Laboratory-Based Surveillance of *Neisseria meningitidis* Isolates from Disease Cases in Latin American and Caribbean Countries, SIREVA II 2006–2010

Ana Belén Ibarz-Pavón1*, Ana Paula Lemos2, María Cecilia Gorla2, Mabel Regueira3, SIREVA II Working Group4, Jean-Marc Gabastou1

1 Pan American Health Organization, Washington, D.C., United States of America, 2 Division of Medical Biology, Department of Bacteriology, Instituto Adolfo Lutz, São Paulo, Brazil, 3 Department of Bacteriology, ANLIS-INEI Dr. Carlos G. Malbrán, Buenos Aires, Argentina

Abstract

Background: Published data on the epidemiology of meningococcal disease in Latin America and the Caribbean region is scarce and, when available, it is often published in Spanish and/or in non-peer-reviewed journals, making it difficult for the international scientific community to have access.

Methods: Laboratory data on 4,735 *Neisseria meningitidis* strains was collected and reported by the National Reference Laboratories in 19 Latin American and Caribbean countries and the Caribbean Epidemiology Centre (CAREC) between 2006 and 2010 as part of the work carried out by the SIREVA II network. Serogroup and MIC to penicillin, rifampin and chloramphenicol were determined.

Results: Isolates were mainly obtained from patients <5 years, but each year around 25% of isolates came from adult patients. Serogroup distribution was highly variable among countries. Serogroup C was the main cause of disease in Brazil; the majority of disease seen in the Southern cone was caused by serogroup B, but serogroup W135 strains have increased in recent years. In the Andean and Mexico, Central America and Caribbean regions, serogroups B and C were equally present, and serogroup Y was frequently isolated. Isolates were generally susceptible to chloramphenicol, penicillin and rifampin, but almost 60% of isolates characterized in Southern cone countries presented intermediate resistance to penicillin. Five rifampin-resistant isolates have been isolated in Uruguay and Brazil.

Conclusions: Serogroup distribution is highly variable among countries, but some geographic structuring can be inferred from these data. Epidemiological and laboratory data are scarce among Andean and Mexico, Central America and Caribbean countries. Evaluation and implementation of corrective measures on disease surveillance and reporting systems and the implementation of molecular diagnostic techniques and molecular characterization on meningococcal isolates are advised.

Citation: Ibarz-Pavón AB, Lemos AP, Gorla MC, Regueira M, SIREVA II Woring Group, et al. (2012) Laboratory-Based Surveillance of *Neisseria meningitidis* Isolates from Disease Cases in Latin American and Caribbean Countries, SIREVA II 2006–2010. PLoS ONE 7(8): e44102. doi:10.1371/journal.pone.0044102

Editor: D. William Cameron, University of Ottawa, Canada

Received March 27, 2012; Accepted July 30, 2012; Published August 30, 2012

Copyright: © 2012 Ibarz-Pavón et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding to the SIREVA II network was provided by the Canadian International Development Agency (CIDA). Since 2010, funding for meningococcal disease surveillance in 2010 is provided by Sanofi-Pasteur through the Pan-American Health and Education Foundation (PAHEF). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ibarzpav@paho.org

† Membership of the SIREVA II Working Group is provided in the Acknowledgments.

Introduction

Neisseria meningitidis is a leading cause of invasive disease in the form of meningitis and septicemia worldwide. Invasive meningococcal disease (IMD) is associated with a high case-fatality rate and survivors are often left with severe long-term neurological sequelae [1].

In industrialized countries, IMD is presented in sporadic cases with small localized outbreaks occurring occasionally [2–8]. In these countries, incidence rates remain low and rarely surpass 1/100,000 [9]. Large epidemics are restricted to Africa and, specifically to the area known as the “meningitis belt” [10,11,12].

Disease causing serogroups vary widely across continents. Serogroup A is associated with epidemic outbreaks in Africa and, occasionally, in other parts of the world, whereas serogroup B is the leading cause of disease in Australia and New Zealand, as well as in Europe [9,13], especially since the introduction of the meningococcal C conjugate vaccine in the national vaccination schedules of many countries [14–17]. In the United States, serogroups B, C and Y account for the majority of disease in the United States, although the implementation of the tetravalent A, C, W135, Y conjugate vaccine for children from the age of eleven has contributed to a substantial reduction on disease incidence [18].

Despite being a disease of compulsory notification and presumably a leading cause of invasive bacterial disease in Latin America, the real burden of meningococcal disease is widely
underestimated in the majority of countries in the region. Reported annual incidence rates range from the approximately 2/100,000 cases reported annually from Brazil, a country with a well-established surveillance and reporting system, to figures below 0.1/100,000 in countries such Paraguay, Costa Rica or Mexico, or even countries where no cases of disease have been confirmed for years [19].

The reasons for this are diverse and also vary from country to country, but differences on clinical definition of cases and management of patients, difficulties on the isolation, identification and characterization of the bacterium, and under-notification to the national reporting system are common problems in the region [19,20].

Since 1993, the Pan-American Health Organization (PAHO) has run a laboratory-based regional surveillance system; SIREVA (Sistema Regional de Vacunas) and later SIREVA II (Sistema de Redes de Vigilancia de Agentes Bacterianos Causantes de Meningitis y Neumonias) aimed at the collection of relevant laboratory and epidemiological data on the invasive disease-causing bacteria, *Streptococcus pneumoniae*, *Haemophilus influenzae*, *Neisseria meningitidis* (1997) and, since 2000, *Neisseria meningitidis* [20–23].

Meningococcal vaccines are not available through the public sector in Latin American countries, with two exceptions: Cuba introduced in 1991 the Cuban-developed outer-membrane protein based vaccine VA-MENGOC-BC®, which achieved a significant reduction of IMD incidence rates in the country [24,25,26]. And Brazil is currently the only country in Latin America that has introduced a meningococcal serogroup C conjugate vaccine in its national immunization scheme for children under the age of two [27], but in contrast to the majority of European countries, no catch-up campaign on teenagers is planned. However, meningococcal vaccination is available through the private sector in many Latin American countries. It is crucial for public health authorities and policy makers that data regarding distribution and characteristics of disease-causing strains in Latin America is made available so a cost-effective vaccination campaign with the right vaccine formulation can be implemented through the National Program of Immunization, targeting at including all individuals on the selected groups to be vaccinated regardless of their socio-economic status. This paper reviews available laboratory-based data on serogroup distribution and antibiotic resistance of *Neisseria meningitidis* generated by countries from the Latin America and Caribbean region within the SIREVA II network for the period 2006–2010 [28–32].

Materials and Methods

SIREVA II Network

In 1993, the Pan-American Health Organization (PAHO) started a regional laboratory-based passive surveillance program, aiming at obtaining quality laboratory data on disease-causing *Streptococcus pneumoniae* strains. Surveillance was extended to *Haemophilus influenzae* in 1997 and *Neisseria meningitidis* in 2000. Currently, the SIREVA II network includes 19 national reference laboratories (NRLs) from an equivalent number of countries from the Latin American and Caribbean region participate in the SIREVA II network: Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panama, Paraguay, Peru, Dominican Republic, Uruguay and Venezuela. Additionally, the Caribbean Epidemiology Centre (CAREC), which provides reference laboratory services for 21 countries in the Caribbean, is also part of the network. The *Instituto Adolfo Lutz* (IAL) in São Paulo, Brazil serves as the regional reference laboratory (RRL) for *Neisseria meningitidis*, and the Instituto de Saúd Carlos III in Madrid, Spain (ISCIII), acts as global reference laboratory for this bacterium [20,21,33,34].

Data have been grouped into four geographic regions: (i) Brazil, (ii) Southern cone (Argentina, Chile, Paraguay and Uruguay), (iii) Andean Region (Bolivia, Colombia, Ecuador, Peru and Venezuela), and (iv) Mexico, Central America and Caribbean (Mexico, CAREC, Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Honduras, Nicaragua, and Panama) (Table 1).

Isolates

Data include a total of 4,735 *Neisseria meningitidis* strains that were received between 2006 and 2010 at the NRLs from the aforementioned countries [28,29,30,31,32]. Isolates came from national hospitals whose type and distribution varies across countries, but there is a predominance of pediatric hospitals belonging to the public health sector, although adult population are also attended in many centers and some countries receive isolates also from the private sector. Isolates were obtained from CSF (71.4%), blood (28.0%), and other sterile body fluids (0.6%), and information on gender, age, clinical presentation of the disease, serogroup and antibiotic resistance pattern was available. A total of 3,081 (65.1%) isolates were reported from Brazil alone. Argentina reported 591 (12.5%) isolates, and 326 (6.9%) came from Chile. Uruguay, Colombia and Venezuela reported 160 (3.4%), 124 (2.6%) and 111 (2.3%) respectively. All other countries reported under 100 isolates each (Table 1).

Laboratory Procedures

N. meningitidis isolates received at the NRLs were processed for ascertainment of species identification, serogrouping and determination of Minimum Inhibitory Concentration (MIC) to antibiotics [35]. Determinations were performed by agar dilution when possible [36], or using the gradient diffusion method (e.g. Etest, AB Biodisk©) following the manufacturers instructions. Results were interpreted according to the MENSURA group [37].

Quality Assurance

Quality and reliability of data are guaranteed through a comprehensive quality control and assurance assessment that is carried out by the IAL. The program was originally developed for *S. pneumoniae* and later extended to *H. influenzae* and *N. meningitidis*. Twice a year, five meningococcal test strains are distributed among the SIREVA II network participating laboratories, which will perform the necessary tests for species identification, phenotypic characterization (serogroup, serotype and serosubtype) and antibiotic susceptibility testing. A report is issued twice a year with the results for all countries, so corrective measures can be implemented if needed. A similar test is carried out on the IAL by ISCIII. External quality assurance is carried out twice a year, when the NRLs send their strains to the IAL for confirmation [34].

Statistical Analyses

Proportions were compared using Chi-Square test or Fishers exact tests as appropriate. All analyses were performed using Stata/SE 11 for Windows.

Results

Clinical Origin of Isolates

Around 80% of isolates were obtained from patients with meningitis in all study years (Figure 1). Approximately 20% of isolates came from patients presenting sepsis without meningitis, and around 1% of strains were isolated from cases of forms of
invasive disease. Data did not specify what type of disease, with the exception of pneumonia cases, of which there were three in 2006, one in Argentina and two in Ecuador, and another three in 2007: in Chile, Ecuador and Paraguay respectively.

Isolates Reported by Age Group and Region

Data on age distribution of meningococcal disease isolates is shown in Tables 2 and 3, reflecting changes on the age-distribution data reporting introduced in 2009.

From 2006 to 2008, isolates obtained from cases on patients aged up to 5 years were consistently the most frequent on the five-year period in Brazil and in the Southern cone region. Brazilian isolates obtained from patients <1 year represented 12.7%, and in the Southern cone isolates from patients <1 year surpassed 30% in most years. A total of 185 (29.4%) isolates were obtained from patients aged 15 and over in Brazil during 2006, and that percentage increased steadily over the following years amidst an outbreak of serogroup C disease in recent years affecting older-age groups in some states in the country. In the Southern cone region, the yearly percentages of isolates obtained from this age-group remained stable.

In the Andean region, the highest percentage of isolates obtained from patients below the age of 5 was seen in 2007, with a total of 34 (47.2%) and 33.3% of them belonging to patients <1 year. Isolates on patients aged 15 and over represented 37.5% of the total in the same year.

In the Mexico, Central America and Caribbean region the percentage of cases among patients aged 5 or less were 40.8%, 34.7% and 38.7% in 2006, 2007 and 2008 respectively, with 21.1%, 16.3% and 21% of cases occurring among those <1 year.

The same trends were observed in all four regions for the period 2009–2010 (Table 3), with a high percentage of isolates coming from older patients in Brazil, and most isolates being obtained from young children, and particularly those <12 months in the Southern cone, Andean and Mexico, Central America & CAREC regions.

Serogroup Distribution by Regions and Countries

Serogroup distribution (Figure 2) was highly variable among countries for the period 2006–2010, which is consistent with what was seen in previous years since Neisseria meningitidis surveillance began in 2000 [20]. Sixty-six percent of meningococcal isolates characterized at the Brazil NLR for the period 2006–2010 belonged to serogroup C, and 26.7% were serogroup B. Serogroups W135 and Y represented 5.2 and 1.9% of isolates respectively. Conversely, 66% of all isolates characterized at the NRLs in the Southern cone region belonged to serogroup B, and 7.6% were serogroup C. Serogroup W135 was detected in 19.6% of isolates, and serogroup Y represented 5.8%.
In the Andean region, serogroups B and Y were the most predominant, representing 41.7% and 29.1% respectively. Serogroup W135 accounted for 1.2% of isolates and 23.3% were serogroup C. Serogroup C was the most predominant serogroup among countries located in the Mexico, Central America & Caribbean region (46.5% of all isolates). Serogroup B was found in 37.5% of the isolates, and serogroups W135 and Y were 0.4% and 7% respectively.

Figure 3 shows serogroup distribution among those countries that have reported at least 100 meningococcal isolates for the study period. In Argentina, serogroup B isolates represented 71.9% of all characterized isolates in 2006, whereas these isolates made up to 41.8% in 2010 (p < 0.0001). Similarly, serogroup C halved its prevalence, from 7.8% in 2006 to 3% in 2009, but it was higher again in 2010, when it was found in 5.22% of isolates (p = 0.018). The biggest change was noticed in the proportion of isolates belonging to serogroup W135, which represented 6.3% of isolates in 2006 but accounted for almost half the isolates received by the NRL from 2008 onwards.

In Brazil, serogroup C has experienced an important and progressive increase since the year 2000 [20,28,30,31,38] and accounted for over 74% of isolates characterized in 2006, whereas these isolates made up to 41.8% in 2010 (p < 0.0001). Similarly, serogroup C halved its prevalence, from 7.8% in 2006 to 3% in 2009, but it was higher again in 2010, when it was found in 5.22% of isolates (p = 0.018). The biggest change was noticed in the proportion of isolates belonging to serogroup W135, which represented 6.3% of isolates in 2006 but accounted for almost half the isolates received by the NRL from 2008 onwards.

In Brazil, serogroup C has experienced an important and progressive increase since the year 2000 [20,28,30,31,38] and accounted for over 74% of isolates characterized in 2006, whereas these isolates made up to 41.8% in 2010 (p < 0.0001). Similarly, serogroup C halved its prevalence, from 7.8% in 2006 to 3% in 2009, but it was higher again in 2010, when it was found in 5.22% of isolates (p = 0.018). The biggest change was noticed in the proportion of isolates belonging to serogroup W135, which represented 6.3% of isolates in 2006 but accounted for almost half the isolates received by the NRL from 2008 onwards.

Serogroup Distribution by Age Group

Serogroup distribution by age for the period 2006–2010 can be seen in Tables 4 and 5. Serogroup B isolates were consistently the most frequently obtained among those that came from patients aged >5 years in the LAC region. Serogroup C isolates, however, appeared to be more prevalent among those coming from older patients and, particularly, among teenagers and adults. Similarly, serogroups W135 and Y were also associated with older age, but from 2008 onwards the number of W135 isolates obtained from young children was noticeably higher.

Serogroup B isolates lowered from 53.1% of all processed isolates in 2006, to 28.3% in 2010 (p < 0.0001). Serogroup C isolates varied over the five-years period, but continued to represent around 50% of all those received by the NRLs. Serogroup W135 was found in 3.6% of all isolates received by the NRLs in 2006, but it represented a much higher proportion in 2007, when it was present in 34% of isolates. In 2010, serogroup W135 was detected in 11.7% of isolates in 2010 (p < 0.0001).

Data on serogroup distribution by age and regions is submitted as supplementary data (Tables S1 and S2). A decrease in serogroup B across all age groups was noticed in Brazil during the 2006–2008 period, which was accompanied by an increase in serogroup C that was specially marked among older patients. Serogroup C became less prevalent among isolates obtained in the Southern cone region. This serogroup remained generally very low among patients in the <1 year and 1–5 year groups (4–6%), but our data show that this trend is not sustained over time [39].

Serogroup W135 disease has not been detected in Venezuela, but serogroup Y isolates have been received occasionally by the NRL since surveillance started in 2000 [20]. The percentage of cases caused by this serogroup peaked in 2006, accounting for 44% of the total isolates characterized. Serogroup B isolates accounted for 32% of all meningococcal isolates processed at the NRL in 2006 and 2007, but it became over 50% on the three following years. Serogroup C isolates, however, remained at around 25% of isolates over the 5 years period.
Table 2. Age distribution by region, 2006–2008.

Region	2006	2007	2008												
	<1 yr	1–5 yrs	6–14 yrs	15–20 yrs	>20 yrs	<1 yr	1–5 yrs	6–14 yrs	15–20 yrs	>20 yrs	<1 yr	1–5 yrs	6–14 yrs	15–20 yrs	>20 yrs
Brazil	98 (15.6%)	194 (30.8%)	153 (24.3%)	132 (21.0%)	95 (16.9%)	164 (29.1%)	121 (21.5%)	43 (7.7%)	140 (24.9%)	79 (12.7%)	178 (28.6%)	121 (19.4%)	52 (8.3%)	193 (31.0%)	
Southern cone	62 (32.4%)	55 (28.8%)	33 (17.3%)	4 (2.1%)	37 (19.4%)	70 (26.6%)	85 (32.3%)	34 (12.9%)	14 (5.4%)	60 (22.8%)	71 (29.5%)	76 (31.5%)	29 (12.0%)	12 (5.0%)	53 (22.0%)
Andean Region	19 (35.2%)	6 (11.1%)	6 (11.7%)	17 (31.5%)	24 (33.3%)	10 (13.9%)	11 (15.3%)	7 (9.7%)	20 (27.8%)	13 (22.8%)	10 (17.5%)	9 (15.8%)	2 (3.5%)	23 (40.4%)	
Mexico, Central America & Caribbean	15 (21.1%)	14 (19.7%)	24 (33.8%)	3 (4.2%)	15 (21.1%)	10 (19.6%)	11 (21.6%)	12 (23.5%)	5 (9.8%)	13 (25.5%)	13 (20.3%)	12 (18.8%)	11 (17.2%)	7 (10.9%)	21 (32.8%)
Total	194 (20.5%)	269 (28.4%)	216 (22.8%)	66 (7.0%)	201 (21.2%)	199 (21.0%)	270 (28.5%)	178 (18.8%)	69 (7.3%)	233 (24.6%)	176 (17.9%)	276 (28.0%)	170 (17.3%)	73 (7.4%)	290 (29.4%)

Table 3. Age distribution by region, 2009–2010.

Region	2009	2010										
	<12 months	12–23 months	24–59 months	≥5–14 years	15–20 years	>20 years	<12 months	12–23 months	24–59 months	≥5–14 years	15–20 years	>20 years
Brazil	73 (12.9%)	50 (8.6%)	93 (16.0%)	152 (26.1%)	59 (10.1%)	153 (26.6%)	81 (12.3%)	40 (6.2%)	83 (12.9%)	169 (26.2%)	82 (12.7%)	190 (29.5%)
Southern cone	63 (28.3%)	30 (13.5%)	27 (12.1%)	41 (18.4%)	11 (4.9%)	51 (22.9%)	69 (32.4%)	19 (9.1%)	27 (12.7%)	41 (19.2%)	9 (4.2%)	48 (22.5%)
Andean Region	12 (31.6%)	2 (5.3%)	2 (5.3%)	5 (13.2%)	5 (13.2%)	12 (31.6%)	10 (27.0%)	0	8 (21.6%)	10 (27.0%)	3 (8.1%)	6 (16.2%)
Mexico, Central America & Caribbean	7 (20.6%)	4 (11.8%)	2 (5.9%)	6 (17.6%)	11 (32.4%)	4 (11.8%)	8 (16.3%)	3 (6.1%)	10 (20.4%)	12 (24.5%)	5 (10.2%)	11 (22.4%)
Total	155 (17.7%)	86 (9.8%)	124 (14.1%)	204 (23.3%)	86 (9.8%)	222 (25.3%)	168 (17.8%)	62 (6.6%)	128 (13.6%)	232 (24.6%)	99 (10.5%)	255 (27.0%)

DOI: 10.1371/journal.pone.0044102.t002

DOI: 10.1371/journal.pone.0044102.t003
and was more frequent isolated among older patients, representing around 15% of isolates obtained from those aged 6–14, 15–20 and >20 years.

An increase on the percentage of isolates belonging to serogroup W135 was noticed in the Southern cone region across all age groups. In the Andean region, serogroup B represented 16.7% of isolates obtained from those aged 6–14 years in 2006, but it became 44.4% in 2008. An increase on serogroup Y isolates was seen among all age groups.

For the period 2009–2010, serogroup B remained stable in Brazil in all age-groups with the exception of the 15–20 years, among whom changed from 23.7% to 13.4%. Serogroup C went from 62.0% to 70.0% among those aged 12–23 months, and from 67.8% to 79.3% among the 15–20 years group. In the Southern cone region, the proportion of serogroup B isolates among those aged <12 months was 60.3% in 2009, and 47.8% in 2010. Among those in the 24–59 months group, the percentages in 2009 and 2010 were 81.5% and 66.7% respectively, and, 37.7% and 45.7% among the >20 years. Serogroup W135 was found to increase from 2009 to 2010 among adults >20 years, from 29.4% in 2009 to 41.3% in 2010.

Antibiotic Susceptibility

Minimum inhibitory concentration to penicillin, rifampin and chloramphenicol were determined either at the NRLs of participating countries, or at the RRLs in Brazil. Overall, 70.3% of all isolates were fully susceptible to penicillin, and 29.1% presented an intermediate resistance to this drug. A small decrease in the percentage of isolates with intermediate resistance to penicillin was noticed over the five-year period, as well as in comparison to published data from 2000–2005 [20]. Five fully-resistant isolates were found in 2006: four in Uruguay and one in Mexico. The 14 penicillin-resistant isolates reported in 2010 were found in Mexico, and all but one were isolated from cases of meningococcal disease occurred in penitentiary enclosure.

Isolates remained highly susceptible to rifampin. Intermediate-resistant isolates were rare (0.2%), and only 2 resistant isolates were detected: one in Brazil in 2006 and one in Argentina in 2009. Two rifampin resistant isolates reported in 2010 were isolated in Uruguay. Clinical and epidemiological data has been reported elsewhere [40].

Almost all isolates tested were resistant to chloramphenicol (data not shown) One isolate from Ecuador presented intermediate resistance to this drug, and one fully-resistant isolate was detected in Brazil in 2009.

Tables 6, 7, 8 and 9 show antibiotic resistance data by geographic regions. In Brazil, 14.5% of isolates characterized between 2006–2010 presented intermediate resistance to penicillin, and no fully resistant isolates were found. Over 99% of isolates were susceptible to rifampin, and intermediate and resistant isolates remained rare in Brazil.

A total of 643 (59.2%) of isolates characterized in the Southern cone region presented intermediate resistance to penicillin, and fully-resistant isolates were also present (four in Uruguay in 2006 and one in Paraguay in 2008) although their overall prevalence was below 1%. Isolates from this region remained susceptible to rifampin, with intermediate and fully resistant isolates being representing 0.1 and 0.3% of isolates respectively.

The Andean Region presented similar percentages of susceptibility to those seen in Brazil. However, the percentage of isolates presenting intermediate resistance to penicillin increased noticeably from 2008 onwards.

In the Mexico, Central America and CAREC, an overall of 68.7% of isolates were fully susceptible to penicillin, and 22.3% presented intermediate resistance to this antibiotic. In 2010, 14 fully penicillin resistant isolates were found in Mexico, all associated to an outbreak of disease in a prison. With the exception of these isolates, penicillin resistance also remained rare in this region.
Discussion

Neisseria meningitidis is presumed to be a leading cause of invasive bacterial disease in Latin America, as the implementation of the Hib-conjugate vaccine has substantially reduced the burden of disease caused by this bacterium [19,41–44]. But to date, very few countries in the region have a well-established surveillance for IMD so no data on the true burden of disease is available. All available laboratory data has been generated through the SIREVÁ II network, which is coordinated by PAHO [20,28,30,31,38]. Despite many improvements over the years, quality of both epidemiological and laboratory information is not equal among all participating countries. Specifically, the recovery of *Neisseria meningitidis* is particularly challenging for a number of reasons; empiric antibiotic therapy is often administered prior to sample collection, which prevents the isolation of the bacterium in culture. Delays in sample processing sometimes result in the bacterium being detected by indirect methods such as Gram-stain or latex-agglutination, but not recovered in culture. In many low-income countries, peripheral laboratories lack the infrastructure and resources to allow them to process samples correctly, which

Figure 3. Serogroup distribution by year for Argentina Brazil, Chile, Uruguay and Venezuela. *Selected countries are those for which >100 isolates were available.
doi:10.1371/journal.pone.0044102.g003
results in bacteria being neither detected nor isolated from biological samples. Data presented here was obtained solely from information on the number of strains processed by NRLs and reported to the SIREVA II network, so with a few exceptions, they are not representative of the epidemiology and strain characteristics of IMD in individual countries, but show trends of what has taken place in the region over the past five years. It is worth pointing out that countries such as Argentina, Brazil or Chile, with well-established surveillance system, report to receive isolates from approximately 50 to 60% of all reported cases any given year, whereas Uruguay, which also has a good performing surveillance receives nearly all isolates obtained in the country. But countries such as those located in the Mexico, Central America and Caribbean region and in the Andean region are unlikely to receive any percentage of isolates that could suffice to draw any conclusions regarding the epidemiology or circulating strains in these countries.

Based on the data collected by the NRL in Latin America, IMD in appears to occur mainly in children under the age of 5. However, a substantial number of isolates processed by the NRLs participating in the SIREVA II network were obtained from patients over 20 years of age. Although this could indicate that the number of disease cases among adult patients is unusually high, especially as this trend appears to be sustained over time and also evidenced in countries where clinical management guidelines are well established, such as Brazil or Argentina, further investigations are needed to determine whether and which operational factors could account for this phenomenon in each of the countries. Additionally, the implementation of an active surveillance in a well-defined population including both pediatric and adults hospitals is needed to confirm this trend. Carriage studies in the region could be of use in providing indirect evidence. In high and medium-income countries, asymptomatic carriage of Neisseria meningitidis peaks among adolescents and decreases progressively in adulthood, making disease less likely [45,46,47]. Data on the distribution of IMD from Latin America and Caribbean countries could suggest distribution of carriage rates across age groups might differ from those reported from Europe and the US, at least in those where environmental and socio-economic factors make living conditions not comparable to those in other continents. A study performed in Uruguay in 1998 found carriage rates of 41.5% among adults aged 21–30 years, and 19.5% on the 31–40 years age range, which differ from findings elsewhere [48]. However, studies from Cuba [49] and Brazil have shown trends and carriage rates similar to those reported elsewhere [47,50,51]. It would therefore be advised that asymptomatic carriage studies are carried out in the region before any vaccination strategy is considered, as the adult group might need to be taken into consideration in some countries if transmission of invasive strains is to be stopped by, for instance, the implementation of a catch-up campaign similar to that carried out in the United Kingdom in addition to the introduction of the vaccine in the national immunization scheme [52].

Serogroup distribution varied widely among the four regions in which countries were divided. Serogroup C was the major cause of disease in Brazil, where a sustained epidemic of serogroup C disease in some states prompted the health authorities to introduce the serogroup C conjugate vaccine in the infant vaccination schedule in October 2010, while changes induced by this public health intervention are being monitored closely [19]. As serogroup C accounted for over 90% of all vaccine-preventable isolates, it is expected that the implementation of the vaccine will substantially reduce the overall burden of disease in the country. In the Southern cone region serogroup C isolates represented less than

Age	2006	2007	2008														
	B	C	W135	Y	Other	C	B	C	W135	Y	Other	C	B	C	W135	Y	Other
	C	W135	Y	Other	C	B	C	W135	Y	Other	C	B	C	W135	Y	Other	
<1																	
1-5	91 (48.4%)	125 (49.8%)	28 (42.4%)	96 (47.8%)	14 (8.4%)	1 (0.5%)	0	22 (32.8%)	56 (42.1%)	12 (8.5%)	0	39 (48.7%)	42 (53.2%)	17 (21.7%)	7 (9.4%)		
6-14	101 (47.9%)	104 (49.5%)	7 (2.3%)	77 (36.2%)	7 (2.9%)	0	22 (29.8%)	35 (52.2%)	3 (3.9%)	0	76 (54.9%)	69 (56.6%)	17 (13.7%)	7 (9.4%)			
15-20	28 (42.4%)	27 (40.6%)	4 (5.7%)	7 (3.3%)	7 (3.3%)	0	14 (20.9%)	16 (23.2%)	4 (5.7%)	0	15 (20.8%)	14 (19.4%)	4 (5.7%)	0			
>20	96 (47.8%)	80 (45.8%)	7 (3.5%)	17 (9.5%)	8 (4.5%)	0	37 (23.2%)	54 (32.8%)	6 (3.8%)	0	30 (39.1%)	34 (25.4%)	28 (20.8%)	3 (3.8%)			
Total	540	376	376	360	340	340	340	340	340	340	340	340	340	340	340	340	340

Serogroup distribution varied widely among the four regions in which countries were divided. Serogroup C was the major cause of disease in Brazil, where a sustained epidemic of serogroup C disease in some states prompted the health authorities to introduce the serogroup C conjugate vaccine in the infant vaccination schedule in October 2010, while changes induced by this public health intervention are being monitored closely [19]. As serogroup C accounted for over 90% of all vaccine-preventable isolates, it is expected that the implementation of the vaccine will substantially reduce the overall burden of disease in the country. In the Southern cone region serogroup C isolates represented less than
10% of those processed by the NRLs, with serogroup B being the major cause of MD. A substantial increase of serogroup W135 was noticed among countries in this region in recent years, especially in Argentina. Brazil reported also an increase on the number of cases of W135 disease in two states: Rio de Janeiro and Rio Grande do Sul. In both cases, the causing strain was found to be that linked to the 2000 Hajj global outbreak [53,54]. Data presented in this article appear to indicate that serogroup W135 is more often seen among isolates obtained from older patients. It is widely accepted that an age-shift towards older patients occurs in hyper-endemic situations [55,56], which can occur when a new serogroup among the four regions in which the data has been grouped. This finding could have implications to those countries experiencing a recent increase in W135 isolates. Similarly, Colombia and Venezuela, which are both grouped in the Andean region, also share the pattern, with serogroups B and C being both a major cause of disease, and high percentages of serogroup Y compared to other countries in the region. This serogroup was reported to have increased significantly in Colombia since 2003 onwards [39] but our data suggest that this trend might be reverting. A previously published study on the molecular characteristics of serogroup Y isolates found in Latin America showed that the strains circulating in Colombia are not different from those found in Argentina, Brazil, Chile or Costa Rica and hence this apparently unusual situation could not be attributed to the presence of a particularly virulent strain in Colombia [59]. Our data does not suggest that serogroup Y is replacing any of the previously circulating serogroups but rather that there is a higher circulation of this serogroup among the Colombian and Venezuelan populations. Serogroup Y strains are also present in Ecuador, also grouped in the Andean region, and its presence in other surrounding countries could not be ruled out. Close monitoring of disease-causing strains, and particularly of serogroup Y in all countries in the Andean region should be maintained.

Although the number of isolates analyzed from countries grouped in the Mexico, Central America and Caribbean region is not enough to discern a common pattern of major disease-causing serogroups, based on results from the other two major regions, data suggest that some geographic structuring is present among the four regions in which the data has been grouped. This finding could have implications to those countries experiencing a higher circulation of this serogroup among the Colombian and Venezuelan populations.

Table 5. Serogroup distribution by age, 2009–2010.

Age	2009		2010									
	B	C	W135	Y	NG	Other*	B	C	W135	Y	NG	Other*
<12 months	70	50	27	7	0	0	62	61	40	5	0	0
12–23 months	37	36	9	4	0	0	23	30	8	4	0	0
24–59 months	48	68	5	2	0	0	52	63	4	1	0	0
≥5–14 years	57	127	16	5	0	0	64	145	18	4	0	0
15–20 years	19	47	9	4	0	0	15	70	11	3	0	0
>20 years	50	132	27	1	0	0	51	155	32	12	1	4
Total	281	460	93	9	0	0	267	529	110	30	3	5

Table 6. Susceptibility to penicillin and rifampin by year-Brazil.

Year	PENICILLIN	RIFAMPICIN				
	Susceptible	Intermediate	Resistant	Susceptible	Intermediate	Resistant
2006	168 (80.8%)	40 (19.2%)	0	207 (99.5%)	0	1 (0.5%)
2007	293 (89.9%)	33 (10.1%)	0	326 (100%)	0	0
2008	432 (84.4%)	80 (15.6%)	0	511 (100%)	0	0
2009	368 (83.6%)	72 (16.4%)	0	440 (100%)	0	0
2010	442 (87.4%)	64 (12.6%)	0	502 (99.2%)	3 (0.6%)	1 (0.2%)
Total	1703 (85.5%)	289 (14.5%)	0	1986 (99.9%)	3 (0.2%)	2 (0.1%)

*Brazil tests a random selection of isolates (67% in this study). Calculations take into account the percentage of penicillin intermediate-resistance as on the previous year.

doi:10.1371/journal.pone.0044102.t005

doi:10.1371/journal.pone.0044102.t006
difficulties to isolate meningococcus in their laboratories, as they could infer the epidemiology of meningococcal disease based on findings from neighboring countries, notwithstanding the necessity of taking steps to improve their surveillance systems and laboratory capacities to generate their own data.

The number of isolates reported from many of the countries has experienced an important decline, especially when all data collected on the 2000–2005 period are taken into consideration [20]. Evidence points at this decline being caused by the cyclical nature of meningococcal disease outbreaks, which is characterized by waves of progressive increased incidence rates followed by an equally progressive decrease that can last for decades [18,60,61]. In many Latin American countries a decline on disease incidence rates that is consistent with this observation has also been noticed [62–65]. One explanation for this could be the widespread practice of administering antibiotics prior to LP, which is very common in the region and results in IMD cases being reported as unknown ætiology when reported at all. However, the cyclical nature of meningococcal disease could also provide an explanation for this and if so, increases in the number of isolates reported through the SIREVA II network as well as in disease incidence are to be expected in the future.

All *Neisseria meningitidis* strains for which antibiotic susceptibility was tested remained highly sensitive to rifampin and chloramphenicol. However, the presence of sporadic cases caused by rifampin-resistant strains evidences the need to maintain systematic monitoring of resistance to this drug, as it is still the first choice as prophylaxis for case contacts in many countries in the region.

Decreased sensitivity to penicillin was found in around 30% of isolates. Special attention should be paid in the Southern cone region, where isolates presenting intermediate resistance to penicillin represented almost 60% of all characterized isolates. A number of studies have shown that the infection with a such strains is not associated with a fatal outcome [66,67,68], as the drug remains effective for the treatment of IMD. But as the opposite has also been documented, it would be advisable that attention is paid by NRL and epidemiologist to the outcome of IMD cases from whom a strain with decreased susceptibility to penicillin is isolated in order to establish the clinical significance of such strains in the region. These results also highlight the necessity to maintain systematic surveillance of MICs to this drug, as well as the importance of standardizing protocols and unifying susceptibility reporting criteria so ensure data are comparable among countries in the region.

Fourteen penicillin-resistant isolates reported in 2010 belong to an outbreak occurred in a Mexican prison. The outbreak affected mainly inmates and some of their relatives, but at least one unrelated case of penicillin-resistant meningococcal disease was reported (Monica Viveros-Terrazas, personal communication). These results need to be considered with caution as confirmation from the RRL is still pending, but attention must be paid should they be confirmed, as the spread of fully-resistant strains in a region where penicillin is the first line of action when a case of acute bacterial meningitis is suspected could have fatal consequences for the patients.

In conclusion, laboratory data on meningococcal disease across the Latin American region evidences that disease surveillance needs to be improved, especially among countries located in the Mexico, Central America and Caribbean, and those in the Andean region. Information is urgently needed, as the use of either the already available meningococcal vaccines against serogroups A, C, W135 and Y or those that are to come covering serogroup B are likely to have a great impact in the epidemiology of IMD in the region.

Table 7. Susceptibility to penicillin and rifampin by year-Southern cone.

Year	PENICILIN	RIFAMPICIN				
	Susceptible	Intermediate	Resistant	Susceptible	Intermediate	Resistant
2006	49 (27.8%)	123 (69.9%)	4 (2.3%)	176 (100%)	0	0
2007	71 (28.9%)	175 (71.1%)	0	237 (99.6%)	1 (0.4%)	0
2008	100 (42.0%)	137 (57.6%)	1 (0.4%)	238 (100%)	0	0
2009	110 (51.6%)	103 (48.4%)	0	204 (99.5%)	0	1 (0.5%)
2010	108 (50.7%)	105 (49.3%)	0	204 (99.0%)	0	2 (1.0%)
Total	438 (40.3%)	643 (59.2%)	5 (0.5%)	1059 (99.6%)	1 (0.1%)	3 (0.3%)

Table 8. Susceptibility to penicillin and rifampin by year-Andean region.

Year	PENICILIN	RIFAMPICIN				
	Susceptible	Intermediate	Resistant	Susceptible	Intermediate	Resistant
2006	52 (92.9%)	4 (7.1%)	0	55 (98.2%)	1 (1.8%)	0
2007	36 (92.3%)	3 (7.7%)	0	39 (100%)	0	0
2008	26 (81.3%)	5 (15.6%)	1 (3.1%)	31 (100%)	0	0
2009	27 (75.0%)	9 (25.0%)	0	35 (100%)	0	0
2010	19 (63.3%)	10 (33.3%)	1 (3.4%)	30 (100%)	0	0
Total	160 (82.9%)	31 (16.1%)	2 (1.0%)	190 (99.5%)	1 (0.5%)	0
The establishment of standardized case definitions and clear guidelines on when lumbar puncture or blood culture should be performed would ensure that cases of meningococcal disease are diagnosed, especially since new molecular diagnostic techniques are being incorporated into routine surveillance and making it possible to identify the causative pathogen even when very little quantities of bacterial DNA are present in the sample [69]. Epidemiological surveillance and report systems need to be carefully evaluated to ensure weaknesses at all levels are identified and addressed. It is of great importance that national health authorities adopt these guidelines into their national ones, and accept the need to obtain data of IMD in their countries if improvements are to be made. An active sentinel-site surveillance covering all age-groups and allowing the incorporation of population-based data would be strongly recommended, especially for those countries where IMD is rarely reported.

Harmonization of laboratory procedures is essential not only to ensure data are comparable among countries, but also to facilitate the identification and solution of any methodological problems that might arise. Peripheral laboratories need to be well equipped and supplied with all necessary reagents and quality control-media to ensure isolation of bacteria. Personnel in these laboratories should be enrolled in periodic trainings carried out at central level by the NRLs to ensure they can perform all laboratory procedures correctly. Additionally, NRLs need to ensure their staff are properly trained and encouraged to implement new emerging technologies. Implementation of molecular characterization techniques such as Multilocus Sequence Typing (MLST) as a routine in NRLs and RRLs would make data from Latin America comparable to that generated and published worldwide.

With the predicted arrival of new meningococcal vaccines and their potential introduction in Latin American countries, the implementation of measures to allow the generation of reliable data on disease burden and circulating strains in those countries where no information is available will be a major challenge in the upcoming years.

Supporting Information

Table S1 Serogroup distribution by age and regions 2006–2008.

Year	Serogroup Distribution		
	A (20%)	B (10%)	C (10%)

Table S2 Serogroup distribution by age and regions 2009–2010.

Year	Serogroup Distribution		
	A (20%)	B (10%)	C (10%)

Acknowledgments

The authors are grateful to the Canadian International Development Agency (CIDA) to their support to the SIREVA II network. They also want to extend their gratitude to all personnel working at sentinel and peripheral laboratories in participating countries, in national reference laboratories and, especially to the Instituto Adolfo Lutz in Sao Paulo, Brazil, Instituto Nacional de Salud, Colombia, and the Instituto de Salud Carlos III in Madrid, Spain for their contribution as regional and international reference laboratories.

Since 2010, meningococcal disease surveillance is supported by the Pan-American Health and Education Foundation (PAHEF). Finally, the authors wish to thank the Immunizations Project in the Family and Community Health Area (FCH/IM) in PAHO headquarters and country offices.

Contributors

Members of the SIREVA II study group are: Alejandra Corso, Paula Gagetti, Adriana Efron, Cecilia Soroñuet, Marilina Moscoloni (Instituto Nacional de Enfermedades Infecciosas Dr. Carlos G. Malbrán, Argentina); Patricia Rosales Rojas (Instituto Nacional de Laboratorios de Salud-Brasil, Bolivia); María Cristina de Cunto Brändleone (Instituto Adolfo Lutz, Bolivia); Aurora Maldonado, Soledad Prat, Mabel Seoane, Pamela Araya (Instituto de Salud Pública, Chile); María Elena Realpe, Olga Marina Sanabria, Carolina Duarte (Instituto Nacional de Salud, Colombia); Grettel Chanto Chacon (Centro Nacional de Referencia en Bacteriología, Costa Rica); Rafael Llanes, Gilda Toraño, Onelkis Feliciano, Oderay Gutiérrez (Instituto de Medicina Tropical Pedro Kouri, Cuba); Carmen Pesantes Almeida, Yolanda Návaro San Martín, Javier Sánchez Chóez (Instituto Nacional de Higiene y Medicina Tropical Leopoldo Izquieta-Perez, Ecuador); Zandra Jiménez de Fuentes (Ministerio de Salud Pública y Asistencia Social, El Salvador); Roxana Elizabeth Castillo (Centro Nacional de Referencia en Bacteriología, México); Grettel Chanto Chacon, Michelle Gagetti, Adriana Efron, Cecilia Sorohuet, Marilina Moscoloni (Instituto Nacional de Enfermedades Infecciosas Dr. Carlos G. Malbrañ, Argentina); Maria Cristina de Cunto Brandileone (Instituto Adolfo Lutz, Brazil); Maria Elena Realpe, Olga Marina Sanabria, Carolina Duarte, Francisca Palacios, María Paula Narváez (Instituto Nacional de Salud, Colombia); Aurora Maldonado, Soledad Prat, Mabel Seoane, Pamela Araya (Instituto Nacional de Salud, Colombia); Pamela Araya (Instituto Nacional de Salud, Colombia); and especially to the Instituto Adolfo Lutz in São Paulo, Brazil, the Instituto Nacional de Salud, Colombia, and the Instituto de Salud Carlos III in Madrid, Spain for their contribution as regional and international reference laboratories.

The authors are grateful to the Pan-American Health and Education Foundation (PAHEF). Finally, the authors wish to thank the Immunizations Project in the Family and Community Health Area (FCH/IM) in PAHO headquarters and country offices.

Table S1 Serogroup distribution by age and regions 2006–2008.

Year	Serogroup Distribution		
	A (20%)	B (10%)	C (10%)

Table S2 Serogroup distribution by age and regions 2009–2010.

Year	Serogroup Distribution		
	A (20%)	B (10%)	C (10%)

The authors wish to thank the Immunizations Project in the Family and Community Health Area (FCH/IM) in PAHO headquarters and country offices.
Author Contributions
Conceived and designed the experiments: ABIP JMG. Performed the experiments: APL MCG MR SIREVA II Working Group. Analyzed the data: ABIP. Contributed reagents/materials/analysis tools: ABIP APL MCG MR SIREVA II Working Group JMG. Wrote the paper: ABIP.

References
1. Rosenberg NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Meningococcal disease. N Engl J Med 344: 1378–1388.
2. Aguilar-Garcia J, Olalla-Sierra J, Perea-Milla E, Rivas-Ruiz F, Martos F, et al. (2009) Analysis of the epidemiological characteristics and prognostic factors in probable or confirmed invasive meningococcal disease in a cohort of adolescents and adults during an epidemic outbreak. Rev Clin Esp 209: 221–226.
3. Deghimane AE, Parent du Châtelet I, Sztanik M, Hong E, Ruckly C, et al. (2010) Emergence of new virulent Neisseria meningitidis serogroup C sequence type 11 isolates in France. J Infect Dis 202: 247–250.
4. Doyle TJ, Mejia-Echeverry A, Fiorolla P, Leguen F, Livengood J, et al. (2009) Cluster of serogroup W135 meningococci, southeastern Florida, 2008–2009. Emerg Infect Dis 16: 115–116.
5. Juanita J, Truan G, Sheppeard V, Gibbons D, Thomas J, et al. (2009) A community outbreak of meningococcal serogroup B disease in western Sydney: the challenges of identification and significance. Commun Dis Intell 33: 221–225.
6. Skroczynska A, Wasko I, Kuch A, Golebiowska A, Forsz P, et al. (2010) Outbreak of invasive meningococcal disease in Goleniów County, northwest Poland, March 2009. Euro Surveill 15.
7. Taylor-Robinson D, Elders K, Milton B, Thurston H (2010) Students' attitudes to the community awareness campaigns employed during an outbreak of meningococcal disease in a UK school: a qualitative study. J Public Health (Oxf) 32: 32–37.
8. Weiss D, Stern EJ, Zimmerman C, Bregman B, Yeung A, et al. (2009) Emerging threat of fluoroquinolone-resistant Neisseria meningitidis in the United States. Clin Infect Dis 50 Suppl 2: S37–44.
9. Harrison LH (2010) Epidemiological profile of meningococcal disease in the United States. Clin Infect Dis 50 Suppl 2: S37–44.
10. Stephens DS, Greenwood B, Brandtzaeg P (2007) Epidemic meningitis, 2000–2004. Lancet 369: 2196–2210.
11. Lopez L, Sexton K, Carter P (2011) The epidemiology of meningococcal disease in New Zealand in 2010.
12. Cano R, Larrauri A, Mateo S, Alcalá B, Salcedo C, et al. (2004) Impact of the SIREVA-project in Latin America, from 1993 to 2005. J Clin Microbiol 42: 948–951.
13. Di Fabio JL, Homma A, de Quadros C (1997) Pan American Health Organization epidemiological surveillance network for Streptococcus pneumoniaiae. Microb Drug Resist 3: 131–133.
14. Popovic T, Ajello G, Facklam R (1998) Laboratory methods for the diagnosis of meningitis caused by Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae. Centers for Disease Control and Prevention and World Health Organization. 301 p.
15. Wilder ML, Low DE, Cockerill FR, Craig WA, et al. (2006) Methods for detection of antimicrobial susceptibility testing for bacteria that grow aerobically: approved standard–seventh edition. Available: http://www3.chi.org/
16. Baquero F, Martinez-Beltran J, Canton R (1998) Criteria of the MENSURA group for the definition of the critical points of sensitivity to antibiotics. Enferm Infecc Microbiol Clin 16: 85–92.
17. OPS (2007) Informe regional de SIREVA II, 2006: datos por país y por grupos de edad. Washington D.C.: OPS. 387 p.
18. OPS (2008) Informe regional de SIREVA II, 2007: datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis, en procesos invasivos. Washington D.C.: OPS. 273 p.
19. OPS (2009) Informe regional de SIREVA II, 2008: datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis, en procesos invasivos. Washington D.C.: OPS. 273 p.
20. OPS (2010) Informe regional de SIREVA II, 2009: datos por país y por grupos de edad sobre las características de los aislamientos de Streptococcus pneumoniae, Haemophilus influenzae y Neisseria meningitidis, en procesos invasivos. Washington D.C.: OPS. 273 p.
21. Di Fabio JL, Homma A, de Quadros C (1999) Pan American Health Organization epidemiological surveillance network for Streptococcus pneumoniae. Microb Drug Resist 5: 263–271.
22. Lagos R, Horwitz I, Toro J, San Martin O, Abrego P, et al. (1996) Large scale, rapid assessment of the impact of Haemophilus influenzae type b conjugate vaccines in children: an epidemiological and microbiological decision. Euro Surveill 9: 11–15.
23. Kafetzis DA, Stamboulidis KN, Tzanakaki G, Kourea Kremastinou J, Skevaki M (2009) Outbreak of meningococcal meningitis among illicit drug users in Brooklyn, New York. Clin Infect Dis 49: 894–901.
24. Harrison LH, Trotter CL, Ramsay ME (2009) Global epidemiology of meningococcal disease. Vaccine 27 Suppl 2: B51–63.
25. Ines Agudelo C, Sanabria OM, Ovalle MV (2008) Serogroup Y meningococcal disease. Vaccine 27 Suppl 2: 837–844.
26. Wikler ML, Low DE, Cockerill FR, Craig WA, et al. (2006) Methods for detection of antimicrobial susceptibility testing for bacteria that grow aerobically: approved standard–seventh edition. Available: http://www3.chi.org/ source/orders/free/m117x.pdf.
27. Galindez J, Garcia Del Rio H, Salazar P (1998) Determination of rifampicin-resistant strains of Neisseria meningitidis in Uruguay. Emerg Infect Dis 14: 990–991.
28. Perez Galloni G, Garcia Gabarro G, Alfonso A, Pujadas M, Cannou T (2012) Detection of rifampicin-resistant strains of Neisseria meningitidis in Uruguay. Rev Panam Salud Publica 30: 540–544.
29. Austin J, Bloemers M, Gracia-Lahoz M, Puerta E, Goins SC, et al. (2007) Invasive meningococcal disease in Latin America: current situation and opportunities for prevention. Neurol Res 29: 263–271.
30. Galindez J, Agudelo CI, Brandhöle MC, Castaneda E, de Lemos AP, et al. (2008) Characterization of invasive isolates of S. pneumoniae, H. influenzae, and N. meningitidis in Latin America and the Caribbean: SIREVA II, 2000–2005. Rev Panam Salud Publica 24: 1–15.
31. Castro de la Hoz F, Agudelo CI, Regueira M, Corso A, Brandhöle MC, et al. (2009) Laboratory-based surveillance of Streptococcus pneumoniae invasive disease in children in 10 Latin American countries: a SIREVA II project, 2000–2005. Pediatr Infect Dis J 28: e265–e270.
32. Ines Agudelo C, Sanabria OM, Ovalle MV (2008) Serogroup Y meningococcal disease. Colomb Emerg Infect Dis 14: 990–991.
33. Agudelo CI, Munoz N, De la Hou F (2000) Rapid assessment of the impact of Haemophilus influenzae vaccine serotype b in Colombia. Public Health Laboratories. Rev Panam Salud Publica 8: 101–104.
34. Diaz JM, Catalán L, Urrutia MT, Prado V, Ledermann W, et al. (2001) Trends of etiology of acute bacterial meningitis in Chilean children from 1989 to 1998. Pediatr Infect Dis J 19: 719–726.
35. Lagos R, Horwitz I, Toro J, San Martin O, Abrego P, et al. (1996) Large scale, postlicensure, selective vaccine acceptance of Chilean infants with PRP-T conjugate vaccine: practicality and effectiveness in preventing invasive Haemophilus influenzae type b infections. Pediatr Infect Dis J 15: 216–222.
36. Broome CV (1986) The carrier state: Neisseria meningitidis. J Antimicrob Chemother 18 Suppl A: 25–34.
37. Cartwright KA, Stuart JM, Jones DM, Noah ND (1987) The Stonehouse survey: nasopharyngeal carriage of meningococci and Neisseria lactamica. Epidemiol Infect 99: 591–601.
38. Pla C, Jain MC, Wilson DJ, McCarthy ND, Jolley KA, et al. (2005) Genetic analysis of meningococci carried by children and young adults. J Infect 51: 1263–1271.
39. Fabio JL, Homma A, de Quadros C (1999) Pan American Health Organization epidemiological surveillance network for Streptococcus pneumoniae. Microb Drug Resist 5: 263–271.
40. Parodi V, Allemand F, Torres E, Macedo M, Maglione R, et al. (1998) Portadores de Neisseria meningitidis en una poblacion de Montevideo. Revista medica uruguaya: 4.
49. Núñez N, Martinez I, Liqueodo L, Álvarez N, López O (2007) Portadores de Neisseria meningitidis y Neisseria lactamica en tres grupos de edades diferentes. VacciMonitor 16.

50. Jolley KA, Kalmusova J, Feil EJ, Gupta S, Musilek M, et al. (2000) Carried meningococci in the Czech Republic: a diverse recombining population. J Clin Microbiol 38: 4492–4498.

51. Ibarz-Pavon AB, Maclennan J, Andrews NJ, Gray SJ, Urwin R, et al. (2011) Changes in serogroup and genotype prevalence among carried meningococci in the United Kingdom during vaccine implementation. J Infect Dis 204: 1046–1053.

52. Miller E, Salisbury D, Ramsay M (2001) Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: a success story. Vaccine 20 Suppl 1: S58–67.

53. Weidlich L, Baethgen LF, Mayer LW, Moraes C, Klein CC, et al. (2008) High prevalence of Neisseria meningitidis hypervirulent lineages and emergence of W135-P1.5,2:ST-11 clone in Southern Brazil. J Infect 57: 324–331.

54. Russell JE, Urwin R, Gray SJ, Feavers IM, et al. (2008) Molecular epidemiology of meningococcal disease in England and Wales 1975–1995, before the introduction of serogroup C conjugate vaccines. Microbiology 154: 1170–1177.