Baseline Serum C-reactive Protein Level Predicts Mortality in Cryptococcal Meningitis

Supavit Chesdachai¹, Nicole W Engen², Joshua Rhein¹, Lillian Tugume³, Tadeo Kiiza Kandole³, Mahsa Abassi¹, Kenneth Ssebambulidde³, John Kasibante³, Darlisha A Williams¹, Caleb P Skipper¹, Kathy H Hullsiek², Abdu K Musubire³, Radha Rajasingham¹, David B Meya³, David R Boulware¹

1. Department of Medicine, University of Minnesota, Minneapolis, MN, USA
2. Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
3. Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda

Corresponding Author:
Supavit Chesdachai, MD
420 Delaware Street SE, MMC 284, Minneapolis, MN 55455
Phone: 612-625-5454
Email: schesdac@umn.edu

Alternate Corresponding Author:
David R Boulware, MD, MPH
MRF 4-103, 689 23rd Avenue SE, Minneapolis, MN 55455
Phone: 612-626-9546
Email: boulw001@umn.edu

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
40 Words Article Summary:

C-reactive protein (CRP) is a promising surrogate for poor outcomes in many diseases. We demonstrate that baseline CRP associates with higher mortality in HIV patients with cryptococcal meningitis. This finding could lead to comprehensive prognostic markers in the future.
Abstract

Background: C-reactive protein (CRP) is an acute phase protein produced by the liver in response to systemic inflammation. CRP is a helpful surrogate biomarker used for following the progression and resolution of infection. We aimed to determine the association between baseline CRP level and the temporal change in CRP over time with cryptococcal meningitis outcome.

Methods: We reviewed 168 prospectively enrolled HIV-infected Ugandans with confirmed first-episode cryptococcal meningitis. Baseline plasma CRP collected within five days from meningitis diagnosis were categorized into quartiles. We compared baseline CRP with 18-week survival using time-to-event analysis.

Results: Of 168 participants, the baseline first quartile of serum CRP was <29.0 mg/L, second quartile 29.0-49.5 mg/L, third quartile 49.6-83.6 mg/L, and fourth quartile >83.6 mg/L. Baseline CD4 count, HIV viral load, and cerebrospinal fluid results did not differ by CRP quartile. Participants with CRP >49.5 mg/L more likely presented with Glasgow Coma Scale (GCS) <15 (P=.03). The 18-week mortality was 55% (46/84) in the highest two quartile CRP groups (>49.5 mg/L), 41% (17/42) in the mid-range CRP group (29.0-49.5 mg/L), and 14% (6/42) in the low CRP group (<29.0 mg/L) (P<.001). After adjusted for possible confounding factors including GCS<15, CRP remained significantly associated mortality (adjusted Hazard Ratio 1.084 per 10 mg/L; 95%CI, 1.031-1.139, P=.0016).
Conclusions: Higher baseline CRP is associated with increased mortality in HIV-infected individuals with first episode cryptococcal meningitis. CRP could be a surrogate marker for undiagnosed coinfections or may reflect immune dysregulation leading to worse outcomes in persons with advanced AIDS and concomitant cryptococcal meningitis.

Keywords: C-reactive protein, Cryptococcal meningitis, *Cryptococcus*, Mortality
Introduction

Cryptococcal meningitis remains a significant cause of morbidity and mortality in HIV infected individuals worldwide [1]. Access to antiretroviral therapy (ART), cryptococcal antigen (CrAg) screening with pre-emptive therapy and optimization of ART are the major strategies to reduce mortality [2, 3]. Despite those strategies, mortality is still unacceptably high with one-year mortality up to 70% in low-income countries [1]. Multiple studies demonstrated a variety of clinical factors for poor outcomes in cryptococcal meningitis including altered mental status, low baseline weight, high opening pressure, cerebrospinal fluid (CSF) with low white blood cell count, protein, glucose, high CrAg titer and high fungal burden [4-6]. However, there is no well-described serologic marker that potentially predicts clinical outcome.

C-reactive protein (CRP) is an acute-phase protein that is commonly used as a surrogate marker for inflammation and infection [7]. Elevated interleukin-6 (IL-6) in the setting of systemic inflammation stimulates the production of CRP from the liver [8]. CRP is a useful biomarker to detect, follow and predict the outcome in both systemic and localized bacterial infections, mainly bloodstream infection, bacterial pneumonia and bacterial meningitis [9-13]. CRP is also applicable in detecting systemic fungal infections, but no clear data have demonstrated an association between cryptococcal meningitis clinical outcome with CRP elevation [14-16]. The primary goal of this study was to examine the association between baseline CRP level and cryptococcal meningitis mortality in HIV-infected individuals. The secondary objective was to determine the change in CRP over time from cryptococcal diagnosis to eventual outcome.
Methods

Study design and participants

We conducted a cohort study among 168 HIV-infected Ugandans with confirmed first-episode cryptococcal meningitis at Mulago Hospital in Kampala, Uganda who had plasma CRP level collected from August 2013 through August 2014. Our study is a sub-study of The Adjunctive Sertraline for the Treatment of Cryptococcal Meningitis (ASTRO-CM) trial (Clinical Trials: NCT01802385) [17].

Plasma CRP measurement

Plasma CRP was measured on site with a point-of-care Piccolo® MetLyte Plus CRP Reagent Disc (Abaxis, Union City, CA). The baseline CRP result was defined as the first CRP result from a specimen drawn within 5 days of cryptococcal meningitis diagnosis. Follow-up plasma CRP was obtained on the subsequent study visits within 14 days of diagnosis.

Outcome measurement

Baseline demographic data and clinical outcomes were prospectively collected. We categorized baseline plasma CRP levels into four groups by quartiles. We assessed the percent change in CRP between baseline plasma CRP and the most recent follow-up plasma CRP through day 14 by using a ±20% difference as a threshold to define a clinically significant change in CRP from baseline; with 20% being >3-fold greater than the coefficient of variation of the assay. We compared baseline plasma CRP as well as percent change in CRP with 18-week survival after enrollment.
Statistical analysis

Baseline characteristics were compared using Chi-square or Kruskal-Wallis tests; while log-rank testing compared 18-week all-cause mortality in a time-to-event model. We used Cox-regression to adjust for possible confounders associated with 18-week mortality including age, male sex, Glasgow Coma Scale score <15, baseline CSF white cell count <5, ART status, and receiving antibiotic therapy within 14 days of enrollment. We conducted all analyses using SAS version 9.4 (SAS Institute, Cary, NC).

Results

Baseline demographic data

The median age of the 168 participants was 35 years (interquartile range [IQR] 30-40). Fifty-four percent were men. The median CD4 T cell count was 19 cells/µL (IQR 8-41). The baseline plasma CRP was ranging from 0.7 mg/L to 201.0 mg/L. The first quartile of baseline plasma CRP was <29.0 mg/L, the second quartile was 29.0-49.5 mg/L, the third quartile was 49.6-83.6 mg/L, and the fourth quartile was >83.6 mg/L. Baseline characteristics stratified by quartile are demonstrated in Table 1.

Associations with baseline plasma CRP

There was no difference in baseline HIV parameters, electrolytes, absolute neutrophil count, CSF microscopy and protein result between quartile groups. The incident of tuberculosis (TB) after enrollment was 19% (23/146). There was no difference in median baseline CRP in the TB group and non-TB group (P=.58). The GCS score <15 on presentation was 43% (36/84) of third and fourth quartile groups compared to 36% (15/42) of second quartile group and only 19% (8/42) of the first quartile group (P=.03). The number of patients who received antibiotic therapy within 14 days of enrollment was 31% (13/42) of
first quartile group compared to 57.1% (24/42) of second quartile group and 58.3% (49/84) of third and fourth quartile groups (P=.001).

Timing of ART and baseline plasma CRP

Median baseline CRP for the patients who were on ART prior to enrollment was 56.3 mg/L (IQR 34.7-88.9) and the non-ART group was 45.0 mg/dL (IQR 27.8-72.0) (P=.03). Within the ART group, participants who were on ART less than 30 days had median baseline CRP of 77.0 mg/L (IQR 46.0-111.8) which was significantly higher than participants who were on ART more than 30 days, which was 48.8 mg/L (IQR 31.0-83.2) (P=.05).

Baseline plasma CRP and clinical outcome

The 18-week mortality was 14% (6/42) in the first CRP quartile group (<29.0 mg/L), 41% (17/42) in the second quartile group (29.0-49.5 mg/L), 56% (24/43) in the third quartile group (49.6-83.6 mg/L) and 54% (22/41) in the fourth quartile group (>83.6 mg/L) (Log-rank P<.001). As a continuous variable, CRP also remained associated with risk (Hazard Ratio = 1.086 per 10 mg/L unit increase; 95% CI, 1.039-1.136; P=.0004) (Figure 1). After adjusting for age, sex, Glasgow Coma Scale score <15, baseline CSF white cell count <5, ART status, and receiving antibiotic therapy within 14 days of enrollment, CRP remained significantly associated with mortality (adjusted Hazard Ratio = 1.084 per 10 mg/L; 95% CI 1.031-1.139, P=.0016; Table 2). Focusing on third and fourth quartile groups, receiving antibiotic therapy within 14 days of enrollment did not associate with mortality (adjusted Hazard Ratio = 1.578; 95% CI 0.647-3.850, P=.32).
Change in plasma CRP and clinical outcome

The percent change from baseline to the most recent follow-up CRP result through day 14 was calculated. The median time difference between baseline CRP and follow up CRP was 4 days (IQR 3-5). A total of 84 participants with baseline plasma CRP >32 mg/L had at least one follow-up plasma CRP result available. Of those, 43% (36/84) had a 20% increase in follow-up plasma CRP from baseline, 25% (21/84) had a 20% decrease, and 32% (27/84) had no clinically significant change in CRP. There was no difference in 18-week mortality within these three groups (P=.10).

Discussion

Our study found that increasing baseline plasma CRP positively correlates with 18-week mortality, especially in the third and fourth quartile groups (CRP >49.5 mg/L) among cryptococcal meningitis patients. This remained significant after adjusting for other possible confounders. Based on our multivariate analysis, CRP appeared to be more predictive of mortality than GCS score <15 and lack of CSF pleocytosis (<5 white cells/μL). Mortality was prominent during the first two weeks of the amphotericin B deoxycholate induction therapy. Unlike other infections, CRP during the first two weeks of cryptococcal meningitis therapy initially rises rather than decreases [18]. The potential explanation was the systemic inflammation induced by intensive antifungal therapy. Interestingly, our study found that the direction of follow up CRP tended to be scattered and difficult to predict. The change in CRP within the first 2 weeks was not able to predict 18 weeks mortality, however, this finding was limited by short time interval between baseline and follow up CRP and lost to follow up.

Several hypotheses explain the association of elevated baseline CRP and mortality in cryptococcal meningitis. First, elevated CRP may reflect immune dysregulation. Cell-mediated immunity plays a critical role in the host immune response to cryptococcal
infection. In the normal host response, type 1 helper T cells (Th1) with protective cytokines activate macrophages to eliminate the phagocytic *Cryptococcus* [19-22]. On the other hand, increasing of counter-regulatory cytokines from type 2 helper T cell (Th2) in HIV infected individuals leads to uncontrolled cryptococcal infection [23-25]. Dysregulation of Th1 and Th2 leads to severe disease and poor outcomes [20, 26, 27]. We also observed that patients with higher plasma CRP presented more often with altered mental status. Previous studies showed that low Glasgow coma scale score reflects the high severity of disease and unfavorable outcome [28, 29].

Secondly, CRP is a sensitive marker of infection [8]. Undiagnosed coinfection is another potential factor that drives the elevation of CRP. We found that high CRP group had significantly higher prevalence of antibiotic therapy within the first 14 days from enrollment. This indirectly indicated that the clinical suspicious for coinfection was higher than the low CRP group. The majority of participants in our study had a baseline CD4 T cell count less than 50 cells/µL. Even though we did not see the relationship between CRP level and TB status, patients who develop cryptococcal meningitis are more likely to have other opportunistic infections [30, 31]. Given the degree of immune suppression, undiagnosed infections could be a cause of high mortality.

Another explanation is systemic inflammation from immune reconstitution inflammatory syndrome (IRIS). We found that the median baseline CRP in participants who had initiated ART within a month was significantly higher than the participants who were on ART for a longer period. Shorter duration of ART before developing cryptococcal meningitis has been linked to poor outcomes [32]. In other words, an unmasked IRIS likely augments the risk of death in preexisting subclinical cryptococcal meningitis. This finding suggests that CRP could be a marker for unmasked IRIS, which leads to high mortality. Furthermore, CRP
greater than 32 mg/L was known to be a surrogate marker for paradoxical IRIS after treatment initiation [33].

There are some limitations. Our study includes a prospective analysis of the subgroup in the clinical trial, limiting being able to differentiate causation from association. We conducted the study in HIV-infected Ugandans; therefore, the result may not be generalizable to other immunocompromised or transplant populations. We hypothesized several explanations for the elevated CRP including undiagnosed concurrent bacterial or mycobacterial infections, immune dysregulation, or IRIS. However, in reality elevated CRP likely has heterogeneous and multifactorial etiologies in this sick population, precluding a singular approach to management of these patients. Nevertheless, our study demonstrates CRP can contribute to prognostication that a poor outcome is more likely, suggesting further research is warranted to determine if elevated CRP is a modifiable risk factor. Evaluating change in CRP over time was limited by small sample size with repeated testing.

To our knowledge, this is a first study that described the relationship between plasma CRP level and mortality of HIV infected individuals with cryptococcal meningitis. A bundle of discovered prognostic clinical and biomarker factors could lead to a comprehensive scoring system to predict an outcome of cryptococcal meningitis in the future. An elevated CRP should prompt additional diagnostic evaluations in persons with advanced AIDS. Additionally, this could potentially lead to tailor-made adjunctive therapies or individualized interventions in the poor prognostic group.

In conclusion, elevated baseline CRP reflects high mortality and poor outcome. This finding suggests that baseline plasma CRP could be a promising prognostic biomarker in cryptococcal meningitis. Additional clinical studies investigating the long-term trend of other inflammatory biomarkers in the future would be helpful.
Acknowledgments:

This research was made possible through support from the National Institute of Allergy and Infectious Diseases (T32AI055433, U01AI125003, K23AI138851); the National Institute of Neurologic Disorders and Stroke (R01NS086312); the Fogarty International Center (K01TW010268); and a combined National Institute of Neurologic Disorders and Stroke and Fogarty International Center award (D43TW009345, K01TW010268, K43TW010718).

Conflict of Interest:

There are no conflicts of interest by any of the authors.
Reference

1. Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. *The Lancet Infectious Diseases* 2017; 17: 873-81.

2. Vidal JE, Penalva de Oliveira AC, Dauar RF, Boulware DR. Strategies to reduce mortality and morbidity due to AIDS-related cryptococcal meningitis in Latin America. *The Brazilian journal of infectious diseases: an official publication of the Brazilian Society of Infectious Diseases* 2013; 17: 353-62.

3. Rajasingham R, Boulware DR. Cryptococcal antigen screening and preemptive treatment - how can we improve survival? *Clin Infect Dis* 2019; In Press. doi:10.1093/cid/ciz488.

4. Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. *Ann Intern Med* 1974; 80: 176-81.

5. Kambugu A, Meya DB, Rhein J, et al. Outcomes of cryptococcal meningitis in Uganda before and after the availability of highly active antiretroviral therapy. *Clin Infect Dis* 2008; 46: 1694-701.

6. Anekthananon T, Manosuthi W, Chetchotisakd P, et al. Predictors of poor clinical outcome of cryptococcal meningitis in HIV-infected patients. *Int J STD AIDS* 2011; 22: 665-70.

7. Du Clos TW, Mold C. C-reactive protein: an activator of innate immunity and a modulator of adaptive immunity. *Immunol Res* 2004; 30: 261-77.
8. Sproston NR, Ashworth JJ. Role of C-Reactive Protein at Sites of Inflammation and Infection. *Front Immunol* **2018**; 9: 754.

9. Rabello L, Povoa P, Lapa ESJR, et al. Patterns of C-reactive protein ratio predicts outcomes in healthcare-associated pneumonia in critically ill patients with cancer. *J Crit Care* **2017**; 42: 231-7.

10. Povoa P, Teixeira-Pinto AM, Carneiro AH. C-reactive protein, an early marker of community-acquired sepsis resolution: a multi-center prospective observational study. *Crit Care* **2011**; 15: R169.

11. Corrall CJ, Pepple JM, Moxon ER, Hughes WT. C-reactive protein in spinal fluid of children with meningitis. *The Journal of pediatrics* **1981**; 99: 365-9.

12. Lin KH, Wang FL, Wu MS, et al. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection in patients with liver cirrhosis: a systematic review and meta-analysis. *Diagn Microbiol Infect Dis* **2014**; 80: 72-8.

13. Coelho LM, Salluh JI, Soares M, et al. Patterns of c-reactive protein RATIO response in severe community-acquired pneumonia: a cohort study. *Crit Care* **2012**; 16: R53.

14. Markova M, Brodska H, Malickova K, et al. Substantially elevated C-reactive protein (CRP), together with low levels of procalcitonin (PCT), contributes to diagnosis of fungal infection in immunocompromised patients. *Support Care Cancer* **2013**; 21: 2733-42.

15. Kostiala I. C-reactive protein response induced by fungal infections. *J Infect* **1984**; 8: 212-20.
16. Kostiala I, Kostiala AA, Elonen E. Serial study of C-reactive protein during fungal esophagitis and enterocolitis. *Infection* 1987; 15: 417-21.

17. Rhein J, Morawski BM, Hullsiek KH, et al. Efficacy of adjunctive sertraline for the treatment of HIV-associated cryptococcal meningitis: an open-label dose-ranging study. *Lancet Infect Dis* 2016; 16: 809-18.

18. Scriven JE, Rhein J, Hullsiek KH, et al. Early ART after cryptococcal meningitis is associated with cerebrospinal fluid pleocytosis and macrophage activation in a multisite randomized trial. *J Infect Dis* 2015; 212: 769-78.

19. Naranbhai V, Chang CC, Durgiah R, et al. Compartmentalization of innate immune responses in the central nervous system during cryptococcal meningitis/HIV coinfection. *Aids* 2014; 28: 657-66.

20. Mora DJ, Fortunato LR, Andrade-Silva LE, et al. Cytokine profiles at admission can be related to outcome in AIDS patients with cryptococcal meningitis. *PLoS One* 2015; 10: e0120297.

21. Siddiqui AA, Brouwer AE, Wuthiekanun V, et al. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. *J Immunol* 2005; 174: 1746-50.

22. Jarvis JN, Casazza JP, Stone HH, et al. The phenotype of the Cryptococcus-specific CD4+ memory T-cell response is associated with disease severity and outcome in HIV-associated cryptococcal meningitis. *J Infect Dis* 2013; 207: 1817-28.
23. Osakwe CE, Bleotu C, Chifiriuc MC, et al. TH1/TH2 cytokine levels as an indicator for disease progression in human immunodeficiency virus type 1 infection and response to antiretroviral therapy. *Roum Arch Microbiol Immunol* 2010; 69: 24-34.

24. Hernandez Y, Arora S, Erb-Downward JR, McDonald RA, Toews GB, Huffnagle GB. Distinct roles for IL-4 and IL-10 in regulating T2 immunity during allergic bronchopulmonary mycosis. *J Immunol* 2005; 174: 1027-36.

25. Lortholary O, Sitbon K, Dromer F. Evidence for human immunodeficiency virus and Cryptococcus neoformans interactions in the pro-inflammatory and anti-inflammatory responses in blood during AIDS-associated cryptococcosis. *Clin Microbiol Infect* 2005; 11: 296-300.

26. Zhou Q, Gault RA, Kozel TR, Murphy WJ. Protection from direct cerebral cryptococcus infection by interferon-gamma-dependent activation of microglial cells. *J Immunol* 2007; 178: 5753-61.

27. Skipper C, Abassi M, Boulware DR. Diagnosis and Management of Central Nervous System Cryptococcal Infections in HIV-Infected Adults. *J Fungi (Basel)* 2019; 5.

28. Dromer F, Mathoulin-Pelissier S, Launay O, Lortholary O. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. *PLoS Med* 2007; 4: e21.

29. Hakyemez IN, Erdem H, Beraud G, et al. Prediction of unfavorable outcomes in cryptococcal meningitis: results of the multicenter Infectious Diseases International Research Initiative (ID-IRI) cryptococcal meningitis study. *Eur J Clin Microbiol Infect Dis* 2018; 37: 1231-40.
30. Wake RM, Govender NP, Omar T, et al. Cryptococcal-related mortality despite fluconazole pre-emptive treatment in a cryptococcal antigen (CrAg) screen-and-treat programme. Clin Infect Dis 2019; In Press. doi:10.1093/cid/ciz485.

31. Hurtado JC, Castillo P, Fernandes F, et al. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: an autopsy study. Sci Rep 2019; 9: 7493.

32. Rhein J, Hullsiek KH, Evans EE, et al. Detrimental Outcomes of Unmasking Cryptococcal Meningitis With Recent ART Initiation. Open forum infectious diseases 2018; 5: ofy122-ofy.

33. Boulware DR, Meya DB, Bergemann TL, et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS medicine 2010; 7: e1000384-e.
Table 1. Baseline Demographics by Baseline CRP

CRP Groups	N	CRP < 29.0	CRP 29.0-49.5	CRP > 49.5	P-value
Participants, n	168	42	42	84	
Median age, years [IQR]	168	36 [31, 44]	35 [30, 40]	35 [30, 40]	0.31
Male sex, n (%)	168	17 (40.5%)	28 (66.7%)	47 (56%)	0.05
Median weight, kg [IQR]	149	52.5 [50, 58]	50 [45.5, 55]	50 [46, 60]	0.47
Receiving TB therapy at baseline, n (%)	168	5 (11.9%)	3 (7.1%)	16	0.17
Receiving antibiotic therapy within 14 days of enrollment, n (%)	168	13 (31.0%)	24 (57.1%)	49	0.01
Glasgow Coma Scale score <15, n (%)	168	8 (19.0%)	15 (35.7%)	36	0.03

Antiretroviral Therapy

Currently on ART, n (%)	Median [IQR] or n				
168	16 (38.1%)	22 (52.4%)	46 (54.8%)	0.20	
Months on ART 1, months	84	7.9 [2.1, 29.2]	7.4 [1.0, 29.8]	2.7 [0.6, 20.9]	0.66
Days on ART ≤14 days	15	2 (12.5)	3 (13.6)	10 (21.7)	0.82
15-30 days	8	0 (0.0)	2 (9.1)	6 (13.0)	
31-90 days	16	4 (25.0)	4 (18.2)	8 (17.4)	
91-180 days	5	1 (6.3)	2 (9.1)	2 (4.3)	
>180 days	40	9 (56.3)	11 (50.0)	20 (43.5)	

Baseline Blood Results

CD4+, cells/μL	Median [IQR]				
160	23 [11, 40]	28 [8, 52]	14 [6, 39]	0.28	
Sodium, mmol/L	137	130 [125, 133]	129 [126, 132]	128 [125, 130]	0.26
Potassium, mmol/L	164	4.2 [3.7, 4.6]	4.1 [3.7, 4.4]	4.1 [3.5, 4.6]	0.67
Absolute neutrophil count, kcells/μL	157	1.6 [0.9, 2.1]	1.8 [1.2, 2.4]	2.0 [1.3, 3.5]	0.06

Baseline CSF Results

Median [IQR] or n (%)
2.3 [0.9, 6.8]
Culture Cryptococcus, log₁₀ CFU/mL

Sterile CSF culture, n
Opening pressure, mmH₂O
Opening pressure >250 mmH₂O, n
White cell count, cells/μL
White cell count >5 cells/μL, n
Protein, mg/dL

Table 1. CRP groups based on first plasma CRP result between days 0-5. Quartiles 3 and 4 are grouped together due to similar clinical outcomes. P-values calculated by Kruskal-Wallis test for medians; chi-square test for proportions. Abbreviations: ART: Antiretroviral therapy, CRP: C-reactive protein, CFU: Colony forming unit, CSF: Cerebrospinal fluid, IQR: Interquartile range, n: number, TB: Tuberculosis. 1 Among those on ART at CM diagnosis.
Table 2. Hazard ratios for 18-week mortality from Cox Regression Model

Variable	Multivariate analysis	Hazard Ratio (95%CI)	P-value
Plasma CRP, per 10 mg/L		1.084 (1.031-1.139)	.003
Age, per 10 years		1.130 (.847-1.508)	.41
Male sex		1.078 (.654-1.777)	.77
Glasgow Coma Scale score <15		1.587 (.945-2.666)	.08
CSF white cell count <5 cells/µL		1.388 (.786-2.449)	.25
Currently on HIV therapy		1.192 (.713-1.991)	.50
Receiving antibiotic therapy within 14 days		1.160 (.695-1.935)	.57
TB diagnosis at baseline or within 14 days		1.495 (.821-2.720)	.19

Abbreviations: CI: Confidence interval, CRP: C-reactive protein, CSF: Cerebrospinal fluid, HIV: Human immunodeficiency virus; TB: tuberculosis.
Figure 1. Kaplan-Meier plot of cumulative survival stratified by baseline plasma CRP quartiles

Figure 1. Eighteen weeks survival in the low CRP group (<29 mg/L) was 86% (36/42) which was significantly higher than 59% survival in the mid CRP group (29-49.5 mg/L) and 44% survival in the highest two quartiles (>49.5 mg/L), P<0.001.