Research Article

On Solutions of Fractional-Order Gas Dynamics Equation by Effective Techniques

Naveed Iqbal,1 Ali Akgül,2 Rasool Shah,3 Abdul Bariq,4 M. Mossa Al-Sawalha,1 and Akbar Ali 1

1Department of Mathematics, Faculty of Science, University of Ha’il, Ha’il 2440, Saudi Arabia
2Siirt University, Art and Science Faculty, Department of Mathematics, Siirt 56100, Turkey
3Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
4Department of Mathematics, Laghman University, Mehtarlam 2701, Laghman, Afghanistan

Correspondence should be addressed to Abdul Bariq; abdulbariq.maths@lu.edu.af

Received 7 October 2021; Revised 10 January 2022; Accepted 27 January 2022; Published 16 March 2022

Academic Editor: Hemen Dutta

Copyright © 2022 Naveed Iqbal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, the novel iterative transformation technique and homotopy perturbation transformation technique are used to calculate the fractional-order gas dynamics equation. In this technique, the novel iteration method and homotopy perturbation method are combined with the Elzaki transformation. The current methods are implemented with four examples to show the efficacy and validation of the techniques. The approximate solutions obtained by the given techniques show that the methods are accurate and easy to apply to other linear and nonlinear problems.

1. Introduction

Fractional calculus (FC) has been there since classical calculus, but it has recently gained much attention due to its reaction to the requirements as mentioned above. The framework of Liouville and Riemann is used to analyze FC using differential and integral operators. Following that, it was widely used to investigate a variety of phenomena. Many academics, however, pointed out some limitations in engaging this operator, in particular, the physical meaning of the initial condition and the nonzero derivative of a constant. Caputo then presented a unique and new fractional operator that incorporated all of the abovementioned constraints. The Caputo operator is used to study most of the models studied and analyzed under the FC framework. For many ideas of FC, senior academics propose many pioneering directions, and they are the ones who provide the groundwork for the concept [1–5]. The theory and core ideas of FC have been applied to a variety of real-world problems, including biomathematics, financial models, chaos theory, optics, and other fields [6–12].

Gas dynamic equations are mathematical representations defined as the physical laws of energy conservation, mass conservation, momentum conservation, etc. Nonlinear fractional-order gas dynamics equations are applied in shock fronts, unusual factions, and connection discontinuities. Gas dynamics is a study in the field of fluid dynamics that studies gas motion and its effect on physical constructions based on the concept of fluid mechanics and fluid dynamics. The science emerges from research of gas flows, mostly around or within human minds, several instances for these research involve, and not restricted to, choked flows in nozzles and pipes, gas fuel streams in a rocket engine, aerodynamic heating on atmospheric reentry cars, and shock waves around aircraft [13, 14].

Consider the nonlinear fractional-order gas dynamics equation:

$$\frac{\partial^{\delta} v}{\partial \eta^{\delta}} + v \frac{\partial v}{\partial \eta} - \nu (1 - \nu) = 0, \quad \eta \in \mathbb{R}, \ 0 < \delta \leq 1. \quad (1)$$

The initial condition is \(\Phi(\mathfrak{3}, 0) = g(\mathfrak{3}) \), where \(\delta \) is a parameter that describes the fractional-order derivatives.
When \(\varphi = 1 \), (1) improves the equation of classical gas dynamics.

Since certain physical processes, both in engineering and applied sciences, can be successfully explained by the creation of models with the aid of fractional calculus theory. The response of the fractional-order equations eventually converges to the equations of the integer order, attracting particular interest nowadays. Due to a broad variety of applications for mathematical modeling of real-world problems, fractional differentiations are very efficient, e.g., traffic flow models, earthquake modeling, regulation, diffusion model, and relaxation processes [15–17]. In the past, traffic flow models, earthquake modeling, regulation, differential equations have been used for mathematical modeling of real-world problems, fractional differentiations are very efficient, e.g., applications for mathematical modeling of real-world models, and relaxation processes [15–17]. In the past, traffic flow models, earthquake modeling, regulation, differential equations have been used for mathematical modeling of real-world problems, fractional differentiations are very efficient, e.g., traffic flow models, earthquake modeling, regulation, diffusion model, and relaxation processes [15–17].

The goal of this study is to show how, applying the novel iterative technique and the homotopy perturbation technique, the Elzaki transform can be used to obtain approximate solutions for linear and nonlinear fractional-order differential equations. The homotopy perturbation technique was developed by Chinese mathematician J.H. In 1998, he played an important role [28]. This approach is equitable, efficient, and effective, as it eliminates an unconditioned matrix, infinite series, and complicated integrals. This technique does not necessitate the use of any unique problem parameter. Tarig Elzaki, in 2010, develops a new transformation known as the Elzaki transform (E.T). E.T. is a new transform of Laplace and Sumudu transformations [29–32]. Many other researchers use HPTM to solve various equations, such as heat-like models [33], Navier–Stokes models [34], hyperbolic and Fisher’s equations [35], and gas dynamic problem [36]. Jafari and Daftardar-Gejji presented a new iterative approach for solving nonlinear equations in 2006 [37]. Jafari et al. first apply the iterative technique and Laplace transformation and combine it. They developed an iterative Laplace transformation method, which is a modified straightforward method [38] to solve the FPDE system [39, 40].

2. Basic Definitions

2.1. Definition. The fractional-order Riemann operator \(D^\varphi \) of order \(\varphi \) is defined as [29]

\[
D^\varphi \nu(\zeta) = \begin{cases}
\frac{d^\ell}{d\zeta^\ell} \nu(\zeta), \\
\frac{1}{\Delta(\ell - \varphi)} \frac{d}{d\zeta} \int_0^\zeta \frac{\nu(\zeta)}{(\zeta - \psi)^{\varphi-\ell+1}} d\psi, & \ell - 1 < \varphi < \ell,
\end{cases}
\]

where \(\ell \in Z^+, \varphi \in R^+, \) and

\[
D^{-\varphi} \nu(\zeta) = \frac{1}{\varphi(\varphi)} \int_0^\zeta (\zeta - \psi)^{\varphi-1} \nu(\psi) d\psi, \quad 0 < \varphi \leq 1.
\]

2.2. Definition. The Riemann fractional-order integral operator \(J^\varphi \) is presented by [29]

\[
J^\varphi \nu(\zeta) = \frac{1}{\varphi(\varphi)} \int_0^\zeta (\zeta - \psi)^{\varphi-1} \nu(\psi) d\psi, \quad \zeta > 0, \varphi > 0.
\]

The basic properties of the operator are presented as

\[
J^\varphi \zeta^\ell = \frac{\Gamma(\ell + 1)}{\Gamma(\ell + \varphi + 1)} \zeta^{\ell - \varphi},
\]

\[
D^\varphi \zeta^\ell = \frac{\Gamma(\ell + 1)}{\Gamma(\ell - \varphi + 1)} \zeta^{\ell - \varphi}.
\]

2.3. Definition. The Caputo fractional operator \(D^\varphi \) of \(\varphi \) is defined as [29]

\[
CD^\varphi \nu(\zeta) = \begin{cases}
\frac{1}{\varphi(\varphi)} \int_0^\zeta \frac{\nu(\psi)}{(\zeta - \psi)^{\varphi-\ell+1}} d\psi, & \ell - 1 < \varphi < \ell,
\end{cases}
\]

2.4. Definition. The Elzaki transformation Caputo fractional-order operator is defined as

\[
E[D_\ell^\varphi g(\zeta)] = s^{-\varphi} \left[D_\ell^\varphi g(\zeta) \right] - \sum_{k=0}^{\ell-1} s^{\ell - \varphi + k} g^{(k)}(0),
\]

where \(\ell - 1 < \varphi < \ell. \)
3. New Iterative Transformation Technique

We consider

\[D_\eta^\ell v(\mathfrak{I}, \eta) + M v(\mathfrak{I}, \eta) + N v(\mathfrak{I}, \eta) = h(\mathfrak{I}, \eta), \quad \ell \in \mathbb{N}, \; \ell - 1 < \varphi \leq \ell, \quad (8) \]

where \(M \) and \(N \) are linear and nonlinear terms. We consider the initial condition as

\[\nu(\mathfrak{I}, 0) = \gamma_{\ell}(\mathfrak{I}). \quad (9) \]

Using the Elzaki transformation of (8), we obtain

\[E[D_\eta^\ell v(\mathfrak{I}, \eta)] + E[M v(\mathfrak{I}, \eta) + N v(\mathfrak{I}, \eta)] = E[h(\mathfrak{I}, \eta)]. \quad (10) \]

Implement the Elzaki differentiation property:

\[E[v(\mathfrak{I}, \eta)] = \sum_{\ell=0}^{m} s^{2-\varphi \ell} v^{(\ell)}(\mathfrak{I}, 0) + s^\varphi E[h(\mathfrak{I}, \eta)] - s^\varphi E[M v(\mathfrak{I}, \eta) + N v(\mathfrak{I}, \eta)]. \quad (11) \]

Using the inverse Elzaki transformation (11),

\[v(\mathfrak{I}, \eta) = E^{-1} \left[\left\{ \sum_{\ell=0}^{m} s^{2-\varphi \ell} v^{(\ell)}(\mathfrak{I}, 0) + s^\varphi E[h(\mathfrak{I}, \eta)] \right\} - E^{-1} [s^\varphi E[M v(\mathfrak{I}, \eta) + N v(\mathfrak{I}, \eta)]] \right]. \quad (12) \]

Then, we reach

\[v(\mathfrak{I}, \eta) = \sum_{\ell=0}^{\infty} v_\ell(\mathfrak{I}, \eta), \quad (13) \]

\[N \left(\sum_{\ell=0}^{\infty} v_\ell(\mathfrak{I}, \eta) \right) = \sum_{\ell=0}^{\infty} N \left[v_\ell(\mathfrak{I}, \eta) \right]. \quad (14) \]

Replacing equations (12), (13), and (15) in (12) yields

\[\sum_{\ell=0}^{\infty} v_\ell(\mathfrak{I}, \eta) = E^{-1} \left[s^\varphi \left(\sum_{\ell=0}^{m} s^{2-\varphi \ell} v^{(\ell)}(\mathfrak{I}, 0) + E[h(\mathfrak{I}, \eta)] \right) \right] - E^{-1} \left[s^\varphi \left[M \left(\sum_{\ell=0}^{m} v_\ell(\mathfrak{I}, \eta) \right) - N \left(\sum_{\ell=0}^{m} v_\ell(\mathfrak{I}, \eta) \right) \right] \right]. \quad (16) \]

We consider the nonlinear term \(N \) by

\[N \left(\sum_{\ell=0}^{\infty} v_\ell(\mathfrak{I}, \eta) \right) = v_0(\mathfrak{I}, \eta) + N \left(\sum_{\ell=0}^{m} v_\ell(\mathfrak{I}, \eta) \right) - M \left(\sum_{\ell=0}^{m} v_\ell(\mathfrak{I}, \eta) \right). \quad (15) \]

We describe the iterative method:

\[v_0(\mathfrak{I}, \eta) = E^{-1} \left[s^\varphi \left(\sum_{\ell=0}^{\ell} s^{2-\varphi \ell} v^{(\ell)}(\mathfrak{I}, 0) + s^\varphi E[g(\mathfrak{I}, \eta)] \right) \right], \]

\[v_1(\mathfrak{I}, \eta) = -E^{-1} s^\varphi E \left[M v_0(\mathfrak{I}, \eta) + N v_0(\mathfrak{I}, \eta) \right], \]

\[v_{\ell+1}(\mathfrak{I}, \eta) = -E^{-1} \left[s^\varphi E \left[-M \left(\sum_{\ell=0}^{\ell} v_\ell(\mathfrak{I}, \eta) \right) - N \left(\sum_{\ell=0}^{\ell} v_\ell(\mathfrak{I}, \eta) \right) \right] \right], \quad \ell \geq 1. \quad (17) \]
Finally, we can write as

\[v(F, \eta) \equiv \sum_{m=1}^{\infty} v_m(F, \eta) = v_0(F, \eta) + v_1(F, \eta) + v_2(F, \eta) + \cdots + v_\ell(F, \eta), \quad m = 1, 2, \ldots \]

(18)

4. Homotopy Perturbation Transform Method

In this section, we give the general solution of FPDEs via the homotopy perturbation method:

\[vD_\eta^\varphi v(F, \eta) + Mv(F, \eta) + Nv(F, \eta) = h(F, \eta), \quad \eta > 0, \ 0 < \varphi \leq 1, \]
\[v(F, 0) = g(F), \quad \varphi \in \mathbb{R}. \]

(19)

Applying Elzaki transformation of (16),

\[E\left[D_\eta^\varphi v(F, \eta) + Mv(F, \eta) + Nv(F, \eta)\right] = E[h(F, \eta)], \quad \eta > 0, \ 0 < \varphi \leq 1, \]
\[v(F, \eta) = s^\varphi g(F) + s^\varphi E[h(F, \eta)] - s^\varphi E[Mv(F, \eta) + Nv(F, \eta)]. \]

(20)

Now, we use Elzaki inverse transformation, and we obtain

\[v(F, \eta) = F(x, \eta) - E^{-1}[s^\varphi E[Mv(F, \eta) + Nv(F, \eta)]], \]

(21)

where

\[F(F, \eta) = E^{-1}[s^2 g(F) + s^\varphi E[h(F, \eta)]] = g(\varphi) + E^{-1}[s^\varphi E[h(F, \eta)]]. \]

(22)

Now, the parameter \(p \) shows the producer of perturbation:

\[v(F, \eta) = \sum_{\ell=0}^{\infty} p^\ell v_\ell(F, \eta). \]

(23)

The nonlinear term can be defined as

\[Nv(F, \eta) = \sum_{\ell=0}^{\infty} p^\ell H_\ell(v_\ell), \]

(24)

where \(H_\ell \) are He’s polynomial in terms of \(v_0, v_1, v_2, \ldots, v_\ell \) and can be calculated as

\[H_\ell(v_0, v_1, \ldots, v_\ell) = \frac{1}{\ell(n+1)} D_\eta^\ell \left[N\left(\sum_{\ell=0}^{\infty} p^\ell v_\ell \right) \right]_{p>0}. \]

(25)

Substituting (24) and (25) in (21), we achieve as

\[\sum_{\ell=0}^{\infty} p^\ell v_\ell(F, \eta) = F(F, \eta) - p \times E^{-1}\left\{ s^\varphi E\left\{ M \sum_{\ell=0}^{\infty} p^\ell v_\ell(F, \eta) + \sum_{\ell=0}^{\infty} p^\ell H_\ell(v_\ell) \right\} \right\}. \]

(26)

Comparison of coefficients \(p \) on both sides, we obtain
\(p^0: v_0(\mathfrak{F}, \eta) = F(\mathfrak{F}, \eta), \)
\(p^1: v_1(\mathfrak{F}, \eta) = E^{-1}[s^\varphi E(Mv_0(\mathfrak{F}, \eta) + H_0(\nu))], \)
\(p^2: v_2(\mathfrak{F}, \eta) = E^{-1}[s^\varphi E(Mv_1(\mathfrak{F}, \eta) + H_1(\nu))], \)
\[\vdots \]
\(p^\ell: v_\ell(\mathfrak{F}, \eta) = E^{-1}[s^\varphi E(Mv_{\ell-1}(\mathfrak{F}, \eta) + H_{\ell-1}(\nu))], \quad \ell > 0, \; \ell \in \mathbb{N}. \]

(27)

The \(v_\ell(\mathfrak{F}, \eta) \) components can be calculated easily which is a fast convergence series. We can obtain \(p \longrightarrow 1 \):
\[
v(\mathfrak{F}, \eta) = \lim_{p \to 1} \sum_{\ell=1}^{M} v_\ell(\mathfrak{F}, \eta). \tag{28}\]

4.1. Example. Consider the fractional-order gas dynamics equation:
\[
\frac{\partial^\varphi v}{\partial \eta^\varphi} + v \frac{\partial v}{\partial \eta} - v(1 - v) = 0, \quad 0 < \varphi \leq 1, \tag{29}\]

with initial condition,
\[
v(\mathfrak{F}, 0) = e^{-\varphi}. \tag{30}\]

First on both sides apply Elzaki transformation in (29), we have
\[
E[v(\mathfrak{F}, \eta)] = s^\varphi (e^{-\varphi}) - s^\varphi E\left[v \frac{\partial v}{\partial \eta} - v(1 - v) \right]. \tag{31}\]

Using inverse Elzaki transform on the above equation,
\[
v(\mathfrak{F}, \eta) = e^{-\varphi} - E^{-1}\left[s^\varphi E\left[v \frac{\partial v}{\partial \eta} - v(1 - v) \right] \right]. \tag{32}\]

We use the NITM:
\[
v_0(\mathfrak{F}, \eta) = e^{-\varphi}, \]
\[
v_1(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_0 \frac{\partial v_0}{\partial \eta} - v_0(1 - v_0) \right] \right] = e^{-\varphi} \eta^\varphi \Gamma(\varphi + 1), \]
\[
v_2(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_1 \frac{\partial v_1}{\partial \eta} - v_1(1 - v_1) \right] \right] = e^{-\varphi} \eta^{2\varphi} \Gamma(2\varphi + 1), \]
\[
v_3(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_2 \frac{\partial v_2}{\partial \eta} - v_2(1 - v_2) \right] \right] = e^{-\varphi} \eta^{3\varphi} \Gamma(3\varphi + 1), \]
\[
\vdots \]
\[v_{\ell+1}(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_\ell \frac{\partial v_\ell}{\partial \eta} - v_\ell(1 - v_\ell) \right] \right] = e^{-\varphi} \eta^{\ell\varphi} \Gamma(l\varphi + 1). \tag{33}\]

The series solution form is given as
\[
v(\mathfrak{F}, \eta) = v_0(\mathfrak{F}, \eta) + v_1(\mathfrak{F}, \eta) + v_2(\mathfrak{F}, \eta) + v_3(\mathfrak{F}, \eta) \]
\[+ \cdots + v_\ell(\mathfrak{F}, \eta). \tag{34}\]

The approximate solution is achieved as
\[
v(\mathfrak{F}, \eta) = e^{-\varphi} \sum_{\ell=0}^{\infty} p^\ell H_\ell(v) \tag{35}\]
\[
\sum_{\ell=0}^{\infty} p^\ell v_\ell(\mathfrak{F}, \eta) = e^{-\varphi} + p\left\{ E^{-1}\left[s^\varphi E\left(\sum_{\ell=0}^{\infty} p^\ell H_\ell(v) \right) \right] \right\}. \tag{36}\]

Then, we have
\[
p^0: v_0(\mathfrak{F}, \eta) = e^{-\varphi}, \]
\[
p^1: v_1(\mathfrak{F}, \eta) = \left[E^{-1}\left[s^\varphi E(H_0(\nu)) \right] \right] = e^{-\varphi} \eta^\varphi \Gamma(\varphi + 1), \]
\[
p^2: v_2(\mathfrak{F}, \eta) = \left[E^{-1}\left[s^\varphi E(H_1(\nu)) \right] \right] = e^{-\varphi} \eta^{2\varphi} \Gamma(2\varphi + 1), \tag{37}\]
\[
p^3: v_3(\mathfrak{F}, \eta) = \left[E^{-1}\left[s^\varphi E(H_2(\nu)) \right] \right] = e^{-\varphi} \eta^{3\varphi} \Gamma(3\varphi + 1), \]
\[
\vdots \]
\[
p^\ell: v_\ell(\mathfrak{F}, \eta) = \left[E^{-1}\left[s^\varphi E(H_{\ell-1}(\nu)) \right] \right] = e^{-\varphi} \eta^{\ell\varphi} \Gamma(l\varphi + 1). \tag{38}\]

Then, the series form solution of HPTM is presented:
\[
v(\mathfrak{F}, \eta) = \sum_{n=0}^{\infty} p^n v_n(\mathfrak{F}, \eta). \tag{39}\]

The approximate solution of Example 1 is given by
\[
v(\mathfrak{F}, \eta) = e^{-\varphi} + e^{-\varphi} \eta^\varphi \Gamma(\varphi + 1) + e^{-\varphi} \eta^{2\varphi} \Gamma(2\varphi + 1) + e^{-\varphi} \eta^{3\varphi} \Gamma(3\varphi + 1) \]
\[+ \cdots + e^{-\varphi} \eta^{n\varphi} \Gamma(n\varphi + 1). \]

The exact result of (29):
\[v(\mathfrak{F}, \eta) = e^{-\alpha \eta}. \]

(40)

In Figure 1, the actual and analytical solutions are proved at \(\varphi = 1 \) of Example 4.1. In Figure 2, the three-dimensional figure for numerous fractional orders are described which demonstrates that the modified decomposition technique and new iterative transform technique approximated obtained results are in close contact with the analytical and the exact results. In Figure 3, the analytical solution graph of fractional order \(\varphi = 0.4 \) of problem 3.1. This comparative shows a strong connection among the homotopy perturbation transform method and actual solutions. Consequently, the homotopy perturbation transform method and new iterative transformation technique are accurate innovative techniques which need less calculation time and is very simple and more flexible as compared to other methods.

4.2. Example. We take into consideration

\[v_0(\mathfrak{F}, \eta) = b^{-\alpha}, \]

\[v_1(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_0 \frac{\partial v_0}{\partial \eta} - v_0 (1 - v_0) \log b\right]\right] = b^{-\alpha} \frac{\log b \eta^\varphi}{\Gamma(\varphi + 1)}, \]

\[v_2(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_1 \frac{\partial v_1}{\partial \eta} - v_1 (1 - v_1) \log b\right]\right] = b^{-\alpha} \frac{(\log b)^2 \eta^{2\varphi}}{\Gamma(2\varphi + 1)}, \]

\[v_3(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_2 \frac{\partial v_2}{\partial \eta} - v_2 (1 - v_2) \log b\right]\right] = b^{-\alpha} \frac{(\log b)^3 \eta^{3\varphi}}{\Gamma(3\varphi + 1)}, \]

\[\vdots \]

\[v_{n+1}(\mathfrak{F}, \eta) = -E^{-1}\left[s^\varphi E\left[v_n \frac{\partial v_n}{\partial \eta} - v_n (1 - v_n) \log b\right]\right] = b^{-\alpha} \frac{(\log b)^n \eta^{n\varphi}}{\Gamma(n\varphi + 1)}. \]

(45)

The series solution form is presented by

\[v(\mathfrak{F}, \eta) = v_0(\mathfrak{F}, \eta) + v_1(\mathfrak{F}, \eta) + v_2(\mathfrak{F}, \eta) \]

\[+ v_3(\mathfrak{F}, \eta) + \cdots + v_n(\mathfrak{F}, \eta). \]

The approximate solution is achieved as

\[v(\mathfrak{F}, \eta) = b^{-\alpha} + b^{-\alpha} \frac{\log b \eta^\varphi}{\Gamma(\varphi + 1)} + b^{-\alpha} \frac{(\log b)^2 \eta^{2\varphi}}{\Gamma(2\varphi + 1)} + b^{-\alpha} \frac{(\log b)^3 \eta^{3\varphi}}{\Gamma(3\varphi + 1)} + \cdots + b^{-\alpha} \frac{(\log b)^n \eta^{n\varphi}}{\Gamma(n\varphi + 1)}, \]

\[v(\mathfrak{F}, \eta) = b^{-\alpha} \sum_{n=0}^{\infty} \frac{(\log b)^n \eta^{n\varphi}}{\Gamma(n\varphi + 1)} = b^{-\alpha} E_\varphi(\log b \eta^\varphi). \]

(46)
Now, we apply the HPTM; we obtain

\[
\sum_{\ell=0}^{\infty} p^\ell \nu_\ell(\mathfrak{F}, \eta) = (b^{-\mathfrak{F}}) + p \left\{ E^{-1} \left(s^p E \left[\sum_{\ell=0}^{\infty} p^\ell H_\ell(\nu) \right] \right) \right\},
\]

where the polynomial signifying the nonlinear expressions is \(H_\ell(\nu) \). For instance, the components of He’s polynomials are obtained through the recursive correlation

\[
H_\ell(\nu) = \nu_\ell(\partial \nu_\ell/\partial \eta) - \nu_\ell(1 - \nu_\ell) \log b, \ \forall \ell \in \mathbb{N}.\]

Now, both sides as the equivalent power coefficient of \(p \) are compared; the following calculation is obtain by
\[p^0: \upsilon_0(\mathfrak{F}, \eta) = b^{-\alpha}, \]
\[p^1: \upsilon_1(\mathfrak{F}, \eta) = [E^{-1}s^\alpha E(H_0(\upsilon)))] = b^{-\alpha} \frac{\log b \eta^\alpha}{\Gamma(\alpha + 1)}, \]
\[p^2: \upsilon_2(\mathfrak{F}, \eta) = [E^{-1}s^\alpha E(H_1(\upsilon)))] = b^{-\alpha} \frac{(\log b)^2 \eta^{2\alpha}}{\Gamma(2\alpha + 1)}, \]
\[p^3: \upsilon_3(\mathfrak{F}, \eta) = [E^{-1}s^\alpha E(H_2(\upsilon)))] = b^{-\alpha} \frac{(\log b)^3 \eta^{3\alpha}}{\Gamma(3\alpha + 1)}, \]
\[\vdots \]
\[p^n: \upsilon_n(\mathfrak{F}, \eta) = [E^{-1}s^\alpha E(H_{n-1}(\upsilon)))] = b^{-\alpha} \frac{(\log b)^n \eta^{n\alpha}}{\Gamma(n\alpha + 1)}. \]

Thus, we obtain
\[\upsilon(\mathfrak{F}, \eta) = \sum_{i=0}^{\infty} p^i \upsilon_i(\mathfrak{F}, \eta). \]

The approximate solution of Example 2 is given as
\[\upsilon(\mathfrak{F}, \eta) = b^{-\alpha} + b^{-\alpha} \frac{\log b \eta^\alpha}{\Gamma(\alpha + 1)} + b^{-\alpha} \frac{(\log b)^2 \eta^{2\alpha}}{\Gamma(2\alpha + 1)} + b^{-\alpha} \frac{(\log b)^3 \eta^{3\alpha}}{\Gamma(3\alpha + 1)} + \cdots + b^{-\alpha} \frac{(\log b)^n \eta^{n\alpha}}{\Gamma(n\alpha + 1)}. \] (51)

The exact result of (40) is
\[\upsilon(\mathfrak{F}, \eta) = b^{-\alpha} \sum_{m=0}^{\infty} \frac{(\log b)^m \eta^m}{\Gamma(m\alpha + 1)} = b^{-\alpha} E_\alpha(\log b \eta^\alpha). \]

In Figure 4, the actual and analytical solutions are proved at \(\phi = 1 \) of Example 4.2. In Figure 5, the three-dimensional figure for numerous fractional order is described which demonstrates that the modified decomposition technique and new iterative transform technique approximated obtained results are in close contact with the analytical and the exact results. In Figure 6, the analytical solution graph of fractional order \(\phi = 0.4 \) of problem 3.2. This comparative result shows a strong connection between the homotopy perturbation transform method and actual solutions. Consequently, the homotopy perturbation transform
method and new iterative transformation technique are accurate innovative techniques which needs less calculation
time and is very simple and more flexible as compare to other methods.

4.3. Example. We take into consideration the fractional-order nonlinear homogeneous gas dynamics equation:
\[
\frac{\partial^\varphi u}{\partial \eta^\varphi} + u \frac{\partial v}{\partial \eta} - v(1 - u) + e^{-3\eta} = 0, \quad 0 < \varphi \leq 1,
\]
(53)
with initial condition,
\[
u(0, 0) = 1 - e^{-3}.
\]
(54)
Applying the Elzaki transformation in (52) yields
\[
E[u(\eta, \eta)] = s^2(1 - e^{-3}) - s^\varphi E\left[\frac{\partial u}{\partial \eta} - v(1 - u) + e^{-3\eta}\right].
\]
(55)
Using inverse Elzaki transform on the above equation,
\[
u(\eta, \eta) = 1 - e^{-3} - E^{-1}\left[s^\varphi E\left[\frac{\partial u}{\partial \eta} - v(1 - u) + e^{-3\eta}\right]\right].
\]
(56)
We use the NITM:

Figure 4: Simulations of the solutions of problem 3.2.

Figure 5: The fractional order of \(\varphi = 0.8\) and \(0.6\) of problem 3.2.
The series solution form is given as

$$v(\mathcal{S}, \eta) = v_0(\mathcal{S}, \eta) + v_1(\mathcal{S}, \eta) + v_2(\mathcal{S}, \eta) + v_3(\mathcal{S}, \eta) + \cdots + v_n(\mathcal{S}, \eta).$$

The approximate solution is achieved as

$$v(\mathcal{S}, \eta) = 1 - e^{-\alpha} - e^{-\alpha} \frac{\eta^\varphi}{\Gamma(\varphi + 1)} - e^{-\alpha} \frac{\eta^{2\varphi}}{\Gamma(2\varphi + 1)} - e^{-\alpha} \frac{\eta^{3\varphi}}{\Gamma(3\varphi + 1)} - \cdots - e^{-\alpha} \frac{\eta^{m\varphi}}{\Gamma(m\varphi + 1)}.$$

$$v(\mathcal{S}, \eta) = e^{-\alpha} \sum_{m=0}^{\infty} \frac{(\eta^\varphi)^m}{\Gamma(m\varphi + 1)} = e^{-\alpha} E_{\varphi}(\eta^\varphi).$$

Figure 6: The fractional order of $\varphi = 0.4$ of problem 3.2.
Now, we apply the HPTM, and we obtain

\[
\sum_{\ell=0}^{\infty} p^\ell \nu_\ell (\mathfrak{G}, \eta) = 1 - e^{-3} + p \left\{ E^{-1} \left(s^\kappa E \left[\sum_{\ell=0}^{\infty} p^\ell H_\ell (\nu) + e^{-3+\eta} \right] \right) \right\},
\]

where the polynomial signifying the nonlinear expressions is \(H_\ell (\nu) \). For instance, the components of He’s polynomials are obtained through the recursive correlation

\[H_\ell (\nu) = \nu_\ell (\partial \nu_\ell / \partial \eta) - \nu_\ell (1 - \nu_\ell) \log b, \quad \forall \ell \in \mathbb{N}. \]

Now, both sides of the equivalent power coefficient of \(p \) is compared; the following calculation is obtain by

\[H_\ell (\nu) = \nu_\ell (\partial \nu_\ell / \partial \eta) - \nu_\ell (1 - \nu_\ell) \log b, \quad \forall \ell \in \mathbb{N}. \]
\begin{align}
 p^0: \quad & \psi_0(\mathfrak{I}, \eta) = 1 - e^{-\frac{\eta}{(\mathfrak{I} + 1)}} \\
 p^1: \quad & \psi_1(\mathfrak{I}, \eta) = \left[E^{-1} \left\{ \frac{s \phi}{E} H_0(\psi) + e^{-\frac{3 \eta}{(\mathfrak{I} + 1)}} \right\} \right] = -e^{-\frac{\eta}{(\mathfrak{I} + 1)}} \\
 p^2: \quad & \psi_2(\mathfrak{I}, \eta) = \left[E^{-1} \left\{ \frac{s \phi}{E} H_1(\psi) + e^{-\frac{3 \eta}{(2 \mathfrak{I} + 1)}} \right\} \right] = -e^{-\frac{\eta}{(2 \mathfrak{I} + 1)}} \\
 p^3: \quad & \psi_3(\mathfrak{I}, \eta) = \left[E^{-1} \left\{ \frac{s \phi}{E} H_2(\psi) + e^{-\frac{3 \eta}{(3 \mathfrak{I} + 1)}} \right\} \right] = -e^{-\frac{\eta}{(3 \mathfrak{I} + 1)}} \\
 \vdots
 \end{align}

\begin{align}
 p^n: \quad & \psi_n(\mathfrak{I}, \eta) = \left[E^{-1} \left\{ \frac{s \phi}{E} H_{n-1}(\psi) + e^{-\frac{3 \eta}{(n \mathfrak{I} + 1)}} \right\} \right] = -e^{-\frac{\eta}{(n \mathfrak{I} + 1)}} \\
 \end{align}

Then, the series-form solution of HPTM is given as

\begin{equation}
 \psi(\mathfrak{I}, \eta) = \sum_{\ell=0}^{\infty} \psi_{\ell}(\mathfrak{I}, \eta). \tag{62}
\end{equation}

The approximate solution of example in this section is given as

\begin{align}
 \psi(\mathfrak{I}, \eta) &= 1 - e^{-\frac{\eta}{(\mathfrak{I} + 1)}} - e^{-\frac{\eta}{(2 \mathfrak{I} + 1)}} - e^{-\frac{\eta}{(3 \mathfrak{I} + 1)}} - \cdots - e^{-\frac{\eta}{(n \mathfrak{I} + 1)}} \\
 \psi(\mathfrak{I}, \eta) &= e^{-\frac{\eta}{(\mathfrak{I} + 1)}} \sum_{\ell=0}^{\infty} \frac{\eta^\ell}{(\mathfrak{I} + 1)} = e^{-\frac{3 \eta}{(\mathfrak{I} + 1)}}. \tag{63}
\end{align}

The exact result of (52) is

\begin{equation}
 \psi(\mathfrak{I}, \eta) = 1 - e^{-\frac{3 \eta}{(\mathfrak{I} + 1)}}. \tag{64}
\end{equation}

In Figure 7, the actual and analytical solutions are proved at \(\mathfrak{I} = 1\) of Example 4.3. In Figure 8, the three-dimensional figure for numerous fractional order is described, which demonstrates that the modified decomposition technique and new iterative transform technique approximated obtained results are in close contact with the analytical and the exact results. In Figure 9, the analytical solution graph of fractional order \(\mathfrak{I} = 0.4\) of problem 3.4. This comparative shows a strong connection among the homotopy.
perturbation transform method and actual solutions. Consequently, the homotopy perturbation transform method and new iterative transformation technique are accurate innovative techniques which need less calculation time and is very simple and more flexible as compared to other methods.

5. Conclusion

In this paper, we analyzed the time fractional of gas dynamics equation by applying two analytical techniques. It is also used that the suggested methods’ rate of convergence is sufficient for the solution of fractional-order partial differential equations. The computations of these methods are very straightforward and simple. Therefore, these methods can be applied to fractional partial differential equations.

Data Availability

The numerical data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this study.

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Ha’il - Saudi Arabia through project number RG-21 005.

References

[1] M. G. Sakar, “Numerical solution of neutral functional-differential equations with proportional delays,” An International Journal of Optimization and Control: Theories & Applications, vol. 7, no. 2, pp. 186–194, 2017.

[2] M. Yavuz, N. Özdemir, and N. Özdemir, “Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel,” Discrete & Continuous Dynamical Systems - S, vol. 13, no. 3, pp. 995–1006, 2020.

[3] M. Naeem, A. M. Zidan, K. Nonlaopon, M. I. Syam, Z. Al-Zhour, and R. Shah, “A new analysis of fractional-order equal-width equations via novel techniques,” Symmetry, vol. 13, no. 5, p. 886, 2021.

[4] M. Alesmi, N. Iqbal, and A. A. Hamoud, “The analysis of fractional-order proportional delay physical models via a novel transform,” Complexity, vol. 2022, Article ID 2431533, 13 pages, 2022.

[5] M. Yavuz, N. Özdemir, and H. M. Baskonus, “Solution of fractional partial differential equation using the operator involving non-singular kernel,” European Physical Journal - Plus, vol. 133, no. 215, pp. 1–12, 2018.

[6] K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, and R. Shah, “Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform,” Symmetry, vol. 13, no. 7, p. 1263, 2021.

[7] R. M. Jena, S. Chakraverty, and M. Yavuz, “Two-hybrid techniques coupled with an integral transform for Caputo time-fractional Navier-Stokes equations,” Progress in Fractional Differentiation and Applications, vol. 6, no. 4, pp. 201–213, 2020.

[8] H. Yasmin, N. Iqbal, and A. Hussain, “Convective heat/mass transfer analysis on Johnson-Segalman fluid in a symmetric curved channel with peristaltic engineering applications,” Symmetry, vol. 12, no. 9, p. 1475, 2020.

[9] R. Shah, H. Khan, D. Baleanu, P. Kumam, and M. Arif, “The analytical investigation of time-fractional multi-dimensional Navier-Stokes equation,” Alexandria Engineering Journal, vol. 59, no. 5, pp. 2941–2956, 2020.

[10] P. Veeresha, “A numerical approach to the coupled atmospheric ocean model using a fractional operator,” Mathematical Modelling and Numerical Simulation with Applications, vol. 1, no. 1, pp. 1–10, 2021.

[11] Z. Hammouch, M. Yavuz, and N. Özdemir, “Numerical solutions and synchronization of a variable-order fractional chaotic system,” Mathematical Modelling and Numerical Simulation with Applications, vol. 1, no. 1, pp. 11–23, 2021.

[12] B. Dasbasi, “Stability analysis of an incommensurate fractional-order SIR model,” Mathematical Modelling and Numerical Simulation with Applications, vol. 1, no. 1, 2021.

[13] R. P. Agarwal, F. Mofarreh, R. Shah, W. Luangboon, and K. Nonlaopon, “An analytical technique, based on natural transform to solve fractional-order parabolic equations,” Entropy, vol. 23, no. 8, p. 1086, 2021.

[14] T. G. Elzbarova, “Quasi-gas-dynamic equations,” in Quasi-Gas Dynamic Equations, pp. 37–62, Springer, Berlin, Heidelberg, 2009.

[15] R. Hilfer, Applications of Fractional Calculus in Physics, World Science Publishing, River Edge, NJ, USA, 2000.

[16] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Elsevier, Amsterdam, Netherlands, 1998.

[17] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, p. pp384, Wiley, New York, NY, USA, 1993.

[18] J. Biazar and M. Eslami, “Differential transform method for nonlinear fractional gas dynamics equation,” International Journal of the Physical Sciences, vol. 6, no. 5, pp. 1203–1206, 2011.

[19] M. Tamsir and V. K. Srivastava, “Revisiting the approximate analytical solution of fractional-order gas dynamics equation,” Alexandria Engineering Journal, vol. 55, no. 2, pp. 867–874, 2016.

[20] P. K. G. Bhadane and V. H. Pradhan, “Elzaki transform homotopy perturbation method for solving Gas Dynamics equation,” International Journal of Renewable Energy Technology, vol. 33, 2013.

[21] O. S. Iyiola, “On the solutions of non-linear time-fractional gas dynamic equations: an analytical approach,” International Journal of Pure and Applied Mathematics, vol. 98, no. 4, pp. 491–502, 2015.

[22] D. J. Evans and H. Bulut, “A new approach to the gas dynamics equation: an application of the decomposition method,” International Journal of Computer Mathematics, vol. 79, no. 7, pp. 817–822, 2002.

[23] A. Nikkar, “A new approach for solving gas dynamic equation,” Acta Technica Corviniensis - Bulletin of Engineering, vol. 5, no. 4, p. 113, 2012.

[24] H. Jafari, H. Hosseinizadeh, and E. Salehpour, “A new approach to the gas dynamics equation: an application of the variational iteration method,” Applied Mathematical Sciences, vol. 2, no. 48, pp. 2397–2400, 2008.
[25] S. Kumar and M. M. Rashidi, “New analytical method for gas dynamics equation arising in shock fronts,” *Computer Physics Communications*, vol. 185, no. 7, pp. 1947–1954, 2014.

[26] Singh, J. and Kumar, D., 2012. Homotopy Perturbation Algorithm Using Laplace Transform for Gas Dynamics Equation.

[27] S. Maitama and S. M. Kurawa, “An efficient technique for solving gas dynamics equation using the natural decomposition method,” *International Mathematical Forum*, vol. 9, no. 24, pp. 1177–1190, 2014.

[28] J.-H. He, "Homotopy perturbation method: a new nonlinear analytical technique," *Applied Mathematics and Computation*, vol. 135, no. 1, pp. 73–79, 2003.

[29] T. M. Elzaki, “The new integral transform ‘Elzaki transform,” *Global Journal of Pure and Applied Mathematics*, vol. 7, no. 1, pp. 57–64, 2011.

[30] T. M. Elzaki, “Application of new transform ‘Elzaki transform’ to partial differential equations,” *Global Journal of Pure and Applied Mathematics*, vol. 7, no. 1, pp. 65–70, 2011.

[31] T. M. Elzaki, “On the new integral Transform”Elzaki Transform”Fundamental properties investigations and applications,” *Global Journal of Mathematical Sciences: Theory and Practical*, vol. 4, no. 1, pp. 1–13, 2012.

[32] T. M. Elzaki and S. M. Ezaki, “On the Elzaki transform and ordinary differential equation with variable coefficients,” *Advances in Theoretical and Applied Mathematics*, vol. 6, no. 1, pp. 41–46, 2011.

[33] M. Mahgoub and A. Sedeeg, “A comparative study for solving nonlinear fractional heat -like equations via Elzaki transform,” *British Journal of Mathematics & Computer Science*, vol. 19, no. 4, pp. 1–12, 2016.

[34] R. M. Jena and S. Chakraverty, “Solving time-fractional Navier-Stokes equations using homotopy perturbation Elzaki transform,” *SN Applied Sciences*, vol. 1, no. 1, p. 16, 2018.

[35] P. Singh and D. Sharma, “Comparative study of homotopy perturbation transformation with homotopy perturbation Elzaki transform method for solving nonlinear fractional PDE,” *Nonlinear Engineering*, vol. 9, no. 1, pp. 60–71, 2019.

[36] S. Das and P. K. Gupta, "An approximate analytical solution of the fractional diffusion equation with absorbent term and external force by homotopy perturbation method," *Zeitschrift für Naturforschung A*, vol. 65, no. 3, pp. 182–190, 2010.

[37] V. Daftardar-Gejji and H. Jafari, “An iterative method for solving nonlinear functional equations,” *Journal of Mathematical Analysis and Applications*, vol. 316, no. 2, pp. 753–763, 2006.

[38] H. Jafari, M. Nazari, D. Baleanu, and C. M. Khalique, “A new approach for solving a system of fractional partial differential equations,” *Computers & Mathematics with Applications*, vol. 66, no. 5, pp. 838–843, 2013.

[39] J. Xu, H. Khan, H. Khan et al., “The analytical analysis of nonlinear fractional-order dynamical models,” *AIMS Mathematics*, vol. 6, no. 6, pp. 6201–6219, 2021.

[40] H. Liu, H. Khan, R. Shah, A. A. Alderremy, S. Aly, and D. Baleanu, "On the fractional view analysis of keller-segel equations with sensitivity functions," *Complexity*, vol. 2020, Article ID 2371019, 2020.