Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera

Thomas Merckx*, b, 1, 2, Matthew E. Nielsen c, 1, 2, Janne Heliöla d, Mikko Kuussaari d, Lars B. Pettersson e, Juha Pöyry e, Juha Tiainen f, g, Karl Gotthard d, and Sami M. Kivelä a

*Ecology and Genetics Research Unit, University of Oulu, 90014 Oulu, Finland; bBiology Department, Vrije Universiteit Brussel, 1050 Brussels, Belgium; cDepartment of Zoology, Stockholm University, 106 91 Stockholm, Sweden; dBiodiversity Centre, Finnish Environment Institute, 00790 Helsinki, Finland; eBiodiversity Unit, Department of Biology, Lund University, 223 62 Lund, Sweden; fNatural Resources Institute Finland, 00790 Helsinki, Finland; and gLammi Biological Station, University of Helsinki, 16900 Lammi, Finland

Edited by David Denlinger, The Ohio State University, Columbus, OH, and approved August 6, 2021 (received for review March 29, 2021)

Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napri (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ecotones and may contribute to coevolutionary dynamics in cities.

Significance

Cities represent novel environments with altered seasonality; they are warmer, which may accelerate growth, but light pollution can also lengthen days, misleading organisms that use daylength to predict seasonal change. Using long-term observational data, we show that urban populations of a butterfly and a moth have longer flight seasons than neighboring rural populations for six Nordic city regions. Next, using laboratory experiments, we show that the induction of diapause by daylength has evolved in urban populations in the direction predicted by urban warming. We thus show that the altered seasonality of urban environments can lead to corresponding evolutionary changes in the seasonal responses of urban populations, a pattern that may be repeated in other species.

Author contributions: T.M., M.E.N., K.G., and S.M.K. designed research; T.M., M.E.N., K.G., and S.M.K. performed research; J.H., M.K., L.B.P., J.P., and J.T. provided citizen science data; T.M. and S.M.K. analyzed data; and T.M., M.E.N., J.H., M.K., L.B.P., J.P., J.T., K.G., and S.M.K. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

*To whom correspondence may be addressed. Email: th.mercks@gmail.com or matthew.nielsen@zoologi.su.se.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2106006118/-/DCSupplemental.

Published September 27, 2021.

PNAS 2021 Vol. 118 No. 40 e2106006118
https://doi.org/10.1073/pnas.2106006118 | 1 of 8
rural mosquito demes responded similarly (20). In moths, ALAN can disrupt larval development and pupal diapause (e.g., ref. 22), indicating that ALAN could also negatively affect fitness of day-flying Lepidoptera through impacts on earlier life stages (23). For instance, in horse-chestnut leaf miners, the number of diapausing pupae halved in continuously illuminated host plants (24).

Both the UHI and ALAN are predicted to lead to an extended flight season with adult activity later in the year, but they would have very different fitness consequences, leading to opposite evolutionary changes in the underlying reaction norms (Fig. 1). The UHI should extend the length of the growing season in urban environments, similar to the broader consequences of climate change for phenology (13, 25, 26). This would increase the fitness of genotypes that can effectively use this extra time, leading to selection for the direct development to continue later in the year at shorter photoperiods. In contrast, ALAN will lengthen the photoperiod, making species that use photoperiod as a cue mistakenly develop directly later in the year than they would under ordinary conditions (a developmental trap). This should lead to selection for the induction of diapause at longer photoperiods in urban environments, the opposite direction of the change predicted by the UHI. ALAN could also select for reduced sensitivity to photoperiod as a cue, leading to a shallower slope of the photoperiodic reaction norm. Here, using a butterfly and a moth as models, we set out to test for phenological shifts in urban areas and whether the underlying reaction norm for seasonal plasticity has evolved in the way predicted by the UHI or ALAN, as a mechanism for this phenological shift. Both the multivoltine green-veined white (Pieris napi) and the bivoltine latticed heath (Chiasmia clathrata) are widespread lepidopterans, entering pupal diapause primarily using photoperiod as a cue but also responding to temperature (27–30).

First, we test whether the flight season in urban environments has lengthened, as predicted by both the UHI and ALAN hypotheses, in the three largest cities of both Finland and Sweden (Fig. 2). For both species, we amassed long-term standardized data from monitoring schemes and citizen science data from observation schemes and compared the flight curves of urban and nearby rural populations for the six city regions. Then, we compared urban and rural populations from the two largest cities (Helsinki and Stockholm) to test for the genetic shifts in their photoperiodic reaction norms for diapause predicted by the UHI or ALAN. For each species, we used a common garden split-brood experiment, in which we reared offspring from wild-caught females along a controlled, photoperiodic gradient to establish among-population variation in the response to photoperiod. If the UHI was the primary factor selecting for change in these reaction norms, we expected shorter critical daylengths (CDLs) (i.e., daylength at which 50% of a population enters diapause) in urban populations, whereas if ALAN was the primary factor, we either expected longer CDLs and/or shallower photoperiodic reaction norms in urban populations (Fig. 1).

Results

Monitoring and Citizen Science-Based Phenology. To verify whether, and to what extent, the phenomenology of P. napi and C. clathrata has changed in urban environments, we gathered phenological data on adults of both species from various standardized monitoring and citizen science-based observation schemes. Using generalized additive models (GAMs), we fitted yearly phenological flight curves to these daily count data, separately for the urban versus rural context (0 to 10 km versus 20 to 50 km from the city center, respectively), of the three largest city regions in each of Finland and Sweden (Fig. 2). Linear mixed-effects model analysis of these flight curves showed that the flight periods of both study species were typically longer in urban than in nearby rural environments for the six city regions analyzed (Fig. 3 and SI Appendix, Table S8). However, some of these differences were not statistically significant at the 95% confidence level, contributing to environment by city interactions, with even an opposite difference for C. clathrata in Göteborg (Fig. 3 and SI Appendix, Table S8 and Figs. S7 and S8). Both species had significantly longer flight periods in urban Helsinki than in surrounding rural sites (estimated rural–urban contrast [95% CI]: C. clathrata: 21.3 [12.2, 30.4] days, z = 4.60, and P < 0.0001; P. napi: 37.1 [20.4, 53.7] days, z = 4.36, and P < 0.0001). For the Stockholm region, however, the effect was not statistically significant (C. clathrata:...
8.68 [−11.9, 29.2] days, \(z = 0.828 \), and \(P = 0.41 \); \(P. napi \): 8.02 [−6.07, 22.1] days, \(z = 1.12 \), and \(P = 0.26 \).

Linear mixed-effects model analysis of the flight curves also showed that the end of the flight period was typically later in urban than in rural zones in both species (Fig. 3 and SI Appendix, Table S8). In \(C. clathrata \), last flight days in urban than in rural zones were statistically supported (95% confidence level) in three of the city regions, while Göteborg showed again the opposite difference (Fig. 3 and SI Appendix, Table S8). In \(P. napi \), last flight days were consistently later in urban zones, the urban–rural difference being similar in all city regions (Fig. 3 and SI Appendix, Table S8). Both species had significantly later last flight days in the urban zone of the Helsinki region (\(C. clathrata \): 16.8 [9.88, 23.7] days, \(z = 4.77 \), \(P < 0.0001 \); \(P. napi \): 5.06 [0.395, 9.72] days, \(z = 2.13 \), and \(P = 0.034 \), but in the Stockholm region, this was the case only for \(P. napi \) (\(C. clathrata \): 3.47 [−12.1, 19.0] days, \(z = 0.436 \), and \(P = 0.66 \); \(P. napi \): 4.91 [0.676, 9.15] days, \(z = 2.27 \), and \(P = 0.023 \)).

Photoperiod Experiment. For the two biggest cities, Helsinki and Stockholm, we compared photoperiodic reaction norms of diapause induction, larval development time, and pupal mass between urban and rural populations. We used photoperiod gradients that were tailored to the known CDL of diapause induction in \(P. napi \) in Stockholm (31), suggestive experimental data on \(C. clathrata \) in southern Finland (29, 32), and known phenologies of the species in the two cities. For \(P. napi \), we had access to families from urban and rural populations for both city regions, but we did not have access to \(C. clathrata \) from rural Stockholm. We used binomial, generalized linear mixed-effects models with a logistic link function to analyze these data. In both study species, the probability of direct development increased in the order Helsinki rural < Helsinki urban < Stockholm rural < Stockholm urban across the daylength gradient studied (Table 1 and Fig. 4 and SI Appendix, Fig. S11). Consequently, CDLs were shorter in Stockholm than in Helsinki populations, in accordance with the 0.9° latitudinal difference, but were also shorter in urban than in rural populations (CDL estimates from photoperiodic response curves of the female sex presented in Fig. 4 [hours; 95% CI]: \(P. napi \): Helsinki: urban: 18.3 [18.1 to 18.6], rural: 18.5 [18.3 to 18.7], Stockholm: urban: 17.8 [17.6 to 18.0], rural: 18.1 [17.9 to 18.3], \(C. clathrata \): Helsinki: urban: 19.9 [19.5 to 20.4], rural: 21.0 [20.5 to 21.5], and Stockholm: urban: 19.0 [18.5 to 19.4]). In \(C. clathrata \), the photoperiodic reaction norm for direct development was steeper in the two urban populations than in the rural one (Fig. 4), as indicated by the interaction between daylength and population (Table 1), with an urban–rural CDL difference of 62 min for the Helsinki populations, corresponding to a 9-d between-population difference in the timing of CDL based on civil twilight (Fig. 4 and SI Appendix, Table S9). While the urban–rural difference between the two Helsinki \(P. napi \) populations was not statistically significant at the 95% confidence level

![Fig. 3. Field observation–based estimates of the flight period length (Top) and end (Bottom) in \(C. clathrata \) (Left) and \(P. napi \) (Right) in urban and rural areas in and around the three largest cities in both Finland and Sweden (note the difference in y-axis scaling between the species). In each panel, points are fitted values from a linear mixed-effects model (fixed effects presented in SI Appendix, Table S8; model-averaged fixed effects—that did not indicate an interaction between city region and environment—are used in the bottom right panel [see Statistical Analyses and SI Appendix, Table S8 for details]), and whiskers indicate 95% CIs of the fitted values, with lines connecting urban and surrounding rural areas for each of six differently colored cities. The city- and environment-specific locations from where we have additional experimental data (results illustrated in Fig. 4) are indicated with squares.](https://doi.org/10.1073/pnas.2106006118)
and civil twilight, respectively; population difference in the timing of CDL based on daylength: 19 min, corresponding to a 6-d and 3-d between-population difference in the timing of CDL based on daylength and civil twilight, respectively; and 2-d between-population difference in the timing of CDL based on daylength [95% CI]: 0.027, with the Stockholm rural population as the reference; L larval development time and pupal mass did not differ between urban and rural populations within Helsinki and Stockholm, with “Helsinki rural” and “female” coded as reference categories.

Species Model parameter Averaged estimate 95% CI * z value P value

Species	Model parameter	Averaged estimate	95% CI	z value	P value
C. clathrata	Intercept †	0.0360	−0.293, 0.365	0.214	0.83
	Centered DL	0.707	0.516, 0.898	7.27	<0.0001
	Population (Helsinki urban)	1.11	0.546, 1.67	3.85	0.00012
	Population (Stockholm urban)	2.02	1.41, 2.63	6.52	<0.0001
	Centered DL × Population (Helsinki urban)	0.388	0.0470, 0.729	2.23	0.026
	Centered DL × Population (Stockholm urban)	0.319	0.00932, 0.629	2.02	0.043
P. napi	Intercept †	−1.63	−2.33, −0.930	4.57	<0.0001
	Centered DL	3.16	2.35, 3.97	7.62	<0.0001
	Population (Helsinki urban)	0.601	−0.326, 1.53	1.27	0.20
	Population (Stockholm rural)	1.26	0.300, 2.22	2.58	0.010
	Population (Stockholm urban)	2.29	1.40, 3.18	5.02	<0.0001
	Sex (male)	−0.813	−1.41, −0.22	2.68	0.0073

*95% CIs derived by using the adjusted SE.
† This is the predicted probability (in the scale of the linear predictor) when centered DL is 0, population is “Helsinki rural,” and sex is “female.”

(Table 1 and Fig. 4; CDL difference: 11 min, corresponding to a 4- and 2-d between-population difference in the timing of CDL based on daylength and civil twilight, respectively; SI Appendix, Table S9), the two Stockholm P. napi populations clearly differed (Fig. 4; model-averaged difference [95% CI]: 1.02 [0.118, 1.93], z = 2.21, P = 0.027, with the Stockholm rural population as the reference; CDL difference: 19 min, corresponding to a 6-d and 3-d between-population difference in the timing of CDL based on daylength and civil twilight, respectively; SI Appendix, Table S9).

Laboratory results can also help explain the results of our monitoring and citizen science-based analysis of in situ flight phenology, which showed an extended urban flight season for both species in most cities considered. For instance, in P. napi, the laboratory-estimated CDL difference of 11 to 19 min corresponds to a 4- to 6-d later occurrence of CDL calculated from daylength in the urban sampling locations, which matches well with the on average 5 d later end of the flight period in urban environments in the in situ flight curves. Specifically, the shift toward direct development at shorter photoperiods indicates that the UHI may be driving the observed, phenological changes rather than a maladaptive response to ALAN. Although both photoperiod and temperature are known to affect the phenology and life cycle regulation of multivoltine Lepidoptera reaction norms following urbanization. A shift in the same direction occurred in all three urban–rural comparisons tested, involving two different cities and two different species, demonstrating the potential to replicate our results spatially and phylogenetically. These laboratory results can also help explain the observed, phenological changes rather than a maladaptive response to ALAN. Although both photoperiod and temperature are known to affect the phenology and life cycle regulation of multivoltine Lepidoptera

Discussion

In our common garden experiments, we found a shift toward a lower photoperiod threshold for direct development in urban populations, indicated by consistently shorter (11 to 62 min) CDLs. This result is evidence for genetic shifts in photoperiodic reaction norms following urbanization. A shift in the same direction occurred in all three urban–rural comparisons tested, involving two different cities and two different species, demonstrating the potential to replicate our results spatially and phylogenetically. These laboratory results can also help explain the results of our monitoring and citizen science-based analysis of in situ flight phenology, which showed an extended urban flight season for both species in most cities considered. For instance, in P. napi, the laboratory-estimated CDL difference of 11 to 19 min corresponds to a 4- to 6-d later occurrence of CDL calculated from daylength in the urban sampling locations, which matches well with the on average 5 d later end of the flight period in urban environments in the in situ flight curves. Specifically, the shift toward direct development at shorter photoperiods indicates that the UHI may be driving the observed, phenological changes rather than a maladaptive response to ALAN. Although both photoperiod and temperature are known to affect the phenology and life cycle regulation of multivoltine Lepidoptera

![Fig. 4. Population-specific probability of direct development in C. clathrata (Left) and P. napi (Right) in relation to experimentally manipulated daylength. Each curve is for a different population (i.e., Helsinki rural, Helsinki urban, Stockholm rural, and Stockholm urban) and is drawn on the grounds of model-averaged fixed effects (Table 1) of generalized linear mixed-effects models, explaining the data. The shaded regions around the curves are 95% CIs. The fitted regression curves are for females. For males, the curves are similar, with no significant effect of sex in C. clathrata and only a small independent effect of sex in P. napi (see Table 1). Although centered daylength was used in the statistical analyses, we relocated the regression curves to the original daylengths for an easier interpretation of the figure. The horizontal dashed line indicates the probability of 0.5 so that the fitted regression curves intersect the dashed line at the CDL. Points indicate observed proportions of directly developing individuals in each population and daylength treatment, with circles being used for overlapping points.](https://doi.org/10.1073/pnas.2106006118)
and other ectotherms (33–35), the genetic changes we found support a stronger role of urban warming than of ALAN in the evolution of seasonal plasticity in urban environments. This is also emphasized by the steeper slopes of the reaction norms in urban than in rural C. clathrata, opposite to the prediction of the hypothesized ALAN effect. Nonetheless, we cannot rule out that ALAN is also contributing to the observed phenological shifts, as implied by the diapause-averting effects of ALAN in other insects (20–22). Also, it is worth noting that ALAN has increasingly recognized biological effects on organismal fitness and behavior that could lead to the evolutionary differentiation of urban and rural populations (36, 37).

Even a moderate UHI (0.2 to 1.5 °C), as we show here for two medium-sized cities (1.3 to 1.6 M inhabitants) (SI Appendix, Appendix B), probably results in different optimia for the induction of diapause. Warmer urban sites allow for faster development rates and longer periods of growth and reproduction than their cooler rural surroundings (13, 38, 39). Consequently, one expects these urban sites to allow more individuals to successfully complete an extra generation near the end of the flight season (25, 26). Nonetheless, fully demonstrating that the genetic changes we found are adaptive will require reciprocal transplant experiments that would contrast the fitness of urban versus rural populations in both settings (4, 40), similar to those recently performed for another moth species (41). To provide further evidence of the parallel evolution of seasonal plasticity to urban environments, we can test how widespread our observation is in other species and other cities, since each city and species will likely involve independent and rapid selection events. Indeed, urban-to-urban dispersal of urban-adapted variants is unlikely in most nonmigratory Lepidoptera because of limited dispersal ranges (42), and selective pressures likely differ among cities because of variation in urbanization intensity and strong, natural latitudinal gradients for selection on photoperiodic reaction norms (11, 43). Both reciprocal transplant experiments and observations of parallel evolution by independent populations across urban environments would be considered strong evidence for adaptation by natural selection (41, 44) and would suggest that the genetic signal we observed is present in other species and other city regions (45).

Although it does not provide concrete evidence for a genetic basis for these changes, our complementary monitoring and citizen science–based analysis of in situ flight phenology suggests that similar changes have occurred in several additional cities, indicating a strong signal despite the sometimes relatively low amount of urban compared to rural observations. For instance, the overall number of urban citizen science records and corresponding abundance amounted to only 52 and 13% of the rural records and to 32 and 7% of the rural abundance for P. napi and C. clathrata, respectively. While these lower urban amounts fit the generally adverse impact of urbanization on butterfly and moth abundance (46, 47), it also implies that, with a more equal representation of both butterfly and moth species, urbanization may be a major factor in a parallel increase in urban butterflies and moths observed in Helsinki, Stockholm, and other cities (33, 34). Future experiments with urban-adapted variants are needed to explore urbanization-induced phenological responses more thoroughly (42, 50).

Seasonal plasticity is a classic example of a trait that can rapidly evolve because of its importance for ensuring proper seasonal timing (7), while urbanization is a new source of a mixture of anthropogenic changes whose evolutionary implications we are just beginning to appreciate (3). Here, we provide evidence for the evolution of the reaction norm for diapause induction in urban environments, using two species of Lepidoptera. Lepidoptera are of fundamental importance to ecosystem functioning given their role as pollinators, herbivores, prey, and hosts for parasitoids (23, 55), so changes in their ecoevolutionary dynamics can potentially lead to disruption across trophic levels (56, 57). Understanding how Lepidoptera can adapt to the altered seasonality found in urban environments is thus critical to understanding the resilience of their roles in urban ecosystems. With increasing attention being paid to the impacts of climate change on phenology and whether evolution can correct for it (5, 58), we show here that these same questions need to be asked for urbanization as well. Our results in that regard may also apply to the wide range of other species globally that need to maintain appropriate phenologies in the face of the UHI and ALAN, and whose contemporary evolution may hence be shaped by urban seasonal change (2).

Materials and Methods

Monitoring and Citizen Science-Based Phenology. To determine how urbanization has affected the phenology of P. napi and C. clathrata, we amassed standardized monitoring data and citizen science–based observational data on the abundance and phenology of both species. For the observational data, we included data from 2005 onwards, while for the monitoring data we included all years available. We gathered the available phenological data on adults of both species from various Lepidoptera-monitoring schemes (Finnish Moth Monitoring Scheme ("Nocturna"): 1993 to 2020 (C. clathrata); Swedish Butterfly Monitoring Scheme: 2010 to 2020 (P. napi); Finnish Butterfly Monitoring Scheme: 1999 to 2020 (P. napi and C. clathrata), additionally including data (P. napi and C. clathrata) collected with the same sampling protocol for a separate ecological study in Helsinki (59)) and from two national observation portals ([http://www.laji.fi; 2005 to 2020 (P. napi and C. clathrata]). Cleaning of the portal data involved excluding observations referring to nonadult stages, treating them as estimates rather than real counts. Observations with spatial accuracy >1 km were not retained, while observations linked to grid coordinates were attributed to the respective grid centers. While the observation portals collate nonsystematic observational records, the monitoring schemes collect data systematically based on diurnal “Pollard walks” and
Alliaria petiolata. There, females were kept at conditions favorable for oviposition in 1-L cups. All females were taken or shipped to Stockholm University for egg laying.

[59.930° N, 23.186° E], Öby [59.925° N, 23.165° E], Höglandet [59.975° N, 23.351° E] in 2019 (Fig. 2). As we only managed to collect a few males and no females from rural Stockholm, our comparisons in that species focus on the Finnish populations while still retaining the urban Stockholm population for context. All females were taken to the University of Oulu, where they were kept at 21 °C under 12L:12D conditions for egg laying in individual pots with access to sugar water. Newly hatched larvae were moved individually to cups (0.25-L translucent plastic). Each larva had ad libitum access to fresh shoots of the natural host plant Lathyrus pratensis and was reared until pupation at 21 °C under 12L:12D. A layer of garden peat was added to the cups for pupation which was not removed after eclosion. Around 75% of all pupae were excavated from the peat and placed in a cup with Sphagnum sp. moss. After ca. 10 mo of overwintering in a refrigerator room at 5 °C, the pupae were taken to 20 °C and 18L:6D. Eclosed females were placed with a nonsibling male from the same population in cups under 21 °C and 18L:6D with access to sugar water and allowed to mate and lay eggs. Up to 40 F1 larvae were reared from each of up to two females, and 75% of all pupae were singly placed in cups. Initial sample sizes per population were 420 (14 families) for Rural Helsinki, 305 (10 families) for Urban Helsinki, and 395 (13 families) for Urban Stockholm. The offspring of each female was evenly divided among five climate rooms (Arctest Oy) at 21 °C with the following photoperiod regimes: 18L:6D, 19.5L:4.5D, 21L:3D, 22.5L:1.5D, and 24L:0D. Date and nearest hour were recorded when these larvae were placed in cups, in which they were reared similarly to the previous generation. Final instar larvae were checked at least twice a day, and the hour and date when the larva burrowed into the peat for pupation were recorded. Around 5 days after pupation, pupae were excavated from the peat, weighed (Metler Toledo MTS; precision: 0.01 mg), and sexed based on sex-specific genital scars. After pupation, each individual was kept under the same conditions as those experienced during larval development, at least for the first 5 d, and monitored daily for eclosion for a minimum of 2 wk. All individuals that did not eclose during that time were considered to be in diapause. At the point when the monitoring of pupae was ended, no adults had eclosed for 3 d.

Statistical Analyses. For all analyses, we used the R 4.0.2 software (64). Throughout we used the multimodel inference approach (e.g., ref. 65) to avoid problems in model selection and to reduce the risk of overconfident inferences. This was done by averaging over a set of models, including the “global model” (i.e., the most complex model considered) and all simpler models that follow the principle of hierarchy. R codes are provided in SI Appendix, Appendix C.

Monitoring and Citizen Science-Based Phenology. We analyzed the length of the flight period in both C. clathrata and P. napi by using linear mixed-effects models fitted with the function “glmmTMB” (66) and by setting a Gaussian error distribution and an identity link function. For both species, the fixed effects of the global model included the environment (urban/rural), city identity, and the interaction between them. Random effects included random intercepts for city-year combinations. We initially used numbers of observation sites as weights in the global models for both species, but this resulted in poor model goodness of fit, as indicated by diagnostic tools from package “DHARMa” (67) in P. napi. Removing these weights considerably improved model goodness of fit, so we used unweighted models for inferences in this species. In C. clathrata, the weighted model fitted the data well although it was not as informative for inference as the separate family models. The global models from the global models for both species by using the function “ dredge” and derived model comparison metrics with the function “model.avg” [package “MuMIn” (68)]. The global model was superior to any

Merckx et al. Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera.

6 of 8 | PNAS https://doi.org/10.1073/pnas.2106060118
other model in both species. In P. napi, we used both random-family-specific intercepts and slopes, but we did not converge, a model with only random-family-specific slopes converged and indicated negligible, family-level variation in random slopes for C. clathrata.

Moreover, as AIC comparison suggested that the model with only random intercepts was better (ΔAIC = 0.75), we did not include random family-specific slopes in the global model for C. clathrata. For P. napi, AIC comparison indicated that the model with only family-specific random intercepts was better (ΔAIC = 2.1) than a model with both family-specific random intercepts and slopes in relation to daylength. Hence, for P. napi too, we included only random intercepts in the global model. We assessed the goodness of fit of the global models with the diagnostic tools available in package DHARMA (67). These tools indicated a good model fit.

Model averaging was performed as explained in Monitoring and Citizen Science-Based Phenology. The sets of averaged models are shown in SI Appendix, Table S10.

Data Availability. Phenological and experimental data are available in Dryad (https://doi.org/10.5061/dryad.dzn525q2). Citizen science data are available in open databases (https://www.arbportalen.se and https://aji.ferjan). Standardized monitoring data were obtained upon request from: Lars.petersson@biol.lu.se (Swedish Butterfly Monitoring Scheme), janne.helioila@syke.fi (Finnish Butterfly Monitoring Scheme), and juha.poyry@syke.fi (Finnish Moth Monitoring Scheme). R scripts of analyses are available in supporting information.

ACKNOWLEDGMENTS. We thank Mahdi Amminikha, Reetta Hämäläinen, Mira Kajanus, Tuomas Kankaanpää, Mahtab Yazdian, and two anonymous reviewers for their constructive comments to the manuscript. We also thank Anna Antinou, Pauline Gaillaut, and Olle Lindeström for their aid in raising Lepidoptera and all citizen scientists for their contributions to the various schemes. This study was financed by the Academy of Finland (Grant Nos. 314833 and 319898 to S.M.K.), the Swedish Research Council (Grant No. VR 2017-04500 to K.G.), and the Swedish Environmental Protection Agency (Grant No. 22720-006 to L.B.P.). While the Finnish Ministry of the Environment supported the Finnish moth-monitoring scheme.
33. J. S. Bale et al., Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).
34. W. E. Winterhalter, T. A. Mousseau, Patterns of phenotypic and genetic variation for the plasticity of diapause. Evolution 61, 1520–1531 (2007).
35. A. Valtonen et al., Is climate warming more consequential towards poles? The pheno-

ology of Lepidoptera in Finland. Glob. Change Biol. 20, 16–27 (2014).
36. F. Altermatt, D. Ebert, Reduced flight-to-light behaviour of moth populations ex-posed to long-term urban light pollution. Biol. Lett. 12, 20160111 (2016).
37. G. R. Hopkins, K. J. Gaston, M. E. Visser, M. A. Elgar, T. M. Jones, Artificial light at night as a driver of evolution across urban–rural landscapes. Front. Ecol. Environ. 16, 472–479 (2018).
38. E. K. Meineke, R. R. Dunn, J. O. Sexton, S. D. Frank, Urban warming drives insect pest abundance on street trees. PLoS One 8, e59687 (2013).
39. F. Günter et al., Genotype-environment interactions rule the response of a widespread butterfly to temperature variation. J. Evol. Biol. 33, 920–929 (2020).
40. A. Kaiser, T. Merckx, H. Van Dyck, The Urban Heat Island and its spatial scale de-
pendent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016).
41. R. A. Martin, L. D. Chick, M. L. Garvin, S. E. Diamond, In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorn-dwelling ant. Evolution 75, 876–887 (2021).
42. M. Kuussaari, M. Saarinen, E.-L. Korpela, J. Pöry, T. Hyvönen, Higher mobility of butterflies than moths connected to habitat suitability and body size in a release experiment. Ecol. Evol. 4, 3800–3811 (2014).
43. W. L. Bradshaw, C. M. Holzapfel, Light time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72, 147–166 (2010).
44. Y. E. Stuart et al., Contrasting effects of environment and genetics generate a con-

tinuum of parallel evolution. Nat. Ecol. Evol. 1, 158 (2017).
45. M. T. J. Johnson, C. M. Prashad, M. Lavoignat, H. S. Saini, Contrasting the effects of natural selection, genetic drift and gene flow on urban evolution in white clover (Trifolium repens). Proc. Biol. Sci. 285, 20181019 (2018).
46. T. Merckx, H. Van Dyck, Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob. Ecol. Biogeogr. 28, 1440–1455 (2019).
47. E. Piano et al., Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Change Biol. 26, 1196–1211 (2020).
48. S. E. Diamond, R. R. Dunn, S. D. Frank, N. M. Haddad, R. A. Martin, Shared and unique responses of insects to the interaction of urbanization and background climate. Curr. Opin. Insect Sci. 11, 71–77 (2015).
49. D. Li, B. J. Stucky, J. Deck, B. Baisier, R. P. Guralnick, The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).
50. B. C. Wood, A. S. Pullin, Persistence of species in a fragmented urban landscape: The importance of dispersal ability and habitat availability for grassland butterflies. Bio-

divers. Conserv. 11, 1451–1468 (2002).
51. T. J. Kawecki, D. Ebert, Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
52. S. H. Montgomery, M. Rossi, W. O. McMillan, R. M. Merrill, Neural divergence and hybrid disruption between ecologically isolated Heliconius butterflies. Proc. Natl. Acad. Sci. U.S.A. 118, e2015102118 (2021).
53. D. L. Denlinger, P. A. Armbruster, Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).
54. K. A. Medley, K. M. Westby, D. G. Jenkins, Rapid local adaptation to northern winters in the invasive Asian tiger mosquito Aedes albopictus: A moving target. J. Appl. Ecol. 56, 2518–2527 (2019).
55. V. Zaninotto et al., Broader phenology of pollinator activity and higher plant re-

productive success in an urban habitat compared to a rural one. Ecol. Evol. 10, 11607–11621 (2020).
56. E. K. Meineke, R. R. Dunn, S. D. Frank, Early pest development and loss of biological control are associated with urban warming. Biol. Lett. 10, 20140586 (2014).
57. J. R. Bell et al., Spatial and habitat variation in aphid, butterfly, moth and bird phe-

nologies over the last half century. Glob. Change Biol. 25, 1982–1994 (2019).
58. M. E. Visser, P. Gienapp, Evolutionary and demographic consequences of phenolog-
ical mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
59. M. Kuussaari et al., Butterfly species’ responses to urbanization: Differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2020).
60. C. A. M. van Swaay et al., Eds., The EU Butterfly Indicator for Grassland Species: 1990–

2017 (Butterfly Conservation Europe, 2019).
61. L. H. Antão, J. Pöry, R. Leinonen, T. Roslin, Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020). Correction in: Glob. Ecol. Biogeogr. 30, 572 (2021).
62. T. Gustavson, J. Bogren, C. Green, Road climate in cities: A study of the Stockholm area, South-East Sweden. Meteorol. Appl. 8, 481–489 (2001).
63. R. Schmucki, C. A. Harrower, E. B. Dennis, rachs: Computing Generalised Abundance Indices for Butterfly Monitoring Count Data. (Version 1.0.0, 2019). https://gitub.com/ RetoSchmucki/rachs (Accessed 1 October 2020).
64. R Core Team, Eds., R: A Language and Environment for Statistical Computing. Version 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria, 2020).
65. K. Barton, MuMIn: Multi-Model Inference. (Version 1.43.17, 2020). https://CRAN.

R-project.org/package=MuMIn (Accessed 12 October 2020).
66. M. E. Brooks et al., glmTMB balances speed and flexibility among packages for zero-

inflated Generalized Linear Mixed Modeling. R J. 9, 378–400 (2017).
67. F. Hartig, DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (Version 0.3.3.0, 2020). https://CRAN.R-project.org/package=DHARMa (Accessed 12 October 2020).
68. K. Barton, MuMin: Multi-Model Inference. (Version 1.43.17, 2020). https://CRAN.

R-project.org/package=MuMin (Accessed 12 October 2020).
69. T. Merckx et al., Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Dryad. https://doi.org/10.5061/dryad.dfn2z352q. Deposited 2 September 2021.