Spinorial wave equations and stability of the Milne spacetime

Edgar Gasperin and Juan Antonio Valiente Kroon

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK

E-mail: e.gasperingarcia@qmul.ac.uk and j.a.valiente-kroon@qmul.ac.uk

Received 15 July 2014, revised 17 June 2015
Accepted for publication 29 June 2015
Published 2 September 2015

Abstract
The spinorial versions of the conformal vacuum Einstein field equations are used to construct a system of quasilinear wave equations for the various conformal fields. As a part of the analysis we also show how to construct a subsidiary system of wave equations for the zero quantities associated to the various conformal field equations. This subsidiary system is used, in turn, to show that under suitable assumptions on the initial data a solution to the wave equations for the conformal fields implies a solution to the actual conformal Einstein field equations. The use of spinors allows for a more unified deduction of the required wave equations and the analysis of the subsidiary equations than similar approaches based on the metric conformal field equations. As an application of our construction we study the nonlinear stability of the Milne Universe. It is shown that sufficiently small perturbations of initial hyperboloidal data for the Milne Universe gives rise to a solution to the Einstein field equations which exists towards the future and has an asymptotic structure similar to that of the Milne Universe.

Keywords: conformal methods, spinors, wave equations, Milne Universe, global existence

1. Introduction

The conformal Einstein field equations (CEFE) constitute a powerful tool for the global analysis of spacetimes—see e.g. [15–17, 20–22]. The CEFE provide a system of field equations for geometric objects defined on a Lorentzian manifold \((\mathcal{M}, g)\) (the so-called unphysical spacetime) which is conformally related a spacetime \((\tilde{\mathcal{M}}, \tilde{g})\) (the so-called physical spacetime) satisfying the (vacuum) Einstein field equations. The metrics \(g\) and \(\tilde{g}\) are

1 Author to whom any correspondence should be addressed.
related to each other via a rescaling of the form \(g = \Xi^2 \hat{g} \), where \(\Xi \) is the so-called conformal factor. The CEFE have the property of being regular at the points where \(\Xi = 0 \) (the so-called conformal boundary) and a solution thereof implies, wherever \(\Xi \neq 0 \), a solution to the Einstein field equations. The great advantage of the conformal point of view provided by the CEFE is that it allows to recast global problems in the physical spacetime as local problems in the unphysical one. It is important to stress that, within this framework, the unphysical spacetime is a mathematical tool to discuss the asymptotic behaviour of the gravitational field. It is always conceptually clear that the stage of the Physics is the physical spacetime. This may be ambiguous in some scalar-tensor theories of gravity with conformal invariance, see e.g. [36], but not for the Einstein field equations which are not conformally invariant—the spacetime on which the Einstein field equations are satisfied is necessarily the physical one.

The CEFE have been extended to include matter sources consisting of suitable trace-free matter—see e.g. [22, 28, 29]. The CEFE can be expressed in terms of a Weyl connection (i.e. a connection which is not metric but nevertheless preserves the conformal structure) to obtain a more general system of field equations—the so-called extended CEFE, see [23]. In what follows, the conformal field equations expressed in terms of the Levi-Civita connection of the metric \(g \) will be known as the standard CEFE. The analysis of the present article is restricted to this version of the CEFE. The standard CEFE can be read as differential conditions on the conformal factor and some concomitants thereof: the Schouten tensor, the rescaled Weyl tensor and the components of the unphysical metric \(g \)—this version of the equations is known as the metric CEFE. Alternatively, by supplementing the field equations with the Cartan structure equations, one can replace the metric components by the coefficients of a frame and the associated connection coefficients as unknowns. This frame version of the equations allows a direct translation of the CEFE into a spinorial formalism—the so-called spinorial CEFE.

In view of the tensorial nature of the CEFE, to make assertions about the existence and properties of their solutions, it is necessary to derive from them a suitable evolution system to which the theory of hyperbolic partial differential equations can be applied. This procedure is known as a hyperbolic reduction. Part of the hyperbolic reduction procedure consists of a specification of the gauge inherent to the equations. A systematic way of proceeding to the specification of the gauge is through so-called gauge source functions. These functions are associated to derivatives of the field unknowns which are not determined by the field equations. This idea can be used to extract a first order symmetric hyperbolic system of equations for the field unknowns for the metric, frame and spinorial versions of the standard CEFE. More recently, it has been shown that gauge source functions can be used to obtain, out of the metric conformal field equations, a system of quasilinear wave equations—see [31]. This particular construction requires the specification of a coordinate gauge source function and a conformal gauge source function and is close, in spirit, to the classical treatment of the Cauchy problem in general relativity in [14]—see also [10]. Although, in principle, of general applicability, the construction of wave equations for the metric conformal field equations has been used, so far, only in the discussion of the asymptotic characteristic problem on a cone—see [11].

In the present article we show how to deduce a system of quasilinear wave equations for the unknowns of the spinorial CEFE and analyse its relation to the original set of field equations. The use of the spinorial CEFE (or, in fact, the frame CEFE) gives access to a wider set of gauge source functions consisting of coordinate, frame and conformal gauge source functions. Another advantage of the spinorial version of the CEFE is that they have a much simpler algebraic structure than the metric equations. To discuss this point let \(\nabla_A \) denote the spinorial extension of the Levi-Civita covariant derivative \(\nabla_a \) of the unphysical metric \(g \). One
of the features of the spinorial formalism simplifying our analysis is the use of the symmetric operator
\[\square_{AB} \equiv \nabla_{Q}^{(A} \nabla_{B)} Q' \]
instead of the usual commutator of covariant derivatives \([\nabla_{a}, \nabla_{b}]\). As shown in this article, the use of spinors allows a more unified and systematic discussion of the construction of the wave equations and the so-called subsidiary system—needed to show that under suitable conditions a solution to the wave equations implies a solution to the CEFE. As already mentioned, in the spinorial formulation of the CEFE the metric is not part of the unknowns. This observation is important since, whenever the wave operator \(\nabla_{a} \nabla^{a}\) is applied to any tensor of non-zero rank, there will appear derivatives of the connection which, in terms of the metric, represent second order derivatives. Thus, if the metric is part of the unknowns, the principal part of the operator \(\nabla_{a} \nabla^{a}\) is altered by the presence of these derivatives. This is an extra complication that needs to be taken into account in the analysis of [31]. The use of a spinorial frame formalism allows to exploit the algebraic properties of the conformal field equations in a more systematic manner—as it will be seen in the sequel the construction of evolution and subsidiary equations becomes almost algorithmic. In addition, the use of a spinorial version of the equations allows the use of more general classes of gauges and may be more amenable to the inclusion of matter.

In the view of the use of spinors, the wave equations considered in this article are expressed in terms of the spinorial extension of \(\nabla_{a} \nabla^{a}\)—see [34]. Namely, one has
\[\square \equiv \nabla_{AA} \nabla^{AA}. \]
The operator \(\square\) acting on spinors of non-zero rank will give rise to terms involving frame derivatives of the spin connection coefficients. The operator \(\square\) is the two-spinor version of the square of the spin-Dirac derivative operator—see e.g. [30].

The construction of wave equations for the fields appearing in the CEFE gives access to a set of methods of the theory of partial differential equations alternative to that used for first order symmetric hyperbolic systems—see e.g. [37] for a discussion on this. For example, the analysis in [31] is motivated by the analysis of the characteristic problem on a cone for which a detailed theory is available for quasilinear wave equations. An analogous construction of wave equations for the Dirac field on a curved spacetime using the two-spinors formalism has been given in [9]. It is also worth mentioning that a similar construction of wave equations can be readily implemented for the Maxwell and Yang–Mills fields.

As an application of the hyperbolic reduction procedure put forward in the present article, we provide an analysis of the nonlinear stability of the Milne Universe. The Milne Universe is a spatially flat Friedman–Lemaître–Robertson–Walker (FLRW) solution to the Einstein field equations with vanishing cosmological constant—see e.g. [24]. The Milne Universe can be seen to be a part of the Minkowski spacetime written in comoving coordinates adapted to the worldline of a particle. Accordingly, analysing the nonlinear stability of the Milne Universe is essentially equivalent to obtaining a proof of the the semiglobal stability of the Minkowski spacetime—see [20]. The stability of the Milne Universe has been analysed by means of a coupled mixed quasilinear elliptic-hyperbolic evolution system which combines a constant mean curvature foliation of spacetime and spatial harmonic coordinates in [6]—see also [3]. The formulation of the well-posedness for this system requires a delicate analysis. Once this is done, the stability is controlled by means of Bel–Robinson energies and a bootstrap argument.
In the analysis presented in the present article, the stability result follows from the general theory of quasilinear wave equations, in particular the property of Cauchy stability, as given in [26]. In broad terms, our stability result for the Milne Universe can be phrased as:

Theorem. Initial data for the conformal wave equations close enough to the data for the Milne Universe give rise to a solution to the Einstein field equations which exist globally to the future and has the an asymptotic structure similar to that of the Milne Universe.

As in the case of first order hyperbolic reductions of the CEFE—see e.g. [22]—the methods discussed in this article are applicable to spacetimes manifolds whose spatial sections are orientable compact manifolds. For this, one makes use the localisability property of solutions to hyperbolic equations—see e.g. [38] for further discussion on this type of constructions.

Outline of the article

This article is organized as follows. In section 2 we briefly present the spinorial version of the CEFE which will be the starting point of the analysis. In section 3, we give the derivation of the wave equations. For the sake of clarity, we first present a general procedure and then discuss the peculiarities of each equation. In section 4, we derive the subsidiary system and analyse the propagation of the contraints. In section 5, we give a semiglobal existence and stability result for the Milne spacetime as an application of the equations derived in section 3. In section 6 some concluding remarks are presented. In order to ease the presentation of the article, we have moved part of the calculations to a series of appendices. In appendix A we recall some general spinor relations and deduce the general form for the spinorial Ricci identities for a connection which is metric but not necessarily torsion free. In appendix B a brief discussion of the relation between the transition spinor and the torsion is provided. In appendix C detailed computations for the subsidiary system are presented. In appendix D we recall the the frame version of the CEFE. In appendix E an adapted version of a existence and Cauchy stability result for wave equations is given.

Notations and conventions

The signature convention for (Lorentzian) spacetime metrics will be \(+,−,−,−\). In what follows \(\{a, b, c, ...\}\) will be used as tensor indices and \(\{a, b, c, ...\}\) will be used as spacetime frame indices taking the values \(0, ..., 3\). In this manner, given a basis \(\{e_a\}\) a tensor will be denoted with \(T_{ab}\) while its components in the given basis will be denoted by \(T_{ab} \equiv T_{ab} e_a^a e_b^b\). The main part of the analysis will require the use of spinors. Accordingly, \(\{A, B, C, ...\}\) will denote frame spinorial indices with respect to some specified spin dyad \(\{\delta_A \, A\}\). We will follow the conventions and notation of Penrose and Rindler [34]. In addition, \(D^+(A), H(A), J^+(A)\) and \(I^+(A)\) will denote the future domain of dependence, the Cauchy horizon, causal and chronological future of \(A\), respectively—see [25, 42].

2. The CEFE in spinorial form

In [32] Penrose introduced a geometric technique to study the far fields of isolated gravitational systems in which, given a spacetime \((\mathcal{M}, \gamma_{ab})\) satisfying the Einstein field equations (the physical spacetime), we consider another spacetime \((\tilde{\mathcal{M}}, \tilde{\gamma}_{ab})\) (the unphysical spacetime) such that
\(g_{ab} = \Xi^2 \hat{g}_{ab}, \) \hspace{1cm} (1)

where \(\Xi \) is a scalar field (the conformal factor). If we try to derive an equation for the unphysical metric \(\hat{g}_{ab} \) using the Einstein field equations

\[
\hat{R}_{ab} = \lambda \hat{g}_{ab}
\]

making the straightforward computation using the conformal transformation rules for the curvature tensors implied by (1) we will obtain an expression which is singular at the conformal boundary, i.e. the points for which \(\Xi = 0 \). An approach to deal with this problem was given in [16] where a regular set of equations for the unphysical metric was derived. These equations are known as the CEFE. In order to recall the (vacuum) spinorial version of these equations let us introduce a frame \(\{e_{AA}\} \) and an associated spinorial dyad \(\{\epsilon_A^B\} \). Let \(\Gamma_{AA'}^{CC'}_{DD'} \) denote the spinorial counterpart of the connection coefficients of the Levi-Civita connection \(\nabla \) with respect to the metric \(g \). This spinor can be decomposed as

\[
\Gamma_{AA'}^{CC'}_{BB'} \equiv \Gamma_{AA'}^{CC'}_B \delta^C_B + \hat{\Gamma}_{AA'}^{CC'}_B \delta^C_B,
\]

where \(\Gamma_{AA'}^{CC'}_B = \frac{1}{2} \Gamma_{AA'}^{CC'}_B + \hat{\Gamma}_{AA'}^{CC'}_B \) are the reduced spin connection coefficients. Let \(\phi_{ABCD} \equiv \Xi^{-1} \psi_{ABCD} \) represent the so-called rescaled Weyl spinor as defined by Friedrich [16, 19]—the spinor \(\psi_{ABCD} \) is the so-called Weyl spinor and is the same conformal factor of equation (1). The spinor \(\phi_{ABCD} \) allows to exploit the conformal properties of the Weyl tensor and takes into account the classical result on the vanishing of Weyl tensor at the conformal boundary—see [35].

In the following \(\Gamma_{AA'}^{BB'} \) will denote the spinorial counterpart of the Schouten tensor of the metric \(g \). Likewise, \(s \) will denote a concomitant of the conformal factor defined by

\[
s \equiv \frac{1}{4} \Box \Xi - \Lambda \Xi \quad \text{with} \quad \Lambda \equiv -24R,
\]

where \(R \) is the Ricci scalar of the metric \(g \). In addition, \(R^C_{DAA'BB'} \) and \(\rho^C_{DAA'BB'} \) will represent shorthands for the geometric curvature and the algebraic curvature, given explicitly as

\[
R^C_{DAA'BB'} \equiv e_{AA'} \left(\Gamma_{BB'}^D \right) - e_{BB'} \left(\Gamma_{AA'}^D \right) - \Gamma_{BB'}^C \Gamma_{AA'}^D - \Gamma_{AA'}^D \Gamma_{BB'}^C + \Gamma_{FA}^C \Gamma_{DB}^F A + \Gamma_{AA'}^E \Gamma_{BB'}^E D - \Gamma_{BB'}^E \Gamma_{AA'}^E D,
\]

\[
\rho^C_{ABCD} \equiv \psi_{ABCD}^{CDD'} + L_{BC}^{DD'} \epsilon_{CA} - L_{BD}^{CC'} \epsilon_{DA}.
\]

Now, let us define the following spinors which will be collectively called zero-quantities:

\[
\Sigma_{AA'}^{QQ'}_{BB'} \equiv [e_{BB'}, e_{AA'}] - \hat{e}_{BB'}^{CQ} \epsilon_{AQ} - \hat{e}_{BB'}^{CQ} \epsilon_{AQ},
\]

\[
\Delta_{DB} \equiv \nabla_C^{Q} L_{D}^{QQ'} B^{B} + \phi_{CDBQ} \nabla^{Q} B^{C} \Xi,
\]

\[
\Lambda_{BB'}^{CQ} \equiv \nabla_{B}^{C} \phi_{BQ} \nabla^{Q} B^{C} \Xi.
\]

\[
Z_{AA'}^{BB'} \equiv \nabla_{AA'} \nabla_{BB'} \Xi + \Xi L_{AA'}^{BB'} - s e_{AB} \epsilon_{A'B'},
\]

\[
\Xi_{C}^{DAA'B'B'} \equiv R_{CaAA'B'B'} - \rho_{DAA'B'B'},
\]
In terms of these definitions, the spinorial version of the CEFE can be succinctly expressed as

$$
\Sigma_{AA'}^{QQ'} - \Delta_{BB'} = 0, \quad \Lambda_{B'BCD} = 0,
$$

(5a)

$$
Z_{AA'BB'} = 0, \quad \Xi^C_{DAAB'} = 0, \quad Z_{AA'} = 0.
$$

(5b)

Remark. Observe that all the equations are first order except for the fourth equation, which can be written as a first order equation by defining $\Sigma_{AA'} \equiv \nabla_{AA'} \Xi$. Also, notice that the trace $Z = Z_{AA'}$ renders the definition of the field s. More details about the CEFE and its derivation can be found in [18, 22].

3. The spinorial wave equations

In this section a set of wave equations is derived from the spinorial version of the CEFE. Since the approach for obtaining the equations is similar for most of the zero-quantities, we first provide a general discussion of the procedure. In the subsequent parts of this section we address the peculiarities of each equation. The results of this section are summarized in proposition 1.

3.1. General procedure for obtaining the wave equations

Before deriving each of the wave equations let us illustrate the general procedure with a model equation. To this end consider an equation of the form

$$
\nabla^E_A N_{EAK} = 0,
$$

(6)

where $N_{EAK} \equiv \nabla_{E} M_{ABK}$ and κ is an arbitrary string of spinor indices. We can exploit the symmetries using the following decomposition of a spinor of the same index structure

$$
T_{EAK} = T_{(EA)\kappa} + \frac{1}{2} \epsilon_{EA} T_{Q^\kappa},
$$

and recast N_{EAK} as

$$
N_{EAK} = \nabla_{E} M_{ABK} + \frac{1}{2} \epsilon_{EA} \nabla_{Q^\kappa} M_{QBK}.\]

Remark. The model equation (6) determines the symmetrized derivative $\nabla_{E} M_{ABK}$, while the divergence $\nabla_{Q^\kappa} M_{QBK}$ can be freely specified.

In view of the last remark let $F_{\lambda}(x) \equiv \nabla_{Q^\kappa} M_{QBK}$ be a smooth but otherwise arbitrary spinor. This spinor, encoding the freely specifiable part of N_{EAK}, is the *gauge source function* for our model equation. Taking this discussion into account, the model equation can be reexpressed as
\[\nabla^E_{A'\hat{A}} N_{E\hat{A}} = \nabla^E_{A'} \nabla^B_{\hat{A}'} M_{AB'\hat{C}} + \frac{1}{2} \nabla_{AA'} F_{\hat{C}}(x) \]

\[= \nabla^E_{A'} (\nabla^H_{B'\hat{A}} M_{B'\hat{C}} + \frac{1}{2} \epsilon_{A'B'\hat{A'}} \nabla^E_{\hat{C}} M_{A'B'\hat{C}} + \frac{1}{2} \nabla_{AA'} F_{\hat{C}}(x) = 0, \]

where in the second row we have used, again, the decomposition of a two-valence spinor in its symmetric and trace parts. Finally, recalling the definition of the operators

\[\Box = \nabla_{AA'} \nabla_{AA'}, \quad \Box_{AB} = \nabla^Q_{(A} \nabla_{B)}, \]

we rewrite equation (7) as

\[\Box M_{AA'\hat{C}} - 2 \Box_{A'B'} M_{B'\hat{C}} - \nabla_{AA'} F_{\hat{C}}(x) = 0. \]

The spinorial Ricci identities allow us to rewrite \(\Box_{A'B'} M_{B'\hat{C}} \) in terms of the curvature spinors —namely, the Weyl spinor \(\Psi_{\hat{A}\hat{B}\hat{C}\hat{D}} = \Xi \epsilon_{\hat{A}\hat{B}\hat{C}\hat{D}} \), the Ricci spinor \(\Phi_{A'B',\hat{C}} \), and the Ricci scalar \(\Lambda = -24R \) and \(M_{AB'\hat{C}} \).

In the rest of the section we will derive the particular wave equations implied by each of the zero-quantities following an analogous procedure as the one used for the model equation.

3.2. Wave equation for the frame (no-torsion condition)

The zero-quantity \(\Sigma_{AA'}^{Q'O'B'} \) encodes the no-torsion condition. The equation (4a) can be conveniently rewritten introducing an arbitrary frame \(\{ e_a \} \), which allow us to write \(e_{AA'} = e_{AA'} e_a e_a \). Taking this into account we rewrite the zero-quantity for the no-torsion condition as

\[\Sigma_{AA'}^{Q'O'B'} e_{Q'O'} = \nabla_{BB'}(e_{AA'} e_a e_a) - \nabla_{AA'}(e_{BB'} e_a e_a) - C_a e_{AA'} e_{BB'} e_b, \]

where \(C_a e_b \) are the commutation coefficients of the frame, defined by the relation \([e_a, e_b] = C_a e_b e_c \). For conciseness, we have introduced the notation \(\nabla_{AA'} e_{BB'} e_a e_{BB'} e_b \) which is to be interpreted as a shorthand for the longer expression

\[\nabla_{AA'} e_{BB'} e_a e_{BB'} e_b = e_{AA'} e_a e_{BB'} e_a e_{BB'} e_b - \Gamma_{AA'} e_{BB'} e_a e_{BB'} e_b - \Gamma_{AA'} e_{BB'} e_a e_{BB'} e_b. \]

Using the irreducible decomposition of a spinor representing an antisymmetric tensor we obtain that

\[\Sigma_{AA'}^{Q'O'B'} e_{Q'O'} = \epsilon_{AB} \Sigma_{A'B'} e_{A'B'} + \epsilon_{A'B'} \Sigma_{AB} e_{A'B'}, \]

where

\[\Sigma_{AB} e_{A'B'} = \frac{1}{2} \Sigma_{D'|D} Q'O'^{D'} B' D' e_{Q'O'} e_{D'} \]

is a reduced zero-quantity which can be written in terms of the frame coefficients using equation (9) as

\[\Sigma_{AB} e_{A'B'} = \nabla_{A'} e_{B'D'} e_{A'B'} + \frac{1}{2} \epsilon_{A'D} e_{B'D} e_{D'} e_{A'B'} C_a e_b. \]

Using the decomposition of a valence-2 spinor in the first term of the right-hand side we get

\[\Sigma_{AB} e_{A'B'} = \nabla_{A'} e_{B'D'} e_{A'B'} + \frac{1}{2} \epsilon_{AB} e_{D'D} e_{D'} e_{A'B'} C_a e_b. \]

Introducing the coordinate gauge source function \(F^e(x) = \nabla^{PD} e_{PD} e^e \), a wave equation can then be deduced from the condition
\[\nabla^A_E \Sigma_{AB}^C = 0. \]

Observe that this equation is satisfied if \(\Sigma_{AB}^C = 0 \)—that is, if the corresponding CEFE is satisfied. Adapting the general procedure described in section 3.1 as required, we get

\[\square e_{BE}^{\epsilon} - 2 \square e_{ED}^{\epsilon} e_{B}^{D} - \nabla_{BE} F^\epsilon(x) - \nabla_{E}^A (e_A^{D} e_{EB}^{D} e_{B}^{C}) \phi = 0. \]

Finally, using the spinorial Ricci identities and rearranging the last term we get the following wave equation

\[\square e_{BE}^{\epsilon} - 2 \epsilon_{qB}^{D} e_{qBE}^{D} + 6 \Lambda e_{BE}^{\epsilon} - e_A^{D} e_{EB}^{D} e_{B}^{C} \nabla_{E}^A C_A^\epsilon = 0. \]

(11)

3.3. Wave equation for the connection coefficients

The spinorial counterpart of the Riemann tensor can be decomposed as

\[R_{A\bar{B}B\bar{C}}^{C\bar{D}} = R_{A\bar{B}C\bar{D}}^{\bar{D}C\bar{A}} + \bar{R}_{A\bar{B}C\bar{D}D\bar{C}}^{\bar{D}C\bar{A}}, \]

where the reduced curvature spinor \(R_{A\bar{B}C\bar{D}D\bar{C}} \) is expressed in terms of the spin connection coefficients as

\[R_{A\bar{B}C\bar{D}D\bar{C}} + \Sigma_{CC}^{\mu \nu} \Gamma_{\mu \nu \bar{A} \bar{B}} - \nabla_{D\bar{D}} \Gamma_{C|\bar{C}|\bar{A} \bar{B}} - \nabla_{C\bar{C}} \Gamma_{D\bar{D}|\bar{A} \bar{B}} - \Gamma_{D\bar{D}} \Gamma_{C\bar{C}Q|\bar{A} \bar{B}}. \]

(12)

In the last equation, \(\nabla_{D\bar{D}} \Gamma_{C|\bar{C}|\bar{A} \bar{B}} \) has been introduced for convenience as a shorthand for the longer expression

\[\tilde{\nabla}_{D\bar{D}} \Gamma_{C|\bar{C}|\bar{A} \bar{B}} \equiv \epsilon_{D\bar{D}} \Gamma_{C|\bar{C}|\bar{A} \bar{B}} - \Gamma_{D\bar{D}} Q_{C\bar{D}} \Gamma_{C|\bar{A} \bar{B}} - \Gamma_{D\bar{D}} Q_{C\bar{D}} \Gamma_{C|\bar{A} \bar{B}} - \Gamma_{D\bar{D}} Q_{C\bar{D}} \Gamma_{C|\bar{A} \bar{B}}. \]

Now, observe that the zero quantity \(\Xi_{A\bar{B}C\bar{D}D\bar{C}} \) defined in equation (4e) has the symmetry \(\Xi_{A\bar{B}C\bar{D}D\bar{C}} = -\Xi_{A\bar{B}D\bar{C}C\bar{D}} \). Exploiting this fact, the reduced spinors associated to the geometric and algebraic curvatures \(R_{A\bar{B}C\bar{D}D\bar{C}} \) and \(\rho_{A\bar{B}C\bar{D}D\bar{C}} \) can be split, respectively, as

\[R_{A\bar{B}C\bar{D}D\bar{C}} = \epsilon_{C\bar{D}} R_{A\bar{B}CD} + \epsilon_{C\bar{D}} R_{A\bar{B}CD}, \quad \rho_{A\bar{B}C\bar{D}D\bar{C}} = \epsilon_{C\bar{D}} \rho_{A\bar{B}CD} + \epsilon_{C\bar{D}} \rho_{A\bar{B}CD}, \]

where

\[R_{A\bar{B}CD} = \frac{1}{2} R_{A\bar{B}CD | E D E}, \quad R_{A\bar{B}CD} = \frac{1}{2} R_{A\bar{B}CD | E D E}. \]

are the reduced geometric curvature spinors. Analogous definitions are introduced for the algebraic curvature. Together, these two reduced geometric and algebraic curvature spinors give the reduced zero quantities

\[\Xi_{A\bar{B}C\bar{D}D\bar{C}} = R_{A\bar{B}CD} - \rho_{A\bar{B}C\bar{D}D\bar{C}} \quad \Xi_{A\bar{B}C\bar{D}D\bar{C}} = R_{A\bar{B}CD} - \rho_{A\bar{B}CD}. \]

Remark. Observe that although \(R_{A\bar{B}CD} \) and \(\rho_{A\bar{B}C\bar{D}D\bar{C}} \) are independent, their derivatives are related through the second Bianchi identity, which implies that

\[\nabla_{D\bar{D}} R_{A\bar{B}CD} = \nabla_{D\bar{D}} R_{A\bar{B}CD}. \]

\(^2\) Observe that in contrast with the split (10) used for the no-torsion condition, the reduced spinors \(R_{A\bar{B}CD} \) and \(\rho_{A\bar{B}C\bar{D}D\bar{C}} \) are not complex conjugate of each other.
This observation is also true for the algebraic curvature as a consequence of the conformal field equations \(\Delta_{CDBB'} = 0 \) and \(\Lambda_{B'BCD} \equiv 0 \) since they encode the second Bianchi identity written as differential conditions on the spinorial counterpart of the Schouten tensor and the Weyl spinor. To verify the last statement, recall that the equation for the Schouten tensor encoded in \(\Delta_{CDBB'} = 0 \) comes from the frame equation

\[
\nabla_a C^a_{\ bcd} = \nabla_d L_{bc} - \nabla_d L_{cb},
\]

which can be regarded as the second Bianchi identity written in terms of the Schouten and Weyl tensors. It can be easily checked, since the last equation is obtained from the substitution of the expression for the Riemann tensor in terms of the Weyl and Schouten tensors (i.e. the algebraic curvature) in the second Bianchi identity. This means that, as long as the conformal field equations \(\Delta_{CDBB'} = 0 \) and \(\Lambda_{B'BCD} \equiv 0 \) are satisfied we can write

\[
\nabla^C D^D \rho_{ABCD} = \nabla^C D^D \rho_{ABCD}'.
\]

Therefore, the reduced quantities \(\Xi_{ABCD} \) and \(\Xi_{ABCD'} \) are related via

\[
\nabla^C D^D \Xi_{ABCD} = \nabla^C D^D \Xi_{ABCD'}.
\]

Now, we compute explicitly the reduced geometric and algebraic curvature. Recalling the definition of \(\rho_{ABCC DD} \) in terms of the Weyl spinor and the spinorial counterpart of the Schouten tensor as given in equation (3b) it follows that

\[
\rho_{ABCD} = \psi_{ABCD} + L_{BE/(D} E^C_{\ C)} A
\]
or, equivalently

\[
\rho_{ABCD} = \Xi_{ABCD} + 2\Lambda(\epsilon_{DB} \epsilon_{CA} + \epsilon_{CB} \epsilon_{DA}).
\]

Similarly

\[
\rho_{ABCD'} = \Phi_{ABCD'}.
\]

Computing the reduced version of the geometric curvature from expression (12) we get

\[
R_{ABCD} = -\frac{1}{2} \Sigma_{(C[E|F]QO')} D^E' I_{QO'} AB + \nabla_{(C[E|F]} \Gamma_{D) AB} + \Gamma_{(C[E|QO'B|D) AB} E'_{\ QA}.
\]

\[
R_{ABCD'} = -\frac{1}{2} \Sigma_{E(C[QO'} D') I_{QO'} AB + \nabla_{E(C[QO'} D') AB} + \Gamma_{E(C[QO'B|D) AB} E'_{\ QA}.
\]

If the no-torsion condition (9) is satisfied, then the first term in each of the last expressions vanishes. In this manner one obtains an expression for the reduced geometric curvature purely in terms of the reduced connection coefficients and, in turn, a wave equation from either \(\nabla^C D^D \Xi_{ABCD} \) or \(\nabla^C D^D \Xi_{ABCD'} \). In what follows, for concreteness we will consider

\[
\nabla^C D^D \Xi_{ABCD} = 0.
\]

Adapting the procedure described in section 3.1 and taking into account equations (14) and (15a) one obtains

\[
\Box \Gamma_{DD'AB} = 2\Box D^E_{\ E'DAB} - \nabla_{D'D} F_{AB}(x) + 2\nabla^C D^E_{\ E'DAB} + \Gamma_{D'E'OBB'} = 2\nabla^C D^D \Phi_{ABCD'}.\]

The gauge source function that appears in the last expression is the frame gauge source function defined by
Using the spinorial Ricci identities to replace $\Box_{D} \Gamma_{D}^{E} D_{AB}$ in equation (16) and exploiting the symmetry $\Gamma_{D}^{E} D_{(AB)} = \Gamma_{D}^{E} D_{(BA)}$ we get

$$\Box_{D} \Gamma_{D}^{E} D_{AB} = -3 \Lambda \Gamma_{D}^{AB} + \Gamma_{D}^{EH} B_{H} D_{DE}$$

$$+ 2 \Xi \phi_{DEH(A} \Gamma_{D)}^{E} D_{H} B) - 2 \Gamma_{D}^{E} D_{(B} \epsilon_{(D)} A).$$

Substituting the last expression into (16) we get the wave equation

$$\Box \Gamma_{D}^{E} D_{AB} = -2 \Gamma_{D}^{EH} B_{H} D_{DE} - 3 \Lambda \Gamma_{D}^{AB} + 2 \Xi \phi_{DEH(A} \Gamma_{D)}^{E} D_{H} B) - 2 \Gamma_{D}^{E} D_{(B} \epsilon_{(D)} A)$$

$$- 2 \Gamma_{(A}^{E} D_{|B)} - 2 \Gamma_{D}^{E} D_{(B} \epsilon_{(D)} A) + 2 \nabla_{C}^{E} D_{D}^{1} E_{C}^{(B) |D} B_{|D} A$$

$$- 2 \nabla_{D}^{E} D_{D}^{B} A_{C} D_{D} E - \nabla_{D} D_{F} D_{AB}(x) = 0.$$

3.4. Wave equation for the Ricci spinor

The zero-quantity defined by equation (4b) is expressed in terms of the spinorial counterpart of the Schouten tensor. The spinor $L_{AA'BB'}$ can be decomposed in terms of the Ricci spinor $\Phi_{AA'BB'}$ and Λ as

$$L_{AA'BB'} = \Phi_{AA'BB'} - \Lambda \epsilon_{AA'BB'}$$

(18)

see appendix A for more details. In the context of the CEFE the field Λ can be regarded as a gauge source function. Thus, in what follows we regard the equation $\Delta_{CABB} = 0$ as differential conditions on $\Phi_{AA'BB'}$.

In order to derive a wave equation for the Ricci spinor we consider

$$\nabla_{C}^{E} \nabla_{C}^{D} L_{DDE'B'} = 0.$$

Proceeding, again, as described in section 3.1 and using that $\nabla_{C}^{E} \phi_{CD} = 0$—that is, assuming that the equation encoded in the zero-quantity L_{CD}^{C} is satisfied—we get

$$\Box_{D} L_{DDE'B'} = 2 \Box_{D} Q_{D} Q_{D} B' - \nabla_{DE} \nabla_{Q}^{E} Q_{DE} B' - 2 \Phi_{CD} \nabla_{C}^{E} \nabla_{D} Q_{B} Q_{B} \Xi = 0.$$

Using the decomposition (18) and symmetrizing in CD we further obtain that

$$\Box_{D} L_{DDE'B'} = 2 \Box_{D} Q_{D} Q_{D} B' - \nabla_{DE} \nabla_{Q}^{E} Q_{DE} B' - 2 \Phi_{CD} \nabla_{C}^{E} \nabla_{D} Q_{B} Q_{B} \Xi = 0.$$

(19)

To find a satisfactory wave equation for the Ricci tensor we need to rewrite the last three terms of equation (19). To compute the third term observe that the second contracted Bianchi identity as in equation (55) and the decomposition of the Schouten spinor given by equation (18) render

$$\nabla_{Q}^{E} Q_{DE} B' = \nabla_{Q}^{E} Q_{DE} B' - \epsilon_{EB} Q_{B} B' \nabla_{Q}^{E} \Lambda = -4 \nabla_{BB} \Lambda.$$

Thus, one finds that

$$\nabla_{DE} \nabla_{Q}^{E} Q_{DE} B' = -4 \nabla_{Q}^{E} \nabla_{B} B' \Lambda.$$

(20)

This last expression is satisfactory since, as already mentioned, the Ricci scalar R (or equivalently Λ) can be regarded as a gauge source function—the so-called conformal gauge source function [18]. In order to replace the last term of equation (19) we use field equation encoded in $Z_{AA'BB'} = 0$ and the decomposition (18), to obtain
Finally, computing \(\Box_Q \phi_{DB} \phi_{B'} \) and substituting equations (20) and (21) we conclude that
\[
\phi_{CD} \nabla^C E^E \nabla_E Q B' = -\Xi \phi_{CD} \phi^C E^E Q B'.
\]
(21)

3.5. Wave equation for the rescaled Weyl spinor

Proceeding as in the previous subsections, consider the equation
\[
\nabla^Q_{B'} \Lambda_{B'BC} = 0.
\]
(23)

Observe that in this case we do not need a gauge source function since we already have an unsymmetrized derivative in the definition of \(\Lambda_{B'BC} \). Following the procedure described in section 3.1 we get
\[
\nabla^Q_{B'} \phi_{ABC} = -2 \nabla^Q_{B'} \phi_{ABC} = 0.
\]

Thus, to complete the discussion we need to calculate \(\nabla^Q_{B'} \phi_{ABC} \). Using the spinorial Ricci identities we obtain
\[
\nabla^Q_{B'} \phi_{ABC} = \Xi \phi_{AB} \phi_{BC} FQ + \Xi \phi_{AB} \phi_{AC} FQ + \Xi \phi_{ABC} FQ - 6 \Lambda \phi_{ABCD}.
\]

The symmetries of \(\phi_{ABCD} \) simplify the equation since
\[
\nabla^Q_{B'} \phi_{ABC} = 3 \Xi \phi_{AB} \phi_{C} FQ - 6 \Lambda \phi_{ABCD}.
\]

Taking into account the last expression we obtain the following wave equation for the rescaled Weyl spinor
\[
\nabla^Q_{B'} \phi_{ABC} = 6 \Xi \phi_{AB} \phi_{C} FQ + 12 \Lambda \phi_{ABCD} = 0.
\]
(24)

Observe that the wave equation for the rescaled Weyl spinor is remarkably simple.

3.6. Wave equation for the field \(s \) and the conformal factor

Since \(s \) is a scalar field, the general procedure described in section 3.1 does not provide any computational advantage. The required wave equation is derived from considering
\[
\nabla^AA' Z_{AA'} = 0.
\]

Explicitly, the last equation can be written as
\[
\nabla^AA' \phi_{AC} \nabla^CC \Xi + \phi_{AC} \nabla^AA' \nabla^CC \Xi = 0.
\]

Using the the contracted second Bianchi identity (55) to replace the second term and the field equation \(Z_{ABCD} \) along with the decomposition (18) to replace the third term we get
\[
\nabla^AA' \phi_{AC} \nabla^CC \Xi + 3 \nabla^CC \Lambda \nabla^CC \Xi = 0.
\]

Finally, notice that a wave equation for the conformal factor follows directly from the contraction \(AA' \) and the decomposition (54):
\[
\nabla^AA' = 4(s + \Lambda \Xi).
\]
3.7. Summary of the analysis

We summarize the results of this section in the following proposition:

Proposition 1. Let

\[F^a(x), \quad F_{AB}(x), \quad \Lambda(x) \]

denote smooth functions on \(\mathcal{M} \) such that

\[
\nabla^QQ e_{QD} = F^a(x), \quad \nabla^QQ \Gamma_{Q'AR} = F_{AB}(x) \quad \nabla^QQ \phi_{PQ^{P}Q'} = -3\nabla_{PP}'\nabla(x).
\]

If the CEFE (5b) are satisfied on \(\mathcal{U} \subset \mathcal{M} \), then one has that

\[\Box e_{BE}^{c} - 2e_{QD}^{c}e_{QBE}^{D'} + 6\Lambda e_{BE}^{c} - e_{[A}^{D}e_{B[D}^{D} \nabla A_{E} e_{B]}^{c} - 2C_{a}^{c} e_{[A}^{D} \nabla A_{E} e_{B]^c} - \nabla_{BE} F^{c}(x) = 0, \]

(25a)

\[\Box \Gamma_{DD'AB} - 2(\Gamma^{E[789}] AB e_{D[D'} e_{B]} - 3\Lambda \Gamma_{DD'AB} + 2\phi_{DEH(A}^{E} |D'|^{B}) - 2\Gamma_{(A}^{E[D} D_{B]}^{D} = 0, \]

(25b)

\[\Box \phi_{DBE'B'} - 4\phi_{D[B}^{E} e_{B[D'} e_{E']} + 6\Lambda \phi_{DBE'B'} - 2\phi_{E}[Q'B'H^{Q'}] + 4\nabla_{E}[D] \nabla_{B]B'} - 2\phi_{E}^{[Q} e_{B']^{Q'} = 0, \]

(25c)

\[\Box \phi - 3\phi_{AC}^{[A} e_{E]}^{C]e_{AC}^{C]} - 3\nabla_{CC} A \nabla^{CC' E} = 0, \]

(25d)

\[\Box \phi_{ABCD} - 6\phi_{E[Q} e_{B]^{Q} e_{CD]} + 12\phi_{ABCD} = 0, \]

(25e)

\[\Box \Xi - 4(s + \Lambda \Xi) = 0, \]

(25f)

on \(\mathcal{U} \).

Remark.

(a) The unphysical metric is not part of the unknowns of the system of equations of the spinorial version of the CEFE. This observation is of relevance in the present context because when the operator \(\Box \) is applied to a spinor \(n_{C} \) of non-zero rank one obtains first derivatives of the connection—if the metric is part of the unknowns then these first derivatives of the connection representing second derivatives of \(g \) would enter into the principal part of the operator \(\Box \). Therefore, since in this setting the metric is not part of the unknowns, the principal part of the operator \(\Box \) is given by \(e_{AB}^{A} e_{BB} \).

(b) The operator \(\Box \) acting on spinors of non-zero rank will rise to terms involving frame derivatives of the spin connection coefficients. The presence of derivatives of the spin connection coefficients do not affect the hyperbolicity of the system as both the frame and the spin connection coefficients are included as unknowns in the evolution system (25a)–(25f). The operator \(\Box \) is the two-spinor version of the square of the spin-Dirac derivative operator—see e.g. [30].

(c) In the sequel let \(\{ e, \Gamma, \Phi, \phi \} \) denote vector-valued unknowns encoding the independent components of \(\{ e_{[A}^{[A} e_{E]}^{C]e_{AC}^{C]} \} \) and let \(\Xi = (e, \Gamma, \Phi, \phi, s, \Xi) \). Additionally, let \(\partial \Xi \) denote collectively the derivatives of \(\Xi \). With this notation the wave equations of proposition 1 can be recast as a quasilinear wave equation for \(\Xi \) having, in
local coordinates, the form
\[
g^{\mu\nu}(\mathbf{u})\partial_{\mu}u + F(x, u, \partial u) = 0,
\]
where \(F\) is a vector-valued function of its arguments and \(g^{\mu\nu}\) denotes the components, in local coordinates, of contravariant version of a Lorentzian metric \(g\). In accordance with our notation \(g^{\mu\nu} = \eta^{ab}e^{a}_{\mu}e^{b}_{\nu}\) where, in local coordinates, one writes \(e_{a} = e^{a}_{\mu}\partial_{\mu}\).

4. Propagation of the constraints and the derivation of the subsidiary system

The starting point of the derivation of the wave equations discussed in the previous section was the CEFE. Therefore, any solution to the CEFE is a solution to the wave equations. It is now natural to ask: under which conditions a solution to the wave equations (25) will imply a solution to the CEFE? The general strategy to answer this question is to use the spinorial wave equations of proposition 1 to construct a subsidiary system of homogeneous wave equations for the zero-quantities and impose vanishing initial conditions. Then, using a standard existence and uniqueness result for wave equations, the unique solution satisfying the data will be given by the vanishing of each zero-quantity. This means that under certain conditions (encoded in the initial data for the subsidiary system) a solution to the spinorial wave equations will imply a solution to the original CEFE. The procedure to construct the subsidiary equations for the zero quantities is similar to the construction of the wave equations of proposition 1. There is, however, a key difference: the covariant derivative is, \textit{a priori}, not assumed to be a Levi-Civita connection. Instead we assume that the connection is metric but not necessarily torsion-free. We will denote this derivative by \(\nabla\). Therefore, whenever a commutator of covariant derivatives appears, or in spinorial terms the operator
\[
\nabla_{AB} \equiv \nabla_{(A}^{C'} \nabla_{B)}^{C'},
\]
it is necessary to use the \(\nabla\)-spinorial Ricci identities involving a non-vanishing torsion spinor—this generalization is given in the appendix A and is required in the discussion of the subsidiary equations where the torsion is, in itself, a variable for which a subsidiary equation needs to be constructed.

As in the previous section, the procedure for obtaining the subsidiary system is similar for each zero-quantity. Therefore, we first give a general outline of the procedure.

4.1. General procedure for obtaining the subsidiary system and the propagation of the constraints

In the general procedure described in section 3.1, the spinor \(N_{EAK}\) played the role of a zero-quantity, while the spinor \(M_{AB/K}\) played the role of the variable for which the wave equation (8) was to be derived. In the construction of the subsidiary system we are not interested in finding an equation for \(M_{AB/K}\) but in deriving an equation for \(N_{EAK}\) under the hypothesis that the wave equation for \(M_{AB/K}\) is satisfied. As already discussed, since we cannot assume that the connection is torsion-free the equation for \(N_{EAK}\) has to be written in terms of the metric connection \(\nabla\).

Before deriving the subsidiary equation let us emphasise an important point. In section 3.1 we defined \(N_{EAK} = \nabla_{E}^{B'} M_{AB/K}^{B'}\). Then, decomposing this quantity as usual we obtained
\[
N_{EAK} = \nabla_{E}^{B'} M_{AB/K}^{B'} + \frac{1}{2} \epsilon_{EA}^{B'} \nabla^{QB'} M_{QB/K}^{B'}.
\]
At this point in the discussion of section 3.1 we introduced a gauge source function $\nabla^P M^{PQ}_{\;KC} = F_K$. Now, instead of directly deriving an equation for \overline{N}_{EAC} we have derived an equation using the modified quantity MF_{EAC}. Accordingly, the wave equations of proposition 1 can be succinctly written as

$$\nabla_E P^E_{\;MB^\prime C} + \frac{1}{2} \epsilon_{EA} F_K.$$

Now, let's consider the modified quantity

$$\overline{N}_{EAC} \equiv \nabla_E P^E_{\;MB^\prime C} + \frac{1}{2} \epsilon_{EA} F_K.$$

Accordingly, the wave equations of proposition 1 can be succinctly written as

$$\nabla^A C\overline{N}_{ABC} = \nabla^A C\overline{N}_{ABC} - Q^A C^A H\overline{N}_{HBK} - Q^A C^B H\overline{N}_{ABK} - \cdots - Q^A C^K H\overline{N}_{AB \cdots H}. \quad (27)$$

where K is the last index of the string K. For a connection which is metric, the transition spinor can be written entirely in terms of the torsion as

$$Q_{AA'BC} = -2\Sigma_{BAA'C} - 2\Sigma_{A(C[A'\mid B]} - 2\Sigma_{A\mid C\mid Q'^\prime \epsilon_{A\mid B]}}. \quad (28)$$

If the wave equation $\nabla^A C\overline{N}_{ABC} = 0$ is satisfied, the first term of equation (27) vanishes. Therefore, the wave equations of proposition 1 can be written in terms of the connection ∇^A as

$$\nabla^A C\overline{N}_{ABC} = W_{BC}^\prime \quad (29)$$

where

$$W_{BC}^\prime = - Q^A C^A H\overline{N}_{HBK} - Q^A C^B H\overline{N}_{ABK} - \cdots - Q^A C^K H\overline{N}_{AB \cdots H}.$$

4.1.1. The subsidiary system. Now, we want to show that by setting the appropriate initial conditions, if the wave equation $\nabla^A E\overline{N}_{ABC} = 0$ holds then $\overline{N}_{ABC} = 0$. The strategy will be to obtain an homogeneous wave equation for \overline{N}_{ABC} written in terms of the connection ∇. First, observe that $\nabla^E P^E_{\;MB^\prime C}$ can be decomposed as

$$\nabla^E P^E_{\;MB^\prime C} = \nabla^E P^E_{\;MB^\prime C} + \frac{1}{2} \epsilon_{PA} \nabla^E_{\;B\overline{N}_{AC}^\prime E}. \quad (30)$$

Replacing the second term using (29)—i.e. using that the wave equation $\nabla^A E\overline{N}_{ABC} = 0$ holds—we get that

$$\nabla^E P^E_{\;MB^\prime C} = \nabla^E P^E_{\;MB^\prime C} + \frac{1}{2} \epsilon_{PA} W E^\prime_{\;B\overline{N}_{AC}^\prime E}. \quad$$

Applying $\nabla^E P^E_{\;MB^\prime C}$ to the previous equation and expanding the symmetrized term in the right-hand side one obtains
\begin{align*}
\hat{\nabla}_P^Q \hat{\nabla}_R^S \hat{\nabla}_P^R \hat{\nabla}_A^B = & \frac{1}{2} \hat{\nabla}_P^Q \left(\hat{\nabla}_P^R \hat{\nabla}_A^B + \hat{\nabla}_R^Q \hat{\nabla}_A^P \right) + \frac{1}{2} \hat{\nabla}_A^Q W^Q_{\ B K},
\end{align*}

From this expression, after some rearrangements we obtain

\begin{align*}
\hat{\Delta} \hat{\nabla}_{ABC} = 2 \hat{\nabla}_P^A \hat{\nabla}^P_{\ B K} - 2 \hat{\nabla}_A^Q W^Q_{\ B K}.
\end{align*}

It only remains to reexpress the right-hand side of the above equation using the \(\hat{\nabla} \)-spinorial Ricci identities. This can be computed for each zero-quantity using the expressions given in appendix A. Observe that the result is always an homogeneous expression in the zero-quantities and its first derivatives. The last term also shares this property since the transition spinor can be completely written in terms of the torsion, as shown in equation \((28)\), which is one of the zero-quantities. Finally, once the homogeneous wave equation is obtained we set the initial conditions

\begin{align*}
\hat{\nabla}_{ABC} \mid_S = 0 \quad \text{and} \quad \left(\hat{\nabla}_{EE} \hat{\nabla}_{ABC} \right) \mid_S = 0
\end{align*}

on a initial hypersurface \(\mathcal{S} \), and using a standard result of existence and uniqueness for wave equations we conclude that the unique solution satisfying this data is \(\hat{\nabla}_{ABC} = 0 \).

Remark. The crucial step in the last derivation was the assumption that the equation \(\nabla^A_E \hat{\nabla}_{ABC} = 0 \) is satisfied—i.e. the wave equation \((8)\) for \(M_{ABC} \).

4.1.2. Initial data for the subsidiary system. In this section we analyse the relations between the initial conditions

\begin{align*}
\hat{\nabla}_{ABC} \mid_S = 0, \quad \left(\hat{\nabla}_{EE} \hat{\nabla}_{ABC} \right) \mid_S = 0.
\end{align*}

As will be shown in the sequel, these conditions can be used to construct initial data for the wave equations of proposition 1. The main purpose of this section is to show that only \(\hat{\nabla}_{ABC} \mid_S = 0 \) is essential, while \(\hat{\nabla}_{EE} \hat{\nabla}_{ABC} \mid_S = 0 \) holds by virtue of the condition \(\nabla^A_E \hat{\nabla}_{ABC} = 0 \). In order to show this, first observe that as the spatial derivatives of \(\hat{\nabla}_{ABC} \) can be determined from \(\hat{\nabla}_{ABC} \mid_S = 0 \), it follows that \(\left(\hat{\nabla}_{EE} \hat{\nabla}_{ABC} \right) \mid_S = 0 \) is equivalent to only specify the derivative along the normal to \(\mathcal{S} \).

Let \(\tau^A \) be an Hermitian spinor corresponding to a timelike vector such that \(\tau^A \mid_S \) is the normal to \(\mathcal{S} \). The spinor \(\tau^A \) can be used to perform a *space spinor split* of the derivative \(\hat{\nabla}_A^A \):

\begin{align*}
\hat{\nabla}_A^A = \frac{1}{2} \tau_A^A \hat{\nabla}_P^P - \tau_A^Q \hat{\nabla}_Q^A,
\end{align*}

where

\[\mathcal{P} \equiv \tau^{AA'} \Theta_{AA'} \quad \text{and} \quad \mathcal{D}_{AB} \equiv \tau_B^{A'} \Theta_{A'A} \]

denote, respectively, the derivative along the direction given by \(\tau^{AA'} \) and \(\mathcal{D}_{AB} \) is the Sen connection relative to \(\tau^{AA'} \). We have chosen the normalization \(\tau^{AA'} \tau_{AA'} = 2 \), in accordance with the conventions of [22]. Using this split and \(\mathcal{N}_{ABC} |_S = 0 \) it follows that

\[\Theta_{EE} \mathcal{N}_{ABC} |_S = \frac{1}{2} (\tau_{EE} \mathcal{P} \mathcal{N}_{ABC}) |_S . \]

Therefore, requiring \(\Theta_{EE} \mathcal{N}_{ABC} |_S = 0 \) is equivalent to having \((\mathcal{P} \mathcal{N}_{ABC}) |_S = 0 \) as previously stated. Now, observe that the wave equation \(\nabla^{AA'} \mathcal{N}_{ABC} = 0 \) or, equivalently, \(\Theta^{AA'} \mathcal{N}_{ABC} = W^{A'}_{BC} \) implies \((\Theta^{AA'} \mathcal{N}_{ABC}) |_S = W^{A'}_{BC} |_S \). Therefore, if we require that all the zero-quantities vanish on the initial hypersurface \(\mathcal{S} \) then \((\Theta^{AA'} \mathcal{N}_{ABC}) |_S = 0 \). Using, again, the space spinor decomposition of \(\Theta^{AA'} \) and considering \(\mathcal{N}_{ABC} |_S = 0 \) we get \((\tau^{AA'} \mathcal{P} \mathcal{N}_{ABC}) |_S = 0 \) which also implies that \((\mathcal{P} \mathcal{N}_{ABC}) |_S = 0 \).

Summarizing, the only the condition that is needed is that all the zero-quantities vanish on the initial hypersurface \(\mathcal{S} \) since the condition \((\Theta^{AA'} \mathcal{N}_{ABC}) |_S = 0 \) is always satisfied by virtue of the wave equation \(\nabla^{AA'} \mathcal{N}_{ABC} = 0 \).

4.1.3. Propagation of the constraints. We still need to show that \(\mathcal{N}_{AB} = \mathcal{N}_{AB} \). One can write

\[\mathcal{N}_{ABC} = \mathcal{N}_{ABC} - \frac{1}{2} \epsilon_{AB} Q_C , \]

where \(\epsilon_{AB} \) encodes the difference between \(\mathcal{N}_{ABC} \) and \(\mathcal{N}_{ABC} \). Computing the trace of the last equation and taking into account the definition of \(\mathcal{N}_{ABC} \) one finds that \(\mathcal{N}^{A}_{AC} = O_C \). Now, invoking the results derived in the last subsection it follows that if the wave equation \(\nabla^{A'} \mathcal{N}_{ABC} = 0 \) is satisfied and all the zero-quantities vanish on the initial hypersurface \(\mathcal{S} \) then \(\mathcal{N}_{ABC} = 0 \). This observation also implies that if \(\mathcal{N}^{A}_{AC} |_S = 0 \) then \(\mathcal{N}^{A}_{AC} = 0 \). The latter result, expressed in terms of \(O_C \) means that if \(O_C |_S = 0 \) then \(O_C = 0 \). Therefore, requiring that all the zero-quantities vanish on \(\mathcal{S} \) and that the wave equation \(\nabla^{AA'} \mathcal{N}_{ABC} = 0 \) holds everywhere, is enough to ensure that

\[\mathcal{N}_{ABC} = \mathcal{N}_{ABC} \]

everywhere. Moreover, \(\mathcal{N}_{ABC} = 0 \) implies that \(\mathcal{N}_{ABC} = 0 \) and the gauge conditions hold. Namely, one has that

\[\nabla^{AB'} M_{AB'C} = F_{BC}(x) . \]

4.2. Subsidiary system and propagation of the constraints

The essential ideas of the section 4.1 can be applied to every single zero-quantity. One only needs to take into account the particular index structure of each zero-quantity encoded in the string of spinor indices \(k \). The problem then reduces to the computation of

\[\Theta^{AA'} \mathcal{N}_{ABC} = W^{A'}_{BC} \]

3 Under certain conditions the Sen connection coincides with the Levi-Civita connection of the intrinsic three-metric of the hypersurfaces orthogonal to \(\tau^{AA'} \).

4 Recall that \(W^{A'}_{BC} |_S \) is given entirely in terms of zero-quantities since the transition spinor can be written in terms of the torsion.
the result of which is to be substituted into
\[\Delta_{ABc} = 2\hat{\Delta}_{PABc} - 2\hat{\Delta}_{AQc} W_{c}^{'B}. \] (31)

The latter can be succinctly computed using the equations (62a) in appendix A. The explicit form can be easily obtained and renders long expressions for each zero-quantity. The key observation from these computations is that (31) leads to an homogeneous wave equation. The explicit form is given in appendix C. These results can be summarized in the following proposition:

Proposition 2. Assume that the wave equations
\[
\nabla^A E\Sigma_{AB^c} = 0, \quad \nabla^C D\Sigma_{AB^c} = 0,
\n\nabla^C E\Sigma_{CD_{B}B^c} = 0, \quad \nabla^E F\Lambda_{AB^c} = 0,
\n\nabla^A Z_{AA^c} = 0, \quad Z_{AA^c} = 0,
\]
are satisfied everywhere. Then the zero-quantities satisfy the homogeneous wave equations
\[
\nabla^A E\Sigma_{AB^c} = 2\hat{\Delta}_{PABc} - 2\hat{\Delta}_{AQc} \Sigma_{c}^{'B} = 0,
\n\nabla^C D\Sigma_{AB^c} = 2\hat{\Delta}_{PC} E\Sigma^{P} D^{'c} + 2\hat{\Delta}_{CQ} \Sigma^{C} \Sigma_{c}^{'B} = 0,
\n\nabla^C E\Sigma_{CD_{B}B^c} = 2\hat{\Delta}_{PC} \Delta_{DB_{B}B^c} + 2\hat{\Delta}_{CQ} W[\Sigma] \Sigma^{B} D_{B} = 0,
\n\nabla^E F\Lambda_{AB^c} = 2\hat{\Delta}_{PC} \Lambda_{AB^c} + 2\hat{\Delta}_{CQ} W[\Sigma] \Lambda_{AB^c} = 0,
\n\n\hat{\Delta}_{AA^c} Z_{AA^c} - W[Z] AA^c = 0,
\]
where
\[
W[\Sigma] \Sigma^{B} D_{B} = \hat{\Delta}_{E} E\Sigma^{E} D^{'c}, \quad W[\Sigma] \Sigma^{B} D_{B} = \hat{\Delta}_{F} F\Sigma^{F} D_{B}.
\]

We will refer to the set of equations given in the last proposition as the *subsidiary system*. It should be noticed that the terms of the form \(\hat{\Delta}_{PABc}\) and \(W_{c}^{'B}\) can be computed using the \(\hat{\Delta}_{PA}\)-Ricci identities and the transition spinor \(Q_{AB^c}^{'C}\) respectively. Using the subsidiary equations from the previous proposition one readily obtains the following reduction lemma:

Proposition 3. If the initial data for the subsidiary system of proposition 2 are given by
\[
\Sigma_{AB^c} \big|_{S} = 0, \quad \Sigma_{AB^c} \big|_{S} = 0, \quad \Delta_{ABCC} \big|_{S} = 0, \quad \Lambda_{B^c}^{'C} = 0, \quad Z_{AA^c} \big|_{S} = 0,
\]
where \(S\) in are satisfied everywhere, then one has a solution to the vacuum CEFE—in other words
\[
\Sigma_{AB^c} = 0, \quad \Sigma_{AB^c} = 0, \quad \Delta_{ABCC} = 0, \quad \Lambda_{B^c}^{'C} = 0, \quad Z_{AA^c} = 0,
\]
in \(D(S)\). Moreover, whenever \(\Sigma \neq 0\), the solution to the CEFE implies a solution to the vacuum Einstein field equations.
Proof. It can be verified, using the $\hat{\nabla}$-Ricci identities given in the appendix A, that the equations of proposition 2 are homogeneous wave equations for the zero-quantities. Notice, however, that the equation for $Z_{AA'}$ is not a wave equation but of first order and homogeneous. Therefore, if we impose that the zero-quantities vanish on an initial spacelike hypersurface Σ, then by the homogeneity of the equations we have that

$$\tilde{\Sigma}_{AB} = 0, \quad \tilde{\Sigma}_{ABCD} = 0, \quad \Lambda_{R'BAC} = 0, \quad Z_{AA'} = 0,$$

everywhere on $D(S)$. Moreover, since initially $\tilde{\Sigma}_{AB} = \Sigma_{AB}$, $\tilde{\Sigma}_{ABCD} = \Sigma_{ABCD}$ and $\Delta_{ABCD} = \Delta_{ABCD}$, we have that $\Sigma_{AB} = 0, \Sigma_{ABCD} = 0, \Delta_{ABCD} = 0$ on $D(S)$. In addition, using that a solution to the CEFE implies a solution to the Einstein field equations whenever $\Xi = 0$ [18], it follows that a solution to the wave equations of proposition 1 with initial data consistent with the initial conditions given in proposition 3 will imply a solution to the vacuum Einstein field equations whenever $\Xi = 0$.

Remark. It is noticed that the initial data for the subsidiary equations gives a way to specify the data for the wave equations of proposition 1. This observation is readily implemented through a space spinor formalism which mimics the hyperbolic reduction process to extract a first order hyperbolic system out of the CEFE—see e.g. [22]. In order to illustrate this procedure let us consider the data for the rescaled Weyl spinor encoded in $\Lambda_{AA'BCD} |_S = 0$.

4.2.1. Initial data for the rescaled Weyl spinor. We need to provide the initial data

$$\phi_{ABCD} \big|_{S}, \quad P\phi_{ABCD} \big|_{S}.$$

A convenient way to specify the initial data is to use the space spinor formalism to split the equations encoded in $\Lambda_{AA'BCD} = 0$. From this split, a system of evolution and constraint equations can be obtained. Recall that $\Lambda_{AA'BCD} \equiv \nabla^Q A^Q_{ABCD}$. Making use of the decomposition of $\nabla_{AB} \equiv \gamma^Q_{BA^Q} \nabla_{AA^Q}$ in terms of the operators P and D_{AB} we get

$$\Lambda_{ABCD} = -\frac{1}{2} P\phi_{ABCD} + D^Q A^Q_{ABCD}.$$

Evolution and constraint equations are obtained, respectively, from considering

$$E_{ABCD} \equiv -2 \Lambda_{ABCD} = P\phi_{ABCD} - 2 D^Q (A^Q_{ABCD})Q = 0, \quad (\text{evolution equation})$$

$$C_{CD} \equiv \Lambda_{QCD} = D^P Q \phi_{PQCD} = 0 \quad (\text{constraint equation}).$$

Restricting the last equations to the initial hypersurface S it follows that the initial data $\phi_{PQCD} |_S$ must satisfy $C_{CD} |_S = 0$ and the initial data for $(P\phi_{PQCD})_S$ can be read from $E_{ABCD} |_S = 0$.

The procedure for the other equations is analogous and can be succinctly obtained by revisiting the derivation of the first order hyperbolic equations derived from the CEFE using the space spinor formalism—see for instance [22].

Remark. The hyperbolic reduction given in [31] makes use of the metric version of the CEFE, consequently, since in this formulation the metric is part of the unknowns one has to append an equation for the metric. To do so, one uses the definition of the Schouten tensor as a concomitant of the Ricci tensor as an equation for the metric. Namely

$$R_{ab} [g] = 2L_{ab} + \frac{1}{6} R g_{ab},$$

Class. Quantum Grav. 32 (2015) 185021
E Gasperín and J A Valiente Kroon
where R_{ab} is the Ricci tensor, R is the Ricci scalar and L_{ab} is the Schouten tensor. The notation $R_{ab}[g]$ emphasises the fact that $R_{ab}[g]$, in contrast with the approach of this article, is not an unknown of the system but it is regarded as an expression involving second order derivatives of the metric. However, the principal part of $R_{ab}[g]$ is not necessarily hyperbolic. To recast the system of second order equations (3.2)–(3.4) and (3.8) and (3.9) given in [31] it is necessary to impose the appropriate gauge condition. As discussed in [31] the last is accomplished imposing a generalized wave-map gauge.

One of the advantages of deriving wave equations using the spinorial version of the CEFE is that the metric is not part of the unknowns so that the principal part of \Box is always hyperbolic. In this case, instead of writing an equation for the metric one has to write equations for the frame and connection coefficients denoted by e_{AA}^{a} and $\Gamma_{AA}^{B}{}_{C}$ respectively. Another difference to be emphasised is that, in the spinorial approach put forward in this article, the algebraic structure of the spinorial version of the CEFE allow us to derive the wave equations in a systematic way. This can be noticed for instance in the derivation of the wave equation for the rescaled Weyl spinor ϕ_{ABCD} in comparison with that for the rescaled Weyl tensor $d^{a}{}_{bcd}$.
5. Nonlinear stability of the Milne Universe

As an application of the hyperbolic reduction procedure described in the previous sections we analyse the nonlinear stability of the Milne Universe.

5.1. Basic properties of the Milne Universe

The Milne Universe is a FLRW vacuum solution to the Einstein field equation with vanishing cosmological constant, energy density and pressure. In fact, it represents a flat spacetime written in comoving coordinates of the worldlines starting at $t = 0$—see [24]. This means that the Milne Universe can be seen as a portion of the Minkowski spacetime, which we know is conformally related to the Einstein Cosmos, $(\mathcal{M}_E \equiv \mathbb{R} \times \mathbb{S}^3, \hat{g})$ (sometimes also called the Einstein cylinder)—see figure 1. The metric \hat{g} of the Milne Universe is given in comoving coordinates $(t, \chi, \theta, \varphi)$ by

$$\hat{g} = dt \otimes dt - t^2 \left(d\chi \otimes d\chi + \sin^2 \chi \left(d\theta \otimes d\theta + \sin^2 \theta d\varphi \otimes d\varphi \right) \right),$$

where $t \in (-\infty, \infty)$, $\chi \in [0, \infty)$, $\theta \in [0, \pi)$, $\phi \in [0, 2\pi)$.

In fact, introducing the coordinates $\bar{r} \equiv t \sinh \chi$, $\bar{t} \equiv t \cosh \chi$

the metric reads

$$\hat{g} = d\bar{r} \otimes d\bar{r} - \bar{r}^2 \left(d\bar{t} \otimes d\bar{t} - \bar{r}^2 \left(d\theta \otimes d\theta + \sin^2 \theta d\varphi \otimes d\varphi \right) \right).$$

Therefore, $\bar{r}^2 - \bar{t}^2 > 0$, and the Milne Universe corresponds to the interior of the light cone through the origin in the Minkowski spacetime as shown in the Penrose diagram of figure 1. As already discussed, this metric is conformally related to the metric g of the Einstein Cosmos. More precisely, one has that

$$\hat{g} = \hat{\omega}^2 \bar{g},$$

where the metric of the Einstein cylinder, \hat{g}, is given by

$$\hat{g} = dT \otimes dT - \hat{h},$$

with \hat{h} denoting the standard metric of \mathbb{S}^3

$$\hat{h} = d\psi \otimes d\psi + \sin^2 \psi d\theta \otimes d\theta + \sin^2 \psi \sin^2 \theta d\varphi \otimes d\varphi.$$

The conformal factor relating the metric of the Milne Universe to metric of the Einstein Universe is given by

$$\hat{\omega} = \cos T + \cos \psi,$$

and the coordinates (T, ψ) are related to (\bar{r}, \bar{t}) via

$$T = \arctan(\bar{t} + \bar{r}) + \arctan(\bar{t} - \bar{r}), \quad \psi = \arctan(\bar{t} + \bar{r}) - \arctan(\bar{t} - \bar{r}).$$
Equivalently, in terms of the original coordinates t and χ we have

$$\chi = \arctan \left(\frac{\sin \psi}{\sin T} \right), \quad t = \frac{\cos \psi - \cos T}{\cos \psi + \cos T}.$$

Therefore, the Milne Universe is conformal to the domain

$$\tilde{\mathcal{M}} = \{ p \in \mathcal{M}_E | 0 \leq \psi < \pi, \quad \psi - \pi < T < \pi - \psi, \quad |T| > \psi \}.$$

5.2. The Milne Universe as a solution to the wave equations

Since the Milne Universe is a solution to the the Einstein field equations, it follows that the pair $(\tilde{g}, \tilde{\Xi})$ implies a solution to the CEFE which, in turn, constitutes a solution to the wave equations of proposition 1. Following the discussion of section 2, this solution consists of the frame fields

$$\{ e^a, \Gamma^a_{bc}, L_{ab}, d^a_{bcd}, \Sigma_a, \Xi, s \}$$

or, equivalently, the spinorial fields

$$\{ e_{\alpha\gamma}, \Gamma_{\alpha\gamma}^{BC}, \varphi_{\alpha\gamma}^{BB'}, \varphi_{\alpha\gamma}^{BCD}, \Sigma_{\alpha\gamma}, \Xi, \Sigma, s \},$$

where we have written $\Sigma_a \equiv \nabla_a \Xi$ and $\nabla_{\alpha\gamma} \Xi \equiv \Sigma_{\alpha\gamma}$ as a shorthand for the derivative of the conformal factor.

For later use, we notice that in the Einstein Cosmos $(\mathcal{M}_E, \tilde{g})$ we have

$$\text{Weyl}[\tilde{g}] = 0, \quad R[\tilde{g}] = -6, \quad \text{Schouten}[\tilde{g}] = \frac{1}{2} (dT \otimes dT + h).$$

The spinorial version of the above tensors can be more easily expressed in terms of a frame. To this end, now consider a geodesic on the Einstein Cosmos $(\mathcal{M}_E, \tilde{g})$ given by

$$x(\tau) = (\tau, x_\alpha), \quad \tau \in \mathbb{R},$$

where $x_\alpha \in \mathbb{S}^3$ is fixed. Using the congruence of geodesics generated varying x_α over \mathbb{S}^3 we obtain a Gaussian system of coordinates (τ, x^α) on the Einstein cylinder $\mathbb{R} \times \mathbb{S}^3$ where (x^α) are some local coordinates on \mathbb{S}^3. In addition, in a slight abuse of notation we identify the standard time coordinate T on the Einstein cylinder with the parameter τ of the geodesic.

5.2.1. Frame expressions

A globally defined orthonormal frame on the Einstein Cosmos $(\mathcal{M}_E, \tilde{g})$ can be constructed by first considering the linearly independent vector fields in \mathbb{R}^4

$$c_1 \equiv w \frac{\partial}{\partial z} - z \frac{\partial}{\partial w} + x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x},$$

$$c_2 \equiv w \frac{\partial}{\partial y} - y \frac{\partial}{\partial w} + z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z},$$

$$c_3 \equiv w \frac{\partial}{\partial x} - x \frac{\partial}{\partial w} + y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y},$$

where (w, x, y, z) are Cartesian coordinates in \mathbb{R}^4. The vectors $\{c_i\}$ are tangent to \mathbb{S}^3 and form a global frame for \mathbb{S}^3—see e.g. [21]. This spatial frame can be extended to a spacetime frame $\{\tilde{e}_a\}$ by setting $\tilde{e}_0 \equiv \partial_\tau$ and $\tilde{e}_a \equiv c_a$. Using this notation we observe that the components of the basis respect to this frame are given by $\tilde{e}_a = e_a^b \tilde{e}_b \equiv \tilde{e}_a^b \tilde{e}_b$. With respect to this orthogonal basis the components of the Schouten tensor are given by...
\[\hat{L}_{ab} = \delta_a^0 \delta_b^0 - \frac{1}{2} \hat{\gamma}_{ab}. \]

So that the components of the traceless Ricci tensor are given by

\[\hat{R}_{(ab)} = 2 \delta_a^0 \delta_b^0 - \frac{1}{2} \hat{\gamma}_{ab}, \]

where the curly bracket around the indices denote the symmetric trace-free part of the tensor.

In addition

\[\dot{\hat{\gamma}}_{abcd} = 0 \]

since the Weyl tensor vanishes.

Now, let \(\gamma^i_j k \) denote the connection coefficients of the Levi-Civita connection \(\mathbf{D} \) of \(\hat{\mathbf{h}} \) with respect to the spatial frame \(\{ e_i \} \). Observe that the structure coefficients defined by \([e_i, e_j] = C_i^k e_k \) are given by

\[\gamma_i^k j = -\epsilon_i^k j, \]

where \(\epsilon_i^k j \) is the three-dimensional Levi-Civita totally antisymmetric tensor. Taking into account that \(\epsilon_0 = \partial_t \) is a timelike Killing vector of \(\hat{\mathbf{g}} \), we can readily obtain the connection coefficients \(\hat{\Gamma}_a^b c \) of the Levi-Civita connection \(\nabla \) of the metric \(\hat{\mathbf{g}} \), with respect to the basis \(\{ \hat{e}_a \} \). More precisely, one has that

\[\hat{\Gamma}_a^b c = -\epsilon_a^b e. \]

For the conformal factor and its concomitants we readily obtain

\[\hat{\Sigma} = -\sin \tau, \quad \hat{\Sigma}_i = e_i(\hat{\Xi}), \quad \hat{s} = -\frac{1}{2}(\cos \tau + \cos \psi). \]

5.2.2. Spinorial expressions

In order to obtain the spinor frame form of the last expressions let \(\tau^{A^A} \) denote the spinorial counterpart of the vector \(\sqrt{2} \partial_t \) so that \(\tau^{A^A} \cdot \tau^{A^A} = 2 \). With this choice, consider a spinor dyad \(\{ \epsilon_A^A \} = \{ \epsilon^A, \epsilon^\lambda \} \) adapted to \(\tau^{A^A} \)—i.e. a spinor dyad such that

\[\epsilon^{A^A} = \epsilon_0^A \epsilon^0_A + \epsilon_1^A \epsilon^1_A. \]

The spinor \(\tau^{A^A} \) can be used to introduce a space spinor formalism similar to the one discussed in section 4.1.2. Now, the *Infeld-van der Waerden symbols* \(\sigma_{A^A}^b \) are given by the matrices

\[
\begin{align*}
\sigma_{A^A}^0 & = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \\
\sigma_{A^A}^1 & = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \\
\sigma_{A^A}^2 & = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \\
\sigma_{A^A}^3 & = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\end{align*}
\]

One directly finds that in the present case

\[\hat{\epsilon}_{A^A}^b \equiv \sigma_{A^A}^a e_a^b = \sigma_{A^A}^b. \]

Now, decomposing \(\hat{\epsilon}_{A^A}^a \) using the space spinor formalism induced by \(\tau^{A^A} \) one has that

\[\hat{\epsilon}_{A^A}^a = \frac{1}{2} \tau^{A^A} \hat{\epsilon}^a - \tau^A A^A \hat{\epsilon}^a. \]
where
\[\tilde{e}^a \equiv \tilde{e}_{AA'} \gamma^{AA'}. \]
Comparing the above expression with equation (34) one readily finds that the coefficients \(\tilde{e}^a \) and \(\tilde{e}_{AB}^a \) are given by
\[\tilde{e}^a = \sqrt{2}, \quad \tilde{e}_{AB}^a = 0, \]
\[\tilde{e}^i = 0, \quad \tilde{e}_{AB}^i = \sigma_{AB}^i, \]
where \(\sigma_{AB}^i \) are the spatial Infeld-van der Waerden symbols, given by the matrices
\[\sigma_{AB}^1 \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \sigma_{AB}^2 \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} i & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \sigma_{AB}^3 \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}. \]
The above expressions provide a direct way of recasting the frame expressions of section 5.2.1 in spinorial terms. Now, denoting by \(\Phi_{AA'BB'} \) the spinorial counterpart of \(\hat{R}_{(ab)} \) we get
\[\hat{\Phi}_{AA'BB'} = \frac{1}{2} \sigma_{AA'} \gamma^{BB'} \hat{R}_{(ab)} = \sigma_{AA'} \gamma^{BB'} \hat{\epsilon}^a \epsilon_{AB} - \frac{1}{4} \epsilon_{AB} \epsilon_{A'B'}. \]
From (33) we see that \(\sigma_{AA'} = \sqrt{2} \sigma_{AA} \). Accordingly
\[\hat{\Phi}_{AA'BB'} = \frac{1}{2} \sigma_{AA'} \gamma_{BB'} - \frac{1}{4} \epsilon_{AB} \epsilon_{A'B'}. \]
To obtain the reduced spin connection coefficients we proceed as follows: let \(\hat{\Gamma}_{AA'BB'}^{CC'} \) denote the spinorial counterpart of \(\hat{\Gamma}_{a'b'c'} \). Now, since \(\hat{\Gamma}_{a'b'c'} = -\epsilon_{a'bc} \), we can readily compute its spinorial counterpart by recalling the spinorial version of the volume form
\[\epsilon_{AA'BB'CC'DD'} = i(\epsilon_{AC} \epsilon_{BD} \epsilon_{A'D'} \epsilon_{B'C'} - \epsilon_{AD} \epsilon_{BC} \epsilon_{A'C'} \epsilon_{B'D'}). \]
It follows then that
\[\hat{\Gamma}_{BB'CC'DD'} = -\frac{1}{\sqrt{2}} \epsilon_{AA'} \epsilon_{BB'} \epsilon_{CC'} \epsilon_{DD'} = -\frac{1}{\sqrt{2}} \left(\tau_{CC'} \epsilon_{BD} \epsilon_{B'D'} - \tau_{DD'} \epsilon_{B'C'} \epsilon_{BD'} \right). \]
Combining the last expression with the definition of the reduced spin connection coefficients \(\hat{\Gamma}_{AA'BB'}^{CC} \) given in equation (2) one obtains
\[\hat{\Gamma}_{BB'CD} = -\frac{1}{2 \sqrt{2}} \left(\tau_C \epsilon_{BD} \epsilon_{B'D'} + \tau_D \epsilon_{B'C'} \epsilon_{B'B'} \right) = -\frac{1}{2 \sqrt{2}} \left(\epsilon_{BD} \epsilon^{CC} + \epsilon_{B'D'} \epsilon_{B'C'} \right). \]
Thus, one concludes that
\[\hat{\Gamma}_{AA'BC} = -\frac{i}{\sqrt{2}} \epsilon_{AC} \epsilon_{B'A'}. \]
Finally, for the rescaled Weyl tensor we simply have
\[\hat{\Phi}_{ABCD} = 0. \]

5.2.3. Gauge source functions for the Milne spacetime. The expressions for \(\hat{\Gamma}_{a'b'} \) and \(\hat{\epsilon}^a \) derived in the previous sections allow to readily compute the gauge source functions associated to the conformal representation of the Milne Universe under consideration. Regarding \(\hat{\epsilon}^a \) as the component of a contravariant tensor we compute
\[\nabla^b \hat{\epsilon}^a = \eta^{bc} \hat{\nabla}_c \hat{\epsilon}^a = \eta^{bc} \left(\hat{\epsilon}_c (\hat{\epsilon}^a) - \hat{\Gamma}_C \epsilon^A \epsilon^a \right), \]
where $\hat{e}_c = \hat{e}_c e_\gamma$. Using that for this case $\hat{e}_b = \hat{e}_b$, we get

$$\nabla^a \hat{e}_b = -\eta^{ac} \Gamma_c^a_{eb} = \eta^{ac} \epsilon_{ab} = 0.$$

Therefore, the coordinate gauge source function vanishes. That is, one has that

$$F^a (x) = \nabla^a A^a = 0.$$

We proceed in similar way to compute the frame gauge source function. One has that

$$\nabla^a \hat{b} = \eta^{ad} \nabla_d \hat{b} + \eta^{ad} \hat{e}_a \epsilon_{eb} = \eta^{ad} \epsilon_{ab} = 0.$$

Therefore, using the irreducible decomposition of $\tilde{F}^{AB} = \tilde{F}_Q^{QQ'} AB$ in terms of $\tilde{F}_Q^{QQ'} AB$ given in (2), we conclude that

$$\tilde{F}_Q^{QQ'} AB = 0.$$

Finally, the conformal gauge source function is determined by the value of the Ricci scalar, in this case $R = -6$. It follows then that

$$\Lambda = \frac{1}{4}.$$

5.2.4. Summary. We collect the main results in the following proposition:

Proposition 4. The fields $(\hat{\Xi}, \hat{\Omega}, \hat{\Theta}, \hat{\sigma}, \hat{\epsilon}_b, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_b, \hat{\epsilon}_b, \hat{\epsilon}_b, \hat{\epsilon}_b)$ given by

$$\hat{\Xi} = \cos \tau + \cos \psi,$$

$$\hat{\Omega} = -\sin \tau,$$

$$\hat{\Theta} = \epsilon_c (\hat{\Xi}),$$

$$\hat{\epsilon}_b = \hat{\epsilon}_b,$$

$$\hat{\epsilon}_a = -\epsilon_{ab} e_b,$$

$$\hat{\epsilon}_b = 2\epsilon_{ab} e_b + \frac{1}{2} \eta_{ab},$$

$$\hat{\epsilon}_a = 0, \quad \hat{\epsilon}_b = -\frac{1}{2} (\cos \tau + \cos \psi),$$

or, alternatively, in spinorial terms, the fields $(\hat{\Xi}, \hat{\Omega}, \hat{\Theta}, \hat{\epsilon}_b, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_a, \hat{\epsilon}_b, \hat{\epsilon}_b, \hat{\epsilon}_b, \hat{\epsilon}_b, \hat{\epsilon}_b)$ with $\hat{\Xi}, \hat{\sigma}$ as above and

$$\hat{\epsilon}_b = \sigma_{ab},$$

$$\hat{\epsilon}_b = -\frac{1}{2} \epsilon_{ab} e_{b},$$

$$\hat{\epsilon}_a = \frac{1}{2} \epsilon_{ab} e_{b},$$

$$\hat{\epsilon}_a = 0, \quad \hat{\epsilon}_b = -\frac{1}{2} (\cos \tau + \cos \psi),$$

defined on the Einstein cylinder $\mathbb{R} \times S^3$ constitute a solution to the CEFE representing the Milne Universe. The gauge source functions associated to this representation are given by

$$\hat{F}^a (x) = 0, \quad \hat{F}_Q^{QQ'} AB = 0, \quad \hat{A} = \frac{1}{4}.$$

The solution is smooth for all $\tau \in \mathbb{R}$.

5.2.5. Initial data for the Milne spacetime. The expressions in proposition 4 readily imply initial data for the wave equations (25a)–(25f) on the hyperboloids

$$\tag{35} \left\{ p \in \mathbb{R} \times S^3 \mid \tau(p) = \tau, \quad \cos \tau, \quad \cos \psi(p) \geq 0 \right\}, \quad \tau, \in \left[\frac{1}{2} \pi, \pi \right].$$

By construction, the development of this data is a portion of the Milne Universe.
In what follows, for simplicity, our discussion will be restricted to the initial data on the so-called *standard hyperboloid*

\[\mathcal{H}_* \equiv \left\{ p \in \mathbb{R} \times S^3 \mid \tau(p) = \frac{1}{2} \pi, \cos \psi(p) \geq 0 \right\}. \]

Our analysis can be readily extended to any of the hyperboloids in (35). The intersection of the standard hyperboloid with the conformal boundary \(\mathcal{I}^+ \) is given by

\[Z_* \equiv \left\{ p \in \mathcal{H}_* \mid \cos \psi(p) = 0 \right\}. \]

Restricting the expressions of proposition 4 to \(\mathcal{H}_* \), we get the following initial data for the wave equations of proposition 1:

\[\hat{\Xi}_{|\mathcal{H}_*} = \cos \psi, \quad \hat{\epsilon}_{\Lambda A}^B |_{\mathcal{H}_*} = \sigma_{\Lambda A}^B, \quad \hat{\Gamma}_{\Lambda A}^{BC} |_{\mathcal{H}_*} = -\frac{i}{\sqrt{2}} \epsilon_{\Lambda (B} \tau_{C)A'}, \]

\[\hat{\phi}_{\Lambda A}^{BB'} |_{\mathcal{H}_*} = \frac{1}{2} \tau \tau_{\Lambda A}^{BB'} - \frac{1}{4} \epsilon_{AB} \epsilon_{AC}, \quad \Sigma_{\Lambda A}^B |_{\mathcal{H}_*} = \sigma_{\Lambda A}^{AB} (\hat{\Xi}) |_{\mathcal{H}_*}, \quad \hat{\phi}_{\Lambda A}^{BCD} |_{\mathcal{H}_*} = 0, \]

\[\hat{s} |_{\mathcal{H}_*} = -\frac{1}{2} \cos \psi, \quad \hat{\Xi}^2 |_{\mathcal{H}_*} = \Sigma |_{\mathcal{H}_*} = \frac{1}{2}, \quad \hat{\phi}_{\Lambda A}^{AB} |_{\mathcal{H}_*} = 0, \]

\[\hat{\phi}_{\Lambda A}^{ABCD} |_{\mathcal{H}_*} = 0, \quad \hat{\phi}^B |_{\mathcal{H}_*} = \frac{1}{2} \sin \tau. \]

Observe that the above data is, in fact, smooth on the whole of the hypersurface of the Einstein cylinder. In what follows, the set \(\mathcal{S}_* \) will be the paradigmatical hypersurface on which initial data for the wave equations (25a)–(25f) will be prescribed.

5.3. Perturbation of initial data

To discuss the stability of the Milne Universe we need to parametrize perturbations of initial data close to the data for the exact solution.

A basic initial data set for the conformal field equations consists of a collection \((S, h, K, \Omega, \Sigma)\) such that \(S\) denotes a three-dimensional manifold, \(h\) is a three-metric, \(K\) is a symmetric tensor, \(\Omega\) and \(\Sigma\) are scalar functions on the manifold \(S\) satisfying

\[\begin{align*}
2\Omega D D^i \Omega - 3 D^i \Omega D^j \Omega + \frac{1}{2} \Omega^2 r - 3 \Sigma^2 - \frac{1}{2} \Omega^2 (K^2 - K_i K^i) + 2 \Omega \Sigma K &= 0 \quad (36a) \\
\Omega^2 D^i (\Omega^{-2} K_{ik}) - \Omega (D_k K - 2 \Omega^{-1} D_k \Sigma) &= 0, \quad (36b)
\end{align*}\]

where \(D\) is the covariant Levi-Civita connection of \(h\), \(r\) is its Ricci scalar and \(K \equiv h^{ij} K_{ij}\). These equations are, respectively, the conformal counterpart of the Hamiltonian and momentum constraints in vacuum.

5.3.1. Hyperboloidal initial data

Motivated by the prototypical example of the Milne Universe, in what follows we will consider solutions to the conformal constraint equations (36a) and (36b) corresponding to hyperboloidal data. A solution \((S, h, K, \Omega, \Sigma)\) to equations (36a) and (36b) will be said to be hyperboloidal data if there exists a three-dimensional manifold with boundary \(\mathcal{H} \subset S\), \(Z\) such that

\[\begin{align*}
\Omega &> 0 \quad \text{on int } \mathcal{H}, \\
\Omega &= 0, \quad d\Omega = 0, \quad \Sigma < 0, \quad \text{on } Z \equiv \partial \mathcal{H} \approx S^3.
\end{align*}\]
The construction of hyperboloidal initial data has been analysed in [4, 5]. The conformal factor Ω in an hyperboloidal initial data set plays the role of a boundary defining function.

Again, motivated by the discussion of initial data for the Milne Universe on the standard hyperboloid, we will assume that the three-manifold \mathcal{S} is topologically (but not metrically) \mathbb{S}^3—that is, $\mathcal{S} \approx \mathbb{S}^3$. Accordingly, we consider a diffeomorphism $\psi : \mathcal{S} \to \mathbb{S}^3$. This diffeomorphism and its inverse can be used to pull-back coordinates (x^μ), the frame fields $\{e_i\}$ and associated coframe fields $\{\alpha^i\}$ on \mathbb{S}^3 to fields on \mathcal{S}. In a slight abuse of notation we denote the coordinates, vector and covector fields on \mathcal{S} again by (x^μ), $\{e_i\}$ and $\{\alpha^i\}$. Observe that while $\{e_i\}$ are orthonormal with respect to the standard metric of \mathbb{S}^3, they will not be orthonormal, in general, with respect to the metric h obtained from the solution to the conformal constraint equations (36a) and (36b).

The inherent freedom in the choice of the diffeomorphism ψ can be exploited make ψ a harmonic map and the correspondence between coordinates of \mathbb{S}^3 and \mathcal{S} the identity—see [22] for further details on this construction.

5.3.2. Parametrizing the initial data. Assume one is given a hyperboloidal solution $(\mathcal{S}, h, k, \Omega, \Sigma)$ to the conformal constraint equations (36a) and (36b) defined on a $\mathcal{H} \subset \mathcal{S}$. Let $\{e_i\}$ denote a h-orthonormal frame over \mathcal{S} and let $\{\omega^i\}$ be the associate coframe.

Now, assume that there exist vector fields $\{\tilde{e}_i\}$ such that an h-orthonormal frame $\{e_i\}$ is related to an \tilde{h}-orthonormal frame \tilde{c}_i through $e_i = e_i + \tilde{e}_i$. This last requirement is equivalent to introducing coordinates on \mathcal{S} such that

$$h = \tilde{h} + \hat{h} = h + \hat{h}. \quad \text{(37)}$$

Notice that the notation $\hat{\cdot}$ is used to denote the value in the exact (background) solution while \cdot is used to denote the perturbation.

To measure the size of the perturbed initial data, we introduce the Sobolev norms defined for any spinor quantity $N_\mathcal{K}$ with \mathcal{K} being an arbitrary string of frame spinor indices, as

$$||N_\mathcal{K}||_{\mathcal{H}, m} \equiv \sum_{\mathcal{K}} ||N_\mathcal{K}||_{\mathcal{H}, m},$$

where $\sum_{\mathcal{K}}$ is the sum over all the frame spinor indices encoded in \mathcal{K} and

$$||N_\mathcal{K}||_{\mathcal{H}, m} = \left(\sum_{l=0}^{m} \sum_{a_0, \ldots, a_l} \int_\mathcal{H} \left(\partial_{a_0} \ldots \partial_{a_l} N_\mathcal{K} \right)^2 d^3x \right)^{1/2}.$$

Observe that since the indices in \mathcal{K} are frame indices; the quantities $N_\mathcal{K}$ are scalars. Notice also that at $\mathcal{S} \approx \mathbb{S}^3$, then \mathcal{H} can be regarded as a region of \mathbb{S}^3.

Consistent with the split (37), we make use of the above expressions to consider perturbations of the initial data for the Milne Universe on the standard hyperboloid \mathcal{H}, of the form

$$\Xi |_{\mathcal{H}} = \Xi |_{\mathcal{H}} + \Xi |_{\mathcal{K}}, \quad e_{\alpha\beta}^{\cdot \cdot \cdot |_{\mathcal{H}}} = \tilde{e}_{\alpha\beta}^{\cdot \cdot \cdot |_{\mathcal{H}}} + \hat{e}_{\alpha\beta}^{\cdot \cdot \cdot |_{\mathcal{H}}},$$

$$\Gamma_{\alpha\beta\gamma}^{\cdot |_{\mathcal{H}}} = \tilde{\Gamma}_{\alpha\beta\gamma}^{\cdot |_{\mathcal{H}}} + \hat{\Gamma}_{\alpha\beta\gamma}^{\cdot |_{\mathcal{H}}}, \quad \phi_{\alpha\beta\gamma\delta}^{\cdot |_{\mathcal{H}}} = \tilde{\phi}_{\alpha\beta\gamma\delta}^{\cdot |_{\mathcal{H}}} + \hat{\phi}_{\alpha\beta\gamma\delta}^{\cdot |_{\mathcal{H}}},$$

$$\Sigma_{\alpha\beta}^{\cdot |_{\mathcal{H}}} = \tilde{\Sigma}_{\alpha\beta}^{\cdot |_{\mathcal{H}}} + \hat{\Sigma}_{\alpha\beta}^{\cdot |_{\mathcal{H}}},$$

where Ξ, Γ, ϕ and Σ are all spinor quantities.
Together with
\[
\Sigma |_{\mathcal{H}} = \tilde{\Sigma} |_{\mathcal{H}} + \sum |_{\mathcal{H}}, \quad \mathcal{P} e_{\alpha \alpha'} |_{\mathcal{H}} = \mathcal{P} e_{\alpha \alpha'} |_{\mathcal{H}},
\]
\[
\mathcal{P} \Gamma_{\alpha' \beta \gamma} |_{\mathcal{H}} = \mathcal{P} \Gamma_{\alpha' \beta \gamma} |_{\mathcal{H}}, \quad \mathcal{P} \phi_{\alpha \alpha' \beta \beta'} |_{\mathcal{H}} = \mathcal{P} \phi_{\alpha \alpha' \beta \beta'} |_{\mathcal{H}}.
\]

By assumption, the above fields are solution to the equations implied by the initial data for the subsidiary system given in proposition 2. Thus, in particular, they ensure that the initial data for the subsidiary equations vanish. The above data will be collectively denoted by
\[
w_\varepsilon \equiv (u_\varepsilon, \partial_\varepsilon u_\varepsilon).
\]
The parametrization into background and perturbed parts will be written as
\[
u_\varepsilon = \bar{u}_\varepsilon + \tilde{u}_\varepsilon, \quad \partial_\varepsilon u_\varepsilon = \partial_\varepsilon \tilde{u}_\varepsilon + \partial_\varepsilon \tilde{u}_\varepsilon.
\]
The perturbation part of the initial data \((\tilde{u}_\varepsilon, \partial_\varepsilon \tilde{u}_\varepsilon)\) is only defined in the region \(\mathcal{H}\) of \(\mathcal{S}\). To apply the theory of quasilinear wave equations as described in appendix E, one needs data to on the whole of \(\mathcal{S} \approx \mathbb{S}^3\). We can extend the initial data by invoking the Extension Theorem which states that there exists a linear operator
\[
\mathcal{E}: H^m(\mathcal{H}, \mathbb{C}^N) \to H^m(\mathcal{S}, \mathbb{C}^N)
\]
such that if \(w_\varepsilon \in H^m(\mathcal{H}, \mathbb{C}^N)\) then \(\mathcal{E}w_\varepsilon(x) = w_\varepsilon(x)\) almost everywhere in \(\mathcal{H}\) and
\[
||\mathcal{E}w_\varepsilon||_{m, \mathcal{H}} \leq K ||w_\varepsilon||_{m, \mathcal{H}},
\]
where \(K\) is a universal constant for fixed \(m\)—see e.g. [13]. Hence, using equation (42) we can make \(||\mathcal{E}w_\varepsilon||_{m, \mathcal{S}}\) small as necessary by making \(\varepsilon\) small—that is, the size of the extended data is controlled by the data in the initial hypersurface \(\mathcal{H}\). Therefore, the extended data will be given by
\[
\mathcal{E}u_\varepsilon = u_\varepsilon + \tilde{\mathcal{E}}u_\varepsilon, \quad \mathcal{E}\partial_\varepsilon u_\varepsilon = \partial_\varepsilon \tilde{u}_\varepsilon + \mathcal{E}\partial_\varepsilon \tilde{u}_\varepsilon,
\]
which are well defined on \(H^m(\mathbb{S}^3, \mathbb{C}^N)\). Using equation (42) we observe that
\[
||\mathcal{E}u_\varepsilon||_{\mathcal{H}, m} + ||\mathcal{E}\partial_\varepsilon u_\varepsilon||_{\mathcal{H}, m} \leq K\varepsilon.
\]

Remark. The fact that the extension of the data obtained in the previous paragraph is not unique and it does not necessarily satisfy the constraints of proposition 3 is not a problem in our analysis since
\[
D^+(\mathcal{H}) \cap I^+(\mathcal{S}\setminus \mathcal{H}) = \emptyset,
\]
where \(D^+\) denotes the domain of dependence and \(I^+\) the chronological future of achronal sets—see [42] for a detailed discussion of these causal concepts. The proof of the last statement follows by contradiction. Let \(q \in D^+(\mathcal{H}) \cap I^+(\mathcal{S}\setminus \mathcal{H})\). Then, in the one hand we have that \(q \in I^+(\mathcal{S}\setminus \mathcal{H})\), so that it follows that there exists a future timelike curve \(\gamma\) from \(p \in \mathcal{S}\setminus \mathcal{H}\) to \(q\). On the other hand \(q \in D^+(\mathcal{H})\) which means that every past in extendible causal curve through \(q\) intersects \(\mathcal{H}\), therefore \(p \in \mathcal{H}\). This is a contradiction since \(p \in \mathcal{S}\setminus \mathcal{H}\).

5.4. Construction of perturbed solutions

In this section we discuss the construction of solutions to the wave equations (25a)–(25f) describing nonlinear perturbations of the Milne Universe.
Consistent with the discussion of the previous subsection, we will split the unknowns in the wave equations (25a)–(25f) into a background and a perturbation part. More precisely, we write

\[\Xi = \ddot{\Xi} + \dddot{\Xi}, \quad \Sigma_{AA'} = \dot{\Sigma}_{AA'} + \ddot{\Sigma}_{AA'}, \quad \epsilon_{AA'}^\mu = \dot{\epsilon}_{AA'}^\mu + \ddot{\epsilon}_{AA'}^\mu, \quad s = \dot{s} + \ddot{s}, \]

\[\Gamma_{AA'C} = \dot{\Gamma}_{AA'C} + \ddot{\Gamma}_{AA'C}, \quad \Phi_{AA'RBB'} = \dot{\Phi}_{AA'RBB'} + \ddot{\Phi}_{AA'RBB'}. \]

Following the notation used in the third remark in section 3.7, we collect the independent components of the unknowns as a single vector-valued variable \(\mathbf{u} \) and write \(\mathbf{u} = \hat{\mathbf{u}} + \bar{\mathbf{u}}. \)

The components of the contravariant metric \(g^{\mu\nu}(x, \mathbf{u}) \) in the vector-valued wave equation (26) can be written as the metric for the background solution \(\hat{\mathbf{u}} \) plus a term depending on the unknown \(\mathbf{u} \)

\[g^{\mu\nu}(x; \mathbf{u}) = \hat{g}^{\mu\nu}(x; \hat{\mathbf{u}}) + \tilde{g}^{\mu\nu}(x; \mathbf{u}). \]

(38)

The latter can be expressed, alternatively, in spinorial terms as

\[g^{\mu\nu}(x; \mathbf{u}) = \epsilon^{AA'} \epsilon^{BB'} \epsilon_{AA'}^\mu \epsilon_{BB'}^\nu = \epsilon^{AA'} \epsilon^{BB'} \left(\dot{\epsilon}_{AA'}^\mu \dot{\epsilon}_{BB'}^\nu + \ddot{\epsilon}_{AA'}^\mu \ddot{\epsilon}_{BB'}^\nu \right). \]

(39)

Substituting the split (38) into equation (26) we get

\[\left(\hat{g}^{\mu\nu}(x; \hat{\mathbf{u}}) + \tilde{g}^{\mu\nu}(x; \mathbf{u}) \right) \partial_{\mu} \partial_{\nu} (\hat{\mathbf{u}} + \bar{\mathbf{u}}) + F(x; \mathbf{u}, \partial \mathbf{u}) = 0. \]

Now, noticing that \(\bar{\mathbf{u}} \) is, in fact, a solution to

\[\hat{g}^{\mu\nu}(x; \hat{\mathbf{u}}) \partial_{\mu} \partial_{\nu} \mathbf{u} + F(x; \hat{\mathbf{u}}, \partial \mathbf{u}) = 0 \]

it follows then that

\[\tilde{g}^{\mu\nu}(x; \mathbf{u}) \partial_{\mu} \partial_{\nu} \mathbf{u} + \hat{g}^{\mu\nu}(x; \hat{\mathbf{u}}) \partial_{\mu} \partial_{\nu} \bar{\mathbf{u}} + \tilde{g}^{\mu\nu}(x; \mathbf{u}) \partial_{\mu} \partial_{\nu} \bar{\mathbf{u}} + F(x; \mathbf{u}, \partial \mathbf{u}) - F(x; \hat{\mathbf{u}}, \partial \hat{\mathbf{u}}) = 0. \]

Finally, since the background solution \(\hat{\mathbf{u}} \) is known then the last equation can be recast as

\[\left(\tilde{g}^{\mu\nu}(x; \mathbf{u}) \right) \partial_{\mu} \partial_{\nu} \mathbf{u} = F(x; \hat{\mathbf{u}}, \partial \hat{\mathbf{u}}). \]

(40)

The above equation is in a form where the local existence and Cauchy stability theory of quasilinear wave equations as given in, say, [26] can be applied. Notice that \(\tilde{g}(x) \) is Lorentzian since it corresponds to the metric of the background solution—i.e. the metric of the Einstein Cosmos. Now, consider initial data \((\mathbf{u}_*, \partial_\mu \mathbf{u}_*) \) close enough to initial data \((\hat{\mathbf{u}}_*, \partial_\mu \hat{\mathbf{u}}_*) \) for the Milne Universe—that is, take

\[(\mathbf{u}_*, \partial_\mu \mathbf{u}_*) \subset B_r (\hat{\mathbf{u}}_*, \partial_\mu \hat{\mathbf{u}}_*), \]

(41)

where the notion of closeness is encoded in

\[B_r (\mathbf{u}_*, \mathbf{v}_*) \equiv \left\{ (w_1, w_2) \in H^m(S, \mathbb{C}^N) \times H^m(S, \mathbb{C}^N) \mid \| w_1 - \mathbf{u}_*\|_{S,m} + \| w_2 - \mathbf{v}_*\|_{S,m} \leq \varepsilon \right\}. \]

Using that \(\mathbf{u} = \hat{\mathbf{u}} + \bar{\mathbf{u}} \), the requirement (41) is equivalent to saying that the initial data for the perturbation is small in the sense that
With this remark in mind and recalling that \(\hat{u} \) is explicitly known, observe that from equation (38) it follows that

\[
g^{\mu\nu}(x; u) = \hat{g}^{\mu\nu}(x) + \tilde{g}^{\mu\nu}(x; \hat{u}).
\]

Since the variable \(\hat{u} \), is a vector-valued function collecting the independent components of the conformal fields, and in particular \((\hat{e}_{A}, \hat{\nu}) \), it follows that for sufficiently small initial \(\hat{u} \), the perturbation \(\tilde{g}^{\mu\nu} \) will be small. Therefore, choosing \(\varepsilon \) small enough we can guarantee that the metric \(\tilde{g}^{\mu\nu}(x; \hat{u}) \) is initially Lorentzian.

To state the main result of this section, it will be convenient to shift the time coordinate \(\tau \) by an amount of \(\frac{1}{2} \pi \), namely \(\bar{\tau} = \tau - \frac{1}{2} \pi \) so that the location of the standard hyperboloid of the Milne Universe is given by \(\hat{\tau} = 0 \). We are now in position to make use of a local existence and Cauchy stability result adapted from [26]—see appendix E, to establish the following theorem:

Theorem 1 (Existence and Cauchy stability). Let \((u_\ast, \partial_i u_\ast) = (\hat{u}_\ast + \hat{u}_\ast, \partial_i \hat{u}_\ast + \partial_i \hat{u}_\ast)\) be hyperboloidal initial data for the conformal wave equations on an three-dimensional manifold \(\mathcal{H} \) where \((\hat{u}_\ast, \partial_i \hat{u}_\ast)\) denotes initial data for the Milne Universe. Let \((\hat{E}u_\ast, \hat{E}\partial_i u_\ast)\) denote the extension of these data to \(\hat{S} \approx \mathbb{S}^3 \). Then, for \(m \geq 4 \) and \(\bar{\tau} \geq \frac{1}{2} \pi \) there exist an \(\varepsilon > 0 \) such that:

(i) For \(||\hat{u}_\ast||_{|\mathcal{H}|} + ||\partial_i \hat{u}_\ast||_{|\mathcal{H}|} < \varepsilon \), there exist a unique solution \(u = \hat{u} + \bar{u} \) to the wave equations of proposition 1 with a minimal existence interval \([0, \bar{\tau}] \) and \(u \in \mathcal{C}_{m-2}([0, \bar{\tau} \times \hat{S}]) \),

(ii) Given a sequence \((u^{(n)}_\ast, v^{(n)}_\ast) \in B_\varepsilon (u_\ast, v_\ast) \cap D_\varepsilon\) such that

\[
||u^{(n)}_\ast - u_\ast||_{\mathcal{S}, m} \to 0, \quad ||v^{(n)}_\ast - v_\ast||_{\mathcal{S}, m} \to 0, \quad \text{as} \quad n \to \infty,
\]

then for the solutions \(u^{(n)} \) with \(u^{(n)}_\ast = u^{(n)}_\ast \) and \(\partial_i u^{(n)}(0, \cdot) = v^{(n)}_\ast \), it holds that

\[
||u^{(n)}(t, \cdot) - u(t, \cdot)||_{\mathcal{S}, m} \to 0 \quad \text{as} \quad n \to \infty
\]

uniformly in \(t \in [0, \bar{\tau}] \) as \(n \to \infty \).

(iii) The solution \(u = \hat{u} + \bar{u} \) is unique in \(D^+(\mathcal{H}) \) and implies, wherever \(\Xi = 0 \), a \(C^{m-2} \) solution to the Einstein vacuum equations with vanishing cosmological constant .

Proof. Points (i) and (ii) are a direct application of theorem 2 given in appendix E. The wave equation (40) is of the form covered by equation (69): the condition ensuring that \(\hat{g}(x) + \tilde{g}(x; u) \) is Lorentzian is encoded in the requirement of the perturbation for the initial data being small as discussed in section 5.4; moreover, the coefficients in equation (40) are smooth functions of their arguments. The fact that the background conformal representation of the Milne Universe (i.e. the Einstein cylinder) is a smooth solution of the time coordinate, ensures, in particular, that there will be a neighbourhood of the data for the Milne Universe such that each of these data sets will exist in the interval \([0, \frac{1}{2} \pi])\).

The statement of point (iii) follows from the discussion of section 4 for the propagation of the constraints and the subsidiary system as summarized in propositions 1 and 3. In particular, in this section it was shown that a solution to the spinorial wave equations is a solution to the CEFE if initial data satisfies the appropriate conditions. As exemplified in section 4.2.1 for the rescaled Weyl spinor, requiring the zero-quantities to vanish in the initial hypersurface renders conditions on the initial data. Finally, recall that a
solution to the CEFE implies a solution to the Einstein field equations wherever $\Xi \equiv 0$—see [18].

Remark.

(a) The localisability property of solutions to wave equations allows to apply the methods leading to theorem 1 to discuss the nonlinear perturbations of background solutions whose spatial sections are orientable compact manifolds. For this one consider a finite cover of the base manifold. Solutions are then obtained on the Cauchy development of each of the elements of the cover. These global solutions are then patched together to obtain a global solution. The geometric uniqueness of the setting ensures that solutions on the overlapping regions are compatible. The details of this construction well-known can be found in [38]. A discussion of the patching method for (first order) symmetric hyperbolic systems can be found in [22].

(b) Point (ii) in the theorem establishes the stability of the background (Milne) solution—i.e. the fact that the development of data close to Milne data will be, in a suitable sense, close to the Milne solution.

(c) Observe that $0 < S < \infty$ for $0, 1 < 2$ and $0 > S > \infty$ for $0, 1 < 2$ for ε small enough, therefore there is at least one point where $\Sigma = 0$. This fact will be used in the analysis of the conformal boundary given in the next section.

5.5. Structure of the conformal boundary

Now, we will complement theorem 1 by showing that the conformal boundary \mathcal{J} coincides with the Cauchy horizon of \mathcal{H}. The argument of this section is based on analogous discussion in [21]. Since the Cauchy horizon $H(\mathcal{H}) = \partial (D^+(\mathcal{H}))$ is generated by null geodesics with endpoints on \mathcal{Z} the null generators of $H(\mathcal{H})$—i.e the null vectors tangent to $H(\mathcal{H})$—are given at \mathcal{Z} by $\Sigma_a |_Z$. We then define two null vectors (n, l) on \mathcal{Z} by setting

$$l_a = \Sigma_a |_Z, \quad n_a \perp \mathcal{Z}, \quad g(n_a, l_a) = 1 \quad \text{on } \mathcal{Z}. \quad (43)$$

We complement this pair of null vectors $\{l_a, n_a\}$, where l_a is tangent to $H(\mathcal{H})$ on \mathcal{Z} and n_a is normal to \mathcal{Z}, with a pair of complex conjugate vectors m_a and $\overline{m_a}$ tangent to \mathcal{Z} such that $g(m_a, \overline{m_a}) = 1$, so as to obtain the tetrad $\{l_a, n_a, m_a, \overline{m_a}\}$. In order to obtain a Newman–Penrose frame $\{l, n, m, \overline{m}\}$ off \mathcal{Z} along the null generators of $H(\mathcal{H})$ we propagate them by parallel transport in the direction of l by requiring

$$l^a \nabla_a l^b = 0, \quad l^a \nabla_a n^b = 0, \quad l^a \nabla_a m^b = 0. \quad (44)$$

Now, suppose that we already have a solution to the conformal wave equations. Using the result of proposition 3, we know that the solution will also satisfy the CEFE. In this section we will make use of the CEFE equations to study the conformal boundary. From the tensorial (frame) version of the CEFE as given in appendix D, one notices the following subset consisting of equations (68d), (68e) and the definition of Σ_a as the gradient of the conformal factor:

$$\nabla_a \Xi = \Sigma_a, \quad (45a)$$

$$\nabla_a \Sigma_b = s g_{ab} - \Xi L_{ab}. \quad (45b)$$
\[\nabla_a s = -L_{ab} \Sigma^b. \] (45c)

Transvecting the first two equations, respectively, with \(l^a \), \(l^n b \) and \(l^n m^b \) we get

\[l^a \nabla_a \Xi = l^a \Sigma_a, \]
\[l^a \nabla_a (l^b \Sigma_b) = -\Xi L_{ab} l^a b, \]
\[l^a \nabla_a (m^b \Sigma_b) = -\Xi L_{ab} l^a b m^b, \]

where we have used (44) and the fact that \(l \) is null and orthogonal to \(m \). The latter equations can be read as a system of homogeneous transport equations along the integral curves of \(l \) for a vector-valued variable containing as components \(\Xi, \Sigma_a l^a \) and \(\Sigma_a m^a \). Written in matricial form one has

\[\nabla_l \begin{pmatrix} \Xi \\ \Sigma_a l^a \\ \Sigma_a m^a \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ -L_{cd} l^c l^d & 0 & 0 \\ -L_{cd} l^c m^d & 0 & 0 \end{pmatrix} \begin{pmatrix} \Xi \\ \Sigma_a l^a \\ \Sigma_a m^a \end{pmatrix}. \] (46)

Observe that the column vector shown in the last equation is zero on \(\mathcal{Z} \), since \((l^n \Sigma_a) |_{\mathcal{Z}} = (l^n l^a) |_{\mathcal{Z}} = 0 \) and \((\Sigma_a m^a) |_{\mathcal{Z}} = (l_a m^b) |_{\mathcal{Z}} = 0 \) which follows from and (43). Since equation (46) is homogeneous and it has vanishing initial data on \(\mathcal{Z} \) we have that \(\Xi, \Sigma_a l^a \) and \(\Sigma_a m^a \) will be zero along \(l \) until one reaches a caustic point. Consequently, we conclude that the conformal \(\Xi \) factor vanishes in the portion of \(H(\mathcal{H}) \) which is free of caustics. Thus, this portion of \(H(\mathcal{H}) \) can be interpreted as the conformal boundary of the physical spacetime \((\bar{\mathcal{M}}, \bar{g})\). In addition, notice that from the vanishing of the column vector of equation (46) it follows that \(\Sigma_a l^a = \Sigma_a m^a = 0 \) on \(H(\mathcal{H}) \). Therefore, the only component of \(\Sigma_a \) that can be different from zero is \(\Sigma_a n^a \). Accordingly, \(\Sigma_a \) is parallel to \(l^a \) and \(\Sigma_a = (\Sigma_a n^a) l^a \). Moreover, since \(g(n_a, l_1) = 1 \) it follows that \((\Sigma_a n^a) |_{\mathcal{Z}} = 1 \).

Now, in order to extract the information contained in \(\Sigma_a n^a \) one transvects (45b) with \(l^n n_b \), to obtain

\[l^n \nabla_a \left(n^b \Sigma_b \right) = s g_{ab} l^a n^b - \Xi L_{ab} l^a n^b. \]

Using that \(g(l, n) = 1 \) and that \(\Xi \) vanishes on \(H(\mathcal{H}) \) one concludes that

\[\nabla_l (\Sigma_a n^a) = s \quad \text{on} \quad H(\mathcal{H}). \]

We can obtain a further equation transvecting (45c) with \(l^a \)

\[l^a \nabla_a s = -L_{ab} l^a \Sigma^b = -L_{ab} l^a l^b \Sigma_f l^b \quad \text{on} \quad H(\mathcal{H}). \]

It follows then that one has the system

\[\nabla_l \begin{pmatrix} \Sigma_a n^a \\ s \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -L_{cd} l^c l^d & 0 \end{pmatrix} \begin{pmatrix} \Sigma_a n^a \\ s \end{pmatrix}. \]

Since \((\Sigma_a n^a) |_{\mathcal{Z}} = 1 \) (i.e. non-vanishing), the solution for the column vector formed by \(s \) and \(\Sigma_a n^a \) cannot be zero. Accordingly, \(s \) and \(\Sigma_a n^a \) cannot vanish simultaneously. Finally, transvecting equation (45b) with \(m^n m^b \) we get

\[m^n m^b \nabla_a \Sigma_b = -\Xi m^n m^b L_{ab} + s g_{ab} m^n m^b. \]

This can also be shown by noticing that \((n^b \Sigma_b) |_{\mathcal{Z}} = (n^b L_b) |_{\mathcal{Z}} = 1 \).
Using that \(g(m, \dot{m}) = 1 \) and restricting to \(H(\mathcal{H}) \), where \(\Xi = 0 \) we obtain
\[
m^b m^a \nabla_a \Sigma_b = s \quad \text{on} \quad H(\mathcal{H}).
\]
Using \(g(m, I) = 0 \) it follows that the left-hand side of the last equation is equivalent to
\[
m^a m^b \nabla_a \Sigma_b = m^a m^b \nabla_a (\Sigma_c n^c l_b)\\= m^a \dot{m}^b \Sigma_c n^c \nabla_a l_b + m^a m^b l_b \nabla_a \Sigma_c n^c\\= \Sigma_c n^c m^a \dot{m}^b \nabla_a l_b.
\]
Finally, recalling the definition of the expansion \(\rho \equiv -m^a \dot{m}^b \nabla_a l_b \) (in the Newman–Penrose notation [40]) we finally obtain
\[
\Sigma_a n^a \rho = -s \quad \text{on} \quad H(\mathcal{H}).
\]
We already know that the only possible non-zero component of the gradient of \(\Xi \) is \(\Sigma_a n^a \) and that it cannot vanish simultaneously with \(s \). This means that \(d\Xi = 0 \) implies \(\rho \to \infty \) on \(H(\mathcal{H}) \). To be able to identify the point \(i^+ \) where \(d\Xi = 0 \) with timelike infinity we need to calculate the Hessian of the conformal factor. Observe that this information is contained in the conformal field equation (68d). Considering this equation at \(H(\mathcal{H}) \), where we have already shown that the conformal factor vanishes, we get
\[
\nabla_a \nabla_b \Xi = s g_{ab}.
\]
Now, as we have shown that \(s \) and \(\Sigma_a n^a \) (or, equivalently, \(d\Xi \)) do not vanish simultaneously we conclude that \(s \neq 0 \) and that \(\nabla_a \nabla_b \Xi \) is non-degenerate. Thus, we can consider the point \(i^+ \) on \(H(\mathcal{H}) \) where both \(\Xi \) and \(d\Xi \) vanish as representing future timelike infinity for the physical spacetime \((\bar{M}, \bar{g}) \).

Figure 2. Portion of the Penrose diagram of the Milne Universe showing the initial hypersurface \(\mathcal{H} \) where the hyperboloidal data is prescribed. At \(\mathcal{Z} \) the conformal factor vanishes and the argument of section 5.5 can be applied. The dark gray area represents the development of the data on \(\mathcal{H} \). Compare with the case of the hypersurface \(\mathcal{H}' \) which intersects the horizon at \(\mathcal{Z}' \) where the argument cannot be applied. Analogous hypersurfaces can be depicted for the lower diamond of the complete diagram of figure 1.
Remark. Observe that the construction discussed in the previous paragraphs crucially assumes that Ξ_τ is zero on the boundary \mathcal{Z} of the initial hypersurface \mathcal{H}. This construction cannot be repeated if we were to take another hypersurface \mathcal{H}' with boundary \mathcal{Z}' where the conformal factor does not vanish. This is the case of an initial hypersurface that intersects the cosmological horizon, where for the reference solution the conformal factor does not vanish—see figure 2.

The results of the analysis of this section are summarized in the following:

Proposition 5 (Structure of the conformal boundary). Let u denote a solution to the conformal wave equations equations constructed as described in theorem 1, then, there exists a point $i^+ \in H(\mathcal{H})$ where $\Xi_{\mid i^+} = 0$ and $d\Xi_{\mid i^+} = 0$ but the Hessian $\nabla_a \nabla_b \Xi_{\mid i^+}$ is non-degenerate. In addition, $d\Xi = 0$ on $\mathcal{J}^+ = H(\mathcal{H}) \setminus \{i^+\}$. Moreover $D^+(\mathcal{H}) = \mathcal{J}^+(i^+)$.

Proof. From the conclusions of theorem 1 and the discussion of section 5.5 it follows that if we have a solution to the conformal wave equations which, in turn implies a solution to the conformal field equations, then there exists a point i^+ in $H(\mathcal{H})$ where both the conformal factor and its gradient vanish but $\nabla_a \nabla_b \Xi$ is non-degenerate. This means that i^+ can be regarded as future timelike infinity for the physical spacetime. In addition, null infinity \mathcal{J}^+ will be located at $H(\mathcal{H}) \setminus \{i^+\}$ where the conformal factor vanishes but its gradient does not.

Remark. Inspection of the argument leading to proposition 5 requires two continuous derivatives of the conformal fields involved. This is precisely the minimal regularity provided by theorem 1.

6. Conclusions

In this article we have shown that the spinorial frame version of the CEFE implies a system of quasilinear wave equations for the various conformal fields. The use of spinors allows a systematic and clear deduction of the equations and the not less important issue of the propagation of the constraints. The fact that the metric is not part of the unknowns in the spinorial formulation of the CEFE simplifies the considerations of hyperbolicity of the operator $\Box \equiv \nabla_a \nabla^a$. The application of these equations to study the semiglobal stability of the Milne Universe exemplifies how the extraction of a system of quasilinear wave equations out of the CEFE allows to readily make use of the general theory of partial differential equations to obtain non-trivial statements about the global existence of solutions to the Einstein field equations. The analysis of the present article has been restricted to the vacuum case. However, a similar procedure can be carried out, in the non-vacuum case, for some suitable matter models with trace-free energy–momentum tensor—see e.g. [22].

In addition, the present analysis has been restricted to the case of the so-called standard CEFE. There exists another more general version of the CEFE, the so-called, extended CEFE (XCEFE) in which the various equations are expressed in terms of a Weyl connection—i.e. a torsion free connection which is not necessarily metric but, however, respects the structure of the conformal class, [23]. The hyperbolic reduction procedures for the XCEFE available in the literature do not make use of gauge source functions. Instead, one makes use of conformal Gaussian systems based on the congruence of privileged curves known as conformal geodesics to extract a first order symmetric hyperbolic system. It is an interesting open question.
to see whether it is possible to use conformal Gaussian systems to deduce wave equations for the conformal fields in the XCEFE.

As a final remark, it is emphasised the two-spinor formalism used throughout this article allows a systematic (and, in fact, almost algorithmic) computation of of the evolution equations. It is, nevertheless, of interest to see whether other formalisms could be used to perform the required calculations or to present the results in an index free manner—e.g. the tractor formalism [8] or the framework used in [12]. In this respect, index free expressions are of particular interest as the would allow to identify structural features in the equations which may be hidden by complicated index arrays.

Acknowledgments

E Gasperín gratefully acknowledges the support from Consejo Nacional de Ciencia y Tecnología (CONACyT Scholarship 494039/218141).

Appendix A. Spinorial relations

In this appendix we recall several relations and identities that are used repeatedly throughout this article—see sections 4.6, 4.7, 4.9 and 4.10 of [34]. In addition, using the remarks made in [33] we give a generalization for the spinorial Ricci identities for a connection which is metric but not necessarily torsion free.

A.1. The Levi-Civita case

In this subsection we recall some well known relations satisfied the curvature spinors of a Levi-Civita connection. The discussion of this subsection follows [34], sections 4.9 and 4.11. First recall the decomposition of a general curvature spinor

$$R_{AA'BB'CC'DD'} = R_{ABCC'DD'}^{B'\epsilon A'} + R_{A'B'CC'DD'}^{A\epsilon BA}.$$

We can further decompose the reduced spinor $R_{ABCC'DD'}$ as

$$R_{ABCC'DD'} = \hat{X}_{ABCD}^{\epsilon \epsilon \epsilon C'D'} + \hat{Y}_{ABCD}^{\epsilon \epsilon \epsilon CD'},$$

where

$$\hat{X}_{ABCD} \equiv \frac{1}{2} R_{AB(C|E'|D)}^{E'}, \quad \hat{Y}_{ABCD} \equiv \frac{1}{2} R_{AB(E|C')D'}^{C'E'}.$$

In the above expressions the symbol $\hat{}$ over the Kernel letter indicates that this relation is general—i.e. the connection is not necessarily neither metric nor torsion-free. The spinors \hat{X}_{ABCD} and \hat{Y}_{ABCD} are not necessarily symmetric in AB.

It is well known that if that the connection is metric, then the spinors \hat{X}_{ABCD} and \hat{Y}_{ABCD} have the further symmetries

$$\hat{X}_{ABCD} = \hat{X}_{A\hat{B}C\hat{D}}, \quad \hat{Y}_{ABCD} = \hat{Y}_{A\hat{B}C\hat{D}'.}$$ (47)

We add the symbol $\hat{}$ over the Kernel letter to denote that only the metricity of the connection is being assumed. Now, if the connection is not only metric but, in addition, is torsion free (i.e. it is a Levi-Civita connection) then the first Bianchi identity $R_{a[bed]} = 0$ can be written equivalently as

$$34$$
where $R^*_{ab} = 0$, (48)

where $R^*_{abcd} \equiv \frac{1}{6} \epsilon^{cde} dR_{abef}$ and ϵ_{abcd} is the totally antisymmetric Levi-Civita tensor. Notice that equation (48) can be written in spinorial terms as—see equations (4.6.7) and (4.6.14) of [34]

$$R_{AA'BB',CB'BC'} = 0.$$

The last equation in turn implies that $X_{S}^{SP} = \tilde{X}_{S'}^{SP'}$ and $Y_{ABA'B'} = \tilde{Y}_{A'B'AB}$. Accordingly X_{SP}^{SP} is a real scalar and $Y_{ABA'B'}$ is a Hermitian spinor which, following the notation of [34], will be denoted by $\phi_{ABA'B'}$. Collecting all this information and decomposing in terms of irreducible components one obtains the usual decomposition of the curvature spinors

$$X_{ABCD} = \Psi_{ABCD} + \Lambda (\epsilon_{DB}\epsilon_{CA} + \epsilon_{CB}\epsilon_{DA}),$$

$$Y_{ABCD} = \Phi_{ABCD'},$$

where Ψ_{ABCD} is the Weyl spinor and $\Phi_{ABCD'}$ is the Ricci spinor. The latter is the spinorial counterpart of a world tensor (because of its Hermiticity which is consequence of the first Bianchi identity) and Λ is a real scalar (consequence of the first Bianchi identity again). Additionally, observe that one also has that $X_{A(BC)A} = 0$. This is a consequence of the interchange of pairs symmetry $R_{abed} = R_{ceab}$ of the Riemann tensor of a Levi-Civita connection. For a general connection the righthand side of last equation is not necessarily zero.\(^6\)

In the Levi-Civita case, the spinorial Ricci identities are the spinorial counterpart of

$$\left[\nabla_{A},\nabla_{B}\right]v^{C} = R^{C}_{\quad eab} v^{e}.$$

These identities are given in terms of the operator $\Box_{AB} = \nabla_{Q} (A \nabla_{B}) Q$. The spinorial Ricci identities are given in a rather compact form by

$$\Box_{AB} \zeta^{C} = X_{ABC}^C \xi Q, \quad \Box_{A'B'} \zeta^{C} = \phi_{A'B'}^C \xi Q, \quad (49)$$

$$\Box_{AB} \zeta_{C} = -X_{A'B'}^{C} \xi Q, \quad \Box_{A'B'} \zeta_{C} = -\phi_{A'B'}^{C} \xi Q. \quad (50)$$

It is useful to combine these identities with the decomposition of X_{ABCD} to obtain a more detailed list of relations. The following expressions are repeatedly used in this article:

$$\Box_{AB} \zeta_{C} = \Psi_{ABCD}^{Q} - 2\Lambda \zeta_{(A'B'C)}, \quad \Box_{A'B'} \zeta_{C} = \Psi_{ABCD}^{Q}, \quad (51)$$

$$\Box_{AB}^{\zeta^{B}} = -3\Lambda \zeta_{A}, \quad \Box_{A'B'}^{\zeta^{C}} = \xi Q \phi_{CDA'B'}. \quad (52)$$

Using these relations and the Jacobi identity (ϵ-identity) the second Bianchi identity can be expressed in terms of spinors as

$$\Sigma^{A}_{B} X_{ABCD} = \Sigma^{A'}_{B'} \phi_{CD'A'B'}.$$

For completeness, we recall the relation between $\phi_{ABA'B'}$ and the Ricci tensor and between R and Λ. Namely, that

$$R_{ac} \leftrightarrow R_{AA'CC'} = 2 \phi_{ACA'C'} - 6 \Lambda \epsilon_{AC} \epsilon_{A'C'}. \quad R = -24 \Lambda. \quad (53)$$

From the above expressions it follows that $2\Phi_{ABA'B'}$ is the spinorial counterpart of the trace-free Ricci tensor $R_{ab} \equiv R_{ab} - \frac{1}{2} R g_{ab}$. From this last observation, it follows that the spinorial counterpart of the Schouten tensor can be rewritten in terms of $\Phi_{AA'BB'}$ and Λ. Recalling the

\(^6\) The reason is that the interchange of pairs symmetry is a consequence of the antisymmetry in the first and, second pairs of indices and the first Bianchi identity which for a general connection will involve the torsion and its derivatives.
definition of the four-dimensional Schouten tensor \(L_{ab} = \frac{1}{2}R_{ab} - \frac{1}{12}Rg_{ab} \) and equation (53) we get

\[
L_{ABA'B'} = \phi_{ACA'C'} - \Lambda e_{AC} e_{A'C'}. \tag{54}
\]

The second contracted Bianchi identity can be recast in terms of these spinors as

\[
\nabla^CA' \phi_{CDA'B'} + 3 \nabla_{DB'} \Lambda = 0. \tag{55}
\]

A.2. Spinorial Ricci identities for a metric connection

We now consider the case of a connection \(\hat{\nabla} \) which is metric but not torsion-free. First, we need to obtain a suitable generalization of the operator \(\hat{\Box}_{AB} \). In order to achieve this, observe that the relation \([\nabla_a, \nabla_b] u^d = R^d_{cabu^c}\) valid for a Levi-Civita connection extends to a connection with torsion as

\[
\left[\nabla_a, \nabla_b \right] u^d = \frac{\hat{\Delta}^d}{R} c_{abu^c} + \Sigma_a \epsilon^b_c \nabla_c u^d.
\]

Another way to think the last equation is to define a modified commutator of covariant derivatives through

\[
[\nabla_a, \nabla_b] u^d = \frac{\hat{\Delta}^d}{R} c_{abu^c}.
\]

In this way we can recast the Ricci identities as

\[
[\nabla_a, \nabla_b] u^d = \frac{\hat{\Delta}^d}{R} c_{abu^c}.
\]

This observation leads us to an expression for the generalized operator \(\hat{\Box}_{AB} \)

\[
\hat{\Box}_{AB} = \nabla_C (A \nabla_B C).
\]

The relation between this operator and the commutator of covariant derivatives is

\[
\left[\nabla_{AA'}, \nabla_{BB'} \right] = \epsilon_{A'B'} \hat{\Box}_{AB} + \epsilon_{AB} \hat{\Box}_{A'B'}.
\]

We cannot directly write down the equivalent spinorial Ricci identities simply by replacing \(X \) and \(Y \) by \(\hat{\nabla} \) and \(\hat{\phi} \) because of appearance of the term \(\Sigma_a \epsilon^b_c \nabla_c u^d \) in the definition of the curvature tensor. A way to get around this difficulty is to define a modified operator \(\hat{\Box}_{AB} \) formed using the modified commutator of covariant derivatives instead of the usual commutator. In this way we can directly translate the previous formulae simply by replacing \(X \) and \(Y \) by \(\hat{\nabla} \) and \(\hat{\phi} \). Now, the relation between \(\hat{\Box}_{AB} \) and \(\hat{\Delta}_{AB} \) can be obtained by observing that

\[
\hat{\Box}_{CD} = \frac{1}{2} \epsilon^{C'D'} \left[\nabla_{CC'}, \nabla_{DD'} \right] = \frac{1}{2} \epsilon^{C'D'} \left[\nabla_{CC'}, \nabla_{DD'} - \Sigma_{CC'} \nabla_{DD'} \right] = \frac{1}{2} \left(\nabla_{D'} \nabla_{C'} + \nabla_{D'} \nabla_{C'} - \Sigma_{CD'} \nabla_{D'} \nabla_{E'}. \right) \tag{56}
\]
Using the antisymmetry of the torsion spinor we have the decomposition
\[\Sigma_{AA'}^{CC'} = \epsilon_{AB} \Sigma_A^{EE'} B'B + \epsilon_{A'B'} \Sigma_A^{EE'} B'B', \]
(57)
where the reduced spinor is given by \(\Sigma_A^{EE'} B'B = \frac{1}{2} \Sigma_{(A|Q^1_{EE'} B')} Q' \). Using this decomposition and symmetrizing expression (56) in the indices \(CD \) one obtains
\[\hat{\Delta}_{CD} = \hat{\Delta}_{CD}^{(C} \hat{\Delta}_{D')}, - \sum_{C} EE' \hat{\Delta}_{EE'}^{(C} D' \hat{\Delta}_{EE'}^{D')} = \hat{\Delta}_{CD} - \sum_{C} EE' D' \hat{\Delta}_{EE'}. \]

Therefore
\[\hat{\Delta}_{AB} = \hat{\Delta}_{AB} + \sum_{A} EE' D' \hat{\Delta}_{EE'}. \]
(58)
In order to compute explicitly how \(\hat{\Delta}_{AB} \) acts on spinors we only need to compute the generalized the spinors \(\hat{\Psi}_{ABCD} \) and \(\hat{\Phi}_{ABCD} \).

As discussed in previous paragraphs, the fact that the connection is not torsion free is reflected in the symmetries of the curvature spinors. We still have that the symmetries in (47) hold due to the metricity of \(\hat{\nabla} \). However, the interchange of pairs symmetry of the Riemann tensor, the reality condition on \(\hat{\Psi}^{SP} \) and the Hermiticity of \(\hat{\Phi}_{ABCD'} \) do not longer hold as these properties rely on the cyclic identity \(R_d ^{[abc]} = 0 \). In fact, the first Bianchi identity is, in general, given by
\[\hat{\nabla}^d R \hat{\nabla}^d_{[abc]} + \hat{\nabla}^d \Sigma_{a BC e} + \Sigma_{a [b BC c]} \hat{\nabla}^d e = 0. \]
It follows that \(\hat{\Psi}_{A(BC)} = \hat{\Psi}_{A(BC)} \) does not necessarily vanish and, generically, it will depend on the torsion and its derivatives as can be seen from the last equation. Labelling, as usual, the remaining non-vanishing contractions of \(\hat{\Psi}_{ABCD} \)
\[\hat{\Psi}_{ABCD} = \hat{\Psi}_{ABCD}, \quad \hat{\Psi}_{(ABCD)} = \hat{\Psi}_{(ABCD)}, \quad \hat{\Psi}_{A^{(BC)} = \hat{\Psi}_{A^{(BC}}}. \]

where \(H_{BC} \) is a spinor which, as discussed previously, depends on the torsion and its derivatives. The explicit form of \(H_{BC} \) will not be needed. Finally, recall the general decomposition in irreducible terms of a four-valence spinor \(\xi_{ABCD} \):
\[\xi_{ABCD} = \xi_{(ABCD)} + \frac{1}{2} \epsilon_{(AB)} P^P \epsilon_{(CD)} + \frac{1}{2} \epsilon_{(CD)} P^P \epsilon_{(AB)} + \frac{1}{2} \epsilon_{(CD)} P^P \epsilon_{(AB)} \xi_{CD}, \]
\[+ \frac{1}{2} \epsilon_{(AB)} \xi_{CD}, \]
where
\[\xi_{AB} \equiv \xi_{Q^(AB)}, \quad \xi \equiv \xi_{PQ} P^Q. \]
Using the above formula we get the following expressions for the irreducible decomposition of the curvature spinor \(\hat{\Psi}_{ABCD} \):
\[\hat{\Psi}_{ABCD} = \hat{\Psi}_{ABCD} + \hat{\Lambda}(\epsilon_{AC} \epsilon_{BD} + \epsilon_{AD} \epsilon_{BC} + \frac{1}{2} \epsilon_{[C} \epsilon_{D]} \hat{\Psi}_{ABCD} + \frac{1}{2} \epsilon_{[C} \epsilon_{D]} \hat{\Psi}_{ABCD} \hat{\Lambda}. \]
(59)
In order to ease the comparisons with the Levi-Civita case let
\[\hat{\Psi}_{ABCD'} = \hat{\Phi}_{ABCD'}. \]
(60)
Observe that, in contrast with the case of a Levi-Civita connection, we have that $\hat{\Lambda}$ is not real and $\hat{\Phi}_{ABCD}$ is not Hermitian. In other words, one has

$$\hat{\Lambda} - \hat{\Lambda} = 0, \quad \hat{\Phi}_{ABCD} - \hat{\Phi}_{A'B'C'D'} = 0, \quad H_{AB} = 0.$$ \hfill (61)

In fact, the right-hand side of the previous equations depends on the torsion and its derivatives—see [33]. However, its explicit expression will not play any role in the discussion of this article. Having found the curvature spinors, we can derive the spinorial Ricci identities. As discussed in the previous paragraph, the modified operator $\hat{\Phi}_{AB}$ formed from the modified commutator of covariant derivatives satisfies as version of the spinorial Ricci identities which is obtained simply by replacing the curvature spinors X_{ABCD} and Φ_{ABCD} by the spinors $\hat{\Phi}_{ABCD}$ and $\hat{\Phi}_{ABCD}$. The Ricci identities with torsion are then given by

$$\hat{\Lambda}_{AB} \zeta^C = \hat{\Phi}_{ABQ} \zeta^D + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta^C,$$

$$\hat{\Lambda}_{AB} \zeta_C = \hat{\Phi}_{ABQ} \zeta^D + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta_C,$$

with $\hat{\Phi}_{ABCD}$ and $\hat{\Phi}_{ABCD}$ given by (59) and (60). The primed version of the last expressions can be readily identified. More importantly, the detailed version (in terms of irreducible components) of the spinorial Ricci identities become

$$\hat{\Lambda}_{AB} \zeta_C = \hat{\Phi}_{ABQ} \zeta^D + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta_C,$$

$$\hat{\Lambda}_{AB} \zeta_C = \hat{\Phi}_{ABQ} \zeta^D + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta_C,$$

$$\hat{\Lambda}_{AB} \zeta^B = -3 \hat{\Lambda}_{AB} \zeta^B + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta^B,$$

$$\hat{\Lambda}_{AB} \zeta^C = \zeta^D \hat{\Phi}_{QCA} B^{PP'} + \Sigma A^{PP'} B^{PP'} \hat{\Lambda}_{QD} \zeta^C.$$ \hfill (62a-d)

The above identities are supplemented by their complex conjugated version—keeping in mind the non-Hermiticity of $\hat{\Phi}_{ABCD}$ and the non-reality of Λ as stated in (61). In the last list of identities we have defined in the quantity U_{ABCD}

$$U_{ABCD} \equiv \frac{1}{2} \Sigma A^{PP'} B^{PP'} H_{AB} + \frac{1}{2} \Sigma A^{PP'} B^{PP'} H_{DA} H_{BC}.$$ \hfill (63)

The Levi-Civita case can be readily recovered by setting $\Sigma A^{PP'} B = 0$ since the spinors H_{AB} and U_{ABCD} also vanish. Moreover, we also recover the pair interchange symmetry and the expressions presented in (61) become equalities.

Appendix B. The transition tensor and the torsion tensor

In this appendix we briefly derive the transition spinor relating a Levi-Civita connection ∇ with a connection $\widehat{\nabla}$ which is metric but not necessarily torsion-free. The general strategy behind this discussion can be found in [34]. Given two general connections ∇ and $\widehat{\nabla}$ we have that
where $Q_{a^b^c}$ is the transition tensor. It is well known that for the case of a Levi-Civita connection ∇ and a metric connection \triangledown one has that

$$\Sigma_{a^b} = -2Q_{[a^b]}.$$

Therefore, the spinorial counterpart of the transition tensor can be decomposed as

$$Q_{A^B^C} = Q_{AA'BC} \epsilon_{B'C'} + Q_{AA'B'C} \epsilon_{BC}.$$ \hspace{1cm} (65)

where

$$Q_{AA'BC} \equiv \frac{1}{2}Q_{AA'[B]Q'[C]} \epsilon^Q.$$

This expression allows to translate expressions containing the covariant derivative \triangledown to expressions containing ∇ and the transition spinor $Q_{AA'BC}$ as follows:

$$\hat{\nabla}_{AA'} \xi^B = \nabla_{AA'} \xi^B + Q_{AA'} B^Q \xi^Q, \quad \hat{\nabla}_{AA'} \xi_C = \nabla_{AA'} \xi_C - Q_{AA'} Q^Q \xi_Q.$$ \hspace{1cm} (66)

These expression can be extended in a similar manner to spinors of any index structure. Now, from the equations in (64) it follows that

$$Q_{abc} = -\Sigma_{a[bc]} - \frac{1}{2} \Sigma_{cab}.$$ \hspace{1cm} (67)

Using the above equation along with the decompositions (65) and (57) we get

$$Q_{AA'BC} = -2\Sigma_{A[C|A'|B]} - 2\Sigma_{A'(C|A'B)} - 2\Sigma_{A'[C|Q]Q' \epsilon_{A|B}B}.$$

Appendix C. Explicit expressions for the subsidiary equations

In section 4.2 it was shown that the generic form of the equations in the subsidiary system is

$$\hat{\nabla}_{PA} N_{BC} = 2\hat{\nabla}_{PA} N_{BC}^P - 2\hat{\nabla}_{A} W_{BC}^Q.$$

In this section we use the results of appendices A and B to explicitly compute the terms $\hat{\nabla}_{PA} N_{BC}^P$ and W_{BC}^Q for every zero-quantity. One has that:

$$\hat{\nabla}_{PA} N_{BC}^P = -3\hat{\nabla}_{PA} \Sigma_{AB} \epsilon^c + H_{PA} \Sigma_{ABC}^P \epsilon^c + \hat{\nabla}_{PA} \Sigma_{AB}^{PGc} - 2\hat{\nabla}_{P} \Sigma_{(P^c \epsilon_{A|B}}}$$

$$+ U_{PAQ} \Sigma_{A} \epsilon^P \epsilon^Q + 2\hat{\nabla}_{P} \Sigma_{00^P \epsilon_{A|B}},$$

$$\hat{\nabla}_{P} C^a_{AB} \tilde{e}_{a -D'} = \hat{\nabla}_{P} C^a_{AB} \tilde{e}_{a -D'} + \hat{\nabla}_{D'} \Sigma_{00' \epsilon_{B|C}} - \hat{\nabla}_{D'} \Sigma_{00' \epsilon_{B|C}} \tilde{e}_{a -D'}$$

$$- \hat{\nabla}_{A} \Sigma_{ABD} \epsilon^c + H_{P} C^a_{AB} \tilde{e}_{a -D'} + \hat{\nabla}_{D'} \Sigma_{00' \epsilon_{B|C}} \tilde{e}_{a -D'}$$

$$+ \hat{\nabla}_{P} C^a_{D'Q} \tilde{e}_{a -D'} - \hat{\nabla}_{A} \Sigma_{ABD} \epsilon^c + H_{P} C^a_{AB} \tilde{e}_{a -D'} + \hat{\nabla}_{D'} \Sigma_{00' \epsilon_{B|C}} \tilde{e}_{a -D'}$$

$$+ \hat{\nabla}_{P} C^a_{D'Q} \tilde{e}_{a -D'}.$$
\[\hat{\Delta}^P_{PC} \hat{\Delta}^P_{DBB} = - 3 \hat{\Delta}^P_{CDBB} + H_{PC} \hat{\Delta}^P_{DBB} + \Sigma_P \hat{\Delta}^P_{CQQ} \hat{\Delta}^P_{DBB} + \hat{\Psi}_{PCQD} \hat{\Delta}^P_{DBB} \]
\[- 2 \hat{\Delta}^P_{D(P)DBB'} + U_{PCQD} \hat{\Delta}^P_{DBB} + \Sigma_P \hat{\Delta}^P_{CQQ} \hat{\Delta}^P_{DBB} \]
\[+ \hat{\Psi}_{PCQD} \hat{\Delta}^P_{DBB'} + \hat{\Delta}^P_{DBD} \hat{\Delta}^P_{QQ} + \Sigma_P \hat{\Delta}^P_{CQQ} \hat{\Delta}^P_{DBB} \]
\[+ \Sigma_P \hat{\Delta}^P_{CQQ} \hat{\Delta}^P_{DBB} + \hat{\Delta}^P_{DBB} \hat{\Delta}^P_{QQ} + \Sigma_P \hat{\Delta}^P_{CQQ} \hat{\Delta}^P_{DBB} \]
\[\hat{\Delta}^P_{P'B'BAC} = \Sigma_P \hat{\Delta}^P_{P'B'BAC} + \Sigma_P \hat{\Delta}^P_{P'B'BAC} + \hat{\Delta}^P_{P'B'BAC} - 3 \hat{\Delta}^P_{P'B'BAC} \]
\[+ \Sigma_P \hat{\Delta}^P_{P'B'BAC} + \Sigma_P \hat{\Delta}^P_{P'B'BAC} + \hat{\Delta}^P_{P'B'BAC} = 3 \hat{\Delta}^P_{P'B'BAC} \]

Moreover, one has that
\[W[\Sigma] \hat{Q}_B^a = Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b, \]
\[W[\Xi] \hat{Q}_{ABD} = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b, \]
\[W[\Delta] \hat{Q}_{DBB} = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b, \]
\[W[\Lambda] \hat{Q}_{BAC} = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b, \]
\[W[Z] \hat{Q}_{AA} = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b = - Q^a_{EB} \hat{Q}_E^F \hat{\Xi}_F^b, \]

where the transition spinor is understood to be expressed in terms of the reduced torsion spinor which is, in itself, a zero-quantity—see equation (28).

Appendix D. The frame CEFE

The tensorial (frame) version of the standard vacuum CEFE are given by the following system—see e.g. [15–18]:
\[\Sigma_{\alpha} \hat{e}_{bc}^\alpha = 0, \]
\[\nabla_e d^e_{abf} = 0, \]
\[\nabla_c L_{db} - \nabla_d L_{bc} - \nabla_b \Xi d^a_{bcd} = 0, \]
\[\nabla_a \nabla_b \Xi + \Xi L_{ab} - s g_{ab} = 0, \]
\[\nabla_a s + L_{ac} \nabla^c \Xi = 0, \]
\[R^e_{abcd} - \rho^e_{abcd} = 0, \]

where \(\Sigma_{\alpha} \hat{e}_{bc}^\alpha \) is the torsion tensor, given in terms of the connection coefficients, as
\[\Sigma_{\alpha} \hat{e}_{bc}^\alpha = \left[e_{\alpha}, e_b \right] - (\Gamma_{\alpha}^e b - \Gamma_{b}^e \alpha) e_c, \]

\(L_{ab} \) is the Schouten tensor, \(\Xi \) is the conformal factor, \(s \) is the concomitant of the conformal factor defined by
s \equiv \frac{1}{4} \nabla_a \nabla^a \Xi + \frac{1}{24} R \Xi.

In addition, \(\rho^a_{bcd} \) is the algebraic curvature and \(R^c_{ab} \) is the geometric curvature

\[
\rho^a_{bcd} = \Xi d^a_{bcd} + 2 \left(g^a_{[c} L_{d]b} - g_{b[c} L_{d]} a \right).
\]

\[
R^c_{ab} = e_a (\Gamma^c_d d - e_b (\Gamma^c_d + \Gamma^f_d \Gamma^c_f a - \Gamma^c_d b) + \Gamma^f_d \Gamma^c_f d - \Gamma^c_d \Gamma^f_d b - \Sigma^c_d \Gamma^f_d e) d.
\]

Appendix E. Basic existence and stability theory for quasilinear wave equations

In this appendix we will give an adapted version of a theorem for quasilinear wave equations given in [26]. The particular formulation has been chosen so as to simplify comparison with an analogous result for first order symmetric hyperbolic as given in [21]—see theorem 3.1 in that reference.

In what follows, we will consider open, connected subsets \(\mathcal{U} \subset M_T \equiv [0, T) \times S \) for some \(T > 0 \) and \(S \approx \mathbb{S}^3 \) an oriented, compact three-dimensional manifold. On \(\mathcal{U} \) one can introduce local coordinates \(x = (x^i) = (t, x^\alpha) \). Given a fixed \(N \in \mathbb{N} \), in what follows, let \(u: M_T \rightarrow \mathbb{C}^N \) denote a \(\mathbb{C}^N \)-valued function. The derivatives of \(u \) will be denoted, collectively, by \(\partial u \). We will consider quasilinear wave equations of the form

\[
g^{\mu\nu}(x; u) \partial_\mu \partial_\nu u = F(x; u, \partial u),
\]

where \(g^{\mu\nu}(x; u) \) denotes the contravariant version of a Lorentzian metric \(g_{\mu\nu}(x; u) \) which depends smoothly on the unknown \(u \) and the coordinates \(x \) and \(F \) is a smooth \(\mathbb{C}^N \)-valued function of its arguments. Separating the fields into real and imaginary parts one can regard \(u \) as a \(\mathbb{R}^{2N} \)-valued function.

In order to formulate a Cauchy problem for equation (69) it is necessary to supplement it with initial data corresponding to the value of \(u \) and \(\partial u \) on the initial hypersurface \(S \). For simplicity, choose coordinates such that \(S \) is described by the condition \(t = 0 \). Given two functions \(u^x, v^x \in H^m(S, \mathbb{C}^N), \) \(m \geq 2 \), one defines the ball of radius \(\varepsilon \) centred around \((u^x, v^x) \) as the set

\[
R_\varepsilon (u^x, v^x) \equiv \left\{ (w_1, w_2) \in H^m(S, \mathbb{C}^N) \times H^m(S, \mathbb{C}^N) \ \mid \ \| w_1 - u^x \|_{S,m} + \| w_2 - v^x \|_{S,m} \leq \varepsilon \right\}.
\]

Also, given \(\delta > 0 \) define

\[
D_\delta \equiv \left\{ (w_1, w_2) \in H^m(S, \mathbb{C}^N) \times H^m(S, \mathbb{C}^N) \ \mid \ \delta < \left| \det g^{\mu\nu}(w_2) \right| \right\}.
\]

The basic existence and Cauchy stability theory for equations of the form (69) has been given in [26]. The following theorem is based on theorem III of the later reference—the presentation follows theorem 3.1 of [21]:

Theorem 2. Given an orientable, compact, three-dimensional manifold \(S \approx \mathbb{S}^3 \), consider the Cauchy problem

...
\[g^{\mu\nu}(x; u) \partial_{\mu} \partial_{\nu} u = F(x; u, \partial u), \]
\[
u(0, x) = u_{\nu}(x) \in H^{m+1}(S, \mathbb{C}^N),
\]
\[
 \partial_{\nu} u(0, x) = v_{\nu}(x) \in H^{m}(S, \mathbb{C}^N),
 \quad m \geq 4,
\]
and assume that \(g^{\mu\nu}(x; u_{\nu}) \) is a Lorentzian metric such that \(u_{\nu}(x, \cdot) \in D_0 \) for some \(\delta > 0 \).

Then:

(i) There exists \(T > 0 \) and a unique solution to the Cauchy problem defined on \([0, T] \times S\) such that
\[
u \in C^{m-2}(0, T) \times S, \mathbb{C}^N).
\]

Moreover, \((u(t, \cdot), \partial u(t, \cdot)) \in D_0\) for \(t \in [0, T]\).

(ii) There is an \(\varepsilon > 0 \) such that a common existence time \(T \) can be chosen for all initial data conditions on \(B_{\varepsilon}(u_{\nu}, v_{\nu}) \cap D_0\).

(iii) If the solution \(u \) with initial data \(u_{\nu} \), exists on \([0, T]\) for some \(T > 0 \), then the solutions to all initial conditions in \(B_{\varepsilon}(u_{\nu}, v_{\nu}) \cap D_0 \) exist on \([0, T]\) if \(\varepsilon > 0 \) is sufficiently small.

(iv) If \(\varepsilon \) and \(T \) are chosen as in (i) and one has a sequence \((u^{(n)}_{\nu}, v^{(n)}_{\nu}) \in B_{\varepsilon}(u_{\nu}, v_{\nu}) \cap D_0\) such that
\[
\| u^{(n)}_{\nu} - u_{\nu} \|_{S,m} \to 0, \quad \| v^{(n)}_{\nu} - v_{\nu} \|_{S,m} \to 0, \quad \text{as} \ n \to \infty,
\]
then for the solutions \(u^{(n)}(t, \cdot) \) with \(u^{(n)}(0, \cdot) = u^{(n)}_{\nu}(0, \cdot) = v^{(n)}_{\nu}(0, \cdot) \), it holds that
\[
\| u^{(n)}(t, \cdot) - u(t, \cdot) \|_{S,m} \to 0 \quad \text{as} \ n \to \infty
\]
uniformly in \(t \in [0, t) \) as \(n \to \infty \).

Remark.

(a) The particular formulation of the theorem has been chosen to ease the comparison with theorem 3.1 of [21] where an analogous existence and Cauchy stability result for first order symmetric hyperbolic systems is given.

(b) The hypotheses of theorem III in [26], on which theorem 2 is based, require the positivity away from zero of the coefficients of the second derivatives with respect to time in the wave equations. It also requires that the second order partial derivatives give rise to a strongly elliptic system. These requirements are satisfied for equation (69) if the matrix \(g^{\mu\nu} \) is a non-degenerate Lorentzian metric. This requirement is encoded in the set \(D_0 \). The regularity requirements of the coefficients in the quasilinear wave equations with respect to their arguments required by theorem III in [26] are satisfied by the smoothness assumptions on the functional form of equation (69).

(c) Theorem III in [26] establishes the well-posedness of the Cauchy problem for quasilinear wave equations of the form (69). It contains two main statements. The first establishes the local existence and uniqueness of solutions to initial value problem—this is essentially the content of point (i) in theorem 2. The second statement asserts the continuous dependence of solutions and existence times with respect to the initial data. In particular, if a known solution to the initial value problem has a minimal existence time \(T \), then any initial data sufficiently close to the reference solution will have the same existence time—this is essentially the statement in points (ii) and (iii) of theorem 2. The non-existence of nearby data with solutions having the same existence time would be in contradiction with
the uniform continuity of the map relating initial data and solutions. The dependence of
the solutions on the initial data is continuous in the topology of \(H^{m+1} \times H^{m} \) uniformly in
the common existence interval—this is the statement in point (iv) of theorem 2. Notice
that this is expressed, for concreteness, in terms of the convergence of a sequence.
(d) In view of the applications of the theorem, the regularity of the solutions has been
expressed in terms of standard derivatives rather than Sobolev spaces—see also, the
remarks after theorem 3.1 in [21].
(e) The regularity in both the hypothesis and conclusions of the theorem are not optimal. The
reader interested in sharpness is referred to [7, 27, 39, 41].
(f) Alternatively, rewriting equation (69) as a first order symmetric hyperbolic system, one
can obtain theorem 2 from theorem 3.1 of [21]. Similar ideas have been used in [1, 2].
(g) Using the method of patching solutions, theorem III can be extended to any compact
orientable three-manifold \(S \)—see e.g. the discussion in [22].

References
[1] Anderson M T 2005 Existence and stability of even dimensional asymptotically de Sitter spaces
Ann. Henri Poincaré 6 801
[2] Anderson M T and Chrusciel P T 2005 Asymptotically simple solutions of the vacuum Einstein
equations in even dimensions Commun. Math. Phys. 260 557
[3] Andersson L 2004 The Global Existence Problem in General Relativity, in 50 Years of the Cauchy
Problem in General Relativity ed P T Chrusciel and H Friedrich (Basel: Birkhäuser) p 71
[4] Andersson L and Chrusciel P T 1993 Hyperboloidal Cauchy data for vacuum Einstein equations
and obstructions to smoothness of null infinity Phys. Rev. Lett. 70 2829
[5] Andersson L, Chrusciel P T and Friedrich H 1992 On the regularity of solutions to the Yamabe
equation and the existence of smooth hyperboloidal initial data for Einstein’s field equations
Commun. Math. Phys. 149 587
[6] Andersson L and Moncrief V 2003 Elliptic-hyperbolic systems and the Einstein equations Ann.
Henri Poincaré 4 1
[7] Bahouri H and Chemin J-Y 1999 Équations d’ondes quasilinéaires et inégalités de Strichartz Am.
J. Math. 121 1337
[8] Bailey T N, Eastwood M G and Gover A R 1994 Thomas’s structure bundle for conformal,
projective and related structures Rocky Mt. J. Math. 24 1191
[9] Cardoso J G 2006 Wave equations for classical two-component Dirac fields in curved spacetimes
without torsion Class. Quantum Grav. 23 4151
[10] Choquet-Bruhat Y 2008 General Relativity and the Einstein Equations (Oxford: Oxford
University Press)
[11] Chrusciel P T and Paetz T-T 2013 Solutions of the vacuum Einstein equations with initial data on
past null infinity Class. Quantum Grav. 30 235037
[12] da Rocha R and Vaz J 2008 Conformal structures and twistors in the paravector model of spacetime
Int. J. Geom. Methods Mod. Phys. 4 547
[13] Evans L C 1998 Partial Differential Equations (Providence, RI: American Mathematical Society)
[14] Foursès-Bruhat Y 1952 Théorème d’existence pour certains systèmes d’équations aux dérivées
partielles non linéaires Acta Math. 88 141
[15] Friedrich H 1981 The asymptotic characteristic initial value problem for Einstein’s vacuum field
equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system
Proc. R. Soc. A 378 401
[16] Friedrich H 1981 On the regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations Proc. R. Soc. A 375 169
[17] Friedrich H 1982 On the existence of analytic null asymptotically flat solutions of Einstein’s
vacuum field equations Proc. R. Soc. A 381 361
[18] Friedrich H 1983 Cauchy problems for the conformal vacuum field equations in general relativity
Commun. Math. Phys. 91 445
[19] Friedrich H 1984 Some (con-)formal properties of Einstein’s field equations and consequences
 Asymptotic Behaviour of Mass and Spacetime Geometry (Lecture Notes in Physics 202) ed
 F J Flaherty (Berlin: Springer)
[20] Friedrich H 1986 On purely radiative space-times Commun. Math. Phys. 103 35
[21] Friedrich H 1986 On the existence of n-geodesically complete or future complete solutions of
 Einstein’s field equations with smooth asymptotic structure Commun. Math. Phys. 107 587
[22] Friedrich H 1991 On the global existence and the asymptotic behaviour of solutions to the
 Einstein–Maxwell–Yang–Mills equations J. Diff. Geom. 34 275
[23] Friedrich H 1995 Einstein equations and conformal structure: existence of anti-de Sitter-type
 space-times J. Geom. Phys. 17 125
[24] Griffiths J B and Podolsky J 2009 Exact Space-Times in Einstein’s General Relativity (Cambridge:
 Cambridge University Press)
[25] Hawking S W and Ellis G F R 1973 The Large Scale Structure of Space-Time (Cambridge:
 Cambridge University Press
[26] Hughes T J R, Kato T and Marsden J E 1977 Well-posed quasi-linear second-order hyperbolic
 systems with applications to nonlinear elastodynamics and general relativity Arch. Ration.
 Mech. Anal. 63 273
[27] Klainerman S, Rodnianski I and Szeftel J 2012 The bounded L^2 curvature conjecture
 arXiv:1204.1767
[28] Lübbe C and Valiente Kroon J A 2012 The extended conformal Einstein field equations with
 matter: the Einstein–Maxwell system J. Geom. Phys. 62 1548
[29] Lübbe C and Valiente Kroon J A 2013 A conformal approach for the analysis of the nonlinear
 stability of pure radiation cosmologies Ann. Phys. 328 1
[30] Notte-Cuello E A, Rodrigues W A and de Souza Q A G The square of the Dirac and spin-Dirac
 operators on a Riemann–Cartan spacetime Rep. Math. Phys. 60 135
[31] Paetz T-T 2013 Conformally covariant systems of wave equations and their equivalence to
 Einstein’s field equations Ann. H. Poincare 16 2059
[32] Penrose R 1963 Asymptotic properties of fields and space-times Phys. Rev. Lett. 10 66
[33] Penrose R 1983 Spinors and torsion in general relativity Found. Phys. 13 325
[34] Penrose R and Rindler W 1984 Spinors and Space-Time: Volume 1. Two-Spinor Calculus and
 Relativistic Fields (Cambridge: Cambridge University Press)
[35] Penrose R and Rindler W 1986 Spinors and Space-Time: Volume 2. Spinor and Twistor Methods
 in Space-Time Geometry (Cambridge: Cambridge University Press)
[36] Quiros I, García-Salcedo R, Madriz-Aguilar J E and Matos T 2013 The conformal
 transformation’s controversy: what are we missing? Gen. Relativ. Gravit. 45 489
[37] Rendall A D 2008 Partial differential equations in General Relativity (Oxford: Oxford University
 Press)
[38] Ringström H 2009 The Cauchy problem in General Relativity (Eur. Math. Soc. Zürich)
[39] Smith H F and Tataru D 2005 Sharp local well-posedness results for the non-linear wave equation
 Ann. Math. 162 291
[40] Stewart J 1991 Advanced General Relativity (Cambridge: Cambridge University Press)
[41] Tataru D 2000 Strichartz estimates for operators with nonsmooth coefficients and the nonlinear
 wave equation Am. J. Math. 122 349
[42] Wald R M 1984 General Relativity (Chicago, IL: University of Chicago Press)