Understanding Patients’ Adherence-Related Beliefs about Medicines Prescribed for Long-Term Conditions: A Meta-Analytic Review of the Necessity-Concerns Framework

Rob Horne1*, Sarah C. E. Chapman1, Rhian Parham1, Nick Freemantle2, Alastair Forbes3, Vanessa Cooper1

1 Centre for Behavioural Medicine, Department of Practice and Policy, UCL School of Pharmacy, London, United Kingdom, 2 Department of Primary Care and Population Health, University College London, London, United Kingdom, 3 Department of Internal Medicine, University College Hospital, London, United Kingdom

Abstract

Background: Patients’ beliefs about treatment influence treatment engagement and adherence. The Necessity-Concerns Framework postulates that adherence is influenced by implicit judgements of personal need for the treatment (necessity beliefs) and concerns about the potential adverse consequences of taking it.

Objective: To assess the utility of the NCF in explaining nonadherence to prescribed medicines.

Data sources: We searched EMBASE, Medline, PsycInfo, CDSR/DARE/CCT and CINAHL from January 1999 to April 2013 and handsearched reference sections from relevant articles.

Study eligibility criteria: Studies using the Beliefs about Medicines Questionnaire (BMQ) to examine perceptions of personal necessity for medication and concerns about potential adverse effects, in relation to a measure of adherence to medication.

Participants: Patients with long-term conditions.

Study appraisal and synthesis methods: Systematic review and meta-analysis of methodological quality was assessed by two independent reviewers. We pooled odds ratios for adherence using random effects models.

Results: We identified 3777 studies, of which 94 (N = 25,072) fulfilled the inclusion criteria. Across studies, higher adherence was associated with stronger perceptions of necessity of treatment, OR = 1.742, 95% CI [1.569, 1.934], \(p < 0.0001 \), and fewer Concerns about treatment, OR = 0.504, 95% CI: [0.450, 0.564], \(p < 0.0001 \). These relationships remained significant when data were stratified by study size, the country in which the research was conducted and the type of adherence measure used.

Limitations: Few prospective longitudinal studies using objective adherence measures were identified.

Conclusions: The Necessity-Concerns Framework is a useful conceptual model for understanding patients’ perspectives on prescribed medicines. Taking account of patients’ necessity beliefs and concerns could enhance the quality of prescribing by helping clinicians to engage patients in treatment decisions and support optimal adherence to appropriate prescriptions.

Introduction

Prescribing medicines is fundamental to the medical management of most long-term conditions. However, approximately half of this medication is not taken as directed, representing a failure to translate potentially effective treatment into optimal outcomes for patients and society [1,2]. Where prescriptions are appropriate, this level of nonadherence has potentially serious consequences,
both for individual patients, in terms of lost opportunities for health gain with increased morbidity and mortality [3], and for the health care system, in terms of wasted resources, increased use of services and hospital admissions [4].

In the absence of a single definitive intervention to address nonadherence [5], the NICE Medicines Adherence Guidelines amalgamate insights from trials of interventions and explanatory studies of nonadherence [1]. They apply a perceptions and practicalities approach [4] recognizing that nonadherence may be both unintentional and intentional. Unintentional nonadherence occurs when the patient wants to adhere but is unable to because they lack capacity or resources. For example, they may not have understood the instructions, cannot afford copayment costs, or find it difficult to schedule, administer or remember the treatment. Intentional nonadherence occurs when the patient decides not to follow the recommendations. It is best understood in terms of the perceptual factors (e.g. beliefs and preferences) influencing motivation to start and continue with treatment.

Prescribing consultations do not occur in a vacuum. Patients (and prescribers) bring pre-existing beliefs about the illness and treatment [6,7] which influence the patient’s evaluation of the prescription, their adherence and even beneficial [8] or adverse outcomes [9]. Interventions to optimise adherence tend to be more effective if they are tailored to the needs of the individual taking account of the perceptions of the treatment as well as practical abilities and resources that enable or impede their adherence [10]. Although the perceptual and practical dimensions of adherence are influenced by the social, cultural, economic and healthcare system contexts, taking account of the patient’s beliefs about the prescribed medication is fundamental to shared-decision making and supporting adherence [1,11].

Research conducted with patients with a variety of long-term conditions suggests that the key beliefs influencing patients’ common-sense evaluations of prescribed medicines can be grouped under two categories: perceptions of personal need for treatment (Necessity beliefs) and Concerns about a range of potential adverse consequences [7,12,13]. This ‘Necessity-Concerns Framework (NCF)’ potentially offers a convenient model for clinicians to elicit and address key beliefs underpinning patients’ attitudes and decisions about treatment.

Over the past decade, a number of studies have been conducted, using a validated questionnaire, the Beliefs about Medicines Questionnaire [14] to quantify Necessity beliefs and Concerns in order to explore the relationship between these beliefs and adherence. This research spans a range of long-term medical conditions, across different settings and within various cultural groups. Many of the individual studies have demonstrated the utility of the NCF in explaining nonadherence to medication (e.g. [15–18]). It is therefore timely that a meta-analysis is performed to consolidate the results from these studies and to examine the explanatory value of the NCF in predicting adherence to medication prescribed for long-term medical conditions. In line with the underlying theory, we hypothesized that adherence in long-term conditions would be associated with stronger perceptions of Necessity for treatment and fewer Concerns about adverse consequences.

Methods

This review was conducted in line with the MOOSE guidelines for meta-analysis of observational trials [19].

Literature Search

A computerised literature search was conducted by the investigators on April 22nd, 2013 using EMBASE, Medline, PsycInfo, CDSR/DARE/CCT and CINAHL. The search strategy included the following terms:

- **BMQ or belief**
- treatment$ or medicine$ or medication$
- and
- adheren$ or complian$

The search was limited to studies published from the year 1999 onwards (the year in which the BMQ was published). Duplicates were removed.

Inclusion and Exclusion Criteria

Identified studies were included in the meta-analysis if they met the following criteria:

1. participants were suffering from a long-term condition
2. participants were taking medication
3. participants were adults
4. the article was published in a peer-reviewed journal
5. the Necessity and/or Concerns subscales of the BMQ were used
6. a measure of adherence was employed

There were no restrictions based on language, or on cultural or geographical factors.

Titles and abstracts were screened for relevance, and the full text of relevant articles was obtained. Data from each article was extracted as described below.

Selection of Results When Multiple Relationships between Beliefs and Adherence Were Reported

Fifteen studies reported multiple associations of beliefs related to different adherence measurements (details reported in Table 1). Where the choice was between adherence measures, the most objective measure was selected for the meta-analysis. Therefore, electronic monitoring of adherence [20] and prescription redemption data [16] were chosen over self-report. Where data was presented for both ‘on demand’ and prophylactic medications, data for the prophylactic medication data were chosen [21,22], for consistency with medications prescribed for other long-term conditions. In studies where cross-sectional and longitudinal data were both available, longitudinal data was used within the analysis [21,23–26]. Where one group provided cross-sectional data at multiple timepoints, the timepoint with the fewest missing data points was selected [27]. If the choice was between two self-report measures of adherence, we used the more commonly used measure. Thus the Morisky Medication Adherence Scale (MMAS) was chosen over the Brief Medication Questionnaire [28] and the ACTG adherence measure was used over the Walsh VAS scale [29]. Where patients within a sample were taking multiple medications and individual associations were provided for each medication [30,31], the mean association was used within the meta-analysis but individual effect sizes are reported in Table 1 to facilitate comparison. Where data on two samples are reported within the same study [32,33] we included both associations within the analysis.

Data Extraction

The following information was extracted from papers onto coding forms: author names, date of publication, the country in which the research was conducted (dichotomized into UK or non-UK), sample size, illness group, sex (% male), mean age, study design (cross-sectional, longitudinal or prospective), the number of...
Table 1. Summary Data for Included Studies.

Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
Aakre et al. (2012)	USA	Comorbid	44	45%	51.1 (9.3)	Cross-sectional	1) Brief Medication Necessity	5	1.467	0.523
		Serious Mental Illness and Type II Diabetes	102	22%	40.7 (11.4)	Cross-sectional	2) Brief Medication Questionnaire (Hypoglycaemic medication)	10 item version	1.670	0.172
Aikens et al. (2005)	USA	Depression	82	21%	42.9 (10.63)	Cross-sectional	1) General adherence: 4- Item MMAS	5	2.097	0.075
Aikens & Piette (2009)	USA	Diabetes	803	38%	55.3 (11.8)	Cross-sectional	Single Item Necessity	5	1.430	0.069
Klinkman (2012)	USA	Depression	163	38%	35 (10)	Prospective	Brief Medication Questionnaire AND STAR'D Medication Adherence Questionnaire	5	2.582	0.002
Allen LaPointe et al.	USA	Acute Coronary Syndrome groups	972	6	Medians for 6 groups	Prospective	Self-report of no discontinuation nor missed doses in last reported 2) Beta-blocker and 3) Lipid-lowering therapy	5	1.262	0.137
Barnes et al. (2004)	NZ	Diabetes	82	Not	Reported 12.7; Tongan 5.92 (11.2)	Cross-sectional	MARS plus two items	5	4.054	0.001
Batchelder et al. (2013)	USA	Comorbid HIV and Type II Diabetes	62	45%	52.8 (7.3)	Cross-sectional	5-item MARS 1) Antiretroviral 2) Diabetes	5	1.300	0.306
Beck et al. SWZ	Schizophrenia	150	65.3%	44.9 (11.7)	Cross- Medication adherence	Necessity	5	1.942	0.029	
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
----------------	---------	---------------	----	--------	---------------	--------------	--	----------------------	------	---------
Berglund et al.	SWE	Statin Users	414	50.8%	64.2 (9.5)	Cross-sectional	subscale of the Service Engagement Scale (Tait et al., 2002)- clinician rated. Brief Adherence Rating Scale (BARS; Byerly et al., 2008) BARS selected for use here	Concerns (5)	2.266	<0.001
Bhattacharya et al.	UK	Colorectal or Breast Cancer	43	44.2%	64.5 (7.4)	Cross-sectional	Necessity (5)	Concerns (5)	1.338	0.105
Brown et al.	USA	Depression	192	29%	45.2 (16.0)	Cross-sectional	Concerns (5)	Concerns (5)	0.570	0.352
Brown et al. (2013)	USA	HIV	116	58%	45.3 (8.6)	Cross-sectional	VAS scale 0–100% used to rate adherence to each medication over the last month dichotomized at 95%	Necessity (8)	2.357	0.014
Butler et al.	UK	Renal Transplant	58	66%	48.0 (13)	Cross-sectional	Electronic monitors\(c\)	Necessity (5)	4.871	0.003
Byer & Myers	UK	Asthma	64	50%	39.6 (13.83)	Cross-sectional	Concerns (5)	Concerns (5)	0.517	0.184
Byrne et al.	IRE	Coronary Heart Disease	1084	65%	66.0 (9.1)	Cross-sectional	5-item MARS	Necessity (5)	2.551	<0.001
Chisholm-Burns et al.	USA	Renal Transplant	512	61.1%	52.4 (10.7)	Cross-sectional	Immunosuppressant	Necessity (5)	2.065	<0.001
Clatworthy et al.	UK	Bipolar Disorders	223	36%	48 (11.2)	Cross-sectional	5-item MARS	Necessity (5)	2.114	0.006
Clifford et al.	UK	Chronic illness	146	52%	64.3 (12.06)	Longitudinal Telephone call (*When Necessity (5)	1.764	0.090		
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
----------------	---------	---------------	-------	--------	---------------	-------------	---	-----------------------	-------	--------
(2008) [142]							was the last time you missed a dose of this medicine? Nonadherence defined as any dose missed in the previous 7 days b	Concerns (5)	0.457	0.020
Cooper et al., UK HIV 234 84% 42 (8.9) Longitudinal At 48 weeks MASRI							(Walsh et al., 2002) scale-VAS % taken over last month dichotomized at 95%	Concerns (8)	0.499	0.004
de Boer-van der NTL HIV 341 90% 45 Cross-sectional							Self report % of prescribed medicines taken	Concerns (11)	0.070	0.075
Kolk et al. (2008) [183]							prescribed medicines taken	Concerns (8)	0.499	0.004
De Las Cuevas ESP Affective 167 23.4% 56.1 (12.3) Longitudinal							4-item MMAS	Concerns (5)	2.521	0.002
De Smedt et al (2008) [184]	NTL Heart Failure 960 63.6% 69.6 (11.9) Cross-sectional						SECope non-adherence	Concerns (5)	0.484	0.112
(2012) [185]							subsection (Johnson & Neilsands, 2007)	Concerns (5)	0.484	0.112
de Thurah et al. DMK Rheumatoid 91 36% Median 63 Prospective							CQR 1) 9 months 2)	Concerns (5)	1.257	0.061
(2010) [21]		Arthritis					baseline	Concerns (5)	0.420	0.132
Ediger et al CAN IBD 326 40% 41.0 (14.06) Cross-sectional							5-item MARS b	Concerns (5)	3.630	0.016
(2007) [186]							Concerns (5)	0.677	0.054	
Emilsson et al. SWE Asthma 35 28.6% 52.9 (14.7) Cross-sectional							Pill count	Concerns (5)	4.438	0.032
(2011) [187]							Concerns (5)	0.555	0.365	
Fawzi et al. EGT Adjustment Disorder with Depressed Mood 108 33.3% 61.3 (5.3) Cross-sectional							10-item MARS	Concerns (5)	3.712	0.001
(2012) [188]							Concerns (5)	0.269	0.001	
Foo et al. SGP Glaucoma 344 64.8% 66.1 (10.2) Cross-sectional							8-item MMAS dichot. at	Concerns (4)	1.045	0.837
(2012) [189]							Concerns (5)	2.778	<0.0001	
French et al. UK Type II 453 57.4% 65.9 (10) Prospective							5-item MARS 1) Baseline	Concerns (5)	1.295	0.232
(2013) [23]		Diabetes					2) Prospective	Concerns (5)	0.525	0.004
(2012) [188]							Concerns (5)	1.800	0.013	
Gauchet et al. FRA HIV 127 78% 39.7 (9.2) Cross-sectional							16-item self-report	Concerns (5)	3.264	0.001
(2007) [190]							Concerns (5)	0.865	0.065	
Gatti et al. USA Chronic illness 275 27% - Cross-sectional							8-item MMAS dichot. at	Concerns (5)	1.239	0.331
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
----------------	-----------	---------------	-----	--------	---------------	--------------	-------------------	----------------------	-------	-------
(2009) [191]						sectional	1	Concerns (6)	0.357	<0.001
George & CAN	USA	Heart Failure	350	69%	61.0 (12.6)	Cross-sectional	1) Prescription dispensing	Necessity (5)	1.529	0.069
Shalansky						sectional data (nonadherence)	defined as < 90% mean refill adherence	0.954	0.539	
(2007) [192]							2) 4-item MMAS			
Gonzalez et al.	USA	HIV	325	60%	40.9 (8.5)	Longitudinal randomised	1) ACTG	Necessity (8)	1.494	0.048
(2007) [20]							2) MEMS cap – one drug	Concerns (11)	0.459	<0.001
Griva et al.	UK	Kidney	218	59.6%	49.7 (12.3)	Cross-sectional	5-item MARS item plus	Necessity (5)	7.278	<0.001
(2012) [193]							serum immunosuppressant concentrations	Concerns (5)		
Grunfeldt et al	UK	Breast Cancer	110	0%	56.3 (7.0)	Cross-sectional	1) Asked “In the past”	Necessity (5)	2.916	0.007
(2005) [194]							week have you taken your tamoxifen everyday? (Yes/No)	Concerns (11)	0.868	0.708
Hedenrud et al.	SWE	Migraine	174	16%	Not calculable	Cross-sectional	5-item MARS	Necessity (5)	0.747	0.309
(2008) [195]							serum immunosuppressant concentrations	Concerns (5)	0.588	0.064
Horne et al.	UK	Cardiac and	210	49%	50.8 (16.2)	Cross-sectional	4-item RAM	Necessity (5)	2.018	0.006
(1999) [14]							serum immunosuppressant concentrations	Concerns (5)	0.347	<0.001
Horne & UK	Asthma, Renal		324	54%	54.1 (15.96)	Cross-sectional	4-item MARS	Necessity (5)	2.180	<0.001
Weinman (1999)	[7]	Cardiac, Oncology (pooled data)				sectional		Concerns (5)	0.281	<0.001
Horne et al.	UK	Renal	47	49%	49.0 (17.3)	Cross-sectional	Single item: ‘How often’	Necessity (5)	1.115	0.842
(2001) [196]							do you deliberately miss a dose of medication?	Concerns (5)	0.215	0.010
Horne & UK	Asthma		100	39%	49.3 (18.1)	Cross-sectional	9-item MARS	Necessity (6)	3.405	0.002
Weinman							serum immunosuppressant concentrations	Concerns (11)	0.178	<0.001
(2002) [168]							serum immunosuppressant concentrations	Concerns (11)	0.524	0.095
Horne et al.	UK	HIV	109	97%	41.2 (9.0)	Cross-sectional	Single item: ‘How much’	Necessity (8)	1.773	0.126
(2004) [197]							of your HAART medication did you take within two hours of when you were supposed to?	Concerns (11)	0.524	0.095
Horne et al.	UK	HIV	117	96%	37.8 (8.4)	Prospective	Single item: VAS from	Necessity (6)	2.477	0.008
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
----------------	---------	---------------	----	--------	--------------	--------------	------------------	----------------------	------	-------
(2007) [198]										
Horne et al.	UK	IBD	1871	37%	50 (16.0)	Cross-	4-item MARS	Necessity (8)	1.790	<0.001
(2009) [167]										
Horne et al.	UK	Hypertension	230	88%	67.6	sectional				
(2010) [24]										
(2010) [199]		Affective Disorder	35	28.6%	45 (11)	Cross-	MMAS 4-item (dichot. at)	Necessity (5)	0.881	0.837
Hou et al.	UK	Bipolar	35	28.6%	45 (11)	Cross-	MMAS 4-item (dichot. at)	Necessity (5)	0.680	0.532
Hunot et al.	UK	Depression	178	25%	40.1 (12.6)	Longitudinal				
(2007) [200]										
Iihara et al.	JPN	Hospital	151	62.3%	–	Cross-	Measure based on MMAS	Necessity (5)	1.998	0.020
(2010) [201]										
Johnson et al.	USA	HIV	295	100%	45.2 (10.1)	Cross-	1) ACTG 3 days (%)	Necessity (5)	0.960	0.365
(2012) [29]										
Johnsdottir et al.	UK	Schizophrenia/	280	51%	35.1	Cross-	VAS (0%–100%)	Necessity (8)	5.887	<0.001
Kemp et al.	UK	Epilepsy	37	51%	40.7 (SD not reported)	Cross-	Low-dose of phenobarbital indicative of nonadherence, and/or measurement of antiepileptic drug levels	Necessity (5)	0.493	0.057
(2007) [203]										
Khandheria et al.	USA	Coronary Artery	132	83%	65.8 (10.1)	Cross-	4-item MMAS	Necessity (5)	1.050	0.875
(2008) [204]										
Kressin et al.	USA	Hypertension	806	35%	59	Cross-	Hill-Bone Compliance to	Necessity (5)	1.414	0.200
(2010) [205]										
Kronish et al.	USA	Stroke or TIA	600	60.6%	63.4 (11.2)	Cross-	8-item MMAS dichot. at	Necessity (5)	1.120	0.557

BMQ (number of items): it is not specified for all studies.

OR: odds ratio.

p: p-value.
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
(2013) [206]	NZ	Heart, Liver,	326	64.4%	Heart	Cross-	Concerns (4) modified [193]			
		Lung Transplant			section		Imunosuppressant			
Kung et al.							Therapy Adherence Scale (ITAS) <12 non-adherence			
(2012) [207]	NZ	Heart, Liver,	326	64.4%	Heart	Cross-	Concerns (5)			
		Lung Transplant			section		Necessity (5)			
Llewellyn et al. [208]	UK	Haemophilia	65	100%	36.4 (12.2)	Cross-	1) Adherence to frequency of prophylactic Concerns (5)			
et al. (2003) [22]							Necessity (5)			
							infusion with clotting Necessity (5)			
							Therapy adherence scale (ITAS) <12 non-adherence			
Maguire et al. [208]	UK	Hypertension	327	46%	Not reported	Cross-	Concerns (5)			
(2008) [208]							Necessity (5)			
Mahler et al.	GMY	Mixed Chronic	360	53.3%	69.5 range 19-	Cross-	Concerns (5)			
(2012) [209]					section		Necessity (5)			
Maidment et al. [209]	UK	Depression	67	49%	74.2 (6.1)	Cross-	Concerns (5)			
et al. (2002) [15]							Necessity (5)			
Menckeberg et al. [210]	NTL	Asthma	238	33%	36.2 (6.3)	Cross-	Concerns (5)			
al. (2008)							Necessity (5)			
Moshkovska et al. [210]	UK	Ulcerative	169	51%	49 (SD not	Cross-	Concerns (5)			
al. (2009)					reported		Necessity (5)			
Nikolitina et al. [210]	USA	Epilepsy	72	37.5%	44 (14.2)	Cross-	Concerns (5)			
(2011) [212]					section		Necessity (5)			
Neame & Hammond (2005) [213]	UK	Rheumatoid	344	33%	49.5% aged	Cross-	Concerns (5)			
Nicklas et al. [214]	UK	Chronic Pain	217	–	–	Cross-	Concerns (5)			
O’Carroll et al. [215]	UK	Liver	33	52%	55.8 (13.37)	Cross-	Concerns (5)			
(2006) [215]					section		Concerns (5)			

Table 1. Cont.
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p	
O’Carroll et al.	UK	Ischaemic	180	54%	69 (11.4)	Cross-sectional	salicylic acid/creatinine	1) Baseline	Necessity (5)	0.705	0.202
		Stroke						2) Prospective	Necessity (5)	0.209	<0.001
Ovchinikova et	AUS	Asthma	134	31%	53 (19)	Longitudinal	MARS 1) Baseline 2)	Necessity (5)	1.249	0.262	
al. (2011) [26]								Prospective	Necessity (5)	0.220	<0.001
Percival et	AUS	Heart Failure	43	83.7%	64.2 (17.1)	Cross-sectional	5-item MARS dichot. at	Necessity (5)	3.068	0.165	
al. (2012) [216]								Concerns (5)	0.508	0.399	
Peters et al.	USA	Marfan	174	42%	39.8 (12.2)	Cross-sectional	3-item self-report measure	Necessity (5)	1.299	0.417	
(2001) [217]		Syndrome						(adapted from MARS)	Necessity (5)	0.424	0.010
Phatak & Thomas	USA	Hypertension, 250	38%	<30 (11.2%)	Cross- sectional	9-item MMAS	Necessity (5)	1.550	0.059		
		Arthritis, Back		30–39 (14%)				Concerns (6)	0.215	<0.001	
		Asthma, Hypercholesterolemia		50–59 (24.4%)							
Rajpura & Nayak	USA	Hypertension 117	64.1%	55–65 (23.9%)	Cross- sectional	MMAS	Necessity (5)	2.551	0.008		
(2013)		and aged 55 or over		>65 (52.1%)				Concerns (5)	0.423	0.014	
Rees et al.	AUS	Glaucoma	131	61.1%	67.7 (13.6)	Cross- sectional	4-item RAM	Necessity (5)	1.966	0.035	
(2010)								Concerns (8)	0.651	0.180	
Rees et al.	USA, SGP, AUS	Glaucoma 475	55.4%	African	Cross- sectional	4-item RAM	Necessity (5)	2.385	<0.001		
(2013) [220]									0.414	<0.001	
Reynolds et al.	USA	Osteoporosis 193	0%		Cross- sectional	Osteoporosis Specific 8-item MMAS	Necessity (5)	3.405	<0.001		
(2012)								Concerns (6)	0.424	0.005	
Ross et al.	UK	Hypertension 515	52%	59.9 (12.16)	Cross- sectional	4-item MMAS	Necessity (5)	3.060	0.001		
(2004) [159]								Concerns (5)	0.501	0.306	
Ruppert et al.	Hypertension 33	21%	70.6 (9.1)	Prospective	MEMS for 6 weeks post-	Necessity (5)	0.51	0.053			
(2012) [222]								BMQ	Necessity (5)	1.115	0.786
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p	
----------------	---------	---------------	-------	--------	---------------	--------------	-------------------	-----------------------	-----	------	
Kazantzis (2008) [223]	USA	Type II	608	48%	62.1 (9.2)	sectional	Concerns (14)		0.269	0.002	
Schoenthaler et al. (2012) [224]	Diabetes	MPR over last 2 years	608	48%	62.1 (9.2)	Cross-	Necessity (5)		0.757	0.060	
Schuz et al. (2011) [225]	GMY Older Adults with Comorbid Illnesses	309	59.3%	73.3 (5.1)	Longitudinal	2 items from RAM	Necessity (2)	1.353	0.155		
Nelson (2011) [226]	USA Diabetes	sectional	16	0%	46.1 (10.2)	Cross-	4-item MMAS		0.917	0.931	
Sirey et al. (2013) [227]	USA Older Adults with Comorbid Illnesses	299	22.1%	75.6 (7.3); Adherent 76.7 (7.4)	sectional	Concerns (2)		0.494	0.001		
Sofianou et al. (2012) [228]	USA Asthma	sectional	242	16.1%	67.4 (6.8)	Cross-	10-item MARS		2.353	<0.001	
Tibaldi et al. (2009) [229]	Italy Chronic Illness	sectional	427	45%	59 (14)	Cross-	5-item MARS		1.314	0.123	
Sud et al. (2005) [60]	USA Acute Coronary Syndrome	sectional	208	60.6%	64.9 (13.0)	Cross-	4-item MARS		1.800	0.022	
Trachtenberg et al. (2004) [230]	UK Rheumatoid	sectional	371	47.4%	24.0 (12.6)	Longitudinal	Self-reported number of Mason		0.694	0.256	
Unni & Farris (2011a) [33]	USA Cholesterol	Lowring	85	25%	58.9 (12.64)	Cross-	1) 19-item CQR	Necessity (5)	3.758	<0.001	
Unni & Farris (2011b) [27]	USA Older Adults	Medication Maintenance Patients	1061	45.6%	73.2 (9.2)	Cross-	4-item MMAS 1) time 1; 2) time 2	Necessity (5)	1.010	0.931	
Uusku¨ la et al. (2011a) [33]	EST HIV	sectional	161	55%	72.5 (5.5)	Recall of proportion of		0.503	<0.001		

BMQ: Brief Medicine Questionnaire; **MPR:** Medication Possession Ratio; **MMAS:** Morisky Medication Adherence Scale; **MARS:** Medical Adherence Rating Scale; **CQR:** Credibility and Qualitative Rating Scale; **DFO:** Direct Falcon’s Osteitis; **HIV:** Human Immunodeficiency Virus.
Author and date	Country	Illness Group	N	% male	Mean age (SD)	Study Design	Adherence measure	BMQ (number of items)	OR	p
(2012) [231]	NTL	Rheumatoid	228	33%	56.2 (12.2)	Cross-sectional	Self-report	Concerns (7)	0.250	0.073
et al. (2009) [232,233]	Arthritis	sectional								
Voils et al. (2012) [233]	USA	Hypertension	201	86%	64.1 (11.0)	Cross-sectional	8-item MMAS	Necessity (5)	1.516	0.442
(2012) [234]	sectional									
Wileman et al. (2011) [234]	UK	End-Stage	76	60.5%	63.1 (15.4)	Cross-sectional	Medications adherence	Necessity (5)	1.641	0.270
(2011) [234]	sectional									
Wong & Mulherin (2007) [235]	UK	Rheumatoid	68	40%	55.8 (13.0)	Longitudinal	Patient report of drug	Necessity (5)	1.319	0.568
Yu et al. (2012) [236]	SGP	Peritoneal	20	60%	64.4 (11.6)	Cross-sectional	Specially designed 5 item	Necessity (5)	1.828	0.499
(2012) [237]	Dialysis	sectional								
Zerah et al. (2012) [237]	FRA	Patients taking glucocorticoids	182	21%	Median 47	Cross-sectional	4-item MMAS	Necessity (5)	2.008	0.042
Note. NZ = New Zealand; IRE = Ireland; NTL = Netherlands; CAN = Canada; FRA = France; SWE = Sweden; IRI = Iran; SWZ = Switzerland; ESP = Spain; DMK = Denmark; EGT = Egypt; SGP = Singapore; JPN = Japan; EST = Estonia; GMY = Germany; AUS = Australia; IBD = inflammatory bowel disorder; TIA = Transient Ischemic Attack; MARS is the Medication Adherence Rating Scale from Thompson, Kulkarni, & Sergejew (2000); MEMS is Medication Event Monitoring System; CQ-R is the Compliance Questionnaire-Rheumatology from de Klerk, van der Heijde, Landewe, van der Tempel, & van der Linden (2003); MMAS is the Morisky Medication Adherence Scale from Morisky, Green, & Levine (1986); TxEQ is the Transplant Effects Questionnaire from Ziegelmann et al. (2002); ACTG is the Adherence to Combination Therapy Guide from Chesney et al., 2000; RAM is the Reported Adherence to Medication Scale from Horne et al., (1999), renamed MARS (Medication Adherence Report Scale); VAS = visual analogue scale.										
Adherence result selected for use in meta-analysis;										
Relationship between adherence measure and BMQ scales not reported.										
doi:10.1371/journal.pone.0080633.t001										
Necessity and Concerns items included (since items may be added specific to the medication prescribed), the adherence measure used, information (means and standard deviations, odds ratios and 95% confidence intervals or correlation coefficients) to calculate the effect size between adherence and Necessity beliefs and Concerns, and the p-value. Where the full required statistics were not reported, authors were contacted for further information.

Methodology/Quality Assessment

A simple methodology assessment tool was devised for this study. Methodology was assessed by two of three independent expert raters (SC, RP and VC) using the following parameters:

- study location (UK or non-UK)
- study design (cross-sectional or longitudinal/prospective)
- measure of adherence (self-report or objective measure [electronic monitors, prescription redemption, blood test results])

- sample size ($<82 = 0$ or $\geq 82 = 1$). This was based on the sample needed to detect a medium effect size for a correlation ($r = 0.3$) with an alpha level of 0.05 and 80% power.

Ratings were completed independently and then combined. There were no disagreements regarding ratings.

Statistical Analysis

The primary outcome measure was adherence to medication. For each study, the effect size was expressed as an odds ratio with 95% confidence intervals. Where studies reported the standard mean difference or correlation coefficient, the effect size was converted into an odds ratio, using the Comprehensive Meta-Analysis program. We used a random effects model to accommodate heterogeneity between studies which was anticipated due to differences with respect to sample characteristics, study design and the adherence measure used.

The presence of significant heterogeneity across studies was examined using the chi-squared statistic (Q). The magnitude of this heterogeneity across studies was estimated using the I^2 statistic.
Sample Characteristics

The mean age of participants in the 94 included studies ranged from 24.0 to 74.2, with an overall mean age of 55.8 (it was not possible to calculate the mean age in 13 studies). The percentage of males ranged from 0–100% (breast cancer and haemophilia samples respectively), with an overall percentage of males of 49.7% male (excluding 3 studies where it was not possible to calculate the number of males). Sample sizes ranged from 16 to 1071.

The total sample, N= 25,072, encompassed patients with asthma, renal disease, organ transplantation, dialysis chronic pain, kidney transplantation, cancer, cardiovascular disorders, Marfan’s syndrome, depression, haemophilia, diabetes, HIV, rheumatoid arthritis, osteoporosis, thalassemia, inflammatory bowel disease, bipolar disorder, schizophrenia, epilepsy, migraine, back problems, glaucoma and mixed chronic illness.

Thirty-three studies (35.1%) used the MARS to measure adherence, 20 used the Morisky Medication Adherence Scale (21.2%), 3 used pharmacy refill (3.2%), 3 used electronic monitoring (3.2%) and two or fewer studies used the remaining measures.

Effect Sizes

Necessity beliefs. There was a significant relationship between Necessity beliefs and adherence, OR=1.742, 95% CI [1.569, 1.934], p<0.0001. There was significant heterogeneity between the 96 comparisons from 94 studies, Q(95) = 422.662, p<0.001, which was substantial in magnitude, I² = 77.52%.

Figure 2 presents the individual effect-size estimates and shows that the relationship between Necessity beliefs and adherence was significant (p<0.05) for 49 (51.0%) of the included studies. Sensitivity analyses revealed that the overall result was not affected when any single finding was omitted.

Concerns. There was a significant relationship between Concerns and adherence and fewer Concerns about adverse effects, OR = 0.502, 95% CI [0.450, 0.560], p<0.0001. There was significant heterogeneity among the 93 comparisons from 91 studies, Q(92) = 481.84, p<0.001, suggesting that factors other than chance accounted for a moderate-substantial amount of variance, I² = 80.91%.

Figure 3 presents the individual effect-size estimates and shows that the relationship between concerns and adherence was significant (p<0.05) for 53 (57.0%) of the included studies. Sensitivity analyses revealed that the overall result did not change when any single finding was omitted.

Stratification by Long-Term Condition and Measurement

See Tables 2 and 3 for OR stratified by different long-term conditions and adherence measures. Two few studies reported data on the majority of conditions and measures to allow statistical tests for heterogeneity.

Methodology/Quality Assessment

See Table 4 for sensitivity analyses.

Study location. Most studies were conducted outside of the UK (n=62; 66.0%). Stronger effects were apparent for both Necessity and Concerns for studies conducted in the UK relative to studies conducted outside of the UK, however the relationship between Necessity and Concerns was significant for both locations. Substantial and significant heterogeneity was present in all analyses.

Study design. The majority of studies (n = 77, 81.9%) were cross-sectional, with few studies using longitudinal or prospective designs (n = 17; 18.1%). Effect sizes were similar for longitudinal/prospective and cross-sectional designs for both Necessity and Concerns. Substantial and significant heterogeneity was present in all analyses.

Measurement of adherence. Eighty-three studies (88.3%) employed measured adherence using self-report, while 11 (11.7%) used other methods. The association between adherence and
Figure 2. Forest plot of effect sizes for BMQ Necessity and medication adherence. doi:10.1371/journal.pone.0080633.g002
Figure 3. Forest plot of effect sizes for BMQ Concerns and medication adherence.

doi:10.1371/journal.pone.0080633.g003
Table 2. Analyses Stratified By Long-Term Condition.

Condition	k	OR	(95% CI)	p
Necessity				
Asthma	7	2.610	1.802–3.780	<0.001
Bipolar disorder	2	1.624	0.739–3.567	0.227
Blood disorders	3	1.512	0.580–3.944	0.398
Cancer	2	2.313	1.190–4.496	0.013
Depression	8	1.989	1.382–2.862	<0.001
Diabetes	6	1.502	0.930–2.425	0.096
Dialysis/end stage renal disease	3	1.454	0.771–2.742	0.247
Epilepsy	2	0.859	0.284–2.602	0.789
Glaucoma	3	1.697	0.976–2.949	0.061
High cholesterol	2	1.497	0.659–3.401	0.335
HIV	9	1.742	1.242–2.444	0.001
Hypertension	7	1.426	0.980–2.075	0.064
IBD	3	1.775	1.560–2.020	<0.001
Mixed sample	11	1.504	1.249–1.810	<0.001
Organ transplant	5	2.875	1.561–5.294	0.001
Pain	2	1.239	0.468–3.280	0.666
Rheumatoid arthritis	5	3.277	1.106–9.708	0.032
Schizophrenia	2	3.301	1.115–9.777	0.031
Stroke/CHD/acute coronary syndrome	9	1.402	1.022–1.924	0.036

Concerns

Condition	k	OR	(95% CI)	p
Asthma	6	0.406	0.304–0.541	<0.001
Bipolar disorder	2	0.410	0.250–0.672	<0.001
Blood disorders	3	0.764	0.545–1.073	0.121
Cancer	2	0.771	0.411–1.445	0.417
Depression	8	0.408	0.215–0.772	0.006
Diabetes	6	0.450	0.202–1.003	0.051
Dialysis/end stage renal disease	3	0.509	0.211–1.232	0.134
Epilepsy	2	0.662	0.327–1.339	0.251
Glaucoma	3	0.909	0.258–3.204	0.882
High cholesterol	2	0.598	0.123–2.918	0.525
HIV	9	0.619	0.465–0.824	0.001
Hypertension	6	0.433	0.340–0.552	<0.001
IBD	3	0.612	0.536–0.698	<0.001
Mixed sample	11	0.423	0.339–0.501	<0.001
Organ transplant	4	0.486	0.356–0.503	<0.001
Pain	2	0.620	0.428–0.897	0.011
Rheumatoid arthritis	5	0.608	0.385–0.962	0.033
Schizophrenia	2	0.648	0.410–1.025	0.063
Stroke/CHD/acute coronary syndrome	9	0.518	0.382–0.704	<0.001

Note. CHD = coronary heart disease. doi:10.1371/journal.pone.0080633.t002

Table 3. Analyses Stratified by Adherence Measure.

Measure	k	OR	(95% CI)	p
Necessity				
Brief Medication Questionnaire	2	2.350	1.122–4.341	0.022
CQ-R	2	18.327	5.696–58.967	<0.001
Electronic monitoring	3	1.625	0.599–4.412	0.340
MARS	33	1.838	1.581–2.137	<0.001
MASRI	2	2.048	1.390–3.018	<0.001
MMAS	20	1.558	1.305–1.862	<0.001
Pharmacy refill	3	1.668	0.684–4.066	0.260

Concerns

Measure	k	OR	(95% CI)	p
Brief Medication Questionnaire	2	0.415	0.131–1.321	0.137
CQ-R	2	0.546	0.286–1.044	0.067
Electronic monitoring	3	0.620	0.403–0.946	0.027
MARS	31	0.425	0.362–0.500	<0.001
MASRI	2	0.410	0.251–0.669	<0.001
MMAS	20	0.590	0.426–0.817	0.002
Pharmacy refill	3	0.785	0.630–0.979	0.031

Note. CQ-R = Compliance Questionnaire- Rheumatology from de Klerk, van der Heijde, Landewé, van der Tempel, & van der Linden (2003), MARS = Medication Adherence Report Scale Scale from Horne et al., (1999), MASRI = Medication Self-Report Index from Walsh et al., 2002, MMAS = Morisky Medication Adherence Scale from Morisky, Green, & Levine (1986). doi:10.1371/journal.pone.0080633.t003

Statistical power. Eighteen (19.1%) of the studies were classed as having small samples (less than 82). The size of the associations between Necessity and Concerns and adherence were similar for smaller and larger studies. Heterogeneity estimates indicated that variability around the larger samples estimates was substantial. However, the smaller sample estimates were less heterogeneous, with I^2 values in the small range for Concerns and the moderate range for Necessity beliefs.

Assessment of Risk of Publication Bias

Necessity. The fail-safe $N (Nfs)$ was 96, indicating that there would need to be ≥ 96 unpublished findings of an equal magnitude but opposite direction, to reverse our conclusion that a significant effect exists. Inspection of the funnel plot suggested asymmetry (see Figure 4), however Duval and Tweedie’s trim and fill method did not suggest that studies should be added/removed. Egger’s t-test was significant, $t(94) = 1.60$, $p<0.001$, suggesting the presence of asymmetry.

Concerns. The fail-safe $N (Nfs)$ was 94, indicating that there would need to be ≥ 94 unpublished findings of an equal magnitude but opposite direction, to reverse our conclusion that a significant effect exists. Funnel plot inspection suggested the presence of asymmetry (see Figure 5), which was confirmed by a significant Egger’s t-test, $t(91) = 1.80$, $p<0.001$. Further, Duval and Tweedie’s trim and fill method suggested 13 studies should be added/removed to make the funnel plot symmetrical. The location of the imputed studies indicated that the asymmetry may arise from a lack of reporting of studies which find a negative relationship between concerns and adherence. However, the similarity between the adjusted OR 0.567 95% CI [0.507, 0.634], which includes the imputed trimmed and filled studies, and the observed OR 0.504 95% CI [0.450, 0.564], suggests that any bias does not have a large impact on the findings.
This meta-analytic review indicates that the Necessity-Concerns Framework (NCF) is a potentially useful model for understanding patients’ evaluations of prescribed medicines. The magnitude of the aggregate effect sizes indicates that, for each standard deviation increase in Necessity beliefs, the odds of adherence increases by a factor of 1.7. Conversely, for each standard deviation increase in Concerns, the odds of adherence decreases by a factor of 2.0.

Strengths and Limitations of the Study

The sensitivity and publication bias analyses conducted confirm our hypothesis that Necessity beliefs and Concerns are associated with adherence/nonadherence to medicines, across a wide range of conditions, medications, and study locations. No research synthesis can transcend the limitations of the primary studies. However, sensitivity analyses confirmed that this association is robust across methodological features; remaining when small, underpowered studies were removed, when only longitudinal/prospective designs were included, and when self-report and non self-report adherence assessments were included separately. The majority of the studies relied solely on self-reported adherence. Self-report measures have high face validity and high specificity for nonadherence, however they may be subject to self-presentation and recall bias [161]. Thus some people may be reporting higher adherence rates than they actually attain. This bias does not diminish our confidence in the finding that beliefs were related to adherence, as there is no evidence that such a bias would be associated with medication beliefs. Indeed some patients with high Concerns and low Necessity beliefs may be expected to incorrectly report high adherence in order to present themselves positively. This pattern would attenuate the relationship found between adherence and medication beliefs, making it less likely that we would find an association between beliefs and adherence. Moreover, given that this relationship remained when non-self report measures were used, we are confident that the observed relationships between beliefs and adherence are not an artifact arising from the limitations of self-report. Only published studies were included, creating a possible bias, since studies submitted for publication may be more likely to have positive results and larger effect sizes. Since for both Necessity beliefs and Concerns, the fail safe N indicated that the number of additional negative findings required to accept our null hypothesis was similar to the number of studies included in this meta-analysis, and there was little suggestion of publication bias through funnel plot analysis, our findings appear to reflect a true relationship between beliefs and adherence.

Table 4. Analyses Stratified By Adherence Measure, Study Location, Design and Power.

	k	OR	(95% CI)	\(p\)	\(I^2\)	Heterogeneity test
Necessity						
UK study	32	2.201	1.786-2.713	<0.001	72.72%***	\(Q(1) = 7.67, \ p<0.05\)
Non-UK study	64	1.573	1.405-1.761	<0.001	74.79%***	
Concerns						
UK study	31	0.403	0.335-0.485	<0.001	62.75%***	\(Q(1) = 7.61, \ p<0.05\)
Non-UK study	62	0.555	0.486-0.635	<0.001	82.48%***	
Subjective adherence measure	83	1.737	1.565-1.929	<0.001	75.54%***	\(Q(1) = 0.031, \ p=0.86\)
Objective adherence measure	13	1.817	1.114-2.963	0.017	86.20%***	
Concerns						
Subjective adherence measure	81	0.485	0.429-0.549	<0.001	82.84%***	\(Q(1) = 13.55, \ p<0.001\)
Objective adherence measure	12	0.726	0.609-0.866	<0.001	8.93%	
Prospective/longitudinal	18	1.526	1.243-1.874	<0.001	63.02%***	\(Q(1) = 1.82, \ p=0.18\)
Cross-sectional	78	1.798	1.595-2.027	<0.001	79.49%***	
Concerns						
Prospective/longitudinal	18	0.449	0.356-0.567	<0.001	70.88%***	\(Q(1) = 1.14, \ p=0.29\)
Cross-sectional	75	0.519	0.458-0.588	<0.001	81.28%***	
Necessity						
Low power	18	1.848	1.290-2.646	0.001	46.19%*	\(Q(1) = 0.12, \ p=0.73\)
High power	78	1.730	1.550-1.930	<0.001	80.16%***	
Concerns						
Low power	17	0.488	0.371-0.643	<0.001	0.00%	\(Q(1) = 0.05, \ p=0.82\)
High power	76	0.505	0.448-0.570	<0.001	83.83%***	

Note. *\(p<.05\), **\(p<.001\) for Q statistic.

\(\text{doi:10.1371/journal.pone.0080633.t004}\)
injections, or if practical barriers to care may be of relatively greater importance in some groups using medications administered through different routes.

Eighteen studies assessed whether Concerns and Necessity beliefs could predict adherence using longitudinal/prospective designs. The relationship was not reduced in these studies, supporting the proposal that medication beliefs can influence adherence.

Figure 4. Funnel plot for BMQ Necessity and medication adherence.
[Link: doi:10.1371/journal.pone.0080633.g004]

Figure 5. Funnel plot for BMQ Concerns and medication adherence.
[Link: doi:10.1371/journal.pone.0080633.g005]
later adherence as part of the self-regulation of illness [14]. We did not restrict our inclusion criteria to studies published in English. However, our search only identified one study published in any other language, despite the fact that the BMQ was translated into the native language for the study. Cultural values [162] can impact on the way in which individuals interact with the healthcare system. However, variations in treatment necessity and concerns and association between these beliefs and adherence were noted across different countries, languages and cultures. We found that studies outside the UK, where the BMQ and its disease-specific modifications have been predominantly developed, found reduced associations between necessity and concerns beliefs and adherence. Further work is needed to investigate potential cultural variations in medication beliefs.

Implications for Research and Practice

The development of more effective methods for addressing nonadherence is a priority for research and practice [1,5]. Our findings suggest, that novel interventions to support informed choice and optimal adherence to appropriately prescribed medicines are likely to be more effective if they take account of patients’ beliefs about the treatment and how they judge their personal need for the prescription relative to concerns about potential adverse consequences of taking it. Necessity beliefs and Concerns may trigger intentional nonadherence, for example, if patients decide not to take their medication due to concerns regarding potential or actual adverse consequences, and unintentional nonadherence, (e.g. if patients who believe a medicine is not important for their health forget to take it). Beliefs can have counter-balancing effects on adherence, such as when patients continue to take a medication they believe is essential for their health despite concerns regarding adverse effects. The challenge now is to develop effective interventions to address patients’ doubts about the necessity for treatment and concerns about adverse consequences in order to enhance adherence. The challenge goes beyond ‘getting patients to take more medicines’. Our findings show that many patients harbour significant, unresolved doubts and concerns about prescribed treatment suggesting a fault-line between patients’ and prescribers’ cultural perceptions of the treatment. Viewed from the perspective of biomedicine, nonadherence may seem irrational. However, from the patients’ perspective, nonadherence may be a ‘common-sense’ response to their implicit appraisal of the treatment. For some patients nonadherence might represent an informed choice. In this case the outcome of ‘adherence support’ would be to avoid prescribing an unwanted treatment, to the relief of patient and payer. However, for others, evaluations of treatment necessity and concerns may be based on misconceptions about the illness and treatment.

More detailed studies of patient representations illness and treatment show that, even when treatment evaluations are based on misconceptions they appear to draw on a ‘common-sense’ logic [12,163,164]. For example, the need for daily medication may seem less salient when symptoms are absent or cyclical [165–167]. Concerns about prescribed medication are not just related to side effects but are common, even when the medication is well tolerated. They are often related to beliefs about the negative effects of medication and include worries about long-term effects, dependence, cost of medication and dislike of having to rely on medicines [14,167]. Concerns are related to more general beliefs about pharmaceuticals as a class of treatment which are often perceived as intrinsically harmful and over-prescribed by doctors [167,168]. The package information leaflets, dispensed with many prescription medicines may exacerbate concerns as they list all possible side effects, leaving patients with outstanding questions and making it difficult to understand the likely risk and place them in context with potential benefits [169].

Nonadherence is often a hidden problem. Patients may be reluctant to express doubts or concerns about prescribed medication and to report nonadherence; sometimes because they fear that this will be perceived by the prescriber as a lack of faith in them. The first step to facilitating adherence is therefore to take a ‘no-blame approach’ and encourages an honest and open discussion to identify nonadherence and the reasons for nonadherence [1]. Adherence support should be tailored to the needs of the individual addressing perceptions (e.g. necessity beliefs and concerns) as well as practicalities (e.g. capacity and resources). This can be approached in a three stage process: 1) communicating a common-sense rationale for personal need that takes account of the patient’s perceptions of the illness and symptoms expectations and experiences 2) eliciting and addressing specific concerns and 3) making the treatment as convenient and as easy to use a possible. Interventions attempting to improve adherence by applying these approaches have had encouraging results [142,170]. Nonadherence remains a fault-line in clinical practice. Consideration of patients perceptions of treatment necessity and concerns in prescribing and treatment review is essential to support informed choice and optimal adherence to appropriately prescribed treatment.

Supporting Information

Supporting Information S1 PRISMA Checklist. (DOC)

Acknowledgments

We would like to thank Christina Jackson for her help with the publication bias analysis, and the authors who sent additional data for their assistance.

Author Contributions

Analyzed the data: VC RH RP SC AF NF. Wrote the paper: RH VC RP SC. Conceived and designed the study: RH. Acquired the data: RP SC VC. Critically revised the manuscript for important intellectual content: RH SC RP NF AF VC.

References

1. National Institute for Health and Clinical Excellence (2009) Medicines adherence: involving patients in decisions about prescribed medicines and supporting adherence CG76. London: National Institute for Health and Clinical Excellence.
2. World Health Organisation (2003) Adherence to Long-term Therapies: Evidence for Action. Geneva: World Health Organisation.
3. Simpson SH, Euring DT, Majumdar SR, Patward RN, Tsuyuki RT, et al. (2006) A meta-analysis of the association between adherence to drug therapy and mortality. BMJ 333: 15.
4. Horne R, Weinman J, Barber N, Elliott RA, Morgan M (2006) Concordance, Adherence and Compliance in Medicine Taking: A conceptual map and research priorities. London: National Institute for Health Research (NIHR) Service Delivery and Organisation (SDO) Programme. Available: http://www.sdo.lshtm.ac.uk/sdo762004.html. Accessed October 17th 2013.
5. Haynes RB, Yao X, Degani A, Kripalani S, Garg A, et al. (2005) Interventions to enhance medication adherence. Cochrane Database Syst Rev: CD000011.
6. Weinman J, Petrie KJ, Moss-Morris R, Horne R (1996) The illness perception questionnaire: A new method for assessing the cognitive representation of illness. Psychology & Health 11: 431–443.
7. Horne R, Weinman J (1999) Patients’ beliefs about prescribed medicines and their role in adherence to treatment in chronic physical illness - processes and applications. Journal of Psychosomatic Research 47: 555–567.
8. Benedetti F, Carlino E, Pollo A (2011) How placebos change the patient’s brain. Neuropsychopharmacology 36: 339–354.
36. Rosenthal R (1979) The “file drawer problem” and tolerance for null results.

34. Higgins J, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions: The Cochrane Collaboration. Available: http://handbook.cochrane.org/. Accessed 2013 Nov 10.

31. Allen LaPointe NM, Ou FS, Calvert SB, Melloni C, Stafford JA, et al. (2011) Predictors of adherence to secondary preventive medication in stroke patients. Value in Health 14: 26–32.

29. Johnson MO, Dilworth SE, Taylor JM, Darbes LA, Comfort ML, et al. (2012) Medication management in older people with visual impairment. International Journal of Geriatric Psychiatry 17: 752–757.

27. Unni EJ, Farris KB (2011) Unintentional non-adherence and belief in symptoms, beliefs about medications, negative mood, and long-term HIV medication adherence. Annals of Behavioural Medicine 34: 46–55.

26. Ovchinikova L, Smith L, Bosnic-Anticevich S (2011) Inhaler technique and perceptions of treatment as determinants of adherence to warfarin treatment. International Journal Of Pharmacy Practice 19: 73–85.

25. O’Carroll R, Whittaker J, Hamilton B, Johnston M, Sudlow C, et al. (2011) Understanding blood pressure medication adherence, illness perceptions, and beliefs about medications in co-morbid HIV and type 2 diabetes mellitus. Journal of the International Association of Physicians in AIDS Care 4 (4): 253.

23. French DP, Wade AN, Farmer AJ (2013) Predicting self-care behaviours of patients with type 2 diabetes: The importance of beliefs about behaviour. Journal of Health Psychology 18: 1411–1418.

22. Lewellyn G, Miners A, Lee C, Harrington C, Weinman J (2003) The illness perceptions and treatment beliefs of individuals with severe haemophilia and their role in adherence to home treatment. Health Psychology 18: 183–200.

21. Byrne M, Walsh J, Murphy AW (2005) Secondary prevention of coronary heart disease: patient beliefs and health-related behaviour. Journal of Psychosomatic Research 58: 403–415.

20. Clatworthy J, Bowskill R, Parham R, Rank T, Scott J, et al. (2009) Adherence to inhaled corticosteroids in asthma. Psychology, Health and Medicine 5: 389–393.
disorder with adherence to medication in stroke survivors. Br J Health Psychol. In press.

Mane Z, Rose AJ, Orner MB, Berlowitz DR, Kressin NR (2010) Understanding racial disparities in treatment intensification for hypertension among Inner City Med patients. J Gen Intern Med 25: 819-825.

Schur B, Wurm S, Ziegelmann JP, Warner LM, Tschol-Romer C, et al. (2011) Changes in functional health, changes in medication beliefs, and medication adherence. Health Psychol 30: 31-39.

Shinya beta OIOFB, Shinya beta OOOSe (2010) Variation in patients’ and pharmacists’ attribution of symptoms and the relationship to patients’ concerns and beliefs in medications. Research in Social & Administrative Pharmacy Vol6(4), Dec 2010, 334-344.

Horne R, Faase K, Cooper V, Diefenbach MA, Leventhal H, et al. (2013) The perceived sensitivity to medicines (PSM) scale: an evaluation of validity and reliability. Br J Health Psychol 18: 18-30.

McHorney CA, Zhang NJ, Stump T, Zhao X (2012) Structural equation modeling of the proximal-distal continuum of adherence drivers. Patient Prefer Adherence 6: 269-284.

Lopez-Torres J, Pargara I, Del Campo JM, Villena A (2013) Follow up of patients who start treatment with antidepressives: treatment satisfaction, treatment compliance, efficacy and safety. BMC Psychiatry 13: 65.

O’Carroll R, Dennis M, Johnston M, Sudlow C (2010) Improving adherence to medications in stroke survivors: JMASHY: a randomised controlled trial: study protocol. BMJ Neuro 10: 15.

Timmers L, Boons CC, Mangnus D, Moes JE, Swart EL, et al. (2011) Use of electronic in daily practice: a study on adherence and patients’ experiences. BMC Cancer 11: 294.

Timmers L, Swart EL, Boons CC, Mangnus D, van de Ven PM, et al. (2012) The use of capetabinb in daily practice: a study on adherence and patients’ experiences. Patient Prefer Adherence 6: 741-748.

Fell A, Le C, Wijk AC (2001) Preliminary study of chronic pain patients’ concerns about cannabis as analgesics. Clinical Journal of Pain 17: 245-248.

Hober N, Weinman J, Hanks M (2004) Using the self-regulatory model to cluster chronic pain patients: the first step towards identifying relevant treatments. Pain 106: 276-285.

Horne R, Frost S, Hanks M, Wright S (2001) “In the eye of the beholder”: Pharmacy students have more positive perceptions of medicines than students of other disciplines. International Journal Of Pharmacy Practice 9: 85-89.

Horne R, Gagnier JI, Frost S, Weinman J, Wright SM, et al. (2004) Medicine in a multi-cultural society: The effect of cultural background on beliefs about medications. Social Science & Medicine 59: 1307-1313.

Jorgensen TM, Andersson KA, Mardby A-CM (2006) Beliefs about medicines among Swedish pharmacy employees. Pharmacy World & Science 28: 233-238.

Ramstrom H, Afandi S, Elofsson K, Petersson S (2006) Differences in beliefs between patients and pharmaceutical specialists regarding medications. Patient Edcuation & Counselling 62: 244-249.

Gylling C, Goulli V, Davis C, Fisher M, Date HL, et al. (2006) Patients’ perception of information about HAART: impact on treatment decisions. AIDS Care 17: 367-376.

Kumar K, Gordon C, Toescu V, Buckley CJ, Horne R, et al. (2008) Beliefs about medicines in patients with rheumatoid arthritis and systemic lupus erythematosus: a comparison between patients of South Asian and White British origin. Rheumatology 47: 690-697.

Wray J, Watters S, Radley-Smith R, Sensky T (2006) Adherence in adolescents and young adults following heart or heart-lung transplantation. Pediatric Cardiol 315: 23-29.

Frost S, Horne R, Hankins M, Wright S (2001) ‘‘In the eye of the beholder’: Patients’ concerns and beliefs in medications. European Heart Journal 27: 434-248.

Hobro N, Weinman J, Hanks M (2004) Using the self-regulatory model to cluster chronic pain patients: the first step towards identifying relevant treatments. Pain 106: 276-285.

Horne R, Frost S, Hanks M, Wright S (2001) “In the eye of the beholder”: Pharmacy students have more positive perceptions of medicines than students of other disciplines. International Journal Of Pharmacy Practice 9: 85-89.

Horne R, Gagnier JI, Frost S, Weinman J, Wright SM, et al. (2004) Medicine in a multi-cultural society: The effect of cultural background on beliefs about medications. Social Science & Medicine 59: 1307-1313.

Jorgensen TM, Andersson KA, Mardby A-CM (2006) Beliefs about medicines among Swedish pharmacy employees. Pharmacy World & Science 28: 233-238.

Ramstrom H, Afandi S, Elofsson K, Petersson S (2006) Differences in beliefs between patients and pharmaceutical specialists regarding medications. Patient Edcuation & Counselling 62: 244-249.

Gylling C, Goulli V, Davis C, Fisher M, Date HL, et al. (2006) Patients’ perception of information about HAART: impact on treatment decisions. AIDS Care 17: 367-376.

Kumar K, Gordon C, Toescu V, Buckley CJ, Horne R, et al. (2008) Beliefs about medicines in patients with rheumatoid arthritis and systemic lupus erythematosus: a comparison between patients of South Asian and White British origin. Rheumatology 47: 690-697.

Wray J, Watters S, Radley-Smith R, Sensky T (2006) Adherence in adolescents and young adults following heart or heart-lung transplantation. Pediatric Cardiol 315: 23-29.

Frost S, Horne R, Hankins M, Wright S (2001) ‘‘In the eye of the beholder’: Patients’ concerns and beliefs in medications. European Heart Journal 27: 434-248.

Hobro N, Weinman J, Hanks M (2004) Using the self-regulatory model to cluster chronic pain patients: the first step towards identifying relevant treatments. Pain 106: 276-285.

Horne R, Frost S, Hanks M, Wright S (2001) “In the eye of the beholder”: Pharmacy students have more positive perceptions of medicines than students of other disciplines. International Journal Of Pharmacy Practice 9: 85-89.

Horne R, Gagnier JI, Frost S, Weinman J, Wright SM, et al. (2004) Medicine in a multi-cultural society: The effect of cultural background on beliefs about medications. Social Science & Medicine 59: 1307-1313.

Jorgensen TM, Andersson KA, Mardby A-CM (2006) Beliefs about medicines among Swedish pharmacy employees. Pharmacy World & Science 28: 233-238.

Ramstrom H, Afandi S, Elofsson K, Petersson S (2006) Differences in beliefs between patients and pharmaceutical specialists regarding medications. Patient Edcuation & Counselling 62: 244-249.

Gylling C, Goulli V, Davis C, Fisher M, Date HL, et al. (2006) Patients’ perception of information about HAART: impact on treatment decisions. AIDS Care 17: 367-376.

Kumar K, Gordon C, Toescu V, Buckley CJ, Horne R, et al. (2008) Beliefs about medicines in patients with rheumatoid arthritis and systemic lupus erythematosus: a comparison between patients of South Asian and White British origin. Rheumatology 47: 690-697.

Wray J, Watters S, Radley-Smith R, Sensky T (2006) Adherence in adolescents and young adults following heart or heart-lung transplantation. Pediatric Cardiol 315: 23-29.
113. Crowley MJ, Grubber JM, Olsen MK, Bosworth HB (2013) Factors associated with non-adherence to three hypertension self-management behaviors: preliminary data for a new instrument. J Gen Intern Med 28: 99–106.

114. Davis DP, Jandrisevits MD, Bres S, Weber TR, Gallo LC (2012) Demographic, socioeconomic, and psychological factors related to non-adherence among emergency department patients. J Emerg Med 43: 775–785.

115. Ferreira C, Gay M, Regniet-Aerberth F, Briafre F (2010) Representation of illness and of treatment side effects as determinants of adherence to treatment of HIV patients. Annales Medico-Psychologiques 168: 255–259.

116. Foster JM, Smith L, Bosnie-Anicicvich SZ, Usherwood T, Sawyer SM, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Intern Med J 42: e136–e144.

117. Garvie PA, Flynn FM, Belzer M, Birtie P, Hu C, et al. (2011) Psychological factors, beliefs about medication, and adherence of youth with human immunodeficiency virus in a multisite directly observed therapy pilot study. J Adolesc Health 48: 657–640.

118. Gelernter BS, Gafni AM, Careres ML, Smith DE, Wilken LA, et al. (2010) A pharmacist and health promotion team to improve medication adherence among Latinos with diabetes. Ann Pharmacoth 44: 70–79.

119. Jarab AS, Alquth SG, Khldour M, Shammas M, Makat嗒sh TL (2012) Impact of pharmacological care on health outcomes in patients with COPD. Int J Clin Pharm 34: 53–62.

120. Joseph HA, Flores SA, Parsons JT, Purcell DW (2010) Beliefs about transmission risk and vulnerability, adherence, and sexual risk behavior among a sample of HIV-positive males who have sex with men. AIDS Care 22: 29–39.

121. Kalichman SC, Eaton L, Cherry C (2010) ‘There is no proof that HIV causes AIDS’. AIDS denialism beliefs among people living with HIV/AIDS. Journal of Behavioral Medicine 33: 432–440.

122. Kalichman SC, Amaral CM, White D, Swetsz C, Kalichman MO, et al. (2012) Alcohol and adherence to antiretroviral medications: interactive toxicity beliefs among people living with HIV. J Assoc Nurses AIDS Care 23: 511–520.

123. Kalichman SC, Gruber R, Butler T, Amaral CM, McKinney M, White D, et al. (2013) Intentional non-adherence to medications among HIV positive alcohol drinkers: prospective study of interactive toxicity beliefs. J Gen Intern Med 28: 399–405.

124. Kapur TK, Gerni Onderhol E, Zalich A, Pehar R, Hadziosmanovic Z, et al. (2013) Adherence to pharmacological treatment of chronic non-malignant pain in patients aged 65 and older. Pain Med 14: 247–256.

125. Natarajan N, Putnam W, Van Aarsen K, Beverley Lawson K, Burge F (2013) Impact of psychological, demographic, and financial barriers. Adm Policy Ment Health 38: 86–95.

126. Nordmann JP, Baudouin C, Renard JP, Denis P, Regnault A, et al. (2010) Patients’ perceptions and illness severity at start of antidepressant medications as a predictor of treatment adherence in women with urinary incontinence. Int J Clin Pharm 34: 63–70.

127. Moshkovska T, Stone MA, Smith RM, Bankart J, Baker R, et al. (2011) Impact of behavioral medicine on the pharmacy encounter? Research in Social and Administrative Pharmacy 6: 185–195.

128. van den Bemt BJ, den Broeder AA, van den Hoogen FH, Benraad B, Hekster YA (2009) Identification of noncompliant glaucoma patients using Bayesian networks and a decision theory system. Psychol Med 39: 1459–1469.

129. Mardby A-C, Akerlind I, Jorgensen T (2007) Beliefs about medicines and self-reported adherence among pharmacy clients. Patient Education & Counseling 60: 158–164.

130. Webb DG, Horne R, Pinching AJ (2001) Treatment-related empowerment: preliminary evaluation of a new measure in patients with advanced HIV disease. International Journal of STD & AIDS 12: 103–107.

131. Higgins N, Livingstone G, Catona C (2004) Concordance therapy: an intervention to help older people take antidepressants. Journal of Af fective Disorders 86: 281–287.

132. Foster JM, Smith L, Bosnie-Anicicvich SZ, Usherwood T, Sawyer SM, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Intern Med J 42: e136–e144.

133. van Geffen EC, Heerdink ER, Hugtenburg JG, Siero FW, Egberts AC, et al. (2010) Measuring the rate of therapeutic adherence in a defined population. The Netherlands. Int J Clin Pharm 32: 185–195.

134. Shams MEE, Barakat EAME (2010) Measuring the rate of therapeutic adherence in a defined population. The Netherlands. Int J Clin Pharm 32: 185–195.

135. Powers BJ, Danus S, Grubber JM, Olsen MK, Oddone EZ, et al. (2011) The effect of beliefs about medication, illness, and treatment on medication adherence in patients with diabetes. Administration & Policy in Long-Term Care 60: 175–185.

136. Wilke T, Muller S, Morisky DE (2011) Toward identifying the causes and consequences of medication non-adherence of patients with cardiovascular disease. J Cardiovasc Nurs 25(9): 1149–1158.

137. Beck EM, Vogelin R, Wirtz M, Caveli M, Kyvsgaard S, et al. (2012) Do patients with schizophrenia distinguish attitudes towards antipsychotic medication and pharmacotherapy in general? validation of the beliefs about medication questionnaire. Journal of Nervous & Mental Disease 200: 33–43.

138. Smith DW, Bathauer J, Baker R, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Int J Clin Pharm 34: 53–62.

139. Mardby A-C, Akerlind I, Jorgensen T (2007) Beliefs about medicines and self-reported adherence among pharmacy clients. Patient Education & Counseling 60: 158–164.

140. Foster JM, Smith L, Bosnie-Anicicvich SZ, Usherwood T, Sawyer SM, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Intern Med J 42: e136–e144.

141. Higgins N, Livingstone G, Catona C (2004) Concordance therapy: an intervention to help older people take antidepressants. Journal of Af fective Disorders 86: 281–287.

142. Johnson PA, Flynn PM, Belzer M, Birtie P, Hu C, et al. (2011) Psychological factors, beliefs about medication, and adherence of youth with human immunodeficiency virus in a multisite directly observed therapy pilot study. J Adolesc Health 48: 657–640.

143. Mardby A-C, Akerlind I, Jorgensen T (2007) Beliefs about medicines and self-reported adherence among pharmacy clients. Patient Education & Counseling 60: 158–164.

144. Foster JM, Smith L, Bosnie-AnicicvichSZ, Usherwood T, Sawyer SM, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Intern Med J 42: e136–e144.

145. Kleinman A (1986) Illness meanings and illness behavior. In: McHugh S, Plenum Press. 149–160.

146. Foster JM, Smith L, Bosnie-Anicicvich SZ, Usherwood T, Sawyer SM, et al. (2012) Identifying patient-specific beliefs and behaviours for conversations about adherence in asthma. Intern Med J 42: e136–e144.

147. Nordmann JP, Baudouin C, Renard JP, Denis P, Regnault A, et al. (2010) Patients’ perceptions and illness severity at start of antidepressant medications as a predictor of treatment adherence in women with urinary incontinence. Int J Clin Pharm 34: 86–95.

148. Beck EM, Vogelin R, Wirtz M, Caveli M, Kyvsgaard S, et al. (2012) Do patients with schizophrenia distinguish attitudes towards antipsychotic medication and pharmacotherapy in general? validation of the beliefs about medication questionnaire. Journal of Nervous & Mental Disease 200: 33–43.

149. Bender BG, Aptor A, Bogen DK, Dickinson P, Fisher L, et al. (2010) Test of an interactive voice response intervention to improve adherence to controller medications in adults with asthma. J Am Board Fam Med 23: 159–163.

150. Shams MEE, Barakat EAME (2010) Measuring the rate of therapeutic adherence in a defined population. The Netherlands. Int J Clin Pharm 32: 185–195.

151. Nordmann JP, Baudouin C, Renard JP, Denis P, Regnault A, et al. (2010) Patients’ perceptions and illness severity at start of antidepressant medications as a predictor of treatment adherence in women with urinary incontinence. Int J Clin Pharm 34: 86–95.
Aflakseir A (2012) Role of illness and medication perceptions on adherence to medication in a group of Iranian patients with type 2 diabetes. J Diabetes 4: 235–247.

Aikens JE, Fetter JD (2009) Diabetic Patients’ Medication Underuse, Illness Outcomes, and Beliefs About Antihyperglycemic and Antihypertensive Treatments. Diabetes Care 32: 19–24.

Aikens JE, Kleinman MS (2012) Changes in patients’ beliefs about their antidepressants during the acute phase of depression treatment. Gen Hosp Psychiatry 34: 221–226.

Barnes L, Moss-Morris R, Kaufusi M (2004) Illness beliefs and adherence in diabetes mellitus: a comparison between Tongan and European patients. New Zealand Medical Journal 117: 743.

Beck EM, Caveli M, Krivig S, Klein B, Vauht R (2011) Are we addressing the ‘right stuff’ to enhance adherence in schizophrenia? Understanding the role of insight and attitudes towards medication. Schizophr Res 132: 110–112.

Berglund E, Lyset P, Westerling R (2011) Adherence to and beliefs in lipid-lowering medical treatments: a structural equation modeling approach including the necessity-concern framework. Patient Educ Couns 89: 105–112.

Bhattacharya D, Easthall C, Willoughby KA, Small M, Watson S (2012) Capiezcibenzaldehyde: understanding of nature, and contributing factors. J Oncol Pharm Pract 18: 333–342.

Brown C, Battista DR, Brushmaker R, Sereika SS, Thase ME, et al. (2005) Beliefs about antidepressant medications in primary care patients: relationship to self-reported adherence. Medical Care 43: 1209–1217.

Butler JA, Peveler RC, Roderick P, Smith PW, Horne R, et al. (2004) Modifiable risk factors for non-adherence to immunosuppressants in renal transplant recipients. A cross sectional study. Nephrol Dial Transplant 19: 3144–3149.

Chisholm-Burns M, Pinky B, Parker G, Johnson P, Arcona S, et al. (2009) Factors related to immunosuppressant medication adherence in renal transplant recipients. Clin Transplant 26: 706–713.

Cooper V, Meyers JF, Fisher M, Reilly G, Ewan J, et al. (2011) Beliefs about antiretroviral therapy, treatment adherence and quality of life in a 48-week randomised study of continuation of zidovudine/lamivudine or switch to tenofovir DF/emtricitabine, each with efavirenz. AIDS Care 23: 703–713.

de Boer-van der Kolk DM, Speegveld MAG, Ede Mvd, Schreij G, Wolf-P, et al. (2008) Lower Perceived Necessity of HAART Predicts Lower Treatment Adherence and Worse Virological Response in the ATHENA Cohort. JAIDS Journal of Acquired Immune Deficiency Syndromes 49: 860–862.

De Las Cuevas C, Penate W, Sanz EJ (2013) Psychiatric outpatients’ self-reported adherence to psychotropic medications in primary care. Int J Clin Pharm 34: 618–625.

De Smedt RH, Jaarsma T, Ranchor AV, van der Meer K, Groenier KH, et al. (2012) Preliminary cross-sectional study. Eur Psychiatry 25: 216–219.

Hunot VM, Horne R, Leese MN, Churchill RC (2007) A Cohort Study of Adherence to Antidepressants in Primary Care: The Influence of Antidepressant Concerns and Treatment Preferences. The Primary Care Companion to The Journal of Clinical Psychiatry 9: 91–99.

Ihara N, Suzuki K, Kurosita Y, Morita S, Hori K (2010) Factorial invariance of a questionnaire assessing medication beliefs in Japanese non-adherent groups. Pharm World Sci 32: 432–439.

Jo´nsdo´ttir H, Friis S, Hansen P, Petersen KL, Reikvam A˚, et al. (2009) Beliefs about medications: measurement and relationship to adherence in patients with severe mental disorders. Acta Psychiatr Scandinavica 119: 78–84.

Kemp S, Freey M, Hay A, Wild H, Cooper C (2007) Psychological factors and use of antiepileptic drugs: pilot work using an objective measure of adherence. Psychology, Health & Medicine 12: 107–113.

Khandheria U, Tomsen KA, Eriksson SR, Vlasnik J, Prager RL, et al. (2008) Medication adherence following coronary artery bypass graft surgery: assessment of beliefs and attitudes. Annals of Pharmacotherapy 42: 192–199.

Kresin NR, Omer MB, Manze M, Glickman ME, Belowsitz D (2010) Understanding contributors to racial disparities in blood pressure control. Circ Cardiovasc Qual Outcomes 3: 178–180.

Kronish I, Diefenbach M, Edmondson D, Phillips LA, Fri K, et al. (2013) Key Barriers to Medication Adherence in Survivors of Strokes and Transient Ischemic Attacks. Journal of General Internal Medicine 28: 673–682.

Krug M, Koschlacew HE, Painter L, Honeyman V, Broadbent E (2012) Immunosuppressant nonadherence in heart, liver, and lung transplant patients: associations with medication beliefs and illness perceptions. Transplantation 95: 958–963.

Maguire IK, Hughes CM, McNally J, 2008 Exploring the impact of depressive symptoms and medication beliefs on medication adherence in hyperension–A primary care study. Patient Education and Counseling 73: 371–377.

Mahler C, Hermann K, Horne R, Jank S, Haeleli VE, et al. (2012) Patients’ beliefs about medicines in a primary care setting in Germany. J Eval Clin Pract 18: 409–413.

Manchell TG, Bouvy ML, Bracke M, Kaptein AA, Leufkens HG, et al. (2008) Beliefs about medicines predict refill adherence to inhaled corticosteroids. Journal of Psychosomatic Research 64: 47–54.

Moshkova T, Stone M, Baker R, Smith R, Clarry T, et al. (2009) An investigation of medication adherence to lamivudine/zidovudine therapy in patients with ulcerative colitis. Gut 58: A43–A44.

Nakhtina L, Gonzalez JS, Margolis SA, Spada A, Grant A (2011) Adherence to antiepileptic drugs and beliefs about medication among predominantly ethnic minority patients with epilepsy. Epilepsia Behav 20: 843–849.

Neame R, Hammond A (2005) Beliefs about medications: a questionnaire survey of people with rheumatoid arthritis.[see comment]. Rheumatology 44: 762–767.

Niclas LB, Dunbar M, Wild M (2010) Adherence to pharmacological treatment of non-malignant chronic pain: the role of illness perceptions and medication beliefs. Psychol Health 25: 601–615.

O’Carroll RE, McGregor LM, Swanston V, Masterton G, Hayes PC (2006) Adherence to medication after liver transplantation in Scotland: a pilot study. Liver Transplantation 12: 1862–1867.

Percival M, Cotrell WN, Jayasinghe R (2012) Exploring the beliefs of heart failure patients towards their heart failure medicines and self care activities. Int J Clin Pharm 34: 619–625.
217. Peters KF, Horne R, Kong F, Francomano CA, Biesecker BB (2001) Living with Marfan syndrome II. Medication adherence and physical activity modification. Clinical Genetics 60: 283–292.

218. Phatak HM, Thomas J 3rd (2006) Relationships between beliefs about medications and nonadherence to prescribed chronic medications. Annals of Pharmacotherapy 40: 1737–1742.

219. Rees G, Leong O, Crowston JG, Lamoureux EL (2010) Intentional and unintentional nonadherence to ocular hypotensive treatment in patients with glaucoma. Ophthalmology 117: 903–908.

220. Rees G, Cheung XL, Cheung CY, Aung T, Friedman DS, et al. (2015) Beliefs and Adherence to Glaucoma Treatment: A Comparison of Patients From Diverse Cultures. J Glaucoma. doi: 10.1097/IJG.0b013e3182741f1c.

221. Reynolds K, Viswanathan HN, O’Malley CD, Munner P, Harrison TN, et al. (2012) Psychometric properties of the Osteoporosis-specific Morisky Medication Adherence Scale in postmenopausal women with osteoporosis newly treated with bisphosphonates. Ann Pharmacother 46: 659–670.

222. Ruppert TM, Dobbels F, De Geest S (2012) Medication beliefs and antihypertensive adherence among older adults: a pilot study. Geriatr Nurs 33: 89–93.

223. Russell J, Kazantzis N (2008) Medication beliefs and adherence to antidepressants in primary care. The New Zealand medical journal 121: 14–20.

224. Schoenthaler AM, Schwartz BS, Wood C, Stewart WF (2012) Patient and physician factors associated with adherence to diabetes medications. Diabetes Edu 38: 397–408.

225. Schuz B, Marx C, Wurm S, Warner LM, Ziegelmann JP, et al. (2011) Medication beliefs predict medication adherence in older adults with multiple illnesses. J Psychosom Res 70: 179–187.

226. Shayanbola OO, Nelson J (2011) Illness perceptions, beliefs in medicine and medication non-adherence among South Dakota minority women with diabetes: a pilot study. S D Med 64: 363–368.

227. Sirer JJA, Greenfield A, Weinberger MI, Bruce ML, et al. (2013) Medication beliefs and self-reported adherence among community-dwelling older adults. Clin Ther 35: 153–160.

228. Sofianou A, Martynenko M, Wolf MS, Winnovsky JP, Krauskopf K, et al. (2015) Asthma beliefs are associated with medication adherence in older asthmatics. J Gen Intern Med 29: 67–73.

229. Tihaldi G, Clatworthy J, Torchio E, Argentero P, Munizza C, et al. (2009) The utility of the Necessity–Concerns Framework in explaining treatment non-adherence in four chronic illness groups in Italy. Chronic Illness 5: 129–133.

230. Tyharne GJ, Lyons AG, Kitas GD (2004) Medication adherence in rheumatoid arthritis: effects of psychosocial factors. Psychology, Health and Medicine 13: 337–349.

231. Uusiku A, Laisaar K-T, Raag M, Šmihl J, Semjonova S, et al. (2012) Antiretroviral therapy (ART) adherence and correlates to nonadherence among people on ART in Estonia. AIDS Care 24: 1470–1479.

232. van den Bemt BJF, van den Hoogen HHJ, Benraad B, Helster YA, van Riel PLCM, et al. (2009) Adherence Rates and Associations with Nonadherence in Patients with Rheumatoid Arthritis Using Disease Modifying Antirheumatic Drugs. The Journal of Rheumatology 36: 2164–2170.

233. Voils CI, Maciejewski ML, Holve RH, Reeve BB, Gallagher P, et al. (2012) Initial validation of a self-report measure of the extent of and reasons for medication nonadherence. Med Care 50: 1013–1019.

234. Wåleman V, Chilcot J, Norton S, Hughes L, Wessled D, et al. (2011) Choosing not to take phosphate binders: the role of dialysis patients’ medication beliefs. Nephron Clin Pract 119: c205–213.

235. Wong M, Muirhead D (2007) The influence of medication beliefs and other psychosocial factors on early discontinuation of disease-modifying anti-rheumatic drugs. Musculoskeletal Care 5: 148–159.

236. Yu ZL, Yeoh LY, Seow YY, Luo XC, Griva K (2012) Evaluation of adherence and depression among patients on peritoneal dialysis. Singapore Med J 53: 474–480.

237. Zerah L, Arena C, Morin AS, Blanchon T, Cabane J, et al. (2012) [Patients’ beliefs about long-term glucocorticoid therapy and their association to treatment adherence]. Rev Med Internne 33: 300–304.