Periods of Mixed Tate Motives over Real Quadratic Number Rings

Ivan Horozov

Abstract

Recently, the author defined multiple Dedekind zeta values [5] associated to a number field and a cone C. In this paper we construct explicitly non-trivial examples of mixed Tate motives over the ring of integers in K, for a real quadratic number field K and a particular cone C. The period of such a motive is a multiple Dedekind zeta values at $(s_1, s_2) = (1, 2)$, associated to the pair $(K; C)$, times a nonzero element of K.

MSC 2010: 11M32, 11R42, 14G10, 14G25

Keywords: Multiple zeta values, Dedekind zeta values, mixed Tate motives, periods, real quadratic fields

1 Introduction

The Riemann zeta function

$$\zeta(s) = \sum_{n>0} \frac{1}{n^s}$$

is widely used in number theory, algebraic geometry and quantum field theory. Euler’s multiple zeta values

$$\zeta(s_1, \ldots, s_m) = \sum_{0<n_1<\cdots<n_m} \frac{1}{n_1^{s_1} \cdots n_m^{s_m}},$$

where s_1, \ldots, s_m are positive integers and $s_m \geq 2$, appear as values of some Feynman amplitudes, and in algebraic geometry, as periods of mixed Tate motives over $\text{Spec}(\mathbb{Z})$ (see [4], [3], [1], [7]).

Dedekind zeta values

$$\zeta_K(s) = \sum_{a \neq (0)} \frac{1}{N(a)^s},$$

are a generalization of the Riemann zeta function to a number field K. In some Feynman amplitudes one of the summands is $\log(1 + \sqrt{2})$ or $\log \left(\frac{1 + \sqrt{5}}{2} \right)$. These values are essentially the residues at $s = 1$ of Dedekind zeta functions over $\mathbb{Q}(\sqrt{2})$ and over $\mathbb{Q}(\sqrt{5})$, respectively. For $s = 2, 3, 4, \ldots$ the values $\zeta_K(s)$ are periods of mixed Tate motives over the ring of algebraic integers in K with ramification only at the discriminant of K (see [2]).
In [5], the author has constructed multiple Dedekind zeta values, which are a generalization of Euler’s multiple zeta values to number fields in the same way as Dedekind zeta values generalizes Riemann zeta values. For a quadratic number field K, the key examples of multiple Dedekind zeta values are

$$
\zeta_{K;C}(s_1, \ldots, s_1; \ldots; s_m, \ldots, s_m) = \sum_{\alpha_1, \ldots, \alpha_m \in C} \frac{1}{N(\alpha_1)^{s_1}N(\alpha_1 + \alpha_2)^{s_2} \cdots N(\alpha_1 + \cdots + \alpha_m)^{s_m}}, \quad (1)
$$

where s_1, \ldots, s_m are positive integers and $s_m \geq 2$ and C is a cone generated by a totally positive unit β in K and 1, defined by

$$
C = \mathbb{N}\{1, \beta\} = \{\gamma \in K \mid \gamma = a + b\beta, \text{ for positive integers } a \text{ and } b\}.
$$

Similar types of cones were considered by Zagier in [8] and [9].

In [5], the author has proven that multiple Dedekind zeta values can be interpolated to multiple Dedekind zeta functions, which have meromorphic continuation to all complex values of the variables s_1, \ldots, s_m.

In this paper we prove the following theorem.

Theorem 1 Let K be a real quadratic field, and let C be a cone generated by a totally positive unit β in K and 1. Then the multiple Dedekind zeta values

$$
(\beta_2 - \beta_1)^3 \zeta_{K;C}(1, 2)
$$

is a period of a mixed Tate motive over the ring of integers in K. In particular, it is unramified over the primes dividing the discriminant \sqrt{D}.

Remark: The proof of the Theorem can easily be generalized to all

$$
(\beta_2 - \beta_1)^{s_1 + \cdots + s_m} \zeta_{K;C}(s_1, \ldots, s_m)
$$

for the same cone C. The details for the general case will be completed in a sequel to this paper. The choice of considering $\zeta_{K;C}(1, 2)$ in this paper is two-fold. First, this is among the simplest non-trivial example of a multiple Dedekind zeta value. Second, for any other (multiple) Dedekind zeta value, the proof of the corresponding statement is essentially the same.

2 Background

2.1 Multiple zeta values

The Riemann zeta function at the value $s = 2$ can be expressed in term of an iterated integral in the following way
\[
\int_0^1 \left(\int_0^y \frac{dx}{1-x} \right) \frac{dy}{y} = \int_0^1 \left(\int_0^y \left(1 + x^2 + x^3 \ldots \right) dx \right) \frac{dy}{y} = \int_0^1 \left(y + \frac{y^2}{2} + \frac{y^3}{3} + \frac{y^4}{4} \ldots \right) \frac{dy}{y} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \cdots = \zeta(2).
\]

Let us examine the domain of integration of the iterated integral. Note that \(0 < x < y\) and \(0 < y < 1\). We can put both inequalities together. Then we obtain the domain \(0 < x < y < 1\), which is a simplex. Thus, we can express the iterated integral as

\[
\zeta(2) = \int_0^1 \left(\int_0^y \frac{dx}{1-x} \right) \frac{dy}{y} = \int_{0<x<y<1} \frac{dx}{1-x} \wedge \frac{dy}{y}.
\]

Moreover, Goncharov and Manin [4] have expressed all multiple zeta values as periods of motives related to the moduli space of curves of genus zero with \(n + 3\) marked points, \(\mathcal{M}_{0,n+3}\). In particular, \(\zeta(2)\) can be expressed as a period of the motive \(H^2(\overline{\mathcal{M}}_{0,5} - A, B - A \cap B)\) by pairing of \([\Omega_A] \in Gr_W^1 H^2(\overline{\mathcal{M}}_{0,5} - A)\) for \(\Omega_A = \frac{dz}{1-x} \wedge \frac{dy}{y}\), with \([\Delta_B] \in (Gr_0^W H^2(\overline{\mathcal{M}}_{0,5} - B))^\vee\). The Deligne-Mumford compactification \(\overline{\mathcal{M}}_{0,5}\) of the moduli space \(\mathcal{M}_{0,5}\) can be obtained by three blow-ups of \(\mathbb{P}^1 \times \mathbb{P}^1\) at the points \((0, 0)\), \((1, 1)\) and \((\infty, \infty)\). Let us name the exceptional divisors at the three points by \(E_0\), \(E_1\) and \(E_\infty\), respectively. Then \(A = (x = 1) \cup (y = 0) \cup (x = \infty) \cup (y = \infty) \cup E_\infty\) and \(B = (x = 0) \cup (x = y) \cup (y = 1) \cup E_0 \cup E_1\).

Similarly, one can express \(\zeta(3)\) and \(\zeta(1, 2)\) as iterated integrals

\[
\zeta(3) = \int_0^1 \left(\int_0^z \left(\int_0^y \frac{dx}{1-x} \right) \frac{dy}{y} \right) \frac{dz}{z} = \int_{0<x<y<z<1} \frac{dx}{1-x} \wedge \frac{dy}{y} \wedge \frac{dz}{z},
\]

\[
\zeta(1, 2) = \int_0^1 \left(\int_0^z \left(\int_0^y \frac{dx}{1-x} \right) \frac{dy}{1-y} \right) \frac{dz}{z} = \int_{0<x<y<z<1} \frac{dx}{1-x} \wedge \frac{dy}{1-y} \wedge \frac{dz}{z}.
\]

Again, \(\zeta(3)\) and \(\zeta(1, 2)\) can be expressed as periods of motives related to \(\mathcal{M}_{0,6}\). In the same paper, Goncharov and Manin prove that the motives associated to multiple zeta values (MZVs) are mixed Tate motives unramified over \(Spec(\mathbb{Z})\).

A few years later, Francis Brown [1] proved that periods of mixed Tate motives unramified over \(Spec(\mathbb{Z})\) can be expressed as a \(\mathbb{Q}\)-linear combination of MZVs times an integer power of \(2\pi i\).

2.2 Multiple Dedekind zeta values (MDZVs)

We recall the construction of MDZVs over a real quadratic field \(K\). (See [3] for definition of MDZVs over any number field.) Let \(\mathcal{O}_K\) be the ring of integers in \(K\).

And let \(\beta\) be a totally positive unit in \(\mathcal{O}_K\). Let \(C\) be the cone defined as \(\mathbb{N}\)-linear combination of 1 and \(\beta\), that is,

\[
C = \{\gamma \in \mathcal{O}_K \mid \gamma = a + b\beta, \text{ for } a, b \in \mathbb{N}\}.
\]
Let \(f_0(C; t_1, t_2) = \sum_{\gamma \in C} \exp(-t_1 \gamma_1 - t_2 \gamma_2) \), where \(\gamma_1 \) and \(\gamma_2 \) are two real embeddings of \(\gamma \). We express \(\zeta_{K;C}(2) \), \(\zeta_{K;C}(3) \) and \(\zeta_{K;C}(1, 2) \) as iterated integrals on a membrane. See [5] and [6], for more examples and properties of iterated integrals on membranes.

\[
\int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty f_0(C; t_1, t_2) dt_1 \wedge dt_2 \right) du_1 \wedge du_2.
\]

\[
= \int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty \left(\sum_{\gamma \in C} \exp(-t_1 \gamma_1 - t_2 \gamma_2) \right) dt_1 \wedge dt_2 \right) du_1 \wedge du_2.
\]

\[
= \int_0^\infty \int_0^\infty \left(\sum_{\gamma \in C} \frac{\exp(-u_1 \gamma_1 - u_2 \gamma_2)}{\gamma_1 \gamma_2} \right) du_1 \wedge du_2
\]

\[
= \sum_{\gamma \in C} \frac{1}{(\gamma_1 \gamma_2)^2} = \sum_{\gamma \in C} \frac{1}{N(\gamma)^2} = \zeta_{K;C}(2).
\]

Similarly,

\[
\zeta_{K;C}(3) = \sum_{\gamma \in C} \frac{1}{N(\gamma)^3}
\]

\[
= \int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty f_0(C; t_1, t_2) dt_1 \wedge dt_2 \right) du_1 \wedge du_2 \right) dv_1 \wedge dv_2,
\]

and

\[
\zeta_{K;C}(1, 2) = \sum_{\gamma \in C} \frac{1}{N(\gamma)^3 N(\gamma + \delta)^2} = \int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty \left(\int_0^\infty \int_0^\infty f_0(C; t_1, t_2) dt_1 \wedge dt_2 \right) \right.
\]

\[
\times f_0(C; u_1, u_2) du_1 \wedge du_2 \Big) dv_1 \wedge dv_2.
\]

3 Transition to Algebraic Geometry

We can write the infinite sum in the definition of \(f_0 \) as a product of two geometric series

\[
f_0(C; t_1, t_2) = \sum_{\gamma \in C} \exp(-\gamma_1 t_1 - \gamma_2 t_2)
\]

\[
= \sum_{a=1}^\infty \sum_{b=1}^\infty \exp[-(a \alpha_1 + b \beta_1) t_1 - (a \alpha_2 + b \beta_2) t_2]
\]

\[
= \sum_{a=1}^\infty \sum_{b=1}^\infty \exp[-a(\alpha_1 t_1 + \alpha_2 t_2)] \exp[-b(\beta_1 t_1 + \beta_2 t_2)]
\]

\[
= \frac{\exp[-(\alpha_1 t_1 + \alpha_2 t_2)]}{1 - \exp[-(\alpha_1 t_1 + \alpha_2 t_2)]} \times \frac{\exp[-(\beta_1 t_1 + \beta_2 t_2)]}{1 - \exp[-(\beta_1 t_1 + \beta_2 t_2)]}
\]
Let \(x_1 = e^{-t_1} \) and \(x_2 = e^{-t_2} \). Then

\[
f_0(C; t_1, t_2) = \frac{x_1 x_2}{1 - x_1 x_2} \cdot \frac{x_1^{\beta_1} x_2^{\beta_2}}{1 - x_1^{\beta_1} x_2^{\beta_2}}.
\] (3)

Now we are going to express \(f_0 \) algebraically. At this point there is a problem of raising the variable \(x \) to an integer algebraic power. Note that \(\beta_1 \) and \(\beta_2 \) are algebraic integers (in fact totally positive units), which are not rational integers.

How do we raise \(x \) to power \(\beta_1 \) and to \(\beta_2 \)? We introduce new variables

\[
y_1 = x_1^{\beta_1} \quad \text{and} \quad y_2 = x_2^{\beta_2}.
\]

Then \(x_1^{a+b\beta_1} = x_1^a y_1^b \), where \(a \) and \(b \) are integers.

We are going to use the variables \(x_1, x_2 \). For each of them we introduce \(y_1, y_2 \), so that we write \(y_1 \) instead of \(x_1^{\beta_1} \) and \(y_2 \) instead of \(x_2^{\beta_2} \). In terms of \(x_1, x_2, y_1 \) and \(y_2 \), we can express \(f_0 \) as

\[
f_0(C; t_1, t_2) = \frac{x_1 x_2}{1 - x_1 x_2} \cdot \frac{x_1^{\beta_1} x_2^{\beta_2}}{1 - x_1^{\beta_1} x_2^{\beta_2}} = \frac{x_1 x_2}{1 - x_1 x_2} \cdot \frac{y_1 y_2}{1 - y_1 y_2}.
\]

Let us also define \(\omega_1 = \frac{d(x_1 x_2)}{y_1 y_2} \wedge \frac{d(y_1 y_2)}{x_1 x_2} \) and let \(\omega_0 = \frac{d(x_1 x_2)}{y_1 y_2} \wedge \frac{d(y_1 y_2)}{x_1 x_2} \).

Key Remark: The differential forms \(\omega_0 \) and \(\omega_1 \) will be used for both algebraic geometry on moduli spaces and for defining multiple Dedekind zeta values.

Lemma 2 If we substitute \(x_1 = e^{-t_1} \), \(x_2 = e^{-t_2} \), \(y_1 = e^{-\beta_1 t_1} \) and \(y_2 = e^{-\beta_2 t_2} \), then

\[
\omega_0 = (\beta_2 - \beta_1) dt_1 \wedge dt_2.
\]

Proof: Consider \(x_1, x_2, y_1 \) and \(y_2 \) as functions of \(t_1 \) and \(t_2 \). Then

\[
y_1 y_2 = x_1^{\beta_1} x_2^{\beta_2}
\]

and

\[
d(y_1 y_2) = d(x_1^{\beta_1} x_2^{\beta_2}) = \beta_1 \frac{dx_1}{x_1} + \beta_2 \frac{dx_2}{x_2} = -\beta_1 dt_1 - \beta_2 dt_2
\]

Similarly,

\[
d(x_1 x_2) = -dt_1 - dt_2.
\]

Again, as functions of \(t_1 \) and \(t_2 \), we have

\[
\omega_0 = \frac{d(x_1 x_2)}{x_1 x_2} \wedge \frac{d(y_1 y_2)}{y_1 y_2} = (dt_1 + dt_2) \wedge (\beta_1 dt_1 + \beta_2 dt_2) = (\beta_2 - \beta_1) dt_1 \wedge dt_2.
\]

Now let us write \(\omega_0(x_1, x_2) \) and \(\omega_1(x_1, x_2) \), when we want to specify the dependence on the variables. In fact, both forms depend also on \(y_1 \) and \(y_2 \); however, we will take care of that by choosing a region of integration together with tangential base points.
4 Tangential base points

Let \(x_1 = e^{-t_1} \) and let \(y_1 = e^{-\beta_1 t_1} \). We would like to find an algebraic relation among the variables \(x_1 \) and \(y_1 \) when they approach \((0, 0)\) or when they approach \((1, 1)\). That occurs when \(t_1 \) approaches \(\infty \) or when \(t_1 \) approaches 0, respectively. If \(\beta_1 > 1 \) then

\[
\lim_{t_1 \to \infty} \frac{dy_1}{dx_1} = \lim_{t_1 \to \infty} \frac{de^{-\beta_1 t_1}}{de^{-t_1}} = \lim_{t_1 \to \infty} \frac{\beta_1 e^{t_1}}{(e^{t_1})^{\beta_1}} = 0.
\]

Also

\[
\lim_{t_1 \to 0} \frac{dy_1}{dx_1} = \lim_{t_1 \to 0} \beta_1 \frac{e^{-\beta_1 t_1}}{e^{-t_1}} = \beta_1.
\]

Let

\[
\gamma_1 : (0, \infty) \to \mathcal{M}_{0, 5},
\]

\[
\gamma_1(t_1) = (e^{-t_1}, e^{-\beta_1 t_1}) = (x_1, y_1).
\]

For a vector \(v = (a, b) \), consider \([v] = [a : b]\) as an element of \(\mathbb{P}^1 \).

We have proven the following lemma.

Lemma 3

(a) \(\lim_{t_1 \to \infty} \left[\frac{d\gamma_1}{dt_1} \right] = [1 : 0] \),

(b) \(\lim_{t_1 \to 0} \left[\frac{d\gamma_1}{dt_1} \right] = [1 : \beta_1] \).

Similarly, we have \(x_2 = e^{-t_2} \) and \(y_2 = e^{-\beta_2 t_2} \) with \(0 < \beta_2 < 1 \). Let

\[
\gamma_2 : (0, \infty) \to \mathcal{M}_{0, 5},
\]

\[
\gamma_2(t_2) = (e^{-t_2}, e^{-\beta_2 t_2}) = (x_2, y_2).
\]

The following Lemma could be proven in the same way.

Lemma 4

(a) \(\lim_{t_2 \to \infty} \left[\frac{d\gamma_2}{dt_2} \right] = [0 : 1] \),

(b) \(\lim_{t_2 \to 0} \left[\frac{d\gamma_2}{dt_2} \right] = [1 : \beta_2] \).

Remark: The paths \(\gamma_1 \) and \(\gamma_2 \) can be used to define a membrane \(m = \gamma_1 \times \gamma_2 \) by taking a Cartesian products of both the domains and the targets

\[
m = \gamma_1 \times \gamma_2 : (0, 1)^2 \to (\mathcal{M}_{0, 5})^2.
\]

The definition of multiple Dedekind zeta values via iterated integrals on a membrane use exactly the membrane \(m \) in the case of quadratic fields (see \[3\]).

Proposition 5

With the above choice of tangential base points, we have

\[
\int_{0 < x_1 < x_3 < 1; 0 < x_2 < x_4 < 1} \omega_1(x_1, x_2) \wedge \omega_0(x_3, x_4) = (\beta_2 - \beta_1)^2 \zeta_{K, C}(2).
\]
Proof: The differential forms ω_0 and ω_1 are closed. Thus we can vary the paths γ_1 and γ_2 without changing the value of the integral as long as the tangential base points remain the same. Thus, we can choose the parametrization $x_i = e^{-t_i}$ and $y_i = e^{-\beta_it_i}$, keeping the tangential points fixed. Using Formulas (2) and (3), we obtain

$$\frac{d(x_3x_4)}{x_3x_4} \wedge \frac{d(y_3y_4)}{y_3y_4} = (\beta_2 - \beta_1)dt_3 \wedge dt_4$$

Similarly, we have that

$$\frac{x_1x_2}{1 - x_1x_2} \cdot \frac{y_1y_2}{1 - y_1y_2} \cdot \left(\frac{d(x_3x_4)}{x_3x_4} \wedge \frac{d(y_3y_4)}{y_3y_4} \right) = f_0(C; t_1, t_2)(\beta_2 - \beta_1)dt_1 \wedge dt_2.$$

Thus, with the above choice of tangential base points, we have

$$\int_{0<x_1<x_3<1; 0<x_2<x_4<1} \omega_1(x_1, x_2) \wedge \omega_0(x_3, x_4)$$

$$= (\beta_2 - \beta_1)^2 \int_{t_1>t_4>0; t_2>t_4>0} f_0(C; t_1, t_2)dt_1 \wedge dt_2 \wedge dt_3 \wedge dt_4$$

$$= (\beta_2 - \beta_1)^2 \zeta_{K; C}(2).$$

Corollary 6 With the above choice of tangential base points, we have

$$(\beta_2 - \beta_1)^3 \zeta_{K; C}(1, 2)$$

$$= \int_{0<x_1<x_3<x_5<1; 0<x_2<x_4<x_6<1} \omega_1(x_1, x_2) \wedge \omega_1(x_3, x_4) \wedge \omega_0(x_5, x_6).$$

Theorem 7 In Corollary 6, the integral on the right hand side is a period of a mixed Tate motive unramified over a real quadratic number ring.

Proof: In this proof we are going to follow closely the paper by Goncharov and Manin [1]. The period will be a pairing between $[\Omega_A] \in Gr^W H^6(\overline{M}_{0,15} - A)$ and $[\Delta_B] \in (Gr^W H^6(\overline{M}_{0,15} - B))^\vee$ associated to a mixed Tate motive $H^b(\overline{M}_{0,15} - A; B - A \cap B)$.

Let the $(4n)$-coordinates $x_{2i-1}, y_{2i-1}, z_{2i-1}, w_{2i-1}$ for indices $i = 1, 2, \ldots, n$, be a coordinate of a point on $M_{0,4n+3}$. One can think of $M_{0,4n+3}$ as $(\mathbb{P}^1)^{4n} - D$ where the divisor D is obtained by setting any of the coordinates to be $0, 1, \infty$ or setting any two of the coordinates to be equal. Let us define

$$x_{2i} = \frac{1}{z_{2i-1}} \text{ and } y_{2i} = \frac{1}{w_{2i-1}}.$$

Now the coordinates of any point on $M_{0,4n+3}$ can be written as $(x_1, y_1, x_2, y_2, \ldots, x_{2n}, y_{2n})$. In terms of the new coordinates, we have the following components of D:

7
\[
x_i = 0, \quad x_i = 1, \quad x_i = \infty,
\]
\[
y_i = 0, \quad y_i = 1, \quad y_i = \infty,
\]
\[
x_1 = x_3, \quad x_3 = x_5, \quad y_1 = y_3, \quad y_3 = y_5, \quad x_1 x_2 = 1, \quad x_3 x_4 = 1, \quad y_1 y_2 = 1, \quad y_3 y_4 = 1.
\]

The last four components can be realized in terms of the previous coordinates as:
\[
x_1 = z_1, \quad x_3 = z_3, \quad y_1 = w_1, \quad y_3 = w_3.
\]

Let \(n = 3 \). Let \(\overline{M}_{0, 4n+3} = \overline{M}_{0, 15} \) be the Deligne-Mumford compactification of the moduli space of curves of genus 0 with 15 marked points. The ambient space will be \(M_{0, 15} \). From it we will remove a divisor \(A \) whose components occur as poles of the differential forms under the integral. Explicitly, the differential forms are
\[
\omega_1(x_1, x_2) = \frac{d(x_1 x_2)}{1 - x_1 x_2} \wedge \frac{d(y_1 y_2)}{1 - y_1 y_2},
\]
\[
\omega_1(x_3, x_4) = \frac{d(x_3 x_4)}{1 - x_3 x_4} \wedge \frac{d(y_3 y_4)}{1 - y_3 y_4},
\]
\[
\omega_0(x_5, x_6) = \frac{d(x_5 x_6)}{x_5 x_6} \wedge \frac{d(y_5 y_6)}{y_5 y_6}.
\]

The components of the divisor \(A \) consists of the union of:
\[
(x_1 x_2 = 1), \quad (y_1 y_2 = 1), \quad (x_3 x_4 = 1), \quad (y_3 y_4 = 1),
\]
\[
(x_5 = 0), \quad (x_6 = 0), \quad (y_5 = 0), \quad (y_6 = 0),
\]
\[
(x_i = \infty), \quad (y_i = \infty), \quad \text{for } i = 1, 2, \ldots, 6,
\]

together with the exceptional divisors obtained via blow-up at the intersections of two components that both contain the same variable or the same constant 0, 1 or \(\infty \) on the right hand side of the equalities.

Thus, the differential form
\[
\Omega_A = \omega_1(x_1, x_2) \wedge \omega_1(x_3, x_4) \wedge \omega_0(x_5, x_6)
\]
is well-defined on \(\overline{M}_{0, 15} - A \).

Now we proceed to defining \(B \). The key part will be to include the tangential base points in the definition of \(B \).

The components of \(B \) consist of a union of codimension 1 subvarieties and codimension 2 subvarieties. The latter ones correspond to the tangential base points.

The codimension 1 components are the following:
\[
(x_1 = 0), \quad (x_1 = x_3), \quad (x_3 = x_5), \quad (x_5 = 1),
\]
\[
(x_2 = 0), \quad (x_2 = x_4), \quad (x_4 = x_6), \quad (x_6 = 1),
\]
\[
(y_1 = 0), \quad (y_1 = y_3), \quad (y_3 = y_5), \quad (y_5 = 1),
\]
\[
(y_2 = 0), \quad (y_2 = y_4), \quad (y_4 = y_6), \quad (y_6 = 1),
\]

together with the exceptional divisors of the blow-up at an intersection of two subvarieties such that the two polynomials contain the same variable or the same constant
0 or 1 on the right hand side of the equalities, except the following 4 double intersections of components

\((x_1 = 0)\) and \((y_1 = 0)\),
\((x_2 = 0)\) and \((y_2 = 0)\),
\((x_5 = 1)\) and \((y_5 = 1)\),
\((x_6 = 1)\) and \((y_6 = 1)\),

to which we associate a codimension 2 subvarieties of \(\overline{M}_{0,15}\), using the tangential base points.

For the blow-up at the intersection \((x_1 = 0)\) and \((y_1 = 0)\) we choose a divisor \(B_1\) on the exceptional divisor defined by \([x_1 : y_1] = [1 : 0]\). Note that \(B_1\) is of codimension 2 in \(\overline{M}_{0,15}\).

For the blow-up at the intersection \((x_2 = 0)\) and \((y_2 = 0)\) we choose a divisor \(B_2\) on the exceptional divisor defined by \([x_2 : y_2] = [0 : 1]\).

For the blow-up at the intersection \((x_5 = 1)\) and \((y_5 = 1)\) we choose a divisor \(B_5\) on the exceptional divisor defined by \([x_5 : y_5] = [1 : \beta_1]\).

For the blow-up at the intersection \((x_6 = 1)\) and \((y_6 = 1)\) we choose a divisor \(B_6\) on the exceptional divisor defined by \([x_6 : y_6] = [1 : \beta_2]\).

The tangential base points define the components \(B_1, B_2, B_5, B_6\). Thus, \((\beta_2 - \beta_1)^3 \zeta_{K,C}(1,2)\) occurs as a period of \(H^6(\overline{M}_{0,15} - A; B - A \cap B)\) when \([\Omega_A] \in Gr^W_{12} H^6(\overline{M}_{0,15} - A)\) is paired with \([\Delta_B] \in (Gr^W_0 H^6(\overline{M}_{0,15} - B))^\vee\).

Note that \(B_1\) and \(B_2\) are defined over \(\mathbb{Z}\), and \(B_5\) and \(B_6\) are defined over the ring of integers \(\mathcal{O}_K\) of the field \(K\). Each of them is naturally isomorphic to \(\overline{M}_{0,13}\) as a variety over \(\mathcal{O}_K\). Similarly, any intersection of the components of \(B\) is isomorphic over \(\mathcal{O}_K\) to \(\overline{M}_{0,n}\) for some integer \(n\). Using that \(H^i(\overline{M}_{0,n})\) is a mixed Tate motive over \(Spec(\mathcal{O}_K)\), we obtain that the motivic cohomology of the components of \(B\) are mixed Tate motives. Using Proposition 1.7 from Deligne and Goncharov, \([3]\), we conclude that for \(l \neq \text{char}(\nu)\) the \(l\)-adic cohomology of the reduction of \(B_j\) modulo \(\nu\) of the motive \(H^i(B_j)\) is unramified for any component \(B_j\) of \(B\), since \(B_j\) is isomorphic to \(\overline{M}_{0,n}\) over \(Spec(\mathcal{O}_K)\) for some \(n\). We conclude that for \(l \neq \text{char}(\nu)\) the \(l\)-adic cohomology of the reduction modulo any \(\nu \in Spec(\mathcal{O}_K)\) of the motive \(H^6(\overline{M}_{0,15} - A; B - A \cap B)\) is unramified. Thus, \(H^6(\overline{M}_{0,15} - A; B - A \cap B)\) is a mixed Tate motive unramified over \(Spec(\mathcal{O}_K)\).

Acknowledgements

I would like to thank the organizers of the XXXV Workshop on Geometry and Mathematical Physics in Biaowieza, Poland, especially, Emma Previato, for the opportunity to present this result, and for the encouragement and interest in my work. I would also like to thank the referees of the paper for their questions, suggestions and corrections. Due to their comments, the mathematical content of the paper has been improved immensely.

References

[1] Brown, F.: Mixed Tate motives over \(\mathbb{Z}\). Ann. of Math. (2) 175 (2012), no. 2, 949-976.
[2] Brown, F.: Dedekind zeta motives for totally real number fields. Invent. Math. 194 (2013), no. 2, 257-311.

[3] Deligne, P. and Goncharov, A: Groupes fondamentaux motiviques de Tate mixte. (French) [Mixed Tate motivic fundamental groups], Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 1, 1-56.

[4] Goncharov, A. and Manin, Yu.: Multiple ζ-motives and moduli spaces $\mathcal{N}_{0,n}$. Compos. Math. 140 (2004), no. 1, 1-14.

[5] Horozov, I.: Multiple Dedekind Zeta Functions, J. Reine Angew. Math. 722 (2017), 65-104. (Crelle’s Journal), DOI: 10.1515/crelle-2014-0055

[6] Horozov, I.: Non-commutative Hilbert modular symbols, Algebra and Number Theory Vol. 9 (2015), No. 2, 317-370 DOI: 10.2140/ant.2015.9.317

[7] Kontsevich, M. and Zagier, D.: Periods, Mathematics unlimited - 2001 and beyond, 771-808, Springer, Berlin, 2001.

[8] Zagier, D.: A Kronecker limit formula for real quadratic fields. Math. Ann. 213 (1975), 153-184.

[9] Zagier, D.: On the values at negative integers of the zeta-function of a real quadratic field, L’Enseignement Mathmatique, 22 (1976) 55-95.

City University of New York, Bronx Community College 2155 University Avenue, Bronx, New York 10453 , U.S.A.; ivan.horozov@bcc.cuny.edu