Spending of HIV resources in Asia and Eastern Europe: systematic review reveals the need to shift funding allocations towards priority populations

Andrew P Craig1, Hla-Hla Thein1,2, Lei Zhang1, Richard T Gray1, Klara Henderson1, David Wilson3, Marelize Gorgens3 and David P Wilson§,1

§Corresponding author: David P Wilson, The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia. Tel: +61 2 9385 0959. Fax: +61 2 9385 0920. (dwilson@unsw.edu.au)

Abstract

Introduction: It is increasingly important to prioritize the most cost-effective HIV interventions. We sought to summarize the evidence on which types of interventions provide the best value for money in regions with concentrated HIV epidemics.

Methods: We conducted a systematic review of peer-reviewed and grey literature reporting measurements of cost-effectiveness or cost-benefit for HIV/AIDS interventions in Asia and Eastern Europe. We also collated HIV/AIDS spending assessment data from case-study countries in the region.

Results: We identified 91 studies for inclusion, 47 of which were from peer-reviewed journals. Generally, in concentrated settings, prevention of mother-to-child transmission programmes and prevention programmes targeting people who inject drugs and sex workers had lower incremental cost-effectiveness ratios than programmes aimed at the general population. The few studies evaluating programmes targeting men who have sex with men indicate moderate cost-effectiveness. Collation of prevention programme spending data from 12 countries in the region (none of which had generalized epidemics) indicated that resources for the general population/non-targeted was greater than 30% for eight countries and greater than 50% for five countries.

Conclusions: There is a misalignment between national spending on HIV/AIDS responses and the most affected populations across the region. In concentrated epidemics, scarce funding should be directed more towards most-at-risk populations. Reaching consensus on general principles of cost-effectiveness of programmes by epidemic settings is difficult due to inconsistent evaluation approaches. Adopting a standard costing, impact evaluation, benefits calculation, analysis and reporting framework would enable cross comparisons and improve HIV resource prioritization and allocation.

Keywords: HIV; cost-benefit analyses; programme evaluation; systematic review; concentrated epidemics; Asia; Eastern Europe; cost-effectiveness.

To access the supplementary material to this article please see Supplementary Files under Article Tools online.

Introduction

Asia is the second most HIV-affected region of the world and Eastern Europe is the only region of the world in which HIV epidemics continue to increase [1]. These regions are not only geographically adjacent but share similar HIV epidemic features. HIV epidemics in Asia and Eastern Europe are concentrated among most-at-risk populations (MARPs), specifically among people who inject drugs (PWID) and sex workers (SW) and more recently in some countries also among men who have sex with men (MSM) [1].

Although responses to HIV epidemics in these regions have increased over the past decade, they have not controlled the spread of infection due to an inadequate coverage of populations most at risk. The increased response to HIV epidemics is largely due to substantial bilateral and multilateral donor investment in low- and middle-income countries across the region [2]. However, it is acknowledged that as this investment is withdrawing [3] it is becoming increasingly important to get more value for the available HIV money by prioritizing the most cost-effective HIV interventions. Allocating resources in the most effective way will reduce new infections and the morbidity and mortality caused by HIV.

HIV/AIDS intervention effectiveness evaluation and cost-effectiveness studies have become important analytical tools to understand what HIV investments have bought and which future allocation of funds is likely to result in the greatest epidemiological impact. The most comprehensive review of
the cost-effectiveness of HIV programmes we identified was by Pattanaphaesa and Teerawattanon [4], who reviewed evidence specific for Thailand between 1997 and 2008. More specific reviews included Wolfe et al. [5], which reviewed the cost-effectiveness evidence of antiretroviral therapy (ART) for PWID, focusing on low- and middle-income countries. Galarraga et al. [6] reviewed relevant literature published in the years 2005–2008 for low- and middle-income countries and Sweeney et al. [7] considered studies that investigated the integration of HIV and AIDS services with other health services. Although these studies are not an exhaustive list of HIV cost-effectiveness reviews, the purview of recent broad-ranging reviews does end at 2008, reviews of subsequent periods concentrate on particular intervention types and we have not identified any reviews of all intervention types across a global region.

We conducted a systematic review of cost-effectiveness studies of HIV/AIDS programmes across Asia and Eastern Europe in order to identify evidence for which type of interventions offers the best value-for-money to address HIV epidemics in this region. To our knowledge, the current study is the broadest such review yet conducted. We also review National AIDS Spending Assessments from 12 case-study countries across the region to ascertain to what extent prevention spending is aligned with cost-effectiveness evidence.

Methods
The criteria for a study to be included in the review were that the study considered an intervention to prevent HIV infection or reduce the burden of HIV, either in terms of health (as quantified by e.g. quality adjusted life-years (QALYs)) or in financial/economic terms; that the intervention occurred in Asia or Eastern Europe, or, if amalgamated results for a group of regions were presented, that a majority of the regions in the group were in Asia or Eastern Europe; and that the study reported at least one of the following: (1) cost per HIV infection averted, cost per disability adjusted life-year (DALY) averted, cost per QALY gained, cost per life-year saved or information that allowed simple calculation to produce one of these indicators; or (2) cost at which an intervention would be deemed cost-effective; or (3) cost savings; or (4) net present value, rate of return, or benefit-cost ratio. Our inclusion criteria meant that we included cost-effectiveness analyses (CEA), cost-benefit analyses (CBA) and cost-utility analyses (CUA), as well as other kinds of economic evaluation.

We searched the following databases: PubMed, EMBASE, LocatorPlus, EconLit, Tufts Medical Center CEA Registry. We also searched the World Bank Documents & Reports database, as well as those of the Asian Development Bank, UNAIDS, the Department for International Development UK, the International AIDS Vaccine Initiative, the International Partnership for Micobicides, the Office of Health Economics UK and PEPFAR. We also conducted Google searches on individuals known to have produced relevant papers or reports, models known to be used in HIV CEA and on each of the countries considered (the large numbers of results for these Google searches meant that checking each individually would have been prohibitively time-consuming; as such, we chose to check the first 100 results of each query). We adjusted the list of search keywords according to the capabilities of each search engine, but we required a match for a keyword synonymous with “HIV” or “AIDS,” and a keyword similar in meaning to “cost-effectiveness” or “programme evaluation.” We have provided the full list of search strings, the dates on which they were conducted and the number of hits (Supplementary file 1).

We also searched the references of identified studies and included referenced documents if they met our inclusion criteria. In addition, we included any relevant documents that we encountered for any reason during the course of the review. In several cases contacting an author with a request for further information also yielded documents that were considered for inclusion. Where evaluations in multiple studies considered the same intervention and were all conducted before the intervention or all conducted during/after the intervention, we chose one study for inclusion on the basis of comprehensiveness and publication date.

To better enable comparison of results from disparate countries and years we converted all incremental cost-effectiveness ratio (ICER) results into 2011 US$. Where ICERs were given in a non-US currency we converted the ratios into US$ for the same year, by dividing by the US per capita gross domestic product (GDP) purchasing power parity (PPP) and multiplying by the per capita GDP PPP corresponding to the non-US currency used. Per capita GDP PPP measures the value of goods produced in a country relative to the in-country purchasing power of that country’s currency. By using PPP instead of the exchange rate to do the conversion from local currency to US$ we estimate the number of US$ that would buy similar goods in the United States as could be bought in the original country with the amount of local currency to be converted. Under this approach, when ICERs were given in a non-US currency that was also not the currency of the country in which the intervention took place, the conversion used the per capita GDP PPP corresponding to the country of the currency rather than the country of the intervention. Per capita GDP PPP were sourced from the International Monetary Fund [8] (Taiwan) and World Bank [9] (all others); the World Bank figures did not include per capita GDP PPP for 2012, so for those we used the corresponding 2011 values. We then inflated that value into 2011 US$ using medical care consumer price indexes taken from the United States Department of Labor [10]. In many cases, a study provided only US$ or international dollar ICERs; in these cases we skipped the currency conversion step.

When recording ICERs, we included ranges if these were noted alongside or in place of point estimates. We excluded ranges if they were noted in a separate sensitivity/uncertainty analysis section. Some studies that reported ICERs for a number of different interventions also calculated the ICERs of combinations of these interventions; in these cases, we reported only the ICERs for the separated interventions.

We standardized outcomes of studies for visualization and comparison purposes. Considering the World Health Organization (WHO)-CHOICE criteria for cost-effectiveness thresholds compare ICERs to a country’s GDP [11], we divide the 2011 US$ ICERs by the 2011 per capita GDP (nominal) of the country in which the intervention was performed to
normalize results. We used per capita GDP from [12] for Taiwan and [13] for all others. No per capita GDP values were available for the regions considered in studies that presented multi-country amalgamated results, and so these were not standardized for inclusion in figures.

We calculated summary statistics for the cost per HIV-infection-averted ICERs (in 2011 US$). To calculate these, we used the point estimates where available; where unavailable, we took the mean of the lower and upper bounds. For those studies in which ICER was recorded as “Cost-saving,” we treated the ICER as 0 (although the true ICER would have been negative).

We conducted a simple quality assessment of the included studies, using a slightly modified version of Neumann et al.’s checklist [14]. As part of this we calculated a “checklist success score” for each study: this was the percentage of non-N/A checklist items for which the result was not “no” or “unclear.”

In order to compare actual spending patterns to our findings on which populations can be targeted with HIV interventions in a cost-effective manner, we estimated for 12 countries the proportion of resources allocated to prevention programmes for SW/clients, MSM, PWID and the general population, using HIV spending and budgeting data [15—41] and communication with in-country stakeholders. Programmes without a clear priority population were designated as “Not targeted.” We excluded indirect costs including overhead or management costs and health infrastructure costs. Proportions allocated to each group were estimated from available spending data over the period 2007–2011. No adjustment for inflation was made.

Results

A flowchart of identified relevant studies and inclusions/exclusions according to different criteria is presented in Figure 1.

We included 91 studies (refs. 42–129 and J. Stover, personal communication, August 16, 2012; J. Bottcher, personal communication, August 17, 2012; D.P. Wilson, personal communication, November 28, 2012); these studies are summarized in a table (Supplementary file 3). Of the studies included, 47 were peer-reviewed journal publications. There were 28 countries considered individually; 9 studies gave amalgamated results for groups of countries. The country represented in the most studies was Thailand (21 studies), followed by India (16 studies) and Ukraine (7 studies). Of the 91 studies, 64 considered a single country/region and primary target group; the remainder compared multiple

Figure 1. Flowchart indicating inclusion and exclusion of studies (with numbers of studies N) at each stage of the review process.
regions and/or primary target groups. The number of included studies, by region/country and primary target group of intervention(s) evaluated, is summarized in Table 1.

We included programme evaluations of future/hypothetical interventions, as well as programme evaluations of in-progress/completed interventions: there were 65 of the former, 32 of the latter and 2 for which this was unclear. Eight studies included both before and after analyses. (Some studies considered in-progress or completed programmes, but analyzed cost-effectiveness for extensions or expansions of those programmes; we considered such evaluations to be future/hypothetical.) Of the evaluations of in-progress/
completed studies, one assessed a randomized controlled trial [59], one compared patient outcomes before and after the introduction of highly active ART [81] and one compared different arms of an observational cohort [74]; the rest estimated effectiveness using approaches such as mathematical modelling.

Cost per HIV infection averted was the most-reported of the indicators we considered: 45 of the 91 studies gave at least one value for this indicator, for a total of 194 values with a mean of US$187,248, population standard deviation US$899,973, minimum cost-saving, first quartile US$567, median US$2,362, third quartile US$18,028 and maximum US$10,687,255. Peer-reviewed journal publications performed better in the quality assessment (Supplementary file 2), with the mean checklist success score for peer-reviewed journal publications being 61% versus 32% for other studies.

Only one of the studies of an in-progress/completed intervention clearly stated that it was an evaluation planned from the outset, although many other evaluations were presumably in the same category even if they did not make that explicit. Of the studies of future/hypothetical interventions, 10 were clearly programme evaluations carried out during their planning phases—all were either World Bank or Asian Development Bank publications. A feasibility assessment by the WHO also could be added to that number.

We noted whether studies of in-progress/completed interventions used prevalence or incidence routine surveillance data in determining effectiveness; there were only two studies where the answer was an unequivocal yes. In the remaining cases, it was considered that the studies had not used such data, or that they were not clear on this point; however, many studies used mathematical models and it is possible that surveillance data were used for calibration without this being stated in the study.

Of the 32 studies that evaluated in-progress/completed interventions, in five cases the source of the cost data used was unclear. In each of the other 27 cases cost data were drawn from actual costs and/or other sources, although where these were not available costs were assumed.

The cost-effectiveness of HIV interventions varied substantially across the Asia/Eastern Europe region. A comparison of ratio estimates of ICERs/per capita GDP for all identified evaluated interventions is provided in Figure 2. Many studies gave ICERs for a single programme incorporating a number of interventions. Therefore, results are differentiated by programme primary target group rather than by intervention type. Whether results are presented according to incremental cost per (a) life-year gained, (b) DALY saved, (c) QALY gained or (d) HIV infection averted, interventions appear to range from less than one per capita GDP to greater than 5 per capita GDP (Figure 2). Although there is variation in cost-effectiveness ratios for all targeted population group interventions, broadly it is identified that prevention of mother-to-child transmission (PMTCT) interventions and interventions targeted at PWID and SW/clients seem to have lower ICERS/per capita GDP, while programmes that were non-targeted or for the general population seem to have greater ICERS/per capita GDP (Figure 2). Relatively few studies focused on evaluating programmes targeting MSM. It is also important to note that there were large differences between studies in methodologies for assessing impacts and estimating costs (e.g. some studies considered only the unit costs of the intervention project, while others included infrastructure costs, while still others also included averted health care costs). This means that direct comparison of results across studies must be done with caution. Of particular importance is the large difference in time horizons considered in the included studies for assessment of benefits, which ranged from one year to lifetime. Some studies included the costs of health care while other studies did not. The most common form of annual discounting used was 3% for both costs and benefits, but this was not universal and there were studies in which costs and/or benefits were not discounted. Methods for estimating the burden avoided by the intervention evaluated varied from dynamic mathematical models to a simple assumption of the percentage of infections averted [51].

Of the 91 studies, 51 indicated whether or not the interventions studied were considered cost-effective and/or cost-saving, and 2 studies indicated costs at which the interventions would be considered cost-effective, based on HIV mobility [53] or vaccine costs [112]. No study reported that none of the interventions considered were cost-effective, although in many cases statements of cost-effectiveness were qualified with epidemic condition thresholds that would be necessary for the intervention to be cost-effective (e.g. [98]). The threshold or comparator for establishing cost-effectiveness varied: most used the WHO’s standard, with interventions with a cost-effectiveness of less than the per capita GDP considered highly cost-effective, and those with a cost-effectiveness of between one and three times the per capita GDP considered cost-effective [11]. Other willingness-to-pay thresholds included medical costs for a person infected with HIV [62] and “a variety of formal and informal international standards” [84]. The particular ICER compared to the chosen willingness-to-pay threshold varied between studies and gross national income was sometimes used in place of GDP.

The two countries for which the greatest numbers of health economic evaluations have been conducted are India and Thailand. Findings from evaluations conducted in these countries further emphasize the message that targeted programmes are generally cost-effective whereas those aimed at the general population are not cost-effective. In Figure 3, the cost per infection averted divided by per capita GDP is shown for evaluations of programmes conducted in (A) India and (B) Thailand.

For India, non-targeted interventions or programmes for the general public, including workplace programs, information, education and communication (IEC), microbiocide programmes for the public, mixed/tuberculosis (TB) +/− unclear programs and programs for tuckers, street children, prisoners and migrant labourers had an ICER/per capita GDP ratio point estimate above 3. Some general population programmes were more cost-effective, including youth-based interventions, voluntary counselling and testing (VCT),
sexually transmitted infection management (STI) and blood banks. Programmes targeting SW and programmes for PMTCT were deemed to be cost-effective in all evaluations. Similarly for Thailand, interventions targeting the public and mixed target groups have a wide range of ICER/per capita GDP ratios; notably, the most common interventions of condom distribution and education programmes for the public and mixed target groups have relatively poor cost-effectiveness. It was found that interventions targeting MSM have an ICER/per capita GDP ratio of less than 2, as does PMTCT in all but one evaluation. ART programmes were deemed to have a high ICER/per capita GDP ratio.

A relatively large proportion of HIV prevention resources are allocated to the general public or otherwise untargeted. The allocation of prevention programme spending to different target groups is given for 12 countries in Figure 4.

There is large variability in the proportions of resources allocated to different target populations. However, greater than 30% of all HIV resources were provided for the general population or non-targeted in eight of twelve
countries and greater than 50% of HIV resources were non-targeted in five countries (Figure 4).

Discussion
To determine whether actual spending on HIV interventions is in accordance with the latest evidence of HIV intervention cost-effectiveness, and also to address the lack of a recent comprehensive review of such evidence from countries with concentrated epidemics, we conducted a systematic review of studies of cost-effectiveness of HIV interventions in Asia and Eastern Europe. Generally, we found that programmes targeting populations at highest risk, such as PWID, SW and MSM, were most
cost-effective while programmes targeting the general public were not cost-effective or much less cost-effective than targeted programmes. However, for all target groups some evaluated programmes reported low ICERs and others reported high ICERs. Some programmes for the general population, such as VCT and STI treatment programmes, were shown to have greater cost-effectiveness (in India) than other programmes for the general public. Although VCT and STI programmes do target the public, their users will self-select and be those who consider themselves to be at risk of acquiring HIV or other STIs. Therefore, these more cost-effective “general population” programmes are also targeted towards those at greater risk. Conversely, workplace programmes, IEC and other non-targeted programmes are somewhat indiscriminate in that they will cover many people who are at low risk for HIV infection. This is likely to be the main reason for these broader programmes’ lower cost-effectiveness.

We also determined, through collation of data from National AIDS Spending Assessments from twelve countries in the region, that for eight of these countries, over 30% (and as high as 72%) of prevention funding over recent years was non-targeted and/or allocated to the general population despite the evidence of the low cost-effectiveness of these programmes and that more cost-effective programmes for most at-risk populations are generally far from saturation [41,130].

It could be considered that a priority is to guard the general population from the entry of HIV that would otherwise spark generalized epidemics as seen in Southern Africa. However, there is little evidence of a generalized epidemic occurring to date. The most at-risk populations of PWID, SW and MSM are often marginalized and therefore it may be politically difficult to invest significantly in health interventions targeting them. However, the evidence collated here suggests that decision makers would be wise to shift the limited HIV/AIDS resources available away from general population programmes and towards interventions that specifically target groups of people at greatest risk of infection. The interventions implemented should be those that have proven efficacy and are feasible in the given contexts. In doing so, the investment has the potential to make the greatest epidemiological impact and future economic return on the given investment.

A recent study found that a trial of antiretroviral pre-exposure prophylaxis (PrEP) given to PWID in Bangkok, Thailand, reduced transmission of HIV by 48.9% [131]. We have seen in this review that interventions targeting PWID can be very cost-effective and so look forward to a cost-effectiveness evaluation of PrEP for PWID. PrEP has also reduced transmission by 44% in MSM [132], and so it may be that PrEP becomes a key HIV intervention for many at-risk sub-populations. A recent review of CEA of treatment strategies for persons living with HIV/AIDS (PLWHA) found that increasing access to ART was generally more cost-effective than investing in more laboratory monitoring for those on ART [133]. Most of the studies included in that review considered Africa, but in those studies in our review that assessed interventions that primarily target PLWHA, ART seems to have been generally more cost-effective than alternative PLWHA-targeted interventions (such as TB interventions); thus, our findings broadly agree.

Many studies (51 of 91) made their own assessment as to whether an intervention was cost-effective or cost-saving. We attempted to standardize comparison between studies by reporting ICERs and ICERS/per capita GDP. The range of outcome measures used (HIV infections averted, DALYs averted, QALYs gained, life-years saved) further complicates...
comparison. The most-reported of these indicators, cost per HIV infection averted, is only reported by 43 of the 91 studies—less than half. There were also little-to-no similarities in the way in which the different studies were carried out. There is a lack of a standard in approaches to measuring effectiveness, costing and assessing cost-effectiveness, as well as in the time horizon over which analyses are conducted. The lack of standardization has been highlighted in the literature (e.g. [6] and [134]). The difference between assessing effectiveness over one year and over a lifetime can be great, as is the difference between including and excluding medical costs that would have been incurred as the result of contracting HIV, yet there were many such variations in the measurement approaches used in the studies we reviewed. These variations reduce the utility of comparing ICERs reported by different studies and should be seriously considered when interpreting the findings of this review. Indeed, such variations make it difficult for any attempt by decision makers to evaluate and implement best evidence-based practice. That all studies declared cost-effectiveness or found at least one of the intervention components cost-effective may also indicate bias in scientific approach or publication bias. To reduce this potential, we recommend that a registry of CEA protocols be established, similar to ClinicalTrials.gov [135] for clinical trials, and results presented as per the protocol regardless of the finding.

We recommend the adoption of a consistent costing and reporting framework, to better enable the comparison of the findings of different studies and to reduce the potential for methods of measuring costs and benefits to be selectively chosen in the interests of calculating a favourable cost-effectiveness. Guidelines on clear calculation of cost-effectiveness have existed for some time (e.g. [136–139]) but [140] noted that guidelines do not necessarily agree with one another, and that their recommendations do not always provide sufficient detail as to how they should be followed. In addition, the emphasis generally seems to be on promoting clarity (i.e. by being explicit about what has been included and excluded in cost and benefit calculations) rather than on proscribing what should be included and excluded. Proscriptive guidelines would be more effective in creating a consistent and comparable body of evaluation literature. As a starting point for a proscriptive set of guidelines, we recommend: healthcare costs saved be included when costing; the “lifetime” timeframe (which was the most frequently used in the studies in this review) be used; both economic and financial costs be reported; costs and cost-effectiveness ratios be reported in local currency, US$ (converted using standard exchange rates) and international dollars; HIV infections averted (where this makes sense) and QALYs gained be used as the measures of benefit; and point estimates as well as 95% credible intervals be given for ICERs. For all of these suggestions, there are arguments for using an alternative measure or method, and discussion should be made before guidelines are decided upon, but what we consider important is not so much which particular method is recommended in future guidelines, but simply that a particular method is recommended.

Almost half of the studies included in this review were not from peer-reviewed journal publications, and the results of our quality assessment suggest that the standard of reporting in peer-reviewed journal publications is higher. It should be noted that there were many ambiguous cases for even seemingly open-and-shut checklist items and so there was a large degree of subjectivity involved in the assessment. Also, the results are to a large extent a measure of how much information was directly available to the reader, and so the low rating of short documents, including conference abstracts and posters, is unavoidable. Given the difference in rated reporting quality of the peer-reviewed and grey literature, it is important to note whether there is a noticeable difference in their broad findings. Figure 2 identifies whether or not each study shown was peer reviewed; we do not consider there to be a clear pattern to the cost-effectiveness ratios based on whether or not the source was peer reviewed, and so we believe it is reasonable to draw conclusions by considering together the peer-reviewed and grey literature.

This study has some limitations. The National AIDS Spending Assessments represented the best indication we could find of actual spending on HIV interventions, but it should be noted that spending categorized in Figure 4 as “not targeted” may have been targeted at high-risk groups. Also, our exclusion of separate sensitivity/uncertainty analysis sections reported within reviewed studies means that some information that is in the literature was not included in our review. Although we attempted to restrict study inclusion to one per intervention, the high proportion of evaluations of future/hypothetical interventions means that results of some studies for the same region/country will probably have some overlap with other evaluation studies. We did not include a restriction on publication date in our inclusion criteria and, therefore, some of the included studies are relatively old. Results from these studies should be viewed with more caution because the cost of some interventions may have changed (e.g. ART). Furthermore, the epidemic dynamics from different time periods, and in different country settings, may influence the cost-effectiveness of interventions. Studies that compare different intervention types and/or interventions in different regions are valuable because they provide comparison of these interventions without the usual concern about different methods and settings, allowing for better dissemination of knowledge and for general conclusions and principles to be elicited, which can inform decision-making.

Most of the studies included (65 of 91) considered only one relevant region/intervention combination. More studies contrasting multiple regions and/or interventions would be valuable. Of particular benefit might be more investigations that contrast the cost-effectiveness of different interventions targeting PWID, SW/clients, individuals living with HIV, and the public. As can be seen in Table 1, several regions are considered by only one study, while only interventions in Thailand and India have each been considered in a relatively large number of studies. There are also regions within Asia and Eastern Europe not represented or under-represented in the literature. There is also a lack of investigation into the effectiveness and cost-effectiveness of programmes primarily targeting MSM.
With around one third of included studies evaluating in-progress/completed evaluations, our results are dominated by future/hypothetical studies that project estimated cost-effectiveness of future programme implementation. Assessing the potential cost-effectiveness of different budget decisions and also evaluating interventions after implementation may provide greater rigor to the process of identifying greatest value for money. However, in current environments where decisions need to be made on resource prioritization, our study suggests the greatest value for money, resulting in largest epidemiological impact, will be attained by targeting populations and sub-populations of people at greatest per capita risk of infection. We suggest that less-targeted intervention programmes should be considered only when these groups are covered with programmes towards saturation.

Authors’ affiliations
1The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; 2Dalla Lana School of Public Health, University of Toronto, Toronto, Canada; 3World Bank Group Washington, DC, USA

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
APC jointly planned the search strategy, conducted the literature searches and wrote the manuscript. HHT jointly planned the search strategy and the reporting method, conducted the literature searches, chose the method for processing the cost-effectiveness results for comparison and edited the manuscript. LZ jointly planned the search strategy and the reporting method. RTG led the collation and interpretation of the spending data for the case-study countries and edited the manuscript. KH jointly planned the reporting method and contributed to the discussion and edited the manuscript. DW jointly planned the reporting method and contributed to the discussion. MG jointly planned the reporting method and contributed to the discussion and edited the manuscript. DPMJ jointly planned the search strategy and the reporting method, edited the manuscript and initiated and led the review. All authors have read and approved the final version.

Acknowledgements
We thank the following people for assistance in collating spending data for each of the case-study countries: Eric P. F. Chow, Anne Jamaludin, Karina Razali, Josephine F. Reyes, Duy Pham, Ibu Mardati, Julius Cheah, Anna Yakuksel and Alexander Hoare. We thank Ijaco A. Kwon and Waikok Yi for assistance during the search process, and Sergio Bautista, Eduard Beck, Desiree Bernard, Alexey, Bobrik, Lori Bollinger, Jo Bottcher, Margaret Brandeau, Elizabeth Christian, Skye McGregor, Julienne McKay, Laura McPherson, Willem Jan Meerding, Karen Schneider, John Stover, Pornchai Sithisarankul, Michael Sweat, Yot Teerawattanon, Khiophon Tupsart, Peter Vickersman, Damien Walker, Alan Whiteside and Chalarnporn Yothasmut for assistance obtaining documents, clarifying study details and providing suggestions on studies to consider for review. We would also like to thank the two anonymous reviewers for their valuable comments and suggestions.

Funding: This study was funded by the World Bank Group with support by the Australian Research Council and University of New South Wales. The Kirby Institute is funded by the Australian Government, Department of Health and Ageing. The views expressed in this publication do not necessarily represent the position of the Australian Government. The Kirby Institute is affiliated with the University of New South Wales.

References
1. UNAIDS. UNAIDS World AIDS Day report [Internet]. 2012 [cited 2012 Dec 4]. Available from: http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/jr2012/ji2434_worldaidsday_results_en.pdf
2. Schwartländer B, Stover J, Hallett T, Atun R, Avila C, Gouws E, et al. Towards an improved investment approach for an effective response to HIV/AIDS. Lancet. 2011;377(9782):2031-41.
3. The Global Fund to Fight AIDS, Tuberculosis and Malaria. The Global Fund adopts new strategy to save 10 million lives by 2016 [Internet]. The Global Fund to Fight AIDS, Tuberculosis and Malaria; 2011 [cited 2012 Dec 11]. Available from: http://www.theglobalfund.org/en/mediacenter/newreleases/2011-11-23_the_globalfund_adopts_new_strategy_to_save_10_million_lives_by_2016/.
4. Pattanapanej J, Teerawattananon Y. Reviewing the evidence on effectiveness and cost-effectiveness of HIV prevention strategies in Thailand. BMC Public Health. 2010;10(1):401.
5. Wolfe D, Carrieri MP, Shepard D. Treatment and care for injecting drug users with HIV infection: a review of barriers and ways forward. Lancet. 2010;376(9753):355-66.
6. Galarraga O, Colchero MA, Wamai R, Bertozzi S. HIV prevention cost-effectiveness: a systematic review. BMC Public Health. 2009;9(Suppl 1):S5.
7. Sweeney S, Obure CD, Maier CB, Greener R, Dehne K, Vassall A. Costs and efficiency of integrating HIV/AIDS services with other health services: a systematic review of evidence and experience. Sexually Transmitted Infections. 2012;88(2):85-99.
8. International Monetary Fund. World Economic Outlook Database October 2012 [Internet]. 2012 [cited 2012 Oct 29]. Available from: http://www.imf.org/external/pubs/ft/weo/2012/02/weodata/index.aspx
9. World Bank. GDP per capita, PPP (current international $) | Data | Table [Internet]. c2013 [cited 2013 Jul 4]. Available from: http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
10. United States Department of Labor. Consumer Price Index (CPI) [Internet]. c2012 [cited 2012 Aug 17]. Available from: http://www.bls.gov/cpi/flationdata/tables
11. World Health Organization. Cost-effectiveness thresholds [Internet]. c2013 [cited 2013 Jan 2]. Available from: http://www.who.int/choice/costs/CER_thresholds/en/index.html
12. Global Finance. Taiwan GDP Data & Country Report [Internet]. 2011 [cited 2012 Nov 28]. Available from: http://www.gfmag.com/gdp-data-country-reports/166-taiwan-gdp-country-report.html
13. World Bank. GDP per capita (current US$) | Data | Table [Internet]. c2013 [cited 2013 Jun 24]. Available from: http://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD
14. Neumann Pi, Stone PW, Chapman RH, Sandberg EA, Bell CM. The quality of reporting in published cost-utility analyses, 1976–1997. Ann Intern Med. 2000;132(12):964-72.
15. Belarus National AIDS Spending Assessments (2008–2011). Geneva: UNAIDS.
16. Cambodia National AIDS Spending Assessments (2006–2010). Geneva: UNAIDS.
17. Indonesia National AIDS Spending Assessments (2003–2010). Geneva: UNAIDS.
18. Philippines National AIDS Spending Assessments (2000–2004). Geneva: UNAIDS.
19. Tajikistan National AIDS Spending Assessments (2008–2009). Geneva: UNAIDS.
20. Thailand National AIDS Spending Assessments (2009–2010). Geneva: UNAIDS.
21. Vietnam National AIDS Spending Assessments (2008–2010). Geneva: UNAIDS.
22. [UNGASS National Progress Report, Tajikistan: Reporting period: January 2006–December 2007] 2009. Geneva: UNAIDS.
23. [UNGASS Reporting 2010 [Indicator No. 1, the Period of 2008–2009]] 2010. Geneva: UNAIDS.
24. [UNGASS Country Progress Report Nepal 2010. 2010. Geneva: UNAIDS.
25. [IGARPR Reporting 2012, Belarus [Indicator 6.1, the Period of 2010–2011]] 2012. Geneva: UNAIDS.
26. [National Report on Progress in the Response to AIDS, Tajikistan: Reporting period: January 2010–December 2011] 2012. Geneva: UNAIDS.
27. [UNGASS Country Progress Report: Republic of Armenia: Reporting period: January 2008–December 2009 [date unknown]. Geneva: UNAIDS.
28. Hiu L. Resource investment and needs analysis for HIV/AIDS prevention and control in China [dissertation]. Beijing: National Center for STD/AIDS Control and Prevention, Chinese Center for Disease Control and Prevention; 2009.
29. Ministry of Health of Armenia. National strategic plan on the response to HIV epidemic in the Republic of Armenia for 2007–2011. Yerevan: Ministry of Health of Armenia; 2006.
30. Ministry of Health of Armenia. The Global Fund to Fight AIDS, Tuberculosis and Malaria: CCM Request for RCC Continued Funding (RCF). Yerevan: Ministry of Health of Armenia; [date unknown].
31. Ministry of Health of Ukraine. Ukraine harmonized AIDS response progress report: Reporting period: January 2010–December 2011. Kyiv: Ministry of Health of Ukraine; 2012.
32. Mission East Armenia. The Global Fund to Fight AIDS, Tuberculosis and Malaria: CCM Request for RCC Continued Funding (RCF). Yerevan: Mission East Armenia; [date unknown].
33. National AIDS Prevention and Allocation Committee. UNGASS Country Progress Report, Thailand: Reporting period: January 2006–December 2007. Nonthaburi: Ministry of Public Health; 2008.
34. National AIDS Prevention and Allocation Committee. UNGASS Country Progress Report, Thailand: Reporting period: January 2008–December 2009. Nonthaburi: Ministry of Health; 2010.
35. Office of the State Council Working Committee on AIDS. Progress on implementing UNGASS declaration of commitment in China 2005. Beijing: Ministry of Health of the People’s Republic of China; 2005.
36. Rou K, Sullivan SG, Liu P, Wu Z. Scaling up prevention programmes to reduce the sexual transmission of HIV in China. Int J Epidemiol. 2010;39(Suppl 2):ii84–45.
37. State Council AIDS Working Committee Office (SCAWCOCO). China 2010 UNGASS Country Progress Report (2008–2009). Beijing: Ministry of Health of the People’s Republic of China; 2010.
38. State Council AIDS Working Committee Office (SCAWCOCO). 2012 China AIDS Response Progress Report. Beijing: Ministry of Health of the People’s Republic of China; 2012.
39. State Council AIDS Working Committee Office (SCAWCOCO), United Nations Theme Group on AIDS. UNGASS Country Progress Report P. R. China. Beijing: Ministry of Health of the People’s Republic of China; 2008.
40. Sun J, Liu H, Li H, Wang L, Guo H, Shan D, et al. Contributions of international cooperation projects to the AIDS/HIV response in China. Int J Epidemiol. 2010;39(Suppl 2):ii14–20.
41. UNAIDS Global report: UNAIDS report on the global AIDS epidemic 2010. Geneva: UNAIDS; 2010.
42. World Bank. Memorandum and recommendation of the President of the International Development Association to the Executive Directors on a proposed credit of SDR 59.8 million to India for a National AIDS Control Project [Internet]. Washington, DC: World Bank; 1992 [cited 2012 Jul 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/1992/09/09/000009265_961002082438/Rendered/PDF/multi0page.pdf.
43. World Bank. Staff appraisal report: Indonesia HIV/AIDS and STDS prevention and management report [Internet]. Washington, DC: World Bank; 1996 [cited 2012 Apr 27]. Available from: http://www apprém.org/external/default/WDSContentServer/WDSP/B/1996/01/31/00009265_366161917520/Rendered/PDF/multi0page.pdf.
44. Prescott N. Setting priorities for government involvement with antiretrovirs. In: Praag EV, Fernyak S, Katz AM, editors. The implications of international cooperation projects to the AIDS/HIV response in China. Int J Epidemiol. 2010;39(Suppl 2):ii14–20.
45. Ratanasuwan W, Anekthananon T, Techasathit W, Rongrungruang Y, Sonjai A, Suwanagool S. Estimated economic losses of hospitalized AIDS patients at three major hospitals in Bangkok, Thailand. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva, Switzerland.
46. Rahman M, Fukui T, Asai A. Cost-effectiveness analysis of partner notification program for human immunodeficiency virus infection in Japan. J Epidemiol. 1998;8(2):123–8.
47. Thainee V, Sirinirand P, Tanbanjong A, Lallemand M, Soucat A, Lamboray J-L. From research to practice: use of short course zidovudine to prevent mother-to-child HIV transmission in the context of routine health-care in Northern Thailand. 12th World AIDS Conference; Geneva, Switzerland; 1998.
48. World Bank. Project appraisal document on a proposed credit in the amount of SDR 140.82 million to India for a Second National HIV/AIDS Control Project [Internet]. Washington, DC: World Bank; 1998 [cited 2012 Apr 27]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/1998/09/17/000009496_990601953024/Rendered/PDF/multi0page.pdf.
49. World Health Organization. Feasibility assessment of using antiretroviral therapy to prevent vertical transmission of HIV from mother to child in Cambodia [Internet]. Geneva: World Health Organization; 1999 [cited 2013 Jan 1].
Available from: http://www.wpro.who.int/hiv/documents/docs/Rep_of_an_assessment_of_feasibility_of_use_of_Nuceraine Cameroon.pdf.
50. Tangcharoensathien V, Phoolcharoen W, Pitayaramsri S, Kongsi S, Kasemep V, Tantives S, et al. The potential demand for an AIDS vaccine in Thailand. Health Policy 2001;57(1):111–39.
51. World Bank. Pakistan — report of an HIV/AIDS technical review mission. Washington, DC: World Bank; 2001.
52. AusAID. HIV/AIDS Treatment and care: evaluation of the Thailand-Australia HIV/AIDS ambulatory care project [Internet]. Canberra: AusAID; 2002 [cited 2012 Jul 17]. Available from: http://www.ausaaid.gov.au/publications/Documents/qaas28.pdf.
53. Guinness L, Kumaranayake L. The potential costs and benefits of responding to the mobility aspect of the HIV epidemic in South East Asia – a conceptual framework [Internet]. New York: UNDP; 2002 [cited 2012 Aug 3]. Available from: http://www.hivdevelopment.org/pdf_files_2002_31%20potential%20costs%20and%20benefits%20of%20responding%20to%20the%20Mobility%20Aspect%20of%20the%20HIV%20epidemic%20in%20South%20East %20Asia%20%20A%20conceptual%20framework.pdf.
54. Stover J, Garnett DP, Setz S, Forsythe S. The epidemiological impact of an HIV/AIDS vaccine in developing countries [Internet]. Washington, DC: The Futures Group International; 2002 [cited 2012 Jul 20]. Available from: http://www Afghanistan. Int J Tuberculosis and Lung Disease. 2010;14(11):1100–5.
56. World Bank. Project appraisal document on a proposed loan in the amount of US$50 million to Ukraine for a Tuberculosis and HIV/AIDS Control Project [Internet]. Washington, DC: World Bank; 2002 [cited 2012 Aug 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/2002/12/14/00009496_021220304032016866/Rendered/PDF/multi0page.pdf.
57. Boltz A. Cost-effectiveness of needle exchange program among IDUs in Uzbekistan [Slides]. Dynamic Communications: Strategies & Tools Workshop; 2003 Dec 16–19; Washington, DC, USA.
58. Dziekan G, Chisholm J, Johns B, Rovira J, Huitin YJ. The cost-effectiveness of policies for the safe and appropriate use of injection in healthcare settings. Bull World Health Organ. 2003;81(4):277–85.
59. Lallemand M, Kanshana S, Chalermpantmetagul S, Seubmongkolchai R, Ariyadej L, Lamertkkittil S, et al. Feasibility, cost-effectiveness of a maternal zidovudine (ZDV) treatment starting at 28 weeks of pregnancy for the prevention of perinatal HIV in Thailand [abstract]. Poster: The 2nd IAS Conference on HIV Pathogenesis and Treatment: Abstract no. 1025; 2003 Jul 13–16; Paris, France.
60. World Bank. Project appraisal document on a proposed loan in the amount of US$150 million to the Russian Federation for a Tuberculosis and AIDS Control Project [Internet]. Washington, DC: World Bank; 2003 [cited 2012 Aug 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/2003/03/29/00009496_030320306036/Rendered/PDF/multi0page.pdf.
61. World Bank. Project appraisal document on a proposed IDA grant in the amount of SDR 4.1 million to Moldova for an AIDS Control Project [Internet]. Washington, DC: World Bank; 2003 [cited 2012 Aug 2]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/B/2003/05/21/00160016_20030521115838/Rendered/PDF/multi0page.pdf.
62. Bobrik A. Cost and cost-effectiveness of HIV prevention among drug users in Russia. 14th International Conference on the Reduction of Drug-Related Harm; 2003 Apr 6–10; Chiang Mai, Thailand.
63. Kumaranayake L, Vickerman P, Walker D, Samoshkin S, Romantzov V, Emel'yanova Z, et al. The cost-effectiveness of HIV preventive measures among injecting drug users in Svetlogorsk, Belarus. Addiction. 2004;99(12):1565–76.
64. Hogan DR, Baltussen R, Hayashi C, Lauer JA, Salomon JA. Cost effectiveness analysis of strategies to combat HIV/AIDS in developing countries. BMJ; 2003; 321(7530):1431–7.
65. Ratnasuwon W, Anekthananon T, Tchachasit W, Rongrungruang Y, Sonjai A, Suwanagool S. Estimated economic losses of hospitalized AIDS patients at...
Siriraj Hospital from January 2003 to December 2003: time for aggressive voluntary counseling and HIV testing. J Med Assoc Thai. 2005;88(3):335–9.

66. Tewarattanamon Y, Vos T, Tangcharoensathien V, Mugford M. Cost-effectiveness of models for prevention of vertical HIV transmission – voluntary counseling and testing and choices of drug regimens. Cost Eff Resour Alloc. 2005;3:7.

67. World Bank. Project appraisal document on a proposed grant in the amount of SDR23.1 million (US$35.0 million equivalent) to the Socialist Republic of Vietnam for the Vietnam HIV/AIDS Project [Internet]. Washington, DC: World Bank; 2005 [cited 2012 Aug 18]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2005/03/31/000090341_20050331090705/Rendered/PDF/30319rev.pdf

68. World Bank. Project appraisal document on a proposed IDA grant in the amount of SDR 16.2 million (US$25.0 million equivalent) to the Central Asia Cooperation Organization for a Central Asia AIDS Control Project [Internet]. Washington, DC: World Bank; 2005 [cited 2012 Aug 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2005/03/01/000090341_20050330101504/Rendered/PDF/31429.pdf

69. ‘A’ Project Technical Working Group. Combining epidemiology & economic analysis to inform the response to the HIV epidemic in Ho Chi Minh City [Internet]. Washington, DC: USAID; 2006 [cited 2012 Aug 10]. Available from: http://www.fhi360.org/NR/rdonlyres/e641d4cd-pwdr7psa5acbcd99wv44ymp4kcmpndtnirxios4f361tfg642pkvprxvedi/Vietnam2AReprotFINISHEDHV.pdf

70. Kumar M, Birch S, Maturana A, Gafni A. Economic evaluation of HIV screening in pregnant women attending antenatal clinics in India. Health Policy. 2006;77(2):233–43.

71. Price M, Stewart S, Miller W, Behets F, Dow W, Martinson F, et al. The cost-effectiveness of treating male trichomoniasis to avert HIV transmission in men seeking sexually transmitted disease care in Malawi. J Acquir Immune Defic Syndr. 2006;43(2):192–9.

72. Ono S, Kurata T, Nakasone T, Honda M, Boon-Long J, Sawanyanaretal P, et al. Cost-effectiveness analysis of antiretroviral drug treatment and HIV-1 vaccination in Thailand. J Inf Dis. 2006;193(6):168–73.

73. Over M, Marselle E, Suhdkalter H, Gold J, Gupta I, Indrayan A, et al. Antiretroviral therapy and HIV prevention in India: modeling costs and consequences of policy options. Sex Transmm Dis. 2006;33(Suppl 10):S145–52.

74. Paton NI, Chapman CA, Sangeetha S, Mandalia S, Bellamy R, Beck EJ. Cost and cost-effectiveness of antiretroviral therapy for HIV infection in Singapore. Int J STD AIDS. 2006;17(10):699–705.

75. Perchel P, Assefa B, Collins L, Babenko O. Cost-effectiveness of Integrating HIV/STI Prevention in Maternal Health Programmes [Slides] [Internet]. Washington, DC: World Bank; 2007 [cited 2012 Aug 20]. Available from: http://www.hsp6.org/research/centers-and-institutes/bill-and-melinda-gates-institute-for-population-and-reproductive-health/pdf/policy_practice/ff-hiv/Programs/Session_5A_Perchel_Cost-effectiveness_of_HIV/Perchel-Cost-effectiveness-of-HIV-FFP-Conference-April10.pdf

76. Stover J, Bertozzi S, Gutierrez J, Walker N, Staneci K, Greener R, et al. The global impact of scaling up HIV/AIDS prevention programs in low- and middle-income countries. Science. 2006;311(5766):1474–6.

77. World Bank. Socioeconomic impact of HIV/AIDS in Ukraine [Internet]. Washington, DC: World Bank; 2006 [cited 2012 Aug 16]. Available from: http://www-cesources.worldbank.org/INTUKRAINE/Resources/328335--1147812046770/ukr_aid_eng.pdf

78. Vickerman P, Kumaranayake L, Babalaka O, Guiness L, Artyukh O, et al. The cost-effectiveness of expanding harm reduction activities for injecting drug users in Osessa, Ukraine. Sex Transmm Dis. 2006;33(Suppl 10):S145–52.

79. Albam A, Manuel C. Cost-effectiveness of injecting drug user interventions to prevent HIV in Nepal [Internet]. Mandalyang: Asian Development Bank; 2007 [cited 2012 May 10]. Available from: http://www.aidsdatabhub.org/dmdocuments/Cost-Effectiveness_IDU.pdf.pdf

80. Albam A, Hansen DH, Fatima M, Nielsen S. Cost-effectiveness of drop-in centres to prevent HIV among injecting drug users, IDUs, in Karachi, Pakistan [Internet]. Mandaluyong: Asian Development Bank; 2007 [cited 2012 May 10]. Available from: http://www.ilo.org/wcmsp5/groups/public/―asia/―ro-bangkok/―ilo-manila/documents/publication/wcms_140905.pdf

81. Sutton BS, Arais MS, Chheng P, Fung MT, Kimerling ME. The cost of intensified case finding and isoniaid preventive therapy for HIV-infected patients in Battambang, Cambodia. Int J Tuberc Lung Dis. 2009;13(6):713–8.

82. World Bank. Implementation completion and results report (IDA-H4600) on a grant in the amount of SDR1.1 million (US$1.5 million equivalent) to the Republic of Moldova for an AIDS Control Project [Internet]. Washington, DC: World Bank; 2009 [cited 2012 Aug 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2009/06/01/000330307_20090601233743/Rendered/PDF/ICR937PP074122CDisclosed051209.pdf

83. Tole SP, Sanders GD, Bayoumi AM, Galvin CM, Vincenich TN, Brandeau ML, et al. Cost-effectiveness of voluntary HIV screening in Russia. Int J AIDS. 2009;24(1):46–51.

84. van Hulst M, Hubben GA, Sager KW, Prompong C, Permpikul P, Conigattiukul L, et al. Web interface for supported transmission risk assessment and cost-effectiveness analysis of postdonation screening: a global model applied to Ghana, Thailand, and the Netherlands. Transfusion. 2009;49(12):2729–42.
100. Dandona L, Kumar SG, Kumar GA, Dandona R. Cost-effectiveness of HIV prevention interventions in Andhra Pradesh state of India. BMC Health Serv Res. 2010;10:117.

101. Brooks-Pollock E, Mabey D, Witter I. Economic impact and cost-effectiveness of HIV prevention, treatment and care in Africa. AIDS. 2010;24:1605–17.

102. Nagelkerke NJ, Hontelez JA, de Vlas SJ. The potential impact of an HIV prevention programme for injecting drug users in developing countries: a modeling analysis for Ukraine. PLoS One. 2010;5(3):e9833.

103. Tong L, Sopheab H, Sovannary T. Evidence based operational research on KHANA integrated care and prevention program in Cambodia [Internet]. Phnom Penh: KHANA; 2012 [cited 2012 May 17]. Available from: http://reliefweb.int/sites/reliefweb.int/files/resources/Final-SROI-Short-Report2.pdf

104. Prinja S, Bahungana P, Rudra S, Gupta I, Kaur M, Mehendale SM, et al. Cost-effectiveness of targeted HIV prevention interventions for female sex workers in India. Sex Transm Infect. 2011;87(4):354–61.

105. Reid S. Estimating the burden of disease from unsafe injections in India: a cost-benefit assessment of the auto-disable syringe in a country with low blood-borne virus prevalence. Indian J Community Med. 2012;37(2):89–94.

106. Rissley CL, Drake LJ, Bundy DA. Impact of HIV and antiretroviral therapy on education supply in high prevalence regions. PLoS ONE. 2012; 7(11):e42909.

107. World Bank. Implementation completion and results report (IDA-H4790 TF-S8225 TF-93986) on a grant in the amount of SDR2.5 million (US$2.5 million equivalent) to the Eurasian Economic Community for a Central Asia AIDS Control Project [Internet]. Washington, DC: World Bank; 2012 [cited 2012 Aug 23]. Available from: http://www-wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2012/07/11/000333038_20120711235438/Ren- dered/PDF/CR18730P087000DOCDisclosure370100120.pdf

108. Vassall A, Pickles M, Guynes L, Chandrashekar S, Wheeler K. Net financial benefits of averting HIV infections among people who inject drugs in Urumqi, Xinjiang, Peoples Republic of China (2005-2010). AIDS. 2012;26(16):2069–78.

109. Alistar SS, Owens DK, Brandeau ML. Effectiveness and cost effectiveness analysis of pre-exposure prophylaxis for HIV infection in injecting drug users. Health Econ. 2011;20(1):25–36.

110. Beyrer C, Wirtz AL, Walker D, Johns B, Sifakis F, Baral SD. The global HIV epidemic among injecting drug users: prevalence, risk factors and potential impact of interventions. AIDS. 2011;25(9):1259–65.

111. Leelahavarong P, Teerawattananon Y, Werayingyong P, Akaleephan C, et al. The cost-effectiveness of large scale HIV prevention activities. Asia Pac J Public Health. 2011;23(4):620–26.

112. Nagelkerke NJ, Hontelez JA, de Vlas SJ. The potential impact of an HIV prevention programme for injecting drug users in Dehong, China. AIDS Care. 2012;24(6):756–62.

113. Venkatesh KK, Becker JE, Kumaramay N, Nakamura YM, Mayer KH, Losina E, et al. The cost-effectiveness and budget impact of Vietnam’s methadone maintenance treatment programme in HIV prevention and treatment among injecting drug users. Glob Public Health. 2012;7(10):1080–94.

114. Wannmes JJ, Sirerag AV, Hidayat T, Raya RP, van Crevel R, van der Avi J, et al. Cost-effectiveness of methadone maintenance therapy as HIV prevention in an Indonesian high-prevalence setting: a mathematical modeling study. Int J Drug Policy. 2012;23(5):358–64.

115. Xing Y, Sun J, Cao W, Lee W, Guo H, Li H, et al. Economic evaluation of methadone maintenance treatment in HIV/AIDS control among injecting drug users in Dehong, China. AIDS Care. 2012;24(6):756–62.

116. Zhang L, Yap L, Xun Z, Wu Z, Wilson DP. Needle and syringe programs in community life and competence. Asia Pac J Public Health. 2011;23(4):620–26.

117. Premsri N, Namwat C, et al. Is a HIV vaccine a viable option and at what price? Health Econ. 2013;22(1):250–61.

118. Ni MJ, Fu LP, Chen XL, Hu XY, Wheeler K. Net financial benefits of averting HIV infections among people who inject drugs in West Sumatera, Indonesia. Saarbrücken: VDM Verlag Dr. Müller; 2010.

119. Pho MT, Swaminathan S, Kumaramay N, Losina E, Ponnuraja C, Uhler LM, et al. The cost-effectiveness of tuberculosis preventive therapy for HIV-infected individuals in southern India: a trial-based analysis. PLoS One. 2012;7(4):e36001.