Physicochemical Properties and Factors that Induce Asbestos-Related Respiratory Disease†

Hiroto Izumi* and Yasuo Morimoto

† Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan

Abstract

It is thought that inhaled dusts such as asbestos and man-made mineral fibers in the lung repeatedly induce persistent inflammation and finally lead to pulmonary fibrosis and respiratory cancer. There have been many studies about whether a variety of factors, such as oxidative stress including free radicals, chemokines, inflammatory cytokines, and fibrosis-related cytokines are related to pulmonary fibrosis, lung cancer and malignant mesothelioma. In this paper, we introduce the relationship between these factors and these diseases. It is important to determine what physicochemical properties of fibrous materials such as asbestos are related to asbestos-related diseases. We show the relationship between the physicochemical properties of not only asbestos but also other fibrous materials and inflammation, fibrosis and biopersistence in the lung.

Keywords: asbestos, lung cancer, malignant mesothelioma, cumulative exposure

Asbestos exposure and respiratory tumor

It is thought that a high concentration of asbestos exposure induces lung cancer1). There are some reports that a cumulative exposure of 25–100 fiber-years induced the onset of lung cancer caused by asbestos, and the Helsinki criteria showed that a cumulative exposure of 25 fiber-years, the minimum cumulative exposure level, is necessary for the onset of lung cancer induced by asbestos2). Cumulative exposure correspond to a 2-fold risk of lung cancer. The indexes of the risk of lung cancer are 1) retained fiber levels of 2 million amphibole fibers (> 5 μm) per gram of dry lung tissue or 5 million amphibole fibers (> 1 μm) per gram of dry lung tissue measured by electron microscopy, (Fig. 1); 2) 5000 asbestos bodies per gram of dry tissue measured by light microscopy, or 5 asbestos bodies per milliliter of bronchoalveolar lavage fluid measured by light microscopy (Fig. 2); and 3) a profusion score of 1 in a chest x-ray finding, which means early asbestosis.

Henderson et al.3) proposed, as a revised version of the Helsinki criteria, that a cumulative exposure of 20 fiber-years for amphibole asbestos, cumulative exposure of 25 fiber-years for asbestos yarn spinning, cumulative exposure of 200 fiber-years for chrysotile asbestos only (work in chrysotile mine quarrying, crushing and friction materials production in Canada), or cumulative exposure of more than 25 fiber-years for the combined exposure of chrysotile and amphibole asbestos is necessary for the onset of lung cancer induced by asbestos.

The onset of malignant mesothelioma is thought to be induced by a low concentration of asbestos exposure, although there is no significant evidence of a relationship between the occurrence of mesothelioma and the amount of exposure to asbestos. Previous studies4) reported that malignant mesothelioma was contracted by workers who were engaged in indirect asbestos exposure in a shipyard or in the vehicle manufacturing industry developed malignant mesothelioma, a person who washed workers’ clothes, to which asbestos was attached, and neighboring inhabitants around asbestos mines and the asbestos product manu-

† Accepted: September 18, 2013

1-1, Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan

* Corresponding author:
E-mail: h-izumi@med.uoeh-u.ac.jp
TEL: +81-93-691-7466 FAX: +81-93-691-4284

Fig. 1 Scanning electron microscope of asbestos bodies
ufacturing industry. Therefore, asbestos exposure other than in occupation induced the disease. For that reason, in examining asbestos-related diseases, it is very important to know not only the occupational history of workers but also the residential history of families. It is thought that from cohort studies the degree of risk of developing mesothelioma by asbestos depends on the kind of asbestos, namely when the strength of chrysotile, amosite and crocidolite is 1: 100: 500, respectively\(^5\). In addition, the onset is unrelated to smoking.

Relationship between size of asbestos and asbestos-related tumor

The physicochemical properties of asbestos in the induction of lung cancer are thought to be 1) fibers with low solubility and 2) fibers which are thin and long.

If fibers reach the lung, some of them melt in body fluid and some are divided into small fragments. These fibers, which become small, are phagocytized by alveolar macrophages and are excreted outside the lungs with mucociliary escalator. Even if fibers have low solubility, short fibers are also excreted by alveolar macrophages. However, it is difficult for macrophages to phagocytize the fiber physically, particularly when fibers with low solubility are longer than the diameter of the macrophages. Thus fibers with low solubility and long length are deposited in the lung in the long term and will influence the lung continuously without being excreted. It is thought that fibers which are not excreted from the lung have a physically and chemically harmful effect on the lung.

Solubility tests (in vitro test to examine how fibers dissolve in medium) and inhalation studies of not only asbestos but also man-made mineral fibers have been performed\(^6\). The solubility in the solubility test is associated with pathological lesions in acute and chronic inhalation studies. In the solubility test, fibers with low solubility, such as crocidolite and amosite, induced a long half-life of the fiber in an acute inhalation study and developed pulmonary fibrosis and cancer in a chronic inhalation study. On the other hand, fibers with high solubility, such as slagwool and HT stone wool, reduced the half-life of the fiber and caused no significant pathological lesions.

Taken together, the physicochemical properties of asbestos which affect the lung tissue are its length and solubility. Long and thin fibers with low solubility induce biopersistence in the lung and finally cause lung disorders. From the clinical point of view, the length of the fiber affects the development of lung cancer. There are regulations based on the length of fiber, such as more than 1 μm or 5 μm, to measure the number of asbestos fibers in lung tissue in order to examine whether or not lung cancer is related to asbestos exposure. This may show that the length of fibers is related to the onset of lung cancer induced by asbestos.

In malignant mesothelioma, the association between physicochemical properties and the development of mesothelioma is unclear, but it has been reported that short fibers induce malignant mesothelioma. In the case of malignant mesothelioma, it may be important that the onset of mesothelioma is associated with the movement of the asbestos to the parietal pleura. The physical limitation of phagocytosis of the fibers by the macrophages may be related to the shortness of the fibers.

Lung damage by free radicals and inflammation

Inhalation of fibers can cause inflammation in the respiratory tract and pulmonary alveolar space in not only the acute phase but also in the chronic phase\(^7\). These inflammations, especially continuous inflammation, progress to fibrosis of the lungs and pleura, or lung tumor (malignant mesothelioma and lung cancer)\(^\)\(^7\),\(^8\). We performed intratracheal instillation of different mineral fibers to rat, and examined lung inflammation from 3 days up to 6 months\(^9\). Harmful respirable particles like crystalline silica or crocidolite asbestos, which are kinds of asbestos, caused persistent inflammation from the initial instillation until six months. However, transient inflammation was only observed early in the instillation when less harmful titanium dioxide of micron size was inhaled. In the inhalation exposure examination to rat with chrysotile for 20 days, continuous inflammation and fibrosis containing mainly neutrophils were observed\(^9\). Continuous inflammation causes lung injury, and free radicals play a central role in this injury. There are two types of free radicals, one is reactive oxygen species and the other is reactive nitrogen.
Asbestos is known as a carcinogen, and it can cause malignant pleural mesothelioma and lung cancer. However, the mechanism of carcinogenesis has not been sufficiently clarified. Its oncogenesis might be influenced by complicated factors, such as diversity of the asbestos (type, geometry, dose of the fiber, and so on), individual sensitivity, and synergistic effects with other carcinogens like cigarette. Abnormality of gene expression is broadly classified into genetic abnormality and epigenetic abnormality. Genetic abnormality is a disorder which is directly caused by a mutation in the nucleotide sequence of the gene. On the other hand, epigenetics is a study that reveals the diversity of gene expression inherited even after cell division without a change in the nucleotide sequence. Both genetic abnormality and epigenetic abnormality are associated with not only oncogenesis but also malignant progression. In cancer cells, there are two types of mutations. One is passenger mutations, which are accumulated only by chance, and the other is oncogenic driver mutations, which occur in important genes involved in the phenotype of cancer. Oncogenic driver mutations have been found in the EGF receptor, K-ras, HER2, AKT1, etc. (Table 1). In addition, there is a cancer that is completely dependent on the oncogenic signal associated with cell proliferation and survival of cancer by only one mutated gene. This is called oncogene addiction, and its representative example is L858R mutation in the EGFR gene.

In the genetic abnormality of asbestos-related lung cancer, mutations of the k-ras and TP53 (p53) have been reported. K-ras mutation is an oncogene that plays an important role in the signal transduction of the epidermal growth factor receptor (EGFR). Husafvel-Pursiainen et al. reported that asbestos exposure alone was not significantly associated with an increased occurrence of K-ras mutations. However, a strong and significant association was found between adenocarcinoma and K-ras mutation in a group of combined smoking and asbestos exposure. Nelson et al. suggested that asbestos exposure increases the likelihood of mutation at K-ras codon 12 and that this process occurs independently of the induction of interstitial fibrosis. Mutant p53 proteins acquire oncogenic properties that enable them to promote invasion, metastasis, proliferation and cell survival. Wang X et al. reported that p53 mutations occurred significantly more frequently in patients with a history of occupational exposure to
asbestos. It has also been reported that the mutation of p53 gene is common in asbestos-associated cancers. An analysis of specific gene copy number changes in asbestos-related lung cancer revealed some allelic imbalances. In particular, allelic imbalances of 19p, 9q33, and 2p16 were important in asbestos-related lung cancer. FHIT, a candidate tumor suppressor gene, contains the FRA3B common fragile site and is highly susceptible to carcinogen damage. Deletion of the FHIT gene in the chromosome 3p14.2 and reduced expression of the FHIT protein are correlated with malignant non-small cell lung cancer. It has also been indicated that these mutations are associated with smoking and asbestos exposure.

There are many reports about the genetic abnormality of malignant pleural mesothelioma. Mutations of K-ras and p53 in malignant pleural mesothelioma have been reported in the same way as other malignant tumors. However, association with malignant pleural mesothelioma and the BRCA1 associated protein-1 (BAP1), the cyclin-dependent kinase inhibitor 2A (p16/CDKN2A), neurofibromin 2 (NF2), and EGFR genes have been well investigated. BAP1 binds to BRCA1 and acts as a tumor suppressor gene, contains the FRA3B common fragile site and is highly susceptible to carcinogen damage. Deletion of the FHIT gene in the chromosome 3p14.2 and reduced expression of the FHIT protein are correlated with malignant non-small cell lung cancer. It has also been indicated that these mutations are associated with smoking and asbestos exposure.

There are many reports about the genetic abnormality of malignant pleural mesothelioma. Mutations of K-ras and p53 in malignant pleural mesothelioma have been reported in the same way as other malignant tumors. However, association with malignant pleural mesothelioma and the BRCA1 associated protein-1 (BAP1), the cyclin-dependent kinase inhibitor 2A (p16/CDKN2A), neurofibromin 2 (NF2), and EGFR genes have been well investigated. BAP1 binds to BRCA1 and acts as a tumor suppressor gene, contains the FRA3B common fragile site and is highly susceptible to carcinogen damage. Deletion of the FHIT gene in the chromosome 3p14.2 and reduced expression of the FHIT protein are correlated with malignant non-small cell lung cancer. It has also been indicated that these mutations are associated with smoking and asbestos exposure.

Table 1: Oncogenic driver mutations for lung cancer

Entrez GeneID	Entrez GeneID
KRAS (Kirsten rat sarcoma viral oncogene homolog)	3845
EGFR (epidermal growth factor receptor)	1956
HER2 (v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2)	2064
BRAF (v-raf murine sarcoma viral oncogene homolog B)	673
MET (met proto-oncogene, hepatocyte growth factor receptor)	4233
AKT1 (v-akt thymoma viral oncogene homolog 1)	207
MAP2K1 (mitogen-activated protein kinase kinase 1)	5604
PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha)	5290
EML4-ALK	27436/238

* EML4-ALK is a product of the fusion gene lined the N-terminus of EML4 (echinoderm microtubule associated protein like 4, GeneID 27436) and the C-terminus of ALK (anaplastic lymphoma receptor tyrosine kinase, GeneID 238).

The status of DNA methylation, structural changes in the chromatin by chemical modification of histones (Table 2), the action of non-coding RNA, etc., are important in epigenetic abnormality. For the methylation of DNA, guanine and cytosine rich regions as the promoter of the gene (CpG island) are easily transferred by the addition of a methyl group by a specific enzyme. Transcription factor can not bind to the methylated promoter and transcriptional activity is suppressed. For example, when the promoter or cording region of a tumor suppressor gene is methylated, tumor suppressor proteins can not be synthesized and the tumor suppression effect is attenuated. Same reported DNA-hypermethylated tumor suppressor genes are, p16/CDKN2A, mutL homologue 1 (MLH1), epithelial-cadherin (E-cadherin), runt-related transcription factor 3 (RUNX3), adenomatous polyposis coli (APC), O(6)-methylguanine-DNA methyltransferase (MGMT), Ras association domain family 1A (RASSF1A), death-associated protein kinase (DAPK), cell adhesion molecule 1 (CADM1), retinoic acid receptor beta (RARB), metalloproteinase inhibitor 3 (TIMP3), and FHIT.

Hypermethylation of tumor suppressor genes is also involved in malignant mesothelioma and lung cancer caused by asbestos. When Dammann et al. analyzed the methylation from the lung tissue of lung cancer patients, hypermethylation of p16 was observed in 47% of lung cancer tissue and in 14% of normal lung tissue of patients. They also reported that there is a correlation between inactivation of p16 and asbestos exposure. On the other hand, Fujii et al. reported that hypermethylation of p16 was observed in 7.7% of malignant pleural mesothelioma, which was lower than 30.4% of lung cancer. Further
target mRNA and reduces the protein expression by inhibiting translation. An association between miRNA and gene expression is not affected by asbestos exposure. Some reports indicate the target genes of miRNA and the effects on cell transformation. There are few reports of miRNA in asbestos-related lung cancer and biomarkers for early detection of malignant pleural mesothelioma is anticipated.

Conclusion

It is thought that asbestos inhaled into the lungs causes inflammation and eventually leads to pulmonary fibrosis and tumors. In this inflammation, free radicals such as those produced by reactive oxygen species and reactive nitrogen oxide species induce not only cell and tissue damage but also the progression of fibrosis and inflammation. These observations are forming a consensus that continuous inflammation is important in the formation of pathogenesis. It is believed that additional mutations in the bronchial-alveolar epithelial cells and pleural mesothelial cells cause the onset of lung cancer and pleural mesothelioma, respectively. The characteristics of the fibers that are related to fibrosis and carcinogenicity are low solubility and thin-long type. It is necessary to elucidate the molecular mechanisms of asbestos-related lung cancer and malignant pleural mesothelioma. The development of biomarkers using serum miRNA is also required. In particular, the development of biomarkers to distinguish between asbestos-related and non-asbestos-related lung cancer and biomarkers for early detection of malignant pleural mesothelioma is anticipated.

References

1) The committee report on the regulation for authorization of asbestos-related disease. (2012): Ministry of Health, Labour and Welfare.
2) Asbestos, asbestosis, and cancer: the Helsinki criteria for diagnosis and attribution. (1997): Scand J Work Environ Health 23, pp. 311–316.
3) Henderson, D. W. and Leigh, J. (2011): “Chapter 6. Asbestos and Carcinoma of the Lung. In: Dodson, R. F., Hammar, S. P., (eds.), Asbestos. Risk assessment, epidemiology and health effects, second edition”, CRC press, pp. 269–306.
4) Kurumata, N. and Kumagai, S. (2008): Mapping the risk of mesothelioma due to neighborhood asbestos exposure, American Journal of Respiratory and Critical Care Medicine, Vol. 178, pp. 624–629.
5) Hodgson, J. T. and Darnton, A. (2000): The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure, Annals of Occupational Hygiene, Vol. 44, pp. 565–601.
6) IARC monographs on the evaluation of carcinogenic risks to humans. Volume 81 Man-made vitreous fibres. (2002): IARC press
7) Mossman, B. T., Lippmann, M., Hesterberg, T. W., Kelsey, K. T., Barchowsky, A. and Bonner, J. C. (2011): Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos, Journal of Toxicology and Environmental Health. Part B, Critical Reviews, Vol. 14, pp. 76–121.
8) Ardies, C. M. (2003): Inflammation as cause for scar cancers of the lung, Integrative Cancer Therapies, Vol. 2, pp. 238–246.
Ogami, A., Morimoto, Y., Myojo, T., Oyabu, T., Murakami, M., Nishi, K., Kadoya, C. and Tanaka, I. (2007): Histopathological changes in rat lung following intratracheal instillation of silicon carbide whiskers and potassium octatitanate whiskers, Inhalation Toxicology, Vol. 19, pp. 753–758.

10) Quinlan, T. R., Bérubé, K. A., Marsh, J. P., Janssen, Y. M., Taishi, P., Leslie, K. O., Hemenway, D., O’Shaughnessy, P. T., Vacek, P. and Mossman, B. T. (1995): Patterns of inflammation, cell proliferation, and related gene expression in lung after inhalation of chrysotile asbestos, American Journal of Pathology, Vol. 147, pp. 728–739.

11) Roberts, R. A., Smith, R. A., Safe, S., Szabo, C., Tjalkens, R. B. and Robertson, F. M. (2010): Toxicological and pathophysiological roles of reactive oxygen and nitrogen species, Toxicology, Vol. 276, pp. 85–94.

12) Giss, D. and Spitz, D. R. (2006): Redox signaling in cancer biology, Antioxidants & Redox Signaling, Vol. 8, pp. 1249–1252.

13) Fubini, B. and Hubbard, A. (2003): Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis, Free Radical Biology & Medicine, Vol. 34, pp. 1507–1516.

14) Dizdaroglu, M. and Jaruga. P. (2012): Mechanisms of free radical-induced damage to DNA, Free Radical Research. Vol. 46, pp. 382–419.

15) Hawkins, C. L., Morgan, P. E. and Davies, M. J. (2009): Quantification of protein modification by oxidants, Free Radical Biology & Medicine, Vol. 46, pp. 965–988.

16) Fialkow, L., Wang, Y. and Downey, G. P. (2007): Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function, Free Radical Biology & Medicine, Vol. 42, pp. 153–164.

17) Kar, S., Subbaram, S., Carrico, P. M. and Melendez, J. A. (2010): Redox-control of matrix metalloproteinase-1: a critical link between free radicals, matrix remodeling and degenerative disease, Respiratory Physiology & Neurobiology, Vol. 174, pp. 299–306.

18) Kliment, C. R. and Oury, T. D. (2010): Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radical Biology & Medicine, Vol. 49, pp. 707–717.

19) Chan, E. C., Jiang, F., Peshavariya, H. M. and Dusting, G. J. (2009): Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering, Pharmacology & Therapeutics, Vol. 122, pp. 97–108.

20) Azad, N., Iyer, A., Valleyathan, V., Wang, L., Castranova, V., Stihlik, C. and Rojanasakul, Y. (2010): Role of oxidative/nitrative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation, Annals of the New York Academy of Sciences, Vol. 1203, pp. 1–6.

21) Liu, G., Cheresh, P. and Kamp, D. W. (2013): Molecular basis of asbestos-induced lung disease, Annual Review of Pathology, Vol. 8, pp. 161–187.

22) Kido, T., Morimoto, Y., Asonuma, E., Yatera, K., Ogami, A., Oyabu, T., Tanaka, I. and Kido, M. (2008): Chrysotile asbestos causes AEC apoptosis via the caspase activation in vitro and in vivo, Inhalation Toxicology, Vol. 20, pp. 339–347.

23) Was, H., Dulak, J. and Jozkowicz, A. (2010): Heme oxygenase-1 in tumor biology and therapy, Current Drug Targets, Vol. 11, pp. 1511–1570.

24) Raval, C. M. and Lee, P. J. (2010): Heme oxygenase-1 in lung disease, Current Drug Targets, Vol. 11, pp. 1532–1540.

25) Nagatomo, H., Morimoto, Y., Oyabu, T., Hirohashi, M., Ogami, A., Yamato, H., Kuroda, K., Higashi, T. and Tanaka, I. (2005): Expression of heme oxygenase-1 in the lungs of rats exposed to crocidolite asbestos, Inhalation Toxicology, Vol. 17, pp. 293–296.

26) Nagatomo, H., Morimoto, Y., Ogami, A., Hirohashi, M., Oyabu, T., Kuroda, K., Higashi, T. and Tanaka, I. (2007): Change of heme oxygenase-1 expression in lung injury induced by chrysotile asbestos in vivo and in vitro, Inhalation Toxicology, Vol. 19, pp. 317–323.

27) Driscoll, K. E., Carter, J. M., Howard, B. W., Hassenbein, D., Janssen, Y. M. and Mossman, B. T. (1998): Crocidolite activates NF-kappa B and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochondrial-derived oxidants, Environmental Health Perspectives, Vol. 5, pp. 1171–1174.

28) Fattman, C. L., Tan, R. J., Tobolewski, J. M. and Oury, T. D. (2006): Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase, Free Radical Biology & Medicine, Vol. 40, pp. 601–607.

29) Murata, M., Thanan, R., Ma, N. and Kawanishi, S. (2012): Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis, Journal of Biomedicine & Biotechnology, Vol. 2012, Article ID.623019. doi: 10.1155/2012/623019.

30) Hiraku, Y., Kawanishi, S., Ichinose, T. and Murata, M. (2010): The role of iNOS-mediated DNA damage in infection- and asbestos-induced carcinogenesis, Annals of the New York Academy of Sciences, Vol. 1203, pp. 15–22.

31) Matsuoka, M., Igisu, H. and Morimoto, Y. (2003): Phosphorylation of p53 protein in A549 human pulmonary epithelial cells exposed to asbestos fibers, Environmental Health Perspectives, Vol. 111, pp. 509–512.

32) Mineo, T. C. and Ambrogi, V. (2012): Malignant pleural mesothelioma: factors influencing the prognosis, Oncology, Vol. 26, pp. 1164–1175.

33) Chiba, T., Marusawa, H. and Ushijima, T. (2012): Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation, Gastroenterology, Vol. 143, pp. 550–563.

34) Wen, J., Fu, J., Zhang, W. and Guo, M. (2011): Genetic and epigenetic changes in lung carcinoma and their clinical implications, Modern Pathology, Vol. 24, pp. 932–943.

35) Risch, A. and Plass, C. (2008): Lung cancer epigenetics and genetics, International Journal of Cancer, Vol. 123, pp. 1–7.

36) Suda, K., Tomizawa, K. and Mitsudomi, T. (2010): Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation, Cancer Metastasis Reviews, Vol. 29, pp. 49–60.

37) Bean, G. R., Ganesan, Y. T., Dong, Y., Takeda, S., Liu, H., Chan, P. M., Huang, Y., Chodosh, L. A., Zambetti, G. P., Hsieh, J. J. and Cheng, E. H. (2013): PUMA and BIM are
required for oncogene inactivation-induced apoptosis, Science Signaling, Vol. 6, pp. ra20. doi: 10.1126/scisignal.203483.

38) Ahrendt, S. A., Decker, P. A., Alawi, E. A., Zhu, Yr. Yr., Sanchez-Cesperedes, M., Yang, S. C., Haasler, G. B., Kajdacsy-Balla, A., Demeure, M. J. and Sidransky, D. (2001): Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung, Cancer, Vol. 92, pp. 1525–1530.

39) Sioris, T., Husagafvel-Pursiainen, K., Karjalainen, A., Anttila, S., Kanno, A., Salo, J. A., Perhonievi, V., Heikkilä, L. and Vainio, H. (2000): Survival in operable non-small-cell lung cancer: role of p53 mutations, tobacco smoking and asbestos exposure, International Journal of Cancer, Vol. 86, pp. 590–594.

40) Nelson, H. H., Christiani, D. C., Wenecke, J. K., Mark, E. J., Wain, J. C. and Kelsey, K. T. (1999): k-ras mutation and occupational asbestos exposure in lung adenocarcinoma: asbestos-related cancer without asbestos, Cancer Research, Vol. 59, pp. 4570–4573.

41) Mayall, F. G., Jacobson, G. and Wilkins, R. (1999): Mutations of p53 gene and SV40 sequences in asbestos associated and non-asbestos-associated mesotheliomas, Journal of Clinical Pathology, Vol. 52, pp. 291–293.

42) Husagafvel-Pursiainen, K., Karjalainen, A., Kanno, A., Anttila, S., Partanen, T., Oja-järvi, A. and Vainio, H. (1999): Lung cancer and past occupational exposure to asbestos. Role of p53 and K-ras mutations, American Journal of Respiratory and Critical Care Medicine, Vol. 20, pp. 667–674.

43) Liu, B. C., Fu, D. C., Miao, Q., Wang, H. H. and You, B. R. (1998) p53 gene mutations in asbestos associated cancers, Biomedical and environmental sciences, Vol. 11, pp. 226–232.

44) Husagafvel-Pursiainen, K., Kanno, A., Oksa, P., Suititala, T., Koskinen, H., Partanen, R., Hemminki, K., Smith, S., Rosenstock-Leib, R. and Brandt-Rauf, P. W. (1997): Mutations, tissue accumulations, and serum levels of p53 in patients with occupational cancers from asbestos and silica exposure, Environmental and Molecular Mutagenesis, Vol. 30, pp. 224–230.

45) Kanno, A. (1996): A molecular and epidemiological study on bladder cancer: p53 mutations, tobacco smoking, and occupational exposure to asbestos, Cancer Epidemiology, Biomarkers & Prevention, Vol. 5, pp. 33–39.

46) Wang, X., Christiani, D. C., Wenecke, J. K., Fischbein, M., Xu, X., Cheng, T. J., Mark, E., Wain, J. C. and Kelsey, K. T. (1995): Mutations in the p53 gene in lung cancer are associated with cigarette smoking and asbestos exposure, Cancer Epidemiology, Biomarkers & Prevention, Vol. 4, pp. 543–548.

47) Vainio, H., Husagafvel-Pursiainen, K., Anttila, S., Karjalainen, A., Hackman, P. and Partanen, T. (1993): Interaction between smoking and asbestos in human lung adenocarcinoma: role of K-ras mutations, Environmental Health Perspectives, Vol. 3, pp. 189–192.

48) Husagafvel-Pursiainen, K., Hackman, P., Ridanpää, M., Anttila, S., Karjalainen, A., Partanen, T., Taikina-Aho, O., Heikkilä, L. and Vainio, H. (1993): K-ras mutations in human adenocarcinoma of the lung: association with smoking and occupational exposure to asbestos, International Journal of Cancer, Vol. 53, pp. 250–256.

49) Muller, P. A. and Vousden, K. H. (2013): p53 mutations in cancer, Nature Cell Biology, Vol. 15, pp. 2–8.

50) Nymark, P., Wikman, H., Ruosaaari, S., Hollmén, J., Vanhala, E., Karjalainen, A., Anttila, S. and Knuttila, S. (2006): Identification of specific gene copy number changes in asbestos-related lung cancer, Cancer Research, Vol. 66, pp. 5737–5743.

51) Wikman, H., Ruosaaari, S., Nymark, P., Sarhadi, V. K., Saharinen, J., Vanhala, E., Karjalainen, A., Hollmén, J., Knuttila, S. and Anttila, S. (2007): Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer, Oncogene, Vol. 26, pp. 4730–4737.

52) Nymark, P., Kettunen, E., Aavikko, M., Ruosaaari, S., Kuosma, E., Vanhala, E., Salmenkivi, K., Pirinen, R., Karjalainen, A., Knuttila, S., Wikman, H. and Anttila, S. (2009): Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer, Clinical Cancer Research, Vol. 15, pp. 468–475.

53) Kettunen, E., Aavikko, M., Nymark, P., Ruosaaari, S., Wikman, H., Vanhala, E., Salmenkivi, K., Pirinen, R., Karjalainen, A., Kuosma, E. and Anttila, S. (2009): DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure, British Journal of Cancer, Vol. 100, pp. 1336–1342.

54) Palumbo, E., Tosoni, E., Matricardi, L. and Russo, A. (2013): Genetic instability of the tumor suppressor gene FHIT in normal human cells, Genes, Chromosomes & Cancer, Vol. 52, pp. 832–844.

55) Nelson, H. H., Wenecke, J. K., Gunn, L., Wain, J. C., Christiani, D. C. and Kelsey, K. T. (1998): Chromosome 3p14 alterations in lung cancer: evidence that FHIT exon deletion is a target of tobacco carcinogens and asbestos, Cancer Research, Vol. 58, pp. 1804–1807.

56) Pylkkänen, L., Wolff, H., Stjernvall, T., Tuominen, P., Sioris, T., Karjalainen, A., Anttila, S. and Husagafvel-Pursiainen, K. (2002): Reduced Hf1 protein expression and loss of heterozygosity at FHIT gene in tumours from smoking and asbestos-exposed lung cancer patients, International Journal of Oncology, Vol. 20, pp. 285–290.

57) Metcalf, R. A., Welsh, J. A., Bennett, W. P., Seddon, M. B., Lehan, T. A., Pelin, K., Linnainmaa, K., Tammiilehto, L., Mattson, K., Gerwin, B. I. and Harris, C. C. (1992): p53 and Kirsten-ras mutations in human mesothelioma cell lines, Cancer Research, Vol. 52, pp. 2610–2615.

58) Mezzapelle, R., Miglio, U., Rena, O., Paganotti, A., Allegrini, S., Antonia, J., Molinari, F., Frattini, M., Monga, G., Alabiso, O. and Boldorini, R. (2013): Mutation analysis of the EGFR gene and downstream signalling pathway in histologic samples of malignant pleural mesothelioma, British Journal of Cancer, Vol. 108, pp. 1743–1749.

59) Venti, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G. and Wilkinson, K. D. (2008): BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization, Cancer Research, Vol. 68, pp. 6953–6962.
74) Phé, V., Cussenot, O. and Roupér, M. (2009): Interest of methylated genes as biomarkers in urothelial cell carcinoma of the urinary tract, BJU International, Vol. 104, pp. 896–901.

75) Wentzensen, N., Sherman, M. E., Schiffman, M. and Wang, S. S. (2009): Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science, Gynecologic Oncology, Vol. 112, pp. 293–299.

76) Dammann, R., Strunnikova, M., Schagdarsurengin, U., Rastetter, M., Papritz, M., Hattemer, U. E., Hofmann, H. S., Silber, R. E., Burdach, S. and Hansen, G. (2005): CpG island methylation and expression of tumour-associated genes in lung carcinoma, European Journal of Cancer, Vol. 41, pp. 1223–1236.

77) Fujii, M., Fujimoto, N., Hiraki, A., Gemba, K., Aoe, K., Umemura, S., Katayama, H., Takigawa, N., Kiura, K., Tanimoto, M. and Kishimoto, T. (2012): Aberrant DNA methylation profile in pleural fluid for differential diagnosis of malignant pleural mesothelioma, Cancer Science, Vol. 103, pp. 510–514.

78) Sawan, C. and Herceg, Z. (2010): Histone modifications and cancer, Advances in Genetics, Vol. 70, pp. 57–85.

79) Ramalingam, S. S. and Belani, C. P. (2008): Recent advances in the treatment of malignant pleural mesothelioma, Journal of Thoracic Oncology, Vol. 3, pp. 1056–1064.

80) Maki, Y., Asano, H., Toyooka, S., Soh, J., Kubo, T., Katsui, K., Ueno, T., Shien, K., Muraoka, T., Tanaka, N., Yamamoto, H., Tsukuda, K., Kishimoto, T., Kanazawa, S. and Miyoshi, S. (2012): MicroRNA miR-34b/c enhances cellular radiosensitivity of malignant pleural mesothelioma cells, Anticancer Research, Vol. 32, pp. 4871–4875.

81) Kirschner, M. B., Cheng, Y. Y., Badrian, B., Kao, S. C., Creaney, J., Edelman, J. J., Armstrong, N. J., Vallely, M. P., Musk, A. W., Robinson, B. W., McCaughan, B. C., Klebe, S., Mutsaers, E. S., van Zandwijk, N. and Reid, G. (2012): Increased circulating miR-625-3p: a potential biomarker for patients with malignant pleural mesothelioma, Journal of Thoracic Oncology, Vol. 7, pp. 1184–1191.

82) Santarelli, L., Straffella, E., Staffolani, S., Amati, M., Emanuelli, M., Sartini, D., Pozzi, V., Carbonari, D., Bracci, M., Pignotti, E., Mazzanti, P., Sabbatini, A., Ranaldi, R., Gasparini, S., Neužil, J. and Tomasetti, M. (2011): Association of MiR-126 with soluble mesothelin-related peptides, a marker for malignant mesothelioma, PLoS One, Vol. 6, pp. e18232.

83) Pass, H. I., Goparaju, C., Ivanov, S., Donington, J., Carbone, M., Hoshen, M., Cohen, D., Chajut, A., Rosenwald, S., Dan, H., Benjamin, S. and Aharonov, R. (2010): hsa-miR-29c⁎ is linked to the prognosis of malignant pleural mesothelioma, Cancer Research, Vol. 70, pp. 1916–1924.

84) Weber, D. G., Johnen, G., Bryk, O., Jöckel, K. H. and Brüning, T. (2012): Identification of miRNA-103 in the cellular fraction of human peripheral blood as a potential biomarker for malignant mesothelioma – a pilot study, PLoS One, Vol. 7, pp. e30221.

85) Busacca, S., Germano, S., De Cecco, L., Rinaldi, M., Comoglio, F., Favero, F., Murer, B., Mutti, L., Pierotti, M. and Gaudino, G. (2010): MicroRNA signature of malignant mesothelioma with potential diagnostic and prognostic implications, American Journal of Respiratory Cell
and Molecular Biology, Vol. 42, pp. 312–319.
86) Tomasetti, M., Staffolani, S., Nocchi, L., Neuzil, J., Straffella, E., Manzella, N., Mariotti, L., Bracci, M., Valentino, M., Amati, M. and Santarelli, L. (2012): Clinical significance of circulating miR-126 quantification in malignant mesothelioma patients, Clinical biochemistry, Vol. 45, pp. 575–581.
87) Benjamin, H., Lebanony, D., Rosenwald, S., Cohen, L., Gibori, H., Barabash, N., Ashkenazi, K., Goren, E., Meiri, E., Morgenstern, S., Perelman, M., Barshack, I., Goren, Y., Edmonston, T.B., Chajut, A., Aharonov, R., Bentwich, Z., Rosenfeld, N. and Cohen, D. (2010): A diagnostic assay based on microRNA expression accurately identifies malignant pleural mesothelioma, Journal of Molecular Diagnostics, Vol. 12, pp. 771–779.
88) Khodayari, N., Mohammed, K. A., Goldberg, E. P. and Nasreen, N. (2011): EphrinA1 inhibits malignant mesothelioma tumor growth via let-7 microRNA-mediated repression of the RAS oncogene, Cancer Gene Therapy, Vol. 18, pp. 806–816.
89) Kubo, T., Toyooka, S., Tsukuda, K., Sakaguchi, M., Fukazawa, T., Soh, J., Asano, H., Ueno, T., Muraoka, T., Yamamoto, H., Nasu, Y., Kishimoto, T., Pass, H. I., Matsui, H., Huh, N. H. and Miyoshi, S. (2011): Epigenetic silencing of microRNA-34b/c plays an important role in the pathogenesis of malignant pleural mesothelioma, Clinical Cancer Research, Vol. 17, pp. 4965–4974.
90) Ghawmeh, T., Thunberg, U., Castro, J., Murray, F. and Layrargoon-Lewin, N. (2011): miR-34a expression, cell cycle arrest and cell death of malignant mesothelioma cells upon treatment with radiation, docetaxel or combination treatment, Oncology, Vol. 81, pp. 330–335.
91) Ivanov, S. V., Goparaju, C. M., Lopez, P., Zavadil, J., Toren-Haritan, G., Rosenwald, S., Hoshen, M., Chajut, A., Cohen, D. and Pass, H. I. (2010): Pro-tumorigenic effects of miR-31 loss in mesothelioma, Journal of Biological Chemistry, Vol. 285, pp. 22809–22817.
92) Balatti, V., Maniero, S., Ferracin, M., Veronese, A., Negrini, M., Ferrocci, G., Martini, F. and Tognon, M. G. (2011): MicroRNAs dysregulation in human malignant pleural mesothelioma, Journal of Thoracic Oncology, Vol. 6, pp. 844–851.
93) Nymark, P., Guled, M., Lahti, L., Lindholm, P. M., Salmenkivi, K., Bagwan, I., Nicholson, A. G. and Knuutila, S. (2009): CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma - A miRNA microarray analysis, Genes, Chromosomes & Cancer, Vol. 48, pp. 615–623.
94) Nymark, P., Guled, M., Borze, I., Faisal, A., Lahti, L., Salmenkivi, K., Kettunen, E., Anttila, S. and Knuutila, S. (2011): Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer, Genes, Chromosomes & Cancer, Vol. 50, pp. 585–597.

Author's short biography

Hiroto Izumi

Hiroto Izumi M.D. & Ph.D. is an associate professor in Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan. He graduated from Oita Medical University in 1988 and obtained doctorate in 1996. He joined Department of Molecular Biology, University of Occupational and Environmental Health Japan, in 1996. He was visiting Researcher at Institute of Anatomy and Cell Biology, Göteborg University in Sweden from 1997 to 1999. From 2013, he joined current department. Research theme is the analysis of the biological properties of cancer. In particular, he has focused on the analysis of mechanisms of the anti-cancer drug resistance.

Yasuo Morimoto

Yasuo Morimoto graduated from Kagoshima University, Faculty of Medicine at 1986. He received his Ph.D. at 1993 from University of Occupational and Environmental Health, Japan (UOEH). Since 2000 he is professor of Institute of Industrial Ecological Sciences, UOEH. His topics of research are hazard assessment and pulmonary toxicity of environmental particles including nano and fibrous materials.