Machine Learning Assisted Security Analysis of 5G-Network-Connected Systems

TANUJAY SAHA, NAJWA AARAJ, AND NIRAJ K. JHA, (Fellow, IEEE)

ABSTRACT The core network architecture of telecommunication systems has undergone a paradigm shift in the fifth-generation (5G) networks. 5G networks have transitioned to software-defined infrastructures, thereby reducing their dependence on hardware-based network functions. New technologies, like network function virtualization and software-defined networking, have been incorporated in the 5G core network (5GCN) architecture to enable this transition. This transition has significantly improved network efficiency, performance, and robustness. However, this has also made the core network more vulnerable, as software systems are generally easier to compromise than hardware systems. This article presents a comprehensive security analysis framework for the 5GCN. The novelty of this approach lies in the creation and analysis of attack graphs of the software-defined and virtualized 5GCN through machine learning. This analysis points to 119 novel possible exploits in the 5GCN. We demonstrate that these potential exploits of 5GCN vulnerabilities generate five novel attacks on the 5G Authentication and Key Agreement protocol. We combine the attacks at the network, protocol, and application layers to generate complex attack vectors. In a case study, we use these attack vectors to find four novel security loopholes in WhatsApp running on a 5G network.

INDEX TERMS Attack graphs, 5G network, 5G security, machine learning, mobile network security, network function virtualization, software-defined networks

I. INTRODUCTION

Fifth-generation (5G) networks hold promise for realizing the vision of universal connectivity. They enable various verticals like Internet-of-Things (IoT), autonomous vehicles, smart cities, and telemedicine. These applications require high-bandwidth, robust, flexible, dynamic, and fault-tolerant network architectures.

5G networks represent a giant leap from previous-generation telecommunication networks, both qualitatively and quantitatively. The network core architecture has undergone a paradigm shift from its predecessor, the Evolved Packet Core. Previously, network operators implemented network functions on commodity hardware. In 5G networks, the network functions are primarily implemented in software. Moreover, with the advent of cloud computing, many network operations are now virtualized. This advancement allows multiple operators to use the same underlying hardware resources to provide network services. This technology is broadly known as network function virtualization (NFV). 5G networks also separate communication on the data plane from the control plane. This delineation involves using a controller that observes the entire network before making routing decisions. This technology, broadly referred to as software-defined networking (SDN), has been shown to reduce both the operational expenditure (OPEX) and capital expenditure (CAPEX) of the network. Many of these transitions have become possible due to an mm-wave technology in 5G. Incorporating these new technologies results in significant improvements in wireless network efficiency, reliability, and flexibility.

The confluence of the new technologies makes the 5G core network (5GCN) an intricate system comprising SDN, NFV, distributed systems, and cloud computing. The 5GCN has a service-based architecture that dynamically modifies itself according to the requirements of the operators and users. However, introducing new technologies into the 5GCN also expands its attack surface [1], as it now inherits the vulnerabilities of all these individual technologies.
Prior work in 5G security has referred to broad categories of attacks that the 5GCN may be vulnerable to [2], [3]. This article addresses the far-reaching implications of these threats and how they may interact with each other to give rise to complex attacks that were infeasible in previous generations of telecommunication networks. The sequences of operations executed to implement an attack, also referred to as attack vectors, can be combined into an attack graph for a concise representation. We combine the various attack vectors of SDN, NFV, and 5G protocols into attack graphs. We analyze these graphs to generate 119 novel possible exploits that are exclusive to 5G networks. The discovered exploits are novel sequences of commands that can potentially trigger a 5GCN vulnerability when executed under specific inputs and/or invariants. They are potential exploits in a specific system. The numerous vulnerabilities arising due to implementation errors are generally system-specific. We show how these possible exploits can compromise the 5G Authentication and Key Agreement (AKA) protocol. We discover five new attack vectors in the 5G-AKA protocol that 5GCN vulnerabilities can trigger. We combine various attacks at the network and protocol levels to hack targeted end-user applications remotely. In a case study, we demonstrate the hacking of the WhatsApp account of an end-user. We chose WhatsApp as our target application because it is the most widely used instant messaging (IM) platform and possesses some of the most advanced security features [4]. We discovered four security loopholes that may be triggered in WhatsApp without appropriate 5GCN security measures. We show how our framework can scale to more extensive infrastructures through the use of machine learning (ML) and a constraint satisfaction problem (CSP) formulation. We use ML and CSP formulation at the system level to predict possible vulnerability exploits when a new node is added to the attack graphs. A new node may be added when a new vulnerability is discovered or when a new vulnerable component is introduced in the 5GCN. The utilization of ML at the system level is inspired by the SHARKS framework [5], where ML was used to discover novel possible exploits in an IoT system. SHARKS is an acronym for Smart Hacking Approaches for Risk Scanning. Although SHARKS was initially targeted at IoT and cyber-physical systems, it is also applicable to the 5GCN architecture.

The new contributions of this article include:

1) Representation of 113 documented SDN and NFV attack vectors in the form of concise attack graphs.

2) Analysis of attack graphs to obtain 119 possible exploits of SDN, NFV, and malicious peripheral vulnerabilities in the 5GCN.

3) Analysis of the consequences of network infrastructure threats and their interactions on the 5G-AKA protocol, resulting in the discovery of five novel possible attack vectors that are triggered by 5GCN vulnerabilities.

4) Combination of threats across the hardware, software, network, and protocol layers to compromise end-user applications.

5) Application of ML and CSP models to the attack graphs to make the framework scalable to more extensive infrastructures.

We organize the rest of the article as follows. Section 2 provides a summary of the work that has been done on 5G security. Section 3 discusses background material. Section 4 gives details of our methodology. Section 5 describes the impact of system vulnerabilities on the implementation of the 5G-AKA protocol. Section 6 describes the application of our approach to the exploitation of network-level vulnerabilities to compromise end-user applications. Section 7 includes a discussion on the applications and limitations of our framework. Section 8 concludes the article.

II. RELATED WORK

Security and privacy of users are of prime importance in 5G networks. The Third Generation Partnership Project (3GPP) has been working continuously to define the security standards of 5G communication systems. Multiple versions of security standards have been published to date. Recent surveys and articles list the potential vulnerabilities of various 5G-enabling technologies like cloud radio access networks, SDN, NFV, network slicing, cloud computing, and multi-edge computing [2], [6].

Many vulnerabilities exist in the SDN ecosystem [7]. Multiple implementation vulnerabilities exist in various open-source SDN controllers and network operating systems (NOSs) like OpenFlow, POX, and OpenDaylight [8]. Similarly, network slicing and NFV have their vulnerabilities [9], [10]. NFV inherits many of its vulnerabilities from traditional virtualization technologies. However, prior research does not report on the specific attack vectors that can exploit these vulnerabilities in the 5G framework and lacks detailed analyses of the impact of these vulnerabilities on the end-user. To the best of our knowledge, no prior work explores interactions among vulnerabilities of different technologies, like SDN and NFV, to generate complex attack vectors.

We use attack graphs to analyze 5GCN security. Attack graphs have found extensive use in network security, software, and electronic systems. Various vulnerability assessment tools have been developed to analyze the security of software systems and networks using attack graphs. Some of the popular ones are MulVal and A2G2V [11], [12]. However, these tools do not address the discovery of unique vulnerability exploits in a software-defined and virtualized network. We target this problem in this article. ML-based attack graphs have been used previously to analyze the security of IoT and cyber-physical systems [5], [13]. We use ML on the attack graphs to enable our framework to scale to more extensive networks.

The 5G ecosystem consists of multiple protocols executing at different layers. Many vulnerabilities have been detected in various 5G protocols like cellular paging protocols, multiple control layer protocols [14], and cellular access network protocols [15]. The 5G-AKA protocol claims to provide higher security than its predecessors because it provides
enhanced user identity protection, more sophisticated key derivation, and an increased influence of the home network in the authentication. However, the increased complexity of the 5G-AKA protocol leads to new vulnerabilities [16]. Most of these vulnerabilities have been detected using formal verification methods [16], [17]. This article investigates how SDN, NFV, and other infrastructure vulnerabilities can facilitate the execution of protocol-level attacks.

In a case study, we analyze the impact of 5G network-level vulnerabilities on the implementation of WhatsApp on a client device. WhatsApp is one of the most widely used IM platforms with one of the most secure platforms. Due to its high popularity and highly secure platform, we choose to examine its security features through the lens of a vulnerable network. Although WhatsApp is highly secure, it is still susceptible to attacks like media file jacking, non-blocking behavior exploitation, voicemail-based verification exploits [18], and key hijacking attacks. We demonstrate that executing these attacks becomes more manageable when we have a compromised 5G network.

III. BACKGROUND
We analyze the vulnerabilities of various disruptive technologies like NFV, SDN, and network slicing. This section provides an introduction to these concepts. We also introduce some of the techniques we use to analyze system security.

A. NFV
A network comprises various network functions (NFs) like gateways, load balancers, and firewalls. In traditional networks, these NFs are implemented on proprietary hardware systems. Such systems are not flexible and incur high maintenance costs because they are vendor-proprietary. Moreover, they often remain underutilized. These issues prevent network operators from improving their average revenue per user (ARPU). NFV provides a way to increase ARPU by reducing network CAPEX and OPEX.

NFV abstracts out lower-level NF details by implementing NFs on virtual machines (VMs). This abstraction facilitates the easier adoption of NFs by various applications. In addition, the virtual network functions (VNFs) provide higher flexibility and higher resource utilization.

We show the NFV architecture in Figure 1. In this figure, every layer interacts only with the layers directly above and below it. The rest of the infrastructure is abstracted out. So, for example, the VNFs interact only with OSS/BSS above and virtual resources below. They do not need to interact directly with any other layer.

The various components of the NFV architecture are as follows:

- **Operations support system (OSS):** This is responsible for multiple network management and operation-based functions like service provisioning and fault tolerance.
- **Network functions virtualization infrastructure (NFVI):** This is a distributed system of resources designed to provide a common platform to the VNFs. As shown in Figure 1, the NFVI can be categorized into virtual resources, virtualization layer, and physical resources.
- **NFV orchestrator:** This is part of the NFV management and network orchestration (MANO) unit. It plays a vital role in instantiating the network.
- **VNF manager:** This is responsible for instantiating the VNFs. It manages various attributes of the VNFs like their creation, migration, resource allocation, and termination.
- **Virtual infrastructure manager (VIM):** This is responsible for management and virtualization of the physical compute, storage, and network resources.

All the components described above are provided by third-party vendors, unlike pre-5G networks where all parts are proprietary. This diversification makes these components inherently untrustworthy. Moreover, third-party software systems cannot be protected by hardware-based fingerprinting mechanisms like hardware root-of-trust and physically unclonable functions [19]. This article studies various methods for compromising the virtualization components and the consequences of doing so.

B. SDN
Traditionally, network devices have their functionalities hard-coded into the devices. This hinders flexibility and innovation in networks. SDNs ameliorate these issues, make virtualization of networks easier, and have the potential to increase the ARPU of network operators.

The primary objective of SDN is decoupling the control and data planes. SDNs have centralized controllers that make forwarding decisions for the switches. The controllers have a broad overview of the entire network, hence can make better decisions than localized switches.

The SDN architecture is shown in Figure 2. The logically centralized controllers receive application requirements
through the northbound interface. They are responsible for translating the application requirements into efficient flow rules. These rules are relayed to the data plane devices via the southbound interface. The data plane mainly consists of forwarding devices like routers and switches. The data plane devices communicate periodically with the controllers, updating them with the current situation in the data plane. This gives the controllers a global view of the network, thus enabling them to make efficient forwarding decisions.

Various components of the SDN architecture, namely the control plane, data plane, and northbound and southbound interfaces, are prone to vulnerabilities. We analyze the consequences of these vulnerabilities on a 5G-enabled system.

C. NETWORK SLICING FOR 5G NETWORKS WITH SDN/NFV

Network slicing is a method of sharing virtual network resources among multiple verticals. A network slice refers to an independent, end-to-end network composed of virtual resources. Network slicing enables the network operators to meet their ambitious goals, like scalability and low latency, by providing better network isolation and increased statistical multiplexing. The network slicing architecture for the 5GCN is depicted in Figure 3.

There are two kinds of resources available for sharing: NFs and the physical infrastructure [20]. The NFs are provided to the operators by the tenants and the infrastructure by the infrastructure provider (InP). Virtualization and SDN are utilized at both the tenant and InP levels. The SDN controller at the tenant and InP levels are referred to as the tenant controller (TC) and infrastructure controller (IC), respectively. A simplified example of the implementation of network slicing is depicted in Figure 3. Every network slice has a network services orchestrator (NSO) that communicates with the resource orchestrator (RO) of the tenant. A tenant provides multiple slices to the operators. In the simplified example depicted in Figure 3, the tenant is dependent on a single InP for its resources. In reality, the tenant may be dependent on multiple InPs.

D. REGULAR EXPRESSION

Regular expression is a concise representation of a set of strings. We use regular expressions to represent an attack vector. The set of all permissible characters in a regular expression is called its alphabet, denoted by Σ. The operations in regular expressions that we use in this article are described in Table 1.

Regular expressions are generally used to denote system-level operations that are incomprehensible to humans. In this article, we define the characters of the regular expression at a higher granularity for the sake of generality. The alphabet (Σ) of our regular expressions comprises human-understandable system-level operations. For example, $\Sigma = \{ \text{‘Install malicious switch,’ ‘Insert malware in hypervisor,’ ...} \}$. This is done to ensure that application of our approach is independent of the application, operating system (OS) or the compiler employed by the 5GCN.

IV. METHODOLOGY

This section describes our methodology and its impact. We analyze the security of the software-defined and virtualized 5GCN using ML and CSP formulation. Section 4.1 describes our threat model. Section 4.2 describes the method of representing attack vectors with attack graphs. Section 4.3 gives details of analyzing 5GCN security with attack graphs. Section 4.4 describes the methods for exploiting ML and CSP formulation to improve the scalability of the proposed methodology.
TABLE 1. The basic operations in our regular expressions.

Operation	Definition	Example
Set Union (+)	Set union of two regular expressions	$A + B = \{a, b, c, d\}$
Concatenation (.)	Concatenation of strings of two regular expressions	$A.B = \{ac, ad, bc, bd\}$

A. ATTACK SURFACE

An attack surface of a system refers to the set of various entry points that can be exploited. The various components that compose the attack surface of the 5GCN are depicted in Figure 3. They are as follows:

1. User applications
2. Northbound interface of SDN controller
3. SDN controller
4. Control channel of SDN
5. VNFs
6. Tenant
7. Network slice
8. NFV MANO unit
9. Management network between tenant and InP
10. Hypervisor
11. InP peripheral attacks; Attacks on physical infrastructure

The attack vectors for exploiting vulnerabilities of these components are discussed in detail in the subsequent sections.

B. ATTACK VECTOR REPRESENTATION

We use regular expressions and attack graphs to represent various attacks on the 5G system. We use regular expressions because they allow us to represent the sequence of exploits in an exploit chain. We use attack graphs because they enable efficient modeling of the interactions between different threats. In this section, we describe the process of constructing the attack graphs from various attacks. First, every attack is decomposed into a sequence of system-level operations. We represent this sequence using a regular expression. Then, we convert this regular expression into an attack graph. For example, let us consider an attack in which a target switch is disconnected from its SDN controller by poisoning the Address Resolution Protocol (ARP). This attack can be executed by the following sequence of system-level operations:

1. Install a malicious VM in the system.
2. Launch an ARP poisoning attack to alter the MAC address of the controller on the target switch.
3. In the target switch memory, replace the MAC address of the original controller with that of the malicious VM.
4. The target switch is now disconnected from the controller.
5. Send malicious flow rules to the switch from the malicious VM. This disrupts network functionalities.

Let ch denote a character from the alphabet Σ of our regular expressions. Then, the regular expression of the attack vector described above can be represented as: $ch_1(\text{Install malicious VM}), ch_2(\text{ARP poisoning}), ch_3(\text{Impersonate controller in switch}), ch_4(\text{Disconnect switch from controller}), ch_5(\text{Crash network})$. This regular expression can be converted into an execution graph, as shown in Figure 4.

We combine the execution graphs of multiple attacks to obtain the aggregated attack graphs.

C. 5GCN VULNERABILITY ANALYSIS

In this section, we describe the vulnerabilities of NFV, SDN, and peripheral devices, and the threats that arise from them. For each of these domains, we use regular expressions and attack graphs to conduct a complete security analysis of the system.

1) SDN VULNERABILITY ANALYSIS

SDN is one of the most disruptive technologies that is deployed in 5G systems. SDN implementation contains multiple vulnerabilities and is prone to exploits of varying complexity, including topology poisoning attacks, controller hijacking attacks, man-in-the-middle (MiTM) attacks, and denial-of-service (DoS) attacks, to name just a few [7], [21]–[23]. Moreover, popular open-source NOSs for the SDN controller, namely OpenFlow, OpenDaylight, and POX, have been shown to be vulnerable to multiple attacks [8].

SDN vulnerabilities can be broadly divided into two categories: control plane and data plane attacks. Control plane attacks involve compromising the NOS or the control channel that is used to send the control messages to the data plane devices [24]. The communication in the control channel is generally unencrypted to enhance performance. This is a potential security loophole. An adversary with access to the control channel can possibly eavesdrop on the control messages to infer the network topology. Knowledge of the network topology can lead to a variety of attacks [25], [26]. Moreover, an adversary can compromise the integrity of the control messages without being detected. This can cause malicious network reconfiguration and DoS attacks. The data plane is also vulnerable to various attacks. The data plane attacks generally target individual switches and forwarding devices. We represent all SDN attack vectors as regular expressions and then convert them into attack graphs. The regular expressions of various SDN attacks are shown in Table 2. These attack vectors in the SDN control plane...
TABLE 2. Regular expressions for SDN attacks [7], [22]–[27].

Attack	Entry point of attack	Regular expression
Application layer		
Abuse of privileges and authority	Malicious third party apps	\(ch_1\)(install malicious app). \(ch_2\)(gain control over tenant controller VM).
		\(\{ch_1\}\)(disconnect sensitive apps) + \(ch_2\)(shutdown sensitive apps)).
		\(\{ch_1\}(crash network) + \(ch_2\)(degrade network performance))
Service disruption	Malware	\(ch_1\)(malicious app). \(ch_2\)(gain control over tenant controller VM).
		\(\{ch_1\}(drop control messages to VNFs) + \(ch_2\)(subvert order in which app
		handlers access control packets) + \(ch_3\)(instruct switches to eavesdrop)
		\(\{ch_1\}(crash network) + \(ch_2\)(degrade network performance)
Application shutdown	Vulnerable northbound API	\(ch_1\)(exploit vulnerability in northbound API). \(\{ch_1\}(issue system command).
		\(ch_2\)(terminate victim app) + \(ch_3\)(eavesdrop on messages between controller
		and app))
Control layer		
Dynamic flow rule tunneling	Malware & vulnerable switches	\(ch_1\)(install malicious app). \(ch_2\)(instruct conflicting/overlapping flow
		rules). \(ch_3\)(bypass sensitive VNFs like firewall/Intrusion Detection Systems
		(IDS)). \(ch_1\)(degrade performance) + \(ch_2\)(degrade network performance) +
		\(ch_3\)(DoS attack))
Controller poisoning (Poisoned	Malware & vulnerable network services and	\(ch_1\)(gain access to controller VM). \(\{ch_2\}(send crafted LLDP packets).
network view)	protocols	\(ch_3\)(poison network topology in controller by adding fake connections).
		\(ch_4\)(drop packets in data plane). \(ch_5\)(degrade performance) + \(ch_6\)(poison
		controller host profile reservoir). \(ch_7\)(malicious VM). \(ch_8\)(redirect
		data packets to malicious VM). \(ch_9\)(MiTM attack in data plane))
NOS misuse	Vulnerable controller	\(\{ch_1\}(malicious apps running at Application layer) + \(ch_2\)(rogue switch
		VM)). (multiple attacks that are denoted in cells below)
		\(ch_3\)(execute system commands). \(ch_4\)(terminate controller). \(ch_5\)(degrade
		network performance)
		\(ch_6\)(access sensitive network information). \(ch_7\)(execute deviant actions)
		\(ch_8\)(modify flow rules). \(\{ch_9\}(eavesdrop on data plane packets) +
		\(ch_{10}\)(redirect data packets)). \(\{ch_1\}(degrade network performance) +
		\(ch_2\)(MiTM attack in data plane)) + \(ch_3\)(bypass security functions like
		firewalls/IDS))
		\(ch_4\)(install rootkits)
		\(ch_5\)(hijack network policy database)
		\(ch_6\)(input invalid input data). \(ch_7\)(send controller in an invalid state).
		\(ch_8\)(degrade network performance)
Packet-in flooding	Faulty controller or compromised switch VMs	\(\{ch_1\}(malicious app) + \(ch_2\)(malicious switch VM) + \(ch_3\)(send massive
		amounts of malformed packets). \(ch_4\)(switch-table misses of switch VM). \(ch_5\)
		(massive amount of packet-in messages sent to controller VM). \(ch_6\)(DoS attack
		on controller). \(ch_7\)(degrade network performance)
Switch table flooding	Faulty controller or compromised switch VMs	\(\{ch_1\}(malicious app) + \(ch_2\)(malicious switch VM) + \(ch_3\)(send massive
		amount of ‘features-reply’ messages to controller). \(ch_4\)(fill controller
		switch table with fake switches). \(ch_5\)(DoS attack on controller). \(ch_6\)(degrade
		network performance)
Legitimate switch id hijacking		\(ch_1\)(malicious switch VM installed). \(ch_2\)(connect malicious VM to controller
		using DPID of target VM). \(ch_3\)(legitimate VM gets disconnected). \(ch_4\)(network
		crash) + \(ch_5\)(degrade network performance))
Spanning tree poisoning		\(ch_1\)(send crafted LLDP packets to controller VM). \(ch_2\)(poison spanning tree
		protocol with targeted fake links). \(ch_3\)(disconnect targeted links). \(ch_4\)(network
		crash) + \(ch_5\)(degrade network performance))
Control Channel (CC)		
Passive MiTM	Unencrypted messages	\(ch_1\)(absence of crypto in CC). \(ch_2\)(sniff packets on CC). \(\{ch_1\}(eavesdrop
		on control messages) + \(ch_2\)(eavesdrop on topology information) + \(ch_3\)(eavesdrop
		on management info))
Active MiTM	Compromised southbound interface or vulnerable data	
	links	\(ch_1\)(absence of crypto in CC). \(ch_2\)(ARP poisoning). \(ch_3\)(insert intruder
		host between controller and data plane)
Infrastructure layer		
DoS leveraging ARP		\(ch_1\)(ARP poisoning). \(ch_2\)(impersonate controller VM). \(ch_3\)(connect fake
poisoning		controller to target switch). \(ch_4\)(disconnect target switch VM from network).
		\(ch_5\)(degrade network performance)
(SDN-CP) and SDN data plane (SDN-DP) are then concisely represented as the attack graphs shown in Figure 5 and Figure 6, respectively. In an attack graph, every path from a head node to a tail node is a unique attack vector. The graph in Figure 5 has 14 unique SDN-CP attack vectors and the graph in Figure 6 has 25 unique SDN-DP attack vectors.

2) NFV VULNERABILITY ANALYSIS

NFV provides a dynamic and loosely-coupled infrastructure that caters to a large diversity of user requirements. However, NFV inherits multiple implementation vulnerabilities and exploits thereof. Prior to NFV, when a proprietary function was introduced in the network, there existed an established trust between the developer and the operator. This trust is absent in an NFV-enabled network architecture because third-party VNFs are usually susceptible to a variety of threats [27]:

1) Generic networking threats.
2) Generic virtualization threats.
3) Emerging threats due to a combination of networking and virtualization.

Due to multi-tenancy and Infrastructure-as-a-Service paradigms of virtualization, access to the core network is easier than before. This makes the 5GCN vulnerable to different kinds of attackers, some of whom may be end customers of retail networks, retail network operators, wholesale network operators, hypervisor operators, infrastructure sharers and operators, and facility managers. Hence, security monitoring should be an integral part of the 5GCN ecosystem.

The regular expressions of the NFV threats and vulnerabilities are described in Table 3 and are concisely represented in the attack graph shown in Figure 7. The attack graph has 25 unique NFV attack vectors. These attack vectors have been constructed from the ETSI NFV security problem statement [27].

3) MALICIOUS PERIPHERALS

The 5GCN is vulnerable to malicious peripheral devices that can potentially compromise the virtualization infrastructure. Input/output (IO) attacks involve malicious peripherals that make root-level read and write accesses to the DRAM or to the memory embedded in other peripherals. Various attacks involve corrupting the Peripheral Component Interconnect
(PCI) to install rootkits [28], exploiting Message Signal Interrupts (MSI) and VGA driver vulnerabilities for privilege escalation on hypervisors, and overwriting root-table entries to gain kernel privileges. A concise representation of these attacks is shown in the attack graph in Figure 8. This attack graph consists of 49 attack vectors introduced by malicious peripherals and attacks on physical infrastructure of InP.

The vulnerabilities mentioned in this section require physical access to the infrastructure. Hence, they are less likely to be exploited than NFV and SDN vulnerabilities. However, such attacks are quite common and their impact is often catastrophic. Thus, it is necessary to take precautions against such attacks while designing the system.

4) GRAPH ANALYSIS

The attack vectors in the graphs are constructed from SDN vulnerabilities pointed out in existing literature [7], [24], [26], NFV vulnerabilities [9], [27], and IO vulnerabilities [28]–[30]. We find that there are 113 attack vectors in all in the four aggregated attack graphs. This is summarized in Table 4.

After constructing the attack graphs based on previous literature, we observe that many of the unconnected nodes in these graphs can be linked together to generate new possible exploits. In this section, we analyze the feasibility of connections among the unconnected nodes. A link or a branch is deemed to be feasible if the control/data flow represented by that branch is feasible in a real-world system. For example, nodes ‘Exploit test backdoors’ and ‘Access sensitive information’ can be connected because sensitive credentials of a resource can be accessed through backdoors. On the other hand, nodes ‘Compromise hypervisor’ and ‘Flood management ports’ cannot be connected because there is a lack of a direct causal relationship between the two.

Connecting a pair of nodes leads to a new directed branch in the graph. A new branch is interpreted as a possible exploit of an existing vulnerability. There are two categories of possible exploits in this analysis:

- **Intra-graph**: These possible exploits are restricted to one of the four domains, namely SDN-CP, SDN-DP, NFV, and malicious peripherals. For example, when we connect two nodes in Figure 5, we get a possible exploit in the SDN-CP.
- **Inter-graph**: These possible exploits involve the combination of vulnerabilities of multiple attack graphs. For example, when we connect a node in Figure 6 to a node in Figure 7, it leads to a possible exploit that combines vulnerabilities of the SDN-DP with that of the NFV infrastructure.

We demonstrate some of our possible exploits in Table 5. We state the number of possible exploits per category in Table 6.

D. ML ANALYSIS

When the number of components in the 5GCN increases, the size of the attack graphs increases significantly. To add a new node to these graphs, every possible connection between the new node and the existing nodes has to be analyzed manually. This is a tedious process that hinders scalability of this framework. To overcome this obstacle, we employ ML and CSP formulation to predict the possible connections of a new node in the graphs.

1) FEATURE ENGINEERING

Feature engineering is a necessary pre-processing step for using an ML or CSP model. Every possible branch in the graphs has to be represented by a feature vector for it to be
Attack	Regular expression
Adding unauthorized connection in VNF	ch_i(modify VNF instantiation). ch_i(add unauthorized connection in VNF). ch_i(exploit weak crypto implementations). {ch_i(eavesdrop on packets) + ch_i(add a loop in network) + ch_i(orchestrator creates new instances of VMs (to handle excess load)) + ch_i(DoS on NFV infrastructure)]
Modifying firewall/IDS instantiation	ch_i(modify VNF instantiation). ch_i(modify rules in firewall virtual storage). ch_i(connect to malicious website) + ch_i(modify IDS rules). {ch_i(flood network with incoming malicious traffic) + ch_i(orchestrator creates new instances of VMs (to handle excess load)) + ch_i(DoS on NFV infrastructure) + ch_i(flood network with incoming DNS queries) + ch_i(orchestrator creates new virtual DNS) + ch_i(amplified DNS query request - DoS attack on victim) }
Passive MiTM	{ch_i(modify VNF instantiation). ch_i(add a link to malicious VM) + ch_i(physical access of interfaces). ch_i(eavesdrop on the messages being sent). ch_i(infer topology of network) }
Active MiTM	ch_i(physical access to interface). ch_i(exploit weak crypto implementations). ch_i(modify packets in-transit). ch_i(crash the system) + ch_i(replay packets). ch_i(orchestrator creates new instances of VMs (to handle excess load)) + ch_i(DoS on NFV infrastructure) }
Exploiting Lights out Management (LOM)	ch_i(identify network port(s) having access to LOM). ch_i(flood the port with requests). ch_i(DoS attack on LOM port(s))
Exploiting LOM network	{ch_i(SQL injection attack on virtual storage) + ch_i(SCA by physical access) + ch_i(cache poisoning attack) + ch_i(download unwhitelisted software) + ch_i(gain control over hypervisor) + ch_i(dynamic memory overflow of hypervisor) + ch_i(overwrite frame pointer of hypervisor) + ch_i(code injection in hypervisor) + ch_i(read secret LOM credentials) + ch_i(crash the system) + ch_i(modify critical files on virtual storage) + ch_i(modify critical code on virtual compute) }
Exploiting hypervisor dependency on VNF (1)	ch_i(network fails). ch_i(hypervisor starts to boot). ch_i(hypervisor requests network configuration from VM running on top of it). {ch_i(VM crashed; depends on hypervisor2 which has also crashed) + ch_i(crashed VM depends on hypervisor) + ch_i(VM fails to boot). ch_i(DoS on hypervisor) }
Exploiting hypervisor dependency on VNF (2)	ch_i(network failure). ch_i(virtual forwarding function1 (VFF1) starts to boot). ch_i(requests access to VFF2). ch_i(VFF2 is crashed). ch_i(VFF2 requests access to VFF1). ch_i(deadlock arises, DoS on VFF1). ch_i(DoS on VFF2)
Exploiting insecure boot	ch_i(absence of secured boot authentication). ch_i(steal secret keys) + ch_i(rootkit injection) + ch_i(reset configuration) + ch_i(hypervisor compromise) + ch_i(VM compromise) + ch_i(orchestrator compromise) + ch_i(VM manager compromise)
Insecure Crash	ch_i(VM/VNF crashes). {ch_i(local memory not cleared by hypervisor) + ch_i(remote memory not cleared by hypervisor) + ch_i(new VM gets assigned same memory addresses as crashed VM) + ch_i(new VM gets access to sensitive data) + ch_i(new VM implementations privilege escalation) + ch_i(application within VM crashes but VM is still functional) + ch_i(hypervisor resets/changes existing authorizations) + ch_i(VM is restricted from performing required functions) + ch_i(network crashes) }
Exploiting absence of safety measures	ch_i(VM crashes). ch_i(memory and authorizations are not cleared by hypervisor). ch_i(VM gets assigned the same memory location as crashed instance of VM). ch_i(VM gets same privileges as VM)
Privilege escalation	ch_i(weak authentication on NFVI manager). ch_i(access to hypervisor). ch_i(access to physical storage, compute and network). {ch_i(get secret keys) + ch_i(MiTM attacks) + ch_i(replay attacks) + ch_i(eavesdrop on communication) + ch_i(modify packets in-transit) + ch_i(assign low memory to VMs). ch_i(DoS on VMs) + ch_i(give unauthorized privileges to malicious actors) + ch_i(download unwhitelisted malware) + ch_i(add unauthorized connections) }
Authentication, Authorization, Accounting (AAA) attacks (1)	ch_i(weak auth. of hypervisor) + ch_i(weak auth. of orchestrator) + ch_i(weak auth. of VM) + ch_i(weak auth. of NFV managers)
AAA attacks (2)	ch_i(virtualized switch in promiscuous mode). {ch_i(eavesdrop on VNF traffic with test process) + ch_i(adversary sends malicious traffic through test backdoor) + ch_i(shared memory access to test process) + ch_i(modify sensitive data of VNF in test/monitoring mode) }
We generate the feature vectors of a branch by implementing the following sequence of steps:

1) Assign feature values for individual nodes.
2) Combine the feature vectors of the constituent nodes of a branch.

We assign various attributes (features) to the nodes of the attack graph(s) depending on the layer(s) at which it is executed, the type of impact the attack would have on the system and network, and its position in the graph(s). The exhaustive set of features that we used comprises the following: application layer, controller, application-controller interface, VNF, exchange, physical access to shared network resources). {

\[ch_i \text{(flooding with high-priority messages)} \] + \n
\[ch_j \text{(physical sharing of same network component)} \] + \n
\[ch_k \text{(spoof target VM)} \] + \n
\[ch_m \text{(send modified packets with target VM id)} \] + \n
\[ch_n \text{(request access to other VMs with target VM’s id)} \] + \n
\[ch_p \text{(remote control channel degradation)} \] + \n
\[ch_q \text{(crash the system)} \] + \n
\[ch_r \text{(launch DoS attack on another VM through target VM)} \] +

\[ch_s \text{(SCA analysis)} \] + \n
\[ch_t \text{(cache poisoning)} \] +

\[ch_u \text{(extract crypto keys)} \] +

\[ch_v \text{(force hypervisor to fill up local storage with logs)} \] +

\[ch_w \text{(local storage insufficient for VMs)} \] +

\[ch_x \text{(remote storage insufficient for VMs)} \] +

\[ch_y \text{(remote control channel degradation)} \] +

\[ch_z \text{(DoS attack on VMs)} \] +

\[ch_a \text{(consume file handles)} \] +

\[ch_b \text{(consume event channels)} \] +

\[ch_c \text{(insufficient resources for OS)} \] +

\[ch_d \text{(degrade network performance)} \] +

\[ch_e \text{(crash the system)} \]

processed by the ML or CSP model. We generate the feature vectors of a branch by implementing the following sequence of steps:

1) Assign feature values for individual nodes.
2) Combine the feature vectors of the constituent nodes of a branch.
network infrastructure, management layer, hypervisor, flooding (DoS), access control, data plane, SCA analysis, control channel, sensitive information, SDN-CP, SDN-DP, NFV, malicious peripheral, head, and tail. We assign 1 to the features that are related to the node and 0 to the others. For example, we demonstrate the features of nodes ‘Install malicious apps’ and ‘Assign low memory to VM’ in Table 7. We can observe that the feature vectors of these two nodes are $f_1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 1; 0; 0$. We represent a branch of the graph with an ordered pair of the source and destination nodes, i.e., (source, destination). We obtain the feature vector of a branch by the ordered concatenation of the feature vectors of the source and destination nodes, as shown in Figure 9. This feature vector constitutes a datapoint for our ML/CSP model. We assign a positive label (equal to 1) or a negative label (equal to 0) to this datapoint if the branch is feasible or infeasible, respectively.

We classify all plausible branches into positive and negative examples. The positive examples also include the existing branches in the attack graphs. We split the dataset for

![Aggregated attack graph of malicious peripheral-based attacks.](image)

TABLE 4. Summary of attacks in the graphs.

Graph	Number of attack vectors
SDN-CP	14
SDN-DP	25
NFV	25
Malicious peripheral	49
Total	113

TABLE 5. Category-wise examples of possible exploits.

Category	Possible exploit
SDN-CP	Drop control messages to VNFs \rightarrow Disrupt targeted links in the network
SDN-DP	Gain control of tenant controller VM \rightarrow Hijack network policy database
NFV	Install a malicious switch \rightarrow Modify critical files on virtual storage or virtual compute
SDN-CP, SDN-DP	Hijack northbound API \rightarrow Input invalid data to tenant controller, forcing it to go to an invalid state
NFV, SDN-CP	Exploit backdoors for testing \rightarrow Poison tenant controller host profile reservoir
SDN-DP, NFV	Flood the switch table of target virtual switch \rightarrow Exploit the insecure crash recovery of NFV to shut down new VNFs assigned the same memory as the crashed VNF
Malicious peripheral, SDN-DP	Compromise NFV-MANO unit \rightarrow Issue system command to terminate controller
Malicious peripheral, NFV	Connect malicious peripheral and exploit MSI vulnerabilities \rightarrow Gain hypervisor privilege

network infrastructure, management layer, hypervisor, flooding (DoS), access control, data plane, SCA analysis, control channel, sensitive information, SDN-CP, SDN-DP, NFV, malicious peripheral, head, and tail. We assign 1 to the features that are related to the node and 0 to the others. For example, we demonstrate the features of nodes ‘Install malicious apps’ and ‘Assign low memory to VM’ in Table 7. We can observe that the feature vectors of these two nodes are $\{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0\}$ and $\{0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0\}$.

We represent a branch of the graph with an ordered pair of the source and destination nodes, i.e., (source, destination). We obtain the feature vector of a branch by the ordered concatenation of the feature vectors of the source and destination nodes, as shown in Figure 9. This feature vector constitutes a datapoint for our ML/CSP model. We assign a positive label (equal to 1) or a negative label (equal to -1) to this datapoint if the branch is feasible or infeasible, respectively.

We classify all plausible branches into positive and negative examples. The positive examples also include the existing branches in the attack graphs. We split the dataset for

TABLE 6. Number of possible exploits per category.

Category	Number of possible exploits
SDN-CP	36
SDN-DP	23
NFV	36
Malicious peripheral	0
Inter-graph	24
Total	119
that contains the feature vectors of all the positions till (xP ... (xP can be obtained by constructing a frequency table of the features from the training data. In our experiments, we used the Gaussian Naive Bayes classifier, where the likelihood of the features is assumed to be a Gaussian distribution.

- **Decision Tree**: A decision tree classifier uses a decision tree to assign class labels. A decision tree can be expressed as a logical expression composed of ‘AND’ and ‘OR’ Boolean operators. The leaf nodes of the tree represent the class labels. The other nodes represent conditional tests on the data attributes. Edges between two nodes represent control flow transition that depends on the outcome of the conditional test at the source node.

- **k-Nearest Neighbors (k-NN)**: The k-NN algorithm assigns a datapoint to the most popular class label among its k (k ≥ 1) nearest neighbors. We experimented with k = {1, 2, 3, 4, 5, 6, 7}. We observed that the performance on our data initially increased with an increase in k till k = 3. Then, it either stopped increasing or started decreasing. Hence, we chose k = 3.

- **Support vector machine (SVM)**: For an n-dimensional dataset, an SVM constructs an (n − 1)-dimensional separating hyperplane that serves as the decision boundary. An SVM can generate nonlinear decision boundaries with the help of kernel transformations based on a quadratic optimization algorithm. We experimented with various parameters of the SVM model. We observed that the most effective kernel for our data was the radial basis function. The class imbalance effects are mitigated through data preprocessing (see Section 4.4.4 for details).

- **Artificial neural network (ANN)**: ANNs are loosely modeled after the biological neurons in the brain. We use an ANN variant called the multi-layer perceptron (MLP). The neurons in an MLP model are arranged in multiple layers. Every neuron receives signals from all the neurons in its previous layer. All these signals are weighted by their corresponding edge weights and their weighted sum is passed through a nonlinear activation function. This output is then propagated to all the neurons in the next layer. The training process involves updating the edge weights so that the prediction error is minimized. In our experiments, two-layer MLPs with the ReLU activation function yield the best results.

4) PERFORMANCE RESULTS

In this section, we compare the performance of various ML algorithms on our data. We use the negative predictive value (NPV) to evaluate the ML models. NPV is defined as the fraction of correct negative predictions, as shown in the equation below. We combine the models with highest NPVs to obtain our final ensemble model. We evaluate the ensemble model with additional metrics like precision, recall, F1 score, and other performance indicators.

TABLE 7. Node features.

Feature	Install malicious apps	Assign low memory to VM
Application layer	1	0
Controller	0	0
Application-controller interface	0	0
VNF	0	1
Network infrastructure	0	1
Management layer	0	1
Hypervisor	0	1
Flooding	0	1
Access control	0	0
Data plane	0	0
SCA	0	0
Control channel	0	0
Sensitive information	0	0
SDN-CP	1	0
SDN-DP	1	0
NFV	0	1
Malicious peripheral	0	0
Head	1	0
Tail	0	0

Each graph is divided into a training set and a test set. The training set is used to train the model and the test set is used to evaluate it. The training set contains 85% of the data while the test set has the remaining. Table 8 shows the number of instances in the training and test sets for each graph.

2) ANALYSIS WITH A CSP FORMULATION

A CSP formulation requires creating a set of constraints on the features of the data instances, such that any feature that satisfies all the constraints represents a feasible exploit.

To obtain a CSP formulation based on our dataset, we generate a set S that contains the feature vectors of all the positive examples in the training set. For prediction, we check if the feature vector of the test instance belongs to S. If it does, we assign a positive label to it; else, a negative one.

3) ML MODELS

We train multiple ML models on our data and choose the best-performing ones for our final ensemble model. The performance of these models is reported in Section 4.4.4. In this section, we briefly describe the various ML models that we experiment with.

- **Naive Bayes**: Naive Bayes is a probabilistic ML algorithm based on Bayes theorem. The Naive Bayes model assumes that features are independent of each other, given the label. Let the class label be denoted by y and the input features by \{x1, x2, ..., xn\}. Assuming feature independence, the probability of label y can be calculated as

\[
P(y|x1, x2, ..., xn) = \frac{P(y) \prod_{i=1}^{n} P(x_i|y)}{\prod_{i=1}^{n} P(x_i)}
\]

(1)

The class label with the highest conditional probability is assigned to a test instance, i.e., prediction = \arg \max \{P(y|x1, ..., xn)\}.
false positive rate (FPR), Matthew's correlation coefficient (MCC), and classification accuracy.

\[
NPV = \frac{\text{True Negatives}}{\text{True Negatives} + \text{False Negatives}} \tag{2}
\]

We design our framework in such a way that the security analyst, who uses our framework, can trust the negative predictions of our model with high confidence to be infeasible exploits. Then, the analyst only needs to manually examine the positive predictions for possible exploits. This significantly reduces the amount of manual effort needed. We show the NPVs of our models in Table 9.

We use stratified three-fold cross validation for evaluation of our models. Stratified cross validation ensures that each fold has an equal ratio of positive and negative labels.

Our dataset is quite imbalanced with a much higher fraction of negative examples. To mitigate its impact, we resample the positive examples \(n\) times, where the value of \(n\) changes for different algorithms. The value of \(n\) varies between 3 and 12. We observe that this is highly effective for all the ML models, except k-NN.

We select the models with the highest NPVs in Table 9 and combine them into an ensemble model. For the inter-graph dataset, although the Naive Bayes and k-NN (\(k = 3\)) models have perfect NPV values, we do not select these models. This is because Naive Bayes and k-NN have very low precision values of 0.005 and 0.008, respectively, on this dataset. This overshadows their perfect NPV scores. The final ensemble model is shown in Table 10. The numbers in the parentheses indicate the number of neurons in the two hidden MLP layers.

In Table 11, we observe that there are 93 positive predictions. Our framework reduces the search space of manual analysis to 93 instances from the original search space of 1625 instances. This is a 94.3% reduction in manual effort. Manual examination of these 93 instances leads to the discovery of the 26 true positives as possible exploits. The drawback of using the ML/CSP approximation is that we fail to include the 15 false negatives in our search space, thus missing the detection of 15 possible exploits.

We evaluate our final ensemble model with the following metrics:

- **Precision**: Precision is defined as

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{3}
\]

A higher precision implies a lower FP. This implies that a smaller effort is devoted to manually examining infeasible exploits, thus resulting in higher automation efficiency.

- **Recall**: Recall of a model is defined as

\[
\text{Recall} = \frac{TP}{TP + FN} \tag{4}
\]

A high recall value enables the user of our framework to discard the negative predictions from the manual examination set with high confidence. This requires our model to have a minimal FN.
V. CASE STUDY I: 5G-AKA

The possible exploits of the 5GCN reported in the previous sections can lead to attacks at the higher layers of the network or increase the ease of execution of existing attacks in the protocol and application layers. In this section, we demonstrate the impact of 5GCN vulnerabilities on the protocol layer.

AKA is used in telecommunication networks to establish a secure and authenticated connection between the subscribers and service providers. It enables sharing of a secret key between the user and service provider that is used to secure all further communication.

The AKA protocols have evolved through generations of telecommunication networks. Today, the most widely used authentication mechanism in such networks is the 4G-AKA. The 3GPP Consortium has designed 5G-AKA to provide superior privacy and security guarantees than 4G-AKA. However, it has been shown that multiple 4G-AKA vulnerabilities still persist in 5G-AKA [31]. 5G-AKA is also vulnerable to novel attacks that were not possible in previous generations of networks [16], [17]. The 5G-AKA protocol can be easily compromised if the 5GCN is vulnerable. In this section, we analyze the implications of our possible exploits on 5G-AKA security.

A. 5G-AKA PROTOCOL

The 5G-AKA protocol authenticates a user equipment (UE), a serving network (SN), and a home network (HN) to each other. It is a challenge-response based protocol where the UE is authenticated as a legitimate user only if it succeeds in providing the expected response to a challenge provided by the HN. Unlike previous networks, the identity of the UE, called subscriber permanent identifier (SUPI) in 5G networks, is not sent directly. In 5G networks, the UE sends a subscriber concealed identifier (SUCI) that prevents international mobile subscriber identity catcher attacks [31].

Often, the SN and HN are the same network. However, sometimes they are different. For example, when a UE is roaming, its SN is different from its HN. In our analysis, we consider a separate SN and HN because this scenario is more prone to attacks. The primary network functions involved in 5G-AKA are the Authentication Server Function (AUSF), Authentication Credential Repository and Processing...
Function (ARPF), and Security Anchor Function (SEAF). A simplified outline of the 5G-AKA protocol is shown in Figure 10. The details of the messages are abstracted for simplicity. AV denotes the authentication vector, XRES denotes the expected response from the UE, and HXRES denotes a hash of XRES.

B. THREAT MODEL
Most of the security analysis of the 5G-AKA protocol so far has considered a threat model where the adversary has access to the UE and the communication channels between different networks. The core network infrastructure is considered to be inaccessible to the adversary. From Figure 10, we see that the AUSF and ARPF communicate over a secure network because they belong to the same network (HN). However, we have shown in Section 4 that the internal components of the 5GCN can be compromised. To overturn the assumption of having an impenetrable 5GCN, we expand the attack surface of the 5G-AKA protocol in our analysis. In our threat model, an adversary can compromise the network’s private channels and the network functions as well. In Section 4, we demonstrated how VNFs and other network components can be compromised by exploiting vulnerabilities of SDN, NFV, and IO peripherals.

C. 5G-AKA SECURITY ANALYSIS
In this section, we analyze the implications of a compromised 5GCN on the security properties of the 5G-AKA protocol. A compromised 5GCN leads to unique exploits and also facilitates exploits that were unrealistic before. Section 5.3.1 describes the attack vectors that become possible using our analysis framework to compromise the 5GCN. Section 5.3.2 analyzes the various 5G-AKA security properties that are violated in the presence of a compromised 5GCN.

1) NOVEL ATTACKS
The vulnerabilities of NFV, SDN, and IO peripherals have a variety of potential consequences at the network level. These consequences include flooding (DoS) attacks, termination of sensitive VNFs, passive MiTM attacks (like eavesdropping), hijacking of VNFs, and active MiTM attacks (like modification of in-flight traffic). In this section, we analyze how these consequences can be exploited to compromise the 5G-AKA protocol.

- **Flooding attacks**: The 5G-AKA protocol is vulnerable to session confusion attacks triggered by a race condition in the AUSF-ARPF channel [16]. We demonstrate this attack in Figure 11. When the ARPF receives multiple authentication requests in parallel, it sends the AVs for all the requests to the AUSF at the same time. This leads to a race condition in which the AUSF is unable to distinguish which AV belongs to which UE. Thus, there is a high probability that the AUSF sends the wrong credentials to the users. In the threat model of this attack, the adversary can hijack the VNFs on the SN but not the VNFs on the HN. He can hijack the SEAF on the SN and use it to bombard the AUSF with multiple network packets of SUCI(Attkr) simultaneously. The AUSF generates authentication requests, Auth. info. request (Attkr), for all of these packets and sends them to the ARPF. When the ARPF receives all these packets simultaneously, along with Auth. info. request (Victim), it leads to a race condition. According to the 5G-AKA protocol specifications, the response of the ARPF does not
include the identity of the UE. Thus, the simultaneous reception of multiple (AV, XRES) pairs by the AUSF causes a session confusion. It is probable that the AUSF forwards the AV of the victim to the adversary as a result of this confusion. Now, the adversary can authenticate himself as the victim.

The probability of success of this attack is \((1 - \frac{n}{2}) \), where \(n \) depicts the total number of simultaneous authentication requests received by the ARPF. In Figure 11, the value of \(n \) is 2; thus the probability of attack success is 0.5. Increasing the number of simultaneous authentication requests from the adversary’s UEs (by replay/flooding attacks from a compromised SEAF) will increase \(n \), thus increasing the probability of attack success. The node ‘Flood VNF with requests/high priority requests’ of the NFP attack graph in Figure 7 can be implemented via multiple possible exploits discovered by our framework to execute this attack.

- **Termination of sensitive VNFs**: NFV and IO vulnerabilities can be exploited to forcibly terminate targeted VNFs. This can be achieved by executing one of the following nodes in Figure 7: ‘Shutdown sensitive VNFs,’ ‘NFV crash,’ ‘DoS on target VNF.’ Our analysis framework predicts multiple possible exploits for implementing these nodes in a vulnerable 5GCN. Untimely termination of SEAF, AUSF or ARPF disrupts the 5G-AKA protocol. Although the adverse effects of such attacks can be mitigated by a fault-tolerant implementation of these functions [32], all ongoing authentication information is lost. This forces the UEs to restart the 5G-AKA protocol.

- **Passive MiTM**: Passive MiTM can be executed on the AUSF-ARPF channel. Since this channel is considered to be secure by the 5G-AKA designers, it is not required to be encrypted. Operators would also prefer having no encryption to boost performance. In our analysis of attack graphs in Section 4, we generated multiple attack vectors for launching privilege escalation attacks that give access to 5GCN resources. An adversary with access to the 5GCN infrastructure can eavesdrop on the secure channels. This leads to the disclosure of private information like AV, XRES, SUPI, and the secret keys of AUSF and SEAF to the adversary. The adversary can exploit the knowledge of XRES and SUPI to authenticate himself on behalf of a legitimate UE. The secret key of AUSF can be exploited to authenticate a fake base-station, thereby launching active MiTM attacks on UEs.

- **Hijacking of VNFs**: Hijacking of sensitive VNFs like the SEAF, AUSF or ARPF can cause the 5G-AKA protocol to prevent authentication of legitimate UEs or authenticate adversaries with the credentials of a legitimate UE. Our methodology in Section 4 demonstrates multiple access control and privilege escalation attacks in the graphs that can be exploited to hijack VNFs.

- **Active MiTM**: Active MiTM attacks involve modifying the packets during transit. This compromises the integrity of network packets. Since the connections in the same network are assumed to be secure in the original 5G-AKA threat model, the operators are not required to have integrity checks on intra-network messages. The adversary can get access to the internal network by exploiting certain infrastructure vulnerabilities and modify the packets in transit. Our methodology in Section 4 demonstrates multiple attack vectors for launching active MiTM attacks. The attack graphs in Figure 5, 6, and 8 demonstrate that there are multiple openings for MiTM attacks in a vulnerable 5GCN. The adversary can exploit them to modify the AV, XRES, AUSF secret key or SUPI in the AUSF-ARPF channel without being detected. Modifying the SUPI or XRES will enable the adversary to authenticate himself on behalf of a legitimate UE. Modifying the AUSF secret key enables the user to launch a fake base station.

2) **5G-AKA PROPERTY VIOLATIONS**

The 3GPP Consortium has detailed the security requirements of 5G system components in TS 33.501 v0.7.0 [33]. The security requirements that are related to the 5G-AKA protocol can be expressed concisely through two secrecy properties and seven authentication properties [16]. Every vulnerability of the 5G-AKA protocol, including the ones mentioned in Section 5.3.1, violates at least one of these security properties. Hence, analyzing these properties may provide insights into what kinds of attacks are possible.

The secrecy properties of 5G-AKA are:

- **S1**: The long-term secret key of the UE should be unknown to the adversary.
- **S2**: The adversary should not have access to the secret keys of AUSF and SEAF.

The authentication properties of 5G-AKA are:

- **A1**: SN and UE must agree on the identity of UE.
- **A2**: UE and SN must agree on the identity of SN.
- **A3**: HN and SN must agree on the identity of UE.
- **A4**: UE and HN must agree on the identity of HN.
- **A5**: UE and HN must agree on the identity of SN.
- **A6**: UE, HN, and SN must agree on the anchor key of SEAF, \(K_{SEAF} \).
- **A7**: UE, HN, and SN must agree that an anchor key \(K_{SEAF} \) instance is not used more than once.

The security of the 5G-AKA protocol is compromised if any of the aforementioned properties is violated. It has been shown that the compromise of participating components of the 5G-AKA protocol leads to the violation of these properties [16]. We demonstrate the consequences of compromising the 5GCN on the 5G-AKA properties in Table 13.

We see that 5GCN vulnerabilities and threats lead to the violation of many of the security properties of the 5G-AKA protocol. This demonstrates that 5GCN vulnerabilities also make the 5G-AKA protocol vulnerable.
TABLE 13. Property satisfaction under compromised channels and components.

Compromised element	S1	S2	A1	A2	A3	A4	A5	A6	A7
AUSF-ARPF channel; passive MiTM	✓	✗	✗	✗	✓				
AUSF-ARPF channel; active MiTM	✓	✗	✗	✗	✓				
SEAF	✓	✗	✗	✗	✓	✓			
AUSF	✓	✗	✗	✗	✓	✓	✓		
ARPF	✓	✗	✗	✗	✓	✓	✓	✓	

VI. CASE STUDY II: WHATSAPP SECURITY IN 5G NETWORKS

In this section, we analyze how various existing and novel possible exploits of a vulnerable 5GCN can lead to targeted attacks in the application layer of the network. We chose the WhatsApp application for our security analysis.

WhatsApp is the most widely used IM application in the world, with over 1.5 billion users [34]. It is also one of the most secure IM applications, where all communications are end-to-end (E2E) encrypted. In this section, we demonstrate that even WhatsApp can be compromised through network and protocol vulnerability exploits. Various WhatsApp attack vectors that are facilitated by our methodology include the following.

- **Impersonation of the victim via 5G-AKA**: As described in Section 5.3.1, the adversary can authenticate himself as the victim during 5G-AKA protocol execution by exploiting any of the following attacks: flooding, passive MiTM, hijacking of VNFs, and active MiTM. Then, the adversary can use the victim’s identity to impersonate him on WhatsApp.

- **Assisting WhatsApp impersonation through voicemail cracking**: During registration of a WhatsApp account, the user can choose to be authenticated by a text message or a call. If the user chooses to be authenticated by a call and fails to receive the authentication call, then the one-time password voice message is saved in voicemail. It has been shown that voicemails can be easily hacked using brute-force attacks [18]. This attack has a low probability of being successful in a real-world situation because it requires the victim to either be offline or ignore the authentication call. This obstacle for the adversary can be bypassed by launching a DoS attack on the victim’s network infrastructure. The framework discussed in Section 4 generates multiple possible exploits to launch a DoS attack on various components of the 5GCN. Figure 5, 6, 7, and 8 show that DoS attacks can be launched on VNFs, VMs, switches, and SDN controllers. A DoS attack on the network infrastructure will terminate the victim’s connection to the 5GCN, thus ensuring that he is offline. Now, the voicemail attack has a much higher probability of being successful.

- **Compromising encryption keys**: E2E security of WhatsApp can be readily compromised if the adversary gets access to the WhatsApp encryption keys on the device. The WhatsApp keys are stored in a sandbox memory on the smartphone that is only accessible by the WhatsApp application. If an adversary has root privileges on the phone, he can access the WhatsApp encryption keys. Rootkits can be installed on the UE by combining MiTM attacks in our attack graphs with baseband attacks [35]. Attack vectors that exploit rootkit injection attacks are described in Figure 6.

- **Lack of certificate pinning**: WhatsApp does not implement certificate pinning on the UE. This makes the WhatsApp clients vulnerable to MiTM attacks through certificate proxying. We demonstrated the possible exploits for launching an MiTM attack at the network level in Section 4. These attacks can be executed in the absence of certificate pinning.

VII. DISCUSSION

The attack graphs depicted in Figures 5–8 are designed to be as exhaustive as possible. We have attempted to include all possible attack classes applicable to SDN, NFV, and malicious peripherals in a 5GCN in these graphs. For application of our framework to a specific 5GCN implementation, we have to derive 5GCN-specific graphs from the generalized graphs that we have presented. For a given 5GCN architecture, the relevant nodes from the generalized graphs are extracted to form the architecture-specific graphs. For example, if a 5GCN does not use LLDP to establish network topology, we will eliminate the LLDP-specific nodes from Figure 5 for this 5GCN. If a 5GCN has a feature that warrants addition of new nodes to the graphs, we can use ML to predict the connections of the new nodes to the existing nodes. Thus, we can add new nodes to the graphs and create a 5GCN-specific attack graph for further analysis.

Probabilistic attack graphs, more popularly known as Bayesian attack graphs, have been extensively used to assess the security risk of networks. The framework proposed here can be extended to Bayesian attack graphs with minimal modifications. In a traditional Bayesian attack graph, each node represents a state of the system. An edge from state A to state B exists if an exploit of a vulnerability at state A takes the system to state B. The weight of this edge is equal to the probability of execution of the aforementioned exploit. Hence, the graphs presented in our article can be transformed into equivalent Bayesian attack graphs if the edges have weights corresponding to their probability of execution. These probabilities can be obtained for specific systems from the CVE databases. However, our framework is more useful...
than Bayesian attack graphs because it can also discover possible exploits in a system.

VIII. CONCLUSION
5G communication systems have a huge potential for revolutionizing the way we live. This is made possible by the integration of new technologies like NFV and SDN into the 5GCN. This gives rise to new vulnerabilities in the 5G system. This article analyzes how various vulnerabilities of NFV, SDN, and malicious IO peripherals can interact with each other to compromise the security of the 5GCN. We discovered 119 novel possible exploits by analyzing the underlying patterns in the 113 existing attack vectors in SDN, NFV, and IO peripherals. We showed that a compromised 5GCN may have devastating consequences on the end user. A compromised 5GCN was shown to trigger five unique types of attacks in the 5G-AKA protocol. These attacks can be further combined with infrastructure vulnerabilities to compromise targeted users at the application layer. We demonstrated this by analyzing four potential security loopholes in the WhatsApp IM application.

REFERENCES
[1] R. Sens, “Be ready to fight new 5G vulnerabilities,” Netw. Secur., vol. 2018, no. 10, pp. 6–7, 2018.
[2] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Yiianitila, and A. Gurtov, “Overview of 5G security challenges and solutions,” IEEE Commun. Standards Mag., vol. 2, no. 1, pp. 36–43, Mar. 2018.
[3] P. P. Sriram, H. Wang, H. G. Jami, and K. Srivinvasa, “5G security: Concepts and challenges,” in 5G Enabled Secure Wireless Netw. Berlin, Germany: Springer, 2019, pp. 1–43.
[4] T. Sutikno, L. Handayani, D. Stanwan, M. A. Riyadi, and I. M. I. Subroto, “WhatsApp, Viber and Telegram: Which is the best for instant communication?,” in Proc. IEEE Int. Symp. Nanoelectronic Inform. Syst., 2016, pp. 182–186.
[5] J. Brown, T. Saha, and N. K. Jha, “5G security: Conception and challenges, 3G, 4G, and upcoming 5G AKA protocols,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 669–684.
[6] C. Cremer and M. Dehnel-Wild, “Component-based formal analysis of 5G-AKA: Channel assumptions and session confusion,” in Proc. Symp. Netw. Distrib. Syst. Secur., 2019.
[7] D. Basin, J. Dreier, L. Hirsch, S. Radomirovic, R. Sasse, and V. Stettler, “A formal analysis of 5G authentication,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2018, pp. 1383–1396.
[8] M. Vigo, “Compromising online accounts by cracking voicemail systems,” DEF. CON., 2018. [Online]. Available: https://www.martinvigo.com/voicemailcracker/
[9] V. Selwag and T. Saha, “TV-PUP: A fast lightweight analog physical unclonable function,” in Proc. IEEE Int. Symp. Nanoelectronic Inform. Syst., 2016, pp. 182–186.
[10] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz, J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV: Concepts, architectures, and challenges,” IEEE Commun. Mag., vol. 55, no. 5, pp. 80–87, May 2017.
[11] I. Ahmad, S. Namal, M. Yiianitila, and A. Gurtov, “Security in software defined networks: A survey,” IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 2317–2346, Fourth Quarter 2015.
[12] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and dependable software-defined networks,” in Proc. ACM SIGCOMM Work- shop Hot Top. Softw. Defined Netw., 2013, pp. 55–60.
[13] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software defined networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp. 623–654, Fourth Quarter 2015.
[14] J. Cao et al., “The crosspath attack: Disrupting the SDN control channel via shared links,” in Proc. USENIX Secur. Symp., 2019, pp. 19–36.
[15] T. Alharbi, M. Portmann, and F. Pakzad, “The (in)security of topology discovery in software defined networks,” in Proc. IEEE Conf. Local Comput. Netw., 2015, pp. 502–505.
[16] E. Marin, M. Buccioli, and M. Conti, “An in-depth look into SDN topology discovery mechanisms: Novel attacks and practical countermeasures,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2019, pp. 1101–1114.
[17] B. Risbec et al., “Software functions virtualization (NFV)-NFV security: Problem statement,” ETSI NFV ISG., White paper, 2014. [Online]. Available: https://www.etsi.org/deliver/etsi_gs/ NFV-SO/001_099/001/01.01.01_600gs/ NFV-sec01v010101p.pdf.
[18] B. Morgan, É. Alata, V. Nicomette, and M. Kainiche, “IOMMU protection against I/O attacks: A vulnerability and a proof of concept,” J. Braz. Comput. Soc., vol. 24, no. 1, 2018, Art. no. 2.
[19] T. Markettos et al., “Thunderclap: Exploring vulnerabilities in operating system IOMMU protection via DMA from untrusted peripherals,” in Proc. Symp. Netw. Distrib. Syst. Secur., 2019.
[20] S. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines from hypervisor and host operating system exploits,” in Proc. USENIX Secur. Symp., 2019, pp. 1357–1374.
[21] A. Koutsos, “The 5G-AKA authentication protocol privacy,” Apr. 2019, arXiv:1811.06922v2.
[22] F. Lu, K. Tsai, H. Susanto, C. Gu, and I. You, “A fault tolerant mechanism for UE authentication in 5G networks,” Mobile Netw. Appl., vol. 26, no. 4, pp. 1650–1667, 2021.
[23] 3rd Generation Partnership Project (3GPP), “5G: System architecture for the 5G system,” Tech. Specification Group Serv. Syst. Aspects, 2018. [Online]. Available: https://www.3gpp.org/deliver/etsi ts/123500_123599/ 123501 v15.00.00_60/ ts_123501 v150200p.pdf.
[24] M. Igbal, WhatsApp Revenue and Usage Statistics, 2020. [Online]. Available: https://www.businessofapps.com/data/whatsapp-statistics/.
[25] C. Xenakis and C. Ntantogian, “Attacking the baseband modem of mobile phones to breach the users’ privacy and network security,” in Proc. Int. Conf. Cyber Conflict: Archit. Cyberspace, 2015, pp. 231–244.
TANUJAY SAHA received the bachelor’s degree in technology in electronics and electrical communications engineering from I.I.T., Kharagpur, India, in 2017 and the master’s degree in electrical engineering from Princeton University, NJ, USA in 2019. He has held research positions in various organizations and institutes like Intel Corp., KU Leuven, and Indian Statistical Institute. His research interests lie at the intersection of IoT, cybersecurity, machine learning, embedded systems, and cryptography.

NAJWA AARAJ received the bachelor’s degree in computer and communications engineering from American University, Beirut and the PhD in electrical engineering from Princeton University. She is a chief research officer with UAE Technology Innovation Institute. Her expertise lies in applied cryptography, trusted platforms, secure embedded systems, software exploit detection/prevention, and biometrics. She has more than 15 years of experience working in the United States, Australia, Middle East, Africa, and Asia with global firms. She has two patents and 15 academic publications. She has worked with cybersecurity start-up (DarkMatter). Prior to joining DarkMatter, she worked with Booz & Company, where she led consulting engagements in the communication and technology industry for clients across four continents. She has also held research positions with IBM T. J. Watson Center, New York, Intel Security Research Group, Portland, Oregon, and NEC Laboratories, Princeton, New Jersey.

NIRAJ K. JHA (Fellow, IEEE) received the BTech degree in electronics and electrical communication engineering from I.I.T., Kharagpur, India, in 1981 and the PhD degree in electrical engineering from the University of Illinois at Urbana-Champaign, Illinois, in 1985. He has been a faculty member with the Department of Electrical and Computer Engineering, Princeton University, since 1987. He was given the Distinguished Alumnus Award by I.I.T., Kharagpur. He has also received the Princeton Graduate Mentoring Award. He has served as the editor-in-chief for IEEE Transactions on VLSI Systems and as an associate editor of several other journals. He has coauthored five books that are widely used. His research has won 20 best paper awards or nominations. His research interests include smart healthcare, cybersecurity, machine learning, and monolithic 3D IC design. He has given several keynote speeches in the area of nanoelectronic design/test and smart healthcare. He is a fellow of ACM.