 Irreducible massive representations

The irreducible massive representations of the Poincaré group ISO\(_0(4, 1)\) are characterised by two conditions

\[
\frac{1}{8} \left(W_{ab} W_{ab} + m^2 \right) = m^2 s_1 (s_1 + 1) \mathbb{1}, \tag{2.5a}
\]

\[
\frac{1}{8} \left(W_{ab} W_{ab} - m^2 \right) = m^2 s_2 (s_2 + 1) \mathbb{1}, \tag{2.5b}
\]

in addition to (1.4a). Here \(s_1\) and \(s_2\) are two spin values corresponding to the two SU(2) subgroups of the universal covering group Spin(4) \(\cong SU(2) \times SU(2)\) of the little group.\(^2\)

2.2 Irreducible massless representations

It turns out that all irreducible massless representations of ISO\(_0(4, 1)\) with a finite spin are characterised by the condition

\[
\varepsilon_{abcde} P^c W^{de} = 0 \iff P^{[a} W^{bc]} = 0 . \tag{2.6}
\]

Both Casimir operators (2.4) are equal to zero in these representations, \(W_{ab} W^{ab} = 0\) and \(W^{ab} J_{ab} = 0\).

Let \(|p, \sigma\rangle\) be an orthonormal basis in the Hilbert space of one-particle states, where \(p^a\) denotes the momentum of a particle, \(P^a |p, \sigma\rangle = p^a |p, \sigma\rangle\), and \(\sigma\) stands for the spin degrees of freedom. For a massless particle, we choose as our standard 5-momentum \(k^a = (E, 0, 0, 0, E)\). On this eigenstate:

\[
W^{ab} |k, \sigma\rangle = \frac{1}{2} \varepsilon_{abcde} J_{cd} P_e |k, \sigma\rangle = \frac{E}{2} \left(\varepsilon^{abcd4} J_{cd} - \varepsilon^{abcd0} J_{cd} \right) |k, \sigma\rangle . \tag{2.7}
\]

Running through the elements of \(W^{ab}\), one finds:

\[
W^{01} = W^{41} = -E J_{23} , \quad W^{12} = E (J_{30} + J_{34}) , \quad W^{02} = W^{42} = -E J_{31} , \quad W^{23} = E (J_{10} + J_{14}) ,
\]

\[
W^{03} = W^{43} = -E J_{12} , \quad W^{31} = E (J_{20} + J_{24}) , \quad W^{04} = 0 . \tag{2.8}
\]

\(^2\)The equations (2.5) were independently derived during the academic year 1992-93 by Arkady Segal and David Zinger, who were undergraduates at Tomsk State University at the time.
If we rescale these generators and define:

\[R_1 \equiv \frac{1}{E} \mathbb{W}^{2i}, \quad R_2 \equiv \frac{1}{E} \mathbb{W}^{3i}, \quad R_3 \equiv \frac{1}{E} \mathbb{W}^{12}, \]

\[J_i \equiv -\frac{1}{E} \mathbb{W}^{0i}, \]

then these new operators satisfy:

\[[J_i, J_j] = i \epsilon^{ijk} J_k, \quad [J_i, R_j] = i \epsilon^{ijk} R_k, \quad [R_i, R_j] = 0. \]

These are the commutation relations for the three-dimensional Euclidean algebra, \(\mathfrak{iso}(3) \).

The irreducible unitary representations of \(\mathfrak{iso}(3) \) are labelled by a continuous parameter \(\mu^2 \), corresponding to the value the Casimir operator \(R_i R_i \) takes. Since \(R_i \) commute among themselves the operators can be simultaneously diagonalised, and the eigenvectors \(|r_i\rangle \) taken as a basis. However the only restriction on these is that \(r_i r_i = \mu^2 \), which for non-zero \(\mu^2 \) permits a continuous basis and is thus an infinite dimensional representation. Because we want only finite-dimensional representations, we must take:

\[\mu^2 = 0 \implies R_i = 0 \iff J_0 = -J_4. \]

We are therefore restricted to those representations in which the translation component is trivial, and so only the generators \(J_i \) remain, which generate the algebra \(\mathfrak{so}(3) \). The algebra of the little group on massless representations is thus \(\mathfrak{so}(3) \) which is isomorphic to \(\mathfrak{su}(2) \).

As stated previously, the irreducible representations of \(\mathfrak{su}(2) \) are labelled by a non-negative (half) integer \(s \) and have a single Casimir operator \(J^i J_i \) which takes the value \(s(s + 1) \).

This analysis leads to (2.6).

The spin value of a massless representation can still be found using a ‘spin’ operator. The following relation holds on massless representations:

\[S_a := -\frac{1}{4} \varepsilon_{abcd} J^{bc} \mathbb{W}^{de} = J^2 P_a = s(s + 1) P_a, \]

where \(J^2 = J^i J_i \) is the Casimir operator for the \(\mathfrak{so}(3) \) generators in (2.9). The parameter \(s \) is the spin of a massless particle. Its possible values in different representations are \(s = 0, 1/2, 1, \) and so on. Equation (2.12) naturally holds for massless spinor and vector fields [5].

In general, the operator \(S_a \) is not translationally invariant,

\[[S_b, P_a] = \frac{i}{2} \varepsilon_{abcd} P^c \mathbb{W}^{de}. \]

It is only for the massless representations with finite spin that the quantity on the right vanishes so that the spin operator commutes with the momentum operators. Equation (2.12)
is the five-dimensional analogue of the operator equation (1.5). Its consistency condition is (2.6).3

3 Generalisations

The results of section 2.2 can be generalised to $d > 5$ dimensions. The Pauli-Lubanski tensor (2.1) turns into

$$W^{a_1...a_{d-3}} = \frac{1}{2} \varepsilon^{a_1...a_{d-3}bce} J_{bc} P_e.$$ (3.1)

The condition (2.6) is replaced with

$$P^{[a} W^{b_1...b_{d-3}]} = 0.$$ (3.2)

This equation is very similar to another that has appeared in the literature using the considerations of conformal invariance [6–9]. One readily checks that (3.2) is equivalent to

$$J_{ab} P^2 + 2 J_{[a|P_b|} P^c = 0 \quad \Rightarrow \quad J_{[c|P_b|} P^c = 0.$$ (3.3)

The latter is solved on the momentum eigenstates by $J_{ab} P^b \propto p_a$, which is of the form considered in [6–9].4

Equation (3.2) characterises all irreducible massless representations of ISO$_0(d-1, 1)$ with a finite (discrete) spin. Finally, the spin equation (2.12) turns into

$$S_a := \frac{(-1)^d}{2(d-3)!} \varepsilon_{abce_1...e_{d-3}} J^{bc} W^{e_1...e_{d-3}} = J^2 P_a,$$ (3.4)

where $J^2 = \frac{1}{2} \mathcal{J}^{ij} J_{ij}$ is the quadratic Casimir operator of the algebra so$(d-2)$, with $i, j = 1, \ldots, d-2$. For every irreducible massless representation of ISO$_0(d-1, 1)$ with a finite spin, it holds that $J^2 \propto 1$.

We can extend this further to higher-order Casimir operators of so$(d-2)$. As a generalisation of (3.1), we introduce the n^{th} Pauli-Lubanski tensor

$$W^{(n)}_{a_1...a_{d-2n-1}} = \frac{1}{2^n \varepsilon_{a_1...a_d} J^{a_{d-2n}a_{d-2n+1}} \cdots J^{a_{d-2}a_{d-1}}} P^{a_d}, \quad 1 \leq n \leq \left\lfloor \frac{d-2}{2} \right\rfloor$$ (3.5)

3The consistency condition for (1.5) is $P^{[a} \mathcal{W}^{b]} = 0$, which is the four-dimensional counterpart of (2.6).

4We are grateful to Warren Siegel for useful comments.

5
which is order n in the Lorentz generators (the operator (3.1) coincides with $\mathbb{W}(1)$). Then higher-order spin operators can be defined as

$$S^{(n)}_{a_1} = \frac{(-1)^d}{2(d-2n-1)!} \varepsilon_{a_1...a_d} J^{a_2 a_3} \ldots J^{a_{2n} a_{2n+1}} \mathbb{W}^{(n)}(a_{2n+2}...a_d),$$ \hspace{1cm} (3.6)

which are order $2n$ in the Lorentz generators. Using the fact that $J^{a_0} = J^{a_0} = 1$ in the frame with a standard d-momentum $k^a = (E, 0, \ldots, 0, E)$, one can show that

$$S^{(n)}_{a_1} = C^{(n)} P_a$$ \hspace{1cm} (3.7)

where $C^{(n)}$ is an order $2n$ Casimir operator for $\mathfrak{so}(d-2)$ defined by

$$C^{(n)} = \frac{-1}{2^{n+1}(d-2n-2)!} \varepsilon_{0i_1...i_{d-2}} d-1 \varepsilon_{0j_1...j_{2n} i_{2n+1}...i_{d-2}} d-1 \times J^{i_1 i_2} \ldots J^{i_{2n-1} i_{2n}} J_{j_1 j_2} \ldots J_{j_{2n-1} j_{2n}}$$ \hspace{1cm} (3.8)

If d is odd, the operators (3.8) can be constructed up to $n = \frac{d-3}{2}$ (the order $n = \frac{d-1}{2}$ Pauli-Lubanski tensor is a scalar). If d is even, it suffices to restrict n to run from 1 to $n = \frac{d-4}{2}$, since the Pauli-Lubanski tensor of order $\frac{d-2}{2}$,

$$\mathbb{W}^{(\frac{d-1}{2})}_{a_1} = \frac{1}{2^{\frac{d-1}{2}}} \varepsilon_{a_1...a_d} J^{a_2 a_3} \ldots J^{a_{d-2} a_{d-1}} P^{a_d},$$ \hspace{1cm} (3.9)

is itself a ‘spin operator’ with the property

$$\mathbb{W}^{(\frac{d-1}{2})}_{a_1} = \Lambda^{(\frac{d-1}{2})} P_a,$$ \hspace{1cm} (3.10)

where

$$\Lambda^{(\frac{d-1}{2})} = -\frac{1}{2^{\frac{d-1}{2}}} \varepsilon_{0i_1...i_{d-2}} d-1 J^{i_1 i_2} \ldots J^{i_{d-2} i_{d-2}}$$ \hspace{1cm} (3.11)

Note that the $d = 4$ case corresponds to (1.5).

For every irreducible massless representation of $\text{ISO}_0(d-1, 1)$ with a finite spin, the operator $C^{(n)}$ in (3.7) is a multiple of the identity operator, $C^{(n)} \propto 1$. Then the translational invariance of the equations (3.7) implies (3.2) and the relation

$$\mathbb{W}^{(n-1)}_{a_1 a_2 b_1...b_{d-2n-1}} \mathbb{W}^{(n)}(b_1...b_{d-2n-1}) = 0 .$$ \hspace{1cm} (3.12)

5In the massless case, all Casimir operators of the Poincaré group $(\mathbb{W}^{(n)}_{a_1...a_{d-2n-1}})^2$ vanish, and so does the scalar operator $\mathbb{W}^{(\frac{d-1}{2})}$, which is defined when d is odd.
It is possible to derive a five-dimensional analogue of the operator equation defining the \(\mathcal{N} = 1 \) superhelicity \(\kappa \) in four dimensions [10]. The latter has the form\(^6\)

\[
\mathbb{L}_a = \left(\kappa + \frac{1}{4} \right) P_a ,
\]

(3.13)

where the operator \(\mathbb{L}_a \) is defined by

\[
\mathbb{L}_a = \mathbb{W}_a - \frac{1}{16} (\tilde{\sigma}_a) ^{\hat{\alpha} \alpha} [Q_\alpha , \bar{Q}^{\hat{\alpha}}] .
\]

(3.14)

The fundamental properties of the operator \(\mathbb{L}_a \) (the latter differs from the supersymmetric Pauli-Lubanski vector [11]) are that it is translationally invariant and commutes with the supercharges \(Q_\alpha \) and \(\bar{Q}^{\hat{\alpha}} \) in the massless representations of the \(\mathcal{N} = 1 \) super-Poincaré group.\(^7\) The superhelicity operator (3.14) was generalised to higher dimensions in [12,13]. Generalisations of (3.13) to five and higher dimensions will be discussed elsewhere.

Acknowledgements:
We thank Warren Siegel for pointing out important references, and Michael Ponds for comments on the manuscript. SMK is grateful to Ioseph Buchbinder for email correspondence, and to Arkady Segal for discussions. The work of SMK work is supported in part by the Australian Research Council, project No. DP200101944.

References

[1] E. P. Wigner, “On unitary representations of the inhomogeneous Lorentz group,” Annals Math. 40 (1939) 149 [Nucl. Phys. Proc. Suppl. 6 (1989) 9].

[2] S. Weinberg, *The Quantum Theory of Fields. Vol. 1: Foundations*, Cambridge University Press, Cambridge, 1995.

[3] X. Bekaert and N. Boulanger, “The unitary representations of the Poincare group in any spacetime dimension,” hep-th/061263

[4] S. Weinberg, “Massless particles in higher dimensions,” arXiv:2010.00823 [hep-th].

[5] A. E. Pindur, “Irreducible unitary representations of the Poincaré group ISO(4,1) and their field realisations,” B.Sc. Honours thesis, UWA, 2020.

\(^6\)In the supersymmetric case, the conventions of [10] are used, in particular the Levi-Civita tensor \(\varepsilon_{abcd} \) is normalised by \(\varepsilon_{0123} = -1 \).

\(^7\)The irreducible massless representation of superhelicity \(\kappa \) is the direct sum of two irreducible massless Poincaré representations corresponding to the helicity values \(\kappa \) and \(\kappa + \frac{1}{2} \).
[6] A. J. Bracken, “A comment on the conformal invariance of the zero-mass Klein-Gordon equation,” Lett. Nuovo Cim. 2 (1971) 574.

[7] A. J. Bracken and B. Jessup, “Local conformal invariance of the wave equation for finite component fields. I. The conditions for invariance, and fully reducible fields,” J. Math. Phys. 23 (1982) 1925.

[8] W. Siegel, “Classical superstring mechanics,” Nucl. Phys. B 263 (1986) 93.

[9] W. Siegel and B. Zwiebach, “Gauge string fields from the light cone,” Nucl. Phys. B 282 (1987) 125.

[10] I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk Through Superspace, Bristol, UK: IOP, 1995 (Revised Edition: 1998).

[11] A. Salam and J. A. Strathdee, “Supergauge transformations,” Nucl. Phys. B 76 (1974) 477.

[12] A. Pasqua and B. Zumino, “Constraints and superspin for superPoincare algebras in diverse dimensions,” Phys. Rev. D 70 (2004) 066010 [arXiv:hep-th/0404219 [hep-th]].

[13] A. S. Arvanitakis, L. Mezincescu and P. K. Townsend, “Pauli-Lubanski, supertwistors, and the super-spinning particle,” JHEP 06 (2017), 151 [arXiv:1601.05294 [hep-th]].