Promoting Plant-Based Therapies for Chronic Kidney Disease

Muhammad Ali Khan, MPharm1,2,3,4,5, Andrew J Kassianos, PhD3,6,7,8, Wendy E Hoy, MD1,6, AHM Khurshid Alam, PhD9, Helen G Healy, MD1,3,6,7, and Glenda C Gobe, PhD1,2,4

Abstract
Chronic kidney disease (CKD) is debilitating, increasing in incidence worldwide, and a financial and social burden on health systems. Kidney failure, the final stage of CKD, is life-threatening if untreated with kidney replacement therapies. Current therapies using commercially-available drugs, such as angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers and calcium channel blockers, generally only delay the progression of CKD. This review article focuses on effective alternative therapies to improve the prevention and treatment of CKD, using plants or plant extracts. Three mechanistic processes that are well-documented in CKD pathogenesis are inflammation, fibrosis, and oxidative stress. Many plants and their extracts are already known to ameliorate kidney dysfunction through antioxidant action, with subsequent benefits on inflammation and fibrosis. In vitro and in vivo experiments using plant-based therapies for pre-clinical research demonstrate some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid any toxic outcomes to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using plant-based therapies for the treatment of kidney diseases, including CKD.

Keywords
chronic kidney disease, herbal medicine, plant-based therapies, oxidative stress, pathology, inflammation

Received June 16, 2021. Received revised November 18, 2021. Accepted for publication January 15, 2022.

Introduction
Chronic kidney disease (CKD) is an insidious, multifactorial, and slowly progressive disease, defined using altered kidney structure or dysfunction present for three months or more.1 CKD is graded into six progressive stages (Stage 1, 2, 3a and 3b, 4, and 5) based on glomerular filtration rate (GFR).2 While not progressive in everyone, CKD progresses in many people to total and permanent kidney failure, or Stage 5 CKD, previously termed end-stage kidney disease (ESKD).2,3 CKD is one of the major public health burdens in developed and developing countries. Although statistics differ from country to country, the prevalence of this disease has tended to increase from year to year recently.4 CKD increases rapidly with age, with rates among those aged 75 and over, twice as high as for 65-74 year olds, and around 7 times as high as those aged 18-54 (42%, 21% and 6%, respectively).

1 NHMRC CKD CRE (CKD.QLD), Univ of Queensland, Brisbane, Australia
2 School of Biomedical Sciences, Faculty of Medicine, Univ of Queensland, Australia
3 Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Brisbane, Queensland, Australia
4 Kidney Disease Research Collaborative, Princess Alexandra Hospital and Univ of Queensland, Translational Research Institute, Brisbane, Australia
5 Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Bangladesh
6 Centre for Chronic Disease, Faculty of Medicine, Univ of Queensland, Brisbane, Australia
7 Kidney Health Service, Royal Brisbane and Women’s Hospital, Brisbane, Australia
8 IHBI, Queensland Univ of Technology, Brisbane, Australia
9 Department of Pharmacy, Univ of Rajshahi, Rajshahi-6205, Bangladesh

Corresponding Author:
Prof Glenda Gobe, Faculty of Medicine, UQ Health Sciences Building, Royal Brisbane and Women’s Hospital, Brisbane, Australia 4029.
Email: g.gobe@uq.edu.au

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Prevalence is generally higher in lower socioeconomic groups (14% compared with 8% in higher socioeconomic groups), and Indigenous populations often experience higher risk of CKD than the non-Indigenous populations.

Interest in the health-benefiting properties of plant-based therapies is driven, in part, by the potential to prevent onset, or ameliorate progression, of certain diseases and reduce health care costs. The financial burden to health systems for CKD hospitalizations and treatments, worldwide, is immense and expected to increase. Complementary and alternative medicines have been used for CKD patients for many years, with reportedly disparate results for improving outcome. In Western countries, these therapies are most likely used to complement conventional medicines, whereas in other countries such as China, other Asian, and African countries, sole use of alternative medicines is practiced for CKD patients. Therefore, an important challenge to researchers is identifying low-cost and effective plant-based therapeutic options for CKD patients in poorer countries and disadvantaged populations. This review will describe the pathogenic mechanisms of CKD that may be modulated by these therapies and emphasize and summarize information on some plants used for complementary and alternative medicine, using examples from pre-clinical and clinical studies.

Materials and Methods
PubMed, Medline, Google Scholar, Web of Science, Cochrane Library and China Journal Full-text Database for relevant articles published in English were used for this review of preclinical and clinical plant-based therapies for CKD. The contents of full articles were checked by Muhammad Ali Khan (MAK) and Glenda Gobe (GG) for quality of investigations. Only English articles were included.

Results
Preclinical research using plant-based therapies in in vitro and in vivo experiments demonstrates some robust therapeutic benefits. In the CKD clinic, combination treatments of plant extracts with conventional therapies that are seen as relatively successful currently may confer additive or synergistic renoprotective effects. These results are summarized in the following paragraphs.

Pathogenetic Mechanisms of CKD
The most common causes of CKD are aging, male gender, diabetes, hypertension and lifestyle. Common pathogenetic mechanisms include tubulointerstitial fibrosis and chronic inflammation, tubular atrophy, glomerulosclerosis and proteinuria. Chronic inflammation occurs through a series of biological signaling pathways involving the vasculature and the immune system, leading to the accumulation of inflammatory mediators in the tissue. Fibrosis is a multifaceted cellular response primarily driven by various proinflammatory and inflammatory cytokines such as transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), platelet-derived growth factor, fibroblast growth factor-2, and some of the interleukins (ILs). Mechanistically, fibrosis and inflammation are exacerbated by oxidative stress. Another key mechanism for kidney fibrosis is epithelial-mesenchymal transition (EMT) which is induced by various factors, including TGF-β, IL-1β and angiotensin II.

Hypoxia and inflammation coexist and have interactive roles in CKD. Hypoxia promotes inflammation by increasing vascular permeability, a central process in the movement of inflammatory cells that facilitate the production of inflammatory mediators. In contrast, inflamed tissues are often severely hypoxic because of increased metabolic demands. Some important inflammatory signaling pathways in CKD involve mitogen-activated protein kinase (MAPK), the transcription factor nuclear factor kappa B (NF-κB), p65 and some of the ILs. The MAPK family consists of extracellular signal-regulated kinase, Jun N-terminal kinase and p38 MAPK. NF-κB is a key player in the production of pro-inflammatory cytokines and chemokines, such as TNF-α, IL-1β, IL-6, chemokine motif ligand 2 and macrophage inflammatory protein-2. Hypoxia is closely regulated by hypoxia-inducible factor (HIF). HIF plays a critical role in inflammation and fibrosis during CKD through determining gene transcription, activation of multiple signaling pathways and epigenetic regulation, and contributes to the pathogenesis of comorbidities of CKD such as anemia, and aberrant angiogenesis. Tissue hypoxia also causes mitochondrial dysfunction and oxidative stress, which lead to the generation of reactive oxygen species and reactive nitrogen species. Other leading causes of oxidative stress are proteinuria, uremic toxins, hyperglycemia and increased activity of the intra-renal angiotensin system.

One of the recent research interests for pathogenesis of CKD is continuum of chronic injury after repair of acute kidney injury (AKI). AKI involves tubular epithelial cell apoptosis and/or necrosis. If the injury is mild, an adaptive repair process can lead to complete recovery. In contrast, if severe or prolonged injury occurs, this may be followed by maladaptive repair that progresses to chronic inflammation, vascular rarefaction, nephron loss, fibrosis and finally progression to CKD. One
of the main causes of AKI is ischemia-reperfusion. Ischemia also causes release of damage-associated molecular pattern molecules (DAMPs) by damaged cells. The DAMPs promote and exacerbate the inflammatory response. Inflammatory mediators such as inducible nitric oxide synthase, and pro- and anti-apoptotic signaling pathways also act in the continuum of disease progression from AKI to CKD. Ultimately, tubulointerstitial fibrosis develops, thereby impairing local oxygenation. Thus, a time-dependent, combined and cumulative interplay of fibrosis, inflammation and tubular cell loss leads finally to progression to CKD. Figure 1 shows relevant selected mechanisms for the pathogenesis of CKD.

Multiple factors and many signaling pathways are responsible for chronic kidney disease (CKD). Ischemia-reperfusion injury (IRI) is one of the key causes of acute kidney injury (AKI) and apoptosis. Hypoxia produces oxidative stress and reactive oxygen species. Tubular inflammation stimulates immune cells to produce and accumulate extracellular matrix (ECM), causing malfunctioning of kidney structure. Chronic tubular inflammation causes vascular rarefaction and nephron loss. The transcription factor nuclear factor-κB (NF-κB) stimulates proinflammatory cytokines. Reactive oxygen species, proinflammatory cytokines and kidney structure malfunction cause kidney fibrosis and, ultimately, CKD.

Current CKD Treatment Strategies

As mentioned previously, there are limited therapies for CKD. Many current therapies rely on modulating the renin-angiotensin system (RAS) which consists of angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensin II, angiotensin II type 1 receptor and angiotensin II type 2 receptor. The renin-angiotensin-aldosterone system helps to regulate normal blood pressure. Renin and ACE produce angiotensin II, which alone or in combination with other components of the RAS, upregulates TGF-β1 and causes renal fibrosis through extracellular matrix accumulation, via multiple signaling pathways. The RAS also regulates other profibrotic factors that lead to accumulation of extracellular matrix, causing podocyte loss in glomeruli and decrease in GFR. ACE inhibitors (ACEi) and angiotensin receptor blockers (ARB) alone or in combination, are currently the most efficacious treatments for inhibition of the RAS and for maximal therapeutic effect on CKD, although their use is not without controversy for kidney failure. Recently, there has been an increasing interest in diet and the gut microbiome as modulators of CKD progression. Dietary supplements or natural foods are attractive, beneficial, and feasible complementary strategies to prevent or delay the progression of CKD. Natural products can also prevent kidney fibrosis through suppressing the RAS, inflammation and oxidative stress. These products can also prevent kidney fibrosis by suppressing the Wnt/β-catenin and the TGF-β1 signaling pathways. The inclusion of diet regulation in CKD therapies could be cost effective and possibly safer than combined regular drugs in reducing morbidity and mortality of CKD. Figure 2 summarizes the targets for current and alternative CKD therapies.

After conversion of angiotensinogen to angiotensin by renin, angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II. Angiotensin II together with angiotensin type I and type 2 receptors (AT1R and AT2R) stimulate pro-fibrotic transforming growth factor-β1 (TGF-β1) to produce and accumulate extracellular matrix, causing kidney fibrosis and finally chronic kidney disease (CKD). Inflammation and oxidative stress also stimulate ECM accumulation. The ACE inhibitor (ACEi) inhibits production of angiotensin II. Angiotensin receptor blockers (ARBs) block AT1R and AT2R and so TGF-β1 synthesis is blocked, ultimately inhibiting accumulation of extracellular matrix. Natural products (alternative therapies) may block the final common pathway of kidney fibrosis through multiple mechanisms, including those stimulated by oxidative stress and inflammation.

Plants as Natural Medicines

Plants, algae and fungi have been utilized as natural medicines throughout human history. Medicinal plants are regarded as an acceptable, cheap, easily available and relatively safe source of many active compounds for pharmaceuticals. In China, the use of traditional herbal medicine for kidney disease has shown some advantages over single conventional drug treatment. The beneficial effect of medicinal plants on kidney disease is often derived from their ability to boost the natural antioxidant defence mechanisms in the body. Different types of phytochemicals such as flavonoids, vitamins, resveratrol, anthocyanin, curcumin and phenolic acid are often found in the plant-based medicines and may act as antioxidant. In this review, plants known to be beneficial in CKD, and to have minimal adverse outcomes, are discussed. Although by no means restricted to these plants, benefit has been demonstrated from Rheum spp. (Rhubarb), Astragalus membranaceus (Astragalus), Cordyceps sinensis (CS), Tripterygium wilfordii Hook F (TwHF), Abelmoschus manihot (L.) medic (AM), Salvia miltiorrhiza (SM), Vitis vinifera (Grape), and Zingiber officinale (Ginger). These plants and
Common/Botanical Name	Plant part and delivery dose	Animal and renal effect	Ref.
Abelmoschus manihot	Flower; Huangkui capsule (HKC) (75 mg - 300 mg/kg/d)	Rats: Reduced ER stress and c-Jun NH2-terminal kinase activation in the liver and kidney; subsequently improved renal injury and also improved lipid metabolic disorders by activating PPARγ/α.	38
Astragalus membranaceus var. mongholicus with Angelica sinensis	Roots (14 g/kg/d); Decoction of water extract	Rats: Decreased urinary protein excretion, up-regulated VEGF and improved kidney microstructure.	39
Cornus officinalis with Radix Astragalus membranaceus	Roots (10 gm – 20 gm/kg/d); Aqueous extract	Mice: Reduced urinary protein excretion.	40
Cordyceps sinensis with Tripterygium wilfordii	Fruiting body (16 mg/kg/d – 5 g/kg/d); Polyglycosidium powder from both herbs	Rats: Attenuated glomerular damage by preventing the downregulation of podocin and nephrin in diabetic kidney disease.	41
Anrederea cordifolia	Leaves (50 mg/kg/d – 150 mg/kg/d); Ethanolic extract	Rats: Potential nephron-protective action, but not evident in animals under study.	42
Urtica dioica	Leaves (100 mg/kg); Ethanolic extract	Rats: Inhibited renal fibrosis by inhibiting TGF-β1/CTGF.	43
Elsholtzia ciliate (Thunb.) Hylander	Whole plant (300 mg/kg – 500 mg/kg); Ethanolic extract	Unknown: Prevented progression of glomerulosclerosis.	44
Vigna angularis	Seeds (10 mg/kg); Aqueous extract	Rats: Prevented glomerular mesangial matrix deposits and protected nephrons.	45
Asparagus racematus	Roots (125 mg/kg/d); Ethanol extract	Rats: Significantly decreased plasma glucose, creatinine, BUN, total cholesterol and triglyceride levels. Attenuated renal hypertrophy, polyuria, hyperfiltration, microalbuminuria, structural abnormalities and oxidative stress.	42
Anrederea cordifolia	Leaves (50 mg/kg/d – 150 mg/kg/d); Ethanol extract	Rats: Reduced serum creatinine, urea, influenced renal index and improved kidney function.	46
Urtica dioica	Leaves (100 mg/kg); Ethanol extract	Rabbits: Decreased BUN and SCr; increased gluthathione and reduced MDA level.	47
Elsholtzia ciliate (Thunb.) Hylander	Whole plant (300 mg/kg – 500 mg/kg); Ethanol extract	Rats: Improved tubulointerstitial fibrosis via regulation of TGF-β and Smad3 expression.	48
Vigna angularis	Seeds (10 mg/kg); Aqueous extract	Rats: Significantly decreased glucose, triglycerides, VLDL, uric acid, ALT, urea, Scr and increased HDL.	49
Panax ginseng	Whole plant (0.2 g/kg/d – 0.4 g/kg/d); Decoction with water	Mice: Reduced Scr, BUN and histopathology; increased Cr clearance.	50
Rheum palmatum L., Salvia miltiorrhiza, Astragalus membranaceus Fisch. Bunge with Carthamus tinctorius L.	Polyherbal (2 g/kg/d – 8 g/kg/d); Shenkang granules (SKGs) with normal saline	Rats: Significantly decreased levels of microalbumin, total protein, Scr, BUN and serum lipid.	51
Paonia lactiflora, Angelica acutiloba, Astragalus membranaceus, Rehmannia glutinosa, Cnidium officinale, Uncaria rhynchoephylia with Phellodendron amnurense	Polyherbal (0.15 g/kg – 0.45 g/kg); Shichimotsu-koka-To (SKT) decoction	Rats: Significantly decreased urinary albumin excretion and prevented loss of CIC-5 in renal cortex.	52
Radix astragali, Salvia miltiorrhiza, Panax notoginseng with Rosewood	Polyherbal (250 mg/kg/d – 500 mg/kg/d); QiShenYiQi (QSYQ) water-ethanol extract	Rats: Inhibited downstream fibrogenic action and ameliorated renal tubulointerstitial fibrosis.	53
Rheum palmatum, Salvia miltiorrhiza, Cordyceps sinensis, Leonurus sibiricus, Epipedium macranthum, Radix Astragali with Radix Codonopsis Pilosulae	Polyherbal (50 mg/kg); WH30°	Rats: Improved Cr clearance and effectively prevented acute renal failure.	54
Curcuma longa	Seeds (1 mg/kg – 5 mg/kg); Powder in food	Mice: Inhibited MCP-1 mRNA expression and IL-2 mRNA and secretion of MCP-1 and IL-8.	55
Vigna angularis	Flower (300 mg/kg – 500 mg/kg); Aqueous extract	Rats: Improved renal function of CKD.	48
Mangifera indica	Bark (250 mg/kg); Water and ethanolic extracts	Rats: Exhibited diuretic effect.	56

(continued)
their extracts are sometimes used alone, but in many countries they are used in polyherbals for the treatment of kidney disease.36,37 The following section describes these selected plants and their extracts for treating CKD, their mechanisms of action, and their particular beneficial effects for CKD, using pre-clinical and clinical studies. Tables 1 and 2 give a broader list of plants used in pre-clinical and clinical studies for the treatment of CKD.

Table 1. (continued)

Common/Botanical Name	Plant part and delivery dose	Animal and renal effect	Ref.
Mimosa pudica	Leaves (100 mg/kg – 400 mg/kg); Aqueous extract	Rats: Diuretic; increased electrolyte excretion.	57
Achyranthes aspera	Whole plant (400 mg/kg); Various extracts	Rats: Diuretic; increased electrolyte excretion.	58
Bixa orellana	Leaves (500 mg/kg); Methanolic extract	Rats: Diuretic; increased electrolyte excretion.	59
Taraxacum officinale/Dandelion	Leaves (50 ml/l); Aqueous extract	Mice: Potent diuretic comparable to furosemide.	60
Orthosiphon stamineus	Unknown (100 mg/kg – 200 mg/kg); Methanolic extract	Rats: Decreased SCr, blood urea, urinary protein and extent of renal damage.	61
Strychnos potatorum	Seeds (200 mg/kg); Ethanolic extract	Rats: Normalize BUN, blood protein and SCr.	62
Aerva javanica	Roots (400 mg/kg); Ethanolic extract	Rats: Recover functional biomarkers of kidneys.	63
Ficus religiosa L.	Latex (200 mg/kg); Methanolic extract	Rats: Increased MDA, decreased SOD, catalase, glutathione level, exhibited nephroprotective and curative activity.	64
Vernonia cinerea	Aerial plant parts (500 mg/kg); Various extracts	Rats: Pronounced curative, prophylactic, and protective action on the Kidney.	65
Acorus calamus	Aerial plant parts (250 mg/kg – 500 mg/kg); Various extracts	Rats: Increased Hb, leukocytes, packed cell volume and mean corpuscular volume, Cr clearance, body weight decreased neutrophils, granulocytes, uric acid and platelets.	66
Boerhaavia diffusa	Roots (200 mg/kg – 400 mg/kg); Aqueous extract	Rats: Prevented acetaminophen-induced nephrotoxicity.	67
Aegle marmelos	Leaves (250 mg/kg – 750 mg/kg); Aqueous extract	Rats: Significantly reduced MDA, SCr, urea and BUN; increased GSH and catalase in gentamicin toxicity.	68
Euphorbia neriifolia	Leaves (150 mg/kg – 400 mg/kg); Hydro alcoholic extract	Rats: Significantly restored antioxidant enzymes in the kidney and exhibited protective effect.	69
Pomegranate (Punica granatum)	Peel (286 mg/kg – 667 mg/kg); Ethanolic extract	Rats: Significantly decreased lipid peroxidation, serum urea and Cr levels; recovered glutathione-S-transferase and antioxidant enzymes.	70
Sesamum indicum	Seeds (500 mg/kg); Ethanolic extract	Rats: Decreased serum total protein, albumin and globulin; increased blood urea, SCr and uric acid.	71
Launaea procumbens	Aerial plant parts (100 mg/kg – 200 mg/kg); Various extracts	Rats: Improved Cr clearance; decreased proteinuria and hematia.	72
Rutin (extracted from, for example, onions, apples, red grapes/wine)	Bioflavonoid (100 mg/kg/d); Powder	Rats: Rutin improved kidney and heart structure and function, decreased HO-1 and PLA-2 expression in a model of CKD.	73
Camellia sinensis	Leaves; Tea polyphenol	Rats: Reduced tubulointerstitial fibrosis, inflammation, prevented obesity related CKD in offspring programmed by maternal malnutrition.	74

Abbreviations: ALT, alanine amino transferase; BUN, blood urea nitrogen; CIC-5, chloride channel 5; CTGF, connective tissue growth factor; CKD, chronic kidney disease; Cr, creatinine; ER, endoplasmic reticulum; ECM, extracellular matrix; GSH, glutathione; Hb, hemoglobin; HO-1, heme-oxygenase-1; HDL, high density lipoprotein; IL-2, interleukin-2; IL-8, interleukin-8; MDA, malondialdehyde; MCP-1, monocyte chemotactic protein-1; PPARα/γ, peroxisome proliferator-activated receptor α/γ; PLA-2, phospholipase A2; SCr, serum creatinine; SOD, superoxide dismutase; TGF-β1, transforming growth factor β1; VEGF, vascular endothelial growth factor; VLDL, very low density lipoprotein.

Rheum spp. (Rhubarb). Rhubarb, derived from the root of *Rheum spp* indigenous to Asia, belongs to the Polygonaceae family.91 Some species are cultivated for their potential to treat CKD.92,93 Rhubarb contains compounds such as saponins, flavonoids, volatile oils, polysaccharides, tannins, stilbene glycosides (resveratrol and piceatannol) and anthraquinone glycosides (physcion, aloe emodin, chrysophanol, emodin and rhein). The anthraquinone glycosides may have some inherent
toxicities, but they can be removed from extracts to produce an effective extract that is nephroprotective. Many clinical and pre-clinical trials have consistently shown that extracts of rhubarb can reduce serum creatinine levels and offset other metabolic dysfunction related to kidney failure.

In CKD therapy, rhubarb increases the excretion of nitrogenous and other waste products through the intestine and ameliorates uremic toxin accumulation, as demonstrated in various pre-clinical animal models of kidney failure. Using a model of diabetic nephropathy in mice, the proposed mechanism was thought to target the gut-kidney axis and trigger protective gut microbiota, rather than being directly nephroprotective. The two primary active anthraquinones in rhubarb are rhein and emodin. Rhein prevents kidney damage by modulating various signaling pathways. It down-regulates the Wnt/β-catenin signaling pathway, up-regulates Sirtuin 1, decreases EMT that normally leads to fibrosis and ameliorates dyslipidemia. Rhein also improves cell metabolism through modulation of the glucose transporter I, decreasing mesangial cell hypertrophy and glomerulosclerosis.
glycation of proteins, inhibits the lipopolysaccharide-induced expression of TLR4 and down-regulates pro-inflammatory TNF-α and IL-6 in the damaged kidney. Emodin also decreases mesangial cell proliferation by inhibiting cellular FLICE-like inhibitor protein, TGF-β1 and fibronectin. p38 MAPK, differentiation and maturation of dendritic cells, and increases the number of regulatory T cells. These results indicate that the active ingredients in rhubarb have multiple mechanisms of action for the treatment of CKD, including regulation of inflammation and the immune response. Most of these reports have used pre-clinical models. Clinically, rhubarb extract alone, or as a polyherbal, was beneficial in CKD patients, delaying CKD progression and decreasing adverse effects of hemodialysis. The most common adverse side effects of rhubarb are nausea, vomiting, diarrhea, electrolyte disorders and liver toxicity.

Astragalus membranaceus (Astragalus). Astragalus membranaceus (synonymous name of Astragalus propinquus), belongs to the family Fabaceae and the genus Astragalus, which has more than 3000 species worldwide. The plant is indigenous to the north and eastern regions of China but is grown worldwide and used widely in complementary and alternative medicines. Astragalus contains more than 60 bioactive compounds, including polysaccharides, saponins (astragalosides I–VII), flavonoids, amino acids and trace elements. In vitro and in vivo pre-clinical trials have revealed that Astragalus extract has potent antioxidant and anti-inflammatory effects. Other mechanisms include downregulating angiotensin receptors, inhibiting nitric oxide synthase and TNF-α production, and stimulating vascular endothelial growth factor and the immune system. In addition, the plant extracts from Astragalus can rebalance profibrotic TGF-β/Smad signaling activity and inhibit endoplasmic reticulum stress-induced pathways.

Several pre-clinical CKD models reported that the plant extract, either alone or as a polyherbal, showed anti-fibrotic effects, ameliorated proteinuria, attenuated kidney injury and promoted Reno protective effects. Wojcikowski et al. performed a pre-clinical trial in rats using the unilateral ureteral obstruction (UUO) model of kidney fibrosis, with or without Astragalus membranaceus and Angelica sinensis (A and A). The ACEi Enalapril was administered in drinking water in some groups. The combined effect of A and A, with or without Enalapril, had anti-fibrotic benefits. Several clinical trials have reported that Astragalus significantly ameliorated CKD by decreasing proteinuria, with a corresponding increase in creatinine clearance, and hemoglobin levels. Astragalus is safe for most of the recipients. However, the plant is known to inhibit CYP3A4 hence it could affect the action of some other drugs that are metabolized by this enzyme.

Cordyceps sinensis (CS). CS is a fungus that derives its nutrients from the larvae of Lepidoptera. It is endemic to the Tibetan plateau but is produced commercially now. Various bioactive compounds, including amino acids, polysaccharides, organic acids, trace elements, nucleosides, peptides, steroids and other chemical components are present in CS extracts. The ability of CS to ameliorate urinary disorders and edema was described over 2000 years ago in traditional Chinese medicine. In vitro studies with CS demonstrate potent antioxidant capacity. In vivo, glomerular protection via inhibition of mesangial cell proliferation was demonstrated. Treatment with CS also decreased apoptosis and kidney tubular atrophy, and enhanced the immune system.

Extensive work has been carried out on CS alone, or in combination with other existing drugs, or other plant extracts. Different pre-clinical animal studies have been used to observe the beneficial effect on kidney disease, especially in CKD. In rat models of CKD, CS improved kidney function, reduced cardiovascular and endocrine comorbidities, inhibited oxidative stress, and reduced CKD-triggering metabolites. Clinically, CS extracts significantly reduced the levels of serum creatinine, proteinuria, hematuria, inflammatory cytokines, monocyte chemo attractant protein-1 and TNF-α. Clinical trials of CS, alone or in combination with other medicinal plant extracts or existing drugs, showed significant improvement of kidney function, with reduced levels of serum creatinine, albuminuria, proteinuria, blood urea nitrogen (BUN) and profibrotic TGF-β1, and increased creatinine clearance. There are very limited reports of adverse effects of dietary supplements of CS in humans. The most common adverse side effects are nausea, dry mouth and stomach upset.

Tripterygium wilfordii Hook F (TwHF). TwHF is a member of the Celastraceae family, and is native to Eastern and Southern China, Korea, Japan and Taiwan. A stable glycoside named “multi-glycoside of TwHF” (GWT) has been approved by the China State Food and Drug Administration (Z32021007) for the treatment of chronic diseases such as rheumatoid arthritis and glomerulonephritis. In China, GWT has been used extensively for the treatment of proliferative glomerulonephritis for more than three decades. The major active compound of GWT is triptolide. GWT showed several beneficial therapeutic effects via its immunosuppressive, immunomodulatory, anti-inflammatory, antioxidant and antitumor activities.

Pre-clinical studies of CKD have demonstrated that TwHF reduced tubular apoptosis and kidney fibrosis, as well as improving kidney function by inhibiting the TGF-β1/Smad3 signaling pathways. Clinically, GWT in combination with irbesartan reduced excretion of urinary proteins, including urinary connective tissue growth factor and TGF-β1, in diabetic nephropathy patients. In combination with an ARB, podocyte injury was reduced in a similar patient population. However, the use of TwHF extract is limited due to the lack of high-quality clinical trial data. TwHF causes some common adverse side effects, such as stomach upset, diarrhea, skin rash and changes in skin pigmentation. The other concerning, although reversible, side effects are infertility in men.
and amenorrhea in women.148 These adverse side effects limit its usefulness for the treatment of CKD.

\textit{Abelmoschus manihot (L) medic (AM).} AM belongs to the Malvaceae family. It has been used as a traditional medicine for hundreds of years in China, notably for the treatment of CKD.149 Due to its potential renoprotective properties, the State Food and Drug Administration of China approved the Huangki capsule (HKC, made from AM) as a Class III new drug (GUOYAOZHUNZI Z19990040) for the treatment of chronic glomerulonephritis. The main active components of HKC are total flavonoids extracted from the flowers of AM, sometimes known as Aibika flowers. Recent research considered HKC as an important adjuvant treatment for CKD, especially as a side effect of diabetes, and suggested that HKC is more effective than the ARB losartan in reducing proteinuria.150,151

The beneficial effect of AM or HKC on CKD and other kidney complications relate to potential anti-inflammatory and antioxidant activities, probably via the flavonoids.152 Several pre-clinical studies in animal models demonstrated that HKC reduced urinary albumin excretion, serum triglycerides, cholesterol levels and podocyte apoptosis.153 Kidney inflammation and glomerular injury were reduced as evidenced by fewer activated macrophages in glomeruli, reduced TNF-\(\alpha\) protein expression in the kidney, and a dampened p38 MAPK signaling pathway.154,155 There are limited data on AM (or HKC) as an anti-fibrotic agent in clinical trials. AM alone, or together with other drugs, reduced levels of proteinuria, BUN, serum creatinine, and also decreased oxidative stress.156 There were no serious adverse effects from taking AM, except mild to moderate gastrointestinal discomfort.

\textit{Salvia miltiorrhiza (SM).} SM, commonly known as Danshen, is a perennial plant of the genus Salvia, within the family Lamiaceae. It is native to most Asian countries, including China. The roots and rhizomes of the plant have been widely used in traditional Chinese medicine for thousands of years.157 More than 100 bioactive compounds have been isolated from this plant and characterized for their structure. SM has been used for the treatment of numerous diseases, including CKD, because of its potent anti-inflammatory and antioxidant properties.158–161 The bioactivity of SM extract relates to the presence of phenolics, flavonoids, terpenoids, polysaccharides and other related quinone compounds.160 For instance, Tanshinone IIA, a di-terpenoid isolated from SM, showed antioxidant benefit by activating the Nrf2 signaling pathway, improving the metabolic profile and exhibiting potent renoprotective effects,160 and the lipophilic fraction attenuated oxidative stress in diabetic nephropathy.161

Pre-clinical trials of SM alone, or in combination with other drugs, reduced albuminuria, improved kidney function, decreased fibrosis and TGF-\(\beta\)/Smad3 signaling, suppressed pro-inflammatory cytokines and adhesion molecules, and inhibited apoptosis.162,163 SM extracts also ameliorated proteinuria, serum and kidney tissue levels of TGF-\(\beta\)1 and collagen IV, reduced numbers of monocytes/macrophages and exhibited a significant renoprotective effect. Of note, a clinical trial of a polyanherbal that contained SM for CKD stabilized the albumin/creatinine ratio, increased hemoglobin content and improved accumulative survival rate of the test group.164 No serious adverse side effects of SM have been reported.

\textit{Vitis vinifera (grape).} \textit{Vitis vinifera}, or grape, belongs to the Vitaceae family.165 Grape seeds contain more than 1600 phytonutrients, including flavonoids, catechin, anthocyanins, flavonols, non-flavonoids and pro-anthocyanidins, and their extracts exhibit enormous biological activity.166 For this review, one of the most important of the biological actions is inhibition of progression in CKD.167 Grape seed extracts typically act by alleviating oxidative stress and endoplasmic reticulum stress-induced apoptosis.168–170 Pre-clinical studies of grape seed extracts in animal models of CKD have also reported improved kidney function, decreased proteinuria and reduced podocyte cell death.171 Clinical trials have demonstrated that grape seed extracts increased GFR, decreased proteinuria and triglycerides, prevented anemia, and counteracted plasma low density lipoprotein and thrombocytopenia.81 There are no known adverse side effects at normal doses of grape seed extracts.

\textit{Zingiber officinale (ginger).} Ginger is used widely as a spice but also often in folk medicine. It belongs to the Zingiberaceae family and has been cultivated for thousands of years especially in China and the South Asian countries.172 Ginger contains many beneficial compounds, the most important of which are 6-, 8-, and 10-gingerol and 6-shogaol.173 It displays diverse beneficial biological actions due to its potent antioxidant, anti-inflammatory, anti-tumour, anti-diabetic and neuroprotective activities. In pre-clinical animal models of kidney and cardiovascular diseases, ginger extracts lowered blood glucose levels, restored the total carbohydrates, pyruvate, glycogen and total protein in kidney tissue, promoted the regeneration of tubules and restored glomeruli, and reduced fatty infiltration.174–177 One clinical trial of ginger extract in CKD patients on peritoneal dialysis, demonstrated that daily administration of 1000 mg ginger reduced serum fasting glucose, a risk factor for diabetes, diabetic nephropathy and cardiovascular disease.178 There have been no adverse side effects reported when doses are kept to a moderate level.

\textit{Some other nephroprotective medicinal plants.} There are many other plants reported to have benefits for kidney failure and/or CKD. Rutin (or quercetin) is a flavonoid present in onions, apples, tea and red wine. This plant extract is readily available “over the counter” and has demonstrated strong antioxidant and anti-inflammatory properties in heart and liver in a high fat-high carbohydrate diet model of metabolic syndrome in rats.179 Rutin also protected the kidney against ischemia-reperfusion injury,180 cisplatin-induced nephrotoxicity,181 and diabetic nephropathy.182 It normalized BUN, thereby modulating a key factor in the pathogenesis of CKD.73 However, some other studies did not show benefits. For example, rutin may
induce protein-energy malnutrition in CKD.183 Although there are some promising results, more analyses are needed to confirm whether, or not, preclinical and clinical benefits exist for this plant extract, particularly in the context of CKD. Clinically, \textit{Glycyrrhiza glabra} extracts consistently decreased pre-dialysis serum potassium concentrations in chronic hemodialysis patients.83 \textit{Silybum marianum}, known as “milk thistle” or silymarin, is a very safe herb that protects against kidney failure and end-stage diabetic nephropathy.184 Significant benefits have been claimed for \textit{Lespedeza} tincture for both AKI and CKD patients.185 Clinically, beetroot juice decreased peripheral systolic and diastolic blood pressure, mean arterial pressure, improved kidney function, histological damage and kidney prognosis, and prevented cardiovascular events.36,186 In a recent study, a beetroot protease inhibitor was isolated and characterized.187 The results showed the potential of such plant protease inhibitors for peptide-based drug discovery against targets involved in diseases such as cancers and immune system related diseases, such as is seen in CKD in some instances. \textit{Coptis} rhizome extracts significantly reduced biomarkers of kidney damage, such as urinary albumin-to-creatinine ratio, urinary osteopontin and KIM-1, and improved kidney hemodynamics. In addition, clinically, it decreased inflammation and oxidative stress.87 Extracts of \textit{Urtica dioica}, or “stinging nettle”, significantly attenuated kidney damage and tubular atrophy, loss of brush border, hydropic epithelial cell degeneration, glomerular shrinkage, and tubulointerstitial fibrosis, as well as demonstrating clinical benefits in patients undergoing partial nephrectomy or kidney transplantation.188 The polyherbal named “Sairei-To” significantly decreased urinary protein excretion, hematuria and normalized proteinuria in CKD patients.90 A dietary supplementation with curcumin (turmeric) reduced oxidative stress and proteinuria in CKD patients.88 A combination of \textit{Curcuma longa} and \textit{Boswellia serrata} decreased the levels of inflammatory cytokines and ameliorated inflammatory markers in patients with CKD.89

\textbf{Concerns of Toxicities of Plant-Based Extracts to the Kidney}

Natural products are often considered safer than traditional drugs, and many of our modern drugs are derived from herbs. Nonetheless, some researchers are concerned over their safe use.189–191 The possible nephrotoxicity and other chronic or insidious health disorders of using popular complementary and alternative medicine in different countries is not properly reported. The most well-known toxicity or side-effect is associated with traditional Chinese herbal medication that uses aristolochic acid and induces aristolochic acid nephropathy (AAN). The clinical features of AAN are characterized by extensive interstitial fibrosis and tubular atrophy in the kidney without obvious glomerular injury. Prolonged use causes uroepithelial malignancies.189 In addition, traditional herbal remedies have been implicated in 35% of all cases of AKI in Africa.190 The Therapeutic Goods Administration restricted the use of ephedra in Australia due to its potential toxic effects (quickened heartbeat and elevated blood pressure, heart palpitations, nausea and vomiting).189 Some herbal drugs that contain specific herbs, nuts and mushrooms may also be associated with inherent nephrotoxicity. Interestingly, the inherent properties of the herbs are not the only source of herb-associated kidney disorders. Herb-drug interactions, mistakes in dosage and identification, contaminants within mixtures, adulteration with heavy metals, and even deliberate adulteration with non-labelled plant extracts are all issues of concern.191 However, with proper identification, rigorous pre-clinical and clinical trials, strict controls on the presence of adulterants within herbal medicines, labeling of dosages and contraindications, and robust manufacturing techniques, the safety of those consuming herbal medicines should be maintained.

\textbf{Conclusion}

There is no doubt that medicinal plants present a largely untapped source of new CKD therapies. Clinical and pre-clinical trials of plant extracts sometimes demonstrate benefit but some research has also demonstrated that plant extracts may produce chronic organ dysfunction when used for long term due to the presence of harmful chemicals. Therefore, the aim of recent research is to identify, rigorously test pre-clinically and clinically, and avoid such toxic outcomes in order to obtain optimal therapeutic benefit from medicinal plants. This review may prove to be a filtering tool to researchers into complementary and alternative medicines to find out the current trends of using medicinal plants and plant extracts for the treatment of kidney diseases, including CKD.

\textbf{Abbreviations List}

\textbf{A and A} \textit{Astragalus membranaceus} and \textit{Angelica sinensis}

\textbf{AAN} aristolochic acid nephropathy

\textbf{AKI} acute kidney disease

\textbf{AM} \textit{Abelmoschus manihot (L.) medic}

\textbf{CKD} chronic kidney disease

\textbf{CS} \textit{Cordyceps sinensis}

\textbf{DAMPs} damage-associated molecular patterns

\textbf{HIF} hypoxia inducible factor

\textbf{HKC} Huangki capsule

\textbf{IL} interleukin

\textbf{MAPK} mitogen activated protein kinase

\textbf{NF-kB} nuclear factor kappa B

\textbf{SM} \textit{Salvia miltiorrhiza}

\textbf{TGF-β} transforming growth factor-beta

\textbf{TNF-α} tumor necrosis factor-alpha

\textbf{TWHF} \textit{Tripterygium wilfordii Hook}

\textbf{Acknowledgments}

Muhammad Ali Khan is supported by a University of Queensland Research Training Scholarship (RTP) and a Top-up Scholarship from the Kidney Disease Research Collaborative, Translational Research Institute, Brisbane Australia. This group
received National Health and Medical Research Council of Australia support from its Centre of Research Excellence grant, 2017-2020.

Author Contributions (Roles)

Each author has participated sufficiently in the work to take public responsibility for the content. M.A.K. and G.G. conceptualised the review article. All authors contributed in writing, reviewing and editing of the original draft. M.A.K. compiled the manuscript and G.G. supervised the study.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Health and Medical Research Council of Australia.

ORCID iD

Muhammad Ali Khan https://orcid.org/0000-0002-6980-6112

References

1. Levey AS, Coresh J. Chronic kidney disease. *The lancet*. 2012;379(9811):165-180.
2. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. *Jama*. 2019;322(13):1294-1304.
3. Levey AS, Eckardt KU, Dorman NM, et al. Nomenclature for kidney function and disease: report of a kidney disease: improving global outcomes (KDIGO) consensus conference. *Kidney Int*. 2020;97(6):1117-1129.
4. Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. *Kidney Int*. 2018;94(4):567-581.
5. Jha V, Garcia GG, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. *The Lancet*. 2013;382(9888):260-272.
6. Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: estimates, variability and pitfalls. *Nature Reviews Nephrology*. 2017;13(2):104.
7. Hoy WE, Wendy EHFRCAP, Smith PK, Hughston MD, Fogo AB, Sinniah R, Dowling J, et al. *CKD in aboriginal Australians*. *Am J Kidney Dis*. 2010;56(5):983-993.
8. Zhong Y, Zhong Y, Deng Y, Chen Y, Chuang PY, Heet JC. Therapeutic use of traditional Chinese herbal medications for chronic kidney disease. *Kidney Int*. 2013;84(6):1108-1118.
9. Gobe GC, Wojcikowski K. Nontraditional (non-Western pharmaceutical) treatments for chronic kidney disease. *Clin Nephrol*. 2019; 93(1): 49-54.
10. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. *The lancet*. 2017;389(10075):1238-1252.
28. Aron-Wisnewsky J, Aron WJ, Clément K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nature Reviews Nephrology. 2016;12(3):169.

29. Yang CY, Tarng DC. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology. 2018; 23(4):16-20.

30. Chen DQ, HeHu HH, Wang YN, Feng YL, Cao G, Zhao YY. Natural products for the prevention and treatment of kidney disease. Phytomedicine. 2018;50:50-60.

31. Zhong Y, Menon MC, Deng Y, Chen Y, He JC. Recent advances in traditional Chinese medicine for kidney disease. Am J Kidney Dis. 2015;66(3):513-522.

32. Wojcikowski K, Johnson DW, Gobe G. Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies. J Lab Clin Med. 2006;147(4):160-166.

33. Yarnell E. Botanical medicines for the urinary tract. World J Urol. 2002;20(5):285-293.

34. Shahzad M, Small DM, Morais C, Wojcikowski K, Shabbir A, Botanical medicines for the urinary tract. Altern Med. Reviews Nephrology. 2016;12(3):169.

35. Rapa SF, Iorio BRD, Campiglia P, Heidland A, Marzocco S. Inflammation and oxidative stress in chronic kidney disease—potential therapeutic role of minerals, vitamins and plant-derived metabolites. Int J Mol Sci. 2020;21(1):263.

36. Wang S, Zhang J, Guo M, Lian X, Sun M, Guo L. The efficacy of shen shauning capsule on chronic kidney disease: a systematic review and meta-analysis. Evidence-Based Complementary Altern Med. 2016; 2016: 1-11.

37. Bahnani M, Ahmadi BB, Tajeddini P, Kopaei MR, Naghdi N. Identification of medicinal plants for the treatment of the kidney and urinary stones. J Renal Inj Prev. 2016; 5(3):129-133.

38. Ge J, Miao JJ, Sun XY, Yu JY. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats. J Ethnopharmacol. 2016;189:238-239.

39. Meng L, Qu L, Tang J, Cai SQ, Wang H, Li X. A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, enhanced nitric oxide production in obstructed rat kidney. Vasc Pharmacol. 2007;47(2-3):174-183.

40. Huang L, Shi X, Liang H. Effects of Radix Astragali and Fructus Corni on urinary protein pattern in nephropathy mice by microfluidic chip. Zhongguo Zhong yao za zhi=China journal of Chinese materia medica. 2007;32(13):1324-1328.

41. Hao L, Pan MS, Zheng Y, Wang RF. Effect of Cordyceps sinensis and Tripterygium wilfordii polyglycosidum on podocytes in rats with diabetic nephropathy. Exp Ther Med. 2014;7(6):1465-1470.

42. Octavio Carvajal-Z DMB-D, Hayward-Jo PM, Aguilar-Us MG, Nolasco-Hi C, Quero-Herr S, Guadalupe G, Zaraval OC, DeEmitz DMB, Jones PMH et al. Study of Anthurium schlechtendalii Kanth Extract Effects on Nephroprotective or Renal Damage Remission Capacity. Research Journal of Medicinal Plants. 2017; 11(3): 107-114.
59. Radhika B, Begum N, Srisailam K. Diuretic activity of Bixa orellana Linn. leaf extracts. 2010; 3(1): 353-355.
60. Racz–Kotila E, Racz KE, Racz G, Solomon A. The action of Taraxacum officinale extracts on the body weight and diuretics of laboratory animals. Planta Med. 1974;26(07):212-217.
61. MannaVan R. Evaluation of nephroprotective activity of Orthosiphon stamineus Benth extract using rat model. EVALUATION. 2010;2(1):209-215.
62. Varghese R, Moideen MM, Suhail MMJ, Dhanapal CK. Nephroprotective effect of ethanolic extract of Strychnos potatorum Seeds in Rat Models. Research journal of pharmaceutical. Biological and Chemical Sciences. 2011;2(3):521-529.
63. Movaliya V, Khamar D, Setty M. Nephroprotective activity of aqueous extract of Aerva Javanica roots in cisplatin induced renal toxicity in rats. Pharmacologyonline. 2011;1:68-74.
64. Yadav YC, Srivastava DN, Saini V, et al. Nephroprotective and curative Activity of methanolic extract of Ficus religiosa L. latex in albino rats using cisplatin induced nephrotoxicity. Pharmacologyonline. 2011;1:132-139.
65. Sreedevi A, Bharrathi K, Prasad K. Effect of Vernonia cinerea aerial parts against Cisplatin-induced nephrotoxicity in rats. Pharmacologyonline. 2011;2:548-555.
66. Pulani S, Raja S, Kumar RP, Swaran PP, Kumar BS. Therapeutic efficacy of Acorus calamus on Acetaminophen induced nephrotoxicity and oxidative stress in male albino rats. Acta Pharmacuetica Scientia. 2010;52(1): 89-100.
67. Puresa SK, Patra KC, Harwansh R, Kumar M, Meena KP. Protective effects of Boerhavia diffusa against Acetaminophen-induced nephrotoxicity in rats. Pharmacologyonline. 2011;2:698-706.
68. K KJ, Shete R, Jadhav P. RP-HPLC method of simultaneous nephroprotective role of A. marmelos extract. International Journal of Research in Pharmacy and Chemistry. 2011; 1(3): 617-623.
69. Jameda P, Sharma V, Singh L, et al. Chemopreventive effect of hydroethanolic extract of Euphorbia nerifolia leaves against DENA-induced renal carcino genesis in mice. Asian Pac J Cancer Prev. 2011;12(3):667-683.
70. Divakar K, Pawar AT, Chandrashekhar SB, Dighe SB, Divakar G. Protective effect of the hydro-alcoholic extract of Rubia cordifolia roots against ethylene glycol induced urolithiasis in rats. Food Chem Toxicol. 2010;48(4):1013-1018.
71. Bhuvanesswari P, Krishnakumari S. Nephroprotective effects of ethanolic extract of Sesamum indicum seeds (Linn.) in streptozotocin induced diabetic male albino rats. International Journal of Green Pharmacy (IJGP). 2012;6(4); 330-333.
72. Khan RA, Khan MR, Sahreen S. Evaluation of Launaea procumbens use in renal disorders: a rat model. J Ethnopharmacol. 2010;128(2):452-461.
73. Diwan V, Brown L, Gobe GC. The flavonoid rutin improves kidney and heart structure and function in an adenine-induced rat model of chronic kidney disease. J Funct Foods. 2017;33:85-93.
74. Kataoka S, Norikura T, Sato S. Maternal Green tea polyphenol intake during lactation attenuates kidney injury in high-fat-diet-fed male offspring programmed by maternal protein restriction in rats. J Nutr Biochem. 2018;56:99-108.
75. Khan IA, Nasiruddin M, Haque SF, Khan RA. Evaluation of rhubarb supplementation in stages 3 and 4 of chronic kidney disease: a randomized clinical Trial. Int J Chronic Dis. 2014;2014: 1-6.
76. Ji S, Li L, Ji D. Effects of baoshen pill in treating chronic renal failure with long-term hemodialysis. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine. 1993;13(2):71-73, 67.
77. Li LS. Rhubarb in preventing progression of chronic renal disease. Nephrology. 1996;2(1):s146-s150.
78. Sheng Z, Li N, Ge X. Clinical study of baoyuan dahuang decoction in the treatment of chronic renal failure. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine. 1994;14(5):268-270, 259.
79. Ahmed MS, Hou SH, Battaglia MC, Picken MM, Leehey DJ. Treatment of idiopathic membranous nephropathy with the herb Astragalus membranaceus. Am J Kidney Dis. 2007;50(6): 1028-1032.
80. Ma R, Xu Y, Jiang W, Zhang W. Combination of Tripterygium wilfordii Hook F and angiotensin receptor blocker synergistically reduces excretion of urinary podocytes in patients with type 2 diabetic kidney disease. Biotechnology & Biotechnological Equipment. 2015;29(1):139-146.
81. Turki K, Charradi K, Boukhalfa H, Belhaj M, Limam F, Aouanial E. Grape seed powder improves renal failure of chronic kidney disease patients. EXCLI J. 2016;15:424-433.
82. Zhang Z, Wang X, Zhang Y, Ye G. Effect of Cordyceps sinensis on renal function of patients with chronic allograft nephropathy. Urol Int. 2011;86(3):298-301.
83. Farese S, Kruse A, Pasch A, et al. Glycyr rhetic acid food supplementation lowers serum potassium concentration in chronic hemodialysis patients. Kidney Int. 2009;76(8):877-884.
84. Dietzmann J, UteThiel U, Ansorge S, Neumann KH, Tüger M. Therapeutic effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: a pilot study. J Ren Nutr. 2016;26(4):237-244.
Herbal Bath Therapy. Evidence-Based Complementary Altern Med. 2020;2020: 1-9.

119. Wojcikowsk K, Wohlmuth H, Johnson DW, Gobe G. Effect of Astragalus membranaceus and Angelica sinensis combined with Enalapril in rats with obstructive uropathy. Phytother Res. 2010;24(6):875-884.

120. Zhang HW, Lin ZX, Xu C, Connie L, Chan LS. Astragalus (a traditional Chinese medicine) for treating chronic kidney disease. Cochrane Database Syst Rev. 2014;10: 1-63.

121. Pao L-H, Pao LH, Hu OYP, Fan HY, Lin CC, Liu LC, Huang PW. Herb-drug interaction of 50 Chinese herbal medicines on CYP3A4 activity in vitro and in vivo. Am J Chin Med. 2012; 40(01):57-73.

122. Zhu J-S, Zhu JS, Halpern GM, Jones K. The scientific rediscovery of a precious ancient Chinese herbal regimen: cordyceps sinensis Part II. The Journal of Alternative and Complementary Medicine. 1998;4(4):429-457.

123. Tuli HS, Sandhu SS, Sharma A. Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 2014;4(1):1-12.

124. Zhang X, Shi L, Hu J. Research progress of Cordyceps chemical constituents and pharmacological functions. Zhong Yao Cai. 2000;23:722-724.

125. Li SP, Zhaob KJ, Ji ZN, et al. A polysaccharide isolated from Cordyceps sinensis, a traditional Chinese medicine, protects PC12 cells against hydrogen peroxide-induced injury. Life Sci. 2003;73(19):2503-2513.

126. Yang LY, Huang WJ, Hsieh HG, Lin CY, et al. H1-A extracted from Cordyceps sinensis suppresses the proliferation of human mesangial cells and promotes apoptosis, probably by inhibiting the tyrosine phosphorylation of Bcl-2 and Bcl-XL. J Lab Clin Med. 2003;141(1):74-83.

127. Huang YS, Wang X, Feng Z, et al. Cordyceps cicadae Prevents Renal Tubular Epithelial Cell Apoptosis by Regulating the SIRT1/p53 Pathway in Hypertensive Renal Injury. Evidence-Based Complementary Altern Med. 2020;2020: 1-13.

128. Koh JH, Won KYU, Joo HSUH, Moon YCHOI, Seok TAHN. Activation of macrophages and the intestinal immune system by an orally administered decoction from cultured mycelia of Cordyceps sinensis. Biosci, Biotechnol, Biochem. 2002;66(2):407-411.

129. Liu X, Zhong F, Tang XI, et al. Cordyceps sinensis protects against liver and heart injuries in a rat model of chronic kidney disease: a metabolomic analysis. Acta Pharmacol Sin. 2014;35(5):697-706.

130. Zhang M, Pan MM, Ni HF, et al. Effect of Cordyceps sinensis powder on renal oxidative stress and mitochondria functions in 5/6 nephrectomized rats. Zhongguo Zhong xi y i jie he za zhi= Chinese journal of integrated traditional and Western medicine. 2015;35(4):443-449.

131. Zhong F, Liu X, Zhou Q, et al. IH NMR spectroscopy analysis of metabolites in the kidneys provides new insight into pathophysiological mechanisms: applications for treatment with Cordyceps sinensis. Nephrol Dial Transplant. 2012;27(2):556-565.

132. Zhang HW, Lin ZX, Tung YS, et al. Cordyceps sinensis (a traditional Chinese medicine) for treating chronic kidney disease. Cochrane Database Syst Rev. 2014;12: 1-50

133. Lan L. Study on effect of Cordyceps sinensis and artemisinin in preventing recurrence of lupus nephritis. Chinese Journal of Integrated Traditional and Western Medicine. 2002;8(2):89-89.

134. Sun M, Yang YR, Lu YP, et al. Clinical study on application of bailing capsule after renal transplantation. Zhongguo Zhong xi y i jie he za zhi= Chinese journal of integrated traditional and Western medicine. 2004; 24(9):808-810.

135. Zhang Z, Zhang W, Yao K. Treatment of chronic allograft nephropathy with combination of enalapril and bailing capsule. Zhongguo Zhong xi y i jie he za zhi= Chinese journal of integrated traditional and Western medicine. 2008;28(9):806-809.

136. Shao G. Treatment of hyperlipidemia with cultivated Cordyceps—a double-blind, randomized placebo control trial. Zhong xi y i jie he za zhi= Chinese Journal of Modern Developments in Traditional Medicine. 1985;5(11):652-654. 642.

137. Hong T, Zhang M, Fan J. Cordyceps sinensis (a traditional Chinese medicine) for kidney transplant recipients. Cochrane Database Syst Rev. 2015;10(8): 1172-1178.

138. Brinker AM, Maa J, Lipsky PE, Raskin I. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry. 2007;68(6):732-766.

139. Ma J, Hui MD, Yang H, et al. Anti-inflammatory and immunosuppressive compounds from Tripterygium wilfordii. Phytochemistry. 2007;68(8):1172-1178.

140. Li L. Clinical study of Tripterygium wilfordii Hook in treating glomerulonephritis. Clin J Intern Med. 1981;20:216-220.

141. Wan Y. Mechanism of protective effects of effective components in Tripterygium wilfordii hook. f. on glomerulonephritis. J Clin Exp Med. 2003;207:285-288.

142. Zhou ZL, Yang YY, Ding J, Li YC, Miao ZH. Triptolide: structural modifications, structure–activity relationships, bioactivities, clinical development and mechanisms. Nat Prod Rep. 2012; 29(4):457-475.

143. Wan YG, Sun W, Zhen YJ, et al. Multi-glycoside of Tripterygium wilfordii Hook. f. reduces proteinuria through improving podocyte slit diaphragm dysfunction in anti-Thy1. 1 glomerulonephritis. J Ethnopharmacol. 2011;136(2):322-333.

144. Wan YG, Zhao Q, Sun W, et al. Contrasting dose–effects of multi-glycoside of Tripterygium wilfordii HOOK, f. on glomerular inflammation and hepatic damage in two types of anti-Thy1. 1 glomerulonephritis. J Pharmacol Sci. 2012;118(4):433-446.

145. Ma R, Zhao N, Zhang W. The effects and mechanism of Tripterygium wilfordii Hook F combination with irbesartan on urinary podocyte excretion in diabetic nephropathy patients. Zhonghua Nei Ke Za Zhi. 2013;52(6):469-473.

146. Ji S-M, Ji SM, Wang QW, Chen JS, Sha GZ, Liu ZH, Li LS. Clinical study of Tripterygium wilfordii hook F. in human kidney transplantation in China. In: Transplantation Proceedings. Elsevier; 2006; 38(5): 1174-1279.

147. Chou WC, Wu CC, Yang PC, Lee YT, et al. Hypovolemic shock and mortality after ingestion of Tripterygium wilfordii hook F.: a case report. Int J Cardiol. 1995;49(2):173-177.

148. Zhou J, Zhu Q, Yang X. Clinical observation of side effects of Tripterygium preparation. Zhongguo Zhong xi y i jie he za zhi
Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine. 1999;19(2):77-79.

149. Chen P, Wan Y, Wang C, et al. Mechanisms and effects of Abelmoschus manihot preparations in treating chronic kidney disease. Zhongguo Zhong yao za zhi= Zhongguo zong yao zazhi= China journal of Chinese materia medica. 2012;37(15):2252-2256.

150. Zhang L, Li P, Xing CY, et al. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: a prospective, multicenter randomized controlled clinical trial. Am J Kidney Dis. 2014;64(1):57-65.

151. Wen Y, Yan M, Zhang B, Li P. Chinese medicine for diabetic kidney disease in China. Nephrology. 2017;22(4):50-55.

152. Chen Y, Cai G, Sun X, Chen X. Treatment of chronic kidney disease using a traditional Chinese medicine, Flos Abelmoschus manihot (Linnaeus) Medicus (Malvaceae). Clin Exp Pharmacol Physiol. 2016;43(2):145-148.

153. Tu Y, Sunb W, Wan YG, et al. Huangkui capsule, an extract from Abelmoschus manihot (L.) medc. ameliorates Adriamycin-induced renal inflammation and glomerular injury via inhibiting p38MAPK signaling pathway activity in rats. J Ethnopharmacol. 2013;147(2):311-320.

154. Zhao Q, Wan YG, Sun W, et al. Effects of huangkui capsule on renal inflammatory injury by intervening p38MAPK signaling pathway in rats with Adriamycin-induced nephropathy. Zhongguo Zhong yao za zhi= Zhongguo zong yao zazhi= China journal of Chinese materia medica. 2012;37(19):2926-2934.

155. Mao ZM, Shen SM, Wan YG, et al. Huangkui capsule attenuates renal fibrosis in diabetic nephropathy rats through regulating oxidative stress and p38MAPK/Erk pathways, compared to α-lipoic acid. J Ethnopharmacol. 2015;173:256-265.

156. Sun Q, Gangyi Y, Mina Z, Mina Z, Shua C, Pin C. Effect of Huangshuikaihua (Flos Abelmoschi Manihot) on diabetic nephropathy: a meta-analysis. J Tradit Chin Med. 2015;35(1):15-20.

157. Yan CS, Liang QMING, Rahman K, Ting HAN, Ping LQIN. Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med. 2015;13(3):163-182.

158. Ji XY, Tan BKH, Huang SH, et al. Effects of Salvia miltiorrhiza after acute myocardial infarction in rats. Novel compounds from natural products in the new millennium. 2004;183-195.

159. Pang H, Wu L,Tang Y, Zhou G, Qu C, Duan J. Chemical analysis of the herbal medicine Salviae miltiorrhazae Radix et Rhizoma (Danshen). Molecules. 2016;21(1):51.

160. Jiang C, Zhu W, Shao Q, et al. Tanshinone IIA protects against folic acid-induced acute kidney injury. Am J Chin Med. 2016;44(04):737-753.

161. An L, Zhou M, Marikar FMMT, et al. Salvia miltiorrhiza lipophilic fraction attenuates oxidative stress in diabetic nephropathy through activation of nuclear factor erythroid 2-related factor 2. Am J Chin Med. 2017;45(07):1441-1457.

162. Lee SH, Kim YS, Lee SJ, Lee BC, et al. The protective effect of Salvia miltiorrhiza in an animal model of early experimentally induced diabetic nephropathy. J Ethnopharmacol. 2011;137(3):1409-1414.

163. You Z, Xina Y, Liu Y, et al. Protective effect of Salvia miltiorrhzae injection on N(G)-nitro-D-arginine induced nitric oxide deficient and oxidative damage in rat kidney. Exp Toxicol Pathol. 2012;64(5):453-458.

164. Wang YJ, He L, Sun W, et al. Optimized project of traditional Chinese medicine in treating chronic kidney disease stage 3: a multicenter double-blinded randomized controlled trial. J Ethnopharmacol. 2012;139(3):757-764.

165. This P, Lacombe T, Thomas MR. Historical origins and genetic diversity of wine grapes. Trends Genet. 2006;22(9):511-519.

166. Khanal R, Howard L, Prior R. Procyanidin content of grape seed and pomace, and total anthocyanin content of grape pomace as affected by extraction processing. J Food Sci. 2009;74(6):H174-H182.

167. Almomen SM, Guan Q, Liang P, et al. Daily intake of grape powder prevents the progression of kidney disease in obese type 2 diabetic ZSF1 rats. Nutrients. 2017;9(4):345.

168. Li SG, Song YDING, Qiang NIU, et al. Grape seed proanthocyanidin extract alleviates arsenic-induced oxidative reproductive toxicity in male mice. Biomed Environ Sci. 2015;28(4):272-280.

169. Chen Q, Zhang R, Li W, et al. The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice. Environ Toxicol Pharmacol. 2013;36(3):759-768.

170. Gao Z, Liu G, Hu Z, et al. Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Mol Med Rep. 2014;9(3):801-807.

171. Ulusoy S, Ozkan G, Yucesan FB, et al. Anti-apoptotic and anti-oxidant effects of grape seed procyanidin extract in preventing cyclosporine A-induced nephropathy. Nephrology. 2012;17(4):372-379.

172. Li Y, Tran YH, Duke CC, Roufogalis BD. Preventive and protective properties of Zingiber officinale (ginger) in diabetes mellitus, diabetic complications, and associated lipid and other metabolic disorders: a brief review. Evidence-Based Complementary Altern Med. 2012:2012:1-10.

173. Xu Y, Baia L, Chen X, et al. 6-Shogaol ameliorates diabetic nephropathy through anti-inflammatory, hyperlipidemic, anti-oxidative activity in db/db mice. Biomed Pharmacother. 2018;97:633-641.

174. Atashk D, Peeri M, Azarbayjani MA, Stannardc SR. Effects of Ginger and its Extract on cytosolic and mitochondrial enzymes against streptozotocin (STZ)-induced diabetic complications in rats. Chin J Physiol. 2011;54(2):79-86.

175. Abdulsalam K, Alkalifa A. Effect of Ginger and its Extract on Blood Sugar and on Kidney Function of Type I Diabetic Rats. Middle East Journal of Family Medicine. 2016;7(10):12.

176. Al Hroob AM, Hroob AMA, Abukhalil MH, Alghonmeen RD, Mahmoud AM. Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against...
178. Imani H, Tabibi H, Najafi I, Atabak S, Hedayati M, Rahmani L. Effects of ginger on serum glucose, advanced glycation end products, and inflammation in peritoneal dialysis patients. Nutrition. 2015;31(5):703-707.

179. Panchal SK, Poudyal H, Arumugam TV, Brown L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J Nutr. 2011;141(6):1062-1069.

180. Korkmaz A, Kolankaya D. Inhibiting inducible nitric oxide synthase with rutin reduces renal ischemia/reperfusion injury. Can J Surg. 2013;56(1):6.

181. Kamel KM, Raouf OMAE, Metwally SA, Latif HAAE, Sayed MEL. Hesperidin and rutin, antioxidant citrus flavonoids, attenuate cisplatin-induced nephrotoxicity in rats. J Biochem Mol Toxicol. 2014;28(7):312-319.

182. Hao H, Shao Z, Tang D, et al. Preventive effects of rutin on the development of experimental diabetic nephropathy in rats. Life Sci. 2012;91(19-20):959-967.

183. Hsieh CL, Peng CC, Chen KC, Peng RY. Rutin (quercetin rutinoside) induced protein-energy malnutrition in chronic kidney disease, but quercetin acted beneficially. J Agric Food Chem. 2013;61(30):7258-7267.

184. Turgut F, Bayrak O, Catalal F, et al. Antioxidant and protective effects of silymarin on ischemia and reperfusion injury in the kidney tissues of rats. Int Urol Nephrol. 2008;40(2):453-460.

185. Desruelles J, Delmon A. Clinical trial of treatment of azotemic conditions with an injectable extract of Lespedeza capitata. Lille medical: journal de la Faculte de medecine et de pharmacie de l’Universite de Lille. 1969;14(2):83-87.

186. Kemmner S, Kemmner S, Burkhardt K, Heemann U, Baumann M. P6. 9. Dietary nitrate by beetroot juice can lower renal resistive index in patients with chronic kidney disease. Artery Res. 2014;8(4):147-148.

187. Retzl B, Hellinger R, Muratspahić E, Pinto MEF, Bolzani VS, Gruber CW. Discovery of a Beetroot Protease Inhibitor to Identify and Classify Plant-Derived Cystine Knot Peptides. J Nat Prod. 2020;83(11):3305-3314.

188. Jan KN, Singh S. Stinging nettle (Urtica dioica L.): a reservoir of nutrition and bioactive components with great functional potential. Journal of Food Measurement and Characterization. 2017;11(2):423-433.

189. Wojcikowski K, Johnson DW, Gobe G. Medicinal herbal extracts—renal friend or foe? Part one: The toxicities of medicinal herbs. Nephrology. 2004;9(5):313-318.

190. Jha V. Herbal medicines and chronic kidney disease. Nephrology. 2010;15:10-17.

191. Luyckx VA, Naicker S. Acute kidney injury associated with the use of traditional medicines. Nature Clinical Practice Nephrology. 2008;4(12):664-671.