Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues

Constantin Bușe 1,* , Donal O’Regan 2 and Olivia Saierli 3

1 Department of Mathematics, Polytechnic University of Timisoara, Piața Victoriei, No. 2, Timisoara 300006, Romania
2 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, H91 CF50 Galway, Ireland; donal.o'regan@nuigalway.ie
3 Department of Computer Science and Applied Informatics, Tibiscus University of Timisoara, Str. Lascăr Catargiu, No. 4-6, Timisoara 300559, Romania; saierli_olivia@yahoo.com

Received: 17 February 2019; Accepted: 1 March 2019; Published: 7 March 2019

Abstract: Let \(q \geq 2 \) be a positive integer and let \((a_j), (b_j)\) and \((c_j)\) (with \(j \) nonnegative integer) be three given \(\mathbb{C}\)-valued and \(q\)-periodic sequences. Let \(A(q) := A_{q-1} \cdots A_0 \), where \(A_j \) is defined below. Assume that the eigenvalues \(x, y, z \) of the "monodromy matrix" \(A(q) \) verify the condition \((x - y)(y - z)(z - x) \neq 0 \). We prove that the linear recurrence in \(\mathbb{C}\ x_{n+3} = a_nx_{n+2} + b_nx_{n+1} + c_nx_n, \quad n \in \mathbb{Z}_+ \) is Hyers–Ulam stable if and only if \((|x| - 1)(|y| - 1)(|z| - 1) \neq 0 \), i.e., the spectrum of \(A(q) \) does not intersect the unit circle \(\Gamma := \{ w \in \mathbb{C} : |w| = 1 \} \).

Keywords: difference and differential equations; discrete dichotomy; Hyers–Ulam stability

MSC: 34D09; 39B82

1. Introduction

Exponential dichotomy and its links with the unconditional stability of differential dynamics systems were first highlighted by O. Perron in 1930 [1]. The reader can find details on the subsequent evolution of this topic in Coppel’s monograph [2]. The history of the Ulam problem (concerning the stability of a functional equation) and of stability in the sense of Hyers–Ulam is well known. In particular, Hyers–Ulam stability for linear recurrences and for systems of linear recurrences is considered in [3–16], and the references therein.

The relationship between exponential stability and Hyers–Ulam stability has been studied in the articles [3,8,9,17,18], and this article continues these studies.

2. Notations and Definitions

By \(\mathbb{C} \), we denote the set complex numbers and \(\mathbb{Z}_+ \) is the set of all nonnegative integers. Now, \(\mathbb{C}^m \) (with \(m \) a given positive integer) is the set of all vectors \(v = (\xi_1, \cdots, \xi_m)^T \) with \(\xi_j \in \mathbb{C} \) for every integers \(1 \leq j \leq m \); here and in as follows \(^T \) denotes the transposition. The norm on \(\mathbb{C}^m \) is the well-known Euclidean norm defined by \(\|v\| := (|\xi_1|^2 + \cdots + |\xi_m|^2)^{1/2} \). In addition, \(\mathbb{C}^{m \times n} \) (with \(m \) and \(n \) given positive integers) denotes the set of all \(m \) by \(n \) matrices with complex entries. In particular, \(\mathbb{C}^{m \times m} \) becomes a Banach algebra when it is endowed with the (Euclidean) matrix norm defined by \(||M|| := \sup_{\|v\| \leq 1} ||Mv||, \quad v \in \mathbb{C}^m, \quad M \in \mathbb{C}^{m \times m} \). As is usual, the rows and columns of a matrix
$M \in \mathbb{C}^{m \times n}$ are identified by vectors of the corresponding dimensions and in that case its norm is the vector norm. The entry m_{ij} of a matrix M (i.e., the entry in M located at the intersection between the ith row and the jth column) is denoted by $|M|_{ij}$. As is usual, the uniform norm of a \mathbb{C}^m-valued and bounded sequence $g = (g_n)$ is defined and denoted by $\|g\|_\infty := \sup_{n \in \mathbb{Z}_+} \|g_n\|$.

Let $\varepsilon > 0$ be given. We recall (see also [8] for the two-dimensional case) that a scalar valued sequence (y_j) is an ε-approximative solution of the linear recurrence

$$x_{n+3} = a_n x_{n+2} + b_n x_{n+1} + c_n x_n, \quad n \in \mathbb{Z}_+ \quad (1)$$

if

$$|y_{n+3} - a_n y_{n+2} - b_n y_{n+1} - c_n y_n| \leq \varepsilon, \quad \forall n \in \mathbb{Z}_+. \quad (2)$$

The recurrence in Equation (1) is Hyers–Ulam stable if there exists a positive constant L such that for every $\varepsilon > 0$ and every ε-approximative solution $y = (y_j)$ of Equation (1) there exists an exact solution $\theta = (\theta_j)$ of Equation (1) such that $\|y - \theta\|_\infty \leq L \varepsilon$.

Remark 1. Since any ε-approximative solution of the recurrence in Equation (1) can be seen as a solution of the nonhomogeneous equation

$$x_{n+3} - a_n x_{n+2} - b_n x_{n+1} - c_n x_n = f_{n+1}, \quad n \in \mathbb{Z}_+. \quad (3)$$

for some scalar valued sequence (f_n) with $f_0 = 0$ and $\|f(0, f_1)\|_\infty \leq \varepsilon$, one has that Equation (1) is Hyers–Ulam stable if and only if there exists a positive constant L such that for every $\varepsilon > 0$, every sequence as above, and every initial condition $Y_0 = (z_0, v_0, w_0)^T \in \mathbb{C}^3$, there exists an initial condition $X_0 = (x_0, x_1, x_2)^T \in \mathbb{C}^3$ such that

$$|\phi(n, Y_0, (f_k)) - \phi(n, X_0, (0))| \leq L \varepsilon. \quad (4)$$

Here, and in what follows, $(\phi(n, Y_0, (f_k))$ denotes the solution of the nonhomogeneous linear recurrence in Equation (3) initiated from Y_0.

Proof. See the proof of Proposition 3.1 in [9]. □

3. Background, Previous Results and the Main Result

Proposition 1. ([19]) Let A be a 3×3 matrix whose spectrum (i.e., the set of its eigenvalues $\sigma(A) := \{x, y, z\}$) satisfies the condition

$$(x - y)(x - z)(y - z) \neq 0. \quad (5)$$

Then, for every nonnegative integer n, one has

$$A^n = x^n B + y^n C + z^n D \quad (6)$$

where

$$B = \frac{(A - yI_3)(A - zI_3)}{(x - y)(x - z)}, \quad C = \frac{(A - xI_3)(A - zI_3)}{(y - x)(y - z)} \quad (7)$$

and

$$D = \frac{(A - xI_3)(A - yI_3)}{(z - x)(z - y)}. \quad (8)$$

Remark 2. (i) The matrices B, C and D in Equation (6) are orthogonal projections, that is

$$BC = BD = CD = 0_3; \text{ the null matrix of order three}, \quad (9)$$

and

$$B^2 = B, \quad C^2 = C, \text{ and } D^2 = D. \quad (10)$$
(ii) In addition, B, C, and D are nonzero matrices.

Proof. Under assumption in Equation (5), the characteristic polynomial P_A and the minimal polynomial m_A of A coincide and $P_A(\lambda) = (\lambda - x)(\lambda - y)(\lambda - z)$. Thus, from the Hamilton–Cayley Theorem we have $P_A(A) = (A - xI_3)(A - yI_3)(A - zI_3) = 0_3$, and Equation (9) becomes clear.

To prove Equation (10), it is enough to see that

$$B^2 - B = \frac{(A - yI_3)(A - zI_3)(A - xI_3)(A - (y + z - x)I_3)}{(x - y)(x - z)^2};$$

the details are clear thus omitted. Then, we apply the Hamilton–Cayley theorem and obtain Equation (10).

Finally, assuming that $B = 0_3$, the polynomial

$$Q(\lambda) = \frac{(\lambda - y)(\lambda - z)}{(x - y)(x - z)}$$

is annulated by A and its degree is equal 2 and is a contradiction with the minimality of the degree of m_A. □

Let $q, (a_j), (b_j), (c_j)$ be as above. Recall that

$$A(q) := A_{q-1} \cdots A_0, \text{ where } A_j := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_j & b_j & a_j \end{pmatrix}, \quad j \in \mathbb{Z}_+.$$ (11)

Our main result reads as follows.

Theorem 1. Assume that the eigenvalues x, y, z (of $A(q)$) satisfy the condition in Equation (5). Then, the following two statements are equivalent:

1. The linear recurrence in \mathbb{C}

$$x_{n+3} = a_n x_{n+2} + b_n x_{n+1} + c_n x_n, \quad n \in \mathbb{Z}_+.$$ (12)

is Hyers–Ulam stable.

2. The eigenvalues of $A(q)$ verify the condition

$$|x| - 1)(|y| - 1)(|z| - 1) \neq 0.$$ (13)

The proof of the implication 2 \Rightarrow 1 is covered (for the most part) in the existing literature. We present the ideas and complete the details. For unexplained terminology, we refer the reader to [8,9]. The following result is taken directly from the second section of [9].

Let X be a complex, finite dimensional Banach space and let $B = \{B_n\}_{n \in \mathbb{Z}_+}$ and $P = \{P_n\}_{n \in \mathbb{Z}_+}$ be two families of linear operators acting on X. Assume that:

[A1] $B_n q = B_n$ and $P_{n+q} = P_n$, for all $n \in \mathbb{Z}_+$ and some positive integer q.

[A2] $P_n^2 = P_n$, for all $n \in \mathbb{Z}_+$, that is, P is a family of projections.

[A3] $B_n P_n = P_{n+1} B_n$, for all $n \in \mathbb{Z}_+. \text{ In particular, this yields that } B_n x \in \ker(P_{n+1}) \text{ for each } x \in \ker(P_n).$

[A4] For each $n \in \mathbb{Z}_+$, the map

$$x \mapsto B_{[n]} x := B_n x : \ker(P_n) \rightarrow \ker(P_{n+1})$$

is invertible. Denote by $(B_{[n]})^{-1}$ its inverse.
We say that the family B is \mathcal{P}-dichotomic if there exist four positive constants N_1, N_2, ν_1 and ν_2 such that

(i) $\|U_B(n, k)P_k\| \leq N_1 e^{-\nu_1(n-k)}$ for all $n \geq k \geq 0$.

(ii) $\|U_B(n, k)(I - P_k)\| \leq N_2 e^{\nu_2(n-k)}$ for all $0 \leq n < k$.

Here, $U_B(n, k) = B_{n-1} \cdots B_k$ when $n > k$, $U_B(k, k) = I$-the identity operator on X, and $U_B(n, k) := (B_{k})^{-1} \cdots (B_{n-1})^{-1}$ when $n < k$.

Theorem 2. ([9]) Assume that the families B and \mathcal{P} satisfy [A1]–[A4] above. The following four statements are equivalent:

1. The monodromy operator $B(q) := B_{q-1} \cdots B_0$ is hyperbolic (that is, the spectrum of $B(q)$ does not intersect the unit circle $\Gamma = \{ w \in \mathbb{C} : |w| = 1 \}$, or equivalently (with the terminology in [9]) it possesses a discrete dichotomy.

2. The family B is \mathcal{P}-dichotomic.

3. For each bounded sequence $(G_n)_{n \in \mathbb{Z}}$, $G_0 = 0$ (of X-valued functions) there exists a unique bounded solution (starting from $\ker(P_0)$) of the difference equation.

$$x_{n+1} = B_n x_n + G_{n+1}, \quad n \in \mathbb{Z}.$$

4. The family B is Hyers–Ulam stable.

We mention that the equivalence between (2) and (3) still works when X is an infinite dimensional Banach space (see [20]). We use Theorem 2 to prove $2 \Rightarrow 1$ in Theorem 1.

The main ingredient in the proof of the implication $1 \Rightarrow 2$ in Theorem 1 is the following Lemma. With A we denote the set of all matrices A_j (with $j \in \mathbb{Z}_+$), where A_j is given in Equation (11) and the matrix $U_A(n, k)$ is defined above.

Lemma 1. If the spectrum of $A(q)$ intersects the unit circle then for each $\epsilon > 0$ there exists a \mathbb{C}-valued sequence $(f_j)_{j \in \mathbb{Z}}$, with $f_0 = 0$ and $\|((f_j))\|_{\infty} \leq \epsilon$ such that for every initial condition $Z_0 = (z_0, y_0, z_0)^T \in \mathbb{C}^3$, the \mathbb{C}-valued sequence

$$\left(\left\| U_A(n, 0)Z_0 + \sum_{k=1}^n U_A(n, k)F_k \right\|_{\infty} \right)_{n \in \mathbb{Z}_+}$$

(with $F_k = (0, 0, f_k)^T$), is unbounded.

4. **Proofs**

Proof of Lemma 1. We first use Proposition 1 with $A(q)$ instead of A. Assume that the eigenvalue x has modulus 1. Let P_x be the Riesz projection associated to $A(q)$ and x; that is

$$P_x = \frac{1}{2\pi i} \int_{C(x, r)} (wI_3 - A(q))^{-1} \, dw,$$

where $C(x, r)$ is the circle centered at x of radius r, and r is small enough that y and z are located outside of the circle. Using Dunford calculus (see [21]), it is easy to see that $P_x A(q)^n = x^n B$, for each $n \in \mathbb{Z}_+$. Consider the matrix B from Equation (8), of the form:

$$B = \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}.$$

The solution of the system
\[X_{n+1} = A_n X_n + F_{n+1}, \quad n \in \mathbb{Z}_+, \quad (15) \]

initiated from \(Z_0 \), where \(X_n = (z_n \ v_n \ w_n)^T \in \mathbb{C}^3, F_n = \left(\begin{array}{ccc} 0 & 0 & f_n \end{array} \right)^T \) and \(A_n = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ c_n & b_n & a_n \end{array} \right) \)

is given by

\[\Phi_n := \Phi(n, Z_0, (F_k)) = U_A(n, 0) Z_0 + \sum_{k=1}^{n} U_A(n, k) F_k. \quad (16) \]

Denote by \((\varphi(n, Z_0, (f_k)) \) the solution of Equation (1). An obvious calculation yields

\[\varphi_n := \varphi(n, Z_0, (f_k)) = \left[U_A(n, 0) Z_0 + \sum_{k=1}^{n} U_A(n, k) F_k \right]_{11}. \quad (17) \]

In fact, one has \(\Phi_n = \left(\begin{array}{ccc} \varphi_n & \varphi_{n+1} & \varphi_{n+2} \end{array} \right)^T. \)

Case 1.1. Let \(b_{13} \neq 0 \). Set

\[F_k = \left\{ \begin{array}{ll} x^{j/q} u_0, & \text{if } k = nq \\ 0, & \text{if } k \text{ is not a multiple of } q. \end{array} \right. \quad (18) \]

where \(u_0 = \left(\begin{array}{ccc} 0 & 0 & c_0 \end{array} \right)^T \) and \(c_0 \) is a randomly chosen nonzero complex scalar with \(|c_0| < \varepsilon \).

Successively, one has

\[\Phi_{nj} = U_A(nq, 0) Z_0 + \sum_{k=1}^{nq} U_A(nq, k) F_k = U_A(nq, 0) Z_0 + U_A(nq, 0) F_0 + U_A(nq, q) F_q + \cdots + U_A(nq, nq) F_{nq} = U_A(nq, 0) Z_0 + \sum_{j=1}^{nq} U_A(nq, jq) F_{jq} = A(q)^{nq} Z_0 + \sum_{j=1}^{nq} x^{j/q} A(q)^{nq-j} u_0, \]

that yields

\[P_x \left[U_A(nq, 0) Z_0 + \sum_{k=1}^{nq} U_A(nq, k) F_k \right] = P_x A(q)^{nq} Z_0 + \sum_{j=1}^{nq} x^{j/q} P_x A(q)^{nq-j} u_0 = x^n B Z_0 + \sum_{j=1}^{nq} x^{j/q} B u_0 = x^n B Z_0 + n x^n B u_0. \]

Since the sequence \((x^n B Z_0)_n \) is bounded, it is enough to prove that the sequence \((n x^n B u_0)_{11} \) is unbounded, and note

\[|(n x^n B u_0)_{11}| = n |b_{13} c_0| \to \infty \text{ as } n \to \infty. \]

Case 1.2. Let \(b_{23} \neq 0 \). Arguing as above we can show that \((\varphi_{n+1}) \) is unbounded, that is that \((\varphi_n) \) is unbounded as well.

Case 1.3. Analogously, we can treat the case \(b_{33} \neq 0 \).

Case 1. Let \(b_{13} = b_{23} = b_{33} = 0 \) and \(b_{12} \neq 0 \). Set

\[F_k = \left\{ \begin{array}{ll} x^{j/q} A_{q-1} u_0, & \text{if } k = nq \\ 0, & \text{if } k \text{ is not a multiple of } q, \end{array} \right. \quad (19) \]

where \(u_0 \) and \(c_0 \) are taken as above. We obtain
\[\Phi_{nq} = A(q)^n Z_0 + \sum_{j=1}^{n} x^j A(q)^{n-j} A_{q-1} u_0 \]

which leads to

\[|q_{nq}| = \left| \sum_{j=1}^{n} x^j P_A(q)^{n-j} A_{q-1} u_0 \right|_{11} \]

\[= \left| \sum_{j=1}^{n} x^j n^q A_{q-2} A_{q-1} u_0 \right|_{11} \]

\[= n^q b_{12} c_0 \]

\[\Rightarrow |n^q b_{12} c_0| = n |b_{12} c_0| \to \infty \text{ as } n \to \infty. \]

Case 2.2. Let \(b_{22} \neq 0 \). Similar to the previous case, we can show that \((q_{n+1}) \) is unbounded, that is, \((q_n) \) is unbounded as well.

Case 3. Let \(b_{12} = b_{13} = 0 \) and \(b_{11} \neq 0 \). Then, set

\[F_k = \begin{cases} x^k A_{q-2} A_{q-1} u_0, & \text{if } k = nq \\ 0, & \text{if } k \text{ is not a multiple of } q, \end{cases} \] (20)

with \(u_0 \) and \(c_0 \) as above.

As in the previous cases, we obtain

\[\left| \sum_{j=1}^{n} x^j P_A(q)^{n-j} A_{q-2} A_{q-1} u_0 \right|_{11} = |n^q b_{12} c_0| = n |b_{12} c_0| \to \infty \text{ as } n \to \infty, \]

therefore \((q_n) \) is again unbounded.

Finally, we remark that the matrix \(B \) cannot be of the form

\[\begin{pmatrix} 0 & 0 & 0 \\ * & 0 & 0 \\ * & * & 0 \end{pmatrix}. \]

Indeed, if this is the case, all eigenvalues of \(B \) are equal to 0 and the Hamilton–Cayley Theorem yields \(B^3 = 0_3 \). Since \(B^2 = B \) we obtain \(B^2 = 0_3 \), that is, \(B = 0_3 \). This contradicts the statement in Remark 2, (ii).

Proof of Theorem 1. \(\Rightarrow \). We argue by contradiction. Suppose that \(\sigma(A(q)) \) intersects the unit circle. Without loss of generality, assume that \(x \) is an eigenvalue of \(A(q) \) and \(|x| = 1 \). Let \(Y_0 \) and \(X_0 \) be as in the Remark 1. From Lemma 1, it follows that the sequence in Equation (14) with \((Y_0 - X_0)\) instead of \(Z_0\) is unbounded and this contradicts Equation (4).

\(\Rightarrow \). From the assumption and Theorem 2, it follows that the system \(X_{n+1} = A_n X_n \) is Hyers–Ulam stable. Thus, for a certain positive constant \(L \), every \(\epsilon > 0 \), every sequence \((f_n)\), every \(Y_0 \) and some \(X_0 \) one has

\[|\phi(n, Y_0, (f_k)) - \phi(n, X_0, (0))| \]

\[\leq \left| \left[\sum_{k=1}^{n} U_A(n, k) F_k \right] \right|_{11} \]

for all \(n \in \mathbb{Z}_+ \). Now, the assertion follows from Remark 1.

5. An Example

The following example illustrates our theoretical result.

Example 1. The linear recurrence of order three

\[x_{n+3} = \sin \frac{2n\pi}{3} x_{n+2} + \cos \frac{2n\pi}{3} x_{n+1} + c_n x_n, \quad n \in \mathbb{Z} \] (21)
\[c_n = \begin{cases} 1, & \text{if } n \text{ is a multiple of } 3 \\ 0, & \text{elsewhere} \end{cases} \]

is Hyers–Ulam stable. Indeed, with the above notation one has
\[
A_0 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix},
\]

and
\[
A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}.
\]

Now, the monodromy matrix associated to Equation (21) is
\[
A(3) = A_2 A_1 A_0 = \begin{pmatrix} 1 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{\sqrt{3}}{4} \end{pmatrix}.
\]

The characteristic equation associated to \(A(3)\) is
\[
\lambda^3 - \left(1 + \frac{3\sqrt{3}}{4}\right) \lambda^2 + \frac{\sqrt{3}}{4} - \frac{1}{4} = 0
\]

and the absolute value of each of its solutions is different to 1.

Remark 3. Reading [22], we note that an interesting question is if the spectral condition
\[|x| - 1 \left(|y| - 1 \right) \left(|z| - 1 \right) \neq 0 \]

is equivalent to Hyers–Ulam stability of the recurrence in Equation (12) with \(\mathbb{Z}_+\) replaced by \(\mathbb{Z}\).

We thank the anonymous reviewer who made us aware of the work in [22].

Author Contributions: All the authors equally contributed in this work.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Perron, O. Ueber eine Matrixtransformation. *Math. Z.* **1930**, *22*, 465–473. [CrossRef]
2. Coppel, W.A. *Dichotomies in Stability Theory*; Lecture Notes in Math; Springer: Heidelberg, Germany, 1978; Volume 629.
3. Barbu, D.; Bușe, C.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy. *J. Math. Anal. Appl.* **2015**, *423*, 1738–1752. [CrossRef]
4. Brzdek, J.; Piszczek, M. On Stability of the Linear and Polynomial Functional Equations in Single Variable. In *Handbook of Functional Equations*; Rassias T., Ed.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 96.
5. Brzdek, J.; Wojcik, P. On approximate solutions of some difference equations. *Bull. Aust. Math. Soc.* **2017**, *95*, 476–481. [CrossRef]
6. Brzdek, J.; Popa, D.; Xu, B. Remarks on stability of linear recurrence of higher order. *Appl. Math. Lett.* **2010**, *23*, 1459–1463. [CrossRef]
7. Brzdek, J.; Jung, S.-M. A note on stability of an operator linear equation of the second order. *Abstr. Appl. Anal.* **2011**, *2011*, 602713. [CrossRef]
8. Bușe, C.; Lupulescu, V.; O’Regan, D. Hyers-Ulam stability for equations with differences and differential equations with time dependent and periodic coefficients. *Proc. A R. Soc. Edinb.* **2019**, Accepted.
9. Buşe, C.; O’Regan, D.; Saierli, O.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy for difference periodic systems. *Bull. Sci. Math.* **2016**, *140*, 908–934. [CrossRef]

10. Chu, H.Y.; Ku, S.H.; Park, J.S. A note on envelopes of homotopies. *J. Differ. Equ. Appl.* **2015**, *21*, 512–527. [CrossRef]

11. Popa, D. On the stability of the second order linear recurrence. *Gazeta Mat. Ser. A* **2012**, *XXX(CIX)*, 69–74.

12. Popa, D. Hyers-Ulam stability of the linear recurrence with constant coefficients. *Adv. Differ. Equ.* **2005**, *2005*, 101–107. [CrossRef]

13. Popa, D. Hyers-Ulam-Rassias stability of a linear recurrence. *J. Math. Anal. Appl.* **2005**, *309*, 591–597. [CrossRef]

14. Xu, B.; Brzdek, J. Hyers-Ulam stability of a system of first order linear recurrences with constant coefficients. *Discrete Dyn. Nat. Soc.* **2015**, *2015*, 269356. [CrossRef]

15. Xu, B.; Brzdek, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. *Pac. J. Math.* **2015**, *273*, 483–498. [CrossRef]

16. Xu, M. Hyers-Ulam-Rassias stability of a system of first order linear recurrences. *Bull. Korean Math. Soc.* **2007**, *44*, 841–849. [CrossRef]

17. Barbu, D.; Buşe, C.; Tabassum, A. Hyers-Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent. *Electron. J. Qual. Theory Differ. Equ.* **2015**, *58*, 1–12.

18. Buşe, C.; Saierli, O.; Tabassum, A. Spectral characterizations for Hyers-Ulam stability. *Electron. J. Qual. Theory Differ. Equ.* **2014**, *30*, 1–14. [CrossRef]

19. Buşe, C.; O’Regan, D.; Saierli, O. A surjectivity problem for 3 by 3 matrices. *Oper. Matrices* **2019**, *13*, 111–119.

20. Huy, N.T.; Minh, N.V. Exponential Dichotomy of Difference Equations and Applications to Evolution Equations on the Half-Line. *Comput. Math. Appl.* **2001**, *42*, 300–311. [CrossRef]

21. Dunford, N.; Schwartz, J.T. *Linear Operators, Part I: General Theory*; Wiley: New York, NY, USA, 1958.

22. Ma, W.-X. A Darboux transformation for the Volterra lattice equation. *Anal. Math. Phys.* **2019**, *9*. [CrossRef]