Sampling the News Producers: A Large News and Feature Data Set for the Study of the Complex Media Landscape

Benjamin D. Horne, Sara Khedr, Sibel Adalı
Rensselaer Polytechnic Institute, Troy, New York, USA
{horneb, khedrs, adalis}@rpi.edu

Abstract
The complexity and diversity of today’s media landscape provides many challenges for researchers studying news producers. These producers use many different strategies to get their message believed by readers through the writing styles they employ, by repetition across different media sources with or without attribution, as well as other mechanisms that are yet to be studied deeply. To better facilitate systematic studies in this area, we present a large political news data set, containing over 136K news articles, from 92 news sources, collected over 7 months of 2017. These news sources are carefully chosen to include well-established and mainstream sources, maliciously fake sources, satire sources, and hyper-partisan political blogs. In addition to each article we compute 130 content-based and social media engagement features drawn from a wide range of literature on political bias, persuasion, and misinformation. With the release of the data set, we also provide the source code for feature computation. In this paper, we discuss the first release of the data set and demonstrate 4 use cases of the data and features: news characterization, engagement characterization, news attribution and content copying, and discovering news narratives.

Introduction
The complexity and diversity of today’s media landscape provides many challenges for researchers studying news. In this paper, we introduce a broad news benchmark data set, called the NEws LANDscape (NELA2017) data set, to facilitate the study of many problems in this domain. The data set includes articles on U.S. politics from a wide range of news sources that includes well-established news sources, satire news sources, hyper-partisan sources (from both ends of the political spectrum), as well as, sources that have been known to distribute maliciously fake information. At the time of writing, this data set contains 136K news articles from 92 sources between April 2017 and October 2017.

As news producers and distributors can be established quickly with relatively little effort, there is limited prior data on the reliability of some of many sources, even though the information they provide can end up being widely disseminated due to algorithmic and social filtering in social media. It has been argued that the traditionally slow fact-checking process and journalistically trained “gatekeepers” are insufficient to counteract the potentially damaging effect these sources have on the public (Mele et al. 2017) (Buntain and Golbeck 2017). As a result, there is a great deal of early research in automatically identifying different writing styles and persuasion techniques employed by news sources (Popat et al. 2016) (Potthast et al. 2017) (Horne and Adalı 2017) (Chakraborty et al. 2016) (Singhania, Fernandez, and Rao 2017). Hence, a broad data set including many different types of sources is especially useful in further refining these methods. To this end, we include 130 content-based features for each article, in addition to the article metadata and full text. The feature set contains almost all the features used in the related literature, such as identifying misinformation, political bias, clickbait, and satire. Furthermore, we include Facebook engagement statistics for each article (the number of shares, comments, and reactions).

While much of recent research has focused on automatic news characterization methods, there are many other news publishing behaviors that are not well-studied. For instance, there are many sources that have been in existence for a long time. These sources enjoy a certain level of trust by their audience, sometimes despite their biased and misleading reporting, or potentially because of it. Hence, trust for sources and content cannot be studied independently. While misinformation in news has attracted a lot of interest lately, it is important to note that many sources mix true and false information in strategic ways to not only to distribute false information, but also to create mistrust for other sources. This mistrust and uncertainty may be accomplished by writing specific narratives and having other similar sources copy that information verbatim (Lytvynenko 2017). In some cases, sources may copy information with the intention to misrepresent it and undermine its reliability. In other cases, a source may copy information to gain credibility itself. Similarly, the coverage of topics in sources can be highly selective or may include well-known conspiracy theories. Hence, it may be important to study a source’s output over time and compare it to other sources publishing news in the same time frame. This can sometimes be challenging as sources are known to remove articles that attract unwanted attention. We have observed this behavior with many highly shared false articles during the 2016 U.S. election.

These open research problems are the primary reasons we
have created the NELA2017 data set. Instead of concentrating on specific events or specific types of news, this data set incorporates all political news production from a diverse group of sources over time. While many news data sets have been published, none of them have the broad range of sources and time frame that our data set offers. Our hope is that our data set can help serve as a starting point for many exploratory news studies, and provide a better, shared insight into misinformation tactics. Our aim is to continuously update this data set, expand it with new sources and features, as well as maintain completeness over time.

In the rest of the paper, we describe the data set in detail and provide a number of motivating use cases. The first describe how we can characterize the news sources using the features we have provided. In the second, we show how social media engagement differs across groups sources. We then illustrate content copying behavior among the sources and how the sources covered different narratives around two events.

Related Work

There are several recent news data sets, specifically focused on fake news. These data sets include the following.

Buzzfeed 2016 contains a sample of 1.6K fact-checked news articles from mainstream, fake, and political blogs shared on Facebook during the 2016 U.S. Presidential Election. It was later enhanced with meta data by Potthast et al. (Potthast et al. 2017). This data set is useful for understanding the fake news spread during the 2016 U.S. Presidential Election, but it is unknown how generalizable results will be over different events. **LIAR** is a fake news benchmark data set of 12.8K hand-labeled, fact-checked short statements from politifact.com (Wang 2017). This data set is much larger than many previous fake news data sets, but focuses on short statements rather than complete news articles or sources. **NECO 2017** contains a random sample of three types of news during 2016: fake, real, and satire. Each source was hand-labeled using two online lists. It contains a total of 225 articles (Horne and Adalı 2017). While the ground truth is reasonably based, the data set is very small and time-specific. **BS Detector** contains approximately 12K “fake news” articles collected using the browser extension BS Detector which labels news based on a manually compiled source dictionary (http://bsdetector.tech/) and is publicly available on kaggle.com. The reliability of these lists are unknown.

Additionally, there are much larger, general news data sets that are focused on events, topics, and location. These include the following. **GDELT** contains a wide range of online publications, including news and blogs, in over 100 languages. The collection is based on world events, focusing on location, temporal, and network features. GDELT provides a useful visual knowledge graph that indexes images and visuals used in news. While this data set provides news data over an extended period of time, it is focused on news surrounding external events, and may not capture many “fake” news sources. In addition, Kwak and An (Kwak and An 2016) point out that there is concern as to how biased the GDELT data set is as it does not always align with other event based data sets. **Unfiltered News** (unfiltered.news) is a service built by Google Ideas and Jigsaw to address filter bubbles in online social networks. Unfiltered News indexes news data for each country based on mentioned topics. This data set does not focus on raw news articles or necessarily false news, but on location-based topics in news, making it extremely useful for analyzing media attention across time and location. Data from Unfiltered News is analyzed in (An, Aldarbesti, and Kwak 2017).

There are many more data sets that focus on news or claims in social networks. **CREDBANK** is a crowd sourced data set of 60 million tweets between October 2015 and February 2016. Each tweet is associated to a news event and is labeled with credibility by Amazon Mechanical Turkers (Mitra and Gilbert 2015). This data set does not contain raw news articles, only news article related tweets. **PHEME** is a data set similar to CREDBANK, containing tweets surrounding rumors. The tweets are annotated by journalist (Zubiaga et al. 2016). Once again, this data set does not contain raw news articles, but focused on tweets spreading news and rumors. Both PHEME and CREDBANK are analyzed in (Buntain and Golbeck 2017). **Hoaxy** is an online tool that visualizes the spread of claims and related fact checking (Shao et al. 2016). Claim related data can be collected using the Hoaxy API. Once again, data from this tool is focused on the spread of claims (which can be many things: fake news article, hoaxes, rumors, etc.) rather than raw news articles themselves.

Other works use study-specific data sets collected from a few sources. Some of these data sets are publicly available. Piotrkowicz et al. use 7 months of news data collected from The Guardian and The New York Times to assess headline structure’s impact on popularity (Piotrkowicz et al. 2017). Reis et al. analyze sentiment in 69K headlines collected from The New York Times, BBC, Reuters, and Daily mail (Reis et al. 2015). Qian and Zhai collect news from CNN and Fox News to study unsupervised feature selection on text and image data from news (Qian and Zhai 2014). Saez-Trumper at al. explore different types of bias in news articles from the top 80 news websites during a two-week period (Saez-Trumper, Castillo, and Lalmas 2013).

There are 3 core issues with these data sets that we address with the NELA2017 data set:

1. **Small in size and sources** - The current data sets that focused on news producers contain very few sources, typically focused on one type of source (mainstream, fake, etc.), and have a small number of data points.

2. **Event specific** - Many of the current data sets are focused on small time frames or specific events (ex. 2016 Presidential Election). To ensure current results can be generalized and to track how the news is changing, researchers need data across time and events.

3. **Engagement specific** - The majority of these data sets contain only highly engaged or shared articles. While it can be argued that these are the more important data points, they lack the complete picture of news producer...
behavior. In order to understand how news producers publish, specifically hyper-partisan and malicious sources, researchers need to explore both the viral and the never seen articles produced.

Hence, our goal for the NELA2017 data set is to create a large, near-complete news article data set, across the various types of sources, in hopes of providing a more complete view of how news producers behave.

Data set creation

In creating our data set, we target a collection of sources to include both well-established news companies, political blogs, and satire websites, as well as many alternative news sources that have published misinformation in the past or have relatively unknown veracity. To select these sources, we used a 3-step process: 1. We select well-known sources using Wikipedia lists to capture many mainstream and well-established sources. 2. We randomly select sources from the opensources.co lexicon. OpenSources is expert-curated news source lexicon containing 12 different types of sources: fake, satire, extreme bias, conspiracy, rumor, state, junk science, hate speech, clickbait, unreliable, political, and reliable. This step captures many niche sources and those who have spread fake news in the past. 3. We hand select sources cited by previously selected sources (based on reading random articles). This 3rd step provides even more diversity across intentions and political leanings. To ensure that we have a balance of left and right leaning sources, we review selected sources using the crowd-sourced bias-checking service mediabiasfactcheck.com.

Once we have the set of news sources, we create article scrapers for each source. Each scraper is collects news articles at 12:00pm EST and 9:00pm EST each day. This near real-time collection allows us to maintain news articles that are later deleted, a common practice among maliciously fake new sources. Some sources can be collected using standard RSS feed scrapers, while others, especially the less credible sources, need custom web scrapers to collect articles. For news sources with available RSS feeds, we use the Python library feedparser 2, for news sources with standard HTML structure we use python-goose 3, and for news sources with difficult to parse HTML structures, we use a mix of BeautifulSoup 4, and feedparser to create site specific scrapers. Of the 100 sources selected, there were 8 that our scrapers could not consistently collect, leaving us with 92 sources.

To control for topic, we only collect political news from each source. For the majority of sources, controlling for topic is very easy, as their websites are divided into topic-based feeds. It is important to note that some topic-based feeds are less strict than others, specifically on fake news sites. Thus, in the political news feed, some pseudo-science and odd topic conspiracy articles are mixed in. We choose to collect these occasional off-topic articles as well, as they may provide insight to these fake news sources.

Each scraper collects the following information:

- **content** - the text from the body of the article
- **title** - the text from the title of the article
- **source** - the source of the article
- **author** - the journalist who wrote the article, if the information is available in the web page metadata
- **published** - the UTC time stamp of publication according to the web page
- **link** - the url used to scrape the article (RSS feed or web page)
- **html** - the full HTML of the article page stored as unicode

This information is stored for each article in a JSON dictionary, with keys of the same name as above.

Using this process, we obtain almost 100% of the articles produced during the 7 month time period. The approximate completion percentage for each source over the 7 months of collection can be found in Table 1.

Feature set creation Next, to facilitate content-based analysis and writing style research on these articles, we compute 130 content-based features and collect 3 Facebook engagement statistics on each news article. These features come from a wide range of literature on false news detection (Potthast et al. 2017) (Horne and Adali 2017) (Horne et al. 2018), political bias detection (Recasens, Danescu-Niculescu-Mizil, and Jurafsky 2013), content popularity (Piotrkowicz et al. 2017) (Horne, Adali, and Sikdar 2017), clickbait detection (Chakraborty et al. 2016), and general text characterization (Loper and Bird 2002). We break these features down into 7 categories: structure, complexity, sentiment, bias, morality, topic, and engagement. All 130 features are computed on the title and the body text separately, giving us 260 content-based features in total. Due to the wide range of literature these features are borrowed from, some are highly correlated, but all are computed differently. To allow researchers even more flexibility, we provide all of the feature code in one easy-to-use Python script. All feature code and implementation details are available at: (suppressed for blind review). Descriptions of these features can be found in Table 2. Due to lack of space, we will leave major implementation details to the data set and code documentation.

Potential use cases of the NELA2017 data set

There is a variety of news credibility research strands that can benefit from this data set. In particular, we argue that this data set can not only test the generality of previous results in computational journalism, but also spark research in lesser studied areas. In this section, we present 4 use cases with varying levels of granularity, including: general news source characterization, highly engaged article characterization, content attribution and copying, and analyzing specific news narratives.

News Source Characterization

The most obvious and general use of the NELA2017 data set is news source characterization and comparison. With the increasing public attention on news sources, many maps

2pythonhosted.org/feedparser/
3github.com/grangier/python-goose
4www.crummy.com/software/BeautifulSoup/bs4/doc/
Table 1: Approximate completion percentage of all sources in the data set. Since each news source publishes at different rates, we compute completion as having more than 1 article published in each 2 week period of the data set.

Source	Complete	Source	Complete	Source	Complete
Activist Post	100%	Freedom Outpost	100%	Occupy Democrats	100%
Addicting Info	57%	FrontPage Mag	100%	PBS	100%
Alt Media Syn	78%	Fusion	86%	Palmer Report	50%
BBC	100%	Gloppy News	100%	Politicus USA	100%
Bipartisan Report	100%	Hang the Bankers	72%	Prindle	71%
Breitbart	100%	Humor Times	100%	RT	71%
Business Insider	100%	InfoWars	100%	The Real Strategy	100%
BuzzFeed	100%	Intellihub	100%	Real News Right Now	100%
CBS News	100%	Investors Bi Daily	100%	RedState	100%
CNBC	100%	Liberty Writers	100%	Salon	100%
CNN	100%	Media Matters	100%	Shareblue	50%
CNN News	100%	Mother Jones	36%	Slate	100%
Conservative Trib	100%	NODISINFO	86%	The Shovel	100%
Counter Current	100%	NPR	100%	The Spur	100%
Daily Buzz Live	86%	National Review	100%	The Blaze	100%
Daily Kos	100%	Natural News	100%	The Beaverton	100%
Daily Mail	100%	New York Daily	100%	Borowitz Report	100%
Daily Stormer	72%	New York Post	100%	Burrard Street Journal	86%
Drudge Report	79%	NewsBiscuit	100%	The Chaser	100%
Faking News	100%	D.C. Clothesline	93%	USA Politics Now	36%
Fox News	86%	NewsBox	72%	Vox	100%
World News Politics	93%	Xinhua	36%	Waking Times	100%

Table 2: Different features implemented on data set. Each feature is compute on the title and body text separately

Feature Type	Description
(a) Structure Features	POS normalized count of each part of speech (36 feats)
	linguistic # function words, pronouns, articles, prepositions, verbs, etc. using LIWC lexicons (24 features)
	clickbait clickbait title classification using models built in (Chakraborty et al. 2016)

(b) Sentiment Features	sentiment negative, positive, and neutral sentiment scores from VADER (Hutto and Gilbert 2014) (3 features)
	emotion positive, negative, affect, etc. words using LIWC and strong/weak emotion words from lexicons in (Recasens, Danescu-Niculescu-Mizil, and Jurafsky 2013) (13 features)
	Happiness happiness score using (Mitchell et al. 2013) Happiness lexicon

(c) Engagement Features	Facebook engagement # of shares, comments, reactions collected using Facebook API
	bio biological processes from LIWC lexicon (5 features)
	relativity motion, time, and space words from LIWC lexicon (4 features)
	personal concerns work, home, leisure, etc. from LIWC lexicon (6 features)

(d) Topic-dependent Features	TTR Type-token Ratio, also known as lexical diversity or redundancy, computed as #uniquewords / totalwords
	FKE Standard readability measure computed by 0.39 * (totalwords / totalsentences) + 11.8 * (totalsentences / totalwords) - 15.59
	SMOG Standard readability measure computed by 1.0430 * √#polysyllables / #sentences + 3.1291
	wordlen average # characters in a word
	WC word count
	cogmech # cognitive process words (includes cause, insight, etc.) from LIWC lexicons (7 features)

| (e) Complexity Features | bias several bias lexicons from (Recasens, Danescu-Niculescu-Mizil, and Jurafsky 2013) and (Mukherjee and Weikum 2015) (14 features) |
| | subjectivity probability of subjective text using a Naive Bayes classifier trained on 10K subjective and objective sentences from (Pang and Lee 2004) used in (Horne and Adalí 2017) |

| (f) Bias Features | Moral features based on Moral Foundation Theory (Graham, Haidt, and Nosek 2009) and lexicons used in (Lin et al. 2017) (10 features) |

| (g) Morality Features | Moral features based on Moral Foundation Theory (Graham, Haidt, and Nosek 2009) and lexicons used in (Lin et al. 2017) (10 features) |

of the media landscape have been offered to show how different sources compare to each other. Often these maps are based on a subjective evaluation of these sources. Our features make it possible to draw such comparisons based on algorithms with transparent criteria.

We first show the top 10 sources in Figure 1 according
to their average behavior with respect: (a) subjectivity based on writing style, (b) grade level readability, (c) the clickbait nature of titles, (d) length of titles, (e) negative sentiments expressed, and (f) the amount lexical redundancy, i.e. repetition in articles. Past research shows fake news articles are generally easier to read and more repetitive, but are not necessarily clickbait (Horne and Adalı 2017). It is also well-studied that many highly engaged fake articles and conspiracy theories express negative emotions (Bessi et al. 2015). All of these previous results are accurately supported by the ranking with our features. For example, the subjectivity accurately captures a number of highly partisan sources in our list and the clickbait predictions point to well-known clickbait sources. However, these clickbait sources are not necessarily among the sources with very long titles or repetitive content. The sources with highest grade reading include some sources that translate languages (Xinhua) and more niche domain sources (The Fiscal Times).

Additionally, we also look at the consistency of sources over time. Sources may show higher variation in these distributions due to lack of editorial standards, as well as, different types of content mixing (made up content or content copied from other sources). In Figure 2, we show select feature distributions over the full 7 months of data for four news sources: Liberty Writers, Newslo, The New York Times, and PBS. We can clearly see both Liberty Writers and Newslo have very wide distributions, whereas The New York Times and PBS have much more narrow distributions, illustrating consistency. These features are not only useful for quick source comparison, but have predictive power in news as shown in prior work (Popat et al. 2016) (Horne and Adalı 2017). Given our feature set is a superset of all the features from the different literature threads, we expect them to have accuracy as well or better than those reported. Due to lack of space, we do not provide examples of prediction.

Engagement Characterization

While the NELA2017 data set does not contain labels, such as which articles are fake and which are not, we can make labeled subgroups of the data set using external labeling or unsupervised clustering over different features described in the previous use case. For space reasons, we provide an example of external labeling only. There are many ways to label news articles and sources in the NELA2017 data set such as based on ownership, self-proclaimed political leaning, reliability (using a lexicon like opensources.co), or the age of the news source.

To explore this method, we group sources by their self-
proclaimed political leaning as conservative or liberal and exclude satire news sources and any news source that does not clearly claim a political ideology. These subgroups contain 16 liberal sources and 17 conservative sources. While there are certainly other politically biased news sources in the data set, we are strictly looking at self-proclaimed leaning. We can break down these groups even further by using previously known reporting behavior. Specifically, we ask “has the source published a completely false article in the past?” To do this, we manually use 3 online fact-checkers: (snopes.com, politifact.com or factcheck.org). In this division, we do not include sources that have published partially false articles, only completely false. This labeling can be thought of as source-level reliability rather than article-level correctness.

With these newly labeled subgroups of the NELA2017 data set, we explore Facebook shares over time. In Figure 3a, we see that, on average, politically-left leaning news sources had higher shares over the 7 month time period and these shares increased over time. When looking at the max number of shares, rather than the median, we see politically-right leaning news sources were often shared slightly more. In Figure 3b, when splitting by previously publishing a false article, false politically-left sources were shared more than true politically-left news sources in the first 3 months of the time slice, but decrease significantly in the last 4 months of the time slice. In contrast, false right-leaning sources are shared more than true right-leaning source over the full 7 month time slice. While this simple analysis does not conclude that false news articles were more highly shared than true news articles during this time, it does illustrate differences in engagement with political news sources that have published false articles in the past.

Attribution and Content Copying

A lesser studied area that can benefit from the NELA2017 data set is news attribution, which has been studied in journalism, but not in the context of today’s news ecosystem. In context of today’s news environment, Jane Lytvynenko of Buzzfeed News points out that the conspiracy news site Infowars copied 1000’s are articles from other sources without attribution over the past 3 years (Lytvynenko 2017). Most notably, Infowars copied from Russia Today (RT), Sputnik, CNN, BBC, The New York Times, Breitbart, CNS News, and The Washington Post. This article sheds light on the potential content-mixing methods of fake and conspiracy news sources that publish original material with a specific message and also report “real” content from other sources to increase their perceived credibility.

To provide an example of this, we extract highly similar articles from several two-week intervals. We do this using the cosine similarity between TFIDF (Term-Frequency Inverse Document-Frequency) article vectors, a standard technique in information retrieval. For every article pair from a different source, if the cosine similarity is above 0.90 (meaning the articles are almost verbatim), we extract the article pair and compare time stamps to see which source published the article first. Over each two week interval, we use the time stamp comparison to create a weighted directed graph, in which in-degree is how many articles are copied from the node and out-degree is how many articles a node copies. In Figure 4, we show networks from two time frames: May
Figure 4: Article similarity graphs during two different two-week periods. The weighted in-degree is the number of articles copied from a source. The weight is indicated by the size of the arrow. The in-degree of a source is shown by the size of the node. The color of a node indicates the community it belongs to based on modularity.

1st-14th and July 1st-14th. In each figure, the weighted in-degree is represented by the size of the arrow. Each node’s in-degree is shown by the size of the node and each node is colored based on the community it belongs to (using modularity). Note, since this is a pair-wise analysis, there may be redundant links if the same story is copied by many sources. For example, if several sources copy a story from AP, the network will not only point to AP, but also to the sources that published that story earlier than another source. While there are many potential types of content copying, this analysis is only exploring near exact content copying. Specifically, sources that may mix false and true content would not be captured by the high cosine similarity.

In each graph, there are multiple connected components and clear communities of who copies from whom. In particular, we see well-known mainstream sources copy from each other (primarily from AP, a news wire service) and known conspiracy sources copy from each other. In some cases, these two communities are completely disconnected and other times there is a path between them. For example, in Figure 4a, there exists a path between USA Politics Now and Fox News (through Liberty Writers and The Gateway Pundit). In other time slices (not shown), we see a direct path between Infowars and Fox News (Fox News copying from Infowars and vice versa). In addition to these two larger communities, we see many separate smaller communities of sources, including satire, left-wing, and right-wing communities. We see very similar community structure and attribution patterns throughout the data set. Overall, the community structure we observe in content similarity networks is very similar to that of the news ecosystem on Twitter (Starbird 2017), where alternative news sources form tight-knit communities with few connections to mainstream news.

We further categorize the types of content copying we see into three primary categories:

Proper Attribution, Different Title. Many sources publish full, word-for-word articles from The Associated Press (AP), but provide clear citations such as “2017 The Associated Press. All Rights Reserved.” or “The Associated Press contributed to this report.” Specifically, we see this citation behavior in sources like CBS News, PBS News, Fox News, Breitbart, The Talking Points Memo, and The Huffington Post. More interestingly, while the content is almost exactly the same, the titles can be very different. For example, the title for an AP article was “Scholars White Houses name gaffe not helping US-China ties,” whereas the Fox News title for the same article was “Chinese scholars rip White House staff after name mix up.” Related, we see that True Pundit directly copies many full articles from The Daily Caller (60 copied articles between April 14th and May 14th). At the end of each article The Daily Caller writes: “Content created by The Daily Caller News Foundation is available without charge to any eligible news publisher that can provide a large audience.” Thus, True Pundit’s copying can be considered legitimate attribution. Infowars similarly takes articles from the Daily Caller.

Same Author, Different Source. Surprisingly, we find the majority of highly similar articles are written by the same author on different sources. There are many examples of this behavior. We see The D.C. Clothesline and Freedom Outpost commonly publish articles written by Tim Brown. The D.C. Clothesline also has articles written by Jay Syrmopou-
los, who writes for Activist Post and The Free Thought Project. The Daily Caller, Infowars, and The Real Strategy all have word for word identical articles written by Luke Rosiak. The Waking Times and Activist Post have articles written by Alex Pietrowski. Salon and Media Matters for America have multiple articles written by Cydney Hargis. In satire news, Rodger Freed writes the same articles for The Spoof, Humor Times, and Glossy News, usually publishing on The Spoof first. In another example, a series of stories about a “George Soros backed Trump resistance fund” are published word for word on both Infowars and Fox News, all written by Joe Schoffstal. Each article does not have clear attribution to one or the other source, despite being exact copies and each article was written on Infowars days prior to its publication on Fox News. This example is particularly surprising as Fox News captures a wide, mainstream audience and Infowars is a well known conspiracy source, creating a clear path between a well-established news source and conspiracy/false news. Note, while many of these articles are clearly written by the same author, as the authors state they contribute to both sources, there are others that may just be copied with the authors name included. For example, The D.C. Clothesline seems to have many authors that contribute elsewhere, but there is no indication in the authors’ biographical information (on the other sources they contribute to) that they contribute to The D.C. Clothesline. Hence, while the author contributes to multiple sources, it is unclear that they contribute to The D.C. Clothesline.

No Attribution. We also see several sources, particularly those who have been caught spreading false news in the past, copying news articles with no citation. In particular, we found that both Veterans Today and Infowars copied multiple articles directly from Russia Today (RT), with no citation similar to behavior that has been pointed out by Jane Lytvynenko (Lytvynenko 2017).

Issue framing and narrative slant

In addition to “big picture” analysis, NELA2017 can also be used to study specific events. To illustrate this, we explore differing narratives reported around a specific event. While many sources may cover the same topic, they may not report all sides of a story or may have an imbalanced quantity of coverage (Lin, Bagrow, and Lazer 2011). This type of coverage bias has been explored in terms of political party slant in US congress stories (Lin, Bagrow, and Lazer 2011), and similar notions of bias, including framing and agenda setting bias, have been in explored in various media studies (Entman 2007) (Pan and Kosicki 1993). There is more recent work on ideological bias in news stories caused by journalists Twitter networks (Wihbey et al. 2017). However, there is little to no recent work on the specific dynamics of differing news narratives. Further, since the NELA2017 data set covers many different political events, it is ideal for tracking publishing and reporting behavior over a wide range of time, something that has also not been explored in the literature.

To provide an example of event extraction from the NELA2017 data set, we perform a simple extraction technique on two different events: 1. the U.S. national anthem protests 5, 2. the dismissal of James Comey 6. The U.S. national anthem protests were protests in which athletes, specifically NFL players, knelted during the singing of the U.S. national anthem to protest police brutality and racial inequality in the U.S. These protests begin in 2016, but became widespread in late 2017 as U.S. President Donald Trump called for NFL team owners to fire any player who knelted. This event caused a debate of whether NFL players were being disrespectful to the U.S. flag and military. Hence, two sides of the story emerged: race inequality and disrespecting the military. A similar two-sided story is the dismissal of James Comey. James Comey was the 7th director of the Federal Bureau of Investigation (FBI), who was dismissed by U.S. President Donald Trump in May 2017. This dismissal came at a controversial time, as President Trump’s administration was under FBI investigation for alleged Russian interference in the 2016 election. At the same time, James Comey had been widely criticized for the way he handled the earlier Hillary Clinton email controversy 7. The Trump administration publicly stated Comey’s dismissal was due to the recommendation by then Attorney General Jeff Sessions and Comey’s handling of the earlier email investigation. The media created a divide between the two sides: did President Trump dismiss Comey due to the Russia investigation or due to the Clinton email investigation. Therefore, in both of these events there are clear sides that news sources may or may not give fair coverage.

To do this analysis, we first select the dates of each event and extract all articles from several days before and after the event. With these articles extracted, we filter by a set of event keywords and manually ensure all articles extracted are reporting the appropriate event. We then modify a simple slant score technique used in (Lin, Bagrow, and Lazer 2011) to quantify the narrative slant. In (Lin, Bagrow, and Lazer 2011), the slant score is measured by the log-odds-ratio of the number of times source i refers to party k (specifically refers to a member of said party), where the baseline probability is 50% (meaning an article has a 50-50 chance to refer to each party). We perform a similar analysis, but instead of counting party references, we count narrative keyword references. These narrative keywords are manually generated. While there are more sophisticated methods to measure bias, this method provides a base understanding of coverage bias within these stories.

U.S. national anthem protests. For the U.S. national anthem protests, we use the following keywords for side 1: Kaepernick, racism, race, racist, police, brutality, African American, and prejudice, and the following for side 2: respect, stand, disrespect, flag, troops, military, and anti-American.

In Figure 5a, we show a scatter plot in which each point represents a source and the x-axis shows the computed slant score. If a source reported both sides equally, it receives a slant score of 0 (indicated by the vertical dotted line). In this case, the higher the score the more coverage of side 1 (police

5. en.wikipedia.org/wiki/U.S._national_anthem_protests
6. en.wikipedia.org/wiki/Dismissal_of_James_Comey
7. en.wikipedia.org/wiki/Hillary_Clinton_email_controversy
We can see right away that there are sources across the spectrum of coverage slant; however, more so on side 1 (police brutality). Despite more sources covering side 1, we see more extreme slant (further from balanced) for side 2 (disrespect of flag), meaning they mention keywords corresponding to side 2 much more than side 1. When inspecting the sources with this extreme slant, we see several cases where there was no mention of side 1. Whereas even the most extreme slant towards side 2 mentions the debate of respecting the flag. Of those sources that only report the disrespecting of the flag narrative, we see they are more subjective in writing and slightly more negative than those sources who are near balanced. On the other side, those who report more of the police brutality message use the 1st person plural words more (like we, us, or our).

Dismissal of James Comey For the dismissal of James Comey, we use the following keywords for side 1: Russia, Trump-Russia, collusion, election, and meddling, and the following for side 2: Hillary, Clinton, Democrats, dems, email, and server. In Figure 5b, we show the same for scatter plots as in Figure 5a discussed above. In this case, the higher the score the more coverage of side 1 (Russia) and the lower the score the more coverage of side 2 (Clinton emails).

In this study, we can see the vast majority of sources give balanced coverage, receiving slant scores close to 0. In fact, there is only 1 source that reported the event extremely one sided. When inspecting this source, they did not mention anything about the Russia investigation, only the Clinton email scandal. This one extreme source was much more negative, more subjective, and used 1st person plurals more than the other sources.

Conclusions

In this paper, we presented the NELA2017 data set, which contains articles from 92 news sources over 7 months, as well as, 130 content-based features that have been used throughout the news literature. Together with the data set, we include the source code for computing the features (go o.gl/JssxGr). We also illustrated potential research directions with a number of use cases, showing the data set’s use in studying individual sources, compare sources to each other, or study sources over a specific event. We are continuing to expand and collect data for future releases. As we update, we will release the data set by versions, thus, NELA2017 will be an unchanged version corresponding to the meta data in this paper. All data can be requested at nelatoolkit.science.

References

An, J.; Aldarbesti, H.; and Kwak, H. 2017. Convergence of media attention across 129 countries. In Intl. Conf. on Social Informatics, 159–168. Springer.

Bessi, A.; Coletto, M.; Davidescu, G. A.; Scala, A.; Caldarelli, G.; and Quattrociocchi, W. 2015. Science vs Conspiracy: Collective Narratives in the Age of Misinformation. *PLoS ONE* 10(2):e0118093–17.

Buntain, C., and Golbeck, J. 2017. Automatically identifying fake news in popular twitter threads. In 2017 IEEE Intl. Conference on Smart Cloud, 208–215. IEEE.
Chakraborty, A.; Paranjape, B.; Kakarla, S.; and Ganguly, N. 2016. Stop clickbait: Detecting and preventing clickbaits in online news media. In ASONAM, 9–16. IEEE.

Entman, R. M. 2007. Framing bias: Media in the distribution of power. Journal of communication 57(1):163–173.

Graham, J.; Haidt, J.; and Nosek, B. A. 2009. Liberals and conservatives rely on different sets of moral foundations. Journal of personality and social psychology 96(5):1029.

Horne, B. D.; Adali, S.; and Sikdar, S. 2017. Identifying the social signals that drive online discussions: A case study of reddit communities. In Computer Communication and Networks (ICCCN), 2017 26th International Conference on, 1–9. IEEE.

Horne, B. D., and Adali, S. 2017. This just in: Fake news packs a lot in title, uses simpler, repetitive content in text body, more similar to satire than real news. In ICWSM NECO Workshop.

Horne, B. D.; Dron, W.; Khedr, S.; and Adali, S. 2018. Assessing the news landscape: A multi-module toolkit for evaluating the credibility of news. In WWW Companion.

Hutto, C. J., and Gilbert, E. 2014. V ader: A parsimonious rule-based model for sentiment analysis of social media text. In ICWSM.

Kwak, H., and An, J. 2016. Revealing the hidden patterns of news photos: Analysis of millions of news photos through gdel and deep learning-based vision apis. In ICWSM.

Lin, Y.-R.; Bagrow, J. P.; and Lazer, D. 2011. More voices than ever? quantifying media bias in networks. ICWSM 1(arXiv: 1111.1227):1.

Lin, Y.; Hoover, J.; Dehghani, M.; Mooijman, M.; and Ji, H. 2017. Acquiring background knowledge to improve moral value prediction. arXiv preprint arXiv:1709.05467.

Loper, E., and Bird, S. 2002. Nltk: The natural language toolkit. In ACL-02 Workshop on Effective tools and methodologies for teaching natural language processing and computational linguistics, 63–70.

Lytvynenko, J. 2017. Infowars has republished more than 1,000 articles from rt without permission. Available at “www.buzzfeed.com/janelytvynenko/infowars-is-ru

Mele, N.; Lazer, D.; Baum, M.; Grinberg, L.; Friedland, L.; Joseph, K.; Hobbs, W.; and Mattsson, C. 2017. Combating fake news: An agenda for research and action.

Mitchell, L.; Frank, M. R.; Harris, K. D.; Dodds, P. S.; and Danforth, C. M. 2013. The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place. PloS one 8(5):e64417.

Mitra, T., and Gilbert, E. 2015. Credbank: A large-scale social media corpus with associated credibility annotations. In ICWSM, 258–267.

Mukherjee, S., and Weikum, G. 2015. Leveraging joint interactions for credibility analysis in news communities. In CIKM, 353–362. ACM.

Pan, Z., and Kosicki, G. M. 1993. Framing analysis:

An approach to news discourse. Political communication 10(1):55–75.

Pang, B., and Lee, L. 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In ACL, 271.

Piotrkowicz, A.; Dimitrova, V.; Otterbacher, J.; and Markert, K. 2017. Headlines matter: Using headlines to predict the popularity of news articles on twitter and facebook. In ICWSM, 656–659.

Popat, K.; Mukherjee, S.; Strötgen, J.; and Weikum, G. 2016. Credibility assessment of textual claims on the web. In CIKM, 2173–2178. ACM.

Potthast, M.; Kiesel, J.; Reinartz, K.; Bevendorff, J.; and Stein, B. 2017. A stylometric inquiry into hyperpartisan and fake news. arXiv preprint arXiv:1702.05638.

Qian, M., and Zhai, C. 2014. Unsupervised feature selection for multi-view clustering on text-image web news data. In CIKM, 1963–1966. ACM.

Recasens, M.; Danescu-Niculescu-Mizil, C.; and Jurafsky, D. 2013. Linguistic models for analyzing and detecting biased language. In ACL (1), 1650–1659.

Reis, J.; Benevenuto, F.; de Melo, P. V.; Prates, R.; Kwak, H.; and An, J. 2015. Breaking the news: First impressions matter on online news. In ICWSM.

Saez-Trumper, D.; Castillo, C.; and Lalmas, M. 2013. Social media news communities: gatekeeping, coverage, and statement bias. In CIKM, 1679–1684. ACM.

Shao, C.; Ciampaglia, G. L.; Flammini, A.; and Menczer, F. 2016. Hoaxy: A platform for tracking online misinformation. In WWW 2016, 745–750.

Singhania, S.; Fernandez, N.; and Rao, S. 2017. 3han: A deep neural network for fake news detection. In International Conference on Neural Information Processing, 572–581. Springer.

Starbird, K. 2017. Examining the alternative media ecosystem through the production of alternative narratives of mass shooting events on twitter. In ICWSM, 230–239.

Wang, W. Y. 2017. “ liar, liar pants on fire”: A new benchmark dataset for fake news detection. arXiv preprint arXiv:1705.00648.

Wihbey, J.; Coleman, T. D.; Joseph, K.; and Lazer, D. 2017. Exploring the ideological nature of journalists’ social networks on twitter and associations with news story content. arXiv preprint arXiv:1708.06727.

Zubiaga, A.; Liakata, M.; Procter, R.; Hoi, G. W. S.; and Tolmie, P. 2016. Analysing how people orient to and spread rumours in social media by looking at conversational threads. PloS one 11(3):e0150989.