Patterns of changes in serum lipid profiles in prediabetic subjects: results from a 16-year prospective cohort study among first-degree relatives of type 2 diabetic patients

Shahla Safari, Masoud Amini, Ashraf Aminorroaya and Awat Feizi

Abstract

Background: Lipid abnormality pervasively is associated with the risk of type 2 diabetes mellitus. To the best of our knowledge, there is no study that has examined the longitudinal changes in a wide range of serum lipid profiles in prediabetic subjects in association with the risk of developing type 2 diabetes mellitus in the future. This study aimed to identify the patterns of changes in lipid profiles over time in prediabetic patients and to classify these subjects in order to highlight which patients are at high risk for future diabetes.

Methods: This prospective 16-year (2003–2019) cohort study was conducted among 1228 prediabetic subjects. The study subjects were followed, and the changes in their lipid profiles, including triglycerides, cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol, were evaluated. The latent Markov model was used for data analysis.

Results: The mean (standard deviation) age of subjects was 44.0 (6.8) years, and 73.6% of them were female. The latent Markov model identified two latent states of subjects in terms of changes in lipid profiles: a low tendency to progress diabetes / high tendency to progress diabetes (74, 26%). The latent Markov model showed that the transition probability from a “low tendency to progress diabetic” state to a “high tendency to progress diabetic” state was lower than the transition probability from “high tendency to progress diabetic” state to “low tendency to progress diabetic” state.

Conclusions: The present study showed that more than half of the first-degree relatives of T2DM had approximately normal lipid profiles and that these patients are more inclined to transition from a higher- to a lower-tendency diabetic state. These findings confirm the value of regular screening of first-degree relatives of T2DM. Moreover, preventive intervention strategies are recommended to reduce their risk of developing T2DM.

Keywords: Type 2 diabetes, Prediabetes, Triglycerides, Cholesterol, Cholesterol HDL, Cholesterol LDL, Latent Markov model
Introduction
Type 2 diabetes mellitus (T2DM) is a common chronic disease with major morbidities and high mortality rate [1]. The World Health Organization (WHO) estimated that the number of diabetic people in the world to reach 522 million by 2030, of whom 439 million will have T2DM [2, 3]. The prevalence of diabetes among Iranians was 7.9% in 2010, but the distribution of this prevalence in Iran is also diverged widely between 1.3 and 14.5% in various provinces [4]. Prediabetes (PD) is the precursor stage of diabetes mellitus, in which the subject’s plasma glucose is higher than normal but lower than diabetes mellitus thresholds [5]. In recent years, PD prevalence has increased, especially in developing countries, where PD prevalence is higher than that of T2DM [6]. It is estimated that 5–10% of subjects with PD will develop T2DM [7].

The numerous comorbidities, including obesity and lipid abnormality, are associated with the risk of developing diabetes [8]. Previous evidence suggest that lipid abnormalities are common in people with T2DM and PD [9, 10]. For instance, a meta-analytic review demonstrated that lipid profile disorders are significantly associated with T2DM [11]. A community-based cross-sectional survey showed a strong association between serum lipid profiles with T2DM and PD [12]. Prediabetic individuals often exhibit an atherogenic pattern of risk factors that include high levels of total cholesterol (CHOL), low-density lipoprotein cholesterol (LDL), and triglycerides (TG) and low levels of high-density lipoprotein cholesterol (HDL). Lipid abnormalities in diabetic patients are typically characterized by high CHOL, high TG, low HDL, and high LDL levels [13]. Although the association between lipid abnormality and T2DM has been investigated in various populations, few studies have been conducted to evaluate this association in prediabetic patients as a high-risk population.

Due to the increased risk of diabetes progression over the 5–10 years following the onset of the PD stage [14–16], it is important to establish appropriate prevention strategies in PD. One’s lipid profile is not necessarily stable, especially in prediabetes; accordingly, it is necessary to apply an appropriate analytical technique that can provide a comprehensive evaluation of subjects based on changes in their lipid profiles over time. Therefore, in the current study, an advanced statistical method (i.e., the latent Markov model (LMM)) was used for addressing the above points. The previous studies have described the association between lipid profiles with diabetes, without exploring the patterns of changes in lipid profile over time. LMM, a latent state-switching approach, offer a straightforward approach to classify subjects (latent state) according to the patterns of changes in lipid profile over time. The application of this method results in the identification of subjects within each latent state who are highly similar to each other and uniquely different from those in other states. The LMM estimates the probability to move between the states or to remain in the same state. Subjects were assigned to the latent states which they had the highest probability for membership. This study aimed to identify the pattern of changes in lipid profile over time in prediabetic patients and classify these subjects in order to highlight the high risk people for future diabetes risk.

Materials and methods
Study design and participants
The current study was conducted under the framework of the Isfahan Diabetes Prevention Study (IDPS), which was initiated in 2003 among 3483 first-degree relatives (FDRs) from a consecutive sample of patients with T2DM. The IDPS is an ongoing longitudinal study carried out in a cohort of the FDRs of patients with T2DM in Isfahan, which is the largest city in central Iran, to assess the various potential risk factors for diabetes in subjects with a family history of T2DM. The sample of FDR was recruited between 2003 and 2018 and followed up on until 2019. Recruitment methods and examination procedures have been described elsewhere [17]. Prediabetes was defined as: IFG (FPG: 5.6–6.9 mmol/l), and 2-h plasma glucose < 7.8 mmol/l, or IGT (FPG < 7.0 mmol/l, but with 2-h plasma glucose concentration of ≥7.8 mmol/l and < 11.1 mmol/l).

Subjects with T2DM and normal conditions were excluded at the baseline. They completed laboratory tests, including a standard 75 g 2-h oral glucose tolerance test (OGTT), and a questionnaire that asked them about their health status and various potential risk factors of diabetes. Of the 3483 subjects who participated at the baseline, 1228 had been diagnosed with PD. The data from 1228 prediabetics, all of whom had at least two visits during the follow-up period, were used. Data included the baseline measurement, the last measurement, and the mean of the measurements, which was recorded among baseline and last, as the second of measurement.

Full family history was obtained, and physical examinations were performed on all subjects. The standardized blood pressure was measured; also, various potential related risk factors were recorded for prediabetes, diabetes, and high blood pressure. The subjects received follow-up tests according to the Standard of Medical Care in Diabetes [18] to update information regarding lifestyle, anthropometric, and demographic characteristics, as well as to collect data on the diagnosis of prehypertension, hypertension, prediabetes, and diabetes, in every year. Written informed consent was obtained from all subjects in IDPS. The current secondary study has been approved by Bioethics...
Committee of Isfahan University of Medical Sciences (IR.MUI.MED.REC.1398.532).

Laboratory parameters
Biochemical tests including lipid profile, fasting plasma glucose (FPG) and OGTT were carried out for all subjects. To determine lipid profile and FPG, a blood sample was drawn from all subjects after 10–12 h of overnight fasting. Postprandial plasma glucose was measured using venous blood sample at 30, 60, and 120 min after oral glucose administration. Plasma glucose and lipid profile concentrations were determined using enzymatic colorimetric method (ParsAzmoon, Tehran, Iran) adapted Selectra-2 auto-analyzer (Vital Scientific, Spankeren, Netherlands). Serum concentration of LDL was calculated by Friedwald equation in subjects with serum TG levels < 400 mg/dL [19]. Serum concentration of HDL, CHOL and TG were measured using standardized procedures [19].

Definitions and diagnostic criteria were based on the American Diabetes Association (ADA) guidelines. Symptomatic subjects with FPG ≥ 7 mmol/L were considered diabetic. If FPG was ≥7 and < 11.1 mmol/L, a second FPG was measured on another day. If the second FPG was also ≥7 mmol/L, subjects were classified as diabetic. FPG ≥7 mmol/L or 2-h PG ≥11.1 mmol/L also defined diabetes mellitus. Impaired glucose tolerance (IGT) was interpreted as 7.8 ≤ 2h post glucose load (75 g glucose) ≤11.0 mmol/L [5]. Impaired fasting glucose (IFG) was interpreted as 5.6 ≤ FPG ≤ 6.9 mmol/L [5]. In addition, all subjects developing IFG and IGT were pooled in a unique “impaired glucose metabolism” (IGM) group in the analyses.

In the analyses, the following categories were considered as abnormal: TG level of more than 150 mg/dL; LDL level of more than 100 mg/dL and CHOL level more than 200 mg/dL; in both men and women [20], HDL level of less than 40 mg/dL in men; less than 50 mg/dL in women [20]. HDL level > 60 mg/dL, optimal condition, considered protective against heart disease [20].

Other variables
The subjects completed a demographic questionnaire including age and gender. Physical activity was recorded in an International Physical Activity Questionnaire (IPAQ) [21]. Anthropometric and clinical measurements, including body mass index (BMI) (by dividing weight [kg] to the square of height [m^2]), FPG and lipid profile include TG, CHOL, HDL and LDL was recorded. The process of administering and collecting the questionnaires was conducted at the Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences.

Statistical analysis
Continuous and categorical basic characteristics of study subjects were presented as mean (standard deviation (SD)) and frequency (percentage), and compared between study groups using analysis of variance (ANOVA) or independent samples T-Test and Chi-square tests, respectively.

To analysis the patterns of changes in serum lipid profile over time in prediabetic patients, LMM was applied. LMM is a hybrid model from the latent class model (LC), and Markov (MC) chain model. LMM may be seen as an extension of the LC in which subjects are allowed to move between the latent classes during the period of observation. These models assume the existence of a latent process which affects the distribution of the response variable. The main assumption behind this approach is that the response variables are conditionally independent given this latent process, which follows a Markov chain with a finite number of states. LMM estimate patient’s condition using latent variables, adjusting for the measurement error contained in the diagnostic tests studied (lipid profiles).

Three measures of lipid indices obtained from subjects including first measure at baseline, mean values during follow up period and last measure have been used. LMM identified number of latent states in studied subjects based on patterns of changes in study lipid measures, also provided the probability moving between various states. The process of LMM fitting was as follows: the following LMM were estimated, 2-State 1-Class, 2-State 2-Class, 2-State 3-Class, 3-State 1-Class, 3-State 2-Class and 3-State 3-Class sequentially, based on lipid profile; TG, CHOL, HDL and LDL responses in prediabetic patients and the model with 2-State 1-Class was selected based on goodness of fit criteria and more interpretability.

The balance between fit and parsimony (number of parameters) of different models was estimated using Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The optimum number of states was determined through comparing the AIC, BIC, classification error and entropy indices across models. Lower AIC, BIC and classification error and higher entropy, indicate the better model fitting and the better states separation [22, 23]. Two latent states were extracted from TG, CHOL, LDL and HDL in order to evaluate their association with progress diabetes over time, and were labelled as “State1” and “State2”.

After selecting the number of proper latent states, the LMM without/with covariates including age, smoking, gender, physical activity, BMI, and FPG were fitted and the patterns of changes in serum lipid profile over time in prediabetic patients was evaluated. The fitted model was adopted separately in gender subgroups. The
interpretation of extracted latent states was done based on the mean values of lipid profiles calculated by LMM.

LMM also allows estimating the longitudinal change in the metabolic condition of prediabetic subjects. The LMM estimates the initial and transition probabilities according to the mean values of TG, CHOL, LDL and HDL. The initial probabilities define as the probability of current state that is the one needed to predict the future. The transition probability is defined as, probability to move of subjects between different latent states. The subjects in the PD state can remain and/or move to other latent states. The proposed model was fitted using the LMer package developed within the R free statistical Software (version 3.6.3) [23].

Results

General characteristics of subjects at baseline are presented in Table 1. Of 1228 study subjects with mean (SD) 44.0 (6.8) years, 73.6% were females. Basic characteristics; smoking (P < 0.001), BMI (P < 0.001), FPG (P < 0.001), Physical activity (P < 0.05), TG (P < 0.05), and HDL (P < 0.001) were statistically significantly different between male and female (Table 1).

General characteristics of subjects at the end of follow up are presented in Table 2. Over the 16-year follow-up, 339 (27.6%) became diabetic, 204 (16.6%) was normal, 403 (32.8%) remained PD (IFG and IGT) and the data about final status of 282 (23%) of subjects was not available.

A series of LMM was estimated to determine the number of latent states (2-3State 1-3Class). All models’ fit criteria as well as interpretability of extracted states strongly suggested a LMM with two latent states based on the patterns of changes in lipid profile. According to fit criteria, 2-State 1-Class model selected, with lower AIC, BIC, parameter number and classification error and as well as higher entropy (Table 3).

Table 4 presents the results of fitting the LMM regarding the identified latent states of subjects based on the means of lipid profiles of the total sample, as well as the male and female samples. For total, males, and females samples, two latent states were identified. The interpretation of states is based on the mean of the lipid profiles.

The state1 consists of subjects who had relatively few problems in their lipid profile levels; that is, the subjects in this state had relatively low lipid profile values. This state reflects a low tendency to progress diabetes in the future and consists of 74, 74, and 69% of the samples. The subjects in this state had normal TG and CHOL levels. TG levels in males were borderlines, and LDL levels in all groups were borderlines. The state2 consists of subjects who had relatively many problems in their lipid profile levels; that is, the subjects in this state had relatively high lipid profile values. This state indicates a high tendency for diabetes to progress in the future and consists of 26, 26, and 31% of the samples. The subjects in this state had abnormal levels of TG, CHOL, and LDL. HDL levels were normal in males and overall, and they were borderlines for females. Similar findings were observed when LMM was fitted separately in male and female genders.

Table 5 presents the initial and transition probabilities observed during the study from one particular state to other states. Based on the estimates, at the beginning of the period of investigation, in all groups (i.e., total, males, and females), more than half (initial probabilities were 0.73, 0.74, and 0.68) of subjects were in the latent state (i.e., state1). The probability of being in state1 (with or without covariates) is higher than that of being in state2. According to these results, a subject in state1 or

Variables	Male(n = 324)	Female(n = 904)	Total(n = 1228)	P Value
Age (years)	44.1 ± 7.0	43.9 ± 6.8	44.0 ± 6.8	0.577
Smoking	34(10.5)	9(1)	43(3.5)	< 0.001*
BMI (kg/m²)	28.21 ± 3.10	29.54 ± 4.30	29.20 ± 4.07	< 0.001
FPG (mmol/l)	106.20 ± 9.25	103.72 ± 10.16	104.37 ± 9.99	< 0.001
Physical activity (min/week)	36.52 ± 67.94	48.52 ± 79.92	45.35 ± 77.10	0.016
SBP (mmHg)	11.73 ± 1.13	11.61 ± 1.14	11.65 ± 1.34	0.29
DBP (mmHg)	7.79 ± 0.92	7.62 ± 0.92	7.66 ± 0.92	0.35
TG (mg/dl)	197.96 ± 142.44	158.98 ± 84.38	169.84 ± 105.17	0.002
CHOL (mg/dl)	198.95 ± 43.93	197.96 ± 142.44	200.02 ± 40.54	0.706
HDL (mg/dl)	40.13 ± 10.98	47.00 ± 11.80	45.08 ± 11.97	< 0.001
LDL (mg/dl)	121.23 ± 38.45	122.34 ± 33.72	122.03 ± 35.06	0.376

Values are mean ± SD for continuous and frequency (percentage) for categorical variables. BMI (Body mass index), FPG (Fasting blood glucose in the baseline), SBP (systolic blood pressure), DBP (diastolic blood pressure), CHOL (total cholesterol), LDL (low-density lipoprotein cholesterol), TG (triglycerides), HDL (high-density lipoprotein cholesterol), T-Test, Chi-Square test *, P Value < 0.05 is considered as significant.
in state2 will likely remain at the same condition (without/with covariates), with a probability ranging from 0.78 to 0.97. In all groups, the probability of transitioning from state1 to the state2 is lower than the probability of transitioning from state2 to state1.

Discussion

In this prospective longitudinal study, 1228 prediabetic patients were followed from 2003 to 2019, and changes in their serum lipid profiles were evaluated over time using the LMM. Two latent states were identified based on the patterns of changes in lipid profiles' mean values and the states characterized by levels of the tendency for diabetes to progress (low/ high), with prevalence rates of 74 and 26%, respectively.

The lipid profile mean of subjects assigned to the “high tendency to progress diabetes” state was higher than that of subjects assigned to the “low tendency to progress diabetes” state. The probability of transitioning from the low- to the high-tendency state was lower than the probability of transitioning probability from the high- to the low-tendency state.

No previous study has classified prediabetic patients into homogeneous states based on lipid profile means over time using LMM. However, there are many related studies that have examined the general population, as well as some specific populations, by applying simple statistical methods [8, 9, 24, 25].

Previous studies have focused on investigating the association of each lipid profile (i.e., TG, CHOL, HDL, and LDL) with the risk of developing diabetes in the future or concurrently, separately. For instance, in Framingham Heart’s [26] study, T2DM subjects were compared with those without T2DM; they had higher plasma TG levels and lower HDL levels. In a case-control study, Vineetha et al. documented statistically significantly higher TG values for and lower HDL values in subjects with PD [27].

It is believed that lipid profile abnormality is a strong risk factor for T2DM among prediabetic patients [16, 28]. In the present study, the subjects with a high tendency to progress their diabetes state had lipid profile abnormalities. The mean of lipid profile abnormality was associated with “high/low tendency to progress diabetes” states. This finding is in line with the results of previous studies which have emphasized the association of lipid profile disorders with the risk of diabetes [10, 11, 29, 30].

Bhowmik et al. obtained similar results as the current study in terms of the levels of dyslipidemia. Their results showed a strong association between serum lipid profile and T2DM and PD. In addition, high levels of TG in combination with low levels of HDL showed the highest association with T2DM and PD. High CHOL, high TG, and low HDL levels were more prominent among subjects with T2DM and PD [12].

Table 2 Basic demographic and clinical characteristics of different categories of subjects at the end of follow-up

Variables	Pre diabetic	P Value
Age (years)	43.8 ± 7.1	0.021*
(Male/Female)(%)	(7.0/ 25.1)	0.011**
BMI (kg/m²)	29.13 ± 3.74	0.150*
FPG (mmol/l)	105.18 ± 8.56	<0.001*
Physical activity (min/week)	49.16 ± 81.29	0.498*

Values are mean ± SD for continuous and frequency (percentage) for categorical variables. IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IGM (impaired glucose metabolism, including subjects with IGT and/or IFG), NGT (normal glucose tolerance), DM (diabetes group), BMI (Body mass index), FPG (Fasting blood glucose in the baseline), ANOVA test *, Chi-Squared test**, P Value < 0.05 is considered as significant

Table 3 Model fitting criteria for prediabetic subjects by latent Markov analysis

Fitted models	Log Likelihood	BIC	AIC	Number of parameter a	Classification. Error	Entropy R-squared
2-State 1-Class	−54,789.4762	109,714.1020	109,616.9523	19	0.0920	0.6052
2-State 2-Class	−54,782.2414	109,728.0850	109,610.4828	23	0.0944	0.5924
2-State 3-Class	−54,782.1874	109,756.4296	109,618.3748	27	0.0944	0.5925
3-State 1-Class	−53,737.2923	107,702.2051	107,538.5846	32	0.1421	0.6681
3-State 2-Class	−53,722.8693	107,737.3773	107,527.7385	41	0.1412	0.6695
3-State 3-Class	−53,717.2883	107,790.2337	107,534.5766	50	0.1427	0.6656

aParameters are those unknown quantities that are estimated during the fitting of LMM
In the present study, in an irregular pattern, low HDL levels were not associated with increased T2DM. In line with the present study, Hasse et al. reported that genetically reduced HDL was not associated with increased T2DM, suggesting that the corresponding observational association is due to confounding and/or reverse causation [8]. In contrast, in the Hawaii-Los Angeles-Hiroshima study, Hirano found that HDL is a predictor of T2DM for Japanese-American and native Japanese people independently of age and gender [31]. In a population-based longitudinal survey conducted on a cohort of high-risk individuals in Iran, Janghorbani et al. showed that low HDL levels are a weak predictor of T2DM independently of age and gender [32].

Although numerous research works have examined the risk factors of diabetes, most research has ignored the complexity of diabetes and the reversibility of diabetic states. In the current study, the probability with a low tendency to progress to diabetic state and to remain in the same condition, in the long run, is greater in comparison to the ones with a high tendency to progress to diabetes. Further, the probability of transitioning from low tendency to a high tendency was lower than the probability of transitioning in the opposite direction.

Table 4 The identified latent states of prediabetic subjects based on lipid profile resulted from latent Markov analysis

Group	Lipid profile	Levels of diabetes tendency (without covariates)	Levels of diabetes tendency (with covariates)		
		Low (State1)	High (State2)	Low (State1)	High (State2)
Total (n=1228)	State size	0.7430	0.2570	0.7345	0.2655
	TG	142.9682	265.1101	142.5925	262.1813
	CHOL	192.1266	227.3209	191.6593	227.4827
	HDL	44.9375	44.7703	44.9247	44.8123
	LDL	117.2795	133.8731	116.8747	134.5226
Males (n=324)	State size	0.7355	0.2645	0.7404	0.2596
	TG	159.8346	307.1037	160.0979	296.2107
	CHOL	191.4662	216.0068	191.2984	216.4241
	HDL	39.7675	41.1365	39.7413	41.2079
	LDL	117.7630	121.8403	117.5976	122.4382
Females (n=904)	State size	0.6916	0.3084	0.6833	0.3167
	TG	133.7960	240.4687	133.5538	238.1966
	CHOL	190.4004	229.3418	189.8000	229.6404
	HDL	46.3990	47.1298	46.3120	47.3042
	LDL	116.1769	136.4491	115.6906	137.0170

The covariates include: age, smoking, gender, BMI, FPG and Physical activity.

Table 5 Initial and transition’s probabilities of prediabetic subjects resulted from latent Markov analysis

Group	Status	Levels of diabetes tendency (without covariates)	Levels of diabetes tendency (with covariates)		
		Low (State1)	High (State2)	Low (State1)	High (State2)
Total (n=1228)	State0	0.73	0.27	0.73	0.27
	State1	0.94	0.06	0.94	0.06
	State2	0.22	0.78	0.23	0.77
Males (n=324)	State0	0.74	0.26	0.74	0.26
	State1	0.96	0.04	0.96	0.03
	State2	0.10	0.90	0.11	0.89
Females (n=904)	State0	0.68	0.32	0.68	0.32
	State1	0.92	0.08	0.91	0.08
	State2	0.22	0.78	0.23	0.77

The state0 is initial state. Probabilities represent the probability of transition from a particular state to other states from row to column.
Study strengths and limitations
A major strength of the present study is its application of LMM for classifying subjects according to patterns of changes in lipid profiles over time instead of considering them as a single index. Other strengths of this study are its population (which consisted of a large cohort of prediabetic patients), the length of the follow-up period of these subjects (16 years), and adjustments for some potential confounders in the analyses. The current findings were drawn from a study population of prediabetic patients; therefore, the results may not be applicable to all populations. In this study, some potentially useful information, such as heart disease and some lifestyle variables were not included.

Conclusions
The present study showed that more than half of PD involves normal CHOL and TG levels and borderline LDL and HDL levels (state1). Also, these patients are more likely to transition from a higher to a lower tendency to enter a diabetic state. These findings confirm the value of regular screenings of FDR with T2DM. Preventive intervention strategies are recommended to reduce patients’ chances of developing T2DM.

Acknowledgements
The present article was extracted from a biostatistics Ph.D. thesis at the School of Health, Isfahan University of Medical Science, with project number 1228. Isfahan Endocrine and Metabolism Research Center supported this research. The authors would like to thank the laboratory technicians of Isfahan Endocrine and Metabolism Research Center. We express our great appreciation to Mr. Majid Abyar for his assistance in the computer-related work of the article.

Authors’ contributions
AF, MA and AA contributed to the conception and design of the main study, collection and assembly of the data. AF supervised the current secondary study in the framework of a PhD thesis. SS contributed to the statistical analysis, AF and SS contributed to the interpretation of the results. AF and SS contributed to drafting the manuscript. AF, MA and AA revised it critically for important intellectual content in order for the final approval of the version to be published. All authors read the final version of manuscript and approved it.

Funding
This study is a part of PhD thesis in Isfahan Endocrine and Metabolism Research Center, affiliated to Isfahan University of Medical Sciences (IUMS). It has been supported in part by IUMS (IRMU/MED.REC.1398.532).

Availability of data and materials
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate
The current secondary study has been approved by Bioethics Committee of Isfahan University of Medical Sciences (IRMU/MED.REC.1398.532). Written informed consent was obtained from all subjects in IDPS.

Consent for publication
Not applicable.

Competing interests
No potential conflict of interest was reported by the authors.

Received: 8 June 2020 Accepted: 12 August 2020
Published online: 23 August 2020

References
1. Aljanvand MH, et al. Cross-sectional and longitudinal assessments of risk factors associated with hypertension and moderately increased albuminuria comorbidity in patients with type 2 diabetes: a 9-year open cohort study. Diabetes Metab Syndr Obes. 2019;12:1123.
2. Olockba AB, Obateru OA, Olockba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269.
3. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.
4. Shaw JE, Chisholm DJ. 1: epidemiology and prevention of type 2 diabetes, and the metabolic syndrome. Med J Aust. 2003;179(7):379–83.
5. A. D. Association. 15. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S193–202.
6. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21(9):1414–31.
7. Forouhi NG, Luan J, Hennings S, Wareham NJ. Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990–2000. Diabet Med. 2007;24(2):200–7.
8. Amini M, Parvazeh E. Prevalence of macro-and microvascular complications among patients with type 2 diabetes in Iran: a systematic review. Diabetes Res Clin Pract. 2009;83(1):18–25.
9. Mooladadian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(3):150–9.
10. Santos-Gallego CG, Rosenson RS. Role of HDL in those with diabetes. Curr Cardiol Rep. 2014;16(9):512.
11. Zhu X-W, Deng F-Y, Lei S-F. Meta-analysis of Atherogenic index of plasma and other lipid parameters in relation to risk of type 2 diabetes mellitus. Prim Care Diabetes. 2015;9(1):60–7.
12. Bhowsnik B, et al. Serum lipid profile and its association with diabetes and prediabetes in a rural Bangladeshi population. Int J Environ Res Public Health. 2018;15(9):1944.
13. Bhowsnik B, et al. Prevalence of type 2 diabetes and impaired glucose regulation with associated cardiometabolic risk factors and depression in an urbanizing rural community in Bangladesh: a population-based cross-sectional study. Diabetes Metab J. 2012;36(6):422–32.
14. De Veere F, Dekker JM, Stehouwer CDA, Nieuwerts G, Bouter LM, Heine RJ. The 1997 American Diabetes Association criteria versus the 1985 World Health Organization criteria for the diagnosis of abnormal glucose tolerance: poor agreement in the Hoorn study. Diabetes Care. 1998;21(10):1866–90.
15. Shaw JE, et al. Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care. 1999; 22(3):399–402.
16. Gavin JR III, Alberti K, Davidson MB, DeFronzo RA. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20(7):1183.
17. Amini M, Janghborani M. Diabetes and impaired glucose regulation in first-degree relatives of patients with type 2 diabetes in Isfahan, Iran: prevalence and risk factors. Rev Diabet Stud. 2007;4(3):169.
18. A. D. Association. Executive summary: standards of medical care in diabetes—2011. Diabetes Care. 2011;34:354.
19. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
20. E. Expert Panel on Detection, Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486.
21. Vasheghani-Farahani A, Tahmasbi M, Asheri H, Ashraf H, Nedjat S, Kordi R. The Persian, last 7-day, long form of the International Physical Activity Questionnaire: translation and validation study. Asian J Sports Med. 2011; 2(2):106.
22. Clark SL, Muthén B, Kaprio J, D’Onofrio BM, Viken R, Rose RJ. Models and strategies for factor mixture analysis: an example concerning the structure underlying psychological disorders. Struct Equ Model Multidiscip J. 2013; 20(4):681–703.
23. Bartolucci F, Pandolfi S, Pennoni F. LMest: an R package for latent Markov models for longitudinal categorical data. J Stat Softw. 2017;81(4):1–38.
24. Haffner SM, Mykkänen L, Festa A, Burke JP, Stern MP. Insulin-resistant prediabetic subjects have more atherogenic risk factors than insulin-sensitive prediabetic subjects: implications for preventing coronary heart disease during the prediabetic state. Circulation. 2000;101(9):975–80.
25. Kundu D, Saikia M, Paul T. Study of the correlation between total lipid profile and glycosylated hemoglobin among the indigenous population of Guwahati. Int J Life Sci Scienti Res. 2017;3:1175–80.
26. Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham study. Am Heart J. 1985;110(5):1100–7.
27. Nayak WR, Nayak KR, Vidyasagar S, Kamath A. Body composition analysis, anthropometric indices and lipid profile markers as predictors for prediabetes. PLoS One. 2018;13(8).
28. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism. 2014;63(12):1469–79.
29. Yan L, et al. Prevalence of dyslipidemia and its control in type 2 diabetes: a multicenter study in endocrinology clinics of China. J Clin Lipidol. 2016;10(1):50–60.
30. Ren X, et al. Association between triglyceride to HDL-C ratio (TG/HDL-C) and insulin resistance in Chinese patients with newly diagnosed type 2 diabetes mellitus. PLoS One. 2016;11(4).
31. Hirano M, et al. Low high-density lipoprotein cholesterol level is a significant risk factor for development of type 2 diabetes: data from the Hawaii–Los Angeles–Hiroshima study. J Diabetes Investig. 2014;5(5):501–6.
32. Janghorbani M, Amini M, Aminorroaya A. Low levels of high-density lipoprotein cholesterol do not predict the incidence of type 2 diabetes in an Iranian high-risk population: The Isfahan diabetes prevention study. Rev Diabet Stud. 2016;13(2–3):187.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.