Sensitivity of Lepton Number Violating Meson Decays in Different Experiments

Eung Jin Chun,1, * Arindam Das,2, † Sanjoy Mandal,3,4, ‡ Manimala Mitra,3,4, § and Nita Sinha5,4, ¶

1 Korea Institute for Advanced Study, Seoul 130-722, Korea
2 Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
3 Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
4 Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, India
5 The Institute of Mathematical Sciences, C.I.T Campus, Taramani, Chennai 600 113, India

Abstract

We study the discovery prospect of different three body lepton number violating (LNV) meson decays $M_1^- \rightarrow \ell_1^- \ell_2^- M_2^+$ in the framework of right handed (RH) neutrino extended Standard Model (SM). We consider a number of ongoing experiments, such as, NA62 and LHCb at CERN, Belle II at SuperKEK, as well as at the proposed future experiments, SHiP, MATHUSLA and FCC-ee. The RH Majorana neutrino N mediating these meson decays provides a resonant enhancement of the rates, if the mass of N lies in the range (100 MeV – 6 GeV). We consider the effect of parent mesons velocity, as well as, the effect of finite detector size. Using the expected upper limits on the number of events for the LNV decay modes, $M_1^- \rightarrow \ell_1^- \ell_2^- M_2^+$ ($M_1 = B, B_c, D, D_s$ and K), we analyze the sensitivity reach of the mixing angles $|V_{eN}|^2, |V_{\mu N}|^2, |V_{\tau N}|^2, |V_{eN}V_{\mu N}|, |V_{eN}V_{\tau N}|$ and $|V_{\mu N}V_{\tau N}|$ as a function of heavy neutrino mass M_N. We show that, inclusion of parent meson velocity can account to a large difference for active-sterile mixing, specially for D, D_s meson decay at SHiP and K meson decay at NA62. Taking into account the velocity of the D_s meson, the future beam dump experiment SHiP can probe $|V_{eN}|^2 \sim 10^{-9}$. For RH neutrino mass in between 2 - 5 GeV, MATHUSLA can provide best sensitivity reach of active-sterile mixings.
1. INTRODUCTION

The discovery of neutrino oscillations [1] in a series of oscillation experiments have confirmed that neutrinos have non-zero masses and non-zero mixings. The solar and atmospheric mass splittings are $\mathcal{O}(10^{-5})$ and $\mathcal{O}(10^{-3})$ eV2, while the three mixings are $\theta_{12} \sim 33^\circ$, $\theta_{23} \sim 45^\circ$ and $\theta_{13} \sim 9^\circ$. These observations indicate, at least two of the three SM neutrinos have non-zero masses. The absolute scale of the neutrino masses are yet unknown. The sum of masses of three active neutrinos are bounded from cosmological observation as $\sum_i m_\nu_i < 0.23$ eV [2]. One of the most natural ansatz to explain small neutrino masses is the seesaw mechanism, where the dimension-5 operator [3] with lepton and Higgs doublets generates Majorana mass of light neutrinos through electroweak symmetry breaking. This operator breaks global lepton number symmetry of the SM by two units. The other possibility is to generate Dirac mass terms for the SM neutrinos by including gauge singlet RH neutrinos in the theory. However, to explain eV mass of the neutrinos, this requires unnatural fine-tuning of Yukawa coupling to a very small value $Y_\nu \sim \mathcal{O}(10^{-11})$. The seesaw mechanism on the other hand is most appealing, as the tiny Majorana mass of the light neutrinos are inversely proportional to the cut-off scale of the theory. This large cut-off scale naturally explains eV mass of neutrinos. Seesaw can be realised in different beyond standard model (BSM) extensions, such as Type-I [4–7]/Inverse seesaw [8, 9] with gauge singlet Majorana neutrinos, Type-II [10–13] seesaw with Higgs triplets, and Type-III seesaw [14–17] with fermionic triplet. For Type-I/Inverse seesaw, RH neutrinos can have Majorana/Quasi-Dirac masses, that can vary in wide ranges, starting from GUT scale down to GeV. The low scale seesaw models, that inherits lighter RH neutrino states have higher discovery prospect, as they can be tested in a wide range of experiments.

Heavy SM gauge singlet RH neutrinos of mass GeV to TeV can be searched at LHC, via di-lepton [18–23], as well as, tri-lepton final states [24–29]. The 13 TeV LHC tri-lepton search has constrained the mixing of the RH neutrinos with active neutrinos down to $|V_{\ell N}|^2 < 10^{-5}$ [28], for the mass of RH neutrino M_N in between 10 GeV to 50 GeV. For other future colliders, such as, e^+e^-, FCC-hh, and discussions on a future e^-p collider, such as, LHeC, see [30–37]. For heavy RH neutrino of mass $M_N \sim$ TeV, the final decay products will be collimated and will produce fat-jets [23, 33, 35, 38]. For the discussion on sub weak scale RH neutrino state, that can produce lepton-jet, see [39]. The other mass ranges of
RH neutrinos, such as, MeV-GeV are tightly constrained from the lepton number violating neutrinoless double beta decay ($0\nu\beta\beta$-decay) \[40-44\], while in GeV - TeV range, lepton flavor violating process $\mu \rightarrow e\gamma$ \[45-47\] can give significant constraint. RH neutrinos have also been searched for in the laboratory experiment through peak searches in leptonic decays of pions and kaons \[48, 49\].

Another interesting probe for Majorana neutrinos of hundreds of MeV- few GeV masses and their mixings are the lepton number violating (LNV) rare meson decay processes, such as $M_1^- \rightarrow \ell_1^- \ell_2^- \pi^+$ \[49-63\]. For RH neutrino search, this process has an advantage as compared to the LNV $0\nu\beta\beta$-decay due to the lesser uncertainties in the meson decay constant. In the later process, the nuclear matrix elements (NME) uncertainty can make difference in the prediction of active-sterile mixing. We consider a number of three body $\Delta L = 2$ meson decays $M_1^- \rightarrow \ell_1^- \ell_2^- \pi^+$ ($M_1 = B, B_c, D, D_s$ and K) and derive sensitivity reach of the active-sterile mixing parameter in a number of ongoing and future experiments, such as, NA62, LHCb at CERN, Belle II, SHiP, MATHUSLA and FCC-ee. Note that, the light neutrino contribution to these meson decays are extremely suppressed. However, for RH neutrinos in the mass range of $0.140 \text{ GeV} < M_N < 6 \text{ GeV}$, the intermediate Majorana neutrinos can be produced on-shell. This results in resonant enhancement of these decay rates. In addition, large number of decaying mesons in these experiments, in-particular at SHiP will facilitate to improve the sensitivity reach significantly. In deriving these results, we consider parent meson velocity, that affects the probability of RH neutrino decay inside the detector. We show, that inclusion of parent meson velocity can give one or two orders of magnitude shift $\mathcal{O}(10^1 - 10^2)$ in the results obtained.

The paper is organized as follows. In sec. 2, we very briefly review the basic features of the three RH neutrino framework, following which in sec. 3, we discuss in detail the contributions of the RH neutrino in meson decays. In sec. 4, we then compute the total decay width of RH neutrino N in the mass range $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$. In sec. 5, we study the effects of parent meson velocity in the RH neutrino decay probability. In sec. 6 and 7, we give the formalism to calculate the signal events and give different inputs for various experiments which we consider. In sec. 8, we derive the limits on the mixing angle $|V_{\ell N}|^2$, $\ell = e, \mu, \tau$ and $|V_{\ell_1 N}V_{\ell_2 N}|$, $\ell_1, \ell_2 = e, \mu, \tau, \ell_1 \neq \ell_2$ that are expected from the upper limits on the number of signal events of various LNV meson decays, that may be achievable in some
of the ongoing and future experiments. In secs. 9, we present our combined limit from all
the considered meson decays and give the comparison with other existing constraints on the
mixing angles. Finally in sec. 10, we provide our conclusions. In the Appendix, we provide
details of the RH neutrino decay width calculations.

2. THE MODEL

We extend the SM to include additional RH neutrinos N. The heavy neutrinos can
generate light neutrino masses through seesaw. For simplicity, we consider only one RH
neutrino and carry out our analysis. The mixing of N with the active neutrinos are given
by the following expression,

$$\nu_\ell = \sum_{m=1}^{3} U_{\ell m} \nu_m + V_{\ell N} N_m^c,$$

where ν_m and N_m^c are the mass eigenstates. We denote the mixing between the standard
flavour neutrino $\nu_\ell (\ell = e, \mu, \tau)$ and the heavy mass eigenstate N by $V_{\ell N}$. Due to the mixing,
the charged and neutral currents in the lepton sector gets modified and can be written as

$$L^{CC}_\ell = -\frac{g}{\sqrt{2}} W^\mu_\mu \left(\sum_{\ell=\tau}^{3} \sum_{m=1}^{3} U_{\ell m}^* \bar{\nu}_m \gamma^\mu P_L \ell + \sum_{\ell=\tau}^{3} V_{\ell N}^* N_m^{c\ell} \gamma^\mu P_L \ell \right) + \text{h.c},$$

$$L^{NC}_\ell = -\frac{g}{2 \cos \theta_W} Z_\mu \left(\sum_{\ell=\tau}^{3} \sum_{m=1}^{3} U_{\ell m}^* \bar{\nu}_m \gamma^\mu P_L \nu_\ell + \sum_{\ell=\tau}^{3} V_{\ell N}^* N_m^{c\ell} \gamma^\mu P_L \nu_\ell \right) + \text{h.c.}$$

For the purpose of phenomenology, we consider the mass and mixings of N as free pa-
rameters, constrained only by experimental observations. Note that, adding only one RH
neutrino is not enough to correctly reproduce the neutrino oscillations parameters, namely
two mass square differences and the mixings. In our considered model, we can add two more
RH neutrinos to generate the neutrino masses and consider two of them to be heavy enough
such that only one RH neutrino lies in the mass range $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$.

3. PROCESS

The RH neutrino N, if a Majorana state can mediate the LNV process $M_1^- \to \ell_1^- \ell_2^- M_2^+$. The Feynman diagrams for these decays are shown in Figs. 1 and 2. The diagram in Fig. 2
will give a very small contribution, as this is not a resonance production diagram. Note
FIG. 1. The Feynman diagrams for the lepton number violating meson decays. These processes can produce resonance enhancement. See text for details.

that the diagrams with light neutrino exchange are also present but the contributions will be negligibly small as they will not be resonantly enhanced. The decay amplitude for the processes $M_1^- (p) \to \ell_1^- (k_1) \ell_2^- (k_2) M_2^+(k_3)$ depicted in Fig. 1 can be expressed as

\[
\mathcal{M} = G_F^2 V_{M_1}^{CKM} V_{M_2}^{CKM} f_{M_1} f_{M_2} (V_{\ell_1 N} V_{\ell_2 N}) M_N \frac{M_N}{(p - k_1)^2 - M_N^2 + i M_N \Gamma_N} \bar{u}(k_1) \not{p}_3 (1 + \gamma_5) v(k_2),
\]

(4)

where M_1 and M_2 are both pseudo-scalar mesons. Though M_2 can also be a vector meson, we have considered only the case of pseudo-scalar meson. In Eq. 4, G_F is the Fermi coupling constant, $V_{\ell_j N}$ are the mixing angles between the neutrino of flavor state ν_{ℓ_j} and mass eigenstate N. $V_{M_1}^{CKM}$ ($V_{M_2}^{CKM}$) are the Cabbibo-Kobayashi-Maskawa (CKM) matrix elements at the annihilation (creation) vertex of the meson M_1(M_2). f_{M_1} and f_{M_2} are the decay constants of M_1 and M_2, respectively. We use the values $f_D = 0.204 \text{ GeV}$, $f_{D_s} = 0.258 \text{ GeV}$, $f_K = 0.156 \text{ GeV}$, $f_B = 0.188 \text{ GeV}$ and $f_{B_s} = 0.436 \text{ GeV}$ [64]. M_N, Γ_N are the mass and
decay width of the heavy neutrino N. Finally, the total decay rate is given by

$$\Gamma (M_1 \rightarrow \ell_1 \ell_2 \pi) = \frac{1}{n!} \sum |M|^2 d_3(PS).$$ \hspace{1cm} (5)$$

In Eq. 5, $n = 2$ for identical final leptons, otherwise $n = 1$ and $d_3(PS)$ is the three body phase space.

4. TOTAL DECAY WIDTH OF N

Although the RH neutrino N is a SM singlet, due to mixing with active neutrinos it can decay via charged and neutral current interactions. For the mass range $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$, RH neutrino can be produced as an intermediate on mass shell state in the LNV meson decays being considered here. We consider only tree level diagrams in the calculation of RH neutrino total decay width. In the relevant mass range $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$, the following channels contribute to the total decay width of heavy neutrino:

- $N \rightarrow \ell^- P^+$, where $\ell = e, \mu, \tau$, and $P^+ = \pi^+, K^+, D^+, D_s^+, B^+$ (for $\ell = e, \mu$).
- $N \rightarrow \nu_\ell P^0$, where ν_ℓ are the flavor eigenstates ν_e, ν_μ, ν_τ and $P^0 = \pi^0, \eta, \eta', \eta_c$.
- $N \rightarrow \ell^- V^+$, where $\ell = e, \mu, \tau$, and $V^+ = \rho^+, K^{*+}, D^{*+}, D_s^{*+}, B^{*+}$ (for $\ell = e, \mu$).
- $N \rightarrow \nu_\ell V^0$, where $\nu_\ell = \nu_e, \nu_\mu, \nu_\tau$ and $V^0 = \rho^0, \omega, \phi, J/\psi$.
- $N \rightarrow \ell_1^- \ell_2^+ \nu_{\ell_2}$, where $\ell_1, \ell_2 = e, \mu, \tau$, $\ell_1 \neq \ell_2$.
- $N \rightarrow \nu_{\ell_1} \ell_2^- \ell_2^+$, where $\ell_1, \ell_2 = e, \mu, \tau$.
- $N \rightarrow \nu_{\ell_1} \nu_\ell$, where $\nu_{\ell_1} = \nu_e, \nu_\mu, \nu_\tau$.

Hence, the total decay width is given by

$$\Gamma_N = \sum_{\ell, P^+} 2\Gamma_{\ell P^+} + \sum_{\ell, P^0} \Gamma_{\ell P^0} + \sum_{\ell, V^+} 2\Gamma_{\ell V^+} + \sum_{\ell, V^0} \Gamma_{\ell V^0} + \sum_{\ell_1, \ell_2 (\ell_1 \neq \ell_2)} 2\Gamma_{\ell_1 \ell_2 \nu_{\ell_2}} + \sum_{\ell_1, \ell_2} \Gamma_{\nu_{\ell_1} \ell_2 \ell_2} + \sum_{\nu_{\ell_1}} \Gamma_{\nu_{\ell_1} \nu_{\ell}}.$$ \hspace{1cm} (6)

As the RH neutrino is Majorana, the charge conjugate processes are also allowed and the decay rate is same, hence the 2 factor is included for some of the channels. We can parameterize
the above decay width as follows

$$\Gamma_N = a_e(M_N)|V_{eN}|^2 + a_\mu(M_N)|V_{\mu N}|^2 + a_\tau(M_N)|V_{\tau N}|^2,$$

(7)

where, a_e, a_μ and a_τ are functions of the Majorana neutrino mass and hence will differ from mode to mode. We show the total decay width of heavy neutrino N in the left panel of Fig. 3, for the choice of mixing $|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}|^2 = 1$. Even with mixing angle equal to 1, the decay width lies in the range $10^{-16} \text{ GeV} \leq \Gamma_N \leq 10^{-7} \text{ GeV}$ for the M_N mass range, $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$. Hence, we can safely use the narrow-width approximation, $\frac{1}{(p^2_N - M^2_N + M_N^2 \Gamma_N^2)} \approx \frac{\pi}{M_N N} \delta(p^2_N - M^2_N)$ and $\Gamma(M_1 \rightarrow \ell_1 \ell_2 M_2)$ can be approximated as, $\Gamma(M_1 \rightarrow \ell_1 N)\text{Br}(N \rightarrow \ell_2 M_2)$. We also show in the right panel of Fig. 3, the different coefficients a_e, a_μ and a_τ as a function of mass M_N. For the RH neutrino mass M_N upto 0.25 GeV, $a_\mu \approx a_\tau$ and for mass $M_N > 0.4 \text{ GeV}$, $a_e \approx a_\mu$.

5. PARENT MESON VELOCITY AND FINITE DETECTOR SIZE EFFECT

For the mass range $0.140 \text{ GeV} \leq M_N \leq 6 \text{ GeV}$, the RH neutrino produced in these LNV meson decays are on shell. The RH neutrino produced in meson decays $M_1 \rightarrow \ell_1 N$, propagates and decays after traveling some distance from the production point. This is the decay length L_N of the RH neutrino N and it depends on the total decay width of N. If L_N is greater than the actual size of the detector, then N will decay outside the detector and the signature $M_1 \rightarrow \ell_1 \ell_2 \pi$ cannot be observed. For a particular experiment the detector
FIG. 4. Dependence of the decay length L_N on parent meson velocity as a function of RH neutrino mass M_N. The upper panel is for B meson decay at Belle-II (left) and SHiP (right). The left figure of lower panel is for D_s meson decay at SHiP and the right figure of lower panel is for K meson decay at NA62.

size is finite. Hence, when calculating the signal events, we need to take into account this finite size detector effect by the probability factor P_N, of N to decay within the detector. In general, this probability factor can be written as

$$P_N = 1 - \exp \left(-L_D \Gamma_N \frac{M_N}{p_N} \right) = 1 - \exp \left(-\frac{L_D}{L_N} \right),$$

where $L_N = \frac{p_N}{M_N \Gamma_N}$, L_D is the detector length, p_N is the three momentum of N. Defining $x = \frac{L_D}{L_N}$, it is obvious that for a very large detector length L_D and small decay length L_N, $P_N = 1 - \exp(-x) \approx 1$. Note that the probability factor depends on three momentum p_N, which in turn depends on the velocity of decaying meson M_1. Hence to incorporate the probability factor correctly, we need to use the correct velocity of the parent meson M_1 in each of the experiments. If the parent meson M_1 decays at rest, three momentum p_N is fixed and is given by $p_N^* = \frac{m_{M_1}}{2} \lambda^{\pm} \left(1, \frac{m_2^2}{m_{M_1}^2}, \frac{M_2^2}{m_{M_1}^2} \right)$. For the case of parent meson M_1 produced
FIG. 5. Dependence of parameter $x = \frac{L_D}{E_N}$ on parent meson velocity as a function of RH neutrino mass M_N. The upper panel is for B meson decay at Belle-II (left) and SHiP (right). The left figure of lower panel is for D_s meson decay at SHiP and the right figure of lower panel is for K meson decay at NA62.

with fixed boost $\vec{\beta}$, the energy of N is then given by,

$$E_N = E_N^* \left(\gamma + \frac{p_N^*}{E_N^*} \sqrt{\gamma^2 - 1} \cos \theta_N^* \right),$$

where E_N^* is the energy of N in rest frame of M_1 which is given as $E_N^* = \sqrt{p_N^{*2} + M_N^2}$. $\gamma = \frac{E_{M_1}}{m_{M_1}}$ and θ_N^* is the emission angle of particle N in the rest frame of M_1, which is measured from the boost direction $\vec{\beta}$. The energy E_N of the N in the boosted M_1 frame lies within the range,

$$E_N \in [E_N^-, E_N^+] = \left[(\gamma E_N^* - p_N^* \sqrt{\gamma^2 - 1}), (\gamma E_N^* + p_N^* \sqrt{\gamma^2 - 1}) \right] \quad (9)$$

Similarly we can derive the range of $p_N \in [p_N^-, p_N^+]$ from Eq. 9 using the relation $p_N^* = \sqrt{E_N^*^2 - M_N^2}$. In this section, we show how x, L_N depends on parent meson velocity and compare to the case of parent meson decay at rest. For the case of meson decay at rest, $p_N = p_N^*$ and for meson decay with non-zero momentum p_{M_1}, we take $p_N = \frac{p_N^* + p_{M_1}^*}{2}$ to
compare. With the assumption of $|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}|^2$, we can write the decay length L_N and x as

$$L_N = \frac{p_N}{M_N \Gamma_N} = \frac{p_N}{P_N} M_N |V_{\ell N}|^2 (a_e(M_N) + a_\mu(M_N) + a_\tau(M_N))$$ \hspace{1cm} (10)

$$x = \frac{L_D}{L_N} = \frac{L_D}{P_N} M_N |V_{\ell N}|^2 (a_e(M_N) + a_\mu(M_N) + a_\tau(M_N))$$ \hspace{1cm} (11)

In Figs 4 and 5, we have shown the variations of $L_N, |V_{\ell N}|^2$ and x as a function of RH neutrino mass M_N in B, D_s and K meson decays. To do the comparison with the meson decay at rest ($p_{M_1} = 0$), we take $p_B = 45$ GeV (FCC-ee) [65], 58 GeV (SHiP) [66]; $p_{D_s} = 58$ GeV (SHiP) and $p_K = 75$ GeV (NA62) [67]. From these two figures it is clear that decay length increases (hence x decreases) for fixed mixing angle in the case of meson decays in flight compared to meson decay at rest. Hence, the probability of RH neutrino P_N to decay inside the detector is smaller in the case of meson decay in flight compared to meson decay at rest. As a result, compare to meson decay at rest, in the case of meson decay in flight we get a rather loose bound on mixing angle from the expected signal events.

6. SIGNAL EVENTS

The sensitivity reach for the LNV decay modes in a particular experiment depends on the number of the parent mesons M_1’s produced ($N_{M_1^-}$), their momentum (p_{M_1}) and the branching ratio for these mesons to the LNV modes. Assuming the parent meson M_1 decays at rest, the expected number of signal events is [68]:

$$N_{\text{event}} = 2 N_{M_1^-} \text{Br} \left(M_1^- \rightarrow \ell^-_1 \ell^-_2 M_2^+ \right) P_N,$$

$$\approx 2 N_{M_1^-} \text{Br} \left(M_1^- \rightarrow \ell^-_1 N \right) \frac{\Gamma(N \rightarrow \ell^-_2 M_2^+)}{\Gamma_N} P_N,$$ \hspace{1cm} (12)

the factor 2 is due to inclusion of the charge conjugate process $M_1^+ \rightarrow \ell^+_1 N$ and P_N is the detector probability which is given by

$$P_N = \left[1 - \exp \left(- \frac{M_N \Gamma_N L_D}{p_N^*} \right) \right].$$

For the case of meson decay in flight the RH neutrino energy E_N lies in range according to Eq. 9 and follows a flat distribution as:

$$f(E_N) = \frac{1}{E^+_N - E^-_N} = \frac{1}{2p_N^* \sqrt{\gamma^2 - 1}},$$
Hence to calculate the total number of events for $M_1^- \rightarrow \ell_1^- \ell_2^- M_2^+$ in the lab-frame we need to integrate within the range of E_N as

$$N_{\text{event}} \approx 2N_{M_1^-} \int_{E_N^-}^{E_N^+} dE_N \text{Br} \left(M_1^- \rightarrow \ell_1^- N \right) \frac{m_{M_1}}{2p_{M_1}^* |\vec{p}_{M_1}|} \frac{\Gamma(N \rightarrow \ell_2^- M_2^+)}{\Gamma_N} \mathcal{P}_N^\prime,$$

(13)

where $\mathcal{P}_N^\prime = \left[1 - \exp \left(-\frac{M_N \Gamma_N L_D}{\sqrt{E_N^2 - M_N^2}} \right) \right]$ is the detector probability after taking into account the parent meson M_1 velocity.

Since the LNV meson decay rates will be extremely small, the expected number of signal events for these processes can be assumed to follow a Poisson distribution. Following Ref. [69] and assuming zero background events, we derive the average upper limit on the number of events at 95% C.L., assuming number of signal events to be $N_{\text{event}} = 3.09$.

Note that the number of events given in Eqs. 12 or 13 are functions of the mass parameters M_N and mixing $V_{\ell N}$. Equating the numerical upper limit on the number of events to the theoretical expressions, we get constraints on mixing angle $V_{\ell N}$, corresponding to specific M_N values for a particular experiments. We have assumed $|V_{eN}|^2 = |V_{\mu N}|^2 = |V_{\tau N}|^2$ in Γ_N when deriving these bounds using Eq. 12 and 13.

7. INPUT FOR DIFFERENT EXPERIMENTS

7.1. LHCb

The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. A search for heavy Majorana neutrinos in $B \rightarrow \mu\mu\pi$ decay mode had been performed by the LHCb collaboration using 7 TeV data [70] and bound on the mixing angle $|V_{\mu N}|^2$ is provided in the mass range $0.25 \text{ GeV} \leq M_N \leq 5 \text{ GeV}$\(^1\). The cross-section for producing B, D and D_s mesons at $\sqrt{s} = 13 \text{ TeV}$ within the LHCb acceptance ($2 < \eta < 5$) are 86.6 μb, 834 μb and 353 μb, respectively [72, 73]. Hence, in LHCb upgrade with 300 fb\(^{-1}\) luminosity, expected number of B, D and D_s mesons are, $N_{B^+} = 2.6 \times 10^{13}$, $N_{D^+} = 2.5 \times 10^{14}$ and $N_{D_s^+} = 1.05 \times 10^{14}$. LHCb will also produce a large number of B_c mesons. A crude estimate [74] using the measured [75] ratio of production cross section times branching

\(^1\) This bound has been recently revised in Ref. [71] by taking into account the correct life time calculation of N.

fractions between the $B_c \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$ decays at $\sqrt{s} = 8$ TeV, indicates $\mathcal{O}(10^{11})$ B_c events with 300 fb$^{-1}$ luminosity at 14 TeV. Though the number of B_c mesons at LHCb are smaller than the number of B mesons, this mode being less suppressed with respect to $B^+ \rightarrow \ell_1^+ \ell_2^- \pi^-$, gives tighter constraints on the mixing angles. The produced mesons will decay in flight, carrying a momentum of order of 100 GeV in forward direction [76]. We take the detector length $L_D \approx 20$ m.

7.2. NA62

NA62 is an ongoing experiment at CERN that will produce a large number of K^+ mesons [67]. The primary SPS 400 GeV proton beam, aims on a target, produce a secondary high intensity hadron beam with an optimum content of $K^+ (\approx 6\%)$. The expected number of K^+ decays in the fiducial volume is 4.5×10^{12} per year. Assuming three years of running, $N_{K^+} = 1.35 \times 10^{13}$. The detector length $L_D \approx 65$ m and the produced K^+ mesons will decay in flight, carrying a momentum of 75 GeV.

7.3. SHiP

The SHiP experiment is a newly proposed general purpose fixed target facility at the CERN SPS accelerator [77]. A 400 GeV proton beam will be dumped on a heavy target for the duration of five years. One of the primary goal of the experiment is to use decays of charmed mesons to search for heavy sterile neutrinos using the decay mode $D^+_s/D^+ \rightarrow \ell^+ \ell^+ \pi^-$. One can easily estimate the number of charmed meson pairs that are expected to be produced in this experiment as [78],

$$N_{meson} = X_{c\bar{c}} \times N_{POT} \times R,$$

where $X_{c\bar{c}}$ is the $c\bar{c}$ production rate, $N_{POT} = 2 \times 10^{20}$ is the number of proton-target interaction. The relative abundances R of charmed mesons, such as, D and D_s are 30% and 8%, respectively. Hence, the expected number of D and D_s mesons are $N_{D^+} = 1.02 \times 10^{17}$ and $N_{D^+_s} = 2.72 \times 10^{16}$, respectively. This very high intensity of the charmed mesons will permit to set tight constraints on mixing angle at SHiP. There will also be large number of B and B_c meson productions at SHiP. Following [79], we can estimate the number of B and
B_c meson as $N_{B^+} = 10^{13}$ and $N_{B_c} = 10^{11}$, respectively. The detector length is taken to be, $L_D = 60$ m. For the 400 GeV CNGS proton beam on target, the expected momentum of the produced mesons is ~ 58 GeV [66].

7.4. MATHUSLA

MATHUSLA [80] is a newly proposed detector near ATLAS or CMS. Its main goal is to search for neutral long-lived particles (LLP) produced in HL-LHC collisions by reconstructing displaced vertices. The detector is designed to have an area of 200m \times 200m and a height of 20m for the decay volume, which is displaced from ATLAS or CMS by 100m both horizontally and vertically. RH neutrino search is one of the primary goals of MATHUSLA and is most sensitive to the parameter space which yields a decay length ~ 200m. RH neutrinos which are coming from the meson decays or W and Z boson decays has very large decay length and this has been already studied in [80]. For the meson decay case, they have considered the decay modes $B \rightarrow D\ell N$, $B \rightarrow \ell NN$ and $D \rightarrow K\ell NN$ and after including the probability of RH neutrinos to decay visibly within the MATHUSLA detector, they derived the constraints on mixing angles. In this study, we have considered the meson decays $B \rightarrow \ell_1\ell_2\pi$ and $D \rightarrow \ell_1\ell_2\pi$ for MATHUSLA. For the number of B and D meson productions we followed the Ref. [81]. The result of their detailed simulation suggests that number of B and D meson production within the geometric acceptance of the MATHUSLA detector are 5.7×10^{14} and 5.4×10^{13}, respectively. Their simulation also gives the average γ factor of the B and D mesons as $\langle \gamma_B \rangle = 2.3$ and $\langle \gamma_D \rangle = 2.6$ from which we can derive the average momentum of the mesons. The detector length is taken to be 38m.

7.5. Belle II

The asymmetric SuperKEKB facility is designed to collide electron and positron beams such that the centre of mass energy is in the region of the Υ resonances. An upgrade of Belle, the newly completed Belle II detector is expected to collect data samples corresponding to an integrated luminosity of 50 ab$^{-1}$ by the end of 2024 [82]. The expected number of charged $B\bar{B}$ pairs to be produced is 5.5×10^{10} [83, 84]. In addition, a large sample of charged D, D_s...
mesons will also be accessible, with \(N_{D^+} = 3.4 \times 10^{10} \) and \(N_{D_s^+} = 10^{10} \) [84]. A direct search for heavy Majorana neutrinos in B-meson decays was performed by Belle collaboration using a data sample that contained \(772 \times 10^6 \) \(B \bar{B} \) pairs (at 711 fb\(^{-1}) [85]. At KEKB as well as superKEKB, the energies of the \(e^+, e^- \) beams are sufficiently low so that the momentum of the produced \(B \) mesons as well as that for the charmed mesons will not be appreciable and the suppression from high momentum of the decaying mesons in the number of events will be absent.

7.6. FCC-ee

The Future Circular Collider (FCC-ee) [65] will collect multi-\(ab^{-1} \) integrated luminosities for \(e^+e^- \) collisions at c.m.energy \(\sqrt{s} \approx 91 \) GeV. The expected number of \(Z \)-bosons is \(10^{12} - 10^{13} \). The number of charged B mesons from \(Z \) decays can be estimated as,

\[
N_{B^+} = N_Z \times Br (Z \rightarrow b\bar{b}) \times f_u,
\]

where \(N_Z \sim 10^{13} \), \(Br (Z \rightarrow b\bar{b}) = 0.1512 \) [86], \(f_u = 0.410 \) [87] is the fraction of \(B^+ \) from \(\bar{b} \) quark in \(Z \) decay. The B mesons produced at FCC-ee will have an energy distribution peaked at \(E_{B^+} = \frac{M_Z}{2} \). Hence we can calculate the number of signal events using Eq. (13), where the detector length is taken to be \(L_D = 2 \) m.

8. RESULTS

In Fig. 6, we show how the velocity of the parent mesons affect the sensitivity reach of the mixing angles. We consider a number of ongoing and future experiments, such as, FCC-ee, SHiP to explore \(B \rightarrow ee\pi \), SHiP for \(D_s \rightarrow ee\pi \), NA62 for \(K \rightarrow ee\pi \), and LHCb, SHiP for \(B_c \rightarrow \tau\tau\pi \) meson decays. To derive the bounds/sensitivity on the mixing angle as a function of RH neutrino mass \(M_N \), we use Eq. 12, and Eq. 13, for meson decay at rest and in flight, respectively. For all of the above decays, the obtained bounds/future sensitivity on the mixing angles are rather loose in case of meson decays in flight compared to meson decays at rest. As an example, for the case of \(B \) (FCC-ee, SHiP) and \(D_s \) (SHiP) meson decays, there is approximately one order of magnitude difference between the two results. The result for \(K \) meson decay at NA62 differs by two order of magnitude. Hence,
FIG. 6. Future sensitivity reach and present limits on the mixing angles as a function of RH neutrino mass M_N. The black and red lines stand for meson decay at rest and meson decay with finite momentum, respectively. The upper panel corresponds to the B meson decay at FCC-ee (left) and SHiP (right). The left figure of middle panel is for D_s meson decay at SHiP and the right figure of middle panel is for K meson decay at NA62. The lower panel represents B_c meson decay at LHCb (left) and SHiP (right).

the inclusion of parent meson velocity is indeed very important when calculating the bounds on the mixing angles.

In Figs. 7-10, we show the final bounds and future sensitivity on various mixing angles such as $|V_{\ell N}|^2$, $\ell = e, \mu, \tau$ and $|V_{\ell_1 N} V_{\ell_2 N}|$, $\ell_1, \ell_2 = e, \mu, \tau$, $\ell_1 \neq \ell_2$ as a function of RH neutrino mass.
FIG. 7. Variation of the future sensitivity reach and present limits on the mixing angle $|V_{eN}|^2$ with respect to the mass M_N. We consider meson decay channel $M_1 \rightarrow ee\pi$. The left figure in the upper panel is for K meson decay at NA62. The right figure in the upper panel is for B meson decay at SHiP (black), MATHUSLA (magenta), LHCb (red), FCC-ee (blue) and Belle-II (green). The left figure in middle panel is for B_c meson decay at SHiP (black) and LHCb (red). The right figure of the middle panel is for D meson decay at SHiP (black), MATHUSLA (magenta), LHCb (red) and Belle-II (green). The last figure of D_s meson decay at SHiP (black), LHCb (red) and Belle-II (green).

M_N. When calculating the limits on these mixing angles, we are using Eq. 12 for Belle-II and Eq. 13 for the other experiments. The latter properly takes into account parent meson velocity effect in the RH neutrino decay probability inside the detector. Due to huge number
of charmed meson productions, the future experiment SHiP will be able to probe $|V_{eN}|^2$, $|V_{\mu N}|^2 \sim \mathcal{O}(10^{-9})$ and $|V_{eN}V_{\mu N}| \sim \mathcal{O}(10^{-9})$ in the mass range $0.14 \text{ GeV} < M_N < 1.9 \text{ GeV}$. Fig. 6 shows that without considering the K meson velocity, tightest bounds on mixing angles $|V_{eN}|^2$ ($0.14 \text{ GeV} < M_N < 0.49 \text{ GeV}$), $|V_{\mu N}|^2$ ($0.24 \text{ GeV} < M_N < 0.38 \text{ GeV}$) and $|V_{eN}V_{\mu N}|$ ($0.14 \text{ GeV} < M_N < 0.49 \text{ GeV}$) are obtained from the meson decays $K \rightarrow e\pi\pi$, $K \rightarrow \mu\mu\pi$ and $K \rightarrow e\mu\pi$, respectively. Taking into account parent meson velocity, the tightest bound in the above mass ranges can instead be obtained from the D_s meson decays at SHiP. For relatively higher mass range $2 \text{ GeV} < M_N < 5 \text{ GeV}$, the tightest bound on

FIG. 8. Same as Fig. 7 except now the limits are on the mixing angle $|V_{\mu N}|^2$ from the meson decays $M_1 \rightarrow \mu\mu\pi$.
mixing angles $|V_{eN}|^2$, $|V_{\mu N}|^2 \sim \mathcal{O}(10^{-7})$ and $|V_{eN}V_{\mu N}| \sim \mathcal{O}(10^{-7})$ can be obtained from B meson decays at MATHUSLA. Finally for the mass range $5 \text{ GeV} < M_N < 6 \text{ GeV}$, the tightest limit on mixing angles $|V_{eN}|^2$, $|V_{\mu N}|^2 \sim \mathcal{O}(10^{-7})$ and $|V_{eN}V_{\mu N}| \sim \mathcal{O}(10^{-7})$ will be provided by the B_c meson decay at LHCb.

Furthermore, the large mass gap between $B(B_c)$ and π meson allows one or both final leptons to be tau. Hence, we have included in our study additional final states like B, $B_c \rightarrow e\tau\pi$, $\mu\tau\pi$ and $\tau\tau\pi$. The highest sensitivity reach on $|V_{eN}V_{\tau N}| \sim \mathcal{O}(10^{-7})$ and $|V_{\mu N}V_{\tau N}| \sim \mathcal{O}(10^{-7})$ can be provided from the $B \rightarrow e(\mu)\tau\pi$ ($0.2 \text{ GeV} < M_N < 5 \text{ GeV}$) at MATHUSLA and $B_c \rightarrow e(\mu)\tau\pi$ ($5 \text{ GeV} < M_N < 6 \text{ GeV}$) at LHCb, respectively. Additionally, the tightest
FIG. 10. Future sensitivity reach and present limits on the mixing angles $|V_{eN}V_{\tau N}|$, $|V_{\mu N}V_{\tau N}|$ and $|V_{\tau N}|^2$ with respect to the mass M_N from meson decays $B, B_c \to e\tau\pi$, $B, B_c \to \mu\tau\pi$ and $B, B_c \to \tau\tau\pi$, respectively at various experiments. The upper panel is for B meson decay at SHiP (black), MATHUSLA (magenta), LHCb (red), FCC-ee (blue) and Belle-II (green). The middle panel is for B_c meson decay at SHiP (black) and LHCb (red). The left figure of the lower panel is for the bound on $|V_{\tau N}|^2$ from $B \to \tau\tau\pi$ decay at SHiP (black), MATHUSLA (magenta), LHCb (red), FCC-ee (blue) and Belle-II (green). The right figure of the lower panel is for the bound on $|V_{\tau N}|^2$ from $B_c \to \tau\tau\pi$ decay at SHiP (black) and LHCb (red).

bound on $|V_{\tau N}|^2 \sim \mathcal{O}(2 \times 10^{-7})$ can also be provided by $B \to \tau\tau\pi$ decay mode ($2\,\text{GeV} < M_N < 3.4\,\text{GeV}$) at MATHUSLA and $B_c \to \tau\tau\pi$ decay mode ($3.4\,\text{GeV} < M_N < 4.5\,\text{GeV}$).
at LHCb, respectively. Note that, $B, B_c \rightarrow \tau \tau \pi$ meson decays constraint the mixing angle $|V_{\tau N}|^2$ in the mass range, where it has so far been unconstrained by any of the τ or other meson decays. In spite of larger number of D production, compared to D_s meson at SHiP, the suppression from the weak annihilation vertex in the case of D_s meson V_{cs} is less compared to D meson V_{cd}. As a result of this, tightest limits on the mixing angles will be provided by the D_s meson decays in the relatively lower mass range.

Note that, if both the like sign di-leptons are not of the same flavor ($\ell_1 \neq \ell_2$), then the process is not only lepton number violating, but also lepton flavor violating. Further, if the distance between N production and decay points is large enough, then the two processes, $M_1 \rightarrow \ell_1 N$ followed by $N \rightarrow \ell_2 \pi$ will be separated. Assuming this separation, the two processes $M_1 \rightarrow \ell_1 \ell_2 \pi$ and $M_1 \rightarrow \ell_2 \ell_1 \pi$ can be distinguished. While deriving the bounds on the mixing angles for the case of $\ell_1 \neq \ell_2$, we are assuming this separation in our study. This is justified as the decay width Γ_N is very small (hence the lifetime is very large) in the mass range of interest. The allowed mass range of N for the decay modes $M_1 \rightarrow \ell_1 \ell_2 \pi$ and $M_1 \rightarrow \ell_2 \ell_1 \pi$ are $m_{\ell_2} + m_\pi < M_N < m_{M_1} - m_{\ell_1}$ and $m_{\ell_1} + m_\pi < M_N < m_{M_1} - m_{\ell_2}$, respectively. We consider both of the channels $M_1 \rightarrow \ell_1 \ell_2 \pi$ and $M_1 \rightarrow \ell_2 \ell_1 \pi$ to derive the bound on the mixing angle $|V_{\ell_1 N} V_{\ell_2 N}|$.

One important point to note is that we have considered idealized detector with 100% detection, reconstruction efficiencies etc to derive the constraints on the mixing angles. The realistic constraints are expected to be weaker and will only be feasible through searches by the experimental collaborations, incorporating the detection, reconstruction efficiencies in actual experiment.

9. COMBINED SENSITIVITY REACH FROM MESON DECAYS AND COMPARISON WITH EXISTING CONSTRAINTS

In this section, we discuss the future sensitivity reach from LNV three body meson decays. The combined limits represent the strongest limits obtained in different mass ranges of N. In Fig. 11, we show the combined sensitivity reach for $|V_{eN}|^2$ by dark blue solid line. This corresponds to the tightest constraints that can be obtained from $D_s \rightarrow e e \pi$ mode (by SHiP) in the lower mass range $0.14 \text{ GeV} < M_N < 2 \text{ GeV}$, and from $B \rightarrow e e \pi$ (by MATHUSLA), $B_c \rightarrow e e \pi$ (by LHCb) in the higher mass range $2 \text{ GeV} < M_N < 6 \text{ GeV}$.
FIG. 11. Combined bounds (thick-blue solid) on mixing angle $|V_{eN}|^2$ as a function of mass M_N from all the meson decays. Strongest lower limits from the Seesaw (green-dashed) and BBN (brown-dashed) on $|V_{eN}|^2$ are shown in this plot. Strongest upper bounds on $|V_{eN}|^2$ are obtained from PS191 (magenta-dashed), JNIR (black-dashed), CHARM (red-dashed), DELPHI (Orange-dashed) and Leptogenesis (black-dotted) are shown in this plot. The shaded region is ruled out by these results. The projected upper limits from the NA62 (blue dashed), GERDA (dark-cyan dashed), FCC-ee (magenta-dashed) and DUNE (pink-dashed) on $|V_{eN}|^2$ are shown. Prospective bounds are shown from the FASER with detector radius $R = 20$ cm is shown by FASER20 (green-dotted) whereas the limits from the $R = 1$ m is shown by FASER1 (green-dot-dashed). Prospective upper limits from the MATHUSLA at the FCC-hh for the W/Z boson decays at the FCC-hh for MATHUSLA standard benchmark surface version are represented by M-WZ-FCC-hh(S) (magenta-dot-dashed) and forward version M-WZ-FCC-hh(F) (magenta-dotted). Prospective limits for the heavy neutrinos produced from the W/Z decays are represented by M-HL-LHC-WZ (magenta-dot-dashed) and B/D meson decays are represented by M-HL-LHC-BD (magenta-dotted) at the HL-LHC.

Note that, for the lower mass range, SHiP can probe $|V_{eN}|^2 \sim 10^{-9}$, while for higher mass range, MATHUSLA and LHCb can probe $|V_{eN}|^2 \sim 10^{-7}$. In particular, the very near future accumulation of data ($\mathcal{L} = 300 \text{fb}^{-1}$) in LHCb can probe $|V_{eN}|^2 \sim 10^{-7}$, around $M_N \sim 5$ GeV. The sensitivity reach of $|V_{\mu N}|^2$, as shown in Fig. 12 is very similar. The combined limit
FIG. 12. Combined bounds (thick-blue solid) on mixing angle $|V_{\mu N}|^2$ as a function of mass M_N from all the meson decays. Strongest lower limits from the Seesaw (green-dashed) and BBN (brown-dashed) and strongest upper limits from PS191 (yellow-dashed), E949 (magenta-dashed), NuTeV (blue-dashed), CHARM (black-dashed), Belle (red-dashed) and DELPHI (Orange-dashed) are shown in this plot. The shaded region is ruled out by these results. The projected upper limits from the NA62 (brown-dotted), Leptogenesis (black-dotted), FCC-ee (magenta-dashed) and DUNE (cyan-dashed) and FASER with detector radius $R = 20$ cm is shown by FASER20 (green-dot-dahsed) whereas the limits from the $R = 1$ m is shown by FASER1 (green-dotted). Prospective upper limits from the MATHUSLA at the FCC-hh for the W/Z boson decays at the FCC-hh for MATHUSLA standard benchmark surface version are represented by M-WZ-FCC-hh(S) (magenta-dot-dashed) and forward version M-WZ-FCC-hh(F) (magenta-dotted). Prospective limits for the heavy neutrinos produced from the W/Z decays are represented by M-HL-LHC-WZ (magenta-dot-dashed) and B/D meson decays are represented by M-HL-LHC-BD (magenta-dotted) at the HL-LHC. Experimental bounds from the ATLAS displaced vertex searches of the Majorana heavy neutrino for the Lepton Number Violating (LNV) channel are represented by ATLAS-Displaced (LNV) (light-blue-dotted) and the limits obtained from the Lepton Number Conserving (LNC) channel are represented by ATLAS-Displaced (LNC) (sea-blue-dotted). Theoretical limits from lepton-jet search for $1 \text{ GeV} \leq M_N \leq 10 \text{ GeV}$ has been represented by Lepton-Jet (13 TeV)(Black, dashed). Corresponding limits for $M_N \geq 5 \text{ GeV}$ for the 13 TeV LHC and 100 TeV are shown by LJ, 13 TeV (Magenta, dot-dashed) and LJ, 100 TeV (Magenta, dotted) respectively.
FIG. 13. Combined bounds (thick-blue solid) on mixing angle $|V_{\tau N}|^2$ as a function of mass M_N from all the meson decays. Strongest lower limits from the Seesaw (green-dashed) and BBN (brown-dashed) on $|V_{\tau N}|^2$ are shown in this plot. Strongest upper bounds on $|V_{\tau N}|^2$ are obtained from CHARM (purple-dashed), EWPD (orange-dashed), Leptogenesis (black-dotted), DELPHI (magenta-dashed) are shown in this plot. The shaded region is ruled out by these results. The projected upper limits from the NA62 (cyan-solid), FCC-ee (darker-blue-solid) and DUNE (light-blue-solid) on $|V_{\tau N}|^2$ are shown. Prospective bounds are shown from the FASER with detector radius $R = 20$ cm is shown by FASER20 (black-dashed) whereas the limits from the $R = 1$ m is shown by FASER1 (black-dotted). Prospective upper limits from the MATHUSLA at the FCC-hh for the W/Z boson decays at the FCC-hh for MATHUSLA standard benchmark surface version are represented by M-WZ-FCC-hh(S) (magenta-dot-dashed) and forward version M-WZ-FCC-hh(F) (magenta-dotted). Prospective limits for the heavy neutrinos produced from the W/Z decays are represented by M-HL-LHC-WZ (magenta-dot-dashed) and B/D meson decays are represented by M-HL-LHC-BD (magenta-dotted) at the HL-LHC. The prospective limits from the B-factory (red-dashed and red-solid) and IceCube (darker-cyan-dashed) are also shown in this figure.

represents the constraint from $D_s \to \mu\mu\pi$, $B \to \mu\mu\pi$ and $B_c \to \mu\mu\pi$ decay modes, that can again be probed in SHiP, MATHUSLA and LHCb. For $|V_{\tau N}|^2$, the best sensitivity reach $|V_{\tau N}|^2 \sim 10^{-7}$ can be provided by MATHUSLA in $B \to \tau\tau\pi$ mode, while SHiP and LHCb
can give similar sensitivity reach with the mode $B_c \rightarrow \tau\tau\pi$. The combined sensitivity reach has been shown in Fig. 13.

The future sensitivity of $|V_{eN}V_{\mu N}|$, $|V_{\mu N}V_{\tau N}|$ and $|V_{eN}V_{\tau N}|$ are shown in Fig. 14, Fig. 15 and Fig. 16, respectively. For $|V_{eN}V_{\mu N}|$ mode, lower mass range up to $M_N \sim 2$ GeV can be probed by the channel $D_s \rightarrow e\mu\pi$ (by SHiP) where sensitivity down to $|V_{eN}V_{\mu N}| \sim 10^{-9}$ can be obtained. RH neutrino of higher mass $M_N \sim 5$ GeV and $M_N \sim 6$ GeV can be probed by $B \rightarrow e\mu\pi$ mode (by MATHUSLA) and $B_c \rightarrow e\mu\pi$ mode (by LHCb), with sensitivity reach $|V_{eN}V_{\mu N}| \sim 10^{-7}$. For $|V_{eN}V_{\tau N}|$ and $|V_{\mu N}V_{\tau N}|$ mixings, the sensitivity for the active-sterile mixing angles are similar, as depicted in the Fig. 15 and Fig. 16. These can be probed in LHCb, MATHUSLA and SHiP. We note that, the future limits from LNV meson decays will be most sensitive in between 0.5 GeV $< M_N < 2$ GeV for $|V_{eN}|^2$, $|V_{\mu N}|^2$, $|V_{eN}V_{\mu N}|$. For other mixing angles that involves τ in the final state, best limit can be obtained in relatively higher mass range $M_N \sim 5$ GeV. We stress that, LHCb, and future experiments - SHiP and MATHUSLA can probe mixing angle of the τ sector in a region, that is very loosely constrained.

A number of other constraints on the active-sterile mixing have been obtained from peak searches, pion decays, collider searches etc. A variety of choices of the heavy neutrino mass have been made in different articles [29, 30, 32, 37, 88–102], which discussed the limits on the heavy neutrino mass and mixing. We summarize the existing limits from these articles. We only show the constraints for the heavy neutrinos lighter than 10 GeV. See Fig. 11 for the two electron, Fig. 12 for two muon, and Fig. 13 for two tau final states, that constrain $|V_{eN}|^2$, $|V_{\mu N}|^2$ and $|V_{\tau N}|^2$. These bounds in the mass vs mixing plane of Figs. 11 to 13 represent the theory constraint from the seesaw (Seesaw) [103–105], big bang nucleosynthesis (BBN) [66, 106, 107], experimental constraint from CHARM [108–110], DELPHI [111]. We also show the future sensitivity reach of FCC-ee [112, 113], and DUNE (LBNE) [114]. The PS191 [115] limits for the electron and muon flavors are shown in Figs. 11 and 12, respectively. The JNIR [116] limit is represented by the black dashed line for the electron flavor in Fig. 11. The regions excluded by the present constraints are shaded in gray. The limits from GERDA [117] on the mass mixing plane in search of Majorana neutrinos from the neutrinoless double beta decay is represented by the dark cyan line in Fig. 11. Majorana heavy neutrino searches from the Meson decay in E949 [118] and NuTeV [119] can produce strong bounds on the heavy neutrino mass-mixing plane. Lepton-jet theoretical searches
FIG. 14. Combined bounds on mixing angle $|V_{eN}V_{\mu N}|$ as a function of mass M_N from all the meson decays. The other strongest bounds on $|V_{eN}V_{\mu N}|$ from BBN (magenta-dashed), PS191 (black-dashed), NuTeV, CHARM (blue-dashed, DELPHI (orange-dashed)) are also shown in this figure. Prospective bounds on $|V_{eN}V_{\mu N}|$ from the $\mu \to e(Ti)$ (green-dashed) and $\mu \to e(Al)$ (red-dashed) are also shown for $M_N \leq 10$ GeV.

FIG. 15. Combined bounds (thick-blue solid) on mixing angle $|V_{eN}V_{\tau N}|$ as a function of mass M_N from all the meson decays. Upper limits from $\tau \to e\pi\pi$ (magenta-dashed) and $\tau \to e^{-}\pi^{+}\pi^{+}$ (black-dashed) are also shown for $M_N \leq 10$ GeV.
FIG. 16. Combined bounds (thick-blue solid) on mixing angle $|V_{\mu N} V_{\tau N}|$ as a function of mass M_N from all the meson decays. Upper limits from $\tau \to \mu \pi \pi$ (magenta-dashed) and $\tau \to \mu^\pm \pi^\mp$ (black-dashed) are also shown for $M_N \leq 10$ GeV.

[120] for the Majorana neutrinos with muon flavor can also put strong bounds. These bounds are shown in Fig. 12 for the muon flavors. For the tau lepton, the bound in the corresponding mass region from EWPD [121–123] has been shown in Fig. 13. The decay of tau lepton into heavy Majorana neutrino and meson can also put bounds on the mass-mixing plane and can have prospective limits marked as B-factory [89, 92]2. The NA62 [125–127] projection lines from the electron, muon and tau are shown in Figs. 11, 12 and 13, respectively. Such experiment can be performed in the kaon mode and beam dump mode [128]. This search is sensitive to the heavy neutrinos that are produced in weak decays [129, 130] of mesons or tau leptons [66]. The upper limit on the mass mixing plane from the Leptogenesis [131] for the minimal scenario with two right handed neutrinos are shown in Figs. 11 and 12, respectively for the electrons and muons assuming the normal hierarchy of the light neutrino masses. The upper limit on the mixing angle $|V_{\mu N}|^2$ from Belle [85] are shown in Fig. 12. Projected sensitivities (for the 4 events) of the MATHUSLA [80] detector in the mass-mixing plane for the heavy neutrinos produced from the W/Z decays at the FCC-hh for MATHUSLA standard benchmark surface version (M-WZ-FCC-hh(S))

2 Recently, Ref [124] also put bound on $|V_{\tau N}|^2$ using large samples of $e^+ e^- \to \tau^+ \tau^-$ collected at B-factory experiments.
and forward version \(((\text{M-WZ-FCC-hh(F)}))\) for the electron, muon and tau are shown in the Figs. 11, 12 and 13, respectively for \(M_N > 2\) GeV. We have shown the projected sensitivities in the mass-mixing plane for the heavy neutrinos produced from the \(W/Z\) decays (M-HL-LHC-WZ) and \(B/D\) meson decays (M-HL-LHC-BD) for electron, muon and tau lepton at the HL-LHC in Figs. 11, 12 and 13, respectively. The bounds on the mass-mixing plane from the FASER [132] with detector radius \(R = 20\) cm has been represented by FASER20 and \(R = 1\) m has been represented by FASER1, respectively for the electron, muon and tau leptons in Figs. 11, 12 and 13, respectively. ATLAS displaced vertex bounds on the \(|V_{\mu N}|^2\) for the Lepton Number Violating (LNV) and Lepton Number Conserving (LNC) searches are given in 12 [133]. The prospective upper bounds in the mass-mixing plane for the tau lepton from the Ice-Cube [134–137] for \(M_N < 10\) GeV are shown in Fig. 13. The projected sensitivity (theoretical) on \(|V_{\mu N}|^2\) for the lepton-jet search for the for \(1\) GeV \(\leq M_N \leq 10\) GeV at the 13 TeV are shown in Fig. 12, by the black dashed line, and the line labelled by Lepton-Jet (13 TeV). The corresponding limits (theoretical) on \(|V_{\mu N}|^2\) from another lepton-jet search [120] for \(M_N \geq 5\) GeV at 13 TeV (LJ, 13 TeV) and 100 TeV (LJ, 100 TeV) are also shown in Fig. 12.

We briefly summarize the current strongest experimental bounds on the mixing angles such as \(|V_{eN}|, |V_{\mu N}|,\) and \(|V_{\tau N}|\) for the Majorana heavy neutrinos in Fig. 14, 15 and 16, respectively for \(M_N < 10\) GeV. Strongest bounds from the BBN [66, 106, 107], PS191 [115], NuTeV [119], CHARM [108–110], DELPHI [111] are obtained from the Majorana heavy neutrino search for \(M_N \leq 10\) GeV. The shaded region is excluded by the results obtained from these experiments. The prospective bounds from the \(\mu \rightarrow e\) (Ti) and \(\mu \rightarrow e\) (Al) are shown in Fig. 14 from [138]. The limits on the mixings from the \(\tau\) decay into hadrons in association with electron and muon are shown in Figs. 15 and 16, respectively from BABAR [139]. The limits from the \(\tau \rightarrow e\pi\pi\) and \(\tau \rightarrow e^{-}\pi^{+}\pi^{+}\) are shown in Fig. 15 and those obtained from \(\tau \rightarrow \mu\pi\pi\) and \(\tau \rightarrow \mu^{-}\pi^{+}\pi^{+}\) are shown in Fig. 16, respectively [140].

We stress that, in the relatively lower mass range, among the experimental constraints, the tightest constraint on the mixing angles \(|V_{eN}|^2\) and \(|V_{\mu N}|^2\) can be obtained from LNV meson decays. These are however still one order of magnitude weaker than the theory constraints from BBN and Seesaw. For relatively higher mass range, our combined bounds on the mixing angles \(|V_{eN}V_{\mu N}|, |V_{eN}V_{\tau N}|\) and \(|V_{\mu N}V_{\tau N}|\) are the tightest bounds. As we have discussed before, the LNV meson decays can probe the product of the mixings \(|V_{\mu N}V_{\tau N}|\),
|\text{V}_eN\text{V}_\tau N| in higher mass ranges \(M_N \sim 5\) GeV, that are so far unconstrained.

10. CONCLUSION

We analyse discovery prospect of a heavy Majorana neutrino via lepton number violating meson decays \(M^-_i \rightarrow \ell^-_i \ell^-_i \pi^+\) at various ongoing and future experiments, such as, NA62, LHCb, FCC-ee, Belle-II, SHiP and MATHUSLA. The large number of decaying mesons in these experiments may possibly result in an observation of the different rare lepton number violating decays. Even their non-observation can be used to set constraints on the mixing coefficients between the standard flavour neutrinos and the heavy mass eigenstates. We explore in detail the effect of parent meson’s velocity on the sensitivity reach of the active-sterile mixing angles in the ongoing and future experiments. We compare the resulting constraints on the mixing angles for the case of meson decay at rest with that of meson decaying in flight, with the former being much tighter. We stress that, significant difference in the mixing angles can occur for experiments NA62, LHCb, and the future experiment SHiP. Due to non-zero velocity of the parent meson, the probability of the generated RH neutrino to decay inside the detector changes. This alters the sensitivity reach by more than an order of magnitude for the above mentioned experiments.

We explore a number of channels, \(B/D/D_s \rightarrow \mu \mu \pi, B/D/D_s \rightarrow e e \pi, B_c/D_s \rightarrow e \mu \pi, B \rightarrow \tau \tau \pi, B/B_c \rightarrow e \tau \pi, B/B_c \rightarrow \mu \tau \pi,\) and few others. We find that, for the mass range \(M_N \sim 1\) GeV, future experiment SHiP can probe \(|V_{eN}|^2 \sim 10^{-9}\), while for mass range \(M_N \sim 5\) GeV, future experiment MATHUSLA, and LHCb with 300 fb\(^{-1}\) integrated luminosity can probe \(|V_{eN}|^2 \sim 10^{-7}\). The sensitivity reach of \(|V_{\mu N}|^2\) is very similar to \(|V_{eN}|^2\). For \(|V_{\tau N}|^2\), the best sensitivity reach \(|V_{\tau N}|^2 \sim 10^{-7}\) can be provided by MATHUSLA in the mass range \(2\) GeV \(< M_N < 3.4\) GeV, while in the mass range \(3.4\) GeV \(< M_N < 4.4\) GeV, SHiP and LHCb gives similar sensitivity reach. For \(|V_{eN}V_{\mu N}|, mass range up to \(M_N \sim 2\) GeV can be probed at SHiP with the sensitivity reach \(|V_{eN}V_{\mu N}| \sim 10^{-9}\), while higher mass \(M_N \sim 5\) GeV and \(M_N \sim 6\) GeV can be probed at MATHUSLA and LHCb with sensitivity reach \(|V_{eN}V_{\mu N}| \sim 10^{-7}\). The highest sensitivity reach on \(|V_{eN}V_{\tau N}|, |V_{\mu N}V_{\tau N}| \sim 10^{-7}\) can be provided by MATHUSLA and LHCb. The combined sensitivity of the mixing angles \(|V_{eN}V_{\mu N}|, |V_{eN}V_{\tau N}| and |V_{\mu N}V_{\tau N}| from meson decays are tighter than the other constraints available in a large range of heavy neutrino mass.
ACKNOWLEDGEMENTS

The work of A. D. is supported by the Japan Society for the Promotion of Science (JSPS) Post-doctoral Fellowship for Research in Japan. MM acknowledges the support of DST INSPIRE Research Grant IFA14-PH-99.

APPENDIX

The different partial decay widths of the RH neutrinos N_i are,

$$\Gamma(N_j \to \ell^- P^+) = \frac{G_F^2 M_{N_j}^3}{16\pi} f_P^2 \left| V_{q\ell}^{CKM} \right|^2 \left| V_{\ell_1 N_j} \right|^2 F_P(x_\ell, x_P), \quad (14)$$

$$\Gamma(N_j \to \ell^- V^+) = \frac{G_F^2 M_{N_j}^3}{16\pi} f_P^2 \left| V_{q\ell}^{CKM} \right|^2 \left| V_{\ell_1 N_j} \right|^2 F_V(x_\ell, x_V), \quad (15)$$

$$\Gamma(N_j \to \nu P^0) = \frac{G_F^2 M_{N_j}^3}{4\pi} f_P^2 \sum_i \left| U_{\ell_1 i} \right|^2 \left| V_{\ell_1 N_j} \right|^2 K_{P}^2 F_P(x_\nu, x_P), \quad (16)$$

$$\Gamma(N_j \to \nu V^0) = \frac{G_F^2 M_{N_j}^3}{4\pi} f_V^2 \sum_i \left| U_{\ell_1 i} \right|^2 \left| V_{\ell_1 N_j} \right|^2 K_{V}^2 F_V(x_\nu, x_P), \quad (17)$$

$$\Gamma(N_j \to \ell_1^+ \ell_2^- \nu) = \frac{2 G_F^2 M_{N_j}^5}{16\pi^3} \left| V_{\ell_1 N_j} \right|^2 \sum_i \left| U_{\ell_2 i} \right|^2 \left[I_1 \left(x_{\nu_2}, x_{\ell_2}, x_{\ell_2} \right) + 2 \left((g_V^\ell)^2 + (g_A^\ell)^2 \right) \right] I_1 \left(x_{\nu_2}, x_{\ell_2}, x_{\ell_2} \right) + 2 \left((g_V^\ell)^2 - (g_A^\ell)^2 \right) I_2 \left(x_{\nu_2}, x_{\ell_2}, x_{\ell_2} \right) \right] \quad (19)$$

$$\Gamma(N_j \to \nu \ell_1^+ \ell_2^-) = \frac{G_F^2 M_{N_j}^5}{8\pi^3} \left| V_{\ell_1 N_j} \right|^2 \sum_i \left| U_{\ell_1 i} \right|^2 \left[(g_V^\ell)^2 + (g_A^\ell)^2 \right] I_1 \left(x_{\nu_1}, x_{\ell_2}, x_{\ell_2} \right) + \left((g_V^\ell)^2 - (g_A^\ell)^2 \right) I_2 \left(x_{\nu_1}, x_{\ell_2}, x_{\ell_2} \right) \right] \quad (20)$$

(21)
In the above decay mode $\ell_1 \neq \ell_2$,

$$
\Gamma \left(N_j \rightarrow \nu_{\ell_1} \nu_{\ell_2} \right) = \frac{G_F^2 M_{N_j}^5}{192 \pi^3} \left| V_{Nj} \right|^2 \sum_i \left| U_{\ell_i} \right|^2,
$$

where $x_i = \frac{m_i}{M_N}$ with $m_i = m_{\ell_1}, m_{\rho^0}, m_{\nu_0}, m_{P^+}, m_{V^+}$. The kinematical function are given by,

$$
I_1(x, y, z) = \int_{(x+y)^2}^{(1-z)^2} \frac{ds}{s} (s - x^2 - y^2)(1 + z^2 - s)\lambda^\frac{1}{2}(s, x^2, y^2)\lambda^\frac{1}{2}(1, s, z^2);
$$

$$
I_2(x, y, z) = yz \int_{(y+z)^2}^{(1-x)^2} \frac{ds}{s} (1 + x^2 - s)\lambda^\frac{1}{2}(s, y^2, z^2)\lambda^\frac{1}{2}(1, s, x^2);
$$

$$
F_P(x, y) = ((1 + x^2)(1 + x^2 - y^2) - 4x^2)\lambda^\frac{1}{2}(1, x^2, y^2);
$$

$$
F_V(x, y) = ((1 - x^2)^2 + (1 + x^2)y^2 - 2y^4)\lambda^\frac{1}{2}(1, x^2, y^2).
$$

Neutral current couplings of leptons are given by,

$$
g^\ell_{V} = -\frac{1}{4} + \sin^2 \theta_w, \quad g^\ell_{A} = \frac{1}{4}, \quad (22)
$$

Neutral current coupling of pseudoscalar and vector mesons are given by,

$$
K_{\pi^0} = -\frac{1}{2\sqrt{2}}, \quad K_{\eta} = -\frac{1}{2\sqrt{6}}, \quad K_{\eta'} = \frac{1}{4\sqrt{3}}, \quad K_{\eta_c} = -\frac{1}{4}, \quad K_{\rho^0} = \frac{1}{\sqrt{2}}(\frac{1}{2} - \sin^2 \theta_w),
$$

$$
K_{\omega} = -\frac{1}{3\sqrt{2}} \sin^2 \theta_w, \quad K_{\phi} = (-\frac{1}{4} + \frac{1}{3}\sin^2 \theta_w), \quad K_{J/\psi} = (\frac{1}{4} - \frac{2}{3} \sin^2 \theta_w)
$$

\[1\] M. C. Gonzalez-Garcia and M. Maltoni, “Phenomenology with Massive Neutrinos,” Phys. Rept. 460 (2008) 1–129, arXiv:0704.1800 [hep-ph].

\[2\] M. Lattanzi and M. Gerbino, “Status of neutrino properties and future prospects - Cosmological and astrophysical constraints,” Front. in Phys. 5 (2018) 70, arXiv:1712.07109 [astro-ph.CO].

\[3\] S. Weinberg, “Baryon and Lepton Nonconserving Processes,” Phys. Rev. Lett. 43 (1979) 1566–1570.

\[4\] P. Minkowski, “$\mu \rightarrow e\gamma$ at a Rate of One Out of 10^9 Muon Decays?,” Phys. Lett. 67B (1977) 421–428.

30
[5] T. Yanagida, in Proc. of the Workshop on Grand Unified Theory and Baryon Number of the Universe, KEK, Japan, 1979.

[6] P. Ramond, “The Family Group in Grand Unified Theories,” in International Symposium on Fundamentals of Quantum Theory and Quantum Field Theory Palm Coast, Florida, February 25-March 2, 1979, pp. 265–280. 1979. arXiv:hep-ph/9809459 [hep-ph].

[7] R. N. Mohapatra and G. Senjanovic, “Neutrino Mass and Spontaneous Parity Nonconservation,” Phys. Rev. Lett. 44 (1980) 912. [231(1979)].

[8] R. N. Mohapatra, “Mechanism for Understanding Small Neutrino Mass in Superstring Theories,” Phys. Rev. Lett. 56 (1986) 561–563.

[9] R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Phys. Rev. D34 (1986) 1642. [235(1986)].

[10] M. Magg and C. Wetterich, “Neutrino Mass Problem and Gauge Hierarchy,” Phys. Lett. 94B (1980) 61–64.

[11] T. P. Cheng and L.-F. Li, “Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions,” Phys. Rev. D22 (1980) 2860.

[12] G. Lazarides, Q. Shafi, and C. Wetterich, “Proton Lifetime and Fermion Masses in an SO(10) Model,” Nucl. Phys. B181 (1981) 287–300.

[13] R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D23 (1981) 165.

[14] R. Foot, H. Lew, X. G. He, and G. C. Joshi, “Seesaw Neutrino Masses Induced by a Triplet of Leptons,” Z. Phys. C44 (1989) 441.

[15] E. Ma, “Pathways to naturally small neutrino masses,” Phys. Rev. Lett. 81 (1998) 1171–1174, arXiv:hep-ph/9805219 [hep-ph].

[16] B. Bajc and G. Senjanovic, “Seesaw at LHC,” JHEP 08 (2007) 014, arXiv:hep-ph/0612029 [hep-ph].

[17] P. Fileviez Perez, “Renormalizable adjoint SU(5),” Phys. Lett. B654 (2007) 189–193, arXiv:hep-ph/0702287 [hep-ph].

[18] W.-Y. Keung and G. Senjanovic, “Majorana Neutrinos and the Production of the Right-handed Charged Gauge Boson,” Phys. Rev. Lett. 50 (1983) 1427.

[19] CMS Collaboration, A. M. Sirunyan et al., “Search for heavy Majorana neutrinos in same-sign dilepton channels in proton-proton collisions at √s = 13 TeV,” JHEP 01 (2019)
[20] **ATLAS** Collaboration, G. Aad *et al.*, “Search for doubly-charged Higgs bosons in same-charge electron pair final states using proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” Tech. Rep. ATLAS-CONF-2016-051, CERN, Geneva, Aug, 2016. http://cds.cern.ch/record/2206133.

[21] F. del Aguila and J. A. Aguilar-Saavedra, “Distinguishing seesaw models at LHC with multi-lepton signals,” *Nucl. Phys. B* **813** (2009) 22–90, arXiv:0808.2468 [hep-ph].

[22] A. Das and N. Okada, “Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches,” *Phys. Lett. B* **774** (2017) 32–40, arXiv:1702.04668 [hep-ph].

[23] A. Das, P. Konar, and A. Thalapillil, “Jet substructure shedding light on heavy Majorana neutrinos at the LHC,” *JHEP* **02** (2018) 083, arXiv:1709.09712 [hep-ph].

[24] F. del Aguila and J. A. Aguilar-Saavedra, “Electroweak scale seesaw and heavy Dirac neutrino signals at LHC,” *Phys. Lett. B* **672** (2009) 158–165, arXiv:0809.2096 [hep-ph].

[25] S. Pascoli, R. Ruiz, and C. Weiland, “Heavy neutrinos with dynamic jet vetoes: multilepton searches at $\sqrt{s} = 14$, 27, and 100 TeV,” *JHEP* **06** (2019) 049, arXiv:1812.08750 [hep-ph].

[26] A. Das and N. Okada, “Improved bounds on the heavy neutrino productions at the LHC,” *Phys. Rev. D* **93** no. 3, (2016) 033003, arXiv:1510.04790 [hep-ph].

[27] A. Das, P. Konar, and S. Majhi, “Production of Heavy neutrino in next-to-leading order QCD at the LHC and beyond,” *JHEP* **06** (2016) 019, arXiv:1604.00608 [hep-ph].

[28] **CMS** Collaboration, A. M. Sirunyan *et al.*, “Search for heavy neutral leptons in events with three charged leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV,” *Phys. Rev. Lett.* **120** no. 22, (2018) 221801, arXiv:1802.02965 [hep-ex].

[29] D. Das, K. Ghosh, M. Mitra, and S. Mondal, “Probing sterile neutrinos in the framework of inverse seesaw mechanism through leptoquark productions,” *Phys. Rev. D* **97** no. 1, (2018) 015024, arXiv:1708.06206 [hep-ph].

[30] S. Banerjee, P. S. B. Dev, A. Ibarra, T. Mandal, and M. Mitra, “Prospects of Heavy Neutrino Searches at Future Lepton Colliders,” *Phys. Rev. D* **92** (2015) 075002, arXiv:1503.05491 [hep-ph].
[31] S. Mondal and S. K. Rai, “Probing the Heavy Neutrinos of Inverse Seesaw Model at the LHeC,” *Phys. Rev.* **D94** no. 3, (2016) 033008, arXiv:1605.04508 [hep-ph].

[32] S. Antusch, E. Cazzato, and O. Fischer, “Sterile neutrino searches at future e^-e^+, pp, and e^-p colliders,” *Int. J. Mod. Phys.* **A32** no. 14, (2017) 1750078, arXiv:1612.02728 [hep-ph].

[33] S. Chakraborty, M. Mitra, and S. Shil, “Fat Jet Signature of a Heavy Neutrino at Lepton Collider,” arXiv:1810.08970 [hep-ph].

[34] S. Mandal, M. Mitra, and N. Sinha, “Probing leptoquarks and heavy neutrinos at the LHeC,” *Phys. Rev.* **D98** no. 9, (2018) 095004, arXiv:1807.06455 [hep-ph].

[35] A. Das, S. Jana, S. Mandal, and S. Nandi, “Probing right handed neutrinos at the LHeC and lepton colliders using fat jet signatures,” *Phys. Rev.* **D99** no. 5, (2019) 055030, arXiv:1811.04291 [hep-ph].

[36] R. Ruiz, M. Spannowsky, and P. Waite, “Heavy neutrinos from gluon fusion,” *Phys. Rev.* **D96** no. 5, (2017) 055042, arXiv:1706.02298 [hep-ph].

[37] Y. Cai, T. Han, T. Li, and R. Ruiz, “Lepton Number Violation: Seesaw Models and Their Collider Tests,” *Front.in Phys.* **6** (2018) 40, arXiv:1711.02180 [hep-ph].

[38] A. Bhardwaj, A. Das, P. Konar, and A. Thalapillil, “Looking for Minimal Inverse Seesaw scenarios at the LHC with Jet Substructure Techniques,” arXiv:1801.00797 [hep-ph].

[39] E. Izaguirre and B. Shuve, “Multilepton and Lepton Jet Probes of Sub-Weak-Scale Right-Handed Neutrinos,” *Phys. Rev.* **D91** no. 9, (2015) 093010, arXiv:1504.02470 [hep-ph].

[40] F. T. Avignone, III, S. R. Elliott, and J. Engel, “Double Beta Decay, Majorana Neutrinos, and Neutrino Mass,” *Rev. Mod. Phys.* **80** (2008) 481–516, arXiv:0708.1033 [nucl-ex].

[41] H. V. Klapdor-Kleingrothaus *et al.*, “Latest results from the Heidelberg-Moscow double beta decay experiment,” *Eur. Phys. J.* **A12** (2001) 147–154, arXiv:hep-ph/0103062 [hep-ph].

[42] P. Benes, A. Faessler, F. Simkovic, and S. Kovalenko, “Sterile neutrinos in neutrinoless double beta decay,” *Phys. Rev.* **D71** (2005) 077901, arXiv:hep-ph/0501295 [hep-ph].

[43] M. Mitra, G. Senjanovic, and F. Vissani, “Neutrinoless Double Beta Decay and Heavy Sterile Neutrinos,” *Nucl. Phys.* **B856** (2012) 26–73, arXiv:1108.0004 [hep-ph].
[44] S. Pascoli, M. Mitra, and S. Wong, “Effect of cancellation in neutrinoless double beta decay,” *Phys. Rev.* **D90** no. 9, (2014) 093005, arXiv:1310.6218 [hep-ph].

[45] E. Ma and A. Pramudita, “Exact Formula for ($\mu \rightarrow e\gamma$) Type Processes in the Standard Model,” *Phys. Rev.* **D24** (1981) 1410.

[46] M. Duerr, D. P. George, and K. L. McDonald, “Neutrino Mass and $\mu \rightarrow e + \gamma$ from a Mini-Seesaw,” *JHEP* **07** (2011) 103, arXiv:1105.0593 [hep-ph].

[47] C. A. Heusch and P. Minkowski, “Lepton flavor violation induced by heavy Majorana neutrinos,” *Nucl. Phys.* **B416** (1994) 3–45.

[48] R. E. Shrock, “New Tests For, and Bounds On, Neutrino Masses and Lepton Mixing,” *Phys. Lett.* **96B** (1980) 159–164.

[49] A. Atre, T. Han, S. Pascoli, and B. Zhang, “The Search for Heavy Majorana Neutrinos,” *JHEP* **05** (2009) 030, arXiv:0901.3589 [hep-ph].

[50] J. C. Helo, S. Kovalenko, and I. Schmidt, “Sterile neutrinos in lepton number and lepton flavor violating decays,” *Nucl. Phys.* **B853** (2011) 80–104, arXiv:1005.1607 [hep-ph].

[51] G. Cvetic, C. Dib, S. K. Kang, and C. S. Kim, “Probing Majorana neutrinos in rare K and D, D_s, B, B_c meson decays,” *Phys. Rev.* **D82** (2010) 053010, arXiv:1005.4282 [hep-ph].

[52] G. Cvetic and C. S. Kim, “Sensitivity bounds on heavy neutrino mixing $|U_{\mu N}|^2$ and $|U_{\tau N}|^2$ from LHCb upgrade,” arXiv:1904.12858 [hep-ph].

[53] D. Milanés and N. Quintero, “Search for lepton-number-violating signals in the charm sector,” *Phys. Rev.* **D98** no. 9, (2018) 096004, arXiv:1808.06017 [hep-ph].

[54] H.-l. Li, P.-c. Lu, C.-f. Qiao, Z.-g. Si, and Y. Wang, “Study Standard Model and Majorana Neutrino Contributions to $B^+ \rightarrow K^{(*)}\pm \mu^+\mu^-$,” *Chin. Phys.* **C43** no. 2, (2019) 023101, arXiv:1806.03786 [hep-ph].

[55] A. Abada, V. De Romeri, M. Lucente, A. M. Teixeira, and T. Toma, “Effective Majorana mass matrix from tau and pseudoscalar meson lepton number violating decays,” *JHEP* **02** (2018) 169, arXiv:1712.03984 [hep-ph].

[56] H. Yuan, T. Wang, Y. Jiang, Q. Li, and G.-L. Wang, “Four-body decays of B meson with lepton number violation,” *J. Phys.* **G45** no. 6, (2018) 065002, arXiv:1710.03886 [hep-ph].

[57] J. Mejia-Guisao, D. Milanés, N. Quintero, and J. D. Ruiz-Alvarez, “Lepton number violation in B_s meson decays induced by an on-shell Majorana neutrino,” *Phys. Rev.* **D97**
[58] G. Cvetic and C. S. Kim, “Sensitivity limits on heavy-light mixing $|U_{\mu N}|^2$ from lepton number violating B meson decays,” *Phys. Rev.* **D96** no. 3, (2017) 035025, arXiv:1705.09403 [hep-ph].

[59] S. Mandal, M. Mitra, and N. Sinha, “Constraining the right-handed gauge boson mass from lepton number violating meson decays in a low scale left-right model,” *Phys. Rev.* **D96** no. 3, (2017) 035023, arXiv:1705.01932 [hep-ph].

[60] S. Mandal and N. Sinha, “Favoured B_c Decay modes to search for a Majorana neutrino,” *Phys. Rev.* **D94** no. 3, (2016) 033001, arXiv:1602.09112 [hep-ph].

[61] G. Cvetic and C. S. Kim, “Rare decays of B mesons via on-shell sterile neutrinos,” *Phys. Rev.* **D94** no. 5, (2016) 053001, arXiv:1606.04140 [hep-ph]. [Erratum: Phys. Rev.D95,no.3,039901(2017)].

[62] D. Milanes, N. Quintero, and C. E. Vera, “Sensitivity to Majorana neutrinos in $\Delta L = 2$ decays of B_c meson at LHCb,” *Phys. Rev.* **D93** no. 9, (2016) 094026, arXiv:1604.03177 [hep-ph].

[63] S. Antusch, E. Cazzato, and O. Fischer, “Sterile neutrino searches via displaced vertices at LHCb,” *Phys. Lett.* **B774** (2017) 114–118, arXiv:1706.05990 [hep-ph].

[64] **Particle Data Group** Collaboration, K. Nakamura *et al.*, “Review of particle physics,” *J. Phys.* **G37** (2010) 075021.

[65] *FCC-ee* WEB page, http://tlep.web.cern.ch.

[66] D. Gorbunov and M. Shaposhnikov, “How to find neutral leptons of the νMSM?,” *JHEP* **10** (2007) 015, arXiv:0705.1729 [hep-ph]. [Erratum: JHEP11,101(2013)].

[67] *Na62* WEB page, https://na62.web.cern.ch/na62/.

[68] T. Asaka and H. Ishida, “Lepton number violation by heavy Majorana neutrino in B decays,” *Phys. Lett.* **B763** (2016) 393–396, arXiv:1609.06113 [hep-ph].

[69] G. J. Feldman and R. D. Cousins, “A Unified approach to the classical statistical analysis of small signals,” *Phys. Rev.* **D57** (1998) 3873–3889, arXiv:physics/9711021 [physics.data-an].

[70] **LHCb** Collaboration, R. Aaij *et al.*, “Search for Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$ decays,” *Phys. Rev. Lett.* **112** no. 13, (2014) 131802, arXiv:1401.5361 [hep-ex].
[71] B. Shuve and M. E. Peskin, “Revision of the LHCb Limit on Majorana Neutrinos,” *Phys. Rev. D* **94** no. 11, (2016) 113007, arXiv:1607.04258 [hep-ph].

[72] LHCb Collaboration, R. Aaij et al., “Measurement of the b-quark production cross-section in 7 and 13 TeV pp collisions,” *Phys. Rev. Lett.* **118** no. 5, (2017) 052002, arXiv:1612.05140 [hep-ex]. [Erratum: Phys. Rev. Lett.119,no.16,169901(2017)].

[73] LHCb Collaboration, R. Aaij et al., “Measurements of prompt charm production cross-sections in pp collisions at $\sqrt{s} = 13$ TeV,” *JHEP* **03** (2016) 159, arXiv:1510.01707 [hep-ex]. [Erratum: JHEP05,074(2017)].

[74] *Our crude estimate is based on private communication with Vanya Belyaev from the LHCb collaboration.*

[75] LHCb Collaboration, R. Aaij et al., “Measurement of B_c^+ production in proton-proton collisions at $\sqrt{s} = 8$ TeV,” *Phys. Rev. Lett.* **114** (2015) 132001, arXiv:1411.2943 [hep-ex].

[76] Marina Artuso, *Talk given at ICHEP 2016 on behalf of LHCb collaboration,* https://cds.cern.ch/record/2206834/files/LHCb-TALK-2016-222.pdf.

[77] SHiP WEB page, http://ship.web.cern.ch/ship/.

[78] S. Alekhin et al., “A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case,” *Rept. Prog. Phys.* **79** no. 12, (2016) 124201, arXiv:1504.04855 [hep-ph].

[79] SHiP Collaboration, C. Ahdida et al., “Sensitivity of the SHiP experiment to Heavy Neutral Leptons,” *JHEP* **04** (2019) 077, arXiv:1811.00930 [hep-ph].

[80] D. Curtin et al., “Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case,” arXiv:1806.07396 [hep-ph].

[81] K. Bondarenko, A. Boyarsky, M. Ovchynnikov, and O. Ruchayskiy, “Sensitivity of the intensity frontier experiments for neutrino and scalar portals: analytic estimates,” arXiv:1902.06240 [hep-ph].

[82] SuperKEKB WEB page, http://www-superkekb.kek.jp.

[83] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle Physics,” *Chin. Phys. C* **40** no. 10, (2016) 100001.

[84] *Our estimate is based on private communication with Karim Trabelsi from the Belle collaboration.*
[85] **Belle** Collaboration, D. Liventsev et al., “Search for heavy neutrinos at Belle,” *Phys. Rev. D* **87** no. 7, (2013) 071102, arXiv:1301.1105 [hep-ex]. [Erratum: Phys. Rev.D95,no.9,099903(2017)].

[86] **Particle Data Group** Collaboration, K. A. Olive et al., “Review of Particle Physics,” *Chin. Phys. C** **38** (2014) 090001.

[87] **Heavy Flavor Averaging Group (HFAG)** Collaboration, Y. Amhis et al., “Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2014,” arXiv:1412.7515 [hep-ex].

[88] M. Drewes, “The Phenomenology of Right Handed Neutrinos,” *Int. J. Mod. Phys. E** **22** (2013) 1330019, arXiv:1303.6912 [hep-ph].

[89] F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, “Neutrinos and Collider Physics,” *New J. Phys. J. Phys. C** **17** no. 7, (2015) 075019, arXiv:1502.06541 [hep-ph].

[90] A. Das, “Searching for the minimal Seesaw models at the LHC and beyond,” *Adv. High Energy Phys. 2018* (2018) 9785318, arXiv:1803.10940 [hep-ph].

[91] A. Caputo, P. Hernandez, M. Kekic, J. López-Pavón, and J. Salvado, “The seesaw path to leptonic CP violation,” *Eur. Phys. J. C** **77** no. 4, (2017) 258, arXiv:1611.05000 [hep-ph].

[92] G. Cvetić, A. Das, and J. Zamora-Saá, “Probing heavy neutrino oscillations in rare W boson decays,” *J. Phys. G** **46** (2019) 075002, arXiv:1805.00070 [hep-ph].

[93] S. K. Kang, “Roles of sterile neutrinos in particle physics and cosmology,” *Int. J. Mod. Phys. A** **34** no. 10, (2019) 1930005, arXiv:1904.07108 [hep-ph].

[94] G. Cvetić, A. Das, S. Tapia, and J. Zamora-Sá, “Measuring the heavy neutrino oscillations in rare W boson decays at the Large Hadron Collider,” arXiv:1905.03097 [hep-ph].

[95] S. Tapia and J. Zamora-Sá, “Exploring CP-Violating heavy neutrino oscillations in rare tau decays at Belle II,” arXiv:1906.09470 [hep-ph].

[96] K. Bondarenko, A. Boyarsky, D. Gorbunov, and O. Ruchayskiy, “Phenomenology of GeV-scale Heavy Neutral Leptons,” *JHEP JHEP 11* (2018) 032, arXiv:1805.08567 [hep-ph].

[97] R. W. Rasmussen and W. Winter, “Perspectives for tests of neutrino mass generation at the GeV scale: Experimental reach versus theoretical predictions,” *Phys. Rev. D** **94** no. 7, (2016) 073004, arXiv:1607.07880 [hep-ph].

[98] A. Das, P. S. Bhupal Dev, and N. Okada, “Direct bounds on electroweak scale pseudo-Dirac neutrinos from $\sqrt{s} = 8$ TeV LHC data,” *Phys. Lett. B** **735** (2014) 364–370.
[99] P. S. B. Dev, A. Pilaftsis, and U.-k. Yang, “New Production Mechanism for Heavy Neutrinos at the LHC,” Phys. Rev. Lett. 112 no. 8, (2014) 081801, arXiv:1308.2209 [hep-ph].

[100] A. Das, P. S. B. Dev, and C. S. Kim, “Constraining Sterile Neutrinos from Precision Higgs Data,” Phys. Rev. D95 no. 11, (2017) 115013, arXiv:1704.00880 [hep-ph].

[101] A. Das, Y. Gao, and T. Kamon, “Heavy neutrino search via semileptonic Higgs decay at the LHC,” Eur. Phys. J. C79 no. 5, (2019) 424, arXiv:1704.00881 [hep-ph].

[102] P. S. Bhupal Dev, R. Franceschini, and R. N. Mohapatra, “Bounds on TeV Seesaw Models from LHC Higgs Data,” Phys. Rev. D86 (2012) 093010, arXiv:1207.2756 [hep-ph].

[103] A. de Gouvea, W.-C. Huang, and J. Jenkins, “Pseudo-Dirac Neutrinos in the New Standard Model,” Phys. Rev. D80 (2009) 073007, arXiv:0906.1611 [hep-ph].

[104] A. de Gouvea, “See-saw energy scale and the LSND anomaly,” Phys. Rev. D72 (2005) 033005, arXiv:hep-ph/0501039 [hep-ph].

[105] M. Cirelli, G. Marandella, A. Strumia, and F. Vissani, “Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments,” Nucl. Phys. B708 (2005) 215–267, arXiv:hep-ph/0403158 [hep-ph].

[106] A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, “The Role of sterile neutrinos in cosmology and astrophysics,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 191–214, arXiv:0901.0011 [hep-ph].

[107] O. Ruchayskiy and A. Ivashko, “Restrictions on the lifetime of sterile neutrinos from primordial nucleosynthesis,” JCAP 1210 (2012) 014, arXiv:1202.2841 [hep-ph].

[108] CHARM Collaboration, F. Bergsma et al., “A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV,” Phys. Lett. 166B (1986) 473–478.

[109] CHARM II Collaboration, P. Vilain et al., “Search for heavy isosinglet neutrinos,” Phys. Lett. B343 (1995) 453–458. [Phys. Lett.B351,387(1995)].

[110] J. Orloff, A. N. Rozanov, and C. Santoni, “Limits on the mixing of tau neutrino to heavy neutrinos,” Phys. Lett. B550 (2002) 8–15, arXiv:hep-ph/0208075 [hep-ph].

[111] DELPHI Collaboration, P. Abreu et al., “Search for neutral heavy leptons produced in Z decays,” Z. Phys. C74 (1997) 57–71. [Erratum: Z. Phys.C75,580(1997)].
[112] **FCC-ee study Team** Collaboration, A. Blondel, E. Graverini, N. Serra, and M. Shaposhnikov, “Search for Heavy Right Handed Neutrinos at the FCC-ee,” *Nucl. Part. Phys. Proc.* **273-275** (2016) 1883–1890, arXiv:1411.5230 [hep-ex].

[113] A. Abada, V. De Romeri, S. Monteil, J. Orloff, and A. M. Teixeira, “Indirect searches for sterile neutrinos at a high-luminosity Z-factory,” *JHEP* **04** (2015) 051, arXiv:1412.6322 [hep-ph].

[114] **LBNE** Collaboration, C. Adams *et al.*, “The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe,” in *Snowmass 2013: Workshop on Energy Frontier Seattle, USA, June 30-July 3, 2013*. 2013. arXiv:1307.7335 [hep-ex]. http://lss.fnal.gov/archive/2014/pub/fermilab-pub-14-022.pdf.

[115] G. Bernardi *et al.*, “FURTHER LIMITS ON HEAVY NEUTRINO COUPLINGS,” *Phys. Lett.* **B203** (1988) 332–334.

[116] S. A. Baranov *et al.*, “Search for heavy neutrinos at the IHEP-JINR neutrino detector,” *Phys. Lett.* **B302** (1993) 336–340.

[117] **GERDA** Collaboration, M. Agostini *et al.*, “Results on Neutrinoless Double-β Decay of 76Ge from Phase I of the GERDA Experiment,” *Phys. Rev. Lett.* **111** no. 12, (2013) 122503, arXiv:1307.4720 [nucl-ex].

[118] **E949** Collaboration, A. V. Artamonov *et al.*, “Search for heavy neutrinos in $K^+ \rightarrow \mu^+ \nu_H$ decays,” *Phys. Rev.* **D91** no. 5, (2015) 052001, arXiv:1411.3963 [hep-ex]. [Erratum: Phys. Rev.D91,no.5,059903(2015)].

[119] **NuTeV, E815** Collaboration, A. Vaitaitis *et al.*, “Search for neutral heavy leptons in a high-energy neutrino beam,” *Phys. Rev. Lett.* **83** (1999) 4943–4946, arXiv:hep-ex/9908011 [hep-ex].

[120] S. Dube, D. Gadkari, and A. M. Thalapillil, “Lepton-Jets and Low-Mass Sterile Neutrinos at Hadron Colliders,” *Phys. Rev.* **D96** no. 5, (2017) 055031, arXiv:1707.00008 [hep-ph].

[121] F. del Aguila, J. de Blas, and M. Perez-Victoria, “Effects of new leptons in Electroweak Precision Data,” *Phys. Rev.* **D78** (2008) 013010, arXiv:0803.4008 [hep-ph].

[122] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michaels, and J. Smirnov, “Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos,” *JHEP* **05** (2013) 081, arXiv:1302.1872 [hep-ph].
[123] J. de Blas, “Electroweak limits on physics beyond the Standard Model,” *EPJ Web Conf.* **60** (2013) 19008, arXiv:1307.6173 [hep-ph].

[124] C. O. Dib, J. C. Helo, M. Nayak, N. A. Neill, A. Soffer, and J. Zamora-Saa, “Searching for a Sterile Neutrino in Tau Decays at B-factories,” arXiv:1908.09719 [hep-ph].

[125] **NA62** Collaboration, E. Cortina Gil *et al.*, “The Beam and detector of the NA62 experiment at CERN,” *JINST* **12** no. 05, (2017) P05025, arXiv:1703.08501 [physics.ins-det].

[126] **NA62** Collaboration, E. Cortina Gil *et al.*, “Search for heavy neutral lepton production in K^+ decays,” *Phys. Lett.* **B778** (2018) 137–145, arXiv:1712.00297 [hep-ex].

[127] **NA62** Collaboration, G. Lanfranchi, “Search for Hidden Sector particles at NA62,” *PoS EPS-HEP2017* (2017) 301.

[128] M. Drewes, J. Hajer, J. Klaric, and G. Lanfranchi, “NA62 sensitivity to heavy neutral leptons in the low scale seesaw model,” *JHEP* **07** (2018) 105, arXiv:1801.04207 [hep-ph].

[129] R. E. Shrock, “General Theory of Weak Leptonic and Semileptonic Decays. 1. Leptonic Pseudoscalar Meson Decays, with Associated Tests For, and Bounds on, Neutrino Masses and Lepton Mixing,” *Phys. Rev.* **D24** (1981) 1232.

[130] R. E. Shrock, “General Theory of Weak Processes Involving Neutrinos. 2. Pure Leptonic Decays,” *Phys. Rev.* **D24** (1981) 1275.

[131] M. Drewes, B. Garbrecht, D. Gueter, and J. Klaric, “Testing the low scale seesaw and leptogenesis,” *JHEP* **08** (2017) 018, arXiv:1609.09069 [hep-ph].

[132] F. Kling and S. Trojanowski, “Heavy Neutral Leptons at FASER,” *Phys. Rev.* **D97** no. 9, (2018) 095016, arXiv:1801.08947 [hep-ph].

[133] **ATLAS** Collaboration, G. Aad *et al.*, “Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector,” arXiv:1905.09787 [hep-ex].

[134] **IceCube** Collaboration, M. G. Aartsen *et al.*, “Search for Astrophysical Tau Neutrinos in Three Years of IceCube Data,” *Phys. Rev.* **D93** no. 2, (2016) 022001, arXiv:1509.06212 [astro-ph.HE].

[135] **IceCube** Collaboration, M. G. Aartsen *et al.*, “The IceCube Neutrino Observatory: Instrumentation and Online Systems,” *JINST* **12** no. 03, (2017) P03012,
IceCube Collaboration, M. G. Aartsen et al., “Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore,” *Phys. Rev. Lett.* **120** no. 7, (2018) 071801, arXiv:1707.07081 [hep-ex].

P. Coloma, P. A. N. Machado, I. Martinez-Soler, and I. M. Shoemaker, “Double-Cascade Events from New Physics in Icecube,” *Phys. Rev. Lett.* **119** no. 20, (2017) 201804, arXiv:1707.08573 [hep-ph].

R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye, “Muon conversion to electron in nuclei in type-I seesaw models,” *JHEP* **01** (2013) 118, arXiv:1209.2679 [hep-ph].

BaBar Collaboration, B. Aubert et al., “Search for lepton-flavor and lepton-number violation in the decay $\tau^- \to \ell^\mp h^\pm h'^-$,” *Phys. Rev. Lett.* **95** (2005) 191801, arXiv:hep-ex/0506066 [hep-ex].

J. Zamora-Saa, “Resonant CP violation in rare τ^\pm decays,” *JHEP* **05** (2017) 110, arXiv:1612.07656 [hep-ph].