Synchronization and anti-synchronization of dynamically coupled networks

Malgorzata Turalska1,2,3, Adam Svenkeson2 and Bruce J West3,4
1 Computational and Information Sciences Directorate, US Army Research Laboratory, Adelphi, MD 20783, United States of America
2 Vehicle Technology Directorate, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States of America
3 Department of Physics, Duke University, Durham, NC 27709, United States of America
4 Information Science Directorate, US Army Research Office, Research Triangle Park, NC 27708, United States of America
Author to whom any correspondence should be addressed.
E-mail: gosiatura@gmail.com, adam.j.svenkeson.civ@mail.mil and bruce.j.west.civ@mail.mil

Keywords: synchronization, Langevin equation, master equation, cooperation

Abstract
We consider the coupling between two networks, each having \(N \) nodes whose individual dynamics is modeled by a two-state master equation. The intra-network interactions are all-to-all, whereas the inter-network interactions involve only a small percentage of the total number of nodes. We demonstrate that the dynamics of the mean field for a single network has an equivalent description in terms of a Langevin equation for a particle in a double-well potential. The coupling of two networks or equivalent coupling of two Langevin equations demonstrates synchronization or anti-synchronization between two systems, depending on the sign of the interaction. The anti-synchronized behavior is explained in terms of the potential function and the inter-network interaction. The relative entropy is used to establish that the conditions for maximum information transfer between the networks are consistent with the principle of complexity management and occurs when one system is near the critical state. The limitations of the Langevin modeling of the network coupling are also discussed.

1. Introduction

The significance of synchronization for the understanding of complex systems became evident to the broad scientific community with the publication of Strogatz’s remarkable book Sync [1]. Although the underlying mechanisms can be quite varied in different kinds of events, synchronization is central in phenomena from the coordinated clapping of an audience [2], to the rhythmic firing of heart pacemaker cells [3], to spontaneous dynamics of power systems [4]. Since Huygens’s historic observation of in-phase (zero-lag) synchronization between two mechanical oscillators [5], various types of synchronization phenomena have been identified, such as anti-synchronization [6], complete synchronization [7] or chimera states [8].

Parallel to the research on synchronization, discoveries made recently in the field of complex networks brought new directions into the study of dynamical systems. In particular, the focus has been placed on the identification of structural features of networks that promote synchronization. A natural extension of this approach is to imagine composite systems, built from a collection of loosely connected clusters. The human brain, a complex network consisting of a hierarchy of interacting elements on different levels, of different functions and different interconnections, is a foremost example of such a network-of-networks architecture.

On such a complex network a plethora of dynamical patterns is observed, the two simplest being the in-phase and anti-phase oscillations. While in-phase synchronization is believed to benefit integration of brain regions performing separate functions in more complex tasks [9], the anti-synchronization captures increase of activity in certain regions coupled to decrease of activity in others [10]. An anti-phase pattern is present also during rest [11] and sleep [12], and has been explained by Zhou [13, 14] as a type of background organized by the spontaneous cortico-cortical communication dynamics. Their two module coupling calculations using both
neuron cell and neuron mass models suggest that the anti-phase dynamics observed in both is generic. The challenge is then to explain the anti-synchronization property independently of specific mechanisms.

Surprisingly, the organization of dynamical brain patterns is not restricted to the brain regions of an individual. Functional MRI recordings made in a cohort of patients watching the same movie [15] demonstrate in-phase synchronization of the activity in different regions of the brain among different members of the audience cohort, revealing shared emotional states. Similarly a conversation between two people can be perceived as an example of cognitive behavior synchronization, where people take turns at speaking and listening in order to facilitate communication and information exchange [16].

From the perspective of network science synchronization observed in a modular system, composed of few smaller elementary networks, can be classified as a two level process. Dynamical organization of individual subnetworks, referred to as intra (inner) synchronization is juxtaposed by the inter (outer) synchronization [17]. Here we consider a generic system of coupled networks and we investigate under what conditions both of those types of synchronization are present.

We study the interaction of two modules (networks), both having the same structure and functionality. Each network is composed of N coupled two-state master equations [18] and its global dynamics follows the behavior of systems belonging to the Ising universality class. We demonstrate that cooperative dynamics of single units within each module leads to consensus, which can be interpreted as a basic type of intra-network synchronization. However our oscillators are two-state stochastic units, diametrically different from typically studied Kuramoto oscillators [19] or chaotic maps [20].

When coupled, dynamic consensus can act to counter the influence of the inter-network coupling, resulting in an anti-synchronization of the two networks or it can act to synchronize the cooperative impulse. The response of the two networks to one another depends on their internal states and on the symmetry of the interaction. The symmetry of the interactive response has been discussed in the context of coupled chaotic systems as an adaptive control scheme [21, 22]. Herein the symmetry of the interactive networks is the result of a control process that is dependent on the nature of the coupling of the networks. From an analysis of the inter-network synchronization and its dependence on the intra-network interactions we establish consistency with the principle of complexity management (PCM) [23, 24], thereby suggesting the conditions allowing for maximum information transfer across complex networks composed of multiple modules.

In section 2 the decision making model (DMM) is introduced in terms of the two-state master equation. A number of the DMM properties are reviewed, such as the all-to-all (ATA) coupling of the elements in an infinite sized network, where the dynamics of the mean field variable is described analytically by a particle in a double-well potential and the magnitude of the potential barrier is a function of a cooperation parameter. For a finite sized network this description reduces to a Langevin equation and the strength of the fluctuations scales with the size of the network and is also a function of the cooperation parameter.

The coupling between two ATA DMM networks is considered in section 3 and shown to be equivalent to two coupled Langevin equations. The strength of the fluctuations in the Langevin model are estimated from a corresponding DMM calculation thereby making the Langevin description empirical. The sign of the coupling terms determines the symmetry of the coupled network, that is, whether the dynamics of the coupled networks are synchronized or anti-synchronized. Moreover, the conditions under which the maximum information is shuttled back and forth between the modules are determined using relative entropy and it is determined that the information transfer is not dependent on the symmetry of the dynamics.

In section 4 we draw some conclusions.

2. Methods

2.1. The DMM

The DMM implements the echo response hypothesis, which assumes that the dynamic properties of a network of identical individuals are determined by singular people imperfectly copying the behavior of one another [18]. Formally an isolated individual is modeled as an unit switching back and forth between two states, $+1$ and $−1$, with constant rate g_0 of making a transition at any time. Thus, the probability of finding an isolated unit $s(t)$ in one of two states, $p(t) = (p_{+1}, p_{−1})$ is described by a two-state master equation

$$\frac{dp(t)}{dt} = Gp(t),$$

(1)

where G is a 2×2 transition matrix with constant elements:

$$G = \begin{bmatrix} -g_0 & g_0 \\ g_0 & -g_0 \end{bmatrix}$$

(2)
Here the adopted network structure is that of an ATA network, in which each individual $s_i(t)$ interacts with all other individuals composing the network. The interactions modify the two-state master equation describing a single individual (equation (1)) and lead to a master equation with time-dependent transition rates:

$$\frac{dp^{(i)}(t)}{dt} = G^{(i)}(t)p^{(i)}(t),$$

where $G^{(i)}(t)$ contains the transition rates of switching from state $+1$ to -1, $g_{+1\rightarrow -1}$, and the rates of switching from state -1 to $+1$, $g_{-1\rightarrow +1}$:

$$G^{(i)}(t) = \begin{bmatrix} -g_{+1\rightarrow -1}^{(i)}(t) & g_{-1\rightarrow +1}^{(i)}(t) \\ g_{+1\rightarrow -1}^{(i)}(t) & -g_{-1\rightarrow +1}^{(i)}(t) \end{bmatrix}.$$

(4)

The probability of individual i being in one of two states $(+1, -1)$, is $p^{(i)}(t) = (p^{(i)}_+, p^{(i)}_-)$. Positioning N such individuals at the nodes of a network yields a system of N coupled two-state master equations [25, 26]. The transition rates for each of the i individuals:

$$g_{+1\rightarrow -1}^{(i)}(t) = g_0 \exp \left[-\frac{K}{N}(N_{i+1}(t) - N_{i-1}(t)) \right],$$

$$g_{-1\rightarrow +1}^{(i)}(t) = g_0 \exp \left[\frac{K}{N}(N_{i+1}(t) - N_{i-1}(t)) \right]$$

(5)

(6)

depend on the total number of individuals in the state $+1$ and -1, $N_{i+1}(t)$ and $N_{i-1}(t)$, respectively. Since every individual in the network stochastically chooses their state, the total number of individuals within each state, $N_{i+1}(t)$ and $N_{i-1}(t)$ also fluctuates in time. As the number of the elements in the network increases and approaches $N = \infty$, the ratio $N_{i+1}(t)/N \rightarrow p^+_{i}(t)$, and the relative frequency becomes the probability that the network is in one state or the other. In this limit the transition rates become exponentially dependent on the state probabilities, resulting in a highly nonlinear master equation [18]. The parameter K denotes the strength of cooperation between elements of the network, being a measure of the extent individuals copy the behavior of one another.

2.2. Infinite ATA network

In an ATA network of infinite size we may introduce the difference variable $\Pi^{(i)} = p^{(i)}_+ - p^{(i)}_-$, which reduces the two-state master equation for each of the elements in the network to the scalar rate equations

$$\frac{d\Pi^{(i)}}{dt} = 2g_0 \sinh(K\Pi) - 2g_0 \Pi^{(i)} \cosh(K\Pi).$$

(7)

Alternatively we introduced the global difference variable $\Pi = p_{+1} - p_{-1}$ and we replace the set of two-state master equations with the single expression for the mean field variable

$$\frac{d\Pi}{dt} = 2g_0 \sinh(K\Pi) - 2g_0 \Pi \cosh(K\Pi) = -\frac{\partial V(\Pi)}{\partial \Pi}.$$

(8)

The global two-state master equation (equation (8)) is equivalent to the over-damped movement of a particle in the potential

$$V(\Pi) = \frac{2g_0}{K} \left[\Pi \sinh(K\Pi) - \left(1 + \frac{1}{K}\right) \cosh(K\Pi) \right].$$

(9)

whose shape is a function of the cooperation parameter K [25, 26]. For $K < 1$, $V(\Pi)$ has one minimum centered at $\Pi = 0$, denoting the fact that the equilibrium solution to equation (8) in this regime is $\Pi_{eq} = 0$ and exactly half of the individuals in the network are in state $+1$ and half in the state -1. At the critical value $K_C = 1$ a bifurcation occurs and the potential develops two wells separated by a barrier. The height of the barrier increases with an increase of the cooperation parameter K as depicted in figure 1. The presence of two equilibrium values $\Pi_{eq}(K)$, which correspond to the minima of the double well potential, reflects the fact that for $K > K_C$ a majority decision in the system emerges, where more than half of the individuals share the same state. The condition of perfect consensus is reached for $K \rightarrow \infty$, where Π converges on either the value $+1$ or -1, for details see [25, 27].

2.3. Finite ATA network

In numerical calculations, the states of N individuals composing the network, are first randomly initialized with the value of $+1$ or -1. Then, in a single time step the transition rates defined by equation (6) are calculated, according to which each individual is given the possibility to change its state. The procedure is repeated at all consecutive time steps. When $K = 0$ all units are isolated and switch their state from $+1$ to -1 and in the opposite direction with the transition rate g_0. When the control parameter increases, $K > 0$, a node in state
+1 (−1) makes a transition to the state −1 (+1) slower or faster depending on whether the total number of nodes in state +1, N_{+1} is larger or smaller than the total number of individuals in state −1, N_{−1}.

Global decisions of a network composed of N individuals can be defined by the time-dependent global order parameter (mean field) $\zeta(K, t)$ as an average state of the network at a given time

$$\zeta(K, t) = \frac{1}{N} \sum_{j=1}^{N} s_j(K, t),$$

where $s_j(K, t)$ is the value (±1) of the element j of the network coupled to other nodes with cooperation level K. For values of the cooperation parameter $K < K_c$, single individuals are only weakly influenced by other individuals, leading to small amplitude fluctuations of $\zeta(K, t)$, oscillating rapidly about the zero-axis (see figure 2). For $K > K_c$, the interaction between individuals gives rise to a majority state, which recovers partially the dichotomous character of the single individuals, however at much larger time scale.

The time-average of the global order parameter, $\zeta_{eq} = \langle |\zeta(K, t)| \rangle$, is used as a measure of the organization of the network and an approximation of its equilibrium state. In figure 1 the calculations of Π_{eq} and ζ_{eq} are compared and found to be essentially the same quantity, the difference being due to the finite number of elements in the numerical calculation. Thus, the global dynamics of the DMM is characterized by a phase transition with respect to the cooperation parameter K, demonstrating that a network of identical imitating individuals is able to reach consensus, given sufficient influence of the imitation on their decisions.

2.4. Langevin formalism for finite ATA network

In a network of finite size the mean field approximation is no longer exact and we replace Π in equation (8) with

$$\frac{N_{+1}(t) - N_{-1}(t)}{N} = \zeta(K, t) + f(K, t) = \zeta(K, t),$$

where $f(K, t)$ is a random fluctuation induced by the finite size of the network, whose magnitude is proportional to $1/\sqrt{N}$. When the network size increases, $N \to \infty$, the frequencies $N_{+1}(t)/N$ collapse into probabilities, $N_{+1}(t)/N \to p_{+1}(t)$, and the global order parameter $\zeta(K, t) = \xi(K, t) \to \Pi(t)$.

Using this new value of the global variable equation (8) becomes the nonlinear Langevin equation [25, 26]

$$\frac{d\xi}{dt} = 2g_0 \sinh(K \xi + Kf) - 2g_0 (\xi + f) \cosh(K \xi + Kf)$$

$$\approx -\frac{\partial V(\xi)}{\partial \xi} + \eta(t),$$

where $\eta(t)$ is a random function given by $\eta(t) = \sigma f(K, t)$ and the potential is given by equation (9).

The strength σ of the random force is determined by the equilibrium properties of the numerical realization of the DMM dynamics. We approximate the random force by a white noise Gaussian process whose strength is $\sigma = \sqrt{2D}$ and D is an unknown diffusion coefficient. The Langevin equation given by equation (12) has an equivalent Fokker–Planck equation (FPE) description.
\[\frac{\partial P(\xi, t)}{\partial t} = \frac{\partial}{\partial \xi} \left(\frac{\partial V(\xi)}{\partial \xi} P(\xi, t) + D \frac{\partial P(\xi, t)}{\partial \xi} \right) \]

for the probability density function (PDF). The equilibrium solution to the FPE is obtained by setting the time derivative to zero to obtain the equilibrium distribution for the mean field variable

\[P_{eq}(\xi) = \frac{1}{Z} \exp \left[-\frac{V(\xi)}{D} \right] \]

and \(Z \) is the normalization.

The value of \(D \) is determined numerically from the mean field generated by the DMM of size \(N \), with cooperation parameter \(K \) and transition rate \(g_0 \). Using a long time realization of \(\zeta(K, t) \), the equilibrium PDF can be estimated as depicted in figure 2. The resulting histograms are fit with equation (14), where \(D \) is kept as an unknown parameter that optimizes the fitting. Figure 3 presents the dependence of numerically obtained values of \(D \) on the cooperation parameter \(K \) and size of the network \(N \). It is well known from the law of large numbers that the intensity of the noise ought to decrease as \(N^{-1/2} \). Using this as a starting point we obtain an empirical expression defining the dependence of \(D \) on \(K \) and \(N \):

\[D = \begin{cases} \frac{2g_0}{N} & K < K_C \\ \frac{2g_0}{N} \exp \left(-\sqrt{2} (K - 1) \right) & K > K_C \end{cases} \]

whose excellent overlap with values of \(D \) in two domains, \(K < K_C \), where the value of \(D \) is constant and independent of the cooperation parameter, and \(K > K_C \), where \(D \) decreases exponentially with \(K \), as depicted in figure 3.

Now one can adopt the Langevin equation (equation (12)) to quantitatively simulate the dynamics of the DMM on a finite size ATA network. For given \(N, K \) and \(g_0 \), equation (12) is numerically integrated using the Euler–Maruyama algorithm for integration of stochastic differential equations. The simulation time step is \(h = 0.01 \). The comparison of the fluctuations of the global order parameter \(\zeta(K, t) \), resulting from the DMM dynamics defined by equation (6), and the fluctuations of the mean field \(\xi(K, t) \), resulting from the solution to the Langevin equation with matching parameters is presented in figure 4. The visual similarity of both time series is further confirmed by the comparison of their statistical properties. We quantify the changes in temporal properties of \(\zeta(K, t) \) and \(\xi(K, t) \) by evaluating the waiting time PDF \(\psi(\tau) \) and corresponding survival probability function.
of time intervals τ between consecutive crossings of the zero-axis by $\varsigma(K, t)$ and $\zeta(K, t)$. The statistical properties of the global order parameter $\varsigma(K, t)$ have been extensively studied for subcritical ($K < K_C$), critical ($K \approx K_C$) and supercritical ($K > K_C$) regime of values of the cooperation parameter [18, 25]. Briefly, in the subcritical regime $\Psi(\tau)$ has an exponential form, which reflects the largely independent nature of individuals. The critical region is characterized by an inverse power law (IPL) decrease of $\Psi(\tau)$, whereas in the supercritical region long majority intervals are responsible for an exponential shoulder present in $\Psi(\tau)$. From the comparison of respective survival probability functions (see figure 4) it is evident that the Langevin equation reproduces all the global dynamic properties of the DMM network dynamics, throughout the range of values of the cooperation parameter K.

The applicability of the Langevin equation (equation (12)) to simulate the DMM dynamics clearly depends on the size N of the ATA network. Since the value of the diffusion coefficient D is established empirically by fitting the equilibrium distribution $P_{eq}(\xi)$, its correctness is limited by $P_{eq}(\xi)$ being a continuous distribution. This condition is fulfilled in the upper limit for any large N. The lower limit is defined by the validity of the

$$\Psi(\tau) = \int_{\tau}^{\infty} \psi(t') \, dt',$$

(16)
central limit theorem to approximate a binomial distribution with a Gaussian curve. Thus we expect the DMM dynamics to be captured by equation (12) for any $N \geq 10$. See also [28] for an alternative approach to the Langevin approximation for coupled stochastic oscillators.

3. Results

In this section we consider the interaction between two ATA DMM networks each of which is modeled by a Langevin equation with a double-well potential. The symmetry of the response of the combined network depends on the choice of coupling between the sub-networks, which we explain in detail. Section 3.1 presents an approximation technique for modeling the coupling between the two networks through a modification of the individual switching rates in terms of the fraction of individuals within a network that are sensitive to the state of the other network. It is shown in section 3.2 that the sign of the perturbative coupling between the two networks leads to either synchronization or anti-synchronization of their relative dynamics. The relative entropy is used to determine that the conditions under which the maximum information is exchanged between the two networks. The limitation of the coupled Langevin model as an approximation to the coupling between two ATA DMM networks is also discussed.

3.1. Network response

The response of the ATA DMM network to external forces was analyzed by Svenkeson [29] and we follow that discussion closely in this section. We assume that a subset of individuals within the group are sensitive to external influences and that they relay the information obtained through this sensitivity to the free individuals in the network (free from external influences). These latter individuals behave in the normal DMM fashion previously described. The total number of individuals in the network N is the sum of those that are free and those that are driven by the external force l, $N = n + l$. Consequently, in the presence of sensitive individuals the transition rates governing the ATA network dynamics of the free individuals are

$$g_{+,}(t) = g_0 \exp [-K[(1 - P)x + P_0]];$$

$$g_{-,}(t) = g_0 \exp [K[(1 - P)x + P_0]]$$

where the fraction of sensitive individuals is $P = \frac{l}{N}$, the fraction of free individuals is $1 - P = \frac{n}{N}$, and the value of s_i is determined by the sensitivity to the external force. The mean field for the free individuals alone is given by

$$x(K, t) \equiv \frac{1}{n} \sum_{j=1}^{n} s_j(K, t) = \frac{n_+(K, t) - n_-(K, t)}{n}.$$

The two-state master equation for the mean field coupled to an external force is therefore given by

$$\frac{d\Pi}{dt} = 2g_0[\sinh(K\eta) - \Pi \cosh(K\eta)] \cosh(KP_0) + 2g_0[\cosh(K\eta) - \Pi \sinh(K\eta)] \sinh(KP_0)$$

with the new control parameter $K_0 \equiv (1 - P)K$.

3.2. Two coupled networks

Here we extend the discussion of the network response to external forces to the case when the external influence originates from another ATA network. Additionally, we assume that the second ATA network is in turn being influenced by the very network it exerts its influence on, thus leading to bi-directional coupling of two ATA networks (see figure 5). Taking advantage of the demonstrated equivalence between the dynamics of the DMM on an ATA network and the solution to the matching Langevin equation, we study the coupling of two ATA networks by means of the coupled Langevin equations

$$\frac{d\xi_1}{dt} = -\frac{\partial V(\xi_2)}{\partial \xi_1} + \eta_1(t) \pm \alpha \xi_2,$$

$$\frac{d\xi_2}{dt} = -\frac{\partial V(\xi_1)}{\partial \xi_2} + \eta_2(t) \pm \alpha \xi_1,$$

where α is the strength of the coupling between networks and the choice of sign determines the symmetry of the interaction. Thus, in the model one considers the intra-network coupling between elements of single ATA network, the cooperation parameter K, and the inter-network coupling $\pm \alpha$, denoting the mutual influence between networks.
3.2.1. Symmetry of interaction

The positive sign for the interaction terms in equation (22) leads to a synchronized response of the two networks. This is observed in figure 6 where the temporal fluctuations of the mean field $\xi_1(K_1, t)$ and $\xi_2(K_2, t)$ and their statistical properties are compared between uncoupled ($\alpha = 0$) and coupled case. In the uncoupled case (figure 6(A)) the disparity between the the behavior of $\xi_1(K_1, t)$ and $\xi_2(K_2, t)$ is clearly visible, since the subcritical system is characterized by random fluctuations, while the supercritical system demonstrates the onset of dichotomous dynamics. When positive coupling is turned on, it is evident that although not in lock step the two networks are synchronized (figure 6(C)). Variable $\xi_1(K_1, t)$ is being visibly influenced by coupling to $\xi_2(K_2, t)$, exhibiting dichotomous dynamics, and although it does not match $\xi_2(K_2, t)$ in amplitude, it follows the switching dynamics of $\xi_2(K_2, t)$. The joint probability distribution for both variables, $P(\xi_1, \xi_2)$, provides additional evidence for the synchronization between systems, being characterized by two peaks, corresponding to the situation when both global variables simultaneously attain positive or negative values. The coupling effects are visible also in the effective increase of cooperation parameters K for both networks. When compared with the uncoupled case, the probability distributions of the global variables, $P(\xi_1)$ and $P(\xi_2)$, demonstrate stronger bimodality, especially evident for the $\xi_1(K_1, t)$ variable, whose original distribution is unimodal (figure 6(F)).

The negative sign for the interaction terms in equation (22) leads to an anti-synchronized mutual response of the two networks, observed in figure 6(D). It is again evident that although not in lock step the two networks are negatively synchronized. The probability distribution of global variable $P(\xi_1)$ is clearly unimodal in the absence of coupling and bimodal when the mutual interaction is turned on (figure 6(F)). The $P(\xi_2)$ is affected less significantly, with the bimodal peaks being shifted towards higher values of ξ_2 as a result of the coupling. Due to the thee fact that the coupling α differs only in sign between the synchronized and anti-synchronized case, the obtained probability distributions are indistinguishable. The presence of the bimodality is clearly indicated in the shape of distribution $P(\xi_1, \xi_2)$ (figure 6(G)) and here is where the effect of the sign of the mutual coupling is most evident. The anti-synchronization is manifest by the two networks peaking oppositely, when one global variable is positive the other is negative and vice versa.

Let us look in more detail at the reason for the anti-synchronization.

3.2.2. Anti-synchronization

In numerous studies [30] the coupling of stochastic oscillators represented by the Langevin equations leads to network size resonance, when the ensemble of oscillators respond to a periodic forcing in a fashion similar to the stochastic resonance phenomenon. In our case however, the weak coupling of two Langevin equations results in non-resonant behavior. In particular, the coupling causes an effective increase of the cooperation parameter K in both networks, regardless of the sign of the coupling.

A visual inspection of the temporal fluctuations of the mean fields $\xi_1(K_1, t)$ and $\xi_2(K_2, t)$ presented on figure 6(D) demonstrates the change in the dichotomous character of both networks, with the increased sojourn in the majority states visible in $\xi_1(K_1, t)$ and $\xi_2(K_2, t)$, when compared to the uncoupled dynamics (figure 6(A)). Longer waiting times induced by the mutual coupling affect the survival probability function as well. In figure 6(B) we see that the inverse power-law regime of the survival probability is not changed. The difference in $\Psi(\tau)$ due to the coupling increases the extension of the exponential shoulder, which in an uncoupled case would correspond to a larger cooperation parameter K. Thus, individuals present in each of the two coupled ATA networks perceive the coupling as an effective increase of the level of intra-network cooperation. Since the
sign of the coupling α changes only the nature of synchronization, the synchronized case presents the same change to the survival probability functions as the anti-synchronized coupling. Of most significance is the observation that the two time series are statistically anti-synchronized. Consequently, when the mean field $\xi_1(K_1, t)$ is in the positive state the probability is greatly enhanced that the mean field $\xi_2(K_2, t)$ is in the negative state and vice versa. The anti-synchrony effect can be understood in the following way. Consider the potential for network one with the interaction term $V(\xi_1) + \alpha \xi_1 \xi_2$. When $\alpha = 0$ the potential is symmetric around $\xi_1 = 0$ and we have the uncoupled case of the network being in either consensus state with equal frequency. However when $\alpha > 0$ and $\xi_2 < 0$ the network one potential becomes asymmetric with the deeper well being on the side $\xi_1 > 0$. This biasing of the potential (see figure 7) results in the mean field time series for network one being in the positive state. In this case of $\xi_1 > 0$ consider the potential for network two $V(\xi_2) + \alpha \xi_1 \xi_2$. This latter potential is biased by the mean field of network one and is now also asymmetric. With $\xi_1 > 0$ the deeper well in network two is for $\xi_2 < 0$ resulting in the mean field for network two being in the negative consensus state. However the two networks are not locked in these relative states. The fluctuations are seen to be substantial and when they are sufficiently large to induce a phase transition in one network the inter-network coupling induces a corresponding change in the dynamics of the other network. This intermittent rocking of the two potentials produces the anti-symmetry of the two time series observed in figure 6.

Figure 6. The coupling of two Langevin equations. The cooperation parameters are $K_1 = 0.90$ and $K_2 = 1.05$ for the two networks, and $\alpha = 0.001$, with positive sign (left), with negative sign (right). (A) The global variable fluctuations for the uncoupled case. Top panel (green line) corresponds to K_1, while bottom panel (orange line) corresponds to K_2. (B) The distribution of waiting times demonstrates the change introduced by coupling to the dynamics of both networks. (C) Synchronous coupling of two networks. (D) Anti-synchronous coupling of two networks. In both cases top panel (dark blue) corresponds to system K_1 and bottom panel (light blue) shows the behavior of system K_2. (E), (G) The joint probability distribution for the coupled variables $P(\xi_1, \xi_2)$. (F) Comparison of single variable probability distribution between the coupled and uncoupled cases. Synchronous and anti-synchronous coupling of the same strength result in the same probability distributions.
3.3. Information exchange

A topic of considerable interest are the parameter values at which the maximum information exchange between the interacting systems takes place. Here we adopt the relative entropy S as a measure of the exchange of information between two networks. The relative entropy relates the entropy of the coupled networks, expressed by the joint probability distribution of mean fields in the coupled case, $P(\xi_1^{CP}, \xi_2^{CP})$, to the entropies of the individual uncoupled networks, denoted by probability distributions for uncoupled variables, $P(\xi_1^{UC})$ and $P(\xi_2^{UC})$. The constant S_0 denotes a reference state.

The values of the relative entropy calculated for the coupled Langevin equations model with a wide range of cooperation parameters K_1 (for $\xi_1(K_0, t)$ variable) and K_2 (for $\xi_2(K_2, t)$ variable) are shown on figure 8. The mirror symmetry of $S(K_1, K_2)$ with respect to the $K_1 = K_2$ line is due to the symmetric nature of the coupling between the two Langevin equations in terms of the PDF’s. Additionally, as demonstrated on figure 6(F), since the PDF’s do not depend on the sign of the coupling between two networks, the values of relative entropy are identical both for synchronous and anti-synchronous coupling.
The concentration of highest values of $S(K_1, K_2)$ near $K_1 \approx 1$ clearly indicates that maximum transfer of information between the two networks occurs at the critical value of the cooperation parameter K_1; an observation consistent with the PCM [23]. In the regime where both cooperation parameters are subcritical, K_1, $K_2 < K_C$, the relative entropy $S(K_1, K_2)$ values are small, implying a lack of effective coupling between the two networks. When $K_1, K_2 > K_C$, the values of $S(K_1, K_2)$ are relatively high, although smaller then maximal, indicating that the intra-network dynamical organization facilitates the cooperation between networks. It is worth pointing out that the peak in value of the relative entropy disappears when both $K_1 = K_2 = 1$, indicating that there is no preference for information transfer when both networks are at criticality.

Furthermore, the effective influence of the coupling between networks depends on the strength of the coupling term. The values of relative entropy obtained for increasing the coupling strength α reinforce the observation that the transfer of information is maximal once one network is in the critical regime (see figure 9). The values of S initially increase with the increase of cooperation parameter K_1, to reach maximum at $K_1 \approx 1$. This peak is followed by a decrease of S and a region of the relative entropy is constant suggesting that the two-point PDF is proportional to the product of the singlet PDF’s, $P(C_1^\alpha, C_2^\alpha) = P(C_1^\alpha)P(C_2^\alpha)$. If this ratio is denoted by C, then the change in the relative entropy is given by

$$\Delta S = -C \log_2 C$$

and the constant C is a function of the control parameters $C(K_1, K_2)$. In addition to the dependence on the control parameters through C the relative entropy is seen to decrease disproportionately with the coupling strength.

3.4. Validity of Langevin formalism

The discussion of the external influence exerted on the network through a small fraction of its members presented in section 3.1 can be adopted to treat the weak coupling between two networks realized with the Langevin equation model. In that case one considers two ATA networks of size N_1 and N_2, whose intra-network dynamics is realized with the cooperation levels K_1 and K_2, respectively. Here for simplicity we choose $N_1 = N_2$.

Next the dynamics of a fraction $1 - P$ of the free individuals is realized following the rules of normal DMM dynamics, adopting the expressions for the transition rates defined by equation (6). The fraction P of sensitive individuals obey the modified transition rates

\begin{align}
\gamma^{(i)}_{s_{1, \ldots, 1}}(t) &= g_0 \exp [-K_1 s_1 + s_2]; \\
\gamma^{(i)}_{s_{1, \ldots, 1}}(t) &= g_0 \exp [K_1 s_1 - s_2],
\end{align}

where the additional term in the exponent comes from the coupling to the second network. The transition rates defined for the dynamics of the sensitive individuals in the second network contain opposite indices. With the introduction of the difference variable as before, $\Pi^{(i)} = \Pi^{(i)} - \Pi^{(i)}$, the $1 - P$ two-state master equations describing the free individuals reduce to equation (7) and the P sensitive individuals are described by
The dynamics of the global variable for one network is then
\[\frac{d\Pi^{(i)}}{dt} = 2g_0 \sinh(K_i \Pi) - 2g_0 \Pi^{(i)} \cosh(K_i \Pi) - 2g_0 \xi_2. \]
(27)

The dynamics of the global variable for one network is then
\[\frac{d\xi_1}{dt} = \frac{1}{N} \sum_{i=1}^{N} \frac{d\Pi^{(i)}}{dt} \approx -\frac{\partial V(\xi_1)}{\partial \xi_1} + \eta_1(t) - 2g_0 P_{\xi_2}(K_i, t). \]
(28)

The correspondence with the coupled Langevin equation occurs when the coupling is \(\alpha = 2g_0 P\), denoting the fact that in a particular realization weak coupling between two networks can be obtained by making a small fraction of individuals of each network sensitive to the dynamics of the second network.

The effect of the coupling of two ATA networks realized through sensitive individuals is demonstrated in figure 9, where the values of the relative entropy for increasing values of the coupling strength \(\alpha\) are compared with the Langevin equation model. We observe the same qualitative behavior as in the Langevin models, that is, the maximum information transfer occurs at criticality, and the values of the entropy saturate in the supercritical cooperation parameter regime.

Finally, one needs to consider what is the range of validity in which the coupled Langevin model recovers the dynamics of two ATA networks coupled with a small number of links. One significant difference between the direct numerical simulation of an ATA network with DMM dynamics and the realization of the corresponding Langevin equation is the fact that in the DMM the mean field variable \(z(K, t)\) is always limited to the range \([-1, 1]\), while the variable \(\xi(K, t)\) present in the Langevin equation is not so restricted. Thus, we adopted the value of \(\alpha\) at which \(\xi(K, t)\) observed for the coupled networks is larger than either \(+1\) or \(-1\) as the measure of the validity limitation for the equivalence of the two approaches.

We investigate the properties of the PDF of the Langevin variables \(\xi_1(K_1, t)\) and \(\xi_2(K_2, t)\), and that of the DMM variables, \(\xi_1(K_1, t)\) and \(\xi_2(K_2, t)\). We concentrate our attention on the equilibrium value of \(\xi_{1,2}\) and \(\xi_{1,2}\), which corresponds to the location of the maxima of the PDF’s for those variables. The approach is illustrated on figure 10, where the PDF’s obtained for weak coupling, \(\alpha = 0.001\) are compared with those obtained for stronger coupling, \(\alpha = 0.01\). In the case of weak coupling both approaches lead to identical PDF’s. However, stronger coupling in the case of coupled Langevin equations results in the peaks of \(P(\xi_1)\) and \(P(\xi_2)\) to be located...
outside the range $-1 < \xi < 1$, which violates the underlying assumption for the mean field dynamics. This behavior is not observed for coupled ATA networks independently of the strength of the coupling.

The position of the equilibrium values of $\xi_{1,2}$ and $s_{1,2}$ for a wide range of α values is also plotted. One determines for coupling strengths $\alpha < 10^{-2}$ that the coupling does not result in any effective change in either network, being too weak to influence the intra-network dynamics. Additionally, coupling values larger than $\alpha > 10^{-2}$ do not recover the correspondence between the direct simulation of the DMM and the Langevin approach.

In this study we adopt the Langevin formalism to define both intra- and inter-network dynamics. While the intra organization of a subnetwork is determined by the order parameter K, the inter-network synchronization is maximized when both subnetworks operate close to the critical coupling, K_c. Following the behavior of systems demonstrating a second order phase transition, we expect the condition for the inter-network synchronization to become more narrow as the size of subnetworks increases. On the other hand, decreasing subnetwork size corresponds to the increase of noise present in the system and presents an obstacle for inter-synchronization.

4. Discussion and conclusions

Herein we have shown that two weakly coupled ATA DMM networks each modeled with a two-state master equation can be approximated to a high degree of accuracy by two Langevin equations each with a double well potential that is biased by the interaction with the other network. When the percentage of elements within the network that is sensitive to the other network is sufficiently small the coupling can be treated as a perturbation resulting in the symmetry of the mean field for the composite network that depends on the sign of the interaction term. Depending on the choice of coupling between subnetworks a condition of inter-synchronization or anti-synchronization is realized. Furthermore the interaction between two systems leads to an effective increase in the intra-cooperativity of each of them. The dynamics of coupled networks is reminiscent of the dynamics of a single ATA network with a cooperation parameter larger than the one characterizing the interacting subnetwork. As an interesting consequence, we find that intra-network consensus or synchronization is not a prerequisite for inter-synchronization. In fact, consensus can be induced by the inter-network dynamics.

The sign choice leading to anti-symmetry of the dynamic interaction between these two ATA DMM networks makes one think of the adolescent infighting between two political groups that are oppositely polarized [31]. As long as one party holds a particular point of view the other party adopts the opposite point of view. Moreover there is no reconciling them, when a fluctuation induces one group to change its position this change immediately induces a corresponding reaction in the other group to change its position as well. Consequently, the weak coupling between the two groups prevents them from ever reaching accommodation. Furthermore, presence of opposition party causes both of them to become internally more uniform and orderly, eliminating diverse point of view within the group and becoming more radical in the opinions they hold.

West et al [23] hypothesized that the efficiency of information exchange between two complex networks depends on the relative complexity of the two networks. They used the IPL index characterizing network dynamics to quantify network’s complexity and concluded that two interacting complex networks exchange information most efficiently when their IPL indices match. The hypothesis of the complexity matching effect was subsequently proven in a more general form by Aquino et al [24, 32] using averages over PDFs and more generally using time averages by Piccinini et al [33]

Here we investigate dynamical processes characterized by the IPL with index $\mu = 1.5$ and we determine that the information exchange between networks is maximal at the transition from disorganized behavior to cooperation. This condition corresponds to a point at which the survival probability distribution $\Psi(\tau)$ is characterized by the longest IPL interval. Future work is necessary to design models characterized by a wider range of IPL scaling. This would be needed in order to test the condition of $\mu \approx 2$, predicted by the PCM [23] as one leading to the maximum transfer of information between complex systems. Interestingly enough such IPL scaling has been reported by Abney et al [34] for the inter-event distribution function characterizing two-person conversation. In light of our work such interaction would correspond to a desirable condition of anti-synchronization, where both individuals politely take turns at presenting their arguments. The potential minima in the Langevin model could then be associated with speaking and listening in dyadic conversation.

Acknowledgments

The authors acknowledge the US Army Research Laboratory for support of this research.
ORCID iDs

Malgorzata Turalska @ https://orcid.org/0000-0003-1189-5498

References

[1] Strogatz S 2003 Sync: the Emerging Science of Spontaneous Order (New York: Hyperion)
[2] Neda Z, Ravasz E, Vicsek T, Breck T H and Barabasi A L 2000 Physics of the rhythmic applause Phys. Rev. E 61 6987
[3] Michaels D C, Matyas E P and Jalife J 1987 Mechanism of sinoatrial pacemaker synchronization: a new hypothesis Circ. Res. 61 704–14
[4] Motter A, Myers S, Anghel M and Nishikawa T 2013 Spontaneous synchrony in power-grid networks Nat. Phys. 9 191–7
[5] Pikovsky A, Rosenblum M and Kurths J 2003 Synchronization: a Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[6] Kim C M, Rim S, Kye W H, Ryu I W and Park Y J 2003 Anti-synchronization of chaotic oscillators Phys. Lett. A 320 39–46
[7] Pecora L and Carroll T 1990 Synchronization in chaotic systems Phys. Rev. Lett. 64 821
[8] Abrams D and Strogatz S 2004 Chimera states of coupled oscillators Phys. Rev. Lett. 93 174102
[9] Buzsaki G 2006 Rhythms of the Brain (Oxford: Oxford University Press)
[10] Giusfredi D and Raichle M 2001 Searching for a baseline: functional imaging and the resting human brain Nat. Rev. Neurosci. 2 685–94
[11] Mantini D, Perrucci M, Del Gratta C, Romani G and Corbetta M 2007 Electrophysiological signatures of resting state networks in the human brain Proc. Natl. Acad. Sci. USA 104 13179–5
[12] Horovitz S, Braun A, Carr W, Picchioni D, Balkin T, Fukunaga M and Duyn J H 2009 Decoupling of the brain’s default mode network during deep sleep Proc. Natl. Acad. Sci. USA 106 13376–81
[13] Gollo L L, Mirasso O, Sporns O and Breakspear M 2014 Mechanisms of zero-lag synchronization in cortical motifs PLoS Comput. Biol. 10 e1003548
[14] Li D and Zhou C 2011 Organization of anti-phase synchronization pattern in neural networks: what are the key factors? Frontiers Syst. Neurosci. 5 100
[15] Nummenmaa L, Glerean E, Viinikainen M, Jääskeläinen I P, Hari R and Sams M 2012 Emotions promote social interaction by synchronizing brain activity across individuals Proc. Natl. Acad. Sci. USA. 109 9599–604
[16] Levinson S 2016 Turn-taking in human communication—origins and implications for language processing Trends Cogn. Sci. 20 6–14
[17] Li C, Syn W and Kurths J 2007 Synchronization between two coupled complex networks Phys. Rev. E 76 046204
[18] West B J, Turalska M and Grigolini P 2014 Network of Echoes. Imitation, Innovation and Invisible Leaders (Berlin: Springer)
[19] Rodrigues F, Peron T, Ji P and Kurths J 2016 The Kuramoto model in complex networks Phys. Rep. 610 1–98
[20] Pecora L and Carroll T 2013 Synchronization of chaotic systems Chaos 25 097611
[21] Ahn C K 2009 Adaptive H∞ anti-synchronization for time-delayed chaotic neural networks Prog. Theor. Phys. 122 1391–403
[22] Zhang D and Xu J 2010 Projective synchronization of different chaotic time-delayed neural networks based on integral sliding mode controller Appl. Math. Comput. 217 164–74
[23] West B J, Geverson E L and Grigolini P 2008 Maximizing information exchange between complex networks Phys. Rep. 468 1–99
[24] Aquino G, Bologna M, West B J and Grigolini P 2011 Transmission of information between complex systems: 1/f resonance Phys. Rev. E 83 051130
[25] Turalska M, Lukovic M, West B J and Grigolini P 2009 Complexity and synchronization Phys. Rev. E 80 021110
[26] Bianco S, Geneston E, Grigolini P and Ignaccolo M 2008 Renewal aging as emerging property of phase synchronization Physica A 387 1387
[27] Turalska M, West B J and Grigolini P 2011 Temporal complexity of the order parameter at the phase transition Phys. Rev. E 83 061142
[28] Pinto I, Escabi D, Harbola U, Rosas A and Lindenberg K 2014 Globally coupled stochastic two-state oscillators: fluctuations due to finite numbers Phys. Rev. E 89 052143
[29] Svenkonsen A 2013 How cooperative systems respond to external forces PhD Dissertation University of North Texas http://digital.library.unt.edu/ark:/67531/metadc500014/
[30] Pikovsky A, Zaikin A and de la Casa M A 2002 System size resonance in coupled noisy systems and in the Ising model Phys. Rev. Lett. 88 056001
[31] Moody J and Mucha P 2013 Portrait of political party polarization Netw. Sci. 1 119–21
[32] Aquino G, Bologna M, Grigolini P and West B J 2010 Beyond the death of linear response theory: criticality of the 1/f noise condition Phys. Rev. Lett. 105 040601
[33] Piccinin N, Lambert D, West B J, Bologna M and Grigolini G 2016 Nonergodic complexity management Phys. Rev. E 93 062301
[34] Abney D H, Paxton A, Dale R and Kello C T 2014 Complexity matching in dyadic conversation J. Exp. Psychol. Gen. 143 2304–15