ALGEBRAIC MORSE THEORY AND HOMOLOGICAL PERTURBATION THEORY

EMIL SKÖLDBERG

Abstract. We show that the main result of algebraic Morse theory can be obtained as a consequence of the perturbation lemma of Brown and Gugenheim.

1. Introduction

Robin Forman introduced discrete Morse theory in [For98] as a combinatorial adaptation of the classical Morse theory suited for studying the topology of CW-complexes. Its fundamental idea is also applicable in purely algebraic situations (see e.g. [Jon03], [Koz05], [JW09], [Skö06]).

Homological perturbation theory on the other hand builds on the perturbation lemma [Bro65], [Gug72]. In addition to its applications in algebraic topology, it has also found uses in e.g. the study of group cohomology [Lam92], [Hue89], resolutions in commutative algebra [JLS02] as well as in operadic settings, [Ber09].

In this note we show how to derive the main result of algebraic Morse theory from the perturbation lemma. In related work, Berglund [Ber], has also treated connections between algebraic Morse theory and homological perturbation theory.

2. Definitions

We will briefly review the definitions of the main objects of study.

A contraction is a diagram of chain complexes of (left or right) modules over a ring R

$$
\begin{array}{c}
D \\
\xrightarrow{f} \\
\xrightarrow{g} \\
\xleftarrow{h}
\end{array}
\quad C
$$

where f and g are chain maps and h is a degree 1 map satisfying the identities

$$
fg = 1, \quad gf = 1 + dh + hd
$$

and

$$
fh = 0, \quad hg = 0, \quad h^2 = 0.
$$

A contraction is filtered if there is a bounded below exhaustive filtration on the complexes which is preserved by the maps f, g and h. A perturbation of a chain complex C is a map $t : C \to C$ of degree -1 such that $(d + t)^2 = 0$. Given a perturbation t on C, we let C^t be the complex obtained by equipping C with the new differential $d + t$.

We can now state the perturbation lemma.

Date: 25th November 2013.

1991 Mathematics Subject Classification. Primary 18G35; Secondary 55U15.

1
Theorem 1 (Brown, Gugenheim). Given a filtered contraction

\[\begin{array}{ccc} D & \xrightarrow{g} & C \\ f & & \circlearrowleft h \end{array} \]

and a filtration lowering perturbation \(t \) of \(C \), the diagram

\[\begin{array}{ccc} D' & \xrightarrow{g'} & C' \\ f' & & \circlearrowleft h' \end{array} \]

where

\[f' = f + fSh, \quad g' = g + hSg, \quad h' = h + hSh, \quad t' = fSg \]

and

\[S = \sum_{n=0}^{\infty} t(ht)^n \]

defines a contraction.

Let us next review some terminology of algebraic Morse theory. By a based complex of \(R \)-modules we mean a chain complex \(C \) of \(R \)-modules together with direct sum decompositions \(C_n = \bigoplus_{\alpha \in I_n} C_{\alpha} \) where \(\{I_n\} \) is a family of mutually disjoint index sets. For \(f : \bigoplus_n C_n \to \bigoplus_n C_n \) a graded map, we write \(f_{\beta,\alpha} \) for the component of \(f \) going from \(C_{\alpha} \) to \(C_{\beta} \), and given a based complex \(C \) we construct a digraph \(G(C) \) with vertex set \(V = \bigcup_n I_n \) and with a directed edge \(\alpha \to \beta \) whenever the component \(d_{\beta,\alpha} \) is non-zero.

A subset \(M \) of the edges of \(G(C) \) such that no vertex is incident to more than one edge of \(M \) is called a Morse matching if, for each edge \(\alpha \to \beta \) in \(M \), the corresponding component \(d_{\beta,\alpha} \) is an isomorphism, and furthermore there is a well founded partial order \(\prec \) on each \(I_n \) such that \(\gamma \prec \alpha \) whenever there is a path \(\alpha^{(n)} \to \beta \to \gamma^{(n)} \) in the graph \(G(C)^M \), which is the graph obtained from \(G(C) \) by reversing the edges from \(M \).

Given the matching \(M \), we define the set \(M^0 \) to be the vertices that are not incident to an arrow from \(M \).

For \(\alpha \) and \(\beta \) vertices in \(G(C)^M \) we can now consider all directed paths from \(\alpha \) to \(\beta \). For each such path \(\gamma \), we get a map from \(C_{\alpha} \) to \(C_{\beta} \) by, for each edge \(\sigma \to \tau \) in \(\gamma \) which is not in \(M \) take the map \(d_{\tau,\sigma} \), and for each edge \(\sigma \to \tau \) in \(\gamma \) which is the reverse of an edge in \(M \) take the map \(-d_{\tau,\sigma}^{-1} \) and composing them. Summing these maps over all paths from \(\alpha \) to \(\beta \) defines the map \(\Gamma_{\beta,\alpha} : C_{\alpha} \to C_{\beta} \).

3. The main result

From the based complex \(C \) with \(C_n = \bigoplus_{\alpha \in I_n} C_{\alpha} \) furnished with a Morse matching \(M \), we define another based complex \(\tilde{C} \) by letting it be isomorphic to \(C \) as a graded module, and defining the differential \(\tilde{d} \) in \(\tilde{C} \) as

\[\tilde{d}(x) = \begin{cases} d_{\beta,\alpha}(x), & \text{if } \alpha \to \beta \in M, \\ 0, & \text{otherwise;} \end{cases} \]

for \(x \in C_{\alpha} \).
We also need a based complex coming from the vertices in M^0, so we define \tilde{C}^M by

$$\tilde{C}^M_n = \bigoplus_{\alpha \in I_n \cap M^0} C_\alpha, \quad d_{\tilde{C}^M} = 0,$$

and maps $\tilde{f} : \tilde{C} \to \tilde{C}^M$, $\tilde{g} : \tilde{C}^M \to \tilde{C}$ and $\tilde{h} : \tilde{C} \to \tilde{C}[1]$ given by

\[
\tilde{f}(x) = \begin{cases} x, & \text{if } \alpha \in M^0, \\ 0, & \text{otherwise}, \end{cases} \quad x \in C_\alpha.
\]

\[
\tilde{g}(x) = x, \quad x \in C_\alpha.
\]

\[
\tilde{h}(x) = \begin{cases} -d_{\alpha,\beta}^{-1}(x), & \text{if } \beta \to \alpha \in M, \\ 0, & \text{otherwise}; \end{cases}
\]

With this notation we can now formulate the following lemma.

Lemma 1. The diagram

$$\tilde{C}^M \xrightarrow{\tilde{f}} \tilde{C} \xrightarrow{\tilde{g}} \tilde{C} \xrightarrow{\tilde{h}}$$

is a contraction.

Proof. We first need to verify that \tilde{f} and \tilde{g} are chain maps, which is readily seen. Next we check the identities

$$\tilde{f}\tilde{g} = 1, \quad \tilde{g}\tilde{f} = 1 + \tilde{d}\tilde{h} + \tilde{h}\tilde{d}.$$

The first one is obvious, and the second follows from the fact that for a basis element $x \in C_\alpha$, $\tilde{d}\tilde{h}(x) = -x$ if there is an edge $\beta \to \alpha$ in M, and 0 otherwise; and similarly $\tilde{h}\tilde{d}(x) = -x$ if there is an edge $\alpha \to \beta$ in M, and 0 otherwise. The identities

$$\tilde{h}\tilde{g} = 0, \quad \tilde{f}\tilde{h} = 0, \quad \tilde{h}^2 = 0$$

follow from that vertices in M^0 are not incident to any edge in M (the first two) and that no vertex is incident to more than one edge in M (the third). \qed

Let us now define the perturbation t on \tilde{C} as $t = d - \hat{d}$, where d is the differential on C, so

$$t(x) = \sum_{\alpha \to \beta \notin M} d_{\beta,\alpha}(x)$$

for $x \in C_\alpha$. This makes \tilde{C}^t and C isomorphic as based complexes.

Lemma 2. The diagram

$$C^M \xrightarrow{f} C \xrightarrow{g} h$$

where, for $x \in C_\alpha$ with $\alpha \in I_n$,

$$d_{C^M}(x) = \sum_{\beta \in M^0 \cap I_{n-1}} \Gamma_{\beta,\alpha}(x) \quad f(x) = \sum_{\beta \in M^0 \cap I_n} \Gamma_{\beta,\alpha}(x)$$

$$g(x) = \sum_{\beta \in I_n} \Gamma_{\beta,\alpha}(x) \quad h(x) = \sum_{\beta \in I_{n+1}} \Gamma_{\beta,\alpha}(x)$$

is a filtered contraction.
Proof. From Lemma 1 together with the fact that there are no infinite paths in $G(C)^M$, the Morse graph of C, we can deduce that ht is locally nilpotent, and we can thus invoke the perturbation lemma. It is not so hard to see that the perturbed differential on \tilde{C}^M is given by

$$d(x) = \sum_{i=0}^{\infty} t(ht)^i(x) = \sum_{\beta \in M^0 \cap I_{n-1}} \Gamma_{\beta,\alpha}(x)$$

and the maps f, g and h by

$$f(x) = \sum_{i=0}^{\infty} f(ht)^i(x) = \sum_{\beta \in M^0 \cap I_n} \Gamma_{\beta,\alpha}(x)$$

$$g(x) = \sum_{i=0}^{\infty} g(ht)^i(x) = \sum_{\beta \in I_n} \Gamma_{\beta,\alpha}(x)$$

$$h(x) = \sum_{i=0}^{\infty} (ht)^i h(x) = \sum_{\beta \in I_{n+1}} \Gamma_{\beta,\alpha}(x)$$

where $x \in C_{\alpha}$. □

The above result is also shown (without the use of the perturbation lemma) in [Ber] using a result from [JW09].

From the preceding lemma, the main result of algebraic Morse theory now follows.

Theorem 2. Let C be a based complex with a Morse matching M, then there is a differential on the graded module $\bigoplus_{\alpha \in M^0} C_{\alpha}$ such that the resulting complex is homotopy equivalent to C.

References

[Ber] Alexander Berglund, *Algebraic discrete Morse theory II – extra algebraic structures*, Preprint.

[Ber09], *Homological perturbation theory for algebras over operads*, 2009.

[Bro65] R. Brown, *The twisted Eilenberg-Zilber theorem*, Simposio di Topologia (Messina, 1964), Edizioni Oderisi, Gubbio, 1965, pp. 33–37. MR 0220273 (36 #3339)

[For98] Robin Forman, *Morse theory for cell complexes*, Adv. Math. 134 (1998), no. 1, 90–145. MR 99b:57050

[Gug72] V. K. A. M. Gugenheim, *On the chain-complex of a fibration*, Illinois J. Math. 16 (1972), 398–414. MR 46 #891

[Hue89] Johannes Huebschmann, *Perturbation theory and free resolutions for nilpotent groups of class 2*, J. Algebra 126 (1989), no. 2, 348–399. MR 1024997 (90m:20060)

[JLS02] Leif Johansson, Larry Lambe, and Emil Sköldberg, *On constructing resolutions over the polynomial algebra*, Homology Homotopy Appl. 4 (2002), no. 2, part 2, 315–336, The Roos Festschrift volume, 2. MR 1918515 (2003h:13017)

[Jon03] Jakob Jonsson, *On the topology of simplicial complexes related to 3-connected and Hamiltonian graphs*, J. Combin. Theory Ser. A 104 (2003), no. 1, 169–199. MR 2018427 (2004h:05130)

[JW09] Michael Jöllenbeck and Volkmar Welker, *Minimal resolutions via algebraic discrete Morse theory*, Mem. Amer. Math. Soc. 197 (2009), no. 923, vii+74. MR 2488864 (2009m:13017)

[Koz05] Dmitry N. Kozlov, *Discrete Morse theory for free chain complexes*, C. R. Math. Acad. Sci. Paris 340 (2005), no. 12, 867–872. MR 2151775 (2006i:18017)
[Lam92] Larry A. Lambe, *Homological perturbation theory, Hochschild homology, and formal groups*. Deformation theory and quantum groups with applications to mathematical physics (Amherst, MA, 1990), Amer. Math. Soc., Providence, RI, 1992, pp. 183–218. MR 94b:16013

[Skö06] Emil Sköldberg, *Morse theory from an algebraic viewpoint*, Trans. Amer. Math. Soc. **358** (2006), no. 1, 115–129 (electronic). MR 2171225 (2006e:16013)

School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

E-mail address: emil.skoldberg@nuigalway.ie

URL: http://www.maths.nuigalway.ie/~emil/