Genome sequence of the dark pink pigmented *Listia bainesii* microsymbiont *Methylobacterium* sp. WSM2598

Julie Ardley¹, Rui Tian¹, John Howieson¹, Ron Yates¹-², Lambert Bräu³, James Han⁴, Elizabeth Lobos⁴, Marcel Huntemann⁴, Amy Chen⁵, Konstantinos Mavromatis⁵, Victor Markowitz⁵, Natalia Ivanova⁴, Amrita Pati⁴, Lynne Goodwin⁶, Tanja Woyke⁴, Nikos Kyrpides⁴,⁷ and Wayne Reeve¹*

Abstract

Strains of a pink-pigmented *Methylobacterium* sp. are effective nitrogen- (N₂) fixing microsymbionts of species of the African crotalarioid genus *Listia*. Strain WSM2598 is an aerobic, motile, Gram-negative, non-spore-forming rod isolated in 2002 from a *Listia bainesii* root nodule collected at Estcourt Research Station in South Africa. Here we describe the features of *Methylobacterium* sp. WSM2598, together with information and annotation of a high-quality draft genome sequence. The 7,669,765 bp draft genome is arranged in 5 scaffolds of 83 contigs, contains 7,236 protein-coding genes and 18 RNA-only encoding genes. This rhizobial genome is one of 100 sequenced as part of the DOE Joint Genome Institute 2010 *Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria* (GEBA-RNB) project.

Keywords: Root-nodule bacteria, Nitrogen fixation, Symbiotic specificity, Alphaproteobacteria

Introduction

Nodulated legumes are important and established components of Australian agricultural systems: the value of atmospheric nitrogen (N₂) fixed by rhizobia in symbiotic association with these legumes is estimated to be worth more than $2 billion annually [1,2]. The major agricultural region of south-western Australia has a Mediterranean climate, with soils that are often acid, have a low clay content and low organic matter, and tend to be inherently infertile [3,4]. The last forty years, however, have seen a sharp decrease in average winter rainfall by about 15–20% [5]. This, together with the development of dryland salinity [6], has challenged the sustainability of using the commonly sown subterranean clover and annual medics as pasture legumes in these systems. Alternative perennial legume species (and their associated rhizobia) are therefore being sought [2]. We have identified a suite of South African perennial, herbaceous forage legumes, including several species in the crotalarioid genus *Listia* (previously *Lotononis*) [7], that are potentially well-adapted to the arid climate and acid, infertile soils of the target agricultural areas.

Listia species are found in seasonally wet habitats throughout southern and tropical Africa [8]. They produce stoloniferous roots [8,9] and form lupinoid nodules rather than the indeterminate type found in other crotalarioid species [7,10]. Rhizobial infection occurs by epidermal entry rather than via root hair curling [7]. *Listia*-rhizobia symbioses are highly specific. The tropically distributed *L. angolensis* forms effective (i.e. N₂-fixing) nodules with newly described species of *Microvirga* [11], while all other studied *Listia* species are only nodulated by strains of pigmented methyllobacteria [7,10,12]. Unlike the methylotrophic *Methylobacterium nodulans*, which specifically nodulates some species of *Crotalaria* [13], the *Listia* methyllobacteria are unable to utilize methanol as a sole carbon source [14]. In Australia, strains of pigmented methyllobacteria have been used as commercial inoculants for *Listia bainesii* and are able to persist in acidic, sandy, infertile soils, while remaining symbiotically and serologically stable [10,15].

* Correspondence: W.Reeve@murdoch.edu.au
1 Centre for Rhizobium Studies, Murdoch University, Murdoch, Western Australia, Australia
Full list of author information is available at the end of the article

© 2014 Ardley et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Figure 1 Images of Methylobacterium sp. strain WSM2598 using scanning (Left) and transmission (Center) electron microscopy as well as light microscopy to visualize colony morphology on solid ½LA [10] (Right).

| Table 1 Classification and general features of Methylobacterium sp. strain WSM2598 according to the MIGS recommendations [17,18] |
|---|---|---|
| **MIGS ID** | **Property** | **Term** | **Evidence code** |
| Current classification | Domain | Bacteria | TAS [18] |
| | Phylum | Proteobacteria | TAS [19] |
| | Class | Alphaproteobacteria | TAS [20,21] |
| | Order | Rhizobiales | TAS [21,22] |
| | Family | Methylobacteriaceae | TAS [21,23] |
| | Genus | Methylobacterium | TAS [24-26] |
| | Species | Methylobacterium sp. | TAS [10] |
| | Strain | WSM2598 | TAS [10] |
| Gram stain | Negative | IDA |
| Cell shape | Rod | IDA |
| Motility | Motile | IDA |
| Sporulation | Non-sporulating | NAS |
| Temperature range | Mesophile | IDA |
| Optimum temperature | 28°C | NAS |
| Salinity | Non-halophile | NAS |
| MIGS-22 | Oxygen requirement | Aerobic | IDA |
| MIGS-6 | Carbon source | Formate, succinate & glutamate | TAS [14] |
| | Energy source | Chemoorganotroph | TAS [14] |
| MIGS-15 | Habitat | Soil, root nodule on host | TAS [10] |
| MIGS-14 | Biotic relationship | Free living, symbiotic | TAS [10] |
| MIGS-4 | Pathogenicity | Non-pathogenic | NAS |
| Biosafety level | 1 | TAS [27] |
| Isolation | Root nodule of *Listia bainesii* | TAS [10] |
| MIGS-4 | Geographic location | Estcourt Research Station, South Africa | TAS [10] |
| MIGS-5 | Sample collection date | May 27, 2002 | TAS [10] |
| MIGS-4.1 | Latitude | ~29.9125 | TAS [10] |
| MIGS-4.2 | Longitude | 29.16667 | TAS [10] |
| MIGS-4.3 | Depth | Not reported | NAS |
| MIGS-4.4 | Altitude | 1,200 m | IDA |

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [31].
A pigmented *Methylobacterium* strain, WSM2598, isolated from a root nodule of *L. bainesii* cv “Miles” in South Africa in 2002, was found to be a highly effective nitrogen fixing microsymbiont of both *L. bainesii* and *Listia heterophylla* (previously *Lotononis listii*) [10]. Here we present a set of preliminary classification and general features for *Methylobacterium* sp. strain WSM2598, together with the description of the genome sequence and annotation.

Figure 2 Phylogenetic tree showing the relationships of *Methylobacterium* sp. WSM2598 (shown in blue print) with some of the root nodule bacteria in the order *Rhizobiales* based on aligned sequences of the 16S rRNA gene (1,340 bp internal region). All sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5 [28]. The tree was built using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis [29] with 500 replicates was performed to assess the support of the clusters. Type strains are indicated with a superscript T. Brackets after the strain name contain an accession number. Strains with a genome sequencing project registered in GOLD [30] are in bold print and the GOLD ID is mentioned after the accession number. Published genomes are designated with an asterisk.

Organism information

Methylobacterium sp. strain WSM2598 is a motile, non-sporulating, non-encapsulated, Gram-negative rod with one to several flagella. It is a member of the family *Methylobacteriaceae* in the class *Alphaproteobacteria*. The rod-shaped form varies in size with dimensions of approximately 0.5 μm in width and 1.0-1.5 μm in length (Figure 1 Left and 1 Center). WSM2598 is medium to slow growing, forming
0.5–1.5 mm diameter colonies within 6–7 days at 28°C. WSM2598 is pigmented, an unusual property for rhizobia. When grown on half strength Lupin Agar (½LA) [10], WSM2598 forms dark pink pigmented, opaque, slightly domed colonies with smooth margins (Figure 1 Right).

WSM2598 alkalinizes ½LA containing universal indicator (BDH Laboratory Supplies). WSM2598 cultured in minimal medium [16] is unable to utilize arabinose, galactose, glucose, mannitol, methanol, methylamine or formaldehyde as sole carbon sources, but grows poorly on formate and well on succinate and glutamate [14]. Minimum Information about the Genome Sequence (MIGS) is provided in Table 1 and Additional file 1: Table S1.

Table 2 Compatibility of Methylobacterium sp. WSM2598 with 11 host legume genotypes for nodulation (Nod) and N₂-Fixation (Fix)

Species name	Nod	Fix	Reference
Listia angolensis (Welw. ex Bak.) B.-E. van Wyk & Boatwr.	+(w)	-	[7,10]
Listia bainesii (Bak.) B.-E. van Wyk & Boatwr.	+	+	[7,10]
Listia heterophylla E. Mey.	+	+	[7,10]
Listia marlothii (Engl.) B.-E. van Wyk & Boatwr.	+	+	[7,10]
Listia solutudinis (Dümmer) B.-E. van Wyk & Boatwr.	+	+	[10]
Listia subulata (B.-E. van Wyk) B.-E. van Wyk & Boatwr.	+	+	[10]
Leobordea lanata (Thunb.) B.-E. van Wyk & Boatwr. (=Lotononis bolusii)	+(w)	-	[7]
Leobordea langiflora (H. Bolus) B.-E. van Wyk & Boatwr.	+(w)	-	[7]
Leobordea stipulosa (Bak. f.) B.-E. van Wyk & Boatwr.	+(w)	-	[7]
Macroptilium atropurpureum (DC.) Urb. cv. Siratro	+(w)	-	[10]

(w) indicates nodules present were white.

Figure 2 shows the phylogenetic neighborhood of Methylobacterium sp. WSM2598 in a 16S rRNA sequence based tree. The 16S rDNA sequence of WSM2598 has 99% (1,358/1,364 bp) and 98% (1,334/1,365 bp) sequence identity to the 16S rRNA of the fully sequenced strains Methylobacterium sp. 4–46 (Gc00857) and M. nodulans ORS2060 (Gc00935), respectively.

Symbiotaxonomy
Methylobacterium sp. WSM2598 forms nodules on (Nod+), and fixes N₂ (Fix+), with southern African species of Listia. On Listia angolensis, some species of the crotalarioid genus Leobordea and the promiscuous legume Macroptilium atropurpureum, WSM2598 forms white, ineffective (Fix-)

Table 3 Genome sequencing project information for Methylobacterium sp. WSM2598

MIGS ID	Property	Term
MIGS-31	Finishing quality	Improved high quality draft
MIGS-28	Libraries used	Illumina GAII standard PE and CLIP PE libraries
MIGS-29	Sequencing platforms	Illumina GAII technology
MIGS-312	Sequencing coverage	685x Illumina
MIGS-30	Assemblers	Velvet, version 1.0.05; Allpaths r99750
MIGS-32	Gene calling method	Prodigal 1.4
GenBank		ARAA0000000.1
GenBank release date		August 28, 2013
GOLD ID		G08887
NCBI project ID		88639
Database: IMG		2517572068
Project relevance		Symbiotic N₂ fixation, agriculture

Table 4 Genome statistics for Methylobacterium sp. WSM2598

Attribute	Value	% of total
Genome size (bp)	7,669,765	100.00
DNA coding region (bp)	6,286,667	81.97
DNA G+C content (bp)	5,458,294	71.17
Number of scaffolds	5	
Number of contigs	83	
Total genes	7,349	100.00
RNA genes	18	0.24
rRNA operons	6	0.08
Protein-coding genes	7,236	98.46
Genes with function prediction	5,234	71.22
Genes assigned to COGs	5,025	68.38
Genes assigned Pfam domains	5,314	72.31
Genes with signal peptides	736	10.01
Genes with transmembrane helices	1,492	20.30
CRISPR repeats	3	
Figure 3 (See legend on next page.)
nodules. It does not form nodules on other tested legumes [7], [Table 2].

Genome sequencing and annotation information

Genome project history

This organism was selected for sequencing on the basis of its environmental and agricultural relevance to issues in global carbon cycling, alternative energy production, and biogeochemical importance, and is part of the Community Sequencing Program at the U.S. Department of Energy, Joint Genome Institute (JGI) for projects of relevance to agency missions. The genome project is deposited in the Genomes OnLine Database [30] and an improved-high-quality-draft genome sequence in IMG. Sequencing, finishing and annotation were performed by the JGI. A summary of the project information is shown in Table 3.

Growth conditions and DNA isolation

Methylobacterium sp. WSM2598 was grown to mid-logarithmic phase in TY rich media on a gyratory shaker at 28°C [32]. DNA was isolated from 60 mL of cells using a CTAB (Cetyl trimethyl ammonium bromide) bacterial genomic DNA isolation method [33].

Genome sequencing and assembly

The draft genome of *Methylobacterium* sp. WSM2598 was generated at the DOE Joint Genome Institute (JGI) using Illumina technology [34,35]. For this genome, we constructed and sequenced an Illumina short-insert paired-end library with an average insert size of 270 bp which generated 19,048,548 reads and an Illumina long-insert paired-end library with an average insert size of 6354.14 +/− 3100.07 bp which generated 18,876,864 reads totaling 5,689 Mbp of Illumina data. (unpublished, Feng Chen). All general aspects of library construction and sequencing performed at the JGI can be found at the JGI website. The initial draft assembly contained 141 contigs in 41 scaffold(s). The initial draft data was assembled with Allpaths, version 39750, and the consensus was computationally shredded into 1 Kbp overlapping fake reads. The Illumina draft data was also assembled with Velvet, version 1.1.05 [36] and the consensus sequences were computationally shredded into 1.5 Kbp overlapping fake reads (shreds). The Illumina draft data was assembled again with Velvet using the shreds from the first Velvet assembly to guide the next assembly. The consensus from the second VELVET assembly was shredded into 1.5 Kbp overlapping fake reads. The fake reads from the Allpaths assembly and both Velvet assemblies and a subset of the Illumina CLIP paired-end reads were assembled using parallel phrap, version 4.24 (High Performance Software, LLC). Possible mis-assemblies were corrected with manual editing in Consed [37-39]. Gap closure was accomplished using repeat resolution software (Wei Gu, unpublished), and sequencing of bridging PCR fragments with Sanger and/or PacBio (unpublished, Cliff Ardley et al. Standards in Genomic Sciences 2014, 9:5 http://www.standardsingenomics.com/content/9/1/5

| Table 5 Number of protein coding genes of *Methylobacterium* sp. WSM2598 associated with the general COG functional categories |
|---|---|---|---|
| Code | Value | % age | COG category |
| J | 176 | 3.15 | Translation, ribosomal structure and biogenesis |
| A | 3 | 0.05 | RNA processing and modification |
| K | 398 | 7.13 | Transcription |
| L | 384 | 6.88 | Replication, recombination and repair |
| B | 5 | 0.09 | Chromatin structure and dynamics |
| D | 44 | 0.79 | Cell cycle control, mitosis and meiosis |
| Y | 0 | 0.00 | Nuclear structure |
| V | 78 | 1.40 | Defense mechanisms |
| T | 422 | 7.56 | Signal transduction mechanisms |
| M | 306 | 5.48 | Cell wall/membrane biogenesis |
| N | 139 | 2.49 | Cell motility |
| Z | 2 | 0.04 | Cytoskeleton |
| W | 0 | 0.00 | Extracellular structures |
| U | 96 | 1.72 | Intracellular trafficking and secretion |
| O | 155 | 2.78 | Posttranslational modification, protein turnover, chaperones |
| C | 399 | 7.15 | Energy production conversion |
| G | 307 | 5.50 | Carbohydrate transport and metabolism |
| E | 526 | 9.42 | Amino acid transport metabolism |
| F | 80 | 1.43 | Nucleotide transport and metabolism |
| H | 208 | 3.73 | Coenzyme transport and metabolism |
| I | 234 | 4.19 | Lipid transport and metabolism |
| P | 285 | 5.11 | Inorganic ion transport and metabolism |
| Q | 174 | 3.12 | Secondary metabolite biosynthesis, transport and catabolism |
| R | 640 | 11.47 | General function prediction only |
| S | 520 | 9.32 | Function unknown |
| - | 2,324 | 31.62 | Not in COGS |
Han) technologies. One round of manual/wet lab finishing was also completed. 17 PCR PacBio consensus sequences were completed to close gaps and to raise the quality of the final sequence. The total (“estimated size” for the unfinished) size of the genome is 8.3 Mb and the final assembly is based on 5.689 Mbp of Illumina draft data, which provides an average 685× coverage of the genome.

Genome annotation

Genes were identified using Prodigal [40] as part of the DOE-JGI Annotation pipeline [41], followed by a round of manual curation using the JGI GenePRIMP pipeline [42]. Within the Integrated Microbial Genomes (IMG-ER) system [43], predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRfam, Pfam, PRIAM, KEGG, COG, and InterPro databases. These data sources were combined to assert a product description for each predicted protein. Non-coding genes and miscellaneous features were predicted using tRNAscan-SE [44], RNAMer [45], Rfam [46], TMHMM [47], and SignalP [48]. Additional gene prediction analyses and functional annotation were performed within IMG.

Genome properties

The genome is 7,669,765 nucleotides with 71.17% GC content (Table 4) and comprised of 5 scaffolds (Figure 3) of 83 contigs. From a total of 7,349 genes, 7,236 were protein encoding and 18 RNA only encoding genes. The majority of genes (71.22%) were assigned a putative function whilst the remaining genes were annotated as hypothetical. The distribution of genes into COGs functional categories is presented in Table 5.

Conclusion

WSM2598 was sequenced as part of the DOE Joint Genome Institute GBEA-RNB project. In common with other sequenced rhizobial strains, WSM2598 has a comparatively large genome of around 7.69 Mbp, with a high proportion of genes assigned to the COG functional categories associated with transcription control and signal transduction (14.69%), transport and metabolism (29.38%) and secondary metabolite biosynthesis (3.12%). These features are characteristic of soil bacteria, which inhabit oligotrophic environments with typically diverse but scarce nutrient sources. Rhizobial methylobacteria are unusual, however, in that they form symbiotic associations exclusively with African crotalarioid legume hosts, several species of which are well-adapted to arid climates and acid, infertile soils and are therefore potentially useful pasture plants in marginal agricultural systems. The molecular basis for this symbiotic specificity has yet to be determined. As WSM2598 is highly effective for N₂-fixation on several of these hosts, its sequenced genome is a valuable resource for gaining an understanding of symbiotic specificity and N₂-fixation in a currently understudied group of legumes and rhizobia.

Additional file

Additional file 1: Table S1. Associated MG5 record.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JA, JH and RY supplied the strain and background information for this project and contributed to the assembly of the manuscript with WR, TR supplied DNA to JGI and performed all imaging, WR coordinated the project and all other authors were involved in either sequencing the genome and/ or editing the paper. All authors read and approved the final manuscript.

Acknowledgements

This work was performed under the auspices of the US Department of Energy Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396. We gratefully acknowledge Strategic Research Funds allocated by Murdoch University to support this project.

Author details

1Centre for Rhizobium Studies, Murdoch University, Murdoch, Western Australia, Australia. 2Department of Agriculture and Food, South Perth, Western Australia, Australia. 3School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia. 4DOE Joint Genome Institute, Walnut Creek, California, USA. 5Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA. 6Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA. 7Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.

Received: 13 June 2014 Accepted: 16 June 2014

Published: 8 December 2014

References

1. Herridge DF, Peoples MB, Boddey RM. *Global inputs of biological nitrogen fixation in agricultural systems*. Plant Soil 2008; 311:1–18. http://dx.doi.org/10.1007/s11104-008-0668-3

2. Howieson JG, Yates RJ, Foster K, Real D, Beiser B. *Prospects for the future use of legumes*. In: Dilworth MJ, James EK, Sprent JI, Newlin WE, editors. Leguminous Nitrogen-Fixing Symbioses. London, UK: Elsevier; 2008. p. 363–394.

3. Howieson JG, O’Hara GW, Can S. *Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective*. Field Crops Res 2000; 65:107–122. http://dx.doi.org/10.1016/S0378-4290(99)00081-7

4. Nichols P, Lci A, Nutt B, Snowball R, Revell C. *Domestication of new Mediterranean annual pasture legumes*. In: Huyghe C, editor. Dordrecht, Netherlands: Sustainable Use of Genetic Diversity in Forage and Turf Breeding. Springer; 2010. p. 137–142.

5. Initiative IOC. *Climate variability and change in southwest Western Australia*. 2002. p 1–34.

6. Šy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Mills G, Bovin-Masson C, Dreyfus B. *Long-term groundwater trends and their impact on the future extent of dryland salinity in Western Australia in a variable climate*. University of Western Australia: Crawley, Western Australia: Salinity Forum; 2008.

7. Ardley JK, Reeve WG, O’Hara GW, Yates RJ, Dilworth MJ, Howieson JG. *Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l.* Ann Bot (Lond) 2013; 112:1–15. PubMed http://dx.doi.org/10.1093/aob/mct095
8. van Wyk BE. A Synopsis of the Genus Lottonon (Fabaceae: Crotalarieae). Cape Town: South Africa: Rustica Press; 1991.

9. Boatwright JS, Wink M, van Wyk BE. The generic concept of Lottonon (Crotalarieae, Fabaceae): Reinstatement of the genera Euchlora, Leobordea and Listia and the new genus Ezolobia. Taxon 2011; 60:161–177.

10. Yates RJ, Howieson KG, Reeve WG, Nandanasa KG, Law LJ, Brul A, Arldley JK, Nistelberger HM, Real D, O’Hara GW. Lottonon angolensis forms nitrogen fixing, lipoid nodules with phylogenetically unique, fast-growing, pink-pigmented bacteria, which do not nodulate L. bainesii or L. listii. Soil Biol Biochem 2007; 39:1680–1688. http://dx.doi.org/10.1016/j.soilbio.2007.01.025.

11. Arldley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG. Microviroga lunipi sp. nov., Microviroga lontonidus sp. nov. and Microviroga zamiasiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 2012; 62:2579–2588. PubMed http://dx.doi.org/10.1099/ijs.0.053907-0.

12. Norris DO. A red strain of Rhizobium from Lottonon bainesii Baker. Aust J Agric Res 1958; 9:629–632. http://dx.doi.org/10.1071/AR958s629.

13. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 2001; 183:214–220. PubMed http://dx.doi.org/10.1128/JB.183.1.214-220.2001.

14. Arldley JK, O’hara GW, Reeve WG, Yates RJ, Dilworth MJ, Twari RP, Howieson JG. Root nodule bacteria isolated from South African Lottonon bainesii, L. listii and L. solitudinis are unable to utilize methanol. Arch Microbiol 2009; 191:311–318. PubMed http://dx.doi.org/10.1007/s00203-009-0456-0.

15. Datta A. Ecological studies of root-nodule bacteria introduced into field environments—6. Antigenic and symbiotic stability in Lottonon rhizobia over a 12-year period. Soil Biol Biochem 1977; 9:953–958. http://dx.doi.org/10.1016/0038-0717(77)90042-6.

16. O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR. Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 1989; 55:1870–1876. PubMed

17. Field D, Garrity G, Gray T, Morrison N, Setlur GP, Stank B, Patusova T, Thomson N, Allen M, Angluich SV, Ashburner M, Axelrod N, Baldauf S, Ballard PR, Baker. Technical rules for biological agents. TRBA http://www.baua.de):466.

18. van Wyk BE. A Synopsis of the Genus Lottonon (Fabaceae: Crotalarieae). Cape Town: South Africa: Rustica Press; 1991.

19. Boatwright JS, Wink M, van Wyk BE. The generic concept of Lottonon (Crotalarieae, Fabaceae): Reinstatement of the genera Euchlora, Leobordea and Listia and the new genus Ezolobia. Taxon 2011; 60:161–177.

20. Garrity G, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. New York, 1976; 1:63–67. PubMed http://dx.doi.org/10.1007/bf01390207.

21. O’Hara GW, Goss TJ, Dilworth MJ, Glenn AR. Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 1989; 55:1870–1876. PubMed

22. Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. New York, 1976; 1:63–67. PubMed http://dx.doi.org/10.1007/bf01390207.

23. Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology. New York, 1976; 1:63–67. PubMed http://dx.doi.org/10.1007/bf01390207.

24. Patterson KE, Adams MD, Wu Y, Lasseter KD, Nelson KE, Hickey ER. RGENeRator: database of ribosomal genes. Nucleic Acids Res 2010; 38:D529–D534. PubMed http://dx.doi.org/10.1093/nar/gkp1200.

25. Patterson KE, Adams MD, Wu Y, Lasseter KD, Nelson KE, Hickey ER. RGENeRator: database of ribosomal genes. Nucleic Acids Res 2010; 38:D529–D534. PubMed http://dx.doi.org/10.1093/nar/gkp1200.

26. Green PN, Bousfield U. Emendation of Methylobacterium Patt, Cole and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corr.; Methylobacterium radiotolerans, (Itto and Iizuka 1971) comb. nov. corr.; and Methylobacterium mesophilicum, (Austin and Goodfellow 1979) comb. nov. Int J Syst Bacteriol 1983; 33:875–877. http://dx.doi.org/10.1099/00207719-33-4-875.

27. Biological Agents. Technical rules for biological agents. TRBA http://www.baua.de):466.

28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: Molecular evolutionary genetics analysis using Maximum Likelihood, evolutionary distance, and Maximum Parsimony methods. Mol Biol Evol 2011; 28:2731–2739. PubMed http://dx.doi.org/10.1093/molbev/mmr121.

29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791. http://dx.doi.org/10.2307/2408678.

30. Liolios K, Mavromatis K, Tavernaraks N, Kyrpides NC. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res 2008; 36:D475–D479. PubMed http://dx.doi.org/10.1093/nar/gkm684.

31. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, et al. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 2001; 183:214–220. PubMed http://dx.doi.org/10.1128/JB.183.1.214-220.2001.

32. Arldley JK, O’hara GW, Reeve WG, Yates RJ, Dilworth MJ, Twari RP, Howieson JG. Root nodule bacteria isolated from South African Lottonon bainesii, L. listii and L. solitudinis are unable to utilize methanol. Arch Microbiol 2009; 191:311–318. PubMed http://dx.doi.org/10.1007/s00203-009-0456-0.
47. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J Mol Biol 2001; 305:567–580. PubMed http://dx.doi.org/10.1006/jmbi.2000.4315

48. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004; 340:783–795. PubMed http://dx.doi.org/10.1016/j.jmb.2004.05.028

doi:10.1186/1944-3277-9-5

Cite this article as: Ardley et al.: Genome sequence of the dark pink pigmented Listia bainesii microsymbiont Methylobacterium sp. WSM2598. Standards in Genomic Sciences 2014 9:5.