Prediction of functional modules based on comparative genome analysis and Gene Ontology application

Hongwei Wu1,2, Zhengchang Su1,2, Fenglou Mao1, Victor Olman and Ying Xu1,2,*

1Department of Biochemistry and Molecular Biology, University of Georgia, 120 Green Street, Athens, GA 30602-7229, USA and 2Computational Biology Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Received January 28, 2005; Revised April 5, 2005; Accepted April 25, 2005

ABSTRACT

We present a computational method for the prediction of functional modules encoded in microbial genomes. In this work, we have also developed a formal measure to quantify the degree of consistency between the predicted and the known modules, and have carried out statistical significance analysis of consistency measures. We first evaluate the functional relationship between two genes from three different perspectives—phylogenetic profile analysis, gene neighborhood analysis and Gene Ontology assignments. We then combine the three different sources of information in the framework of Bayesian inference, and we use the combined information to measure the strength of gene functional relationship. Finally, we apply a threshold-based method to predict functional modules. By applying this method to Escherichia coli K12, we have predicted 185 functional modules. Our predictions are highly consistent with the previously known functional modules in E.coli. The application results have demonstrated that our approach is highly promising for the prediction of functional modules encoded in a microbial genome.

INTRODUCTION

The worldwide sequencing efforts of microbial genomes (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.html, http://www.sanger.ac.uk/Projects/Genomes, http://www.tigr.org/db/mdb/mdbcomplete.html and http://microbialgenome.org) have led to the completion of over 200 microbial genomes, and this number will continue to increase very rapidly. We expect to see over a thousand sequenced genomes within the next few years. This wealth of genomic data provides unprecedented opportunities for computational biologists to unveil the enormous amount of information encoded in the genomes about the biological machinery of these micro-organisms.

The complex biological processes in a living microbial cell, including metabolism, regulations and signal transduction, are carried out by a large set of functional modules at various levels. These functional modules are made up of interacting biomolecules and serve as the basic building blocks of the complex biological machinery in a microbial cell. Some of the functional modules are organized in a hierarchical manner while others could serve in multiple levels forming a complex organizational network. At the very basic level in the functional hierarchy is the set of operons (1,2) (we also consider single-gene operons here), each of which are arranged in tandem in the genome and share a common promoter and a common terminator. A regulon is a group of operons that are regulated by a common transcriptional regulator (1,2), and a modulon is a group of regulons that are controlled by more global regulators and respond to more general physiological states (1,2). At the top of this functional hierarchy is a set of stimulons, each of which consists of a collection of operons, regulons and/or modulons that respond to a common environmental stimulus (1,2). In general, functional modules at different levels are made up of combinations of operons, regulons, modulons and possibly stimulons, many of which might have ‘conserved’ components and structures across multiple (related) microbial organisms. We expect that the interactions of these functional modules play the essential roles in the entire functionality of a microbial organism (3,4).

In this paper, we present a new computational framework for the prediction of functional modules in a microbial organism through comparative genome analysis and application of Gene Ontology (GO) (5) information. Our focus will be on the identification of genes involved in a functional module rather than the detailed interaction relationships among these genes. This study provides a basis for further prediction of detailed
gene functions and prediction of biological (metabolic, signaling and regulatory) networks.

Comparative genome analysis is one of the most powerful tools to unravel the information encoded in a genome (6,7). By identifying conserved elements across multiple genomes, researchers have been able to uncover biological functions and structures at different levels of the biological machinery in a microbial cell. Successful applications of such a strategy include predictions of gene functions (8–10), cis-regulatory elements (11,12), operons (13,14) and regulons (11,15).

Our approach to the identification of functional modules is based on three classes of information: (i) co-evolutionary information of genes that are encoded in phylogenetic profiles (8); (ii) conserved gene neighborhood information, which reflects if genes have ‘conserved’ adjacency relationship across multiple microbial genomes and, hence, possibly suggest their functional relatedness; and (iii) functional relatedness information of genes that are encoded in the GO classification (5,16). GO is a dynamically controlled vocabulary that can be applied to all organisms and has been used to measure protein or gene relationships (17–20). In this paper, we define a similarity measure among GO terms to evaluate the functional relationship of genes.

Each of the three measures provides a different perspective about functional relationships among genes. Information derived through each of them is then combined using a Bayesian inference framework. Using this combined score, we predict whether two genes belong to the same functional module. We use a graph representation to describe such a functional relatedness relationship. That is, if two genes are predicted to belong to the same functional module, they will have an edge linking their representative nodes in this graph representation. We believe that a functional module, in general, should be represented by a group of genes that are highly connected in this graph representation. In addition, each ‘highly connected’ subgraph may be part of a larger and also highly connected subgraph representing for functional modules at different levels in the biological machinery of a microbial cell. We have applied this computational procedure to the genome of *Escherichia coli* K12. On the 2579 genes of *E.coli* that have been assigned biological process GO terms, we have predicted a large interaction network involving these genes. Then using a particular segmentation strategy on this network, we have obtained 185 highly connected modules covering 654 genes. By comparing these predicted modules to the known pathways, regulons and operons in the Eco Cyc (21) and KEGG (22) databases, we have observed that the highest matching degrees (see definition later) achieved by these predicted modules are significantly higher than those achieved by randomly generated modules. We believe that this large interaction network contains a great amount of information about functional modules and relationships among them in *E.coli*. The predicted modules presented in this paper represent probably only a small subset of the functional modules in *E.coli*. In our future work, we intend to fully investigate the functional modules and their organizational structures by further refining the large network prediction and exploring more sophisticated strategies to identify many more such functional modules.

There have been numerous efforts in the past few years, devoted to the discovery of molecular modules through computational methods, as exemplified by the previous works (19,20,23–25). Lee et al. (19) compared different classes of data (including the physical and genetic interaction datasets, mRNA co-expression data, functional links extracted through literature search, prediction of gene fusion events and phylogenetic profile analysis) and integrate them by using a Bayesian framework, and Lee et al. (20) first developed quantitative ways to measure functional relationship among genes from three different sources of information (including gene fusion, chromosomal proximity and phylogenetic profiles) and predicted functional modules by using a clustering algorithm. Spirin and Mirny (23) developed algorithms to analyze the structural properties of a predicted interaction network to identify the subsets of genes that are densely connected among themselves but sparsely connected with others. Yamada et al. (24) extracted gene modules from metabolic pathways by identifying genes that share similar phylogenetic profiles. Yanai and Delisi (25) predict gene links by using the same sources of information as described previously (20) and use the union operation to combine the three types of links to predict gene modules. The gene modules predicted by all these studies have shown some level of consistency with the well-established biological concepts as described in COGG (26), Eco Cyc (21) and KEGG (22).

Our approach differs significantly from the previous methods, as summarized below: (i) we utilize both the phylogenetic and the neighborhood profiles obtained from the comparative genome analysis; (ii) we explicitly incorporate the GO information into our evaluation of functional relationships of genes; (iii) we combine different sources of information in the framework of the Bayesian inference; and (iv) we develop a formal measure to quantify the degree of consistency between the predicted and the known modules, and we provide analysis of statistical significance for such comparisons.

MATERIALS AND METHODS

We first evaluate the functional relationships among genes from three different perspectives: one based on GO assignments and the other two based on comparative genome analysis. We, then, combine these different measures by using a Bayesian inference to predict functional modules.

Gene Ontology

The GO Consortium (5) has developed three separate ontologies—molecular function, biological process and cellular component—to describe the attributes of gene products, where molecular function defines what a gene product does at the biochemical level without specifying where or when the event actually occurs or its broader context; biological process describes the contribution of a gene product to a biological objective; and cellular component refers to where in the cell a gene product functions. Each GO is structured as a directed acyclic graph, wherein each term is a child of one or multiple parents, and child terms are instances or components of parent terms. For example, in Figure 1, the term carbohydrate biosynthesis (GO: 0016051) is an instance of the term carbohydrate metabolism (GO: 0005975) as well as an instance of the term macromolecule biosynthesis (GO: 0009059).
From another point of view, from each GO term \(V \), we can induce a directed acyclic graph that has the following properties:

(i) The bottommost level of the graph is \(V \) itself, and at upper levels are its ancestor GO terms. Particularly, at the topmost level is the term Gene_Ontology (GO: 0003673).

(ii) Given two GO terms \(V_1 \) and \(V_2 \), if \(V_1 \) is one of the ancestors of \(V_2 \); then, the graph induced from \(V_1 \) is completely included as a subgraph in the graph induced from \(V_2 \).

Figure 1 shows the graph induced from the term UDP-N-acetylgalactosamine biosynthesis (GO: 0019277). Note that the graph induced from a GO term can also be represented by a collection of paths with each path corresponding to a complete trace from the bottommost level (i.e. the GO term of interest itself) to the topmost level (i.e. the term Gene_Ontology).

For example, one possible path in the graph of Figure 1 is as follows:

\[
\text{UDP-N-acetylgalactosamine biosynthesis (GO: 0019277)} \rightarrow \text{amino sugar biosynthesis (GO: 0046349)} \rightarrow \text{carbohydrate biosynthesis (GO: 0016051)} \rightarrow \text{macromolecule biosynthesis (GO: 0009059)} \rightarrow \text{biosynthesis (GO: 0009058)} \rightarrow \text{metabolism (GO: 0008152)} \rightarrow \text{physiological process (GO: 0007582)} \rightarrow \text{biological_process (GO: 0008150)} \rightarrow \text{Gene_Ontology (GO: 0003673)}.
\]

The number of terms along the longest path in a graph is called the depth of the graph. For example, the depth of the graph for Figure 1 is 9. The depth of a graph reflects how specific the GO term is in describing the attributes of gene products. Hence, a GO term is always more specific than its ancestor GO terms.
In the rest of this paper, we do not differentiate between a GO term and the graph induced from it. When quantifying the similarity between two GO terms, it is desired that both their commonality and individual specificities (in describing the attributes of gene products) can be captured simultaneously. Let V_s and V_r be the graphs induced from two GO terms, respectively. We define their similarity $s(V_s, V_r)$ as follows:

$$s(V_s, V_r) = \max_{L_s \in V_s, L_r \in V_r} \{ \text{the number of common terms between } L_s \text{ and } L_r \},$$

where L_s and L_r are the paths of V_s and V_r, respectively. If $s(V_s, V_r)$ is large, it means that the two GO terms are both highly specific and share much commonality in describing the attributes of gene products; if $S_{GO}(V_s, V_r)$ is small, it means that either the two GO terms are not highly specific or they do not share much commonality; and, if $s(V_s, V_r) > s(V_v, V_r)$, it means that the most recent common ancestor of V_s and V_r is more specific than the most recent common ancestor of V_v and V_r.

The above defined similarity measure is then used to assess the functional relationship among genes (through their products) based on their biological process GO assignments. Because a gene product may be involved in more than one biological process, it may be assigned with multiple GO terms, and, therefore, multiple GO graphs may be induced. Let $V(g)$ denote all the GO terms assigned to a gene g. We define the GO similarity S_{GO} for a pair of genes g_i and g_j, as the maximum similarity of all possible combinations of $V(g_i)$ and $V(g_j)$, i.e.

$$S_{GO}(g_i, g_j) = \max_{v_i \in V(g_i), v_j \in V(g_j)} s(V_i, V_j),$$

where V_i and V_j are the GO terms assigned to g_i and g_j, respectively. If $S_{GO}(g_i, g_j)$ is large, then at a very specific level the two genes are involved in at least one common biological process (e.g. both of them are involved in the UDP-N-acetylgalactosamine biosynthesis); and if $S_{GO}(g_i, g_j)$ is small, then only at a very general level can the two genes be considered to be involved in the same biological process (e.g. both of them are involved in the physiological process).

Our similarity measure for GO annotations is very similar in concept to the information-content based semantic similarity defined by Lord et al. (27), although the two definitions treat in different ways how specific the most recent common ancestor of two GO terms is. In our definition, the specificity of a GO term is reflected by the number of GO terms along the longest path (distance) to the topmost level GO term, whereas in (27) the specificity is reflected by the number of genes that are assigned with it or its descendant GO terms. When assessing the functional relationship among genes using the similarity measure of GO terms, we take a different approach from that of Lord et al. (27). Given all GO terms assigned to two genes, we use the maximum similarity of all term pairs, whereas Lord et al. use the average similarity of all term pairs. We believe that the difference between the implementations of ours and Lord et al.’s is minor compared with their commonality at the conceptual level.

As we focus on the prediction of functional modules, which are basic building blocks of the biological machinery of a microbial cell for carrying out complex biological processes, we are most interested in whether a specific gene is involved in related biological processes and have consequently only used the biological process GO annotations of genes. Out of the 4311 genes in E.coli K12 (release of December 2003), 2579 genes have been assigned biological process GO terms by the GO Annotation project (16) (release of September 2004). In this paper we focus on these 2579 genes. These genes form 3 324 331 gene pairs, among which 46 009 pairs whose two genes belong to the same functional module (i.e. an operon, regulon or pathway) according to Eco Cyc (21) are considered to form the positive set, and the remaining 3 278 322 pairs are considered to form the background (or called random) set. Note that a random set is not necessarily an equivalent to a negative set, where the former consists of the pairs whose two genes have not been confirmed by experiments to be involved in the same functional module, and the latter consists of the pairs whose two genes have been confirmed by experiments not to be involved in the same functional module. Since our knowledge about the role of a protein/gene in biological processes is still accumulating and evolving, it might be difficult to identify a true negative set. Hence, we use a random set rather than a negative set.

The means and standard deviations of $S_{GO}(g_i, g_j)$ for both the positive and the random sets are summarized in Table 1. We have performed a χ^2-test (28) to check if the distribution of $S_{GO}(g_i, g_j)$ is different for the positive and the random sets. The χ^2-statistics (four bins have been used for the χ^2-test, so that there are \sim32, 41, 15 and 27% of positive pairs, and 37, 37, 16 and 10% random pairs falling into the four bins, respectively) is corresponding to a P-value less than 10^{-4}, which reveals that the distribution of $S_{GO}(g_i, g_j)$ for the positive set is significantly different from the random set. Figure 2 shows the distribution of $S_{GO}(g_i, g_j)$ for the positive and the random sets. From this figure, we can see that a pair of genes of the same functional module (operon, regulon or pathway) are more likely to have a high degree of GO similarity than a random pair.

Comparative genome analysis

Among the 145 complete genome sequences of bacteria and archaea that are available (release of December 2003), we have used 135 genomes for our comparative genome analysis, including E.coli K12 as the target genome and the other 134 as the reference genomes. Let G_0, N_0 and g_0, denote the genome, the number of genes and the i-th ($i = 1, \ldots, N_0$) gene of E.coli K12, and G_k, and N_k denote the genome and the number of genes of the k-th ($k = 1, \ldots, K$, $K = 134$ in our study) reference genome, respectively.

The first step in our comparative genome analysis is to predict orthologous genes for each gene of E.coli K12 in the reference genomes. We have used the PSI-BLAST (29) with an E-value of 10^{-6} to search for the bi-directional best

| Table 1. Means and standard deviations of $S_{GO}(g_i, g_j)$, $d_{GO}(g_i, g_j)$, $S_n(g_i, g_j)$ and $Comb_{GO}(g_i, g_j)$ for the positive and the random sets |
|--|--|--|--|--|
| $S_{GO}(g_i, g_j)$ | $d_{GO}(g_i, g_j)$ | $S_n(g_i, g_j)$ | $Comb_{GO}(g_i, g_j)$ |
| Mean | SD | Mean | SD | Mean | SD | Mean | SD |
| Positive set | 3.652 | 1.871 | 23.273 | 11.365 | 0.864 | 0.436 | 0.286 | 1.192 |
| Random set | 3.111 | 1.244 | 26.882 | 16.077 | 0.720 | 0.266 | 0.262 | 0.813 |
hit (BDBH) and have obtained the following two profiles for each gene of E.coli K12, g_i ($i = 1, \ldots, N_0$):

(i) The phylogenetic profile of g_i is a K-dimensional binary vector indicating the presence or absence of the orthologous genes of g_i in the reference genomes.

(ii) The neighborhood profile is a K-dimensional vector with each element indicating the absence or the order of the orthologous genes of g_i along the reference genomes.

These two profiles are then used to evaluate the functional relationships of genes.

Dissimilarity of phylogenetic profiles. Let $x_i \equiv \{x_{i1}, x_{i2}, \ldots, x_{ik}\}$ denote the phylogenetic profile of gene g_i, with $x_{ik} = 1$ representing the presence and $x_{ik} = 0$ for the absence of g_i in G_k. Given the phylogenetic profiles x_i and x_j for a pair of genes g_i and g_j, we define their dissimilarity $d(g_i, g_j)$ as follows:

$$d(g_i, g_j) = \frac{d_{Hamming}(x_i, x_j)}{1 + \gamma \text{Entropy}(x_i, x_j)},$$

where $d_{Hamming}(x_i, x_j)$ represents the Hamming distance between x_i and x_j, γ is a non-negative constant and has been set as 2 in our study, and $\text{Entropy}(x_i, x_j)$ is the entropy of the common part of x_i and x_j and is computed as follows:

$$\text{Entropy}(x_i, x_j) = -p \log p - (1-p) \log (1-p)$$

with p being the frequency of 1’s in the common part. The dissimilarity between x_i and x_j ranges from 0 to K, with 0 and K corresponding to the identical and complementary phylogenetic profiles, respectively, and is smaller when x_i and x_j have a smaller Hamming distance and/or a more diverse common part. We omit further details about how to choose the value of the constant γ to balance between the Hamming distance and the entropy of x_i and x_j.

To check if the distribution of $d(g_i, g_j)$ is different for the positive and the random sets, we have performed both Kolmogorov–Smirnov test (by treating $d(g_i, g_j)$ as an observation of a continuous random variable] and χ^2-tests (28). The Kolmogorov–Smirnov test rejects the hypothesis that the distribution of $d(g_i, g_j)$ is the same for the positive and the random sets with a significance level less than 10^{-4}, while from the χ^2-test (nine bins have been used for the χ^2-test, so that there are at least 6% of positive pairs and 5.58% of random pairs in each bin) we have obtained the χ^2-statistics value of 1341 corresponding to a P-value less than 10^{-4}. Therefore, both tests demonstrate that the distribution of $d(g_i, g_j)$ for the positive set is significantly different from the random set. Figure 3 shows the distributions of $d(g_i, g_j)$ for the positive and the random sets. Note that a pair of genes from the same functional module are less likely to have a large measure of dissimilarity than a random pair.

Likelihood of neighborhood profiles. Let $y_i \equiv \{y_{i1}, y_{i2}, \ldots, y_{ik}\}$ denote the neighborhood profile of a gene g_i. When the k-th element of y_i, y_{ik}, is 0, it stands for that the orthologous gene of g_i is absent from G_k; when y_{ik} is $n \neq 0$, it stands for that the orthologous gene of g_i is ordered as the n-th gene along G_k. We make the following assumptions about the statistical model for the neighborhood profiles:

(i) For each gene g_i and each reference genome G_k, g_i is present in G_k with probability p_{ik}; and when present, the order of g_i along G_k is uniformly distributed over $\{1, 2, \ldots, N_k\}$, i.e.

$$p(y_{ik} = n) = \begin{cases} 1-p_{ik}, & \text{when } n = 0 \\ p_{ik}/N_k, & \text{when } n = 1, 2, \ldots, N_k. \end{cases}$$

(ii) For each gene g_i, the elements of y_i are independent, i.e.

$$P(y_{ik}, y_{il}) = P(y_{ik})P(y_{il}), \quad k, l \in \{1, 2, \ldots, K \} \text{ and } k \neq l.$$

This means that a gene’s behavior (i.e. the presence/absence and order) is independent among different reference genomes.

Given a pair of genes g_i and g_j, under the hypothesis that g_i and g_j do not functionally relate to each other, their
neighborhood profiles \(y_i \) and \(y_j \) can be treated as independent random vectors; hence, the log-likelihood of \(y_i \) and \(y_j \), \(L(g_i, g_j) \), is computed as follows:

\[
L(g_i, g_j) = \sum_{k=1}^{K} L(g_i, g_j, G_k)
\]

with \(L(g_i, g_j, G_k) \) standing for the log-likelihood of \(y_i \) and \(y_j \) and are being computed as follows:

\[
L(g_i, g_j, G_k) = I(y_{ik} = 0, y_{jk} = 0) \log P_{00} + I(y_{ik} = 0, y_{jk} \neq 0) \log P_{01} + I(y_{ik} \neq 0, y_{jk} = 0) \log P_{10} + I(y_{ik} \neq 0, y_{jk} \neq 0) \log P_{11},
\]

where \(I(\cdot) \) is 1 if and only if both criteria within the parentheses are satisfied and is 0 otherwise, \(P_{00} \) stands for the probability that neither \(g_i \) nor \(g_j \) is present, \(P_{01} \) stands for the probability that only \(g_i \) is present, and \(P_{11} \) stands for the probability that both \(g_i \) and \(g_j \) are present and have a distance not more than \(d_k(i, j) \) with \(d_k(i, j) \equiv |y_{ik} - y_{jk}| \) being the observed distance between \(g_i \) and \(g_j \) (in terms of the number of genes in between) along \(G_k \). Since \(y_{ik} \) and \(y_{jk} \) can be treated as independent random variables under the hypothesis that \(g_i \) and \(g_j \) are functionally unrelated, these four probabilities are computed as follows:

\[
P_{00} = (1 - p_{ik})(1 - p_{jk}).
\]

\[
P_{01} = (1 - p_{ik})p_{jk}.
\]

\[
P_{10} = p_{ik}(1 - p_{jk}).
\]

\[
P_{11} = p_{ik}p_{jk} \frac{d_k(i, j)(2N_k - d_k(i, j) - 1)}{N_k(N_k - 1)}.
\]

Note that \(P_{11} \) is very small when \(d_k(i, j) \), \(p_{ik} \) and/or \(p_{jk} \) are small. This is consistent with our intuition—it is very unlikely that two functionally unrelated genes are simultaneously present at a genome with a small distance, especially when these two genes are not highly conserved at this genome.

The likelihood \(L(g_i, g_j) \) is the evidence supporting the hypothesis that the two genes do not functionally relate to each other. The larger \(L(g_i, g_j) \) is, the more supportive the neighborhood profiles \(y_i \) and \(y_j \) are for this hypothesis; and the smaller \(L(g_i, g_j) \) is, the more \(y_i \) and \(y_j \) are against this hypothesis (i.e. the more supportive \(y_i \) and \(y_j \) are for the alternative hypothesis that the two genes functionally relate to each other in some way).

We use the score

\[
S_N(g_i, g_j) \equiv -L(g_i, g_j)
\]

to evaluate the strength of the functional relationship between \(g_i \) and \(g_j \) in terms of their neighborhood profiles. In this way, a larger \(S_N(g_i, g_j) \) implies a stronger functional relationship between \(g_i \) and \(g_j \).

In practice, \(p_{ik} \) is unknown and must be estimated from phylogenetic profiles. We first group all the 134 reference genomes into 14 groups so that each group corresponds to a phylum (as shown in Table 2), and then assume that \(p_{ik} \) is identical within the same group of genomes for each gene \(g_i \).

The maximum-likelihood estimation of \(p_{ik} \) is computed as the frequency of \(g_i \) in the group that \(G_k \) belongs to, i.e.

\[
p_{ik} = \frac{\text{the number of genomes having } g_i \text{ in the group } G_k \text{ belongs to}}{\text{the number of genomes in the group } G_k \text{ belongs to}}.
\]

We have performed both the Kolmogorov–Smirnov test and the \(\chi^2 \)-test to check if the distribution of \(S_N(g_i, g_j) \) is different for the positive and the random sets. The Kolmogorov–Smirnov test rejects the hypothesis that the distribution of \(S_N(g_i, g_j) \) is the same for the positive and the random sets with significance level less than \(10^{-4} \); and from the \(\chi^2 \)-test (seven bins have been used for the \(\chi^2 \)-test, so that there are at least 8% of positive gene pairs and 5.7% of random gene pairs in each bin) we have obtained the \(\chi^2 \)-statistics value of 7583 corresponding to a \(P \)-value less than \(10^{-4} \). Therefore, both tests demonstrate that the distribution of \(S_N(g_i, g_j) \) for the positive set is significantly different from the random set. Figure 4 shows the distribution of \(S_N(g_i, g_j) \) for both the positive and the random sets. As shown in the figure, a pair of genes of the same functional module are more likely to have a large neighborhood score than a random pair.

Bayesian inference for information fusion

As we have shown, the GO similarity measure \(S_{GO}(g_i, g_j) \), the dissimilarity measure of phylogenetic profiles \(d(g_i, g_j) \), and the neighborhood score \(S_N(g_i, g_j) \) reflect the possible functional relationship between two genes from different perspectives. To fully utilize the information from all the three sources, we combine them by using a Bayesian inference approach.

Given two genes \(g_i \) and \(g_j \), we assume that their GO assignments are conditionally independent of their comparative genome analysis. Therefore, based on the three measures, \(S_{GO}(g_i, g_j) \), \(d(g_i, g_j) \) and \(S_N(g_i, g_j) \), the odds of \(g_i \) and \(g_j \) belonging to the same functional module can be computed as follows:

\[
P(g_i, g_j) = P(g_i \in \text{same module} \mid S_{GO}(g_i, g_j), d(g_i, g_j), S_N(g_i, g_j))
\]

\[
P(g_i, g_j) = \frac{P(S_{GO}(g_i, g_j) \mid g_i, g_j \in \text{the same module})}{P(S_{GO}(g_i, g_j) \mid g_i \notin \text{the same module})}
\]

\[
= P(d(g_i, g_j), S_N(g_i, g_j) \mid g_i, g_j \in \text{the same module}) \times P(S_N(g_i, g_j) \mid g_i, g_j \notin \text{the same module})
\]

\[
= \frac{P(d(g_i, g_j), S_N(g_i, g_j) \mid g_i, g_j \in \text{the same module})}{P(d(g_i, g_j), S_N(g_i, g_j) \mid g_i \notin \text{the same module})}
\]

\[
= \frac{P(g_i, g_j \in \text{the same module})}{P(g_i \notin \text{the same module})}
\]

We use the logarithm of (9), i.e.

\[
C_{\text{combined}}(g_i, g_j) \equiv \log P(g_i, g_j \in \text{the same module} \mid S_{GO}(g_i, g_j), d(g_i, g_j), S_N(g_i, g_j)) - \log P(g_i, g_j \notin \text{the same module} \mid S_{GO}(g_i, g_j), d(g_i, g_j), S_N(g_i, g_j \pm g_j))
\]

as the combined score for \(g_i \) and \(g_j \). The higher \(C_{\text{combined}}(g_i, g_j) \) is, the stronger the functional relationship between \(g_i \) and \(g_j \) we consider them to have.

Note that the ratios and conditional distributions in the last three rows of (9) must be known or estimated a priori in order to calculate \(C_{\text{combined}}(g_i, g_j) \) for any pair of genes. To estimate
Table 2. Group assignments of the 134 reference genomes

Phylum	Genomes
Crenarchaeota	Aerothrix pernix, Pyrococcus aerophilum, Sulfolobus solfataricus, Sulfolobus tokodaii
Aquificae	Aquifex aeolicus
Euryarchaeota	Archaeoglobus fulgidus DSM 4304, Halobacterium sp. NRC-1, Methanococcus jannaschii, Methanopyrus kandleri AV19, Methanosarcina acetivorans str. C2A, Methanosarcina mazei Goel, Methanothermococcus thermostrophicus, Pyrococcus abyssi, Pyrococcus horkohii, Pyrococcus furiosus DSM 3638, Thermoplasma acidophilum, Thermoplasmata volcanii
Firmicutes	Bacillus anthracis A2012, Bacillus anthracis str. Ames, Bacillus cereus ATCC 14579, Bacillus halodurans, Bacillus subtilis, Clostridium acetobutylicum, Clostridium perfringens, Clostridium tetani E88, Enterococcus faecalis V583, Lactobacillus plantarum WCFS1, Lactococcus lactis subsp. lactis, Listeria innocua, Listeria monocytogenes EGD-e, Mycoplasma gallisepticum R, Mycoplasma genitalium, Mycoplasma penetrans, Mycoplasma pulmonis, Mycoplasma pneumoniae, Oceanobacillus iheyensis HTE831, Staphylococcus aureus subsp. aureus MW2, Staphylococcus aureus subsp. aureus Mu50, Staphylococcus aureus subsp. aureus N315, Staphylococcus epidermidis ATCC 12228, Streptococcus agalactiae 2603VR, Streptococcus agalactiae NEM316, Streptococcus mutans UA159, Streptococcus pneumoniae R6, Streptococcus pneumoniae TIGR4, Streptococcus pyogenes, Streptococcus pyogenes MGAS315, Streptococcus pyogenes MGAS8232, Streptococcus pyogenes SSI-1, Thermotoga maritima, Thermoplasma acidophilum, Thermplasmata volcanii
Bacteroidetes	Bacteroides thetaiotaomicron VPI-5482, Chlorobium tepidum TLS, Porphyromonas gingivalis W83
Actinobacteria	Bifidobacterium longum NCC2705, Corynebacterium diphtheriae, Corynebacterium efficiens YS-314, Corynebacterium glutamicum ATCC 13032, Mycobacterium bovis subsp. bovis AF212297, Mycobacterium leprae, Mycobacterium tuberculosis CDC1551, Mycobacterium tuberculosis H37Rv, Streptomyces avermitilis MA-4680, Streptomyces coelicolor A3(2), Tropheryma whipplei TW08/27, Tropheryma whipplei str. Twist
Spirochaetes	Borrelia burgdorferi, Treponema pallidum
Chlamydiae	Chlamydia muridarum, Chlamydia trachomatis, Chlamyphila caviae GPC, Chlamyphila pneumoniae AR39, Chlamyphila pneumoniae CWL029, Chlamyphila pneumoniae J138, Chlamyphila pneumoniae TW-183
Fusobacteria	Fusobacterium nucleatum subsp. nucleatum ATCC 25586
Cyanobacteria	Gloeobacter violaceus, Nostoc sp. PCC 7120, Prochlorococcus marinus str. MIT 9313, Prochlorococcus marinus subsp. marinus str. CCMP1375, Prochlorococcus marinus subsp. pastoris str. CCMP1378, Synechococcus sp. WH 8102, Synechocystis sp. PCC 6803, Thermosynechococcus elongatus BP-1
Nanoarchaeota	Nanoarchaeum equitans Kini4-M
Planctomycetes	Pirellula sp.
Thermotogae	Thermotoga maritima
Proteobacteria	Bordetella bronchiseptica, Bordetella parapertussis, Bradyrhizobium japonicum, Buchnera aphidicola (Baiizzlinga pistaciae), Buchnera aphidicola str. APS (Acrithosiphon pisum), Buchnera aphidicola str. Sg (Schizaphis graminum), Campylobacter jejuni, Candidatus Bloemnana florianus, Caulobacter crescentus CB15, Chromobacterium violaceum ATCC 12472, Coxiella burnetti RSA 493, Escherichia coli CFT073, Escherichia coli O157:H7, Escherichia coli O157:H7 EDL933, Haemophilus ducreyi 35000HP, Haemophilus influenzae Rd, Helicobacter hepaticus ATCC 51449, Helicobacter pylori 26695, Helicobacter pylori 199, Mesorhizobium loti, Neisseria meningitidis MC58, Neisseria meningitidis Z2491, Nitrosomonas europaea ATCC 19718, Pasteurella multocida, Photobahbubla luminiscens subsp. laumondii TTO1, Pseudomonas aeruginosa PA01, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato str. DC3000, Ralstonia solanacearum, Rickettsia conorii, Rickettsia prowazekii, Salmonella enterica subsp. enterica serovar Typhi, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Shewanella oneidensis MR-1, Shigella flexneri 2a str. 2457T, Shigella flexneri 2a str. 301, Sinorhizobium meliloti, Wigglesworthia glossinidia endosymbiont of Glossina brevipalpis, Wolinella succinogenes, Xanthomonas axonopodis pv. citri str. 306, Xanthomonas campestris pv. campestris str. ATCC 33913, Xylella fastidiosa 9a5e, Xylella fastidiosa Temecula1, Yersinia pestis, Yersinia pestis KIM

Figure 4. Distribution of $S_k(g_j, g_k)$ for the positive (blue) and the random (red) sets.

them, we consider a pair of genes in the positive set to be in the same module, and a pair in the random set not to be in the same module.

On estimating the joint conditional distributions of \{d(g, g_i), S_k(g, g_i)\} of (9), we have taken two different approaches. One approach, called the naive Bayesian inference (30), assumes the conditional independence between $d(g, g_i)$ and $S_k(g, g_i)$, and estimates the conditional distributions of $d(g, g_i)$ and $S_k(g, g_i)$ separately. The second approach, called the Bayesian inference, directly estimates the joint conditional distribution of \{d(g, g_i), S_k(g, g_i)\}. Each approach has its own strengths and limitations. For example, the naive Bayesian inference approach heavily relies on the assumption of conditional independence; hence, the resulting estimated joint distribution may be far away from the true joint distribution when the assumption is not valid. Whereas, for the Bayesian inference approach, when estimating the distribution of random variables, we need much more observations for a multidimensional random vector than for a one-dimensional random variable (the number of needed observations grows exponentially with the dimensionality of the random vector).
to achieve the same level of resolution (31); hence, there may
exist a resolution problem with the estimated joint distribution.
Especially for the estimation of
\[P(d(g_i, g_j), S_N(g_i, g_j) \mid g_i \text{ and } g_j \in \text{the same module}) \]
because there are only a very small percentage of gene pairs
(46 009/3 324 331 \approx 1.4\%) whose two genes are known
to belong to the same functional module based on the current
information of Eco Cyc, the Bayesian inference approach
cannot achieve a high-resolution level. It is an interesting
problem regarding how to find the right tradeoff between
these two approaches, but that is out of the scope of this paper.

We have computed \(C_{\text{combined}}(g_i, g_j) \) by using both the naive
Bayesian and Bayesian inferences. We have performed the
Kolmogorov–Smirnov test and the \(\chi^2 \)-test to check if the
distribution of \(C_{\text{combined}}(g_i, g_j) \) is different for the positive
and the negative tests. The Kolmogorov–Smirnov tests reject
the hypothesis that the distribution of \(C_{\text{combined}}(g_i, g_j) \) is
the same for the positive and the random sets with a significance
level less than \(10^{-4} \) for both approaches; and, from the \(\chi^2 \)-tests
we have obtained the values of \(\chi^2 \)-statistics as 11 591 and
4866, both corresponding to the \(P \)-values less than \(10^{-4} \),
for the naive Bayesian and Bayesian approaches, respectively.
(The \(\chi^2 \)-tests have been performed on the normalized
\(C_{\text{combined}}(g_i, g_j) \) for both approaches. Although seven bins
have been used, bins have been located differently for the
naive Bayesian and Bayesian approaches. The bins for the
naive Bayesian approach are located at 0.35, 0.36, \ldots , 0.41,
so that there are at least 8\% of positive gene pairs and 8.92\%
of random gene pairs in each bin. The bins for the Bayesian
approach are located at 0.25, 0.26, \ldots , 0.31, so that there are at
least 5\% positive gene pairs and 5.8\% random gene pairs in
each bin.) All these tests demonstrate that the distribution of
\(C_{\text{combined}}(g_i, g_j) \) is different for the positive and the random sets,
for both the naive Bayesian and the Bayesian approaches. To
compare these two inference approaches, we have normalized
\(C_{\text{combined}}(g_i, g_j) \) so that the normalized \(C_{\text{combined}}(g_i, g_j) \) for each
approach ranges from 0 to 1. Figure 5 shows the distributions
of the normalized \(C_{\text{combined}}(g_i, g_j) \) for both the positive and the
random sets, and for both the naive Bayesian and the Bayesian
inference approaches. As shown in the figure that (i) for both
approaches, a pair of genes of the same functional module are
more likely to have a large \(C_{\text{combined}}(g_i, g_j) \) than a random pair;
and (ii) the naive Bayesian approach discriminates the positive
pairs out of the random pairs more accurately than the
Bayesian approach. So, in the rest of this paper, we focus on
the naive Bayesian inference approach.

Threshold-based module prediction and evaluation
Every two genes will have a score \(C_{\text{combined}}(g_i, g_j) \) measuring
their functional relationship. The higher the score, the stronger
their functional relationship is. Note that a negative value of
\(C_{\text{combined}}(g_i, g_j) \) does not necessarily mean that the \(g_i \) and the
\(g_j \) are less likely to belong to the same functional module,
because the positive and the random sets we have used to
estimate the ratios and conditional distributions in (9) are not
complete. More specifically, the positive set we have used is
only part of the true positive set, and the random set we have
used contains some true positives as well as true negatives,
where by true positive we mean a set consisting of all pairs
whose two genes belong to the same module, and by true
negative we mean a set consisting of all pairs whose two
genes do not belong to the same module.

The genes and their functional connections can be interpreted
at different levels. At the lowest resolution level, all
genes are functionally connected to form one large network
that is responsible for all activities of a cell; at a higher res-
olution level, genes with stronger functional relationship stand
out and form smaller and densely interacted modules that are
responsible for some specific activities of a cell. At the highest
resolution level, each gene forms a functional module by itself.

To predict biologically meaningful functional modules of
smaller sizes, we apply a simple thresholding method described
as follows. We first compute for each gene \(g_i \) the mean (\(m_i \)) and standard deviation (\(\sigma_i \)) of its functional
connection scores \(C_{\text{combined}}(g_i, g_j) \) with all other genes \(g_j (j \neq i) \),
keep the connection between \(g_i \) and \(g_j \) if and only if
\[C_{\text{combined}}(g_i, g_j) \geq m_i + \alpha \sigma_i \text{ and } C_{\text{combined}}(g_i, g_j) \geq m_j + \alpha \sigma_j \]
with \(\alpha \geq 0 \) being a threshold parameter, and call a group of
genes that are directly or indirectly linked as a predicted
functional module.

We choose the value of \(\alpha \) to make our predicted modules
consistent as much as possible with the known functional
modules in Eco Cyc, where the consistency is measured by
using the matching degrees defined below.

**Matching degree between a pair of known and predicted gene
modules.** Let \(K_m \) be the set of genes in the \(m \)-th known
functional module, and \(C_n \) be the set of genes in the \(n \)-th predicted
module, the matching degree between \(K_m \) and \(C_n \), \(t_{mn} \), is
defined as follows:
\[t_{mn} = \frac{|K_m \cap C_n|}{|K_m \cup C_n|} \]
where \(|\cdot| \) represents for the cardinality of a set, and \(\cap \) and
\(\cup \) represent the intersection and union operations between
two sets.

![Figure 5](image-url)
Figure 5. The normalized \(C_{\text{combined}}(g_i, g_j) \) of both naive Bayesian (red) and Bayesian (blue) inference approaches for both the positive (solid) and the random (dashed) sets.
As we demonstrate below, the matching degree \(t_{mn} \) defined in (11) is actually a combination of the measures of sensitivity and specificity of \(C_m \), where sensitivity = \(|K_m \cap C_n|/|K_m|\) and specificity = \(|K_m \cap C_n|/|C_n|\).

\[
t_{mn} = \frac{|K_m \cap C_n|}{|K_m| + |C_n| - |K_m \cap C_n|} = \left(\frac{|K_m|}{|K_m \cap C_n|} + \frac{|C_n|}{|K_m \cap C_n|} - 1 \right)^{-1}
= (\text{sensitivity}^{-1} + \text{specificity}^{-1} - 1)^{-1}
\approx 2 \times \text{sensitivity} \times \text{specificity}
\approx (\text{sensitivity} + \text{specificity}) + 1. \tag{12}
\]

In the last row of (12) are the first- and second-order terms of the Taylor expansion [MathWorld—a Wolfram Web Resource, mathworld.wolfram.com/TaylorExpansion.html] of the original non-linear function of \(t_{mn} \) in (11) around sensitivity, specificity = 1. Note that one can add coefficients before sensitivity or specificity in (12) to put different weights on these two measures.

Highest matching degree for a known module. Let \(C \) be the collection consisting of all the \(N \) predicted modules \(C_1, \ldots, C_N \), i.e. \(C = \{C_1, C_2, \ldots, C_N\} \). Since \(t_{mn} \) is monotonically increasing as the sensitivity and or specificity of \(C_m \) increases, by maximizing \(t_{mn} \) with respect to all the predicted modules in \(C \), we pick one particular predicted module for \(K_m \) that best balances the measures of sensitivity and specificity. We define the highest matching degree (HMD) for \(K_m \), \(t_m \) which measures the matching capability of all the predicted modules of \(C \) to \(K_m \), as follows:

\[
t_m = \max_{1 \leq n \leq N} t_{mn} = \max_{1 \leq n \leq N} \left(\frac{|K_m \cap C_n|}{|K_m \cap C_n|} \right). \tag{13}
\]

The so-defined HMD has the following properties:

(i) If the genes in \(C \) does not cover any gene of \(K_m \), then the HMD achieved by \(C \) for \(K_m \) is 0.

(ii) If there exist several predicted modules in \(C \) each of which can be perfectly matched with a fraction of \(K_m \), then the HMD achieved by \(C \) for \(K_m \) is the ratio of the maximum size of these predicted modules to the size of \(K_m \).

(iii) If there exists one predicted module \(C_n \) one of whose fractions is perfectly matched with the entire \(K_m \), then the HMD achieved by \(C \) for \(K_m \) is the ratio of the size of \(K_m \) to the size of \(C_n \).

(iv) If there exists one predicted module \(C_n \) that is perfectly matched with the entire \(K_m \), then the HMD achieved by \(C \) for \(K_m \) is 1.

Let \(K \) be the collection consisting of all the \(M \) known functional modules, i.e. \(K = \{K_1, K_2, \ldots, K_M\} \). We choose the value of \(\alpha \) so that the average HMD (AHMD) over \(K \) [defined in the following equation] is maximized.

\[
\text{AHMD} \equiv \frac{1}{M} \sum_{m=1}^{M} t_m = \frac{1}{M} \sum_{m=1}^{M} \max_{1 \leq n \leq N} \left(\frac{|K_m \cap C_n|}{|K_m \cup C_n|} \right). \tag{14}
\]

Statistical analysis on the highest matching degree. Let \(t_1, t_2, \ldots, t_m \) be the HMDs for \(K = \{K_1, K_2, \ldots, K_M\} \) achieved by our predicted modules \(C = \{C_1, C_2, \ldots, C_N\} \). To evaluate the statistical significance of \(\{t_1, t_2, \ldots, t_M\} \), we first estimate the probability distribution of the HMDs for the same \(K \) achieved by a collection of randomly predicted modules \(C' = \{C_1, C_2, \ldots, C_N\} \) where each \(C'_n \) is of the same size as \(C_n \), and then estimate the Z-score of \(\{t_1, t_2, \ldots, t_M\} \). If the Z-score is high, then the HMDs achieved by \(C \) are statistically significant. Here by randomly predicted modules we mean a module that is predicted by randomly picking out the genes with equal probability and without replacement from the pool of the \(N_0 \) genes of *E.coli* K12.

Given a known functional module \(K_m \), because of the nature of randomness of the functional modules in \(C' \), the matching degree achieved by each \(C_n \) in \(C' \) and the HMD achieved by \(C' \) are all random variables; hence, in the following analysis, we use \(T'_{mn} \) and \(T_{mn} \) to denote the matching degree and the HMD for \(K_m \) achieved by \(C'_n \) and \(C \), respectively.

First focus on the statistical model of \(T'_{mn} \). The distribution of \(T'_{mn} \) can be approximated by using a Binomial distribution (32) when the number of genes in the known functional module, \(|K_m|/N_0 \), is small compared with \(N \), i.e.

\[
P(T'_{mn} = t) = \binom{N}{|K_m|/N_0} \left(\frac{1}{N} \right)^{|K_m|/N_0} \left(1 - \frac{1}{N} \right)^{|C_n| - (|K_m|/N_0)}, \tag{15}
\]

where \(p_m = |K_m|/N_0 \) and

\[
z_{mn} = \left[\frac{t}{1 + t} \left(\frac{|K_m|}{|C_n|} \right) \right] \tag{16}
\]

with \([\cdot] \) representing a round-off.

We then turn our attention to the statistical model of \(T_{mn} \). Because the modules \(C_1', C_2', \ldots, C_N' \) are disjoint, the distribution of \(T_{mn} \) can be approximated based on (15) as follows:

\[
P(T_{mn} = t) = \frac{N}{N_0} \left(\frac{1}{N} \right)^{|K_m|/N_0} \left(1 - \frac{1}{N} \right)^{|C_n| - (|K_m|/N_0)} = \left(\frac{1}{N_0} \right)^{|K_m|/N_0} \frac{N}{N_0} \sum_{u=0}^{|C_n| - (|K_m|/N_0)} \binom{|C_n|}{u} \left(\frac{N_0}{N} \right)^u \left(1 - \frac{N_0}{N} \right)^{|C_n| - u}, \tag{17}
\]

with \(z_{mn} \) being given as in (16).

Let \(\mu_m \) and \(s_m \) be the mean and standard deviation of \(T_{mn} \) associated with \(K_m \), then \((T_{mn} - \mu_m)/s_m \) is called the standardized HMD of \(K_m \). By using the Central Limit Theorem (32), the sum of the standardized HMDs over all \(K = \{K_1, K_2, \ldots, K_M\} \) asymptotically complies to a normal distribution, i.e.

\[
\frac{1}{\sqrt{M}} \sum_{m=1}^{M} \frac{T_m - \mu_m}{s_m} \sim \mathcal{N}(0, 1). \tag{18}
\]

The Z-score of \(\{t_1, t_2, \ldots, t_M\} \), which are the HMDs for \(K = \{K_1, K_2, \ldots, K_M\} \) achieved by our predicted modules \(C = \{C_1, C_2, \ldots, C_N\} \), is then computed as follows:

\[
Z_{\text{score}} = \frac{1}{\sqrt{M}} \sum_{m=1}^{M} \frac{t_m - \mu_m}{s_m}. \tag{19}
\]

A high Z-score means that \(\{t_1, t_2, \ldots, t_M\} \) and, consequently, our predicted modules in \(C \) as well as our prediction method, are statistically significant.
Table 3. The maximum AHMDs and their associated α-values for the 10 experiments, each of which corresponds to one repeat of the procedure of forming the training set, computing the combined score and predicting modules.

Experiment	Pathway	Regulon	Operon			
	α	α	α	α		
1	6.25	0.265	6.5	0.168	6.5	0.164
2	6.25	0.257	5.25	0.171	5.25	0.165
3	7	0.259	5.75	0.192	5.5	0.172
4	6.25	0.260	5.25	0.184	5	0.157
5	6	0.269	5.5	0.194	6	0.181
6	6.25	0.268	5.75	0.183	6	0.171
7	5.25	0.249	5.25	0.190	4.75	0.171
8	6.25	0.288	6	0.217	6	0.188
9	5.75	0.261	4.75	0.191	4.75	0.165
10	6	0.267	5.25	0.200	5.25	0.176

Table 4. The maximum AHMD values, the associated values of α, the number (N) of predicted modules, the total number ($|C|$) of genes in all the predicted modules and the associated Z-scores, for the known pathways, regulons and operons achieved by using different sources of information.

| Pathways ($M = 207$) | α | N | $|C|$ | Z-score |
|-----------------------|---------|-----|------|-----------|
| $C_{combined}(g_i, g_j)$ | 0.265 | 185 | 654 | 62.293 |
| $S_{R}(g_i, g_j)$ | 0.236 | 189 | 998 | 58.474 |
| $d(g_i, g_j)$ | 0.0364 | 28 | 221 | 4.753 |
| $S_{cr}(g_i, g_j)$ | 0.224 | 106 | 796 | 70.103 |

| Regulons ($M = 132$) | α | N | $|C|$ | Z-score |
|----------------------|---------|-----|------|-----------|
| $C_{combined}(g_i, g_j)$ | 0.168 | 194 | 717 | 37.908 |
| $S_{R}(g_i, g_j)$ | 0.182 | 189 | 1099 | 40.576 |
| $d(g_i, g_j)$ | 0.0200 | 26 | 431 | 0.769 |
| $S_{cr}(g_i, g_j)$ | 0.117 | 115 | 959 | 31.591 |

| Operons ($M = 745$) | α | N | $|C|$ | Z-score |
|----------------------|---------|-----|------|-----------|
| $C_{combined}(g_i, g_j)$ | 0.164 | 194 | 717 | 32.572 |
| $S_{R}(g_i, g_j)$ | 0.176 | 188 | 702 | 39.406 |
| $d(g_i, g_j)$ | 0.0147 | 28 | 221 | 0.502 |
| $S_{cr}(g_i, g_j)$ | 0.0708 | 115 | 959 | 13.868 |

The phylogenetic and neighborhood profiles are obtained by using the BDBH method.

EXPERIMENTS AND RESULTS

Performance by using the combined score $C_{combined}(g_i, g_j)$

We have performed the following procedure to predict functional modules based on the combined score $C_{combined}(g_i, g_j)$:

(i) Randomly choose 1250 genes ($\approx 50\%$) out of the gene pool (consisting of 2579 E.coli K12 genes) to form the training set, and use the pairs of these training genes to estimate the ratios and conditional distributions in (9).

(ii) Compute $C_{combined}(g_i, g_j)$ for all pairs (including the pairs of the training genes).

(iii) Segment the large interaction network with various α values to predict functional modules that maximize the AHMD [defined in (14)].

Owing to the nature of randomness in choosing genes to form the training set in the first step, the outputs of the following

Table 5. The maximum AHMD values, the associated values of α, the number (N) of predicted modules, the total number ($|C|$) of genes in all the predicted modules and the associated Z-scores, for the known pathways, regulons and operons achieved by using the combined information, neighborhood profiles and phylogenetic profiles, respectively.

| Pathways ($M = 207$) | α | N | $|C|$ | Z-score |
|----------------------|---------|-----|------|-----------|
| $C_{combined}(g_i, g_j)$ | 0.248 | 191 | 700 | 66.694 |
| $S_{R}(g_i, g_j)$ | 0.212 | 173 | 920 | 52.832 |
| $d(g_i, g_j)$ | 0.0416 | 61 | 416 | 2.647 |
| $S_{cr}(g_i, g_j)$ | 0.176 | 171 | 1006 | 45.653 |
| $d(g_i, g_j)$ | 0.0317 | 61 | 416 | 1.406 |
| $S_{cr}(g_i, g_j)$ | 0.164 | 191 | 700 | 32.959 |
| $d(g_i, g_j)$ | 0.0246 | 61 | 416 | 0.988 |

The neighborhood and phylogenetic profiles are obtained by using the reciprocal smallest distance algorithm (33).

Figure 6. (a) The number of edges as a function of α; and (b) AHMD values for the known pathways, regulons and operons as functions of α.

Nucleic Acids Research, 2005, Vol. 33, No. 9 2831
Figure 7. Predicted modules consisting of at least three genes obtained by using $t = 6.75$, where edges of red represent for belonging to the same known pathways, edges of blue represent for belonging to the same known regulons, edges of green represent for belonging to the same known operons, edges of orange represent for transporter unit, edges of purple represent for having similar GO assignments and edges of black represent for having not been experimentally verified.
steps, including $C_{\text{combined}}(g_i, g_j)$, the maximum AHMD and the associated α-value, are all random in essence. Therefore, we have repeated the above procedure 10 times. Table 3 summarizes the maximum AHMDs and their associated α-values for these 10 experiments.

As shown in Table 3, all experiments have achieved similar AHMD for the known pathways, regulons and operons; and have shown that our predicted functional modules are matched with the known pathways better than with the known regulons or operons. Because all the experiments have shown similar performance in terms of AHMD, without loss of generality, we focus on the first experiment for the rest of the analysis.

Comparisons among different sources of information

To see whether the combined score can better describe functional relationships among genes than individual scores, we have also performed experiments on each individual source of information, i.e. we have used $S_{\text{GO}}(g_i, g_j)$, $d(g_i, g_j)$ or $S_{\text{SN}}(g_i, g_j)$ alone as a measure of functional relationship between genes to predict functional modules. Table 4 summarizes the maximum AHMD values, the associated values of α, the number (N) of predicted modules, the total number ($|C|$) of genes in all the predicted modules and the associated Z-score for the experiments based on $C_{\text{combined}}(g_i, g_j)$, $S_{\text{SN}}(g_i, g_j)$, $d(g_i, g_j)$ and $S_{\text{GO}}(g_i, g_j)$, respectively.

From Table 4, we can see that for the individual information sources,

(i) The AHMD values and the associated Z-scores achieved by using the phylogenetic profile dissimilarity measure $d(g_i, g_j)$ are much smaller than those achieved by...
using the other information sources, which demonstra-
tes that \(d(g_i, g_j)\) alone cannot provide sufficient
information to predict functional modules that are rea-
sonably consistent with the known functional
modules.

(ii) Although the AHMD values for both the GO assign-
ments and the neighborhood profiles are moderate, their asso-
ciated Z-scores are very high, which demonstrates that ei-
ther \(S_{\text{GO}}(g_i, g_j)\) or \(S_N(g_i, g_j)\) alone provides sufficient
information to achieve sound consistency with the
known functional modules. This observation regarding
the neighborhood profiles makes it very promising as a
measure for the prediction of functional modules for
those microbial genomes that have been sequenced but
do not have much other information (e.g. GO assign-
ments) available.

(iii) For the GO assignments, the AHMD value and the
associated Z-score for the known pathways are larger
than those for either the known regulons or known
operons, which demonstrate that the functional modules
predicted by using our approach are more consistent with
the known pathways than with the known regulons or
known operons. We have made a similar observation for
the neighborhood profiles.

and for the combined information,

(i) For the known pathways, the AHMD value achieved by
using the combined information \(C_{\text{combined}}(g_i, g_j)\) is larger
than that of each individual information source, although
its Z-score is smaller than that of the GO assign-
ments. Because the Z-scores for both \(C_{\text{combined}}(g_i, g_j)\) and
\(S_{\text{GO}}(g_i, g_j)\) are already very high, and their values of \(N\)
and \(IC\) (consequently the sizes of all the predicted
modules) are different, the fact that the former is
smaller than the latter does not necessarily mean that
\(C_{\text{combined}}(g_i, g_j)\) is worse than \(S_{\text{GO}}(g_i, g_j)\); rather, the obvious
difference among their AHMD values demonstrates
that information fusion can achieve a higher degree of
consistency with the known pathways than individual
information sources.

(ii) For the known operons, though the neighborhood pro-
files alone already provide sufficient information to
achieve sound consistency, the GO assignments do not.
The incapabilities of \(S_{\text{GO}}(g_i, g_j)\) greatly undermine the
capabilities of \(S_N(g_i, g_j)\) during the information fusion;
therefore, either the AHMD value or Z-score for the combined
information \(C_{\text{combined}}(g_i, g_j)\) cannot even be as high as that
of \(S_N(g_i, g_j)\) alone. We have made similar observations
about known regulons.

The observation that phylogenetic profiles do not seem to
contribute much to the identification of functional modules,
while surprising, is consistent with the observation made by
other authors (19). To exclude the possibility that this might be
an artifact of the specific prediction method for orthologous
genes using BDBH, we have also used the reciprocal smallest
distance algorithm (33) for the prediction of orthologous genes,
and have then performed the same experiment of comparing
different information sources. The results are summarized in
Table 5, for which we have made the same observations as
above.

Modules predicted using \(C_{\text{combined}}(g_i, g_j)\) **for
a particular choice of** \(\alpha\)**

For the combined information \(C_{\text{combined}}\), Figure 6 shows
the total number of edges and the AHMD values for the known
pathways, regulons and operons as functions of \(\alpha\). Observe
from the figure that (i) the number of edges decreases rapidly
as the value of \(\alpha\) increases; (ii) the tendencies of the three
AHMD values all first increase and then decrease as the value
of \(\alpha\) increases; and (iii) these three AHMD values achieve
their maximum around \(\alpha \in [6, 7]\).

When using \(\alpha = 6.75\), we have obtained 185 predicted
functional modules covering 654 genes. Figure 7 shows those
predicted modules consisting of at least three genes, where
genres are identified by using their IDs. For most cases, genes
within the same predicted modules belong to the same
functional modules according to Eco Cyc, or have similar
GO assignments. This means that we can predict functional
units based on our approach. For example, all genes in the
module of Figure 8 are involved in the flagellar metabolism
pathway according to KEGG (22), even though only the
colored genes and edges are confirmed by Eco Cyc to belong
to the same operons or regulons. We have also made the
following interesting observations:

(i) Genes within the same predicted module belong to several
different pathways, as shown in Figure 9. For the predicted
module (a) involving the histidine and the tryptophan bio-
syntheses, the two pathways are connected through the
gene \(\text{hisA} (16129965)\), which is assigned to be involved
in both pathways by GO Annotation (16). For the predicted
module (b) involving the methionine and the cysteine bio-
syntheses, the two pathways are connected through the
gene \(\text{metB} (16131777)\), which is assigned to be involved
in both pathways by KEGG (22). For the predicted module
(c) involving the glycerolipid metabolism, glycerol-3-P
ABC transporter and branched amino acid ABC transpor-
ter, the first two parts are connected because they are both
related to glycerol, and the last two parts are connected

Riboflavin metabolism

![Riboflavin metabolism](image)

Figure 10. Genes are connected mainly because they are conserved
neighboring genes along the same strand of DNA.

![Predicted modules](image)

Figure 11. Predicted modules that have not been experimentally
verified.
because they have similar GO assignments (i.e. transport). So far, we have not been able to find experimental evidence to support our predicted module in (d) which involves the pantothenate and folate biosyntheses, but this prediction may be due to that both pathways are related to the precursors for co-enzyme biosynthesis (34).

(ii) Genes are connected in a predicted module mainly because they are conserved neighboring genes on the same strand of the genome, as nusB (16128401) and ribH (16128400) in the module of Figure 10 and other five modules each consisting of one pair of genes. These genes are highly likely to be functionally related, and deserve further experimental investigations.

(iii) Genes are connected via their paralogous genes. For example, we have predicted two modules each consisting of two genes that do not have any obvious commonality.
For the pair \(\text{amtB} (16128436) \) and \(\text{glnB} (16130478) \), one of the paralogous genes of \(\text{glnB} \), \(\text{glnK} (16128435) \), belongs to the same operon as \(\text{amtB} \) according to Eco Cyc. For the other pair \(\text{purU} (16129193) \) and \(\text{add} (16129581) \), one of the paralogous genes of \(\text{purU} \), \(\text{purN} (16130425) \), is involved in the same pathway (purine metabolism) as \(\text{add} \).

(iv) So far, we have not been able to find evidences in Eco Cyc, KEGG or GO to support our predicted modules in Figure 11 and the other five modules each consisting of two genes. They deserve further experimental investigations.

Modules predicted using \(C_{\text{combined}}(g_i, g_j) \) for a particular gene

We have also focused on one particular gene \(\text{hemL} (16128147) \) to see how its involved module changes as \(\alpha \) is changed. Figure 12 shows three predicted modules that \(\text{hemL} \) is involved for \(\alpha = 6.75 \), \(\alpha = 5.5 \) and \(\alpha = 4 \), respectively. When \(\alpha = 6.75 \), the predicted module consists of only four genes, all of which are involved in the porphyrin and chlorophyll metabolism pathway. When \(\alpha \) decreases to 5.5, the predicted module consists of 79 genes, which are involved in valine, leucine and isoleucine biosynthesis, lysine biosynthesis, arginine metabolism, glutamate metabolism, cysteine biosynthesis, biosynthesis of proto- and siroheme, biosynthesis of steroids, and sulfate transport pathways, respectively. When \(\alpha \) decreases further to 4, the predicted module consists of 1116 out of all 2579 genes.

As we mentioned earlier, the functional relationships among genes can be viewed at different levels. At a very high resolution level (as shown in Figure 12a), only a small number of genes are grouped together so that the group is responsible for one specific activity; at a lower resolution level (as shown in Figure 12b), a relatively larger number of genes are grouped together so that the group is responsible for more general activities; and, at the lowest resolution level (as shown in Figure 12c) most of the genes are connected directly or indirectly so that the group is responsible for most activities of a cell. Consequently, by varying the threshold values, we can predict the hierarchical structure of the functional modules.

CONCLUSIONS

We have presented a new computational method to predict functional modules by combining the information from the comparative genome analysis and the GO in the framework of the Bayesian inference. In this work, we have also developed a formal measure to quantify the degree of consistency between the predicted and the known modules, and provided analysis of the statistical significance for such consistency degrees. We have applied our method to the genome of \(\text{E.coli} \) K12, and have observed that (i) the predicted modules are more consistent with the known pathways than to the known regulons or operons; (ii) neighborhood profiles or GO assignments alone can provide sufficient information for predicting modules that are fairly consistent with the known functional modules, but phylogenetic profiles cannot; (iii) by fusing the information from the GO, phylogenetic and neighborhood profiles using the naive Bayesian inference and using the combined information for module prediction, even higher degrees of consistency can be achieved for the known functional modules; (iv) most of the predicted modules can be verified by Eco Cyc, KEGG or GO, and the unverified predicted modules reveal interesting gene functional relationships that deserve further experimental investigations; and (v) different threshold values can be used to predict functional modules at different resolution levels.
In our future study, we will apply the method presented in this paper to other microbial genomes. Particularly, since we have observed that the neighborhood profiles alone can provide sufficient information for the prediction, we will use the neighborhood profiles to evaluate the gene functional relationships for those microbial genomes that have already been completely sequenced but do not have much other information (e.g. GO) available. We will also generalize the current method of information fusion based on the Bayesian inference to incorporate more sources of information, e.g. microarray data. And finally, we will apply more sophisticated methods to gene clustering so that even higher degrees of consistency can be achieved for the known functional modules.

ACKNOWLEDGEMENTS

This research was supported in part by National Science Foundation (#NSF/DBI-0354771, #NSF/ITR-IIS-0407204) and by the US Department of Energy’s Genomes to Life program (http://doegenomestolife.org/) under project ‘Carbon Sequestration in Synechococcus sp.: From Molecular Machines to Hierarchical Modeling’ (www.genomes2life.org). Funding to pay the Open Access publication charges for this article was provided by the University of Georgia.

Conflict of interest statement. None declared.

REFERENCES

1. Kremling,A., Janeis-K., Engler,J.W. and Gilles,E.D. (2000) The organization of metabolic reaction networks: a signal-oriented approach to cellular models. Metab. Eng., 2, 190–200.
2. Wagner.R. (2000) Transcription Regulation in Prokaryotes. Oxford University Press, Oxford, UK.
3. Stephanopoulos,G.N., Aristidou,A.A. and Nielsen,J. (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA.
4. Zhou,J., Thompson,D.K., Xu,Y. and Tiedje,J.M. (2004) Synechococcus sp. WH8102 genome. Science, 306, 1555–1558.
5. von Mering,C., Zdobnov,E.M., Tsoka,S., Ciccarelli,F.D., Pereira-Leal,J.B., Ouzounis,C.A. and Bork,P. (2003) Gene Ontology Annotation (GOA) project: implementation of GO in Swiss-Prot, Trembl, and Interpro. Genomes Informatics, 13, 662–672.
6. Chung,Y. (2004) Biological knowledge discovery through mining multiple sources of high-throughput data. PhD thesis. The University of Tennessee, Knoxville, TN.
7. Yeates,T.O. (1999) Assigning protein functions by comparative genome analysis. Bioessays, 21, 275–281.
8. Altschul,S.F., Madden,T.L., Schaffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402.
9. etsau,P.S., Hart,P.E. and Stork,D.G. (2001) Pattern Classification. John Wiley & Sons, Inc., 2nd edition.
10. Hasting,C., Tibshirani,R. and Friedman,J. (2001) The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, NY.
11. Casella,G. and Berger,R.L. (2001) Statistical Inference, 2nd edn. Duxbury Press, CA.
12. Voet,D. and Voet,J.G. (1995) Biochemistry, 2nd edn. John Wiley & Sons, Inc., NY.