Predicting the settlement of Urumqi subway based on wavelet denoising and BP neural network

J Q Zhang, Y J Qin, L F Xie*
Institute of architectural engineering, Xinjiang University. 1230 Yan’an Road, Tianshan District, Urumqi, Xinjiang, China

*Corresponding email: xieliangfu@xju.edu.cn

Abstract. In this study, we propose a model to accurately predict the ground subsidence caused by subway excavation using the wavelet denoising model and BP neural network. First, we develop an optimal denoising model by comparing and analyzing the denoising effect of different wavelet denoising parameters. The model is used to reduce the noise of the monitoring data. Then, we utilize BP neural network to develop a prediction model in which the proposed denoising model is used. Finally, we apply the proposed model to Urumqi subway. The results demonstrate the rationality and accuracy of the proposed model.

Key word. Wavelet denoising; BP neural network; Settlement prediction

1. Introduction
With the growth of the city population and the expansion of urban scale, underground engineering is rapidly developing in China. However, the construction of underground engineering inevitably causes surface deformation. When the surface deformation exceeds the safety limit, it will affect the safe operation of underground work and the regular use of surrounding buildings and will cause serious casualties. Therefore, accurate prediction of surface deformation caused by underground construction is crucial for disaster prevention and mitigation [1-5].

Currently, the empirical method [6-8], numerical simulation [9-10], analysis [11], and artificial neural network [12-16] are commonly used to predict the surface deformation induced by the construction of underground engineering. Among them, artificial neural network is widely used because of advantages such as simplicity, small computational cost, and strong parallelism. Moreover, monitoring data inevitably contain noise pollution due to the influence of measuring instruments, human operation, observation conditions, and other factors. Wavelet transform has an excellent performance in signal denoising [17-19].

To eliminate noise and improve the prediction accuracy, several studies have used the prediction model of the wavelet denoising combined with neural network. Zheng Y Y used the wavelet transform principle to reduce the monitoring noise, and used neural network to analyze the prediction effect and accuracy for different training samples [20]. Jialong S predicted the deformation caused by grouting around mine shaft by combining wavelet analysis and neural network [21]. In this study, based on the monitoring data of Urumqi Rail Transit Line 1, the wavelet theory was used to reduce the noise of the monitoring data and predict the ground subsidence using the BP neural network. Our model provides a reference for the subsidence prediction of Urumqi metro.
2. Project overview

Based on the monitoring data of the Beimen Station of Urumqi Rail Transit Line No. 01 as an example, the configuration is shown in figure 1. Sixteen monitoring points are set around the station to reflect surface deformation. Among them, the monitoring point DB-02-01 is arranged around the station and along the metro lines. It bears double destabilization that can be attributed to excavation tunnel and foundation pit and is more representative than the remaining points. In this study, we select the accumulated settlement of DB-02-01 monitoring point for research purposes. The original data are plotted in figure 2. Due to the error of the original data, the settlement curve locally fluctuates, which is inconsistent with the actual deformation trend. Therefore, it is necessary to reduce the noise of the original data before settlement prediction.

3. Data denoising

Recently, wavelet analysis is a rapidly developing signal processing technology. It is known as a "mathematical microscope" because it can perform time-frequency analysis for multilayer resolutions [22-23]. Due to the different time-frequency characteristics of real signal and noise in monitoring data, wavelet denoising can effectively separate them to reduce the error and obtain real deformation information [24]. Generally, the steps of wavelet denoising are as follows [25-30]: a) choose the appropriate wavelet function, level and decomposition order to decompose the monitoring signal according to the actual characteristics of the project; b) process the threshold value; c) reconstruct the signal by wavelet transform. There are two main methods to evaluate the effect of wavelet denoising: (1) the root mean square error (RMSE), which refers to the mean square error between the denoised signal and the original signal. The smaller the RMSE is, the better the denoising effect is. (2) Signal to noise ratio
(SNR), which refers to the energy ratio of the original signal and noise. The higher the SNR is, the better the denoising performance is. Before applying wavelet transformation to denoise the original data, the influence of various parameters on the denoising effect is considered to obtain the optimal denoising model and achieve the optimal denoising effect.

3.1. Influence of different thresholds on the denoising effect

Based on related studies in literature, the wavelet functions dbN and symN that are widely used in engineering to decompose the monitoring signal into three layers are used. To select the appropriate threshold, the denoising effects of different thresholds are compared (table 1 and figure 3).

Table 1. The denoising effects of different thresholds.

dbN	Soft threshold	Hard threshold	symN	Soft threshold	Hard threshold				
	SNR	RMSE	SNR	RMSE	SNR	RMSE	SNR	RMSE	
db1	20.57	0.17	22.27	0.14	sym1	20.58	0.17	22.27	0.14
db2	21.30	0.15	25.68	0.09	sym2	21.30	0.15	25.68	0.09
db3	20.27	0.17	23.95	0.11	sym3	20.27	0.17	23.95	0.11
db4	20.39	0.17	23.63	0.12	sym4	21.36	0.15	24.04	0.11
db5	21.03	0.16	22.78	0.13	sym5	20.20	0.18	22.73	0.13
db6	18.26	0.22	19.39	0.19	sym6	20.83	0.16	23.57	0.12
db7	25.02	0.10	30.18	0.06	sym7	20.11	0.18	22.95	0.13
db8	22.64	0.13	28.62	0.07	sym8	21.03	0.16	23.29	0.12
db9	22.07	0.14	25.90	0.09	sym9	20.54	0.17	22.92	0.13
db10	24.58	0.11	30.23	0.06	sym10	19.55	0.19	22.10	0.14

Figure 3. The denoising effects of different thresholds.

Figure 3 shows that the RMSE of different thresholds are similar regardless of the wavelet function. However, the SNR of hard threshold is significantly higher than that of the soft threshold. Thus, it can be concluded that the denoising effect of hard threshold is better than that of the soft one.

3.2. Influence of different threshold selection rules on the denoising effect

In the process of wavelet denoising, there are four kinds of threshold selection rules: sqtwolog, minimaxi, rigrsure, and heursure thresholds. The dbN and symN wavelet functions are also used to decompose the monitoring signal into three layers, and the above four thresholds are applied to denoise the monitoring data, respectively. The denoising results are shown in table 2 and figure 4 as follows:
Table 2. Comparison of denoising effect using four thresholds.

dbN	sqtwolog	minimaxi	rigrsure	heursure				
SNR	RMSE	SNR	RMSE	SNR	RMSE	SNR	RMSE	
db1	19.49	0.19	22.15	0.14	22.27	0.14	20.97	0.16
db2	15.91	0.29	20.15	0.18	25.68	0.09	17.75	0.23
db3	16.97	0.26	21.80	0.15	23.95	0.11	20.17	0.18
db4	16.96	0.26	21.98	0.14	23.63	0.12	18.37	0.22
db5	17.25	0.25	20.76	0.16	22.78	0.13	17.73	0.23
db6	17.26	0.25	19.68	0.19	19.39	0.19	19.22	0.20
db7	18.02	0.23	22.33	0.14	30.18	0.06	19.46	0.19
db8	17.48	0.24	21.11	0.16	28.62	0.07	18.77	0.21
db9	17.12	0.25	22.10	0.14	25.90	0.09	18.15	0.22
db10	18.59	0.21	23.13	0.16	30.23	0.06	20.70	0.17

symN	sqtwolog	minimaxi	rigrsure	heursure				
SNR	RMSE	SNR	RMSE	SNR	RMSE	SNR	RMSE	
sym1	19.49	0.19	22.15	0.14	22.27	0.14	20.97	0.16
sym2	15.91	0.29	20.15	0.18	25.68	0.09	17.75	0.23
sym3	16.97	0.26	21.80	0.15	23.95	0.11	20.17	0.18
sym4	18.32	0.22	21.55	0.15	24.04	0.11	19.23	0.20
sym5	17.16	0.25	21.21	0.16	22.73	0.13	17.99	0.23
sym6	17.27	0.25	19.95	0.18	23.57	0.12	18.59	0.21
sym7	16.74	0.26	20.90	0.16	22.95	0.13	18.67	0.21
sym8	17.30	0.25	20.20	0.18	23.29	0.12	19.59	0.19
sym9	17.27	0.25	21.71	0.15	22.92	0.13	19.14	0.20
sym10	16.93	0.26	20.11	0.18	22.10	0.14	18.57	0.21

Figure 4. Comparison of denoising effect using four threshold rules.

Figure 4 shows that regardless of the wavelet function used, the RMSE generated by denoising with different threshold selection rules is similar. However, the SNR of rigrsure threshold is the highest, indicating that the denoising effect of rigrsure threshold is the best, followed by the minimaxi threshold, then the heursure threshold, and finally the sqtwolog threshold.
3.3. About scal
Scal defines multiplicative threshold rescaling, and scal = one for no rescaling; scal = sln for rescaling using a single estimation of level noise based on first-level coefficients; scal = mln for rescaling using level-dependent estimation of level noise. The above three methods are used, respectively, to filter the noise; the results are shown in Table 3 and Figure 5:

Table 3. Comparison of denoising effect using different scal.

dbN	one					
	SNR	RMSE	SNR	RMSE	SNR	RMSE
db1	14.53	0.34	22.27	0.14	21.46	0.15
db2	13.57	0.38	25.68	0.09	21.44	0.15
db3	14.42	0.34	23.95	0.11	20.04	0.18
db4	14.38	0.34	23.63	0.12	18.92	0.20
db5	13.65	0.37	22.78	0.13	20.38	0.17
db6	11.58	0.47	19.39	0.19	18.08	0.22
db7	14.09	0.36	30.18	0.06	22.76	0.13
db8	12.35	0.43	28.62	0.07	21.70	0.15
db9	13.25	0.39	25.90	0.09	22.09	0.14
db10	11.52	0.48	30.23	0.06	23.08	0.13

symN	one					
	SNR	RMSE	SNR	RMSE	SNR	RMSE
sym1	14.53	0.34	22.27	0.14	21.46	0.15
sym2	13.57	0.38	25.68	0.09	21.44	0.15
sym3	14.42	0.34	23.95	0.11	20.04	0.18
sym4	13.37	0.39	24.04	0.11	23.40	0.12
sym5	13.66	0.37	22.73	0.13	23.01	0.13
sym6	14.00	0.36	23.57	0.12	21.44	0.15
sym7	13.99	0.36	22.95	0.13	22.95	0.13
sym8	13.92	0.36	23.29	0.12	22.18	0.14
sym9	14.02	0.36	22.92	0.13	22.59	0.13
sym10	14.47	0.34	22.10	0.14	20.25	0.17

(a) dbN wavelet function (b) symN wavelet function

Figure 5. Comparison of denoising effect using different scal.
Figure 5 shows that regardless of the wavelet function used, the SNR of \textit{scal} = \textit{sln} is significantly higher than the others, indicating that the denoising effect of the case with \textit{scal} = \textit{sln} is better than the case with \textit{scal} = \textit{mln} and \textit{scal} = \textit{one}.

3.4. \textit{Influence of different wavelet functions on the denoising effect}

To obtain the appropriate wavelet function, the denoising effects of wavelet functions \textit{dbN} and \textit{symN} are compared, the results are shown in table 4.

| \textbf{Table 4. Comparison of denoising effect using different wavelet functions.} |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| \textbf{dbN} | \textbf{SNR} | \textbf{RMSE} | \textbf{symN} | \textbf{SNR} | \textbf{RMSE} |
| db1 | 22.27 | 0.14 | sym1 | 22.27 | 0.14 |
| db2 | 25.68 | 0.09 | sym2 | 25.68 | 0.09 |
| db3 | 23.95 | 0.11 | sym3 | 23.95 | 0.11 |
| db4 | 23.63 | 0.12 | sym4 | 24.04 | 0.11 |
| db5 | 22.78 | 0.13 | sym5 | 22.73 | 0.13 |
| db6 | 19.39 | 0.19 | sym6 | 23.57 | 0.12 |
| db7 | 30.18 | 0.06 | sym7 | 22.95 | 0.13 |
| db8 | 28.62 | 0.07 | sym8 | 23.29 | 0.12 |
| db9 | 25.90 | 0.09 | sym9 | 22.92 | 0.13 |
| db10 | 30.23 | 0.06 | sym10 | 22.10 | 0.14 |
| average | 25.26 | 0.11 | average | 23.35 | 0.12 |
| variance | 3.39 | 0.04 | variance | 0.99 | 0.01 |

Table 4 reveals that the SNR corresponding to \textit{dbN} wavelet function is greater than \textit{symN} wavelet function, and the RMSE of \textit{dbN} wavelet function is less than \textit{symN} wavelet function, showing that the denoising effect of \textit{dbN} wavelet function is better than that of \textit{symN} wavelet function.

3.5. \textit{Influence of different decomposition levels on the denoising effect}

The \textit{dbN} wavelet function, hard threshold, \textit{rigrsure}, and \textit{scal} = \textit{sln} are used to denoise the original data with different decomposition levels, the denoising results are shown in table 5:

| \textbf{Table 5. Comparison of denoising effect using different levels.} |
|-----------------|----------------|----------------|----------------|----------------|----------------|
| \textbf{dbN} | \textbf{lev} 1 | \textbf{lev} 2 | \textbf{lev} 3 | \textbf{lev} 4 | \textbf{lev} 5 | \textbf{lev} 6 | \textbf{lev} 7 | \textbf{lev} 8 |
| \textbf{SNR} | \textbf{RMSE} | \textbf{SNR} | \textbf{RMSE} | \textbf{SNR} | \textbf{RMSE} | \textbf{SNR} | \textbf{RMSE} | \textbf{SNR} |
| db1 | 24.06 | 0.11 | 22.28 | 0.14 | 22.27 | 0.14 | 22.27 | 0.14 | 22.27 | 0.14 |
| db2 | 26.12 | 0.09 | 25.82 | 0.09 | 25.68 | 0.09 | 25.28 | 0.10 | 25.28 | 0.10 |
| db3 | 25.92 | 0.09 | 24.49 | 0.11 | 23.95 | 0.11 | 23.93 | 0.11 | 23.93 | 0.11 |
| db4 | 24.94 | 0.10 | 23.63 | 0.12 | 23.63 | 0.12 | 23.55 | 0.12 | 23.55 | 0.12 |
| db5 | 22.87 | 0.13 | 22.87 | 0.13 | 22.78 | 0.13 | 22.77 | 0.13 | 22.77 | 0.13 |
| db6 | 21.23 | 0.16 | 19.40 | 0.19 | 19.39 | 0.19 | 19.39 | 0.19 | 19.39 | 0.19 |
| db7 | 31.49 | 0.05 | 30.40 | 0.05 | 30.18 | 0.06 | 30.02 | 0.06 | 30.02 | 0.06 |
| db8 | 29.79 | 0.06 | 28.63 | 0.07 | 28.62 | 0.07 | 28.62 | 0.07 | 28.62 | 0.07 |
| db9 | 26.76 | 0.08 | 25.87 | 0.09 | 25.90 | 0.09 | 25.89 | 0.09 | 25.89 | 0.09 |
| db10 | 32.52 | 0.04 | 30.22 | 0.06 | 30.23 | 0.06 | 30.19 | 0.06 | 30.19 | 0.06 |
| average | 26.57 | 0.09 | 25.36 | 0.11 | 25.26 | 0.11 | 25.19 | 0.11 | 25.19 | 0.11 |
| variance | 3.49 | 0.03 | 3.39 | 0.04 | 3.39 | 0.04 | 3.36 | 0.01 | 3.36 | 0.01 |
From Table 5, in the process of dbN wavelet denoising, as the decomposition layers increase, the SNR decrease, while the RMSE's increase. When Lev = 1, the SNR is the largest and the RMSE is the smallest. Thus, we choose Lev = 1.

3.6. Influence of different wavelet orders on the denoising effect

To determine the wavelet order, the average and variance of dbN wavelet function under different decomposition levels (Lev = 1–12) are calculated, and the results are shown in the following figure:

![Figure 6. Influence of different wavelet orders on denoised effect.](image)

Figure 6 shows that the SNR of the db3 wavelet function is the highest, indicating that the denoising effect of db3 is the best. Therefore, db3 is selected to filter the noise.

To sum up, the db3 wavelet function is used to analyze the original monitoring data of DB-02-01 based on hard threshold, rigrsure, scal = sln and Lev = 1. The denoised data are shown in Table 6, while the comparison with the original data is shown in Figure 7.
Table 6. The denoised data of DB-02-01.

periods	time /d	settlement /mm	periods	time /d	settlement /mm	periods	time /d	settlement /mm
1	1	5.7755	20	30	-0.1698	38	60	1.3291
2	3	4.1765	21	31	-0.0814	39	64	1.2786
3	6	4.1565	22	32	0.0074	40	67	1.1116
4	8	3.9096	23	33	0.0433	41	71	0.7276
5	9	4.0100	24	34	0.0516	42	74	1.0020
6	10	2.7900	25	36	0.7576	43	78	0.8524
7	12	0.7891	26	37	0.1210	44	81	0.8079
8	13	0.9278	27	39	0.3867	45	85	0.8358
9	15	-0.2989	28	41	0.4810	46	89	0.8990
10	17	-0.0739	29	43	0.5683	47	92	0.9130
11	18	-0.3897	30	44	0.6678	48	96	0.9302
12	19	-0.4000	31	46	0.6449	49	100	0.6801
13	20	-0.4821	32	48	0.5750	50	103	0.3127
14	22	-0.5089	33	50	0.5789	51	107	0.2422
15	23	-0.5137	34	52	0.5793	52	111	0.2148
16	24	-0.4909	35	55	0.5578	53	116	0.2335
17	25	-0.4609	36	57	0.5330	54	120	0.3234
18	26	-0.4125	37	59	0.8584	55	124	0.4234
19	28	-0.3078						

Figure 7. Comparison between the original data and denoised data.

Figure 7 shows that in the three-time periods of 40–60 days, 75–90 days, and 105–120 days, the monitoring data contain significant contamination, which is also why the monitoring curve appears “spikes.” After the wavelet denoising, the monitoring curve becomes flat and closer to the real deformation.

4. Settlement prediction and analysis

We establish the structure of 31-18-1 BP neural network. That is, we construct a function fitting neural network with the size of the input as 31, the hidden is 18, and the output is 1. The monitoring data of the 1st to 45th periods are used as the learning set of the neural network, and the BP neural network algorithm is implemented by MATLAB. The monitoring data of the 46th to 55th periods are used as the test set to verify the accuracy of the prediction model. The comparison between the predicted data of BP neural network and denoised data is shown in table 7.
Table 7. Comparison between the predicted data of BP neural network and denoised data.

periods	original data	predicted data	absolute error	relative error
46	0.7766	0.0534	6.43%	0.0534
47	0.5660	0.0440	7.21%	0.0440
48	0.4435	0.0335	8.17%	0.0335
49	0.6652	0.0648	8.88%	0.0648
50	0.3986	0.0414	9.41%	0.0414

de-noised data	predicted data	absolute error	relative error
	0.9176	0.0186	2.07%
	0.9295	0.0165	1.81%
	0.9470	0.0168	1.81%
	0.7004	0.0203	2.98%
	0.3107	0.0020	0.61%

| | | | | | |
|---------|----------------|----------------|----------------|
| | 51 | 52 | 53 | 54 | 55 |
| original data | predicted data | absolute error | relative error |
| | 0.4432 | 1.0774 | 1.1095 | 1.2937 | 1.1491 |
| | 0.0368 | 0.0574 | 0.0905 | 0.0863 | 0.0691 |
| | 7.67% | 5.63% | 7.54% | 6.25% | 6.40% |

denoised data	predicted data	absolute error	relative error
	0.2322	0.01	4.13%
	0.2145	0.0003	1.4%
	0.2293	0.0042	1.8%
	0.3342	0.0108	3.34%
	0.4300	0.0066	1.56%

Table 7 shows that the relative error between the predicted value and the true value is kept within 10%, and the relative error is within 5% after the wavelet denoising. This shows that our model is reasonable. Meanwhile, the methods are simple and easy to use in practice, and one may incorporate these methods to accurately predict deformation.

5. Conclusion
In this study, a combination of wavelet denoising and BP neural network is used to develop a model for predicting subway construction settlement. The model fully reflects the prediction performance of BP neural network.

According to the noise reduction of the monitoring data, the method of the hard threshold is better than the soft threshold, and the denoising effect of the dbN wavelet function is better than the symN wavelet function. This provides a reference for ground settlement data processing caused by similar subway construction in the future.

By using BP neural network to predict the settlement of the denoised data, the results showed that the prediction error of the data after noise reduction is less than 5%, and the highest accuracy can reach 99.86%, validating the reliability and accuracy of the prediction model used in this study.

References
[1] Li Z H, Liu W J, Liu W F, Guo X X, Yang P and Branch P C 2014 Design and application of on-line monitoring system and assessment on safety of ground surface buildings (structures) in metro construction. Tunnel Construction
[2] Kavvadas M J 2005 Monitoring ground deformation in tunnelling: current practice in transportation tunnels. Engineering Geology. 79 93-113
[3] Ocak I 2012 Interaction of longitudinal surface settlements for twin tunnels in shallow and soft soils: the case of istanbul metro. Environmental Earth Sciences
[4] Ng C W W, Liu G B and Li Q 2013 Investigation of the long-term tunnel settlement mechanisms of the first metro line in shanghai. Canadian Geotechnical Journal. 50 674-84
[5] Ran L, Yi T H, Ye X W and Dong X B 2012 Long-term deformation monitoring of metro-tunnel airshaft excavation during construction stage. International Journal of Distributed Sensor Networks. 1-11
[6] Bobet A 2001 Analytical solutions for shallow tunnels in saturated ground. Journal of Engineering Mechanics. 127 1258-66
[7] Lei H, Duan S W, Xie Z Q and Jiang X L 2015 A revision of peck formula based on the surface subsidence due to metro excavation in Changsha. Electronic Journal of Geotechnical
Engineering. 20 2115-23
[8] Fan S, Zhang S T and Li Y 2017 Based on the peck formula of tunnel construction prediction surface subsidence in real time. Geomatics & Spatial Information Technology
[9] Ding K W and Wang X 2016 Analysis of Excavation with Numerical Simulation and Monitoring Data Has Effect on Surface Subsidence. 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016)
[10] Heidari S R, Zare S, Mirzaei N H and Foroughi M 2013 Numerical study of face pressure effect on surface settlement in soft ground mechanized tunneling- a case study: tehran metro line 7.
[11] Chou W I and Bobet A 2002 Prediction of ground deformations in shallow tunnels in clay. Tunnelling & Underground Space Technology. 17 3-19
[12] Du S, Zhang J, Deng Z and Li J 2014 A neural network based intelligent method for mine slope surface deformation prediction considering the meteorological factors. Telkomnika Indonesian Journal of Electrical Engineering. 12
[13] Chen H M, Zhou S Q and Yang Z 2009 Artificial Neural Network's Application in Intelligent Prediction of Enclosure Structure Deformation Induced by Foundation Pit Excavation. International Conference on Artificial Intelligence & Computational Intelligence (IEEE)
[14] Chen H Q, Zeng Z G and Tang H M 2015 Landslide deformation prediction based on recurrent neural network. Neural Processing Letters
[15] Tsekouras G J, Koukoulis J and Mastorakis N E 2010 An optimized neural network for predicting settlements during tunneling excavation. WSEAS Transactions on Systems 12 1153-67
[16] Xiong H, Ran Y F, Xiong G C, Li S S and Ye L Y 2010 Study on deformation prediction of landslide based on genetic algorithm and improved bp neural network. 39 1245-54
[17] Hilton M L and Ogden R T 1997 Data analytic wavelet threshold selection in 2d signal denoising. IEEE Transactions on Signal Processing. 45 496-500
[18] Yang Y M, Wang Z G, Gao Y Y and Gao F P 2012 Deformation monitoring data de-noising processing based on wavelet packet. Applied Mechanics & Materials. 1180-86
[19] Yuan Z, Wang X X and Li S 2010 Data processing for operating subway tunnel with automatic deformation monitoring system based on wavelet. Site Investigation Science & Technology
[20] Zheng Y Y, Chen S S and Hu Y 2019 Application of wavelet de-noising and bp neural network model in settlement deformation monitoring. Geomatics & Spatial Information Technology
[21] Sun J L and Guo J Y 2010 Combination forecasting method for ground surface deformation based on wavelet analysis and BP neural network. International Conference on Test & Measurement (IEEE)
[22] Bruni V and Vitulano D 2006 Wavelet-based signal de-noising via simple singularities approximation. Signal processing. 86 859-76
[23] Wornell G W and Gaumond C F 1999 Signal processing with fractals: a wavelet-based approach. Journal of the Acoustical Society of America. 105
[24] Chanerley A A and Alexander N A 2007 Correcting data from an unknown accelerometer using recursive least squares and wavelet de-noising. Computers & Structures
[25] Pan Q and Zhang L 1999 Two denoising methods by wavelet transform. IEEE Transactions on Signal Processing. 47 3401-06
[26] Li W S, Li X and Niu G X 2014 Modified project based on the wavelet threshold denoising method. Shaanxi Xueqian Normal University Journal
[27] Barthel K U, Cycon H L and Marpe D 2004 Image denoising using fractal and wavelet-based methods. Proceedings of SPIE the International Society for Optical Engineering. 5266 10-18
[28] Taswell C 2000 The what, how, and why of wavelet shrinkage denoising. Computing in Science & Engineering, 2 12-19
[29] Steidl G and Weickert J 2002 Relations between soft wavelet shrinkage and total variation denoising
[30] Hsung T C 1999 Denoising by singularity detection. IEEE Trans Signal Process. 47 3139-44
Acknowledgments
This thesis is supported by the funding from National Natural Science Foundation of China (51908482) and Xinjiang Uygur Autonomous Region University Research project (XJEDU2018Y008).