Role of tissue microenvironment resident adipocytes in colon cancer

Maria Tabuso, Shervanthi Homer-Vanniasinkam, Raghu Adya, Ramesh P Arasaradnam

Abstract

Colorectal cancer (CRC) is a multifactorial disease characterized by several genetic and epigenetic alterations occurring in epithelial cells. It is increasingly recognized that tumour progression is also regulated by tumour microenvironment (TME). The bidirectional cross-talk between tumour resident adipocytes and cancer cells within TME has been proposed as active contributor to carcinogenesis. Tumour resident adipocytes exhibit an activated phenotype characterized by increased secretion of pro-tumorigenic factors (angiogenic/inflammatory/immune) which contribute to cancer cell proliferation, invasion, neoangiogenesis, evasion of immune surveillance and therapy resistance. Furthermore, adipocytes represent a fuel rich source for increasing energy demand of rapidly proliferating tumour cells. Interestingly, a relationship between obesity and molecular variants in CRC has recently been identified. Whether adipose tissue promotes cancer progression in subsets of molecular phenotypes or whether local tissue adipocytes are involved in inactivation of tumour suppressor genes and/or activation of oncogenes still needs to be explored. This editorial highlights the major findings related to cross-talk between adipocytes and colon cancer cells and how local paracrine interactions may promote cancer progression. Furthermore, we provide future strategies in studying colonic TME which could provide insights in...
bidirectional cross-talk mechanisms between adipocytes and colonic epithelial cells. This could enable to decipher critical signalling pathways of both early colonic carcinogenesis and cancer progression.

Key words: Tumour resident adipocytes; Dysfunctional adipocytes; Adipose tissue; Cancer cell-tumour resident adipocyte cross-talk; Colon cancer microenvironment

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The tumor microenvironment (TME) has been implicated in cancer progression and chemoresistance. Adipocytes are active components of the TME. Bidirectional cross-talk between adipocytes and cancer cells has recently been postulated to actively contribute to tumor initiation and progression. This Editorial highlights the role of local paracrine interactions between adipocytes and colon cancer cells. Discovery of signalling pathways activated by tumor resident adipocytes in colon cancer will allow better understanding of carcinogenesis and provide potential therapeutic targets.

Tabuso M, Homer-Vanniasinkam S, Adya R, Arasaradnam RP. Role of tissue microenvironment resident adipocytes in colon cancer. World J Gastroenterol 2017; 23(32): 5829-5835 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i32/5829.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i32.5829

INTRODUCTION

Colorectal carcinogenesis is multifactorial involving interactions between genetic mutations (APC, TP53, PI3K, KRAS, BRAF, PTEN), microsatellite instability, chromosomal instability, epigenetic alterations (locus-specific CpG island methylation, global DNA hypomethylation) and environmental factors (obesity, diabetes, metabolic syndrome, intestinal microbiome). Moreover the importance of “field cancerisation” has been highlighted in terms of cancer development in the macroscopically normal colon. Epidemiologic studies support an association between obesity and molecular variants in CRC. It has been proposed that microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumour evolution. Studies in breast cancer suggest that bidirectional interactions induce sequential epigenetic modifications in both cancer and stromal cells with progression from in situ ductal carcinoma to invasive carcinoma. Epigenetic modifications induced by tumour resident adipocytes in colon cancer cells have not been reported, although MPE studies have identified a relationship between obesity and molecular variants in CRC.

DYSFUNCTIONAL ADIPOCYTES AND CANCER

The main component of adipose tissue is white adipose tissue (WAT). Expansion of WAT is consequence of...
an increase in size (hypertrophy) and/or increase in number (hyperplasia) of adipocytes. Healthy adipose tissue expansion consists in hypertrophic and hyperplastic white adipocytes, with appropriate angiogenic response, extracellular matrix remodelling and minimal inflammation. In contrast, pathological expansion of adipose tissue consists of adipocytes hypertrophy resulting in hypoxia, reduced angiogenesis, infiltration of macrophages and immune cells, low-grade inflammation, excessive production of reactive oxygen radicals, endoplasmic reticulum stress, mitochondrial dysfunction and remodelling of extracellular matrix.

Inflammation is a recognised hallmark of cancer and pre-existing pro-inflammatory microenvironments are associated with increased cancer risk. Increasing evidence, in breast, prostatic, ovarian and colon cancer, suggests that dysfunctional adipocytes are involved in cancer cell proliferation and migration through dysregulation of local and systemic inflammatory-immune-angiogenic response system. Inflammation is initiated by adipose tissue hypertrophy leading to localized hypoxia which activates hypoxia-inducible factor 1-alpha (HIF-1α). HIF-1α up-regulates secretion of chemokines and proangiogenic factors including TNF-α, IL-6, IL-1, monocyte chemoattractant protein (MCP-1), plasminogen activator inhibitor-1 and VEGF, which are involved in the recruitment of macrophages and initiation of angiogenesis. Recruited macrophages contribute further to up regulation of inflammatory/immune cytokines favouring the acquisition of a systemic and local inflammatory phenotype.

ROLE OF ADIPOSE TISSUE SECRETED FACTORS AND LIPID METABOLITES IN COLON CANCER

The adipose tissue secreted factors, lipid metabolites and signalling pathways have been summarized in Table 1.

AT secreted factors	Function	Signalling pathway	Ref.
TNF-α	Pro-inflammatory, cell proliferation, anti-apoptotic, angiogenic	PI3K, NF-κB	Pikarsky et al. [25], 2004
			Huang et al. [26], 2009
			Viatour et al. [27], 2005
			Hefetz-Sela et al. [28], 2013
			Hoda et al. [22], 2007
IL-6	Pro-inflammatory, cell proliferation and anti-apoptotic	JAK/STAT3	Hodge DR et al. [24], 2009
			Hefetz-Sela et al. [28], 2013
Leptin	Promotion of cell survival, proliferation, differentiation, pro-inflammatory	JAK/STAT, PI3K, MAPK	Hoda et al. [22], 2007
Adiponectin	Anti-inflammatory, anti-proliferative and pro-apoptotic effect	Inhibition of PI3K, AMPK/mTOR, NF-κB	Hoda et al. [21], 2013
Visfatin	Anti-inflammatory, angiogenic, promotion of cell survival and migration, angiogenesis	ERK/MAPK, PI3K/AKT, NF-κB, β1-integrin	Hoda et al. [22], 2007
Lipid peroxidation products	Promotion of cell proliferation, differentiation, survival, migration, angiogenesis	PI3K/AKT/mTOR, NF-κB, PPAR, MAPK	Ayala et al. [20], 2014

PI3K: Phosphoinositide 3-kinase; NF-κB: Nuclear factor-kappa B; JAK/STAT3: Janus kinase/signal transducers and activators of transcription 3; MAPK: Mitogen-activated protein kinases; AMPK: AMP-activated protein kinase; mTOR: Mammalian target of rapamycin; HIF-1α: Hypoxia-inducible factor 1-alpha; TNF-α: Tumor necrosis factor alpha; IL-6: Interleukin-6; AKT: Protein Kinase B; ERK: Extracellular signal-regulated kinase; PPAR: Peroxisome proliferator-activated receptors.

TNF-α

TNF-α, secreted by dysfunctional adipose tissue, has been shown to support cancer cell proliferation, angiogenesis and metastasis through activation of key transcription factors, including PI3K/AKT/mTOR and nuclear transcription factor NF-κB. TNF-α and hypoxic conditions also induce secretion of the proinflammatory cytokine IL-6, activator of Janus Kinase and signal transducers and activators of transcription 3 (Jak/STAT3) pathways, key regulators of cell proliferation and apoptosis.

Adipoxy secreted hormones, including leptin, adiponectin and visfatin, have also been implicated in colon cancer progression.

Leptin

Leptin is a potent inflammatory agent involved in up regulation of pro-inflammatory cytokines such as TNF-α, MCP-1, and reactive oxygen species from endothelial cells and peripheral blood mononuclear cells. In vitro studies, in colon cancer cell lines, have demonstrated that leptin exerts pro-inflammatory, mitogenic, anti-apoptotic and angiogenic properties.

Adiponectin

Adiponectin has a potent anti-inflammatory, anti-proliferative and anti-apoptotic activity. However, proliferative and pro-inflammatory properties of adiponectin on colonic epithelial cancer cells have also been reported. Several studies suggest local-paracrine pro tumorigenic effects of adiponectin according to tissue-specific expression of its receptor subtypes (ADIPOR1 and ADIPOR2). Increased AdipoR1 and AdipoR2 expression has been associated with cancer progression linked with the pro-angiogenic activity of adiponectin.

Visfatin

Visfatin has been shown to exhibit pro-inflammatory
and pro-angiogenic effects in endothelial cells\cite{25}. Studies have demonstrated a role of visfatin in CRC. CRC cells express chemokine receptors (CXCR4 and CXCR7), activated by visfatin, which bind stromal cell-derived factor-1, promoter of survival and migration of cancerous cells\cite{26}.

Lipid peroxidation products
The chronic low-grade inflammatory state of dysfunctional adipocytes leads to activation of lipid peroxidation with the production and secretion of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde. The secreted 4-HNE is responsible of deregulation of multiple pathways involved in tumour cell proliferation, differentiation, cell survival, apoptosis and angiogenesis including MAPK, PI3K-AKT-mTOR, NF-kB. This also results in upregulation of prostaglandin E2 (PGE2) and cyclooxygenase-2, implicated in CRC\cite{27}.

ACTIVATED PHENOTYPE OF TUMOUR RESIDENT ADIPOCYTES AND LOCAL PARACRINE REGULATION OF COLON CANCER

Recently great interest has emerged in reciprocal signalling between tumour resident adipocytes and cancer cells. CRC progresses through sequential stages involving multiple layers of the colonic wall. TNM staging system is currently used for classifying CRC in 4 stages according to local invasion depth (T stage), lymph node involvement (N stage) and presence or absence of distant metastasis (M stage), providing indication for prognosis and therapeutic strategies. With cancer progression activation of complex signalling networks modify both cancer cells and stromal cells\cite{28}. Cancer cells and activated stromal cells communicate by autocrine/paracrine pathways contributing to dynamic modulation of TME through persistent recruitment of inflammatory and stromal cells in the TME. As a result, TME becomes increasingly populated with infiltrating innate immune cells (macrophages, neutrophils), adaptive immune cells (T and B lymphocytes) pericytes and stem cells contributing to cancer cell proliferation and invasion (Figure 2).

Figure 1 Signalling pathways activated by tumour resident adipocytes secreted factors. Tumour resident adipocytes secreted factors activate cell cycle regulators and inflammatory/immune/angiogenic regulators. Cancer cell secreted inflammatory cytokines activate host cells of TME constituting a paracrine/autocrine loop. MAPK: Mitogen-activated protein kinase; PI3K: Phosphoinositide 3-kinase; AKT: Protein Kinase B; mTOR: Mammalian target of rapamycin; NF-kB: Nuclear factor-kB; JAK/STAT3: Janus kinase/signal transducers and activators of transcription 3; HIF-1α: Hypoxia-inducible factor 1-alpha; TNF-α: Tumor necrosis factor alpha; IL-6: Interleukin-6.

Colon cancer microenvironment	Tumor resident adipocyte	
Cytokines/growth factors	Adipokines	Products of lipid peroxidation
HIF-1α	PI3K/AKT	MAPK
JAK/STAT3	AKT	Cell cycle regulators
NF-kB	Inflammatory/immune regulator	
MAPK	NF-kB	Angiogenic regulator
JAK/STAT3	HIF-1α	

Tabuso M et al. Tumour resident adipocytes in colon cancer
activity, decreased adipocyte-differentiation markers (adiponectin, resistin, fatty acid binding protein-4, adipocyte protein 2), and increased secretion of inflammatory factors (IL-6, IL-8, IL-1β, TNF-α), growth factors (insulin-like growth factor 1, IGF1 binding proteins), angiogenic factors (VEGF) and MCP-1 (CCL2) [15]. In vitro studies, in breast and prostate cancer, have demonstrated that tumour resident adipocyte secreted factors activate signalling pathways involved in cancer cell survival, proliferation, invasion, epithelial to mesenchimal transition, angiogenesis and extracellular matrix remodelling, promoting cancer initiation and metastasis [15,22]. Active recruitment of adipocytes to TME has not been reported, although it has been reported that bone marrow derived mesenchymal stem cells (progenitors of adipocytes) may be recruited to specific sites of neoplasia inducing metastatic properties [29]. An open question is whether adipose tissue promotes cancer progression in subsets of molecular phenotypes or whether local tissue adipocytes are involved in inactivation of tumour suppressor genes and/or activation of oncogenes (Figure 3).

Adipocytes serve as a fuel rich source for increasing energy demand of rapidly proliferating tumour cells. Advanced stages of gastrointestinal malignancies often present with cancer-associated-cachexia as a result of lipolysis induced by cancer cells. Studies have described increased lipid droplets in colon adenocarcinoma and it has been implicated in PGE2 synthesis. Inhibition of lipid droplet formation by fatty acid synthase inhibitors reduces cancer cell proliferation in vitro, suggesting a role of lipid droplets in colon adenocarcinoma [30].

Metabolic and transcriptomic expression profile and direct paracrine effects of tumour resident adipocytes in colon cancer have not been evaluated. We have preliminary data (unpublished) indicating increased expression of pro-inflammatory/immune/angiogenic factors in colon cancer resident adipocytes, isolated from paraffin embedded sections using laser micro dissection system, compared to adipocytes isolated from the distal non neoplastic mucosa.

TME signalling pathways have recently been implicated in inducing chemoresistance in breast and prostate cancer [31]. There is also evidence, in colon cancer cell lines, that leptin inhibits cytotoxic effects of 5-fluorouracil [32].

Novel strategies in studying TME

Two dimensional (2D) cell culture models, widely used in basic science research, do not reproduce the complex interactions between host cells of TME. Recently, three-dimensional (3D) organoid models, derived from mouse and human intestinal tissue ex vivo, have been described. These in vitro organ-like cultures reproduce intestinal tissue microenvironment. Furthermore, they can be co-cultured with stromal components [33]. Reproduction of colonic microenvironment in vitro will allow to decipher ex vivo bidirectional cross-talk mechanisms between adipocytes and colonic epithelial cells.
CONCLUSION

The bidirectional cross talk between tumour resident adipocytes and colon cancer cells contributes to the progressive evolution of tumour microenvironment and cancer progression. It is therefore important to decipher the metabolic and transcriptomic expression profiles of colon cancer resident adipocytes in different stages of tumour progression. Colon organoid cultures combined with adipocytes and/or tumour resident adipocyte secreted factors will allow to identify critical signalling pathways of both early colonic carcinogenesis and cancer progression providing diagnostic biomarkers and novel therapeutic targets for colon cancer.

ACKNOWLEDGMENTS

We would like to thank Jason McAllister for the creation of the figures.

REFERENCES

1. Lao VV, Grady WM. Epigenetics and colorectal cancer. Nat Rev Gastroenterol Hepatol 2011; 8: 686-700 [PMID: 22092903 DOI: 10.1038/nrgastro.2011.173]
2. Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer 2009; 125: 171-180 [PMID: 19350627 DOI: 10.1002/ijc.24343]
3. Patel A, Tripathi G, Gopalakrishnan K, Williams N, Arasaradnam RP. Field cancerisation in colorectal cancer: a new frontier or pastures past? World J Gastroenterol 2015; 21: 3763-3772 [PMID: 25852261 DOI: 10.3748/wjg.v21.i13.3763]
4. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008; 371: 569-578 [PMID: 18280327 DOI: 10.1016/S0140-6736(08)60269-X]
5. van Kruisdijk RC, van der Wall E, Visseren FL. Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 2009; 18: 2569-2578 [PMID: 19755644 DOI: 10.1158/1055-9965.EPI-09-0372]
6. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309-322 [PMID: 22439926 DOI: 10.1371/journal.pone.0030563]
7. Eroschenko VP. diFiore’s Digestive System: small and large intestines. In: diFiore’s Atlas of Histology. Philadelphia: Lippioncott Williams Wilkins, 2005: 270-271
8. Jones B, Fishman EK, Hamilton SE, Bayless TM, Cameron JC, Siegelman SS. Submucosal accumulation of fat in inflammatory bowel disease: CT/pathologic correlation. J Comput Assist Tomogr 1986; 10: 759-763 [PMID: 3745545 DOI: 10.1097/00004728-198609000-00009]
9. Harisinghani MG, Wittenberg J, Lee W, Chen S, Gutierrez AL, Mueller PR. Bowel wall fat halo sign in patients without intestinal disease. AJR Am J Roentgenol 2003; 181: 781-784 [PMID: 12933481 DOI: 10.2214/ajr.181.3.1810781]
10. Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011; 60: 397-411 [PMID: 21036793 DOI: 10.1136/gut.2010.217182]
11. Comaills V, Kabecho L, Morris R, Buisson R, Yu M, Madden MW, LiCausi JA, Boukhali M, Tajima K, Pan S, Aceto N, Sell S, Zheng Y, Sundaresan T, Yae T, Jordan NV, Miyamoto DT, Ting DT, Ramasamy H, Haas W, Zou L, Haber DA, Maheswaran S. Genomic Instability Is Induced by Persistent Proliferation of
Cells Undergoing Epithelial-to-Mesenchymal Transition. *Cell Rep* 2016; 17: 2632-2647 [PMID: 27926867 DOI: 10.1016/j.celrep.2016.11.022]

12 Bussard KM, Mutkus L, Stumpf F, Gomez-Manzano C, Marini FC. Tumor-associated stromal cells as key contributors to the tumor microenvironment. *Breast Cancer Res* 2016; 18: 84 [PMID: 27515302 DOI: 10.1186/s13058-016-0746-2]

13 Trayhurn P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. *Annu Rev Nutr* 2014; 34: 207-236 [PMID: 24819450 DOI: 10.1146/annurev­nutr­071812­161156]

14 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. *Cell* 2011; 144: 646-674 [PMID: 21376230 DOI: 10.1016/j.cell.2011.02.013]

15 Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. *Biochim Biophys Acta* 2013; 1831: 1533-1541 [PMID: 23500888 DOI: 10.1016/j.bbalip.2013.02.010]

16 Iyengar NM, Hudis CA, Danenberg AJ. Obesity and cancer: local and systemic mechanisms. *Annu Rev Med* 2015; 66: 297-309 [PMID: 25587655 DOI: 10.1146/annurev­med­050913­022228]

17 Pikarsky E, Porat RM, Stein I, Abramovich R, Amit S, Kasem S, Gutkovich­Pyes E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-κB signaling in cancer. *Nature* 2004; 431: 461-466 [PMID: 15329734 DOI: 10.1038/nature02924]

18 Huang XF, Chen JZ. Obesity, the PI3K/Akt signal pathway and colorectal cancer. *Obes Rev* 2009; 10: 610-636 [PMID: 19527447 DOI: 10.1111/j.1467-789X.2009.00607.x]

19 Viatour P, Merville MP, Bour S, Chariot A. Phosphorylation of NF-κB and IκB proteins: implications in cancer and inflammation. *Trends Biochem Sci* 2005; 30: 43-52 [PMID: 15653325 DOI: 10.1016/j.tibs.2004.11.009]

20 Hodge DR, Hurt EM, Farrar WL. The role of IL-6 and STAT3 in inflammation and cancer. *Eur J Cancer* 2005; 41: 2502-2512 [PMID: 16199153 DOI: 10.1016/j.ejca.2005.08.016]

21 Adya R, Tan BK, Randeva HS. Differential effects of leptin and adiponectin in endothelial angiogenesis. *J Diabetes Res* 2015; 2015: 648239 [PMID: 25650072 DOI: 10.1155/2015/648239]

22 Hefetz-Sela S, Scherer PE. Adipocytes: impact on tumor growth and potential sites for therapeutic intervention. *Pharmacol Ther* 2013; 138: 197-210 [PMID: 23353703 DOI: 10.1016/j.pharmthera.2013.01.008]

23 Hoda MR, Keely SJ, Bertelsen LS, Junger WG, Dharmasena D, Barrett KE. Leptin acts as a mitogenic and antiapoptotic factor for colon cancer cells. *Br J Surg* 2007; 94: 346-354 [PMID: 17212381 DOI: 10.1002/bjs.5530]

24 Byeon JS, Jeong JY, Kim MJ, Lee SM, Nam WH, Myung SJ, Kim JG, Yang SK, Kim JH, Suh DJ. Adiponectin and adiponectin receptor in relation to colorectal cancer progression. *Int J Cancer* 2010; 127: 2758-2767 [PMID: 21315255 DOI: 10.1002/ijc.25301]

25 Adya R, Tan BK, Punn A, Chen J, Randeva HS. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. *Cardiovasc Res* 2008; 78: 356-365 [PMID: 18093986 DOI: 10.1093/cvr/cvm111]

Huang WS, Chen CN, Sze CI, Teng CC. Visfatin induces stromal cell-derived factor-1 expression by β1 integrin signaling in colorectal cancer cells. *J Cell Physiol* 2013; 228: 1017-1024 [PMID: 23042611 DOI: 10.1002/jcp.24248]

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. *Oxid Med Cell Longev* 2014; 2014: 360438 [PMID: 24999379 DOI: 10.1155/2014/360438]

Polyak K, Haviv I, Campbell G. Evolution of tumor cells and their microenvironment. *Trends Genet* 2009; 25: 30-38 [PMID: 19054589 DOI: 10.1016/j.tig.2008.10.012]

Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. *Nature* 2007; 459: 557-563 [PMID: 17914389 DOI: 10.1038/nature06168]

Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgan-Diaz JA, Bozza PT, Viola JP. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. *Cancer Res* 2008; 68: 1732-1740 [PMID: 18339853 DOI: 10.1158/0008-5472.CAN-07-1999]

Villanueva MT. Cell signalling: Stuck in the middle of chemoresistance and metastasis. *Nat Rev Clin Oncol* 2012; 9: 490 [PMID: 22850753 DOI: 10.1038/nrclinonc.2012.129]

Bartucci M, Svensson S, Ricci-Vitiani L, Battilo R, Biffoni M, Signore M, Ferla R, De Maria R, Sturnaz E. Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-fluorouracil in colorectal tumor stem cells. *Endocr Relat Cancer* 2010; 17: 823-833 [PMID: 20603394 DOI: 10.1677/ERC-10-0083]

Pastua A, Middelhoff M, Brandtner A, Tobiasch M, Höhl B, Nuber AH, Demir IE, Neupert S, Kollmann P, Mazzuoli-Weber G, Quante M. Three-Dimensional Gastrointestinal Organoid Culture in Combination with Nerves or Fibroblasts: A Method to Characterize the Gastrointestinal Stem Cell Niche. *Stem Cells Int* 2016; 2016: 3710836 [PMID: 26697073 DOI: 10.1155/2016/3710836]

P- Reviewer: Abdel-Rahman WM, Harmanci O, Zhu YL
S- Editor: Gong ZM
L- Editor: A
E- Editor: Huang Y
