Characteristics of the fatty acid composition of naked oats of Russian selection

G A Batalova¹, V N Krasilnikov¹, V S Popov*, E E Safonova¹

¹ Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, Russian Federation
* Corresponding author: popovitaly@yandex.ru

Abstract. The fatty acid composition of acyl lipids of 7 naked oat cultivars was studied. Lipids are source of energy and plastic material; promote metabolic processes in the body. In the grain of studied lines the content of raw lipids varied from 5.91 to 7.87 %. The main fatty acids of the investigated lines of naked oats are linoleic (36.2-38.7 %), oleic (33.5-36.7 %), palmitic (15.3-17.8 %). According to the content of oleic and linoleic fatty acids and their ratio (1: 1), lipids of naked oats belong to the oleic-linoleic group of vegetable oils.

1. Introduction

It is known that the basis of the world food system is made up of cereals. Annually, the production of cereals is approximately 3 times higher than the total production of other crops, including leguminous plants.

Today, all nutritionalists advise to keep cereals as the central part of our diet because of their natural high content of carbohydrate complex, characterized, in particular, by their large prebiotic and bifidogenic ability.

Epidemiological studies have shown that consumption of whole-grain products, obtained from such traditional crops for northern regions of Russia as rye and oats, is associated with a decrease in the incidence of a number of chronic diseases, in particular diabetes, cardiovascular diseases.

At present, extensive work is carried out on the selection of naked oats, effective for growing in various soil and climatic zones and resistant to pathogenic organisms and abiotic factors [1].

Benchmarking of the production and processing of naked oats has shown that the strong side of the naked oat is a high nutritional value [2].

The presence of lipids distinguishes oat grain from other cereals [3,4,5]. Oat grain lipids mainly consist of unsaturated oleic (18:1) and linoleic (18:2), and saturated palmitic (16:0) acids and low levels of stearic (18:0) and linoleic (18:3) acids [6,7].

Currently, in different oat cultivars, the lipid content is in the range of 5-8 % [7,8]. It makes the oat a potentially oilseed crop. The oil content in the seeds of such cereal crops as wheat, barley, rye and triticale is only 1-3 % [8,9].

Acyl (saponifiable) lipids are sources of acyl radicals ω-9, ω-6 and ω-3 fatty acids, of which ω-6 and ω-3 are considered as essential nutrition factors. In general, speaking about the functionality of saponifiable lipids, as sources of essential fatty acids, we can state:

- monounsaturated fatty acids (ω-9) are equivalent in their effectiveness to polyunsaturated fatty acids in terms of lowering the level of cholesterol in the blood;
- (ω-3) fatty acids have a healing effect and are considered as indispensable nutritional factors, especially in childhood;
- there is a relationship between specific fatty acids (γ- and α-linolenic acid) and physiological response in some diseases [10].

The purpose of this study was to study the fatty acid composition of acyl lipids of naked oats of domestic selection.

2. **Objects and methods of research.**

For the study were selected samples of cultivated and new cultivars of naked oats. As the morphological characteristics of the grain were used the parameters of the grain volume weight and 1000 seeds weight (Table 1).

Samples of grain were provided by the Zonal Scientific Research Institute of Agriculture of the Northeast named after N.V. Rudnitsky (city of Kirov).

No.	Cultivar	Origin (parental forms)	1000 seeds weight, g	Grain volume weight, g/L
1	1h07	K-2108 Pushikinsky Golozerny	25.9	698
2	766h05	Borys x Mozart	26.0	701
3	41h04	Faust x Mernime	24.6	701
4	74h12	86h04 x BAI 3	27.8	703
5	8h12	1h07 x 543h02	24.5	710
6	857h05	OA-503-1 x Tyumensky Golozerny	26.1	710
7	37h12o	Sallust x Vyatsky	25.8	723

The content of lipids in the selection oat cultivars was determined in accordance with GOST 10857-64 "Oilseeds. Method for determination of oil content". The fatty acid composition of oat oil was determined by gas-liquid chromatography according to GOST R ISO 5508:2010 "Animals and vegetable fats and oils. Determination of methyl esters of fatty acids (FAME) by gas chromatography". Preparations of methyl esters were carried out in accordance with GOST R ISO 5509:2000 "Animal and vegetable fats and oils: Preparation of methyl esters of fatty acids".

3. **Results and discussion.**

The content of raw lipids varies from 5.91 to 7.87 % in the grain of the investigated naked oat cultivars (Table 2). The average lipid content is 6.9 % ± 0.98 %.

The noted limits of variation of this measurement are characteristic for grain of cultural types of oats, both hulled and naked. The content of lipids above 7-9 % is very rare for them [11]

No	Cultivar	Humidity, % on dry matter	Fat content, % on dry matter
1	1h07	9.13	7.71
2	766h05	9.43	5.91
3	41h04	9.18	7.87
4	74h12	8.99	6.59
5	8h12	8.78	7.58
6	857h05	9.44	6.10
7	37h12o	8.88	6.32

The lipid complex of investigated naked oat cultivars was characterized by fatty acid composition (Table 3).
Table 3. Fatty acid composition of lipids of naked oats

Fatty acids	Designation	Content, % of the amount	1h07	766h05	857h05	41h04	37h12o	74h12	8h12
Saturated acids									
Hexanoic (caproic)	C6:0		0.17	0.07	0.14	0.19	0.23	0.21	0.08
Tetradecanoic (myristic)	C14:0		0.36	0.38	0.37	0.31	0.35	0.28	0.27
Hexadecanoic (palmitic)	C16:0		16.63	17.41	17.8	16.60	16.58	15.38	15.34
Octadecanoic (stearic)	C18:0		1.70	1.05	1.25	1.87	1.38	1.23	1.24
Monounsaturated acids									
cis-9-hexadecenoic (palmitoleic)	C16:1		0.19	0.37	0.29	0.17	0.36	0.33	0.17
cis-11-octadecenoic (vaccenic)	C18:1		0.89	1.03	1.00	0.89	0.66	0.87	0.74
cis-9-octadecenoic (oleic)	C18:1		35.74	33.74	33.49	36.42	36.18	36.34	36.73
cis-11-eicosenoic (gondoic)	C20:1		0.82	0.88	0.73	0.85	0.79	0.85	0.73
cis-11-docosenoic (cetoleic)	C22:1		0.70	0.24	0.24	-	-	-	0.24
cis-13-docosenoic (erucic)	C22:1		1.11	0.68	0.89	0.88	0.76	0.67	0.91
Diunsaturated acids									
all cis-9,12-octadecadienoic (linoleic)	C18:2		36.25	38.68	38.37	35.89	37.12	37.61	37.83
all cis-9,12-tetracosanoic	C24:2		1.13	1.31	1.00	1.06	1.29	1.26	1.48
Triunsaturated acids									
all cis-9,12,15-octadecatetraenic (α-linolenic)	C18:3		1.46	1.5	1.61	1.12	1.43	1.69	1.25
No data			-	2.85	2.67	2.83	3.75	2.86	3.29

Triglycerides of oat lipids of the studied genotypes are represented by three types of fatty acids — saturated (palmitic acid), monounsaturated (oleic acid), dinosaturated (linoleic acid). The proportion of these acids in the lipids of the studied lines accounted for an average 89.4 %. The ratio of linoleic acid to oleic acid is close to 1. It allows to attribute oat oil to the oleic-linoleic group of oils (Table 4). The noted features of fatty-acid composition of lipids of naked oats are characteristic for tetraploid species, such as A.barbata, A.magna, A.vaviloviana [12].

It is actual to study lipid changes during grain storage so the oats is marked by a significant variety of lipases and lipoxidases [18]. Human body does not have effective chemical systems for the transformation of the compounds of one family of essential fatty acids into compounds of another family, therefore in assessing the nutritional properties of oat lipids metabolic pathways of linoleic acid, the family of n(ω)-6 essential fatty acids, are considered (Figure 1).
Essential fatty acids, including linoleic (ω-6), are important as precursors of hormonal compounds. So linoleic acid is the basis of the formation of hormone-like compounds called eicosanoids, such as prostaglandins and leukotrienes, which play an important role in maintaining the body's homeostasis. There is a positive effect of linoleic acid on the lipid profile of blood serum of patients with diabetes mellitus. On the contrary, a deficiency of linoleic acid contributes to the development of atherosclerosis. Optimum consumption of linoleic acid is 5-8 % of the total caloric value [10,13].

Fatty acid composition of selected lipids allows attribute oat oil to the oleic-linoleic group, which includes such vegetable oils as sesame, peanut (Table 4).

Vegetable oils	Saturated	Monounsaturated	Polyunsaturated	
			Linolic	Linolenic
Oat	18.4±1.1	38.5±1.4	37.4±1.4	1.5±0.2
Peanut *	19.5	37.0	42.0	1.5
Pumpkin *	19.2	28.0	52.0	0.8
Corn *	14.5	32.5	52.0	1.0
Sesame *	13.5	42.0	44.0	0.5
Wheatgerm *	16.0	22.0	57.0	5.0
Sunflower *	12.5	24.0	63.0	0.5

* borrowed from [14]

The optimal ratio in the daily diet of ω-6 to ω-3 fatty acids should be 5-10 : 1 [15].

The lines of the naked oats 41h04 and 857h05 were transferred to the State Test, respectively, as Bekas and Bagel cultivars for the production of functional and gluten-free foods – the content of oleic acid is 36.42 and 33.49 %, linoleic 35.89 and 38.37 % respectively, gluten is less than 0.2 mg/g of product [16,17].

4. Conclusions.

1. Lipids of naked oats by fatty acid composition belong to the oleic-linoleic group of vegetable oils according to the content of oleic and linoleic acids and their ratio (1:1);
2. The content of crude lipids varied from 5.91 % to 7.87 % and averaged 6.9 % ± 0.98 % in the grain of the studied lines;
3. Linoleic (36.2-38.7 %), oleic (33.5-36.7 %), and palmitic (15.3-17.8 %) acids are the main fatty acids of lipids of naked oats of the selection studied lines;

4. When designing the food matrix of functional and specialized products based on or with the addition of oatmeal, it is necessary to take into account the metabolic aspects of the main nutrients taking into account their bioavailability.

References
[1] Batalova G A 2014 Perspectives and results of naked oats breeding Legumes and groat crops 2 (10) pp 64-9.
[2] Peltonen-Sainio P, Kirkkari A-M and Jauhiainen L 2004 Charactering strengths, weaknesses, opportunities and threats in producing naked oat as a novel crop for northern growing conditions J. Agricultural and Food Science 13 (1-2) pp 212-28.
[3] Banas A, Debski H and Banas W 2007 Lipids in grain tissues of oat (Avena sativa): differences in content, time of deposition, and fatty acid composition J. of Experimental Botany 58(10) pp 2463-70.
[4] Koehler P and Wieser H 2013 Chemistry of Cereal Grains Handbook on Sourdough Biotechnology (New York: Springer Science end Business Media) pp 11-45.
[5] Heneen W K, Karlsson G and Brismar K 2008 Fusion of oil bodies in endosperm of oat grains Planta 228(4) pp 589-99.
[6] Zhou M X, Robards K, Glennie-Holmes M and Helliwell S 1999 Oat lipids J. of the American Oil Chemists Society 76(2) pp 159-69.
[7] Leonova S, Shelenga T, Hamberg M, Konarev A V, Loskutov I and Carlsson A S 2008 Analysis of oil composition in cultivars and wild species of oat (Avena sp.) J. of Agricultural and Food Chemistry b(17) pp 7983-91.
[8] Liu K 2011 Comparison of lipid content and fatty acid composition and their distribution within seeds of 5 small grain species J. of Food Science 76(2) pp 334-42.
[9] Ragae S, Abdel-Aal E M and Noaman M 2006 Antioxidant activity and nutrient composition of selected cereals for food use Food Chemistry 98(1) pp 32-8.
[10] Ipatova L G, Kochetkova A A, Nechaev A P and Tutelyan V A 2009 Fat products for a healthy diet. A modern look. (Moscow: DeLiPrint) pp 14-121.
[11] Sichkar N M and Lishkevich M I 1958 Biochemistry of oats In the book "Biochemistry of cultivated plants", Vol. 1, Bread and cereals cultures (Moscow-Leningrad: State publishing of agricultural literature) pp 339-40.
[12] Loskutov I G 2007 Oats (Ovena L.) Spread, taxonomy, evolution and selection value (St. Petersburg, SRC of the VIR)
[13] McDonald B E and Fitzpatrick K 1998 Designer vegetable oils In the book «Functional Foods. Biochemical and Processing Aspects» (Lancaster-Basel: Technomic Publishing Co.inc) pp 274-6.
[14] Anemueller H 1993 Lebensmittelkunde und Lebensmittelqualität in der Ernährungsberatung (Stuttgart: HippokratesVerl)
[15] 2009 Norms of physiological needs for energy and nutrients for different population groups of the Russian Federation. Methodical recommendations (M.: Federal Center for Hygiene and Epidemiology of Russian Agency for Health and Consumer Rights)
[16] Chekina M S, Meledina T V and Batalova G A 2016 Prospects for the use of oats in the production of special purpose products Vestnik of the St. Petersburg State Agrarian University 43 pp 20-5.
[17] Batalova G A, Andreev N R, Nosovskaya L P, Adikaeva L V, Goldstein V G and Shevchenko S N Evaluation of technological properties of some naked oat cultivars as raw material for the production of starch Leguminous and cereal crops 1 (17) pp 83-9.
[18] Young V L 1986 Oat lipids and lipid-related enzymes In: Oats chemistry and technology (Minnesota, USA) pp 205-26.