Use of underutilized green leafy vegetables as food nutrition and ethnobotanical among rural community of Odisha: A review

Priyanka Sahu, Monalisha Biswal and Nityamanjari Mishra

DOI: https://doi.org/10.22271/chemi.2020.v8.i5l.10405

Abstract
In the current era of deforestation, well supported by gradual extinction of medicinally and economically important flora, traditional knowledge holds a valuable option in order to keep a balancing role towards biodiversity conservation leading to sustainability, hence needs to be focused and disseminated generation wise. Every crop has its own benefits to serve mankind. Green leafy vegetables are important group of nutrient dense commodity regarded as nature’s anti-aging wonders, inexpensive food resource and a future herbal medicine owing to its concentrated and overloaded source of nutrients and phytochemicals. Unfortunately, some of them are still confined to local habitat and not explored commercially, accompanied by rare consumption. As leafy vegetables serve an important and diverse component in regular diet of rural and tribal communities satisfying nutritional need and contribute to livelihood as a food and medicine, hence can be considered as a potential tool to obtain sustainable agriculture, safeguarding the nature thus can incorporated with other commercial crops leading to minimizing the scarcity of traditional food availability and danger of extinction. The current paper enlists the baseline information about medicinal properties, Nutritional quality and health benefits of some non-cultivated leafy vegetables from various regions of Odisha. Leafy vegetables, the commodity of nutritional significance is important horticultural produce and form integral part of the rural and tribal household.

Keywords: Ethnobotanicals, food security, leafy vegetables, nutrition, Phyto-neutraceuticals and underutilized

Introduction
The world desperately over-dependent on fewer and specified plant species (Bhag Mal, 2007)[1]. Due to exponential increase in population and fast decrease in natural resources it became necessary to explore newer plant resources and their multifarious horizon (Joshi, 2005)[2]. In nature, there are many underutilized greens having promising nutritive value, which can nourish the ever-increasing human population (Sheela et al., 2004)[3]. Green leafy vegetables in our country are known to be the most inexpensive source of several vital nutrients (Kamble and Jadhav, 2013)[4]. These are defined as the plant leaves along with tender petiole and shoot eaten as vegetable when the plants are in their young and active growth phase. They are not only short lived and herbaceous (with few exceptions with woody plants and creepers), but also rapidly growing plants and becomes ready for market in short period of time. Considering the abundance and nature of growth of the plant that are used for consumption, 71.4% constitutes Herbs being the primary source of leafy vegetables followed by 14.3% each constitutes trees and climbers (Panda et al., 2015)[5]. Leafy vegetables being nutrient dense and incredibly healthy in nature, blessed with an array of photochemical, anti-oxidant vitamins and minerals like beta-carotene, lutein, and zeaxanthin which protect our cells from damage also helps in alleviating the age-related problems, Tocopherols and polyphenols which is required for good health and protect against coronary heart diseases and cancer, vitamin A, C, K, Ca, Fe and P, K, Na, Zn respectively form an important place among all other vegetable crops (Lakshmi and Vimala, 2000; Negi and Roy, 2000; Fasuyi, 2006; Aberoumand and Deokule, 2009; Sudha and Mathangi 2012; Misra and Misra, 2014)[6,7,8,9,10,11]. These are also called as natures anti-aging wonders as they lower
the age-related disorders and plays a key role in human health management due to its ability to lower the risk of chronic human ailments like cancer and cardio vascular diseases. These have the special power for uplifting the health profile of an individual as they are typically low in calories and rich in folic acid and dietary fiber content. Nutritional value of these greens is twenty times more than in other vegetables (Sudha and Mathanghi, 2012)[11]. Moreover, in the spending up cost and their side effects, herbs or plant derived products are believed to have miraculous effect in modern days and remain the primary source of healthcare among ¾ th of the world’s population. Most modern-day medicines are directly or indirectly derived from plant sources.

Previously these leafy vegetables were restricted among rural community of certain geographical area but now a day a widespread network can be seen in markets of urban and peri urban area selling with higher price due to preference of more of vegetables in their diet, increasing health consciousness, changing consumption pattern, living standards and life style. Hence in the age of speeding up medical cost and their side effects, peoples are intelligently and eagerly turning to natural medicines i.e., herbs. Fortunately, India has highest number of vegetarians in the world where 40% of its population depends on vegetables and other plant foods for fulfilling their essential nutritional requirements. Studies have shown that vegetarians are less susceptible to disease and live longer, healthier and having stronger immunity (Akindahunsi and Salawu, 2005)[12]. In this way, leafy vegetables are not only popular but also getting momentum of their existence and dedicately offers an exclusive service to human society by its strong nutritional support. Cultivation of these vegetables will not only increase food production but also provide balanced nutrition, food security, health security and poverty alleviation to the deprived section (Buragohain et al., 2013) [13]. Odisha lies between the latitudes 17.78°N and 22.73°N, and between longitudes 81.37°E and 87.53°E is 9th largest state by area and 11th largest by population covering an area of 1,55,707 km², which supports a population of 41.94 million (Odisha economic survey 2014-15) and a population density of 270/km² respectively is considered to be a rich heritage of wild edible and genetic paradise for its diversity in plant genetic resources (Misra et al., 2012)[14]. There are 51349 villages (national health mission ministry of health and family welfare). Among which the tribes constitute a major share (22.43%) of the total state population (Meher, 2007)[15]. The state is having 10 versatile agro-climatic conditions which are immensely suitable for variety of crop. Approximately half of the state’s people live below the poverty line, with limited access to exploitable resources due to a complex interplay of social, economic and cultural dynamics (State Health Systems Odisha). Like other indigenous communities, use of wild plants as food is an integral part of the culture and tradition of Odia people (Surjata and Korsam, 2016)[16]. A large section of the rural population meets their nutritional requirement through unconventional means by consuming various wild leafy vegetables along with water rice. As the winter sets the variety of taste to our taste buds like sour and bitter (Das, 2016)[17]. In Odisha, Colossal studies have concentrated on south Odisha by Sahu et al., 2013[22]; Panda et al. 2015[23] in Bhadrak district, Pradhan and Panda, 2015 [24] in Koraput, Misra and Mishra (2014)[20], Tripathy et al. (2014)[25] in Similipal Bio-reserve Panda, 2014[26] and Misra et al., 2012[24] in south Odisha.

There is scanty documentation and literature about the existence of underutilized leafy vegetables in India. Hence the scattered information on edible leafy vegetable diversity in Odisha are being compiled in this review paper and the current review also highlights about the basic knowledge, nutritional value, ecological occurrence, medicinal significance and expected future commercial horizon of some lesser known and underutilized leafy vegetables but predominantly occupied and regularly consumed species by people of Odisha with an objective for its multi-dimensional exploitation.

Distribution of diversified edible leafy flora

The diversity of vegetables consumed by humans varied widely both with geographical area and culture (Welbaum, 2015) [27]. There are more than 50,000 leafy crops in the world out of which more than 1,000 varieties are used as vegetables in one way or other. But the usages of green leafy vegetables are limited to specific geographical location (Ashok Kumar C.K et al., 2013) [28]. It is estimated that in India about 800 species are consumed as wild edible plants, mostly by the tribal people (Bandyopadhyay and Mukherjee, 2009) [29]. These are chiefly categorized as cultivated indigenous vegetable like Amaranthus sp., Chenopodium album, Trigonella foenum-graecum, Raphanus sativus, Allium cepa, Cucurbita maxima, Momordica charantia, Langeria siceria; non cultivated naturally growing leafy vegetables like Polygonum plebeium, Paederia foetida, Oxalis corniculata, Marselia minuta, Leucas aspera, Ipomea aquatica, Glinus oppositifolius, Enydra fluctuans Lour, Commelina Benghalensis, Celome viscosa,Colocasia esculenta,Brassica juncea,Bahunia purpurea, Bacopa monnieri, Alternanthera sessilis; perennial greens like Tamarindus indica Murraya koinigii and Moringa oleifera; introduced leafy vegetables like Spinacea oleracea, Basella rubra. Odisha harbors a wide range lesser known but increasingly consumed leafy vegetable well distributed in 10 types of varies agro-climatic conditions. In Odisha many species of edible and wildly available species are appreciated as favorite cuisine and preferred in regular diet with water rice (boiled rice soaked overnight with water) after hard work in summer. Typically, available leafy flora signifies the flavour of Odia culture. Variety of leafy vegetables can be found growing in kitchen garden, roadside, grazing fields, weeds in agricultural fields, under growths in forests, marshylands and along water bodies, some greens are crunchy some are smooth with variety of taste to our taste buds like sour and bitter (Das, 2016)[30]. A world vegetable survey showed that 402 vegetable crops are cultivated worldwide, representing 69 families and 230 genera (Kays, 2011) [31]. Leafy vegetables were the most often utilized (53% of the total), followed by vegetable fruits (15%), and vegetables with below ground edible organs comprised 17% (Dias, 2012) [32]. In Odisha province south Odisha alone is a home of 106 species of leafy vegetables out of which 78 having distinct taste and medicinal property.

Nutritional quality and Phytonutreaceutical profile

Malnutrition is a result of faulty nutrition due to inadequate or unbalanced intake of nutrients or their impaired assimilation
or utilization which becomes the unsolved issue in developing countries. The leafy vegetables play a major hand in eradiating the malnutrition problem due to combined source of nutrients and micronutrients. Each leafy vegetable contains a unique combination of phyto-nutraceuticals (vitamins, minerals, dietary fiber and phytochemicals) which distinguishes them from other group of vegetables (Dias and Ryder, 2011) [33]. So great diversity of vegetables should be eaten to ensure that individual’s diet which includes a combination of phyto-nutraceuticals to get all the health benefits. Further phytochemical and neutraceutical studies of these edible species may provide better nutritional source (Seema, 2015) [34]. Green leafy vegetables are important constituent of neutraceuticals (Gowthami et al., 2016) [35] and are natural plant-based multivitamin and composed of health enhancing phytonutrients and packed with anti-oxidant vitamins such as A, C, K immune enhancing antioxidants like carotenoids and chlorophyll and cancer development reducing compound and chemo preventive like phenols, indoles. Flavonoids in addition to trace minerals, including good amounts of sulfur, potassium, calcium and iron, omega fatty acids, folate as well as vitamins and antioxidants. According to the dietician, the daily intake of vegetables should coincide with 280 g/ capita /day of vegetables from which leafy vegetable constitutes its share of 116 g/capita/day (Sahoo et al., 2014) [36] but in reality, the intakes of leafy and non-leafy vegetables were less than RDI in 88 and 67% of households respectively. The consumption unit is 33g/cu/day 799 households of Odisha (Arlappa et al., 2010) [37]. They contain cellulose, fibrous matter and moisture and highest source of dietary fibre, which provides necessary roughage in the diet, stimulates intestinal activities and constipation, helps to normalize bowel movements and helps in alleviating the risk of colorectal cancer.it also provides carotene which is converted to vitamin A in our body. They also help in formation of fresh blood in our body as they are rich source of iron. Potassium is crucial to heart function and blood pressure regulation and plays a key role in skeletal and smooth muscle contraction and spinach is a best source of potassium.

Green leafy vegetables are rich in a pigment called chlorophyll which helps in cleansing the blood enhance oxygen transport, balancing body pH and increases the production of red blood cells thus termed as energizing superfood for boosting cognitive and immune functions. Fresh raw greens also contain some living enzymes and digestible proteins that help in building muscle and tissue strength when consumed on regular basis. They also help to reduce inflammation, a key factor in in many chronic diseases. Being useful in removing and neutralizing poisonous substances from the bloodstream, such as heavy metals, radiation, pesticides and other ingested pollutants by the vital components, they play a major role in cell membrane stability, oxygen transfer, immune response and cardiovascular maintenance. The availability of a large diversity of vegetables year-round will help to enhance mean per capita incomes in recent years and knowledge of vegetable health benefits; will enable consumers to include a variety of health promoting phytonutraceuticals in their diet.

Health benefits and medicinal significance

“Let food be your medicine and let medicine be your food” was advised by the father of medicine, Hippocrates, over two million ago. As per the World Health Organization (WHO) report, 80% of the world population, presently use herbal medicine for some aspect of primary health care (Sujatha 2005) [38]. There is a widespread belief that the green medicines are healthier and safer than synthetic ones (Bandyophay et al., 2002; Sudha and Mathangi, 2012) [39-41]. Millions of people, particularly tribal and rural communities in many developing countries still collect and consumed a wide variety of wild plant resources to meet their food requirements (Bailemie and Kebebew, 2006; Bharucha and Pretty, 2010) [40, 41] and use it as tonics, antioxidants, cooling, digestive, laxative, diuretic (Kamble and Jadhav, 2013) [4].

The consumption of synthetic drugs leads to hyperuricemia, diarrhoea, nausea, myositis, gastric irritation, flushing, dry skin and abnormal liver function (Speight, 1987) [42]. Leafy vegetables are characterized by high nutritional value in term of vitamins, minerals and other compounds, when properly supplemented support better health. (Sharma et al., 2013) [43] which can be ultimately helpful in management of oxidative stress and age related human ailments (Gacch et al., 2010) [44]. Green leafy vegetables are also rich in compounds having antidiabetic property (Keshari et al., 2005) [45], anti-histaminic (Yamamura et al. 1998) [46] anti-carcinogenic (Rajesh Kumar et al., 2002) [47] and hypo-lipidemic properties and possess preventive or curative properties against cardiovascular disease, ageing, obesity, hypertension, insomnia and ageing (Lyer et al., 2012 ; Vishwakarma and Dubey, 2011) [48, 49]. Leafy greens also contain a lot of water, which helps keep you hydrated and contributes to beautiful skin and hair (Settaluri et al., 2015) [50]. The uncontrolled production of oxygen derived free radicals is involved in onset of cancer, Rheumatoid arthritis and aging (Ashok Kumar CK, 2013) [28]. Green vegetables are known to be a rich source of antioxidant which neutralizes the free radicals (Moller et al., 2000) [51]. Plant used for medicines contains bioactive compounds like alkaloids, flavonoids, tannins and phenolic compounds which make a plant as medicine that ultimately produce a definite physiological action on the body (Hemashenpagam et al., 2009) [52]. Consumption of Green leafy vegetables particularly iron rich commodity spinach help increase iron in the diet and in the blood and ward off anemia, a critical condition of women due to inadequate iron. More than 40% of the world’s blindness principally occurs due to age related cataract. Common constituent of leafy vegetables like Ascorbic acid (vitamin C), Tocopherol (Vitamin E), Vitamin A (retinol and provitamin A), Lutein and zeaxanthine, Lycopene, Folate, Riboflavin, Niacin, Molybdenum, Selenium and Zinc (De Bolle et al., 1996) [53] can able to avoid eye problems.

Expected future thrust

Due to proliferating urbanization and industrialization the land has become scarce and the biodiversity are depleting day by day due to fast loss of crop natural habitat. In this regard, the underutilized leafy vegetable face diverse challenge to make its existence. In India, various types of underutilized foods are available seasonally but are not utilized to the extent they should be in spite of their high nutritive value. Looking into the high prevalence of over and under nutrition, these underutilized foods can be explored to overcome the nutritional disorders. (Gupta and Yadav, 2016) [54]. To feed, nourish and toning up the over increasing population both by quality, it is of prime to give prioritization to not only increase the productivity of limited numbers of domestic and introduced crops of modern days but also to the nutritionally valuable and quality rich traditional vegetables.
Botanical name	Common name in Odisha	English name	Family	Ecological occurrence	Season of availability	Vitamin, mineral and active chemical constituent	Medicinal properties
Allium cepa (herb)	Piaja saga	Spring onion	Alliaceae	Commercial crop	Rabi, Khurif	O-cafeoyl-beta-D-glucose, Anti atherosclerotic, malic acid, niacin, trans-3,5-diethyl-1,2,4-trithiolane	Antibacterial, antioxidant synergist, antiseptic, anti-tumorous, Anti-dermatitis, antithistamine (Upadhyay, 2016 and Zainab et al., 2017) [55, 56]
Alternanthera sessilis (herb)	Madaranga	sessile joy weed	Amaranthaceae	Ponds and fields	Khurif	Proteins, fat, vitamin A, C, E, K, B6 (folic acid), riboflavin, niacin, thiamine, calcium, magnesium iron, kaempferol saponins, amino acid such as arginine, leucine, isoleucine, lysine, threonine and tryptophan, peptide	Anti-oxidant, Hepato-protective, nutritive, eye health, appetizer, blood tonic (Gupta and Singh, 2012; Balachandar et al., 2013) [57, 58]
Amaranthus Spinosus (climber)	Kanta leutia	Prickly Amaranth	Amaranthaceae	Weed in cultivated crops	Rainy, Winter	uracil, rutin, adenine 7-p-coumaroyl, apigenin 4 o beta D glucopyranoside, xylufuranosyl, b-sitosterol, linoleic acid, isoamamaranthine, gompherenin, betanin, betacyanin, amaranthine, kaempferol, betalains, betaxanthin, quercetin, glucoside, hydroxyl cinnamnates, beta-D-ribofuranosyl	Obesity (Ediriweera, 2010) [59], eczema or abscesses, dysuria (Satapathy et al., 2012) [60], burns, wounds, inflammation, indigestion (Rajasab and Mahamad, 2004) [61], laxative, emollient, spasmytotytic, diuretic (Khare, 2007) [62]
Amaranthus Gaertnicius (herb)	Lalkhada	Chinese spinach	Amaranthaceae	Tomato and ground nut fields	Rainy Summer	glyicine betaine, cyclooxynase, diacyl galactosyl glycerol	Blood pressure (Dhanam and Elayaraj, 2014) [63], menorrhagia, leucorrhoea, dysentery, diarrhoea, haemorrhagic colitis, cough, bronchitis (Khare, 2007) [64], relieve headache (Manandhar, 2002) [65], tumors and warts (Duke and Ayensu, 1985) [66]
Amaranthus Oleraceus (herb)	Kosala	Green amaranth	Amaranthaceae	Found as weed in waste areas	Winter	Polyphenols, tannins, flavonoids, steroids, terpenoids, saponins and betalains.	Anti-nociceptive, anti-pyretic, Blood tonic (Bagepalli et al., 2009) [66]
Amaranthus Viridis (herb)	Leutia	slender amaranth	Amaranthaceae	Weed among cultivated crop	Summer Winter	Carotenoids, ascorbic acid, flavonoids and phenolic acids (Bagepalli et al., 2009) [66]	
Bacopa monnieri (herb)	Brahmi sag	Indian pennywort	Scrophulariaceae	Marshy lands	Winter Rainy	bacosides, aglycone, alkaloids brahmine, nicotine, herbestine, D-mannitol, apigenin, hersaponin, monnierasides I-III, cucubritacin and plantainside B	Brain tonic, fever (Jeeva et al., 2006), epilepsy (Satapathy et al., 2012) [66], enhance memory (Bhattacharya and Borah, 2008) [67], skin diseases, leprosy, epilepsy, eczema, asthma, diseases of nervous system (Manju et al., 2011) [68]
Basella alba (climber)	poi	Malabar spinach	Basellaceae	Moist fertile and well-drained soil	Rainy winter	Calcium, vitamin A thiamine, riboflavin, niacin, betacatin vitamin C, acacetin 7,4 dimethoxy kampherol, oxalic acid, 4-methoxy isovitexin, phenolic acid like vanilla, syringic, ferulic acid.	Urinary disorders, source of Vitamin B & C (Rajasab and Mahamad, 2004) [69], laxative, antifungal, anticonvulsant, analgesic, anemia anti-inflammatory, androgenic activities, febrifuge hemorrhages, rubelacien (Shruthi et al., 2012) [70],
Basella rubra (climber)	Lal poi	Malabar spinach	Basellaceae	Cultivate areas in hedges	Rainy summer	Calcium, iron, vitamins A, B, and C saponins A, B, C, and D, oleanane-typepterpenesoligoglycosides, together with betavulgaroside 1, spinoside C, momordinsBf, β-carotene, α-carotene s 4-coumaroyl and feruloyl derivatives	Constipation, cures mouth ulcers, irregular periods, mild laxative (Shruthi et al., 2012) [69],
Bauhinia purpurea (tree)	Barada	Butterfly tree	Fabaceae	Fields	Summer	Alkaloid steroid, sterol, glycoside, saponin, flavonoid, tannin, phenolic compounds, flavonoid, protein, amino acid, fixed oil.	Antigoiter, blood purifier (Khare, 2007) [66] wound infection, cuts & wounds, antioxidant (Sahu et al., 2013) [71], constipation (Pareek and Trivedi, 2011) [70],
Brassica juncea (herb)	Sorisa	Mustard	Brassicaceae	Cultivated	Rabi	Eruic acid, saponins, phosents, fatty acids and amino acids. (Malan et al., 2011) [71]	Analgesic, hypoglycemic, wound healing activity, nutritive, relieves joint pain (Malan et al., 2011) [71],
Chenopodium album (herb)	Bathuaa	White goosefoot	Chenopodiaceae	Cultivated in small scale	Rabi winter	Alkaloids, carotenoids, xylode, L-imonene (23.2%), α-terpinyl acetate (13.7%), α-terpinene (12.3%) and cisasaricaride (12.2%)	Anti-ulcer, anti-nociceptive and Hepato-protective, nutritive (Nigam and Paurakh, 2011; Jain and Singhai, 2012) [72, 73], leucoderma, antihelminthic (Lal et al., 2012; Satapathy et al., 2012) [74, 69], abdominal pain, gastric (Razzaq et al., 2013) [73],
Scientific Name	Common Name	Family	Plant Habit	Plant Part Used	Active Constituents		
-------------------------	-------------	-----------------	----------------------------------	---	--		
Cleome viscosa	Bana sorisa	Dog mustard	Capparaceae	Crops, in waste lands, wet and grassy places	Gallic acid, gallotannins, iridoid, saponins and terpinoid polyphenolic compounds		
Colocasia esculenta	Saaru	Elephant ear	Araceae	Commercial crop	Flavonoids, β-sitosterol, and steroids, calcium, phosphorus, and iron. Young leaves are rich in vitamin C		
Commelina benghalensis	Kaniscera	Bengal day flower	Commelinaceae	Crop fields, marshy land	Anthocyanin, dammarane triterpene, sterols, campesterol, Phlobatannins, carbohydrates, tannins, glycosides, volatile oils, resins, balsams, flavonoids and saponins.		
Cucurbita maxima	Kakhraru	Squash	Cucurbitaceae	Commercial crop	Tannins, saponins, polyphenolic, alkaloids, lignans, essential oils and steroids		
Enydra fluctuans lour	Hidimichika	Marsh Herb	Asteraceae	Marsy and pond	B-carotene, saponins, myrcyl alcohol, kaurol, cholesterol, sitosterol, glycoside, sesquiterpene lactones, germacranolide, enhydrin, fluctuatin and fluctuand, a number of diterpenoid acids and their isovalerate and angelate derivatives, stigma sterol, sitosterol, sitosterol, glycoside (Ghani, 2003) [77].		
Glinus oppositifolius	Pitaa saga	Bitter Cumin	Molluginaceae	Grazing field	Spergulagenic acid, a saturated triterpenoid sapogenin, spergulagenic A and a tri-hydroxy ketone.		
Ipomoea aquatica	Kalama	Swamp morning glory	Convolvulaceae	Ponds and marshy lands	Protein, vitamin B2, Nortropane alkaloids, calystegines B2, phenolic compounds N-cis-Feruloyltyramine, N-trans-Feruloyltyramine, 3a,7β-O-D-diglycopyranosyl-dihydroquercetin and Isochrolorenic acid a, b and c., nicotinic acid, riboflavin, vitamin E, essential amino acids, leucine, lysine and threonine, potassium, calcium, sodium phosphorus, magnesium, copper, zinc, iron and manganese.		
Lagenaria sicera	Laau	Bottle gourd	Cucurbitaceae	Commercial crop	Sterols, terpinoid, flavonoids, and saponins Cucurbitacin, fibres, and polyphenol		
Leucas aspera	Gayasa	Thumbai	Laminaceae	Dry open sandy soil	Jaundice, diabetes, ulcer, piles, colitis, insanity, hypertension, congestive cardiac failure (CCF), and skin diseases (Prajapati et al., 2010) [79].		
Marselia minuta	Sunsunia	Four leaf clover	Marsilaceae	Moist, wet soil, in water	Ear ache, sore, snake bite, jaundice, antibiotic (Sahu et al., 2013) [68], gastric trouble (Satapathy et al., 2012) [69], dyspepsia, verminosis (Dhanam and Elayaraj, 2014) [63], anorexia dyspepsia, helminthic manifestation, fever respiratory and skin diseases (Khare, 2007) [62].		
Momordica charantia	Kalara	Bitter gourd	Cucurbitaceae	Commercial crop	Bronchitis, psychopathy, ophthalmia, diarrhoea, leprosy, skin disease, fever, sedation, haemorrhoids, dyspepsia, insomnia, diuretic, anti-inflammatory, (Dhanam and Elayaraj, 2014) [63].		
Mentha sativa	Pudina	Mint	Laminaceae	Marshy land	Flatulence, functional gastrointestinal and gallbladder disorders		
(herb)	(tree)	Sandy soil	Winter	(herb)	Winter		
--------	--------	------------	--------	--------	--------		
Moringa Oleifera	(tree)	Sajana	Drumstick	Rutaceae	Commercial crop	Year round	
Oxalis corniculata	(herb)	Ambilti	Indian sorrel	Oxalidaceae	Damp shady places, roadsides, plantations	Rainy winter	
Paederia graecum	(herb)	Pasaruni	Chinese fever vine	Rubiaceae	Under water, disturbed areas	Year round	
Raphanus sativus L.	(herb)	Mulaa saga	radish	Brassicaceae	Cultivated fields	winter	
Spinacia Oleracea	(herb)	Paalanga	Spinach	Chenopodiaceae	Cultivated field	winter	
Trigonella foenum-graecum	(herb)	Methi	Fenugrek	Fabaceae	Cultivated field	winter	

(herb)	(tree)	Sandy soil	Winter	(herb)	Winter	
Moringa Oleifera	(tree)	Sajana	Drumstick	Rutaceae	Commercial crop	Year round
Oxalis corniculata	(herb)	Ambilti	Indian sorrel	Oxalidaceae	Damp shady places, roadsides, plantations	Rainy winter
Paederia graecum	(herb)	Pasaruni	Chinese fever vine	Rubiaceae	Under water, disturbed areas	Year round
Raphanus sativus L.	(herb)	Mulaa saga	radish	Brassicaceae	Cultivated fields	winter
Spinacia Oleracea	(herb)	Paalanga	Spinach	Chenopodiaceae	Cultivated field	winter
Trigonella foenum-graecum	(herb)	Methi	Fenugrek	Fabaceae	Cultivated field	winter

- **Moringa Oleifera** (tree): Sajana, Drumstick, Rutaceae. Year round: 4-(4'-O-acetyl-α-L-ribofuranosyl) benzylisothiocyanate, 4-(α-L-rhamnopyranosyl) benzyl isothiocyanate, niazimicin, pterygospermin, benzyl isothiocyanate and 4-(α-L-rhamnopyranosyl) benzyl glucosinolate, carotenoids (including β-carotene or provitamin A).
- **Oxalis corniculata** (herb): Ambilti, Indian sorrel, Oxalidaceae. Year round: Tartaric acid and citric acids, calcium oxalate, flavones (acacetin and 7,4'-diOMe apigenin), glycoflavones (4'-OMe vitexin, 4'-OMe iso-vitexin and 3',4'-diOMe orientin), flavonols (3',4'-diOMe quercetin) and phenolic acids such as p-hydroxybenzoic, vanillic and syringic acids, oxalate, 6-C-glucosyl tateolin (isorigirin), 6-C-glucosyl apigenin (isorigirin) and isorigirin 7-methylether (sirtisin) (Merugu et al., 2015). Anorexia (Ediriweera, 2007), anemia, tympanitis, dyspepsia, dysentery and piles (Lal et al., 2012; Satapathy et al., 2012). Appetizer, cough, jaundice, rickets, scurvy (Kumari and Kumar, 2000).
- **Paederia graecum** (herb): Pasaruni, Chinese fever vine, Rubiaceae. Year round: Linalool, hentriacontan, hentriacontanol, cerylalcohol, benzoic acid, sulphur containing compounds, dimethyl sulphide and dimethyl trisulphide, ursoic acid, sitosterol, stigmasterol, camestrol, fatty acid, nonionic acid, caprylic acid, lauric acid, myristic, arachidic and palmitic, vitamin C. Hepatoprotective, Antitussive, Antioxidant, Antispasmodic, Anthelmintic, immunity enhancer, stimulate central nervous system, rheumatoid arthritis. Abdominal pain.
- **Raphanus sativus L.** (herb): Mulaa saga, radish, Brassicaceae. Winter: Phytol (65.3–69.7%), hexadecanoic acid (2.5–14.3%), methyl linolenate (2.1–11.1%) and (Z)-3-hexen-1-ol (0.7–6.9%), 5-(methylthio)-4-pentenenitrile (0.3–2.2%), 4-(methylthio) butyl isothiocyanate (0.3–1.7%), 2-phenylethyl isothiocyanate (0.4%), 4-(methylthio)-3-butenyl isothiocyanate, 4-methylpentyl isothiocyanate, benzyl isothiocyanate and benzeneepropenetril, calcium, iron and ascorbic acid. Gastrointestinal, biliary, hepatic, urinary and respiratory disorders, and hypertension, laxative.
- **Spinacia Oleracea** (herb): Paalanga, Spinach, Chenopodiaceae. Cultivated field: Tannins, saponins, polyphenolics, alkaloids, lignans, essential oils and steroids (Garg et al., 2010) iron and calcium, vitamin A, C and K and folic acid. carotenoids Beta-Carotene and Lutein, bioflavonoid Quercetin. Carminative; febrifuge; hypoglycaemic, laxative., lower heart diseases stroke and cancer. regulate high blood pressure, osteoporosis, arthritis, improve brain function and may reduce age-related cognitive problems, anemia, Retinal disorder.
- **Trigonella foenum-graecum** (herb): Methi, Fenugrek, Fabaceae. Cultivated field: Amino acid, fatty acid, vitamins, saponins, folic acid, disaccharides, fibre, citric acid, Provitamin A, provitamin D, provitamin E, provitamin K and provitamin B12. Anti-diabetic, anti-cancer, anti-inflammatory, anti-oxidant, Nutritive, blood tonic (Toppo et al., 2009).
Conclusion
Biodiversity, a human managed natural ecosystem consisting of habitat of species diversity and species richness. In order to create more robust and resilient production systems, we have to depend upon biodiversity. Underutilized leafy vegetables can strengthen our nutritional security and commercial cultivation of these lesser known underutilized greens will not only help in improving the economic and nutritional condition of people but also help in conserving the valuable and endangered bio diversity. It may be the vital source of income in the modern society for the small and marginal category, thus alleviating their economic condition and ensuring health and nutritional security of the farming community. Though India have ideal agro-climatic condition to raise number of leafy vegetables, more greens found in wild and unexplored. Knowledge of wild leafy vegetables may be lost in the near future, unless efforts are made to educate younger generations about their importance. These traditional greens having rich in bioactive compounds can play a role of future medicine. India is a storehouse of large number of unexplored, indigenous vegetables which are competing to become major crops in years to come. Exploitation and wider use of these underutilized crops can become a solution to the social problems like food heath and nutritional security, poverty and unemployment. Although, 175 major and minor vegetable crops are grown in India including 82 leafy vegetables, there is a challenge to achieve the target of 160 million tons of vegetables to fulfill the recommended requirement by 2020. The rich leafy flora should be restored from extinct by germplasm conservation and further multiplication of the true through different breeding methods and R&D management chains. Significant research, breeding and development efforts are needed for a range of promising crops to convert existing local landraces into competitive varieties with wide adaptation and promising commercial potential. Underutilized crops can play a major role in a more diversified and sustainable food production system. Access to genetic diversity of these selected crops is a pre-condition for success. Traditional vegetables are becoming an increasingly attractive food group for the wealthier segments of the population and are slowly moving out of the underutilized category into the commercial mainstream.

Reference
1. BhagMal, Neglected and underutilized crop genetic resources for sustainable agriculture, J of Plant Genetic Resources, 20 (1) (2007) 1-14.
2. Joshi V, Some promising underutilized industrial crops for cultivation on wastelands of India. Green page article, 4(5) (2005) 396-404.
3. Sheela K, Nath KG, Vijayalakshmi D, Yankanchi GM and Patil RB, Proximate Composition of underutilized green leafy vegetables in Southern Karnataka. J of Human Ecology, 15(3) (2004) 227-229.
4. Kamble VS and Jadhav VD, Traditional leafy vegetables: a future herbal medicine, International J of Agricultural and Food Science, 3(2) (2013) 56-58.
5. Panda T, Mishra N, Pradhan BK and Mohanty RB, Diversity of leafy vegetables and its significance to rural households of Bhadrak district, Odisha, India, Scientia Agriculturae, 11 (3) (2015) 114-123.
6. Lakshmi B and Vimala V, Nutritive value of dehydrated green leafy vegetable powders, J of Food Science and Technology, 37 (5) (2000) 465-471.
7. Negi PS and Roy SK, Effect of blanching and drying methods on β-carotene, ascorbic acid and chlorophyll retention of leafy vegetables, LWT-Food Science and Technology, 33(4) (2000) 295-298.
8. Fasuyi AO, Nutritional potentials of some tropical vegetable meals, chemical characterization and functional properties, African J of Biotechnology, 5(1) (2006) 49–53.
9. Aberoumand A and Deokule SS, Studies on nutritional values of some wild edible plants from Iran and India, Pakistan J of Nutrition, 8 (1) (2009) 26-31.
10. Misra S and Misra MK, Nutritional evaluation of some leafy vegetable used by the tribal and rural people of south Odisha, India, J of Natural Product and Plant Resources, 4(1) (2014) 23-28.
11. Sudha K and Mathanghi SK, Traditional underutilized green leafy vegetables and its curative properties. International J of Pharmacy, 2(4) (2012) 786-793.
12. Akindahunsi AA and Salawu SO, Phytochemical screening and nutrient and anti-nutrient composition of selected tropical green leafy vegetables, African J of Biotechnology, 4 (2005) 497-501.
13. Buragohain J, Singh VB, Deka BC, Jha AK, Wanshongk K and Angami T, Collection and evaluation of some underutilized Leafy vegetables of Meghalaya. Indian J of Hill Farming, 26(2) (2013) 111-115.
14. Misra MK, Panda A and Sahu D, Survey of useful wetland plants of south Odisha, Indian J of Traditional Knowledge, 11(4) (2012) 658-666.
15. Meher R, A study on health and socioeconomic status of the tribal population in Orissa. J of Health Management, 9 (2007) 343-367.
16. Surjata KBT and Konsam AKH, Assessment of wild leafy vegetables traditionally consumed by the ethnic communities of Manipur, northeast India, J of Ethnobiology and Ethnomedicine, 12 (2016) 9-2-15.
17. Marandi RR and Britto SJ, Medicinal properties of edible weeds of crop fields and wild plants eaten by Oraon Tribals of Latehar district, Jharkhand. International J of life science and pharma research, 5(2) (2015) 9-20.
18. Horo S and Topno S, Lesser known wild leafy vegetables consumed by “Ho” tribes of W. Singhbhumi district, Jharkhand, India J of Medicinal Plants Studies, 3(5) (2015) 155-159.
19. Bhojane P, Damle S, Thite A and Dabholkar V, Anti-microbial effects of some leafy vegetables - a comparative analysis, International Research J of Biological Sciences, 3(8) (2014) 26-32.
20. Jeeva S, Kiruba S, Mishra BP, Venugopal N, Dhas SSM, Regini GS, Kingston C, Kavitha A, Sukumaran S, Raj ADS and Laloo RC, Weeds of Kanyakumari district and their value in rural life.
1. Jana JC, Use of traditional and underutilized leafy vegetables of sub Himalayan region of west Bengal. *Acta horticulture*, (752) (2007) 571-575.
2. Sahu RK, Kar M and Routray R, DPPH free radical scavenging activity of Some leafy vegetables used by Tribals of Odisha, *India J of Medicinal Plants Studies*, 1(4) (2013) 21-27.
3. Pradhan B and Panda D, Wild Edible Plant Diversity and its Ethnno-medical use by Indigenous Tribes of Koraput, Odisha, *India Research J of Agriculture and Forestry Sciences*, 3(9) (2015) 1-10.
4. Tripathy PK, Kumar S and Jena PK, Nutritional and medicinal values of selected wild cucurbits available in Similipal biosphere reserve forest, Odisha, *International J of Pharmaceutical Sciences and Research*, 5 (10) (2014) 5430-5437.
5. Panda T, Traditional knowledge on wild edible plants as livelihood food in Odisha, India, *J of Biology and Earth Sciences*, 4 (2) (2014) 144-159.
6. Welbaum GE, Vegetable Production and Practices vegetable history, nomenclature and classification. CAB international, (wallingforth, Oxfordshire) UK, 2015, 486.
7. Ashok Kumar CK, Divyasree MS, Joshua A, Lakshmi SM and Kumar DS, A review on south Indian edible leafy vegetables. *J of Global Trends in Pharmaceutical Sciences*, 4 (4) (2013) 1248-1256.
8. Bandyopadhyay S and Mukherjee SK, Wild edible plants of Koch Bihar district, west Bengal, *Natural Product Radiance*, 8(1) (2009) 64-72.
9. Das S, Leafy saga first food culture of taste, Centre for science and environment’s publication, 2016. www. Downtoeart.org.in/news/health/leafy-saga56498.
10. Kays SJ, Cultivated Vegetables of the World: A Multi-lingual Onomasticon, Wageningen Academic Publishers, The Netherlands, 2011, doi:10.3920/978-90-8686-720-2.
11. Dias JS, Nutritional Quality and Health Benefits of Vegetables: A Review. *Food and Nutrition Sciences*, 3(1) (2012) 1354-1374.
12. Dias JS and Ryder E, World Vegetable Industry: Production, Breeding, Trends, *Horticulture Review*, 38 (2011) 299-356.
13. Seema A, Medicinal properties of wild leafy vegetables available in Maharashtra state in rainy season, *International J of Recent Scientific Research*, 6 (8) (2015) 5875-5879.
14. Gowthami R, Prakash BG, Raghavendra KV, Brunda SM and Niranjana KB, Survey of underutilized leafy vegetables in South Karnataka of India to attain nutritional security, *Agricultural Research and Technology*, 1(5) (2016) 1-6.
15. Sahoo GR, Panda MK, Pal US and Sahoo NR. 2014. Leafy vegetable -nature’s wonderful gift to mankind. Section i: indigenous agricultural practices of Odisha, 2016, 81-90.
16. Arlappa N, Laxmaiah A, Balakrishna N and Brahman GNV, Consumption pattern of pulses, vegetables and nutrients among rural population in India, *African J of Food Science*, 4(10) (2010) 668-675.
17. Sujatha S, Complementary and alternative therapies in palliative care: A transition from modern medicine to traditional medicine in India, *J of Cancer Pain and Symptom Palliation*, 1 (2005) 25-29.
18. Bandyopadhyay U, Biswas K, Chattopadhyay I and Banerjee RK, Biological activities and medicinal properties of neem (Azadirachta indica), *Current Science*, 82(11) (2002) 1336-45.
19. Balemie K and Kebebew F, Ethnobotanical study of wild edible plants in Derashe and Kucha Districts, South Ethiopia. *J of Ethnobiology Ethnomedicine*, 2 (2006) 53-61.
20. Bharucha Z and Pretty J, The roles and values of wild foods in agricultural systems. *Philosophical Transactions of the Royal Society B : Biological Sciences*, 365(1554) (2010) 2913–2926.
21. Speight TM, In: Avery’s Drug treatment Principles and Practice of clinical pharmacology and therapeutics, 3rd Edition, (ADIS press Ltd.), 1987, 599.
22. Sharma HP, Kumar RA, Health security in ethnic communities through nutraceutical leafy vegetables. *J of Environmental Research and Development*, 7(4) (2013) 1423–1429.
23. Gach RN, Kabayie VN, Dhole NA and Jadhav AD, Antioxidant potential of selected vegetables commonly used in diet in Asian sub-continent. *Indian J of Natural Products and Resources*, 1 (3) (2010) 306–313.
24. Keshari AN, Gupta RK and Watal G, Hypoglycemic effects of Murrawya koenigii on normal and alloxan-diabetic rabbits, *J Ethnopharmacol*, 2 (2) (2005) 47-51.
25. Yamamura S, Ozawa K, Ohtani K, Kasai R and Yamasaki K, Antihistaminic flavones and aliphatic glycosides from Mentha spicata, *J of Phyto Chemistry*, 48 (1998) 131–136.
26. Rajesh Kumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG and Kuttan R, Anti-tumour and anti-carcinogenic activity of Phyllanthus amarus extract, *J of Ethnopharmacology*, 81(1) (2002) 17-22.
27. Layer SR, Sethi R and Abroham AA, Analysis of nitrogen and phosphate in enriched and non-enriched vermicompost, *J of Environmental Research and Development*, 7 (2) (2012) 899-904.
28. Vishwakarma KL and Dubey V, Nutritional analysis of indigenous wild edible herbs used in eastern Chhattisgarh, India. *Emirates J of Food and Agriculture*, 23 (6) (2011) 554–560.
29. Settaluri VS, Al-Mamari KMK, Al-Balushi SIM, Al-Risi MKZ and Ali BM, Review of biochemical and
nutritional constituents in different green leafy vegetables in Oman, *Food and Nutrition Sciences*, 6 (2015) 765-769.

51. Moller SM, Jacques PF and Blumberg, JB, The potential role of dietary xanthophylls in cataract and age related macular degeneration, *Indian Journal of the American College of Nutrition*, 19 (5) (2000) 522-27.

52. Hemashenapagam N, Sankar LG, Selvaraj T and Panneerselvam A, Photochemical analysis and antimicrobial activity of Solanum xanthocarpum, *Biomedicine*, 29 (4) (2009) 353-356.

53. De Bolle MF, Osborn RW, Goderis IJ, Noe L, Acland D, Hart CA, Torrekens S, Van Leuven F and Broekaert WF, Antimicrobial peptides from *Mirabilis jalapa* and *Amaranthus caudatus*: expression, processing, localization and biological activity in transgenic tobacco, *Plant Molecular Biology*, 31(5) (1996) 993-1008.

54. Gupta A and Yadav N, Evaluation of nutritional and anti-nutritional activity of indigenous and underutilized green leafy vegetables of north India, *International Journal of Food and Nutritional Science*, 5 (3) (2016) 88-95.

55. Upadhyay RK, Nutraceutical, pharmaceutical and therapeutic use of *Allium cepa*: a review, *International Journal of Green Pharmacy*, 10(1) (2016) 46-64.

56. Zainab A, Saeed A, Muhammad I, Muhammad N, Syed AG, Elhashar, Magdy, El-Ghorab and Ahmed, Antioxidant activity, anti-inflammatory activity, anticancer and chemical composition of spring onion (*Allium fistulosum*) extract, *Research Journal of Pharmaceutical, Biological and Chemical Sciences*, 8(2) (2017) 1880-1890.

57. Gupta R and Singh HK, Nootropic potential of *Alternanthera sessilis* and *Clerodendrum infortunatum* leaves on mice, *Asian Pacific Journal of Tropical Disease*, (2012) S465-S470.

58. Balachandar B, Jayachitra A, Paramasivam S and Abimannan AK, Evaluation of antioxidant activity of *Clitoria ternatea* and *Alternanthera sessilis* plant extracts using model system for yeast cells, *African Journal of Basic and Applied Sciences*, 5 (3) (2013) 134-138.

59. Ediriweera ER, A review on medicinal uses of weeds in Sri Lanka, *Tropical Agricultural Research and Extension*, 10 (2010) 11-16.

60. Satapathy KB, Sahu BB and Jena GS, Crop weeds diversity and their ethno-medicinal uses in the treatment of common ailments in Jajpur district of Odisha, *International Journal of Medicinal and Aromatic Plants*, 2(1) (2012) 80-89.

61. Rajasab AH and Mahamad I, Documentation of folk knowledge on edible wild plants of North Karnataka, *Indian Journal of Traditional Knowledge*, 3(4) (2004) 419-429.

62. Khare CP, Encyclopedia of Indian Medicinal Plants. Springer. New York, 2007, 1-739.

63. Dhanam S and Elayaraj B, Ethno-medicinal aspects of some weeds from paddy fields of Villupuram district in Tamil Nadu, India, *International Letters of Natural Sciences*, 14 (2014) 1-10.

64. Manandhar NP, Plants and people of Nepal, (Timber Press. Oregon.), 2002, 32-35.

65. Duke JA and Ayensu ES, *Medicinal Plants of China*, (Reference Publication, Inc.), 1985, 98-103.

66. Bagepalli SAK, Kuruba L, Korala KNJ, Devangam SS, Velmuragan CS and Bacchpa M, Antinociceptive and Antipyretic activities of *Amaranthus viridis* Linn. in different experimental models, *Avicenna Journal of Medical Biotechnology*, 1(3) (2009) 167-171.

67. Bhattachariya DK and Borah PC, Medicinal Weeds of Crop Fields and Role of Women in rural health and hygiene in Nalbari District, Assam, *Indian Journal of Traditional Knowledge*, 7 (3) (2008) 501-504.

68. Manju CN, Swapna MM, Prakash RK, Anoop KP and Rajith NP, A review on the medicinal and edible aspects of aquatic and wetland plants of India, *J of Medicinal Plants Research*, 5(33) (2011) 7163-7176.

69. Shruthi SD, Adhikari R and Naveen KHN, A review on medicinal importance of *Basella alba* L., *International Journal of Pharmaceutical and Drug Research*, 4(2) (2012) 110-114.

70. Pareek A and Trivedi PC, Ethnobotanical studies on medicinal plants of Kaladera region of Jaipur District, *Indian Journal of Fundamental and Applied Life Sciences*, 1(1) (2011) 59-63.

71. Malan R, Walia A, Saini V and Gupta S, Comparison of different extracts leaf of *Brassica juncea* Linn on wound healing activity, *European Journal of Experimental Biology*, 1 (2) (2011) 33-40.

72. Nigam V and Paarakh PM, Anti-ulcer effect of *Chenopodium album* Linn. against gastric ulcers in rats, *International Journal of Pharmaceutical Sciences and Drug Research*, 3(4) (2011) 319-322.

73. Jain NK and Singhai AK, Hepatoprotective activity of Chenopodium album Linn. in different experimental models, *J of Experimental and Integrative Medicine*, 2(4) (2012) 331-336.

74. Lal HS, Singh S and Priya K, Study of Ethnomedicinal uses of weeds in rice field of Hazariabag District of Jharkhand, India, *International Journal of Integrative Sciences, Innovation and Technology A*, 1(2) (2012) 23-26.

75. Razzaq A, Rashid A, Muhammad I and Ajmal I, Medicinal biodiversity of weeds and livelihood security of District Shangla, Pakistan. J of Medicinal Plants Research, 7(16) (2013) 1039-1042.

76. Saha P, Mazumder UK, Haldar PK, Naskar S, Kundu S, Bala A and Kar B, Anticancer activity of methanol extract of *Cucurbita maxima* against ehrlich ascites carcinoma, *International Journal of Research in Pharmaceutical Sciences*, 2(1) (2011) 52-59.

77. Ghani, Medicinal plants of Bangladesh with chemical constituent and uses, 2nd edition, (Asiatic Society of Bangladesh, 5 old secretariat road, Nimtali), 2003, 55.
78. Yusuf KA and Oluwole SO, Heavy Metal (Cu, Zn, Pb) contamination of vegetables in urban city: a case study in Lagos. Research J of Environmental Sciences, 3 (2009) 292-298.

79. Prajapati RP, Kalariya M, Parmar SK and Sheth NR, Phytochemical and pharmacological review of Lagenaria sicereria, J of Ayurveda and Integrative Medicine, 1(4) (2010) 266-272.

80. Goyal BR, Goyal RK and Mehta AA, Phyto-Pharmacognosy of Archyranthes aspera: a review, Pharmacognosy Review, 1(1) (2008) 143-150.

81. Anandan A, Eswaran R, Doss A, Sangeetha G and Anand SP, Chemical compounds investigation of Lucas aspera leaves – a potential folklore medicinal plant, Asian J of pharmaceutical and clinical research, 5(1) (2012) 86-88.

82. Dhalla NS, Gupta KC, Sastry MS and Malhotra CL, Chemical composition of the fruit of Momordica charantia Linn, Indian J of Pharmacology, 23 (1981) 128.

83. Gupta S and Prakash J, Nutritional and sensory quality of micronutrient-rich traditional products incorporated with green leafy vegetables, International Food Research J, 18 (2011) 667-675.

84. Goyal BR, Agarwal BB, Goyal RR and Mehta AA, Phyto-pharmacology of Moringa oleifera Lam., An over view. Natural Product Radiance, 6(4) (2007) 347-353.

85. Merugu S, Tadigotla S and Veeresh B, Phyto-chemistry and pharmacology of Oxalis corniculata linn.: a review. International J of Pharmaceutical Sciences and Research, 3(11) (2012) 4077-4085.

86. Kumari B and Kumar S, A checklist of some leafy vegetables used by tribal in and around Ranchi, Jharkhand, Zoos' Print J, 16(3) (2000) 442-444.

87. Garg VK, Jain M, Sharma PK and Garg G, Anti-inflammatory activity of Spinacia oleracea, International J of Pharma Professional’s Research, Volume1(1) (2010) 1-4.

88. Toppo E, Akhand R and Pathak AK, Pharmacological actions and potential uses of Trigonella foenum-graecum: a review, Asian J of Pharmaceutical and Clinical Research, 2 (4) (2009) 29-38.