Solvant-driven isomerization of cis,cis-muconic acid for the production of specialty and performance-advantaged cyclic biobased monomers†

Jack M. Carraher, †a,b Prerana Carter, †a,b Radhika G. Rao, †a,b Michael J. Forrester, †a Toni Pfennig, †a,b Brent H. Shanks, †a,b Eric W. Cochran †a and Jean-Philippe Tessonnier †b

The quest for green plastics calls for new routes to aromatic monomers using biomass as a feedstock. Suitable feedstock molecules and conversion pathways have already been identified for several commodity aromatics through retrosynthetic analysis. However, this approach suffers from some limitations as it targets a single molecule at a time. A more impactful approach would be to target bioprivileged molecules that are intermediates to an array of commodity and specialty chemicals along with novel compounds. Muconic acid (MA) has recently been identified as a bioprivileged intermediate as it gives access to valuable aliphatic and cyclic diacid monomers including terephthalic acid (TPA), 1,4-cyclohexanedicarboxylic acid (CHDA), and novel monounsaturated 1,4-cyclohexenedicarboxylic acids (CH1DA, CH2DA). However, accessing these cyclic monomers from MA requires to first isomerize biologically-produced cis, cis-Mu to Diels–Alder active trans,trans-Mu. A major impediment in this isomerization is the irreversible ring closing of MA to produce lactones. Herein, we demonstrate a green solvent-mediated isomerization using dimethyl sulfoxide and water. The mechanistic understanding achieved here elucidates the role of low concentrations of water in reducing the acidity of the system, thereby preventing the formation of lactones and improving the selectivity to trans,trans-Mu from less than 5% to over 85%. Finally, a Diels–Alder reaction with trans,trans-Mu is demonstrated with ethylene. The monounsaturated cyclic diacid obtained through this reaction (CH1DA) can be converted in a single step into TPA and CHDA, or can be directly copolymerized with adipic acid and hexamethylenediamine to tailor the thermal and mechanical properties of conventional Nylon 6,6.

Introduction

The polymer industry has become a key driver for the research and development of biorenewable chemicals due to end user appeal for green plastics.1−4 For instance, biobased terephthalic acid (TPA) is receiving significant attention due to its central role in the production of polyethylene terephthalate (PET), a commodity polyester broadly used in bottling and packaging.5−17 Other cyclic targets include specialty chemical 1,4-cyclohexanedicarboxylic acid (CHDA), which is gaining attention for tuning properties in polyesters while enhancing their sustainability.18,19 The market size for these cyclic building blocks is currently valued at $60 billion and is expected to further grow at an annual rate of 5%.20,21 Therefore, even a conservative 5% replacement by biobased drop-in chemicals represents tremendous opportunities for the emerging bio-renewable chemical industry.

Technologies developed to access cyclic molecules from renewable feedstocks have largely used retrosynthetic strategies. In the case of biobased TPA production, research has primarily focused on renewable p-xylene as a drop-in replacement for catalytic oxidation in the AMOCO process.6−8,13,22,23 An alternate route towards these cyclic diacids is through muconic acid (MA), an intermediate produced from either sugar or lignin using metabolically engineered yeasts and bacteria.24−28 The latter approach is particularly attractive as
MA is a bioprivileged molecule with substantial potential for diversification to commodity and specialty chemicals, as well as novel molecules for enhanced end-use properties (Scheme 1).29–31 Previous work has already demonstrated the conversion of MA to an array of aliphatic commodity monomers including adipic acid and hexamethylenediamine,24,25,32 cyclic monomers such as ε-caprolactam,37,38 TPA and CHDA,5,19,39,40 and novel monoenediamine,24,25,32 with our prior study,19 indicating an effect of reactant concentration on the isomerization reaction. Therefore, this system was investigated kinetically in order to develop optimization strategies for the isomerization to ttMA.

The present work investigates an organic solvent-mediated isomerization and demonstrates its clear potential to be scaled. It is shown here that the addition of water to the green aprotic solvent dimethyl sulfoxide (DMSO),50,51 enhances selectivity to ttMA (S_{ttMA}) by 13-fold at 20% conversion. A comprehensive mechanistic understanding of the role of water was achieved through a series of reactions with ctMA in DMSO/water solvent systems. As a proof of concept, ttMA was reacted with ethylene to produce the novel unsaturated molecule 1,4-cyclohex-1-enedicarboxylic acid (CH1DA); finally, a novel polyamide was formed through copolymerization with adipic acid and hexamethylenediamine. Overall, this study demonstrates a green, solvent-driven, scalable isomerization of MA in order to synthesize renewable cyclic diacids.

Results and discussion

While ccMA readily isomerizes to ctMA at room temperature,19,52 further isomerization to Diels–Alder active ttMA is hindered by the intramolecular lactonization between unsaturated carbon–carbon and carboxylic acid moieties. We previously showed that the aprotic solvent DMSO impedes this lactonization and allows for high S_{ctMA} (88%).19 To investigate this conversion on a more industrially relevant scale, a sample with a ccMA concentration on the order of 300 g L$^{-1}$ (\sim2 M concentration) was prepared in DMSO-d_6. Despite 1H NMR spectra at such a high concentration being qualitative at best, heating a highly concentrated solution of ccMA at 100 °C overnight ($t_1 \sim 2–4$ hours) yielded primarily Mlac with no indication of the expected ttMA product. This result contrasted with our prior study,19 indicating an effect of reactant concentration on the isomerization reaction. Therefore, this system was investigated kinetically in order to develop optimization strategies for the isomerization to ttMA.

Effect of muconic acid concentration in dry DMSO-d_6

The experiments in this study used ctMA as the starting material, with concentrations ranging from 5 to 80 mM. Reactions were typically performed at 87 °C unless stated otherwise. The product selectivity at 20% and 50% conversion was determined as a function of initial ctMA concentration ([ctMA]$_0$) as shown in Table 1 and Fig. 1. Maximum S_{ttMA}
Kinetic traces obtained for the consumption of ctMA are consistent with a first order rate equation (eqn (1)) for all [ctMA].

\[
\ln\left(\frac{[ctMA]_t}{[ctMA]_0}\right) = -k_{obs} \times t + \text{const.}
\]

where \([ctMA]_t\) = concentration of ctMA at time \(t\), \([ctMA]_0\) = initial concentration of ctMA, \(k_{obs}\) = observed first order rate constant, \(t\) = time in seconds, and const. = integration constant of first order rate law.

Fig. 1 shows the observed rate constants \((k_{obs})\) obtained from eqn (1) plotted against \([ctMA]_0\). The trend for \(k_{obs}\) with increasing \([ctMA]_0\) is somewhat peculiar and initially unexpected as the isomerization of ccMA and ctMA to ttaMA was shown to be unimolecular in an aqueous system. Therefore, an acid-catalyzed pathway that generates lactones would be expected to generate a linear plot with a y-intercept equal to the sum of all rate constants for unimolecular MA reactions and a slope corresponding to \(k_{acid-catalysed} = \text{M}^{-1} \text{s}^{-1}\). The unimolecular reaction pathways would include isomerization, unimolecular lactonization, and unimolecular degradation (Scheme 3). However, \(k_{obs}\) was found to initially decrease with increasing \([ctMA]_0\) between 5 and 45 mM and then increase between 45 and 79 mM. The initial decrease at low \([ctMA]_0\) suggested an equilibrium with a non-reactive species like an unreactive MA complex. Though kinetically observable, the non-reactive complex was not identifiable spectroscopically. At higher \([ctMA]_0\) the acid catalyzed pathway shown in Scheme 2 appeared to be dominant. In addition to higher Mlac yields, elevated \([ctMA]_0\) also resulted in significantly higher degradation to unidentified byproducts. Clearly, in the absence of water, this system is rather complex and will not offer high \(S_{ctMA}\) under industrially relevant conditions (i.e. high concentration). It was therefore decided to minimize efforts in this system and focus on approaches that take into consideration the effect of \([ctMA]_0\): (i) an acid-catalyzed lactonization pathway and (ii) the potential for reversible formation of a non-reactive complex/es. The former is more important as it clearly dominates near the solubility limit. It was therefore concluded that decreasing the apparent acidity should improve \(S_{ctMA}\).

Effect of low water concentrations on muconic acid isomerization

The Dumesic group demonstrated that the addition of water to solid-acid catalyzed systems in DMSO and γ-valerolactone
(GVL) can significantly decrease the activity of the catalyst.53 The decrease in catalyst activity could be attributed to a more widespread hydrogen bonding network near the active sites, which effectively decreases their pK_a. This rationale was extended to our reaction system by introducing water to minimize the acid-catalyzed lactonization of $ctMA$. The experiments in this section were carried out using 48 mM $ctMA$ in dry DMSO-d_6 with varying concentrations of water ($[\text{H}_2\text{O}]$). 1H NMR spectra of samples containing water (5 mM – 744 mM) indicated that MA was in its fully protonated ($ctMAH_2$) form under all conditions.

At very low $[\text{H}_2\text{O}]$ the reactivity of $ctMA$ was similar to that of the dry DMSO system at 20% conversion (compare 45 mM $ctMA$ in Table 1 with 5 mM H$_2$O in Table 2). S_{ctMA} at 96 mM H$_2$O ($H_2O:MA \sim 2 : 1$) increased 13-fold to 81.5% (88% if conversion is considered as conv. = $[ctMA]_0 - ([ctMA] + [ccMA])/[ctMA]_0$ due to the relatively rapid $ctMA \leftrightarrow ctMA$ equilibrium). For $[\text{H}_2\text{O}]$ of 96 mM, high S_{ctMA} (82%) was maintained up to 50% conversion. Additionally, throughout this reaction the 1H NMR signal of H$_2$O (3.34 ppm) gradually decreased with increase in conversion as shown in Fig. 2, until it was not observable after 52% conversion. The majority of the samples showed an increased S_{ctMA} with decreasing H$_2$O signal, suggesting that an optimal ratio of H$_2$O : MA exists for a highly selective production of $ttMA$ ($\geq 75\%$). This optimal range appears to be broad, varying from a H$_2$O : MA ratio of 0.9 : 1 to 10 : 1.

Kinetically, the conversion of $ctMA$ follows first order rate equations. As the water content was increased, there was an initial 20% drop in k_{obs} between 5 mM and 38 mM, followed by a gradual increase (70–120 mM H$_2$O), and a plateau from 120 mM to 744 mM. The initial decrease was expected under the assumption that an acid-catalyzed lactonization pathway exists in parallel to unimolecular isomerization, and that introduction of water to the system would decrease the apparent pK_a. The sigmoidal shape observed in Fig. 3 could be indicative of a $ctMA$-$2H_2O$ complex that is roughly 20% more active for isomerization to $ttMA$ than a $ctMA$-H_2O complex. The plateau achieved at high [H$_2$O] coupled with decreasing H$_2$O

Table 2 Effect of water concentration on muconic acid isomerization in DMSOa

$[\text{H}_2\text{O}]_0$ (mM)	$10^3 \times k_{obs}$ (s$^{-1}$)	Half-life (days)	Selectivity at 20% conversion	Selectivity at 50% Conversion				
			$ccMA$	$ttMA$	Mlac	$ccMA$	$ttMA$	Mlac
5.0	1.8	4.5	6.5%	6.3%	55.0%	1.8%	4.0%	37.6%
37.7	1.4	5.9	7.5%	70.0%	3.5%	1.8%	69.8%	2.8%
55.6	1.4	5.9	7.5%	75.0%	3.0%	1.8%	71.2%	2.8%
70.1	1.3	6.2	7.5%	77.5%	4.0%	1.9%	70.0%	2.7%
74.6	1.5	5.4	7.5%	76.0%	3.0%	1.8%	78.2%	2.6%
96.1	1.5	5.5	7.5%	81.5%	3.0%	1.8%	82.0%	2.6%
115.8	1.7	4.7	7.5%	80.0%	2.5%	1.8%	70.0%	2.4%
157.4	1.6	5.0	7.5%	80.0%	2.5%	1.8%	72.0%	2.2%
322.0	1.6	5.0	7.5%	75.0%	4.5%	2.1%	83.7%	2.5%
478.0	1.6	5.0	7.5%	75.0%	4.5%	2.4%	85.7%	2.4%
744.0	1.6	5.0	7.0%	70.0%	3.0%	2.4%	79.0%	2.4%

a Selectivities at 20 and 50% conversion for 48 mM $ctMA$ in DMSO-d_6 with varying concentrations of water at 90 °C. b k_{obs} acquired from fits to eqn (1) at 20% $ctMA$ conversion. c 5 mM H$_2$O sample also contains Lac2.
signal and steady decline in S_{CTMA} above 160 mM H$_2$O could also be indicative of H$_2$O being a potential reactant in the degradation pathway.

Probing the effect of muconic acid at low water concentration

To probe the effect of [ctMA]$_0$ on the kinetics and yields at low water concentrations, these experiments were carried out with D$_2$O:MA of (1.9–2.6) : 1 ([ctMA]$_0$ ranging from 0.049–0.16 M). Under these conditions the water should interact primarily with the carboxyl moieties, lowering their apparent acidity and minimizing the acid-catalyzed lactonization shown in Scheme 2. This assumption is supported by NOESY NMR experiments showing proximity between the carboxyl moieties and H$_2$O in the system (ESI 1†). However, it should be noted that the NOESY spectrum is not definitive proof for the absence of H$_2$O association with internal carbon atoms.

The selectivity to cc- and ttMA at 20% conversion remained relatively constant between 50 and 160 mM ctMA (ca. 6 and 75–80%, respectively), but selectivity to Mlac increased 6-fold (Fig. 4). Additionally, k_{abs} for ctMA consumption decreased with increasing [ctMA]$_0$, similar to that observed under dry DMSO. However, unlike the trend observed in Fig. 1, the rate constants did not increase again at higher [ctMA]$_0$. This observation supports the non-reactive complex hypothesis presented above.

Effect of high water concentrations on muconic acid isomerization

D$_2$O in concentrations ranging from 1.8 M to 16.0 M was added to a 50 mM ctMA solution resulting in a decrease in k_{abs} for ctMA consumption from 2.1×10^{-6} s$^{-1}$ to 1.0×10^{-6} s$^{-1}$, as shown in Fig. 5. ttMA yields at 20% conversion remained relatively constant (15 ± 1%) up to 8.5 M D$_2$O but were halved to 7.5% at 16 M D$_2$O. This was accompanied by a slight decrease in equilibrium concentrations of ccMA and a 10-fold increase in Mlac yields (Fig. 5). Mlac yields rose steadily from 0.1% to 0.5% as [D$_2$O] increased from 1.8 to 8.5 M, and then jumped to 5.5% at 16 M D$_2$O. Rate constants obtained by initial rates analysis for Mlac formation (eqn (2)) were plotted as a function of [D$_2$O]. The results suggested a ternary reaction in which water promotes lactonization through a push–pull type interaction, where one water molecule donates a proton to the δ carbon of the cis-carboxylic acid while another accepts the proton from the cis-carboxylic acid (Scheme 4). This observation is consistent with the large negative entropy of activation ($\Delta S^\ddagger = -110$ J (mol K)$^{-1}$) obtained from simulations fitted to experimental data for the same reaction in an aqueous system. The rate constant for Mlac formation at 16 M D$_2$O obtained from eqn (2) is consistent with the aqueous simulations ($4 \pm 2 \times 10^{-7}$ s$^{-1}$ at 16 M D$_2$O and 3×10^{-7} s$^{-1}$ at 55 M). This of course is only consistent if the reaction reaches kinetic saturation near 16 M D$_2$O (i.e. D$_2$O : ctMA = 320 : 1). The elementary rate constant for the ternary reaction shown in Scheme 4 was calculated to be $2 \pm 1 \times 10^{-9}$ M$^{-2}$ s$^{-1}$.

$$\text{rate}_{\text{Mlac}} = \frac{[\text{Mlac}]_t}{t} \rightarrow k_{\text{Mlac}} = \text{rate}_{\text{Mlac}}/\left\{\frac{1}{2}([\text{ctMA}]_0 - [\text{ctMA}]_t)\right\}$$

(2)
The solvent driven lactonization at high water concentration in conjunction with the significant decrease in k_{tta} at 16 M D$_2$O (neat D$_2$O = 55 M) would help explain why ttMA is never observed in an aqueous system in the absence of catalyst like La$^{3+}$.19

Effects of temperature & kinetic simulations

An investigation into the effects of temperature on the reaction system with ca. 2 equivalents of water was carried out. Product yields at 20% conversion and k_{obs} for ctMA conversion are shown in Fig. 6. k_{obs} was relatively high for all three temperatures; 88, 80, and 88% at 60, 87, and 121 °C, respectively (91, 88, and 93% considering the ctMA ↔ ttMA equilibrium). The reaction at 121 °C was fast enough ($t_1/2 = 5.2$ weeks, 5.2 days, and 1.7 hours at 60, 87, and 121 °C, respectively) that we were able to achieve equilibrium between ctMA and ttMA. While this is reasonable, it was surprising due to previous observations in which aged aqueous solutions of ttMA and ttMA in DMSO with no added water at 200 °C do not appear to yield ctMA. To probe the temperature effects further, kinetic simu-
Table 3 Equilibrium constants, rate constants, and activation parameters for the reactions outlined in Scheme 4 *

Reaction	Temperature (°C)	$K_{cc,ct}^{b}$	$K_{ct,cc}^{b}$	$k_{ct,ff}^{b}$	$k_{ct,ct}^{d}$
	60	87	121		
$K_{cc,ct}^{b}$	68	55	50	1.7	2.4
$K_{ct,cc}^{b}$					
$k_{ct,ff}^{b}$	2.5×10^{-7}	1.9×10^{-6}	1.4×10^{-6}	1.1×10^{-7}	1.4×10^{-6}
$k_{ct,ct}^{d}$	1.5×10^{-7}	5.0×10^{-7}	3.0×10^{-5}	92 ± 103	$78 \pm 3.0 \times 10^{-7}$
$k_{ct,lc}\text{Mlac}$	4.0×10^{-6}	3.1×10^{-6}	6.0×10^{-6}	1.28 ± 31	25 ± 86
$k_{ct,deg}$	2.0×10^{-6}	3.5×10^{-7}	3.0×10^{-5}	128 ± 14	11 ± 39

* All reactions were carried out in DMSO-d$_6$ with 1.9–2.5 equivalents of D$_2$O relative to 50 mM cttMA. Equilibrium constants expressed with the subscript ‘isomer1–isomer2’ are for reversible isomerization and should not be confused with equilibrium constants with the subscript ‘isomer1’ mentioned above as they represent K for formation of non-reactive complexes of the different isomers. $K_{ct,ct}$ is an apparent equilibrium constant derived from kinetic information about the forward and reverse reactions obtained from fitting the simulation to experimental values and does not represent the thermodynamic equilibrium. Activation parameters are calculated for the reactions outlined in Scheme 3 and are specific to the system at 50 mM cttMA with 2 equivalents of H$_2$O. They do not take into consideration the equilibrium formation of potential non-reactive complexes.

Table 4 Rate constants for isomerization of ccMA a

ccMA$_0$ (mM)	[D$_2$O] (M)	$10^7 \times k_{obs}$ (s$^{-1}$)
5	0.009	1.6
20	0.009	0.8
6	0.009	0.8
4	4.9	4.1
4	9.8	4.6
3	21.5	4.6

a Isomerization was carried out at 22 ± 1 °C in DMSO-d$_6$, and monitored by 1H NMR. Selectivity to cttMA was 100% and signal loss due to degradation was not observed.

Isomerization from cis,cis-muconic acid

As was the case with cttMA, 1H NMR spectra of solutions initially containing cc- and ttMA were consistent with the fully protonated form (MAH$_2$). These experiments are outlined in Table 4. Kinetic traces for the isomerization of ccMA to cttMA were fitted to 1st order rate equations with R^2 values >97%. Values for k_{obs} decreased with increasing [ccMA]$_0$ in the presence of 9 mM H$_2$O. This is consistent with the potential formation of a non-reactive MA complex and the lack of an acid catalyzed pathway for ccMAa. Addition of D$_2$O to the system increased k_{obs} implicating water as a non-innocent solvent consistent with the aqueous $\Delta S^\ddagger = -88$ J (mol K)$^{-1}$ for cc- to cttMA isomerization of MAH$_2$. This effect appears to reach saturation at high H$_2$O : cttMA ratios. Unlike experiments in which cttMA was the initial isomer, no loss of signal was observed with reaction time, and selectivity to cttMA was 100%. This supports the above hypothesis that degradation of MA occurs from the ct-isomer.

Isomerization from biobased cis,cis-muconate

The robustness of the isomerization process, specifically its tolerance to impurities, was investigated using a fermentation broth containing 70 g L$^{-1}$ (~0.5 M) of cis,cis-ammonium muconate (ESI). The broth was first filtered over activated carbon to remove biogenic impurities and organic byproducts. ccMA was subsequently precipitated by acidification of the solution using 5 M sulfuric acid. The precipitate was recovered by filtration, rinsed with a minimum amount (10 ml) of 5 M sulfuric acid to prevent its redissolution, and dried overnight at room temperature. The biobased ccMA was then isomerized to cttMA using the procedure described previously. Further isomerization to ttMA was carried out in DMSO with 1.5 equivalents of H$_2$O. The ttMA yield at 50% conversion reached 34.8%, which is on par albeit lower than the yield obtained for reagent-grade ccMA (39.5%), see Fig. 7. This difference can be at least partly attributed to residual sulfuric acid that catalyzed the lactonization of ccMA during the isomerization step to cttMA, as indicated by 1H NMR (ESI 2 and 3f). This issue could be easily addressed by improving the separation–purification process, which is beyond the scope of the present work.

6450 | Green Chem., 2022, 22, 6444–6454

This journal is © The Royal Society of Chemistry 2020
Synthesis and copolymerization of the monounsaturated cyclic diacid CH1DA

Further conversion of Diels–Alder active ttMA to TPA and CHDA have been demonstrated in literature.19,54,55 Here, we show the preparation of novel monounsaturated cyclic diacids and their role on the physical and mechanical properties of Nylon-6,6 when copolymerized with adipic acid and hexamethylenediamine. ttMA underwent cycloaddition with ethylene in GVL to form cyclohex-1-ene-1,4-dicarboxylic acid (CH1DA) with >99% yield. Although cyclohex-2-ene-1,4-dicarboxylic acid (CH2DA) is the expected cycloadduct, CH2DA was not detected as it readily isomerizes in GVL likely due to the stabilization resulting from conjugation (Scheme 5).

The synthesized CH1DA was further copolymerized with adipic acid and hexamethylenediamine to demonstrate the potential of this new monomer for tuning the properties of conventional Nylon. To maintain an equimolar ratio between the diacid and diamine, 10 to 25 mol% of adipic acid were replaced by CH1DA (Fig. 8). This range was selected taking into consideration the economic feasibility of using novel chemicals. Gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA) were used to characterize these polymers using Nylon-6,6 as a reference (ESI 4–6†). The corresponding results are summarized in Table 5. The addition of the cyclic diacid into Nylon’s aliphatic backbone altered its crystallinity due to the defects introduced by CH1DA sequences. This change reduces the polymer’s melting temperature from 261 to 233 °C, which facilitates its processing through blow molding. Moreover, introducing a cyclic molecule in the polymer backbone increased the rigidity of polymer chains, thereby increasing the storage modulus and glass transition temperatures. The addition of CH1DA allows control over Nylon-6,6 thermal properties without sacrificing its mechanical properties, as shown in Table 5. Overall, CH1DA offers a renewable alternative to commercially available products such as INVISTA’s Dytek diamines with the additional benefit of providing an unsaturated bond. This unsaturation allows for further functionalization to insert properties such as hydrophobicity and flame retardance directly into Nylon’s backbone.28

Conclusion

A novel solvent-driven, catalyst-free, isomerization of ctMA to ttMA was demonstrated and investigated mechanistically. The lactonization process that is dominant in aqueous media was overcome in solvent systems combining the polar aprotic solvent DMSO and water.19 In dry DMSO, MA generates a significant quantity of lactones through an acid-catalyzed pathway analogous to the aqueous system. This reaction is enhanced at higher [cMA] due to MA acting as both the catalyst and reactant. The addition of 1 equivalent of water has the effect of reducing the apparent acidity of the system, thereby...
reducing lactonization. Consequently, the S_{ctMA} was increased by 13-fold.

The production of $ttMA$ is a relatively slow process, particularly at high [ctMA]. This is believed to be due to the formation of a non-reactive MA complex that slows the kinetics. The system is also limited by the reversibility of the system in DMSO/H$_2$O mixtures, which was not previously observed in the aqueous system. Nevertheless, high yields of $ttMA$ can be obtained at elevated temperatures in a relatively short period of time due to a shift in the $ctMA$ to $ttMA$ equilibrium constant favoring $ttMA$ (nearly 5 : 1 at 121 °C). Although further increase in temperature would favor isomerization to $ttMA$, it needed to be balanced with the decomposition of DMSO at elevated temperatures.\(^{30}\)

Continued addition of water sheds light on the role of solvent in both isomerization and lactonization for the aqueous system. Previous work supported by simulations and kinetic measurements indicated that the isomerization of ccMA to ctMA and the lactonization of ctMA to Mlac were unimolecular reactions. However, these reactions were both accompanied by relatively large entropies of activation (−88 and −110 J (mol K)$^{-1}$, respectively).\(^{19}\) While the involvement of water in the isomerization of ccMA is still not definitively shown, it is strongly supported by the increase in k_{loc} with water content and apparent saturation kinetics when D$_2$O was in large excess of MA. Lactonization of ctMA, on the other hand, is strongly supported by the dependence of k_{Mlac} on [D$_2$O]. Furthermore, this observed dependence on [D$_2$O] indicates that this transformation is a ternary reaction in which water acts as both a proton donor and a proton acceptor (Scheme 2). In addition to the enhanced lactonization at high [D$_2$O], $k_{ct\rightarrow\alpha}$ becomes slower while $k_{ct\rightarrow\gamma}$ remains unchanged; resulting in a shift in the apparent equilibrium constant to favor ctMA over $ttMA$. Perhaps this offers an explanation as to why $ttMA$ has never been observed to form in aqueous solutions without the presence of a catalyst.

Under optimal conditions (2 equivalents of water, 121 °C), ctMA is isomerized to $ttMA$ with 88% selectivity, with Mlac and degradation products representing less than 3% of the mixture. The other species in solution are ctMA (in equilibrium with $ttMA$) and ccMA (in equilibrium with ctMA). In an industrial setting, ccMA and ctMA would be recovered and recycled, making it a scalable, green, and cost-efficient process.

This advancement in MA isomerization technology will not only allow for the development of biobased commodity chemicals such as TPA, but also for novel unsaturated cyclic molecules such as CH1DA. Incorporation of CH1DA in a polyamide backbone enabled tunable properties that could help with processability of polymers. Further modification of the alkene moiety in this diacid could additionally achieve targeted property enhancement in polyesters and polyamides.

Experimental

ccis,cis-muconic acid (ccMA), trans,trans-muconic acid (ttMA), DMSO-d_6 (99.96% D), γ-valerolactone (GVL), tetrahydrofuran (THF), hexamethylenediamine (HMDA), adipic acid (AA), tetramethylenediamine and dimethyl sulfone (DMSO$_2$) were purchased from Sigma-Aldrich. Ethylene gas was purchased from Airgas at 99.5% purity. cis,trans-Muconic acid (ctMA) was prepared by methods previously described in the literature.\(^{41}\) Extra-dry DMSO-d_6 was refluxed over CaH$_2$ and stored over sieves.

For experiments in which strict water-free conditions were required, a mother solution containing ctMA and DMSO$_2$ (internal standard) with dried DMSO-d_6 was prepared in an inert atmosphere box. Experiments in which the effect of [MA] was investigated utilized 600 μL of the mother solution in J. Young tubes containing additional solid ctMA. ctMA concentrations were determined by NMR vs. DMSO$_2$ internal standard in the mother solution. The tubes were sealed, placed in an Erlenmeyer flask with a thermometer, and heated in a laboratory oven. The experiments at 121 °C were carried out using an aluminum heating block equipped with a thermocouple. Samples were removed from the oven, cooled to room temperature, and analyzed by 1H NMR throughout the duration of the experiment. Experiments that investigated the effect of water were prepared in DMSO-d_6 that had not been dried. Instead, aliquots of a mother solution containing ctMA and DMSO$_2$ were added to J. Young tubes and H$_2$O was added via syringe (<1 μL−100 μL). The water concentration was determined by 1H NMR signal relative to DMSO$_2$ standard. High water concentration experiments (>1 M) utilized D$_2$O to minimize interference with 1H NMR spectra. D$_2$O was added to the mother solution with an electronic micropipette (>100 μL). Dilution of [ctMA] was adjusted by addition of solid ctMA and was again determined relative to [DMSO$_2$] internal standard.

Cyclohex-1-ene-1,4-dicarboxylic acid (CH1DA) was produced through a Diels−Alder cycloaddition of $ttMA$ with 500 psig ethylene in γ-valerolactone at 180 °C for 24 hours in a 50 ml pressurized reactor (Parr 4590 Series). The products in the liquid phase were filtered using a cellulose filter, washed repeatedly with water, and dried overnight in a drying oven. The dried product was then dissolved in DMSO-d_6 and characterized using NMR using tetramethylsilane as internal standard.

To prepare the salt for polymerization, adipic acid and CH1DA were added in the molar ratio of x : (1 − x) with 0.75 ≤ x ≤ 1 and dissolved in methanol and THF, respectively. The molar equivalent of HMDA was then added to the resulting mixtures and heated to 40 °C. The precipitated salt was filtered, washed and dried overnight in a fume hood. Polymerization was carried out in a Parr reactor charged with the salt and 60 wt% water and pressurized with 100 psig N$_2$. The mixture was heated to an internal temperature of 210 °C, held there for 80 minutes, followed by venting out the N$_2$ and water. The sample was then allowed to polymerize at an internal temperature of 270 °C at atmospheric pressure for 1.5 hours and cooled to room temperature. Molecular weight of copolymers was obtained through gel permeation chromatography (GPC) using EcoSEC GPC system. Polymer samples of around 5 mg were dissolved in 1,1,1,3,3,3-hexafluoroiso-
propanol and compared to poly(methyl methacrylate) standards. Samples were then annealed in an oven for 6 hours at 150 °C. DSC was carried out on the copolymer using TA Q100. Dynamic mechanical analysis was performed using a TA ARES-G2 rheometer.

1H NMR spectra were collected with a Bruker AVIII600 spectrometer, and spectra were analyzed with MestReNova software. Data were plotted with OriginPro 9.1 software.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This material is based upon work supported in part by the National Science Foundation under grant number EEC-0813570 and the U.S. Department of Energy under grant number DE-EE0008492. The authors thank James Trettin for his help with synthesizing the polymers, Dustin Gansebom and Andrew Becker for their help with GPC analysis.

References

1. N. Hernández, R. C. Williams and E. W. Cochran, Org. Biomol. Chem., 2014, 12, 2834–2849.

2. S. Laurichesse and L. Avérous, Prog. Polym. Sci., 2014, 39, 1266–1290.

3. R. P. Babu, K. O’Connor and R. Seeram, Prog. Biomater., 2013, 2, 8.

4. T. Iwata, Angew. Chem., Int. Ed., 2015, 54, 3210–3215.

5. D. I. Collias, A. M. Harris, V. Nagpal, I. W. Cottrell and M. W. Schultheis, Ind. Biotechnol., 2014, 10, 91–105.

6. C.-C. Chang, S. K. Green, C. L. Williams, P. J. Dauenhauer and W. Fan, Green Chem., 2014, 16, 585–588.

7. H. J. Cho, L. Ren, V. Vattipalli, Y.-H. Yeh, N. Gould, B. Xu, R. J. Gorte, R. Lobo, P. J. Dauenhauer, M. Tsapatsis and W. Fan, ChemCatChem, 2017, 9, 398–402.

8. C. L. Williams, C.-C. Chang, P. Do, N. Nikbin, S. Caratzoulas, D. G. Vlachos, R. F. Lobo, W. Fan and P. J. Dauenhauer, ACS Catal., 2012, 2, 935–939.

9. S. Bérard, C. Vallée and D. Delcroix, Ind. Eng. Chem. Res., 2015, 54, 7164–7168.

10. T. Pfennig, R. L. Johnson and B. H. Shanks, Green Chem., 2017, 19, 3263–3271.

11. T. Pfennig, A. Chemburkar, S. Cakolli, M. Neurock and B. H. Shanks, ACS Sustainable Chem. Eng., 2018, 6, 12855–12864.

12. Y. Xiao, Q. Meng, X. Pan, C. Zhang, Z. Fu and C. Li, Green Chem., 2020, 22, 4341–4349.

13. R. Y. Rohling, E. Uslamin, B. Zijlstra, I. C. Tranca, I. A. W. Filot, E. J. M. Hensen and E. A. Pidko, ACS Catal., 2018, 8, 760–769.

14. Y.-T. Cheng, J. Jae, J. Shi, W. Fan and G. W. Huber, Angew. Chem., Int. Ed., 2012, 51, 1387–1390.

15. C. Li, X. Zhao, A. Wang, G. W. Huber and T. Zhang, Chem. Rev., 2015, 115, 11559–11624.

16. A. E. Settle, L. Berstis, N. A. Rorrer, Y. Roman-Leshkóv, G. T. Beckham, R. M. Richards and D. R. Vardon, Green Chem., 2017, 19, 3468–3492.

17. S. Thiyagarajan, H. C. Genuino, J. C. van der Waal, E. de Jong, B. M. Weckhuysen, J. van Haveren, P. C. A. Brujininckx and D. S. van Es, Angew. Chem., Int. Ed., 2016, 55, 1368–1371.

18. Y. Hu, Z. Zhao, Y. Liu, G. Li, A. Wang, Y. Cong, T. Zhang, F. Wang and N. Li, Angew. Chem., 2018, 130, 7017–7021.

19. J. M. Carraher, T. Pfennig, R. G. Rao, B. H. Shanks and J.-P. Tessonnier, Green Chem., 2017, 19, 3042–3050.

20. Purified Terephthalic Acid Market Size, Share | Industry Report, 2025, https://www.grandviewresearch.com/industry-analysis/purified-terephthalic-acid-market, (accessed June 3, 2020).

21. Purified Terephthalic Acid (PTA) Market, https://www.marketandmarkets.com/Market-Reports/purified-terephthalic-acid-market-150628286.html, (accessed June 3, 2020).

22. T. Dai, C. Li, L. Li, Z. K. Zhao, B. Zhang, Y. Cong and A. Wang, Angew. Chem., Int. Ed., 2018, 57, 1808–1812.

23. F. Wang and Z. Tong, ChemistrySelect, 2016, 1, 5538–5541.

24. J. W. Frost and K. M. Draths, Synthesis of adipic acid from biomass-derived carbon sources, US5487987A, 1996.

25. D. R. Vardon, M. A. Franden, C. W. Johnson, E. M. Karp, M. T. Guarneri, J. G. Linger, M. J. Salm, T. J. Strathmann and G. T. Beckham, Energy Environ. Sci., 2015, 8, 617–628.

26. K. A. Curran, J. M. Leavitt, A. S. Karim and H. S. Alper, Metab. Eng., 2013, 15, 55–66.

27. M. Suástegui and Z. Shao, J. Ind. Microbiol. Biotechnol., 2016, 43, 1611–1624.

28. M. Suastegui, J. E. Matthiesen, J. M. Carraher, N. Hernandez, N. Rodriguez Quiroz, A. Okerlund, E. W. Cochran, Z. Shao and J.-P. Tessonnier, Angew. Chem., Int. Ed., 2016, 55, 2368–2373.

29. B. H. Shanks and P. L. Keeling, Green Chem., 2017, 19, 3177–3185.

30. B. H. Shanks and L. J. Broadbelt, ChemSusChem, 2019, 12, 2970–2975.

31. X. Zhou, Z. J. Brentzel, G. A. Kraus, P. L. Keeling, J. A. Dumesic, B. H. Shanks and L. J. Broadbelt, ACS Sustainable Chem. Eng., 2019, 7, 2414–2428.

32. S. Capelli, D. Motta, C. Evangelisti, N. Dimitratos, L. Prati, C. Pirola and A. Villa, ChemCatChem, 2019, 11, 3075–3084.

33. A. Rosengart, S. Capelli, C. Pirola, A. Citterio, C. L. Bianchi, L. Prati and A. Villa, Chem.Eng. Trans., 2017, 57, 931–936.

34. W. Niu, K. M. Draths and J. W. Frost, Biotechnol. Prog., 2002, 18, 201–211.

35. C. Müller, et al., Method for producing hexamethylenediamine, WO2015086819A1, 2015.

36. D. R. Vardon, N. A. Rorrer, D. Salvachúa, A. E. Settle, C. W. Johnson, M. J. Menart, N. S. Cleveland, P. N. Ciesielski, K. X. Steirer, J. R. Dorgan and G. T. Beckham, Green Chem., 2016, 18, 3397–3413.
37 R. Beerthuis, G. Rothenberg and N. R. Shiju, *Green Chem.*, 2015, 17, 1341–1361.
38 L. Coudray, V. Bui, J. W. Frost and D. Schweitzer, Process for Preparing Caprolactam and Polyamides Therefrom, US2013085255A1, 2013.
39 R. Lu, F. Lu, J. Chen, W. Yu, Q. Huang, J. Zhang and J. Xu, *Angew. Chem., Int. Ed.*, 2016, 55, 249–253.
40 J. W. Frost, A. Miermont, D. Schweitzer and V. Bui, Preparation of trans, trans muconic acid and trans, trans muconates, US8426639, 2013.
41 J. E. Matthiesen, J. M. Carraher, M. Vasiliu, D. A. Dixon and J.-P. Tessonnier, *ACS Sustainable Chem. Eng.*, 2016, 4, 3575–3585.
42 J. E. Matthiesen, M. Suástegui, Y. Wu, M. Viswanathan, Y. Qu, M. Cao, N. Rodriguez-Quiroz, A. Okerlund, G. Kraus, D. R. Raman, Z. Shao and J.-P. Tessonnier, *ACS Sustainable Chem. Eng.*, 2016, 4, 7098–7109.
43 J.-P. Tessonnier, J. E. Matthiesen, T. Pfennig, B. H. Shanks and J. M. Carraher, Electrochemical isomerization of muconic acid, US10465043B2, 2016.
44 J.-P. Tessonnier, J. M. Carraher, T. Pfennig and B. H. Shanks, Isomerization of muconic acid, US9957218B2, 2016.
45 J. K. Ogunjobi, T. J. Farmer, C. R. McElroy, S. W. Breeden, D. J. Macquarrie, D. Thorntwhait and J. H. Clark, *ACS Sustainable Chem. Eng.*, 2019, 7, 8183–8194.
46 I. Khalil, G. Quintens, T. Junkers and M. Dusselier, *Green Chem.*, 2020, 22, 1517–1541.
47 V. Bui, M. K. Lau, D. MacRae and D. Schweitzer, Methods for producing isomers of muconic acid and muconate salts, US8809583B2, 2014.
48 J. W. Frost, A. Miermont, D. Schweitzer and B. Vu, Preparation of trans, trans muconic acid and trans, trans muconates, WO2010148049A2, 2010.
49 A. E. Settle, L. Berstis, S. Zhang, N. A. Rorrer, H. Hu, R. M. Richards, G. T. Beckham, M. F. Crowley and D. R. Vardon, *ChemSusChem*, 2018, 11, 1768–1780.
50 F. P. Byrne, S. Jin, G. Paggiola, T. H. M. Petchey, J. H. Clark, T. J. Farmer, A. J. Hunt, C. R. McElroy and J. Sherwood, *Sustainable Chem. Processes*, 2016, 4, 7.
51 M. Martí, L. Molina, C. Alemán and E. Armelin, *ACS Sustainable Chem. Eng.*, 2013, 1, 1609–1618.
52 J. A. Elvidge, R. P. Linstead, P. Sims and B. A. Orkin, *J. Chem. Soc.*, 1950, 2235.
53 D. M. Alonso, J. M. R. Gallo, M. A. Mellmer, S. G. Wettstein and J. A. Dumesic, *Catal. Sci. Technol.*, 2013, 3, 927–931.
54 M. J. Burk, R. E. Osterhout and J. Sun, Semi-synthetic terephthalic acid via microorganisms that produce muconic acid, US9562241, 2014.
55 V. Bui, J. W. Frost, D. A. Wicks, D. Schweitzer and A. Miermont, Cyclohexane 1,4 carboxylates, US8367859, 2013.