A Single Amino Acid Substitution in STKc_GSK3 Kinase Conferring Semispherical Grains and Its Implications for the Origin of Triticum sphaerococcum Perc.

Xuejiao Cheng, Mingming Xin, Ruibin Xu, Zhaoyan Chen, Wenlong Cai, Lingling Chai, Huanwen Xu, Lin Jia, Zhiyu Feng, Zihao Wang, Huiru Peng, Yingyin Yao, Zhaorong Hu, Weilong Guo, Zhongfu Ni, & Qixin Sun

Author information

1 State Key Laboratory for Agrobiotechnology/Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, National Plant Gene Research Centre, Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, People's Republic of China.

These authors contributed equally to this work

Corresponding authors: Qixin Sun (qxsun@cau.edu.cn) and Zhongfu Ni (nizf@cau.edu.cn)

No.2 Yuanmingyuan Xi Road, Haidian District, Beijing, China, 100193

Competing interests

The authors declare no competing financial interests.

Short title: STKc_GSK3 kinase mutation affects grain shape

One-sentence summary: Map-based cloning of a gene underlying grain shape in wheat suggests that modest genetic changes induce dramatic phenotypic variations associated with a new wheat subspecies during evolution.

The authors responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the instructions for Authors (www.plantcell.org) are Qixin Sun (qxsun@cau.edu.cn) and Zhongfu Ni (nizf@cau.edu.cn).
ABSTRACT

Six subspecies of hexaploid wheat (*Triticum* spp.) have been identified, but the origin of Indian dwarf wheat (*Triticum sphaerococcum* Perc.), the only subspecies with round grains, is currently unknown. Here, we isolated the grain-shape gene *Tasg-D1* in *T. sphaerococcum* Perc. via positional cloning. *Tasg-D1* encodes a serine/threonine protein kinase glycogen synthase kinase 3 (STKc_GSK3) that negatively regulates brassinosteroid signaling. Expression of *TaSG-D1* and the mutant form *Tasg-D1* in *Arabidopsis thaliana* suggested that a single amino acid substitution in the TREE domain of TaSG-D1 enhances protein stability in response to brassinosteroids, likely leading to formation of round grains in wheat. This gain-of-function mutation has pleiotropic effects on plant architecture and exhibits incomplete dominance. Haplotype analysis of 898 wheat accessions indicated that the origin of *T. sphaerococcum* Perc. in ancient India involved at least two independent mutations of *TaSG-D1*. Our results demonstrate that modest genetic changes in a single gene can induced dramatic phenotypic changes.
INTRODUCTION

Hexaploid wheat (*Triticum aestivum* L.) is a typical allopolyploid species containing three distinct genomes (A, B and D; AABBDD) resulting from two sequential allopolyploidization events. The first episode, which occurred 0.36 to 0.50 million years ago, involved a cross between *Triticum urartu* (AA genome) and an unidentified species (BB genome) (Dvořák, 1976; Huang et al., 2002; Dvorak and Akhunov, 2005; Pont and Salse, 2017). The second polyploidization event between *Triticum turgidum* (AABB) and *Aegilops tauschii* (DD genome) ultimately led to the origin of hexaploid wheat approximately 10,000 years ago (Kihara, 1944; McFadden and Sears, 1946; Dvorak et al., 1998; Huang et al., 2002).

To date, six subspecies of hexaploid wheat (AABBDD) have been reported: *T. aestivum* L., *T. spelta* L., *T. vavilovi* (Tum.) Jakubz., *T. macha* Dek. & Men., *T. compactum* Host., and *T. sphaerococcum* Perc.. *T. zhukovskyi* Men. & Er. was excluded from the list since it has a different genome constitution, AABBBGG. *T. sphaerococcum* Perc., also known as Indian dwarf wheat, is a landrace endemic to India and Pakistan (Ellerton, 1939; Hosono, 1954). Archaeological evidence supports the contribution of this wheat to ancient civilization in the Indus valley dating back to 9000-10,000 years ago (Josekutty, 2008; Mori et al., 2013). *T. sphaerococcum* exhibits semispherical grains, a semi-dwarf stature, short rigid culms, straight flag leaves, and compact and dense spikes (Percival, 1921; Sears, 1947). In addition, the grain has a shallow crease and high protein content compared to other wheat subspecies, making it a valuable genetic resource in wheat breeding programs (Singh, 1946). Thus, *T. sphaerococcum* Perc. was cultivated in the Indian subcontinent for thousands of years before the Green Revolution.

The spike-related morphological traits of hexaploid wheat, including seed threshability, spike compactness, and grain shape, are strongly influenced by three major genes: *Q* (free-threshing seeds, Faris et al., 2005; Mac Key, 1954), *C* (compact ears, Rao, 1972) and *s* (sphaerococcum grains, Rao, 1977; Salina et al., 2000). However, the genetic and biological basis of round grain development in *T. sphaerococcum* wheat is largely unknown. Miczynski (1930) crossed *T. aestivum* wheat with *T. sphaerococcum* and observed complete dominance of the *T. aestivum* trait over the *T. sphaerococcum* trait, indicating that the inheritance of the *T. sphaerococcum* trait is likely controlled by a single pleiotropic gene. Sears (1947)
located the corresponding gene (denoted as s) on chromosome 3D by crossing *T. sphaerococcum* with nullisomics of Chinese Spring wheat and concluded that the *T. sphaerococcum* gene is hemizygous ineffective, in contrast to the observation that the phenotypes segregate at a ratio of approximately 1(SS):2(Ss):1(ss) (Ellerton, 1939). Subsequent studies confirmed this observation and mapped the s locus close to the centromere region of chromosome 3D (Rao, 1977; Koba and Tsunewaki, 1978; Singh, 1987). The *sphaerococcum* trait is not only restricted to the responsible gene in the D genome, but can also be attributed to its homoeologs on the A and B genomes (Schmidt et al., 1963; Schmidt and Johnson, 1963; Schmidt and Johnson, 1966).

Indeed, Salina et al. (2000) mapped the *T. sphaerococcum* genes *s1*, *s2*, and *s3* on chromosomes 3D, 3B and 3A, respectively.

Recent studies have highlighted the importance of brassinosteroids (BRs) in controlling grain shape through BR biosynthetic/homeostatic or signaling pathways (Che et al., 2015; Huang et al., 2013; Jiang, 2013; Tian et al., 2018; Zhu et al., 2015). BR-deficient mutants often exhibit smaller and less-elongated seeds than wild-type plants due to reduced cell length (Jiang, et al., 2013; Che et al., 2015). The glycogen synthase kinase 3-like kinase (GSK) BRASSINOSTEROID INSENSITIVE2 (BIN2), a critical repressor of BR signaling, plays a crucial role in regulating grain shape. For example, loss of function of *OsGSK3*, a rice (*Oryza sativa*) ortholog of BIN2, alters the phosphorylation status of BRASSINAZOLE RESISTANT1 (OsBZR1) and induces its nuclear localization, leading to enhanced BR sensitivity and ultimately resulting in increased seed length (Gao et al., 2019). In addition, GSK2, another ortholog of BIN2, interacts with and represses the transcriptional activation activity of GROWTH REGULATION FACTOR4 (OsGRF4) in rice (Che et al., 2015), leading to reduced BR responses and small seeds (Hu et al., 2015; Che et al., 2015). However, the role of BR responses in determining grain shape in *T. sphaerococcum* Perc. remains unknown. Identifying the mechanism underlying this trait would shed light on the evolution of this subspecies.

Here, by performing positional cloning based on the semispherical seed phenotype, we isolated the “subspecies-forming” gene underlying grain shape in *T. sphaerococcum* Perc. This gene, *Tasg-D1*, encodes a serine/threonine protein kinase glycogen synthase kinase 3 (STKc_GSK3), the wheat orthologue of BIN2. In *T. sphaerococcum*, a single amino acid substitution of STKc_GSK3 enhances protein
stability in response to BR, leading to round grain formation. Evolutionary analysis provided evidence that the origin of *T. sphaerococcum* wheat involved at least two independent mutations of *TaSG-D1*.

RESULTS AND DISCUSSION

Map-Based Cloning of *Tasg-D1*

To explore the genetic basis of semispherical grain trait and its origin in *T. sphaerococcum*, we generated an F₂ segregating population using wheat lines *HeSheng 2* (HS2, common wheat) and *Nongda 4332* (ND4332, derived from a cross between *T. aestivum* and *T. sphaerococcum* Perc.) (Figure 1A), which exhibit significant differences in grain shape (Figure 1B and Supplemental Data Set 1). The corresponding segregation ratio fits a Mendelian model of 3:1 (208 long grains/62 semispherical grains; \(\chi^2 < \chi^2_{0.05, 1} = 3.84 \)), indicating that the semispherical grain trait is controlled by a single nuclear gene, which is consistent with previous findings (Sears, 1947; Salina et al., 2000).

The gene that determines semispherical grain (hereafter referred to as *Tasg-D1*) according to the official nomenclature rules in wheat [https://wheat.pw.usda.gov/GG2/Triticum/wgc/2013/; Ta: *Triticum aestivum*; sg: semispherical grain; *D1*: the first *sg* gene identified in genome D), was mapped between markers *Xgwm341* and *Xgdm72* on the short arm of chromosome 3D near the centromeric region (Figure 1C). To perform fine mapping of *Tasg-D1*, we generated an F₇ recombinant inbred line (RIL) population of 247 lines derived from a cross between HS2 and ND4332 and confirmed that the locus is located between markers 3DS-68 and 3DS-44 (Figure 1D; Supplemental Data Set 2). We self-pollinated a residual heterozygous line from the F₇ RIL population to produce a segregating population and screened for recombinants. Using recombinant-derived progeny, we narrowed the candidate region to a 1.01-Mb region between markers 3DS-68 and 3DS-94 (Figure 1E and 1F; Supplemental Data Set 2).

This region contains 13 predicted high-confidence genes, as annotated based on the Ensembl Plants database (Appels et al., 2018, http://plants.ensembl.org/index.html) (Figure 1G; Supplemental Data Set 3 and 4). Resequencing of the 13 predicted high-confidence genes in the 1.01-Mb region revealed only one single-nucleotide polymorphism (SNP) in the coding sequences (CDS). This SNP (A/G) is located in
the 9th exon of *TraesCS3D01G137200* between ND4332 (*Tasg-D1*) and HS2 (*TaSG-D1*) (Figure 1H). Although 253 SNPs and 32 insertion/deletions (InDels) were detected in the intergenic regions, we focused on the SNP in the coding region, which led to an amino acid substitution from lysine (286K) to glutamic acid (286E) (Figure 1H).

TraesCS3D01G137200 is predicted to encode an STKc_GSK3 kinase containing a TREE (Thr-283-Arg-284-Glu-285-Glu-286) domain (Figure 1H).

TraesCS3D01G137200 is an ortholog of *OsGSK1* in rice (Koh et al., 2007) (Supplemental Figure 1A; Supplemental Data Set 3). Interestingly, the orthologous *OsGSK1* gene in rice is involved in regulating stress responses (Koh et al., 2007) but not grain shape, indicating that the roles of these orthologs have diverged. By contrast, *OsGSK2*, a homolog of *OsGSK1*, helps regulate seed development (Tong et al., 2012). Phylogenetic analysis revealed that the TREE domain is highly conserved among different species, including monocots and dicots (Supplemental Figure 1B).

By using the publicly available expression data for wheat (eFP browser, http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi), we predicted the expression profiles of *TaSG-D1* in different tissues and found that it was highly expressed in shoot meristem, root, spike, grain, shoot axis, and ovary tissue. To verify these predictions, we performed reverse transcription quantitative PCR (RT-qPCR) analysis of *TaSG-D1* in 13 tissue/time points, including spikes and grains at different developmental stages (since we were focusing on seed shape formation). As expected, the expression patterns of the candidate gene were consistent with the publicly available data, with high levels of expression in roots, immature spikes, and seeds (Supplemental Figure 2A).

TaSG1 has three homoeologs since wheat is a typical hexaploid containing three genomes. We investigated their expression patterns according to the publicly available data and found that the three homoeologs shared similar expression patterns (Supplemental Figure 2B).

Genetic Analysis of *Tasg-D1*

Previous studies have revealed a discrepancy in the inheritance pattern of the *sphaerococcum* gene, which either has a hemizygous-ineffective recessive effect or an incompletely dominant effect (Sears, 1947; Schmidt et al., 1963; Salina et al., 2000).
Since we determined that *Tasg-D1* is a gain-of-function allele in wheat line ND4332, we evaluated its genetic effects on grain shape and other traits using a segregating population (F8-RHL-II, see Methods). The grain length showed a 1:2:1 segregation ratio in the examined populations ($\chi^2 = 0.46 < \chi^2_{0.05, 2} = 5.99$) (Supplemental Figure 3), supporting the notion that *Tasg-D1* shows incomplete dominance. Moreover, the phenotypes of heterozygous RHL-*TaSG-D1*/*Tasg-D1* individuals were significantly different from those of homozygous RHL-*TaSG-D1* and RHL-*Tasg-D1* individuals, including grain length, plant height, spike length, spikelet density, and thousand-grain weight (Supplemental Data Set 5), suggesting that the effects of *Tasg-D1* on plant architecture associated with the s locus are indeed pleiotropic.

Functional Analysis of *Tasg-D1*

The TREE domain likely plays a crucial role in GSK activity in plants (Li and Nam 2002; Koh et al., 2007; Tong et al., 2012). The overexpression of a mutant *OsGSK2* allele with a missense mutation in the TREE domain led to the production of small round seeds in rice (Tong et al., 2012). To determine whether the STKc_ GSK3 kinase is associated with the s locus responsible for grain shape, we obtained three independent mutants (M2 generation) of *TaSG-D1* via ethyl methanesulfonate (EMS) mutagenesis in wheat line ND4332 (Supplemental Figure 4). Homozygous premature-termination mutations resulted in plants with longer grains, larger spikes, and greater plant height than wild-type plants (Figure 2A to 2I).

To investigate the potential functions of the *TaSG-D1* homoeologs, we obtained a plant with a mutation in the TREE domain of the *TaSG-A1* homoeolog (namely, line IIA236) in the Ningchun 4 (NC4) background by EMS mutagenesis (Supplemental Figure 5A). NC4 contained the same *TaSG-A1* allele as HS2 and the NC4 plants exhibited tall stature, large leaf angles, and long grain shape. Interestingly, the IIA236 mutant showed contrasting phenotypic variation, including semispherical grains (Supplemental Figure 5B to 5G). This result is consistent with the finding that the *Tasg-D1* gene homoeolog in the A genome contributes to the semispherical grain development (Schmidt et al., 1963; Schmidt and Johnson, 1963; Schmidt and Johnson, 1966; Salina et al. 2000). In addition, BLASTP analysis (match length > 70%; sequence identity > 70%; e value < 1 × 10^{-5}) revealed 22 homologs of *TaSG-D1* in the wheat genome. Only six of the homologs might be involved in negatively regulating...
the BR-mediated signaling pathway (according to the annotation in Ensembl Plant), indicating that neo- or sub-functionalization of the gene duplicates occurred independently during evolution, a topic that merits further investigation. To further confirm our observations, we overexpressed the full CDS of this gene from HS2 (OE-TaSG-D1) and ND4332 (OE-Tasg-D1) driven by the Ubiquitin promoter in the wheat cultivar Fielder. The overexpression of Tasg-D1 appeared to cause more severe phenotypic variation compared to TaSG-D1 (Figure 2J to 2R). Specifically, the OE-Tasg-D1 lines had reduced grain length, whereas the OE-TaSG-D1 lines had increased grain length compared to the control (Figure 2K, 2L, and 2Q). In addition, the OE-Tasg-D1 lines exhibited delayed flowering, decreased plant height and spike length, increased spikelet density, decreased thousand-grain weight, and the failure to produce ears in tillers with unelongated internodes compared to control and OE-TaSG-D1 plants (Figure 2J and 2M to 2P). Together, these findings confirm the notion that the STKc_GSK3 kinase is the s gene and that a single amino acid substitution is sufficient to confer pleiotropic effects on phenotype, including grain shape, between T. sphaerococcum Perc. and other wheat subspecies.

Tasg-D1 Functions as a Negative Regulator of the BR Signaling Pathway

The homologs of TaSG-D1 in Arabidopsis and rice are negative regulators of BR signaling (Li and Nam 2002; Koh et al., 2007; Tong et al., 2012). Therefore, to explore how Tasg-D1 regulates grain shape, we treated the roots of plants of the near-isogenic lines (NILs) NIL-TaSG-D1 and NIL-Tasg-D1 with epi-brassinolide (BL). Root growth was significantly promoted in plants treated with a low BL concentration (0.001 μM, \(P=1.3\times10^{-6} \)) and inhibited with a high BL concentration (0.1 μM, \(P=9.7\times10^{-4} \)), compared to untreated NIL-TaSG-D1 plants (Figure 3A). In addition, the root dry mass significantly decreased with increasing BL concentration (Figure 3B). By contrast, NIL-Tasg-D1 plants showed less sensitivity to BL application than NIL-TaSG-D1 plants, with only a gradual increase in root length in response to increasing BL concentrations from 0.001 to 0.1 μM. Moreover, the expression of BR biosynthesis and BR signaling-related genes decreased in both Tasg-D1 and TaSG-D1 overexpression plants compared to the wild type, including TaD11, TaBrd2, TaBZR1, TaTUD1, and TaRAVL1 (Figure 3C). Consistent with the effects of BR on cell growth (Che et al., 2015; Gasperini, et al., 2012; Jiang, et al.,
2013), cell length was significantly lower in ND4332 (Tasg-D1) than in HS2 (TaSG-D1), with a decrease of 12.97% (P=0.006) (Figure 3D and 3E), as revealed by scanning electron microscopy of the grain pericarp. These results indicate that Tasg-D1 has a negative effect on cell elongation.

To further investigate the effect of Tasg-D1 at the molecular level, we introduced TaSG-D1-GFP and Tasg-D1-GFP fusion constructs into Arabidopsis to test whether BR affects TaSG-D1 protein abundance. Similar to the results in wheat, Tasg-D1-GFP transgenic Arabidopsis plants showed more severe phenotypes than TaSG-D1-GFP plants (Supplemental Figure 6A). Furthermore, treatment with brassinazole (BRZ), a specific inhibitor of BR biosynthesis, enhanced the dwarf phenotype of TaSG-D1-GFP plants but had little effect on Tasg-D1-GFP plants (Supplemental Figure 6B). BL treatment resulted in a rapid decrease in TaSG-D1-GFP abundance but no change in Tasg-D1-GFP abundance after 3, 6, 9, and 12 h of treatment (Supplemental Figure 6C). These results indicate that Tasg-D1 is more stable than TaSG-D1 in response to BR. Therefore, our results indicate that a single amino acid substitution in the TREE domain influences the accumulation of TaSG-D1.

The Origin of T. sphaerococcum

To explore the origin of *T. sphaerococcum*, we analyzed the sequences of the TREE domain of TaSG-D1 in 898 wheat accessions with varying ploidy levels. Of these, 14 *T. sphaerococcum* accessions (Supplemental Data Set 6) harbored two haplotypes, one identical to that of ND4332 and the other exhibiting an amino acid substitution from R to G in the TREE domain (Figure 4). Interestingly, all of the examined *Aegilops tauschii* accessions contained the same allele to HS2 (Supplemental Data Set 7). Therefore, we propose that the *Tasg-D1* gene or related traits of *T. sphaerococcum* Perc. might have originated from *T. aestivum* due to a spontaneous mutation in the TREE domain of TaSG-D1 after hexaploidization. The mutations most likely occurred on two separate occasions. All of the other hexaploid wheat accessions with long grain shape contained the allele identical to that in HS2, including all *T. spelta* accessions (Supplemental Data Sets 8 and 9), indicating that the mutation likely occurred after domestication.

Potential Use of *Tasg-D1* for Wheat Yield Improvement
Although *Tasg-D1* itself had a negative effect on grain weight, as the NIL with the
ND432 allele (~28.9 g) exhibited significantly lower thousand-grain weight than the
NIL containing the HS allele (~45.8 g) (Supplemental Data Set5), we evaluated the
potential use of *Tasg1-D1* combined with other yield-related genes in wheat breeding
programs by comprehensively examining yield-related traits in various RILs.

Compared with the parent HS2, six selected lines had compact plant architecture, with
erect leaves, decreased plant height (~11.2 cm, 12.4%) (Figure 5A), reduced grain
length/width ratio (~0.5, 23.8%) (Figure 5B; Supplemental Figure 7), and more fertile
spikelets per spike (~2.1, 11.3%) (Figure 5C), but the thousand-grain weight was
reduced in these lines by an average of 34.9%. However, the thousand-grain weight of
these RILs was 56.1% (16.8 g) larger compared to the other parental line, ND432
(~29.9 g) (Figure 5D; Supplemental Figure 7). Collectively, these results indicate that
combining *Tasg-D1* with other favorable yield-related genes could improve wheat
yield potential substantially, even though *Tasg-D1* itself has a negative effect on grain
weight.

Finally, elliptical grains produced by plants harboring *Tasg-D1* could be
beneficial for enhancing the flour extraction rate during wheat processing (Evers et al.,
1990; Gegas et al., 2003). To test this hypothesis, we performed a flour extraction
experiment using ND432 (*Tasg-D1*) and HS2 (*TaSG-D1*) plants. The flour extraction
rate was significantly lower in ND432 (54.8%) vs. HS2 (63.4%) (Supplemental
Figure 8), suggesting that elliptical grains might be one factor affecting the flour
extraction rate. Other factors such as seed size and the depth of the crease might also
contribute to the flour extraction rate. Thus, we conducted the experiment again using
RILs with the same thousand-grain weight (~31.0 g). The flour extraction rate was
indeed higher for semispherical grains (62.1%) than for long grains (57.4%)
(Supplemental Figure 8).

In conclusion, positional cloning and haplotype analysis of *Tasg-D1*, a gene
affecting grain shape in wheat, broadened our view of the origin and evolution of *T.
sphaerococcum* species. Introducing *Tasg-D1* into modern wheat cultivars could
facilitate the genetic engineering of grain shape and potentially improve the flour
extraction rate.
METHODS

Plant Materials

Line ND432 was derived from a cross between common wheat and natural *Triticum sphaerococcum* wheat. HS2 is a common wheat (*Triticum aestivum*) cultivar with large grains. An F$_2$ population of 270 individuals was generated by self-pollinating the F$_1$ progeny of a cross between HS2 and ND432 and used for genetic analysis and candidate gene mapping. A population comprising 247 RILs was developed by crossing HS2 and ND432 and was advanced to the F$_7$ generation by single-seed descent. We identified two residual heterozygous lines in the F$_7$ RIL population, including one line (RHL-I) carrying the heterozygous segment in the genetic region from simple sequence repeat (SSR) markers 3DS-68 to 3DS-94 and the other (RHL-II) carrying the heterozygous segment from SSR markers 3DS-20 to 3DS-94. These two lines were self-pollinated to produce the F$_8$ generations (F$_8$-RHL-I and F$_8$-RHL-II, respectively). The recombinants of F$_8$-RHL-I were self-pollinated to generate a segregation population for fine-mapping of candidate genes. The F$_8$-RHL-II population was used to analyze the effect of *Tasg-D1* on grain shape and other agronomic traits.

Seeds from self-pollinated ND432 plants were used to construct the ethyl methanesulfonate (EMS) mutant population. More than 10,000 seeds were soaked in water for 12 h at room temperature and imbibed in a 0.4% (w/v) aqueous solution of EMS (M0880, Sigma) in the dark for 16 h at room temperature. The seeds were washed in water for 12 h and air-dried at room temperature. M1 plants with variant phenotypes were selected and self-pollinated to produce the M2 generation. In addition, IIA236, a *sphaerococcum* mutant, was identified from the EMS-mutagenized population of the spring wheat cultivar NC4, which was kindly provided by Dr. Ligeng Ma (Capital Normal University, China) and used for analysis of *TaSG-A1*.

Using the marker 3D-CASP1, 898 wheat accessions with varying ploidy levels were used to test the allele frequency of *TaSG-D1*; these accessions included 791 allohexaploid wheat accessions (14 *T. sphaerococcum* wheat accessions, which was kindly provided by Dr. Yuming Wei (Sichuan Agricultural University, China), 296 Chinese common wheat accessions, and 481 accessions from other countries).
(Supplemental Data Sets 6, 8 and 9, respectively) and 107 diploid accessions (Ae. tauschii; Supplemental Data Set 7).

The Fielder accession (US spring hexaploid wheat) and Arabidopsis thaliana Columbia (Col-0) ecotype were employed for transformation. Transgenic wheat plants were grown in a greenhouse (400W HPS lamps; light intensity of 3000 lux) under 16 h of light at 24°C and 8 h of dark at 16°C. The transgenic Arabidopsis plants were grown in a greenhouse (white light; approximately 100 µmol m\(^{-2}\) s\(^{-1}\)) at 22°C/18°C under a 16/8-h light/dark cycle.

Scanning Electron Microscopy

HS2 and ND4332 seeds were cleaned, placed crease-down onto aluminum specimen stubs, and sputter-coated with gold. The grains were observed and photographed under a Hitachi S-3400 scanning electron microscope (Japan) (Wu et al., 2016). Cell length was measured in a minimum of 100 cells per sample using Adobe Photoshop software (v7.0). Each experiment was performed with three biological replicates using seeds from at least three plants per biological replicate. Analysis of variance (ANOVA) for cell size was conducted using SPSS 22.0 software with default parameters. Asterisks indicate significant differences determined by ANOVA (Supplemental File 1). *, \(P < 0.05\); **, \(P < 0.01\).

Trait Evaluation

Seeds from the \(F_2\), \(F_8\)-RHL-I and \(F_8\)-RHL-II segregating populations, the parent, and \(M_0\) seeds of ND4332 were planted in a seasonal growing location in Shangzhuang Experimental Station in Beijing, with 20 seeds per row (1.5-m long rows). The \(F_7\) RIL population was grown in Beijing, Shandong, and Hebei using a randomized complete block design with three biological replicates. Each line was hand-sown in two-row plots of 1.5-m long rows with 30 seeds per row. The seeds of each \(M_1\) plant were planted in one row in Beijing. The three independent \(M_2\) lines and parent (ND4332) were grown in the greenhouse with 10 seeds per plot with three biological replicates. The Fielder and two independent transgenic plants of \(T_1\) generation were also grown in the greenhouse with six plants per row and two rows per pot. Agronomic traits, including plant height, spike length, and spikelet density were examined before harvest. Thousand-grain weight, grain length, and grain width were determined using
a camera-assisted phenotyping system (Wanshen Detection Technology Co., Ltd., Hangzhou, China). Statistical analysis was performed via one-way ANOVA using SPSS 22.0 software with default parameters. ** and * indicate significant differences at the 1% and 5% levels, respectively. A chi-square (χ^2) test was used to test whether the distribution of the test statistic for each trait fit a chi-square distribution.

Marker Development

Microsatellite markers were designed and used to construct a genetic map of chromosome 3DS. The chromosome 3DS reference sequence of the Chinese Spring wheat (http://www.wheat genome.org/) and the *Ae. tauschii* (accession AL8/78) genome sequence (http://aegilops.wheat.ucdavis.edu/ATGSP/) were used to design new SSR markers as described by Cheng et al. (2015). A parental polymorphism survey and identification of polymorphic SSR markers were conducted using the polymerase chain reaction (PCR) conditions described by Cheng et al. (2015).

A cleaved amplified polymorphic sequence (CAPS) marker (3DS-CAPS1) was developed as follows. Based on the sequence of rice gene *Os01g0205700 (OsGSK1)*, the cDNA of the wheat orthologous gene was cloned and sequenced to detect nucleotide polymorphism (SNP) in the cDNA sequences between the parents, i.e., a Mnl1 site (CCTC) mutation in ND4332 (TCTC). This SNP was used to develop a 3D-specific CAPS marker (3DS-CAPS1). The PCR product (10 μl) was digested with restriction enzyme Mnl1 restriction enzymes for four hours, and the digestion products were separated in 2% agarose gels and visualized under ultraviolet light after ethidium bromide staining. As expected, 107-bp PCR products were completely cleaved by Mnl1 in HS2 but not in ND4332. Detailed information about the polymorphic markers used for genetic map construction is provided in Supplemental Data Set 10.

Linkage analysis of the markers was performed using JoinMap 4.0 software (http://www.kyazma.nl/index.php/mc.JoinMap/sc.General).

BL Treatment of Roots

Two individuals with 90% background similarity were selected from the F$_9$ population, which were detected using 210 SSR primer pairs on 21 chromosomes.
The two individuals had homozygous segments from markers 3DS-68 to 3DS-94 of
ND4332 and HS2; the individuals were named NIL-Tasg-D1 and NIL-TaSG-D1,
respectively. The seeds were surface-sterilized with 75% ethanol for 30 s and 1%
NaClO for 10 min and germinated for 1 d in Petri dishes. The germinated seeds were
incubated at 4°C for 3 d in the dark and exposed to white light for 1 d. Seedlings with
uniform growth were sown in boxes containing the appropriate epi-brassinolide (BL ,
E1641, Sigma) concentration (0, 0.001, 0.01, and 0.1 μM) and grown in a greenhouse
for 4 d (16 h of light at 24°C and 8 h of dark at 16°C; 75% humidity). Primary roots
were stretched out with forceps and measured with a ruler. The experiment was
repeated three times, with at least five plants per treatment. The roots of all five
seedlings were removed and placed together in a single kraft-paper bags. Root dry
mass was measured after the roots were dried for 3 d at 60°C.

Genome Resequencing

Genomic DNA from HS2 and ND4332 was used to build paired-end sequencing
libraries with insert sizes of approximately 500 bp as previously described (Chai et al.,
2018). We performed sequencing with an average 5× coverage of the assembled
genome using the Illumina NovaSeq 6000 platform. High-quality reads were aligned
to the reference genome of Chinese Spring (RefSeq v1.0) (Appels et al., 2018) using
the Burrows-Wheeler Aligner (BWA, ver. 0.7.15) program with default parameters (Li
and Durbin, 2009). SNP and InDel calling was performed using the HaplotypeCaller
module. Illumina reads of all samples were deposited in the Bioproject at the National
Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/sra) under
accession number PRJNA533588.

Gene Cloning and Sequence Analysis

Homoeolog-specific primer pairs were designed to amplify the genomic and
full-length coding sequences (CDSs) of the three TaSG1 homoeologs. The PCR assays
were performed with high-fidelity Tks Gflex polymerase (TaKaRa, Japan) for 35
cycles (94°C for 1 min; cycles of 98°C for 10 s, 58°C for 15 s, and 68°C for 30 s;
followed by 68°C for 10 min). The PCR products were confirmed using 1% agarose
gels and visualized under ultraviolet light after ethidium bromide staining. The
purified PCR products were cloned into the pEASY-Blunt vector (TaKaRa, Japan) and
sequenced. DNAMAN software and the online tool Conserved Domain Search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) were used to analyze the nucleotide and amino acid sequences.

Phylogenetic Analysis

We downloaded the sequences of TaSG-D1 homologous proteins from various species, including both monocots and dicots, by performing a BLASTP (nr) search in the National Center for Biotechnology Information (NCBI) database (Supplemental File 2). The amino acid sequences were aligned with ClustalW, and a phylogenetic tree was constructed using the neighbor-joining method with MEGA 6.06 software with default parameters (Tamura et al., 2013). The evolutionary distances were calculated using Poisson model. The phylogeny test was computed using bootstrap method with 1000 replications (Supplemental File 3).

Reverse Transcription Quantitative PCR Analysis

For expression analysis, 13 different tissues from HS2, and leaves from transgenic wheat lines and Arabidopsis lines were collected from at least three plants per biological replicate for RNA extraction. Total RNA was extracted from the samples using the standard TRIzol RNA isolation protocol (Invitrogen, USA). The detailed protocols and procedures were as described by Han et al. (2016). RT-qPCR was performed using SYBR Green PCR Master Mix (TaKaRa, Tokyo, Japan) with a CFX96 Real-Time PCR Detection System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). The RT-qPCR conditions and analytical methods were the same as those used in Wang et al. (2018). The wheat β-ACTIN gene (Paolacci et al., 2009) was used as an endogenous control. The specific primer pairs used for amplification are listed in Supplemental Data Set 10. Each experiment was performed with three biological replicates.

Vector Construction and Plant Transformation

For wheat, the full-length CDS of TaSG-D1 and Tasg-D1 of HS2 and ND4332 were amplified using specific primer pairs and inserted into the pWMB110 vector via homologous recombination technology with a ClonExpress II One Step Cloning Kit (Vazyme, China). The sequencing-confirmed vectors were transformed into
15-day-old immature wheat embryos via *Agrobacterium*-mediated transformation.

For Arabidopsis, the 35S: TaSG-D1-GFP and 35S: Tasg-D1-GFP constructs were generated by inserting the full-length CDS of HS2 and ND4332 into a modified pCAMBIAsuper1300 vector containing the green fluorescent protein (GFP) gene. The resulting vectors were introduced into *Agrobacterium tumefaciens* GV3101 and transformed into wild-type Arabidopsis plants using the floral dip method (Clough and Bent, 1998). All primers used for PCR amplification are listed in Supplemental Data Set 10.

Chemical Treatment of Arabidopsis Seedlings

As described by Peng et al. (2008), seeds from two independent transgenic Arabidopsis lines of T2 generation were germinated on ½-strength Murashige and Skoog (MS) medium supplemented with 2 μM brassinazole (BRZ, SML1406, Sigma), a specific inhibitor of BR biosynthesis, and grown in a greenhouse at 22°C under a 16/8-h light/dark cycle for 2 weeks. The seedlings were transferred to 1/2 MS liquid medium containing 1 mM BL, and incubated for 0 h, 3 h, 6 h, 9 h and 12 h prior to immunoblot analysis.

Immunoblot Analysis

Transgenic Arabidopsis seedlings grown on 1/2 MS medium with or without chemical treatment were collected, transferred to liquid nitrogen, and ground into a fine powder. Total protein was extracted from the samples via incubation at 100°C for 10 min in 5X sodium dodecyl sulfate-polyacrylamide gene electrophoresis (SDS-PAGE) sample buffer (Zhang, et al., 2017), followed by centrifugation at 12,000 g for 10 min at room temperature. The protein samples were separated in an 8% SDS-PAGE gel for 1 h and 10 min, transferred to a polyvinylidene difluoride membrane (Millipore), and blocked with 5% fat-free milk in Tris-buffered saline with 0.1% Tween-20 (TBST) (Guo et al., 2015) for 1 h. The membrane was incubated for 1 h in antibodies (anti-ACTIN antibody (A0480, Sigma) and anti-GFP antibody (ab290, Abcam) diluted 1:5000), washed three times (10 min each) with TBST, incubated with secondary antibody diluted 1:5000 for 1 h, and washed three times (5 min each) with TBST. Specific protein bands were visualized with Immobilon Western Chemiluminescent horseradish peroxidase substrate (http://www.millipore.com). ACTIN served as a
Flour Extraction Experiment

The flour extraction rate was examined using 300 g of seeds from HS2, ND4332, and two RILs harvested in Beijing in 2017. The thousand-grain weight of HS and ND4332 was 67.4 g and 25.0 g, respectively, whereas the two RILs had the same thousand-grain weight (31.0 g). Seed moisture content was measured with a Grain analyzer machine (FOSS Infratec 1241, Denmark), and water was added until the moisture content rose to 14%. The seeds were stored at room temperature for 24 h before starting the flour extraction experiment using a flour-milling machine (Chopin Moulin CD1, France). Each sample was performed with three biological replicates.

Finally, ANOVA was performed to calculate differences in flour extraction rates using SPSS 22.0 software with default parameters. Asterisks indicate significant differences determined by ANOVA. *, $P < 0.05$; **, $P < 0.01$.

Accession Numbers

Sequence data from this article for RT-qPCR can be found in the Ensembl Plants data library or National Center for Biotechnology Information data library (NCBI) under the following accession numbers: TaD11, TraesCS2B02G350400; TaBrd2, TraesCS7A02G559400; TaD2, TraesCS3D02G106100; TaDwarf4, TraesCS4B02G234100; TaBRI1, TraesCS3D02G246500; TaBZR1, TraesCS2A02G187800; TaTUD1, TraesCS4A02G060800; TaRAVL1, TraesCS2D02G392400; TaDLT, TraesCS4A02G430600; AtActin, NP_175350.1; TaActin, TraesCS5B02G124100. Sequences used for phylogenetic analysis can be found in NCBI under the following accession numbers: OsGSK1, Q9LWN0.1; OsGSK2, XP_015637571.1; Aegilops tauschii (AeGSK), XP_020190077.1; Hordeum vulgare (HvGSK2.1), BAJ91341.1; Brachypodium distachyon (BdGSK1), XP_003565257.1; Oryza sativa, XP_015617780.1; Sorghum bicolor (SbGSK1), XP_002454973.1; Zea mays, NP_001131812.1; Arabidopsis thaliana (AtBIN2), NP_193606.1; Brassica napus, XP_013702388.1; Ananas comosus, XP_020097081.1; Panicum miliaceum, RLM91534.1; Chlamydomonas reinhardtii, PNW74746.1; Vitis
vinifera, XP_010657061.1; Nelumbo nucifera, XP_010274430.1; Elaeis guineensis, XP_010915474.1; Citrus sinensis, XP_006468992.1; Ipomoea nil, XP_019194482.1; Carica papaya, XP_021898006.1; Musa acuminate, XP_009394828.1; Daucus carota, XP_017248488.1; Helianthus annuus, XP_022002937.1; Solanum tuberosum, XP_006345509.1; Solanum lycopersicum, XP_004240041.1; Nicotiana tabacum, NP_001312816; Populus trichocarpa, XP_002320754.2; Glycine max, XP_003528879.1; Ziziphus jujube, XP_015874161.1; Hevea brasiliensis, XP_021678477.1; Camellia sinensis, XP_028055688.1; Sesamum indicum, XP_011082988.1; Malus domestica, XP_008383613.1; Medicago truncatula, XP_003596712.2; Prunus persica, XP_007211435.1; Morus notabilis, EXC00262.1.

Genome resequencing data of all samples were deposited in the Bioproject at the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA533588.
Supplemental Data

Supplemental Figure 1. Sequence analysis of TaSG-D1 in different species.

Supplemental Figure 2. Expression analysis of TaSG-D1 and its homoeologs.

Supplemental Figure 3. Distribution of grain length in the segregating population.

Supplemental Figure 4. Sequence analysis of TaSG-D1 in various EMS mutants.

Supplemental Figure 5. Sequence analysis and phenotypic characterization of NC4 and the EMS mutant IIA236.

Supplemental Figure 6. Functional analysis of TaSG-D1 and Tasg-D1 in Arabidopsis.

Supplemental Figure 7. Grain morphology of the parents and six RILs.

Supplemental Figure 8. Flour extraction rate comparison analysis of RILs and their parents.

Supplemental Data Set 1. Phenotypic performance of HS2 and ND4332.

Supplemental Data Set 2. Genotype data of RIL population and recombinants.

Supplemental Data Set 3. Comparative analysis of orthologous genes between wheat and rice at Tasg-D1 locus.

Supplemental Data Set 4. Detailed information about the 13 annotated high-confidence genes in the 1.01-Mb region.

Supplemental Data Set 5. Statistical analysis of the effect of Tasg-D1 on agronomic traits in a segregating population differing in grain shape.

Supplemental Data Set 6. Origin and identity of the T. sphaerococcum wheat accessions (AABBDD) used for the allele frequency analysis.

Supplemental Data Set 7. Origin and identity of the Ae. tauschii accessions (DD) used for the allele frequency analysis.
Supplemental Data Set 8. Origin and identity of the Chinese wheat accessions (AABBDD) used for the allele frequency analysis.

Supplemental Data Set 9. Origin and identity of the wheat accessions from other countries (AABBDD) used for the allele frequency analysis.

Supplemental Data Set 10. Primers used in this study.

Supplemental File 1. Statistical analysis.

Supplemental File 2. Text file of the alignment used for the phylogenetic analysis shown in Supplemental Figure 1.

Supplemental File 3. Machine-readable tree file of the phylogenetic analysis.
ACKNOWLEDGEMENTS

We thank Dr. Ligeng Ma (Capital Normal University, China) for providing the seeds and for information about NC4 and the IIA236 mutant, Dr. Yuming Wei (Sichuan Agricultural University, China) for providing the seeds and for information about T. sphaerococcum wheat accessions, and Na Song (China Agricultural University) for her help with wheat transformation. We are also grateful to Dr. Zhenqi Su for editing the manuscript.

This work was supported by the Major Program of the National Natural Science Foundation of China (91935304 and 31991210) and the National Key Research and Development Program of China (2017YFD0101004).

AUTHOR CONTRIBUTIONS

Q.S. and Z.N. conceived the project, X.C. and R.X. performed the experiment, X.C., M.X., R.X., Z.C., W.C., L.C., H.X., L.J. and Z.F. collected the plant materials; X.C., M.X. Z.W., H.P., Y.Y., Z.H. and W.G. analyzed the data; M.X. X.C., Z.N. and Q.S. wrote the manuscript.
FIGURE LEGENDS

Figure 1. Characterization and map-based cloning of the semispherical grain gene *Tasg-D1*.

(A) Plant architecture of HS2 and ND4332. Scale bar, 10 cm. (B) Spike, spikelet and grain morphology of HS2 and ND4332. Scale bar, 5 cm, 5 mm and 5 mm, respectively. (C) The *Tasg-D1* locus was mapped between markers *Xgdm72* and *Xgwm341* on chromosome 3DS near the centromeric region. (D) High-resolution linkage map of *Tasg-D1*. (E) The *Tasg-D1* gene was fine-mapped to a 1.01-Mb region between markers 3DS-68 and 3DS-94 using recombinants. The number of recombinants between the molecular marker and *Tasg-D1* is indicated. (F) Analysis of genomic architecture and grain shape analysis for each recombinant type. The number of recombinants used for phenotypic analysis was indicated on the right. The black and white rectangles represent the homozygous ND4332 and HS2 regions, respectively. (G) Predicted high-confidence genes in the mapping region according to the International Wheat Genome Sequencing Consortium (IWGSC) wheat genome. Colored arrows indicate the orientation and order of the annotated genes. (H) Gene structure and sequence analysis of *Tasg-D1* between HS2 and ND4332. The SNP information is indicated in red.

Figure 2. Functional analysis of *Tasg-D1*.

(A) Gross morphology of ND4332 and its three independent EMS mutants. Scale bar, 10 cm. (B) to (C) Spikelet and grain morphology of ND4332 and the mutants. Scale bar, 5 mm and 5 mm, respectively. 20 grains were aligned for photograph. (D) to (I) ANOVA of plant height, spike length, spikelet density, thousand-grain weight, grain length, and grain length/width ratio between ND4332 and the mutants. 10 plants were selected for trait analysis. (J) Gross morphology of Fielder (control), OE-*Tasg-D1* and OE-*TaSG-D1* transgenic plants. Scale bar, 10 cm. (K) to (L) Spikelet and grain morphology of Fielder (control), OE-*Tasg-D1* and OE-*TaSG-D1*, respectively. Scale bar, 5 mm and 5 mm, respectively. 20 grains were aligned for photograph. (M) to (R) ANOVA of plant height, spike length, spikelet density, thousand-grain weight, grain length and grain length/width ratio among Fielder, OE-*Tasg-D1* and OE-*TaSG-D1*. Eight plants were selected for data analysis. Values are means, with bars showing the s.d. ** and * indicate significant differences at the 1% and 5% levels, respectively.
Figure 3. Effects of point mutations in TaSG-D1 on wheat.

(A) and (B) Comparison of root length and dry mass between NIL-Tasg-D1 and NIL-TaSG-D1 with different concentrations of BL at the seedling stage. NIL-Tasg-D1 and NIL-TaSG-D1 are recombinants with 90% background similarity, identified from the fine-mapping population. The BL concentrations were 0, 0.001, 0.01, and 0.1 μM, respectively. Three independent biological replicates were used (5 plants per treatment). (C) Expression analysis of BR biosynthesis-related and signaling-related genes in Fielder (control), OE-Tasg-D1 and OE-TaSG-D1, respectively. TaD11, TaBrd2, TaD2, and TaDwarf4 are BR biosynthesis-related genes. TaBRI1, TaBZR1, TaTUD1, TaRAVL1, and TaDLT are BR signaling-related genes. Values are means, with bars showing the s.d. (D) and (E) Scanning electron microscopy of grain pericarp in HS2 and ND4332 and statistical analysis. Scale bar, 100 μm. A minimum of 100 cells per sample were measured using the instrument’s software. Each parent was performed with three biological replicates. ANOVA method was conducted for statistical analysis. Values are means, with bars showing the s.d. Asterisks indicate significance determined by ANOVA. *, P < 0.05; **, P < 0.01.

Figure 4. Haplotype analysis of TaSG-D1.

Three types of TREE domains were detected in 898 wheat accessions with varying ploidy levels. I indicates the HS2-type allele; II indicates the ND4332-type allele; and III indicates the third type in which the TREE domain was changed to TGEE.

Figure 5. Phenotypic comparison of the parents and six RILs.

(A) to (D) ANOVA of plant height, grain length/width ratio, number of fertile spikelets per spike, and thousand grain weight, among HS2, ND4332, and six RILs. Asterisks indicate significance determined by ANOVA. *, P < 0.05; **, P < 0.01.

REFERENCES

Appels, R., Eversole, K., Feuillet, C. et al. (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.

Chai, L., Chen, Z., Bian, R., Zhai, H., Cheng, X., Peng, H., Yao, Y., Hu, Z., Xin, M., Guo, W., Sun, Q., Zhao, A., and Ni, Z. (2018). Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling
phase on the short arm of chromosome 2D of common wheat (*Triticum aestivum* L.).

Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L.,
Wang, H., Zhao, M., and Chu, C. (2015). Control of grain size and rice yield
by *GL2*-mediated brassinosteroid responses. Nat. Plants 2: 15195.

Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You,
M., Sun, Q., and Ni, Z. (2015). Identification and characterization of a high kernel
weight mutant induced by gamma radiation in wheat (*Triticum aestivum* L.). BMC
Genet. 16: 127.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for
Agrobacterium-mediated transformation of *Arabidopsis thaliana*. Plant J. 16:
735-743.

Ellerton, S. (1939). The origin and geographical distribution of *Triticum*
sphaerococcum per and its cytogenetical behaviour in crosses with *T vulgare* vill. J.
of Genet. 38: 307-324.

Evers, A., Cox, R., Shaheedullah, M., and Withey, R. (1990). Predicting milling
extraction rate by image analysis of wheat grains. Aspects of Applied Biol. 25:
417-426.

Gasperini, D., Greenland, A., Hedden, P., Dreos, R., Harwood, W., and Griffiths,
S. (2012). Genetic and physiological analysis of *Rht8* in bread wheat: an alternative
source of semi-dwarfism with a reduced sensitivity to BR. J. Exp. Bot. 63: 4419-4436.

Gegas, V.C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers,
L., Doonan, J.H., and Snape, J.W. (2010). A genetic framework for grain size and
shape variation in wheat. The Plant Cell 22: 1046-1056.

Dvořák J. (1976). The relationship between the genome of *Triticum urartu* and the A
and B genomes of *Triticum aestivum*. Can. J. Genet. Cytol. 18: 371-377.

Dvorak J., and Akhunov E.D. (2005). Tempos of gene locus deletions and
duplications and their relationship to recombination rate during diploid and polyploid
evolution in the *Aegilops-Triticum* alliance. Genetics 171: 323-332.
Dvorak J., Luo M.C., Yang Z.L., and Zhang H.B. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657-670.

Faris J.D., Simons K.J., Zhang Z., and Gill B.S. (2005). The wheat super domestication gene Q. Wheat Inf Serv. 100:129-148.

Gao, X., Zhang, J., Zhang, X., Zhou, J., Jiang, Z., Huang, P., Tang, Z., Bao, Y., Cheng, J., Tang, H., Zhang, W., Zhang, H., Huang, J. (2019). Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. The Plant Cell 31: 1077-1093.

Guo, W., Yang, H., Liu, Y., Gao, Y., Ni, Z., Peng, H., Xin, M., Hu, Z., Sun, Q., and Yao, Y. (2015). The wheat transcription factor TaGAMyb recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant J. 84: 347-359.

Han, Y., Xin, M., Huang, K., Xu, Y., Liu, Z., Hu, Z., Yao, Y., Peng, H., Ni, Z., and Sun, Q. (2016). Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytologist 209: 721-732.

Hosono, S. (1954). The classification and the distribution of wheat. Study of Wheat.

Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Shi, Z., Pan, J., Zhang, D., Kang, S., Zhu, L., Dong, G., Guo, L., Zeng, D., Zhang, G., Xie, L., Xiong, G., Li, J., and Qian, Q. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8:1455-1465.

Huang, H., Jiang, W., Hu, Y., Wu, P., Zhu, J., Liang, W., Wang, Z., and Lin, W. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Mol. Plant 6: 456-469.

Huang S., Sirikhachornkit A., Su X., Faris J., Gill B., Haselkorn R., and Gornicki P. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA 99: 8133-8138.

Jiang, W., Huang, H., Hua, Y., Zhu, S., Wang, Z., and, and Lin, W. (2013).
Brassinosteroid Regulates Seed Size and Shape in Arabidopsis. Plant Physiol. 162: 1965-1977.

Josekutty, P.C. (2008). Defining the genetic and physiological basis of *Triticum sphaerococcum* Perc. University of Canterbury, New Zealand.

Kihara H. (1944). Discovery of the DD-analyser, one of the ancestors of *Triticum vulgare*. Agric. Hortic. 19: 889-890.

Koba, T. (1978). Mapping of the s and Ch2 genes on chromosome 3D of common wheat. Wheat Inf. Serv. 45: 18-20.

Koh, S., Lee, S.C., Kim, M.K., Koh, J.H., Lee, S., An, G., Choe, S., and Kim, S.R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 65: 453-466.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754-1760.

Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-1301.

Mac Key J. (1954). Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40: 65-180.

McFadden E.S., and Sears E.R. (1946). The origin of *Triticum spelta* and its free-threshing hexaploid relatives. J. Hered. 37: 81-107.

Miczynski, K. Jr. (1930), "0 dziedziczeniu sie niektórych cech u pszenioy w krzyzowkach *Triticum pyramidale* x *T. durum* i *T. vulgare* x *T. sphaerococcoum").

Roczn.Nauk, rol. 23: 27-62.

Mori, N., Ohta, S., Chiba, H., Takagi, T., Niimi, Y., Shinde, V., Kajale, M.D., and Osada, T. (2013). Rediscovery of Indian dwarf wheat (*Triticum aestivum* L. ssp sphaerococcum (Perc.) MK.) an ancient crop of the Indian subcontinent. Genetic Resources and Crop Evolution 60: 1771-1775.

Paolacci, A.R., Tanzarella, O.A., Porceddu, E., and Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR
normalization in wheat. BMC Mol. Biol. 10: 11.

Peng, P., Yan, Z.Y., Zhu, Y.Y., and Li, J.M. (2008). Regulation of the Arabidopsis GSK3-like kinase brassinosteroid-insensitive 2 through proteasome-mediated protein degradation. Mol. Plant 1: 338-346.

Percival, J. (1921). The Wheat Plant, a Monograph. Duckworth and Co, London.

Pont C., and Salse J. (2017). Wheat paleohistory created asymmetrical genomic evolution. Curr. Opin. Plant Biol. 36: 29-37.

Rao M.P. (1972). Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf Serv. 35: 9.

Rao, M.P. (1977). Mapping of the Sphaerococcum gene 'S' on chromosome 3D of wheat. Cereal Research Commun.: 15-17.

RH, B. (1922). The Wheat Plant: A Monograph. Nature 109: 366-368.

Salina, E., Borner, A., Leonova, I., Korzun, V., Laikova, L., Maystrenko, O., and Roder, M.S. (2000). Microsatellite mapping of the induced sphaerococcoid mutation genes in *Triticum aestivum*. Theor. Appl. Genet. 100: 686-689.

Schmidt, J.W. and Johnson, V.A. (1963) A sphaerococcum-like tetraploid wheat. Crop Science 3: 98-99

Schmidt, J.W., and Johnson, V.A. (1966). Inheritance of the sphaerococcum effect in tetraploid wheat. Wheat Information Service 22: 5-6.

Schmidt, J.W., Weibel, D.E., and Johnson, V.A. (1963). Inheritance of an Incompletely Dominant Character in Common Wheat Simulating *Triticum sphaerococcum* L. Crop Science 3: 261-264.

Sears, E.R. (1947). The sphaerococcum gene in wheat. Genetics 32: 102-103.

Singh, D. (1987) Mapping of the complex *T. sphaerococcum* locus. Wheat Information Service 64: 17-20

Singh, R. (1946). *Triticum sphaerococcum* Perc.(Indian dwarf wheat). Indian J. Genet. 6: 34-37.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Boil. Evol. 30: 2725-2729.
Tian, P., Liu, J., Mou, C., Shi, C., Zhang, H., Zhao, Z., Lin, Q., Wang, J., Wang, J., Zhang, X., Guo, X., Cheng, Z., Zhu, S., Ren, Y., Lei, C., Wang, H., and Wan, J. (2018). GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. J Integr. Plant Biol. 61: 1171-1185.

Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., and Chu, C. (2012). DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. The Plant Cell 24: 2562-2577.

Wang, H., Hu, Z., Huang, K., Han, Y., Zhao, A., Han, H., Song, L., Fan, C., Li, R., Xin, M., Peng, H., Yao, Y., Sun, Q., and Ni, Z. (2018). Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. Plant J. 95: 976-987.

Wu, Y., Fu, Y., Zhao, S., Gu, P., Zhu, Z., Sun, C., and Tan, L. (2016). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biol. J. 14: 377-386.

Zhang, N., Yin, Y., Liu, X., Tong, S., Xing, J., Zhang, Y., Pudake, R.N., Izquierdo, E.M., Peng, H., Xin, M., Hu, Z., Ni, Z., Sun, Q., and Yao, Y. (2017). The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins. Plant Physiol. 175: 1878-1892.

Zhu, X., Liang, W., Cui, X., Chen, M., Yin, C., Luo, Z., Zhu, J., Lucas, W.J., Wang, Z., and Zhang, D. (2015). Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J. 82: 570-581.
Figure 1. Characterization and map-based cloning of the semispherical grain gene *Tasg-D1*.

(A) Plant architecture of HS2 and ND4332. Scale bar, 10 cm. (B) Spike, spikelet and grain morphology of HS2 and ND4332. Scale bar, 5 cm, 5 mm and 5 mm, respectively. (C) The *Tasg-D1* locus was mapped between markers *Xgdm72* and *Xgwm341* on chromosome 3DS near the centromeric region. (D) High-resolution linkage map of *Tasg-D1*. (E) The *Tasg-D1* gene was fine-mapped to a 1.01-Mb region between markers 3DS-68 and 3DS-94 using recombinants. The number of recombinants between the molecular marker and *Tasg-D1* is indicated. (F) Analysis of genomic architecture and grain shape analysis for each recombinant type. The number of recombinants used for phenotypic analysis was indicated on the right. The black and white rectangles represent the homozygous ND4332 and HS2 regions, respectively. (G) Predicted high-confidence genes in the mapping region according to the International Wheat Genome Sequencing Consortium (IWGSC) wheat genome. Colored arrows indicate the orientation and order of the annotated genes. (H) Gene structure and sequence analysis of *Tasg-D1* between HS2 and ND4332. The SNP information is indicated in red.
Figure 2. Functional analysis of *Tasg-D1*.

(A) Gross morphology of ND4332 and its three independent EMS mutants. Scale bar, 10 cm. (B) to (C) Spikelet and grain morphology of ND4332 and the mutants. Scale bar, 5 mm and 5 mm, respectively. 20 grains were aligned for photograph. (D) to (I) ANOVA of plant height, spike length, spikelet density, thousand-grain weight, grain length, and grain length/width ratio between ND4332 and the mutants. 10 plants were selected for trait analysis. (J) Gross morphology of Fielder (control), OE-*Tasg-D1* and OE-*TaSG-D1* transgenic plants. Scale bar, 10 cm. (K) to (L) Spikelet and grain morphology of Fielder (control), OE-*Tasg-D1* and OE-*TaSG-D1*, respectively. Scale bar, 5 mm and 5 mm, respectively. 20 grains were aligned for photograph. (M) to (R) ANOVA of plant height, spike length, spikelet density, thousand-grain weight, grain length and grain length/width ratio among Fielder, OE-*Tasg-D1* and OE-*TaSG-D1*. Eight plants were selected for data analysis. Values are means, with bars showing the s.d. ** and * indicate significant differences at the 1% and 5% levels, respectively.
Figure 3. Effects of point mutations in *TaSG-D1* on wheat.

(A) and (B) Comparison of root length and dry mass between NIL-*Tasg-D1* and NIL-*TaSG-D1* with different concentrations of BL at the seedling stage. NIL-*Tasg-D1* and NIL-*TaSG-D1* are recombinants with 90% background similarity, identified from the fine-mapping population. The BL concentrations were 0, 0.001, 0.01, and 0.1 μM, respectively. Three independent biological replicates were used (5 plants per treatment). (C) Expression analysis of BR biosynthesis-related and signaling-related genes in Fielder (control), OE-*Tasg-D1* and OE-*TaSG-D1*, respectively. *TaD11*, *TaBrd2*, *TaD2*, and *TaDwarf4* are BR biosynthesis-related genes. *TaBRI1*, *TaBZR1*, *TaTUD1*, *TaRAVL1*, and *TaDLT* are BR signaling-related genes. Values are means, with bars showing the s.d. (D) and (E) Scanning electron microscopy of grain pericarp in HS2 and ND4332 and statistical analysis. Scale bar, 100 μm. A minimum of 100 cells per sample were measured using the instrument’s software. Each parent was performed with three biological replicates. ANOVA method was conducted for statistical analysis. Values are means, with bars showing the s.d. Asterisks indicate significance determined by ANOVA. *, $P < 0.05$; **, $P < 0.01$.
Three types of TREE domains were detected in 898 wheat accessions with varying ploidy levels. I indicates the HS2-type allele; II indicates the ND4332-type allele; and III indicates the third type in which the TREE domain was changed to TGEE.

Figure 4. Haplotype analysis of TaSG-D1.

Aegilops tauschii
A C C C G T G A G G A A
I TREE 107

T. aestivum L.
A C C C G T G A G G A A
I TREE 656

T. spelta L.
A C C C G T G A G G A A
I TREE 121

T. spheerococcum Perc.
A C C C G T G A G A A A
II TREK 10

T. spheerococcum Perc.
A C C G G T G A G G A A
III TGEE 4
Figure 5. Phenotypic comparison of the parents and six RILs.

(A) to (D) ANOVA of plant height, grain length/width ratio, number of fertile spikelets per spike, and thousand grain weight, among HS2, ND4332, and six RILs. Asterisks indicate significance determined by ANOVA. *, $P < 0.05$; **, $P < 0.01$.
Appels, R., Eversole, K., Feuillet, C. et al. (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.

Chai, L., Chen, Z., Bian, R., Zhai, H., Cheng, X., Peng, H., Yao, Y., Hu, Z., Xin, M., Guo, W., Sun, Q., Zhao, A., and Ni, Z. (2018). Dissection of two quantitative trait loci with pleiotropic effects on plant height and spike length linked in coupling phase on the short arm of chromosome 2D of common wheat (Triticum aestivum L.). Theor. Appl. Genet. 131: 2621-2637.

Che, R., Tong, H., Shi, B., Liu, Y., Fang, S., Liu, D., Xiao, Y., Hu, B., Liu, L., Wang, H., Zhao, M., and Chu, C. (2015). Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2: 15195.

Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You, M., Sun, Q., and Ni, Z. (2015). Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC Genet. 16: 127.

Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743.

Ellerton, S. (1939). The origin and geographical distribution of Triticum sphaerococcum perc and its cytogenetical behaviour in crosses with T vulgare vill. J. of Genet. 38: 307-324.

Evers, A., Cox, R., Shaheedullah, M., and Wtthey, R. (1990). Predicting milling extraction rate by image analysis of wheat grains. Aspects of Applied Biol. 25: 417-426.

Gasperini, D., Greenland, A., Hedden, P., Dreos, R., Harwood, W., and Griffiths, S. (2012). Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to BR. J. Exp. Bot. 63: 4419-4436.

Gegas, V.C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J.H., and Snape, J.W. (2010). A genetic framework for grain size and shape variation in wheat. The Plant Cell 22: 1046-1056.

Dvořák, J. (1976). The relationship between the genome of Triticum urartu and the A and B genomes of Triticum aestivum. Can. J. Genet. Cytol. 18: 371-377.

Dvorak J., and Akhunov E.D. (2005). Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171: 323-332.

Dvorak J., Luo M.C., Yang Z.L., and Zhang H.B. (1998). The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97: 657-670.

Faris J.D., Simons K.J., Zhang Z., and Gill B.S. (2005). The wheat super domestication gene Q. Wheat Inf Serv. 100:129-148.

Gao, X., Zhang, J., Zhang, X., Zhou, J., Jiang, Z., Huang, P., Tang, Z., Bao, Y., Cheng, J., Tang, H., Zhang, W., Zhang, H., Huang, J. (2019). Rice qGL3/OsPPKL1 Functions with the GSK3/SHAGGY-Like Kinase OsGSK3 to Modulate Brassinosteroid Signaling. The Plant Cell 31: 1077-1093.
recruits histone acetyltransferase and activates the expression of a high-molecular-weight glutenin subunit gene. Plant J. 84: 347-359.

Han, Y., Xin, M., Huang, K., Xu, Y., Liu, Z., Hu, Z., Yao, Y., Peng, H., Ni, Z., and Sun, Q. (2016). Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat. New Phytologist 209: 721-732.

Hosono, S. (1954). The classification and the distribution of wheat. Study of Wheat.

Hu, J., Wang, Y., Fang, Y., Zeng, L., Xu, J., Shi, Z., Pan, J., Zhang, D., Kang, S., Zhu, L., Dong, G., Guo, L., Zeng, D., Zhang, G., Xie, L., Xiong, G., Li, J., and Qian, Q. (2015). A rare allele of GS2 enhances grain size and grain yield in rice. Mol. Plant 8:1455-1465.

Huang, H., Jiang, W., Hu, Y., Wu, P., Zhu, J., Liang, W., Wang, Z., and Lin, W. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Mol. Plant 6: 456-469.

Huang S., Sirikhachornkit A., Su X., Faris J., Gill B., Haselkorn R., and Gornicki P. (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc. Natl. Acad. Sci. USA: 8133-8138.

Jiang, W., Huang, H., Hua, Y., Zhu, S., Wang, Z., and Lin, W. (2013). Brassinosteroid Regulates Seed Size and Shape in Arabidopsis. Plant Physiol. 162: 1965-1977.

Josekutty, P.C. (2008). Defining the genetic and physiological basis of Triticum sphaerococcum Perc. University of Canterbury, New Zealand.

Kihara H. (1944). Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric. Hortic. 19: 889-890.

Koba, T. (1978). Mapping of the s and Ch2 genes on chromosome 3D of common wheat. Wheat Inf. Serv. 45: 18-20.

Koh, S., Lee, S.C., Kim, M.K., Koh, J.H., Lee, S., An, G., Choe, S., and Kim, S.R. (2007). T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 65: 453-466.

Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25: 1754-1760.

Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295: 1299-1301.

Mac Key J. (1954). Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40: 65-180.

McFadden E.S., and Sears E.R. (1946). The origin of Triticum spelta and its free-threshing hexaploid relatives. J. Hered. 37: 81-107.

Miczynski, K. Jr. (1930), "0 dziedziczeniu sie niektórych cech u pszeniow w krzyzowkach Triticum pyramidele x T. durum i T. vulgare x T. sphaerococcum." Roczn. Nauk, rol. 23: 27-62.
Evolution 60: 1771-1775.

Paolacci, A.R., Tanzarella, O.A., Porceddu, E., and Ciaffi, M. (2009). Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol. Biol. 10: 11.

Peng, P., Yan, Z.Y., Zhu, Y.Y., and Li, J.M. (2008). Regulation of the Arabidopsis GSK3-like kinase brassinosteroid-insensitive 2 through proteasome-mediated protein degradation. Mol. Plant 1: 338-346.

Percival, J. (1921). The Wheat Plant, a Monograph. Duckworth and Co, London.

Pont C., and Salse J. (2017). Wheat paleohistory created asymmetrical genomic evolution. Curr. Opin. Plant Biol. 36: 29-37.

Rao M.P. (1972). Mapping of the compactum gene C on chromosome 2D of wheat. Wheat Inf Serv. 35: 9.

Rao, M.P. (1977). Mapping of the Sphaerococcum gene 'S' on chromosome 3D of wheat. Cereal Research Commun.: 15-17.

RH, B. (1922). The Wheat Plant: A Monograph. Nature 109: 366-368.

Salina, E., Borner, A., Leonova, I., Korzun, V., Laikova, L., Maystrenko, O., and Roder, M.S. (2000). Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor. Appl. Genet. 100: 686-689.

Schmidt, J.W. and Johnson, V.A. (1963) A sphaerococcum-like tetraploid wheat. Crop Science 3: 98-99

Schmidt, J.W., Weibel, D.E., and Johnson, V. A. (1966). Inheritance of the sphaerococcum effect in tetraploid wheat. Wheat Information Service 22: 5-6.

Schmidt, J.W., and Johnson, V. A. (1966). Inheritance of an Incompletely Dominant Character in Common Wheat Simulating Triticum sphaerococcum L. Crop Science 3: 261-264.

Sears, E.R. (1947). The sphaerococcum gene in wheat. Genetics 32: 102-103.

Singh, D. (1987) Mapping of the complex T. sphaerococcum locus. Wheat Information Service 64: 17-20

Singh, R. (1946). Triticum sphaerococcum Perc.(Indian dwarf wheat). Indian J. Genet. 6: 34-37.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.

Tian, P., Liu, J., Mou, C., Shi, C., Zhang, H., Zhao, Z., Lin, Q., Wang, J., Wang, J., Zhang, X., Guo, X., Cheng, Z., Zhu, S., Ren, Y., Lei, C., Wang, H., and Wan, J. (2018). GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. J Integr. Plant Biol. 61: 1171-1185.
Tong, H., Liu, L., Jin, Y., Du, L., Yin, Y., Qian, Q., Zhu, L., and Chu, C. (2012). DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. The Plant Cell 24: 2562-2577.

Wang, H., Hu, Z., Huang, K., Han, Y., Zhao, A., Han, H., Song, L., Fan, C., Li, R., Xin, M., Peng, H., Yao, Y., Sun, Q., and Ni, Z. (2018). Three genomes differentially contribute to the seedling lateral root number in allohexaploid wheat: evidence from phenotype evolution and gene expression. Plant J. 95: 976-987.

Wu, Y., Fu, Y., Zhao, S., Gu, P., Zhu, Z., Sun, C., and Tan, L. (2016). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biol. J. 14: 377-386.

Zhang, N., Yin, Y., Liu, X., Tong, S., Xing, J., Zhang, Y., Pudake, R.N., Izquierdo, E.M., Peng, H., Xin, M., Hu, Z., Ni, Z., Sun, Q., and Yao, Y. (2017). The E3 Ligase TaSAP5 Alters Drought Stress Responses by Promoting the Degradation of DRIP Proteins. Plant Physiol. 175: 1878-1892.

Zhu, X., Liang, W., Cui, X., Chen, M., Yin, C., Luo, Z., Zhu, J., Lucas, W.J., Wang, Z., and Zhang, D. (2015). Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J. 82: 570-581.
A Single Amino Acid Substitution in STKc_GSK3 Kinase Conferring Semispherical Grains and Its Implications for the Origin of Triticum sphaerococcum Perc.

Xuejiao Cheng, Mingming Xin, Ruibin Xu, Zhaoyan Chen, Wenlong Cai, Lingling Chai, Huanwen Xu, Lin Jia, Zhiyu Feng, Zihao Wang, Huiru Peng, Yingyin Yao, Zhaorong Hu, Weilong Guo, Zhongfu Ni and Qixin Sun

Plant Cell; originally published online February 14, 2020;
DOI 10.1105/tpc.19.00580

This information is current as of May 7, 2020

Supplemental Data	/content/suppl/2020/02/14/tpc.19.00580.DC1.html
Permissions	https://www.copyright.com/ccc/openurl.do?sid=pd_hw1532298X&issn=1532298X&WT.mc_id=pd_hw1532298X
eTOCs	Sign up for eTOCs at:
	http://www.plantcell.org/cgi/alerts/ctmain
CiteTrack Alerts	Sign up for CiteTrack Alerts at:
	http://www.plantcell.org/cgi/alerts/ctmain
Subscription Information	Subscription Information for *The Plant Cell* and *Plant Physiology* is available at:
	http://www.aspbi.org/publications/subscriptions.cfm

© American Society of Plant Biologists
ADVANCING THE SCIENCE OF PLANT BIOLOGY