The Outcomes of Transcatheter Closure in Patients with Patent Ductus Arteriosus at Haji Adam Malik General Hospital, Indonesia

Putri Amelia1,2,*, Rizky Adriansyah1,2, Bastian Lubis3,4, Muhammad Akiil5

1Department of Child Health, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 2Functional Medical Unit of Child Health, H. Adam Malik Central Hospital, Medan, Indonesia; 3Department of Anesthesiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia; 4Functional Medical Unit of Anesthesiology, H. Adam Malik Central Hospital, Medan, Indonesia

Abstract

BACKGROUND: Patent ductus arteriosus (PDA) is one of the most common acyanotic congenital heart diseases. The incidence of PDA is approximately 1 in 500 full-term neonates. The current management of PDA includes pharmacological and surgical treatments. Transcatheter closure is a preferable PDA treatment than pharmacological intervention, for medications have a higher failure rate in premature infants. Several studies have reported the efficacy and safety of transcatheter closure in smaller and lower-weight infants.

AIM: This study aims to describe the outcomes of transcatheter closure of PDA, which are complete closure, migrating device, and residuals, while also investigating factors that might affect these outcomes.

METHODS: A descriptive cross-sectional study was conducted from January to March 2018 in the pediatric cardiology outpatient clinic of Haji Adam Malik Hospital, Medan, Indonesia. All PDA patients who underwent transcatheter closure were included in this study. We collected patients’ demographic data (age and sex), PDA size (categorize into large, moderate, and small), and PDA closure outcomes from medical records. The collected data were then analyzed with SPSS.

RESULTS: One hundred and two children were included in this study, comprised 34 (33.3%) males and 68 (66.7%) females, with a mean age of 4.3 (±4.02) years old and the mean size of the defects 4.4 (±2.25) mm. Transcatheter closure with Lifetech® PDA Occluder was performed in 95 (93.1%) and MFO® in 7 (6.9%) patients. Small residuals were found in three patients, device migration was found in one patient. No relationship was found between the size of PDA and the outcomes measured.

CONCLUSION: We concluded that transcatheter closure remains an effective treatment for PDA, with a considerable success rate.

Introduction

Patent ductus arteriosus (PDA) is one of the most common acyanotic congenital heart diseases (CHD), characterized by a left-to-right shunt [1]. This condition affected 5–10 percent of CHD patients. Recently, there has been an increase in PDA incidence, with 1 in 500 full-term newborns [2]. PDA has affected more than 50 percent of premature neonates, and its presence is associated with high morbidity and mortality rates [3]. PDA with a significant hemodynamic deterioration may cause volume overload in the left ventricle (LV). This problem is usually resolved after the closure of PDA. However, LV systolic dysfunction may persist in some patients [1].

PDA has been managed with prostaglandin antagonists (COX-1 and COX-2 inhibitors), surgical ligation, and even acetaminophen. Drug treatment has shown a high failure rate in most premature infants, from 20 to 30 percent. Therefore, conservative management and surgery have been suggested as the first-line treatment or an alternative after a failure with prostaglandin inhibitors [3].

In the past decade, percutaneous closure of PDA with detachable coils and Amplatzer Duct Occluder (ADO) has remained a standard therapy [4], [5]. The ADO II is the second generation, which developed to replace the previous version in treating smaller (<2 mm) and nonconical shaped PDA [6], [7], [8]. A study in premature infants suggested that ADO II has improved PDA outcomes, particularly in combination with echocardiography [9]. Transcatheter closure using this device is considered safe and effective in smaller infants, with a weight of 6–10 kg [10], [11], [12]. Furthermore, the ADO II Additional Sizes introduction has made transcatheter occlusion performed with a 4F antegrade delivery sheath become a viable option [3], [13].

This study aims to describe the outcomes of transcatheter closure of PDA at the Haji Adam Malik General Hospital, Medan, and investigate factors that might affect these outcomes.
Methods

Study design

This descriptive cross-sectional study investigated the outcomes of transcatheter closure of PDA at the Haji Adam Malik General Hospital, Medan, Indonesia. The procedure was performed by pediatric cardiologists and pediatricians using two types of devices, Lifetech® and MFO®, at the Department of Child Health, Faculty of Medicine, Universitas Sumatera Utara.

We assessed PDA patients’ medical records from January 2015 to December 2018. All patients with PDA and treated with transcatheter closure were included in this study. However, we excluded patients with incomplete or broken medical records.

No consent was required for this research. This study was approved by the Ethics Committee of Faculty of Medicine, Universitas Sumatera Utara.

Data collection

We collected patients’ demographic data (age and sex), PDA size (categorize into large, moderate, and small), and PDA closure outcomes. The outcomes investigated were complete closure, residual/incomplete, and migrated device based on echocardiography.

Statistical analysis

We analyzed the data with SPSS version 26.0. The categorical data were described by their absolute (n) and relative frequencies (%). Meanwhile, the quantitative data were expressed as mean and standard deviation. We used bivariate analysis, the Chi-square or Fisher Exact test, to determine the association between PDA size and transcatheter closure outcomes. The relationship is considered significant if the p < 0.05.

Results

We analyzed data from 102 patients who underwent transcatheter closure of PDA in our center over the study period. The mean of patients’ ages was 4.3 (±4.02) years old. The youngest was 3 months, and the oldest was 16 years old. Thirty-four (33.3%) patients were male, and the remaining 68 patients (66.7%) were female. We performed the closure using Lifetech® PDA Occluder in 95 (93.1%) patients and MFO® in 7 (6.9%) patients (Table 1).

The patients’ median weight was 11 (±2.25) kg, and the average size of the defects was 4.4 (±2.25) mm. The most common category of the PDA size is the moderate PDA (1.5–3 mm), which was found in 56 (54.9%) patients (Table 1). In contrast, small PDAs (<1.5 mm) were only found in 17 (16.7%) patients, which was the lowest percentage. The proportion of the PDA size categories is illustrated in Figure 1.

We found small residuals in three patients (2.9%) and the device migration in one subject (1%). The complete closure was successfully achieved in most subjects, with 96.1% (Figure 2). We investigated the relationship between the categories of PDA size and the outcomes (complete closure, migrating devices, or residuals) using bivariate analysis. The Fisher Exact test results showed no relationship between the PDA size and the outcomes measured (p = 0.27; p > 0.05).

Discussion

In managing PDA, definitive closure should be considered the first-line treatment, except in children with duct-dependent CHD or Eisenmenger syndrome [14], [15], [16]. Drug treatments, such as indomethacin or ibuprofen, have shown a significant failure rate in most premature infants, from 20 to 30 percent [3]. Thus, transcatheter closure might be indicated in every PDA case [14], [15], [16].

Transcatheter closure of PDA has shown a significant success rate in children. In this study, we found that only three children had residuals, and one had the device migrating from its original place. The majority of patients (98 children; 96.1%) were successfully managed with transcatheter closure, completely closing the PDA. A study from Saliba et al. suggested a similar success rate (93.7%), and only one patient had a small residual [17]. Likewise, a multicenter study in the USA showed that transcatheter closure was successfully performed in 93% of patients, and complete closure was achieved in 98% of successful implantations [12].

The median age of patients with PDA admitted to our center was 4.3 (±4.02) years old. This finding
is similar to other studies, mostly under 5 years old. A study in Mexico found a mean age of 5 years old (range from 3 months to 14 years) [18], while a study in Korea found a median age of 4.5 years (0.9–6.03 years) [5]. However, some studies investigated PDA in younger age groups in children below 3 years old [2], [3], [11]. The defect’s median size was 4.1 (1.2–14.8) mm. Some other studies with similar results are Parra-Bravo et al. (mean, 4.4 ± 1.8 mm), Choi et al. (median, 3.8 mm), and Park (range 3.2–4.6 mm) [10], [18], [19].

Our study showed a considerable success rate of transcatheter closure in children with PDA. The size of defects also not significantly influenced the results of this procedure. Therefore, we can consider that transcatheter closure remains an effective PDA treatment.

Conclusion

We concluded that transcatheter closure remains an effective treatment for PDA, with a considerable success rate.

References

1. Gupta SK, Krishnamoorthy KM, Tharakan JA, Sivasankaran S, Sanjay G, Bijulal S, et al. Percutaneous closure of patent ductus arteriosus in children: Immediate and short-term changes in left ventricular systolic and diastolic function. Ann Pediatr Cardiol. 2011;4(2):139-44. https://doi.org/10.4103/0974-2069.84652 PMid:21976873

2. Behjati-Ardakani M, Behjati-Ardakani MA, Hosseini SH, Noori N. Long-term results of transcatheter closure of Patent ductus arteriosus in infants using Amplatzer duct occluder. Iran J Pediatr. 2013;23(4):411-6. https://doi.org/10.4103/1947-2714.157478 PMid:24427494

3. Morville P, Akhavi A. Transcatheter closure of hemodynamic significant patent ductus arteriosus in 32 premature infants by Amplatzer duct occluder additional size-ADOIIAS. Catheter Cardiovasc Interv. 2017;90(4):612-7. https://doi.org/10.1002/ccd.27091 PMid:28471089

4. Saliba Z, El-Rassi I, Helou D, Abou-Jaoudeh P, Chehab G, Daou L, et al. Development of catheter-based treatment of patent ductus arteriosus: A medium-sized centre experience. Arch Cardiov Dis. 2009;102(2):111-8. https://doi.org/10.1016/j.acvd.2008.11.001 PMid:19303578

5. Moore JW, Levi DS, Moore SD, Schneider DJ, Berdjis F. Interventional treatment of patent ductus arteriosus in 2004. Catheter Cardiovasc Interv. 2005;64(1):91-101. https://doi.org/10.1002/ccd.20243 PMid:15619281

6. Morgan G, Tometzki AJ, Martin RP. Transcatheter closure of long tubular patent arterial ducts: The Amplatzer duct occluder II-a new and valuable tool. Catheter Cardiovasc Interv. 2009;73(4):576-80. https://doi.org/10.1002/ccd.21841 PMid:19235246

7. Thanopoulos B, Eleftherakis N, Tzannos K, Stefanadis C. Transcatheter closure of the patent ductus arteriosus using the new Amplatzer duct occluder: Initial clinical applications in children. Am Heart J. 2008;156(5):917.e1-6. https://doi.org/10.1016/j.ahj.2008.08.001 PMid:19061707

8. Forsey J, Kenny D, Morgan G, Hayes A, Turner M, Tometzki A, et al. Early clinical experience with the new Amplatzer ductal...
occluder II for closure of the persistent arterial duct. Catheter Cardiovasc Interv. 2009;74(4):615-23. https://doi.org/10.1002/ccd.22055
PMid:19360878

9. Bass JL, Wilson N. Transcatheter occlusion of the patent ductus arteriosus in infants: Experimental testing of a new Amplatzer device. Catheter Cardiovasc Interv. 2014;83(2):250-5. https://doi.org/10.1002/ccd.22931
PMid:2444324

10. Park YA, Kim NK, Park SJ, Yun BS, Choi JY, Sul JH. Clinical outcome of transcatheter closure of patent ductus arteriosus in small children weighing 10 kg or less. Korean J Pediatr. 2010;53(12):1012-7. https://doi.org/10.3345/kjp.2010.53.12.1012
PMid:21253316

11. Dimas VV, Takao C, Ing FF, Mattamal R, Nugent AW, Grifka RG, et al. Outcomes of transcatheter occlusion of patent ductus arteriosus in infants weighing ≤6 kg. JACC Cardiovasc Interv. 2010;3(12):1295-9. https://doi.org/10.1016/j.jcin.2010.08.022

12. Gruenstein DH, Ebeid M, Radtke W, Moore P, Holzer R, Justino H. Transcatheter closure of patent ductus arteriosus using the AMPLATZER™ duct occluder II (ADO II). Catheter Cardiovasc Interv. 2017;89(6):1118-28. https://doi.org/10.1002/ccd.26968

13. Mandhan P, Brown S, Kukkady A, Samarakkody U. Surgical closure of patent ductus arteriosus in preterm low birth weight infants. Congenit Heart Dis. 2009;4(1):34-7. https://doi.org/10.1111/j.1747-0803.2008.00241.x
PMid:19207401

14. Schneider DJ, Moore JW. Patent ductus arteriosus. Circulation. 2006;114(17):1873-82.
PMid:17060397

15. Yarrabolu TR, Rao PS. Transcatheter closure of patent ductus arteriosus. Pediatr Ther. 2012;55:1-8. https://doi.org/10.4172/2161-0665.s5-005

16. Tharakan J, Venkateshwaran S. Large patent ductus arteriosus: To close or not to close. Ann Pediatr Cardiol. 2012;5(2):141-4. https://doi.org/10.4103/0974-2069.99615
PMid:23129902

17. Saliba Z, El-Rassi IS, Abi-Warde MT, Chehab G, Daou L, Khater D, et al. The Amplatzer duct occluder II: A new device for percutaneous ductus arteriosus closure. J Interv Cardiol. 2009;22(6):496-502. https://doi.org/10.1111/j.1540-8183.2009.00504.x
PMid:19780890

18. Parra-Bravo R, Cruz-Ramírez A, Rebolledo-Pineda V, Robles-Cervantes J, Chávez-Fernández A, Beirana-Palencia L, et al. Transcatheter closure of patent ductus arteriosus using the amplatz duct occluder in infants under 1 year of age. Rev Esp Cardiol. 2009;62:867-74. https://doi.org/10.1016/s1885-5857(09)72651-9
PMid:19706242

19. Choi DY, Kim NY, Jung MJ, Kim SH. The results of transcatheter occlusion of patent ductus arteriosus: Success rate and complications over 12 years in a single center. Korean Circ J. 2010;40(5):230-4. https://doi.org/10.4070/kcj.2010.40.5.230
PMid:20514333

20. Hajzeiniali A, Sadeghian H, Rezvanfard M, Alidoosti M, Kassaian SE, Nematiipur E. Transcatheter closure of patent ductus arteriosus: An initial study on echocardiographic estimation of device size. J Tehran Heart Cent. 2010;5(4):199-201.
PMid:23074593

21. Azhar AS, Abd El-Azim AA, Habib HS. Transcatheter closure of patent ductus arteriosus: Evaluating the effect of the learning curve on the outcome. Ann Pediatr Cardiol. 2009;2(1):36-40. https://doi.org/10.4103/0974-2069.52804
PMid:2030267