Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in *Brassica napus*

Haijiang Liu · Maoyan Zou · Bingbing Zhang · Xinyu Yang · Pan Yuan · Guangda Ding · Fangsen Xu · Lei Shi

Received: 14 June 2022 / Accepted: 19 September 2022 / Published online: 27 September 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Oilseed rape (*Brassica napus* L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of *B. napus* breeding. Several studies have been reported on the genetic mechanisms of SY of *B. napus*. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of *B. napus*, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of *BnaA01g17200D* and *BnaA02g08680D* were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. *BnaA09g10430D* detected through lead SNP chrA09__5160639 was associated with SY of *B. napus*. Our results provide valuable information for studying the genetic control of seed yield in *B. napus* and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield *B. napus* cultivars.

Keywords Oilseed rape · Genome-wide association study · Seed yield · Candidate genes association analysis · Haplotype analysis

Introduction

Oilseed rape (*Brassica napus* L.) is the second most important oil crop after soybean in the world (Zhang et al. 2022). Increasing seed yield (SY) of *B. napus* can meet the growing global demand for oil and protein (Zhao et al. 2016). Studying the genetic basis of SY in *B. napus* and mining candidate genes associated with SY has become particularly important (Raboanatathiry et al. 2018; Deng et al. 2019). In recent years, linkage mapping analysis has been widely applied to the study of the genetic basis of SY in *B. napus* (Shi et al.
Two hundred twenty-six quantitative trait loci (QTLs) have been identified for yield and yield-related traits (biomass yield, thousand-seed weight, plant height, first effective branch height, first effective branch number, length of main inflorescence, and pod number of main inflorescence) in eight environments (Zhao et al. 2016). Among them, eighteen QTLs were detected for SY, explaining 5.63–20.91% of the phenotypic variation (PVEs) (Zhao et al. 2016). Besides that, a total of 870 QTLs were identified for nine yield related traits, of which nearly 10% (85) were identified for SY, which can explain 3.1–33.4% of the PVEs (Shi et al. 2009).

Compared with linkage analysis, GWAS has the advantages of high positioning accuracy without constructing mapping population (Xiao et al. 2017; Liu et al. 2022). GWAS has been widely applied to the genetic dissection of seed (grain) yield in different crops, such as rice (Zhong et al. 2021), maize (Ma and Cao 2021), oil palm (Kalyana et al. 2021), wheat (Garcia et al. 2019), soybean (Hu et al. 2020), and cotton (Zhu et al. 2021). In rice, seventy-four quantitative trait nucleotides (QTN) were significant associated with grain yield and yield related traits, such as grain length (GL), grain width (GW), grain thickness (GT), thousand-seed weight (TSW), and yield per plant (YYP), respectively, and 17 QTNs for YYP explained 0.28–6.99% of the PVEs (Zhong et al. 2021). The association panel of maize consisting of 309 cultivars was used to perform GWAS for eight grain yield traits (Ma and Cao 2021). Only one SNP was identified for grain yield per plant with a PVE of 5.92% (Ma and Cao 2021). In recent years, GWAS has also been widely used in the genetic analysis of complex agronomic traits in *B. napus*, including harvest index (Lu et al. 2017), plant height (Sun et al. 2016), branch number (Zheng et al. 2017), branch angle (Shen et al. 2018), and seed yield (Pal et al. 2021). A total of 16, 18, 27, and 18 SNPs were identified to be significantly associated for siliqua length, number of seeds per siliqua, thousand-seed weight and SY, respectively (Pal et al. 2021). In addition, six candidate genes for SY were identified on chromosomes A02 and C02 (Pal et al. 2021). However, the genotypes used in above GWAS were all based on 60 K SNP chips. With the continuous development of sequencing technology, genetic markers developed by whole-genome re-sequencing have been widely used in *B. napus* GWAS analysis (Tang et al. 2021).

In this study, we investigated the SY in an association panel of *B. napus* across 2 years. GWAS of SY was performed using more than five million SNPs by whole-genome resequencing. A total of 1773 significant SNPs were identified to be associated with SY and three candidate genes were identified. In addition, three haplotypes of *BnaA-01g17200Hap1* (TTAT), *BnaA02g08680Hap1* (GGCT), and *BnaA09g10430Hap2* (TGACATCCCCG) associated with high SY were revealed, which provided the molecular basis for subsequent molecular marker-assisted breeding.

Materials and methods

Plant materials and field trials

A total of 403 *B. napus* accessions were used in this study. Detailed information on them and their genotypes are described in our previous study (Liu et al. 2021). All accessions were planted in sandy loam soil at Meichuan Town, Wuxue City, Hubei Province, China (115.55°E, 29.85°N) during *B. napus* growing seasons from 2018 to 2019 (Trial 1) and from 2019 to 2020 (Trial 2). Each accession had four rows and each plot had eight plants in each row. After harvest, six plants in each plot were selected to measure SY. The mean value, maximum, minimum, and coefficient of variation were calculated using Excel 2007. Trial 1_mean value and Trial 2_mean value were calculated with the phenotypic values of three replications in Trial 1 and Trial 2, respectively (Supplementary Table 1). The R language was used to calculate the correlation coefficients between trials.

Genome-wide association analysis and candidate gene identification

More than 5 million high-quality SNPs of the association panel were derived from previous study (Tang et al. 2021; Liu et al. 2021). Tassel 5.0 software was used for GWAS analysis by general linear models (GLM) and mixed linear models.
Mol Breeding (2022) 42:61

The threshold for this population was 6.25×10^{-07} (Liu et al. 2021). The analysis of non-synonymous and synonymous SNPs was performed based on gene models from the version 5 annotation on Genoscope using SnpEff (Cingolani et al. 2012). GGplot2 (https://cran.r-project.org/web/packages/ggplot2/index.html) and CMplot (https://github.com/YinLiLin/CMplot) software were used to draw Manhattan plot and quantile–quantile plot, respectively. The population could be divided into five subgroups based on the cross-validation errors and the pairwise relative kinship was close to 0 (Liu et al. 2021). The LD value of the association panel is 300 kb (Liu et al. 2021); thus, the genes located within LD decay (300 kb) value up-/down-stream of the peak SNPs were considered as candidate genes. The genotypes of $BnaA01g17200D$, $BnaA02g08680D$, and $BnaA09g10430D$ in the association panel of $B. napus$ were obtained by VCFtools software (Danecek et al. 2011). Candidate gene association study of $BnaA01g17200D$, $BnaA02g08680D$, and $BnaA09g10430D$ was performed with Tassel 5.0 software (Bradbury et al. 2007). The SNP markers from 2 kb upstream of the gene to termination codon were used to conduct association analysis with the SY of the association panel of $B. napus$.

Candidate gene identification and haplotype analysis

The published genome of “Darmor-bzh” was used as a reference genome to annotate the candidate genes by BLAST analysis using gene sequence from Arabidopsis and rice (Chalhoub et al. 2014). The best hits for $B. napus$ were considered to be the homologous gene. To detect candidate genes for SY, all genes located in the 300 kb up-/downstream of candidate lead SNP were selected and common differentially expressed genes were predicted to be candidate genes combined with the transcriptome data of four high and four low-yield $B. napus$ cultivars (Lu et al. 2017). The annotation of candidate genes was obtained from TAIR10 (https://www.arabidopsis.org/). HaploView.4.2 software was used to conduct haplotype analysis (Barrett et al. 2005). Haplotypes containing at least 10 $B. napus$ accessions were used for further comparative analysis, and Student’s t-test was used to compare the differences in SY among the haplotypes.

Results

Phenotypic variation for SY of an association panel of $B. napus$

SY ranged from 1.51 to 25.07 g/plant (16.60-fold) in Trial 1 and from 2.18 to 35.88 g/plant (16.45-fold) in Trial 2 (Table 1). A wide range of variations were detected, with the coefficient of variation (CV) varying from 33.71 in Trial 2 to 46.12% in Trial 1 (Table 1). SY in both trials showed an approximate normal distribution (Supplementary Fig. 1). The correlation coefficient (r) of SY between Trial 1 and Trial 2 was 0.41 (Table 1, Supplementary Fig. 2).

GWAS of SY of $B. napus$

GLM and MLM approaches were used to perform GWAS analysis to reveal SNPs significantly associated with SY of $B. napus$ (Supplementary Figs. 3, 4, Supplementary Tables 2–3). A total of 1773 SNPs were identified to be significantly associated with SY across two trials by GLM approach ($P < 6.25 \times 10^{-07}$) (Supplementary Table 2). The PVE of 1773 SNPs ranged from 5.57 to 12.73% (Supplementary Table 2). Thirteen, 20, 19, 34, 38, 92, 390, and 1167 significant SNPs were associated with SY in Trial 1_1, Trial 1_2, Trial 1_3, Trial 1_mean value, Trial 2_1, Trial 2_2, Trial 2_3, and Trial 2_mean value, respectively, and distributed on 19 $B. napus$ chromosomes (Supplementary Fig. 3, Supplementary Table 2). Chromosomes C09 and A09 had the largest (404) and the second largest (281) number of significant SNPs.

Table 1 Mean, maximum (max), minimum (min), range, and coefficient of variation (CV, %) of the seed yield (SY) in an association panel of $B. napus$ in Trial 1 and Trial 2

Trials	Seed yield (g/plant)	CV (%)			
	Mean	Max	Min	Range	
Trial 1_1	5.68	13.38	1.51	11.87	48.75%
Trial 1_2	9.92	21.71	1.85	19.86	44.19%
Trial 1_3	12.31	25.07	3.1	21.97	38.63%
Trial 1_mean value	9.34	23.35	1.53	21.83	32.49%
Trial 2_1	17.06	34.47	2.18	32.39	42.85%
Trial 2_2	16.31	31.15	2.85	28.30	36.65%
Trial 2_3	16.96	35.88	2.18	33.7	44.09%
Trial 2_mean value	16.79	35.79	2.4	33.38	32.86%
respectively (Supplementary Table 2). Both MLM and GLM analysis identified the same 16 significant SNPs located on chromosomes A02, A05, A09, A10, C03, C04, and C06, explaining 9.78–12.08% of PVE (Supplementary Table 3). Annotation analysis of SNPs showed that 144 SNPs significantly associated with SY were non-synonymous mutations (Supplementary Table S2–S4).

Candidate gene association analysis and haplotype analysis of BnaA01g17200D and BnaA02g08680D

The SNP of chrA01__8920351 co-located on chromosome A01 was significantly associated with SY in both Trial 2_2 and Trial 2_mean value (Fig. 1a, Supplementary Table 2, 4). Within the 300 kb up-/downstream of chrA01__8920351, a total of 87 genes were found (Supplementary Table 5). Previously, transcriptome sequencing was performed on extremely high- and low-yield B. napus cultivars to mine yield-related candidate genes (Lu et al. 2017). We compared the GWAS results in this study with previous transcriptome data, and results showed that BnaA01g17200D was the only one significantly differentially expressed gene among the 87 candidate genes on A01 chromosome (Table 2, Supplementary Table 5). The expression level of BnaA01g17200D in bud on the primary branch of high-yield cultivars was significantly higher than that of low-yield cultivars (Table 2, Supplementary Table 5). We

![Graphs and diagrams](image-url)

Fig. 1 The co-localized locus and haplotypes on chromosome A01 associated with SY of B. napus. **a** Manhattan plot of co-localized loci for SY in Trial 2_2 and Trial 2_mean value. **b** Candidate gene association study of BnaA01g17200D with SY. Association of the four alleles in chrA01__9042710 (c), chrA01__9042762 (d), chrA01__9044014 (e), and chrA01__9044072 (f) with SY, respectively. **g** Two haplotypes of BnaA01g17200D. The number of inbred lines harboring the corresponding allele is shown in brackets at the bottom.
extracted the SNPs within the coding region and promoters (upstream, 2000 bp) of BnaA01g17200D, and eight SNPs were located within the 2 kb promoter region and the entire coding region of BnaA01g17200D (Supplementary Table 6). Four SNPs in BnaA01g17200D were detected to be significantly associated with SY (P<0.001) (Table 3). Further analysis of the four significant SNPs showed that T allele of chrA01__9042710, T allele of chrA01__9042762, A allele of chrA01__9044014, and T allele of chrA01__9044072 were high-seed yield alleles (Fig. 1b–f). Based on the above four SNPs, two major haplotypes were detected, and cultivars with BnaA01g17200Hap1 (TTAT) had much higher SY than cultivars with BnaA01g17200Hap2 (CAGC) (Fig. 1g).

Table 2 Common candidate genes identified by GWAS and transcriptome sequencing

Gene ID	Log2 (fold change)	P value*	Arabidopsis homologue	Annotations	Expression tissue
BnaA01g17200D	1.97	5.62E-16	AT4G27140	Seed storage albumin	Bud on the primary branch
BnaA02g08680D	-6.14	1.05E-08	AT2G30480	Hypothetical protein	Bud on the main inflorescence

*P value, significance level of Log2

Table 3 List of SNP variants identified in the candidate genes of BnaA01g17200D, BnaA02g08680D, and BnaA09g10430D

Candidate genes	SNP	Major allele	Minor allele	SNP types	Amino acid changes
BnaA01g17200D	chrA01__9042710	T	C	Promoter	
	chrA01__9042762	T	A	Promoter	
	chrA01__9044014	A	G	Promoter	
	chrA01__9044072	T	C	Promoter	
	chrA02__4290037	G	A	Promoter	
	chrA02__4290087	G	A	Promoter	
	chrA02__4290091	C	T	Promoter	
	chrA02__4290092	T	A	Promoter	
BnaA02g08680D	chrA09__5322341	C	T	Exon	Arginine to cysteine
	chrA09__5322518	C	T	Intron	
	chrA09__5322553	T	C	Intron	
	chrA09__5322559	C	G	Intron	
	chrA09__5322560	T	G	Intron	
	chrA09__5322565	A	G	Intron	
	chrA09__5322568	G	A	Intron	
	chrA09__5322918	C	T	Intron	
	chrA09__5322966	A	G	Intron	
	chrA09__5323050	A	G	Exon	Isoleucine to valine
	chrA09__5323064	T	A	Exon	Leucine to terminator
	chrA09__5323081	A	C	Exon	Glutamine to histidine
	chrA09__5323251	T	A	Promoter	
	chrA09__5323456	C	T	Promoter	
	chrA09__5323496	T	C	Promoter	
	chrA09__5323633	G	C	Promoter	
	chrA09__5323759	A	C	Promoter	
	chrA09__5324271	T	C	Promoter	
	chrA09__5324376	A	G	Promoter	
The SNP of chrA02__4555979 on chromosome A02 was identified in Trial 1_2 and Trial 1_mean value (Fig. 2a, Supplementary Table 2, 4). Based on the LD decay (300 kb), 108 genes were selected within the 300 kb up-/downstream of the chrA02__4555979 (Supplementary Table 6). The expression of BnaA02g08680D was 6.14-fold between high-yield B. napus cultivars and low-yield B. napus cultivars in bud on the main inflorescence (Lu et al. 2017, Table 2). Ten SNPs were extracted within the coding region and promoters (upstream, 2000 bp) of BnaA02g08680D and four SNPs in BnaA02g08680D were significantly associated with the SY, and G allele of chrA02__4290037, G allele of chrA02__4290087, C allele of chrA02__4290091, and T allele of chrA02__4290092 were the high-seed yield alleles (Fig. 2b–f, Supplementary Fig. 6). The above significant SNPs revealed two major haplotypes, and cultivars harboring BnaA02g08680Hap1 (GGCT) had significantly greater seed yield than cultivars harboring BnaA02g08680Hap2 (AATA) (Fig. 2g).

Comparison of the significant SNPs associated with SY with QTLs for SY

Based on the Darmor-bzh reference genome, a total of 783 SNPs were co-located with the intervals of 47 QTLs for SY in the previous linkage analysis of the B. napus segregation populations (Bouchet et al. 2014; Cai et al. 2016; Luo et al. 2017; Supplementary Table 8). A significant SNP (chrA09__5160639)
identified in Trial 2_3 was co-located with the interval of “qSY38” QTL and a gene (BnaA09g10430D) reported to control SY was within the interval of this QTL (Luo et al. 2017, Supplementary Table 8). OsNPF7.2, the orthologue of BnaA09g10430D, regulates tiller number and grain yield in rice (Wang et al. 2018). Candidate gene association analysis of BnaA09g10430D with SNP from the 2-kb promoter and the entire coding region showed that 19 SNPs were significantly associated with SY, and had strong LD with each other (Fig. 3b, Table 3, Supplementary Table 6). Among them, 7 were located in the promoter, 4 in the exon and 8 in the intron region (Table 3). Notably, chrA09__5322341 (C/T), chrA09__5323050 (A/G), chrA09__5323064 (T/A), and chrA09__5323081 (A/C) were located in the exon region of the gene BnaA09g10430D and resulted in amino acid changes from arginine to cysteine, isoleucine to valine, leucine to terminator and glutamine to histidine, respectively (Table 3). Two major haplotype groups were obtained based on the above 11 significant SNPs (Fig. 3c). Among them, BnaA09g10430Hap2 (TGACATCCCCG) had significantly higher SY than BnaA09g10430Hap1 (CATATCTGATA); therefore, BnaA09g10430Hap2 was considered as the favorable haplotype (Fig. 3c). In addition, a total of 67 B. napus cultivars containing these three favorable haplotypes had higher SY than other B. napus cultivars (Fig. 4).

Discussion

Effects of growth environment and GWAS methods on the identification of SNPs associated with SY

SY of B. napus is greatly affected by the growth environments (Raman et al. 2022). As the cultivars used in this study are too many (403 B. napus accessions), three contiguous fields were used, and each replication is an independent experimental field in each year. Although the soil physical and chemical properties in the field trials are very similar, some parameters, such as soil-available P and total of K, are much different in three fields (Liu et al. 2021). The basic soil fertility could affect the segregation in the seed yield in the association panel and finally affect the number of significant SNPs identified in different replications (Supplementary Table 2). In order to obtain the reliable
SNPs, the seed yields in Trial1_1, Trial1_2, Trial1_3, Trial1_mean value, Trial2_1, Trial2_2, Trial2_3, and Trial2_mean value were all used to identify the co-located SNPs, respectively (Supplementary Table 4). Moreover, there were only 16 SNPs detected by MLM approach in this study, and it is likely that some key SNPs significantly associated with SY were missed by the MLM approach (Supplementary Table 3). For example, many SNPs co-located with the interval of QTLs for SY in previous reports were not identified by MLM approach such as chrA05__11888567 and chrC08__33928511 (Bouchet et al. 2014; Cai et al. 2016; Luo et al. 2017; Pal et al. 2021). Thus, GLM approach was employed to identify SNPs associated with SY in this study.

Overlapped loci for SY between this study and previous studies

In this study, SY of the panel of 403 B. napus accessions varied from 1.51 to 25.07 g/plant in Trial 1 and from 2.18 to 35.88 g/ plant in Trial 2 (Table 1, Supplementary Table 1). Compared with the association panel with 200 B. napus accessions by Pal et al. (2021), the natural population (403 B. napus accessions) panel in this study has more extensive phenotypic variation. In addition, more than 5 million SNPs by whole genome-wide re-sequencing were used for GWAS analysis in this study (Tang et al. 2021; Liu et al. 2021). Compared with previous studies using 60 K SNP chip as genotype for GWAS of SY of B. napus, more significant SNPs related to SY were identified in this study (Supplementary Table 2–3).

Understanding the genetic variation of SY and SY-related traits is helpful for improving crop yield. GWAS of SY-related traits including PH (Sun et al. 2016), BN (Zheng et al. 2017; Liu et al. 2021), PB (Li et al. 2020), biological yield (Xiao et al. 2021), and SY in B. napus (Pal et al. 2021) has been conducted in recent years. For instance, a panel of 476 inbred lines of B. napus was genotyped using 19,167 high-quality SNPs, and a total of 48 significant SNPs were identified to be associated with plant height (Sun et al. 2016). With a panel of 331 B. napus accessions and 24,508 SNPs, 27 loci were significantly associated with silique number (Li et al. 2020). In another study, a panel of 505 inbred lines of B. napus was genotyped using more than ten million SNPs, and a total of 88 significant loci were identified to
be significantly associated with biological yield (Xiao et al. 2021). Chloroplast membrane protein-located FATTY ACID EXPORTER 1–1 (FAX1-1) is identified as a candidate gene for the significant SNPs associated with biological yield through the combination of GWAS with transcriptome sequencing (Xiao et al. 2021). In this study, a total of 103 SNPs associated with SY were co-located with previously reported SNPs and QTLs for seed number per pod (49), pod number (21), and TSW (33) (Shi et al. 2015; Lu et al. 2017; Khan et al. 2019; Pal et al. 2021; Supplementary Table 9). In addition, two SNPs (C03.27718223 and C02.22109942) associated with SY identified by Pal et al. (2021) were also identified in our study (Supplementary Table 8). These repeatedly identified significant SNPs should be focused on in the further study.

In this study, a total of 1773 SNPs were detected for SY and 783 SNPs were co-located with QTLs for SY and SY-related QTLs by linkage analysis reported in previous studies (Bouchet et al. 2014; Luo et al. 2017; Cai et al. 2016; Pal et al. 2021) (Supplementary Table 8). ChrA09__5160639 was co-located with QTL “qSY38” (Luo et al. 2017) and BnaA09g10430D (BnaA09.NPF8.5) was considered to be the most likely candidate gene. BnaA09.NPF8.5 had an MFS (Major facilitator superfamily) domain-contain protein. In rice, NPF7.2 enhanced influx of nitrate and nitrate concentration and improved root length, root weight, and fresh weight, thereby increasing tiller number and grain yield (Wang et al. 2018).

The candidate genes for SY in *B. napus*

In this study, 9.53% (169/1773) of the significant SNPs were identified in more than one repetition (Supplementary Table 4). For example, chrA02__4555979 was identified simultaneously in Trial 1_2 and Trial 1_mean value. BnaA02g08680D was located 269 kb upstream of chrA02__4438592. The expression of BnaA02g08680D in bud on the main inflorescence of high-yield cultivars was significantly higher than that of low-yield cultivars (Table 2). In addition, chrA01__8920351 was detected simultaneously in Trial 2_2 and Trial 2_mean value (Supplementary Table 2). BnaA01g17200D was located 121 kb downstream of chrA01__893123. The expression level of BnaA01g17200D in bud on the primary branch of high-yield cultivars was 6 times higher than that in low-yield cultivars (Table 2). In Arabidopsis, ATSESA1 (SEED STORAGE ALBUMIN 1), the orthologue of BnaA01g17200D, regulates seed protein accumulation to influence seed growth (Hu et al. 2021). In addition, some genes which have been reported to improve SY were also identified in our GWAS (Supplementary Table 10). The mediator subunit, OsMED15 is important for flowering, seed size and weight in rice (Dwivedi et al. 2019). The significant SNP chrA05__18407128 on A05 was identified to be located downstream 101 kb of *B. napus* BnaA05.TCP4 (TCP family transcription factor 4), which is the homologous of OsMED15. Optimal flowering time is associated with high SY, and AtTCP4 regulates flowering time in Arabidopsis (Schiessl et al. 2015; Kubota et al. 2017). BnaC08g36050D, a member of the AUX1 LAX family of auxin influx carriers, was located within the interval of SNP chrC08__33833529. AT2G21050, the homologous of BnaC08g36050D in Arabidopsis, has been reported to increase xylem area and enhance SY (Cabello and Chan 2019). These reported SY related genes detected in this study further prove the accuracy of our GWAS results.

Favorable alleles, haplotypes, and high-seed yield breeding in *B. napus*

Traditional breeding methods are difficult to meet the demand for food and edible oil caused by the growing population (Ma and Cao 2021). Mining superior alleles and haplotypes for molecular marker–assisted breeding has gradually become a new method for breeders (Ma and Cao 2021). Candidate gene association study can detect genetic variants within genes that are significantly associated with phenotypes. Genetic variations are located in the promoter and coding regions, which may lead to the difference of gene expression level and protein sequences among cultivars, respectively. In this study, we conducted candidate gene association study on three candidate genes (*BnaA01g17200D, BnaA02g08680D, and BnaA09g10430D*) and identified several genetic variations significantly related to SY within the genes. Four significant SNPs (chrA01__9042710, chrA01__9042762, chrA01__9044014, and chrA01__9044072) in BnaA01g17200D and four SNPs (chrA02__4290037, chrA02__4290087, chrA02__4290091, and chrA02__4290092) in
BnaA02g08680D were all located in the promoter. Seven, four, and eight significant SNPs associated with SY were located in the promoter, the exon, and the intron of BnaA09g10430D, respectively; and the SNPs located in the exon caused the changes of amino acids among different haplotypes (Table 3). Three high-yield haplotypes (BnaA01g17200Hap1, BnaA02g08680Hap1, and BnaA09g10430Hap2) were identified based on the above significant SNPs (Figs. 1, 2, 3). SYs of 67 B. napus cultivars harboring these three favorable haplotypes were significantly higher than those of other cultivars in 2-year field experiments (Fig. 4). These favorable alleles and haplotypes will be valuable for the cultivation of high-yield B. napus cultivars.

Conclusion

SY of B. napus is a complex quantitative trait controlled by multiple genes. A total of 1773 SNPs were identified to be significantly associated with seed yield across two years, and 783 of them were co-located with previous reported QTLs. Candidate gene association and haplotype analysis of BnaA01g17200D, BnaA02g08680D, and BnaA09g10430D revealed several high-yield haplotypes. These significant SNP loci, candidate genes, favorable alleles, and haplotypes will be useful for the breeding of high-yield B. napus cultivars.

Acknowledgements We greatly acknowledge the efforts of Dr. Zeng Wenhua, College of Foreign Languages, Huazhong Agricultural University, in reading and editing the English version of the manuscript. The computations in this paper were run on the bioinformatics computing platform of the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University.

Author contribution HL, MZ and LS designed research, reviewed writing, and drafted the manuscript. HL, MZ, BZ, XY, and PY participated in the experiments. LS, GD, and FX participated in manuscript revision.

Funding This work was supported by the National Nature Science Foundation of China (Grant Nos. 31972498 and 32172662).

Data availability The data sets supporting the results of this article are included within the article and its additional files. The association mapping population data can be found in the Genome Sequence Archive (https://bigd.big.ac.cn/gsa/) with Bioproject IDs PRJCA002835 and PRJCA002836 (Tang et al. 2021), and transcriptome data can be found in the Gene Expression Omnibus (GEO) database, with the accession number SRP072900 (Lu et al. 2017).

Code availability Not applicable.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

References

Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265. https://doi.org/10.1093/bioinformatics/bth457

Bouchet AS, Nesi N, Bissuel C, Brégeon M, Lariepe A, Navier H, Ribière N, Orsel M, Grezes-Berset B, Renard M, Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. Euphytica 199:183–205. https://doi.org/10.1007/s10681-014-1130-4

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Bucker ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

Cabello JV, Chan RL (2019) Arabidopsis and sunflower plants with increased xylem area show enhanced seed yield. Plant J 99:717–732. https://doi.org/10.1111/tpj.14356

Cai GQ, Yang QY, Chen H, Yang Q, Zhang CY, Fa CC, Zhou YM (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625. https://doi.org/10.1038/srep21625

Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:945–953. https://doi.org/10.1126/science.1253435

Chao HB, Raboanatahiry N, Wang XD, Zhao WG, Chen L, Guo LX, Li BJ, Hou DL, Pu S, Zhang LN, Wang H, Wang BS, Li MT (2019) Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breed Sci 69:104–116. https://doi.org/10.1270/jb.s18115

Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 6:80–92. https://doi.org/10.4161/fly.19695

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis G (2011) The variant call format and VCFtools.
Bioinforma 27:2156–2158. https://doi.org/10.1093/bioinformatics/btr330

Deng CR, Liu HD, Yao YM, Guo SM, Xiao L, Fu Z, Du DZ (2019) QTL analysis of four yield-related traits for Brassica napus L. in multiple environments. Mol Breeding 39:166. https://doi.org/10.1007/s11032-019-1067-3

Dwivedi N, Maji S, Waseem M, Thakur P, Kumar V, Parida SK, Thakur JK (2019) The Mediator subunit OsMED15a is a transcriptional co-regulator of seed size/weight-modulating genes in rice. Biochim Biophys Acta 1862:194432. https://doi.org/10.1016/j.bbagen.2019.194432

Garcia M, Eckermann P, Haeefe S, Satija S, Sznaider B, Timmins A, Baumann U, Wolters P, Mather DE, Fleury D (2019) Genome-wide association mapping of grain yield in a diverse collection of spring wheat (Triticum aestivum L.) evaluated in southern Australia. PLoS One 14:e0211730. https://doi.org/10.1371/journal.pone.0211730

Hu DZ, Zhang HR, Du Q, Hu ZB, Yang ZY, Li X, Wang J, Huang F, Yu DY, Wang H, Kan GZ (2020) TCP4-dependent induction of CONSTANS expression across multiple environments in wild soybean (Glycine soja) and Zuc. Planta 251:39. https://doi.org/10.1007/s00425-019-03329-6

Hu YL, Zhou LM, Yang YH, Zhang WB, Chen ZH, Li XM, Qian Q, Kong FJ, Li YG, Liu X, Hou XL (2021) The gibberellin signaling negative regulator RGA-LIKE3 promotes seed storage protein accumulation. Plant Physiol 185:1697–1707. https://doi.org/10.1093/physp/kiaa114

Kalyana BB, Mathur RK, Venu MV, Sandip S, Ravichandran G, Anita P, Bhagya HP (2021) Genome-wide association study (GWAS) of major QTLs for bunch and oil yield related traits in Elaeisguineensis L. Plant Sci 305:110810. https://doi.org/10.1016/j.plantsci.2020.110810

Khan SU, Jiao YM, Liu S, Zhang KP, Khan MHU, Zhai YG, Olalekan A, Fan CC, Zhou YM (2019) Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Ind Crops Prod 142:111877. https://doi.org/10.1016/j.indcrop.2019.111877

Kubota A, Ito S, Shim JS, Johnson RS, Song YH, Breton G, Gorolagia GS, Kwon MS, Cintrón DL, Koyama T, Ohme-Takagi M, Pruneda-Paz JL, Kay SA, MacCoss MJ, Imai-zumi T (2017) TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet 13:e1006856. https://doi.org/10.1371/journal.pgen.1006856

Li SY, Zhu YY, Varshney RK, Zhan JP, Zheng XX, Shi JQ, Wang XF, Liu GH, Wang HZ (2020) A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm. Plant Biotechnol J 18:568–580. https://doi.org/10.1111/pbi.13224

Liu HJ, Wang JC, Zhang BB, Yang XY, Hammond JP, Ding GD, Wang SL, Cai HM, Wang C, Xu FS, Shi L (2021) Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. Ann Bot 128:919–930. https://doi.org/10.1093/aob/mcab115

Liu HJ, Wang W, Yang M, Yuan P, Hammond JP, King GJ, Ding GD, White PJ, Wang SL, Cai HM, Wang C, Lu CG, Xu FS, Shi L (2022) Genome-wide association studies of important agronomic traits in Brassica napus: what we have learned and where we are headed. Annual Plant Reviews 5:1–30. https://doi.org/10.1093/9781119312994.apr0801

Lu K, Peng L, Zhang C, Lu JH, Yang B, Xiao ZC, Liang Y, Xu XF, Qu CM, Zhang K, Liu LZ, Zhu QL, Fu ML, Yuan XY, Li JN (2017) Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in Brassica napus. Front Plant Sci 8:206. https://doi.org/10.3389/fpls.2017.00206

Luo ZL, Wang M, Long Y, Huang YJ, Shi L, Zhang CY, Liu X, Fitt BDL, Xiang JX, Mason AS, Snowdon RJ, Liu PF, Meng JL, Zou J (2017) Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example. Theor Appl Genet 130:1569–1585. https://doi.org/10.1007/s00122-017-4911-7

Ma J, Cao YY (2021) Genetic dissection of grain yield of maize and yield-related traits through association mapping and genomic prediction. Front Plant Sci 12:690059. https://doi.org/10.3389/fpls.2021.690059

Pal L, Sandhu SK, Bhatia D, Sethi S (2021) Genome-wide association study for candidate genes controlling seed yield and its components in rapeseed (Brassica napus subsp. napus). Physiol Mol Biol Plants 27:1933–1951. https://doi.org/10.1007/s12298-021-01060-9

Raboanatahiry N, Chao HB, Dalin H, Pu S, Yan W, Yu LJ, Wang BS, Li MT (2018) QTL alignment for seed yield and yield related traits in Brassica napus. Front Plant Sci 9:1127. https://doi.org/10.3389/fpls.2018.01127

Raman H, Raman R, Pirathiban R, McMittie B, Sharma N et al (2022) Multi-environment QTL analysis delineates a major locus associated with homoeologous exchanges for water-use efficiency and seed yield in canola. Plant, Cell Environ 45:2019–2036. https://doi.org/10.1111/pce.14337

Schiesell S, Iniguez-Luy F, Qian W, Snowdon RJ (2015) Diverse regulatory factors associate with flowering time and yield responses in winter-type Brassica napus. BMC Genomics 16:737. https://doi.org/10.1186/s12864-015-1950-1

Shen YS, Yang Y, Xu ES, Ge XH, Xiang Y, Li ZY (2018) Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.). Theor Appl Genet 131:67–78. https://doi.org/10.1007/s00122-017-2986-1

Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan CL, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861. https://doi.org/10.1534/genetics.109.101642

Shi JQ, Zhan JP, Yang YH, Ye J, Huang SM, Li RY, Wang XF, Liu GH, Wang HZ (2015) Linkage and regional association analysis reveal two new tightly-linked major-QTLs for pod number and seed number per pod in rapeseed (Brassica napus L.). Scientific Reports 5:14481. https://doi.org/10.1038/srep14481

Sun CM, Wang BQ, Yan L, Hu KN, Liu S, Zhou YM, Guan CY, Zhang ZQ, Li JN, Zhang JF, Chen S, Wen J, Ma CZ, Tu JX, Shen JX, Fu TD, Yi B (2016) Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci 7:1102. https://doi.org/10.3389/fpls.2016.01102

Tang S, Zhao H, Lu SP, Yu LQ, Zhang GF, Zhang YT, Yang QY, Zhou YM, Wang XM, Ma W, Xie WB, Guo L (2021)
Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in *Brassica napus*. Mol Plant 14:470–487. https://doi.org/10.1016/j.molp.2020.12.003

Wang J, Lu K, Nie HP, Zeng QS, Wu BWJ, Qian J, Fang ZM (2018) Rice nitrate transporter OsNPF7.2 positively regulates tiller number and grain yield. Rice 11:12. https://doi.org/10.1186/s12284-018-0205-6

Xiao YJ, Liu HJ, Wu LJ, Warburton M, Yan JB (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10:359–374. https://doi.org/10.1016/j.molp.2016.12.008

Xiao ZC, Tang F, Zhang LY, Li ST, Wang SF, Huo Q, Yang B, Zhang C, Wang DJ, Li Q, Wei LJ, Guo T, Qu CM, Lu K, Zhang YF, Guo L, Li JN, Li NN (2021) The *Brassica napus* fatty acid exporter FAX1-1 contributes to biological yield, seed oil content, and oil quality. Biotechnol Biofuels 14:190. https://doi.org/10.1186/s13068-021-02035-4

Zhang ST, Lu JW, Zhu Y, Fang YT, Cong RH, Li XK, Ren T (2022) Rapeseed as a previous crop reduces rice N fertilizer input by improving soil fertility. Field Crop Res 281:108487. https://doi.org/10.1016/j.fcr.2022.108487

Zhao WG, Wang XD, Wang H, Tian JH, Li BJ, Chen L, Chao HB, Long Y, Xiang J, Gan JP, Liang WS, Li MT (2016) Genome-wide identification of QTL for seed yield and yield-related traits and construction of a high-density consensus map for QTL comparison in *Brassica napus*. Front Plant Sci 7:17. https://doi.org/10.3389/fpls.2016.00017

Zheng M, Peng C, Liu HF, Tang M, Yang HL, Li XK, Liu JL, Sun XC, Wang XF, Xu JF, Hua W, Wang HZ (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (*Brassica napus* L.). Front Plant Sci 8:1246. https://doi.org/10.3389/fpls.2017.01246

Zhong H, Liu S, Sun T, Kong WL, Deng XD, Peng ZH, Li YS (2021) Multi-locus genome-wide association studies for five yield-related traits in rice. BMC Plant Biol 21:364. https://doi.org/10.1186/s12870-021-03146-8

Zhou QH, Fu DH, Mason AS, Zeng YJ, Zhao CX, Huang YJ (2014) In silico integration of quantitative trait loci for seed yield and yield-related traits in *Brassica napus*. Mol Breeding 33:881–894. https://doi.org/10.1007/s11032-013-0002-2

Zhu GZ, Hou S, Song XH, Wang X, Wang W, Chen QJ, Guo WZ (2021) Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (*Gossypium hirsutum*). BMC Plant Biol 21:250. https://doi.org/10.1186/s12870-021-03009-2

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.