Asymptotic distribution of Brownian Excursions into an Interval.

B. Rajeev
Indian Statistical Institute, 8th Mile,
Mysore Road, Bangalore 560 059, India
email:brajeev@isibang.ac.in

May 25, 2022

Abstract

In this paper, following earlier results in [2] we derive the asymptotic distribution, as \(t \to \infty \), of the excursion of Brownian motion straddling \(t \), into an interval \((a, b)\), conditional on the event that there is such an excursion.

Key words and phrases: Brownian motion, excursions, last exit/entrance times, asymptotic distribution of excursions.

1 Introduction:

In this paper we consider the asymptotic distribution of the excursions \((\zeta_t)\) of a one dimensional standard Brownian motion \((W_t)\), straddling the time \(t \), into an interval \((a, b)\) as \(t \to \infty \). Although, excursions straddling a given time are well studied in the literature for general Markov processes (for a
sample, see [6, 7, 11, 12]), the study of their asymptotics as \(t \to \infty \) seems to be new.

To describe our results in more detail let for each \(t > 0 \), \(\sigma_t, d_t \) be the last entrance before \(t \) into \((a, b)\) and first exit after \(t \) from \((a, b)\) respectively for a sample path \(W \) such that at time \(t, W_t \in (a, b) \). The excursion straddling time \(t \) is the portion of the trajectory \(\zeta_t(s) := W_{\sigma_t+s\wedge d_t-\sigma_t}, s \geq 0 \). We view the process \((\zeta_t) \) as a process with values in the space \(C([0, \infty), [a, b]) \), the space of continuous functions with values in \([a, b]\) so that the convergence in question reduces to weak convergence in this space. The crucial step in the proof is to express the expected value \(E[f(\zeta_t)|W_t \in (a, b)] \), where \(f : C([0, \infty), [a, b]) \to \mathbb{R} \) a bounded and continuous function as \(E[q(W_{\sigma_t}, t-\sigma_t, f)|W_t \in (a, b)] \) where the kernel \(q(x, s, A) \) is a bounded continuous function of \((x, s), s > 0, x = a \) or \(b \) for a Borel set \(A \in C([0, \infty), [a, b]) \) and then use the weak convergence of the pair \((W_{\sigma_t}, t-\sigma_t)\). It is known (see [2]) that the latter pair converges to \((X, Y)\), the exit place and time respectively of a Brownian motion started uniformly in the interval \((a, b)\). Together with the explicit form of \(q(x, s, A) \), this gives the limiting distribution of \(\zeta := \lim_{t \to \infty} \zeta_t \) as follows: Starting from \(X = a \) or \(b \) with probability \(\frac{1}{2} \), the conditional distribution of \(\zeta \in A \) given that the lifetime \(Y \) of \(\zeta \) is at least \(s \), is given by \(q(x, s, A) \). Together with the known distribution of the lifetime of excursions into \((a, b)\), starting from \(a \) or \(b \) this gives a complete description of the limiting distribution.

In Section 2, we set up the necessary machinery from excursion theory. Rather than use the extension of Itô’s excursion theory, due to B.Maisonneuve ([6]), in cases where the boundary of the excursion set involves more than one point, we give a more intuitive, ‘bare hands’ construction, using Itô’s original result (as presented in [11]) (Theorem 2.3). Although we are dealing with a very basic example as far as excursion theory is concerned, our approach maybe of interest in constructing non trivial ‘exit systems’ starting with excursions from a single point. See Remark 2.4 for the connection with the exit system formalism of [6]. As mentioned above, the crucial point in the proof is to express the expected value of functionals of the excursions into \((a, b)\) at time \(t \), in terms of the kernel \(q(x, s, A) \) describing the conditional excursion measures and then the continuity in \((x, s)\) of these kernels. This is done via a ‘conditional excursion formula’ for the excursion straddling \(t \), proved in Section 3. Such formulas are well known for general Markov processes (see [1, 6]) but at specific time instances and not for the excursion process as a...
whole, as in [11] and as required in our situation.

In section 4, we describe the limiting distribution of ζ_t and prove the convergence to this distribution. As mentioned above the proof involves the convergence, as $t \to \infty$ of the pair of variables $(W_{\sigma_t}, t - \sigma_t)$ to the pair (X, Y) described above. This latter result is a consequence of a more general result, proved in [2], about the convergence as $t \to \infty$ of the time reversal $(W_{t-s}, 0 \leq s \leq t)$ of Brownian motion W_t from a point t with $W_t \in (a, b)$. Finally, we give an application to the evaluation of asymptotic distribution of functionals of the excursion straddling t as $t \to \infty$.

2 Excursions into an interval:

Let S be an open subset of \mathbb{R}. In this paper, S will be either $(0, \infty) \cup (-\infty, 0)$ or the finite interval (a, b) or the set $(-\infty, a) \cup (a, b) \cup (b, \infty)$. ∂S will denote the boundary of S. We denote the closure of a set S by \bar{S}. Let $C([0, \infty), \bar{S})$ denote the space of continuous functions from $[0, \infty)$ into \bar{S}, equipped with the topology of uniform convergence on compact subsets of $[0, \infty)$. We will denote by $U = U(S)$ the space of excursions from ∂S into S. In other words,

$$U := \{u \in C([0, \infty), \bar{S}) : u(0) \in \partial S, \text{ and } \exists R(u) > 0 \text{ such that } u(t) \in S, 0 < t < R(u) \text{ and } u(t) \in \partial S \forall t \geq R(u)\}.$$

Let U be the trace of the Borel σ-field B of $C([0, \infty), \bar{S})$ on U i.e. $U = U \cap B$. Let $U_\delta := U \cup \{\delta\}$, with δ attached as an isolated point. Let U_δ be the sigma field generated by U and $\{\delta\}$.

Let (Ω, \mathcal{F}, P) be a probability space and (\mathcal{F}_t) a filtration on it satisfying the usual conditions i.e. \mathcal{F}_0 contains P null sets and the filtration is right continuous. Let (W_t) be a 1-dimensional standard \mathcal{F}_t-Brownian motion. \mathcal{P} will denote the previsible σ-field over (\mathcal{F}_t). Let $(L_t^x)_{t \geq 0}$ denote the local time process of $(W_t)_{t \geq 0}$ at $x \in \mathbb{R}$. For a continuous, non decreasing, \mathcal{F}_t-adapted process (L_t), we define its right continuous inverse (τ_t) in the usual way by

$$\tau_t := \inf\{s > 0 : L_s > t\}.$$
We note that (τ_t) is a non decreasing, right continuous process such that for each t, τ_t is an \mathcal{F}_t-stopping time. Let Z be the random closed set $Z := \{ t : W_t \in S^c \}$. We will assume that a.s. (P), $L_t = \int_0^t I_Z(s) \, dL_s$. For $t > 0$ let $e_t : \Omega \to U_\delta$ be defined by

$$e_t(\omega)(s) = W_{\tau_t + s \wedge (\tau_t - \tau_t)}(\omega), \quad s \geq 0, \quad \tau_t(\omega) - \tau_t - (\omega) \neq 0,$$

$$\tau_t(\omega) - \tau_t(\omega) = 0.$$

Then $e(\cdot)$ defines a sigma finite point process on Ω with state space U_δ and time domain $D(\omega) = \{ t > 0 : \tau_t(\omega) \neq \tau_t(\omega) \}$. For $\Gamma \in U_\delta$ we define

$$N_t^\Gamma(\omega) := \#\{ s \leq t : s \in D(\omega), e_s(\omega) \in \Gamma \}.$$

With Z as defined above we can write $Z(\omega)^c = \bigcup_{i=1}^\infty (\alpha_i(\omega), \beta_i(\omega))$. Let $G(\omega) := \{ \alpha_i(\omega) : i = 1, \ldots, \}$ be the set of left end points of the excursion intervals , $d_t(\omega) := \inf\{ s > t : W_s(\omega) \notin S \}$ and $\sigma_t = \sup\{ s \leq t : W_s \notin S \}$. We use the convention that $\inf\{ \phi \} = \infty$ and $\sup\{ \phi \} = 0$. For $\omega \in \Omega$, and $t > 0$, we define the portion of the excursion straddling t, from t onwards viz. $i_t(\omega)$ as follows:

$$i_t(\omega)(s) := W_{t + s \wedge (d_t(\omega) - t)}(\omega), \quad 0 \leq s \leq d_t(\omega) - t. \tag{2.1}$$

Note that if $t \in G(\omega)$, then $i_t(\omega) \in U(S)$.

Now we specialise to the case $S = (0, \infty) \cup (-\infty, 0)$ and recall a few well known facts. We take $L_t := L_0^\delta$, the local time at 0 of Brownian motion. Then it is well known that e is a σ- finite (\mathcal{F}_τ) Poisson point process with characteristic measure $n(\Gamma), \Gamma \in U_\delta$ given by

$$n(\Gamma) := \frac{1}{t} E \left(N_t^\Gamma \right).$$

Note that $n(\{ \delta \}) = 0$.

Remark 2.1 Let $t > 0$. Then it is known (see [11], Propn.2.8, Chap.XII) that $n\{ u \in U : R(u) > t \} = \left(\frac{2}{\pi t} \right)^{1/2}$. In particular $N_t^\Gamma < \infty$ a.s. with $\Gamma = \{ u : R(u) > t \}$.

4
We also note that if Γ is such that $EN_{1}^{\Gamma} < \infty$ then $n(\Gamma) < \infty$ and
$
\{N_{t}^{\Gamma} - tn(\Gamma); t \geq 0\}
$
is an $\mathcal{F}_{\tau_{t}}$-martingale.

Suppose $H : [0, \infty) \times \Omega \times U_{\delta} \rightarrow [0, \infty]$, with $H(t, \omega, \delta) \equiv 0$ for all (t, ω). Suppose H is $\mathcal{P} \otimes U_{\delta}$ measurable. We have the following well known Theorem of K.Ito\^{(2)}.

Theorem 2.2 Let $S = (-\infty, 0) \cup (0, \infty)$, $L_{t} := L_{t}^{0}$, and H, G, i_{t}, τ_{t} and n be as above. Then,

$$
E \left[\sum_{t \in G(\omega)} H(t, \omega, i_{t}(\omega)) \right] = E \left[\sum_{s \in D(\omega)} H(\tau_{s-}(\omega), \omega, e_{s}(\omega)) \right]
$$

$$
= E \int_{0}^{\infty} ds \int_{U_{\delta}} H(\tau_{s}(\omega), \omega, u)n(du)
$$

$$
= E \int_{0}^{\infty} dL_{s}(\omega) \int_{U_{\delta}} H(s, \omega, u)n(du). \quad (2.2)
$$

Proof: The proof follows as in Proposition 2.6, using Proposition 1.10 and Theorem 2.4 of Chapter XII of [11](see also [3], Chap. III, Thm. 3.18 and Thm 3.24). The only difference in our case is that \mathcal{F}_{t} is not the canonical filtration. □

We now take $S = (a, b), -\infty < a < b < \infty$ and $L_{t} := L_{t}^{a} + L_{t}^{b}$, $t \geq 0$. Let $(\tau_{t})_{t \geq 0}, D$ be as defined above. We note that for $t \in D(\omega)$ the excursion $e_{t}(\omega)$ defined earlier, may not be in U since $D(\omega)$ includes excursions below a and above b. Consequently $G(\omega) \subseteq D(\omega)$. Since we are only interested in excursions into (a, b) we proceed as follows: For $t \in D(\omega)$, define $e_{t}(\omega) \in U$ as

$$
e_{t}(\omega)(s) := W_{\tau_{s}(\omega) + a}(\omega) \quad 0 \leq s < \tau_{t}(\omega) - \tau_{s-}(\omega)
$$

$$
W_{\tau_{s}(\omega)}(\omega) \quad s \geq \tau_{t}(\omega) - \tau_{s-}(\omega).
$$

If $t \notin D(\omega)$, put $e_{t}(\omega) \equiv \delta$. Define

$$
e_{t}(\omega) := I_{U}(e_{t}(\omega))e_{t}(\omega) + \delta I_{U^{c}}(e_{t}(\omega)).
$$
We shall take this as the definition of our excursion process when $S = (a, b)$.

We define the kernel $n(x, \cdot), x \in \mathbb{R}$ on $U = U(S), S = (a, b)$ as follows: We denote by $U_0 := U(S)$, when $S = (-\infty, 0) \cup (0, \infty)$, the space of excursions from 0. Let $U_0^+ := \{u \in U_0, u(t) > 0, 0 < t < R(u)\}$. U_0^- is defined similarly. $U_0 = U_0^+ \cup U_0^-$ and $U_{0, \delta} := U_0 \cup \{\delta\}$. The sigma field $U_{0, \delta}$ is the sigma field generated by U_0 and $\{\delta\}$, where $U_0 = U_0 \cap B$ and B the Borel sigma field of $C([0, \infty), \mathbb{R})$. For $c \in \mathbb{R}$, let $T_c := \inf\{s > 0 : W_s = c\}$. For $u \in U_0$, let u^c denote the path in $C([0, \infty), \mathbb{R})$ which is given by $u(\cdot)$ stopped when it reaches level c viz. $u(T_c \wedge \cdot)$. Define maps $\lambda^a : U_{0, \delta} \rightarrow U_{\delta}$, $\lambda^b : U_{0, \delta} \rightarrow U_{\delta}$ as follows: For $u \in U_0^+$, $\lambda^a(u) := a + u^{b-a}$ and for $u \in U_0^-$, $\lambda^b(u) := b + u^{a-b}$.

We extend λ^a, λ^b to the whole of $U_{0, \delta}$ by setting $\lambda^a = \delta (= \lambda^b)$ on $U_0^+ \cup \{\delta\}$ (respectively $U_0^- \cup \{\delta\}$).

Let n be the Itô excursion measure and $n^+ := n \mid_{U_0^+}, n^- := n \mid_{U_0^-}$, the restrictions of n to U_0^+ and U_0^- respectively.

Define $n_a := n^+ \circ (\lambda^a)^{-1}$; $n_b := n^- \circ (\lambda^b)^{-1}$. For $\Gamma \in \mathcal{U}, x \in \mathbb{R}$, define

$$n(x, \Gamma) := 1_{\{a\}}(x)n_a(\Gamma) + 1_{\{b\}}(x)n_b(\Gamma).$$

We extend $n(x, \cdot)$ to the whole of U_{δ} by setting $n(x, \{\delta\}) = 0$ for every x. Let $H : [0, \infty) \times \Omega \times U_{\delta} \rightarrow [0, \infty]$ be $\mathcal{P} \times U_{\delta}$ measurable and such that $H(t, \omega, \delta) = 0$ for all (t, ω).

Theorem 2.3 Let $S = (a, b)$. Let, G, H, i_t, τ_t, L_t and $n(x, \cdot)$ be as above, corresponding to the interval (a, b). Then,

$$E \left[\sum_{t \in G(\omega)} H(t, \omega, i_t(\omega)) \right] = E \left[\sum_{s \in D(\omega)} H(\tau_s-(\omega), \omega, e_s(\omega)) \right]$$

$$= E \int_0^\infty dL_s(\omega) \int_{U_{\delta}} H(s, \omega, u)n(W_s, du)$$

$$= E \int_0^\infty ds \int_{U_{\delta}} H(\tau_s, \omega, u)n(W_{\tau_s}, du). \tag{2.3}$$
Proof: The first equality follows from the inclusion \(G(\omega) \subseteq D(\omega) \) and the fact that for \(s \in D(\omega) - G(\omega) \), \(H(\tau_{s-}, \omega, e_s(\omega)) = 0 \). The third equality follows by time change. Thus it suffices to prove the 2nd equality in the statement. Let \(D^+(\omega) := \{ t \in G(\omega) : W_{\tau_{t-}} = a \} \) and \(D^-(\omega) := \{ t \in G(\omega) : W_{\tau_{t-}} = b \} \). Then

\[
E \sum_{t \in D} H(\tau_{t-}, \omega, e_t) = E \sum_{t \in D^+} H(\tau_{t-}, \omega, e_t) + E \sum_{t \in D^-} H(\tau_{t-}, \omega, e_t) =: S_1 + S_2.
\]

To analyse \(S_1 \) introduce the standard Brownian motion \((\tilde{W}_t)\) where

\[
\tilde{W}_t := (W_{t+T_a} - W_{T_a}) I_{\{T_a < \infty\}} = (W_{t+T_a} - a) I_{\{T_a < \infty\}}.
\]

We will denote the excursions from 0 of \((\tilde{W}_t)\) with a tilde. Thus, \(\tilde{L}_0^t \) is the local time at 0 of \((\tilde{W}_t)\) with right continuous inverse \((\tilde{\tau}_t^0)\); \(\tilde{e}_t^0 \) is the excursion process for \(t \in \tilde{D}_0^0 = \{ s : \tilde{\tau}_s^0 \neq \tilde{\tau}_s^0 \} \). Let \(\tilde{D}_0^{0,+} = \{ s \in \tilde{D}_0^0 : \tilde{e}_s^0 \in U_0^+ \} \). Then note that, almost surely, there is a 1-1 correspondence between \(t \in D^+(\omega) \) and \(s \in \tilde{D}_0^{0,+} \) in the sense that \(\tau_{t-}(\omega) = \tilde{\tau}_s^0(\omega) + T_a \). This follows from two facts: Firstly the local time at 0 for \((\tilde{W}_t)\) at time \(t \) is precisely the local time at \(a \) for \((W_t)\) at time \(t + T_a \) on \(T_a < \infty \). Secondly, the positive excursions of \((\tilde{W}_t)\) from 0 until the hitting time of \(b - a \) are exactly the excursions of \((W_t)\) from \(a \) until the hitting time of \(b \). Further for such \(t \) and \(s, e_t(\omega) = e_{s+T_a}^0 + a = \lambda^a(e_{s}^0) \). Hence

\[
S_1 = E \sum_{s \in \tilde{D}_0^{0,+}} H(\tilde{\tau}_s^0, T_a, \omega, \lambda^a(e_{s}^0)) I_{\{T_a < \infty\}} = E \sum_{s \in \tilde{D}_0^0} \tilde{H}(\tilde{\tau}_s^0, \omega, e_{s}^0)
\]

where \(\tilde{H}(t, \omega, u) := H(t + T_a, \omega, \lambda^a(u)) I_{\{T_a < \infty\}} \) for \(t \geq 0, \omega \in \Omega, u \in U_{0,\delta} \). Note that \(\tilde{H}(t, \omega, u) \) is \(\tilde{P} \otimes U_{0,\delta} \) measurable, where \(\tilde{P} \) is the previsible sigma field with respect to the filtration \((\mathcal{F}_{t+T_a})\). Since \((\tilde{W}_t)\) is an \((\mathcal{F}_{t+T_a})\) Brownian motion, we get using basic Brownian excursion theory, the definition of the
map λ_a and a change of variable, that

$$S_1 = E \int_0^\infty d\tilde{L}_s \int_0^U \tilde{H}(s, \omega, u) n(du)$$

$$= E \int_0^\infty d\tilde{L}_s \int_{U_0^+} H(s + T_a, \omega, \lambda^a(u)) I_{\{T_a < \infty\}} n(du)$$

$$= E \int_0^\infty dL_{s+T_a} \int_U H(s + T_a, \omega, u) 1_{\{a\}}(W_{s+T_a}) n_a(du)$$

where we have used the fact that $\tilde{L}_s^0 = L_{s+T_a}^a$, and that the latter process is, almost surely, supported on the set $\{s : W_{s+T_a} = a\}$ to obtain the last equality. Hence

$$S_1 = E \int_0^\infty dL_{s+T_a} \int_U H(s, \omega, u) 1_{\{a\}}(W_s) n_a(du).$$

Similarly,

$$S_2 = E \int_0^\infty dL_{s+T_a} \int_U H(s, \omega, u) 1_{\{b\}}(W_s) n_b(du).$$
Hence

\[
S_1 + S_2 = E \int_0^\infty dL_s \int_U H(s, \omega, u) \, n(W_s, du) \\
+ E \int_0^\infty dL_s^b \int U H(s, \omega, u) \, n(W_s, du) \\
= E \int_0^\infty d(L_s^a + L_s^b) \int_U H(s, \omega, u) \, n(W_s, du) \\
= E \int_0^\infty dL_s \int_U H(s, \omega, u) \, n(W_s, du) \\
= E \int_0^\infty ds \int_U H(\tau_s, \omega, u) \, n(W_{\tau_s}, du).
\]

This completes the proof of the Theorem. \[\square \]

Remark 2.4 We can arrive at the above result, using the results in [6]. Consider the closed homogenous set \(M = \{ t : W_t = a \text{ or } b \} \) and the corresponding exit system \(\{(\tilde{L}, \tilde{n}(x, .)); x \in \mathbb{R}\} \). Then \(\tilde{L}_t = L_t = L_s^a + L_s^b \) and \(\tilde{n}(x, .) \) is a measure on \(\tilde{U} := U(S) \cup U(S_1) \cup U(S_2) \) where \(S := (a, b), S_1 := (-\infty, a), S_2 := (b, \infty) \) and \(\tilde{n}(a, .)|_{U(S)} = n(a, .), \tilde{n}(b, .)|_{U(S)} = n(b, .) \).

3 Excursions Straddling a fixed time:

We next look at excursions into \(S \), straddling a given time \(t > 0 \). We work with the filtration generated by the Brownian motion \((W_t) \). In other words, \(\mathcal{F}_t \) is the same as \(\mathcal{F}_t^W := \sigma\{W_s, s \leq t\} \) augmented by all \(P \) null sets. Recall that \(\sigma_t := \sigma\{s \leq t : W_s \notin S\} \). Let \(\mathcal{F}_{\sigma_t} := \sigma\{H(\sigma_t) : H(t, \omega) \text{ an } \mathcal{F}_t \text{ optional process}\} \). Recall that \(i_t(\omega) \) denotes the portion of the excursion straddling \(t \), from \(t \) upto its lifetime \(d_t(\omega) \) and that for \(u \in U \),
$R(u) := \inf\{s > 0 : u_s \notin S\}$ denotes the lifetime of the excursion u. Define for $s > 0$ and $F : U_{0,\delta} \to [0, \infty]$ measurable, with $F(\delta) = 0$,

$$q(s, F) := \frac{1}{n\{R > s\}} \int_{\{R > s\}} F(u) n(du). \quad (3.4)$$

Note that $n\{R > s\} > 0$ (see Remark 2.1). We then have the following proposition from Chap.XII, Propn.3.3, [11]:

Proposition 3.1 Let $S = (-\infty, 0) \cup (0, \infty)$ and σ_t the associated last entrance time before t for S. Then for every $t > 0$,

$$E[F(i_{\sigma_t}) | \mathcal{F}_{\sigma_t}] = q(t - \sigma_t, F) \text{ a.s.} \quad (3.5)$$

We now wish to generalise this proposition to the case of excursions into (a, b) straddling $t > 0$. For $s > 0, x \in \mathbb{R}$, let

$$q(x, s, F) = \frac{1}{n(x, \{R > s\})} \int_{\{R > s\}} F(u)n(x, du). \quad (3.6)$$

Theorem 3.2 Let $S = (a, b)$ and $U_{\delta}, \sigma_t, \mathcal{F}_{\sigma_t}$ be associated with S as above. Let $F : U_{\delta} \to [0, \infty]$ be measurable with $F(\delta) = 0$. Then for every $t > 0$, we have

$$E[F(i_{\sigma_t}(\omega)) | \mathcal{F}_{\sigma_t}] = q(W_{\sigma_t}, t - \sigma_t, F) \quad (3.7)$$

almost surely on $(\sigma_t < t)$.

The proof of the Theorem 3.2 depends on an extension of Proposition 3.1 which we now formulate. Let $(W_s) \equiv (\{W_{s+T_a} - W_{T_a}\}I_{(T_a<\infty)})$ be the standard Brownian motion introduced in the proof of Theorem 2.3 and $\tilde{\sigma}_t = \sup\{s \leq t : \tilde{W}_s = 0\}$. Let

$$\tilde{T}_{b-a} := \inf\{s > 0 : \tilde{W}_{s+\tilde{\sigma}_t} = b - a\} \text{ on } \{\tilde{\sigma}_t < t\}$$

$$= \infty \text{ on } \{\tilde{\sigma}_t = t\}.$$
Similarly let \(\hat{W}_s \equiv ((W_{s+T_b} - W_{T_b}) I_{(T_b < \infty)}), \hat{\sigma}_t := \sup\{s \leq t : \hat{W}_s = 0\} \) and
\[
\hat{T}_{-\sigma}^{t-a} := \inf\{s > 0 : \hat{W}_{s+\hat{\sigma}_t} = -(b-a)\} \text{ on } \{\hat{\sigma}_t < t\} = \infty \text{ on } \{\hat{\sigma}_t = t\}.
\]

In what follows, we will abuse notation to refer to \(\hat{\sigma}_t \) as the excursion of \(\hat{W}_s \) from zero, starting at time \(\hat{\sigma}_t < t \) and a similar reference to \(\hat{\sigma}_t \) will mean the excursion of \(\hat{W}_s \) from zero starting at time \(\hat{\sigma}_t < t \). For \(u \in U_0 \), again by abusing notation we will denote by \(T_{b-a}(u) \) the hitting time of level \(b-a \) by the excursion \(u \) with a similar convention for \(T_{-\sigma}^{t-a}(u) \). The following Proposition relates the excursions (straddling \(t \)) of \(\hat{W}_s \) and \(\tilde{W}_s \) below and above zero with state spaces \(U_0^+, U_0^- \) respectively to the excursions (straddling \(t \)) of \(W_s \) into \(S = (a, b) \) with state space \(U = U(S) = U(a, b) \).

Proposition 3.3 Let \(F : U_\delta \rightarrow [0, \infty] \) be measurable with \(F(\delta) = 0 \). Let \(t > 0 \) be fixed.

a) \[E[1_{(0,t)}(\hat{\sigma}_t)1_{(t-\hat{\sigma}_t,\infty)}(T_{b-a}(\hat{\sigma}_t))F \circ \lambda^a(i_{\hat{\sigma}_t})|\mathcal{F}_\sigma] = q(W_{\sigma_t}, t - \sigma_t, F) \]
a.s. on the set \(\{\hat{\sigma}_t < t, \hat{T}_{b-a}^{t} > t - \hat{\sigma}_t\} \) and

b) \[E[1_{(0,t)}(\hat{\sigma}_t)1_{(t-\hat{\sigma}_t,\infty)}(T_{-\sigma}^{t-a})(i_{\hat{\sigma}_t}))F \circ \lambda^b(i_{\hat{\sigma}_t})|\mathcal{F}_\sigma] = q(W_{\sigma_t}, t - \sigma_t, F) \]
a.s. on the set \(\{\hat{\sigma}_t < t, \hat{T}_{-\sigma}^{t-a} > t - \hat{\sigma}_t\} \).

Proof: Let \(\alpha(s, \omega) \) be \((\mathcal{F}_t) \)-optional. To prove a) we need to show that
\[
E[\alpha(\hat{\sigma}_t)1_{(0,t)}(\hat{\sigma}_t)1_{(t-\hat{\sigma}_t,\infty)}(T_{b-a}(\hat{\sigma}_t))F(\lambda^a(i_{\hat{\sigma}_t}))] = E[\alpha(\hat{\sigma}_t)q(W_{\sigma_t}, t - \sigma_t, F)1_{(0,t)}(\hat{\sigma}_t)1_{(t-\hat{\sigma}_t,\infty)}(T_{b-a}^{t})]
\]

For \((s, \omega, u) \in [0, \infty) \times \Omega \times U_{0,\delta} \) define
\[
H(s, \omega, u) := \alpha(s)F \circ \lambda^a(u)I_{(0,t)}(s)I_{\{R > t-s\}}(u)I_{\{T_{b-a} > t-s\}}(u).
\]

Let \(\tilde{G}(\omega) \subset [0, \infty) \) be the left end points of excursion intervals of \(\hat{W}_t \) from zero. Let \(L_t := \tilde{L}_t^0 \), the local time of zero of \(\hat{W}_s \). Recall that \(\tau_t \) is the
right continuous inverse of \((L_t)\). Then we may write as in Proposition 3.3, Chapter XII, [11],

\[
E \left[\alpha(\tilde{\sigma}_t) I_{(0,t)}(\tilde{\sigma}_t) I_{(t-\tilde{\sigma}_t,\infty)} (T_{b-a}(i_{\tilde{\sigma}_t})) F \circ \lambda^a(i_{\tilde{\sigma}_t}) \right]
\]

\[
= E \sum_{s \in \tilde{G}} H(s, \omega, i_s(\omega))
\]

\[
= E \int ds \int_{U_{0,\delta}} H(\tau_s, \omega, u) n(du)
\]

\[
= E \int ds I_{(0,t)}(\tau_s) \alpha(\tau_s) \int_{\{R > t - \tau_s \cap \{T_{b-a} > t - \tau_s\}} F \circ \lambda^a(u) n(du)
\]

\[
= E \int ds I_{(0,t)}(\tau_s) q(a, t - \tau_s, F) n^a(R > t - \tau_s)
\]

\[
= E \sum_{s \in \tilde{G}} \alpha(s) q(a, t - s, F) I_{(0,t)}(s) G(s, i_s)
\]

\[
= E \alpha(\tilde{\sigma}_t) I_{(0,t)}(\tilde{\sigma}_t) q(a, t - \tilde{\sigma}_t, F) G(\tilde{\sigma}_t, i_{\tilde{\sigma}_t})
\]

where for \((s, u) \in [0, \infty) \times U_{0,\delta}\) we define

\[
G(s, u) := I_{U_0^+ \cap \{R > t - s, T_{b-a} > t - s\}}(u);
\]

and where in the 4th equality above we have used the fact that for \(0 < s < t\),

\[(\lambda^a)^{-1}\{u \in U : R(u) > t - s\} = U_0^+ \cap \{R > t - s, T_{b-a} > t - s\}.
\]

Finally we note that when \(G(\tilde{\sigma}_t, i_{\tilde{\sigma}_t}) = 1\), \(\tilde{\sigma}_t = \sigma_t\) and \(W_{\sigma_t} = a\). This completes the proof of a). The proof of b) is similar. \(\Box\)

Proof of Theorem 3.2: Let \(\alpha(s, \omega)\) be \((\mathcal{F}_t)\)-optional and \(t > 0\) be given. We need to show

\[
E \alpha(\sigma_t) 1_{(\sigma_t < t)} F(i_{\sigma_t}) = E \alpha(\sigma_t) 1_{(\sigma_t < t)} q(W_{\sigma_t}, t - \sigma_t, F).
\]
Recalling the notation $i_{\tilde{\sigma}_t}$ and $\tilde{\sigma}_t$ introduced before the statement of Proposition(3.3), we note that

$$(\sigma_t < t) = (\tilde{\sigma}_t < t, \bar{T}_{b-a}^t > t - \tilde{\sigma}_t) \cup (\tilde{\sigma}_t < t, \hat{T}_{b-a}^t > t - \tilde{\sigma}_t)$$

where the sets in the right hand side are disjoint. Further we note that $\sigma_t = \tilde{\sigma}_t$ on the set ($\tilde{\sigma}_t < t, \hat{T}_{b-a}^t > t - \tilde{\sigma}_t$) and $\sigma_t = \tilde{\sigma}_t$ on the set ($\tilde{\sigma}_t < t, \bar{T}_{b-a}^t > t - \tilde{\sigma}_t$). We then have

$$E\alpha(\sigma_t) 1_{(\sigma_t < t)} F(\delta_{i_{\sigma_t}}) = E[\alpha(\tilde{\sigma}_t) 1_{(0,t)}(\bar{\sigma}_t) 1_{(t-\tilde{\sigma}_t,\infty)}(\bar{T}_{b-a}^t) F(\lambda^a(i_{\tilde{\sigma}_t}))]$$

$$+ E[\alpha(\tilde{\sigma}_t) 1_{(0,t)}(\hat{\sigma}_t) 1_{(t-\hat{\sigma}_t,\infty)}(\hat{T}_{b-a}^t) F(\lambda^b(i_{\hat{\sigma}_t}))]$$

$$= E[\alpha(\tilde{\sigma}_t) q(W_{\sigma_t}, t - \sigma_t, F) 1_{(0,t)}(\tilde{\sigma}_t) 1_{(t-\tilde{\sigma}_t,\infty)}(\bar{T}_{b-a}^t)]$$

$$+ E[\alpha(\tilde{\sigma}_t) q(W_{\sigma_t}, t - \sigma_t, F) 1_{(0,t)}(\hat{\sigma}_t) 1_{(t-\hat{\sigma}_t,\infty)}(\hat{T}_{b-a}^t)]$$

$$= E\alpha(\sigma_t) 1_{(\sigma_t < t)} q(W_{\sigma_t}, t - \sigma_t, F),$$

where to obtain the second equality we have used the result of Proposition(3.3). This completes the proof of Theorem(3.2). \(\square \)

4 Asymptotic Distribution of Excursions

Stradling a fixed time:

Let $C := C([0, \infty), \bar{S}) \cup \{\delta\}$ with the σ-field \mathcal{C} generated by the Borel sigma field of $C([0, \infty), \bar{S})$ and the singleton $\{\delta\}$. We now consider only the case $S = (a, b)$. All excursion related objects are considered with respect to this S. We consider the excursions i_{σ_t} as a stochastic process with values in C and accordingly use a new notation. We define the C valued stochastic process (ζ_t), measurable in (t, ω) as follows:

$$\zeta_t(\cdot) := W_{\sigma_t + \wedge (d_t - \sigma_t)} I(\sigma_t < t) + \delta I(\sigma_t = t)$$

where on $(\sigma_t < t)$, we note that the function $s \rightarrow W_{\sigma_t + \wedge (d_t - \sigma_t)}$ belongs to C. Let $E := \{a, b\} \times [0, \infty) \times C$ and $\mathcal{E} := \{a, b, \phi, \{a, b\}\} \times \mathcal{B}[0, \infty) \times \mathcal{C}$ the product sigma field on E. For $A \in \mathcal{E}, x = a, b, \text{ and } s > 0$, let $A(x, s) :=$
\(\{ \omega : (x, s, \omega) \in A \} \). For \(A \in \mathcal{E}, s > 0, x \in \mathbb{R} \), we recall from eqn.(3.6) the kernel
\[q(x, s, A(x, s)) := \frac{n(x, A(x, s)) \cap \{ R > s \}}{n(x, \{ R > s \})}. \]
We then define the probability measure \(P^0 \) on \((E, \mathcal{E})\) as follows:
\[P^0(A) := \int_0^\infty \left(\frac{q(a, s, A(a, s)) + q(b, s, A(b, s))}{2} \right) dF(s) \quad (4.8) \]
where \(F(\cdot) \) is a distribution function on \([0, \infty)\) defined as follows: Let \(P_x, x \in \mathbb{R} \), denote the distribution of \((W_s + x)\) on \(C([0, \infty), \mathbb{R})\). Then,
\[F(s) := \frac{1}{b - a} \int_a^b (1 - \psi(x, s)) \, dx \]
where
\[\psi(x, s) := P_x \left(a < \inf_{0 \leq r \leq s} W_r < \sup_{0 \leq r \leq s} W_r < b \right). \]
We note that \(F \) is the asymptotic distribution of \(t - \sigma_t \), conditional on \(\{ W_t \in (a, b) \} \) as \(t \to \infty \) (see [1], Thm.(4.2)). Further it is clear that \(P^0(A) = EQ(X, Y, A(X, Y)) \) where \(X, Y \) are independent, \(Y \sim F \) and \(P(X = a) = P(X = b) = \frac{1}{2} \).

We then have the following theorem.

Theorem 4.1 Let \((\zeta_t), P^0, X, Y\) be as above. Then, conditional on \((\sigma_t < t), (W_{\sigma_t}, t - \sigma_t, \zeta_t)\) converges weakly to \(P^0 \) on \((E, \mathcal{E})\) as \(t \to \infty \).

Proof: Let \(f : E \to \mathbb{R} \) be a bounded and continuous function. It suffices to show that
\[\lim_{t \to \infty} E[f(W_{\sigma_t}, t - \sigma_t, \zeta_t) \mid \sigma_t < t] = \int_E f \, dP^0. \]
We have
\[E[f(W_{\sigma_t}, t - \sigma_t, \zeta_t) \mid \sigma_t < t] = \frac{E I_{(\sigma_t < t)} f(W_{\sigma_t}, t - \sigma_t, \zeta_t)}{P(\sigma_t < t)} = \frac{E \left[I_{(\sigma_t < t)} E[f(W_{\sigma_t}, t - \sigma_t, \zeta_t) \mid F_{\sigma_t}] \right]}{P(\sigma_t < t)}. \]
From Theorem 3.2, we have

\[E[f(W_{\sigma_t}, t - \sigma_t, \zeta_t) \mid \mathcal{F}_{\sigma_t}] = q(W_{\sigma_t}, t - \sigma_t, f(W_{\sigma_t}, t - \sigma_t, \cdot)) \]

almost surely on \(\{\sigma_t < t\} \). On the other hand we know from the results in [2] that \((W_{\sigma_t}, t - \sigma_t) \) converges weakly to \((X,Y) \) conditional on \(\{\sigma_t < t\} \). Using Remark 2.1 it can be shown that \(q(x, s, f(x, s, \cdot)) \) is a bounded continuous function on \(\{a, b\} \times (0, \infty) \). The result follows. □

Remark 4.2 The limiting distribution \(P_0 \) can be described in terms of the measure \(Q_{ex} \) introduced in [7]. We recall that the measure \(Q_{ex} \) was introduced on the space of excursions as an 'equilibrium measure' or more specifically as the 'Palm measure' corresponding to a stationary point process. It is natural to interpret our results in Sec.4 as \(t \to \infty \) in terms of this equilibrium measure. Let \(M, \{(\tilde{L}, \tilde{n}(x, \cdot)); x = a \text{ or } b\} \) be as in Remark 2.4, with \(\tilde{L} = L = L^a + L^b \). Then it was shown in [7] that \(Q_{ex} \) was given as \(Q_{ex}(\cdot) = \int \alpha(dx)\tilde{n}(x, \cdot) \) where \(\alpha(A) := \int dxE^x \int_0^1 I_A(W_s) dL_s \). It follows from the occupation density formula that \(\alpha = \delta_a + \delta_b \) and consequently from Remark 2.4 that, \(Q_{ex}\mid U(S) = n(a, \cdot) + n(b, \cdot) \). We than have for \(x = a \text{ or } b, s > 0, A \in \mathcal{U}(S) \)

\[q(x, s, A) := \frac{Q_{ex}(A \cap \{R(u) > s, u(0) = x\})}{Q_{ex}(\{R(u) > s, u(0) = x\})}. \]

An application : For \(u > 0, y > 0 \), consider the probabilities

\[\phi(t) := P_a\{0 < t - \sigma_t < u, 0 < W_t - W_{\sigma_t} < y\} \]

where for each \(a \in \mathbb{R} \), \(P_a\{\omega : W_0 = a\} = 1 \). In [1],Theorem (5.1), it was shown that \(\phi(t) \) satisfies a renewal equation. With the renewal theorem in mind, a natural question is to find the limit of \(\phi(t) \) as \(t \to \infty \). However, it is easy to see that the probabilities that define \(\phi(t) \) converge to zero since the events in question are contained in \(\{W_t \in (a,b)\} \). On the other hand, since these events can be expressed as functionals of the excursion straddling \(t \), we can apply the previous theorem to compute the limit of the conditional probability

\[P_a\{\omega : 0 < t - \sigma_t < u, 0 < W_t - W_{\sigma_t} < y|W_t \in (a,b)\} \]
as $t \to \infty$. Let

$$A := \{ (x, s, \omega) : 0 < \omega_s - \omega_0 < y, 0 < s < u, x = a \text{ or } b \}.$$

Then by Thm.(4.1),

$$P_a\{ 0 < t - \sigma_t < u, 0 < W_t - W_{\sigma_t} < y | W_t \in (a, b) \} = P_a\{(W_{\sigma_t}, t - \sigma_t, \zeta_t) \in A | \sigma_t < t \} \to P^0(A)$$

provided $P^0(\partial A) = 0$. Note that

$$(\partial A) = (\bar{A} - A^\circ) = \{(x, s, \omega) : s = u, 0 \leq \omega_u - \omega_0 \leq y, x = a \text{ or } b \}
\cup \{(x, s, \omega) : 0 < s < u, \omega_s - \omega_0 = 0 \text{ or } y, x = a \text{ or } b \}
=: A_1 \cup A_2$$

Clearly, from the definition of the measure P^0 we have,

$$P^0(A_1) = P^0\{(a, s, \omega) : s = u, 0 \leq \omega_u - \omega_0 \leq y, x = a \text{ or } b \} = 0.$$

As for the second set A_2 in the union, from the definition of P^0 (eqn.(4.8)) it suffices to show that for every $0 < s < u, x = a, b, q(x, s, (A_2)(x, s)) = 0$. Again, from the definition of $q(x, s, \cdot)$ (eqn.(3.6)) it suffices to show that for each $x = a, b$ and $0 < s < u, n(x, A_2(x, s) \cap \{ R > s \}) = 0$. From the definition of the kernels $n(x, \cdot)$, we have for $0 < s < u, x = a$,

$$n(a, \{ \omega : \omega_s - \omega_0 = 0 \text{ or } y \} \cap \{ R > s \})
= n^+ \circ \lambda_a^{-1}(\{ \omega : \omega_s - \omega_0 = 0 \text{ or } y \} \cap \{ R > s \})
= n^+(\{ \omega : \omega(s \wedge T_{b-a}) = y \} \cap \{ R \circ \lambda_a > s \})
= n^+(\{ \omega : \omega(s \wedge T_{b-a}) = y \} \cap \{ R_1 \wedge T_{b-a} > s \})
= n^+(\{ \omega : \omega(s) = y \} \cap \{ R_1 \wedge T_{b-a} > s \})
= 0.$$

where $R_1(\omega)$ and $T_{b-a}(\omega)$ are respectively the life time and the hitting time of $b - a$ of the excursion ω starting at 0 and the last equality follows from the absolute continuity of the map $n \circ \omega_s^{-1}, s > 0$. This proves that $P^0(\partial A) = 0$.

Acknowledgement: The author would like to thank Jean Bertoin for pointing out reference [7].
References

[1] Athreya, K.B. and Rajeev, B (2013) : Brownian Crossings via Regeneration times, Sankhya, Vol. 75, Series A, Part 2, p. 194-210.

[2] Athreya, K.B. and Rajeev, B (2014) : Weak Convergence of the past and future of Brownian motion given the present. (Pre-print)

[3] Blumenthal, Robert M. (1992): *Excursions of a Markov Process*, Birkhauser.

[4] Getoor, R and Sharpe, M (1973): Last exit decompositions and distributions, Indiana Univ. Math. J., 23, 377-404.

[5] Itô, K. (1970): Poisson point processes attached to Markov processes, Proc. Sixth Berkeley Symposium, Math. Stat. Prob., vol. 3, University of California, Berkeley, 1970, p. 225-239.

[6] Maisonneuve, B. (1975): Exit Systems, Annals of Probability, 3, p. 399-411.

[7] Pitman, J. (1987): Stationary excursions, Séminaire de Probabilités, Vol. 21, p. 289-302.

[8] Rajeev, B. (1989a): Sojourn times of Martingales, Sankhya, Series A, Vol. 51, Part 1, p. 1-12.

[9] Rajeev, B (1989) : Crossings of Brownian motion: A semi-martingale approach, Series A, vol. 51, Part 3, p. 251-268.

[10] Rajeev, B. (1989b): Crossings of Semi-Martingales, Seminaire de Probabilites XXIV, Lecture Notes in Mathematics 1426, Springer Verlag, p. 107- p. 116.

[11] Revuz, D. and Yor, M. (1991): *Continuous Martingales and Brownian motion*, 3rd edition, Springer Verlag, Berlin.