Dose-escalation study of tabalumab with bortezomib and dexamethasone in Japanese patients with multiple myeloma

Shinsuke Iida,1 Daisuke Ogiya,2 Yasunobu Abe,3 Masafumi Taniwaki,4 Hiroya Asou,5 Kajiiro Maeda,5 Kazunori Uenaka,6 Soshi Nagaoka,7 Tsuyoshi Ishiki,8 Ilaria Conti9 and Kensei Tobinai10

1Department of Hematology and Oncology, Nagoya City University Hospital, Nagoya; 2Division of Hematology and Oncology, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa; 3Department of Hematology, National Hospital Organization Kyushu Cancer Center, Fukuoka; 4Department of Hematology and Oncology, Kyoto Prefectural University of Medicine, Kyoto; 5Medical Science, Eli Lilly Japan K.K., Kobe; 6Japan PK/PD, Eli Lilly Japan K.K., Kobe, Japan; 7Global Medical, Eli Lilly and Company, Indianapolis, Indiana, USA; 8Department of Hematology, National Cancer Center Hospital, Tokyo, Japan

Key words
Anti-B-cell activating factor monoclonal antibody, LY2127399, multiple myeloma, phase 1 study, tabalumab

Correspondence
Shinsuke Iida, Department of Hematology & Oncology, Nagoya City University Graduate School of Medical Sciences, 1-Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan.
Tel: +81-52-853-8738; Fax: +81-52-853-8740;
E-mail: iida@med.nagoya-cu.ac.jp

Funding Information
Eli Lilly and Company.

Received April 3, 2016; Revised June 17, 2016; Accepted June 26, 2016

Cancer Sci 107 (2016) 1281–1289
doi: 10.1111/cas.13000

Multiple myeloma (MM), a clonal B-cell malignancy, accounts for 1% of all malignancies worldwide.1–3 The age-standardized incidence rate (per 100 000 individuals) in 2005 was estimated as 1.5 for men and 1.2 for women worldwide and 2.3 for men and 1.7 for women in Japan.2–4 Treatment of MM includes high-dose chemotherapy with autologous stem cell transplantation and more recently approved therapies such as thalidomide, bortezomib and lenalidomide.3,5,6 Currently, the recommended treatment for patients with relapsed or refractory MM (RRMM) is dexamethasone combined with bortezomib or lenalidomide.5,7 However, most patients eventually develop resistant or refractory disease and therapies targeting several molecular pathways need to be developed and refined to further improve disease control.3,5

B-cell activating factor (BAFF), a member of the tumor necrosis factor (TNF) superfamily, is critical for B-cell development.3,4 BAFF is elevated in serum and bone marrow mononuclear cells from patients with MM and is inversely correlated with cell survival.4,4 In nonclinical studies, BAFF protects B-cells against apoptosis5–7 and is stimulated by and increases MM cell adhesion to bone marrow stromal cells.8 Thus, BAFF promotes the survival and adhesion of MM cells and is a potential therapeutic target for MM treatment.3,9 Tabalumab (LY2127399) is a potent, selective, fully human immunoglobulin G subclass 4 (IgG4) monoclonal antibody that neutralizes soluble and membrane-bound BAFF.9,10 Tabalumab prevents free BAFF from binding its receptor but does not interfere with bound BAFF and, thus, does not directly interact with B-cells. In a model using an interleukin-6 (IL-6)-dependent MM cell line grafted onto a human fetal bone chip in severe combined immunodeficiency mice, tabalumab significantly reduced tumor burden (measured by soluble IL-6 receptor levels) and increased survival compared with controls.10,11 Regarding tabalumab monotherapy, there are three phase 3 studies for rheumatoid arthritis (RA) and SLE.11–13 Results from these studies suggested partial efficacy for both indications, but could not show robust enough efficacy data to meet new drug application criteria. Anticipated adverse events (AE) were infusion reaction or infection, which could be induced by durable blockade of B-cell function. However, no unexpected safety signals, including infection or infusion reaction, were detected in these studies. In a phase 1 clinical study conducted in the US in patients with previously treated RRMM, the
observed safety profile of tabalumab at doses up to 300 mg in combination with bortezomib (with or without dexamethasone) was similar to that of bortezomib alone, and the overall response rate was 46% (partial response or better). In another global phase 1 study, the tabalumab dose was tested up to 300 mg i.v. every 21 days in combination with biweekly 1.3 mg/m² bortezomib i.v. No dose-limiting toxicities (DLT) up to 300 mg i.v. every 21 days in combination with biweekly another global phase 1 study, the tabalumab dose was tested with myeloma. The rationale for choosing the combination of tabalumab with bortezomib and dexamethasone (BD) was: (i) BD combination is one of the standard treatments for relapsed myeloma, and there are no potential overlapping toxicities between tabalumab and bortezomib; (ii) preclinical data showed that tabalumab inhibited osteoclastogenesis in an in vivo model; and (iii) dexamethasone induces apoptosis in myeloma cells, and tabalumab was shown to inhibit cytoprotection from dexamethasone-induced apoptosis of myeloma cells by BAFF/APRIL. Bortezomib is also known to function on bone marrow microenvironment and to activate osteogenesis, so the combination would be expected to improve bone disease associated with myeloma.

Materials and Methods

Study design. This phase 1, multicenter, open-label, nonrandomized dose-escalation study evaluated the safety and efficacy of tabalumab in combination with bortezomib and dexamethasone in Japanese patients with RRMM. Secondary objectives included assessment of pharmacokinetics, pharmacodynamics, and efficacy of tabalumab in combination with bortezomib and dexamethasone.

The primary objective of this study was to evaluate the safety and tolerability of tabalumab 100 mg and 300 mg in combination with bortezomib and dexamethasone in Japanese patients with RRMM. Secondary objectives included assessment of pharmacokinetics, pharmacodynamics, and efficacy of tabalumab in combination with bortezomib and dexamethasone.

The study used a conventional 3 + 3 dose-escalation design where three patients were initially enrolled per cohort. If one of the initial three patients experienced a DLT during Cycle 1, the cohort was to be expanded to six patients.

In Cohort 1 (tabalumab 100 mg), dose escalation to tabalumab 300 mg proceeded if <33% of patients experienced a DLT during Cycle 1. In Cohort 2 (tabalumab 300 mg), the dose was considered tolerable if <33% patients experienced a DLT during Cycle 1.

Dose intensities. Dose adjustments of tabalumab were not permitted, but the schedule was delayed to allow concomitant use with Day 1 bortezomib therapy. The bortezomib dose and/or dexamethasone dose were adjusted in a stepwise manner if DLT developed during Cycle 1.

Table 1. Study treatment regimen

Cycle length	Cycles 1–8	Cycles ≥9
Cycle length	21 days	35 days
Tabalumab (Cohort 1): 100 mg; Cohort 2: 300 mg)	Day 1	Day 1
Bortezomib	Days 1, 4, 8, 11	Days 1, 8, 15, 22
Dexamethasone	Days 1, 2, 4, 5	Days 1, 2, 8, 9, 15, 20 (mg/day)

† Patients in Cohort 1 and Cohort 2-IV received bortezomib i.v.; patients in Cohort 2-SC received bortezomib s.c. !When tabalumab and bortezomib were administered on the same day, bortezomib was administered immediately after tabalumab.
or schedule was modified in response to signs of toxicity. Patients who had bortezomib-related neuropathy Grade ≤1 for Grade 2 without pain had their bortezomib dose or schedule modified to reduce toxicity. Patients who had bortezomib-related neuropathy Grade 2 with pain or ≥Grade 3 had their treatment with bortezomib and dexamethasone discontinued, and were considered for single-agent tabalumab. Dexamethasone was only permitted on the day of and day after bortezomib treatment. Dexamethasone was withheld in the event of Grade ≥3 AE (except hematological toxicity) related to dexamethasone; after AE had resolved to Grade ≤1, dexamethasone could be reinitiated at a 50% dose reduction. If a patient could not receive the standard doses of bortezomib or dexamethasone in Cycle 1 for reasons other than DLT, they were replaced with a new patient for DLT evaluation. From Cycle 1 and beyond, switching between bortezomib i.v. and bortezomib s.c. inter/intracycle was allowed.

Safety. Safety evaluation included the type, severity and incidence of treatment-emergent AE (TEAE), laboratory variables, physical examination and vital signs. A DLT was defined as an AE during Cycle 1 that was possibly related to the study medication(s) and fulfilled any one of the following criteria according to the Common Terminology Criteria for Adverse Events (CTCAE), version 4.03: Grade 4 neutropenia (>10 000/mm³); Grade ≥3 AE (except hematological toxicity) related to tabalumab; fever (≥38.3°C); thrombocytopenia with a platelet count of <10 000/mm³ on ≥2 occasions; a Grade ≥3 non-hematological toxicity (except for nausea and vomiting); Grade 3 electrolyte abnormalities; tumor lysis syndrome; increased alkaline phosphatase or lactate dehydrogenase; or a TEAE that caused Day 1 of Cycle 2 to be delayed by ≥14 days due to toxicity. Lymphopenia, a recognized toxicity of bortezomib and tabalumab, was not considered a DLT in this study.

Peripheral neuropathy was assessed using the “Additional Concerns” subscale of the patient-rated Functional Assessment of Cancer Therapy/Gynecologic Oncology Group Neurotoxicity questionnaire(17) on Day 1 of each cycle and at the 30-day follow-up visit.

Pharmacokinetics. Blood samples for tabalumab pharmacokinetics were collected as follows: Cycle 1, Day 1 (before, 2 h after and 6 ± 0.25 h after bortezomib), Day 4 (before bortezomib), Day 8 (any time) and Day 11 (any time); Cycle 2, Day 1 (before tabalumab and immediately after bortezomib); Cycle 3, Day 1 (immediately after bortezomib); Cycle 6, Day 1 (before tabalumab); Cycle 7, Day 1 (immediately after bortezomib and 2 h after tabalumab), Day 4 (72 ± 1 h after tabalumab), Day 8 (any time) and Day 11 (any time); Cycle 8: Day 11 (any time); Cycles ≥9: Day 1 (immediately after tabalumab); and the 30-day follow-up visit. Blood samples for bortezomib pharmacokinetics were collected on Day 1 (immediately after and at 0.5, 1, 2, 4 and 6 ± 0.25 h after bortezomib) and Day 2 (at least 24 ± 1 h after bortezomib) of Cycle 1. Tabalumab and bortezomib concentrations were analyzed using a validated ELISA.

Tumor response. Tumor response was assessed using the International Myeloma Working Group’s International Uniform Response Criteria for MM during every cycle from Cycle 2 onwards. A repeat assessment (at any time) was required to confirm a response or progressive disease. The tumor response rate was defined as the proportion of patients who experienced a complete or partial response.18 Immunoglobulins IgA, IgG and IgM were measured at a central laboratory using standard methods. Baseline BAFF levels were measured using a validated ELISA method.

Pharmacodynamics. Blood samples for disease-related biomarkers were collected ≤28 days before the first dose of study therapy; before the first tabalumab dose of Cycles 1–8; immediately after the tabalumab dose for Cycles ≥9; and at the 30-day follow-up visit. The B-cell mature naïve CD19+, IgD+, CD27− subset was determined by flow cytometry.

Statistical analysis. This study used a conventional 3 + 3 dose escalation design. The plan was to enroll up to six patients per cohort (9–18 patients). All patients who received at least one dose of any study drug were evaluated for safety and toxicity (full analysis set, FAS). All patients who completed Cycle 1 or who discontinued study treatment due to a DLT were included in the DLT-related safety analysis. DLT were summarized by DLT criteria for each dose level and cohort. Analyses of pharmacokinetic and pharmacodynamic parameters were conducted on all patients in the FAS who had pharmacokinetic or pharmacodynamic samples collected. Descriptive statistics were used to summarize safety, tumor response and pharmacokinetic parameters. Pharmacokinetic parameter estimates for tabalumab were calculated by standard noncompartmental methods of analysis. Imputation for missing values was not performed for the outcome variables. All analyses were performed using SAS 9.2 (SAS Institute, Cary, NC, USA).

Results

Patient disposition. Of 21 patients screened, 16 were enrolled and received at least one dose of tabalumab (Fig. 1).

In Cohort 1 (tabalumab 100 mg + bortezomib + dexamethasone), one of three patients originally enrolled reported ileus and did not receive the scheduled full dose of bortezomib during Cycle 1. This meant that DLT could not be determined in Cycle 1 for this patient, and an additional patient was added to the cohort. All four patients were evaluated for DLT, safety, pharmacokinetics and pharmacodynamics.

Fig. 1. Patient disposition. BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg/day; IV, intravenous; LY, LY2127399 (tabalumab); SC, subcutaneous.
In Cohort 2 (tabalumab 300 mg + bortezomib + dexamethasone), 12 patients were enrolled and received at least one dose of tabalumab and one patient continued the study at data cutoff. In Cohort 2-SC, one of the initial three patients had a DLT in Cycle 1 and the cohort was expanded to six patients. However, two patients did not meet the criteria for DLT evaluation (both discontinued before the end of Cycle 1 because another antitumor therapy was needed) and two more patients were added to the cohort (total = 8). In Cohort 2-IV, three patients were enrolled initially, but one patient had a DLT in Cycle 1 and so an extra patient was included in the cohort (total = 4). The i.v. cohort was not expanded to six patients as future trials planned to use bortezomib s.c. All 12 patients were included in the safety, pharmacokinetics, pharmacodynamics and efficacy analyses, and 10 patients were included in the DLT analysis.

Demographic and baseline clinical characteristics. All patients in Cohort 1 and half of the patients in Cohort 2 had relapsed/progressive MM; the remaining patients in Cohort 2 had relapsed/refractory MM (Table 2). All patients had received one or more systemic therapy, half the patients had received an autologous stem cell transplant, and none had prior surgery. Of the 12 patients in Cohort 2, two had received radiation. **Extent of drug exposure and dose modifications.** The median number (range) of treatment cycles was 3 (2–11) in Cohort 1 and 4.5 (1–15) in Cohort 2. Three (75%) patients in Cohort 1 and 9 (75%) patients in Cohort 2 received 3 or more treatment cycles. After Cycle 1, 2 (50%) patients in Cohort 1 had tabalumab dose delays and bortezomib dose reductions, and 1 (25%) of these patients also had a bortezomib dose delay; no patients had dexamethasone dose adjustments. In Cohort 2, 8 (66.7%) patients had tabalumab dose delays; 3 (25%) of these patients also had bortezomib and dexamethasone dose reductions, 1 (8.3%) patient also had a bortezomib dose delay, one patient (8.3%) also had a dexamethasone dose increase, and 1 (8.3%) patient also had dexamethasone dose reduction.

Safety and tolerability. All 16 patients who received study medication experienced at least one TEAE and 13 (81.3%) patients had a Grade ≥3 TEAE (Table 3). Ten (62.5%) patients had ≥1 serious adverse event (SAE; Table 3); 6 (37.5%) of these patients had SAE that were possibly related to study treatment (one patient had peripheral sensory neuropathy and syncope, one patient had febrile neutropenia and tumor lysis syndrome, one patient had an embolism and infection, one patient had ileus, one patient had gastroenteritis and one patient had bronchopulmonary aspergillosis). Six patients discontinued due to an AE, five of which were considered possibly related to study treatment. One patient died within 30 days of the last dose of study the drug due to a subarachnoid hemorrhage, but this was not considered related to treatment by the investigator. No acute toxicities relevant to tabalumab were observed, and no topical infusion reactions or allergic reactions were seen after tabalumab administration.

The most common TEAE possibly related to study treatment were thrombocytopenia, lymphopenia and increased alanine aminotransferase (Table 4). Other common TEAE were fatigue, constipation, peripheral sensory neuropathy and anemia (Table 4). TEAE of CTCAE Grade ≥3 were mostly hematologic, including 7 (43.8%) patients with lymphopenia and 7 (43.8%) patients with anemia. Febrile neutropenia was

Table 2. Patient characteristics

Characteristic	Cohort 1	Cohort 2
Sex, n (%)	LY 100 mg + BTZ	LY 300 mg + BTZ
Female	2 (50.0)	8 (66.7)
Male	2 (50.0)	4 (33.3)
Age, median (range) years	68.1 (66.4–80.2)	75.0 (52.0–82.1)
≤65 years, n (%)	0	3 (25.0)
>65 years, n (%)	4 (100.0)	9 (75.0)
ECOG performance status, n (%)	0	3 (75.0)
0	1	5 (41.7)
1	1 (25.0)	5 (41.7)
2	0	2 (16.7)
Disease response status, n (%)	Relapsed/progressive MM	Relapsed/refractory MM
0	4 (100.0)	6 (50.0)
1	0	0
2	0	2 (16.7)
Prior therapies	Surgery	Radiotherapy
0	0	0
1	0	2 (16.7)
Systemic therapies	4 (100.0)	12 (100.0)
Bortezomib	3 (75.0)	10 (83.3)
Melphalan	3 (75.0)	11 (91.7)
Lenalidomide	2 (50.0)	5 (41.7)
Thalidomide	1 (25.0)	3 (25.0)
1 regimen	1 (25.0)	5 (41.7)
2 regimens	3 (75.0)	5 (41.7)
≥3 regimens	0	2 (16.7)
Stem cell transplant	2 (50.0)	6 (50.0)

BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg/day; ECOG, Eastern Cooperative Oncology Group; LY, LY2127399 (tabalumab); MM, multiple myeloma; N, number of patients; relapsed/progressive, the relapsed patients who once achieved response (PR, VGPR, CR, sCR) in the prior therapy; relapsed/refractory, the refractory patient who did not respond to prior therapy or the relapsed patient from SD after prior therapy.

Table 3. Summary of all adverse events

Characteristic	Cohort 1	Cohort 2	Total (N = 16)
LY 100 mg + BTZ + DEX (N = 4)	LY 300 mg + BTZ + DEX (N = 12)		
Patients with ≥1 AE	4 (100.0)	12 (100.0)	16 (100.0)
Patients with ≥1 TEAE	4 (100.0)	12 (100.0)	16 (100.0)
Patients with ≥1 Grade ≥3 TEAE	3 (75.0)	10 (83.3)	13 (81.3)
Patients with ≥1 SAE	2 (50.0)	8 (66.7)	10 (62.5)
Patients who discontinued due to AE	4 (100.0)	2 (16.7)	6 (37.5)
Patients who died during the study	0	1 (8.3)	1 (6.3)
Patients who died within 30 days of last	0	1 (8.3)	1 (6.3)

© 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
observed in one patient (6.3%) and no cases of interstitial lung
disease were observed. Most of the clinically significant AE
were considered to be related to the underlying condition and
concomitant medications. There were no clear differences in
TEAE between Cohort 1 and Cohort 2 (tabalumab 100 vs
300 mg), or between Cohort 2-IV and Cohort 2-SC (bortezomib i.v. vs s.c.).
Two DLT occurred during Cycle 1. One patient in Cohort 2-IV had febrile neuropathy and peripheral sensory neuropathy and one patient in Cohort 2-SC had syncope and peripheral

System order class†	Preferred term‡	Cohort 1 LY 100 mg + BTZ + DEX (N = 4)	Cohort 2-IV LY 300 mg + BTZ IV + DEX (N = 4)	Cohort 2-SC LY 300 mg + BTZ SC + DEX (N = 8)	Total (N = 16)
Patients with ≥1 possibly related TEAE		4 (100.0)	4 (100.0)	8 (100.0)	16 (100.0)
Blood and lymphatic system disorders		4 (100.0)	4 (100.0)	5 (62.5)	13 (81.3)
Thrombocytopenia		4 (100.0)	4 (100.0)	5 (62.5)	13 (81.3)
Lymphopenia		0	3 (75.0)	4 (50.0)	7 (43.8)
Anemia		1 (0.25)	3 (75.0)	1 (12.5)	5 (31.3)
Neutropenia		1 (0.25)	2 (50.0)	1 (12.5)	4 (25.0)
Febrile neutropenia		0	1 (25.0)	0	1 (6.3)
General disorders and administration		2 (50.0)	4 (100)	7 (87.5)	13 (81.3)
Fatigue		2 (50.0)	2 (50.0)	2 (25.0)	6 (37.5)
Edema		0	0	3 (37.5)	3 (18.8)
Injection site reaction		0	1 (25.0)	1 (12.5)	2 (12.5)
Malaise		0	2 (50.0)	0	2 (12.5)
Peripheral edema		0	1 (25.0)	1 (12.5)	2 (12.5)
Pyrexia		0	0	2 (25.0)	2 (12.5)
Investigations		4 (100.0)	3 (75.0)	4 (50.0)	11 (68.8)
Increased ALT		4 (100.0)	1 (25.0)	2 (25.0)	7 (43.8)
Decreased WBC count		1 (25.0)	2 (50.0)	1 (12.5)	4 (25.0)
Increased AST		1 (25.0)	0	2 (25.0)	3 (18.8)
Increased blood creatinine		1 (25.0)	1 (25.0)	0	2 (12.5)
Gastrointestinal disorders		3 (75.0)	4 (100.0)	3 (37.5)	10 (62.5)
Constipation		3 (75.0)	1 (25.0)	2 (25.0)	6 (37.5)
Nausea		1 (25.0)	2 (50.0)	0	3 (18.8)
Abdominal distension		0	1 (25.0)	1 (12.5)	2 (12.5)
Diarrhea		0	0	2 (25.0)	2 (12.5)
Stomatitis		1 (25.0)	1 (25.0)	0	2 (12.5)
Metabolism and nutrition disorders		3 (75.0)	3 (75.0)	4 (50.0)	10 (62.5)
Decreased appetite		2 (50.0)	1 (25.0)	2 (25.0)	5 (31.3)
Hypophosphatemia		2 (50.0)	1 (25.0)	2 (25.0)	5 (31.3)
Hypoalbuminemia		0	0	3 (37.5)	3 (18.8)
Hyponatremia		0	1 (25.0)	1 (12.5)	2 (12.5)
Nervous system disorders		3 (75.0)	3 (75.0)	3 (37.5)	9 (56.3)
Peripheral sensory neuropathy		2 (50.0)	1 (25.0)	3 (37.5)	6 (37.5)
Dysesthesia		1 (25.0)	1 (25.0)	1 (12.5)	3 (18.8)
Vagus nerve disorder		1 (25.0)	2 (50.0)	0	3 (18.8)
Dizziness		0	1 (25.0)	1 (12.5)	2 (12.5)
Neuralgia		1 (25.0)	0	1 (12.5)	2 (12.5)
Infections and infestations		2 (50.0)	1 (25.0)	4 (50.0)	7 (43.8)
Nasopharyngitis		1 (25.0)	1 (25.0)	1 (12.5)	3 (18.8)
Skin and subcutaneous tissue disorders		2 (50.0)	0	3 (37.5)	5 (31.3)
Psychiatric disorders		1 (25.0)	1 (25.0)	1 (12.5)	3 (18.8)
Insomnia		1 (25.0)	1 (25.0)	1 (12.5)	3 (18.8)
Respiratory, thoracic and mediastinal disorders		1 (25.0)	0	2 (25.0)	3 (18.8)
Vascular disorders		0	2 (50.0)	1 (25.0)	3 (18.8)
Eye disorders		1 (25.0)	1 (25.0)	0	2 (12.5)
Ear and labyrinth disorders		0	0	1 (12.5)	1 (6.3)

†Patients were only counted once for each preferred term but could be counted in more than one preferred term within each system organ class; events were coded using MedDRA Version 17.1. ‡Preferred terms are only shown for TEAE that occurred in ≥1 patient (total). System order classes are shown for all TEAE. ALT, alanine aminotransferase; AST, aspartate aminotransferase; BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg/day; IV, intravenous; LY, LY2127399 (tabalumab); MedDRA, Medical Dictionary for Regulatory Activities; N, number of patients; SC, subcutaneous; TEAE, treatment-emergent adverse event; WBC, white blood cell.
sensory neuropathy (all CTCAE Grade 3). No other DLT were observed in subsequent cycles.

Discontinuation from the study. A total of 4 (100%) patients in Cohort 1 and 11 (91.7%) patients in Cohort 2 discontinued the study prematurely (Table 5).

Pharmacokinetics. Tabalumab. Serum tabalumab concentrations decreased biexponentially over time with a terminal half-life of 18–25 days following the first dose (Table 6 and Fig. 2). The pharmacokinetics of tabalumab were similar when bortezomib was coadministered i.v. versus s.c. (Fig. 2).

Bortezomib. Plasma bortezomib concentrations decreased exponentially over time (Table 7 and Fig. 3). No differences in bortezomib pharmacokinetics were observed when bortezomib was administered i.v. versus s.c. (Fig. 3). The ratio of the area under the curve from time 0 to infinity (AUC(0–∞)) following s.c. administration relative to i.v. administration was 74.5%.

Overall tumor response. All four patients in Cohort 1 and five of 12 (41.7%) patients in Cohort 2 responded to treatment; the overall response rate was 56.3% (Table 8). Of the three patients in Cohort 2 with progressive disease, two progressed in Cycle 1 after one dose of tabalumab and one progressed in Cycle 2 after two doses of tabalumab. There was no clear relationship between the baseline BAFF level and tumor response (Fig. 4). For most patients, the immunoglobulins IgA, IgG and IgM either remained stable or decreased during treatment (Fig. 5).

Pharmacodynamics. The mature naïve B-cell subset also largely remained stable or decreased during treatment in most patients (Fig. 5). Patient H, who started at the highest CD19+, IgD−, CD27+ value and had the largest decrease over time, had a very good partial response to treatment and continued for 12 cycles.

Discussion

This is the first study to evaluate the safety and efficacy of tabalumab 100 or 300 mg in combination with bortezomib and dexamethasone in Japanese patients with RRMM. The safety profile of the combined treatment was consistent with the known safety profile of the individual treatments and 2 (20.0%) DLT were observed at the 300-mg dose of tabalumab, below the predetermined 33% cutoff for tolerability. The overall response rate was 56.3%, suggesting that the combined treatment was effective even in aggressively pretreated patients. We reevaluated the relationship between tumor response and clinical profile in each patient. In Cohort 2, refractory patients occupied 50% (0% in Cohort 1), and 16.7% of patients were treated with more than three regimens. Therefore, the lower response rate in Cohort 2 was likely due to the more heavily treated or refractory population compared with patients in Cohort 1.

All patients experienced at least one TEAE possibly related to the study drug. However, the most commonly observed TEAE (thrombocytopenia, lymphopenia, anemia, neutropenia, fatigue and constipation) have been associated with bortezomib. Mild lymphopenia and neutropenia were reported but there was no indication that long-term treated patients were

Table 5. Summary of reasons for discontinuation of study treatment

Parameter	Cohort 1	Cohort 2	Total
Patients entered	4 (100.0)	12 (100.0)	16 (100.0)
Patients who received at least one study medication	4 (100.0)	12 (100.0)	16 (100.0)
Patients discontinued from study	4 (100.0)	11† (91.7)	15† (93.8)
Reasons for discontinuation			
Adverse events	4 (100.0)	2 (16.7)	6 (37.5)
Colon cancer	0 (0.0)	1 (8.3)	1 (6.3)
Constipation	2 (50.0)	0 (0.0)	2 (12.5)
Peripheral sensory neuropathy	2 (50.0)	1 (8.3)	3 (18.8)
Death	0 (0.0)	1 (8.3)	1 (6.3)
Sponsor decision	0 (0.0)	2 (16.7)	2 (12.5)
Progressive disease	0 (0.0)	6 (50.0)	6 (37.5)

†One patient was still continuing the study at the data cut-off. BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg/day; LY, LY2127399 (tabalumab).

Table 6. Summary of tabalumab pharmacokinetic parameters

Parameter	Cycle 1, Day 1	Cycle 7, Day 1		
	Cohort 1	Cohort 2-Iv	Cohort 2-SC	
		(N = 4)	(N = 4)	(N = 8)
	Cohort 1	Cohort 2-IV	Cohort 2-SC	
	LY 100 mg +	BTZ + DEX	LY 300 mg +	BTZ SC + DEX
Cmax, μg/mL	38.5 (12)	154 (21)	139 (14)	
tmax, h	2.58 (0.68–6.37)	0.65 (0.60–2.52)	1.56 (0.55–6.75)	
t1/2, h	434 (343–528)	602 (363–920)	433 (145–916)	
AUC(0–tmax), μg·h/mL	8100 (15)	34 600 (23)	26 900 (48)	

†Median (range). §Geometric mean (range). AUC, area under the concentration–time curve; AUC(0–tmax), area under the concentration–time curve from 0 h to the last measurable concentration; BTZ, bortezomib 1.3 mg/m²; Cmax, maximum concentration; CV, coefficient of variation; DEX, dexamethasone 20 mg/day; LY, LY2127399 (tabalumab); NC, not calculated; t1/2, half-life; tmax, time at which maximum concentration is reached. n=1
Fig. 2. Mean ± SD serum LY2127399 (tabalumab) concentration–time profiles (linear) following intravenous infusion of LY2127399 (tabalumab) 100 or 300 mg in combination with i.v. or s.c. bortezomib 1.3 mg/m² and oral dexamethasone 20 mg during Day 1 of Cycle 1 and Cycle 7. BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg; IV, intravenous; LY, LY2127399 (tabalumab); SC, subcutaneous.

Table 7. Summary of bortezomib pharmacokinetic parameters

Parameter	Cycle 1, Day 1		
	Cohort 1	Cohort 2-IV	Cohort 2-SC
LY 100 mg + BTZ + DEX (N = 4)	103 (650)	185 (42)	15.9 (23)
LY 300 mg + BTZ + DEX (N = 4)	185 (42)	103 (650)	15.9 (23)
BTZ IV + DEX (N = 8)	15.9 (23)	185 (42)	103 (650)
BTZ SC + DEX (N = 8)	15.9 (23)	185 (42)	103 (650)
Cmax † ng/mL	103 (650)	185 (42)	15.9 (23)
tmax ‡ h	0.05 (0.02–0.50)	0.06 (0–0.08)	0.50 (0.48–1.00)
t1/2 ¿ h	16.8 (10.0–25.4)	16.2 (12.1–23.6)	14.8 (9.05–31.8)
AUC(0–∞) †	69.4 (52)	77.7 (41)	57.9 (36)

†Geometric mean (CV%). ‡Median (range). §Geometric mean (range). AUC, area under the concentration–time curve; AUC(0–∞), area under the concentration–time curve from 0 h to infinity; BTZ, bortezomib 1.3 mg/m²; Cmax, maximum concentration; CV, coefficient of variation; DEX, dexamethasone 20 mg/day; t1/2, half-life; tmax, time at which maximum concentration is reached.

Fig. 3. Mean plasma bortezomib concentration–time profiles (semi-logarithmic) following intravenous infusion of LY2127399 (tabalumab) 100 or 300 mg in combination with i.v. or s.c. bortezomib 1.3 mg/m² and oral dexamethasone 20 mg during Day 1 of Cycle 1 and Cycle 7. BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg; IV, intravenous; LY, LY2127399 (tabalumab); SC, subcutaneous.

Table 8. Best overall tumor response

Response to treatment	Cohort 1	Cohort 2	Total (N = 16)
LY 100 mg + BTZ + DEX (N = 4)	100.0 (0.0)	41.7 (0.0)	56.3 (0.0)
LY 300 mg + BTZ + DEX (N = 12)	41.7 (0.0)	2 (12.5)	2 (12.5)
Best overall response, n (%)	0 (0.0)	3 (18.8)	0 (0.0)
CR	0 (0.0)	0 (0.0)	0 (0.0)
VGPR	2 (50.0)	1 (8.3)	3 (18.8)
PR	2 (50.0)	4 (33.3)	6 (37.5)
SD	0 (0.0)	2 (16.7)	2 (1.3)
PD	0 (0.0)	3 (25.0)	3 (18.8)
Unknown	0 (0.0)	2 (16.7)	2 (12.5)
Overall response	100.0	41.7	56.3

†Two patients had PD in Cycle 1 after one dose of tabalumab; one patient had PD in Cycle 2 after two doses of tabalumab. BTZ, bortezomib 1.3 mg/m²; DEX, dexamethasone 20 mg/day; CR, complete response; LY, LY2127399 (tabalumab); PD, progressive disease; PR, partial response; SD, stable disease; VGPR, very good partial response.

Fig. 4. Relationship between baseline B-cell activating factor (BAFF) levels and tumor response. Each data point represents an individual patient for responders (partial response or better: ●) and nonresponders (stable or progressive disease: △). For two patients, the response status was unknown.
immunocompromised. The number and type of TEAE and the pharmacokinetics of Cohorts 2-IV and 2-SC were similar, thus no tabalumab dose adjustments were needed when switching between bortezomib i.v. and s.c.

Although the patient numbers were small, the tumor response findings in the present phase 1 study suggested that tabalumab in combination with bortezomib and dexamethasone was effective in some patients with RRMM. The combined overall response rate for both cohorts was 56.3%, similar to an earlier phase 1 study in previously treated RRMM patients in the USA (46%).(11) and there were no safety concerns. This suggests that tabalumab may be a promising treatment for patients with RRMM. However, a phase 2 study of tabalumab 100 or 300 mg versus placebo in combination with bortezomib s.c. and dexamethasone in some patients with RRMM failed to demonstrate a difference in progression-free survival, the primary efficacy endpoint (JDCG; N = 220; ClinicalTrials.gov: NCT01602224).

Informal assessment of the combined results of the current phase 1 study and the phase 2 JDCG study suggest that very few RRMM patients who have baseline BAFF concentrations above 1500 pg/mL respond to tabalumab (unpublished data). It is possible that at these concentrations, BAFF cannot be fully neutralized by tabalumab 300 mg. Although full BAFF neutralization may be achieved with higher tabalumab doses, the risk was considered to outweigh any potential benefits and clinical development of tabalumab in RRMM was discontinued. It is also possible that a high serum BAFF concentration is a surrogate biomarker in terms of the disease activity in patients with RRMM.(3)

The lack of efficacy in the phase 2 JDCG study may also be due to the activity of a proliferation-inducing ligand (APRIL), another member of the TNF family, which induces proliferation independently of BAFF. Both BAFF and APRIL bind to BCMA (B-cell maturation antigen) and TACI (transmembrane activation and calcium modulator and cyclophilin ligand interaction), resulting in the activation of the nuclear factor-kappa B, mitogen-activation protein kinase, and phosphatidylinositol-3 kinase to Akt pathways in MM cells.(10) Thus, tabalumab combined with anti-APRIL antibody or TACI-Fc fusion protein, a potent inhibitor of both BAFF and APRIL, could augment clinical efficacy in RRMM.(21)

This is the first report of a clinical test of anti-BAFF treatment for multiple myeloma patients, so we believe the data will be valuable when considering the clinical significance of BAFF-APRIL pathway involved in myeloma pathogenesis. In this study we evaluated tabalumab in combination with bortezomib, the standard regimen for MM. We believe that the data of this study could be a valuable future reference for these potential combination therapies, even though the result was negative. Investigating a future combination therapy with anti-APRIL antibody or TACI-Fc
fusion protein which might enhance blockages of the pathway would be very interesting.

In conclusion, i.v. tabalumab 100 or 300 mg administered in combination with i.v. or s.c. bortezomib and dexamethasone was well tolerated in this population of Japanese patients with RRMM.

Acknowledgments

The authors would like to thank all study participants. This study was sponsored by Eli Lilly and Company. Medical writing assistance was provided by Michelle Anderson, PhD, and Rebecca Lew, PhD, CMPP of ProScribe – Envision Pharma Group, and was funded by Eli Lilly Japan K.K.

References

1 Palumbo A, Anderson K. Multiple myeloma. N Engl J Med 2011; 364: 1046–60.
2 Matsuda T, Marugame T, Kamo K, Katanoda K, Ajiki W, Sobue T. Cancer incidence and incidence rates in Japan in 2005: based on data from 12 population-based cancer registries in the Monitoring of Cancer Incidence in Japan (MCIJ) project. Jpn J Clin Oncol 2011; 41: 139–47.
3 Hengeveld PJ, Kersten MJ. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy? Blood Cancer J 2015; 5: e282.
4 Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol 2009; 9: 491–502.
5 He B, Chadburn A, Joue E, Schattner EJ, Knowles DM, Cerutti A. Lym-
phoma B cells evade apoptosis through the TNF family members BAFF/ BLYs and APRIL. J Immunol 2004; 172: 3268–79.
6 Moreaux J, Legouffe E, Jourdan E et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexametha-
sone. Blood 2004; 103: 3148–57.
7 Haiat S, Billard C, Quiney C, Ajchenbaum-Cymbalista F, Kolb JP. Role of BAFF and APRIL in human B-cell chronic lymphocytic leukaemia. Immunology 2006; 118: 281–92.
8 Tai YT, Li XF, Breitkreutz I et al. Role of B-cell-activating factor in adhe-
sion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res 2006; 66: 6675–82.
9 Manetta J, Bina H, Ryan P, Fox N, Witcher DR, Kikly K. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor. J Inflamm Res 2014; 7: 121–31.
10 Neri P, Kumar S, Fulciniti MT et al. Neutralizing B-cell activating factor antibody improves survival and inhibits osteoclastogenesis in a severe com-
bined immunodeficient human multiple myeloma model. Clin Cancer Res 2007; 13: 5903–9.
11 Merrill JT, van Vollenhoven RF, Buyon JP et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-con-
trolled study. Ann Rheum Dis 2016; 75: 332–40.
12 Smolen JS, Weinblatt ME, van der Heijde D et al. Efficacy and safety of tabalumab, an anti-B-cell-activating factor monoclonal antibody, in patients with rheumatoid arthritis who had an inadequate response to methotrexate therapy: results from a phase III multicentre, randomised, double-blind study. Ann Rheum Dis 2015; 74: 1567–70.
13 Isenberg AD, Petri M, Kalunian K et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLU-
MINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis 2016; 75: 523–31.
14 Ocio EM, Richardson PG, Rajkumar SV et al. New drugs and novel mecha-
nisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia 2014; 28: 525–42.
15 Raje NS, Hohlf RJ, Faber EA et al. Phase I study of LY2127399, a human anti-BAFF antibody, and bortezomib in patients with previously treated mul-
tiple myeloma. J Clin Oncol 2011; 29 (suppl; abstr 8012).
16 Li X, Pennisi A, Yaccoby S. Role of decorin in the antmyeloma effects of osteo-
blasts. Blood 2008; 112: 159–68.
17 Calhoun EA, Welshman EE, Chang CH et al. Psychometric evaluation of the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (Fact/GOG-Ntx) questionnaire for patients receiving systemic chemotherapy. Int J Gynecol Cancer 2003; 13: 741–8.
18 Durie BG, Harousseau JL, Miguel JS et al. International uniform response criteria for multiple myeloma. Leukemia 2006; 20: 1467–73.
19 Millennium Pharmaceuticals. VELCADE (Bortezomib): Highlights of Pre-
scribing Information. Cambridge, MA: Millennium Pharmaceuticals, 2014.
20 Moreau P, Pylypenko H, Grosicki S et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 2011; 12: 431–40.
21 Abe M, Kido S, Hissa M et al. BAFF and APRIL as osteoclast-derived sur-
factors for myeloma cells: a rationale for TACI-Fc treatment in patients with multiple myeloma. Leukemia 2006; 20: 1313–5.

Disclosure Statement

HA, KM, KU, SN, TI and IC are employees of Eli Lilly and Company. SI has received honoraria from Janssen, Celgene, Ono, Takeda and Bristol-Myers Squibb and research funding from Ono, Eli Lilly, Cel-
gene, Janssen, Chugai, Kyowa Hakko Kirin and Takeda. MT has received research funding from Chugai, Bristol-Myers Squibb, and Kyowa Hakko Kirin. KT has received research funding from Chugai, Kyowa Hakko Kirin, Ono, Celgene, Janssen, GlaxoSmithKline, Eisai, Mundipharma, Takeda, Servier and Abbvie. DO and YA have no con-
flicts of interest to declare.