Supplementary Materials for

Structural basis for effector recognition by an antibacterial Type IV Secretion System

Gabriel U. Oka, Diorge P. Souza, William Cenens, Bruno Y. Matsuyama, Marcus V.C. Cardoso, Luciana C. Oliveira, Filipe da Silva Lima, Iolanda M. Cuccovia, Cristiane R. Guzzo, Roberto K. Salinas and Chuck S. Farah*

*Corresponding author. Email: chsfarah@iq.usp.br

This PDF file includes:

Materials and Methods
Supplementary Text
Figs. S1 to S12
Tables S1 to S9
Legends for Movies S1 to S3
Legends for Datasets S1 and S2
Materials and Methods

Bacterial strains and cloning. Oligonucleotides, plasmids and bacterial strains utilized in this study are described in Tables S6, S7 and S8. The cloning procedures were performed using PCR (Phusion polymerase, Thermo Scientific), cleavage by restriction enzymes, ligation reactions, and Gibson Assembly reactions (NEB) (Table S6). Mutagenesis reactions were performed with Quik Change II XL (Agilent) using pET28a-XAC2609HIS-311-431, pBRA-XAC2609 (1) and pBRA-XAC3633-XAC3634 plasmids as templates. Single colonies of X. citri strains transformed with pBRA-derived or pBBRGFP-derived vectors were selected on LB-agar plates containing 100 µg/mL spectinomycin or 20 µg/mL gentamicin, respectively. Liquid cultures of X. citri strains were grown as pre-inoculum in 2xTY (2 x tryptone and yeast extract) media containing the appropriate antibiotics at 28°C and 200 RPM for 12-16 hours and then diluted 100-fold in the specific media (see below). Antibiotics were maintained throughout all steps of growth and preparation of cell cultures. E.coli BL21(DE3) RP cells (Novagen) transformed with pET28- or pET11a-derived vectors (Novagen) were selected by growth on LB agar plates containing kanamycin (50 µg/mL) or ampicillin (150 µg/mL), respectively.

The X. citri Δ7Δ2609-GFP strain construction was based on the sequential deletions of the X-Tfi/X-Tfe pairs (except for the XAC2610 X-Tfi) genes from the X. citri genome(1–5). Deletions of each X-Tfi/X-Tfe pair were achieved using two-step allelic exchange with the pNPTS138a suicide vector (1) encoding approximately the 1 Kb regions both upstream to the X-Tfi and downstream to the X-Tfe. Table S6 describes the primers and pairing regions used for each deletion. This strain has a total of eight deletions which were introduced in the following order: 1) ΔXAC2885/XAC2884; 2) ΔXAC0574/XAC0573; 3) ΔXAC0097/XAC0096; 4) ΔXAC3634/XAC3633; 5) ΔXAC1918/XAC1917; 6) ΔXAC0467/XAC0466; 7) ΔXAC4264/XAC4263/XAC0462; 8) ΔXAC2609::msfGFP. For the 8th deletion, the xac2609 gene was replaced with the msfGFP gene (6), which allows the strain to be distinguished from target cells during time-lapse fluorescence microscopy, as has been described for a similar strain, Δ8Δ2609-
GFP, which has one additional X-Tfe/X-Tfi pair (ΔXAC3266/XAC3267) deleted (4) (Table S9). All plasmids were confirmed by DNA sequencing.

Yeast two hybrid assays. Yeast two-hybrid assays were carried as previously described (2, 7). The VirD4 all alpha domain (196-355), coded by the pOBD_VirD4_AAD vector, was used as a bait to screen a prey library of *X. citri pv. citri* 306 genomic DNA fragments cloned in the pOAD vector (2, 7). Screening was performed by selecting isolated colonies of transformed *Saccharomyces cerevisiae* strain PJ694 that grew in media lacking tryptophan, leucine, histidine and adenine followed by isolation and sequencing of the pOAD-derived plasmids, as previously described (2, 7).

Protein expression, purification, SEC-MALS, and Analytical-SEC Analyses

Protein expression conditions utilized in this study are described in Table S7. Colonies of *E. coli* BL21(DE3) cells transformed with specific plasmids were typically inoculated in 5 mL of 2xTY medium and grown overnight (37°C, 200 rpm), then diluted in 500 mL 2xTY. After reaching OD (600nm) = 0.7, the culture temperature was adjusted to the one used for induction (Table S7), IPTG was added to a final concentration of 0.5 mM and induction followed as described in Table S7. Samples isotopically labeled with 15N and 13C were induced using the same protocol except that 2xTY was substituted with M9 medium containing 20 mM 15NH$_4$Cl, 50 mM Na$_2$HPO$_4$, 20 mM KH$_2$PO$_4$, 10 mM NaCl, 2 mM MgSO$_4$, 20 mM 12C-glucose or 13C-glucose and 0.1 mM CaCl$_2$. Cells were collected by centrifugation and lysed with a French press at 5°C in lysis buffer (20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 5% glycerol). The soluble fractions were recovered after centrifugation for 45 min at 25000 g. Chromatography purification was carried out at room temperature using an FPLC AKTA system (Cytiva), and each step was monitored by absorbance at 280 nm and 220 nm. Protein quantification was estimated by absorbance at 280 nm and the specific protein extinction coefficient or using the Bio-Rad DC Protein kit assay at 750 nm. N-terminal polyhistidinyl tagged proteins (Table S7) were first purified by affinity chromatography using HiTrap Ni$^{2+}$-chelating resin (Cytiva) equilibrated with 20 mM Tris-HCl buffer (pH 8.0), 200 mM NaCl, 20 mM imidazole, and 2% (v/v) glycerol. Elution was done using a 20 to 500 mM imidazole gradient. The XAC2609$_{XVIPCD}$ produced
from the expression of the pET11a vector was purified using Q-Sepharose anion-exchange chromatography (Cytiva) as previously described(1, 2). This XAC2609XVIPCD construct that does not present an N-terminal polyhistidine tag (Table S7) was used to perform Pulldown assays (see below), SAXS and Analytical-SEC experiments. Copurification assays of VirD4His-AAD and XAC2609XVIPCD were performed by mixing the lysates of cells expressing each protein individually and applying the same protocol for the purification of polyhistidine tagged proteins described above. Purified His-tagged proteins (Table S7) were subjected to cleavage of their N-terminal tags overnight at 4 °C according to the "Thrombin CleanCleave" kit (Sigma). Samples were then submitted to a final purification step by passage through a Superdex 75 26/600 size exclusion column (Cytiva) in Tris buffer (20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 2% glycerol). The VirD4AAD-XAC2609XVIPCD complex was purified by His-tag affinity chromatography followed by the removal of the VirD4His-AAD N-terminal His-tag using thrombin and a size exclusion chromatography as the final step. The VirD4AAD-XAC2609XVIPCDΔ20 complex was obtained by mixing purified samples followed by size exclusion column chromatography (Superdex 75 26/600). The molecular masses of VirD4AAD, XAC2609XVIPCD, XAC2609XVIPCDΔ20, and the complexes formed by VirD4AADXAC2609XVIPCD and VirD4AAD-XAC2609XVIPCDΔ20 were estimated using SEC-MALS (size-exclusion chromatography coupled to multi-angle light scattering). SEC-MALS was performed using a Superdex 75 10/300 GL (Cytiva) coupled to a Wyatt MALS detector and data were processed using the ASTRA software with a Zimm light scattering model and refractive index increment dn/dc = 0.185 mL/g. SEC-MALS and analytical SEC were performed using buffers at pH 8.0 (20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 2% (v/v) glycerol), pH7.0 (20 mM Tris-HC (pH 7.0), 200 mM NaCl, 2% (v/v) glycerol), pH 6.0 (20 mM Mes-OH (pH 6.0), 200 mM NaCl, 2% (v/v) glycerol) and pH 4.5 (20 mM Na-acetate (pH 4.5), 200 mM NaCl, 2% (v/v) glycerol) with protein samples ranging from 1 to 2 mg/ml and a flow rate of 0.5 mL/min. Supernatants of cell lysates of BL21-CodonPlus (DE3) RIL (Agilent) RIL in buffer (50 mM Tris pH 8.0 200 mM NaCl 20 mM Imidazole and 10 % glycerol) expressing HIS-XAC2609XVIPCD, HIS-XAC2609XVIPCDF375A-V377A, HIS-XAC2609XVIPCDΔ20, PcfG-His, His6-PcfF, His-VirD2, as baits, and VirD4AAD as prey were mixed and washed (20 cv) and eluted (10 cv) through a HiTrap Chelating HP (Cytiva) (5 mL) immobilized with cobalt column
using 20 mM to 50 mM Imidazole gradient. Same approach was performed using the supernatants of cell lysates coexpressing the VirD4(83-557) as a prey and HIS-XAC2609XVIPCD derivatives a bait. Interactions between the proteins were also confirmed by Tricine-SDS-PAGE. Quantitative analysis was performed with the Image Studio Lite (version 4.0) software package.

Isothermal titration calorimetry. Isothermal titration calorimetry experiments were performed in a MicroCal VP-ITC calorimeter (Malvern). Typically, VirD4AAD (10 to 20 µM) was injected into the titration cell and His-tagged XAC2609XVIPCD samples into the syringe. Aliquots of 5 to 10 µL of titrants at 100 to 250 µM were gradually added from the syringe to the cell. ITC assays were performed at 298 K. Buffers were exchanged to 20 mM Tris-HCl pH 8.0, 200 mM NaCl, 2% (v/v) glycerol using PD-10 Desalting Columns (Cytiva) or Amicon Ultra (Millipore) Centrifugal devices. Heat curves integrals were obtained using the Origin Microcal software and dissociation constants (Kd) were calculated over 200 fitting iterations with the ITC Data Analysis software. The Kd values represent the mean of two to four independent assays and errors are reported as standard deviations.

Small Angle X-ray Scattering (SAXS). SAXS experiments were carried out at the SAXS 2 beamline of the Brazilian Synchrotron Light Laboratory (LNLS). X-ray scattering was collected using 1.55 Å radiation and a MAR CCD 165 detector (MAR Research) at a distance of 935.5 mm from the sample. The scattering vector q (q = 4µ/λsin(ө), where 2ө is the scattering angle) interval was set between 0.016 Å⁻¹ and 0.356 Å⁻¹. SAXS measurements were collected for 30 to 600 seconds at 2 to 3 protein concentrations on dialyzed samples of VirD4AAD (1, 2 and 5 mg/ml), XAC2609XVIPCD (2, 4 and 8 mg/mL) and the VirD4AAD-XAC2609XVIPCD co-purified complex (1 and 2 mg/mL). SAXS data were also obtained for the dialysis buffer (20 mM Tris-HCl (pH 8.0), 200 mM NaCl, 5% (v/v) glycerol). The SAXS curves were normalized by protein concentration to monitor radiation damage or aggregation effects. No radiation or aggregation effects were evidenced. Data reduction, analysis and normalization by concentration was performed with the ATSAS package (8). SAXS curves represent the mean of two to three independent assays.
normalized by the concentration and errors are reported as standard deviations. Graphs were generated using Origin data analysis software.

NMR Spectroscopy and Structure Calculation. NMR experiments were performed on a Bruker Avance III 800 MHz NMR spectrometer at 25°C equipped with a TCI cryogenic probe. All NMR samples consisted of 15N labeled or 15N and 13C doubly labeled XAC2609_{XVIPCDΔ20} at a concentration of 1.6 mM in NMR buffer (20 mM Tris-HCl pH 8, 100 mM NaCl, 0.1% glycerol, 7% D$_2$O, 0.05% sodium azide) unless otherwise stated. Backbone resonance assignments were obtained for most residues, except for 318-319, 333, 340, 369-370, 381 - 382, 397 - 399, and 403 - 408. These assignments were obtained from the analysis of a set of BEST-TROSY triple resonance NMR experiments, HNCA/CBCA(CO)NH, HNCA/HN(CO)CA, HNCO/HN(CA)CO, implemented using NMRLib(9). Side-chain resonances were obtained from the analysis of 3D-(H)CCH (TOCSY) and 3D-H-(C)CH TOCSY experiments. All triple resonance and TOCSY NMR experiments were recorded using non-uniform sampling, and reconstructed using MddNMR(10) or the IST approach with the poisson-gap method to generate the sampling schedule (11). All NOESY experiments were recorded using a mixing time of 100 ms. The following NOE experiments were recorded in H2O: 3D 15N NOESY-HSQC, 13C NOESY-HSQC and 1H-1H 2D NOESY. NOEs from aromatic residues were obtained from the analysis of a 13C NOESY-HSQC experiment recorded as a 2D plane and with the 13C carrier frequency centered in the aromatic region. Additionally, H(C)CH-TOCSY, (H)CCH-TOCSY, 13C NOESY-HSQC, 15N NOESY-HSQC, and 2D NOE spectra were collected using a lyophilized sample resuspended in deuterated buffer. The NMR titration was carried out by recording 1H-15N-HSQC experiments of 15N-13C-XAC2609$_{XVIPCDΔ20}$ at a concentration of 160 µM in the absence or presence of VirD4$_{AAD}$ at 40 µM, 80 µM, 120 µM, 160 µM, 320 µM protein concentrations. Ratios of the 1H-15N-HSQC peak heights at the last titration point (XAC2609$_{XVIPCDΔ20}$ [160 µM]: VirD4$_{AAD}$ [320 µM]) with respect to the first titration point (XAC2609$_{XVIPCDΔ20}$ [160 µM]) were mapped on the NMR structure of XAC2609$_{XVIPCDΔ20}$. NMR spectra were processed with NMRPipe (12) and analyzed with CcpNmr Analysis (13), data analysis and graphs were made using Origin(2020).
Automated NOE assignment and structure calculation were performed with the Ariaweb server at https://ariaweb.pasteur.fr/(14), by simulated annealing molecular dynamics in torsion angle space(15), based on the assignments for 81.9% of backbone resonances, and 73.8% of 1H side chain resonances, 5462 manually picked NOESY crosspeaks and 154 dihedral angle restraints obtained using Talos-N (16). A total of 15 iterations were performed, for each interaction 50 structures were calculated. Network anchoring was not used, and all default options were maintained except for the use of spin diffusion correction in iterations 3-15, log-harmonic potentials (17), and automatic restraints weighting. A total of 2383 NOEs were assigned and used in the calculation. The 20 lowest energy models were refined in explicit solvent and chosen for the ensemble of the XAC2609\(_{\text{XVIPCD}}\)\(\Delta_{20}\). The precision of the final ensemble is 0.69 Å for the backbone coordinates within residues 316 - 393. An average of 32.9 distance restraints were violated by more than 0.5 Å, however, they are not consistently violated in more than 50% of the conformers. When all distance restraints violations are considered, the average violation is 0.148 Å ± 0.026 Å (Table S3). The stereochemical quality of the final ensemble was examined with the Ramachandran plot, which showed 97.2% of residues in the most favoured and allowed regions, 1.3% in the generously allowed region, and 1.4% in the disallowed region.

Thermal denaturation monitored by circular dichroism (CD). CD assays were performed on a Jasco J-815 Spectropolarimeter with a 0.5 mm optical path length quartz cuvette. Samples of XAC2609, XAC2609(1-306), and the XAC2609\(_{\text{XVIPCD}}\) at a concentration ranging from 0.5-0.75 mg/mL were diluted in buffer pH 8 (5 mM Na-Hepes, 20 mM Na\(_2\)SO\(_4\)) and pH 5 (5 mM Na-Acetate, 20 mM Na\(_2\)SO\(_4\)). CD spectra were typically acquired with 1 nm data pitch, 1 second of D.I.T, scanning speed at 50 nm/min ranging from 195 to 260 nm, with signal is the average of eight-time acquisitions for each assay. Thermal denaturation curves were monitored at 222 nm from 5°C to 70°C at 1°C/minute with a 30 second interval before each acquisition. The buffer spectrum was subtracted from the (protein + buffer) and smoothed by the Savitzky-Golay method. The normalized denaturation curve (% unfolded vs T) was estimated as described (18).
CPRG bacteria-killing experiments. To prepare *X. citri* cells for the assays, they were cultivated in 24-well plates for 12 to 14 hours in 2xTY medium at 28°C, 200 RPM, followed by three rounds of sedimentation (3 minutes, 5000 g) and resuspension with 2xTY before the assays. *E.coli* K12 strain MG1655 cells were prepared by growing overnight in 2xTY at 37 °C and 200 RPM, and diluted 100x in 2xTY supplemented with 100 µM IPTG to induce production of beta-galactosidase, cultivated for 3 hours at 37 °C, 200 RPM, and washed three times with 2xTY medium. CPRG bacteria-killing assays were performed as previously described(19), with some adaptations. Briefly, these experiments were carried out in a 96-well plate reader (SpectraMax Paradigm, Molecular Devices) at room temperature using U-shaped bottom 96-well plates (Corning Costar, catalog 3799). Each well was filled with 100 µL of agarose-CPRG medium (1.5 % (w/v) agarose, 40 µg/mL CPRG (Sigma-Aldrich), 2 mM CaCl$_2$, 100 µM IPTG) and allowed to dry for 2 hours at room temperature. Next, 5 µL of the mixtures of *X. citri* strains (OD$_{600nm}$ = 0.5) and *E. coli* MG1655 cells (OD$_{600nm}$ = 5) were spotted over the wells filled with agarose-CPRG medium. The plates were covered with a transparent seal and immediately loaded in the plate reader. Absorbance was monitored at 572 nm (A$_{572nm}$) at 10 minutes intervals for 8 hours setting the initial absorbance to zero. The signal background during the course of the experiment was estimated by the A$_{572nm}$ curve from a negative control containing only *E.coli* MG1655 cells. Data reduction was performed by subtracting the signal background from the experimental curves obtained for different *X. citri* strains. Normalization was then performed by dividing absorbance values at each time point by the A$_{572nm}$ at 480 minutes. Data reduction, first derivative determination and statistical analysis was performed using Origin.

Colony growth competition assays. Colony competition assays were performed as previously described(1, 5), with some modifications. *X. citri* strains used were wild type, ΔViB7 and Δ7Δ2609-GFP transformed with the empty pBRA plasmid and *X. citri* Δ7Δ2609-GFP transformed with pBRA-XAC2609 or pBRA-XAC3633-XAC3634. The competing strain was *E. coli* BL21(DE3)RIL ArcticExpress transformed with the vector pBBR(1)RFP, that confers cells a red color phenotype and kanamycin resistance. After washing with 2xTY, *X. citri* cultures were resuspended at OD$_{600nm}$ = 2 and *E. coli* at OD$_{600nm}$ = 0.2. Equal volumes of cell cultures were mixed, resulting in a final cell ratio of
X. citri: *E. coli* of 10:1. Five µL of this mixture were pipetted onto Luria-Bertani (LB) agar plates supplemented with spectinomycin (100 mg/mL) and incubated at 30°C for 36 hours. Finally, colonies were resuspended in 2 mL 2xTY and CFU/mL was monitored by serial dilution on LB agar plates supplemented with ampicillin or kanamycin for selection of *X. citri* or *E. coli*, respectively.

Time lapse microscopy assays. Microscopy assays were performed as previously described (1, 4), with modifications. Briefly, a Nikon Ti microscope equipped with a GFP filter (GFP-3035B-000-ZERO, Semrock), a RFP filter (Texas Red BrightLine, TXRED4040-B, Semrock) and a Plan APO lambda 100x 1.45 oil ofn25 ph3 DM objective were utilized for microscopy assays. Time-lapse microscopy images were taken every 10 minutes for 4 hours at 22°C. Microscopy chambers were built of a glass microscope slide (7.5 cm x 2.5 cm) attached to a double-sided tape (3M) (5.5 cm x 2.5 cm x 2 mm), forming a central rectangular aperture (3 cm x 5 mm x 2 mm) filled with LB-agar in which 1 µL of the mixed bacterial cultures were deposited, allowed to dry, and then closed with coverslips. Images were processed using the Nis Elements software (version 3.07; Nikon), analyzed with Fiji(20) and drifts corrected using the StakReg plugin(21).

Micrococcus luteus peptidoglycan hydrolysis assays. Peptidoglycan hydrolysis experiments were performed as previously described (1), with some modifications. Briefly, *M. luteus* cell wall suspensions (Sigma) at OD$_{650nm} = 0.7$ (1.2 mg/mL) in 50 mM sodium acetate (pH 5.0) and 2 mM CaCl$_2$ were incubated in triplicate for 2 hours at 30 °C with only buffer (negative control), 2 µM XAC3633(HIS-40-300), 1 µM XAC3634 (HIS-1-513), 1 µM XAC3634E35Q (HIS-1-513), or a 2 µM XAC3633(HIS-40-300) + 1 µM XAC3634(HIS-1-513) mixture. Reactions were quenched by adding 500 mM sodium carbonate. Peptidoglycan hydrolysis was monitored as a decrease in OD$_{650nm}$.

Bioinformatics. Search for X-Tfes and taxonomic analysis were performed using the sequence of residues 311-431 of XAC2609 as a query in PSI-Blast(22) against the non-redundant protein sequence database (all non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects). Two iterations were performed, with the e-value threshold set to 1×10^{-6}, and the
hit list size limited to 10000 sequences. Then, the last 150 residues were extracted from each hit, redundant sequences were removed using Jalview (2.11)(23) and aligned with Mafft(24). Truncated sequences and potential outliers were excluded from the XVIPCD final data set. A total of 4756 sequences were selected for WebLogo analysis(25) and XVIPCD N-terminal and C-terminal alignments were obtained using the XAC2609XVIPCD sequence as reference in Jalview, followed by compressing vectorial images with Illustrator. Conservation mapped to the structure of the XAC2609XVIPCDΔ20 was achieved using the Mutalign Viewer tool in Chimera(26). All images of protein structures were prepared using Chimera(26).

Western-blot. Protein samples coeluted from the pull-down assay of His-VirD4AAD-XAC2609XVIPCD were separated by SDS-PAGE 16% and transferred to a nitrocellulose membrane using a semi-dry blot system at 60 mA for 1 hour. After transfer, the membrane was blocked (TBS buffer 10% non-fat milk, 50 rpm, 16 hours) and then incubated with anti-XAC2609 rabbit serum(1) (1:1000 dilution, two hours, 50 rpm), washed (five steps: PBS buffer, 10% non-fat milk, 0.1% tween 20, 5 minutes, 50rpm), incubated with IRDye 800CW goat anti-rabbit IgG (LI-COR Biosciences) at 1:15,000 dilution. Anti-polyhistidine-alkaline phosphatase conjugated (Sigma A5588) (1:20000 dilution, two hours, 50 rpm), was incubated for one hour, washed and revealed with 22.5 ul de BCIP (50 mg/ml) e 30 ul de NBT (75 mg/m 70 % dimethylformamide) in buffer (100 mM Tris-HCl, pH 9.5, 100 mM NaCl, 5 mM MgCl). Images were acquired with ChemiDoc System MP (BioRad).
Supplementary Text

XVIPCD sequences are not similar to any other protein families with known structures (see Supplementary Text). We therefore used the ensemble of twenty XAC2609_XVIPCD_Δ20 solution structures to search for proteins with structural similarities using the Dali server(34). The most significant hit, the small RNA-binding protein HutP (PDB IDs 1VEA and 1WPU) that regulates the histidine utilization operon in Bacillus subtilis(35), has an \(αβαβββ\) topology, whose last five secondary structures fold with the same \(αβββ\) topology as that of XAC2609_XVIPCD_Δ20. However, the structural alignment with XAC2609_XVIPCD_Δ20 has a relatively low Z-score (4.0) and very low sequence identity (8%).

Supplementary Figures
Figure S1. Sequence alignment of Type IV Coupling proteins. Above: Schematic of domain architectures of VirD4 from A. tumefaciens (VirD4 A.tu), VirD4 from X. citri (VirD4 X. ci), TrwB from the E. coli plasmid R388 (TrwB R388), and PcfC from the Enterococcus faecalis plasmid pCF10 (PcfC pCF10). Transmembrane domain (beige), nucleotide binding domain (brown), all-alpha domain (blue), C-terminal extension (green). Below: Protein sequence alignment using T-coffee(27). The all-alpha domain (AAD) observed in the crystal structure of TrwB(28) and predicted for A. tumefaciens VirD4 (29), PcfC (29) and X. citri VirD4 are in blue bold type. Sequences within the AADs predicted to form α-helices are highlighted in rose.
Figure S2. Purification of the VirD4\text{AAD}-XAC2609\text{xVIPCD complex.} (A) Tricine 16% SDS-PAGE of fractions obtained for the expression and purification of the VirD4\text{HIS-AAD}-XAC2609\text{XVIPCD} complex. Total cell lysates of *E. coli* cells before (NI) and after induction of expression of XAC2609\text{XVIPCD} (I1) or VirD4\text{HIS-AAD} (I2). Soluble fraction of combined total cell lysates after VirD4\text{HIS-AAD} and XAC2609\text{XVIPCD} induction (S). Purification of the VirD4\text{HIS-AAD}-XAC2609\text{XVIPCD} complex by Ni2+-affinity chromatography: fraction of unbound proteins eluted during the column washing step (FT) and during the 20-500 mM imidazole gradient (1, 2, 3). (B) Detection of XAC2609\text{XVIPCD} and VirD4\text{HIS-AAD} in the purified fractions by western blot. Immunodetection was performed using primary anti-XAC2609 antibody (α-XAC2609) and anti-polyhistidine (α-His-VirD4\text{AAD}) antibody. (C) Analytical size exclusion chromatography of XAC2609\text{XVIPCD}, XAC2609\text{XVIPCDΔ20}, VirD4\text{AAD}, VirD4\text{AAD}-XAC2609\text{XVIPCD} and VirD4\text{AAD}-XAC2609\text{XVIPCDΔ20} at pH 8.0 (black; 20 mM Tris-HCl pH 8.0, 200 mM NaCl, 2% glycerol), pH 7.0 (yellow; 20 mM Tris-HCl pH 7.0, 200 mM NaCl, 2% glycerol), pH 6.0 (green; 20 mM Mes-OH pH 6.0, 200 mM NaCl, 2% glycerol), and pH 4.5 (blue; 20 mM sodium acetate pH 4.5, 200 mM NaCl, 2% glycerol). (D) SEC-MALS analysis of the purified recombinant XAC2609\text{XVIPCD}, XAC2609\text{XVIPCDΔ20}, VirD4\text{AAD}, and the VirD4\text{AAD}-XAC2609\text{XVIPCD} complex at pH 4.5 (20 mM sodium acetate (pH 4.5), 200 mM NaCl, 2% glycerol). Normalized absorbance at 280 nm (black line, left axis) and molecular mass distribution (gray dots, right axis) are shown as a function of elution volume (mL). Representative elution profiles are shown for each sample.
VirD4(83-557) + HIS-XAC2609 derivatives

A

MW	S	FT	Elu
(kDa)			
250.0			
150.0			
100.0			
75.0			
50.0			
37.0			
20.0			
25.0			
15.0			
10.0			

B

C

relative signal intensity

0% 50% 100%

S FT ELU S FT ELU S FT ELU S FT ELU S FT ELU
Figure S3. XAC2609XVIPCD interaction with the cytoplasmic portion of VirD4. (A) Coomassie-stained Tricine-SDS-PAGE of the cobalt affinity pulldown assay between distinct HIS-tagged XAC2609XVIPCD constructs (*) and the cytoplasmic portion of VirD4 (VirD4(83-557) (#)). E. coli BL21De3 cells co-expressing VirD4(83-557) + empty pET28a vector (VirD4(83-557) only), VirD4(83-557) + HIS-XAC2609xVIPCD (xVIPCD), VirD4(83-557) + HIS-XAC2609xVIPCDΔ20 (xVIPCDΔ20), VirD4(83-557) + HIS-XAC2609xVIPCDF375A/V377A (xVIPCDF375A V377A), VirD4(83-557) + HIS-XAC2609(392-431) (392-431). Lane labels: S: soluble fractions of the supernatants before application to Co²⁺ affinity column; FT: flow-through fraction with unbound proteins obtained by washing with buffer A (50 mM Tris-HCl pH8, 200 mM NaCl, 20 mM Imidazole, 10% glycerol); ELU: bound protein fraction obtained by elution with an imidazole gradient (20 mM - 500mM); MW: molecular weight markers. (B) Scanned image of the coomassie-stained gel shown in (A) employed for quantification of the 50 KDa band corresponding to VirD4(83-557) (highlighted with the blue rectangle). (C) Relative signal intensities for the highlighted area measured in (B).
Figure S4. NMR analysis of XAC2609XVIPCDΔ20. (A) 1H-15N-HSQCs spectra of 15N-labeled XAC2609XVIPCDΔ20 (250 µM, 25 °C) at pH 4.5 (20 mM sodium acetate, 20 mM NaCl, 0.1% glycerol), pH 6.0 (20 mM Mes-NaOH, 20 mM NaCl, 0.1% glycerol), pH 7.0 (20 mM Tris-HCl, 20 mM NaCl, 0.1% glycerol), and pH 8.0 (20 mM Tris-HCl, 20 mM NaCl, 0.1% glycerol). (B) Superposition of 1H-15N-HSQC spectra of 15N-XAC2609XVIPCD (red) and 15N-XAC2609XVIPCDΔ20 (black). (C) *Left vertical scale:* NMR chemical shift-based TALOS-N secondary structure prediction (30): alpha helix, red bars; beta sheet, blue bars. *Right vertical scale:* amide heteronuclear $[^1]$H-15N NOE (HetNOE) of 15N-labelled-XAC2609XVIPCDΔ20 (black dots) and the RCI chemical shift order parameter predicted by TALOS-N (gray dots) as a function of the protein sequence. (D) XAC2609XVIPCDΔ20 structure showing Pro400 and residues with which it makes close contacts (as detected by NOEs). Pro400, Asp372, Phe390, Asp392, Arg393 and Asn394 are shown as cyan colored stick models (hydrogens are not shown). For the rest of the molecule, α-helices are red, β-sheets are yellow and loops are green. For clarity, residues 396-411 are not shown.
Figure S5. Circular dichroism (CD) analysis of the X-TfeXAC2609. (A) Schematic model of X-TfeXAC2609 showing the glycohydrolase 19 domain (GH19), peptidoglycan-binding (PG binding) domain and the XVIPCD. CD spectra of the X-TfeXAC2609 residues 1-431, XAC2609(1-431); residues 1-206 XAC2609(1-306); and residues 311-431, XAC2609\textsubscript{XVIPCD}. CD spectra were obtained at 25°C before denaturation assay (solid black line), at 70°C (red line) and at 25°C after denaturation assay (dotted black line) at pH 5.0 (5 mM Na-Acetate, 20 mM Na\textsubscript{2}SO\textsubscript{4}) and at pH 8.0 (5 mM Hapes-Na, 20 mM Na\textsubscript{2}SO\textsubscript{4}).

(B) Thermal denaturation assay monitored by CD. Mean residual ellipticity ([Θ]) at 222 nm of XAC2609(1-431) (square), XAC2609(1-306) (circle) and XAC2609\textsubscript{XVIPCD} (triangle) at pH 5.0 (gray) and pH 8.0 (black). Thermal denaturation and assays were performed from 5°C to 70°C, with data collected at 1°C intervals. Ramp speed was 1°C/min with 30 seconds equilibration time before reads. (C) Normalized denaturation curves obtained using the data shown in (B) except for XAC2609\textsubscript{XVIPCD} at pH 5.0 which did not present a well defined unfolding transition. The fraction of unfolded protein at each temperature was calculated as described (18).
Figure S6. $^{15}\text{N}^{-1}\text{H}$ HSQC spectrum and assignment of $^{15}\text{N}^{-13}\text{C}$-labelled $\text{XAC2609}_{\text{VIPCD}}\Delta 20$ at pH 8.0. The crowded region in the center of the spectrum (small box) is amplified in the large box at the top left.
Figure S7. Ribbon representation of the models of XVIPCD domains from X-Tfes selected from a wide range of bacterial species. The figure shows the first top-ranked models for each prediction obtained using the RaptorX (31, 32) server. Labels provide the access code for the protein sequence (GenBank or Kegg) with the residues of the domain given in lowercase parentheses and the bacterial species in square brackets. Only the αβββ regions of each model are shown.
Figure S8. VirD4AAD-induced perturbations in the 15N-1H HSQC spectrum of XAC2609XVIPCDΔ20. (A) 15N-1H HSQC spectrum of 15N-labelled XAC2609XVIPCDΔ20 (160 µM) was measured on its own (160:0) and in the presence of increasing concentrations of unlabelled VirD4AAD: 0 µM (black), 40 µM (yellow), 80 µM (green), 120 µM (cyan), 160 µM (purple), 320 µM (red). Molar ratios of the two proteins are shown. (B) Superposition of the 15N-1H HSQC spectra shown in A. (C) Amplification of the central region of the superposed spectra within the square in (B). All spectra were collected at 25°C in 20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 0.1% glycerol.
Figure S9. Titration of VirD4\textsubscript{AAD} by XAC2609, XAC2609\textsubscript{XVIPCD} and its mutants, monitored by isothermal calorimetry. (A). Representative titrations for each mutant are shown. Data points represent the heat released after each injection of XAC2609, XAC2609\textsubscript{XVIPCD} or its mutants. Assays were performed at 298 K in 20 mM Tris-HCl pH8, 200 mM NaCl, 2% glycerol. All XAC2609\textsubscript{XVIPCD} fragments used in these experiments have an N-terminal His-tag. Dissociation constants (K\textsubscript{D}) were calculated as described in Materials and Methods and are listed in Supplementary Table 4. (B) Ribbon representation of the XAC2609\textsubscript{XVIPCD}\textsubscript{Δ20} structure with mutated residues within the ααβββ region shown as space-filling models (green). (C) Isothermal titration calorimetry of titration of X. citri VirD4\textsubscript{AAD} with HIS-PcfF and His-PcfG from E. faecalis and His-VirD2 from A. tumefaciens (29).
Figure S10. Pull-down assays to detect *Xanthomonas citri* VirD4_{AAD} interactions. Coomassie blue stained tricine-SDS-PAGE of the Co²⁺-affinity pulldown assays to detect interactions between the *X. citri* VirD4_{AAD} and distinct HIS-tagged T4SS substrates: His-XAC2609_{XYIPCD}, His-XAC2609_{XYIPCD}F375A/V377A, *E. faecalis* HIS-PcfF, *E. faecalis* PcfG-His and *A. tumefaciens* His-VirD2. VirD4 and His-tagged substrates were expressed separately, equal numbers of cells combined and lysed together. (+) and (-) indicates the presence and absence, respectively, of *X. citri* VirD4_{AAD} in each assay. Lane labels: S, soluble bacterial cell lysates before application to the Co²⁺ affinity column; FT, unbound protein fraction obtained by washing with buffer A (50 mM Tris-HCl pH8, 200 mM NaCl, 20 mM Imidazole, 10% glycerol); ELU, bound proteins obtained by eluting with a 20 mM - 500 mM imidazole gradient; MW, molecular weight markers.
Figure S11. CPRG bacterial competition assay. Mixed cultures of *X. citri* strains and *E. coli K-12 MG1655* cells (constitutively expressing β-galactosidase) were grown at 25°C in 96 well plates containing agar media supplemented with CPRG. Absorbance at 572 nm was measured every 10 min for 480 minutes. *X. citri* strains used in each assay are indicated in each panel. Error bars represent the standard error from three to five independent measurements.
Figure S12. Correlation of the effect of XVIPCD mutations on XVIPCD-VirD4_{AAD} binding affinity and efficiency of X-Tfe transfer into the target cell. Binding affinity of XAC2609_{XVIPCD} mutants for VirD4_{AAD} is expressed on a discontinuous scale of K_D values (left vertical axis) as determined by ITC assays (Table S4). Relative killing efficiencies of *X. citri* Δ7ΔXAC2609-GFP strains carrying plasmids expressing X-Tfe^{XAC2609} (central vertical axis) or X-Tfe^{XAC3634} (right vertical axis) with mutations in their XVIPCDs. Relative killing efficiencies are derived from Figures 4D and 5G, respectively.
Table S1. Molecular Mass estimated by SEC-MALS and Analytical SEC.

Protein	Theoretical Mass	SEC (mL)	MALS (KDa)								
XAC2609 XVIPCD	13.7 KDa	11.4	11.0 +/- 2%	12.0	11.0 +/- 2%	12.2	20.0 +/- 3%	11.8;	12.8 ND		
VirD4AAD	18.0 KDa	11.5	11.0 +/- 2%	12.0	11.0 +/- 2%	12.4	ND	11.5;	13.2 ND		
VirD4AAD-XAC2609 XVIPCD	31.7 KDa	12.6	11.6 +/- 5%	12.3	11.6 +/- 5%	12.7	20.7 +/- 3%	11.0	34.0 +/- 1%	11.2	30.1 +/- 4%
VirD4AAD-XAC2609 XVIPCDΔ20	29.5 KDa	ND	ND	ND	ND	10.9	ND	11.2	ND		

Theoretical molecular mass after purification and cleavage of the N-terminal histidine tail is shown. Estimated molecular mass assuming the formation of a heterodimer in solution (18.0 KDa + 13.7 KDa). Estimated molecular mass assuming the formation of a heterodimer in solution (18.0 KDa + 11.5 KDa). SEC elution volume of the peaks shown in Supplementary Figure 2C. MALS: Molecular mass estimated in accordance with mass distribution shown in Figure 1 A and Supplementary Figure 2D. *: †SEC elution volume of the first* and the second † peaks shown in Supplementary Figure 2C indicating the dissociation of the VirD4AAD-XAC2609 XVIPCD and VirD4AAD-XAC2609 XVIPCDΔ20 complexes at acidic pHs (pH 4.5 and pH 6.0). Value not determined (ND).
Table S2. Two-hybrid assays to identify protein-protein interactions between VirD4\textsubscript{AAD} (residues 197-355) and preys derived from a library of protein fragments coded by the \textit{Xanthomonas citri str 306} genome.

Bait	Specific preys (\textit{X. citri gene})	number of independent prey clones	initial codon of smallest prey
VirD4\textsubscript{AAD}	XAC0151	2	6
	XAC0096	5	354
	XAC3266	1	656
	XAC2885	1	78

* Reference: (2)
Table S3. NMR data collection and structural refinement statistics for XAC2609\textsubscript{XVIPCDΔ20}

NMR distance and dihedral constraints	\textbf{XAC2609\textsubscript{XVIPCDΔ20}}
Distance constraints	\multicolumn{1}{c}{2383}
Total NOE	
Intra-residue	750
Inter-residue	
Sequential \((i - j) = 1\)	390
Medium-range \((i - j) < 4\)	322
Long-range \((i - j) > 5\)	578
Ambiguos	343
Total dihedral angle restraints	
\(\phi\)	77
\(\psi\)	77

Structural refinement statistics

Violations (mean and s.d.)	\multicolumn{1}{c}{0.148 ± 0.026}
Distance constraints (Å)	
Dihedral angle constraints (°)	0.000 ± 0.000
Max. distance constraint violation (Å)	0.1
Deviations from idealized geometry	\multicolumn{1}{c}{0.003 ± 0.0001}
Bond lengths (Å)	
Bond angles (°)	0.45 ± 0.014
Impropers (°)	1.29 ± 0.072
Average pairwise r.m.s. deviation* (Å)	\multicolumn{1}{c}{1.67 ± 0.42}
Heavy	
Backbone	0.69 ± 0.20

*Pairwise r.m.s. deviation was calculated among 20 refined structures for XVIPCD\textsubscript{XAC2609Δ20} residues 315-393.
Table S4. Bacterial strains that code for a putative X-T4SSs and X-Tfes

Organism	Organism	Organism
[Pseudomonas] geniculata ATCC 19374 = JCM 13324	Luteibacter pinisoli	Lysobacter sp. cf310
[Pseudomonas] geniculata N1	Luteibacter rhizovicinus	Lysobacter sp. CHu50b-3-2
Acinetobacterbaumannii	Luteibacter rhizovicinus DSM 16549	Lysobacter sp. HDW10
Alcaligenaceae bacterium	Luteibacter sp. 22Crub2.1	Lysobacter sp. lI4
Alphaproteobacteria bacterium	Luteibacter sp. 329MFSha	Lysobacter sp. N42
Bacillus sp. SRB_336	Luteibacter sp. OK325	Lysobacter sp. Root494
bacterium AM6	Luteibacter sp. Sphag1AF	Lysobacter sp. Root559
bacterium M00.F.Ca.ET.141.01.1.1	Luteibacter sp. UNC138MFCol5.1	Lysobacter sp. Root604
bacterium M00.F.Ca.ET.163.01.1.1	Luteibacter sp. UNC MF331Sha3.1	Lysobacter sp. Root667
bacterium M00.F.Ca.ET.177.01.1.1	Luteibacter sp. UNC MF366Tsu5.1	Lysobacter sp. Root76
bacterium M00.F.Ca.ET.199.01.1.1	Luteibacter yeojuensis	Lysobacter sp. Root916
Betaproteobacteria bacterium HGW-16	Luteimonas aestuarii	Lysobacter sp. Root96
Betaproteobacteria bacterium HGW-9	Luteimonas arsenica	Lysobacter sp. Root983
Burkholderiales bacterium GWF1_66_17	Luteimonas gilva	Lysobacter sp. SJ-36
Burkholderiales bacterium rifcsphighO2_12_FULL_67_38	Luteimonas granuli	Lysobacter sp. TY2-98
Dyella ginsengisoli	Luteimonas huabeiensis	Lysobacter sp. UKS-15
Dyella jiangningensis	Luteimonas mephitis	Lysobacter sp. URHA0019
Dyella marenis	Luteimonas padinae	Lysobacter sp. yr284
Dyella soli	Luteimonas sp. 83-4	Lysobacter sp. zong2i5
Dyella sp. 333MFSha	Luteimonas sp. H23	Lysobacter xinjiangensis
Dyella sp. 4MSK11	Luteimonas sp. MC1782	Morococcus cerebrosus
Dyella sp. AD56	Luteimonas sp. Sa2BVA3	Neisseria dentiae
Dyella sp. AtDHG13	Luteimonas sp. YD-1	Neisseria flavescens SK114
Dyella sp. DHOA06	Luteimonas terricola	Neisseria lactamica
Dyella sp. OAE510	Lutibacter sp. SG786	Neisseria meningitidis
Dyella sp. OK004	Lysobacter alkalisoli	Neisseria mucosa C102
Dyella sp. SG562	Lysobacter antibioticus	Neisseria sp. HMSC056A03
Dyella sp. SG609	Lysobacter capsici	Neisseria sp. HMSC064D07
Dyella terrae	Lysobacter capsici AZ78	Neisseria sp. HMSC066H01
Dyella thiooxydans	Lysobacter enzymogenes	Neisseria sp. HMSC069H12
Frateuria defendens	Lysobacter gummosus	Neisseria sp. HMSC06F02
Frateuria terrea	Lysobacter lacus	Neisseria sp. HMSC070A01
Hydrogenophaga crassostreae	Lysobacter maris	Neisseria sp. HMSC071B12
Hydrogenophaga flava	Lysobacter oculi	Neisseria sp. HMSC071C03
Hydrogenophaga pseudoflava	Lysobacter profundi	Neisseria sp. HMSC073B07
Hydrogenophaga sp.	Lysobacter pythonis	Neisseria sp. oral taxon 014 str. F0314
Hydrogenophaga sp. A37	Lysobacter silvestris	Oxalobacteraceae bacterium
Hydrogenophaga sp. H7	Lysobacter silvisoli	Pseudomonas aeruginosa
Hydrogenophaga sp. PAMC20947	Lysobacter sp. 17J7-1	Pseudomonas avellanae
-----------------------------	----------------------	----------------------
Pseudomonas savastanoi	Rhodanobacter sp. DHB23	Stenotrophomonas sp. CC120222-04
Pseudomonas syringae group	Rhodanobacter sp. K2T2	Stenotrophomonas sp. CC22-02
genomosp. 3		
Pseudomonas syringae pv. avellanae str.	Rhodanobacter sp. L36	Stenotrophomonas sp. CF319
ISPaVe013		
Pseudoxanthomonas composti	Rhodanobacter sp. MP1X3	Stenotrophomonas sp. HMWF023
Pseudoxanthomonas dokdonensis	Rhodanobacter sp. OK091	Stenotrophomonas sp. JAI102
Pseudoxanthomonas gev	Rhodanobacter sp. Root480	Stenotrophomonas sp. LMG 10879
Pseudoxanthomonas sacheonensis	Rhodanobacter sp. Root627	Stenotrophomonas sp. MYb57
Pseudoxanthomonas sp. CF125	Stenotrophomonas acidaminiphila	Stenotrophomonas sp. NA06056
Pseudoxanthomonas sp. GM95	Stenotrophomonas chelatiphaga	Stenotrophomonas sp. Pemsol
Pseudoxanthomonas sp. GSS15	Stenotrophomonas cyclobalanopsidis	Stenotrophomonas sp. pho
Pseudoxanthomonas sp. KAs_5_3	Stenotrophomonas daejeonensis	Stenotrophomonas sp. RIT309
Pseudoxanthomonas sp. NML130738	Stenotrophomonas ginsengisoli	Stenotrophomonas sp. SAM-B
Pseudoxanthomonas sp. NML130969	Stenotrophomonas indicatrix	Stenotrophomonas sp. SAU14A_NAIMI4_5
Pseudoxanthomonas sp. NML140781	Stenotrophomonas koreensis	Stenotrophomonas sp. SbOxS2
Pseudoxanthomonas sp. NML160639	Stenotrophomonas lactitubi	Stenotrophomonas sp. SPM
Pseudoxanthomonas sp. NML170316	Stenotrophomonas maltophilia	Stenotrophomonas sp. TEPEL
Pseudoxanthomonas sp. NML171107	Stenotrophomonas maltophilia 5BA-I-2	Stenotrophomonas sp. VV52
-------------------------------	-----------------------------------	--------------------------
Pseudoxanthomonas sp. NML171200	Stenotrophomonas maltophilia Ab55555	Stenotrophomonas sp. W1S232
Pseudoxanthomonas sp. NML171202	Stenotrophomonas maltophilia AU12-09	Stenotrophomonas sp. WZN-1
Pseudoxanthomonas sp. NML171590	Stenotrophomonas maltophilia D457	Stenotrophomonas sp. Y
Pseudoxanthomonas sp. NML171591	Stenotrophomonas maltophilia EPM1	Stenotrophomonas sp. YAU14A_MKIMI4_1
Pseudoxanthomonas sp. NML180370	Stenotrophomonas maltophilia JV3	Stenotrophomonas sp. YAU14D1_LEIMI4_1
Pseudoxanthomonas sp. NML180594	Stenotrophomonas maltophilia K279a	Stenotrophomonas sp. YR399
Pseudoxanthomonas sp. X-1	Stenotrophomonas maltophilia M30	Stenotrophomonas sp. ZAC14D2_NAIMI4_6
Pseudoxanthomonas spadix	Stenotrophomonas maltophilia MF89	Stenotrophomonas sp. ZAC14D2_NAIMI4_7
Pseudoxanthomonas suwonensis	Stenotrophomonas maltophilia R551-3	Streptomyces sp. SID10244
Pseudoxanthomonas wuyuanensis	Stenotrophomonas maltophilia RA8	Thermomonas fusca
Pseudoxanthomonas yeongjuensis	Stenotrophomonas maltophilia WJ66	Variovorax paradoxus
Raoultella sp. 18102	Stenotrophomonas pavanii	Variovorax sp. DXTD-1
Rhodanobacter fulvus Jip2	Stenotrophomonas pictorum	Variovorax sp. Root318D1
Rhodanobacter glycini	Stenotrophomonas pictorum JCM 9942	Variovorax sp. Sphag1AA
Rhodanobacter panaciterrae	Stenotrophomonas rhizophila	Variovorax sp. Sphag1J
Rhodanobacter sp. 67-28	Stenotrophomonas sp. 278	Vulcaniibacterium gelatinicum
------------------------	--------------------------	-------------------------------
Rhodanobacter sp. 7MK24	Stenotrophomonas sp. 92mfcol6.1	Vulcaniibacterium thermophilum
Rhodanobacter sp. A1T4	Stenotrophomonas sp. AG209	Xanthomonadaeae bacterium
Rhodanobacter sp. ANJX3	Stenotrophomonas sp. ASS1	Xanthomonadales bacterium 13-68-4
Rhodanobacter sp. C01	Stenotrophomonas sp. BIIR7	Xanthomonadales bacterium 14-68-21
Rhodanobacter sp. C06	Stenotrophomonas sp. Br8	Xanthomonadales bacterium 15-68-25
Xanthomonadales bacterium	Xanthomonas citri pv. citri str. 306	Xanthomonas sp. 3498
Xanthomonadales bacterium	Xanthomonas citri pv. fuscans	Xanthomonas sp. 60
Xanthomonas albilineans	Xanthomonas citri pv. glycines str. 8ra	Xanthomonas sp. CFBP 7698
Xanthomonas arboricola pv. arracaciae	Xanthomonas citri pv. malvacearum	Xanthomonas sp. CFBP 7912
Xanthomonas arboricola pv. celebensis	Xanthomonas citri pv. mangiferaeindicae LMG 941	Xanthomonas sp. CPBF 426
Xanthomonas arboricola pv. corylina	Xanthomonas citri pv. phaseoli var. fuscans	Xanthomonas sp. F1
Xanthomonas arboricola pv. fragariae	Xanthomonas citri pv. vignicola	Xanthomonas sp. F14
Xanthomonas arboricola pv. guizotiae	Xanthomonas citri subsp. citri A306	Xanthomonas sp. F4
Xanthomonas arboricola pv. juglandis	Xanthomonas citri subsp. citri Aw12879	Xanthomonas sp. GPE 39
Xanthomonas arboricola pv. populi	Xanthomonas codiaeai	Xanthomonas sp. GW
Xanthomonas arboricola pv. pruni MAFF 301420	Xanthomonas cucurbitae	Xanthomonas sp. ISO98C4
---	------------------------	------------------------
Xanthomonas arboricola pv. pruni MAFF 301427	Xanthomonas cynarae	Xanthomonas sp. JAI131
Xanthomonas arboricola pv. pruni str. MAFF 311562	Xanthomonas dyei	Xanthomonas sp. Leaf131
Xanthomonas axonopodis pv. begoniae	Xanthomonas euroxanthea	Xanthomonas sp. Leaf148
Xanthomonas axonopodis pv. citrumeloi F1	Xanthomonas euvesicatoria	Xanthomonas sp. LMG 12459
Xanthomonas axonopodis pv. eucalyptorum	Xanthomonas euvesicatoria pv. citrumeononis	Xanthomonas sp. LMG 12460
Xanthomonas axonopodis pv. khayae	Xanthomonas floridensis	Xanthomonas sp. LMG 12461
Xanthomonas axonopodis pv. manihotis str. CIO151	Xanthomonas fragariae LMG 25863	Xanthomonas sp. LMG 12462
Xanthomonas axonopodis pv. melhusii	Xanthomonas gardneri	Xanthomonas sp. LMG 8989
Xanthomonas axonopodis pv. vasculorum	Xanthomonas gardneri ATCC 19865	Xanthomonas sp. LMG 8992
Xanthomonas axonopodis Xac29-1	Xanthomonas hortorum	Xanthomonas sp. LMG 8993
Xanthomonas campestris pv. arecae	Xanthomonas hortorum pv. carotae str. M081	Xanthomonas sp. LMG 9002
Xanthomonas campestris pv. azadirachtae	Xanthomonas hortorum pv. cynarae	Xanthomonas sp. MUS 060
Xanthomonas campestris pv. badrii	Xanthomonas hortorum pv. gardneri	Xanthomonas sp. NCPPB 1128
Xanthomonas campestris pv. campestris str. 8004	Xanthomonas hortorum pv. hederae	Xanthomonas sp. Sa3BUA13
Xanthomonas campestris pv. campestris str. ATCC 33913	Xanthomonas hortorum pv. pelargonii	Xanthomonas sp. SHU 166
Xanthomonas campestris pv. campestris str. B100	Xanthomonas hortorum pv. taraxaci	Xanthomonas sp. SHU 199
Xanthomonas campestris pv. durantae	Xanthomonas hortorum pv. vitians	Xanthomonas sp. SI
Xanthomonas campestris pv. musacearum NCPPB 2251	Xanthomonas hyacinthi	Xanthomonas sp. SS
Xanthomonas campestris pv. musacearum NCPPB 4379	Xanthomonas hyacinthi DSM 19077	Xanthomonas theicola
Xanthomonas campestris pv. musacearum NCPPB 4380	Xanthomonas melonis	Xanthomonas translucens pv. arrhenatheri
Xanthomonas campestris pv. musacearum NCPPB 4384	Xanthomonas nasturtii	Xanthomonas translucens pv. arrhenatheri LMG 727
Xanthomonas campestris pv. raphani 756C	Xanthomonas perforans	Xanthomonas translucens pv. phlei
Xanthomonas campestris pv. vesicatoria str. 85-10	Xanthomonas phaseoli	Xanthomonas translucens pv. poae
Xanthomonas campestris pv. vitiscarnosae	Xanthomonas phaseoli pv. dieffenbachiae	Xanthomonas translucens pv. translucens DSM 18974
Xanthomonas cannabis pv. cannabis	Xanthomonas phaseoli pv. manihotis	Xanthomonas vasicola
Xanthomonas cannabis pv. phaseoli	Xanthomonas phaseoli pv. phaseoli	Xanthomonas vasicola pv. vasicola
Xanthomonas cassavae	Xanthomonas pisi	Xanthomonas vasicola pv. vasicola NCPPB 206
Xanthomonas citri pv. aurantifolii	Xanthomonas prunicola	Xanthomonas vasicola pv. vasicola NCPPB 890
Xanthomonas citri pv. citri	Xanthomonas sacchari	Xanthomonas vesicatoria ATCC 35937
Genomes listed code for an X-T4SS and putative X-Tfes based in the presence of an XVIPCD domain and VirB7 subunits with a C-terminal N0 domain. Hits were identified using the PSI-BLAST algorithm in the non-redundant protein database (GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects).
Table S5. Complex dissociation constants (K_D) calculated from ITC experiments.

Protein pairs in titration	K_D +/- sd (µM)
XAC2609-VirD4AAD	0.4 +/- 0.1
XAC2609_XVIPCD-VirD4AAD	0.5 +/- 0.1
XAC2609_XVIPCDΔ20-VirD4AAD	0.5 +/- 0.1
XAC2609_XVIPCDH315A P316A D317A-VirD4AAD	1.2 +/- 0.6
XAC2609_XVIPCDG336W-VirD4AAD	0.5 +/- 0.3
XAC2609_XVIPCDD363A-VirD4AAD	29.3 +/- 6.6
XAC2609_XVIPCDF375A V377A-VirD4AAD	†ND
XAC2609_XVIPCDD383A P384A-VirD4AAD	28.1 +/- 25.0
XAC2609_XVIPCDA396M-VirD4AAD	0.7 +/- 0.3
XAC2609_XVIPCDP400A-VirD4AAD	0.9 +/- 0.6
XAC2609_XVIPCDΔ6-VirD4AAD	0.6 +/- 0.1
XAC2609_XVIPCDQ(397-431)A-VirD4AAD	0.6 +/- 0.1
XAC2609(392-431)-VirD4AAD	†ND
XAC2609(1-306)-VirD4AAD	†ND
PcfF-VirD4AAD	†ND
PcfG-VirD4AAD	†ND
VirD2-VirD4AAD	†ND
XAC2609_XVIPCD-VirD4(487-557)	†ND

K_D values are the average values from two to four independent experiments using a 1:1 binding model. sd, standard deviation.

†No interaction was measured in experiments.
Table S6. Oligonucleotides used in this study

Oligonucleotides	Description	Sequence 5' - 3'
F/vtrD4 AAD/NdeI	Forward primer used to amplify virD4 (197-355) and cloning into pET28a vector at NdeI restriction site.	CACCAGCATATGATCGCTGGAAATCCATTGAC
R/vtrD4 AAD/XhoI	Reverse primer used to amplify virD4 (197-355) and cloning into pET28a vector at XhoI restriction site.	ATCTGCTCGAGTTAGTCATCTTCTGGCAGG
1F/pBRA_3633/NcoI/GA	Forward primer used to amplify XAC3633-XAC3634 and cloning into pBRA vector at NcoI restriction site.	GGTAGCGAGGAATTACCATATGTCGTCAGGAAGATTTCACTGGTCC
1R/pBRA_3634/SalI/GA	Reverse primer used to amplify XAC3633-XAC3634 and cloning into pBRA vector at SalI restriction site.	CAAGCATAAAGGCTGAGATCGATCGGTCAATTCAACGAGTACGAGC
xac2609/F/H315AP316AD317A	Forward primer for mutagenesis of XAC2609 at the codons 315, 316, and 317.	TTGTGCTGATCCTCGCGCTGCGCAACGCGCATGCAATCAACG
xac2609/R/H315AP316AD317A	Reverse primer for mutagenesis of XAC2609 at the codons 315, 316, and 317.	GGTGTAGAGGCTGATCGCGCTGCGCTGACCGCAATCAG
xac2609/F/G336W	Forward primer for mutagenesis of XAC2609 at the codon 336.	TGTTGTCTGATCCGCGCGCTGCCGCCAACGCGATGTACAACG
xac2609/R/G336W	Reverse primer for mutagenesis of XAC2609 at the codon 336.	CGTTGTACATCGCGTTGGCGGCAGCGCGCGGATCAGACAACA
xac2609/F/D363A	Forward primer for mutagenesis of XAC2609 at the codon 363.	CTTGCGGTTGGCAAACCAGCCACGTTCACCCAG
xac2609/R/D363A	Reverse primer for mutagenesis of XAC2609 at the codon 363.	CTGGGTGAACGTGGCTGGTTTGCCAACCGCAAG
xac2609/F/F375A V377A	Forward primer for mutagenesis of XAC2609 at the codons 375 and 377.	TCGCCCTGCGCTGCGGAAGCCGTCGCCGCTCT
xac2609/R/F375A V377A	Reverse primer for mutagenesis of XAC2609 at the codons 375 and 377.	AGAGCGGCGACGGTCTTGGCGACGCGAGGCG
xac2609/F/D383AP384A	Forward primer for mutagenesis of XAC2609 at the codons 383 and 384.	CGCTGCATTGCACCGCGCGTGACGTCGACG
xac2609/R/D383AP384A	Reverse primer for mutagenesis of XAC2609 at the codons 383 and 384.	GCCGAGCTGACCGCGCGGCAAATGCAACG
xac2609/F/A396M	Forward primer for mutagenesis of XAC2609 at the codon 396.	TCCAAAGGCGTATTCTGACATTATGATCGATCCAAACAAAC
xac2609/R/A396M	Reverse primer for mutagenesis of XAC2609 at the codon 396.	GCTTTTTTGTTGTGATCGCATAATTGCGAATATCGCGGGTTGGA
xac2609/F/P400A	Forward primer for mutagenesis of XAC2609 at the codon 400.	CTGCTGTTTTTCAACGCCGTGATTCTGCGGTGAG
xac2609/R/P400A	Reverse primer for mutagenesis of XAC2609 at the codon 400.	TCAAGCGGAGATCGGCGGTTGAAAAACAGCAG
xac2609/F/S412_Stop Codon	Forward primer for mutagenesis of XAC2609 at the codon 412.	TTGCTTGCTACGCATTTCCTCGCGCGCTTGG
xac2609/F/S412_Stop Codon	Reverse primer for mutagenesis of XAC2609 at the codon 412.	AGCAAGCGGCGACGGTGGAAATAGCAGCGTCAAG
xac3634/F/P514AD515A	Forward primer for mutagenesis of XAC3634 at the codons 514 and 515.	GGAGAAGAAAACACCGCGCACCCACCGCGTGTTC
xac3634/R/P514AD515A	Reverse primer for mutagenesis of XAC3634 at the codon 514 and 515.	GAACAGCGGCGGTGGCGCGGTGGTTTTCTCC
xac3634/F/D560A	Forward primer for mutagenesis of XAC3634 at the codon 560.	GCAATGCAACCAGCTCGCCATGCGTGGCCGGAAAG
xac3634/R/D560A	Reverse primer for mutagenesis of XAC3634 at the codon 560.	CTTTGGCACCACCGATCGCGGTGGTGCCATGC
xac3634/F/F572AV574A	Forward primer for mutagenesis of XAC3634 at the codon 572 and 574.	GGTGCGTACCCCTGCGCGCGACGCGATCGCGTC GCCAATC
xac3634/R/F572AV574A	Reverse primer for mutagenesis of XAC3634 at the codon 572 and 574.	GAGCGGGCCCAACGGTGGCGCACCCACCGCGCTGTTC

36
Forward primer for mutagenesis of XAC3634 at the codon 581.
GGTCAGCCAACCGCTGCGGCGCATCAGCG

Reverse primer for mutagenesis of XAC3634 at the codon 581.
CGCTGCGGAAACGTGGCGCTGGAG

Forward primer for mutagenesis of XAC3634 at the codon 597.
CTCCAGCGAGGTTCGCGACGGG

Reverse primer for mutagenesis of XAC3634 at the codon 597.
CGGCCGCAGTCGTACGTTGGCGAAAC

Forward primer for mutagenesis of XAC3634 at the codon 622.
AAGATCAGCAGGCAATACGTTAGGCCAGCGG

Reverse primer for mutagenesis of XAC3634 at the codon 622.
GGGCTGGAGGC TGCCCTGTGCCGGCGCAG

Forward primer used to amplify xac2609 (1-308) with the reverse primer R_2609NT(308) and the plasmid pBRA-XAC2609 as template. This amplicon was used with the PCR product of F_XVIPCD(302) and R_2609XVIPCD(431)pBRA primers and the opened plasmid pBRA at Ncol/Sal cleavage site for the Gibson assembly reaction step to produce the vector pBRA-XAC2609Q(397-431)A.
GGCTAGCAGGAGGAATTCACCATGGGCGATGGACGTGGTCGGAG

Reverse primer used to amplify xac2609(1-308) with the forward primer F_pBRA_2609NT(1) and the plasmid pBRA-XAC2609 as template.
GGGCTGGAGGC TGCCCTGTGCCGGCGCAG

Forward primer to amplify XAC2609Q(397-431)A(302-431) with the pair primer R_2609XVIPCD(431)pBRA and the plasmid pET28a-XAC2609HIS-306-431Q(397-431)A as template.
GCACAGGCAGCCTCCAGCCCTTTGTTGTC

Reverse primer to amplify XAC2609Q(397-431)A with the pair primer F_XVIPCD(302) and pET28a-XAC2609HIS-306-431Q(397-431)A as template.
CAAGCATAAAGCCCTGACGGTCGACTTACATGGACATTGAGCGC

Forward primer used to amplify XAC3634(1-513) and cloning into pET28a vector at NdeI restriction site.
TTCTTGTCATATGCGCAGCAACTATTCACG

Reverse primer used to amplify XAC3634(1-513) and cloning into pET28a vector at BamHI restriction site.
TCAGGATCCTTGGTGGTTGGTTTGAGCA

Forward primer used to amplify XAC3634(40-300) and cloning into pET28a vector at NdeI restriction site.
GCCCATATGAAAACCCTCAGAAAAGGATGCA

Reverse primer used to amplify XAC3634(40-300) and cloning into pET28a vector at BamHI restriction site.
TCAGGATCCTCAAGGGGTGCGGCAAATAC

Annealing at 877 bp upstream the starting codon of XAC2884.
TCATTCCGATCCACCTCAAGGCAACCCCGAT

PCR pair primer with R1 ∆2884 Xhol to produce the amplicon used in the construction of the pNPTS\(\Delta\)XAC2885/XAC2884 plasmid.

Annealing at the codon 36 of XAC2884. PCR pair primer with F1 ∆2884 Xhol to produce the amplicon used in the construction of the pNPTS\(\Delta\)XAC2885/XAC2884 plasmid.

Annealing at the codon 304 of XAC2885. PCR pair primer with R2 ∆2884 EcoRI to produce the amplicon used in the construction of the pNPTS\(\Delta\)XAC2885/XAC2884 plasmid.
R2 ∆2884 ∆2885 EcoRI

Annealing at 1003 bp downstream of the termination codon of XAC2885. PCR pair primer with F2 ∆2884 ∆2885 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC2885/XAC2884 plasmid.

```
TATCAGGAATTCCGAAGATCGATGCACGCAG
```

F1 ∆0573 ∆0574 BamHI

Annealing at 1015 bp upstream the starting codon of XAC0573. PCR pair primer with R1 ∆0573 ∆0574 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0573/XAC0574 plasmid.

```
TCATTCGGATCCCTGCGCTATGGGTCAGAAAGC
```

R1 ∆0573 ∆0574 XhoI

Annealing at the starting codon of XAC0573. PCR pair primer with F1 ∆0573 ∆0574 BamHI to produce the amplicon used in the construction of the pNPTSΔXAC0573/XAC0574 plasmid.

```
TTCATGCTCGAGCAATCTAGTCCGCTCGCGTTC
```

F2 ∆0573 ∆0574 XhoI

Annealing at the codon 438 of the XAC0574. PCR pair primer with R2 ∆0573 ∆0574 EcoRI to produce the amplicon used in the construction of the pNPTSΔXAC0573/XAC0574 plasmid.

```
AATGTCCTCGAGCACCTGGGCTAAGGGGAGC
```

R2 ∆0573 ∆0574 EcoRI

Annealing at 1024 bp downstream of the termination codon of XAC0574. PCR pair primer with F2 ∆0573 ∆0574 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0573/XAC0574 plasmid.

```
TATCAGGAATTCCGTTGGGATACACCGCCTTGG
```

F1 ∆0096 ∆0097 NheI

Annealing at 1033 bp upstream the starting codon of XAC0097. PCR pair primer with R1 ∆0096 ∆0097 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0097/XAC0096 plasmid.

```
TATCAGGGCTAGCATCGGAGCTGTGGTTGATG
```

R1 ∆0096 ∆0097 XhoI

Annealing at 10 pb downstream the starting codon of XAC0097. PCR pair primer with F1 ∆0096 ∆0097 NheI to produce the amplicon used in the construction of the pNPTSΔXAC0097/XAC0096 plasmid.

```
TTCATGCTCGAGGAAGCGCATTAGCAGATCC
```

F2 ∆0096 ∆0097 XhoI

Annealing starts at the codon 628 of the XAC0096. PCR pair primer with R2 ∆0096 ∆0097 NheI to produce the amplicon used in the construction of the pNPTSΔXAC0097/XAC0096 plasmid.

```
AATGTCCTCGAGCTGTCCCGCTAGATCGCAC
```

R2 ∆0096 ∆0097 NheI

Annealing starts 1005 bp downstream the termination codon of XAC0096. PCR pair primer with F2 ∆0096 ∆0097 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0097/XAC0096 plasmid.

```
TCATCGCTAGCGCGCAGCATCATGTTCTCGAC
```

F1 ∆3633 ∆3634 BamHI

Annealing at 860 bp upstream the starting codon of XAC3633. PCR pair primer with R1 ∆3633 ∆3634 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC3633/XAC3632 plasmid.

```
TATCAGGGATTCCGTTGGCCCTCTCCATCAACG
```
amplicon used in the construction of the pNPTSΔXAC3633/XAC3634 plasmid.

R1 Δ3633 Δ3634 XhoI
Annealing at 162 pb downstream the starting codon of XAC3633. PCR pair primer with F1 Δ3633 Δ3634 BamHI to produce the amplicon used in the construction of the pNPTSΔXAC3633/XAC3634 plasmid.

TCATTCCCTCGAGCTGGGTGGTGCCTGCAATG

F2 Δ3633 Δ3634 XhoI
Annealing at the codon 628 of the XAC3634. PCR pair primer with R2 Δ3633 Δ3634 BamHI to produce the amplicon used in the construction of the pNPTSΔXAC3633/XAC3634 plasmid.

TTCATGCTCGAGACGGTATGGCTGATTGTC

R2 Δ3633 Δ3634 BamHI
Annealing at 1023 bp downstream the termination codon of XAC3634. PCR pair primer with F2 Δ3633 Δ3634 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC3633/XAC3634 plasmid.

AATGTCGGATCCGATGGCAGCTGAGTGC

F1 Δ1917 Δ1918 BamHI
Annealing starts 9 pb downstream of the starting codon of XAC1917. PCR pair primer with R1 Δ1917 Δ1918 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC1917/XAC1918 plasmid.

TTCATGCTCGAGGTATCCACGGGAGCCCAC

R1 Δ1917 Δ1918 XhoI
Annealing at the codon 602 of the XAC1918. PCR pair primer with R2 Δ1917 Δ1918 BamHI to produce the amplicon used in the construction of the pNPTSΔXAC1917/XAC1918 plasmid.

AATGTCCTCGAGCAACCAACCAGGTGTGAG

F2 Δ1917 Δ1918 XhoI
Annealing at 954 bp downstream of the termination codon of XAC1918. PCR pair primer with F2 Δ1917 Δ1918 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC1917/XAC1918 plasmid.

TATCAGGGATCTGGGCTATCACCACAAG

R2 Δ1917 Δ1918 BamHI
Annealing at 970 bp upstream the starting codon of XAC0467. PCR pair primer with F1 Δ0466 Δ0467 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0467/XAC0466 plasmid.

TATCAGGGATCTGGGCTATCACCACAAG

F1 Δ0466 Δ0467 NheI
Annealing at 42 pb downstream of the starting codon of XAC0467. PCR pair primer with F1 Δ0466 Δ0467 NheI to produce the amplicon used in the construction of the pNPTSΔXAC0467/XAC0466 plasmid.

TTCATGCTCGAGCTGACGACTGGTCG

R1 Δ0466 Δ0467 XhoI
Annealing at 42 pb downstream of the starting codon of XAC0467. PCR pair primer with F1 Δ0466 Δ0467 XhoI to produce the amplicon used in the construction of the pNPTSΔXAC0467/XAC0466 plasmid.
Annealing at the stop codon of the XAC0466. PCR pair primer with R2 ∆0466 ∆0467 NheI to produce the amplicon used in the construction of the pNPTS ∆XAC0467/XAC0466 plasmid.

Annealing starts at 1094 bp downstream of the stop codon of XAC0466. PCR pair primer with F2 ∆0466 ∆0467 XhoI to produce the amplicon used in the construction of the pNPTS ∆XAC0467/XAC0466 plasmid.

Annealing at 870 bp upstream of the starting codon of XAC4262. PCR pair primer with R1 XAC ∆XAC4264/3/2 to produce the amplicon used in the construction of the pNPTS ∆XAC4264/4263/422 plasmid.

Annealing at the codon 302 of XAC4264. PCR pair primer R2 XAC Delta XAC4264/3/2 to produce the amplicon used in the construction of the pNPTS ∆XAC4264/4263/422 plasmid.

Annealing starts at 911 bp downstream of the stop codon of XAC4264. PCR pair primer with F2 XAC Delta XAC4264/3/2 to construct the insert for the pNPTS ∆XAC4264/4263/422 plasmid.

Annealing 995 bp upstream from the starting codon of XAC2609. PCR pair primer with R1 Transl msfGFP/Xac2609 to produce the amplicon used in the construction of the pNTPS-∆2609::msfGFP.

Annealing starts at 5 bp downstream of the starting codon of XAC2609 (italic). PCR pair primer with F1 Transl msfGFP/Xac2609 to produce the PCR product was used in the construction of the pNTPS-∆2609::msfGFP.

Annealing starts at 5 pb downstream of the starting codon of XAC2609. PCR pair primer with CW31_msfGFP R using the plasmid pDHL1029 (6) as template. PCR product was used in the construction of the pNTPS-∆2609::msfGFP.

Forward primer to amplify msfGFP starting at 5 pb downstream of the starting codon. PCR pair primer with CW31_msfGFP R using the plasmid pDHL1029 (6) as template. PCR product was used in the construction of the pNTPS-∆2609::msfGFP.
Reverse primer to amplify msfGFP 1 pb upstream from the stop codon. PCR pair primer with CW30_msfGFP F using the plasmid pDHL1029 (6) as template. PCR product was used in the construction of the pNTPS-∆2609::msfGFP.

TTTGTAGAGTTCCATCCATGC

Forward primer used to amplify the downstream region of the XAC2609, annealing starts at the stop codon of the XAC2609 (italic). PCR pair primer with R2 Transl GFP/Xac2609. PCR product was used in the construction of the pNTPS-∆2609::msfGFP.

ATCACGCACGGCATGGATGACCTCTAACAATAAAGTGGCGTGTTGTC

Reverse primer used to amplify the downstream region of XAC2609, annealing starts at 983 bp after the stop codon of XAC2609. PCR pair primer with F2 Transl msfGFP/Xac2609. PCR product was used in the construction of the pNTPS-∆2609::msfGFP.

F1pNPTSFup3267

Annealing 1000 bp from the starting codon of XAC3267. PCR pair primer with R1up3267 to build the plasmid pNPTS_XAC3267/3266.

ATATGGATCCTAGTTGCCCGCTGCGCTACC

Annealing at 60 bp downstream of the starting codon of XAC3267. PCR pair primer with F1pNPTSFup3267 to build the plasmid pNPTS_XAC3267/3266.

CTGCTGTGCATTTCACTGGGAACGTAAACTGGAAGAACTC

Annealing at the codon 845 of XAC3266. PCR pair primer with R2down3266pNPTS to build the plasmid pNPTS_XAC3267/3266.

GTCCCCGATGAATTCACACAGCAGCAGACTGCACG

Annealing at 889 bp downstream of XAC3266 stop codon. PCR pair primer with F2down3266 to build the plasmid pNPTS_XAC3267/3266.

ATATGGATCCTAGTTGCCCGCTGCGCTACC

F-Primer used for yeast two hybrid assays cloning VirD4 into the pOBD vector.

AADFTH

gacggaattcACGCATCGCTGGAATCCATTG

R-Primer used for yeast two hybrid assays cloning VirD4 into the pOBD vector.

ADR

taggtggatcgattgaggggcaaggccgccc

F-VirD4-83-Ndel

Forward primer to cloning VirD4 gene into pET28a vector.

R-VirD4-557HindI

Reverse primer to cloning VirD4 gene into pET28a vector.

F-VirD4-487-557 sumoGA

Forward primer for cloning VirD4(487-557) into pSUMO vector.

R-VirD4-487-557 sumoGA

Reverse primer for cloning VirD4(487-557) into pSUMO vector.

F-VirD4-83-Ndel GA

Forward primer to cloning VirD4 gene into pET11a vector.

R-VirD4-557-Ndel GA

Forward primer to cloning VirD4 gene into pET11a vector.
Table S7. Plasmids used for heterologous protein expression in *E. coli* BL21(DE3) strain and purification

Plasmid	Expression condition (Temperature/Time)	Purification Steps [(first step)/(second step)]	Recombinant Proteins	Reference		
pET28a-VirD4[HIS-197-355]	18 °C / 16 hrs	Affinity chromatography/SEC	HIS-VirD4AAD/$^+$VirD4AAD	This work		
pET11a-VirD4₍₁₉₇₋₃₅₅₎	18 °C / 16 hrs	Co-purified as prey for pull down assay by Affinity chromatography	VirD4_{AAD}	This work		
pET28a-VirD4[HIS-83-557]	18 °C / 16 hrs	Affinity chromatography	VirD4_(HIS-83-557)	This work		
pET11a-VirD4₍₈₃₋₅₅₇₎	18 °C / 16 hrs	Co-purified as prey for pull down assay by Affinity chromatography	VirD4₍₈₃₋₅₅₇₎	This work		
pSUMO-VirD4[HIS-SUMO-487-557]	18 °C / 16 hrs	Affinity chromatography	1VirD4(487-557)	This work		
pET11a-XAC2609₃₁₁₋₄₃₁	37 °C / 3 hrs	Anion-exchange chromatography/SEC and as prey for pull down assay by Affinity chromatography	XAC2609_{XVIPCD}	(1)		
pET11a-XAC2609₋₄₃₁	37°C/ 3 hrs	Anion-exchange chromatography/SEC	XAC2609	(2)		
pET11a-XAC2609₋₃₀₆	37°C/ 3 hrs	Anion-exchange chromatography/SEC	XAC2609(1-306)	(1)		
pET28a-XAC2609_{HIS-311-431}^{D317A}	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_{XVIPCD}/"XAC2609_{XVIPCD}"	This work		
pET28a-XAC2609_{HIS-311-431}^{H315A P316A D317A}	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_{XVIPCD}H315A P316A D317A	This work		
pET28a-XAC2609_{HIS-311-431}^{G336W}	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_{XVIPCD}G336W	This work		
pET28a-XAC2609_{HIS-311-431}^{D363A}	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_{XVIPCD}D363A	This work		
Construct	Temperature	Duration	Expression Method	Fusion Tag	Modification	Source
----------------------------	-------------	----------	-------------------	------------	-----------------------	--------
pET28a-XAC2609_F375A_V377A	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_F375A_V377A	This work		
pET28a-XAC2609_D383A_P384A	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_D383A_P384A	This work		
pET28a-XAC2609_A396M	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_A396M	This work		
pET28a-XAC2609_P400A	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_P400A	This work		
pET28a-XAC2609_S426STer	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_S426STer	This work		
pET28a-XAC2609_Q(397-431)A	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_Q(397-431)A	This work		
pET28a-XAC2609_Δ2O	18 °C / 16 hrs	Affinity chromatography	HIS-XAC2609_XVIPCD_Δ2O	This work		
pET28a-XAC3633_Q(40-300)	18 °C / 16 hrs	Affinity chromatography	XAC3633_Q(40-300)	This work		
pPC2071	18 °C / 16 hrs	Affinity chromatography	His-VirD2	(29)		
pCY36	18 °C / 16 hrs	Affinity chromatography	pcfG-His	(33)		
pCY33	18 °C / 16 hrs	Affinity chromatography	His6-pcfF	(33)		
pET28a-XAC3634_Δ20	37°C / 3 hrs	Affinity chromatography	XAC3634_Δ20	(33)		
pET28a-XAC3634_E35Q	37°C / 3 hrs	Affinity chromatography	XAC3634_E35Q	(33)		

% Named follow cleavage of the N-Terminal Histidine tail.

*pET11a-VirD4_197-355 was produced by subcloning the insert Ndel/Xhol from pET28a-VirD4_HIS-197-355 into a vector pET11a modified vector coding for Ndel/Xhol restriction sites.

†pET28a-XAC2609_HIS-311-431 was produced by subcloning the insert from pET11a-XAC2609_HIS-311-431 into vector pET28a using Ndel/BamHI cleavage sites.

‡1 ‡2The synthetic gene produced by GenScript, ‡1 all the glutamine codons between the residues 397-431 of xac2609 were replaced by alanine codons.

$1VirD4(487-557) is obtained after the HIS-SUMO-VirD4(487-557) cleavage with Ulp1 protease (4).
Table S8. Plasmids used in *X. citri* strains and *E. coli* in interspecies competition assays.

Plasmid	Recombinant Proteins produced	Recipient strain
pBRA-empty	--	*X. citri Δ7Δ2609-GFP*
pBRA-empty	--	*X. citri ΔVirB7* (34)(1)
pBRA-empty	--	*X. citri ΔVirD4* (1)
pBRA-XAC2609 (1)	XAC2609	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609 (1)	XAC2609(1-306)	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609G336W	XAC2609 G336W	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609D363A	XAC2609 D363A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609F375A V377A	XAC2609 F375A V377A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609D383A P384A	XAC2609 D383A P384A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609A396M	XAC2609 A396M	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609P400A	XAC2609 P400A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609S426Ter	XAC2609 S426Ter	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609Q(397-431)A	XAC2609 Q(397-431)A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609R427A	XAC2609 R427A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC2609Δ20	XAC2609 Δ20	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634	XAC3633 + XAC3634	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634P514A D515A	XAC3633 + XAC3634 P514A D515A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634D560A	XAC3633 + XAC3634 D560A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634F572A V574A	XAC3633 + XAC3634 F572A V574A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634P597A	XAC3633 + XAC3634 P597A	*X. citri Δ7Δ2609-GFP*
pBRA-XAC3633-XAC3634Q622Ter	XAC3633 + XAC3634 Q622Ter	*X. citri Δ7Δ2609-GFP*
pBRA-VirB7 (1)	VirB7	*X. citri ΔVirB7* (1)
pBBRGFP (1)	GFP protein	*X. citri WT, X. citri ΔVir7
pOBDAAD	VirD4AAD	Yeast
pBBR(1)RFP (reference 4)	RFP protein	*E. coli BL21(DE3)RIL ArcticExpress*
Table S9. Construction of *X. citri* strain Δ7Δ2609-GFP and Δ8Δ2609-GFP strains by successive two-step allelic exchanges.

Plasmid pNPTSΔX-Tfi/X-Tfe	Recipient strain	*X. citri* strain after recombination
pNPTSΔXAC2885/XAC2884	*X. citri* wild type	*X. citri* Δ1
pNPTSΔXAC0574/XAC0573	*X. citri* Δ1	*X. citri* Δ2
pNPTSΔXAC0097/XAC0096	*X. citri* Δ2	*X. citri* Δ3
pNPTSΔXAC3633/XAC3634	*X. citri* Δ3	*X. citri* Δ4
pNPTSΔXAC1918/XAC1917	*X. citri* Δ4	*X. citri* Δ5
pNPTSΔXAC0467/XAC0466	*X. citri* Δ5	*X. citri* Δ6
pNPTSΔXAC4264/XAC4263/XAC4262	*X. citri* Δ6	*X. citri* Δ7
pNTPS-Δ2609::msfGFP	*X. citri* Δ7	*X. citri* Δ7Δ2609-GFP
pNPTS3266/3267	*X. citri* Δ7Δ2609-GFP	*X. citri* Δ8Δ2609-GFP
Movie S1. *X. citri* Δ7Δ2609 vs *E. coli*. Time-lapse microscopy movies showing *X. citri* Δ7Δ2609-GFP (green) carrying the empty pBRa vector interacting with *E. coli* BL21(DE3)RIL ArcticExpress expressing RFP (red). Images were acquired every 10 min. Timestamps in hours:minutes. Scale bar 5 μm. No *E. coli* killing events were observed.

Movie S2. *X. citri* Δ7Δ2609 expressing X-TfeXAC2609 vs *E. coli*. Time-lapse microscopy movies showing *X. citri* Δ7Δ2609-GFP carrying pBRA-XAC2609 vector interacting with *E. coli* BL21(DE3)RIL ArcticExpress expressing RFP (red). Images were acquired every 10 min. Timestamps in hours:minutes. Scale bar 5 μm. *E. coli* killing events were only observed when in contact with *X. citri* Δ7Δ2609-GFP carrying pBRA-XAC2609.

Movie S3. *X. citri* Δ7Δ2609 expressing X-TfeXAC3634 vs *E. coli*. Time-lapse microscopy movies showing *X. citri* Δ7Δ2609-GFP carrying the pBRA-XAC3633-XAC3634 vector interacting with *E. coli* BL21(DE3)RIL ArcticExpress expressing RFP (red). Images were acquired every 10 min. Timestamps in hours:minutes. Scale bar 5 μm. *E. coli* killing events were only observed when in contact with *X. citri* Δ7Δ2609-GFP carrying pBRA-XAC3633-XAC3634.

Dataset S1. Sequence alignment of the XVIPCD N-terminal ααβββ region of 4756 XVIPCD sequences from X-Tfes identified shown in Figure 2A of the main manuscript. This file includes the NCBI reference code for each target identified in the protein databases. They are provided in PFAM format and can be conveniently visualized using Jalview software (https://www.jalview.org/).

Dataset S2. Sequences of the XVIPCD C-terminal tails shown in Figure 2B of the main manuscript. Sequences are ordered according to length and aligned from their C-terminii. This file includes the NCBI reference code for each target identified in the protein databases. They are provided in PFAM format and can be conveniently visualized using Jalview software (https://www.jalview.org/).
REFERENCES

1. D. P. Souza, et al., Bacterial killing via a type IV secretion system. *Nat. Commun.* **6**, 6453 (2015).

2. M. C. Alegria, et al., Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. *J. Bacteriol.* **187**, 2315–2325 (2005).

3. G. G. Sgro, et al., Bacteria-Killing Type IV Secretion Systems. *Front. Microbiol.* **10**, 1078 (2019).

4. E. Bayer-Santos, et al., The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. *PLoS Pathog.* **15**, e1007651 (2019).

5. L. C. Oliveira, et al., VirB7 and VirB9 Interactions Are Required for the Assembly and Antibacterial Activity of a Type IV Secretion System. *Structure* **24**, 1707–1718 (2016).

6. N. Ke, D. Landgraf, J. Paulsson, M. Berkmen, Visualization of Periplasmic and Cytoplasmic Proteins with a Self-Labeling Protein Tag. *J. Bacteriol.* **198**, 1035–1043 (2016).

7. M. C. Alegria, et al., New protein-protein interactions identified for the regulatory and structural components and substrates of the type III Secretion system of the phytopathogen Xanthomonas axonopodis Pathovar citri. *J. Bacteriol.* **186**, 6186–6197 (2004).

8. M. V. Petoukhov, et al., New developments in the program package for small-angle scattering data analysis. *J. Appl. Crystallogr.* **45**, 342–350 (2012).

9. A. Favier, B. Brutscher, NMRlib: user-friendly pulse sequence tools for Bruker NMR spectrometers. *J. Biomol. NMR* **73**, 199–211 (2019).

10. V. Y. Orekhov, V. A. Jaravine, Analysis of non-uniformly sampled spectra with multidimensional decomposition. *Prog. Nucl. Magn. Reson. Spectrosc.* **59**, 271–292 (2011).

11. S. G. Hyberts, A. G. Milbradt, A. B. Wagner, H. Arthanari, G. Wagner, Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. *J. Biomol. NMR* **52**, 315–327 (2012).

12. F. Delaglio, et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* **6**, 277–293 (1995).

13. W. F. Vranken, et al., The CCPN data model for NMR spectroscopy: development of a software pipeline. *Proteins* **59**, 687–696 (2005).

14. F. Allain, F. Mareuil, H. Ménager, M. Nilges, B. Bardiaux, ARIAweb: a server for automated NMR structure calculation. *Nucleic Acids Res.* **48**, W41–W47 (2020).

15. A. T. Brünger, et al., Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Crystallogr. D Biol. Crystallogr.* **54**, 905–921 (1998).

16. Y. Shen, A. Bax, Protein backbone and sidechain torsion angles predicted from NMR
chemical shifts using artificial neural networks. *J. Biomol. NMR* **56**, 227–241 (2013).

17. M. Nilges, *et al.*, Accurate NMR Structures Through Minimization of an Extended Hybrid Energy. *Structure* **16**, 1305–1312 (2008).

18. Pace CN, Scholtz JM, “Chapter 12: Measuring the Conformational Stability of a Protein” in *Protein Structure A Practical Approach*, The Practical Approach Series., T. E. Creighton, Ed. (Oxford University Press, 1997), pp. 299–321.

19. G. G. Sgro, *et al.*, Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. *Nat Microbiol* **3**, 1429–1440 (2018).

20. J. Schindelin, *et al.*, Fiji: an open-source platform for biological-image analysis. *Nat. Methods* **9**, 676–682 (2012).

21. P. Thévenaz, U. E. Ruttimann, M. Unser, A pyramid approach to subpixel registration based on intensity. *IEEE Trans. Image Process.* **7**, 27–41 (1998).

22. S. F. Altschul, *et al.*, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* **25**, 3389–3402 (1997).

23. A. M. Waterhouse, J. B. Procter, D. M. A. Martin, M. Clamp, G. J. Barton, Jalview Version 2--a multiple sequence alignment editor and analysis workbench. *Bioinformatics* **25**, 1189–1191 (2009).

24. K. Katoh, K. Misawa, K.-I. Kuma, T. Miyata, MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* **30**, 3059–3066 (2002).

25. G. E. Crooks, G. Hon, J.-M. Chandonia, S. E. Brenner, WebLogo: a sequence logo generator. *Genome Res.* **14**, 1188–1190 (2004).

26. E. F. Pettersen, *et al.*, UCSF Chimera--a visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612 (2004).

27. C. Notredame, D. G. Higgins, J. Heringa, T-Coffee: A novel method for fast and accurate multiple sequence alignment. *J. Mol. Biol.* **302**, 205–217 (2000).

28. F. X. Gomis-Rüth, M. Coll, Structure of TrwB, a gatekeeper in bacterial conjugation. *Int. J. Biochem. Cell Biol.* **33**, 839–843 (2001).

29. N. Whitaker, *et al.*, The All-Alpha Domains of Coupling Proteins from the Agrobacterium tumefaciens VirB/VirD4 and Enterococcus faecalis pCF10-Encoded Type IV Secretion Systems Confer Specificity to Binding of Cognate DNA Substrates. *J. Bacteriol.* **197**, 2335–2349 (2015).

30. Y. Shen, A. Bax, Protein structural information derived from NMR chemical shift with the neural network program TALOS-N. *Methods Mol. Biol.* **1260**, 17–32 (2015).

31. M. Källberg, *et al.*, Template-based protein structure modeling using the RaptorX web server. *Nat. Protoc.* **7**, 1511–1522 (2012).

32. S. Wang, S. Sun, Z. Li, R. Zhang, J. Xu, Accurate De Novo Prediction of Protein Contact
Map by Ultra-Deep Learning Model. *PLoS Comput. Biol.* **13**, e1005324 (2017).

33. Y. Chen, *et al.*, Enterococcus faecalis PcfC, a Spatially Localized Substrate Receptor for Type IV Secretion of the pCF10 Transfer Intermediate. *Journal of Bacteriology* **190**, 3632–3645 (2008).

34. D. P. Souza, *et al.*, A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. *PLoS Pathog.* **7**, e1002031 (2011).