LIGHTWEIGHT CONVOLUTIONAL NEURAL NETWORKS BY HYPERCOMPLEX PARAMETERIZATION

Eleonora Grassucci
Sapienza University of Rome
Rome, Italy

Aston Zhang
Amazon Web Services AI
East Palo Alto, CA, USA

Danilo Comminiello
Sapienza University of Rome
Rome, Italy

ABSTRACT

Hypercomplex neural networks have proved to reduce the overall number of parameters while ensuring valuable performances by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers to develop lightweight and efficient large-scale convolutional models. Our method grasps the convolution rules and the filters organization directly from data without requiring a rigidly predefined domain structure to follow. The proposed approach is flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multi-dimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed method operates with $1/n$ free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts.

1 INTRODUCTION

Recent state-of-the-art convolutional models achieved astonishing results in various fields of application by large-scaling the overall parameters amount (Karras et al., 2020; d’Ascoli et al., 2021; Dosovitskiy et al., 2021). Simultaneously, quaternion neural networks (QNNs) demonstrated to significantly reduce the number of parameters while still gaining comparable performances (Parcollet et al., 2019c; Grassucci et al., 2021a; Tay et al., 2019). Quaternion models exploit hypercomplex algebra properties, including the Hamilton product, to painstakingly design interactions among the imaginary units, thus involving $1/4$ of free parameters with respect to real-valued models. Furthermore, thanks to the modelled interactions, quaternion networks capture internal latent relations in multidimensional inputs and preserve pre-existing correlations among dimensions. Therefore, the quaternion domain is particularly appropriate for processing 3D or 4D data, such as color images or (up to) 4-channel signals. Unfortunately, most common color image datasets contain RGB images and a zero channel has to be padded to the input in order to encapsulate the image in the four quaternion components. Additionally, while quaternion neural components are widespread and easy to be integrated in pre-existing models, very few attempts have been made to extend models to higher domain orders. Accordingly, the development of hypercomplex convolutional models for larger multidimensional inputs, such as magnitudes and phases of multichannel audio signals or 16-band satellite images, still remains painful. Recently, a parameterized hypercomplex multiplication (PHM) for fully connected layers have been proposed to generalize hypercomplex multiplications as sum of Kronecker products, going beyond quaternion algebra. However, no solution exists for convolutional layers, which remain the most employed layers when dealing with multidimensional inputs, such as images and audio signals (Wu et al., 2021; Hershey et al., 2017).

In this paper, we propose a parameterized hypercomplex convolutional (PHC) layer to define lightweight large-scale neural models admitting any multidimensional input, whichever the number of dimensions. Our method is flexible to operate in domains from 1D to nD, where n can be arbitrarily chosen by the user or tuned to let the model performances lead to the most appropriate...
domain for the given input data. Such a malleability comes from the ability of the proposed approach to subsume algebra rules to perform convolution regardless of whether these regulations are preset or not. Thus, neural models endowed with our approach adopt $1/n$ of free parameters with respect to their real-valued counterparts, and the amount of parameter reduction is a user choice. This makes PHC layers adaptable to a plethora of applications and hardware, even on the edge where the memory saving is a crucial aspect. Additionally, the PHC versatility allows to process multidimensional data in its natural domain by simply setting the dimensional hyperparameter n. For instance, color images can be analyzed in their RGB domain by setting $n = 3$ without adding any useless information, contrary to standard processing for quaternion networks with the padded zero-channel. Indeed, PHC-based models are able to grasp the proper algebra from input data, while capturing internal correlations among the image channels and saving 66% of free parameters.

On a thorough empirical evaluation on multiple benchmarks, we demonstrate the flexibility of our method that can be adopted in different domain of applications, from images to audio signals. We devise a set of convolutional models endowed with PHC layers for large-scale image classification and sound event detection tasks, letting them operate in different hypercomplex domain and with various input dimensionality with n ranging from 2 to 16.

The contribution of this paper is three-fold.

- We introduce a parameterized hypercomplex convolutional (PHC) layer, which aims at building lightweight and more efficient large-scale convolutional models. The approach grasps the convolution rules directly from data via backpropagation exploiting the Kronecker product properties, thus reducing the number of free parameters to $1/n$.
- We show how the proposed approach can be employed with any kind of multidimensional data by easily changing the hyperparameter n. Indeed, by setting $n = 3$ the PHC-based models can process RGB images in their natural domain, while leveraging the properties of hypercomplex algebras, which allow the parameters sharing inside the layers and lead to a parameter reduction to $1/3$. As well, multichannel audio signals can be analysed by simply considering $n = 4$ for standard first-order ambisonics (which has 4 microphone capsules), $n = 8$ for an array of two ambisonics microphones, or even $n = 16$ if we want to include the information of each channel phase.
- We devise a family of PHC neural networks, redefining common ResNets, VGGs and Sound Event Detection networks (SEDnets), operating in any user-defined domain just by choosing the hyperparameter n, which also drives the number of convolutional filters.\footnote{Code is available at: \url{https://github.com/eleGAN23/HyperNets}}

The rest of the paper is organized as follows. In Section2 we recapitulate real and quaternion-valued convolutional layers. Section3 theoretically introduces the proposed method and expounds how to process RGB images with $n = 3$, while in Section4 we define the PHC models and we present the experimental evaluation, including datasets, experiment details and results. Finally, Section5 reports the related works and in Section6 we draw conclusions.

2 \textbf{REAL AND QUATERNION-VALUED CONVOLUTIONAL LAYERS}

A brief recall on real-valued and quaternion convolutional layers is appropriate to better understand the proposed method. A generic convolutional layer can be described by

$$y = \text{Conv}(x) = W \ast x + b,$$

where the input $x \in \mathbb{R}^{t \times s}$ is convolved (\ast) with the filter tensor $W \in \mathbb{R}^{s \times d \times k \times k}$ to produce the output $y \in \mathbb{R}^{d \times t}$, where k is the filter size. The bias term b does not heavily influence the number of parameters, thus the degrees of freedom for this operation are essentially $O(sd k^2)$.

Quaternion convolutional layers, instead, build the weight tensor $W \in \mathbb{R}^{s \times d \times k \times k}$ by following the Hamilton product rule and organize filters according to it:

$$W \ast x = \begin{bmatrix} W_0 - W_1 - W_2 - W_3 \\ W_1 + W_0 - W_3 + W_2 \\ W_2 + W_3 + W_0 - W_1 \\ W_3 - W_2 - W_1 + W_0 \end{bmatrix} \ast \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix},$$

\footnote{1Code is available at: \url{https://github.com/eleGAN23/HyperNets}}
where $W_0, W_1, W_2, W_3 \in \mathbb{R}^{i \times \frac{d}{k} \times k}$ are the real coefficients of the quaternion weight matrix $W = W_0 + W_1i + W_2j + W_3k$ and x_0, x_1, x_2, x_3 are the coefficients of the quaternion input x with the same structure. The imaginary units comply with the property $i^2 = j^2 = k^2 = -1$ and with the non-commutative products $ij = -ji; jk = -kj; ki = -ik$.

As done for real-valued layers, the bias can be ignored and the degree of freedom computations of the quaternion convolutional layer can be approximated to $O(sd^2/4)$. The lower number of parameters with respect to the real-valued operation is due to the reuse of filters performed by the Hamilton product in Eq.[2]. Also, sharing the parameter submatrices forces to consider and exploit the correlation between the input components (Parcollet et al., 2019a; Tay et al., 2019; Gaudet & Maida, 2019).

3 Parameterizing Hypercomplex Convolutions

3.1 Parameterized Hypercomplex Convolutional Layers

In the following, we delineate the formulation for the proposed parameterized hypercomplex convolutional (PHC) layer. We also show that it is capable of learning the Hamilton product rule when two quaternions are convolved. The PHC layer is based on the construction, by sum of Kronecker products, of the weight tensor H which encapsulates the filters of the convolution. The proposed method is formally defined as:

$$y = \text{PHC}(x) = H \ast x + b,$$

whereby $H \in \mathbb{R}^{s \times d \times k \times k}$ is built by sum of Kronecker products between two learnable matrices. Here, s is the input dimensionality to the layer, d is the output one, and k is the filter size. More concretely,

$$H = \sum_{i=1}^{n} A_i \otimes F_i,$$

in which $A_i \in \mathbb{R}^{n \times n}$ with $i = 1, ..., n$ are the matrices that describe the algebra rules and $F_i \in \mathbb{R}^{\frac{d}{k} \times \frac{d}{k} \times k}$ represents the i-th batch of filters that are arranged by following the algebra rules to compose the final weight matrix. The core element of this approach is the Kronecker product, which is a generalization of the vector outer product that can be parameterized by n. The hyperparameter n can be set by the user who wants to operate in a pre-defined real or hypercomplex domain (e.g., by setting $n = 2$ the PHC layer is defined in the complex domain, or in the quaternion one if n is set equal to 4, as Figure[1] illustrates), or tuned to obtain the best performance from the model. The matrices A_i and F_i are learnt during training and their values are reused to build the definitive tensor H.

The degree of freedom of A_i and F_i is n^3 and sd^2 / n, respectively. In real world applications that consider deep layers ($s, d = 256, 512, ...$) and small values for k, usually $sd^2 \gg n^3$, thus the

![Figure 1: The quaternion convolution rule can be expressed as sum of Kronecker products between the matrices A_i that subsume the algebra rules and the matrices F_i that contain the convolution filters, with $i = 1, 2, 3, 4$. In this example, the parameters of A_i are fixed for visualization purposes, but in PHC layers they are learnable parameters.](image-url)
degrees of freedom for the PHC weight matrix can be approximated to $O(sdk^2/n)$. Hence, the PHC layer reduces the number of parameters by $1/n$ with respect to a standard convolutional layer in real world problems.

Moreover, when processing multidimensional data with correlated channels, such as color images, rather than mulichannel audio or multisensor signals, PHC layers bring benefits due to the weight sharing among different channels. This allows to capture latent intra-channels relations that standard convolutional networks ignore because of the rigid structure of the weights (Grassucci et al., 2021a; Parcollet et al., 2019b).

We test the receptive ability of the PHC layer in a toy problem building an artificial dataset. The task is learning the proper matrix A to build a quaternion convolutional layer which properly follows the Hamilton rule in Eq.2. We build the dataset by performing a convolution with a matrix of filters $W \in \mathbb{H}$, that are arranged following the regulation in Eq.2 and a quaternion $x \in \mathbb{H}$ in input. The target is still a quaternion, named $y \in \mathbb{H}$. The PHC loss converges very fast, meaning that the layer properly learns the matrix A and the Hamilton convolution. We perform an additional toy example for learning a special case of quaternion convolution and we report results in the Appendix B, together with the loss plot for the main toy experiment.

Therefore, the PHC layer is able to subsume hypercomplex convolution rules and the desired domain is specified by the hyperparameter n. Interestingly, by setting $n = 1$ a real-valued convolutional layer can be represented too. Indeed, standard real layers does not involve parameters sharing, therefore the algebra rules are solely described by the single $A \in \mathbb{R}^{1 \times 1}$ and the complete set of filters are included in $F^{s \times d \times k \times k}$. We report detailed explanations in Appendix A.

3.2 Parameterized layers for color images

In this section, we describe how the PHC layer can be employed to process color images in hypercomplex domains without needing extra information. Different encodes exist to process color images, however, the most common computer vision datasets are comprised of three channels images in \mathbb{R}^3. In the quaternion domain, RGB images are enclosed into a quaternion and processed as single elements (Parcollet et al., 2019a). The encapsulation is performed by considering the RGB channels as the real coefficients of the imaginary units and by padding a zeros channel as the first real component of the quaternion.

We propose to leverage the high malleability of PHC layers to deal with RGB images in hypercomplex domains without embedding useless information. Indeed, the PHC can directly operate in \mathbb{R}^3 by easily setting $n = 3$ and process RGB images in their natural domain but exploiting hypercomplex algebra properties such as the sharing of parameters.

Indeed, the great flexibility of PHC layers allows the user to choose whether processing images in \mathbb{R}^4 or \mathbb{R}^3. On one hand, by setting $n = 4$, the zeros channel is added to the input but the layer saves the 75% of free parameters. On the other hand, by choosing $n = 3$ the network does not handle any useless information but it reduces the number of parameters by solely 66%. This is a trade-off which may depend on the application or on the hardware the user needs. Furthermore, the domain on which processing images can be tuned by letting the performance of the network indicates the best choice for n.

3.3 Parameterized layers for multichannel audio

In the following, we expound how the proposed PHC layer can be employed to deal with multi-channel audio signals. For instance, first-order Ambisonics (FOA) is composed of 4 microphone capsules, whose magnitudes representation can be enclosed in a quaternion (Comminiello et al., 2019; Ricciardi Celsi et al., 2020). However, the quaternion algebra may be restrictive if more than one microphone is employed for registration or whether the phase information has to be included too. Indeed, quaternion neural networks badly fit with multidimensional input with more than 4 channels.

Conversely, the proposed method can be easily adapted to deal with these additional information by handily setting the hyperparameter n and thus completely leveraging each information in the n-dimensional input.
4 Convolution-Based Neural Models with PHC Layers

In this section, we expound neural models endowed with PHC layers and we demonstrate how the proposed method can be employed in various spheres of application. To this end, we devise deep PHC models for image classification and for sound event detection. For each task, we empirically substantiate the effectiveness and flexibility of the proposed PHC layer. In order to be consistent with the literature, we perform each experiment with a real-valued baseline model and then we compare it with its quaternion counterpart and with the proposed PHC network. Furthermore, we assess the PHC malleability testing different values of the hyperparameter \(n \), therefore defining PHC models in multiple hypercomplex domains.

4.1 Hypercomplex Parameterization for Image Classification

To begin with, we test the PHC layer with RGB images and we show how, exploiting the correlations among channels, the proposed method is able to reduce the number of parameters while ensuring high performance.

4.1.1 Parameterized Hypercomplex ResNets

In recent literature, a copious set of good performance in image classification is obtained with models having a residual structure. ResNets \cite{He2016} pile up manifold residual blocks composed of convolutional layers and identity mappings. A generic PHC residual block is defined by

\[
y = F(x, \{H_j\}) + x, \tag{5}
\]

whereby \(H_j \) are the PHC weights of layer \(j = 1, 2 \) in the block, and \(F \) is

\[
F(x, \{H_j\}) = \text{PHC}(\text{ReLU}(\text{PHC}(x))). \tag{6}
\]

Therefore, PHC ResNets can be defined in the desired hypercomplex domain by the proposed method.

4.1.2 Parameterized Hypercomplex VGGs

Another family of popular methods for image classification is based on the VGG networks \cite{Simonyan2015} that stack several convolutional layer and a closing fully connected classifier. To completely define models in the desired hypercomplex domain, we propose to endow the network with PHC layers as convolution components and with Parameterized Hypercomplex Multiplication (PHM) layers \cite{Zhang2021} as linear classifier. The backbone of our PHC VGG is then

\[
h_t = \text{ReLU}(\text{PHC}_t(h_{t-1})) \quad t = 1, ..., j \]

\[
y = \text{ReLU}(\text{PHM}(h_j)). \tag{7}
\]

We also test a hybrid model by employing standard real-valued fully connected (FC) layers instead of PHM ones. However, we believe that it is out of the scope of this paper which aims at exploiting hypercomplex algebras properties to define highly malleable neural networks. Nevertheless, for a further comparison, we report these additional experiments in the Appendix B.

4.1.3 Experimental Setup and Evaluation

We perform image classification with four baseline models. We consider ResNet18, ResNet50 and ResNet152 from the ResNet family and VGG16 and VGG19 from the VGG one. Each hyperparameter is set according to the original papers \cite{He2016, Simonyan2015}. We investigate the performance in three different color images datasets, SVHN, CIFAR10 and CIFAR100, and any kind of data augmentation is applied to these datasets in order to guarantee a fair comparison.
The PHC model with \(n = 2, 4 \) outperforms the real-valued baseline in the considered datasets, while both the PHC VGG19 versions with \(n = 2, 4 \) are more efficient than the real and quaternion-valued baselines at inference time.

Table 1: Image classification results for VGG. The accuracy mean and standard deviation over three runs with different seeds is reported. Training (T) time and inference (I) time required on CIFAR10. For training time we report, in seconds per 100 iterations, the mean and the standard deviation over the iterations in one epoch, while the inference time is the time required to decode the test set. The PHC model with \(n = 4 \) outperforms the quaternion counterpart both in terms of accuracy and time. The PHC with \(n = 2 \) far exceeds the real-valued baseline in the considered datasets, while both the PHC VGG19 versions with \(n = 2, 4 \) are more efficient than the real and quaternion-valued baselines at inference time.

Model	Params	SVHN	CIFAR10	Time (T)	Time (I)
VGG16	15M	94.364 ± 0.394	85.067 ± 0.765	2.2 ± 0.02	1.2
Quaternion VGG16	3.8M (-75%)	93.887 ± 0.292	83.997 ± 0.493	5.2 ± 0.02	2.2
PHC VGG16 \(n = 2 \)	7.6M (-50%)	**94.831 ± 0.257**	**86.510 ± 0.216**	3.2 ± 0.02	1.4
PHC VGG16 \(n = 4 \)	3.8M (-75%)	94.639 ± 0.121	85.640 ± 0.205	3.2 ± 0.02	1.4
VGG19	29.8M	94.140 ± 0.129	85.624 ± 0.257	3.2 ± 0.02	16.0
Quaternion VGG19	7.5M (-75%)	93.983 ± 0.190	83.914 ± 0.129	6.2 ± 0.02	16.3
PHC VGG19 \(n = 2 \)	14.9M (-50%)	**94.553 ± 0.229**	**85.750 ± 0.286**	4.0 ± 0.02	**15.4**
PHC VGG19 \(n = 4 \)	7.4M (-75%)	94.169 ± 0.296	84.830 ± 0.733	4.2 ± 0.02	15.5

We execute initial experiments with VGGs against Quaternion VGGs and two versions of PHC VGGs with \(n \) equal to 2 and to 4. Average and standard deviation accuracy over three runs are reported for SVHN and CIFAR10 datasets in Table 1. Both the VGG16 and VGG19 PHC versions of the networks clearly outperform real and quaternion counterparts while being built with more than a half the number of parameters of the baseline. Additionally, PHC models extraordinarily reduce the number of training and inference time required with respect to the quaternion model which operates in hypercomplex domains as well. Furthermore, when scaling up the experiment with VGG19, the proposed methods are more efficient at inference time with respect to the real-valued VGG19. Therefore, PHC models can be easily adopted in applications with disk memory limitations, due to the reduction of parameters, and for fast inference problems thanks to the efficiency at testing time. More initial experiments with various networks on other datasets are reported in the Appendix B.

The malleability of the proposed approach when dealing with color images is expressed in the opportunity to choose the domain in which operating. Therefore, we test PHC networks in the complex \(\mathbb{H}^2 \ (n = 2) \), quaternion \(\mathbb{H}^4 \ (n = 4) \) or \(\mathbb{H}^3 \ (n = 3) \) domain, where the latter does not concatenate any zero padding and processes the RGB channels of the image in their natural domain. In order to implement this experiment, we change the number of filters, in the baseline and in the corresponding compared networks, to be divisible by each value of \(n \). More details about the implementations are provided in the Appendix B.

Table 2 presents the models mean and standard deviation accuracy over three runs with different seeds. We perform extensive experiments and the PHC models with \(n = 4 \) always outperform the quaternion counterpart gaining a higher accuracy and being more robust. This underlines the effectiveness of the PHC architectural flexibility over the predefined and rigid structure of quaternion layers. Furthermore, our method distinctly far exceeds the corresponding real-valued baselines across the experiments while saving from 50% to 75% parameters. Focusing on the latter result, the PHC model with \(n = 3 \) results to be the most performing choice in many cases, proving the validity of processing with hypercomplex algebra RGB images in their natural domain. However, performances with \(n = 3 \) and \(n = 4 \) are comparable, thus the choice of this hyperparameter may depend on the application or on the hardware employed. On one hand, \(n = 4 \) may sometimes lead to lower performances but it allows to save disk memory, as shown in Table 3, thus it may be more appropriate for edge applications. On the other hand, processing color images with \(n = 3 \) may bring higher accuracy but it requires more parameters. Therefore, such a flexibility makes PHC models adaptable to a large range of applications. Likewise, PHC networks with \(n = 2 \) gain considerable accuracy scores with respect to the real-valued corresponding models and, due to the larger number of parameters with respect to the PHC with \(n = 3 \), sometimes outperform it too. Finally, the PHC with \(n = 4 \) obtains the overall best accuracy in the largest experiment. Indeed, considering a ResNet152 backbone on CIFAR100, our method exceeds the real-valued baseline by more than

6
Table 2: Image Classification results with ResNet models. Each experiment is run three times with different seeds and mean with standard deviation is reported. The proposed models far exceed real-valued and quaternion baselines almost in each experiment we conduct. Interestingly, the PHC model outperform the real-valued counterpart by 4% points in the largest-scale experiment on CIFAR100.

Model	Params	SVHN	CIFAR10	CIFAR100
ResNet18	10.1M	93.992 ± 1.317	89.543 ± 0.340	62.634 ± 0.600
Quaternion ResNet18	2.8M (-75%)	93.661 ± 0.413	88.240 ± 0.377	59.850 ± 0.607
PHC ResNet18 n = 2	5.4M (-50%)	**94.359 ± 0.187**	89.260 ± 0.625	60.320 ± 2.249
PHC ResNet18 n = 3	3.6M (-66%)	94.303 ± 1.234	**89.603 ± 0.563**	**62.660 ± 1.067**
PHC ResNet18 n = 4	2.7M (-75%)	94.234 ± 0.161	88.847 ± 0.874	61.780 ± 0.689
ResNet50	22.5M	94.546 ± 0.269	89.630 ± 0.305	65.514 ± 0.569
Quaternion ResNet50	5.7M (-75%)	93.685 ± 0.389	89.670 ± 0.383	63.760 ± 0.717
PHC ResNet50 n = 2	11.1M (-50%)	93.849 ± 0.249	89.750 ± 0.386	65.884 ± 0.333
PHC ResNet50 n = 3	7.6M (-66%)	93.617 ± 0.497	**90.423 ± 0.145**	**66.497 ± 1.256**
PHC ResNet50 n = 4	5.7M (-75%)	**94.558 ± 0.754**	88.897 ± 0.645	66.240 ± 1.165
ResNet152	52.6M	94.625 ± 0.355	89.580 ± 0.173	62.053 ± 0.485
Quaternion ResNet152	13.2M (-75%)	93.638 ± 0.098	89.227 ± 0.287	61.267 ± 0.784
PHC ResNet152 n = 2	26.6M (-50%)	93.915 ± 0.512	**90.540 ± 0.401**	65.817 ± 0.327
PHC ResNet152 n = 3	17.8M (-66%)	93.955 ± 0.152	90.077 ± 0.436	66.347 ± 0.567
PHC ResNet152 n = 4	13.4M (-75%)	**94.290 ± 0.237**	89.897 ± 0.097	**66.437 ± 0.064**

Table 3: Storage memory required for ResNet152s checkpoints on CIFAR100. Quaternion and PHC models allow for a considerable disk memory saving with respect to the real-valued ResNet.

Model	Storage Memory
ResNet152	201 MB
Quaternion ResNet152	51 MB (-75%)
PHC ResNet152 n = 2	103 MB (-49%)
PHC ResNet152 n = 3	70 MB (-65%)
PHC ResNet152 n = 4	53 MB (-74%)

4%. This is the empirical proof that PHC models well scale to large real-world problems by notably reducing the overall number of parameters. What is more, in Table 3, we report the memory required to store models checkpoints for inference. The proposed method crucially reduces the amount of disk memory demand with respect to the heavy real-valued model.

4.2 Hypercomplex Parameterization for Sound Event Detection

Sound event detection (SED) is the task of recognizing the sounds classes and at what temporal instances these sounds are active in an audio signal (Mesaros et al., 2021). We prove that the PHC layer is adaptable to n-dimensional input signals and, due to parameters reduction and hypercomplex algebra, is more performing in terms of efficiency and evaluation scores.

4.2.1 Parameterized Hypercomplex SEDnets

Sound Event Detection networks (SEDnets) (Adavanne et al., 2019) are composed of a core convolutional component which extracts features from the input spectrogram. The information is then passed to a Gated Recurrent Unit (GRU) module and to a stack of fully connected (FC) layers with an ending sigmoid σ which outputs the probability the sound is in the audio frame. Formally, the PHC SEDnet is described by
Table 4: SEDnets results with one microphone (4 channels input). Scores are computed over three runs with different seeds and we report the mean. The proposed method with \(n = 2 \) far exceeds the baselines in each metric considered.

Model	Conv Params	\(F_{\text{score}} \uparrow \)	ER \(\downarrow \)	SED \(\text{score} \downarrow \)	P \(\uparrow \)	R \(\uparrow \)
SEDnet	1.6M	0.637	0.450	0.406	0.756	0.5505
Quaternion SEDnet	0.4M (-75%)	0.580	0.516	0.468	0.724	0.484
PHC SEDnet \(n = 2 \)	0.8M (-50%)	**0.680**	**0.389**	**0.355**	**0.767**	**0.611**
PHC SEDnet \(n = 4 \)	0.4M (-75%)	0.638	0.453	0.407	0.765	0.547

Table 5: SEDnets results with two microphones (8 channels input). Scores are computed over three runs with different seeds and we report the mean. The PHC SEDnet with \(n = 2 \) outperform real and quaternion-valued baselines.

Model	Conv Params	\(F_{\text{score}} \uparrow \)	ER \(\downarrow \)	SED \(\text{score} \downarrow \)	P \(\uparrow \)	R \(\uparrow \)
SEDnet	1.6M	0.663	0.428	0.383	**0.788**	**0.572**
Quaternion SEDnet	0.4M (-75%)	0.559	0.556	0.499	0.754	0.444
PHC SEDnet \(n = 2 \)	0.8M (-50%)	**0.669**	**0.406**	**0.368**	**0.767**	**0.594**
PHC SEDnet \(n = 4 \)	0.4M (-75%)	0.638	0.433	0.397	0.729	0.567
PHC SEDnet \(n = 8 \)	0.2M (-87%)	0.553	0.560	0.503	0.747	0.439

\[
\begin{align*}
 h_t &= \text{PHC}_t(h_{t-1}) \quad t = 1, \ldots, j \\
 y &= \sigma(\text{FC}(\text{GRU}(h_j))) \\
\end{align*}
\]

In this model, we employ standard fully connected layers, that can be also implemented as PHM layers with \(n = 1 \), after the GRU module since the so processed signal loses its multidimensional original structure.

4.2.2 Experimental Setup and Evaluation

For Sound event detection models we consider the augmented version of the SELDnet \cite{Adavanne2019,Comminiello2019} which was proposed as baseline for Task 2 of the L3DAS21 Challenge \cite{Guizzo2021} and we perform our experiment with the corresponding released dataset.\footnote{L3DAS21 dataset and code are available at: https://github.com/l3das/L3DAS21} We consider as our baselines the SEDnet (without the localization part) and its quaternion counterpart. The L3DAS21 Task 2 dataset contains 15 hours of MSMP B-format Ambisonics audio recordings, divided in 1-minute-long data points, each of which consists of a simulated 3D office audio environment where up to 3 acoustic events may overlap. We perform multiple experiments on this dataset. We first test the recordings from one microphone considering the magnitudes only (4 channels input), then we test the networks with the signals recorded by two microphones and magnitudes only (8 channels input). In the Appendix \footnote{We investigate PHC SEDnets in complex, quaternion and octonion domain with \(n \) equal to 2, 4, 8 and train each network for 1000 epochs with a batch size of 16. Other hyperparameters are set as suggested in the original paper \cite{Guizzo2021} and more details are provided in the Appendix \footnote{To assess the performances of our models we take various metrics into account: the \(F_{\text{score}} \) on the detection metric, Precision (P) and Recall (R) are suggested in the original paper. For a more rigorous evaluation, we also compute the SED \(\text{score} \) and the Error Rate (ER) \cite{Adavanne2019, Mesaros2021}.} We assess the performances of our models we take various metrics into account: the \(F_{\text{score}} \) on the detection metric, Precision (P) and Recall (R) are suggested in the original paper. For a more rigorous evaluation, we also compute the SED \(\text{score} \) and the Error Rate (ER) \cite{Adavanne2019, Mesaros2021}.\footnote{The proposed parameterized SEDnets distinctly outperform the real and quaternion-valued baselines, as reported in Table 4 and Table 5. Indeed, the PHC SEDnet with \(n = 2 \) gains the best results}}

The proposed parameterized SEDnets distinctly outperform the real and quaternion-valued baselines, as reported in Table 4 and Table 5. Indeed, the PHC SEDnet with \(n = 2 \) gains the best results.
Table 6: SEDnets training (T) and inference (I) time with 8 channels input. For training time (seconds/iteration) the mean and the standard deviation over one epoch is reported, for inference time we report the time required to perform an iteration on the validation set.

Model	Time (T)	Time (I)
SEDNet	1.242 ± 0.088	1.198
Quaternion SEDNet	1.308 ± 0.088	1.298
PHC SEDnet n = 2	1.091 ± 0.074	1.085
PHC SEDnet n = 4	1.091 ± 0.032	1.077
PHC SEDnet n = 8	1.142 ± 0.042	1.173

for each score and in both one and two microphone datasets, proving that the weights sharing due to the hypercomplex parameterization is able to capture more information regardless the lower number of parameters. It is also interesting to note that the PHC SEDNet $n = 4$, which operates in the quaternion domain, achieves improved scores with respect to the Quaternion SEDnet that follows the rigid predefined algebra rules. Further, the malleability of PHC layers allows us to gain comparable performance, with respect to the quaternion baseline, with a reduction of convolutional parameters equal to -87%, by simply setting $n = 8$. In Appendix B we show additional experimental results of PHC models able to save 94% of convolutional parameters while operating in the sedonion domain by involving $n = 16$.

Furthermore, PHC SEDnets are more efficient in terms of time required for training and for inference too. Table 6 shows that each tested version of the proposed method is faster regards as the real SEDnet and the quaternion one, both at training and at inference time. Time efficiency is crucial in audio applications where networks are usually trained for thousands of epochs and datasets are very large and require protracted computations.

5 Related Works

While a research field deals with scaling up networks (Real et al., 2019), a consistent area in literature aims instead at making these models more efficient and accessible (Tan & Le, 2019; Sandler et al., 2018). Among the latter, quaternion neural networks (QNNs) have proved to reduce the amount of parameters to $1/4$ (Parcollet et al., 2019a; 2017). QNNs ensure high performance thanks to the sharing of weights due to the Hamilton product that preserves correlations among channels in multidimensional inputs (Grassucci et al., 2021c; Tay et al., 2019; Grassucci et al., 2021b). However, despite the lower number of parameters, QNNs are often slightly slow with respect to real-valued baselines. Recently, several attempts have been made to compress neural networks relying on Kronecker product decomposition (Huang et al., 2020; Tang et al., 2021). These methods gain considerable results in terms of model efficiency (Wang et al., 2021). Lately, a parameterization of hypercomplex multiplications have been proposed to generalize hypercomplex fully connected layers by sum of Kronecker products (Zhang et al., 2021). The latter method obtains high performance in various natural language processing tasks by also reducing the number of overall parameters.

6 Conclusion

In this paper, we introduce a parameterized hypercomplex convolutional (PHC) layer which grasps the convolution rule directly from data and can operate in any domain from 1D to nD, regardless the algebra regulations are preset. The proposed approach reduces the convolution parameters to $1/n$ with respect to real-valued counterparts and allows to capture internal latent relations thanks to parameter sharing among input dimensions. We show our method is flexible to operate in different fields of application by performing experiments with images and audio signals. We also prove the malleability of our approach to learn convolution rules in any domain by setting different values for the hyperparameter n.
Reproducibility Statement

One of the objectives of proposing methods that allow a reduction of parameters is to make large models more accessible and reproducible, even with a lower budget. We strongly believe reproducibility should be a key ingredient for recent deep learning papers. Therefore, we provide detailed explanations in the Appendix A to better understand the proposed method. Moreover, each experiment reported in the main corpus and in the appendix of this paper is completely reproducible. We provide the full code at https://github.com/eleGAN23/HyperNets, including models, train configurations, L3DAS21 preprocessing and information for dataset download and thorough instructions and details are provided in the Appendix B. Notebooks tutorials with toy examples are uploaded too, hoping these may help further research on this topic.

References

S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen. Sound event localization and detection of overlapping sources using convolutional recurrent neural networks. *IEEE Journal of Selected Topics in Signal Processing*, 13:34–48, 2019.

D. Comminiello, M. Lella, S. Scardapane, and A. Uncini. Quaternion convolutional neural networks for detection and localization of 3D sound events. In *IEEE Int. Conf. on Acoust., Speech and Signal Process. (ICASSP)*, pp. 8533–8537, Brighton, UK, May 2019.

S. d’Ascoli, H. Touvron, M. Leavitt, A. Marcos, G. Biroli, and L. Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. *arXiv preprint: arXiv:2103.10697*, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *Int. Conf. on Learning Representations (ICLR)*, 2021.

C. Gaudet and A. Maida. Deep quaternion networks. In *IEEE Int. Joint Conf. on Neural Netw. (IJCNN)*, Rio de Janeiro, Brazil, July 2018.

E. Grassucci, E. Cicero, and D. Comminiello. Quaternion Generative Adversarial Networks. *arXiv preprint: arXiv:2104.09630v1*, 2021a.

E. Grassucci, D. Comminiello, and A. Uncini. An information-theoretic perspective on proper quaternion variational autoencoders. *Entropy*, 23(7), 2021b.

E. Grassucci, D. Comminiello, and A. Uncini. A quaternion-valued variational autoencoder. In *IEEE Int. Conf. on Acoust., Speech and Signal Process. (ICASSP)*, Toronto, Canada, June 2021c.

E. Guizzo, R. F. Gramaccioni, S. Jamili, C. Marinoni, E. Massaro, C. Medaglia, G. Nachira, L. Nucciarelli, L. Pagliaungua, M. Pennese, S. Pepe, E. Rocchi, A. Uncini, and D. Comminiello. L3DAS21 Challenge: Machine learning for 3D audio signal processing. *2021 IEEE Int. Workshop on Machine Learning for Signal Process. (MLSP)*, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp. 770–778, 2016.

S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney, R. J. Weiss, and K. Wilson. CNN architectures for large-scale audio classification. In *IEEE Int. Conf. on Acoustics, Speech and Signal Process. (ICASSP)*, pp. 131–135, 2017.

C.W. Huang, A. Touati, P. Vincent, G. K. Dziugaite, A. Lacoste, and A. C. Courville. Stochastic neural network with Kronecker flow. In *AISTATS*, 2020.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving the image quality of StyleGAN. *IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2020.
A. Mesaros, T. Heittola, T. Virtanen, and M. D. Plumbley. Sound event detection: A tutorial. *IEEE Signal Processing Magazine*, 38(5):67–83, 2021.

T. Parcollet, M. Morchid, and G. Linares. Deep quaternion neural networks for spoken language understanding. In *IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)*, pp. 504–511, Okinawa, Japan, December 2017.

T. Parcollet, M. Morchid, and G. Linares. A survey of quaternion neural networks. *Artif. Intell. Rev.*, August 2019a.

T. Parcollet, M. Morchid, and G. Linares. Quaternion convolutional neural networks for heterogeneous image processing. In *IEEE Int. Conf. on Acoust., Speech and Signal Process. (ICASSP)*, pp. 8514–8518, Brighton, UK, May 2019b.

T. Parcollet, M. Ravanelli, M. Morchid, G. Linares, C. Trabelsi, R. De Mori, and Y. Bengio. Quaternion recurrent neural networks. In *Int. Conf. on Learning Representations (ICLR)*, pp. 1–19, New Orleans, LA, May 2019c.

E. Real, A. Aggarwal, Y. Huang, and Q. Le. Regularized evolution for image classifier architecture search. *Proceedings of the AAAI Conf. on Artificial Intelligence*, 33:4780–4789, Jul. 2019.

M. Ricciardi Celsi, S. Scardapane, and D. Comminiello. Quaternion neural networks for 3D sound source localization in reverberant environments. In *IEEE Int. Workshop on Machine Learning for Signal Process.*., pp. 1–6, Espoo, Finland, September 2020.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, 2018.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In *Int. Conf. on Learning Representations (ICLR)*, San Diego, CA, USA, 2015.

M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In *Int. Conf. on Machine Learning (ICML)*, volume 97, pp. 6105–6114, 09–15 Jun 2019.

Z. Tang, F. Jiang, M. Gong, H. Li, Y. Wu, F. Yu, Z. Wang, and M. Wang. SKFAC: Training neural networks with faster Kronecker-factored approximate curvature. In *IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR)*, pp. 13479–13487, 2021.

Y. Tay, A. Zhang, A. T. Luu, J. Rao, S. Zhang, S. Wang, J. Fu, and C. S. Hui. Lightweight and efficient neural natural language processing with quaternion networks. In *ACL (1)*, pp. 1494–1503. Association for Computational Linguistics, 2019.

D. Wang, B. Wu, G. S. Zhao, H. Chen, L. Deng, T. Yan, and G. Li. Kronecker CP decomposition with fast multiplication for compressing RNNs. *IEEE Trans. Neural Netw. Learn. Syst.*, PP, 2021.

H. Wu, B. Xiao, N. C. F. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt: Introducing convolutions to vision transformers. *ArXiv*, abs/2103.15808, 2021.

A. Zhang, Y. Tay, S. Zhang, A. Chan, A. T. Luu, S. C. Hui, and J. Fu. Beyond fully-connected layers with quaternions: Parameterization of hypercomplex multiplications with $1/n$ parameters. *Int. Conf. on Machine Learning (ICML)*, 2021.
A Theoretical Add-Ons

A.1 Quaternion Algebra

A quaternion $q \in \mathbb{H}$ is an hypercomplex number of rank 4. It is defined as the composition of four real coefficients with three imaginary units as follows:

$$q = q_0 + q_1 \hat{i} + q_2 \hat{j} + q_3 \hat{k} = q_0 + q,$$

being $q_0, q_1, q_2, q_3 \in \mathbb{R}$ and $\hat{i}, \hat{j}, \hat{k}$ orthonormal basis in \mathbb{R}^3. A quaternion with scalar part q_0 equal to 0 is a pure quaternion. Considering two quaternion q and p, the Hamilton product in Eq.2 can be rewritten in concise form as:

$$qp = q_0p_0 - q \cdot p + q_0p + p_0q + q \times p,$$

where the bold notation is intended for vectors and the plain notation for scalars. From the above definition, it is easy to derive the Hamilton product between two pure quaternions. It takes the form:

$$qp = -q \cdot p + q \times p,$$

in which $-q \cdot p$ is the scalar part of the new quaternion and $q \times p$ its vector part. Therefore, the vector product between two pure quaternions gives rise to a full quaternion.

As complex numbers, also quaternions have their own complex conjugates that are defined as

$$q^* = q_0 - q_1 \hat{i} - q_2 \hat{j} - q_3 \hat{k} = q_0 - q.$$

The norm of a quaternion is the Euclidean norm in \mathbb{R}^4 of its real coefficients, that is

$$|q| = \sqrt{qq^*} = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2},$$

while the inverse is

$$q^{-1} = \frac{q^*}{|q|^2}.$$

A.2 Demystifying PHC Layers

We provide a formal explanation of the PHC layer to better understand the Kronecker product and how it organizes convolution filters to reduce the overall number of parameters to $1/n$. In Eq.10, we show how the PHC layer generalizes from 1D to nD domains. When subsuming real-valued convolutions in the first line of Eq.10 the Kronecker product is performed between a scalar A and the filter matrix F, whose dimension is the same as the final weight matrix H, that is $s \times d \times k \times k$.

Considering the complex case with $n = 2$ in the second line of Eq.10, the algebra is defined in A_1 and A_2 while the filters are contained in F_1 and F_2, each of dimension $1/4$ the final matrix H. Therefore, while the size of the weight matrix H remains unchanged, the parameter size is approximately $1/2$ the real one. In the last line of Eq.10 we can see the generalization of this process, in which the size of matrices $F_i, i = 1, ..., n$ is reduced proportionally to n. It is worth noting that, while the parameter size is reduced with growing values of n, the dimension of H remains the same.
\[
\begin{bmatrix}
[A] & \otimes & F \\
(1 \times 1) & & (s \times d \times k \times k)
\end{bmatrix}
=
\begin{bmatrix}
H \\
(1 \times 1) & & (s \times d \times k \times k)
\end{bmatrix}
\]

\[
\begin{bmatrix}
[A_1] & \otimes & F_1 \\
(2 \times 2) & & (\frac{s}{2} \times \frac{d}{2} \times k \times k)
\end{bmatrix} +
\begin{bmatrix}
[A_2] & \otimes & F_2 \\
(2 \times 2) & & (\frac{s}{2} \times \frac{d}{2} \times k \times k)
\end{bmatrix}
=
\begin{bmatrix}
H \\
(2 \times 2) & & (s \times d \times k \times k)
\end{bmatrix}
\]

...

\[
\begin{bmatrix}
[A_n] & \otimes & F_n \\
(n \times n) & & (\frac{s}{n} \times \frac{d}{n} \times k \times k)
\end{bmatrix} +
\begin{bmatrix}
[A_1] & \otimes & F_1 \\
(n \times n) & & (\frac{s}{n} \times \frac{d}{n} \times k \times k)
\end{bmatrix} + \ldots +
\begin{bmatrix}
[A_n] & \otimes & F_n \\
(n \times n) & & (\frac{s}{n} \times \frac{d}{n} \times k \times k)
\end{bmatrix}
=
\begin{bmatrix}
H \\
(n \times n) & & (s \times d \times k \times k)
\end{bmatrix}
\]

(10)

B Experimental Add-Ons

B.1 Toy example: learning the matrix \(A \)

The additional toy example is a modification of the original dataset target in Section 3. Here, we want to learn the matrix \(A \) which describes the convolution among two pure quaternions. Pure quaternions may be, as an example, an input RGB image and the weights of a hypercomplex convolutional layer. Figure B.1 (left) displays the convergence of the PHC layer loss during training, proving that the proposed method is able of subsuming hypercomplex convolutional rules when dealing with pure quaternions too. The right plot in Fig. B.1 shows instead the loss for the toy example defined in Section 5.

![Loss plots for toy examples](image)

Figure 2: Loss plots for toy examples. The PHC layer is able to learn the matrix \(A \) which describes the convolution rule for pure quaternions (left) and for full quaternions (right).
B.2 EXPERIMENTAL ADD-ONS ON IMAGE CLASSIFICATION

B.2.1 IMAGE CLASSIFICATION IMPLEMENTATION DETAILS

To guarantee the complete reproducibility of our experiments, here we provide more implementation details for the image classification task.

The modified versions of the ResNets are built with an initial convolutional layer with 60 filters. Then, the subsequent blocks have 60, 120, 240, 516 filters. The number of layers in the blocks depends on the ResNet chosen, whether 18, 50 or 152.

Instead, VGG19 convolution component comprise two 24, two 72, four 216, and eight 648 filter layers, with batch normalization. The classifier is composed of three fully connected layers of 648, 516 and with the number of classes neurons each.

The rest of the hyperparameters are set as suggested in the original papers. The batch size is fixed to 128 and training is performed via SGD optimizer with momentum equal to 0.9, weight decay $5e^{-4}$ and a cosine annealing scheduler. For ResNets, the initial learning rate is set to 0.1. For VGG is equal to 0.01. Models on CIFAR10 and CIFAR100 are trained for 200 epochs whereas on SVHN networks run for 50 epochs.

B.2.2 ADDITIONAL EXPERIMENTS ON IMAGE CLASSIFICATION

In the following, we provide additional preliminary experiments with small models equipped with the proposed PHC layer. Table 7 contains VGG16s with real-valued final classifier. Table 8 reports experiments with ResNet20 where we test also $n = 1$ to replicate the real-valued model, outperforming it. Experiments with VGG11 with modified number of filters in order to be divided by each value of n is also reported in the same table. Finally, in Table 9 additional experiment on SVHN and CIFAR10 with ResNet56 and ResNet110, the latter with modified number of filters. PHC-based models gain good performance in each test we conduct while reducing the amount of free parameters.

Table 7: VGG16 results with real-valued classifier for quaternion and PHC networks. Extension of Table 1 in the main corpus.

Model	Params	SVHN	CIFAR10
Quaternion VGG16	4.2M (-72%)	94.086	84.126
PHC VGG16 $n = 2$	7.9M (-62%)	**94.885**	**86.147**
PHC VGG16 $n = 4$	4.2M (-72%)	94.562	85.710

Table 8: Additional preliminary experiments on SVHN dataset with ResNet20 and VGG11, the latter with modified number of filters in order to be divided by each value of n and FC layers in the closing classifier. We test also the PHC model with $n = 1$ to replicate the real domain which outperform the real-valued ResNet20.

Model	Params	SVHN
ResNet20	0.27M	90.463
Quaternion ResNet20	0.07M (-75%)	93.535
PHC ResNet20 $n = 1$	0.27M	**93.7962**
PHC ResNet20 $n = 2$	0.14M (-50%)	93.708
PHC ResNet20 $n = 4$	0.07M (-75%)	93.669
VGG11	13.8M	93.488
Quaternion VGG11	3.9M (-71%)	92.888
PHC VGG11 $n = 2$	7.2M (-48%)	**93.958**
PHC VGG11 $n = 3$	5.0M (-64%)	93.804
PHC VGG11 $n = 4$	3.9M (-71%)	93.919
Table 9: Additional preliminary experiments with ResNet56 and ResNet110, the latter with modified number of filters in order to be divided by each value of \(n \). Accuracy score is the mean over three runs with different seeds.

Model	Params	SVHN	CIFAR10
ResNet56	0.9M	94.116	83.700
Quaternion ResNet56	0.2M (-75%)	93.664	81.687
PHC ResNet56 \(n = 2 \)	0.4M (-50%)	93.722	83.413
PHC ResNet56 \(n = 4 \)	0.2 (-75%)	94.122	82.720
ResNet110	16.7M	93.461	84.810
Quaternion ResNet110	4.2M (-75%)	92.788	83.920
PHC ResNet110 \(n = 2 \)	8.4M (-50%)	93.746	83.220
PHC ResNet110 \(n = 3 \)	5.6M (-66%)	94.712	85.200
PHC ResNet110 \(n = 4 \)	4.2M (-75%)	94.885	85.280

B.3 Experimental Add-Ons on Sound Event Detection

B.3.1 L3DAS21 Dataset Details

The L3DAS21 Task 2 dataset is a collection of 900 1-minute-long data-points sampled at a rate of 32 kHz. The 14 sounds classes have been selected from the FSD50K dataset and are representative for an office sounds: computer keyboard, drawer open/close, cupboard open/close, finger snapping, keys jangling, knock, laughter, scissors, telephone, writing, chink and clink, printer, female speech, male speech. In this dataset, the volume difference between the sounds is in the range 0 and 20 dB full scale (dBFS). Considering the array of two microphones \(1,2 \), the channels order is \([W1, Z1, Y1, X1, W2, Z2, Y2, X2]\), where WXYZ are the B-format ambisonics channels if the phase (p) information is not considered. Whether we want to include also this information, the order will be \([W1, Z1, Y1, X1, W1p, Z1p, Y1p, X1p, W2, Z2, Y2, X2, W2p, Z2p, Y2p, X2p]\) up to 16 channels. In Fig.3, we show the 8-channel input when considering one microphone and the phase information. Magnitudes and phases are normalized to be centered in 0 with standard deviation 1.

![Sample spectrograms from L3DAS21 dataset recorded by one microphone with four capsules. The first four figures represent the magnitudes while the last four contain the corresponding phases information. The black sections represent silent instants.](image-url)
B.3.2 SED IMPLEMENTATION DETAILS

To guarantee the complete reproducibility of our experiments, here we provide more implementation details for the sound event detection task.

The extracted features by the preprocessing are fed to the four-layer convolutional stack with 64, 128, 256, 512 filters, with batch normalization, ReLU activation, max pooling and dropout (probability 0.3), with pooling sizes (8, 2), (8, 2), (2, 2), (1, 1). The bidirectional GRU module has three layers, each with an hidden size of 256. The tail has is a four-layer fully connected classifier with 1024 filters alternated by ReLUs and with a final dropout and a sigmoid activation function. The initial learning rate is set to 0.00001.

Following, we define the equations of the evaluation metrics considered in Subsection 4.2. To be consistent with pre-existing literature, we define True Positives as TP, False Positives as FP and False Negatives as FN. These are computed according to the detection metric (Guizzo et al., 2021). Moreover, in order to compute the Error Rate (ER), we consider: \(S = \min(FN, FP) \), \(D = \max(0, FN - FP) \) and \(I = \max(0, FP - FN) \), as in (Adavanne et al., 2019).

\[
\text{Fscore} = \frac{2\text{TP}}{2\text{TP} + \text{FP} + \text{FN}}
\]

\[
\text{ER} = \frac{S + D + I}{N}
\]

whereby \(N \) is the total number of active sound event classes in the reference.

\[
\text{SED}_{\text{score}} = \frac{\text{ER} + 1 - \text{Fscore}}{2}
\]

For ER and SED_{score}, the lower scores, the better the performances, while for the F_{score} higher values stand for better accuracy.

B.3.3 ADDITIONAL EXPERIMENTS ON SOUND EVENT DETECTION

In this section, we provide additional experiments for the sound event detection task. We conduct a test considering two microphones and the phase information, so to have an input with 16 channels. For this purposes, we consider as baseline the quaternion model and PHC-based networks with \(n = 4, 8, 16 \) so to test higher order domains. Results are shown in Table 10.

Table 10: SED results with two microphone: magnitudes and phases (16 channels input). We test higher order hypercomplex domains up to sedonions by setting \(n = 16 \). Although the incredible reduction of the number of parameters with respect to the real-valued baseline in Table 5, the PHC with \(n = 16 \) still has comparable performances with other models. Furthermore, the PHC with \(n = 8 \) outperform also the quaternion baseline which has more degrees of freedom.

Model	Conv Params	F_{score} ↑	ER ↓	SED_{score} ↓	P ↑	R ↑
Quaternion SEDnet	0.4M (-75%)	0.580	0.480	0.450	0.655	0.520
PHC SEDnet \(n = 4 \)	0.4M (-75%)	0.585	0.470	0.443	0.653	0.530
PHC SEDnet \(n = 8 \)	0.2M (-87%)	0.607	0.466	0.430	0.702	0.534
PHC SEDnet \(n = 16 \)	0.1M (-94%)	0.588	0.509	0.461	0.734	0.491