Novel drug delivery systems in topical treatment of psoriasis: Rigors and vigors

Om Prakash Katare, Kaisar Raza, Bhupinder Singh, Sunil Dogra

ABSTRACT
Psoriasis is a chronic inflammatory skin disorder that may drastically impair the quality of life of a patient. Among the various modes of treatments for psoriasis, topical therapy is most commonly used in majority of patients. The topical formulations based on conventional excipients could serve the purpose only to a limited extent. With the advent of newer biocompatible and biodegradable materials like phospholipids, and cutting-edge drug delivery technologies like liposomes, solid lipid nanoparticles (SLNs), microemulsions, and nanoemulsions, the possibility to improve the efficacy and safety of the topical products has increased manifold. Improved understanding of the dermal delivery aspects and that of designing and developing diverse carrier systems have brought in further novelty in this approach. Substantial efforts and the consequent publications, patents and product development studies on the subject are the matter of interest and review of this article. However, majority of the work is related to the preclinical studies and demands further clinical assessment in psoriasis patients.

Key words: Dermal drug delivery, Liposomes, Microemulsions, Nanoparticles, Phospholipids, Vesicles

INTRODUCTION
Topical therapy is the mainstay of treatment for mild to moderate psoriasis and serves as a useful adjunct support to systemic therapy in severe disease. However, efficacy and compliance to topical therapy in psoriasis have been a major concern. Approximately, 70% of the psoriasis patients in three large surveys were found to be unsatisfied or moderately satisfied with their current treatment.[1] Lack of effective delivery of drugs and undesirable skin interactions of the topical treatments are the main reasons for patient noncompliance.[2] Nevertheless, newer developments in the formulation approaches have raised hopes in making topical therapy more useful and acceptable.[3] The present paper endeavors to review the overall developments in the field of Novel Drug Delivery Systems (NDDS) pertaining to the topical treatment of psoriasis.

NOVEL DRUG DELIVERY SYSTEMS
In search of safe and effective therapy, the development of new drugs has been the common practice historically. However, it involved a long gestation period in terms of time, efforts, and huge cost. Later on, it was realized that the issues pertaining to efficacy and safety are largely influenced by the distribution of the drug within the biological system, as there is appreciable deviation from the desired site of action, i.e., the target site. In fact, Nobel laureate, Sir Paul Ehrlich in 1905 envisioned the drug molecules as “magic-bullets” to hit the specific target site to attain the absolute efficacy and safety.[4] This objective, hitherto un-accomplished gave way to an alternate approach of drug delivery, wherein the carrier systems were used to deliver the molecules to specific receptor sites without afflicting the normal tissues and organs of the body. Interestingly, it turned out to be a transformation of the original idea of “magic-bullets” to that of the “magic-guns.” The fundamentals lie in hosting the drug in carefully designed carriers to bring favorable change(s) in its surrounding microenvironment, and consequently, its delivery. It is
the modification(s) in physicochemical characteristics of the molecules and in the barrier properties of the biological membranes at various locations, which lead to improved transportation of drugs toward the diseased locations. Further, it improves the chances of the availability of the drug at the specific receptor site and enhances drug–receptor interaction through mediation of specialized composition and design of the carrier systems. All these factors tend to potentiate the degree of pharmacodynamic response, the safety and patient compliance being the immediate benefits.

The novel carriers have been exploited through almost all the routes of administration. However, the topical route has been adjudged as one of the most relevant to treat dermatological disorders more effectively. In contrast to the conventional formulations based on creams and ointments, these novel dermatological systems are different in their composition and constructs including their exterior and interior design. Various pharmaceutical and dermatological variables influence the choice of the system as per the demand of the drug and disease. Phospholipids represent a special class of surfactants with two long fatty acid chains (lipid region) and a bulky polar head (hydrophilic region) linked with phosphogroup on glycerol as the backbone. The unique structural features allow phospholipids to interact with water to form well-organized supra-structures like liposomes. The variation in composition and methods influences the nature of such self-assembled supra-structures in terms of their shape, design, size, and surface properties. This leads to different classes of carriers, viz. liposomes, transfersomes, micro and nanoemulsions, niosomes, dendrimers, invasomes, and nano lipid carriers. These carrier systems provide the entrapment opportunities to the drug molecules within their interior locations as per their fitment of steric and physicochemical properties. Association of drugs with carriers is normally noncovalent, based on collective strength of weak binding forces. Many newer carriers are evolving with the advent of technology and the demand of targeted delivery like ethosomes, emulsomes, magnetic nanoparticles, resealed erythrosomes and bilosomes.

Apart from projected advantages, the novel carriers have associated drawbacks of high cost of excipients, need of expertise in the production of such carriers, stability, and evaluation issues.

Drug delivery carrier systems	Description
Liposomes	Vesicular carriers composed of bilayers of phospholipid molecules and enclosed water in these bilayers
Niosomes	Vesicular carriers composed of non-ionic surfactants instead of phospholipids
Microemulsions	Thermodynamically stable, isotopically clear and transparent carriers composed of oil, aqueous phase and surfactant(s). They are supersolvents.
Lipid emulsions	Micro- and nano-emulsions containing phospholipids as one of their surfactants
Transfersomes, flexible membrane vesicles	Liposomes with edge activators, highly deformable, reported to penetrate stratum corneum as such
Ethosomes	Liposomal systems comprising of high alcohol content, flexible vesicles, high drug loading
Solid lipid nanoparticles	Nanocolloids composed of drug loaded in solid lipid particles
Emulsomes	Nanocarriers with solid lipid core along with bilayers of phospholipids
Nanolipid carriers	Nanocolloids composed of drug loaded in lipid core composed of both solid and liquid lipids
Invasomes	Liposomes containing penetration enhancers
Dendrimers	Repeatedly branched, roughly spherical large molecules also used for drug delivery

Figure 1 illustrates the pictorial representation of such interactions of the carriers with skin. The novel carrier systems are versatile and flexible in handling the various issues associated with the drug and thus, possess high potential for better patient compliance. Table 2 enumerates the meritorious roles of NDDS in topical therapy. Various attempts have been made...
in the recent past in reporting many studies for the delivery of various drugs employing novel colloidal carriers. Table 3 enlists selected instances.[25-64]

CHALLENGES IN TOPICAL DELIVERY OF DRUGS IN PSORIATIC SKIN

According to the studies reported recently, stratum corneum (SC) is not an inert layer, but an “active-wall,” which opposes the penetration of xenobiotics.[4] Though no molecule can readily and fully pass through this membrane, yet it allows penetration of nearly all the materials to some extent. It is also vivid that the major route of penetration across the SC is the intercellular lipids.[4] The state of hydration of SC is one of the most important factors in determining the rate of percutaneous absorption of a given solute. The level of hydration is a function of the water concentration gradient between the dermis and the surface of the skin as well as the ability of the SC to “bind” water.[5]

Delivery of solutes through the skin is associated with a number of difficulties as shown in Table 4. “Rigidization” of psoriatic skin has been attributed to a rise in the levels of cholesterol and fall in the levels of ceramides.[6] Apart from this, normal moisturizing factors (NMFs) like water are almost absent in the psoriatic skin. As a result of various factors, targeting the psoriatic tissues using topical route poses a big

Table 2: Role of Novel drug delivery systems
• Use of versatile carriers
• Imparting protection to the molecules
• Biocompatibility of the systems
• Passive targeting
• Loading a variety of drugs
• Modifications in the physicochemical properties

Table 3: List of drugs (topical) encapsulated in various carrier systems[25-64]
Drugs
Cyclosporin A
Calcineurin inhibitors
Amphotericin B
Fluconazole
Fluconazole
NB-002
Ketoconazole
Ciclopirox
Olamine
Methotrexate
Methotrexate
Methotrexate
Temoporfin
Dithranol
Coal tar
Tacrolimus
Tacrolimus
Cetirizine
Butorphanol
Lauric acid
Azelaic acid
Tretinoin
Benzyl peroxide
Idoxuridine
Dipotassium Glycyrrhizinate
Prednisolone
Capsaicin
Nimesulide
Finasteride
Corticosteroid
Tamoxifen
Hydroxyzine
Vitamin D analogues:
Calcipotriol, tacalcitrol
challenge. The intricacies of the topical delivery into the psoriatic skin have lately been proposed to be addressed by the lipoidal carrier systems, such as liposomes. The latter resolve the problem of lipid imbalance by imparting the unsaturated fatty acids like linoleic acid to restore the normal skin conditions.[4] Hence, these liposomal and allied carriers can result in an effective delivery of drugs across the psoriatic skin.[65]

Several topical therapeutic agents are available for the treatment of psoriasis. Nevertheless, none of them can be regarded as an ideal drug molecule. This may either be due to their inherent side effects or their improper incorporation in the conventional vehicles. It is a well-known fact that due to variation in the physicochemical characteristics of the carrier and of the active compounds used, the degree of drug absorption through skin may vary, and therefore, may be the drug efficacy. Hence, the carriers based on scientific approach can modify the physicochemical properties of the drugs and can help to decrease the intensity and frequency of side effects associated with these active moieties.[66] Formulations like gels, creams, ointments, and lotions are frequently used for the topical delivery of the antipsoriatic agents. However, these formulations are often not able to mask the drug-related issues causing obvious problems with patient acceptance and compliance [Table 5].[4,65,67] The topical delivery vehicle must be suitably designed and developed to attain the desirable attributes for use in extremely dehydrated and thickened psoriatic skin having lipid imbalance and sensitive to irritants.[10]

Table 4: Challenges for topical drug delivery

- Variability in percutaneous absorption due to site, disease, age, etc.
- Skin “first-pass” metabolic effect
- Reservoir capacity of the skin
- Irritation potential and other toxicities due to drug
- Heterogeneity and inducibility of the skin in turn-over and metabolism
- Inadequate definition of bioequivalence criteria
- Incomplete understanding of technologies to facilitate or reduce percutaneous absorption

Table 5: Common skin barrier problems in psoriasis

- Thickened inflamed skin lesions covered with scales
- Dry and natural moisturizing factor deficient skin
- Sensitive skin
- Tethered hairy skin
- Imbalance of skin lipids
- Excessive growth and aberrant differentiation of corneocytes

diseased conditions like psoriasis. Considering the benefits, there have been several recent attempts to use the NDDS approach to improve the existing topical drug formulations in psoriasis. A brief account of the efforts presents here the current scenario.

Dithranol

Dithranol, with a long history of use spanning over more than 100 years, is one of the most effective topical therapies in psoriasis. But in the existing form of products, it has not been fully accepted, mostly because of its irritation and staining properties. This made a long-standing demand on the researchers world wide to search for the modified molecule or formulation. It included enormous efforts as reflected in more than 1500 publications, patents and exclusive meetings on the dithranol per se. Various efforts like chemical modifications of the molecule, formulation changes, new treatment modifications or strategies and other miscellaneous approaches like short-contact therapy did not provide any definite solution.[68-70] Subsequent work on liposomal systems with dithranol led to the improvement in its skin penetration.[71] Agarwal et al. developed dithranol entrapped in liposomal and niosomal vesicles (0.5%) and found both of them superior to conventional formulation, while liposomes showed better results than niosomes employing mice skin. They found both of them superior to conventional formulation, while liposomes showed better results than niosomes.[38] Gidwani et al. in their patent application revealed the usefulness of mixed vesicular systems of dithranol with and without salicylic acid. The formulations, when tested on more than 12 patients for 4 weeks, proved to be effective and devoid of irritation and staining.[72]

The study on liposomal dithranol continued by Katare et al. resulted in the development of a product.[39-41,73,74] This product when tested clinically in an open label[41] as well as randomized double blind trials[40] showed that dithranol in greatly reduced doses (0.5%) in liposomes could clear the psoriasis

Novel Drug Delivery Systems in Topical Therapy for Psoriasis

The NDDS with their unique advantageous features provide favorable skin interactions as desired in the...
plaques to match that of 1.15% commercially available dithranol ointment. The advantages of liposomal dithranol in terms of efficacy and compliance (nonirritancy and nonstaining) have been attributed to the ability of strategic liposomal formulation design [Figure 2]. In the latter form, the reactivity of drug is moderated to the desired level, while favorable drug–skin interactions as a result of membranous layers of liposomes do not allow for irritancy and deep staining of clothes.

Methotrexate
Methotrexate (MTX) is the gold standard drug used systemically in psoriasis, though there are not many products available for its topical application. The key reason for this is its inability to penetrate adequately in the skin and get access to the target cells. But of late, several formulations and delivery techniques have been employed in order to improve its delivery through skin. Strategies include the use of different penetration enhancers, adhesive laminate tapes as occlusive covering, physical techniques like iontophoresis, and development of novel drug delivery vehicles. In a study of liposomal formulation of MTX conducted in six patients, it resulted in clearance of psoriasis lesions, while one patient recovered completely. Further modified version of liposomes, i.e., deformable liposome was found to be quite superior to that of aqueous solution and normal liposomes in vitro. In a double-blind placebo-controlled trial involving 40 psoriasis patients, niosomal systems in chitosan gel (0.25%) resulted in a better efficacy, tolerance, and patient compliance, when compared to a marketed formulation. Another version of liposomal system containing ethanol, i.e., ethosomes, showed favorable skin permeation characteristics. Trotta et al. developed oil in water (o/w) microemulsions of MTX having sixfold higher permeation flux than that from the corresponding solutions in mice skin. Recently, MTX incorporated in a hydrogel formulation showed zero-order kinetic release and antipsoriatic activity. This formulation was evaluated in 35 psoriasis patients and the application site was also irradiated with 80 J diode laser of wavelength 650 nm, thrice a week. During 8 months' follow-up, up to 60% of the patients treated with LMTX gel had no recurrence. Solid lipid nanoparticles (SLN) of MTX have showed improved drug accumulation in human cadaver skin. This formulation was also investigated clinically on 24 psoriasis patients for 6 weeks period. The researchers reported that MTX SLN-gel significantly improved the therapeutic index in terms of average percent improvement in healing (APIH) of lesions and reduction in average score of degree of erythema and scaling.

Retinoids
Tretinoin (TRE) is a widely used drug in the topical treatment of acne, photo-aged skin, and other skin disorders but unpleasant side effects often appear in the form of scaling, erythema, burning, and stinging. Several attempts have been made to incorporate the drug in various colloidal carriers. For instance, the drug has been incorporated into liposomes, niosomes, SLNs, and nanocapsules. These studies have been carried out in various animal models and reported to perform quite well. Safe iontophoretic tretinoin delivery is also reported in human volunteers.

Tamoxifen
Tamoxifen (TAM), an anti-estrogen compound given systemically, has recently been figured as a useful agent in the treatment of certain skin specific disorders like psoriasis. Enhanced epidermal transport of TAM employing different penetration enhancers has been reported. Katare et al. (2004) developed TAM liposomes of multilamellar nature, which exhibited appreciably enhanced skin permeation as well as retention of drug molecules in the skin.

Vitamin D-analogue
Vitamin D3 analogues such as calcipotriol, maxacalcitol, tacalcitol, and calcitriol are the mainstay of treatment in mild-to-moderate plaque psoriasis. Local irritation is the most frequently noted side effect, which is managed by combining vitamin D3 analogues with topical corticosteroids. Lin et al. developed NLCs
loaded with both MTX and calcipotriol and reported enhanced drug permeation with limited skin irritation in animal models.[93] Prüfer et al. incorporated 1,25-dihydroxyvitamin D₃ in liposomes and reported its superiority over un-encapsulated drug in efficacy as well as safety.[94]

Tacrolimus
Tacrolimus (FK506), an effective and well-tolerated immunosuppressant, has also found its importance in the treatment of chronic plaque-psoriasis. Various clinical trials of tacrolimus in chronic plaque-psoriasis have been conducted with the conventional topical formulations.[94-98] Only preclinical animal studies with liposomes and nanoparticles of tacrolimus have been reported with improved skin transport effect.[69-70]

Theophylline derivatives
Dyphylline, a derivative of theophylline, inactivates cyclic AMP (cAMP), and is, therefore, used in the management of psoriasis.[99] Touitou et al. (1992) reported significant increase in permeation of dyphylline across abdominal mice skin using liposomal systems, thus corroborating its promise in topical delivery.[100]

Levulinic acid derivatives
Topical photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA), a second-generation photosensitizer is a treatment option for psoriasis covering large area.[101] The major limitation of this strategy, however, is the poor penetration of ALA into the skin lesions. Recently, Fang et al. developed ethosomal system for topical delivery of ALA to overcome its penetration problem. The said work significantly contributed in understanding of the behavior and outcome of penetration of hyperproliferative murine skin.[102]

Temoporfin
Temoporfin (mTHPC) is a very potent second-generation synthetic photosensitizer with high tumor selectivity on activation at 652 nm. However, due to low aqueous solubility and high lipophilicity, the drug is difficult to be delivered topically.[106] Considering this, Dragicic-Curic et al. formulated a different type of vesicular systems (invasomes) which improved topical delivery of mTHPC indicating promising advantage for the photodynamic therapy.[106,17]

Corticosteroids
Corticosteroids, one of the most frequently used classes of drugs in dermatology, have been in practice to treat psoriasis too, either alone or in combination with other drugs.[103,104] Korting et al. developed liposomes containing 0.039% betamethasone dipropionate (BDP) and compared it with a commercial propylene glycol gel containing 0.064% BDP in a double-blind, randomized, paired trial lasting 14 days in 10 patients with psoriasis vulgaris and eczema. This report documented improvement in case of eczema, but not in psoriasis.[105]

Psoralens
Psoralens, mainly employed in PUVA are 8-methoxypsoralen (8-MOP), 5-methoxypsoralen (5-MOP), and 4,5,8-trimethylpsoralen (TMP). Studies have shown that the application of an emulsion cream and a microemulsion of 8-MOP helps in localization of the drug. Baroli et al. developed microemulsions for topical delivery of 8-MOP at the target site and enhanced porcine skin accumulation of 8-MOP without systemic side effects.[106] Fang et al. developed nanoparticulate lipid-based drug carriers viz. SLNs and NLCs, with increased skin permeation and controlled release properties for psoralens.[107]

Terpenoids
Triptolide (TP), a diterpenoid triepoxide, is indicated in the clinical treatment of psoriasis via oral or intravenous route.[108] However, the clinical use of triptolide is limited because of its severe systemic toxicity profile. Mei et al. developed SLNs and microemulsions in order to explore their potential for the topical delivery of TP. The results indicated that these SLN dispersions and microemulsions could serve as efficient promoters for the TP penetrating into skin.[109] Chen et al. also developed microemulsions, and it showed an enhanced in vitro permeation through mouse skins compared to an aqueous solution with no obvious skin irritation. They also studied hydrogel microemulsion of TP and found improvement in its penetration.[110]

Cyclosporin A
Cyclosporin A (CsA) is used in the treatment of psoriasis by oral as well as topical route. Its high molecular weight (more than 500 Da) and limited cutaneous permeation are the key challenges for topical delivery.[111] Many attempts have been made to achieve localized site-specific immunosuppression using conventional topical formulations of CsA, e.g., at Novartis Research Centre (Vienna, Austria), but of without any avail.[112,113] Duncan et al. in a small double-
ple, vehicle-controlled trial reported significant improvement in psoriasis lesions treated with topical CsA formulation with penetration enhancer(s).114 Guo et al.

developed lecithin vesicular carriers for the transdermal delivery of CsA. They observed by \textit{in vitro} permeation technique that the flexible vesicles are better carriers for dermal enhancement.115 Ugazio et al.

incorporated CsA in SLNs and proposed for the exploitation through various routes.116 Boinpally et al.

studied the effect of iontophoresis on topical delivery of CsA across human cadaver skin using lecithin-solubilized drug which resulted in appreciable drug transport across skin. Few reports demonstrated monoolein as penetration enhancer for the topical and transdermal delivery of CsA in various liquid crystalline systems.117-119 Verma et al.

reported increased transport of CsA across skin employing alcoholic liposomes.120 Katare et al.,

demonstrated successful topical delivery of CsA through multicompartmental liposomes and microemulsified systems.121,122 Liu et al.

reported that 40\% ethanol and 10\% menthol shortened the lag time of the penetration of CsA into deeper skin layers.123

\section*{Coal tar}

Some studies have been conducted on very old but highly useful drug, coal tar, using novel phospholipid structured topical formulation. This approach has been reported to be beneficial in meeting the challenges of skin irritation and staining on cloth and skin.42 They also reported better anti-psoriatic activity of this novel formulation \textit{vis-à-vis} the conventional formulation employing mouse tail model of psoriasis.124

\section*{CONCLUSIONS}

The emergence of novel drug delivery systems and its further evolution has attracted the interest of researchers in psoriasis. A wide range of efforts has been made which are mostly centered on the development of carrier-based formulations like liposomes and other colloidal range supra structures. The fundamental interest of such carriers lies on making the existing drugs more effective, safe, and patient-compliant. The studies suggest the importance of these systems for the enhancement in the skin penetration and accumulation of drug along with improved patient compliance. The unique moisturizing ability of the vesicles and its interactions through liposomal lipids with the skin lipids are the possible reason for the improvement in cutaneous transport of drugs. The problem of bulkiness of the molecules could be overcome by way of carrier interactions with the skin cells as reported in the case of cyclosporin. Besides latter, the moderation in the reactivity of the drugs such as dithranol could be of great avail by way of strategic liposomal (carrier) design.

Further, despite so much of work done on development of technique, it could not be extended sufficiently to the clinical level, which reflects a gap between the two domains of research, i.e., clinical and pharmaceutical. However, out of few isolated attempts for clinical applications, the availability of liposome-based dithranol and coal tar gel in the market exemplifies the initiation of the progress. And it needs an all round effort from different stakeholders to work out the bottleneck problems especially the cost of raw materials, scale-up stability and quality issues to ensure the availability of the products, while the establishment of clinical efficacy in psoriasis is of paramount interest.

\section*{REFERENCES}

1. Finlay AY, Ortonne JP. Patient satisfaction with psoriasis therapies: An update and introduction to biologic therapy. J Cutan Med Surg 2004;8:310-20.
2. Fouere S, Adjadj L, Pawin H. How patients experience psoriasis: Results from a European survey. J Eur Acad Dermatol Venereol 2005;19:2-6.
3. Bos JD, Spuls PI. Topical treatments in psoriasis: Today and tomorrow. Clin Dermatol 2008;26:432-37.
4. Morganti P, Ruocco E, Wolf R, Ruocco V. Percutaneous absorption and delivery systems. Clin Dermatol 2001;19:489-501.
5. Hadgraft J. Recent developments in topical and transdermal delivery. Eur J Drug Metab Pharmacokinet 1996;21:165-73.
6. Wertz PW, Madison KC, Downing DT. Covalently bound lipids of human stratum corneum. J Invest Dermatol 1989;92:109-11.
7. de Leeuw J, de Vlijder HC, Bjerring P, Neumann HA. Liposomes in dermatology today. J Eur Acad Dermatol Venereol 2009;23:505-16.
8. Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: An update review. Curr Drug Deliv 2007;4:297-305.
9. Goyal P, Goyal K, Vijaya Kumar SG, Singh A, Katare OP, Mishra DN. Liposomal drug delivery systems--clinical applications. Acta Pharm 2005;55:1-25.
10. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul 2008;2:238-57.
11. Bali V, Bhavna, Ali M, Baboota S, Ali J. Potential of microemulsions in drug delivery and therapeutics: A patent review. Recent Pat Drug Deliv Formul 2008;2:136-44.
12. Azmin MN, Florence AT, Handjani-Vila RM, Stuart JF, Vanlerberghhe G, Whittaker JS. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol 1985;37:237-42.
13. Rogerson A, Cummings J, Willmott N, Florence AT. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol 1988;40:337-42.
14. Baillie AJ, Coombs GH, Dolan TF, Laurie J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol 1986;38:502-5.
Katare, et al.

Psoriasis and novel drug delivery systems

15. Singh B, Kapil R, Bandopadhyay S, Katare OP. Dendrimers as nanobiopolymers: Drug delivery applications. Pharma Buzz 2009;34-43.

16. Dragicovic-Curic N, Scheglmann D, Albrecht V, Fähr A. Temoporfin-loaded invasomes: Development, characterization and in vitro skin penetration studies. J Control Release 2008;127:59-69.

17. Dragicovic-Curic N, Scheglmann D, Albrecht V, Fähr A. Development of different temoporfin-loaded invasomes-novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloids Surf B Biointerfaces 2006;79:199-206.

18. zur Muhlen A, Schwarz C, Mehrert W. Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism. Eur J Pharm Biopharm 1998;45:149-55.

19. Freitas C, Muller RH. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J Microencapsul 1999:16:59-71.

20. Pardeike J, Hommos A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 2009;366:170-84.

21. Scuto EB, Muller RH. Cosmetic features and applications of lipid nanoparticles (SLN, NLC). Int J Cosmet Sci 2008;30:157-65.

22. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. Eur J Pharm Biopharm 2000;50:161-77.

23. Muller RH, Petersen RD, Hommos A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007;59:522-30.

24. Singh B, Bandopadhyay S, Kapil R, Katare OP. Nanostructured lipid carriers as novel drug delivery vehicles. Pharma Buzz 2008;38:46.

25. Kim ST, Jang DJ, Kim JH, Park JY, Lim JS, Lee SY, et al. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie 2009;64:510-14.

26. Tran C, Lubbe J, Sorg O, Deelker L, Carraux P, Antille C, et al. Topical calcineurin inhibitors decrease the production of UVB-induced thymine dimers from hairless mouse epidermis. Dermatology 2005;211:341-47.

27. Hamada Y, Komatsu T, Seto Y, Matsubara H, Kume H, Sunakawa K, et al. Liposomal-ampicillin B efficacy and safety. Kansenschougaku 2010;84:193-8.

28. Gupta M, Goyal AK, Paliwal SR, Paliwal R, Mishra N, Vaidya B, et al. Development and characterization of effective topical liposomal system for localised treatment of cutaneous candidiasis. J Liposome Res 2010 [In Press].

29. Bhalaria MK, Naik S, Misra AN. Ethenoses: A novel delivery system for antifungal drugs in the treatment of topical fungal infections. Indian J Exp Biol 2009;47:368-75.

30. Pannu J, McCarthy A, Martin A, Hamouda T, Ciotti S, Fothergill K, et al. NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrobial Agents Chemotherapy 2009;53:3273-39.

31. Patel RP, Patel H, Baria AH. Formulation and Evaluation of Liposomes of Ketoconazole. Int J Drug Deliv Technol 2009;1:42-45.

32. Verma AM, Palani S. Development and in vitro evaluation of liposomal gel of ciclopirox olamine. Int J Pharm Bio Sci 2010;1:200-9.

33. Trotta M, Peira E, Carlotti ME, Gallarate M. Deformable liposomes for dermal administration of methotrexate. Int J Pharm 2004;270:119-25.

34. Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J Control Release 2007;123:148-54.

35. Lakshmi PK, Devi GS, Bhaskaran S, Sacchidanand S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J Dermatol Venereol Leprol 2007;73:157-61.

36. Ali MF, Salah M, Rafea M, Saleh N. Liposomal methotrexate hydrogel for treatment of localized psoriasis: Preparation, characterization and laser targeting. Med Sci Monit 2008;14:P66-74.

37. Dragicovic-Curic N, Winter S, Krajensnik D, Stupar M, Milic J, Graefe S, et al. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J Liposome Res 2010;20:38-48.

38. Agarwal R, Katare OP, Vyas SP. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int J Pharm 2001;228:43-52.

39. Saraswat A, Agarwal R, Kaur I, Katare OP, Kumar B. Fabric-staining properties and washability of a novel liposomal dithranol formulation. J Dermatolog Treat 2002;13:119-22.

40. Saraswat A, Agarwal R, Katare OP, Kaur I, Kumar B. A randomized, double-blind, vehicle-controlled study of a novel liposomal dithranol formulation in psoriasis. J Dermatolog Treat 2007;18:40-5.

41. Agarwal R, Saraswat A, Kaur I, Katare OP, Kumar B. A novel liposomal formulation of dithranol for psoriasis: Preliminary results. J Dermatol 2002;29:529-32.

42. Bhatia A, Mangat P, Jain B, Singh B, Katare OP. Washability and fabric-staining properties of a novel phospholipid-structured coal tar formulation. J Dermatolog Treat 2006;19:105-10.

43. Fernandez JM, Knudson MB. Method of delivering a lipid-coated condensed-phase microparticle composition. United States: United States Patent Office; 1995.

44. Jenkins S, Liversidge G, Liversidge E. Nanoparticulate tacrolimus formulations. United States: United States Patent Office; 2008.

45. Erdogan M, Wright JR, McAlister VC. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: experimental studies in a murine model. Br J Dermatol 2002;146:964-7.

46. Elzainy AA, Gu X, Simons FE, Simons KJ. Cetirizine from topical phenol/dichloroacetic acid-liposome preparations: Intradermal skin penetration and clinical effects. J Invest Dermatol 2006;127:1235-41.

47. Lim GJ, Ishiuji Y, Dawn A, Harrison B, Kim do W, Atala A, et al. In vitro and in vivo characterization of a novel liposomal butorphanol formulation for treatment of pruritus. Acta Derm Venereol 2008;88:327-30.

48. Yang D, Pokhrel A, Nakatsuji T, Chan M, Carson D, Huang CM, et al. The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes. Biomaterials 2009;30:6035-40.

49. Esposito E, Menegatti E, Cortesi R. Ethosomes and liposomes as topical vehicles for azelaic acid: A preformulation study. J Cosmet Dermatol 2005;8:167-73.

50. Patel VB, Misra A, Marfatia YS. Topical liposomal gel of tretinoin for the treatment of acne: Research and clinical implications. Pharm Dev Technol 2000;5:545-64.

51. Patel VB, Misra A, Marfatia YS. Preparation and comparative clinical evaluation of liposomal gel of benzoyl peroxide for acne. Drug Dev Ind Pharm 2001;27:863-9.

52. Seth AK, Misra A, Umrigar D. Topical liposomal gel of idoxuridine for the treatment of herpes simplex: Pharmaceutical and clinical implications. Pharm Dev Technol 2004;9:277-89.

53. Trotta M, Peira E, Debernardi F, Gallarate M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm 2002;241:319-27.

54. Ismailova GK, Efremenko VI, Logvinenko OV, et al. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J Liposome Res 2010;20:38-48.

55. Raza K, Singh B, Mahajan A, Negi P, Bhatia A, Katare OP. Design and evaluation of flexible membrane vesicles (FMVs) for enhanced topical delivery of capsaicin. J Drug Target 2010 [In Press].

56. Singh B, Mehta G, Kumar R, Bhatia A, Ahuja N, Katare OP. Design, development and optimization of nimesulide-loaded liposomes for topical delivery via transdermal patch. Indian J Pharm Sci 2009;71:217-20.
Psoriasis and novel drug delivery systems

Katare, et al.

57. Kumar R, Singh B, Bakshi G, Katare OP. Development of liposomal systems of finasteride for topical applications: design, characterization, and in vitro evaluation. Pharm Dev Technol 2007;12:591-601.

58. Fresta M, Puglisi G. Corticosteroid dermal delivery with skin-lipid liposomes. J Control Release 1997;44:141-51.

59. Frangos JE, Kimball AB. Globetasol propionate emollient formulation foam in the treatment of corticosteroid-responsive dermatoses. Expert Opin Pharmacother 2008;9:2001-7.

60. Bhathia A, Kumar R, Katare OP. Tacrolimus in topical pharmaceuticals: development, characterization and in vitro evaluation. J Pharm Pharm Sci 2004;7:252-9.

61. Bhathia A, Singh B, Blushan S, Katare OP. Tamoxifen-encapsulated vesicular systems: cytotoxicity evaluation in human epidermal keratinocyte cell line. Drug Del Ind Pharm 2010;36:350-4.

62. Elzainy AA, Gu X, Simons FE, Simons KJ. Hydroxynicone from topical phospholipid liposomal formulations: evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSci 2003;5:E28.

63. Korbel JN, Sebok B, Korenyi M, Mahrle G. Enhancement of the antiparakeratotic potency of calcitriol and taccalcit in liposomal preparations in the mouse tail test. Skin Pharmacol Appl Skin Physiol 2001;14:291-5.

64. Pruefer K, Jirikowski GF. Liposomal incorporation changes the effect of 1,25-dihydroxyvitamin D3 on the phospholipase C signal transduction pathway and the eicosanoid cascade on keratinocytes in vitro. Biochem Pharmacol 1996;51:247-52.

65. Menter A, Korman NJ, Elmers CA, Feldman SR, Gelfand JM, Gordon KB, et al. Guidelines of care for the management of psoriasis with topical phospholipid liposomal formulations: evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. AAPS PharmSci 2003;5:E28.

66. Buja LM, Wang Z, O’Rourke J, et al. Development, characterization and in vitro mucoadhesion of salbutamol nanosuspension formulations for topical delivery. Int J Nanomedicine 2010;5:117-28.

67. Piacquadio D, Kligman A. The critical role of the vehicle to therapeutic efficacy and patient compliance. J Am Acad Dermatol 1998;39:567-73.

68. Mustakallio KK. The history of dithranol and related hydroxyanthrones, their efficacy, side effects, and different regimens employed in the treatment of psoriasis. A review. Acta Derm Venereol Suppl (Stockh) 1992:172:7-9.

69. Mahrle G. Dithranol. Clin Dermatol 1997;15:723-37.

70. Prins M, Swinkels OQ, Bouwhuys S, de Gast MJ, Bouwman-Boer Y, van der Valk PG, et al. Dithranol in a cream preparation: disperse or dissolve? Skin Pharmacol Appl Skin Physiol 2000;13:273-9.

71. Gehring W, Ghyczy M, Gloor M, Scheer T, Roding J. Enhancement of the penetration of dithranol and increase of effect of dithranol on the skin by liposomes. Arzneimittelforschung 1992;42:983-5.

72. Gidwani SK, Singnurkar PS. Composition for delivery of dithranol. India: European Patent Office: 2003: p. 1-14.

73. Citations, Biotech product and process development and commercialization awards. In: DBT, New Delhi: Government of India; 2007. p. 1-5.

74. Citations, Biotech product and process development and commercialization awards, Ministry of Science and Technology. In: DBT, New Delhi: Government of India; 2006. p. 16-9.

75. Montes L. Method of treating psoriasis with cycloheximide. United States: United States Patent Office; 1972.

76. Comaih S. The effect of methotrexate on skin. Br J Dermatol 1969;81:551-4.

77. McCullough JL, Synder DS, Weinstein GD, Friedland A, Stein B. Factors affecting human percutaneous penetration of methotrexate and its analogues in vitro. J Invest Dermatol 1976;66:103-7.

78. Zaffaroni A. Therapeutic adhesive tape. United States: United States Patent Office; 1971.

79. Alvarez-Figueroa MJ, Delgado-Charro MB, Blanco-Mendez J. Passive and iontophoretic transdermal penetration of methotrexate. Int J Pharm 2001;212:101-7.

80. Alvarez-Figueroa MJ, Blanco-Mendez J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm 2001;215:57-65.

81. Patel H. Methotrexate ointment. United States: United State Patent Office; 1983.

82. Trott A, Patterson F, Gasco MR. Influence of counter ions on the skin permeation of methotrexate from water–oil microemulsions. Pharm Acta Helv 1996;71:135-40.

83. Misra AK, Padhi BK, Chougule M. Methotrexate-loaded solid lipid nanoparticles for topical treatment of psoriasis: formulation & clinical implications. Drug Del Tech 2004;4:8.

84. Pariser D, Bucko A, Fried R, Jarratt MT, Kempters S, Kircik L, et al. Tretinoin gel microsphere pump 0.04% plus 5% benzyol peroxide wash for treatment of acne vulgaris: Morning/morning regimen is as effective and safe as morning/evening regimen. J Drugs Dermatol 2010;9:805-13.

85. Kikuchi K, Suetake T, Kumassaka N, Tagami H. Improvement of photofacial skin in middle-aged Japanese females by topical retinol (vitamin A alcohol): a vehicle-controlled, double-blind study. J Dermatol Treat 2009;20:276-81.

86. Bai K, Chuana VK, Sharma V, Gupta RK. Recalcitrant psoriasis treated with tretinoin 0.05% cream. Indian J Dermatol Venereol Leprol 1996;62:338.

87. Schmidt JB, Donath P, Hannes J, Perl S, Neumayer R, Reiner A. Tretinoin-iotphoresis in atrophic acne scars. Int J Dermatol 1999;38:149-53.

88. Boyd AS, King LE Jr. Tamoxifen-induced remission of psoriasis. J Am Acad Dermatol 1999;41:887-89.

89. Ferrari VD, Jirillo A. Psoriasis and tamoxifen therapy: A case report. Tumori 1996;82:262-63.

90. Zhao K, Singh J. Mechanisms of percutaneous absorption of tamoxifan by terpenes: eugenol, D-limonene and menthone. J Control Release 1998;55:253-60.

91. Katare OP, Sinha VR, Bhathia A, Kumar R, Gupta S. Synergistic liposomal tamoxifan composition for topical application and method of preparing thereof. United Nations: WIPO; 2006.

92. O’Neill JL, Feldman SR. Vitamin D analogue-based therapies for psoriasis. Drugs Today (Barc) 2010;46:351-60.

93. Lin YK, Huang ZR, Zhuo RZ, Fang JY. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int J Nanomedicine 2010;5:117-28.

94. Remitz A, Reitamo S, Erkko P, Granlund H, Lauerma AI. Tacrolimus ointment improves psoriasis in a microplate assay. Br J Dermatol 1999;141:103-7.

95. Clayton TH, Harrison PV, Nichols R, Delap M. Topical tacrolimus for facial psoriasis. Br J Dermatol 2003;149:419-20.

96. Yamamoto T, Nishikawa K. Topical tacrolimus is effective for facial lesions of psoriasis. Acta Derm Venereol Suppl (Stockh) 2000:80:451.

97. Yamamoto T, Nishikawa K. Topical tacrolimus: An effective therapy for facial psoriasis. Eur J Dermatol 2003;13:471-3.

98. Freeman AK, Linowski GJ, Brady C, Lind L, Vanveldhuysen P, Singer G, et al. Tacrolimus ointment for the treatment of psoriasis on the face and intertriginous areas. J Am Acad Dermatol 2003;48:564-8.

99. Iancu L, Shneur A, Cohen H. Trials with xanthine derivatives in systemic treatment of psoriasis. Dermatologica 1979;159:55-61.

100. Tsoufis CD, Shaco-Ezra N, Dayan N, Jushynsky M, Rafaeloff R, Azoury R. Dysphyllic liposomes for delivery to the skin. J Pharm Sci 1992;81:131-4.

101. Ibotson SH. Topical 5-aminoalavulenic acid photodynamic therapy for the treatment of skin conditions other than non-melanoma skin cancer. Br J Dermatol 2002;146:178-86.

102. Fang YP, Huang YB, Wu PC, Tsai YH. Topical delivery of 5-aminoalavulenic acid-encapsulated ethosomes in a...
Katare, et al.

hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur J Pharm Biopharm 2009;73:391-8.

103. Afifi T, de Gannes G, Huang C, Zhou Y. Topical therapies for psoriasis: Evidence-based review. Can Fam Physician 2005;51:519-25.

104. Pearce DJ, Spencer L, Hu J, Balkrishnan R, Fleischer AB Jr, Feldman SR. Class I topical corticosteroid use by psoriasis patients in an academic practice. J Dermatolog Treat 2004;15:235-38.

105. Korting HC, Zienicke H, Schafer-Korting M, Braun-Falco O. Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur J Clin Pharmacol 1990;39:349-51.

106. Baroli B, Lopez-Quintela MA, Delgado-Charro MB, Fadda AM, Blanco-Mendez J. Microemulsions for topical delivery of 8-methoxsalen. J Control Release 2000;69:209-18.

107. Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008;70:633-40.

108. Wu SX, Guo NR. Clinical observation on effect of triptolide tablet in treating patients with psoriasis vulgaris. Chin J Integr Med 2005;11:147-8.

109. Mei Z, Chen H, Weng T, Yang Y, Yang X. Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm 2003;56:189-96.

110. Chen H, Chang X, Weng T, Zhao X, Gao Z, Yang Y, et al. A study of microemulsion systems for transdermal delivery of triptolide. J Control Release 2004;98:427-36.

111. Thomson AW, Whiting PH, Simpson JG. Cyclosporine: immunology, toxicity and pharmacology in experimental animals. Agents Actions 1984;15:306-27.

112. Lawrence R. Novel topical and oral treatment for dermatitis and psoriasis. Drug Discov Today 2001;6:114-5.

113. Hewitt CW, Black KS. Overview of a 10-year experience on methods and compositions for inducing site-specific immunosuppression with topical immunosuppressants. Transplant Proc 1996;28:922-3.

114. Duncan JJ, Wakeel RA, Winfield AJ, Ormerod AD, Thomson AW. Immunomodulation of psoriasis with a topical cyclosporin A formulation. Acta Derm Venereol 1993;73:84-7.

115. Guo J, Ping Q, Sun G, Jiao C. Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm 2000;194:201-17.

116. Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm 2002;241:341-4.

117. Boinpally RR, Zhou SL, Devraj G, Anne PK, Poondru S, Jasti BR. Iontophoresis of lecithin vesicles of cyclosporin A. Int J Pharm 2004;274:185-90.

118. Lopes LB, Gollet JH, Bentley MV. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur J Pharm Biopharm 2005;60:25-30.

119. Lopes LB, Lopes JL, Oliveira DC, Thomazini JA, Garcia MT, Fantini MC, et al. Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: Characterization and study of in vitro and in vivo delivery. Eur J Pharm Biopharm 2006;63:146-55.

120. Verma DD, Fahr A. Synergistic penetration enhancement effect of ethanol and phospholipids on the topical delivery of cyclosporin A. J Control Release 2004;97:55-66.

121. Katare OP, Kumar R, Bhoop BS, Dogra S, Kaur I. A multicompartmental liposomal system for topical drug delivery. Kolkata (India): The Patent Office Journal; 2009. p. 6210.

122. Katare OP, Kumar R, Bhoop BS, Dogra S, Kaur I. Phospholipid-based formulation with improved attributes of coal tar. J Cosmet Dermatol 2009;8:282-8.
Be on the top with Lumenis

Only company with direct presence in India

Best in class Lasers: LightSheer and Ultrapulse

Strong Service Network in India

Comprehensive clinical trainings from renowned clinicians

Strong Base of Users in India

For more information please contact:

Lumenis India Pvt. Ltd., 308-309-310, 3rd Floor, Suncity Business Tower, Golf Course Road, Sector -54, Gurgaon - 122 002 Haryana, India. Tel: +91-1244854902; M: +91-8800411599, Fax: +91-1244854932
Email: shantanu.bhatnagar@lumenis.com
India Service Helpline: 0124-4210795, Email: customercareindia@lumenis.com