**Cinnamomum cassia** Bark in Two Herbal Formulas Increases Life Span in *Caenorhabditis elegans* via Insulin Signaling and Stress Response Pathways

**Young-Beob Yu**\(^1\), Laura Dosanjh\(^1\), Lixing Lao\(^2\), Ming Tan\(^3\), Bum Sang Shim\(^6\), Yuan Luo\(^1\),\(^2\)*

\(^1\) Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America, \(^2\) Center for Integrative Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America, \(^3\) Division of Biostatistics, School of Medicine, University of Maryland, Baltimore, Maryland, United States of America, \(^4\) Brain Disease Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea, \(^5\) Department of Medicinal Plant Resources, Nambu University, Gwangju, Korea, \(^6\) College of Oriental Medicine, Kyunghee University, Seoul, Korea

**Abstract**

**Background:** Proving the efficacy and corresponding mode of action of herbal supplements is a difficult challenge for evidence-based herbal therapy. A major hurdle is the complexity of herbal preparations, many of which combine multiple herbs, particularly when the combination is assumed to be vitally important to the effectiveness of the herbal therapy. This issue may be addressed through the use of contemporary methodology and validated animal models.

**Methods and Principal Findings:** In this study, two commonly used traditional herbal formulas, *Shi Quan Da Bu Tang* (SQDB) and *Huo Luo Xiao Ling Dan* (HLXL) were evaluated using a survival assay and oxidative stress biomarkers in a well-established *C. elegans* model of aging. HLXL is an eleven herb formula modified from a top-selling traditional herbal formula for the treatment of arthritic joint pain. SQDB consists of ten herbs often used for fatigue and energy, particularly in the aged. We demonstrate here that SQDB significantly extend life span in a *C. elegans* model of aging. Among all individual herbs tested, two herbs *Cinnamomum cassia* bark (Chinese pharmaceutical name: Cinnamomi Cortex, CIN) and *Panax ginseng* root (Chinese pharmaceutical name: Ginseng Radix, GS) significantly extended life span in *C. elegans*. CIN in both SQDB and HLXL formula extended life span via modulation of multiple longevity assurance genes, including genes involved in insulin signaling and stress response pathways. All the life-span-extending herbs (SQDB, CIN and GS) also attenuated levels of H\(_2\)O\(_2\) and enhanced small heat shock protein expression. Furthermore, the life-span-extending herbs significantly delayed human amyloid beta (A\(_\beta\))-induced toxicity in transgenic *C. elegans* expressing human A\(_\beta\).

**Conclusion/Significance:** These results validate an invertebrate model for rapid, systematic evaluation of commonly used Chinese herbal formulations and may provide insight for designing future evidence-based herbal therapy(s).

**Citation:** Yu Y-B, Dosanjh L, Lao L, Tan M, Shim BS, et al. (2010) *Cinnamomum cassia* Bark in Two Herbal Formulas Increases Life Span in *Caenorhabditis elegans* via Insulin Signaling and Stress Response Pathways. PLoS ONE 5(2): e9339. doi:10.1371/journal.pone.0009339

**Editor:** Wendy A. Peer, Purdue University, United States of America

**Received** December 14, 2009; **Accepted** January 26, 2010; **Published** February 22, 2010

**Copyright:** © 2010 Yu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Funding:** NIH AT001928 http://nccam.nih.gov/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Competing Interests:** The authors have declared that no competing interests exist.

* E-mail: yluo@rx.umaryland.edu
constituent herbs. However, this claim has not been scientifically evaluated.

In recent years, numerous efforts have been made, particularly in China and other Asian countries, to investigate the mechanisms of action of Chinese herbal formulas using modern scientific methodology [4–6]. In vitro and in vivo studies on the individual herbs or constituents of classic formulas have been reported that many herbal medicines that are components of widely recognized traditional Chinese herbal formulas have immunomodulatory or antioxidant effects that may offer clinically relevant therapeutics for patients with disorders associated with aging [7,8]. While the majority of research has focused on the identification of the biological functions and active components of individual constituents, there are relatively few reported studies that consider the effects of interaction among herbs within a formula.

Working with highly complex multicomponent formulas with multiple possible interactions between component herbs requires studies in multicellular organisms. Because the systematic evaluation of efficacy, safety and mechanism of these multi-herbal formulas in mammalian models is costly and time consuming, we evaluated of efficacy, safety and mechanism of these multi-herbal studies in multicellular organisms. Because the systematic multiple possible interactions between component herbs requires mechanisms of interaction among herbs within a formula.

Table 1. Botanical names and origin of the formulas SQDB and HLXL.

![Table 1](https://www.plosone.org/doi/abs/10.1371/journal.pone.0009339.t001)
Table 2. Description of C. elegans strains.

| Strain     | Gene            | Expression     | Phenotype       | Assay                  |
|------------|-----------------|----------------|-----------------|------------------------|
| N2         | Wild type       | Life span      |                 |                        |
| ser-1(ok345)| 5-HT receptor  | Increased life span | Life span     |                        |
| daf-16    | Insulin pathway | Decreased life span | Life span     |                        |
| mev-1 (kn118)| Electron transport | ROS sensitive | Life span     |                        |
| CL4176    | myo-3(Aβ4) 2 | Inducible muscle Aβ | Rapid paralysis | Paralysis               |
| CL2070    | GFP reporter for shSPs | GFP | Thermal, oxidative stress |                        |

Table 3. Life span assays in wild type C. elegans fed with SQDB and individual herbs.

| N2 strain       | No. of experiments | Mean life span (days) | % change | No. of animal (+/−herbs) | p-value |
|-----------------|--------------------|-----------------------|----------|--------------------------|---------|
| Control         | 4                  | 19.9                  |          | 322                      |         |
| Mianserin       | 4                  | 27.1                  | 35.9     | 315/322                  | 0.0000  |
| SQDB            | 3                  | 22.3                  | 11.7     | 233/322                  | *0.0004 |
| Angelica gigas  | 2                  | 20.0                  | 0.2      | 65/322                   | (0.8317) |
| Astragalus membranaceus | 2           | 20.9                  | 4.8      | 70/322                   | (0.5422) |
| Atractylodes japonica | 2           | 19.7                  | −1.1     | 53/322                   | (0.6144) |
| Cinnamomum cassia (CIN) | 3           | 22.1                  | 10.8     | 170/322                  | *0.0017 |
| Cnidium officinale | 2            | 19.8                  | −0.8     | 56/322                   | (0.9064) |
| Glycyrrhiza uralensis | 2          | 20.7                  | 3.6      | 62/322                   | (0.9328) |
| Paonia lactiflora | 2             | 19.4                  | −2.8     | 58/322                   | (0.2946) |
| Panax ginseng (GS) | 3           | 21.5                  | 7.7      | 167/322                  | *0.047  |
| Poria cocos     | 2                  | 19.8                  | −0.9     | 72/322                   | (0.3162) |
| Rehmannia glutinosa | 2            | 20.9                  | 4.7      | 60/322                   | (0.9481) |

*P<0.005, Statistical significant; n.s. P>0.005 not significant.
doi:10.1371/journal.pone.0009339.t003

27.1 days, n = 4 experiments, p = 0.00001, total 637 worms). In contrast, formula HLXL (100 μg/ml) did not extend mean life span significantly (mean life span 20.7 days, p = 0.1364, total worms 139, Table 4).

SQDB and HLXL contain 11 and 10 individual herbs, respectively. To determine which herb(s) contribute to life span prolongation, we assayed each individual herb for effects on C. elegans survival. Among all individual herbs tested, only two herbs Panax ginseng root (GS) and Cinnamomum cassia bark (CIN) significantly extended life span in C. elegans (Table 3). Cinnamomum cassia bark present in both herbal formulas significantly extended mean lifespan to a similar extent (Table 3 and 4).

2. Life Span Extension by CIN (Cinnamomum cassia Bark) Requires Multiple Cellular Pathways

Cellular pathways for genes that affect life span have been identified in C. elegans. Life span extension by CIN offers an opportunity to use the power of worm mutants to test mechanisms of action. This approach was applied in our recent publication [17] showing that inhibition of 5-HT-controlled egg laying by bilobalide is blocked in mod-1 and ser-4 suggesting a role for 5-HT receptors in the beneficial effects of bilobalide. A similar approach also led to the identification of resveratrol, a natural compound that extends the worm’s life span by acting on the Sir2 gene [37], and the requirement of the CaMKII pathway for osmotic stress resistance and life span extension by blueberry extracts [38].

To identify the mechanism of action of CIN, we examined the effects of CIN on life span in three mutants implicated in major longevity pathways. If a specific pathway were required for lifespan extension by CIN, then CIN would be unable to prolong lifespan in that mutant. In C. elegans, the DAF-16 transcription factor in the insulin signaling pathway promotes expression of stress resistance and longevity genes. In mutant worms (daf-16) fed with CIN, the ability of CIN to extend lifespan was impaired compared to vehicle fed controls (Fig. 1A&B, Table 5). Similarly, lifespan extension by CIN was also blocked in mutants of serotonin receptors (ser-1) and anti-oxidative enzyme (mev-1) (Fig. 1C&D, Table 5), suggesting that CIN requires the insulin signaling pathway, anti-oxidative pathway and serotonin signaling for its lifespan prolonging effect. Lifespan extension by ginseng (GS), on the other hand, was unaffected in the daf-16 mutant (Table 5 & 6) indicating that ginseng may act independently of this gene. Interestingly, the herbal formula SQDB prolonged life span in ser-1 mutant worms (Table 5 & 6), suggesting that the serotonin pathway may not be involved in lifespan prolongation by SQDB.

3. Life Span-Extending Herbs Enhance Expression of Small Heat Shock Proteins (sHSP16) and Attenuate Intracellular Levels of H2O2 in C. elegans

To elucidate whether the above identified lifespan extending herbs regulate a specific stress response gene, we used the transgenic C. elegans (CL2070) expressing GFP as a reporter for inducible hsp-16.2 expression. Figure 2A shows representative images of hsp-16.2/GFP worms induced by a heat shock treatment for 2 hr (temperature shift from 20°C to 35°C). Upon induction by thermal stress, the GFP fluorescence is visible at the head of the worm, including the pharynx and the anterior nerve ring in the transgenic worms. The expression of hsp-16.2 induced by heat shock was significantly enhanced in CL2070 worms fed with SQDB, GS and CIN (Fig. 2B).
Oxidative free radicals have been postulated as a cause of aging and of some degenerative diseases [39]. Previously, we were able to measure H$_2$O$_2$-related ROS levels in *C. elegans*, and an age-dependent increase in the levels of H$_2$O$_2$ was observed [40]. To monitor the levels of H$_2$O$_2$ in wild type *C. elegans* treated with the herbs, we performed a DCF-DA fluorescence assay. We observed that in *C. elegans* treated with SQDB, GS and CIN the basal levels of H$_2$O$_2$ were significantly attenuated compared to untreated worms (Fig. 3). As a comparison, levels of H$_2$O$_2$ were also attenuated in worms fed with ascorbic acid (Vit. C). The ability of all life span-extending herbs to also enhance expression of the stress response protein hsp-16.2 and decrease ROS levels suggests that antioxidative pathways are a nonspecific effect associated with life span extension by antioxidant herbs.

### 4. Life Span Extending Herbs Delay Amyloid-Induced Paralysis in Transgenic *C. elegans* Expressing Human Aβ

The *C. elegans* FOXO transcription factor, DAF-16, is repressed by activation of the DAF-2 insulin receptor and is considered a key regulator of many important biological processes including lifespan, metabolism and stress response. It has been shown that DAF-16 regulates the process that converts misfolded proteins from toxic form (oligomers) to less toxic forms (high molecular mass aggregates). Recently, it was revealed that decreasing expression of *daf-2* in *C. elegans*, the homolog of the mammalian IR/IGF-1R, reduces Aβ$_{1–42}$ toxicity [41]. To determine if life span-extending herbs have an effect on protein misfolding-associated pathological behaviors, a transgenic *C. elegans* model of Aβ toxicity was used. The transgenic worms display progressive muscle paralysis after induction of transgene expression by temperature up-shift from 16°C to 23°C. The paralysis time course demonstrated (Fig. 4) that Aβ-induced muscle paralysis was significantly delayed in worms fed with SQDB (*p* = 0.0004), GS (*p* = 0.0002), and CIN (*p* = 0.0164).

### Discussion

In this study, we demonstrated that herbal formula SQDB and two constituent herbs *Cinnamomum cassia* bark (CIN) and *Panax ginseng* root (GS) significantly extended lifespan in *C. elegans*. The observation that herbal formula HLXL did not prolong lifespan validates the *C. elegans* model for evaluating efficacy of herbs in an organism, because the herbal formula SQDB has been used for age-related fatigue and improving wellness, whereas HLXL is more specific for anti-inflammation and used to treat arthritis.

*C. elegans* is a relevant model system for evaluating the efficacy of life span extending herbs due to the high conservation of biochemical pathways from worms to humans, and because of the similarity of many aspects of aging shared by nematodes and humans. Sarcopenia, the loss of muscle mass, occurs in both humans and *C. elegans* as a result of advanced age and results in corresponding behavioral declines. Intervention with ginseng has been demonstrated to slow this decline in *C. elegans* [19]. Though aging mechanisms have been well studied in model organisms such as yeast and nematodes, a feasible pharmaceutical intervention for humans has not yet been discovered. Because of the co-evolution of plants and animals, it is practical to evaluate natural compounds as potential therapies for aging and aging-related declines. Indeed, such compounds have been demonstrated to delay aging and age-related declines in model organisms [19,20,38,42,43].

Despite the common use of herbal supplements in the United States and elsewhere [2], the precise mechanisms associated with purported beneficial effects of these supplements are unknown. This lack of information is at least partially due to the fact that investigation of herbal formulas is complicated by the intricate nature of these mixtures, and an advanced method for studying individual herbs is necessary to facilitate understanding of their mechanisms. Well-characterized mutations of *C. elegans* that promote longevity, including insulin signaling and stress response, have previously been utilized to evaluate the specific mechanisms of natural compounds [38]. Similarly, multiple pathways were evaluated in this study for their involvement in lifespan-prolonging mechanistic targets of SQDB, GS, and CIN.

Oxidative stress has previously been demonstrated to be a major factor limiting lifespan in both *C. elegans* and humans [44] and as such, has gained widespread support as a preeminent theory of aging [45]. SQDB, GS, and CIN all significantly reduced levels of reactive oxygen species. However, CIN did not extend lifespan in the *mev-1* mutant (for summary see Table 6) indicating that though this herb reduces oxidative stress in the wild type worm, it likely

### Table 4. Life span assays in wild type *C. elegans* fed with HLXL and individual herbs.

| N2 strain | No. of experiments | Mean life span (days) | % change | No. of animals | p-value |
|-----------|--------------------|-----------------------|----------|---------------|---------|
| Control   | 3                  | 19.5                  |          | 141           |         |
| HLXL      | 2                  | 20.7                  | 5.7      | 139           | n.s.(0.1364) |
| *Angelica pubescens* | 1                    | 21.0                  | 7.5      | 35            | n.s.(0.1892) |
| *Angelica sinensis* | 1                    | 19.2                  | –2.0     | 39            | n.s.(0.5373) |
| *Lingustium chuanxiong* | 1                    | 17.0                  | –13.0    | 29            | n.s.(0.4937) |
| *Cinnamomum cassia* (CIN) | 2                    | 22.4                  | 14.5     | 93            | *0.0041 |
| *Corydalis yanhusuo* | 1                    | 17.7                  | –9.4     | 30            | n.s.(0.3039) |
| *Gentiana macrophylla* | 1                    | 20.2                  | 3.2      | 35            | n.s.(0.2190) |
| *Glycyrrhiza uralensis* | 1                    | 19.8                  | 1.3      | 34            | n.s.(0.8503) |
| *Notopterygium incisum* | 1                    | 19.2                  | –1.7     | 20            | n.s.(0.3520) |
| *Boswellia carterii* | 2                    | 20.9                  | 7.1      | 101           | n.s.(0.0744) |
| *Peonia lactiflora* | 1                    | 19.4                  | –0.9     | 39            | n.s.(0.8799) |
| *Salvia miltiorrhiza* | 2                    | 21.2                  | 8.3      | 85            | n.s.(0.0539) |

*P*<0.005, Statistical significant; n.s. *P*>0.005 not significant.
doi:10.1371/journal.pone.0009339.t004
requires an endogenous oxidative response pathway to do so. SQDB extended lifespan in the *ser-1* mutant, indicating that SQDB acts independently of serotonin signaling in prolonging lifespan. Additionally, GS extended lifespan in the *daf-16* mutant, suggesting that GS does not require insulin signaling to promote longevity. However, we observed that CIN failed to promote longevity in *ser-1* and *daf-16* mutants (Table 6), indicating that serotonin and insulin signaling are both involved in the beneficial effects exerted by CIN. Cinnamon has previously been shown to activate insulin receptor kinase activity and autophosphorylation of the insulin receptor in rats [46]. Combined with our data demonstrating that CIN requires a downstream member of the insulin signaling pathway in *C. elegans*, it is rational to conclude that CIN acts on the insulin receptor to elicit a beneficial response in the nematode. Modulation of serotonin by antidepressants has been demonstrated to enhance lifespan in *C. elegans* [22] and our results indicate that the serotonin pathway is required for CIN induced longevity. However, the manner in which biogenic amine neurotransmitters affect lifespan, and how CIN may modulate that mechanism requires further investigation. It is clear from our data that CIN has a pluripotent effect on lifespan in *C. elegans* with multiple targets through which it exerts this effect.

Lifespan has been linked to stress response in *C. elegans*, and in fact, long-lived worms are invariably stress resistant [44,47]. It has been suggested that pharmaceutical interventions that enhance longevity will also have therapeutic benefits for age-related diseases such as cancer and neurodegenerative disorders [48], perhaps via activation of endogenous stress response pathways. Transgenic *C. elegans* models have been used previously to investigate the pathological mechanisms of amyloid beta (Aβ), a contributing factor to the development and progression of Alzheimer’s disease (AD) [15, 49, and 50]. In this study, we investigated the effects of SQDB, CIN, and GS on Aβ-induced paralysis in a transgenic *C. elegans*. SQDB, CIN, and GS all delayed paralysis in this assay, indicating a potential beneficial effect of these herbs in an age-related disease. Additionally, we observed that these compounds significantly increased expression of heat shock protein, an endogenous stress response that has previously been demonstrated to diminish Aβ-induced pathological phenotypes in transgenic *C. elegans*. These data support the theory that longevity promoting compounds may also provide a beneficial effect in age-related diseases, and we have identified several new herbal compounds that may be further investigated as potential AD therapeutics. These compounds present exciting and rational new leads because

Figure 1. Effect of *Cinnamomum cassia* (CIN) on life span in multiple pathway mutants of *C. elegans*. Age synchronized control (circles) or CIN fed (triangles) worms were seeded in liquid medium at the L1 stage. CIN treatment began 68 h after seeding (day 1 of adult life) and the fraction of animals alive was scored microscopically on the basis of movement. A. CIN significantly extends life span in wild type worms but not in B. *daf-16*, C. *mev-1* or D. *ser-1* mutants. Survival rate was scored every day and is expressed as percentage of survival. The experiment was conducted at least three times with a minimum of 100 worms per trial. Statistical significant p<0.05, n.s. not significant.

doi:10.1371/journal.pone.0009339.g001
the stress response mediated by heat shock proteins is a highly conserved physiological process in both invertebrate and vertebrate models [51].

Cinnamon is one of the most widely used herbal medicines with diverse bioactive effects. Our study demonstrated its lifespan prolonging, anti-stress and anti-proteotoxicity effects in an organism. These observations are supported by recent in vitro studies that demonstrated CIN to exert protection against oxidative stress [52] and mitochondrial dysfunction [53], to have anti-tumor properties [54], and to inhibit Alzheimer disease associated tau aggregation [55]. A systematic evaluation of more than 30 herb found that cinnamon is among the most potent antioxidant herbs [56] and represents an important source of dietary antioxidants [57] as well as a relevant source for candidate drugs in oxidative stress-related diseases [58]. Furthermore, studies using type II diabetic animals reported anti-diabetic effects of cinnamon extract administered at 200 mg/kg for 6 weeks [59]. Multiple human clinical trials have also provided evidence for anti-diabetic effects of cinnamon in patients and healthy subjects [60–66]. Mechanistic studies of several biomarkers suggest that the effect of cinnamon is mediated via regulation of multiple genes involved in insulin sensitive and lipogenesis pathways [67–69]. Our results provide further evidence for this view by providing genetic targets of cinnamon in an organism.

Though multiple genetic and pharmaceutical interventions have been discovered that increase lifespan in C. elegans, the translation of these effects to humans remains unknown. Our data and that of several others illustrate the power of C. elegans in screening for herb mechanisms [15,37,38]. Further studies that use mammalian systems to build on the discoveries made in C. elegans will lead to a better understanding of how these compounds apply to humans.

### Table 5. Life span assays in mutant C. elegans fed with SQDB and individual herbs.

| Strains | Drugs | Mean life span (d) | % Change | No. of animal (+drug)−drug | P-value |
|---------|-------|--------------------|----------|----------------------------|---------|
| Control | 14    | 76                 |          |                            |         |
| SQDB    | 15    | 7.1                | 57/76    | n.s. (0.295)               |         |
| HLXL    | 15    | 7.1                | 64/76    | n.s. (0.8088)              |         |
| Daf-16  | Cinnamomum cassia (CIN) | 15     | 7.1                | 85/76          | n.s. (0.0596) |
| Boswellia carterii | 14    | 0.0                | 89/76    | n.s. (0.8369)              |         |
| Panax ginseng (GS) | 17    | 21.4               | 72/76    | *0.0006                    |         |
| Control | 18    | 89                 |          |                            |         |
| SQDB    | 22.4  | 24.4               | 100/89   | *0.0045                    |         |
| HLXL    | 17.6  | −2.2               | 100/89   | n.s. (0.3203)              |         |
| Ser-1   | Cinnamomum cassia (CIN) | 19.8   | 10.0               | 88/89          | n.s. (0.1299) |
| Boswellia carterii | 21.3  | 18.3               | 57/89    | n.s. (0.1054)              |         |
| Panax ginseng (GS) | 19.5  | 8.3                | 80/89    | n.s. (0.3296)              |         |
| Control | 13    | 85                 |          |                            |         |
| SQDB    | 12    | −7.7               | 56/85    | n.s. (0.336)               |         |
| HLXL    | 13    | 0.0                | 66/85    | n.s. (0.4368)              |         |
| Mev-1   | Cinnamomum cassia (CIN) | 13    | 0.0                | 63/85          | n.s. (0.3506) |
| Boswellia carterii | 13    | 0.0                | 61/85    | n.s. (0.508)               |         |
| Panax ginseng (GS) | 14    | 7.7                | 69/85    | n.s. (0.416)               |         |

*P<0.005, Statistical significant; n.s. P>0.005 not significant.
doi:10.1371/journal.pone.0009339.t005

### Table 6. Summary.

| Assay     | Strain | % Change (p value) |
|-----------|--------|--------------------|
| Life span | N2     | SQDB 11.7 (0.0004)  |
|           |        | GS 7.7 (0.047)     |
|           |        | CIN 10.8 (0.0017)  |
|           | Ser-1  | Log-rank test      |
|           |        | 24.0 (0.0045)      |
|           |        | 8.3 (0.3296)       |
|           |        | 10.0 (0.1299)      |
|           | Daf-16 | T-test             |
|           |        | 7.1 (0.295)        |
|           |        | 21.4 (0.0006)      |
|           |        | 7.1 (0.0596)       |
|           | Mev-1  | Log-rank test      |
|           |        | (−17.7) (0.3368)   |
|           |        | 7.7 (0.416)        |
|           |        | 0.0 (0.3506)       |
| ROS       | CL-2070| 185*               |
| Thermo-tolerance | CL-2070 | 14.9*              |
| Paralysis | CL-4176| 21.6***            |
|           |        | 18.2**             |
|           |        | 21.5***            |
|           |        | T-test             |
|           |        | T-test             |
|           |        | T-test             |
|           |        | Log-rank test      |

doi:10.1371/journal.pone.0009339.t006
It should be noted that bioavailability studies can be done using *C. elegans* [70], though they were not performed in this study due to the complexity of the herbal formulas. Future studies may incorporate this type of assay to provide a better understanding of the pharmacokinetic properties of herbal compounds. It must also be noted that Zarse et al observed significant differences in lifespan between the liquid culture technique utilized in this study and solid media culture. It has been proposed that worms in liquid
culture exist in a state of caloric restriction, though this conjecture has not been evaluated [71]. The present study validated a simple animal model of aging for mechanistic studies and evaluation of efficacy of herbal supplements. This model can be used for future investigation of longevity promoting herbs or compounds and concurrent mechanisms of action.

Materials and Methods

Preparation of HLXL, SQDB and Chemicals

The method of HLXL preparation has been previously reported [26,27]. In brief, the 11 herbs used in the HLXL were purchased in Beijing (Tong Ren Tang pharmaceutical company, Beijing, China) and authenticated by the Beijing Institute of Material Medica following Chinese pharmacopoeia guidelines (The Pharmacopoeia Commission of PRC, 2000). They were ground into powder (~80 mesh), and both non-polar and polar components were completely extracted with 70% aqueous acetone at room temperature. The crude extract was concentrated under reduced pressure. The weight of the final HLXL extract was approximately 20–25% that of the raw herbs. The quality of the extract was monitored by high performance liquid chromatography (HPLC) fingerprint to assure lot-to-lot consistency. The extract of each individual herb was tested for heavy metals (Hg, As, Cd) contamination before mixing.

All herbal specimens in SQDB were deposited at the Department of Herbal Pharmaceutical Development (Korea Institute of Oriental Medicine, Daejeon, Korea). Preparation of SQDB used the modified method of Korea Pharmacopoeia version 9. SQDB was composed of same amount (10 g) of each drug, a twenty-fold mass of water was added and the mixture was boiled for 2 h at 100°C. After filtration, concentration of a filtrate was carried out. The dried SQDB was maintained at 4°C before use. Mianserin, L-ascorbic acid [vitamin C (VC)] as well as other chemicals were purchased from Sigma (St. Louis, MO). Stock solutions of all chemicals were made either with 100% DMSO or with distilled water only. The final concentration of DMSO did not exceed 0.01% in the food (Escherichia coli strain OP50).

Strains and Genetics

C. elegans strains (for a summary, see Table 2) The wild-type strain N2 (Bristol) was obtained from the Caenorhabditis Genetics Center (University of Minnesota, Minneapolis, MN). The following genes and alleles were used in this work: ser-1(ok345) (C. elegans Gene Knockout Consortium), daf-16 (mgDf50) and mec-1(kn1) III. The construction and characterization of the transgenic nematode strains CL4176 (mg-1[wg-3]/Ab2.42 long 3′-untranslated region (UTR)]) have been described previously [72,73]. CL4176 is a temperature-sensitive mutant strain that expresses human Ab2.42 only when it reaches non-permissive temperatures. The expression of Ab in muscle cells causes paralysis in these mutants [72]. The transgenic strain hsp-16.2/GFP (CL2070) was generated and characterized by Dr. C. Link as described previously (7). CL2070 contains a jellyfish GFP reporter transgene that is under the control of the promoter for the sHSP gene hsp-16.2.

C. elegans Maintenance and Treatment

Maintenance and manipulation of all strains of C. elegans have been previously described [13–18] while CL4176 was propagated at 16°C on solid nematode growth medium (NGM) seeded with 100 μl spots of E. coli (OP50) for food. To prepare age synchronized animals, nematodes were transferred to fresh NGM plates after reaching reproductive maturity at 3 d of age and allowed to lay eggs for 4-6 h. Isolated hatchlings from the synchronized eggs (day 1) were cultured on fresh NGM plates in either a 20°C or a 16°C (for CL4176) temperature-controlled incubator (model 2005; Sheldon Manufacturing, Cornelius, OR). The worms were fed with the herbs either from stage L1 (1 d of age) or starting from egg. The stock solutions of herbs were diluted in distilled water (DDW), or food source of C. elegans. For the liquid culture life span assay, 10 μL of stock solution (1.5 mg/ml formulas and single herbs) was added to the 96 well plate including stage L1 worms to obtain a final concentration of 100 μg/ml. The worms for thermal stress assay, oxidative stress assay and paralysis assay were fed with 10 μL of stock solution in the OP50 food source, seeded on NGM plates and starting from egg. Final concentrations of herbal drugs ranged from 10 μg/ml to 100 μg/ml.

Lifespan Assay in Liquid Medium

Lifespan was assessed in liquid medium [22] (S-complete medium with 50 μg/ml carbenicillin and 0.1 μg/ml fungizone) in 96-well plates containing, respectively, 150 μL total volume, 10–15 nematodes, and 6 mg/ml freshly prepared E. coli OP50 per well. Age-synchronized nematodes were seeded as L1 larvae and plates were sealed with tape (Nunc) to prevent evaporation. To prevent self-fertilization, 5-flouro-2'-deoxyuridine (0.12 mM final) (Sigma) was added 42–45 h after seeding. Worms were treated with final concentrations of 100 μg/ml of herb. Herbs were added 68 h after seeding (day 1 of adult life) unless otherwise specified. Day 1 of the lifespan assay started 68 h after seeding the animals into plates. The fraction of animals alive per well was scored microscopically on the basis of movement. Before counting, each plate was put onto a plate rotator for 1–2 min. Strong microscope light (visual or ultraviolet) effectively stimulated movement even in old animals. Using this assay, daf-16 aging mutants showed alterations in lifespan similar to those reported using standard conditions (agar plates).

Fluorescence Microscopy and Quantitation of hsp-16.2 Expression

Using the CL2070 strain, we used thermal stress to induce hsp-16.2 gene expression. The worms were fed with herbal drugs (final concentration of 10 μg/ml or 100 μg/ml) starting from egg until completion of the assay. The hsp-16.2/GFP worms, synchronized and maintained as stated above, were exposed to 35°C for 2 h. Worms were then allowed to recover in their normal environment at 20°C for 4 h before pictures were taken. After induction, the expression of hsp-16.2 was measured by directly observing the fluorescence of the reporter GFP. Epifluorescence images were acquired at the same exposure parameter using the 40× objective of a microscope (BX 60, Olympus, Tokyo, Japan) equipped with a digital camera (Microublisher 5.0, QIMAGING, Burnaby, BC, Canada). For quantifying a population of GFP reporter animals, each 40× image was analyzed using Image-J software (NIH).

Analysis of Oxidative Free Radicals

The assay was conducted as described previously [40]. Worms were cultivated on agar plates and fed 10 μL of stock solutions (final concentration of 10 μg/ml or 100 μg/ml) from egg until the worms were collected. 4-day old age synchronized worms were collected in 100 μl of 0.1% PBST. Intracellular hydrogen peroxide (H₂O₂)-related reactive oxygen species (ROS) were measured in C. elegans using 2,7-dichlorofluoroscein diacetate (DCF-DA; Molecular Probes). Nonfluorescent DCF-DA is a cell-permeable dye that is readily converted to 2,7-dichlorofluoroscein (DCF) by interacting
predominantly with hydrogen peroxide [40]. Age-synchronized C. elegans treated with or without SQDB (final concentration of 10 μg/ml or 100 μg/ml) on the day after hatching for 48 h were collected into 100 μl PBS (PBS containing 0.1% Tween 20) with 60 worms from each group and 3 groups per treatment. The worms were then subjected to timed homogenization (Pellet Pestle Motor, MGY Scientific) and sonication (Branson Sonifier 250, VWR Scientific) to break up the outer cuticle. 100 μl of 50 μM DCF-DA in PBS was then added to the sonicated worms. 200 μl of each sample were transferred into a 96 well plate and placed into a fluorescent microplate reader for 2 h and 30 min, set to measure fluorescence levels at 10 min intervals. For quantification, fluorescence excitation was read at 485 nm and emission read at 528 nm. For statistical analysis, the endpoint readings upon completion of the cycle were used.

Paralysis Assays

The strain CLA176 [49,74] maintained at 16°C was egg-synchronized on the 35×10 nm NGM plates containing either a vehicle or drug (final concentration of 10 μg/ml or 100 μg/ml) from egg until the completion of the assay. Transgene expression was induced by upshifting the temperature from 16 to 23°C 38 hours after egg laying and lasted until the end of the paralysis assay. Paralysis was scored at 1 h intervals until the last worm became paralyzed.

Statistical Analysis

Routine statistical analyses were performed using SPSS 12 software. Comparisons and P value calculations for lifespan and paralysis assay were made between treated and untreated animals of the same strain using the log-rank test (Mantel-Haenszel). We observed the death of 98.6% of the animals (excluding screen). Animals that were still alive at the end of an experiment (1.4%) were analyzed as alive up to this point with unknown time of death (censoring). Wells containing more than 19 animals were excluded from the analysis. Statistical comparison between treatments for oxidative stress and thermal stress was done with unpaired Student t test using Prism 4 software (GraphPad Inc., San Diego, CA).

Acknowledgments

We would like to thank Professor Harry H.S. Fong for consulting nomenclature of the herbs, and Mr. Byoung-Kab Kang for helping with the statistical analysis.

Author Contributions

Conceived and designed the experiments: YBY YL. Performed the experiments: YBY YL. Analyzed the data: LD MT. Contributed reagents/materials/analysis tools: LL BSS. Wrote the paper: LD YL.

References

1. Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilky S, et al. (1998) Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA 280: 1569–1575.
2. Blumenthal M (2000) Preface. In: Herbal Medicine, 2nd Ed Weiss, R F & Fettner, V Thieme Stuttgart, New York.
3. Luo Y (2000) Contemporary Neuroscience Meets Traditional Medicine - Towards Understanding Ginsko Biloba Neuroprotection. Current Topics in Nutraceutical Research 1: 49–58.
4. Hu Y, Chen X, Duan H, Mu X (2009) Chinese herbal medicinal ingredients inhibit secretion of IL-6, IL-8, E-selectin and TF/EB in LPS-induced rat intestinal microvascular endothelial cells. Immunopharmacol Immunotoxicol [April Epub ahead of print].
5. Yao CJ, Yang CM, Chuang SE, Yan JL, Liu CY, et al. (2009) Targeting PML-RAR[alpha] and Oncogenic Signaling Pathways by Chinese Herbal Mixture Tien-Hsien Liquid in Acute Promyelocytic Leukemia NBL Cells. Evid Based Complement Alternat Med 29 [Epub ahead of print].
6. Yang M, Xiao C, Wu Q, Niu M, Yao Q, et al. (2009) Anti-inflammatory effect of Sanduhaolu decoction may be associated with nuclear factor-kappaB and p38 MAPK/alpha in collagen-induced arthritis in rat. J Ethnopharmacol 127: 264–273.
7. Burns J, Zhao L, Taylor EW, Spelman K (2009) The influence of traditional herbal formulas on cytokine activity. Toxicology 7 (Epub ahead of print).
8. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MR, Tandra S, et al. (2009) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127: 515–520.
9. Wolkow CA, Kimura KD, Lee MS, Ruvkun G (2000) Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 290: 147–150.
10. Luo Y (2004) Long-lived worms and aging. Redox Rep 9: 65–69.
11. Antebi A (2007) Ageing: when less is more. Nature 447: 536–537.
12. Artal-Sanz M, de Jong L, Tavernarakis N (2006) Caenorhabditis elegans: a versatile platform for drug discovery. Baillieres Clin Neurol 11: 1405–1528.
13. Wu Y, Wu Z, Burok P, Christen Y, Lambert MP, et al. (2006) Aminophylline-induced pathological behaviors are suppressed by Ginseng biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J neurosci 26: 13102–13113.
14. Wu Y, Cao Z, Klein WL, Luo Y (2000) Heat shock treatment reduces beta amyloid toxicity in vivo by diminishing oligomers. Neurobiol Aging 21: 10016–10106.
15. Wu Z, Smith JV, Paramasivam V, Burok P, Khan I, et al. (2002) Ginseng biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol (Noisy-le-grand) 48: 725–731.
16. Scriver A, Wu Z, Christen Y, Link CD, Luo Y (2003) Expression of the small heat-shock protein Hsp 16-2 in Caenorhabditis elegans is suppressed by Ginseng biloba extract EGb 761. FASEB J 17: 2305–2307.
17. Brown MK, Luo Y (2009) Biblioblaide modules serotonin-controlled behaviors in transgenic Caenorhabditis elegans. BMC Neurosci 10: 62.
18. Dosanjh LE, Brown MK, Rao G, Link CD, Luo Y (2009) Behavioral Phenotyping of a Transgenic C. Elegans Expressing NeuronalAmyloid-beta. J Alzheimers Dis Nov 5 [Epub ahead of print].
19. Cao Z, Wu Y, Curry K, Wu Z, Christen Y, et al. (2007) Ginkgo biloba extract EGb 761 and the Wisconsin Ginseng delay sarcopenia in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62: 1337–1345.
20. Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and alfa-lipolic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmaco 14: 1357–1367.
21. Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454: 1065–1071.
22. Feroniess M, Ye X, Buck LB (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450: 533–536.
23. Collins JJ, Evason K, Kornfeld K (2006) Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp Gerontol 41: 1032–1039.
24. Pinkston JM, Garigan D, Hansen M, Knyusen C (2006) Mutations that increase the life span of C. elegans inhibit tumour growth. Science 313: 971–975.
25. Rajaiah R, Lee DY, Ma Z, Fan AY, Luo L, et al. (2009) Huo-Luo-Xiao-Ling Dan modulates antigen-directed immune response in advanciant-induced inflammation. J Ethnopharmacol 129: 40–44.
26. Luo L, Fan AY, Zhang RX, Zhang QY, Ma ZZ, et al. (2006) Anti-hyperalgesic and Anti-inflammatory Effects of the Modified Chinese Herbal Formula Huo Luo Xiao Ling Dan (HLXD) in Rats. Am J Chin Med 34: 833–844.
27. Zhang RX, Fan AY, Zhou AN, Moulitig KD, Ma ZZ, et al. (2009) Extract of the Chinese herbal formula Huo Luo Xiao Ling Dan inhibited advanciant arthritis in rats. J Ethnopharmacol 121: 366–371.
28. Zee-Cheng RK (1992) Shi-Quan-da-Bu-Tang (ten significant tonic decoction), SQT. A potent Chinese biological response modifier in cancer immunotherapy, potentiation and detoxification of anticancer drugs. Method Find Exp Clin Pharmacol 14: 725–736.
29. Riedlinger JE, Tan PW, Lu W (2003) Ping wei san, a Chinese medicine for gastrointestinal disorders. Ann Pharmacother 35: 221–235.
30. Kato M, Ishige A, Anjiki N, Yamamoto M, Irie Y, et al. (2007) Effect of herbal medicine Juzen-taiho-to on malignant glioma. Biol Pharm Bull 28: 2111–2116.
31. Tsunemi A, Utsuyama M, Seidler BK, Kobayashi S, Hirokawa K (2005) Age-related decline of brain monoamines in mice is reversed to young level by Japanese herbal medicine. Neurochem Res 30: 75–81.
32. Kamiyama H, Takano S, Ishikawa E, Tsubui K, Matsuura A (2005) Anti-inflammatory and immunomodulatory effect of the herbal medicine “Juzen-taiho-to” on malignant glioma. Biol Pharm Bull 28: 2111–2116.
33. Kogure T, Ltoh K, Tatsumi T, Sekiya N, Sakai S, et al. (2005) The effect of Juzen-taiho-tot to TJ-48 on the expression of killer-cell immunoglobulin-like receptors (CD158a/b) on peripheral lymphocytes in vitro experiment. J Ethnopharmacol 121: 366–371.
34. Tagami K, Niwa K, Lian Z, Gao J, Mori H, et al. (2004) Preventive effect of Juzen-taiho-to on endometrial carcinogenesis in mice is based on Shimosoto-to components. Biol Pharm Bull 27: 156–161.
35. Satoh H, Ishikawa H, Ohtsuka M, Sekizawa K (2002) Japanese herbal medicine in patients with advanced lung cancer: prolongation of survival. J Altern Complement Med 8: 107–108.
36. Tsuchiya M, Kono H, Matsuda M, Fujii H, Rusyn I (2009) Protective effect of Juice-1/2-1-1 on hepatocarcinogenesis is mediated through the inhibition of Kupffer cell-induced oxidative stress. Int J Cancer 123: 2503–2511.

37. Wood JG, Rogina B, Larus S, Howitz K, Hellen SL, et al. (2004) Sir2 mimics caloric restriction and delay ageing in metazoans. Nature 430: 686–689.

38. Wilson MA, Shukitt-Hale B, Kalt W, Ingram DK, Joseph JA, et al. (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5: 59–68.

39. Farooqui A, Farooqui AA (2009) Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech Ageing Dev 130: 203–213.

40. Smith JY, Luo V (2005) Elevation of Oxidative Free Radicals in Alzheimer’s Disease Models Can Be Attenuated by Ginseng polisbo Extract EGb 761. J Alz Dis 4.

41. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteostasis. Science 313: 1604–1610.

42. Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78: 7124–7128.

43. Zhang L, Jie G, Zhang J, Zhao B (2009) Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radic Biol Med 46: 414–421.

44. Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90: 8905–8909.

45. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, et al. (2006) Resveratrol activates Sirtuin activators mimicking caloric restriction and delay ageing in metazoans. Nature 430: 686–689.

46. Link CD (1981) The aging process. Proc Natl Acad Sci U S A 78: 7124–7128.

47. Qin B, Nagasaki M, Ren M, Bajetto G, Oshida Y, et al. (2003) Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract 62: 139–148.

48. Henderson ST, Johnson TE (2001) daf-16 integrates developmental and environmental inputs to mediate aging in the nematode C. elegans. Curr Biol 11: 1975–1980.

49. Srinivasa D, Araya U, SounadaraRajan T, Dwivedi H, Kumar S, et al. (2008) Resverpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9: 309–316.

50. Drake J, Link CD, Butterfield DA (2003) Oxidative stress precedes fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals expressing human Abeta(1–42); implications for Alzheimer’s Disease Models Can Be Attenuated by Ginkgo biloba Extract EGb 761. J Alz Dis 4.

51. Kos S, Akilen R, Sharma S, Tsaini A (2009) The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes Metab 11: 1100–1113.

52. Qin B, Polansky MM, Anderson RA (2009) Cinnamon Extract Regulates Postprandial Blood Glucose, Glucagon-like Peptide 1, and Ghrelin Concentrations in Healthy Subjects. Am J Clin Nutr 89: 729–737.

53. Kirkham S, Akilen R, Sharma S, Tsaini A (2009) The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes Metab 11: 1000–1113.

54. Qin B, Polansky MM, Anderson RA (2009) Cinnamon Extract Regulates Postprandial Blood Glucose, Glucagon-like Peptide 1, and Ghrelin Concentrations in Healthy Subjects. Am J Clin Nutr 89: 729–737.

55. Qin B, Polansky MM, Anderson RA (2009) Cinnamon Extract attenuates TNF-alpha-induced intestinal lipoprotein Apolipoprotein B48 overproduction by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes. Horm Metab Res 41: 516–522.

56. Qin B, Polansky MM, Sato Y, Adeli K, Anderson RA (2009) Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing lipoproteins in fructose-fed animals. J Nutr Biochem 20: 901–908.

57. Wilson MA, Rinnando AM, Wolks CA (2008) Metformin enhances silibene bioactivity in Caenorhabditis elegans. BMC Pharmacol 8: 15.

58. Zarse K, Rimens AM (2008) Antidepressants of the serotonin-antagonist type increase body fat and decrease lifespan of adult Caenorhabditis elegans. PLoS One 3: e4062.

59. Link CD (1995) Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans. Proc Natl Acad Sci U S A 92: 17964–17968.

60. Link CD, Johnson CJ, Fonte V, Paupard M, Hall DH, et al. (2003) Visualization of fibrillar amyloid deposits in living, transgenic Caenorhabditis elegans animals using the sensitive amyloid dye, X-34. Neurobiol Aging 22: 217–226.

61. Link CD, Taft A, Kapudlak V, Duke K, Kim S, et al. (2003) Gene expression analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model. Neurobiol Aging 24: 397–413.