Glimpse of the highly obscured HMXB
IGR J16318–4848 with Hitomi *

Hitomi Collaboration, Felix AHARONIAN1, Hiroki AKAMATSU2, Fumie AKIMOTO3, Steven W. ALLEN4,5,6, Lorella ANGELINI7, Marc AUDARD8, Hisamitsu AWAKI9, Magnus AXELSSON10, Aya BAMBA11,12, Marshall W. BAUTZ13, Roger BLANDFORD4,5,6, Laura W. BRENNEMAN14, Gregory V. BROWN15, Esra BULBUL13, Edward M. CACKETT16, Maria CHERNYAKOVA1, Meng P. CHIAO7, Paolo S. COPPI17,18, Elisa COSTANTINI2, Jelle DE PLAAY2, Cor P. DE VRIES2, Jan-Willem DEN HERDER2, Chris DONE19, Tadayasu DOTANI20, Ken EBISAWA20, Megan E. ECKART7, Teruaki ENOTO21,22, Yuichiro EZOE23, Andrew C. FABIAN24, Carlo FERRIGNO8, Adam R. FOSTER14, Ryuichi FUJIMOTO25, Yasushi FUKAZAWA26, Akihiro FURUZAWA27, Massimiliano GALEAZZI28, Luigi C. GALLO29, Poshak GANDHI30, Margherita GIUSTINI2, Andrea GOLDWURM31,32, Liyi GU2, Matteo GUIAINAZZI33, Yoshito HABA34, Kouichi HAGINO20, Kenji HAMAGUCHI7,35, Ilana M. HARRUS7,35, Isamu HATSUKADE36, Katsushi HAYASHI20, Takayuki HAYASHI37, Kiyoshi HAYASHIDA38, Junko S. HIRAGA39, Ann HORNSCHEMIEIER7, Akio HOSHINO40, John P. HUGHES41, Yuto ICHINOHE23, Ryo IIZUKA20, Hajime INOUE42, Yoshiyuki INOUE20, Manabu ISHIDA20, Kumi ISHIKAWA20, Yoshitaka ISHISAKI33, Masachika IWAI20, Jelle KAASTRA2,43, Tim KALLMAN7, Tsuneyoshi KAMEI11, Jun KATAOKA44, Satoru KATSUDA45, Nobuyuki KAWAI46, Richard L. KELLEY7, Caroline A. KILBOURNE7, Takao KITAGUCHI26, Shunji KITAMOTO40, Tetsu KITAYAMA47, Takayoshi KOHMURA48, Motohide KOKUBUN20, Katsuji KOYAMA49, Shu KOYAMA20, Peter KRETSCMAR50, Hans A. KRIMM51,52, Aya KUBOTA53, Hideyo KUNIEDA37, Philippe LAURENT31,32, Shiu-Hang LEE21, Maurice A. LEUTENEGGER3, Olivier O. LIMOUSIN32, Michael LOEWENSTEIN7, Knox S. LONG43, David LUMB33, Greg MADEJSKI4, Yoshitomo MAEDA20, Daniel MAIER31,32, Kazuo MAKISHIMA55, Maxim MARKEVITCH7, Hironori MATSUMOTO38, Kyoko MATSUHITA56, Dan McCAMMON57, Brian R. McNAMARA58, Missagh MEHDIPOUR2, Eric D. MILLER13, Jon M. MILLER59, Shin MINESHIGE21, Kazuhiro MITSUDA20, Ikuyuki MITSUISHI37, Takeya MIYAZAWA60, Tsunefumi MIZUNO26, Hideyuki MORI7, Koji MORI36, Koji MUKAI7,35, Hiroshi MURAKAMI61, Richard F. MUSCHOTZKY62, Takao NAKAGAWA20, Hiroshi NAKAJIMA38, Takeshi NAKAMORI63, Shinya NAKASHIMA55, Kazuhiro NAKAZAWA11, Kumiko K. NOBUKAWA64, Masayoshi NOBUKAWA65, Hirofumi NODA66,67, Hirokazu ODAKA4, Takaya OHASHI23, Masanori OHNO26, Takashi OKAJIMA7, Naomi OTA64, Masanobu OZAKI20, Frits PAERELS68, Stéphane PALTANI8, Robert PETRE7, Ciro PINTO24,
Frederick S. PORTER, Katja POTTSCHEIDT, Christopher S. REYNOLDS, Samar SAFI-HARB, Shinya SAITO, Kazuhiro SAKAI, Toru SASAKI, Goro SATO, Kosuke SATO, Rie SATO, Makoto SAWADA, Norbert SCHARTEL, Peter J. SERLEMITSOS, Hiromi SETA, Megumi SHIDATSU, Aurora SIMIONESCU, Randall K. SMITH, Yang SOON, Łukasz STAWARZ, Yasuharu SUGAWARA, Satoshi SUGITA, Andrew SZYMKOWIAK, Hiroyasu TAJIMA, Hiromitsu TAKAHASHI, Tadayuki TAKAHASHI, Shinichi TAKEDA, Yoh TAKEI, Toru TAMAGAWA, Takayuki TAMURA, Takaaki TANAKA, Yasuo TANAKA, Yasuyuki TANAKA, Makoto TASHIRO, Yuzuru TAWARA, Yukikatsu TERADA, Yuichi TERASHIMA, Francesco TOMBESI, Hiroshi TOMIDA, Yohko TSUBOI, Masahiro TSUJIMOTO, Hiroshi TSUNEMI, Takeshi Go TSURU, Hiroyuki UCHIDA, Hideki UCHIYAMA, Yasunobu UCHIYAMA, Shutaro UEDA, Yoshihiro UEDA, Shinichiro UNO, C. Megan URRY, Eugenio URSINO, Shin WATANABE, Norbert WERNER, Dan R. WILKINS, Brian J. WILLIAMS, Shinya YAMADA, Hiroya YAMAGUCHI, Kazutaka YAMAOKA, Noriko Y. Yamasaki, Makoto YAMACHI, Shigeo YAMAUCHI, Tahir YAQOOB, Yoichi YATSU, Daisuke YONETOKU, Irina ZHURAVLEVA, Abderahmen ZOGHBI, Nozomi NAKANIWA.

1 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
2 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands
3 Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601
4 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
5 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
6 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
7 NASA, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA
8 Department of Astronomy, University of Geneva, ch. d’Écogia 16, CH-1290 Versoix, Switzerland
9 Department of Physics, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577
10 Department of Physics and Oskar Klein Center, Stockholm University, 106 91 Stockholm, Sweden
11 Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
12 Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
13 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
14 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
15 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
16 Department of Physics and Astronomy, Wayne State University, 666 W. Hancock St, Detroit, MI 48201, USA
17 Department of Physics, Yale University, New Haven, CT 06520-8120, USA
18 Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA
19 Centre for Extragalactic Astronomy, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, UK
21046, USA
52 National Science Foundation, 4201 Wilson Blvd, Arlington, VA 22230, USA
53 Department of Electronic Information Systems, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama, Saitama 337-8570
54 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
55 Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198
56 Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
57 Department of Physics, University of Wisconsin, Madison, WI 53706, USA
58 Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
59 Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109, USA
60 Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son Okinawa, 904-0495
61 Faculty of Liberal Arts, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193
62 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
63 Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560
64 Department of Physics, Nara Women's University, Kitauoyanishi-machi, Nara, Nara 630-8506
65 Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, Nara 630-8528
66 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8578
67 Astronomical Institute, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8578
68 Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA
69 Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
70 Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258
71 Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland
72 Max Planck Institute for extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany
73 Department of Physics, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570
74 Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529
75 Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashi Haemi-cho, Handa, Aichi 475-0012
76 MTA-Eötvös University Lendület Hot Universe Research Group, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
77 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk
Abstract

We report a Hitomi observation of IGR J16318–4848, a high-mass X-ray binary system with an extremely strong absorption of \(N_{\text{H}} \sim 10^{24} \) cm\(^{-2} \). Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well as continuum emission. For physical and geometrical insight into the nature of the reprocessing material, we utilize the high spectroscopic resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer; SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and HXI) aboard Hitomi. Even though photon counts are limited due to unintended off-axis pointing, the SXS spectrum resolves Fe K\(\alpha_1 \) and K\(\alpha_2 \) lines and puts strong constraints on the line centroid and width. The line width corresponds to the velocity of \(160^{+300}_{-70} \) km s\(^{-1} \). This represents the most accurate, and smallest, width measurement of this line made so far from any X-ray binary, much less than the Doppler broadening and shift expected from speeds which are characteristic of similar systems. Combined with the K-shell edge energy measured by the SXI and HXI spectra, the ionization state of Fe is estimated to be in the range of Fe I–IV. Considering the estimated ionization parameter and the distance between the X-ray source and the absorber, the density and thickness of the materials are estimated. The extraordinarily strong absorption and the absence of a Compton shoulder component is confirmed. These characteristics suggest reprocessing materials which are distributed in a narrow solid angle or scattering primarily with warm free electrons or neutral hydrogen. This measurement was achieved using the SXS detection of 19 photons. This provides strong motivation for follow-up observations of this and other X-ray binaries using the X-ray Astrophysics Recovery Mission, and other comparable future instruments.

Key words: Stars: individual: IGR J16318-4848 — binaries: general — X-rays: binaries

1 Introduction

High-mass X-ray binaries (HMXBs) consist of a compact object (neutron star or black hole candidate) and a massive companion star that is typically a Be star or a supergiant O or B type star. HXMBs with Be companions often show periodic variability in X-ray flux when the compact object passes through a circumstellar decretion disk surrounding the star. Supergiant HMXBs exhibit X-ray time variability associated with eclipse, or partial eclipse, of the compact object by the companion star.

In addition to the comprehensive catalog of the galactic HMXBs by Liu et al. (2006), a recent deep survey in the hard X-ray and soft gamma-ray band performed by IBIS/ISGRI (Ubertini et al. 2003; Lebrun et al. 2003) onboard International Gamma-Ray Astrophysics Laboratory (INTEGRAL) (Winkler et al. 2003) has discovered a considerable number of HMXBs that are summarized in a catalog by Krivonos et al. (2017). More than half exhibit persistent time variability in the hard X-ray band (Lutovinov et al. 2013). One of the highlights of the survey is the discovery of a number of HMXBs that exhibit extraordinarily strong absorption with their distribution in the galaxy correlating with that of star forming regions (Bodaghee et al. 2012; Coleiro and Chaty 2013). IGR J16318–4848 (hereafter IGR J16318) was the first discovered and remains the most extreme example of such objects.

IGR J16318 was discovered in the scanning observation of the Galactic plane by the INTEGRAL/IBIS/ISGRI (Courvoisier et al. 2003; Walter et al. 2003). Examination of archival ASCA data revealed extremely strong X-ray absorption toward the direction of the source (Murakami et al. 2003). The X-ray spectrum is dominated by Fe K\(\alpha \), K\(\beta \), and Ni K\(\alpha \) fluorescence emission lines and continuum (Matt and Guainazzi 2003; Revnivtsev 2003). The fluorescence lines as well as the continuum vary on time scales of thousands of seconds, corresponding to an upper limit on the emitting region size approximately \(10^{13} \) cm (Walter et al. 2003).

The optical/near-infrared (NIR) counterpart exhibits less absorption than that measured in the X-ray band, which implies...
that the absorbing material is concentrated around the compact object (Filliatre and Chaty 2004; Lutovinov et al. 2005). The NIR spectroscopy suggests that the counterpart is a supergiant B[e] star (Filliatre and Chaty 2004) based on the detection of forbidden lines of Fe. Such stars are also known to contain dust in their envelopes (Miroshnichenko 2007); a mid-infrared observation revealed that it is surrounded by dust and cold gas with a heated inner rim (Chaty and Rahoui 2012). The distance to the target was derived by Filliatre and Chaty (2004) based on fitting of the optical/NIR spectral energy distribution (SED) fitting to be 0.9–6.2 kpc. Rahoui et al. (2008) performed SED fitting from optical to mid-infrared band, and utilizing the known stellar classification of the companion star obtained a distance of 1.6 kpc.

Long term monitoring of the hard X-ray flux with Swift/BAT shows a periodicity of ~ 0.8 d (Jain et al. 2009; Iyer and Paul 2017). Although the companion star belongs to the spectral type of B[e], there is no obvious coincidence between numbers of outbursts and orbital phase (Jain et al. 2009). Monitoring in the soft and hard X-ray band shows that the source is always bright with flux dynamic range of a factor 5 and Compton thick ($N_{\text{H}} \geq 1.1 \times 10^{24}$ cm$^{-2}$) (Barragan et al. 2010). The statistically best spectrum obtained with Suzaku (Mitsuda et al. 2007) shows no Compton shoulder, which implies a non-spherical and inhomogeneous absorber (Barragan et al. 2009). The average X-ray spectrum of the source exhibits a continuum typical for neutron stars (Walter et al. 2004). Moreover, the source shows disagreement in its X-ray/radio flux relationship with that observed in the low/hard state of black hole binaries (Filliatre and Chaty 2004). Nevertheless, the nature of the compact source (neutron star or black hole candidate) is uncertain because pulsations have not been detected.

Hitomi, the Japan-led X-ray astronomy satellite (Takahashi et al. 2017), carried a microcalorimeter array (SXS; soft X-ray spectrometer) (Kelley et al. 2017) which had outstanding energy resolution in the energy band containing the Fe K-shell lines. Combined with an X-ray CCD camera (SXI; soft X-ray imager) (Tanaka et al. 2017) and a hard X-ray imager (HXI) (Nakazawa et al. 2017), it provided unprecedented wide-band imaging spectroscopy. Hitomi was lost due to an accident a month after the launch. The observation of IGR J16318 was performed during the instrument check-out phase to demonstrate the spectroscopic performance of Hitomi. In spite of offset pointing during the observation due to incomplete attitude calibration, it is possible to extract significant scientific results from the limited data.

In the remainder of this paper, we first describe the observation log including some notes on the data reduction in section 2. The imaging and spectroscopic analyses (section 3) are followed by the discussion (section 4) and summary (section 5). Measurement errors correspond to the 90 % confidence level, unless otherwise indicated.

2 Observation and data reduction

2.1 Observation

Pointing toward IGR J16318 started on 22:28 10th March 2016 UT and ended on 16:20 14th March 2016 UT. While the SXS and SXI were already in operation, the HXI was undergoing the startup procedure of one of the two sensors (HXI-1). Because the observation was performed before optimizing the alignment matrices of star trackers (STT1 and STT2), the target was at off-axis positions throughout the observation. The off-axis angle was 5° according to the SXI image after the switch of the STT from STT1 to STT2 on 17:58 13th March, which limit the effective area of all the instruments. The fields of view (FoV) of the SXS and HXI are $3/05$ and $9/2$ square, respectively. Therefore only the SXI caught the target securely within its FoV thanks to its large FoV of 38° square (Nakajima 2017).

The microcalorimeter array in the SXS was already in thermal equilibrium at the time of our observation (Fujimoto et al. 2016; Noda et al. 2016). The energy resolution of the onboard radioactive 55Fe source was 4.9 eV full width half maximum (FWHM) as reported by Leutenegger et al. (2017). However, the SXS was not in the normal operation mode in terms of some calibration items as follows. The gate valve was still closed and hence the effective area in the soft energy band was limited. The Modulated X-ray Source (MXS; de Vries et al. 2017) was also not yet available for contemporaneous gain measurement, which forces us to estimate the gain uncertainty only by onboard radioactive 55Fe sources.

The SXI was in normal operation with the “Full Window + No Burst” mode (Tanaka et al. 2017). Temperature of the CCDs was already stable at -110°C at the time of the exposure (Nakajima et al. 2017). The observation was carried out before optimizing the parameters for the dark level calculation and hence the SXI suffered from a cross-talk issue. That is, an anomalously low dark level can be induced in a pixel by a charged particle event in the adjacent segment. The dark level leads to continuous false events in the pixel and the erroneously higher pulse heights for the normal events around the pixel. To minimize the effect of the cross-talk issue, the lower threshold of the effective energy band was set to be 100 ch, which corresponds to 600 eV.

The HXI-1 completed its startup procedure and started observation on 21:30 12th March UT. The target came at the edge of the HXI-1 FoV after the switch of the STT. Another sensor HXI-2 was still undergoing increasing of the high voltage for the Si/CdTe double-sided strip detectors.
2.2 Data reduction

Hereafter, we concentrate on the data after the STT switch because event files of all the three instruments are available in the interval. We utilize the data cleaned and processed with a script version 03.01.005.005. All the reduction and analyses below employ the Hitomi software version 5b and the calibration database released on 11th May 2017 (Angelini et al. 2017) \(^1\). The effective exposure times of the SXI, SXS, and HXI-1 are 39.4, 68.9, and 39.4 ks, respectively, after the data reduction.

2.2.1 SXS

Owing to the shape of the point spread function (PSF) of the soft X-ray telescope (SXT-S; Maeda et al. 2017), some photons from the target reached the SXS in spite of the off-axis pointing. Furthermore, there was a wobble of the satellite at the beginning of the observation, so that the optical axis of the SXT-S temporarily approached the target direction. Then a part of the FoV of the SXS overlapped with a photon extracting region for the SXI as shown in figure 1 top panel.

To retrieve photons from the target during the wobbling, we relax the standard screening criteria for the angular distance between the actual pointing and the mean pointing position \((\text{ANG_DIST})\) from 1.5' to 4.0'. Besides the grade filtering in the standard screening, events flagged due to close proximity in time of 0.72 ms to other events are additionally filtered.

Figure 2 shows light curves around Fe Kα line, wide energy band as well as the history of the \(\text{ANG_DIST}\). The events concentrate around the time of the wobbling in both energy bands. There is no bright celestial target around the direction where the satellite pointed at this time. No background flare events can be seen for other instruments around this time. Figure 1 bottom panel shows the spatial distribution of the events in the energy band from 6.38 to 6.42 keV. The 19 events spatially concentrate toward the target position. This provides strong indication that these events originate from the target.

2.2.2 SXI and HXI

With regard to the SXI data, false events originating from the cross talk issue are eliminated with the parameters in \texttt{sxipipeline} set as follows: \(N_{\text{min}}\) of 6, \(PHA_{sp}\) of 15, and \(R\) of 0.7 (Nakajima et al. 2017). The SXI also suffers from a light leak due to optical/infrared light primarily when the minus Z axis of the spacecraft points to the day earth (MZDYE). Although our observation was free from the MZDYE periods, there was another moderate light leak during the sun illumination of the spacecraft. We also see possible charges left inside the CCDs after the passage of the South Atlantic Anomaly (SAA) as described in Nakajima et al. (2017). The pulse heights of the events detected around the physical edge of the CCDs are weakly affected by these issues. The target was always near the

\(^1\) https://heasarc.gsfc.nasa.gov/docs/hitomi/calib/
physical edge of the CCD1 during the exposure. To minimize the effect of these problems, we choose only the data during the eclipse of the spacecraft and when the time after the passage of the SAA is larger than 1800 s (Nakajima et al. 2017). The pile-up fraction is estimated using pileupstat and the results is below 0.7% with a grade migration parameter of 0.1.

No additional filtering is applied to the HXI-1 cleaned event files.

3 Analyses

All the spectral analyses described below are performed using XSPEC v12.9.0u (Arnaud 1996). We adopt the spectral model tbvarabs for the photoelectric absorption using the interstellar medium abundances described in Wilms et al. (2000).

3.1 SXS Spectral Analysis

The spectrum obtained with the SXS in the 2–12 keV band is shown in the top panel of figure 3. The events are summed over all the 35 pixels and their total number is 752. The concentrations of events near 5.9, 9.7 and 11.5 keV originate from the instrumental background lines of Mn Kα, Au Lα and Lβ, respectively. Due to the limited statistics of the events, we focus on the spectral analysis around a peak at 6.4 keV that is magnified in the bottom panel of figure 3. Most of the events fall within 6.39–6.41 keV and the primary peak is slightly above 6.40 keV. This distribution corresponds to the Fe Kα1 and Kα2 lines.

We estimate the number of non-X-ray background (NXB) events (Kilbourne et al. 2017) included in the 6.4 keV line utilizing axanxgen. This tool considers the magnetic cut-off rigidity (COR) weighting of the observation and extract events with identical filtering as the source data from the SXS archive NXB event file. Because the events in the energy band of 6.38–6.42 keV are detected in the specific pixels as shown in the bottom panel of figure 1, we only consider those pixels to calculate the NXB. The estimated NXB spectrum is overlaid on the source spectrum in the bottom panel of figure 3. The expected number of NXB counts in 6.38–6.42 keV range is less than 2 when we assume the same exposure time as the target.

The Kα line centroid near 6.4 keV implies neutral or near-neutral ionization state of Fe. If so, the line should be modeled with Lorentzian functions (Agarwal 1979) that analytically represent the natural shape of an emission line. It is well known that the Kα lines of the 3d transition metals are highly asymmetric. Höfler et al. (1997) applied seven Lorentzians to accurately represent the asymmetric Kα line from neutral Fe. We assume the near-neutral state and then adopt the best-fit parameters in Höfler et al. (1997), which will be justified in section 4. The NXB spectrum is represented using a power-law model with its index fixed to zero. The power-law component is also included to the source spectrum with its parameters linked between the source and background. We set the following four parameters to be free: the energy at the maximum of the primary Lorentzian (α11 in Table II in Höfler et al. (1997)), its width, the normalization factor commonly multiplied to all the seven Lorentzians, and the flux of the power-law component.

The relative energy at the maximum of each Lorentzian is fixed as well as the relative width and amplitude. The continuum emissions from the target and the cosmic X-ray background are ignored from the statistical point of view. We adopt c-statistics (Cash 1979) for the spectral fitting. The original 0.5 eV per bin source and background spectra are fitted while the binned spectra are shown in figure 3 for display purposes. The best-fit energy at the maximum of the primary Lorentzian is 6405.4 eV and its width is 3.5 eV (FWHM). This yields the Fe Kα1 line centroid of 6404.3 eV, a value which is remarkably similar with that of neutral Fe (6403.1 eV) measured by Höfler et al. (1997).

To investigate the probability distribution function in the parameter space, we performed Markov Chain Monte Carlo simulations within XSPEC. We adopt a proposal distribution of a Gaussian for the chain with a length of 10^5. Considering the distribution, the energy at the maximum of the primary component and its width are estimated to be $6405.4^{+2.4}_{-2.5}$ eV and $3.5^{+0.4}_{-1.6}$ eV, respectively. The best-fit parameters for the spectral fit are summarized in Table 1. This is the first observational result resolving Fe Kα1 and Kα2 lines for X-ray binary systems, which demonstrates the superb energy resolution of the microcalorimeter.

The accuracy of the energy scale of the SXS is affected by the instrumental gain uncertainty. There had been no
Table 1. Best-fit parameters for the SXS spectrum.

Parameter	Value
$E_{\alpha_{11}}$ (eV)	6405.4±
$\sigma_{\alpha_{11}}$ (FWHM in eV)	3.5±
$I_{\alpha_{11}}$ (10^{-4} cm$^{-2}$ s$^{-1}$)	2.4
Γ	0 (fixed)
A (10^{-3} cm$^{-2}$ s$^{-1}$)	1.6
C-stat (d.o.f.)	131.7 (234)

* Energy at the maximum of the primary Lorentzian (α_{11} in Table II in Hölzer et al. (1997)).
† See text for a discussion of the probability distributions for $E_{\alpha_{11}}$ and $\sigma_{\alpha_{11}}$.

on-orbit full-array gain calibration before the observation of IGR J16318. A later calibration using the filter-wheel 55Fe sources was carried out after changing several cooler power settings (Eckart et al. in preparation). Because the MXS was not yet available, a dedicated calibration pixel that was located outside of the aperture and continuously illuminated by a collimated 55Fe source served as the only contemporaneous energy-scale reference. The time-dependent scaling required to correct the gain was applied to each pixel in the array. It was known prior to launch that the time-dependent gain-correction function for the calibration pixel generally did not adequately correct the energy scale of the array pixels. The relationship between changes of the calibration pixel and of the array was not fixed, but rather depended on the temperatures of the various shields and interfaces in the dewar. Therefore, although the relative drift rates across the array were characterized during the later calibration with the filter-wheel 55Fe source, the changes in cooler power settings between the IGR J16318 observation and that calibration limit the usefulness of that characterization. In fact, the measured relative gain drift predict a much larger energy-scale offset between the final two pointings of the Perseus cluster of galaxies than was actually observed.

To overcome our limited ability to extrapolate from the calibration pixel, we examined the whole-array Mn $K\alpha$ instrumental line (Kilbourne et al. 2017) in source-free data taken from 7th March to 15th March, when the SXS was being operated with the same cooler settings (Tsujimoto et al. 2017) as those in the IGR J16318 observation. The SXS energy scale is found to be shifted by at most $+1\pm0.5$ eV at 5.9 keV. Further insight into the gain uncertainty comes from examining the errors in the Mn $K\beta$ position in the filter-wheel 55Fe data after adjusting all the pixels gain scales based on the Mn $K\alpha$ line. The errors ranged within -0.6 to $+0.2$ eV, which indicate the minimum scale of the gain uncertainty at 6.5 keV. We conclude that the gain shift with uncertainty of the line centroid of Fe $K\alpha$, which is between the Mn $K\alpha$ and $K\beta$ lines, is $+1\pm0.5$ eV at the time of the observation of IGR J16318.

Fig. 3. (Top) SXS spectrum summed over all the 35 pixels. Peaks around 5.9, 9.7, and 11.5 keV are the instrumental background of Mn $K\alpha$, Au $L\alpha$, and $L\beta$, respectively. Poisson error bars (Gehrels 1986) are presented. Note that the spectrum is binned to 4 eV. (Bottom) Same as the top panel but for the energy range near 6.4 keV. The sum of the fitted models of seven Lorentzian functions for the Fe $K\alpha$ lines and a power-law is shown in a solid red line, with each component shown in dashed lines and different colors. Although the fitting is performed using the original 0.5 eV per bin spectrum, we show the spectrum with a binning of 2 eV for display purposes. Blue data with filled triangles are the calculated NXB spectrum that is not subtracted from the source spectrum.
3.2 SXI and HXI Analysis

The SXI image in the energy band from 4.0 to 12 keV is shown in figure 4. This shows the only additional X-ray source in the FoV, based on the 2XMMi-DR3 catalog (Lin et al. 2012). Note that the additional filtering of the sun illumination of the spacecraft and the time after the passage of the SAA is not applied to the image because the filtering has only a small effect on the pulse height of each event. Another note is that the PSF shape of the target is not smooth because some pixels are affected by the cross-talk issue (Nakajima et al. 2017) and have been filtered. In spite of the unintended off-axis pointing, the target was securely in the CCD1. Photon extracting regions are drawn with a magenta circle.

The hard X-ray image obtained by the HXI-1 in the energy band from 5.5 to 80 keV is shown in figure 5. The circular region in magenta designates the same region as that in figure 4. Thanks to the moderate PSF of the hard X-ray telescope (Awaki et al. 2016), a number of events were detected even though the target is just on the edge of the FoV. The source and background spectra are extracted from the regions colored in yellow with solid and dashed lines, respectively.

Figure 6 shows the light curves of the SXI and HXI-1 extracted from the source regions designated in figure 4 and figure 5, respectively. Background is not subtracted and aspect correction is not applied. Barycenter and dead time correction are applied for the HXI-1 data prior to the extraction. Note that the additional filtering of the sun illumination of the spacecraft and the time after the passage of the SAA is not applied for the SXI light curve because the filtering has only a small effect on the pulse height of each event. The event rate in the energy band dominated by fluorescence lines and continuum both exhibit time variability on a time scale of thousands of seconds, which is also seen in the previous observations (Ibarra et al. 2007; Barragán et al. 2009). The root mean square fractional variation of the continuum band is 0.34 ± 0.03 (HXI-1) and <0.17 (3σ) (SXI), while that of the fluorescence line band is <0.25 (HXI-1) and <0.15 (SXI).

Pulsation search was performed both for the SXI and HXI-1 light curves in each band shown in figure 6 and also in the entire band. After the search from 1 s to one tenth of the exposure time of each instrument, we found no significant periodic pulsation. This prevents a conclusive determination that the compact object is a neutron star.

Because there is no apparent outburst during the exposure, we extract the spectra of the SXI and HXI-1 without any distinction of time. The NXB for the SXI is calculated using sxinxbgen that considers both the magnetic COR weighting of the observation and the position of the source extracting region in the CCD. To maximize the statistics, we subtract only the NXB component rather than extracting background spectrum from the surrounding region for the SXI. We extract all the events during the good time interval of each instrument and hence the extracted durations are not precisely coincident.
between the SXI and HXI-1. In figure 7 top panel, we apply a model of `tbvarabs*(cutoffpl+gau+gau+gau)` (hereafter model A). We set the Fe abundance of the absorbing material to be free to reproduce both of the low-energy extinction and the Fe absorption edge, while the abundances of other elements are fixed to solar values. The difference from the model adopted in Barragán et al. (2009) is that we represent the fluorescence lines from the excitation states with different total angular momenta ($K_{\alpha1}$ and $K_{\alpha2}$, $K_{\beta1}$ and $K_{\beta2}$) with a single Gaussian function, while Barragán et al. (2009) introduce a Gaussian function for each fluorescence line. Considering that the Fe K_{α} line width measured with the SXS is negligible for the SXI and HXI-1, the widths of the Gaussian functions are fixed to be zero. Furthermore, the line centroid of Ni K_{α} is fixed so that the ratio of the centroids of Fe K_{α} and Ni K_{α} becomes the value in Hölzer et al. (1997). We also introduce a constant factor that is multiplied to the HXI-1 data to account for possible inter-instrument calibration uncertainty of the effective area. An edge-like structure seen slightly below 30 keV is due to an edge in quantum efficiency of the CdTe double-sided strip detectors and hence is not seen in the unfolded spectrum shown in the bottom panel of figure 7.

The best-fit parameters are summarized in table 2. Comparison of the spectral parameters with those obtained from the Suzaku observation in 2006 (Barragán et al. 2009) shows that the flux of continuum and line components significantly decreased in the ten year interval while the equivalent widths increased. The unabsorbed luminosity in the 2–10 keV band is 1.0×10^{34} and 5.0×10^{35} ergs s$^{-1}$ assuming the distance to
the target of 0.9 and 6.2 kpc, respectively. This is much less than the Eddington limit of \(1.8 \times 10^{38}\) erg s\(^{-1}\) for a neutron star of 1.4 M\(_{\odot}\) and is consistent with values derived for the vast majority of HMXBs, even if including correction for the partial blockage of the continuum source as discussed in section 4.

The Fe K-shell absorption edge energy is another key parameter that strongly depends on the ionization state of the reprocessing materials. In order to explore this we add the edge model that gives

\[
f(E) = \begin{cases} f(E) & (E < E_{\text{edge}}) \\ f(E) \cdot \exp[-\tau_{\text{MAX}}(E/E_{\text{edge}})^3] & (E \geq E_{\text{edge}}) \end{cases}
\]

where \(E_{\text{edge}}\) and \(\tau_{\text{MAX}}\) are the edge position and the absorption depth at the edge, respectively. Because the edge model accounts for absorption at the edge position, we set the Fe abundance of the \(\text{tvarana}\) to zero in our spectral fitting. The results are given in table 2 in the column labelled model B.

Evaluating the flux of the possible Compton shoulder is performed by adding another Gaussian function to model A with its centroid and width (1\(\sigma\)) fixed to 6.3 keV and 50 eV, respectively (Matt 2002). There is no significant flux of the additional line with its 90% upper limit of 5.4 \(\times 10^{-4}\) cm\(^{-2}\) s\(^{-1}\) that corresponds to the 90% upper limit of the equivalent width of 103 eV.

4 Discussion

The Fe line in IGR J16318 contains information about the ionization state and kinematics of the emitting gas via the profile shape. It also contains information about the quantity and geometrical distribution of the emitting gas via the line strength, i.e., the flux or equivalent width. This does not necessarily yield unique determinations of interesting physical quantities, but can strongly constrain them under various scenarios. General discussions of the dependence of flux or equivalent width have been provided by many authors, e.g., Koyama (1985), Makishima (1986), Torrejón et al. (2010), and Giménez-García et al. (2015).

In particular, in the simplest case of a point source of continuum producing the Fe K line via fluorescence at the center of a spherical uniform cloud, simple analytic calculations show that the line equivalent width is approximately proportional to the equivalent hydrogen column density \(N_{\text{H}}\) of the cloud for \(N_{\text{H}} < 1.5 \times 10^{24}\) cm\(^{-2}\). At greater \(N_{\text{H}}\) the gas becomes Thomson thick and the equivalent width no longer increases. The maximum equivalent width is 1–2 keV and depends on the Fe elemental abundance and on the shape of the SED of the continuum source in the energy band above \(\sim 6\) keV. For solar Fe abundance and an SED consisting of a power-law with photon index of 2, the maximum attainable equivalent width is less than 2 keV. Numerical calculations for toroidal reprocessors show that the Thomson thin approximation breaks down at \(N_{\text{H}}\) much less than \(1.5 \times 10^{24}\) cm\(^{-2}\) (Yaqoob et al. 2010).

Equivalent widths greater than 2 keV can be obtained if the reprocessor is not spherically symmetric around the continuum source, i.e., if there is an opaque screen along the direct line of sight to the continuum source. This is the most likely explanation for large equivalent widths observed from X-ray binaries during eclipse (e.g., Watanabe et al. 2006), or Seyfert 2 galaxies (Krolik and Kallman 1987; Koss et al. 2016). This provides a likely explanation for the large equivalent width observed from IGR J16318; it is crudely consistent with the column density we measure \(N_{\text{H}} \simeq 2.1 \times 10^{24}\) cm\(^{-2}\) together with at least a partial blockage of the continuum source by a structure that has Thomson depth much greater than unity. Then we predict that the true luminosity of the source is greater than we infer from simple dilution at a distance of 0.9–6.2 kpc, by a factor 2.

We derived the line centroid of Fe K\(\alpha\) in spite of low photon statistics. The weighted average of the energies at the maxima of the seven Lorentzian functions is 6399.1\(+2.5\,-2.6\) eV if we consider the gain shift and uncertainty of the SXS. Our result is consistent with those obtained with CCD detectors aboard XMM-Newton (Ibarra et al. 2007) and Suzaku (Barragán et al. 2009). However, the uncertainty of the measurement significantly improved with the SXS. We have to consider the systematic velocity and the orbital velocity of the reprocessor. According to the NIR spectroscopy, there is no significant systemic velocity of the companion star with \(c\Delta\lambda/\lambda = -110 \pm 130\) km s\(^{-1}\) (Filliatre and Chaty 2004). If we assume the masses of the companion star and the compact object of 30 M\(_{\odot}\) and 1.4 M\(_{\odot}\) respectively, the line-of-sight velocity of the compact object with respect to the companion star is within \(\pm 155\) km s\(^{-1}\). Then the total Doppler velocity is expected to be \(-110 \pm 200\) km s\(^{-1}\), corresponding to the shift of 2.3 \(\pm 4.3\) eV.

The top panel of figure 8 shows the theoretical value of the

Table 2. Best-fit parameters for the SXI and HXI-1 spectra.

Parameter	model A	model B
\(N_{\text{H}}\) \(\times 10^{24}\) cm\(^{-2}\)	2.06\(^{+0.21}_{-0.09}\)	2.19\(^{+0.10}_{-0.06}\)
\(A_{\text{Fe}}\)	1.19\(^{+0.14}_{-0.09}\)	0 (fixed)
\(E_{\text{edge}}\)	N/A	7.108\(^{+0.025}_{-0.025}\)
\(\tau_{\text{MAX}}\)	N/A	2.32\(^{+0.13}_{-0.26}\)
\(\Gamma\)	0.74\(^{+0.29}_{-0.24}\)	0.50\(^{+0.02}_{-0.06}\)
\(E_{\text{C}}\) (keV)	37.8\(^{+13.3}_{-19.0}\)	30.9\(^{+10.0}_{-1.9}\)
\(A\) \(\times 10^{-3}\) cm\(^{-2}\) s\(^{-1}\)	4.7\(^{+3.4}_{-3.2}\)	2.4\(^{+0.1}_{-0.2}\)
\(E(\text{Fe K}\alpha)\) (keV)	6.426\(^{+0.011}_{-0.010}\)	6.427\(^{+0.011}_{-0.011}\)
\(E(\text{Fe K}\beta)\) (keV)	7.101\(^{+0.051}_{-0.001}\)	7.108\(^{+0.014}_{-0.028}\)
\(EW(\text{Fe K}\beta)\) (keV)	0.38	0.49
\(I(\text{Fe K}\alpha)\) \(\times 10^{-3}\) cm\(^{-2}\) s\(^{-1}\)	2.15	2.09
\(I(\text{Fe K}\beta)\) \(\times 10^{-4}\) cm\(^{-2}\) s\(^{-1}\)	1.9\(^{+0.9}_{-0.7}\)	1.8\(^{+1.2}_{-0.7}\)
\(I(\text{Ni K}\alpha)\) \(\times 10^{-4}\) cm\(^{-2}\) s\(^{-1}\)	<4.0	2.1\(^{+1.8}_{-1.7}\)
constant factor	1.177	1.213
\(\chi^2\) (d.o.f.)	245.0 (251)	250.3 (249)

\(*\) Exponential cutoff energy in the power-law model.
Fe Kα line centroid (E_{line}) versus ionization state (Palmeri et al. 2003; Mendoza et al. 2004; Yamaguchi et al. 2014). Comparing those with the measured values, the ionization state of Fe I–X is preferred. This is in agreement with the other HMXBs reported by Torrejón et al. (2010). On the other hand, the line centroid measured with the SXI and HXI-1 conflicts formally, at the 90% level with that measured with the SXS. Monitoring the pulse heights of the onboard calibration 55Fe source by the SXI (Nakajima et al. 2017) reveals that the pulse heights disperse in the range of $\sim 2–3$ ch that corresponds to $\sim 12–18$ eV. This can be interpreted as a systematic uncertainty on the SXI energy scale and this brings the SXI+HXI-1 into marginal agreement with the SXS.

The middle panel shows the absorption edge of the Fe (E_{edge}) as a function of ionization state (Kallman et al. 2004; Bearden and Burr 1967). The edge energy measured with the SXI and HXI-1 strongly constrain the ionization state to be no higher than Fe III, which is consistent with that obtained with Bearden and Burr (1967). The edge energy measured with the onboard calibration is plotted as a function of the reprocessing materials along the line of sight (Bearden and Burr 1967). The middle panel shows the absorption edge of the Fe (E_{edge}) as a function of ionization state (Kallman et al. 2004; Bearden and Burr 1967). The edge energy measured with the SXI and HXI-1 strongly constrain the ionization state to be no higher than Fe III, which is consistent with that obtained with Bearden and Burr (1967). The edge energy measured with the onboard calibration is plotted as a function of the reprocessing materials along the line of sight (Bearden and Burr 1967). The middle panel shows the absorption edge of the Fe (E_{edge}) as a function of ionization state (Kallman et al. 2004; Bearden and Burr 1967). The edge energy measured with the SXI and HXI-1 strongly constrain the ionization state to be no higher than Fe III, which is consistent with that obtained with Bearden and Burr (1967). The edge energy measured with the onboard calibration is plotted as a function of the reprocessing materials along the line of sight (Bearden and Burr 1967).

Fig. 8. (Top) Fe Kα line centroid (E_{line}) as a function of the ionization state calculated by Yamaguchi et al. (2014) from the expectation by Palmeri et al. (2003) (charge number ≤ 8) and Mendoza et al. (2004) (charge number ≥ 9). Values measured with the SXS and SXI+HXI-1 are shown by the red and blue solid lines, respectively. The gain shift of +1 eV and the most probable systematic velocity of the reprocessor are corrected for the SXS. The dashed lines designate 90% confidence level. (Middle) Fe K-shell ionization energy (E_{edge}) as a function of the ionization state expected by Kallman et al. (2004) (charge number ≥ 1) and Bearden and Burr (1967) (charge number $= 0$). Values measured with the combined spectra of the SXI and HXI-1 are shown by the blue solid line as well as the statistical error range (dashed line). (Bottom) Difference of E_{edge} and E_{line} is plotted as well as the measured value with the SXI and HXI-1.

Kallman et al. (2004) calculated the abundance distribution of the Fe ions in a photoionized plasma as a function of the ionization parameter $\xi = L/nR^2$ (Tarter et al. 1969), where n is the gas density, R is the distance between the X-ray source of ionizing radiation and the gas, and L is the luminosity of the continuum emission. The range of ionization states Fe I–IV is consistent with an ionization parameter value $\log(\xi) \lesssim -2$. The distance between X-ray source and gas responsible for the Fe emission, R, can be estimated based on the X-ray time variability. Walter et al. (2003) estimated the distance to be $R \approx 10^{13}$ cm with XMM-Newton by the maximum delay observed between the Fe Kα line and the continuum variations. Light curves obtained from other observations (Ibarra et al. 2007) also exhibited that Fe Kα line followed almost immediately the continuum. Applying the $R \approx 10^{13}$ cm, we estimate n and the thickness of the reprocessing materials along the line of sight (l) to be $n \gtrsim 3 \times 10^{10}$ cm$^{-3}$ and $l = N_\text{H}/n \lesssim 7 \times 10^{13}$ cm, respectively. If we consider the ~ 80 d orbit and the masses of the companion star and the compact object as above, the distance between them is 2×10^{13} cm. The maximum size of the reprocessor l and R may be comparable with the system size.

One of the most probable candidates for the reprocessor is the cold stellar wind from the massive companion star. The wind velocity (v_w) at the distance r can be estimated assuming the typical β-law of

$$v_w = v_\infty (1 - R_*/r)^\beta,$$

where v_∞ is the terminal velocity and R_* is the stellar radius. Assuming the commonly used $\beta = 0.5$ and $r = 2R_*$, we obtain $v_w/v_\infty \sim 0.7$. When we assign a typical v_∞ of the early type stars of $\approx 1500–2000$ km s$^{-1}$ (Abbott 1978), $v_w \sim 1050–1400$ km s$^{-1}$ is obtained. The measured Fe Kα line width is equivalent to $v = 160^{+300}_{-70}$ km s$^{-1}$. This is much less than the Doppler broadening expected from speeds that are characteristic of similar systems. This indicates that the line emitting region does not cover the whole region of the stellar wind including the companion star. It suggests that the line may be produced in a relatively small region centered on the compact object. In this case, the line centroid will be Doppler-shifted...
depending on the orbital phase of the compact object. When we shift both of the line centroid and the K-shell edge energy by 25 eV that corresponds to v_∞ of 1250 km s$^{-1}$, the two estimates of ionization state contradict each other. This implies that the preferred orbital phase is ~ 0.25 or ~ 0.75. However, v_∞ distributes in a wide range even among members of the supergiant HMXBs (Giménez-García et al. 2016). Furthermore, Manousakis and Walter (2011) argue that highly absorbed HMXB systems have lower wind velocities than classical supergiant HMXBs. An atmosphere model for the donor of Vela X-1 by Sander et al. (2017) also expects that the wind velocity at the neutron star location is significantly lower than that predicted by the β-law. More accurate determination of v_∞ of the companion star is needed for further discussion. Another interesting possibility is discussed by Torrejón et al. (2015) for supergiant HMXB. These authors argue that Fe Kα must be produced close to the photosphere of the donor star, where the wind is still in the acceleration zone, in the region facing the compact object. This case agrees with the fact that the reprocessor does not cover the X-ray source completely. The SXS established an empirical upper limit to the Fe Kα width which would imply stellar wind velocities at distances of 1.06 R_*–1.10 R_* This is in agreement with theoretical predictions on the onset of wind clumps given by Sundqvist and Owocki (2013).

Fig. 9. (Top) Intensity ratio between the continuum and fluorescence line band versus the intensity in the former band for the SXI. The bin size is 400 s. (Bottom) Count light curves of 13–50 keV band obtained with the HXI-1 versus that in the 8–13 keV band.

To investigate the time variability of the line and continuum emissions obtained in this observation, we plot the ratio of the continuum flux to the fluorescence line flux as a function of the latter for the SXI in figure 9 top panel. The clear positive correlation indicates that the continuum component exhibits variability with a larger dynamical range than the line component, as measured with the fractional variation of the light curves in section 3.2. In other words, at least part of the line emission does not follow the continuum variability on time scales less than 400 s. This is consistent with the results obtained by Ibarra et al. (2007) with XMM-Newton. One possible explanation for the positive correlation is that the continuum is produced in a compact region while the line emission takes place in a significantly extended region. Another possibility is the time variation of the column density on the line of sight. Because the X-ray flux around the Fe K band can be affected by the absorption column, time variation of the absorption column on the line of sight can cause time variation only in the low energy band. To clarify this, we check the correlation between the count light curves in the 8–13 keV and 13–50 keV band with the HXI-1 as shown in the bottom panel of figure 9. The clear positive correlation is a hint of the intrinsic variation of the continuum rather than due to the changes in the intervening column density.

The absence of the Compton shoulder is confirmed as it was in the spectrum obtained by Suzaku (Barragán et al. 2009), making a clear contrast with another strongly absorbed HMXB GX 301–2 (Watanabe et al. 2003; Fürst et al. 2011). Walter et al.
(2003) and Ibarra et al. (2007) point out that the absence of a Compton shoulder can be due to an inhomogeneous distribution of reprocessing material. Another possibility is the smearing of the Compton shoulder due to the free electrons with an temperature of several eV (Watanabe et al. 2003) and/or the scattering with neutral hydrogen (Sunyaev and Churazov 1996; Sunyaev et al. 1999). In fact, mid-infrared observations of IGR J16318 by Chaty and Rahoui (2012) revealed a spectral component with a temperature $\sim 37,000–40,000$ K. Since this temperature is higher than that of typical B1 supergiant stars, they suggest that the component corresponds to dense and hot material surrounding the stellar photosphere and irradiated by X-rays from the compact object. Deeper exposure with high spectral resolution like the SXS is required for the further understanding of the circumstellar environment of this system.

5 Summary

In spite of observing challenges such as the large offset angle and the issues such as cross-talk for the SXI, we analyze photons from the target for all of the instruments that had been started up at the time of the Hitomi observation of IGR J16318. The microcalorimeter spectrum resolved the Fe K$_{\alpha 1}$ and K$_{\alpha 2}$ lines for the first time in an X-ray binary system and revealed that the line width is narrower than that compatible with the full range of speeds expected from a stellar wind. Combining the line centroid measured by the SXS and the energy of the Fe K-shell absorption edge by SXI+HXI-1, we put a constraint on the ionization state of the reprocessing materials to be in the range of Fe I–IV. Judging from the ionization parameter, the density and thickness of the materials are estimated. As reported in the past observations, the absorption is extraordinarily strong ($N_{\text{HI}}>10^{24}\text{ cm}^{-2}$) and the Compton shoulder component is not apparent. These characteristics can be attributed to reprocessing materials which are distributed in a narrow solid angle or scattering primarily with warm free electrons or neutral hydrogen.

The Hitomi observation of IGR J16318 measured the width and energy of the Fe K fluorescence line with precision which are unprecedented for an X-ray binary. They reveal a line width and shift which are much less than the Doppler broadening and shift expected from speeds which are characteristic of similar systems. This was achieved using the SXS detection of 19 photons. If the aspect stability and accuracy of Hitomi pointing system had been accurate at the few arc minutes level, we would have obtained far more detailed diagnostics for the Fe K line and absorption edge diagnostics. However this was not achieved in the initial operations of the Hitomi mission. We now know that the physics of the Fe K line is considerably different for this object, and perhaps for other X-ray binaries, from that previously assumed despite over 40 years of detailed study. Thus, microcalorimeter observations of X-ray binaries in the future with the X-ray recovery mission will open up a new and exciting field of study.

Author contributions

H. Nakajima led this research in data analysis and writing manuscript. He also contributed to the SXI hardware design, fabrication, integration and tests, in-orbit operation, and calibration. K. Hayashida provided key comments on the whole discussion. He also made hardware and software contributions to the SXI as one of the instrument principal investigators. T. Kallman contributed for discussion primarily on the Fe line diagnostics and to elaborate the manuscript. T. Miyazawa worked for the fabrication and calibration of the Hard X-ray Telescope. H. Takahashi contributed to the timing analyses of the HXI. He also made software and hardware contribution to the HXI. M. Guainazzi led observation planning and gave critical comments mainly on the reprocessing materials. H. Awaki, T. Dotani, C. Ferrigno, L. C. Gallo, P. Gandhi, C. A. Kilbourne, P. Laurent, K. Mori, K. Pottschmidt, C. S. Reynolds, and M. Tsujimoto improved the manuscript.

Acknowledgments

We thank the support from the JSPS Core-to-Core Program. We acknowledge all the JAXA members who have contributed to the ASTRO-H (Hitomi) project. All U.S. members gratefully acknowledge support through the NASA Science Mission Directorate. Stanford and SLAC members acknowledge support via DoE contract to SLAC National Accelerator Laboratory DE-AC3-76SF00515. Part of this work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344. Support from the European Space Agency is gratefully acknowledged. French members acknowledge support from CNES, the Centre National d’Études Spatiales. SRON is supported by NWO, the Netherlands Organization for Scientific Research. Swiss team acknowledges support of the Swiss Secretariat for Education, Research and Innovation (SERI). The Canadian Space Agency is acknowledged for the support of Canadian members. We acknowledge support from JSPS/MEXT KAKENHI grant numbers JP15H02737, JP15H00773, JP15H00785, JP15H02070, JP15H02090, JP15H03639, JP15H03641, JP15H03642, JP15H05438, JP15H06896, JP15K05107, JP15K17610, JP15K17657, JP16K05048, JP16J02333, JP16H00949, JP16H03983, JP16H06342, JP16K05295, JP16K05296, JP16K05300, JP16K05296, JP16K05309, JP16K13787, JP16K17667, JP16K17672, JP16K17673, JP21659292, JP23340055, JP23340071, JP23540280, JP24105007, JP24244014, JP24540232, JP24640410, JP25105516, JP25109004, JP25247028, JP25287042, JP25400236, JP25800119, JP26109506, JP26120703, JP26000228, JP26610047, JP26670560, and JP26800102. The following NASA grants are acknowledged: NNX15AC76G, NNX15AE16G, NNX15AK71G, NNX15AU54G, NNX15AW94G, and NNG15PP48P to Eureka Scientific. H. Akamatsu acknowledges support of NWO via Veni grant. C. Done acknowledges STFC funding under grant ST/L00075X/1. A. Fabian and C. Pinto acknowledge ERC Advanced Grant 340442. P. Gandhi acknowledges JAXA International Top Young Fellowship and UK Science and Technology Funding Council (STFC) grant ST/J003697/2. Y. Ichinohe, K. Nobukawa, and H. Seta are supported by the Research Fellow of JSPS for Young Scientists. N. Kawai is supported by the Grant-in-Aid for Scientific Research on Innovative Areas “New Developments in Astrophysics Through Multi-Messenger Observations of Gravitational Wave Sources”. S. Kitamoto is partially
Nakazawa, K., Sato, G., & Kokubun, M. 2017, J. Ast. Inst. Sys., submitted
Noda, H., Mitsuda, K., Okamoto, A., et al. 2016. In Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 9905 of Proc. SPIE, 99053R.
Palmeri, P., Mendoza, C., Kallman, T. R., Bautista, M. A., & Meléndez, M. 2003, A&A, 410, 359–364.
Rahoui, F., Chaty, S., Lagage, P.-O., & Pantin, E. 2008, A&A, 484, 801–813.
Revnivtsev, M. G. 2003, Astronomy Letters, 29, 644–648.
Sander, A. A. C., Fürst, F., Kretschmar, P., Oskinova, L. M., Todt, H., Hainich, R., Shenar, T., & Hamann, W.-R. 2017, A&A, submitted
Sundqvist, J. O., & Owocki, S. P. 2013, MNRAS, 428, 1837–1844.
Sunyaev, R. A., & Churazov, E. M. 1996, Astronomy Letters, 22, 648–663.
Sunyaev, R. A., Uskov, D. B., & Churazov, E. M. 1999, Astronomy Letters, 25, 199–205.
Takahashi, T., Kokubun, M., & Mitsuda, H. 2017, J. Ast. Inst. Sys., submitted.
Tanaka, T., Uchida, H., & Nakajima, H. 2017, J. Ast. Inst. Sys., submitted.
Tarter, C. B., Tucker, W. H., & Salpeter, E. E. 1969, ApJ, 156, 943.
Torrejón, J. M., Schulz, N. S., Nowak, M. A., & Kallman, T. R. 2010, ApJ, 715, 947–958.
Torrejón, J. M., Schulz, N. S., Nowak, M. A., Oskinova, L., Rodes-Roca, J. J., Shenar, T., & Wilms, J. 2015, ApJ, 810, 102.
Tsujimoto, M., Mitsuda, K., Kelley, R. L., den Herder, J. W., & et al. 2017, J. Ast. Inst. Sys., submitted.
Ubertini, P., Lebrun, F., Di Cocco, G., et al. 2003, A&A, 411, L131–L139.
Walter, R., Courvoisier, T. J.-L., Foschini, L., et al. 2004. In Schoenfelder, V., Lichit, G., & Winkler, C., editors, 5th INTEGRAL Workshop on the INTEGRAL Universe, 552 of ESA Special Publication, 417–422.
Walter, R., Rodriguez, J., Foschini, L., et al. 2003, A&A, 411, L427–L432.
Watanabe, S., Sako, M., Ishida, M., et al. 2003, ApJ, 597, L37–L40.
Watanabe, S., Sako, M., Ishida, M., et al. 2006, ApJ, 651, 421–437.
Wilms, J., Allen, A., & McCray, R. 2000, ApJ, 542, 914–924.
Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1–L6.
Yamaguchi, H., Eriksen, K. A., Badenes, C., et al. 2014, ApJ, 780, 136.
Yaqoob, T., Murphy, K. D., Miller, L., & Turner, T. J. 2010, MNRAS, 401, 411–417.