Poisson Bracket in Non-commutative Algebra of Quantum Mechanics

Sina Khorasani

(Dated: November 6, 2014)

In the widely accepted approach to the foundation of quantum mechanics is that the Poisson bracket, governing the non-commutative algebra of operators, is taken as a postulate with no underlying physics. In this manuscript, it is shown that this postulation is in fact unnecessary and may be replaced by a few deeper concepts, which ultimately lead to the derivation of Poisson bracket. One would only need to use Fourier transform pairs and Kramers-Kronig identities in the complex domain.

I. INTRODUCTION

The mathematical foundation of quantum mechanics is based on a few postulates, from which all the relationships and subsequent equations of quantum mechanics are obtained. A rigorous approach to this has been presented in famous textbooks by Sakurai1,2 and Schleich3, where operator algebra in Hilbert space, consisting of operators acting on kets and bras generates eigenket problems. The process of solving for Hermitian operator eigenkets and eigenvalues would constitute the whole mathematical toolbox of whatever needed to be known in quantum mechanics.

These postulates may be enlisted as:

- Every physical state of a closed system may be uniquely represented by a normalized ket such as \(|\psi\rangle \). Furthermore, system kets have one-to-one correspondence to their Hermitian adjoints, namely state bras such as \(\langle \psi | \).

- To every physically measurable quantity, there corresponds exactly one Hermitian operator, which constitutes a Hilbert space with the space spanned by kets or bras.

- Squared absolute values of the inner product of state kets such as \(\langle \psi | \) with bras such as \(\langle \phi | \), denoted by the squared bracket \(|\langle \phi \psi \rangle|^2 \) gives a direct value of the probability density function of the system projection on the state \(|\phi\rangle \).

- The one-dimensional position and momentum operators along any direction do not commute, resulting in the Poisson bracket given by the expression \([\mathbf{X},\mathbf{P}] = i\hbar \).

Out of these above mentioned postulates, with two more related to the measurement and collapse of state kets, the mathematical theory of quantum mechanics is born. Although the collapse of state kets may be well avoided by incorporation of multi-world theory4, still an alternate postulate will be needed to justify the presence of parallel worlds.

As it appears in the above, the fourth postulate suddenly comes out of nowhere, with no physical justification. Although this relationship has been validated in practice on every experimental scale, and serves as the main basis of quantum mechanics, one would hardly accept its usefulness and correctness. It has been therefore an undeniable commonsense that there must be a more fundamental pillar alternative to this fourth postulate.

Recently, Bars and Rychkov4 have demonstrated that the Poisson bracket may be indeed obtained if we start with the mathematical behind dissociation and reconstruction of strings in the much deeper universal picture of string theory. However, as it is being discussed in this paper, this level of complication is totally unnecessary, and the non-commutative algebra of position and momentum may be conveniently drawn from system evolution equation without need to worlds being in parallel or having tinier scales. To this end, all we need to study the equivalence of wavefunctions will be the Fourier and the Hilbert transform pairs, the latter being used in the form of Kramers-Kronig relationships.

II. EVOLUTION EQUATIONS

Upon projection unto a given \(\zeta \) space (Appendix A), and in all non-relativistic and relativistic descriptions of physical systems, a governing differential equation appears in the form of the general form

\[
\mathcal{G}\psi(\zeta) = \frac{\partial}{\partial \zeta}\psi(\zeta)
\]

where \(\mathcal{G} \) is an operator, \(\psi(\zeta) \) is the (scalar or vector) wavefunction, and \(\zeta \) is a universal parameter, to which all other parameters and operators ultimately depend. Hence, the infinitesimal evolution of any system depending on the universal parameter \(s \) is equivalent to operation of the operator \(\mathcal{G} \) on its system wavefunction \(\psi(\zeta) \). Here, we do not discuss the nature of wavefunctions as these issues are still a matter of strong debate5. However, the universal parameter \(s \) may be regarded as a parameter such as time \(t \), or any other physically measurable quantity such as the scalar quantities energy \(e \), phase \(\theta \), or vector quantities such as position \(\mathbf{r} \) and momentum \(\mathbf{p} \). With the exception of time \(t \), which is shown to provide a truly asymmetric behavior under interactions6, the choice of all other parameters would need a separate study. However, a single-particle system as being discussed in this paper, should experience symmetric time directions.
In order to preserve the Hermitian form for the derivative on the right-hand-side of (1), we may insert a unit imaginary number i. Following the approach in \[\text{equation}\], we also insert a dimensional constant which is denoted here by \hbar with the units of Joule · Second to obtain the general form of the evolution equation as

$$G(\zeta)\psi(\zeta) = i\hbar \frac{\partial}{\partial \zeta} \psi(\zeta)$$ \hspace{1cm} (2)

Here, the operator G is allowed to be a function of the universal parameter. The constant \hbar will provide the necessary dimensional correction, in such a way that the dimension of the operator G multiplied by the dimension of parameter ζ would result in Joule-Second as well. The numerical value of the constant \hbar in (2) may be, however, later obtained by experiment, logically turning out to be the same as the measurable Planck’s constant \hbar divided by 2π. As it is known, the zero limit of this constant will reproduce the classical physics in the end.

Since the universal parameter ζ is supposed to be a truly independent variable, all other quantities may be assumed to vary as sole functions of ζ. Hence, the dynamics of a physical system will be described by the variation of its quantities with respect to the variations of ζ. At this point, we will have to take on the fourth postulate, replacing the one in the above as

- The system state functions always obey a form of the Evolution equation \[\text{equation}\].

When taken as the universal parameter, time in the classical physics is only an extra dimension of the spacetime, albeit shown to have a preferred direction. Even in the general and special theories of relativity, time coordinate remains to be a mere fourth dimension. Hence, the classical systems may be or not be dependent on the time. Quantum mechanics, however, provides a different interpretation of time. It exceptionally is an independent parameter, to which no Hermitian operator is assigned; time is only a scalar free parameter. This is while all other physical quantities (c.f. third postulate) are expressible as functions of this free parameter, namely time t.

Upon taking $\zeta = t$ with the dimension of Second, we may denote G by the Hermitian energy operator H, having the dimension of Joule, thus arriving at the Schrödinger equation as

$$H(t)\psi(t) = +i\hbar \frac{\partial}{\partial t} \psi(t)$$ \hspace{1cm} (3)

Had we taken a vector parameter such as three-dimensional momentum p with the dimension of Kilogram · Meter · Second$^{-1}$ instead of the universal parameter ζ, we had arrived at the vector equation

$$\mathcal{R}\psi(p) = +i\hbar \frac{\partial}{\partial p} \psi(p)$$ \hspace{1cm} (4)

Similarly, one would obtain the following upon taking the three-dimensional position r with the dimension of the universal parameter ζ

$$\mathcal{P}\chi(r) = -i\hbar \frac{\partial}{\partial r} \chi(r)$$ \hspace{1cm} (5)

In (4) and (5), \mathcal{R} and \mathcal{P} are respectively the Hermitian vector operators corresponding to position and momentum in space.

Although, $\chi(p)$ in (4) and $\psi(r)$ in (5) express identical systems, they are not necessarily equal, too. That would mean in general that $\chi(r) \neq \psi(r)$ and $\chi(p) \neq \psi(p)$. We refer to $\chi(p)$ and $\psi(r)$ respectively as the momentum and position representations of the system. The reason for taking the negative sign on the right-hand-side of (5) will become apparent later.

Now, assuming satisfaction of sufficient condition for existence of Fourier transform (absolute integrability), we define the three-dimensional Fourier transform

$$\Psi(r) = \mathcal{F}\{\psi(p)\}(r) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \iiint \psi(p) \exp\left(\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right) d^3p$$ \hspace{1cm} (6)

having the inverse transform given by

$$\psi(p) = \mathcal{F}^{-1}\{\Psi(r)\}(p) = \frac{1}{(2\pi\hbar)^{\frac{3}{2}}} \iiint \Psi(r) \exp\left(-\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right) d^3r$$ \hspace{1cm} (7)

Upon taking Fourier transform from both sides of (4) we arrive at

$$\mathcal{F}\{\mathcal{R}\psi(p)\}(r) = \frac{i\hbar}{(2\pi\hbar)^{\frac{3}{2}}} \iiint \left[\frac{\partial}{\partial p} \psi(p)\right] \exp\left(\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right) d^3p$$ \hspace{1cm} (8)

which through part-by-part integration gives

$$\mathcal{F}\{\mathcal{R}\psi(p)\}(r) = \frac{i\hbar}{(2\pi\hbar)^{\frac{3}{2}}} \psi(p) \exp\left(\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right)\bigg|_{p=+\infty}^{p=-\infty}$$

$$- \frac{i\hbar}{(2\pi\hbar)^{\frac{3}{2}}} \iiint \psi(p) \left[\frac{\partial}{\partial p} \exp\left(\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right)\right] d^3p$$

$$= \frac{\mathbf{r}}{(2\pi\hbar)^{\frac{3}{2}}} \iiint \psi(p) \exp\left(\frac{i}{\hbar} \mathbf{p} \cdot \mathbf{r}\right) d^3p$$

$$= \mathbf{r} \mathcal{F}\{\psi(p)\}(r)$$ \hspace{1cm} (9)

Now, to be discussed below, it is expected that (4) and (5) would describe identical systems. What we therefore require to know is that
Similarly, we would expect the inverse relationship to hold true

\[
\mathcal{F}^{-1}\{\chi(r)\}(p) = \frac{-i\hbar}{(2\pi\hbar)^2} \chi(r) \exp\left(-\frac{i}{\hbar} p \cdot r\right)\bigg|_{r=-\infty}^{r=+\infty} + \frac{i\hbar}{(2\pi\hbar)^2} \int\int \int \chi(r) \left[\frac{\partial}{\partial r} \exp\left(-\frac{i}{\hbar} p \cdot r\right) \right] d^3p = \frac{\mathcal{P}}{(2\pi\hbar)^2} \int\int\int \chi(r) \exp\left(-\frac{i}{\hbar} p \cdot r\right) d^3p = p\mathcal{F}^{-1}\{\chi(r)\}(p)
\]

and therefore

\[
X(p) = \mathcal{F}^{-1}\{\chi(r)\}(p) = \psi(p)
\]

Of principal importance, now, is to know whether \(\Psi(r) = \chi(r)\) and \(X(p) = \psi(p)\) hold necessarily true or not. Counter-intuitively, it is not obvious that these two equations actually are correct. As a matter of fact, following \[4\] and \[5\], the system vector parameters \(p\) and \(r\) are here defined to be conjugate variables. Similarly, we may assign an operator to time such as \(\mathcal{T}\) and reconfigure the Schrödinger equation \[3\] in the alternate energy representation form as

\[
\mathcal{T}(e)\chi(e) = -i\hbar \frac{\partial}{\partial e} \chi(e)
\]

where \(e\) and \(t\) are now obviously conjugate variables, and therefore \(\psi(t)\) and \(\chi(e)\) should be connected through Fourier transforms. We furthermore notice the negative sign on the right-hand-side of \[13\] in comparison to \[3\]. What allows us at this stage to proceed is, in fact, assumption of a new amendment to the fourth postulate as

- Physical systems may be described by either of the mathematically equivalent conjugate forms of the Evolution equation \[3\], related through Fourier transform pairs. Conjugate forms should ultimately result in identical probability density functions

Having that said in the above, we must have at least \(|\Psi(r)| = |\chi(r)|\) and \(|X(p) = |\psi(p)|\). Equivalence of phases, comes following the Kramers-Kronig relationships. To verify this, it is sufficient that we assume that state functions are analytic in complex domain. Then, their natural logarithms given by \(\ln \Psi(r) = |\Psi(r)| + i\angle \Psi(r) + i2\pi n\) and \(\ln \chi(r) = |\chi(r)| + i\angle \chi(r) + i2\pi m\) should also be analytic, where \(m, n \in \mathbb{Z}\) are some arbitrary integers. Kramers-Kronig relations require that

\[
\Im f(z) = -\frac{1}{\pi} \text{P.V.} \int_{-\infty}^{+\infty} \frac{\Re f(u)}{u-z} du
\]

\[
\Re f(z) = +\frac{1}{\pi} \text{P.V.} \int_{-\infty}^{+\infty} \frac{\Im f(u)}{u-z} du
\]

where P.V. denotes Cauchy principal values. The first of the above pair is sufficient to observe that \(\angle \Psi(r) - \angle \chi(r) = 2\pi q\) with \(q \in \mathbb{Z}\) being some integer. Regardless of the choice of \(q\), we would readily have \[10\] established. Similarly, \[12\] follows in the momentum representation.

III. POISSON BRACKET

Defining the commutator of two operators such \(\mathcal{A}\) and \(\mathcal{B}\) as

\[
[A, B] \equiv AB - BA
\]

allows us to study the commutative properties of any pair of two physical quantities. A non-zero commutator implies insignificance in the order of measurements, or compatibility of observations. On the contrary, the order of measurements of two quantities will become important when the commutator is non-zero. For the particular choice of \([\mathcal{R}, \mathcal{P}]\) this will be referred to as the Poisson bracket. We may notice here that the Poisson bracket when evaluated on vector position \(\mathcal{R}\) and momentum \(\mathcal{P}\) operators gives a tensor product value.

We assume that the individual components of position and momentum do commute, that is

\[
[R_m, R_n] = 0
\]

\[
[P_m, P_n] = 0
\]

where \(m, n = x, y, z\). Now, to evaluate the value of Poisson bracket \([\mathcal{R}, \mathcal{P}]\) we verify its effect on an arbitrary function of position such as \(f(r)\)

\[
[\mathcal{R}, \mathcal{P}]f(r) = (\mathcal{R}\mathcal{P} - \mathcal{P}\mathcal{R})f(r) = \mathcal{R}\mathcal{P}f(r) - \mathcal{P}\mathcal{R}f(r)
\]

Now, using \[1\] and \[2\] we obtain

\[
[R, P]f(r) = R\left(-i\hbar \frac{\partial}{\partial r}\right)f(r) - \left(-i\hbar \frac{\partial}{\partial r}\right)rf(r) = -i\hbar \frac{\partial f(r)}{\partial r} + i\hbar f(r) + i\hbar r \frac{\partial f(r)}{\partial r} = i\hbar \frac{\partial f(r)}{\partial r} + i\hbar f(r) + i\hbar r \frac{\partial f(r)}{\partial r}
\]
Here, \(I = \nabla r \) is the \(3 \times 3 \) identity matrix. In the derivation of the above, we have assumed the following vector identities for the position \(R \) and momentum \(P \) operators as

\[
\begin{align*}
R f(r) &= r f(r) \quad (19) \\
\mathcal{P} g(p) &= p g(p)
\end{align*}
\]

with \(f(\cdot) \) and \(g(\cdot) \) being arbitrary functions. As a matter of fact, any function of position such as \(f(r) \) must be an eigenfunction of \(R \) with the vector eigenvalue \(r \). Similarly, any function of momentum such as \(g(p) \) must be an eigenfunction of \(\mathcal{P} \) with the vector eigenvalue \(p \).

Now, reverting back to (18) since \(f(r) \) was assumed to be completely arbitrary, we obtain the Poisson bracket

\[
[R, \mathcal{P}] = i \hbar I \quad (20)
\]

Had we assumed an arbitrary function of momentum in the form \(g(p) \), we would obtain

\[
[R, \mathcal{P}] g(p) = \left(i \hbar \frac{\partial}{\partial p} \right) \mathcal{P} g(p) - \mathcal{P} \left(i \hbar \frac{\partial}{\partial p} \right) g(p) = i \hbar \mathcal{P} g(p) - i \hbar \frac{\partial g(p)}{\partial p} + i \hbar \mathcal{P} g(p) - i \hbar \frac{\partial g(p)}{\partial p} = i \hbar \mathcal{P} g(p) \quad (21)
\]

This will result in the same relationship as (20). It is customary to write the tensor Poisson bracket as

\[
[R_m, \mathcal{P}_n] = i \hbar \delta_{mn} \quad (22)
\]

with \(\delta_{mn} \) being Kronecker delta.

A. Generalization

Treatment of the more general choice of \(f(r, p) \) is slightly more difficult, but will again result in the same conclusion as (20). For this purpose, one would need to expand \(f(r, p) \) first as

\[
f(r, p) = \sum_{m,n=0}^{\infty} \frac{r^n p^m}{n! m!} \frac{\partial^{n+m} f(r, p)}{\partial r^n \partial p^m} \bigg|_{r, p = 0} \quad (23)
\]

which allows us to appropriately define the operator

\[
f(R, \mathcal{P}) = \sum_{m,n=0}^{\infty} \frac{\partial^{n+m} f(r, p)}{\partial r^n \partial p^m} \bigg|_{r, p = 0} \cdot \frac{S \{ R^n P^m \}}{n! m!} \quad (24)
\]

where \(S \) is the symmetrization operator defined by Schleich. This operator recursively operates as

\[
S \{ A B C \} = \frac{1}{2} \{ A S \{ B C \} + S \{ B C \} A \} \quad (25)
\]

It is now possible to use (18) and (21) to obtain the identities

\[
\begin{align*}
[[R, \mathcal{P}], R] &= 0 \quad (26) \\
[[R, \mathcal{P}], \mathcal{P}] &= 0
\end{align*}
\]

from which we may obtain

\[
\begin{align*}
[R, \mathcal{P}] f(R, \mathcal{P}) &= \sum_{m,n=0}^{\infty} \frac{1}{n! m!} \frac{\partial^{n+m} f(r, p)}{\partial r^n \partial p^m} \bigg|_{r, p = 0} \quad (27) \\
\mathcal{P} S \{ R^n P^m \} &= \sum_{m,n=0}^{\infty} \frac{1}{n! m!} \frac{\partial^{n+m} f(r, p)}{\partial r^n \partial p^m} \bigg|_{r, p = 0} \\
S \{ R^n P^m \} \bigg| \mathcal{P}
\end{align*}
\]

Therefore, we can readily write down that

\[
[[R, \mathcal{P}], f(R, \mathcal{P})] = [f(R, \mathcal{P}), [R, \mathcal{P}]] \quad (28)
\]

which in turn results in \([R, \mathcal{P}] = \text{const} \). Therefore, comparing to (21), we obtain the same generalized form of Poisson bracket, that is \([R, \mathcal{P}] = i \hbar I \).

Similarly, applying the same calculations to the conjugate evolution equations (3) and (13) we obtain a comparable commutator between energy \(\mathcal{H} \) and time \(\mathcal{T} \) operators as

\[
[\mathcal{H}, \mathcal{T}] = i \hbar \quad (29)
\]

B. Uncertainty Relationships

Following the standard procedure, once the commutators between two operators such as \(A \) and \(B \) is known, then it can be shown that \(^{12,27} \)

\[
\Delta a \Delta b \geq \frac{1}{2} \left\{ |[A, B]| \right\} \quad (30)
\]

where the standard deviations, or uncertainties \(\Delta a \) and \(\Delta b \) are given by

\[
\begin{align*}
\Delta a &= \sqrt{\langle \Delta a^2 \rangle - \langle a \rangle^2} \quad (31) \\
\Delta b &= \sqrt{\langle \Delta b^2 \rangle - \langle b \rangle^2}
\end{align*}
\]

Here, expectation values are taken with respect to a given state function such as \(\psi(r) = \langle r | \psi \rangle \) or \(\chi(p) = \langle p | \chi \rangle \) as
\[\langle A \rangle = \iiint \psi^*(\mathbf{r}) A \psi(\mathbf{r}) d^3r \]
\[= \iiint \chi^*(\mathbf{p}) A \chi(\mathbf{p}) d^3p \]

Anyhow, we readily recover the famous uncertainty relationships

\[\Delta r \cdot \Delta p \geq \frac{3}{2} \hbar \]
\[\Delta E \cdot \Delta t \geq \frac{1}{2} \hbar \]

where we have taken note of the fact that

\[\Delta r \cdot \Delta p = \Delta x \Delta p_x + \Delta y \Delta p_y + \Delta z \Delta p_z \]

IV. CONCLUSION

In this article, we have demonstrated that the non-commutative algebra of quantum mechanics, and in particular, the Poisson bracket can be indeed derived, instead of being postulated. However, this would rely on modifying the basic postulates of quantum mechanics and shifting to more basic concepts starting from evolution equations and conjugate variables.

Appendix A: Appendix

Any operator acting on any member of the ket space such as \(A |\psi\rangle = |\phi\rangle \) relates to a dual operator such as

\[A \]
acting on the functions \(\psi(a) \) or obeys a similar relationship such as \(A \psi(a) = \phi(a) \), where \(\psi(a) = \langle a|\psi\rangle \) and \(\phi(a) = \langle a|\phi\rangle \). This is called a projection of ket space unto a space of functions. Although normally \(A \) and \(\hat{A} \) refer to the same physical quantities they are not mathematically the same. While \(A \) operates in the ket sapce, \(\hat{A} \) operates in the function space. These two however are transformable using the second quantization as

\[A = \iiint \hat{\psi}^\dagger(\mathbf{r}) A \hat{\psi}(\mathbf{r}) d^3r \]

where field operators are given as

\[\hat{\psi}(\mathbf{r}) = \sum_{(n)} \hat{b}_{(n)} \phi_{(n)}(\mathbf{r}) \]
\[\hat{\psi}^\dagger(\mathbf{r}) = \sum_{(n)} \hat{b}_{(n)}^\dagger \phi_{(n)}^*(\mathbf{r}) \]

Here, \(\hat{b}_{(n)} \) and \(\hat{b}_{(n)}^\dagger \) are respectively the annihilation and creation operators at the \((n) \)th state. Also \(\phi_{(n)}(\mathbf{r}) = \langle \mathbf{r}|(n) \rangle \), where \(|(n)\rangle \) is an eigenket of the system. Obviously, this is a projection unto the three-dimensional position \(\mathbf{r} \), while any other projection such as unto the three-dimensional momentum \(\mathbf{p} \) could have been also used.

* [khorasani@sharif.edu] School of Electrical Engineering, Sharif University of Technology, Tehran, Iran

1. J. J. Sakurai, *Modern Quantum Mechanics*, Revised Edition (Addison-Wesley, Reading, 1994).
2. W. Schleich, *Quantum Optics in Phase Space*, (Wiley-VCH, Berlin, 2001).
3. M. J. Hall, D.-A. Deckert, H. M. Wiseman, “Quantum Phenomena Modeled by Interactions between Many Classical Worlds,” Physical Review X 4, 041013 (2014).
4. I. Bars, D. Rychkov, “Is string interaction the origin of quantum mechanics?,” Physics Letters B, doi: 10.1016/j.physletb.2014.10.053 (2014).
5. W. Wei, Z. Xie, L. N. Cooper, G. M. Seidel, H. J. Maris, “Study of Exotic Ions in Superfluid Helium and the Possible Fission of the Electron Wave Function,” Journal of Low Temperature Physics, doi: 10.1007/s10909-014-1224-3 (2014).
6. J. Barbour, T. Koslowski, and F. Mercati, “Identification of a Gravitational Arrow of Time,” Physical Review Letters 113, 181101 (2014).
7. S. Khorasani, *Applied Quantum Mechanics*, (Delarang, Tehran, 2010).
8. D. Eckstein, Epstein Explains Einstein: An Introduction to both the Special and the General Theory of Relativity, English translation by S. Edelstein, 2009, p. 140; http://www.relativity.li.
9. S. Khorasani, “Deflection of Light and Shapiro Delay: An Equivalent Medium Theory Approach,” Proceedings of SPIE 8480, 848006 (2012).
10. G. B. Arfken, H. J. Weber, and F. E. Harris, *Mathematical Methods for Physicists*, 7th Edition (Academic Press, 2012).