Phospholipase A₂ Inhibitors or Platelet-activating Factor Antagonists Prevent Prion Replication*

Received for publication, April 13, 2004, and in revised form, June 18, 2004
Published, JBC Papers in Press, June 21, 2004, DOI 10.1074/jbc.M404086200

Clive Bate‡§§, Stuart Reid¶¶, and Alun Williams**

From the ‡Department of Veterinary Pathology, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, United Kingdom, the §§Comparative Epidemiology and Informatics, Department of Veterinary Clinical Studies, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, United Kingdom, the ¶¶Department of Statistics and Modeling Sciences, University of Strathclyde, Livingston Tower, Glasgow, G1 1XW United Kingdom, and the **Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, AL9 7TA United Kingdom

A key feature of prion diseases is the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc), the deposition of which is thought to lead to neurodegeneration. In this study a pharmacological approach was used to determine the metabolic pathways involved in the formation of protease-resistant PrP (PrPRES) in three prion-infected cell lines (ScN2a, SMB, and ScGT1 cells). Daily treatment of these cells with phospholipase A₂ (PLA₂) inhibitors for 7 days prevented the accumulation of PrPRES. Glucocorticoids with anti-PLA₂ activity also prevented the formation of PrPRES and reduced the infectivity of SMB cells. Treatment with platelet-activating factor (PAF) antagonists also reduced the PrPRES content of cells, while the addition of PAF reversed the inhibitory effect of PLA₂ inhibitors on PrPRES formation. ScGT1 cells treated with PLA₂ inhibitors or PAF antagonists for 7 days remained clear of detectable PrPRES when grown in control medium for a further 12 weeks. Treatment of non-infected cells with PLA₂ inhibitors or PAF antagonists reduced PrP⁺ levels suggesting that limiting cellular PrP⁺ may restrict prion formation in infected cells. These data indicate a pivotal role for PLA₂ and PAF in controlling PrPRES formation and identify them as potential therapeutic agents.

Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that include Kuru, Creutzfeldt-Jakob disease (CJD), and Gerstman-Sträussler-Scheinker (GSS) disease in man. Central to the pathogenesis of TSEs is the conversion of the host-encoded cellular prion protein (PrP⁺) into β-sheet-rich disease-related isoforms (PrPSc) (1). The formation of PrPSc is accompanied by changes in biological and biochemical properties such as an increased resistance to proteases (2), the protease-resistant core of PrPSc designated PrPRES. This PrPRES self-aggregates and forms amyloidogenic fibrils and, in most prion diseases, aggregates of PrPSc are detected in the diseased brain before neuronal loss is observed (3).

The development of current therapeutic strategies is largely based on the belief that the deposition of amyloidogenic PrPSc fibrils leads to neurodegeneration and the clinical symptoms of prion diseases. Many compounds that interact directly with PrP to prevent PrPSc formation and/or disrupt preformed PrPSc aggregates have now been identified; these include large, flat multicyclic compounds and synthetic peptides specifically designed to disrupt the β-sheets in PrPSc (4–6). However, recent studies demonstrated that the propagation of PrPSc within prion-infected cells could be reduced following re-routing the trafficking of PrPSc following treatment with suramin (7). Other studies have also shown that restricting the supply, or alterations in the trafficking, of PrP⁺C can prevent the formation of PrPSc (8–11). In the present study we tested the hypothesis that the trafficking of PrP⁺C within cells, that is vital to PrPSc formation, is controlled by activation of specific signaling pathways. Previous studies have variously reported that PrP⁺C is associated with activation of the tyrosine kinases Fyn (12), with the cyclic AMP/protein kinase A pathway (13), or with the phospholipase A₂ (PLA₂)/cyclo-oxygenase (COX) pathway (14). Thus, in this study, a pharmacological approach was used to investigate the role of signal transduction mechanisms on levels of PrP⁺C in non-infected cells, and PrPSc in scrapie-infected neuroblastoma cell lines (ScN2a, ScGT1, or SMB cells). These studies indicate that activation of PLA₂ and the production of platelet-activating factor (PAF) (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine), a bioactive phospholipid that is not stored in a preformed state (15) but rapidly synthesized in neurons in response to cell specific stimuli via the remodeling pathway (16), are essential factors in the production of PrPSc.

EXPERIMENTAL PROCEDURES

**PrPRES Production—Scrapie-infected neuroblastoma cells (ScN2a cells; gift from Dr. M. Rogers, University College, Dublin, Ireland) that produce PrP⁺ and infectious agent, were grown in Hams F12 medium containing 2 mM glutamine, standard antibiotics (100 units/ml penicillin and 100 μg/ml streptomycin) and 2% fetal calf serum. SMB cells (TSE Resource Centre, Institute for Animal Health, Compton, UK), which also produce PrP⁺ and infectious agent, were grown in RPMI 1640 medium containing standard antibiotics, 2 mM glutamine and 2% fetal calf serum. ScGT1 cells (supplied by Dr. Sylvain Lehmann, CNRES-IGH, Montpellier, France), an immortalized murine hypothalamic neuron cell line infected by the scrapie Chandler isolate and that persistently expresses PrP⁺, were grown in Optimem supplemented with 2 mM glutamine, 5% fetal calf serum, and standard antibiotics. To measure the effect of drugs on PrPRES formation, cells were plated at 1 × 10⁶ cells/well in 6-well microtiter plates in the presence of drugs. Cells were then grown with daily changes of media and PrP⁺ production was evaluated after 7 days. Non-infected N2a cells or SMB cells

This paper is available on line at http://www.jbc.org

Printed in U.S.A.
that had been "cured" of infectivity by serial passages in the presence of pentosan polysulphate (PS cells) (17) were used as controls. For time courses experiments, ScN2a cells were plated at 5 × 10⁶ cells/well in 6-well plates. Cells were grown for 7 days, with daily changes of medium, in the presence or absence of the drugs shown. The levels of protease-resistant PrP in cellular lysates were then determined using an ELISA. Values shown are the mean PrP⁺⁺⁺ pg/1 × 10⁶ cells ± S.D. of triplicate experiments repeated three times (9 observations).

Table I

Enzyme	Drug	ScN2a	SMB	ScGT1
Control		1047 ± 202	2193 ± 249	6118 ± 332
Phospholipase C	Neomycin sulfate (10 μM)	955 ± 57	2245 ± 188	6238 ± 348
	U-73122 (5 μM)	1032 ± 93	2303 ± 204	6407 ± 404
Phospholipase A₂	Ethyl-18-OCH₃ (10 μM)	1052 ± 115	2150 ± 138	6082 ± 429
	CDP (1 μM)	<50°	<50°	<50°
	BEL (1 μM)	<50°	<50°	<50°
	Aristolochic acid (0.5 μg/ml)	<50°	<50°	<50°
	AACOCF₃ (1 μg/ml)	<50°	<50°	<50°

* PrP⁺⁺⁺ content of cells significantly less (p < 0.05) than that of untreated cells.

RESULTS

PLA₂ inhibitors reduce the PrP⁺⁺⁺ content of prion-infected cell lines

To measure the effect of drugs on PrP⁺⁺⁺ formation, ScN2a, SMB, or ScGT1 cells were plated at 1 × 10⁶ cells/well in 6-well plates. Cells were grown for 7 days, with daily changes of medium, in the presence or absence of the drugs shown. The levels of protease-resistant PrP in cellular lysates were then determined using an ELISA. Values shown are the mean PrP⁺⁺⁺ pg/1 × 10⁶ cells ± S.D. of triplicate experiments repeated three times (9 observations).

Figure 1. PLA₂ inhibitors reduce the PrP⁺⁺⁺ content of ScGT1 cells. ScGT1 cells were grown for 7 days in the presence of control medium (lane 1), 1 μg/ml AACOCF₃ (lane 2), 0.5 μg/ml aristolochic acid (lane 3), 1 μM CDP (lane 4), or 10 μm ethyl-18-OCH₃ (lane 5). Cellular lysates were digested with 10 μg/ml protease K for 1 h at 37 °C and protease-resistant PrP was visualized by immunoblot with mAb SAF83 using enhanced chemiluminescence.

1-O-alkyl-2-acyetyl-sn-glycerol-3-phospho-(N,N,N-trimethyl)-hexanolamine (hexa-PAF) was obtained from Novabiochem (Nottingham, UK). C-PAF, CV-6209, U73122, and ethyl-18-OCH₃ were obtained from Biomol (Exeter, UK).

Prostaglandin (PG)E₂ Assay—Analysis of cellular PGE₂ levels was determined in cells by using an enzyme immunoassay kit (Amersham Biosciences) according to the manufacturer's instructions. This assay is based on competition between unlabeled PGE₂ in the sample and a fixed amount of labeled PGE₂ for a PGE₂-specific antibody. The detection limit of this assay is 20 pg/ml.

Statistical Analysis—Comparison of treatment effects were carried out using one and two way analysis of variance techniques as appropriate. Post-hoc comparisons of means were performed as necessary. For all statistical tests, significance was set at the 5% level.

FIG. 1. PLA₂ inhibitors reduce the PrP⁺⁺⁺ content of ScGT1 cells. ScGT1 cells were grown for 7 days in the presence of control medium (lane 1), 1 μg/ml AACOCF₃ (lane 2), 0.5 μg/ml aristolochic acid (lane 3), 1 μM CDP (lane 4), or 10 μM ethyl-18-OCH₃ (lane 5). Cellular lysates were digested with 10 μg/ml protease K for 1 h at 37 °C and protease-resistant PrP was visualized by immunoblot with mAb SAF83 using enhanced chemiluminescence.

PLA₂ Inhibitors Reduce the PrP⁺⁺⁺ Content of Three Prion-infected Cell Lines—In an initial screening experiment, the effects of drugs that inhibit some of the common signal transduction pathways were investigated for their effects on the PrP⁺⁺⁺ content of ScN2a cells. ScN2a cells treated daily for 7 days with one of four different PLA₂ inhibitors (1 μM CDP, 1 μg/ml aristolochic acid, 1 μM BEL, or 1 μg/ml AACOCF₃) contained significantly less PrP⁺⁺⁺ than did untreated cells. In contrast, the levels of PrP⁺⁺⁺ in ScGT1 cells were not significantly affected by treatment with three inhibitors of phospholipase C (Table I and Fig. 1). To confirm the effects of PLA₂ inhibitors on PrP⁺⁺⁺ production, two other prion-infected neuroblastoma cell lines (SMB and ScGT1 cells) were also treated with these drugs. The PrP⁺⁺⁺ content of SMB or ScGT1 cells, treated with CDP, aristolochic acid, BEL, or AACOCF₃ was also greatly reduced. Even at concentrations 10 times higher than those used in these experiments, the drugs used did not alter cell survival or cell growth (data not shown).
Glucocorticoids reduce the PrPres content of prion-infected cell lines

The effects of glucocorticoids on PrPres formation were determined by plating ScN2a, SMB or ScGT1 cells at 1 x 105 cells/well in 6 well plates. Cells were grown for 7 days in the presence of the 1 \mu M glucocorticoids as shown. The levels of protease-resistant PrP in cellular lysates were then determined using an ELISA. Values shown are the mean PrPres pg/1 x 107 cells ± S.D. of quadruplicate experiments repeated three times (12 observations).

Drug	ScN2a	SMB	ScGT1
None	1104 ± 148	2004 ± 261	5848 ± 435
Dexamethasone	<50\(^{\circ}\)	<50\(^{\circ}\)	<50\(^{\circ}\)
Hydrocortisone	<50\(^{\circ}\)	<50\(^{\circ}\)	<50\(^{\circ}\)
Prednisolone	<50\(^{\circ}\)	<50\(^{\circ}\)	<50\(^{\circ}\)
Prednisone	1142 ± 98	1983 ± 224	5985 ± 389

a PrPres content of cells significantly less (p < 0.05) than that of untreated cells.

Corticosteroids Reduce the PrPres Content of Prion-infected Cell Lines—In the present study, ScN2a, SMB, or ScGT1 cells treated with 1 \mu M dexamethasone, 1 \mu M hydrocortisone, or 1 \mu M prednisolone contained undetectable amounts of PrPres, whereas cells treated with 1 \mu M prednisolone, an inactive pro-drug that is converted to active prednisolone in the liver, did not affect PrPres levels (Table II). In further studies, the inhibitory effects of dexamethasone on PrPres content of ScN2a cells was shown to be dose-dependent (Fig. 2). SMB and ScGT1 cells treated with dexamethasone also demonstrated a dose-dependent reduction in PrPres (data not shown).

The effects of 1 \mu M dexamethasone on ScN2a cells were not immediate as levels of PrPres in treated cells were not significantly different from control cells after 24 h (1009 pg/ml ± 116 versus 1122 pg/ml ± 97 in untreated cells, n = 8 independent observations, mean PrPres ± S.D.) but they were significantly reduced after 48 h (561 pg/ml ± 116 versus 1129 pg/ml ± 76, n = 8, p < 0.05) and further reduced after 72 h (66 pg/ml ± 55 versus 1076 pg/ml ± 77, n = 8, p < 0.05). We were unable to detect PrPres in cells that had been treated for 4 days or more with 1 \mu M dexamethasone. When ScN2a cells that had been treated with 1 \mu M dexamethasone for 7 days were then grown for a further 12 weeks in drug-free medium these cells remained clear of detectable amounts of PrPres (<50 pg/ml).

Similarly, SMB or ScGT1 that had been treated with 1 \mu M dexamethasone for 7 days remained clear of detectable amounts of PrPres when grown in drug-free medium for 12 weeks.

PLA\textsubscript{2} Inhibitors Reduce PGE\textsubscript{2} Production in Prion-infected Cells—PrP peptides increase PLA\textsubscript{2} activity resulting in the production of PGE\textsubscript{2} (14). In the present study the levels of PGE\textsubscript{2} were significantly raised in prion-infected cells when compared with their non-infected counterparts, which suggests that prion infection activates PLA\textsubscript{2} pathways in neurons. Prion-infected cells treated with 1 \mu M CDP, 1 \mu g/ml AACOCF\textsubscript{3}, or 1 \mu M dexamethasone produced significantly less PGE\textsubscript{2} than did untreated cells showing that drug treatment did indeed inhibit PLA\textsubscript{2} (Fig. 3).

PAF Antagonists Block PrPres Formation—The effects of downstream pathways following PLA\textsubscript{2} activation on the formation of PrPres were investigated. Arachidonic acid, released from membrane phospholipids by PLA\textsubscript{2}, is converted to leukotrienes and prostaglandins by the lipoxygenase (LOX) and COX enzymes respectively. Because the PrPres content of ScN2a, SMB or ScGT1 cells was not affected by treatment with the LOX or COX inhibitors, other factors produced following PLA\textsubscript{2} activation were therefore examined. PAF is generated in neurons by the remodeling pathway following PLA\textsubscript{2} activation (16) and the PrPres content of cells was reduced following treatment with the PAF antagonists hexa-PAF, CV-6209, ginkgolide A, or ginkgolide B (Table III). These PAF antagonists did not affect the survival, or growth rates of prion-infected cells. All four PAF antagonists caused a dose-dependent reduction in the PrPres content of ScN2a cells (Fig. 4), and there was a highly significant relationship between the level of PrPres and the concentration of PAF antagonist (p < 0.05) for all 4 drugs. We noted that at each concentration, PrPres levels were greater in cells treated with ginkgolide A compared with ginkgolide B (p < 0.05). Furthermore, the PrPres content of ScN2a cells was reduced to below detectable levels following 7 days of treatment with 2 \mu M PAF antagonists (<50pg/1 x 107 cells). Treatment with the PAF antagonists also caused a dose-dependent reduction in the PrPres content of SMB and ScGT1 cells. Furthermore, ScN2a, SMB, or ScGT1 cells treated with 2 \mu M hexa-PAF, or with 2 \mu M ginkgolide B, for 7 days remained free of detectable PrPres when grown in drug-free medium for a further 12 weeks (data not shown).

PAF Increases PrPres Formation—To compliment the PAF antagonist studies, prion-infected cells were grown in medium containing PAF agonists. The PrPres content of cells treated with PAF agonists (2 \mu M PAF or 2 \mu M C-PAF) were significantly higher than untreated cells (Table IV and Fig. 5). The PAF
TABLE III
PAF antagonists prevent PrPres formation in prion-infected cells

Enzyme	Drug	ScN2a	SMB	ScGT1
Control		1047 ± 202	2193 ± 249	6118 ± 388
COX	Aspirin	955 ± 57	2245 ± 188	6238 ± 348
LOX	Ibuprofen	1032 ± 93	2303 ± 204	6407 ± 404
LOX	NDGA	1052 ± 115	2150 ± 138	6082 ± 429
PAF antagonists	Hexa-PAF	985 ± 148	1894 ± 268	5958 ± 482
PAF antagonists	CV-6209	<50a	<50a	<50a
	Ginkgolide A	55 ± 25a	100 ± 78a	167 ± 60a
	Ginkgolide B	<50a	<50a	<50a

a PrPres content of cells significantly less (p < 0.05) than that of untreated cells.

FIG. 4. PAF antagonists cause a dose-dependent reduction in the PrPres content of prion-infected cells. ScN2a cells were grown in the presence of different concentrations of PAF antagonists: hexa-PAF (open circles), CV-6209 (closed circles), ginkgolide A (open squares), or ginkgolide B (closed squares) for 7 days. The levels of protease-resistant PrP were subsequently determined in an ELISA. Values shown are the mean PrPres pg/107 cells ± S.D. of triplicate experiments repeated three times (9 observations).

TABLE IV
PAF agonists increase the PrPres prion-infected cells

Conc (nM)	ScN2a	SMB	ScGT1
1	1047 ± 202	2193 ± 249	6079 ± 542
2	1371 ± 90	3584 ± 332	18528 ± 3325
5	1320 ± 64	3169 ± 404	12484 ± 1842

PrPres content of untreated N2a cells (33.2 ± 2.9 ng/107 cells) was significantly higher than that of cells treated with PLA\textsubscript{2} inhibitors (1 μM CDP: 12.8 ± 3.2, n = 9, p < 0.05; 1 μM AAOCF\textsubscript{3}: 2.5 ± 2.1, n = 9, p < 0.05; 1 μM dexamethasone: 8.4 ± 2.4, n = 9, p < 0.05), or with the PAF antagonists 2 μM hexa-PAF (1.1 ± 1.2, n = 9, p < 0.05), 1 μM CV-6209 (6.8 ± 1.4, n = 9, p < 0.05), 1 μM ginkgolide A (1.5 ± 1.7, n = 9, p < 0.05), or 1 μM dexamethasone (Fig. 5).

FIG. 5. PAF increases the PrPres content of ScN2a and ScGT1 cells. ScN2a or ScGT1 cells were grown for 7 days in the presence of control medium (lanes 3 and 4), 2 μM C-PAF (lanes 2 and 5), or 2 μM PAF (lanes 1 and 6). Protease-resistant PrP was demonstrated by immunoblot with mAb SAF83.

FIG. 6. PAF reverses the inhibition of PrPres formation by PLA\textsubscript{2} inhibitors. ScN2a cells were grown in control medium (Con), in 1 μM dexamethasone (DYM), 1 μM CDP, or 1 μg/ml aristolochic acid (AA) in the absence (shaded bars) or presence of 1 μM PAF (open bars). Values shown are the mean PrPres pg/107 cells ± S.D. of triplicate experiments repeated four times (n = 12).

PAF Antagonists Reduce PrP\textsubscript{IC} Levels in Non-infected Cells—Since the production of PrP\textsubscript{IC} is dependent on the presence of PrPC, the effect of PLA\textsubscript{2} inhibitors, PAF antagonists or PAF on PrP\textsubscript{IC} levels in non-infected cells was investigated. The PrP\textsubscript{IC} content of untreated N2a cells (33.2 ± 2.9 ng/107 cells) was significantly higher than that of cells treated with PLA\textsubscript{2} inhibitors (1 μM CDP: 12.8 ± 3.2, n = 9, p < 0.05; 1 μM AAOCF\textsubscript{3}: 2.5 ± 2.1, n = 9, p < 0.05; 1 μM dexamethasone: 8.4 ± 2.4, n = 9, p < 0.05), or with the PAF antagonists 2 μM hexa-PAF (1.1 ± 1.2, n = 9, p < 0.05), 1 μM CV-6209 (6.8 ± 1.4, n = 9, p < 0.05), 1 μM ginkgolide A (1.5 ± 1.7, n = 9, p < 0.05), or 1 μM dexamethasone (Fig. 5).
ginkgolide B (0.4 ± 0.8, n = 9, p < 0.05). All PAF antagonists used caused a dose-dependent reduction in the levels of PrP_C in N2a cells, and there was a highly significant relationship between PAF antagonist concentration and PrP_C levels (p < 0.05). In addition, the type of ginkgolide used had a significant effect on PrP_C levels (p < 0.05) with cells treated with ginkgolide A containing more PrP_C than cells treated with the same concentration of ginkgolide B (Fig. 7). Time course studies showed that PrP_C levels were reduced within 24 h and remained low in the presence of any of the PAF antagonists for up to 7 days. However, even after prolonged treatment (7 days), removal of the PAF antagonists resulted in PrP_C levels returning to normal within 24 h. Conversely, the PrP_C content of N2a cells treated with PAF agonists, 2 μM PAF (74.6 ± 4.8, n = 9, p < 0.05), or 2 μM C-PAF (58.9 ± 3.8, n = 9, p < 0.05) was significantly higher than that of untreated N2a cells. The PrP_C formed in N2a cells treated with PAF agonists remained sensitive to digestion with proteinase K.

Dexamethasone Reduces the Infectivity of SMB Cells—Dexamethasone is a glucocorticoid widely used in medical practice. It has various mechanisms of action, including inhibition of PLA₂. To determine if dexamethasone-treated SMB cells retained infectivity, C57/BL mice were inoculated via the intracerebral route with homogenates from untreated SMB cells or SMB cells treated for 7 days with 200 nM dexamethasone. The mean incubation period in mice inoculated with lysates from dexamethasone-treated cells (206 ± 8 days) (incubation period ± S.D.) was significantly longer than in mice inoculated with lysates from untreated SMB cells (179 ± 6 days; n = 8 mice in each group, p < 0.05).

DISCUSSION

In the present study we utilized a pharmacological approach to determine the metabolic pathways that underlie the formation of PrP^{res} in three prion-infected neuroblastoma cell lines (ScN2a, ScGT1, and SMB cells). In a broad screen of compounds we found that 4 different drugs that inhibit PLA₂ (aristolochic acid, AACOCF₃, BEL, and CDP) reduced the PrP^{res} content of prion-infected cells. The concentrations of the PLA₂ inhibitors used were at least 10 times less than the concentration of these drugs that had a toxic effect and treatment with PLA₂ inhibitors did not affect total cellular protein levels.² We confirmed that the drugs used inhibited PLA₂ by measuring levels of PGE₂ (a marker of PLA₂ activity). In the present study prion-infected cells treated with CDP, aristolochic acid or AACOCF₃ produced significantly less PGE₂ than untreated cells. It is of interest to note that none of the drugs completely inhibited PLA₂ activity, possibly because there exist several distinct enzymes with PLA₂ activity including cytosolic (cPLA₂) and secretory (sPLA₂) isozymes (19). Although aristolochic acid and CDP inhibit both cPLA₂ and sPLA₂, low concentrations of AACOCF₃ or BEL, which are reported to selectively inhibit cPLA₂ (20), inhibited PrP^{res} formation (Table I) indicating that cPLA₂ may be the isozyme of interest.

PLA₂ can also be inhibited by the lipocortins, a family of proteins that are produced in response to the glucocorticoids (21). In the present study cells treated with the active glucocorticoids: dexamethasone, hydrocortisone, and prednisolone showed a reduced PrP^{res} content, whereas the inactive precursor prednisone had no effect. The effect of dexamethasone was dose-dependent, and PrP^{res} was reduced to below detectable levels at nanomolar concentrations of dexamethasone. A significant effect on PrP^{res} content was not seen until 2 days after the commencement of treatment with dexamethasone, and cells were not clear of PrP^{res} until 4 days after treatment. Nevertheless, ScN2a cells that had been treated with 1 μM dexamethasone for 7 days remained free of detectable PrP^{res} when grown in drug-free medium for a further 12 weeks. Our in vivo observations showed that SMB cells treated with 200 nM dexamethasone for 7 days contained reduced levels of infectivity. Such observations are consistent with previous reports that transient steroid administration immediately postinfection reduced the susceptibility of mice to scrapie after peripheral challenge (22). However, the use of glucocorticoids in prion diseases should be treated with caution due to the observation that chronic administration of glucocorticoids can itself lead to neuronal atrophy (23).

Since PLA₂ and many of its metabolites play important roles in signal transduction, it is possible that altered levels of second messengers could cause the decrease in the PrP^{res} content of cells indirectly. Although the activation of PLA₂ is functionally associated with the production of prostaglandins the PrP^{res}...
content of cells was not affected by treatment with inhibitors of either COX or LOX. The activation of PLA₂ also leads to the synthesis of the bioactive phospholipid PAF in neurons via the remodeling pathway (16). PAF is not stored in a preformed state, but rather is rapidly synthesized in response to cell-specific stimuli (15) and in this study four different PAF antagonists all reduced the PrP楼市 content of Scnta2a, ScGT1, or SMB cells. The effects of PAF antagonists were dose-dependent with an IC₅₀ ~ 50 nM, and at a concentration of 2 μM two PAF antagonists (hexa-PAF and ginkgolide B) were able to reduce PrP楼市 to below detectable levels. The finding in the present study that ginkgolide B had a greater effect on PrP楼市 formation than ginkgolide A is consistent with previous reports that ginkgolide B a more potent PAF antagonist than ginkgolide A (24). The role of PAF in prion replication was supported by two further complementary studies. Firstly, the addition of PAF agonists (PAF or C-PAF) increased the production of PrP楼市 in all 3 prion-infected cell lines without affecting total cellular protein concentrations. The magnitude of the effects of the PAF agonists were cell type-dependent, with a greater increase in PrP楼市 content seen in ScGT1 cells than in SMB and cells both showing greater effects than the Scnta2a cells. Secondly, the addition of PAF restored PAF楼市 production in dexamethasone or CDP-treated Scnta2a cells. Collectively, these results suggest that the effect of dexamethasone or the PLAb inhibitors on PrP楼市 formation is mediated via a reduction in PAF formation.

The observation that PrP楼市 is essential for the development of prion diseases (25) suggests that the density and cellular localization of PrP楼市 may influence PrP楼市 production. Both the PLAb inhibitors and the PAF antagonists reduced cellular PrP楼市 levels indicating that these drugs may prevent the formation of PrP楼市 by limiting the supply of the PrP楼市 substrate. Ginkgolide B, a more potent PAF antagonist than ginkgolide A (24), had a greater effect on PrP楼市 levels in N2a cells than ginkgolide A. In contrast, PAF agonists increased cellular PrP楼市 levels, further indicating the importance of PAF in controlling PrP楼市 expression. The PrP楼市 in PAF treated cells remained sensitive to proteinase K digestion, unlike PrP楼市 species induced in N2a cells treated with proteasome inhibitors (26). The regulation of PrP楼市 expression is poorly understood, previous studies have shown that in neuronal cells PrP楼市 expression was increased after treatment with insulin, nerve growth factor, epidermal growth factor, or tumor necrosis factor α (27, 28).

There are a number of possible mechanisms for the exact manner by which PAF antagonists could affect PrP楼市 formation. PrP楼市 is found in lipid rafts or caveolae (29), specialized membrane compartments that contain high levels of cholesterol and sphingomyelin (30). Since the formation of these lipid rafts is cholesterol-dependent (31), and drugs that affect cholesterol levels influence the formation of PrP楼市 (8, 18), it is possible that PAF may regulate the composition and hence the function of lipid rafts. In this respect it should be noted that PAF induces sphingomyelinase which itself has been shown to increase the formation of PrP楼市 in Scnta2a cells (32). PAF has been demonstrated to increase sterol synthesis (34) and to inhibit cholesterol esterification (33), while PAF antagonists inhibit cholesterol biosynthesis from lanosterol (35). Collectively, these data suggest that PAF may be involved in the maintenance of cholesterol-dependent lipid rafts.

The conversion of PrP楼市 to PrP楼市 is thought to occur after PrP楼市 has reached the plasma membrane and subsequently been re-internalized for degradation (36–38). These observations raise the possibility that the activation of PLAb seen in prion infected cells and the production of PAF may encourage the formation of PrP楼市 by enhancing proipotaxis and sorting pathways. In some cell lines PAF antagonists prevent endocytosis (39), while in other studies, cPLA₂ inhibitors (AA-COCP or BEL) prevent the maintenance of the Golgi network (40), endosome fusion, and endocytosis (41), and modulate the intracellular trafficking of some proteins (42). Together with the observation that the Golgi and the endosomal compartments are involved in the trafficking of a GFP-tagged PrP楼市 (43), these observations suggest that treatment of neurons with PLAb inhibitors or PAF antagonists may inhibit PrP楼市 formation by altering the intracellular trafficking of PrP楼市.

Currently, the development of therapeutic strategies to combat prion disease is largely based on the identification of drugs that bind to and disrupt aggregated PrP楼市. This strategy is based on the belief that PrP楼市 is a major, if not the only, component of the infectious agent (44), and that the formation of fibrillar aggregates of PrP楼市 leads to neurodegeneration. Thus, it is thought that inhibiting PrP楼市 formation, or disrupting pre-formed PrP楼市, will prevent the establishment of disease. The data presented here support the view that PLAb and PAF regulate the formation of PrP楼市 and thus presumably the propagation of infectious prions since dexamethasone-treated SMB cells showed reduced levels of infectivity. The effects of the PAF antagonists were dose-dependent and caused a 50% reduction in PrP楼市 content at nanomolar concentrations. Both PLAb inhibitors and PAF antagonists caused a rapid reduction in the PrP楼市 content of N2a cells. Thus, the effects of PLAb inhibitors and PAF antagonists on PrP楼市 formation may result from reducing the supply of PrP楼市 to sites conducive to conversion of PrP楼市 to PrP楼市. While PrP楼市 formation is undoubtedly a complex process, these observations provide insight into the signaling processes that initiate the formation of PrP楼市 and presumably prions. We therefore propose that PAF antagonists may have a role in preventing neurodegeneration in prion diseases when used in combination with drugs targeted at the structure of PrP楼市 itself.

Acknowledgements—We thank Dr. R. Veerhuis and Prof. P. Eikelenboom (Vrije Universiteit University Medical Center, Amsterdam, The Netherlands) for helpful discussions.

REFERENCES
1. Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fleiterick, R. J., and Cohen, F. E. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 10962–10966
2. Prusiner, S. B., McKinley, M. P., Brown, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F., and Glenny, G. G. (1988) Cell 35, 349–358
3. DeArmond, S. J., and Prusiner, S. B. (1993) J. Neurochem. 61, 1589–1601
4. Prusiner, S. B., and Prusiner, S. (2000) Science 287, 1503–1506
5. Soto, C., Kascsak, R. J., Sabo, T., Guderman, T., Talbott, S., and Prusiner, S. (2000) Lancet 355, 1923–1928
6. Aihara, M., Ishii, S., Kume, K., and Shimizu, T. (2000) Genes Cells. 5, 397–404
7. Gehl, P., Winkler, K. F., Groschup, M. H., Nunziante, L., Lucassen, R., Spielhaupter, C., Muranyi, W., Riesner, D., Tatzelt, J., and Schatzl, H. M. (2001) EMBO J. 20, 3957–3966
8. Taraboulos, A., Scott, M., Semenov, A., Avrahami, D., Laszlo, L., Prusiner, S. B., and Avraham, D. (1995) J. Cell Biol. 129, 121–132
9. Marella, M., Lehmann, S., Grassi, J., and Chabry, J. (2002) J. Biol. Chem. 277, 25457–25464
10. Enari, M., Flechaig, E., and Weissmann, C. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9285–9299
11. Peretz, D., Williamson, R. A., Kaneko, K., Vergara, J., Leclerc, E., Schmitt-Ulms, G., Mehlhorn, I. R., Legnane, G., Wormald, M. R., Radd, P. M., Dwek, R. A., Burton, D. R., and Prusiner, S. B. (2001) Nature 412, 739–743
12. Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J. L., Lehmann, S., Launay, J. M., and Kellermann, O. (2000) Science 289, 1925–1928
13. Charvin, L. B., Freitas, A. R., Zanata, S. M., Brentani, R. R., Martins, V. R., and Linden, R. (2000) EMBO J. 19, 3317–3326
14. Bate, C., Rutherford, S., Gravenor, M., Reid, S., and Bostock, C. J. (2001) EMBO J. 20, 3551–3558
15. Bate, C., Salamina, M., Diomede, L., and Williams, A. (2004) J. Biol. Chem. 279, 14983–14990
19. Murakami, M., Nakatani, Y., Kuwata, H., and Kudo, I. (2000) Biochim. Biophys. Acta 1488, 159–166
20. Kolko, M., de, E. B., Diemer, N. H., and Bazan, N. G. (2003) Neurosci. Lett 338, 164–168
21. Flower, R. J. (1986) Agents Actions 17, 255–262
22. Outram, G. W., Dickinson, A. G., and Fraser, H. (1974) Nature 249, 855–856
23. Abraham, I. M., Harkany, T., Horvath, K. M., and Luiten, P. G. (2001) J. Neuroendocrinol. 13, 749–760
24. Korth, R., and Benveniste, J. (1987) Eur. J. Pharmacol. 142, 331–341
25. Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S., Weismann, C., and Aguzzi, A. (1996) Nature 380, 339–343
26. Ma, J., and Lindquist, S. (2002) Science 298, 1785–1788
27. Kuwahara, C., Kubosaki, A., Nishimura, T., Nasu, Y., Nakamura, Y., Saeki, K., Matsumoto, Y., and Onodera, T. (2000) Biochem. Biophys. Res. Commun. 288, 763–766
28. Sauer, H., Wefer, K., Vetrugno, V., Pocchiari, M., Gissel, C., Sachinidis, A., Hescheler, J., and Wartenberg, M. (2003) Free Radic. Biol. Med. 35, 586–594
29. Vey, M., Pilkhuo, S., Wille, H., Nixon, R., DeArmond, S. J., Smart, E. J., Anderson, R. G., Taraboulos, A., and Prusiner, S. B. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 14945–14949
30. Simons, K., and Ikonen, E. (1997) Nature 387, 569–572
31. Rothberg, K. G., Ying, Y. S., Kamen, B. A., and Anderson, R. G. (1990) Proc. Natl. Acad. Sci. U.S.A. 86, 3962–3966
32. Naslavsky, N., Shmeeda, H., Friedlander, G., Yanai, A., Futerman, A. H., Barenholz, Y., and Taraboulos, A. (1999) J. Biol. Chem. 274, 20763–20771
33. Bergelson, L. D., Kulikov, V. I., and Muzia, G. I. (1985) FEBS Lett. 190, 305–306
34. Maziere, J. C., Maziere, C., Auclair, M., Mura, L., and Polonovski, J. (1988) FEBS Lett. 236, 115–118
35. Shin, B. A., Kim, Y. R., Lee, I. S., Sung, C. K., Hong, J., Sim, C. J., Im, K. S., and Jung, J. H. (1999) J. Nat. Prod. 62, 1554–1557
36. Caughey, B., and Raymond, G. J. (1991) J. Biol. Chem. 266, 18217–18223
37. Caughey, B., Raymond, G. J., Ernst, D., and Race, R. E. (1991) J. Virol. 65, 6597–6603
38. Beranger, F., Mange, A., Goud, B., and Lehmann, S. (2002) J. Biol. Chem. 277, 39973–39977
39. Bazill, G. W., and Dexter, T. M. (1996) Cancer Res. 56, 7505–7512
40. de Figueiredo, P., Drecktrah, D., Katzenellenbogen, J. A., Strang, M., and Brown, W. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 8642–8647
41. Mayorga, L. S., Colombo, M. I., Lennartz, M., Brown, E. J., Rahman, K. H., Weiss, R., Lennon, P. J., and Stahl, P. D. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10255–10259
42. de Figueiredo, P., Doody, A., Polizotto, R. S., Drecktrah, D., Wood, S., Banta, M., Strang, M. S., and Brown, W. J. (2001) J. Biol. Chem. 276, 47381–47370
43. Magalhaes, A. C., Silva, J. A., Lee, K. S., Martins, V. R., Prado, V. F., Ferguson, S. S., Gomez, M. V., Brentani, R. R., and Prado, M. A. (2002) J. Biol. Chem. 277, 33311–33318
44. Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13363–13383

Signal Transduction and Prion Replication
