Geo-accumulation Index, Enrichment Factor and Quantification of Contamination of Heavy Metals in Soil Receiving Cassava Mill Effluents in A Rural Community in the Niger Delta Region of Nigeria

Sylvester Chibueze Izah, Sunday Etim Bassey, Elijah Ige Ohimain
Department of Biological Sciences, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria

Corresponding author email: chivestizah@gmail.com

Molecular Soil Biology, 2017, Vol.8, No.2 doi: 10.5376/msb.2017.08.0002
Received: 15 Sep., 2017
Accepted: 12 Oct., 2017
Published: 20 Oct., 2017

Abstract This study investigated enrichment factor, geo-accumulation index and quantification of contamination of heavy metals in cassava mill effluents contaminated soil by smallholder cassava processors in a rural community in the Niger Delta region of Nigeria. Data used for the environmental risk assessment is from secondary sources. The assessment was carried out under two background scenarios viz: geometric (BGM) and median mean (BMM). 50% of mean detected individual metals was used as mean data for location that the metal was not detected. Assessment was carried out following well established protocol. Results showed that enrichment factor (EF), geo-accumulation index (Igeo), improved Nemorow Index (INI), Metal enrichment index (MEI) and quantification of contamination (QoC) in soil heavy metals (viz: Fe, Cr, Zn, Cu, Co, Ni, Mn, Pb and Cd) receiving cassava mill effluents in a rural community of the Niger Delta region of Nigeria revealed un-contamination to moderately contamination for Igeo, NMI, background rank to significant enrichment for EF, no enrichment to moderate enrichment for MEI, and positive values of quantification of contamination is an indication of pollution/contamination due to anthropogenic sources. The study further showed that cassava mill effluents are contributing to soil heavy metal contamination in study area.

Keywords Cassava mill effluents; Enrichment factor; Geo-accumulation factor; Heavy metals; Quantification of contamination

Background

Some waste disposal system is carried in unsustainable manner especially in developing countries. According to Swarnalatha et al. (2013), waste disposal system is carried out in unscientific and is ill-maintained approach due to unsuitable waste management and poor urban planning and implementation strategies. Most wastes stream end up in the environment (mostly in soil and surface water). These wastes stream mostly result from anthropogenic activities. According to Ghazaryan et al. (2015), human activities on natural landscapes affect both qualitative and quantitative characteristics of the environment (Ghazaryan et al., 2015).

The toxicity of any wastes depends on its composition and source. For instance, wastes emanating from cassava processing including solid (peels and sievate), liquid (cassava mill effluents or whey) and gaseous emission (pollutant gases) could have effect on the environmental components and its associated biota. The constituents of wastes from the cassava peel may depend on the age and species. The emissions also depend on the scale of processor and source. While cassava mill effluents generated during dewatering/pressing activity (Ohimain et al., 2013) is highly lethal to the environment and its associated biota. The characteristics of the effluent have been widely reported in literatures. The general physico-chemistry and heavy metals of cassava mill effluents have been reported by Orhue et al. (2014), Rim-Rukeh (2012), Adejumo and Ola (2011), Patrick et al. (2011), Oluronfemi and Lolodi (2011), Omomowo et al. (2015), Izah et al. (2017a-c). Furthermore, the microbial characteristics have also been documented by authors (Nwaugo et al., 2007; Rim-Rukeh, 2012; Omotioma et al., 2013; Omomowo et al., 2015).

Cassava mill effluents typically elevates the receiving soil heavy metal concentration (Nwakaudu et al., 2012; Osakwe, 2012; Igbinosa and Igiehon, 2015; Igbinosa, 2015). Heavy metals are highly lethal at high concentration.
for the essential metals as well as the non-essential ones even at low concentration (Izah et al., 2016; Izah and Angaye, 2016). Heavy metals have the ability to bioaccumulate within the different links of trophic chains (Ghazaryan et al., 2015).

Heavy metals contamination is one of the major problems facing environmental sustainability in both developed and developing countries (Singovszka et al., 2014). This could be due to the fact that they are toxic and recalcitrant to biodegradation (Singovszka et al., 2014; Mohseni-Bandpei et al., 2016). As such, their contamination level in soils is regarded as a potential hazard for food safety and public health (Karydas et al., 2015).

Typically, heavy metals in the soil could originate from natural pedgeochemical characteristics, anthropogenic sources and/or mixture of both (Ghazaryan et al., 2015). The occurrence of heavy metals in the soil surfaces is harmful to soil ecosystem, citizens' health and can cause other environmental challenges (Mohseni-Bandpei et al., 2016). Therefore, there is the need to continually assess the characteristics of food processing wastes discharged into the environment at all scale of processing.

Several environmental risk indices have been used to assess and quantify extent of pollution in an environment. Some of these indices such as enrichment factor (EF), geo-accumulation factor (Igeo) and Quantification of contamination (QoC) have been applied by authors in assessing environmental risk assessment (Muller, 1969; Sutherland, 2000; Asaah et al., 2006; Elias et al., 2014; Tang et al., 2014; Vowotor et al., 2014; Ghaleno et al., 2015; Ghazaryan et al., 2015; Hassaan et al., 2016; Todorova et al., 2016; Wang et al., 2016; Bhutiani et al., 2017). Hence, this study aimed at assessing the Igeo, EF, QoC of heavy metals in soil receiving cassava mill effluents in a rural community of the Niger Delta region of Nigeria. This study could be used for to policy makers and environmentalists.

1 Methodology
1.1 Study area
Ndemili Umusadege is one of the quarters in Utagba-Uno in Ndokwa-West local government area of Delta state. Ndemili lies between latitude N06º01’ and longitude E006º17’. The region is characterized by 28±6°C and 50 – 95% of temperature and relative humidity respectively all year round. The average annual rainfall of 1900mm which is peculiar to other areas in Delta state (Orji and Egboka, 2015). Farming is a major source of livelihood to the indigenous people of the area. Some of the crops cultivated include cassava, yam, maize, oil palm etc.

1.2 Data source
The data used for the assessment is mainly from secondary source. Previous result from Izah et al. (2017c) was used for the assessment of metal enrichment index (MEI), QoC, Igeo and EF of the heavy metals in cassava mill effluents contaminated soil (Table 1), while Improved Nemerow Index (INI) was computed based on the value obtained from the Igeo. The assessment was carried out under two background scenarios viz: geometric and median mean. Authors have recommended the use of geometric mean (BGM) (Thambavani and Uma Mageswari, 2013; Bhutiani et al., 2017) and median mean (BMM) (Monakhov et al., 2015; Bhutiani et al., 2017) as background values in assessment of environmental risk. Geometric and median mean values are usually lower than the arithmetic values depending of the data distribution. Geometric mean is numerically lesser than the arithmetic mean due to reduction in the values of the sample group and therefore, it a useful indicator for background geochemical data (Thambavani and Uma Mageswari, 2013). Assessment was carried out based on two seasons (wet and dry) across 5 locations of soil receiving cassava mill effluents.

1.3 Enrichment factor, Geo-accumulation factor and identification of contamination source
MEI, EF, Igeo, INI and QoC of heavy metal in contaminated environment have been widely used to assess environmental risk of the activities leading to pollution. Several mean data have been recommended/suggested for the environment risk assessment. Some of these mean include geometric mean (Thambavani and Uma Mageswari, 2013; Bhutiani et al., 2017) and median mean (Monakhov et al., 2015; Bhutiani et al., 2017). Based on the values
presented in Table 1, the resultant EF, INI, Igeo, QoC and MEI were calculated and the results was compared to the criteria presented in Table 2.

Table 1 Concentration of heavy metals among the various locations with their background values in cassava mill effluents contaminated soil

Metals	Seasons	BMM	BGM	Min	Max	LA	LB	LC	LD	LE
Cu	Dry	6.06	5.94	3.10	10.41	6.06	8.83	4.29	10.41	3.10
	Wet	3.87	4.07	3.34	4.84	3.87	4.83	3.69	3.34	4.84
Zn	Dry	43.45	32.47	9.65	49.75	9.65	38.09	43.45	45.41	49.75
	Wet	40.31	35.47	18.98	49.65	18.98	49.65	34.72	40.33	42.55
Mn	Dry	39.19	32.47	18.37	55.29	18.37	20.91	39.19	43.03	55.29
	Wet	39.69	35.82	18.47	53.87	18.47	53.87	34.07	43.83	39.69
Fe	Dry	3526.00	3083.03	1405.77	5696.99	1405.77	1824.58	5696.99	5406.05	3525.99
	Wet	3309.04	3384.44	2635.83	4171.09	3041.84	2635.83	4171.09	4012.61	3309.04
Pb	Dry	5.27	4.84	1.66	10.63	9.92	10.63	5.27	2.88	1.66
	Wet	1.89	2.22	0.79	8.21	1.89	8.21	0.79	1.89	2.35
Cd	Dry	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11	0.11
	Wet	0.23	0.3	0.23	0.48	0.23	0.48	0.23	0.23	0.45
Cr	Dry	2.12	1.62	0.38	3.9	3.9	0.38	2.12	1.54	2.31
	Wet	1.59	1.84	1.19	4.50	2.13	1.18	1.59	1.19	4.50
Ni	Dry	2.66	2.85	1.88	4.21	4.21	1.88	2.66	4.20	2.13
	Wet	1.38	1.77	0.88	4.87	0.88	2.94	4.87	1.38	1.00
Co	Dry	10.31	8.13	3.34	11.28	3.34	10.31	11.28	10.86	8.39
	Wet	0.04	0.05	0.04	0.08	0.08	0.04	0.04	0.04	0.07

Note: Izah et al. (2017a); BMM- Background median mean, BGM- Background geometric mean, Min-Minimum, Max-Maximum

Table 2 Specification of Enrichment factor and Geo-accumulation index used in this study

Enrichment factor (EF)	Considered as background rank	Minimal enrichment	Moderate enrichment	Significant enrichment	Very high enrichment	Extremely high enrichment	Geo-accumulation index (Igeo)	INI ≤ 0.5	0.5 < INI ≤ 1	1 < INI ≤ 2	1 < Igeo ≤ 2	2 < Igeo ≤ 3	3 < Igeo ≤ 4	4 < Igeo ≤ 5	Igeo ≥ 5
1	Uncontamination	1 – 2	2 – 5	5 – 20	20 – 40	40	-	Igeo ≤ 0	0 < Igeo ≤ 1	1 < Igeo ≤ 2	1 < INI ≤ 2	2 < INI ≤ 3	3 < INI ≤ 4	4 < INI ≤ 5	Igeo ≥ 5

Note: Geo-accumulation index is by Muller (1969) have been widely applied by Ghaleno et al. (2015), Bhutiani et al. (2017), Todorova et al. (2016), Improved Nemerow Index is by Forstner et al. (1990) and have been applied by Guan et al. (2014); while Enrichment factor is by Sutherland (2000) and have been applied by Bhutiani et al. (2017)

1.3.1 Quantification of contamination or anthropogenic metals
Quantification of contamination (QoC) represents the lithogenic metal (Asaah et al. 2006; Bhutiani et al., 2017) and was calculated by the formula presented by Bhutiani et al. (2017).

\[\text{QoC} \% = \frac{(C_n - B_n)}{C_n} \times 100 \ (\text{Equal} \ 1) \]

Where QoC is quantification of contamination, \(C_n \) is the concentration of metal in the sample and \(B_n \) is the background individual heavy metals concentrations.

1.3.2 Enrichment factor
Enrichment factor (EF) is an index used to assess the level of contamination of heavy metals from both natural
and anthropogenic sources above uncontaminated background levels (Chen et al., 2007; Amin et al., 2009; Kowalska et al., 2016; Bhutiani et al., 2017; El-Metwally et al., 2017). Fe is the acceptable normalization element (Deely and Fergusson 1994; Elias and Gbadegesin, 2011; Elias et al., 2014; Kowalska et al., 2016; Bhutiani et al., 2017; Mazurek et al., 2017), hence it was used for the calculation of EF. Authors have variously reported that iron has the highest concentration among heavy metals in cassava mill effluents (Adejumo and Ola, 2011; Olorunfemi and Lolodi, 2011; Orhue et al., 2014; Omomowo et al., 2015). Typically, iron has a relatively high natural concentration and is therefore not expected to be substantially enriched from anthropogenic sources (Bhutiani et al., 2017). EF is mathematically expressed based on the method previously described and used by Bhutiani et al. (2017), Elias et al. (2014), Tang et al. (2014), El-Metwally et al. (2017), Gasiorek et al. (2017), Kowalska et al. (2016).

\[
EF = \frac{HM(s)}{Fe(s)} \times \frac{Fe(b)}{HM(b)}\quad \text{(Equal 2)}
\]

Where \(HM(s)\) stands for concentration of heavy metals in sample, \(Fe(s)\) stands for concentration of Fe in sample, \(HM(b)\) stands for concentration of the heavy metals in the reference background value and \(Fe(b)\) is the concentration of Fe in the earth’s crust or reference background value.

1.3.3 Metal enrichment index

Metal enrichment Index (MEI) has been applied in determining the extent of heavy metals associated with anthropogenic activities in an industrial area. In this study, metal enrichment index previously described by Riba et al. (2002) and have been applied by Sarala and Sabitha (2012) was used. MEI is sometimes called surface enrichment factor (Riba et al., 2002).

\[
MEI = \frac{CA - CB}{CA}\quad \text{(Equal 3)}
\]

Where, \(CA = \text{total concentration of individual heavy metals; } CB = \text{Background level.}\)

1.3.4 Geo-accumulation index

Geo-accumulation index (Igeo) is typically used to assess the degree of anthropogenic or geogenic accumulated pollutant loads (Bhutiani et al., 2017). According to Guan et al. (2014), geo-accumulation index is suitable for assessing heavy metals in soil contaminated by industrial activities. Geo-accumulation index by Muller (1969) and have been applied by El-Metwally et al. (2017), Bhutiani et al. (2017), Ghaleno et al. (2015), Todorova et al. (2016), Tang et al. (2014) Wang et al. (2016), Hassaan et al. (2016), Vowotor et al. (2014), Ghazaryan et al. (2015), Guan et al. (2014), Gasiorek et al. (2017), Kowalska et al. (2016).

\[
I_{geo} = \log_{2} \left(\frac{HM(s)}{1.5 \times HM(b)} \right)\quad \text{(Equal 4)}
\]

Where \(HM(s)\) is the measured concentration of heavy metals in the sample, \(HM(b)\) is the background value for the heavy metals and the factor 1.5 is used because of possible variations of the background data due to lithological variations.

1.3.5 Improved nemerow index

Improved Nemerow Index (INI) is another index used in assessing pollution. It was improved by replacing the single factor index in geo-accumulation index (Guan et al., 2014). INI is calculated based on the formula previously described by Guan et al. (2014).

\[
\text{Improved Nemerow Index} = \sqrt{\frac{I_{geo_{mean}}^{2} + I_{geo_{Maximum}}^{2}}{2}}\quad \text{(Equal 5)}
\]

Where \(I_{geo_{mean}}\) the mean value of Igeo of the various locations for each of the heavy metals under consideration; and \(I_{geo_{Maximum}}\) is the maximum value of geo-accumulation index of the various locations for each of the heavy metals under consideration. The resultant values were compared with the standard presented in in Table 2.
2 Results and Discussion

Table 3 presents Igeo of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta, Nigeria. The Igeo ranged from un-contamination (Igeo≤0) to moderately contamination (1< Igeo ≤ 2). Copper were within un-contamination to moderately contamination at dry season of LD in both background scenarios (BMM and BGM). Zinc was within un-contamination to moderately contamination at dry season for LE in BGM background consideration, and uncontaminated level for BMM scenario. Like zinc in BMM consideration, manganese was uncontaminated in all the locations across both seasons of study. While under BGM consideration, it was within un-contamination to moderately contamination at dry season for LE. Iron was within un-contamination to moderately contamination at dry season for LC and LD under both scenarios and LE for wet season in BMM background consideration.

Lead showed moderate contamination in wet season of LB under both scenarios. Furthermore, LA for wet season in BMM background consideration was within un-contamination to moderately contamination. Cadmium showed un-contamination to moderately contamination in wet season for LB and LE. These levels of contamination were also peculiar in wet season of LB under BGM consideration. Chromium level at dry season for LA and wet season for LE under BMM scenario and wet season for LA and LE were within un-contaminated to moderate contamination. In nickel, wet season for LC were within moderate contamination. Furthermore, LA and LD for dry season and LB for wet season were within un-contamination to moderately contamination in BMM background consideration. While in BGM background scenario, nickel at LB and LC for wet season were within uncontaminated to moderate contamination. Cobalt in wet season of LA and LE (under BMM consideration) and LA (under BGM scenario) were within un-contamination to moderately contamination. The findings of this study showed that only 17 (representing 18.89%) of all the metals under study in the different location across both seasons were contaminated under BMM background scenario. Under BGM background scenario, 11 (representing 13.33%) of all the metals under study in the different location across both seasons were also contaminated. Based on the statistical analysis the mean of all the location indicate un-contamination (Table 4). Furthermore, the trend of both background scenarios having different Igeo is in line with the trend previously reported by Bhutiani et al. (2017). Some of the contamination occurred in only one season is an indication of seasonal variations in cassava mill effluents contaminated soil by small-scale cassava processors in a rural area of the Niger Delta region of Nigeria. Based on the positive contamination factor reported by Izah et al. (2017d) and the negative geo-accumulation index, it suggests that instances of the heavy metals contamination in the processing mill are due to human activities. Oliveira et al. (2011), Bhutiani et al. (2017) attributed this to dilution by coarse nature of the environment as possible source of variation in Igeo of an industrial area. Furthermore, Abraham and Parkers (2008) also reported that low level of contamination in some of the heavy metals could be due to background consideration value and lithological value of 1.5 in the Igeo equation. According to Guan et al. (2014), the 1.5 constant is used to compensate for the natural fluctuations of a given metal and for minor human impacts in the environment under investigation. Index of geo-accumulation approach focused on the comparative evaluation of the heavy metals in the study area (Fu et al., 2014; Todorova et al., 2016).

Typically, the accumulation of heavy metals in soil is related to the direct and indirect anthropogenic activities (Wei and Yang, 2010; Mmolawa et al., 2011; Zhao et al., 2013; Mazurek et al., 2017). According to Yisa et al. (2012), Mazurek et al. (2017), Zawadzka and Lukowski (2010), heavy metals resulting from human activities in the environment could have been transported via air and deposited into the topsoil which then penetrates into the soil profile. The penetration capacity is dependent on the soil characteristics with regard to texture and structure. This could also account for the variation in the Igeo among the contaminated sites/locations.
Table 3: Index of Geo-accumulation of heavy metals in cassava mill effluents contaminated soil

Location	Season	BMM	BGM																
		Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co	Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co
LA	Dry	-0.58	-2.74	-1.69	-1.89	0.32	-0.62	0.30	0.08	-2.18	-0.56	-2.32	-1.40	-1.74	0.45	-0.62	0.68	-0.03	-1.89
	Wet	-0.94	-1.69	-1.69	-0.71	-0.58	-0.60	-0.17	-1.22	0.50	-0.67	-1.47	-1.56	-0.74	-0.81	0.97	0.82	-1.60	0.11
LB	Dry	-0.04	-0.79	-1.47	-1.56	0.42	-0.62	-3.06	-1.09	-0.58	-0.01	-0.36	-1.22	-1.36	0.55	-0.62	-2.64	-1.18	-0.23
	Wet	-0.64	-0.29	-0.15	-0.92	1.53	0.45	-1.03	0.51	-0.60	-0.34	-0.10	0.00	-0.94	2.47	0.10	-1.22	0.15	-0.97
LC	Dry	-1.09	-0.58	-0.58	0.11	-0.58	-0.62	-0.58	-0.45	-1.06	-0.17	-0.32	0.30	-0.45	-0.62	-0.20	-1.00	-0.12	
	Wet	-1.03	-0.81	-0.81	-0.25	-1.84	-0.60	-0.58	1.27	-0.60	-0.71	-0.62	-0.67	-0.27	-2.06	-0.97	-0.79	0.87	-0.97
LD	Dry	0.20	-0.51	-0.45	0.03	-1.47	-0.62	-1.06	0.07	-0.51	0.23	-0.10	-0.18	0.23	-1.32	-0.62	-0.67	-0.03	-0.17
	Wet	-1.15	-0.58	-0.43	-0.30	-0.58	-0.60	-1.00	-0.58	-0.60	-0.86	-0.40	-0.29	-0.30	-0.81	-0.97	-1.22	-0.94	-0.97
LE	Dry	-1.56	-0.40	-0.09	-0.58	-2.25	-0.62	-0.45	-0.92	-0.89	-1.35	0.03	0.19	-0.40	-2.12	-0.62	-0.07	-1.00	-0.54
	Wet	-0.62	-0.51	-0.58	0.58	-0.27	0.37	0.91	-1.06	0.26	-0.34	-0.32	-0.43	-0.60	-0.49	0.00	0.70	-1.40	-0.12

Note: Igeo ≤ 0 (uncontaminated), 0 < Igeo ≤ 1 (uncontaminated to moderately contaminated), 1 < Igeo ≤ 2 (moderately contaminated), 2 < Igeo < 3 (moderately to heavily contaminated), 3 < Igeo < 4 (heavily contaminated), 4 < Igeo < 5 (heavily to extremely contaminated), Igeo ≥ 5 (extremely contaminated)

BMM- Background median mean, BGM- Background geometric mean
The heavy metals under study were contaminated (INI > 5 (Extremely contaminated); 2 < INI ≤3 (Moderate to heavy contamination); 3 < INI ≤4 (Heavy contamination); 4 < INI ≤5 (Heavy to extreme contamination)), Igeo ≤ 0 (uncontaminated), 0 < Igeo ≤ 1 (uncontaminated to moderately contaminated), 1 < Igeo ≤ 2 (moderately contaminated), 2 < Igeo < 3 (moderately to heavily contaminated), 3 < Igeo < 4 (heavily contaminated), 4 < Igeo < 5 (heavily to extremely contaminated), Igeo ≥ 5 (extremely contaminated); BMM- Background median mean, BGM- Background geometric mean

Table 5 presents the results of Improved Nemerow index (INI) of heavy metals concentration in cassava mill effluents contaminated soil. Under BMM consideration, all the heavy metals under study were within un-contaminated to moderate contamination apart from copper for dry season. While under BGM scenario all the heavy metals were uncontaminated except for lead, chromium and cadmium that were within un-contaminated to moderate contamination for dry season. In wet season, BMM scenario showed that cadmium and cobalt was un-contaminated, lead was moderately contaminated and copper, zinc, manganese, iron, chromium and nickel was within un-contaminated to moderately contaminated in wet season. While in dry season the BGM were un-contaminated for copper, zinc, manganese, iron, cadmium and cobalt; moderately contaminated for lead and within un-contaminated to moderately contamination for nickel and chromium. This showed that different background data have effect on the assessment. But the overall analysis showed that cassava mill effluent is leading to no contamination to moderate contamination in the receiving soil and are influenced by seasons.

Table 5 Improved Nemerow index of heavy metals concentration in cassava mill effluent contaminated soil in a rural community in the Niger Delta region of Nigeria

Parameters	Dry	Wet	Dry	Wet
Cu	0.45	0.76	0.42	0.48
Zn	0.76	0.59	0.41	0.42
Mn	0.61	0.53	0.44	0.42
Fe	0.56	0.62	0.47	0.45
Pb	0.58	1.11	0.57	1.76
Cd	0.62	0.35	0.62	0.40
Cr	0.97	0.69	0.63	0.63
Ni	0.73	0.91	0.46	0.74
Co	0.72	0.38	0.43	0.42

Note: 0 < INI ≤0.5 (Un-contamination); 0.5 < INI ≤1 (Uncontaminated to moderately contamination); 1 < INI ≤2 (Moderate contamination); 2 < INI ≤3 (Moderate to heavy contamination); 3 < INI ≤4 (Heavy contamination); 4 < INI ≤5 (Heavy to extremely contamination); INI > 5 (Extremely contaminated); BMM- Background median mean, BGM- Background geometric mean
Table 6 presents enrichment factor of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta region of Nigeria. The EF ranged from background rank (EF ≤ 1) to significant enrichment (5< EF < 20). Copper in both background scenarios showed moderate enrichment at dry season for LA and LB and minimal enrichment at wet season for LB and LE and dry season for LD. Zinc minimal enrichment at both seasons for LB and LE under both scenarios. Like zinc, manganese showed minimal enrichment at both seasons for LB and LE, and dry season for LA under both scenarios. Lead showed significant enrichment at both seasons of LB and wet season for LA under both background consideration and wet season for LE at only BMM scenario. Cadmium at dry season for LA, wet season for LB and LE (under BMM consideration) and dry season for LA (under BGM scenario) were moderately enriched. Furthermore, LB for dry season of both background scenarios and only wet season for LA and LE at BMM consideration, and wet season for LE at BGM consideration also showed minimal enrichment.

Chromium showed minimal enrichment at wet season for LB and dry season for LE in both consideration scenarios. It also showed moderate enrichment at wet season for LE in both background scenarios and dry season for LA under only BMM consideration. Dry season of LA showed significant enrichment. Nickel showed moderate enrichment in both background level of dry season for LA, wet season for LB and LC and minimally enriched in dry season of LB. Furthermore, it also showed minimal enrichment in dry season for LD under BMM consideration. Cobalt under BMM consideration was minimally enriched in both seasons for LB and wet season for LE and showed moderate enrichment at wet season for LA. While under BGM consideration wet season for LA and LE were minimally enriched while dry season of LB was moderately enriched. EF in both background levels and seasons were highly similar. This trend is close to work of Bhutiani et al. (2017), which reported comparable enrichment factor in heavy metal associated to ground water in an industrial area. Anthropogenic activities are the major source of heavy metals enrichment into the environment. Specifically, Ghaleno et al. (2015) reported anthropogenic and agricultural source of cadmium could lead to relative enrichment in the receiving environment. According to Mazurek et al. (2017), Rivera et al. (2015), the distribution of the heavy metals in the soil depends on their geoavailability and pedochemical enrichment. This could also account for variation in the EF among the various locations and seasons.

The quantification of contamination (QoC) of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta region of Nigeria is presented in Table 8. Positive values were 34 (representing 37.78%) and 47 (representing 52.22%) in BMM and BGM background consideration respectively. Furthermore, negative values were 27 (representing 30.00%) and 5 (representing 5.56%) in the BMM and BGM background scenarios respectively. Each of the seasons under study had positive contamination quantification among the heavy metals under consideration. The positive values result suggests that pollution/contamination in the study locations are due to anthropogenic sources (Bhutiani et al., 2017) which is mainly by the activities of cassava processing. Among both scenarios, apparent differences exits which could be due to variation in the mean used for the background consideration. This trend has also been reported by Bhutiani et al. (2017).
Table 6 Enrichment factor of heavy metals in cassava mill effluents contaminated soil

Location	Season	BMM	BGM							
		Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co
		Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co
LA	Dry	2.54	0.56	1.18	1.00	4.74	2.52	4.62	3.99	0.82
	Wet	1.16	0.55	0.54	1.00	1.15	1.16	1.56	0.74	2.49
LB	Dry	2.85	1.70	1.03	1.00	3.91	1.94	0.35	1.37	1.95
	Wet	1.67	1.65	1.81	1.00	5.77	2.80	0.99	2.86	1.35
LC	Dry	0.44	0.62	0.62	1.00	0.62	0.62	0.62	0.68	0.39
	Wet	0.81	0.73	0.72	1.00	0.35	0.85	0.85	2.99	0.85
LD	Dry	1.13	0.68	0.72	1.00	0.36	0.66	0.47	1.04	0.69
	Wet	0.75	0.88	0.97	1.00	0.87	0.88	0.66	0.88	0.88
LE	Dry	0.52	1.15	1.41	1.00	0.32	1.01	1.09	0.81	0.82
	Wet	1.33	1.06	1.06	1.00	1.32	2.19	3.02	0.77	1.95

Note: EF ≤ 1 (background rank), 1 < EF < 2 (minimal enrichment), 2 < EF < 5 (moderate enrichment), 5 < EF < 20 (significant enrichment), 20 < EF < 40 (very high enrichment), EF > 40 (extremely high enrichment); BMM- Background median mean, BGM- Background geometric mean
Table 7 Metal enrichment index (MEI) of heavy metals concentration in cassava mill effluent contaminated soil

Seasons	Locations	BMM															
		Cu	Zn	Mn	Pb	Cd	Cr	Ni	Co	Cu	Zn	Mn	Pb	Cd	Cr	Ni	Co
Dry	LA	0.00	-0.78	-0.53	0.88	0.00	0.84	0.58	-0.68	0.02	-0.70	-0.43	1.05	0.00	1.41	0.48	-0.59
	LB	0.46	-0.12	-0.47	1.02	0.00	-0.82	-0.29	0.00	0.49	0.17	-0.36	1.20	0.00	0.77	-0.34	0.25
	LC	-0.29	0.00	0.00	0.00	0.00	0.00	0.09	-0.28	0.34	0.21	0.09	0.00	0.31	-0.07	0.39	
	LD	0.72	0.05	0.10	-0.45	0.00	-0.27	0.58	0.05	0.75	0.40	0.33	-0.40	0.00	0.05	0.47	0.34
	LE	-0.49	0.14	0.41	-0.69	0.00	0.09	-0.20	-0.19	-0.48	0.53	0.70	0.66	0.00	0.43	0.25	0.03
Wet	LA	-0.53	-0.53	0.00	0.00	0.34	-0.36	1.00	0.00	-0.46	-0.48	-0.15	-0.23	0.16	-0.50	0.60	-0.05
	LB	0.23	0.36	3.34	1.09	-0.26	1.13	0.00	0.96	0.40	0.50	2.70	0.60	-0.36	0.66	-0.20	0.19
	LC	-0.14	-0.14	-0.58	0.00	0.00	2.53	0.00	-0.05	-0.02	-0.05	-0.64	-0.23	-0.14	1.75	-0.20	-0.09
	LD	0.00	0.10	0.00	0.00	-0.25	0.00	0.00	-0.14	0.14	0.22	-0.15	-0.23	-0.35	-0.22	-0.20	-0.18
	LE	-0.48	0.53	0.70	-0.66	0.00	0.43	0.25	0.03	0.20	0.11	-0.80	0.50	1.45	-0.14	0.40	0.19

Note: 1= no enrichment; 2= Low enrichment; 3 = moderate enrichment; 4 strongly enrichment; 5; extremely enrichment.

BMM- Background median mean, BGM- Background geometric mean
Location	Season	BMM	BGM																
		Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co	Cu	Zn	Mn	Fe	Pb	Cd	Cr	Ni	Co
LA	Dry	0.00	-350.26	-113.34	-150.82	46.88	0.00	46.15	36.82	-208.68	1.98	-236.77	-76.76	-119.31	51.21	0.00	58.46	32.30	-143.41
	Wet	0.00	-112.38	-114.89	8.78	0.00	25.35	-56.82	-53.01	5.52	-86.88	-93.94	-11.26	-17.46	-30.43	13.62	-101.14	38.55	
LB	Dry	31.37	-14.07	-87.42	-93.25	50.42	0.00	-457.89	-41.48	0.00	32.29	14.75	-55.28	-68.97	54.47	0.00	-326.32	-51.60	21.14
	Wet	19.88	18.81	26.32	25.54	76.98	52.08	34.75	54.42	0.00	15.73	28.56	33.51	28.40	72.96	37.50	55.93	39.80	30.77
LC	Dry	-27.27	0.00	38.11	0.00	0.00	0.00	8.60	-38.46	25.70	17.15	45.88	8.16	0.00	23.58	-7.14	27.93		
	Wet	-4.59	-16.10	-16.50	20.67	-139.24	0.00	0.00	71.66	0.00	-10.00	-2.16	-5.14	18.86	-181.01	30.43	-15.72	59.55	30.77
LD	Dry	41.79	4.32	8.92	34.78	-84.72	0.00	-37.66	36.67	5.06	42.94	28.50	24.54	42.97	-68.06	0.00	-5.19	32.14	25.14
	Wet	-15.87	9.45	17.53	0.00	0.00	33.61	0.00	0.00	-21.86	-86.99	18.28	15.65	-17.46	30.43	-54.62	-28.26	-30.77	
LE	Dry	-95.48	12.66	29.12	0.00	-21.75	0.00	8.23	-24.88	-22.88	-91.61	34.73	41.27	12.56	-191.57	0.00	29.87	-33.80	3.10
	Wet	19.88	5.26	0.00	0.00	19.57	48.89	64.67	-38.00	45.07	15.91	16.64	9.75	-2.28	5.53	33.33	59.11	-77.00	28.17
3 Conclusions
This study evaluated EF, Igeo, QoC, INI and MEI of heavy metals in cassava mill effluents contaminated soil in the Niger Delta region of Nigeria. Results showed un-contamination to moderately contamination for Igeo and INI; background rank to significant enrichment for EF, and some levels of pollution/contamination for QoC. The study showed that to large extent heavy metals concentration each of the locations is being influenced by cassava mill effluents.

Acknowledgements
This publication is based on part of PhD project work of Sylvester C. Izah supervised by Dr. S.E. Bassey and Prof. E.I. Ohimain at the Niger Delta University, Wilberforce Island, Bayelsa state, Nigeria.

References
Abraham G.M., and Parker R.J., 2008, Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand, Environmental Monitoring Assessment, 136(13): 227-238
Adejumo B.A., and Ola F.A., 2011, The Effect of Cassava Effluent on the Chemical Composition of Agricultural Soil, PP.220-226
Amin B., Ismail A., Arshad A., Yap C.K., and Kamarudin M.S., 2009, Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia, Environmental Monitoring Assessment, 148: 291-305
Asaah V.A., Abimbola A.F., and Suh C.E., 2006, Heavy metal concentrations and distribution in surface soils of the Bassa industrial zone 1, Douala, Cameroon, Arabian Journal of Science and Engineering, 31(2): 147 - 158
Bhutiani R., Kulkarni D.B., Khanna D.R., and Gautam A., 2017, Geochemical distribution and environmental risk assessment of heavy metals in groundwater of an industrial area and its surroundings, Hardiwak, India, Energy, Ecology and Environment, 2(2): 155–167
Chen C.W., Kao C., Chen C., and Dong C., 2007, Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbour, Taiwan, Chemosphere, 66: 1431-1440
https://doi.org/10.1016/j.chemosphere.2006.09.030
PMid:17131328
Deely J.M., and Fergusson J.E., 1994, Heavy metal and organic matter concentration and distribution in dated sediments of a small estuary adjacent to a small urban area, Science of the Total Environment, 153(1-2):97 –111
https://doi.org/10.1016/0048-9697(94)90106-6
Eliaz M.S., Hamzah M.S., Ab Rahman S., Salim N.A.A., Siong W.B., and Sanuri E., 2014, Ecological risk assessment of elemental pollution in sediment from Tunku AbdulRahman National Park, Sabah, American Institute of Physics Conference Proceedings, 1584: 196 – 206
Eliaz P., and Ghadegesin A., 2011, Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos Mainland area, Journal of Applied Science and Environmental Management, 15 (2): 391 – 399
El-Metwally M.E.A., Madkour A.G., Fouad R.R., Mohamedein L.I., Nour Eldine H.A., Dar M.A., and El-Moselhy Kh.M., 2017, Assessment the leachable heavy metals and ecological risk in the surface sediments inside the Red Sea ports of Egypt, International Journal of Marine Science, 7(23): 214-228
https://doi.org/10.5376/jms.2017.07.0023
Forstner U., Ahil W., Calmano W., and Kersten M., 1990, Sediment criteria development, Springer Berlin, Germany
https://doi.org/10.1007/978-3-642-75097-7_18
Fu J., Zhao C., Luo Y., Liu C., Kyzas G.Z., Luo Y., Zhao D., An S., and Zhu H., 2014, Heavy metals in surface sediments of the Jialiu River, China: their relations to environmental factors, Journal of Hazardous Materials, 270: 102–109
https://doi.org/10.1016/j.jhazmat.2014.02.047
PMid:24561322
Gasterek M., Kowalska J., Mazurek R., and Pajak M., 2017, Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland), Chemosphere, 179: 148 – 158
https://doi.org/10.1016/j.chemosphere.2017.03.106
PMid:28365500
Ghaleno O.R., Sayadi M.H., and Rezaei M.R., 2015, Potential ecological risk assessment of heavy metals in sediments of water reservoir case study: Chah Nimeh of Sistan, Proceedings of the International Academy of Ecology and Environmental Sciences, 5(4): 89-96
Ghazaryan K.A., Gevorgyan G.A., Movseyan H.S., Ghazaryan N.P., Grigoryan K.Y., 2015, The Evaluation of Heavy Metal Pollution Degree in the Soils around the Zangezur Copper and Molybdenum Combine, Rome Italy, 17 (5) Part I: 161 –166
Guan Y., Shao C., and Ju M., 2014, Heavy metal contamination assessment and partition for industrial and mining areas, International Journal of Environmental Research and Public Health, 11: 7286 – 7303
https://doi.org/10.3390/ijerph110707286
Hassaan M.A., Nemr A.E., and Madkour F.F., 2016, Environmental Assessment of Heavy Metal Pollution and Human Health Risk, American Journal of Water Science and Engineering, 2(3): 14-19
Igbinosa E.O., 2015, Effect of cassava mill effluent on biological activity of soil microbial community, Environmental Monitoring Assessment, 187: 418
https://doi.org/10.1007/s10661-015-4651-y
PMid:26055654

Igbinosa E.O., and Igideon O.N., 2015, The impact of cassava effluent on the microbial and physicochemical characteristics on soil dynamics and structure, Jordan Journal of Biological Sciences, 8(2): 107 – 112
https://doi.org/10.12816/0027556

Izah S.C., and Angaye T.C.N., 2016, Heavy metal concentration in fishes from surface water in Nigeria: Potential sources of pollutants and mitigation measures, Sky Journal of Biochemistry Research, 5(4): 31–47

Izah S.C., Bassey S.E., and Ohimain E.I., 2017a, Removal of Heavy Metals in Cassava Mill Effluents with Saccharomyces cerevisiae isolated from Palm Wine, MOJ Toxicol. 2017, 3(4), 00057

Izah S.C., Bassey S.E., and Ohimain E.I., 2017b, Changes in the treatment of some physio-chemical properties of cassava mill effluents using Saccharomyces cerevisiae, Toxic. In Press.

Izah S.C., Bassey S.E., and Ohimain E.I., 2017c, Assessment of heavy metal in cassava mill effluent contaminated soil in a rural community in the Niger Delta region of Nigeria, EC Pharmacology and Toxicology, 4(5): 186–201.

Izah S.C., Bassey S.E., and Ohimain E.I., 2017d, Assessment of pollution load indices of heavy metals in cassava mill effluents contaminated soil: A case of small-scale cassava processing mill in a rural community of the Niger Delta region of Nigeria. Bioscience Methods. Accepted for publication.

Izah S.C., Chakrabarty N., and Srivastav A.L., 2016, A Review on Heavy Metal Concentration in Potable Water Sources in Nigeria: Human Health Effects and Mitigating Measures, Exposure and Health, 8: 285–304
https://doi.org/10.1007/12403-016-0195-9

Karydas C.G., Tzoraki O., and Panagos P., 2015, A New Spatiotemporal Risk Index for Heavy Metals: Application in Cyprus, Water, 7: 4323-4342
https://doi.org/10.3390/w7084323

Kowalska J., Mazurek R., Gąsiorek M., Setlak M., Zaleski T., and Waroszewski J., 2016, Soil pollution indices conditioned by medieval metallurgical activity - a case study from Krakow (Poland), Environmental Pollution, 218: 1023 – 1036
https://doi.org/10.1016/j.envpol.2016.08.053
PMid:27574802

Liang J., Chen C., Song X., Han Y., and Liang Z., 2011, Assessment of Heavy Metal Pollution in Soil and Plant from Dunhua Sewage Irrigation Area, International Journal of Electrochemical Science, 6: 5314-5324

Mazurek R., Kowalska J., Gasiorek M., Zadrozny P., Jozefowska A., Zaleski T., Kepka W., Tymczuk M., and Orłowska K., 2017, Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution, Chemosphere, 168: 839 – 850
https://doi.org/10.1016/j.chemosphere.2016.10.126

Mnololawa K.B., Likuku A.S., and Gaboutloeloe G.K., 2015, The Hydrogeology of Delta State, Nigeria, The Pacific Journal of Science and Technology, 16(2): 257-61

Mohseni-Bandpei A., Ashrafi SD., Kamani H., and Paseban A., 2016, Contamination and Ecological Risk Assessment of Heavy Metals in Surface Soils of Esfarayen City, Iran, Health Scope, e39703

Monakhov S., Esina O., Monakhova G., and Tatarnikov V., 2015, Environmental quality assessment: geoenvironmental indices, In: Environmental indicators, Armon R.H., and Hanininen O. (eds), Springer, Dordrecht
https://doi.org/10.1007/978-94-017-9499-2_27

Muller G., 1969, Index of geo-accumulation in sediments of the Rhine River, GeoJournal, 2(3):108–118

Nwakandu M.S., Kamen F.L., Afube G., Nwakandu A.A., and Ike I.S., 2012, Impact of Cassava Mill Effluent on Agricultural Soil Quality, Journal of Emerging Trends in Engineering and Applied Sciences, 3(5): 881-885

Nwaogu V.O., Anyeagba R.A., Umeham S.N., and Azu N., 2007, Effect of physicochemical properties and attachment surfaces on biofilms in cassava mill effluent polluted Oloshi River, Nigeria, Estudos de Biologia - Maize Growth, 2(2): 50-56
https://doi.org/10.15580/GJEMPS.2013.1.112712294

Oliveira A., Palma C., and Valenza M., 2011, Heavy metals distribution in surface sediments from the continental shelf adjacent to Nazare’ canyon, Deep-Sea Res II 58:2420–2432
https://doi.org/10.1016/j.dsr2.2011.04.006

Olormunfemi D.I., and Lolobi O., 2011, Effect of cassava processing effluents on antioxidant enzyme activities in Allium cepa L. Biokemistri, 23(2): 49 – 61

Omomowo I.O., Omomowo O.I., Adeviy A.O., Adebayo E.A., and Oladipo E.K., 2015, Bacteriological Screening and Pathogenic Potential of Soil Receiving Cassava Mill Effluents, International Journal of Basic and Applied Sciences, 3(4): 26-36

Omotioma M., Mbah G.O., Akpan I.J., and Ibezin O.B., 2013, Impact assessment of cassava effluents on barika stream in Ibadan, Nigeria. International Journal of Environmental Science, Management and Engineering Research, 2 (2): 50-56

Orhue E.R., Imausen E.E., and Okunima D.E., 2014, Effect of Cassava Mill Effluent on some soil chemical properties and the growth of fluted pumpkin (Telfairia occidentalis Hook F.), Journal of Applied and Natural Science, 6 (2): 320-325

Orji E.A., and Egboka B.C.E., 2015, The Hydrogeology of Delta State, Nigeria, The Pacific Journal of Science and Technology, 16(2): 257 – 269.

Osakwe S.A., 2012, Effect of Cassava Processing Mill Effluent on Physical and Chemical Properties of Soils in Abraka and Environs, Delta State, Nigeria, Chemistry and Materials Research, 2(7): 27 – 40
Patrick U.A., Egwuonwn N., and Augustine O-A., 2011, Distribution of cyanide in a cassava-mill-effluent polluted eutric tropofluvent soils of Ohaji Area, South-eastern Nigeria, Journal of Soil Science and Environmental Management, 2(2): 49-57

Riba I., DeValls T.A., Forja J.M., and Gomez-Parr a A., 2002, Evaluating the heavy metal contamination in sediments from the Guadaluquivir estuary after the Aznalco ‘Ilar mining spill (SW Spain): a multivariate analysis approach, Environmental Monitoring Assessment, 77: 191-207

https://doi.org/10.1023/A:1015828020313
PMid:12180656

Rim-Rukeh A., 2012, Microbiologically Influenced Corrosion of S45c Mild Steel in Cassava Mill Effluent, Research Journal in Engineering and Applied Sciences, 1(5): 284-290

Rivera M.B., Fernandez-Cali an I.C., and Giraldez M.I., 2015, Geovailability of lithogenic trace elements of environmental concern and supergene enrichment in soils of the Sierra de Aracena Natural Park (SW Spain), Geoderma, 259-260: 164 – 173

https://doi.org/10.1016/j.geoderma.2015.06.009

Sarala T.D., and Sabitha M.A., 2012, Calculating Integrated Pollution Indices for Heavy Metals in Ecological Geochemistry Assessment Near Sugar Mill, Journal of Research in Biology, 2(5): 489-498

https://doi.org/10.1007/s002540050473

Swarnalatha K., Letha J., and Ayoob S., 2013, Ecological risk assessment of a tropical lake system, Journal of Urban and Environmental Engineering, 7(2): 323-329

https://doi.org/10.4090/juee.2013.v7n2.323329

Tang W., Shan B., Zhang H., Zhang W., Zhao Y., Ding Y., Rong N., and Zhu X., 2014, Heavy Metal Contamination in the Surface Sediments of Representative Limnetic Ecosystems in Eastern China, Scientific Reports, 4: 7152

https://doi.org/10.1038/srep07152
PMid:25412580 PMCID:PMC4239569

Thambavan i S.D., and Uma Mageswari Ustr., 2013, Metal pollution assessment in ground water. Bulletin of Environmental Pharmacology Life Science, 2(12): 122–129

Todorova Y., Lincheva S., Yotinov I., and Topalova Y., 2016, Contamination and Ecological Risk Assessment of Long-Term Polluted Sediments with Heavy Metals in Small Hydropower Cascade, Water Resource Management, 30: 4171–4184

https://doi.org/10.1007/s11269-016-1413-8

Vowotor M.K., Hood C.O., Sackey S.S., Owusu A., Tatchie E., Nyarko S., Osei D.M., Letsa C.B., and Ateiomo S.M., 2014, An Assessment of Heavy Metal Pollution in Sediments of a Tropical Lagoon: A Case Study of the Benya Lagoon, Komenda Edina Eguafo Abrem Municipality (KEEA) — Ghana, Journal of Health and Pollution, 4(6): 26 – 39

https://doi.org/10.5696/002540050473

Wei B., and Yang L., 2010, A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China, Microchemical Journal, 94: 99 – 107

https://doi.org/10.1016/j.microc.2009.09.014

Yisa N.J., Jacob J.O., and Onoyima C., 2012, Assessment of toxic levels of some heavy metals in road deposited sediments in Suleja, Nigeria, American Journal of Chemistry, 2: 34 – 37

https://doi.org/10.5923/j.chemistry.20122020.08

Zawadzka M., and Lukowski M.I., 2010, The content of Zn, Cu, Cr in podzolic soils of Roztocze National Park at the line of metallurgical and sulphur and the highway, Acta Agrophysica, 16 (2): 459 – 470

Zhao Q., Liu S., Wang C., Deng L., and Dong S., 2013, Effects of water-level fluctuations and land use type on heavy metal accumulation along a dam reservoir, southwest China, Fresenius Environmental Bulletin, 22(4):1118-1125