ORTHOGONAL DIRICHLET POLYNOMIALS WITH CONSTANT WEIGHT

Dedicated to Academician Professor Gradimir Milovanović on the occasion of his 70th birthday.

Doron S. Lubinsky

Let \(\{\lambda_j\}_{j=1}^{\infty} \) be a sequence of distinct positive numbers. We analyze the orthogonal Dirichlet polynomials \(\{\psi_{n,T}\} \) formed from linear combinations of \(\{\lambda_j^{-it}\}_{j=1}^{n} \), associated with constant (or Legendre) weight on \([-T,T]\). Thus

\[
\frac{1}{2T} \int_{-T}^{T} \psi_{n,T}(t) \overline{\psi_{m,T}(t)} dt = \delta_{mn}.
\]

Moreover, we analyze how these polynomials behave as \(T \) varies.

1. FILL SECTION TITLE HERE

Throughout, let

\[
\{\lambda_j\}_{j=1}^{\infty}
\]

be a sequence of distinct positive numbers.

Given \(m \geq 1 \), a Dirichlet polynomial of degree \(\leq n \) [16], [17] associated with this sequence of exponents has the form

\[
\sum_{n=1}^{m} a_n \lambda_n^{-it} = \sum_{n=1}^{m} a_n e^{-i(\log \lambda_n)t},
\]

2010 Mathematics Subject Classification. FILL SUBJECT MSCs HERE.
Keywords and Phrases. Fill Keywords and Phrases Here - at most 5.
where \(\{a_n\} \subset \mathbb{C} \). We denote the set of all such polynomials by \(\mathcal{L}_n \).

The traditional orthogonal Dirichlet polynomials are just the “monomials” \(\{\lambda_n^{-it}\} \) themselves. Indeed, in the theory of almost-periodic functions [1], [2], heavy use is made of orthogonality in the mean:

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T \lambda_j^{-it} \overline{\lambda_k^{-it}} dt = \delta_{jk}.
\]

In the hope that a more standard orthogonality relation might have some advantages, the author [6], investigated Dirichlet orthogonal polynomials associated with the arctangent density. Thus \(\phi_n \in \mathcal{L}_n \) has positive leading coefficient, and

\[
\int_{-\infty}^{\infty} \phi_n(t) \overline{\phi_m(t)} \frac{dt}{\pi(1+t^2)} = \delta_{mn}, \quad m,n \geq 1.
\]

These Dirichlet orthogonal polynomials admit a very simple explicit expression, at least when \(0 < \lambda_1 < \lambda_2 < \cdots \) : for \(n \geq 2 \),

\[
\phi_n(t) = \frac{\lambda_n^{1-it} - \lambda_{n-1}^{1-it}}{\sqrt{\lambda_n^2 - \lambda_{n-1}^2}}.
\]

These orthonormal polynomials have been applied in several questions by Weber and Dimitrov as well as the author [4], [7], [15], [17], [18], [19]. In a subsequent paper [8], the author considered orthogonal Dirichlet polynomials for the Laguerre weight, though it turned out that much of the material there was already subsumed by Müntz orthogonal polynomials [3]. Müntz orthogonal polynomials have also been a topic investigated by Gradimir Milovanovic [10], [11], [12], to whom this paper is dedicated.

Very recently [9], we investigated Dirichlet orthogonal polynomials for rational weights

\[
w(t) = \sum_{m=1}^{L} \frac{c_m}{\pi \left(1 + (b_m t)^2\right)}
\]

and appropriately chosen \(\{c_j\} \). Here \(L \geq 1 \), and \(1 = b_1 < b_2 < \cdots < b_L \). We obtained a simple explicit determinantal expression for the orthonormal polynomials, but could only resolve positivity of the weight for the case \(L = 2 \).

In this paper, we let \(T > 0 \), and consider \(\psi_{n,T} \in \mathcal{L}_n \), with positive leading coefficient \(\gamma_{n,T} \), such that

\[
(\psi_{n,T}, \psi_{m,T})_T = \frac{1}{2T} \int_{-T}^{T} \psi_{n,T}(t) \overline{\psi_{m,T}(t)} dt = \delta_{mn}.
\]

We are especially interested in how \(\psi_{n,T} \) behaves as \(T \) varies, and in particular how it behaves as \(T \to \infty \). Next, define the \(n \)th reproducing kernel

\[
K_{n,T}(u,v) = \sum_{j=1}^{n} \psi_{j,T}(u) \overline{\psi_{j,T}(v)}.
\]
In the sequel, we also use
\[S(u) = \frac{\sin u}{u}. \]

From the simple relation
\[
\left(\lambda_j^{-it}, \lambda_k^{-it} \right)_T = \frac{1}{2T} \int_{-T}^{T} (\lambda_j/\lambda_k)^{-it} dt = S(T \log (\lambda_j/\lambda_k)),
\]
and standard determinantal representations for orthonormal functions with respect to a given inner product, we see that
\[
\psi_{n,T}(x) = \frac{(-1)^{n+1}}{\sqrt{A_{n-1,T}A_{n,T}}} \times \det \begin{bmatrix}
\lambda_1^{-ix} & \lambda_2^{-ix} & \lambda_3^{-ix} & \cdots & \lambda_n^{-ix} \\
1 & S(T \log \lambda_1/\lambda_2) & S(T \log \lambda_1/\lambda_3) & \cdots & S(T \log \lambda_1/\lambda_n) \\
S(T \log \lambda_2/\lambda_1) & 1 & S(T \log \lambda_2/\lambda_3) & \cdots & S(T \log \lambda_2/\lambda_n) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
S(T \log \lambda_{n-1}/\lambda_1) & S(T \log \lambda_{n-1}/\lambda_2) & S(T \log \lambda_{n-1}/\lambda_3) & \cdots & S(T \log \lambda_{n-1}/\lambda_n)
\end{bmatrix},
\]
so the leading coefficient of \(\psi_{n,T}(x) \) is
\[
\gamma_{n,T} = \sqrt{\frac{A_{n-1,T}}{A_{n,T}}},
\]
where
\[
A_{n,T} = \det [S(T \log \lambda_j/\lambda_k)]_{1 \leq j,k \leq n}.
\]

It follows easily from the determinantal expression and the fact that
\[
\lim_{x \to \infty} S(x) = 0,
\]
that
\[
\lim_{T \to \infty} \psi_{n,T}(x) = \lambda_n^{-ix}
\]
and that \(\psi_{n,T} \) is an infinitely differentiable function of \(T \).

One of the motivations for our study is the celebrated Montgomery-Vaughan inequality and its ramifications. In one form its asserts that [14, p. 74, Corollary 2], [13, p. 128, Thm. 1]
\[
\left| \sum_{j=1}^{n} a_j \lambda_j^{-it} \right|^2 dt = (T + 2\pi \delta^{-1}) \sum_{j=1}^{n} |a_j|^2,
\]
where
\[
\delta = \min \{|\log \lambda_j - \log \lambda_k| : 1 \leq j, k \leq n \text{ and } j \neq k\},
\]
while $|\varepsilon| \leq 1$. We hope that a theory of orthogonal Dirichlet polynomials might contribute to this circle of ideas and to estimates involving Dirichlet polynomials. We begin with a simple result related to the Montgomery-Vaughan inequality: write for $j \geq 1$, $T > 0$,

$$\lambda_j^{-it} = \sum_{k=1}^{j} c_{T,j,k} \psi_{k,T}(t).$$

Also write

$$\psi_{n,T}(t) = \sum_{j=1}^{n} d_{T,n,j} \lambda_j^{-it}.$$

Let

$$C_{T,n} = \begin{bmatrix} c_{T,1,1} & c_{T,2,1} & c_{T,3,1} & \cdots & c_{T,n,1} \\ 0 & c_{T,2,2} & c_{T,3,2} & \cdots & c_{T,n,2} \\ 0 & 0 & c_{T,3,3} & \cdots & c_{T,n,3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c_{T,n,n} \end{bmatrix}.$$

Theorem 1. (a) For any complex numbers $\{a_j\}_{j=1}^{n}$,

$$\frac{1}{2T} \int_{-T}^{T} \left| \sum_{j=1}^{n} a_j \lambda_j^{-it} \right|^2 dt = \|C_{T,n}a\|^2$$

where $a = [a_1 \ a_2 \ \ldots \ a_n]^T$ and the norm is the usual Euclidean norm. In particular,

$$\sup_{\{a_j\}} \frac{1}{2T} \int_{-T}^{T} \left| \sum_{j=1}^{n} a_j \lambda_j^{-it} \right|^2 dt / \sum_{j=1}^{n} |a_j|^2 = \|C_{T,n}\|^2,$$

where the norm is the usual matrix norm induced by the Euclidean norm.

(b) The coefficients $\{c_{T,j,k}\}$ and $\{d_{T,n,k}\}$ are real.

(c) For $j, k \geq 1$,

$$\min_{\{j,k\}} \sum_{\ell=1}^{\min(j,k)} c_{T,k,\ell} c_{T,j,\ell} = S(T \log \lambda_j / \lambda_k).$$

Next, we consider $\psi'_{n,T}$:
Theorem 2.
(a) \[
\psi'_{n,T}(t) = (-i \log \lambda_n) \psi_{n,T}(t) \\
+ \frac{1}{2T} \left(\psi_{n,T}(t) K_{n-1,T}(t,T) - \overline{\psi_{n,T}(t)} K_{n-1,T}(t,-T) \right) \\
= (-i \log \lambda_n) \psi_{n,T}(t) \\
+ \frac{i}{T} \sum_{j=1}^{n-1} \psi_{j,T}(t) \text{Im} \left(\psi_{n,T}(T) \overline{\psi_{j,T}(T)} \right).
\] (15)
(b) \[
\frac{1}{2T} \int_{-T}^{T} |\psi'_{n,T}|^2 = (\log \lambda_n)^2 + \frac{1}{T^2} \sum_{j=1}^{n-1} \left| \text{Im} \left(\psi_{n,T}(T) \overline{\psi_{j,T}(T)} \right) \right|^2 \\
= (\log \lambda_n)^2 + \frac{1}{T} \text{Re} \left(\psi_{n,T} \overline{\psi_{n,T}} \right)(T).
\] (16)

Next, we compare the orthonormal polynomials \(\psi_{n,T}\) and \(\psi_{n,S}\) for different \(S,T\):

Theorem 3. Let \(S > T\).
(a) \[
\Delta_{n,T} = \frac{1}{2T} \int_{-T}^{T} \left| \psi_{n,S}(t) - \frac{\gamma_{n,S}}{\gamma_{n,T}} \psi_{n,T}(t) \right|^2 dt \\
\leq \frac{S}{T} - \left(\frac{\gamma_{n,S}}{\gamma_{n,T}} \right)^2.
\] (17)
(b) \[
\frac{\gamma_{n,S}}{\gamma_{n,T}} \leq \left(\frac{S}{T} \right)^{1/2}.
\] (18)
(c) \[
K_{n,T}(x,x) + \left(\frac{S}{T} - 2 \right) K_{n,S}(x,x) \geq 0.
\] (19)

Finally, we consider the rate of change of several quantities w.r.t. \(T\):

Theorem 4.
(a) \[
\frac{\partial}{\partial T} K_{n,T}(x,x) = \frac{1}{T} K_{n,T}(x,x) - \frac{1}{2T} \left(|K_n(x,T)|^2 + |K_n(x,-T)|^2 \right).
\] (20)
(b) \[
\frac{\partial}{\partial T} (\ln \gamma_{n,T}) = \frac{1}{2T} (1 - |\psi_{n,T}(T)|^2).
\] (21)
(c)

\[
\frac{\partial}{\partial T} \ln A_{n,T} = -\frac{1}{T} (n - K_{n,T}(T,T)).
\]

(d) Let \(c_{T,j,k} \) be the connection coefficient as in (1.9). Then

\[
\frac{\partial}{\partial T} c_{T,j,k} + \frac{1}{2T} c_{T,j,k} = \frac{1}{2T} \left[\lambda_j^{-it} \overline{\psi_{k,T}(T)} + \lambda_j^T \psi_{k,T}(T) \right] + \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-it} \frac{\partial}{\partial T} \psi_{k,T}(t) dt.
\]

We prove Theorems 1 and 2 in Section 2, and Theorems 3 and 4 in Section 3.

1. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1

(a)

\[
\frac{1}{2T} \int_{-T}^{T} \left| \sum_{k=1}^{n} a_k \lambda_k^{-it} \right|^2 dt = \frac{1}{2T} \int_{-T}^{T} \left| \sum_{k=1}^{n} a_k \left(\sum_{j=1}^{k} c_{T,k,j} \psi_{j,T}(t) \right) \right|^2 dt
\]

\[
= \frac{1}{2T} \int_{-T}^{T} \left| \sum_{j=1}^{n} \left(\sum_{k=j}^{n} a_k c_{T,k,j} \right) \psi_{j,T} \right|^2 dt
\]

\[
= \sum_{j=1}^{n} \left| \sum_{k=j}^{n} a_k c_{T,k,j} \right|^2
\]

\[
= \sum_{j=1}^{n} \left| (C_{T,n}a)_j \right|^2 = \|C_{T,n}a\|^2.
\]

(b) First, if \(j < k \),

\[
\frac{1}{2T} \int_{-T}^{T} \lambda_j^{-it} \overline{\psi_{k,T}(-t)} dt
\]

\[
= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-is} \psi_{k,T}(s) ds
\]

\[
= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-is} \psi_{k,T}(s) ds = 0.
\]

Also,

\[
\psi_{k,T}(-t) = \sum_{j=1}^{k} \frac{1}{d_{T,k,j}} \lambda_j^{-it}
\]
so is also an orthonormal polynomial (recall the leading coefficient is positive). By
uniqueness,

\begin{equation}
\psi_{k,T}(-t) = \psi_{k,T}(t),
\end{equation}

and hence the \(\{d_{T,k,j}\} \) are real. Next, by orthogonality,

\begin{align*}
c_{T,j,k} &= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-it} \psi_{k,T}(t) dt \\
&= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{i t} \psi_{k,T}(t) dt \\
&= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-it} \psi_{k,T}(-t) dt \\
&= \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-it} \psi_{k,T}(t) dt = c_{T,j,k}.
\end{align*}

Thus the \(\{c_{T,k,j}\} \) are real.

(c) From (1.4), (2.1), and (a),

\begin{align*}
\sum_{1 \leq j,k \leq n} a_j a_k S(T \log \lambda_j / \lambda_k) \\
&= \sum_{\ell=1}^{n} \left| \sum_{k=\ell}^{n} a_k c_{T,k,\ell} \right|^2 \\
&= \sum_{1 \leq k,j \leq n} a_j a_k \sum_{\ell=1}^{\min\{j,k\}} c_{T,k,\ell}^2 c_{T,j,\ell}.
\end{align*}

Choosing some \(a_j = 1 \) and all remaining \(a' \)'s \(= 0 \) gives

\[\sum_{\ell=1}^{j} c_{T,j,\ell}^2 = 1. \]

Next choose distinct \(j,k \) and \(a_j = a_k = 1 \) with all remaining \(a' \)'s \(= 0 \). Then we obtain

\[2S(T \log \lambda_j / \lambda_k) + 1 = 2 \sum_{\ell=1}^{\min\{j,k\}} c_{T,k,\ell} c_{T,j,\ell} + \sum_{\ell=1}^{j} c_{T,j,\ell}^2. \]

Thus we obtain (1.14) in full generality. \(\square \)

Proof of Theorem 2

(a) Write

\[\psi_{n,T}'(t) = (-i \log \lambda_n) \psi_{n,T}(t) + \sum_{j=1}^{n-1} \beta_j \psi_{j,T}(t). \]
Here, integrating by parts, for $j \leq n - 1$,
\[
\beta_j = \frac{1}{2T} \int_{-T}^{T} \psi'_{n,T} (t) \overline{\psi_{j,T} (t)} dt
\]
\[
= \frac{1}{2T} \left\{ \psi_{n,T} (T) \overline{\psi_{j,T} (T)} - \psi_{n,T} (-T) \overline{\psi_{j,T} (-T)} \right\}
\]
\[
- \frac{1}{2T} \int_{-T}^{T} \psi_{n,T} (t) \overline{\psi_{j,T} (t)} dt
\]
\[
= \frac{1}{2T} \left\{ \psi_{n,T} (T) \overline{\psi_{j,T} (T)} - \psi_{n,T} (-T) \overline{\psi_{j,T} (-T)} \right\}
\]
\[
= \frac{i}{T} \text{Im} \left(\psi_{n,T} (T) \overline{\psi_{j,T} (T)} \right).
\]

So
\[
\psi'_{n,T} (t) = (-i \log \lambda_n) \psi_{n,T} (t)
\]
\[
+ \frac{1}{2T} \left\{ \psi_{n,T} (T) \sum_{j=1}^{n-1} \overline{\psi_{j,T} (T) \psi_{j,T} (t)} - \psi_{n,T} (-T) \sum_{j=1}^{n-1} \overline{\psi_{j,T} (-T) \psi_{j,T} (t)} \right\}
\]
\[
= (-i \log \lambda_n) \psi_{n,T} (t) + \frac{1}{2T} \left\{ \psi_{n,T} (T) K_{n-1} (t, T) - \psi_{n,T} (-T) \overline{K_{n-1} (t, -T)} \right\}.
\]

Also,
\[
\psi'_{n,T} (t) = (-i \log \lambda_n) \psi_{n,T} (t) + \frac{i}{T} \sum_{j=1}^{n-1} \text{Im} \left(\psi_{n,T} (T) \overline{\psi_{j,T} (T)} \right) \psi_{j,T} (t).
\]

(b) The first identity in (1.16) follows from the second identity in (1.15). Next, integrating by parts gives
\[
\frac{1}{2T} \int_{-T}^{T} |\psi'_{n,T}|^2
\]
\[
= \frac{1}{2T} \int_{-T}^{T} \overline{\psi'_{n,T}} \psi'_{n,T}
\]
\[
= \frac{1}{2T} \left\{ \left(\psi_{n,T} \overline{\psi'_{n,T}} \right) (T) - \left(\psi_{n,T} \overline{\psi'_{n,T}} \right) (-T) \right\} - \frac{1}{2T} \int_{-T}^{T} \psi_{n,T} \psi''_{n,T}.
\]

Here using (a) twice,
\[
\psi''_{n,T} = - (\log \lambda_n)^2 \psi_{n,T} + P,
\]
where $P \in L_{n-1}$, so
\[
\frac{1}{2T} \int_{-T}^{T} \psi_{n,T} \overline{\psi''_{n,T}} = - (\log \lambda_n)^2.
\]
Next, \(\psi'_{n,T}(t) = -i \sum_{j=1}^{n} f_j (\log \lambda_j) \lambda_j^{-it} \),

where all \(f_j \) are real, so

\[
\psi'_{n,T}(-T) = -i \sum_{j=1}^{n} f_j (\log \lambda_j) \lambda_j^{iT} = -\psi'_{n,T}(T).
\]

Substituting this and (2.2) into (2.3), gives

\[
\frac{1}{2T} \int_{-T}^{T} |\psi'_{n,T}|^2 \leq \frac{1}{2T} \left\{ (\psi'_{n,T}\psi'_{n,T})(T) + (\psi_{n,T}\psi'_{n,T})(T) \right\} + (\log \lambda_n)^2
\]

\[
= \frac{1}{T} \text{Re} \left(\psi_{n,T}\psi'_{n,T}(T) + (\log \lambda_n)^2 \right).
\]

\[\square\]

2. PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3
(a)

\[
\Delta_{n,T} := \frac{1}{2T} \int_{-T}^{T} \left| \psi_{n,S}(t) - \frac{\gamma_{n,S}}{\gamma_{n,T}} \psi_{n,T}(t) \right|^2 dt
\]

\[
= \frac{1}{2T} \int_{-T}^{T} \left(\psi_{n,S}(t) - \frac{\gamma_{n,S}}{\gamma_{n,T}} \psi_{n,T}(t) \right) \left(\psi_{n,S}(t) - \frac{\gamma_{n,S}}{\gamma_{n,T}} \psi_{n,T}(t) \right) dt
\]

\[
= \frac{1}{2T} \int_{-T}^{T} \psi_{n,S}(t) - \frac{\gamma_{n,S}}{\gamma_{n,T}} \psi_{n,T}(t) \left(\psi_{n,S}(t) \right) dt
\]

\[
= \frac{1}{2T} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt - \left(\frac{\gamma_{n,S}}{\gamma_{n,T}} \right)^2 \leq \frac{S}{T} - \left(\frac{\gamma_{n,S}}{\gamma_{n,T}} \right)^2.
\]

(b) Then also,

\[
\frac{\gamma_{n,S}}{\gamma_{n,T}} \leq \left(\frac{S}{T} \right)^{1/2}.
\]
(28) \[
\frac{1}{2T} \int_{-T}^{T} |K_{n,S}(x,t) - K_{n,T}(x,t)|^2 dt = \frac{1}{2T} \int_{-T}^{T} |K_{n,S}(x,t)|^2 dt - 2K_{n,S}(x,x) + K_{n,T}(x,x).
\]

Also,

\[
\frac{1}{2T} \int_{-T}^{T} |K_{n,S}(x,t)|^2 dt = \frac{S}{T} \left[\frac{1}{2S} \int_{-S}^{S} |K_{n,S}(x,t)|^2 dt - \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt \right] = \frac{S}{T} \left[K_{n,S}(x,x) - \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt \right].
\]

So substituting in (3.1) above,

\[
0 \leq \frac{S}{T} \left[K_{n,S}(x,x) - \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt \right] - 2K_{n,S}(x,x) + K_{n,T}(x,x)
= K_{n,T}(x,x) + \left(\frac{S}{T} - 2 \right) K_{n,S}(x,x)
\]

\[
- \frac{1}{2T} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt.
\]

In particular, (1.19) follows. \(\square\)

Proof of Theorem 4

(a) Let \(S > T\). Now from (3.2) above,

\[
K_{n,T}(x,x) - K_{n,S}(x,x) \geq \left(1 - \frac{S}{T} \right) K_{n,S}(x,x)
+ \frac{1}{2T} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt
\]

so

\[
\frac{K_{n,T}(x,x) - K_{n,S}(x,x)}{T - S} \leq \frac{1}{T} K_{n,S}(x,x)
+ \frac{1}{T - S} \frac{1}{2T} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 dt.
\]

(30)
Next,

\[
0 \leq \frac{1}{2S} \int_{-S}^{S} |K_{n,S}(x,t) - K_{n,T}(x,t)|^2 \, dt \\
= K_{n,S}(x,x) - 2K_{n,T}(x,x) + \frac{1}{2S} \int_{-S}^{S} |K_{n,T}(x,t)|^2 \, dt \\
= K_{n,S}(x,x) - 2K_{n,T}(x,x) \\
+ \frac{T}{S} \left[K_{n,T}(x,x) + \frac{1}{2T} \int_{T \leq |t| \leq S} |K_{n,T}(x,t)|^2 \, dt \right] \\
= K_{n,S}(x,x) + \left(\frac{T}{S} - 2 \right) K_{n,T}(x,x) + \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,T}(x,t)|^2 \, dt,
\]

so

\[
K_{n,S}(x,x) - K_{n,T}(x,x) \geq \left(1 - \frac{T}{S} \right) K_{n,T}(x,x) \\
- \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,T}(x,t)|^2 \, dt.
\]

Then

\[
\frac{K_{n,S}(x,x) - K_{n,T}(x,x)}{S - T} \geq \frac{1}{S} K_{n,T}(x,x) \\
- \frac{1}{S - T} \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,T}(x,t)|^2 \, dt.
\]

Together with (3.3), this establishes

\[
\frac{1}{S} K_{n,T}(x,x) - \frac{1}{S - T} \frac{1}{2S} \int_{T \leq |t| \leq S} |K_{n,T}(x,t)|^2 \, dt \\
\leq \frac{K_{n,S}(x,x) - K_{n,T}(x,x)}{S - T} \\
\leq \frac{1}{T} K_{n,S}(x,x) + \frac{1}{T - S} \frac{1}{2T} \int_{T \leq |t| \leq S} |K_{n,S}(x,t)|^2 \, dt.
\]

Inasmuch as \(K_{n,T}(x,x) - K_{n,S}(x,x) \to 0\) as \(|S - T| \to 0\), (indeed, the representation (1.5) shows that \(\psi_{n,T}\) and hence \(K_{n,T}\) are infinitely differentiable in \(T\)), this last inequality yields that

\[
\frac{\partial}{\partial T} K_{n,T}(x,x) = \frac{1}{T} K_{n,T}(x,x) - \frac{1}{2T} \left(|K_{n}(x,T)|^2 + |K_{n}(x,-T)|^2 \right).
\]
(b) \[
\frac{1}{2T} \int_{-T}^{T} |\psi_{n,S}(t) - \psi_{n,T}(t)|^2 dt \\
= \frac{1}{2T} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt - \frac{2\gamma_{n,S}}{\gamma_{n,T}} + 1 \\
= \frac{S}{T} \left(1 - \frac{1}{2S} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt \right) - \frac{2\gamma_{n,S}}{\gamma_{n,T}} + 1,
\]

So \[
2\frac{\gamma_{n,T} - \gamma_{n,S}}{\gamma_{n,T}} \geq 1 - \frac{S}{T} + \frac{1}{2T} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt.
\]

Then recalling that \(\psi_{n,S}(-t) = \overline{\psi_{n,S}(t)}\),

\[
2\frac{\gamma_{n,T} - \gamma_{n,S}}{\gamma_{n,T}} \leq \frac{1}{2T} \gamma_{n,T} + \frac{1}{T - S} \gamma_{n,T} \frac{1}{2T} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt.
\]

In the other direction,

\[
\frac{1}{2S} \int_{-S}^{S} |\psi_{n,S}(t) - \psi_{n,T}(t)|^2 dt \\
= 1 - \frac{2\gamma_{n,T}}{\gamma_{n,S}} + \frac{1}{2S} \int_{-S}^{S} |\psi_{n,T}(t)|^2 dt \\
= 1 - \frac{2\gamma_{n,T}}{\gamma_{n,S}} + \frac{T}{S} \frac{1}{2S} \int_{-T}^{T} |\psi_{n,T}(t)|^2 dt,
\]

so \[
2\frac{\gamma_{n,S} - \gamma_{n,T}}{\gamma_{n,S}} \geq 1 - \frac{T}{S} - \frac{1}{2S} \int_{-T}^{T} |\psi_{n,T}(t)|^2 dt,
\]

and hence \[
\frac{\gamma_{n,S} - \gamma_{n,T}}{S - T} \geq \frac{\gamma_{n,S}}{2S} - \frac{\gamma_{n,S}}{2S} \frac{1}{S - T} \int_{-T}^{T} |\psi_{n,T}(t)|^2 dt.
\]

Combined with (3.5), this gives

\[
\frac{\gamma_{n,S}}{2S} - \frac{\gamma_{n,S}}{2S} \frac{1}{S - T} \int_{-T}^{T} |\psi_{n,T}(t)|^2 dt \leq \frac{\gamma_{n,S} - \gamma_{n,T}}{S - T} \\
\leq \frac{\gamma_{n,T}}{2T} - \frac{1}{S - T} \frac{\gamma_{n,T}}{2T} \int_{-T}^{T} |\psi_{n,S}(t)|^2 dt.
\]

This gives \[
\frac{\partial \gamma_{n,T}}{\partial T} = \frac{\gamma_{n,T}}{2T} - \frac{\gamma_{n,T}}{2T} |\psi_{n,T}(T)|^2,
\]
and hence the result.

(c) Recall that
\[\gamma_{n,T} = \sqrt{\frac{A_{n-1,T}}{A_{n,T}}}, \]
so
\[\gamma_{2,T} \cdots \gamma_{n,T} = \sqrt{\frac{A_{1,T}}{A_{n,T}}} = \sqrt{\frac{1}{A_{n,T}}}. \]
Thus
\[\frac{\partial}{\partial T} \ln \sqrt{\frac{1}{A_{n,T}}} = \sum_{j=2}^{n} \frac{\partial (\ln \gamma_{j,T})}{\partial T} = \sum_{j=2}^{n} \frac{1}{2T} (1 - |\psi_{j,T}(T)|^2) \]
\[\Rightarrow \frac{\partial}{\partial T} \ln A_{n,T} = -\frac{1}{T} \sum_{j=2}^{n} (1 - |\psi_{j,T}(T)|^2) \]
\[= -\frac{1}{T} (n - K_{n,T}(T,T)), \]
recall that \(\psi_{1,T}(x) = \lambda_1^{-ix} \) so \(|\psi_{1,T}(x)| = 1. \)

(d) \(c_{S,j,k} - c_{T,j,k} \)
\[= \frac{1}{2S} \int_{-S}^{S} \lambda_j^{-iu} \psi_{k,S}(t) dt - \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-iu} \overline{\psi}_{k,T}(t) dt \]
\[= \frac{1}{2S} \int_{T \leq |t| \leq S} \lambda_j^{-iu} \psi_{k,S}(t) dt + \frac{1}{2} \left(\frac{1}{S} - \frac{1}{T} \right) \int_{-T}^{T} \lambda_j^{-iu} \overline{\psi}_{k,S}(t) dt \]
\[+ \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-iu} \left[\frac{\psi_{k,S}(t)}{S} - \frac{\overline{\psi}_{k,T}(t)}{T} \right] dt \]
so
\[\frac{c_{S,j,k} - c_{T,j,k}}{S - T} \]
\[= \frac{1}{S - T} \left(\frac{1}{2S} \int_{T \leq |t| \leq S} \lambda_j^{-iu} \psi_{k,S}(t) dt - \frac{1}{2} \frac{1}{ST} \int_{-T}^{T} \lambda_j^{-iu} \overline{\psi}_{k,S}(t) dt \right) \]
\[+ \frac{1}{2T} \int_{-T}^{T} \lambda_j^{-iu} \left[\psi_{k,S}(t) - \frac{\psi_{k,T}(t)}{S} \right] dt \]
Now let \(S \rightarrow T. \)
REFERENCES

1. A. S. Besicovitch, *Almost Periodic Functions*, Dover, New York, 1954.
2. H. Bohr, *Almost Periodic Functions*, Chelsea, New York, 1947.
3. P. Borwein and T. Erdelyi, *Polynomials and Polynomial Inequalities*, Springer, New York, 1995.
4. D. K. Dimitrov and W. D. Oliveira, *An Extremal Problem Related to Generalizations of the Nyman-Beurling and Baez-Duarte Criteria*, manuscript.
5. P. Lancaster, M. Tismenetsky, *The Theory of Matrices*, 2nd edn., Academic Press, San Diego, 1985.
6. D. S. Lubinsky, *Orthogonal Dirichlet Polynomials with Arctangent Density*, J. Approx. Theory, 177(2014), 43–56.
7. D. S. Lubinsky, *Uniform Mean Value Estimates and Discrete Hilbert Inequalities via Orthogonal Dirichlet Series*, Acta Math Hungarica, 143(2014), 422–438.
8. D. S. Lubinsky, *Orthogonal Dirichlet Polynomials with Laguerre Weight*, J. Approx. Theory, 194(2015), 146–156.
9. D. S. Lubinsky, *Orthogonal Dirichlet Polynomials with Rational Weight*, manuscript.
10. G. V. Milovanovic, Müntz orthogonal polynomials and their numerical evaluation, (in) Applications and Computation of Orthogonal Polynomials (W. Gautschi, G. H. Golub, and G. Opfer, eds.), ISNM, Vol. 131, Birkhäuser, Basel, 1999, pp. 179–194.
11. G. V. Milovanovic, A. Cvetkovic, Gaussian-Type Quadrature Rules for Müntz Systems, SIAM J. Sci. Computing, 27(2005), 893–913.
12. G. V. Milovanovic, A. Cvetkovic, Remarks on “Orthogonality of some sequences of rational functions and Müntz polynomials”, J. Comp. Appl. Math., 173(2005), 383–388.
13. H. L. Montgomery, *Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis*, CBMS, No. 84, Amer. Math. Soc., Providence, 1994.
14. H. L. Montgomery and R. C. Vaughan, *Hilbert’s Inequality*, J. London Math.Soc., 8(1974), 73–82.
15. W. D. Oliveira, *Zeros of Dirichlet Polynomials via a Density Criterion*, Journal of Number Theory, to appear.
16. K. M. Seip, *Estimates for Dirichlet Polynomials*, CRM Notes, 2012, online at http://www.yumpu.com/en/document/view/12120090/estimates-for-dirichlet-polynomials-kristian-seip-ems.
17. M. Weber, *Dirichlet polynomials: some old and recent results, and their interplay in number theory*, (in) Dependence in probability, analysis and number theory, (2010), Kendrick Press, Heber City, UT, pp. 323–353.
18. M. Weber, *On mean values of Dirichlet polynomials*, Math. Inequal. Appl., 14(2011), 529–534.
19. M. Weber, *Cauchy Means of Dirichlet Polynomials*, J. Approx. Theory, 204(2016), 61–79.

Doron S. Lubinsky

(Received 14.07.2019)

School of Mathematics,
Georgia Institute of Technology,
Atlanta, GA 30332-0160 USA

E-mail: lubinsky@math.gatech.edu

(Revised 15.12.2019)