Badanie rozkładu wielkości cząsteczek generowanych przez (UDN) odwrócony nebulizator bezmaseczkowy BabyAir **

Celem tego badania jest ocena średniej średniicy cząsteczek aerozolu (MMAD Mass Median Aerodynamic Diameter) wraz z geometrycznym odchyleniem standardowym (GSD Ground Sampled Dystance) na przykładzie trzech popularnych leków do aerozoloterapii: Albuterol sulfate, Budesonide, Cromolyn sodium.

Badanie przeprowadzono na modelu gardła Andersen 8-kaskadowy z pompą próżniową o stałej szybkości przepływu 28,3Lpm. Aktywne składniki zebrane na modelu kaskadowym były oznaczane za pomocą wysokosprawnej chromatografii cieczowej (HPLC).

Badanie wykazało wysoki procent dawki respirabilnej z aerozolu.

ALBUTEROL SULFATE	
Roztwór leku	1/6 5mg albuterol sulfate oraz 5/6 soli fizjologicznej razem 3ml
Przepływ roboczy kompresora	11Lpm
Ilość prób	3

Nr próby	MMAD µm	GSD
1	0,67	2,04
2	0,72	1,92
3	0,85	1,95
Podsumowanie/średnia wielkość cząstek	0,75 ± 0,09	1,97 ± 0,06

Procentowa ilość poszczególnych cząstek *

Wielkość cząstek w µg	Ilość cząstek w %
2,1 – 1,1 µg	21 ± 5
1,1 – 0,65 µg	29 ± 1
0,65 – 0,43 µg	31 ± 2

*pominięto wielkości nie znaczące
Suma to 81% cząstek w zakresie pomiędzy 2,1 a 0,43 µg

BUDESONIDE	
Roztwór leku	Budesonide (Budicort, Budezonid) 0,5ml (1mg/2ml ampul.) + 2,5ml soli fizjologicznej razem 3ml
Przepływ roboczy kompresora	10Lpm
Ilość prób	3

Nr próby	MMAD µm	GSD
1	1,71	2,01
2	1,80	2,41
3	1,81	2,13
Podsumowanie/średnia wielkość cząstek	1,78 ± 0,05	2,18 ± 0,21

Procentowa ilość poszczególnych cząstek *

Wielkość cząstek w µg	Ilość cząstek w %
3,3 – 2,1 µg	20 ± 2
2,1 – 1,1 µg	38 ± 3
1,1 – 0,65 µg	12 ± 2

*pominięto wielkości nie znaczące
Suma to 70% cząstek w zakresie pomiędzy 3,3 a 0,65 µg
CROMOLYN SODIUM

Roztwór leku
Cromolyn sodium 0,5ml (cromolyn sodium 20mg w 2ml) + 2,5ml soli fizjologicznej razem 3ml

Przepływ roboczy kompresora
10Lpm

Ilość prób
3

WYNIKI POMIARÓW

Nr próby	MMAD µm	GSD
1	0,63	2,14
2	0,82	2,15
3	0,91	1,67

Podsumowanie/średnia wielkość cząstek
0,78 ± 0,15 1,99 ± 0,27

Procentowa ilość poszczególnych cząstek

Wielkość cząstek w µg	Ilość cząstek w %
2,1 – 1,1 µg	17 ± 5
1,1 – 0,65 µg	39 ± 15
0,65 – 0,43 µg	21 ± 13

*pominięto wielkości nie znaczące
Suma to 77% cząstek w zakresie pomiędzy 2,1 a 0,43 µg

Badania wykonane przez Baby's Breath Ltd. Advanced Inhalation Technologies Ha'hadass St. Bldg. No. 5. North Industrial Area, Or-Akiva 30600 Israel do akredytacji FDA (US Food and Drug Administration)
Następujące wyniki badań symulacyjnych oceniają ilość leków wziewnych zdeponowanych na oczach i blisko oczu – analiza porównawcza.*

Inhalacje przy użyciu maski są najczęściej stosowaną metodą w grupie niemowląt i małych dzieci. W trakcie nebulizacji znaczna ilość gazu zawierającego aktywne cząstki może deponować się poza docelowym obszarem (jama ustna i drogi oddechowe). Rodzaj zastosowanego interfejsu pomiędzy inhalatorem a pacjentem może determinować skuteczność podawania leków.

Badania wykazały, że skuteczność stosowania namiotu do inhalacji jako interfejsu do podania aerozolu w grupie niemowląt i małych dzieci jest co najmniej tak samo skuteczna jak przy użyciu standardowych maseczek. Jednakże badania ilościowe depozycji aerozolu poza obszarem docelowym, w szczególności na oczach wykonane na modelu symulacyjnym przy użyciu siedmi modeli maseczek w kombinacji z trzema różnymi inhalatorami tłokowymi wykazały, że znaczne ilości aerozolu wydostają się poza jamę ustną i deponowane są na oczach. Badanie in vitro miało również na celu oznaczenie poziomu depozycji aerozolu na oczach przy zastosowaniu namiotu do inhalacji BabyAir jako nowego interfejsu do nebulizacji niemowląt.

Badanie in vitro przeprowadzono na radioaktywnej soli fizjologicznej (2ml) za pomocą filtrów i kamery gamma N28A Silfab gamma (Med & Lab Grupa, Argentyna). Na modelach odpowiadających dzieciom w wieku około dwóch lat wykonano 10 aerozoloterapii każda po 5 minut przy użyciu namiotu BabyAir z odwróconym nebulizatorem oraz tyle samo prób przy użyciu tradycyjnych masek. Depozycję aerozolu w okolicach oczu mierzono bezpośrednio po aerozoloterapii. Aerozol generowany był przy pomocy pompy tłokowej (Harvard Pump, South Natick, MA) oraz kompresora N28A Silfab (Med & Lab Grupa, Argentyna) a modele wentylowano za pomocą symulatora oddechowego (PARI Respiratory Equipment Inc., Monterey, CA) przy objętości 50ml i częstotliwości cyklu 25 oddechów na minutę. Przygotowany aerozol odpowiadał większości prostych leków jak np. albuterol.

W załączonych tabelach i wykresach pokazano wyniki jako średnie z uwzględnieniem błędów statystycznych (test Wilcoxona z powiązanymi danymi). Wyniki tego eksperymentu wykazały różnicę depozycji w zależności od kombinacji nebulizatora i maski oraz to, że depozycja aerozolu na oczy przy zastosowaniu odwróconego nebulizatora i namiotu BabyAir jest znacznie niższa w porównaniu z tradycyjnymi maseczkami i nebulizatorem (Hudson) (odpowiednio 0,45% i 6,54%). Na wykresie 1,2 pokazano wyniki poszczególnych prób, na wykresie 3 pokazano wynik uśredniony wszystkich 10 prób dla obu systemów.
Tab. 1.

Urządzenie	Ilość prób	Ilość aerosolu	Depozycja na oczy
BabyAir	10	4,89 ± 0,6	0,45% ± 0,34%
Maska	10	4,85 ± 0,5	6,54% ± 2,05%

Tab. 1.

DEPOZYCJA NA OCZY (%)

Tab. 2.

%	BabyAir	Maska
12		
10		
8		
6		
4		
2		
0		

Tab. 2.

Średnia depozycja na oczy (%)

Tab. 3. Uśrednione dane

*Badania wykonane przez Baby’s Breath Ltd. Advanced Inhalation Technologies Ha’hadás St. Bldg. No. 5. North Industrial Area, Or-Akiva 30600 Israel do akredytacji FDA (US Food and Drug Administration).