Reversible Splenial Lesion Syndrome with Some Novel Causes and Clinical Manifestations

Pei-lin Lu¹, John F. Hodes², Xu Zheng¹ and Xing-yue Hu¹

Abstract:
Objective Reversible Splenial Lesion Syndrome (RESLES) is a clinical radiological syndrome characterized by a reversible lesion of the splenium of the corpus callosum with a decreased apparent diffusion coefficient (ADC) value. The clinical manifestations of RESLES are diverse.
Methods Fifteen cases of adult RESLES patients (10 males and 5 females) were retrospectively selected from the radiology system using the key word “corpus callosum” at a university-affiliated tertiary care hospital between May 1, 2015 and Dec 31, 2019. The possible precipitating factors, clinicoradiological findings and modified Rankin Scale (mRS) on follow-up were then analyzed.
Results The patient ages ranged from 22 to 53 years old. The mean age was 34 years old. The most common neurological symptoms included headache (3/15), dizziness (3/15), first onset of seizure (3/15), paroxysmal blurred vision (2/15), vertigo (2/15), amnesia (2/15), and confused consciousness without seizure (2/15), followed by drowsiness (1/15), paresthesia (1/15), dysmetria (1/15) and dysarthria (1/15). The precipitating factors included infection, seizure, anti-epileptic treatment with levetiracetam, carbamazepine, valproate, hyperglycemia, hypoglycemia, cerebral venous sinus thrombosis, and rabies vaccine injection prior to the onset of RESLES. All cases were carefully followed up and had excellent prognoses.
Conclusion RESLES manifests as variety of symptoms with less specificity and precipitating factors. Paroxysmal blurred vision may be a relatively specific symptom of RESLES. Levetiracetam, carbamazepine or valproate could be the cause of RESLES, exposure to the rabies vaccine could be another predisposing factors for RESLES as well. RESLES type 1 was therefore found to be highly “reversible” with an excellent prognosis.

Key words: reversible splenial lesion syndrome (RESLES), corpus callosum, magnetic resonance imaging, levetiracetam, carbamazepine, valproate

(Intern Med Advance Publication) (DOI: 10.2169/internalmedicine.4516-20)

Introduction
Reversible Splenial Lesion Syndrome (RESLES) is a clinical radiological syndrome characterized by the presence of a reversible lesion involving the splenium of the corpus callosum (SCC) with a decreased apparent diffusion coefficient (ADC) value of the lesion on ADC maps. RESLES often resolves spontaneously with a favorable clinical outcome. In 1999, reversible corpus callosum lesion syndrome (RESLES) was first reported by Kim and colleagues (1). They reported a group of epileptic patients with concurrent lesions of the corpus callosum (CC), and speculated that these lesions were caused by the use of antiepileptic drugs. Garcia Monco et al. (2) proposed RESLES with a diversity of etiologies in 2011. Since that time, an increasing number of RESLES cases have been reported, with most such studies being in the case report format. Besides seizures and withdraw from antiepileptic drugs (3-5), reports have revealed a variety of etiologies, including the use of other pharmacological agents such as metronidazole (6), olanzapine (7), infections like influenza A (8, 9), rotavirus infection (10), streptococcus pneumoniae (11), meningococcal meningitis (12), metabolic conditions such as hypoglycemia.

¹Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China and ²Marquette University, USA
Received: January 20, 2020; Accepted: May 11, 2020; Advance Publication by J-STAGE: June 30, 2020
Correspondence to Dr. Xingyue Hu, luxingyue2003@zju.edu.cn
or hypernatremia (2, 13, 14), glufosinate ammonium poisoning (15) and miscellaneous conditions including malnutrition, vitamin B12 deficiency (16), malnutrition (17), high-altitude cerebral edema (18), systemic lupus erythematosus (SLE) (19), Kawasaki disease (20), anti-VGKC (Voltage-Gated Potassium Channel) autoantibody syndrome (21), malignancy (13), cerebral venous sinus thrombosis (22), and preeclampsia (23). The heterogeneity in the clinical manifestations makes RESLES hard to predict before Magnetic Resonance imaging (MRI) and the precise pathophysiological mechanism of RESLES thus remains unclear. The subsequent cases are offered to provide the medical community with more evidence to stimulate research into the nature of these lesions. RESLES is reported to be a rare clinical-radiological disorder; nevertheless, in this cases series fifteen cases from different clinical settings are described, with our findings suggesting that it could be less rare than previously reported.

Materials and Methods

Criteria for RESLES

RESLES was diagnosed mainly based on the revised inclusion criteria of Garcia et al. (2011) (2); we included lesions involving the SCC as shown by MRI. Patients in whom lesions were persistent (or follow-up was not available) were not included. Other exclusion criteria included: the presence of extracallosal lesions, asymmetrical lesions, lesions without restricted diffusion on the MR image, or patients with acute disseminated encephalopathy and other common demyelinating disorders involving the CC.

Patient selection

The following is a retrospective observational study. Patients were treated at a tertiary hospital affiliated with Zhejiang University between May 1, 2015 and Dec. 31, 2019. Two board-certified, fellowship-trained neurologists with more than 10 years of experience made an independent review and read the radiological images to confirm a diagnosis of RESLES. We selected patients by searching through our Picture Archiving and Communication Systems (PACS) using the keywords “corpus callosum”. Reports of brain MR +DWI (diffusion-weighted images) with the words “corpus callosum” were found for 613 records and 485 cases of patients in our MRI record system. Each report was read, and those with “spleminium of corpus callosum” were selected, thus resulting in a total of 197 cases. Each MR image was read, patients were selected according to inclusion criteria and exclusion criteria listed above. Finally, a total of fifteen patients were selected.

Imaging Evaluation

MR was the main technique used for evaluation. Brain MR+DWI was conducted in each patient using a Siemens Skyra 3.0 Tesla MRI or GE Signa HDx 3.0 Tesla MRI scanner with 5-mm thick sections, including T1, T2, fluid attenuation inversion recovery (FLAIR), DWI and ADC.

Data collection

The medical history of each patient was reviewed. Information was collected including possible precipitating factors, demographics, clinical characteristics, biochemical results, pathogenic assessments, drugs, imaging findings, the treatments offered at baseline and during hospital stay, and the follow-up results. The prognosis of each patient was evaluated using a modified Rankin Scale: 0, No symptoms; 1, No significant disability. Able to carry out all usual activities despite some symptoms; 2, Slight disability. Able to look after own affairs without assistance, but unable to carry out all previous activities; 3, Moderate disability. Requires some help, but able to walk unassisted; 4, Moderately severe disability. Unable to attend to own body needs without assistance and unable to walk unassisted; 5, Severe disability. Requires constant nursing care and attention, bedridden, incontinent.

Results

Two board-certified, fellowship-trained neurologists with more than 10 years of experience made an independent review and read the radiological images to confirm the diagnosis of RESLES. The consistency of the diagnosis was deemed to be 100%.

Our series of fifteen cases included ten males and five females. The patient ages ranged from 22 to 53 years old. The mean age was 34 years old. The clinical characteristics of the patients are shown in Tables 1 and 2. The most common neurological symptoms before MR imaging were headache (3/15), dizziness (3/15), first onset of seizure (3/15), paroxysmal blurred vision (2/15), vertigo (2/15), amnesia (2/15), and confused consciousness without seizure (2/15), followed by drowsiness (1/15), paresthesia (1/15), dysmetria (1/15) and dysarthria (1/15). One patient had recurrent seizures before and around the time of the discovery of the CC lesion. Most of the patients recovered completely with a modified Rankin Scale (mRS) score of 0 except for case 3, in which the patient complained of slight amnesia after 3 months, which finally recovered without any sequelae a year later.

During the prodromal period, fever was the most common symptom (6/15; cases 1, 4, 8, 9, 12, 14); three out of six cases had a respiratory infection (cases 1, 6, 14), one patient had an intestinal infection, while causes of fever in the other two remain unknown. There was one case of pulmonary embolism (PE, case 6) and rabies vaccine injection (case 9) as shown in Fig. 1. Medications during the prodromal period included: antibiotics, such as piperacillin and tazobactam, amoxicillin, ceftriaxone, and levofloxacin; compound paracetamol; antiepileptic medications like levetiracetam, carbamazepine, valproate; antidiabetic drugs like glitazide and dimethylguanide. There were six cases of hyponatremia (cases 2, 4, 5, 10, 12, 14, in cases 5 and 10, the sodium
concentrations were under 130 mmol/L, one case of hyperglycemia (case 10) and one case of hypoglycemia (case 3). There were three cases of a decreased osmotic pressure (cases 4, 5, 14). Six out of fifteen (8/15) were admitted to the hospital for 4-12 days, while the other seven cases were followed up in an outpatient clinic. One underwent second generation sequencing (case 8), no virus or bacteria was found. 4/15 of the patients (4/15, case 1, 4, 8, 12, 14) underwent multiple virus antibody workups, which were all negative for IgM antibodies including cytomegalovirus (CMV), herpes simplex virus (HSV), Epstein-Barr virus (EBV) and measles virus, adenovirus, rubella virus and an influenza virus in a single patient.

All lesions were symmetrical and oval-shaped, and they were located in the midline of the splenium of the corpus callosum with DWI hyperintensity, T1 hypointensity, and T2 hyperintensity. Susceptibility Weighted Imaging (SWI) and diffusion tensor imaging (DTI) were conducted in case 8 as shown in Fig. 2; DTI showed no obvious abnormalities on the fractional anisotropy map (FA). SWI showed no microbleeding. The mean duration between the presumed onset of RESLES and MR imaging 10 days (3-34 days).

Discussion

Most of the previous descriptions of RESLES have been in the case report format; thus, the incidence of RESLES remains unknown. Fifteen cases of RESLES were found among 197 cases of “splenium of corpus callosum” and 485 cases of “corpus callosum” in reports of brain MR+DWI, suggesting that it is not so rare.

This study is one of the biggest case series with a diversity of clinical manifestations and inducing factors, some of which are first time reported.

The patient ages ranged from 22 to 53 years old with a mean age of 34 years old, and this was similar to a previous study. The mean duration between the presumed onset of RESLES and MR imaging 10 days (3-34 days).
Table 2. Biochemical and Virus Results of Fifteen Patients with RESLES.

Patient no.	Wbc (/μL)	CRP (mg/L)	Glu (mmol/L)	Na+ (mmol/L)	Cl- (mmol/L)	ALT (μL/L)	Osmotic pressure (mmol/L)	Csf pressure (mH2O), wbc (/μL), protein (mg/L)	Virus workups
1	5,600	218.5††	10.27	137	106	144††	291	120.6, 353	CMV-IgG(+), IgM(-), HSV 1-IgG(+), IgM(-), HSV 2-IgG(-), IgM(-), EBVCA-IgG(+), EBVCA-IgM(-), EHF Ab-IgM (-)
2	6,900	8.1†	8.39	135†	100	76†	283.59	NE	HBsAb(+), HBeAb(+), HBsAb(-), HBeAb(-)
3	1,1000††	1.41	<2‡	141	106	12	289.73	NE	HBsAb(+), HBeAb(-)
4	3,100	22‡	5.19	134‡	102	34	276.63‡	210.4, 265.5	of Measle, EBVCA, rubella, CMV, HSV-1 virus Ig G Abs(+), HSV-2 IgG (+), Ig M (-), ADVAb (-)
5	8,300	4.8	6.54	124‡	91‡	24	257.44‡	NE	HSV-Ab(-), HbS Ab(+), second generation sequencing(-)
6	4,200	0.6	7.76	145	107	23	305.06	NE	HBV(-)
7	7,600	14.2†	5.63	142	105	53†	293.83	NE	NE
8	9,700	61.9†‡	5.03	141	100	27	291.93	120,4,176	HSV-Ab(-), Hbs Ab(+), second generation sequencing(-)
9	10,300†	4.4	NE	NE	NE	NE	NE	NE	NE
10	10,800	3	35.2†	127†	94†	96†	291.02	NE	NE
11	NE	NE	NE	NE	NE	NE	NE	NE	NE
12	11,100	75.1	7.27	136‡	101	10	282	80,4,205	HSV-I IgG -, HSV-I IgM-, HSV-II IgG -, HSV-II IgM -, Abs of influenza A,B -
13	7,300	1.5	5.79	139	106	NE	287	NE	Abs of influenza A,B - , CMV-DNA -, CMV-IgG+, IgM -, EBV Ab -, EBV-DNA -, HSV Ab -
14	19,300	199.2	7.14	133‡	96	72	279‡	NE	NE
15	NE	NE	NE	NE	NE	NE	NE	NE	NE

CSF: cerebrospinal fluid, BA: basic activity, NE: not examined, HBV: hepatitis B virus, CMV: cytomegalovirus, HSV: herpes simplex virus, EBV: Epstein-Barr virus, EHF epidemic hemorrhagic fever, Ig G: immunoglobulin G, Ig M: immunoglobulinM, Ab: antibody, NE: not examined

Figure 1. Number of cases with different etiologies of RESLES.

males and five females. However, a large number of cases is needed in order to claim that this condition has a male predominance.

Over the years, there have been various terms used to describe splenial lesions, including “mild encephalitis with a reversible lesion in the splenium (MERS)”, “reversible splenial lesion syndrome (RESLES)”, “cytotoxic lesions of the corpus callosum (CLOCCs)”. MERS is an acute clinico-neuroradiological syndrome characterized by mild encephalitis or encephalopathy presenting as a reversible solitary mass in the central portion of the splenium of the corpus callosum (28). However, encephalitis/encephalopathy is not always mild. The spectrum of RESLES includes MERS. MERS cases were not excluded from our cases series of RESLES. In our case series, there were 2/15 cases of MERS (case 1,12), besides, RESLES contains more heterogenic causes and symptoms such as Marchiafava-Bignami Disease (MBD) (26). CLOCCs are various entities associated with a variety of causes with restricted diffusion, and some of these lesions are not reversible.

The splenial lesion of MERS and RESLES contains two different patterns according to the lesion location (32, 70): type 1, an isolated lesion located in the center of the splenium of CC, mostly are round or oval, some of the lesion
The cerebral MRI features of case 8. a, b, and c were conducted seven days after the onset of his symptoms. D and h were taken 15 days after the onset of symptoms. e, f, and g were taken 33 days after the onset of his symptoms. MR demonstrated an isolated oval lesion in the splenium of the corpus callosum (arrows) with hypointensity on ADC (c), hyperintensity on T2 (a), and DWI (b). All abnormal signals disappeared upon a repeat of MR imaging (e: T2, f: DWI, g: ADC). No FA change was observed on DTI; no microbleeding was seen on SWI.

Figure 2. The cerebr al MRI features of case 8. a, b, and c were conducted seven days after the onset of his symptoms. D and h were taken 15 days after the onset of symptoms. e, f, and g were taken 33 days after the onset of his symptoms. MR demonstrated an isolated oval lesion in the splenium of the corpus callosum (arrows) with hypointensity on ADC (c), hyperintensity on T2 (a), and DWI (b). All abnormal signals disappeared upon a repeat of MR imaging (e: T2, f: DWI, g: ADC). No FA change was observed on DTI; no microbleeding was seen on SWI.

extended along splenium; type 2, a lesion centered in splenium and extended into other brain areas (71). Our cases of RESLES were all isolated symmetrical lesions in SCC without any extracallosal lesions (type 1).

A broad spectrum of symptoms was reported in previously published papers of MERS and RESLES (Table 3). A disturbed consciousness and headache were common symptoms in RESLES. In our report, patients presented with significant clinical heterogeneity, ranging from headache, seizure, confusion and alterations in consciousness, paresthesia, dysmetria, memory deficits, paroxysmal vertigo, slurred speech, to paroxysmal blurred vision. Studying these cases helps to understand the functions of the SCC and the symptoms associated with its damage, thus making it easier to identify and diagnose RESLES in clinical practice.

Typical MRI features of RESLES are reversible, nonenhanced rounded or oval lesions located in the splenium of the corpus callosum; isointensity to slight hypointensity on T1WI without contrast enhancement, hyperintensity on T2-weighted images (T2WI), FLAIR, restricted diffusion on DWI, and a decreased ADC value of the lesion on ADC maps. The SCC abnormalities had disappeared upon the completion of follow-up MRI studies performed 10 to 32 days after the first MRI study by Zhu et.al (24), the DTI imaging value of the SCC lesion was reported to be mildly decreased in the fractional anisotropy (FA) map, but with a normal projecting direction of white matter fibers (24). In case 8 of our series (Fig. 2), no FA change was found, most likely due to the reversible character of the clinico-radiological change. The possible mechanisms for the restricted diffusion of the SCC include intramyelinic edema, reversible demyelination, damage to the blood-brain barrier, arginine vasopressin release, and inflammatory cell-induced cytotoxic edema. Follow-up assessment with DTI may help to distinguish the “real” reversibility of splenial lesions in future research.

RESLES and MERS were previously reported to have a diverse number of etiologies (Table 4). Though an increasing number of publications have focused on RESLES, its exact pathophysiology remains unknown. Because of the characteristic reversible restricted diffusion on DWI and low ADC values, transient intramyelinic cytotoxic edema has often been thought to be a cause rather than persistent ischemia. Antiepileptic drug toxicity and associated changes in salt homeostasis and transhemispheric seizure propagation are other suspected mechanisms (45, 72). Cell-cytokine interactions lead to massively elevated extracellular glutamate levels, and this phenomenon is thought to be important in development of SCC lesions. Because of the heterogeneous nature of the etiologies, no definite common mechanism has yet been identified.

Two injections of the rabies vaccine preceded the onset of symptoms by 11 and 4 days in case 9. Hara M. described an eight-year-old boy who appeared to have clinically-mild encephalitis with a reversible splenial lesion following a mumps vaccination (73). No other cases of this nature have
been reported. Rabies vaccine may be one of the precipitating factors of RESLES. RESLES in case 9 manifested as fever and tinnitus five days after the second injection of rabies vaccine. The pathological mechanism is unknown, however, a vaccine may induce an inflammatory reaction and thus cause a transient influx of inflammatory cells. The effects of the rabies virus on RESLES has yet to be determined and thus requires further research.

Certain medications also induce RESLES. Besides the use and withdrawal of antiepileptic medications, such as oxcarbazepine (5, 44), levetiracetam (46), and phenytoin (74), psychiatric medication use, including olanzapine (7), and glufosinate ammonium poisoning (15) can also purportedly induce RESLES. It remains unclear, however, whether suspected seizures or valproate, which was used after a transient loss of conscious, may have induced RESLES in case 12. Valproate was not reported to induce RESLES previously.

Levetiracetam was suspected to play a role in the onset of RESLES in case 7, to the best of our knowledge, this is the first report of levetiracetam to be associated with the etiology of RESLES, while the withdrawal of levetiracetam has been previously reported to cause RESLES (46). After carbamazepine treatment was given because of vestibular paroxysmia in case 12, an SCC lesion was discovered 34 days later after carbamazepine treatment. The antiepileptic treatment without epilepsy attack followed by a subsequent SCC lesion strongly supports to the role of antiepileptic medications in the onset of RESLES.

Treatment with antiepileptic drugs like carbamazepine and the drugs’ effects on rapid concentration changes of antiepileptic drugs (AEDs) can influence fluid balance systems through arginine vasopressin release. These drugs can also alter sodium and potassium balance, which can lead to changes in body fluid distribution and electrolyte concentration. Changes in body fluid distribution can affect the osmolality of cerebrospinal fluid (CSF) and the blood-brain barrier (BBB), leading to changes in brain water content and osmolality. These changes can induce neuroinflammation and alter the permeability of the BBB, leading to the development of RESLES.

A marked elevation of urinary β2-microglobulin was reported in patients with RESLES. We found normal levels of blood and urinary β2-microglobulin in case 8. More research is needed to elucidate the relationship between β2-microglobulin and RESLES.

Hyponatremia has also been observed in RESLES. In our cohort, six of fifteen cases (cases 2, 4, 5, 10, 12, 14) had hyponatremia; in cases 5 and 10, sodium concentrations were under 130 mmol/L. There were no antiepileptic treatments before the onset of hyponatremia. Therefore, hyponatremia, in these cases, was not induced by antiepileptic medicine. Case 5 had been trying to lose weight and thus

Table 3. Symptoms of MERS and RESLES Type 1 and 2.

RESLES type 1	MERS type 1	MERS type 2	RESLES type 2
Disturbed consciousness24-51, somnolence4-7,51, confusion15,21,51,22, memory problems15,21,47, disorientation14,52,55, apathy51,22, mental abnormalities11, delirious behavior23, delirium21, agraphestria51, ideomotor apraxia58, autotopagnosia58	Disturbed consciousness7,9,12,18,33,40,62, lethargy28, somnolence26,28, confusion28, cognitive impairment28, beative impairment28, behavioral disorders28, hallucination28, delirium38,40, disorientation38, apathy40	Drowsiness17,63,64, confusion58, stupor49, delirium37	Disturbed consciousness56, stupor28,49, somnolence28,34, cognitive impairment26, coma26, interhemispheric disconnection26, cognitive impairment26
Headache22,24,25,34,42,43,52,61,65, status migrainous60, vertigo24,42, dizziness52	Headache18,26-28,36,40,60,67, vertigo29, dizziness26,67, phonophobia29, photophobia67	Headache37,63,68, dizziness38	Headache34
Seizure24,26,51	Seizure28,34	Seizure38	Seizure26,38
Shurred language24, dysartria51,22, gait difficulty49, tremor49, tremulousness51, dysmetria21, ataxia21,26,61, fatigue21	Alalia39, monoparesis29, gait difficulty35,40, tremor40	Dysarthria26,64, monoparesis47, ataxia38	Dysarthria26, ataxia26, limb hyperton26
Visual disturbance23,26,34,43, kaleidoscopic visual illusion41	Offactory disturbance9	Visual hallucination26	
Limb numbness29,paresthesias52	Paresthesias40	Paresthesia69, facial numbness77,	
Urinary retention52, diaphoresis31	Urinary retention32,40,67		

Notes: All symptoms in MERS column also be symptoms of RESLES but are not listed in RESLES column now.
had a seriously restricted intake, and thus developed serious diarrhea, nausea and vomiting, which may explain her markedly decreased plasma sodium levels.

Hyponatremia has also been noticed in different reports (14, 18, 32, 35, 36, 49). Six out of sixteen MERS adult patients showed hyponatremia upon admission in a review by Yuan (32). The etiologies of these cases with hyponatremia include tick bites, anti-Yo rhombencephalitis and Legionnaires’ disease.

Hyponatremia may be secondary to these etiologies or predisposing factors in these cases. Takanashi et al. reported that there were significant differences between the sodium levels of patients with MERS and those with upper respiratory infection, other types of encephalopathy and febrile seizures, respectively (14). Hyponatremia itself may act as an important precipitating factor of RESLES in these cases.

Inappropriate antidiuretic hormone secretion (SIADH), AED administration or withdrawal, high altitude cerebral edema (HACE) seem to cause hyponatremia, water/electrolyte imbalance, cerebral edema as the underlying pathophysiological mechanism in RESLES (14).

Infections and metabolic abnormalities were the most common etiologies in our series (three cases had respiratory infection, one patient had intestinal infection, one with hypoglycemia, one with hyperglycemia and hyponatremia, and another with hyponatremia). In addition, one case of RESLES were induced by the use of levetiracetam, carbamazepine, valproate respectively in our series, thus supporting the fact that seizures and antiepileptic drugs were some of the most common etiologies in previous report (2).

In our series of fifteen cases, there was no obvious relationship between the clinical manifestations and the etiology, except in case 3 and case 10, both of which were presumably caused by an abnormality in their glucose metabolism - hypoglycemia in case 3 and hyperglycemia in case 10. These two patients both had memory loss, possibly related to dysregulations in the energy utilization accompanying hyperglycemia and hypoglycemia.

The diverse pathologies reported in various manuscripts and neuroimaging studies cause significant uncertainty about the precise mechanisms of reversible splenial lesions in RESLES. It has been proposed that viral or induced antibodies show selected affinity for the splenial axonal receptors. SCC is specifically vulnerable to excitotoxic injury in metabolic causes - one possible mechanism of splenial involvement in various pathological events induced by viruses.

Table 4. Etiologies of MERS and RESLES Type 1 and 2.

RESLES type 1	MERS type 1	RESLES type 2	
Infection	Influenza B24, rotavirus, herpes virus-624, Epstein-Barr virus24, puumala kantavirus25, mumps virus26	Influenza A13,27, VZV28, adenovirus29, nonfulminating hepatitis A30, klebsiella pneumoniae31, meningococcal meningitis12, Mycoplasma pneumoniae36,33,14, legionella pneumophila33, tick-bites36	Epstein-Barr virus37,38
Seizures	Seizure99	Olanzapine7	Anti-Yo rhombencephalitis99
Drug	Ipilimumba40, sympathomimetic41, minocycline42	Olanzapine7	Carbon monoxide poisoning26, hypoglycemia26,56, MBD26, osmotic myelinolysis13
Use of AEDs	Phenytoin141, carbamazepine3, vigabatrin43	Oxcarbazepine44	
withdrawal of AEDs	Valproate28, oxcarbazepine5,44, topiramate35, levetiracetam46, phenytoin47, carbamazepine48		
Autoimmune disease	Hypoglycemia50,51, methyl bromide poisoning52, glucosinate ammonium poisoning53, anorexia nervosa	Amanita phalloides intoxication54, hemolytic uremic syndrome55	
Metabolic disturbances		Carbon monoxide poisoning26, hypoglycemia26,52, MBD26, osmotic myelinolysis13	
Miscellaneous conditions	cerebral venous thrombus22, Anti-VGKC autoantibody syndrome23, Charcot-Marie-Tooth disease37, blood transfusion54, migrane with aura59		

MBD: Marchiafava-Bignami disease,
Notes: All etiologies in MERS column also be etiologies of RESLES but are not listed in RESLES column now.
or certain medicines. However, no common pathophysiolog-
ical mechanism has so far been able to explain the splenial
predilection or diversity of heterogeneous etiologies in this
disease. A large number of patients demonstrated such eti-
ological problems as taking antiepileptic drugs, but only a
small number of such patients developed RESLES. Further
investigation is needed to determine whether a genetic sus-
ceptibility exists in RESLES patients.

Generally, RESLES has a highly benign prognosis and it
is usually associated with a complete recovery without any
obvious neurological sequelae shortly after the acute course,
as illustrated by our cases. However, some cases have been
previously reported with poor prognoses, such as those who
entered a comatose or vegetative state, even after the abnor-
mal lesions had disappeared (24). The results of previous
studies indicate that severe disturbances in consciousness at
the onset of the disease, diffuse slow waves on electroen-
cephalogram (EEG) findings, and extracallosal lesions are
indicative of a relatively poor prognosis in RESLES. Our
case series excluded cases with extracallosal lesions, and
thus it seemed that RESLES type 1 without any extracal-
losal lesions had a better prognosis.

There are several limitations associated with our study.
First, this was a retrospective study. Functional MR imaging,
such as the use of DTI, was only provided in one case of
RESLES. Furthermore, β2-microglobulin was only tested in
a single case. These initial findings, however, provide many
clues about the factors contributing to the onset of RESLES
and provide guidance for the future research into this clinico-radiological disease.

Conclusions

In this series of fifteen cases of RESLES, we reported a
variety of clinical manifestations with identical radiological
lesions located in SCC. These cases are groundbreaking in
their contribution to medical knowledge about the functions
of SCC. This report is also the first to show the involvement of
levetiracetam, valproate and rabies vaccination in the eti-
ology of RESLES. RESLES type 1 without extracallosal les-
ions are therefore deemed to be highly “reversible” with an
excellent prognosis.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

Thanks to Yating Lv from The Affiliated Hospital of Hang-
zhou Normal University for helping to process the DTI.

Source of funding

This work was supported by by grant No. 81201722 from the
National Natural Science Foundation of China, by grant No. LY
20H090001 from the Natural Science Foundation of Zhejiang
Province, by grant No. 2018258959 from the Health Commis-
sion of Zhejiang Province, and by grant No. 2017ZYC-A18 from the
clinical research foundation of Zhejiang Medical Association.

References

1. Kim SS, Chang KH, Kim ST, et al. Focal lesion in the splenium
of the corpus callosum in epileptic patients: antiepileptic drug tox-
icity? AJNR Am J Neuroradiol 20 125-129, 1999.
2. Garcia-Monco JC, Cortina JE, Ferreira E, et al. Reversible splenial
lesion syndrome (RESLES): what’s in a name? J Neuroimag-
ing 21: e1-e14, 2011.
3. Polster T, Hoppe M, Eber M. Transient lesion in the splenium of
the corpus callosum: three further cases in epileptic patients and a
pathophysiological hypothesis. J Neurol Neurosurg Psychiatry 70:
459-463, 2001.
4. Mirsattari SM, Lee DH, Jones MW, Blume WT. Transient lesion in
the splenium of the corpus callosum in an epileptic patient.
Neurology 60: 1838-1841, 2003.
5. Jing C, Sun L, Wang Z, Chu C, Lin W. Reversible splenial lesion
syndrome due to oxcarbazepine withdrawal: case report and litera-
ture review. J Int Med Res 300060517736452, 2018.
6. Neshige S, Kanaya Y, Takeshima S, Yoshimoto T, Tanaka A,
Kuriyama M. [Reversible changes on MR images in a patient with
metronidazole-induced encephalopathy]. Rinsho Shinkeigaku 55:
174-177, 2015.
7. Kaino K, Kumagai R, Furukawa S, et al. Reversible splenial lesion
syndrome with a hyperosmolar hyperglycemic state and neurolep-
tic malignant syndrome caused by olanzapine. J Diabetes Invest 8:
392-394, 2017.
8. Takayangi M, Okabe S, Yamamoto K, et al. Kleine-Levin syn-
drome elicited by encephalopathy with reversible splenial lesion.
Pediatr Int 59: 929-931, 2017.
9. Takatsu H, Ishimaru N, Ito M, Kinami S. Mild Encephalitis/En-
cephalopathy with a Reversible Splenial Lesion in an Adult Patient
with Influenza. Intern Med 56: 3093-3095, 2017.
10. Karampatsas K, Spyridou C, Morrison IR, Tong CY, Prendergast
AJ. Rotavirus-associated mild encephalopathy with a reversible
splenial lesion (MERS)-case report and review of the literature.
BMC Infect Dis 15: 446, 2015.
11. Avcu G, Klinic MA, Eraslan C, Karapinar B, Vardar F. Mild en-
cephalitis/encephalopathy with reversible splenial lesion (MERS)
associated with Streptococcus pneumoniae Bacteriaemia. J Infect
Public Health 10: 479-482, 2017.
12. Hayashi Y, Yasunishi M, Hayashi M, Asano T, Kimura A, Inuzuka
T. Reversible splenial lesion of the corpus callosum associated with
meningococcal meningitis. J Neurol Sci 373: 81-82, 2017.
13. Maeda M, Tsukahara H, Terada H, et al. Reversible splenial lesion
with restricted diffusion in a wide spectrum of diseases and condi-
tions. J Neuroradiol 33: 229-236, 2006.
14. Takashani J, Tada H, Maeda M, Suzuki M, Terada H, Barkovich
AJ. Encephalopathy with a reversible splenial lesion is associated
with hyponatraemia. Brain Dev 31: 217-220, 2009.
15. Jeong TO, Yoon JC, Lee JB, Jin YH, Hwang SB. Reversible
Splenial Lesion Syndrome (RESLES) Following Glufosinate Am-
monium Poisoning. J Neuroimag ing 25: 1050-1052, 2015.
16. Theeler BJ, Wilson DJ, Crawford CM, Grazko M. Optic neuropa-
thy and a reversible splenial lesion after gastric bypass: shared pathophysiology? J Neurol Sci 291 (1-2): 92-94, 2010.
17. Kosugi T, Isoda H, Imai M, Sakahara H. Reversible focal splenial
lesion of the corpus callosum on MR images in a patient with
malnutrition. Magn Reson Med Sci 8: 81-82, 2017.
18. Pan JJ, Zhao YY, Lu C, Hu YH, Yang Y. Mild encephalitis/en-
cephalopathy with a reversible splenial lesion: five cases and a lit-
erature review. Neurol Sci 36: 2043-2051, 2015.
19. Soon GS, Rodan LH, Laughlin S, Laxer RM, Benseler S,
Silverman ED. Reversible splenial lesion syndrome in pediatric
systemic lupus erythematosus. J Rheumatol 39: 1698-1699, 2012.
20. Iamura S, Kamada M, Nakagawa N. Kawasaki disease compli-
cated with reversible splenial lesion and acute myocarditis. Pediatr

Cardiol 32: 696-699, 2011.
21. Gilder TR, Hawley JS, Theeler BJ. Association of reversible splenial lesion syndrome (RESLES) with Anti-VGKC autoantibody syndrome: a case report. Neurol Sci 37: 817-819, 2016.
22. Liu J, Liu D, Yang B, et al. Reversible splenial lesion syndrome (RESLES) coinciding with cerebral venous thrombosis: a report of two cases. Ther Adv Neurol Disord 10: 375-379, 2017.
23. Chen Z, Xu M, Shang D, Luo B. A case of reversible splenial lesions in late postpartum preeclampsia. Intern Med 51: 787-790, 2012.
24. Zhu Y, Zheng J, Zhang L, et al. Reversible splenial lesion syndrome associated with encephalitis/encephalopathy presenting with great clinical heterogeneity. BMC Neurol 16: 49, 2016.
25. Lebecque O, Mulquin N, Dupont M. Cytotoxic Lesion of the Corpus Callosum Caused by Puumala Hantavirus Infection. J Belg Soc Radiol 103: 11, 2019.
26. Zhang S, Ma Y, Feng J. Clinico-radiological spectrum of reversible splenial lesion syndrome (RESLES) in adults: a retrospective study of a rare entity. Medicine (Baltimore) 94: e512, 2015.
27. Bulakbasi N, Kocaoglu M, Tayfun C, Ucoz T. Transient splenial lesion of the corpus callosum in clinically mild influenza-associated encephalitis/encephalopathy. AJNR Am J Neuroradiol 27: 1983-1986, 2006.
28. Tada H, Takanashi J, Barkovich AJ, et al. Clinically mild encephalitis/encephalopathy with a reversible splenial lesion. Neurology 63: 1854-1858, 2004.
29. Hibino M, Horiiuchi S, Okubo Y, Kakutani T, Ohe M, Kondo T. Transient hemiparesis and hemianesthesia in an atypical case of adult-onset clinically mild encephalitis/encephalopathy with a reversible splenial lesion associated with adenovirus infection. Intern Med 53: 1183-1185, 2014.
30. Ko SY, Kim BK, Kim DW, et al. Reversible splenial lesion on the corpus callosum in nonfulminant hepatitis A presenting as encephalopathy. Clin Mol Hepatol 20: 398-401, 2014.
31. Li C, Wu X, Qi H, et al. Reversible splenial lesion syndrome associated with lobar pneumonia: Case report and review of literature. Medicine (Baltimore) 95: e4798, 2016.
32. Yuan J, Yang S, Wang S, Qin W, Yang L, Hu W. Mild encephalitis/encephalopathy with reversible splenial lesion (MERS) in adults-a case report and literature review. BMC Neurol 17: 103, 2017.
33. Shibuya H, Osamura K, Hara K, Hisada T. Clinically mild encephalitis/encephalopathy with a reversible splenial lesion due to Mycoplasma pneumoniae infection. Intern Med 51: 1647-1648, 2012.
34. Dong X, Cong S. Reversible splenial lesion syndrome associated with acute Mycoplasma pneumoniae-associated encephalitis: A report of four cases and literature review. Exp Ther Med 16: 2152-2159, 2018.
35. Tomizawa Y, Hoshino Y, Sasaki F, et al. Diagnostic Utility of Splenial Lesions in a Case of Legionnaires’ Disease due to Legionella pneumophila Serogroup 2. Intern Med 54: 3079-3082, 2015.
36. Vollmann H, Hagemann G, Mentzel HJ, Witte OW, Redecker C. Isolated reversible splenial lesion in tick-borne encephalitis: a case report and literature review. Clin Neurol Neurosurg 113: 430-433, 2011.
37. Takanashi J, Barkovich AJ, Shiibara T, et al. Widening spectrum of a reversible splenial lesion with transiently reduced diffusion. AJNR Am J Neuroradiol 27: 836-838, 2006.
38. Hagemann G, Mentzel HJ, Weisser H, Kunze A, Terborg C. Multiple reversible MR signal changes caused by Epstein-Barr virus encephalitis. AJNR Am J Neuroradiol 27: 1447-1449, 2006.
39. Marsala SZ, Antichi E, Pistacchi M, et al. Mild Encephalitis with a Reversible Splenial Lesion: A Clinical Benign Condition, often Underrecognized - Clinical Case and Literature Review. J Neurosci Rural Pract 8: 281-283, 2017; Oster J, Doherty C, Grant PE, Simon M, Cole AJ. Diffusion-weighted imaging abnormalities in the splenium after seizures. Epilepsia 44: 852-854, 2003.
40. Conry RM, Sullivan JC, Naboris LB 3rd. Iliopilumab-induced encephalopathy with a reversible splenial lesion. Cancer Immunol Res 3: 598-601, 2015.
41. Winslow H, Mickey B, Frohman EM. Symptomatic and paralysis associated with reversible splenial lesion. Arch Neurol 63: 135-137, 2006.
42. Gruhbaum B, Salzer H, Nasel C, Lernbass I. Reversible cytotoxic oedema in the splenium of the corpus callosum related to tetracycline therapy. Pediatr Radiol 40: 1693-1695, 2010.
43. Rocha AJ da, Reis F, Gama HP, et al. Focal transient lesion in the splenium of the corpus callosum in three non-epileptic patients. Neuroradiology 48: 731-735, 2006.
44. Merizalde M, Navalon P, Gonzalez MF, Dominguez A, Livianos L, Martinez JC. Manic episode, confusional syndrome and reversible splenial lesion after abrupt withdrawal of oxcarbazepine. J Affect Disord 210: 122-124, 2017.
45. Philippko O, Delavelle J, Tedjini L, Capelle L, Sceek M. Reversible cytotoxic edema in the splenium of the corpus callosum related to antiepileptic treatment: report of two cases and literature review. Epilepsia 46: 1633-1636, 2005.
46. Sawagashira R, Narita H, Hashimoto N, et al. Transient lesions of the splenium of the corpus callosum following rapid withdrawal of levetiracetam. Epileptic Disord 19: 379-382, 2017.
47. Wang L, Wang X, Shi X, Qiu W, Miao A. Reversible lesion involving the splenium of the corpus callosum caused by phenytoin sodium withdrawal. Neurol Sci 38: 689-691, 2017.
48. Narita H, Odawara T, Kawanishi C, Kishida I, Iseki E, Kosaka K. Transient lesion in the splenium of the corpus callosum, possibly due to carbamazepine. Psychiatry Clin Neurosci 57: 550-551, 2003; Honda K, Nishimiya J, Sato H, et al. Transient splenial lesion of the corpus callosum after acute withdrawal of antiepileptic drug: A case report. Magn Reson Med Sci 5: 211-215, 2006.
49. Renard D, Taieb G, Briere C, Bengler C, Castelvongo G, Mild encephalitis/encephalopathy with a reversible splenial lesion, white matter, putaminal, and thalamic lesions following anti-Yo rhombencephalitis. Acta Neurol Belg 112: 405-407, 2012.
50. Miyakawa Y, Fuchigami T, Aoki M, et al. Agraphia with reversible splenial corpus callosum lesion caused by hypoglycemia. Brain Dev 40: 592-595, 2018.
51. Kim JH, Choi JY, Koh SB, Lee Y. Reversible splenial abnormality in hypoglycemic encephalopathy. Neuroarthritis 49: 217-222, 2007.
52. Kang K, Song YM, Jo KD, Roh JK. Diffuse lesion in the splenium of the corpus callosum in patients with methyl bromide poisoning. J Neurol Neurosurg Psychiatry 77: 703-704, 2006.
53. Nishimura K, Takei N, Suzuki K, et al. A transient lesion in splenium of the corpus callosum in a patient with childhood-onset anorexia nervosa. Int J Eat Disord 39: 527-529, 2006.
54. Alakbarova N, Eraslan C, Celebisoy N, Karasoy H, Gonul AS. Mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) development after Amanita phalloides intoxication. Acta Neurol Belg 116: 211-213, 2016.
55. Gawlitza M, Hoffmann KT, Lobsien D. Mild encephalitis/encephalopathy with reversible splenial and cerebellar lesions (MERS type II) in a patient with hemolytic uremic syndrome (HUS). J Neurol Imaging 25: 145-146, 2015.
56. Bottcher I, Kunze A, Kurrat C, et al. Localized reversible reduction of apparent diffusion coefficient in transient hypoglycemia-induced hemiparesis. Stroke 36 (3): e20-e22, 2005.
57. Okada K, Fujiwara H, Tsuji S. X-linked Charcot-Marie-Tooth disease with transient splenium lesion on MRI. Intern Med 45: 33-34, 2006.
58. Ma X, Su W, Chen H. Reversible splenial lesion syndrome after...
blood transfusion presents callosal disconnection syndrome: A case report. Medicine (Baltimore) 97: e11127, 2018.

59. Agarwal A, Kanupriya V, Maller V. Transient restricted diffusion in the splenium of the corpus callosum in migraine with aura. Wien Klin Wochenschr 124 (5-6): 146-147, 2012.

60. Degirmenci E, Degirmenci T, Cetin EN, Kirolgu Y. Mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) in a patient presenting with papilledema. Acta Neurol Belg 115: 153-155, 2015.

61. Oaklander AL, Buchbinder BR. Pregabalin-withdrawal encephalopathy and splenial edema: a link to high-altitude illness? Ann Neurol 58: 309-312, 2005.

62. Mitaki S, Onoda K, Ishihara M, Nabika Y, Yamaguchi S. Dysfunction of default-mode network in encephalopathy with a reversible corpus callosum lesion. J Neurol Sci 317 (1-2): 154-156, 2012.

63. Takanashi J, Hirasawa K, Tada H. Reversible restricted diffusion of entire corpus callosum. J Neurol Sci 247: 101-104, 2006.

64. Cho JS, Ha SW, Han YS, et al. Mild encephalopathy with reversible lesion in the splenium of the corpus callosum and bilateral frontal white matter. J Clin Neurol 3: 53-56, 2007.

65. Steiner T, Ettlinger I, Peng Z, et al. Hyperintense lesion in the corpus callosum associated with Puumala hantavirus infection. J Neurol 259: 1742-1745, 2012.

66. Samanta D. Transient lesion in the splenium of the corpus callosum in status migrainosus. Acta Neurol Belg 115: 397-398, 2015.

67. Tascilar N, Aydemir H, Emre U, Unal A, Atasoy HT, Ekem S. Unusual combination of reversible splenial lesion and meningitis-retention syndrome in aseptic meningomyelitis. Clinics (Sao Paulo) 64: 932-937, 2009.

68. Kitami M, Kubo S, Nakamura S, Shiozawa S, Isobe H, Furukawa Y. Acute urinary retention in a 23-year-old woman with mild encephalopathy with a reversible splenial lesion: a case report. J Med Case Rep 5: 159, 2011.

69. Shankar B, Narayanan R, Muralitharan P, Ulaganathan B. Evaluation of mild encephalitis/encephalopathy with a reversible splenial lesion (MERS) by diffusion-weighted and diffusion tensor imaging. BMJ Case Rep 2014: 2014.

70. Notaert A, Willems J, Coucke L, Van Coster R, Verhelst H. Expanding the spectrum of MERS type 2 lesions, a particular form of encephalitis. Pediatr Neurol 48: 135-138, 2013.

71. Dong K, Zhang Q, Ding J, et al. Mild encephalopathy with a reversible splenial lesion mimicking transient ischemic attack: A case report. Medicine (Baltimore) 95: e5258, 2016.

72. Doherty MJ, Jayadev S, Watson NF, Konchada RS, Hallam DK. Clinical implications of splenium magnetic resonance imaging signal changes. Arch Neurol 62: 433-437, 2005.

73. Hara M, Mizuochi T, Kawai G, et al. A case of clinically mild encephalitis with a reversible splenial lesion (MERS) after mumps vaccination. Brain Dev 33: 842-844, 2011.

74. Duberkar D, Jawale R. Transient lesion in the splenium of corpus callosum due to abrupt phenytoin withdrawal. Neurol India 65 (Supplement): S104, 2017.

75. Oztoprak I, Engin A, Gumus C, Egilmez H, Oztoprak B. Transient splenial lesions of the corpus callosum in different stages of evolution. Clin Radiol 62: 907-913, 2007.