Successful Surgical Abdominal Aortic Debranching Preceding Stent Graft Implantation: A Case Report

Magdalena L. Laux1 Michael Erb1 Frank Hoelschermann2 Johannes M. Albes1

1 Department of Cardiovascular Surgery, Brandenburg Heart Center, University Hospital, Brandenburg Medical School Theodor Fontane, Bernau, Germany
2 Department of Cardiology, Brandenburg Heart Center, Bernau, Germany

Thorac Cardiovasc Surg Rep 2018;7:e24–e26.

Address for correspondence Magdalena L. Laux, MD, Department of Cardiovascular Surgery, Brandenburg Heart Center, University Hospital, Brandenburg Medical School Theodor Fontane, Ladeburgerstr 17, 16321 Bernau, Germany (e-mail: m.laux@immanuel.de).

Abstract

Background Acute endovascular aneurysm repair with stent grafts (thoracic endovascular aortic repair [TEVAR]) is safe and feasible.

Case Description A 64-year-old female presented with a perforated aortic aneurysm of the thoracic descending aorta. Primary TEVAR resulted in good management of the perforation but a type Ib endoleakage remained postoperatively. To place another stent, abdominal debranching with saphenous vein bypass to the celiac trunk was required. In the same session, another endograft was inserted successfully.

Conclusion Abdominal debranching is a safe alternative to open aortic repair in acute thoracic and abdominal aneurysms, instead of waiting for a custom-made device.

Introduction

The incidence of rupture in descending thoracic aortic aneurysms is described as 5 per 100,000, with a mortality rate of 97 to 100%.1 The predominant risk factor is hypertension.1 Treatment with thoracic endovascular aortic repair (TEVAR) has demonstrated a lower morbidity and mortality than conventional surgery.2 Aortic anatomy is sometimes a limitation for TEVAR but new options have become available in the last years. Endoleaks, however, present an unpredictable problem. Fenestrated or branched prostheses are an option, have to be custom-made, and are not helpful in an acute or subacute setting. Snorkels and chimneys can solve this problem but tend to have type I endoleaks, and a slightly higher complication rate than fenestrated endovascular aneurysm repair (EVAR).3 As an alternative, overstenting of major vessels is a good solution provided that debranching is performed before or during the procedure.

Case Description

A 64-year-old female with a history of hypertension, hypercholesterinemia, and obesity presented with back pain and dyspnea. Earlier external diagnosis included spinal magnetic resonance imaging showing a descending thoracoabdominal aortic aneurysm. A computed tomography (CT) led to the diagnosis of a covered ventral aortic perforation of the descending thoracic aorta approximately 5 cm above the diaphragm (►Fig. 1).

Taking the possible landing zones right below the left subclavian artery and cranially above the celiac trunk into account, we placed a thoracic stent graft (Bolton Medical Relay NBS Thoracic Stentgraft 36 × 199 mm, Sunrise, Florida, United States) into the descending aorta. The stent graft was then extended with a second graft (Bolton Medical Relay NBS 38 × 154 mm). A type Ib endoleak was initially treated with balloon dilatation of the second prosthesis. Back pain receded. Postinterventional CT scan showed a small endoleak initially understood as type II (►Fig. 2).

Within 1 month the patient was hospitalized for recurrent pain. The endoleak now presented as severe type Ib. Sealing of the endoleak by extension with another short graft failed due to shortening of the stent during release and therefore missing its optimal position just above the celiac trunk by 5 mm. Thus, another extension was necessary. In a hybrid procedure, a venous bypass from the caudal abdominal aorta to the celiac
trunk was placed via median laparotomy followed by implan-
tation of a fourth stent introduced via the abdominal aorta in
the same session excluding the celiac trunk as expected
(Baro Medical Relay Plus 42 × 105 × 42 mm). A peroneal
palsy of the right foot was noted but decreased over time. The
patient was discharged 2 weeks after the procedure, with
planned follow-up at 3, 9, and 12 months and annual controls
thereafter.

After 1 year, an aneurysm of the ascending aorta showed
an increase in diameter of 1 cm reaching 5.6 cm in total
extending to the landing zone of the first TEVAR (►Fig. 1). We
performed supracoronary replacement of the ascending
aorta and aortic arch with a hybrid prosthesis (Jotec, Evita
Open, 36 mm, Jotec, Hechingen, Germany) under circulatory
arrest connecting the stented part of this graft with the
TEVAR. After an uneventful postoperative course the patient
was discharged home.

Discussion

We describe a case of overstenting the celiac trunk with a TEVAR
after debranching in a large thoracoabdominal aneurysm with a
contained rupture. Adequate and close follow-up in TEVAR is
necessary to detect further problems. Positioning of a TEVAR is
always delicate owing to potential impairment of major arterial
branches.4 Particularly in patients with acute symptoms and a
complicated anatomy abdominal debranching is a safe option
and offers an avenue out of the dilemma of a prolonged and thus
potentially risky waiting time for a custom-made prosthesis
with fenestrations and/or chimneys.5,6 In case of acute rupture,
the mortality for EVAR is described as 40% versus 62.5% in
surgically treated patients.7 There is no long-term data about
mortality and endoleaks in snorkels and chimneys. Patency of
visceral grafts is described as 97% after 19.3 months and 30-day
mortality is 0 to 34% in the literature.8–10 We chose a hybrid
procedure in this young patient, expecting it to be the option with the best long-term outcome with no endoleaks. While available evidence is mostly anecdotal, the favorable outcome of our patient with abdominal bypass and TEVAR occluding the celiac trunk for treatment of a persisting endoleak is encouraging.

Note
The article was presented in annual meeting, DGTHG Leipzig, Germany, February 13, 2017.

References
1. Johansson G, Markström U, Swedenborg J. Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J Vasc Surg 1995;21(06):985–988
2. Jackson RS, Chang DC, Freischlag JA. Comparison of long-term survival after open vs endovascular repair of intact abdominal aortic aneurysm among Medicare beneficiaries. JAMA 2012;307 (15):1621–1628
3. Katsargyris A, Oikonomou K, Klonaris C, Töpel I, Verhoeven EL. Comparison of outcomes with open, fenestrated, and chimney graft repair of juxtarenal aneurysms: are we ready for a paradigm shift? J Endovasc Ther 2013;20(02):159–169
4. Czerny M, Weigang E, Sodeck G, et al. Targeting landing zone 0 by total arch rerouting and TEVAR: midterm results of a transcontinental registry. Ann Thorac Surg 2012;94(01):84–89
5. Shijo T, Kuratani T, Shirakawa Y, et al. The assessment of collateral communication after hybrid repair for Crawford extent II thoracoabdominal aortic aneurysms. Eur J Cardiothorac Surg 2015;48 (06):960–967, discussion 967
6. Hughes GC, Andersen ND, Hanna JM, McCann RL. Thoracoabdominal aortic aneurysm: hybrid repair outcomes. Ann Cardiothorac Surg 2012;1(03):311–319
7. Dalainas I, Nano G, Bianchi P, et al. Endovascular techniques for the treatment of ruptured abdominal aortic aneurysms: 7-year intention-to-treat results. World J Surg 2006;30(10):1809–1814, discussion 1815–1816
8. Hughes GC, Barfield ME, Shah AA, et al. Staged total abdominal debranching and thoracic endovascular aortic repair for thoracoabdominal aneurysm. J Vasc Surg 2012;56(03):621–629
9. Damrauer SM, Fairman RM. Visceral debranching for the treatment of thoracoabdominal aortic aneurysms: based on a presentation at the 2013 VEITH Symposium, November 19-23, 2013 (New York, NY, USA). Aorta (Stamford) 2015;3(02):67–74
10. Fukui D, Wada Y, Komatsu K, et al. Innovative application of available stent grafts in Japan in aortic aneurysm treatment: significance of innovative debranching and chimney method and coil embolization procedure. Ann Vasc Dis 2013;6(03):601–611