DAG-width is PSPACE-complete*

Saeed Akhoondian Amiri, Stephan Kreutzer, and Roman Rabinovich

Logic and Semantics, Technische Universität Berlin
{saeeed.amiri,stephan.kreutzer,roman.rabinovich},
@tu-berlin.de

Abstract

Berwanger et al. show in Berwanger et al. (2012) that for every graph G of size n and DAG-width k there is a DAG decomposition of width k and size $n^{O(k)}$. This gives a polynomial time algorithm for determining the DAG-width of a graph for any fixed k. However, if the DAG-width of the graphs from a class is not bounded, such algorithms become exponential. This raises the question whether we can always find a DAG decomposition of size polynomial in n as it is the case for tree width and all generalisations of tree width similar to DAG-width.

We show that there is an infinite class of graphs such that every DAG decomposition of optimal width has size super-polynomial in n and, moreover, there is no polynomial size DAG decomposition which would approximate an optimal decomposition up to an additive constant.

In the second part we use our construction to prove that deciding whether the DAG-width of a given graph is at most a given constant is PSPACE-complete.

1 Introduction

In the study of hard algorithmic problems on graphs, methods derived from structural graph theory have proved to be a valuable tool. The rich theory of special classes of graphs developed in this area has been used to identify classes of graphs, such as classes of bounded tree width or clique width, on which many computationally hard problems can be solved efficiently. Most of these classes are defined by some structural property, such as having a tree decomposition of low width, and this structural information can be exploited algorithmically.

Structural properties of classes of graphs such as tree width, clique width, definability by excluded minors etc. studied in this context relate to undirected graphs. However, in various applications in computer science, directed graphs are a more appropriate model. Given the enormous success width parameters had for problems defined on

*The research of all authors has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC consolidator grant DISTRUCT, agreement No 648527).
undirected graphs, it is natural to ask whether they can also be used to analyse the
complexity of hard algorithmic problems on digraphs. While in principle it is possible
to apply the structure theory for undirected graphs to directed graphs by ignoring the
direction of edges, this implies a significant information loss. Hence, for computational
problems whose instances are directed graphs, methods based on the structure theory
for undirected graphs may be less useful.

Tree width is one of the most successful structural complexity measures. It has
several characterisations coming from seemingly unrelated notions, e.g., by elimi-
nation orders or cops and robber games. Tree width is also deeply connected to
graph minors and has numerous algorithmic applications. The result of several ap-
proaches to generalise tree width to digraphs was a number of structural complex-
ity measures for digraphs. Reed Reed (1999) and Johnson, Robertson, Seymour and
Thomas Johnson et al. (2001) introduced the concept of directed tree width and showed
that the \(k \)-disjoint paths problem and more general linkage problems can be solved in
polynomial-time on classes of digraphs of bounded directed tree width. Following
this initial proposal, several alternative notions of width measures for sparse classes
of digraphs have been presented, for instance directed path width (see Barát (2006),
initially proposed by Robertson, Seymour and Thomas), D-width Safari (2005), DAG-
width Berwanger et al. (2012) and Kelly-width Hunter and Kreutzer (2008).

In this work we concentrate on DAG-width. It distinguishes itself in its particularly
simple definition. DAG decompositions have a clear structure and the definition of
the cops and robber games characterising DAG-width is a stra ight forward and natural
generalisation of the corresponding game for tree width. However, we show some
disadvantages of DAG-width.

A crucial task in designing efficient algorithms for some problems on graphs where
some width is bounded is to find a decomposition of the given graph of small width.
Such decompositions, usually trees or DAGs (directed acyclic graphs), are used to
solve some problem recursively following the decomposition. For tree width and di-
rected tree width one can decompose the graph in fixed parameter tractable time. For
D-width and for Kelly-width such algorithms are not known, but there is always a de-
composition of polynomial size, so it can be found at least non-deterministically. Only
the complexity of DAG-width was left as an open problem as it was not known whether
every digraph has a decomposition of polynomial size.

We show here that deciding the DAG-width of a digraph is not only not in NP
(under standard complexity theoretical assumptions), it is in fact \(\text{PSPACE} \)-complete.
In terms of the DAG-width game this exhibits the worst case complexity of such games.
This result is quite unexpected and especially surprising as such a high complexity
was to date only exhibited by a form of cops and robber games called domination
games (see Fomin et al. (2003, 2011); Kreutzer and Ordyniak (2009)). In these games,
each cop not only occupies his current vertex (as in other such games) but a whole
neighbourhood of fixed radius, which essentially allows to simulate set quantification
making the problem \(\text{PSPACE} \)-complete. The DAG-width game, however, is to the best
of our knowledge the only cops and robber game with the usual capturing condition
that exhibits such a complexity.

With the same proof technique we also show that there are classes of graphs for
which any DAG decomposition of optimal width contains a super-polynomial number
of bags. (If NP \neq \text{PSPACE}, this would follow from the previous result, but we show this unconditionally.) Furthermore, we obtain that for every \(\varepsilon \in (0, 1) \) there are graphs of DAG-width \(k \) with no polynomial size DAG decomposition of width at most \(k + k^{1-\varepsilon} \).

2 \ DAG-Width and Cops and Robber Games

2.1 Preliminaries

We assume familiarity with basic concepts of graph theory and refer to Diestel (2012) for background. All graphs in this paper are finite, directed and simple, i.e. they do not have loops or multiple edges between the same pair of vertices. Undirected graphs are directed graphs with a symmetric edge relation. If \(G \) is a graph, then \(V(G) \) is its set of vertices and \(E(G) \) is its set of edges. For a set \(X \subseteq V(G) \) we write \(G[X] \) for the subgraph of \(G \) induced by \(X \) and \(G - X \) for \(G[V(G) \setminus X] \). If \(X \) is a set of vertices, we write \(\text{Reach}_G(X) \) to denote the set of vertices reachable from a vertex in \(X \). If \(X = \{v\} \), we write \(\text{Reach}_G(v) \). If \(w \in \text{Reach}_G(v) \), we also write \(v \leq w \) and \(v < w \) for the irreflexive variant. A root of a graph is a vertex without incoming edges. A strongly connected component of a digraph \(G \) is a maximal subgraph \(C \) of \(G \) which is strongly connected, i.e. between any pair \(u,v \in V(C) \) there are directed paths from \(u \) to \(v \) and from \(v \) to \(u \). All components considered in this paper will be strong and hence we simply write component.

2.2 DAG-Width and Cops and Robber Games

A \textit{DAG decomposition} of \(G \) is a tuple \((D,B) \) where \(D \) is a DAG and \(B = \{B_d : d \in V(D)\} \) is a set of bags, i.e. subsets of \(V(G) \), such that

1. \(\bigcup_{d \in V(D)} B_d = V(G) \),
2. for all \(a,b,c \in D \), if \(a < b < c \), then \(B_a \cap B_c \subseteq B_b \),
3. for every source \(r \in V(D) \), \(\text{Reach}_G(B_{\geq r}) = B_{\geq r} \) where \(B_{\geq r} = \bigcup_{d \leq r} B_d \),
4. for each \((a,b) \in E(D) \), \(\text{Reach}_{G-(B_a \cap B_b)}(B_{\geq b} \setminus B_a) = B_{\geq b} \setminus B_a \).

The width of \((D,B) \) is \(\max_{d \in V(D)} |B_d| \) and its size is \(|V(D)| \). The \textit{DAG-width} \(\text{DAG-w}(G) \) of \(G \) is the minimal width of a DAG decomposition of \(G \).

Cops and Robber Games \ DAG-width can be characterised by a cops and robber game played on a graph \(G \) by a team of cops and a robber. Each cop occupies a vertex of \(G \) or is outside of the graph. The robber occupies a component of the graph that arises if we delete vertices occupied by the cops. Hence, a game position can be described by a pair \((C,R) \), where \(C \) is the set of vertices occupied by cops and \(R \) is robber component. At the beginning the robber chooses an arbitrary component \(R_0 \) of the graph and the game starts at position \((\emptyset, R_0)\). The game is played in rounds. In each round, from a position \((C,R)\) the cops first announce their next move, i.e. the
set \(C' \subseteq \text{V}(G) \) of vertices that they will occupy next, and remove the cops from the vertices \(C \setminus C' \) that will not be occupied. Based on the triple \((C, C', R)\) the robber chooses his new component \(R' \) that must be reachable from \(R \) via cop free paths, i.e. a path reachable from \(R \) that does not contain a vertex occupied by a cop which remains on the board. This completes a round and the play continues at position \((C', R')\).

Abstract games An abstract game is a tuple \((V, V_0, E, v_0, \Omega)\) where \((V, E)\) is a directed graph, in which \(V \) denotes the set of all positions and \(E \) the set of moves, \(V_0 \subseteq V \) is the set of positions in which Player 0 has to move, \(v_0 \in V \) is the start position and \(\Omega \subseteq \text{V}^w \) is the winning condition. A play is a maximal sequence \(v_0, v_1, \ldots \) such that for all \(i \geq 0 \), \((v_i, v_{i+1})\) \(\in E \). Player 0 wins a play \(\pi \) if it is finite and ends in a vertex \(v \in V_1 := V \setminus V_0 \) without successors (so Player 1 has to move, but cannot do this) or \(\pi \in \Omega \). A (memoryless) strategy for Player 0 is a partial function \(\sigma : V \rightarrow V \) such that for all \(v \in V \) where \(\sigma \) is defined, \((v, \sigma(v))\) \(\in E \). Strategies for Player 1 are defined analogously. A play \(v_0, v_1, \ldots \) is consistent with \(\sigma \) if for each \(v_i \in V_0 \) that has a successor, we have \(\sigma(v_i) = v_{i+1} \). We say that \(\sigma \) is winning if Player 0 wins every play consistent with \(\sigma \) (and analogously for Player 1). We say that a game position is consistent with \(\sigma \) if there is a play consistent with \(\sigma \) which contains the position.

The DAG-width game The DAG-width game \((V, V_0, E, v_0, \Omega)\) on a graph \(G \) is defined as follows. The set of positions is \(V := \text{Pos}(G) := \text{Pos}_c \cup \text{Pos}_r \) where

\[
\text{Pos}_c := V_0 := \{ (C, R) : C \subseteq \text{V}(G), R \subseteq \text{V}(G) \text{ is a component of } G \setminus C \}
\]

are cop positions and

\[
\text{Pos}_r := \{ (C, C', R) : C, C' \subseteq \text{V}(G) \text{ and } R \subseteq \text{V}(G) \text{ is a component of } G \setminus C \}
\]

are robber positions. The set of robber moves is defined by

\[
\text{Moves}_r(G) := \{ ((C, C', R), (C', R')) : (C, C', R) \in \text{Pos}_r, (C', R') \in \text{Pos}_c, \text{ and } R' \text{ is a component of } G \setminus C' \}
\]

and the set of cop moves by

\[
\text{Moves}_c(G) := \{ ((C, R), (C, C', R)) : (C, R) \in \text{Pos}_c, (C, C', R) \in \text{Pos}_r \} \cap \text{Mon}
\]

where

\[
\text{Mon} := \{ ((C, R), (C, C', R)) : \text{Reach}_{G \setminus (C \cap C')} (R) = \text{Reach}_{G \setminus C} (R) \}
\]

is the monotonicity condition saying that while making a move, it is forbidden to remove cops if this allows the robber to reach vertices that were unreachable for him otherwise. The whole set of moves is \(\text{Moves}(G) := \text{Moves}_c(G) \cup \text{Moves}_r(G) \). The start position is \((\emptyset, \emptyset, \emptyset)\) and the winning condition for the cops (i.e. for Player 0) is \(\Omega = \emptyset \), i.e. the cops lose all infinite plays. As the cops always have a possible move (e.g., by not changing their vertices), they win all finite plays.
A cop is free in a position \((C, R)\) if he is outside of the graph (i.e. \(|C| < k\) in the game with \(k\) cops) or on a vertex \(v \in C\) such that \(v \notin \text{Reach}_{G-(C\setminus\{v\})}(R)\), i.e. removing this cop does not lead to non-monotonicity and is thus allowed. We say that the robber is in some set \(A\) of vertices, if \(A\) is contained in his component.

In Berwanger et al. (2012) Berwanger et al. showed that \(k\) cops have a winning strategy \(\sigma\) on a graph if and only if the graph has a DAG decomposition of width \(k\). From their proof one can easily infer a correspondence between the number of bags in the decomposition and the number of possible positions in the game where the cops play according to \(\sigma\).

Lemma 1. If there is a DAG decomposition of a graph \(G\) of width \(k\) and of size \(n\), then \(k\) cops have a winning strategy such that the number of positions consistent with this strategy is at most \(n \cdot |G|\).

Proof. Consider the strategy obtained from a DAG decomposition of width \(k\) as described in (Berwanger et al., 2012, Theorem 16). In a play consistent with the strategy, the cops occupy only sets of vertices that correspond to some bag. Thus there are at most \(n\) cop placements that can appear in a play. A position can be described by the cop placement and an arbitrary vertex in the robber component. There are at most \(|G|\) vertices, so the total number of positions is at most \(n \cdot |G|\).

3 The Basic Construction

Let \(s, t: \mathbb{N} \to \mathbb{N}\) be two non-decreasing functions with \(s(n) \in o(n)\) and let \(n_0 \in \mathbb{N} \setminus \{0\}\) such that for all \(n \geq n_0\) we have \(n - s(n) > 2\). We also demand that for all \(n \geq n_0\), \(s\) and \(t\) satisfy \(s(n) \geq 2\) and \(t(n) \geq 2\), and, furthermore, if \(t\) is bounded by a constant, then \(s(n) \in o\left(\frac{\log n}{\log \log n}\right)\). Notice that \(n_0\) depends only on \(s\) and \(t\), but not on \(n\).

We define a class of graphs \(G_n(s,t)\) of DAG-width \(n + 1\) and size \(|V(G_n(s,t))| \in O(n^2 \cdot t(n))\) (measured in the number of vertices) such that every DAG decomposition of width \(n + 1\) has super-polynomially many bags in the size of \(G_n(s,t)\). The parameters \(s\) and \(t\) will be used to determine the difference between the optimal width of a DAG decomposition and the best possible width of a polynomial size decomposition. Our proof in the next section works already if \(s(n) = t(n) = 2\) for all \(n\) and the reader is invited to assume these values at first. We shall consider what changes if \(s\) and \(t\) are different later.

For \(n \in \{0, \ldots, n_0 - 1\}\), the graph \(G_n(s,t)\) is a single vertex without edges. For \(n \geq n_0\), the graph \(G_n(s,t)\) is constructed as follows (see Figure 1). Let \(M(n)\) and \(C_i(n)\) for \(i \in \{0, \ldots, t(n) - 1\}\) be pairwise disjoint sets of vertices, each of \(n - s(n)\) elements. Let \(D^s(n)\) be a set of \(s(n)\) elements disjoint from all \(C_i(n)\) and \(M(n)\), and let \(N(n) = M(n) \cup D^s(n)\). Let \(A^t(n)\) be a set of \(s(n)\) new vertices, and let \(B^t(n) = \{b_0(n), \ldots, b_{t(n)-1}(n)\}\) be a set of \(t(n)\) new vertices. The graph \(G_n(s,t)\) has vertices

\[
V(G_n(s,t)) = V(G_{n-s(n)-1}(s,t)) \cup A^t(n) \cup B^t(n) \cup \bigcup_{i=0}^{t(n)-1} C_i(n) \cup N(n).
\]
We say that vertices from $A^s(n) \cup B^t(n) \cup \bigcup_{i=0}^{t(n)-1} C_i(n) \cup N(n)$ are in level $n \geq n_0$.
If n_1 and n_2 are levels, then level n_1 is bigger than level n_2 if $n_1 > n_2$.

For a set X let $\binom{X}{2}$ be the set $\{(x, y) \in X^2 : x \neq y\}$. The edges are defined by

$$E(G_n(s, t)) = E(G_{n-s(n)-1}(s, t)) \cup \left(\binom{N(n)}{2} \cup \bigcup_{i=0}^{t(n)-1} \binom{C_i(n)}{2} \cup \binom{A^s(n)}{2}\right)$$

$$\cup \left((N(n) \times C_i(n)) \cup (C_i(n) \times M(n)) \cup (C_i(n) \times B^t(n)) \cup (A^s(n) \times M(n)) \right)$$

$$\cup \left((N(n) \times (G_{n-s(n)-1}(s, t))) \cup (A^s(n) \times (G_{n-s(n)-1}(s, t))) \cup (V(G_{n-s(n)-1}(s, t)) \times A^s(n)) \cup (V(G_{n-s(n)-1}(s, t)) \times B^t(n)) \right).$$

In other words, the first line says that $G_n(s, t)$ has all edges from $G_{n-s(n)-1}(s, t)$, and that $N(n)$, all $C_i(n)$ for $i \in \{0, \ldots, t(n) - 1\}$ and $A^s(n)$ are cliques of sizes n, $n - s(n)$ and $s(n)$, respectively (i.e. every two distinct vertices are connected in both directions). Note also that $B^t(n)$ induces an independent set.

For the following lemma the precise definition of s and t in $G_{n-s(n)-1}(s, t)$ is inessential.

Lemma 2. The DAG-width of $G_n(s, t)$ is $n + 1$ for $n \geq n_0$.

Proof. The $n + 1$ cops have the following winning strategy for the DAG-width game on $G_n(s, t)$. The initial move of the robber must be to choose the whole graph as a
Then the cops occupy \(N(n) \) and we can assume that the robber chooses some \(C_i(n) \) (for \(i \in \{0, \ldots, t(n) - 1\} \)) because all other strongly connected components of \(G_n(s, t) - N(n) \) have incoming edges from all \(C_i(n) \). (So the robber can go to every other component that is reachable now also later, see Lemma 5.21 in Rabinovich (2013).) Then the remaining cop occupies \(b_i(n) \). If the robber stays in \(C_i(n) \), the cops from \(M(n) \) capture him there (recall that \(M(n) \) has the same size \(n - s(n) \) as every \(C_i(n) \), \(i \in \{0, \ldots, t(n) - 1\} \)).

So we can assume that the robber goes to \(A^s(n) \cup (B^i(n) \setminus \{b_i(n)\}) \cup V(G_{n-s(n)-1}(s, t)) \). The cops from \(D^s(n) \) move to \(A^s(n) \) and force the robber to proceed to \(G_{n-s(n)-1}(s, t) \). If the robber remains in \(B^i(n) \), he is captured in the next move. From now on, the \(s(n) + 1 \) cops in \(A^s(n) \cup \{b_i(n)\} \) stay there until the end of the play and the robber cannot leave \(G_{n-s(n)-1}(s, t) \), which has outgoing edges only to \(B^i(n) \) and to \(A^s(n) \). The remaining \(n-s(n) \) cops play in \(G_{n-s(n)-1}(s, t) \) in the same way as on \(G_n(s, t) \) until the robber is captured or expelled to a \(b_j(n) \) for \(j \neq i \). There he will be captured in one move.

A winning robber strategy against \(n \) cops is to stay in \(N(n) \) until all \(n \) cops are there and then to go to \(C_0(n) \). Due to the monotonicity of the winning condition, in that position of the game, no cop can be removed from his vertex as every vertex of \(N(n) \) is reachable from every vertex of \(C_0(n) \).

\[\square \]

4 Big DAG Decompositions

In this section we prove that the described winning strategy for \(n + 1 \) cops from Section 3 (let us call it \(\sigma \)) is the only possible one up to some irrelevant changes. Then we count the number of positions that are consistent with \(\sigma \) and observe that there are super-polynomially many of them. It will follow that every DAG decomposition of the optimal width has a super-polynomial size.

The first kind of change is to occupy the vertices within the sets \(M(n), C_i(n) \) (\(i \in \{0, \ldots, t(n) - 1\} \)), \(A^s(n) \) and \(D^s(n) \) or to remove cops from them in a different order than according to \(\sigma \). The second kind of a change is to place cops on and then to remove them from vertices that are already unavailable for the robber. (Note that \(\sigma \) never lets cops stay on such vertices.) Both changes can obviously only increase the number of possible positions.

Observation 3. Let \(\sigma' \) be as \(\sigma \), but with some irrelevant changes applied. Then \(\sigma' \) uses as many cops as \(\sigma \) and there are at least as many positions consistent with \(\sigma' \) as with \(\sigma \).

Lemma 4. Up to irrelevant changes, there is only one winning strategy for \(n + 1 \) cops on \(G_n(s, t) \).

Proof. We describe a family \(\Gamma \) of robber strategies that enforces the cops to play according to \(\sigma \) (the cops strategy from Lemma 1) up to irrelevant changes. If \(n + 1 \) cops play in a different way, they lose. By Observation 3 we can ignore those possible changes. The strategies in \(\Gamma \) differ only in the choice of components \(C_i(\ell) \) (for all levels \(\ell \geq n_0 \) and \(i \in \{1, \ldots, t(\ell)\} \)) the robber visits during a play. Every choice is made independently of any other cop or robber move. Thus \(\Gamma \) can be described as a set
of strategies $\rho(I)$ parameterised by a sequence of choices $I = i_n, i_{n-s(n)}-1, \ldots, i_{n_0}$ (the indexes are the levels in decreasing order) where each i_t is in $\{1, \ldots, t(\ell)\}$.

Let some I be fixed. The robber remains in $N(n)$ until it is completely occupied by cops. If a cop was placed on a vertex $v \in N(n)$ before $N(n)$ was completely occupied, the cops lose. Indeed, consider the position where all vertices of $N(n)$ are occupied for the first time. Because v (whatever it is) has been occupied and because it is still reachable from $N(n)$, the last $(n+1)$-st cop is still on v, otherwise the monotonicity is violated at v. The robber goes to some $C_i(n)$ from which v is reachable via paths avoiding $N(n)$ (such a $C_i(n)$ always exists) and the cops have no legal move. Thus the first moves of the cops are to occupy $N(n)$ and the last cop remains outside of the graph. (An irrelevant change can be made here: $N(n)$ can also be occupied in many steps. However, this ends in the same position in that the whole $N(n)$ is occupied. The second kind of irrelevant changes cannot be applied here.)

The robber chooses some $C_{i_n}(n)$ and the cops have no other possible move than to place the last remaining cop on $b_{i_n}(n)$ (otherwise we have the situation discussed in the previous paragraph). The robber goes to $A^*(n) \cup B^*(n) \setminus \{b_{i_n}(n)\}$. In this position, the cops in $\{b_{i_n}(n)\} \cup M(n)$ cannot be removed. So the cops from $D^s(n)$ must be used and they can be placed either in $A^*(n)$ or in $G_{n-s(n)}-1(s, t)$, or in $B^*(n) \setminus \{b_{i_n}(n)\}$, or in some $C_i(n)$. Placing the cops in $C_i(n)$ belongs to the second kind of irrelevant changes. In this case the robber component does not change, so after some number of such moves the cops have to play in a different way (or they lose). If at least one cop is placed in $G_{n-s(n)}-1(s, t)$ or in $B^*(n) \setminus \{b_{i_n}(n)\}$, the robber remains in $A^*(n)$ until all cops are placed. Then the cops have no legal move and lose. It follows that the cops from $D^s(n)$ must occupy the whole $A^*(n)$ (as above, regardless in which order) and the robber goes to $G_{n-s(n)}-1(s, t)$. From now on, all cops occupying $A^*(n)$ and $b_{i_n}(n)$ will be reachable from the robber component and must stay there. It follows by induction on n that σ is the unique winning strategy for $n+1$ cops up to irrelevant changes.

Theorem 5. Every DAG decomposition of $G_n(s, t)$ of width $n+1$ has super-polynomially many bags.

Proof. We count the number of positions that are consistent with σ. When the robber goes to the level n_0-1, the cops are occupying $A^*(\ell)$ for all levels $\ell \geq n_0$ that appear as indices of $G_\ell(s, t)$. Additionally, for each ℓ, the cops occupy exactly one of $\{b_0(\ell), \ldots, b_{i(\ell)}(\ell)\}$. (If they occupy more of them, the remaining cops do not suffice to capture the robber due to Lemma 2.) Thus every I induces a new position and there are $\prod_{\ell \text{ is a level}} t(\ell)$ possible positions with the robber in level n_0-1, each corresponding to a particular choice of $C_i(m)$ for $m > \ell$. By Lemma 1, the number of bags in an DAG decomposition of optimal width is at least $\prod_{\ell \text{ is a level}} t(\ell)$. We set $s(\ell) = t(\ell) = 2$ for all $\ell \in \mathbb{N}$ and $n_0 = 5$. Then $\prod_{\ell \text{ is a level}} t(\ell) \geq 2^{\lfloor n/2 \rfloor - 5}$. On the other hand the size of $G_n(s, t)$ is

$$|V(G_n(s, t))| = |N(n)| + t(n) \cdot |C_i(n)| + |A^*(n)| + |B^*(n)| + |G_{n-s(n)-1}(s, t)|$$

$$= n + t(n) \cdot (n - s(n)) + s(n) + t(n) + |G_{n-s(n)-1}(s, t)|$$

$$= O(n^2 \cdot t(n)) = O(n^2),$$

where $s(n)$ is the unique winning strategy for $n+1$ cops up to irrelevant changes.
so \(2^{n/2} - 2\) is super-polynomial in \(|G_n(2, 2)|\).

\[\]

5 Consider an Additive Constant Error

In the simplest case we can set \(s(\ell) = t(\ell) = 2\) for all levels. Then we obtain at least \([n/2]\) levels and the size of an optimal decomposition is at least \(2^{O(\sqrt{|G_n(s,t)|})}\).

However, at the cost of one additional cop we can construct a DAG decomposition with polynomially many bags. We change \(\sigma\) to occupy \(A^*(n)\) with two cops instead of placing one cop on \(b_i(n)\). We need one extra cop for this, but this is not repeated in each level. Already in the first level, when the robber goes to \(G_{n-s(n)-1}(s, t) = G_{n-3}(s, t)\), we have cops only on \(A^*(n)\), but not on \(b_i(n)\). So one cop is saved for \(G_{n-3}(s, t)\) and we can continue to play in all levels in the same manner.

We can change our choice of \(s\) and \(t\) to make the number of additional cops needed to obtain a polynomial size decomposition unbounded. Let \(s(\ell) = t(\ell) = \lfloor \ell / \log \ell \rfloor\) for all \(\ell\). Then there are at least \(\log n\) levels and

\[
|G_n(s, t)| = \sum_{i=0}^{t(n)-1} (|C_i(n)| + |\{b_i(n)\}|) + N(n) + |A^*(n)| + |G_{n-s(n)}(s, t)| = (n - s(n) + 1) \cdot t(n) + n + s(n) + |G_{n-s(n)-1}(s, t)| = O\left(\frac{n^2}{\log n}\right) + |G_{n-s(n)-1}(s, t)| = O(n^2).
\]

It remains to estimate the number of bags in an optimal decomposition. Let \(n_1, n_2, \ldots\) be the indices in \(G_{n_i}(s, t)\) appearing in \(G_n(s, t)\), i.e. \(n_0 = n\), and for \(i > 0\) we have \(n_i = n_{i-1} - \lfloor n_{i-1} / \log n_{i-1} - 1\rfloor\). Then for \(n \geq 5\),

\[
n_i \geq n - i \cdot n / \log n - i,
\]

which is easy to prove by induction on \(i\). For all \(i \leq \log n / 2\) we have

\[
n_i \geq n - \frac{\log n}{2} \cdot \frac{n}{\log n} - \frac{\log n}{2} = n - \frac{n}{2}
\]

and thus for \(n \geq 5\),

\[
t(n_i) = \left\lfloor \frac{n_i}{\log n_i} \right\rfloor \geq \frac{n - \log n}{2 \log n} \geq \frac{n - n/2}{2 \log n} \geq \frac{n}{4 \log n}.
\]

So for \(\lfloor \log n / 2 \rfloor\) many levels \(t(n_i) \geq n / (4 \log n)\) and thus the number of bags in any DAG decomposition is at least \((\frac{n}{\log n})^{\lfloor \log n / 2 \rfloor}\).

We can define a winning cop strategy with only polynomially many positions with the same trick as before investing \(s(n) - 1\) new cops, i.e. using \(n + s(n)\) cops. Occupy \(N(n)\) and when the robber goes to some \(C_i(n)\), occupy \(A^*(n)\). The robber has to go to the lower levels (otherwise he will be captured in \(C_i(n) \cup \{b_i(n)\}\) or in \(B^*(n)\)) and we do not need cops in \(B^*(n)\). In the following theorem we show that less than \(n + s(n)\) cops do not have a winning strategy with polynomially many positions. Thus there is no polynomial approximation of an optimal DAG decomposition by an additive constant.
Theorem 6. For all $G_n(s,t)$ with $n \geq 25$, every DAG decomposition of width at most $n - s(n) - 1$ has size at least \(\left(\frac{\log n}{16} \right)^{\log n/4} \).

Proof. We describe a robber strategy against $n - s(n) - 1$ cops that allows him to enforce at least \(\left(\frac{n}{16} \right)^{\log n/2} \) positions (dependent on his choices of $C_i(\ell)$). The robber waits in $N(n)$ until it is occupied by n cops and goes to some $C_i(n)$ for $i \geq 0$ such that $b_i(n)$ is not occupied by the cops. As $|C_i(n)| = n - s(n) \geq s(n)$ (recall that $n \geq 25$) and only $s(n) - 1$ cops are left, in all $C_i(n)$ there is a cop free vertex. Similarly, the remaining $s(n) - 1$ cops cannot occupy all $b_i(n)$ (there are $t(n) = s(n)$ many of them), so going to such a $C_i(n)$ is possible. Now the cops in $N(n)$ cannot move, $s(n) - 1$ free cops cannot expel the robber from $C_i(n)$ and the robber waits in $C_i(n)$ for $b_i(n)$ to be occupied. When the cops announce to do this, he runs via $b_i(n)$ and $A^*(n)$ (which also has a free vertex) to $G_{n - s(n) - 1}(s,t)$ and plays there in the same way recursively.

If the cops do not occupy all vertices in $A^*(n)$ when the robber is in the subgraph $G_{n - s(n) - 1}(s,t)$, they cannot use the cops from $M(n)$, so they cannot expel the robber from $M(n - s(n) - 1)$ (i.e. M in the highest but one level). Indeed, $|M(n - s(n) - 1)| = (n - s(n) - 1) - \left\lfloor \frac{n}{\log(n - s(n) - 1)} \right\rfloor$ and there are at most $(n + s(n) - 1) - (n - s(n)) - 1 = 2s(n) - 2$ free cops (namely $n - s(n)$ cops are in $M(n)$ and 1 cop is on $b_i(n)$), so we only need to choose an appropriately large n, the least possible being 25. Hence we can assume that the cops occupy all $A^*(n)$, i.e. $s(n) + 1$ cops are tied in level n and there are at most $(n + s(n) - 1) - s(n) - 1 = n - 2$ cops for $G_{n - s(n) - 1}(s,t)$.

Let us count the number of possible positions that may appear in a play consistent with the described strategy of the robber. We first count the number of levels ℓ where the cops have more than one cop in $B^i(\ell)$. When playing according to σ, which uses $n + 1$ cops, exactly one cop is in each $B^i(\ell)$ and now we have $s(n) + 2$ cops more, so there are at least $\log n / 2$ levels i with $t(n_i) \geq n / (4 \log n)$. Then there are $\log n / 4$ levels ℓ with at most $4n \log^2 n$ cops in each of them. In order to cover $B^i(\ell)$ in each such level with $4n \log^2 n$ cops, we need \(\frac{t(\ell)}{4n \log^2 n} \) times. As $t(\ell) \geq n / (4 \log n)$, we obtain \(\frac{t(\ell)}{4n \log^2 n} \geq \frac{\log n}{16} \). Summing up, there are $\log n / 4$ levels where the cops have to choose one among at least $\log n / 16$ placements depending of the robber’s choice of the corresponding $C_i(\ell)$. Thus the size of any DAG decomposition of width at most $n + s(n) - 1$ is at least $(\log n / 16)^{\log n / 4}$. Recall that the size of $G_n(s,t)$ is polynomial in n for $t(n) \leq n$.

Corollary 7. There is no polynomial size approximation of an optimal DAG decomposition of $G_n(s,t)$ with an additive constant error.

6 DAG-width is PSPACE-complete

The construction of $G_n(s,t)$ shows how the robber can save the history of the play in the current position. In each level ℓ he chooses one of the $C_i(\ell)$, which is stored as a cop occupying $b_i(\ell)$ until the end of the play. In the first step we extend the construction
to reduce the Tautology problem to DAGW (the problem, given a graph G and a number k, is $\text{DAG-w}(G) \leq k$?). Tautology is the problem, given a formula of propositional logic, to decide whether it is satisfied by all variable interpretations. In general, Tautology is co-NP-hard (Garey and Johnson, 1979, Problem [LO8]), but in our version the formula is given in CNF. This is a restriction, as CNF-Tautology is in PTime, but we use it only as a part of our construction which proves that DAGW is PSPACE-hard. Later we extend it to reduce QBF (which is PSPACE-complete) to DAGW where CNF is the general case (Garey and Johnson, 1979, Theorem 7.10) and is more convenient for our purposes. For a technical reason we also restrict the formula by forbidding a variable to appear twice in a clause.

Let φ be a formula with n variables and m clauses. The graphs H_φ are based on the graphs $G_{n_0+n-1}(s,t)$ from Section 3 such that

- (obviously) the number n of non-trivial levels in $G_{n_0+n-1}(s,t)$ is the number of variables in φ,
- $s(\ell) = t(\ell) = 2$ for all levels ℓ.

It will be convenient to define functions that relate variables and levels. Let the variables of φ be enumerated as X_1, X_2, \ldots, X_n. Let lev be a set of level numbers. Let var be the function mapping a level to an index of a variable such that $\text{var}(\ell) = i$ if and only if $\text{lev}(i) = \ell$.

Consider $G_{n_0+n-1}(s,t)$ as a starting point. We replace $G_{n_0-1}(s,t)$ (which is a single vertex) by the following gadget F_φ. It has a vertex v and for every clause $C = L_1 \lor L_2 \lor \ldots \lor L_r(C)$ an n-clique K_C with vertices $v^C_1, v^C_2, \ldots, v^C_r(C)$. The edges go from v to every vertex of K_C and back, i.e. we have edges (v, v^C_1) and (v^C_1, v) for all clauses C and all $i \in \{1, \ldots, r(C)\}$.

From outside of F_φ, all vertices that had outgoing edges to the vertex of $G_{n_0-1}(s,t)$ now have outgoing edges to all vertices of F_φ. So those edges build the set $A^*(\ell) \times F_\varphi \cup N(\ell) \times F_\varphi$ for every level $\ell \geq n_0$. Additionally we have edges from every vertex of F_φ to every vertex of every $A^*(\ell)$, i.e. the set of edges $V(F_\varphi) \times A^*(\ell)$ for every level ℓ.

Finally, the edges from K_C leaving F_φ reflect the clause C. For all levels ℓ we add the following edges.

1. If $X_{\text{var}(\ell)}$ does not appear in C, then there are edges $(v_j^C, b_0(\ell))$ and $(v_j^C, b_1(\ell))$ for all v_j^C from K_C.
2. If $X_{\text{var}(\ell)} = L_i$ for some $i \in \{1, \ldots, r(C)\}$ (i.e. $X_{\text{var}(\ell)}$ appears in C positively), then there is an edge $(v_{\text{var}(\ell)}^C, b_1(\ell))$.
3. If $\neg X_{\text{var}(\ell)} = L_i$ (i.e. $X_{\text{var}(\ell)}$ appears in C negatively), then there is an edge $(v_{\text{var}(\ell)}^C, b_0(\ell))$.

Observation 8. By assumption, a variable can appear in a clause at most once, so either it does not appear there at all, and we have two edges from every vertex in the clique to the corresponding $B^*(\ell)$, or it appears once and we have exactly one edge from the whole clique to $B^*(\ell)$.

11
We claim that \(n + 1 \) cops capture the robber in \(H_\varphi \) if and only if \(\varphi \) is a tautology.

Lemma 9.
(1) If \(n + 1 \) cops win in \(H_\varphi \), then they must play according to the strategy \(\sigma \) as in the proof of Lemma 2 until a first position \(P \) in that the robber component is \(F_\varphi \).

(2) The cops can play according to \(\sigma \) until position \(P \) (also if the robber wins).

(3) In position \(P \) the only possible move for the cops is to occupy \(v \) with the only free cop.

Proof. The first two claims were proven in Lemma 2 and in Lemma 4. For the third claim, the only free cop is the one that would capture the robber on \(G_{n_0-1}(s, t) \) if we played on \(G_{n_0+n-1}(s, t) \). \(\square \)

The robber chooses a component \(C \). Let the new position be \(P' \).

Lemma 10. In position \(P' \), \(n + 1 \) cops win if and only if there is a cop on a vertex \(w \in B'(\ell) \) for some level \(\ell \) such that

(1) \(w \) is not reachable from \(C \) (via cop free paths) and

(2) \(X_{\var{\ell}} \) appears in \(C \).

Proof. Let \(P' \) be some position as described above. If the cops win, in \(P' \) a cop is free and the cops occupy all \(A^x(\ell) \) (in all levels) and, in each level \(\ell \), one of the two vertices \(b_0(\ell) \) and \(b_1(\ell) \). The free cop is placed on \(v \) in \(F_\varphi \) (there is no other legal move that cops occupy a vertex in \(F_\varphi \) which does not lead to an immediate loss for the cops) and the robber chooses some \(K_C \) for a clause \(C = L_1 \lor L_2 \lor \ldots \lor L_r \). Let \(X_j \) be the variable in the literal \(L_i \). Now for all levels \(\ell \) no cops from any \(A^x(\ell) \) can be removed and reused as this would violate the monotonicity: there are edges from all vertices of \(K_C \) to all vertices of all \(A^x(\ell) \). The cops from every level \(\ell \) such that \(X_{\var{\ell}} \) does not appear in \(C \) cannot be removed for the same reason. Thus only cops from \(\bigcup A^x(\ell) \) can potentially be reused. If no cop from any \(B'(\ell) \) can be reused, the robber wins, otherwise the cops win as follows. Let this cop be in level \(\ell \) and assume without loss of generality that \(\var{\ell} = j_1 \). The cop is placed on \(v_1^C \), then the cop from \(B'(\var{\ell}(j_2)) \) is placed on \(v_2^C \). Now the cop from \(B'(\var{\ell}(j_3)) \) is placed on \(v_3^C \) and so on, the last cop occupying \(v_1^C \).

To see that \(X_{\var{\ell}} \) must appear in \(C \), note that otherwise the cop from \(B'(\ell) \) cannot be removed due to the monotonicity condition. \(\square \)

Lemma 11. \(n + 1 \) cops win on \(H_\varphi \) if and only if \(\varphi \) is a tautology.

Proof. Assume that \(\varphi \) is true under every valuation. The cops have the following winning strategy. Until the robber component is \(F_\varphi \), they play as described in Lemma 2. Then by Lemma 9 they have a free cop that is placed no \(v \in V(F_\varphi) \). The robber chooses some clique \(K_C \) for a clause \(C \).

Let, without loss of generality, \(R(C) \subseteq \{1, \ldots, r(C)\} \) be the set of indices \(\var{\ell} \) of \(X_{\var{\ell}} \) appearing in \(C \). Let \(\alpha : \{ X_i : i \in R \} \to \{0, 1\} \) be the valuation of those \(X_{\var{\ell}} \) defined by the choices of the robber during the previous part of the play as
follows. For all levels \(\ell \), if \(X_{\text{var}(\ell)} \) appears in \(C \) and the robber chose the component \(C_i(\ell) \) in level \(\ell \) (for \(i \in \{0, 1\} \)), then \(\alpha(X_{\text{var}(\ell)}) = 1 \) if \(i = 0 \) and \(\alpha(X_{\text{var}(\ell)}) = 0 \) if \(i = 1 \). Let \(\beta \) be a valuation of \(X_1, \ldots, X_n \) extending \(\alpha \). By assumption \(\beta \models \varphi \), so \(\beta \models C \) and thus there is some \(L_j \) in \(C \) with \(\beta \models L_j \). Let \(\ell \) be such that \(X_{\text{var}(\ell)} = L_j \) or \(\neg X_{\text{var}(\ell)} = L_j \) (we have \(\text{var}(\ell) \in R \)). If \(X_{\text{var}(\ell)} = L_j \), then \(\beta(X_{\text{var}(\ell)}) = \alpha(X_{\text{var}(\ell)}) = 1 \) and thus the robber chose \(C_0(\ell) \) in level \(\ell \). Then a cop occupies \(b_0(\ell) \) in the current position. As \(X_{\text{var}(\ell)} \) occurs in \(C \) positively, there is an edge from \(K_C \) to \(b_1(\ell) \) and by Observation ~8, there is no edge from \(K_C \) to \(b_0(\ell) \). The cop from \(b_0(\ell) \) can be reused and the cops win by Lemma ~9. If \(\neg X_{\text{var}(\ell)} = L_j \), the situation is symmetric.

If \(\varphi \) is not a tautology, let \(\beta \) be a valuation with \(\beta \not\models \varphi \). The robber winning strategy is to choose in level \(\ell \) the component \(C_i(\ell) \) if \(\beta(X_{\text{var}(\ell)}) = 0 \) and the component \(C_0(\ell) \) otherwise. When the cops occupy \(v \), the robber chooses the clique \(K_C \) corresponding a clause \(C = L_1 \lor \ldots \lor L_r(\ell) \) with \(\beta \not\models C \). Then \(\beta \not\models L_j \) for all \(j \in \{1, \ldots, r\} \). Let \(X_{i_j} \) be the variable in \(L_j \). If \(X_{i_j} = L_{j} \), then there is an edge from \(K_C \) to \(b_1(\text{lev}(X_{i_j})) \). As \(\beta \not\models X_{i_j} \), the robber chose \(C_i(\text{lev}(X_{i_j})) \), so there is a cop on \(b_1(\text{lev}(X_{i_j})) \), which cannot be removed. By Observation ~8 there is no other cop in \(B^i(\text{lev}(X_{i_j})) \).

By Lemma ~10 the cops from levels corresponding to variables that do not occur in \(C \) cannot be reused. Thus all cops in all \(B^i(\ell) \) is still reachable from the robber component and the cops lose.

We extend our construction again to model choices of the cops that are still recognizable at the end of the play. This leads to a reduction from QBF, which is PSPACE-complete, to DAGW. A quantified boolean formula \(\varphi \) is of the form

\[
\varphi = Q_1 X_1 \ldots Q_r X_r \psi(X_1, \ldots, X_r)
\]

where \(Q_i \) is either \(\forall \) or \(\exists \) and \(\psi \) is a propositional formula in CNF with variables from \(\mathcal{X} = \{X_1, \ldots, X_r\} \).

The semantics of \(\varphi \) can be defined by means of a two-player game with perfect information, which is convenient for our reduction. It is the model-checking game MCgame(\(\varphi \)) for \(\varphi \) on the fixed structure \((\{0, 1\}, \emptyset)\) with no relations. The players are called \(\forall \) (the universal player) and \(\exists \) (the existential player). A play is played as follows. First, the quantifier prefix of the formula is read from left to right and, for \(i = 1, 2, \ldots, r \), player \(Q_i \in \{\forall, \exists\} \) chooses a value \(\beta(X_i) \in \{0, 1\} \) for \(X_i \). In other words, we have positions \(P_j \) of the form

\[
P_j = Q_j X_j, \ldots, Q_r X_r \psi(X_1/\beta(X_1), \ldots, X_{j-1}/\beta(X_{j-1}), X_j, \ldots, X_r)
\]

where \(X_i/\beta(X_i) \) means that we replace all occurrences of \(X_i \) in \(\psi \) by \(\beta(X_i) \). If \(Q_j = \forall \), then \(P_j \) is a position of the universal player, otherwise \(P_j \) belongs to the existential player. Successor positions have the form

\[
Q_{j+1} X_{j+1}, \ldots, Q_r X_r \psi(X_1/\beta(X_1), \ldots, X_{j+1}/\beta(X_{j+1}), X_{j+2}, \ldots, X_r).
\]

The remaining positions of the game are of the form \((\vartheta, \beta)\) where \(\vartheta \) is a subformula of \(\psi \) and \(\beta \) is the valuation of the variables as chosen in the first part of the play. The
second part starts in position \((ψ, β)\). If \(θ = ϑ_1 ∨ ϑ_2\), the existential player moves to \((ϑ_1, β)\) or to \((ϑ_2, β)\) and if \(θ = ϑ_1 ∧ ϑ_2\), then the universal player moves to \((ϑ_1, β)\) or to \((ϑ_2, β)\). In positions \((X_i, β)\), the existential player wins if \(β(X_i) = 1\) and loses of \(β(X_i) = 0\). In positions \((¬X_i, β)\), the universal player wins if \(β(X_i) = 1\) and loses if \(β(X_i) = 0\). The formula \(ϕ\) is true if and only of the existential player has a winning strategy in the game.

It is very well known that deciding whether a given quantified player is true is \(\text{PSPACE}\)-complete.

The rest of the section is devoted to proof of the following theorem.

Theorem 12. DAGW is \(\text{PSPACE}\)-complete.

The easier part is to show that DAGW is in \(\text{PSPACE}\). It suffices to prove that any play in the cops and robber game has polynomial length. Then deciding the winner of the game is in \(\text{APTIME}\) (alternating \(\text{PTIME}\)) and thus in \(\text{PSPACE}\). If \(k\) cops have a winning strategy on a graph, they also have a winning strategy that always prescribes to place cops in a way that the space available for the robbers shrinks by at least one vertex. We consider a version of the game where the cops have to play in this manner. Then they win if and only if they win in at most \(2n\) moves where \(n\) is the number of vertices of the graph (the robbers can also make \(n\) moves). Thus any play lasts at most \(2n\) steps.

For the hardness we reduce QBF to DAGW. Let

\[
ϕ = Q_1X_1 Q_2X_2 \ldots Q_rX_r ψ(X_1, \ldots, X_r)
\]

be a quantified boolean formula. Our construction of the graph \(S_ϕ\) extends the construction of \(H_ϕ\). For every universal quantifier we add a new level as in \(H_ϕ\). For each existential quantifier we add a level that is depicted in Figure 2. The only difference to a universal level is that we replace edges from \(N(ℓ)\) to \(C_i(ℓ)\) by paths of length two which share the middle vertex \(c_i\). We now give a formal description of the reduction.

If \(ϕ\) has no variables, then if \(ϕ\) is true, \(S_ϕ\) is a single vertex, and if \(ϕ\) is false, \(S_ϕ\) is a 2-clique. (So one cop wins if and only if \(ϕ\) is true.) Otherwise we start the construction of \(S_ϕ\) with \(F_ϕ\) and for \(j = r, r-1, \ldots, 1\) we construct graphs \(S_ϕ^j\) such that \(S_ϕ^1 = S_ϕ\). Assume that \(S_ϕ^{j+1}\) is already constructed, then \(S_ϕ^j\) is the following graph. There are two cases. If \(Q_j = ∃\), then the vertex set is

\[
V(S_ϕ^j) = V_3(j) = V(S_ϕ^{j+1}) ∪ A(j) ∪ B(j) ∪ C_0(j) ∪ C_1(j) ∪ N(n) ∪ \{c_0(j), c_1(j)\}.
\]

Here \(N(j) = M(j) ∪ D(j)\) and \(B(j)\) are as \(N(j)\), \(M(j)\), \(D^s(j)\) and \(B^t(j)\) in \(G_n(s, t)\), i.e.

\[
|B(j)| = |D(j)| = 2, |C_i(1)| = |M(1)| = 4, |C_i(k + 1)| = |M(k + 1)| = |M(k)| + 3
\]

for all \(k ∈ \{2, \ldots, j\}\) and \(i ∈ \{0, 1\}\). Furthermore, \(B(j) = \{b_0(j), b_1(j)\}\). Analogously to the graphs \(G_n\) we call the set of vertices \(V_3 \setminus V(S_ϕ^{j+1})\) an *existential level.*
The set of edges is
\[
E(S^j_\varphi) = E(S^{j+1}_\varphi) \cup \left(N(j) / 2 \cup \bigcup_{i=0}^{1} \left(C_i(j) / 2 \cup A(j) \right) \right)
\]
\[
\cup \bigcup_{i=0}^{1} \left((N(j) \times \{c_i(j)\}) \cup (\{c_i(j)\} \times C_i(j)) \right.
\]
\[
\left. \cup (C_i(j) \times D(j)) \cup (C_i(j) \times \{b_i(j)\}) \right)
\]
\[
\cup (B(j) \times A(j)) \cup (A(j) \times B(j)) \cup (A(j) \times M(j))
\]
\[
\cup (N(j) \times V(S^{j+1}_\varphi)) \cup (A(j) \times V(S^{j+1}_\varphi))
\]
\[
\cup (V(S^{j+1}_\varphi) \times A(j)) \cup E(j).
\]

Here \(E(j)\), the edges connecting \(F_\varphi\) to the new level are defined as follows. Let \(K_C = \{v_1^C, \ldots, v_{r(C)}^C\}\) be a clique in \(F_\varphi\) corresponding to a clause \(C = L_1 \lor \ldots \lor L_r\). If \(X_j = L_1\), then \((v_1^C, b_1(j)) \in E(j)\). If \(\neg X_j = L_1\), then \((v_1^C, b_0(j)) \in E(j)\). Otherwise (i.e. if \(X_j\) does not appear in \(C\)) \(\{(v_i^C, b_0(j)), (v_i^C, b_1(j))\} \subseteq E(j)\) for all \(i \in \{1, \ldots, r(C)\}\).

In the second case \(Q_j = \forall\). Then \(V(S_\varphi(j)) = V_\varphi(j) = V_3(j) \setminus \{c_0(j), c_1(j)\}\) and the edges are defined as in \(H_\varphi\). We call the set of the new vertices a universal level.

We are going to show that \(r + 1\) cops win on \(S_\varphi\) if and only if the existential player wins \(\text{MCgame}(\varphi)\). For that we need some lemmata. Our global assumption is that there are \(r + 1\) cops in total.

Let \(L = \{\ell_1, \ldots, \ell_r\}\) be the set of level numbers and let \(b = (b_{\ell_1}, \ldots, b_{\ell_r})\) be a tuple of bits. (Recall that the levels are numbered such that the biggest is in \(S^r_\varphi\), but not

Figure 2: The existential level of \(S_\varphi\). Indices \((n)\) are omitted.

Here \(E(j)\), the edges connecting \(F_\varphi\) to the new level are defined as follows. Let \(K_C = \{v_1^C, \ldots, v_{r(C)}^C\}\) be a clique in \(F_\varphi\) corresponding to a clause \(C = L_1 \lor \ldots \lor L_r\). If \(X_j = L_1\), then \((v_1^C, b_1(j)) \in E(j)\). If \(\neg X_j = L_1\), then \((v_1^C, b_0(j)) \in E(j)\). Otherwise (i.e. if \(X_j\) does not appear in \(C\)) \(\{(v_i^C, b_0(j)), (v_i^C, b_1(j))\} \subseteq E(j)\) for all \(i \in \{1, \ldots, r(C)\}\).

In the second case \(Q_j = \forall\). Then \(V(S_\varphi(j)) = V_\varphi(j) = V_3(j) \setminus \{c_0(j), c_1(j)\}\) and the edges are defined as in \(H_\varphi\). We call the set of the new vertices a universal level.

We are going to show that \(r + 1\) cops win on \(S_\varphi\) if and only if the existential player wins \(\text{MCgame}(\varphi)\). For that we need some lemmata. Our global assumption is that there are \(r + 1\) cops in total.

Let \(L = \{\ell_1, \ldots, \ell_r\}\) be the set of level numbers and let \(b = (b_{\ell_1}, \ldots, b_{\ell_r})\) be a tuple of bits. (Recall that the levels are numbered such that the biggest is in \(S^r_\varphi\), but not
in \(S^{\ell - 1}_\varphi \). Define

\[
O^b(\ell) = \left(\bigcup_{\ell' > \ell} A(\ell') \right) \cup \{ b_i(\ell_j) : b_{\ell_j} = i, \ell_j > \ell \}.
\]

The first lemma states what the cops can achieve in an existential level.

Lemma 13. Let \(\ell \) be the number of an existential level. Let the cops occupy \(O^b(\ell) \) for some bit vector \(b \) and let the robber component be \(S^\ell_\varphi \). For both \(i \in \{0, 1\} \) the cops have a strategy that allows them either to capture the robber or to expel him from level \(\ell \) such that the cops occupy precisely \(O^b(\ell) \cup A(\ell) \cup \{ b_i(\ell) \} \).

Proof. Note that all cops in \(O^b \) are all tied and there are \(|N(\ell)| + 1 \) free cops. The strategy is as follows. One cop is placed on \(c_{1-i}(\ell) \). This creates two components of \(S^\ell_\varphi \): the one induced by \(C_0(\ell) \) and the one induced by \(N(\ell), A(\ell), B(\ell), C_i(\ell) \) and \(S^{\ell-3}_\varphi \). If the robber is in \(C_i(\ell) \), the remaining free cops expel him from there and the robber is in the other component. Then the cops occupy \(N(\ell) \) and then the cop from \(c_{1-i}(\ell) \) occupies \(b_i(\ell) \). If the robber is in \(C_i(\ell) \) and stays there, he is captured there by the cops from \(N(\ell) \), so assume that the robber goes either to the component induced by \(b_{1-i}(\ell) \) or to the component induced by \(A(\ell) \) and \(S^{\ell-3}_\varphi \). In any case the cops leave \(D(\ell) \) and occupy \(A(\ell) \). If the robber remains in \(b_{1-i}(\ell) \), he is captured by the cop from \(b_i(\ell) \), so assume that he goes to \(S^{\ell-3}_\varphi \). We obtain the required position. \(\square \)

The following lemma describes what the robber can achieve in a level.

Lemma 14. Let \(\ell \) be the number of a level. Let the cops occupy \(O^b(\ell) \) for some bit vector \(b \) and let the robber component be \(S^\ell_\varphi \). The robber has a strategy that permits him either to win or to reach a position where the robber is in \(S^{\ell-3}_\varphi \) and the cops occupy \(O^b(\ell), A(\ell) \) and at least one of \(b_i(\ell) \). If the level is universal, the robber can additionally enforce \(b_0(\ell) \) or \(b_1(\ell) \). Furthermore, this robber strategy is winning if there are only \(|N(\ell)| \) free cops.

Proof. Again, all cops in \(O^b \) are all tied and there are \(|N(\ell)| + 1 \) free cops. The robber stays in \(N(\ell) \) until it is completely occupied by the cops. In that position, one of \(c_i(\ell) \) is not occupied by cops, and the robber runs to \(C_i(\ell) \) and plays as in the proof of Theorem 5. Note that the cops from \(A(\ell') \) and from \(B(\ell') \) for all \(\ell' > \ell \) cannot be removed. \(\square \)

Lemma 15. There is a winning strategy for \(r + 1 \) cops on \(S_\varphi \) if and only if \(\varphi \) is true.

Proof. Assume that \(r \) cops have a winning strategy \(\sigma \) on \(S_\varphi \). Without loss of generality we assume that one cop is placed in \(B(\ell) \) in every level \(\ell \), even if not enforced by the robber. In \(\text{MCgame}(\varphi) \), the existential player simulates the cops and robber game on \(S_\varphi \) by translating the moves of the universal player into robber moves and translating cop moves (according to \(\sigma \)) into his choices of the existentially quantified variables. Assume that we reached a position \(P \) in the cops and robber game and a position \(P_i \) (for \(i \geq 1 \)) in the \(\text{MCgame}(\varphi) \) such that the following invariant (INV) holds.
• Exactly the values $b_j = \beta(X_j)$ for the variables X_j where $j \in \{1, \ldots, i - 1\}$ are already chosen;

• in the cops and robber game, the robber component is S^{r+1-i}_φ with the biggest level number $\ell = \ell(i)$;

• the cops occupy $O^b(\ell)$ for the tuple $b = (b_1, \ldots, b_{i-1})$ and nothing else.

Then there are exactly $\ell + 1$ free cops. If $Q_i = \forall$, the universal player chooses a value $b_i = \beta(X_i)$ for X_i. Then the existential player simulates the cops and robber game playing for the cops according to σ from position P and for the robber as in Lemma 14 such that the robber is expelled from level ℓ and $A(\ell)$ and $b_i(\ell)$ are occupied by cops. The number of free cops suffices for that. It is straightforward to check that the above invariant holds for $i + 1$ and for the position of the cops and robber game where the robber is blocked in the next level, i.e. in level $\ell - 3$.

If $Q_i = \exists$, the existential player simulates the cops and robber game from P until the robber is expelled from level ℓ according to Lemma 13. Here, the cops play according to σ and the robber plays arbitrarily, but such that he is not captured in level ℓ. For example, the robber goes directly to S^{l-3}_φ. Again, there are enough free cops for the simulation. Then exactly one of $b_0(\ell)$ and $b_1(\ell)$ is occupied by a cop. If it is $b_0(\ell)$, the existential player sets $\beta(X_i) = 0$, otherwise $\beta(X_i) = 1$. Again, the invariant holds.

When all variables have their values, the universal player chooses a clause C and the existential player simulates in the cops and robber game the move of the free cop to vertex v in F_φ and the move of the robber to K_φ.

Let us revise the current position. As the cops have played according to σ and σ is a winning strategy, there is still a free cop. The cops completely occupy every $A(\ell)$ and for all ℓ exactly one of $b_0(\ell)$ and $b_1(\ell)$. Every vertex in all $A(\ell)$ and v are still reachable from the robber component, so the free cop is in some $b_i(\ell)$. As the cop is free, there is no edge from any v^C_j to $b_i(\ell)$, i.e. there is the edge from some v^C_j to $b_{i-1}(\ell)$. By construction of S_φ, X_j appears in C and if $i = 0$, then X_j is negative and if $i = 1$, then X_j is positive in C. In the first case $b_i = 0$ and $\beta(X_{c(\ell)}) = 0$, so C is satisfied and the existential player wins by choosing $\lnot X_j$. The second case is symmetric.

For the other direction assume that the existential player has a winning strategy. We show that $r + 1$ cops have a winning strategy. The cops simulate the game $MCgame(\varphi)$ while playing on S_φ by translating the moves of the robber to choices of the universal player and the choices of the existential player to their moves. Assume as before that (INV) holds for some $i \geq 1$.

There are two cases: level ℓ is either existential or universal. In any case, there are $\ell + 1$ free cops and if the level is universal, ℓ of them occupy $N(\ell)$. The robber escapes to some $C_i(\ell)$ for an $i \in \{0, 1\}$ or goes to the component consisting of $A(\ell)$, $B(\ell)$ and S^{l-3}_φ. If the robber is in $C_i(\ell)$ the last remaining cop is placed on $b_i(\ell)$ and the robber proceeds to $\{b_{i-1}(\ell)\} \cup A(\ell) \cup V(S^{l-3}_\varphi)$, otherwise the cop is placed on $b_i(\ell) = b_0(\ell)$ and the robber is in $\{b_1(\ell)\} \cup A(\ell) \cup V(S^{l-3}_\varphi)$. Now the cops from $D(\ell)$ occupy $A(\ell)$ and the robber goes to S^{l-3}_φ (if he goes to the component induced by the free vertex of $B(\ell)$, he loses immediately). Finally, the cops simulate the choice of the universal player: $\beta(X_{c(\ell)}) = i$. It is easy to see that the invariant holds.
If the level is existential, the cops look up what value the strategy for the existential player in MCgame(\(\phi\)) prescribes to choose for \(X_{v}(\ell)\): \(\beta(X_{v}(\ell)) = b_{i} \in \{0, 1\}\). Then according to Lemma 13 the cops can play such that the invariant holds again.

When the play arrives \(F_{\psi}\), there is one free cop that is placed on \(v\) and the robber goes to some \(K_{C}\) for a clause \(C\). As the existential player has a winning strategy, there is some literal \(L_{j}\) in \(C\) that is satisfied by \(\beta\). Without loss of generality, \(L_{j} = X_{i}\) and \(\beta(X_{i}) = 1\). Then \(b_{1}(\ell(i))\) is occupied by a cop, but there is no edge from \(v_{C}^{i}\) to \(b_{1}(\ell(i))\). Recall that in \(C\) every variable appears at most once, so there is no edge from \(C\) to \(b_{1}(\ell(i))\) and the cop from \(b_{1}(\ell(i))\) is free. The cops win by Lemma 10. □

7 Conclusion

We showed that DAG-width cannot be computed efficiently in the classical sense (assuming \(\text{Ptime} \neq \text{PSpace}\)). It would be interesting to find (fixed-parameter tractable) algorithms computing constant factor approximations of an optimal DAG decomposition. Another approach to DAG-width would be to show that DAG-width and Kelly-width are bounded in each other, as deciding Kelly-width is in \(\text{NPtime}\). It is known that DAG-width is bounded in Kelly-width by a quadratic function Kaiser et al. (2014).

References

Barát, J., 2006. Directed Path-width and Monotonicity in Digraph Searching. Graphs and Comb. 22.

Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdržálek, J., 2012. The DAG-width of directed graphs. J. Comb. Theory 102, 900–923. URL: http://www.lsv.ens-cachan.fr/~dwb/dagwidth.pdf.

Diestel, R., 2012. Graph Theory, 4th Edition. Springer.

Fomin, F., Golovach, P., Thilikos, D., 2011. Approximation algorithms for domination search, in: Jansen, K., Solis-Oba, R. (Eds.), Approximation and Online Algorithms (WAOA). Springer Berlin / Heidelberg. volume 6534 of Lecture Notes in Computer Science, pp. 130–141.

Fomin, F., Kratsch, D., Müller, H., 2003. On the domination search number. Discrete Applied Mathematics 127, 565–580.

Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman.

Hunter, P., Kreutzer, S., 2008. Digraph measures: Kelly decompositions, games, and orderings. Theor. Comput. Sci. 399.
Johnson, T., Robertson, N., Seymour, P., Thomas, R., 2001. Directed Tree-Width. J. Combin. Theory, Ser. B 82.

Kaiser, Ł., Kreutzer, S., Rabinovich, R., Siebertz, S., 2014. Directed width measures and monotonicity of directed graph searching. arXiv. URL: http://arxiv.org/pdf/1408.4745v1.

Kreutzer, S., Ordyniak, S., 2009. Distance-d-domination games, in: 34th International Workshop on Graph-Theoretic Concepts in Computer Science (WG).

Rabinovich, R., 2013. Graph Complexity Measures and Monotonicity. Ph.D. thesis. RWTH Aachen University.

Reed, B., 1999. Introducing directed tree-width. Electronic Notes in Discrete Mathematics 3, 222 – 229.

Safari, M.A., 2005. D-width: A more natural measure for directed tree width, in: Jedrzejowicz, J., Szepietowski, A. (Eds.), MFCS, Springer. pp. 745–756.