ON THE NON-HYPERCYCLICITY
OF SCALAR TYPE SPECTRAL OPERATORS
AND COLLECTIONS OF THEIR EXPONENTIALS

MARAT V. MARKIN

Abstract. We give a straightforward proof of the non-hypercyclicity of an arbitrary scalar type spectral operator A (bounded or not) in a complex Banach space as well as of the collection $\{e^{\lambda A}\}_{\lambda \geq 0}$ of its exponentials, which, under a certain condition on the spectrum of A, coincides with the C_0-semigroup generated by it. The spectrum of A lying on the imaginary axis, it is shown that non-hypercyclic is also the generated by it strongly continuous group $\{e^{\lambda A}\}_{\lambda \in \mathbb{R}}$ of bounded linear operators. As an important particular case, we immediately obtain that of a normal operator A in a complex Hilbert space. From the general results, we infer that, in the complex Hilbert space $L_2(\mathbb{R})$, the anti-self-adjoint differentiation operator $A := \frac{d}{dx}$ with the domain $D(A) := \mathcal{W}_{1}^2(\mathbb{R})$ is not hypercyclic and neither is the left-translation group generated by it.

Everything should be made as simple as possible, but not simpler.

Albert Einstein

1. Introduction

In this paper, we give a straightforward proof of the non-hypercyclicity of an arbitrary scalar type spectral operator A (bounded or not) in a complex Banach space as well as of the collection $\{e^{\lambda A}\}_{\lambda \geq 0}$ of its exponentials (see, e.g., [4, 5, 8]), which, provided the spectrum of A is located in a left half-plane

$$\{\lambda \in \mathbb{C} \mid \text{Re}\lambda \leq \omega\}$$

with some $\omega \in \mathbb{R}$, coincides with the C_0-semigroup generated by A [14] (see also [3, 20]). The spectrum of A lying on the imaginary axis $i\mathbb{R}$ (i is the imaginary unit), it is shown that non-hypercyclic is also the generated by it strongly continuous group $\{e^{\lambda A}\}_{\lambda \in \mathbb{R}}$ of bounded linear operators.

As an important particular case, we immediately obtain that of a normal operator A in a complex Hilbert space.

2010 Mathematics Subject Classification. Primary 47A16, 47B40; Secondary 47B15, 47D06, 47D60, 34G10.

Key words and phrases. Hypercyclicity, scalar type spectral operator, normal operator, C_0-semigroup, strongly continuous group.
From the general results, we infer that, in the complex Hilbert space $L_2(\mathbb{R})$, the anti-self-adjoint differentiation operator $A := \frac{d}{dx}$ with the domain

$$W_2^1(\mathbb{R}) := \{ f \in L_2(\mathbb{R}) | f(\cdot) \text{ is absolutely continuous on } \mathbb{R} \text{ with } f' \in L_2(\mathbb{R}) \}$$

is not hypercyclic and neither is the left-translation strongly continuous unitary group generated by it [9, 23].

First, we are going to extend the definitions of hypercyclicity, traditionally given for bounded linear operators (see, e.g., [10, 11]), to unbounded ones. The reason for such a shortcoming appears to stem out of the fact that, for an unbounded linear operator

$$A : X \supseteq D(A) \to X$$

(where $D(\cdot)$ is the domain of an operator) in a normed vector space $(X, \| \cdot \|)$, the subspace

$$(1.1) \quad C^\infty(A) := \bigcap_{n=0}^{\infty} D(A^n)$$

($A^0 := I$, I is the identity operator on X) of all those vectors f in X, whose orbit

$$\{ A^n f \}_{n \in \mathbb{Z}_+}$$

($\mathbb{Z}_+ := \{0, 1, 2, \ldots \}$ is the set of nonnegative integers) is well defined, can be meager and even degenerate to $\{0\}$.

However, this not being the case for many important unbounded operators, including the scalar type spectral in a complex Banach space $(X, \| \cdot \|)$, for which the subspace of all permissible orbit starters defined by (1.1) is dense in X (see Preliminaries), without further reservations, we naturally extend the known definition of hypercyclicity (see, e.g., [10, 11]) as follows.

Definition 1.1 (Hypercyclicity).

Let

$$A : X \supseteq D(A) \to X$$

be a linear operator in a (real or complex) normed vector space $(X, \| \cdot \|)$. A vector $f \in C^\infty(A)$ is called hypercyclic if its orbit

$$\{ A^n f \}_{n \in \mathbb{Z}_+}$$

is dense in X.

Operators possessing hypercyclic vectors are called hypercyclic.

More generally, a collection $\{ T(t) \}_{t \in I}$ (I is a nonempty indexing set) of linear operators in X is called hypercyclic if it possesses hypercyclic vectors, i.e., such vectors $f \in \bigcap_{t \in I} D(T(t))$, whose orbit

$$\{ T(t) f \}_{t \in I}$$

is dense in X.
Remarks 1.1.

• It is quite obvious that, in the definition of hypercyclicity for an operator, the underlying space must necessarily be separable. Generally, for a collection of operators, this need not be so.

• According to [10, Observation 2.17], an operator has no nontrivial invariant closed subsets iff every nonzero vector is hypercyclic. Since nontrivial scalar type spectral operators are certain to have nontrivial invariant closed subspaces [4,5,8], our quest to prove their non-hypercyclicity appears to be amply justified.

2. Preliminaries

Here, for the reader’s convenience, we outline certain essential preliminaries.

Henceforth, unless specified otherwise, \(A \) is supposed to be a scalar type spectral operator in a complex Banach space \((X, \| \cdot \|) \) with strongly \(\sigma \)-additive spectral measure (the resolution of the identity) \(E_A(\cdot) \) assigning to each Borel set \(\delta \) of the complex plane \(\mathbb{C} \) a projection operator \(E_A(\delta) \) on \(X \) and having the operator’s spectrum \(\sigma(A) \) as its support [4,5,8].

Observe that, in a complex finite-dimensional space, the scalar type spectral operators are all linear operators on the space, for which there is an eigenbasis (see, e.g., [4,5,8]) and, in a complex Hilbert space, the scalar type spectral operators are precisely all those that are similar to the normal ones [24].

Associated with a scalar type spectral operator in a complex Banach space is the Borel operational calculus analogous to that for a normal operator in a complex Hilbert space [7,21], which assigns to any Borel measurable function \(F : \sigma(A) \to \mathbb{C} \) a scalar type spectral operator

\[
F(A) := \int_{\sigma(A)} F(\lambda) \, dE_A(\lambda)
\]

(see [5,8]).

In particular,

\[
A^n = \int_{\sigma(A)} \lambda^n \, dE_A(\lambda), \quad n \in \mathbb{Z}_+,
\]

and

\[
e^{tA} := \int_{\sigma(A)} e^{t\lambda} \, dE_A(\lambda), \quad t \in \mathbb{R}.
\]

Provided

\[
\sigma(A) \subseteq \{ \lambda \in \mathbb{C} | \text{Re } \lambda \leq \omega \},
\]

with some \(\omega \in \mathbb{R} \), the collection of exponentials \(\{ e^{tA} \}_{t \geq 0} \) coincides with the \(C_0 \)-semigroup generated by \(A \) [14, Proposition 3.1] (cf. also [3,20]), and hence, if

\[
\sigma(A) \subseteq \{ \lambda \in \mathbb{C} | -\omega \leq \text{Re } \lambda \leq \omega \},
\]
with some $\omega \geq 0$, the collection of exponentials $\{e^{tA}\}_{t \in \mathbb{R}}$ coincides with the strongly continuous group of bounded linear operators generated by A.

Remarks 2.1.

- By [13, Theorem 4.2], the orbits
 \begin{equation}
 y(t) = e^{tA}f, \quad t \geq 0, \quad f \in \bigcap_{t \geq 0} D(e^{tA}),
 \end{equation}
 describe all weak/mild solutions of the abstract evolution equation
 \begin{equation}
 y'(t) = Ay(t), \quad t \geq 0,
 \end{equation}
 whereas, by [19, Theorem 7], the orbits
 \begin{equation}
 y(t) = e^{tA}f, \quad t \in \mathbb{R}, \quad f \in \bigcap_{t \in \mathbb{R}} D(e^{tA}),
 \end{equation}
 describe all weak/mild solutions of the abstract evolution equation
 \begin{equation}
 y'(t) = Ay(t), \quad t \in \mathbb{R},
 \end{equation}
 which need not be differentiable in the strong sense and encompass the classical ones, strongly differentiable and satisfying the equations in the traditional plug-in sense, [2] (cf. [9, Ch. II, Definition 6.3], see also [18, Preliminaries]).

- The operator A generating a C_0-semigroup or a strongly continuous group of bounded linear operators (see, e.g., [9,12]), the associated abstract Cauchy problem (ACP)
 \begin{equation}
 \begin{cases}
 y'(t) = Ay(t), & t \in I, \\
 y(0) = f
 \end{cases}
 \end{equation}
 with $I := [0, \infty)$ or $I := \mathbb{R}$, respectively, is well-posed (cf. [9, Ch. II, Definition 6.8]).

- Observe that all three subspaces
 \[
 C^\infty(A), \bigcap_{t \geq 0} D(e^{tA}), \text{ and } \bigcap_{t \in \mathbb{R}} D(e^{tA})
 \]
 are dense in X since they contain the dense in X subspace \[\bigcup_{\alpha > 0} E_A(\Delta_\alpha)X, \]
 where
 \[
 \Delta_\alpha := \{ \lambda \in \mathbb{C} \mid |\lambda| \leq \alpha \}, \quad \alpha > 0,
 \]
 which coincides with the class $\mathcal{E}^{(0)}(A)$ of entire vectors of A of exponential type [17,22].

The properties of the spectral measure and operational calculus, exhaustively delineated in [5,8], underlie the subsequent discourse. Here, we touch upon a few facts of particular importance.

Due to its strong countable additivity, the spectral measure $E_A(\cdot)$ is bounded [6,8], i.e., there is such an $M \geq 1$ that, for any Borel set $\delta \subseteq \mathbb{C}$,

\begin{equation}
\|E_A(\delta)\| \leq M.
\end{equation}
Observe that the notation \(\| \cdot \| \) is used here to designate the norm in the space \(L(X) \) of all bounded linear operators on \(X \). We adhere to this rather conventional economy of symbols in what follows also adopting the same notation for the norm in the dual space \(X^* \).

For any \(f \in X \) and \(g^* \in X^* \), the total variation measure \(v(f, g^*, \cdot) \) of the complex-valued Borel measure \(\langle E_A(\cdot) f, g^* \rangle \) (\(\langle \cdot, \cdot \rangle \) is the pairing between the space \(X \) and its dual \(X^* \)) is a finite positive Borel measure with

\[
(2.10) \quad v(f, g^*, C) = v(f, g^*, \sigma(A)) \leq 4M\|f\|\|g^*\|
\]

(see, e.g., [15, 16]).

Also (Ibid.), for a Borel measurable function \(F: \mathbb{C} \to \mathbb{C} \), \(f \in \mathcal{D}(F(A)) \), \(g^* \in X^* \), and a Borel set \(\delta \subseteq \mathbb{C} \),

\[
(2.11) \quad \int_{\delta} |F(\lambda)| \, dv(f, g^*, \lambda) \leq 4M\|E_A(\delta) F(A) f\|\|g^*\|.
\]

In particular, for \(\delta = \sigma(A) \),

\[
(2.12) \quad \int_{\sigma(A)} |F(\lambda)| \, dv(f, g^*, \lambda) \leq 4M\|F(A) f\|\|g^*\|.
\]

Observe that the constant \(M \geq 1 \) in \((2.10)-(2.12)\) is from \((2.9)\).

3. Main Results

Theorem 3.1. An arbitrary scalar type spectral operator \(A \) in a complex Banach space \((X, \| \cdot \|)\) with spectral measure \(E_A(\cdot) \) is not hypercyclic and neither is the collection \(\{e^{tA}\}_{t \geq 0} \) of its exponentials, which, provided the spectrum of \(A \) is located in a left half-plane

\[
\{ \lambda \in \mathbb{C} \mid \text{Re } \lambda \leq \omega \}
\]

with some \(\omega \in \mathbb{R} \), coincides with the \(C_0 \)–semigroup generated by \(A \).

Proof. Let \(f \in C^\infty(A) \setminus \{0\} \) be arbitrary.

There are two possibilities: either

\[
E_A(\{ \lambda \in \sigma(A) \mid |\lambda| > 1 \}) f \neq 0
\]

or

\[
E_A(\{ \lambda \in \sigma(A) \mid |\lambda| > 1 \}) f = 0.
\]

In the first case, as follows from the Hahn-Banach Theorem (see, e.g., [6]), there is a \(g^* \in X^* \setminus \{0\} \) such that

\[
\langle E_A(\{ \lambda \in \sigma(A) \mid |\lambda| > 1 \}) f, g^* \rangle \neq 0
\]

and hence, for any \(n \in \mathbb{Z}_+ \),

\[
\|A^n f\| \geq [4M\|g^*\|]^{-1} \int_{\sigma(A)} |\lambda|^n \, dv(f, g^*, \lambda) \geq [4M\|g^*\|]^{-1} \int_{\{\lambda \in \sigma(A) \mid |\lambda| > 1\}} |\lambda|^n \, dv(f, g^*, \lambda)
\]

by \((2.12)\).
\[
\geq [4M\|g^*\|]^{-1}v(f, g^*, \{\lambda \in \sigma(A)\|\lambda\| > 1\})
\]
\[
\geq [4M\|g^*\|]^{-1}|E_A(\{\lambda \in \sigma(A)\|\lambda\| > 1\}) f, g^*)| > 0,
\]
which immediately implies that the orbit \(\{A^n f\}_{n \in \mathbb{Z}_+}\) is not dense in \(X\).

In the second case,
\[
f = E_A(\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}) f \neq 0
\]
and, for any \(n \in \mathbb{Z}_+\),
\[
\|A^n f\| = \left\| \int_{\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}} \lambda^n dE_A(\lambda)f \right\| \quad \text{by the properties of the operational calculus;}
\]
as follows from the Hahn-Banach Theorem;
\[
= \sup_{\{g^* \in X^*\|\|g^*\| = 1\}} \left\| \left\langle \int_{\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}} \lambda^n dE_A(\lambda)f, g^* \right\rangle \right\|
\]
by the properties of the operational calculus;
\[
\leq \sup_{\{g^* \in X^*\|\|g^*\| = 1\}} \int_{\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}} |\lambda|^n dv(f, g^*, \lambda)
\]
\[
\leq \sup_{\{g^* \in X^*\|\|g^*\| = 1\}} \int_{\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}} 4M \|E_A(\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}) f\| \|g^*\|
\]
\[
\leq 4M \|E_A(\{\lambda \in \sigma(A)\|\lambda\| \leq 1\}) f\|,
\]
which also implies that the orbit \(\{A^n f\}_{n \in \mathbb{Z}_+}\), being bounded, is not dense in \(X\) and completes the proof for the operator case.

Now, let us consider the case of the exponential collection \(\{e^{tA}\}_{t \geq 0}\) assuming that \(f \in \bigcap_{t \geq 0} D(e^{tA}) \setminus \{0\}\) is arbitrary.

There are two possibilities: either
\[
E_A \left(\{\lambda \in \sigma(A)\|\Re \lambda > 0\}\right) f \neq 0
\]
or
\[
E_A \left(\{\lambda \in \sigma(A)\|\Re \lambda > 0\}\right) f = 0.
\]
In the first case, as follows from the Hahn-Banach Theorem, there is a \(g^* \in X^* \setminus \{0\}\) such that
\[
\langle E_A \left(\{\lambda \in \sigma(A)\|\Re \lambda > 0\}\right) f, g^* \rangle \neq 0
\]
and hence, for any $t \geq 0$,

$$
\|e^{tA}f\| \quad \text{by (2.12)};
$$

$$
\geq \left[4M\|g^*\|\right]^{-1} \int_{\sigma(A)} |e^{t\lambda}| \, dv(f, g^*, \lambda)
$$

$$
\geq \left[4M\|g^*\|\right]^{-1} \int_{\{\lambda \in \sigma(A) \mid \Re \lambda > 0\}} e^{t\Re \lambda} \, dv(f, g^*, \lambda)
$$

$$
\geq \left[4M\|g^*\|\right]^{-1} v(f, g^*, \{\lambda \in \sigma(A) \mid \Re \lambda > 0\})
$$

$$
\geq \left[4M\|g^*\|\right]^{-1} |\langle E_A(\{\lambda \in \sigma(A) \mid \Re \lambda > 0\}) f, g^* \rangle| > 0,
$$

which immediately implies that the orbit $\{e^{tA}f\}_{t \geq 0}$ is not dense in X.

In the second case,

$$
f = E_A(\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}) f \neq 0
$$

and, for any $t \geq 0$,

$$
\|e^{tA}f\| \quad \text{by the properties of the operational calculus};
$$

$$
= \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} \left| \int_{\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}} e^{t\lambda} \, dE_A(\lambda)f, g^* \right|
$$

as follows from the Hahn-Banach Theorem;

$$
= \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} \left| \int_{\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}} e^{t\lambda} \, d\langle E_A(\lambda)f, g^* \rangle \right|
$$

by the properties of the operational calculus;

$$
\leq \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} \left| \int_{\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}} |e^{t\lambda}| \, dv(f, g^*, \lambda) \right|
$$

$$
= \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} \left| \int_{\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}} e^{t\Re \lambda} \, dv(f, g^*, \lambda) \right|
$$

$$
\leq \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} \int_{\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}} 1 \, dv(f, g^*, \lambda)
$$

by (2.11) with $F(\lambda) \equiv 1$;

$$
\leq \sup_{\{g^* \in X^* \mid \|g^*\| = 1\}} 4M \|E_A(\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}) f\| \|g^*\|
$$

$$
\leq 4M \|E_A(\{\lambda \in \sigma(A) \mid \Re \lambda \leq 0\}) f\|,
$$
which also implies that the orbit \(\{ e^{tA}f \}_{t \geq 0} \) being bounded, is not dense on \(X \) and completes the entire proof. \(\square\)

If further \(\sigma(A) \subseteq i\mathbb{R} \), by [8, Theorem XVIII.2.11 (c)], for any \(t \in \mathbb{R} \)

\[
\| e^{tA} \| = \left\| \int_{\sigma(A)} e^{\lambda t} dE_A(\lambda) f \right\| \leq 4M \sup_{\lambda \in \sigma(A)} |e^{\lambda t}| = 4M \sup_{\lambda \in \sigma(A)} e^{t \text{Re} \lambda} = 4M,
\]

where the constant \(M \geq 1 \) is from (2.9). Therefore, the generated by \(A \) strongly continuous group \(\{ e^{tA} \}_{t \in \mathbb{R}} \) is bounded (cf. [3]), which implies that every orbit \(\{ e^{tA}f \}_{t \in \mathbb{R}} \), \(f \in X \), is bounded, and hence, cannot be dense in \(X \), and we arrive at the following

Proposition 3.1. For a scalar type spectral operator \(A \) in a complex Banach space \((X, \| \cdot \|) \) with \(\sigma(A) \subseteq i\mathbb{R} \), the generated by it strongly continuous group \(\{ e^{tA} \}_{t \in \mathbb{R}} \) is bounded, and hence, non-hypercyclic.

4. **The Case of a Normal Operator**

As an important particular case of Theorem 3.1, we obtain

Corollary 4.1 (The Case of a Normal Operator).

An arbitrary normal operator \(A \) in a complex Hilbert space is not hypercyclic and neither is the collection \(\{ e^{tA} \}_{t \geq 0} \) of its exponentials, which, provided the spectrum of \(A \) is located in a left half-plane

\[\{ \lambda \in \mathbb{C} \mid \text{Re} \lambda \leq \omega \} \]

with some \(\omega \in \mathbb{R} \), coincides with the \(C_0 \)-semigroup generated by \(A \).

As is known [23], for an anti-self-adjoint operator \(A \) in a complex Hilbert space, \(\sigma(A) \subseteq i\mathbb{R} \) and the generated by it strongly continuous group \(\{ e^{tA} \}_{t \in \mathbb{R}} \) is unitary, which, in particular, implies that

\[\| e^{tA} \| = 1, \ t \in \mathbb{R}. \]

Hence, in this case, Proposition 3.1 acquires the following form.

Corollary 4.2 (The Case of an Anti-Self-Adjoint Operator).

For an anti-self-adjoint operator \(A \) in a complex Hilbert space, the generated by it strongly continuous group \(\{ e^{tA} \}_{t \in \mathbb{R}} \) is unitary, and hence, non-hypercyclic.

5. **An Application**

Since, in the complex Hilbert space \(L_2(\mathbb{R}) \), the differentiation operator \(A := \frac{d}{dx} \) with the domain

\[W^1_2(\mathbb{R}) := \{ f \in L_2(\mathbb{R}) \mid f(\cdot) \text{ is absolutely continuous on } \mathbb{R} \text{ with } f'(\cdot) \in L_2(\mathbb{R}) \} \]

is anti-self-adjoint (see, e.g., [1]), and hence, the generated by it left-translation group is strongly continuous and unitary [9, 23], by the Corollaries 4.1 and 4.2, we obtain
Corollary 5.1 (The Case of Differentiation Operator).

In the complex Hilbert space $L_2(\mathbb{R})$, the differentiation operator $A := \frac{d}{dx}$ with the domain

$$D(A) := W^1_2(\mathbb{R}) := \{ f \in L_2(\mathbb{R}) | f(\cdot) \text{ is absolutely continuous on } \mathbb{R} \text{ with } f' \in L_2(\mathbb{R}) \}$$

is not hypercyclic and neither is the left-translation group generated by it.

Remark 5.1. In a different setting, the situation with the differentiation operator can be vastly different (Cf. MacLanes operator [10, Example 2.21]).

6. Concluding Remark

The exponentials given by (2.4) describing all weak/mild solutions of equation (2.5) (see Remarks 2.1, Theorem 3.1, in particular, implies that the latter is void of chaos (cf. [10]). The same, by Proposition 3.1, is true also for equation (2.7) provided $\sigma(A) \subseteq i\mathbb{R}$.

7. Acknowledgments

The author would like to express sincere appreciation to his colleague, Dr. Oscar Vega of the Department of Mathematics, California State University, Fresno, for his gift of the book [11], reading which inspired the above findings.

References

[1] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
[2] J.M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc. 63 (1977), no. 2, 101–107.
[3] E. Berkson, Semi-groups of scalar type operators and a theorem of Stone, Illinois J. Math. 10 (1966), no. 2, 345-352.
[4] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321–354.
[5] , A survey of the theory of spectral operators, Bull. Amer. Math. Soc. 64 (1958), 217–274.
[6] N. Dunford and J.T. Schwartz with the assistance of W.G. Bade and R.G. Bartle, Linear Operators. Part I: General Theory, Interscience Publishers, New York, 1958.
[7] , Linear Operators. Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space, Interscience Publishers, New York, 1963.
[8] , Linear Operators. Part III: Spectral Operators, Interscience Publishers, New York, 1971.
[9] K.-J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000.
[10] K.-G. Grosse-Erdmann and A.P. Manguillon, Linear Chaos, Universitext, Springer-Verlag, London, 2011.
[11] A.J. Guirao, V. Montesinos, and V. Zizler, Open Problems in the Geometry and Analysis of Banach Spaces, Springer International Publishing, Switzerland, 2016.
[12] E. Hille and R.S. Phillips, Functional Analysis and Semi-groups, American Mathematical Society Colloquium Publications, vol. 31, Amer. Math. Soc., Providence, RI, 1957.
[13] M.V. Markin, On an abstract evolution equation with a spectral operator of scalar type, Int. J. Math. Math. Sci. 32 (2002), no. 9, 555–563.
[14] , A note on the spectral operators of scalar type and semigroups of bounded linear operators, Ibid. 32 (2002), no. 10, 635–640.
[15] On scalar type spectral operators, infinite differentiable and Gevrey ultradifferentiable C_0-semigroups, Ibid. 2004 (2004), no. 45, 2401–2422.

[16] On the Carleman classes of vectors of a scalar type spectral operator, Ibid. 2004 (2004), no. 60, 3219–3235.

[17] On the Carleman ultradifferentiable vectors of a scalar type spectral operator, Methods Funct. Anal. Topology 21 (2015), no. 4, 361–369.

[18] On the mean ergodicity of weak solutions of an abstract evolution equation, Ibid. 24 (2018), no. 1, 53–70.

[19] On the differentiability of weak solutions of an abstract evolution equation with a scalar type spectral operator on the real axis, Int. J. Math. Math. Sci. 2018 (2018), Article ID 4168609, 14 pp.

[20] T.V. Panchapagesan, Semi-groups of scalar type operators in Banach spaces, Pacific J. Math. 30 (1969), no. 2, 489–517.

[21] A.I. Plesner, Spectral Theory of Linear Operators, Nauka, Moscow, 1965 (Russian).

[22] Ya.V. Radyno, The space of vectors of exponential type, Dokl. Akad. Nauk BSSR 27 (1983), no. 9, 791–793 (Russian with English summary).

[23] M.H. Stone, On one-parameter unitary groups in Hilbert space, Ann. of Math. (2) 33 (1932), no. 3, 643–648.

[24] J. Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math. 4 (1954), 355–361.