Endoscopic Treatment of Refractory Gastroesophageal Reflux Disease

Won Hee Kim, Pil Won Park, Ki Baik Hahm and Sung Pyo Hong
Digestive Disease Center, CHA Bundang Medical Center, CHA University, Seongnam, Korea

INTRODUCTION

Gastroesophageal reflux disease (GERD) is the most common gastrointestinal disorder; its prevalence is around 10% to 20% in the Western countries, but rather lower in Asia. Acid suppression with proton pump inhibitors (PPIs) remains the mainstay of treatment, but about 10% to 40% of the patients with GERD fail to respond to this treatment, causing refractoriness to PPI therapy. Refractory GERD is defined as <50% improvement in reflux symptoms including heartburn in spite of at least 12 weeks of double dose PPI therapy. The mechanisms of refractory GERD are variable, including motility disorder of the esophagus, functional heartburn, persistent reflux of acid, or nonacid material, esophageal hypersensitivity, and psychological comorbidity. For patients with typical reflux symptoms and inadequate response to PPIs, in whom abnormal esophageal acid exposure or positive symptom reflux association are demonstrated, surgical fundoplication can be a relatively safe and highly effective procedure. Remission rate was reported about 85% to 93.5%, whereas the complication rate (0.06% to 1.3%) and mortality rate (0% to 0.08%) are relatively low. However, postoperative side effects such as persistent dysphagia, inability to belch, increased bloating and flatulence are common and may persist for more than 6 month. Recently, various endoscopic treatments have been tried. These endoscopic treatments are largely divided into three categories as follows; injection or implantation techniques, radiofrequency (RF) ablation, and endoluminal gastroesophageal plication. That is, Stretta procedure and the EsophyX transoral incisionless fundoplication (TIF) are currently available for human use for refractory GERD. The beneficial mechanisms after these procedures are alteration in the car dia compliance, decrease in transient lower esophageal sphincter (LES) relaxations, increase from the baseline LES length, and decrease in the diameter of either the distal esophagus or gastroesophageal junction (GEJ).
finally healed by fibrosis. This procedure can be done in the outpatient setting with conscious sedation and procedure time of about 40 to 45 minutes. The Stretta system consists of RF control module and a flexible stretta catheter. The catheter consists of a 20 F soft bougie tip and a balloon, which opens in a surrounding basket. The four electrodes provide 60 to 300 J of RF energy to each needle, heating the surrounding muscle tissue to the target temperature between 65°C to 85°C. Continuous irrigation of the esophageal mucosa and surface temperature monitoring is utilized to prevent thermal mucosal injury (Fig. 1A). RF energy induces shrinkage of the esophageal collagen fibrils, then the LES become more tightened (Fig. 1B), preventing acid reflux from the stomach. Furthermore, remodeling of the stretch fibers located in the cardia occurs and the vagal afferent signals to the brainstem triggering transient LES relaxations are finally interrupted. Therefore, it could be quite effective in decreasing esophageal sensitivity to acid. Several controlled clinical studies have showed clinically significant improvement in esophageal symptoms as manifested by the mean score decreasing from 2.7 at baseline to 0.6 at 48 months and 68.7% of patients showing complete resolution of symptoms, improved quality of life (QOL) scores, significantly decreased PPI use from 100% to 13.75%, decreased esophageal acid exposure from 44.37 to 28.53 on Johnson-DeMeester score, and increased LES pressure from 16.54 to 20.24 mm Hg. Therefore, the Stretta procedure can be helpful in patients with refractory GERD. The other advantage is that the procedure is relatively safe and easy. The most common complications are gastroparesis and ulcerative esophagitis, which are rare. Transient epigastric pain or chest pain, low grade fever, dysphagia, or odynophagia was also reported. However, there are limited data yet on the effectiveness of this procedure, necessitating further extended clinical application to warrant safety and effectiveness.

THE INJECTION OR IMPLANTATION TECHNIQUES

The principle of endoscopic injection methods consists of the endoscopic implantation of nonreabsorbable or synthetic material in the distal esophagus, for which various bulking methods are used as follows.

Enterynx (ethylene vinyl alcohol copolymer)

Enterynx (Boston Scientific, Natick, MA, USA) was approved by the FDA in April 2003. It is consisted of a biocompatible polymer (8% ethylene vinyl alcohol copolymer), mixed with a radio-opaque contrast agent (30% tantalum powder) and dissolved in an organic liquid carrier (dimethyl sulfoxide). The procedure can be performed under conscious sedation. The needle catheter, 23 to 25 gauze, is inserted through the working channel of the endoscope and Enterynx is injected into the muscular and submucosal layers at a point about 1 to 2 mm caudal to the Z-line. Four quadrant injections of 1 to 2 cc each are made at the same level. After injection, Enterynx is rapidly diffused into the tissue, resulting in the precipitation of the polymer as a spongy mass (Fig. 2A). Although Enterynx does not affect LES pressure, it may augment the gastroesophageal reflux barrier zone. The distensibility and shape of esophagogastric junction (EGJ) is changed (Fig. 2B). The fibrous encapsulation might lengthen the LES, potentially leading to an elevated threshold for transient LES relaxation. The 53% to 80% of the patients can cease PPI and there was significant improvement of symptoms and QOL in over 50% of patients. However, normalization of pH was seen only in about 30% of the patients. Though seemingly effective, the procedure was notorious for severe complications such as esophageal abscess, pneumomediastinum, esophageal perforation, renal failure, esophageal stenosis, and even death due to intra-aortic injection, after which this procedure was withdrawn in 2005.

Fig. 1. (A) The stretta system. The four electrodes provide 60 to 300 J of radiofrequency energy to each needle, heating the surrounding muscle tissue. (B) The lower esophageal sphincter is tightened after radiofrequency ablation.
Plexiglas (polymethylmethacrylate)

Plexiglas (Rohm GmbH & Co., Darmstadt, Germany) is a suspension of polymethylmethacrylate microspheres in gelatin solution. It is injected into six proximal areas of EGJ. After injection, the gelatin is phagocytized by macrophages within 3 months and replaced by fibroblasts and collagen fibers. The microspheres are encapsulated by connective tissue. Significant decreases in either the symptoms or the mean total time with an esophageal pH of less than 4 were achieved. However, there was only one publication about the use of Plexiglas in the treatment of GERD.

Gatekeeper TM system (dehydrated hydrogel)

The Gatekeeper Reflux Repair system (Medtronic, Shoreview, MN, USA) was approved for clinical use in the European Union in May 2003. However, Medtronic ceased its development and voluntarily withdrew the device from the market. Through the mechanism that expandable polycrylonitrile-based hydrogel prostheses injected into the distal esophageal submucosa augments the LES and creates a reflux barrier, the reflux symptoms were reduced and a normal pH level was achieved, accompanied by medial increase of LES pressure, in 40% of the patients. However, the procedure related serious complications, such as esophageal perforation, pulmonary infiltrate and severe chest pain, limited further extension of its use. This method was voluntarily withdrawn in 2006 due to quite disappointing results.

ENDOLUMINAL GASTROESOPHAGEAL Plication

Several endoluminal devices have been developed for creating a suture or plication of the gastric folds at GEJ, reproducing a valve mechanism mimicking surgical fundoplication.

Mucosal suture plication

EndoCinch (Bard Inc., Billerica, MA, USA), an endoscopic suturing system, was approved by FDA in 2000. The device produces suction of tissue just below Z-line, then needle with preloaded suture is advanced, followed by cinching/cutting catheter advanced to the tissue. This procedure can be performed in the outpatient setting. It was effective in short-term follow-up period and the complication rate was relatively low. However, sutures were significantly lost within the 6-month follow-up period, thus necessitating reprocedure in about 25% of the patients. Most patients returned to baseline in long-term follow-up because mucosa-to mucosa plication did not lead to serosal adhesion.

Full-thickness plication

To overcome the limitation of mucosal plication, Full-thickness plication devices are developed. NDO plicator system (NDO Surgical Inc., Mansfield, MA, USA), consisting of endoscopic tissue retractor and suturing system, was approved by FDA in April 2003. A gastroscope equipped with the plication device is introduced through an over-tube. The helical tissue retractor retracts the stomach wall, approximately 1.5 cm below the cardia, then the instruments arms are closed, creating a serosa-serosa pllication. The QOL of patients were improved by more than 50%, and the use of PPI was significantly decreased in 50% to 80%, accompanied with decreased esophageal acid exposure. On the contrary to these achievements, normalization of pH was observed in only 14% to 30% of the patients, and LES pressure measured by manometry was...
generally unchanged.25-28 Fever, abdominal pain, pharyngitis were reported. Serious complications such as perforation, pneumothorax, pneumoperitoneum, pneumediastinum, adhesions, pleural effusion, and aspiration leading to death have been also reported.15,26 The device has become unavailable since 2008.

TIF

TIF (EsophayX; EndoGastric Solutions Inc. Redmond, WA, USA) is the latest device for endoscopic treatment of refractory GERD. The procedure can be performed under general anesthesia. One physician controls the device and another physician operates the endoscope. The device retracts the gastric cardia, and creates full-thickness serosa to serosa plication and valve (Fig. 3A). The valve produced by EsophyX is 3 to 5 cm in length, 200 to 300 µM in circumference (Fig. 3B) and plays the role of gastroesophageal sphincter.27 It can be a less invasive alternative treatment to laparoscopic fundoplication for refractory GERD patients. Over 70% of the patients ceased or reduced PPIs use.27-31 The reflux symptoms improved significantly, which was maintained up to 3 years' follow-up.29 Also resolution of hiatal hernia and reflux esophagitis were reported in over 55% to 97% of patients.30 Reflux characteristics in terms of acid exposure, number of refluxes, and DeMeester scores improved significantly and were normalized in 61% to 89% of patients in a retrospective study.32 However, some studies reported that EsophyX was less effective than surgery and laparoscopic Nissen fundoplication have been reported effective in EsophyX failure cases.33 Therefore, the potential value of this technique should be further evaluated in controlled prospective trials. The procedure is relatively safe; the overall complication rate is 3% to 10%. Serious complication, such as esophageal perforation, intraluminal bleeding and mediastinal abscess, can occur but are rare 33 (<5%) and no procedure related deaths have been reported.26

CONCLUSIONS

Though endoscopic treatment is a reasonable alternative treatment for refractory GERD, there still remains room for improvement. TIF EsophyX is promising, but long-term follow-up and prospective studies are needed.

Conflicts of Interest

The authors have no financial conflicts of interest.

REFERENCES

1. Dent J, El-Serag HB, Wallander MA, Johansson S. Epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 2005;54:710-717.
2. Lee ES, Kim N, Lee SH, et al. Comparison of risk factors and clinical responses to proton pump inhibitors in patients with erosive oesophagitis and non-erosive reflux disease. Aliment Pharmacol Ther 2009;30:154-164.
3. Katz PO, Gerson LB, Vela MF. Guidelines for the diagnosis and management of gastroesophageal reflux disease. Am J Gastroenterol 2013;108:308-328.
4. Sifrim D, Zerbib F. Diagnosis and management of patients with reflux symptoms refractory to proton pump inhibitors. Gut 2012;61:1340-1354.
5. Carlson MA, Frantzides CT. Complications and results of primary minimally invasive antireflux procedures: a review of 10,735 reported cases. J Am Coll Surg 2001;193:428-439.
6. Galmiche JP, Hatalebuk J, Attwood S, et al. Laparoscopic antireflux surgery vs esomeprazole treatment for chronic GERD: the LOTUS randomized clinical trial. JAMA 2011;305:1969-1977.
7. Lee SK, Kim EK. Laparoscopic Nissen fundoplication in Korean patients with gastroesophageal reflux disease. Yonsei Med J 2009;50:89-94.
8. Fry LC, Mönkemüller K, Mallerthener P. Systematic review: endoluminal therapy for gastro-oesophageal reflux disease: evidence from clinical trials. Eur J Gastroenterol Hepatol 2007;19:1125-1139.
Endoscopic Treatment for Refractory GERD

9. Triadafilopoulos G, Stretta: an effective, minimally invasive treatment for gastroesophageal reflux disease. Am J Med 2003;115 Suppl 3A:1925-2005.

10. Go MR, Dundon JM, Karlowicz DJ, Domingo CR, Muscarella P, Melvin WS. Delivery of radiofrequency energy to the lower esophageal sphincter improves symptoms of gastroesophageal reflux. Surgery 2004;136:786-794.

11. Cipolletta L, Rotondano G, Dughen L, et al. Delivery of radiofrequency energy to the gastroesophageal junction (Stretta procedure) for the treatment of gastroesophageal reflux disease. Surg Endosc 2005;19:849-853.

12. Tam WC, Schoeman MN, Zhang Q, et al. Delivery of radiofrequency energy to the lower esophageal sphincter and gastric cardia inhibits transient lower esophageal sphincter relaxations and gastro-esophageal reflux in patients with reflux disease. Gut 2003;52:479-485.

13. Reymunde A, Santiago N. Long-term results of radiofrequency energy delivery for the treatment of GERD: sustained improvements in symptoms, quality of life, and drug use at 4-year follow-up. Gastrointest Endosc 2007;65:361-366.

14. Perry KA, Banerjee A, Melvin WS. Radiofrequency energy delivery to the lower esophageal sphincter reduces esophageal acid exposure and improves GERD symptoms: a systematic review and meta-analysis. Surg Laparosc Endosc Percutan Tech 2012;22:283-288.

15. Chen D, Barber C, McLoughlin P, Thavaneswaran P, Jamieson GG, Maddern GJ. Systematic review of endoscopic treatments for gastro-oesophageal reflux disease. Br J Surg 2009;96:128-136.

16. Louis H, Closset J, Devière J. Enteryx. Best Pract Res Clin Gastroenterol 2004;18:49-59.

17. Edmundowicz SA. Injection therapy of the lower esophageal sphincter for the treatment of GERD. Gastrointest Endosc 2004;59:545-552.

18. Cohen LB, Johnson DA, Ganz RA, et al. Enteryx implantation for GERD: expanded multicenter trial results and interim postapproval follow-up to 24 months. Gastrointest Endosc 2005;61:650-658.

19. Domagk D, Menzel J, Seidel M, et al. Endoluminal gastroplasty (EndoCinch) versus endoscopic polymer implantation (Enteryx) for treatment of gastroesophageal reflux disease: 6-month results of a prospective, randomized trial. Am J Gastroenterol 2006;101:422-430.

20. Wong RF, Davis TV, Peterson KA. Complications involving the mediastinum after injection of Enteryx for GERD. Gastrointest Endosc 2005;61:753-756.

21. Tintillier M, Chaput A, Kirch L, Martinet JP, Pochet JM, Cavelier C. Esophageal abscess complicating endoscopic treatment of refractory gastroesophageal reflux disease by Enteryx injection: a first case report. Am J Gastroenterol 2004;99:1856-1858.

22. Noh KW, Loeb DS, Stockland A, Achern SR. Pneumomediastinum following Enteryx injection for the treatment of gastroesophageal reflux disease. Am J Gastroenterol 2005;100:723-726.

23. Fereti C, Benakis P, Dimopoulos C, et al. Endoscopic implantation of Plexiglas (PMMA) microspheres for the treatment of GERD. Gastrointest Endosc 2001;53:423-426.

24. Mahmood Z, Ang YS. EndoCinch treatment for gastro-oesophageal reflux disease. Digestion 2007;76:241-247.

25. Jafri SM, Arora G, Triadafilopoulos G. What is left of the endoscopic anti-reflux devices? Curr Opin Gastroenterol 2009;25:352-357.

26. Zagol R, Mikami D. Advances in transoral fundoplication for oesophageal reflux. Dig Liver Dis 2011;43:361-364.

27. Pleskow D, Rothstein R, Lo S, et al. Endoscopic full-thickness plication for the treatment of GERD: 12-month follow-up for the North American open-label trial. Gastrointest Endosc 2005;61:643-649.

28. von Renteln D, Schieke I, Fuchs KH, et al. Endoscopic full-thickness plication for the treatment of GERD by application of multiple Plicator implants: a multicenter study (with video). Gastrointest Endosc 2008;68:833-844.

29. Testoni PA, Vailati C. Transoral incisionless fundoplication with EsophyX(R) for treatment of gastro-oesophageal reflux disease. Dig Liver Dis 2012;44:631-635.

30. Barnes WE, Hoddinott KM, Mundy S, Williams M. Transoral incisionless fundoplication offers high patient satisfaction and relief of therapy-resistant typical and atypical symptoms of GERD in community practice. Surg Innov 2011;18:119-129.

31. Trad KS, Turgeon DG, Deljkich E. Long-term outcomes after transoral incisionless fundoplication in patients with GERD and LPR symptoms. Surg Endosc 2012;26:650-660.

32. Bell RC, Freeman KD. Clinical and pH-metric outcomes of transoral esophagogastric fundoplication for the treatment of gastroesophageal reflux disease. Surg Endosc 2011;25:1975-1984.

33. Frazoni M, Conigliaro R, Manta R, Melotti G. Reflux parameters as modified by Esophyx or laparoscopic fundoplication in refractory GERD. Aliment Pharmacol Ther 2011;34:67-75.