INTEGER DECOMPOSITION PROPERTY OF FREE SUMS OF
CONVEX POLYTOPES

TAKAYUKI HIBI AND AKIHIRO HIGASHITANI

Abstract. Let \(P \subset \mathbb{R}^d \) and \(Q \subset \mathbb{R}^e \) be integral convex polytopes of dimension \(d \) and \(e \) which contain the origin of \(\mathbb{R}^d \) and \(\mathbb{R}^e \), respectively. In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \(P \) and \(Q \) to possess the integer decomposition property will be presented.

Introduction

A convex polytope is called integral if any of its vertices has integer coordinates. Let \(P \subset \mathbb{R}^d \) and \(Q \subset \mathbb{R}^e \) be convex polytopes and suppose that \(0_d \in P \) and \(0_e \in Q \), where \(0_d \in \mathbb{R}^d \) denotes the origin of \(\mathbb{R}^d \) and \(0_e \in \mathbb{R}^e \) denotes that of \(\mathbb{R}^e \). We introduce the canonical injections \(\mu : \mathbb{R}^d \to \mathbb{R}^{d+e} \) by setting \(\mu(\alpha) = (\alpha, 0_e) \in \mathbb{R}^{d+e} \) with \(\alpha \in \mathbb{R}^d \) and \(\nu : \mathbb{R}^e \to \mathbb{R}^{d+e} \) by setting \(\nu(\beta) = (0_d, \beta) \in \mathbb{R}^{d+e} \) with \(\beta \in \mathbb{R}^e \). In particular, \(\mu(0_d) = \nu(0_e) = 0_{d+e} \), where \(0_{d+e} \) denotes the origin of \(\mathbb{R}^{d+e} \). Then \(\mu(P) \) and \(\nu(Q) \) are convex polytopes of \(\mathbb{R}^{d+e} \) with \(\mu(P) \cap \nu(Q) = 0_{d+e} \in \mathbb{R}^{d+e} \). The free sum of \(P \) and \(Q \) is the convex hull of the set \(\mu(P) \cup \nu(Q) \) in \(\mathbb{R}^{d+e} \). It is written as \(P \oplus Q \). One has \(\dim(P \oplus Q) = \dim P + \dim Q \).

For a convex polytope \(P \subset \mathbb{R}^d \) and for each integer \(n \geq 1 \), we write \(nP \) for the convex polytope \(\{n\alpha : \alpha \in P\} \subset \mathbb{R}^d \). We say that an integral convex polytope \(P \subset \mathbb{R}^d \) possesses the integer decomposition property if, for each \(n \geq 1 \) and for each \(\gamma \in nP \cap \mathbb{Z}^d \), there exist \(\gamma^{(1)}, \ldots, \gamma^{(n)} \) belonging to \(P \cap \mathbb{Z}^d \) such that \(\gamma = \gamma^{(1)} + \ldots + \gamma^{(n)} \).

Let \(P \subset \mathbb{R}^d \) and \(Q \subset \mathbb{R}^e \) be convex polytopes containing the origin (of \(\mathbb{R}^d \) or \(\mathbb{R}^e \)). It is then easy to see that if the free sum of \(P \) and \(Q \) possesses the integer decomposition property, then each of \(P \) and \(Q \) possesses the integer decomposition property. On the other hand, the converse is not true in general. (See Example [0.3].)

The purpose of the present paper is to show the following

Theorem 0.1. Let \(P \subset \mathbb{R}^d \) and \(Q \subset \mathbb{R}^e \) be integral convex polytopes of dimension \(d \) and \(e \) containing \(0_d \) and \(0_e \), respectively. Suppose that \(P \) and \(Q \) satisfy \(\mathbb{Z}(P \cap \mathbb{Z}^d) = \mathbb{Z}^d \), \(\mathbb{Z}(Q \cap \mathbb{Z}^e) = \mathbb{Z}^e \) and

\[
(P \oplus Q) \cap \mathbb{Z}^{d+e} = \mu(P \cap \mathbb{Z}^d) \cup \nu(Q \cap \mathbb{Z}^e),
\]

2010 Mathematics Subject Classification: 52B20.

Keywords: integral convex polytope, free sum, integer decomposition property.
Then the free sum $\mathcal{P} \oplus \mathcal{Q}$ possesses the integer decomposition property if and only if the following two conditions are satisfied:

- each of \mathcal{P} and \mathcal{Q} possesses the integer decomposition property;
- either \mathcal{P} or \mathcal{Q} satisfies that the equation of each facet is of the form $\sum_{i=1}^{f} a_i z_i = b$, where each a_i is an integer, $b \in \{0, 1\}$ and $f \in \{d, e\}$.

An integral convex polytope $\mathcal{P} \subset \mathbb{R}^d$ is called a $(0, 1)$-polytope if each vertex of \mathcal{P} belongs to $\{0, 1\}^d$. It then follows that the equality (1) is always satisfied if each of \mathcal{P} and \mathcal{Q} is a $(0, 1)$-polytope. As an immediate corollary of Theorem 0.1, we also obtain the following

Corollary 0.2. Let $\mathcal{P} \subset \mathbb{R}^d$ be a $(0, 1)$-polytope of dimension d containing 0_d and $\mathcal{Q} \subset \mathbb{R}^e$ an integral convex polytope of dimension e containing 0_e. Suppose that \mathcal{P} and \mathcal{Q} satisfy $\mathbb{Z}(\mathcal{P} \cap \mathbb{Z}^d) = \mathbb{Z}^d$ and $\mathbb{Z}(\mathcal{Q} \cap \mathbb{Z}^e) = \mathbb{Z}^e$. Then the free sum $\mathcal{P} \oplus \mathcal{Q}$ possesses the integer decomposition property if and only if the following two conditions are satisfied:

- each of \mathcal{P} and \mathcal{Q} possesses the integer decomposition property;
- either \mathcal{P} or \mathcal{Q} satisfies that the equation of each facet is of the form $\sum_{i=1}^{f} a_i z_i = b$, where each a_i is an integer, $b \in \{0, 1\}$ and $f \in \{d, e\}$.

Example 0.3. Even though \mathcal{P} and \mathcal{Q} possess the integer decomposition property, the free sum $\mathcal{P} \oplus \mathcal{Q}$ may fail to possess the integer decomposition property. For example, let $\mathcal{P} \subset \mathbb{R}^3$ be the $(0, 1)$-polytope with the vertices $(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)$ and $(1, 0, 0)$. Then \mathcal{P} possesses the integer decomposition property, but the free sum $\mathcal{P} \oplus \mathcal{P}$ fails to possess the integer decomposition property. In fact, $z_1 + z_2 + z_3 = 2$ is the equation of a facet of \mathcal{P}.

A structure of the present paper is as follows. In Section 1, we will consider the condition for \mathcal{P} and \mathcal{Q} to satisfy the equality (1). In Section 2, a proof of Theorem 0.1 will be given.

1. When does the equality (1) hold?

Let $V(\mathcal{P})$ be the set of vertices of \mathcal{P} and let $V(\mathcal{Q})$ be that of \mathcal{Q}. First, for $W \subset V(\mathcal{P}) \setminus \{0_d\}$, let

$$\text{int}(W) = (\text{conv}(W \cup \{0_d\}) \setminus \partial \text{conv}(W \cup \{0_d\})) \cap \mathbb{Z}^d.$$

For $W \subset V(\mathcal{Q}) \setminus \{0_e\}$, $\text{int}(W)$ is also defined in the same way. Next, we define

$$\mathcal{W}(\mathcal{P}) = \{ W \subset V(\mathcal{P}) \setminus \{0_d\} : W \text{ is linearly independent and } \text{int}(W) \neq \emptyset \}.$$

In the similar way, we also define $\mathcal{W}(\mathcal{Q})$. Last, for any $W = \{w_1, \ldots, w_m\} \in \mathcal{W}(\mathcal{P})$ (similarly, for any $W \in \mathcal{W}(\mathcal{Q})$), let

$$\min(W) = \min \left\{ \sum_{i=1}^{m} r_i : \sum_{i=1}^{m} r_i w_i \in \text{int}(W) \right\}.$$
Then $0 < \min(W) < 1$.

Proposition 1.1. Let $\mathcal{P} \subset \mathbb{R}^d$ and $\mathcal{Q} \subset \mathbb{R}^e$ be integral convex polytopes containing 0_d and 0_e, respectively. Then the free sum $\mathcal{P} \oplus \mathcal{Q}$ satisfies the equality (1) if and only if

- $\mathcal{W}(\mathcal{P}) = \emptyset$ or $\mathcal{W}(\mathcal{Q}) = \emptyset$, or
- $\mathcal{W}(\mathcal{P}) \neq \emptyset$, $\mathcal{W}(\mathcal{Q}) \neq \emptyset$ and $\min(F) + \min(G) > 1$ for any $F \in \mathcal{W}(\mathcal{P})$ and $G \in \mathcal{W}(\mathcal{Q})$.

Proof. "Only if" Assume that there exist $F \in \mathcal{W}(\mathcal{P})$ and $G \in \mathcal{W}(\mathcal{Q})$ such that $\min(F) + \min(G) \leq 1$. Then each of F and G is linearly independent. Let $F = \{v_1, \ldots, v_n\}$ and let $G = \{w_1, \ldots, w_m\}$. Then there are $0 < r_1, \ldots, r_n < 1$, $0 < s_1, \ldots, s_m < 1$ such that $\sum_{i=1}^{n} r_i v_i \in \text{int}(F)$ and $\sum_{i=1}^{m} s_i w_i \in \text{int}(G)$, where $0 < \sum_{i=1}^{n} r_i < 1$ and $0 < \sum_{i=1}^{m} s_i < 1$ with $\sum_{i=1}^{n} r_i + \sum_{i=1}^{m} s_i \leq 1$. Let us consider

$$\alpha = \sum_{i=1}^{n} r_i \mu(v_i) + \sum_{i=1}^{m} s_i \nu(w_i) \in \mathbb{R}^{d+e}.$$

Since $\sum_{i=1}^{n} r_i v_i \in \mathbb{Z}^d$, we have $\sum_{i=1}^{n} r_i \mu(v_i) \in \mathbb{Z}^{d+e}$. Similarly, $\sum_{i=1}^{m} s_i \nu(w_i) \in \mathbb{Z}^{d+e}$. Thus, $\alpha \in \mathbb{Z}^{d+e}$. Moreover, since $\sum_{i=1}^{n} r_i + \sum_{i=1}^{m} s_i \leq 1$, we have $\alpha \in \mathcal{P} \oplus \mathcal{Q}$. Hence, $\alpha \in (\mathcal{P} \oplus \mathcal{Q}) \cap \mathbb{Z}^{d+e}$. On the other hand, since $\sum_{i=1}^{n} r_i v_i \neq 0_d$ and $\sum_{i=1}^{m} s_i w_i \neq 0_e$, we see that $\alpha \notin \mu(\mathcal{P} \cap \mathbb{Z}^d) \cup \nu(\mathcal{Q} \cap \mathbb{Z}^e)$. These mean that the equality (1) is not satisfied.

"If" Assume that (1) is not satisfied. Since the inclusion $(\mathcal{P} \oplus \mathcal{Q}) \cap \mathbb{Z}^{d+e} \supset \mu(\mathcal{P} \cap \mathbb{Z}^d) \cup \nu(\mathcal{Q} \cap \mathbb{Z}^e)$ is always satisfied, we may assume that there is α belonging to $(\mathcal{P} \oplus \mathcal{Q}) \cap \mathbb{Z}^{d+e} \setminus (\mu(\mathcal{P} \cap \mathbb{Z}^d) \cup \nu(\mathcal{Q} \cap \mathbb{Z}^e))$. Then α can be written like

$$\alpha = \sum_{i=1}^{n} r_i \mu(v_i) + \sum_{i=1}^{m} s_i \nu(w_i),$$

where $v_1, \ldots, v_n \in V(\mathcal{P}) \setminus \{0_d\}$, $w_1, \ldots, w_m \in V(\mathcal{Q}) \setminus \{0_e\}$, $0 \leq r_1, \ldots, r_n \leq 1$, $0 \leq s_1, \ldots, s_m \leq 1$ and $\sum_{i=1}^{n} r_i + \sum_{i=1}^{m} s_i \leq 1$. By Carathéodory’s Theorem (cf. [4, Corollary 7.1]), we can choose $\mu(v_1), \ldots, \mu(v_n), \nu(w_1), \ldots, \nu(w_m)$ as linearly independent vectors of \mathbb{R}^{d+e}, that is, v_1, \ldots, v_n are linearly independent in \mathbb{R}^d and so are w_1, \ldots, w_m in \mathbb{R}^e. Moreover, if $\sum_{i=1}^{n} r_i = 0$, then $\alpha \in \nu(\mathcal{Q} \cap \mathbb{Z}^e)$, a contradiction. Similarly, if $\sum_{i=1}^{m} s_i = 0$, then $\alpha \in \mu(\mathcal{P} \cap \mathbb{Z}^d)$, a contradiction. Thus, we also assume $\sum_{i=1}^{n} r_i > 0$ and $\sum_{i=1}^{m} s_i > 0$.

We consider $v = \sum_{i=1}^{n} r_i v_i \in \mathbb{Z}^d$. Since $\sum_{i=1}^{n} r_i > 0$, $\sum_{i=1}^{m} s_i > 0$ and $\sum_{i=1}^{n} r_i + \sum_{i=1}^{m} s_i \leq 1$, we have $0 < \sum_{i=1}^{n} r_i < 1$. Thus, $v \in \mathcal{P} \cap \mathbb{Z}^d$. Let v_{i_1}, \ldots, v_{i_g} be all of v_i’s such that $r_i > 0$ and let $S = \{v_{i_1}, \ldots, v_{i_g}\}$. Then S is also linearly independent and $v \in \text{int}(S)$. Hence, $S \in \mathcal{W}(\mathcal{P})$. Similarly, let w_{j_1}, \ldots, w_{j_h} be all of w_i’s such
that $s_i > 0$ and let $T = \{w_{j_1}, \ldots, w_{j_h}\}$. Then $T \in \mathcal{W}(Q)$. Now we see
\[
\min(S) + \min(T) \leq \sum_{k=1}^{g} r_{i_k} + \sum_{k=1}^{h} s_{j_k} = \sum_{i=1}^{n} r_{i} + \sum_{i=1}^{m} s_{i} \leq 1,
\]
as required.

\[\square\]

Example 1.2. (a) Let $P \subset \mathbb{R}^d$ be a $(0, 1)$-polytope. Then we easily see that $\mathcal{W}(P) = \emptyset$. Thus, if P or Q is a $(0, 1)$-polytope in Proposition 1.1, then the equality (1) always holds.

(b) Let $P = \text{conv}(\{(0, 0), (1, 0), (1, 2)\}) \subset \mathbb{R}^2$ and let $Q = \text{conv}(\{(0, 2)\}) \subset \mathbb{R}^1$. Then $\mathcal{W}(Q) \neq \emptyset$ but $\mathcal{W}(P) = \emptyset$. Thus the equality (1) holds.

(c) Let $P = Q = \text{conv}(\{(0, 0), (2, 1), (1, 2)\}) \subset \mathbb{R}^2$ and consider $W = \{(2, 1), (1, 2)\}$. Then we see that $\mathcal{W}(P) = \{W\}$. On the other hand, we also have $\min(W) = 2/3$. Thus the equality (1) holds.

2. A proof of Theorem 0.1

Let $P \subset \mathbb{R}^d$ be an integral convex polytope of dimension d. A configuration arising from P is the finite set $A = \{(\alpha, 1) \in \mathbb{Z}^{d+1} : \alpha \in P \cap \mathbb{Z}^d\}$. We say that A is normal if
\[
\mathbb{Z}_{\geq 0} \cdot A = \mathbb{Z} \cdot A \cap \mathbb{Q}_{\geq 0} \cdot A,
\]
where $\mathbb{Z}_{\geq 0}$ is the set of nonnegative integers and $\mathbb{Q}_{\geq 0}$ is the set of nonnegative rational numbers.

Recall from [3, Chapter IX] what the Ehrhart polynomial of an integral convex polytope is. Let $P \subset \mathbb{R}^d$ be an integral convex polytope of dimension d and, for each integer $n \geq 1$, write $i(P, n)$ for the number of integer points belonging to nP, i.e., $i(P, n) = \#nP \cap \mathbb{Z}^d$. It is known that $i(P, n)$ is a polynomial in n of degree d with $i(P, 0) = 1$. We call $i(P, n)$ the Ehrhart polynomial of P. We then define the integers $\delta_0, \delta_1, \delta_2, \ldots$ by the formula
\[
(1 - \lambda)^{d+1} \left[1 + \sum_{n=1}^{\infty} i(P, n) \lambda^n\right] = \sum_{n=0}^{\infty} \delta_n \lambda^n.
\]
It then follows that $\delta_n = 0$ for $n > d$. The polynomial
\[
\delta(P) = \sum_{n=0}^{d} \delta_n \lambda^n
\]
is called the δ-polynomial of P.

Let $K[t_1^{-1}, \ldots, t_d^{-1}, s]$ denote the Laurent polynomial ring in $d+1$ variables over a field K. If $\alpha = (\alpha_1, \ldots, \alpha_d) \in P \cap \mathbb{Z}^d$, then we write u_{α} for the Laurent monomial $t_1^{\alpha_1} \cdots t_d^{\alpha_d} \in K[t_1^{-1}, \ldots, t_d^{-1}]$. The toric ring of A is the subring $K[A]$ of $K[t_1^{-1}, \ldots, t_d^{-1}, s]$ which is generated by those Laurent monomials $u_{\alpha}s$ with $\alpha \in P \cap \mathbb{Z}^d$. Let $K[\{x_{\alpha}\}_{\alpha \in P \cap \mathbb{Z}^d}]$ be the polynomial ring in $|P \cap \mathbb{Z}^d|$ variables
over K with each $\deg x_\alpha = 1$. We then define the surjective ring homomorphism $\pi: K[[x_\alpha, \alpha \in P \cap Z^d]] \to K[A]$ by setting $\pi(x_\alpha) = u_\alpha s$ for each $\alpha \in P \cap Z^d$.

Finally, the Hilbert function of the toric ring $K[A]$ of the configuration A arising from an integral convex polytope $P \subset \mathbb{R}^d$ of dimension d is introduced. We write $(K[A])_n$ for the subspace of $K[A]$ spanned by those Laurent monomials of the form

$$(u_\alpha(1)s)(u_\alpha(2)s)\cdots(u_\alpha(n)s)$$

with each $\alpha^{(i)) \in P \cap Z^d$. In particular $(K[A])_0 = K$ and $(K[A])_1 = \sum_{\alpha \in P \cap Z^d} K u_\alpha s$.

The Hilbert function of $K[A]$ is the numerical function

$$H(K[A], n) = \dim_K(K[A])_n, \quad n = 0, 1, 2, \ldots.$$

Thus in particular $H(K[A], 0) = 1$ and $H(K[A], 1) = |P \cap Z^d|$. We then define the integers h_0, h_1, h_2, \ldots by the formula

$$(1 - \lambda)^{d+1} \left[\sum_{n=0}^{\infty} H(K[A], n)\lambda^n \right] = \sum_{n=0}^{\infty} h_n\lambda^n.$$

A basic fact [1, Theorem 11.1] of Hilbert functions guarantees that $h_n = 0$ for $n \gg 0$. We say that the polynomial

$$h(K[A]) = \sum_{n=0}^{\infty} h_n\lambda^n$$

is the h-polynomial of $K[A]$.

Lemma 2.1. Let $P \subset \mathbb{R}^d$ be an integral convex polytope of dimension d and $A \subset \mathbb{Z}^{d+1}$ the configuration arising from P. Suppose that P satisfies $\mathbb{Z}(P \cap \mathbb{Z}^d) = \mathbb{Z}^d$. Then the following conditions are equivalent:

(i) P possesses the integer decomposition property;

(ii) A is normal;

(iii) $\delta(P) = h(K[A]).$

Proof. It follows that P possesses the integer decomposition property if and only if, for $\alpha \in nP \cap \mathbb{Z}^d$, one has $(\alpha, n) \in \mathbb{Z}_{\geq 0}A$. Since $\mathbb{Z}(P \cap \mathbb{Z}^d) = \mathbb{Z}^d$, i.e., $\mathbb{Z}A = \mathbb{Z}^{d+1}$, it follows that A is normal if and only if $\mathbb{Z}_{\geq 0}A = \mathbb{Z}^{d+1} \cap \mathbb{Q}_{\geq 0}A$. Moreover, for $\alpha \in \mathbb{Q}^d$, one has $\alpha \in nP$ if and only if $(\alpha, n) \in \mathbb{Q}_{\geq 0}A$. Hence (i) \iff (ii) follows.

In general, one has $i(P, n) \geq H(K[A], n)$ for $n \in \mathbb{Z}_{\geq 0}$. Furthermore, it follows that $i(P, n) = H(K[A], n)$ for all $n \in \mathbb{Z}_{\geq 0}$ if and only if P possesses the integer decomposition property. Hence (i) \iff (iii) follows. \qed

Lemma 2.2. Let $P \subset \mathbb{R}^d$ and $Q \subset \mathbb{R}^e$ be integral convex polytopes of dimension d and e which contain the origin of \mathbb{R}^d and \mathbb{R}^e, respectively. Let $A \subset \mathbb{Z}^{d+1}$ and $B \subset \mathbb{Z}^{e+1}$ be the configurations arising from P and Q, respectively. Let $A \oplus B \subset \mathbb{Z}^{d+e+1}$ denote the configuration arising from the free sum $P \oplus Q \subset \mathbb{R}^{d+e}$. Suppose that

$$(P \oplus Q) \cap \mathbb{Z}^{d+e} = \mu(P \cap \mathbb{Z}^d) \cup \nu(Q \cap \mathbb{Z}^e).$$
Then
\[h(K[A \oplus B]) = h(K[A])h(K[B]). \]

Furthermore, if \(P \oplus Q \) possesses the integer decomposition property, then
\[\delta(P \oplus Q) = \delta(P)\delta(Q). \]

Proof. Let \(K[A] \subset K[t_1, t_1^{-1}, \ldots, t_d, t_d^{-1}, s] \) and \(K[B] \subset K[t'_1, t'_1^{-1}, \ldots, t'_e, t'_e^{-1}, s'] \). Then \(K[A \oplus B] = (K[A] \otimes K[B])/(s - s') \). Hence \(h(K[A \oplus B]) = h(K[A] \otimes K[B]) = h(K[A])h(K[B]) \), as desired.

If, furthermore, \(P \oplus Q \) possesses the integer decomposition property, then each of \(P \) and \(Q \) possesses the integer decomposition property. Lemma 2.1 then says that \(\delta(P \oplus Q) = h(K[A \oplus B]) \), \(\delta(P) = h(K[A]) \) and \(\delta(Q) = h(K[B]) \). Hence \(\delta(P \oplus Q) = \delta(P)\delta(Q) \), as required. \(\square \)

We also recall the following theorem.

Theorem 2.3 ([2, Theorem 1.4]). Let \(P \subset \mathbb{R}^d \) and \(Q \subset \mathbb{R}^e \) be integral convex polytopes containing the origin (of \(\mathbb{R}^d \) or \(\mathbb{R}^e \)). Then the equality \(\delta(P \oplus Q) = \delta(P)\delta(Q) \) holds if and only if either \(P \) or \(Q \) satisfies that the equation of each facet is of the form \(\sum_{i=1}^f a_iz_i = b \), where each \(a_i \) is an integer, \(b \in \{0, 1\} \) and \(f \in \{d, e\} \).

We are now in the position to give a proof of Theorem 0.1.

Proof of Theorem 0.1. Assume that each of \(P \) and \(Q \) possesses the integer decomposition property and either \(P \) or \(Q \) satisfies the condition on its facets described in Theorem 0.1. It then follows from Theorem 2.3 that the condition on the facets is equivalent to satisfying that
\[\delta(P \oplus Q) = \delta(P)\delta(Q). \]

Moreover, since each of \(P \) and \(Q \) possesses the integer decomposition property, we have the equalities \(\delta(P) = h(K[A]) \) and \(\delta(Q) = h(K[B]) \) by Lemma 2.1. In particular, one has
\[\delta(P)\delta(Q) = h(K[A])h(K[B]). \]

Furthermore, since the equality (1) is satisfied, it follows from Lemma 2.2 that
\[h(K[A \oplus B]) = h(K[A])h(K[B]), \]
where \(A \oplus B \subset \mathbb{Z}^{d+e+1} \) denotes the configuration arising from \(P \oplus Q \subset \mathbb{R}^{d+e} \). Hence, by (2), (3) and (4), we obtain
\[\delta(P \oplus Q) = h(K[A \oplus B]). \]

Therefore, from Lemma 2.1 we conclude that \(P \oplus Q \) possesses the integer decomposition property.
On the other hand, suppose that $P \oplus Q$ possesses the integer decomposition property. Then it is easy to see that each of P and Q possesses the integer decomposition property. Moreover, since $P \oplus Q \subseteq \mathbb{R}^{d+e}$ satisfies (1), the equality $\delta(P \oplus Q) = \delta(P)\delta(Q)$ holds by Lemma 2.2. Therefore, by Theorem 2.3, either P or Q satisfies the condition on its facets described in Theorem 0.1, as required. □

References

[1] M. F. Atiyah and I. G. Macdonald, “Introduction to Commutative Algebra,” Addison–Wesley, 1969.

[2] M. Beck, P. Jayawant and T. B. McAllister, Lattice-point generating functions for free sums of convex sets, *J. Combin. Theory, Ser. A* 120 (2013), 1246–1262.

[3] T. Hibi, “Algebraic combinatorics on convex polytopes,” Carslaw Publications, Glebe, N.S.W., Australia, 1992.

[4] A. Schrijver, “Theory of Linear and Integer Programming,” John Wiley & Sons, 1986.

Takayuki Hibi, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: hibi@math.sci.osaka-u.ac.jp

Akihiro Higashitani, Department of Mathematics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake cho, Sakyo-ku, Kyoto 606-8502, Japan

E-mail address: ahigashi@math.kyoto-u.ac.jp