Collective operations can extremely reduce work fluctuations

Martí Perarnau-Llobet1,* and Raam Uzdin2

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany
2Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 3200000, Israel

We consider work extraction from \(N \) copies of a quantum system. When the same work-extraction process is implemented on each copy, the relative size of fluctuations is expected to decay as \(1/\sqrt{N} \). Here, we consider protocols where the copies can be processed collectively, and show that in this case work fluctuations can disappear exponentially fast in \(N \). As a consequence, a considerable proportion of the average extractable work \(W \) can be obtained almost deterministically by globally processing a few copies of the state. This is derived in the two canonical scenarios for work extraction: (i) in thermally isolated systems, where \(W \) corresponds to the energy difference between initial and passive states, known as the ergotropy, and (ii) in the presence of a thermal bath, where \(W \) is given by the free energy difference between initial and thermal states.

Fluctuations play a crucial role in microscopic systems, which has motivated enormous efforts to build a theory of thermodynamics for small fluctuating systems, both classical [1] and quantum [2–4]. Particularly relevant is the question of how to extend the celebrated second law of thermodynamics. A standard formulation of this law is that the average work consumed or extracted from a system in a process is bounded by its change of free energy. Since this law concerns average work, one can naturally ask what can be said about its fluctuations. This question has lead to very interesting insights, which notably include fluctuation theorems [4] and extensions of the free energy to the nanoscale regime [5, 6].

Our results show that a large proportion of work fluctuations can disappear exponentially fast in \(N \), regardless of the specific protocol being implemented. In this case, using concentration results from probability and information theory [7, 8], we find that work fluctuations have a size proportional to \(1/\sqrt{N} \), whereas average work scales as \(N \). The relative size of fluctuations will hence decay as \(1/\sqrt{N} \), regardless of the specific protocol being implemented. The universality of this behaviour builds a clear intuition that (work) fluctuations disappear in the limit \(1/\sqrt{N} \to 0 \).

In this article, we also consider work extraction from \(\rho^{\otimes N} \), but away from the thermodynamic limit \(1/\sqrt{N} \to 0 \), so that \(N \) can be small. Crucially, we consider processes where the \(N \) copies of \(\rho \) can be processed collectively, hence assuming a high level of control. In this case, using concentration results from probability and information theory [7, 8], we find that work fluctuations can disappear exponentially fast in \(N \). This is first derived in thermally isolated systems, where the amount of extractable work from a state \(\rho \) is given by its ergotropy \(W_{\text{erg}}(\rho) \) [9], i.e., the energy difference between \(\rho \) and its passive state [10, 11]. While the concepts of ergotropy and passivity have been explored for average quantities [9–14], our results show that a large proportion of \(W_{\text{erg}}(\rho^{\otimes N}) \) can be extracted \textit{without} fluctuations by means of global operations. We note that the relevance of work fluctuations has been characterised in the creation of correlations from work [15], and in the charging of a quantum battery consisting of an harmonic oscillator [16]. We also study the decay of work fluctuations in the presence of a thermal bath. In this case, fluctuation-free protocols have been extensively studied in the last years within the field of single-shot thermodynamics [5, 6, 17–25], and our results provide new insights on the mesoscopic regime [23, 24], where \(N \) is finite and possibly small. Our considerations concern states that are diagonal in the energy basis, as the definition of work fluctuations in coherent systems is subtle and an active area of research [26].

\textbf{Work extraction from \(N \) two-level systems.} We start by considering an illustrative scenario where work is extracted from a system \(S \) made up of \(N \) identical qubits (spins). This is modelled by putting \(S \) in contact with a a work repository \(W \), which can extract or give energy to \(S \). The total Hamiltonian of SW reads

\[H = H_S + H_W, \]

where

\[H_S = \sum_{\nu=1}^N \frac{1}{2} \otimes^{\nu-1} \cdot \mathcal{O} \otimes^{N-\nu+1} \text{ with } h = \nu |1\rangle \langle 1|, \text{ and } H_W = \sum_{j=1}^L w_j |j\rangle \langle j| \]

with \(w_j = j\nu \) and \(L \geq N \). Energy is transferred from \(S \) to \(W \) via unitary operations that satisfy

\[[U, H] = 0, \]

which ensures that energy extracted/consumed from \(S \) comes solely from \(W \). The initial state of SW is taken to be a product state,

\[\sigma = \rho^{\otimes N} \otimes |0\rangle \langle 0|, \]

with \(\rho = (1-p)|0\rangle \langle 0| + p|1\rangle \langle 1| \) being the single-qubit density matrix. We also assume \(p > 1/2 \) so that the qubits have initially population inversions and can transfer energy to \(W \).

Work is quantified as energy exchanges in the state of \(W \), which starts with a well-defined energy [27]. Given (2), the probability to extract an amount of work \(w \) through \(U \) reads

\[P(w) = \langle w | \text{Tr}_S (U \sigma U^\dagger) | w \rangle, \]

i.e., the probability that \(W \) has raised from 0 to \(w \). Our goal is to maximise \(P(w) \) over all protocols, and hence we define

\[\hat{P}(w) = \max_U \left(\langle w | \text{Tr}_S (U \sigma U^\dagger) | w \rangle \right), \]

where the maximisation runs over \(U \)’s that satisfy (1).

The computation of (3) is provided in Appendix A, and here we provide a sketch of it. We take \(w = k\nu \) and consider transitions in degenerate energy levels of SW, which is imposed by (1). Considering a global energy \(E_{SW} = j\nu \), with \(j = 0, \ldots, N \), the populations of SW are distributed as:

* marti.perarnau@mpq.mpg.de
• Initial state: W is at $|0\rangle$. Then there are $C_N^{j_k} = \binom{N}{j_k}$ states of SW at energy $E_{SW} = j\nu$, each with probability $p(j) \equiv p^j(1-p)^{N-j}$.

• Target state: W is at $|k\nu\rangle$, and there are C_N^{j-k} states at energy $E_{SW} = j\nu$. Note that initially these states are not populated.

The protocol that achieves $\tilde{P}(k\nu)$ is the one that moves as much probability as possible from the initial to the target state in each degenerate energy $E_{SW} = j\nu$. Since we only consider diagonal states, it is enough to consider permutations within each subspace. This leads to

$$\tilde{P}(k\nu) = \sum_{j=k}^N \min\left(C_N^{j-k}, C_N^k\right) p(j). \quad (4)$$

By noting that $\min\left(C_N^{j-k}, C_N^k\right) = C_N^k$ for $j \geq \lfloor (N+k)/2 \rfloor$, we obtain the bound $\tilde{P}(k\nu) \geq 1 - \sum_{j=0}^{\lfloor (N+k)/2 \rfloor} C_N^j p(j)$. Defining the single-qubit ergotropy $W_{qbit} \equiv (2p-1)\nu$ (5) and taking $k\nu = NW_{qbit} (1-\gamma) \equiv \omega_{-}\gamma$ with $\gamma \in (0,1)$, we can use Hoeffding’s inequality [8] to finally obtain (see Appendix A for details)

$$\tilde{P}(\omega_{-}\gamma) \geq 1 - \exp\left(-N\gamma^2(2p-1/2)^2\right). \quad (6)$$

To interpret this result, note that W_{qbit} in (5) corresponds to the extractable work on average from ρ, i.e., its ergotropy [9] (see also discussion in (9)). Hence, this result shows that we can extract deterministically a proportion $1-\gamma$ of the total average extractable work from $\rho^{\otimes N}$ with a failure probability that decays exponentially with $\gamma^2 N$.

The result (6) is a direct consequence of concentration results in probability theory, in particular of Hoeffding’s inequality. Yet, it is important to distinguish it from the standard thermodynamic limit in which the relative size of fluctuations disappears as $1/\sqrt{N}$. To illustrate this point, consider a simple protocol where work is extracted from each qubit individually. Energy is transferred from S to W by iteratively applying the energy-preserving unitary that swaps $|0, j+1\rangle \leftrightarrow |1, j\rangle \forall j$, where $|a, b\rangle \equiv |a\rangle_S \otimes |b\rangle_W$, successively for each of the N copies. After N iterations, the state of W is described by $\sigma_W = \sum_{j=0}^N C_N^j p(j) |2j-N\rangle\langle 2j-N|$. The work distribution $P(w) = \langle w |\sigma_W |w\rangle$ is hence a binomial distribution centred at $\langle w \rangle = N(2p-1)\nu$ with standard deviation $\mu = \nu\sqrt{Np(1-p)}$. Hence, this protocol is essentially probabilistic and becomes only reliable by considering a confidence interval $NW_{qbit} \pm O(\sqrt{N})$ [28]. This is contrast with the fast convergence to a deterministic process of global protocols suggested by (6). This difference appears in protocols that extract less than NW_{qbit}, see Fig. 1.

This simple example demonstrates the capabilities of global protocols for reducing work fluctuations. This is illustrated in Fig. 2, where we plot $\tilde{P}(\omega_{+}\gamma)$, with $\omega_{+}\gamma = NW_{qbit} (1+\gamma)$, as a function of γ and for different N’s. Note, for example, that one can extract 2/3 of the average extractable work from $\rho^{\otimes N}$ with success probability $\tilde{P} \approx 0.90, 0.92, 0.97, 0.99$ by collectively processing $N = \{10, 25, 50, 100\}$ copies of the state. On the other hand, the success probability of protocols that attempt to extract more than NW_{qbit} rapidly decays to zero. This is made rigorous in Appendix A where we show that $\tilde{P}(\omega_{+}\gamma) \leq O\left(\exp\left(-N\gamma^2\right)\right)$.

The goal of this article is to show that the behaviour explained for this example is in fact a generic property of work-extraction protocols. In what follows, we show that

$$\tilde{P}(\omega_{-}\gamma) \geq 1 - d \exp\left(-N\gamma^2\nu^2\right), \quad (7)$$

with

$$\omega_{-}\gamma = (1-\gamma)NW, \quad (8)$$

where $\gamma \in (0,1)$ and W is the maximal extractable work on average from a diagonal state ρ; whereas c and d in (7) are parameters that depend on the initial conditions (the initial state ρ and Hamiltonian H_S). Expressions (7) and (8) naturally connect average bounds with almost-deterministic protocols for work extraction. A direct consequence of this result is
to provide a bound on the minimal number of copies that we need to globally process in order to extract $\omega - \gamma$ with success probability $1 - \epsilon$, $N \geq \ln(1/d/\epsilon)/(\gamma^2 c^2)$.

Disappearance of work fluctuations in thermally isolated systems. Consider that S is made up of N identical (d-level) qudit systems, each of them with a Hamiltonian $h = \sum_{i=1}^{d} \nu_i |i\rangle \langle i|$ and an initial diagonal state $\rho = \sum_{i=1}^{d} p_i |i\rangle \langle i|$. The total state reads $\rho^{\otimes N}$ and the total Hamiltonian is non-interacting, $H_S = \sum_{i=1}^{N} \prod_{i'=1}^{N-1} h \otimes \prod_{i'=i+1}^{N} h^{i'}$. The state is thermally isolated, so that work can only be extracted via controlled operations. Then, a crucial quantity is the ergotropy of ρ [9]

$$W_{\text{erg}}(\rho) \equiv \text{Tr}(h(\rho - \rho_{\text{pas}})),$$

where ρ_{pas} is the passive state associated to ρ [10, 11],

$$\rho_{\text{pas}} = \sum_{i} p_i^h |i\rangle \langle i|,$$

with ν_i^h being the eigenvalues of ρ ordered in decreasing order. $W_{\text{erg}}(\rho)$ quantifies the average extractable work from ρ by means of unitary operations as $\text{Tr}(h(\rho - U \rho U^\dagger)) \leq W_{\text{erg}}(\rho)$, $\forall U$ [29]. That is, it quantifies how much accessible energy on average is stored in ρ.

Now we move to probabilistic work-extraction protocols. For that, as in the previous section, we consider an auxiliary work-repository W, which can accept energy from S. The possible work values are given by energy differences of H_S, which can be written as

$$w_{n,m} = \sum_{i=1}^{d} (n_i - m_i) \nu_i$$

with $n \equiv (n_1, n_2, ..., n_d), n_i \in [0, N], \sum_i n_i = N$ and similarly for m. The spectrum of W is taken to be non-degenerate and dense enough to accept all possible $w_{n,m}$.

FIG. 3. $\hat{P}(\omega_s)$ as a function of γ, with $\omega_s = (1 + \gamma) W_{\text{glob}}(\rho)$ for 20 copies of a qutrit system with populations $\{p_0, p_1, p_2\} = \{0.2, 0.2, 0.6\}$ and internal Hamiltonian $h = \{0, 1, 8\}$. The blue dots correspond to $\hat{P}(w_{n,m}) \forall n, m$, whereas the orange and green dots correspond to the choices (12) and (15), respectively.

We now proceed to find a lower bound on $\hat{P}(w)$ as defined in (3), where the maximisation runs over all unitaries satisfying (1). The possible values of w are given by (11) with all possible $w_{n,m}$. We focus on a subset of those, defined by

$$n_i - m_i = \lfloor N(1 - \gamma)(p_i - p_i^h) \rfloor \equiv k_i^h,$$

where $\gamma \in (0, 1)$, and the $\lfloor \ldots \rfloor$ ensures that the k_i are natural numbers. This can be understood as a work-extraction protocol which moves the probability of the S' initial states with energy $\sum_i (k_i - k_i^h) \nu_i, \forall j$. As a consequence, W raises from 0 to $w = \sum_i k_i \nu_i \approx (1 - \gamma) N W_{\text{erg}}(\rho)$. Given this protocol, the calculation of $\hat{P}(w)$ is conceptually similar to the previous qubit example, but becomes more involved and is carried out in Appendix B. There, using arguments based on typicality [7, 8, 30], we show that (7) and (8) are satisfied with $W = W_{\text{erg}}(\rho), d = d_S$ where d_S is the dimension of H_S, and where c, at leading order in $1/N$ and γ, is given by

$$c = \sqrt{\prod S(\rho_{\text{pas}} || \rho)^{d/2}} \ln h_i^\gamma - \sum_{i=(d/2)+1}^{d} \ln h_i^\gamma$$

with $h_i \equiv p_i^h/p_i$ and where $S(\rho || \sigma)$ is the relative entropy. The expression (13) for c is correct up to corrections of order $O(1/N)$ and $O(\gamma)$, the first order corrections in $O(1/N)$ is provided in Appendix B.

An exciting property of passive states is the phenomenon of activation [10–14, 31], which means that $W_{\text{erg}}(\rho^{\otimes N})$ can be larger than $NW_{\text{erg}}(\rho)$. That is, by collectively processing $\rho^{\otimes N}$ more average work can be extracted. Interestingly, Alicki and Fannes showed in [31] that for $N \to \infty$,

$$W_{\text{erg}}(\rho) \equiv \lim_{N \to \infty} \frac{W_{\text{erg}}(\rho^{\otimes N})}{N} = \text{Tr}(h(\rho - \omega_\beta(h)))$$

where $\omega_\beta(h)$ is a thermal state, $\omega_\beta(h) \equiv e^{-\beta H}/\text{Tr}(e^{-\beta H})$, whose temperature is defined by $S(\rho) = S(\omega_\beta(h))$ with $S(\rho) = -\text{Tr}(\rho \ln \rho)$ the Von Neumann entropy [32]. Note that (14) can be also obtained through catalytic transformations [14], and that the state after the transformation is a completely passive state, i.e., a Gibbs state [10–12].

A natural question then arises: Can one extract a large proportion of the fundamental bound (14) almost deterministically? In Appendix C, we answer this question positively. More precisely, we consider a protocol defined by

$$n_i - m_i = \lfloor N(1 - \gamma)(p_i - p_i^h) \rfloor \equiv k_i^h,$$

where $\gamma \in (0, 1)$, and p_i^h are the populations of $\omega_\beta(h)$, i.e., $\omega_\beta(h) = \sum_i p_i^h |i\rangle \langle i|$. For such k_i^h’s, we then show that (7) and (8) are satisfied with $W = W_{\text{glob}}(\rho), d = d_S$, and where c can be inferred from (13) by replacing $\rho_{\text{pas}} \leftrightarrow \omega_\beta(h)$ and $h_i \leftrightarrow h_i^h \equiv p_i^h/p_i$. This value of c holds up to corrections $O(1/N)$, which are expected to appear as $O(1/N)$ can only be achieved for large N.

We illustrate these results in Fig. 3, where we compute exactly $\hat{P}(w)$ for 50 copies of a qutrit system. From the figure it becomes clear that there are many possible protocols corresponding to different choices of $w_{n,m}$, and that the choices (12) and (15) perform particularly well, especially the latter.
In fact, numerical results suggest that (15) rapidly becomes optimal with increasing N.

Disappearance of work fluctuations for systems in contact with a thermal bath. We now move to the case where S may be put in contact with a thermal bath B at temperature $1/\beta$. In this case, the average extractable work from ρ with internal Hamiltonian h is given by the non-equilibrium free energy change [33–37],

$$W_{th}(\rho) = F(\rho, h) - F(\omega_\beta(h), h),$$

(16)

where $F(\rho, h) = \text{Tr}(\rho h) - TS(\rho)$, with $S(\rho) = -\text{Tr}(\rho \ln \rho)$ and $\omega_\beta(h) = e^{-\beta h}/\text{Tr}(e^{-\beta h})$, the temperature being now provided by B. The expression (16) bounds the extractable work on average of a generic ρ with B, and can be interpreted as a formulation of the second law of thermodynamics with a single bath. Note also that $N W_{th}(\rho) = W_{th}(\rho^\otimes N)$ when the total Hamiltonian H_S is a sum of non-interacting h’s, so there is no possible activation here.

Now we move to probabilistic work-extraction protocols on $\rho^\otimes N$ in contact with B. We consider $\rho = \sum_{i=1}^d p_i |ii\rangle\langle ii|$, i.e. diagonal states, with internal Hamiltonian $h = \sum_{i=1}^d \nu_i |ii\rangle\langle ii|$ with $\nu_1 = 0$ for convenience. The bath has an internal Hamiltonian H_B and starts in a Gibbs state, $\omega_\beta(H_B)$ – see Appendix D for details on the spectra of B. The total Hamiltonian is then $H = H_S + H_B + H_W$, and the initial state reads $\sigma = \rho^\otimes N \otimes \omega_\beta(H_B) \otimes |0\rangle\langle 0|$. Work is extracted by raising W from 0 to w through unitaries that preserve the total energy, $[H, U] = 0$. This framework is commonly employed in resource-theoretic [18, 38, 39] and single-shot $(N = 1)$ [5, 6, 17–25, 40] studies of thermodynamics.

Our goal is to find $\tilde{P}(w)$ in (3), and in particular to prove (7). In Appendix D, we bound $\tilde{P}(w)$ in (3) by combining the techniques developed in Ref.5 with notions of typicality and concentration results in probability theory [30]. This leads to the desired results (7) and (8) with $W = W_{th}(\rho)$ and

$$c = S(\rho|\omega_\beta(h))/\beta \sum_i \nu_i - \sum_i \ln p_i,$$

(17)

where $S(\rho|\omega_\beta(h))$ is the relative entropy, that satisfies $S(\rho|\omega_\beta(h)) = \beta W_{th}(\rho)$. Note that $c > 0$ and that this result holds for every finite N.

Our results hence show that by sacrificing a proportion $(1 - \gamma)$ of the extracted work allows for exponentially enhancing its purity. This is possible through collective operations. To give a feeling of these results, in Appendix E we compute exactly $\tilde{P}(w)$ for a qubit system, which in particular shows that one can extract $2/3$ of the free energy of $\rho^\otimes N$ with a success probability $\{0.92, 0.96, 0.98, 1.0\}$ by processing $\rho^\otimes N$ collectively with $N = \{10, 25, 50, 100\}$ (see also Fig. 4 in Appendix E).

While so far we have assumed γ to be a finite fixed number, let us now consider the limit $\gamma \xrightarrow{N \to \infty} 0$. In particular, by choosing $\gamma^2 = \ln(N)/(c^2 N)$, we obtain simultaneously:

$$\tilde{P}(w) \geq 1 - d/N,$$

$$w = \left(1 - \frac{1}{c} \sqrt{\frac{\ln N}{N}}\right) NW_{th}(\rho).$$

Hence both $\tilde{P}(w) \to 0$ and $w \to NW_{th}(\rho)$ in the thermodynamic limit $1/\sqrt{N} \to 0$. Alternatively, one may choose $\gamma^2 = -\ln(\epsilon/d)/(c^2 N)$, so that one allows a finite error ϵ while $w = NW_{th}(\rho) + O(1/\sqrt{N})$. With this choice, we recover the same behaviour found within single-shot thermodynamics [5, 6, 18, 24, 39], where the usual mindset is to allow a small finite error ϵ in order to extract w exactly. Summarising, by appropriately choosing γ as a function of N, one can interpolate between two regimes of work extraction from $\rho^\otimes N$: (i) the one presented here, where one fixes the extracted work, as $w = (1 - \gamma)NW$, and observes an exponential decay of the failure probability, and (ii) the single-shot regime, where one fixes a (small) failure probability, and maximises the extracted work finding $w = NW_{th}(\rho) + O(1/\sqrt{N})$ [5, 6, 18, 24, 39]. Other choices of γ lead to interesting interplays, such as (18), between the success probability and the extracted work. These different asymptotic scenarios are known as small, large, and moderate deviation regime in the context of information theory (see [41] and references therein).

Finally, let us briefly comment on the notion of work used here, based on a transition $0 \to w$ in the state of W [5, 18]. When transitions between more energy levels of W are considered, apparent violations of the second law can appear [20, 42, 43], which can be avoided by either accounting for the entropy increase in the state of W [20, 42] or by restricting to protocols that act on W in a translationally invariant manner [37]. In this sense, we note that (i) since $\tilde{P}(w) \to 1$ the entropy gain can be neglected in most cases, and that (ii) it is possible to adapt the protocols derived here to satisfy translational invariance in W without modifying $P(w)$ [44]. Another relevant question is the presence of quantum coherence in ρ. While the coherent part of $W_{th}(\rho)$ can not be extracted for U’s that commute with the total Hamiltonian, it can by considering global protocols on $\rho^\otimes N$ [45–47] – note that, since such protocols do not rely on B, they can also be applied to $W_{th}(\rho)$. This is yet another interesting effect of collective protocols.

Conclusions. We have shown that collective operations can extremely reduce work fluctuations, which can decrease exponential with N – the number of copies being processed. This is in contrast to the standard “thermodynamic limit”, where the relative size of fluctuations decays slowly as $1/\sqrt{N}$.

The exponential decay (7) of work fluctuations has been proven for generic systems both in the presence and absence of a thermal bath, providing a bound on the exponential decay for each case. This result contributes to our understanding of global effects in quantum thermodynamics, and in this sense we note that previous results have shown that global operations can extract more average work [31, 48–55] and in a faster manner [56–62].

A high level of control has been assumed to obtain these results and arguably one of the most interesting questions is
to which extent they can be observed experimentally. As recently proposed in Ref. [59], a promising candidate are architectures based upon the Dicke model [63], which allow for generating genuinely collective interactions. Another interesting proposal is the one of Ref. [64] based on Josephson junctions, that would allow for testing various properties of work extraction protocols, including collective effects. These proposals open the door for experimental observations of some of the results reported here in near-future experiments.

Acknowledgments. We thank Joseph M. Renes and Renato Renner for useful discussions, and Kamil Korzekwa for valuable comments on the manuscript. M.P.-L. acknowledges support from the Alexander von Humboldt Foundation. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958.

[1] C. Jarzynski, “Nonequilibrium work relations: foundations and applications,” The European Physical Journal B 64, 331–340 (2008).
[2] Massimiliano Esposito, Upendra Harbola, and Shaul Mukamel, “Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems,” Rev. Mod. Phys. 81, 1665–1702 (2009).
[3] Michele Campisi, Peter Hänggi, and Peter Talkner, “Colloquium: Quantum fluctuation relations: Foundations and applications,” Rev. Mod. Phys. 83, 771–791 (2011).
[4] Peter Hänggi and Peter Talkner, “The other qft,” Nature Physics 11, 108 (2017).
[5] Michal Horodecki and Jonathan Oppenheim, “Fundamental limitations for quantum and nanoscale thermodynamics,” Nature communications 4, 2059 (2013).
[6] Johan Åberg, “Truly work-like work extraction via a single-shot analysis,” Nature communications 4, 1925 (2013).
[7] Claude Elwood Shannon, “A mathematical theory of communication,” Bell System Technical Journal 27, 379423 (1948).
[8] Wassily Hoeffding, “Probability inequalities for sums of bounded random variables,” Journal of the American Statistical Association 58, 13–30 (1963).
[9] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen, “Maximal work extraction from finite quantum systems,” EPL (Europhysics Letters) 67, 565 (2004).
[10] W. Pusz and S. L. Woronowicz, “ Passive states and kms states for general quantum systems,” Communications in Mathematical Physics 58, 273–290 (1978).
[11] A. Lenard, “Thermodynamical proof of the gibbs formula for elementary quantum systems,” Journal of Statistical Physics 19, 575–586 (1978).
[12] Paul Skrzypczyk, Ralph Silva, and Nicolas Brunner, “Passivity, complete passivity, and virtual temperatures,” Phys. Rev. E 91, 052133 (2015).
[13] Martí Perarnau-Llobet, Karen V. Hovhannisyan, Marcus Huber, Paul Skrzypczyk, Jordi Tura, and Antonio Acín, “Most energetic passive states,” Phys. Rev. E 92, 042147 (2015).
[14] Carlo Sparaciari, David Jennings, and Jonathan Oppenheim, “Energetic instability of passive states in thermodynamics,” Nature communications 8, 1895 (2017).
[15] Emma McKay, Nayeli A. Rodríguez-Briones, and Eduardo Martín-Martínez, “Fluctuations of work cost in optimal gener- ation of correlations,” Phys. Rev. E 98, 032132 (2018).
[16] Nicolai Friis and Marcus Huber, “Precision and Work Fluctuations in Gaussian Battery Charging,” Quantum 2, 61 (2018).
[17] Oscar C O Dahlsten, Renato Renner, Elisabeth Rieper, and Vlatko Vedral, “Inadequacy of von neumann entropy for characterizing extractable work,” New Journal of Physics 13, 053019 (2011).
[18] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, “Resource theory of quantum states out of thermal equilibrium,” Phys. Rev. Lett. 111, 250404 (2013).
[19] Nicole Yunger Halpern, Andrew J P Garner, Oscar C O Dahlsten, and Vlatko Vedral, “Introducing one-shot work into fluctuation relations,” New Journal of Physics 17, 095003 (2015).
[20] Jochen Gemmer and Janet Anders, “From single-shot towards general work extraction in a quantum thermodynamic framework,” New Journal of Physics 17, 085006 (2015).
[21] Jonathan G Richens and Lluis Masanes, “Work extraction from quantum systems with bounded fluctuations in work,” Nature communications 7, 13151 (2016).
[22] Joseph M Renes, “Relative submajorization and its use in quantum resource theories,” Journal of Mathematical Physics 57, 122202 (2016).
[23] Remco van der Meer, Nelly Hui Ying Ng, and Stephanie Wehner, “Smoothed generalized free energies for thermodynamics,” Phys. Rev. A 96, 062135 (2017).
[24] Christopher T Chubb, Marco Tomamichel, and Kamil Korzekwa, “Beyond the thermodynamic limit: finite-size corrections to state interconversion rates,” arXiv preprint arXiv:1711.01193 (2017).
[25] Philippe Faist and Renato Renner, “Fundamental work cost of quantum processes,” Phys. Rev. X 8, 021011 (2018).
[26] Elisa Bäumer, Matteo Lostaglio, Martí Perarnau-Llobet, and Rui Sampaio, “Fluctuating work in coherent quantum systems: proposals and limitations,” arXiv preprint arXiv:1805.10096 (2018).
[27] (i), at this point, the separation between work and heat may be a bit ambiguous, since energy acquired by W might have fluctuations, and hence its entropy can increase. However, in our results these fluctuations turn out to be exponentially small.
[28] (i), other protocols that act locally on each copy of ρ^N have a similar scaling ($w \sim N$ and $\mu \sim N^{1/2}$) due to the law of large numbers.
[29] (i), it is interesting to note that the ergotropy also bounds the average extractable work in the presence of W, as given by the average energy change in W. For that, one needs an extra assumption on the unitaries allowed, namely they must commute with the translation operator on W [37]. In this case, the effective action of the operations on S corresponds to a mixture of unitary operations [65], from which no more work than the ergotropy can be extracted.
[30] Mark M Wilde, Quantum information theory (Cambridge University Press, 2013).
[31] Robert Alicki and Mark Fannes, “Entanglement boost for extractable work from ensembles of quantum batteries,” Phys. Rev. E 87, 042123 (2013).
[32] (i), in this case, temperature is a mathematical parameter, with no physical meaning associated to an external thermal reservoir.
[33] I Procaccia and RD Levine, “Potential work: A statistical-mechanical approach for systems in disequilibrium,” The Jour-
Appendix A: Lower and upper bounds on \tilde{P} for N qubit systems and without a bath

We start by describing in detail how to reach (6) in the main text, where the goal is to extract $w = k\nu$. Recall that, at global energy $E = j\nu (j = 0, \ldots)$,

- Initial state ($\rho_W = |0\rangle\langle 0|$). There are C_N^j, $j = 0, \ldots, N$ states with population $p^j (1 - p)^{N-j}$.
- Target state ($\rho_W = |w\rangle\langle w|$). There are C_N^{j-k}, $j = k, \ldots, N + k$ states with zero population.

We wish to move as much probability from the initial state to the target state. The success probability can be written as

$$\tilde{P}(k\nu) = \sum_{j=0}^{N} \min \left(C_N^j, C_N^{j-k} \right) p^j (1 - p)^{N-j}$$

for $k\nu = \mathcal{W}_{\text{qbit}}(1 - \gamma)$, with $\mathcal{W}_{\text{qbit}} \equiv (2p - 1)\nu$ so that $k = N(2p - 1)(1 - \gamma)$ with $\gamma \in (0, 1)$. We will use Hoeffding’s inequality [8], which in the particular case of a Binomial distribution with probability of success p and N runs, states that the probability $p(k)$ of obtaining $k \leq Np$ successes is bounded by $p(k) \leq \exp(-2(Np-k)^2/N)$. Here, this implies

$$\tilde{P}(k\nu) \geq 1 - \exp \left(-N\gamma^2 (p-1/2)^2 \right),$$

for $k\nu = \mathcal{W}_{\text{qbit}}(1 - \gamma)$, as desired.

Let us now investigate the case where $k\nu = \mathcal{W}(1 + \gamma)$, so that $k = N(2p - 1)(1 + \gamma)$. Note that here $\gamma = (0, 1 - p)/(2p - 1)$. The second term in (A1) can be easily bounded as

$$\sum_{j=\lceil (N+k)/2 \rceil}^{N} C_N^j p^j (1 - p)^{N-j} \leq \sum_{j=0}^{\lceil (N-k)/2 \rceil} C_N^j p^{N-j} (1 - p)^j$$

$$\leq \exp \left(-2N\gamma^2 (p-1/2)^2 \right)$$

We used again Hoeffding’s inequality [8]. On the other hand, the first term in (A1) can be upper bounded as

$$\sum_{j=k}^{\lceil (N+k)/2 \rceil} C_N^j p^j (1 - p)^{N-j} = \sum_{j=0}^{\lceil (N-k)/2 \rceil} C_N^j p^{j+k} (1 - p)^{N-j-k}$$

$$= \left(\frac{p}{1-p} \right)^k \sum_{j=0}^{\lceil (N-k)/2 \rceil} C_N^j p^j (1 - p)^{N-j}$$

$$\leq \left(\frac{p}{1-p} \right)^k e^{-ND(1 - \frac{1}{2p}(1+\gamma))} = e^{-Nf(p, \gamma)}$$

where we used well-known results on the tails of binomial distributions [66], and with

$$f(p, \gamma) = D \left(1 - p - (1 - \gamma(2p-1))/2 \right) + (2p - 1)(1 + \gamma) \ln((p)/(1 - p))$$

By plotting the function $f(p, \gamma)$ we find that $f(p, \gamma) > 0$ for $p \in (0.5, 1)$ and $\gamma = (0, 2(1-p)/(2p - 1))$. Furthermore, we can expand $f(p, \alpha)$ for small γ obtaining

$$f(p, \gamma) = \gamma^2 \frac{1-2p}{8p(1-p)^2} + O(\gamma^3).$$

Putting everything together, we obtain the desired result $\tilde{P}(\mathcal{W}_{+\gamma}) \leq O(e^{-\gamma^2 N})$.

Appendix B: Lower bounds on \tilde{P} for N qudits in thermally isolated systems

We consider that S to be made up of N identical qudit systems, with a Hamiltonian $H_S = \sum_{i=1}^{N} I^\otimes i-1 \otimes h_S \otimes I^\otimes N-i+1$ with $h_S = \sum_{i=1}^{d} \nu_i |i\rangle\langle i|$, and an initial diagonal state $\rho^{\otimes N}$ with $\rho = \sum_{i=1}^{d} p_i |i\rangle\langle i|$. The possible values of work are given by energy differences within S,

$$w_{kl} = \sum_{i} (n_i - m_i) \nu_i,$$

where $n_i, m_i \in [0, N]$, are natural numbers with $\sum_i n_i = \sum_i m_i = N$. We assume that the spectra H_W of the work repository W system is dense enough so that it can accept the values of work (B1). One may take it to be continuous, $H_W = \int dx \, x |x\rangle\langle x|$, but in principle this is not necessary. It is convenient to introduce the vector notation $k \equiv \{k_1, k_2, ..., k_d\}$,

$$p(k) = \prod_{i=1}^{d} p_{i}^{k_{i}},$$

and

$$C_N^k = \frac{N!}{\prod_{i=1}^{d} k_i!}$$

with $\sum_{i=1}^{d} k_i = N$.

The average extractable work from ρ (under unitary operations on S, but note also [29]) is bounded by its ergotropy [9],

$$W = \sum_{i=1}^{d} (p_i - p_i^{\perp}) \nu_i$$

where p_i^{\perp} are the probabilities p_i ordered in decreasing order, $p_{i+1}^{\perp} \leq p_{i}^{\perp}, \forall i$. We wish to extract deterministically an amount of work $w = (1 - \gamma)NW$ by acting globally on $\rho^{\otimes N}$ and W. For that we take the n_{i}, m_{i} in (B1) to satisfy

$$k_{i} \equiv n_{i} - m_{i}$$

with

$$k_{i} = \lfloor N(1 - \gamma)(p_i - p_i^{\perp}) \rfloor,$$

where the $\lfloor \rfloor$ is introduced to ensure that the n_{i} are natural numbers. In what follows we use that

$$k_{i} \approx N(1 - \gamma)(p_i - p_i^{\perp})$$

and assume (B7) for the sake of mathematical tractability (when we consider numerical simulations we use (B6)). It is important to recognize that there are many other choices of n that could lead to the desired $w = (1 - \gamma)NW$. For example, one can simply increase n_{1} while taking $n_{j} = 0$ with $j > 1$. The choice (B7) will however turn out to be crucial for the proof.

We now consider the calculation of $\tilde{P}(w)$. Proceeding as in the main text, we have that at a global energy $E = \sum_i n_i \nu_i$ of SW:

- Initial state ($\rho_{W} = |0\rangle\langle 0|$). There are C_N^n states with population $p(k)$ for each k.
- Target state ($\rho_{W} = |w\rangle\langle w|$). There are C_N^{N-n} states, all of them with zero population.

Then, since we can only move energies in degenerate levels, we obtain

$$\tilde{P}(w) = \sum_n \min \left(C_N^n, C_N^{N-n} \right) p(n).$$

In what follows, we find $\min \left(C_N^n, C_N^{N-n} \right)$ within the typical subspace of S (see, e.g. [30]). To define the typical subspace, let $|i_1, ..., i_N\rangle$ with $i_j \in \{0, 1, ..., d\}$ be an energy eigenstate of S, and $n_l = \sum_{j=1}^{N} \delta_{i_j,l}$ the number of l’s in $|i_1, ..., i_N\rangle$. The
(strong) δ-typical subspace T^δ_N is defined by eigenstates whose n_i^{typ} satisfy $|p_i - n_i^{\text{typ}}/N| \leq \delta \forall i$ (and assuming $p_i \neq 0$). For convenience, let us also make the formal choice
\begin{equation}
\delta = \gamma c \tag{B9}
\end{equation}
where c is still to be defined. Then, we can write a typical state as
\begin{equation}
n_i^{\text{typ}} = N(p_i + \gamma c_i) \tag{B10}
\end{equation}
with $\sum_i c_i = 0$ and $c_i \leq c$. Combining (B10) with (B7) we obtain
\begin{equation}
n_i^{\text{typ}} - k_i = N(p_i^\dagger + \gamma(c_i + p_i - p_i^\dagger)). \tag{B11}
\end{equation}
In order to find $\min(C_N^{\text{typ}}, C_N^{\text{typ} - k})$, we consider
\begin{equation}
\ln \frac{C_N^{\text{typ} - k}}{C_N^{\text{typ}}} = N \left(\frac{d}{d} \sum_{i=1} p_i + \gamma c_i \right) - \left(p_i^\dagger + \gamma(c_i + p_i - p_i^\dagger) \right) \ln[p_i^\dagger + \gamma(c_i + p_i - p_i^\dagger)]
\end{equation}
where we applied Stirling’s approximation $N! = \sqrt{2\pi N}N^N/e^N(1 + O(1/N))$. Expanding for small γ we further obtain
\begin{equation}
\ln \frac{C_N^{\text{typ} - k}}{C_N^{\text{typ}}} = N\gamma \left(S(\rho_{\text{pas}}||\rho) - \sum_{i=1} c_i \ln[p_i^\dagger/p_i] \right) + \gamma \frac{1}{2} \sum_{i=1} \left(\frac{c_i + p_i - p_i^\dagger}{p_i^\dagger} - \frac{c_i}{p_i} \right) + O(\gamma^2) + O\left(\frac{1}{N}\right) \tag{B13}
\end{equation}
where $\rho_{\text{pas}} = \sum_i p_i^\dagger |i\rangle \langle i|$, $S(\rho_{\text{pas}}||\rho)$ is the relative entropy, $S(\rho_{\text{pas}}||\rho) = \sum_{i=1}^d (p_i^\dagger - p_i) \ln p_i^\dagger$. Let us write the c_i as
\begin{equation}
c_i = c\alpha_i \tag{B14}
\end{equation}
with $\alpha_i \in [0, 1]$, $\sum_i \alpha_i = 0$, and c to be determined. Now, by noting that $S(\rho_{\text{pas}}||\rho) \geq 0$ and $\sum_i \left(\frac{p_i^\dagger - p_i}{p_i^\dagger} \right) \geq 0$, we can already anticipate that there is a sufficiently small positive c such that $\ln(C_N^{\text{typ} - k}/C_N^{\text{typ}}) \geq 0 \alpha_i$, and hence
\begin{equation}
\min(C_N^{\text{typ}}, C_N^{\text{typ} - k}) = C_N^{\text{typ}}. \tag{B15}
\end{equation}
We now want to find the maximum c that ensures that $\ln(C_N^{\text{typ} - k}/C_N^{\text{typ}}) \geq 0 \alpha_i$. This leads to
\begin{equation}
c \leq \frac{S(\rho_{\text{pas}}||\rho) + \frac{1}{2N} \left(\sum_{i=1} \frac{p_i^\dagger - p_i}{p_i^\dagger} \right) + O(\gamma) + O\left(\frac{1}{N^2}\right)}{\sum_{i=1} \alpha_i \left(\ln \frac{p_i^\dagger}{p_i} + \frac{1}{N} \left(\frac{1}{p_i} - 1 \right) \right)} \qquad \forall \alpha_i \text{ s.t. } \sum_i \alpha_i = 0 \tag{B15}
\end{equation}
In order to find a bound that is independent of the α_i's, we can maximise the denominator of (B15). For that, we can define the vector $h_i = p_i^\dagger/p_i$, $i = 1, \ldots, d$ and order it decreasingly h_i^\dagger with $h_i^\dagger \leq h_{i+1}^\dagger$. Then, we have that
\begin{equation}
\sum_{i=1}^d \alpha_i \left(\ln \frac{p_i^\dagger}{p_i} + \frac{1}{N} \left(\frac{1}{p_i} - 1 \right) \right)
= \sum_{i=1}^d \alpha_i \left(\ln \frac{h_i^\dagger}{h_i} + \frac{1}{N} \left(\frac{h_i^\dagger - 1}{h_i} \right) \right)
\leq \frac{d}{2} \ln h_{i+1}^\dagger + \frac{1}{N} \left(h_{i+1}^\dagger - 1 \right) - \sum_{i=|d/2|+1}^d \ln h_i^\dagger + \frac{1}{N^2} \left(h_i^\dagger - 1 \right) \tag{B16}
\end{equation}
Defining,
\begin{equation}
C \equiv \sum_{i=1}^{|d/2|} \left(\ln h_i^\dagger + \frac{1}{N} \left(h_i^\dagger - 1 \right) \right) - \sum_{i=|d/2|+1}^d \left(\ln h_i^\dagger + \frac{1}{N} \left(h_i^\dagger - 1 \right) \right) \tag{B17}
\end{equation}
we finally arrive at the choice for δ \(\text{(B9)} \)

\[
\delta = \gamma \frac{1}{C} \left(S(\rho_{\text{pas}}|\rho) + \frac{1}{2N} \left(\sum_{i=1}^{d} \frac{p_i - p_i^\text{th}}{p_i^\text{th}} \right) \right) + O \left(\frac{1}{N^2} \right) + O \left(\gamma^2 \right).
\]

Here we multiplied the term $O(1/N^2)$ by γ because for $\gamma = 0$ we have that $C_N^{\text{typ}} = C_N^\text{typ} - k$, and hence it must vanish. Note that the choice \(\text{(B18)} \) only depends on γ and on the initial state, defined by p^k.

Coming back to \(\text{(B8)} \), this result allows us to write,

\[
\tilde{P}(w) = \sum_n \min \left(C_n^\text{typ}, C_N^{-k} \right) p(n) \\
\geq \sum_{n \in \delta \text{-typ}} \min \left(C_n^\text{typ}, C_N^{-k} \right) p(n) \\
= \sum_{n \in \delta \text{-typ}} C_n^\text{typ} p(n).
\]

Hence, all that is left is to evaluate the population in the δ-typical subspace, i.e. the probability that $|n_i/N - p_i| \leq \delta$, $\forall i$. For that, we note that

\[
\tilde{P}(w) \geq P \left(\left\{ \frac{n_i}{N} - p_i < \delta \right\} \right) \\
= 1 - P \left(\bigcup_i \left| \frac{n_i}{N} - p_i \right| \geq \delta \right) \\
\geq 1 - \sum_{i=1}^{d} P \left(\left| \frac{n_i}{N} - p_i \right| \geq \delta \right) \\
\geq 1 - d e^{-2N\delta^2}
\]

where in the first inequality we used union bound of probability theory, and in the second inequality we used the Hoeffding’s inequality. Because δ is proportional to γ as in \(\text{(B18)} \), we obtain the desired decay in $N\gamma^2$ with corrections of order $N O(\gamma^3)$ and $1/N O(\gamma^2)$. Absorbing the factor 2 into c, we obtained the desired result from the main text.

Appendix C: Passivity, complete passivity, and work fluctuations.

In this section, we extend our previous results when \(\text{(B4)} \) is substituted by the global bound

\[
\mathcal{W}_{\text{erg}}^{(\text{glob})}(\rho) \equiv \lim_{N \to \infty} \frac{\mathcal{W}_{\text{erg}}(\rho^{\otimes N})}{N} = \text{Tr}(h(\rho - \omega_\beta(h))),
\]

where $\omega_\beta(h)$ is a thermal state, $\omega_\beta(h) \equiv e^{-\beta h}/\text{Tr}(e^{-\beta h})$, whose temperature is defined by $S(\rho) = S(\omega_\beta(h))$ with $S(\rho) = -\text{Tr}(\rho \ln \rho)$ the Von Neumann entropy. It is convenient to expand $\omega_\beta(h)$,

\[
\omega_\beta(h) = \sum_i p_i^{\text{th}} |i\rangle\langle i|
\]

In order to extend our previous considerations, the key idea is to chose the n_i in \(\text{(B5)} \) as

\[
k_i = \lfloor N(1 - \gamma)(p_i - p_i^{\text{th}}) \rfloor,
\]

and again we assume

\[
k_i \approx N(1 - \gamma)(p_i - p_i^{\text{th}}),
\]

for the sake of analytical tractability. Proceeding as in the previous section, one then obtains,

\[
\frac{1}{N} \ln \frac{C_N^{\text{typ} - k}}{C_N^{\text{typ}}} = \sum_{i=1}^{d} (p_i + \gamma c_i) \ln[p_i + \gamma c_i] - (p_i^{\text{th}} + \gamma (c_i + p_i - p_i^{\text{th}})) \ln[p_i^{\text{th}} + \gamma (c_i + p_i - p_i^{\text{th}})] + O \left(\frac{1}{N} \right)
\]

\[
\text{(C5)}
\]
where we now keep only highest orders in N. Expanding over γ as before,

$$
\frac{1}{N} \ln \frac{C_N^{\text{typ}} - k}{C_N^{\text{typ}}} = \gamma \left(S(\omega^\beta(h)||\rho) - \sum_{i=1}^{d} c_i \ln \frac{p_i^{\text{th.}}}{p_i} \right) + O(\gamma^2) + O\left(\frac{1}{N} \right)
$$

(C6)

where we used that $S(\rho) = S(\omega^\beta(h))$. At this point, the proof proceeds in complete analogy with the previous one, so one easily arrives at the final result

$$
c = \frac{\sqrt{2} S(\omega^\beta(h)||\rho)}{\sum_{i=1}^{[d/2]} \ln h_i^+ - \sum_{i=[d/2]+1}^{d} \ln h_i^+}
$$

(C7)

with $h_i = p_i^{\text{th.}}/p_i$, $i = 1, ..., d$.

Appendix D: Lower bounds on \tilde{P} in the presence of a bath

Let us start by making explaining H_B following [5]. Denote by e_B an energy of B and by $g(e_B)$ its degeneracy, and recall that B is assumed to be in a Gibbs state $\omega^\beta(H_B)$. Then, we assume that there exists a subset E of the whole spectrum $\{e_B\}$, in which $g_B(e_B)$ increases exponentially and satisfies $g_B(e_B - e_S) = g_B(e_S)e^{-\beta e_S}$, where e_S is any energy of S—see [5] for more details. For short-range interacting systems, the subset E contains $1 - \epsilon$ of the population of $\omega^\beta(H_B)$, with ϵ approaching 0 with the size of B [67]. Therefore, in what follows we assume that B is sufficiently large so that $\epsilon \approx 0$, and hence H_B is well described by the subset E.

Having defined B, we now proceed as in the last section and consider work extraction from $\rho^{\otimes N}$, with $\rho = \sum_{i=1}^{d} p_i |i\rangle \langle i|$ and $H_S = \sum_{i=1}^{d} \nu_i |i\rangle \langle i|$. The initial state of SBW being $\rho^{\otimes N} \otimes \omega^\beta(H_B) \otimes \langle 0|0\rangle$. Finding $\tilde{P}(w)$ essentially boils down to moving states in the degenerate energy levels of SBW. Let us fix a total energy E for SBW and note that (using the notation (B2) and (B3)),

- Initial state. Given W at $|0\rangle$, $e_S = \sum_i \nu_i$ and $e_B = E - \sum_i \nu_i$, there are $g(E)e^{-\beta \sum_i \nu_i} C_N^k$ states at total energy E, each with probability $Z^{-1}e^{-\beta E}e^{\beta \sum_i \nu_i} p(n)$ and $\forall n$.
- Target state. Given W at $|w\rangle$, $e_S = \sum_i \nu_i$ and $e_B = E - \sum_i \nu_i - w$, there are $g(E)e^{-\beta \omega e^{-\beta \sum_i \nu_i}} C_N^w$ states at total energy E (each of them initially with 0 probability), and $\forall n$.

We now wish to move the probabilities of the initial to the target state, which has $e^{-\beta \omega}$ less states, in each degenerate energy level E. Since the scenario is identical for each global energy, we can focus on a particular E with a degeneracy $g(E) = g$, which we take to be a very large number. By normalising the probabilities within this subspace, we can reformulate the setting as: In a subspace of SBW with fixed global energy, the initial state of SBW has normalised populations of the form

$$
p_{\text{ini}}(n) = g^{-1} e^{\beta \sum_i \nu_i} p(n)
$$

(D1)

with degeneracies

$$
g_{\text{ini}}(n) = ge^{\beta \sum_i \nu_i} C_N^n,
$$

(D2)

with $C_N^n = N! / \prod_i n_i!$ and $n_i = 0, ..., N$ with $\sum_i n_i = N$. On the other hand, in the target state, where W is at ω, has degeneracies

$$
g_{\text{tar}}(n) = ge^{\beta (\omega + \sum_i \nu_i)} C_N^n.
$$

(D3)

The total number of states in the target state is then given by

$$
N_{\text{tar}} = ge^{\beta \omega} \sum_n e^{\beta \sum_i \nu_i} C_N^n = ge^{\beta \omega} \left(\sum_i e^{-\beta \nu_i} \right)^N = ge^{\beta \left(\omega + N P(\omega^\beta(H_B)) \right)}.
$$

(D4)

To find $\tilde{P}(w)$, in principle one has to move the N_{tar} biggest populations of the initial state to the target state. This leads to a set of inequalities that are directly related to the concept of thermomajorisation [5]. In order to obtain a simple and analytic result, here we will instead move the typical subspace of S, hence finding a lower bound on $\tilde{P}(w)$. Recall that the (strong) δ-typical subspace T^δ_S is defined by eigenstates that satisfy $n_l \in N[p - \delta, p + \delta]$, $\forall l$ with $\delta > 0$ where $n_l = \sum_{j=1}^N \delta_{j,l}$ is the number of l's
in the state $|i_1, \ldots, i_N\rangle$. The number of states in T^β_3 can be upper bounded by $e^{N(S(\rho)+C\delta)}$ with $C = -\sum_i \ln p_i$ for $p_i \in (0,1)$ [30]. This allows us to upper bound the number of typical states of SBW at global energy E in the initial state,

$$N^{(\delta)}_{\text{typ.ini.}} = \sum_{\mathbf{n} \in \text{typ}} g_{\text{ini}}(\mathbf{n}) \leq g e^{-\beta N \sum_i \nu_i (p_i - \delta)} \sum_{\mathbf{n} \in \text{typ}} C_N^\mathbf{n} \leq g e^{-\beta N \sum_i \nu_i (p_i - \delta) + N(S(\rho)+C\delta)}$$

$$= g e^{-\beta N F(\rho) + \delta N (\beta \sum_i \nu_i - \sum_i \ln p_i)}.$$

(D5)

The goal now is to find the largest δ that guarantees $N_{\text{tar}} \geq N^{(\delta)}_{\text{typ.ini.}}$, so that we can move the whole population of the typical space to the target space. This easily leads to

$$\delta = \frac{\beta \gamma \Delta F}{\beta \sum_i \nu_i - \sum_i \ln p_i}.$$

(D6)

Putting everything together, and proceeding exactly as in (B20), we obtain

$$\tilde{P}(w) \geq 1 - d \exp \left(-N \gamma^2 \left(\frac{\sqrt{2} \beta W_{\text{th}}(\rho)}{\beta \sum_i \nu_i - \sum_i \ln p_i} \right)^2 \right)$$

with $w = N W_{\text{th}}(\rho)(1 - \gamma)$, and where we used that $W_{\text{th}}(\rho) = F(\rho) - F(\omega_\beta(h))$. This shows the desired exponential decay with $N \gamma^2$, which is multiplied by a function that depends on β and on S through H_S and ρ_S.

Appendix E: Numerical computation of $\tilde{P}(w)$

Here we discuss how to compute $\tilde{P}(w)$ exactly by numerical means. First of all, in the case of thermally isolated systems, because of the high degeneracies, we can describe the state effectively with a vector of dimension $\approx N$. Then, we can compute $\tilde{P}(w)$ by computing exactly (A1).

The exact numerical calculation of $\tilde{P}(w)$ when the thermal bath is present is more involved. Essentially, to compute $\tilde{P}(w)$ we want to move as much probability as possible from the initial state to the target state at each energy level E (See Section D). As explained in Sec. D, we recall that it is enough to focus on a single energy level E. In particular, we need to move the N_{tar} (given in (D4)) biggest populations of the initial state to the target state. We do so numerically for the case of qubits with population p. The populations of the initial state can be written as

$$p_{\text{ini}}(k) = g^{-1} e^{\beta \nu k} p^k (1-p)^{N-k} = g^{-1} e^{k(\beta \nu + \ln p - \ln(1-p)) + n \ln(1-p)}$$

(E1)

with degeneracy

$$g_{\text{ini}}(k) = g e^{-\beta \nu k} C_N^k.$$

(E2)

From (E1), we see that the probability decreases/increases monotonically with k if $\beta \nu + \ln p - \ln(1-p)$ is negative/positive. Hence, we can construct a simple algorithm as follows:

1. Choose a large number for g (in Fig. 4 we take $g = 2^{10^4}$), which approximately sets the dimension of B. If g is large enough, the results become independent of it.
2. Check if $\beta \nu + \ln p - \ln(1-p)$ is negative/positive.
3. If it is negative:
 - for $k = 0$, fill $g_{\text{ini}}(0)$ states of the target state with probability $p_{\text{ini}}(0)$, Increase k by 1.
 - for $k = 1$, fill $g_{\text{ini}}(1)$ states of the target state with probability $p_{\text{ini}}(1)$, Increase k by 1.
 - Idem for larger k’s until all states of the target state are filled, i.e., one reaches N_{tar} given in (D4).
4. If it is positive:
 - for $k = k$, fill $g_{\text{ini}}(k)$ states of the target state with probability $p_{\text{ini}}(N)$. Decrease k by 1.
 - for $k = N - 1$, fill $d_{\text{ini}}(N - 1)$ states of the target state with probability $p_{\text{ini}}(N - 1)$. Decrease k by 1.
 - Idem for smaller k’s until all states of the target state are filled.

This protocol ensures that as much probability as possible has been transferred to the target state. Results for $p = 0.8$ are shown in Fig. (4).
FIG. 4. Deterministic work extraction in the presence of a bath. $\tilde{P}(\omega_\gamma)$ as a function of γ, with $\omega_\gamma = (1 + \gamma) N W_{th}(\rho)$ and where $W_{th}(\rho)$ is given in (16). Parameters: $p = 0.8$, $\beta = 1$, $\nu = 1$, $g = 2^{10^4}$.