Case Report

A Frontal Lobe Meningioma in a Child Leading to Visual Loss

Nedime Sahinoglu-Keşkek,¹ Gokhan Soker,² Şakir Öğzür Keşkek,³ Sehire Sahinoglu,⁴ Figen Unal,² Fikret Unal,² and Selim Cevher¹

¹Department of Ophthalmology, Adana Numune Training and Research Hospital, 01240 Adana, Turkey
²Department of Radiology, Adana Numune Training and Research Hospital, 01240 Adana, Turkey
³Department of Internal Medicine, Adana Numune Training and Research Hospital, 01240 Adana, Turkey
⁴Department of Radiology, Sisli Etfal Training and Research Hospital, 34360 Istanbul, Turkey

Correspondence should be addressed to Şakir Öğzür Keşkek; drkeskek@yahoo.com

Received 21 August 2014; Revised 22 December 2014; Accepted 23 December 2014

Objective. Meningiomas are benign primary meningeal tumors and are seen rare in children and adolescents. Clinical Presentation and Intervention. A 15-year-old Turkish boy reported a 1-month history of headache and blurred vision in both eyes. His visual acuity was 0.3 in both eyes with papilledema. Magnetic resonance imaging showed a $77 \times 97 \times 77$ mm intracranial-extra-axial frontal lesion which compresses the chiasm. He was diagnosed with intracranial meningioma and referred to neurosurgery clinic. Conclusion. Ophthalmologists should be aware of the fact that papilledema and low vision can be caused by an intracranial tumor which compresses optic chiasm.

1. Introduction

Meningiomas are benign primary meningeal tumors and are seen rare in children and adolescents. These tumors arise from meninges, covering the brain and spinal cord, and therefore can occur in any number of locations. The diagnosis may be incidental or in response to a workup for ophthalmological or neurological symptoms. Even though they are slow-growing benign tumors, significant morbidity may result from compression of the oculomotor nerve, anterior visual pathways, or trigeminal nerve. Tumor expansion may lead to visual loss [1]. The purpose of this case report is to present a case of meningioma in a child associated with compressive optic neuropathy.

2. Case Report

A healthy 15-year-old Turkish boy presented with one-month history of headache and visual impairment in both eyes. He visited the neurology department of a hospital one week before, but the results of general physical examination were unremarkable. It was suggested that he visit an ophthalmologist because of his visual disturbance. His best-corrected visual acuity (BCVA) was 0.3 in both eyes. There was papilledema on funduscopy examination (Figure 1). Magnetic resonance imaging (MRI) showed a $77 \times 97 \times 77$ mm intracranial-extra-axial frontal lesion which compresses the chiasm. He was diagnosed with intracranial meningioma and referred to neurosurgery clinic. Operation was planned urgently. After gross-total resection, the patient progressed well with considerable improvement of his visual function. There has been no
3. Discussion

Meningiomas occur most commonly in the fifth decade of life with female preponderance, accounting for approximately 15–20% of primary intracranial tumors [2]. They are very rare in children with pediatric cases. Recently the Central Brain Tumor Registry of the United States reported that only 2.5% of all primary pediatric central nervous system tumors were meningiomas and in contrast to adult meningiomas, there is no female preponderance among pediatric cases [3, 4]. We presented a rare case of meningioma in a child with papilledema.

Frequent symptoms of meningioma are headache and visual disturbance [5]. Diagnosis of meningioma is made by a contrast-enhanced computed tomography (CT) or magnetic resonance imaging (MRI) scan. CT can be helpful in determining if the tumor invades the bone or if it is becoming hard...
like bone. Contrast-enhanced MRI well delineates the mass and its possible invasion into surrounding structures [6]. MRI characteristics of pediatric meningiomas are similar to adult meningiomas. They are usually isointense to hypointense on T1 and iso- to hyperintense on T2 and exhibit important enhancement [3]. The dural tail sign which was evident in our case is typically associated with meningioma. Dural tail sign is seen on contrast-enhanced magnetic resonance images as a thickening of the dura mater that resembles a tail extending from a mass [7]. The existence of dural sign is not apparent in all cases of pediatric meningiomas that makes the radiological differential diagnosis with schwannomas difficult.

Aggressive surgical treatment is the treatment of choice in most cases which allows complete excision of the tumor in about 70–80% of cases. Kotecha et al. have stated that extent of initial surgical resection is also the strongest independent prognostic factor for children and adolescent meningiomas [8]. Hence, aggressive surgical management, to achieve gross-total resection, is the initial treatment of choice.

Most pediatric meningiomas are WHO grade I (80.6%) with WHO grade II accounting for 10.4% and grade III for 8.1% [9]. The pathological study of our case confirmed the diagnosis of WHO grade I meningioma.

With this case report we aimed to point out that papilledema and low vision can be caused by an intracranial tumor which compresses optic chiasm.

Conflict of Interests

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.

References

[1] M. Jacob, E. Wydh, A. Vighetto, and M. Sindou, “Visual outcome after surgery for cavernous sinus meningioma,” *Acta Neurochirurgica*, vol. 150, no. 5, pp. 421–429, 2008.

[2] I. M. Germano, M. S. B. Edwards, R. L. Davis, and D. Schiffer, “Intracranial meningiomas of the first two decades of life,” *Journal of Neurosurgery*, vol. 80, no. 3, pp. 447–453, 1994.

[3] G. Menon, S. Nair, J. Sudhir, B. R. M. Rao, A. Mathew, and B. Bahuleyan, “Childhood and adolescent meningiomas: a report of 38 cases and review of literature,” *Acta Neurochirurgica*, vol. 151, no. 3, pp. 239–244, 2009.

[4] S. Greene, N. Nair, J. G. Ojemann, R. G. Ellenbogen, and A. M. Avellino, “Meningiomas in children,” *Pediatric Neurosurgery*, vol. 44, no. 1, pp. 9–13, 2007.

[5] S. Rasras, M. J. A. Ansari, M. H. A. Ansari, F. Rahbarian, and I. Rashidi, “Diaphragma sellae meningioma mimicking pituitary macroadenoma: a case report,” *International Journal of Collaborative Research on Internal Medicine and Public Health*, vol. 2, no. 11, pp. 404–409, 2010.

[6] S. Aoki, Y. Sasaki, T. Machida, and H. Tanioka, “Contrast-enhanced MR images in patients with meningioma: importance of enhancement of the dura adjacent to the tumor,” *The American Journal of Neuroradiology*, vol. 11, no. 5, pp. 935–938, 1990.

[7] G. Wilms, M. Lammens, G. Marchal et al., “Thickening of dura surrounding meningiomas: MR features,” *Journal of Computer Assisted Tomography*, vol. 13, no. 5, pp. 763–768, 1989.

[8] R. S. Kotecha, E. M. Pascoe, E. J. Rushing et al., “Meningiomas in children and adolescents: a meta-analysis of individual patient data,” *The Lancet Oncology*, vol. 12, no. 13, pp. 1229–1239, 2011.

[9] R. S. Kotecha, R. C. Junckerstorff, S. Lee, C. H. Cole, and N. G. Gottardo, “Pediatric meningioma: current approaches and future direction,” *Journal of Neuro-Oncology*, vol. 104, no. 1, pp. 1–10, 2011.