Finite groups in which the \mathcal{X}-maximal subgroups are conjugate

Wenbin Guo
School of Mathematical Sciences, University of Science and Technology of China,
Hefei 230026, P. R. China
E-mail: wbguo@ustc.edu.cn

Danila O. Revin, and Evgeny P. Vdovin
1. Sobolev Institute of Mathematics SB RAS, and
2. Novosibirsk State University,
Novosibirsk 630090, Russia
E-mail: revin@math.nsc.ru, vdovin@math.nsc.ru

Abstract
Let \mathcal{X} be a class of finite groups closed under taking the subgroups, homomorphic images and extensions. By $\mathcal{D}_\mathcal{X}$ denote the class of finite groups G in which every two \mathcal{X}-maximal subgroups are conjugate. In the paper, the following statement is proven. Let A be a normal subgroup of a finite group G. Then
$$G \in \mathcal{D}_\mathcal{X} \text{ if and only if } A \in \mathcal{D}_\mathcal{X} \text{ and } G/A \in \mathcal{D}_\mathcal{X}.$$ This statement implies that the \mathcal{X}-maximal subgroups are conjugate if and only if the so called \mathcal{X}-submaximal subgroups are conjugate. Thus we obtain an affirmative solution to a problem posed by H.Wielandt in 1964.

Key words: \mathcal{X}-maximal subgroup, \mathcal{X}-submaximal subgroup, π-Hall subgroup, Sylow π-theorem, $\mathcal{D}_\mathcal{X}$-group, \mathcal{D}_π-group.

1 Introduction
1.1 Mains concepts: \mathcal{X}-maximal and \mathcal{X}-submaximal subgroups. History and problems
In the paper we consider only finite groups, G always denotes a finite group, and π is a set of primes.

*The first author is supported by a NNSF grant of China (Grant #11771409) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences. The second author is supported by Chinese Academy of Sciences President’s International Fellowship Initiative, PIFI, (Grant # 2016VMA078). The third author is supported by Chinese Academy of Sciences President’s International Fellowship Initiative, PIFI, (Grant # 2017VMA0049).
According to H.Wielandt, a class of finite groups is said to be *complete* if it is non-empty and closed under taking subgroups, homomorphic images and extensions\footnote{Recall that a group G is an *extension* of a group A by a group B if there is an epimorphism $G \to B$ with the kernel isomorphic to A. Thus a class \mathcal{X} is closed under taking the extensions if $N \in \mathcal{X}$ and $G/N \in \mathcal{X}$ imply $G \in \mathcal{X}$ for any group G and its normal subgroup N.}. Moreover, \mathcal{X} always denotes some given complete class. Examples of complete classes are

- \mathcal{G}, the class of all finite groups;
- \mathcal{S}, the class of all finite solvable groups.

The following two classes are among the most important examples of complete classes:

- \mathcal{G}_π, the class of all π-groups for a set π of primes (i.e. the class of all groups G such that every prime divisor of $|G|$ belongs to π);
- \mathcal{S}_π, the class of all solvable π-groups for a set π of primes.

In fact, these two cases are extremal for every \mathcal{X}. If we denote by $\pi(\mathcal{X}) = \pi(\mathcal{X})$ the union of the sets of prime divisors of $|G|$, where G runs through \mathcal{X}, then\footnote{First inclusion follows from the Sylow theorem and from the solvability of groups of prime power order. The second one is obvious.}

$$\mathcal{S}_\pi \subseteq \mathcal{X} \subseteq \mathcal{G}_\pi.$$

For given group G we denote by $m_\mathcal{X}(G)$ the set of \mathcal{X}-*maximal* subgroups of G, i.e. the set of all maximal members of $\{H \leq G \mid H \in \mathcal{X}\}$ with respect to inclusion.

Thus, the \mathcal{X}-subgroups of G (i.e. subgroups of G belonging to \mathcal{X}) are exactly the subgroups of members of $m_\mathcal{X}(G)$. One of the fundamental problems in the finite group theory is: given a group G and a complete class \mathcal{X}, to determine $m_\mathcal{X}(G)$.

In case $\pi(\mathcal{X}) = \{p\}$, this problem is solved by the Sylow theorem: the order of every \mathcal{X}-maximal subgroup of G equals the greatest power of p dividing $|G|$ and all \mathcal{X}-maximal subgroups of G are conjugate. Recall that a π-subgroup H of a group G is called a π-*Hall* subgroup, if its index $|G:H|$ is not divisible by primes from π. The Hall theorem\footnote{First inclusion follows from the Sylow theorem and from the solvability of groups of prime power order. The second one is obvious.} says that a complete analogue of the Sylow theorem for π-Hall subgroups in solvable groups holds, i.e. for any set π of primes, the π-maximal subgroups of a solvable group G are exactly π-Hall subgroups and they are conjugate. Thus, for a solvable group G, the set $m_\mathcal{X}(G)$ coincides with the set $m_\pi(G)$ of π-maximal subgroups of G, where $\pi = \pi(\mathcal{X})$, and members of $m_\pi(G)$ are precisely π-Hall subgroups.

For a group G, the existence of π-Hall subgroups for all sets π is equivalent to the solvability of G\footnote{Recall that a group G is an *extension* of a group A by a group B if there is an epimorphism $G \to B$ with the kernel isomorphic to A. Thus a class \mathcal{X} is closed under taking the extensions if $N \in \mathcal{X}$ and $G/N \in \mathcal{X}$ imply $G \in \mathcal{X}$ for any group G and its normal subgroup N.}. This means that for every non-solvable group G there exists π such that G has more than one conjugacy class of π-maximal subgroups and these subgroups are not π-Hall subgroups.

Although π-Hall subgroups in non-solvable groups may not exist, they have nice properties and are well studied by now (see survey \cite{survey}). In particular, it is known that

\begin{itemize}
 \item[(*)] if N is a normal and H is a π-Hall subgroup of G then $H \cap N$ is a π-Hall subgroup of N and HN/N is a π-Hall subgroup of G/N (see Lemma \cite{lemma} below).
\end{itemize}

Consequently, the existence of a π-Hall subgroup in a group implies that every composition factor of the group possesses a π-Hall subgroup as well. The converse statement is not true in general. A criterion for the existence of π-Hall subgroups in a group G is formulated
in terms of so-called groups of G-induced automorphisms of composition factors of G (see [11, 13]). A classification of π-Hall subgroups in almost simple groups \footnote{Recall that G is almost simple if its socle is a nonabelian simple group} is required in order to apply the criterion of existence. There exist a lot of papers dedicated to the classification of π-Hall subgroups in almost simple groups. First steps were made by P.Hall \footnote{A subgroup H of a group G is said to be subnormal if there is a series of subgroups such that G_i is normal in G_{i-1} for $i = 1, \ldots, n$.} and J.Thompson \footnote{Hartley’s \cite{22} and Shemetkov’s \cite{21} results are proved for $\mathfrak{X} = \mathfrak{S}_\pi$.}, who classified solvable and nonsolvable Hall subgroups in symmetric groups respectively. The reader can find the bibliography and the results in the survey paper \cite{46}.

In contrast with π-Hall subgroups, \mathfrak{X}-maximal subgroups have no properties similar to (⋆) even for $\mathfrak{X} = \mathfrak{S}_\pi$. In fact, an analog of (⋆) is not true for homomorphic images, since H.Wielandt in \cite{18, 19} note: if A contains more than one conjugacy class of \mathfrak{X}-maximal subgroups, B is a group and $G = A \wr B$ is the regular wreath product, then every \mathfrak{X}-subgroup of B is the image of an \mathfrak{X}-maximal subgroup under the natural epimorphism $G \to B$. Also the intersection of an \mathfrak{X}-maximal subgroup H with a normal subgroup N of G is not an \mathfrak{X}-maximal in N in general. For example, a Sylow 2-subgroup H of $G = PGL_2(7)$ is \{2, 3\}-maximal in G but $H \cap N \notin \mathfrak{m}_{\{2,3\}}(N)$ for $N = PSL_2(7)$.

In his lectures \cite{19} and in his plenary talk at the famous conference on finite groups in Santa-Cruz (USA) in 1979 \cite{18}, Wielandt put forward a program on how to study \mathfrak{X}-maximal subgroups of finite groups by using \mathfrak{X}-submaximal subgroups. Recall the Wielandt–Hartley theorem first.

Proposition 1 (Wielandt and Hartley) Let N be a subnormal \footnote{In \cite{48} G^ϕ is required to be normal in G^*.} subgroup of a group G and $H \in \mathfrak{m}_\mathfrak{X}(G)$. Then $H \cap N = 1$ if and only if N is a π'-group, where π' is the complement to $\pi = \pi(\mathfrak{X})$ in the set of all primes.

In the case when N normal, Wielandt’s proof of this statement can be found in \cite{13, 13.2], and Hartley’s proof in \cite{28, Lemmas 2 and 3}. For the general case see \cite{42, Theorem 7} and \cite{20, Proposition 8].

In light of Proposition 1, it is natural to consider the following concept.

Definition 1 According to Wielandt (see \cite{18}), a subgroup H of a group G is called an \mathfrak{X}-submaximal subgroup, if there is a monomorphism $\phi: G \to G^*$ into a group G^* such that G^ϕ is subnormal \footnote{In \cite{48} G^ϕ is required to be normal in G^*.} in G^* and $H^\phi = K \cap G^\phi$ for an \mathfrak{X}-maximal subgroup K of G^*. We denote the set of \mathfrak{X}-submaximal subgroups of G by $\mathfrak{m}_\mathfrak{X}(G)$.

Evidently, $\mathfrak{m}_\mathfrak{X}(G) \subseteq \mathfrak{sm}_\mathfrak{X}(G)$ for any group G. The inverse inclusion does not hold in general: any Sylow 2-subgroup of $PSL_2(7)$ is \{2, 3\}-submaximal but is not \{2, 3\}-maximal.

The importance of the classification of \mathfrak{X}-submaximal subgroups in simple groups is explained in \cite{21, 24}: the classification would be a crucial ingredient in finding \mathfrak{X}-maximal subgroups in arbitrary nonsolvable group. In \cite{23} the classification of \mathfrak{X}-submaximal subgroups in minimal non-solvable groups is obtained.

As we mention above, if $M \in \mathfrak{m}_\mathfrak{X}(G)$ and $N \leq G$, then MN/N may not lie in $\mathfrak{m}_\mathfrak{X}(G/N)$ in general. An important part of Wielandt’s program is to find necessary and sufficient conditions for such subgroups N. In \cite{48} Wielandt put forward a program on how to study \mathfrak{X}-maximal subgroups of finite groups by using \mathfrak{X}-submaximal subgroups. Recall the Wielandt–Hartley theorem first.
conditions on N making the correspondence

$$M \mapsto MN/N$$

to be a (surjective) map from $m_X(G)$ to $m_X(G/N)$. Wielandt shows [19, 15.4] that conjugateness of all X-submaximal subgroups in N is a sufficient condition. Moreover, if the X-submaximal subgroups in N are conjugate, then $M \mapsto MN/N$ induces a bijection between the sets of conjugacy classes of X-maximal subgroups of G and G/N. Immediately after this statement, Wielandt puts forward the following problem.

Problem 1 (H. Wielandt, [19, offene Frage zu 15.4]) Whether the conjugateness of the X-maximal subgroups of a finite group G implies the conjugateness of the X-submaximal subgroups G?

It was proved in [21, Theorem 2] that this problem can be equivalently reformulated as Problem 2 below. We need the concept of a D_X-group introduced in [21] which plays an important role in this article.

Definition 2 A finite group G is a D_X-group (we say also that G belongs to D_X and write $G \in D_X$) if every two X-maximal subgroups of G are conjugate. If $X = \mathfrak{G}_\pi$ is the class of all π-groups, then we write D_π instead of D_X.

Problem 2 Is an extension of a D_X-group by a D_X-group always a D_X-group?

A particular case of Problem 2 for $X = \mathfrak{G}_\pi$ was first stated in the one-hour talk by Wielandt at 13th International Congress of Mathematicians in Edinburgh in 1958 [50]. The problem is mentioned in surveys [7, 43, 51] and in text-books [18, 19, 41, 44], and was also included by L. Shemetkov into the “Kourovka Notebook” [32, Problem 3.62]. Now, Problem 2 for $X = \mathfrak{G}_\pi$ is solved in the affirmative (see [46, Theorem 6.6]).

Wielandt [19, 15.6] note: if G contains a nilpotent π'-Hall subgroup for $\pi = \pi(X)$, then G has exactly one conjugacy class of X-submaximal subgroups. At the same section he asks [19, offene Frage, Seite 37 (643)]: does there exist a group containing a non-nilpotent maximal X-subgroup with the unique conjugacy class of X-submaximal subgroups? The following example allows to construct such groups with non-nilpotent maximal X-subgroups. Assume G possesses a normal series

$$G = G_0 > G_1 > \cdots > G_n = 1$$

such that, for every $i = 1, \ldots, n$, either $G_{i-1}/G_i \in X$, or G_{i-1}/G_i is a π'-group. Then all X-submaximal subgroups are conjugate in G (this follows by Lemma 2.8 below), but X-maximal subgroups (in this case they appear to be the π-Hall subgroups) of G are not nilpotent, in general. Therefore, the following interpretation of above mentioned Wielandt’s question seems to be more relevant:

Problem 3 (H. Wielandt, [19, offene Frage, Seite 37 (643)]) In what groups all X-submaximal subgroups are conjugate?

The goal of this article is to solve Problems 1, 2, and 3.
1.2 Mains results

In [20, 21] the study of Problems 1 and 2 is reduced to the case of simple groups (see also [24]). We obtain the solutions to Problems 1, 2, and 3 as consequences of the following theorem.

Theorem 1 Let X be a complete class of finite groups, $\pi = \pi(X)$, and let G be a finite simple group. Then $G \in D_X$ if and only if either $G \in X$ or $\pi(G) \not\subseteq \pi$ and $G \in D_\pi$. In particular, if $G \in D_X$, then $G \in D_\pi$.

The following statement solves Problem 2 in the affirmative.

Corollary 1.1 Let X be a complete class of finite groups. Assume, N is a normal subgroup of G. Then $G \in D_X$ if and only if $N \in D_X$ and $G/N \in D_X$.

Since Problem 1 is equivalent to Problem 2, we obtain next Corollary which solves Problem 1 in the affirmative.

Corollary 1.2 Let X be a complete class of finite groups. Then the conjugateness of the X-maximal subgroups of a finite group is equivalent to the conjugateness of the X-submaximal subgroups.

In view of Corollary 1.2, X-maximal subgroups in a finite group are conjugate if and only if X-submaximal subgroups are conjugate. Thus X-maximal subgroups in a finite group are conjugate if and only if X-submaximal subgroups in the sense of [49] are conjugate, and so Corollary 1.2 provides an affirmative answer to Problem 1.

Corollary 1.3 Let X be a complete class of finite groups. Assume, $N \in D_X$ is a normal subgroup of G. Then

$$M \mapsto MN/M$$

surjectively maps $m_X(G)$ onto $m_X(G/N)$ and induces a bijection between the conjugacy classes of X-maximal subgroups of G and G/N. Moreover,

$$M \mapsto M \cap N$$

surjectively maps $m_X(G)$ onto $m_X(N) = sm_X(N)$.

Note that, under assumption of Corollary 1.3, the set $m_X(N) = sm_X(N)$ coincides with Hall$_\pi(N)$, where $\pi = \pi(X)$ (see Corollary 1.6 below).

According to Wielandt [49], denote by $k_X(G)$ the number of conjugacy classes of X-maximal subgroups of G. We can join statements of Corollaries 1.2 and 1.3 in the following way.

Corollary 1.4 Let X be a complete class and G be a finite group. Then the following statements are equivalent:

1. $G \in D_X$.
2. The X-submaximal subgroups of G are conjugate.
3. $k_X(A) = k_X(A/B)$ for every finite group A containing a normal subgroup B isomorphic to G.
Corollary 1.5 Let \mathcal{X} be a complete class of finite groups, $\pi = \pi(\mathcal{X})$. Then $\mathcal{D}_\mathcal{X} \subseteq \mathcal{D}_\pi$.

Corollary 1.6 Let \mathcal{X} be a complete class of finite groups, $\pi = \pi(\mathcal{X})$. Then every π-subgroup of a $\mathcal{D}_\mathcal{X}$-group is an \mathcal{X}-group. In particular, $m_\mathcal{X}(G) = \text{Hall}_\pi(G)$.

Corollary 1.7 Let \mathcal{X} be a complete class of finite groups, $G \in \mathcal{D}_\mathcal{X}$, $H \in m_\mathcal{X}(G)$ and $H \leq M \leq G$. Then $M \in \mathcal{D}_\mathcal{X}$. In particular, $m_\mathcal{X}(M) \subseteq m_\mathcal{X}(G)$.

The next consequence of Theorem [4] gives an exhaustive solution to Problem 3.

Corollary 1.8 Let \mathcal{X} be a complete class of finite groups. Then, for a finite group G, the following statements are equivalent:

(1) All \mathcal{X}-submaximal subgroups are conjugate;

(2) All \mathcal{X}-maximal subgroups are conjugate (i.e. $G \in \mathcal{D}_\mathcal{X}$);

(3) For every composition factor S of G either $S \in \mathcal{X}$ or pair (S, π) satisfies one of Conditions I–VII below, where $\pi = \pi(\mathcal{X})$.

Condition I. We say that (S, π) satisfies Condition I if $|\pi \cap \pi(S)| \leq 1$.

Condition II. We say that (S, π) satisfies Condition II if one of the following cases holds.

(1) $S \cong M_{11}$ and $\pi \cap \pi(S) = \{5, 11\}$;

(2) $S \cong M_{12}$ and $\pi \cap \pi(S) = \{5, 11\}$;

(3) $S \cong M_{22}$ and $\pi \cap \pi(S) = \{5, 11\}$;

(4) $S \cong M_{23}$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{5, 11\}$ and $\{11, 23\}$;

(5) $S \cong M_{24}$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{5, 11\}$ and $\{11, 23\}$;

(6) $S \cong J_1$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{3, 5\}$, $\{3, 7\}$, $\{3, 19\}$, and $\{5, 11\}$;

(7) $S \cong J_4$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{5, 7\}$, $\{5, 11\}$, $\{5, 31\}$, $\{7, 29\}$, and $\{7, 43\}$;

(8) $S \cong O'N$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{5, 11\}$ and $\{5, 31\}$;

(9) $S \cong L_6$ and $\pi \cap \pi(S) = \{11, 67\}$;

(10) $S \cong R_6$ and $\pi \cap \pi(S) = \{7, 29\}$;

(11) $S \cong Co_1$ and $\pi \cap \pi(S) = \{11, 23\}$;

(12) $S \cong Co_2$ and $\pi \cap \pi(S) = \{11, 23\}$;

(13) $S \cong Co_3$ and $\pi \cap \pi(S) = \{11, 23\}$;

(14) $S \cong M(23)$ and $\pi \cap \pi(S) = \{11, 23\}$;

(15) $S \cong M(24)'$ and $\pi \cap \pi(S) = \{11, 23\}$;

(16) $S \cong B$ and $\pi \cap \pi(S)$ coincide with one of the following sets $\{11, 23\}$ and $\{23, 47\}$;
(17) \(S \cong M \) and \(\pi \cap \pi(S) \) coincide with one of the following sets \(\{23, 47\} \) and \(\{29, 59\} \).

Condition III. Let \(S \) be isomorphic to a group of Lie type over the field \(\mathbb{F}_q \) of characteristic \(p \in \pi \) and let \(\tau = (\pi \cap \pi(S)) \setminus \{p\} \). We say that \((S, \pi)\) satisfies Condition III if \(\tau \subseteq \pi(q-1) \) and every prime in \(\pi \) does not divide the order of the Weyl group of \(S \).

In order to formulate Conditions IV and V, we need the following notation. If \(r \) is an odd prime and \(q \) is an integer not divisible by \(r \), then \(e(q, r) \) is the smallest positive integer \(e \) with \(q^e \equiv 1 \mod r \).

Condition IV. Let \(S \) be isomorphic to a group of Lie type with the base field \(\mathbb{F}_q \) of characteristic \(p \). Let \(2, p \not\in \pi \). Denote by \(r \) the minimum in \(\pi \cap \pi(S) \) and let \(\tau = (\pi \cap \pi(S)) \setminus \{r\} \) and \(a = e(q, r) \). We say that \((S, \pi)\) satisfies Condition IV if there exists \(t \in \tau \) with \(b = e(q, t) \neq a \) and one of the following statements holds.

1. \(S \cong A_{n-1}(q), a = r - 1, b = r, (q^{r-1} - 1)_r = r, [\frac{n}{r-1}] = a, \) and \(e(q, s) = b \) for every \(s \in \tau \);
2. \(S \cong A_{n-1}(q), a = r - 1, b = r, (q^{r-1} - 1)_r = r, [\frac{n}{r-1}] = a, n \equiv -1 \mod r, \) and \(e(q, s) = b \) for every \(s \in \tau \);
3. \(S \cong ^2A_{n-1}(q), r \equiv 1 \mod 4, a = r - 1, b = 2r, (q^{r-1} - 1)_r = r, [\frac{n}{r-1}] = a, \) and \(e(q, s) = b \) for every \(s \in \tau \);
4. \(S \cong ^2A_{n-1}(q), r \equiv 3 \mod 4, a = \frac{r-1}{2}, b = 2r, (q^{r-1} - 1)_r = r, [\frac{n}{r-1}] = a, n \equiv -1 \mod r, \) and \(e(q, s) = b \) for every \(s \in \tau \);
5. \(S \cong ^2A_{n-1}(q), r \equiv 1 \mod 4, a = r - 1, b = 2r, (q^{r-1} - 1)_r = r, [\frac{n}{r-1}] = a, n \equiv -1 \mod r, \) and \(e(q, s) = b \) for every \(s \in \tau \);
6. \(S \cong ^2D_n(q), a \equiv 1 \mod 2, n = b = 2a \) and for every \(s \in \tau \) either \(e(q, s) = a \) or \(e(q, s) = b \);
7. \(S \cong ^2D_n(q), b \equiv 1 \mod 2, n = a = 2b \) and for every \(s \in \tau \) either \(e(q, s) = a \) or \(e(q, s) = b \).

Condition V. Let \(S \) be isomorphic to a group of Lie type with the base field \(\mathbb{F}_q \) of characteristic \(p \). Suppose, \(2, p \not\in \pi \). Let \(r \) be the minimum in \(\pi \cap \pi(S) \), let \(\tau = (\pi \cap \pi(S)) \setminus \{r\} \) and \(c = e(q, r) \). We say that \((S, \pi)\) satisfies Condition V if \(e(q, t) = c \) for every \(t \in \tau \) and one of the following statements holds.

1. \(S \cong A_{n-1}(q) \) and \(n < cs \) for every \(s \in \tau \);
2. \(S \cong ^2A_{n-1}(q), c \equiv 0 \mod 4 \) and \(n < cs \) for every \(s \in \tau \);
3. \(S \cong ^2A_{n-1}(q), c \equiv 2 \mod 4 \) and \(2n < cs \) for every \(s \in \tau \);
4. \(S \cong ^2A_{n-1}(q), c \equiv 1 \mod 2 \) and \(n < 2cs \) for every \(s \in \tau \);
5. \(S \) is isomorphic to one of the groups \(B_n(q), C_n(q), \) or \(^2D_n(q) \), \(c \) is odd and \(2n < cs \) for every \(s \in \tau \);
(6) S is isomorphic to one of the groups $B_n(q)$, $C_n(q)$, or $D_n(q)$, c is even and $n < cs$ for every $s \in \tau$;
(7) $S \cong D_n(q)$, c is even and $2n \leq cs$ for every $s \in \tau$;
(8) $S \cong \mathcal{S} D_n(q)$, c is odd and $n \leq cs$ for every $s \in \tau$;
(9) $S \cong \mathcal{S} D_4(q)$;
(10) $S \cong E_6(q)$, and if $r = 3$ and $c = 1$ then $5, 13 \not\in \tau$;
(11) $S \cong \mathcal{S} E_6(q)$, and if $r = 3$ and $c = 2$ then $5, 13 \not\in \tau$;
(12) $S \cong E_7(q)$, if $r = 3$ and $c \in \{1, 2\}$ then $5, 7, 13 \not\in \tau$, and if $r = 5$ and $c \in \{1, 2\}$ then $7 \not\in \tau$;
(13) $S \cong E_8(q)$, if $r = 3$ and $c \in \{1, 2\}$ then $5, 7, 13 \not\in \tau$, and if $r = 5$ and $c \in \{1, 2\}$ then $7, 31 \not\in \tau$;
(14) $S \cong G_2(q)$;
(15) $S \cong F_4(q)$, and if $r = 3$ and $c = 1$ then $13 \not\in \tau$.

Condition VI. We say that (S, π) satisfies Condition VI if one of the following statements holds.

1. S is isomorphic to $\mathcal{S} B_2(2^{2m+1})$ and $\pi \cap \pi(S)$ is contained in one of the sets
 $$\pi(2^{2m+1} - 1), \quad \pi(2^{2m+1} \pm 2^{m+1} + 1);$$
2. S is isomorphic to $\mathcal{S} G_2(3^{2m+1})$ and $\pi \cap \pi(S)$ is contained in one of the sets
 $$\pi(3^{2m+1} - 1) \setminus \{2\}, \quad \pi(3^{2m+1} \pm 3^{m+1} + 1) \setminus \{2\};$$
3. S is isomorphic to $\mathcal{S} F_4(2^{2m+1})$ and $\pi \cap \pi(S)$ is contained in one of the sets
 $$\pi(2^{2(2m+1)} \pm 1), \quad \pi(2^{2m+1} \pm 2^{m+1} + 1),$$
 $$\pi(2^{2(2m+1)} \pm 2^{3m+2} \pm 2^{m+1} - 1), \quad \pi(2^{2(2m+1)} \pm 2^{3m+2} \pm 2^{m+1} \pm 2^{m+1} - 1).$$

Condition VII. Let S be isomorphic to a group of Lie type with the base field \mathbb{F}_q of characteristic p. Suppose that $2 \in \pi$ and $3, p \not\in \pi$, and let $\tau = (\pi \cap \pi(S)) \setminus \{2\}$ and $\varphi = \{t \in \tau \mid t$ is a Fermat number$\}$. We say that (S, π) satisfies Condition VII if $\tau \subseteq \pi(q - \varepsilon)$, where the number $\varepsilon = \pm 1$ is such that 4 divides $q - \varepsilon$, and one of the following statements holds.

1. S is isomorphic to either $A_n(q)$ or $\mathcal{S} A_n(q)$, $s > n$ for every $s \in \tau$, and $t > n + 1$ for every $t \in \varphi$;
2. $S \cong B_n(q)$, and $s > 2n + 1$ for every $s \in \tau$;
3. $S \cong C_n(q)$, $s > n$ for every $s \in \tau$, and $t > 2n + 1$ for every $t \in \varphi$;
4. S is isomorphic to either $D_n(q)$ or $\mathcal{S} D_n(q)$, and $s > 2n$ for every $s \in \tau$;
(5) S is isomorphic to either $G_2(q)$ or $^2G_2(q)$, and $7 \notin \tau$;

(6) $S \cong F_4(q)$ and $5, 7 \notin \tau$;

(7) S is isomorphic to either $E_6(q)$ or $^2E_6(q)$, and $5, 7 \notin \tau$;

(8) $S \cong E_7(q)$ and $5, 7, 11 \notin \tau$;

(9) $S \cong E_8(q)$ and $5, 7, 11, 13 \notin \tau$;

(10) $S \cong ^3D_4(q)$ and $7 \notin \tau$.

Conditions I–VII appear in [33–36], see also [46, Theorem 6.9 and Appendix 2], as necessary and sufficient ones for a simple group S to satisfy D_π. Note that Condition I here differs from Condition I in [34,46]. In these articles Condition I include case $\pi(S) \subseteq \pi$. But a π-group is not an X-group, in general.

Now we return to the problem of determining of X-maximal subgroups in a finite group. It follows from results of the paper that every finite group G has the D_X-radical, i.e. the greatest normal D_X-subgroup N. This subgroup coincides with the subgroup generated by all subnormal subgroups U of G such that every composition factor of U either is an X-group or satisfies one of Conditions I–VII. In view of Corollary 1.3, there is a bijection between the sets conjugacy classes of X-maximal subgroups in G and G/N, and we can study the members of $m_X(G/N)$ instead of $m_X(G)$.

2 Preliminaries

2.1 Notation

According to [1, 3, 10], we use the following notation.

ε and η always denote either $+1$ or -1 and the sign of this number. Sometimes (in the notation of orthogonal groups of odd dimension) η can be used as an empty symbol.

$\varepsilon(q)$ denotes $\varepsilon \in \{+1, -1\}$ (or the sign of ε) such that $q \equiv \varepsilon \pmod{4}$ for given odd q.

n denotes the cyclic group of order n, where n is a positive integer.

A^n denotes the direct product of n copies of A. In particular,

p^n denotes the elementary abelian group of order p^n, where p is a prime.

$\text{Sym}(\Omega)$ denotes the symmetric group on Ω.

Sym_n is the symmetric group of degree n, i.e. $\text{Sym}_n = \text{Sym}(\Omega)$, where $\Omega = \{1, 2, \ldots, n\}$.

Alt_n denotes the alternating group of degree n.

$\text{GL}_n(q)$ or $\text{GL}_n^+(q)$ denotes the general linear group of degree n over a field of order q.

$\text{SL}_n(q)$ or $\text{SL}_n^+(q)$ denotes the special linear group of degree n over a field of order q.

$\text{PSL}_n(q)$ or $\text{PSL}_n^+(q)$ denotes the projective special linear group of degree n over a field of order q.

$\text{PGL}_n(q)$ or $\text{PGL}_n^+(q)$ denotes the projective general linear group of degree n over a field of order q.

$\text{GU}_n(q)$ or $\text{GL}_n^-(q)$ denotes the general unitary group of degree n over a field of order q.

$\text{SU}_n(q)$ or $\text{SL}_n^-(q)$ denotes the special unitary group of degree n over a field of order q.

$\text{PSU}_n(q)$ or $\text{PSL}_n^-(q)$ denotes the projective special unitary group of degree n over a field of order q.

$\text{PGU}_n(q)$ or $\text{PGL}_n^-(q)$ denotes the projective general unitary group of degree n over a field of order q.

$\text{O}_n^\varepsilon(q)$ is the orthogonal group of degree n over a field of order q, where $\varepsilon \in \{ +1, -1 \}$ for n even and ε is an empty symbol for n odd.

$\text{SO}_n^\varepsilon(q)$ is $\text{O}_n^\varepsilon(q) \cap \text{SL}_n(q)$, the special orthogonal group of degree n over a field of order q.

$\Omega_n^\varepsilon(q)$ is the derived subgroup of $\text{SO}_n^\varepsilon(q)$.

$\text{PG}_n(q)$ is the reduction of $\Omega_n^\varepsilon(q)$ modulo scalars.

$\text{Sp}_n(q)$ denotes the symplectic group of even degree n over a field of order q.

$\text{PSp}_n(q)$ denotes the projective symplectic group of even degree n over a field of order q.

r^{1+2n} denotes an extra special group of order r^{1+2n}, where r is a prime.

$A : B$ means a split extension of a group A by a group B (A is normal).

$A \cdot B$ means a non-split extension of a group A by a group B (A is normal).

$A . B$ means an arbitrary (split or non-split extension) of a group A by a group B (A is normal).

A^{m+n} means $A^m : A^n$.

PG, for a linear group G, means the reduction of G modulo scalars.

\mathcal{X} is a complete class of groups.

\mathcal{G} is a class of all solvable groups.

$\mathcal{D}_\mathcal{X}$ is a class of groups with all maximal \mathcal{X}-subgroups conjugate.

π is a set of primes.

\mathfrak{G}_π is a class of all solvable π-groups

\mathfrak{G}_π is a class of all π-groups.
\(D_\pi \) is a class of groups with all maximal \(\pi \)-subgroups conjugate, i.e. \(D_\pi = D_{\phi_\pi} \).

\(E_\pi \) is a class of groups possessing \(\pi \)-Hall subgroups, i.e. \(G \in E_\pi \) if Hall_\(\pi \)(\(G \)) is nonempty.

\(G_X \) means the \(X \)-radical of \(G \), i.e. the subgroup generated by all normal \(X \)-subgroups of \(G \). In particular,

\(G_\text{sol} \) means the solvable radical of \(G \).

\(O_\pi(\ G \) means the \(\pi \)-radical of \(G \), the subgroup generated by all normal \(\pi \)-subgroups of \(G \), i.e. \(O_\pi(\ G = G_{\phi_\pi} \).

\(\mu(G) \) denotes the degree of the minimal faithful permutation representation of a finite group \(G \), i.e. the smallest \(n \) such that \(G \) is isomorphic to a subgroup of \(\text{Sym}_n \).

A \(X \)-Hall subgroup, is a subgroup \(H \) of \(G \) such that \(H \) is an \(X \)-subgroup and a \(\pi(X) \)-Hall subgroup.

Hall_\(X \)(\(G \)) is the set of all \(X \)-Hall subgroups of \(G \), i.e. \(\text{Hall}_X \)(\(G = X \cap \text{Hall}_\pi \)(\(G \)).

2.2 Known properties of \(\pi \)-Hall subgroups, \(D_\pi \)- and \(D_X \)-groups

Lemma 2.1 [27, Lemma 1] Let \(N \) be a normal subgroup and \(H \) a \(\pi \)-Hall subgroup of \(G \). Then \(H \cap N \in \text{Hall}_\pi(\ N \) and \(HN/N \in \text{Hall}_\pi(\ G/N \).

Lemma 2.2 [16, Theorem A] If \(2 \notin \pi \) and \(G \in E_\pi \), then every two \(\pi \)-Hall subgroups of \(G \) are conjugate.

Lemma 2.3 [38, Theorem 7.7], [10, Theorem 6.6] Let \(N \) be a normal subgroup of \(G \). Then \(G \in D_\pi \) if and only if \(N \in D_\pi \) and \(G/N \in D_\pi \).

Lemma 2.4 [34, Theorem 3] Let \(\pi \) be a set of primes and \(G \) be a simple group. Then \(G \in D_\pi \) if and only if either \(G \) is a \(\pi \)-group or \((G, \pi) \) satisfies one of Conditions I–VII above.

Lemma 2.5 [21, Proposition 1] Let \(\mathcal{X} \) be a complete class, \(\pi = \pi(\mathcal{X}) \), and \(G \in D_{\mathcal{X}} \). Then

\[
\text{m}_\mathcal{X}(\ G = \text{Hall}_\mathcal{X}(\ G \subseteq \text{Hall}_\pi(\ G \).
\]

In particular, \(G \in E_\pi \).

Lemma 2.6 [21, Theorem 1] If \(G \in D_{\mathcal{X}} \) and \(N \unlhd G \), then \(N \in D_{\mathcal{X}} \) and \(G/N \in D_{\mathcal{X}} \).

Lemma 2.7 [21, Theorem 2] For a complete class \(\mathcal{X} \), the following statements are equivalent.

1. The elements of \(\text{sm}_\mathcal{X}(\ G \) are conjugate in any \(G \in D_{\mathcal{X}} \).
2. \(\text{sm}_\mathcal{X}(\ G) = \text{m}_\mathcal{X}(\ G \) for any \(G \in D_{\mathcal{X}} \).
3. \(D_{\mathcal{X}} \) is closed under taking extensions.
4. \(\text{Aut} \ S \in D_{\mathcal{X}} \) for every simple \(S \in D_{\mathcal{X}} \).
(5) The elements of $\text{sm}_X(S)$ are conjugate in any simple $S \in \mathcal{D}_X$.

By the analogy with Chunikhin’s concept of a π-separable group, we say that G is X-separable\(^8\) if G has a subnormal series

$$G = G_0 > G_1 > \cdots > G_n = 1$$

such that G_{i-1}/G_i is either an X-group or a $\pi(X)'$-group. It is clear that every solvable group is X-separable for every complete class X.

Lemma 2.8 [31, Theorem 1] Let N be a normal X-separable subgroup of G. Then the map given by the rule $M \mapsto MN/N$ is a surjection between sets $m_X(G)$ and $m_X(G/N)$. Moreover, this map induces a bijection between the sets of conjugacy classes of X-maximal subgroups of G and G/N. In particular, $G \in \mathcal{D}_X$ if and only if $G/N \in \mathcal{D}_X$.

Lemma 2.9 Let $G \in \mathcal{D}_\pi, H \in \text{Hall}_\pi(G)$ and $H \leq M \leq G$. Then $M \in \mathcal{D}_\pi$.

Lemma 2.10 [39, Lemma 2.1(e)] Let N be a normal subgroup of G and $\pi(G/N) \subseteq \pi$. Assume N contains a π-Hall subgroup H_0. Then the following statements are equivalent.

1. There is $H \in \text{Hall}_\pi(G)$ such that $H_0 = H \cap N$.
2. For every $g \in G$ there exists $x \in N$ such that $H^g_0 = H^x_0$.

2.3 Arithmetic Lemmas

For an odd integer q, denote by $\varepsilon(q)$ the number $\varepsilon = \pm 1$ such that $q \equiv \varepsilon \pmod{4}$.

If r is an odd prime and k is an integer not divisible by r, then $e(k, r)$ is the smallest positive integer e with $k^e \equiv 1 \pmod{r}$. So, $e(k, r)$ is the multiplicative order of k modulo r.

For a natural number e set

$$e^* = \begin{cases} 2e & \text{if } e \equiv 1 \pmod{2}, \\ e & \text{if } e \equiv 0 \pmod{4}, \\ e/2 & \text{if } e \equiv 2 \pmod{4}. \end{cases}$$

It follows from the definition that if e divides an even number n then e^* divides n again. Moreover, it follows from definition that $e^{**} = e$ for every e.

For a real x, the integer part of x is denoted by $[x]$, i.e. $[x]$ is a unique integer such that

$$[x] \leq x < [x] + 1.$$

The following lemma is evident.

Lemma 2.11 If m is a positive integer and x is a real, then

$$[[x]/m] = [x/m].$$

The next result may be found in [17].

\(^8\)Wielandt [13] named such groups by the German term ‘X-reihig’.
Lemma 2.12 (\cite{[13]}, Lemmas 2.4 and 2.5) Let r be an odd prime, k an integer not divisible by r, and m a positive integer. Denote $e(k, r)$ by e.

Then the following identities hold.

\[(k^m - 1)_r = \begin{cases} (k^e - 1)_r(m/e)_r & \text{if } e \text{ divides } m, \\ 1 & \text{if } e \text{ does not divide } m; \end{cases} \]

\[(k^m - (-1)^m)_r = \begin{cases} (k^e - (-1)^e)^*(m/e^*_r)_r & \text{if } e^* \text{ divides } m, \\ 1 & \text{if } e^* \text{ does not divide } m. \end{cases} \]

Lemma 2.13 Let $q > 1$ and n be positive integers, let r be an odd prime such that $(q, r) = 1$, and let $e = e(r, q)$. Then the following statements hold:

(i) $(n!)_r = r^n$, where $\alpha = \sum_{i=1}^{\infty} [n/r^i]$;

(ii) $\prod_{i=1}^{n} (q^i - 1)_r = (q^e - 1)^{(n/e)!}(n/e)_r$;

(iii) $\prod_{i=1}^{m} (k^i - (-1)^i)_r = (k^e - (-1)^e)^*(m/e^*_r)!_r$;

(iv) $\prod_{i=1}^{n} (q^i - 1)_r$ if and only if $e = r - 1$, $(q^{r-1} - 1)_r = r$ and $[n/r] = [n/(r - 1)]$.

(v) $\prod_{i=1}^{m} (q^i - (-1)^i)_r = (n!)_r$ if and only if $e^* = r - 1$, $(q^{(r-1)^*} - (-1)^{(r-1)^*})_r = r$ and $[n/r] = [n/(r - 1)]$.

Proof. The statement (i) is well-known (see, for example, \cite{[13], Lemma 2}). Statements (ii) and (iii) follow from Lemma 2.12.

Now we prove (iv). Let $A = \prod_{i=1}^{n} (q^i - 1)_r$. Then by ii) and in view of the Little Fermat Theorem,

\[A = (q^e - 1)^{(n/e)!}(n/e)!_r \geq r^{[n/e]}([n/e]!)_r \geq r^{[n/(r-1)]}([n/(r-1)]!)_r \geq r^{[n/r]}([n/r]!)_r = r^\beta, \]

where by (i) and, in view of Lemma 2.11 for $x = n/r$ and $m = r^i$, we have

\[\beta = [n/r] + \sum_{i=1}^{\infty} \left[\frac{n/r}{r^i}\right] = [n/r] + \sum_{i=1}^{\infty} \left[\frac{[n/r]}{r^{i+1}}\right] = \sum_{i=1}^{\infty} \left[\frac{n/r}{r^i}\right] = \log_r(n/r)_r.\]

Therefore, $A \geq (n!)_r$. Moreover, this inequality becomes an equality if and only if all inequalities in (1) are equalities, i.e. if and only if

\[r - 1 = e, \quad (q^e - 1)_r = r, \quad \text{and } [n/(r - 1)] = [n/r].\]

This implies (iv).
Now we prove (v). Let $A' = \prod_{i=1}^{n}(q^i - (-1)^i)r_i$. Since r is odd, in view of the Little Fermat Theorem e divides the even number $r - 1$. Consequently, e^* also divides $r - 1$ and, by (iii),

$$A' = (q^{e^*} - (-1)^{e^*})r_i \geq r^{[n/e^*]}(n/e^*!)r_i \geq r^{[n/(r - 1)]}(n/(r - 1)!)r_i \geq r^{[n/r]}(n/r) = r^\beta,$$

(2)

where β is as above.

Therefore, $A' \geq (n!)r_i$. Again this inequality becomes an equality if and only if all the inequalities in (2) are equalities, i.e. if and only if one of the equalities

$$r - 1 = e^*, \quad (q^{e^*} - (-1)^{e^*})r_i = r_i, \quad \text{and} \quad [n/(r - 1)] = [n/r].$$

This implies (v).

\[\Box\]

\section{2.4 On Hall subgroups of finite simple groups}

\textbf{Lemma 2.14} \cite{27, Theorem A4 and the notices after it}, \cite{45, Main result}, \cite{46, Theorem 8.1} Suppose that $n \geq 5$ and π is a set of primes with $|\pi \cap \pi(n!)| > 1$ and $\pi(n!) \not\subseteq \pi$. Then

(1) The complete list of possibilities for Sym_n containing a π-Hall subgroup H is given in Table 1.

(2) $M \in \text{Hall}_\pi(\text{Alt}_n)$ if and only if $M = H \cap \text{Alt}_n$ for some $H \in \text{Hall}_\pi(\text{Sym}_n)$.

In particular, every proper nonsolvable π-Hall subgroup of a symmetric group of degree n is isomorphic to a symmetric group of degree n or $n - 1$ and has a unique nonabelian composition factor isomorphic to an alternating group of the same degree.

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
n & π & $H \in \text{Hall}_\pi(\text{Sym}_n)$ \\
\hline
prime & $\pi((n - 1)!)$ & Sym_{n-1} \\
7 & $\{2, 3\}$ & $\text{Sym}_3 \times \text{Sym}_4$ \\
8 & $\{2, 3\}$ & $\text{Sym}_4 \wr \text{Sym}_2$ \\
\hline
\end{tabular}
\end{center}

\textbf{Lemma 2.15} \cite{21, Proposition 3} Let $\pi = \pi(\mathcal{X})$. Then for $G = \text{Alt}_n$ the following conditions are equivalent.

(1) $G \in \mathcal{D}_\mathcal{X}$.

(2) $G \in \mathcal{D}_\mathcal{X} \cap \mathcal{D}_\pi$.

(3) either $|\pi \cap \pi(G)| \leq 1$ or $G \in \mathcal{X}$.

(4) All submaximal \mathcal{X}-subgroups are conjugate in G.

\textbf{Lemma 2.16} \cite{44, Theorem 4.1}, \cite{46, Theorem 8.2} Let G be either one of the 26 sporadic groups or a Tits group, π be such that $2 \in \pi$, $\pi(G) \not\subseteq \pi$, and $|\pi \cap \pi(G)| > 1$, and H be
a \pi\text{-Hall subgroup of } G. \text{ Then the corresponding intersections } \pi \cap \pi(G) \text{ and the structure of } H \text{ are indicated in Table } 2.

Table 2:

G	\pi \cap \pi(G)	Structure of H
M_{11}	\{2, 3\}	3^2 : Q_8 \cdot 2
	\{2, 3, 5\}	Alt_6 : 2
M_{22}	\{2, 3, 5\}	2^4 : Alt_6
M_{23}	\{2, 3\}	2^4 : (3 \times A_4) : 2
	\{2, 3, 5\}	2^4 : Alt_6
	\{2, 3, 5, 7\}	2^4 : (3 \times Alt_5) : 2
	\{2, 3, 5, 7\}	2^4 : Alt_6
	\{2, 3, 5, 7, 11\}	M_{22}
M_{24}	\{2, 3, 5\}	2^6 : 3 \cdot \text{Sym}_6
J_1	\{2, 3\}	2 \times Alt_4
	\{2, 3, 5\}	2 \times Alt_5
	\{2, 3, 7\}	2^3 : 7 : 3
	\{2, 7\}	2^4 : 7
J_4	\{2, 3, 5\}	2^{11} : (2^6 : 3 \cdot \text{Sym}_6)

Lemma 2.17 [53, Lemma 3.1], [55, Lemma 8.10] Let } \pi \text{ be a set of primes with } 2, 3 \in \pi. \text{ Assume that } G \cong \text{SL}_q(q) \cong \text{SL}_2^2(q) \cong \text{Sp}_2(q), \text{ where } q \text{ is a power of an odd prime } p \notin \pi, \text{ and } \varepsilon = \varepsilon(q). \text{ Recall that for a subgroup } A \text{ of } G \text{ we denote by } PA \text{ the reduction modulo scalars. Then the following statements hold.}

(A) \text{ If } G \in \mathcal{E}_\pi \text{ and } H \in \text{Hall}_\pi(G), \text{ then one of the following statements holds.}

(a) \pi \cap \pi(G) \subseteq \pi(q - \varepsilon), \text{ PH is a } \pi\text{-Hall subgroup in the dihedral subgroup } D_{q-\varepsilon} \text{ of order } q - \varepsilon \text{ of } PG. \text{ All } \pi\text{-Hall subgroups of this type are conjugate in } G.

(b) \pi \cap \pi(G) = \{2, 3\}, \ (q^2 - 1)_{(2,3)} = 24, \text{ PH } \cong \text{Alt}_4. \text{ All } \pi\text{-Hall subgroups of this type are conjugate in } G.

(c) \pi \cap \pi(G) = \{2, 3\}, \ (q^2 - 1)_{(2,3)} = 48, \text{ PH } \cong \text{Sym}_4. \text{ There exist exactly two classes of conjugate subgroups of this type, and } \text{PGL}_2^2(q) \text{ interchanges these classes.}

(d) \pi \cap \pi(G) = \{2, 3, 5\}, \ (q^2 - 1)_{(2,3,5)} = 120, \text{ PH } \cong \text{Alt}_5. \text{ There exist exactly two classes of conjugate subgroups of this type, and } \text{PGL}_2^2(q) \text{ interchanges these classes.}

(B) Conversely, if } \pi \text{ and } (q^2 - 1)_\pi \text{ satisfy one of statements (a)--(d), then } G \in \mathcal{E}_\pi.

(C) \text{ Every } \pi\text{-Hall subgroup of } PG \text{ can be obtained as } \text{PH} \text{ for some } H \in \text{Hall}_\pi(G). \text{ Conversely, if } PH \in \text{Hall}_\pi(PG) \text{ and } H \text{ is a full preimage of } PH \text{ in } G, \text{ then } H \in \text{Hall}_\pi(G).

Lemma 2.18 [53, Lemma 3.2], [55, Corollary 8.11] Let } G = \text{GL}_2^2(q), \text{ PG = G/Z(G) = PGL}_2^2(q), \text{ where } q \text{ is a power of a prime } p, \text{ and } \varepsilon = \varepsilon(q). \text{ Let } \pi \text{ be a set of primes such that } 2, 3 \in \pi \text{ and } p \notin \pi. \text{ A subgroup } H \text{ of } G \text{ is a } \pi\text{-Hall subgroup if and only if } H \cap \text{SL}_2(q)
is a π-Hall subgroup of $\text{SL}_2(q)$, $|H : H \cap \text{SL}_2(q)|_\pi = (q - \eta)_\pi$, and either statement (a), or statement (b) of Lemma 2.19 holds. More precisely, one of the following statements holds.

(a) $\pi \cap \pi(G) \subseteq \pi(q - \varepsilon)$, where $\varepsilon = \varepsilon(q)$, PH is a π-Hall subgroup in the dihedral group $D_{2(q-\varepsilon)}$ of order $2(q-\varepsilon)$ of PG. All π-Hall subgroups of this type are conjugate in G.

(b) $\pi \cap \pi(G) = \{2, 3\}$, $(q^2 - 1)_{(2,3)} = 24$, $PH \cong \text{Sym}_4$. All π-Hall subgroups of this type are conjugate in G.

Lemma 2.19 [14, Theorem 3.2], [17, Theorem 3.1], [37, Theorem 1.2], [46, Theorems 8.3–8.7] Let π be a set of primes and G a group of Lie type over the field \mathbb{F}_q of characteristic $p \in \pi$. Assume that $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then one of the following statements holds.

1. $H = G$.

2. $\pi \cap \pi(G) \subseteq \pi(q - 1) \cup \{p\}$, H is contained in a Borel subgroup of G (in particular, H is solvable) and any prime in $\pi \setminus \{p\}$ does not divide the order of the Weyl group of G.

3. $p = 2$, $G = D_l(q)$, the Dynkin diagram of the fundamental root system Π^1 of G is on Pic. 1, l is a Fermat prime, $(l, q - 1) = 1$ and H is conjugate to the canonic parabolic maximal subgroup corresponding to the set $\Pi \setminus \{r_1\}$ of fundamental roots.

4. $p = 2$, $G = 2 D_l(q)$, the Dynkin diagram of the fundamental root system Π of G is on Pic. 2, $l - 1$ is a Mersenne prime, $(l - 1, q - 1) = 1$ and H is conjugate to the canonic parabolic maximal subgroup corresponding to the set $\Pi^1 \setminus \{r_1^1\}$ of fundamental roots;

5. G is isomorphic to the quotient by the center of $\text{SL}(V)$, where V is a vector space of a dimension n over \mathbb{F}_q and H is the image in G under the natural epimorphism of the stabilizer in $\text{SL}(V)$ of a series

$$0 = V_0 < V_1 < \cdots < V_s = V$$

such that $\dim V_i/V_{i-1} = n_i$, $i = 1, 2, \ldots, s$, and one of the following conditions holds:

(a) n is a prime, $(n, q - 1) = 1$, $s = 2$, $n_1, n_2 \in \{1, n - 1\}$;

(b) $n = 4$, $(2 \cdot 3, q - 1) = 1$, $s = 2$, $n_1 = n_2 = 2$;

(c) $n = 5$, $(2 \cdot 5, q - 1) = 1$, $s = 2$, $n_1, n_2 \in \{2, 3\}$;

Pic. 1. Dynkin diagram of the root system of $D_l(q)$.

16
Lemma 2.20 [39, Lemma 4.3], [39, Theorem 8.12] Assume $G = \text{SL}_n^q(q)$ is a special linear or unitary group with the base field \mathbb{F}_q of characteristic p and $n \geq 2$. Let π be a set of primes such that $2, 3 \in \pi$ and $p \not\in \pi$. Then the following statements hold.

(A) Suppose $G \in \mathcal{E}_\pi$, and H is a π-Hall subgroup of G. Then for G, H, and π one of the following statements holds.

(a) $n = 2$ and one of the statements (a)–(d) of Lemma 2.17 holds.
(b) either $q \equiv \eta \pmod{12}$, or $n = 3$ and $q \equiv \eta \pmod{4}$, Sym_n satisfies \mathcal{E}_π, $\pi \cap \pi(G) \subseteq \pi(q-\eta) \cup \pi(n!)$, and if $r \in (\pi \cap \pi(n!)) \setminus \pi(q-\eta)$, then $|G|_r = |\text{Sym}_n|_r$; H is included in

$$M = L \cap G \cong \mathbb{Z}^n \cdot \text{Sym}_n,$$

where $L = \mathbb{Z} \cdot \text{Sym}_n \leq \text{GL}_n^q(q)$ and $Z = \text{GL}_1^q(q)$ is a cyclic group of order $q-\eta$. All π-Hall subgroups of this type are conjugate in G.
(c) $n = 2m + k$, where $k \in \{0, 1\}$, $m \geq 1$, $q \equiv -\eta \pmod{3}$, $G \cap \pi(G) \subseteq \pi(q^2 - 1)$, the groups Sym_m and $\text{GL}_2^q(q)$ satisfy \mathcal{E}_π, and

$$M = L \cap G \cong (\underbrace{\text{GL}_2^q(q) \circ \cdots \circ \text{GL}_2^q(q)}_{m \text{ times}}) \cdot \text{Sym}_m \circ Z,$$

where $L = \text{GL}_2^q(q) \cap \text{Sym}_m \times Z \leq \text{GL}_n(q)$ and Z is a cyclic group of order $q-\eta$ for $k = 1$ and Z is trivial for $k = 0$. The subgroup H acting by conjugation on the set of factors in the central product

$$\underbrace{\text{GL}_2^q(q) \circ \cdots \circ \text{GL}_2^q(q)}_{m \text{ times}}$$

has at most two orbits. The intersection of H with each factor $\text{GL}_2^q(q)$ in (3) is a π-Hall subgroup in $\text{GL}_2^q(q)$. The intersections with the factors from the same
orbit all satisfy the same statement (a) or (b) of Lemma 2.18. Two \(\pi \)-Hall subgroups of \(M \) are conjugate in \(G \) if and only if they are conjugate in \(M \). Moreover \(M \) possesses one, two, or four classes of conjugate \(\pi \)-Hall subgroups, while all subgroups \(M \) are conjugate in \(G \).

(d) \(n = 4 \), \(\pi \cap \pi(G) = \{2, 3, 5\} \), \(q \equiv 5 \eta \pmod{8} \), \((q + \eta)_3 = 3 \), \((q^2 + 1)_5 = 5 \), and \(H \cong 4 \cdot 2^4 \cdot \text{Alt}_6 \). In this case, \(G \) possesses exactly two classes of conjugate \(\pi \)-Hall subgroups of this type and \(\text{GL}_2^\pm(q) \) interchanges these classes.

(e) \(n = 11 \), \(\pi \cap \pi(G) = \{2, 3\} \), \((q^2 - 1)_{2,3} = 24 \), \(q \equiv -\eta \pmod{3} \), \(q \equiv \eta \pmod{4} \).

H is included in a subgroup \(M = L \cap G \), where \(L \) is a subgroup of \(G \) of type \(((\text{GL}_2^\pm(q) \wr \text{Sym}_4) \downarrow (\text{GL}_2^\pm(q) \lhd \text{Sym}_3)) \), and

\[
H = (((Z \circ 2 \cdot \text{Sym}_4) \lhd \text{Sym}_4) \times (Z \lhd \text{Sym}_3)) \cap G,
\]

where \(Z \) is a Sylow 2-subgroup of a cyclic group of order \(q - \eta \). All \(\pi \)-Hall subgroups of this type are conjugate in \(G \).

(B) Conversely, if the conditions on \(\pi \), \(n \), \(\eta \), and \(q \) in one of statements (a)–(e) are satisfied, then \(G \in \mathcal{E}_\pi \).

Lemma 2.21 [43, Lemma 4.4], [46, Theorem 8.13] Let \(G = \text{Sp}_{2n}(q) \) be a symplectic group over a field \(\mathbb{F}_q \) of characteristic \(p \). Assume that \(\pi \) is a set of primes such that \(2, 3 \in \pi \) and \(p \not\in \pi \). Then the following statements hold.

(A) Suppose \(G \in \mathcal{E}_\pi \) and \(H \in \text{Hall}_\pi(G) \). Then both \(\text{Sym}_n \) and \(\text{SL}_2(q) \) satisfy \(\mathcal{E}_\pi \) and \(\pi \cap \pi(G) \subseteq \pi(q^2 - 1) \). Moreover, \(H \) is a \(\pi \)-Hall subgroup of

\[
M = \text{Sp}_2(q) \wr \text{Sym}_n \cong \left(\frac{\text{SL}_2(q) \times \cdots \times \text{SL}_2(q)}{n \text{ times}} \right) : \text{Sym}_n \leq G.
\]

(B) Conversely, if both \(\text{Sym}_n \) and \(\text{SL}_2(q) \) satisfy \(\mathcal{E}_\pi \) and \(\pi \cap \pi(G) \subseteq \pi(q^2 - 1) \), then \(M \in \mathcal{E}_\pi \) and every \(\pi \)-Hall subgroup \(H \) of \(M \) is a \(\pi \)-Hall subgroup of \(G \).

(C) Two \(\pi \)-Hall subgroups of \(M \) are conjugate in \(G \) if and only if they are conjugate in \(M \).

Lemma 2.22 [33, Lemma 6.7], [46, Theorem 8.14] Assume that \(G = \Omega_n^\varepsilon(q), \eta \in \{+, -, o\}, q \) is a power of a prime \(p, n \geq 7, \varepsilon = \varepsilon(q) \). Let \(\pi \) be a set of primes such that \(2, 3 \in \pi, p \not\in \pi \). Then the following statements hold.

(A) If \(G \) possesses a \(\pi \)-Hall subgroup \(H \), then one of the following statements holds.

(a) \(n = 2m + 1 \), \(\pi \cap \pi(G) \subseteq \pi(q - \varepsilon) \), \(q \equiv \varepsilon \pmod{12} \), \(\text{Sym}_m \in \mathcal{E}_\pi \), and \(H \) is a \(\pi \)-Hall subgroup in \(M = (\text{O}_2^\varepsilon(q) \wr \text{Sym}_m \times \text{O}_1(q)) \cap G \). All \(\pi \)-Hall subgroup of this type are conjugate.

(b) \(n = 2m \), \(\eta = \varepsilon^m, \pi \cap \pi(G) \subseteq \pi(q - \varepsilon), q \equiv \varepsilon \pmod{12} \), \(\text{Sym}_m \in \mathcal{E}_\pi \), and \(H \) is a \(\pi \)-Hall subgroup in \(M = (\text{O}_2^\varepsilon(q) \lhd \text{Sym}_m) \cap G \). All \(\pi \)-Hall subgroup of this type are conjugate.

(c) \(n = 2m \), \(\eta = -\varepsilon^m, \pi \cap \pi(G) \subseteq \pi(q - \varepsilon), q \equiv \varepsilon \pmod{12} \), \(\text{Sym}_{m-1} \in \mathcal{E}_\pi \), and \(H \) is a \(\pi \)-Hall subgroup of \(M = (\text{O}_2^\varepsilon(q) \times \text{O}_2^{-\varepsilon}(q)) \cap G \). All \(\pi \)-Hall subgroup of this type are conjugate.
(d) \(n = 11, \pi \cap \pi(G) = \{2, 3\}, q \equiv \varepsilon \pmod{12}, (q^2 - 1)_{11} = 24, \) and \(H \) is a \(\pi \)-Hall subgroup of \(M = \{O_5^+(q) \wr \text{Sym}_4 \wr \text{O}_1(q) \wr \text{Sym}_3\} \cap G. \) All \(\pi \)-Hall subgroup of this type are conjugate.

(e) \(n = 12, \eta = -, \pi \cap \pi(G) = \{2, 3\}, q \equiv \varepsilon \pmod{12}, (q^2 - 1)_{12} = 24, \) and \(H \) is a \(\pi \)-Hall subgroup of \(M = \{O_5^+(q) \wr \text{Sym}_4 \wr \text{O}_1(q) \wr \text{Sym}_3\} \cap G. \) There exist precisely two classes of conjugate subgroups of this type in \(G, \) and the automorphism of order 2 induced by the group of similarities of the natural module interchanges these classes.

(f) \(n = 7, \pi \cap \pi(G) = \{2, 3, 5, 7\}, |G|_\pi = 2^9 \cdot 3^4 \cdot 5 \cdot 7, \) and \(H \cong \Omega_7(2). \) There exist precisely two classes of conjugate subgroups of this type in \(G, \) and \(\text{SO}_9(q) \) interchanges these classes.

(g) \(n = 8, \eta = +, \pi \cap \pi(G) = \{2, 3, 5, 7\}, |G|_\pi = 2^{13} \cdot 3^5 \cdot 5^2 \cdot 7, \) and \(H \cong 2 \cdot \Omega_8^+(2). \) There exist precisely four classes of conjugate subgroups of this type in \(G. \) The subgroup of \(\text{Out}(G) \) generated by diagonal and graph automorphisms is isomorphic to \(\text{Sym}_4 \) and acts on the set of these classes as \(\text{Sym}_4 \) in its natural permutation representation, and every diagonal automorphism acts without fixed points.

(h) \(n = 9, \pi \cap \pi(G) = \{2, 3, 5, 7\}, |G|_\pi = 2^{14} \cdot 3^5 \cdot 5^2 \cdot 7, \) and \(H \cong 2 \cdot \Omega_9^+(2). \) There exist precisely two classes of conjugate subgroups of this type in \(G, \) and \(\text{SO}_9(q) \) interchanges these classes.

(B) Conversely, if one of the statements (a)–(h) holds, then \(G \) possesses a \(\pi \)-Hall subgroup with the given structure.

Lemma 2.23 [3] Lemmas 7.1–7.6, [10] Theorem 8.13 | Assume that

\[
G \in \{E_6^0(q), E_7(q), E_8(q), F_4(q), G_2(q), 3D_4(q)\},
\]

where \(q \) is a power of a prime \(p. \) Let \(\varepsilon = \varepsilon(q). \) Let \(\pi \) be a set of primes such that \(2, 3 \in \pi, \) \(p \notin \pi. \) Then \(G \) contains a \(\pi \)-Hall subgroup \(H \) if and only if one of the following statements hold:

(a) \(G \) is a group in Table 3 and the values for the untwisted Lie rank \(l \) of \(G, \delta \) and the structure of the Weyl group \(W \) are given in the Table 3; if \(G = E_6^0(q) \) then \(\eta = \varepsilon; \)

\(\pi(W) \subseteq \pi \cap \pi(G) \subseteq \pi(q - \varepsilon), \) \(H \) is a \(\pi \)-Hall subgroup of a group \(T \cdot W, \) where \(T \) is a maximal torus of order \((q - \varepsilon)^l/\delta. \) All \(\pi \)-Hall subgroups of this type are conjugate in \(G; \)

(b) \(G = 3D_4(q), \pi \cap \pi(G) \subseteq \pi(q - \varepsilon) \) and \(H \) is a \(\pi \)-Hall subgroup in \(T \cdot W(G_2), \) where \(T \) is a maximal torus of order \((q - \varepsilon)(q^3 - \varepsilon). \) All \(\pi \)-Hall subgroups of this type are conjugate in \(G; \)

(c) \(G = E_8^\varepsilon(q), \pi \cap \pi(G) \subseteq \pi(q - \varepsilon) \) and \(H \) is a \(\pi \)-Hall subgroup in \(T \cdot W(F_4), \) where \(T \) is a maximal torus of order \((q^2 - 1)^2(q - \varepsilon)^3/(3, q + \varepsilon). \) All \(\pi \)-Hall subgroups of this type are conjugate in \(G; \)

(d) \(G = G_2(q), \pi \cap \pi(G) = \{2, 3, 7\}, (q^2 - 1)_{2,3,7} = 24, (q^4 + q^2 + 1), = 7, H \cong G_2(2), \) and all \(\pi \)-Hall subgroups of this type are conjugate in \(G. \)
Lemma 2.24 \cite[Theorem 3.1]{17} Let G be a group of Lie type with base field \mathbb{F}_q of some characteristic p. Assume that π is such that $2, p \in \pi$, and $3 \notin \pi$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then $p = 2$ and one of the following statements holds.

1. $\pi \cap \pi(G) \subseteq \pi(q - 1) \cup \{2\}$, a Sylow 2-subgroup P of H is normal in H and H/P is Abelian.

2. $p = 2, G \cong 2B_2(2^{2m+1})$ and $\pi(G) \subseteq \pi$.

Lemma 2.25 \cite[Lemma 4]{17} Let G be a nonabelian simple group. Then $G \in \mathcal{D}_{\{2,3\}}$ if and only if G is a Suzuki group $2B_2(q)$. In this case every π-subgroup of G is 2-group.

Lemma 2.26 \cite[Lemma 5.1 and Theorem 5.2]{17} Let G be a group of Lie type over a field of characteristic p. Assume that π is such that $3, p \notin \pi$ and $2 \in \pi$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then either H possesses a normal abelian 2'-Hall subgroup or $G \cong 2G_2(3^{2m+1})$ and $\pi \cap \pi(G) = \{2, 7\}$.

Lemma 2.27 Let G be a simple nonabelian group. Assume that π is such that $\pi(G) \not\subseteq \pi$, $|\pi \cap \pi(G)| > 1, 2 \in \pi$ and $3 \notin \pi$. Suppose $G \in \mathcal{E}_\pi$ and $H \in \text{Hall}_\pi(G)$. Then the following statements hold.

1. H is solvable.

2. If every solvable π-subgroup of G is conjugate to a subgroup of H, then G is a group of Lie type over a field of characteristic $p \notin \pi$ and $G \in \mathcal{D}_\pi$.

Proof. Statement (1) is proved in \cite[Lemma 10]{17}.

Prove (2). Consider all possibilities for G, according to the classification of finite simple groups (see \cite[Theorem 0.1.1]{3}).

Case 1: $G \cong \text{Alt}_n, n \geq 5$. This case is impossible by Lemma \ref{lem:alt}.

Case 2: G is either a sporadic group or a Tits group. By Lemma \ref{lem:tits} it follows that $G \cong J_1$ and $\pi \cap \pi(G) = \{2, 7\}$. Now, by the Burnside theorem \cite[Ch. I, 2]{10}, every π-subgroup of G is solvable and is conjugate to a subgroup of H, that is $G \in \mathcal{D}_\pi$. It contradicts Lemma \ref{lem:j1}.

Case 3: G is a group of Lie type over a field \mathbb{F}_q of characteristic $p \in \pi$. By Lemma \ref{lem:lie} $p = 2$, H is solvable and a Sylow 2-subgroup P of H is normal in H. Moreover, $\pi \cap \pi(G) \subseteq \pi(q - 1) \cup \{2\}$. Condition $|\pi \cap \pi(G)| > 1$ implies that $q > 2$. It is known that G has a subgroup which is a homomorphic image of $\text{SL}_2(q) = \text{PSL}_2(q)$. Since $\text{PSL}_2(q)$ is simple, we assume that $\text{PSL}_2(q) \leq G$. Take $r \in \pi \cap \pi(q - 1)$. Then $\text{PSL}_2(q)$ contains a dihedral subgroup U of order $2r$ and U has no normal Sylow 2-subgroups. Hence, U is not conjugate to any subgroup of H.

Case 4: G is a group of Lie type over a field of characteristic $p \notin \pi$. Lemma \ref{lem:lie} implies that either H possesses a normal abelian 2'-Hall subgroup or $G \cong 2G_2(3^{2m+1})$, \cite{17}.

Table 3: Weyl groups of exceptional root systems

| G | ℓ | δ | W | $|W|$ |
|---------|--------|----------|----------------------|----------------|
| $E_6^7(q)$ | 6 | $(3, q - \eta)$ | $W(E_6) \cong \text{Spin}_4(3)$ | $2^7.3^1.5$ |
| $E_7(q)$ | 7 | 2 | $W(E_7) \cong 2 \times \text{Spin}_7(2)$ | $2^{10}.3^4.5.7$ |
| $E_8(q)$ | 8 | 1 | $W(E_8) \cong 2 \cdot \text{Spin}_7^+(2).2$ | $2^{14}.3^5.5^2.7$ |
| $F_4(q)$ | 4 | 1 | $W(F_4)$ | $2^7.3^2$ |
| $G_2(q)$ | 2 | 1 | $W(G_2)$ | $2^2.3$ |
\[\pi \cap \pi(G) = \{2,7\}. \] In the last case every \(\pi\)-subgroup of \(G\) is solvable by the Burnside theorem [14, Ch. I, 2] and \(G \in \mathcal{D}_\pi\). Suppose, \(H\) possesses a normal abelian \(2'\)-Hall subgroup. It is sufficient to prove that every \(\pi\)-subgroup of \(G\) is solvable by the Burnside theorem [10, Ch. I, 2]. Take in \(U\) the full preimage \(V\) of a Borel subgroup of \(2^B_2(2^{2m+1})\). Then \(V\) is solvable and is conjugate to a subgroup of \(H\). In particular, \(V\) and a Borel subgroup \(V/U_\mathcal{E}\) of \(2^B_2(2^{2m+1})\) possesses a normal \(2'\)-Hall subgroup, but this is not true. \(\blacksquare\)

Lemma 2.28 Let \(G \in \mathcal{D}_\pi\) be a nonabelian simple group. Then either \(G\) is a \(\pi\)-group or every \(\pi\)-Hall subgroup of \(G\) is solvable. In particular, if \(G\) is not a \(\pi\)-group, then \(G \in \mathcal{D}_\tau\) for every \(\tau \subseteq \pi\).

Proof. Lemma follows from Lemmas 2.25 and 2.27 and the solvability of groups of odd order [12]. \(\blacksquare\)

2.5 Degrees of minimal faithful permutation representation

In the following Lemma we collect some statements about minimal degrees of faithful permutation representations of some groups.

Lemma 2.29 The following statements hold.

1. If \(H \leq G\), then \(\mu(H) \leq \mu(G)\).
2. [13, Theorem 2] Let \(\mathcal{L}\) be a complete class of finite groups. Let \(N\) be the \(\mathcal{L}\)-radical of \(G\), that is the maximal normal \(\mathcal{L}\)-subgroup of \(G\). Then \(\mu(G) \geq \mu(G/N)\).
3. [14, Theorem 3.1] If \(G = L_1 \times L_2 \times \cdots \times L_r\) and \(L_1, L_2, \ldots, L_r\) are simple, then \(\mu(G) = \mu(L_1) + \mu(L_2) + \cdots + \mu(L_r)\).
4. If \(G\) is simple, then \(\mu(G)\) is equal to the minimum of indices of maximal subgroups in \(G\).
5. \(\mu(\text{Sym}_n) = \mu(\text{Alt}_n) = n\).

2.6 Some subgroups of quasisimple and almost simple groups

Lemma 2.30 [4, Tables 8.1 and 8.2] Assume that \(q^2 \equiv 1 \pmod{5}\) and \(q\) is a power of an odd prime. Then \(\text{SL}_2(q)\) contains a subgroup isomorphic to \(\text{SL}_2(5)\) and \(\text{PSL}_2(q)\) contains a subgroup isomorphic to \(\text{PSL}_2(5) \cong \text{Alt}_5\).

Lemma 2.31 [4, Tables 8.8 and 8.10] Assume that \(q \equiv \eta \pmod{4}\), where \(q\) is a power of an odd prime and \(\eta = \pm 1\). Then \(\text{SL}_2^4(q)\) contains a subgroup isomorphic to \(4 \circ 2^{1+4} \cdot \text{Alt}_6\).
Lemma 2.32 [14, Lemma 1.24] Let l be an odd prime, $q > 2$ be a power of a prime. Assume $G = \langle D, x \rangle$, where D is the group of all diagonal matrices of determinant 1, and

$$x = \begin{pmatrix}
0 & 1 & & \\
0 & 1 & & \\
& & \ddots & \\
1 & 0 & & 0
\end{pmatrix} \in \text{SL}_r(q).$$

Then $|G| = (q - 1)^{r-1}r$ and G is absolutely irreducible.

Lemma 2.33 Let q be a power of an odd prime. Let pair (G^*, m), where G^* is a quasisimple group and m is an positive integer, appear in the following list:

1. $(G^*, m) = (\text{SL}^n(q), [n/2]), n > 2, \eta = \pm$;
2. $(G^*, m) = (\text{Sp}_n(q), n/2), n > 2$ is even;
3. $(G^*, m) = (\Omega_n(q), 2[n/4]), n > 5$ is odd;
4. $(G^*, m) = (\Omega_n^+(q), 2[n/4]), n > 6$ is even;
5. $(G^*, m) = (\Omega_n^-(q), 2[(n - 1)/4]), n > 6$ is even;
6. $(G^*, m) = (E_6^q(q), 4), G^*$ is a quotient of the universal group by a central subgroup;
7. $(G^*, m) = (E_7(q), 7), G^*$ is a quotient of the universal group by a central subgroup;
8. $(G^*, m) = (E_8(q), 8)$.

Then G^* contains a collection Δ of subgroups such that

(a) every member of Δ is isomorphic to $\text{SL}_2(q)$,
(b) if $K^*, L^* \in \Delta$ are distinct, then $[K^*, L^*] = 1$, and
(c) $|\Delta| = m$.

Proof. Lemma follows from Aschbacher’s theory of fundamental subgroups. Recall that, if G^* is a group from the lemma, then K^* is a fundamental subgroup, if K^* is conjugate to a subgroup generated by a long root subgroup U and its opposite U^-. Every fundamental subgroup of G^* is isomorphic to $\text{SL}_2(q)$. Fix a Sylow 2-subgroup S^* of G^* and consider $\Delta = \text{Fun}(S^*)$ consisting of all fundamental subgroups L^* such that $S^* \cap L^*$ is a Sylow 2-subgroup of L^*. It follows from [14, 6.2] that distinct elements of Δ elementwise commute and follows from [4, Theorem 2] that $|\Delta| = m$. \hfill \Box

Lemma 2.34 Let $G = \text{Sym}_n$, where $n \geq 5$, and G contains a subgroup H having Alt_m as a homomorphic image for some $m \in \{n - 1, n\}$. Then $H \cong \text{Alt}_m$.

Proof. Suppose that $m = n$. In this case $|G : H| \leq 2$ and $H \in \{\text{Sym}_n, \text{Alt}_n\}$. Since Sym_n has no Alt_n as a homomorphic image, we have $H = \text{Alt}_n$.

Suppose that $m = n - 1$. First of all, note the following well-known fact: every subgroup H_0 of G of index n is isomorphic to Sym_{n-1}. Indeed, let K be the kernel of the action of G by right multiplication on the set Ω of right cosets of H in G. Then $K \leq H_0$
and \(|G : K| \geq |G : H_0| = n > 2 \). Since \(G \) has a unique minimal normal subgroup \(\text{Alt}_n \) and its index equals 2, we have \(K = 1 \). Therefore, \(G \) is embedded in \(\text{Sym}(\Omega) \cong \text{Sym}_n \) and \(G \cong \text{Sym}(\Omega) \). Since \(H_0 \) is a point stabilizer in \(G \), we have \(H_0 \cong \text{Sym}_{n-1} \).

Now let \(L \) be the kernel of an epimorphism \(H \to \text{Alt}_{n-1} \). We need to show that \(L = 1 \). If not, then

\[
|H| = |L| |\text{Alt}_{n-1}| \geq 2 |\text{Alt}_{n-1}| = (n-1)! \text{ and } |G : H| \leq n.
\]

Since \(G \) has no proper subgroups of index less than \(n \), except \(\text{Alt}_n \), we have either \(H = G = \text{Sym}_n \), or \(H \cong \text{Sym}_{n-1} \). But \(\text{Alt}_{n-1} \) is not a homomorphic image of both \(S_n \) and \(\text{Sym}_{n-1} \).

Lemma 2.35 Let \(G = \text{Sym}_n \). Then \(H = N_G(H) \) for every subgroup \(H \) of \(G \) such that \(|G : H| \) is odd.

Proof. Let \(S \) be a Sylow \(2 \)-subgroup of \(H \). Then \(S \) is a Sylow \(2 \)-subgroup of \(G \) and \(S = N_G(S) \) by [5, Lemma 4]. So \(S = N_G(S) \leq H \), and \(H = N_G(H) \) by the Frattini Argument. \(\square \)

Lemma 2.36 Let \(H \) be a \(\pi \)-Hall subgroup of \(G = L \wr \text{Sym}_n \). Denote by \(L_i \times \ldots \times L_n \) the base of the wreath product. Assume that \(L_i \) possesses a \(\pi \)-Hall subgroup that is isomorphic to \(H \cap L_i \) and is not conjugate with \(H \cap L_i \) in \(L_i \). Then \(G \) possesses a \(\pi \)-Hall subgroup \(K \) such that \(H \) and \(K \) have the same composition factors and are not conjugate in \(G \).

Proof. We can assume for the simplicity that \(i = 1 \). We set \(A = L_1 \times \ldots \times L_n \) and \(H_1 = H \cap L_1 \) and denote by \(K_1 \) a subgroup of \(L_1 \) that is isomorphic to \(H_1 \) but is not conjugate to \(H_1 \). Note that \(G \) acts on the set \(\Omega = \{L_1, \ldots, L_n\} \) via conjugation and \(A \) is the kernel of this action. Moreover, it follows from the definition of a wreath product that \(N_G(L_1) = C_G(L_1)L_1 \).

Renumbering \(\{L_1, \ldots, L_n\} \), if necessary, we may choose a right transversal \(h_1 = 1, \ldots, h_m \) of \(N_H(L_1) \) in \(H \) so that \(L_1^{h_1} = L_1 \). Then \(L_i^{h_i} \neq L_i^{h_j} \) if \(i \neq j \). In particular, \(m \leq n \). So \(\{L_1, \ldots, L_m\} \) is an orbit of \(H \) on \(\Omega \). Thus both \(\Delta = \{L_1, \ldots, L_m\} \) and \(\Gamma = \{L_{m+1}, \ldots, L_n\} \) are \(H \)-invariant. Set

\[
K_i = \left\{ \begin{array}{ll}
K_1^{h_i} & \text{for } i = 1, \ldots, m \\
H \cap L_i & \text{for } i = m + 1, \ldots, n
\end{array} \right.
\]

and \(K_0 = \langle K_i \mid i = 1, \ldots, n \rangle = K_1 \times \ldots \times K_n \). By construction, \(K_0 \leq A \) and \(K_0 \cong H \cap A \in \text{Hall}_r(A) \).

We claim that for every \(h \in H \) there exists \(a \in A \) such that \(K_0^h = K_0^a \).

Indeed, take \(h \in H \). Then there exists \(\sigma \in \text{Sym}_n \) such that \(L_i^h = L_i^{i\sigma} \) for \(i = 1, \ldots, n \). Since \(\Delta \) and \(\Gamma \) are both \(H \)-invariant, we obtain that \(i\sigma \in \{1, \ldots, m\} \) for \(i = 1, \ldots, m \) and \(i\sigma \in \{m + 1, \ldots, n\} \) for \(i = m + 1, \ldots, n \).

Take \(i \leq m \). Then \(h_i h = xh_{i\sigma} \) for some \(x \in N_H(L_1) \). In this case

\[
K_i^h = K_1^{h_i} = K_1^{xh_{i\sigma}}.
\]

Since \(x \in N_H(L_1) \leq N_G(L_1) = C_G(L_1)L_1 \) and \(K_1 \leq L_1 \), \(K_1^b = K_1^c \) for some \(b \in L_1 \). Set \(b_i = b_1^{h_i} \in L_i \). Then we have

\[
K_i^h = K_1^{xh_{i\sigma}} = K_1^{bh_{i\sigma}} = \left(K_1^{xh_{i\sigma}}
ight)^{bh_{i\sigma}} = K_1^{h_{i\sigma}}.
\]
Thus, we see that there are $b_1 \in L_1, \ldots, b_m \in L_m$ such that

$$K^h_i = K^b_i$$

for every $i \leq m$.

Let $a = b_1 \ldots b_m$. We show that $K^h_0 = K^a_0$. Indeed, we have seen that $K^h_i = K^b_i = K^a_i$ if $i \leq m$. If $i > m$ then

$$K^h_i = H \cap L^h_i = H \cap L_i = K_i = K_i^a,$$

since a centralizes K_j for all $j > m$. Hence,

$$K^h_0 = \langle K^h_i \mid i = 1, \ldots, n \rangle = \langle K^a_i \mid i = 1, \ldots, n \rangle = K^a_0.$$

Now Lemma 2.11 implies that there is $K \in \text{Hall}_\pi(HA) \subseteq \text{Hall}_\pi(G)$ such that $K_0 = K \cap A$.

The groups H and K have the same composition factors, since

$$K/K \cap A \cong K/A = HA/A \cong H/H \cap A \text{ and } K \cap A = K_0 \cong H \cap A.$$

Suppose, $K = H^g$ for some $g \in G$. Then the image of g in G/A normalizes $HA/A = KA/A$. Note that $2 \in \pi$ in view of Lemma 2.2. Therefore, the index of HA/A in $G/A \cong \text{Sym}_n$ is odd. Lemma 2.35 implies that $g \in HA$, and so we may assume that $g \in A$. Thus $K \cap A = H^g \cap A$, i.e. $K_0 = K \cap A = K_1 \times \ldots \times K_n$ and $H \cap A = H_1 \times \ldots \times H_n$ are conjugate in $A = L_1 \times \ldots \times L_n$. In particular, K_1 and H_1 are conjugate in L_1, a contradiction. □

3 Proof of Theorem 1

Theorem 1 says that, for a finite simple group G, the following two statements are equivalent.

(1) $G \in \mathcal{D}_\pi$ and

(2) either $G \in \mathfrak{X}$ or $\pi(G) \nsubseteq \pi$ and $G \in \mathcal{D}_\pi$.

(2) \Rightarrow (1). Obviously $\mathfrak{X} \subseteq \mathcal{D}_\pi$. So we need to prove that if $\pi(G) \nsubseteq \pi$ and $G \in \mathcal{D}_\pi$ then $G \in \mathcal{D}_\pi$. Lemma 2.28 implies that every π-Hall subgroup (hence every π-subgroup of G, since $G \in \mathcal{D}_\pi$) is solvable, thus it belongs to \mathfrak{X}. On the other hand, every \mathfrak{X}-subgroup of G is a π-subgroup and so is contained in a π-Hall subgroup (we again use $G \in \mathcal{D}_\pi$ here). Therefore, $m_{\mathfrak{X}}(G) = \text{Hall}_\pi(G)$. Hence every two \mathfrak{X}-maximal subgroups of G are conjugate, i.e. $G \in \mathcal{D}_\pi$.

(1) \Rightarrow (2). This implication is much harder to prove. The proof of the implication requires case by case consideration and we organize it in a series of steps, and divide it in the following subsections.

3.1 Proof of the implication (1) \Rightarrow (2): general remarks

Assume that $G \in \mathcal{D}_\pi$ and $G \nsubseteq \mathfrak{X}$. We need to show that $G \in \mathcal{D}_\pi$.

Lemma 2.3 implies that
(i) \(m_X(G) = X \cap \text{Hall}_\pi(G) = \text{Hall}_\pi(G) \). In particular, \(G \in \mathcal{E}_\pi \) and all elements of \(\text{Hall}_X(G) \) are conjugate.

Suppose by contradiction that \(G \notin \mathcal{D}_\pi \). Then

(ii) There exists a \(\pi \)-subgroup of \(G \) which does not belong to \(\mathcal{X} \).

Otherwise the \(\pi \)-subgroups of \(G \) are exactly the \(\mathcal{X} \)-subgroups, thus the \(\pi \)-maximal subgroups of \(G \) are conjugate, i.e. \(G \in \mathcal{D}_\pi \).

The inclusion \(\mathcal{G}_\pi \subseteq \mathcal{X} \) and (ii) immediately imply

(iii) There exists a non-solvable \(\pi \)-subgroup in \(G \).

The solvability of primary and biprimary groups [10, Ch. I, 2] and (iii) implies

(iv) \(|\pi \cap \pi(G)| > 2 \).

The Feit–Thompson theorem [12] implies

(v) \(2 \in \pi \cap \pi(G) \).

Moreover, it follows from (v) and Lemma 2.27 that

(vi) \(3 \in \pi \cap \pi(G) \).

Now we prove that

(vii) \(G \) has no solvable \(\pi \)-Hall subgroups.

Indeed, if \(G \) has a solvable \(\pi \)-Hall subgroup \(H \), then \(H \in \mathcal{X} \cap \text{Hall}_\pi(G) = m_X(G) \). In view of (v), (vi) and the Hall theorem, \(H \) contains a \(\{2, 3\} \)-Hall subgroup \(H_0 \) and \(H_0 \in \text{Hall}_{\{2,3\}}(G) \). Take an arbitrary \(\{2, 3\} \)-subgroup \(U \) in \(G \). Since \(U \) is solvable and in view of (v) and (vi) we have \(U \in \mathcal{X} \). Now \(G \in \mathcal{D}_\mathcal{X} \) implies that \(U \) is conjugate to a subgroup of \(H \). Moreover, the solvability of \(H \) means that \(U \) is conjugate to a subgroup of \(H_0 \) by the Hall theorem. Hence \(G \in \mathcal{D}_{\{2,3\}} \), a contradiction with Lemma 2.23.

Now we exclude all possibilities for \(G \), considering finite simple groups case by case, according to the Classification of the finite simple groups.

3.2 Alternating groups

The following statement follows from Lemma 2.19.

(viii) \(G \) is not isomorphic to an alternating group.
3.3 Sporadic groups and Tits group

Now, exclude any possibilities for G to be a sporadic group.

(ix) G is not isomorphic to the Mathieu group M_{11}.

Suppose that, $G = M_{11}$. According to Lemma 2.10 and Table 2 and in view of (v)–(vii) it is sufficient to consider the situation $\pi \cap \pi(G) = \{2, 3, 5\}$ and a Hall \mathfrak{X}-subgroup H of G is $M_{10} = \text{Alt}_6 \cdot 2$. Take a $\{2, 3\}$-Hall subgroup U of G (this group appears in Table 4). Since U is a solvable π-group, we have $U \in \mathfrak{X}$. Now $G \in \mathfrak{D}_X$ implies that U is conjugate to a subgroup of H. But this means that H and its unique nonabelian composition factor Alt_6 satisfy $\delta_{\{2,3\}}$. A contradiction with Lemma 2.14.

(x) G is not isomorphic to the Mathieu group M_{22}.

According to Lemma 2.16 and Table 2 if $G = M_{22}$, then an \mathfrak{X}-Hall subgroup H of G is isomorphic to $2^4 : \text{Alt}_6$. But G contains a maximal subgroup $U \simeq 2^4 : \text{Sym}_5$ which is an \mathfrak{X}-group and is not isomorphic to a subgroup of H.

(xi) G is not isomorphic to the Mathieu group M_{23}.

Suppose that $G = M_{23}$ and $H \in \text{Hall}_{\mathfrak{X}}(G)$. Lemma 2.10, Table 2 and (vii) imply that one of the following cases holds.

(a) $\pi \cap \pi(G) = \{2, 3, 5\}$ and $H \cong 2^4 : \text{Alt}_6$;
(b) $\pi \cap \pi(G) = \{2, 3, 5\}$ and $H \cong 2^4 : (3 \times \text{Alt}_5)$;
(c) $\pi \cap \pi(G) = \{2, 3, 5, 7\}$ and $H \cong \text{PSL}_3(4) : 2_2$;
(d) $\pi \cap \pi(G) = \{2, 3, 5, 7\}$ and $H \cong 2^4 : \text{Alt}_7$;
(e) $\pi \cap \pi(G) = \{2, 3, 5, 7, 11\}$ and $H \cong M_{22}$.

In Case (a), we consider an \mathfrak{X}-subgroup $U \cong 2^4 : (3 \times \text{Alt}_5)$ which is a π-Hall subgroup (and appears in Case (b)) and is not isomorphic to H.

Suppose that Case (b) holds. In G, consider a $\{2,3\}$-subgroup $U \cong 3^2 : Q_8$, a Frobenius group which is contained in $\text{PSL}_3(4)$, see [3]. Suppose, U is a subgroup of H. Let

$$\pi : H \to H/O_2(H)$$

be the natural epimorphism. Since U has no non-trivial normal 2-subgroups, we have

$$U \cong \overline{U} \leq H \cong 3 \times \text{Alt}_5.$$

Now $|U|_3 = |H|_3 = 3^2$, i.e. \overline{U} contains a Sylow 3-subgroup of \overline{H} and the cyclic subgroup $O_3(\overline{H})$ of order 3 must be a normal subgroup in \overline{U}. But $U \ncong \overline{U}$ has no normal subgroups of order 3. A contradiction.

We exclude Cases (c), (d) and (e), since the subgroup H does not contain elements of order 15 in these cases while M_{23} has a cyclic subgroup U of order 15 and $U \in \mathfrak{S}_n \subseteq \mathfrak{X}$.

(xii) G is not isomorphic to the Mathieu group M_{24}.

26
If $G = M_{24}$, then an \mathfrak{X}-Hall subgroup H is isomorphic to $2^6 : 3 \cdot \text{Sym}_6$. Consider an \mathfrak{X} subgroup $U \cong 2^4 : \text{Alt}_6$ which is included in a maximal subgroup $M = M_{23}$ of G and is a $\{2, 3, 5\}$-Hall subgroup of M. Since $G \in \mathcal{D}_{\mathfrak{X}}$, without loss of generality, we can assume that $U \leq H$. Now U contains a subgroup $U_0 \cong \text{Alt}_6$ and, clearly, $U_0 \cap O_2(H) = 1$. Let $\pi : H \to H/O_2(H)$ be the natural epimorphism. We have

$$\text{Alt}_6 \cong U_0 \cong \overline{U}_0 \leq \overline{H} \cong 3 \cdot \text{Sym}_6.$$

But this means that $\text{Alt}_6 \cong U_0 = U'_0 \leq H'_0 \cong 3 \cdot \text{Alt}_6$ and we have a contradiction.

(xiii) G is not isomorphic to the Janko group J_1.

Suppose that $G = J_1$ and $H \in \text{Hall}_\mathfrak{X}(G)$. It follows from Lemma 2.16, Table 2 and (vii) that $H \cong 2 \times \text{Alt}_5$. Clearly, H contains no elements of order 15. But G has a cyclic subgroup U of order 15 (see [9]) and $U \in \mathfrak{S}_x \subseteq \mathfrak{X}$, a contradiction.

(xiv) G is not isomorphic to the Janko group J_4.

Suppose, $G = J_4$ and $H \in \text{Hall}_\mathfrak{X}(G)$. Lemma 2.16 and Table 2 imply that

$$H \cong 2^{11} : 2^6 : 3 \cdot \text{Sym}_6.$$

We exclude this possibility arguing exactly as in (xii), because G contains a subgroup isomorphic to M_{24}.

(xv) G is not isomorphic to any sporadic group or a Tits group.

This statement follows from (v) Lemma 2.10 and (ix)–(xiv).

3.4 Groups of Lie type of characteristic $p \in \pi(\mathfrak{X})$

Now, according to Lemma 2.19, we exclude the possibilities for G to be isomorphic to a group of Lie type whose characteristic belongs to π.

(xvi) If G is a group of Lie type, then G has no π-Hall subgroups contained in a Borel subgroup.

Since every Borel subgroup of G is solvable, (xvi) follows from (vii).

(xvii) G is not isomorphic to $D_l(q)$, where q is a power of some $p \in \pi$.

Suppose that $G \cong D_l(q)$ and the numeration of the roots in a fundamental root system Π of G is chosen as in the Dynkin diagram on Pic. 1. It follows from Lemma 2.19 that q is a power of 2, l is a Fermat prime (in particular, $l \geq 5$), and $(l, q-1) = 1$. Moreover, if $H \in \text{Hall}_\mathfrak{X}(G)$, then H is conjugate to the canonic parabolic maximal subgroup corresponding
to the set $\Pi \setminus \{r_1\}$ of fundamental roots. This parabolic subgroup has a composition factor isomorphic to $D_{l-1}(q)$. Since \mathfrak{X} is a complete class, we obtain that

$$D_i(q) \in \mathfrak{X} \quad \text{for} \quad i \leq l - 1, \quad \text{and} \quad A_1(q) \in \mathfrak{X}.$$

Moreover, $\pi(q - 1) \subseteq \pi$. Consider the canonic parabolic maximal subgroup P_J of G, corresponding to the set $J = \Pi \setminus \{r_2\}$. Above remarks and the completeness of \mathfrak{X} under extensions implies that $P_J \in \mathfrak{X}$: the nonabelian composition factors of P are isomorphic to $D_{l-2}(q)$ and, possibly, $A_1(q)$, while the orders of abelian composition factors belong to $\pi(q - 1) \cup \{2\} \subseteq \pi$. But the maximality of P means that P_J is not conjugate to any subgroup of H, a contradiction with $G \in \mathcal{D}_\mathfrak{X}$.

(xviii) G is not isomorphic to $^2D_l(q)$, where q is a power of some $p \in \pi$.

Suppose that $G \cong ^2D_l(q)$ and the numeration of the roots in a fundamental root system Π^1 of G is chosen as in the Dynkin diagram on Pic. 2. It follows from Lemma 2.19 that q is a power of 2, $l - 1$ is a Mersinne prime, and $(l-1, q-1) = 1$. Take $H \in \text{Hall}_\mathfrak{X}(G)$. Then H is conjugate to the canonic parabolic maximal subgroup corresponding to the set $\Pi^1 \setminus \{r_1\}$ of fundamental roots. This parabolic subgroup has a composition factor isomorphic to $^2D_{l-1}(q)$ if $l > 4$ or isomorphic to $^2A_3(q)$ if $l = 4$. Consider the canonic parabolic maximal subgroup P_J of G which corresponds to the set $J = \Pi^1 \setminus \{r_1\}$ of fundamental roots. Arguing as in (xviii), we see that $P_J \in \mathfrak{X}$ and P is not conjugate to any subgroup of H, a contradiction with $G \in \mathcal{D}_\mathfrak{X}$.

(xix) G is not isomorphic to $A_{l-1}(q) \cong \text{PSL}_l(q)$, where q is a power of some $p \in \pi$.

Suppose that $G = \text{PSL}_n(q)$, where q is a power of some $p \in \pi$, and let $G^* = \text{SL}_n(q)$. Lemma 2.8 implies that $G \in \mathcal{D}_\mathfrak{X}$ if and only if $G^* \in \mathcal{D}_\mathfrak{X}$. Thus, $G^* \in \mathcal{D}_\mathfrak{X}$ and, moreover, it follows from (vii) and Lemma 2.8 that there are no solvable π-Hall subgroups in G^*.

Identify G^* with $\text{SL}(V)$, where $V = \mathbb{F}_q^n$ is the natural n-dimensional module for G^*. Let $H^* \in \text{Hall}_\mathfrak{X}(G^*)$. By Lemma 2.19, H^* is the stabilizer in G^* of a series

$$0 = V_0 < V_1 < \cdots < V_s = V$$

of subspaces such that $\dim V_i/V_{i-1} = n_i, i = 1, 2, \ldots, s$, and one of the following conditions holds:

(a) n is a prime, $s = 2, n_1, n_2 \in \{1, n - 1\}$;
(b) $n = 4, s = 2, n_1 = n_2 = 2$; moreover, $q = 2^{2t+1}$;
(c) $n = 5, s = 2, n_1, n_2 \in \{2, 3\}$;
(d) $n = 5, s = 3, n_1, n_2, n_3 \in \{1, 2\}$;
(e) $n = 7, s = 2, n_1, n_2 \in \{3, 4\}$;
(f) $n = 8, s = 2, n_1 = n_2 = 4$; moreover, $q = 2^{2t}$;
(g) $n = 11, s = 2, n_1, n_2 \in \{5, 6\}$.

28
In cases (a), (c), (e), and (g), \(H^* \) is the stabilizer of a subspace of some dimension \(m \neq n - m \) and the stabilizer \(K^* \) of a subspace of dimension \(n - m \) is isomorphic to \(H^* \) (in particular, \(K^* \in \mathfrak{X} \)) but is not conjugate to \(H^* \). It contradicts \(G^* \in \mathcal{D}_X \).

If case (d) holds, then there are exactly three conjugacy classes of \(\pi \)-Hall subgroups with the same composition factors and \(H^* \) belongs to one of them. Thus, case (d) is impossible for \(G^* \in \mathcal{D}_X \).

Now consider cases (b) and (f). In these cases \(n = 4 \) and \(n = 8 \), respectively. Moreover, if \(q = 2 \) then case (b) holds and \(G = \text{PSL}_4(2) \cong \text{Alt}_8 \notin \mathcal{D}_X \) in view of (viii). Therefore, we assume that \(q > 2 \) if \(n = 4 \). Define \(r = n - 1 = 3 \) in (b) and \(r = n - 1 = 7 \) in (f). It is easy to check that \(r \in \pi \) in both cases. Consider the subgroup \(U^* \) of \(G^* \), consisting of all matrices of type

\[
\begin{pmatrix}
a & 1 \\
1 & 0
\end{pmatrix},
\]

where \(a \in \langle D, x \rangle \leq \text{SL}_r(q) \), \(D \) is the group of all diagonal matrices in \(\text{SL}_r(q) \) and

\[
x = \begin{pmatrix}
0 & 1 & & \\
0 & 1 & & \\
& & & \\
1 & 0 & &
\end{pmatrix} \in \text{SL}_r(q).
\]

By Lemma 2.32 it follows that there is a subspace \(W \) of \(V \) of dimension \(r \), such that \(U^* \) acts irreducibly on \(W \). Clearly, \(U^* \) cannot stabilize any subspace of dimension \(n/2 = 2 \) in case (b) or \(n/2 = 4 \) in case (f). Therefore, \(U^* \) is not conjugate to any subgroup of \(H^* \). By Lemma 2.32, \(U^* \) is a solvable \(\pi \)-group, so \(U^* \in \mathfrak{X} \), a contradiction with \(G^* \in \mathcal{D}_X \).

\((xx)\) \(G \) is not isomorphic to any group of Lie type of characteristic \(p \in \pi \).

This statement follows from (xvi)–(xix) and Lemma 2.19.

3.5 Classical groups of characteristic \(p \notin \pi(\mathfrak{X}) \)

In view of (xx), \(G \) is a group of Lie type over a field of an order \(q \) and characteristic \(p \notin \pi \). In particular, \(p \neq 2, 3 \).

We start with the smallest case \(G = \text{PSL}_2(q) \).

\((xxi)\) \(G \) is not isomorphic to \(\text{PSL}_2(q) \).

Suppose \(G = \text{PSL}_2(q) \), and denote \(G^* = \text{SL}_2(q) \). Then \(G^* \in \mathcal{D}_X \) and \(G^* \) has no solvable \(\pi \)-Hall subgroups by (vii) and Lemmas 2.1 and 2.8, so statement (d) of Lemma 2.17 holds. Therefore if \(H^* \) is an \(\mathfrak{X} \)-Hall subgroup of \(G^* \) then the image of \(H^* \) in \(G^*/Z(G^*) \cong G \) is isomorphic to \(\text{Alt}_5 \). But in this case there are exactly two conjugacy classes of \(\mathfrak{X} \)-Hall subgroup in \(G \). It contradicts \(G \in \mathcal{D}_X \).

Now we show that \(G \) is not isomorphic to a classical group. First we consider the most transparent case of symplectic groups. Similar, but more complicated, arguments appear in the consideration of the other types of classical groups: linear, unitary and orthogonal.

\((xxii)\) \(G \) is not isomorphic to \(\text{PSp}_{2n}(q) \).
Suppose \(G = \text{PSp}_{2n}(q) \) and denote \(G^* = \text{Sp}_{2n}(q) \). By (viii) and Lemma 2.21, we have \(G^* \in \mathcal{D}_X \) and \(G^* \) has no solvable \(\pi \)-Hall subgroups. Consider \(H^* \in \text{Hall}_X(G^*) \). We claim that

- \(\pi \cap \pi(G^*) \subseteq \pi(q^2 - 1) \);
- \(H^* \) is included in a subgroup
 \[M^* \cong \text{SL}_2(q) \wr \text{Sym}_n, \]
 we denote by \(B^* \) the base of this wreath product;
- \(H^*/(H^* \cap B^*) \) is isomorphic to a \(\pi \)-Hall subgroup of \(\text{Sym}_n \);
- \(H^* \cap B^* \) is solvable.

First two items can be found in Lemma 2.21, the third item follows by Lemma 2.1. The last item follows by Lemma 2.33, since if \(H^* \cap B^* \) is nonsolvable, then, for some component \(L^* = \text{SL}_2(q) \), \(H^* \cap L^* \) is a nonsolvable \(\pi \)-Hall subgroup of \(L^* \). Now Lemma 2.11 implies that \(L^* \) possesses \(\pi \)-Hall subgroup that is isomorphic and nonconjugate to \(H^* \cap L^* \). Finally Lemma 2.33 implies that \(M^* \) possesses a \(\pi \)-Hall subgroup that is nonconjugate to \(H^* \) but have the same composition factors. Lemma 2.21(C) implies that \(G^* \) possesses nonconjugate \(X \)-Hall subgroups, a contradiction with \(G^* \in \mathcal{D}_X \).

The nonsolvability of \(H^* \) and Lemma 2.14 imply that \(H^*/(H^* \cap B^*) \) is isomorphic to a symmetric group of degree \(n \) or \(n - 1 \) and this degree is at least 5. In particular, \(5 \in \pi \cap \pi(G^*) \), \(\text{Alt}_5 \in X \), and 5 divides \(q^2 - 1 \). Moreover, \(H^* \cap B^* \) coincides with the solvable radical \(H_5^* \) of \(H^* \).

Lemma 2.33 implies that \(G^* \) possesses a collection \(\Delta \) of subgroups isomorphic to \(\text{SL}_2(q) \) such that \(|\Delta| = n \) and \([K^*, L^*] = 1 \) for every \(K^*, L^* \in \Delta \) and \(K^* \neq L^* \). Since 5 divides \(q^2 - 1 \), Lemma 2.30 implies that \(\text{SL}_2(q) \) possesses a subgroup isomorphic to \(\text{SL}_2(5) \). For every \(K^* \in \Delta \) fix some \(U(K^*) \leq K^* \) such that \(U(K^*) \cong \text{SL}_2(5) \). Set
\[
U^* = \langle U(K^*) \mid K^* \in \Delta \rangle.
\]
It follows from the definition that
\[
U^*/U^*_\mathcal{D} \cong \text{Alt}_5 \times \cdots \times \text{Alt}_5\]
and \(U^*_\mathcal{D} \) is a 2-group. Thus, \(U^* \in X \).

We show that \(U^* \) is not conjugate to a subgroup of \(H^* \), and this contradicts \(G^* \in \mathcal{D}_X \). Indeed, if \(U^* \) is conjugate to a subgroup of \(H^* \), then we can assume that \(U^* \leq H^* \). Denote by \(R^* = H^* \cap B^* \) the solvable radical of \(H^* \) and let
\[
\phi : H^* \to H^*/R^* = \overline{H}^*
\]
be the natural epimorphism. We have seen above that \(\overline{H}^* \) is isomorphic to a subgroup of \(\text{Sym}_n \). Therefore,
\[
\mu(\overline{U}^*) \leq \mu(\overline{H}^*) \leq n.
\]
On the other hand, \(\overline{U}^*/U^*_\mathcal{D} \cong U^*/U^*_\mathcal{D} \) and Lemma 2.29 implies that
\[
\mu(\overline{U}^*) \geq \mu(U^*/U^*_\mathcal{D}) = 5n > n.
\]
It contradicts the previous inequality.

Thus, (xxii) is proved.
(xxiii) G is not isomorphic to $\text{PSL}_n^\gamma(q)$, $\eta = \pm$.

Suppose $G = \text{PSL}_n^\gamma(q)$ and denote $G^* = \text{SL}_n^\gamma(q)$. By (viii) and Lemma 2.33 we have $G^* \in \mathcal{D}_X$ and G^* has no solvable π-Hall subgroups. Let $H^* \in \text{Hall}_X(G^*)$. Consider all possibilities for H^* given in statements (a)--(e) of Lemma 2.20.

In case (a) n is equal to 2, and this case is excluded in view of (xxi).

In case (d) H^* is isomorphic to $4.2^4.\text{Alt}_6$. In this case G^* has two conjugacy classes of π-Hall subgroups isomorphic $4.2^4.\text{Alt}_6$. So if H^* satisfies (d), then this contradicts $G^* \in \mathcal{D}_X$.

In case (e) we have $\pi \cap \pi(G^*) = \{2, 3\}$. So H^* is solvable and this case is excluded in view of (vii).

Thus, one of the following statements holds.

(b) $q \equiv \eta \pmod{4}$, Sym_n satisfies \mathcal{E}_π, $\pi \cap \pi(G) \subseteq \pi(q - \eta) \cup \pi(n!)$, and if $r \in (\pi \cap \pi(n!)) \setminus \pi(q - \eta)$, then $|G^*|_r = |\text{Sym}_n|_r$. In this case H^* is included in

$$M^* = L^* \cap G^* \cong (q - \eta)^{n-1} \cdot \text{Sym}_n,$$

where $L^* = \text{GL}_1^\gamma(q) \cdot \text{Sym}_n \leq \text{GL}_n^\gamma(q)$.

(c) $n = 2m + k$, where $k \in \{0, 1\}$, $m \geq 1$, $q \equiv -\eta \pmod{3}$, $\pi \cap \pi(G) \subseteq \pi(q^2 - 1)$, the groups Sym_m and $\text{GL}_2^\gamma(q)$ satisfy \mathcal{E}_π. In this case H^* is contained in

$$M^* = L^* \cap G^* \cong \left(\text{GL}_1^\gamma(q) \circ \cdots \circ \text{GL}_2^\gamma(q)\right) \cdot \text{Sym}_m \circ Z,$$

m times

where $L^* = \text{GL}_2^\gamma(q) \cdot \text{Sym}_m \times Z \leq \text{GL}_n(q)$ and Z is a cyclic group of order $q - \eta$ for $k = 1$, and Z is trivial for $k = 0$. The intersection of H^* with each factor $\text{GL}_2^\gamma(q)$ is a π-Hall subgroup in $\text{GL}_2^\gamma(q)$.

By Lemma 2.13 π-Hall subgroups of $\text{GL}_2^\gamma(q)$ are solvable. Since H^* is nonsolvable, every nonabelian composition factor of H^* is a composition factor of a π-Hall subgroup of a symmetric group of degree at most n. In both cases (b) and (c), it follows from Lemma 2.14 that

- every nonabelian composition factor of H^* is isomorphic to an alternating group; in particular
- $5 \in \pi \cap \pi(G^*)$, $\text{Alt}_5 \in \mathcal{X}$ and $n \geq 5$; and
- H^*/H^*_5 is isomorphic to a subgroup of Sym_n.

Now we consider two cases: 5 divides $q^2 - 1$ and 5 does not divide $q^2 - 1$.

Suppose, 5 divides $q^2 - 1$. In this case we argue similarly the case of symplectic groups above. Lemma 2.33 implies that G^* possesses a collection Δ of subgroups isomorphic to $\text{SL}_2(q)$ such that $|\Delta| = [n/2]$ and $[K^*, L^*] = 1$ for every $K^*, L^* \in \Delta$ and $K^* \neq L^*$. Since 5 divides $q^2 - 1$, Lemma 2.30 implies that $\text{SL}_2(q)$ possesses a subgroup isomorphic to $\text{SL}_2(5)$. For every $K^* \in \Delta$ fix some $U(K^*) \leq K^*$ such that $U(K^*) \cong \text{SL}_2(5)$. Set

$$U^* = \langle U(K^*) \mid K^* \in \Delta \rangle.$$
Indeed, if \(U^* \) is not conjugate to a subgroup of \(H^* \) and this contradicts \(G^* \in \mathcal{D}_X \).

We claim that \(U^* \) is not conjugate to a subgroup of \(H^* \) and this contradicts \(G^* \in \mathcal{D}_X \).

On the other hand, Lemma 2.29 implies that it contradicts the previous inequality. Hence 5 does not divide \(q^2 - 1 \).

Suppose that 5 does not divide \(q^2 - 1 \). It means that case (b) holds (in particular, the solvable radical \(H^*_\mathbb{S} \) of \(H^* \) is abelian) and \(|G^*|_5 = |\text{Sym}_n|_5 \). We have

\[|G^*|_5 = \prod_{i=1}^n (q^i - \eta^i)_5 \quad \text{and} \quad |\text{Sym}_n|_5 = (n!)_5. \]

Lemma 2.13 implies that \([n/4] = [n/5] \). Since \(n \geq 5 \), this means \(n \in \{5, 6, 7, 10, 11, 15\} \).

Assume that \(n \in \{5, 6, 7\} \) first. Since \(\text{Sym}_n \in \mathcal{D}_\pi \) and a \(\pi \)-Hall subgroup of \(\text{Sym}_n \) belongs to \(\mathcal{X} \), it follows from Lemma 2.14 that \(\text{Alt}_5 \in \mathcal{X} \). Moreover, if \(n = 6 \) or \(n = 7 \), then \(\text{Alt}_6 \in \mathcal{X} \).

The group \(G^* \) has a subgroup isomorphic to \(SL_2^\eta(q) \). Moreover, (b) implies that \(q \equiv \eta \pmod{4} \) and by Lemma 2.31, \(G^* \) has a subgroup

\[W^* \cong 4 \circ 2^{1+4} \cdot \text{Alt}_6. \]

Define \(U^* \leq G^* \) in the following way. If \(n = 6, 7 \), then \(U^* = W^* \). If \(n = 5 \), then \(W^*/W^*_\mathbb{S} \cong \text{Alt}_6 \) contains a subgroup isomorphic to \(\text{Alt}_5 \), and we set \(U^* \) to be equal to its full preimage in \(W^* \). By construction \(U^* \in \mathcal{X} \).

We claim that \(U^* \) is not conjugate to any subgroup of \(H^* \) and this contradicts \(G^* \in \mathcal{D}_X \).

Indeed, if \(U^* \leq H^* \) and \(R^* = H^*_\mathbb{S} \) is the solvable radical of \(H^* \) then \(U^*/(U^* \cap R^*) \) is isomorphic to a subgroup of \(H^*/R^* \leq \text{Sym}_n \). We have that \(U^*/U^*_\mathbb{S} \cong \text{Alt}_m \) for some \(m \in \{n, n-1\} \). Since \(U^*/U^*_\mathbb{S} \) is a homomorphic image of \(U^*/(U^* \cap R^*) \), it follows by Lemma 2.34 that \(U^*/(U^* \cap R^*) \cong \text{Alt}_m \). Therefore, \(U^*_\mathbb{S} \cong U^* \cap R^* \). This is impossible, since \(R^* \) is abelian, while \(U^*_\mathbb{S} \cong 4 \circ 2^{1+4} \) contains an extra special 2-subgroup of order \(2^5 \).

Assume finally that \(n \in \{10, 11, 15\} \). Lemma 2.14 implies that \(\text{Alt}_{10} \in \mathcal{X} \). Therefore \(\text{Alt}_6 \in \mathcal{X} \). It is clear that \(G^* \) has a subgroup

\[SL_4^\eta(q) \circ SL_4^\eta(q) \text{ if } n \in \{10, 11\}, \text{ and } SL_4^\eta(q) \circ SL_4^\eta(q) \circ SL_4^\eta(q) \text{ if } n = 15. \]
By Lemma 2.31 and in view of \(q \equiv \eta \pmod{4} \), we can find a subgroup \(U^* \) in \(G^* \) such that \(U^* = O_2(U^*) \) and

\[
U^*/U^*_S \cong \begin{cases}
\text{Alt}_6 \times \text{Alt}_6, & \text{if } n \in \{10, 11\}, \\
\text{Alt}_6 \times \text{Alt}_6 \times \text{Alt}_6, & \text{if } n = 15.
\end{cases}
\]

Clearly, \(U^* \in \mathcal{X} \). But \(U^* \) is not conjugate to a subgroup of \(H^* \). Indeed, if \(U^* \leq H^* \), then \(U^*/(U^* \cap R^*) \) is isomorphic to a subgroup of \(\text{Sym}_n \), where \(R^* = H^*_S \). Therefore, by Lemma 2.29 we have

\[
n \geq \mu(U^*/(U^* \cap R^*)) \geq \mu(U^*/U^*_S) = \begin{cases}
\mu(\text{Alt}_6 \times \text{Alt}_6) = 12, & \text{if } n \in \{10, 11\}, \\
\mu(\text{Alt}_6 \times \text{Alt}_6 \times \text{Alt}_6) = 18, & \text{if } n = 15,
\end{cases}
\]

a contradiction.

Thus, (xxiii) is proven.

(xxiv) \(G \) is not isomorphic to \(P\Omega_3^n(q), \eta \in \{+, -, \circ\} \).

Suppose \(G = P\Omega_3^n(q), n \geq 7 \) and denote \(G^* = \Omega_3^n(q) \). By (vii) and Lemma 2.8, we have \(G^* \in \mathcal{D}_X \), and \(G^* \) has no solvable \(\pi \)-Hall subgroups and has exactly one class of \(\mathcal{X} \)-Hall subgroups. Let \(H^* \in \text{Hall}_X(G^*) \). Consider all possibilities for \(H^* \) given in statements (a)–(h) of Lemma 2.22.

In cases (d) and (e) we have \(\pi \cap \pi(G^*) = \{2, 3\} \), and we exclude these cases in view of (vii) and the solvability of \(\{2, 3\} \)-groups.

We exclude cases (f), (g) and (h), since in all these cases there are at least two conjugacy classes of \(\mathcal{X} \)-Hall subgroups of \(G^* \) isomorphic to \(H^* \).

Thus, one of the following statements holds.

(a) \(n = 2m + 1, \pi \cap \pi(G^*) \subseteq \pi(q - \varepsilon), q \equiv \varepsilon \pmod{12}, \text{Sym}_m \in \mathcal{E}_n \), and \(H^* \) is a \(\pi \)-Hall subgroup in

\[
M^* = (O_2^+(q) \wr \text{Sym}_m \times O_1(q)) \cap G^*.
\]

(b) \(n = 2m, \eta = \varepsilon^m, \pi \cap \pi(G^*) \subseteq \pi(q - \varepsilon), q \equiv \varepsilon \pmod{12}, \text{Sym}_m \in \mathcal{E}_n \), and \(H \) is a \(\pi \)-Hall subgroup in

\[
M^* = (O_2^{-}(q) \wr \text{Sym}_m \cap G^*.
\]

(c) \(n = 2m, \eta = -\varepsilon^m, \pi \cap \pi(G^*) \subseteq \pi(q - \varepsilon), q \equiv \varepsilon \pmod{12}, \text{Sym}_{m-1} \in \mathcal{E}_n \), and \(H^* \) is a \(\pi \)-Hall subgroup of

\[
M^* = (O_2^{-}(q) \wr \text{Sym}_{m-1} \times O_2^{-\varepsilon}(q)) \cap G^*.
\]

Here \(\varepsilon = \pm 1 \) and \(q - \varepsilon \) is divisible by 4.

Groups \(O_2^+(q) \) and \(O_2^-(q) \) are solvable. As in the proofs of (xxiii) and (xxviii), we see that the symmetric group of degree \(m \), in cases (a) and (b), and of degree \(m - 1 \) in case (c) has nonsolvable \(\mathcal{X} \)-Hall subgroup which is isomorphic to a symmetric group. Moreover, this \(\mathcal{X} \)-Hall subgroup is isomorphic to \(H^*/H^*_S \). Thus,

- \(5 \in \pi \cap \pi(G^*) \subseteq \pi(q - \varepsilon) \subseteq \pi(q^2 - 1) \),
- \(\text{Alt}_5 \in \mathcal{X} \) and
• H^*/H^*_Δ is isomorphic to a subgroup of Sym_m in cases (a) and (b) and of Sym_{m-1} in case (c). Therefore,

$$\mu(H^*/H^*_\Delta) \leq m = \lceil n/2 \rceil.$$

Lemma 2.33 implies that G^* possesses a collection Δ of subgroups isomorphic to $\text{SL}_2(q)$ such that $|\Delta| = k \geq 2[(n - 1)/4]$ and $[K^*, L^*] = 1$ for every $K^*, L^* \in \Delta$ and $K^* \neq L^*$. Since 5 divides $q^2 - 1$, Lemma 2.30 implies that $\text{SL}_2(q)$ possesses a subgroup isomorphic to $\text{SL}_2(5)$. For every $K^* \in \Delta$ fix some $U(K^*) \leq K^*$ such that $U(K^*) \cong \text{SL}_2(5)$. Set

$$U^* = \langle U(K^*) \mid K^* \in \Delta \rangle.$$

It follows from the definition that

$$U^*/U^*_\Delta \cong \underbrace{\text{Alt}_5 \times \cdots \times \text{Alt}_5}_{k \text{ times}}$$

and U^*_Δ is a 2-group. Thus, $U^* \in \mathfrak{X}$.

We show that U^* is not conjugate to a subgroup of H^*. Otherwise we can assume that $U^* \leq H^*$. Let $R^* = H^*_\Delta$ and let

$$\varphi: H^* \to H^*/R^* = \overline{H}^*$$

be the natural epimorphism. Therefore,

$$\mu(\overline{U}^*) \leq \mu(\overline{H}^*) \leq \lceil n/2 \rceil.$$

On the other hand, since $n \geq 7$ and in view of Lemma 2.29, we have

$$\mu(\overline{U}^*) \geq \mu(U^*/U^*_\Delta) = 5k \geq 10 \left\lceil \frac{n - 1}{4} \right\rceil \geq \frac{10(n - 4)}{4} = \frac{5(n - 4)}{2} > \frac{n + 1}{2} \geq \left\lceil \frac{n}{2} \right\rceil,$$

a contradiction.

\textit{(xxv)} G is not isomorphic to a classical group.

This statement follows from (xx) if characteristic of a group belongs to π and from \textit{(xxii)}–\textit{(xxiv)} in over cases.

3.6 Exceptional groups of Lie type of characteristic $p \notin \pi(\mathfrak{X})$

\textit{(xxv)} G is not isomorphic to one of groups $2B_2(2^{2m+1})$, $2G_2(3^{2m+1})$, and $2F_4(2^{2m+1})$.

This statement follows from (v), (vi) and (xx).

\textit{(xxvi)} G is not isomorphic to $G_2(q)$.

Suppose that $G = G_2(q)$ and $H \in \text{Hall}_x(G)$. By Lemma 2.23, either H is solvable, which contradicts (vii), or statement (d) of Lemma 2.23 holds:

\textit{(d) $G = G_2(q)$, $\pi \cap \pi(G) = \{2, 3, 7\}$, $(q^2 - 1)_{(2,3,7)} = 24$, $(q^4 + q^2 + 1)_7 = 7$, and $H \cong G_2(2)$.}
By [9], \(H' \cong \text{PSU}_3(3) \) has a maximal subgroup isomorphic to \(\text{SL}_3(2) \cong \text{PSL}_2(7) \) and every maximal subgroup of \(H' \) not isomorphic to \(\text{SL}_3(2) \) is solvable. This implies that \(\text{SL}_3(2) \in \mathcal{X} \) and \(H \) has no subgroups isomorphic to \(2^3 \cdot \text{SL}_3(2) \), which belongs to \(\mathcal{X} \). On the other hand, it follows from \([8}\ Table 1\) that \(G \) has a subgroups isomorphic to \(2^3 \cdot \text{SL}_3(2) \).

\textbf{(xxvii)} \(G \) is not isomorphic to one of groups \(3D_4(q) \) and \(F_4(q) \).

By Lemma \(\text{2.23} \), every Hall \(\mathcal{X} \)-subgroup of \(3D_4(q) \) and \(F_4(q) \) is solvable, which contradicts (vii), if \(G \in \{ 3D_4(q), F_4(q) \} \).

\textbf{(xxviii)} \(G \) is not isomorphic to one of groups \(E_6(q) \) and \(2E_6(q) \).

Suppose \(G = E_6^\eta(q), \eta = \pm 1 \) and \(H \in \text{Hall}_\chi(G) \). Since \(H \) is not solvable, statement (c) of Lemma \(\text{2.23} \) does not hold, and we have case (a) of this Lemma for \(E_6^\eta(q) \):

- 4 divides \(q - \eta \), \(\{2, 3, 5\} \subseteq \pi \cap \pi(G) \subseteq \pi(q - \eta) \), \(H \) is a \(\pi \)-Hall subgroup of a group \(T, \text{Sp}_4(3) \), where \(T \) is a maximal torus of order \((q - \eta)^6/3 \).

Note that \(\text{Sp}_4(3) \) is a \(\pi \)-group. This implies that \(\text{Sp}_4(3) \) is a homomorphic image of \(H \) and \(\text{Sp}_4(3) \in \mathcal{X} \). Furthermore, \(H/H_\chi \cong \text{Sp}_4(3) \). By information in \([9]\), \(\text{Sp}_4(3) \) has a subgroup isomorphic to \(\text{Alt}_5 \). Therefore, \(\text{Alt}_5 \in \mathcal{X} \).

Lemma \(\text{2.33} \) implies that \(G \) possesses a collection \(\Delta \) of subgroups isomorphic to \(\text{SL}_2(q) \) such that \(|\Delta| = 4 \) and \([K, L] = 1 \) for every \(K, L \in \Delta \) and \(K \neq L \). Since 5 divides \(q^2 - 1 \), Lemma \(\text{2.31} \) implies that \(\text{SL}_2(q) \) possesses a subgroup isomorphic to \(\text{SL}_2(5) \). For every \(K \in \Delta \) fix some \(U(K) \leq K \) such that \(U(K) \cong \text{SL}_2(5) \). Set

\[U = \langle U(K) \mid K \in \Delta \rangle. \]

It follows from the definition that

\[U/U_\chi \cong \text{Alt}_5 \times \text{Alt}_5 \times \text{Alt}_5 \times \text{Alt}_5 \]

and \(U_\chi \) is a 2-group. Thus, \(U \in \mathcal{X} \). Suppose that \(U \) is conjugate to a subgroup of \(H \). Then \(H/H_\chi \cong \text{Sp}_4(3) \) contains a subgroup for which \(U/U_\chi \) is a homomorphic image. But

\[|H/H_\chi|_5 = |\text{Sp}_4(3)|_5 = 5 \times 5^4 = |\text{Alt}_5|_5^4 = |U/U_\chi|_5, \]

and this is impossible.

\textbf{(xxix)} \(G \) is not isomorphic to \(E_7(q) \).

Suppose \(G = E_7(q) \) and \(H \in \text{Hall}_\chi(G) \). By Lemma \(\text{2.23} \) we have:

- \(\{2, 3, 5, 7\} \subseteq \pi \cap \pi(G) \subseteq \pi(q - \varepsilon) \), where \(\varepsilon = \pm 1 \) is such that 4 divides \(q - \varepsilon \), \(H \) is a \(\pi \)-Hall subgroup of a group \(T, (2 \times \mathcal{P}_7(2)) \), where \(T \) is a maximal torus of order \((q - \varepsilon)^7/2 \).

This implies that \(\mathcal{P}_7(2) \in \mathcal{X} \) and \(H/H_\chi \cong \mathcal{P}_7(2) \). In \(\mathcal{P}_7(2) \) there is a maximal subgroup \(\mathcal{P}_7^4(2) \cong \text{Sym}_8 \). Therefore, \(\text{Alt}_5 \in \mathcal{X} \).

Now we argue as in (xxviii). Lemma \(\text{2.33} \) implies that \(G \) possesses a collection \(\Delta \) of subgroups isomorphic to \(\text{SL}_2(q) \) such that \(|\Delta| = 7 \) and \([K, L] = 1 \) for every \(K, L \in \Delta \) and \(K \neq L \). Since 5 divides \(q^2 - 1 \), Lemma \(\text{2.31} \) implies that \(\text{SL}_2(q) \) possesses a subgroup
isomorphic to \(\text{SL}_2(5) \). For every \(K \in \Delta \) fix some \(U(K) \trianglelefteq K \) such that \(U(K) \cong \text{SL}_2(5) \). Set
\[
U = \langle U(K) \mid K \in \Delta \rangle.
\]
It follows from the definition that
\[
U/U_\varnothing \cong \underbrace{\text{Alt}_5 \times \cdots \times \text{Alt}_5}_{7 \text{ times}}
\]
and \(U_\varnothing \) is a 2-group. Thus, \(U \in \mathcal{X} \). We claim that \(U \) is not conjugate to a subgroup of \(H \). It is sufficient to show that \(|U/U_\varnothing|_5 > |H/H_\varnothing|_5 \). Indeed,
\[
|H/H_\varnothing|_5 = |P\Omega_7(2)|_5 = 5 < 5^7 = |\text{Alt}_5|^7 = |U/U_\varnothing|_5,
\]
a contradiction with \(G \in \mathcal{D}_X \).

\((xxx) \) \(G \) is not isomorphic to \(E_8(q) \).

Suppose \(G = E_7(q) \) and \(H \in \text{Hall}_\mathcal{X}(G) \). By Lemma 2.23 we have:

\begin{itemize}
 \item \(\{2, 3, 5, 7\} \subseteq \pi \cap \pi(G) \subseteq \pi(q - \varepsilon) \), where \(\varepsilon = \pm 1 \) is such that 4 divides \(q - \varepsilon \), \(H \) is a \(\pi \)-Hall subgroup of a group \(T \). \(P\Omega_8^+(2).2 \), where \(T \) is a maximal torus of order \((q - \eta)^8 \).
\end{itemize}

This implies that \(P\Omega_8^+(2) \in \mathcal{X} \) and \(H/H_\varnothing \cong P\Omega_8^+(2).2 \). In \(P\Omega_8^+(2) \) there is a maximal subgroup \(\Omega_7(2) \). Therefore, \(\text{Alt}_5 \in \mathcal{X} \).

Now we argue as in (xxviii). Lemma 2.33 implies that \(G \) possesses a collection \(\Delta \) of subgroups isomorphic to \(\text{SL}_2(q) \) such that \(|\Delta| = 8 \) and \([K, L] = 1 \) for every \(K, L \in \Delta \) and \(K \neq L \). Since 5 divides \(q^2 - 1 \), Lemma 2.30 implies that \(\text{SL}_2(q) \) possesses a subgroup isomorphic to \(\text{SL}_2(5) \). For every \(K \in \Delta \) fix some \(U(K) \leq K \) such that \(U(K) \cong \text{SL}_2(5) \).

Set
\[
U = \langle U(K) \mid K \in \Delta \rangle.
\]
It follows from the definition that
\[
U/U_\varnothing \cong \underbrace{\text{Alt}_5 \times \cdots \times \text{Alt}_5}_{8 \text{ times}}
\]
and \(U_\varnothing \) is a 2-group. Thus, \(U \in \mathcal{X} \). We claim that \(U \) is not conjugate to a subgroup of \(H \). It is sufficient to show that \(|U/U_\varnothing|_5 > |H/H_\varnothing|_5 \). Indeed,
\[
|H/H_\varnothing|_5 = |P\Omega_7(2)|_5 = 5 < 5^7 = |\text{Alt}_5|^7 = |U/U_\varnothing|_5,
\]
a contradiction with \(G \in \mathcal{D}_X \).

\((xxxi) \) \(G \) is not isomorphic to any exceptional group of Lie type.

This statement follows from (xxvi)–(xxx).

3.7 Final proof of the implication \((1) \Rightarrow (2)\)

\((xxxi) \) \(G \) does not exist.

Indeed, according to the classification of finite simple groups [3, Theorem 0.1.1], in (viii), (xv), (xx), (xxv), and (xxxi) we have excluded for \(G \) all possibilities to be a finite simple group.

Theorem [3] is proven.
4 Proofs of Corollaries

4.1 Proofs of Corollaries 1.1 and 1.2

In view of Lemma 2.6, in order to prove Corollary 1.1 it is sufficient to prove that any extension of a D_X-group by a D_X-group is a D_X-group. Now by Lemma 2.7, to prove Corollaries 1.1 and 1.2, it is sufficient to show that if $G \in D_X$ is a simple group then $\hat{G} = \text{Aut}(G) \in D_X$.

By Theorem 1 we need to consider two cases: $G \in X$ and $G \in D_X \cap D_\pi$, where $\pi = \pi(X)$, and in the last case G is not a π-group.

In the first case, since $\text{Aut}(G)/\text{Inn}(G)$ is solvable and $\text{Inn}(G) \cong G \in X$, we conclude that \hat{G} is X-separable and $\hat{G} \in D_X$ follows from Lemma 2.8.

In the last case, every π-Hall subgroup of G is solvable by Lemma 2.28. Consequently, the X-subgroups of G are exactly the solvable π-subgroups. Since $\text{Aut}(G)/\text{Inn}(G)$ is solvable, the same statement holds for the X-subgroups of $\hat{G} = \text{Aut}(G)$. In particular $m_X(G) = \text{Hall}_\pi(G)$. Now Lemma 2.3 implies that $G \in D_\pi$. Hence the elements of $m_X(\hat{G}) = \text{Hall}_\pi(\hat{G})$ are conjugate and $\hat{G} \in D_X$.

\[\square\]

4.2 Proof of Corollary 1.3

In fact, Corollary 1.3 is induced from Corollary 1.2 in [49, 15.4].

4.3 Proof of Corollary 1.4

The equivalency of (1) and (2) follows from Corollary 1.2 and the inclusion

$$m_X(G) \subseteq \text{sm}_X(G).$$

The implication (2) \Rightarrow (3) is proved in Corollary 1.3.

Prove (3) \Rightarrow (1). Take $A = B = G$. It follows from (3) that

$$k_X(G) = k_X(A) = k_X(A/B) = k_X(1) = 1$$

or, equivalently, $G \in D_X$.

\[\square\]

4.4 Proofs of Corollaries 1.5 and 1.6

Let $G \in D_X$. Then Corollary 1.1 implies that $S \in D_X$ for every composition factor S of G. In view of Theorem 1, this means that $S \in D_\pi$. By Lemma 2.3, we have $G \in D_\pi$, and so Corollary 1.3 is proved. Now, it follows from Lemma 2.3 that some π-Hall subgroup H of G belongs to X. If U is a π-subgroup of G, then U is conjugate to a subgroup of H, since $G \in D_\pi$. The completeness of X under taking subgroup means that $U \in X$. Hence Corollary 1.6 is proved.

\[\square\]

4.5 Proof of Corollary 1.7

Let $G \in D_X$, $H \in m_X(G)$ and $H \leq M \leq G$. Then $H \in \text{Hall}_\pi(G)$, where $\pi = \pi(X)$ and Lemma 2.9 implies that $M \in D_\pi$, i.e. every π of M is conjugate to H in M. This implies that every X-maximal subgroup of M is conjugate to H in M and $M \in D_X$. Now clearly, $m_X(M) \subseteq m_X(G)$.

\[\square\]
4.6 Proof of Corollary 1.8

Corollary 1.1 means that $G \in \mathcal{D}_X$ if and only if every composition factor S of G is a \mathcal{D}_X-group. Now Corollary 1.8 immediately follows from Theorem 1 and Lemma 2.4. □

References

[1] M. Aschbacher, Characterization of Chevalley groups over fields of odd order, Ann. Math., 106 (1977), 353–468.

[2] M. Aschbacher, On finite groups of Lie type and odd characteristic, J. Algebra, 66:2 (1980), 400–424.

[3] M. Aschbacher, R. Lyons, S.D. Smith, R. Solomon, The classification of finite simple groups. Groups of characteristic 2 type. Mathematical Surveys and Monographs, 172. American Mathematical Society, Providence, RI, 2011. xii+347 pp.

[4] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups. Cambridge: Cambridge Univ. Press, 2013. 438 p.

[5] R. Carter, P. Fong, The Sylow 2-subgroups of the finite classical groups, J. Algebra, 1:1 (1964), 139–151.

[6] S. A. Chunikhin, Über auflösbare Gruppen, Mitt. Forsch.-Inst. Math. Mech. Univ. Tomsk, 2 (1938), 222–223.

[7] S. A. Chunikhin and L. A. Shemetkov, Finite groups, J. Soviet Math. 1:3 (1973), 291–332.

[8] A.M.Cohen, M.W.Liebeck, J.Saxl, G.M.Seitz, The local maximal subgroups of exceptional groups of Lie type, finite and algebraic, Proc. London Math. Soc. Ser. III, 64 (1992), N1, 21–48.

[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups. Oxford: Clarendon Press, 1985. 252 p.

[10] K. Doerk, T. Hawks, Finite Soluble Groups, Berlin, New York, Walter de Gruyter, 1992.

[11] D. Easdown, C.E.Praeger, On minimal faithful permutation representations of finite groups, Bulletin Australian Mathematical Society, 38(1988), 207–220.

[12] W.Feit, J.G.Thompson, Solvability of groups of odd order, Pacif. J. Math., 13:3 (1963), 775–1029.

[13] G. Glauberman, Factorization in local subgroups of finite groups. Conf. Ser. Math., 33, Amer. Math. Soc., Providence, RI, 1976.

[14] F. Gross, On a conjecture of Philip Hall, Proc. Lond. Math. Soc. (3), 52:3 (1986), 464–494.
[15] F. Gross, Odd order Hall subgroups of the classical linear groups, Math. Z., 220:3 (1995), 317–336.

[16] F. Gross, Conjugacy of odd order Hall subgroups, Bull. Lond. Math. Soc., 19:4 (1987), 311–319.

[17] F. Gross, Hall subgroups of order not divisible by 3, Rocky Mount. J. Math., 23:2 (1993), 569–591.

[18] W. Guo, The Theory of Classes of Groups, Beijing, New York, Kluwer Acad. Publ., 2006.

[19] W. Guo, Structure Theory of Canonical Classes of Finite Groups, Berlin, Springer, 2015.

[20] W. Guo, D. O. Revin, On maximal and submaximal \mathcal{X}-subgroups, Algebra and logic, 56:1 (2018), 9–28.

[21] W. Guo, D. O. Revin, On a relation between the conjugateness for the maximal and submaximal \mathcal{X}-subgroups, Algebra and logic, 56 (2018), accepted.

[22] W. Guo, D. O. Revin, E. P. Vdovin, Confirmation for Wielandt’s conjecture, J. Algebra, 434 (2015), 193–206.

[23] W. Guo, D. O. Revin, Classification and properties of the π-submaximal subgroups in minimal nonsolvable groups, Bulletin of Mathematical Sciences, 8:2 (2018), 325–351.

[24] W. Guo, D. O. Revin, Pronormality and submaximal \mathcal{X}-subgroups on finite groups, Communications in Mathematics and Statistics, 6:3 (2018), accepted.

[25] P. Hall, A note on soluble groups, J. London Math. Soc., 3 (1928), 98–105.

[26] P. Hall, A characteristic property of soluble groups, J. London Math. Soc., 12 (1937), 198–200.

[27] P. Hall, Theorems like Sylow’s, Proc. London Math. Soc., 6:22 (1956), 286–304.

[28] B. Hartley, A theorem of Sylow type for a finite groups, Math. Z., 122:4 (1971), 223–226.

[29] D.F. Holt, Representing quotients of permutation groups, Quarterly Journal of Mathematics, 48, No. 2 (1997), 347–350.

[30] P. B. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups. Cambridge: Cambridge University Press, 1990. 303 p.

[31] N. Ch. Manzaeva, D. O. Revin, E. P. Vdovin, The Hall property \mathcal{D}_π is inherited by overgroups of π-Hall subgroups, https://arxiv.org/abs/1808.03536, to appear.

[32] V. D. Mazurov and E. I. Khukhro (eds.), The Kourovka notebook. Unsolved problems in group theory, 17th ed., Institute of Mathematics, Siberian Branch of RAS, Novosibirsck 2010.
[33] D. O. Revin, The D_π property of finite groups in the case $2 \notin \pi$, Proceedings of the Steklov Institute of Mathematics, 257:suppl.1 (2007), 164–180.

[34] D. O. Revin, The D_π-property in finite simple groups, Algebra and Logic, 47:3 (2008), 210–227.

[35] D. O. Revin, The D_π-property of linear and unitary groups, Siberian Math. J., 49:2 (2008), 353–361.

[36] D. O. Revin, The D_π-Property in a Class of Finite Groups, Algebra and Logic, 41:3 (2002), 187–206.

[37] D. O. Revin, Hall π-Subgroups of Finite Chevalley Groups Whose Characteristic Belongs to π, Siberian Advances in Mathematics, 1999, 9:2, 25–71.

[38] D. O. Revin, E. P. Vdovin, Hall subgroups of finite groups, Contemporary Mathematics, 402 (2006), 229–265.

[39] D. O. Revin, E. P. Vdovin, On the number of classes of conjugate Hall subgroups in finite simple groups, J. Algebra, 324:12 (2010), 3614–3652.

[40] D. O. Revin, E. P. Vdovin, An existence criterion for Hall subgroups of finite groups, J. Group Theory, 14:1 (2011), 93–101.

[41] L. A. Shemetkov, Formations of Finite Groups (in Russian), Nauka, Moscow (1978).

[42] L. A. Shemetkov, Generalizations of Sylow’s theorem, Siberian Math. J., 44:6 (2003), 1127–1132.

[43] L. A. Shemetkov, Two directions in the development of the theory of non-simple finite groups, Russian Math. Surveys 30:2 (1975), 185–206.

[44] M. Suzuki, Group Theory II, Springer-Verlag, New York–Berlin–Heidelberg–Tokyo, 1986.

[45] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383–437.

[46] E. P. Vdovin, D. O. Revin, Theorems of Sylow type, Russian Math. Surveys, 66:5 (2011), 829–870.

[47] A.J. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proceedings of the American Mathematical Society 6:4 (1955), 529–533.

[48] H. Wielandt, Zusammengesetzte Gruppen: H"older Programm heute, The Santa Cruz conf. on finite groups, Santa Cruz, 1979. Proc. Sympos. Pure Math., 37, Providence RI: Amer. Math. Soc., 1980, 161–173.

[49] H. Wielandt Zusammengesetzte Gruppen endlicher Ordnung, Vorlesung an der Universität Tübingen im Wintersemester 1963/64. Helmut Wielandt: Mathematical Works, Vol. 1, Group theory (ed. B. Huppert and H. Schneider, de Gruyter, Berlin, 1994), 607–655.
[50] H. Wielandt, Entwicklungslinien in der Strukturtheorie der endlichen Gruppen, Proc. Intern. Congress Math., Edinburg, 1958. London: Cambridge Univ. Press, 1960, 268–278.

[51] H. Wielandt, Arithmetische Struktur und Normalstruktur endlicher Gruppen, Conv. Internaz. di Teoria dei Gruppi Finiti e Applicazioni (Firenze 1960), Edizioni Cremonese, Roma 1960, 56–65.