Long non-coding RNA LINC00511 facilitates colon cancer development through regulating microRNA-625-5p to target WEE1

Xiaowu Qian1✉, Chun Jiang2, Zhentai Zhu1, Gaohua Han3, Ning Xu4, Jun Ye5 and Ruixing Wang1

© The Author(s) 2022

INTRODUCTION
Colon cancer (CC) registers as the third most widespread cancer, with high occurrence and mortality rates [1]. According to anatomical positions, CC is divided into two subtypes, right CC and left CC, showing different molecular characteristics and discrepant strategies [2]. Screening colonoscopy is effectively applied in the diagnosis of CC due to its benefits in reducing death rate and survival duration [3]. In addition, surgical resection of the colon is a well-established therapy for CC, while adjuvant chemotherapy followed by surgery further reduces the recurrence rate of CC [4]. As to the high prevalence, it is critical to explore optimal agents to minimize the impacts induced by CC.

The cooperation of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) has been implied in the molecular movement of CC. For example, IncRNA metastasis-associated lung adenocarcinoma transcript 1 serves in the regulation of biological behaviors of CC cells through interfering with miR-21 [5]. Additionally, IncRNA differentiation antagonizing non-protein coding RNA has been witnessed to promote cellular growth and metastasis in CC through targeting mir-518a-3p [6]. According to former research, it is illustrated that abnormally expressed IncRNA LINC00511 (LINC00511) functions in the biological behaviors of colorectal cancer (CRC) [7]. Pertaining to the miRNA collection, mir-625 is implied to relate to microsatellite instability in CC [8] and is differently expressed in healthy controls and colorectal adenosas [9]. Creatively, mir-625-5p is hinted to negatively connect with the outcomes of first-line oxaliplatin-based chemotherapy in metastatic CRC [10] and down-regulated mir-625-5p is responsible for accelerating CRC cell progression [11]. Though the ceRNA network of LINC00511 and mir-625 has been explored in tumor cell progression [12], the synergism of LINC00511 and mir-625-5p has been rarely discussed in CC. WEE1, defined as an oncogenic G2 checkpoint kinase, works in the field of modulating the proliferation of CC cells [13]. Ge et al. have surveyed that WEE1 is substantially connected with distant metastasis and advanced tumor node metastasis stage in CRC [14]. Also, it is manifested that depletion of WEE1 is conducive to the suppressed proliferation ability of CRC cells [15]. Illuminated by these researches, our research was initiated to explore the function of LINC00511, mir-625-5p, and WEE1 in the malignant phenotype of CC.

RESULTS
LINC00511 attains a high level while mir-625-5p a low level in CC
It has been proved that LINC00511 promoted the proliferation of CRC and its immune activity was enhanced in CRC tissues [7]. In addition, the anti-tumor effect of mir-625-5p has been evidenced in cancers [16, 17]. Based on these facts, the functions of LINC00511 and mir-625-5p in CC have been first clarified...
through detecting LINC00511 and miR-625-5p expression in CC tumor tissues and normal tissues, as well as CC cell lines and human normal intestinal epithelial cells NCM460. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) clearly manifested that LINC00511 was up-regulated and miR-625-5p was down-regulated in CC tumor tissues (Fig. 1A, B) and CC cell lines (Fig. 1C, D). The lncATLAS website predicted the subcellular localization of LINC00511 while subcellular separation and fluorescence in situ hybridization (FISH) assays found that LINC00511 was mainly located in the cytoplasm (Fig. 1E–G).

LINC00511 knockdown destroys CC cell viability and colony forming ability and encourages apoptosis

The functional relevance of dysregulated LINC00511 in CC was investigated in SW480 cells. Upon sh-LINC00511 having been introduced into SW480 cells, LINC00511 expression was knocked down in SW480 cells (Fig. 2A).

Fig. 1 LINC00511 attains a high level while miR-625-5p a low level in CC. A RT-qPCR detected LINC00511 expression in CC tumor tissues and normal tissues (n = 120); B RT-qPCR detected miR-625-5p expression in CC tumor tissues and normal tissues (n = 120); C RT-qPCR detected LINC00511 expression in CC cell lines and normal epithelial cells; D RT-qPCR detected miR-625-5p expression in CC cell lines and normal epithelial cells; E Bioinformatics website predicted the subcellular localization of LINC00511; F subcellular separation assay detected subcellular localization of LINC00511; G FISH assay detected subcellular localization of LINC00511; the measurement data are expressed as mean ± standard deviation. N = 3.

Fig. 2 LINC00511 knockdown destroys CC cell viability and colony forming ability and encourages apoptosis. A RT-qPCR detected LINC00511 expression in CC cells; B MTT assay detected viability of CC cells; C colony formation assay detected colony-forming ability of CC cells; D Flow cytometry detected apoptosis rate of CC cells; the measurement data are expressed as mean ± standard deviation. N = 3. *P < 0.05 compared with the sh-NC group.

LINC00511 knockdown impairs the migration and invasion of CC cells and cellular growth in mice

Through scratch test and Transwell assay, it was revealed that depleting LINC00511 lowered the migration and invasion rate of SW480 cells (Fig. 3A, B). LINC00511-regulated tumorigenesis of CC in vivo was tested by subcutaneously injecting SW480 cells (transfected with sh-LINC00511 and sh-NC) into the dorsal side of
nude mice. Smaller and lighter tumors were seen in mice injected with depleted LINC00511 (Fig. 3C). In addition, reduced LINC00511 and increased miR-625-5p levels were recognizable in mice injected with sh-LINC00511-transfected SW480 cells (Fig. 3D, E).

LINC00511 negatively targets miR-625-5p

In the xenografted tumors, miR-625-5p expression was elevated upon LINC00511 down-regulation. To define the action between LINC00511 and miR-625-5p, the RNA22 website was applied to perform binding site analysis between LINC00511 and miR-625-5p (Fig. 4A), which was followed by dual-luciferase reporter gene and RNA pull-down assays to confirm that LINC00511 was bound to miR-625-5p (Fig. 4B, C).

Besides that, miR-625-5p expression after LINC00511 down-regulation was tested to increase in SW480 cells (Fig. 4D). Moreover, miR-625-5p and LINC00511 were negatively correlated in CC tissues (Fig. 4E), supporting that LINC00511 negatively regulated miR-625-5p expression.

Restored miR-625-5p destroys CC cell viability and colony forming ability and encourages apoptosis

miR-625-5p-regulated SW480 cells were established by transfecting with miR-625-5p mimic (Fig. 5A). Various assays discovered that restoring miR-625-5p would result in damages in cell viability, colony-forming, migration, and invasion capacities, along with induction of apoptosis (Fig. 5B–F).

LINC00511 positively while miR-625-5p negatively connects with WEE1

WEE1 was reported to be overexpressed in CRC clinical samples [14]. As manifested in Fig. 6A, B, miR-625-5p could bind to the 3′ untranslated region of WEE1 and regulate WEE1 expression in SW480 cells. Also, RT-qPCR and Western blot assay illustrated that reducing LINC00511 or elevating miR-625-5p abated WEE1 expression in SW480 cells (Fig. 6C–F). Consistently, WEE1 expression was enriched in CC tissues (Fig. 6G), and it was negatively connected with miR-625-5p expression (Fig. 6H).
LINC00511 negatively targets miR-625-5p. A RNA22 predicted the binding site of LINC00511 and miR-625-5p; B dual-luciferase reporter gene assay detected the targeting relationship between LINC00511 and miR-625-5p; C RNA pull-down assay verified the targeting relationship between LINC00511 and miR-625-5p; D RT-qPCR detected miR-625-5p expression after knockdown of LINC00511; E Pearson correlation analysis evaluated the correlation between LINC00511 and miR-625-5p in CC tumor tissues (n = 120); the measurement data are expressed as mean ± standard deviation. N = 3. *P < 0.05 compared with the sh-NC group.

Silenced miR-625-5p reverses depleted LINC00511-induced effects on CC cells

The carcinogenic effect of miR-625-5p/WEE1 axis-mediated LINC00511 on CC was decoded. sh-LINC00511 + inhibitor-NC, sh-LINC00511 + miR-625-5p-inhibitor, miR-625-5p-inhibitor + si-NC, and miR-625-5p-inhibitor + si-WEE1 were transfected into SW480 cells, respectively. RT-qPCR and western blot analysis proved the successful transfection (Fig. 7A, B). Next, in SW480 cells, it was observed that the biological progress of SW480 cells suppressed by sh-LINC00511 was reversed by miR-625-5p-inhibitor transfection. Also, si-WEE1 could antagonize the tumor role of miR-625-5p-inhibitor in SW480 cells (Fig. 7C–G).

DISCUSSION

Established as the common malignant tumor, CC is often accompanied by higher mortality and morbidity [18]. The lncRNA-miRNA-mRNA network has been constructed in CC. On the basis of that, this work is guided toward decoding the mechanism of the LINC00511-miR-625-5p-WEE1 network in the biological behaviors of CC cells. Ultimately, the research works out that silencing LINC00511 up-regulated miR-625-5p to restrain WEE1, thereafter to block the way of CC cell progression.

First, LINC00511 expression was detected in CC tissues and cells for further explorations of its movements in CC. By so doing, up-regulated LINC00511 was exhibited in CC. To proceed, LINC00511 down-regulation assays were implemented on SW480 cells to convince the suppressive functions of depleted LINC00511 in cell viability, colony-forming, migration, and invasion abilities and the promoting functions in apoptosis. Consistently, the aggressive growth of xenografted tumors in mice was suppressed by depleted LINC00511. To support the result in this work, current work has elucidated that LINC00511 is overexpressed in CRC, contributing to augmenting proliferation and impeding apoptosis of CRC cells, whereas depleted LINC00511 delays tumorigenesis in animal models [7]. Except for CC, the promoting actions of LINC00511 have been reflected in other cancers. Apparently, the overexpressed LINC00511 is manifested in gastric cancer, and LINC00511 knockdown encumbers cell maturity and increases cell death ratio [19, 20]. Likewise, LINC00511 expression attains a high level in esophageal cancer, and further enhancement of LINC00511 accelerates the process of proliferation and migration and hinders cell apoptosis [21]. In a similar fashion, highly expressed LINC00511 in cervical cancer is inhibited by si-LINC00511, thereby repressing cellular proliferation and encouraging apoptosis, and destroying tumorigenesis in mice [22]. Compatibly, LINC00511 expression goes toward an increase in papillary thyroid carcinoma, which crucially excites G1/S transition and cell progression vitality [23]. Anyhow, the actions of LINC00511 in impelling the malignant development of other cancers are echoed with those in CC.

Afterward, the potential relationship between LINC00511 and miR-625-5p was predicted and validated, as reflected by the fact that LINC00511 is bound to miR-625-5p. As to miR-625-5p, its expression was down-regulated in CC, and functionally, its restoration contributed to the restricted cellular growth. However, inhibited miR-625-5p suppressed the anti-tumor role of depleted LINC00511 on CC cells. In fact, binding sites do exist between miR-625-5p and LINC00511, further proving the negative relation between those two factors [24]. With prognostic meaningfulness, miR-625 is reported to be down-regulated in CRC [25]. In an experiment conducted by Shang T et al., the kenspeckle decrease is noticed in miR-625-5p expression in CRC and the down-regulated miR-625-5p triggers CRC cells to perform aggressively [11]. In a similar way, depressed miR-625 expression is manifested in CRC while the miR-625 restoration is devoted to impairing the abilities of tumor cells to invade and migrate in vitro and in vivo [26]. Moreover, miR-625-5p expression is intended to reduce lung adenocarcinoma and its down-regulation stimulates malignant cells to act in an aggressive way [27].

Subsequently, the substantial link between miR-625-5p and WEE1 showed that miR-625-5p was negatively correlated while LINC00511 was positively correlated with WEE1 expression in CC. Our study found the up-regulated WEE1 in CC and further proved that silenced WEE1 rescued the pro-tumor effect of inhibited miR-625-5p on CC. WEE1 mRNA expression is inclined to elevate in CRC, dramatically connecting with CRC metastasis [14]. Drawn
Fig. 5 Restored miR-625-5p destroys CC cell viability and colony forming ability and encourages apoptosis. A RT-qPCR detected miR-625-5p expression in CC cells; B MTT assay detected viability of CC cells; C colony formation assay detected colony-forming ability of CC cells; D flow cytometry detected apoptosis rate of CC cells; E scratch test detected migration ability of CC cells; F Transwell assay detected invasion ability of CC cells; the measurement data are expressed as mean ± standard deviation. N = 3. *P < 0.05 compared with the mimic-NC group.
from observational works, WEE1 depletion attacks the proliferative ability of CC cells [13] and has the potency to reverse G2/M cell cycle checkpoint activation in cancers [28]. From a wide perspective, spontaneous inhibition of WEE1 and Chk1 takes over premature mitosis before DNA replication, causing apoptosis and disturbed tumor growth [29]. Anyway, the above researches all support the positive behaviors of depleted WEE1 in cancers.

All in all, it is explanatory that LINC00511 initiates and expands the carcinogenic growth of CC cells through repressing miR-625-5p and enhancing WEE1. Due to the limitations in the relatively small scale of this work, much more researches are required to explore LINC00511/miR-625-5p/WEE1 axis on a larger scale.

METHODS AND MATERIALS

Clinical specimens
A total of 120 cases of CC tissue and normal tissues specimens were resected from CC patients. All specimens were confirmed in the Department of Pathology, and relevant clinical data were collected. Patients having received radiotherapy or chemotherapy before surgery were excluded. The specimens were frozen in liquid nitrogen and preserved at −80 °C [30].

Cell culture
Human CC cells SW480, SW620, HCT16, and HT29 and normal human colon mucosal epithelial cell line NCM460 (ATCC, VA, USA) were obtained from ATCC (Manassas, VA, USA) and cultured as per their instructions. All cells were incubated following their instructions at 37 °C with 5% CO2 [31].

Cell transfection
Cells of passage 3 were trypsinized and cultured in 24-well plates (2 × 10⁶ cells/well) to grow into a single layer. Then, cells were transfected with negative control short hairpin RNA (sh-NC), LINC00511 shRNA (sh-LINC00511), mimic NC, miR-625-5p mimic, sh-LINC00511 + miR-625-5p-inhibitor NC, sh-LINC00511 + miR-625-5p inhibitor, miR-625-5p-inhibitor + si-NC, or miR-625-5p-inhibitor + si-WEE1 by Lipofectamine 2000 following the instructions (Invitrogen, CA, USA) [32].

Reverse transcription-quantitative polymerase chain reaction
Total RNA was extracted by Trizol reagent (Sigma-Aldrich, St. Louis, MO, USA) and reversely transcribed by the PrimeScript™ RT Master Mix and SYBR® PrimeScript™ miRNA RT-PCR Kit (TaKaRa, Shiga, Japan). RT-qPCR was performed in the 7500 real-time PCR system (Applied Biosystems Corp., CA, USA) with FastStart Essential DNA Green Master (Roche, Indianapolis, USA). All primers are listed in Table 1. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and U6 were endogenous controls and the 2−ΔΔCt method was applied to calculate gene expression [33].

Western blot assay
With tissues and cells lysed with radio-immunoprecipitation assay buffer (Cell Signaling Technology, MA, USA) containing protease inhibitors, protein concentration was measured with a bicinchoninic acid protein assay kit (Beyotime, Shanghai, China). Processed with separation with 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the protein was transferred to a polyvinylidene fluoride membrane and mounted with 5% skim milk. Through incubation with primary antibody WEE1 (1:1000, Abcam, MA, USA) and GAPDH (1:5000, Sigma-Aldrich), the protein membrane was exposed to an appropriate secondary antibody. With GAPDH as an internal control, protein bands were tested on a SupreSignal ECL kit (Pierce, IL, USA) [34].

Subcellular separation assay
Subcellular separation assay was conducted on a PARIS kit (Invitrogen). RNA distribution (GAPDH, LINC00511, and U6) in the nucleus and cytoplasm was tested by RT-qPCR [35].

FISH assay
The bioinformatics website (http://lncatlas.crg.eu/) predicted the distribution of LINC00511 while FISH assay determined the localization
of LINC00511 in SW480 cells. Followed by incubation with a LINC00511 probe (RiboBio, Guangzhou, China), SW480 cells were blocked with 3% bovine serum albumin and rinsed with phosphate-buffered saline/Tween (PBST). Diluted by PBST at 1:800, 4,6-diamino-2-phenylindole (DAPI) was utilized to stain cells. A fluorescence microscope (Olympus, Tokyo, Japan) was applied to capture cell images under five different fields of view [36].

Dual-luciferase reporter gene assay

A luciferase reporter vector containing the wild-type (WT) sequences of LINC00511 or the 3′-untranslated region (UTR) of WEE1 was constructed. Next, the mutated constructs were constructed following the binding sites. Luciferase reporter vectors were then cotransfected with miR-625-5p mimic or mimic NC. Forty-eight hours post transfection, the relative luciferase activity was counted as the ratio between firefly and Renilla...

Fig. 7 Silenced miR-625-5p reverses depleted LINC00511-induced effects on CC cells. A RT-qPCR detects WEE1 mRNA expression in CC cells; B western blot assay detected WEE1 protein expression in CC cells; C MTT assay detected viability of CC cells; D colony formation assay detected colony-forming ability of CC cells; E flow cytometry detected apoptosis rate of CC cells; F Scratch test detected migration ability of CC cells; G Transwell assay detected invasion ability of CC cells; the measurement data are expressed as mean ± standard deviation. N = 3. *P < 0.05 compared with the sh-LINC00511 + inhibitor-NC group; &P < 0.05 compared with the miR-625-5p-inhibitor + si-NC group.
luciferase activities, which was detected by a dual-luciferase system (Promega, Madison, WI). Relative luciferase activity = firefly/Renilla luciferase activity [37].

RNA-pull down assay
The biotinylated LINC00511 probe was dissolved in 500 µL wash/binding buffer (0.5 mM NaCl, 20 mM Tris-HCL, pH 7.5, and 1 mM ethylenediamine-tetraacetic acid). Magnetic beads coated with streptavidin (Life Technologies, Carlsbad, CA, USA) were hatched with the probe and then with cell lysate. Washed twice with cold lysate, three times with low salt buffer, and once with high salt buffer, the RNA complex was eluted from the beads and extracted for RT-qPCR [38].

MTT assay
After incubation for 24, 48, and 96 h on 96-well plates at 1 × 10³ cells/well, cells were added with 5 mg/mL MTT solution at 10 µL/well and observed for the dissolution of the purple crystals under a microscope. Finally, optical density values were read on a 100 µL dimethyl sulfoxide and counted under a microscope (Olympus) [39].

Colony formation assay
The transfected cells were counted on a cell counting plate and fostered in 6-well plates at 0.5 × 10⁵ cells/well for 10 days. The formed cell colonies were fixed with 10% formaldehyde and stained with 0.5% crystal violet solution. After that, the stained cell colonies were photographed and counted under a microscope (Olympus) [39].

Flow cytometry
Transfected cells were harvested by trypsin, rinsed with pre-cooled phosphate buffer saline, followed by re-suspending in Binding Buffer containing Annexin V-labeled with fluorescein isothiocyanate (FITC) and propidium iodide (PI) (BestBio, Shanghai, China). Upon incubation at 4 °C for 30 min, the apoptotic cells were tested on flow cytometric (BD Biosciences, NJ, USA) [40].

Scratch test
Transfected cells at 90% confluence in 96-well plates were scraped by a sterile micropipette tip vertically along a ruler. Then, rinsed with PBS, cells were observed for the healing rate at 0 and 48 h with a microscope [36].

Transwell assay
Transfected cells were seeded into the upper part of the 8-µm Transwell chamber (Corning, NY, USA) coated with Matrigel. The medium (500 µL) containing 15% FBS was added to the lower part. After incubation under the conventional conditions, the non-invasive cells in the upper part were removed while the invasive cells in the lower part were fixed in 4% paraformaldehyde and stained with 0.1% crystal violet solution, followed by photography under an optical microscope [31].

Tumor xenografts in nude mice
Nude mice (4–5 weeks old, male) were available from the Model Animal Research Center of Nanjing University (Jiangsu, China) and reared at 25–27°C with 45-50% humidity. The suspension (1 × 10⁶ cells, 200 µL) of SW480 cells stably transfected with sh-LINC00511 was injected to the left side of the back of mice (n = 5). With tumor size measured every 4 days by a vernier caliper, the tumor volume (mm³) was calculated as V = (length) × (width)²/2. After 20 days, the mice were euthanized with CO₂ to resect tumors. The tumors were photographed and weighed [41].

Statistical analysis
All data were processed with the SPSS 21.0 statistical software (IBM, NY, USA). The measurement data were expressed as mean ± standard deviation. Except for the discrepancy between tumor tissues and normal tissues evaluated by paired t test, the discrepancy between the other two groups was assessed by independent sample t test. One-way analysis of variance was adopted to discrepancy among multiple groups, followed by Tukey’s post-test. Repeated measurement of variance was applied to comparisons at different time points with Bonferroni post hoc test. Pearson correlation analysis was used in evaluating the correlation of indicators in clinical samples. Upon P 0.05, statistical significance was constructed.

DATA AVAILABILITY
The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

REFERENCES

1. Liu K, Lai M, Wang S, Zheng K, Xie S, Wang. X. Construction of a CXC chemokine-based prediction model for the prognosis of colon cancer. Biomed Res Int. 2020;2020:6107865.
2. Shen H, Yang J, Huang Q, Jiang MJ, Tan YN, Fu JF, et al. Different treatment strategies and molecular features between right-sided and left-sided colon cancers. World J Gastroenterol. 2015;21:6470–8.
3. Amri R, Bordeianou LG, Sylla P, Berger DL. Impact of screening colonoscopy on outcomes in colon cancer surgery. JAMA Surg. 2013;148:747–54.
4. Alshehri KA, Altuwaylil TM, Fakieha A, AlGhamdi G, Alshahrani SM, Milkwar. Z. Recurrence rate in a patient treated with colon resection followed by chemotherapy in comparison to a patient treated with colon resection without chemotherapy. Cureus. 2020;12:e7544.
5. Huang B, Guo X, Li Y. IncRNA MALAT1 regulates the expression level of miR-21 and interferes with the biological behavior of colon cancer cells. J BUON. 2020;25:907–13.
6. Sun Y, Cao B, Zhou J. Roles of DANC1/microRNA-518a-3p/MDMA ceRNA network in the growth and malignant behaviors of colon cancer cells. BMC Cancer. 2020;20:434.
7. Sun S, Xia C, Xu Y. HIF-1alpha induced IncRNA LINC00511 accelerates the colorectal cancer proliferation through positive feedback loop. BioMed Pharmacother. 2020;125:110014.
8. Mjelle R, Sjursen W, Thommesen L, Saetrom P, Hofeli E. Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location. BMC Cancer. 2019;19:161.
9. Verma AM, Patel M, Aslam MI, Jameson J, Pringle JH, Wurm P, et al. Circulating plasma microRNAs as a screening method for detection of colorectal adenomas. Lancet. 2015;385:5100.
10. Rasmussen MH, Jensen NF, Tarpgaard LS, Qvortrup C, Romer MU, Stenvang J, et al. High expression of microRNA-625-3p is associated with poor response to first-line oxaliplatin based treatment of metastatic colorectal cancer. Mol Oncol. 2013;7:637–46.
11. Shang T, Zhou X, Chen W. LINC01123 promotes progression of colorectal cancer via miR-625-5p/LASP1 axis. Cancer Biother Radiopharm. 2021;36:765–73.
12. Deng H, Huang C, Wang Y, Jiang H, Peng S, Zhao. X. LINC00511 promotes the malignant phenotype of clear cell renal cell carcinoma by sponging miRNA-625 and thereby increasing cyclin D1 expression. Aging. 2019;11:5975–91.
13. Yin Y, Shen Q, Tao R, Chang W, Li R, Xie G, et al. Wee1 inhibition can suppress tumor proliferation and sensitize p53 mutant colonic cancer cells to the anticancer effect of irinotecan. Mol Med Rep. 2018;17:3344–9.
14. Ge XC, Wu F, Li WT, Zhu XJ, Liu JW, Wang BL. Upregulation of WEE1 is a potential prognostic biomarker for patients with colorectal cancer. Oncol Lett. 2017;13:6431–4.
17. Wang L, Zhong Y, Yang B, Zhu Y, Zhu X, Xia Z, et al. LINC00958 facilitates cervical cancer cell proliferation and metastasis by sponging miR-625-5p to upregulate LIRRCBE expression. J Cell Biochem. 2020;121:2500–9.

18. Sharma R. An examination of colorectal cancer burden under socioeconomic status: evidence from GLOBOCAN 2018. EPMA J. 2020;11:95–117.

19. Zhao Y, Chen X, Jiang J, Wan X, Wang Y, Xu, P. Epigallocatechin gallate reverses gastric cancer by regulating the long non-coding RNA LUNC00511/miR-29b/KDM2A axis. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165856.

20. Huang HG, Tang XL, Huang XS, Zhou L, Hao YG, Zheng. YF. Long noncoding RNA LINC00511 promoted cell proliferation and invasion via regulating miR-124-3p/EZH2 pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 2020;24:4233–45.

21. Han D, Yuan RX, Su F. LINC00511 can promote the proliferation, migration and invasion of esophageal cancer cells through regulating microRNA-150-5p. Eur Rev Med Pharmacol Sci. 2020;24:2462–6.

22. Shi Y, Liu M, Huang Y, Zhang J, Yin L. Promotion of cell autophagy and apoptosis in cervical cancer by inhibition of long non-coding RNA LUNC00511 via transcription factor RXRA-regulated PLD1. J Cell Physiol. 2020;235:6592–604.

23. Xiang J, Guan Y, Bhandari A, Xia E, Wen J, Wang, O. LINC00511 influences cellular proliferation through cyclin-dependent kinases in papillary thyroid carcinoma. J Cancer. 2020;11:450–9.

24. Chen Z, Wu H, Zhang Z, Li G, Liu B. LINC00511 accelerated the process of gastric cancer by targeting miR-625-5p/NF1X axis. Cancer Cell Int. 2019;19:351.

25. Siders M, Papagiorgiadi S. Molecular biomarkers and classification models in the evaluation of the prognosis of colorectal cancer. Anticancer Res. 2014;34:2061–8.

26. Lou X, Qi X, Zhang Y, Long H, Yang J. Decreased expression of microRNA-625 is associated with tumor metastasis and poor prognosis in patients with colorectal cancer. J Surg Oncol. 2013;108:230–5.

27. Yang L, Li L, Zhou Z, Liu Y, Sun J, Zhang X, et al. SPI1 induced long non-coding RNA LINC00958 overexpression facilitate cell proliferation, migration and invasion in lung adenocarcinoma via mediating miR-625-5p/CPSF7 axis. Cancer Cell Int. 2020;20:2024.

28. Sun L, Moore E, Berman R, Clavijo PE, Saleh A, Chen Z, et al. WEE1 kinase inhibition reverses G2/M cell cycle checkpoint activation to sensitize cancer cells to immunotherapy. Oncoimmunology. 2018;7:e1488359.

29. Carrassa L, Chila R, Lupi M, Ricci F, Celenza C, Mazzoletti M, et al. Combined inhibition of Chk1 and Wee1: in vitro synergistic effect translates to tumor growth inhibition in vivo. Cell Cycle. 2012;11:2507–17.

30. Tukiainen H, Silvasti M, Karttunen P, Savolainen K, Kokkonen P, Parviainen. M. Pharmacokinetic comparison of a slow-release theophylline-hydroxyzine combination and a plain slow-release theophylline preparation. Int J Clin Pharmacol Ther Toxicol. 1988;26:346–50.

31. Yu B, Ye X, Du Q, Zhu B, Zhai Q, Li. XX. The long non-coding RNA CRNDE promotes colorectal carcinoma progression by competitively binding miR-217 with TCF7L2 and enhancing the Wnt/beta-catenin signaling pathway. Cell Physiol Biochem. 2017;41:2489–502.

32. Li CF, Li YC, Wang Y, Sun LB. The effect of LncRNA H19/miR-194-5p axis on the epithelial-mesenchymal transition of colorectal adenocarcinoma. Cell Physiol Biochem. 2018;50:196–213.

33. Huang L, Zhang Y, Li Z, Zhao X, Xi Z, Chen H, et al. MiR-4319 suppresses colorectal cancer progression by targeting ABTB1. United Eur Gastroenterol J. 2019;7:517–28.

34. Tang Y, Li M, Wang YL, Threadgill MD, Xiao M, Mou CF, et al. ART1 promotes starvation-induced autophagy: a possible protective role in the development of colon carcinoma. Am J Cancer Res. 2015;5:498–513.

35. Xu T, Lei T, Li SQ, Mai EH, Ding FH, Niu B. DHA1H7-AS1 promotes pancreatic cancer by increasing PPM1E expression via inhibition of miR-432-5p. World J Gastroenterol. 2020;26:1745–57.

36. Zhao X, Liu Y, Li Z, Zheng S, Wang Z, Li W, et al. Linc00511 acts as a competing endogenous RNA to regulate VEGFA expression through sponging hsa-miR-29b-3p in pancreatic ductal adenocarcinoma. J Cell Mol Med. 2018;22:655–67.

37. Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, et al. LncRNA-FEZF1-A51 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 2018;24:4808–19.

38. Zhang Y, Li C, Liu X, Wang Y, Zhao R, Yang Y, et al. circHIPK3 promotes oxaliplatin-resistance in colorectal cancer through autophagy by sponging miR-637. EBioMedicine. 2019;48:277–88.

39. Xiao Z, Qu Z, Chen Z, Fang Z, Zhou K, Huang Z, et al. LncRNA HOTAIR is a prognostic biomarker for the proliferation and chemoresistance of colorectal cancer via miR-203a-3p-mediated Wnt/ss-catenin signaling pathway. Cell Physiol Biochem. 2018;46:1275–85.

40. Li C, Tan F, Pei Q, Zhou Z, Zhou Y, Zhang L, et al. Non-coding RNA MF12-AS1 promotes colorectal cancer cell proliferation, migration and invasion through miR-574-5p/MYCBP axis. Cell Physio. 2019;52:e12632.

41. Wang K, Zhu G, Bao S, Chen S. Long non-coding RNA LINC00511 mediates the effects of ESRI on proliferation and invasion of ovarian cancer through miR-424-5p and miR-370-5p. Cancer Manag Res. 2019;11:10807–19.

AUTHOR CONTRIBUTIONS
XQ finished study design; XQ, CJ, ZZ, and GH finished experimental studies; XQ, NX, JY, and RW finished data analysis; XQ finished manuscript editing. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
This study was approved by Taizhou People’s Hospital (Taizhou People’s Hospital affiliated to Nanjing Medical University) and the informed consent of each patient was obtained. All experiments were compatible with the “Helsinki Declaration.” The animal experiment was approved by the Animal Research Ethics Committee of Taizhou People’s Hospital (Taizhou People’s Hospital affiliated to Nanjing Medical University) and carried out in accordance with the Animal Use Guidelines of the National Institutes of Health.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to Xiaowu Qian.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.