A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9

Ming Yuan1, Xuefei Gao2, Louisa S Chard1, Zarah Ali1, Jahangir Ahmed1, Yunqing Li1, Pentao Liu2, Nick R Lemoine1,4 and Yaohe Wang1,4

The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (~90%) in generation of marker gene-positive TK-mutant VACV vectors. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application.

INTRODUCTION

Since the eradication of smallpox, vaccinia virus (VACV) has been utilized as a vector for development of vaccines for the prevention of infectious diseases as well as in cancer immunotherapies.1–7 and oncolytic therapies.8,9 The renewed interest in VACV has driven traditional method for modification of VACV is based on homologous recombination (HR). However, the frequency of recombination is typically less than 0.1%,13 and the purification of recombinant virus is tedious and time-consuming. To purify the recombinant virus, a number of selection methods have been described including selection for TK-positive or -negative phenotypes,14 and resistance to neomycin15 or mycophenolic acid.16 In addition, β-galactosidase,17 β-glucuronidase,18 and fluorescent reporter constructs19 have also been used. However, the marker gene in the resultant mutant virus is not desirable in clinical use, and the Cre/LoxP system has been used to remove the marker gene from the recombinant virus,20 however the efficiency of recovery of the recombinant marker-free vector was still very low.

The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas system is a natural microbial immune mechanism against invading viruses and other genetic elements.21–23 There are three CRISPR-Cas systems in a range of microbial species.24 The type II CRISPR-Cas system consisting of the RNA-guided Cas9 endonuclease (from Streptococcus pyogenes), a single guide RNA (sgRNA) and the trans-activating crRNA (tracrRNA), has been developed for genome editing in eukaryotic cells.25,26 The Cas9 system can be designed to cleave any sequence preceding a 5'-NGG-3' PAM sequence in mammalian cells.25,26 It has been a huge success in efficient generation of genetically modified cells and animal models.25–28 It has also been used to modify adenovirus and type I herpes simplex virus.29 Recently, we developed an efficient method to edit the VACV genome using the CRISPR Cas9 system.30

Here we developed a marker-free system for efficiently and rapidly making VACV vectors by combining the CRISPR Cas9 and two repair donor vectors targeting the TK and N1L genes respectively. The RFP marker gene in the resultant TK-deleted VACA vector can be excised using Cre recombinase, and the RFP marker gene in the resultant N1L-deleted VACA vector can be excised using Flp recombinase. The marker-free system platform developed in this study has significant potential for development of new marker-free VACV vectors for clinical application.

1Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK; 2Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK; 3The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK; 4Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, Zhengzhou, China. Correspondence: Y Wang (yaohe.wang@qmul.ac.uk) or M Yuan (m.yuan@qmul.ac.uk)
Received 25 June 2015; accepted 5 August 2015
RESULTS
Construction of a homologous recombination repair donor vector with an excisable RFP gene targeting the VACV TK region

The TK gene in VACV is commonly deleted to engineer a safer vector and to insert therapeutic or reporter genes. Therefore, we first constructed a repair donor vector to target the TK region for homologous recombination. The cassette for HR is cloned between the EcoRI sites of the pGEMT-easy vector (Figure 1a). RFP or GFP have frequently been used as plaque purification markers to purify engineered mutant VACV. However, these genes are not desirable features for the virus to possess when moving towards clinical trials as they may impair the efficacy of the vector and compromise the safety of the treatment. In order to remove RFP in the mutant VACV vector subsequently, we adopted the Cre-Loxp system to make RFP excisable after a pure TK-deleted VACV vector was obtained. The RFP gene is flanked by loxP sites in the repair donor vector (Figure 1a).

To make the TK repair donor vector more versatile for inserting therapeutic genes, we included a multiple cloning site (MCS, with PacI, SmaI, Pmel, Nhel and MIUI as unique sites) downstream of the VV H5 promoter, (Figure 1a). The resulting TK region repair donor vector is designated as pTK Loxp-RFP.

Efficient editing of the VACV TK region by gRNA-guided Cas9

Previously, we have shown that homologous recombination of VACV can be efficiently mediated by gRNA-guided Cas9 in the N1L and A46R regions.36 To gain highly efficient HR in making TK-mutant VACV using the TK region repair donor vector pTK Loxp-RFP, we designed gRNAs targeting the TK gene and constructed three gRNA vectors targeting this region (Figure 1b) (designated as TKgRNA1, TKgRNA2, and TKgRNA3 hereafter). We observed successful HR events using all three gRNA-guided Cas9, with rates for TKgRNA1, TKgRNA2, and TKgRNA3 being 93, 94, and 67%, respectively (Supplementary Figure S1 and Supplementary Table S1). The time to complete the whole process of obtaining pure mutant VACV is approximately 10–12 days. The resulting mutant VACV was designated vTK-Loxp-RFP (Supplementary Table S2).

RFP is excisable in vTK-Loxp-RFP using Cre recombinase

To remove the RFP selection marker from the resulting TK-deleted VACV vector, we employed the Cre-LoxP system (Figure 1a; Figure 2a). RFP was removed in about 10% of plaques after vTK-Loxp-RFP infection of CV-1 cells expressing Cre recombinase (Figure 2b). The RFP-negative plaques were purified until the RFP-positive plaques were completely diluted out upon a few rounds of infection of CV-1 cells by RFP-negative purification. The deletion of RFP in the final mutant VACV vector was also confirmed by polymerase chain reaction (PCR) (Figure 2c). The resulting mutant VACV was designated vTK-RFPnull (Supplementary Table S2).

Generation of TK-deleted VACV vector armed with the therapeutic transgene human IL12 without RFP

To test the potential of the TK region repair donor pTK Loxp-RFP for introducing therapeutic genes into the TK-mutant VACV, we cloned human Interleukin-12 (hIL-12) into the MCS of the vector, as shown in Figure 1.
The RFP selection marker in modified VACV is excisable by Cre recombinase. (a) Schematics of Cre targeting Loxp sites spanning RFP in VACV before and after RFP is removed by Cre. (b) Images of plaques of TK-LoxP-RFP “in” (lower panel) or “not in” (upper panel) presence of Cre expression. Pure plaques of TK-LoxP-RFP were used to infect CV-1 cells with or without Cre expression. The RFP-negative plaque (indicated with p) was picked up and purified further. (c) RFP gene deletion was verified by PCR in pure mutant VACV obtained from vTK-LoxP-RFP virus after RFP was excised by Cre in CV-1 cells. A46R gene amplification was used as a DNA control. Ctr is the control sample from the TK-LoxP-RFP virus, Cre is the sample from a pure plaque after RFP was removed by Cre from the TK-LoxP-RFP virus. RFP, red fluorescent protein; TK, thymidine kinase; VACV, vaccinia virus.

Generation of N1L-mutant VACV armed with the therapeutic transgene human IL-21 without RFP
To test the potential of the N1L region repair donor pN1L Flp-RFP for introducing therapeutic genes into the N1L-mutant VACV, we cloned human IL-21 into the MCS of the vector (Figure 5a). RFP-negative plaques were purified further until no RFP-positive plaques were present. The deletion of RFP in the final mutant VACV was confirmed by PCR (Figure 5c). The resulting mutant VACV was designated vTK-N1L-RFPnull (Supplementary Table S2).

DISCUSSION
The efficiency of the traditional HR method for constructing mutant VACV is less than 0.1%. Recently we showed that the efficiency of mutant VACV construction can be improved significantly using gRNA-guided Cas9 system, by which we generated mutant VACV
Figure 3 gRNA-guided Cas9 induces homologous recombination in the TK region with a repair donor vector expressing hIL12. (a) Schematic of the homologous recombination cassette of the shuttle vector (TK gene repair donor vector) pTK-LoxP-RFP-hIL12 expressing hIL12 and repaired target region on the VACV genome. (b) TK gene deletion was verified by polymerase chain reaction (PCR) in pure plaques of mutant VACV obtained from TkRNA1-guided Cas9-induced homologous recombination. Partial LacZ gene was amplified by PCR to confirm the HR in TK region. A46R gene amplification was used as a DNA control. 8/10 plaques show TK deletion. (c) hIL12 expression was detected by enzyme-linked immunosorbent assay from the supernatant of pure vTK-Loxp-RFP-hIL12 virus-infected CV-1 cells. HR, homologous recombination; RFP, red fluorescent protein; TK, thymidine kinase; VACV, vaccinia virus.

Figure 4 The RFP selection marker in mutant vTK-Loxp-RFP-hIL12 is excisable by Cre recombinase. (a) Schematic of Cre targeting LoxP sites spanning RFP in VACV before and after RFP was removed by Cre. (b) Images of plaques of vTK-Loxp-RFP-hIL12 “in” (lower panel) or “not in” (upper panel) the presence of Cre expression in CV-1 cells. A pure plaque of vTK-Loxp-RFP-hIL12 was used to infect CV-1 cells with or without Cre expression. The RFP-negative plaque (indicated with p) was picked up and purified further. (c) RFP gene deletion was verified by polymerase chain reaction in pure mutant VACV obtained from vTK-Loxp-RFP-hIL12 virus after RFP was excised by Cre in CV1 cells. A46R gene amplification was used as a DNA control. Ctr is the control sample from vTK-Loxp-RFP-hIL12 virus; Cre is the sample from pure plaque after RFP was removed by Cre from vTK-Loxp-RFP-hIL12 virus. (d) hIL12 expression detected from the supernatant of CV-1 cells infected with pure vTK-hIL12 virus by enzyme-linked immunosorbent assay after RFP was removed by Cre. RFP, red fluorescent protein; TK, thymidine kinase; VACV, vaccinia virus.
with deletion of the N1L or A46R regions. We used the gRNA-guided Cas9 system to achieve high HR efficiency in making mutant VACA with repair donor vectors with excisable marker genes.

VACV is usually modified by gene deletion to create a more selective virus for infection and lysis of tumour cells. This improves the efficacy of the treatment as well as its safety. Deletion of the TK region is one of the most common modifications to the VACV genome to achieve its selectivity. We created the TK region repair donor vector pTK Loxp-RFP, which has the features of an excisable RFP selection marker flanked by LoxP sites, and unique restriction enzyme sites that can accommodate any therapeutic gene in the MCS, under control of an endogenous, stable H5 promoter. Combination of this donor vector with TK gRNA-guided Cas9 system was used to efficiently and rapidly produce TK-deleted VACV armed with a therapeutic gene, hIL-12 as an exemplar. Comparing three TK gRNAs, TKgRNA1- and TKgRNA2-guided Cas9 can induce more than 90% HR, subsequently, one of these two TK gRNA vectors was used for TK region HR. After construction of the TK-deleted VACV using the donor vector pTK Loxp-RFP or pTK Loxp-RFP-hIL-12, RFP was successfully removed. The removal of RFP using Cre recombinase system does not alter the expression of hIL-12 in vTK-hIL-12. Within just 10–12 days, a mutant VACA was made using the above method.

As the MCS of the TK donor vector pTK Loxp-RFP has the potential to accommodate any therapeutic gene, combination of this donor vector with TK gRNA-guided Cas9 system was used to efficiently and rapidly produce TK-deleted VACV armed with a therapeutic gene free of the plaque purification marker RFP.

VACV has distinctive features for development as a tumor-targeted oncolytic virus for cancer treatment. TK-deleted Lister strain VACV is an attractive platform for development of the next generation of oncolytic viruses. The VV N1L gene (called L025 in the VVL strain)
Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Molecular Therapy — Methods & Clinical Development (2015) 15035 Official journal of the American Society of Gene & Cell Therapy

Figure 7 gRNA-guided Cas9 induces homologous recombination in the N1L region with a repair donor vector expressing hIL21. (a) Schematic of the homologous recombination cassette of the shuttle vector (N1L repair donor vector) pN1L FRT-RFP-hIL21 expressing hIL21 and repaired target region on the VACV genome. (b) N1L gene deletion was verified by PCR in pure plaques of mutant VACV obtained from N1L gRNA2-guided Cas9-induced homologous recombination. Partial N1L and Partial L026 gene amplification was used to confirm the HR in N1L region, A46R gene amplification was used as a DNA control. Eight out of nine plaques show N1L deletion. (c) hIL21 expression was detected by enzyme-linked immunosorbent assay from the supernatant of pure vN1L-Flp-RFP-hIL21 virus-infected CV-1 cells. HR, homologous recombination; RFP, red fluorescent protein; TK, thymidine kinase; VACV, vaccinia virus.

Figure 8 The RFP selection marker in mutant vN1L-Flp-RFP-hIL21 is excisable by Flp. (a) Schematic of Flp targeting FRT sites spanning RFP in VACV before and after RFP was removed by Flp. (b) Images of plaques of vN1L-Loxp-RFP-hIL21 “in” (lower panel) or “not in” (upper panel) the presence of Flp expression in CV-1 cells. A pure plaque of vN1L-Loxp-RFP-hIL21 was used to infect CV-1 cells with or without Flp expression. The RFP-negative plaque (indicated with p) was picked up and purified further. (c) RFP gene deletion was verified by PCR in pure mutant VACV obtained from vN1L-Flp-RFP-hIL21 virus after RFP was excised by Flp in CV-1 cells. A46R gene amplification was used as a DNA control. Ctr is the control sample from vN1L-FRT-RFP-hIL21 virus, Flp is the sample from pure plaque after RFP was removed by Flp from vN1L-Flp-RFP-hIL21 virus. (d) hIL21 expression detected by enzyme-linked immunosorbent assay from the supernatant of CV-1 cells infected with pure vN1L-hIL21 virus after RFP was removed by Flp. RFP, red fluorescent protein; TK, thymidine kinase; VACV, vaccinia virus.
is a major virulence gene that when disrupted, was shown to significantly reduce pulmonary toxicity following various routes of administration into animal models. N1L gene disruption led to a significant reduction in the neurovirulence of VACV, with reduced viral titres in the brains of mice that had been directly inoculated. Recently, we demonstrated that deletion of N1L gene can significantly enhance antitumour immunity by oncolytic VACV (unpublished data). Therefore, N1L gene is another potential region that can be deleted to insert therapeutic genes. We have shown here that the Flp-FRT system is another site-specific recombination system to efficiently excise reporter genes. The VTK-N1L-RFPnull, VTK-N1L-hIL21-RFPnull, and VTK-N1L-hIL12-RFPnull viruses could be useful in the construction of vectors for the clinic.

MATERIALS AND METHODS

Cell culture and transfection

CV-1 (Monkey kidney fibroblast) cells were maintained in Dulbecco's Eagle's medium (Life Technologies, Paisley, UK) supplemented with 5% fetal bovine serum (HyClone, Northumberland, UK), 100 U/ml penicillin, and 100 μg/ml streptomycin at 37 °C with 5% CO2. CV-1 cells were transfected using Effectene (Qiagen, Manchester, UK) according to the manufacturer's instructions.

Restriction enzymes

All restriction enzymes were bought from New England Biolabs (Hitchin, UK).

Plasmids

pCAG-Cre (Addgene, #13775), pCAG-Fplo (Addgene, #13787), and pGEM-Teasy (Promega, UK) were purchased commercially.

Plasmid purification

Plasmids were purified using the Qiagen miniprep kit (Qiagen, Manchester, UK) according to the manufacturer's instructions.

Cloning of gRNAs

The target RNA sequences for the TK region of VACV were selected following the principle stated previously. ORF gRNA oligos with extra ends for cloning were synthesized (Sigma, UK) and cloned into the gRNA cloning vector PB-gRNA-Bsal vector as follows: PB-gRNA-Bsal vector was digested with Bsal to produce sticky ends on the backbone as 3-GAAC-5 and 3-GTTT-5. After annealing and ligation, a 20 bp sequence will replace the 400 bp unrelated sequence in the backbone, which was checked by Xhol-BgIII digestion (If ligation works, 0.5K + 1.7K + 3.9K bands will be seen; if not, 0.9K + 1.7K + 3.9K bands will be seen). The sequences of the gRNA oligos are shown in the Supplementary Figure S1 and Table S1. The individual gRNA coding sequences in the resulting vector were confirmed by Sanger sequencing. The resulting plasmids were designated TkgrRNA1, TkgrRNA2, and TkgrRNA3.

Construction of a TK-directed shuttle vector containing RFP flanked by LoxP sites for homologous recombination

The left arm for TK region (TK left arm) homologous recombination was amplified by PCR from Lister strain of VACV DNA with forward primer 5′-AAGCTTGTATCCATGAGGCGATAGA-3′ (HindIII is underlined) and reverse primer 5′-GGTACC GAATTCCGCGATATTTAGTTATTTCCGG TTTCAATTATTTAGACCCCAACCTTTCAAA GAACCTTGTTTTTAAGTTTTT-3′ (the elements of this primer are as follows: Xhol and KpnI are underlined; HS promoter; LoxP; and reverse primer sequence to amplify VACV gene). The right arm for N1L region (N1L left arm) homologous recombination was amplified by PCR from Lister strain of VACV DNA with forward primer 5′-AAGCTTGTATCCATGAGGCGATAGA-3′ (HindIII is underlined) and reverse primer 5′-GGTACC GAATTCCGCGATATTTAGTTATTTCCGG TTTCAATTATTTAGACCCCAACCTTTCAAA GAACCTTGTTTTTAAGTTTTT-3′ (the elements of this primer are as follows: Xhol and KpnI are underlined; HS promoter; LoxP; and reverse primer sequence to amplify VACV gene).

Construction of shuttle vector TK-Loxp-RFP-hil-12

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Molecular Therapy — Methods & Clinical Development (2015) 15035

Official journal of the American Society of Gene & Cell Therapy

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.

Vaccinia virus and CRISPR Cas-9

M Yuan et al.
Verification of RFP-deleted mutant VACV

After purification of RFP-deleted plaques upon the excision of RFP by Cre or Flp recombinase (RFP was amplified by PCR using forward primer 5′-GCTACCGACTCTACATCCA-3′ and reverse primer 5′-GGCCCTTAAAGATACATTG-3′ to verify the deletion of RFP in the RFP-negative mutant VACV. A control DNA fragment spanning the A46R and A47L genes was amplified by PCR using forward primer 5′-TTGCCATATACAAAGTG-3′ and reverse primer 5′-GGATCCGGATAACATAG-3′.

Enzyme-linked immunosorbent assay

The expression of hIL-12 was detected by enzyme-linked immunosorbent assay (eBioscience, UK) following the manufacturer’s instructions. The expression level of hIL-12 was recorded as OD value. The expression of hIL-21 was detected by enzyme-linked immunosorbent assay (eBioscience) following the manufacturer’s instructions. The expression level of hIL-21 was recorded as OD value.

ACKNOWLEDGMENTS

This project was funded by the UK charity Pancreatic Cancer Research Fund, Ministry of Sciences and Technology, China (2013DFG32080) and QMUL Innovation Ltd.

REFERENCES

1. Gallucci, S and Matzinger, P (2001). Danger signals: SOS to the immune system. Curr Opin Immunol 13: 114–119.
2. Matzinger, P (2002). The danger model: a renewed sense of self. Science 296: 301–305.
3. Guo, ZS and Bartlett, DL (2004). Vaccinia as a vector for gene delivery. Expert Opin Biol Ther 4: 901–917.
4. Kwak, H, Hörlig, H and Kaufman, HL (2003). Poxviruses as vectors for cancer immunotherapy. Curr Opin Drug Discov Deliv 6: 161–168.
5. Tsymo, JR, Briat, A, Alusi, G, Cao, F, Gao, D, Yu, J et al. (2009). Lister strain of vaccinia virus armed with endostatin-angiostatin fusion gene as a novel therapeutic agent for human pancreatic cancer. Gene Ther 16: 1223–1233.
6. Kim, DH, Wang, Y, Liang, W, Contag, CH and Thorpe, SH (2008). Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res 68: 2071–2075.
7. Park, BH, Hwang, T, Liu, TC, Sze, DY, Kim, JS, Kwon, HC et al. (2008). Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol 9: 533–542.
8. Liu, TC, Hwang, T, Park, BH, Bell, J and Kim, DH (2008). The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Mol Ther 16: 1637–1642.
9. Puhlmann, M, Gnant, M, Brown, CK, Alexander, HR and Bartlett, DL (1999). Thymidine kinase-deleted vaccinia virus expressing purine nucleoside phosphorylase as a vector for tumor-directed gene therapy. Hum Gene Ther 10: 649–657.
10. Breitbach, CJ, Burke, J, Jonker, D, Stephenson, J, Haas, AR, Chow, LQ et al. (2011). Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477: 99–102.
11. Heo, J, Reit, T, Ruo, L, Breitbach, CJ, Rose, S, Bloomston, M et al. (2013). Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 19: 329–336.
12. Puhlmann, M, Brown, CK, Gnant, M, Huang, J, Libutti, SK, Alexander, HR et al. (2000). Vaccinia as a vector for tumor-directed gene therapy: biodistribution of a thymidine kinase-deleted mutant. Cancer Gene Ther 7: 66–73.
13. Piccini, A, Perkus, ME and Paolotti, E (1987). Vaccinia virus as an expression vector. Methods Enzymol 153: 545–563.
14. Mackett, M, Smith, GL and Moss, B (1984). General method for production and selection of infectious vaccinia virus recombinants expressing foreign genes. J Virol 49: 857–864.
15. Franke, CA, Rice, CM, Strauss, JH and Hruby, DE (1985). Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol Cell Biol 5: 1819–1824.
16. Falkner, FG and Moss, B (1988). Escherichia coli gpt gene provides dominant selection for vaccinia virus open reading frame expression vectors. J Virol 62: 1849–1854.
17. Chakrabarti, S, Brechling, K and Moss, B (1985). Vaccinia virus expression vector: coexpression of beta-galactosidase provides visual screening of recombinant virus plaques. Mol Cell Biol 5: 3403–3409.
18. Carroll, MW and Moss, B (1995). E. coli beta-glucuronidase (GUS) as a marker for recombinant vaccinia viruses. Biotechniques 19: 352–4, 356.
19. Luker, KE, Hutchens, M, Schultz, T, Pekosz, A and Luker, GD (2005). Bioluminescence imaging of vaccinia virus: effects of interferon on viral replication and spread. Virology 341: 284–300.
20. Rintoul, J.L., Wang, J., Gammon, D.B., van Buuren, N.J., Garson, K., Jardine, K. et al. (2011). A selectable and excisable marker system for the rapid creation of recombinant poxviruses. PLoS One 6: e24643.

21. Jansen, R., Embden, J.D., Gaaster, W. and Schouls, L.M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43: 1565–1575.

22. Brouns, S.J., Jore, M.M., Ludgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P. et al. (2008). Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960–964.

23. van der Oost, J., Jore, M.M., Westra, E.R., Lundgren, M. and Brouns, S.J. (2009). CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem Sci 34: 401–407.

24. Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E. (2012). Engineering genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 31: 551–553.

25. Yin, H., Xue, W., Chen, S., Bogorad, R.L., Benedetti, E., Grompe, M. et al. (2014). Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32: 551–553.

26. Wang, H., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. et al. (2013). One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153: 910–918.

27. Yuan, M., Zhang, W., Wang, J., Al Yaghi, C., Ahmed, J., Chard, L. et al. (2015). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89: 5176–5179.

28. Hughes, J., Wang, P., Alusi, G., Shi, H., Chu, Y., Wang, J. et al. (2011). Lister vaccine strain of vaccinia virus armed with the endostatin-angiostatin fusion gene: an oncolytic virus superior to dl1520 (ONYX-015) for human head and neck cancer. Hum Gene Ther 22: 476–484.

29. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.

30. Billings, B., Smith, S.A., Zhang, Z., Lahiri, D.K. and Kotwal, G.J. (2004). Lack of N1L gene expression results in a significant decrease of vaccinia virus replication in mouse brain. Ann NY Acad Sci 1030: 297–302.

31. Park, Y.N., Maisson, D., Eisenberg, E. and Greene, L. (2011). Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28: 673–681.

32. Yuan, M., Zhang, W., Wang, J., Al Yaghi, C., Ahmed, J., Chard, L. et al. (2015). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89: 5176–5179.

33. Gratz, M.S., Suezer, Y., Kremer, M., Volz, A., Majzoub, M., Hanschmann, K.M. et al. (2011). N1L is an ectromelia virus virulence factor and essential for in vivo spread upon respiratory infection. J Virol 85: 3557–3569.

34. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.

35. Yuan, M., Zhang, W., Wang, J., Al Yaghi, C., Ahmed, J., Chard, L. et al. (2015). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89: 5176–5179.

36. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.

37. Yuan, M., Zhang, W., Wang, J., Al Yaghi, C., Ahmed, J., Chard, L. et al. (2015). Efficiently editing the vaccinia virus genome by using the CRISPR-Cas9 system. J Virol 89: 5176–5179.

38. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.

39. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.

40. Bartlett, N., Symons, J.A., Tscharke, D.C. and Smith, G.L. (2002). The vaccinia virus N1L protein is an intracellular homodimer that promotes virulence. J Gen Virol 83(Pt 8): 1965–1976.