Sphingolipid dysregulation due to lack of functional KDSR impairs proplatelet formation causing thrombocytopenia

by Tadbir K Bariana, Veerle Labarque, Jessica Heremans, Chantal Thys, Mara De Reys, Daniel Greene, Benjamin Jenkins, Luigi Grassi, Denis Seyres, Frances Burden, Deborah Whitehorn, Olga Shamardina, Sofia Papadia, Keith Gomez, NIHR BioResource, Chris Van Geet, Albert Koulman, Willem H Ouwehand, Cedric Ghevaert, Mattia Frontini, Ernest Turro, and Kathleen Freson. Collaborative Groups: NIHR BioResource (Jayanthi Alamelu, Raza Alikhan, David Allsup, Arif Alvi, Steve Austin, Trevor Baglin, Tamam Bakchoul, Gareth Baynham, Neha Bhatnagar, Tina Biss, Sara Boyce, Elizabeth Chalmers, Melissa V Chan, Janine Collins, Peter W Collins, Nicola S Curry, Kate Downes, Tina Dutt, Wendy N Erber, Gillian Evans, Tamara Everington, Remi Favier, Bruce Furie, Michael Gattens, Greinacher Andreas, Gresele Paolo, Daniel Hart, Yvonne M C Henskens, Rashid Kazmi, David Keeling, Anne M Kelly, Michael A Laffan, Michele Lambert, Claire Lentainghe, Ri Liesner, Bella Madan, Mike Makris, Carolyn Millar, Andrew D Mumford, Sarah Mangles, Mary Mathias, Paquita Nurden, Samya Obaji, K John Pasi, Jeanette H Payne, Kathelijne Peerlinck, Fernando Pinto, Shoshana Revel-Vilk, Sylvia Richardson, Mike Richards, Matthew T Rondina, Catherine Roughley, Sol Schulman, Harald Schulze, Suthesh Sivapalaratnam, Ilenia Simeoni, Marie Scully, Susan E Shapiro, Keith Sibson, Matthew C Sims, Matthew J Stubbs, R Campbell Tait, Kate Talks, Gordon B Taylor, Jecko Thachil, Cheng-Hock Toh, Minka J A Vries, Timothy Warner, Henry G Watson, Sarah K Westbury, John-Paul Westwood)

Haematologica 2018 [Epub ahead of print]

Citation: Tadbir K Bariana, Veerle Labarque, Jessica Heremans, Chantal Thys, Mara De Reys, Daniel Greene, Benjamin Jenkins, Luigi Grassi, Denis Seyres, Frances Burden, Deborah Whitehorn, Olga Shamardina, Sofia Papadia, Keith Gomez, NIHR BioResource, Chris Van Geet, Albert Koulman, Willem H Ouwehand, Cedric Ghevaert, Mattia Frontini, Ernest Turro, and Kathleen Freson. Collaborative Groups: NIHR BioResource (Jayanthi Alamelu, Raza Alikhan, David Allsup, Arif Alvi, Steve Austin, Trevor Baglin, Tamam Bakchoul, Gareth Baynham, Neha Bhatnagar, Tina Biss, Sara Boyce, Elizabeth Chalmers, Melissa V Chan, Janine Collins, Peter W Collins, Nicola S Curry, Kate Downes, Tina Dutt, Wendy N Erber, Gillian Evans, Tamara Everington, Remi Favier, Bruce Furie, Michael Gattens, Greinacher Andreas, Gresele Paolo, Daniel Hart, Yvonne M C Henskens, Rashid Kazmi, David Keeling, Anne M Kelly, Michael A Laffan, Michele Lambert, Claire Lentainghe, Ri Liesner, Bella Madan, Mike Makris, Carolyn Millar, Andrew D Mumford, Sarah Mangles, Mary Mathias, Paquita Nurden, Samya Obaji, K John Pasi, Jeanette H Payne, Kathelijne Peerlinck, Fernando Pinto, Shoshana Revel-Vilk, Sylvia Richardson, Mike Richards, Matthew T Rondina, Catherine Roughley, Sol Schulman, Harald Schulze, Suthesh Sivapalaratnam, Ilenia Simeoni, Marie Scully, Susan E Shapiro, Keith Sibson, Matthew C Sims, Matthew J Stubbs, R Campbell Tait, Kate Talks, Gordon B Taylor, Jecko Thachil, Cheng-Hock Toh, Minka J A Vries, Timothy Warner, Henry G Watson, Sarah K Westbury, John-Paul Westwood). Sphingolipid dysregulation due to lack of functional KDSR impairs proplatelet formation causing thrombocytopenia.

Haematologica. 2018; 103:xxx
doi:10.3324/haematol.2018.204784

Publisher's Disclaimer.

E-publishing ahead of print is increasingly important for the rapid dissemination of science. Haematologica is, therefore, E-publishing PDF files of an early version of manuscripts that have completed a regular peer review and have been accepted for publication. E-publishing of this PDF file has been approved by the authors. After having E-published Ahead of Print, manuscripts will then undergo technical and English editing, typesetting, proof correction and be presented for the authors' final approval; the final version of the manuscript will then appear in print on a regular issue of the journal. All legal disclaimers that apply to the journal also pertain to this production process.
Sphingolipid dysregulation due to lack of functional KDSR impairs proplatelet formation causing thrombocytopenia

Scientific category: Platelets and Thrombopoiesis

Short title for running head: Mechanism of KDSR-associated thrombocytopenia

Tadbir K Bariana1-3,4, Veerle Labarque5, Jessica Heremans5, Chantal Thys4,5, Mara De Reys5, Daniel Greene3,4,6,7, Benjamin Jenkins5, Luigi Grassi3,4,6,7, Denis Seyres3,4,6,7, Frances Burden3,4,6, Deborah Whitehorn3,4,6, Olga Shamardina3,4,6, Sofia Papadia3,4,6, Keith Gomez1,2,4, NIHR BioResource4, Chris Van Geet4,5, Albert Koulman8, Willem H Ouwehand3,4,6,9,10, Cedric Ghevaert3,4,6, Mattia Frontini3,4,6,9, Ernest Turro3,4,6,7, Kathleen Freson4,5

1Department of Haematology, University College London, London, United Kingdom
2The Katharine Dormandy Haemophilia Centre and Thrombosis Unit, Royal Free London NHS Foundation Trust, London, United Kingdom
3Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
4NIHR BioResource, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
5Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Belgium
6NHS Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
7Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge Biomedical Campus, Cambridge, United Kingdom
8NIHR Biomedical Research Centre Core Metabolomics and Lipidomics Laboratory, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
9British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, United Kingdom
10Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom

Correspondence to
Kathleen Freson
Department of Cardiovascular Science
Center for Molecular and Vascular Biology
Herestraat 49, 3000 Leuven, Belgium
kathleen.freson@med.kuleuven.be

Abstract word count: 249
Text word count: 3009
6 figures, 1 supplemental file
Abstract

Sphingolipids are fundamental to membrane trafficking, apoptosis and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4. Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalisation of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organisation during megakaryopoiesis and proplatelet formation.
Introduction
KDSR or 3-keto-dihydrosphingosine reductase is an early, essential enzyme in the pathway of de novo sphingolipid synthesis that catalyzes the conversion of 3-keto-dihydrosphingosine (KDS) to dihydrosphingosine (DHS) on the cytosolic leaflet of the endoplasmic reticulum.1 The canonical transcript for KDSR encodes a 332 amino acid protein. The gene is widely transcribed,1-3 consistent with the integral roles of the sphingolipid family in forming lipid rafts that facilitate membrane trafficking and in the regulation of fundamental cellular functions that include apoptosis, differentiation, and proliferation.4 The importance of sphingolipid synthesis for normal cellular functions is illustrated by the complex multisystem phenotypes of null mice for key enzymes or receptors in the pathway, including defective platelet activation and thrombus formation.5, 6 A pathway for de novo synthesis of sphingolipids in a megakaryocytic cell line has been shown, but plays a minimal role in mature platelets, which instead acquire essential sphingolipids by incorporating them from plasma or recycling plasma membrane sphingomyelins, both largely independently of KDSR.7

Consistent with these important roles of sphingolipids, compound heterozygous variants in KDSR (Figure 1) have recently been identified as causal of the severe skin disorder erythrokeratodermia variabilis et progressiva 4 (EKVP4, OMIM617526), a condition characterised by neonatal onset of thick, scaly skin on the face and genitals and milder erythematous palmo-plantar scaling.8 This observation established a role for KDSR in the homeostasis of keratinisation, however it was unclear whether these cases had hematological pathologies. A more recent study described four probands with EKVP4 caused by KDSR variants accompanied by severe thrombocytopenia and platelet dysfunction in infancy.9 A reduction in plasma S1P and surface-exposed ceramide in human platelets, as well as diminished ceramide levels in affected skin were reported. Bone marrow morphology in one patient was normal and in a second one demonstrated increased megakaryopoiesis. For this patient a diagnosis of immune-mediated thrombocytopenia was made with no response to corticosteroid treatment and minimal response to splenectomy. No further exploration of the molecular mechanism underlying the thrombocytopenia was undertaken.9

Here we provide evidence that in this pedigree, KDSR plays a fundamental role in megakaryopoiesis, cytoplasmic organisation and proplatelet formation. We describe a pedigree in which compound heterozygous variants in KDSR segregate with severe thrombocytopenia and minimal or no skin involvement. We report novel phenotypes of progressive juvenile myelofibrosis in the propositus, who is older, and anemia in both siblings. Broad metabolic profiling complemented by targeted mass spectrometry assays confirm KDSR hypofunction and suggest activation of an alternative, compensatory pathway in vivo. Depletion of kdsr in zebrafish and studies with CD34+ stem cell- and induced pluripotent stem cell (iPSC)-derived MK show cellular and biochemical signatures in common with those observed in our patients, showing the mechanism by which KDSR variants mediate thrombocytopenia.

Methods

Recruitment and sequencing
Following informed, written consent (ethical study approval ML3580), the propositus was recruited to the Bleeding, thrombotic and Platelet Disorders (BPD) domain of the NIHR BioResource-Rare Diseases study (UK Research Ethics Committee 13/EE/0325, https://bioresource.nihr.ac.uk). Further details are provided in the supplemental Methods.

Platelet studies
Aggregation and transmission electron microscopy (EM) studies were performed as described previously.10

Metabolic profiling
Global metabolic profiling of plasma was performed by Metabolon, Inc. (Durham, NC) using the DiscoveryHD4 liquid chromatography tandem mass spectrometry (LC-MS/MS) platform, as previously described.11 Results of study participants were
compared with 496 subjects between the ages of 4 and 55 years without thrombocytopenia. A separate LC-MS platform method, previously described,12,13 was used for specific confirmation of the global sphingolipid profile. Further details are provided in the supplemental Methods.

\textit{Stem cell differentiation assays}

CD34+ hematopoietic stem cells (HSC) were isolated by magnetic cell sorting (Miltenyi Biotec, Bergisch Gladbach, DE) from bone marrow aspirates from the propositus (at 5 years of age) and an unrelated control, and from peripheral blood from the propositus (at 8-5 years of age), his affected sister (at 5 months of age) and an unrelated control.

In addition, expanded bone marrow- and peripheral blood- derived HSC at day 3 of differentiation were used for liquid MK cultures in two experiments. In the first experiment, HSC obtained from the bone marrow of the propositus were differentiated in parallel to a control. For the second experiment, HSC obtained from the peripheral blood of the propositus and his affected sister were cultured in parallel with a different control. Details of the differentiation protocols, colony assays and statistical analysis of MK immunostaining are provided in the supplemental Methods.

\textit{Zebrafish analysis}

Tg(cd41:EGF) embryos14 were injected at the one-cell stage with a \textit{kdsr} ATG morpholino (MO) (5’ ctcaggagcatgggtcaacctgat, \textit{Kdsr-MO}) purchased from Gene Tools LLC (Philomath, OR) or with buffer (control). Zebrafish \textit{kdsr} has ZFIN accession number ZDB-GENE-040426-853. Thrombocyte formation was analysed as described previously.15,16 Immunoblots were developed with goat anti-GFP (Rockland) and anti-FVT1/KDSR (Clone H-149; Santa Cruz). All animal protocols were approved by the Ethical Committee of KU Leuven.

\textit{Lentiviral reference KDSR transcript expression in iPSC}

iPSC were prepared by the Cambridge Biomedical Research Centre iPSC core laboratory as described in the supplemental Methods. iPSC were transduced with the lentiviral vector to express the open reading frame (ORF) of \textit{KDSR} (pLenti-EF1a-KDSR-myc-DDK-IRES-Puro, Origene) and the un-cloned destination vector PS10085 (Origene) to generate the reference transcript rescue line (K\textit{resc}) and empty vector control line (K\textit{ev}), respectively. The ORF is identical to transcript ENST00000591902 (RefSeq accession no. NM_002035, Origene TrueClone cDNA cat. RC201153), which has the highest reported expression in MK.2 Details of lentiviral particle production, transduction and selection are given in the supplemental Methods.

\textit{Forward programming to MK (iMK)}

iPSC were reprogrammed to MK (named iMK hereafter) using a protocol for generating MK described by Moreau \textit{et al.}17 K\textit{resc} and K\textit{ev} iMK were generated in three independent experiments. Details of iMK reprogramming, immunophenotyping, the proplatelet assay and RNA sequencing are given in the supplemental Methods.

\textbf{Results}

\textit{Clinical characteristics}

The eight-year old male propositus was born to healthy, unrelated parents of European ancestry (Figure 2A). At 4 months of age he presented with a viral infection and was found to have a platelet count of 65x109/L and mild normocytic, normochromic anemia with normal iron and hematinic levels (Figure 2B, supplemental Table 1A, supplemental Figure 1). Subsequent complete blood counts showed on several occasions platelet counts <100x109/L accompanied by rectal and gingival bleeding, excessive ecchymosis, and recurrent epistaxis when platelet counts were <10x109/L. Possible skin involvement was limited to a slow-to-heal perianal wound following rectal manometry. Serial bone marrow examinations revealed increased numbers of dysplastic MK and progressive severe myelofibrosis (Figure 2C, supplemental Figure 2, supplemental Table 1B); despite this we observed significant
fluctuation in the propositus’ thrombocytopenia and normalisation of the hemoglobin level over the course of his first decade (Figure 2B, supplemental Table 1A). The mechanism of the improvement is unclear, and occurred in the absence of identifiable environmental, therapeutic, or dietary interventions. Genetic analyses of bone marrow DNA excluded known somatic mutations causal of myelodysplasia or primary myelofibrosis (supplemental Table 1B). Light transmission platelet aggregation was normal with the exception of an attenuated response to stimulation with collagen at low dose (supplemental Table 1C). The propositus’ older brother and his parents were unaffected (Figure 2A). His sister presented at birth with thrombocytopenia (Figure 2A and B, supplemental Table 1A) and mild ichthyosis in her left axilla (Figure 2D), but the skin symptoms resolved spontaneously over the first month. At 5 months of age she also developed persistent, normocytic, normochromic anemia (Figure 2B, supplemental Table 1A). Transmission EM analysis showed platelets of normal size (Figure 2E). Delta-granules appeared diminished, however it was not possible to count these accurately in the absence of whole-mount EM or a specific δ-granule marker (CD63 also stains lysosomal structures). There were no other marked ultrastructural abnormalities.

Pathogenic variants in KDSR

The propositus and his affected sister carry a maternally inherited nonsense variant 18:61006104 G>A (p.Arg236*) and a paternally inherited missense variant 18:61018270 G>A (p.Arg154Trp) in *KDSR* (Figure 2A). The variants were confirmed by Sanger sequencing (supplemental Figure 3) and have minor allele frequencies in Europeans of 4.82x10^{-5} and 2.32x10^{-4} respectively.18, 19 The missense variant p.Arg154Trp is localised in the catalytic domain of KDSR (Figure 1)20 and both are found in the most abundant KDSR transcripts in MK (supplemental Figure 4).2 The nonsense variant is absent from two out of three major platelet transcripts, which is in keeping with minimal de novo sphingolipid synthesis in mature platelets (supplemental Figure 4).7 The results of co-segregation study were concordant with an autosomal recessive mode of inheritance (Figure 2A).

Sphingolipid profiles

We reasoned that the variants would cause reduced enzymatic function, leading to a build-up of the substrate KDS (Figure 3A). Indeed global metabolic profiling showed KDS to be detectable in plasma from the propositus but not from the parents, the healthy sibling, and 496 unrelated controls (Figure 3B). This finding was corroborated using a LC-MS platform for the selective measurement of specific sphingolipids, which confirmed that KDS was detectable in both patients and absent from the plasma of controls (Figure 3C, supplemental Figure 5). Interestingly, there was no reduction in downstream sphingolipids in the patients using either platform (supplemental Tables 2 and 3A). In fact, global profiling showed levels of the KDSR product, DHS, were higher for the propositus than controls. These findings raise the hypothesis that KDSR hypofunction during de novo sphingolipid synthesis is compensated in vivo by alternative mechanisms, for example by the recycling of relatively abundant sphingomyelins along a pathway that normally contributes little to free DHS production.4

Depletion of kdsr in zebrafish causes thrombocytopenia

We explored the role of the enzyme on thrombocyte formation in zebrafish by MO-mediated depletion of the kdsr transcript in Tg(cd41:EGFP). This led as expected to a reduction of the Kdsr protein level (Figure 4A and B) and resulted in curved tails, which is a typical feature for embryos with thrombocytopenia (supplemental Figure 6).15 The number of thrombocytes was inversely correlated with the dose of MO injected (Figure 4C and D). Targeted sphingolipid profiling showed elevated and undetectable KDS in lysates from MO and control embryos, respectively (Figure 4E). Similar to the results obtained with the propositus’ plasma, dihydroceramides, ceramides, sphingomyelins and glycosphingolipids that are downstream of Kdsr were not significantly different between Kdsr-depleted and control fish (supplemental Table 3B).

Impaired proplatelet formation in MK from patients

CFU-GEMM cultures differentiated from bone marrow HSC of the propositus showed hyperproliferation of myeloid cells (p=0.001, t-test) with a reduced myeloid/erythroid ratio compared to the controls (supplemental Figure 7). CFU-MK numbers
were comparable to those of the control, although individual MK colonies were denser for the propositus and liquid cultures showed an increased number of MK (supplemental Figure 8). MK in control cultures formed proplatelets, whilst MK derived from both the propositus and affected sister showed a strong reduction in proplatelet formation, despite similar levels of membrane budding and a higher number of CD41 and CD42 positive cells in propositus-derived cultures when compared with control MK (Figure 5A; supplemental Figure 8, 9, and 10). Patient-derived MK also showed extensive, abnormal formation of lamellipodia and reduced cell size (p=0.014, likelihood ratio test, Figures 5B and C).

The abnormal morphological, functional, and biochemical features of the propositus’ iMK can be rescued

To corroborate the atypical phenotypes of MK derived from the HSC, we transduced iPSC from the propositus with lentiviral vectors containing the reference KDSR ORF (K^{resc}) or an inert control vector (K^{ev}), and reprogrammed these cells to iMK (supplemental Figure 11A). Analysis of the iMK RNA-seq results showed similar KDSR gene expression but the majority of sequencing reads in the rescued iMK carried the reference allele at Chr18:61018270 G>A (p.Arg154Trp, supplemental Figures 11B, C and D). These findings are consistent with correction of the genetic defect without significant overexpression, and resulted in increased proplatelet formation compared with control iMK four hours after seeding (Figures 6A, B and C; p=0.047, t-test). The observed iMK proplatelets were shorter and less branched than those observed following directed differentiation from stem cell cells, in keeping with published reports using this protocol.17 Upon microscopic inspection the rescued iMK seemed larger than the non-rescued ones (which was confirmed to be significant by flow cytometry, supplemental Figure 11E) and the increased proplatelet formation resulted by 24 hours in little residual cytoplasm for the rescued versus the non-rescued iMK (Figure 6C). At the biochemical level the rescue resulted in a significant reduction of KDS levels (p=0.02, t-test) showing the effectiveness of the gene therapy approach in ‘curing’ the iMK from the propositus (Figure 6D). Similar to findings in plasma and in zebrafish, DHS levels did not differ between the iMK with and without functional KDSR transcripts, indicating that the postulated, compensatory mechanism is also present in iMK. We searched the iMK transcriptome landscape for possible differences in the levels of transcripts of other key enzymes that regulate sphingolipid synthesis and recycling (the enzymes examined are as shown in Figure 3A). This identified only ASAH1 and CERS6 transcripts to be down- and up- regulated respectively (posterior probabilities 0.610 and 0.774; log fold change -0.67 and +0.70, respectively). These two enzymes regulate the ceramide-sphingosine ratio (Figure 3A, supplemental Figure 12) and in keeping with these findings, the rescued iMK showed higher sphingosine and lower ceramide levels (Figure 6D).

Discussion

Pathogenic mutations in KDSR have recently been associated with a recessively inherited syndrome of moderate-to-severe skin pathology and thrombocytopenia.8, 9 We have described two novel KDSR mutations causing thrombocytopenia in the propositus and his infant sister, expanding the phenotypic spectrum of this recently identified Mendelian disorder from severe skin pathology with no apparent hematological involvement to profound thrombocytopenia and moderate anemia with spontaneous improvement across the first decade, and almost imperceptible dermatological abnormalities. In the propositus bone marrow studies also showed the novel phenotype of severe juvenile myelofibrosis, however the sister was too young to allow confirmation of this phenotype. The biochemical sphingolipid signatures of the plasma and patient-derived iMK confirmed the predicted reduction in function with elevated levels of its substrate, KDS. This is as expected, from the combination of a variant encoding a premature stop codon and a hypomorphic allele involving a missense variant in the catalytic domain. Unexpectedly, downstream metabolites in the sphingolipid pathway including DHS, ceramide, and sphingosine-1-phosphate were not reduced in plasma, suggesting that KDSR hypofunction during de novo sphingolipid synthesis is compensated by an alternative pathway. One possible alternative pathway is the recycling of relatively abundant sphingomyelins, a pathway previously shown to contribute to production of downstream sphingolipids such as dihydroceramide, ceramide, and sphingosine, but considered to contribute little, if at all to DHS production under normal conditions.21 Post-translational modifications to sphingolipid enzymes may also explain the metabolic
profile, and further work is required to explore this possibility. Importantly, the profile of increased ceramide and reduced sphingosine in propositus-derived iMK compared with rescued iMK, and the consistent and potentially explanatory transcriptional dysregulation of enzymes \textit{ASAH1} and \textit{CERS6}, is at odds with the limited sphingolipid quantitation undertaken in previous studies which showed that ceramide levels were reduced in affected skin and that platelet surface exposure of ceramide was impaired in individuals with hypo-functional \textit{KDSR} variants.\cite{9}

Our observation that MK lacking functional \textit{KDSR} are hyperproliferative is consistent with earlier reports,\cite{9} but we expand on this characterisation by showing the \textit{ex-vivo} generated patient MK to be smaller than controls and to be less effective in proplatelet formation. Proplatelets are pseudopodial projections of megakaryocyte cytoplasm, supported at their core by microtubular bundles that carry granules and other platelet cargo from the body of the megakaryocyte to the tip of the proplatelet.\cite{22} Aberrant size and proplatelet formation were not only observed in MK obtained by differentiation of primary HSC obtained from the two patients, but are also present in iMK generated by forward programming of iPSC derived from the propositus’ fibroblasts. All together we consider the ineffective platelet formation caused by the absence of \textit{KDSR} to be the primary cause of the thrombocytopenia. Increased turn-over because of a reduced platelet lifespan seems to be a less likely explanation because the immature platelet fraction was not significantly raised in the two patients compared with healthy controls (data not shown). We hypothesize that impaired platelet formation may, in turn, be caused by cytoskeletal disorganisation and further experiments are required to explore this possibility. Pathogenic mutations in several other genes (e.g. \textit{MYH9}, \textit{ACTN1}, \textit{FLNA}, \textit{TUBB1}, \textit{DIAPH1}, \textit{TPM4}) encoding proteins with important functional roles in cytoskeletal reorganisation and actin polymerisation are causal of dominant forms of thrombocytopenia.\cite{23} However these genetic disorders are characterised by enlarged platelets, and the mean volumes of the platelets of our patients are within the normal ranges for males and females, respectively.

The increased level of KDS in plasma was confirmed at the cellular level in iMK derived from the propositus. This increased level was normalised upon rescue of the propositus’ iMK with a \textit{KDSR} transcript carrying the reference allele. The correction of the biochemical defect was mirrored by a recovery of iMK size and improvement of their capacity to form proplatelets. In further support of the central importance of \textit{KDSR} in thrombopoiesis we show that \textit{KDSR} knockdown in a zebrafish model is associated with impaired thrombocyte formation. Similar approaches have identified multiple potential regulators of thrombopoiesis,\cite{24} though in isolation zebrafish studies are limited by inherent differences in thrombopoiesis between mammals and fish, notably that zebrafish have nucleate thrombocytes rather than MK.

The marked, spontaneous improvement of the propositus’ thrombocytopenia and anemia led to reversal of the decision to treat the condition by HSC transplantation. The mechanism of this improvement is unclear, given the presence of progressive myelofibrosis and in the absence of clinical features to suggest significant extramedullary hemopoiesis such as splenomegaly. Recent studies have shown spontaneous improvement in blood counts in other inherited juvenile bone marrow failure syndromes, most notably those associated with pathogenic variants in \textit{SAMD9} or \textit{SAMD9L}.\cite{25} In these cases the improvement was attributed to the acquisition of corrective somatic mutations. Further longitudinal studies of individuals affected by pathogenic \textit{KDSR} variants is essential to determine whether the clinical course described is representative, and whether a careful watch-and-wait approach rather than early intervention may be more appropriate in this genetically-defined subgroup of cases with inherited thrombocytopenia accompanied by bone marrow failure.
Funding
T.K.B is supported by the British Society of Haematology and NHS Blood and Transplant. K.F and C.V.G. are supported by the Fund for Scientific Research-Flanders (FWO Vlaanderen, Belgium; G.0B17.13N) and by the Research Council of the University of Leuven (BOF KU Leuven, Belgium; OT/14/098). C.V.G is holder of the Bayer and Norbert Heimburger (CSL Behring) Chairs. The structured illumination microscope was acquired through a CLME grant from Minister Lieten to the VIB BioImaging Core, Leuven. J.H is supported by the Fund for Scientific Research-Flanders (FWO Vlaanderen, Belgium) grant no.1S00816N. A.K and B.J are funded by the National Institute for Health Research (NIHR) Biomedical Research Centre (RG64245). M.F. is supported by the British Heart Foundation (BHF) Cambridge Centre of Excellence (RE/13/6/30180). The Ouwehand laboratory receives support from the BHF, Bristol-Myers Squibb, European Commission, MRC, NHS Blood and Transplant, Rosetrees Trust, the NIHR Biomedical Research Centre based at Cambridge University Hospitals NHS Foundation Trust, and the University of Cambridge.

Acknowledgements
The NIHR BioResource – Rare Disease Study is a multicentre whole-genome sequencing (WGS) study of approximately 13,000 patients. The genotype and phenotype data are being incorporated in the 100,000 Genomes Project. This study makes use of data generated by the NIHR BioResource and a full list of investigators who contributed to the generation of the data is available from https://bioresource.nihr.ac.uk/rare-diseases/consortia-lists/. Funding for the project was provided by the NIHR (grant number RG65966). The NIHR BioResource projects were approved by Research Ethics Committees in the UK and appropriate national ethics authorities in non-UK enrolment centres. The authors are also grateful to all the research participants who donated their samples for this study and to Professor Andrew Mumford (University of Bristol, Bristol, UK), Professor Michael Laffan (Imperial College London, London, UK), Dr Lining Guo (Metabolon Inc, Durham, NC), and Dr Sergio Rodriguez-Cuenca and Professor Antonio Vidal-Puig from the University of Cambridge (Cambridge, UK) for their input. The Tg(cd41:EGF)11 line was a gift from Professor Leonard Zon (Hematology Division, Brigham and Women’s Hospital, Boston, MA).

Authorship contributions
T.K.B analysed the results, performed the iPSC and iMK experiments, and wrote the manuscript. E.T and D.G performed statistical analyses and E.T edited the manuscript. C.T. performed stem cell differentiations. J.H. performed granule immunostainings and quantifications. M.D.R. performed zebrafish experiments. F.B assisted with cDNA library synthesis. L.G and D.S performed RNA-seq analysis. B.J performed mass spectrometry of sphingolipids. M.F and A.K analysed results and edited the paper. D.W provided sample logistics, QC and whole genome sequencing oversight. O.S analysed the sequencing results. C.G and K.G edited the paper. V.L and C.V.G are clinicians following up this pedigree. W.H.O leads the NIHR BioResource- Rare Diseases and co-wrote the paper. K.F. designed the study and analysis plan, and co-wrote the paper.

Conflict of Interest Disclosures
The authors have declared that no conflict of interest exists.
References

1. Kihara A, Igarashi Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J Biol Chem. 2004;279(47):49243-49250.
2. Chen L, Kostadima M, Martens JH, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014;345(6204):1251033.
3. Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204-213.
4. Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry. 2001;40(16):4893-4903.
5. Munzer P, Schmid E, Walker B, et al. Sphingosine kinase 1 (Sphk1) negatively regulates platelet activation and thrombus formation. Am J Physiol Cell Physiol. 2014;307(10):C920-927.
6. Munzer P, Borst O, Walker B, et al. Acid sphingomyelinase regulates platelet cell membrane scrambling, secretion, and thrombus formation. Arterioscler Thromb Vasc Biol. 2014;34(1):61-71.
7. Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. J Lipid Res. 2005;46(11):2458-2467.
8. Boydem LM, Vincent NG, Zhou J, et al. Mutations in KDSR Cause Recessive Progressive Symmetric Erythroderma. Am J Hum Genet. 2017;100(6):978-984.
9. Takeichi T, Torrelo A, Lee JYW, et al. Biallelic mutations in KDSR disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia. J Invest Dermatol. 2017;137(11):2344-2353.
10. Frexon K, De Voros R, Wittevrongel C, et al. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood. 2005;106(7):2356-2362.
11. Long T, Hicks M, Yu HC, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet. 2017;49(4):568-578.
12. Koulman A, Woffendin G, Narayana VK, Welchman H, Crone C, Volmer DA. High-resolution extracted ion chromatography, a new tool for metabolomics and lipomics using a second-generation orbitrap mass spectrometer. Rapid Commun Mass Spectrom. 2009;23(10):1411-1418.
13. Lu L, Koulman A, Petry CJ, et al. An Unbiased Lipidomics Approach Identifies Early Second Trimester Lipids Predictive of Maternal Glycemic Traits and Gestational Diabetes Mellitus. Diabetes Care. 2016;39(12):2232-2239.
14. Lin HF, Traver D, Zhu H, et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood. 2005;106(12):3803-3810.
15. Louwette S, Labarque V, Wittevrongel C, et al. Regulator of G-protein signaling 18 controls megakaryopoiesis and the cilia-mediated vertebrate mechanosensory system. FASEB J. 2012;26(5):2125-2136.
16. Louwette S, Regal L, Wittevrongel C, et al. NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish. Hum Mol Genet. 2013;22(1):61-73.
17. Moreau T, Evans AL, Vasquez L, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun. 2016;7:11208.
18. Lek M, Karcewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.
19. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310-315.
20. Gupta SD, Gable K, Han G, et al. Tsc1lp and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. J Lipid Res. 2009;50(8):1630-1640.
21. Kitani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cellular Signal. 2008;20(6):1010-1018.
22. Italiano JE, Jr., Lecine P, Shvidasani RA, Hartwig JH. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol. 1999;147(6):1299-1312.
23. Lentaigne C, Frexon K, Laffan MA, Turro E, Ouwehand WH. Inherited platelet disorders: toward DNA-based diagnosis. Blood. 2016;127(23):2814-2823.
24. Bielczyk-Maczynska E, Serbanovic-Canic J, Ferreira L, et al. A loss of function screen of identified genome-wide association study Locis reveals new genes controlling hematopoiesis. PLoS Genet. 2014;10(7):e1004450.
25. Bluteau O, Sebert M, Leblanc T, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131(7):717-732.
Figure 1. Reported KDSR variant genotypes and phenotypes in the context of KDSR structure and function
Protein and cDNA schematic adapted from Gupta et al demonstrating location of known pathogenic KDSR variants with documented phenotypes in skin only (black), skin and platelets (red) and the novel variants reported in this manuscript in bold and underlined. Variants are linked by brackets where present in compound heterozygosity in an individual. Key structural elements of KDSR are illustrated: transmembrane anchors (blue, purple), the Rossman folds (red), and a highly conserved domain containing three putative catalytic sites (yellow). The novel p.Arg154Trp variant is within the catalytic domain.

Figure 2. Clinical characteristics associated with loss-of-function KDSR variants
(A) Pedigree and variants identified in KDSR. ‘+’ denotes the major allele. The propositus and affected sibling, but not the healthy sibling, carry the missense variant 18:61018270 G>A (p.Arg154Trp) and the nonsense variant 18:61006104 G>A (p.Arg236*). Co-segregation analysis demonstrated that the father carries the former and the mother the latter variant. (B) Serial blood counts are shown for the two affected siblings and a single value for the healthy brother. Fluctuating anemia and thrombocytopenia was observed, without evidence of neutropenia. (C) Bone marrow biopsy. Left: Numerous dysplastic megakaryocytes made visible with LAT staining are present. Right: Marrow fibrosis with strong stromal reticulin staining. Magnification ×40. Further images can be found in the supplemental materials. (D) The affected sibling was born during the course of this study and presented at birth with thrombocytopenia and mild ichthyosis in her left axilla. The skin symptoms improved spontaneously over the first month. (E) Platelets were examined by electron microscopy for an unrelated healthy control, the propositus, and the affected sibling. There were no marked morphological differences. Arrowed magnifications show δ-granules. Magnification 12,000x.

Figure 3. Metabolic profiling shows that the KDSR variants are associated with loss-of-function and downstream sphingolipid pathway compensation
(A) Simplified sphingolipid pathway highlighting the role of the KDSR enzyme in de novo synthesis (black arrows) and the generation of sphingolipid intermediates from the recycling of complex sphingolipids and sphingomyelins (green arrows). (B) Mass spectrometry using the Metabolon platform shows the major chromatographic peak of 3-keto-dihydrosphingosine (KDS) in the plasma of the propositus, but not of the unaffected pedigree members (shown) or the controls (not shown). (C) KDSR hypofunction was confirmed in the propositus and affected sister using a second mass spectrometry platform for targeted sphingolipid profiling. The chromatogram shows that KDS was detected in the plasma from the propositus and his affected sister but not in the plasma from the healthy brother, parents (shown), and two controls (not shown).

Figure 4. Kdsr morpholino knockdown is associated with reduced thrombopoiesis in zebrafish
(A) Tg(cd41:EGF) embryos were injected with a kdsr ATG-MO (1000 µM) or with buffer (control). Embryos were lysed 72 hpf and used for immunoblotting. GFP and Kdsr proteins were reduced in the kdsr knockdown condition. Equal amounts (50 µg) were loaded (5 randomly selected embryos for each of the 4 conditions). Staining of Gapdh was used as loading control. (B) Quantification of immunoblot after normalization for Gapdh. Mean values are plotted and error bars show the standard deviation, analysed by one-way ANOVA. (C) Quantification by flow cytometry of the number of GFP-labelled thrombocytes in Tg(cd41:EGFP) Danio rerio embryos at 72 hpf for kdsr-MO (800 or 1000 µM) or buffer (control) injected fish. Values are means and standard deviations (SD) as quantified for 10 randomly selected embryos for each condition, performed in triplicate. Results were analyzed by one-way ANOVA. (D) Greyscale stereo-microscope images (20x original magnification) in the tail region at 72 hpf showed a reduced number of GFP-labelled thrombocytes (in white). (E) KDS levels in lysates from 72 hpf embryos (20/condition) for kdsr-MO (800 µM) or buffer (control) injected fish. KDS was detected in the lysates from the MO-injected embryos but not in the control-injected embryos.

Figure 5. KDSR variants are associated with reduced proplatelet formation by megakaryocytes (MK)
(A) Quantification of proplatelet formation by MK at day 11 of differentiation. On the left are the results of differentiation of bone marrow-derived hematopoietic stem cells (HSC) from the propositus and control. On the right are the results of differentiation of HSC obtained from the blood of the propositus, his affected sibling and a second control. All MK with proplatelets and membrane budding were counted as positive. Values plotted are means and standard deviations (SD) as quantified on 20 images. Results were analyzed by the unpaired, two-tailed t-test. (B) MK at day 11 derived from bone marrow HSC from the propositus and a control. MK are stained for the cytoskeletal marker F-actin (red) and lysosome and δ-granule marker CD63 (green). MK from the propositus and affected sibling have irregular cytoskeletal structures with
lamellipodia (arrows). Further images can be found in supplemental Figure 10. (C) MK area was quantified by automated analysis. Modelling was performed using a linear mixed effects model and associated p-values were computed by a likelihood ratio test. MK from affected cases were smaller compared to unrelated controls ($p=0.01473$).

Figure 6. KDSR reference allele expression rescues ineffective proplatelet formation

Proplatelet formation by iMK. 100% of live MK plated for the proplatelet assay were CD41 positive and 75% were dual positive for CD41 and CD42 by flow cytometry (supplemental Figure 11A). Cytoskeletal marker α-tubulin was stained with antibodies in green and nuclei were stained with DAPI in blue. Proplatelet formation was counted manually. Values shown were analyzed using the paired, two-tailed Student’s t-test, using $p<0.05$ for significance and are plotted as means and standard deviations. (A) The number of proplatelets formed at 4 hours per proplatelet-forming MK (PPFMK) by the rescued and non-rescued iMK. The differences were significant at 4 hours ($p=0.047$) but not anymore at 24 hours ($p=0.20$). (B) The number of PPFMK at 4 hours did not differ significantly between the two groups (7.1% vs 42.4%, $p=0.10$), but at 24 hours the rescued showed less PPFMK ($p=0.03$). (C) Representative images from the proplatelet formation assay at 4 and 24 hours. Proplatelets are indicated by white arrows. Top left and right panel: Results at 4 hours for rescued iMK show increased proplatelet formation. White scale bars indicate 10µm. Bottom left and right panel: Results at 24 hours show little proplatelet formation for the rescued iMK, and residual cells are either fragmented into platelet-like particles, or consist of bare nuclei. (D) Metabolon mass spectrometry results for non-rescued and rescued iMK. The ion counts for KDS detection differed significantly between the non-rescued and non-rescued iMK ($p=0.02$). The DHS level did not differ between the groups of samples but the levels of sphingosine and ceramide were lower and higher in the non-rescued versus rescued iMK, respectively.
Supplemental Methods

Recruitment and sequencing

Genetic variants were identified from whole genome sequencing (WGS) data using Isaac (Illumina Inc.) or as described previously for whole exome sequencing. Clinical and laboratory phenotypes were recorded in raw form and as Human Phenotype Ontology (HPO) terms along with pedigree data. The propositus’ genetic and phenotypic data were analyzed as part of a dataset of from 9,472 study participants that have undergone genetic analysis, which includes 1,472 cases with unexplained BPDs.

Platelet imaging

Platelet imaging was performed using a structured illumination microscope (SIM, Elyra S.1, Zeiss, Heidelberg, DE). Images were analyzed with ZEN Black (Carl Zeiss Inc., Oberkochen, DE) and ImageJ software (National Institutes of Health (NIH), Bethesda, MD). Raw 3D SIM images were processed to super-resolution SIM using ZEN Black software, followed by maximum intensity projection as previously described.

Metabolic profiling

In the targeted sphingolipid profiling protocol, for the identification of KDS we used a Thermo Scientific Q-Exactive Orbitrap (ThermoFisher Scientific, Hemel Hempstead, UK) set up to fragment the 300.3 ion (±2 m/z) using a relative collision energy of 30. The KDS standard used was purchased from Matreya LLC (Cat. no. 1876, State College, PA). All samples were snap frozen in dry ice and stored at -80°C until analysed. Zebrafish lysates for sphingolipid profiling were prepared as for immunoblot analysis, using 20 embryos per condition, in triplicate, isolated at 72 hours post fertilisation [hpf].

Stem cell differentiation assays

CD34+ hematopoietic stem cells (HSC) isolated from bone marrow aspirates from the propositus (at 5 years of age) and an unrelated control, and from peripheral blood from the propositus (at 8.5 years of age), his affected sister (at 5 months of age) and an unrelated control were stored in liquid nitrogen. The recovered (differentiation day 0) CD34+ HSCs were cultured in StemSpan SFEM medium with StemSpan CC100 ensuring strong expansion of HSC for 3 days (Stem Cell Technologies, Vancouver, CA).

The expanded bone marrow derived HSC were used to perform colony assays for MK (CFU-MK) and granulocytes, erythrocytes, monocytes, and MK (GEMM; CFU-GEMM) as described previously. These were performed in quintuple for MegaCult-C 04973 (MK) and triplicate for MethoCult 04964 (GEMM, StemCell Technologies, Vancouver, CA). MK (after Giemsa staining) and GEMM (without staining) colonies were counted by two independent operators using a Zeiss Axiovert 200M microscope (Carl Zeiss Inc.) or light microscope (Leica DM RBE, Wetzlar, DE), respectively. Colonies from GEMM plates were further analysed by flow cytometry using FITC-labelled mouse antibodies against glycophorin A (CD235a; BD Biosciences, San Jose, CA) and PE-labelled mouse antibodies against CD45 (Clone T29/33; Dako, Glostrup, DK).

Liquid MK cultures were derived from bone marrow- and peripheral blood- derived HSC at day 3 of differentiation by incubation with 50ng/ml thrombopoietin (TPO), 25ng/ml stem cell factor, and 10ng/ml
interleukin 1β (Peprotech, Rocky Hill, NJ.). MK were analysed by flow cytometry on total differentiation day 7 with FITC-labelled antibodies against CD41 and CD42 (BD Biosciences) and on total differentiation day 11 for proplatelet formation and immunostaining of cytoskeletal proteins F-actin, phalloidin-rhodamine (Sigma, St Louis, MO), and anti-tubulin (ThermoFisher Scientific), and δ-granule and lysosome marker CD63 (Santa Cruz, Dallas, TX). For immunostaining MK were seeded for 4 hours on fibrinogen-coated coverslips and stained cells were photographed at 63x magnification with a confocal microscope (AxioObserver.Z1, Zeiss, Heidelberg, DE). MK cell size was determined by F-actin staining and images were analyzed with ImageJ software (NIH). Three random control images were used to optimize parameters and MK were excluded if the ploidy was unclear following F-actin staining, as described.

Statistical analysis of MK size following immunostaining

Using the lmer function from the R package lme4 a linear mixed effects model was fitted to the log of MK cell size:

\[
\gamma_{ijkl} = \alpha + \beta p_{ijk} + \gamma s_i + \xi f_j + \delta p_{ijk}s_i + \eta_l + \epsilon_{ijkl}
\]

where \(\gamma_{ijkl}\) corresponds to the \(k\)th observation for individual \(i \in \{1,2,3,4\}\) obtained as part of experiment \(j \in \{1,2\}\). The covariate \(p_{ijk}\) is equal to 0, 1 or 2 depending on whether the ploidy was 1, 2 or between 4 and 8, respectively. The covariate \(s_i\) equals 1 if individual \(i\) is a case and 0 otherwise. The covariate \(f_j\) equals 1 if \(j=2\) and 0 if \(j=1\). The interaction term \(\delta\) captures the difference in the ploidy-dependent slope between cases and controls. Inter-individual variation is modelled with normally distributed random effects (\(\epsilon_{ijkl}\)). The regression coefficients \(\alpha, \beta, \gamma, \xi, \delta\) were estimated by maximum likelihood and associated \(p\)-values were computed by a likelihood ratio test and were as follows:

MK cell size:

\[
\hat{\alpha} = 7.78075 \\
\hat{\beta} = 0.35496 \\
\hat{\gamma} = -0.42443 \quad p = 0.01473 \\
\hat{\xi} = -0.05632 \\
\hat{\delta} = 0.07197 \quad p = 0.2641
\]

iPSC derivation

iPSC were prepared by the Cambridge Biomedical Research Centre iPSC core laboratory from fibroblasts isolated from a 2mm skin biopsy of the propositus’ upper arm. Fibroblasts were reprogrammed following the protocol of Yamanaka and colleagues by overexpression of transcription factors OCT4, SOX2, KLF4, and c-MYC using the CytoTune™-iPS 2·0 Sendai Reprogramming Kit (Invitrogen) followed by culture on mouse embryonic fibroblast feeder cells in chemically defined media. Following establishment of iPSC colonies, approximately one month after reprogramming, clones were picked, passaged to feeder-free conditions, and validated. iPSC were cultured feeder- and antibiotic-free in Essential 8 medium (ThermoFisher Scientific).

Lentiviral particle production, transduction and selection

Replication-deficient lentiviral vector particles were produced by transient co-transfection of HEK 293T cells with the rescue or empty vector and a 2nd generation packaging system consisting of psPAX2 and pCMV-VSV-
G (Addgene #12260, #8454). Viral particles were concentrated by the LentiX-concentrator system (Clontech). Transduction was performed in iPSC at MOI 2, in the presence of protamine sulphate 10μg/ml (Sigma) and was followed by plate centrifugation at 2500 rpm for 45 minutes at 37°C. Cells carrying the rescue or empty vector were selected after 72 hours using 0·1μg/ml puromycin (Sigma).

Forward programming to MK (iMK)

Passage to single iPSC was obtained using TrypLE (ThermoFisher Scientific) followed by culture in Essential 8 media containing 10μM ROCK inhibitor (Sigma) for 24 hours prior to lentiviral transduction with FLI1, GATA1, and TAL1 using a protocol for generating MK described by Moreau et al.10 The MK obtained by this protocol (named iMK hereafter) were defined at day 20 post-transduction by absence of staining with 1μg/ml DAPI (Sigma; at this concentration live iMK are impermeant to DAPI) and dual staining with anti-CD41a-APC and anti-CD42b-PE (1:100, cat. 559777 and 1:1000, cat. 555473, respectively, BD Biosciences) on the Beckman Coulter Gallios Cytometer. Cytometry results were analysed using Kaluza Analysis v.1.5a (Beckman Coulter).

Proplatelet assay

iMK were placed at a concentration of 0·5x10⁶/ml in CellGro medium (CellGenix) for seeding on sterile glass coverslips coated with 200μg/ml fibrinogen (Sigma) in phosphate-buffered saline (PBS). Cells were fixed in 1% paraformaldehyde at 4 hours or 24 hours after seeding. Cells were quenched with 50μM ammonium chloride and permeabilized with 0·1% saponin, 0·2% gelatin, and 0·02% azide (Sigma) in PBS. Staining was performed with antibody against α-tubulin (1:250, cat.T5168, Sigma), 1μg/ml DAPI (Sigma), and goat anti-mouse Alexa Fluor 488 antibody (1:1000, cat. A21121, ThermoFisher Scientific). Cells were examined within 48 hours using a Leica DMi8 fluorescent microscope and images were analysed using FIJI software.² Five to ten representative fields were examined to ensure at least 100 iMK were observed for each experimental condition. Proplatelets were defined as clear projections from the main cell body with approximately parallel sides to the shaft. Results were compared using the paired, two-tailed Student’s t-test.

RNA sequencing

1 x 10⁵ iMK were stored in 500 μl Trizol reagent (ThermoFisher Scientific) at -80°C. RNA was recovered for sequencing (RNA-seq) with the Direct-zol RNA MiniPrep kit (Zymo). RNA was quantified using the Qubit RNA HS Assay kit (ThermoFisher Scientific) and its quality was confirmed using the Agilent RNA 6000 Pico kit on the Agilent 2100 Bioanalyzer. cDNA libraries were prepared using the KAPA Stranded RNA-Seq Kit with Ribonase (Roche) and Agencourt AMPure XP beads (Beckman Coulter) for purification. Libraries were quantified by RT-qPCR with the KAPA Library Quantification Kit (Roche). Libraries were sequenced at the Cancer Research UK Cambridge Institute Genomics Core on a HiSeq4000 (Illumina Inc.) using 150bp read length paired-end sequencing. Sequences were aligned with STAR11 and read counts were obtained using featureCounts12 with respect to Ensembl v.70 of reference genome build GRCh37. Expression of transcripts and genes was quantified using MMSEQ and differential expression was assessed using MMDIFF13, 14. The prior probability of differential expression was set to 0·1 and a posterior probability >0·5 was used to declare a transcript being differentially expressed.
Supplemental Table 1: Clinical data

(A) Serial blood results for propositus and pedigree members. Abnormal results are shown in bold. Spontaneous improvements in both platelet count and hemoglobin level were observed in the propositus, though the improvement in platelet count was not sustained. The affected sibling’s platelet count and haemoglobin values have been decreasing since birth.

	WBC (x10^9/L)	Neutrophils (x10^9/L)	Erythrocytes (x10^9/L)	Reticulocytes (x10^9/L)	Immature reticulocyte fraction (%)	Hemoglobin (g/dL)	Platelets (x10^9/L)
Control values Neonates (<6 months)							
Father	5.9	3.21	4.88	ND	ND	15.5	258
Mother	5.22	2.94	4.25	ND	ND	12.8	415
Healthy brother, 4 years	5.04	1.59	3.94	ND	ND	11.5	521
Propositus, 4 months	11.3	5.9	3.8	ND	19	10.6	65
Propositus, 1 years	8.85	3.8	3.91	45	18.2	10.0	65
Propositus, 2 years	10.98	4.7	3.94	43	25.4	10.2	64
Propositus, 3 years	10.22	3.3	3.78	39	27.2	10.3	60
Propositus, 4 years	7.84	3.9	3.41	27	39.3	9.1	9
Propositus, 5 years	14.53	9.7	3.69	56	32	10.7	41
Propositus, 6 years	7.61	2.9	3.77	14	22.2	10.6	15
Propositus, 8 years	7.06	3.4	4.67	25	7.8	13.6	77
Propositus, 8.5 years	9.49	4.4	4.24	37	9.7	12.5	152
Propositus, 9 years	7.89	3.9	4.2	36	10.6	12.5	132
Propositus, 9.5 years	9.97	5.6	4.72	40	10.4	13.4	113
Affected Sister, 1 week	11.64	3.4	5.73	25	16.1	19.1	73
Affected Sister, 5 months	9.34	2.2	3.33	45	24.7	8.6	148
Affected Sister, 7 months	10.15	3.8	3.2	34	22.2	7.8	124
Affected Sister, 9 months	13.18	5.5	3.2	72	32.1	7.7	107
Affected Sister, 1 year	14.58	4.1	2.67	76	41.6	6.3	24
(B) Serial assessments of peripheral blood films and bone marrow biopsies in the propositus.

Peripheral blood smears	Bone marrow biopsy	Bone marrow genetics	
II:2 (Propositus) 4 years	White blood cells normal, mild normocytic normochromic anemia with mild aniso-poikilocytosis and severe thrombocytopenia.	Erythrophagocytosis. Dysplastic megakaryocytes that are located in clusters. Normal lymphoid lineage with granulocytes. Myelofibrosis grade 2 reticulin staining.	Negative: BCR-ABL, FISH (monosomy 7), JAK2, CALR and MPL, chromosomal breakage
II:2 (Propositus) 5 years	Mild monocytosis and neutrophilia, mild normocytic normochromic anemia with anisopoikilocytosis and obvious thrombocytopenia	Left-shifted myeloid lineage. Increased numbers of dysplastic megakaryocytes. Erythroid lineage difficult to study due to insufficient numbers. Myelofibrosis grade 3. Cellularity 90%, myeloid/erythroid: 4/1.	
II:2 (Propositus) 8 years	Mild poikilocytosis and thrombocytopenia.	Normal cellularity 70-80%. Normocellular but hyperplastic and left-shifted myeloid lineage. Prominent hyperplastic megakaryocyte lineage with strong cluster formation on LAT staining. Megakaryocyte dysplasia with both hyperlobulated and small hypolobulated, hyperchromic cells. Normocellular erythroid lineage without dysplasia. Myelofibrosis grade 3. Mason trichrome staining of bone marrow showed mature collagen fibers (grade 3).	Negative: NGS panel test TruSight Myeloid Sequencing (Illumina) with coverage of 500x. FISH with normal karyotype.

(C) Platelet light transmission aggregometry studies.

The propositus had normal aggregation responses for ristocetin (105%), arachidonic acid (95%), U46619 (111%), collagen at 2 μg/ml (70%) and ADP at 5 μM (97%). Only the response to low dose of collagen was mildly reduced.

	Propositus*	Two unrelated healthy controls*
Amplitude for Horm collagen 1μg/ml	25%	63 and 66%
Amplitude for ADP 2.5 μM	52%	48 and 28%

*All aggregations were performed using platelet-rich plasma at 90x10⁷ platelets/μL.
Supplemental Table 2

Ion counts from Metabolon analysis of plasma sphingolipids from the propositus, healthy brother, parents, and 496 unrelated controls.

3-ketosphinganine (KDS) was detectable in only the propositus. Downstream metabolites were not reduced, and the enzymatic product of KDSR dihydrosphingosine (DHS) was in fact unexpectedly high. NF, not found

	Propositus	Healthy brother	Mother	Father	Median (controls)	S.D (controls)
KDS	8.5 E5	NF	NF	NF	NF	NF
DHS	3.6 E5	NF	NF	NF	6.7 E4	3.2 E4
Dihydroceramide	6.3 E5	2.5 E5	3.3 E5	2.6 E5	3.1 E5	1.8 E5
Sphinganine-1-phosphate	6.7 E5	4.0 E5	4.6 E5	3.4 E5	3.9 E5	1.4 E5
Ceramide	3.5 E6	2.8 E6	3.6 E6	2.9 E6	2.8 E6	7.9 E6
Sphingosine	1.8 E5	9.5 E4	1.0 E5	6.2 E4	1.5 E5	8.3 E4
Sphingosine 1-phosphate	3.4 E6	2.7 E6	3.1 E6	2.3 E6	2.6 E6	6.2 E5
Total sphingomyelins	1.3 E9	1.2 E9	1.2 E9	1.3 E9	1.2 E9	1.8 E8
Total glycosphingolipids	1.2 E7	1.2 E7	8.9 E7	1.2 E7	1.0 E7	2.6 E6
Phosphoethanolamine	1.6 E6	1.7 E6	1.1 E6	8.0 E5	1.6 E6	6.1 E5
Supplemental Table 3
Ion counts from targeted sphingolipid analysis by LC-MS

(A) Plasma sphingolipid analysis by LC-MS. Metabolites downstream of KDSR were not reduced in affected individuals (propositus, affected sister) compared with unaffected individuals (healthy brother, parents and controls). DHS, sphingosine and S1P are not measurable by this method. Differences were analyzed using the paired, two-tailed Student’s t-test, using \(p<0.05 \) for significance.

Plasma	Propositus	Affected Sister	Healthy Brother	Mother	Father	Control 1	Control 2	\(p \)
Dihydroceramides	3.78E-3	6.06E-3	3.90E-3	3.21E-3	2.60E-3	2.34E-3	8.46E-3	0.52
Ceramides	2.34E-2	8.70E-3	7.21E-3	6.48E-3	8.66E-3	5.64E-3	1.37E-2	0.5
Glycosphingolipids	1.78E-3	1.05E-3	1.69E-3	1.85E-3	1.98E-3	1.64E-3	4.04E-3	0.56
Sphingomyelins	11.7	5.26	9.31	9.01	11.3	4.17	11.5	0.74

(B) Analysis of zebrafish protein lysates by LC-MS. Metabolites downstream of Kdsr were not significantly different between \(kdsr \)-ATG morpholino targeted fish (800μM) and controls. Differences were analyzed using the paired, two-tailed \(t \)-test, using \(p<0.05 \) for significance.

Zebrafish protein lysate	Control 1	Control 2	Control 3	\(kdsr \)-ATG 1	\(kdsr \)-ATG 2	\(kdsr \)-ATG 3	\(p \)
Dihydroceramides	1.02 E3	2.31 E3	8.31 E4	5.98 E4	3.26 E4	5.23 E4	0.16
Ceramides	3.67 E3	9.43 E3	3.07 E3	3.43 E3	1.46 E3	3.82 E3	0.33
Glycosphingolipids	5.11 E5	0.00	4.40 E5	3.26 E5	5.28 E5	1.01 E4	0.19
Sphingomyelins	2.05	2.06	2.02	2.06	1.64	2.34	0.91
Supplemental Figure 1
Peripheral blood smears from the propositus taken at 6 years of age
Dysmorphic erythrocytes with poikilocytosis including (A) tear drop cells and (B) thrombocytopenia with platelets of normal volume are shown (magnification x100).
Supplemental Figure 2
Bone marrow (BM) biopsies from the propositus
(A) BM biopsy at 4 years of age. Left: Dysplastic megakaryocytes (MK) forming unusually large clusters. Right: Fibrosis with reticulin staining. (B) BM biopsy at 8 years of age. Left and right upper: Dysplastic MK in clusters. Left lower: Marrow fibrosis with strong stromal reticulin staining (magnification x40).
Supplemental Figure 3
Sanger sequencing confirms putative pathogenic KDSR variants
Two rare variants (18:61006104 G>A and 18:61018270 G>A) were confirmed by Sanger sequencing in the proband and his affected sister. The healthy brother carried the major allele for both variants.
Supplemental Figure 4
Heatmap of KDSR transcripts in MK and platelets (Plt)
Transcripts present at >0.5 log FPKM (fragments per kilobase of transcript per million mapped reads) are shown and schematically represented. Key structural elements and variant annotation are as defined in Figure 1. The variants present in the affected siblings are highlighted in bold, and are present in the major transcripts present in MK (ENST00000406396, ENST00000591902) but not platelets (ENST00000592327, ENST00000590056, http://blueprint.haem.cam.ac.uk). This is in keeping with previous reports that de novo sphingolipid synthesis plays a minimal role in mature platelets.
Supplemental Figure 5
Mass spectrum of 3-KDS in propositus and standard
An LC-MS platform was used to confirm the metabolic phenotype in the propositus and affected sister. The MS2 spectrum is shown for the 3-KDS biochemical standard and the propositus, showing conformity of peaks. FTMS, Fourier transformation mass spectrometry; +pESI, positive mode electrospray ionisation; HCD, higher energy collisional dissociation. Set at the specific fragmentation of ion 300·3 m/z by HCD at a relative energy of 30%, obtaining data from the range 50 to 325 m/z.
Supplemental Figure 6
Zebrafish experiments
Tg(cd41:EGF) embryos were injected with a kdsr ATG-MO (1000 µM) or with buffer (control). At 72 hpf most embryos developed curled tails but no other dysmorphisms.
Supplemental Figure 7
Myeloid stem cell differentiation assays from propositus at 5 years of age
(A, B) Representative images of CFU-GEMM colonies counted at day 10 of differentiation of CD34+ bone-marrow HSC. There was a higher number and increased density of colonies for the propositus compared with controls. Means and standard deviations of three experiments are shown. (C) Flow cytometry analysis following staining with anti-CD45 and anti-CD235 antibodies to stain the myeloid and erythroid lineage, respectively. The proportion of myeloid leukocytes was higher in control cultures, whilst cultures from the propositus were enriched for erythroid progenitors.
Supplemental Figure 8

Megakaryocyte colony assays

(A) MegaCult cultures. Representative images of CFU-MK colonies at day 11 of differentiation of CD34+ bone-marrow HSC. We observed an increased density of colonies for the propositus compared with controls. (B) However, the total number of MK colonies was comparable between conditions. Means and standard deviations of 5 experiments are shown. (C) Liquid MK cultures were analysed at day 7 of differentiation using flow cytometry. A higher number of cells expressed mature MK markers CD41 and CD42 in cultures derived from the propositus compared with controls. FSC, forward scatter.
Supplemental Figure 9
Liquid megakaryocyte cultures show impaired proplatelet formation

(A) MK proplatelet formation was measured at day 11 of differentiation using bone marrow-derived CD34+ HSC from the propositus and controls. Propositus-derived MK were unusually large and displayed reduced proplatelet formation. (B) MK proplatelet formation was measured at day 12 of differentiation using peripheral blood derived CD34+ HSC from the propositus and affected sister. Again, MK from the patients were large and displayed membrane budding (arrows) but did not form normal proplatelets. Scale bars indicate 50 μm.
Supplemental Figure 10

Immunostaining of CD34+ stem cell-derived megakaryocytes confirm impaired proplatelet formation, and show abnormal cytoskeletal organisation

Megakaryocytes derived from bone marrow (BM) or peripheral blood (PB) were spread on fibrinogen and immunostained with antibodies against cytoskeletal marker F-actin (red) and δ-granule marker CD63 (green). MK for the propositus and his affected sibling showed irregular cytoskeletal structures that resembled filopodia (*). Proplatelet formation was infrequent and observed proplatelets demonstrated reduced δ-granule trafficking (arrow). Scale bars indicate 20μm.
Supplemental Figure 11

Gene expression analysis by RNA-seq in Kresc and Kev iMK is consistent with correction of the genetic defect, without significant overexpression.

(A) iPSC from the propositus were transduced with lentiviral vectors containing the reference KDSR ORF (Kresc) or an inert control (Kev), then reprogrammed to iMK. Single, viable cells were assessed by flow cytometry for markers of iMK at day 20 of forward programming. In both conditions the majority of cells were CD41+ and CD42+, in keeping with differentiation to iMK.

(B) KDSR expression was assessed by RNA-seq. At the gene level there was no significant difference in normalised KDSR expression between propositus-derived iMK (Korig), Kev and Kresc iMK.

(C) At the transcript level ENST00000591902 was differentially expressed and higher in Kresc iMK. This transcript corresponds to the KDSR sequence in the wild-type expression vector and is the transcript with the highest expression in MK. A posterior probability of differential expression > 0.5 was considered significant.

(D) Kresc iMK carried the reference allele at Chr18:61018270 G>A (p.Arg154Trp) (mean count G: 192 (84%), A: 36 (16%), \(p = 0.0015 \) by paired, two-tailed \(t \)-test). Kev iMK expression was consistent with heterozygosity (mean count G: 14 (33%), A: 29 (67%), \(p = 0.25 \)).

(E) iMK were defined by flow cytometry as CD41+ viable, single cells and forward scatter area (FSC-A) was measured for each experimental replicate. The means and standard deviations of FSC-A are plotted for the three experimental replicates. At day 20 Kresc iMK were significantly larger than Kev iMK (\(p = 0.015 \) by paired, two-tailed \(t \)-test).
Supplemental Figure 12
Differential expression of ASAH1 and CERS6 between Kresc and Kev suggests that KDSR variants result in ceramide and sphingosine imbalance

Gene expression was assessed by RNA-seq. Using a posterior probability of differential expression > 0.5 for significance, only two of the sphingolipid enzymes listed in Figure 4A were significantly differentially expressed between Kresc and Kev. ASAH1 (posterior probability = 0.61, estimated log fold change = -0.67) was down-regulated in the Kev condition and CERS6 (posterior probability = 0.77, estimated log fold change = +0.70) was up-regulated in the Kev condition. ASAH1 and CERS6 act in opposition to regulate the balance between ceramide and sphingosine. These findings are in keeping with the metabolic profile of higher sphingosine and lower ceramide in Kresc iMK compared with Kev iMK shown in Figure 7.
Supplemental References

1. Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, et al. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome medicine. 2015; 7(1): 36.

2. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012; 9(7): 676-82.

3. Westmoreland D, Shaw M, Grimes W, Metcalf DJ, Burden JJ, Gomez K, et al. Super-resolution microscopy as a potential approach to diagnosis of platelet granule disorders. J Thromb Haemost. 2016; 14(4): 839-49.

4. Louwette S, Regal L, Wittevrongel C, Thys C, Vandeweeghde G, Decuyper E, et al. NPC1 defect results in abnormal platelet formation and function: studies in Niemann-Pick disease type C1 patients and zebrafish. Human molecular genetics. 2013; 22(1): 61-73.

5. Freson K, Peeters K, De Vos R, Wittevrongel C, Thys C, Hoyaerts MF, et al. PACAP and its receptor VPAC1 regulate megakaryocyte maturation: therapeutic implications. Blood. 2008; 111(4): 1885-93.

6. Turro E, Greene D, Wijgaerts A, Thys C, Lentaigne C, Bariana TK, et al. A dominant gain-of-function mutation in universal tyrosine kinase SRC causes thrombocytopenia, myelofibrosis, bleeding, and bone pathologies. Science translational medicine. 2016; 8(328): 328ra30.

7. Heremans J, Garcia-Perez JE, Turro E, Schlenner SM, Casteels I, Collin R, et al. Abnormal differentiation of B cells and megakaryocytes in patients with Roifman syndrome. The Journal of allergy and clinical immunology. 2018.

8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-72.

9. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frané JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917-20.

10. Moreau T, Evans AL, Vasquez L, Tijssen MR, Yan Y, Trotter MW, et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nature communications. 2016; 7: 11208.

11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15-21.

12. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-30.

13. Turro E, Astle WJ, Tavare S. Flexible analysis of RNA-seq data using mixed effects models. Bioinformatics. 2014; 30(2): 180-8.

14. Turro E, Su SY, Goncalves A, Coin LJ, Richardson S, Lewin A. Haplotype and isoform specific expression estimation using multi-mapping RNA-seq reads. Genome biology. 2011; 12(2): R13.

15. Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science. 2014; 345(6204): 1251033.

16. Tani M, Sano T, Ito M, Igarashi Y. Mechanisms of sphingosine and sphingosine 1-phosphate generation in human platelets. Journal of lipid research. 2005; 46(11): 2458-67.