Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities

Maximilian Stahl, Tae Kon Kim, Amer M Zeidan

Abstract
The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.

Key words: Leukemia stem cells; Cancer stem cells; Acute myeloid leukemia; Stem cell niche; Xenotransplantation; Plerixafor; NF-κB; C-X-C chemokine receptor type 4

Core tip: Leukemia stem cell (LSC) directed therapy targets: (1) Cell surface markers expressed on LSC: CD33, CD44, CD123, CD47, etc.; (2) Crucial pathways for maintenance of their stemness: NF-κB, PI3K/AKT/mTOR and bcl-2; and (3) Interactions between LSC in the bone marrow niche: LSC mobilization with granulocyte-colony stimulating factor and inhibition of LSC homing to the bone marrow by interrupting the C-X-C chemokine receptor type 4-CXCL12 and VCAM-VLA4 axis.
INTRODUCTION

Despite extensive research efforts in myeloid malignancies, minimal progress has been made in introducing new effective treatment strategies for acute myeloid leukemia (AML) since the introduction of the anthracycline-cytarabine combination chemotherapy regimens (known as 7 + 3) more than 40 years ago[1]. Despite achieving complete remission (CR) with intensive induction chemotherapy in about 70% of patients with AML, relapse is frequent and the rate of 5-year disease free survival is only about 30%-40%. It has been long proposed that the high rate of relapse is due to the persistence of a rare subset of malignant cells that are not effectively eliminated by current treatment regimens, the so-called leukemia stem cells (LSCs)[2-4]. LSC were first identified but tumor cells with stem cell-like behavior were later found to be also present in a variety of solid tumors[5-9]. LSC remain the best studied and characterized cancer stem cell (CSC) due to the easy accessibility of tumor tissue for (i.e., blood and bone marrow) and the availability of a number of cell surface markers that allow their prospective identification and isolation by flow cytometry followed by assays to examine their function both in vitro and in vivo[10]. This review will focus on the biology of LSC, the impact they have on current leukemia diagnosis and prognosis and treatment as well as future directions of leukemia therapy based on targeting LSC[6].

CSC VS CLONAL EVOLUTION THEORY

It is now well understood that not only tumors from different patients but also cells within a single tumor are characterized by heterogeneity in terms of the morphology, cell surface markers, genetic variations and response to therapy[11]. Why there is significant variation in genetic and epigenetic abnormalities between different cells or locations within a tumor despite the clonal origin of all tumor cells, is a question that has puzzled researchers for decades. There are essentially two different explanations for this fundamental problem of cancer biology: The hierarchy or CSC model vs the stochastic or clonal evolution model[6]. In the stochastic model, all cells in a tumor have a similar biological function but are heterogeneous (e.g., expression of cell surface markers) because of clonal evolution resulting in small but entirely random/stochastic variations triggered by external and internal factors based on Darwinian principles. Importantly, all cells within the tumor have an equal sensitivity to both intrinsic (transcription factors and signaling pathways) and extrinsic (host factors, tumor microenvironment and immune response) factors[10]. In the cancer stem cell (CSC) model, a tumor follows the principles of normal, healthy tissue development with a stem cell at the top of the hierarchy, which gives rise to all other cells in the tumor. In this model only these rare population of CSCs are able to initiate tumor growth: They possess self-renewal capacity and can be isolated from the bulk non-tumorigenic population. Importantly, both models appreciate the existence of a CSC but differ in their assessment what cells within the tumor can be CSCs. In the stochastic model CSCs are created randomly and every cell has the potential to be a CSC, whereas in the CSC model only a subset of cancer cells has the potential to behave like a stem cell[11].

Whether the stochastic model or the CSC model best reflects tumorigenesis/leukemogenesis, has significant impact on how cancer/leukemia should be treated[10]. In the stochastic model, the cells within a tumor are relatively homogeneous in terms of genetic makeup and function and therapy can be uniformly directed at the bulk of tumor cells. However, per the CSC model, tumorigenic pathways might operate differently in CSCs compared with the bulk cells and therapy must specifically target the CSCs in order to be truly effective. Most of the current targeted therapies against leukemia and cancer focuses on inhibiting the molecular drivers found in all cancer cells but do not necessarily target CSCs[11].

BIOLOGY OF LSCS

CSC characteristics

The definition of a LSC is adapted from normal HSC: It is a cell that possesses the capacity to self-renew, proliferates and gives rise to leukemic blasts, which are morphologically homogeneous but biologically heterogeneous[12]. Apart from self-renewal potential, dormancy/quiescence and a protective stem cell niche are shared characteristics between HSCs and LSCs.

Self-renewal capacity: As the definition of CSCs is a functional definition, CSCs can thus only be defined experimentally by their ability to recapitulate the generation of a continuously growing tumor. Immunodeficient mice, such as the non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse and newer generations of xenograft models, are used to functionally define human hematopoietic stem and progenitor cells as well as LSCs[13]. Long-term repopulating cells, thought to be LSC are able to be successfully engrafted in these mice over prolonged periods as well as in secondary recipients[13,14]. Bonnet et al.[15] in the John Dick laboratory isolated subpopulations of cells from primary human AML bone marrow based on their immunophenotype and xenotransplanted them into NOD/SCID mice. It demonstrated that the CD34+CD38- expressing sub-population of AML cells
were capable of being serially transplanted in these immunodeficient mice[31,32]. Reflecting the emphasis on functional assessment, these cells were named as SCID leukemia-initiating cells (SL-IC) and are considered the equivalent of LSC.

Symmetrical vs asymmetrical cell division: Similar to HSCs, LSCs have the ability to undergo symmetrical self-renewing cell division, generating identical daughter stem cells that retain self-renewal capacity (expansion), or an asymmetrical self-renewing cell division, resulting in one stem cell and one more differentiated progenitor cell (maintenance)[12,17,18]. Normal stem cells are able to switch between symmetrical and asymmetrical division based on the demands of the tissue they are meant to maintain. During early embryogenesis normal stem cells undergo symmetrical cell division in order to expand the total pool of stem cells giving rise to tissues whereas in adult tissues stem cells give rise to mature cells though asymmetrical cell division[19,20]. There is increasing amount of evidence that in CSCs this delicate balance seems to be disturbed in favor of symmetric cell division[19,21,22]. For example, CSCs isolated from ERBB2-expressing breast cancer have been demonstrated to prefer symmetric cell division compared to normal breast tissue stem cells[23]. Furthermore, the adenomatous polyposis coli tumor suppressor gene (APC) has been shown to play a major role in regulating asymmetric cell division in drosophila and its mutational loss is suspected to lead to an expansion of CSCs by symmetric cell division[24,25]

Stem cell quiescence and exhaustion: Normal stem cells need to be quiescent to avoid exhaustion of a stem cell pool and to minimize the risk of oncogenic events[26]. In fact, stem cell exhaustion has been described as one reason for aging and as a consequence of the attempt of the body to prevent the development of cancer[27]. Aging leads to an accumulation of DNA damage in all cells of the body, including stem cells, which in turn leads to an increased risk of developing cancer. Aging stem cells are affected by sophisticated mechanisms cells have developed to suppress the development of cancer, mainly induction of senescence and apoptosis, which are mediated through telomere shortening and activation of tumor suppressor genes p16 and p53[28-30]. The diminished ability of aging HSC to reconstitute the hematopoietic system is demonstrated by prolonged myelosuppression after cytotoxic chemotherapy in older patients as well as age of the stem cell donor being significantly associated with overall and disease-free survival after hematopoietic stem cell transplant[31,32]

However, normal stem cells are also required to continuously replenish the cells that are lost in a tissue. In order to fulfill both purposes-avoid exhaustion as well as maintaining the cellular integrity of a tissue-stem cells undergo asymmetric cell divisions, which give rise to another stem cell as well as a rapidly dividing progenitor cells. These progenitor cells proliferate quickly for a limited amount of cell divisions and regenerate all cells in a tissue[33,34]

Similarly, LSCs are quiescent, which explains the difficulties to eradicate LSCs with standard chemotherapy that preferentially target rapid proliferating cells[35-37]

Key signaling pathways relevant for retaining stemness: Similar signaling pathways involved in the control of self-renewal of HSCs are also key elements maintaining stemness in LSCs (Figure 1). Among many others, these pathways include PI3K/Akt/mTOR[38], Wnt/beta-catenin[39,40], Hedgehog[41,42], NF-kB[43,44], Notch[45] and Bcl-2[46,47]. Several drugs targeting these pathways are in different stages of preclinical and clinical development (Figure 1).

Stem cell niche: The bone marrow niche is quintessential for normal HSC to maintain their quiescence but at the same time enable HSC to generate cells in the blood stream to meet the organism’s needs[48]. The stem cell niche is formed by a complex network of different cells including vascular endothelial cells, perivascular mesenchymal cells, megakaryocytes, osteoblastic lineage cells, macrophages and nerve cells[49-53]. Dysregulation of the bone marrow niche plays an important role in preventing the detection of LSC by the immune system and protecting LSC from the effects of chemotherapy[48,54]. Similar to normal HSCs, LSCs are retained in the marrow niche by interactions between CXCR4, on stem cells, and CXCL12 (SDF-1), on osteoblasts and mesenchymal cells in the bone marrow niche[55,56]. Chemokine interactions through CXCL12 can lead to up-regulation of vascular cell adhesion molecule-1 (VCAM-1) and very late antigen-4 (VLA-4) expression, which further strengthen LSC retention in the marrow niche[57,58] (Figure 1). The significance of the interaction between LSCs and the protective bone marrow niche is exemplified by the fact that elevated levels of CXCR4 and VLA-4 have been associated with poor response to chemotherapy and decreased survival[59-61]. Several therapeutic approaches attempt to break the dormancy of LSCs by induction of stem cell cycling with granulocyte-colony stimulating factor (G-CSF) and inhibition of the CXCR4-SDF-1 axis involved in LSC retention in the protective bone marrow niche[62,63] (Figure 1).

Identification of LSCs by surface markers: Recent studies have shown that LSCs may reside not only in CD34+CD38+, but also in CD34+CD38− and CD34+CD38− compartments demonstrating the lack of a definitive phenotype for LSCs[64,65]. Several studies have shown that the CD34+CD38− fraction has repopulating ability when immunosuppression is applied[18,67,68]. It was demonstrated that by treating mice with immunosuppressive antibodies, the CD34+CD38− fraction of AML samples is able to initiate leukemia in immuno-deficient mice[64]. Furthermore, by transplanting sorted
fractions of primary NPM-mutated AML into immuno-deficient mice, it was shown that approximately one-half of cases had LICs exclusively within the CD34- fraction, whereas the CD34+ fraction contained normal multilineage hematopoietic repopulating cells [66]. Most of the remaining cases had LICs in both CD34+ and CD34- fractions and when samples were sorted based on CD34 and CD38 expression, multiple fractions initiated leukemia in primary and secondary recipients (Table 1).

Heterogeneity within the LSC population

Over the last years several groups have found a wide variety of other markers that appear to be expressed higher in LSCs than normal HSCs [14]. These include CD123, CD96, CLL-1, TIM3, CD33, CD13, CD44, CD47 and others [69-75] (Table 1). In essence, these studies suggest that leukemogenic activity is not restricted to the CD34+’CD38- fraction and there is heterogeneity among patients in leukemogenic cell phenotype. Over the last years, there has been significant advancement in the understanding of the complexity and heterogeneity of human LSC. Several important observations have been made along the way of discovery.

LSC heterogeneity within a patient: First, there is heterogeneity of the stem cell population within the same patient as not all LSC have the same self-renewal capacity [10,76]. Use of lentiviral gene marking to track the behavior of individual leukemia initiating cells following serial transplantation has revealed heterogeneity in their ability to repopulate secondary and tertiary recipients and this enabled researchers to classify long term (LT-LSC) and short term (ST-LSC) LSCs [76,77]. LT-LSCs are defined by a long-termed persistence in xenotransplantation models given an extensive self-renewal capacity while ST-LSCs have a reduced self-renewal capacity and only a transient repopulation capability in xenotransplantation models.

LSC heterogeneity based on the specific xenotransplantation model used: The LSC phenotype...
Table 1 Markers of leukemia stem cells

Cell surface markers	Patient samples used	Mouse model used	Ref.
CD34+CD38+	FAB M1, M4, M5	NOD/SCID	[15,16]
CD34+CD38-	CN-AML, MLL-ENL	NOD/SCID + IVIG or anti-CD122	[18,64,67,68]
CD34-CD38-	AML with NPM1 mutation	NOD/SCID β2 microglobulin	[66]
CD34-CD38-		NOD/SCID IL2 receptor γ/− + IVIG	
CD34+CD123+	FAB M1, M2, M4, CD34+CD38+	NOD/SCID	[69]
CD34+CD96+	CK-AML, CBFB-MYH11, PML-RARA, AML1-ETO, FAB M4	Rag2− IL2RG−−	[70]
CD34+CD38-	AMLs with FLT3-ITD	NOD/SCID	[71]
TIM3+	FAB M1, M2, M4, M5	NOD/Rag1− IL2RG−	[72]
CD34+CD38-	CN-AML, FAB M4	NOD/SCID	[73]

FAB: French-American-British classification system; CN: Cytogenetically normal; CK: Cytogenetically complex; MLL-ENL: Mixed-lineage leukemia-eleven nineteen leukemia; NPM1: Nucleoposin 1; CBFB-MYH11: Core binding factor beta unit-Myosin heavy chain 11; PML-RARA: Promyelocytic leukemia-retinoic acid receptor alpha; AML1-ETO: Acute myeloid leukemia 1 protein- eight twenty one; FLT3-ITD: Fms-like tyrosine kinase 3 Internal tandem duplication; NOD/SCID: Non-obese diabetic/severe combined immunodeficiency; Rag: Recombination activating gene; IL2RG: Interleukin 2 receptor subunit gamma.

Cell of origin of LSCs

It is important to distinguish the concept of the cell of origin from the CSC [10]. The CSC has stem cell like properties and is capable of initiating and sustaining tumor growth, whereas the cell of origin refers to the normal cell in which the initial transforming event occurs. Importantly, cancer and LSCs do not have to arise from a normal stem cell, in fact, it is not entirely clear what the cell of origin for most LSCs is [11,12]. One hypothesis is that LSCs are only able to arise from normal HSCs but not from committed progenitor cells [10,15]. This theory is supported by the observation that LSCs and HSCs share many characteristics like self-renewal capacity controlled by genes like Bmi1 and PTEN and quiescence [35,85,86]. On the contrary, transformation might occur in a variety of cell types in the hematopoietic hierarchy, including HSCs and committed progenitors [10,87]. Experimental evidence in mice shows that LSCs may arise either through neoplastic changes initiated in normal self-renewing HSCs or downstream progenitors cells [10,11,88]. Some oncogenes including MOZ-TIF, MLL-AF9 and MLL-ENL can induce LSCs regardless of what target cell population they are expressed in [88-90]. Other oncogenes like BCR-ABL, FLT3-ITD, Hoxa9 and Meis1 were found to be oncogenic when expressed in HSCs but not when expressed in progenitor cells [39,89,91]. However, experimental data in murine studies might be confounded by non-physiologic levels of expression from exogenous promoters, such as transgenes or retroviral vectors [110]. This was demonstrated by the recent finding that in an MLL-AF9 knock-in model of the same construct shown to initiate disease in both HSCs and progenitor cells by retroviral expression only initiated leukemias from HSCs when expressed from the endogenous MLL.

LSC heterogeneity between patients: It has become increasingly evident that the LSC phenotype varies between patients based on the specific subtype of leukemia that they suffer from (Table 1). As mentioned above, the majority of AML cells express CD34, however in AML cells carrying a mutation in NPM1 the CD34+ percentage is very low and LSC activity is exclusively restricted to the CD34+ population [66]. Furthermore, specific subtypes of AML (in particular less aggressive subtypes) are significantly more difficult to be engrafted as they may have low progenitor cell frequency or are particularly sensitive to a specific cytokine or cell type missing in the particular xenotransplantation model [64]. For example, AML samples with a t(8;21) translocation were shown to be difficult to be engrafted and found to be dependent on signaling through the TPO/ mpl pathway [82,83]. Subsequently, human TPO knock-in mice were shown to have improved engraftment for t(8;21) AML samples [64].

depends on what mouse model is used for functional assessment of stem cell properties of human AML cells [14] (Table 1). The bone marrow niche in mice differs from that of humans in terms of architecture, stromal cells, cytokines, growth factors, adhesion molecules and most importantly the immune cell composition, which potentially impairs growth of human HSC or LSC in the mouse bone marrow. Normal HSCs and LSC are therefore more likely to be detected in more highly immunodeficient mice. As different xenotransplantation mouse models display different levels of immunodeficiency they are associated with different levels of engraftment of normal human HSCs and LSCs [6,14]. In nude mice T cells are absent whereas in severe combined immunodeficiency mice (SCID mice) both B and T cells are inactivated. NOD/SCID mice, which harbor defects in T, B, and macrophage activity, support higher levels of human engraftment [14]. NOD/SCID gamma (NSG) mice have almost no murine immune system left as a complete null mutation in the gene encoding the interleukin 2-receptor gamma chain blocks NK cell differentiation [79]. Similarly, NK cells can be depleted by treating NOD/SCID mice with anti-CD122 antibodies [80]. In creating a supportive bone marrow niche for engraftment of human AML cells not only a suppression of the hosts immune system is essential but also a recreation of the cytokine environment supporting stem cell self-renewal and quiescence [14]. This has led to the development of mouse models that express human cytokines like human SCF, GM-SCF, IL3 and TPO [13,81].
promoter[92]. \textit{In vivo} clonality studies in humans suggest variations in the cells of origin and is was demonstrated that in patients with t(8;21) AML primitive CD34+CD90−CD38+ HSC like cells from leukemic bone marrow give rise to normally differentiating progenitors, whereas more mature CD34−CD90 CD38− multi-potent progenitor like cells form exclusively leukemic blast colonies[93-95]. These observations suggest that the truth about the cell of origin might be reflected by a combination of both theories depicted above: Although the initial genetic mutation might happen in HSCs subsequent events occur in the committed progenitor pool, giving rise to LSCs[111].

IMPACT OF LSC ON CURRENT TREATMENT AND PROGNOSIS

Impact on prognosis
The LSC burden of AML patient is suggested to be a strong biomarker for clinical outcome in AML[96-100]. The ability of cells from AML patients to engraft NOD/SCID mice and the LSC frequency (simplistically characterized as CD34+CD38− frequency) are associated with worse clinical outcomes[99-101]. AML patients with greater than 3.5\% of CD34+CD38− AML cells show a median relapse free survival of 5.6 mo vs 16 mo in those with a lower percentage of CD34+CD38− cells[96]. Furthermore, poor clinical outcome seems to correlate with the degree to which the LSCs matched normal HSC gene expression[98]. It is noted that it is controversial whether the simplystically phenotypically defined LSC frequency (characterized as CD34+CD38−) in AML is prognostic and correlates with xenograft potential[114]. Also, as described above, LSCs can be found outside of the CD34+CD38− cell fraction. An improved characterization of subpopulations of LSCs is expected to be associated with improved prediction of prognosis.

Impact on current therapies
It is thought that LSCs have a significant role in the relapse of leukemia as induction chemotherapy targets the bulk of blast cells but not LSC[102]. Minimal residual disease (MRD) is an important determinant for relapse and poor outcomes in AML and it is likely that the MRD cell population contains LSCs[103-105]. Thus, in order to improve outcomes in AML, MRD needs to be reduced to prevent disease relapse. LSCs seem to be only minimally affected by traditional chemotherapy[35,106]. Several reasons for chemotherapy resistance have been proposed, which are related to the key features of LSCs discussed above. LSCs are quiescent in the G0 phase of the cell cycle but chemotherapy is only effective in killing rapidly cycling cells[36,37]. LSCs are supported by a stem cell niche in the bone marrow protecting them from the effect of classical chemotherapy[65]. Furthermore, LSCs express high levels of ATP transporters, which are involved in extrusion of chemotherapeutic drugs from LSCs[107-109]. To improve survival in AML, traditional chemotherapy targeting the blast population needs to be combined with therapy specifically targeting LSCs to maintain prolonged remission.

FUTURE DIRECTIONS FOR THERAPY

Despite the recent increased interest in LSCs, experimental studies have not been translated into improved survival outcomes for cancer patients. However, several new agents targeting LSC specific surface molecules and pathways as well as the LSC microenvironment remains under different stages of preclinical and clinical development (Table 2 and Figure 1). To rationally design clinical trials testing drugs for efficacy against LSCs, it is important to appreciate the fundamental differences between drug design targeting blast cells and LSCs[102]. Principles and challenges faced by targeting LSCs will be discussed first followed by an overview of various new therapeutic options targeting LSCs.

General principles and challenges faced by targeting LSCs

Limiting side effects: As LSCs and HSCs have many similar properties (see above), therapeutic approaches targeting LSCs also have the potential of causing severe side effects by eliminating healthy HSCs. To develop novel therapies with limited side effects, unique properties of LSCs have to be identified[102,110]. While expression of several surface markers is similar between normal HSCs and LSCs (CD34, CD38, CD71 and HLA-DR), other surface antigens are only displayed on LSCs (CD33, CD90, CD117 and CD123)[110]. Apart from a similar immunophenotype, HSCs and LSCs share many pathways important for maintaining features of “stemness” like quiescence and self-renewal capacity[111]. Pathways, which are up-regulated in LSCs compared to normal HSCs, are the ideal target for therapeutic approaches directed towards LSCs. For example, the active form of NF-κB and bcl-2, which are associated with anti-apoptotic activity in cancer cells, are overexpressed in LSCs compared to normal HSC and drugs targeting both NF-κB and bcl-2 are in clinical development[36,46,112].

Using biomarkers for LSC eradication: To assess the efficacy of investigational therapies targeting LSCs, precise diagnostic methods are needed to assess the quantity of LSCs present in leukemia patients. Unfortunately, current characterization of LSC phenotype is not precise enough to permit real-time tracking of LSCs \textit{in vivo}[113]. As discussed above, current strategies for purification do not yield functionally homogeneous population: The frequency of LSCs within the CD34+CD38− fraction in AML ranges from 1 in 104 to 1 in 5 \times 106 cells and several other populations contain LSCs as well[115]. Functional assessment of LSC frequency with xenotransplantation models offers a
Table 2 Emerging therapy targeting leukemia stem cells

Drug	Mechanism	Selected clinical trials	Phase	Ref.
GO	Anti-CD33 monoclonal antibody conjugated with calicheamicin, a potent antitumor anthracycline antibiotic	NCT010882102 Phase I-III [124,126, 130,132,133]	N/A	[61,135,169,179]
HuSF9-G4	Anti-CD47 monoclonal antibody	NCT02678338 Phase I [74,141]	N/A	[137]
CSL360	Anti-CD123 monoclonal antibody	NCT00440739 Phase I [69,134]	N/A	[165-168]
DT388IL3/SL-401	Anti-CD123 recombinant immunotoxin created by the fusion of diphtheria toxin with a ligand targeting the IL-3 receptor	NCT02113982 Phase II [69,134,136]	N/A	[102]
A3D8	Anti-CD44 monoclonal antibody	N/A	N/A	[161-163]
MGD006/ SB-0880 F90	Anti-CD3 and CD123 DART	NCT02152956 Phase I [137]	N/A	[38,155-157]
A3D8	Anti-CD44 monoclonal antibody	N/A	N/A	[102]
Therapy targeting LSC-specific molecular pathways	Proteasome inhibitor inhibits the degradation of the IκBα creating an anti-NF-κB effect	N/A	N/A	[149]
Parthenolide	Inhibitor of NF-κB	N/A	N/A	[150]
Celasrol	Inhibitor of Hsp90 and by extension NF-κB	N/A	N/A	[151,152]
4-hydroxy-2-nonenal	Product of lipid peroxidation, inhibiting the proteasome and NF-κB function	N/A	N/A	[149]
BKM120	PI3K inhibitors	N/A	N/A	[149]
CAL-101	Anti-CD3 and CD47	NCT00981694 Phase I-III [38,155-157]	N/A	[161-163]
MK-2206	mTOR inhibitors	NCT010828976 Phase I-III [165-168]	N/A	[137]
Sirolimus, everolimus, temsirolimus	N/A	N/A	N/A	[102]
Oblimersen (Gerasense, G3139)	PPI inhibitors	NCT00309138 Phase I-III [69,134]	N/A	[165-168]
Obatoclax (GX15-070MS)	PPI inhibitors	NCT00841739 Phase I-III [69,134]	N/A	[165-168]
G-CSF	Mobilization of LSC from the bone marrow niche > increased susceptibility to traditional chemotherapy	NCT00006202 Phase I [165-168]	N/A	[165-168]
Plerixafor (AMD3100)	CXCR4 inhibitor Decreased homing to the bone marrow	NCT00940943 Phase I-III [61,135,178]	N/A	[165-168]
BMS-936564	Anti-CXCR4 antibody Decreased homing to the bone marrow	NCT011200457 Phase I [172]	N/A	[165-168]
Natalizumab	Anti-VLA4 antibody Decreased homing to the bone marrow	NCT00940943 Phase I-III [61,135,178]	N/A	[165-168]

GO: Gemtuzumab ozogamicin; DART: Dual-affinity retargeting molecule; N/A: Not available; LSC: Leukemia stem cell; IκBα: Inhibitor of kappa B alpha; CXCR4: C-X-C chemokine receptor type 4; mTOR: Mechanistic target of rapamycin; G-CSF: Granulocyte-colony stimulating factor.

more robust method to evaluate eradication of LSCs but might not be feasible in large clinical trials. Similarly, methods for detecting MRD might guide decisions by detecting patients who do require additional therapy to prevent relapse. However, detecting MRD does not distinguish persistent LSCs, which may cause relapse, from residual blasts and normal HSCs that do not have tumor-initiating activity. Distinguishing residual LSCs from residual blasts might be accomplished by gene expression analysis showing reactivation of self-renewal
genes in LSCs but not in blast cells[88,114]. In preclinical development, the recently published Connectivity Map could be investigated for agents that attenuate a stem cell gene signature or induce a differentiated state[115,116].

Timing of LSC targeted therapy: Therapy targeting LSCs is effective in eradicating a small amount of leukemia initiating cells but not the bulk of blasts cells in the blood and bone marrow[102]. By combining drugs eradicating LSCs with standard chemotherapy targeting the bulk of the disease, both the aggressive proliferating process as well as the root of the leukemia can be targeted[117]. An example serves the successful combination of the anti-CD33 immunoconjugate antibody gemtuzumab ozogamicin (GO) with standard chemotherapy[118]. This is associated with challenges in a meaningful design of clinical trials in terms of the correct timing of these therapies. LSC targeting therapy can either be given after reduction of the bulk population with standard chemotherapy as remission therapy or concomitant with chemotherapy as an induction regimen[102]. Upfront combination would allow assessing for additive and/or synergistic properties between drugs and would allow targeting of LSCs early on in the disease process, which might improve outcomes[102]. On the other hand, LSC targeted therapy might be particular valuable as post-consolidation therapy as no current post-consolidation intervention has led to improved OS for patients with AML[102,110,120]. LSC targeting therapies have the potential to fill the gap as they eradicate the cells responsible for relapses of AML.

Assessing clinical endpoints: Classical response criteria like CR and hematologic improvement might not be the best parameters to assess the efficacy of therapeutic approaches targeting LSCs as these drugs do not eradicate the bulk of blast cells but rather eliminate the rare population of LSCs[102]. Progression-free survival (PFS), event free survival and overall survival (OS) may be a more relevant endpoint for assessing the effectiveness of LSC elimination than tumor response as they better account for whether the root of the leukemia has been eliminated[113]. Importantly, while LSC frequency was found to be prognostic for survival, response rates did not correlate with LSC burden[96]. Subsequently, drugs targeting LSCs may show little activity if tested in traditional phase I/II trials as a proper assessment of endpoints relevant for LSCs, like PFS and OS, is generally only feasible in a phase III trial with a larger numbers of patients and long-term follow-up[113,121].

One example for the importance of assessing relevant endpoints for LSC targeting therapy, is inconsistency of clinical trials evaluating the efficacy of GO[102]. Single agent studies of GO showed overall response rates only approaching 30% at best and GO was voluntarily withdrawn from the United States market in 2010 after a study showed no improvements in outcomes when used in combination therapy as well as increased fatal toxicity[122-124]. In contrast, other large clinical trials showed improvement in outcomes more relevant for therapies targeting LSCs: event-free survival, disease-free survival and OS- despite no differences in disease response rates[125-128].

Targeting LSC surface molecules

Anti-CD33 antibodies: CD33 is found on LSCs although it is not a consistent feature of all LSCs studied[73,118,129]. As discussed above, there have been conflicting reports surrounding the efficacy and safety of GO and currently GO is not available on the market in the United States or Europe[130]. Apart from the different endpoints studied, there are additional explanations for the discrepancies observed: First, the dose of daunorubicin as the combination partner of GO did vary between trials, although it is known that treatment with daunorubicin-based schedules of 90 mg/m² for 3 d is more effective than similar schedules with daunorubicin at 45 mg/m²[131]. In the SWOG trial, which questioned the efficacy of GO, single bolus combined with daunorubicin at 45 mg/m² was studied against a control group with daunorubicin at 60 mg/m²[124]. However, the best effect of GO was seen when higher dose of GO (3 d at 3 mg/m² for 2 cycles) was added to a daunorubicin regimen of 60 mg/m² in both comparator groups[126]. Furthermore, GO seems to be quite active in acute promyelocytic leukemia (APL) as APL cells express high levels of CD33[132,133]. These results have prompted calls to reconsider the approval status of GO[130].

Anti-IL-3 receptor (CD123) antibodies: The interleukin-3 receptor alpha chain (IL-3Rα or CD123) is strongly expressed in CD34+/CD38- LSCs and can be targeted with monoclonal antibodies[89,134]. The blockage of CD123 has pleiotropic anti-leukemic effects including inhibition of LSC homing to the bone marrow, activation of innate immunity and inhibition of intracellular signaling events[135]. Several different agents targeting CD123 are currently evaluated in clinical trials: CD123 targeting antibodies can either be naked antibodies or be conjugated to toxins (e.g., diptheria toxin) or chemotherapeutic agents (chemo-immune conjugates) or be the backbone of a bi-specific T cell engager (BITE, e.g., CD3-CD123)[134,136,137] (Table 2).

Anti-CD44 antibodies: CD44 regulates interaction between LSCs and the bone marrow niche by controlling cell-cell adhesion and cell-matrix interaction through binding to hyaluronic acid, osteopontin, collagens and others[138].

Inhibition of CD44 with monoclonal antibodies was shown to reduce the numbers of LSCs in NOD/SCID mice and to increase the survival of the primary recipient mice as well prevent engraftment into the secondary recipient mice[79,139] (Table 2).

Anti-CD47 antibodies: CD47 is overexpressed on LSCs and high expression of CD47 is associated with

Stahl M et al. AML stem cells

WJSC | www.wjgnet.com

October 26, 2016 | Volume 8 | Issue 10
worse outcomes274. By interaction with the extracellular region of signal-regulatory protein alpha (SIRP\textsubscript{\textalpha}) on phagocytic cells, LSCs deliver a “do not eat me” message to these phagocytic cells140. Antibodies blocking the interaction between CD47 and SIRP\textsubscript{\textalpha} promote LSC phagocytosis and are in development (Table 2)274,141.

Targeting LSC-specific molecular pathways

NF-\kappaB signaling pathway: Bortezomib is able to suppress the NF-\kappaB signaling pathway by inhibiting the destruction of I\kappaB, a cellular inhibitory protein of NF\kappaB, by the ubiquitin-proteasome pathway142. Several clinical trials are examining the efficacy of Bortezomib targeting AML LSCs (Table 2). Two clinical trials combining Bortezomib with Cytarabine and Anthracyclines resulted in CR rates of 61% and 65\%143,144, whereas other trials that co-administered Bortezomib with other drugs did not show encouraging CR rates145-147. Several other inhibitors of NF-\kappaB signaling are in different phases of development (Table 2)148-152.

PI3K/AKT/mTOR pathway: The PI3K/AKT/mTOR pathway is of utmost importance in regulating cellular growth, survival, and metabolism and is frequently dysregulated in cancers and AML38. A multitude of PI3K inhibitors143,154, AKT inhibitors155-157 and mTOR inhibitors158 is currently investigated for their efficacy targeting LSCs in clinical trials (Table 2).

Bcl-2 pathway: LSCs, similar to other tumor cells, are able to avoid apoptosis due to overexpression of bcl-246. Currently, bcl-2 inhibition is investigated in clinical trials in form of the bcl-2 antisense oligodeoxy-nucleotide oblimersen159,160 and the small molecule inhibitor of bcl-2 obatoclax161-163 (Table 2).

Targeting the LSC microenvironment

Approaches targeting the interactions of LSCs with the bone marrow niche focus on breaking the dormancy of LSCs in the bone marrow in order to make them sensitive to traditional chemotherapy62,164.

LSC mobilization: LSC mobilization from the marrow niche can be achieved by nonspecific stimulators like G-CSF, Interferon-\alpha and Arsenic trioxide62. Using the NOD/SCID/IL2rgamma (null) mouse model, Saito et al65 showed that quiescent human AML LSCs, at first resistant to cytarabine, start proliferating and become susceptible to cytarabine once exposed to G-CSF. Combining chemotherapy with G-CSF leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone. Furthermore, they showed that treatment with G-CSF before cytarabine did not increase apoptosis of normal HSCs making this approach a particular attractive option for targeting LSCs but at the same time avoiding side effects from depletion of HSCs. The data from clinic trials using G-CSF priming in combination with chemotherapy are conflicting. Löwenberg et al166 randomized 640 newly diagnosed AML patients to receive cytarabine plus idarubicin with G-CSF (321 patients) or without G-CSF (319 patients) for the first cycle of induction of chemotherapy. Patients in CR after induction chemotherapy plus G-CSF had a higher rate of disease-free survival than patients who did not receive G-CSF (42\% vs 33\% at four years, \(P = 0.02\)), owing to a reduced probability of relapse (relative risk, 0.77; \(P = 0.04\)). Other studies did not show a benefit of adding G-CSF to traditional chemotherapy regimens167,168. These different responses to G-CSF might be explained by differences in the group of patients included in these trials63. In the trial by Löwenberg et al166 patients with standard-risk AML benefitted from G-CSF therapy whereas G-CSF did not improve the outcome in the subgroup with an unfavorable prognosis. In the trials without improvement with G-CSF, patients had a more unfavorable prognosis based on age, cytogenetic abnormalities or response to previous treatment. Several clinical trials are ongoing to investigate the efficacy of G-CSF in combination of chemotherapy in different risk groups of AML (Table 2).

Inhibition of homing: LSC dormancy can be targeted by specifically interrupting the CXCR4-CXCL12 and VCAM-VLA4 axis as well as inhibiting CD44 and CD123 on LSCs to prevent homing of LSCs to the bone marrow.

CXCR4-CXCL12 axis: SDF-1 was shown to promote survival of AML cells, whereas addition of neutralizing CXCR4 antibodies, SDF-1 antibodies, or AMD3100 significantly decreased their survival169. Furthermore, pretreatment of primary human AML cells with neutralizing CXCR4 antibodies blocked their homing into the BM and spleen of transplanted NOD/SCID/B2m\null mice169. Additionally, CXCR4 inhibition with AMD3465 was shown to increase the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib170. Recently a phase 1/2 study examined the efficacy of the CXCR4 inhibitor plerixafor in combination with mitoxantrone, etoposide, and cytarabine in 52 patients with relapsed or refractory AML171. Overall CR was found to be 46\% and correlative studies demonstrated a 2-fold mobilization in leukemic blasts into the peripheral circulation without evidence of symptomatic hyperleukocytosis or delayed count recovery. BMS-936564, a fully human IgG4 monoclonal antibody against CXCR4, exhibits antitumor activity in cytarabine-resistant mouse xenograft models of AML and is currently tested in a phase I clinical trial (Table 2)172.

VCAM-VLA4 axis: Integrin alpha4beta1 (VLA4) mediates adhesion of LSCs to stromal cells and extracellular matrix in the marrow niche and can be blocked by the monoclonal antibody Natalizumab59,69,173. AML cells were shown to de-adhere from a layer of
immobilized human VCAM1 expressing human stromal cells when exposed to Natalizumab and NSG mice transplanted with human AML cells survived significantly longer when they received intraperitoneal Natalizumab injections.[174]

CONCLUSION

AML remains one of the most difficult malignancies to treat. Despite significant advancements in the understanding of disease biology, this has not been translated yet into new treatment modalities improving outcomes. The relapse of AML is frequent and is responsible for the inability to cure AML. LSCs are understood to be the root of relapse and their presence has been found to be prognostic for the disease course. Unfortunately, LSCs are not easy to target as they are quiescent, able to self-renew and well protected by a supportive bone marrow niche. Furthermore, their inconsistent phenotype and similarity to normal HSCs hamper specific drug development. Nevertheless, a multitude of potential targets have been identified and are currently tested in different phases of clinical and preclinical development. Successful eradication of LSCs will require combination of different strategies including targeting LSC specific surface molecules and pathways as well as interactions of LSCs with the microenvironment. Furthermore, clinical trials have to be designed in a way that they are able to detect a specific effect of LSCs, which is easy to miss in a traditional trial design. Overall, targeting LSCs has the promise to not only effectively reduce disease burden but to eradicate the root of leukemia itself.

REFERENCES

1. Roboz GJ. Novel approaches to the treatment of acute myeloid leukemia. \textit{Hematol Am Soc Hematol Educ Program 2011; 2011:} 43-50 [PMID: 22160011 DOI: 10.1182/ash.education.2011.1.43]
2. Felipe Rico J, Hassane DC, Guzman ML. Acute myelogenous leukemia stem cells: from Bench to Bedside. \textit{Cancer Lett 2013; 338:} 4-9 [PMID: 22713929 DOI: 10.1016/j.canlet.2012.05.034]
3. Crews LA, Jamieson CH. Selective elimination of leukemia stem cells: hitting a moving target. \textit{Cancer Lett 2013; 338:} 15-22 [PMID: 22906415 DOI: 10.1016/j.canlet.2012.08.006]
4. Lutz C, Hoang VT, Buss E, Ho AD. Identifying leukemia stem cells—is it feasible and does it matter? \textit{Cancer Lett 2013; 338:} 10-14 [PMID: 22820159 DOI: 10.1016/j.canlet.2012.07.014]
5. Ailles LE, Weissman IL. Cancer stem cells in solid tumors. \textit{Curr Opin Biotechnol 2007; 18:} 460-466 [PMID: 18023337 DOI: 10.1016/j.copbio.2007.10.007]
6. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. \textit{Cancer Cell 2012; 21:} 283-296 [PMID: 22439924 DOI: 10.1016/j.ccc.2012.03.003]
7. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. \textit{Nature 2001; 414:} 105-111 [PMID: 11689555 DOI: 10.1038/35102167]
8. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. \textit{Proc Natl Acad Sci USA 2003; 100:} 3983-3988 [PMID: 12629218 DOI: 10.1073/pnas.03052091100]
9. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. \textit{Nature 2004; 432:} 396-401 [PMID: 15549107 DOI: 10.1038/nature03128]
10. Wang JC, Dick JE. Cancer stem cells: lessons from leukemia. \textit{Trends Cell Biol 2005; 15:} 494-501 [PMID: 16084092 DOI: 10.1016/j.tcb.2005.07.004]
11. Dick JE. Stem cell concepts renew cancer research. \textit{Blood 2008; 112:} 4793-4807 [PMID: 19067439 DOI: 10.1182/blood-2008-08-107941]
12. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on stem cell tumors. \textit{Cancer Res 2006; 66:} 9339-9344 [PMID: 16990346 DOI: 10.1158/0008-5472.CAN-06-3126]
13. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, Mulloy JC. AML xenograft efficiency is significantly improved in NOD/SCID-IL2Rg mice constitutively expressing human SCF, GM-CSF and IL-3. \textit{Leukemia 2010; 24:} 1785-1788 [PMID: 20686503 DOI: 10.1038/leu.2010.158]
14. Goyama S, Wunderlich M, Mulloy JC. Xenograft models for normal and malignant stem cells. \textit{Blood 2015; 125:} 2630-2640 [PMID: 25762176 DOI: 10.1182/blood-2014-11-570218]
15. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. \textit{Nat Med 1997; 3:} 730-737 [PMID: 9212098 DOI: 10.1038/nm0797-730]
16. Lapidot T, Sirad C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. A cell initiating human acute myloid leukaemia after transplantation into SCID mice. \textit{Nature 1994; 367:} 645-648 [PMID: 7590404 DOI: 10.1038/367645a0]
17. Till JE, Mcculloch EA, Siminovich L. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. \textit{Proc Natl Acad Sci USA 1964; 51:} 29-36 [PMID: 14104600 DOI: 10.1073/pnas.51.1.29]
18. McKenzie JL, Gan OL, Doedens M, Wang JC, Dick JE. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. \textit{Nat Immunol 2006; 7:} 1225-1233 [PMID: 17013390 DOI: 10.1038/ni1393]
19. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. \textit{Nature 2006; 441:} 1068-1074 [PMID: 16810241 DOI: 10.1038/nature04956]
20. Huttner WB, Kosodo Y. Symmetric versus asymmetric cell division during neurogenesis in the developing vertebrate central nervous system. \textit{Curr Opin Cell Biol 2005; 17:} 648-657 [PMID: 16243506 DOI: 10.1016/jceb.2005.10.005]
21. Boman BM, Wicha MS, Fields JZ, Ranaquist OA. Symmetric division of cancer stem cells--a key mechanism in tumor growth that should be targeted in future therapeutic approaches. \textit{Clin Pharmacol Ther 2007; 81:} 893-898 [PMID: 17460605 DOI: 10.1038/sj.cpt.6100202]
22. Powell AE, Shung CY,aylor KW, Mullendorff KA, Weiss JB, Wong MH. Lessons from development: A role for asymmetric stem cell division in cancer. \textit{Stem Cell Res 2010; 4:} 3-9 [PMID: 19685549 DOI: 10.1016/j.stem.2009.09.005]
23. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giallini B, Briskin C, Minucci S, Di Fiore PP, Pelicci PG. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. \textit{Cell 2009; 138:} 1083-1095 [PMID: 19766563 DOI: 10.1016/j.cell.2009.06.048]
24. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centromeres in stem cell division. \textit{Science 2007; 315:} 518-521 [PMID: 17255513 DOI: 10.1126/science.1134910]
25. Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. \textit{Science 2003; 301:} 1547-1550 [PMID: 12970569 DOI: 10.1126/science.1087795]
26. Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. \textit{Development 2014; 141:} 4656-4666 [PMID: 25468935 DOI: 10.1242/
activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6: 5490-5500 [PMID: 25823927 DOI: 10.18632/oncotarget.3545]

Kagoya Y, Yoshimi A, Katoaka K, Nakagawa M, Kumano K, Arai S, Kobayashi H, Saito T, Iwakura Y, Kurokawa M. Positive feedback between NF-kB and TNF-α promotes leukemia-initiating cell capacity. J Clin Invest 2014; 124: 528-542 [PMID: 23482394 DOI: 10.1172/JCI68101]

Liu N, Zhang J, Ji C. The emerging roles of Notch signaling in leukemia and stem cells. Biomark Res 2013; 1: 23 [PMID: 24252593 DOI: 10.1186/2047-7711-1-23]

Lagadino ED, Sach A, Callaham K, Rossi RM, Neering SJ, Minnajuddin M, Ashton JM, Pei S, Goe S, O’Dwyer KM, Lissvold JL, Brooks PS, Becker MW, Jordan CT. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cell niches. Cell Stem Cell 2013; 12: 329-341 [PMID: 23333149 DOI: 10.1016/j.stem.2012.12.013]

Domn J, Weissman IL. Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kit/c-kit signaling the other. J Exp Med 2000; 192: 1707-1718 [PMID: 11207688 DOI: 10.1084/jem.192.12.1707]

Scheppers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 2015; 16: 254-267 [PMID: 25748932 DOI: 10.1016/j.stem.2015.02.014]

Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 2008; 132: 631-644 [PMID: 18295580 DOI: 10.1016/j.cell.2008.01.025]

Butler JM, Nolan DJ, Vertes EL, Varum-Finney B, Kobayashi H, Hooper AT, Scandell M, Shido K, White IA, Kobayashi M, Witte L, May C, Shawber C, Kimura Y, Kitajewski J, Rosenwaks Z, Bernstein ID, Rafi S. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 2010; 6: 251-264 [PMID: 20272228 DOI: 10.1016/j.stem.2010.02.001]

Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Peng N, Troas J, Schugar R, Decuy BM, Badyak S, Buhling HJ, Giacobino JP, Lazzari L, Huard J, Pautel B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301-313 [PMID: 18786417 DOI: 10.1016/j.stem.2007.07.003]

Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327-334 [PMID: 24240631 DOI: 10.1038/nature12984]

Brunei D, Lucass D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS. Megakaryocyte colony-stimulating factor regulates hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 2014; 20: 1315-1320 [PMID: 25326802 DOI: 10.1038/nm.3707]

Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 2009; 114: 1150-1157 [PMID: 19401558 DOI: 10.1182/blood-2009-01-202606]

Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977-988 [PMID: 17174120 DOI: 10.1016/j.immuni.2006.10.016]

Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 2003; 19: 257-267 [PMID: 12932359 DOI: 10.1016/S1074-7613(03)00201-2]

Juneja HS, Schmalstieg FC, Lee S, Chen J. Vascular cell adhesion molecule-1 and VLA-4 are obligatory adhesion proteins in the heterotypic adhesion between human leukemia/lymphoma cells and marrow stromal cells. Exp Hematol 1993; 21: 444-450 [PMID: 7680000]

Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, Jin DK, Dias S, Zhang F, Hartmann TE, Hackett NR, Crystal RG, Witte L, Hicklin DJ, Bohlen P, Eaton D, Lyden D, de Sauvage F, Rafi S. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Cell Biol 2005; 7: 637-647 [PMID: 15790998 DOI: 10.1038/ncl.2005.110]
Taugss DC, Vargaffig J, Miraki-Moud F, Griessinger E, Sharrock A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama T, Matsunaga T

Clonogenic cells in acute myeloblastic leukemia. Proc Natl Acad Sci USA 2004; 101: 1970-1980 [PMID: 15265378 DOI: 10.1073/pnas.012336799

Lister TA, Gribben JG, Bonnet D. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity and challenges. Proc Natl Acad Sci USA 2010; 107: 2364-2372 [PMID: 20914607 DOI: 10.1073/pnas.0914754107

Leukemia stem cells. Cell Stem Cell 2010; 7: 708-717 [PMID: 21112565 DOI: 10.1016/j.stem.2010.11.014

Stahl M et al. AML stem cells
The connectivity map. Weissman IL, Akashi K. AML1/ETO-expressing Taussig D, Zibara K, Smith LL, Ridler CM, Appelbaum FR, Estey EH, Bernstein ID. Acute 2004; 96: 1166-1173 [PMID: 16234360 DOI: 10.1016/j.stem.2007.12.010]

van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zeijlemaker W, Kelder A, Rutten AP, Snel AN, Passegué E, Ayton PM, Karsunky H, Cleary ML, Stahl M. Preferential expression of a high number of ATP binding cassette transporter expression in hematopoietic stem cells and the role in drug resistance. Leukemia 2008; 21: 214-226 [PMID: 17768038 DOI: 10.1038/leu.2007.02.003]

Jordan CT. Unique molecular and cellular features of acute myelogenous leukemia stem cells. Leukemia 2002; 16: 559-562 [PMID: 11960332 DOI: 10.1038/sj.leu.2402446]

Chen K, Huang YH, Chen JL. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacol Sin 2013; 34: 732-740 [PMID: 23685952 DOI: 10.1038/aps.2013.27]

Guzman ML, Swiderski CF, Howard DS, Grimes BA, Rossi RM, Szilassy SJ, Jordan CT. Preferential induction of apoptosis for primary human leukemia stem cells. Proc Natl Acad Sci USA 2002; 99: 16220-16225 [PMID: 12451177 DOI: 10.1073/pnas.252462599]

Wang JC. Evaluating therapeutic efficacy against cancer stem cells: new challenges posed by a new paradigm. Cell Stem Cell 2007; 1: 497-501 [PMID: 18938746 DOI: 10.1016/j.stem.2007.10.005]

Krivtsov AV, Feng Z, Armstrong SA. Transformation from committed progenitor to leukemia stem cells. Ann N Y Acad Sci 2009; 1176: 144-149 [PMID: 19796242 DOI: 1111.j.1497-6962.2009.04966.x]

Michnick SW. The connectivity map. Nat Chem Biol 2006; 2: 663-664 [PMID: 17108982 DOI: 10.1038/nchembio.1206-663]

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Hagerty SJ, Clemons PA, Wei R, Carr SA, Lander ES, Golub TR. The Connectivity Map: using gene expression signatures to connect small molecules, cells, genes, and disease. Science 2006; 313: 1929-1935 [PMID: 17008526 DOI: 10.1126/science.1132939]

Huff CA, Matsui WH, Smith BD, Jones RJ. Strategies to eliminate cancer stem cells: clinical implications. Eur J Cancer 2006; 42: 1293-1297 [PMID: 16644203 DOI: 10.1016/j.ejca.2006.01.045]

Walter RB, Appelbaum FR, Estey EH, Bernstein ID. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood 2012; 119: 6196-6208 [PMID: 22286199 DOI: 10.1182/
Anthracycline dose intensification in acute myeloid leukemia. *N Engl J Med* 2009; 361: 1249-1259 [PMID: 19776406 DOI: 10.1056/NEJMoa0904544]

132 Lo-Coco F, Cimino G, Breccia M, Nogoena NI, Diverio D, Finollez E, Pogliani EM, Di Bona E, Micalizzi C, Kropp M, Venditti A, Tafari A, Mandelli F. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. *Blood* 2004; 104: 1995-1999 [PMID: 15187030 DOI: 10.1182/blood-2004-04-1550]

133 Breccia M, Cimino G, Diverio D, Gentilini F, Mandelli F, Lo Coco F. Sustained molecular remission after low dose gemtuzumab-ozogamicin in elderly patients with advanced acute promyelocytic leukemia. *Haematologica* 2007; 92: 1273-1274 [PMID: 17768126 DOI: 10.3324/haematol.11329]

134 Jin J, Lee EM, Ramshaw HS, Busfield SJ, Peoppl AG, Wilkinson L, Guthrie MA, Thomas D, Barry EF, Boyd A, Gearing DP, Vairo G, Lopez AF, Dick JE, Lock RB. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemia stem cells. *Cell Stem Cell* 2009; 5: 31-42 [PMID: 19570512 DOI: 10.1016/j.stem.2009.04.018]

135 Konopleva MY, Jordan CT. Leukemia stem cells and micro-environment: biology and therapeutic targeting. *J Clin Oncol* 2011; 29: 591-599 [PMID: 21220598 DOI: 10.1200/JCO.2010.31.0904]

136 Frankel A, Liu JS, Rizzieri D, Hogge D. Phase I clinical study of diphteria toxin-interleukin 3 fusion protein in patients with acute myeloid leukemia and myelodysplasia. *Leukemia* 2008; 49: 543-553 [PMID: 18297533 DOI: 10.1016/j.leukres.2008.03.030]

137 Al-Hussaini M, Rettig MP, Ritchey JK, Karpova D, Uly GL, Eisenberg LG, Gao F, Eades WC, Bonvini E, Chichili GR, Moore PA, Johnson S, Collins L, DiPersio JF. Targeting CD123 in acute myeloid leukemia using a T-cell-directed dual-affinity retargeting platform. *Blood* 2016; 127: 122-131 [PMID: 26531164 DOI: 10.1182/blood-2014-05-575704]

138 Zhou J, Chng WJ. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia. *World J Stem Cells* 2014; 6: 473-484 [PMID: 25258669 DOI: 10.4225/wjst.v6i4.473]

139 Gadhoum Z, Delaunay J, Maquereur E, Durand L, Lancereaux JN, Qi J, Robert-Lezenes C, Chomienne C, Smadja-Joffe F. The effect of anti-CD44 monoclonal antibodies on differentiation and proliferation of human acute myeloid leukemia cells. *Leuk Lymphoma* 2004; 45: 1501-1510 [PMID: 15370200 DOI: 10.1080/10428190400206687]

140 Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL, leukemia. *J Clin Oncol* 2009; 27: 218-225 [PMID: 19632178 DOI: 10.1200/JCO.2009.05.046]

141 Liu J, Wang L, Zhao F, Tseng S, Narayanan C, Shura L, Willingham S, Howard M, Prohaska S, Volkmer J, Chao M, Weissman IL, Majeti R. Pre-Clinical Development of a Humanized Anti-CD44 Antibody with Anti-Cancer Therapeutic Potential. *PLoS One* 2015; 10: e0137345 [PMID: 26390038 DOI: 10.1371/journal.pone.0137345]

142 Shen M, Schmitt S, Buac D, Dou QP. Targeting the ubiquitin-proteasome system for cancer therapy. *Expert Opin Ther Targets* 2013; 17: 1091-1108 [PMID: 23822887 DOI: 10.1517/14724222.2013.81315728]

143 Attar EC, De Angelo DJ, Supko JG, D’Amato F, Zahrieh D, Sridhara R, Rahman A, Williams G, Pazdur R. Approval summary: gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. *Blood* 2010; 115: 2248-2940 [DOI: 10.1182/blood-2009-12-260871]

144 Attar EC, Johnson JL, Amrein PC, Lozanski G, Wadleigh M, DeAngelo DJ, Kolitz JE, Powell BL, Voorhees P, Wang ES, Blum W, Stone RM, Marcucci G, Bloomfield CD, Moser B, Larson RA. Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502. *J Clin Oncol* 2013; 31: 923-929 [PMID: 23129738 DOI: 10.1200/JCO.2012.45.2177]
155 Modulation of antioxidant gene expression by 4-hydroxynonenal: atheroprotective role of the Nrf2/Keap1 pathway.

154 2011; 11: 447-453 [PMID: 17804695 DOI: 10.1182/blood-2007-05-090621]

153 Hassane DC, Sen S, Minjaujedin M, Rossi RM, Corbett CA, Balys M, Wei I, Crooks PA, Guzman ML, Jordan CT. Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 2010; 116: 5983-5990 [PMID: 20808920 DOI: 10.1182/blood-2010-04-270844]

152 Sethi G, Ahn KS, Pandey MK, Aggarwal BB. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 2007; 109: 2727-2735 [PMID: 17110449]

151 Page S, Fischer C, Baumgartner B, Haas M, Kreuzig JJ, Liolli G, Hayn M, Ziegler-Heitbrock HW, Neumeier D, Brand K. 4-Hydroxynonenal prevents NF-kappaB activation and tumor necrosis factor expression by inhibiting IkappaB phosphorylation and subsequent proteolysis. J Biol Chem 1999; 274: 11611-11618 [PMID: 10206970 DOI: 10.1074/jbc.274.17.11611]

150 Slew RC, Ishii T, Mann GE. Modulation of antioxidant gene expression by 4-hydroxynonenal: antheroprotective role of the Nrf2/ARE transcription pathway. Redox Rep 2007; 12: 11-15 [PMID: 17263908 DOI: 10.1179/135437806X162167]

149 Allegretti M, Righetti MR, Lichetta F, Mitralithi R, Sorecchi E, Reggiani F, Talarico G, Foi R, Bertolini F, Arnadiri S, Tortisi MR, Tafuri A. The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia. Sci Rep 2015; 5: 18137 [PMID: 26674543 DOI: 10.1038/srep18137]

148 Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, Byrd JC, Tyner JW, Loriaux MM, Deininger M, Drucker BJ, Puri KD, Ulrich RG, Giese NA. CAL-101, a p10delta selective phosphatidylinositol-3 kinase inhibitor for the treatment of B-cell malignancies, induces PI3K signaling and cellular viability. Blood 2011; 117: 591-594 [PMID: 20959606 DOI: 10.1182/blood-2010-03-275305]

147 Lu JW, Lin YM, Lai YL, Chen CY, Hu CY, Tien HF, Ou DL, Lin LI. MK-2206 induces apoptosis of AML cells and enhances the cytotoxicity of cytarabine. Med Oncol 2015; 32: 206 [PMID: 26087977 DOI: 10.1007/s12032-015-0560-7]

146 Konopleva MY, Walter RB, Faderl SH, Jabbour EJ, Zeng Z, Borthakur G, Huang X, Kadim TA, Ruvolo PP, Feliz JB, Lu H, Debose L, Burger JA, Andreeff M, Liu W, Baggerly KA, Kornblau SM, Doyle LA, Estey EH, Kantarjian HM. Preclinical and early clinical evaluation of the oral AKT inhibitor, MK-2206, for the treatment of acute myelogenous leukemia. Clin Cancer Res 2014; 20: 2226-2235 [PMID: 24583795 DOI: 10.1158/1078-0432.CCR-13-1978]

145 Blum W, Schwind S, Tarhigt SS, Geyer S, Eisfeldt AK, Whitan M, Walker A, Kliosovic R, Byrd JC, Svanthoom R, Wang H, Curtman JP, Devine SM, Jacobs G, Kefauver C, Perrotti D, Chan KK, Bloomfield CD, Caligiuri MA, Grever MR, Garzon R, Marcucci G. Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood 2012; 119: 6025-6031 [PMID: 22566605 DOI: 10.1182/blood-2012-03-413898]

144 Lasnert JE, Duong VH, Winton EF, Sturt RK, Burton M, Zhang S, Cubit C, Blaskovics MA, Wright J, Sebi S, Sullivan DM. A phase I clinical-pharmacodynamic study of the farnesyltransferase inhibitor tipifarnib in combination with the proteasome inhibitor bortezomib in advanced acute leukemias. Clin Cancer Res 2011; 17: 11-40 [PMID: 21233494 DOI: 10.1158/1078-0432.CCR-10-1878]

143 Walker AR, Kliosovic RB, Garzon R, Schaaf LI, Humphries K, Devine SM, Byrd JC, Grever MR, Marcucci G, Blum W. Phase I study of azacitidine and bortezomib in adults with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2014; 55: 1304-1308 [PMID: 23952245 DOI: 10.3109/10428194.2013.833333]

142 Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC, Becker MW, Bennett JM, Sullivan E, Lachowicz JL, Vaughan A, Sweeney CJ, Matthews W, Carroll M, Liesveld JL, Crooks PA, Jordan CT. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007; 110: 4427-4435 [PMID: 17804695 DOI: 10.1182/blood-2007-05-090621]

141 Hassane DC, Sen S, Minjaujedin M, Rossi RM, Corbett CA, Balys M, Wei I, Crooks PA, Guzman ML, Jordan CT. Chemical genomic screening reveals synergism between parthenolide and inhibitors of the PI-3 kinase and mTOR pathways. Blood 2010; 116: 5983-5990 [PMID: 20808920 DOI: 10.1182/blood-2010-04-270844]

140 Sethi G, Ahn KS, Pandey MK, Aggarwal BB. Celastrol, a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 2007; 109: 2727-2735 [PMID: 17110449]
M., Konopleva M. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. *Blood* 2009; 113: 6215-6224 [PMID: 19955566 DOI: 10.1182/blood-2008-05-158311]

171 Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, Kulkarni S, Abboud CN, Cashen AF, Stockerl-Goldstein KE, Vij R, Westervelt P, DiPersio JF. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. *Blood* 2012; 119: 3917-3924 [PMID: 23208295 DOI: 10.1182/blood-2011-10-383406]

172 Kuhne MR, Mulvey T, Belanger B, Chen S, Pan C, Chong C, Cao F, Nieko W, Kempe T, Henning KA, Cohen LJ, Korman AJ, Cardarelli PM. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. *Clin Cancer Res* 2013; 19: 357-366 [PMID: 23213054 DOI: 10.1158/1078-0432.CCR-12-2333]

173 Zohren F, Toutzaris D, Klärner V, Hartung HP, Kieseier B, Haas R. The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. *Blood* 2008; 111: 3893-3895 [PMID: 18235044 DOI: 10.1182/blood-2007-10-120329]

174 Hsieh YT, Jiang E, Pham J, Kim HN, Abdel-Azim H, Khazal S, Bug G, Spohn G, Bonig H, Kim YM. VLA4 Blockade In Acute Myeloid Leukemia. *Blood* 2013; 122: 3944

175 Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. *Curr Opin Genet Dev* 2008; 18: 19-26 [PMID: 18440219 DOI: 10.1016/j.gde.2008.01.020]

176 Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. *Blood* 2005; 105: 4163-4169 [PMID: 15687234 DOI: 10.1182/blood-2004-10-4135]

177 Liesveld JL, Rosell KE, Lu C, Bechelli J, Phillips G, Lancet JE, Abboud CN. Acute myelogenous leukemia--microenvironment interactions: role of endothelial cells and proteasome inhibition. *Hematology* 2005; 10: 483-494 [PMID: 16321813 DOI: 10.1080/1024530500233452]

178 Mothy M, Duarte RF, Croockewit S, Hübel K, Kvalheim G, Russell N. The role of plerixafor in optimizing peripheral blood stem cell mobilization for autologous stem cell transplantation. *Leukemia* 2011; 25: 1-6 [PMID: 21224858 DOI: 10.1038/leu.2010.224]

179 Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Stour EF. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. *J Exp Med* 2005; 201: 1307-1318 [PMID: 15837815 DOI: 10.1084/jem.20041385]

P- Reviewer: Kita K, Li ZJ, Ramirez M, Shao R S- Editor: Ji FF L- Editor: A E- Editor: Wu HL
