Role of Glycosylation/Deglycosylation Processes in *Francisella tularensis* Pathogenesis

Monique Barel¹, ², ³* and Alain Charbit¹, ², ³

Francisella tularensis is able to invade, survive and replicate inside a variety of cell types. However, in vivo *F. tularensis* preferentially enters host macrophages where it rapidly escapes to the cytosol to avoid phagosomal stresses and to multiply to high numbers. We previously showed that human monocyte infection by *F. tularensis* LVS triggered deglycosylation of the glutamine transporter SLC1A5. However, this deglycosylation, specifically induced by *Francisella* infection, was not restricted to SLC1A5, suggesting that host protein deglycosylation processes in general might contribute to intracellular bacterial adaptation. Indeed, we later found that *Francisella* infection modulated the transcription of numerous glycosidase and glycosyltransferase genes in human macrophages and analysis of cell extracts revealed an important increase of N and O-protein glycosylation. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity and dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases. Pathogenic bacteria have also evolved dedicated glycosylation machineries and have notably been shown to use these glycoconjugates as ligands to specifically interact with the host. In this review, we will focus on *Francisella* and summarize our current understanding of the importance of these post-translational modifications on its intracellular niche adaptation.

Keywords: glycosylation, host-pathogen interaction

INTRODUCTION

Protein glycosylation is one of the most common post-translational modifications (PTM) of proteins, as present in all kingdoms of life. It consists in the covalent attachment of glycans onto amino acid side chains, this reaction being catalyzed by an enzyme. In eukaryotic cells, glycosylation has significant effects on protein folding, conformation, distribution, stability, and activity. Particularly, the sugar chains of glycoproteins are essential for maintaining the order of intercellular interactions among all differentiated cells in multicellular organisms. Therefore, alterations in the sugar chains may range from being essentially undetectable to a complete loss in particular functions (Varki, 1993). Indeed, dysfunction of protein glycosylation may lead to development of diseases like cancer and pathogenesis of infectious diseases (Moran et al., 2011). In the innate immune system, which is the major actor for protection against microbial
HOST POINT OF VIEW

Francisella infection modifies numerous “glyco-genes” involved in glycosylation pathways in human macrophages. Indeed, using a glycan processing gene microarray (Chacko et al., 2011), we observed significant changes in the level of glycosyltransferase and glycosidase gene expression profiles in human THP-1 monocytes, infected for 24 h with *F. tularensis* LVS (Barel et al., 2016). Expression of eight genes, encoding four glycosyltransferases and four glycosidases, was down-regulated upon infection. These four glycosidases belonged to the EDEM family, which is involved in ER-associated degradation (ERAD). The expression of six genes was up-regulated upon infection, corresponding to five glycosyltransferases and one glycosidase. The up-regulated glycosyltransferases were involved either in N-glycosylation or in O-glycosylation of glycoproteins. The glycosidase gene whose expression was up-regulated, encoded the glycosidase HEXA, which is involved in the Hexosamine Biosynthetic Pathway (HBP) (Vaidyanathan et al., 2014).

Glycosylation occurred as soon as 1 h after entry of the bacteria into the cells. Only three proteins were found and characterized as carrying potential N-glycosylation residues, while nine proteins contained potential O-glycosylation residues. Among them, we characterized BiP/GRP78/HSPA5 protein, a member of the HSP70 heat shock protein family. BiP expression was increased both at transcription and translation level, by *F. tularensis* LVS infection immediately after binding to the cells. BiP glycosylation was also induced at early stage of infection. BiP being a key regulator of the UPR (Ni et al., 2009; Pfaffnback and Lee, 2011), we hypothesized that the glycosylation-deglycosylation processes could be modified by *Francisella*. This could result in direct triggering of the UPR (including BiP) in infected cells with a decrease of the load of newly synthesized “abnormal” proteins. In addition, among the nine proteins containing potential O-glycosylation residues and being glycosylated by *Francisella* infection, we also found PRKCSH, the beta-subunit of glucosidase 2. This enzyme is acting upstream BiP, in the calnexin pathway, which is also involved in correcting misfolded proteins (Hetz et al., 2011).

Infection of human monocytes by *F. tularensis* LVS also triggered the deglycosylation of the glycosylated amino acid transporter SLC1A5 and other glycoproteins (Barel et al., 2012). Deglycosylation induced by *F. tularensis* LVS was maximum at 24 h when intracellular multiplication occurred and depended on the capacity of the bacteria to escape from the phagosomes (Barel et al., 2012). It was not an inhibition of glycosylation since tunicamycin had no inhibiting effect on this deglycosylation.

The enzymes involved in these glycosylation-deglycosylation mechanisms are still not characterized.

We tried to summarize the cascade of events triggered upon infection of macrophages by *Francisella* in the hypothetical model depicted in Figure 1. The transporter SLC1A5 was chosen as a prototypic glycosylated membrane protein. After its synthesis and translocation into the ER, the protein is transported to the Golgi where it is first glycosylated and, from there, addressed to the membrane via secretory vesicles. In the plasma membrane, SLC1A5 is present only as a glycosylated protein (Console...
et al., 2015). Upon re-entry into the cytoplasm via endocytosis, glycosylated SLC1A5 becomes available to glucosidases such as HEXA (whose expression is induced upon Francisella infection). The deglycosylated form of SLC1A5 has been indeed localized only in the cytoplasm (Console et al., 2015). This deglycosylated form of the protein (possibly misfolded) could trigger increase of BiP expression and its glycosylation.

It is tempting to suggest that the intracellular survival of Francisella would be favored both by the control exerted on the UPR response of the host and by the availability of free oligosaccharides resulting from deglycosylation processes, that could serve as nutrients.

PATHOGEN POINT OF VIEW

A large number of bacterial proteins have been found to be glycosylated (Tan et al., 2015). They show a surprising degree of diversity, both within and between bacterial species. Protein glycosylation can be classified according to the glycosidic linkage. Attachment to the amide nitrogen of asparagine (Asn) is known as N-glycosylation, with that of serine or threonine (Ser/Thr) to the hydroxyl oxygen being known as O-glycosylation. N- and O-linked glycosylation may occur either through the action of an oligosaccharyltransferase (OST) or via the action of glycosyltransferases (GTs). OSTs substrates are lipid-linked oligosaccharides while the GTs substrates are usually nucleotide-activated sugars. It was only very recently (Dankova et al., 2016) that the glycosylation machinery of Francisella was found to involve a variety of sugar biogenesis enzymes, glycosyltransferases, a flippase, and a protein-targeting oligosaccharyltransferase. As both type A and type B strains of *F. tularensis* subspecies expressed an O-linked protein glycosylation system, which utilizes core biosynthetic and assembly pathways, O-linked protein glycosylation may be a feature common to members of the *Francisella* genus (Egge-Jacobsen et al., 2011).

The initial attempts to elucidate the glycan repertoire of Francisella and their structures had failed because of the enzymatic and chemical release techniques used. Some proteins were found after transcriptional profiling of mutants. Indeed, FTT_0905 was characterized as a glycosylated Type IV pili protein, which is transcriptionally regulated by MglA. As MglA controls the expression of the Francisella pathogenicity island, FTT_0905 was considered as a new virulence factor (Brotcke et al., 2006). However, by mapping the glycoproteome of the FSC200 strain of *F. tularensis* subsp. holarctica, several candidate proteins were found that could be target for glycosylation as DsbA (FTH_1071), an uncharacterized protein FTH_0069, FopA, Tul4, and LemA (Balonova et al., 2010). In contrast, the PglA protein was identified as a targeting oligosaccharyltransferase because it is necessary for PilA glycosylation in *F. tularensis* (Egge-Jacobsen et al., 2011). Indeed, this protein undergoes multisite O-linked glycosylation, with a pentasaccharide of the structure...
HexNac-Hex-Hex-HexNac-HexNac. PglA is highly conserved in Francisella genus, supporting the general feature of O-glycosylation. Then, the detailed characterization of the DsbA glycan and the putative role of the FTT0789–FTT0800 gene cluster in glycan biosynthesis were reported (Thomas et al., 2011). Indeed, these authors observed that the essential virulence factor DsbA migrated as multiple protein spots on two-dimensional electrophoresis gels. The protein was modified with a 1,156-Da glycan moiety in O-linkage. The glycan is a hexasaccharide, comprised of N-acetylhexosamines, hexoses, and an unknown monosaccharide. Loss of DsbA glycan modification was obtained by disruption of two genes within the FTT0789–FTT0800 putative polysaccharide locus, including a galE homolog (FTT0791) and one gene encoding a putative glycosyltransferase (FTT0798). As the mutants remained virulent in the murine model of subcutaneous tularemia, it indicated that glycosylation of DsbA does not play a major role in virulence under these conditions (Thomas et al., 2011). When defining the previously uncharacterized FTH_0069 protein as a novel glycosylated lipoprotein required for virulence, Balonova et al. (2012) also showed that the glycan structure modifying its two C-terminal peptides was identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA. They therefore suggested a common biosynthetic pathway for the protein modification and a relationship between synthesis of the O-antigen and the glycan in the early steps of their biosynthetic pathways. Indeed, the pglA gene, encoding pilin oligosaccharyl transferase PglA, was involved in both pilin and general F. tularensis protein glycosylation.

In another study on activation of pulmonary inflammation after F. tularensis Schu S4 exposure (Walters et al., 2013), altered expression level of bacteria-specific mRNA transcripts was found. Among these transcripts, a hypothetical protein FTT_0797 was characterized which shared homology with a glycosyl transferase. This protein is part of a gene cluster, which is thought to encode a polysaccharide additional to the lipopolysaccharide O antigen. Another protein, encoded by FTS_1402, was found to be involved in glycoprotein synthesis and to also contribute in part to LPS/capsule and/or Capsule Like Complex (CLC) production (Dankova et al., 2016). The resulting FTS_1402 mutant presented more sensitivity to serum complement.

All these proteins are summarized in Table 1.

Concerning enzymes involved in degradation pathways, analysis of F. tularensis genomes showed a difference in the number of genes coding for proteins with such enzymatic activity (Table 2). Five genes were found in LVS, while only two genes were found in SchuS4 strain and only one gene in FSC200 strain. None of them was characterized.

ROLE OF POST-TRANSLATIONAL MODIFICATIONS (PTM) ON BACTERIA/HOST CELL PROTEINS

While two-third of all eukaryotic proteins are estimated to be glycosylated, the number of prokaryotic glycoproteins is still way behind understanding. This is mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. In 2016, Schäffer and Messner (2016) combined glycan structural information with bioinformatic, genetic, biochemical and enzymatic data for in-depth analyses of glycosylation processes in prokaryotes. This study included the major classes of prokaryotic (i.e., bacterial and archaeal) glycoconjugates without any example on Francisella. Furthermore, in a very recent publication (Bastos et al., 2017), while F. tularensis was shown to exhibit the

TABLE 1 | Genes published involved in glycosylation pathway.

Published Gene	Gene Number (FTT)	Protein name	Characteristics	Function	References
FTT_0905		FTT_0905	Type IV pilin glycosylation protein	Virulence Factor	Brotcke et al., 2006
FTH_1071	Dsba	Dsba			Thomas et al., 2011
FTH_0069		FopA	Putative Glycosylation		Balonova et al., 2010
tu14	Tu14	Lema	Putative Glycosylation		Balonova et al., 2010
lemA		Pga	Oligosaccharyltransferase	Pilin and Protein glycosylation	Egge-Jacobsen et al., 2011
pglA					
FTT_0789	Ribulose-phosphate 3-epimerase	Glycosyltransferase family protein	Glycan Biosynthesis	Virulence Factor	Thomas et al., 2011
FTT_0798		Hypothetical protein	Glycosyltransferase		Thomas et al., 2011
FTH_0069	FTT_1676	Hypothetical protein	Glycosyltransferase	Involved in O antigen glycosylation	Balonova et al., 2012
FTT_0797					Walters et al., 2013
FTS_1402	FTT_0793	ABC transporter	Putative glycan flippase	Involved in LPS and CLC product	Dankova et al., 2016

FTT, Francisella tularensis ssp. tularensis; FTH, Francisella tularensis ssp. holarctica; FTS, Francisella tularensis ssp. tularensis; FSC200 stain nomenclature.
largest number of glycoproteins in common with M. tuberculosis (Mtb), by sharing 16% of its glycoproteome, none of the glycosylated proteins of Francisella, as well as none of the enzymes involved in glycosylation pathway, have been found to play a specific role in pathogenesis. At the opposite, in M. tuberculosis, glycosylation of HbN, a truncated hemoglobin protein, was demonstrated to be necessary for its maintenance at the bacterial membrane and wall (Arya et al., 2013). Mutation in its mannosine glycan linkage disrupted the facilitation of Mtb and M. smegmatis entry within the macrophages. These data suggested that glycosylation processes allowed Mtb survival within the hazardous environment of macrophages and the establishment of long term persistent infection in the host (Dey and Bishai, 2014).

Of note, Francisella did not belong to the list of prokaryotes that catalyzed glycosylation of host cell proteins (Bastos et al., 2017). In contrast, Legionella was cited as targeting eEF1A through effect of the glucosyl transferase Lgt1, with as result, the killing of eukaryotic cells (Belyi et al., 2014).

CONCLUSION

While 146 examples of protein glycosylation were cited for Francisella and only 111 for Helicobacter pylori (Bastos et al., 2017), the importance of these PTM, observed in Francisella, as well as none of the enzymes involved in glycosylation pathway, have been found to play a specific role in pathogenesis. At the opposite, in M. tuberculosis, glycosylation of HbN, a truncated hemoglobin protein, was demonstrated to be necessary for its maintenance at the bacterial membrane and wall (Arya et al., 2013). Mutation in its mannosine glycan linkage disrupted the facilitation of Mtb and M. smegmatis entry within the macrophages. These data suggested that glycosylation processes allowed Mtb survival within the hazardous environment of macrophages and the establishment of long term persistent infection in the host (Dey and Bishai, 2014).

Of note, Francisella did not belong to the list of prokaryotes that catalyzed glycosylation of host cell proteins (Bastos et al., 2017). In contrast, Legionella was cited as targeting eEF1A through effect of the glucosyl transferase Lgt1, with as result, the killing of eukaryotic cells (Belyi et al., 2014).

TABLE 2 | Genes found in KEGG, with a putative deglycosylation function.

Francisella tularensis	Gene number	Name	Function
Subsp. tularensis SCHU S4	FTT_0928c	Beta-N-acetyltetraosaminidase [EC:3.2.1.52]	Beta-glucosidase
	FTT_0412c	Pullulanase [EC:3.2.1.41]	PullB; pullulanase
Subsp. holarctica LVS (Live Vaccine Strain)	FTL_1282	Beta-N-acetyltetraosaminidase [EC:3.2.1.52]	Beta-glucosidase-related glycosidase
	FTL_1052	Pullulanase [EC:3.2.1.41]	Pullulanase
	FTL_0482	Pullulanase [EC:3.2.1.41]	Pullulanase
	AW21_68	Glycosyl hydrolase family 3 N terminal domain	Hypothetical protein
	AW21_1415	Glycosyl hydrolase family 3 N terminal domain	Hypothetical protein
subsp. holarctica FSC200	FTS_1254	Beta-N-acetyltetraosaminidase [EC:3.2.1.52]	Glycosyl hydrolase family protein
Subsp. novicida U112	FTN_0911	Alpha-glucosidase [EC:3.2.1.20]	Glycosyl hydrolases family 31 protein
	FTN_0627	Chitinase [EC:3.2.1.14]	Chitinase, glycosyl hydrolase family 18
	FTN_0806	Beta-N-acetyltetraosaminidase [EC:3.2.1.52]	Glycosyl hydrolase family 3
	FTN_1474	BglX	Glycosyl hydrolase family 3

CONCLUSION

While 146 examples of protein glycosylation were cited for Francisella and only 111 for Helicobacter pylori (Bastos et al., 2017), the importance of these PTM, observed in Francisella, as well as none of the enzymes involved in glycosylation pathway, have been found to play a specific role in pathogenesis. At the opposite, in M. tuberculosis, glycosylation of HbN, a truncated hemoglobin protein, was demonstrated to be necessary for its maintenance at the bacterial membrane and wall (Arya et al., 2013). Mutation in its mannosine glycan linkage disrupted the facilitation of Mtb and M. smegmatis entry within the macrophages. These data suggested that glycosylation processes allowed Mtb survival within the hazardous environment of macrophages and the establishment of long term persistent infection in the host (Dey and Bishai, 2014).

Of note, Francisella did not belong to the list of prokaryotes that catalyzed glycosylation of host cell proteins (Bastos et al., 2017). In contrast, Legionella was cited as targeting eEF1A through effect of the glucosyl transferase Lgt1, with as result, the killing of eukaryotic cells (Belyi et al., 2014).

REFERENCES

Abu Kwaik, Y., and Bumann, D. (2013). Microbial quest for food in vivo: "Nutritional virulence" as an emerging paradigm. Cell. Microbiol. 15, 882–890. doi: 10.1111/cmi.12138
Arya, S., Sethi, D., Singh, S., Hade, M. D., Singh, V., Raju, P., et al. (2013). Truncated hemoglobin, hbn, is post-translationally modified in Legionella and enteropathogenic Escherichia coli (EPEC) (Lu et al., 2015).

Francisella infection modifies the unfolded protein response (UPR) (Barel et al., 2016) and manipulates autophagy (Miller and Celli, 2016). Both processes are involved in maintaining cellular homeostasis and helping destroy invading microorganisms. Glycosylation and deglycosylation could be involved in molecular mimicry of common host cell glycans therefore helping the bacteria to avoid immune recognition. At this stage, we have all the reasons to believe that the glyclosylation-deglycosylation processes observed in THP-1 cells were originated from eukaryotic enzymes. However, we cannot formerly exclude that Francisella enzymes might also be involved. Glycans and glycan-binding receptors influence all stages of infection, starting from initial colonization of host epithelial surfaces to spreading in tissue and inducing inflammation or host-cell injury, which may results in clinical symptoms (Nizet and Esko, 2009). Therefore, knowledge of glycosylation pathways involved during Francisella infection remains fundamental for prevention and treatment strategies.

AUTHOR CONTRIBUTIONS

MB and AC wrote the review.

ACKNOWLEDGMENTS

INSERM, CNRS, and Université Paris Descartes Paris Cité Sorbonne supported these studies. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Balonova, L., Mann, B. F., Cerveny, L., Alley, W. R., Chovancova, E., Forslund, A.-L., et al. (2012). Characterization of protein glycosylation in Francisella tularensis subsp. holarctica: identification of a novel glycosylated lipoprotein required for virulence. Mol. Cell. Proteomics 11, M111.015016. doi: 10.1074/mcp.M111.015016

Barel, M., Grall, N., and Charbit, A. (2015). Pathogenesis of Francisella tularensis in Humans. Hoboken, NJ: John Wiley & Sons, Inc.

Barel, M., Harduin-Lepers, A., Portier, L., Slomianny, M.-C., and Charbit, A. (2016). Host glycosylation pathways and the unfolded protein response contribute to the infection by Francisella. Cell. Microbiol. 18, 1763–1781. doi: 10.1111/cmi.12614

Barel, M., Meibom, K., Dubail, I., Botella, J., and Charbit, A. (2012). Francisella tularensis regulates the expression of the amino acid transporter SLC1A5 in infected THP-1 human monocytes. Cell. Microbiol. 14, 1769–1783. doi: 10.1111/j.1462-5822.2012.01837.x

Bastos, P. A. D., da Costa, J. P., and Vitorino, R. (2017). A glimpse into the modulation of post-translational modifications of human-colonizing bacteria. J. Proteomics 152, 254–275. doi: 10.1016/j.jprot.2016.11.005

Belyi, Y., Tabakova, I., Stahl, M., and Aktories, K. (2008). Lgt: a family of cytotopic glucosyltransferases produced by Legionella pneumophila. J. Bacteriol. 190, 3026–3035. doi: 10.1128/JB.01798-07

Brottke, A., Weiss, D. S., Kim, C. C., Chain, P., Malfatti, S., Garcia, E., et al. (2006). Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect. Immun. 74, 6642–6655. doi: 10.1128/IAI.01250-06

Case, E. D. R., Chong, A., Wehrly, T. D., Hansen, B., Child, R., Hwang, S., et al. (2015). Francisella O-antigen mediates survival in the macrophage cytosol in infected THP-1 human monocytes. Cell. Microbiol. 17, 1305–1323. doi: 10.1111/cmi.12614

Chovancova, E., Balonova, L., Mann, B. F., Cerveny, L., Alley, W. R., Chovancova, E., et al. (2016). Emerging facets of prokaryotic glycosylation. Mol. Med. Rev. 18, 1763–1781. doi: 10.1016/j.mib.2009.11.007

Miller, C., and Celli, J. (2016). Avoidance and subversion of eukaryotic homeostatic autophagy mechanisms by bacterial pathogens. J. Mol. Biol. 428, 3387–3398. doi: 10.1016/j.jmb.2016.07.007

Moran, A. P., Gupta, A., and Joshi, L. (2011). Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60, 1412–1425. doi: 10.1136/gut.2010.212794

Ni, M., Zhou, H., Wey, S., Baumeister, P., and Lee, A. Y. (2009). Regulation of PfkR signaling and leukemic cell survival by a novel cytosolic isofrom of the UPR regulator GRP78/Bip. PLoS ONE 4:e6868. doi: 10.1371/journal.pone.0006868

Nizet, V., and Esko, J. (2009). "Chapter 39: Bacterial and viral infections," in Essentials of Glycobiology, 2nd Edn., eds R. D. Cummings, A. Varkevič, I. D. Esko H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, and M. E. Etzler (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), 1–16.

Opdenakker, G., Proost, P., and Van Damme, J. (2016). Microbiomic and posttranslational modifications as preludes to autoimmune diseases. Trends Mol. Med. 22, 746–757. doi: 10.1016/j.molmed.2016.07.002

Paffenbach, K. T., and Lee, A. S. (2011). The critical role of GRP78 in physiologic and pathologic stress. Curr. Opin. Cell. Biol. 23, 150–156. doi: 10.1016/jceb.2010.09.007

Ray, K., Marteyn, B., Sansonetti, P. I., and Tang, C. M. (2009). Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7, 333–340. doi: 10.1038/nrmicro2112

Santic, M., Al Khodor, S., and Abu Kwaik, Y. (2010). Cell biology and molecular ecology of Francisella tularensis. Cell. Microbiol. 12, 129–139. doi: 10.1111/j.1462-5829.2009.01400.x

Schäffer, C., and Messner, P. (2016). Emerging facets of prokaryotic glycosylation. FEMS Microbiol. Rev. 41, 49–91. doi: 10.1093/femsrev/fuw036

Sjöstedi, A. (2011). Special topic on Francisella tularensis and tularemia. Front. Cell. Infect. Microbiol. 2, 86. doi: 10.3389/fmicb.2011.00086

Tan, F. Y. Y., Tang, C. M., and Exley, R. M. (2015). Sugar coating: bacterial protein glycosylation and host-microbe interactions. Trends Biochem. Sci. 40, 342–350. doi: 10.1016/j.tibs.2015.03.016

Thomas, R. M., Twine, S. M., Fulton, K. M., Tessler, L., Kilmurry, S. L. N., Ding, W., et al. (2011). Glycosylation of DsbA in Francisella tularensis subsp. tularensis. J. Bacteriol. 193, 5498–5509. doi: 10.1128/JB.00438-11

Tytgat, H. L. P., and de Vos, W. M. (2016). Sugar coating the envelope: glycoconjugates for microbe–host crosstalk. Trends Microbiol. 24, 853–861. doi: 10.1016/j.tim.2016.06.004

Vaidyanathan, K., Durning, S., and Wells, L. (2014). Functional O-GlcNAc modifications: implications in molecular regulation and pathophysiology. Crit. Rev. Biochem. Mol. Biol. 49, 140–163. doi: 10.3109/10409238.2014.884535

Varčič, A. (1993). Biological roles of oligosaccharides: all of the theories are correct. Glyobiology 3, 97–130. doi: 10.1093/glycob/3.2.97

Walters, K.-A., Olsufka, R., Kuestner, R. E., Cho, J. H., Li, H., Zornetzoler, L. et al. (2013). Francisella tularensis subsp. tularensis induces a unique pulmonary inflammatory response: role of bacterial gene expression in temporal regulation of host defense responses. PLoS ONE 8:e62412. doi: 10.1371/journal.pone.0062412

Zhang, Y. J., and Rubin, E. J. (2013). Feast or famine: the host–pathogen battle over amino acids. Cell. Microbiol. 15, 1079–1087. doi: 10.1111/cmi.12140

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.