Physiological stress-induced corticosterone increases heme uptake via KLF4-HCP1 signaling pathway in hippocampus neurons

Hongxia Li1, Caixia Zhang1,2, Hui Shen1, Zhilei Shen1, Lusha Wu1, Fengfeng Mo1 & Min Li1

Iron overload has attracted much attention because of its adverse effect in increasing the risk of developing several neurodegenerative disorders. Under various pathologic conditions, a lot of heme are released. The aggregation of heme is more neurotoxic than that of iron released from the heme breakdown. Our previous studies demonstrated that psychological stress (PS) is a risk factor of cerebral iron metabolism disorders, thus causing iron accumulation in rat brains. In the present study, we found PS could increase heme uptake via heme carrier protein 1 (HCP1) in rat brains. We demonstrated that Glucocorticoid (GC), which is largely secreted under stress, could up-regulate HCP1 expression, thus promoting heme uptake in neurons. We also ascertained that HCP1 expression can be induced by GC through a transcription factor, Krüppel-like factor 4 (KLF4). These results may gain new insights into the etiology of heme uptake and iron accumulation in PS rats, and find new therapeutic targets of iron accumulation in Parkinson’s disease or Alzheimer’s disease.

Heme, a ferrous protoporphyrin IX that serves as the major source of iron in the body, plays a pivotal role in iron metabolism and a myriad of other cellular processes, including electron transport, gas synthesis, gas sensing, signal transduction, microRNA processing, and maintenance of the circadian clock1–3. However, an excessive amount of free heme promotes lipid peroxidation and increases oxidative stress through generation of reactive oxygen species (ROS). Such a process may give rise to membrane injury, ultimately resulting in cell apoptosis4. Therefore, the intracellular levels of free heme must be tightly regulated5.

Under normal physiological conditions, free heme is rarely detected, thus concentrations are expected to be negligible. However, under various pathologic conditions, such as hemorrhage, hemolysis or cell injury, large amounts of heme are released and contribute to brain damage6–8. Such an excess in free heme can lead to other physiological disorders, such as complications after hemorrhagic stroke9–11. Previous studies demonstrated that the incidence of brain microhemorrhages increases with age12, 13 and contributes to Alzheimer disease pathology14, 15. Recent studies suggested that the accumulation of heme is more neurotoxic than that of iron released from the heme breakdown16. Hemin is the oxidized form of heme, and though the neurotoxic effect of hemin has been previously demonstrated in primary neuronal cultures and neuronal cell lines11, 17, the underlying mechanisms of hemin uptake by brain cells remains largely unclear.

Heme carrier protein 1 (HCP1), also known as proton-coupled folate transporter (PCFT)18, is a membrane transporter belonging to the major facilitator superfamily. It was first identified and described as being able to take up heme in the duodenum19. Subsequent research demonstrated that HCP1 could also mediate heme uptake in the retina, retinal pigment epithelium, and astrocytes20, 21. 5′-aminolevulinate synthase 1 (ALAS1) catalyzes the first step in the heme synthesis, while heme oxygenase 1 (HO-1) catalyzes the step in heme degradation. ALAS1 and HO-1 are the rate-limiting enzymes in heme biosynthesis and catabolism, respectively22. Previously we have reported that psychological stress (PS) could induce dysregulation of iron metabolism23, 24. PS significantly decreases serum iron and affect erythropoiesis. In PS rats, iron absorption decreased and iron is significantly accumulated in the apical poles of villous enterocytes25. We also have demonstrated that PS could increase...
HCP1 plays an essential role in heme uptake in vitro. To investigate the role of HCP1 in heme uptake by hippocampus nerve cells, HCP1 siRNA was used to knockdown HCP1 expression in HT-22 cells 2 days prior to the treatment with hemin. It was found that the intracellular iron content was increased in both concentration and time gradient when cells were incubated with hemin (p < 0.01, Fig. 2A). To visualize hemin accumulation in neurons, cells were incubated with 30μM ZnPPIX, which has been previously reported to be accumulated in cells via HCP138. After 2h incubation with ZnPPIX, strong cellular fluorescence was observed (Fig. 2B).

Western blot assays indicated that the HCP1 expression was significantly inhibited 48 hours post-transfection. When compared to a non-specific control siRNA (p < 0.0001), meanwhile, there was a significant decreased heme uptake upon HCP1 knockdown (Fig. 2C). In contrast, when an HCP1 expression plasmid was transfected into HT-22 cells, a significant enhanced heme uptake was observed (Fig. 2D).

GC enhances HCP1 expression in vitro. It was previously shown that corticosterone is largely secreted under stress36. We also reported that increased extracellular corticosterone concentrations could cause iron accumulation in hippocampal neurons in vitro37. We hypothesized that HCP1-mediated hemin uptake might be one of the mechanisms of corticosterone-induced iron accumulation in hippocampus neurons. To this end, HT-22 cells were treated with corticosterone and HCP1 expression was determined by both reverse-transcribed PCR (RT-PCR) and Western blot assays for mRNA and protein, respectively. Previous reports indicated that corticosterone impairs HT-22 cell viability at a concentration higher than 50μM38,39. Our results indicated that at as low as 15μM, corticosterone treatment for 24 hours hardly induced HCP1 mRNA transcription in HT-22 cells (Fig. 3A). The enhancement was more significant when corticosterone was used at 30μM(Fig. 3A). In addition,
Figure 1. Iron content, HCP1 and its transcription factors expression in hippocampus and cortex of rat brain. (A) The iron content in hippocampus and cortex was significantly elevated in PS group compared with the control group. (B) RT-PCR analysis showed that HCP1 mRNA expression in hippocampus and cortex of PS rat brain was significantly higher than in control group. (C,D) The transcription factors NRF1, KLF4, YY1 and CDX2 mRNA expression in hippocampus and cortex of the rat brain: only KLF4 mRNA expression was significantly increased in PS group, and others have no significant differences compared with the control group. (E) Western blot analysis revealed that HCP1 protein expression was increased in hippocampus and cortex of the PS rat brain. (F) Western blot analysis also demonstrated that KLF4 protein expression was increased in hippocampus and cortex of the PS rat brain. (G) Western blot showed that ALAS1 expression in hippocampus and cortex of PS rat brain has no differences with the control group, while the expression of HO-1 was significantly increased in PS group. Values are means ± SD. *p < 0.05; **p < 0.01; ***p < 0.001. (HC: hippocampus in control group; HPS: hippocampus in PS group; CC: cortex in control group; CPS: cortex in PS group).
the effect of corticosterone on HCP1 mRNA transcription is time-dependent (Fig. 3B). Similarly, Western blot analysis revealed that HCP1 protein expression was increased upon corticosterone treatment in a concentration- and time-dependent manner (Fig. 3C and D).

GC enhances KLF4 expression and hemin uptake in vitro. Next, the expression of KLF4, a potential transcription factor of HCP1, was determined upon corticosterone treatment at 30 µM for 24 hours. As shown in Fig. 4A, corticosterone treatment led to a significant increase (>2-fold) in the KLF4 mRNA expression in HT-22 cells (p = 0.0048). Meanwhile, Western blot analysis revealed that KLF4 protein expression was significantly increased upon corticosterone treatment (p = 0.0155, Fig. 4B). To investigate the effect of GC on heme uptake, cells were pre-incubated with corticosterone for 1 h, and then added hemin for 2 h. Interestingly, in the corticosterone and heme co-treated cells, the cellular iron content was increased more markedly than that in the only hemin treated cell (p = 0.017066, Fig. 4C).
GC stimulates HCP1-mediated heme uptake in vitro through the activation of KLF4. To investigate the role of KLF4 in the effect of corticosterone on HCP1-mediated heme uptake, HT-22 cells were treated with KLF4 specific siRNA and the inhibitor of GC receptor (RU486). The present results showed that the increased HCP1 expression induced by corticosterone was significantly reduced when cells were pretreated with RU486 or transfected with KLF4 siRNA (*p < 0.05, Fig. 5A). Moreover, the effect of GC on heme uptake in HT-22 cells was also abolished when cells were transfected with KLF4 siRNA (Fig. 5B). These indicate that the expression of HCP1 and increased heme uptake induced by GC in HT-22 cells or PS rat brain may be through KLF4.

Discussion
Our previous studies demonstrated that PS could cause iron accumulation in the cerebral cortex and hippocampus of the rat brain^{25-28}, and suggested that PS is a risk factor of disorders related to cerebral iron metabolism. Oxidative damage could be induced by increased iron^{46}. In the present study, we demonstrated that in PS rat brains the expression of HCP1 could be induced by corticosterone through KLF4, and the enhanced HCP1 may increase heme uptake, which may partly lead to iron accumulation in the cerebral cortex and hippocampus, thus exacerbate oxidative damage in rat brain.
The iron content in different parts of brain varies greatly. Previously, we demonstrated that after PS exposure, the iron concentrations are increased in some specific regions of rat brain, which may be attributed to varying iron regulation factors. PA Dennery found that reactive iron can induce HO-1 expression. In this study, we found the expression of HCP1 was significantly increased and accompanied by elevated concentrations of iron in the cerebral cortex and hippocampus of PS rat brains. We also found that increased expression of HO-1 in PS rat brain can be induced by heme imported by HCP1. ALAS1 expression in PS rat brain has no significant differences compared with the control group. The elevated HCP1 means that much heme has been imported to cells. Above results indirectly indicate that heme release is increased by PS and then heme is transported into brain cells by HCP1, raising the iron concentration in cerebral cortex and hippocampus of rat brain.

Previous studies have demonstrated that cultured astrocytes and cerebellar granule cells have the capacity to uptake hemin via HCP1, and cause iron accumulation in cells. In the present study we ascertained that hippocampal neurons can take up hemin by HCP1, and accumulate it in a time-and concentration-dependent manner. However, the neurotoxicity of heme to HT-22 cells seems more alleviated. The differences in hemin toxicity between the present study and Regan's may be due to cell type differences. The current study used immortalized cells whereas they used primary cells. Immortalized cells were used because the accumulation of hemin should be examined for up to 6 h without cell death.

To investigate the possibility that the neurons uptake hemin via HCP1, we used ZnPPIX (has autofluorescent property), which has previously been shown to accumulate in cells via HCP1. The result showed that the bright...
fluorescence indicator appeared in the cells incubated with 40 µM ZnPPIX for 2 h. Furthermore, HCP1 expression was induced and inhibited by constructing the corresponding over-expression and siRNA plasmid. The present study demonstrated that when HCP1 expression was suppressed, the iron content in cells was decreased, and when HCP1 expression was enhanced, the iron content in cells was increased. The result further confirmed hemin could be taken up by HCP1 in hippocampal neurons.

Glucocorticoid is one of the most widely used anti-inflammatory agents in clinical practice, and is largely secreted under stress. The present study showed that serum corticosterone was increased markedly in PS rats. A study on macrophages reported that HCP1 could be induced by GC, and has an essential role in the regulation of Hb/heme-iron recycling. Interestingly, the present study found that HCP1 expression was significantly increased in cerebral cortex and hippocampus of the PS rat brain. Furthermore, our study showed that HCP1 expression was increased in a concentration- and time-dependent manner when cells were treated with corticosterone. More important, the present study suggested cells treated with corticosterone accumulated more iron than the control. This illustrated that corticosterone could enhance HCP1 expression and therefore increase hemin uptake in neurons.

KLF4 (Krüppel-like factor 4), a member of the family of zinc-finger transcription factors, has diverse functions and is associated with a variety of pathophysiological processes. KLF4 is believed to be critical to endothelial

Figure 5. CORT stimulates HCP1 expression through activation of KLF4. (A) Western blot showed that HCP1 expression was increased when cells were treated with CORT. However, this effect was abolished when cells were pre-transfected with KLF4 specific siRNA or pre-incubated with the inhibitor of CORT (RU486). (B) HT-22 cells were pre-transfected with KLF4 siRNA, then treated with CORT and incubated with hemin. The cellular iron content originally increased by CORT was decreased, and has no differences with the control group. Values are means ± SD. *p < 0.05; **p < 0.01.
and macrophage-mediated inflammation45–48, and is also a key factor in mediating neuroinflammation via microglial activation and the subsequent release of proinflammatory cytokines46,50. Recent studies suggested that KLF4 may be involved in the regulation of reaction after ischemic injury in astroglial51, and play a key role in regulating the immunomodulatory activities of microglia52. Previous studies demonstrated that KLF4, NRP1, YY1, and CDX2 and HNF4a are potential transcription factors of HCP1/PCFT/SLC46a114,35. In the study, we detected the expression of above HCP1 transcription factors in the brains of rats, and found that only KLF4 expression was greatly increased in the cerebral cortex and hippocampus of PS rats. More importantly, our study suggested KLF4 expression is significantly elevated in corticosterone treated cells. To ascertain if corticosterone up-regulates HCP1 expression through KLF4, the glucorticoid-receptor inhibitor RU486 and KLF4 specific siRNA were administrated26. Western analysis showed a more than twofold increase in KLF4 expression in corticosterone treated cells. However, the RU486 and KLF4 silence RNA added significantly repressed the up-regulation of corticosterone on HCP1. Further, we demonstrated that the effect of corticosterone on heme uptake via HCP1 was abolished when cells were transfected with KLF4 siRNA. Taken together we ascertain that through activated KLF4, corticosterone up-regulated HCP1, and resulted in increased heme uptake in hippocampal neurons.

In our previous and this study, we clarified that the iron content increased in the hippocampus and cortex and there were many iron particles in the neurons in stress-exposed rats, however we can’t distinguish non-heme iron and heme iron. We can only speculate that the iron content in the physiological stress-exposed rats increased partly due to the strengthen of transporting heme, according to the elevated HCP1 and HO-1 indirectly. We think we should repeat this experiment in more cells such as neuroglia in our future experiment.

Conclusion

Our study demonstrated that the expression of HCP1 was significantly increased in the cerebral cortex and hippocampus of the PS rat brain, and that CORT, which is largely secreted under stress, could greatly stimulate HCP1 expression and increase the uptake of heme in hippocampal neurons. In addition, CORT stimulated HCP1 expression through the activation of the transcription factor KLF4. Based on these findings, we postulate that CORT-induced elevation of HCP1 through KLF4 may be one of the reasons why PS can cause iron accumulation in the rat brain.

Methods

Animals and establishment of the PS model. Thirty male Sprague-Dawley (SD) rats, weighing 120 ± 5g, were purchased from Shanghai-BK Co., Ltd., Shanghai, China, and were housed individually with free access to food and water. After 7-day of adaptation, rats were equally divided into three groups: control, PS, and foot shock (FS) groups. The PS model was created in rats by a communication box as described previously. Rats were exposed to PS for 30 min every morning (10:00–10:30) for 7 days. All animal procedures were performed strictly in accordance with the international ethical guidelines and approved by the animal research committee of the Second Military Medical University (Shanghai, China).

Sampling preparation. At the end of PS exposure, animals were anesthetized by i.p. injection of 10% chlорal hydrate. Blood samples were collected from the heart, and centrifuged at 3000g for 20 min. The serum content of corticosterone (CORT), adrenocorticotropic hormone (ACTH), and norepinephrine (NE) were analyzed to evaluate the PS model using a commercially available ELISA kit (R&D Systems, Inc., USA).

Then, rats were perfused through the left cardiac ventricle with ice-cold phosphate buffered saline (PBS; pH 7.4) to flush out the blood. The cerebral cortex and hippocampus were quickly removed, snap frozen in liquid nitrogen, and kept at −80°C for further assays.

In vitro experiments with HT-22 cells. Mouse hippocampus nerve cells (Cell line HT-22, gifted by David Schubert, Salk Institute for Biological Studies, California) were grown in high-glucose DMEM supplemented with 10% FBS (Gibco, USA) and 1% antibiotic solution, and incubated in a humidified 5% CO\textsubscript{2} atmosphere at 37°C. The culture medium was replaced every 2–3 days.

In vitro heme uptake assays. The cells were incubated with the medium containing 0, 10, 30 and 50 μM hemin (Sigma) for 2 h, and with 30 μM hemin for 0, 0.5, 1, 2, 4 and 6 h. After incubation, the cellular content of iron was quantified using an atomic absorption spectrophotometer as described previously53, and standardized against basal protein levels52.

To determine whether HCP1 contributes to heme uptake in neurons, we constructed a HCP1 expression plasmid and synthesized HCP1 siRNA. To visualize heme uptake via HCP1 in HT-22 cells, we used ZnPPIX (has autofluorescent properties), which has previously been shown to accumulate in cells via HCP114.

Corticosterone treatment. HT-22 cells were treated with 1 μM, 10 μM, 15 μM and 30 μM corticosterone for 24 h, and treated with 30 μM corticosterone for 1 h, 2 h, 4 h, 8 h, 12 h and 24 h. QPCR and western blot were used for investigating the effect of corticosterone on HCP1 expression. To ascertain the effect of corticosterone on heme uptake, HT-22 cells were pretreated with corticosterone for 1 h, and then added 30 μM heme for 2 h. The cellular content of iron was quantified using an atomic absorption spectrophotometer as previously described53.

siRNA silence of KLF4. HT-22 cells were transfected to 6-well plates and transfected with siRNA products for KLF4 silence or negative control oligos (Jima, China) in the presence of lipofectamine RNAiMAX according to the manufacturer’s instructions (Invitrogen, USA). Cells were maintained for 24 h after transfection and given 30 μM corticosterone for another 24 h. For testing the effect of corticosterone on KLF4 expression, RU486, an inhibitor of GR, was added to cells at 20 μM 1 h prior to the treatment with corticosterone at 30 μM.
Real-time quantitative PCR analysis. Total RNA was extracted using Trizol (Invitrogen, USA) and reversely transcribed to cDNA by RT reagent Kit (Primerscript™, TAKARA, Japan). Quantitative PCR amplification was performed with Real Time PCR Master Mix (TOYOBO Biotech Co., Ltd.) using StepOne Plus (ABI, USA). Primers were as follows. Rat and mouse HCP1 primer: sense: 5-CGCATCAAGCAGTTGATTGC-3, antisense: 5-AAAAAGAGGACCCCTGCTCAGA-3; KLF4 primer, sense: 5-CATCGTGTAGCAAAAGGAAAG-3, antisense: 5-GTGGCATGAGCTCTTGATAATG-3.

Western blotting. Homogenates of the rat cerebral cortex and hippocampus or HT-22 cell lysates were prepared for Western-Blot analysis. Proteins were incubated overnight at 4 °C with a primary antibody against HCP1 (Cell signaling, USA) and subsequently exposed to BioMax Light Film (Eastman Kodak Co., USA).

Statistical analysis. The values are presented as mean ± SD. Statistical analysis was carried out using SPSS 16.0 (SPSS, Inc., Chicago, IL, USA). Statistical difference between two groups was assessed by the Independent-t test. One way ANOVA, followed by LSD-t and SNK post-hoc test, were performed to analyze the difference between the three or more groups. Differences were considered statistically significant at p < 0.05.

References
1. Tsiftsoglou, A. S., Tsamadou, A. I. & Papadopoulou, L. C. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. *Pharmacol Ther* **111**, 327–45 (2006).
2. Faller, M., Matsunaga, M., Yin, S., Loo, J. A. & Guo, F. Heme is involved in microRNA processing. *Nat Struct Mol Biol* **14**, 23–9 (2007).
3. Yin, L. et al. Rev-erba, a heme sensor that coordinates metabolic and circadian pathways. *Science* **318**, 1786–9 (2007).
4. Balla, J. et al. Haem, haem oxygenase and ferritin in vascular endothelial cell injury. *Nephrol Dial Transplant* **18**(Suppl 5), v8–12 (2003).
5. Ryter, S. W. & Tyrrell, R. M. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. *Free Radic Biol Med* **28**, 289–309 (2000).
6. Lara, F. A. et al. On the fate of extracellular hemoglobin and heme in brain. *J Cereb Blood Flow Metab* **29**, 1109–20 (2009).
7. Wu, C. H. et al. Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. *J Neuroinflammation* **13**, 62 (2016).
8. Goldstein, L., Teng, Z. P., Zeserson, E., Patel, M. & Regan, R. F. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. *J Neurosci Res* **73**, 113–21 (2003).
9. Regan, R. F., Chen, J. & Benvenisti-Zarom, L. Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular heme. *BMC Neurosci* **5**, 34 (2004).
10. Takahashi, M. et al. Amyloid precursor proteins inhibit heme oxygenase activity and augment neurotoxicity in Alzheimer’s disease. *Neuron* **28**, 461–73 (2000).
11. Qureshi, A. I. et al. Spontaneous intracerebral hemorrhage. *N Engl J Med* **344**, 1450–60 (2001).
12. Cordonnier, C. & van der Flier, W. M. Brain microbleeds and Alzheimer’s disease: innocent observation or key player? *Brain Pathol* **13**, 335–44 (2011).
13. Tong, X. K., Nicolakakis, N., Kocharyan, A. & Hamel, E. Vascular remodeling versus amyloid beta-induced oxidative stress in the cerebrovascular dysfunctions associated with Alzheimer’s disease. *J Neurosci** **25**, 11165–74 (2005).
14. Dang, T. N., Robinson, S. R., Dringen, R. & Bishop, G. M. Uptake, metabolism and toxicity of heme in cultured neurons. *Neurochem Int* **58**, 804–11 (2011).
15. Laird, M. D., Wakade, C., Alleyne, C. H. Jr. & Dhandapani, K. M. Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. *Free Radic Biol Med* **45**, 1103–14 (2008).
16. Yeh, K. Y., Yeh, M. & Glass, J. Glucocorticoids and dietary iron regulate postnatal intestinal heavy and light ferritin expression in rats. *BMC Biochem* **13**(4), 97–28 (2012).
17. Sharma, S., Dimasi, D., Broer, S., Kumar, R. & Della, N. G. Heme carrier protein 1 (HCP1) expression and functional analysis in the retina and retinal pigment epithelium. *Exp Cell Res* **313**, 1251–9 (2007).
18. Zhao, M. et al. Psychological stress induces hypoferritemia through the IL-6-hepcidin axis in rats. *Biochim Biophys Acta* **821**, 55–66 (1985).
19. Schaefer, C. A., Vallelian, F., Imhof, A., Schoeden, G. & Schär, D. J. Heme carrier protein (HCP-1) spatially interacts with the CD163 hemoglobin uptake pathway and is a target of inflammatory macrophage activation. *J Leukoc Biol* **83**, 325–33 (2008).
20. Feng, Y., Qi, R., Xu, M., Shen, Z. & Li, M. Dietary iron supplements may affect stress adaptation and aggravate stress hyperglycemia in a rat model of psychological stress. *Nutrition* **28**, 691–7 (2012).
21. Ibrahimagic, O. C. et al. Psychological Stress and Changes of Hypothalamic-Pituitary-Adrenal Axis in Patients with “De Novo” Parkinson’s Disease. *Med Arch* **70**, 445–448 (2016).
33. Spanakos, E. K., Wand, G. S., Ji, N. & Golden, S. H. Association of HPA axis hormones with copeptin after psychological stress differs by sex. *Psychoneuroendocrinology* **63**, 254–61 (2016).

34. Furumiya, M., Inoue, K., Ohta, K., Hayashi, Y. & Yuasa, H. Transcriptional regulation of PCFT by KLF4, HNF4alpha, CDX2 and C/EBPalpha: implication in its site-specific expression in the small intestine. *Biochem Biophys Res Commun* **431**, 158–63 (2013).

35. Gonen, N. & Assaraf, Y. G. The obligatory intestinal folate transporter PCFT (SLC46A1) is regulated by nuclear respiratory factor 1. *J Biol Chem* **285**, 33602–13 (2010).

36. Maekawa, Y., Sugiyama, A. & Takeuchi, T. Lactoferin ameliorates corticosterone-related acute stress and hyperglycemia in rats. *J Vet Med Sci* (2016).

37. Wang, L. *et al.* Corticosterone induces dysregulation of iron metabolism in hippocampal neurons *in vitro*. *Biol Trace Elem Res* **137**, 88–95 (2010).

38. Zheng, Y. *et al.* Corticosterone increases intracellular Zn(2+) release in hippocampal HT-22 cells. *Neurosci Lett* **588**, 172–7 (2013).

39. Xu, Y. *et al.* Corticosterone induced morphological changes of hippocampal and amygdaloid cell lines are dependent on 5-HT7 receptor related signal pathway. *Neuroscience* **182**, 71–81 (2011).

40. Yu, S., Feng, Y., Shen, Z. & Li, M. Diet supplementation with iron augments brain oxidative stress status in a rat model of psychological stress. *Nutrition* **27**, 1048–52 (2011).

41. Suttner, D. M. & Dennery, P. A. Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. *FASEB J* **13**, 1800–9 (1999).

42. Andrews, N. C. Understanding heme transport. *N Engl J Med* **353**, 2508–9 (2005).

43. Regan, R. F., Wang, Y., Ma, X., Chong, A. & Guo, Y. Activation of extracellular signal-regulated kinases potentiates hemin toxicity in endothelial cells. *Anal Biochem* **370**, 338–42 (2004).

44. Suttner, D. M. & Dennery, P. A. Understanding heme transport. *N Engl J Med* **353**, 2508–9 (2005).

45. Shen, B., Smith, R. S. Jr., Hsu, Y. T., Chao, L. & Chao, J. Kruppel-like factor 4 is a novel mediator of Kallistatin in inhibiting endothelial inflammation via increased endothelial nitric-oxide synthase expression. *J Biol Chem* **284**, 35471–8 (2009).

46. Franke, A. *et al.* Heme transport and iron homeostasis. *FASEB J* **22**, 3330–8 (2008).

47. Pinto, D. M. *et al.* Apoptosis and heme metabolism in the CNS. *J Biol Chem* **280**, 38253–8 (2005).

48. Alder, J. K. *et al.* Apoptosis and heme metabolism in the CNS. *J Biol Chem* **280**, 38253–8 (2005).

49. Kaushik, D. K., Mukhopadhyay, R., Kumawat, K. L., Gupta, M. & Basu, A. Therapeutic targeting of Kruppel-like factor 4 abrogates heme transport and iron homeostasis in the CNS. *Brain Pathol* **18**, 68 (2008).

50. Gonen, N. & Assaraf, Y. G. The obligatory intestinal folate transporter PCFT (SLC46A1) is regulated by nuclear respiratory factor 1. *J Biol Chem* **285**, 33602–13 (2010).

51. Park, J. H. *et al.* Heme transport and iron homeostasis in the CNS. *J Biol Chem* **280**, 38253–8 (2005).

Acknowledgements

This work was supported by the funds from the National Natural Science Foundation of China (81273053).

Author Contributions

H.L., F.M. and M.L. contributed to experimental design, acquisition, analysis and interpretation of data and drafting the manuscript. H.L., F.M. and M.L. contributed to experimental design, acquisition, analysis and interpretation of data and drafting the manuscript. H.L., C.Z. and H.S. contributed to experimental design and interpretation of data. H.L., C.Z. and H.S. contributed to experimental design and interpretation of data. H.L., F.M. and M.L. contributed to experimental design, acquisition, analysis and interpretation of data and drafting the manuscript. H.L., F.M. and M.L. contributed to experimental design, acquisition, analysis and interpretation of data and drafting the manuscript. H.L., F.M. and M.L. contributed to experimental design, acquisition, analysis and interpretation of data and drafting the manuscript.

Additional Information

Competing Interests

The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017