Molecular docking analysis of Enterotoxin I from Staphylococcus aureus with Nafcillin analogues

Jayaraman Selvaraj¹, Rajagopal Ponnulakshmi², Veeraraghavan Vishnupriya¹, Chandrasekar Kirubhanand³*

¹Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India; ²Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), West K. K. Nagar, Chennai-600 078, India; ³Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Nagpur, India; Dr. Chandrasekar Kirubhanand - E.mail:kirubhanand@aiimsnagpur.edu.in; Corresponding author*

Contact Details:
Jayaraman Selvaraj - jselvaendo@gmail.com
Veeraraghavan Vishnupriya - drvishnupiyav@gmail.com
Rajagopal Ponnulakshmi - ramgslaks@gmail.com

Submitted on May 23, 2020; Revision August 15, 2020; Accepted August 15, 2020; Published October 31, 2020

The authors are responsible for the content of this article. The Editorial and the publisher has taken reasonable steps to check the content of the article with reference to publishing ethics with adequate peer reviews deposited at PUBLONS.

Declaration on official E-mail:
The corresponding author declares that official e-mail from their institution is not available for all authors

Declaration on Publication Ethics:
The authors state that they adhere with COPE guidelines on publishing ethics as described elsewhere at https://publicationethics.org/. The authors also undertake that they are not associated with any other third party (governmental or non-governmental agencies) linking with any form of unethical issues connecting to this publication. The authors also declare that they are not withholding any information that is misleading to the publisher in regard to this article.

Abstract:
Staphylococcal enterotoxins (SEs) are linked with food poisoning and other related infections. Nafcillin is an antibiotic used to treat S. aureus. Therefore, it is of interest to study the molecular interactions of 25 nafcillin analogues with enterotoxin I using molecular docking analysis. The analysis shows optimal interaction features of Nafcillin analogues with Enterotoxin I from Staphylococcus aureus for further consideration.

Key words: S. aureus, Nafcillin, enterotoxins I, molecular docking
Background:

Staphylococcus aureus (S. aureus) is a gram-positive bacterium that causes a broad range of diseases from mild skin infections to life-threatening diseases such as necrotizing pneumonia and bacteremia. *S. aureus* infection is one of the rising alarms for family physicians, because of its high occurrence of morbidity and antimicrobial resistance. *S. aureus* virulence capacity mainly relies on the production of a notable list of protein toxins. These are able to work alone or in concert to cause a multitude of human being diseases [1]. Enterotoxins are short secreted proteins, soluble in water and saline solutions. These Enterotoxins have common structural and biochemical features and it’s extremely resistant to heat. Prolonged boiling or autoclaving can reduce the effectiveness of these types of proteins. They are extremely resistant to the majority proteolytic enzymes, and thus retain their action in the digestive tract after ingestion [2]. Pneumonia, the sepsis-related infections, toxic shock syndrome, and food poisoning are some of the main diseases associated with enterotoxins [3]. There are so many recent reports proposed that the staphylococcal enterotoxins (SEs) play a wider part in the manifestation of other human diseases like the diseases connected to the respiratory tract [4,5] and autoimmune disorders [6,7]. The *S. aureus* enterotoxins are potent non-specific T-cell stimulators (super antigens) involving the unregulated activation of the immune response [8]. A huge cytokine load is formed creating the clinical features of toxic shock syndrome, which is linked to fever, organ malfunction leading to significant mortality [9].

Compared to other toxins produced by *S. aureus*, enterotoxins needs only tiny amount to be toxic in human. So this enterotoxin can act as potential target for the identification of new drug candidate against *S. aureus* infections. The treatment of bacterial infections has become gradually more difficult because of the emergence of antibiotic resistance. Symbolic of these issues are strains of methicillin-resistant *Staphylococcus aureus* (MRSA) that have attained epidemic in many countries [10, 11]. In the United States, *S. aureus* is the frequent source of hospital and community-associated bacterial illness of the bloodstream, skin and soft tissue and other sites, with MRSA strains containing a huge majority in lots of locales [12,13]. The occurrence of *S. aureus* infections is increasing. Antimicrobial agents such as daptomycin, linezolid and nafcillin or oxacillin are used for treatment. Therefore, it is of interest to study the molecular interactions of 25 nafcillin analogues with enterotoxin I using molecular docking analysis.

Materials and Methods:

Structure of Enterotoxin I protein:
The structure of Enterotoxin I protein (PDB ID: 2G9H) [14] was downloaded from the Protein Data Bank (PDB) and processed using the CHARMM force field using standard procedures.

Ligand Preparation:
The 2-D structure of Nafcillin and its analogue structures were downloaded from pubchem database [15]. These 2-D structures were converted as 3-D structures using the Online Smiles Translator. The compounds were processed using the CHARMM force field following standard procedures. Lipinski’s properties like molecular weight, log P and number of Hydrogen-bond donors and acceptors for the active compounds were calculated and validated.

Active site prediction:
Active site residues in the enterotoxins were predicted using discovery studio 2.1.

Molecular docking:
Molecular docking analysis of enterotoxins I and the Nafcillin analogues were completed using the Lib dock module in Discovery studio (Version 2.1, Accelry’s Software Inc.) [16].

Table 1: Docking score value of the selected compounds

Compound No	Docking Score	Energy	No. of H bond
Nafcillin	99.525	96.128	1
Pubchem ID : 23675745	101.494	97.664	2
Pubchem ID : 4636599	100.608	77.56	3

Figure 1: Molecular interaction of nafcillin with enterotoxin I
the protein and ligands. Higher PLP scores assign stronger protein ligand binding [17,18]. These scoring functions have helped to identify the active and inactive compounds. To make sure that the ligand orientations attained from the docking studies were probable to signify suitable and sensible binding modes, the LibDock program-docking parameters had to be verified in the crystal structure’s active site. Utilities in Discovery’s studio help to ascertain the binding site of protein structure. Results of docking confirmed that LibDock find the most favorable orientation of the docked compound accurately to the active sites. Both nafcillin and its analogues bind to the same amino acids residues in the active site region.

LibDock score of nafcillin is 99.525, the hydrogen bond length is 2.1 Å and energy values 96.128. Amino acid involved in the hydrogen bond formation [THR-80] is noted. Out of 25 analogues two analogues were selected based on the scoring parameters. A LipDock score of two analogues are 101.494 and 100.608 respectively. The energy values also occur close the original compounds nafcillin. The energy vales of two best analogues are 97.664 and 77.56 (Table 1). Analysis of docking results showed that the hydrogen bonding interactions between THR74 and ASN 15 mainly contributed the compounds and target protein. These two residues alternatively form the H-bond with most of the compounds. So it plays the functional role of the protein. The analysis of the best docked ligands allowed the binding mode of compounds involved in this study and confirmed the role as antibacterial agent. The overall structure obtained by docking of Nafcillin to enterotoxin I was given in Figure 1. Interaction of other analogues with enterotoxin was also shown in Figure 2 & 3.

Conclusion:
We document the optimal interaction features of 25 Nafcillin analogues with Enterotoxin I from Staphylococcus aureus for further consideration.

References:
[1] Lowy FD J Clin Invest 2003 111:265 [PMCID: PMC154455]
[2] Bergdoll et al.1983; pp. 559-598
[3] Abeaat et al. Microbiol Immunol 2000 44:79 [PMID: 10803494]
[4] Pastacaldiet et al. Allergy 2011 66:549 [PMID: 21087214]
[5] Huvenne et al. Allergy Immunol 161:304 [PMID: 23689556]
[6] Principato et al. Toxins 2014 6:1471 [PMID: 24776983]
[7] Li et al. Viral Immunol 2015; 28:354 [PMID: 26086678]
[8] Spaulding et al. Clin Microbiol Rev 2013 26:422 [PMID: 23824366]
[9] Lappin et al.Lancet Infect Dis 2009; 9:281 [PMID: 19393958]
[10] Grundmann et al. Lancet 2006 368:874 [PMID: 16950365]
[11] Mediavilla et al. Curr Opin Microbiol 2012 15:588 [PMID: 23044073]
[12] Como-Sabetti et al. Public Health Rep 2009 124:427 [PMID: 19445419]
[13] DeLeo FR et al. Lancet 2010 375:1557 [PMID: 2026987]
[14] Bernstein FC, et al. Arch Biochem Biophys 1978 185:584. [PMID: 626512]

[15] Yanli et al. Nucleic Acids Res 2010 38:D255 [PMID: 19933261]
[16] Daisy et al. J Chem Pharm Res 2011 3:557.
[17] Muegge et al. J Med Chem 1999 42:791 [PMID: 10072678]
[18] Venkatachalam CM et al. J Mol Graph Model 2003 21:289 [PMID: 10072678]

License statement: This is an Open Access article which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. This is distributed under the terms of the Creative Commons Attribution License

Edited by P Kangueane

Citation: Selvaraj et al. Bioinformation 16(10): 731-735 (2020)

Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
