Large N transition in the 2D SU(N)xSU(N) nonlinear sigma model.

Rajamani Narayanan
Florida International University, Department of Physics, Miami, FL 33199, USA
E-mail: rajamani.narayanan@fiu.edu

Herbert Neuberger
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855, USA
E-mail: neuberg@physics.rutgers.edu

Ettore Vicari
Dipartimento di Fisica, Università di Pisa and INFN, I-56127 Pisa, Italy
E-mail: vicari@df.unipi.it

We consider the characteristic polynomial associated with the smoothed two point function in two dimensional large N principal chiral model. We numerically show that it undergoes a transition at a critical distance of the order of the correlation length. The transition is in the same universality class as two dimensional large N QCD.
Large N transition in the 2D SU(N)xSU(N) nonlinear sigma model.

Rajamani Narayanan

1. Two dimensional SU(N) X SU(N) principal chiral model

The two dimensional SU(N) X SU(N) principal chiral model is similar to four dimensional SU(N) gauge theory in many respects\[1\]. The continuum action is given by

\[S = \frac{N}{T} \int d^2x Tr \partial_\mu g(x) \partial_\mu g^\dagger(x) \] (1.1)

where \(g(x) \in SU(N) \). The global symmetry group \(SU(N)_L \times SU(N)_R \) reduces down to a single SU(N) “diagonal subgroup” if we make a translation breaking “gauge choice”, \(g(0) = 1 \). This model is asymptotically free and there are \(N-1 \) particle states with masses

\[M_R = M \frac{\sin \left(\frac{R\pi}{N} \right)}{\sin \left(\frac{\pi}{N} \right)}, \quad 1 \leq R \leq N-1. \] (1.2)

The states corresponding to the \(R \)-th mass are a multiplet transforming as an \(R \) component antisymmetric tensor of the diagonal symmetry group.

The two point function \(W = g(0)g^\dagger(x) \) plays the role of Wilson loop with the separation \(x \) playing the role of area. We expect the behavior to be perturbative for small \(x \). On the other hand, non-perturbative effects become important for large \(x \).

One expects

\[G_R(x) = \langle \chi_R(g(0)g^\dagger(x)) \rangle \sim C_R \left(\frac{N}{R} \right) e^{-M_R|x|} \] (1.3)

where \(\chi_R \) is the trace in the \(R \)-antisymmetric representation. Comparison with the heat-kernel representation of the characteristic polynomial associated with the Wilson loop operator in two dimensional large \(N \) QCD \[2\] suggests the following connections:

- The two point correlator, \(W(d) = g(0)g^\dagger(d) \), is analogous to the Wilson loop operator.
- \(M|x| \) is analogous to the dimensionless area, \(t \).

Based on this analogy, we hypothesize \[3\] that the characteristic polynomial, \(\det(z - g(0)g^\dagger(d)) \), will undergo a transition at some value \(d_c \). The universal behavior at this transition will be in the same universality class as two dimensional large \(N \) QCD.

2. Setting the scale

Numerical measurement of the correlation length using the lattice action

\[S_L = -2Nb \sum_{x,\mu} \Re Tr [g(x)g^\dagger(x+\mu)] \] (2.1)

and

\[\xi_G^2 = \frac{1}{4} \sum_i x_i^2 G_1(x) \] (2.2)

yields the following continuum result \[4\]:

\[M\xi_G = 0.991(1) \] (2.3)
Large N transition in the 2D SU(N)xSU(N) nonlinear sigma model. Rajamani Narayanan

We use ξ_G to set the scale and it is well described by

$$\xi_G = 0.991 \left[\frac{e^{\frac{\pi}{16\pi}}}{16\pi} \right] \sqrt{E} \exp \left(\frac{\pi}{E} \right)$$ \hspace{1cm} (2.4)

in the range $11 \leq \xi_G \leq 20$ with

$$E = 1 - \frac{1}{N} \text{Re} \langle Tr [g(0)g^\dagger(\hat{1})] \rangle = \frac{1}{8b} + \frac{1}{256b^2} + \frac{0.000545}{b^3} - \frac{0.00095}{b^4} + \frac{0.00043}{b^5}$$ \hspace{1cm} (2.5)

The above equations will be used to find a b for a given ξ.

3. Smeared SU(N) matrices

Well defined operators are obtained using smeared matrices. We start with $g(x) \equiv g_0(x)$ and one smearing step takes us from $g_t(x)$ to $g_{t+1}(x)$ using the following procedure. Define $Z_{t+1}(x)$ by:

$$Z_{t+1}(x) = \sum_{\pm\mu} [g_{t}^\dagger(x)g_t(x+\mu) - 1].$$ \hspace{1cm} (3.1)

Construct anti-hermitian traceless $SU(N)$ matrices $A_{t+1}(x)$

$$A_{t+1}(x) = Z_{t+1}(x) - Z^\dagger_{t+1}(x) - \frac{1}{N} \text{Tr}(Z_{t+1}(x) - Z^\dagger_{t+1}(x)) \equiv -A^\dagger_{t+1}(x).$$ \hspace{1cm} (3.2)

Set

$$L_{t+1}(x) = \exp[fA_{t+1}(x)].$$ \hspace{1cm} (3.3)

g_{t+1}(x) is defined in terms of $L_{t+1}(x)$ by:

$$g_{t+1}(x) = g_t(x)L_{t+1}(x).$$ \hspace{1cm} (3.4)

This procedure is iterated till we reach $g_n(x)$ and the smearing parameter is defined by $\tau = nf$. For a fixed ξ_G, the parameter τ is fixed such that τ/ξ_G^2 remains unchanged. We set $n = 30$ in our numerical simulations and this was found sufficiently large to eliminate a dependence on the two factors, f and n, individually.

4. Numerical details

We need $L/\xi_G > 7$ to minimize finite volume effects. We worked in the range $11 \leq \xi_G \leq 20$ and therefore we chose $L = 150$. We used a combination of Metropolis and over-relaxation at each site x for our updates. The full SU(N) group was explored. 200-250 passes of the whole lattices were sufficient to thermalize starting from $g(x) \equiv 1$. 50 passes per step were enough to equilibrate if ξ_G was increased in steps of 1.

The test of the universality hypothesis proceeds in the same manner as for the three dimensional large N gauge theory. We defined the characteristic polynomial, $F(y,d)$, as

$$F(y,d) = \langle \det(e^{y/2} + e^{-y/2}W(d)) \rangle$$ \hspace{1cm} (4.1)
Large N transition in the 2D SU(N)×SU(N) nonlinear sigma model.

Rajamani Narayanan

Figure 1: Behavior of Ω as a function of α in the scaling region.

We perform a Taylor expansion,

$$F(y,d,N) = C_0(d,N) + C_2(d,N)y^2 + C_4(d,N)y^4 + \ldots \quad (4.2)$$

since $F(y,d)$ is an even function of y. It is useful to define

$$\Omega(d,N) = \frac{C_0(d,N)C_4(d,N)}{C_2^2(d,N)} \quad (4.3)$$

which resembles a Binder cumulant.

As $N \to \infty$, $\Omega(d,\infty)$ is a step function with $\Omega = \frac{1}{6}$ for short distances $d < d_c$ and $\Omega = \frac{1}{2}$ for long distances, $d > d_c$. Zooming in on the step function as $N \to \infty$ in the vicinity of $d = d_c$ using the scaling variable $\alpha = \sqrt{N}(d - d_c)$, we obtain Fig. 1.

We use $\Omega(\alpha = 0) = 0.364739936$ to obtain the critical size d_c in the following manner. Given an N and a ξ, we find the d_c that makes the Binder cumulant $\Omega(d_c,N) = 0.364739936$ as shown in Fig. 2. We look at d_c as a function of ξ for a given N. This gives us the continuum value of d_c/ξ for that N. This extrapolation is shown in Fig. 3 for $N = 30$. We then take the large N limit as shown in Fig. 4 and it gives us

$$\left. \frac{d_c}{\xi} \right|_{N=\infty} = 0.885(3) \quad (4.4)$$

Further substantiation of the universal behavior can be given by comparing the eigenvalues distribution in the model to the Durhuus-Olesen eigenvalue distributions in two dimensional QCD. This is shown for one example each on either side of the critical point in Fig. 5 and very close to the critical point in Fig. 6. We use $2k = t$ to match with the notation in [5].
Figure 2: Plot of $\Omega(d)$ after the subtraction of $\Omega(\alpha = 0) = 0.364739936$ as a function of d/ξ_G.

Figure 3: Extrapolation to continuum of d_c/ξ for $N = 30$.

fit: $d_c/\xi = 1543/\xi^4 - 26.10/\xi^2 + 0.7682$

With error estimation: $(d/\xi)_{critical,\,continuum} = 0.768(2)$
Large N transition in the 2D SU(N)\timesSU(N) nonlinear sigma model.

Figure 4: Extrapolation of the continuum d_c/ξ to infinite N.

Figure 5: Examples of eigenvalue distribution for one small and one large distance.
Large N transition in the 2D SU(N) x SU(N) nonlinear sigma model.

Rajamani Narayanan

Figure 6: An example of an almost critical eigenvalue distribution.

Acknowledgments

R.N. acknowledge partial support by the NSF under grant number PHY-055375 at Florida International University. H. N. acknowledges partial support by the DOE, grant # DE-FG02-01ER41165, and the SAS of Rutgers University.

References

[1] P. Rossi, M. Campostrini and E. Vicari, Phys. Rept. 302, 143 (1998) [arXiv:hep-lat/9609003].
[2] R. Narayanan and H. Neuberger, JHEP 0712, 066 (2007) [arXiv:0711.4551 [hep-th]].
[3] R. Narayanan, H. Neuberger and E. Vicari, JHEP 0804, 094 (2008) [arXiv:0803.3833 [hep-th]].
[4] P. Rossi and E. Vicari, Phys. Rev. D 49, 1621 (1994) [Erratum-ibid. D 55, 1698 (1997)] [arXiv:hep-lat/9307014].
[5] B. Durhuus and P. Olesen, Nucl. Phys. B 184, 461 (1981).