Robust Interpretation of User Requests for Text Retrieval in a Multimodal Environment

Alexandra Klein and Estela Puig-Waldmüller
Austrian Research Institute for Artificial Intelligence
Schottengasse 3
A-1010 Vienna, Austria
{alex, stella} @oefai.at

Harald Trost
Department of Medical Cybernetics and Artificial Intelligence, University of Vienna
Freyung 6/2
A-1010 Vienna, Austria
harald@ai.univie.ac.at

Abstract
We describe a parser for robust and flexible interpretation of user utterances in a multi-modal system for web search in newspaper databases. Users can speak or type, and they can navigate and follow links using mouse click. Language queries may combine search expressions with browser commands and search space restrictions. In interpreting input queries, the system has to be fault-tolerant to account for spontaneous speech phenomena as well as typing or speech recognition errors which often distort the meaning of the utterance and are difficult to detect and correct. We present a parser integrating shallow parsing techniques with knowledge-based text retrieval to allow for robust processing and coordination of input modes. Parsing consists of two layers: typical meta-expressions like those for search, newspaper types and dates are identified and excluded from the search string to be sent to the search engine. The search terms which are left after preprocessing are then grouped according to co-occurrence statistics which have been derived from a newspaper corpus. These co-occurrence statistics consist of typical noun phrases as they appear in newspaper texts.

1 Introduction

In this paper we describe a parser for robust and flexible interpretation of user utterances in a web-based multi-modal text retrieving system. The parser forms part of a system for web search in Austrian newspaper databases. In this system users can formulate queries or navigation commands using utterances in both spontaneous spoken or written language, and they can navigate and follow links using mouse click. Users are completely free in formulating their utterances and in their use and combination of the input modes. Typed and spoken utterances may combine query expressions with browser commands and search space restrictions. Users may search for texts with a specific date or in a specific newspaper or in a specific section of a newspaper. They may give complex context descriptions of the texts and they may refer to texts which were found previously. A dialogue manager stores actions and results from previous states and supplements information to construct fully specified formal queries from user requests.

In order to allow for this freedom in user behaviour, flexible processing modules are needed. For every utterance, the parser (and, finally, the dialogue manager) must come up with an adequate interpretation. At the same time, in interpreting the input, it has to be robust and fault-tolerant. It has to cope with typical phenomena of spontaneous speech like hesitation, correction and repetition. There may be typos in written input or - even more difficult to deal with - speech recognition errors from the spoken queries. Such errors often distort the meaning of the utterance and are difficult to detect and correct.

In our interpretation component shallow parsing techniques and knowledge-based text retrieval methods are combined to allow for robust processing and coordination of input modes. We employ a two-layered approach. The first layer serves to separate structure from content, i.e., parts of utterances referring to browser commands and search restrictions (temporal expressions, newspaper types or sections) are analyzed with a combination of keyword spotting and pattern recognition. The underlying assumption is that users will restrict themselves to a rather small vocabulary and a limited range of expressions in expressing this sort of information. This assumption is also confirmed by our Wizard-of-Oz experiments. During this process, stop words (function words and other words typically not contributing to the content of the query) are also removed. The remaining words –which are taken to describe the search content– are then grouped ac-
cording to co-occurrence statistics which have been derived from a newspaper corpus. While text retrieval with the help of linguistic processing has become fairly common, multimodal interaction with textual databases on the web is a fairly recent application of Natural Language Processing. Experience from text retrieval shows that most information is expressed in adjective-noun, noun-preposition-noun, and noun-verb groups (see, e.g. Grefenstette (1992)). In our specific domain the third type can be neglected, because verbs typically denote the action —mostly search— which is already extracted in the first layer. Thus, co-occurrence statistics consist of typical noun phrases as they appear in newspaper texts.

2 Empirical evidence and user experiments

In order to assess user behaviour, we carried out Wizard-of-Oz experiments (Fraser and Gilbert, 1991). Speech recognition and text retrieval were simulated. In different sessions the users interacted with a number of versions of the system: single input mode versions and versions with combinations of input modes. Their performance in terms of number of interactions as well as task completion time was measured, and their comments regarding the interface and the (simulated) system were collected in a questionnaire. Users were grouped according to previous experience with search engines an the web in general. Our results show that both, beginners and advanced users, preferred multimodal interaction over single input modes, and beginners in particular were able to speed up task completion times significantly with the help of a combination of spoken and written input with mouse clicks (Klein et al., 2001).

From these experiments, we also obtained a corpus of written and spoken utterances which were considered in the further design of the system. The queries which were posed by the users in spoken language were recorded. The recorded utterances were later read to a speech recognition system. This gave an impression of the number and type of errors to be expected in dealing with queries in spontaneous speech.

3 The First Layer: Structuring the Input Query

As mentioned in the introduction, user utterances are first analyzed for parts referring to structure. Within our web queries may relate to the way some particular piece of information is presented and connected (e.g. the browser’s history about the accessed pages), and to what this information refers to (e.g. the section a search string belongs to). Utterances may also express browser commands or a combination of browser commands and query (e.g., zurück zum Artikel über Argentinien (back to the text about Argentina)).

To successfully interpret such an utterance one needs to analyze its structure to find out which of these command modes the utterance can be assigned to. This is done in a two-step process. First, each word is looked up in a lexicon and assigned a semantic category. Then, certain rules are applied to strings of these semantic categories. As a result, commands and search restrictions are recognized and the rest of the utterance is passed to search expression interpretation.

We will now describe in more detail how the user’s input is parsed within the Natural Language Interface, and structured into either search patterns - consisting of search strings, sections, dates and timeranges, that are understood by the query engine of the newspaper - or Java browser commands.

Structure is analyzed by a flexible bottom-up parser using a rule-based mechanism with simple syntactic patterns. The aim is a shallow analysis tolerating dialogue and application specific properties (see, e.g. Winiwarter (1993)). Application specific properties are occurrences of words with typing or speech recognition errors that - though ungrammatical - fit in semantically (e.g. with wrong case endings, wrong uppercase/lowercase; example: ich Suche etwas im der gestrige Zeitungen). Dialogue specific are speech phenomena alike garden path sentences, self-correction (example: ich will suche alles über die Biennale), elliptical constructions and topicalization (example: zu Argentinien zurück). Last but not least one is also confronted with discourse particles, filler words and hesitation markers (example: genau ja ah jetzt was neues suchen).

3.1 Keyword Spotting and Lexical Look-Up

After reading in the user’s query input, each word of the utterance is looked up in a lexicon and - if found - assigned a corresponding semantic category. This lexicon contains a small list of semantic categories, that we consider important for the interpretation of an utterance in the domain of searching articles and browsing. For instance, both Suche (search, n.) and
Informationen (informations) are represented by the same category search_expr. A closed category like an adjective or a preposition directing into the past is interpreted by direct_p, i.e. we would use the same expression when interpreting the last week and previously accessed web pages. The lexicon assigns semantic classes for closed categories that are:

- expressions indicating something new:
 new_search
- adjectives and adverbs indicating direction in time or space: direct_p, direct_n, direct_c
- adverbs and connectives indicating constraints on search mode: context_mod_und, context_mod_oder, context_mod_nur
- nouns denoting search, newspaper or section:
 zeitung_expr, ressort_expr, search_expr, search_string
- nouns expressing a specific section: ressort_X (for X = Kultur, Ausland, Wissenschaft,...)
- temporal expressions and temporal prepositions:
 time(1d,TT.MM.JJJJ),
 time(-1w,TT.MM.JJJJ),
 time(-1y,TT.MM.JJJJ), 'seit', 'von'
- stop words: nihil_expr

To avoid giving too much weight on small words (function words, frequent verbs, etc.) which neither improve search results or could be the result of improper insertion during speech recognition, we treat them as stop words (nihil_expr) and ignore them. Words that are not in the lexicon are taken as actual search strings for the subsequent database query. They are translated into 'search_string + SEARCHSTRING + search_string', such that rules can be applied lateron.

Take, for instance, the input phrase Ich suche irgend etwas über Argentinien im Auslandsteil, am besten von gestern (I am searching something about Argentina within the foreign section, preferably of yesterday)). All words found within the lexicon, are replaced by their semantic class, search expressions are marked as such, the stop words are deleted. This leads to the following - intermediate - parsing result:

`search_expr search_string über search_string search_string Argentinien search_string ressort_Ausland 'von' time(-1d,TT.MM.JJJJ)`.

3.2 Pattern Matching

Certain patterns of semantic classes which we obtain through lexical look-up, can be assigned a new meaning via rules. So, by composing the individual meanings another more abstract meaning is defined. The result of this process is a list of chunks\(^1\), where stress is laid on the content words. The advantage of concentrating on chunks is especially within German, a language with a relative free word order, that the order in which chunks occur is much more flexible than the order of words within chunks (see Abney (1991)). This approach might be too shallow for the analysis of deeper semantics, but is sufficient for our needs.

To overcome ambiguities and avoid potential rule conflicts, rules with a greater length have a higher priority and are thus preferred, such that zurück zum Sport (back to sports) would win over zurück (back). What is still missing is an extended pattern for self-correction, where e.g. the modifier inside the proposition is replaced with the one uttered after the correction marker.

After pattern matching and rule application we get the meaning of the user’s utterance as the sum of the lengths of the component analyses (see, e.g. Robust Semantic Parsing in Worm (1998)). The best sequence of analysis is then delivered to the control module, that is able to include its knowledge about previous searches (see Chapter 4.3).

The outcome - or left-hand side - of a rule-based simplification can be divided into:

- **Browser commands**
 - go to next page:
 history-h(+1) =>
 direct_n
 - delete all contexts, and start a new search:
 new_search =>
 new_search, search_expr

- **Content queries**
 - exclude the following expression:
 'und nicht' =>
 context_mod_und_nicht,
 search_expr

\(^1\) According to Abney (1991) a chunk is defined in terms of major heads where a major head is any content word that does not appear between a function word f and the content word f selects, OR a pronoun selected by a preposition. Further The typical chunk consists of a single content word surrounded by a constellation of function words, matching a fixed template.
search only within issues from last week:
time(-1w,TT.MM.JJJJ) =>
time(-1w,TT.MM.JJJJ),
zeitung_expr

- Combined commands
 - go to previous search containing "SEARCH-STRING":
 history_s(-1), SEARCHSTRING,
 search_string =>
direct_p, search_expr,
 search_string, SEARCHSTRING,
 search_string
 - stay within current section:
 history-r() =>
direct_c, ressort_expr

If no rules can be applied to a semantic class it will be ignored within the final interpretation, so the final parsing result of the example will be: über Argentinien ressort_Ausland time(-1d,TT.MM.JJJJ)’. This means, that the user uttered a content query, and searched for one search string with two optional arguments, namely the section’s name and the date of the issue.

Summing up the process of the structure analysis, the partial analyses are stored, a sequence of partial analyses from the set of rules is chosen, and then combined to yield bigger structures.

4 The Second Layer: Keyword extraction for search

After having extracted structure analysis the content of the query must be analyzed in more detail, whereas search strings with low co-occurrences are filtered out. Chapter 4 will explain how content analysis is done in our application.

4.1 Extraction of adjective noun/proper name pairs

From a corpus of Austrian newspaper texts, adjective-noun and adjective proper name pairs were extracted and counted. These pairs were stored and consulted in query interpretation. Since the texts are tagged manually, the lists of adjectives and nouns/proper names contain a considerable number of errors. Therefore it is necessary to use large amounts of text; it may even be useful to eventually introduce a threshold so that only adjective-noun/proper name pairs which appear more than once or a certain number of times are considered. This of course can not prevent systematic tagging errors.

A robust stemming algorithm maps all adjective-noun/proper name pairs to an approximate ‘stem’, thus eliminating flectional forms which result in morphological variation which is typical for the German language. For the purpose of creating a repository of co-occurrence pairs, we do not care about proper stemming. Rather, it is our aim to map various inflectional forms onto one base form.

Spelling variations, numbers etc. are smoothed as far as it is possible in automatic processing. For example, ordinal numbers which are labelled as adjectives are reduced to a placeholder for numbers.

4.2 Identification of Keywords for Search

Whenever a word is encountered in processing which can be considered an adjective, it is kept. Whenever the following word may be a noun or a proper name, it is checked whether the adjective-noun/proper name combination is contained in the repository of adjective-noun/proper name combinations which has previously been extracted from a corpus. If the adjective-noun/proper name combination is found, it is passed on to the search engine as a query. Whenever the combination has not occurred in the corpus, only the noun or proper name is considered a key word.

Again, inflectional variations as well as different spellings etc. are mapped onto base forms as far as possible. The same stemming algorithm is used which was employed in creating the repository of adjective-noun/proper name pairs. The robust (and rough) stemming and categorization algorithms produce a certain amount of mistakes in the lists of pairs as well as in the mapping process, but taking into account larger text corpora evens out these problems the more text is processed.

Our approach distinguishes noun phrases which have a record of co-occurrence from noun phrases which may be spontaneous expressions or modifications or even errors created by users. For example, the phrase europäische Staaten would be retained while beteiligte Staaten would be reduced to the noun. Some adjective used in search expressions serve to qualify the global search expression rather than the noun or proper name in question. For example, a search for yesterday’s speech would only yield articles about this particular speech.

4.3 Control module and Http Request

The results of these rule-based transformations have to be handed over to the control module. These include either commands understood by the Java
browser (go back, forward, new search) or search patterns involving the search string(s), the date or time range of the issued article, and the preferred section. The control module compares these results with the searching and browsing history. The browser's history includes information about all accessed pages, whether the user has accessed them by spoken, typed or mouse-click commands. Those commands, that either are incomplete or impossible in the given context, are ignored and rejected. A powerful interaction control is necessary in order to recognize the user’s intent by comparing it to what the system knows about the addressed entities and their relation to each other as well as to the data which are accessible at the specific moment in the interaction.

After the command has been passed by the control module, it is either executed by the Java browser or translated into a GET method through an Http request to the newspaper’s archive database. The resulting articles are displayed in the Java browser, another search can be started by the user.

5 Conclusion

We have presented an interpretation component for natural language user input in a web-based multimodal text retrieval system. By applying well-known and simple methods from shallow parsing and knowledge-based text retrieval and integrating them in a novel way we have succeeded in creating a robust, flexible and efficient parser for our application.

Crucial for our application is the distinction between those parts of utterances relating to structure and those relating to content. This is achieved by taking advantage of the fact that only a limited vocabulary and set of expressions are used for the former. This allows us to employ simple rule-based techniques for their interpretation. The identification of the content on the other hand is done with the help of a co-occurrence repository, at the moment consisting of adjective-noun/proper name pairs. In the future we will have to investigate whether search results can be improved by inserting other combinations, like noun-preposition-noun triples.

Acknowledgements

This work was supported by the Austrian Science Fund (FWF) under project number P-13704. Financial support for ÖFAI is provided by the Austrian Federal Ministry of Education, Science and Culture.

References

Steven Abney. 1991. Parsing by chunks. In Robert Berwick, Steven Abney, and Carol Tenny, editors, Principle-Based Parsing, Tübingen (Germany). Kluwer Academic Publishers.

Norman M. Fraser and G. Nigel Gilbert. 1991. Simulating speech systems. Computer Speech and Language, 5(1):81–99.

Gregory Grefenstette. 1992. Use of Syntactic Context to Produce Term Association Lists for Text Retrieval. In N.J. Belkin, P. Ingwersen, and A.M. Pejtersen, editors, Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 89–97, Copenhagen: Denmark. ACM Press.

Alexandra Klein, Ingrid Schwank, Michel Généreux, and Harald Trost. 2001. Evaluating Multimodal Input Modes in a Wizard-of-Oz Study for the Domain of Web Search. In Ann Blandford, Jean Vanderdonckt, and Phil Gray, editors, People and Computer XV – Interaction without Frontiers: Joint Proceedings of HCI 2001 and IHM 2001, pages 475–483. Springer: London, September.

Werner Winiwarter. 1993. Syntactic analysis for natural language interfaces - the integrated deductive approach. Proc. of the Workshop on Natural Language Processing at the 1993 Australian Joint Conference on Artificial Intelligence, Melbourne, Australia, Nov.

Karsten L. Worm. 1998. A model for robust processing of spontaneous speech by integrating visible fragments. Technical Report Report 223, Universität des Saarlandes, Mai.