On rigidity of hypersurfaces with constant curvature functions in warped product manifolds

Jie Wu · Chao Xia

Abstract In this paper, we first investigate several rigidity problems for hypersurfaces in the warped product manifolds with constant linear combinations of higher order mean curvatures as well as “weighted” mean curvatures, which extend the work (Brendle in Publ Math Inst Hautes Études Sci 117:247–269, 2013; Brendle and Eichmair in J Differ Geom 94(94):387–407, 2013; Montiel in Indiana Univ Math J 48:711–748, 1999) considering constant mean curvature functions. Secondly, we obtain the rigidity results for hypersurfaces in the space forms with constant linear combinations of intrinsic Gauss–Bonnet curvatures L_k. To achieve this, we develop some new kind of Newton–Maclaurin type inequalities on L_k which may have independent interest.

Keywords Constant mean curvature · Rigidity · Warped product manifold · Gauss–Bonnet curvature

Mathematics Subject Classification (2010) Primary 53C24; Secondary 52A20 · 53C40

J. Wu is partly supported by SFB/TR71 “Geometric partial differential equations” of DFG. C. Xia is supported by funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 267087.

J. Wu
School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, People’s Republic of China
e-mail: jie.wu@math.uni-freiburg.de

J. Wu
Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstr. 1, 79104 Freiburg, Germany

C. Xia (✉)
Max-Planck-Institut für Mathematik in den Naturwissenschaft, Inselstr. 22, 04103 Leipzig, Germany
e-mail: chao.xia@mis.mpg.de
1 Introduction

The rigidity problem of hypersurfaces with constant curvature functions has attracted much attention in the classical differential geometry. The most typical curvature functions are the extrinsic mean curvature and the intrinsic Gauss (scalar) curvature. In 1899, Liebmann [21] showed two rigidity results that closed surfaces with constant Gauss curvature or convex closed surfaces with constant mean curvature in \mathbb{R}^3 are spheres. Later, Süss [28] and Hsiung [17] proved the rigidity for convex or star-shaped hypersurfaces in \mathbb{R}^n for all n. In later 1950s, the condition of convexity or star-shapedness was eventually removed by Alexandrov in a series of papers [2]. Namely, he proved that closed hypersurfaces with constant mean curvature embedded in the Euclidean space are spheres. This result is now often referred to as Alexandrov Theorem. Also his method, based on the maximum principle for elliptic equations, is totally different with all previous ones and now referred to as Alexandrov’s reflection method. The embeddedness condition is necessary in view of the famous counterexamples provided by Hsiang–Teng–Yu [16] and Wente [29]. After the work of Alexandrov, lots of extensions appeared on such rigidity topic. Montiel and Ros [24] and Ros [26,27] proved results for hypersurfaces with constant higher order mean curvatures embedded in space forms, following the work of Reilly [25] who recovered Alexandrov Theorem using an integral technique. Simultaneously, Korevaar [19] proved the same results following the method of Alexandrov. Later, Montiel [22] studied the same problem in more general ambient manifolds, the warped product manifolds. His result was in fact Hsiung’s type since he added the condition of star-shapedness to the corresponding hypersurfaces. Quite recently, Brendle [5] removed this star-shapedness condition and hence proved Alexandrov Theorem for constant mean curvature hypersurfaces in general warped product manifolds, including the (Anti-)deSitter–Schwarzschild manifolds as a typical example. Thereafter, Brendle and Eichmair [6] extended the result to any compact star-shaped hypersurfaces with constant higher order mean curvature, where star-shapedness is needed again. For other generalizations, see for instance [1,3,4,14,15,23] and references therein.

In this paper, we first investigate several related rigidity problems for hypersurfaces with constant curvature functions embedded in the warped product manifolds. Let us start with the setting. Assume $(N^{n-1}(K), g_N)$ is an $(n-1)$-dimensional compact manifold with constant sectional curvature K. Let (M^n, \bar{g}) be an n-dimensional $(n \geq 3)$ warped product manifold $M = [0, \bar{r}) \times \lambda N(K) (0 < \bar{r} \leq \infty)$, equipped with a Riemannian metric

$$\bar{g} = dr^2 + \lambda(r)^2 g_N,$$

where $\lambda : (0, \bar{r}) \to \mathbb{R}$ is a smooth positive function satisfying the following conditions:

\begin{align*}
(C1) \quad & \lambda'(r) > 0 \text{ for all } r \in (0, \bar{r}); \\
(C2) \quad & \frac{\lambda''(r)}{\lambda(r)} + \frac{K - \lambda'(r)^2}{\lambda(r)^2} > 0 \text{ for all } r \in (0, \bar{r}); \\
(C3) \quad & \lambda''(r) \geq 0 \text{ for all } r \in (0, \bar{r}); \\
(C4) \quad & \lambda'(0) = 0, \lambda''(0) > 0; 2 \frac{\lambda''(r)}{\lambda(r)} - (n - 2) \frac{K - \lambda'(r)^2}{\lambda(r)^2} \text{ is non-decreasing for } r \in (0, \bar{r}).
\end{align*}

Condition (C2) is equivalent to say that Ricci curvature is smallest in the radial direction. The latter part of (C4) is equivalent to say that scalar curvature is non-decreasing with respect to r (see (12) below). As shown in [5], the Schwarzschild, the (Anti-)deSitter–Schwarzschild and the Reissner–Nordstrom manifolds satisfy (C1)–(C4).
Before stating our results, let us give some notations and terminologies. For a hypersurface Σ in M, we denote by $H_k = H_k(\lambda)$ the normalized kth mean curvature of Σ, i.e.,

$$H_k(\lambda) = \frac{1}{C_{n-1}^k} \sigma_k(\lambda),$$

where $\lambda = (\lambda_1, \ldots, \lambda_{n-1})$ are the principal curvatures of Σ and σ_k is the kth elementary symmetric function. We say that Σ is k-convex if λ satisfies $\sigma_j(\lambda) \geq 0$ for any $1 \leq j \leq k$. Σ is called star-shaped if $\left(\frac{\partial}{\partial r}, \nu \right) \geq 0$ for the outward normal ν of Σ.

Our first result is on hypersurfaces with constant curvature quotients in the warped product manifolds. This kind of rigidity in the space forms can be obtained using Alexandrov reflection method, which was already referred by Korevaar [19]. Koh [18] gave another proof based on the Minkowski integral formula.

Theorem 1 Let (M^n, \bar{g}) be an n-dimensional ($n \geq 3$) warped product manifold $M = [0, \bar{r}] \times \bar{\Sigma}$ satisfying (C1) and (C2). Let $1 \leq l < k \leq n - 1$ be two integers and Σ be a closed, star-shaped hypersurface in (M, \bar{g}). If there exists some constant c such that H_l is nowhere vanishing and $\frac{H_l}{H_k} = c$, then Σ is a slice $N \times \{r\}$ for some $r \in (0, \bar{r})$.

Next, we study the rigidity problem for hypersurfaces with constant linear combinations of mean curvatures in the warped product manifolds.

Theorem 2 Let (M^n, \bar{g}) be an n-dimensional ($n \geq 3$) warped product manifold $M = [0, \bar{r}] \times \bar{\Sigma}$ satisfying (C1) and (C2). Let $0 \leq l < k \leq n - 1$ be two integers and Σ be a closed, k-convex star-shaped hypersurface in (M^n, \bar{g}). If either of the following holds:

(i) $2 \leq l < k \leq n - 1$ and there are nonnegative constants $\{a_i\}_{i=1}^{l-1}$ and $\{b_j\}_{j=l}^{k}$, at least one of them not vanishing, such that

$$\sum_{i=1}^{l-1} a_i H_i = \sum_{j=l}^{k} b_j H_j;$$

(ii) $1 \leq l < k \leq n - 2$ and there are nonnegative constants $\{a_i\}_{i=0}^{l-1}$ and $\{b_j\}_{j=l}^{k}$, at least one of them not vanishing, such that

$$\sum_{i=0}^{l-1} a_i H_i = \sum_{j=l}^{k} b_j H_j;$$

then Σ is a slice $N \times \{r\}$ for some $r \in (0, \bar{r})$.

Theorems 1 and 2 will be proved using the classical integral method due to Hsiung [17] and Reilly [25]. The main tools are Minkowski formulae as well as a family of Newton–Maclaurin inequalities. Unlike in the space forms, the Newton tensor is generally not divergence-free in the warped product manifolds. As observed in [6], the extra terms will have a good sign under the condition (C2) and star-shapedness. However, to deal with our rigidity problems, one needs to keep trail with these terms carefully rather than just throw them away. On the other hand, by the generality of warped product manifolds, the classical Alexandrov’s reflection method [2] as in [19] seems to be difficult to deal with our problems.

Next, we will also study similar rigidity problems on some “weighted” higher mean curvatures and their linear combinations. We denote the weight in the warped product manifolds by $V(r) := \lambda'(r)$. In [30], the first author discussed such rigidity result in \mathbb{H}^p. This kind of
“weighted” mean curvature appears very naturally. Interestingly, the corresponding weighted Alexandrov–Fenchel inequalities relate to the quasi-local mass in \mathbb{H}^n and the Penrose inequalities for asymptotically hyperbolic graphs, see [7,12] for instance. Our next result is regarding the above-weighted rigidity results in the warped product manifolds.

Theorem 3 Let (M^n, \tilde{g}) be an n-dimensional $(n \geq 3)$ warped product manifold $M = [0, \bar{r}] \times_\lambda N(K)$ satisfying (C1)–(C3). Let $0 \leq l < k \leq n - 1$ be two integers and Σ^{n-1} be a closed star-shaped hypersurface in (M^n, \tilde{g}). If one of the following case holds:

(i) (M, \tilde{g}) satisfies (C4) and $V H_k$ is a constant for some $k = 1, \ldots, n - 1$;

(ii) $2 \leq l < k \leq n - 1$, Σ is k-convex and there are nonnegative constants $\{a_i\}_{i=1}^{l-1}$ and $\{b_j\}_{j=l}^k$, at least one of them not vanishing, such that

$$\sum_{i=1}^{l-1} a_i H_i = \sum_{j=l}^k b_j (V H_j);$$

(iii) $1 \leq l < k \leq n - 2$, Σ is k-convex and there are nonnegative constants $\{a_i\}_{i=0}^{l-1}$ and $\{b_j\}_{j=l}^k$, at least one of them not vanishing, such that

$$\sum_{i=0}^{l-1} a_i H_i = \sum_{j=l}^k b_j (V H_j);$$

then Σ is a slice $N \times \{r\}$ for some $r \in (0, \bar{r})$.

Theorem 3 is proved in a similar way by taking the consideration of a new Minkowski type formula, Proposition 9. We note that the presence of the weight makes Alexandrov’s reflection method hard to apply even in the case of space forms, see [30].

Remark 1 (1) Comparing with the results in [5,6], in the most cases we do not assume (C4). In fact, we mostly will not use the Heintze–Karcher type inequality derived in [5], for which (C4) is essential.

(2) Theorem 2 contains the simplest case that H_1 is constant. In view of Brendle’s result in [5], for this case, if one assumes further (C4) on M, the condition of 1-convexity and star-shapedness on hypersurfaces is actually superfluous. Similarly, the condition of star-shapedness is needless in Theorem 2 when we consider $V H_1$ is a constant.

(3) Theorem 2 also contains the case that higher order mean curvatures H_k are constant. For this case, the k-convexity condition is superfluous since it is implied by the constancy of H_k.

(4) For the same rigidity problem in the space forms, the star-shapedness is not necessary. See Theorem 11 below.

The second part of this paper is about rigidity problems on some intrinsic curvature functions of induced metric from that of the space forms. In fact, this is one of our motivations to study the linear combinations of mean curvature functions. As mentioned at the beginning, Liebmann [21] showed closed surfaces with constant Gauss curvature in \mathbb{R}^3 are spheres. Apparently, in space forms, one can see from the Gauss formula that surfaces with constant scalar (Gauss) curvature is equivalent to constant 2nd mean curvature. Hence Liebmann’s result is equivalent to Ros’ [26]. On the other hand, there is a natural generalization of scalar curvature, called Gauss–Bonnet curvatures. The Pfaffian in Gauss–Bonnet–Chern formula is the highest order Gauss–Bonnet curvature. The general one appeared first in the paper...
of Lanczos [20] in 1938 and has been intensively studied in the theory of Gauss–Bonnet gravity, which is a generalization of Einstein gravity. Precisely, the Gauss–Bonnet curvatures are defined by

\[L_k := \frac{1}{2} \delta^{j_1 j_2 \cdots j_{2k-1} j_{2k}}_{j_1 j_2 \cdots j_{2k-1} j_{2k}} R_{i_1 i_2 \cdots i_{2k-1} i_{2k}} \cdots R_{i_{2k-1} i_{2k}} R_{i_1 i_2 \cdots i_{2k-1} i_{2k}}, \]

where \(\delta^{i_1 i_2 \cdots i_{2k-1} i_{2k}}_{j_1 j_2 \cdots j_{2k-1} j_{2k}} \) is the generalized Kronecker delta defined in (6) below and \(R_{ijkl} \) is the Riemannian curvature 4-tensor in local coordinates. It is easy to see that \(L_1 \) is just the scalar curvature \(R \). When \(k = 2 \), it is the second Gauss–Bonnet curvature \(L_2 = \|Rm\|^2 - 4\|\text{Ric}\|^2 + R^2 \).

For general \(k \), it is the Euler integrand in the Gauss–Bonnet–Chern theorem if \(n = 2k \) and is, therefore, called the dimensional continued Euler density in physics if \(k < n \). Here, \(n \) is the dimension of the corresponding manifold. Using the Gauss–Bonnet curvatures one can define the Gauss–Bonnet–Chern mass and guarantee its well definedness in asymptotically flat manifolds as well as asymptotically hyperbolic manifolds, see [9, 10, 12].

In the Euclidean space \(\mathbb{R}^n \), the intrinsic Gauss–Bonnet curvatures \(L_k \) with the induced metric on the surfaces are the same with \(H_k \), up to some scaling constant. In the space forms rather than \(\mathbb{R}^n \), \(L_k \) can be expressed as some linear combination of \(H_k \) (see Lemma 12 below). Explicitly, for the unit sphere \(S^n \),

\[L_k = C^{2k}_{n-1} (2k)! \sum_{i=0}^{k} C^i_k H_{2k-2i}. \]

Notice here all the coefficients are positive. Therefore, as a direct consequence of Theorem 11(ii), we have the following

Corollary 4 Let \(1 \leq k \leq \frac{n-1}{2} \) be an integer and \(\Sigma \) be a closed \(2k \)-convex hypersurface embedded in the hemisphere \(S^n_+ \). If the \(k \)th Gauss–Bonnet curvature \(L_k \) is constant, then \(\Sigma \) is a centered geodesic hypersphere.

Unlike in \(S^n \), the intrinsic Gauss–Bonnet curvature \(L_k \) in \(\mathbb{H}^n \) is a linear combination of \(H_k \) with sign-changed coefficients. Precisely,

\[L_k = C^{2k}_{n-1} (2k)! \sum_{i=0}^{k} C^i_k (-1)^i H_{2k-2i}. \]

Hence we cannot apply Theorem 11(ii) directly to conclude the rigidity. Moreover, we could prove the general rigidity result of hypersurfaces in terms of the constant linear combinations of \(L_k \). This rigidity of combination form is not direct which evolves the development of some new kind Newton–Maclaurin type inequalities on \(L_k \) rather than \(H_k \) (see Propositions 13 and 15 below), for horoconvex hypersurfaces. Here, a hypersurface in \(\mathbb{H}^n \) is horospherical convex if all its principal curvatures are larger than or equal to 1. The horospherical convexity is a natural geometric concept, which is equivalent to the geometric convexity in Riemannian manifolds.

Theorem 5 Let \(1 \leq l < k \leq \frac{n-1}{2} \) be two integers and \(\Sigma \) be a closed horospherical convex hypersurface in the hyperbolic space \(\mathbb{H}^n \). If there are nonnegative constants \(\{a_i\}_{i=0}^{l-1} \) and \(\{b_j\}_{j=l}^{k} \), at least one of them not vanishing, such that
\[
\sum_{i=0}^{l-1} a_i L_i = \sum_{j=l}^{k} b_j L_j,
\]

then \(\Sigma \) is a centered geodesic hypersphere. In particular, if \(L_k \) is constant, then \(\Sigma \) is a centered geodesic hypersphere.

For \(S_n^+ \), we can also establish similar Newton–Maclaurin type inequalities for \(2k \)-convex hypersurfaces, which enables us to prove rigidity in the hemisphere \(S_n^+ \) for a general linear combination of curvatures, as in \(\mathbb{H}^n \).

Theorem 6 Let \(1 \leq l < k \leq \frac{n-1}{2} \) be two integers and \(\Sigma \) be a closed \(2k \)-convex hypersurface embedded in the hemisphere \(S_n^+ \). If there are nonnegative constants \(\{ a_i \}_{i=0}^{l-1} \) and \(\{ b_j \}_{j=l}^{k} \), at least one of them not vanishing, such that

\[
\sum_{i=0}^{l-1} a_i L_i = \sum_{j=l}^{k} b_j L_j,
\]

then \(\Sigma \) is a centered geodesic hypersphere.

Note that Theorem 6 is an extension of Corollary 4. However, it does not follow directly from Theorem 11 below.

The paper is organized as follows. In Sect. 2, we provide several preliminary results including the most important tool of this paper, Minkowski type formulae. Section 3 is devoted to prove our main theorems of the first part, Theorems 1–3. In Sect. 4, we focus on the rigidity problem on the intrinsic Gauss–Bonnet curvatures and show Theorems 5 and 6.

2 Preliminaries

In this section, let us first recall some basic definitions and properties of higher order mean curvature.

Let \(\sigma_k \) be the \(k \)th elementary symmetry function \(\sigma_k : \mathbb{R}^{n-1} \rightarrow \mathbb{R} \) defined by

\[
\sigma_k(\Lambda) = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k} \quad \text{for } \Lambda = (\lambda_1, \ldots, \lambda_{n-1}) \in \mathbb{R}^{n-1}.
\]

For a symmetric \(n \times n \) matrix \(B \), let \(\lambda(B) = (\lambda_1(B), \ldots, \lambda_n(B)) \) be the real eigenvalues of \(B \). We set

\[
\sigma_k(B) := \sigma_k(\lambda(B)).
\]

We denote by

\[
\sigma_k(\Lambda_j) =: \sigma_k(\lambda_1, \ldots, \lambda_{j-1}, \lambda_{j+1}, \ldots, \lambda_{n-1}), \quad \text{for } 1 \leq k \leq n - 2.
\]

The \(k \)th Newton transformation is defined as follows

\[
(T_k)_j^l(B) := \frac{\partial \sigma_{k+1}}{\partial B_j^l}(B), \quad (3)
\]
where $B = (B^i_j)$. We recall the basic formulas about σ_k and T.

$$\sigma_k(B) = \frac{1}{k!} \delta^{i_1 \cdots i_k}_{i_1 \cdots i_k} B^i_{i_1} \cdots B^k_{i_k} = \frac{1}{k} \operatorname{tr}(T_{k-1}(B)B),$$

(4)

$$(T_k)_j^i(B) = \frac{1}{k!} \delta^{i_1 \cdots i_k}_{j_1 \cdots j_k} B^i_{i_1} \cdots B^k_{j_k}.$$

(5)

Here, the generalized Kronecker delta is defined by

$$\delta^{i_1 j_2 \cdots j_r}_{i_1 i_2 \cdots i_r} = \det \begin{pmatrix}
\delta_{i_1 j_1} & \delta_{i_1 j_2} & \cdots & \delta_{i_1 j_r} \\
\delta_{i_2 j_1} & \delta_{i_2 j_2} & \cdots & \delta_{i_2 j_r} \\
\cdots & \cdots & \cdots & \cdots \\
\delta_{i_r j_1} & \delta_{i_r j_2} & \cdots & \delta_{i_r j_r}
\end{pmatrix}.$$

(6)

The kth positive Garding cone Γ_k^+ is defined by

$$\Gamma_k^+ = \{ \Lambda \in \mathbb{R}^{n-1} | \sigma_j(\Lambda) > 0, \forall j \leq k \}.$$

(7)

And its closure is denoted by $\overline{\Gamma_k^+}$. A symmetric matrix B is said to belong to Γ_k^+ if $\lambda(B) \in \Gamma_k^+$. Let

$$H_k = \frac{\sigma_k}{C_k^{n-1}},$$

(8)

be the normalized kth elementary symmetry function. As a convention, we take $H_0 = 1, H_{-1} = 0$. The following Newton–Maclaurin inequalities are well known. For a proof, we refer to a survey of Guan [13].

Lemma 7 For $1 \leq l < k \leq n - 1$ and $\Lambda \in \overline{\Gamma_k^+}$, the following inequalities hold:

$$H_{k-1}H_l \geq H_k H_{l-1}.$$

(9)

$$H_l \geq H_k^{\frac{l}{k}}.$$

(10)

Moreover, equality holds in (9) or (10) at Λ if and only if $\Lambda = c(1, 1, \ldots, 1)$ for some $c \in \mathbb{R}$.

Next, we collect some well-known results for the warped product manifold $(M = [0, \bar{r}] \times \lambda N(K), \bar{g})$.

We denote by $\tilde{\nabla}$ and ∇ the covariant derivatives on M^n and the surface Σ, respectively. As in [5,6], we define a smooth function $V : M \to \mathbb{R}$ and a vector field X on M by $V(r) = \lambda'(r)$ and $X = \lambda(r) \frac{\partial}{\partial r}$. Note that X is a conformal vector field satisfying

$$\tilde{\nabla}X = V \bar{g}.$$

(11)

Condition (C1) implies that V is a positive function on $(0, \bar{r}) \times N(K)$. One can verify that every slice $\{r\} \times N(K), r \in (0, \bar{r})$, has constant principal curvatures $\frac{\lambda'(r)}{\lambda(r)} > 0$.

The Ricci curvature of (M, \bar{g}) is given by

$$\text{Ric} = -\left(\frac{\lambda''(r)}{\lambda(r)} - (n - 2) \frac{K - \lambda'(r)^2}{\lambda(r)^2}\right) \bar{g} - (n - 2) \left(\frac{\lambda''(r)}{\lambda(r)} + \frac{K - \lambda'(r)^2}{\lambda(r)^2}\right) dr \otimes dr.$$

(12)
Let \(\{e_i\}_{i=1}^{n-1} \) and \(v \) be an orthonormal basis and the outward normal of \(\Sigma \), respectively. Denote by \(h_{ij} \) the second fundamental form of \(\Sigma \) with this basis and \(\lambda = (\lambda_1, \ldots, \lambda_{n-1}) \) the principal curvatures of \(\Sigma \). The star-shapedness of \(\Sigma \) means

\[
\left(\frac{\partial}{\partial r}, v \right) \geq 0.
\] (13)

We need the following Minkowski type formula in the product manifolds, which is included in the proof of [6], Propositions 8 and 9. For completeness, we involve the proof here.

Proposition 8 Let \(\Sigma^{n-1} \) be a closed hypersurface isometric immersed in \((M, \bar{g})\). Then

(i) we have

\[
\int_{\Sigma} \langle X, v \rangle H_k \, d\mu = \int_{\Sigma} V H_{k-1} \, d\mu + (k-1) \int_{\Sigma} \sum_{j=1}^{n-1} A_j H_{k-2}(A_j) \, d\mu, \quad \forall 1 \leq k \leq n-1.
\] (14)

where \(A_j := -\frac{1}{(n-1)(n-2)} \langle X, e_j \rangle \text{Ric}(e_j, v) \).

(ii) If \(\Sigma \) is star-shaped and \((M, \bar{g})\) satisfies (C2), then we have

\[
A_j \geq 0, \quad \forall 1 \leq j \leq n-1.
\] (15)

Proof (i) It follows from the Gauss–Weingarten formula and (11) that

\[
\nabla_i X_j = \bar{\nabla}_i X_j - \langle X, v \rangle h_{ij} = V \tilde{g}_{ij} - \langle X, v \rangle h_{ij}.
\] (16)

Multiplying (16) by the \(k \)th Newton transform tensor \((T_{k-1})_{ij}\) and summing over \(i, j \), we obtain

\[
\sum_{i,j=1}^{n-1} \nabla_i \left(X_j (T_{k-1})_{ij} \right) = \sum_{j=1}^{n-1} X_j \sum_{i=1}^{n-1} \nabla_i (T_{k-1})_{ij} + V \sum_{i,j=1}^{n-1} (T_{k-1})_{ij} \tilde{g}_{ij} - \langle X, v \rangle \sum_{i,j=1}^{n-1} (T_{k-1})_{ij} h_{ij}
\]

\[
= \sum_{j=1}^{n-1} X_j \sum_{i=1}^{n-1} \nabla_i (T_{k-1})_{ij} + V (n-k) \sigma_{k-1} - k \sigma_k \langle X, v \rangle,
\] (17)

where (4) and (5) are used to get (17).

By the definition of \((T_{k-1})_{ij}\), we know that

\[
\sum_{i=1}^{n-1} \nabla_i (T_{k-1})_{ij} = \sum_{i=1}^{n-1} \sum_{i_1, \ldots, i_{k-1} = 1}^{n-1} \frac{1}{(k-2)!} \delta_{i_1 \cdots i_{k-1}}^{i \cdots i_k} \nabla_i h_{i_1 j_1} \cdots h_{i_{k-1} j_{k-1}}
\]

\[
= \sum_{i=1}^{n-1} \sum_{i_1, \ldots, i_{k-1} = 1}^{n-1} \frac{1}{2} \frac{1}{(k-2)!} \delta_{i_1 \cdots i_{k-1}}^{i \cdots i_k} (\nabla_i h_{i_1 j_1} - \nabla_i h_{i_i j_i}) h_{i_2 j_2} \cdots h_{i_{k-1} j_{k-1}}.
\] (18)

As \(N(K) \) is of constant sectional curvature, it is easy to see that \(M \) is locally conformally flat. Using Codazzi equation and the local conformal flatness of \(M \), we have

\[
\nabla_i h_{i_1 j_1} - \nabla_i h_{i_i j_i} = \text{Riem}(e_i, e_{i_i}, e_{j_1}, v)
\]

\[
= -\frac{1}{n-2} (\text{Ric}(e_i, v) \delta_{i i j_1} - \text{Ric}(e_{i_i}, v) \delta_{i i j_i}).
\] (19)
Substituting (18) into (19), we deduce that

$$
\sum_{i=1}^{n-1} \nabla_i (T_{k-1})_{ij} = -\frac{1}{n-2} \sum_{i=1}^{n-1} \mathrm{Ric}(e_i, v) \sum_{i_2, \ldots, i_k=1, j_1, \ldots, j_{k-1}=1, j_1 \neq j_2, \ldots, j_{k-1}=1}^{n-1} \frac{1}{(k-2)!} \delta_{i_1 i_2 \cdots i_k-1}^{i_1} h_{i_2 j_1} h_{i_2 j_2} \cdots h_{i_k j_{k-1}} - 1
$$

$$=-\frac{n-k}{n-2} \sum_{i=1}^{n-1} \mathrm{Ric}(e_i, v) \sum_{i_2, \ldots, i_k=1, j_1, \ldots, j_{k-1}=1, j_1 \neq j_2, \ldots, j_{k-1}=1}^{n-1} \frac{1}{(k-2)!} \delta_{i_2 \cdots i_{k-1} j_{k-1}}^{i_2 \cdots i_{k-1}} h_{i_2 j_1} h_{i_2 j_2} \cdots h_{i_k j_{k-1}}
$$

$$=-\frac{n-k}{n-2} \mathrm{Ric}(e_j, v) \sigma_{k-2}(\Lambda j) = -\frac{n-k}{n-2} \mathrm{Ric}(e_j, v) C_{k-2}^k H_{k-2}(\Lambda j).$$

Now by taking integration of (17) over Σ together with (20) and taking (8) into account, we arrive at (14).

(ii) We know from (12) that

$$\mathrm{Ric}(e_j, v) = -(n-2) \left(\frac{\lambda''(r)}{\lambda(r)} + \frac{K - \lambda'(r)^2}{\lambda(r)^2} \right) \frac{1}{\lambda(r)^2} \langle X, e_j \rangle \langle X, v \rangle,$$

which implies

$$A_j = -\frac{1}{(n-1)(n-2)} \langle X, e_j \rangle \mathrm{Ric}(e_j, v)$$

$$= \frac{1}{n-1} \left(\frac{\lambda''(r)}{\lambda(r)} + \frac{K - \lambda'(r)^2}{\lambda(r)^2} \right) \frac{1}{\lambda(r)^2} \langle X, e_j \rangle^2 \langle X, v \rangle.$$

Using the star-shapedness (13) of Σ and the assumption (C2) on $\lambda(r)$, we conclude $A_j \geq 0$ for any $j = 1, \ldots, n-1$.

Remark 2 In the proof of (5), we have assumed the second fundamental form h_{ij} is diagonal with the orthogonal basis $\{e_i\}_{i=1}^{n-1}$ at the point under computation. The notation $\sum_{j=1}^{n-1} A_j H_{k-2}(\Lambda j)$ here and the following should be always understood as $\frac{1}{C_{n-2}^k} \sum_{i, j=1}^{n-1} A_{ij} (T_{k-2})_{ij}$, where $A_{ij} := -\frac{1}{(n-1)(n-2)} \langle X, e_i \rangle \mathrm{Ric}(e_j, v)$.

For later purpose to prove the rigidity result on weighted curvature functions, we need to extend the above proposition to the following type.

Proposition 9 Let Σ be a hypersurface isometric immersed in the product manifold (M^n, \bar{g}), we have

$$\int_{\Sigma} \langle X, v \rangle V H_k \mathrm{d}\mu = \int_{\Sigma} V^2 H_{k-1} \mathrm{d}\mu + (k-1) \int_{\Sigma} \sum_{j=1}^{n-1} A_j V H_{k-2}(\Lambda j) \mathrm{d}\mu$$

$$+ \frac{1}{kC_{n-1}^k} \int_{\Sigma} (T_{k-1})_{ij} X_i \nabla_j V \mathrm{d}\mu.$$ \hspace{1cm} (21)

Moreover, if Σ is k-convex and (M, \bar{g}) satisfies condition (C3), then we have

$$\int_{\Sigma} \langle X, v \rangle V H_k \mathrm{d}\mu \geq \int_{\Sigma} V^2 H_{k-1} \mathrm{d}\mu + (k-1) \int_{\Sigma} \sum_{j=1}^{n-1} A_j V H_{k-2}(\Lambda j) \mathrm{d}\mu.$$ \hspace{1cm} (22)

Equality holds if and only if Σ is totally umbilical in (M^n, \bar{g}).
Proof Combining (17) and (20) together, we arrive at
\[
\frac{1}{kC_{n-1}} \nabla_i ((T_{k-1})^{ij} X_j) = -\langle X, v \rangle H_k + VH_{k-1} + (k - 1) \sum_{j=1}^{n-1} A_j H_{k-2}(A_j), \tag{23}
\]
where \(A_j\) is as defined in Proposition 8. Multiplying above equation by the function \(V\) and integrating by parts, one obtains the desired result (21). Noting that
\[
X_i = \lambda(r) \nabla_i r, \quad \nabla_j V = \lambda''(r) \nabla_j r,
\]
we have
\[
(T_{k-1})^{ij} X_i \nabla_j V = \lambda(r) \lambda''(r) (T_{k-1})^{ij} \nabla_i r \nabla_j r. \tag{24}
\]
Under the assumption that \(\Sigma\) is \(k\)-convex, the \((k - 1)\)th Newton tensor \(T_{k-1}\) is positively definite (see e.g. Guan [13]), hence
\[
(T_{k-1})^{ij} \nabla_i r \nabla_j r \geq 0.
\]
Together with assumption (C3) \(\lambda''(r) \geq 0\), (22) holds. When the equality holds, we have \(\nabla r = 0\) which implies that \(\Sigma\) is umbilical in \((M^n, \tilde{g})\).

Finally, we need a Heintze–Karcher type inequality due to Ros [27] and Brendle [5].

Proposition 10 (Brendle) Let \((M^n = [0, \tilde{r}] \times N(K), \tilde{g} = dr^2 + \lambda(r)^2 g_N)\) be a warped product space satisfying \((C1), (C2), (C4)\), or the space forms \(\mathbb{R}^n, S^n_+, \mathbb{H}^n\). Let \(\Sigma\) be a compact hypersurface embedded in \((M^n, \tilde{g})\) with positive mean curvature \(H_1\), then
\[
\int_{\Sigma} \langle X, v \rangle d\mu \leq \int_{\Sigma} \frac{V}{H_1} d\mu.
\]
Moreover, equality holds if and only if \(\Sigma\) is totally umbilical.

3 Rigidity for curvature quotients and combinations

In this section, we are ready to prove our main theorems. We start with the one on curvature quotients. This will be proved by making use of Lemma 7 and Proposition 8.

Proof of Theorem 1 We first claim that \(\lambda \in \Gamma_k^+\). In fact, condition (C1) implies that \(\Sigma\) has at least one elliptic point where all the principal curvatures are positive. This can be shown by a standard argument using maximum principle. Hence the constant \(c\) should be positive. Moreover, since \(H_l\) is nowhere vanishing on \(\Sigma\), it must be positive. In turn, \(H_k = c H_l\) is positive. From the result of Gårding [8], we know that \(H_j > 0\) everywhere on \(\Sigma\) for \(1 \leq j \leq k\).

For \(1 \leq l < k \leq n - 1\), Proposition 8 gives the following two formulae:
\[
\int_{\Sigma} \langle X, v \rangle H_k d\mu = \int_{\Sigma} VH_{k-1} d\mu + (k - 1) \int_{\Sigma} \sum_{j=1}^{n-1} A_j H_{k-2}(A_j) d\mu, \tag{25}
\]
\[
\int_{\Sigma} \langle X, v \rangle H_l d\mu = \int_{\Sigma} VH_{l-1} d\mu + (l - 1) \int_{\Sigma} \sum_{j=1}^{n-1} A_j H_{l-2}(A_j) d\mu. \tag{26}
\]
Since $H_k = cH_l$, we deduce from (25), (26) together with (9), (15) that

$$0 = \int_{\Sigma} \langle X, \nu \rangle (H_k - cH_l) d\mu$$

$$= \int_{\Sigma} V(H_{k-1} - cH_{l-1}) d\mu$$

$$+ \int_{\Sigma} \sum_{j=1}^{n-1} A_j ((k-1)H_{k-2}(\Lambda_j) - c(l-1)H_{l-2}(\Lambda_j)) d\mu. \quad (27)$$

We know from the Newton–Maclaurin inequality (9) that

$$\frac{H_{k-1}}{H_{l-1}} \geq \frac{H_k}{H_l} = c.$$

On the other hand, note the simple fact

$$\sigma_k = \lambda_j \sigma_{k-1}(\Lambda_j) + \sigma_k(\Lambda_j),$$

which is equivalent to

$$H_k = \frac{k}{n-1} \lambda_j H_{k-1}(\Lambda_j) + \frac{n-1-k}{n-1} H_k(\Lambda_j). \quad (28)$$

Applying (28), for any $j = 1, \ldots, n-1$, we find

$$(k-1)H_{k-2}(\Lambda_j)H_{l-1} - (l-1)H_{k-1}H_{l-2}(\Lambda_j)$$

$$= \frac{(k-1)(n-l)}{n-1} H_{k-2}(\Lambda_j)H_{l-1}(\Lambda_j) - \frac{(l-1)(n-k)}{n-1} H_{l-2}(\Lambda_j)H_{k-1}(\Lambda_j)$$

$$= (k-l)H_{k-2}(\Lambda_j)H_{l-1}(\Lambda_j) + (l-1)(n-k) \frac{H_{k-2}(\Lambda_j)H_{l-1}(\Lambda_j)}{n-1}(H_{k-2}(\Lambda_j)H_{l-1}(\Lambda_j))$$

$$- H_{l-2}(\Lambda_j)H_{k-1}(\Lambda_j)) > 0. \quad (29)$$

Therefore, the integrand in the right hand side of (27) is non-negative. It follows that the equality holds in (9), which implies that Σ is totally umbilical. Moreover, thanks to (29), we have

$$A_j \equiv 0, \quad \forall \ 1 \leq j \leq n-1. \quad (30)$$

Together with condition (C2), (30) implies that the normal ν is parallel or perpendicular to $\frac{\partial}{\partial r}$ everywhere on Σ. However, there is at least one point on Σ where ν is parallel to $\frac{\partial}{\partial r}$. Therefore, ν is parallel to $\frac{\partial}{\partial r}$ for all points in Σ, which means that Σ is a slice $\{r\} \times N(K)$. We complete the proof. \square

Next, we show the rigidity result for constant linear combinations of mean curvatures in the warped product manifolds. This argument basically follows from the above one except that one needs pay more attention to the use of the Newton–Maclaurin inequality at the first step.

Proof of Theorem 2 (i) By the existence of an elliptic point and non-vanishing of at least one coefficient, we know $\sum_{i=1}^{l-1} a_i H_i > 0$. Since Σ is k-convex, we recall from (9) that

$$H_i H_{j-1} \geq H_{i-1} H_j, \quad 1 \leq i < j \leq k, \quad (31)$$
where all equalities hold if and only if Σ is umbilical. Multiplying (31) by a_i and b_j and summing over i and j, we get
\[
\sum_{i=1}^{l-1} a_i H_i \sum_{j=1}^{k} b_j H_{j-1} \geq \sum_{i=1}^{l-1} a_i H_{i-1} \sum_{j=1}^{k} b_j H_j. \tag{32}
\]
Using the assumption
\[
\sum_{i=1}^{l-1} a_i H_i = \sum_{j=1}^{k} b_j H_j > 0, \quad 2 \leq l < k \leq n - 1,
\]
we obtain from (32) that
\[
\sum_{j=1}^{k} b_j H_{j-1} \geq \sum_{i=1}^{l-1} a_i H_{i-1}. \tag{33}
\]
On the other hand, (9) and (29) give
\[
(i - 1)H_{j-2}(\Lambda_p)H_i \geq (i - 1)H_j H_{i-2}(\Lambda_p), \quad \forall \ 1 \leq i < j \leq k, 1 \leq p \leq n - 1. \tag{34}
\]
Multiplying (34) by a_i and b_j and summing over i and j, we have
\[
\sum_{j=1}^{k} (j - 1) b_j H_{j-2}(\Lambda_p) \sum_{i=1}^{l-1} a_i H_i \geq \sum_{j=1}^{k} b_j H_j \sum_{i=1}^{l-1} (i - 1) a_i H_{i-2}(\Lambda_p). \tag{35}
\]
Hence
\[
\sum_{j=1}^{k} (j - 1) b_j H_{j-2}(\Lambda_p) \geq \sum_{i=1}^{l-1} (i - 1) a_i H_{i-2}(\Lambda_p), \quad \forall \ 1 \leq p \leq n - 1. \tag{36}
\]
We finally infer from (25), (26) that
\[
0 = \int_{\Sigma} \left(\sum_{j=1}^{k} b_j H_j - \sum_{i=1}^{l-1} a_i H_i \right) \langle X, v \rangle d\mu = \int_{\Sigma} \left(\sum_{j=1}^{k} b_j H_{j-1} - \sum_{i=1}^{l-1} a_i H_{i-1} \right) V d\mu \tag{37}
\]
\[
+ \int_{\Sigma} \sum_{p=1}^{n-1} \Lambda_p \left(\sum_{j=1}^{k} (j - 1) b_j H_{j-2}(\Lambda_p) - \sum_{i=1}^{l-1} (i - 1) a_i H_{i-2}(\Lambda_p) \right) d\mu \geq 0. \tag{38}
\]
Here, the last inequality follows from (15), (33) and (36).

(ii) The proof is essentially the same as above. One only needs to notice the slight difference regarding the value of indices. Proceeding as above, we have
\[
\sum_{j=1}^{k} b_j H_{j+1} \leq \sum_{i=0}^{l-1} a_i H_{i+1}, \tag{39}
\]
and
\[
\sum_{j=1}^{k} j b_j H_{j-1}(\Lambda_p) \geq \sum_{i=0}^{l-1} i a_i H_{i-1}(\Lambda_p), \quad \forall \ 1 \leq p \leq n - 1. \tag{40}
\]
Applying (14) again,

\[
0 = \int_{\Sigma} \left(\sum_{i=0}^{l-1} a_i H_i - \sum_{j=l}^{k} b_j H_j \right) V \, d\mu = \int_{\Sigma} \left(\sum_{i=0}^{l-1} a_{i+1} H_i - \sum_{j=l}^{k} b_{j+1} H_j \right) (X, v) \, d\mu
\]

+ \int_{\Sigma} \sum_{p=1}^{n-1} A_p \left(\sum_{j=l}^{k} j b_j H_{j-1}(A_p) - \sum_{i=0}^{l-1} \Lambda_i H_i(A_p) \right) \, d\mu \geq 0. \quad (42)

Here, the last inequality follows from (13), (15), (39) and (40).

We finish the proof by examining the equality in both cases as in the proof in Theorem 1.

\[\square\]

As remarked in the introduction, for the same rigidity problem in the space forms, the star-shapedness is not necessary. That is, we have the following theorem.

Theorem 11 Let \(0 \leq k \leq n - 1\) be an integer and \(\Sigma^{n-1}\) be a closed, \(k\)-convex hypersurface in \(\mathbb{R}^n (S^n_+, \mathbb{H}^n\) resp.) If either of the following case holds:

(i) \(2 \leq l < k \leq n - 1\) and there are nonnegative constants \(\{a_i\}_{i=1}^{l-1}\) and \(\{b_j\}_{j=l}^{k}\), at least one of them not vanishing, such that

\[
\sum_{i=1}^{l-1} a_i H_i = \sum_{j=l}^{k} b_j H_j;
\]

(ii) there are nonnegative constants \(a_0\) and \(\{b_j\}_{j=1}^{k}\), at least one of them not vanishing, such that

\[
a_0 = \sum_{j=1}^{k} b_j H_j;
\]

then \(\Sigma\) is a geodesic hypersphere.

For the proof of Theorem 11, we still apply the integral technique following [25]. We remark that it could be also obtained using the classical Alexandrov’s reflection method as in [19].

For the space forms \(\mathbb{R}^n (S^n_+, \mathbb{H}^n\) resp.), the conformal vector field \(X = r \frac{\partial}{\partial r}\) (\(\sin r \frac{\partial}{\partial r}, \sinh r \frac{\partial}{\partial r}\) resp. and \(V = 1 \cos r, \cosh r\) resp.). It follows from the Codazzi equation that the Newton tensor \(T_k\) is divergence-free with the induced metric on \(\Sigma\), i.e., \(\nabla_i T_{ij}^k = 0\). Thus, (17) implies

\[
\nabla_j (T_{ij}^k - X_i) = -k (X, v) \sigma_k + (n - k) V \sigma_{k-1}. \quad (43)
\]

Integrating above equation and noting (8), we have the Minkowski formula in the space forms

\[
\int_{\Sigma} (X, v) H_k \, d\mu = \int_{\Sigma} V H_{k-1} \, d\mu. \quad (44)
\]
Proof of Theorem 11

(i) It follows from (44) and (9) that

$$0 = \int_{\Sigma} \langle X, \nu \rangle \left(\sum_{i=1}^{l-1} a_i H_i - \sum_{j=l}^{k} b_j H_j \right) d\mu = \int_{\Sigma} V \left(\sum_{i=1}^{l-1} a_i H_{i-1} - \sum_{j=l}^{k} b_j H_{j-1} \right) d\mu \leq 0.$$

(45)

The last inequality follows from (33), where equality holds if and only if Σ is a geodesic hypersphere.

(ii) Making use of (44) and (9), we derive

$$a_0 \int_{\Sigma} \langle X, \nu \rangle d\mu = \int_{\Sigma} \langle X, \nu \rangle \left(\sum_{j=1}^{k} b_j H_j \right) d\mu = \int_{\Sigma} V \left(\sum_{j=1}^{k} b_j H_{j-1} \right) \frac{H_1}{H_1} d\mu \geq \int_{\Sigma} V \left(\sum_{j=1}^{k} b_j H_j \right) \frac{1}{H_1} d\mu = a_0 \int_{\Sigma} \frac{V}{H_1} d\mu \geq a_0 \int_{\Sigma} \langle X, \nu \rangle d\mu,$$

where in the last inequality we used Proposition 10. Therefore, the equality in both case yields that Σ is a geodesic hypersphere.

Using a similar argument and taking Propositions 9 and 10 into account, we now prove the rigidity for the weighted curvature functions.

Proof of Theorem 3 (i) First, the existence of an elliptic point implies that H_k is positive everywhere on Σ. Then, we know that $H_j > 0$ and $H_j(\Lambda_p) \geq 0$, $\forall 1 \leq p \leq n - 1$ for $1 \leq j \leq k$.

Thus (22) implies

$$\int_{\Sigma} \langle X, \nu \rangle V H_k d\mu \geq \int_{\Sigma} V^2 H_{k-1} d\mu. \quad (46)$$

Noticing from (10) that

$$H_{k-1} \geq H_{k}^{\frac{k-1}{k}},$$

we compute

$$V H_k \int_{\Sigma} \langle X, \nu \rangle d\mu = \int_{\Sigma} \langle X, \nu \rangle V H_k d\mu \geq \int_{\Sigma} V^2 H_{k-1} d\mu \geq \int_{\Sigma} V^2 H_k^{\frac{k-1}{k}} d\mu = (V H_k)^{\frac{k-1}{k}} \int_{\Sigma} V^{\frac{1}{k}} d\mu,$$

which yields

$$\int_{\Sigma} \langle X, \nu \rangle d\mu \geq (V H_k)^{-\frac{1}{k}} \int_{\Sigma} V^{\frac{1}{k}} d\mu,$$

(47)

and equality holds if and only Σ is a geodesic sphere.
On the other hand, by Proposition 10 and (10) we derive that
\[\int_{\Sigma} \langle X, v \rangle \, d\mu \leq \int_{\Sigma} \frac{V}{H_1} \, d\mu \leq \int_{\Sigma} \frac{V}{H_k} \, d\mu = (VH_k)^{-\frac{1}{k}} \int_{\Sigma} V^{1+\frac{1}{k}} \, d\mu. \] (48)

Finally, combining (47) and (48) together, we complete the proof.

(ii) As in the proof of Theorem 2, one can obtain the following two inequalities:
\[\sum_{j=l}^{k} b_j (VH_{j-1}) \geq \sum_{i=1}^{l-1} a_i H_{i-1}, \] (49)
and
\[\sum_{j=l}^{k} (j-1)b_j VH_{j-2}(A_p) \geq \sum_{i=1}^{l-1} (i-1)a_i H_{i-2}(A_p), \quad \forall 1 \leq p \leq n-1. \] (50)

For 1 \leq l < k \leq n-1, it follows from Propositions 8 and 9 that
\[\int_{\Sigma} \langle X, v \rangle VH_k \, d\mu \geq \int_{\Sigma} V^2 H_{k-1} \, d\mu + (k-1) \int_{\Sigma} \sum_{p=1}^{n-1} A_p VH_{k-2}(A_p) \, d\mu, \] (51)
\[\int_{\Sigma} \langle X, v \rangle H_l \, d\mu = \int_{\Sigma} VH_{l-1} \, d\mu + (l-1) \int_{\Sigma} \sum_{p=1}^{n-1} A_p H_{l-2}(A_p) \, d\mu. \] (52)

We then derive from above that
\[0 = \int_{\Sigma} \left(\sum_{j=l}^{k} b_j VH_{j-1} - \sum_{i=1}^{l-1} a_i H_{i-1} \right) \langle X, v \rangle \, d\mu = \int_{\Sigma} V \left(\sum_{j=l}^{k} b_j VH_{j-1} - \sum_{i=1}^{l-1} a_i H_{i-1} \right) \, d\mu \] (53)
\[+ \int_{\Sigma} \sum_{p=1}^{n-1} A_p \left(\sum_{j=l}^{k} (j-1)b_j VH_{j-2}(A_p) - \sum_{i=1}^{l-1} (i-1)a_i H_{i-2}(A_p) \right) \, d\mu \geq 0. \] (54)

Here, the last inequality follows from (15), (49) and (50). We finish the proof by examining the equality case as before.

(iii) The proof is similar with above with some necessary adaption as the one did in the proof of Theorem 2(ii).

\[\square \]

4 Rigidity for \(L_k \) curvatures and their combinations

Unlike the mean curvatures \(H_k \), the Gauss–Bonnet curvatures \(L_k \), and hence \(\int_{\Sigma} L_k \, d\mu \) are intrinsic geometric quantities, which depend only on the induced metric on \(\Sigma \) and are independent of the embeddings of \(\Sigma \). The functionals \(\int_{\Sigma} L_k \) are new geometric quantities for the study of the integral geometry in the space forms.

We first infer a relation between \(L_k \) and \(H_k \).

Lemma 12 For a hypersurface \((\Sigma, g)\) in the space forms \(\mathbb{H}^n \) (\(\mathbb{R}^n \), \(\mathbb{S}^n \), resp.) with constant curvature \(\epsilon = -1 \) (0, 1, resp.), its Gauss–Bonnet curvature \(L_k \) with respect to \(g \) can be
expressed by higher order mean curvatures

\[L_k = C_{n-1}^{2k}(2k)! \sum_{i=0}^{k} C_k^i \epsilon^i H_{2k-2i}. \] (55)

Proof First by the Gauss formula

\[R_{ij}^{kl} = (h_i^k h_j^l - h_i^l h_j^k) + \epsilon(\delta_i^k \delta_j^l - \delta_i^l \delta_j^k), \]

where \(h_i^j := g^{ik} h_{kj} \) and \(h \) is the second fundamental form. Then, substituting the Gauss formula above into (2) and noting (4), a straightforward calculation leads to

\[
L_k = \frac{1}{2^k} \delta_{i_1 j_1 \ldots j_{2k-1} j_{2k}}^{i_{2k-2} i_{2k}} R_{i_1 j_1} \ldots R_{i_{2k-1} j_{2k}}
\]

\[
= \sum_{i=0}^{k} C_k^i \epsilon^i \left(n - 2k \right) \left(n - 2k + 1 \right) \ldots \left(n - 1 - 2k + 2i \right) (2k - 2i)! \sigma_{2k-2i}
\]

\[
C_{n-1}^{2k}(2k)! \sum_{i=0}^{k} C_k^i \epsilon^i H_{2k-2i}.
\]

Here in the second equality, we used the symmetry of generalized Kronecker delta and in the third equality we used (4) and the basic property of generalized Kronecker delta

\[
\delta_{i_1 j_1 \ldots j_{2k-1} j_{2k}}^{i_{2k-2} i_{2k}} = (n - p) \delta_{i_1 j_1 \ldots j_{2k-1} j_{2k}}^{i_{2k-2} i_{2k}}.
\] (56)

Motivated by the expression (55), we introduce the following notations,

\[
\tilde{L}_k := \frac{L_k}{C_{n-1}^{2k}(2k)!}, \quad \tilde{N}_k := \frac{N_k}{C_{n-1}^{2k}(2k)!},
\] (57)

where

\[
N_k := C_{n-1}^{2k}(2k)! \sum_{i=0}^{k} C_k^i \epsilon^i H_{2k-2i+1}.
\]

Since for the sphere \(S^n \), \(L_k \) can be expressed as linear combinations of \(H_k \) with nonnegative coefficients in the formula (55), thus rigidity for \(L_k \) is an immediate consequence of Theorem 11.

Proof of Corollary 4 In the hemisphere \(S^n_+ \), there exists an elliptic point. Thus, \(L_k = \text{const.} \) is equivalent to

\[
\sum_{i=1}^{k} C_k^i H_{2i} = a_0,
\]

for some positive \(a_0 \). Hence the conclusion follows from Theorem 11. \(\square \)

However, the hyperbolic case is not that easy. We will apply a new kind of Newton–Maclaurin type inequality to the hyperbolic case. It is clear that in hyperbolic space

\[
\tilde{L}_k = k \sum_{i=0}^{k} C_k^i (-1)^{k-i} H_{2i}, \quad \tilde{N}_k = k \sum_{i=0}^{k} C_k^i (-1)^{k-i} H_{2i+1}.
\] (58)
Due to the sign-changed coefficients of L_k in terms of H_k, it seems to be difficult to apply Newton–Maclaurin inequalities directly. Fortunately, under the condition of horoconvexity, we have the following refined Newton–Maclaurin inequalities [11].

Proposition 13 For any κ satisfying

$$\kappa \in \{ \kappa = (\kappa_1, \kappa_2, \ldots, \kappa_{n-1}) \in \mathbb{R}^{n-1} | \kappa_i \geq 1 \},$$

we have

$$\tilde{N}_k - H_1 \tilde{L}_k \leq 0.$$ \hfill (60)

Equality holds if and only if one of the following two cases holds

either (i) $\kappa_i = \kappa_j \ \forall \ i, j$, or (ii) $k \geq 2$, $\exists i$ with $\kappa_i > 1 & \kappa_j = 1 \ \forall j \neq i$.

Proof This proposition is proved in [11]. The key point is to observe that (60) is equivalent to the following inequality:

$$\sum_{1 \leq i_m \leq n-1, i_j \neq i_l (j \neq i)} \kappa_i (\kappa_{i_2} \kappa_{i_3} - 1)(\kappa_{i_4} \kappa_{i_5} - 1) \cdots (\kappa_{i_{2k-2}} \kappa_{i_{2k-1}} - 1)(\kappa_{i_{2k}} - \kappa_{i_{2k+1}})^2 \geq 0,$$

where the summation takes over all the $(2k+1)$-elements permutation of $\{1, 2, \ldots, n-1\}$. We refer the readers to [11] for more details.

With all above preparing work, we are ready to prove a special case of Theorem 5 first.

Theorem 14 Let $1 \leq k \leq \frac{n-1}{2}$ be an integer and Σ^{n-1} be a closed horospherical convex hypersurface in the hyperbolic space \mathbb{H}^n. If L_k with the induced metric on Σ is constant, then Σ is a centered geodesic hypersphere.

Proof Since $L_1 = R = (n - 1)(n - 2)(H_2 - 1)$, it suffices to discuss the remaining case $k \geq 2$. Observe that (44) implies

$$\int_{\Sigma} V \tilde{L}_k d\mu = \int_{\Sigma} \langle X, v \rangle \tilde{N}_k d\mu.$$ \hfill (62)

The definition of \tilde{L}_k, \tilde{N}_k gives

$$\tilde{L}_0 = 1, \tilde{N}_0 = H_1.$$

Thus using (44) again, we have

$$\int_{\Sigma} V \tilde{L}_0 d\mu = \int_{\Sigma} \langle X, v \rangle \tilde{N}_0 d\mu.$$ \hfill (63)

By (55), we know that \tilde{L}_k is also constant. Combining (62) and (63) together, we have

$$\int_{\Sigma} \langle X, v \rangle (\tilde{N}_k - \tilde{N}_0 \tilde{L}_k) = 0.$$

On the other hand, (60) yields

$$\tilde{N}_k - \tilde{N}_0 \tilde{L}_k \leq 0.$$
This forces
\[\tilde{N}_k - \tilde{N}_0 \tilde{L}_k = 0, \]
everywhere in \(\Sigma \). By Proposition 13, there are two cases that equality holds. However, we assert that the second case will not happen. In fact, in case (ii) we have from (66) below that
\[\tilde{L}_k \equiv 0, \quad \forall \, k \geq 2. \]
However, in \(\mathbb{R}^n \), there exists a horo-elliptic point, where all principal curvatures are strictly larger than 1 (this follows from the fact \(\lambda'(r)/\lambda(r) > 1 \)). Hence it follows again from (66) that at this point \(\tilde{L}_k > 0 \). We get a contradiction. Therefore, we conclude that \(\Sigma \) is a geodesic sphere.

To prove the rigidity result regarding the general linear combination of \(L_k \), Proposition 13 is not enough. We need to develop the following more general Newton–Maclaurin type inequalities which may have independent interest.

Proposition 15 For any \(\kappa \) satisfying
\[\kappa \in \{ \kappa = (\kappa_1, \kappa_2, \ldots, \kappa_{n-1}) \in \mathbb{R}^{n-1} \mid \kappa_i \geq 1 \}, \]we have
\[\tilde{N}_{k-1} \tilde{L}_k \geq \tilde{N}_k \tilde{L}_{k-1}. \]Equality holds if and only if one of the following two cases holds

either (i) \(\kappa_i = \kappa_j \forall \, i, j \), or (ii) \(k \geq 2, \, \exists \, i \) with \(\kappa_i > 1 \& \kappa_j = 1 \forall \, j \neq i \).

Proof Set
\[\kappa_i = 1 + \hat{\kappa}_i, \]
then \(\hat{\kappa}_i \geq 0 \) for any \(i \in \{1, \ldots, n-1\} \). Define

\[\hat{H}_i := H_i(\hat{\kappa}_1, \hat{\kappa}_2, \ldots, \hat{\kappa}_{n-1}). \]

Then
\[H_k = \sum_{i=0}^{k} C_k^i \hat{H}_i. \]
thus

\[\tilde{L}_k = \sum_{i=0}^{k} 2^i C_k^i \hat{H}_{2k-i}, \quad \tilde{N}_k = \sum_{i=0}^{k} 2^i C_k^i \hat{H}_{2k+1-i}. \]Observing that \(\tilde{L}_k \) and \(\tilde{N}_k \) can be split into two terms,
\[\tilde{L}_k = \sum_{i=0}^{k-1} 2^i C_{k-1}^i \hat{H}_{2k-i} + 2 \sum_{i=0}^{k-1} 2^i C_{k-1}^i \hat{H}_{2k-1-i}, \]
\[\tilde{N}_k = \sum_{i=0}^{k-1} 2^i C_{k-1}^i \hat{H}_{2k+1-i} + 2 \sum_{i=0}^{k-1} 2^i C_{k-1}^i \hat{H}_{2k-i}. \]
we introduce the notation

\[X_{s,t} = \sum_{i=0}^{t} 2^i \binom{t}{i} \tilde{H}_{s+t-i}. \]

(67)

It is clear that

\[
\begin{align*}
\tilde{L}_k &= X_{k+1,k-1} + 2X_{k,k-1}. \\
\tilde{N}_k &= X_{k+2,k-1} + 2X_{k+1,k-1}.
\end{align*}
\]

Hence the desired result (65) is equivalent to

\[
(X_{k+1,k-1} + 2X_{k,k-1})X_{k,k-1} \geq (X_{k+2,k-1} + 2X_{k+1,k-1})X_{k-1,k-1}.
\]

(68)

We claim that this is true. In fact, we can show the more general result as stated in the following lemma:

Lemma 16 For any \(s \geq 1 \) and \(t \geq 0 \),

\[
X_{s,t}^2 \geq X_{s+1,t}X_{s-1,t}.
\]

(69)

Proof We use the induction argument for \(t \) to prove this lemma. When \(t = 0 \), (69) holds for any \(s \geq 1 \) by the standard Newton–MacLaurin identity (9). Assume (69) holds for \(t \), we need to prove that (69) holds for \(t + 1 \). Observe the relation that

\[
X_{s,t}^2 = X_{s+1,t}X_{s-1,t} + 2X_{s,t}.
\]

(70)

Using the assumption that (69) holding for any \(s \geq 1 \) and fixed \(t \), we derive

\[
X_{s,t+1}^2 - X_{s+1,t+1}X_{s-1,t+1} = (X_{s+1,t}^2 - X_{s+2,t}X_{s,t}) + 2(X_{s+1,t}X_{s,t} - X_{s+2,t}X_{s-1,t})
+ 4(X_{s,t}^2 - X_{s+1,t}X_{s-1,t}) \geq 0.
\]

The proof of the lemma is completed.

Choosing \(t = k - 1 \) in (69), it is easy to see that (68) holds. Hence we complete the proof of Proposition 15.

We are now in a position to prove the general case of Theorem 5.

Proof of Theorem 5 By (55) and (58), the assumption is equivalent to

\[
\sum_{j=l}^{k} \tilde{b}_j \tilde{L}_j = \sum_{i=0}^{l-1} \tilde{a}_i \tilde{L}_i,
\]

where

\[
\tilde{a}_i = C_{n-1}^{2i}(2i!) a_i, \quad \tilde{b}_j = C_{n-1}^{2j}(2j!) b_j.
\]

Inductively using (65), we get

\[
\tilde{L}_j \tilde{N}_i \geq \tilde{N}_j \tilde{L}_i, \quad \text{for } j > i,
\]

(71)

thus we have

\[
\sum_{i=0}^{k-1} \tilde{a}_i \tilde{N}_i \sum_{j=l}^{k} \tilde{b}_j \tilde{L}_j \geq \sum_{j=l}^{k} \tilde{b}_j \tilde{N}_j \sum_{i=0}^{k-1} \tilde{a}_i \tilde{L}_i.
\]

(72)
Hence
\[\sum_{i=0}^{k-1} \tilde{a}_i \tilde{N}_i \geq \sum_{j=l}^k \tilde{b}_j \tilde{N}_j. \] (73)

Therefore, applying (62), we have
\[0 = \int \Sigma \left(\sum_{j=l}^k \tilde{b}_j \tilde{L}_j - \sum_{i=0}^{k-1} \tilde{a}_i \tilde{L}_i \right) d\mu = \int \Sigma \langle X, \nu \rangle \left(\sum_{j=l}^k \tilde{b}_j \tilde{N}_j - \sum_{i=0}^{k-1} \tilde{a}_i \tilde{N}_i \right) d\mu \leq 0. \] (74)

Arguing as in the proof of Theorem 14, one can exclude the case (ii) in Proposition 15. Hence we conclude \(\Sigma \) is a geodesic sphere. \(\square \)

A suitable adaption of the above argument allows us to demonstrate the same result in the hemisphere case, Theorem 6.

Proof of Theorem 6 According to the proof of Theorem 5, it suffices to establish the corresponding inequality of (65) in \(S^n_+ \) under the assumption of \(2k \)-convexity. The proof basically follows from the one of Proposition 15 except some modifications, so we briefly sketch it here. First, using the simple fact
\[C_i^j = C_i^{j-1} + C_i^{j-1}, \] in view of (55), we can split \(\tilde{L}_k \) and \(\tilde{N}_k \) into two terms
\[\tilde{L}_k = \sum_{i=0}^{k-1} C_i^{k-1} H_{2k-2i} + \sum_{i=0}^{k-1} C_i^{k-1} H_{2k-2i}, \]
\[\tilde{N}_k = \sum_{i=0}^{k-1} C_i^{k-1} H_{2k+1-2i} + \sum_{i=0}^{k-1} C_i^{k-1} H_{2k-1-2i}. \]

Next we introduce the notation
\[X_{s,t} =: \sum_{i=0}^t C_i^j H_{s+2i-2j}. \] (75)

It is clear that
\[\tilde{L}_k = X_{2,k-1} + X_{0,k-1}, \quad \tilde{L}_k = X_{0,k-1}, \]
\[\tilde{N}_k = X_{3,k-1} + X_{1,k-1}, \quad \tilde{N}_k = X_{1,k-1}. \]

By a similar induction argument as in the proof of Lemma 16, one can show that
\[\text{For any } s \geq 1 \text{ and } t \geq 0, \quad X_{s,t} X_{s+1,t} \geq X_{s-1,t} X_{s+2,t}. \] (76)

Finally choosing \(s = 1, t = k-1 \) in (76), we obtain
\[\tilde{N}_{k-1} \tilde{L}_k \geq \tilde{N}_k \tilde{L}_{k-1}. \] (77)

We complete the proof. \(\square \)

In a similar way, one can also prove the rigidity result for the curvature functions \(N_k \). We only state the result here and leave the proof to readers.
Theorem 17 Let \(1 \leq l < k \leq \frac{n-2}{2} \) be two integers and \(\Sigma \) be a closed \((2k+1)\)-convex (horospherical convex resp.) hypersurface embedded in the hyperbolic space \(S^n_{+} \) (resp. \(\mathbb{H}^n \)). If there are nonnegative constants \(\{a_i\}_{i=0}^{l-1} \) and \(\{b_j\}_{j=l}^{k} \), at least one of them not vanishing, such that

\[
\sum_{i=0}^{l-1} a_i N_i = \sum_{j=l}^{k} b_j N_j,
\]

then \(\Sigma \) is a centered geodesic hypersphere. In particular, if \(N_k \) is constant, then \(\Sigma \) is a centered geodesic hypersphere.

We end this paper with a remark.

Remark 3 By virtue of our main results, Theorems 2, 11, 5, 6 and 17, we tend to believe that rigidity holds for hypersurfaces with constant linear combinations of \(H_k \), i.e.,

\[
\sum_{i=1}^{n-1} a_k H_k = \text{const.}
\]

for any \(a_k \in \mathbb{R} \), not necessary nonnegative. In fact, Theorem 5, 6 and 17 include a large class of such rigidity results for linear combinations of \(H_k \) with pure (or odd) indices. However, our method seems not enough to prove the most general version of linear combinations.

Acknowledgments Both authors would like to thank Professors Guofang Wang, Yuxin Ge and Dr. Wei Wang for helpful discussions.

References

1. Alás, L.J., Impera, D., Rigoli, M.: Hypersurfaces of constant higher order mean curvature in warped products. Trans. Am. Math. Soc. 365, 591–621 (2013)
2. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large I-V. Vestn. Leningr. Univ. 11, 5–17 (1956); 12, 15–44 (1957); 13, 14–26 (1958); 13, 27–34 (1958). English transl. in Am. Math. Soc. Transl. 21, 341–354, 354–388, 389–403, 403–411, 412–416 (1962)
3. Aquino, C.P., de Lima, H.F.: On the unicity of complete hypersurfaces immersed in a semi- Riemannian warped product. J. Geom. Anal. (2012). doi:10.1007/s12220-012-9366-5
4. Alías, L.J., de Lira, J.H.S., Malacarne, J.M.: Constant higher-order mean curvature hypersurfaces in Riemannian spaces. J. Inst. Math. Jussieu 5(4), 527–562 (2006)
5. Brendle, S.: Constant mean curvature surfaces in warped product manifolds. Publ. Math. Inst. Hautes Études Sci. 117, 247–269 (2013)
6. Brendle, S., Eichmair, M.: Isoperimetric and Weingarten surfaces in the Schwarzschild manifold. J. Differ. Geom. 94(94), 387–407 (2013)
7. Dahl, M., Gicquaud, R., Sakovich, A.: Penrose type inequalities for asymptotically hyperbolic graphs. Ann. Henri Poincaré 14(5), 1135–1168 (2013)
8. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)
9. Ge, Y., Wang, G., Wu, J.: A new mass for asymptotically flat manifolds. arXiv:1211.3645
10. Ge, Y., Wang, G., Wu, J.: The Gauss–Bonnet–Chern mass of conformally flat manifolds. IMRN. arXiv:1212.3213 (to appear)
11. Ge, Y., Wang, G., Wu, J.: Hyperbolic Alexandrov–Fenchel quermassintegral inequalities II. arXiv:1304.1417
12. Ge, Y., Wang, G., Wu, J.: The GBC mass for asymptotically hyperbolic manifolds. arXiv:1306.4233
13. Guan, P.: Topics in Geometric Fully Nonlinear Equations. Lecture Notes. http://www.math.mcgill.ca/guan/notes.html
14. He, Y., Li, H., Ma, H., Ge, J.: Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures. Indiana Univ. Math. J. 58(2), 853–868 (2009)
15. Hijazi, O., Montiel, S., Zhang, X.: Dirac operator on embedded hypersurfaces. Math. Res. Lett. 8, 195–208 (2001)
16. Hsiang, W.-Y., Teng, Z.-H., Yu, W.-C.: New examples of constant mean curvature immersions of (2k-1) -spheres into Euclidean 2k-space. Ann. Math. (2) 117(3), 609–625 (1983)
17. Hsiung, C.C.: Some integral formulas for closed hypersurfaces. Math. Scand. 2, 286–294 (1954)
18. Koh, S.E.: Sphere theorem by means of the ratio of mean curvature functions. Glasg. Math. J. 42, 91–95 (2000)
19. Korevaar, N.J.: Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces— appendix to a note of A. Ros. J. Differ. Geom. 27, 221–223 (1988)
20. Lanczos, C.: A remarkable property of the Riemann–Christoffel tensor in four dimensions. Ann. Math. (2) 39(4), 842–850 (1938)
21. Liebmann, H.: Eine neue Eigenschaft der Kugel. Nachr. Akad. Wiss. Göttingen. 1899, 44–55 (1899)
22. Montiel, S.: Unicity of constant mean curvature hypersurfaces in some Riemannian manifolds. Indiana Univ. Math. J. 48, 711–748 (1999)
23. Montiel, S.: Uniqueness of spacelike hypersurfaces of constant mean curvature in foliated spacetimes. Math. Ann. 314(3), 529–553 (1999)
24. Montiel, S., Ros, A.: Compact hypersurfaces: The Alexandrov theorem for higher order mean curvatures. In: Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 52 (in honor of M.P. do Carmo; edited by B. Lawson and K. Tenenblat), pp. 279–296 (1991)
25. Reilly, R.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26, 459–472 (1977)
26. Ros, A.: Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differ. Geom. 27, 215–220 (1988)
27. Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Revista Matemática Iberoamericana 3, 447–453 (1987)
28. Süss, W.: Über Kennzeichnungen der Kugeln und Affinsphären durch Herrn K.-P. Grotemeyer. Arch. Math. (Basel) 3, 311–313 (1952)
29. Wente, H.C.: Counterexample to a conjecture of H. Hopf. Pac. J. Math. 121(1), 193–243 (1986)
30. Wu, J.: A new characterization of geodesic spheres in the hyperbolic space. Proc. Am. Math. Soc. arXiv:1305.2805 (to appear)