Supplementation of Oligosaccharide-based Polymer Enhanced Growth and Disease Resistance of Weaned Pigs by Modulating Intestinal Integrity and Systemic Immunity

Kwangwook Kim, PhD
Department of Animal Science
University of California, Davis
Outline

- Challenges in swine industry
- In-feed antibiotics & potential alternative methods
- Research findings & implications
Global population growth: Feeding the world in 2050

Source: United Nations, Department of Economics and Social Affairs, Population Division (2014). World Urbanization Prospects: The 2014 Revision, custom data acquired via website
Can we meet the rising global food demand?

In the year 2050, 70% of the world population will require more food, and 70% of this food must come from efficiency-improving technology.

Source: World Agriculture: Towards 2015/2030. Summary Report (https://www.fao.org/3/y3557e/y3557e.pdf)
5 challenges that will influence food production towards 2050

- Increase food production per acre
- Climate change
- Farmland limitation
- Improving food quality
- Natural resources

Source: www.agrocares.com/en/news/5-challenges-food-production
Growth in global protein demand

	2005	2050
Beef	64	106
Pork	100	143
Poultry	82	181
Eggs	62	102

Source: Food and Agriculture Organization of the United Nations, ESA Working Paper No. 12-03, p. 131
Life cycle of a market pig

- **Farrowing**: 3 months, 3 weeks and 3 days (114 d)
- **Weaning**: 6 to 8 weeks (42 to 56 d)
- **Growing cycle**: 16 to 17 weeks (115 to 120 d)
- **Finishing**: 3 weeks (21 d)
- **To the consumer**: 3 months, 3 weeks and 3 days (114 d)
Weaning stress

- Environmental changes
- Abrupt transition of diet
- Transportation stress
- Increase the risk of exposure to disease
Gastrointestinal (GI) tract development during weanling

Critical Window of postnatal GI Development

- Epithelial barrier and transport functions
- Immune system maturation
- Enteric nervous system

Maternal Immunity

Birth

2.5 to 4 weeks

12 to 14 weeks

Adult

Source: Moeser et al., 2017
Post-weaning diarrhea in pigs

• One of the most serious threats for the swine industry

• Usually associated with proliferation of enterotoxigenic *E. coli* (ETEC)
 ✓ F4 (K88)
 ✓ F18
Post-weaning ETEC diarrhea morbidity

Source: USDA, Swine 2012 Part III: Changes in the U.S. Swine Industry, 1995–2012

E. coli diarrhea

% of sites (US)

2000: 24%
2006: 31.8%
2012: 32.4%
ETEC pathogenesis

Ingestion of ETEC

Attachment of ETEC to receptors through fimbriae

Colonization and release of toxins

Increase gut permeability (water and electrolytes into intestine)

Small intestinal epithelial cells

Diarrhea

=ETEC (Enterotoxigenic E. coli)

=Toxins
Swine (Livestock) production technologies

- Genetics
- Reproduction
- Nutrition
- Manage-ment
- Health

- Macro-nutrients
- Micro-nutrients
- Non-nutrient feed additives
Antibiotics use in livestock

Antimicrobial substances active against bacteria

• Disease prevention
• Disease treatment
• Growth promotion

Efficacy of antibiotics as growth promoters for weaned pigs (7-25 kg)

Source: Zimmerman, 1986
Antibiotics as growth promoter in animal diets poses risk

- Emergence of antibiotic resistance
- Banned in the European Union since 2006
- Also restricted in the United States since 2017

Source: https://fairfarmsnow.org
Trace levels of antibiotics: A global health hazard

- Manure
- Surface water
- Soil
- Air
- Dust
- Farm environment

Source: Harbarth et al, 2015
Adverse effects of trace levels of antibiotics

- Toxicity
- Mutagenicity
- Carcinogenicity
- Hypersensitivity
- Antibiotic resistance

Young animals are more sensitive!

Delay the growth & recovery from diseases

Source: Onegreenplanet.org
Keyword occurrence in academic papers: “Antibiotic alternatives”

Source: Web of Science
ETEC pathogenesis

Attachment of ETEC to receptors through fimbriae

Colonization and release of toxins

Increase gut permeability (water and electrolytes into intestine)

Ingestion of ETEC

Small intestinal epithelial cells

Diarrhea

=ETEC (Enterotoxigenic E. coli)

=Toxins
Ingestion of *E. coli*

Small intestinal epithelial cells

Attachment of *E. coli* to receptors through fimbriae

Colonization and release of toxins

Increase gut permeability (water and electrolytes into intestine)

Diarrhea

- Organic acids
- Antimicrobial peptides
- Bacteriophages

Ingestion of *E. coli* = ETEC (Enterotoxigenic *E. coli*)

= Toxins

Alternative antimicrobial approaches against ETEC

Organic acids

Antimicrobial peptides

Bacteriophages

Small intestinal epithelial cells
Ingestion of *E. coli*

- Attachment of *E. coli* to receptors through fimbriae
- Colonization and release of toxins
- Increase gut permeability (water and electrolytes into intestine)

Diarrhea

Attachment of *E. coli* to receptors through fimbriae

- Oligosaccharides
- Direct-fed microbials
- Prebiotics

=ETEC (Enterotoxigenic *E. coli*)

=Toxins
Ingestion of E. coli

Small intestinal epithelial cells

Attachment of E. coli to receptors through fimbriae

Colonization and release of toxins

- Direct-fed microbials
- Oligosaccharides
- Yeast
- Prebiotics
- Phytochemicals

Increase gut permeability (water and electrolytes into intestine)

Diarrhea

= ETEC (Enterotoxigenic E. coli)

= Toxins

Colonization and release of toxins

Alternative antimicrobial approaches against ETEC

- Direct-fed microbials
- Oligosaccharides
- Yeast
- Prebiotics
- Phytochemicals
Ingestion of E. coli

Attachment of E. coli to receptors through fimbriae

Colonization and release of toxins

Increase gut permeability (water and electrolytes into intestine)

✔ Fiber
✔ Direct-fed microbials
✔ Zinc oxide

=ETEC (Enterotoxigenic E. coli)
=Toxins
Ingestion of *E. coli*

- Attachment of *E. coli* to receptors through fimbriae
- Colonization and release of toxins
- Increase gut permeability (water and electrolytes into intestine)

- Diarrhea
 - =ETEC (Enterotoxigenic *E. coli*)
 - =Toxins

Alternative antimicrobial approaches against ETEC

- **✓** Oligosaccharides
- **✓** Direct-fed microbials
- **✓** Prebiotics
Blood group antigen oligosaccharides: Receptor for fimbrial subunit FedF

FedF

Key

- Galactose
- N-Acetylglucosamine
- N-Acetylgalactosamine
- Fucose

Type O

Type A

Type B

Source: Moonens et al., 2012
Epsilon-poly-lysine (ε-PL): Stable delivery vehicle

Source: Chen et al, 2021
Grafted polymer: Potential synergistic effects

Type A

ε-PL
To investigate the efficacy of blood group A type-based polymer on intestinal health and disease resistance of weanling pigs challenged with ETEC F18.
Experimental design & treatments

- **Experimental design:** RCBD (Blocks: BW x Sex)
- **48 weaning pigs (7.23 ± 1.14 kg BW, 21 d old)**
- **Treatment:** 4 treatments (12 pigs/treatment)

Treatment	Description
Nursery basal diet as control (CON)	
CON + 10 mg/kg of oligosaccharide-based polymer* (LOW)	Glycoconjugate composed of blood group A antigen oligosaccharides grafted on carrier and was designed and synthesized by Elicityl (France) in cooperation with Dr. Eric Cox (Ghent Univ., Belgium) and provided by Pancosma (Geneva, Switzerland)
CON + 20 mg/kg of oligosaccharide-based polymer* (HIGH)	
CON + 50 mg/kg of antibiotics (Carbadox; CAR)	

*E. coli challenged

Glycoconjugate composed of blood group A antigen oligosaccharides grafted on carrier and was designed and synthesized by Elicityl (France) in cooperation with Dr. Eric Cox (Ghent Univ., Belgium) and provided by Pancosma (Geneva, Switzerland)
Experimental timeline & Data acquisition

ETEC F18 challenge (LT, STb, SLT-2); oral inoculation, 10^{10} cfu/dose per 3 mL in PBS

- Growth performance
- Diarrhea severity
- β-hemolytic coliforms
- Bacterial translocation
- Intestinal morphology
- Gene expression in intestinal mucosa

* PI=post-inoculation
PBS= phosphate-buffered saline
OBP supplementation enhanced feed efficiency and reduced diarrhea

Gain:Feed

PI	CON	LOW	HIGH	CAR
-7 to 0	b	ab	b	a
0 to 5 PI	a	a	a	a
5 to 11 PI	b	ab	a	ab

Frequency of diarrhea

PI	CON	LOW	HIGH	CAR
d 0 to 11 PI	a	b	b	b

Plots show the frequency of diarrhea over different periods post-inoculation (PI) with supplementation levels: CON, LOW, HIGH, CAR. Each bar represents a different period and is labeled with a or b to indicate statistical significance.

PI=post-inoculation

UC DAVIS
OBP supplementation enhanced ETEC excretion, thus reduced bacterial translocation.

β-hemolytic coliforms in feces

	CON	LOW	HIGH	CAR
d 2 PI (%)	a a a	a a a	a a a	a a a
d 5 PI (%)	a a a	a a a	b b b	a a a
d 8 PI (%)	a ab ab b			
d 11 PI (%)	a a b	a a b	a a b	a a b

Bacterial translocation

	CON	LOW	HIGH	CAR
Mesenteric lymph node cfu/g	a a	a a	a b	a b
Spleen cfu/g	b b	b b	b b	b b

d = post-inoculation
OBP supplementation is beneficial for pigs’ intestinal morphology

Villous height, d 5 PI

Villous height, d 11 PI

Pl = post-inoculation
OBP supplementation is beneficial for pigs’ intestinal health

Gene expression profiles in jejunal mucosa, d 5 PI

Gene	CON	LOW	HIGH	CAR
MUC2			a	
CLDN1		b	a	
ZO1	ab		a	ab
OCDN			a	

Gene expression profiles in ileal mucosa, d 5 PI

Gene	CON	LOW	HIGH	CAR
IL1B		ab	a	
IL6		b	a	ab
TNF		ab	a	
PTGS2				

PI=post-inoculation
Key takeaways

Oligosaccharide-based polymer supplement enhanced disease resistance of weaned pigs

Smart use of antibiotics:
Minimize the use of antibiotics and explore the possible alternatives

The global food crisis:
Developing sustainable livestock production system
Supplementation of oligosaccharide-based polymer enhanced growth and disease resistance of weaned pigs by modulating intestinal integrity and systemic immunity

Kwangwook Kim¹, Yijie He¹, Cynthia Jinn, Lauren Kovanda¹, Xunde Li², David Bravo³, Eric Cox⁴ and Yanhong Liu¹

Research project No. W4002 and NC1202

Comparative Animal Nutrition & Physiology Laboratory
University of California, Davis
Thank you for your attention!
Thank you for your attention!