How to Cite this article: Min Woo Kang, Navdeep Tangri, Soie Kwon, Lilin Li, Hyeseung Lee, Seung Seok Han, Jung Nam An, Jeonghwan Lee, Dong Kim, Chun Soo Lim, Yon Su Kim, Sejoong Kim, and Jung Pyo Lee, Development of new equations predicting the mortality risk of patients with continuous renal replacement therapy, *Kidney360*, Publish Ahead of Print, 2022, 10.34067/KID.0000862022

Article Type: Original Investigation

Development of new equations predicting the mortality risk of patients with continuous renal replacement therapy

DOI: 10.34067/KID.0000862022

Min Woo Kang, Navdeep Tangri, Soie Kwon, Lilin Li, Hyeseung Lee, Seung Seok Han, Jung Nam An, Jeonghwan Lee, Dong Kim, Chun Soo Lim, Yon Su Kim, Sejoong Kim, and Jung Pyo Lee

Key Points:

*Predicting the risk of mortality in patients with CRRT is important for appropriate management but challenging.

*We developed equations for predicting the mortality risk of patients with CRRT, using clinical data of the patients.

*The newly developed equations showed superior performance to SOFA and APACHE II scores.

Abstract:

Background: Predicting the risk of death in patients admitted to the critical care unit facilitates appropriate management. In particular, among critically ill patients, patients with continuous renal replacement therapy (CRRT) have high mortality, and predicting the mortality risk of these patients is difficult. The purpose of this study was to develop models for predicting the mortality risk of patients on CRRT and to validate the models externally. Methods: A total of 699 adult patients with CRRT who participated in the VENUS (VolumE maNagement Under body composition monitoring in critically ill patientS on CRRT) trial and 1,515 adult patients with CRRT in Seoul National University Hospital were selected as the development and validation cohorts, respectively. Using 11 predictor variables selected by the Cox proportional hazards model and clinical importance, equations predicting mortality within 7 days, 14 days, and 28 days were developed with development cohort data. Results: The equation using 11 variables had area under the time-dependent receiver operating characteristic curve (AUROC) values of 0.745, 0.743, and 0.726 for predicting 7-day, 14-day, and 28-day mortality, respectively. All equations had significantly higher AUROCs than the Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores. The 11-variable equation was superior to the SOFA and APACHE II scores in the integrated discrimination index and net reclassification improvement analyses. Conclusions: The newly developed equations for predicting CRRT patient mortality showed superior performance to the previous scoring systems, and they can help physicians manage patients.

Disclosures: S. Kim reports the following: Consultancy: Exosome Plus; Advisory or Leadership Role: Korean Society of Nephrology, Editorial Board; Korean Society of Hypertension, Editorial Board; and Other Interests or Relationships: Korean Society of Nephrology. Y. S. Kim reports the following: Advisory or Leadership Role: President, Seoul National University Hospital. J. Lee reports the following: Advisory or Leadership Role: Kidney Research and Clinical Practice. C. Lim reports the following: Advisory or Leadership Role: President elect, Korean Society of Nephrology. N. Tangri reports the following: Consultancy: Tricida Inc., PulseData Inc, Mesentech Inc., Renibus, Marizyme; Ownership Interest: Tricida Inc., PulseData Inc, Mesentech Inc., Clinpredict Ltd, Renibus, Marizyme, Klinrisk, Quanta; Research Funding: Astra Zeneca Inc., Tricida Inc, Janssen, Otsuka, BI-Lilly, Bayer; Honoraria: Otsuka Pharmaceuticals, Astra Zeneca Inc., BI-Lilly, Janssen, Pfizer, Bayer; Patents or Royalties: Marizyme, Klinrisk; Advisory or Leadership Role: Tricida Inc., Clinpredict, Klinrisk; and Other Interests or Relationships: National Kidney Foundation; Founder - Klinrisk, Clinpredict. The remaining authors have nothing to disclose.

Funding: Korea Health Industry Development Institute (KHIDI): Jung Pyo Pyo Lee, HI17C1827; Ministry of Health and Welfare (MOHW): Jung Pyo Pyo Lee, HI17C1827; Seoul National University Hospital (SNUH): Jung Pyo Pyo Lee, 03-2021-0380
Author Contributions: Min Woo Kang: Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology; Supervision; Visualization; Writing - original draft Navdeep Tangri: Conceptualization; Formal analysis; Methodology; Visualization; Writing - original draft Soie Kwon: Conceptualization; Data curation; Formal analysis; Methodology; Supervision Lilin Li: Data curation Hyeseung Lee: Data curation Seung Seok Han: Conceptualization; Data curation; Formal analysis Jung Nam An: Data curation; Formal analysis; Methodology Jeonghwan Lee: Data curation; Formal analysis; Methodology Dong Kim: Data curation; Formal analysis; Methodology Chun Soo Lim: Data curation; Formal analysis; Methodology Yon Su Kim: Data curation; Formal analysis; Methodology Sejoong Kim: Data curation; Formal analysis; Methodology Jung Pyo Lee: Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology; Supervision; Visualization; Writing - original draft

Data Sharing Statement: All data is included in the manuscript and/or supporting information.

Clinical Trials Registration:

Registration Number:

Registration Date:

The information on this cover page is based on the most recent submission data from the authors. It may vary from the final published article. Any fields remaining blank are not applicable for this manuscript.
Development of new equations predicting the mortality risk of patients with continuous renal replacement therapy

Min Woo Kang¹, Navdeep Tangri², Soie Kwon¹, Lilin Li¹,³, Hyeseung Lee¹, Seung Seok Han¹, Jung Nam An⁴, Jeonghwan Lee⁵, Dong Ki Kim¹,⁶, Chun Soo Lim⁵,⁶, Yon Su Kim¹,⁶, Sejoong Kim⁷, Jung Pyo Lee⁵,⁶, VENUS trial Investigators.

¹Department of Internal Medicine, Seoul National University Hospital, Republic of Korea
²Department of Internal Medicine, University of Manitoba, Canada
³Department of Intensive Care Unit, Yanbian University Hospital, China
⁴Department of Internal Medicine, Hallym University Sacred Heart Hospital, Republic of Korea
⁵Department of Internal Medicine, Seoul National University Boramae Medical Center, Republic of Korea
⁶Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea
⁷Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea

Corresponding author
Jung Pyo Lee, MD, PhD
Professor
Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Boramae Medical Center
20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 (Republic of Korea)
E-mail: jungpyolee@snu.ac.kr
Key points

- Predicting the risk of mortality in patients with CRRT is important for appropriate management but challenging.
- We developed equations for predicting the mortality risk of patients with CRRT, using clinical data of the patients.
- The newly developed equations showed superior performance to SOFA and APACHE II scores.

Abstract

Background: Predicting the risk of death in patients admitted to the critical care unit facilitates appropriate management. In particular, among critically ill patients, patients with continuous renal replacement therapy (CRRT) have high mortality, and predicting the mortality risk of these patients is difficult. The purpose of this study was to develop models for predicting the mortality risk of patients on CRRT and to validate the models externally.

Methods: A total of 699 adult patients with CRRT who participated in the VENUS (VolumE maNagement Under body composition monitoring in critically ill patientS on CRRT) trial and 1,515 adult patients with CRRT in Seoul National University Hospital were selected as the development and validation cohorts, respectively. Using 11 predictor variables selected by the Cox proportional hazards model and clinical importance, equations predicting mortality within 7 days, 14 days, and 28 days were developed with development cohort data.

Results: The equation using 11 variables had area under the time-dependent receiver operating characteristic curve (AUROC) values of 0.745, 0.743, and 0.726 for predicting 7-
day, 14-day, and 28-day mortality, respectively. All equations had significantly higher AUROCs than the Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores. The 11-variable equation was superior to the SOFA and APACHE II scores in the integrated discrimination index and net reclassification improvement analyses.

Conclusions: The newly developed equations for predicting CRRT patient mortality showed superior performance to the previous scoring systems, and they can help physicians manage patients.
Background

Predicting prognosis and outcome is helpful in the management of patients. Especially in intensive care, it is necessary to select salvageable patients with reversible medical conditions and provide them with more active treatment\(^1\). Patients and families in the intensive care unit are often concerned about the risk of death, and accurate prognostic information can help reduce anxiety and avoid potentially futile therapy. Therefore, predicting the outcomes of critically ill patients is important, and various scoring systems have been developed for this purpose. The Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores are representative predictive scoring systems for critical care populations and have been widely used\(^2\text{-}^5\).

Critically ill patients, especially those undergoing continuous renal replacement therapy (CRRT), are at a particularly high risk for death\(^6\text{-}^7\). In addition, patients undergoing CRRT have many comorbidities, and it is difficult to predict the mortality of these patients because of their complex clinical situations and the rapid changes in their condition\(^8\text{-}^9\). Because the SOFA and APACHE II scores were developed for all critically ill patients, there may be limitations in their application to specific patient subgroups, such as those with CRRT. The purpose of this study is to develop and validate equations that predict the mortality of patients undergoing CRRT and to compare them with the existing scoring systems, SOFA and APACHE II.
Materials and Methods

Study population

We studied CRRT patients admitted to eight hospitals in Korea who participated in the VENUS (VolumE maNagement Under body composition monitoring in critically ill patientS on CRRT) trial from March 24, 2017, to October 31, 2019, and Seoul National University Hospital from June 24, 2010, to December 29, 2016. We excluded patients who were younger than 18 years or had missing mortality data. Patients with missing data on variables needed for developing equations were excluded. All procedures were performed in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All patients who participated in the VENUS trial provided written informed consent at the time of their enrollment. Approval to perform the study was obtained from the Institutional Review Board of each center. (Institutional Review Board of the Seoul National University Hospital, Bundang Seoul National University Hospital, Seoul National University Boramae Medical Center, Ewha Womans University Seoul Hospital, Pusan National University Hospital, Kyungpook National University Hospital, Korea University Guro Hospital, and Hallym University Dongtan Sacred Heart Hospital) The study population data of VENUS trial were used as a development cohort to develop the equations. Patient data from Seoul National University Hospital were used as a validation cohort to validate the equations developed from the development cohort (Figure 1).

Variables and development of equations for predicting mortality

To select variables for use as predictor variables in the equation, we collected the
demographic data, comorbidities, laboratory data, and vital signs of patients. All predictor variables were obtained at baseline of starting CRRT. The laboratory value was the latest test result within 24 hours of CRRT initiation. Comorbid conditions were categorized as present or absent at the time of starting CRRT. Using univariate Cox proportional hazards regression models, we selected the variables that had a statistically significant association with all-cause mortality at a p value threshold of 0.05. Even if the variables did not have a statistically significant association with mortality in the Cox proportional model, those that were identified to be clinically associated with mortality were selected as predictor variables.

Using the survival rate, Cox regression coefficients, and mean values of the variables, we made equations for calculating the probability of death within specific days11. The equations were developed with the development cohort, which includes patient data from VENUS trial. Equations using many predictor variables could have good prediction performance. However, they have a disadvantage in being difficult to apply to patients with limited data. Therefore, among the selected predictor variables, variables that had a higher correlation with mortality in the Cox proportional hazard models or were identified to be highly associated with mortality were selected to develop equations with fewer predictor variables. The outcome was all-cause mortality within 7 days, 14 days, and 28 days.

Validation of the equations

In both the development and validation cohorts, time-dependent receiver operating characteristic (ROC) curves for predicting 7-day, 14-day, and 28-day mortality were analyzed for the developed equations and SOFA and APACHE II scores. Then, the areas under the time-dependent receiver operating characteristic curve (AUROCs) of the developed equations were analyzed and compared with the AUROCs of the SOFA and APACHE II scores. To
compare the equations and conventional scoring systems, such as SOFA and APACHE II, and identify the equation with the best performance among the developed equations, integrated discrimination improvement (IDI) and continuous net reclassification improvement (NRI) analyses were performed with validation cohort data12-14.

To identify the calibration performance of the developed equations, calibration plots were analyzed, and the Brier scores of the equations were calculated and compared with each other. Statistical analyses were performed using R software (Version 4.0.3. R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/). P values < 0.05 were considered significant.
Results

Study population and baseline characteristics

A total of 699 patients in the development cohort and 1,515 patients in the validation cohort were included in the analysis (Figure 1). The mean follow-up duration was 135.6 days in the development cohort and 32.2 days in the validation cohort. The baseline characteristics, excluding mean arterial pressure, albumin, pH, and Glasgow coma scale, differed between the development cohort and validation cohort (Table 1).

Development of equations

As a result of univariate Cox proportional hazards regression analysis in the development cohort data, 10 variables were significantly associated with mortality: presence of malignancy, mean arterial pressure, heart rate, respiratory rate, platelet count, creatinine level, total bilirubin level, albumin level, pH, and Glasgow coma scale. Although age did not show a significant association with mortality in the univariate Cox proportional hazards regression analysis, because elderly patients have high mortality in general, age was selected as a predictor variable. We performed multivariate Cox proportional hazards regression analysis using the 11 predictor variables described above and analyzed the survival rates at 7 days, 14 days, and 28 days, and Cox regression coefficients of the predictor variables were calculated. In multivariate Cox proportional hazards regression analysis using the 11 predictor variables, 7 variables with the strongest association that were clinically considered to be more associated with mortality were selected: age, heart rate, creatinine level, total bilirubin level, albumin level, pH, and Glasgow coma scale. Among the 7 variables, 4 variables were selected in the same way, and the equations were developed in the same way using 7 and 4
variables. As a result, we developed 9 equations, which were 11-variable, 7-variable, and 4-variable equations that predict mortality within 7 days, 14 days and 28 days: VENUS scores (Table S1).

Prediction model discrimination in the development cohort

In the development cohort, the 11-variable equation had time-dependent AUROC values of 0.728, 0.729, and 0.739 for predicting 7-day, 14-day, and 28-day mortality, respectively (Table S2). Among the developed equations, the 11-variable equation had the highest AUROC values, followed by the 7-variable equation and the 4-variable equation (Table S2, Figure S1). All developed equations had AUROC values significantly higher than those of SOFA and APACHE II.

Prediction model discrimination in the validation cohort

In the validation cohort, the 11-variable equation had time-dependent AUROC values of 0.745, 0.743, and 0.726 for predicting 7-day, 14-day, and 28-day mortality, respectively (Table 2). As in the development cohort, 11-variable equation had the highest AUROC value, followed by the 7-variable equation and the 4-variable equation (Table 2, Figure 2). Additionally, all developed equations had AUROC values significantly higher than those of SOFA and APACHE II. As a result of IDI and NRI, the 11-variable and 7-variable equations showed statistically superior performance compared with SOFA and APACHE II. However, the 4-variable equation had superior performance compared with APACHE II alone, not SOFA (Table 3).
Calibration and reclassification analyses

Figure 3 shows the calibration plot, and all of the equations showed good calibration. The calibration plot showed the tendency of the equations to overestimate the risk of patients with a high mortality risk, but overall calibration was good with all three equations approximating the diagonal line.

For the Brier scores, among the developed equations, the 11-variable equation had the lowest Brier score for all outcomes at 7 days, 14 days, and 28 days. However, there was no statistically significant difference when comparing Brier scores among the developed equations (Table 4).

When comparing the discrimination slopes (IDI) or net reclassification, the 11-variable equation was superior to both the 7-variable and 4-variable equations, and the 7-variable equation was superior to the 4-variable equation (Table 3).
Discussion

In this study, the newly developed equations, VENUS scores, for predicting the mortality of patients with CRRT had better discrimination and calibration than the SOFA and APACHE II scores. Among the equations, the 11-variable equation, which contains the most variables, showed the best performance.

Patients undergoing CRRT have a high risk of mortality, and previous studies have reported in-hospital mortality ranging from 37% to 79%. There are various reasons for the high mortality of CRRT patients, including the many comorbidities of patients with CRRT and severe clinical situations such as septic shock. Therefore, high mortality and many situations must be considered for predicting the mortality of CRRT patients. Previous studies showed that the SOFA and APACHE II scores have limitations in predicting the mortality of patients with CRRT. Several studies have predicted the mortality of CRRT patients. However, in previous studies, the study population was limited to patients who underwent CRRT due to acute kidney injury (AKI). According to previous studies, the in-hospital mortality of patients with CRRT due to AKI was similar to that of patients with underlying end-stage renal disease. Therefore, in this study, prediction equations were developed with data from CRRT patients, including not only patients with AKI but also patients with underlying end-stage renal disease. In addition, this study developed equations not only for short-term mortality within 7 days but also for mortality within 14 days and within 28 days. Additionally, the evaluations of the prediction models were analyzed considering time variables using time-dependent ROC, NRI, IDI, calibration plot, and Brier score for time-to-event data.

We developed mortality prediction equations using a total of 11 variables: age, presence of malignancy, mean arterial pressure, heart rate, respiratory rate, platelet count, creatinine level,
total bilirubin level, albumin level, pH, and Glasgow coma scale. Critically ill patients with metabolic acidosis and CRRT patients with low pH have high mortality\(^{8, 25, 26}\). In patients undergoing CRRT, baseline thrombocytopenia, hyperbilirubinemia, and hypoalbuminemia were also associated with high mortality\(^{27-30}\). As a result of multivariate Cox regression analysis, malignancy was the only variable that was statistically significant among the underlying comorbidities. Therefore, we used malignancy as a predictor variable in the equation. In addition, previous studies showed that critically ill patients with low creatinine levels were associated with high mortality, and in this study, low creatinine levels were related to mortality\(^{31, 32}\). Tachycardia is associated with high mortality in patients with CRRT\(^9\). Respiratory rate, body temperature, and Glasgow coma scale are related to the mortality of critically ill patients and have been used as indicators in many mortality scoring systems\(^5, 33-36\).

The AUROCs of the 7-variable and 11-variable equations were significantly greater than the AUROCs of the SOFA and APACHE II scores in the development cohort and validation cohort. In addition, the 7-variable and 11-variable equations were statistically significantly superior to the SOFA and APACHE II scores as a result of IDI and NRI analyses in the validation cohort. However, the 4-variable equation showed no statistically significant difference in AUROCs with SOFA and APACHE II scores. As a result of the IDI and NRI analyses, the 4-variable equation showed superiority to only APACHE II and not to SOFA. The 7-variable and 11-variable equations showed a generally good calibration and had a tendency for overestimation in patients with a high mortality risk in the calibration plot. The results of IDI and NRI analyses in the validation cohort showed that the 11-variable equation had significantly better performance than the 4- and 7-variable equations. Although the 11-variable equation requires many variables, the 11 necessary variables consist of variables that are almost always measured in intensive care unit (ICU) patients. Therefore, we
recommended using the 11-variable equation for mortality prediction. If patient data are insufficient, the 7-variable equation can be used, but the 4-variable equation is not recommended.

This study had several limitations. Although the equations were developed in a multicenter study, the equations were validated in a cohort based on only one center. Additional validation is needed using CRRT patient data from other centers prior to widespread use. The best equations also require 7 or 11 variables collected within 24 hours of CRRT initiation, whether these variables predict prognosis at different time frames post CRRT, or when contemplating CRRT initiation is unknown. Finally, the models can help identify deciles of patients where mortality risk may approach 80-90% in the 28-day period. However, it is unknown whether CRRT or other treatments would be futile in these subgroups, as medical futility often requires a higher burden of evidence and is also modified by patient values and preferences regarding death and discontinuation of therapy.

The newly developed VENUS score equations, which used 7 or 11 predictor variables, can be used to accurately predict the mortality within 7, 14, and 21 days, showing adequate discriminations and calibrations. These equations showed superior performance to the previously known scoring systems, and they can help physicians prognosticate more accurately in patients using CRRT.
Disclosures: S. Kim reports the following: Consultancy: Exosome Plus; Advisory or Leadership Role: Korean Society of Nephrology, Editorial Board; Korean Society of Hypertension, Editorial Board; and Other Interests or Relationships: Korean Society of Nephrology. Y. S. Kim reports the following: Advisory or Leadership Role: President, Seoul National University Hospital. J. Lee reports the following: Advisory or Leadership Role: Kidney Research and Clinical Practice. C. Lim reports the following: Advisory or Leadership Role: President elect, Korean Society of Nephrology. N. Tangri reports the following: Consultancy: Tricida Inc., PulseData Inc, Mesentech Inc., Renibus, Marizyme; Ownership Interest: Tricida Inc., PulseData Inc, Mesentech Inc., Clinpredict Ltd, Renibus, Marizyme, Klinrisk, Quanta; Research Funding: Astra Zeneca Inc., Tricida Inc, Janssen, Otsuka, BI-Lilly, Bayer; Honoraria: Otsuka Pharmaceuticals, Astra Zeneca Inc., BI-Lilly, Janssen, Pfizer, Bayer; Patents or Royalties: Marizyme, Klinrisk; Advisory or Leadership Role: Tricida Inc., Clinpredict, Klinrisk; and Other Interests or Relationships: National Kidney Foundation; Founder - Klinrisk, Clinpredict. The remaining authors have nothing to disclose.

Funding: This study received funding from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), the Ministry of Health and Welfare, Republic of Korea (grant number: HI17C1827), and Seoul National University Hospital (SNUH) research fund (grant number: 03-2021-0380).

Acknowledgements: Published on behalf of the VENUS trial Investigators.

Author contributions: Min Woo Kang: Conceptualization; Data curation; Formal analysis;
Funding acquisition; Methodology; Supervision; Visualization; Writing - original draft. Navdeep Tangri: Conceptualization; Formal analysis; Methodology; Visualization; Writing - original draft. Soie Kwon: Conceptualization; Data curation; Formal analysis; Methodology; Supervision. Lilin Li: Data curation. Hyesung Lee: Data curation. Seung Seok Han: Conceptualization; Data curation; Formal analysis. Jung Nam An: Data curation; Formal analysis; Methodology. Jeonghan Lee: Data curation; Formal analysis; Methodology. Dong Ki Kim: Data curation; Formal analysis; Methodology. Chun Soo Lim: Data curation; Formal analysis; Methodology. Yon Su Kim: Data curation; Formal analysis; Methodology. Sejoong Kim: Data curation; Formal analysis; Methodology. Jung Pyo Lee: Conceptualization; Data curation; Formal analysis; Funding acquisition; Methodology; Supervision; Visualization; Writing - original draft. VENUS trial Investigators: Data curation; Formal analysis; Methodology. All of the authors read and approved the final manuscript.

Data sharing statement: All data is included in the manuscript and/or supporting information.

Supplemental materials:

Equation. Applying equations to individual patient

Supplemental Table S1. VENUS score equations for 7-day, 14-day, and 28-day mortality prediction

Supplemental Table S2. The areas under the time-dependent receiver operating characteristic curve of conventional scoring systems and equations predicting 7-day, 14-day, and 28-day mortality in development cohort
Supplemental Figure S1. Time-dependent receiver operating characteristic curves of SOFA, APACHE II, 4-variable, 7-variable, 11-variable equations in development cohort. a. 7-day mortality prediction. b. 14-day mortality prediction. c. 21-day mortality prediction.
Reference

1. Raffin TA: Intensive care unit survival of patients with systemic illness. *Am Rev Respir Dis*, 140: S28-35, 1989 10.1164/ajrccm/140.2_Pt_2.S28

2. Capuzzo M, Valpondi V, Sgarbi A, Bortolazzi S, Pavoni V, Gilli G, Candini G, Gritti G, Alvisi R: Validation of severity scoring systems SAPS II and APACHE II in a single-center population. *Intensive Care Med*, 26: 1779-1785, 2000 10.1007/s001340000715

3. Cardenas-Turanzas M, Ensor J, Wakefield C, Zhang K, Wallace SK, Price KJ, Nates JL: Cross-validation of a Sequential Organ Failure Assessment score-based model to predict mortality in patients with cancer admitted to the intensive care unit. *J Crit Care*, 27: 673-680, 2012 10.1016/j.jcrc.2012.04.018

4. Ferreira FL, Bota DP, Bross A, Melot C, Vincent JL: Serial evaluation of the SOFA score to predict outcome in critically ill patients. *JAMA*, 286: 1754-1758, 2001 10.1001/jama.286.14.1754

5. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonca A, Bruining H, Reinhart CK, Suter PM, Thijs LG: The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. *Intensive Care Med*, 22: 707-710, 1996 10.1007/BF01709751

6. Cho KC, Himmelfarb J, Paganini E, Ikizler TA, Soroko SH, Mehta RL, Chertow GM: Survival by dialysis modality in critically ill patients with acute kidney injury. *J Am Soc Nephrol*, 17: 3132-3138, 2006 10.1681/ASN.2006030268

7. Prasad B, Urbanski M, Ferguson TW, Karreman E, Tangri N: Early mortality on continuous renal replacement therapy (CRRT): the prairie CRRT study. *Can J Kidney Health Dis*, 3: 36, 2016 10.1186/s40697-016-0124-7
8. Kee YK, Kim D, Kim SJ, Kang DH, Choi KB, Oh HJ, Ryu DR: Factors Associated with Early Mortality in Critically Ill Patients Following the Initiation of Continuous Renal Replacement Therapy. *J Clin Med*, 7, 2018 10.3390/jcm7100334

9. An JN, Hwang JH, Kim DK, Lee H, Ahn SY, Kim S, Park JT, Kang SW, Oh YK, Kim YS, Lim CS, Oh HJ, Lee JP: Chronic Kidney Disease After Acute Kidney Injury Requiring Continuous Renal Replacement Therapy and Its Impact on Long-Term Outcomes: A Multicenter Retrospective Cohort Study in Korea. *Crit Care Med*, 45: 47-57, 2017 10.1097/CCM.0000000000002012

10. Oh HJ, An JN, Oh S, Rhee H, Lee JP, Kim DK, Ryu DR, Kim S: Volume management under body composition monitoring in critically ill patients on CRRT: study protocol for a randomized controlled trial (VENUS trial). *Trials*, 19: 681, 2018 10.1186/s13063-018-3056-y

11. Kang MW, Tangri N, Kim YC, An JN, Lee J, Li L, Oh YK, Kim DK, Joo KW, Kim YS, Lim CS, Lee JP: An independent validation of the kidney failure risk equation in an Asian population. *Sci Rep*, 10: 12920, 2020 10.1038/s41598-020-69715-3

12. Pencina MJ, D'Agostino RB, Sr., Demler OV: Novel metrics for evaluating improvement in discrimination: net reclassification and integrated discrimination improvement for normal variables and nested models. *Stat Med*, 31: 101-113, 2012 10.1002/sim.4348

13. Pencina MJ, D'Agostino RB, Sr., Steyerberg EW: Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. *Stat Med*, 30: 11-21, 2011 10.1002/sim.4085

14. Choi JS, Kim MH, Kim YC, Lim YH, Bae HJ, Kim DK, Park JY, Noh J, Lee JP: Recalibration and validation of the Charlson Comorbidity Index in an Asian population: the National Health Insurance Service-National Sample Cohort study. *Sci Rep*, 10: 13715, 2020 10.1038/s41598-020-70624-8
15. Allegretti AS, Steele DJ, David-Kasdan JA, Bajwa E, Niles JL, Bhan I: Continuous renal replacement therapy outcomes in acute kidney injury and end-stage renal disease: a cohort study. Crit Care, 17: R109, 2013 10.1186/cc12780

16. Stads S, Fortrie G, van Bommel J, Zietse R, Betjes MG: Impaired kidney function at hospital discharge and long-term renal and overall survival in patients who received CRRT. Clin J Am Soc Nephrol, 8: 1284-1291, 2013 10.2215/CJN.06650712

17. Park JY, An JN, Jhee JH, Kim DK, Oh HJ, Kim S, Joo KW, Oh YK, Lim CS, Kang SW, Kim YS, Park JT, Lee JP: Early initiation of continuous renal replacement therapy improves survival of elderly patients with acute kidney injury: a multicenter prospective cohort study. Crit Care, 20: 260, 2016 10.1186/s13054-016-1437-8

18. Park S, Lee S, Jo HA, Han K, Kim Y, An JN, Joo KW, Lim CS, Kim YS, Kim H, Kim DK: Epidemiology of continuous renal replacement therapy in Korea: Results from the National Health Insurance Service claims database from 2005 to 2016. Kidney Res Clin Pract, 37: 119-129, 2018 10.23876/j.krcp.2018.37.2.119

19. da Hora Passos R, Ramos JG, Mendonca EJ, Miranda EA, Dutra FR, Coelho MF, Pedroza AC, Correia LC, Batista PB, Macedo E, Dutra MM: A clinical score to predict mortality in septic acute kidney injury patients requiring continuous renal replacement therapy: the HELENICC score. BMC Anesthesiol, 17: 21, 2017 10.1186/s12871-017-0312-8

20. Kang MW, Kim J, Kim DK, Oh KH, Joo KW, Kim YS, Han SS: Machine learning algorithm to predict mortality in patients undergoing continuous renal replacement therapy. Crit Care, 24: 42, 2020 10.1186/s13054-020-2752-7

21. Kim Y, Park N, Kim J, Kim DK, Chin HJ, Na KY, Joo KW, Kim YS, Kim S, Han SS: Development of a new mortality scoring system for acute kidney injury with continuous renal replacement therapy. Nephrology (Carlton), 24: 1233-1240, 2019
22. Kamarudin AN, Cox T, Kolamunnage-Dona R: Time-dependent ROC curve analysis in medical research: current methods and applications. *BMC Med Res Methodol*, 17: 53, 2017 10.1186/s12874-017-0332-6

23. Liang CJ, Heagerty PJ: A risk-based measure of time-varying prognostic discrimination for survival models. *Biometrics*, 73: 725-734, 2017 10.1111/biom.12628

24. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, Pencina MJ, Kattan MW: Assessing the performance of prediction models: a framework for traditional and novel measures. *Epidemiology*, 21: 128-138, 2010 10.1097/EDE.0b013e3181c30fb2

25. Gunnerson KJ, Saul M, He S, Kellum JA: Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. *Crit Care*, 10: R22, 2006 10.1186/cc3987

26. Kraut JA, Madias NE: Metabolic acidosis: pathophysiology, diagnosis and management. *Nat Rev Nephrol*, 6: 274-285, 2010 10.1038/nrneph.2010.33

27. Griffin BR, Jovanovich A, You Z, Palevsky P, Faubel S, Jalal D: Effects of Baseline Thrombocytopenia and Platelet Decrease Following Renal Replacement Therapy Initiation in Patients With Severe Acute Kidney Injury. *Crit Care Med*, 47: e325-e331, 2019 10.1097/CCM.0000000000003598

28. Guru PK, Singh TD, Akhoundi A, Kashani KB: Association of Thrombocytopenia and Mortality in Critically Ill Patients on Continuous Renal Replacement Therapy. *Nephron*, 133: 175-182, 2016 10.1159/000447543

29. Sasaki S, Gando S, Kobayashi S, Nanzaki S, Ushitani T, Morimoto Y, Demmotsu O: Predictors of mortality in patients treated with continuous hemodiafiltration for acute renal failure in an intensive care setting. *ASAIO J*, 47: 86-91, 2001
30. Moon JJ, Kim Y, Kim DK, Joo KW, Kim YS, Han SS: Association of hypoalbuminemia with short-term and long-term mortality in patients undergoing continuous renal replacement therapy. *Kidney Res Clin Pract*, 39: 47-53, 2020 10.23876/j.krcp.19.088

31. Cartin-Ceba R, Afessa B, Gajic O: Low baseline serum creatinine concentration predicts mortality in critically ill patients independent of body mass index. *Crit Care Med*, 35: 2420-2423, 2007 10.1097/01.ccm.0000281856.78526.f4

32. Cerda J: Low serum creatinine is associated with higher mortality among critically ill patients. *Crit Care Med*, 36: 658-659; author reply 659, 2008 10.1097/CCM.0B013E318162B786

33. Knaus WA, Draper EA, Wagner DP, Zimmerman JE: APACHE II: a severity of disease classification system. *Crit Care Med*, 13: 818-829, 1985

34. Puskarich MA, Nandi U, Long BG, Jones AE: Association between persistent tachycardia and tachypnea and in-hospital mortality among non-hypotensive emergency department patients admitted to the hospital. *Clin Exp Emerg Med*, 4: 2-9, 2017 10.15441/ceem.16.144

35. Teasdale G, Jennett B: Assessment of coma and impaired consciousness. A practical scale. *Lancet*, 2: 81-84, 1974 10.1016/s0140-6736(74)91639-0

36. Young PJ, Saxena M, Beasley R, Bellomo R, Bailey M, Pilcher D, Finfer S, Harrison D, Myburgh J, Rowan K: Early peak temperature and mortality in critically ill patients with or without infection. *Intensive Care Med*, 2012 10.1007/s00134-012-2478-3
Table 1. Baseline characteristics

Characteristics	Development cohort	Validation cohort	P value			
Age (years)	67.86±14.02	63.33±15.20	<0.001			
Mean arterial pressure (mmHg)	79.86±16.59	81.01±17.14	0.140			
Heart rate (/min)	99.72±24.94	105.10±25.53	<0.001			
Respiratory rate (/min)	22.11±6.62	23.9±8.01	<0.001			
Platelet (x10^3/uL)	134.70±101.61	99.88±80.79	<0.001			
Creatinine (mg/dL)	3.47±2.71	2.74±1.78	<0.001			
Total bilirubin (mg/dL)	2.95±5.14	4.99±7.81	<0.001			
Albumin (g/dL)	2.76±0.55	2.74±0.62	0.584			
pH	7.328±0.120	7.316±0.131	0.049			
Glasgow coma scale	8.20±4.68	8.45±4.52	0.236			
Malignancy (%)	26.18	36.44	<0.001			
Models	7-day Mortality	P*	14-day Mortality	P*	28-day Mortality	P*
------------	-----------------	----------	------------------	----------	------------------	----------
SOFA	0.659		0.639		0.623	
	(0.630-0.687)	(0.611-0.668)		(0.592-0.655)		
APACHE II	0.645		0.634		0.615	
	(0.617-0.673)	(0.605-0.663)		(0.581-0.648)		
4-variable	0.685	0.121	0.025	0.664	0.162	0.104
	(0.658-0.713)	(0.636-0.692)		(0.618-0.681)		
7-variable	0.731	<0.001	<0.001	0.728	<0.001	0.711
	(0.706-0.757)	(0.702-0.754)		(0.681-0.740)		
11-variable	0.745	<0.001	<0.001	0.743	<0.001	0.726
	(0.720-0.771)	(0.718-0.769)		(0.697-0.755)		

*Compared with the SOFA II model
†Compared with the APACHE model

Abbreviations: SOFA, Sequential Organ Failure Assessment; APACHE, Acute Physiology and Chronic Health Evaluation
Table 3. Comparing the equations and conventional scoring systems for predicting 7-day, 14-day, and 28-day mortality using IDI and continuous NRI in validation cohort

Models	IDI (95% CI)	P	Continuous NRI (95% CI)	P		
7-day mortality						
4-variable vs SOFA	0.028 (0.000, 0.056)	0.059	0.048 (-0.025, 0.125)	0.238		
4-variable vs APACHE II	0.050 (0.022, 0.079)	<0.001	0.127 (0.045, 0.206)	<0.001		
7-variable vs SOFA	0.082 (0.056, 0.108)	<0.001	0.212 (0.141, 0.279)	<0.001		
7-variable vs APACHE II	0.104 (0.077, 0.128)	<0.001	0.240 (0.171, 0.294)	<0.001		
11-variable vs SOFA	0.104 (0.072, 0.127)	<0.001	0.265 (0.188, 0.331)	<0.001		
11-variable vs APACHE II	0.125 (0.093, 0.153)	<0.001	0.271 (0.208, 0.332)	<0.001		
7-variable vs 4-variable	0.054 (0.029, 0.075)	<0.001	0.173 (0.072, 0.264)	<0.001		
11-variable vs 4-variable	0.075 (0.049, 0.097)	<0.001	0.225 (0.153, 0.293)	<0.001		
11-variable vs 7-variable	0.022 (0.008, 0.036)	<0.001	0.167 (0.069, 0.253)	<0.001		
14-day mortality						
4-variable vs SOFA	0.020 (-0.003, 0.050)	0.119	0.029 (-0.036, 0.122)	0.277		
4-variable vs APACHE II	0.044 (0.018, 0.069)	0.001	0.110 (0.015, 0.176)	0.020		
7-variable vs SOFA	0.085 (0.055, 0.111)	<0.001	0.223 (0.139, 0.297)	<0.001		
7-variable vs APACHE II	0.109 (0.080, 0.134)	<0.001	0.248 (0.188, 0.295)	<0.001		
11-variable vs SOFA	0.111 (0.081, 0.139)	<0.001	0.285 (0.208, 0.343)	<0.001		
11-variable vs APACHE II	0.135 (0.093, 0.170)	<0.001	0.299 (0.222, 0.364)	<0.001		
7-variable vs 4-variable	0.065 (0.040, 0.092)	<0.001	0.196 (0.098, 0.268)	<0.001		
11-variable vs 4-variable	0.090 (0.054, 0.115)	<0.001	0.266 (0.153, 0.327)	<0.001		
11-variable vs 7-variable	0.026 (0.013, 0.035)	<0.001	0.200 (0.105, 0.268)	<0.001		
28-day mortality						
4-variable vs SOFA	0.015 (-0.011, 0.044)	0.257	0.012 (-0.073, 0.085)	0.614		
4-variable vs APACHE II	0.037 (0.014, 0.067)	0.020	0.093 (0.004, 0.178)	0.020		
7-variable vs SOFA	0.081 (0.055, 0.106)	<0.001	0.241 (0.158, 0.309)	<0.001		
7-variable vs APACHE II	0.103 (0.079, 0.134)	<0.001	0.222 (0.153, 0.302)	<0.001		
Comparison	IDI	CI	NRI	CI		
---------------------------------	-----------	---------------------	----------	---------------------		
11-variable vs SOFA	0.102	(0.066, 0.131)	<0.001	0.265	(0.202, 0.340)	<0.001
11-variable vs APACHE II	0.123	(0.092, 0.150)	<0.001	0.280	(0.210, 0.334)	<0.001
7-variable vs 4-variable	0.066	(0.047, 0.094)	<0.001	0.180	(0.105, 0.287)	<0.001
11-variable vs 4-variable	0.087	(0.054, 0.115)	<0.001	0.257	(0.167, 0.327)	<0.001
11-variable vs 7-variable	0.020	(0.006, 0.033)	<0.001	0.170	(0.048, 0.254)	<0.001

Abbreviations: IDI, Integrated Discrimination Improvement; NRI, Net Reclassification Improvement; CI, confidence interval
Table 4. Comparing the equations and conventional scoring systems for predicting 7-day, 14-day, and 28-day mortality using Brier scores in validation cohort

Model	Brier score (95% CI)	Model comparison	P
7-day mortality			
4-variable	0.217 (0.123, 0.311)	7-variable vs 4-variable	0.156
7-variable	0.205 (0.125, 0.284)	11-variable vs 4-variable	0.184
11-variable	0.201 (0.128, 0.275)	11-variable vs 7-variable	0.366
14-day mortality			
4-variable	0.237 (0.175, 0.298)	7-variable vs 4-variable	0.008
7-variable	0.221 (0.167, 0.275)	11-variable vs 4-variable	0.025
11-variable	0.218 (0.169, 0.268)	11-variable vs 7-variable	0.440
28-day mortality			
4-variable	0.243 (0.177, 0.309)	7-variable vs 4-variable	0.005
7-variable	0.230 (0.168, 0.292)	11-variable vs 4-variable	0.015
11-variable	0.229 (0.169, 0.329)	11-variable vs 7-variable	0.807

Abbreviations: CI, confidence intervals
Figure legends

Figure 1. Diagram showing the study population.

Figure 2. Time-dependent receiver operating characteristic curves of SOFA, APACHE II, 4-variable, 7-variable, 11-variable equations in validation cohort. **a.** 7-day mortality prediction. **b.** 14-day mortality prediction. **c.** 21-day mortality prediction.

Figure 3. Calibration plots of 4-variable, 7-variable, 11-variable equations in validation cohort. **a.** 7-day mortality prediction. **b.** 14-day mortality prediction. **c.** 21-day mortality prediction.
Figure 1

Patients with CRRT who participated in the VENUS trial between March 24, 2017, and October 31, 2019 (n=788)

- Missing data of mortality (n=10)
- Missing values of variables for equations (n=79)

Total development cohort (n=699)

Patients with CRRT in Seoul national university hospital between June 24, 2010, and December 29, 2016 (n=1,610)

- Missing data of mortality (n=12)
- Missing values of variables for equations (n=83)

Total validation cohort (n=1,515)
Figure 2
Figure 3

(a) Observed frequency vs. predicted risk for 11-variable, 7-variable, and 4-variable models.
(b) Observed frequency vs. predicted risk for 11-variable, 7-variable, and 4-variable models.
(c) Observed frequency vs. predicted risk for 11-variable, 7-variable, and 4-variable models.
Development of new equations predicting the mortality risk of patients with continuous renal replacement therapy

Authors
Min Woo Kang¹, Navdeep Tangri², Soie Kwon¹, Lilin Li¹,³, Hyeseung Lee¹, Seung Seok Han¹, Jung Nam An⁴, Jeonghwan Lee⁵, Dong Ki Kim¹,⁶, Chun Soo Lim⁵,⁶, Yon Su Kim¹,⁶, Sejoong Kim⁷, Jung Pyo Lee⁵,⁶, VENUS trial Investigators.

Author affiliations
¹Department of Internal Medicine, Seoul National University Hospital, Republic of Korea
²Department of Internal Medicine, University of Manitoba, Canada
³Department of Intensive Care Unit, Yanbian University Hospital, China
⁴Department of Internal Medicine, Hallym University Sacred Heart Hospital, Republic of Korea
⁵Department of Internal Medicine, Seoul National University Boramae Medical Center, Republic of Korea
⁶Department of Internal Medicine, Seoul National University College of Medicine, Republic of Korea
⁷Department of Internal Medicine, Seoul National University Bundang Hospital, Republic of Korea

Corresponding author
Jung Pyo Lee, MD, PhD
Professor
Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Boramae Medical Center
20, Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061 (Republic of Korea)
Telephone: +82 2 870 3206
Fax: +82 2 870 2826
E-mail: jungpyolee@snu.ac.kr
Equation. Applying equations to individual patient

\[P = 1 - (1 - h(t))^{\exp(f(x))} \]

\[f(x) = B_1(X_1 - \bar{X}_1) + \ldots + B_p(X_p - \bar{X}_p) \]

\(P \) is probability of individual’s mortality within time = t

\(h(t) \) is baseline hazard at time = t

\(B_1, \ldots, B_p \) are the regression coefficients

\(X_1, \ldots, X_p \) are average values for the risk factors

\(\bar{X}_1, \ldots, \bar{X}_p \) are the individual’s risk factors
Table S1. VENUS score equations for 7-day, 14-day, and 28-day mortality prediction

Equation	7-day mortality	11-variable	28-day mortality
4-variable	1-0.6073222^\{0.006057*(Age-67.86)-0.137953*(Creatinine-3.471)-0.043863*(Glasgow coma scale-8.199)+1.460093*(pH-7.328)}	\{0.0121640*(Age-67.86)+0.2785681*(Malignancy-0.2618)-0.0008758*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.0419202*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}	\{0.0121640*(Age-67.86)-0.058063*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.0419202*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}
7-variable	1-0.6231771^\{0.010358*(Creatinine-3.471)+0.044601*(Total bilirubin-2.952)-0.051985*(Glasgow coma scale-8.199)-0.386389*(Albumin-2.757)-1.413126*(pH-7.328)+0.008726*(Heart rate-99.72)\}	\{0.012046*(Age-67.86)-0.100358*(Creatinine-3.471)+0.044601*(Total bilirubin-2.952)-0.051985*(Glasgow coma scale-8.199)-0.386389*(Albumin-2.757)-1.413126*(pH-7.328)+0.008726*(Heart rate-99.72)\}	\{0.012046*(Age-67.86)-0.058063*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.0419202*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}
11-variable	1-0.6272894^\{0.0121640*(Age-67.86)+0.2785681*(Malignancy-0.2618)+0.0008758*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.044601*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}	\{0.0121640*(Age-67.86)+0.2785681*(Malignancy-0.2618)+0.0008758*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.044601*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}	\{0.0121640*(Age-67.86)+0.2785681*(Malignancy-0.2618)+0.0008758*(Platelet-134.7)-0.0845622*(Creatinine-3.471)+0.044601*(Total bilirubin-2.952)-0.0501781*(Glasgow coma scale-8.199)-0.0046276*(Mean arterial pressure-79.86)-0.3399093*(Albumin-2.757)-1.1384702*(pH-7.328)+0.0068319*(Heart rate-99.72)+0.0205402*(Respiratory rate-22.11)\}

Abbreviations: VENUS, Volume maNagement Under body composition monitoring in critically ill patientS on continuous renal replacement therapy
Table S2. The areas under the time-dependent receiver operating characteristic curve of conventional scoring systems and equations predicting 7-day, 14-day, and 28-day mortality in development cohort

Models	7-day Mortality	P*	P†	14-day Mortality	P*	P†	28-day Mortality	P*	P†
SOFA	0.593	0.576	0.593	(0.549-0.637)	(0.533-0.619)	(0.550-0.635)			
APACHE II	0.610	0.586	0.587	(0.565-0.654)	(0.543-0.630)	(0.544-0.630)			
4-variable	0.672	0.007	0.010	0.663	0.002	0.001	0.671	0.005	<0.001
	(0.630-0.714)	(0.622-0.704)	(0.631-0.712)						
7-variable	0.718	<0.001	<0.001	0.710	<0.001	<0.001	0.723	<0.001	<0.001
	(0.678-0.757)	(0.671-0.748)	(0.685-0.762)						
11-variable	0.728	<0.001	<0.001	0.729	<0.001	<0.001	0.739	<0.001	<0.001
	(0.689-0.767)	(0.692-0.767)	(0.701-0.777)						

*Compared with the SOFA II model
†Compared with the APACHE model

Abbreviations: SOFA, Sequential Organ Failure Assessment; APACHE, Acute Physiology and Chronic Health Evaluation
Figure S1. Time-dependent receiver operating characteristic curves of SOFA, APACHE II, 4-variable, 7-variable, 11-variable equations in development cohort. a. 7-day mortality prediction. b. 14-day mortality prediction. c. 21-day mortality prediction.