Topological Analysis of the Brainstem of the Australian Lungfish *Neoceratodus forsteri*

Rudolf Nieuwenhuys\(^a, b\)

\(^a\)Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, The Netherlands; \(^b\)The Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands

Keywords

Anamniote vertebrates · Comparative neuroanatomy · Herrick-Johnston concept · Longitudinal zones · Neuromeres

Abstract

This paper presents a survey of the cell masses in the brainstem of the Australian lungfish *Neoceratodus forsteri*, based on transversely cut Bodian-stained serial sections, supplemented by immunohistochemical data from the recent literature. This study is intended to serve a double purpose. First it concludes and completes a series of publications on the structure of the brainstem in representative species of all groups of anamniote vertebrates. Within the framework of this comparative program the cell masses in the brainstem and their positional relations are analyzed in the light of the Herrick-Johnston concept, according to which the brainstem nuclei are arranged in four longitudinal, functional zones or columns, the boundaries of which are marked by ventricular sulci. The procedure employed in this analysis essentially involves two steps: first, the cell masses and large individual cells are projected upon the ventricular surface, and next, the ventricular surface is flattened out, that is, subjected to a one-to-one continuous topological transformation [J Comp Neurol. 1974;156:255–267]. The second purpose of the present paper is to complement our mapping of the longitudinal zonal arrangement of the cell masses in the brainstem of *Neoceratodus* with a subdivision in transversely oriented neural segments. Five longitudinal rhombencephalic sulci – the sulcus medianus inferior, the sulcus intermedius ventralis, the sulcus limitans, the sulcus intermedius dorsalis and the sulcus medianus superior – and four longitudinal mesencephalic sulci – the sulcus tegmentalis media-lis, the sulcus tegmentalis lateralis, the sulcus subtectalis and the sulcus lateralis mesencephali – could be distinguished. Two obliquely oriented grooves, present in the isthmic region – the sulcus isthmi dorsalis and ventralis – deviate from the overall longitudinal pattern of the other sulci. Although in *Neoceratodus* most neuronal perikarya are situated within a diffuse periventricular gray, 45 cell masses could be delineated. Ten of these are primary efferent or motor nuclei, eight are primary afferent or sensory centers, six are considered to be components of the reticular formation and the remaining 21 may be interpreted as “relay” nuclei. The topological analysis showed that in most of the rhombencephalon the gray matter is arranged in four longitudinal zones or areas, termed area ventralis, area ventralis, area intermediodorsalis and area dorsalis. The sulcus intermediodorsalis, the sulcus limitans, and the sulcus intermedius dorsalis mark the boundaries between these morphological entities. These longitudinal zones coincide largely, but not entirely, with the functional columns of Herrick and Johnston. The most obvious incongruity is that the area intermediodorsalis contains, in addition to the viscerosensory nucleus of the solitary tract, several general somatosensory and spe-
ceral somatosensory centers. The isthmus region does not exhibit a clear morphological zonal pattern. The mesencephalon is divisible into a ventral, primarily motor zone and a dorsal somatosensory zone. The boundary between these zones is marked by the sulcus tegmentalis lateralis, which may be considered as an isolated rostral extremity of the sulcus limitans. The results of this study are summarized in a “classical” topological map, as well as in a “modernized” version of this map, in which neuromere borders are indicated.

Abbreviations used in this paper

- **ap**: area postrema
- **aurcb**: auricula cerebelli
- **bol**: bulbus olfactorius
- **cb**: cerebellum
- **ccb**: corpus cerebelli
- **cmsp**: columna motoria spinalis
- **ccrb**: crista cerebellaris
- **drNAG**: dorsal rhombencephalic noradrenergic cell group
- **ep**: epiphysis
- **EW**: nucleus of Edinger-Westphal
- **ft**: fasciculus lateralis telencephali
- **flm**: fasciculus longitudinalis medialis
- **fMth**: fiber of Mauthner
- **fs**: fasciculus solitarius
- **gcr**: griseum centrale rhombencephali
- **gsm**: griseum superficiale isthmi et mesencephali
- **hypo**: hypothalamus
- **int**: nucleus intermedius areae octavolateralis
- **isth**: isthmus rhombencephali
- **ip1**: nucleus interpeduncularis 1
- **ip2**: nucleus interpeduncularis 2
- **lc**: locus coeruleus
- **ldt**: nucleus laterodorsalis tegmenti
- **ll**: lemniscus lateralis
- **loblX**: lobus lineae lateralis
- **lobX**: lobus vagi
- **lrz**: lateral reticular zone
- **m**: mesomere
- **mcbr**: median cerebellar ridge
- **mes**: mesencephalon
- **mesV**: nucleus mesencephalicus nervi trigemini
- **msp**: medulla spinalis
- **Mth**: cell of Mauthner
- **nllad**: nervus lineae lateralis anterior, pars dorsalis
- **nlav**: nervus lineae lateralis, pars ventralis
- **nlp**: nervus lineae lateralis posterior
- **nns**: nervi spinales
- **nnspecoc**: nervi spino-occipitales
- **nufd**: nucleus funiculi dorsalis
- **nuflm**: nucleus fasciculi longitudinalis medialis
- **nuisth**: nucleus isthmi
- **nuiv**: nucleus of the radix descendens nervi trigemini
- **nutsc**: nucleus tori semicircularis
- **nuf**: nucleus fasciculi solitarii
- **nII**: nervus opticus
- **nIII**: nervus oculomotorius
- **nIV**: nervus trochlearis
- **nV**: nervus trigeminus, pars motoria
- **nVs**: nervus trigeminus, pars sensoria
- **nVII**: nervus facialis
- **nVIII**: nervus octavus
- **nIX**: nervus glossopteryngeus
- **nX**: nervus vagus
- **oli**: oliva inferior
- **p**: possible 'pre-Mauthner cells'
- **rai**: nucleus raphes inferior
- **raint**: nucleus raphes intermedius
- **ras**: nucleus raphes superior
- **rdV**: radix descendens nervi trigemini
- **rongb**: rhombencephalon
- **ri**: nucleus reticularis inferior
- **rm**: nucleus reticularis medius
- **rs**: nucleus reticularis superior
- **rub**: nucleus ruber
- **r0, r1 etc.**: rhombomeres
- **sf**: stratum fibrosum et griseum superficiale
- **sg**: stratum griseum centrale
- **sgp**: stratum griseum periventriculare
- **sid**: sulcus intermedius dorsalis
- **sisd**: sulcus isthmi dorsalis
- **sisv**: sulcus isthmi ventralis
- **siH**: sulci limitans of His
- **siHacc**: sulcus limitans of His, pars accessoria
- **sl**: sulcus lateralis tecti
- **smi**: sulcus intermedius
- **smt**: sulcus medius tecti
- **sst**: sulcus subtectalis
- **ste**: sulcus tegmentalis lateralis
- **steg**: sulcus tegmentalis medialis
- **taenia**: tectum mesencephali
- **tel**: telencephalon
- **tsc**: torus semicircularis
- **tviscs**: tractus visceralis secundarius
- **vem**: nucleus vestibularis magnocellularis
- **viscs**: nucleus visceralis secundarius
- **vrNAG**: ventral rhombencephalic noradrenergic cell group
- **vta/sn**: ventral tegmental area/substantia nigra complex
- **z**: zona limitans
- **III**: nucleus nervi oculomotorii
- **IV**: nucleus nervi trochlearis
- **V**: nucleus motorius nervi trigemini
- **VI**: nucleus nervi abducentis
- **VII**: nucleus motorius nervi facialis caudalis
- **VIIr**: nucleus motorius nervi facialis rostralis
- **IX**: nucleus motorius nervi glossoparyngei
- **X**: nucleus motorius nervi vagi

© 2021 The Author(s)
Published by S. Karger AG, Basel
Introduction

The lungfishes or Dipnoi form an extremely ancient group of fish, which appeared in the Lower Devonian and reached the zenith of its evolution in Late Devonian and Carboniferous times [Moy-Thomas and Miles, 1971; Lee et al., 2006]. In the recent fauna it is represented by only six species, belonging to two different orders: the Cercodontiformes and the Lepidosireniformes. The first order has only one species, the Australian lungfish Neoceratodus forsteri, whereas the second order is represented by five species belonging to two different genera, the South American genus Lepidosiren, with a single species: L. paradoxa, and four African lungfish species of the genus Protopterus. (P. annectens, P. aethiopicus, P. dolloi and P. amphibius). The study of lungfishes is of extraordinary interest, because they are considered to represent the closest living relatives of the amphibians and other tetrapods [Brinkmann et al., 2004; Chen et al., 2012; Biscotti et al., 2016].

In the present study an analysis will be presented of the rhombencephalic and mesencephalic cell masses of the Australian lungfish N. forsteri. This study concludes and completes a long series of publications on the structure of the brain stem in representative species of all groups of anamniotes: Nieuwenhuys [1972]: the lamprey Lampetra fluviatilis; Smeets and Nieuwenhuys [1976]: the sharks Squalus acanthias and Scyliorhinus canicula; Smeets et al. [1983]: the cartilaginous fishes S. acanthias, S. canicula, Raja clavata and Hydrologus collei; Nieuwenhuys and Oei [1983]: the reedfish Erpetoichthys calabaricus; Nieuwenhuys [1998a]: the shovelnose sturgeon Scaphirhynchus platoryngus; Heijdra and Nieuwenhuys [1994]: the bowfin Amia calva; Nieuwenhuys and Pouwels [1983]: the gar Lepisosteus osseus; Kremers and Nieuwenhuys [1979]: the coelacanth Latimeria chalumnae; Thors and Nieuwenhuys [1979]: the lungfish Lepidosiren paradoxa; Opdam and Nieuwenhuys [1976]: the axolotl Ambystoma mexicanum; Opdam et al. [1976]: the frogs Rana esculenta and Rana catesbeiana; Nikundiwe and Nieuwenhuys [1983]: the clawed frog Xenopus laevis.

In all of the publications just mentioned, the cell masses in the brainstem and their positional relations have been analyzed. The method employed in these analyses, which is based on the principles of the branch of mathematics known as topology, has been extensively described in a previous paper [Nieuwenhuys, 1974]. Suffice it to mention here that within the frame of this method the cell masses and large individual neurons are first projected upon the ventricular surface, and that next the ventricular surface, including its sulci and nuclear outlines, is flattened out (see Fig. 7).

Most of the studies on the structure of the central nervous system of dipnoans are devoted to representatives of the genera Protopterus and Lepidosiren. These studies are reviewed in Nieuwenhuys [1998b] and Northcutt [2011]. Until recently (see below), the literature on the structure of the Australian lungfish N. forsteri – the species with which we will concern ourselves in the present publication – was essentially confined to the classical paper of Holmgren and van der Horst [1925]. In that paper a detailed description is presented of the cell masses and fiber connections in the brain of Neoceratodus. It is based on two transversely sectioned brains, the one stained for myelin according to Weigert-Pal, the other impregnated with silver, according to Bielschowsky.

During the last decade, a number of immunohistochemical studies have been published on the brains of dipnoans, aimed at the localization of neurotransmitters and related molecules, as well as other neuroregulators. All of these studies are based on material derived from the spotted African lungfish Protopterus dolloi, as well as the Australian lungfish N. forsteri.

The neuromarkers studied include: The acetylcholine synthesizing enzyme choline acetyltransferase (ChAT) [López et al., 2012], tyrosine hydroxylase, the first and rate-limiting enzyme for catecholamine synthesis [López and González, 2017], serotonin or 5-hydroxytryptamine (5-HT) [López and González, 2015], nitric oxide synthase, the nitric oxide synthesis enzyme [López et al., 2019], the calcium-binding proteins, calbindin D28K and calretinin [Morona et al., 2018] and DARPP-32, a phosphoprotein related to the dopamine D1 receptor [López et al., 2017a]. Most of the literature just cited is reviewed in López et al. [2017b].

Material and Technique

This study is based on a young adult specimen of the Australian lungfish N. forsteri. This specimen had a total length of 70 cm (Fig. 1a). The animal was anaesthetized in a 0.025% solution of M.S. 222 (Sandoz) and perfused through the heart with Bouin’s fluid. The brain was removed, embedded in paraffin, cut transversely at a thickness of 15 µm, and stained with silver proteinate according to Bodian.

Procedure

Detailed drawings of 40 equidistant sections of our series were made with the aid of a projection apparatus at a magnification of 100 diameters. The position of these sections is indicated in Figure 7 by bilateral sets of short horizontal lines. The cell masses and large individual cells were identified and delineated in these draw-
ings. In the drawings of all individual sections the ependymal and meningeal surfaces were connected by a number of radially ori-
ented curves, termed vectors. With the aid of these curves, the out-
lines of the cell masses and of the large individual cells were pro-
jected upon the ventricular surface. In each drawing, the deepest
point of the ventricular midline groove of the brain stem, i.e. the
sulcus medianus inferior, was defined as the zero point. At levels
where this groove was lacking or indistinct, the zero point was de-
fined as the ventricular end of the raphe, which was always clearly
discernable. With the aid of a curvimeter, the distances from the
zero point to the deepest point of other sulci, and to the projections
of the outlines of the nuclei and individual neurons upon the ven-
tricular surface, were determined on both sides of the sections. All
the distances were measured along the ventricular surface and
plotted graphically on a line. In the final reconstruction (Fig. 7)
these transverse lines derived from the individual sections were
placed in their correct rostrocaudal sequence and spaced appropri-
ately, with their zero points connected by a vertical line, which
forms the axis of the reconstruction. Finally, best fitting curves
were drawn through the sets of points belonging to one and the
same structure. In cases of doubt, additional sections were ana-
lyzed. For a more detailed description and a critical evaluation of
the topological reconstruction procedure just outlined, the reader
is referred to Nieuwenhuys [1974].

Due to its rather simple configuration, almost the entire ven-
tricular surface of the brain stem of *Neoceratodus* could be includ-
ed in our topological reconstruction (Fig. 7); only the corpus cer-
ebelli and part of the auriculae had to be omitted.

Ten sections were selected to provide an atlas of the brain stem
of *Neoceratodus*. They are represented in Figures 2, 3; their levels
are indicated in Figures 1b, c and 7 by lines numbered 2 to 11.

In order to gain insight into the size of the cells in the various
grisea, ten cells of each cell group were drawn at a magnification
of 500 diameters, using a Zeiss drawing prism. In these drawings,
the size of the somata was determined by averaging their diameters
measured in two diameters perpendicular to each other. When a
particular cell group appeared to contain more than one cell type,
ten elements of each type were sampled and measured. Even
though this procedure cannot be considered a rigorous quantita-
tive analysis, it appeared to us preferable to the common practice
of employing terms like small or fairly large without any quantifi-
cation.

The cell sizes ranged from 8 to 165 µm, excluding the Mauthner
cells. For convenience, we have subdivided the cells into four cat-
gories, viz. small (8–19 µm), medium-sized (20–59 µm), large
(60–99 µm), and very large (100–165 µm). The medium-sized,
large, and very large cells detected in the medial reticular forma-
tion are individually plotted with dots of three different sizes in our
topological reconstruction (Fig. 7).

Results and Comments

Gross Features

The brain of *Neoceratodus* is, except for the telenceph-
alon, slender and elongated (Fig. 1b, c). The well-devel-
oped rhombencephalon includes bilaterally a horizontal basal plate and an alar plate that is vertically oriented throughout most of its extent. Dorsally, the fourth ventricle is closed by a folded tela chorioidea. The ventricular surface of the alar plate shows two elongated bulges, the rostrodorsally situated lobus lineae lateralis (Fig. 2c–e) and the caudoventral lobus vagi (Fig. 2b, c). Rostrally, the alar plate region containing the cerebellar plate curves
around a lateral recess of the fourth ventricle and continues into a thick, horizontally oriented lamella of tissue, which fuses in the median plane with its counterpart of the opposite side. The rostrolateral wall and the rostral part of the bottom of the lateral recess represent the auricula cerebelli. The corpus cerebelli is formed by the fused horizontally oriented lamellae of tissue mentioned above and caps the rostral part of the fourth ventricle (Fig. 2f). The ventricular (luminal) part of the corpus cerebelli forms an unpaired, median ridge, which protrudes into the fourth ventricle (Fig. 3a). Immediately rostral to the cerebellum, the width of the brain narrows, forming a transitional region between the hindbrain and the midbrain, known as the isthmus rhombencephali (Fig. 1b).

The mesencephalon is small and includes bilaterally a dorsal tectal and a ventral tegmental region. The tectal region of *Neoceratodus* is, contrary to that of lepidosirenid lungfishes, differentiated into bilateral lobes (Fig. 1b, 3c, 3d).

The mesencephalon grades over the cephalic flexure into the diencephalon (Fig. 1c, 9), which limits rostrally with the secondary prosencephalon, composed of the hypothalamus and the dorsally evaginated telencephalic hemispheres.

Fig. 3. Transverse sections through the rostral part of the rhombencephalon (a), the isthmus region (b) and the mesencephalon (c, d) of the Australian lungfish. The levels of these sections have been indicated in Figures 1 and 7.
Ventricular Sulci

Our analysis revealed the presence of the following ventricular sulci in the brain stem of Neoceratodus (Fig. 2, 3, 7).

The sulcus medianus inferior varies considerably in depth and distinctness. It is shallow in the caudal rhombencephalon and entirely absent in the intermediate rhombencephalon but is well-marked in the rostral rhombencephalon and throughout the midbrain.

The sulcus intermedius ventralis and the sulcus limitans of His are both distinct grooves, which extend throughout most of the rhombencephalon. The most rostral part of the sulcus limitans is on its medial side accompanied by a short groove, which marks the lateral boundary of the motor trigeminal and rostral facial nuclei. We designate this short groove as sulcus limitans accessorius (Fig. 7).

The sulcus intermedius dorsalis is only present in the intermediate part of the rhombencephalon where it marks the ventral boundary of the lobus lineae lateralis (Fig. 2c–e).

The sulcus medianus superior marks the dorsal line of fusion of the lateral walls of the neural tube. It is distinct in the region behind the obex (Fig. 2a) and throughout the midbrain (Fig. 3c, d). It is, however, lacking in the isthmus and cerebellar regions (Fig. 3a, b).

Two sulci, the short sulcus isthmi ventralis and the much longer sulcus isthmi dorsalis, pass obliquely over the surface of the isthmus region. The ventral sulcus and the rostral part of the dorsal sulcus mark the boundaries of the large nucleus visceralis secundarius (Fig. 3b, 7).

The ventricular surface of the midbrain is sculptured by four more or less longitudinally oriented sulci. These are, from dorsal to ventral, the sulcus lateralis mesencephali, the sulcus subtectalis, the sulcus tegmentalis lateralis and the sulcus tegmentalis medialis (Fig. 3c, d, 7). The sulcus lateralis mesencephali is an intratectal sulcus. The sulcus subtectalis and the sulcus tegmentalis lateralis mark the dorsal and ventral boundaries of the torus semicircularis, respectively. The sulcus tegmentalis ventralis extends rostrally into the diencephalon where it marks the dorsal boundary of the nucleus of the fasciculus longitudinalis medialis (Fig. 7).

Holmgren and van der Horst [1925] indicated to have traced the sulci limitans of His “with some difficulty” (l.c. p 71) rostrally into the midbrain. They designated the sulcus tegmentalis lateralis of the present description as the mesencephalic continuation of the sulcus limitans (cf. their Fig. 22 and 43). According to our observations, the sulcus limitans is in Neoceratodus, and in all of the numerous other anamniotes we investigated (see the introduction), strictly confined to the hindbrain.

Cell Masses, General Notes

In the brain stem of Neoceratodus, most of the neuronal perikarya are located in a continuous periventricular zone. Although the majority of the cells are small, the zone is not homogenous, and a considerable number of cell masses can be delimited within its confines. Some appear as local condensations of small cells, but most of them are composed of larger elements. These large-celled centers characteristically occupy a superficial position in the stratum griseum. A number of neuron groups have migrated away from the central gray and are embedded in the stratum album. One of these, the griseum superficiale isthmi et mesencephali, occupies a submeningeal position throughout (Fig. 3b–d).

Somatic Motor Nuclei

The somatic efferent cell masses include the most rostral part of the columna motoria spinalis and those motoneuronal groups which supply the external eye muscles.

The columna motoria spinalis continues for a considerable distance rostral to the obex. Its encephalic part (Fig. 2a, b) consists of large (62 µm) and very large (110 µm) fusiform cells (Fig. 4a). It gives rise to the three motor roots of the nervi spino-occipitales.

The nucleus nervi abducentis consists of a small group of loosely arranged, medium-sized (36 µm) ellipsoid and polygonal cells (Fig. 4i), situated immediately caudal to the Mauthner cell.

The nucleus nervi trochlearis occupies a paramedian position in the isthmus region. Its fusiform, medium-sized cells (36 µm) are situated between the ependymal surface and the dorsomedial aspect of the fasciculus longitudinalis medialis (Fig. 5h).

The nucleus nervi oculomotorii is situated in the dorsomedial part of the tegmentum of the midbrain (Fig. 3d). Its medium-sized (38 µm) triangular and fusiform neurons cover, just like those of the trochlear nucleus, the dorsomedial aspect of the fasciculus longitudinalis medialis (Fig. 6d).

Branchiomotor Nuclei

The branchiomotor nuclei, i.e. the efferent centers of the Xth, IXth, VIIth and Vth cranial nerves, constitute an elongated column of cells situated in the lateral part of the rhombencephalic basal plate (Fig. 2). This column shows an interruption at the level of the Mauthner cell and the abducens nucleus. The rostral part of the column is
Fig. 4. Details of some cell masses in the brainstem of the Australian lungfish.

- a Spinal motor column.
- b Motor vagal nucleus.
- c Inferior raphe nucleus.
- d Inferior olive.
- e Lobus vagi.
- f Intermedius nucleus of the lobus octavolateralis.
- g Motor nucleus of the glossopharyngeal nerve.
- h Superior raphe nucleus.
- i Abducens nucleus.
Fig. 5. Details of some cell masses in the brainstem of the Australian lungfish. a A very large cell from the caudal part of the nucleus reticularis medius. b Nucleus vestibularis magnocellularis. c A large element from the rostral part of the nucleus reticularis medius. d Motor trigeminal nucleus. e A large cell from the caudal part of the nucleus reticularis superior. f Nucleus princeps nervi trigemini. g A medium-sized cell from the rostral part of the nucleus reticularis superior. h Trochlear nucleus. i Griseum superficiale isthmi et mesencephali.
formed by the motor trigeminal and the rostral motor facial nuclei, whereas the caudal part harbors the caudal motor facial nucleus and the motor glosopharyngeal and vagal nuclei (Fig. 7).

The *nucleus motorius nervi vagi* is very elongated and consists of medium-sized (45 µm) fusiform and polygonal cells (Fig. 4b).

The *nucleus motorius nervi glosopharyngei* is constituted by fusiform to multipolar cells, which are somewhat larger (54 µm) than those in the motor vagal nucleus (Fig. 4g).

The *nucleus motorius nervi facialis caudalis* and rostralis are both composed of large (72 µm) triangular and polygonal cells.

The *nucleus motorius nervi trigemini* forms the somewhat enlarged most rostral part of the branchiomotor column. It produces a small elevation of the ventricular surface known as the eminentia trigemini (Fig. 2f). It is pri-
Reticular Formation

For convenience of description, the reticular formation will be divided into three longitudinal zones, median, medial and lateral.

The median reticular zone consists mainly of scattered small cells located in or close to the raphe, but comprises in addition two delimitable nuclei, the nucleus raphes inferior and the nucleus raphes superior.

The nucleus raphes inferior is situated in the caudal part of the rhombencephalon and is composed of loosely arranged, medium-sized (26 µm) ellipsoid cells (Fig. 4c).

The nucleus raphes superior is located in the intermediate part of the rhombencephalon, just caudal to the abducens nuclei. Its texture is similar to that of the inferior raphe nucleus although its constituent cells are somewhat larger (37 µm) (Fig. 4h).

López and González [2015] published an immunohistochemical study on the localization of 5-HT in the CNS of Neoceratodus. They found that in this species, a population of serotonergic elements situated in and near the raphe forms a conspicuous column extending from the caudal midbrain to the spinal cord (Fig. 8). They distinguished superior, median and inferior subdivisions within this column (the designation median is infelicitous and has been replaced here by intermediate). The cells forming the superior subdivision, which extends from the caudal midbrain to the level of the Mauthner nucleus, are embedded in the median and paramedian periventricular gray, whereas the elements constituting the intermediate and caudal subdivisions form a narrow band in the raphe. The most caudal cells of the inferior subdivision, which is situated at the level of the obex, occupy a paramedian submeningeal position. It is noteworthy that the subdivisions of the serotonergic raphe column, distinguished by López and González [2015], show little correspondence with the superior and inferior raphe nuclei delimited by us (cf. Fig. 7, 8).

The medial reticular formation is represented by a continuous cell column, which extends over nearly the entire length of the rhombencephalon. Medially, this column begins at some distance from the raphe; its lateral boundary is marked by the sulcus intermedioventralis. Its constituent cells characteristically occupy the outermost zone of the central gray and the adjacent stratum album. These cells vary considerably in size and include very large (144 µm; Fig. 5a, e), large (87 µm; Fig. 5c) as well as medium-sized elements (55 µm; Fig. 5g). The reticular cells generally show a spherical or ellipsoid shape. From the opposite poles of the very large and large cells typically two transversely and horizontally oriented dendritic trunks arise which again, just as with the soma, emit a number of ramifying dendrites that invade the white matter. Plotting the individual very large, large and medium-sized cells in our topological map revealed that these elements are not equally dispersed over the medial reticular formation. On this account, a division into three moieties, which are designated here as nucleus reticularis superior, nucleus reticularis medius and nucleus reticularis inferior, appeared to be warranted (Fig. 7). The

Fig. 7. Topological chart of the brainstem of the Australian lungfish, Neoceratodus forsteri. The heavy lines, which constitute the axis of the figure, represent the sulcus medianus inferior. The curves, which form the lateral limits of the figure, represent the taenia rhombencephali (continuous parts) and the sulcus medianus superior (dashed parts). The interruptions in these curves, marked by short horizontal lines, indicate the areas where the cerebellum has been omitted from the reconstruction. The remaining heavy curves indicate the position of ventricular sulci. The cell masses have been projected on the flattened out ventricular surface. The thin, continuous curves indicate the boundaries of periventricular cell masses; the outlines of migrated cell masses are indicated by interrupted curves; the position of the griseum superficiale isthmi et mesencephali is indicated by dotted curves. The delimitable parts of the reticular formation are indicated by curves of alternate dots and dashes. The small, intermediate and large black dots represent the medium-sized (20–59 µm), large (60–99 µm) and very large (100–165 µm) reticular cells, respectively. The vertical lines to the right of the figure indicate the rostrocaudal extent of the entrance/exit sides of cranial nerves.

(For figure see next page.)
Topological Analysis of the Brainstem of Neoceratodus forsteri

Brain Behav Evol 2021;96:242–262
DOI: 10.1159/000516409

253
basal part of the caudal diencephalon contains a cell group which may be considered as a rostral continuation of the medial reticular formation. This cell group, which is known as the nucleus fasciculi longitudinalis medialis, is composed of medium-sized (24 µm) and large (67 µm) ellipsoid cells (Fig. 6f). The medial reticular formation, which is also known as the nucleus motorius tegmenti, subserves a motor coordinating function. Accordingly, all of its parts project strongly to the spinal cord [Ronan and Northcutt, 1985].

The lateral reticular zone consists of a narrow strip of periventricular, small (19 µm), granular cells, which is located between the branchiomotor nuclei and the sulcus limitans (Fig. 2c). Holmgren and van der Horst [1925] believed that the cells in this zone are embedded in visceral sensorimotor reflex arcs.

The bilateral giant cells of Mauthner are situated directly behind the rostral motor facial nucleus (Fig. 7). Their transversely oriented, fusiform somata (368 µm) grade into coarse medially and laterally directed dendritic trunks, which together span the entire width of the basal plate. Dorsal ramifications of the lateral dendritic trunk contact efferent fibers of the octavus nerve. The lateral as well as the medial dendritic trunks give rise to numerous ventrally directed, ramifying branches. The axon originates from the dorsomedial aspect of the soma, passes medially, decussates and passes within the contralateral fasciculus longitudinalis medialis toward the spinal cord. It is noteworthy that the Mauthner fibers in Neoceratodus, and in dipnoans in general, are of an exceptionally large diameter (Fig. 2a, b), and that their thin, loosely arranged myelin sheaths harbor not only the axon of the Mauthner cell, but also numerous other fibers, the nature of which is not certain (see Nieuwenhuys [1998] for details and references).

The fasciculus solitarius, which consists of the afferent fibers of the VIIth, IXth and Xth nerves, forms in Neoceratodus a conspicuous descending bundle in the caudal rhombencephalon (Fig. 2d). The loosely arranged medium-sized (21 µm), ellipsoid cells surrounding this bundle form the nucleus fasciculi solitarii (Fig. 4e). This nucleus forms throughout most of its rostrocaudal extent a projection of the lateral wall of the fourth ventricle, known as the “pre-Mauthner cells” just described, may well represent persistent elements of one of these pairs of segmental groups.

The fasciculus solitarius, which consists of the afferent fibers of the VIIth, IXth and Xth nerves, forms in Neoceratodus a conspicuous descending bundle in the caudal rhombencephalon (Fig. 2d). The loosely arranged medium-sized (21 µm), ellipsoid cells surrounding this bundle form the nucleus fasciculi solitarii (Fig. 4e). This nucleus forms throughout most of its rostrocaudal extent a projection of the lateral wall of the fourth ventricle, known as the “pre-Mauthner cells” just described, may well represent persistent elements of one of these pairs of segmental groups.

Visceral Sensory Nuclei

Under this heading, two centers, the nucleus fasciculi solitarii and the nucleus visceralis secundarius, will be considered.

The area situated directly medial to the mediocaudal tip of the motor V nucleus contains bilaterally a large reticular cell, which occupies a position corresponding to that of the Mauthner neurons. We designated these elements provisionally as pre-Mauthner neurons (Fig. 7: p). It is known that the rhombencephalon of early embryonic anamniotes contains small bilateral groups of segmentally arranged neurons [Metcalfe et al., 1986; Hanneman et al., 1988]. The “pre-Mauthner cells” just described, may well represent persistent elements of one of these pairs of segmental groups.

Visceral Sensory Nuclei

Under this heading, two centers, the nucleus fasciculi solitarii and the nucleus visceralis secundarius, will be considered.

The fasciculus solitarius, which consists of the afferent fibers of the VIIth, IXth and Xth nerves, forms in Neoceratodus a conspicuous descending bundle in the caudal rhombencephalon (Fig. 2d). The loosely arranged medium-sized (21 µm), ellipsoid cells surrounding this bundle form the nucleus fasciculi solitarii (Fig. 4e). This nucleus forms throughout most of its rostrocaudal extent a projection of the lateral wall of the fourth ventricle, known as the “pre-Mauthner cells” just described, may well represent persistent elements of one of these pairs of segmental groups.

Visceral Sensory Nuclei

Under this heading, two centers, the nucleus fasciculi solitarii and the nucleus visceralis secundarius, will be considered.
A considerable portion of the entering fibers of the Vth nerve constitute the large, superficially situated tractus descendens nervi trigemini, which can be traced as far caudal as the obex region (Fig. 2a–d).

The nucleus tractus descendens nervi trigemini is formed by small (19 µm), spherical cells situated among and directly medially to the fibers of the descending V bundle. These cells are generally rather loosely arranged but tend to be more concentrated in the caudal part of the rhombencephalon (Fig. 7).

The nucleus sensorius principalis nervi trigemini occupies a periventricular position in the most rostral and lateral part of the rhombencephalic basal plate (Fig. 2f, 3a). It is composed of medium-sized (21 µm), spherical and ellipsoid cells (Fig. 5f). This nucleus has been shown to contain a large population of calbindin- and calretinin-immunoreactive cells, many of them showing coexpression of both proteins [Morona et al., 2018].

The nucleus mesencephalicus nervi trigemini, finally, forms an elongated median strip in the caudal part of the tectum mesencephali (Fig. 3c). Its medium-sized (37 µm), spherical and polygonal cells are embedded in the most dorsomedial parts of the small-celled periventricular tectal zone (Fig. 6b).

Special Somatic Sensory Nuclei

The special somatic sensory area, or area octavolateralis, occupies a large part of the lateral rhombencephalic wall. It begins a little in front of the obex and extends to the cerebellar region. Three delimitable cell masses are present in this area, termed here the nucleus dorsalis areae octavolateralis, the nucleus intermedius areae octavolateralis and the nucleus vestibularis magnocellularis. The first two of these nuclei represent end stations of the lateral line nerves, whereas the last one receives vestibular fibers. The lateral line nerve nuclei are externally covered by a highly characteristic, cell-poor layer, known as the crista cerebellaris (Fig. 2c–e). This layer strongly resembles the molecular layer of the cerebellum with which it is rostrally directly continuous. In the areas between the intermediate and dorsal lateral line nerve nuclei as well as caudal to the latter nucleus, the crista cerebellaris lies immediately against the ependymal lining of the fourth ventricle. These subependymal parts of the cerebellar crest have been included in our topological map (Fig. 7).

The large nucleus dorsalis areae octavolateralis extends along the ventricular surface of the lateral line lobe (Fig. 2c–e). It is composed of small (16 µm), granular and medium-sized (32 µm) ellipsoid cells.

The elongated nucleus intermedius areae octavolateralis accompanies the sulcus intermedius dorsalis throughout its extent (Fig. 2c–e). It is composed of the same types of cells as the dorsal octavolateral nucleus (Fig. 4f).

The nucleus vestibularis magnocellularis (Fig. 2e) is represented by a small group of large (58 µm), bipolar cells (Fig. 5b), which occupy a periventricular position at the level of entrance of the eighth cranial nerve.

All three of the special somatosensory or octavolateral nuclei just discussed have been shown to contain populations of calbindin- and calretinin-immunoreactive cells (Fig. 8) [Morona et al., 2018].

Remaining Rhombencephalic Nuclei

Under this heading, the following cell masses will be discussed: the oliva inferior, the griseum centrale rhombencephali, the griseum superficiale isthmi et mesencephali, the nucleus isthmi, the laterodorsal tegmental nucleus, and the locus coeruleus, as well as a few catecholaminergic cell groups in the caudal rhombencephalon.

The oliva inferior is an elongated nucleus, which occupies a submeningeal paramedian position in the caudal part of the rhombencephalon (Fig. 2b). It consists of small (13 µm), granular, and medium-sized (20 µm), ellipsoid cells (Fig. 4d).

The griseum centrale rhombencephali is a condensation of small (14 µm), granular cells, situated in the periventricular zone of the rostral part of the rhombencephalic basal plate (Fig. 3a–c). Its caudal boundary is fairly distinct, but rostrally it grades into the mesencephalic central gray.

The griseum superficiale isthmi et mesencephali is represented by a conspicuous, superficially situated cell mass, which covers the dorsolateral aspect of the isthmus region (Fig. 3b). Rostrally, it extends as a tongue-shaped layer along the lateral surface of the midbrain, attaining the level of the oculomotor nucleus (Fig. 3c, d). Its very small (8 µm), compactly arranged cells surround irregularly shaped small patches of neuropil (Fig. 5i). The griseum superficiale isthmi et mesencephali express the Pax6 protein [Lopéz et al., 2020]. Holmgren and Van der Horst [1925] considered this superficial griseum to be homologous with the ganglion or nucleus isthmi of anurans and reptiles and designated it accordingly as ganglion isthmi. The cell mass in question has a clear homologue in lepidosirenid lungfishes.
The putative *nucleus isthmi* indicated above occupies a position halfway between the secondary visceral nucleus and the griseum superficiale isthmi et mesencephali (Fig. 3b). It is composed of rather loosely arranged small (13 µm) spherical cells. López et al. [2012] found a scarce population of weakly ChAT-immunoreactive cells in the same location, which they likewise considered to represent a putative nucleus isthmi (Fig. 8). Slightly more caudal and ventral to the putative isthmic nucleus, López et al. [2012] detected a conspicuous group of intensively labeled ChAT-immunoreactive cells (Fig. 8). This group appeared to be similar in position and cholinergic nature to the *nucleus laterodorsalis tegmenti* of amphibians, perhaps including the likewise cholinergic and nitricergic pedunculopontine tegmental nucleus of tetrapods. This correspondence is further supported by immunohistochemical evidence indicating that these cells produce nitric oxide in dipnoans, amphibians as well as amniotes [López et al., 2019]. It is also noteworthy that the lateral basal plate area, situated directly rostral to the motor trigeminal nucleus contains a small group of tyrosine hydroxylase-immunoreactive (likely noradrenergic) cells, which presumably represents the lungfish homologue of the *locus coeruleus* ([López and González, 2017]; Fig. 8). Neither the laterodorsal tegmental nucleus nor the locus coeruleus could be delimited in our silver-impregnated material of *Neoceratodus*. López and González [2017] also demonstrated the presence of three tyrosine hydroxylase-immunoreactive (putatively noradrenergic) cell populations in the caudal rhombencephalon, a small group of weakly labeled cells in the dorsomedial part of the vagal lobe, a larger group of intensely labeled cells in the ventral part of the same lobe and a caudal group occupying a superficial, dorsomedian position in the obex region. We designate the two groups first mentioned here provisionally as the *dorsal and ventral rhombencephalic noradrenergic cell groups*; the third group represents the *area postrema* (Fig. 8).

Mesencephalic Cell Masses

The bilobed tectum mesencephali of *Neoceratodus* is a clearly laminated structure. It contains, from the ependymal surface outward, the following three layers: (1) a compact stratum griseum periventriculare, consisting of small (15 µm) granular cells; (2) a stratum griseum centrale, which is mainly composed of small (17 µm), loosely arranged piriform elements, and (3) a wide stratum fibrosum et griseum superficiale, in which zones of small (15 µm) scattered cells alternate with layers of optic fibers and terminal fields (Fig. 3c, d). The periventricular tectal layer contains a prominent population of nitricergic cells [López et al., 2019]. These cells are intermingled with 5-HT-immunoreactive cells of similar morphology but forming a separate subpopulation [López and González, 2015]. López et al. [2017a] reported that the periventricular tectal zone harbors in addition a conspicuous group of DARPP-32-immunoreactive cells (Fig. 8). It has been experimentally established that the tectum receives strong, predominantly contralateral retinal afferents [Northcutt, 1980], and projects to the contralateral side of the spinal cord [Ronan and Northcutt, 1985].

The *nucleus tori semicircularis* is located directly ventral to the tectum. It is mainly composed of a layer of periventricular, small (13 µm) cells, which at caudal levels are situated at some distance from the ependymal surface (Fig. 3c, d). Experimental data on the connections of the dipnoan torus semicircularis are lacking. It may be expected, however, that this structure receives, just as in other fishes [Wullimann, 1998], bilateral afferents from the rhombencephalic octavus and lateral line nuclei, which ascend via the lateral lemniscus to the midbrain (Fig. 3b, c).

The *nucleus ruber* consists of a small group of medium-sized (21 µm), ellipsoid cells, situated in the rostrocaudal part of the quintacaepithalamus, at some distance from the ventricular surface (Fig. 3d, e). The identity of this nucleus as representing the nucleus ruber, was substantiated by Ronan and Northcutt [1985], who demonstrated experimentally that its cells project to the contralateral side of the spinal cord.

As a possible *nucleus interpeduncularis*, we interpreted a group of medium-sized (21 µm), ellipsoid cells, situated in and near the mesencephalic raphe, between the levels of the oculomotor and trochlear nuclei (Fig. 3c, d). We are well aware of the fact that this is an atypical position for the interpeduncular nucleus, which in almost all other vertebrates, including lepidosirenid lungfishes [Northcutt, 2011] is located caudally to the trochlear nucleus in the most rostral part of the rhombencephalon. It is re-
markable, however, that Holmgren and van der Horst [1925], who also studied silver-impregnated material, located the interpeduncular nucleus in Neoceratodus at precisely the same location as we did. These authors established, moreover, that fibers of the fasciculus retroflexus, i.e. the principal afferent system of the interpeduncular nucleus, terminate in Neoceratodus at the level of entrance of the oculomotor nerve (cf. their Fig. 20). Morona et al. [2018] established on the other hand, that the habenular ganglia contain numerous calbindin-immunoreactive cells and that the axons of these cells descend with the fasciculus retroflexus to form a conspicuous terminal neuropil in the mediobasal part of the rostral rhombencephalon. They designated the neurons surrounding this neuropil as the interpeduncular nucleus. We label the possible mesencephalic and rhombencephalic positions of the interpeduncular nucleus here provisionally as ip1 (Fig. 3c, 7) and ip2 (Fig. 8), respectively.

The immunohistochemical studies of López and González [2017] have shown that the most ventral parts of the mesencephalic periventricular zone are occupied by a group of densely packed dopaminergic cells. Rosstrally, this group extends for some distance into the diencephalon; caudally, it ends abruptly just rostral to the trochlear nucleus (Fig. 8). González and Northcutt [2009] have demonstrated that this cell group has reciprocal connections with the telencephalon. Taken together, these findings indicate that the dopaminergic elements in question correspond to the area tegmentalis ventralis and the substantia nigra pars compacta (vta/sn) of amniotes.

General Discussion

Longitudinal Zones

As has been pointed out in the introduction, the present paper forms part of a program of research within the frame of which the morphological pattern of the brainstem is studied in a number of representative amniote vertebrates. This program and its specific aims have been discussed in a general, introductory paper [Nieuwenhuys, 1974] to which the reader is referred for details. Briefly, it may be stated that for each species studied the following questions are to be tested: (1) Is the brainstem divisible into a motor basal plate and a sensory alar plate? (2) To what extent are the nuclei contained within the basal and alar plates arranged in a longitudinal zonal pattern? (3) To what extent are the boundaries of such zones marked by ventricular sulci? (4) To what extent do the nuclei, falling under common functional denominators, fit into a longitudinal zonal pattern? With the aid of the topological analysis, represented in Figure 7, an attempt will now be made to answer these questions for Neoceratodus.

Basal Plate – Alar Plate. In Neoceratodus a distinct sulcus limitans extends uninterruptedly from the obex level to the rostral part of the rhombencephalon. Considering with His [1893] this sulcus as a landmark indicating the boundary between the basal plate and the alar plate, most of the rhombencephalon of Neoceratodus is divisible into these two basic entities. The designation of the basal plate as “motor” and alar plate as “sensory” is correct, in so far that all primary efferent centers are situated within the former and most primary afferent centers within the latter. Exceptions to this rule include the nucleus vestibularis magnocellularis and the nucleus sensorius principalis nervi trigemini, the former lying partly and the latter lying entirely in the lateral part of the basal plate.

Subdivision of Basal Plate. Our topological chart (Fig. 7) shows that the cell masses in the basal plate fit into three longitudinal zones, median, medial and lateral. The median zone contains the raphe nuclei. The medial zone is formed by the spinal motor column, the abducens nucleus, the medial reticular formation and the inferior olive. The lateral zone encompasses the motor nuclei of V, VII, IX and X, the Mauthner cells, and, most laterally, the lateral reticular zone. According to the purely morphological brainstem concept of Kühnebeck [1973], the median and medial zones constitute together the area ventralis, whereas the lateral zone forms the area intermedioventralis. Kühnebeck pointed out that a ventricular groove, the sulcus intermedius ventralis, marks the boundary between the ventral and intermedioventral zones. Our map shows clearly that such is the case indeed in Neoceratodus.

The functional designation of the area ventralis as the somatomotor column is appropriate in that it contains the most rostral part of the spinal motor column, the ab-
ducens nucleus and the medial reticular formation, and the latter suberves a somatomotor coordinating function. However, this area contains three centers, the inferior olive and the inferior and superior raphe nuclei, which cannot be characterized as somatomotor. The inferior olive is a “precerebellar” nucleus, which sends climbing fibers to the contralateral half of the cerebellum. It is an extrinsic component of the area ventralis because its constituent cells have migrated ventrally from a progenitor zone situated in the most dorsal part of the rhombencephalon. The two raphe nuclei mentioned are embedded in, and form part of a continuous column of serotonergic cells, which extends throughout the rhombencephalon [López and González, 2015]. The function of this serotonergic column is unknown. In mammals, the derivatives of this column are involved in multifarious neuromodulatory functions.

The area intermedioventralis contains, first and foremost, the motor nuclei of V, VII, IX, and X. Together, these nuclei constitute a branchiomotor or special visceromotor column. López et al. [2012] have presented evidence that the most lateral parts of the motor VII, IX and X nuclei also contain assemblages of small, autonomnic, general visceromotor elements. The lateral reticular zone, which occupies the most lateral part of the area intermedioventralis, consists of small cells, which according to Holmgren and van der Horst [1925], are probably intercalated in visceral reflex arcs. Taken together, the facts just discussed justify the designation of the area intermedioventralis as a visceromotor zone.

Subdivision of Alar Plate. Along most of the rhombencephalon, the alar plate contains two longitudinally arranged cell zones which, according to Kühlenbeck [1973], may be designated as the area intermediodorsalis and the area dorsalis. The boundary between these areas is marked by the sulcus intermediodorsalis. The constituents of the intermediodorsal area do not form a functional entity. Its caudal part is occupied by the nucleus fasciculi solitarii, which receives viscerosensory afferents via VII, IX and X, but also harbors the general somatosensory nucleus of the tractus descendens of V and most of the special somatosensory nucleus vestibularis magnocellularis. The two cell masses situated in the area dorsalis, i.e. the nucleus dorsalis and the nucleus intermediodorsalis areae octavolateralis, receive their inputs exclusively from the lateral line nerves. On that account, this area may be designated as a special somatosensory zone.

The isthmus region does not exhibit a clear morphological zonal pattern. Functionally, the nucleus trochlearis belongs to the somatomotor zone, whereas the nucleus visceralis secundarius, possibly representing the homolog of the parabrachial nervous complex of tetrapods, may be considered as the most rostral part of the discontinuous viscerosensory column. The nucleus isthmi is reciprocally connected with the tectum in all nonmammalian groups studied [López et al., 2012]. If it is confirmed that the tentative nucleus isthmi delineated in Neoceratodus, has similar connections, this center may be considered to belong to the special somatosensory category.

The mesencephalon is divisible into a ventral, primarily motor, and a dorsal sensory zone. The ventral zone contains the somatomotor oculomotor nucleus, the somatomotor coordinating nucleus ruber, and the visceromotor nucleus of Edinger-Westphal. The dorsal zone is composed of the general somatosensory nucleus mesencephalicus of V, and two special somatosensory centers, viz. the tectum and the nucleus of the torus semi-circularis. The sulcus tegmentalis lateralis, which marks the boundary between the ventral and dorsal zones just discussed, may be considered to represent a separate mesencephalic portion of the sulcus limitans.

Neural Segments

At the time that we started the research program, of which the present analysis of the brainstem of Neoceratodus forms part, it was generally held that the brainstem (and in fact the entire brain) is essentially composed of longitudinally oriented structural and functional zones, which are separated by ventricular sulci. The central aim of our program was to test the validity of this “zonal concept” for a number of anamniote vertebrates. In the meantime, a notable paradigm shift with regard to the fundamental pattern of the vertebrate brain has occurred. Studies on the expression patterns of a large number of developmental regulatory genes and their products (morphogens, transcription factors) have shown that the CNS of vertebrates is essentially organized into transverse neural segments or neuromeres and longitudinal zones [Puelles, 2013; Nieuwenhuys and Puelles, 2016]. The intersection of the transverse and longitudinal patterning processes in the embryonic brain leads to the formation of a checkerboard pattern of distinct progenitor domains called “fundamental morphological units.” The topologically invariant pattern formed by the FMUs represents the Bauplan or morphotype of the vertebrate brain. The most important longitudinal landmark in this Bauplan is the molecularly defined alar-basal boundary [Puelles, 2013]. It is noteworthy that at rhombencephalic levels, this zone does not coincide with the classical sulcus limitans of His, but is rather situated more ventrally, roughly

DOI: 10.1159/000516409
just ventral to the branchiomotor nuclei. Due to this shift, the branchiomotor nuclei, which according to the Herrick-Johnston concept are situated in the basal plate, have now come to lie in the alar plate.

On the basis of detailed ontogenetic studies, several authors [Gilland and Baker, 1993; Aroca and Puelles, 2005; Straka et al., 2006; Puelles and Rubinstein, 2015] have succeeded in tracing the neuromeric borders from their origin in the neural plate and early neural tube, to their ultimate position in the adult brain. These data have been used for the construction of models of the segmental organization of the brain of several vertebrates, including the Australian lungfish Neoceratodus [López et al., 2012]. The caudal part of this neuromeric model, which is based on a series of sagittal sections, is shown in Figure 9. It will be seen that in this model the mesencephalon consists of a single mesomere (m), that the rhombencephalon is composed of eight rhombomeres (r1-r8), and that an isthmic neuromere, designated as r0, is intercalated between m and r1. López et al. [2012] used this model to visualize the results of some of the immunohistochemical studies just quoted in this new map. Contrary to López et al. [2012], and in harmony with Cambronero and Puelles [2000], we subdivided the rhombencephalon into 11 rather than eight rhombomeres.

A special feature, in which our topological maps differ from sagittal schemes, such as the one depicted in Figure 9, is that in our maps the cell masses are projected in a natural way upon a natural plane. The natural plane is the ventricular surface, which represents the “starting” or “zero” plane of the histogenesis of the CNS. The mode of projection is natural because, given the fact that most cell groups migrate radially outward from their origin in the ventricular matrix to their ultimate location, we project these cell masses “back to their origin,” using a system of radially oriented vectors.

Concluding Remark

Topological maps, such as the one depicted in Figure 7, were originally designed to study the zonal arrangement of grisea in the brainstem. It should be emphasized that modified versions of such maps, in which the neuromere borders are indicated, and in which the ventricular sulcal pattern is replaced by molecularly defined longitudinal borders, provide a structural framework which reflects a richer checkerboard pattern of the fundamental morphological units alluded to above, and therewith the set of invariants, which constitutes the Bauplan or mor-
phototype of the vertebrate brainstem. Given these properties, modern maps contemplating molecular boundaries and patterns of tangential cell migration are particularly useful for the determination of the topological position of grisea, and hence for the establishment of their homology [Nieuwenhuys, 2011, 2017].

Acknowledgements

The author thanks Prof. Lawrence Bannister for critically reading this paper, Mr. Ton Put for help with the illustrations, Dr. Jenneke Kruisbrink for help with the collection of the literature, and Suzanne Bakker, MSc, for moral support and reference management.

References

Aroca P, Puelles L. Postulated boundaries and differential fate in the developing rostral hindbrain. Brain Res Brain Res Rev. 2005 Sep;49(2):179–90.
Biscotti MA, Gerdol M, Canapa A, Forconi M, Olmo E, Pallavicini A, et al. The lungfish transcriptome: a glimpse into molecular evolution events at the transition from water to land. Sci Rep. 2016 Feb;6(1):21571.
Brinkmann H, Venkatesh B, Brenner S, Meyer A. Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proc Natl Acad Sci USA. 2004 Apr;101(14):4900–5.
Cambroner F, Puelles L. Rostrocaudal nuclear relationships in the avian medulla oblongata: a fate map with quail chick chimeras. J Comp Neurol. 2000 Nov;427(4):522–45.
Chen M, Zou M, Yang L, He S. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing. PLoS One. 2012;7(4):e36256.
Gilland E, Baker R. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat (Basel). 1993;148(2-3):110–23.
González A, Northcutt RG. An immunohistochemical approach to lungfish telencephalic organization. Brain Behav Evol. 2009 Sep;74(1):43–55.
Haneman E, Trevarrow B, Metcalfe WK, Kimmel CB, Westerfield M. Segmental pattern of the development of the hindbrain and spinal cord of the zebrafish embryo. Development. 1988 May;103(1):49–58.
Heijdra YF, Nieuwenhuys R. Topological analysis of the brainstem of the bowfin, Amia calva. J Comp Neurol. 1994 Jan;339(1):12–26.
Herrick CJ. The central gustatory paths in the brains of bony fishes. J Comp Neurol Psychol. 1905;15(5):375–456.
His W. Vorschläge zur Eintheilung des Gehirns. Arch Anat Physiol, Anat Abt; 1893. pp. 172–80.
Holmgren N, van der Horst CJ. Contribution to the morphology of the brain of Ceratodus. Acta Zool. 1925;6(1-2):59–165.
Kremers JWPM, Nieuwenhuys R. Topological analysis of the brain stem of the crossopterygian fish Latimeria chalumnae. J Comp Neurol. 1979 Oct;187(3):613–37.
Kühlenbeck H II. Overall Morphological Pattern. The Central Nervous System of Vertebrates. Volume 3. Basel: Karger; 1973.
Lee J, Albuisaian J, Dores RM. Are lungfish living fossils? Observation on the evolution of the opioid/orphanin gene family. Gen Comp Endocrinol. 2006 Sep;148(3):306–14.
López JM, Domínguez L, Morona R, Northcutt RG, González A. Organization of the cholinergic systems in the brain of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct. 2012 Apr;217(2):549–76.
López JM, González A. Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct. 2015 Jan;220(1):385–405.
López JM, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017 Oct;525(14):3083–109.
López JM, González A. Immunohistochemical localization of DARPP-32 in the brain of two lungfishes: further assessment of its relationship with the dopaminergic system. Brain Behav Evol. 2017a Dec;90(4):289–310.
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: dipnoi). J Comp Neurol. 2019 Aug;527(11):1771–800.
López JM, Morona R, Moreno N, González A. 1.07 The Organization of the Central Nervous System of Lungfishes: An Immunohistochemical Approach. In: Kaas JH, editor. Evolution of Nervous Systems, 2ed. Amster-dam: Elsevier; 2017b. p. 121-39.
López JM, Morona R, Moreno N, Lozano D, Jiménez S, González A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020 Jan;528(1):135–59.
Metcalfe WK, Mendelson B, Kimmel CB. Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol. 1986 Sep;251(2):147–59.
Morona R, López JM, Northcutt RG, González A. Regional chemoarchitecture of the brain of lungfishes based on calbindin D-28K and calretinin immunohistochemistry. J Comp Neurol. 2018 Jun;526(9):1457–97.
Moy-Thomas JA, Miles RS. Palaeozoic fishes. London: Chapman and Hall; 1971. https://doi.org/10.1007/978-1-4684-6465-8.
Nieuwenhuys R. Principles of current vertebrate neuromorphology. Brain Behav Evol. 2017 Oct;90(2):117–30.
Nieuwenhuys R, Oey PL. Topological analysis of the brainstem of the reedfish, Erpetoichthys calabaricus. J Comp Neurol. 1983 Jan;213(2):220–32.
Nieuwenhuys R, Pouwels E. The brain stem of ac-tinopterygian fishes. In: Davis RE, Northcutt RG, editors. Fish Neurobiology. Ann Arbor: University of Michigan Press; 1983.
Nieuwenhuys R, Puelles L. Towards a New Neuromorphology. Heidelberg: Springer; 2016.
Nieuwenhuys R. Chondrostean Fishes. In: Nieuwenhuys R, ten Donkelaar HJ, Nicholson C, editors. The Central Nervous System of Vertebrates. Berlin, Heidelberg: Springer; 1998a. pp. 701–57.
