Solid-state NMR provides evidence for small-amplitude slow domain motions in a multi-spanning transmembrane α-helical protein

Daryl Good1,2, Charlie Pham,1 Jacob Jagas,1 Józef R. Lewandowski,3 and Vladimir Ladizhansky1,2,*

1Department of Physics and 2Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario N1G 2W1 Canada

3Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

Supporting Information
1. Materials and Methods

![Figure S1](image)

Figure S1. Dipolar recoupling and 15N relaxation measurement pulse sequences used in this study. Hollow and filled bars represent 90° and 180° pulses, respectively. (A1) 15N detected and (A2) 13Cα detected TMREV recoupling was used to probe 15N-1H dipolar couplings. TMREV pulse train was applied for increasing duration during a constant-time interval of length 12t_r (m=6). Four MREV12,3 blocks were applied per rotor period t_r (n=4), with the overall phase of each block incremented by 90° (TMREV-4). TPPM decoupling was used for the remainder of the 12t_r period. Phase tables were as follows: $f_1=y-x, f_2=x, f_3=x, f_4=x x y y -x -x -y -y, f_{rec}=x x x y x y y y -x y -y -y$. (B) For 15N R$_1$ measurements 2D NCA and afterglow NCO spectra were acquired as a function of recovery time τ of 1s, 5s, 10s, 20s and 30s. The following phases were used: $f_1=x x x x -x, f_2=x x x x -x -x x -x -x, f_3=x x x x x x x x x x, f_4=x x x x x, f_5=8(x) 8(-x), f_6=8(x) 8(-x), f_7=x, f_8=-x, f_{rec}=x x x x -x x x x -x x x x x x x x x x$. (C) For R$_{1p}$ measurements 2D NACAB correlation spectra were recorded as a function of a spinlock time τ. The phases were as follows: $f_1=y -y, f_2=x, f_3=x, f_4=x x y y -x -y -y -y, f_{rec}=x x y y -y -x -y y y$. The phase of all other pulses including the spinlock pulse was x.
Figure S2. A comparison of 15N spectra of ASR collected on a 600 MHz spectrometer at a spinning rate of 8 kHz, and at 7 °C and 30 °C. Spinning sideband intensities remain unchanged and match the theoretical simulation of a typical 15N chemical shift anisotropy (CSA) tensor, overall indicating that the protein does not undergo rotational diffusion. Simulation was performed using the program SIMPSON6 with the CSA parameters of $\delta_{\text{CSA}} = -109$ ppm, $\eta = 0.2.$

Figure S3. Amino acid sequence and the topological model of ASR. Helices are shown as rectangles and are labelled A through G. Assigned residues at 7 °C are shown as blue and green circles; assigned residues at 30 °C are shown as green circles. The cytoplasmic side is on top.
2. Chemical shift perturbations and cross peak intensities at 30 °C.

Figure S4. (A) A comparison of cross peak intensities in the CANCO experiments recorded at 7 °C and 30 °C. (B) Chemical Shift Index $\delta_{C\alpha} - \delta_{C\beta}$ at 30 °C. (C) 15N amide and (D) 13Cα chemical shift difference between 30 °C and 7 °C.
Figure S5. Bulk R_{1p} measurements at a spinning frequency of 14.3 kHz, at 7 °C and 30 °C for (A) 1H, (B) 13C and (C) 15N.

3. Estimation of the residual coherent contributions to the 15N R_{1p} relaxation rates at fast MAS rates.

Figure S6. Experimental 15N R_{1p} trajectories measured in N-acetyl-[U-13C, 15N-labeled]-Val-Leu peptide at a spinning frequency of 50 kHz and at the magnetic field strength of 800 MHz.

R_{1p} relaxation rates measured in fully protonated samples may include coherent contributions from anisotropic interactions which are incompletely averaged by the fast (50-55
kHz) magic angle spinning. To estimate an order of magnitude of the residual coherent effects, we measured 15N $R_{1\rho}$ relaxation rates in a model dipeptide N-Ac-[13C, 15N-labeled]-Val-Leu (NAVL), under typical experimental conditions which were used to measure relaxation rates in ASR at 7 °C ($\omega_r/2\pi=50$ kHz, 15N lock RF field $\omega_1/2\pi=12$ kHz). Previous multiple solid-state NMR measurements (e.g., internuclear distance measurements) on NAVL indicate rigid peptide in which intermediate time scale motions are largely suppressed. Rotations of the methyl groups likely present in the peptide at the experimental temperatures are expected to occur on a fast time scale and would have minimal contributions to the transverse relaxation. Thus, we expect that $R_{1\rho}$ rates to be governed by the residual anisotropic interactions. $R_{1\rho}$ rates in NAVL were determined to be $\sim 0.23\pm 0.09$ s$^{-1}$ and 0.42 ± 0.13 s$^{-1}$ (Figure S6) for valine and leucine, respectively, with both values being less than the lowest $R_{1\rho}$ rate of 0.60 s$^{-1}$ measured in ASR for protonated amide nitrogen atoms.

4. Bulk order parameter measurements at 30 °C.

As explained in the main text, ASR samples were found to be unstable at 30 °C on the time scale of a full 3D DIPSHIFT experiment. To probe the amplitudes of motions, we performed the bulk order parameter measurements using 15N- and 13C-detected DIPSHIFT experiments with TMREV-4 recoupling (Figures S1A1, A2). 15N and 1D NCA spectra are shown in Figure S7A, C, and representative dipolar dephasing curves are in Figure S7B, D. The observed small changes in the extracted dipolar order parameters are comparable to the small change in the order parameter of 15N-labeled crystalline sample of N-Ac-Valine (Table S1). Thus, small differences in the dipolar coupling at 7 °C and 30 °C are representative of the systematic effects from the equipment rather than from changes in the amplitudes of motions in ASR.
Figure S7. TMREV-4 measurements of the 1H-15N bulk order parameter in the 1,3-ASR sample at 7 °C and 30 °C. (A) 1D NCA spectrum with some amino acid type-specific assignments indicated in the figure. (B) Representative TMREV 1H-15N dipolar dephasing from the bulk peak in the 13C detected spectrum at 7 °C and 30 °C. (C) Nitrogen spectrum with amino acid assignment assignments. (D) Representative nitrogen-detected TMREV 1H-15N dipolar dephasing curves of the Thr/Ser/Gly peak at 7 °C and 30 °C.

Table S1. Order parameters measured from TMREV experiments at 7 °C and 30 °C

Sample	Peak labeling	S_{NH}^2 at 7 °C	S_{NH}^2 at 30 °C	
1,3-ASR	13C-detected (Fig. S6C)	Bulk no prolines	0.843±0.007	0.788±0.009
		Thr	0.830±0.040	0.890±0.060
		Thr/Ser/Gly	0.823±0.021	0.779±0.025
NAV			0.883±0.015	0.869±0.019
5. Site-specific relaxation rates and order parameter measurements

Figure S8. (A-B) Representative NCA spectra collected on a 1,3-ASR sample and at 30 °C. (A) represents a starting point of the R_1 relaxation trajectory (0 s delay); (B) corresponds to the 30 s delay. (C-D) NCACB spectra collected at 30 °C, and representing two points of the $R_{1\rho}$ relaxation trajectories with the delay times of 0s (C) and 300ms (D). Negative peaks resulting from the double-quantum DREAM mixing are shown in red.

Table S2. Relaxation rates and order parameters measured at 7 °C and 30 °C

Residue	R_1 @7°C, 600MHz (s$^{-1}$)	R_1 @7°C, 800MHz (s$^{-1}$)	$R_{1\rho}$ @7°C, 800MHz (s$^{-1}$)	$S_{\rho H}$ @7°C, 600MHz (s$^{-1}$)	R_1 @30°C, 800MHz (s$^{-1}$)	$R_{1\rho}$ @30°C, 800MHz (s$^{-1}$)
L7	0.0170 ± 0.0008	0.0175 ± 0.0010	3.8 ± 0.6	0.880 ± 0.013	0.0155 ± 0.0011	4.3 ± 0.6
W9					5.0 ± 1.6	
I10						1.7 ± 0.8
V12				0.925 ± 0.033	0.0019 ± 0.0019	1.4 ± 0.4
A13	0.0250 ± 0.0100	0.0105 ± 0.0013	2.0 ± 0.9	0.908 ± 0.021	0.0030 ± 0.0016	2.3 ± 0.5
G14	0.0101 ± 0.0019	0.0040 ± 0.0030		0.803 ± 0.016	0.0060 ± 0.0030	
M15			0.5 ± 0.7	0.870 ± 0.022	0.0125 ± 0.0019	1.9 ± 0.7
---	---	---	---	---		
G18	0.0050 ± 0.0014	0.0040 ± 0.0040	2.4 ± 1.0	0.837 ± 0.029		
A19	0.0120 ± 0.0006	0.0110 ± 0.0010	0.859 ± 0.019	0.0065 ± 0.0019		
L20	0.0195 ± 0.0017	0.0100 ± 0.0020	0.867 ± 0.013	0.0105 ± 0.0010		
F22	0.0130 ± 0.0020	0.869 ± 0.026	0.0270 ± 0.010			
S24	0.0185 ± 0.0016	0.0275 ± 0.0020	0.0250 ± 0.003			
L25	0.0400 ± 0.0070	0.0410 ± 0.0070	0.0275 ± 0.0019			
N28	0.0190 ± 0.0040	0.0450 ± 0.0110	0.0580 ± 0.011			
P29	0.0200 ± 0.0040	0.0220 ± 0.0020	0.0200 ± 0.004			
V32	0.0200 ± 0.0040	0.0370 ± 0.0090	0.0280 ± 0.007			
P33	0.0460 ± 0.0050	0.0340 ± 0.0050	11.0 ± 2.0	0.774 ± 0.037		
E36	0.0120 ± 0.0020	0.0100 ± 0.0050	0.0420 ± 0.004			
M41	0.0006 ± 0.0009	0.0012 ± 0.0018	0.0030 ± 0.004			
I43	0.0060 ± 0.0009	0.0055 ± 0.0011	0.0008 ± 0.0012			
S47	0.0060 ± 0.0012	0.0030 ± 0.0020	1.1 ± 0.4			
G48	0.0070 ± 0.0013	0.869 ± 0.015	1.1 ± 0.5			
A50	0.0065 ± 0.0008	0.0060 ± 0.0010	0.0006 ± 0.0009			
Y51	0.0065 ± 0.0019	0.0050 ± 0.0020	0.799 ± 0.011			
M52	0.19 ± 0.5	0.878 ± 0.026	0.0065 ± 0.0018			
A53	0.0110 ± 0.0020	0.0150 ± 0.0020	1.2 ± 0.6			
M54	0.0150 ± 0.0012	0.0135 ± 0.0016	3.0 ± 0.7			
A55	0.0170 ± 0.0030	0.0060 ± 0.0040	0.0007 ± 0.0020			
I56	0.0220 ± 0.0020	0.0250 ± 0.0030	0.0180 ± 0.0070			
G59	0.0320 ± 0.0050	0.0140 ± 0.0090	5.4 ± 1.9			
K60	0.0320 ± 0.0040	0.0660 ± 0.0050	19.0 ± 14.0			
E62	0.0370 ± 0.0030	0.0510 ± 0.0090	1.0 ± 0.7			
A63	0.0890 ± 0.0070	0.0670 ± 0.0070	0.806 ± 0.02			
A64	0.0610 ± 0.0060	0.0430 ± 0.0060	0.0740 ± 0.0320			
H69	0.0650 ± 0.0040	0.0660 ± 0.0050	16.0 ± 4.0			
H71	0.0890 ± 0.0070	0.0762 ± 0.0028	0.0420 ± 0.0100			
A71	0.0330 ± 0.0040	0.0270 ± 0.0070	9.0 ± 3.0			
G65	0.0330 ± 0.0030	0.0510 ± 0.0090	0.0850 ± 0.0260			
Q66	0.0200 ± 0.0060	0.0860 ± 0.027	0.0630 ± 0.0120			
I67	0.0330 ± 0.0030	0.0290 ± 0.0030	0.0740 ± 0.0320			
A68	0.0070 ± 0.0020	0.0100 ± 0.0040	6.1 ± 1.6			
H69	0.0110 ± 0.0012	0.0100 ± 0.0015	0.878 ± 0.03			
A71	0.0061 ± 0.0018	0.0050 ± 0.0020	0.0340 ± 0.0080			
R72	0.0075 ± 0.0011	0.0045 ± 0.0014	7.0 ± 2.0			
Y73	0.0180 ± 0.0015	0.0105 ± 0.0017	0.817 ± 0.045			
D75	0.0070 ± 0.0030	0.091 ± 0.0032	0.0110 ± 0.0050			
W76	0.0200 ± 0.0040	0.0931 ± 0.0033	1.0 ± 0.4			
M77	0.0030 ± 0.0015	0.0095 ± 0.0016	0.914 ± 0.0018			
V78	0.0040 ± 0.0016	0.0070 ± 0.0030	0.9 ± 0.5			
T79	0.0070 ± 0.0030	1.7 ± 0.5	0.821 ± 0.014			
T80	0.0065 ± 0.0013	0.0010 ± 0.0020	0.9 ± 0.5			
P81	0.0009 ± 0.0013	0.0010 ± 0.0020	0.0008 ± 0.0011			
	0.3 ± 0.5	0.046 ± 0.014	1.3 ± 0.4			
	0.0070 ± 0.0020	0.941 ± 0.041	0.8 ± 0.4			
	0.0009 ± 0.0013	0.0065 ± 0.0020	0.5 ± 0.6			
---	---	---	---	---	---	
L82	0.0080 ± 0.0007	0.0050 ± 0.0010	0.912 ± 0.015	0.0075 ± 0.0009	2.0 ± 0.4	
L84	0.0115 ± 0.0011	0.0120 ± 0.0050	0.0050 ± 0.0010	1.1 ± 0.7		
L85	0.0050 ± 0.0008	0.0190 ± 0.0030	0.0050 ± 0.0010	0.9 ± 0.4		
S86	0.0050 ± 0.0008	0.0050 ± 0.0010	0.0050 ± 0.0010	0.9 ± 0.4		
S88	0.912 ± 0.015	0.0075 ± 0.0009	0.0075 ± 0.0009	2.7 ± 0.6		
T90	0.0120 ± 0.0050	0.0120 ± 0.0050	0.0120 ± 0.0050	3.2 ± 1.0		
A91	3.1 ± 1.1	0.9 ± 0.4	0.9 ± 0.4	3.6 ± 1.2		
M92	0.0190 ± 0.0030	0.0190 ± 0.0030	0.0190 ± 0.0030	3.1 ± 0.8		
F94	0.0050 ± 0.0008	0.0050 ± 0.0008	0.0050 ± 0.0008	1.4 ± 0.6		
I95	0.0160 ± 0.0020	0.0160 ± 0.0020	0.0160 ± 0.0020	3.7 ± 1.1		
K96	0.0360 ± 0.0100	0.0360 ± 0.0100	0.0360 ± 0.0100	4.3 ± 1.1		
T100	0.0230 ± 0.0060	0.0070 ± 0.0070	0.0070 ± 0.0070	7.0 ± 2.0		
I102	0.0125 ± 0.0017	0.0090 ± 0.0030	0.0090 ± 0.0030	0.8 ± 0.7		
G103	2.1 ± 0.9	0.9 ± 0.4	0.9 ± 0.4	3.6 ± 1.2		
F104	0.0120 ± 0.0080	0.0120 ± 0.0080	0.0120 ± 0.0080	1.8 ± 0.9		
S107	0.0080 ± 0.0017	0.0022 ± 0.0019	0.0022 ± 0.0019	0.9 ± 0.4		
T108	1.3 ± 0.5	0.885 ± 0.015	0.885 ± 0.015	3.2 ± 1.0		
Q109	0.878 ± 0.021	0.0140 ± 0.0020	0.0140 ± 0.0020	0.9 ± 0.4		
I110	0.0070 ± 0.0013	0.060 ± 0.0030	0.060 ± 0.0030	0.9 ± 0.4		
V111	0.0050 ± 0.0007	0.085 ± 0.0018	0.085 ± 0.0018	0.9 ± 0.4		
V112	0.0050 ± 0.0007	0.0060 ± 0.0016	0.0060 ± 0.0016	0.9 ± 0.4		
T114	0.0070 ± 0.0018	1.7 ± 0.8	1.7 ± 0.8	0.9 ± 0.4		
S115	0.0080 ± 0.0007	0.0095 ± 0.0010	0.0095 ± 0.0010	0.9 ± 0.4		
G116	0.865 ± 0.013	0.865 ± 0.013	0.865 ± 0.013	0.9 ± 0.4		
L117	0.0080 ± 0.0007	0.0095 ± 0.0010	0.0095 ± 0.0010	0.9 ± 0.4		
I118	0.0180 ± 0.0007	1.9 ± 0.5	1.9 ± 0.5	0.9 ± 0.4		
A119	0.0070 ± 0.0030	0.0130 ± 0.0030	0.0130 ± 0.0030	0.9 ± 0.4		
D120	0.0070 ± 0.0007	0.0130 ± 0.0030	0.0130 ± 0.0030	0.9 ± 0.4		
L121	0.891 ± 0.030	0.891 ± 0.030	0.891 ± 0.030	0.9 ± 0.4		
S122	0.0080 ± 0.0007	0.0095 ± 0.0010	0.0095 ± 0.0010	0.9 ± 0.4		
E123	0.0080 ± 0.0007	0.0130 ± 0.0030	0.0130 ± 0.0030	0.9 ± 0.4		
R124	0.0080 ± 0.0007	0.0130 ± 0.0030	0.0130 ± 0.0030	0.9 ± 0.4		
D125	0.0080 ± 0.0007	0.0130 ± 0.0030	0.0130 ± 0.0030	0.9 ± 0.4		
W126	0.0210 ± 0.0030	0.891 ± 0.059	0.891 ± 0.059	0.9 ± 0.4		
L130	0.0250 ± 0.0020	0.0310 ± 0.0060	0.0310 ± 0.0060	0.9 ± 0.4		
W131	0.0100 ± 0.0014	0.0110 ± 0.0020	0.0110 ± 0.0020	0.9 ± 0.4		
Y132	0.835 ± 0.031	0.0230 ± 0.0050	0.0230 ± 0.0050	0.9 ± 0.4		
C134	0.843 ± 0.018	0.0106 ± 0.0012	0.0106 ± 0.0012	0.9 ± 0.4		
G135	0.878 ± 0.017	2.2 ± 0.6	2.2 ± 0.6	0.9 ± 0.4		
V136	0.895 ± 0.021	5.2 ± 1.0	5.2 ± 1.0	0.9 ± 0.4		
C137	0.814 ± 0.016	3.6 ± 0.9	3.6 ± 0.9	0.9 ± 0.4		
A138	0.8 ± 0.6	6.2 ± 1.8	6.2 ± 1.8	0.9 ± 0.4		
I142	0.814 ± 0.016	3.6 ± 0.9	3.6 ± 0.9	0.9 ± 0.4		
---	---	---				
W144	0.0080 ± 0.0030	0.050 ± 0.0050	0.0075 ± 0.0016			
G145	0.0100 ± 0.0017	0.030 ± 0.0030	0.0260 ± 0.0100			
I146	0.0210 ± 0.0020	0.0280 ± 0.0040	0.0120 ± 0.0030			
N148	0.0020 ± 0.0020	0.0120 ± 0.0040	0.0200 ± 0.0050			
P149	0.0150 ± 0.0050	0.0070 ± 0.0010	0.0080 ± 0.0030			
K153	0.0640 ± 0.0004	0.0190 ± 0.0080	0.0033 ± 0.0009			
S158	0.0390 ± 0.0020	0.0320 ± 0.0030	0.0470 ± 0.0080			
S159	0.0120 ± 0.0030	0.0340 ± 0.0050	0.0120 ± 0.0040			
L161	0.0080 ± 0.0017	0.0070 ± 0.0030	0.0240 ± 0.0050			
K167	0.0120 ± 0.0020	0.0120 ± 0.0040	0.0200 ± 0.0110			
L168	0.0125 ± 0.0007	0.0115 ± 0.0009	0.0070 ± 0.0030			
V169	0.0090 ± 0.0020	0.0120 ± 0.0040	3.5 ± 1.5			
T170	0.0120 ± 0.0020	0.0050 ± 0.0020	0.0260 ± 0.0100			
Y171	0.0020 ± 0.0020	0.0070 ± 0.0040	0.0033 ± 0.0009			
F172	0.0100 ± 0.0030	0.040 ± 0.0030	0.0120 ± 0.0030			
I173	0.0080 ± 0.0020	0.0070 ± 0.0040	0.0030 ± 0.0040			
I177	0.0099 ± 0.0016	0.0120 ± 0.0040	0.0120 ± 0.0030			
G178	0.0120 ± 0.0020	0.0100 ± 0.0020	0.0030 ± 0.0040			
Y179	0.0120 ± 0.0020	0.0120 ± 0.0040	0.0050 ± 0.0040			
P180	0.0088 ± 0.0012	0.0200 ± 0.0040	3.5 ± 1.5			
I181	0.0090 ± 0.0011	0.0110 ± 0.0030	0.0260 ± 0.0100			
V182	0.0120 ± 0.0020	0.0050 ± 0.0020	1.6 ± 1.0			
I184	0.0080 ± 0.0020	0.0070 ± 0.0040	0.0030 ± 0.0040			
I185	0.0099 ± 0.0016	0.0120 ± 0.0040	0.0030 ± 0.0040			
G186	0.0190 ± 0.0060	0.0170 ± 0.0080	0.0060 ± 0.0030			
G187	0.0090 ± 0.0020	0.0120 ± 0.0040	0.0120 ± 0.0030			
P188	0.0088 ± 0.0012	0.0200 ± 0.0040	3.5 ± 1.5			
I189	0.0020 ± 0.0030	0.0160 ± 0.0050	0.0120 ± 0.0030			
G190	0.0120 ± 0.0020	0.0120 ± 0.0040	0.0120 ± 0.0030			
F190	0.0090 ± 0.0020	0.0120 ± 0.0040	0.0120 ± 0.0030			
G191	0.0080 ± 0.0020	0.0120 ± 0.0040	0.0120 ± 0.0030			
I193	0.0360 ± 0.0060	0.0370 ± 0.0080	0.0350 ± 0.0070			
N194	0.0560 ± 0.0080	0.0310 ± 0.0090	0.0420 ± 0.0070			
Q195	0.0040 ± 0.0060	0.0120 ± 0.0050	0.0180 ± 0.0040			
D198	0.0175 ± 0.0012	0.0140 ± 0.0016	0.0160 ± 0.0030			
F202	0.0190 ± 0.0040	0.0160 ± 0.0050	0.0210 ± 0.0050			
L204	0.0160 ± 0.0008	0.0160 ± 0.0011	0.0135 ± 0.0007			
L205	0.0110 ± 0.0011	0.0100 ± 0.0016	0.0120 ± 0.0010			
P206	0.0060 ± 0.0040	0.0230 ± 0.0120	0.0030 ± 0.0030			
F207	0.0030 ± 0.0009	0.0080 ± 0.0009	0.0030 ± 0.0030			
Figure S9. Backbone 15N R_1 (A) and R_{1p} (B) relaxation rates measured on a 800 MHz spectrometer at 7 °C (red squares) and 30 °C (black circles). This is the same as Figure 4 except only residues in the center and extracellular sides are shown. Relaxation rates of residues in the interhelical loops and on the cytoplasmic sides of TM helices (shown in grey) have been removed from clarity. Figure 4 represents the full version of this figure.

Table S3. Average R_1 relaxation rates for non-proline residues of helices and loops at fields of 600 MHz and 800 MHz and temperatures of 7 °C and 30 °C.

	R_1 @7°C, 600 MHz (s$^{-1}$)	R_1 @7°C, 800 MHz (s$^{-1}$)	R_1 @30°C, 800 MHz (s$^{-1}$)
Helix A	0.015±0.002	0.012±0.001	0.014±0.001
Loop AB	0.040±0.007	0.031±0.004	0.058±0.001
Helix B	0.014±0.001	0.011±0.001	0.012±0.001
Loop BC	0.039±0.001	0.034±0.002	0.045±0.004
Helix C	0.009±0.001	0.008±0.001	0.007±0.001
Table S4. Average R_{1p} relaxation rates for non-proline residues in the seven helices and loops at 800 MHz magnetic field and temperatures of 7 °C and 30 °C.

Region	R_{1p} @7°C, (s$^{-1}$)	R_{1p} @30°C, (s$^{-1}$)
Helix A	2.2±0.4	2.8±0.4
Loop AB	N/A*	N/A*
Helix B	4.1±0.5	2.0±0.3
Loop BC	13.6±1.3	9.0±3.0
Helix C	1.5±0.2	1.45±0.15
Loop CD	2.0±0.7	3.6±1.2**
Helix D	2.5±0.3	2.9±0.4
Loop DE	5.2±1.0**	4.2±1.1**
Helix E	4.1±0.8	3.7±0.5
Loop EF	10.0±3.0**	9.0±2.0**
Helix F	2.6±0.5	2.6±0.4
Loop FG	16.0±4.0	4.4±0.9
Helix G	7.0±1.5	2.6±0.5

Notes: *No residues detected in this region. **Single residue detected in this region.
6. Simple Model Free Fit

For residues with at least 5 out of 6 experimentally measured 1H dipolar S_{NNH}^2, R_1 at 600MHz and 7 °C, R_1 at 800MHz and 7 °C, R_1 at 800MHz and 30 °C, and R_{1p} at 800 MHz and 30°C the best fit single motional order parameter S_{eff}^2, timescale $\tau_{c,eff}$ and activation energy E_a were determined by minimizing the following χ^2 equation.

$$\chi^2 = \left(\frac{s_{NNH,exp} - s_{eff}^2}{\sigma_{s_{NNH}^2}}\right)^2 + \left(\frac{(R_{1,600,exp}-R_{1,600,bc})^2}{\sigma_{R_{1,600}^2}}\right)^2 + \left(\frac{(R_{1,800,exp}-R_{1,800,bc})^2}{\sigma_{R_{1,800}^2}}\right)^2 + \left(\frac{(R_{1p,7C,exp}-R_{1p,7C,bc})^2}{\sigma_{R_{1p,7C}^2}}\right)^2 + \left(\frac{(R_{1,30C,exp}-R_{1,30C,bc})^2}{\sigma_{R_{1,30C}^2}}\right)^2 + \left(\frac{(R_{1p,30C,exp}-R_{1p,30C,bc})^2}{\sigma_{R_{1p,30C}^2}}\right)^2$$ \hspace{1cm} (S1)

Where σ denotes the experimental uncertainty in the measured values and the subscripts exp and bc denote the experimentally measured and back calculated values, respectively. Back calculated relaxation rates were determined using Eqs. 1-7 from the main text. The reduced χ^2 and the degrees of freedom $(d.f.)$ are defined as

$$\chi^2_{\text{reduced}} = \frac{\chi^2}{d.f.}$$ \hspace{1cm} (S2)

$$d.f. = \text{number of experimental values} - \text{number of fit values} - 1$$

We also calculate the Akaike’s Information Criterion (AIC),14 Bayesian Information Criterion (BIC)15 and corrected Akaike’s Information Criterion (AICc)16 which are defined with respect to the number of fit parameters k and the number of experimental data points included in the fit n. These values are calculated for each residue (see Table S5) and to allow comparison to EMF they are calculated for each molecular fragment (see Table S7).

$$AIC = \chi^2 + 2k$$ \hspace{1cm} (S3)

$$BIC = \chi^2 + k \cdot \ln (n)$$ \hspace{1cm} (S4)

$$AICc = AIC + \frac{2k(k+1)}{(n-k-1)}$$ \hspace{1cm} (S5)

Uncertainties in the best fit parameters S_{eff}^2, $\tau_{c,eff}$ and E_a were determined by a Monte Carlo procedure. First, the best fit parameters were used to back calculate all experimental data.
Gaussian distributed noise was then added to each of the back-calculated values for 5000 times, and the χ^2 minimization was done for each iteration to determine the distribution of the fit parameters.

Table S5. Summary of best fit SMF results

Residue Number	S_{eff}^2	$\tau_{c,eff}$	$E_a (kJ/mol)$	reduced χ^2	d.f.	AIC	BIC	AICc
L7	0.933	44ps	4.1	44.5	2	95.1	94.5	107.1
A13	0.965	51ps	36.5	13.8	2	33.5	32.9	45.5
A19	0.912	11ps	0.0	5.9	1	11.9	10.7	35.9
E36	0.853	45ns	7.1	1.1	1	7.1	5.9	31.1
S47	0.947	19ps	55.0	5.9	2	17.8	17.1	29.8
M52	0.931	15ps	0.0	12.5	2	31.0	30.4	43.0
M54	0.955	49ps	17.8	24.1	2	54.2	53.5	66.2
A55	0.937	35ps	16.4	14.1	2	34.3	33.7	46.3
I56	0.940	58ns	22.2	4.6	1	10.6	9.5	34.6
G59	0.868	58ns	7.0	5	1	11.0	9.8	35.0
K60	0.921	47ns	2.9	6.2	2	18.4	17.8	30.4
E62	0.807	47ns	8.4	3.4	1	9.4	8.2	33.4
A63	0.825	36ns	6.5	16.7	1	22.7	21.6	46.7
A64	0.797	34ns	0.0	3.1	2	12.1	11.5	24.1
G65	0.791	91ns	35.7	0.5	2	7.0	6.4	19.0
Q66	0.865	52ns	25.0	9.8	1	15.8	14.6	39.8
A68	0.905	40ns	5.8	2.9	2	11.7	11.1	23.7
H69	0.947	89ns	8.0	2.7	2	11.3	10.7	23.3
A71	0.960	45ps	13.1	11.2	2	28.4	27.8	40.4
R72	0.960	23ps	4.1	8.3	2	22.7	22.0	34.7
Y73	0.956	25ps	56.0	10.6	2	27.2	26.6	39.2
V78	0.977	46ps	42.4	7.2	2	20.4	19.7	32.4
T79	0.871	6ps	52.4	6.6	2	19.2	18.6	31.2
T80	0.982	72ps	4.5	7.2	2	20.3	19.7	32.3
A91	0.948	40ns	10.8	1.5	2	9.1	8.4	21.1
I102	0.936	34ps	0.0	11.4	2	28.9	28.3	40.9
S107	0.960	20ps	0.0	13.3	2	32.6	32	44.6
V112	0.946	27ps	8.5	5.1	2	16.2	15.5	28.2
L117	0.917	18ps	3.0	15.4	1	21.4	20.2	45.4
D120	0.980	66ps	0.0	7.5	2	21.0	20.3	33.0
L121	0.931	32ps	0.0	23.9	2	53.7	53.1	65.7
I146	0.952	70ns	15.7	8.6	1	14.6	13.4	38.6
N148	0.903	61ns	3.8	5.7	2	17.5	16.8	29.5
Residue Number	S_{eff}^2 range	$\tau_{c,eff}$ range	E_a (kJ/mol)					
----------------	-------------------	----------------------	----------------					
L7	0.906 - 0.966	31 - 98 ps	5±2					
A13	0.924 - 0.986	20 - 176 ps	40±21					
A19	0.974 - 0.847	6 - 21 ps	<16					
E36	0.761 - 0.912	29 - 87 ps	<5					
S47	0.914 - 0.985	11 - 67 ps	65±35					
M52	0.876 - 0.980	7 - 69 ps	<13					
M54	0.894 - 0.986	19 - 245 ps	20±11					
A55	0.903 - 0.980	22 - 124 ps	19±12					
I56	0.815 - 0.983	13 - 186 ps,	<1					
	0.919 - 0.975	27 - 98 ns	28±8					
G59	0.851 - 0.903	51 - 87 ns	13±8					
K60	0.915 - 0.939	45 - 63 ns	8±6					
E62	0.748 - 0.865	34 - 69 ps	<3					
A63	0.774 - 0.869	43 - 81 ps	<8					
A64	0.739 - 0.847	47 - 91 ps	8±5					
	0.763 - 0.819	32 - 45 ns	3±3					
G65	0.766 - 0.840	85 - 138 ns	41±11					
Q66	0.860 - 0.903	51 - 76 ns	34±6					
A68	0.837 - 0.981	29 - 659 ps	<14					
	0.889 - 0.921	38 - 53 ns	10±7					
H69	0.936 - 0.970	71 - 162 ns	12±11					
A71	0.925 - 0.986	24 - 180 ps	15±10					
R72	0.893 - 0.987	8 - 102 ps	<18					
Y73	0.919 - 0.987	13 - 97 ps	66±35					
V78	0.914 - 0.988	11 - 112 ps	54±37					
Molecular Fragment	Degrees of freedom	Reduced χ^2	AIC	BIC	AICc			
--------------------	--------------------	------------------	-----	-----	------			
Helix A (L7-R27)	5	23.3	116.6	128.6	131.5			
Helix B (Q34-I56)	11	10.3	113.2	137.2	151.3			
BC loop (K60-A68)	11	2.3	25.2	49.2	63.4			
Helix C (Y70-A91)	20	5.3	105.2	147.2	183.7			
Helix D (T100-L121)	14	8.7	122.4	152.4	173.4			
Helix E (D125-N148)	2	5.7	11.5	17.5	16.8			
Helix F (S159-I184)	11	4.3	47.8	71.8	85.9			
FG loop (I185-N194)	5	1.3	6.3	18.3	21.2			
Helix G (Q195-L221)	2	0.8	1.7	7.7	7			

Table S7. Summary of SMF results by molecular fragment
Figure S10. Representative histograms of the populations of 5000 Monte Carlo SMF fits for residues G14, A19, A68, H69, I185 and G189. Histograms of the correlation time $\tau_{c,\text{eff}}$ are shown in the left column, histograms of order parameter S^2_{eff} are in the center column, and histograms of the activation energy E_a are shown in the right column.
Figure S11. Comparison of experimental and SMF best fit (A) R_1 and (B) R_{1p} relaxation rates at 30 °C. The best fit solution is shown as black circles, and the second best fit result is shown in grey.

Figure S12. Reduced χ^2 for the SMF fit as a function of residue number.
7. Modified Extended Model Free Fit

In this modified EMF fit the spectral density function $J(\omega)$ is modelled assuming the presence of fast and slow motions where the fast motional parameters $S_{f,loc}^2$, $\tau_{f,loc}$, and $E_{a,loc}$ were defined locally for each residue and the slow motional parameters $S_{s,loc}^2$, $\tau_{s,loc}$ and $E_{a,col}$ were defined globally for all residues within the given molecular fragment (7 helices, BC and FG loops). The modified EMF approach was used for residues with all six experimental measurements available (Table 1, main text): 15N-1H dipolar order parameters S_{NH}^2, R_1 at 600 MHz and 7 °C, R_1 at 800 MHz and 7 °C, R_{1p} at 800 MHz and 7 °C, R_1 at 800 MHz and 30 °C, and R_{1p} at 800 MHz and 30 °C. The best fit parameters were determined by minimizing χ^2 for each of the nine fragments by using a grid search followed by steepest decent procedure:

$$
\chi^2 = \sum_{i=1}^{N_1} \left[\frac{(S_{NH,exp}^2 - S_{f,loc,i}^2 S_{s,loc,i}^2)^2}{\sigma_{S_{NH,i}}^2} + \frac{(R_{1,600,exp} - R_{1,600,bcl})^2}{\sigma_{R_{1,600,i}}^2} + \frac{(R_{1,800,exp} - R_{1,800,bcl})^2}{\sigma_{R_{1,800,i}}^2} + \frac{(R_{1,30c,exp} - R_{1,30c,bcl})^2}{\sigma_{R_{1,30c,i}}^2} + \frac{(R_{1,p,7c,exp} - R_{1,p,7c,bcl})^2}{\sigma_{R_{1,p,7c,i}}^2} + \frac{(R_{1,p,30c,exp} - R_{1,p,30c,bcl})^2}{\sigma_{R_{1,p,30c,i}}^2} \right],
$$

(S6)

where relaxation rates are defined by Eqs 1-6 and 9 from the main text. The summation extends over all residues with all 6 experimentally measured values available within a molecular fragment (N_1). The reduced χ^2 and the degrees of freedom ($d.f.$) are defined as

$$
\chi^2_{reduced} = \frac{\chi^2}{d.f.},
$$

(S7)

d.f. = number of experimental values – number of fit values – 1

$$
= (6 \cdot N_1) - (3 \cdot N_1 + 3) - 1 = 3 \cdot N_1 - 4.
$$

(S8)

Uncertainties in the best fit parameters $S_{f,loc}^2$, $S_{s,loc}^2$, $\tau_{f,loc}$, $\tau_{s,loc}$, $E_{a,loc}$ and $E_{a,col}$ were determined by the Monte Carlo procedure. First, the best fit parameters were used to back calculate experimental data. Gaussian distributed noise was then added to each of the back-calculated values for 1000 iterations, and the χ^2 minimization was done for each iteration to determine the distribution of the fit parameters.
Table S8. Summary of EMF results by molecular fragment

Molecular Fragment	Degrees of freedom	Reduced χ^2	AIC	BIC	AICc
Helix A (L7-R27)	2	6.3	30.5	35.0	120.5
Helix B (Q34-I56)	8	3.6	59.0	76.6	119.0
BC loop (K60-A68)	8	4.0	61.9	79.6	121.9
Helix C (Y70-A91)	17	2.2	85.5	127.2	156.0
Helix D (T100-L121)	11	3.6	76.0	101.3	138.2
Helix E (D125-N148)	0	n/a	n/a	n/a	n/a
Helix F (S159-I184)	8	1.7	43.4	61.1	103.5
FG loop (I185-N194)	2	3.3	24.8	29.1	114.8
Helix G (Q195-L221)	0	n/a	n/a	n/a	n/a

Table S9. Summary of Best Fit EMF results by residue.

Residue Number	$S^2_{s,\text{col}}$	$\tau_{s,\text{col}}$ (ns)	$S^2_{f,\text{loc}}$	$\tau_{f,\text{loc}}$ (ps)	$E_{a,\text{col}}$ (kJ mol$^{-1}$)	$E_{a,\text{loc}}$ (kJ mol$^{-1}$)
L7	0.980	105	0.952	55	2	4
A13	0.980	105	0.973	56	2	43
S47	0.990	123	0.951	17	4	49
M52	0.990	123	0.951	18	4	0
M54	0.990	123	0.970	67	4	20
A55	0.990	123	0.949	40	4	16
K60	0.953	90	0.931	40	0	8
A64	0.953	90	0.868	105	0	23
G65	0.953	90	0.838	28	0	0
A68	0.953	90	0.970	190	0	0
A71	0.996	231	0.964	50	8	15
R72	0.996	231	0.970	30	8	4
Y73	0.996	231	0.959	26	8	45
V78	0.996	231	0.969	31	8	36
T79	0.996	231	0.874	6	8	43
T80	0.996	231	0.990	146	8	4
A91	0.996	231	0.989	543	8	0
I102	0.978	77	0.970	51	14	0
S107	0.978	77	0.990	14	14	0
V112	0.978	77	0.968	31	14	28
Residue Number	$S^2_{s,col}$	$\tau_{s,col}$ (ns)	$S^2_{f,loc}$	$\tau_{f,loc}$ (ps)	$E_{a,col} (kJ/mol)$	$E_{a,loc} (kJ/mol)$
----------------	---------------	---------------------	---------------	---------------------	----------------------	---------------------
L7	0.970 - 0.992	66 - 231	0.920 - 0.974	34 - 115	<7	4 ± 3
A13	0.970 - 0.992	66 - 231	0.930 - 0.990	19 - 209	<7	37 ± 10
S47	0.982 - 0.996	66 - 270	0.912 - 0.984	7 - 51	5 ± 5	38 ± 13
M52	0.982 - 0.996	66 - 270	0.893 - 0.990	6 - 67	5 ± 5	<15
M54	0.982 - 0.996	66 - 270	0.896 - 0.990	18 - 250	5 ± 5	21 ± 11
A55	0.982 - 0.996	66 - 270	0.912 - 0.977	23 - 96	5 ± 5	18 ± 10
K60	0.943 - 0.964	66 - 144	0.893 - 0.968	24 - 86	<9	13 ± 13
A64	0.943 - 0.964	66 - 144	0.803 - 0.927	64 - 287	<9	26 ± 9
G65	0.943 - 0.964	66 - 144	0.784 - 0.894	18 - 48	<9	<27
A68	0.943 - 0.964	66 - 144	0.906 - 0.989	46 - 707	<9	<19
A71	0.990 - 0.996	90 - 316	0.930 - 0.989	23 - 186	9 ± 6	16 ± 10
R72	0.990 - 0.996	90 - 316	0.895 - 0.991	8 - 113	9 ± 6	7 ± 10
Y73	0.990 - 0.996	90 - 316	0.925 - 0.990	11 - 95	9 ± 6	39 ± 12
V78	0.990 - 0.996	90 - 316	0.908 - 0.991	8 - 121	9 ± 6	30 ± 14
T79	0.990 - 0.996	90 - 316	0.842 - 0.905	2 - 10	9 ± 6	39 ± 19
T80	0.990 - 0.996	90 - 316	0.936 - 0.991	18 - 247	9 ± 6	<18
A91	0.990 - 0.996	90 - 316	0.934 - 0.991	42 - 918	9 ± 6	<13
I102	0.974 - 0.990	66 - 169	0.893 - 0.990	14 - 196	17 ± 7	<10
S107	0.974 - 0.990	66 - 169	0.931 - 0.992	3 - 52	17 ± 7	<33
V112	0.974 - 0.990	66 - 169	0.900 - 0.991	8 - 129	17 ± 7	24 ± 16
D120	0.974 - 0.990	66 - 169	0.857 - 0.990	2 - 42	17 ± 7	<26
L121	0.974 - 0.990	66 - 169	0.914 - 0.990	19 - 193	17 ± 7	<8
T170	0.988 - 0.996	169 - 593	0.802 - 0.971	6 - 52	14 ± 9	<17
Y171	0.988 - 0.996	169 - 593	0.940 - 0.990	26 - 321	14 ± 9	28 ± 13
T173	0.988 - 0.996	169 - 593	0.906 - 0.991	16 - 321	14 ± 9	18 ± 12
G178	0.988 - 0.996	169 - 593	0.748 - 0.988	4 - 70	14 ± 9	26 ± 17
I185	0.931 - 0.953	90 - 231	0.874 - 0.991	8 - 147	40 ± 9	<19
G189	0.931 - 0.953	90 - 231	0.894 - 0.988	19 - 189	40 ± 9	30 ± 15

Table S10. Summary of Monte Carlo EMF results by residue.
All intervals are given at a 95% confidence level.
Figure S13. Representative histograms of the population of all 6 fit parameters ($S^2_{s,col}$, $S^2_{f,loc}$, $\tau_{s,col}$, $\tau_{f,loc}$, $E_{a,col}$ and $E_{a,loc}$) from 1000 Monte Carlo EMF fits for residues I102 and I185.
Figure S14. Comparison of experimental and EMF back-calculated (A) R_1 and (B) R_{1p} relaxation rates at 30 °C.

Table S11. Summary of MF-3DGAF results by molecular fragment*

Molecular Fragment	Data points	Fit parameters	χ^2	AIC	BIC	AICc
Helix A (L7-R27)	13	13	3.7	29.7	37.0	n/a
Helix B (Q34-I56)	27	19	17.3	55.3	80.0	163.9
BC loop (K60-A68)	28	19	17.5	55.5	80.8	150.5
Helix C (Y70-A91)	45	28	40.0	96.0	146.6	197.5
Helix D (T100-L121)	45	22	20.94	20.9	95.8	165.5
Helix E (D125-N148)	n/a	n/a	n/a	n/a	n/a	n/a
Helix F (S159-I184)	25	19	10.4	48.4	71.5	200.4
FG loop (I185-N194)	13	13	4.3	30.3	37.6	n/a
Helix G (Q195-L221)	n/a	n/a	n/a	n/a	n/a	n/a
Table S12. Summary of MF-3DGAF by residue.

Residue Number	Residue	$\sigma_{\alpha}(\degree)$	$\sigma_{\beta}(\degree)$	$\sigma_{\gamma}(\degree)$	$\Delta\phi(\degree)$	$\Delta\theta(\degree)$	$\tau_{\alpha,280K}$ (ns)	$S_{F,loc}^2$	$\tau_{\gamma,280K}$ (ps)	$E_{a,cot}(kJ/mol)$	$E_{a,loc}(kJ/mol)$
L7	L	0.0	2.3	4.4	-55.1	-0.1	148	0.95	54	0	0
A13	A	0.0	2.3	4.4	-55.1	-0.1	148	0.97	58	0	0.8
S47	S	0.7	0.0	18.6	55.0	-15.6	192	0.95	18.6	2.6	2.8
M52	M	0.7	0.0	18.6	55.0	-15.6	192	0.93	13.4	2.6	8.4
M54	M	0.7	0.0	18.6	55.0	-15.6	192	0.99	765	2.6	0
A55	A	0.7	0.0	18.6	55.0	-15.6	192	0.95	40.3	2.6	0
K60	K	0.0	5.2	11.7	-30.4	36.2	73	0.94	43.7	6.2	0
A64	A	0.0	5.2	11.7	-30.4	36.2	73	0.93	179	6.2	9.8
G65	G	0.0	5.2	11.7	-30.4	36.2	73	0.84	24.3	6.2	7.5
A68	A	0.0	5.2	11.7	-30.4	36.2	73	0.99	1000	6.2	5.4
A71	A	4.3	0.0	0.0	-70.7	6.5	65	0.97	51.4	11.8	6.1
R72	R	4.3	0.0	0.0	-70.7	6.5	65	0.96	11.5	11.8	18.6
Y73	Y	4.3	0.0	0.0	-70.7	6.5	65	0.97	19.2	11.8	37.2
V78	V	4.3	0.0	0.0	-70.7	6.5	65	0.97	36.5	11.8	0
T79	T	4.3	0.0	0.0	-70.7	6.5	65	0.88	4.3	11.8	0
T80	T	4.3	0.0	0.0	-70.7	6.5	65	1.00	787	11.8	12.6
A91	A	4.3	0.0	0.0	-70.7	6.5	65	0.98	25.5	11.8	20.1
I102	I	0.0	5.8	0.0	-74.7	54.3	133	0.99	210	6.0	13.0
S107	S	0.0	5.8	0.0	-74.7	54.3	133	1.00	773	6.0	0
V112	V	0.0	5.8	0.0	-74.7	54.3	133	0.95	27.4	6.0	1.7
D120	D	0.0	5.8	0.0	-74.7	54.3	133	0.94	15.8	6.0	48.2
L121	L	0.0	5.8	0.0	-74.7	54.3	133	0.99	179	6.0	11.5
T170	T	1.6	0.0	12.0	62.5	-17.1	482	0.90	16.4	11.4	0
Y171	Y	1.6	0.0	12.0	62.5	-17.1	482	0.99	237	11.4	25.3
T173	T	1.6	0.0	12.0	62.5	-17.1	482	1.00	888	11.4	0
G178	G	1.6	0.0	12.0	62.5	-17.1	482	0.91	13.8	11.4	4.6
I185	I	18.6	0.0	0.0	-62.6	-7.8	131	0.93	19.2	23.0	0
G189	G	18.6	0.0	0.0	-62.6	-7.8	131	0.97	72.3	23.0	23.5
Figure S15. Movie of a mode 7 from Normal Mode Analysis of ASR trimer performed using Nomad-Ref webserver."}

References

(1) Hohwy, M.; Jaroniec, C. P.; Reif, B.; Rienstra, C. M.; Griffin, R. G. J. Am. Chem. Soc. 2000, 122, 3218–3219.

(2) Rhim, W.-K. W.-K.; Elleman, D. D.; Vaughan, R. W. J. Chem. Phys. 1973, 59, 3740–3749.

(3) Mansfield, P.; Orchard, M. J.; Stalker, D. C.; Richards, K. H. B. Phys. Rev. B 1973, 7, 90–105.

(4) Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V; Griffin, R. G. J. Chem. Phys. 1995, 103, 6951.

(5) Banigan, J. R.; Traaseth, N. J. J. Phys. Chem. B 2012, 116, 7138–7144.

(6) Bak, M.; Rasmussen, J. T.; Nielsen, N. C. J. Magn. Reson. 2000, 147, 296–330.

(7) Wylie, B. J.; Sperling, L. J.; Frericks, H. L.; Shah, G. J.; Franks, W. T.; Rienstra, C. M. J. Am. Chem. Soc. 2007, 129, 5318–5319.

(8) Wishart, D. S.; Sykes, B. D. J. Biomol. NMR 1994, 4, 171–180.

(9) Carroll, P. J.; Stewart, P. L.; Opella, S. J. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1990, 46, 243–246.
(10) Jaroniec, C. P.; Tounge, B. a.; Herzfeld, J.; Griffin, R. G. J. Am. Chem. Soc. 2001, 123, 3507–3519.

(11) Jaroniec, C. P.; Filip, C.; Griffin, R. G. J. Am. Chem. Soc. 2002, 124, 10728–10742.

(12) Janik, R.; Peng, X.; Ladizhansky, V. J. Magn. Reson. 2007, 188, 129–140.

(13) Ramachandran, R.; Ladizhansky, V.; Bajaj, V. S.; Griffin, R. G. J. Am. Chem. Soc. 2003, 125, 15623–15629.

(14) Akaike, H. IEEE Trans. Automat. Contr. 1974, 19, 716–723.

(15) Schwarz, G. Ann. Stat. 1978, 6, 461–464.

(16) Hurvich, C. M.; Tsai, C.-L. Biometrika 1989, 76, 297.

(17) Good, D. B.; Wang, S.; Ward, M. E.; Struppe, J.; Brown, L. S.; Lewandowski, J. R.; Ladizhansky, V. J. Am. Chem. Soc. 2014, 136, 2833–2842.

(18) Lindahl, E.; Azuara, C.; Koehl, P.; Delarue, M. Nucleic Acids Res. 2006, 34, 52–56.