Exponentially fitted multisymplectic scheme for conservative Maxwell equations with oscillatory solutions

Xiuling Yin\(^{1}\)*, Yanqin Liu\(^{1}\), Jingjing Zhang\(^{2}\), Yanfeng Shen\(^{1}\), Limei Yan\(^{1}\)

\(^{1}\) School of Mathematics and Big Data, Dezhou University, Dezhou, China, \(^{2}\) School of Sciences, East China Jiaotong University, Nanchang, China

* ynlimm@163.com

Abstract

Aiming at conservative Maxwell equations with periodic oscillatory solutions, we adopt exponentially fitted trapezoidal scheme to approximate the temporal and spatial derivatives. The scheme is a multisymplectic scheme. Under periodic boundary condition, the scheme satisfies two discrete energy conservation laws. The scheme also preserves two discrete divergences. To reduce computation cost, we split the original Maxwell equations into three local one-dimension (LOD) Maxwell equations. Then exponentially fitted trapezoidal scheme, applied to the resulted LOD equations, generates LOD multisymplectic scheme. We prove the unconditional stability and convergence of the LOD multisymplectic scheme. Convergence of numerical dispersion relation is also analyzed. At last, we present two numerical examples with periodic oscillatory solutions to confirm the theoretical analysis. Numerical results indicate that the LOD multisymplectic scheme is efficient, stable and conservative in solving conservative Maxwell equations with oscillatory solutions. In addition, to one-dimension Maxwell equations, we apply least square method and LOD multisymplectic scheme to fit the electric permittivity by using exact solution disturbed with small random errors as measured data. Numerical results of parameter inversion fit well with measured data, which shows that least square method combined with LOD multisymplectic scheme is efficient to estimate the model parameter under small random disturbance.

Introduction

Maxwell equations are basic and important mathematical physical models in electromagnetism. They reflect the general law of electromagnetic field excited by charge current and the internal motion of electromagnetic field. The study of the equations is helpful to deepen and enrich the understanding of the materiality of electromagnetic field. Efficient numerical analysis to Maxwell equation is an important study hotspot. Numerical investigations of Maxwell equations include symplectic exponential integrator \(^{[1]}\), compact scheme \(^{[2]}\), Runge-Kutta method \(^{[3]}\), stochastic Euler scheme \(^{[4]}\), multisymplectic schemes \(^{[5–8]}\), energy-conserving...
method [9], wavelet collocation method [10, 11], Hamiltonian time integrators [12], finite element method [13, 14], spectral method [15] and other numerical methods.

In the past few decades, multisymplectic schemes, as a kind of structure-preserving algorithms, are popular and gain wide applications in scientific computing due to long-time stability in numerical simulation [5–8, 11, 16–19]. A review on stochastic multisymplectic schemes for Maxwell equations was given by Zhang et al. in [5]. Cui et al. [17] presented stochastic multisymplectic method to solve random Schrödinger equation. Hong et al. [6, 7] proposed multisymplectic methods and investigated discrete conservative quantity to stochastic Maxwell equations driven by additive noise. Multisymplectic wavelet collocation method for Maxwell’s equations were considered in [10, 11]. Zhu et al. [18] also applied multisymplectic wavelet collocation methods to solve Schrödinger equations. High-order compact multisymplectic method was presented to simulate Schrödinger equations in [19]. Kong et al. [8] also studied splitting multisymplectic integrators for Maxwell’s equations. Since much attention has been gained in multisymplectic schemes, we are committed to the investigations on multisymplectic schemes to simulate Maxwell equations with oscillatory solutions.

Numerical method is a promising tool to solve oscillatory differential equations. Some recent works can be found in [20–29]. For example, Wu et al. summarized structure-preserving algorithms for oscillatory differential equations [20, 24, 26]. Wang et al. [21, 23] discussed trigonometric collocation methods for multi-frequency oscillatory equations. In [22], Li et al. proposed functionally fitted energy-preserving methods to oscillatory Hamiltonian systems. ERKN integrators is investigated by Wang et al. [25] and the convergence is obtained for multi-frequency oscillatory systems. Wu et al. also presented exponentially fitted modified Runge-Kutta-Nystrom methods in [27]. Berghe et al. [28] studied symplectic exponentially fitted Runge-Kutta methods of the Gauss type.

However, the investigation of multisymplectic scheme for oscillatory solutions of Maxwell equations is extremely sparse. In this paper, we apply exponentially fitted trapezoidal scheme to construct multisymplectic scheme to simulate Maxwell equations with oscillatory solutions. Our main contributions are highlighted as follows:

• We adopt exponentially fitted method to establish a multisymplectic scheme for solving Maxwell equations with periodic solutions.

• To reduce the calculations, we present a LOD multisymplectic scheme by means of splitting method.

• We rigorously prove the conservation, stability, dispersion and convergence theorems of our method.

• Numerical experiment of Maxwell equations verifies the effectiveness of the LOD multisymplectic scheme in simulating high-frequency oscillatory equations. Meanwhile numerical inversion results show that least square method and LOD multisymplectic scheme can be combined to fit the electric permittivity under small measured errors.

The rest of this paper is outlined as follows. In section 2, we commence by reviewing some preliminary knowledge of Maxwell equations and recall exponentially fitted trapezoidal scheme. In section 3, a new multisymplectic scheme is proposed by utilising exponentially fitted trapezoidal scheme and we proceed with the proof of multisymplectic conservation law and two energy conservation laws. Then we built a splitting multisymplectic scheme by splitting original equations into three LOD systems in section 4. We also analyze its numerical stability, dispersion relation and convergence. In section 5, we present two numerical examples to verify the theoretical analysis and confirm the effectiveness of our method. Numerical test is
also given on fitting the electric permittivity by applying the least square method and exponentially fitted trapezoidal scheme.

Preliminaries

Maxwell equations are the theoretical basis of electrodynamics. Maxwell equations are equivalent to multisymplectic Hamiltonian systems. From the multisymplectic form, we can construct multisymplectic schemes of Maxwell equations.

Multisymplectic structure of Maxwell equations

For isotropic homogeneous medium, by assuming that there is no free charge and conduction current, the propagation law of electromagnetic field can be described by Maxwell’s equations in the following form of curl

\[
\begin{align*}
\frac{\partial E}{\partial t} &= \frac{1}{\varepsilon} \nabla \times H, \\
\frac{\partial H}{\partial t} &= -\frac{1}{\mu} \nabla \times E.
\end{align*}
\]

Here \(E = (E_x, E_y, E_z)^T\) is electric field and \(H = (H_x, H_y, H_z)^T\) is magnetic field. \(\varepsilon\) and \(\mu\) denote permittivity and permeability, respectively. Below \(\varepsilon\) and \(\mu\) are constants. Assume that \(t \in [0, T]\), \((x, y, z) \in \Omega = [0, a] \times [0, b] \times [0, c]\). The corresponding component form of the system (1) is as follows

\[
\begin{align*}
\frac{\partial E_x}{\partial t} &= \frac{1}{\varepsilon} \left(\frac{\partial H_y}{\partial y} - \frac{\partial H_z}{\partial z} \right), \\
\frac{\partial E_y}{\partial t} &= \frac{1}{\varepsilon} \left(\frac{\partial H_z}{\partial z} - \frac{\partial H_x}{\partial x} \right), \\
\frac{\partial E_z}{\partial t} &= \frac{1}{\varepsilon} \left(\frac{\partial H_x}{\partial x} - \frac{\partial H_y}{\partial y} \right), \\
\frac{\partial H_x}{\partial t} &= -\frac{1}{\mu} \left(\frac{\partial E_y}{\partial y} - \frac{\partial E_z}{\partial z} \right), \\
\frac{\partial H_y}{\partial t} &= -\frac{1}{\mu} \left(\frac{\partial E_z}{\partial z} - \frac{\partial E_x}{\partial x} \right), \\
\frac{\partial H_z}{\partial t} &= -\frac{1}{\mu} \left(\frac{\partial E_x}{\partial x} - \frac{\partial E_y}{\partial y} \right).
\end{align*}
\]

By introducing a new variable \(Z = (H_x, H_y, H_z, E_x, E_y, E_z)^T\), the system (2) is equivalent to the following multisymplectic Hamiltonian system

\[
M \frac{\partial Z}{\partial t} + K_1 \frac{\partial Z}{\partial x} + K_2 \frac{\partial Z}{\partial y} + K_3 \frac{\partial Z}{\partial z} = \nabla_z S(Z),
\]
Here the Hamiltonian function is \(S(Z) = 0 \), and corresponding antisymmetric matrices are

\[
M = \begin{bmatrix} 0_3 & -I_3 \\ I_3 & 0_3 \end{bmatrix}, \quad K_1 = \begin{bmatrix} \frac{1}{\varepsilon} A_1 & 0_3 \\ 0_3 & \frac{1}{\mu} A_1 \end{bmatrix}, \quad K_2 = \begin{bmatrix} \frac{1}{\varepsilon} A_2 & 0_3 \\ 0_3 & \frac{1}{\mu} A_2 \end{bmatrix}, \quad K_3 = \begin{bmatrix} \frac{1}{\varepsilon} A_3 & 0_3 \\ 0_3 & \frac{1}{\mu} A_3 \end{bmatrix},
\]

\[
A_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},
\]

where \(0_3 \) and \(I_3 \) denote third order zero square matrix and unit square matrix, respectively. Multisymplectic system (3) satisfies the following multisymplectic conservation law

\[
\frac{\partial}{\partial t} \varpi + \frac{\partial}{\partial x} \kappa_1 + \frac{\partial}{\partial y} \kappa_2 + \frac{\partial}{\partial z} \kappa_3 = 0,
\]

where

\[
\omega = \frac{1}{2} \frac{dZ \wedgeMdZ}{dH_x \wedge dE_x + dH_y \wedge dE_y + dH_z \wedge dE_z},
\]

\[
\kappa_1 = \frac{1}{2} \frac{dZ \wedge K_1 dZ}{\varepsilon dH_y \wedge dE_y + \frac{1}{\mu} dE_y \wedge dE_y},
\]

\[
\kappa_2 = \frac{1}{2} \frac{dZ \wedge K_2 dZ}{\varepsilon dH_z \wedge dE_z + \frac{1}{\mu} dE_z \wedge dE_z},
\]

\[
\kappa_3 = \frac{1}{2} \frac{dZ \wedge K_3 dZ}{\varepsilon dH_x \wedge dE_x + \frac{1}{\mu} dE_x \wedge dE_x}.
\]

Under periodic boundary condition, Maxwell equations have two energy invariants as follows:

\[
I_1 = \int |E(x,t)|^2 + \mu |H(x,t)|^2 \, d\Omega, \tag{5}
\]

\[
I_2 = \int |\nabla E(x,t)|^2 + \mu |\nabla H(x,t)|^2 \, d\Omega. \tag{6}
\]

In the case of one-dimensional transverse magnetic polarization, the electric field is \(E = (0, 0, E_z)^T \), and the magnetic field is \(H = (0, H_y, 0)^T \). Then the transmission law of electromagnetic field accords with the following one-dimensional Maxwell equations

\[
\begin{cases}
\frac{\partial E_z}{\partial t} = \frac{1}{\varepsilon} \frac{\partial H_y}{\partial x} \\
\frac{\partial H_y}{\partial t} = \frac{1}{\mu} \frac{\partial E_z}{\partial x}
\end{cases}
\]

\[
\tag{7}
\]

Exponentially fitted trapezoidal scheme

The exponentially fitted Runge-Kutta method is a kind of efficient numerical tool to simulate ordinary differential equation with oscillatory solutions [27–30]. For example, exponentially
fitted trapezoidal scheme is a special exponentially fitted Runge-Kutta method. Yin et al. [30] applied exponentially fitted trapezoidal scheme to simulate a kind of stochastic oscillator system and obtained efficient and stable numerical results.

For initial value problem of ordinary differential equation \(u' = f(t, u) \), \(u(t_0) = u_0 \), exponentially fitted trapezoidal scheme has the following formula
\[
u_i = u_0 + \frac{1 - \cos(\omega_i \Delta t)}{\omega_i \sin(\omega_i \Delta t)} \left(f(t_0, u_0) + f(t_i, u_i) \right),
\]
where \(\omega_i \) denotes the frequency parameter of the scheme [31]. By Taylor expansion, the local truncation error of the method is \((\omega^3 + \omega^2 u') \Delta t^3 / 12 \). Therefore, exponentially fitted trapezoidal scheme is convergent with second order accuracy. If we choose \(\omega_i \) such that \(\omega^3 + \omega^2 u' = 0 \), third order convergence is obtained.

Exponentially fitted multisymplectic scheme of Maxwell equations

Based on the multisymplectic formula (3), we can design multisymplectic schemes of Maxwell equations with oscillatory solutions by applying exponentially fitted Runge-Kutta method. Below, we take exponentially fitted trapezoidal scheme as an example.

Derivation of exponentially fitted multisymplectic scheme

In temporal and spatial discretization of multisymplectic Hamiltonian system (3), we apply exponentially fitted trapezoidal scheme.

First, divide the solution area into equidistant meshes. The step sizes taken in the directions of time and space are denoted by \(\Delta t, \Delta x, \Delta y, \Delta z \), respectively. Denote the mesh points in the directions of time and space by
\[
t_n = n \Delta t, \quad x_i = i \Delta x, \quad y_j = j \Delta y, \quad z_k = k \Delta z,
\]
respectively, where \(n = 0, 1, 2, \cdots, N_t \), \(i = 0, 1, 2, \cdots, N_x \), \(j = 0, 1, 2, \cdots, N_y \), \(k = 0, 1, 2, \cdots, N_z \),
\[
N_t = T / \Delta t, \quad N_x = a / \Delta x, \quad N_y = b / \Delta y, \quad N_z = c / \Delta z.
\]
The numerical solutions of \(u(t, x, y, z) \) at points
\[
(t_n, x_i, y_j, z_k), \quad (t_n, x_i, y, z), \quad (t, x_j, y, z), \quad (t, x, y_j, z), \quad (t, x, y, z_k)
\]
are denoted by \(u^{n/2}_{i,j,k} \), \(u^n, \ u^i, \ u_j, \ u_k \), respectively. We also make the following notions:
\[
u_{i+1/2}^{n+1} = \frac{u^n + u^{n+1}}{2}, \quad u_{i+1/2}^n = \frac{u_i + u_{i+1}}{2}, \quad u_{j+1/2} = \frac{u_j + u_{j+1}}{2}.
\]
Define the difference operator as follows
\[
\delta_x u^n = u^{n+1} - u^n, \quad \delta_{xx} u_i = u_{i+1} - u_i, \quad \delta_y u_j = u_{j+1} - u_j, \quad \delta_z u_k = u_{k+1} - u_k.
\]
Below, we apply exponentially fitted trapezoidal scheme in temporal and spatial directions to discretize the multisymplectic Hamiltonian system (3) and get the numerical method as follows:
\[
M \frac{\delta_{xx} Z_{i,j,k}^{n+1/2} + K_x \delta_{yy} Z_{i,j,k}^{n+1/2} + K_y \delta_{zz} Z_{i,j,k}^{n+1/2} + K_z \delta_{xzz} Z_{i,j,k}^{n+1/2}}{\Delta x} = 0.
\]
Next we analyze and give numerical properties of our proposed scheme (9).

Numerical properties of exponentially fitted multisymplectic scheme

For convenience, we give the following simple notions in above formula:

\[
x_i = \frac{1 - \cos (\omega_i \Delta t)}{\omega_i \sin (\omega_i \Delta t)}, \quad x_y = \frac{1 - \cos (\omega_y \Delta y)}{\omega_y \sin (\omega_y \Delta y)}, \quad x_z = \frac{1 - \cos (\omega_z \Delta z)}{\omega_z \sin (\omega_z \Delta z)},
\]

where \(\omega_i, \omega_y, \omega_z\) are the frequency parameters of exponentially fitted schemes applied in the direction of time and space, respectively.

For the sake of simplicity, below we omit the semi-node indices. We abbreviate above formula as

\[
M \frac{\delta Z^n}{\delta_x} + K_1 \frac{\delta Z^n}{\delta_y} + K_2 \frac{\delta Z^n}{\delta_z} + K_3 \frac{\delta Z^n}{\delta_x} = 0.
\]

The corresponding component form of above scheme (9) is

\[
\begin{align*}
\frac{\delta E_x^n}{\delta_x} &= \frac{1}{\varepsilon} \left(\frac{\delta H_y^n}{\delta_x} - \frac{\delta H_z^n}{\delta_x} \right), \\
\frac{\delta E_y^n}{\delta_y} &= \frac{1}{\varepsilon} \left(\frac{\delta H_z^n}{\delta_y} - \frac{\delta H_x^n}{\delta_y} \right), \\
\frac{\delta E_z^n}{\delta_z} &= \frac{1}{\varepsilon} \left(\frac{\delta H_x^n}{\delta_z} - \frac{\delta H_y^n}{\delta_z} \right), \\
\frac{\delta H_x^n}{\delta_x} &= -\frac{1}{\mu} \left(\frac{\delta E_y^n}{\delta_x} - \frac{\delta E_z^n}{\delta_x} \right), \\
\frac{\delta H_y^n}{\delta_y} &= -\frac{1}{\mu} \left(\frac{\delta E_z^n}{\delta_y} - \frac{\delta E_x^n}{\delta_y} \right), \\
\frac{\delta H_z^n}{\delta_z} &= -\frac{1}{\mu} \left(\frac{\delta E_x^n}{\delta_z} - \frac{\delta E_y^n}{\delta_z} \right).
\end{align*}
\]

Numerical properties of exponentially fitted multisymplectic scheme

Next we analyze and give numerical properties of our proposed scheme (9).

Theorem 1 The scheme (9) satisfies the following multisymplectic conservation law

\[
\frac{\delta \omega^n}{\delta_x} + \frac{\delta_x (\kappa_1)}{\delta_x} + \frac{\delta_y (\kappa_2)}{\delta_y} + \frac{\delta_z (\kappa_3)}{\delta_z} = 0,
\]

where \(\omega^n = \frac{1}{2} dZ^n \wedge MdZ^n, (\kappa_1)_i = \frac{1}{2} dZ_i \wedge K_i dZ_i, (\kappa_2)_j = \frac{1}{2} dZ_j \wedge K_j dZ_j, (\kappa_3)_k = \frac{1}{2} dZ_k \wedge K_k dZ_k\).

Here for the sake of simplicity, we omit the semi-node indices. So the scheme (9) is a multisymplectic scheme of Maxwell equations.

Proof Taking variation on both sides of the formula (9) yields that

\[
M \frac{\delta dZ^n}{\delta_x} + K_1 \frac{\delta dZ^n}{\delta_y} + K_2 \frac{\delta dZ^n}{\delta_z} + K_3 \frac{\delta dZ^n}{\delta_x} = 0.
\]

Then by making wedge product on both sides of above formula with \(dZ^{n+\frac{1}{2}}\) and considering
the properties of antisymmetric matrix and wedge product, we obtain the discrete multisymplectic conservation law (11).

Below, we refer to the scheme (9) as exponentially fitted multisymplectic (abbreviated to EFMS) scheme.

Theorem 2 Under periodic boundary condition, EFMS scheme (9) has two discrete energy invariants as follows:

1. $I_1^n = \varepsilon \|E^n\|^2 + \mu \|H^n\|^2$,
2. $I_2^n = \varepsilon \|\delta_x E^n\|^2 + \mu \|\delta_y H^n\|^2$,

where

$$\|E^n\|^2 = x_1 x_2 \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \sum_{k=1}^{N_z} \left[(E^n_x)^2 + (E^n_y)^2 + (E^n_z)^2 \right],$$

$$\|\delta_x H^n\|^2 = x_1 x_2 \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \sum_{k=1}^{N_z} \left[(\delta_x H^n_x)^2 + (\delta_x H^n_y)^2 + (\delta_x H^n_z)^2 \right],$$

and other two norms have similar definitions. Here for the sake of simplicity, we omit the semi-node indices.

Proof By taking inner product on both sides of EFMS scheme (9) with $Z^{n+\frac{1}{2}}$ we obtain that

$$M \frac{\delta Z^n, Z^{n+\frac{1}{2}}}{x_t} + K_x \left(\frac{\delta_x Z^n, Z^{n+\frac{1}{2}}}{x_t} \right) + K_y \left(\frac{\delta_y Z^n, Z^{n+\frac{1}{2}}}{x_t} \right) = 0. \quad (12)$$

Above formula can be rewritten as the component form as follows

$$\begin{cases}
\varepsilon \frac{\delta_x E^n_x E^{n+\frac{1}{2}}_x}{x_t} = \delta_x H^n_x E^{n+\frac{1}{2}}_x - \delta_x H^{n+\frac{1}{2}}_x, \\
\varepsilon \frac{\delta_y E^n_y E^{n+\frac{1}{2}}_y}{x_t} = \delta_y H^n_y E^{n+\frac{1}{2}}_y - \delta_y H^{n+\frac{1}{2}}_y, \\
\varepsilon \frac{\delta_z E^n_z E^{n+\frac{1}{2}}_z}{x_t} = \delta_z H^n_z E^{n+\frac{1}{2}}_z - \delta_z H^{n+\frac{1}{2}}_z, \\
\mu \frac{\delta_x H^n_x H^{n+\frac{1}{2}}_x}{x_t} = - \delta_y E^n_y H^{n+\frac{1}{2}}_x + \delta_x E^n_x H^{n+\frac{1}{2}}_x, \\
\mu \frac{\delta_y H^n_y H^{n+\frac{1}{2}}_y}{x_t} = - \delta_x E^n_x H^{n+\frac{1}{2}}_y + \delta_y E^n_y H^{n+\frac{1}{2}}_y, \\
\mu \frac{\delta_z H^n_z H^{n+\frac{1}{2}}_z}{x_t} = - \delta_x E^n_x H^{n+\frac{1}{2}}_z + \delta_z E^n_z H^{n+\frac{1}{2}}_z,
\end{cases} \quad (13)$$

where the omitted indices are semi-node indices. Obviously

$$\delta_x E^n_x E^{n+\frac{1}{2}}_x = \frac{1}{2} \left[(E^{n+1}_x)^2 - (E^n_x)^2 \right].$$
In view of periodic boundary condition, we get that

\[\sum_{j=1}^{N_y} \left(\delta_j H_y E^{i+1}_y + \delta_y E_x H^{i+1}_x \right) = 0, \]

and other five similar equalities. Therefore, summing all terms on both sides of above equation (13) with respect to the indices i, j, k yields the first discrete energy conservation law $I_1^n = I_1^{n+1}$.

By applying difference operator δ_i to EFMS scheme (9), we obtain that

\[M \frac{\delta Z^{n+1}_i - \delta Z^n_i}{\Delta t} + K_1 \frac{\delta_y \delta Z^n_x}{\Delta x} + K_2 \frac{\delta_x \delta Z^n_y}{\Delta y} + K_3 \frac{\delta \delta Z^n_z}{\Delta z} = 0. \]

Making inner product on both sides of above formula with δZ^{n+1}_i yields that

\[M \left(\frac{\delta Z^{n+1}_i - \delta Z^n_i}{\Delta t} \right) + K_1 \left(\frac{\delta_y \delta Z^n_x}{\Delta x} \right) + K_2 \left(\frac{\delta_x \delta Z^n_y}{\Delta y} \right) + K_3 \left(\frac{\delta \delta Z^n_z}{\Delta z} \right) = 0. \]

Its equivalent componentwise form is

\[
\begin{align*}
\varepsilon \frac{\delta (E^{i+1}_x - E^n_x) \delta E^{i+1}_x}{\Delta t} &= \frac{\delta H_y \delta E^{i+1}_x}{\Delta x} - \frac{\delta \delta H_y \delta E^{i+1}_x}{\Delta x}, \\
\varepsilon \frac{\delta (E^{i+1}_y - E^n_y) \delta E^{i+1}_y}{\Delta t} &= \frac{\delta H_x \delta E^{i+1}_y}{\Delta x} - \frac{\delta \delta H_x \delta E^{i+1}_y}{\Delta x}, \\
\varepsilon \frac{\delta (E^{i+1}_z - E^n_z) \delta E^{i+1}_z}{\Delta t} &= \frac{\delta H_y \delta E^{i+1}_z}{\Delta x} - \frac{\delta \delta H_y \delta E^{i+1}_z}{\Delta x},
\end{align*}
\]

\[
\begin{align*}
\mu \frac{\delta (H^{i+1}_x - H^n_x) \delta H^{i+1}_x}{\Delta t} &= -\frac{\delta E_x \delta E^{i+1}_y}{\Delta y} + \frac{\delta \delta E_x \delta H^{i+1}_x}{\Delta y}, \\
\mu \frac{\delta (H^{i+1}_y - H^n_y) \delta H^{i+1}_y}{\Delta t} &= -\frac{\delta E_y \delta E^{i+1}_x}{\Delta x} + \frac{\delta \delta E_y \delta H^{i+1}_y}{\Delta x}, \\
\mu \frac{\delta (H^{i+1}_z - H^n_z) \delta H^{i+1}_z}{\Delta t} &= -\frac{\delta E_z \delta E^{i+1}_x}{\Delta x} + \frac{\delta \delta E_z \delta H^{i+1}_z}{\Delta x},
\end{align*}
\]

where the omitted indices are semi-nodes indices. Clearly,

\[(\delta_i E^{i+1}_x - \delta_i E^n_x) \delta_i E^{i+1}_x = \frac{1}{2} \left((\delta_i E^{i+1}_x)^2 - (\delta_i E^n_x)^2 \right). \]

On account of periodic boundary condition and commutativity of difference operators, we derive that

\[\sum_{j=1}^{N_y} \left(\delta_j H_y E^{i+1}_y + \delta_y E_x H^{i+1}_x \right) = 0, \]
and other five similar equalities. Hence, by summing all terms on both sides of above equation (14) with respect to the indices i, j, k, we obtain the second discrete energy conservation law $I^n_2 = I^{n+1}_2$.

As is well known that if the media is lossless, the system (1) is divergence-free [5, 6], i.e.,

$$\text{div}(E(t)) = \text{div}(E(0)), \quad \text{div}(H(t)) = \text{div}(H(0)).$$

(15)

The divergence convergence is satisfied by EFMS scheme.

Theorem 3 EFMS scheme (9) preserves the following two discrete divergences:

$$\nabla_{i,j,k} \cdot E^{n+1} = \nabla_{i,j,k} \cdot E^n, \quad \nabla_{i,j,k} \cdot H^{n+1} = \nabla_{i,j,k} \cdot H^n.$$

(16)

Here the discrete divergence operator is defined by

$$\nabla_{i,j,k} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \frac{\delta_x}{\mathcal{A}_x} X_{i+\frac{1}{2},j,k} + \frac{\delta_y}{\mathcal{A}_y} Y_{i,j+\frac{1}{2},k} + \frac{\delta_z}{\mathcal{A}_z} Z_{i,j,k+\frac{1}{2}},$$

where

$$X_{i+\frac{1}{2},j,k} = X_{i+\frac{1}{2},j,k+\frac{1}{2}} + X_{i+\frac{1}{2},j,k-\frac{1}{2}} + X_{i+\frac{1}{2},j-1,k+\frac{1}{2}} + X_{i+\frac{1}{2},j-1,k-\frac{1}{2}},$$

and other symbols are similar defined. (16) can be seen as the discrete conservation law of (15).

Proof Above operator definition yields that

$$\nabla_{i,j,k} \cdot E^{n+1} - \nabla_{i,j,k} \cdot E^n = \frac{\delta_x}{\mathcal{A}_x} \delta_x(E_x)^n_{i+\frac{1}{2},j,k} + \frac{\delta_y}{\mathcal{A}_y} \delta_y(E_y)^n_{i,j+\frac{1}{2},k} + \frac{\delta_z}{\mathcal{A}_z} \delta_z(E_z)^n_{i,j,k+\frac{1}{2}}.$$

According to formula (10) of EFMS scheme, we obtain that

$$\nabla_{i,j,k} \cdot E^{n+1} - \nabla_{i,j,k} \cdot E^n = \frac{\mathcal{A}_x \delta_x}{\mathcal{A}_x} \left(\frac{\delta_x(H_x)}{\mathcal{A}_x} - \frac{\delta_x(H_y)}{\mathcal{A}_y} - \frac{\delta_x(H_z)}{\mathcal{A}_z} \right) + \frac{\mathcal{A}_y \delta_y}{\mathcal{A}_y} \left(\frac{\delta_y(H_y)}{\mathcal{A}_y} - \frac{\delta_y(H_x)}{\mathcal{A}_x} - \frac{\delta_y(H_z)}{\mathcal{A}_z} \right) + \frac{\mathcal{A}_z \delta_z}{\mathcal{A}_z} \left(\frac{\delta_z(H_z)}{\mathcal{A}_z} - \frac{\delta_z(H_x)}{\mathcal{A}_x} - \frac{\delta_z(H_y)}{\mathcal{A}_y} \right),$$

where

$$X_{i+\frac{1}{2},j,k} = X_{i+\frac{1}{2},j,k+\frac{1}{2}} + X_{i+\frac{1}{2},j,k-\frac{1}{2}} + X_{i+\frac{1}{2},j-1,k+\frac{1}{2}} + X_{i+\frac{1}{2},j-1,k-\frac{1}{2}},$$

and other symbols are similar defined. By calculation we can derive

$$\delta_x \delta_x(H_x)^n_{i+\frac{1}{2},j,k} = \delta_x \delta_x(H_x)^n_{i+\frac{1}{2},j,k}$$

and other two similar equalities, which completes the proof of the first divergence convergence. The proof of the second assertion is similar.
LOD exponentially fitted multisymplectic scheme

According to the splitting method of vector field [32–34], to reduce calculation cost, we consider the following LOD system of multisymplectic Hamiltonian system (3)

$$\frac{1}{3} M Z_x + K_x Z_x = 0, \quad \frac{1}{3} M Z_y + K_y Z_y = 0, \quad \frac{1}{3} M Z_z + K_z Z_z = 0. \quad (17)$$

The system (17) has LOD multisymplectic conservation law

$$\frac{1}{3} \frac{\partial}{\partial t} \omega + \frac{\partial}{\partial x} \kappa_x = 0, \quad \frac{1}{3} \frac{\partial}{\partial t} \omega + \frac{\partial}{\partial y} \kappa_y = 0, \quad \frac{1}{3} \frac{\partial}{\partial t} \omega + \frac{\partial}{\partial z} \kappa_z = 0. \quad (18)$$

We recast the system (17) into the following six one-dimensional Maxwell equations:

$$\begin{align*}
\frac{\partial E_x}{\partial t} &= \frac{3 \partial H_y}{\varepsilon \partial x}, \\
\frac{\partial H_y}{\partial t} &= \frac{3 \partial E_x}{\varepsilon \partial x}, \\
\frac{\partial E_y}{\partial t} &= \frac{3 \partial H_z}{\varepsilon \partial y}, \\
\frac{\partial H_z}{\partial t} &= \frac{3 \partial E_y}{\varepsilon \partial y}, \\
\frac{\partial E_z}{\partial t} &= \frac{3 \partial H_x}{\varepsilon \partial z}, \\
\frac{\partial H_x}{\partial t} &= \frac{3 \partial E_z}{\varepsilon \partial z}.
\end{align*} \quad (19)$$

$$\begin{align*}
\frac{\partial E_x}{\partial t} &= \frac{3 \partial H_y}{\mu \partial y}, \\
\frac{\partial H_y}{\partial t} &= \frac{3 \partial E_x}{\mu \partial y}, \\
\frac{\partial E_y}{\partial t} &= \frac{3 \partial H_z}{\mu \partial z}, \\
\frac{\partial H_z}{\partial t} &= \frac{3 \partial E_y}{\mu \partial z}, \\
\frac{\partial E_z}{\partial t} &= \frac{3 \partial H_x}{\mu \partial x}, \\
\frac{\partial H_x}{\partial t} &= \frac{3 \partial E_z}{\mu \partial x}.
\end{align*} \quad (20)$$

Using exponentially fitted trapezoidal scheme to solve numerically the LOD system (17) yields the following LOD scheme

$$\frac{1}{3} M \frac{\delta Z^n}{\Delta x} + K_x \frac{\delta Z^n}{\Delta x} = 0, \quad \frac{1}{3} M \frac{\delta Z^n}{\Delta y} + K_y \frac{\delta Z^n}{\Delta y} = 0, \quad \frac{1}{3} M \frac{\delta Z^n}{\Delta z} + K_z \frac{\delta Z^n}{\Delta z} = 0. \quad (22)$$

Here for the sake of simplicity, we omit the semi-node indices in above formula. Similarly to Theorem 1, we can prove that above scheme satisfies the discrete LOD multisymplectic conservation law as follows:

$$\frac{1}{3} \frac{\delta \omega^n}{\Delta x} + \frac{\delta_x (K_1)}{\Delta x} = 0, \quad \frac{1}{3} \frac{\delta \omega^n}{\Delta y} + \frac{\delta_y (K_2)}{\Delta y} = 0, \quad \frac{1}{3} \frac{\delta \omega^n}{\Delta z} + \frac{\delta_z (K_3)}{\Delta z} = 0. \quad (23)$$

So we call the scheme (22) LOD exponentially fitted multisymplectic (abbreviated to LODEFMS) scheme. LODEFMS scheme (22) is equivalent to the following six one-
Multisymplectic scheme for Maxwell equations

To analyze the stability of scheme (28), define the following wave solution that is an eigenvector of scheme (28), and where

\[
\rho \exp^{-i\omega t} \begin{bmatrix} E_y^0 \\ H_z^0 \end{bmatrix},
\]

(29)

where \(i, \omega \) denote imaginary unit and the wave number, respectively. \([E_y^0, H_z^0]^T\) is a nonzero eigenvector of scheme (28), and \(\rho \) is the stability factor. Inserting (29) into scheme (28) yields that

\[
\begin{bmatrix}
(\rho - 1) \cos \theta & -i \frac{3\omega}{c^2} \sin \theta (\rho + 1) \\
-i \frac{3\omega}{c^2} \sin \theta (\rho + 1) & (\rho - 1) \cos \theta
\end{bmatrix}
\begin{bmatrix} E_y^0 \\ H_z^0 \end{bmatrix} = 0,
\]

Theorem 4 LODEFMS scheme (22) is unconditionally stable and non-dissipative scheme.

Proof For simplicity, we consider the following one-dimensional Maxwell equations

\[
\begin{aligned}
\frac{\partial E_x}{\partial t} + \frac{3 \partial H_z}{\partial x} &= 0, \\
\frac{\partial H_z}{\partial t} + \frac{3 \partial E_y}{\partial x} &= 0,
\end{aligned}
\]

and corresponding LODEFMS scheme:

\[
\begin{aligned}
\frac{\delta E_y}{\partial t} + \frac{3 \delta H_z}{\partial x} &= 0, \\
\frac{\delta H_z}{\partial t} + \frac{3 \delta E_y}{\partial x} &= 0.
\end{aligned}
\]

(28)

(25)

(24)

(26)
where $\theta = \omega_x \Delta_t/2$. Making the coefficient determinant 0 leads to
\[
\rho^2 + 2 \frac{9x^2 \tan^2 \theta - \varepsilon \mu \varepsilon_x^2}{9x^2 \tan^2 \theta + \varepsilon \mu \varepsilon_x^2} \cdot \rho + 1 = 0.
\] (30)

Thus, it can be deduced that $|\rho| = 1$. This means that scheme (28) is unconditionally stable and non-dissipative. Similar analysis can prove the stability of other five one-dimensional schemes.

Theorem 5 Maxwell equations (17) satisfy the following exact dispersive relations
\[
\omega^2_x - \frac{9}{\varepsilon \mu} \omega^2_x = 0, \quad \omega^2_y - \frac{9}{\varepsilon \mu} \omega^2_y = 0, \quad \omega^2_z - \frac{9}{\varepsilon \mu} \omega^2_z = 0.
\] (31)

Corresponding numerical dispersive relations of scheme (22) are
\[
\frac{1}{x^2_t} \tan^2 \left(\frac{\omega_x \Delta_t}{2} \right) - \frac{9}{\varepsilon \mu x^2_x} \tan^2 \left(\frac{\omega_x \Delta_x}{2} \right) = 0,
\] (32)
\[
\frac{1}{x^2_t} \tan^2 \left(\frac{\omega_x \Delta_t}{2} \right) - \frac{9}{\varepsilon \mu x^2_y} \tan^2 \left(\frac{\omega_y \Delta_y}{2} \right) = 0,
\] (33)
\[
\frac{1}{x^2_t} \tan^2 \left(\frac{\omega_x \Delta_t}{2} \right) - \frac{9}{\varepsilon \mu x^2_z} \tan^2 \left(\frac{\omega_z \Delta_z}{2} \right) = 0.
\] (34)

Suppose the step sizes tend to 0, numerical dispersive relations converge to exact dispersive relations correspondingly.

Proof For the sake of simplicity, take one-dimensional Maxwell equation (27) as an example to analyze dispersion. Set the wave solution of (27) as follows
\[
\begin{bmatrix}
E_y \\
H_z
\end{bmatrix} = \exp \left[\left(\omega - \omega_t \right) x \right]
\begin{bmatrix}
E^0_y \\
H^0_z
\end{bmatrix},
\] (35)

were ω_t is the frequency. Substituting (35) into (27) results in
\[
\begin{bmatrix}
-\omega_t & \frac{3}{\varepsilon} \omega_x \\
\frac{3}{\mu} \omega_x & -\omega_t
\end{bmatrix}
\begin{bmatrix}
E^0_y \\
H^0_z
\end{bmatrix} = 0.
\]

Since the eigenvector is nonzero, making above coefficient matrix singular results in the exact dispersive relation
\[
\omega^2_y - \frac{9}{\varepsilon \mu} \omega^2_x = 0.
\] (36)

Similar analysis to other five one-dimensional Maxwell equations yields other two exact dispersive relations.

To dispersive relations of scheme (28), inserting the stability factor $\rho = \exp^{i \omega \Delta t}$ into equation (30) leads to
\[
\exp^{2i \omega \Delta t} + 2 \frac{9x^2 \tan^2 \theta - \varepsilon \mu \varepsilon_x^2}{9x^2 \tan^2 \theta + \varepsilon \mu \varepsilon_x^2} \cdot \exp^{i \omega \Delta t} + 1 = 0.
\] (37)

In view of the expression of θ, we obtain the numerical relation (32). Similarly, we can analyse other five one-dimensional scheme to get other two numerical dispersive relations (33) and
Taking the following equivalence relation
\[\lim_{\lambda_i \to 0} \frac{\lambda_i}{\Delta_i} = 1, \quad \lim_{\lambda_j \to 0} \frac{\lambda_j}{\Delta_j} = 1, \quad \lim_{\lambda_k \to 0} \frac{\lambda_k}{\Delta_k} = 1, \quad \lim_{\lambda_m \to 0} \frac{\lambda_m}{\Delta_m} = 1 \]
into consideration yields that, as the step sizes tend to 0, numerical dispersive relations (32)–(34) converge to the exact relations (36), respectively.

Fig 1 depicts numerical errors of phase velocity \(1/\sqrt{\varepsilon \mu} - \omega_0/\omega_x \). The data used in left figure is \(\varepsilon = \mu = 1, \Delta_x = 0.1, \Delta_z = 0.5 \), while in right figure we use \(\varepsilon = \mu = 0.1, \Delta_x = 0.01, \Delta_z = 0.04 \). We can see that in the two cases numerical errors of phase velocity are very small. Similar results in other data cases can be obtained.

Theorem 6 Under precise initial condition, numerical solutions of LODEFMS scheme (22) converge to solutions of Maxwell equations with the following numerical errors:

\[
\varepsilon \| r^{k+1} \|^2 + \mu \| s^{k+1} \|^2 \leq \frac{2\varepsilon}{2 - \varepsilon} \exp \frac{2m}{\varepsilon} \left(\varepsilon \sum_{k=0}^{m} \| F^{k+1} \|^2 + \mu \sum_{k=0}^{m} \| G^{k+1} \|^2 \right),
\]

where \(r \) and \(s \) are error vectors of electric field and magnetic field, respectively.

Proof For simplicity, we consider errors of one-dimensional scheme to solve one-dimensional Maxwell equation (27). According to local truncation analysis of scheme (28), we obtain that

\[
\begin{align*}
\delta_t r^{n+\frac{1}{2}} + \frac{3 \delta_s s^{n+\frac{1}{2}}}{\varepsilon} = F, \\
\delta_t s^{n+\frac{1}{2}} + \frac{3 \delta_r r^{n+\frac{1}{2}}}{\mu} = G,
\end{align*}
\]
where $r^n_i = E_i(x_i, t^n) - (E_j)^n_i, s^n_i = H_i(x_i, t^n) - (H_j)^n_i,$

$$F = \frac{\Delta t^2}{12} \left(\frac{\partial^3 E}{\partial t^3} + 3 \xi_k \frac{\partial E}{\partial x_k} \right) + \Delta x^2 \frac{\partial^3 H}{\partial x^3} + \xi_k \frac{\partial H}{\partial x_k},$$

$$G = \frac{\Delta t^2}{12} \left(\frac{\partial^3 H}{\partial t^3} + 3 \xi_k \frac{\partial H}{\partial x_k} \right) + \Delta x^2 \frac{\partial^3 E}{\partial x^3} + \xi_k \frac{\partial E}{\partial x_k}.$$

Multiplying the first and second equation of (39) with $r^{n+\frac{1}{2}}_{i+\frac{1}{2}}$ and $s^{n+\frac{1}{2}}_{i+\frac{1}{2}},$ respectively, yields that

$$\begin{cases}
\epsilon \left[\frac{r^{n+\frac{1}{2}}_{i+\frac{1}{2}}}{2} - \frac{r^n_i}{2} \right]^2 + \frac{3}{\alpha_k} \left(s^{n+\frac{1}{2}}_{i+\frac{1}{2}} - s^n_i \right) \left(r^{n+\frac{1}{2}}_{i+\frac{1}{2}} + r^n_i \right) = 2\epsilon Fr^{n+\frac{1}{2}}_{i+\frac{1}{2}}, \\
\mu \left[\frac{s^{n+\frac{1}{2}}_{i+\frac{1}{2}}}{2} - \frac{s^n_i}{2} \right]^2 + \frac{3}{\alpha_k} \left(r^{n+\frac{1}{2}}_{i+\frac{1}{2}} - r^n_i \right) \left(s^{n+\frac{1}{2}}_{i+\frac{1}{2}} + s^n_i \right) = 2\mu Gs^{n+\frac{1}{2}}_{i+\frac{1}{2}}.
\end{cases}$$

By adding both sides of above equation and summing with respect to the subscript $i,$ we can get

$$\epsilon \| r^{n+1} \|^2 + \mu \| s^{n+1} \|^2 = \epsilon \| r^n \|^2 + \mu \| s^n \|^2 + 2\epsilon \alpha \Sigma F_{i+\frac{1}{2}}^{n+\frac{1}{2}} + 2\mu \alpha \Sigma G_{i+\frac{1}{2}}^{n+\frac{1}{2}}.$$

Applying Cauchy inequality leads to

$$\epsilon \| r^{n+1} \|^2 + \mu \| s^{n+1} \|^2 \leq \epsilon \| r^n \|^2 + \mu \| s^n \|^2 + 2\epsilon \alpha \Sigma \left(\| F^{n+\frac{1}{2}} \|^2 \right) + \mu \alpha \Sigma \left(\| G^{n+\frac{1}{2}} \|^2 \right).$$

So we derive by recursion that

$$\epsilon \left(1 - \frac{\alpha_i}{2} \right) \| r^{n+1} \|^2 + \mu \left(1 - \frac{\alpha_i}{2} \right) \| s^{n+1} \|^2 \leq \epsilon \left(1 + \frac{\alpha_i}{2} \right) \| r^n \|^2 + \mu \left(1 + \frac{\alpha_i}{2} \right) \| s^n \|^2$$

$$+ 2\epsilon \Sigma \left(\| F^{n+\frac{1}{2}} \|^2 \right) + \mu \Sigma \left(\| G^{n+\frac{1}{2}} \|^2 \right).$$

According to Gronwall inequality, we obtain the following error estimation:

$$\epsilon \| r^{n+1} \|^2 + \mu \| s^{n+1} \|^2 \leq \frac{2\alpha_i}{2 - \alpha_i} \exp {\frac{2\mu}{\alpha_i}} \left(\epsilon \Sigma \| F^{n+\frac{1}{2}} \|^2 + \mu \Sigma \| G^{n+\frac{1}{2}} \|^2 \right)$$

$$+ \frac{2 + \alpha_i}{2 - \alpha_i} \left(\exp {\frac{2\mu}{\alpha_i}} \left(\epsilon \| r^n \|^2 + \mu \| s^n \|^2 \right) \right).$$

Under precise initial condition, (41) reduces to (38). By observing above inequality, we can find that, as the initial data are sufficiently accurate, LODEFMS scheme is convergent.

Numerical examples

In this section, we apply our scheme LODEFMS scheme (22) to two Maxwell equations with periodic boundary condition and oscillatory solutions, to verify our theoretical analysis.

One-dimensional example

We consider one-dimensional Maxwell equations (7) with the following oscillatory solution

$$E_z = \sin (kx - \gamma t), \quad H_y = -\beta E_z, \quad x \in [0, 2\pi], \quad t \in [0, 10].$$

(42)
where $\varepsilon \gamma = k \beta$, $\mu \beta^2 = \varepsilon$. Without loss of generality, here we take two sets of test data as follows:

1. $k = \beta = \gamma = \varepsilon = \mu = 1$,
2. $k = \gamma = 5$, $\beta = \varepsilon = \mu = 1$.

Select the step sizes as $\Delta t = 0.01$, $\Delta x = \frac{\varepsilon}{10}$. Other step sizes have same numerical behavior.

First we check the convergence by comparing the results of LODEFMS scheme and central box scheme to solve above one-dimension Maxwell equations with oscillatory solution (42). Figs 2 and 3 show error curves at $t = 10$ of central box scheme and LODEFMS scheme under two sets of test data.

Fig 2. Numerical errors of central box scheme (left) and LODEFMS scheme (right) under first set of test data.
https://doi.org/10.1371/journal.pone.0256108.g002

Fig 3. Numerical errors of central box scheme (left) and LODEFMS scheme (right) under second set of test data.
https://doi.org/10.1371/journal.pone.0256108.g003
in two testing cases, respectively. We can see that, the errors of LODEFMS scheme are smaller than those of central box scheme. Waveform curves of exact oscillatory solution and numerical solutions of both schemes, at \(t = 10 \) under second set of test data, are depicted in Fig 4. It can be seen that, numerical solution of central box scheme is obviously different from the exact solution, while numerical solution of LODEFMS scheme agrees well with exact solution. LODEFMS scheme is more effective to simulate one-dimension Maxwell equations with oscillatory solutions.

Next analyse the conservation results of LODEFMS scheme. Fig 5 plots two discrete energy \(I^n_1 \) and \(I^n_2 \) in first testing case. The curves in the figure are similar to horizontal straight line. Error evolution curve at adjacent time of two discrete energy in second testing case is depicted in Fig 6. The error magnitude of \(I^n_1 \) and \(I^n_2 \) are approximately \(10^{-14} \) and \(10^{-13} \), respectively. This verifies that \(I^n_1 \) and \(I^n_2 \) are two conservation quantity of LODEFMS scheme.

Least square method is an effective tool to solve inverse problem of parameter estimation \[35\]. Next, we adopt least square method and LODEFMS scheme to fit the parameter \(\varepsilon \) in one-dimensional Maxwell equations. Measured data in simulation is theoretical solution with random disturbance \(\delta \). Suppose that random perturbation \(\delta \) obeys a normal distribution with expectation \(0 \) and variance \(\sigma \). Now given simulation data at points \((x_i, t_k), E^{i,k}_z = E_z(x_i, t_k) + \delta, H^{i,k}_y = H_y(x_i, t_k) + \delta\), \(i = 0, 1, \cdots, N_x, k = 0, 1, \cdots, N_t \), we choose parameter \(\varepsilon^* \), such that

\[
\arg\min_{\varepsilon} \sum_{i=0}^{N_x} \sum_{k=0}^{N_t} \left((E^{i,k}_z - E^i_z(\varepsilon))^2 + (H^{i,k}_y - H^i_y(\varepsilon))^2 \right) = \varepsilon^*,
\]

(43)

where \(E^i_z, H^i_y \) are our numerical solutions. Assume that the real parameter in experiment is \(\varepsilon = 1 \).
Fig 5. Discrete energy I_1^* (left) and I_2^* (right) in first testing case.

https://doi.org/10.1371/journal.pone.0256108.g005

Fig 6. Errors of discrete energy I_1^* (left) and I_2^* (right) in second testing case.

https://doi.org/10.1371/journal.pone.0256108.g006
Table 1 lists the inverting parameter ε^τ under different distribution σ. Figs 7 and 8 show measured data and inversion data with $x = \pi$, $t \in [0, 10]$ and $x \in [0, 2\pi]$, $t = 0.5$, respectively. The results show that the inversion data is consistent with measured data. The inverting parameters estimated by least square method and LODEFMS scheme are reasonable under small disturbance error.

σ	0.001	0.005	0.01	0.05
ε^τ	0.9999	1.0003	1.0011	0.9953

Table 1. Inverting parameter ε^τ under different distribution σ. Fig 7 and 8 show measured data and inversion data with $x = \pi$, $t \in [0, 10]$ and $x \in [0, 2\pi]$, $t = 0.5$, respectively. The results show that the inversion data is consistent with measured data. The inverting parameters estimated by least square method and LODEFMS scheme are reasonable under small disturbance error.
Three-dimensional example

For sake of simplicity, we apply LODEFMS scheme (22) to solve three-dimensional Maxwell equations (1) with oscillatory solution as follows:

\[
E_x = \cos [k(x + y + z) - \gamma t], \quad E_y = -2E_x, \quad H_x = \beta E_x, \quad H_y = E_x, \quad H_z = 0, \quad H_z = -H_x, \quad (44)
\]

where \(\epsilon \gamma = k \beta, \mu \beta^2 = 3\epsilon\). Generally, we adopt the following two sets of test data:

1. \(\epsilon = \mu = 1, \quad k = 2\pi, \quad \beta = \sqrt{3}, \quad x, y, z \in [0, \ 1]\),
2. \(\epsilon = \mu = 1, \quad k = 8, \quad \beta = \sqrt{3}, \quad x, y, z \in [0, \pi/4]\).

First, we give convergence results with step sizes \(\Delta t = 0.0001, \\Delta x = \Delta y = \Delta z = \frac{\pi}{4\Delta t}\). Same convergence behavior is obtained for other step sizes. \(L_\infty\) errors between exact solutions and numerical solutions of LODEFMS scheme and LOD central box scheme are depicted in Figs 9 and 10 in above two cases, respectively. Figs 11 and 12 show \(L_2\) errors of numerical solutions.

Fig 9. \(L_\infty\) errors of numerical solutions to LOD central box scheme (left) and LODEFMS scheme (right) in first testing case.

https://doi.org/10.1371/journal.pone.0256108.g009

Fig 10. \(L_\infty\) errors of numerical solutions to LOD central box scheme (left) and LODEFMS scheme (right) in second testing case.

https://doi.org/10.1371/journal.pone.0256108.g010
From the figures, we observe that the errors of LODEFMS scheme are smaller than those of LOD central box scheme.

Next we check energy conservation property of LODEFMS scheme. Generally, we take step sizes as $\Delta t = 0.04$, $\Delta x = \Delta y = \Delta z = \frac{\pi}{5}$. Figs 13 and 14 show errors of discrete energy I^n_1 and I^n_2 in two testing cases, respectively. We find that, the error magnitudes of I^n_1 and I^n_2 are about 10^{-15} and 10^{-12}, respectively. Same conservation results can be obtained by other step sizes. This verifies that LODEFMS scheme preserves two discrete energy conservation laws.

At last, to test the conservation of discrete divergence, we define the errors of two discrete divergences by

$$\text{Err-Div}E(n) = \Delta x\Delta y\Delta z \sum_{i,j,k} |\nabla_{ij,k} \cdot E^{n+1} - \nabla_{ij,k} \cdot E^n|,$$

$$\text{Err-Div}H(n) = \Delta x\Delta y\Delta z \sum_{i,j,k} |\nabla_{ij,k} \cdot H^{n+1} - \nabla_{ij,k} \cdot H^n|,$$

Fig 11. L_2 errors of numerical solutions to LOD central box scheme (left) and LODEFMS scheme (right) in first testing case.

https://doi.org/10.1371/journal.pone.0256108.g011

Fig 12. L_2 errors of numerical solutions to LOD central box scheme (left) and LODEFMS scheme (right) in second testing case.

https://doi.org/10.1371/journal.pone.0256108.g012
Fig 13. Errors of discrete energy I^1_T (left) and I^2_T (right) in first testing case.

https://doi.org/10.1371/journal.pone.0256108.g013

Fig 14. Errors of discrete energy I^1_T (left) and I^2_T (right) in second testing case.

https://doi.org/10.1371/journal.pone.0256108.g014
Fig 15. Divergence errors Err-DivE (left) and Err-DivH (right) in first testing case.
https://doi.org/10.1371/journal.pone.0256108.g015

respectively. Figs 15 and 16 display the divergence errors with step sizes $\Delta t = 0.01$, $\Delta x = \Delta y = \Delta z = \frac{\Delta x}{3}$. We observe that the scale of the errors is about 10^{-16}. In other data cases, we can obtain the same conservation behavior of discrete divergences.

Conclusion
Conservative Maxwell equations with periodic oscillatory solutions are investigated numerically. First we have constructed a conservative multisymplectic scheme, preserving two discrete energy invariants and two discrete divergences, by applying exponentially fitted trapezoidal scheme to solve Maxwell equations with periodic solutions. Then LOD multisymplectic scheme is presented in order to reduce the cost of calculation. Unconditional stability, dispersion and convergence analysis for LODEFMS scheme are established additionally. We have carried out two examples in simulating Maxwell equations with periodic oscillatory solutions to illustrate the effectiveness and conservation property of LODEFMS scheme. In addition, taking one-dimensional Maxwell equation as an example, we find that least square method and LODEFMS scheme can be combined to fit the electric permittivity under small random perturbation data.
Fig 16. Divergence errors Err-DivE (left) and Err-DivH (right) in second testing case.
https://doi.org/10.1371/journal.pone.0256108.g016

Author Contributions

Conceptualization: Xiuling Yin, Jingjing Zhang.
Formal analysis: Xiuling Yin, Yanqin Liu.
Funding acquisition: Yanqin Liu, Yanfeng Shen.
Investigation: Limei Yan.
Methodology: Xiuling Yin, Limei Yan.
Project administration: Jingjing Zhang.
Resources: Xiuling Yin, Limei Yan.
Supervision: Jingjing Zhang.
Validation: Xiuling Yin.
Visualization: Yanqin Liu.
Writing – original draft: Xiuling Yin.
Writing – review & editing: Yanfeng Shen.

References

1. Cohen D, Cui JB, Hong JL, et al. Exponential integrators for stochastic Maxwell’s equations driven by Itô noise, J Comput Phys, 2020, 410, 109382 https://doi.org/10.1016/j.jcp.2020.109382
2. Kong LH, Hong YQ, Tian NN, et al. Stable and efficient numerical schemes for two-dimensional Maxwell equations in lossy medium. J Comput Phys, 2019, 397: 108703 https://doi.org/10.1016/j.jcp.2019.05.030

3. Chen CC, Hong JL, Ji LH. Runge-Kutta semidiscretizations for stochastic Maxwell equations with additive noise. SIAM J Numer Anal, 2019, 57 (2): 702–727 https://doi.org/10.1137/18M1193372

4. Chen CC, Hong JL, Ji LH. Mean-square convergence of a semidiscrete scheme for stochastic Maxwell equations. SIAM J Numer Anal, 2019, 57 (2): 728–750. https://doi.org/10.1137/18M1170431

5. Zhang LY, Chen CY, Hong JL, et al. A review on stochastic multi-symplectic methods for stochastic Maxwell equations. Commun Appl Math Comput, 2019, 1 (3): 467–501 https://doi.org/10.1007/s42967-019-00017-w

6. Chen CC, Hong JL, Zhang LY. Preservation of physical properties of stochastic Maxwell equations with additive noise via stochastic multi-symplectic methods. J Comput Phys, 2016, 306: 500–519 https://doi.org/10.1016/j.jcp.2015.11.052

7. Hong JL, Ji LH, Zhang LY. A stochastic multi-symplectic scheme for stochastic Maxwell equations with additive noise. J Comput Phys, 2014, 268: 255–268 https://doi.org/10.1016/j.jcp.2014.03.008

8. Kong LH, Hong JL, Zhang JI. Splitting multisymplectic integrators for Maxwell’s equations. J Comput Phys, 2010, 229 (11): 4259–4278 https://doi.org/10.1016/j.jcp.2010.02.010

9. Hong JL, Ji LH, Zhang LY, et al. An energy-conserving method for stochastic Maxwell equations with multiplicative noise. J Comput Phys, 2017, 351: 216–229

10. Zhang LY, Ji LH. Stochastic multi-symplectic Runge-Kutta methods for stochastic Hamiltonian PDEs. Appl Numer Math, 2019, 135: 396–406 https://doi.org/10.1016/j.apnum.2018.09.011

11. Zhu HJ, Song SH, Chen YM. Multi-symplectic wavelet collocation method for 3d stochastic Maxwell equations with multiplicative noise. Mathematics, 2014, 135: 396–406

12. He Y, Qin H, Sun YJ, et al. Hamiltonian time integrators for Vlasov-Maxwell equations. Physics of Plasmas, 2015, 22 (12): 2669–406 https://doi.org/10.1063/1.4938034

13. Wu C, Huang YQ, Yi NY, et al. Superconvergent recovery of edge finite element approximation for Maxwell’s equations. Comput Method Appl Eng, 2020, 371: 113302 https://doi.org/10.1016/j.cma.2020.113302

14. He Y, Sun YJ, Qin H, et al. Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations. Physics of Plasmas, 2016, 23 (9): 2669–58 https://doi.org/10.1063/1.4962573

15. Zeng FH, Ma HP, Liang D. Energy-conserved splitting spectral methods for two dimensional Maxwell’s equations. J Comput Appl Math, 2014, 265: 301–321 https://doi.org/10.1016/j.cam.2013.09.048

16. Zhang LY, Ji LH. Stochastic multi-symplectic Runge-Kutta methods for stochastic Hamiltonian PDEs. Appl Numer Math, 2019, 135: 396–406 https://doi.org/10.1016/j.apnum.2018.09.011

17. Cui JB, Liu ZH, Hong JL, et al. Stochastic symplectic and multi-symplectic methods for nonlinear Schrödinger equation with white noise dispersion. J Comput Phys, 2017, 342 (1): 267–285. https://doi.org/10.1016/j.jcp.2017.04.029

18. Zhu HJ, Chen YM, Song SH, et al. Symplectic and multi-symplectic wavelet collocation methods for two-dimensional Schrödinger equations. Appl Numer Math, 2011, 61 (3): 308–321 https://doi.org/10.1016/j.apnum.2010.10.008

19. Ma YP, Kong LH, Hong JL, et al. High-order compact splitting multisymplectic method for the coupled nonlinear Schrödinger equations. Comput Math Appl, 2011, 61 (2): 319–333 https://doi.org/10.1016/j.camwa.2010.11.007

20. Wu XY, Wang B. Recent developments in structure-preserving algorithms for oscillatory differential equations. Science Press, Spring, 2018

21. Wang B, Wu XY, Meng FW. Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second-order differential equations. J Comput Appl Math, 2017, 313: 185–201 https://doi.org/10.1016/j.cam.2016.09.017

22. Li YW, Wu XY. Functionally fitted energy-preserving methods for solving oscillatory nonlinear Hamiltonian systems. SIAM J Numer Anal, 2016, 54 (4): 2036–2059 https://doi.org/10.1137/15M1032752

23. Wang B, Iserles A, Wu XY. Arbitrary-order trigonometric Fourier collocation methods for multi-frequency oscillatory systems. Found Comput Math, 2016, 16 (1): 151–181 https://doi.org/10.1007/s10208-014-9241-9

24. Wu XY, Liu K, Shi W. Structure-preserving algorithms for oscillatory differential equations II. Science Press, Spring, 2015.

25. Wang B, Wu XY, Xia JL. Error bounds for explicit ERKN integrators for systems of multi-frequency oscillatory second-order differential equations. Appl Numer Math, 2013, 74: 17–34 https://doi.org/10.1016/j.apnum.2013.08.002
26. Wu XY, You X, Wang B. Structure-preserving algorithms for oscillatory differential equations. Science Press, Spring, 2013.

27. Wu XY, Wang B, Xia JL. Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods. BIT Numer Math, 2012, 52 (3): 773–795 https://doi.org/10.1007/s10543-012-0379-z

28. Berghe GV, Daele MV. Symplectic exponentially-fitted four-stage Runge-Kutta methods of the Gauss type. Numer Algorithms, 2011, 56 (4): 591–608. https://doi.org/10.1007/s11075-010-9407-8

29. Calvo M, Franco JM, Montijano JL, et al. Structure preservation of exponentially fitted Runge-Kutta methods. J Comput Appl Math, 2008, 218: 421–434

30. Yin XL, Zhang CJ, Liu YQ. Exponentially fitted trapezoidal scheme for a stochastic oscillator. J Comput Math, 2017, 35 (6): 801–813 https://doi.org/10.4208/jcm.1612-m2016-0677

31. Vanden BG, Ixaru LG, De Meyer H. Frequency determination and step-length control for exponentially-fitted Runge-Kutta methods. J Comput Appl Math, 2001, 132: 95–105 https://doi.org/10.1016/S0377-0427(00)00602-6

32. Cui JB, Hong JL, Liu ZH, et al. Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations. J Diff Equations, 2019, 266 (9): 5625–5663 https://doi.org/10.1016/j.jde.2018.10.034

33. Cui JB, Hong JL. Analysis of a splitting scheme for damped stochastic nonlinear Schrödinger equation with multiplicative noise. SIAM J Numer Anal, 2018, 56 (4): 2045–2069 https://doi.org/10.1137/17M1154904

34. McLachlan RI, Quispel GRW. Splitting methods. Acta Numer, 2002, 16: 341–434 https://doi.org/10.1017/S0962492902000053

35. Fan WP, Jiang XY. Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions. Acta Phys Sin, 2014, 63 (14): 140202