Multi-Source Backlogged Probabilistic Inventory Model for Crisp and Fuzzy Environment

H. A. Ferganya O. M. Hollahb

E-maila: halafergany@Yahoo.com & hala.fergany@science.tanta.edu.eg, Mob: +201223382806
E-mailb: eng_Hollah@Yahoo.com & osama.hollah@science.tanta.edu.eg, Mob: +201211152924

aAssistant Prof. in Department of Mathematics, Faculty of Science, Tanta University, Egypt

bAssistant Lecturer in Department of Mathematics, Higher Institute for Computers, Information & Management, Tanta, Egypt

Abstract

This paper proposed a multi-item multi-source probabilistic periodic review inventory model under a varying holding cost constraint with zero lead time when: (1) the stock level decreases at a uniform rate over the cycle. (2) some costs are varying. (3) the demand is a random variable that follows some continuous distributions as (two-parameter exponential, Kumerswamy, Gamma, Beta, Rayleigh, Erlang distributions).

The objective function under a constraint is imposed here in crisp and fuzzy environment. The objective is to find the optimal maximum inventory level for a given review time that minimize the expected annual total cost. Furthermore, a comparison between given distributions is made to find the optimal distribution that achieves the model under consideration. Finally, a numerical example is applied.

Keywords: Constrained model; Continuous distributions; Lagrange multiplier technique; Periodic inventory model; Varying costs.

Keywords: Constrained model; Continuous distributions; Lagrange multiplier technique; Periodic inventory model; Varying costs.

Date of Publication: 2018-06-13

DOI: 10.24297/jam.v14i2.7365

ISSN: 2347-1921

Volume: 14 Issue: 02

Journal: Journal of Advances in Mathematics

Website: https://cirworld.com

This work is licensed under a Creative Commons Attribution 4.0 International License.
1. Introduction

In the practical situation, some costs are relating to some variables such as quantity \((Q)\) or length of the cycle \((N)\) ... etc., Many researchers dealing with inventory models with varying costs for example, Chu et al. [6] and Fergany [8] illustrated probabilistic multi-item inventory model with varying mixture shortage cost under restrictions. Fergany and El-Wakeel [10] illustrated probabilistic single item inventory problem with varying order cost under two linear constraints. Abou - El-Ata et al. [1] introduced probabilistic multi-item inventory model with varying order cost under two restrictions using a geometric programming approach. And other researchers concern with periodic review model for example, Silver and Robb [14] presented the model with some insights regarding the optimal reorder period. Fergany et al. [9] illustrated the model using Lagrange multiplier technique and fuzzy adaptive particle swarm optimization. Chiang [5] illustrated the model with stochastic supplier’s visit intervals. Chiang [4] developed optimal replenishment for the model with two supply modes. Chiang [3] presented optimal ordering policies for the model with a refined intra-cycle time scale. Chiang [2] developed the model with a refined delivery scenario. Konstantaras and Papachristos [11] introduced manufacturing and logistics optimal policy and holding cost stability regions in the model with manufacturing and remanufacturing options. Yuyue and Hoong [15] developed the model with application to the continuous review obsolescence problem.

The cost parameters in real inventory systems and other parameters such as price, marketing and service elasticity to demand are imprecise and uncertain in nature. Since the proposed model is in a fuzzy environment, a fuzzy decision should be made to meet the decision criteria, and the results should be fuzzy as well. Fuzzy sets introduced by many researchers as a mathematical way of representing impreciseness or vagueness in everyday life. Rong et al. [12] presented a multi-objective wholesaler–retailers inventory-distribution model with controllable lead-time based on probabilistic fuzzy set and triangular fuzzy number. Sadjadi et al. [13] introduced fuzzy pricing and marketing planning model using a geometric programming approach.

This paper formulated a multi-item multi-source periodic review inventory problem with a varying holding cost constraint when the holding and backlogged costs are varying. Also, shortages are permitted but fully backlogged and the demand considered to be a random variable that follows some continuous distributions as (two-parameter exponential, Kumerswamy, Gamma, Beta, Erlang, Raylieph distributions) without lead time. Also, the cost parameters under a constraint is considered here in crisp and fuzzy environment. The problem has been solved by Lagrange multiplier technique. The objective is to find the optimal maximum inventory level for a given review time which minimize the expected annual total cost under a restriction. And a comparison between given distributions is made to find the optimal distribution that achieves the model under considerations. The results of the numerical example are got by Mathematica program.

2. Notations

Parameters for the \(r^{th}\) \((r = 1, 2, \ldots, n)\) item, \(s^{th}\) \((s = 1, 2, \ldots, m)\) source are:

- \(Q_{mrs}\) the maximum inventory level for \(r^{th}\) item, \(s^{th}\) source (decision variable).
- \(N\) the time of review (the cycle).
- \(x_{rs}\) the demand of the \(r^{th}\) item, \(s^{th}\) source during the cycle \(N\) (random variable).
- \(c_{ors}\) the order cost per unit item for \(r^{th}\) item, \(s^{th}\) source.
- \(c_{prs}\) the purchase cost for \(r^{th}\) item for \(r^{th}\) item, \(s^{th}\) source.
- \(c_{hr}\) the holding cost per unit item for \(r^{th}\) item.
- \(c_{brs}\) the backlogged cost per unit item for \(r^{th}\) item, \(s^{th}\) source.
- \(c_{hr}(N)\) the varying holding cost for the \(r^{th}\) per cycle = \(c_{hr}N^{-\beta_r}\).
- \(c_{brs}(N)\) the varying backlogged cost for the \(r^{th}\) per cycle = \(c_{brs}N^{\beta_r}\).
- \(\bar{D}_r\) the expected demand per unit item \(\bar{D}_r \equiv (\bar{D}_1, \bar{D}_2, \ldots, \bar{D}_n)\).
- \(k_{hrs}\) the goal associated to expected holding cost.
- \(c_{ors}\) the fuzzy set up cost per unit item per unit time.
- \(c_{hr}\) the fuzzy holding cost per unit item per unit time.
- \(c_{brs}\) the fuzzy backlogged cost per unit item per unit time.
- \(c_{hr}(N)\) the fuzzy varying holding cost for the \(r^{th}\) per cycle = \(c_{hr}N^{-\beta_r}\).
- \(c_{brs}(N)\) the fuzzy varying backlogged cost for the \(r^{th}\) per cycle = \(c_{brs}N^{\beta_r}\).
- \(k_{hrs}\) the fuzzy goal associated to expected holding cost.
- \(E(TC)\) the expected total average cost function \(E(TC(Q_{mrs}, N))\).
3. The mathematical model

This model developed the stock level decreases at a uniform rate over the cycle. Figure 2 exhibits the inventory flow process two final conditions may arise as indicated in Figure 1.

![Figure (1): Inventory process with uniform demand](image1)

![Figure (2): Two states of uniform model](image2)

The expected total cost of the cycle for multi-item multi source will be the sum of the expected purchase cost, the expected order cost, the expected varying holding cost, and the expected varying backlogged cost,

\[
E(TC) = \sum_{t=1}^{\infty} [E(PC_t) + E(OC_t) + E(HC_t(N)) + E(BC_t(N))]
\]

- The expected purchase cost for the cycle is given by
 \[
 E(PC_t) = C_{priv} \bar{x}_{rs}
 \]

- The expected order cost for the cycle is given by
 \[
 E(OC_t) = C_{or}
 \]

- The expected varying holding cost for the cycle is given by
 \[
 E(HC_t) = C_{hr} N^p \hat{I} = C_{hr} N \hat{I}
 \]

where \(\hat{I} \) represents the expected average amount of inventory.

The first situation in Figure (2). If \(\bar{x}_{rs} \leq Q_{mr} \) then the average amount in inventory \(\hat{I} \), is given by

\[
\hat{I} = \frac{Q_{mr} + (Q_{mr} - x_{rs})}{2}
\]

The second situation, the following relationships are evident:

\[
n_{1r} = \frac{Q_{mr}}{D_v} \quad \text{and} \quad N = \frac{x_{rs}}{D_v} \quad \text{then} \quad n_{1r} = \frac{Q_{mr}}{x_{rs}}
\]

hence,

\[
\hat{I} = \frac{Q_{mr}}{2} \left(\frac{n_{1r}}{N} \right) \quad \text{and} \quad \hat{I} = \frac{Q_{mr} - x_{rs}}{2x_{rs}}
\]

Thus, the expected average amount of inventory is given by

\[
\hat{I} = \int_{x_{rs}=0}^{Q_{mr}} \left(Q_{mr} - x_{rs} \right) f(x_{rs}) dx_{rs} + \int_{x_{rs}=Q_{mr}}^{\infty} \frac{Q_{mr}^2}{2x_{rs}} f(x_{rs}) dx_{rs}
\]

- The varying expected varying holding cost for the cycle becomes
 \[
 E(HC_t) = C_{hr} N^p \left(\int_{x_{rs}=0}^{Q_{mr}} \left(Q_{mr} - x_{rs} \right) f(x_{rs}) dx_{rs} + \int_{x_{rs}=Q_{mr}}^{\infty} \frac{Q_{mr}^2}{2x_{rs}} f(x_{rs}) dx_{rs} \right)
 \]

- The expected varying backlogged cost for the cycle is given by
 \[
 E(BC_t) = C_{br} N^p \hat{S}
 \]

where \(\hat{S} \) represents the expected average backlogged.

In the first situation of Figure (2), the average backlogged is given by

\[
\hat{S} = 0
\]

In the second situation, the following relationship is evident:

\[
n_{2r} = \frac{x_{rs} - Q_{mr}}{D_v} \quad \text{then} \quad n_{2r} = \frac{x_{rs} - Q_{mr}}{N} \quad \text{and} \quad \hat{S} = \frac{x_{rs} - Q_{mr}}{2} \left(\frac{n_{2r}}{N} \right) = \frac{(x_{rs} - Q_{mr})^2}{2x_{rs}}
\]
Thus, the expected average backlogged is
\[
\bar{S} = \int_{x=0}^{\infty} \frac{(x_s - Q_{\text{mrs}})^2}{2x_s} f(x_s) \, d(x_s)
\]
- The expected varying backlogged cost for the cycle becomes
\[
E(BC_{rs}) = C_{\text{hrs}}N^{\beta_r} \int_{x=0}^{\infty} \frac{(x_s - Q_{\text{mrs}})^2}{2x_s} f(x_s) \, d(x_s)
\]
Then, the expected total cost of the cycle for multi-item multi-source is the sum of Equations (1), (2), (3) and (4)
\[
E(TC) = \sum_{i=1}^{n} C_{x}s_s + C_{x} + C_{\text{rs}}N^{\beta_r}\left(\int_{x=0}^{Q_{\text{mrs}}} (Q_{\text{mrs}} - \frac{x_s}{2}) f(x_s) \, dx_s + \int_{x=Q_{\text{mrs}}}^{\infty} \frac{Q_{\text{mrs}}^2}{2x_s} f(x_s) \, dx_s \right) + \lambda_{\text{hrs}} \left(C_{\text{hrs}}N^{\beta_r} \int_{x=0}^{Q_{\text{mrs}}} (Q_{\text{mrs}} - \frac{x_s}{2}) f(x_s) \, dx_s \int_{x=Q_{\text{mrs}}}^{\infty} \frac{Q_{\text{mrs}}^2}{2x_s} f(x_s) \, dx_s \right) - K_{\text{hrs}}
\]
There is a limitation on the available expected varying holding cost:
\[
E(HC(N)) = \sum_{i=1}^{n} C_{x}s_s N^{-\beta_r} \leq K_{\text{hrs}}
\]
The problem is to find the optimal maximum inventory level for a given N which minimize the expected annual average total cost function (5) subject to the expected varying holding cost restriction. It may be written as
\[
\text{Min } E(TC_i(Q_{\text{mrs}}, N)) \quad \text{for all } r = 1, 2, ..., n, \quad s = 1, 2, ..., m \quad \text{subject to inequality constraint } E(HC(N)) \leq K_{\text{hrs}}
\]
To find the optimal values Q^{*}_{mrs} for a given N which minimize Equation (6) under the constraint (7), the Lagrange multipliers technique with the Kuhn-Tacker conditions is used, then the Lagrange function is given by:
\[
L(Q_{\text{mrs}}, N) = C_{x}s_s + C_{x} + C_{\text{rs}}N^{\beta_r}\left(\int_{x=0}^{Q_{\text{mrs}}} (Q_{\text{mrs}} - \frac{x_s}{2}) f(x_s) \, dx_s + \int_{x=Q_{\text{mrs}}}^{\infty} \frac{Q_{\text{mrs}}^2}{2x_s} f(x_s) \, dx_s \right) + \lambda_{\text{hrs}} \left(C_{\text{hrs}}N^{\beta_r} \int_{x=0}^{Q_{\text{mrs}}} (Q_{\text{mrs}} - \frac{x_s}{2}) f(x_s) \, dx_s \int_{x=Q_{\text{mrs}}}^{\infty} \frac{Q_{\text{mrs}}^2}{2x_s} f(x_s) \, dx_s \right) - K_{\text{hrs}}
\]
where λ_{hrs} is the Lagrange multiplier.
The optimal values Q^{*}_{mrs} can be calculated by setting the corresponding first partial derivatives of Equation (8) equal to zero, and then the following equations are obtained.
\[
\frac{\partial E(TC_i(Q_{\text{mrs}}, N))}{\partial Q_{\text{mrs}}} \bigg|_{Q_{\text{mrs}} = Q^{*}_{\text{mrs}}} = 0
\]
hence,
\[
\int_{x_s=0}^{\infty} f(x_s) \, dx_s + \int_{x_s=Q_{\text{mrs}}}^{\infty} \frac{Q_{\text{mrs}}}{2x_s} f(x_s) \, dx_s = \frac{C_{\text{hrs}}N^{\beta_r}}{\lambda_{\text{hrs}} (N^{\beta_r})^2 + (1 + \lambda_{\text{hrs}}) C_{\text{hrs}} N^{-\beta_r}}
\]
Special cases:
Unconstrained unconstraint single-item single source model when $\beta_r = 0, \lambda_{\text{hrs}} = 0$
\[
\int_{x=0}^{m} f(x) \, dx + \int_{x=m}^{\infty} \frac{Q_{\text{m}}}{x} f(x) \, dx = \frac{C_z}{C_z + C_h}
\]
Where C_x the shortage cost per unit item. (Fabrycky W. J. and Banks Jerry [7]).

4. The Model when all parameters are fuzzy numbers
The inventory cost coefficients, elasticity parameters and other coefficients in the model are fuzzy in nature. Therefore, the decision variable and the objective function should be fuzzy as well, it should find the right and the left shape functions of the objective function and decision variable, by find the upper bound and the lower bound of the objective function, i.e. $\bar{L}(\infty)$ and $\bar{L}^{\beta}(\infty)$ Recall that $\bar{L}(\infty)$ and $\bar{L}^{\beta}(\infty)$ represents the largest and the smallest values (The left and right ∞ cuts) of the optimal objective function $\bar{L}(\infty)$. Using approximated value of TFN which observe in Figure 3
Consider the model when all parameters are triangular fuzzy numbers (TFN) as given below:

\[C_{\text{pr}} = (C_{\text{pr}} - \alpha, C_{\text{pr}} + \alpha), \quad C_{\text{ar}} = (C_{\text{ar}} - \alpha, C_{\text{ar}} + \alpha), \quad C_{\text{hr}} = (C_{\text{hr}} - \alpha, C_{\text{hr}} + \alpha), \quad \text{and} \quad C_{\text{brs}} = (C_{\text{brs}} - \alpha, C_{\text{brs}} + \alpha), \]

where \(a_i, i = 1, 2, \ldots, 8 \) are arbitrary positive numbers under the following restrictions:

\[0 \leq a_1 \leq C_{\text{pr}} - a_2r \geq 0, \quad 0 \leq a_2r \leq C_{\text{ar}} - a_4r \geq 0, \quad 0 \leq a_4r \leq C_{\text{hr}} - a_6r \geq 0, \quad \text{and} \quad 0 \leq a_6r \leq C_{\text{brs}} - a_8r \geq 0. \]

The left and right limits of \(\alpha \) cuts of \(C_{\text{pr}}, C_{\text{ar}}, C_{\text{hr}} \) and \(C_{\text{brs}} \) are given by:

\[C_{\text{pr}}(\alpha) = C_{\text{pr}} - (1-\alpha)a_2r, \quad C_{\text{pr}}(1-\alpha) = C_{\text{pr}} + (1-\alpha)a_2r, \]

\[C_{\text{ar}}(\alpha) = C_{\text{ar}} - (1-\alpha)a_4r, \quad C_{\text{ar}}(1-\alpha) = C_{\text{ar}} + (1-\alpha)a_4r, \]

\[C_{\text{hr}}(\alpha) = C_{\text{hr}} - (1-\alpha)a_6r, \quad C_{\text{hr}}(1-\alpha) = C_{\text{hr}} + (1-\alpha)a_6r, \]

and

\[C_{\text{brs}}(\alpha) = C_{\text{brs}} - (1-\alpha)a_8r, \quad C_{\text{brs}}(1-\alpha) = C_{\text{brs}} + (1-\alpha)a_8r, \]

where

\[\tilde{C}_{\text{pr}}(\alpha) = C_{\text{pr}} + \frac{1}{2}(a_2r - a_2), \quad \tilde{C}_{\text{ar}}(\alpha) = C_{\text{ar}} + \frac{1}{2}(a_4r - a_4), \quad \tilde{C}_{\text{hr}}(\alpha) = C_{\text{hr}} + \frac{1}{2}(a_6r - a_6), \quad \text{and} \quad \tilde{C}_{\text{brs}}(\alpha) = C_{\text{brs}} + \frac{1}{2}(a_8r - a_8). \]

Likewise, the same steps as in crisp case will be applied here with replacing \(C_{\text{pr}}, C_{\text{ar}}, C_{\text{hr}} \) and \(C_{\text{brs}} \) by \(\tilde{C}_{\text{pr}}, \tilde{C}_{\text{ar}}, \tilde{C}_{\text{hr}} \) and \(\tilde{C}_{\text{brs}} \). Then the optimal value of \(Q^*_{\text{mrs}} \) for a given \(N \) which minimize expected annual total cost for fuzzy case can be calculated easily and the optimal value \(Q^*_{\text{mrs}} \) for fuzzy case can be calculated by the following equations:

\[\int_{x_{rs}=a}^{\infty} f(x_{rs}) \, dx_{rs} + \int_{x_{rs}=b-a}^{x_{rs}=b} \frac{Q_{\text{mrs}}}{x_{rs}} f(x_{rs}) \, dx_{rs} = \frac{\tilde{C}_{\text{brs}} N_{\text{brs}}}{C_{\text{pr}} N_{\text{pr}} + (1 + \lambda_{\text{brs}}) C_{\text{hr}} N_{\text{hr}}} \quad (14) \]

5. The model with some continuous distributions

Suppose that the demand for a particular item follows some continuous distribution such as:

5.1 The model with two-parameters exponential distribution: If the demand follows the two parameter exponential distribution then,

\[f(x_{rs}) = \theta e^{-\theta (x_{rs} - \gamma)}, \quad \gamma < x_{rs} < \infty, \quad \theta > 0 \]

\(\theta \) continuous inverse scale parameter \(\theta > 0, \gamma \) continuous location parameter.

Hence, the optimal value \(Q^*_{\text{mrs}} \) can be calculated by the following equation

\[\theta \left(\int_{x_{rs}=\gamma}^{x_{rs}=\infty} e^{-\theta (x_{rs} - \gamma)} \, dx_{rs} + \int_{x_{rs}=b-a}^{x_{rs}=b} \frac{Q_{\text{mrs}}}{x_{rs}} e^{-\theta (x_{rs} - \gamma)} \, dx_{rs} \right) = \frac{\tilde{C}_{\text{brs}} N_{\text{brs}}}{C_{\text{pr}} N_{\text{pr}} + (1 + \lambda_{\text{brs}}) C_{\text{hr}} N_{\text{hr}}} \]

5.2 The model with Kumaraswamy distribution: If the demand follows the Kumaraswamy distribution then,

\[f(x_{rs}) = \frac{a_1 a_2 (x_{rs} - \alpha)^{a_1-1} (a_3 - x_{rs})^{a_2-1}}{b^{a_1} - \alpha} \left(\frac{a_3 - \alpha}{b - \alpha} \right)^{a_1 a_2 - 1}, \quad a \leq x_{rs} \leq b, \]

\(a_1, a_2, a_3 \) continuous shape parameter \(a_1, a_2, a_3 > 0, a, b \) continuous boundary parameters \(a < b \).

Hence, the optimal value \(Q_{\text{mrs}} \) can be calculated by the following equation

\[\frac{a_1 a_2}{b - \alpha} \left(\int_{x_{rs}=\alpha}^{x_{rs}=b-a} \frac{Q_{\text{mrs}}}{x_{rs}} x_{rs} - \alpha \right)^{a_1-1} \left(\frac{x_{rs} - \alpha}{b - \alpha} \right)^{a_2-1} \, dx_{rs} + \frac{b}{x_{rs}=b-a} \int_{x_{rs}=b-a}^{\infty} \frac{Q_{\text{mrs}}}{x_{rs}} \left(\frac{x_{rs} - \alpha}{b - \alpha} \right)^{a_1-1} \, dx_{rs} \]

\[= \frac{\tilde{C}_{\text{brs}} N_{\text{brs}}}{C_{\text{pr}} N_{\text{pr}} + (1 + \lambda_{\text{brs}}) C_{\text{hr}} N_{\text{hr}}} \]

5.3 The model with Gamma distribution: If the demand follows the Gamma distribution then,

\[f(x_{rs}) = \frac{(x_{rs} - \delta)^{a-1}}{\sigma^a \Gamma[\alpha]} e^{-\frac{(x_{rs} - \delta)}{\sigma}}, \delta \leq x_{rs} < \infty \]

\(\alpha \) Continuous shape parameter \(\alpha > 0, \sigma \) Continuous scale parameter \(\sigma > 0 \)

\(\delta \) Continuous location parameter.

Hence, the optimal value \(Q_{\text{mrs}} \) can be calculated by the following equation

\[\int_{x_{rs}=\delta}^{x_{rs}=\infty} \frac{Q_{\text{mrs}}}{\sigma^a \Gamma[\alpha]} \left(\frac{x_{rs} - \delta}{\sigma} \right)^{a-1} e^{-\frac{(x_{rs} - \delta)}{\sigma}} \, dx_{rs} + \int_{x_{rs}=b-a}^{x_{rs}=b} \frac{Q_{\text{mrs}}}{x_{rs}} \left(\frac{x_{rs} - \delta}{\sigma} \right)^{a-1} \, dx_{rs} = \frac{\tilde{C}_{\text{brs}} N_{\text{brs}}}{C_{\text{pr}} N_{\text{pr}} + (1 + \lambda_{\text{brs}}) C_{\text{hr}} N_{\text{hr}}} \]

5.4 The model with Beta distribution: If the demand follows the Beta distribution then,
\[f(x_{rs}) = \frac{1}{\text{Beta}[\alpha_1, \alpha_2]} \left(\frac{x_{rs} - a}{\alpha_1} \right)^{\alpha_1 - 1} \left(\frac{b - x_{rs}}{\alpha_2} \right)^{\alpha_2 - 1}, \quad a \leq x_{rs} \leq b \]

\[\alpha_1, \alpha_2 \text{ Continuous shape parameter } \alpha_1, \alpha_2 > 0, \text{ and } a \text{ and } b \text{ Continuous boundary parameters } a < b. \]

Hence, the optimal value \(Q_{mrs} \) can be calculated by the following equation

\[
Q_{mrs} = \frac{C_{brs}}{N^\nu} \int_{x_{rs}=a}^{b} \frac{1}{\text{Beta}[\alpha_1, \alpha_2]} \left(\frac{x_{rs} - a}{\alpha_1} \right)^{\alpha_1 - 1} \left(\frac{b - x_{rs}}{\alpha_2} \right)^{\alpha_2 - 1} dx_{rs}, \quad a \leq x_{rs} \leq b
\]

5.5 The model with Rayleigh distribution:
If the demand follows the Rayleigh distribution then,

\[f(x_{rs}) = \left(\frac{x_{rs} - a}{\alpha_2^2} \right) e^{\frac{-(x_{rs} - a)^2}{\alpha_2^2}}, \quad a \leq x_{rs} < +\infty \]

\[\alpha_2 \text{ continuous shape parameter } \alpha_2 > 0, \text{ a continuous location parameter.} \]

Hence, the optimal value \(Q_{mrs} \) can be calculated by the following equation

\[
Q_{mrs} = \frac{C_{brs}}{N^\nu} \int_{x_{rs}=a}^{\infty} \left(\frac{x_{rs} - a}{\alpha_2^2} \right) e^{\frac{-(x_{rs} - a)^2}{\alpha_2^2}} dx_{rs} = \frac{C_{brs}}{C_{brs} N^\nu + (1 + \lambda_{brs}) C_{hr} N^{-\nu}}.
\]

5.6 The model with Erlang exponential distribution:
If the demand follows the Erlang distribution then,

\[f(x_{rs}) = \left(\frac{x_{rs} - a}{b^m \Gamma[m]} \right) e^{-\frac{(x_{rs} - a)^m}{b^m}}, \quad a \leq x_{rs} < +\infty, \]

\[m \text{ shape parameter (positive integer), } b \text{ continuous scale parameter } b > 0 \]

\[a \text{ a continuous location.} \]

Hence, the optimal value \(Q_{mrs} \) can be calculated by the following equation

\[
Q_{mrs} = \frac{C_{brs}}{C_{brs} N^\nu + (1 + \lambda_{brs}) C_{hr} N^{-\nu}}.
\]

6. Numerical example
To illustrate the above developed model, consider a hypothetical inventory system with the following parameter values which are given in Table 1. It is desired to determine the optimal value \(Q_{mrs} \) which minimize the expected total cost for \(\beta \) between (0,1) and \(N = 1 \text{ month (0.08333 year).} \)

Also, the optimal solutions of the crisp environment and triangular fuzzy number TPN are given in Tables 3, 5, 7, 9, 11 and 13, and show by Figure 4, 5, 6, 7, 8 and 9. When the demand is follows:

1. Two parameter exponential distribution for \(\gamma < x_{rs} < \infty, \) at \(\theta = 0.20755; \gamma = 1.6295 \)
2. Kumaraswamy distribution, \(a \leq x_{rs} \leq b, \) at \(\alpha_1 = 1.5; \alpha_2 = 2; \) \(a = 0; \) \(b = 1 \)
3. Gamma distribution, \(\delta \leq x_{rs} < +\infty, \) at \(\alpha = 3; \delta = 0.041; \) \(\alpha = 1.3162 \)
4. Beta distribution, \(a \leq x_{rs} \leq b, \) at \(\alpha_1 = 1.5; \alpha_2 = 2; \) \(a = 0; \) \(b = 1 \)
5. Rayleigh distribution, \(0 \leq x_{rs} < \infty, \) at \(\alpha_2 = 2; \) \(a = 0 \)
6. Erlang distribution, \(a \leq x_{rs} < +\infty, \) at \(m = 2.5; \) \(a = 0; \) \(b = 1 \)

Table 1: Crisp and fuzzy values of the parameters
Parameters

\(C_{brs} \)
\(C_{hrs} \)
\(C_{brs} \)
\(C_{hr} \)

\(K_{br} \) (two Parameters exponential)
1
2
3

\(K_{br} \) (Kumaraswamy)
1
2
3

7734
Table 2: The results of crisp and fuzzy values for two parameters exponential distribution

β	γ	Item 1	Item 2	Item 3						
		λ_{br}	Q_{n1}	$E(TC)_1$	λ_{br}	Q_{n2}	$E(TC)_2$	λ_{br}	Q_{m1}	$E(TC)_3$
0.1		20.2256	0.0155365	20.2377	1.34.7927	0.0044178	17.4717	20.3843	0.0124822	23.555
		20.9304	0.0098981	19.1046	29.1793	0.0029292	15.012	20.6788	0.0094812	21.1403
		20.2076	0.0201511	21.2952	24.9585	0.0085965	19.2772	21.9394	0.0070877	23.1629
0.2		18.6747	0.0135852	19.6887	23.4535	0.0038694	16.4886	13.591	0.0109182	22.1162
		18.9773	0.0086608	18.2976	19.6206	0.0025667	14.4332	13.8055	0.0082964	19.9872
		18.4077	0.0176127	19.8628	16.7285	0.0075233	18.0082	22.2226	0.0017256	22.2226
0.3		8.90146	0.0118814	18.1914	15.7056	0.0038896	15.7216	8.96493	0.009552	20.9929
		8.92286	0.0075795	17.6677	13.0905	0.0022493	13.9817	9.11159	0.0072611	19.0871
		8.89603	0.0153975	18.7439	11.0081	0.0065852	17.0177	2.64155	0.0019859	14.0079
0.4		5.76228	0.0103934	17.4909	10.4134	0.00296962	15.1232	5.80554	0.0083583	20.116
		5.98503	0.0066343	17.1761	8.62923	0.00197143	13.6294	5.90601	0.006356	18.3847
		5.02039	0.0134639	17.8679	6.36613	0.00576506	16.2439	6.36613	0.00576506	16.2439
0.5		3.61827	0.0090936	16.944	6.79838	0.00260207	14.6543	3.64791	0.00737151	19.4316
		3.77144	0.005808	16.7924	5.58101	0.0017281	13.3546	3.71685	0.0055646	17.8365
		3.61631	0.0117755	17.1876	4.64854	0.00504787	15.6415	-	-	-
0.6		2.15406	0.0079577	16.5171	4.32878	0.00228031	14.2921	2.17442	0.0064032	18.8974
		2.25903	0.0050854	16.4931	3.49814	0.00151498	13.1403	2.22184	0.0048726	17.4088
		2.15274	0.0103009	16.6548	2.85834	0.00442059	15.1708	-	-	-
0.7		1.15411	0.006965	16.1839	2.64155	0.0019859	14.0079	1.16815	0.0056059	18.4806

Table 2: The results of crisp and fuzzy values for two parameters exponential distribution
For the given document, here is the plain text representation:

Table 3: The optimal policy variable for two parameter exponential distribution at $\beta = 0.9$

Item	Source	Q^{*}_{mrs}	Min $E(TC)$	Q^{*}_{mrs}	Source	Min $E(TC)$
1	3	0.00690321	0.000969875	3		
2	2	0.00102143	0.0000960373	2	43.5758	
3	2	0.00237427	0.00033037	2		

Table 4: The results of crisp and fuzzy values for Kamurswamy distribution

β	Value 1	Value 2	Value 3
0.1	18.7367	18.9662	20.3354
0.2	18.8417	18.8251	19.1715
0.3	18.7635	18.792	18.8775
0.4	12.6013	12.7508	12.6984
0.5	12.6678	12.65	12.8569
0.6	12.627	12.6343	12.7935
0.7	8.37271	8.46944	9.12476
0.8	8.41382	8.39086	8.54353
0.9	8.39336	8.39119	8.57341
1	8.54571	5.52063	5.97331
0.4	5.48319	5.47047	5.57224
0.5	5.47253	5.46785	5.63097
0.6	3.44791	3.48984	3.80236
0.7	3.46453	3.45476	3.52785
0.8	3.46309	3.4541	3.62857
0.9	2.0635	2.09138	2.30702
1	2.07421	2.06697	2.11625
2	2.0728	2.06712	2.14565
3	1.10978	1.12844	1.27714
0.7	1.11658	1.1115	1.2486

The tables provide the optimal parameter settings and minimum expected total cost for different values of β. The results show variations in the crisp and fuzzy values for different parameters, indicating the flexibility and adaptability of the Kamurswamy distribution in various applications.
Table 5: The optimal policy variable for Kamurwanshy distribution at $\beta = 0.9$

Item	source	Q_{mrs}^s	Min $E(TC)$	Q_{mrs}^s	Source	Min $E(TC)$
1	3	0.0328123	0.032554	3	1	
2	2	0.00064622	43.1616	0.00065047	2	41.8758
3	2	0.00171133	0.00157627	2		

Table 6: The results of crisp and fuzzy values for Gamma distribution

β	α_r	Q_{m1}	$E(TC)_1$	α_r	Q_{m2}	$E(TC)_2$	α_r	Q_{m3}	$E(TC)_3$	
0.1	1	18.3718	0.082487	17.9083	18.2619	0.022759	15.6092	18.4805	0.086897	20.7608
	2	10.7322	0.057266	17.548	27.2866	0.0193201	13.9211	10.5586	0.050331	18.9199
	3	18.283	0.102784	18.458	22.8952	0.049646	16.8403	--	--	--
0.2	1	12.3929	0.072496	17.3429	22.115	0.0243571	15.0385	12.4631	0.060669	19.946
	2	12.6267	0.055046	17.0879	18.4633	0.0170627	15.0935	12.5055	0.0486013	18.2607
	3	12.3438	0.0907741	17.6632	15.496	0.0438487	16.1134	--	--	--
0.3	1	8.2554	0.064345	16.836	14.3997	0.0215113	14.5924	8.2988	0.0535787	19.3068
	2	8.40756	0.044635	16.7273	12.4176	0.0156069	13.3197	8.32308	0.0429229	17.7448
	3	8.22895	0.0801691	17.0377	10.3851	0.0307248	15.5447	--	--	--
0.4	1	5.93966	0.0560187	16.4382	9.99044	0.0189979	14.4237	5.42055	0.0473187	18.8057
	2	5.49305	0.0394205	16.4449	8.24915	0.0133082	13.1136	5.43485	0.0379009	17.3409
	3	5.37984	0.0708014	16.5461	6.85585	0.0342003	15.0983	--	--	--
0.5	1	3.41527	0.0517949	16.1262	6.57717	0.0167781	13.9713	3.43195	0.0479102	18.413
	2	3.48044	0.0349174	16.2238	3.73539	0.0117532	12.9257	3.49356	0.0334709	17.0246
	3	3.43049	0.0525924	16.1416	4.94957	0.0302044	14.9495	--	--	--
0.6	1	2.04815	0.0443166	15.8817	4.22348	0.0148177	13.7584	2.05853	0.0360075	18.1065
	2	2.09103	0.0307471	16.0507	3.39435	0.0103794	12.8271	2.06265	0.0295673	16.7772
	3	2.04515	0.0522344	15.8571	2.73818	0.0266754	14.4476	--	--	--
0.7	1	1.10377	0.0391387	15.6902	2.60606	0.0130862	13.5922	1.11025	0.0325954	17.8649
	2	1.13212	0.0271547	15.9154	2.02083	0.0091669	12.729	1.11242	0.0261127	16.5837
	3	1.10274	0.0177197	15.6196	1.57084	0.0235987	14.6324	--	--	--
0.8	1	0.45167	0.0345659	15.5403	1.48192	0.0115569	14.6426	0.455714	0.0287878	17.6767
	2	0.47044	0.023982	15.8095	1.08763	0.0089447	12.6524	0.456796	0.0230618	16.4324
Table 7: The Optimal policy variable for Gamma distribution at $\beta = 0.9$

Item	source	Q_{mrs}	Min E(TC)	Q_{mrs}	Source	Min E(TC)
1	3	0.038045	44.1944	0.038137	3	42.823
2	2	0.00714771	0.00626064	0.0198097	2	
3	2	0.0203673				

Table 8: The results of crisp and fuzzy values for Beta distribution

β	ψ	Item 1	Item 2	Item 3						
		λ_1	Q_{m1}	$E(TC)_1$	λ_2	Q_{m2}	$E(TC)_2$	λ_3	Q_{m3}	$E(TC)_3$
0.1	0.2	18.8835	0.00645563	15.3247	32.7975	0.00211678	12.2814	20.9848	0.00497979	17.4085
0.2	0.2	20.2663	0.00450279	15.6756	27.376	0.00147583	12.546	18.9877	0.00425484	16.2179
0.3	0.2	18.7265	0.00815965	15.1627	23.3025	0.00384341	13.8613	-	-	-
0.4	0.2	12.7003	0.00568945	15.2542	22.677	0.00186729	12.2197	13.7389	0.00438996	17.3196
0.5	0.2	13.6464	0.00396985	15.6221	18.3444	0.00130214	12.5096	12.7652	0.00375143	16.1464
0.6	0.2	12.5981	0.0071892	15.0756	17.3535	0.00338898	13.7824	-	-	-
0.7	0.2	8.43809	0.00501349	15.3989	15.018	0.00164734	13.7116	9.15068	0.00387647	16.2499
0.8	0.2	9.0861	0.00350307	15.5802	12.4476	0.00114907	12.4812	8.47885	0.00330794	16.0904
0.9	0.2	8.3716	0.00312157	15.0772	10.5233	0.00299858	13.7207	-	-	-
1	0.2	5.50087	0.00442089	15.1557	10.027	0.00145339	13.134	5.59004	0.00341281	17.1954
1.1	0.2	5.94509	0.00308673	15.5474	8.2575	0.00110389	12.4587	5.52673	0.00291717	16.0466
1.2	0.2	5.45678	0.00553841	14.9536	6.93046	0.00263574	13.6725	-	-	-
0.5	0.5	3.47717	0.00389777	15.1218	6.59116	0.00218235	13.1046	3.81312	0.00309058	17.1527
0.6	0.5	3.78191	0.00272224	15.5217	5.37298	0.000894706	12.4416	3.49373	0.00257281	16.0124
0.7	0.5	3.44795	0.00492153	14.9116	4.46246	0.00322477	13.6484	-	-	-
0.8	0.5	2.05572	0.00346681	15.0952	4.22579	0.00113512	13.0816	2.31394	0.00265425	17.1194
0.9	0.5	2.29323	0.00240101	15.5017	3.3873	0.000798585	12.4281	2.09384	0.00280939	17.9857
1	0.5	2.06365	0.00433866	14.8786	2.78607	0.00205065	13.6503	-	-	-
0.7	0.7	1.12295	0.00303703	15.0749	2.59749	0.000994874	13.6037	1.2816	0.00231408	17.0933
0.8	0.7	1.26663	0.00211786	15.486	2.02034	0.000698484	12.4175	1.12996	0.00201755	15.9647
0.9	0.7	1.10991	0.00382526	14.8528	1.58898	0.001809	13.5822	-	-	-
0.5	0.8	0.4617	0.00267289	15.0582	1.47657	0.000881127	13.0497	0.57079	0.00265693	17.0729
0.6	0.8	0.56045	0.00168624	15.4738	1.07932	0.00015029	12.4093	0.46634	0.00176588	15.9484
0.7	0.8	0.45293	0.00337299	14.8326	0.78232	0.00159593	13.5642	-	-	-
Table 10: The results of crisp and fuzzy values for Rayleigh distribution

Item	1	2	3
Item 1			
Item 2			
Item 3			

Source: [Journal Title], [Volume], [Issue], [Year], Pages [Start]-[End].
Table 13: The optimal policy variable for Erlang distribution at $\beta = 0.9$

Item	Source	Q^*_{nrs}	Min $E(TC)$	Q^*_{nrs}	Source	Min $E(TC)$
1	3	0.0209987	0.021072	3		
2	2	0.00566166	43.7602	0.00548621	2	42.4653
3	2	0.0113241	0.0112277	2		

Figure 4: Crisp and fuzzy value for two-parameter exponential distribution

Figure 5: Crisp and fuzzy value for Kumaraswamy distribution

Figure 6: Crisp and fuzzy value for Gamma distribution

Figure 7: Crisp and fuzzy value for Beta distribution
7. Conclusion
This paper concerns with a multi-item multi-source (MIMS) constrained probabilistic periodic review inventory model. We determine the optimal maximum inventory level for a given N that minimized the expected annual total cost under varying holding cost constraint using Lagrange multiplier technique for crisp and TFN environment. And we conclude that: the fuzzy environment is more closed to the practical situation than crisp number. Also, When β convergence to 1, the solution approaching to the optimal solution. Furthermore, under our assumption and from selected distributions: Raylieph distribution give the optimum expected annual total cost.

References
[1] Abuo - El-Ata M., Fergany H. and El-Wakeel M., Probabilistic Multi-Item Inventory Model with Varying Order Cost under Two Restrictions: A Geometric Programming Approach, International Journal of Production Economics, 83 (2003) PP. 223–231.
[2] Chiang C., A periodic review replenishment model with a refined delivery scenario, International Journal of Production Economics, 118 (2009) PP. 253-259
[3] Chiang C., Optimal ordering policies for periodic-review systems with a refined intra-cycle time scale, Production, Manufacturing and Logistics, European Journal of Operational Research 177 (2007) PP. 872–881.
[4] Chiang C., Optimal replenishment for a periodic review inventory system with two supply modes, European Journal of Operational Research 149 (2003) PP. 229–244
[5] Chiang C., Periodic Review Inventory Models with Stochastic Supplier’s Visit Intervals, International Journal of Production Economics, 115 (2008) PP. 433-438.
[6] Chu K., Lung Y., Shing K. and Thomas N., Note on inventory model with a mixture of back orders and lost sales Peter, European Journal of Operational Research 159 (2004) PP. 470–475.
[7] Fabrycky W. J. and Banks Jerry. (1967). Procurement and Inventory Systems: THEORY AND ANALYSIS. Newwork, Amsterdam, London.
[8] Fergany H., Probabilistic Multi-Item Inventory Model with Varying Mixture Shortage Cost Under Restrictions, Springer Plus Journal of Springer Plus 5(1), (2016), PP. 1-13.
[9] Fergany H., El-Hefnawy N. and Hollah O., Probabilistic Periodic Review $<Q_M$, $N>$ Inventory Model Using Lagrange Technique And Fuzzy Adaptive Particle Swarm Optimization, Journal of Mathematics and Statistics 10 (3) (2014) PP. 368-383.
[10] Fergany H. and El-Wakeel M., Probabilistic Single – Item Inventory Problem with Varying Order Cost Under Two Linear Constraints. Journal of the Egyptian Mathematical Society, 12(1), (2004) PP. 71-81.
[11] Konstantaras I. and Papachristos S., Production, Manufacturing and Logistics Optimal policy and holding cost stability regions in a periodic review inventory system with manufacturing and remanufacturing options, European Journal of Operational Research 178 (2007) PP. 433–448.
[12] Rong M., Mahapatra N. and Maiti M., A multi-objective wholesaler–retailers inventory-distribution model with controllable lead-time based on probabilistic fuzzy set and triangular fuzzy number, Applied Mathematical Modelling 32 (2008) PP. 2670–2685.
[13] Sadjadi S., Ghazanfari M. and Yousefli A., Fuzzy Pricing and Marketing Planning Model: A Possibilistic Geometric Programming Approach, Expert System Applied 37 (2010) PP. 3392–3397.
[14] Silver A. and Robb J., Some insights regarding the optimal reorder period in periodic review inventory systems, International Journal of Production Economics 112 (2008) PP. 354–366
[15] Yuyue S. and Hoong C., A periodic-review inventory model with application to the continuous-review obsolescence problem, *European Journal of Operational Research* 159 (2004) PP.110–120.