Ancestry of the Iban is predominantly Southeast Asian: Genetic evidence from autosomal, mitochondrial, and Y chromosomes, PLoS ONE, 2011; 6(1):e16338

Copyright: © 2011 Simonson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Permissions

http://www.plosone.org/static/policies.action#copyright

3. Copyright and License Policies

Open access agreement. Upon submission of an article, its authors are asked to indicate their agreement to abide by an open access Creative Commons license (CC-BY). Under the terms of this license, authors retain ownership of the copyright of their articles. However, the license permits any user to download, print out, extract, reuse, archive, and distribute the article, so long as appropriate credit is given to the authors and source of the work. The license ensures that the authors’ article will be available as widely as possible and that the article can be included in any scientific archive.

Open access agreement: US government authors. Papers authored by one or more US government employees are not copyrighted, but are licensed under a Creative Commons public domain license (CC0), which allows unlimited distribution and reuse of the article for any lawful purpose. Authors should read about CC-BY or CC0 before submitting papers.

Archiving in PubMed Central. Upon publication, PLoS also deposits all articles in PubMed Central. This complies with the policies of funding agencies, such as the NIH in the USA, the Wellcome Trust, and the Research Councils in the UK, and the Deutsche Forschungsgemeinschaft in Germany, which request or require deposition of the published articles that they fund into publicly available databases.

http://www.plos.org/about/open-access/license/

LICENCE

The Public Library of Science (PLoS) applies the Creative Commons Attribution License (CC-BY) to works we publish (read the human-readable summary or the full license legal code). Under this license, authors retain ownership of the copyright for their content, but allow anyone to download, reuse, reprint, modify, distribute, and/or copy the content as long as the original authors and source are cited. No permission is required from the authors or the publishers.

Appropriate attribution can be provided by simply citing the original article (e.g., Kaltenbach LS et al. (2007) Huntington Interacting Proteins Are Genetic Modifiers of Neurodegeneration. PLoS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082).

For any reuse or redistribution of a work, users must also make clear the license terms under which the work was published.

This broad license was developed to facilitate free access to, and unrestricted reuse of, original works of all types. Applying this standard license to your own work will ensure that it is freely and openly available in perpetuity.

If you have a question about the Creative Commons License please use this contact form and choose “General Questions."

18th December 2012

http://hdl.handle.net/2440/70325
Introduction

Many distinct ethnic groups reside within the Malaysian state of Sarawak, reflecting broader patterns of cultural and linguistic diversity observed throughout Island Southeast Asia (ISEA) [1]. It has been suggested that ISEA inhabitants descend mainly from individuals who either migrated from Southeast Asia before the Neolithic expansion from Taiwan or, alternatively, descend mainly from these Taiwanese migrants [2,3,4,5]. The Iban, also referred to as Sea Dayaks, are one of the largest indigenous groups in Sarawak today [6]. They are believed to have migrated from the headwaters of the Kapuas River in the central highlands of Borneo and down into the coastal plains of present-day Sarawak in several distinct waves, the first of which took place 16 generations, approximately 400 years, ago. Comprehensive genetic analysis of the Iban will provide insight about the extent to which specific population movements influenced this population and contribute to the current understanding of ISEA Asian ancestry.

It is well established that the first people to inhabit ISEA migrated across the prehistoric Sundaland land bridge that connected mainland Southeast Asia to regions as far east as Wallace’s Line (Fig. 1). These early human migrations occurred approximately 45,000 to 50,000 years ago [7]. Primitive human fossil remains excavated from Niah Cave, Sarawak, where the Iban reside today, provide evidence of anatomically modern human habitation in this location at least 50,000 ago [8,9].

Another wave of migration from mainland Southeast Asia into ISEA occurred between 12,000 and 6,000 years ago (Fig. 1) [10]. During this time, the Sunda shelf was partially flooded by rising sea level, resulting in island formation [11,12,13]. Humans continued to migrate into the newly formed islands during the subsequent millennia, but their genetic contribution to various ISEA Asian populations is unclear. One model suggests that most of the present-day ISEA inhabitants are direct descendents of populations that migrated during this time [10,13].

An alternative model suggests the largest ancestral contribution to ISEA populations results from a third and more recent event,
which is associated with one of the largest agriculturally-driven migrations in human history: the Neolithic expansion from Taiwan. Some linguists suggest that the inhabitants who first settled in present-day ISEA, indigenous Australo-Melanesian foragers, were largely displaced by a wave of “Mongoloid” Austronesians who migrated into this region approximately 4,000 ago [14,15]. These migrants are thought to have left South China, traveled to Taiwan, and by 4,000 ago, expanded into the Philippines and throughout ISEA and the Pacific[2,4,16,17].

The maternal and paternal genetic lineages present among inhabitants throughout Taiwan, East Asia, and ISEA have been independently studied using either non-recombining Y (NRY) or mitochondrial DNA (mtDNA) polymorphism data [10,18,19,20,21]. MtDNA studies report greater diversity in Southeast Asians compared to populations in northeast Asia regions and suggest a southern origin for present-day northeastern Asians [22,23,24,25,26]. Expanding on this concept, phylogenetic mtDNA studies have been used to associate haplogroups with...
Southeast Asian population movements into ISEA that were driven by climate change in the later stages of the Last Glacial Maximum [10,13,27]. Several reports of NRY data suggest a similar pattern [18,24,28,29] although influence from northern groups, such as Taiwan, is also apparent in Southeast Asians [30].

Technical advancements now provide the opportunity to address questions about ISEA history by extending beyond mtDNA and NRY analyses to that of multi-locus autosomal DNA. Recent studies of genome-wide SNP data [31] suggest a southern origin of East and Southeast Asian populations. In order to obtain a comprehensive picture of the Iban population, we analyzed marker sets for autosomal, Y, and mitochondrial chromosomes. We use this data to distinguish among various models about the origins of the Iban population of Sarawak and conclude that migrations from mainland Southeast Asia and perhaps Indonesia had the most substantial effect on present-day genetic variation in this population, and the amount of gene flow from Taiwan into ISEA is not as large as some models suggest.

Results and Discussion

Genome-wide autosomal variation

To investigate the genetic structure of the Iban and other East and Southeast Asian populations, we combined overlapping SNPs from three data sets. We genotyped approximately 250,000 genome-wide SNPs in 25 Iban individuals [32] and compared our data with Asians from the HapMap II dataset [33] and a previously published 50K SNP microarray dataset [31]. Our final dataset contains nearly 7,000 SNPs genotyped in more than 950 individuals from 39 East/Southeast Asia populations (Fig. 1; Table S1). The populations collectively represent ten different regional groups. Pairwise-population F_{ST} values calculated between the Iban and each of the ten groups indicate that the Iban population is genetically most similar to Indonesian, Cambodian, and Thai population samples (Table 1; see Fig. S1 for admixture analysis). A principal components analysis (PCA) illustrates a similar pattern of population differentiation, with the Iban showing affinity to the mainland Southeast Asians from Thailand and also Indonesia (Fig. 2; Table 2).

![Figure 2. Principal Components Analysis based on genome-wide SNP genetic distances.](https://www.plosone.org/sup/large/fig2.png)

all subpopulations are categorized into ten group as listed in Table S1. PCA coordinates for each subpopulation are provided in Table 2.

doi:10.1371/journal.pone.0016338."}

Table 1. F_{ST} between subpopulations in Southeast Asia.

	CHB	Chinese	Iban	Indonesia	JPT	Japanese	Cambodian	Malaysia	Philippines	Taiwan	Thailand	Vietnamese
CHB	-	0.002	-									
Chinese	0.002	-	0.025	0.019								
Iban	0.025	0.019	-	0.031	0.025							
Indonesia	0.020	0.015	0.012	-								
JPT	0.007	0.009	0.031	0.025	-							
Japanese	0.008	0.009	0.030	0.025	0.003							
Cambodian	0.012	0.009	0.013	0.006	0.019	0.020	-					
Malaysia	0.026	0.021	0.016	0.012	0.032	0.031	0.009	-				
Philippines	0.017	0.012	0.015	0.008	0.023	0.021	0.011	0.020	-			
Taiwan	0.027	0.024	0.027	0.024	0.033	0.034	0.028	0.035	0.016	-		
Thailand	0.009	0.006	0.014	0.012	0.017	0.016	0.003	0.014	0.015	0.026	-	
Vietnamese	0.006	0.002	0.015	0.010	0.015	0.016	0.006	0.015	0.009	0.024	0.003	-

doi:10.1371/journal.pone.0016338.t001
Table 2. Sub-population PCA coordinates for Figure 2.

Population	Sub-population	PC1	PC2
Iban	Iban	-0.03	-0.01
Chinese	CHB	-0.05	0.02
Chinese	Chinese	-0.06	0.01
Indonesia	Alor	0.23	-0.06
Batak	Batak	-0.04	-0.03
Batak Karo	Batak Karo	-0.02	-0.02
Dayak	Dayak	-0.02	-0.01
Javanese	Javanese	-0.06	-0.02
Kambera	Kambera	0.01	-0.07
Lamaholot	Lamaholot	0.09	-0.08
Lembarata	Lembarata	0.11	-0.07
Malay	Malay	-0.07	-0.03
Manggarai	Manggarai	0.03	-0.07
Mentawai	Mentawai	0.08	0.03
Sundanese	Sundanese	-0.06	-0.02
Toraja	Toraja	-0.03	-0.03
Japanese	Japanese	-0.01	0.03
JPT	JPT	-0.01	0.03
Khmer Cambodian	Khmer Cambodian	-0.07	-0.01
Malaysia	Bidayuh	0.02	0.02
Negrito	Negrito	0.07	0.00
Proto Malay	Proto Malay	0.01	0.01
Philippines	Manobo	0.02	-0.01
Urban	Urban	-0.05	-0.02
Taiwan	Ami	0.02	0.02
Atayal	Atayal	0.14	0.08
Thailand	Hmong	0.06	0.06
H’Tin	H’Tin	0.08	0.06
Karen	Karen	-0.01	0.03
Lawa	Lawa	0.03	0.04
Mon	Mon	-0.04	0.00
Palong	Palong	0.06	0.06
Plang	Plang	-0.04	0.01
Tai Kern	Tai Kern	-0.06	0.01
Tai Lue	Tai Lue	-0.04	0.02
Tai Yong	Tai Yong	-0.07	0.00
Thai Yuan	Thai Yuan	-0.08	0.00
Yao	Yao	-0.04	0.02
Vietnamese	Vietnamese	-0.07	0.00

doI:10.1371/journal.pone.0016338.t002

In addition to SNP analyses, we assayed 45 short tandem repeats (STRs) in the Iban, Chinese, Japanese, and a group of Southeast Asians comprised of Cambodian, Vietnamese, and Malaysian individuals as previously described (Table S2) [34,35,36]. Patterns of genetic differentiation (RST) based on these data matched those observed among comparable samples using the SNP data. The shortest genetic distance observed is between the Iban and peninsular Southeast Asians (Table S7). The Malaysian and Cambodian populations and the Japanese and Chinese populations exhibit the greatest and least genetic affinity to the Iban, respectively.

These analyses indicate that the Iban are most similar to populations located in mainland Southeast Asia and Indonesia (Table 1; Table S7), suggesting that the genetic contribution of Taiwanese populations is minor. These results are inconsistent with the hypothesis that Taiwanese groups nearly replaced the populations indigenous to ISEA during the Neolithic expansion.

NRY chromosome haplogroups

Uniparental marker analyses also indicate a strong genetic influence from mainland Southeast Asia, although there is substantial influence from paternal lineages appears to be associated with northern Asian groups (Table S2; Table S3). The NRY haplogroup frequencies in the Iban and their relation to other populations are shown in Fig. 3. PC1 separates the Taiwanese Aborigines, Philippines, Nusa Tenggara, and Moluccas from the Iban, other Southeast Asian populations, and the Chinese populations. The separation between the Iban and an aboriginal Taiwanese group based on PC1 argues against strong Taiwanese influence on the Iban. On PC2, the Iban, Vietnamese, Chinese, Philippines, and Aboriginal Taiwanese cluster separately from the Malaysian, Southern Bornean, and to the greatest extent, the Nusa Tenggara and Moluccas populations.

Among the 89 Iban males, the NRY O sub-haplogroups (frequency of O2a = 0.42 and O3 = 0.40) are the most frequent. Haplogroup O2a is found at high frequency throughout Southeast Asia and is common among indigenous, isolated populations such as the Hainan Aborigines located off the mainland coast of Southeast Asia [24]. These results suggest a similar prehistory in the Iban and these Southeast Asian populations. The next most frequent NRY haplogroup is O3, which is distributed throughout East Asia, ISEA, and Oceania, and may represent a substantial contribution from Taiwan [18]. Haplogroups O1, K, C, and F are also present, but at lower frequencies (0.04, 0.08, 0.04, and 0.01, respectively). Haplogroup O1 may reflect the impact of the Out-of-Taiwan migration, although better resolution is necessary to specify Taiwan as the source population. The K, C, and F haplogroups are thought to have originated in Melanesian, Asian, and out-of-Africa migrant populations, respectively. The NRY haplogroup frequencies reflect male-specific gene flow from Southeast Asia, although they do not preclude more recent but less substantial contributions from northern populations such as that of Taiwan.

MtDNA haplotypes

In a PCA of the mtDNA haplogroup frequencies, the Iban and southwestern populations (from Sumatra, Java, Lombok, Melayu Malay, Thailand, and Orang Asli) are separated from all other populations on PC1 (Fig. 4). PC2 separates the Iban from Philippine, Taiwan, Sulawesi, Ambon, Sumba, and other groups from Borneo.

A previous study [10] provides age estimates for the mtDNA haplogroups studied here, and these estimates have been correlated with the three major human migrations in ISEA discussed above. We identified sixteen haplogroups associated with each of these categories among 83 Iban individuals (Table S4; Table S5). The haplotypes in the Iban samples reflect signatures of indigenous, late-Pleistocene, and Neolithic migrations throughout Asia [10], although age estimates must be interpreted with caution [37].

The most common haplogroup among the Iban is M* (16%), which appears to represent ancient lineages within ISEA [10]. Other observed haplogroups thought to originate >25,000 ago include: R22, found among individuals from ISEA, mainland Southeast Asia, and the Nicobar Islands [38]; R9c, most frequent
in the Alor population east of Wallace’s line; and M21a, notably most common among the Orang Asli [10]. Haplogroup Z, which is found in China, Mainland SEA, Sumatra, and other populations from Borneo is present at 11.11% in the Iban. These results indicate that various ancient mtDNA haplogroups thought to be associated with the first migrations into ISEA are present in the Iban.

Several lineages are also associated with prehistoric migrations during the Last Glacial Maximum, a second major migration wave, when coastlines within the ISEA region nearly doubled in length and approximately half of Sundaland was covered by water [39,40]. Nearly one-fourth of Iban mtDNA haplogroups may originate from this migration event, supporting the hypothesis that environmental factors, specifically climate change and post-glacial flooding, influenced the demographic history of this population [10,13]. This is largely supported by the second most common haplogroup identified among the Iban, B4a* (13.83%), which dates to the late Pleistocene in ISEA [10]. B4c2 is found at considerable frequency (4.9%) and is considered a “relict” haplogroup, dating to 13,000 ago in ISEA. Two additional low-frequency haplogroups of interest that also fall within this time frame include E1 and E2. These subclades originated at 17,000 ago and 9,500 ago, respectively, and are thought to stem from northeast Sundaland or northwest Wallacea, the present-day
Indonesian islands east of Borneo [13]. The remaining haplotypes associated with the late-Pleistocene and early-Holocene migrations include M7b3, found in Taiwan and ISEA, and F1a1a, which is common throughout western and southern ISEA and Thailand and is present among aboriginal groups of the mainland Southeast Asia peninsula [41].

The previously described mtDNA haplogroups associated with the Neolithic Taiwan expansion [2,10] found in our Iban sample include the Y2 (12.35%) and F1a4 (1.23%) lineages. The combined frequency of these haplogroups is less than that associated with migration events that occurred prior to this population movement.

The results presented in this study, which are based on both autosomal and uni-parentally transmitted markers, highlight the unique genetic history of the Iban people of Sarawak. Analyses of autosomal data indicate that the Iban are most similar to mainland Southeast Asian groups and suggest that gene flow from Taiwanese agriculturalists appears to be relatively minor in contrast to that from mainland Southeast Asians and Indonesians.
The results of NRY and mtDNA haplogroup analyses complement the autosomal analyses by suggesting less gene flow from the agriculturalist expansion from Taiwan than has been previously claimed for ISEA populations [17]. The majority of mtDNA haplogroups and the greatest proportion of NRY lineages identified in our Iban sample are associated with population movements that occurred prior to this expansion. More NRY haplogroups than mtDNA haplogroups were introduced into this population during the Neolithic expansion, but the proportion of NRY haplogroups attributed to this more recent event is still less than half of the total NRY haplogroups identified. Therefore, it appears that migrations during the Neolithic did not eradicate pre-Neolithic groups. Additional sampling of indigenous ISEA populations like the Iban, in addition to genome-wide and model-based analyses, will help to further clarify the population history of this region.

Methods

Data collection
We collected DNA samples for 94 unrelated Iban individuals from Sarawak. Since the Iban is traditionally a literate society, with some community elders unable to read or write, informed consent was obtained verbally and recorded on videotape. This procedure was approved by local institutional ethics committees (Sarawak Department of Health; the University of Malaysia, Sarawak; Department of Psychiatry, University of Adelaide, Adelaide; Queensland Centre for Mental Health Research, Brisbane, Australia; University of Queensland, Brisbane, Australia) [8,32,42,43]. We compared autosomal, Y-chromosome, and mtDNA SNP and sequence data to previously reported and publicly available data sets (Table S2). The populations and data sets are shown in Fig. 1 and Table 2.

Autosomal Genotyping and Analyses
We used Affymetrix Nsp1 technology to survey ~250,000 single nucleotide polymorphisms (SNPs) across the genomes of 25 Iban individuals [32]. Using default parameters for the Birdseed algorithm (version 2), we determined genotypes for all samples and analyzed genotypic data using the Affymetrix Genotyping Console 3.1 (Affymetrix, Santa Clara, CA, USA). We compared these data with ~7,000 overlapping SNPs previously genotyped by the HUGO Pan-Asian SNP Consortium (HUGO) using the Affymetrix 50K Xba platform (Table S1) [31]. In order to determine patterns of variation in the genome-wide SNP data, we calculated a population pairwise F_{ST} genetic distance and performed principal components analysis (PCA) based on these genetic distances as previously described [32]. SNP heterozygosity for the Iban and other Asian populations is provided in Table S6.

To obtain STR genotypes, we combined PCR amplicons in a multiplex reaction comprised of five to ten markers on the Applied Biosystems 3100 Genetic Analyzer. Genotype calls were based upon fluorescence signal and size per ABI GS500-LIZ size standard. We calculated genetic distance estimates (R_{ST}) using STR data for the Iban, Chinese, Japanese, and Southeast Asians with the ARLEQUIN 3.1 software package [44].

Non-recombining Y chromosome (NRY) and mitochondrial (mt) DNA genotyping and analyses
We assayed NRY chromosome haplogroup information using 27 Y-chromosome haplogroup/lineage-defining markers and mtDNA haplogroups using 45 mitochondrial coding region SNPs ascertained in populations from ISEA and surrounding regions [10,43,46,47,48,49] (Table S2). The marker combinations used to determine mtDNA haplogroup/lineages are listed in Table S7. We analyzed PCR amplicons containing NRY and mtDNA haplotype and lineage-defining SNP regions on the Applied Biosystems 3100 using single-base extension SNaPshot chemistry in multiplex reactions of five to eight markers. We supplemented the haplogroup/lineage-defining coding region mtDNA SNPs with hypervariable sequence 1 polymorphisms (HVS1) sequence from position 16,000 to 16,411) obtained with BigDye 3.1 dye-terminator fluorescent sequencing (see Table S8 for estimates of nucleotide diversity).

We compared Iban Y chromosome and mtDNA haplogroup frequencies to Y chromosome haplogroup frequencies from populations in China, Taiwan Chinese, Taiwanese Aborigine, Philippines, Vietnam, Malaysia, Java, Southern Borneo, Moluccas, and Nusa Tenggara males (data from [50]) and mtDNA haplogroup frequency data from throughout ISEA [10]. PCA plots constructed using haplogroup frequencies were generated using MatLab (ver. r2008).

Supporting Information

Figure S1 ADMIXTURE analysis of the Iban and East Asian populations.

Table S1 List of populations and corresponding data used for analyses.

Table S2 List of STR, NRY chromosome, and mtDNA markers analyzed in this study. SNPs overlapping the HGDP markers and the Affymetrix 6.0 chip used for our samples are described in Xing et al. 2009.

Table S3 NRY haplogroup frequencies in the Iban compared to previously reported population frequencies (Kayser et al. 2003).

Table S4 MtDNA haplogroup frequencies in the Iban and neighboring populations (Hill et al. 2007).

Table S5 MtDNA haplogroup definitions for the Iban population.

Table S6 SNP heterozygosity.

Table S7 R_{ST} estimates based on STR analysis.

Table S8 Nucleotide diversity estimates for HVS-1 mtDNA.

Acknowledgments
We thank the Iban individuals who generously participated in this work. We thank A. R. Rogers and L.M. Evans for helpful discussion. All genotype information is available on the Jorde lab website.

Author Contributions
Conceived and designed the experiments: TSS JX WSW DJW CDH SW. Performed the experiments: TSS YZ WSW. Analyzed the data:...
TSS JX DJW CDH. Contributed reagents/materials/analysis tools: RB EJ PL SW BM LB. Wrote the paper: TSS JX WSW DJW CDH LB.

References
1. Chang YM, Swaran Y, Phoont YK, Sothiraan K, Sim HT, et al. (2009) Haplo- type diversity of 17 Y-chromosomal STRs in three native Sarawak populations (Bian, Bidayuh and Melanau) in East Malaysia. Forensic Science International: Genetics 3: e77–e80.

2. Bellwood P (1997) Prehistory of the Indo-Malayian Archipelago. Honolulu (Hawaii: University of Hawaii Press).

3. Hutt R (1995) The prehistory of the Austronesian-speaking peoples: A view from language. Journal of World Prehistory 9: 453–510.

4. Diamond JM (1988) Express train to Polynesia. Nature 336: 308.

5. Oppenheimer S (1996) Eden in the east: the drowned continent of Southeast Asia. Weidenfield & Nicholson.

6. Dhalwal JS, Shahnaaz M, Azrena A, Irdia YA, Salawati M, et al. (2010) HLA polymorphism in three indigenous populations of Sabah and Sarawak. Tissue Antigens 75: 166–169.

7. O’Connell JF, Allen J (2004) Dating the colonization of Sahul (Pleistocene Australia-New Guinea): a review of recent research. Journal of Archaeological Science 31: 635–653.

8. Barker G, Barton H, Beavitt P, Bird M, Daly P, Doherty C, Gilbertson D, Hunt C, Krigbaum JA, Lewis H, Manner J, McClenon S, Paz V, Piper P, Pyatt B, Rabett R, Reynolds T, Rose J, Rushworth G, Stephens M (2002) Prehistoric foragers and farmers in South-east Asia: Renewed investigations at Niah Cave, Sarawak. Proceedings of the Prehistoric Society 68: 147–164.

9. Brothwell DR (1960) Upper Pleistocene human skull from Niah caves, Sarawak. Sarawak Museum Journal (new edition) 15–16: 323–349.

10. Hill C, Soares P, Mormina M, Macaulay V, Clarke D, et al. (2007) A Mitochondrial Stragraphy for Island Southeast Asia. The American Journal of Human Genetics 80: 29–43.

11. Bird MI, Taylor D, Hunt C (2005) Palaeoenvironments of insular South East Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quaternary Science Reviews 24: 2228–2242.

12. Sudibuarythy EVHK (2006) Maps of Holocene sea level transgression and submerged lakes on the Sunda Shelf. Natural History.

13. Soares P, Trejaut JA, Loo J-H, Hill C, Mormina M, et al. (2006) Climate change and postglacial human dispersals in Southeast Asia. Mol Biol Evol 23: 1209–1212.

14. Diamond J, Bellwood P (2003) Farmers and Their Languages: The First Expansion. Science 300: 597–603.

15. Diamond JM (2000) Linguistics: Taiwan’s gift to the world. Nature 403: 709–710.

16. Bellwood P (1991) The Austronesian dispersal and the origin of languages. Scientific American 265.

17. Soares P, Trejaut JA, Loo J-H, Hill C, Mormina M, et al. (2008) Climate change and postglacial human dispersals in Southeast Asia. Mol Biol Evol 23: 1209–1212.

18. Capelli C, Wilson JF, Richards M, Stumpf MPH, Gratrix F, et al. (2001) A graphic differentiation of mitochondrial DNA in Han Chinese. The American Journal of Human Genetics 70: 635–651.

19. Underhill PA, Passarino G, Lin AA, Shen P, Miraz-O´N Lahr M, et al. (2001) Genetic evidence for a northward migration of modern humans into Eastern Asia during the last ice age. The American Journal of Human Genetics 65: 1718–1724.

20. Kayser M, Brauer S, Weiss G, Schiefenhövel W, Underhill P, et al. (2003) The phylogeography of Y chromosome binary haplotypes and the origins of modern humans. Human Genetics 68: 432–443.

21. Forster P (2004) Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 359: 2353–2360.