Serum myo-inositol and valine improve metabolomic-based estimated glomerular filtration rate among kidney transplant recipients

Jeffrey W. Meeusen1*, Frank Stämmler 2, Surendra Dasari3, Eric Schiffer 2 and John C. Lieske1,4

1Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States, 2Department of Research and Development, numares AG, Regensburg, Germany, 3Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN, United States, 4Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States

Background: Close monitoring of glomerular filtration rate (GFR) is essential for the management of patients post kidney transplantation. Measured GFR (mGFR), the gold standard, is not readily accessible in most centers. Furthermore, the performance of new estimated GFR (eGFR) equations based upon creatinine and/or cystatin C have not been validated in kidney transplant patients. Here we evaluate a recently published eGFR equation using cystatin C, creatinine, myo-inositol and valine as measured by nuclear magnetic resonance (eGFR\textsubscript{NMR}).

Methods: Residual sera was obtained from a cohort of patients with clinically ordered iothalamate renal clearance mGFR (n = 602). Kidney transplant recipients accounted for 220 (37%) of participants.

Results: Compared to mGFR, there was no significant bias for eGFRcr or eGFR\textsubscript{NMR}, while eGFRcr-cys significantly underestimated mGFR. P\textsubscript{30} values were similar for all eGFR. P\textsubscript{15} was significantly higher for eGFR\textsubscript{NMR} compared to eGFRcr, while the P\textsubscript{15} for eGFRcr-cys only improved among patients without a kidney transplant. Agreement with mGFR CKD stages of <15, 30, 45, 60, and 90 ml/min/1.73 m2 was identical for eGFRcr and eGFRcr-cys (61.8%, both cases) while eGFR\textsubscript{NMR} was significantly higher (66.4%) among patients with a kidney transplant.

Conclusion: The 2021 CKD-EPI eGFRcr and eGFRcr-cys have similar bias, P\textsubscript{15}, and agreement while eGFR\textsubscript{NMR} more closely matched mGFR with the strongest improvement among kidney transplant recipients.

KEYWORDS
magnetic resonance spectroscopy, creatinine, cystatin C, glomerular filtration rate, iothalamate clearance
Introduction

Serum creatinine-based estimated glomerular filtration rate (eGFR) is routinely used to detect and manage of kidney disease. Alternative eGFR methods using serum cystatin-C alone or in combination with serum creatinine have been developed and endorsed for use in patients when more accurate eGFR is required for clinical decision making (1, 2). The clinical utility of these equations has been independently validated (3). The general consensus is that in most clinical populations eGFR methods, which incorporate both creatinine and cystatin C outperform either in isolation (4–6). However, there are conflicting reports regarding the improvement in eGFR provided by cystatin C among patients with a kidney allograft (7, 8).

Recently, a race-free multi-marker eGFR method based on creatinine, cystatin C, valine and myo-inositol has been published (eGFR_{NMR}) (9–11). The method was developed with the hypothesis that using multiple serum biomarkers would improve the eGFR performance. In order to simplify the measurement and quantify many different biomarkers simultaneously, the method used nuclear magnetic resonance spectroscopy (NMR). Preliminary studies evaluated dozens of metabolites associated with eGFR. The final model included serum valine, myo-inositol, creatinine, and cystatin C. We hypothesized that eGFR_{NMR} incorporating multiple biomarkers would improve eGFR performance in kidney transplant recipients. We also evaluated the newer race-free 2021 CKD-EPI eGFR equations in a cohort of kidney transplant recipients.

Materials and methods

All patient data was accessed in compliance with the Mayo Clinic Institutional Review Board. Residual serum was obtained as available from all patients with a clinically ordered measured GFR test. Indications for testing included post kidney transplant (not kidney), Other Organ Transplant, Hypertension, Diabetes, with the hypothesis that using multiple serum biomarkers would improve eGFR performance in kidney transplant recipients. We also evaluated the newer race-free 2021 CKD-EPI eGFR equations in a cohort of kidney transplant recipients.

Characteristic	Kidney transplant	No kidney transplant	P-value
N (%)	220	382	n.s.
Age, year	55 ± 14	57 ± 13	n.s.
Female, n (%)	97 (44%)	170 (44%)	n.s.
Height	169 ± 11	171 ± 10	n.s.
Weight	86 ± 22	86 ± 21	n.s.
BMI, kg/m²	30 ± 6.1	29 ± 5.9	n.s.
Diabetes, n (%)	88 (40%)	70 (18%)	<0.01
Hypertension, n (%)	199 (90%)	144 (38%)	<0.001
Other Organ Transplant	38 (17%)	113 (29%)	<0.01
(not Kidney), n (%)			
Measured GFR, ml/min/1.73 m²	59 ± 20	74 ± 30	<0.01
Measured GFR group			
<15 ml/min/1.73 m²	1 (0.5%)	3 (0.8%)	n.s.
15–29 ml/min/1.73 m²	16 (7.3%)	25 (6.5%)	n.s.
30–44 ml/min/1.73 m²	43 (19.5%)	37 (9.7%)	<0.01
45–59 ml/min/1.73 m²	62 (28.2%)	74 (19.4%)	0.01
60–89 ml/min/1.73 m²	86 (39.1%)	126 (33.0%)	n.s.
≥90 ml/min/1.73 m²	12 (5.5%)	117 (30.6%)	<0.01
Creatinine, mg/dl	1.40 ± 0.49	1.21 ± 0.57	<0.01
Cystatin C, mg/L	1.53 ± 0.55	1.31 ± 0.62	<0.01
Myo-inositol, µmol/L	78.3 ± 25.5	68.0 ± 33.3	<0.01
Valine, µmol/L	318 ± 71	298 ± 75	<0.01

TABLE 1 Demographic, clinical and laboratory findings among patients with a clinically ordered measured GFR test.
Glomerular filtration rate was estimated by three different methods. The 2021 CKD-EPI eGFRcr was calculated using age, sex and serum creatinine measured by enzymatic assay (1). The 2021 CKD-EPI eGFRcr-cys was calculated using age, sex, serum creatinine measured by enzymatic assay and cystatin C measured by immunoassay (1). The eGFRNMR was reported directly from Axinon software (numares, AG) which combines age, sex, cystatin C (immunoturbidometric) and NMR measured creatinine, valine and myo-inositol (10).

Bias was assessed as the median difference between measured and estimated GFR for a given category. The fraction of eGFR estimates within 30 and 15% of measured GFR were defined as P30 and P15, respectively. Agreement with measured GFR was determined by number of patients grouped into the following diagnostic categories <15, $15–29$, $30–44$, $45–59$, $60–89$, and ≥90 mL/min/1.73 m2. All calculations of performance evaluation and statistical tests were performed within R 4.0.2.

Results

Kidney transplant recipients accounted for 220 (37%) of participants with a mean time post-transplant of 2.14 ± 3.2 years. There were no significant differences in age, sex, or BMI between patient groups with and without kidney transplant. Prevalence of diabetes and hypertension were significantly higher among kidney transplant recipients, as were serum concentrations of creatinine, cystatin C, valine and myo-inositol, while measured GFR was significantly lower (Table 1). Median serum myo-inositol concentrations were significantly higher for kidney transplant recipients among patients with diabetes (85 vs. 73 µmol/L, $p = 0.01$) and without diabetes (68 vs. 59 µmol/L, $p < 0.001$).

Concentrations of serum creatinine, cystatin C, and myo-inositol increased as GFR decreased, whereas serum valine decreased (Figure 1). Comparing patients with vs. without a kidney transplant found no difference in the relationship between measured GFR and serum concentrations of creatinine and cystatin C. However, the concentrations of serum valine were significantly higher among kidney transplant recipients with mGFR < 60 mL/min/1.73 m2 (median 300 µmol/L vs. 284 µmol/L, $p < 0.05$). Furthermore, serum myo-inositol was higher among kidney transplant recipients across the entire measured GFR range (median 73 vs. 62 µmol/L, $p < 0.001$).

There was no significant bias, assessed as the median difference with measured GFR, among kidney transplant recipients by eGFRcr or eGFRNMR (Table 2). However, eGFRcr-cys underestimated measured GFR by a slight but significant margin (-4 mL/min/1.73 m2, $p < 0.05$). The number of samples within 30% of measured GFR (P_{30}) ranged between 85–90% and was not significantly different regardless of equation or kidney transplant status (Figure 2). However, significantly more kidney transplant recipients were within 15% of measured GFR (P_{15}) using the eGFRNMR compared to eGFRcr (67% vs. 57%, $p = 0.03$). When categorizing patients according to CKD diagnostic thresholds of <15, $15–29$, $30–44$, $45–59$, $60–89$, and ≥90 mL/min/1.73 m2, eGFRNMR correctly classified significantly more kidney transplant recipients than eGFRcr and eGFRcr-cys (66% vs. 62%, $p = 0.04$).

Using eGFRcr concordantly classified 82% (105 of 119) of kidney transplant recipients with measured GFR <60 mL/min/1.73m2 and 78% (79 of 101) as >60 mL/min/1.73 m2. Applying the eGFRcr-cys equation correctly reclassified an additional 10.9% as <60 mL/min/1.73 m2, and incorrectly reclassified 2.8% of patients as >60 mL/min/1.73 m2 for a net reclassification improvement of 8.1% (Table 3). Reclassification according to eGFRNMR would correctly reclassify 4.2% of kidney transplant recipients as <60 mL/min/1.73 m2, and correctly reclassify an additional 8.9% as >60 mL/min/1.73 m2, for a net reclassification improvement of 13.1%.
TABLE 2 Method comparison for estimated versus measured GFR by eGFR equation and kidney transplant status.

	eGFRcr	eGFR_{cr}-cys	P-value*	eGFR NMR	P-value*
Bias: median difference; ml/min/1.73 m² (95% CI)					
Kidney transplant	−0.05 (−1.67 to 1.36)	−3.84 (−4.83 to −2.51)	<0.01	0.412 (−1.30 to 1.68)	0.82
No kidney transplant	−2.17 (−3.53 to −0.829)	−3.57 (−4.72 to −1.89)	0.04	−0.12 (−1.34 to 1.17)	0.96
P₁₅, % (95% CI)					
Kidney transplant	57.3 (50.7–63.8)	60.9 (54.5–67.4)	0.43	67.3 (61.1–73.5)	0.03
No kidney transplant	48.7 (42.1–55.3)	56.0 (49.5–62.6)	0.04	58.6 (52.1–65.1)	0.005
P₃₀, % (95% CI)					
Kidney transplant	85.0 (80.3–89.7)	90.0 (86.9–94)	0.11	90.9 (87.1–94.7)	0.06
No kidney transplant	84.8 (81.2–88.4)	86.9 (83.5–90.3)	0.41	85.3 (81.8–88.9)	0.84
Agreement,% (95% CI)					
Kidney transplant	61.8 (55.4–68.2)	61.8 (55.4–68.2)	1.0	66.4 (60.1–72.6)	0.04
No kidney transplant	58.6 (53.7–63.6)	61.8 (56.9–66.7)	0.04	60.7 (55.8–65.6)	0.55

*Denotes p-value compared to eGFRcr.

FIGURE 2 Relative difference between eGFR and mGFR as a function eGFR method and kidney transplant status. Shaded area indicates eGFR values within 30% of mGFR, and the dashed lines represent values within 15% of mGFR.

Discussion

In this study we evaluated the performance eGFR_{cr} and 2 multi-marker eGFR equations for predicting mGFR among patients with and without kidney transplant. Our findings confirm previous reports that including both creatinine and cystatin C (eGFR_{cr}-cys) improves eGFR classification. The improvements for eGFR_{cr}-cys were modest and the
TABLE 3 Reclassification of patients into correct measured GFR clinical categories.

CKD Reclassification*	Kidney transplant recipients	No kidney transplant		
	eGFR_{cr-cys}	eGFR_{NMR}	eGFR_{cr-cys}	eGFR_{NMR}
<60 ml/min/1.73 m²	10.9% (5.3–16.5)	4.2% (0.6–7.8)	6.8% (2.5–11.1)	−1.5% (−3.6–0.6)
≥60 ml/min/1.73 m²	−2.8% (−6.3 to 0.3)	8.9% (3.4–14.5)	−2.8% (−6.0 to 0.4)	2.2% (1.0–5.4)
Net	8.1% (0.8–5.4)	13.1% (0.4–17.6)	5.6% (3.3–7.9)	1.7% (0.4–3.0)

*Relative increase or decrease in mGFR agreement compared to eGFR_{cr}. Parentheses indicate 95th percentile confidence intervals. Confidence intervals that include zero are not significantly different than classification agreement using eGFR_{cr}.

Performance was consistent across all patients regardless of kidney transplant status.

Addition of two novel serum biomarkers, valine and myo-inositol along with creatinine and cystatin C (eGFR_{NMR}) improved the P15 and concordance compared to eGFR_{cr} and eGFR_{cr-cys}. Previous studies have reported associations between kidney failure and increases in both myo-inositol and valine (13–16). In our cohort, the benefits of myo-inositol and valine in GFR estimation were stronger among kidney transplant recipients. Importantly, using eGFR_{NMR} improved agreement with CKD staging and net reclassification.

Previous studies have reported an association between myo-inositol and kidney disease progression (14, 16). Of specific interest are reports of altered inositol metabolism following kidney transplantation (17) and among patients taking calcineurin inhibitors commonly prescribed for immunosuppression following solid organ transplant (18). Teasing out the potentially confounding interactions between reduced kidney function, transplantation, immunosuppression and serum metabolites requires more study.

Elevated plasma valine is linked to metabolic disturbances and cardiovascular disease risk profiles in several non-transplant populations (19, 20). Hence, the increased valine concentrations observed in the transplant recipients of our cohort might point to a higher risk for CVD as indicated by the high prevalence of the conventional CVD risk factors, i.e., diabetes, hypertension, and by the drugs used for immunosuppression (21).

Some limitations of our study include the small number of participants with low measured GFR, which prevented analysis of potential impact on kidney transplant listing or re-listing using the multi-marker eGFR methods. While the differences between eGFR metrics were arguably marginal, they might be especially relevant for these use-cases. Nevertheless, the sample-size had sufficient statistical power to distinguish between method performance based on kidney transplant status.

NMR spectrometry is not-widely available in routine clinical laboratories; however, it is routinely used at reference laboratories for specialty lipid testing, which can guide cardiovascular and endocrinology care management. The improvement in eGFR by inclusion of multiple biomarkers suggests that NMR and its capability to quantify many analytes by a simultaneous measurement may be uniquely suited to investigate the metabolomics of kidney function. Further study to confirm these findings and investigate the relationship between kidney function and the serum concentrations of myo-inositol, valine and other potential biomarkers using NMR is warranted.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and approved by Mayo Clinic Institutional Review Board. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.

Author contributions

JM, FS, and SD participated in data acquisition and analysis. All authors contributed to drafting and editing of the manuscript.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. Inker LA, Eneanya ND, Coresh J, Tighiouart H, Wang D, Sang Y, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. (2021) 385:1737–49. doi: 10.1056/NEJMoa2102953

2. Delgado C, Baejma J, Cresw D, Eneanya N, Gadebheku C, Inker L, et al. A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. J Am Soc Nephrol. (2021) 32:2994–3015. doi: 10.1681/ASN.2021070988

3. Meuesen JW, Kasori RN, Larson TS, Lieske JC. Clinical impact of the refit CKD-EPI 2021 creatinine-based eGFR equation. Clin Chem. (2022) 68:534–9. doi: 10.1093/clinchem/hvab282

4. Meuesen JW, Rule AD, Voskobo new, Baumann NA, Lieske JC. Performance of cystatin C- and creatinine-based estimated glomerular filtration rate equations depends on patient characteristics. Clin Chem. (2015) 61:1265–72. doi: 10.1373/clinchem.2015.24030

5. Keddis MT, Amer H, Voskobo new N, Kremers WK, Rule AD, Lieske JC. Creatinine-based and cystatin C-based GFR estimating equations and their non-GFR determinants in kidney transplant recipients. Clin J Am Soc Nephrol. (2016) 11:1640–9. doi: 10.2215/CJN.01741115

6. Inker LA, Titan S. Measurement and estimation of GFR for use in clinical practice: core curriculum 2021. Am J Kidney Dis. (2021) 78:736–48. doi: 10.1053/j.ajkd.2021.04.016

7. Kukla A, Issa N, Jackson S, Spong R, Foster MC, Matas AJ, et al. Cystatin C enhances glomerular filtration rate estimating equations in kidney transplant recipients. Am J Nephrol. (2014) 39:59–65. doi: 10.1159/000357594

8. Harman G, Akbari A, Hiremath S, White CA, Ramsay T, Kokolo MB, et al. Accuracy of cystatin C-based estimates of glomerular filtration rate in kidney transplant recipients: a systematic review. Nephrol Dial Transplant. (2015) 30:61:1265–72. doi: 10.1373/clinchem.2015.24030

9. Ehrich J, Dubourg L, Hansson N, Pape L, Fruth J, et al. Serum myo-inositol, dimethyl sulfone, and valine in combination with creatinine allow accurate assessment of renal insufficiency—a proof of concept. Diagnostics. (2021) 11:234. doi: 10.3390/diagnostics11120234

10. Stammfer F, Grassi M, Meuesen JW, Lieske JC, Dasari S, Dubourg L, et al. Estimating glomerular filtration rate from serum myo-inositol, valine, creatinine and cystatin C. Diagnostics. (2021) 11:2291. doi: 10.3390/diagnostics11122291

11. Fuhrmann M, Schwaeble Santamaria A, Scott R, Meuesen JW, Fernandez M, Venz J, et al. Analytical validation of GFRNMR: a blood-based multiple biomarker assay for accurate estimation of glomerular filtration rate. Diagnostics. (2022) 12:1120. doi: 10.3390/diagnostics12051120

12. Seegmüller JC, Burns BE, Fuq AH, Mukhtar N, Lieske JC, Larson TS. Lactate quantification by tandem mass spectrometry to measure glomerular filtration rate. Clin Chem. (2010) 56:568–74. doi: 10.1373/clinchem.2009.13751

13. Clements BS Jr, DeJesus PV Jr, Winegrad AI. Raised plasma-myoinositol levels in uremia and experimental neuropathy. Lancet. (1973) 1:1137–41. doi: 10.1016/s0140-6736(73)91143-4

14. Niewczas MA, Sirich TL, Mathew AV, Skupien J, Mohney RP, Warram JH, et al. Uremic solutes and risk of end-stage renal disease in type 2 diabetes: metabolomic study. Kidney Int. (2014) 85:1214–24. doi: 10.1038/kid.2013.497

15. Lanzon B, Martin-Toboads M, Castro-Álves V, Vila-Redmar J, Gonzalez de Pablo L, Duberg D. Lipidomic and metabolic signature of progression of chronic kidney disease in patients with severe obesity. Metabolites. (2021) 11:836. doi: 10.3390/metabo11120836

16. Gil RB, Ortiz A, Sanchez-Nino MD, Markoska K, Schepers E, Vanholder R, et al. Increased urinary osmolyte excretion indicates chronic kidney disease severity and progression rate. Nephrol Dial Transplant. (2018) 33:2156–64. doi: 10.1093/ndt/gfy020

17. Lepping RJ, Montgomery RN, Sharma P, Mahnken JD, Vidoni ED, Choi IY, et al. Normalization of cerebral blood flow, neurochemicals, and white matter integrity after kidney transplantation. J Am Soc Nephrol. (2021) 32:377–87. doi: 10.1681/ASN.2020050584

18. Dume B, Halimi JM, Emond P, Buchler M, Nadal-Desbarat I, Blasco H, et al. Assessing the metabolic effects of calcineurin inhibitors in renal transplant recipients by urine metabolic profiling. Transplantation. (2014) 98:195–201. doi: 10.1097/TP.0000000000000339

19. Guasch-Ferre M, Tyler R, Toleda E, Clough CB, Martinez-Gonzalez MA, Salas-Salvado J, et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care. (2016) 39:833–46. doi: 10.2337/dc15-2251

20. Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol. (2014) 10:723–36. doi: 10.1038/nrendo.2014.171

21. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol. (2019) 32:389–99. doi: 10.1007/s40660-018-0549-4