ECa 233 Suppresses LPS-Induced Proinflammatory Responses in Macrophages via Suppressing ERK1/2, p38 MAPK and Akt Pathways

Wanida Sukketsiri,* a Supita Tanasawet, b Furoida Moolsap, a Mayurce H. Tantisira, c Pilaiwanwadee Hutamekalini, d and Varomyalin Tipmaneep e

a Department of Pharmacology, Faculty of Science, Prince of Songkla University; Songkhla 90110, Thailand; b Department of Anatomy, Faculty of Science, Prince of Songkla University; Songkhla 90110, Thailand; c Faculty of Pharmaceutical Science, Burapha University; Chon Buri Campus; Chon Buri 20131, Thailand; d Department of Physiology, Faculty of Science, Prince of Songkla University; Songkhla 90110, Thailand; and e Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University; Songkhla 90110, Thailand.

Received March 18, 2019; accepted May 27, 2019

INTRODUCTION

Human diseases such as cancer, allergy, infectious diseases, atherosclerosis, and autoimmune disorders are considered as a result of chronic inflammation. Lipopolysaccharide (LPS), a major component in an outer membrane of Gram-negative bacteria, plays a significant role to negotiate inflammation. Following LPS activation, macrophage releases numerous inflammatory signaling molecules including reactive oxygen species (ROS), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β without cytotoxicity. In addition, ECa 233 downregulated not only the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), but also the activation of nuclear factor-kappa B (NF-kB), activated protein kinase B (Akt), extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases (MAPK) induced by LPS. The inhibition of LPS-induced inflammation due to ECa 233 offered an opportunity as a tentatively potential candidate for the prevention and treatment of inflammatory diseases.

Key words Centella asiatica; cyclooxygenase-2; inducible nitric oxide synthase; reactive oxygen species; nuclear factor-kappa B

A current anti-inflammatory agent often targets the prevention of inflammatory disorder development. The standardized Centella asiatica ECa 233 extract has been previously reported for anti-inflammatory effect. This study aimed to investigate its anti-inflammatory effect and mechanisms of ECa 233 in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, nitric oxide (NO) assay, reactive oxygen species (ROS) production assay, enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Our results found that ECa 233 significantly inhibited LPS-stimulated pro-inflammatory mediators production including ROS, NO and prostaglandin E2 (PGE2), and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β without cytotoxicity. Therefore, the anti-inflammatory agent screening tool has paid much attention to the downregulation of these inflammatory mediators.

Centella asiatica (L.) Urbán (Aptaceae) has been widely used in folk medicine in Southeast Asia. Its major bioactive composition is madecassoside and asiaticoside. The pharmacological activity of C. asiatica has been shown to exhibit antioxidant, anti-inflammatory, neuroprotective and wound healing effects. A difficulty of the crude extracts of C. asiatica is its compound variation, leading to inconsistency of pharmacological responses. An attempt to establish a pharmacological standard of the crude extract as a standardized extract of C. asiatica has been made to circumvent this problem. ECa 233 contained madecassoside and asiaticoside in concentration at least 80%. The proportion of madecassoside and asiaticoside were kept in 1.5 ± 0.5. Previous work has addressed the beneficial effect of ECa 233 on wound healing and skin inflammation (unpublished data); however, the effect on inflammatory responses remains an issue of ambiguity. Therefore, the present study aims to investigate the anti-inflammatory effect of ECa 233 and the mechanism of action against LPS-induced macrophages.

MATERIALS AND METHODS

Cell Culture and Reagent RAW264.7 cell was purchased from the American Type Culture Collection (Manassas, VA, U.S.A.). RAW264.7 cells were grown in completed Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, OK, U.S.A.) con-
RAW264.7 cells were treated with 0, 0.1, 1, 10, 100 and 1000 µg/mL of ECa 233 for 24, 48 and 72 h. Values are expressed as mean ± standard error of the mean (S.E.M) for four independent experiments. The difference among groups were performed by using one-way ANOVA. *p < 0.01 compared to the normal control group.

RAW264.7 macrophages were exposed with LPS (1 µg/mL) in the presence or absence of various concentrations of ECa 233 (0.1, 1, 10 and 100 µg/mL) and dexamethasone (1 µg/mL) for 24 h. Intracellular ROS production was determined by DCFH-DA assay and the cytotoxicity was measured by using MTT assay. Values are expressed as mean ± S.E.M for four independent experiments. The difference among groups were performed by using one-way ANOVA. *p < 0.001 compared to the normal control group, **p < 0.001 compared to the LPS group.

ROS Production in RAW264.7 Cells

RAW264.7 macrophages were maintained in a 96-well plate at the density of 1 × 10^5 cells/well. Subsequently, RAW264.7 macrophages were exposed with LPS (1 µg/mL) in the presence or absence of various concentrations of ECa 233 (0.1, 1, 10 and 100 µg/mL) and dexamethasone (1 µg/mL) for 24 h. Intracellular ROS production was determined by the oxidation of DCFH-DA. The cells were added with DCFH-DA (50 µM) for 1 h in dark condition. The fluorescence of DCF was detected using a fluorescence microplate reader (Bio-Tex Instruments, Inc.) at an excitation wavelength of 485 nm and an emission wavelength of 530 nm.

Determination of PGE\(_2\), TNF-\(\alpha\) and IL-1\(\beta\) Production

RAW264.7 macrophages (1 × 10^5 cells/well) were applied with LPS (1 µg/mL) in the presence or absence of various concentrations of ECa 233 (0.1, 1, 10 and 100 µg/mL) and dexamethasone (1 µg/mL) for 24 h. Then, the level of PGE\(_2\), TNF-\(\alpha\), and IL-1\(\beta\) in the cultured medium of RAW264.7 macrophages were determined by using enzyme-linked immunosorbent assay (ELISA) (Merck Millipore, Darmstadt, Germany) method. In addition, the cell viabilities were quantified with MTT assay after 24 h of incubation.

Determination of COX-2, iNOS, p38, ERK1/2, Akt and NF-\(\kappa\)B Protein Expression in RAW264.7 Cells
In order
to examine COX-2 and iNOS protein expression, the cells (1 × 10^6 cells/plate) were treated with LPS (1 µg/mL) in the presence or absence of 0.1, 1, 10 and 100 µg/mL of ECa 233 and dexamethasone (1 µg/mL) for 24 h. For p38, ERK1/2, Akt and NF-κB protein expression, RAW264.7 cells (1 × 10^6 cells/plate) were treated with LPS (1 µg/mL) for 1 h in with or without ECa 233 (0.1, 1, 10 and 100 µg/mL) and dexamethasone (1 µg/mL). RAW264.7 macrophages were prepared in RIPA buffer containing protease inhibitor cocktail on ice for 30 min. The protein concentration in each collected sample was assessed by the Bradford protein assay (Bio-Rad, CA, U.S.A.). Proteins (75 µg) were subjected to 8–10% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and transferred onto nitrocellulose membranes. The membranes were blocked and incubated with primary antibody against Akt (1:1000), NF-κB (1:1000), ERK1/2 (1:1000), p38 (1:1000), iNOS (1:1000), and COX-2 (1:200) overnight. Then, they were incubated with HRP-conjugated secondary antibodies for 1 h at room temperature. Specific bands were visualized by chemiluminescence (Supersignal West Pico; Pierce Biotechnology, IL, U.S.A.).

Statistical Analysis All experiment data were presented as mean ± standard error of results. One-way ANOVA was utilized for testing the differences of the mean values between three or more groups and pairwise comparison between groups was used by Tukey post hoc test. Values of p < 0.05 were considered to be statistically significant.

RESULTS

Effect of ECa 233 on RAW264.7 Cell Viability We first determined an effect of ECa 233 on the viability of RAW264.7 macrophages by using MTT assay. As shown in Fig. 1, ECa 233 at a concentration (0.1–100 µg/mL) did not suppress the viability of RAW264.7 macrophages after 24, 48 and 72 h treatment but significant increase of cell viability was shown by ECa 233 at 1000 µg/mL after 72 h. These results indicate that the suppression of ROS was not due to chemically activated cytotoxicity.

Effect of ECa 233 on LPS-Induced NO and PGE_2 Generation, iNOS and COX-2 Protein Expression in RAW264.7 Macrophages NO level significantly increased after the
treatment of RAW264.7 macrophages with LPS (1 µg/mL) alone. Interestingly, ECa 233 at 1, 10 and 100 µg/mL and dexamethasone (1 µg/mL) induced a significant decline in the nitrite content, an index of NO in LPS-induced RAW264.7 macrophages (Fig. 3A). We further determined the production of PGE₂ level in LPS-stimulated RAW264.7 macrophages. The PGE₂ production was found to be decreased after the administration of ECa 233 (10 and 100 µg/mL) and dexamethasone (Fig. 3B). Upon the stimulation of RAW264.7 macrophages with LPS, the expressions of iNOS and COX-2 were significantly upregulated as demonstrated in Figs. 3C and D. ECa 233 at the concentrations 10 and 100 µg/mL and also dexamethasone could suppress COX-2 expression in the LPS-stimulated RAW264.7 macrophages (Figs. 3C, D). These results suggest that the anti-inflammatory activity of ECa 233 via the reduction of PGE₂ and NO production, and subsequently inhibited COX-2 and iNOS protein expression.

ECa 233 Suppressed LPS-Induced TNF-α and IL-1β Level in RAW264.7 Macrophages We next attempted to examine an inhibitory effect of ECa 233 towards the proinflammatory cytokines in the LPS-induced RAW264.7 macrophages. As shown in Figs. 4A and B, IL-1β and TNF-α secretion significantly increased upon the administration with 1 µg/mL of LPS in RAW264.7 macrophages. All concentrations of ECa 233 (0.1–100 µg/mL) and dexamethasone have significantly inhibited the release of IL-1β and TNF-α in LPS stimulated RAW264.7 macrophages (Figs. 4A, B). Therefore, this result implied that ECa 233 could diminish the inflammatory response in LPS-induced RAW264.7 macrophages by suppressing the proinflammatory cytokines IL-1β and TNF-α production.

ECa 233 Suppressed LPS-Induced Inflammation via Inhibiting p38 and ERK1/2 Signaling in RAW264.7 Macrophages An involvement of the p38 and ERK1/2 pathway in the LPS-induced inflammation was examined. In RAW264.7 macrophages treated with LPS, the phospho-ERK1/2 and phospho-p38 levels were significantly increased after 1 h of treatment without affecting the total protein level (Figs. 5A, B). Interestingly, treatment with ECa 233 (10 and 100 µg/mL) and also dexamethasone significantly suppressed LPS-induced increasing levels of phospho-ERK1/2 and phospho-p38 levels (Figs. 5A, B), confirming the anti-inflammatory effects of ECa 233 on LPS-induced inflammation by suppressed ERK1/2 and p38 MAPK signaling pathway.

Effect of ECa 233 on Akt and NF-κB Signaling Pathway in LPS-Induced RAW264.7 Macrophages The activation of Akt and NF-κB is critically affected in the inflammation progression and involves in the inflammatory cytokines production. We thus examined the effect of ECa 233 on the...
expressions of Akt and NF-κB in LPS-induced RAW264.7 macrophages. As shown in Figs. 6A and B, the expression of p-Akt and p65 NF-κB proteins increased in LPS-stimulated RAW264.7 macrophages. Interestingly, ECa 233 (10 and 100 µg/mL) and dexamethasone significantly decreased the elevating level of p-Akt and p65 NF-κB proteins expression in LPS-stimulated RAW264.7 macrophages (Figs. 6A, B). These results indicated the anti-inflammatory effects of ECa 233 via the suppression of Akt and NF-κB inflammatory signaling pathway.

DISCUSSION

Chronic inflammation is closely related to the initiation and progression of many diseases such as cancer, arteriosclerosis, diabetes, obesity, and neurodegenerative diseases. During inflammation, inflammatory mediators including ROS, NO, PGE_{2}, IL-1β, and TNF-α were released after LPS-stimulated macrophages against the invading pathogens. In addition, prolonged energizing of the macrophage may cause severe life-threatening disorders. Accordingly, to inhibit abnormal activation and to maintain macrophages within their appropriate range of activity are essential for the prevention of chronic inflammatory diseases due to macrophages. An inhibitory effect of ECa 233 on the inflammatory mediators via the Akt, ERK1/2 and p38 MAPK pathways in LPS-activated RAW264.7 macrophages were thus examined.

It is widely known that endotoxin of bacteria activates the production of inflammatory negotiators including PGE_{2}, COX-2, NO, iNOS and proinflammatory cytokines (for example, TNF-α and IL-1β), which has a primary role during inflammatory responses. An innate immunity normally handles inflammatory response via prevention of invasive pathogen into the host. Still, overproduction of inflammatory mediators as well as their excessive activity could lead to various adverse effects such as septic shock, atherosclerosis, cancer and rheumatoid arthritis though. Moreover, the pharmacological inhibition of the inflammatory mediators is crucial in order to control the inflammatory response. Furthermore, PGE_{2} production and expression of COX-2 were proposed as another therapeutic alternative in inflammatory disease treatment. By using RAW264.7 macrophages, we examined whether ECa 233 attenuated the inflammatory reaction through diminishing PGE_{2} generation and expression of COX-2. Intriguingly, we established that ECa 233 successfully attenuated the COX-2 protein expression in LPS-induced mac-
Besides, we also found that ECa 233 decreased the LPS-induced PGE₂ generation in macrophages, which may be possibly due to the abolition of COX-2 at protein levels. Similar to COX-2, iNOS is a crucial molecule of inflammatory for NO synthesis. Based on our report, administration with ECa 233 remarkably restricted the release of NO by downregulating the iNOS expression at protein levels. Consequently, our study proved that treatment with ECa 233 inhibited the release of TNF-α and IL-1β in LPS-induced macrophages. Potential inhibitory effects of ECa 233 related to the suppression of NF-κB, ERK1/2, p38 and Akt pathways in LPS-activated macrophages. In this manner, we additionally examined the downregulatory effects of ECa 233 on NF-κB signaling pathway and that the major valuable pathway in order to control the inflammatory response. The inflammatory negotiator’s expression, including cytokines involved during inflammation progression, was regulated by NF-κB transcription factor. Besides NF-κB signal transduction pathway, ECa 233 exhibited suppressive effects on Akt, ERK1/2 and p38 MAPK signaling occurrence. Akt signal transduction pathway was reported to be responsible for the proinflammatory molecules expression through the NF-κB activation in LPS-triggered cell through numerous studies. For that reason, inhibition of the Akt phosphorylation has been identified as a primary key to handle inflammatory diseases. Hence, the stimulation of Akt, possibly correlated with NF-κB activation in LPS-stimulated cells, could provide the generation of inflammatory signaling molecules. Significantly, this study found that Akt phosphorylation was remarkably decreased by the treatment...
of ECa 233 in LPS-triggered macrophages. Likewise Akt, the MAPKs signaling pathway was observed to control the inflammatory mediators’ expression by regulating the activity of NF-κB transcription in the LPS-activated cells.29,30,32 The unauthorised stimulation of MAPKs signal transduction pathway has been demonstrated to increase the possibility of chronic inflammatory diseases due to the inflammatory mediators’ activation.22,23 Moreover, intracellular signaling pathways including ERK1/2, p38 MAPKs together with NF-κB phosphorylation. The evidence from our study herein suggested one to consider ERK1/2, p38 MAPK and Akt pathway as a development option of the anti-inflammatory novel-and-effective agent.

CONCLUSION

Our present study demonstrated the anti-inflammatory effect of ECa 233 in LPS-induced RAW264.7 macrophages through the selective suppression of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathway (Fig. 7). ECa 233 possessed therapeutic beneficial for inflammatory disorders; however further investigations on other cellular models such as human macrophages are still needed to explore for the additional information on the specific molecular mechanisms responsible for the anti-inflammatory effect of ECa 233. In addition, further studies are required to explore in vivo and clinical trials efficacy thereafter ECa 233 could be developed as an effective anti-inflammatory agent candidate.

Acknowledgments This research was supported by a Grant from the General Project and Invention of Prince of Songkla University (Grant number SCI600421S), Songkhla, Thailand.

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Sugimoto MA, Sousa LP, Pinho V, Ferretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front. Immunol., 7, 160 (2016).
2) Raeiz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu. Rev. Biochem., 71, 635–700 (2002).
3) Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell. Signal., 13, 85–94 (2001).
4) Laskin DL, Sumi VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Ann. Rev. Pharmacol. Toxicol., 51, 267–288 (2011).
5) Michel B, Oelecke JM. Macrophages, immunity, and metabolic disease. Immunity, 41, 36–48 (2014).
6) Mitral M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal., 20, 1126–1167 (2014).
7) Chao LK, Liao PC, Ho CL, Wang EL, Chuang CC, Chiu HW, Hung LB, Hua KF. Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-κB pathway to reduce LPS-induced TNF-α and NO expression. J. Agric. Food Chem., 58, 3472–3478 (2010).
8) Kaminiska B. MAPK signaling pathways as molecular targets for anti-inflammatory therapy from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta, 1754, 253–262 (2005).
9) Moens U, Kostenko S, Sveninjørbø B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes (Basel), 4, 101–133 (2013).
10) Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell, 169, 381–405 (2017).
11) Günther B, Wagner H. Quantitative determination of triterpenes in extracts and phytopreparations of Centella asiatica (L.) urban. Phytochemistry, 3, 59–65 (1996).
12) Ramesh BN, Giriith TK, Raghavendra RH, Naidu KA, Rao UJ, Rao KS. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts. J. Pharm. Bioall. Sci., 6, 86–91 (2014).
13) Teerapatthanan K, Benya-aphikul H, Tansawat R, Wanakhochrakri O, Tantisira MH, Rodsiri R. Neuroprotective effect of a standardized extract of Centella asiatica (ECa233) in rotenone-induced parkinsonism rats. Phytochemistry, 44, 65–73 (2001).
14) Wasuntronwong A, Tantisira MH, Tantisira B, Watanabe H. Anti-inflammatory and anti-oxidative effects of standardized extract of Centella asiatica (ECa 233) after chronic immobilization stress in mice. J. Ethnopharmacol., 143, 579–585 (2012).
15) Singkhorn S, Tantisira MH, Tansawat S, Huatemekalin P, Wongtawatchai T, Sakketsiri W. Induction of keratinocyte migration by ECa 233 is mediated through FAK/Akt, ERK, and p38 MAPK signaling. Phytother. Res., 32, 1397–1403 (2018).
16) Safaf E, Suttissi R, Patarapanich C, Laungchonlatan S, Tantisira MH, Tantisira B. Preparation methods of colorless mixture between madecassoside and asiaticoside from Centella asiatica. Department of Intellectual Property MoC ed. (C07H 1/00 ed.) Chulalongkorn University, Thailand (2009).
17) Anukunwityha T, Tantisira MH, Tantisira B, Khemawoot P. Proinflammatory cytokines. Anti-inflammatory activity in rats. J. Ethnopharmacol., 1364 Vol. 42, No. 8 (2019).
18) Fernandez JV, Cubucci RN, Jatoba CA, Fernandez TA, de Azevedo JW, de Araujo JM. The role of the mediators of inflammation in cancer development. Pathol. Oncol. Res., 21, 527–534 (2015).
19) Mened I, Yacov N, Harats D, Breitbart E. Therapies targeting innate immunity for fighting inflammation in atherosclerosis. Curr. Pharm. Des., 21, 1185–1195 (2015).
20) Karam BS, Chavez-Moreno A, Koh W, Akar JG, Akar FG. Oxidative stress and inflammation as central mediators of atrial fibrillation in obesity and diabetes. Cardiovasc. Diabetol., 16, 120 (2017).
21) Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases. Mol. Med. Rep., 13, 3591–3596 (2016).
22) Ohara Y, Manabe I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech. Dis, 2, 16018 (2016).
23) Duque GA, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious disease. Front. Immunol., 5, 491 (2014).
24) Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 31, 986–1000 (2011).
25) Artiq A, Jull J, Huisain K, Ahmad W. Raging the war against inflammation with natural products. J. Ethnopharmacol., 381–405 (2017).
26) Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur. Heart J., 33, 829–837, 837a–837d (2012).
27) Herrington F, Carmody RJ, Goodyear CS. Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J. Biomol. Screen., 21, 223–242 (2016).
28) Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct. Target Ther., 2, 17025 (2017).
29) Park SY, Park GY, Ko WS, Kim Y. Dichroa febrifuga Lour. inhibits the production of IL-1beta and IL-6 through blocking NF-kappaB, MAPK and Akt activation in macrophages. *J. Ethnopharmacol.*, **125**, 246–251 (2009).

30) Harikrishnan H, Jantan I, Haque A, Kumolosasi E. Phyllanthin from *Phyllanthus amarus* inhibits LPS-induced proinflammatory responses in U937 macrophages via downregulation of NF-κB/MAPK/PI3K-Akt signaling pathways. *Phytother. Res.*, **32**, 2510–2519 (2018).

31) Jeong JW, Lee WS, Shin SC, Kim GY, Choi BT, Choi YH. Anthocyanins downregulate lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-κB and Akt/MAPKs signaling pathways. *Int. J. Mol. Sci.*, **14**, 1502–1515 (2013).

32) Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. *Biochim. Biophys. Acta*, **1802**, 396–405 (2010).

33) Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. *Oncotarget*, **9**, 7204–7218 (2018).

34) Cao W, Li XQ, Zhang XN, Hou Y, Zeng AG, Xie YH, Wang SW. Madecassoside suppresses LPS-induced TNF-alpha production in cardiomyocytes through inhibition of ERK, p38, and NF-kappaB activity. *Int. Immunopharmacol.*, **10**, 723–729 (2010).