An updated assessment on anticancer activity of screened medicinal plants in Jordan: Mini review

Lafi Zainab, Tarik Hiba and Azzam Hanan

DOI: https://doi.org/10.22271/phyto.2020.v9.i5a.12423

Abstract

Since the ancient ages plant species have been used as key part in traditional medicine and curing practices. Recently a huge body of literature showed that medicinal plant species used by the Jordanian people for the treatment of cancer were screened for their potential as cytotoxic therapy at least in vitro. This review summarizes an updated evidence on different features of traditionally used chemotherapeutic plants in addition to the screened ones for their antiproliferative activity and to shed light on them for further investigation. Studies of screening for selective cytotoxicity and antiproliferative activity of plants are briefly discussed.

Keywords: Cancer, Proliferation, Medicinal plants, Jordan Flora, phytochemical, In vitro, In vivo

Introduction

As a second leading cause of death worldwide, cancer is a challenging area of research to discover new drugs (Bray et al., 2018) [14]. Cancer is one of the biggest health problems that affect human and needs active approaches for therapy. Globally, about 1 out of 6 deaths are due to cancer and an estimated 9.6 million deaths in 2018 are from cancer (Bray et al., 2018) [14]. Cancer or tumor are general names represent a group of diseases that can affect all part of the human body. Cancer is an abnormal, uncontrolled rapid growth of cells which can invade other parts of the body. Once cancer spread through the body uncontrollably it leads to death (Akaza, 2019) [7].

According to World Health Organization (WHO, Country-specific 2019) [15] the most commonly diagnosed cancer cases in Jordan for the year 2018 are; breast (19.7%), lung (10.5%), colorectum (10.1%), bladder (4.9%), Leukemia (4.8%) and other cancers (50%). Medicinal plants are key tools in discovering new drugs and new chemical compounds. Plant and plant derived entities are safe and ecofriendly. It was proved that 50% of new chemical substances were natural products, semi-synthetic natural products, and semi-synthetic natural analogs (Sofowora, et al., 2013) [20]. The importance of medicinal plants as a part of the health care system has been reported globally. A high percentage of people around the world depends on therapies of plant origin specially in the primary healthcare (Talib & Mahasneh, 2010) [21].

Jordan territory is diverse and composed of tropical and desert natural features. Jordan is divided into four biogeographic regions: the Mediterranean, Irano-Turanian, Saharo-Arabian and Sudanian. The four regions comprise thirteen vegetation types which provide the natural habitats for over 4,000 species of wildlife and vegetation from the terrestrial, marine and freshwater environments. (Moghbeli et al., 2015-2020) [18].

Issa and Bushati have reported that Jordanians believe in herbs and natural preparations more than synthetic drugs and get their therapeutic information mainly from herbalists. Several plants have been used in traditional medicine for many years without enough scientific data to confirm their efficacy Issa & Basheti 2017) [17]. These plants may contain actual active compounds which could be used therapeutically and prepared in pharmaceutical formulations. Such plants should be evaluated as medicinal plants. Active ingredients which are called phytochemicals can be extracted and purified to be used clinically. For example, but not as a limitation, ginger, capsaicin, and curcumin for direct medicinal use; microscopic plants, e.g. fungi, actinomycetes that are used for isolation of drugs specially antibiotics and fibre plants, e.g. cotton, flax, jute which are used for the preparation of surgical dressings (Sofowora et al., 2013) [20] as semi-synthesis of medicinal compounds.

Many published studies indicated that several plant species are considered as remedies for the treatment of different cancer types (Abu-Dhab, et al., 2012; Alhourani, et al., 2018; Al-Samydi, et al., 2019) [2, 11, 9].
Results and Discussion

Afifi et al., (2011) [5] reviewed more than 100 articles and summarized data for plants cultivated in Jordan and traditionally tested and used for cancer. They listed the ethnopharmacologically used plants with the method of preparation; parts used and reported phytochemical constituents. Moreover, Afifi et al. declared that there is a need for inclusive research to investigate the promising Jordanian flora species alone or as adjuvants with other chemotherapies. This screening might lead to the discovery of a new natural compounds that eliminate or reduce the major influence of cancers. They concluded that these plants have unique potential as anticancer agents and candidates for chemotherapeutic leads. (Afifi, et al., 2011) [5]. The most active plants found by Afifi are listed in table 1.

In 2013 Asaf and her group investigated the anticancer, anti-inflammatory, and antimicrobial activity of Mercurialis annua L., Bongardia chrysogonum L., and Viscum cruciatum Sieb S. which are traditionally used by herbalists in Jordan for hematopoietic neoplasms patients. Viscum cruciatum Sieb S. herbal methanolic extract showed high anti-cancer (IC50 14.21 μg/ml on BJAB cells), anti-inflammatory (inhibited the release of IL-8) and anti-microbial potentials (especially against Propionibacterium acnes). These findings might encourage the use of Viscum cruciatum Sieb S. for the treatment of diseases associated with some bacterial and fungal infections as well as for cancer and other immunotherapies (Assaf et al., 2013) [13].

The anti-proliferative effect of the methanolic extract of Chrysanthemum coronarium L. was evaluated by Abu-Rish and her team against six human tumor cell lines (A375.S2, WM1361A, CACO-2, HRT18, MCF-7, T47D). C. coronarium extract showed cytotoxicity against WM1361A and T47D anti-proliferative in a dose-dependent manner (Abu-Rish et al., 2016) [3].

Having antioxidant property indicates the possibility of anti-proliferative and anticancer activity of the plant. However, not all anti-oxidative plants can protect from oxidative DNA damage and prevent cancer development. In 2016, Alkofahi and others tested the ability of different plants to lower the oxidative stress status and protect against DNA damage.
antitumor activity was assessed. *O. basilicum* essential oil has anticancer potential against triple-negative breast cancer cell line (MDA-MB-231), ER+ breast cancer (MCF7), and the glioblastoma (U-87 MG) with IC₅₀ of 432.3±32.2, 320.4±23.2, and 431.2±15.3 µg/ml respectively (Aburjai, et al. 2020) [4].

In a short review, Ali Al-Samyaidai and his team summed up capsaicin anticancer activity against different cancer cell lines. *Capsicum annum* L. is the natural source of capsaicin that has many therapeutic activities. Capsaicin was tested against *in vitro* T24 human bladder carcinoma cells, colon cells (SW480, HCT116, LoVo and Caco 2), gastric (MGC 803), and many others (Al-Samyaidai, et al., 2019) [9].

Conclusions and upcoming prospects

From this review we can conclude that plants and plants derivatives are promising and effective research zone for cancer treatment. It’s worth mentioning that the main issue that remains unresolved is how researchers can best use medicinal plants for effective cancer prevention in people at risk. Due to the rising prevalence of cancer and the high price of its treatments, alongside various restrictions in the availability of therapy including high toxicity; thus arose the challenge for researchers to develop other biocompatible and cost-effective therapeutic approach. As a result of this situation, phyto-products are likely to alter cancer treatment in the future. The safety profile of plant ingredients and patient compliance have increased the value of phytochemicals in cancer therapy. It was reported that many phytochemicals defined in clinical trials such as thymoquinone, curcumin, epigallocatechin, isothiocyanates, gossypol, sulfonaphane, garcinol…etc. are effective as cytotoxic and immunomodulatory agents. Moreover, more resources should be spent on these phytochemicals to assess their possible applications in cancer therapy either *in vitro* or *in vivo*.

Table 1: The most active plants screened for breast cancer cell line.

Plant name	Part used/extract	cancer cell line	IC₅₀ (µg/ml)	Ref.
Inula graveolens, Asteraceae	Ethanol extract	MCF7	3.83 ± 0.177	1
Salvia dominica, Lamiaeceae	Ethanol extract	MCF7	7.28 ± 1.150	1
Conyza canadiensis, Asteraceae	Ethanol extract	MCF7	12.76 ± 2.475	1
Achillea santolima, Asteraceae	Chloroform extract	MCF7	15.49 ± 1.45	1
Origanum syriacum, Lamiaeceae	Ethanol extract	MCF7	6.40± 3.17	8
Laurus nobilis, Lauraceae	Ethanol extract	MCF7	24.49 ± 8.17	8
Salvia triloba, Lamiaeceae	Ethanol extract	MCF7	25.25 ± 1.21	21
Ononis hirta Fabaceae (aerial parts)	Methanol extract	MCF7	27.96 ± 0.54	21
Inula viscosa Asteraceae (flowers)	Methanol extract	MCF7	15.78 ± 0.59	21

References

1. Abu-Dahab R, Afifi F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Scientia Pharmaceutica. 2007; 75(3):121-146.
2. Abu-Dahab R, Afifi F, Kasabri V, Majdalawi L, Naffa R. Comparison of the antiproliferative activity of crude ethanol extracts of nine salvia species grown in Jordan against breast cancer cell line models. Pharmacognosy Magazine. 2012; 8(32):319-324.
3. Abu-Rish EY, Kasabri V, Hudaib MM, Mashalla SH, AlAlawi LH, Tawaha, K et al. Evaluation of antiproliferative activity of some traditional anticancer herbal remedies from Jordan. Tropical Journal of Pharmaceutical Research. 2016; 15(3):469-474.
4. Aburjai TA, Mansi K, Azzam H, Alqudah DA, Alshaer W, Abuirjei M et al. Chemical Compositions and Anticancer Potential of Essential Oil from Greenhouse-cultivated Ocimum basilicum Leaves. Indian Journal of Pharmaceutical Sciences. 2020; 82(1):179-184.
5. Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from jordan in the treatment of cancer: Traditional uses vs in vitro and in vivo evaluations part 1. Planta Medica. 2011; 77(11):1203-1209.
6. Afifi FU, Kasabri V, Litescu S, Abaza IF, Tawaha K. Phytochemical and biological evaluations of Arum hygrophilum boiss. (Araceae). Pharmacognosy Magazine. 2017; 13(50):275-280.
7. Akaza H. International agency for research on cancer (IARC). Japanese Journal of Cancer and Chemotherapy. 2019; 46(1):34-35.
8. Al-Kalaldeh JZ, Abu-Dahab R, Afifi FU. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutrition Research. 2010; 30(4):271-278.
9. Al-Samyaidai A, Al-Mamoori F, Abdelnabi H, Aburjai, T. An updated review on anticancer activity of capsaicin. International Journal of Scientific and Technology Research. 2019; 8(12):2625-2630.
10. Al-Zereine WA. Ononis natrix and Salvia verbenaca: Two Jordanian Medicinal Plants with Cytotoxic and Antibacterial Activities. Journal of Herbs, Spices and Medicinal Plants. 2017; 23(1):18-25.
11. Alhournani N, Kasabri V, Bustanji Y, Abbassi R, Hudaib M. Potential Antiproliferative Activity and Evaluation of Essential Oil Composition of the Aerial Parts of Tamarix aphylla (L.) H.Karst.: A Wild Grown Medicinal Plant in Jordan. Evidence-Based Complementary and Alternative Medicine, 2018, 7.
12. Alkofahi AS, Alzoubi KH, Khabour OF, Mhaidat NM. Screening of selected medicinal plants from Jordan for their protective properties against oxidative DNA damage. Industrial Crops and Products. 2016; 88:106-111.
13. Assaf AM, Haddadin RN, Aldouri NA, Alabassi R, Mashallah S, Mohammad M et al. Anti-cancer, anti-inflammatory and anti-microbial activities of plant extracts used against hematological tumors in traditional medicine of Jordan. Journal of Ethnopharmacology. 2013; 145(3):728-736.
14. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018; 68(6):394-424.
15. Country-specific I, National J, Registry C, Country-specific, M., Computed, P., & Index, H. D. (2019). 9 903 798, 143:2018-2019.

16. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA et al. Asian Pacific Journal of Tropical Biomedicine. Asian Pacific Journal of Tropical Biomedicine. 2017; 7(12):1129–1150.

17. Issa RA, Basheti IA. Herbal medicine use by people in Jordan: Exploring believes and knowledge of herbalists and their customers. Journal of Biological Sciences. 2017; 17(8):400-409.

18. Moghbelli, H., Ellithy, K., Eslami, Z., Vartanian, R., Wannous D, El Ghamrawy A, Nathan GJ. (n.d.). The national biodiversity strategy and action plan. Block caving – a viable alternative? 2017; 21(1):1-9.

19. Ruwad M Al. Immunomodulatory and anticancer activities of herbal drinks consumed in Jordan. 2018; 6(1):71-82.

20. Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. African Journal of Traditional, Complementary, and Alternative Medicines : AJTCAM / African Networks on Ethnomedicines. 2013; 10(5):210-229.

21. Talib WH, Mahasneh AM. Antiproliferative activity of plant extracts used against cancer in traditional medicine. Scientia Pharmaceutica. 2010; 78(1):33-45.

22. Трушкин ЕВ, Сенявина НВ, Сахаров ДА, Русанов АЛ, Маркс У, Тоневицкий АГ et al. Современные Технологии In Vitro Тестирования Лекарств In Vitro: Использование Микробиореакторов. Биотехнология. 2013; 11(1):51-58.

23. Yousef I, Oran S, Bustanjii Y, Al Eisawi D, Irmaileh BA. Cytotoxic Effect of Selected Wild Medicinal Plant Species from Jordan on Two Different Breast Cancer Cell Lines, MCF7 and T47D. Biology and Medicine. 2018; 10(4):2016-2019.