Pleiotropic effects of heterozygosity for the SERPINA1 Z allele in the UK Biobank

Katherine A Fawcett1, Kijoung Song2, Guoqing Qian3,4, Aliki-Eleni Farmaki5, Richard Packer1, Catherine John1, Nick Shrine3, Raquel Granell6, Sue Ring6, Nicholas J Timpson6,7, Laura M Yerges-Armstrong2, Richard Eastell8, Louise V Wain1,9, Robert A Scott10, Martin D Tobin1,9,*, Ian P Hall*, (joint)

1. Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
2. Human Genetics, GlaxoSmithKline, Collegeville, PA, US
3. Department of General Internal Medicine, Ningbo First Hospital, Ningbo City, Zhejiang Province, China, 315010
4. Division of Respiratory Medicine, University of Nottingham, & NIHR Nottingham BRC, NUH NHS Trust, Nottingham NG7 2UH, UK
5. MRC Unit for Lifelong Health and Ageing, Institute of Cardiovascular Science, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
6. Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
7. Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
8. Department of Oncology and Metabolism, University of Sheffield, S10 2RX, UK
9. National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
10. Human Genetics - R&D, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK

*correspondence to: Prof. Ian P Hall, Division of Respiratory Medicine, D floor, South Block, Queens Medical Centre, Nottingham NG7 2UH, UK, \texttt{Ian.Hall@nottingham.ac.uk}, and Prof. Martin D Tobin, Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK,

\texttt{NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.}
Abstract

Homozygosity for the SERPINA1 Z allele causes alpha-1 antitrypsin deficiency, a rare condition that can cause lung and liver disease. However, the effects of Z allele heterozygosity on non-respiratory phenotypes, and on lung function in the general population, remain unclear. We conducted the largest population-based study to date to determine Z allele effects on >2,400 phenotypes using the UK Biobank study (N>303,353). We detected strong associations between heterozygosity and non-respiratory phenotypes including increased height, increased risk of gall bladder disease, reduced risk of heart disease and lower blood pressure, reduced risk of osteoarthritis and reduced bone mineral density, increased risk of headache and enlarged prostate, as well as with blood biomarkers of liver function. Heterozygosity was associated with higher lung function in non-smokers, but smoking appears to abolish this protective effect. Individuals heterozygous for the Z allele may therefore have altered risk of smoking-induced lung disease and other, non-respiratory conditions.
Introduction

Homozygosity for the SERPINA1 Z allele (rs28929474(T)) is the commonest cause of severe alpha-1 antitrypsin deficiency (AATD) and is a well-established genetic risk factor for lung diseases such as chronic obstructive pulmonary disease (COPD). However, the health consequences of heterozygosity for the Z allele are not as well-understood. Given that approximately one in 30 Europeans are heterozygous for the Z allele, the phenotypic consequences of carriage of this allele could have important public health implications.

Some previous studies have sought to characterise the effect of Z allele heterozygosity and homozygosity on non-respiratory traits, particular liver diseases. However, these have often been carried out in small sample sizes and/or clinical subgroups. To date there has been no systematic approach to determine the consequences of Z allele heterozygosity and homozygosity to non-respiratory phenotypes. The recent development of phenome-wide association testing (PheWAS) and the availability of the well-phenotyped UK Biobank population-based cohort provides a platform to allow this question to be addressed.

In contrast, the effect of Z allele heterozygosity and homozygosity on lung function traits and lung disease has been the subject of many studies. Recent COPD case-control and family-based studies have shown reduced lung function and increased risk of COPD in heterozygous current and former smokers. However, a population-based study demonstrated no significant reductions in lung function in heterozygous smokers, despite having greater numbers of heterozygous smokers compared to previous studies. This discrepancy may be due, in part, to the fact that study participants were identified and recruited based on their health status (as in case-control studies) or based on the health status of a family member, and this can lead to causal estimates that are subject to ascertainment bias. Population-based studies overcome these biases. In addition, the effects of the Z allele on lung function in relation to smoking status remain uncertain.
We therefore systematically evaluated the effects of Z allele heterozygosity in the UK biobank population, which in total includes >18,000 Z allele heterozygotes. We aimed to (i) undertake the first genome-wide association study for Z allele heterozygosity and homozygosity to identify effects beyond the respiratory system, and (ii) to fully define the effects of Z allele heterozygosity on lung function measures (FEV₁ and FVC) in smokers and non-smokers.
Methods

Cohorts

UK Biobank

The UK Biobank data resource is described elsewhere (see http://www.ukbiobank.ac.uk) and has ethical approval from the UK National Health Service (NHS) National Research Ethics Service (Ref 11/NW/0382). All participants provided written informed consent. Genotyping was undertaken using the Affymetrix Axiom® UK BiLEVE and UK Biobank arrays. Genotypes were imputed based on the Human Reference Consortium (HRC) panel, as described elsewhere. Genotyping quality control was performed as described previously. UK Biobank individuals were selected for inclusion in PheWAS analyses if they met the following criteria: (i) they had no missing data for sex or age; (ii) they had genome-wide imputed genetic data for rs28929474; (iii) they were of genetically determined European ancestry and; (iv) they were not first- or second-degree relatives. For lung function analyses, individuals were additionally required to have spirometry data that passed quality control, as described previously and to have full data for height and smoking status as well as data derived from direct genotyping for rs28929474 (N = 303,353).

ALSPAC

ALSPAC children were genotyped using the Illumina HumanHap550 quad genome-wide SNP genotyping platform (Illumina Inc., San Diego, CA, USA) by the Wellcome Trust Sanger Institute (WTSI; Cambridge, UK) and the Laboratory Corporation of America (LCA, Burlington, NC, USA), using support from 23andMe. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. Informed consent for the use of data collected via questionnaires and clinics was obtained from participants following the recommendations of the ALSPAC Ethics and Law Committee at the time. Further details of ALSPAC are available in the Supplementary materials. Participants were excluded from this study if they had
incorrectly recorded sex, minimal or excessive heterozygosity, disproportionate levels of individual missingness (>3%), evidence of cryptic relatedness or non-European ancestry.

Phenome-wide association studies (PheWAS)

To identify whether *SERPINA1* Z allele heterozygosity or homozygosity was associated with respiratory and non-respiratory traits and diseases, two PheWAS across all available traits were performed. The first compared traits in individuals heterozygous for the Z allele vs wild-type, and the second compared individuals homozygous for the Z allele vs wild type and heterozygotes combined (recessive genetic model). Up to 379,101 individuals were available for these analyses. Traits included UK Biobank baseline measures (from both questionnaires and physical measures), self-reported medication usage, and operative procedures, as well as those captured in Office of Population Censuses and Surveys codes from the electronic health record. We also included self-reported disease variables and those from hospital episode statistics (ICD-10 codes truncated to three-character codes and combined in block and chapter groups) as well as combining both self-report and hospital diagnosed diseases where possible to maximise power. The analysis included 2,411 traits (traits with >200 cases were included). Analyses were conducted in unrelated European-ancestry individuals (KING kinship coefficient of <0.0442), and were adjusted for age, age2, sex, genotyping array, and ten ancestry principal components. Logistic models were fitted for binary outcomes, and linear models were fitted for quantitative outcomes (rank transformed to normality). False discovery rates were calculated according to the number of the traits in the analysis.

Statistical analyses for biomarkers, lung function, COPD and height

For continuous traits, linear regression models adjusted for sex, age, age2, the first ten ancestry-based principal components (PCs) and genotyping array were tested in R. *SERPINA1* Z genotype (derived from direct genotyping) was coded according to the genetic model tested: either heterozygous (ie. heterozygous versus wild-type) or recessive. For lung function analyses, ever-smoking status and standing height were also included in the models unless indicated. To test for
interaction of Z allele hetero- or homozygosity with ever-smoking status and sex, interaction terms for sex and smoking were added to the model. Association testing with moderate-severe COPD (defined as FEV₁/FVC<0.7 and FEV₁ < 80% predicted) was carried out using logistic regression in R adjusting for covariates sex, age², ever-smoking status, height, the first ten ancestry-based principal components (PCs) and genotyping array. In addition to the biomarkers available from UK Biobank, we calculated estimated glomerular filtration rate (eGFR) using the following formula: If cystatin C (cys) <= 0.8 then eGFR = 133*((cys/0.8)**-0.499)*(0.996**age)*[0.932 if female] whereas if cystatin C (cys) > 0.8 then eGFR = 133*((cys/0.8)**-1.328)*(0.996**age)*[0.932 if female].

In ALSPAC, the association of Z allele heterozygosity with height and lung function z-scores were examined using linear regression models including age and gender (and including height in the lung function analyses).

Gene Expression

We looked for human tissue-specific expression of SERPINA1 mRNA and protein using Human Protein Atlas (https://www.proteinatlas.org/), which integrates quantitative transcriptomics and antibody-based proteomics of human tissues. We interrogated potential eQTL signals in Gtex (https://gtexportal.org).
Results

Frequency of the SERPINA1 Z in UK Biobank

Amongst 411,002 unrelated, European UK Biobank participants with full sex, age, height, smoking status and genotyping data, 16,199 (3.94%) were heterozygous and 129 (0.0314%) were homozygous for the Z allele. There were fewer ZZ homozygotes than expected under Hardy-Weinberg Equilibrium in all samples (P = 0.004), ever-smokers (P = 0.003), individuals over 60 years of age (P = 0.007) and in females (P = 0.007) (Supplementary Table 1), consistent with reduced survival.

Phenome-wide association studies of the Z allele

To explore the effect of Z allele heterozygosity and homozygosity on a broad range of phenotypes we performed two PheWAS. The phenotypes most strongly associated with Z allele heterozygosity and Z allele homozygosity (FDR < 0.01) are shown in Fig. 1A and 1B respectively (full results are in Supplementary Tables 2 and 3). Standing height, alpha 1 antitrypsin deficiency, and various respiratory phenotypes (lung function, reported emphysema, chronic bronchitis and COPD) were strongly associated with the Z allele under either genetic model. However, we also detected strong associations between Z allele heterozygosity and a number of other phenotypes, including increased risk of gall stones (OR = 1.35, P = 1.69x10^{-16}), gall bladder removal (OR = 1.51, P = 1.85x10^{-29}) and bile duct disease (OR = 1.25, P = 5.42x10^{-8}); cardiovascular phenotypes such as lower risk of heart disease (OR = 0.84, P = 6.66x10^{-6}) and family history of heart disease, and lower blood pressure (P = 1.02x10^{-10}); musculoskeletal phenotypes such as a higher grip strength, lower risk of osteoarthritis, particularly of knee or hip (OR = 0.85, P = 1.18x10^{-6}), lower bone mineral density (P = 1.40x10^{-5}) and higher risk of osteoporosis (OR = 1.17, P = 0.001); and also higher risk of headache (OR = 1.12, P = 5.66x10^{-9}) and enlarged prostate (OR = 1.26, P = 1.95x10^{-7}). The pheWAS also included blood counts for a variety of different cell types, showing reduced reticulocytes in individuals heterozygous for the Z allele. Z allele homozygosity was associated with increased haemoglobin (P = 7.17x10^{-10}),
haematocrit ($P = 6.17 \times 10^{-8}$) and red blood cells ($P = 5.91 \times 10^{-5}$), as well as optic neuritis (OR = 26.9, $P = 4.32 \times 10^{-6}$) and pancreatitis (OR = 6.07, $P = 7.76 \times 10^{-5}$).

To extend these analyses to traits not previously available for the PheWAS, we investigated the effect of Z allele heterozygosity and homozygosity on thirty key blood biochemistry markers in UK Biobank data (Table 1). Heterozygosity for the Z allele was associated with a variety of liver function markers including higher alanine aminotransferase ($\beta = 1.16$ U/l, $P = 2.95 \times 10^{-25}$), higher albumin ($\beta = 0.71$ g/l, $P = 3.11 \times 10^{-229}$), higher alkaline phosphatase ($\beta = 2.97$ U/l, $P = 5.81 \times 10^{-44}$), higher aspartate aminotransferase (0.71 U/l, $P = 2.27 \times 10^{-16}$) and higher direct bilirubin ($\beta = 0.041$ umol/l, $P = 1.64 \times 10^{-8}$). There were also strong associations with calcium ($\beta = 0.012$ mmol/l, $P = 4.01 \times 10^{-50}$), cystatin C (0.0090 mg/l, $P = 8.91 \times 10^{-12}$), C-reactive protein ($\beta = -0.17$ mg/l, $P = 1.11 \times 10^{-6}$) and IGF-1 ($\beta = -0.21$ nmol/l, $P = 2.35 \times 10^{-6}$). Heterozygotes exhibited higher sex hormone binding globulin (SHBG) ($\beta = 4.53$ nmol/l, $P = 1.06 \times 10^{-95}$) and testosterone ($\beta = 0.37$ nmol/l, $P = 1.84 \times 10^{-57}$). The association with higher testosterone was driven by heterozygosity in males (0.76 nmol/l [SE 0.045], $P = 3.38 \times 10^{-64}$), but not females (-0.030 nmol/l [SE 0.0079], $P = 0.00015$).

Z allele heterozygosity is associated with increased lung function in non-smokers

We tested association of heterozygosity for the SERPINA1 Z allele with lung function traits in unrelated, European UK Biobank participants with full sex, age, height, smoking status, lung function and genotyping data (Table 2). Individuals heterozygous for the Z allele exhibited higher FEV$_1$ ($\beta = 9.26$ ml, $P = 0.041$) but no association with FEV$_1$/FVC or FVC compared to wild-type (Table 2).

However, in stratified analyses of UK Biobank never- and ever-smokers, we found that heterozygosity for the Z allele was associated with a large increase in FEV$_1$ ($\beta = 19.36$ ml, $P = 9.21 \times 10^{-4}$) and increased FEV$_1$/FVC ($\beta = 0.0031$, $P = 1.22 \times 10^{-5}$) in never-smokers, but not in ever-smokers (Table 2). Statistical tests of Z allele*ever-smoking interactions showed interactions for FEV$_1$ ($P = 0.022$) and FEV$_1$/FVC ($P = 1.06 \times 10^{-4}$) (Supplementary Table 4). Furthermore, heterozygous ever-
smokers exhibited a small increased risk of COPD (OR = 1.16 [95% CI 1.05 – 1.29], P = 0.005), whereas heterozygous never-smokers did not (OR = 0.87 [95% CI 0.75 – 1.01], P = 0.070) (Table 2).

The Z allele is strongly associated with height

Heterozygosity for the Z allele was strongly associated with height (β = 1.02 cm, P = 3.91x10^{-68} – Table 2) and, when lung function measures were not adjusted for height, the Z allele heterozygosity had much larger effect estimates for FEV₁ (β = 44.72 ml [SE 4.97], P = 2.20x10^{-19}) and FVC (β = 61.06 ml [SE 6.18], P = 5.18x10^{-23}), but not FEV₁/FVC. These results suggest that carrying one copy of the Z allele confers an advantage primarily (but not entirely) driven by increased height. To investigate the developmental stage at which Z allele heterozygosity influences height, we tested association with height in the ALPSAC cohort at ages 8, 15 and 24 years. The findings were consistent with Z allele heterozygosity influencing height from adolescence and, at all the ages, directions of effect on height and lung function were consistent with those in UK Biobank (Supplementary Table 5).

Sex modifies the effect of Z allele heterozygosity on lung function

We also assessed whether sex can modify the effect of the Z allele on lung function or height and found that heterozygosity for the Z allele was associated with higher height-adjusted FEV₁/FVC in females (β = 0.0028 [SE 0.00071], P = 5.89x10^{-5}) but not in males (β = -0.0015 [SE 0.0009], P = 0.093) (Z allele*sex interaction: P = 0.00021 for FEV₁/FVC, Supplementary Table 4 and Supplementary Table 6).

Association between Z allele homozygosity and lung function

In contrast to the lung function raising effects of carrying one copy of the Z allele, homozygosity for the Z allele has been widely reported to reduce lung function and increase risk of COPD. Similarly, UK Biobank individuals homozygous for the Z allele had significantly lower FEV₁ (β = -249.21 ml, P = 6.96x10^{-7}), FEV₁/FVC (β = -0.051, P = 3.54x10^{-16}) and FVC (β = -132.16, P = 0.028) compared to wild-type and heterozygous individuals and greater risk of COPD (OR = 7.42, P = 5.67x10^{-14}) (Table 2).
associations between homozygosity for the Z allele and reduced lung function and increased risk of COPD were stronger in smokers compared to non-smokers (Table 2). Given the strength of these associations, it is interesting to note that 67 of 93 individuals homozygous for the Z allele do not have spirometrically-defined COPD and eight out of 17 homozygous ever-smokers aged over 60 do not have spirometrically-defined COPD. We generated polygenic risk scores for lower FEV₁/FVC by weighting variants according to beta-coefficients in the SpiroMeta consortium cohorts. The 67 individuals homozygous for the Z allele but without COPD have an average score percentile of 48.4 compared to 58.2 in those with COPD. This suggests that individuals homozygous for the Z allele but without COPD may have a more protective genetic profile across other genomic loci.

Diagnosis of AATD in individuals homozygous for the Z allele

We note that only 20 of 141 individuals who were genotyped ZZ homozygotes in the full UK Biobank cohort had a recorded ICD-10 coding for AATD (E880) in Hospital Episode Statistics. As this could indicate miscoding rather than misdiagnosis, we investigated further in subset of 65 homozygotes with linked primary care data. Of these 65 ZZ homozygotes, 15 had primary care (Read) codes or ICD-10 codes for AATD and 50 did not. Of the group without AATD codes, four had primary care (Read) codes or ICD-10 codes for bronchiectasis and an additional 6 had primary care (Read) codes or ICD-10 codes for COPD indicating potential misdiagnosis of AATD.

SERPINA1 expression profiles

Interrogation of data on SERPINA1 expression showed strongest expression both at the mRNA and protein level in liver. Expression was also seen in lung, stomach, smooth muscle, small bowel, testis and kidney, although expression levels were generally low and somewhat variable between different contributing datasets. SNP rs28929474 is an eQTL signal for the IFI27L2 (interferon alpha inducible protein 27 like 2), in left ventricle and artery, with Z allele heterozygotes showing reduced expression compared with wild type.
Discussion

In the largest population-based study to date we describe novel phenotypic associations of heterozygosity for the Z allele of SERPINA1 and also present definitive evidence that heterozygosity for the Z allele is associated with greater lung function only in non-smokers. Our findings have implications for individuals heterozygous for the SERPINA1 Z allele, and more generally for the study of rare variants and gene-environment interactions.

Our PheWAS examining the consequences of carrying one copy of the SERPINA1 Z allele revealed potentially important associations with non-respiratory traits and diseases. Consistent with previous reports\(^1\), we detected a very strong association between Z allele heterozygosity and height (with each additional Z allele adding approximately 1cm to height). The mechanism and timing of the effect of the Z allele on height is not understood. Our findings in the ALSPAC study suggest a possible influence of Z allele heterozygosity on height which is manifest from puberty, although results should be interpreted with caution given the limitations in power in ALSPAC alone. This suggests that sex hormones are a possible mediator of the height-raising effects of the Z allele and, indeed, we detected higher levels of testosterone in individuals heterozygous for the Z allele. However, heterozygosity for the Z allele increases height in males and females, whereas increased testosterone is only seen in males. Furthermore, Z allele heterozygotes also exhibit higher SHBG suggesting that the amount of free testosterone will be unchanged. IGF-I levels relate to height, but in our study the magnitude of the association was very small (less than 1% average levels) and it was a negative association. It is therefore still not clear why heterozygosity and homozygosity for the Z allele increases height.

We detected strong associations between heterozygosity for the Z allele and increased risk of gall stones and gall bladder removal. This is consistent with recent reports that the Z allele may be a risk factor for developing gallstone disease\(^18,19\). The mechanism underlying this association is unclear but previous reports have suggested it may be related to liver dysfunction in AATD and/or the
composition of bile18,19. We found that individuals heterozygous for the Z allele also had increased levels of biomarkers such as alanine aminotransferase, alkaline phosphatase, aspartate aminotransferase and bilirubin, consistent with an impact of heterozygosity on liver function.

Heterozygosity for the Z allele was also associated with musculoskeletal phenotypes such as reduced risk of osteoarthritis, increased risk of osteoporosis and lower bone mineral density. Calcium was increased in heterozygotes but as albumin was also increased free calcium may not be different in this group. A recent study showed that AAT can inhibit receptor activator of nuclear factor \textkappa B ligand (RANKL)-induced osteoclast formation and bone resorption20. As heterozygosity for the Z allele causes reduction in AAT, individuals heterozygous for the Z allele may have increased risk of osteoporosis and lower bone mineral density due to increased RANKL-induced bone resorption.

Lower bone mineral density has been associated with a lower risk of osteoarthritis21,22.

Heterozygotes for the Z allele also had reduced risk of heart disease (even when adjusted for height) and lower blood pressure, as well as increased risk of headache consistent with one previous report suggesting cluster headaches may be more frequent in heterozygotes for the Z allele6. There was also a marked association between heterozygosity and reduced reticulocyte count and reticulocyte percentage which, as far as we are aware, has not been reported previously.

Homozygosity for the Z allele was strongly associated with alpha 1 antitrypsin deficiency and respiratory traits, but also haemoglobin concentration and haematocrit percentage, which may be driven by the associations with respiratory disease. Homozygosity was also associated with markedly higher risk of optic neuritis and pancreatitis. Whilst the association with pancreatitis could be driven by the increased risk of gall stones, the mechanism underlying the increased risk of optic neuritis is unclear.

Whilst homozygosity for the Z allele is an established cause of respiratory disease, the effect of heterozygosity on respiratory health of general populations has been less clear. Our study provides definitive data on the effects of heterozygosity for the Z allele on respiratory traits, showing that
heterozygosity is associated with greater lung function in never-smokers (even after height adjustment), but not in smokers. Our results contrast with previous studies7, 8, 9, 10 that did not detect higher lung function in participants heterozygous for the Z allele compared to wild-type, and with studies that did not detect differential effects by smoking status11. There are several possible reasons for these discrepancies. First, the relatively low frequency of the Z allele meant previous studies were underpowered. Our study contained 18 times more heterozygous participants than the previous largest population-based study and 46 times more than the largest case-control study. Whilst one previous study has suggested a beneficial effect of Z allele heterozygosity on lung function11 it nevertheless did not detect differential effects by smoking status. Again, this is probably due to power. Second, most of the previous studies were conducted in current and former smokers only7, 8, 10, and would therefore have missed the effect of Z allele heterozygosity in non-smokers. Third, most previous studies recruited participants on the basis of their health status (as in case-control studies7, 8) or the health status of a family member9, 10, 23. These approaches can lead to ascertainment biases that might distort causal estimates. A major strength of using the UK Biobank for our study was that participants were not ascertained on the basis of having lung disease, enabling a relatively unbiased assessment of the role of the heterozygosity for the Z allele in lung function. Fourth, the Z allele is not present on most standard genotyping arrays, nor are there any adequate proxies11 – issues that disproportionately affect low frequency and rare variants. Furthermore, genetic studies tend to focus on the additive genetic model rather than heterozygous or recessive models. Because we designed the Z allele into the UK Biobank array14 and compared different genetic models, we were able to robustly examine this association in UK Biobank participants.

The biological mechanism underlying the association between heterozygosity for the Z allele and increased lung function in non-smokers is not clear. The \textit{SERPINA1} gene encodes alpha 1 antitrypsin (AAT), an enzyme with an important role in inhibiting proteases, such as neutrophil elastase, which are secreted during inflammation and cause collateral tissue damage. The Z allele produces AAT
with reduced anti-protease activity and a propensity to form polymers, which accumulate in liver thereby reducing the circulating levels of AAT. The polymers themselves have also been shown to be a pro-inflammatory stimulus in lung tissue24 which further perpetuates lung inflammation and damage. Homozygosity for the Z allele is the most common cause of severe AAT deficiency whereas heterozygosity for the Z allele has been shown to result in intermediate levels of AAT (~60% of normal)25. One might therefore expect heterozygosity to have, if anything, a detrimental effect on lung function. There is evidence that positive selection has acted at the Z allele locus11, 26 and mechanisms of heterozygous advantage (through increased height11 and protection from infectious respiratory diseases by promotion of inflammatory responses26) have been proposed. The amplification of inflammatory response as a result of cigarette smoke may therefore provide a mechanism for eliminating this advantage in smokers. It has also been shown that smoking-induced oxidative modifications to AAT reduce its ability to inhibit neutrophil elastase and turn it into a pro-inflammatory mediator27. Cigarette smoke has been found to accelerate polymerisation of Z-type AAT28, suggesting a possible mechanism whereby smoking may modify the effect of the Z allele on lung function.

We also report a novel interaction between sex and the SERPINA1 Z allele heterozygosity on FEV\textsubscript{1}/FVC. Women heterozygous for the Z allele exhibited greater FEV\textsubscript{1}/FVC compared to wild-type, whereas men heterozygous for the Z allele showed no significant difference to wild-type. Previous studies have shown that individuals with the fastest decline in lung function amongst AATD patients are more likely to be male29. However, the reasons why sex would appear to modify the effect of Z allele heterozygosity on lung function are not clear.

In conclusion, we have used by far the largest and best-powered study to date to demonstrate that heterozygosity for the Z allele is associated with previously unrecognised non-respiratory phenotypes, and also with greater lung function in non-smokers. Our results demonstrate that large sample sizes are required to study the effects of rare variants, particularly when these effects
depend on an environmental stimulus. The opposing directions of effect of Z allele heterozygosity and homozygosity demonstrate that the additive genetic model is not always appropriate for genetic studies of the rarer variants such as the \textit{SERPINA1} Z allele. Our findings suggest that while individuals who are heterozygous for the Z allele may not exhibit symptoms of AAT deficiency, they may be more susceptible to smoking-induced lung disease and have altered risk of other non-respiratory conditions.
References

1. Silverman EK. Risk of Lung Disease in PI MZ Heterozygotes. Current Status and Future Research Directions. *Ann Am Thorac Soc* **13 Suppl 4**, S341-345 (2016).

2. Boelle PY, Debray D, Guillot L, Corvol H, French CFMGSI. SERPINA1 Z allele is associated with cystic fibrosis liver disease. *Genet Med* **21**, 2151-2155 (2019).

3. Curjuric I, et al. Alpha-1 antitrypsin deficiency: From the lung to the heart? *Atherosclerosis* **270**, 166-172 (2018).

4. Hadzik-Blaszczyk M, et al. SERPINA1 Gene Variants in Granulomatosis with Polyangiitis. *Adv Exp Med Biol* **1070**, 9-18 (2018).

5. Schneider CV, et al. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi*Z* Variant of AAT (Pi*MZ vs Pi*ZZ genotype) and Non-carriers. *Gastroenterology*, (2020).

6. Summ O, Gregor N, Marziniak M, Gralow I, Husstedt IW, Evers S. Cluster headache and Alpha 1-antitrypsin deficiency. *Cephalalgia* **30**, 113-117 (2010).

7. Foreman MG, et al. Alpha-1 Antitrypsin PiMZ Genotype Is Associated with Chronic Obstructive Pulmonary Disease in Two Racial Groups. *Ann Am Thorac Soc* **14**, 1280-1287 (2017).
8. Li X, et al. Genome-wide association study of lung function and clinical implication in heavy smokers. *BMC Med Genet* **19**, 134 (2018).

9. Molloy K, et al. Clarification of the risk of chronic obstructive pulmonary disease in alpha1-antitrypsin deficiency PiMZ heterozygotes. *Am J Respir Crit Care Med* **189**, 419-427 (2014).

10. Sorheim IC, et al. alpha(1)-Antitrypsin Protease Inhibitor MZ Heterozygosity Is Associated With Airflow Obstruction in Two Large Cohorts. *Chest* **138**, 1125-1132 (2010).

11. North TL, et al. A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for alpha 1-antitrypsin deficiency increases respiratory capacity and height. *J Med Genet* **53**, 280-288 (2016).

12. Bowden J, Thompson JR, Burton PR. A two-stage approach to the correction of ascertainment bias in complex genetic studies involving variance components. *Ann Hum Genet* **71**, 220-229 (2007).

13. Thun GA, et al. SERPINA1 PIz and PI^S heterozygotes and lung function decline in the SAPALDIA cohort. *PLoS One* **7**, e42728 (2012).

14. Wain LV, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. *Lancet Respir Med* **3**, 769-781 (2015).
15. Bycroft C, et al. Genome-wide genetic data on ~500,000 UK Biobank participants. *bioRxiv*, (2017).

16. Shrine N, et al. New genetic signals for lung function highlight pathways and pleiotropy, and chronic obstructive pulmonary disease associations across multiple ancestries. *bioRxiv*, (2018).

17. Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. *Mol Cell Proteomics* **13**, 397-406 (2014).

18. Ferkingstad E, et al. Genome-wide association meta-analysis yields 20 loci associated with gallstone disease. *Nat Commun* **9**, 5101 (2018).

19. Gellert-Kristensen H, Dalila N, Nielsen SF, Nordestgaard BG, Tybjaerg-Hansen A, Stender S. Identification and replication of six new loci associated with gallstone disease. *Hepatology*, (2018).

20. Akbar MA, et al. Alpha-1 antitrypsin inhibits RANKL-induced osteoclast formation and functions. *Mol Med* **23**, 57-69 (2017).
21. Hackinger S, et al. Evaluation of shared genetic aetiology between osteoarthritis and bone mineral density identifies SMAD3 as a novel osteoarthritis risk locus. *Hum Mol Genet* **26**, 3850-3858 (2017).

22. Johansson H, et al. Low risk for hip fracture and high risk for hip arthroplasty due to osteoarthritis among Swedish farmers. *Osteoporos Int* **29**, 741-749 (2018).

23. Silverman EK, Province MA, Campbell EJ, Pierce JA, Rao DC. Family study of alpha 1-antitrypsin deficiency: effects of cigarette smoking, measured genotype, and their interaction on pulmonary function and biochemical traits. *Genet Epidemiol* **9**, 317-331 (1992).

24. Mulgrew AT, et al. Z alpha1-antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. *Chest* **125**, 1952-1957 (2004).

25. Ferrarotti I, et al. Serum levels and genotype distribution of alpha1-antitrypsin in the general population. *Thorax* **67**, 669-674 (2012).

26. Lomas DA. The selective advantage of alpha1-antitrypsin deficiency. *Am J Respir Crit Care Med* **173**, 1072-1077 (2006).

27. Taggart C, et al. Oxidation of either methionine 351 or methionine 358 in alpha 1-antitrypsin causes loss of anti-neutrophil elastase activity. *J Biol Chem* **275**, 27258-27265 (2000).
28. Alam S, Li Z, Janciauskiene S, Mahadeva R. Oxidation of Z alpha1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. *Am J Respir Cell Mol Biol* **45**, 261-269 (2011).

29. Dawkins PA, Dawkins CL, Wood AM, Nightingale PG, Stockley JA, Stockley RA. Rate of progression of lung function impairment in alpha1-antitrypsin deficiency. *Eur Respir J* **33**, 1338-1344 (2009).
Acknowledgements

The UK Biobank analysis was conducted under approved UK Biobank data application number 648. We thank UK Biobank and all the participants for generating this important health research resource. This study used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester. We are extremely grateful to all the families who took part in the ALSPAC study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses.

Support statement

The data for this study were partially generated by Medical Research Council (MRC) strategic award to M.D.T., I.P.H., and L.V.W. (MC_PC_12010). The research was partially supported by the NIHR Nottingham Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. M.D.T. is supported by a Wellcome Trust Investigator Award (WT202849/Z/16/2). M.D.T. and L.V.W. have been supported by the MRC (MR/N011317/1). The research was partially supported by the NIHR Leicester Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. L.V.W. holds a GSK/British Lung Foundation Chair in Respiratory Research. K.A.F. holds an Asthma UK fellowship award. I.P.H. holds a NIHR Senior Investigator award. C.J. holds a Medical Research Council Clinical Research Training Fellowship (MR/P00167X/1). We would like to acknowledge the support of the Health Data Research UK BREATHE Digital Innovation Hub funded by UHKI (MC_PC_19004). The UK Medical Research Council and Wellcome (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for the Avon Longitudinal Study of Parents and Children (ALSPAC). This publication is the work of the authors and Raquel Granell will serve as guarantor for the contents of this paper. A comprehensive list of grants funding is available on the ALSPAC website.
N.J.T. is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of ALSPAC (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215-2001), the MRC Integrative Epidemiology Unit (MC_UU_00011) and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169).

Author contributions

K.A.F., M.D.T., and I.P.H. designed the study, interpreted the results and wrote the manuscript. K.S., L.M.Y-A., and R.A.S. designed and conducted the PheWAS. G.Q. carried out expression analyses. K.A.F. and A-E.F. carried out the lung function analyses in UK Biobank. R.P. and C.J. contributed to the analysis of primary care data and interpretation of results. N.S. generated polygenic risk scores and contributed to study design and interpretation of results. L.V.W. contributed to study design and interpretation of results. R.G., S.R., and N.J.T. contributed the analyses in ALSPAC, and R.E. contributed to interpretation of the results. All authors reviewed the manuscript prior to submission.

Competing interests

I.P.H. has received support from GSK, Boehringer Ingelheim and Orion. M.D.T. has received grant support from GSK. L.V.W. has received grant support from GSK. R.A.S. is an employee and shareholder in GSK. L.M.Y. is an employee of GSK and may own company shares. K.S. is an employee of GSK and may own company shares. R.E. receives consultancy funding from IDS, Sandoz, Nittobo, Samsung, Haoma Medica, CL Bio, Biocon and Viking and grant funding from Nittobo, Roche, and Alexion.
Fig. 1. Traits associated with the SERPINA1 Z allele in UK Biobank. Traits displayed are those with a false discovery rate < 0.01 from phenome-wide association study of 2411 phenotypes across 379101 UK Biobank participants using the heterozygous model for the Z allele (wild-type vs heterozygous individuals) (A) and the recessive model for the Z allele (wild-type and heterozygous individuals vs individuals homozygous for the Z allele) (B).
Table 1. Association between the SERPINA1 Z allele and blood biomarkers in unrelated, European UK Biobank participants

Biomarker	Heterozygous genetic model	Recessive genetic model		
	Beta (se)	p	Beta (se)	p
Alanine aminotransferase (U/l)	1.163 (0.112)	2.95x10^{-5}	3.037 (1.246)	0.015
Albumin (g/l)	0.712 (0.022)	3.11x10^{-29}	0.306 (0.243)	0.208
Alkaline phosphatase (U/l)	2.968 (0.213)	5.81x10^{-44}	2.379 (2.373)	0.316
Apolipoprotein B (g/l)	-0.0037 (0.0021)	0.082	0.042 (0.024)	0.086
Apolipoprotein A (g/l)	-0.0045 (0.0019)	0.020	0.019 (0.022)	0.375
Aspartate aminotransferase (U/l)	0.707 (0.086)	2.27x10^{-16}	6.353 (0.956)	3.04x10^{-11}
C-reactive protein (mg/l)	-0.174 (0.036)	1.11x10^{-6}	0.192 (0.396)	0.628
Calcium (mmol/l)	0.012 (0.00080)	4.01x10^{-50}	0.01 (0.009)	0.265
Cholesterol (mmol/l)	0.0051 (0.0092)	0.576	0.19 (0.102)	0.063
Creatinine (umol/l)	-0.067 (0.129)	0.601	-0.94 (1.435)	0.512
Cystatin C (mg/l)	0.0090 (0.0013)	8.91x10^{-12}	0.019 (0.015)	0.204
Direct bilirubin (umol/l)	0.041 (0.0073)	1.64x10^{-8}	0.158 (0.079)	0.046
eGFR*	-0.241 (0.157)	0.125	-1.810 (1.732)	0.296
Gamma glutamyltransferase (U/l)	0.253 (0.342)	0.460	8.045 (3.818)	0.035
Glucose (mmol/l)	-0.0032 (0.010)	0.758	-0.133 (0.114)	0.244
Glycated haemoglobin (HbA1c) (mmol/mol)	-0.187 (0.052)	3.40x10^{-4}	-1.781 (0.588)	2.46x10^{-3}
HDL cholesterol (mmol/l)	0.0015 (0.0030)	0.605	0.142 (0.033)	2.01x10^{-5}
IGF-1 (nmol/l)	-0.212 (0.045)	2.35x10^{-6}	-2.245 (0.5)	7.19x10^{-6}
LDL direct (mmol/l)	0.011 (0.007)	0.113	0.115 (0.079)	0.145
Lipoprotein A (nmol/l)	-0.324 (0.452)	0.474	-0.151 (5.115)	0.976
Oestradiol (pmol/l)	9.577 (8.441)	0.257	88.051 (96.144)	0.360
Phosphate (mmol/l)	0.0027 (0.0013)	0.042	-0.014 (0.015)	0.352
Rheumatoid factor (IU/ml)	0.113 (0.529)	0.832	-3.27 (5.7)	0.566
SHBG (nmol/l)	4.531 (0.218)	1.06x10^{-95}	40.573 (2.402)	5.33x10^{-64}
Testosterone (nmol/l)	0.37 (0.023)	1.84x10^{-57}	2.986 (0.258)	6.96x10^{-31}
Total bilirubin (umol/l)	0.146 (0.035)	3.54x10^{-5}	0.52 (0.391)	0.184
Total protein (g/l)	0.578 (0.035)	1.06x10^{-62}	0.459 (0.382)	0.229
Triglycerides (mmol/l)	-0.023 (0.0082)	4.69x10^{-3}	-0.324 (0.092)	4.21x10^{-4}
Urate (umol/l)	1.096 (0.56)	0.050	-1.325 (6.252)	0.832
Urea (mmol/l)	0.051 (0.011)	2.69x10^{-6}	0.06 (0.122)	0.620
Vitamin D (nmol/l)	-0.041 (0.175)	0.816	-2.547 (1.955)	0.193

Results are based on linear regression adjusting for age, age², ancestry-based principal components, and genotyping array. The additive or recessive genetic model was also included in the regression as shown. Highlighted in bold are P values significant at the Bonferroni-corrected level.
Table 2. Association between the *SERPINA1* Z allele and height, lung function traits, and COPD in unrelated, European UK Biobank participants

Genetic model	Smoking status	N (test vs comparison)	Height (cm)	FEV₁ (ml)	FEV₁/FVC	FVC (ml)	COPD*						
			Beta (se)	p	Beta (se)	p	Beta (se)	p	OR (95% CI)	p			
		All	11877 vs 291383	1.023 (0.059)	**3.91x10**^-6^	9.26 (4.53)	0.041	0.00091 (0.00057)	0.108	9.38 (5.43)	0.084	1.05 (0.96-1.14)	0.268
		Ever-smokers	5357 vs 133779	1.027 (0.087)	**8.53x10**^-3^	-2.63 (7.05)	0.709	-0.0017 (0.00091)	0.062	5.47 (8.28)	0.509	1.16 (1.05-1.29)	**0.005**
		Never-smokers	6520 vs 157604	1.022 (0.079)	**3.03x10**^-3^	19.36 (5.84)	**9.21x10**^-4^	0.0031 (0.00071)	**1.22x10**^-5^	12.77 (7.15)	0.074	0.87 (0.75-1.01)	0.070
		Rec	93 vs 303260	1.644 (0.650)	**0.011**	-249.21 (50.22)	**6.96x10**^-7^	-0.051 (0.0063)	**3.54x10**^-16^	-132.16 (60.09)	**0.028**	7.42 (4.29 - 12.27)	**5.67x10**^-14^
		Ever-smokers	35 vs 139136	1.242 (1.062)	**0.242**	-379.21 (85.54)	**9.30x10**^-6^	-0.081 (0.011)	**2.00x10**^-13^	-177.95 (100.35)	**0.076**	9.19 (4.19-19.00)	**6.27x10**^-9^
		Never-smokers	58 vs 164124	1.873 (0.821)	**0.023**	-174.68 (60.68)	**0.004**	-0.034 (0.0074)	**4.95x10**^-6^	-107.69 (74.23)	0.147	5.98 (2.66-12.03)	**2.69x10**^-6^

Results are based on linear (or logistic*) regression adjusting for age, age², ancestry-based principal components, genotyping array and, in the case of lung function and COPD, standing height. The heterozygote or recessive genetic model was also included in the regression as shown. COPD was spirometrically defined as FEV₁/FVC<0.7 and FEV₁ < 80% predicted (consistent with spirometric definition of GOLD Stage 2-4)
