COMMENTARY

Using Online Cancer Genomics Databases to Provide Teaching Resources for Pharmacy Education

Dedeepya Pasupuleti, MS, Tro Nguyen, BS, Rita Nahta, PhD
Mercer University, College of Pharmacy, Atlanta, Georgia
Submitted April 6, 2021; accepted August 30, 2021; published November 2022.

Connecting scientific concepts with clinical applications is an important objective of pharmacy education. As the field of precision oncology expands, it is critical for pharmacy students to understand how genetic information informs cancer treatment decisions. However, to effectively teach students about pharmacogenomics and pharmacogenetics, faculty require relevant educational resources, including those that support higher-order learning. In this Commentary, we demonstrate the potential utility of publicly accessible cancer genomics databases as teaching resources for pharmacogenomics and pharmacogenetics in oncology pharmacy education. Using clinical data retrieved from a genomics database, we illustrate how case studies can be developed to target core competencies, including understanding tumor genomics profiling, somatic mutations and pharmacotherapy selection, and clinical pharmacogenetics testing. Cancer genomics databases provide readily available, cost-effective, clinical data resources that support active learning related to pharmacogenomics and pharmacogenetics education in oncology pharmacy curricula.

Keywords: cancer genetics, education resources, oncology pharmacy, pharmacogenetics, pharmacogenomics

INTRODUCTION

Teaching students how foundational science concepts apply to clinical practice is an important goal of pharmacy education.1 The Accreditation Council for Pharmacy Education recommends helping “students make connections between scientific understandings and patient care.”2 In the era of precision medicine, a critical objective for student pharmacists is understanding how to apply genetic information to guide treatment decisions. In their future professional roles, student pharmacists will be in key positions to educate clinical colleagues and patients about evidence-based pharmacotherapy recommendations driven by genetic information. Thus, the American College of Clinical Pharmacy (ACCP) recognizes the urgent need to include pharmacogenomics and pharmacogenetics education in pharmacy school curricula.3

In 2021, the American Association of Colleges of Pharmacy (AACP) updated the core competencies for pharmacogenomics and pharmacogenetics based on those recommended by the National Human Genome Research Institute (NHGRI).4 These core competencies align with pharmacist entrustable professional activities (EPAs) and include identifying and interpreting pharmacogenomics data to determine the impact on drug pharmacodynamics, response, and adverse reactions.4 In addition, pharmacogenomics and pharmacogenetics educational outcomes established by the AACP Center for the Advancement of Pharmacy Education (CAPE) include understanding how genetic variants influence response to treatment and recognizing that evidence-based guidelines exist for pharmacogenetics testing and treatment selection.5,6 Many pharmacy schools have added pharmacogenomics threads into disease-specific courses, including oncology. However, faculty cite a need for resources that support pharmacogenomics education, including those that can be used to develop higher-order learning activities.7,8 In this commentary, we highlight the utility of publicly accessible cancer genomics databases as teaching resources for pharmacogenomics and pharmacogenetics education in oncology pharmacy curricula.

DISCUSSION

Targeted oncology drugs inhibit specific molecular drivers of cancer progression, including somatic mutations. Clinical trials of targeted drugs that include -omics analyses generally share datasets through publicly accessible cancer genomics databases. Datasets may include tumor genomics, such as differential gene analyses, somatic mutations, polymorphisms, gene amplifications,
and chromosomal rearrangements, as well as pharmacotherapy and clinical outcomes data. One example of a cancer genomics database is the cBioPortal database (https://www.cbioportal.org/), which contains more than 300 datasets representing over 30 distinct tumor types. The data available in each dataset vary and may include genomics, proteomics, tumor mutation count, gene amplification events, race, sex, age, tumor histopathology, treatment regimens, and clinical outcomes. Because of the breadth of genomic and genetic data available from trials of targeted cancer therapies, cBioPortal represents a valuable resource for oncology pharmacogenomics education. Another cancer genomics database, Oncomine (https://www.oncomine.org), contains data from more than 4000 gene microarray experiments. Oncomine supports differential gene expression analysis by tumor type, facilitating classroom discussions about pharmacogenomics and cancer precision medicine. Another resource, KM Plotter (https://kmplot.com), is designed to identify tumor markers associated with survival outcomes across 21 tumor types. Data retrieved from KM Plotter can be used to support learning activities focused on understanding how genetic variants impact disease course and clinical outcomes.

To illustrate the application of a cancer genomics database in pharmacy education, we provide three examples using datasets from the cBioPortal database. The first two examples target CAPE core competencies to understand how genetic mutations inform pharmacotherapy selection based on an approved pharmacogenetics test. The third example targets a learning objective to understand immunotherapy and tumor genomics profiling. We present a case-based discussion with each example to illustrate how the data support active learning.

For our first example of using a cancer genomics database, we discuss how a somatic mutation in PIK3CA can be used to guide treatment of breast cancer (Appendix 1A). We started the data retrieval process by entering a specific tumor type and drug name. Following the steps shown in the flowchart, we mined cBioPortal to obtain data for a single patient case from a clinical trial of alpelisib in breast cancer. Case details, including tumor subtype, genetic mutation, treatment regimen and response, were downloaded from cBioPortal as shown in the table. Using these data, we created a case-based discussion (shown below) focused on treatment selection guided by molecular and genetic information, pharmacogenetic testing, and drug-drug interactions. In addition to this case, we downloaded data for a larger cohort of patients (shown in the graph) to introduce concepts related to clinical response and resistance.

In this case, a postmenopausal female patient presented with advanced breast cancer. The patient’s breast tumor biopsy was positive for estrogen receptor (ER) and negative for human epidermal growth factor receptor 2 (HER2). The patient was started on exemestane. However, disease progression eventually occurred, and pharmacogenetics testing of tumor tissue was then performed for the PIK3CA gene. The patient was found to have an H1047R PIK3CA somatic mutation and was started on alpelisib plus fulvestrant.

Case study questions should include: What are exemestane and alpelisib? What information guided selection of these treatments? Why does a positive pharmacogenetics test not guarantee response to a targeted treatment? What drug-drug interactions need to be considered with alpelisib? Questions in the case-based discussion guide should focus on targeted therapies, including those targeting somatic mutations and companion pharmacogenetics testing. Discussion should also note variability in patient responses and could include discussions about intra- and inter-tumoral heterogeneity, patient-specific factors influencing response, and acquired drug resistance. Finally, drug-drug interactions and the effects of cytochrome p450 (CYP) enzymes on drug activity should be discussed.

Our second example describes how a somatic mutation in BRAF can be used to guide treatment of melanoma (Appendix 1B). For this case, we started by entering a specific cancer type and gene name. Similar to the process described above, we mined cBioPortal following the steps in the flowchart to identify a single patient case of BRAF-mutant melanoma. In addition to the single case, we downloaded a graph showing responses in a larger cohort of patients with BRAF-mutant melanoma treated with dabrafenib or vemurafenib, which provided us with the opportunity to discuss other compounds in this class of drugs. We also introduced the concept of pharmacogenetics testing to assess a marker associated with adverse events.

In this case, a 44-year old female patient with metastatic melanoma was found to have a somatic BRAFV600E mutation. The patient was also found to have wild-type alleles for the glucose-6-phosphate dehydrogenase (G6PD) gene. The patient was treated with dabrafenib for 30 weeks with minimal toxicity and exhibited complete response to therapy.

Case study questions included: What information guided the selection of dabrafenib as a treatment in this patient? What is the mechanism of action of dabrafenib and vemurafenib? Why is pharmacogenetics testing for the G6PD gene important when considering dabrafenib as a potential treatment? Questions in the case-based discussion guide should address BRAF mutations, pharmacogenetics testing for somatic mutations, and mechanisms of action of kinase-targeted therapy. The question about G6PD testing should guide discussion about patient-specific factors that may influence adverse drug effects.
For our third example, we discussed PD-1-directed immunotherapy and tumor genome alterations (Appendix 2). For this case, we started by entering a drug name and mined cBioPortal to display tumor gene analysis from a translational study in patients with melanoma.15 We downloaded differential gene expression data for pre-treatment tumor biopsies of responders and non-responders and a case profile to discuss concepts related to immunotherapy and tumor genomics.

In this case, an 84-year-old male patient with metastatic melanoma showed disease progression while on prior therapy with a mitogen-activated protein kinase (MAPK) inhibitor. The patient was started on treatment with pembrolizumab as part of a trial evaluating pembrolizumab or nivolumab in patients with melanoma. Immune cell profiling and pre-treatment tumor genomics profiling were performed as part of this trial.

Case study questions included: What is the mechanism of action of pembrolizumab and nivolumab? Why was immune cell profiling performed? What do the data in the tumor genomics table show? The case questions should guide discussion about cancer immunotherapy, immune cell types and functions, and the role of genomics data in biomarker and drug discovery research.

These examples are provided to illustrate the potential utility of genomics databases for case study development in cancer pharmacogenomics and pharmacogenetics. Although student feedback, perceptions, and knowledge gains remain to be assessed, we believe there are several advantages to this approach. First, integrating clinical datasets into active learning may assist students in applying foundational concepts to solve practical problems,16 such as the use of genetics data to create informed treatment plans. Second, faculty who lack clinical context may benefit from the ability to retrieve real-life cases from genomics databases, rather than creating hypothetical scenarios. Thus, clinical genomics databases may support pre-course preparation and potentially reduce interdisciplinary workload.17 Third, students can be introduced to emerging pharmacogenomics research, which may enhance their awareness of academic research and related career opportunities.18,19 Fourth, the functions we used to retrieve data were freely accessible, making these cost-effective options.19 Pharmacy programs with limited resources can integrate genomics databases into mentored research experiences to foster critical thinking and problem-solving.18,19 Finally, online databases can be used in synchronous, asynchronous, in-person, blended, and virtual learning environments, making them versatile resources.

Despite the benefits of publicly accessible cancer genomics databases, there are limitations. Because of a wide range of user interfaces, databases vary in complexity and in the amount of time and skill required to retrieve and analyze data. Additionally, although there are many publicly accessible databases suitable for oncology pharmacy education, faculty must be made aware of these resources and know where to find datasets appropriate for their specific learning objectives. We found online tutorials, manuals, and published research articles helpful as we learned to use these databases.

CONCLUSION

Incorporating clinical genomics data into active learning targets several pharmacy student core competencies, such as identifying and interpreting pharmacogenomics test results, determining the impact of genetic variants on drug activity and adverse events, and educating others about the applications of genetic information for optimal drug therapy.4 These competencies map to multiple EPA domains, including patient care provider, population health promoter, and information master. Genomics databases also address a number of CAPE outcomes, including integrating and applying foundational knowledge (domain 1), interpreting data (domain 2), and problem solving (domain 3).20 Ultimately, understanding the application of genetics to inform treatment selection, gaining awareness of evidence-based guidelines for pharmacogenetics testing, and developing a strong knowledge of precision cancer medicine are important objectives targeted by these resources. Thus, publicly accessible cancer genomics databases represent rich sources of clinical pharmacogenomics and pharmacogenetics data that can be adapted for active learning in oncology pharmacy education.

ACKNOWLEDGMENTS

We thank Dr. Milap Nahata, PharmD, for critically reviewing this commentary. The following are potential conflicts of interest and disclosures: RN had personal holdings in GlaxoSmithKline PLC., Pfizer, Bristol Myers Squibb, and Eli Lilly and Company at the time the paper was written.

REFERENCES
1. Lerchenfeldt S, Hall LM. Pharm.D.s in the midst of M.D.s and Ph.D.s: the importance of pharmacists in medical education. Med Sci Educ. 2018;28:259-261. doi:10.1007/s40670-017-0520-3
2. Guidance for the accreditation standards and key elements for the professional program in pharmacy leading to the Doctor of Pharmacy degree. Accreditation Council for Pharmacy Education. 2016.
3. Hicks JK, Aquilante CL, Dunnenberger HM, et al. Precision pharmacotherapy: integrating pharmacogenomics into clinical pharmacy practice. J Am Coll Clin Pharm. 2019;2(3):303-313. doi:10.1002/jac5.1118
4. Gammal RS, Lee YM, Petry NJ, et al. Pharmacists leading the way to precision medicine: updates to the core pharmacist competencies in genomics. *Am J Pharm Educ.* 2021;86(4):8634. doi:10.5688/ajpe8634
5. Roederer MW, Kuo GM, Kisier DF, et al. Pharmacogenomics competencies in pharmacy practice: A blueprint for change. *J Am Pharm Assoc.* 2017;57(1):120-125.
6. Farrell CL, Smith HE, et al. The DNA of Pharmacy Education: CAPE outcomes and pharmacogenomics. Accessed July 6, 2021, http://www.aacp.org/resources/education/cape/Pages/default.aspx.
7. Crabtree B, Bootman JL, Boyle CJ, Chase P, Piascik P, Maine LL. Aligning the AACP strategic engagement agenda with key federal priorities in health: report of the 2016-17 Argus Commission. *Am J Pharm Educ.* 2017;81(8):S15. doi:10.5688/ajpeS15
8. Weitzel KW, Aquilante CL, Johnson S, Kisier DF, Empey PE. Educational strategies to enable expansion of pharmacogenomics-based care. *Am J Health Syst Pharm.* 2016;73(23):1986-1998. doi:10.2146/ajhp160104
9. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. *Cancer Discov.* 2012;2(5):401-404. doi:10.1158/2159-8290.CD-12-0095
10. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal.* 2013;6(269):pl1. doi:10.1126/scisignal.2004088
11. Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. *Neoplasia.* 2004;6(1):1-6. doi:10.1016/s1476-5586(04)80047-2
12. Nagy A, Munkaesy G, Gyorffy B. Pancancer survival analysis of cancer hallmark genes. *Sci Rep.* 2021;11(1):6047. doi:10.1038/s41598-021-84787-5
13. Razavi P, Dickler MN, Shah PD, et al. Alterations in PTEN and ESR1 promote clinical resistance to alpelisib plus aromatase inhibitors. *Nat Cancer.* 2020;1(4):382-393. doi:10.1038/s43018-020-0047-1
14. Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. *Cancer Discov.* 2014;4(1):94-109. doi:10.1158/2159-8290.CD-13-0617
15. Hugo W, Zaretsky JM, Sun L, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. *Cell.* 2016;165(1):35-44. doi:10.1016/j.cell.2016.02.065
16. Greene JM, Fuller KA, Persky AM. Practical tips for integrating clinical relevance into foundational science courses. *Am J Pharm Educ.* 2018;82(5):6603. doi:10.5688/ajpe6603
17. Islam MA, Talukder RM, Taheri R, Blanchard N. Integration of basic and clinical science courses in US PharmD programs. *Am J Pharm Educ.* 2016;80(10):166. doi:10.5688/ajpe8010166
18. Deal EN, Stranges PM, Maxwell WD, et al. The importance of research and scholarly activity in pharmacy training. *Pharmaco-therapy.* 2016;36(12):e200-e205. doi:10.1002/phar.1864
19. Perez A, Rabionet S, Bleidt B. Teaching research skills to student pharmacists in one semester: an applied research elective. *Am J Pharm Educ.* 2017;81(1):16. doi:10.5688/ajpe81116
20. Medina MS, Plaza CM, Stowe CD, et al. Center for the Advancement of Pharmacy Education 2013 educational outcomes. *Am J Pharm Educ.* 2013;77(8):162. doi:10.5688/ajpe778162
Appendix 1. Examples of Pharmacogenetics Case Studies from the cBioPortal Cancer Genomics Database. (A) Left, Flowchart showing steps from data retrieval to case development. Top right, an individual patient case from the trial of alpelisib in PIK3CA-mutant breast cancer was selected, and the data were downloaded as shown. Bottom right, graph shows best responses to treatment with alpelisib in PIK3CA-mutant breast cancer; p<0.001, chi-squared test. (B) Left, Flowchart showing steps from data retrieval to case development. Top right, an individual patient case from the trial of BRAFV600E kinase inhibitor dabrafenib in melanoma was selected, and the data were downloaded as shown. Bottom right, graph shows best responses to treatment with dabrafenib in BRAFV600E-mutant melanoma; p<0.001, chi-squared test. CR, complete response; PR, partial response; PD, progressive disease; POD, progression of disease; SD, stable disease.
Appendix 2. Example of Pharmacotherapy Gene Analysis Case Study from the cBioPortal Cancer Genomics Database. (A) Left, Flowchart showing steps for retrieving pharmacogenomics table. Top right, table of differential gene analysis in pre-treatment tumor tissues from responders and non-responders to pembrolizumab and nivolumab. Bottom right, an individual patient case was selected, and the clinical and immune cell profiling data were downloaded as shown.