Supplementary material

Commands
Approximate Bayesian Branch Support Annotation

iqtree2 -s SEQ_ALIGNMENT -te GENE_TREE -m TVM+I+G4 -abayes -pre ANNOTATED_GENE_TREE

Note: When inferring support as a post-processing step, the same model used for inferring the tree should be used, a task that requires care when the original trees are inferred using a different tool (e.g., RAxML). TVM+I+G4 is simply an example.

Running wASTRAL
Exact commands when running on gene trees with approximate Bayesian/Bootstrap/SH-like supports.

astral-hybrid -x 1 -n 0.333 APPROXIMATE_BAYESIAN_ANNOTATED_GENE_TREE
astral-hybrid -x 100 -n 0 BOOTSTRAP_ANNOTATED_GENE_TREE
astral-hybrid -x 1 -n 0 SH_LIKE_ANNOTATED_GENE_TREE
Table S1. Counters \(w^*_w \) are defined for each node \(w \) in each gene tree, and \(Q \) is defined globally. Here, \(X,Y,Z \) are distinct colors of \(A,B,C \). Let \(u,v,r \) be the children of \(w; e \) the parent edge of \(w; p \) be the parent of \(w; P_{2,w} \) be the path between \(x \) and \(w; s(T) = 1 - \prod_{t \in T}(1 - s(t)); m(i,j) = \text{MRCA of } i \text{ and } j \). Counters for leaves are set to zero unless explicitly noted. For each counter, we show a recursive equation on top and the equivalent non-recursive definition on the bottom.

\[
\begin{align*}
 w_X & \equiv \frac{(u_X + v_X) e^{-\ell(T)} \{ \text{for internal node } w; e^{-\ell(T)} \{ \text{for leaf node } w \text{ colored } X} \}}{\sum_{i,e} e^{-\ell(P_{i,e})} \{ \text{for all leaf nodes } i \text{ colored } X \text{ under } w} \}
 \\
 \bigl(w^+_X, w^+_X, w^+_{XY} & \bigr) & \equiv \frac{u_X + v_X + u_X v_X + v_X + u_X v_Y + v_Y}{\sum_{i,e} e^{-\ell(P_{i,e})} \{ \text{for all leaf nodes } i \text{ colored } X \text{ and } Y \text{ under } w} \}
 \\
 \bigl(w^-_X, w^-_X, w^-_{XY} & \bigr) & \equiv \frac{\bigl((u_X + v_X + u_X v_X + v_X + u_X v_Y + v_Y)(1 - s(e)) \bigr)(u_X v_Y + v_X Y + u_X v_Y + v_Y - u_X) \{ \text{for all leaf nodes } i \text{ colored } X \text{ and } Y \text{ under } w} \}
 \\
 \bigl(w^-_{XY}, w^-_{XY} & \bigr) & \equiv \frac{\bigl((u_X Y + v_X Y + (u_X - u_X v_X) u_Y + u_Y (v_X - v_X X)) e^{-\ell(e)} \bigr)(u_X Y Z + v_X Y Z + u_Y (v_X Y - v_X X)) e^{-\ell(e)} \{ \text{for leaf nodes } i \text{ colored } X, Y \text{ colored } Y, \text{ and } Z \text{ colored } Z \text{ under } w, \text{ and } m(i,j) \text{ under } m(i,k) \} \}}{\sum_{i,j,k} e^{-\ell(P_{i,j,k})} \{ \text{for leaf nodes } i \text{ colored } X, j \text{ colored } Y, k \text{ colored } Z \text{ under } w, \text{ and } m(i,j) \text{ under } m(i,k) \} \}}
 \\
 \bigl(w^-_{XY} & \bigr) & \equiv \frac{\bigl(u_X Y + v_X Y + (u_X - u_X v_X) u_Y + u_Y (v_X - v_X X)) e^{-\ell(e)} \bigr) e^{-\ell(e)} \{ \text{for internal nodes } w \text{ in } G \} \}}{\sum_{i,j,k} e^{-\ell(P_{i,j,k})} \{ \text{for leaf nodes } i \text{ colored } X, j \text{ colored } Y, k \text{ colored } Z \text{ under } w, \text{ and } m(i,j) \text{ under } m(i,k) \} \}}
\end{align*}
\]

\(Q \equiv \frac{\sum_{G \in G} \sum_{w \in \text{Tree}(G)} W(A | B | C) e^{-\ell(w)}}{\sum_{G \in G} \sum_{w \in \text{Tree}(G)} W(A | B | C) e^{-\ell(w)}} \{ \text{for internal nodes } w \text{ in } G \} \}

\(Q = W[A | B | C] = \sum_{G \in G} W(A | B | C, G) \) (Proposition 5).

Table S2. Running time of species tree inference methods on biological datasets. We use 5.17.3 version of ASTRAL-III if not otherwise clarified.

Dataset	n	k	Method	#Cores	Wall-clock time	CPU time
OneKP	1178	410	wASTRAL-h	16	17.1 min	4.57 hr
Canis	48	44950	wASTRAL-h	1	17.2 hr	17.7 hr
Avian	48	14446	wASTRAL-h	16	1.76 min	28.1 min
Cetacean	98	3191	wASTRAL-h	16	35.2 sec	9.39 min
Nominae	32	853	wASTRAL-h	1	8.64 sec	8.64 sec
Lepidoptera	203	1930	wASTRAL-h	16	2.02 min	32.3 min
Papilionidae	61	6405	wASTRAL-h	16	1.11 min	17.8 min
Supplementary Figures and Tables

FIG. S1. Species tree error on the S100 dataset with \(k = \{50, 200, 500, 1000\} \) and gene sequence length \{200, 400, 800, 1600\}. Top: comparison of by weighting scheme. Results with aBayes supports are labeled wASTRAL-s and wASTRAL-h; results with bootstrap support are labeled wASTRAL-s* and wASTRAL-h*. Bottom: comparison with other methods, similar to Figure 2a, but with a y-axis kept fixed.
FIG. S2. Species tree error on the S100 dataset (top) and S200 dataset (bottom), similar to Figures 2 and 3 of the main paper, but with y axis kept fixed.
FIG. S3. Lineage Through Time (LTT) plots for three simulated model conditions with 10^{-7} (red) and 10^{-6} (blue) rates tend to lead to deeper and shallower speciation.
FIG. S4. Species tree error by weighting scheme on the S200 dataset with $k = \{50, 200, 1000\}$ and population size (ILS levels). Species tree shape with parameters E1-6 and E1-7 are used. Results with aBayes supports are labeled wASTRAL-s and wASTRAL-h; results with SH-like support are labeled wASTRAL-s* and wASTRAL-h*.
FIG. S5. Species tree error on the S100 dataset with $k = \{50, 200, 500, 1000\}$ and gene sequence length $\{200, 400, 800, 1600\}$. Results with aBayes supports are labelled wASTRAL-s and wASTRAL-h; results with bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
FIG. S6. Species tree error on the S200 dataset with $k = \{50, 200, 1000\}$ and population size (ILS levels). Species tree shape with parameter E1-6 and E1-7 (box columns) and ILS levels (box rows) low ($1e+07$), medium ($2e+06$), and high ($5e+05$) are used. Results with Bayesian supports are labeled wASTRAL-s and wASTRAL-h; results with SH-like support are labeled wASTRAL-s* and wASTRAL-h*.
FIG. S7. ROC of S100 dataset with $k = \{50, 200, 500, 1000\}$ and gene sequence length $\{200, 400, 800, 1600\}$ as we change the threshold of support considered. Results with aBayes supports are labelled wASTRAL-s and wASTRAL-h; results with FastTree-2 bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
FIG. S8. ECDF of S100 dataset with $k = \{50, 200, 500, 1000\}$ and gene sequence length $\{200, 400, 800, 1600\}$. Results with aBayes supports are labelled wASTRAL-s and wASTRAL-h; results with FastTree-2 bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
FIG. S9. Binned accuracy-versus-support plot of S100 dataset with $k = \{50, 200, 500, 1000\}$ and gene sequence length $\{200, 400, 800, 1600\}$. Results with aBayes supports are labelled wASTRAL-s and wASTRAL-h; results with FastTree-2 bootstrap support are labelled wASTRAL-s* and wASTRAL-h*.
FIG. S10. ROC of S200 dataset with $k = \{50, 200, 1000\}$ and population size (ILS levels). Species tree shape with parameter E1-6 and E1-7 are used. Results with aBayes supports are labeled wASTRAL-h; results with SH-like support are labelled wASTRAL-h*.
FIG. S11. ECDF of S200 dataset with $k = \{50, 200, 1000\}$ and population size (ILS levels). Species tree shape with parameter E1-6 and E1-7 (box columns) and ILS levels (box rows) low (1e+07), medium (2e+06), and high (5e+05) are used. Results with aBayes supports are labelled wASTRAL-h; results with SH-like support are labelled wASTRAL-h*.
FIG. S12. Binned accuracy-verses-support plot of S200 dataset with \(k = \{50, 200, 1000\} \) and population size (ILS levels). Species tree shape with parameter E1-6 and E1-7 are used. Results with aBayes supports are labeled \(\text{wASTRAL-h} \); results with SH-like support are labeled \(\text{wASTRAL-h*} \).
FIG. S13. The distribution of support values of conflicting branches between wASTRAL-h and ASTRAL-III on the 1kp dataset. The ASTRAL-III conflicting branches range between 14% and 99.00% with a mean of 62%. The wASTRAL-h conflicting branches range between 37% and 99.98% with a mean of 78%.
FIG. S14. Inferred species trees (a) from wASTRAL-hybrid with FastTree-2 branch support values as weights using all 459,450 gene trees and (b) from ASTRAL-III using a subset of 100,000 gene trees on canis dataset. Branches support of 100% are omitted.
FIG. S15. Normalized time per round of placement by dividing running time by the total number of rounds of placements for wASTRAL-h on the Canis dataset for various k using the new pipeline.
FIG. S16. Inferred species trees from (a) \textit{w}ASTRAL-hybrid with normalized bootstrap support values as weights and (b) \textit{ASTRAL-III} on gene trees with low (<3\%) bootstrap support branches contracted on avian dataset. Branches support of 100\% are omitted. Branches that disagree with concatenation (blue), MP-EST binned (red) or both (purple) are identified on the \textit{w}ASTRAL-h tree.

FIG. S17. Inferred species trees from (a) \textit{w}ASTRAL-hybrid with normalized Bayesian support values as weights (with clades of taxa from the same species contracted) and (b) \textit{ASTRAL-multi} on cetacean dataset. Branches support of 100\% are omitted. Branches conflicting with RAxML concatenation are marked red.
FIG. S18. (a) RAxML on concatenated genes; (b) wASTRAL-hybrid (top and solid red line) and ASTRAL-III (bottom and dashed red line) on Nomiinae dataset.
FIG. S19. Inferred species trees from (a) wASTRAL-hybrid with normalized bootstrap support values as weights and (b) ASTRAL-III on Lepidoptera dataset.
FIG. S20. Inferred species trees from (a) wASTRAL-hybrid with normalized approximate Bayesian support values as weights and (b) ASTRAL-III on Papilionidae dataset.
FIG. S21. An illustration of the process of creating a random gene tree with branch lengths in SU. Branches in the true species tree S^* are broken into intervals $I_0...I_6$. The species tree with SU branch lengths S^\dagger is created by multiplying each branch length in S^* with a corresponding multiplier; the multipliers are jointly drawn from some distribution and are drawn independently across gene trees. Gene tree G^* is sampled under MSC process from S^* independent of S^\dagger. However, it inherits the same division of its lineages into segments as S^* at the same locations. The gene tree with SU branch lengths G is created by translating branch lengths of G^* into SU by multiplying the CU length of each of segment I_i by $\Lambda_{S^\dagger}^{I_i}$, the multiplier associated with the segment I_i in S^\dagger and hence G.
FIG. S22. The species tree estimation error (FN) of wASTRAL-h on S100 dataset as we change the number of rounds of placements in the base algorithm (r). The most difficult case where gene length = 200 and k = 50 is selected. Mean and standard error (50 replicates) are shown in blue.
Supplementary Algorithm
Algorithm S1 Recursive placement algorithm. Place inserts the species i into an existing species tree S and computes tripartition scores $W(A|B)(C,G):=\sum_{C \in G} W(A \cap L_G|B \cap L_G; C \cap L_G, G)$ for all tripartitions resulting from adding i to each branch of S. A global counter Q and a set of per-node counters $w_A, w_B, w_C, w_+, w_-, w_{+\cdot}, w_{-\cdot}, w_{\cdot+}, w_{\cdot-}$ are all initialized to 0. OptimalTreeDP is defined in Algorithm S2. Each gene tree is rooted on an arbitrary branch e and the support of e is kept for the branch on one side of the root and zero support is given to the branch on the other side of root. L_w is the set of leaves under w.

1: \textbf{procedure} \textsc{Place}(i,S,G) \Comment*[r]{Places species i on tree S according to G}
2: \hspace*{1em} $W \leftarrow$ empty lookup table \Comment*[r]{global variables}
3: \textsc{ColorLeafSet}(L_S, C, S, G, W) \Comment*[r]{Color all leaves of S as C}
4: \textsc{ColorLeafSet}(\{i\}, B, S, G, W) \Comment*[r]{Color new species i as B}
5: \textsc{ColorNode}(the root of S, S, G, W) \Comment*[r]{Traverse S bottom up}
6: $O \leftarrow \textsc{OptimalTreeDP}(L_S \cup \{\{\}, L_S \cup \{\{\}, W\})$
7: \textbf{return} $(W, O, \text{edge of } S \text{ onto which } i \text{ is added to get } O)$

8: \textbf{procedure} \textsc{ColorLeafSet}(L', X, T, G, W) \Comment*[r]{Condition: Coloring L' as X should match T}
9: \hspace*{1em} for $G \in \tilde{G}$ do
10: \hspace*{2em} $W[\{j\}] \leftarrow \textsc{UpdateCounters}(\text{leaf node corresponding to } j \text{ in } g, X)$
11: \textbf{procedure} \textsc{ColorNode}(w, i, S, G, W) \Comment*[r]{On start: i is B, others are C; On exit: w is A, others kept}
12: \hspace*{1em} if w is a leaf then
13: \hspace*{2em} \textsc{ColorLeafSet}(L_w, A, L_w, [\{\}], L_S - L_w, G, W)
14: \hspace*{1em} else
15: \hspace*{2em} $(u, v) := (\text{the larger child of } w, \text{the smaller child of } w)$
16: \hspace*{2em} \textsc{ColorNode}(v, i, S, G, W) \Comment*[r]{Recurse on v, the smaller child}
17: \hspace*{2em} \textsc{ColorLeafSet}(L_v, C, \emptyset, G, W) \Comment*[r]{Undo coloring of v to enable recursing on u}
18: \hspace*{2em} \textsc{ColorNode}(u, i, S, G, W) \Comment*[r]{Recurse on u, the large child}
19: \hspace*{2em} \textsc{ColorLeafSet}(L_u, B, L_u, [\{\}], L_S - L_u, G, W) \Comment*[r]{Tripartition of w when adding i above u}
20: \hspace*{2em} \textsc{ColorLeafSet}(\{\}, A, \{\}, L_S - L_u, G, W) \Comment*[r]{Tripartition of w when adding i above u}
21: \hspace*{2em} \textsc{ColorLeafSet}(\{\}, C, L_u, [\{\}], L_S - L_u, G, W) \Comment*[r]{Tripartition of w when adding i above w}
22: \textbf{procedure} \textsc{RecursiveUpdate}(w)
23: \hspace*{1em} $(u, v, e) := (\text{the left child of } w, \text{the right child of } w, \text{the parent branch of } w)$
24: \hspace*{1em} for $(X, Y, Z) \in \{(A, B, C), (B, C, A), (C, A, B)\}$ do
25: \hspace*{2em} $Q \leftarrow Q - w_{X\cdot Y\cdot Z}Y€$
26: \hspace*{2em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow w_{X\cdot Y\cdot Z}Y€ + u_Xv_YZ + u_Xv_YY + u_Xv_YZv_Y + u_Xv_YZv_YZ + v_XYv_YZ$
27: \hspace*{2em} $+ (u_Xv_YY + u_Yv_YY - u_Xv_YZ - u_Xv_YZv_Y)$
28: \hspace*{2em} $Q \leftarrow Q + w_{X\cdot Y\cdot Z}Y€$
29: \hspace*{2em} if w is not the root then
30: \hspace*{3em} $(u_Xv_YY, w_Z) \leftarrow ((u_X + v_X)e^{-l(e)}, (u_Y + v_Y)e^{-l(e)}, (u_Z + v_Z)e^{-l(e)})$
31: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + v_XY + u_Xv_YY + u_Yv_YZ + u_Zv_ZY$
32: \hspace*{3em} $w_{Y\cdot Z\cdot X}Y€ \leftarrow (u_Yv_YZ + u_Yv_YZ + u_Zv_ZY)(1 - s(e))$
33: \hspace*{3em} $w_{X\cdot Z\cdot Y}Y€ \leftarrow u_Yv_YZ + u_Yv_YZ + u_Zv_ZY$
34: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + u_Xv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
35: \hspace*{3em} $w_{Y\cdot Z\cdot X}Y€ \leftarrow u_Yv_YZ + u_Yv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
36: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + u_Xv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
37: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + u_Xv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
38: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + u_Xv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
39: \hspace*{3em} $w_{X\cdot Y\cdot Z}Y€ \leftarrow u_Xv_YZ + u_Xv_YZ + u_Zv_ZY\left(1 - s(e)\right)$
40: \hspace*{3em} \textsc{RecursiveUpdate}(the parent of w)
41: \textbf{procedure} \textsc{UpdateCounters}(w, X) \Comment*[r]{w is a leaf, X is a color}
42: \hspace*{1em} $e_\cdot :=$ the parent branch of w
43: \hspace*{1em} $(w_A, w_B, w_C) \leftarrow (0, 0, 0)$
44: \hspace*{1em} $w_X \leftarrow e^{-l(e)}$
45: \hspace*{1em} \textsc{RecursiveUpdate}(the parent of w)
46: \textbf{return} Q
Algorithm S2 The Algorithm S2 of $O(n^2kH\log n)$ running time. At start, the function is called as with $\mathcal{L}, \mathcal{G}, r$ as input.

1: procedure NaivePlacement(T, \mathcal{G}, r)
2: $W^* \leftarrow$ empty lookup table from tripartitions to their weights
3: for $i \in \{1, ..., r\}$ do
4: shuffle T
5: $S_i \leftarrow$ tree with leaves $T_1, T_2,$ and T_3
6: for $j \in \{4, ..., |T|\}$ do
7: $W_{i,S_i,e} \leftarrow$ Place(T_j, S_i, \mathcal{G})
8: Add all elements of W_i to W^*
9: return OptimalTreeDP(T, T, W^*)

procedure OptimalTreeDP(P, \mathcal{L}, W)
11: if DPTree(P) available then
12: return DPTree(P)
13: if $|P| = 1$ then
14: DPScore(P) \leftarrow 0
15: DPTree(P) \leftarrow Singleton rooted tree with leafset P
16: else
17: $X \leftarrow -\infty$
18: for $A \in \{A: W[A|P - A|L - P] has been computed\}$ do
19: $S_1 \leftarrow$ OptimalTreeDP(A, \mathcal{L}, W)
20: $S_2 \leftarrow$ OptimalTreeDP($P - A, \mathcal{L}, W$)
21: if DPScore(A) + DPScore($P - A$) + $W[A|P - A|L - P] > X$ then
22: $X \leftarrow$ DPScore(A) + DPScore($P - A$) + $W[A|P - A|L - P]$
23: DPTree(P) \leftarrow merge subtrees S_1 and S_2 at root
24: DPScore(P) $\leftarrow X$
25: return DPTree(P)
Algorithm S3 The DAC algorithm of $O(n^{1.5+k})$ running time given some assumptions. OptimalTreeDP and NaivePlacement are defined in Algorithm S2, and Place is defined in Algorithm S1. At start, the function is called as with L, G, r as input.

1: procedure TwoStepPlacement(T, G, r)
2: $W^* \leftarrow$ empty lookup table from tripartitions to their weights
3: for $i \in \{1, \ldots, r\}$ do
4: $T_i \leftarrow$ a subsample of T by removing each element independently with probability $1 - 1/\sqrt{|T|}$
5: $S_i \leftarrow$ NaivePlacement($T_i, G, \sqrt{|T|}$)
6: for $e \in E_{S_i}$ do
7: $C_e \leftarrow$ empty list
8: for $j \in T - T_i$ do
9: $W, S_j, e \leftarrow$ Place(j, S_i, G)
10: add T_j to C_e
11: $C_\emptyset \leftarrow$ empty list
12: $S'_i \leftarrow S_i$
13: for $e \in$ branches of S_i do
14: $S_e \leftarrow S_i$
15: for $j \in C_e$ do
16: $W, S_j, e' \leftarrow$ Place(j, S_e, G)
17: if $e' \in S_i - \{e\}$ then
18: add j to C_\emptyset
19: else
20: $S_e \leftarrow S_e$
21: $S'_i \leftarrow S'_i$
22: for $j \in C_\emptyset$ do
23: $W, S_j, e' \leftarrow$ Place(j, S'_i, G)
24: if $C_\emptyset = \emptyset$ then
25: $W, S'_i, e' \leftarrow$ Place(\emptyset, S'_i, G)
26: Add all elements of W_i to W^*
27: return OptimalTreeDP(T, T, W^*)
Proofs

Weighting by support: Proof of Proposition 1 and Theorem 1

For ease of reference, we reproduce Table 2 from the main paper here:

| \(E[\cdot] | \alpha_{G,Q} \) | \(\delta_G(ab|cd) \) | \(\delta_G(ac|bd) \) |
| --- | --- | --- |
| \(\delta_G(ab|cd) \) | \(\geq \frac{1}{2}(1 + 2\theta_Q)(\alpha_{G,Q} + \frac{1}{4}(1 - \alpha_{G,Q})(1 - \beta_Q)) \) | \(\leq \frac{1}{2}(1 + 2\theta_Q)(\frac{1}{2}(1 - \alpha_{G,Q})(1 + \beta_Q)) \) |
| \(\delta_G(ac|bd) \) | \(\geq \frac{1}{2}(1 - \theta_Q)(\frac{1}{2}(1 - \alpha_{G,Q})(1 - \beta_Q)) \) | \(\leq \frac{1}{2}(1 - \theta_Q)(\alpha_{G,Q} + \frac{1}{4}(1 - \alpha_{G,Q})(1 + \beta_Q)) \) |
| \(\delta_G(ad|bc) \) | \(\geq \frac{1}{2}(1 - \theta_Q)(\frac{1}{2}(1 - \alpha_{G,Q})(1 - \beta_Q)) \) | \(\leq \frac{1}{2}(1 - \theta_Q)(\frac{1}{2}(1 - \alpha_{G,Q})(1 + \beta_Q)) \) |

Recall that the expected value and variance of \(\alpha_{G,Q} \) across genes is denoted by \(\bar{\alpha}_Q \) and \(\sigma^2_Q \).

Proposition 1. For each estimated gene tree \(G \), \(E[\delta_G(ab|cd) - \delta_G(ac|bd)] \geq \theta_Q \alpha_{G,Q} - \frac{2}{3}(1 - \alpha_{G,Q})\beta_Q \) and \(E[w_G(ab|cd) - w_G(ac|bd)] \geq \frac{1}{9} \theta_Q (3 + 2\beta_Q)(\alpha_{Q}^2 + \sigma^2_Q) + \frac{4}{9}(1 - \alpha_{G,Q})\beta_Q \).

Proof. To prove the Proposition, we start with the following lemma.

Lemma 1. For each estimated gene tree \(G \) with a given \(\alpha_{G,Q} \),

\[
E[\delta_G(ab|cd) - \delta_G(ac|bd)|w_G(ac|bd)] \geq \theta_Q \alpha_{G,Q} - \frac{2}{3}(1 - \alpha_{G,Q})\beta_Q
\]

and

\[
E[w_G(ab|cd) - w_G(ac|bd)|\alpha_{G,Q}] \geq \frac{1}{9} (3\alpha_{Q} - 2\beta_Q + 2\alpha_{G,Q}\beta_Q + 6)\theta_Q \alpha_{G,Q} - \frac{4}{9}(1 - \alpha_{G,Q})\beta_Q.
\]

Proof. From Table 2, we can compute

\[
E[\delta_G(ab|cd) - \delta_G(ac|bd)|\alpha_{G,Q}]
= E\left[(\delta_G(ab|cd) - \delta_G(ac|bd)) (\delta_G(ab|cd) + \delta_G(ac|bd) + \delta_G(ad|bc)) |\alpha_{G,Q} \right]
\geq \frac{1}{3} ((1 + 2\theta_Q)\alpha_{G,Q} + \frac{1}{3}(1 - \alpha_{G,Q})(1 - \beta_Q)) - \frac{1}{3} (1 - \theta_Q)\alpha_{G,Q} + \frac{1}{3}(1 - \alpha_{G,Q})(1 + \beta_Q)
= \theta_Q \alpha_{G,Q} - \frac{2}{3}(1 - \alpha_{G,Q})\beta_Q;
\]

similarly,

\[
E[w_G(ab|cd) - w_G(ac|bd)|\alpha_{G,Q}]
= E\left[(w_G(ab|cd) - w_G(ac|bd)) (\delta_G(ab|cd) + \delta_G(ac|bd) + \delta_G(ad|bc)) |\alpha_{G,Q} \right]
\geq \frac{1}{3} (1 + 2\theta_Q)\alpha_{G,Q} (\alpha_{G,Q} + \frac{2}{3}(1 - \alpha_{G,Q})(1 - \beta_Q)) + \frac{1}{3}(1 - \alpha_{G,Q})(1 - \beta_Q) \]
\[\geq \frac{1}{3} (1 - \theta_Q)\alpha_{G,Q} (\alpha_{G,Q} + \frac{2}{3}(1 - \alpha_{G,Q})(1 + \beta_Q)) - \frac{1}{3}(1 - \alpha_{G,Q})(1 + \beta_Q) \]
\[\geq \frac{1}{9} (3\alpha_{Q} - 2\beta_Q + 2\alpha_{G,Q}\beta_Q + 6)\theta_Q \alpha_{G,Q} - \frac{4}{9}(1 - \alpha_{G,Q})\beta_Q.\]

□
From this lemma, we can prove the proposition. First, assume $\alpha_{G,Q}$ is drawn from a discrete distribution. Then,
$$\mathbb{E}[\delta_G(ab|cd) - \delta_G(ac|bd)] = \sum_{\alpha_{G,Q}} \mathbb{E}[\delta_G(ab|cd) - \delta_G(ac|bd)|\alpha_{G,Q}] P(\alpha_{G,Q})$$
$$\geq \sum_{\alpha_{G,Q}} (\theta_2\alpha_{G,Q} - \frac{2}{3}(1 - \alpha_{G,Q})\beta_Q) P(\alpha_{G,Q}) = \theta_2\alpha_Q - \frac{2}{3}(1 - \alpha_Q)\beta_Q$$
and
$$\mathbb{E}[w_G(ab|cd) - w_G(ac|bd)] = \sum_{\alpha_{G,Q}} \mathbb{E}[w_G(ab|cd) - w_G(ac|bd)|\alpha_{G,Q}] P(\alpha_{G,Q})$$
$$\geq \sum_{\alpha_{G,Q}} \left(\frac{1}{9}(3\alpha_{G,Q} - 2\beta_Q + 2\alpha_{G,Q}\beta_Q + 6)\theta_2\alpha_{G,Q} - \frac{4}{9}(1 - \alpha_{G,Q})\beta_Q\right) P(\alpha_{G,Q})$$
$$= \frac{1}{9}\theta_2(3 + 2\beta_Q)\mathbb{E}[\alpha_{G,Q}^2] + \frac{2}{9}(3 - \beta_Q)\theta_2\alpha_Q - \frac{4}{9}(1 - \alpha_Q)\beta_Q$$
$$= \frac{1}{9}\theta_2(3 + 2\beta_Q)(\alpha_Q^2 + \sigma_Q^2) + \frac{2}{9}(3 - \beta_Q)\theta_2\alpha_Q - \frac{4}{9}(1 - \alpha_Q)\beta_Q.$$

It is straightforward to change these calculations to use integral instead of sum and $P(\alpha_{G,Q})$ to the PDF in the case that the distribution of $\alpha_{G,Q}$ is continuous.

Theorem 1. Given estimated gene trees furnished with support generated under MSC+Error+Support model, there exist conditions where (3) guarantee a statistically consistent estimator of S^* but (2) does not, and the reverse is not true.

Proof. Recall that (1) states
$$W(S,G) := \sum_{G \subseteq [Q \cup \xi(S)]} \sum_{Q \subseteq \xi(S)} w_G(S \mid Q).$$

It means that in order to produce a statistically consistent estimator using (1), the following equation must be satisfied for the true species tree topology S^* and any species tree topology S:
$$\mathbb{E}[W(S^*,G) - W(S,G)] = |G| \sum_{Q \subseteq \xi(S)} \mathbb{E}[w_G(S^* \mid Q) - w_G(S \mid Q)] \geq 0 \quad (9)$$

Notice that proving for any quartet $Q = \{a,b,c,d\}$ we have $\mathbb{E}[w_G(ab|cd) - w_G(ac|bd)] \geq 0$ and $\mathbb{E}[w_G(ab|cd) - w_G(ac|bd)] \geq 0$ where $S^* \mid Q = ab|cd$ is sufficient to prove (9); on the other hand, proving for any quartet $Q = \{a,b,c,d\}$ where the internal branch of $S^* \mid Q$ corresponds to only one branch in S^*, we have $\mathbb{E}[w_G(ab|cd) - w_G(ac|bd)] \geq 0$ and $\mathbb{E}[w_G(ab|cd) - w_G(ac|bd)] \geq 0$ where $S^* \mid Q = ab|cd$ is necessary to prove (9).

Thus, from Proposition 1, we have guaranteed statistical consistency for wASTRAL for support under
$$D = \cap_{Q \subseteq \xi(S)} \{ (\theta_Q, \alpha_Q, \sigma_Q, \beta_Q) \in [0,1]^4 : \frac{1}{9}\theta_Q(3 + 2\beta_Q)(\alpha_Q^2 + \sigma_Q^2) + \frac{2}{9}(3 - \beta_Q)\theta_2\alpha_Q - \frac{4}{9}(1 - \alpha_Q)\beta_Q \geq 0 \}.$$

Similarly, we have guaranteed statistical consistency for unweighted ASTRAL under
$$D' = \cap_{Q \subseteq \xi(S)} \{ (\theta_Q, \alpha_Q, \sigma_Q, \beta_Q) \in [0,1]^4 : \theta_2\alpha_Q - \frac{2}{3}(1 - \alpha_Q)\beta_Q \geq 0 \}.$$

To prove Theorem 1, we only need to prove that D' is a proper subset of D.

□
We can prove $D' \subseteq D$, as for any Q, if $(\theta_Q, \bar{\alpha}_Q, \sigma, \beta_Q) \in [0,1]^4$ and $\theta_Q \bar{\alpha}_Q - \frac{2}{3} (1 - \bar{\alpha}_Q) \beta_Q \geq 0$, then
\[
\frac{1}{9} \theta_Q (3 + 2 \beta_Q)(\bar{\alpha}_Q^2 + \sigma^2) + \frac{2}{9} (3 - \beta_Q) \theta_Q \bar{\alpha}_Q - \frac{4}{9} (1 - \bar{\alpha}_Q) \beta_Q \\
= \frac{1}{9} \theta_Q (3 + 2 \beta_Q)(\bar{\alpha}_Q^2 + \sigma^2) + \frac{1}{3} \theta_Q (1 - \theta_Q) \bar{\alpha}_Q^2 + (\frac{1}{3} \theta_Q \bar{\alpha}_Q + \frac{2}{3}) (\theta_Q \bar{\alpha}_Q - \frac{2}{3} (1 - \bar{\alpha}_Q) \beta_Q) \geq 0.
\]
We can also prove $D' \neq D$, as if for some Q, $\theta_Q = 0.25, \bar{\alpha}_Q = 0.5, \beta_Q = 0.4$,
\[
\theta_Q \bar{\alpha}_Q - \frac{2}{3} (1 - \bar{\alpha}_Q) \beta_Q = -\frac{1}{120} < 0
\]
and
\[
\frac{1}{9} \theta_Q (3 + 2 \beta_Q)(\bar{\alpha}_Q^2 + \sigma^2) + \frac{2}{9} (3 - \beta_Q) \theta_Q \bar{\alpha}_Q - \frac{4}{9} (1 - \bar{\alpha}_Q) \beta_Q = \frac{7}{720} + \frac{19}{180} \sigma^2 > 0.
\]
Thus D' is a proper subset of D and we conclude the proof. □
Weighting by length: Proof of Propositions 2 and 3 and Theorem 2

Before providing the proofs, we remind the reader of one property of the coalescent model. According to the coalescent model, at any point along a branch of the species tree with i gene tree lineages, the time (i.e., distance) \(x \) to the next coalescent event, reducing the number of lineages to \(i - 1 \), is exponentially distributed with the rate \(\binom{i}{2} \), resulting in probability density function (PDF):

\[
\frac{i(i-1)}{2} e^{-\frac{x+1}{x}},
\]

and the two lineages that coalesce are independent of \(x \).

Proposition 2. For a true quartet species tree \(S^* \) with topology \(ab|cd \) and input gene trees \(G \) generated under the naive model with any multiplier \(\lambda \), let \(f \) be the distance between anchors of \(S^* \). As \(f \to 0 \), given \(k=\Theta(f^{-2}) \) gene trees, we have \(\text{Var}[X_G]=\Theta(f) \) and

\[
\frac{\text{E}[X_G]}{\sqrt{\text{Var}[X_G]}} = \frac{1+4\lambda}{1+2\lambda} \sqrt{\frac{3}{2}} f + O(f^2).
\]

Proof. We analyze balanced and unbalanced trees separately.

Case 1: Unbalanced trees (i.e., the root of \(S^* \) has a terminal branch as a child). W.o.l.g., we assume the root branch is located on branch leading to \(d \).

Let \(p,q \), and \(r \) be the MRCA nodes of \((a,b) \), \((a,c) \), and \((a,d) \) on rooted species tree \(S^* \), respectively. Let \(p' \) and \(r' \) be the points of coalescence of leaves \(a,b \) and leaves \(c,d \) on the rooted gene tree \(G \), respectively. Let \(x, y_0 \), and \(z \) be the CU difference in heights of points \((p,p') \), \((q,r) \), and \((r,r') \), respectively. Note that \(f \) is the length of \((p,q) \). Let \(L:=L_S(a,p)+L_S(b,p)+L_S(c,r)+L_S(d,r) \). Notice that \(l_G(a,p)+l_G(b,p)+l_G(c,r)+l_G(d,r)=\lambda L \) and \(l_G(a,b)+l_G(c,d)=\lambda(2x+2z+L) \).

Let \(f_X(x) \) be the probability density that \(x \) is the CU difference in heights of \((p,p') \) and \(p' \) is the lowest point of coalescence. Notice that by (10):

\[
f_X(x) = \begin{cases}
 e^{-x} & 0 \leq x \leq f \\
 \frac{1}{f} \left(e^{-f} \binom{2}{3} e^{-\left(\binom{3}{3}(x-f)\right)} \right) = e^{-3x+2f} & f \leq x \leq f + y_0 \\
 \frac{1}{f} \left(e^{-f} e^{-\left(\binom{3}{3}y_0 \binom{2}{3} e^{-\left(\binom{3}{3}(x-f-y_0)\right)} \right)} = e^{-6x+5f+3y_0} & f + y_0 \leq x
\end{cases}
\]

Let \(f_{Z|X}(z;x) \) be the probability density that \(z \) is the CU difference in heights of \((r,r') \), conditioned on that \(x \) is the CU difference in heights of \((p,p') \) and \(p' \) is the lowest point of coalescence. Notice that:

\[
f_{Z|X}(z;x) = \begin{cases}
 e^{-z} & 0 \leq x \leq f + y_0 \text{ and } 0 \leq z \\
 e^{-z} \left(e^{-z-(x-f-y_0)} \right) = e^{-z + x - f - y_0} & 0 \leq x - f - y_0 \leq z
\end{cases}
\]

We specify three coalescence scenarios by indicator functions \(\delta_1, \delta_2, \delta_3 \): i) \(\delta_1 \) indicates \(0 \leq x < f \); ii) \(\delta_2 \) indicates \(f \leq x < f + y_0 \); iii) \(\delta_3 \) indicates \(f + y_0 \leq x \).

Note that

\[
\text{E}[w_G(ab|cd)] = \text{E}[(\delta_1 + \delta_2 + \delta_3)w_G(ab|cd)]
\]

\[
\text{E}[w_G^2(ab|cd)] = \text{E}[(\delta_1 + \delta_2 + \delta_3)w_G^2(ab|cd)].
\]
FIG. S23. Illustration of the unbalanced case. Lengths in CU/SU units are denoted in blue/red. Branches in green have a
total length $L/\lambda L$ in CU/SU units. The right-hand side shows the position of p' in relation to q and r in various cases.

Similarly, since only scenarios 2 and 3 have deep coalescence events that may lead to gene tree
disagreement with the species tree, and by the symmetry of all three topologies under scenarios 2 and 3,

$$E[w_G(ac|bd)] = E[(\delta_2 + \delta_3)u_G(ab|cd)]$$
$$E[w_G^2(ac|bd)] = E[(\delta_2 + \delta_3)u_G^2(ab|cd)].$$

Thus,

$$E[X_G] = E[w_G(ab|cd)] - E[w_G(ac|bd)] = E[\delta_1 w_G(ab|cd)], \quad (11)$$

and since $w_G(ab|cd)w_G(ac|bd) = 0$,

$$\text{Var}[X_G] = E[X_G^2] - E^2[X_G] = E[w_G^2(ab|cd)] + E[w_G^2(ac|bd)] - E^2[X_G]$$
$$= E[(\delta_1 + 2\delta_2 + 2\delta_3)w_G^2(ab|cd)] - E^2[X_G]. \quad (12)$$

We next compute both elements of (11) as well as some elements of (12) (others will not be necessary).

- δ_1: When G has topology $ab|cd$, p' must be the lowest point of coalescence. Thus,

$$E[\delta_1 w_G(ab|cd)]$$
$$= \int_0^f \int_0^{\infty} e^{-\lambda(2x+2z+L)} f_X(x) f_Z(x) dz dx$$
$$= \int_0^f \int_0^{\infty} e^{-\lambda(2x+2z+L)} e^{-x} e^{-z} dz dx$$
$$= e^{-\lambda f(1-e^{-2\lambda})} f \left(\frac{1+2\lambda}{\lambda^2}\right).$$
\[\mathbb{E}[\delta_1 w_G(ab|cd)] \leq \mathbb{E}[\delta_1 w_G(ab|cd)] = O(f). \]

\textbullet \ \delta_2: \text{When} \ G \text{ has topology } ab|cd, \ p' \text{ must be the lowest point of coalescence. Thus,}
\[
\mathbb{E}[\delta_2 w_G(ab|cd)] = \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} f_X(x) f_G(z) dz dx \\
= \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} e^{-3x+2f} e^{-z} dz dx \\
= \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} e^{-3x+2f} e^{-z} dz dx \\
= \frac{1}{(1+4\lambda)(1+4\lambda)} e^{-(1+4\lambda)f-2\lambda L}.
\]

\textbullet \ \delta_3: \text{When} \ G \text{ has the topology } ab|cd, \text{ either } p' \text{ or } q' \text{ must be the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs. Thus,}
\[
\mathbb{E}[\delta_3 w_G(ab|cd)] = \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} f_X(x) f_G(z) dz dx \\
= \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} e^{-3x+2f} e^{-z} dz dx \\
= \int_{f+y_0}^{+\infty} e^{-\lambda(x+4x+2L)} e^{-3x+2f} e^{-z} dz dx \\
= \frac{1}{(3+4\lambda)(1+4\lambda)} e^{-(1+4\lambda)f-2\lambda L}.
\]

Replacing in (11), we get
\[
\mathbb{E}[X_G] = \mathbb{E}[\delta_1 w_G(ab|cd)] = e^{-\lambda L (1-\delta^2)} \frac{1}{(1+2\lambda)^2} = e^{-\lambda L} \frac{1}{1+2\lambda} f + O(f^2);
\]
and replacing in (12), we get
\[
\text{Var}[X_G] = \mathbb{E}[\delta_1 + 2\delta_2 + 2\delta_3 w_G(ab|cd)] - \mathbb{E}[X_G] = \mathbb{E}[2\delta_2 + \delta_3 w_G(ab|cd)] + O(f) \\
= 2e^{-\lambda L} + O(f) = \frac{2e^{-\lambda L}}{(3+4\lambda)(1+4\lambda)} + O(f).
\]
from which our assumption of Var[\(X_G\)] = \(\Omega(1)\) follows.

Case 2: Balanced tree.

Let \(p,q\), and \(r\) be the MRCA nodes of \((a,b)\), \((c,d)\), and \((a,d)\) on rooted species tree \(S^*\), respectively. Let \(p'\) and \(q'\) be the points of coalescence of leaves \(a,b\) and leaves \(c,d\) on the rooted gene tree \(G\), respectively. Let \(x, y, z, y_0\) be the CU difference in heights of points \((p,p')\), \((p,r)\), \((q,q')\), and \((q,r)\), respectively. Note that \(f = x + y\) is CU length of path \((p,q)\). Let \(L := l_S(a,p) + l_S(b,p) + l_S(c,q) + l_S(d,q)\). Notice that \(l_G(a,p) + l_G(b,p) + l_G(c,q) + l_G(d,q) = \lambda L\) and \(l_G(a,b) + l_G(c,d) = \lambda (2x + 2y + L)\).

We specify three coalescence scenarios by indicator functions \(\delta_1, \delta_2, \delta_3\): i) \(\delta_1\) indicates \(0 \leq x < x_0\); ii) \(\delta_2\) indicates \(x_0 \leq x, 0 \leq y < y_0\); iii) \(\delta_3\) indicates \(x_0 \leq x, y_0 \leq y\).

Note that
\[
\mathbb{E}[w_G(ab|cd)] = \mathbb{E}[\delta_1 + \delta_2 + \delta_3 w_G(ab|cd)] \\
\mathbb{E}[w^2_G(ab|cd)] = \mathbb{E}[\delta_1^2 + \delta_2^2 + \delta_3 w^2_G(ab|cd)].
\]
Similarly, since only scenarios 3 have deep coalescence events that may lead to gene tree disagreement with the species tree, and by the symmetry of all three topologies under scenarios 3,

$$E\left[w_{G}(ac|bd)\right] = E\left[\delta_{1}w_{G}(ab|cd)\right]$$

Thus,

$$E[X_{C}] = E\left[w_{G}(ab|cd)\right] - E\left[w_{G}(ac|bd)\right] = E\left[(\delta_{1} + \delta_{2})w_{G}(ab|cd)\right]; \quad (13)$$

and since $w_{G}(ab|cd)w_{G}(ac|bd) = 0$,

$$\text{Var}[X_{C}] = E[X_{C}^{2}] - E^{2}[X_{C}] = E\left[w_{G}^{2}(ab|cd) + w_{G}^{2}(ac|bd)\right] - E^{2}[X_{C}]$$

$$= E\left[(\delta_{1} + \delta_{2} + 2\delta_{3})w_{G}^{2}(ab|cd)\right] - E^{2}[X_{C}]. \quad (14)$$

- δ_{1}: Here,

$$E[\delta_{1}w_{G}(ab|cd)] = \int_{0}^{x_{0}} \int_{0}^{\infty} e^{-\lambda(2x+2y+L)} e^{-\lambda x} e^{-\lambda y} \, dx \, dy$$

$$= e^{-\lambda L}(1 - e^{-(1+2\lambda)x_{0}}) = e^{-\lambda Lx_{0}} + O(x_{0}^{2}) = e^{-\lambda Lx_{0}} + O(f^{2});$$

and

$$E[\delta_{1}w_{G}^{2}(ab|cd)] \leq E[\delta_{1}w_{G}(ab|cd)] = O(f).$$
\[\delta_2 \text{: Here,} \]
\[E[\delta_2 w_G(abc)] = \int_0^{+\infty} \int_0^{y_0} e^{-\lambda (2x + 2y + L)} e^{-x} e^{-y} dy dx \]
\[= e^{-\lambda L} (1 - e^{-(1+2\lambda) y_0}) e^{-(1+2\lambda) x_0} \frac{(1+2\lambda)^2}{(1+2\lambda)} = e^{-\lambda L} y_0 = (1+2\lambda) + O(f^2); \]

and
\[E[\delta_2 w_G^2(abc)] \leq E[\delta_2 w_G(abc)] = O(1). \]

\[\delta_3 \text{: Similar to the unbalanced case, when } G \text{ has the topology } ab|cd, \text{ either } p' \text{ or } q' \text{ must be the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs. Thus,} \]
\[E[\delta_3 w_G^2(ab|cd)] = \int_{x_0}^{+\infty} \int_{x_0+y_0}^{+\infty} e^{-\lambda (2x_0 + 2y_0 + 2L)} e^{-x_0} e^{-y_0} e^{-x-x_0+y} e^{-y-y_0+y_0} dy dx \]
\[= \int_{x_0}^{+\infty} e^{-4\lambda (x-x_0+y_0)} e^{-(1+2\lambda) x_0} e^{-y_0} e^{-y+x-x_0+y_0} \frac{1}{1+2\lambda} dy dx \]
\[= \frac{1}{(3+4\lambda)(1+2\lambda)} e^{-(1+4\lambda)(x_0+y_0)-2\lambda} = \frac{1}{(3+4\lambda)(1+2\lambda)} e^{-(1+4\lambda)f-2\lambda}. \]

Replacing in (13), we get
\[E[X_G] = E[(\delta_1 + \delta_2) w_G(ab|cd)] = \frac{e^{-\lambda L}(x_0+y_0)}{1+2\lambda} + O(f^2) = \frac{e^{-\lambda L} f}{1+2\lambda} + O(f^2); \]

and replacing in (14), we get
\[\text{Var}[X_G] = E[(\delta_1 + \delta_2 + 2\delta_3) w_G^2(ab|cd)] - E^2[X_G] \]
\[= E[2\delta_3 w_G^2(ab|cd)] = O(f) \]
\[= 2e^{-(1+4\lambda)f-2\lambda}\frac{2\lambda}{(3+4\lambda)(1+4\lambda)} + O(1). \]

from which our assumption of \(\text{Var}[X_G] = \Theta_f(1) \) follows.

Thus, in both balanced and unbalanced cases,
\[\frac{E[X_G]}{\sqrt{\text{Var}[X_G]}} = \frac{\frac{e^{-\lambda L}}{1+2\lambda} f + O(f^2)}{\sqrt{2\frac{e^{-2\lambda L}}{(1+2\lambda)(3+4\lambda)} + O(1)}} = \sqrt{\frac{1+4\lambda + 4\lambda^2}{3(1+2\lambda)^2}} \sqrt{\frac{3}{2} f + O(f^2)} \]

\[\square \]

Proposition 3. For a true quartet species tree \(S^* \) with topology \(ab|cd \) and input gene trees \(G \) generated under the variable rate model, let \(f \) be the distance between anchors of \(S^* \) and \(L \) be the total length of all other branches. Assume that for every branch segment \(I \), the variance of its multiplier is bounded above: \(\text{Var}(\Lambda_{S'}^I) \leq \varepsilon^2 \) where \(\varepsilon^2 = \frac{e^{-\lambda L}}{(1+32\lambda^2)+(6+32\lambda+32\lambda^2)^2} \left(\frac{20(\lambda+\lambda^2)}{(1+2\lambda)^2} \right) \). As \(f \to 0 \), given \(k = \Theta(f^{-2}) \) gene trees, we have \(\text{Var}[X_G] = \Theta_f(1) \) and
\[\frac{E[X_G]}{\sqrt{\text{Var}[X_G]}} \geq \sqrt{\frac{\pi}{2}} (1 - \frac{4\lambda^2}{(1+4\lambda)^2})^{-\frac{1}{2}} f + O(f^2). \]

Proof. We follow the same logic in proof of Proposition 2.
Case 1: Unbalanced trees. Let $P(x)$ be functions to random variables denoting SU difference in heights of points (p, p') where p' is x CU distance above p; let $R(z)$ be functions to random variables denoting SU difference in heights of points (r, r') where r' is z CU distance above r. Note that $P(f + y_0) + R(z) = P(f + y_0 + z)$ where $P(f + y_0)$ denote the SU length of (p, r). Let random variable $\Lambda := l_{S^\uparrow}(a, p) + l_{S^\uparrow}(b, p) + l_{S^\uparrow}(c, r) + l_{S^\uparrow}(d, r)$ be the total SU terminal branch lengths and the constant value L be the CU distance corresponding to Λ.

FIG. S25. Illustration of the unbalanced case. Lengths in CU/SU units are denoted in blue/red. Branches in green have a total length L/Λ in CU/SU units. The right-hand side shows the position of p' in relation to q and r in various cases.

- δ_1: When G has topology $ab|cd$, p' must be the lowest point of coalescence. Thus,

\[
\mathbb{E}[\delta_1 w_G(ab|cd)] = \mathbb{E}\left[\int_0^{+\infty} \int_0^{+\infty} e^{-2P(x)-2R(z)-\Lambda} f_X(x) f_Z|X(z;x) dx dz\right]
\]

\[
= \mathbb{E}\left[\int_0^{+\infty} \int_0^{+\infty} e^{-2P(x)-2R(z)-\Lambda} e^{-x-z} dx dz\right]
\]

\[
= \mathbb{E}\left[\int_0^{+\infty} \int_0^{+\infty} e^{-2P(x)-2R(z)-\Lambda-x-z} dx dz\right];
\]

and

\[
\mathbb{E}[\delta_1 w_G^2(ab|cd)] \leq \mathbb{E}[\delta_1 w_G(ab|cd)] = O(f).
\]
\[\delta_2: \text{When } G \text{ has topology } ab|cd, \text{ either } p' \text{ or } q' \text{ must be the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs. Thus,} \\
\mathbb{E}[\delta_2w_2^2(ab|cd)] \\
= \mathbb{E}\left[\int_f^{f+y_0} \int_0^{+\infty} e^{-4P(x)-4R(z)z} f_X(x)f_{Z|X}(z;x) \, dz \, dx \right] \\
= \mathbb{E}\left[\int_f^{f+y_0} \int_0^{+\infty} e^{-4P(x)-4R(z)z} e^{-3x+2f} \, dz \, dx \right] \\
= \int_f^{f+y_0} \int_0^{+\infty} \mathbb{E}[e^{-4P(x)-4R(z)z}e^{-3x+2f}] \, dz \, dx. \]

Replacing in (11), by Jensen’s inequality, we get

\[\mathbb{E}[X_G] = \mathbb{E}[\delta_1w_G(ab|cd)] = \mathbb{E}\left[\int_f^{f+y_0} \int_0^{+\infty} e^{-2P(x)-2R(z)z} \, dz \, dx \right] \]

\[\geq \int_0^{f+y_0} \int_0^{+\infty} \mathbb{E}[e^{-2P(x)-2R(z)z}] \, dx \, dz \]

\[= \int_0^{f+y_0} \int_0^{+\infty} e^{-2x-2z} \, dx \, dz \]

\[= e^{-\lambda L(1-e^{-(1+2\lambda)f})} / (1+2\lambda)^2 = e^{-\lambda L} + O(f^2). \]

And replacing in (12), we get

\[\text{Var}[X_G] = \mathbb{E}[\delta_1 + 2\delta_2 + 2\delta_3]w_2^2(ab|cd) - \mathbb{E}^2[X_G] = \mathbb{E}[2(\delta_2 + \delta_3)w_2^2(ab|cd)] + O(f) \]

\[= \int_f^{f+y_0} \int_0^{+\infty} \mathbb{E}[e^{-4P(x)-4R(z)z}e^{-3x+2f}] \, dz \, dx \]

\[+ \int_f^{f+y_0} \int_0^{+\infty} \mathbb{E}[e^{-4P(x)-4R(z)z}e^{-3x+2f}] \, dz \, dx + O(f), \]

from which our assumption of \[\text{Var}[X_G] = \Theta_f(1)\] follows.

Let \(F_P(u;x), F_R(v;z), \text{ and } F_\Lambda(w)\) be the CDF of \(P(x), \text{ and } R(z), \text{ and } \Lambda\) respectively; let \(F_{PRA}(u,v,w;x,z)\) and \(F_{PRA}(u,v,w;x,z)\) be the joint CDF and the joint PDF. Let \(F_1^{-1}(t;x), F_R^{-1}(t;z), \text{ and } F_\Lambda^{-1}(t)\) be the inverse function of CDF of \(P(x), R(z), \text{ and } \Lambda\).
Then,

\[
E[e^{-2(2P(x)+2R(z)+\Lambda)}] \\
= \int_0^{+\infty} \int_0^{+\infty} \int_0^{+\infty} e^{-2(2u+2v+w)} F_{P_{R \Lambda}}(u,v,w;x,z) dw dv du \\
= \int_0^{+\infty} \int_0^{+\infty} \int_0^{+\infty} e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w} dw dv du \\
= \int_0^{+\infty} \int_0^{+\infty} \left(e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w} \right) dw dv du \\
+ \int_0^{+\infty} \int_0^{+\infty} \frac{\partial e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w}}{\partial u} dw dv du \\
= \int_0^{+\infty} \int_0^{+\infty} \left(e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w} \right) dw dv du \\
+ \int_0^{+\infty} \int_0^{+\infty} \frac{\partial e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w}}{\partial u} dw dv du \\
= \int_0^{+\infty} \int_0^{+\infty} \left(e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w} \right) dw dv du \\
+ \int_0^{+\infty} \int_0^{+\infty} \frac{\partial e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w}}{\partial u} dw dv du \\
= \int_0^{+\infty} \int_0^{+\infty} \left(e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w} \right) dw dv du \\
+ \int_0^{+\infty} \int_0^{+\infty} \frac{\partial e^{-2(2u+2v+w)} \frac{\partial^3 F_{P_{R \Lambda}}}{\partial u \partial v \partial w}}{\partial u} dw dv du \\
\]

Thus, for any \(0 < t_0 < 1\),

\[
E[e^{-2(2P(x)+2R(z)+\Lambda)}] \\
\leq \int_0^{1} e^{-2(2P_{R^{-1}(t,x)}+2R_{R^{-1}(t,z)}+F_{R^{-1}}(t))} dt \\
\leq \int_0^{t_0} e^{-2(2P_{R^{-1}(t_0,x)}+2R_{R^{-1}(t_0,z)}+F_{R^{-1}}(t_0))} dt + \int_1^{+\infty} e^{-2(2P_{R^{-1}(t_0,x)}+2R_{R^{-1}(t_0,z)}+F_{R^{-1}}(t_0))} dt \\
\leq t_0 e^{-2(2P_{R^{-1}(t_0,x)}+2R_{R^{-1}(t_0,z)}+F_{R^{-1}}(t_0))}.
\]

By Chebyshev’s inequality (using \(t_0^{1/2}\) as the constant), \(F_{R^{-1}}(t_0;x) \geq (\lambda - \frac{1}{\sqrt{m}})x\), \(F_{R^{-1}}(t_0;z) \geq (\lambda - \frac{1}{\sqrt{m}})y\), and \(F_{R^{-1}}(t_0) \geq (\lambda - \frac{1}{\sqrt{m}})L\). Thus,

\[
E[e^{-2(2P(x)+2R(z)+\Lambda)}] \leq t_0 + e^{-\lambda + \frac{1}{\sqrt{m}}(4x+4z+2L)}.
\]
Thus,
\[
\text{Var}[X_G] \leq \int_{f'}^{g_f} \int_{0}^{f+y_0} \left(t_0 + e^{-(\lambda + 1/\sqrt{\alpha f} + 2f d + 2)} \right) dy dx
\]
\[+ \int_{f'}^{g_f} \int_{x-f-y_0}^{x} \left(t_0 + e^{-(\lambda + 1/\sqrt{\alpha f} + 2f d + 2)} \right) dy dx + O(f)
\]
\[= \int_{f'}^{g_f} \left(2t_0 e^{-f} + 2f \right) dx + \int_{f'}^{g_f} \left(2t_0 e^{-f} + 2f \right) dx + O(f)
\]
\[= \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]
\[+ \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]
\[= \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]
\[+ \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]
\[= \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]
\[= \frac{2}{3} t_0 (e^{-f} - e^{-3f}) + \frac{2}{1 + 4\lambda - d^2 \sqrt{\alpha f}} (1 + 2f \lambda - d^2 \sqrt{\alpha f}) f
\]

Case 2: Balanced tree. Let \(P(x) \) be functions to random variables denoting SU difference in heights of points \((p, p') \) where \(p' \) is \(x \) CU distance above \(p \); let \(Q(y) \) be functions to random variables denoting SU difference in heights of points \((q, q') \) where \(q' \) is \(y \) CU distance above \(q \). Note that \(P(x_0 + z) - P(x_0) = Q(z) - Q(0) \) where \(P(x_0) \) and \(Q(y_0) \) denote the SU length of \((p, r) \) and \((q, r) \), respectively. Let random variable \(\Lambda := \text{SU}(a, p) + \text{SU}(b, p) + \text{SU}(c, q) + \text{SU}(d, q) \) be the total SU terminal branch lengths and the constant value \(L \) be the CU distance corresponding to \(\Lambda \).

- \(\delta_1 \): Here,
\[
E[\delta_1 W_G(ab|cd)] = E\left[\int_{x_0}^{+\infty} \int_{0}^{f+y_0} e^{-2P(x)-2Q(y)-2\Lambda} e^{-s} e^{-y} dy dx \right];
\]
and
\[
E[\delta_1 W_G^2(ab|cd)] = E[\delta_1 W_G(ab|cd)] = O(f).
\]

- \(\delta_2 \): Here,
\[
E[\delta_2 W_G(ab|cd)] = E\left[\int_{x_0}^{+\infty} \int_{0}^{f+y_0} e^{-2P(x)-2Q(y)-2\Lambda} e^{-s} e^{-y} dy dx \right];
\]
and
\[
E[\delta_2 W_G^2(ab|cd)] = E[\delta_2 W_G(ab|cd)] = O(f).
\]

- \(\delta_3 \): Similar to the unbalanced case, when \(G \) has the topology \(ab|cd \), either \(p' \) or \(q' \) must be the lowest point of coalescence, and by symmetry, the two cases must have the same PDFs. Thus,
\[
E[\delta_3 W_G^2(ab|cd)] = E\left[\int_{x_0}^{+\infty} \int_{x_0+y_0}^{+\infty} e^{-4P(x)-4Q(y)-4\Lambda} e^{-6x+6x_0} e^{-y} dy dx \right]
\]
\[= \int_{x_0}^{+\infty} \int_{x_0+y_0}^{+\infty} E\left[\int_{x_0+y_0}^{+\infty} e^{-4P(x)-4Q(y)-4\Lambda} e^{-5x-y+4\Lambda} dy dx \right].
\]
Replacing in (13), we get

\[E[X_G] = E[(\delta_l + \delta_u)w_{G|ab|cd}] = E\left[\int_0^{x_0} \int_0^{y_0} e^{-2P(x)} - 2Q(y) - \Lambda e^{-x}e^{-y} dy dx + \int_{x_0}^{+\infty} \int_0^{y_0} e^{-2P(x)} - 2Q(y) - \Lambda e^{-x}e^{-y} dy dx \right] \]

\[\geq \int_0^{x_0} \int_0^{y_0} e^{-2\lambda x - 2\lambda y - \Lambda L e^{-x}e^{-y}} dy dx + \int_{x_0}^{+\infty} \int_0^{y_0} e^{-2\lambda x - 2\lambda y - \Lambda L e^{-x}e^{-y}} dy dx \]

\[= \frac{(x_0 + y_0)e^{-\Lambda L}}{1 + 2\lambda} + O(f^2) \approx \frac{\lambda L}{1 + 2\lambda} + O(f^2); \]
and replacing in (14), for any $0 < t_0 < 1$,

\[\text{Var}[X_G] = \mathbb{E}\left[(d_1 + 3t_0 + 2 \lambda_0) \mathbb{E}[c] \right] - \mathbb{E}^2[X_G] \]

\[= \mathbb{E}\left[2 \alpha_0 \mathbb{E}[c] \mathbb{E}[d] \right] + O(f) \]

\[\leq \int_0^\infty \int_0^x \int_{x-x_0+y_0} \mathbb{E} \left[e^{-4P(x)-4Q(y)-2\lambda_0} \right] \int_{x-x_0+y_0} e^{-6x-y+4z} dx dy dx \]

\[\leq \int_0^\infty \int_0^x \int_{x-x_0+y_0} \left(t_0 + e^{-\lambda \sqrt{y}} (4z+4y+2L) \right) e^{-6x-y+4z} dx dy dx + O(f) \]

\[= \int_0^\infty \left(4e^{-6x-y+5z} + \frac{4}{1+4\lambda-\frac{2\lambda}{\sqrt{y}}} \right) dx + O(f) \]

\[= \frac{4}{6} e^{-x_0+y_0} + \frac{4}{(1+4\lambda-\frac{2\lambda}{\sqrt{y}})(6+8\lambda-\frac{8\lambda}{\sqrt{y}})} e^{-x_0+y_0} + O(f) \]

\[\leq \frac{2}{3} t_0 + \frac{2e^{-2\lambda L(\lambda-\frac{\lambda}{\sqrt{y}})}}{(1+4\lambda-\frac{2\lambda}{\sqrt{y}})(3+4\lambda-\frac{4\lambda}{\sqrt{y}})} + O(f) , \]

from which our assumption of $\text{Var}[X_G] = \Theta(f)$ follows. Thus, for both balanced and unbalanced trees, the variance is bounded by the same expression, and thus in both cases,

\[\text{Var}[X_G] \leq \frac{2}{3} t_0 + \frac{e^{-2\lambda L}}{(1+4\lambda)(3+4\lambda)} + O(f) \]

\[\leq \frac{2}{3} t_0 + \frac{1}{(1+4\lambda)(3+4\lambda)} \left(1 - \frac{2\lambda}{\sqrt{y}} \right) + O(f) \]

\[\leq \frac{2}{3} t_0 + \frac{1}{(1+4\lambda)(3+4\lambda)} \left(1 - \frac{2\lambda}{\sqrt{y}} \right) + O(f) \]

\[\frac{2}{3} t_0 + \frac{2e^{-2\lambda L}}{(3+16\lambda+16L^2) - \frac{2\lambda}{\sqrt{y}} (16+32\lambda) + (6+32\lambda+32L^2) L} + O(f) . \]

Now, let $C := (16 + 32\lambda) + (6 + 32\lambda + 32L^2) L, t_0 = \left(\frac{c + \lambda}{(3+16\lambda+16L^2) \lambda} \right)^2$, we get

\[\text{Var}[X_G] \leq \frac{2e^{-2\lambda L}}{3(3+16\lambda+16L^2)^2} \left((\varepsilon \lambda L C) \frac{1}{2} + \frac{9 + 48\lambda + 48\lambda^2}{1 - (\varepsilon \lambda L C) \frac{1}{2}} + O(f) \right) \]

\[\leq \frac{2e^{-2\lambda L}}{3(3+16\lambda+16L^2)^2} \left((\varepsilon \lambda L C) \frac{1}{2} + \frac{3(\varepsilon \lambda L C) \frac{1}{2}}{1 - (\varepsilon \lambda L C) \frac{1}{2}} + O(f) \right) . \]

Now, recalling that $\varepsilon = \frac{e^{-2\lambda L}}{C} \left(\frac{20(\lambda + \lambda^2)}{9(1+2\lambda)^2} \right)^{\frac{1}{2}}.$
Recall also that under Proposition 2, proved below, under conditions of Theorem 2, we have \(\text{Var}(\bar{w}) = \Theta(1) \) and
\[
(1 - \delta) \frac{20}{27} \lambda^3 + \frac{20}{27} \lambda^3 (1 + 16\lambda^2) + O(f) \]
and thus,
\[
\frac{\text{Var}(\bar{w})}{\text{Var}(\bar{w})} = \sqrt{\frac{3}{2}} f + O(f^2). \tag{15}
\]

Similarly, we can compute the ratio of mean and variance for \(Y \) (corresponding to unweighted ASTRAL):
\[
\mathbb{E}[Y_G] = \mathbb{E}[\delta_G(ab|cd) - \delta_G(ac|bd)] = 1 - e^{-\lambda} = f + O(f^2) \]
\[
\text{Var}[Y_G] = \text{Var}[\delta_G(ab|cd) - \delta_G(ac|bd)] = \frac{5}{3} f - e^{-2\lambda} = \frac{2}{3} + O(f) \]
and thus,
\[
\frac{\mathbb{E}[Y_G]}{\text{Var}[Y_G]} = \sqrt{\frac{3}{2}} f + O(f^2). \tag{16}
\]

Given Proposition 2, we can use Berry–Esseen theorem to derive
\[
P(\bar{X}_G \leq 0) = P\left(\frac{\sqrt{\lambda}}{\text{Var}(\bar{X}_G)} (\bar{X}_G - \mathbb{E}[\bar{X}_G]) \right) \leq \Phi\left(-\frac{\sqrt{\lambda}}{\text{Var}(\bar{X}_G)} \mathbb{E}[\bar{X}_G] \right) = \Phi\left(-\frac{\sqrt{\lambda}}{\text{Var}(\bar{X}_G)} \mathbb{E}[\bar{X}_G] \right) + O\left(\frac{1}{\sqrt{k}} \right),
\]
where \(\Phi \) denotes CDF of the standard Normal distribution. Since \(k = \Theta(f^{-2}) \),
\[
P(\bar{X}_G \leq 0) = \Phi\left(-\frac{\sqrt{\lambda}}{\text{Var}(\bar{X}_G)} \mathbb{E}[\bar{X}_G] \right) + O(f) \tag{17}
\]
and
\[
P(\bar{Y}_G \leq 0) = \Phi\left(-\frac{\sqrt{\lambda}}{\text{Var}(\bar{Y}_G)} \mathbb{E}[\bar{Y}_G] \right) + O(f). \tag{18}
\]
Combining equations (17) and (18) with (15) and (16), we get
\[P\left(\sum_{G \in \mathcal{G}} w_G(ab|cd) \leq \sum_{G \in \mathcal{G}} w_G(ac|bd) \right) = \Phi\left(-\sqrt{\frac{3+16\lambda+16\lambda^2}{3+16\lambda+15\lambda^2}} \sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k} \right) + O(f) \]
and
\[P\left(\sum_{G \in \mathcal{G}} \delta_G(ab|cd) \leq \sum_{G \in \mathcal{G}} \delta_G(ac|bd) \right) = \Phi\left(-\sqrt{\frac{3}{2}} f \sqrt{k} \right) + O(f). \]

As \(f \to 0 \), the interval \(\left(-\sqrt{1 + \frac{4\lambda+4\lambda^2}{3(1+2\lambda)^2}} \sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k}, -\sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k} \right) \) does not shrink because \(\Theta(f \sqrt{k}) = \Theta(1) \). Thus, we have
\[\Phi\left(-\sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k} \right) - \Phi\left(-\sqrt{1 + \frac{4\lambda+4\lambda^2}{3(1+2\lambda)^2}} \sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k} \right) = \Theta(1) \]
ensuring that
\[P\left(\sum_{G \in \mathcal{G}} w_G(ab|cd) \leq \sum_{G \in \mathcal{G}} w_G(ac|bd) \right) \leq P\left(\sum_{G \in \mathcal{G}} \delta_G(ab|cd) \leq \sum_{G \in \mathcal{G}} \delta_G(ac|bd) \right). \]

The proof under Proposition 3 is similar. Recall that under Proposition 3, \(\text{Var}[X_{G^*}] = \Theta(f) \) and
\[\frac{\text{E}[X_{G^*}]}{\sqrt{\text{Var}[X_{G^*}]}} \geq \sqrt{\frac{\sqrt{3}}{2}} \left(1 - \frac{4\lambda^2}{(1+4\lambda)^2} \right)^{-\frac{1}{2}} f + O(f^2). \] (19)

Given this result, the rest of the proof is similar to the proof under the conditions of Proposition 2, culminating in
\[P\left(\sum_{G^* \in \mathcal{G}} w_G^*(ab|cd) \leq \sum_{G^* \in \mathcal{G}} w_G^*(ac|bd) \right) \leq \Phi\left(-\left(1 - \frac{4\lambda^2}{(1+4\lambda)^2} \right)^{-\frac{1}{2}} \sqrt{\frac{\sqrt{3}}{2}} f \sqrt{k} \right) + O(f). \]
\[\square \]
Placement-based Algorithm

In this section, for a node v in tree G, we let L_v denote the set of leaves under v.

Proof of Theorem 3

Theorem 3. Let S be a species tree, i be a species not in L_S, S be the set of possible species tree topologies by placing i onto S, and S' be the output of Algorithm S1. Then, $W(S', G) = \max_{S \in S} W(S, G)$.

Proof. We start with two propositions, proved below.

Proposition 5. After each call to ColorLeafSet(L^*, X, T, G, W) with a $T \neq \emptyset$, $W[T] = \sum_{G \in S} W(T, G)$.

Proposition 6. Before calling OptimalTreeDP in line 6 of Algorithm S1, lookup table W contains all tripartitions corresponding to internal nodes of all tree topologies in S.

By Proposition 6, all tripartitions corresponding to internal nodes of all tree topologies in S pre-computed. Then, OptimalTreeDP uses a dynamic programming algorithm similar to the one formulated by Mirarab and Warnow 2015 to compute $\arg\max_{S \in S} W(S, G)$. □

Proposition 5. After each call to ColorLeafSet(L^*, X, T, G, W) with a $T \neq \emptyset$, $W[T] = \sum_{G \in S} W(T, G)$.

Proof. For a gene tree node w and a color X, let L_w^X denote the set of leaves in L_w colored by X. For an internal node w, let u, v be the children of w, p be the parent of w (if w is not the root), and e denote the branch (w, p). For a leaf i and internal node w, let $P_{i, w}$ denote path between i and w and $s(P) = 1 - \prod_{e \in P}(1 - s(e))$. For leaves i, j, let $m(i, j)$ denote MRCA of i and j. Referring back to Table S1, we first establish the connection between recursive formulas of the algorithm and counter definitions.

- When $u_X = \sum_{i \in L^X} e^{-l(P_{i, w})}$, $v_X = \sum_{i \in L^X} e^{-l(P_{i, w})}$,

 \[u_X := \left(u_X + v_X \right) e^{-l(v)} = \sum_{i \in L^X} e^{-l(P_{i, w})} e^{-l(v)} = \sum_{i \in L^X} e^{-l(P_{i, w})}. \]

- When $u_{XX}^X = \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})}$, $v_{XX}^X = \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})}$,

 \[u_{XX}^X := u_{XX}^X + v_{XX}^X + u_X v_X = \sum_{(i, j) \subseteq L^Y} e^{-l(P_{i, j})} + \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})} + \sum_{i \in L^X} \sum_{j \in L^X} e^{-l(P_{i, j})} e^{-l(P_{j, i})} = \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})} + \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})} + \sum_{i \in L^X} \sum_{j \in L^X} e^{-l(P_{i, j})} e^{-l(P_{j, i})} = \sum_{(i, j) \subseteq L^X} e^{-l(P_{i, j})}. \]

- For $X \neq Y$, when $u_{XY} = \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})}$, $v_{XY} = \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})}$,

 \[u_{XY}^X := u_{XY}^X + v_{XY}^X + u_X v_Y + u_Y v_X = \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})} + \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})} + \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})} + \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})} = \sum_{(i, j) \subseteq L^X \times L^Y} e^{-l(P_{i, j})}. \]
When $u_{XX} = \sum_{(i,j) \in \mathbb{Z}^2} e^{-i(P_{m(i,j,0)})} \prod_{(i',j') \in \mathbb{Z}^2} (1 - s(\hat{e}^{i,j}))$, $v_{XX} = \sum_{(i,j) \in \mathbb{Z}^2} e^{-i(P_{m(i,j,0)})} \prod_{(i',j') \in \mathbb{Z}^2} (1 - s(\hat{e}^{i,j}))$, and $X \neq Y$, similarly,

$$w_{XY} := (u_{XX} + v_{XY} + u_{XY} v_{XY}) (1 - s(\hat{e}^{i,j})) = \sum_{(i,j) \in \mathbb{Z}^2} e^{-i(P_{m(i,j,0)})} (1 - s(\hat{e}^{i,j})) .$$
Similarly,

\[u_{X|Y|Z} = \sum_{h \in L_X} \sum_{k \in L_Y} w_G(hk|ij), u_{X|Z|Y} = \sum_{i \in L_X} \sum_{j \in L_Y} w_G(hi|jk), u_{X|X|Y} = \sum_{j \in L_X} \sum_{k \in L_Y} w_G(hi|jk), \]

Then, the value returned by \(Q \) at the end of procedure \(\text{UpdateCounters} \), \(\sum_{G \in \mathcal{G}} w_G(X|Y|Z) = \sum_{(h,i) \in L_G^X} \sum_{(j,k) \in L_G^Y} w_G(hi|jk). \]

Also,

\[u_{Y|Z|X} = \sum_{(h,i) \in L_G^X} \sum_{(j,k) \in L_G^Y} e^{-(P_{h,i})-(P_{j,k})} \]

\[\sum_{(h,i) \in L_G^X} \sum_{(j,k) \in L_G^Y} w_G(hi|jk). \]

Notice that above cases count exactly once all quartets \(hi|jk \) for all leaf nodes \(h,i \) colored \(X \), \(j \) colored \(Y \), \(k \) colored \(Z \) such that MRCA of \(h,i,j,k \) is \(w \); namely,

\[w_{X|Y|Z} = \sum_{(h,i) \in L_G^X} \sum_{(j,k) \in L_G^Y} w_G(hi|jk). \]

We define \(I(G) \) to be the set of internal nodes of gene tree \(G \) and \(L_G^X \) be the set of leaves of gene tree \(G \) with color \(X \). It is trivial to verify that at the end of procedure \(\text{UpdateCounters} \), \(\sum_{G \in I(G)} w_{X|Y|Z} = \sum_{(h,i) \in L_G^X} \sum_{(j,k) \in L_G^Y} w_G(hi|jk). \]

Thus, \(Q \) returned by \(\text{UpdateCounters} \) satisfies:

\[Q = \sum_{G \in \mathcal{G}} \left(\sum_{(h,i) \in L_G^X} w_G(hi|jk) + \sum_{(j,k) \in L_G^Y} w_G(hi|jk) + \sum_{(h,i) \in L_G^X} w_G(hi|jk) \right). \]

For tripartition \(T = A|B|C \), note that by assumption, before the call, all the gene tree leaves are colored such that recoloring \(C \) by \(X \) would produce a coloring that matches \(T \). Thus, at the end of the call to \(\text{ColorLeafSet} \), for each gene tree \(G \), we have \(A \cap L_G = L_G^A, B \cap L_G = L_G^B, \) and \(C \cap L_G = L_G^C \).

Then, the value returned by \(\text{UpdateCounters} \) satisfies:

\[Q = \sum_{G \in \mathcal{G}} W(A|B|C,G). \]
It can be easily verified that after each call to \(\text{ColorLeafSet}(L^*,X,T,G,W) \), the species tree tripartition \(T \) matches the coloring of all gene trees as required by conditions of (20), concluding \(W[T]=Q=\sum_{c\in\mathcal{G}} W(T,G) \).

Proposition 6. Before calling \(\text{OptimalTreeDP} \) in line 6 of Algorithm S1, lookup table \(W \) contains all tripartitions corresponding to internal nodes of all tree topologies in \(S \).

Proof. Each \(S \in \mathcal{S} \) places \(i \) above a different node \(w \) of \(S \) creating a new node corresponding to tripartition \(L_w[\{i\}]\mathcal{L}_S - L_w \) covered in line 24. Besides new nodes, each existing internal node \(w \) of \(S \) will correspond to a different tripartition after placing \(i \) onto \(S \) depending on the relative location of \(w \) and \(i \). Let \(u,v \) denote the larger and the smaller child of \(w \). Node \(w \) corresponds to \(L_u[\{i\}]\mathcal{L}_v|\mathcal{L}_S - L_w \) if \(i \) is under \(u \), corresponds to \(\{i\} \cup L_u|\mathcal{L}_S - L_w \) if \(i \) is under \(v \), and corresponds to \(L_u|\mathcal{L}_v[\{i\}] \cup \mathcal{L}_S - L_w \) if \(i \) is above \(w \). All three cases for each node \(w \) is covered in lines 20–22. □

Proof of Theorem 4

Theorem 4. If there exists a species tree topology \(S^* \) satisfying that for each quartet subtree \(ab|cd \),

\[
\sum_{c\in\mathcal{G}} w(ab|cd) > \max \left(\sum_{c\in\mathcal{G}} w(ac|bd), \sum_{c\in\mathcal{G}} w(ad|bc) \right),
\]

then the output of Algorithm S2 will be \(S^* \).

Proof. We start with a Corollary 1 of Theorem 3

Corollary 1. Assuming (6), if \(S \) is compatible with the true tree \(S^* \), then \(S' \) is compatible with \(S^* \).

By induction, \(W_i \) in line 8 of Algorithm S2 should contain all tripartitions of \(S^* \), as at that time \(S_i = S^* \) by Corollary 1. Consequentially, the output of Algorithm S2 must also be \(S^* \). □

Proof of Proposition 4

Proposition 4. The time complexity of Algorithm S2 is \(O(kHn^2 \log n) \).

Proof. We begin with a proposition and a corollary.

Proposition 7. Procedure \(\text{ColorNode} \) on any species tree node \(w \) takes \(O(kH|L_w|\log |L_w|) \) time.

Proof (sketch) of Proposition 7. We can prove this proposition by induction. For an internal node \(w \) with larger child \(u \) and smaller child \(v \), if for some constant \(C \geq \frac{1}{\log^2} \), \(\text{ColorNode} \) on \(u \) calls \(\text{UpdateCounters} \) at most \(Ck|L_u|\log |L_u| + 1 \) times and \(\text{ColorNode} \) on \(v \) calls \(\text{UpdateCounters} \) at most \(Ck|L_v|\log |L_v| + 1 \) times, then \(\text{ColorNode} \) on \(w \) calls \(\text{UpdateCounters} \) at most

\[
Ck|L_u|\log |L_u| + 1 + Ck|L_u|\log |L_u| + 1 + 3k(|L_u| + 1) \\
\leq Ck|L_u|\log |L_u| + 1 + Ck|L_u|\log \frac{|L_u|}{2} + 1 + 6k|L_u| \\
\leq Ck|L_u|\log |L_u| + 1 + Ck|L_u|\log |L_u| + 1 - Ck|L_u|\log 2 + 6k|L_u| \\
\leq Ck|L_u|\log |L_u| + 1 + (6 - C\log 2)k|L_u| \\
\leq Ck|L_u|\log |L_u| + 1 \text{ times.}
\]
It is easy to verify that each UpdateCounters takes $O(H_G)$ time where H_G is the height of the gene tree, and thus ColorNode on node w takes $O(kH|L_w|\log |L_w|)$ time.

Corollary 2 (Corollary of Proposition 7). For any tree topology S with n species, the Place procedure on S takes $O(kH\log n)$ time.

NaivePlacement of taxon set T makes $r(|T|−3)$ calls to Place, each of which takes $O(kH|T|\log |T|)$ time. Thus, NaivePlacement takes $O(kH|T|^2\log |T|)$ time and when $T=L_S$ and $r=O(1)$, $O(rkH|T|^2\log |T|)=O(n^2kH\log n)$. □

Proofs of Theorems 6 and Theorem 5

Theorem 6. Under the conditions of Theorem 4, the DAC Algorithm S3 will output S^*.

Proof. By Theorem 4, S_i in line 5 of Algorithm S3 are compatible with S^*. With Corollary 1, by induction, each S_i in line 21 of Algorithm S3 is compatible with S^*. Consequentially, W_i in line 26 contain all tripartitions of S^*, as at that time $S_i^*=S^*$, and the output of Algorithm S3 must also be S^*. □

Theorem 5. When the inequality condition in Theorem 4 is satisfied, then the time complexity of the DAC algorithm is $O(n^{1.5+t}kH)$ with arbitrarily high probability.

Proof (sketch). From the inequality (6), we can trivially deduce that S^* is the species tree topology that maximizes the weighted quartet score, and each S_i in line 5 of Algorithm S3 is compatible to S^*. Also, each C_e in line 15 of Algorithm S3 equals the set of species under the edges coming off of the internal nodes on the path of S^* corresponding to e.

We now introduce a proposition

Proposition 8. With high probability, $\max_{e \in E_{S_i^*}} |C_e| \leq 2\sqrt{n}\log n + O(\sqrt{n})$.

Proof. For each pair of nodes u, v of S^*, let $C_{u,v}:= \{x : x \in L_S, u \text{ is not on } P_{x,v} \text{ and } v \text{ is not on } P_{x,u}\}$. It is easy to verify that for every e of S_i, $C_e=C_{u,v}$ for some nodes u,v of S^*. For every u and v that are sufficiently apart so that $C_{u,v}$ has $2\sqrt{n}\log n + \omega(\sqrt{n})$ elements and a random T_i in line 4 of Algorithm S3,

$$P(C_{u,v} \cap T_i = \emptyset) \leq \left(1 - \frac{1}{\sqrt{n}}\right)^{2|C_{u,v}|} \leq e^{-\frac{2|C_{u,v}|}{n}} = o\left(\frac{1}{n^2}\right).$$

By union bound, the probability that there exists a pair of nodes u, v of S^* such that $|C_{u,v}| \geq 2\sqrt{n}\log n + \omega(\sqrt{n})$ and $C_{u,v} \cap T_i = \emptyset$ is $o(1)$. Since, by definition, $C_e \cap T_i = \emptyset$ for every C_e, with high probability, there exists no C_e having $2\sqrt{n}\log n + \omega(\sqrt{n})$ elements.

Since $|T_i| \sim \text{Binomial}(n, \frac{1}{\sqrt{n}})$, with high probability $|T_i| = O(\sqrt{n})$ and calling NaivePlacement on line 5 takes $O(n^{1.5}kH\log n)$ time. It is easy to confirm that $C_\emptyset = \emptyset$ and every call to Place takes as input a species tree topology of $O(\sqrt{n}\log n)$ species with high probability. Thus, with high probability, each call to Place takes $O(\sqrt{n}kH\log^2 n\log n)$ time and all $O(n)$ calls to Place takes $O(n^{1.5}kH\log^2 n\log n)$ time. Therefore, the time complexity of the DAC algorithm is $O(n^{1.5}kH\log^2 n\log n)=O(n^{1.5+t}kH)$ with high probability. □