Analysis of kinetoplast cytochrome b gene of 16 Leishmania isolates from different foci of China: different species of Leishmania in China and their phylogenetic inference

Bin-Bin Yang1,2, Da-Li Chen2, Jian-Ping Chen2,3*, Lin Liao2, Xiao-Su Hu2 and Jia-Nan Xu2

Abstract

Background: Leishmania species belong to the family Trypanosomatidae and cause leishmaniasis, a geographically widespread disease that infects humans and other vertebrates. This disease remains endemic in China. Due to the large geographic area and complex ecological environment, the taxonomic position and phylogenetic relationship of Chinese Leishmania isolates remain uncertain. A recent internal transcribed spacer 1 and cytochrome oxidase II phylogeny of Chinese Leishmania isolates has challenged some aspects of their traditional taxonomy as well as cladistics hypotheses of their phylogeny. The current study was designed to provide further disease background and sequence analysis.

Methods: We systematically analyzed 50 cytochrome b (cyt b) gene sequences of 19 isolates (16 from China, 3 from other countries) sequenced after polymerase chain reaction (PCR) using a special primer for cyt b as well as 31 sequences downloaded from GenBank. After alignment, the data were analyzed using the maximum parsimony, Bayesian and network methods.

Results: Sequences of six haplotypes representing 10 Chinese isolates formed a monophyletic group and clustered with Leishmania tarentolae. The isolates GS1, GS7, XJ771 of this study from China clustered with other isolates of Leishmania donovani complex. The isolate JS1 was a sister to Leishmania tropica, which represented an L. tropica complex instead of clustering with L. donovani complex or with the other 10 Chinese isolates. The isolates KXG-2 and GS-GER20 formed a monophyletic group with Leishmania turanica from central Asia. In the different phylogenetic trees, all of the Chinese isolates occurred in at least four groups regardless of geographic distribution.

Conclusions: The undescribed Leishmania species of China, which are clearly causative agents of canine leishmaniasis and human visceral leishmaniasis and are related to Sauroleishmania, may have evolved from a common ancestral parasite that came from the Americas and may have split off earlier than the other old world Leishmania. Our results also suggest the following: the isolates GS7, GS1 and XJ771 occur as part of the L. donovani complex; the JS1 isolate is L. tropica; and the isolate GS-GER20 identified as Leishmania gerbilli is close to KXG-2 which is L. turanica.

Keywords: Leishmania, Phylogeny, cyt b, China, Sauroleishmania
Background

The leishmaniases are a group of vector borne diseases that are caused by flagellate of the genus *Leishmania*, which is transmitted by the bite of the sandfly, and affect as many as 12 million people worldwide with 1.5–2 million new cases each year in 88 countries [1]. The genus *Leishmania* consists of nearly 30 species of morphologically similar kinetoplastid protozoa, and approximately 20 of these species are responsible for a spectrum of human diseases that ranges from mild to fatal infections [2,3].

It is well accepted now that the genus *Leishmania* forms a monophyletic group with three distinct subgenera *Leishmania* (Leishmania), *Leishmania* (Viannia), and *Leishmania* (Sauroleishmania) [4]. Once, the *Leishmania*-like parasites of reptiles were recognized as a separate genus *L.* (Sauroleishmania) [5,6]. But the classification of lizard *Leishmania* as subgenus *L.* (Sauroleishmania) was proposed by Saf’janova [7], Croan *et al.* [8], Orlando *et al.* [9], Zelazny *et al.* [10] and Fraga *et al.* [4] on the basis of biological criteria and analysis of different *Leishmania* gene. According to the absolute chromosomal size difference index (aCSDI) analysis of as many as 31 “conserved” chromosomes, subgenus *L.* (Leishmania) is divided into clusters: (1) Old world representatives of subgenus *Leishmania* (OWL), and (2) New world representatives of subgenus *Leishmania* (NWL) and subgenus *Viannia* (NWV) [6].

The complexity of the taxonomy and phylogenetic relationships of the Chinese *Leishmania* was due to the extensive geographic area and complex ecological environment. Identification of species responsible for different leishmaniiasis and clinical manifestation remains uncertain. The strains from cutaneous leishmaniiasis (CL) in Xinjiang Uygur Autonomous Region (Xinjiang) especially in Karamay is closely related to *L.* tropica with analysis of SSU rDNA gene[11,12], whereas the pathogen identified as *Leishmania infantum* [13,14] or *Leishmania turanica* [15] from the same geographic region Karamay also could cause CL. However, *L.* turanica is nonpathogenic to humans, according to Strelkova *et al.* [16]. The parasites of some visceral leishmaniiasis (VL) cases in Sichuan and Gansu provinces were *L. donovani* or undescribed species *Leishmania* sp. [17–19]. VL and CL have been reported in China to date the species of *Leishmania* comprises much more than that. The isolates in China were more heterogeneous than previously thought, requiring the reassignment of some isolates into different groups as described by Lu *et al.* [20].

Over the past few decades, DNA markers including coding and non-coding genes have become additional information for advancing our understanding of evolutionary and phylogenetic relationships and species differentiation. Data pertaining to the ribosomal RNA (rRNA) gene sequences—in particular, the two non-coding, highly variable internal transcribed spacer regions (ITS1 and ITS2) are considered to be acceptable molecular criteria for resolving taxonomic questions and determining the phylogenetic affinities among closely related *Leishmania* species [17,21–25]. While coding genes are also wildly used for taxonomic studies, such as metabolic enzymes (ICD, ME, MPI, G6PDH, ASAT, GPI, NH1, NH2, PGD and FH) [26,27], heat-shock protein 70 gene (hsp70) [4], cytochrome oxidase II (CO II) [28], the gene encoding the largest subunit of RNA polymerase II (rpoII) [68], the glycoprotein 63 gene (gp63) [29], cysteine protease B genes (cpb) [30] and cytochrome b (cyt b) [31–35].

In previous ITS1 and CO II study [17,19], we summarized the four endemic *Leishmania* species in China: *L. donovani*, *L. infantum*, *Leishmania gerbilli*, and *L. turanica*. We also noted that there might be an undescribed *Leishmania* species endemic in China and highlighted that the isolate IPHL/CN/77/XJ771 from Bachu County, Xinjiang, is *L. donovani* instead of *L. infantum*. To elucidate the phylogeny, evolution and epidemiology of interesting group of strains in China, further studies of more genes are required.

Cyt b is one of the cytochromes involved in the electron transport process of the mitochondrial respiratory chain is considered one of the most useful genes for phylogenetic work [34]. Marco *et al.* proved that the cyt b gene sequencing can precisely identify the *Leishmania* spp. for all of the local stocks that are well characterized by multi-locus enzyme electrophoresis (MLEE), the current gold standard [32]. Phylogeny and sequence variation of the genus *Leishmania* has also been discussed successfully with cyt b sequencing [34,35]. In this paper, the cyt b gene of *Leishmania* from China was sequenced and analyzed using bioinformatics methods. Moreover, the phylogenetic relationships were reconstructed using cyt b sequences obtained by this study and download from the GenBank database. We then discuss in detail the implications of relationships between strains in China and other locations.

Methods

Leishmania isolates

A population of cloned promastigotes (including 16 Chinese *Leishmania* isolates and three isolates from other countries) was stored in liquid nitrogen, and kept at the Department of Parasitology, Western China School of Preclinical and Forensic Medicine, Sichuan University. All of the *Leishmania* isolates used in this study are listed in Table 1. The promastigotes were cultivated in medium 199 supplemented with 15% heat-inactivated fetal bovine serum (HIFBS) at 28°C. Approximately 1–5 × 10⁸ promastigotes were collected at room temperature by centrifugation at 3300 × g for 10 min and washed with phosphate-buffered saline.
Sequence length (bp)	GenBank accession numbers	Leishmania strain	MLEE-based species assignment	WHO code	Origin	Reference
1079	HQ908255	Leishmania sp.	MHOM/CN/84/SD1	Shandong, China	This study	
1078	HQ908260	Leishmania sp.	MHOM/CN/90/SC10H2	Sichuan, China	This study	
1079	HQ908263	Leishmania sp.	MHOM/CN/89/G56	Gansu, China	This study	
1079	HQ908264	Leishmania sp.	MHOM/CN/86/SC6	Sichuan, China	This study	
1080	HQ908271	Leishmania sp.	MHOM/CN/84/GS3	Gansu, China	This study	
1080	HQ908273	Leishmania sp.	MHOM/CN/83/GS2	Gansu, China	This study	
1079	HQ908266	Leishmania sp.	MHOM/CN/80/XII801	Xinjiang, China	This study	
1079	HQ908272	Leishmania sp.	MHOM/CN/90/SC11	Sichuan, China	This study	
979	HQ908263	Leishmania sp.	MCAN/CN/86/SC9	Sichuan, China	This study	
1079	HQ908267	Leishmania sp.	MHOM/CN/80/XII801	Xinjiang, China	This study	
1080	HQ908259	L. gerbilli	MG1R5/CN/60/GS-GER20	Gansu, China	This study	
1080	HQ908256	L. tenuica	MRHO/CN/88/KX2	Karamay, China	This study	
1079	HQ908262	L. donovani complex	MCAN/CN/60/GS1	Gansu, China	This study	
1079	HQ908267	L. donovani complex	MHOM/CN/93/GS7	Gansu, China	This study	
1079	HQ908267	L. donovani complex	IPHL/CN/77.XJ71	Xinjiang, China	This study	
1060	HQ908265	L. tropica	MHOM/CN/84/J51	China	This study	
1080	HQ908270	L. tropica	MHOM/SU/74/K27	Soviet Union	This study	
1080	HQ908259	L. tropica	-	-	This study	
1080	AB095960	L. donovani	MHOM/58/Strain OD	Soviet Union	Luyo-Acero et al., 2004 [35]	
1079	AB095965	L. garnhami	MHOM/VE/76/JAP78	Venezuela	Luyo-Acero et al., 2004 [35]	
1078	HQ908258	L. mexicana	-	-	This study	
1079	AB095957	L. donovani	MHOM/5/62/25-25M-C2	Sudan	Luyo-Acero et al., 2004 [35]	
1079	AB095958	L. infantum	MHOM/TN/80/8P1	Tunisia	Luyo-Acero et al., 2004 [35]	
1080	AB095959	L. chagasi	MHOM/BR/74/PP75	Brazil	Luyo-Acero et al., 2004 [35]	
872	EF579896	L. donovani	MHOM/IN/80/DD8	India	Foutel et al., 2007 [33]	
1079	AB434677	L. archibaldi	MHOM/ET/72/GE8RE1	Ethiopia	Asato et al., 2009 [34]	
872	EF579897	L. chagasi	MHOM/BR/74/PP75a	Brazil	Foutel et al., 2007 [33]	
872	EF579913	L. infantum	MCAN/GR/94/CRE69	Greece	Foutel et al., 2007 [33]	
1080	AB095962	L. aethiopica	MHOM/ET/72/L100	Ethiopia	Luyo-Acero et al., 2004 [35]	
872	EF579908	L. aethiopica	MHOM/ET/72/L100	Ethiopia	Foutel et al., 2007 [33]	
1080	AB095970	L. major	MHOM/EC/88/PT-115	Ecuador	Luyo-Acero et al., 2004 [35]	
1080	AB434675	L. tenuica	MRHO/SU/80/CLONE3720	Soviet Union	Asato et al., 2009 [34]	
1080	AB434674	L. arabica	MPSA/SA/83/JISHH220	Saudi Arabia	Asato et al., 2009 [34]	
1104	M97357	L. mexicana	-	-	Lee et al., 1992 [36]	
1089	M92829	L. mexicana	-	-	Lee et al., 1992 [36]	
1078	AB095964	L. amazonensis	MHOM/BR/73/M2269	Brazil	Luyo-Acero et al., 2004 [35]	
1079	AB095963	L. mexicana	MHOM/BR/73/M2269	Brazil	Luyo-Acero et al., 2004 [35]	
872	EF579909	L. amazonensis	LMAMPRO/BR/72/M1841	Brazil	Foutel et al., 2007 [33]	
872	EF579902	L. amazonensis	MHOM/BR/73/M2269	Brazil	Foutel et al., 2007 [33]	
1078	AB434678	L. aristidesi	MORY/PA/69/GML	Panama	Asato et al., 2009 [34]	
1078	M10126	L. tarentolae	-	-	de la Cruz et al., 1984 [37]	
1078	AB095966	L. braziliensis	MHOM/BR/75/M2904	Brazil	Luyo-Acero et al., 2004 [35]	
1078	AB434682	L. braziliensis	MHOM/BR/75/M2903	Brazil	Asato et al., 2009 [34]	
Table 1 List of Leishmania strains, origin, and database accession numbers, including sequences of Leishmania retrieved from GenBank (Continued)

Accession	Prefix	Species	Host	Country
1078	ABO95967	L. braziliensis	MHOM/EC/88/INH-03	Ecuador
872	EF579905b	L. guyanensis	MHOM/GF/79/LEM85	French Guiana
872	EF579912b	L. guyanensis	MHOM/BR/75/M4147	Brazil
1078	ABO95968	L. panamensis	MHOM/BR/71/L594	Brazil
1078	AB434680	L. shawi	MHOM/BR/79/M15065	Brazil
1080	AB434686	L. equatoriensis	MCOH/EC/82/LSP-1	Ecuador
1078	M94286	Trypanosoma brucei	-	Feagin et al., 1987

a, b, c, d, e, f, g, and h shared the same haplotype.

DNA extraction and polymerase chain reaction (PCR)

Total genomic DNA of the parasite was extracted by proteinase K digestion and phenol/chloroform/isoamyl alcohol extraction procedures followed by ethanol precipitation to purify the extracted DNA as described by Sambrook and Russell [39]. PCR was performed to generate a fragment spanning cyt b kinetoplast DNA (kDNA) between the forward primer COIIIF (5′-TAAT ACGACCTCAGATTTTATAGTACATTTTGTWG ATT-3′) and the reverse primer MURF4R (5′- GGGTTT TCCCAG TCAGCAGAATCTCTCTCTCCCTT –3′) [35]. The PCR protocols for amplification were: 94°C for 3 min followed by 35 cycles of 94°C for 30s, 58°C for 30s, and 72°C for 1.5 min, followed by a final elongation step at 72°C for 10 min. The amplified products were purified on a 2.0% agarose gel stained with ethidium bromide, using a commercial DNA purification kit according to the manufacturer's protocol. The purified PCR product was then sequenced. The DNA sequences of each individual and each species were deposited in the GenBank database under accession numbers (HQ908255-HQ908273).

Sequence alignment and analyses

A set of cyt b sequences of Leishmania were retrieved from GenBank, including 29 sequences of genus Leishmania (AB095957—AB095960, AB095962—AB095968, AB095970, EF579896—EF579897, EF579902, EF579905, EF579908, EF579909, EF579912, EF579913, AB434674, AB434675, AB434677, AB434678, AB434680, AB434682, M97357, M92829, M10126), Leishmania equatoriensis (AB434686) and Trypanosoma brucei (M94286) (Table 1). The sequences were first aligned using Clustal X 1.83 [40] with a gap-opening penalty of 5 and gap-extension penalty of 1 following the small gap costs recommendation of Hickson et al. [41]. The aligned matrix from this procedure was verified to have the same length, and minor adjustments were then made manually using SeaView v.4.2.5 [42]. The data matrices are available from the corresponding author. The haplotype analyses were performed to 37 sequences using DAMBE software for 50 sequences [43]. Compositional heterogeneity was evaluated using chi-square (χ²) tests implemented in PAUP* 4.0b10 [44]. Distances from the predicted amino acid sequences were determined with the p-distance model which was computed by MEGA v. 4.1 [45].

Phylogenetic analyses

Phylogenetic hypotheses of Leishmania were generated with cyt b kDNA segments using two types of commonly applied phylogenetic techniques: heuristic searches using maximum parsimony (MP) analyses performed with the program PAUP* program and Bayesian inference (BI) using the MrBayes v.3.2 program [46]. In both MP and BI analyses, gaps were treated as missing data. For heuristic searches under parsimony, invariant characters were removed from the dataset. Each search involved 10 random additional replicates, one tree held at each step, with tree bisection and reconnectin branch swapping, steepest descent on, and a maximum of 10,000 saved trees. Non-parametric bootstrapping was used to generate phylogeny confidence values [47], with 1,000 pseudoreplicates using a heuristic tree search for each pseudoreplicate. Trypanosoma brucei (M94286) was used to root the trees.

Prior to Bayesian analyses, the best-fit model of evolution, TIM3 + G, was selected using jModeltest v. 0.1.1 [48] under the Bayesian information criterion [49], following recent recommendations [50]. We estimated the posterior probability distributions by allowing four incrementally heated Markov chains (default heating values) to proceed to four million generations, and with samples were taken every 200 generations. Analyses were repeated beginning with different starting trees to ensure that the analyses were not restricted from the global optimum [51]. Convergence was first tested by examining the average deviation of the split frequencies of the two runs, in order to determine whether the two runs had converged. MCMC convergence was also explored by examining the potential scale reduction factor (PSRF) convergence diagnostics for all model parameters (provided by the sump and sumt commands). The first one million generations before this chain became stationary were discarded, and the remaining samples from the independent runs were
pooled to obtain the final approximation of the posterior tree distribution.

Sequence alignments were additionally inferred from uncorrected p-distances through NJ networks (Neighbor Net) obtained by SplitsTree 4 [52,53]. This software can detect the alternative evolutionary paths supported by the sequence alignments, and as such, they do not enforce the single bifurcating dendrogram. To yield a single phylogeny hypothesis, the posterior distribution was summarized as a 50% majority rule consensus.

Results

Base composition and nucleotide substitution patterns

The size of the newly determined cyt b fragments is shown in the Table 1. Of the 911 aligned characters, 324 were variable, including 225 that were parsimony-informative. Percentage base compositions were as follows: A, 27.8; C, 7.2; G, 15.6; and T, 50.4. The average maximum likelihood estimated Ti/Tv ratio was 1.2.

A base stationarity test showed insignificant differences among the taxa in base composition bias in the data ($\chi^2 = 85.386150$, df = 108, p = 0.94687017). The p-distances among the 10 isolates (10 isolates, SD1, SC10H2, GS6, SC6, GS3, GS2, XJ801, SC11, SC9, GS5; the isolates SD1, SC10H1, GS6, SC6 and GS3 share the same sequence) in China were ranged from 0.000 to 0.023 (mean = 0.010), which are smaller than the distances between these isolate and any other known species. The average distance in this group as a whole is 0.006. The p-distances among all species except Leishmania sp. and T. brucei were from 0.002 (between L. turanica and L. gerbilli) to 0.136 (between Leishmania arabica and L. equatorensis). Most pairwise comparisons mentioned above had divergence values < 0.136, with an average of 0.106 (Table 2).

Phylogenetic relationships

The heuristic search of the cyt b matrix resulted in 10,000 equally parsimonious trees of 15519 steps with high CI (0.6112) and RI (0.8427) values. In the strict consensus phylogram (Figure 1), three clades (BP = 88%) were formed. Leishmania sp., L. tarentolae and L. braziliensis complex form a clade (BP = 68%); six haplotypes in China formed a strongly cluster Leishmania sp. (BP = 88%), and clustered with with L. tarentolae (BP = 99%); and next joined by the L. braziliensis complex (BP = 99%) containing three haplotypes of L. braziliensis, L. guyanensis, L. panamensis and L. shawi. The OWL clade (BP = 86%) clustered with the following OWL species: L. donovani, L. major, L. tropica, L. arabica, L. turanica and L. gerbilli. Leishmania chagasi (with the synonymous L. infantum), L. donovani, Leishmania archibaldi (with the synonymous L. donovani) [54], L. infantum, and the isolates GS7, GS1 and XJ771 of this study from China formed a monophyletic clade L. donovani complex. The strain JS1 from Jiangsu province of China clustered with L. tropica from the Soviet Union (BP = 100%)

Table 2 Pairwise genetic distances for cyt b segments among Leishmania species

	1	2	3	4	5	6	7	8	9	10	11	
1	Leishmania sp.	-										
2	L. tarentolae	0.051	-									
3	L. braziliensis complex	0.095	0.095	-								
4	L. mexicana complex	0.104	0.106	0.107	-							
5	L. donovani complex	0.110	0.113	0.102	0.095	-						
6	L. turanica	0.131	0.131	0.122	0.107	0.092	-					
7	L. gerbilli	0.131	0.131	0.123	0.107	0.093	0.002	-				
8	L. arabica	0.130	0.130	0.124	0.106	0.101	0.085	0.085	-			
9	L. tropica complex	0.116	0.119	0.113	0.095	0.081	0.088	0.088	0.095	-		
10	L. equatorensis	0.126	0.128	0.119	0.112	0.120	0.126	0.127	0.136	0.125	-	
11	Trypanosoma brucei	0.177	0.176	0.150	0.158	0.158	0.183	0.183	0.185	0.176	0.155	-

Pairwise genetic distances between different groups are detected by MEGA4.
and then clustered with *L. aethiopica* (BP = 100%), which formed the *L. tropica* complex except *L. major* (BP = 89%). *L. turanica* from the Soviet Union clustered with strains GS-GER20 and KXG-2 (BP = 63%) in China from this study clustered together (BP = 100%), which next joined by *L. arabica* (BP = 94%) and *L. major* (BP = 54%). The clade NWL (BP = 100%) is clustered with *L. mexicana*, *L. garnhami*, and *Leishmania aristides*. Information about the strains is shown in Table 1.

For the BI analyses, the likelihood value of the 50% majority consensus tree (Figure 2) was ln L = −4132.1156, while the average PSRF was 1.001. The topology of the BI tree is a little different from that of MP tree. Two robust cladles were formed. In one robust clade (PP = 0.95), *Leishmania* sp. (PP = 0.99) was a sister of *L. tarentolae* (PP = 1.00) and forms one clade with the species of *L. (Leishmania)* (LL), the other clade was consis of the species of *L. (Viannia)* (LV) (PP = 1.00) (see Figure 3). The group of *Leishmania* sp. and *L. tarentolae* was basal to subgenus *Leishmania* and *L. equatorensis*. *L. mexicana*, *L. garnhami*, *L. amazonensis*, and *L. aristides* formed the *L. mexicana* complex (PP = 1.00). The *L. mexicana* and *L. equatorensis* are fundamental to all remaining subgenus *Leishmania* species. Within the other members of subgenus *Leishmania*, the *L. donovani* complex is sister to the clade (PP = 1.00) that clustered with *L. tropica* (PP = 1.00) plus *L. aethiopica* (PP = 1.00), and the clade (PP = 0.97) that consists of *L. turanica*, *L. gerbilli* and *L. arabica*, next joined by *L. major* (PP = 1.00).

In addition to the common phylogenetic relationships among the different species shown by the MP tree and BI tree, the network (Figure 3) calculated by SplitsTree 4 also indicated a clear evolutionary path with a high value. *Leishmania* sp. and *L. tarentolae* share most of their evolutionary paths.
Discussion

As a part of worldwide *Leishmania* population, the phylogenetics of Chinese isolates with analysis of the cyt b genetic sequences of 16 *Leishmania* isolates was discussed in this paper which demonstrated similarities and differences compared with previous data [17,19] and keep the genus evolutionary unity and integrity over large geographic ranges and time periods.

Leishmania sp. of China

Most interestingly, 10 Chinese strains, representing 6 closely related haplotypes, could not be assigned to any of the so far described species of *Leishmania*, a finding that is congruent with our earlier ITS1 and COII studies [17,19]. These *Leishmania* sp. isolates were most closely related to the lizard-infecting *L. tarentolae* (Figures 1, 2, 3).

It was reported that one of these isolates SC6 was collected from patients with VL in Nanping County of Sichuan Province, was infected successfully 8 dogs (8/12) and its amastigotes were detected in their bone marrow smears [55]. Another isolate SC10H2 was proved that it clustered with the pathogen of canine leishmaniasis in Beichuan County, Sichuan Province, China based on the 17S RNA gene [18]. The non-pathogenic to humans *L. tarentolae* has been classified as subgenus *L. (Sauroleishmania)* on the basis of biological criteria and different genes [4,8,10,34]. In such cases, we can conclude that the undescribed *Leishmania* species which is clearly a causative agent of canine leishmaniasis and human VL do exist in China are related to the *Sauroleishmania*. However, the more lizard parasites are required to confirm whether *Leishmania* sp. is assigned to the *Sauroleishmania*.

The pairwise genetic distance analysis (Table 2) and phylogenetic network (Figure 3) suggest that the cyt b sequences of the Chinese/tarentolae group (*Leishmania* sp. and *L. tarentolae*) are closer to the *Viannia* clade than the older world *Leishmania*. This finding is in contrast to that of our ITS1 study [17] and other studies: as an OWL species branching from within New World taxa, *L. tarentolae* (*Sauroleishmania*) are closer to the *Leishmania* subgenus than to the *Viannia* subgenus based on different DNA marks (polA and RNA polymerase II, 7SL RNA, hsp 70) [4,8,10]. It is well known that different genes can have different evolutionary histories and be influenced by selection and horizontal gene transfer, and the phylogenies are also prone to sampling bias; therefore, more genes of diverse geographic original strains would be needed to elucidate the phylogeny, evolution, and epidemiology of the Chinese/tarentolae group.

The isolates of *Leishmania* sp. were collected from different foci (plain, desert and hill), and the longest...
distance between isolates is more than 2000 miles (from Shandong to the Xinjiang) (Figure 4). Meanwhile, different species were found in the same area. The isolate XJ801 of Leishmania sp. is from Kashi city of Xinjiang. The isolate 801 identified as L. donovani based on ITS1 sequences by Wang et al. [16] and Yang et al. [17] is also from Kashi city. Another two isolates MHOM/CN/76/BT013 and MHOM/CN/81/812 which is differs from L. donovani (PHON/CN/77/771), L. turanica (MRHO/CN/88/KXG-2) and L. gerbilli (MRHO/CN/62/1) based on polymorphisms in both kinetoplast (kDNA) and nuclear (nDNA) DNAs that also collected from the same area.

Figure 3: The phylogenetic network of the Leishmania cyt b sequences shown in Table 1 and Figures 1, 2 was built with 1000 bootstrap replicates. It was algorithm, excluding all conserved site. Distances were calculated using the Kimura 2-parameter distance. Trypanosoma brucei (M94286) is the outgroup. Each A-F panel is drawn to the scale indicated and expressed as dissimilarity per nucleotide counted over variable sites (Figures 1–2) in cyt b alignment. The dots indicate the sequence position in the network. A: Complete network with representation of the five groups shown in detail in the remaining panels; the whole network excluding the L. equatorensis and T. brucei is divided into four segments: OWL, NWL, the Leishmania sp. and L. tarentolae group, and NWV. B: The L. donovani complex includes three Chinese isolates. C: Includes the species L. tropica, L. aethiopica, L. major, L. turanica, L. gerbilli, and L. arabica. D: The New World Leishmania subgenus. E: The Leishmania sp. of this study. F: The L. (Viannia) subgenus. Strain information is shown in Table 1.
Kashi [20]. As such, the *Leishmania* isolates in China were more heterogeneous, further epidemiologic survey and more strains are required in Kashi.

L. donovani complex of China

Analysis in the current study revealed that the cyt *b* sequences of GS1, GS7 and XJ771 clustered with other species of *L. donovani* complex (PP = 1.00). On the basis of MLEE of the representative isolates from the plain, hill, and desert regions of China, Xu *et al.* were first to identify the causative agents responsible of VL as *Leishmania donovani sensu lato* and *L. infantum* [56]. The results based on sequences of cyt *b*, ITS1 [17] and COII [19] sequences clearly proved the existence of *L. donovani* in China. However, *L. donovani* or *L. infantum* standard isolates cannot be distinguished from *L. donovani* complex isolate using the cyt *b* gene in the BI and MP trees. These findings aren’t consistent the ITS1 study showing three isolates clustered with *L. donovani* and a clear classification within subspecies between *Leishmania donovani donovani* and *Leishmania donovani infantum*. Therefore, the inter-specific variation of the ribosomal RNA gene ITS1 was inferred to be more suitable than mtDNA segment cyt *b* for studying the phylogenetic relationships among subspecies. Of course, we can’t exclude the possibility that the different interspecific variation between ITS1 and cyt *b* are calculated by choosing the different samples or numbers of the isolates or strains.

L. turanica of China

Our cyt *b* data demonstrate that the isolates KXG-2 and GS-GER20 clustered with *L. turanica* (AB434675) from central Asia, findings that are congruent with those of our earlier studies [17,19] and then clustered with *L. arabica* from western Asia, a finding that agrees with that of Asato *et al.* [34] (Figures 1, 2, 3). The definitive hosts of *L. gerbilli*, *L. turanica*, *L. arabica* are rodents of the Old World [57]. Using MLEE methods, the isolate KXG-2 was identified as *L. turanica* [16], and the isolate GS-GER20 was
identified as *L. gerbilli* [58]. In the 1990s, *L. turanica* and *L. gerbilli* were identified in rodents or sandflies in Karakum, Xinjiang and *L. turanica* was proved to be pathogenic in both monkeys and humans in the laboratory, *Phlebotomus mongolensis* and *Phlebotomus andrejevi* were its major vectors [16]. We considered the isolates KXG-2 and GS-GER20 to be *L. turanica* and *L. gerbilli*, respectively via the cyt *b* gene sequences.

L. tropica of China

The species of the *L. tropica* complex cause the urban form of Old World CL. In Iran, Iraq, and India, it is transmitted by *Phlebotomus papatasi*. This species is rarely reported in China. The fact that the isolate JS1 was collected from Jiangsu Province clustered with *L. tropica*, which agrees with the results of our earlier study based on the COII gene [19]. Lu *et al.* used random amplified polymorphic DNA data to suggest a close relationship between the isolate JS1 and *L. tropica* (K27) [59]. Thus, we infer that the isolate JS1 may be *L. tropica*. However to further confirm this inference, more data such as host specificity, life cycle, and biochemical analysis will be needed.

Evolution inference and epidemiology of China

In our analysis, *Leishmania* cyt *b* sequences are consistent with the genus *Leishmania* that contains three subgenera: *Leishmania*, *Sauroleishmania* and *Viannia* [4]. Based on the suggestion that mammalian *Leishmania* did not evolve from those of lizards but vice versa [60, 61], Lukes *et al.* [54] proposed that the ancestor of the new world *Leishmania* evolved in South America and then migrated via the Bering land bridge to Asia via multiple independent genetic loci. The *Leishmania* lineage would have been dispersed throughout central and/or Southeast Asia, where a major diversification gave rise to *L. aethiopica*, *L. major*, *L. gerbilli*, *L. turanica*, *L. tropica*, and the *L. donovani* complex. The isolates from China were absent in this analysis. However Fraga *et al.* thought this theory puts *L. tarentolae* (Sauroleishmania) in an illogical position. Our data suggest that *Leishmania* sp. of the pathogen of VL and CanL clustering with *L. tarentolae* (Sauroleishmania) was in the same “illogical position”. The maximum parsimony consensus tree (Figure 1) and splitstree (Figure 3) supports the idea of a common origin with the *Viannias* subgenus, whereas the Bayesian tree (Figure 2) show the Chinese/tarentolae group clustered together with species of *Leishmania* subgenus. This ambiguous position of *L. tarentolae* had been discussed by Luyo-Atero *et al.* based on the same DNA marker cyt *b* [35] that *L. tarentolae* clustered with *Viannia* in the NJ tree consisting with the minicircle phylogenetic analysis [62], and clustered with *Leishmania* in the MP tree supported by ATPase 6 gene [63]. The position of *L. equatorensis* as falling outside the *Leishmania* clade in the parsimony tree is supported by the phylogeny suggested by Cupolillo *et al.* [64]. However the Chinese/tarentolae group which was not described by Lukes *et al.* [54], may have evolved from a common ancestral parasite that came from the Americas and may split off earlier than the other OWL.

Leishmaniasis remains endemic in China, especially in the west and northwest frontier regions. The epidemic foci of VL in China were classified into three types according to different geographical origin, infective agent, and clinical evidences, i.e., plain foci, hill foci, and desert foci [20]. Human VL and CL occur in China, most being VL along with rare CL cases [56, 65-67]. VL was one of the most important parasitic diseases occurring in over 17 Chinese provinces in 1951 [68]. Since the condition has come under control, currently, VL is mainly prevalent in six provinces in northwest China [69] (Figure 4). This study proved that the evolution hypothesis of Tian and Chen related to the Chinese *Leishmania* isolates from different epidemic foci was limited and lacked integrity [70]. In fact, the Chinese *Leishmania* species occurs as the multiple species *L. donovani* (L. donovani donovani, L. donovani infantum), *L. turanica*, *L. tropica*, *Leishmania* sp. and so forth, and some of these such as *L. donovani* and *L. turanica* were shared with neighbouring countries including India, Russia, and Uzbekistan.

Conclusions

The current study investigated the Chinese *Leishmania* parasites using cyt *b* sequence data. Undescribed *Leishmania* species which are clearly causative agents of CanL and human VL do exist in China and are related to the *Sauroleishmania* subgenus, may have evolved from a common ancestral parasite that came from the Americas and split off earlier than the other OWL. Our cyt *b* results also suggest the following: the isolates GS7, GS1 and XJ771 occur as part of the *L. donovani* complex; the isolate JS1 is *L. tropica*; and the isolate KXG-2 is close to the isolate GS-GER20, which is *L. turanica* and *L. gerbilli* respectively. The results of the current study indicate that the isolates from China may have had a more complex evolutionary history. In the future, we will build upon the currently described data set to gain more insight into the fascinating spectrum of Chinese *Leishmania*.

Competing interests

The authors have no competing interests to declare.

Authors’ contributions

JPC and BBY conceived, designed and coordinated the field study, while DLC, LL, XSH and JNX participated in the study design and drafted the manuscript. All authors read and approved the final manuscript.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (NO: 30771883, 30800094 and 81171607) and the Chinese Important Scientific Research Project on Infectious Diseases (NO 2008ZX10004-011).

Author details
1Department of Medical Laboratory, Weifang Medical University, #7166, The West Baotong street, Weifang, Shandong 261053, China. 2Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, #17, The 3rd Section of South Renmin Road, Chengdu, Sichuan 610041, China. 3Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, #24, The South 1st Section of Yihuan Road, Chengdu, Sichuan 610041, China.

Received: 5 April 2012 Accepted: 20 January 2013
Published: 5 February 2013

References
1. World Health Organization: Control of the leishmaniases. In Proceedings of a meeting of the WHO Expert Committee, Geneva, 22–26 March 2010. Geneva: World Health Organization; 2010:22–26.
2. Shaw J: Taxonomy of the genus Leishmania: Present and future trends and their implications. Mem Inst Oswaldo Cruz 1994, 89:471–478.
3. World Health Organization: Control of the leishmaniases. Proceedings of a meeting of the WHO Expert Committee, Geneva, 1–15 August 1990. Geneva: World Health Organization; 1990.
4. Fraga J, Montalvo AM, de Dander S, Dujardin JC, der Auwera GV: Phylology of Leishmania species based on the heat-shock protein 70 gene. Infect Genet Evol 2010, 10:238–245.
5. Lainson R, Shaw J: Evolution, classification and geographical distribution of Leishmania. In The Leishmaniases in Biology and Medicine. Edited by Killick W, Kendrick R: London Academic Press: 1987:1–120.
6. Dujardin JC, Henriksson J, Victor K, Brisse S, Gambao D, Arevalo J, Le Ray D: Genomic Rearrangements in Trypanosomatids: An alternative to the ‘One Gene’ Evolutionary Hypothesis? Mem Inst Oswaldo Cruz 2000, 95:527–534.
7. SaFjanova VM: The problem of taxonomy with Leishmania. Ser Protozool Sov Acad Sci Leningr 1982, 7:5–109.
8. Croan DG, Morrison DA, Ellis JT: Evolution of Leishmania species based on 7SL RNA. Mol Biochem Parasitol 1997, 89:149–159.
9. Orlando TC, Rubio MA, Sturm NR, Campbell DA, Floeter-Winter LM: Intergenic and external transcribed spacers of ribosomal RNA genes in lizad-infecting Leishmania: molecular structure and phylogenetic relationship to mammal-infecting Leishmania in the subgenus Leishmania. Mem Inst Oswaldo Cruz 2002, 97:695–701.
10. Zelazny AM, Fedorko DP, Li L, Neva FA, Fisher SH: Evaluation of 7SL RNA gene sequences for the identification of Leishmania spp. Am J Trop Med Hyg 2005, 72:415–420.
11. Chen JP, Hu XS, Jing BQ, Yang WT: Studies of SSU/ODNA sequence homologies of Leishmania species causing cutaneous leishmaniasis in Xinjiang, China by PCR and hybridization. Acta Parasitol Med Entomol Sin 1996, 3:89–92.
12. Zhang T, Hu XS, Jing BQ, Zhen XL, Mu Y, Li F: PCR Amplification and Cloning of SSU ODNA Variable Region of Cutaneous Leishmaniasis Pathogen from Xinjiang, China. J Fujian Med Univ 1998, 32:1–5.
13. Ren HY, Guan LR, Yang YQ, Zuo XP, Li F, Xu YX, Abukleimujang, Deng LQ: Clinicopathological analysis on ninety cases of cutaneous leishmaniasis in Karamay region of Xinjiang, Chin J Parasitol Parasit Dis 1996, 14:226–230.
14. Wang YJ, Guo XG, Guo XQ, Guan LR, Ren HY, Chang XP: Analysis on homology in several isolates of Leishmania from Karamay Xinjiang, Chin J Parasitol Parasit Dis 1996, 14:266–269.
15. Guan LR, Yang YQ, Xu YX, Wu JT: Leishmania in Karamay XI. The development of cutaneous Leishmaniasis in monkey and man experimentally infected with Leishmania from Karamay big gerbil. Bull Soc Controle Prev 1992, 10:263–266.
16. Streitkový MV, Shurhail AJ, Kellina OI, Eliseev LN, Evans DA, Peters W, Chapman CJ, Le Blancq SM, van Eys GJ: A new species of Leishmania isolated from the great gerbil Rhombomys opimus. Parasitology 1990, 101:327–335.
17. Yang BR, Guo XG, Hu XS, Zhang JG, Liao L, Chen DL, Chen JP: Species discrimination and phylogenetic inference of 17 Chinese Leishmania isolates based on internal transcribed spacer 1 (ITS1) sequences. Parasitol Res 2010, 107:1049–1065.
18. Sun K, Guan W, Zhang JG, Wang YJ, Tian Y, Liao L, Yang BB, Chen DL, Chen JP: Prevalence of canine leishmaniasis in Beichuan County, Sichuan, China and phylogenetic evidence for an undescribed Leishmania sp. in China based on 7SL RNA. Parasitol Vectors 2012, 5:75.
19. Gao DP, Guo XG, Chen DL, Chen JP: Species delimitation and phylogenetic relationships of Chinese Leishmania isolates reexamined using kinetoplast cytochrome oxidase II gene sequences. Parasitol Res 2011, 109:163–173.
20. Lu HG, Zhong L, Guan LR, Qu JQ, Hu XS, Chai JC, Xu ZB, Wang CT: Separation of Chinese Leishmania isolates into five genotypes by kinetoplast and chromosomal DNA heterogeneity. Ann J Trop Med Hyg 1994, 50:763–770.
21. Dávalle AMR, Memen H: Internal transcribed spacer (ITS) sequences used to explore phylogenetic relationships within Leishmania. Ann Trop Med Parasitol 2004, 98:651–654.
22. Scho¨nian G, Akhfo K, Lewin S, Maasch K, Nylén S, Prattong F, Eisenberger CL, Schnur LF, Presber WH: Genetic variability within the species Leishmania aethiopica does not correlate with clinical variations of cutaneous leishmaniasis. Mol Biochem Parasitol 2000, 106:239–248.
23. El Tai NO, El Fari M, Mauricio I, Miles MA, Oskam L, El Safi SH, Presber WH, Schönian G: Leishmania donovani: intraspecific polymorphisms of Sudanese isolates revealed by PCRamplified and DNA sequencing. Exp Parasitol 2001, 97:35–44.
24. Kuhts K, Mauricio I, Prattong F, Presber W, Schönian G: Analysis of ribosomal DNA internal transcribed spacer sequences of the Leishmania donovani complex. Microbes Infect 2005, 7:1224–1234.
25. Parvis P, Moradi G, Akbari F, Gaharnand M, Ready PD, Razak N, Assmar M, Arrighiani A: PCR detection and sequencing of parasite ITSODNA gene from reservoir hosts of zoonotic cutaneous leishmaniasis in central Iran. Parasitol Res 2008, 103:1273–1278.
26. Mauricio IL, Yeo M, Baghmai M, Doto D, Prattong F, Zemanova E, Dedet JP, Lukes J, Miles MA: Towards multispecies sequence typing of the Leishmania donovani complex: Resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGDI). Int J Parasitol 2006, 36:767–769.
27. Zemanova E, Jinku M, Mauricio IL, Horák A, Miles MA, Lukes J: The Leishmania donovani complex: Genotypes of five metabolic enzymes (JCD, ME, MPI, G6PDH, and FH), new targets for multispecies sequence typing. Int J Parasitol 2007, 37:149–160.
28. Ibrahim ME, Barker DC: The origin and evolution of the Leishmania donovani complex as inferred from a mitochondrial cytochrome oxidase II gene sequence. Infect Genet Evol 2001, 1:s1–s8.
29. Mauricio IL, Gaunt MW, Stothard JR, Miles MA: Glycophospholipid 63 (gp63) genes show gene conversion and reveal the evolution of Old World Leishmania. Int J Parasitol 2007, 37:565–576.
30. Hide M, Bras-Gonzalves R, Bahuls AL: Specific ctp copies within the Leishmania donovani complex: evolutionary interpretations and potential clinical implications in humans. Parasitology 2007, 134:379–389.
31. Marco JD, Uezato H, Mimori T, Barbaso PA, Korenaga M, Nonaka S, Bascobomba MA, Tanaro NJ, Hashiguchi Y: Are cytochrome b gene sequencing and polymoraw chain reaction as reliable as multilocus enzyme electrophoresis for identifying Leishmania sp from Argentina? Am J Trop Med Hyg 2006, 75:256–260.
32. Marco JD, Bhatto AM, Soomin FR, Baloch JH, Barbaso PA, Kato H, Uezato H, Nakaura K, Korenaga M, Nonaka S, Hashiguchi Y: Multilocus enzyme electrophoresis and cytochrome b gene sequencing as reliable as multilocus enzyme electrophoresis for identifying Leishmania species based on clinical specimens by using a realtime PCR assay and sequencing of the cytochrome b gene. J Clin Microbiol 2007, 45:2110–2115.
33. Asato Y, Oshiro M, Miyata CK, Yamamoto Y, Kato H, Marco JD, Mimori T, Gomez EA, Hashiguchi Y, Uezato H: Phylogenetic analysis of the genus Leishmania by cytochrome b gene sequencing. Exp Parasitol 2009, 121:352–361.
34. LuyoAcero GE, Uezato H, Oshiro M, Takai K, Kanya K, Nakaura K, GomezLandrises E, Hashiguchi Y, Nonaka S: Detection of the cytochrome b gene of various bone of infecting members of the genus Leishmania and their phylogeny. Parasitology 2004, 128:483–491.
