Irreducible φ-Verma modules for hyperelliptic Heisenberg algebras

Felipe Albino dos Santos

Abstract. We defined the hyperelliptic Heisenberg algebra as the Heisenberg subalgebra of a hyperelliptic Krichever-Novikov algebra. Then we gave an explicit irreducibility criteria for φ-Verma modules for these algebras.

Introduction

If R is a commutative \mathbb{C}-algebra and g is a simple Lie \mathbb{C}-algebra, it is well known from the work of Kassel and Loday (see [KL82], and [Kas84]) that the universal central extension G of $g \otimes R$ is the vector space $(g \otimes R) \oplus \Omega^1_R/dR$ where Ω^1_R/dR is the space of Kähler differentials modulo exact forms. The space G is made into a Lie algebra by defining

$$[x \otimes f, y \otimes g] = [xy] + (x, y)fdg, \quad [x \otimes f, \omega] = 0$$

for $x, y \in g$, $f, g \in R$, $\omega \in \Omega^1_R/dR$, (\cdot, \cdot) denotes the Killing form on g, and \bar{a} denotes the image of $a \in \Omega^1_R$ in the quotient Ω^1_R/dR.

Consider the Riemann sphere $\mathbb{C} \cup \{\infty\}$ and fix a set composed by $n > 2$ distinct points on this Riemann sphere $P = \{p_1, p_2, ..., p_n\}$. Bremner gave G type algebras the name n point algebras when R is the ring of rational functions with poles allowed only at P. The n point Lie algebras are examples of Krichever-Novikov algebras.

Probably the simplest example of Krichever-Novikov algebra beyond an affine Kac-Moody algebra is the three point algebra. If we look at the three point algebra case when $g = \mathfrak{sl}(2, \mathbb{C})$, Cox and Jurisich showed at [CJ13] that the three point ring is isomorphic to $R_1 = \mathbb{C}[t, t^{-1}, u]$ with $u^2 = t^2 + 4t$ and gave a free field realization for the three point affine Lie algebra. Furthermore, [CJ13] defined the subalgebra $\mathfrak{sl}(2, \mathbb{R}) \otimes R_1 \oplus \Omega^1_R/dR_1$ as the three point Heisenberg algebra through generators and relations.

The four point algebra was studied by Bremner at [Bre95] and, when $g = \mathfrak{sl}(2, \mathbb{C})$, by Cox at [Cox08]. Bremner showed that the four point ring is isomorphic to $R_2 = \mathbb{C}[t, t^{-1}, u]$ where $u^2 = t^2 - 2bt + 1$ with $b \in \mathbb{C} \setminus \{\pm 1\}$ and gave a free field realization of the four point affine Lie algebra in terms of the ultraspherical Gegenbauer polynomials. Cox gave a realization for the four point algebra where the center acts nontrivially, furthermore [Cox08] defined the subalgebra $\mathfrak{sl}(2, \mathbb{R}) \otimes R_2 \oplus \Omega^1_R/dR_2$ as the four point Heisenberg algebra.

Key words and phrases. Lie algebras, Krichever-Novikov algebras, Verma modules.

The author was supported in part by CNPq Grant 142053/2017-1.
We can find another examples of Krichever-Novikov algebras beyond the point algebras such as the elliptic algebra and Date-Jimbo-Kashiwara-Miwa algebra. Bueno, Cox and Futorny showed that two realizations of the elliptic algebra $\mathfrak{sl}(2, \mathbb{C}) \otimes R^3 \oplus \Omega R^3 \frac{1}{dR^3}$ where $R^3 = \mathbb{C}[t, t^{-1}, u]$ with $u^2 = t^3 - 2bt + t$ and defined the subalgebra $\mathfrak{sl}(2, \mathbb{R}) \otimes R \oplus \Omega R^{1/3}$ as the elliptic Heisenberg algebra.

The DJKM algebra introduced by Date, Jimbo, Kashiwara and Miwa in [DJKM83] are nothing but a one dimensional central extension of $g \otimes R^3$ with $R^3 = \mathbb{C}[t, t^{-1}, u]$ with $u^2 = (t^2 - b^2)(t^2 - c^2)$ where $b \neq \pm c$ are complex constants and g is a simple finite dimensional Lie \mathbb{C}-algebra. Cox, Futorny and Martins constructed a realization of the DJKM algebra when $g = \mathfrak{sl}(2, \mathbb{C})$ in terms of sums of partial differential operators in [CFM14], furthermore defined the subalgebra $\mathfrak{sl}(2, \mathbb{R}) \otimes R^3 \oplus \Omega R^{1/3}$ as the DJKM Heisenberg algebra.

It is a natural question how to classify irreducible modules for these Heisenberg subalgebras defined above. Inspired by [BBFK13], in this paper we give an irreducibility criteria for φ-Verma modules over the hyperelliptic Heisenberg algebras.

Let c be a Lie algebra. The central extension of g by c is an exact sequence of Lie algebras

$$0 \longrightarrow c \longrightarrow e \xrightarrow{\pi} g \longrightarrow 0$$

such that c is the centre of e.

A morphism from one existing central extension to another central extension

$$0 \longrightarrow e' \xrightarrow{\phi'} c \xrightarrow{\pi'} g \longrightarrow 0$$

a pair (ϕ, ϕ_0) of Lie algebra homomorphisms such that the diagram
The central extension is said to be a covering of \(\mathfrak{g} \) in case \(\mathfrak{c} \) is perfect. A covering of \(\mathfrak{g} \) is said to be universal central extension if for every central extension of \(\mathfrak{g} \) there exists a unique morphism from the covering to the central extension.

2. The hyperelliptic Lie algebra

Our goal in this section is to recall, following [Bre95] and [CI17], the universal central extension of the Lie algebra \(\mathfrak{sl}(2, \mathbb{C}) \otimes \mathbb{R} \) with \(\mathbb{R} = \mathbb{C}[t^\pm 1, u : u^2 = p(t)] \), where \(p(t) = t(t - \alpha_1) \cdots (t - \alpha_r) = \sum_{i=1}^{r+1} a_i t^i \in \mathbb{C}[t] \), \(\alpha_i \)'s are pairwise distinct nonzero complex numbers with, \(a_i \)'s are complex numbers and \(a_{r+1} = 1 \). Using a classical result by C. Kassel [Kas84], Bremner described the universal central extension of \(\mathfrak{sl}(2, \mathbb{C}) \otimes \mathbb{R} \) in [Bre95]. Before state this, we recall the module of Kähler differentials module.

Let \(F = \mathbb{R} \otimes \mathbb{R} \) be the left \(\mathbb{R} \)-module with action \(f(g \otimes h) = fg \otimes h \) for \(f, g, h \in \mathbb{R} \). Let \(K \) be the submodule generated by the elements \(1 \otimes fg - f \otimes g - g \otimes f \). Then \(\Omega^1_R = F/K \) is the module of Kähler differentials. We denote the element \(f \otimes g + K \) of \(\Omega^1_R \) by \(fdg \). We define a map \(d : \mathbb{R} \rightarrow \Omega^1_R \) by \(d(f) = df = 1 \otimes f + K \) and we denote the coset of \(fdg \) modulo \(d \mathbb{R} \) by \(dfg \).

Theorem 2.1 (KL82). Let \(\mathfrak{g} \) be a simple finite-dimensional complex Lie algebra and let \(R \) be any commutative associative \(\mathbb{C} \)-algebra. The universal central extension of \(\mathfrak{g} \otimes R \) is linearly isomorphic to \((\mathfrak{g} \otimes R) \oplus \Omega^1_R/d\mathbb{R} \), where \(\Omega^1_R/d\mathbb{R} \) is the space of Kähler differentials of \(R \) modulo exact differentials.

The commutation relations of \(\hat{\mathfrak{g}} = (\mathfrak{g} \otimes R) \oplus \Omega^1_R/d\mathbb{R} \) are

\[
[x \otimes f, y \otimes g] = [xy] \otimes fg + (x, y)\overline{fg},
\]

\[
[x \otimes f, \omega] = 0,
\]

where \(x, y \in \mathfrak{g}, f, g \in R, \omega \in \Omega^1_R/d\mathbb{R} \), \((\cdot, \cdot)\) denotes the Killing form on \(\mathfrak{g} \).

Since we are interested in the description of \(\hat{\mathfrak{g}} \), it is important to remember that:

Theorem 2.2 ([Bre95], Theorem 3.4). Let \(R = \mathbb{C}[t^\pm, u : u^2 = p(t)] \). The set

\[
\{t^{-i}dt, t^{-i}udt, \ldots, t^{-i}udt\},
\]

forms a basis of \(\Omega^1_R/d\mathbb{R} \).

We set the following notation

\[
\omega_0 := \overline{t^{-1}dt} \quad \text{and} \quad \omega_k := \overline{t^{-k}udt}
\]

for \(1 \leq k \leq r \).

Following [CI17], we defined some polynomials in order to give a description of \(\hat{\mathfrak{g}} \). With \(m = 2 \) and \(a_0 = 0 \), we let \(P_{k,i} := P_{k,i}(a_1, ..., a_r), k \geq -r, -r \leq i \leq -1 \) be the polynomials in the \(a_i \) satisfying the recursion relations:
we will denote it by \(\hat{b} \) with generators

\[
(3.2)
\]

where

\[
(3.1)
\]

of \(Q \) with initial condition

\[
(2.10)
\]

for \(k \geq 0 \) with the initial condition \(P_{i,i} = \delta_{l,i}, -r \leq i, l \leq -1 \). Furthermore, we set \(Q_{m,i} \) satisfying

\[
(2.4)
\]

with initial condition \(Q_{m,i} = \delta_{m,-i} \) for \(1 \leq m \leq r \) and \(-r \leq i \leq -1 \).

Theorem 2.3 ([CL17, Theorem 5.1]). Let \(a_1 \neq 0 \). Let \(g \) be a simple finite dimensional Lie algebra over the complex numbers with Killing form \((\cdot,\cdot)\) and for \(a = (a_1, \ldots, a_r) \) define \(\psi_{ij}(a) \in \Omega_R^1/dR \) by

\[
(2.5)
\]

The universal central extension of the hyperelliptic Krichever-Novikov algebra \(g \otimes R \) is the \(\mathbb{Z}_2 \)-graded Lie algebra

\[
(2.6)
\]

where

\[
(2.7)
\]

with braket

\[
(2.8)
\]

\[
(2.9)
\]

\[
(2.10)
\]

We call this algebra hyperelliptic Lie algebra.

3. The hyperelliptic Heisenberg subalgebra

Definition 3.1 (hyperelliptic Heisenberg algebra). The Cartan subalgebra \(h \) of \(\mathfrak{sl}(2, \mathbb{C}) \) tensored with \(R \) generates a Heisenberg subalgebra of \(\hat{g} \). The Lie algebra with generators \(b_m, b_m^1, m \in \mathbb{Z}, 1, i \in \{0, 1, \ldots, r\} \), and relations

\[
(3.1)
\]

\[
(3.2)
\]

\[
(3.3)
\]

\[
(3.4)
\]

where \(i, j \in \{0, \ldots, r\} \) and \(k \in \mathbb{Z} \), is called the hyperelliptic Heisenberg algebra and we will denote it by \(\hat{h} \).
Let φ be an function from \mathbb{Z} to $\{\pm\}$ such that $\varphi(n) = + \iff \varphi(-n) = -$. Setting

$$\hat{b}_\varphi^\pm = \left(\sum_{n \in \mathbb{Z}_{<0} \varphi(n) = \mp} (\mathbb{C}b_n + \mathbb{C}b_n^1) \right) \oplus \left(\sum_{m \in \mathbb{Z}_{>0} \varphi(m) = \pm} (\mathbb{C}b_m + \mathbb{C}b_m^1) \right)$$

and

$$\hat{b}_0 = \mathbb{C}b_0 + \mathbb{C}b_0^1 + \sum_{i=0}^r 1_i \mathbb{C}.$$

we introduce a Borel type subalgebra $\hat{b}_\varphi := \hat{b}_0^0 \oplus \hat{b}_0^+$. Due to the defining relations above one can see that \hat{b}_φ is a subalgebra.

Lemma 3.2. Let $\mathcal{V} = \mathbb{C}v_0 \oplus \mathbb{C}v_1$ be a two-dimensional representation of \hat{b}, where $\hat{b}_0^i v_i = 0$ for $i = 0, 1$. Suppose $\lambda, \mu, \nu, \chi, \gamma, \kappa \in \mathbb{C}$ for $j \in \{1, \ldots, r\}$ are such that

$$b_0 \cdot v_0 = \lambda v_0 , \quad b_0^1 \cdot v_0 = \mu v_0 + \nu v_1 , \quad 1_j v_i = \chi v_i ,$$

$$b_0 \cdot v_1 = \lambda v_1 , \quad b_0^1 \cdot v_1 = \gamma v_0 + \mu v_1 , \quad 1_0 v_i = \kappa v_i ,$$

for $i \in \{0, 1\}$. Then

$$\sum_{k=1}^r (P_{m+n-1,-k}) \chi_k = 0 , \text{ if } m + n \geq -r + 1 , \text{ and}$$

$$\sum_{k=1}^r (Q_{-m-n+1,-k}) \chi_k = 0 \text{ otherwise.}$$

Proof. Since b_m acts by scalar multiplication for $m, n \in \mathbb{Z}$, the first defining relation $[3.1]$ is satisfied. The second relation $[3.2]$ is also satisfied. If $n = 0$, then since b_0 acts by a scalar, the relation $[3.3]$ leads to no condition on $\lambda, \mu, \nu, \chi, \gamma, \kappa \in \mathbb{C}$, the third relation gives the condition on χ_j as

$$0 = b_0^1 b_n v_i - b_n b_0^1 v_i = [b_0^1, b_n]v$$

$$= 2n \sum_{k=1}^r ((\delta_{m+n \geq -r+1})P_{m+n-1,-k} + (\delta_{m+n < -r+1})Q_{-m-n+1,-k}) 1_k v$$

\[\square \]

4. φ-Verma modules for the hyperelliptic Heisenberg subalgebra

Now consider the following induced φ-Verma \hat{g}-module

$$M_{\hat{g}, \varphi} = \mathfrak{u}(\hat{g}) \otimes_{\hat{b}_\varphi} \mathbb{C}v.$$

Given an integer n, we consider that

$$\text{sgn}(n) = \begin{cases} + & \text{if } n > 0, \\ - & \text{if } n < 0. \end{cases}$$
LEMMA 4.1. If \(m, n \in \mathbb{Z} \setminus \{0\} \), \(\varphi(m) = \text{sgn}(m) \) and \(\varphi(n) \neq \text{sgn}(n) \), then

\begin{align*}
(4.3) \quad & b_m(b_n)^{v} = (2ln\kappa_0)\delta_{m+n,0}(b_n)^{l-1}v, \\
(4.4) \quad & b_m(b_n^l)^{v} = 0, \\
(4.5) \quad & b_m(b_n^l)^{v} = (1/2)(l\kappa_0) ((n-m)a_{-(m+n)}) ((b_n^{l})^{-1})v, \\
(4.6) \quad & b_m(b_n^l)^{v} = 0.
\end{align*}

PROOF. Using the Lemma 3.2 and the relations in Definition 3.1 we have that

\[b_m(b_n)^{v} = [b_m, (b_n)^{v}] + (b_m)^{v}b_n^{v} = 0 = \]

\[= (2ln\kappa_0)\delta_{m+n,0}(b_n)^{l-1}v. \]

\[b_m(b_n^l)^{v} = [b_m, (b_n^l)^{v}] + (b_m^l)^{v}b_n^{v} = 0 \]

\[= (1/2)(l\kappa_0) ((n-m)a_{-(m+n)}) ((b_n^{l})^{-1})v. \]

\[b_m(b_n^l)^{v} = [b_m, (b_n^l)^{v}] + (b_m^l)^{v}b_n^{v} = 0 \]

\[= 0 \]

Here we state our main result.

THEOREM 4.2. \(M_{\mathfrak{g},\varphi} \) is irreducible if and only if \(\kappa_0 \neq 0 \).

PROOF. Set

\[(M_{\mathfrak{g},\varphi})_n = \left\{ w \in M_{\mathfrak{g},\varphi} : w = \left(\sum_{(\bar{\alpha},\bar{\beta})} \xi(\bar{\alpha},\bar{\beta}) \prod_{i \in \mathbb{Z} \setminus \{0\}, \varphi(i) \neq \text{sgn}(i)} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}, \varphi(j) \neq \text{sgn}(n)} (b_j^l)^{\beta_j} \right) v, \right. \]

\[\left. \sum_i \alpha_i + \sum_j \beta_j = n, \forall (\bar{\alpha},\bar{\beta}) \right\} . \]

We say that \(\text{deg}(w) = n \) if \(w \in (M_{\mathfrak{g},\varphi})_n \). We suppose \(\kappa_0 \neq 0 \) and proceed by induction in \(\text{deg}(w) \).
(1) Suppose that \(\deg(w) = 1 \), then

\[
w = \left(\sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i b_i + \sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i^1 b_i^1 \right) v
\]

where only finitely many of \(\xi_i, \xi_i^1 \in \mathbb{C} \) are nonzero.

(a) If \(\xi_i^1 \)'s are all zero, then there is \(\xi_m^1 \neq 0 \) for some \(m \in \mathbb{Z} \) such that \(\varphi(m) \neq \text{sgn}(m) \). Let be \(x \in \hat{h}_\varphi^+ \) such that \(x = b_{-m} \). We have that

\[
xw = x \sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i^1 b_i^1 v = (1/2) \kappa_0 \sum_{k \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i^1 (k - m) a_{-(k+m)} v.
\]

(b) If there is some \(\xi_k \) nonzero, let \(x \in \hat{h}_\varphi^+ \) such that \(x = b_{-k} \). We have that

\[
xw = x \sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i b_i v = 2 \kappa_0 k \xi_k v.
\]

Then in both cases there is \(x \in \hat{h}_\varphi^+ \) such that \(xw \neq 0 \) and \(\deg(xw) = 0 \).

(2) Suppose that for all \(v \in M_{\hat{h}, \varphi} \) with degree \(n \), there is \(y \in \hat{h}_\varphi^+ \) such that \(yw \neq 0 \) and \(\deg(yw) = 0 \). Suppose that \(\deg(w) = n + 1 \), so an arbitrary element \(M_{\hat{h}, \varphi} \) with this degree is

\[
w = \left(\sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i b_i^{(n+1)} + \sum_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} \xi_i^1 (b_i^1)^{(n+1)} \right. \\
\left. + \sum_{(\alpha, \beta)} \xi(\tilde{\alpha}, \tilde{\beta}) \prod_{i \in \mathbb{Z}, \varphi(i) \neq \text{sgn}(i)} b_i^{a_i} \prod_{j \in \mathbb{Z}, \varphi(j) \neq \text{sgn}(j)} (b_j^1)^{\beta_j} \right) v
\]

where, \(\overline{a} := \{a_0, a_2, ..., a_l\} \) with \(a_i \in \mathbb{Z} \), only finitely many of \(a_i, \xi_i, \xi_i^1 \) and \(\xi(\tilde{\alpha}, \tilde{\beta}) \) are nonzero.

(a) If there is \(\xi(\tilde{\alpha}, \tilde{\beta}) \neq 0 \), so let \(\xi(\tilde{k}, \tilde{l}) \neq 0 \) and let \(m \) be the greatest index with \(k_m \neq 0 \) and \(x \in \hat{h}_\varphi^+ \) such that \(x = b_{-m} \). Furthermore, reorganize
the monomials in the way that with the appropriate constants

\[
\begin{align*}
w &= \left(\sum_{i \in \mathbb{Z} \setminus \{0\}} \xi_i b_i^{(n+1)} + \sum_{i \in \mathbb{Z} \setminus \{0\}} \xi_i^1 (b_j^1)^{(n+1)} \right) \\
&\quad + \sum_{(\bar{\alpha}, \bar{\beta})} \xi(\bar{\alpha}, \bar{\beta}) \prod_{i \in \mathbb{Z} \setminus \{0\}} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}} (b_j^1)^{\beta_j} \\
&= \left(\sum_{i \in \mathbb{Z} \setminus \{0\}} \tilde{\xi}_i b_i^{(n+1)} + \sum_{i \in \mathbb{Z} \setminus \{0\}} \tilde{\xi}_i^1 (b_j^1)^{(n+1)} \right) \\
&\quad + \sum_{(\bar{\alpha}, \bar{\beta})} \tilde{\xi}(\bar{\alpha}, \bar{\beta}) b_{m_i}^{\alpha_m} \prod_{i \in \mathbb{Z} \setminus \{0\}} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}} (b_j^1)^{\beta_j} \bigg) v.
\end{align*}
\]

Applying \(x \) to \(w \) we get

\[
xw = \tilde{\xi}_m 2^{\kappa_0(n+1)m} b_m^{\alpha_m} v + \sum_{(\bar{\alpha}, \bar{\beta})} \tilde{\xi}(\bar{\alpha}, \bar{\beta}) b_{-m} b_{m_i}^{\alpha_m} \prod_{i \in \mathbb{Z} \setminus \{0\}} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}} (b_j^1)^{\beta_j} v
\]

\[
+ \sum_{(\bar{\alpha}, \bar{\beta})} \xi(\bar{\alpha}, \bar{\beta}) b_{-m} b_{m_i}^{\alpha_m} \prod_{i \in \mathbb{Z} \setminus \{0\}} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}} (b_j^1)^{\beta_j} v
\]

\[
= \tilde{\xi}_m 2^{\kappa_0(n+1)m} b_m^{\alpha_m} v
\]

\[
+ \sum_{(\bar{\alpha}, \bar{\beta})} \xi(\bar{\alpha}, \bar{\beta}) a_m (2^{m \kappa_0}) b_{m_i}^{\alpha_m-1} \prod_{i \in \mathbb{Z} \setminus \{0\}} b_i^{\alpha_i} \prod_{j \in \mathbb{Z} \setminus \{0\}} (b_j^1)^{\beta_j} v.
\]

Then \(xw \neq 0 \) and \(\deg(xw) = n \).

(b) If \(\xi(\bar{\alpha}, \bar{\beta}) = 0 \), \(\forall(\bar{\alpha}, \bar{\beta}) \).

(b.i) If there is \(\xi_k \neq 0 \) let \(x = b_{-k} \) and \(xw = 2^{\kappa_0(n+1)k} b_k^{\alpha_k} v \).

(b.ii) If all the \(\xi_k \)'s are zero, then there is \(\chi_m \) for some \(m \in \mathbb{Z} \) such that \(\varphi(m) \neq \text{sgn}(m) \). Let \(x = b_{-m}^1 \). We have that

\[
xw = (1/2)(n+1)\kappa_0 \sum_{k \in \mathbb{Z}} \xi_k^1 (k-m) a_{-(k+m)} (b_k)^n v.
\]

Since \(\kappa_0 \neq 0 \) implies that the submodule generated by \(w \) contains \(v \) so is all \(M_{\bar{\alpha}, \varphi} \). But \(w \) was an arbitrary nonzero element, so \(M_{\bar{\alpha}, \varphi} \) is irreducible in this case.

If \(\kappa_0 = 0 \) then \(N_{\bar{\alpha}, \varphi} := \bigoplus_{n \in \mathbb{Z} \setminus \{0\}} (M_{\bar{\alpha}})_n \) is a proper submodule. \(\square \)
References

[BBFK13] Viktor Bekkert, Georgia Benkart, Vyacheslav Futorny, and Iryna Kashuba, New irreducible modules for Heisenberg and affine Lie algebras, Journal of Algebra 373 (2013), 284–298.

[BCF09] Andre Bueno, Ben Cox, and Vyacheslav Futorny, Free Field realizations of the Elliptic Affine Lie Algebra sl(2, R) ⊗ dωR/dR, Journal of Geometry and Physics 59 (2009), no. 9.

[Bre95] Murray Bremner, Four-point affine Lie algebras, Proceedings of the American Mathematical Society 123 (1995), no. 7, 1981–1989.

[CFM14] Ben Cox, Vyacheslav Futorny, and Renato Alessandro Martins, Free field realizations of the Date-Jimbo-Kashiwara-Miwa algebra, Developments in Mathematics, vol. 38, Springer International Publishing, 2014.

[CFT13] Ben Cox, Vyacheslav Futorny, and Juan A. Tirao, DJKM algebras and non-classical orthogonal polynomials, Journal of Differential Equations 255 (2013), no. 9, 2846–2870.

[CI17] Ben Cox and Mee Seong Im, On the module structure of the center of hyperelliptic Krichever-Novikov algebras, arXiv preprint arXiv:1706.00850 (2017).

[CJ13] B. Cox and Elizabeth G. Jurisich, Realizations of the three point algebra sl(2, R) ⊗ (ωR/dR), Pacific Journal of Mathematics 270 (2013), no. 1, 27–48.

[Cox08] Ben Cox, Realizations of the four point affine Lie algebra sl(2, R) ⊗ (ωR/dR), Pacific Journal of Mathematics 234 (2008), no. 2, 260–288.

[DJKM83] Etsuro Date, Michio Jimbo, Masaki Kashiwara, and Tetsuji Miwa, Landau-Lifshitz equation: solutions, quasi-periodic solutions and infinite-dimensional Lie algebras, Journal of Physics A: Mathematical and General 16 (1983), no. 2, 221.

[EGH+11] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction to representation theory, Student Mathematical Library, vol. 59, American Mathematical Society, Providence, RI, 2011, With historical interludes by Slava Gerovitch.

[Hum72] James E Humphreys, Introduction to Lie algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9, Springer New York, 1972.

[Kac94] Victor G Kac, Infinite-dimensional lie algebras, Progress in Mathematics, vol. 44, Cambridge university press, 1994.

[Kas84] Christian Kassel, Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra, Journal of Pure and Applied Algebra 34 (1984), no. 2, 265–275.

[KL82] Christian Kassel and Jean-Louis Loday, Extensions centrales d’algèbres de Lie, Annales de l’institut Fourier 32 (1982), no. 4, 119–142.

[KN87] Igor Moiseevich Krichever and Sergei Petrovich Novikov, Algebras of Virasoro type, Riemann surfaces and structures of the theory of solutons, Functional Analysis and Its Applications 21 (1987), no. 2, 126–142.

[MP95] Robert V Moody and Arturo Pianzola, Lie algebras with triangular decompositions, Wiley, 1995.

[Pol50] Féliz Pollaczek, Sur une famille de polynomes orthogonaux a 4 parametres, Comptes rendus Hebdomadaires des séances de l’académie des sciences 230 (1950), no. 26, 2254–2256.

[Sch14a] Martin Schlichenmaier, From the virasoro algebra to krichever–novikov type algebras and beyond, Harmonic and complex analysis and its applications, Springer, 2014, pp. 325–358.

[Sch14b] Martin Schlichenmaier, Krichever-novikov type algebras theory and applications, Walter de Gruyter GmbH, 2014.

[Sze39] Gabor Szeg, Orthogonal polynomials, Colloquium publications, vol. 39, American Mathematical Soc., 1939.

[VGK87] A. K. Raina V. G. Kac, Bombay lectures on highest weight representations of infinite dimensional lie algebras, vol. 2, World Scientific Publishing, 1987.

E-mail address: albino@ime.usp.br