Neurofibrillary pathology in the infundibular nucleus in relation to age and abnormal hormone levels

Andon Hestiantoroa,b, Ai-Min Baoa,c, Wouter Kamphorstd, Dick F. Swaaba

aNetherlands Institute for Brain Research, Amsterdam 1105 AZ, the Netherlands
bDepartment of Obstetrics and Gynecology, Faculty of Medicine, University of Indonesia, Jakarta 10430, Indonesia
cDepartment of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, P. R. China
dDepartment of Neuropathology, Vrije Universiteit Medisch Centrum, Amsterdam 1081 HV, the Netherlands

Correspondence to:
Dick F. Swaab, MD, PhD.
Professor of Neurobiology
Netherlands Institute for Brain Research
Meibergdreef 33, 1105 AZ Amsterdam
The Netherlands
Tel: 031-20-5665500
Fax: 031-20-6961006
E-mail: d.f.swaab@nih.knaw.nl
Abstract

Hyperphosphorylated-tau containing neurofibrillary (NF) Alzheimer-like pathology is present in the hypothalamic infundibular nucleus of cognitively intact control subjects. The NF changes show a striking sex difference: they are preferentially present in elderly men. We investigated the infundibular nucleus in postmortem material of young and old subjects with normal and abnormal hormone conditions, to determine whether the decline of testosterone in men during aging would make this nucleus more vulnerable for neurofibrillary (NF) changes (i.e. hyperphosphorylated tau) and, in women, whether the decline of estrogens in the postmenopausal period would protect the infundibular nucleus. Elderly male subjects with low testosterone conditions showed more severe NF changes in the infundibular nucleus than younger male controls and postmenopausal women. This NF pathology was not found in younger males or younger females with either normal or abnormal sex hormone levels due to hormone replacement therapy or hormone producing tumors. The occurrence of NF changes in aged subjects was generally accompanied by the presence of basket-like nerve terminals staining for ERβ.

Our observations of these cases suggest that the sex difference in NF changes in the infundibular nucleus in elderly people is due to hyperphosphorylated-tau induction in a situation of gradual diminishment of testosterone during the process of aging in men, while in postmenopausal women a strong decline of estrogen levels seems to protect against NF changes in this brain area. Changes in circulating sex hormone levels alone in younger subjects are not sufficient to induce formation of NF changes in the infundibular nucleus.

KEY WORDS

Abnormal hormone conditions; Aging; Estrogen receptor α and β; Human hypothalamus; Hyperphosphorylated-tau, Infundibular nucleus; Sex difference; Testosterone.
1. Introduction

The infundibular nucleus (= arcuate nucleus) of the hypothalamus is considered to be the central site of regulation of the hypothalamus-pituitary-gonadal (HPG) axis and of metabolism (1). Hyperphosphorylated tau-containing neurofibrillary (NF) pathology, which is observed in the infundibular nucleus of the hypothalamus of Alzheimer’s disease patients, is also present in the hypothalamus of cognitively intact elderly subjects. This NF pathology shows a striking sex difference, i.e. it is almost exclusively present in the infundibular nucleus of cognitively intact elderly men and occurs only rarely in cognitively intact elderly women (2, 3).

In postmenopausal women a subset of neurons in the infundibular nucleus becomes strongly activated, as indicated histologically by an increased soma size, larger nuclei containing nuclear spheroids, larger and multiple nucleoli, and increased Nissl substance (4, 5). In addition, in postmenopausal women and in young subjects with a surgical menopause an increased gene expression was found in infundibular nucleus neurons for estrogen receptor (ER), neurokinin-B (NKB), substance-P (SP), and gonadotropin releasing hormone (GnRH) (4, 6, 7). A series of observations strongly suggests that the loss of inhibitory feedback of estrogens on the hypothalamus causes this increased neuronal hyperactivity in postmenopausal women (4). In addition, in elderly men some hypertrophied neurons were observed, but to a much lesser degree than in women (4, 8). In our previous study in the infundibular nucleus (5) a shift was observed from a more nuclear localization of ERα in young females to a more cytoplasmic localization of ERα in non-demented postmenopausal women. This shift in ERα localization was accompanied by a relative absence in the expression of NF pathology, i.e. hyperphosphorylated-tau stained by AT8 in the infundibular nucleus, and was considered to be another sign of neuronal activation. We therefore considered the sex difference in NF pathology as one of the many examples of neurons that
were highly active or strongly activated in the elderly and seemed to be protected against the occurrence of NF pathology, a phenomenon we described as “use it or lose it” (9, 10).

In non-demented elderly men only a small increase in cytoplasmic ERα was found, accompanied by NF pathology in the infundibular nucleus. In addition, the occurrence of NF pathology in non-demented elderly men was accompanied by the presence of more ERβ-containing basket-like nerve terminals in the infundibular nucleus (5), and both subtypes of ERs were therefore studied with the present materials.

In order to determine whether the gradual diminishment of testosterone in men during aging would induce NF pathology or whether the strong decline of estrogens in postmenopausal women would protect the infundibular nucleus neurons against NF pathology, we investigated the infundibular nucleus and adjacent areas in postmortem material of patients with abnormal hormone conditions as judged by their clinical data and by staining of the androgen receptor (AR) in the medial mamillary nucleus (MMN), which is the area of the hypothalamus most sensitive to changes in circulating androgen levels (16).

2. Materials and Methods

2.1. Tissue collection

Postmortem material was obtained from the Netherlands Brain Bank (coordinator Dr. R. Ravid). Permission was obtained for a brain autopsy and for the use of brain material and clinical information for research purposes. Hypothalami of 13 subjects with abnormal circulating gonadal steroid levels were studied immunocytochemically. These levels were: i.e. castrated, estrogen-treated male-to-female (MF) transsexuals; an ovarioectomized testosterone-treated female-to-male (FM) transsexual; castrated prostate cancer patients; an ovarioectomized woman; a subject with complete androgen insensitivity syndrome (CAIS); a subject with an estrogen-producing adrenal tumor, a subject with an androgen-producing
adrenal tumor (table 2), and 16 age and sex-matched control subjects (table 1). None of the subjects suffered from a primary neurological or psychiatric disease. All the brains were investigated in a systematic way by a neuropathologist (for details see (11)). The distribution of the Alzheimer neurofibrillary changes over the brain were estimated according to the stages of Braak and Braak (12, 13). Six stages of disease propagation can be distinguished with respect to the location of intraneuronal cytoskeletal changes, i.e. neuropil threads and neurofibrillary tangles stained with Bodian silver staining, and with respect to the severity of changes in the hippocampal formation, in the transentorhinal and entorhinal regions and in the adjoining temporal isocortex (12). In Braak stage 0 no NF pathology is observed. Braak stages I-II, clinically silent cases, are characterized by the presence of neurofibrillary changes confined to the transentorhinal region. Braak stages III-IV, incipient AD, are characterized by severe changes found only in a few allocortical regions and adjoining areas. Stage III reveals the striking destruction of layer Pre-α within both the entorhinal and transentorhinal regions, and is accompanied by mild changes in the hippocampus and by the virtual absence of neocortical lesions. In stage IV, additional changes are found in the deep layer of Pre-α. Braak stages V-VI, fully developed in Alzheimer's disease, are characterized by the destruction of neocortical association areas (13).

The hypothalami were formalin-fixed, paraffin-embedded, and cut serially in 6 µm coronal sections. For anatomical orientation, every 100th section was mounted on chrome-alumsulphate-coated glass slides, deparaffinized, hydrated, and stained with thionine (0.1% w/v thionine in acetate buffer, pH 4). The location of the infundibular nucleus was determined based on the human brain atlas according to Mai et al (14), and if necessary with the help of neuropeptide Y (NPY) immunocytochemical staining (1, 15). The rostral border of the infundibular nucleus was identified at the level where the nucleus showed its characteristic arcuate shape, with the cell-sparse zone separating the infundibular nucleus from the
ventromedial nucleus (VMN), indicating the dorso-lateral border, the ependymal layer of the third ventricle serving as the medial border and the mamillary bodies taken as the caudal border. Three series of sections per subject were taken from rostral to caudal at approximately 25%, 50% and 75% of the length of the infundibular nucleus, and mounted onto Super-Frost plus (Menzel, Braunschweig, Germany) slides for immunocytochemistry. We took adjacent sections for estrogen receptor (ER)α, ERβ and hyperphosphorylated-tau protein (AT8) immunocytochemical staining. In addition, we also determined the expression of AT8 staining in other areas in the hypothalamus adjacent to the infundibular nucleus, such as the VMN, the nucleus tuberalis lateralis (NTL), the nucleus basalis of Meynert (NBM), and the tuberomamillary nucleus (TMN). Since the serum levels of testosterone in subjects from which we had autopsy material was unavailable, we determined the expression of nuclear AR-ir in the MMN as an indirect measure of circulating androgen levels (16).

2.2. Immunocytochemistry and specificity of the antisera

A polyclonal rabbit anti-ERα antiserum (MC-20) that recognizes the carboxyl-terminus epitope of the ERα (SantaCruz Biotechnology, Inc., catalogue no. sc-542) and a polyclonal goat anti-ERβ antiserum (N-19), directed against an amino acid sequence mapping at the amino-terminus of human ER β (catalogue no. sc-6820, Santa Cruz Biotechnology, Inc., Santa Cruz, CA) were used in the present study. The staining procedures and specificity tests for ERα and ERβ antisera have been described extensively by Ishunina et al (17) and Kruijver et al (18, 19). No staining was observed after omitting the MC-20 antiserum or after adsorption of MC-20 to its blocking peptide (17). In a spot blot test, MC-20 recognized its blocking peptide on nitrocellulose paper by showing the expected concentration gradient (Santa Cruz Biotechnology; blocking peptide, catalog no. sc-542, lot no.C059). In addition, two different anti-ERα antisera, C-314 (N-terminus directed; Santa Cruz Biotechnology; Catalog no. sc-786;
anti-bovine ERα; lot no. J278) and MC-20 (C-terminus directed) displayed similar distribution patterns in the human hypothalamus (18). Western blot with the ERα antiserum MC-20 on human hypothalamic tissue showed a specific band around the expected 68 kDa, with no such band around the 54 kDa of ERβ (18, 20, 21). Western blot with the ERβ antiserum N-19 on human hypothalamic tissue recognized a protein band around the expected 54 kDa weight and did not recognize the 68 kDa protein band, i.e. ERα (19, 20). In spot blots it was also confirmed that the antiserum N-19 recognizes the homologous blocking peptides, while an adsorption test with the homologous peptide resulted in elimination of the staining (17). Moreover, staining of adjacent sections with the antiserum against the C-terminus of the ERβ (L-20, Santa Cruz Biotechnology, Inc, catalogue no. sc-6822)(22) revealed the same staining pattern as the antiserum against the N-terminus of ERβ used in the present study (17). ERβ cytoplasmic staining was observed in granulosa cells and follicles of the human ovary, a localization which is consistent with a study in the rat (23). In human testis, Leydig and connective tissue cells showed nuclear ERβ staining, which is also in agreement with a study in rat (24). The differences in distribution shown by the ERα antiserum MC-20 and the ERβ antiserum N-19 in the hypothalamus, pituitary, ovary and testis, as described extensively by Ishunina et al (17) and Kruijver et al (18, 19), supported the specificity of the antisera. This series of observations demonstrated that the ERα and ERβ antisera used in our study were specific.

For immunocytochemical staining of hyperphosphorylated-tau, a primary monoclonal antiserum AT8 directed against the phosphorylated-tau epitopes serine 202 and threonine 205 (25, 26) was used. This antiserum was used to recognize hyperphosphorylated-tau as an early marker for neurofibrillary AD pathology. The staining procedure was performed according to Schultz et al (2).

Earlier studies showed that the variability in fixation and postmortem time does not influence
the staining of ERα, ERβ or AT8 (5, 18, 19).

Immunocytochemical staining for AR in the MMN was based on the protocol described in Kruijver et al. (16), using a different primary anti-human AR antibody, i.e. ARIE (batch nr# 040898) raised in our institute against the first 20 amino acids of human AR peptide sequence of the C-terminus, coupled to thyroglobulin by glutaraldehyde. For details of the procedure and specificity of this antibody see (Bao et al., 2006).

2.3. Analysis of the staining intensity

Two independent investigators, blind to the subject’s condition, judged the staining intensity of the sections. The staining intensity of ERα and ERβ in the cytoplasmic and nuclear compartment was estimated semi-quantitatively by means of light microscopy, based on the number of stained neuron and basket-like nerve terminals in the infundibular nucleus, and graded according to the following scale: (+++) strong, (++) moderate, (+) weak, (+/-) very weak and (-) absent, according to our previous studies (17). The semi-quantitative estimation for neuropathological changes in AT8-staining was judged according to the number of stained neurons and neuropil threads in the infundibular nucleus and graded by Schultz et al. (2) on the following scale: (++++) severe, (+++) marked, (++) moderate, (+) mild, (0) no discernible changes.

In addition, the semi-quantitative estimation for AR staining in the MMN was judged based on the following scale: (+++) strong, (++) moderate, (+) weak, (+/-) very weak and (-) absent.

3. Results

Subjects who were assumed to have low androgen levels showed lower or absent expression of nuclear AR in the MMN (Table 2).
3.1. Control subjects (table 1, figs. 1, 2)

Female controls (Braak stage 0-II) did not show NF pathology as stained by AT8 in the infundibular nucleus, while mild changes were only observed in the 2 oldest males (#15, #16, age 78 and 80, respectively). Staining of hyperphosphorylated-tau was absent in other hypothalamic or adjacent brain areas in controls.

Histological signs of activation, i.e. hypertrophied neurons and nuclear spheroid-containing neurons, were clearly present in two elderly female controls (#6, #7), while fewer of such changes were observed in another elderly female (#8) and in the 2 oldest male controls (#15, #16; fig. 2). Using adjacent sections, we observed that the hypertrophied neurons in the 2 oldest male controls (#15, #16) did not show NF pathology.

Cytoplasmic ERα was not present in the youngest 2 females, while nuclear ERα was clearly stained. From age 49 onwards cytoplasmic ERα was generally more strongly stained in the infundibular nucleus of female controls than in male controls, while more nuclear ERα was observed in male controls than in female controls. Only weak staining of both nuclear and cytoplasmic ERβ was observed in the infundibular nucleus of male and female controls (fig. 1). Basket-like ERβ-staining was observed more in males than in females.

In the MMN more nuclear AR was observed in male controls than in female controls (table 1).

3.2. Subjects with abnormal hormone conditions (table 2, figs. 1,2)

All 5 subjects that underwent castration because of prostate cancer showed AT8 positive staining in the infundibular nucleus, independent of whether they were treated or not treated with anti-androgens. All 5 patients in this group showed more severe NF pathology than observed in male controls of comparable ages (fig. 2). Two of these patients (#17, #21) showed also hyperphosphorylated-tau in other hypothalamic and adjacent brain areas, i.e. the ventromedial nucleus (VMN), the nucleus tuberalis lateralis (NTL), the nucleus basalis of
Meynert (NBM) and the tuberomamillary nucleus (TMN) (table 2).

The subject with complete androgen insensitivity syndrome (CAIS) (#22), who had received estrogen substitution until 2 months before death, did not show NF pathology in the infundibular nucleus.

The 74-year-old male-to-female (MF) castrated and estrogen-treated transsexual (#25) had moderate AT8-staining in the infundibular nucleus, whereas in two younger MF transsexuals (#23, #24) the presence of hyperphosphorylated-tau was not observed. A female- to-male (FM) transsexual subject (#27) of 51 years of age who had been treated with testosterone showed no AT8-staining. In the 46-year-old ovariectomized female (#26), in a 46-year-old female with an androgen-producing adrenal tumor (#28) and in a 31-year-old male with an estrogen-producing adrenal tumor (#29) no AT8-staining in the infundibular nucleus was observed either.

An absent to weak staining of nuclear ERα and a weak to moderate staining of cytoplasmic ERα were observed in the infundibular nucleus of prostate cancer patients, MF transsexual subjects, ovariectomized woman and a FM transsexual. A moderate nuclear ERα and a very weak to moderate cytoplasmic ERα-staining were observed in the CAIS subject and in subjects with sex steroid-producing adrenocortical carcinoma. Concluding, no clear alteration in relation to the abnormal hormone levels was observed.

All subjects with abnormal hormone conditions showed an absent to very weak nuclear ERβ-staining and a very weak to weak cytoplasmic ERβ-staining. Concluding, the nuclear and cytoplasmic ERβ staining did not reveal any specific information.

Subjects with low levels of testosterone showed relatively more basket-like ERβ than elderly control subjects (fig. 1). The occurrence of hyperphosphorylated-tau in a subset of neurons in the infundibular nucleus of elderly males in low testosterone conditions was generally accompanied by the presence of basket-like ERβ in nerve terminals (#18, #19, #20, and #25).
Hypertrophied neurons were observed more in elderly castrated prostate cancer patients than in other subjects with abnormal hormone conditions. These neurons showed histological signs of hyperactivity, i.e. larger cell size, a larger nucleus and nucleolus compared to the surrounding neurons and the presence of nuclear spheroid bodies. They were observed easily, either located inside or outside basket-like ERβ nerve terminals. Remarkably, these hyperactive neurons never showed NF pathology.

4. Discussion

The infundibular nucleus, a key structure in the regulation of reproduction and metabolism (1) shows remarkable neurofibrillary (NF) Alzheimer (AD)-like changes in cognitively intact subjects (with Braak stage 0-II). The NF pathology in the infundibular nucleus is characterized by neurofibrillary tangles, a network of neuropil threads and terminal-like portal vessel-associated processes. This NF pathology shows a striking sex difference. From 60 years onwards the prevalence of neurofibrillary changes in the infundibular nucleus of cognitively intact elderly males rises from 20% up to 90% around the age of 80-85 years, while in only 6-10% of cognitively intact elderly females such changes were observed (2, 3, 5, 27, 28). Our present control data confirms these previous findings. Moreover, we showed for the first time that changes of circulating sex hormone levels alone are not sufficient to induce formation of NF changes in the infundibular nucleus, while decreasing testosterone levels during aging stimulate the formation of NF changes.

Circulating total testosterone in men derives both from testicular Leydig cell secretion and from peripheral conversion of dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEA-S), that is produced by the adrenals (29). Approximately 90% of the serum testosterone in men originates from the testes, whereas only 67% of the serum testosterone in women is secreted by the ovaries (30). Changes of sex hormones during aging remain a
controversial topic in literature. The reference data from the Endocrinology Department of the Academic Medical Center Amsterdam, The Netherlands (Dr. E. Endert) shows that men have quite stable though slowly decreasing testosterone levels (from 22 nmol/l age 21–30 to 17 nmol/l age 60–70) and stable estradiol levels (around 0.14 nmol/l) up to age ~70), while women have much lower slightly decreasing testosterone levels (from 3 nmol/l age 21–30 to 1.25 nmol/l age 61–70). Their estrogen levels decline abruptly after age 50 (menopause), i.e., estradiol level declines from 0.27 to 0.02 nmol/l. These data fit in well with our present findings that nuclear AR staining in the MMN is generally higher in men than in women and decreases only after age 70 in men. This also confirms that AR staining in the MMN can be used as a monitor for circulating testosterone levels (16).

In postmenopausal women, the abrupt decline in circulating estrogen levels (31) and the diminished negative feedback of estrogens on the infundibular nucleus neurons (32-34) is accompanied by a strong activation of neurons in this brain area, as shown by histological signs of neuronal hypertrophy and increased amounts of estrogen receptors (ER), neurokinin B (NKB) or substance P (SP) gene transcripts in this nucleus (4, 6, 35). In a previous study, the shift from a more nuclear localization of ERα in young females to more cytoplasmic ERα in the infundibular nucleus neurons in cognitively intact postmenopausal women was found to be accompanied by other signs of neuronal hyperactivity and by a lower vulnerability of these neurons to develop NF pathology as compared to males (5). In addition, taking into consideration the relatively young patients with abnormal hormone levels, i.e. the surgical menopausal case (#26, age 46, ovariectomized without hormone replacement), the androgen-producing tumor case (#28, age 46), and the FM transsexual case (#27, age 51, castrated with androgen replacement but stopped 3 years before death), all of which lacked NF pathology, we conclude that changes of sex hormone levels alone are not sufficient to induce NF pathology in the infundibular nucleus of young females, while in postmenopausal
women the decrease of estrogen levels seems to protect against the occurrence of age-related
NF changes in this brain area (table 1).
In elderly men the reported gradually decreasing plasma testosterone levels (36) are
accompanied by a lesser degree of neuronal hypertrophy than observed in women (8). It is
therefore of interest to find in the present study that mild NF pathology in the infundibular
nucleus in controls was only observed in the 2 oldest males (#15, #16, age 78 and 80,
respectively) while all of the 5 old castrated prostate cancer patients showed more NF
pathology than male controls of comparable ages, independent of the fact whether subjects
did (#18, #21) or did not (#17, #19, #20) receive anti-androgen treatment following
orchidectomy (tables 2,3). Hyperphosphorylated-tau as stained by AT8 was also observed in
other brain areas in elderly castrated prostate cancer patients, such as in the ventromedial
nucleus (VMN), the nucleus tuberalis lateralis (NTL), the nucleus basalis of Meynert (NBM)
and the tuberomamillary nucleus (TMN) (#17, #21) and was accompanied in one patient (#20)
by subcortical dementia symptoms, suggesting that low testosterone levels may also be
involved in the development of NF pathology in cognition-related areas in the hypothalamus,
i.e. the NBM and TMN. The observation that the decline of testosterone in old males
especially after the age of 70 and in old castrated men is accompanied by a mild to moderate
NF pathology in the infundibular nucleus, means that androgens seem to protect against NF
changes formation in the infundibular nucleus in males. In women, on the contrary,
testosterone does not change significantly in relation to the menopausal transition (37). A
significant fall in circulating levels of sex steroid hormone-binding globulin (SHBG) across
menopausal transition may result an increase in free androgen levels, as indicated for example
by an increase in free androgen index (FAI) (37). The idea of remain constant or slightly
decrease of testosterone levels across menopausal years (38-40) is in agreement with our
study which observed a relatively constant of AR expression in the MMN in women with
different age (table 1.) We are tempting to suggest if this observation might be related to protective action of testosterone for NF pathology formation in women since women in general hardly ever show age related-NF pathology in the infundibular nucleus.

We observed a lack of NF pathology in the case of the young male with an estrogen-producing tumor (#29, age 31, with both higher testosterone and estrogen levels) and in the two rather young MF transsexuals (#23 and #24, age 50 and 53, with lower androgen levels and higher estrogen levels, respectively). In addition, no NF pathology was found in the CAIS patient (#22, age 75) who was phenotypically a heterosexual woman and had higher estrogen levels during her life until the last two months before her death at age 75. It should be noted that NF staining in control males starts in the seventies (table 1, ref. 15). The presence of NF pathology in the infundibular nucleus of a 74-year-old MF transsexual who had lower androgen levels and higher estrogen levels (#25) may be based on the variability of the occurrence of this pathology in the seventies. These findings implicated that the process of aging is another requirement for the occurrence of NF pathology. In other words, the decline of androgen levels in men during aging is only one of the factors involved in the formation of AD-like pathology.

In a previous study we found that a subset of proopiomelanocortin (POMC) neurons in the infundibular nucleus co-expresses hyperphosphorylated-tau as stained by AT8, both in cognitively intact elderly males and in AD patients (5). In rodent, the cellular POMC mRNA content in the arcuate nucleus was significantly lower in old males than in young males (41). Moreover, the abruptly decreased testosterone levels following castration of adult male rhesus monkey results in a strong suppression of the mRNA production of POMC neurons (42). This indicates that indeed both aging and low testosterone conditions may contribute to reduced metabolic activity of POMC neurons in the hypothalamus and so increase the risk of these neurons to develop NF pathology in males. In our present study, low testosterone conditions
also seemed to increase the risk for elderly males to get NF pathology in areas which are related to memory and attention (i.e. the NBM and TMN) (#17, #21), which suggests that such a mechanism may also take place in other parts of the brain.

In a previous study we observed the occurrence of basket-like nerve terminals staining for ERβ in the infundibular nucleus in two conditions: (i) in elderly men and (ii) in AD patients in relation to the occurrence of NF pathology in this nucleus (5). In the present study, the occurrence of hyperphosphorylated-tau in elderly hypogonadal men was generally also found to be accompanied by the presence of basket-like nerve terminals staining for ERβ in the infundibular nucleus (table 2). Our ongoing study showed that such basket-like ERβ-containing terminals co-express glutamic-acid decarboxylase (GAD) immunoreactivity as a marker for the inhibitory transmitter γ-amino butyric acid (GABA) (43). The neurons inside the ERβ staining basket tended to be larger and to have a larger nucleus and nucleolus than the surrounding neurons, which suggests that the neuron inside the basket is strongly activated while these neurons remain free of NF changes in the middle of NF neuropathology that is derived from the subpopulation of POMC neurons. We also observed this phenomenon of intact, activated neurons surrounded by a basket like terminal and free of NF pathology in AD patients (5). That the presence of ERβ basket and NF changes do not always go together makes it clear that they are in principle two independent phenomena. We hypothesized, therefore, that ERβ-mediated inhibition of the GABAergic terminals may induce an increased activity of the neurons inside the basket and thus prevent the formation of hyperphosphorylated-tau in this subpopulation of neurons, which is in line with the phenomenon we described as “use it or lose it” (9, 10).

Concluding, our observations suggest that the sex difference in NF changes in the infundibular nucleus in elderly people is due to hyperphosphorylated-tau induction in a situation of gradual diminishment of testosterone during aging in men, as is clear following
castration. The NF changes occur in a subpopulation of neurons containing POMC. However, the process of aging seems to play a more important role in the formation of AD-like pathology than the changes in sex hormones. In postmenopausal women the strong decline of estrogen levels seems to protect against NF changes in this brain area. Changes in sex hormone levels appeared to be only one of the many factors involved in the etiology of AD changes in the infundibular nucleus. However, since testosterone was found to be of importance and since substitution may prevent the formation of heat shock-induced hyperphosphorylation of tau in rats (44), further investigation of the efficacy of testosterone substitution therapy for delaying or preventing the occurrence of NF pathology in the brain of elderly males seems worthwhile. A second phenomenon was the increased activity of some neurons in the infundibular nucleus of hypogonadal elderly males, probably mediated by surrounding basket-like nerve terminals containing ERβ, accompanied by an absence of neurofibrillary pathology, even in the middle of NF changes in this nucleus. This phenomenon, which is also present in postmenopausal women (5) indicates a new mechanism in the local prevention of NF pathology.

Acknowledgments
Brain material was obtained from the Netherlands Brain Bank Amsterdam (coordinator Dr. R. Ravid). The authors want to thank Rawien Balesar, Unga Unmehopa and Bart Fisser for their technical help and advice and Max de Leeuw for his receptor stainings; Dr. Michel A. Hofman for statistical advice; Joop van Heerikhuize and Gerben van der Meulen for photography and Wilma Verweij for secretarial help. Financial support was obtained from the Hersenstichting Nederland, the Internationale Stichting Alzheimer Onderzoek, the Nederlandse Alzheimer Stichting, and the KNAW 05CDP027.
Figure legends:

Figure 1. Photomicrograph depicting basket-like nerve terminals containing estrogen receptor (ER)β immunoreactivity (IR) in the infundibular nucleus. Hypogonadal prostate cancer patients (subject #20)(B) showed more of such baskets with a higher intensity of ERβ-IR than elderly male controls (subject #16)(A). Scale bar: 20 μm.

Figure 2. Photomicrograph depicting hyperphosphorylated-tau stained by AT8 in the infundibular nucleus. Hypogonadal prostate cancer patients showed more severe AT8 positive staining (subject #20)(B) than elderly male controls (subject #16)(A). Scale bar: 20 μm.

Figure 3. This figure shows the correlation between expression of nuclear androgen receptor (AR) staining in the MMN and assumed circulating testosterone levels.
REFERENCES:

1. Swaab DF. Neurobiology and neuropathology of the human hypothalamus. In: Bloom FE, Bjorkland A, Hokfelt T, editors. The primate nervous system, part I Handbook of chemical neuroanatomy. Amsterdam: Elsevier Science; 1997. p. 39-137.

2. Schultz C, Braak H, Braak E. A sex difference in neurodegeneration of the human hypothalamus. Neurosci Lett 1996;212(2):103-6.

3. Schultz C, Ghebremedhin E, Braak E, Braak H. Sex-dependent cytoskeletal changes of the human hypothalamus develop independently of Alzheimer's disease. Exp Neurol 1999;160(1):186-93.

4. Rance NE, McMullen NT, Smialek JE, Price DL, Young WS, 3rd. Postmenopausal hypertrophy of neurons expressing the estrogen receptor gene in the human hypothalamus. J Clin Endocrinol Metab 1990;71(1):79-85.

5. Hestianotoro A, Swaab DF. Changes in estrogen receptor-alpha and -beta in the infundibular nucleus of the human hypothalamus are related to the occurrence of Alzheimer's disease neuropathology. J Clin Endocrinol Metab 2004;89(4):1912-25.

6. Rance NE, Young WS. Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalamus of postmenopausal women. Endocrinology 1991;128(5):2239-47.

7. Rance NE, Uswandi SV. Gonadotropin-releasing hormone gene expression is increased in the medial basal hypothalamus of postmenopausal women. J Clin Endocrinol Metab 1996;81(10):3540-6.

8. Rance NE, Uswandi SV, McMullen NT. Neuronal hypertrophy in the hypothalamus of older men. Neurobiol Aging 1993;14(4):337-42.

9. Swaab DF. Brain aging and Alzheimer's disease, "wear and tear" versus "use it or lose it". Neurobiol Aging 1991;12(4):317-24.

10. Swaab DF, Dubelaar EJ, Hofman MA, Scherder EJ, van Someren EJ, Verwer RW. Brain aging and Alzheimer's disease; use it or lose it. Prog Brain Res 2002;138:343-73.

11. van de Nes JA, Kamphorst W, Ravid R, Swaab DF. Comparison of beta-protein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer's disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathol (Berl) 1998;96(2):129-38.

12. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82(4):239-59.

13. Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995;16(3):271-8; discussion 8-84.

14. Mai J, Assheuer J, Paxinos G. Atlas of the Human Brain. San Diego: Academic Press; 1998.

15. Goldstone AP, Unmehopa UA, Bloom SR, Swaab DF. Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects. J Clin Endocrinol Metab 2002;87(2):927-37.

16. Kruijver FP, Fernandez-Guasti A, Fodor M, Kraan EM, Swaab DF. Sex differences in androgen receptors of the human mamillary bodies are related to endocrine status rather than to sexual orientation or transsexuality. J Clin Endocrinol Metab 2001;86(2):818-27.

17. Ishunina TA, Kruijver FP, Balesar R, Swaab DF. Differential expression of estrogen receptor alpha and beta immunoreactivity in the human supraoptic nucleus in relation to sex and aging. J Clin Endocrinol Metab 2000;85(9):3283-91.

18. Kruijver FPM, Balesar R, Espila AM, Unmehopa UA, Swaab DF. Estrogen receptor-alpha distribution in the human hypothalamus in relation to sex and endocrine status. J Comp Neurol 2002;454(2):115-39.

19. Kruijver FPM, Balesar R, Espila AM, Unmehopa UA, Swaab DF. Estrogen-receptor-beta distribution in the human hypothalamus: similarities and differences with ER alpha distribution. J Comp Neurol 2003;466(2):251-77.

20. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 1996;93(12):5925-30.

21. Clarke CH, Norfleet AM, Clarke MS, Watson CS, Cunningham KA, Thomas ML. Perimembrane localization of the estrogen receptor alpha protein in neuronal processes of cultured hippocampal neurons. Neuroendocrinology 2000;71(1):34-42.

22. Kuiper GG, Shughrue PJ, Merchenthaler I, Gustafsson JA. The estrogen receptor beta subtype: a novel mediator of estrogen action in neuroendocrine systems. Front Neuroendocrinol 1998;19(4):253-86.

23. Fitzpatrick SL, Funkhouser JM, Sindoni DM, Stevis PE, Deecher DC, Bapat AR, Merchenthaler I, Frait DE. Expression of estrogen receptor-beta protein in rodent ovary. Endocrinology 1999;140(6):2581-91.

24. Saunders PT, Fisher JS, Sharpe RM, Millar MR. Expression of oestrogen receptor beta (ER beta) occurs in multiple cell types, including some germ cells, in the rat testis. J Endocrinol 1998;156(3):R13-7.

25. Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, Martin JJ, Gheuens J. Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive
epitopes. Acta Neuropathol (Berl) 1992;84(3):265-72.
26. Goedert M, Jakes R, Vanmechelen E. Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 1995;189(3):167-9.
27. Schultz C, Ghebremedhin E, Braak H, Braak E. Neurofibrillary pathology in the human paraventricular and supraoptic nuclei. Acta Neuropathol (Berl) 1997;94(1):99-102.
28. Schultz C, Koppers D, Braak E, Braak H. Neurofibrillary degeneration in hypophysiotrophic nuclei of the aging human hypothalamus. In: Kort H, Usadel K, editors. Neuroendocrinology: Retrospect and Perspectives. Berlin: Springer; 1997. p. 115-26.
29. Baulieu EE. Androgens and aging men. Mol Cell Endocrinol 2002;198(1-2):41-9.
30. Labrie F, Belanger A, Cusan L, Gomez JL, Candas B. Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 1997;82(8):2396-402.
31. Overlie I, Moen MH, Morkrid L, Skjaeraasen JS, Holte A. The endocrine transition around menopause—a five years prospective study with profiles of gonadotropines, estrogens, androgens and SHBG among healthy women. Acta Obstet Gynecol Scand 1999;78(7):642-7.
32. Chakravarti S, Collins WP, Newton JR, Oram DH, Studd JW. Endocrine changes and symptomatology after oophorectomy in premenopausal women. Br J Obstet Gynaecol 1977;84(10):769-75.
33. Gill S, Lavoie HB, Bo-Abbas Y, Hall JE. Negative feedback effects of gonadal steroids are preserved with aging in postmenopausal women. J Clin Endocrinol Metab 2002;87(5):2297-302.
34. Gill S, Sharpless JL, Rado K, Hall JE. Evidence that GnRH decreases with gonadal steroid feedback but increases with age in postmenopausal women. J Clin Endocrinol Metab 2002;87(5):2290-6.
35. Abel TW, Rance NE. Stereologic study of the hypothalamic infundibular nucleus in young and older women. J Comp Neurol 2000;424(4):679-88.
36. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J Clin Endocrinol Metab 2001;86(2):724-31.
37. Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab 2002;87(5):2832-8.
38. Longcope C, Franz C, Morello C, Baker R, Johnston CC, Jr. Steroid and gonadotropin levels in women during the peri-menopausal years. Maturitas 1986;8(3):189-96.
39. Rannevik G, Jeppsson S, Johnell O, Bjerre B, Laurell-Borulf Y, Svanberg L. A longitudinal study of the perimenopausal transition: altered profiles of steroid and pituitary hormones, SHBG and bone mineral density. Maturitas 1995;21(2):103-13.
40. Laughlin GA, Barrett-Connor E, Kritz-Silverstein D, von Muhlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. J Clin Endocrinol Metab 2000;85(2):645-51.
41. Gruenewald DA, Matsumoto AM. Age-related decrease in proopiomelanocortin gene expression in the arcuate nucleus of the male rat brain. Neurobiol Aging 1991;12(2):113-21.
42. El Majdoubi M, Ramaswamy S, Sahu A, Plant TM. Effects of orchidectomy on levels of the mRNAs encoding gonadotropin-releasing hormone and other hypothalamic peptides in the adult male rhesus monkey (Macaca mulatta). J Neuroendocrinol 2000;12(2):167-76.
43. Wong CG, Bottiglieri T, Snead OC, 3rd. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 2003;54 Suppl 6:S3-12.
44. Papasozomenos SC, Papasozomenos T. Androgens Prevent the Heat Shock-Induced Hyperphosphorylation but not Dephosphorylation of t in Female Rats. Implications for Alzheimer's Disease. J Alzheimers Dis 1999;1(3):147-53.
Figure 1.

Figure 2.

Figure 3.
Table 1. AT8, ERα and ERβ staining in the infundibular nucleus of control subjects

No	NBB	Age	Sex	Bw(g)	Pmd(h)	Fix(d)	BS	AT8	ERα (INF)	ERβ (INF)	AR (MMN)				
									N	C	N	C	B	N	
1	86032	33	F	1035	41.00	20	0	-	2+	-	+	±	+	2+	
2	80008	35	F	1200	08.00	26	0	-	3+	-	-	±	+	-	
3	96423	49	F	1253	<17.00	806	0	-	±	2+	2+	+	-	2+	
4	98125	58	F	991	06.15	41	I	-	+	2+	-	±	-	-	
5	98035	65	F	ID	<20.00	31	0	-	+	+	-	+	-	+	
6	99085	69	F	1102	<02.30	120	0	-	±	2+	-	+	-	2+	
7	93139	78	F	1135	06.25	32	0	-	2+	±	+	+	+	+	
8	96084	78	F	1330	07.30	26	II	-	2+	+	-	±	-	+	
									-	+	2+	-	±	-	+
Median value															
---	---	---	---	---	---	---	---	---	---	---	---				
9	98121	47	M	1420	<82.30	31	0	-	±	±	-	+	-	2+	
10	97159	48	M	1500	05.30	42	0	-	2+	±	-	±	2+	2+	
11	93072	50	M	1573	<09.00	52	0	-	+	+	-	+	+	2+	
12	97139	59	M	1400	<65.45	180	0	-	±	+	-	±	-	2+	
13	98122	66	M	1461	<41.00	49	0	-	2+	+	-	+	+	2+	
14	96426	69	M	1222	14.00	728	0	-	2+	2+	±	±	-	3+	
15	94076	78	M	1442	08.25	24	II	+	2+	+	-	±	2+	-	
16	97116	80	M	1380	06.56	33	0	+	3+	+	±	±	-	-	

Median value: - 2+ + - ± ± 2+

Abbreviations: AdenoCa: adenocarcinoma, AR: androgen receptor, AT8: specific staining for hyperphosphorylated-tau, B: basket-like, BS: Braak score, Bw: brain weight (in grams), C: cytoplasmic staining, ER: estrogen receptor, F: female, Fix: fixation time (in days), ID: incomplete data, INF: the infundibular nucleus, N: nuclear staining, NBB: Netherlands Brain Bank number, ND:
can not be determined, M: male, MMN: medial mammillary nucleus, Pmd: postmortem delay (in hours). Note that AT8 staining in the infundibular nucleus is only present in the 2 oldest males.
Table 2. AT8, ERα and ERβ staining in the infundibular nucleus and other brain areas of subjects with abnormal hormone conditions

No	NBB	Diagnosis	Age	Sex	Bw(g)	Pmd(h)	Fix(d)	BS	AT8 (INF)	ERα (INF)	ERβ (INF)	AR (MMN)
17	89103	Prostate cancer	67	M	1290	24:00	28	ID	2+	NTL(2+)	TMN(2+)	VMN(2+)
18	97157	Prostate cancer	69	M	1475	05:55	45	0	4+	-	±	±
19	95062	Prostate cancer	80	M	1400	04:30	24	II	4+	-	±	-
20	94109	Prostate cancer	82	M	1110	05:35	32	II	4+	-	±	±

No.	Code	Diagnosis	Age	Sex	Tumor Size	Time	Stage	Grade	Losses	AR	AT8	B	BS	Bw	
21	94090	Prostate cancer	86	M	1663	03:00	II	3+	VMN(+)	+	2+	-	±	±	
					NBM(2+)										
22	02089	CAIS	75	M	1484	06:30	I	-	-	2+	2+	-	±	-	
23	84020	MF Transsexual	50	M	1380	ID	0	-	-	±	-	±	±	±	
24	93070	MF Transsexual	53	M	1500	<100	0	-	-	-	±	±	±	+	
25	98141	MF Transsexual	74	M	1118	06:35	I	2+	-	±	2+	-	+	2+	
26	80002	Surgical menopause	46	F	1300	02:30	0	-	-	-	+	-	±	+	
27	98138	FM Transsexual	51	F	1171	04:15	0	-	-	+	+	-	+	±	2+
28	83004	Androgen-producing adrenal tumor	46	F	1360	<10:50	ID	-	-	2+	±	-	±	+	2+
29	91005	Estrogen-producing adrenal tumor	31	M	1377	<34:00	ID	-	-	2+	+	-	±	2+	2+

Abbreviations: AR: androgen receptor, AT8: staining for hyperphosphorylated-tau, B: basket-like, BS: Braak score, Bw: brain weight
(in grams), CAIS: complete androgen insensitivity syndrome, C: cytoplasmic staining, ER: estrogen receptor, F: female, FM: female-to-male transsexual, Fix: fixation time (in days), ID: incomplete data, INF: the infundibular nucleus, N: nuclear staining, NBB: Netherlands Brain Bank number, M: male, MF: male to female transsexual, MMN: medial mammillary nucleus, NBM: the nucleus basalis of Meynert, ND: cannot be determined, NTL: the nucleus tuberalis lateralis, ORX: orchidectomy, OVX: ovariectomy, Pmd: postmortem delay (in hours), TMN: the tuberomamillary nucleus, VMN: the ventromedial nucleus.
Table 3. List of control subjects and the cause of death

No	NBB	Age	Sex	Cause of death
1	86032	33	F	AdenoCa metastases to brain
2	80008	35	F	Acute lymphoblastic leukemia
3	96423	49	F	Massive thromboembolism
4	98125	58	F	Multiple organ failure
5	98035	65	F	Mesenterical ischemia
6	99085	69	F	Uremia
7	93139	78	F	Bronchopneumonia
8	96084	78	F	Pulmonary emphysema
9	98121	47	M	Cardiac arrest
10	97159	48	M	Multiple organ failure
11	93072	50	M	Hypovolemic shock
	Code	Age	Gender	Condition
---	--------	-----	--------	---------------------
12	97139	59	M	Pulmonary embolism
13	98122	66	M	Septic shock
14	96426	69	M	Septic shock
15	97116	80	M	Pulmonary emphysema
16	94076	78	M	Myocardial infarction

Abbreviations: F: female, M: Male, NBB: Netherlands Brain Bank number
Table 4. Clinical and endocrine history of patients with abnormal hormone conditions

Case No.	Age (yr)	Age of hormonal treatment (yr)	Age of Orchid-/Ovariectomy (yr)	Clinical data and endocrine history	Cause of death	Assumption androgen status as compared to controls	Assumption estrogen status as compared to controls
Prostate cancer patients #17 67 - 67	Orchidectomy 3 months before death, patient did not receive anti-androgen treatment	Carcinoma of pancreas with metastases; cachexia	↓	↓			
Patient	Age at Death	Age at Orchidectomy	Years before death	Cancer Type	Treatment Details		
---------	--------------	---------------------	--------------------	-------------	-------------------		
#18	69	67	3	Prostate	Orchidectomy, anti-androgen, anandron 150mg 1 dd for 3 years before death		
#19	80	-	5	Renal	Orchidectomy, patient did not receive anti-androgen treatment		
#20	82	-	20	Prostate, respiratory failure, renal insufficiency	Orchidectomy, patient did not receive anti-androgen treatment		
Memory problem started 6 years before death.

Diagnosis at hospitalization: subcortical dementia.

Neuropathological diagnosis: slight alzheimerization, Braak for tangle = II.

Orchidectomy 1 year before death. Patient received CPA, anti-androgen, (50mg 4 dd) during the first 14 months, (50 mg 2 dd) during the last 6 months.
Orchidectomy 20 years before death, patient received 17β-estradiol (2mg 1 dd) during the last 5 years before death, and stopped 2 months before death. Advanced state of squamose cell vagina carcinoma ↓ ↑
MF-transsexuals	#23	50	42	44
Age 42: stilbestrol (5 mg 1 dd); after 2 months to (5 mg 2 dd); age 44: CPA (50 mg 2 dd); treatment lasted 4 years; stopped 2 years before death; ethinylestradiol (50 μg 2 dd); treatment lasted 8 years until death				
Suicide ↓ ↑				
Age 40: stilbestrol treatment (stopped after 1 yr); at age 43–47: premarin (0.625 mg dd); at age 47–50: Premarin (3.75 mg dd); at age 50–53: Premarin (2.5 mg 3 dd); CPA (50 mg 1 dd); topical estrogen cream (estrogen treatment stopped 3 months before death)

Acute fatty liver due to alcohol abuse
#25	74	64	64
Age 64: received CPA treatment (50 mg 2 dd) and ethinyl estradiol (50 µg 2 dd) treatment; at age 67: received estraderm (100 µg 1 dd); at age 74 received spironolactone (50 mg 1 dd) and estraderm (100 µg 1 dd)	Coma post-appendicitis, pneumonia, lung embolism, and occipital cerebral infarction		

Surgical Menopause	#26	46	-	45
Bilateral ovariectomy 22 months before death, Septicemia and ovarian cancer patient did not receive hormone treatment				

FM-transsexual	#27	51	27	32
Bilateral ovariectomy at age 32. At age 27 Cachexia				

35
testosterone, Sustanon (250 mg), twice a month injections; at age 30

testosterone undecanoate (40 mg 3 dd); at age 34

testosterone undecanoate (40 mg 2 dd); at age 36

testosterone undecanoate (40 mg 4 dd); at age 44

testosterone, Sustanon (250 mg) twice a month injections; at age 47–48

testosterone, Sustanon (250 mg) every 3 weeks.

No testosterone
Androgen-producing adrenal tumor	#28 46 - -

Female patient with a virilizing adrenocortical carcinoma for 1 yr that produced high levels of cortisol, androstenedione, and testosterone levels; latest androstenedione serum level before death was 48.0 ng/ml (normal range for women 0.4–3.5 ng/ml); the latest serum testosterone level before death was during the last 3 years before death.
| Estrogen-producing adrenal tumor | #29 | 31 | - | - | Male patient with the recurrent feminizing adrenocortical carcinoma for 3 yr that produced high levels of DHEA-S, DHEA, 17-hydroxyprogesterone, and estradiol levels; the latest estradiol serum levels 1 yr before death was around 689-732 pmol/L (normal range for women is 1.04–3.30 nmol/L). | Advanced metastasis of recurrent adrenocortical carcinoma | Slightly ↑ (measured) |
men is 50-200 pmol/L);

the latest testosterone
levels 1 year before death
was around 28.9-41.3
nmol/L (normal range for
men is 10-30 nmol/L)

Abbreviations: CAIS: complete androgen insensitivity syndrome, CPA: cyproterone acetate, DHEA: dehydroepiandrosterone,
DHEA-S: dehydroepiandrosterone-sulphate, No: numbers corresponding with table 2, (*): cannot be assumed.