Rooftop PV System Policy and Implementation Study for a Household in Indonesia

Elieser Tarigan*
Department of Electrical Engineering, and Center for Environmental and Renewable Energy Studies, University of Surabaya (UBAYA), Indonesia. Email: elieser@staff.ubaya.ac.id

Received: 05 March 2020 Accepted: 13 June 2020 DOI: https://doi.org/10.32479/ijeep.9539

ABSTRACT

This paper discusses the recent solar rooftop photovoltaic (PV) system policies in Indonesia, particularly for the implementation of the residential sector. The aim of this study is to demonstrate the rooftop PV system for a household based on the current related policies. The study is conducted by literature reviews and computer simulation for a typical rooftop PV system for residential in Surabaya, Indonesia. The most recent solar energy policy in Indonesia is the Ministry of Energy and Mineral Resources Regulation No. 49, the year 2018, which establishes net metering for the residential, commercial and industrial National Grid (PLN) customers that have excess power from solar rooftop installations. The simulation shows the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. Energy output by 3 kWp rooftop PV system in Surabaya is found about 4,200 kWh/year, with an average of 11.67 kWh/day. Economically, under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period.

Keywords: Rooftop, PV System, Solar Energy, Residential, Indonesia

1. INTRODUCTION

Solar energy is one of the most promising of renewable energies in attempting to reduce fossil-based fuel consumption due to its limited reserved and the greenhouses gas (GHG) emissions from the combustion process. Indonesia is located around the equator line, which fortunate to have relatively high and stable daily solar energy throughout most of the year. Statistically, the daily solar irradiation in Indonesia would provide more than 500 GW of potential solar sources (Dang, 2017; UNEP DTU Partnership, 2016). However, the solar photovoltaic (PV) sector has not been well tracked in Indonesia. By the time of writing this paper, based on various sources (Hamdi, 2019; Tarigan, 2018; Tarigan et al., 2015), it is estimated that there are approximately 14.7 MW of solar PV system running on-grid, 48 MW under construction, and an estimated 326 MW in the pipeline. This capacity is relatively small in comparing to the neighboring South East Asian countries such as Thailand (2.6 GW) and the Philippines (868 MW) (Hamdi, 2019).

The success of the implementation of the rooftop PV system in a country might be affected by many factors such as technical and policy or regulation. It is important for electricity consumers to consider the factors to ensure the beneficial use of the PV system. A number of studies for different countries were found in the literature regarding the policies that regulate the rooftop PV systems in particular countries. Goel (2016) studied and reported the policies, challenges, and outlook of solar rooftop in India. It is reported that with a strong commitment to increasing the renewable sources based energy capacity to 175 GW by 2022, India has a target to install 100 GW of solar energy capacity. Of this 40 GW would be the share of grid-connected solar PV rooftop (Goel, 2016). Xin-Gang and Yi-Min (2019) studied the economic performance of industrial and commercial rooftop PV in China.

This Journal is licensed under a Creative Commons Attribution 4.0 International License
It was reported that for a small rooftop PV investment payback period is short and the risk is low. The levelized cost of electricity is reported at about 0.2727 - 0.5573 CNY/kWh. The techno-economic impact of the rooftop PV system for schools in Palestine as the study cases. It is reported that the application of the rooftop PV systems was experiencing a significant increase and expanding vastly as an alternative source of energy provider for different buildings.

The Government of Indonesian under the Ministry of Energy and Mineral Resources (MEMR) has set a target of 23% of renewable energy of total national energy needs by 2025 (ESDM, 2016). In this connection, the PV rooftop system regulation has recently been introduced (Government of Indonesia, 2018), i.e Permen ESDM or MEMR Regulation No 49/2018. The regulation allows and encourages users, including residents, public, and commercial buildings to generate electricity by using PV system installed on the building roofs. The produced energy can be exported or fed into the utility grid.

The present paper discusses the current solar rooftop PV system policies in Indonesia, particularly for implementation for the residential sector. The available previous related policies on solar energy are compared, and the electricity Feed-in Tariffs (Fit) per are identified. In addition, simulation for a 3 kWp rooftop PV system for residential is done using solar PVSpot (SolarGis, 2017). The objective of this study is to demonstrate the rooftop PV system for households based on the current related policies and to figure out the opportunity benefits from the user’s perspective. The information and the results from this work are expected to be useful for the development of solar rooftop PV system applications for a larger scale in Indonesia, particularly for residential sectors.

2. METHOD

The study in this present work is carried out by literature reviews and computer simulation. The related solar PV policies documents and literature were retrieved through the internet, and then they were reviewed and discussed. Implementation of solar rooftop PV system for a typical household is simulated by taking Surabaya as object location.

In terms of capacity by the National Electricity Grid (Perusahaan Listrik Negara, PLN), there are several types and sizes of installation capacity for residents, however, the installation with 1300 kVA and 2200 kVA (BPS Kota Surabaya, 2019) are dominating the houses in urban area such as Surabaya. The amount of energy consumption with these capacities varies between 3 and 15 kWh/day. Hence, the analysis and simulation in this study are conducted for a 3 kWp capacity of the on-grid rooftop PV system, which assumes that it would be able to supply the daily energy demand. Simulation is done using PVspot online software by SolarGIS (SolarGis, 2017). In addition, economic and environmental analysis is carried out using RETScreen (Natural Resources Canada, 2017) simulation software. The geographical position of the simulated location is –7°19’S and 112°46’E; altitude: 3m. The other parameters for the simulation are shown in Figure 1.

3. RESULTS

3.1. Solar Energy Policies in Indonesia
Since 2013, the government of Indonesia, through the Directorate General of New and Renewable Energy and Energy Conservation (DGNREEC) of the MEMR has started to regulate solar energy sectors in Indonesia. The first policy was introduced with MEMR Regulation Number 17/2013. In the early years, solar technology was still perceived as expensive and unreliable relative to conventional technologies. This has made the lack of a market for solar energy. In the course of time, there have been the regulation changes in Indonesia as shown in the road map solar energy policies in Figure 2.

Table 1 presents the comparison of solar regulations ever issued in Indonesia. The important issues of regulations are mainly concerning: requirement of local content, feed-in tariffs, procurement method, residential application, the build own operate transfer (boot) rules, and deemed dispatch in case of force majeure. It can be seen that none of the regulations specifically regulate the rooftop PV system until the latest MEMR Regulation Number 49/2018 was introduced.

3.2. Rooftop PV System Policy
The most recent solar energy policy is in Indonesia is MEMR Regulation No. 49 the year 2018 which establishes a net metering
scheme for the customers of PLN, including the residential, commercial and industrial customers that have excess power from solar rooftop installations. Under the regulation, the installation and construction of a rooftop PV system require prior approval and verification from PLN. The process of approval and verification involves application submission to office of relevant PLN distribution unit, along with the required technical information and administrative matters, such as the PLN customer identification number, the capacity of the rooftop PV system planned to install, one-line diagram of the planned PV system, and the specifications of the equipment to be installed.

Upon customer application, PLN will make the evaluation on the application and notify the decision within 15 business days. The decision can be either approved or rejected. The installation work for the PV system can only be started after a customer gets formal approval.

With the rooftop PV system, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value. Under MEMR Regulation No 49 the year 2018, the price of electricity by rooftop PV customers that exported to the grid will be greater than the National supply cost of electricity (National BPP) or no more than 85% of local electricity supply cost (regional BPP) which ranges from US$ 0.048 – 0.144/kWh depending on the location. Exported electricity is valued at 65% for compensation if the export is higher, the balance can be accumulated for up to 3 months before it expires. Self-procurement

Table 1: Solar energy policies in Indonesia

Regulation items	MEMR Regulation No. 12/2017 Updated by No. 50/2017	MEMR Regulation No. 49/2018 – (Solar Rooftop)	Regulation No. 17 the Year 2013	Regulation No. 19 the Year 2016	Regulation No. 12 the Year 2017, Updated by Regulation No. 50 the Year 2017	Regulation No. 49 the Year 2018 – (Solar Rooftop)
The requirement of local content	Yes	Yes	Yes	Yes	Yes	Yes
Feed-in tariffs	Yes	Yes	Yes	Yes	Yes	Yes
Procurement method	Auction based on quota per annum Direct appointment allowed if only 1 company bids	Auction based on quota for certain pre-determined regions Project size per developer is subject to a limit based on the available quota in the region	Direct selection based on quota capacity			
Residential application	Not regulated	Regulated				
BOOT	No	No	No	No	No	No
Deemed Dispatch in case of force majeure	Not regulated	Not regulated	Not regulated			

Figure 2: Solar policy roadmap in Indonesia

Upon customer application, PLN will make the evaluation on the application and notify the decision within 15 business days. The decision can be either approved or rejected. The installation work for the PV system can only be started after a customer gets formal approval.

With the rooftop PV system, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value. Under MEMR Regulation No 49 the year 2018, the price of electricity by rooftop PV customers that exported to the grid will be valued at 65% of the applicable PLN tariff. To illustrate, if a rooftop PV system customer exported 1000 kWh to the grid (daily accumulated for a certain month), and the customer imported 1200 kWh from PLN, the export value will be calculated as 650 kWh. In this case, the customer would be billed for 550 kWh (i.e. 650 subtracted from imported of 1200 kWh). Some key points of MEMR Regulation 49 the year 2018 are:

- The allowed capacity of the rooftop PV system is limited at a maximum of 100% of the PLN customer’s installed capacity.
exemption of emergency energy charge and capacity charge for rooftop PV systems;

- The industrial users can install rooftop PV systems either off-grid on an on-grid installation. For the off-grid installations, capacity charge and emergency energy charge are exempted, while for on-grid installation will be subject to both charges.

There have been some questions raised related to the latest MEMR Regulation 49/2018, including how the electricity that exported from rooftop PV systems valued by the government, and what is the additional requirements to obtain approval prior to system installation. The multiplier of 65% applied to exported energy is considered unfavorable to rooftop PV users (Hamdi, 2019).

3.3. Implementation Study for Household

The conversion process of solar energy into electricity is affected by many factors, including materials properties and operating environment conditions. The material properties have been fixed during the manufacturing process of solar cells, while environmental operating conditions factors can be simulated to find out optimum conditions. The Solar GIS PV planner simulation results showed the potential of the site solar irradiation presented in the form daily sum of global irradiation.

The result from the simulation shows that the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. The global solar irradiation consists of direct, diffuse, and reflected components. The diffuse component of radiation is quite significant especially during March – October, while reflected radiation relatively small throughout the year. The monthly global from simulation results is shown in Figure 3. The global radiation in the past time was usually higher during month April – October than the other months due to dry season, meanwhile low radiation during December – March due to rainy season. However, in the present time, the season period is likely unpredictable, and further investigation should be done. Daily air temperature showed that the ambient temperature in Surabaya varies about 26-30°C.

The results of the simulation on energy output by 3 kWp PV system presented in Figure 4. Total annual energy production from the system is found at about 4200 kWh. The lowest energy production was in December and January which is about 190 kWh. Further specific studies are recommended to investigate the main factors such as dust, shading, weather, etc to optimize the energy output.

3.4. Economic Analysis

A quick market survey on the retail price of PV system components in Surabaya was conducted using the internet. There was a variation of the price for each of the components by different brands, types and vendors or suppliers. The average prices among all surveyed data are used for economic analysis. The retail price of components and cost for installing 3kWP rooftop on-grid PV is presented in Table 2.

A financial simulation was carried out with RETScreen software with financial parameters as presented in Table 3. Assuming that the price of one kWh of exported electricity from rooftop PV

Components	Retail price or cost (USD)
3 kWp PV modules	2400
Inverters 3000 W	350
Cabling	100
Construction cost	250
Total	3100

Table 2: Cost component for 3 kWp PV system

Figure 3: Global irradiation and air temperature in Surabaya
system to the grid is 0.09 (USD/kWh), then during 1 year, based current situation above, the system will be generated earning: 4,200 (kWh/year) × 0.09 (USD/kWh) × 1 (year) = 378 (USD/year). Lifetime for PV panels is considered about 20 years, while for inverters are 6-7 years.

The annual cumulative cash flows are presented in Figure 5. The cumulative cash flow in the figure is from the accumulation of money value of electricity produced by the PV system in comparison to system incremental of installation cost. It can be seen that under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period.

3.5. Environmental Analysis

Replacing fossil fuel with renewable ones for power generation would give a positive impact on the environment. It has been known that the combustion process of fossil fuels in power plants would realize GHG such as Sulphur dioxide (SO₂), nitrogen oxide (NOₓ), and Carbon dioxide (CO₂) to the atmosphere. Besides, it also produces a large amount of ash that needs particular handling.

Mathematically, reducing GHG emissions from using 3 kWp solar panels in Surabaya (due to replace the burning of fossil fuel

Table 3: Simulation parameters for financial simulation

Parameters	Value
Debt ratio	50%
Debt interest rate	6%
Inflation rate	5%
Project life	20 year
Electricity export rate	1.2 USD/kWh
GHG emission factor	0.709 tCO₂/MWh
Debt term	10 year
Capacity factor	14%

Figure 4: Energy output by 3 kWp PV system in Surabaya

Figure 5: Cash flows cumulative of rooftop PV system investment
with the equivalent of produced energy) (RETScreen, 2019) is presented in Table 4.

GHG reduction as shown in Table 4 is just representing by applying the PV system by a household. If the number of the house installing PV increases then the amount of reduction GHG should be multiplied by the number of houses with PV systems.

4. CONCLUSIONS

The regulation on solar energy application in Indonesia has been reviewed, and the simulation of the rooftop PV system a typical household in Surabaya Indonesia has been conducted. The most recent solar energy policy in Indonesia is MEMR Regulation No. 49 the year 2018 which establishes a net metering scheme for the customers of PLN, including the residential, commercial and industrial customers that have excess power from solar rooftop installations. Under the current regulation, the electricity bill for PLN customers will be calculated monthly using the export-import energy meter. The calculation is based on the energy used (kWh import) value minus energy produced by the rooftop PV system (kWh export) value.

The price of electricity by rooftop PV customers that exported to the grid will be valued at 65% of the applicable PLN tariff. The simulation shows the average values global solar irradiation on a horizontal surface in Surabaya vary between 6.81 kWh/m² and 4.82 kWh/m² with an average of 5.54 kWh/m²/day. Energy output by 3 kWp rooftop PV system in Surabaya is found about 4200 kWh/year, with an average of 11.67 kWh/day. Economically, under present conditions, rooftop on-grid PV system investment would give about 9-10 years of the payback period. Environmentally, a 3 kWp rooftop PV system would reduce CO₂ emission about 4, 7-ton kg/year.

REFERENCES

BPS Kota Surabaya. (2019), Kota Surabaya Dalam Angka 2019. Available from: https://www.surabayakota.bps.go.id/publication.html?publikasi%5btahunjudul%5d=2019 and publikasi%5bkatakunci%5d=surabaya+dalam+angka and yt0=tampilkan.

Dang, M.Q. (2017), Solar Energy Potential in Indonesia. 19th International Conference of Young Scientist. p199.

ESDM. (2016), Rencana Umum Energi Nasional (RUEN). Available from: https://www.esdm.go.id/id/publikasi/ruen.

Goel, M. (2016), sciencedirect solar rooftop in India : Policies, challenges and outlook. Green Energy and Environment, 1(2), 129-137.

Government of Indonesia. (2018), Peraturan Menteri ESDM No. 49 Tahun 2018 Tentang Penggunaan Sistem Pembangkit Listrik Tenaga Surya (PLTS) Atap. Indonesia: Government of Indonesia.

Hamdi, E. (2019), Indonesia’s Solar Policies: Designed to Fail? Available from: http://www.ieefa.org.

Ibrik, I., Hashaika, F. (2019), Techno-economic impact of grid-connected rooftop solar photovoltaic system for schools in Palestine: A case study of three schools. International Journal of Energy Economics and Policy, 9(3), 291-300.

Natural Resources Canada. (2017), RETScreen. Available from: http://www.nrcan.gc.ca/energy/software-tools/7465. [Last accessed on 2017 Sep 14].

RETScreen. (2019), Clean Energy Management Software. Available from: https://www.nrcan.gc.ca/energy/retscreen/7465.

SolarGis. (2017), SolarGIS PvPlanner. Available from: http://www.solargis.info/pvplanner. [Last accessed on 2017 Mar 01].

Tarigan, E. (2018), Simulation and feasibility studies of rooftop PV system for university campus buildings in Surabaya, Indonesia. International Journal of Renewable Energy Research, 8(2), 895-908.

Tarigan, E., Djuwari, Kartikasari, F.D. (2015), Techno-economic simulation of a grid-connected PV system design as specifically applied to residential in Surabaya, Indonesia. Energy Procedia, 65, 90-99.

UNEP DTU Partnership. (2016), Indonesian Solar PV Rooftop Program. Karnataka: ISPRP.

Xin-Gang, Z., Yi-Min, X. (2019), The economic performance of industrial and commercial rooftop photovoltaic in China. Energy, 187, 115961.
Editorial Team

EDITORS

Ilhan Ozturk, Editor-in-Chief, Cag University, Mersin, Turkey

Ali ACARAVCI, Co-Editor, Mustafa Kemal University, Hatay, Turkey

SECTION EDITORS

Serkan Yilmaz KANDIR, Co-Editor, Çukurova University, Adana, Turkey

Muhittin KAPLAN, Istanbul University, Istanbul, Turkey

Alper ASLAN, Nevsehir Haci Bektas Veli University, Nevsehir, Turkey

Seyfettin ARTAN, Karadeniz Technical University, Trabzon, Turkey

Gazi Salah UDDIN, Linköping University, Sweden

Constantinos ALEXIOU, Cranfield University, Bedfordshire, United Kingdom

Abdulnasser Hatemi, Sharjah University, United Arab Emirates

Hooi Hooi Lean, Universiti Sains Malaysia, Penang, Malaysia

Muhammad Shahbaz, School of Management and Economics, Beijing Institute of Technology, China

Cem SAATCIOLU, Istanbul University, Istanbul, Turkey

Faik BILGILI, Erçiyes University, Kayseri, Turkey

Abu N.M. WAHID, Tennessee State University, United States

Chor Foon TANG, Universiti Sains Malaysia, Penang, Malaysia

Yunke YU, Louisiana State University, Louisiana, United States

Yu Hsing, Southeastern Louisiana University, United States
Abbas Ali Chandio, Sichuan Agricultural University, Chengdu, Chengdu, China

Arshian Sharif, Universiti Utara Malaysia, Malaysia

Hoang Phong Le, University of Economics Ho Chi Minh City & Ho Chi Minh City University of Law, Viet Nam

Festus Victor Bekun, Istanbul Gelisim University, Turkey

Oludele Folarin, University of Ibadan, Nigeria

Festus Adedoyin, Bournemouth University, United Kingdom

Adedoyin I. Lawal, Landmark University, Omu Aran, Nigeria

Muddassar Sarfraz, Nanjing University of Information Science & Technology, WuXi, JiangSu, China

Ionel Rostan, Ştefan cel Mare University of Suceava, Romania

Bashar H. Malkawi, University of Sharjah, Sharjah, United Arab Emirates

Andrew Adewale Alola, University of Vaasa, Vaasa, Finland

Fabio Pizzutilo, University of Bari “Aldo Moro”, Italy

Sana Ullah, Quaid-i-Azam University, Islamabad, Pakistan

Nuno Carlos Leitão, Évora University, Évora, Portugal

Idiano D’Adamo, Sapienza Università di Roma, Italy

Fayyaz Ahmad, Lanzhou University - Lanzhou, Gansu, China

Akbar Maleki, Shahrood University of Technology, Iran, Islamic Republic of

Shah Fahad, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Muhammad Tariq Majeed, Quaid-i-Azam University, Islamabad, Pakistan

Muhammad Hafeez, University of Sialkot, Sialkot, Pakistan

Muntasir Murshed, North South University, Dhaka, Bangladesh

Daniel Balsalobre-Lorente, University of Castilla-La Mancha, Spain
Vol. 10 No. 5 (2020)

Published: 2020-08-10

Articles

Modeling the Efficiency of Using Digital Technologies of Energy and Resource Saving Technologies at Petrochemical Enterprises
Alexey I. Shinkevich
1-6
PDF

Rule of Law and Environment Nexus in Saudi Arabia
Haider Mahmood, Awad Ali Alanzi
7-12
PDF

Analysis and Prospects for the Development of Regional Energy Integration of the Eurasian Economic Union Countries
Natalya Yuryevna Sopilko, Olga Yuryevna Myasnikova, Nataliya Vital’evna Bondarchuk, Natalia Anatolyevna Navrotskaia, Tatyana Evgenyevna Migaleva
13-20
PDF

Renewable Energy Projects on Isolated Islands in Europe: A Policy Review
Marula Tsaqkari, Jordi Roca Jusmet
21-30
PDF

Energy Consumption and Sustainable Economic Welfare: New Evidence of Organization of Petroleum Exporting Countries
Somayeh Azami, Shabnam Almasi
31-40
PDF
The Investments in Energy Distribution Networks: Does Company Ownership Matter?
Francesca Di Pillo, Nathan Levialdi, Laura Marchegiani
41-49

Renewable Energy Use and Its Effects on Environment and Economic Growth: Evidence from Malaysia
Muhammad Raza, Ahmed E. Ahmed, Ali Saleh Alshebami, Aleksandra G. Polyakova
50-57

Analysis of Economic Growth, Oil Stocks and SIN Stocks in United States
Iis Nasrussiah, Nugraha Nugraha, Disman Disman, Rozmita Dewi Yuniarti, Kharisya Ayu Effend
58-63

Future Natural Gas Price Forecasting Model and Its Policy Implication
Ambya Ambya, Toto Gunarto, Ernie Hendrawaty, Fajrin Satria Dwi Kesumah, Febryan Kusuma Wisnu
64-70

Examining the Driving Forces Affecting Energy Intensity during Financial Crisis: Evidence from ASEAN-6 Countries
Dhani Setyawan, Rakhmin Dyarto, Hadi Setiawan, Rita Helbra Tenrini, Sofia Arie Damayanty
71-81

Energy Price Formation and Energy Consumption by Households as a Factor of Ensuring Energy Safety
Valeriy Prasolov, Valery Bezpalo, Svetlana Doguchaeva, Rodion Rogulin
82-93

The Driving Forces of Change in Energy-related CO2 Emissions in the Polish Iron and Steel Industry in 1990-2017
Zbigniew Gołąb, a
94-102
The Effect of Ownership and Financial Performance on Firm Value of Oil and Gas Mining Companies in Indonesia
Hasanudin Hasanudin, Andini Nurwulandari, I. Made Adnyana, Novi Loviana
103-105

Rooftop PV System Policy and Implementation Study for a Household in Indonesia
Elieser Tarigan
110-115

The Impact of the Oil and Oil Products Market on Economic Development: A National Aspect
Arailym Suleimenova, Kulyash Turkeyeva, Aigul Tulemetova, Nazigul Zhanakova
116-122

How Oil Price and Exchange Rate Affect Non-oil GDP of the Oil-rich Country – Azerbaijan?
Famil Majidli, Hasraddin Guliyev
123-130

Nuclear Power Production: The Future or the Past?
Sergey Kashurnikov, Valeriy Prasolov, Vladimir Gorbanyov, Rodion Rogulir
131-141

Stock Prices Reaction to Oil Price Fluctuations: Empirical Evidence from Nigeria
Henry Inegbedion, Eseosa Obadiaru, Olamide Adeyemi
142-146

Relationship between Oil and Stock Markets: Evidence from Pakistan Stock Exchange
Muhammad Hanif
150-157

Strategic Energy Partnership between Russia and China
Pavel Baboshkir
158-163
Does the Choice of the Multivariate GARCH Model on Volatility Spillovers Matter? Evidence from Oil Prices and Stock Markets in G7 Countries

Dimitrios Kartsonakis-Mademlis, Nikolaos Dritsakis
164-182

Drivers of the Quality of Electricity Supply

Remy Tehero, Emmanuel Brou Aka
183-195

Macro Economics of Virtual Power Plant for Rural Areas of Botswana

Sampath Kumar Venkatachary, Jagdish Prasad, Ravi Samikannu, Annamalai Alagappan, Leo John Baptist, Raymon Antony Raj
196-207

Analysis of the Effects of Cell Temperature on the Predictability of the Solar Photovoltaic Power Production

Sameer Al-Dahidi, Salah Al-Nazer, Osama Ayadi, Shuruq Shawish, Nahed Omrar
208-219

Cross-country Analysis of the Comparative Efficiency of Government Support for Coal and Lignite Production

Alan Karaev, Vadim Ponkratov, Andrey Masterov, Elena Kireeva, Maria Volkova
220-227

Accurate Estimated Model of Volatility Crude Oil Price

Toto Gunarto, Rialdi Azhar, Novita Tresiana, Supriyanto Supriyanto, Ayi Ahadiat
228-233

The Relationship Between Crude Oil Prices, EUR/USD Exchange Rate and Gold Prices

Benlaria Houcine, Gheraia Zouheyr, Belbali Abdessalam, Hadji Youcef, Abdelli Hanane
234-242
Foreign Direct Investment, Electricity Power Supply and Economic Growth in Nigeria
Sherifatu O. Onayemi, Philip A. Olomola, Philip O. Alege, Oluwakemi O. Onayem
243-247

A Look to the Biogas Generation from Organic Wastes in Colombia
Michel Durán Contreras, Rodrigo Sequeda Barros, Jorlany Zapata, Marley Vanegas Chamorro, Alberto Albis Arrieta
248-254

Oil and Food Prices for a Net Oil Importing-country: How Are Related in Indonesia?
Agus Widarjono, Indah Susantun, Sarastri M. Ruchba, Ari Rudatir
255-263

Relationship Between Crude Oil prices and Macro-economic Variables: Evidence from BRICS Countries
Guntur Anjana Raju, Shripad Ramchandra Marathe
264-271

Clean Energy in the EAEU in the Context of Sustainable Development: Compliance and Prospects
Natalia A. Sadovnikova, Valery L. Abramov, Andrey A. Ogryzov, Olga A. Makhova
272-280

Factors Associated with Electricity Losses: A Panel Data Perspective
Hugo Briseño, Omar Rojas
281-286

The Influence of Board Diversity on Environmental Disclosures and Sustainability Performance in Malaysia
Rohaida Abdul Latif, Nurul Huda Yahya, Kamarun Nisham Taufil Mohd, Hasnah Kamardin, Arifatul Husne Mohd Ariff
Do Electricity Consumption and Economic Growth Lead to Environmental Pollution? Empirical Evidence from Association of Southeast Asian Nations Countries
Van Chien Nguyen, Hai Phan Thanh, Thu Thuy Nguyen
297-304

Oil Rent, Geopolitical Risk and Banking Sector Performance
Naif Alsagir, Stefan F. Van Hemmen Almazor
305-314

Identifying the Dynamic Connectedness between Propane and Oil Prices: Evidence from Wavelet Analysis
Ngo Thai Hung
315-326

An Approach to the Large-scale Integration of Wind Energy in Albania
Lorenc Malka, Illirian Konomi, Ardit Gjeta, Skerdi Drenova, Jugert Gjikoka
327-343

The Influence of Fiscal Progress on Energy Consumption in Kazakhstan
Azamat Zhanseitov, Gulnur Raikhanova, Sagynych Mambetova, Serik Daribekov, Yerbolsyn Akbayev
344-347

World Practice of Using Biogas as Alternative Energy
Aslan B. Tasmaganbetov, Zhumabay Ataniyazov, Zhangul Basshieva, Abu U. Muhammedov, Anar Yessengeldina
348-352

Time Series Analysis of Carbon Dioxide Emission, Population, Carbon Tax and Energy use in South Africa
Rufaro Garidzira
An Analysis of Electricity Generation with Renewable Resources in Germany
Eduardo Vicente Mendoza Merchán, Moisés David Velásquez Gutiérrez, Diego Armando Medina Montenegro, Ricardo Nuñez Alvarez, John William Grimaldo Guerrero
361-367

Renewable and Non-renewable Energy, Economic Growth and Natural Resources Impact on Environmental Quality: Empirical Evidence from South and Southeast Asian Countries with CS-ARDL Modeling
Zeeshan Arshad, Margarita Robaina, Anabela Botelho
368-383

Determinants of Diversification from Oil Sector in Saudi Arabia
Khalid Abdullah Alkhathlan, Tarek Tawfik Yousef Alkhaeteb, Haider Mahmood, Wardah Abdulrahman Bindabel
384-391

Energy Prices, Income and Electricity Consumption in Africa: The Role of Technological Innovation
Taiwo Owoeye, Dayo Benedict Olanipekun, Akindele John Ogunsola, Augustine Adebayo Kutu
392-400

Evaluation of the Gas Industry Company’s Competitiveness in the Domestic Market
Natalya S. Shcherbakova, Yulia A. Nazarova, Natalia A. Navrotskaia, Nataliya V. Bondarchuk, Alla V. Vavilina
401-408

The Lead Lag Relationship between Spot and Futures Markets in the Energy Sector: Empirical Evidence from Indian Markets
Guntur Anjana Raju, Sanjeeta Shirodkar
409-414

An Investigation of the Causal Relationship between Energy Consumption and Economic
Growth: A Case Study of Vietnam
Xuan Hoi Rue
415-421
PDF

The Impact of COVID-19 on Price Volatility of Crude Oil and Natural Gas Listed on Multi Commodity Exchange of India
Bharat Kumar Meher, Iqbal Thonse Hawaldar, Latasha Mohapatra, Adel M. Sarea
422-431
PDF

Price and Volatility Spillovers between Crude Oil and Natural Gas markets in Europe and Japan-Korea
Theodosios Perifanis, Athanasios Dagoumas
432-446
PDF

Energy Intensity of Kazakhstan’s GDP: Factors for its Decrease in a Resource-export Developing Economy
Nurlan Kurmanov, Ulukbek Aliyev, Aizhan Satbayeva, Gulmira Kabdullina, Darkhan Baxultanov
447-453
PDF

Management of Sustainable Consumption of Energy Resources in the Conditions of Digital Transformation of the Industrial Complex
Marina V. Shinkevich, Nikolay A. Mashkin, Izida I. Ishmuradova, Valeria V. Kolosova, Olga V. Popova
454-460
PDF

The Effect of Oil Price Fluctuation on the Economy of Nigeria
Jelilov Gylych, Abdullahi Ahmad Jbrin, Bilal Celik, Abdurrahman Isik
461-468
PDF

Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria
Iyabo Adeola Olanre, Adedoyin I. Lawal, Ezekiel Oseni, Ahmed Oluwatobi Adekunle, Bukola, B. Lawal-Adedoyin, Crystal O. Elleke, Racheal Ojeka-John, Henry Nweke-Love
469-478
Renewable Energy, Foreign Direct Investment and Sustainable Development: An Empirical Evidence
Narayan Parab, Ramashanti Naik, Y. V. Reddy
479-484

Effect of Oil Revenues on Government Size in Selected Oil-exporters with an Emphasis on Iran's Economy
Davood Danesh Jafari, Hamid Nazemian, Javid Bahrami, Mohammad Hassan Kheiravar
485-497

Biogas Fed-fuel Cell Based Electricity Generation: A Life Cycle Assessment Approach
S. M. Shafie, Z. Othman, N. Hami, S. Omar, A. H. Nu'man, N. N.A.N. Yusoff, A. Shaf
498-502

Negating the Role of Institutions in the Long Run Growth of an Oil Producing Country
Mohammad Imdadul Haque
503-505

Do Oil Price Shocks Give Impact on Financial Performance of Manufacturing Sectors in Indonesia?
Sudarso Kaderi Wiryono, Oktofa Yudha Sudrajad, Eko Agus Prasetio, Marla Setiawan
510-514

Decovidization through Rurbanization: The Re-development Option for Sustainable Energy Access
Salil K. Sen
515-523

Bosnia and Herzegovina's Renewable Energy Policy and Perspective
Amir Tokic, Tahir Cetin Akinci, Aydin Tarik Zengin
524-530
Venture Financing and the Fuel and Energy Complex: Investing in Alternative Energy
Arslan Kulanov, Assiya Issakhova, Olga Koshkina, Parida Issakhova, Alma Karshalova
531-538

International Economic Cooperation of Central Asian Countries on Energy Efficiency and Use of Renewable Energy Sources
Gulnar Shaimardanovna Kaliakparova, YDulena Evgenievna Gridneva, Sara Sarsebekovna Assanova, Sandugash Babagalikzy Sauranbay, Abdizhapar Djumanovich Saparbayev
539-545

Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households
Muhammad Abrar Ul Haq, Muhammad Atif Nawaz, Farheen Akram, Vinodh K. Natarajar
546-554

The Impact of Environmental, Social and Governance Index on Firm Value: Evidence from Malaysia
Muhammad Sadiq, Jaspal Singh, Muhammad Raza, Shafi Mohamad
555-562

Effect of Economic Growth and Foreign Direct Investment on Carbon emission in the Asian States
Toto Gunartc
563-566

Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand
Chaisri Tarasawatpipat, Thammarak Srimat, Witthaya Mekhum
570-576

What Difference Urban Sprawl, Industrialization and Migration Can Make in Energy Consumption? A Time-series Analysis of Thailand
The Impact of Foreign Direct Investment on CO2 Emissions in ASEAN Countries
Rizky Eriandani, Saiful Anam, Dewi Prastiwi, Ni Nyoman Alit Tiani
584-592

Long Run Association of Oil Prices and Stock Prices: A Case of Indonesia
Venkata Sai Srinivasa Rao Muramalla, Hassan Ali Alqahtani
593-600

Energy Consumption and Economic Growth in Indonesia
Nguyen Duy Dat, Nguyen Hoang, Mai Thanh Huyen, Dinh Tran Ngoc Huy, Luong Minh Lar
601-607

Estimating the Impact of Energy Consumption on Carbon Emissions Using Environmental Kuznets Curve
Naif Dalish N. Alanazi, Zavyalov Dmitriy, Aleksandra G. Polyakova
608-614

The Influence of Biological Asset Accounting Policies and Corporate Governance Practices on the Financial Performance: Moderating Role of Knowledge about Renewable Energy
Retno Martanti Endah Lestari, Wahyudin Zarkasyi, Ida Farida
615-622

Development and Challenges for the Functioning of the Renewable Energy Prosumer in Poland: A Legal Perspective
Dawid StadniczeÅ‚,kc
623-630

Utilization of Energy Sources, Financial Stability and Prosperity in the Economy of Indonesia
Hoang Thanh Hanh, Dinh Tran Ngoc Huy, Pham Minh Dat
Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan
Sholpan Saimova, Gulsim Makenova, Aizhan Skakova, Aitolkyn Moldagaliyeva, Ardak Beisembino, Zhamilya Berdiyarova, Bagdagul Imanbekova
638-646

Impact of Accounting Information System and Intensity of Energy on Energy Consumption in Sugar Industry of Indonesia: Moderating Role of Effectiveness of Supply
Meiryan Meiryan, Leny Suzan, Jajat Sudrajat, Watcharin Joemsittiprasert
647-654

Impact of Energy consumption and Economic Growth on Environmental Performance: Implications for Green Policy Practitioners
Mahmoud Radwan Hussein AlZgoool, Syed Mir Muhammad Shah, Umair Ahmec
655-662

The Increasing of Competitiveness of Agro-Industry Products Through Institutional Empowerment to Support the Achievement of Sustainable Agricultural Development
Achmad Faqih, Roosganda Elizabeth, Delima Hasri Azahar
663-671

Impact of Energy Consumption, and Economic Dynamics on Environmental Degradation in ASEAN
Tri Andjarwati, N. Anggoro Panji, Agus Utomo, Linda Nur Susila, P. Anton Respati, Abdul Talib Bor
672-678

Analysis of the Level of Implementation of Programs for the Efficient Use of Energy and Unconventional Sources: Case Study Colombia
Marlen Fonseca Vigoya, JosÃ© GarcÃ­a Mendoza, Sofia Orjuela Abril
679-686
International Journal of Energy Economics and Policy

Scope

International Journal of Energy Economics and Policy (IJEEP) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of energy economics, energy policy and related disciplines. The journal has a worldwide audience. The journal's goal is to stimulate the development of energy economics, energy policy and related disciplines theory worldwide by publishing interesting articles in a highly readable format. The journal is published bimonthly (6 issues per year) and covers a wide variety of topics including (but not limited to): Energy Consumption, Electricity Consumption, Economic Growth - Energy, Energy Policy, Energy Planning, Energy Forecasting, Energy Pricing, Energy Politics, Energy Financing, Energy Efficiency, Energy Modelling, Energy Use - Energy - Environment, Energy Systems, Renewable Energy, Energy Sources, Environmental Economics, Environmental Management, Oil & Gas.

Join the conversation about this journal.
