Coulomb interaction effects and electron spin relaxation in the 1d Kondo lattice model

Sebastian Smerat
Physics Department, Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, 80333 München, Germany

Herbert Schoeller
Institut für Theorie der Statistischen Physik and JARA-Fundamentals of Future Information Technology, RWTH Aachen University, D-52056 Aachen, Germany

Ian P. McCulloch
School of Physical Sciences, University of Queensland, QLD 4072, Australia

Ulrich Schollwöck
Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80333 München, Germany

(Dated: November 16, 2010)

We study the effects of the Coulomb interaction in the one dimensional Kondo lattice model on the phase diagram, the static magnetic susceptibility and electron spin relaxation. We show that onsite Coulomb interaction supports ferromagnetic order and nearest neighbor Coulomb interaction drives, depending on the electron filling, either a paramagnetic or ferromagnetic order. Furthermore we calculate electron quasiparticle life times, which can be related to electron spin relaxation and decoherence times, and explain their dependence on the strength of interactions and the electron filling in order to find the sweet spot of parameters where the relaxation time is maximized. We find that effective exchange processes between the electrons dominate the spin relaxation and decoherence rate.

PACS numbers: 71.10.Li, 71.27.+a, 73.21.-b, 73.21.Hb
Keywords: Kondo lattice, spinpolaron, quantum information

I. INTRODUCTION

Recently, the interest in nanoscale systems has been rapidly increasing. Among them are 13C carbon nanotubes, nanowires and carbon nanotubes filled with endohedral fullerenes or molecular magnets. The above mentioned systems have in common, that they consist of local spins (electron or nuclear spins) which interact via exchange interaction with itinerant conduction electrons. These are exactly the constituents of the one dimensional Kondo lattice model (KLM).

Interaction between the local spins in the KLM is generated effectively due to the hopping t of electrons and an onsite direct spin exchange J between the itinerant and localized spins, see Fig. 1. This interaction is a result of the competition of onsite singlet formation and an effective RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction. The order of the local spins due to the interaction is captured in the phase diagram of the KLM which is basically divided into three phases depending on J/t and the electron filling n ($n=1$ is half filling). At $n=1$ the system turns out to order ferromagnetically for arbitrary coupling strength. A ferromagnetic (FM) phase is established, if either J is large enough or n is small enough. Otherwise the local spin lattice is in the paramagnetic (PM) phase, because then the effective RKKY interaction dominates the system.

The mechanism of ferromagnetism in the KLM can also be understood in terms of an electron quasiparticle picture, where the quasiparticle is the so called spinpolaron, see Fig. 2. For a given FM order of the local spins in a 1d system it was shown that the itinerant electrons and the magnons of the local spin bath form a bound spinpolaron state which is detectable in transport measurements and was proposed as a long-living correlated many-body spin state forming possibly one part of a many-body spin qubit. In Ref. 15 it was shown for the case of a single conduction electron that a spinpolaron develops with a huge extent over the whole lattice leading to FM order in the ground state. In Ref. 17 this was extended to finite electron fillings and it was shown that long quasiparticle life times are connected with FM order of the local spins. In Ref. 14, the quasiparticle dynamics of the half filled KLM ($n=1$) have been examined as well. By means of a strong coupling expansion up to 11th order it has been possible to calculate the quasiparticle dispersion relation to good accuracy and it could be shown that the quasiparticles behave like nearly localized f-electrons due to the strong correlation of the conduction and localized electrons.

It is known that the main relaxation and decoherence
source of single electron spins in semiconductor based quantum dots arises from interactions with the nuclear spin background.\cite{18,25,26} An appropriate path to diminish the relaxation is the application of a large magnetic field, whereas the decoherence rate is reduced by state distribution narrowing\cite{15,25,26}. However, the initial preparation of the nuclear bath in a pure state (e.g. full polarization) is an experimental challenge. Recently, the idea was proposed to consider the nuclear bath at very low temperatures in the PM phase, which is mediated by many itinerant electrons via the RKKY-interaction.\cite{22,17,29} In Ref.\cite{22} it was shown that the Coulomb interaction in a 2d electron gas leads to an increased critical temperature of order $T \sim 1mK$ for the nuclear spins, which might be feasible in experiments. In Ref.\cite{20} a C13 carbon nanotube was studied. By approximating the conduction electrons by a Luttinger liquid and treating the large effective nuclear spins classically, the transition temperature between a helically ordered (FM for finite systems) and unordered spin lattice was calculated.\cite{20} It could be shown that a finite long-ranged Coulomb interaction is required to have a finite transition temperature,\cite{18,25,26} which is consistent with the Mermin-Wagner Theorem\cite{26} and its recent extension.\cite{22} Taking backaction effects of the nuclear lattice on the electron spins into account increases the transition temperature by another order of magnitude. This makes the KLM interesting for experiments, which are always performed at finite temperature.

These developments motivate the study of the KLM in the presence of a finite Coulomb interaction between the itinerant electrons. The simplest extension to the KLM in terms of lattice models is the onsite Coulomb interaction U. In the case of half-filling a finite U leads to the opening of a spin and charge gap.\cite{23} This work has been extended within a continuum Luttinger liquid approach to arbitrary fillings solved by bosonization.\cite{23} Lattice effects have been accounted for by means of a phononic field and therefore there is no real lattice involved in those calculations. Still, the authors of Ref.\cite{22} find the interesting result of a shift of the phase boundary between FM and PM phase, as expected.

In this paper, we use the density matrix renormalization group method\cite{27,28} (DMRG) to study ground state and dynamical properties of the one dimensional KLM for local spins with spin 1/2 including onsite and nearest neighbor Coulomb interaction. Our method benefits from being numerically exact, acting in the lattice space without any approximations and taking all backaction effects of the local spin lattice on the conduction electrons automatically into account. Furthermore it allows for calculations in a broad parameter regime and works especially well for one dimensional systems with open boundary conditions and finite lattices. Here we are particularly interested in finite lattices, since nanoscale systems have finite sizes and show corresponding effects.

From ground state calculations we show that onsite Coulomb interaction lowers the value of J required for a transition from a PM to a FM ground state. For small $n \lesssim 0.4$ nearest neighbor Coulomb interaction V acts the same way on the magnetic order as U does. For $n \gtrsim 0.4$ they compete with each other. As a different sensor of magnetic order we utilize the static electron spin susceptibility. For the PM phase a peak at $2k_F$ is expected (which diverges for $L \to \infty$), while for the FM order a minimum at the smallest possible quasimomentum q, which is finite for finite lattices, should emerge. This was stated similarly in Refs.\cite{2,20} for small coupling constants J.

Finally, we calculate the quasiparticle life-time broadening Γ_+ of an electron, its spin oriented in the opposite direction than that of all other electrons in the ground state. In Ref.\cite{17} it was shown in the FM phase and for electronic densities below half-filling that the effective interaction between spinnpolaron states is weak proving that spinnpolaron (spin-down) states are indeed well-defined quasiparticles with small life-time broadening Γ_- in the presence of many electrons. However we will show here that the spin relaxation and decoherence rates will be dominated by the life-time broadening Γ_+ of the opposite spin-up state, which is higher in energy. We will consider a single spin-up electron with quasimomentum k on top of the FM ground state of the 1d KLM. Although this spin has the same direction as the underlying local spins and, thus, can not decay by direct exchange with the local spins, we find that Γ_+ is dominated by the effective exchange interaction with the sea of spinnpolaron spin-down states in the system. As a consequence, Γ_+ turns out to be much larger than Γ_- and dominates the spin relaxation as well as the spin decoherence rate (the pure dephasing term arising from the life-time broadening Γ_- of the spin down spinnpolaron state is negligible). We analyze the life-time broadening Γ_+ depending on J, U, n and the quasimomentum k and give explanations for the observations. Although the spin relaxation rate increases significantly in the presence of many electrons we will show in appropriate parameter regimes that the spin relaxation rate can be several order of magnitudes smaller in the FM phase compared to the PM phase.

FIG. 1. (Color online) The Kondo lattice model. The conduction electrons are depicted in the upper row (red) and the localized electrons are depicted as bold arrows in the lower row (grey).
II. MODEL

The Hamiltonian of the KLM with Coulomb interaction is sketched in Fig. 1 and defined as

\[H = -t \sum_{\sigma,i=1}^{L-1} \left(c_{i\sigma}^\dagger c_{i+1\sigma} + c_{i+1\sigma}^\dagger c_{i\sigma} \right) + J \sum_{i=1}^{L} \mathbf{S}_i \cdot \mathbf{s}_i + U \sum_{i=1}^{L} n_{i\uparrow} n_{i\downarrow} + V \sum_{i=1}^{L-1} n_{i\uparrow} n_{i+1\downarrow} \]

(1)

where \(t \) is the hopping integral, \(L \) the lattice size, \(c_{i\sigma}^\dagger \) the electron annihilation (creation) operator at site \(i \) with spin \(\sigma \), \(J > 0 \) the antiferromagnetic Kondo exchange coupling, \(\mathbf{S}_i \) the spin operator of the local spin at site \(i \), \(\mathbf{s}_i \) the spin operator of the conduction electron at site \(i \), \(U \) the onsite Coulomb interaction constant, \(n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma} \), \(V \) the nearest neighbor Coulomb interaction constant and \(n_i = n_{i\uparrow} + n_{i\downarrow} \). All spins are considered to be spin 1/2. We define the filling by \(n = N/L \), where \(N \) denotes the total number of itinerant electrons (\(n = 1 \) corresponds to half-filling).

III. METHOD

A. DMRG

The DMRG method is a well established numerically exact method for the calculation of ground states, dynamical properties and time evolution of one dimensional lattice systems. Our algorithm is formulated in a matrix-product language\(^{32,33}\) and makes use of Abelian, e.g. particle number conservation (\(U(1) \)) and non-Abelian, e.g., total spin conservation (\(SU(2) \)), symmetries. Depending on the symmetry sector, the use of \(SU(2) \) symmetries in addition to \(U(1) \) symmetries allows for computations up to 10 times faster.

B. Ground states

Calculating the ground state of a given system is synonymous to finding the symmetry sector with its corresponding quantum numbers, where the energy is minimal. The ground state phase diagram of the KLM is shown in Fig. 3 in dependence of the Kondo constant \(J \) and the filling \(n \). Fixing \(J \) and \(n \) leaves the total spin quantum number \(S \) as the only free parameter, which distinguishes the order of the ground state, i. e., \(S = (L - N)/2 \) complies with FM order of local spins and \(S = 0 \) with PM order. We choose \(SU(2) \) symmetry for the spin here, first for computational reasons and second it has the benefit that the states with different total spin quantum numbers are non-degenerate in this case, whereas in \(U(1) \) symmetry a partial degeneracy in the total spin in the direction of quantization exists. Considering Coulomb interaction in addition, we have another two variables that have to be fixed in advance and this means we have a quadruple of variables \(\{ n, J, U, V \} \), or a four dimensional phase diagram.

C. Susceptibility

We calculate the static electron spin susceptibility \(\chi(\omega = 0) \) by means of Green's functions and the application of dynamical DMRG\(^{32,33}\) with \(GMRES \)\(^{34,35}\). Details of our implementation can be found in Ref. 17.

The definition of the spin susceptibility is

\[\chi_q^{\pm -}(\omega) = -\frac{1}{L} \left[\langle 0 | \hat{s}_q^+ \frac{1}{H - E_0 + \omega - i\eta} \hat{s}_q^- | 0 \rangle + \langle 0 | \hat{s}_q^- \frac{1}{H - E_0 + \omega + i\eta} \hat{s}_q^+ | 0 \rangle \right], \]

(2)

with (for open boundary conditions)

\[\hat{s}_q = \sum_{i=1}^{L} s_i \sin \left(\frac{q i \pi}{L + 1} \right), \]

where \(H \) is the Hamiltonian given in Eq. 1, \(| 0 \rangle \) is the ground state of the system, and \(E_0 \) the ground state energy. \(\eta \) is a finite artificial broadening factor, needed to avoid finite size effects\(^{36}\) and which can be chosen smaller with larger lattice size.

D. Quasiparticle life-times

In Ref. 17 the quasiparticle life-time of the spinpolaron was calculated (cf. Fig. 2b), by evaluating the electronic Green’s function in momentum and frequency space

\[G_{k\sigma}(\omega + i\eta) = \frac{1}{\omega + i\eta - (\epsilon_0(k) - \mu + \Sigma_\sigma(k, \omega + i\eta))}, \]

(3)

where \(\omega \) is the energy, \(\epsilon_0(k) \) the free electron dispersion relation, \(\mu \) the electrochemical potential (which does not play a role in the calculation of broadenings of spectral densities) and \(\Sigma_\sigma(k, \omega + i\eta) \) the complex self-energy.
From the imaginary part of the self-energy, which is given by the broadening of the Lorentzian shaped peak in the spectral density $A_\sigma(k,\omega) = -(1/\pi) \text{Im} G_{k\sigma}(\omega)$ we can determine the quasiparticle life-time in dependence of all parameters. On the technical side, we use again the above mentioned GMRES method and calculate spectral densities as described in Ref. 13.

Basically, there exist four different scenarios for which the electronic quasiparticle life-time broadenings can be calculated assuming that in the FM ground state the local spins point up and the conduction electron spins point down (for large J the most dominant part of a spinpolaron state consists of a conduction electron pointing down with a small admixture of the spin up state plus a local magnon):

- **1** In the FM phase for a spin down electron (cf. Fig. 2);
- **2** In the FM phase for a spin up electron (cf. Fig. 2);
- **3** and **4** are the corresponding cases for the PM phase.

1 corresponds to the spinpolaron life-time broadening Γ_- and 2 to its natural counter part Γ_+. 3 and 4 are identical, since the spins in the PM ground state have no specific direction.

In addition to Ref. 17 we calculate here the life-time broadening Γ_+. As shown in this paper this rate is very large in the presence of many electrons, $\Gamma_+ \gg \Gamma_-$, and, as a consequence, dominates the spin relaxation and decoherence rates, as can be understood from the following qualitative analysis. The two many-body spin states $|\pm\rangle$ depicted in Fig. 2 are not exact eigenstates but are expected to be part of a sharp many-body continuum with long life-times. The spin down state $|\rangle$ is protected from magnon absorption and emission processes since the spinpolarons can lower their energy by the entanglement with the local spins in a singlet state. Only virtual processes and weak spinpolaron-spinpolaron interactions lead to a small broadening Γ_- of this state, as shown in detail in Ref. 17. The spin-up state $|\rangle$ is protected due to the spin polarization of the local spins. Due to effective exchange interaction between the spinpolarons and the spin-up electron mediated by the magnons, as discussed in detail in this paper in section IV. C, this state has a lifetime broadening $\Gamma_+ \gg \Gamma_-$. Denoting the quasienergies of the two spin states by E_{\pm}, we get a decay according to $\langle |\pm\rangle e^{-\gamma_{\pm} t} |\rangle \sim e^{-\gamma_{\pm} t} e^{-t/2L^2}$. To define the spin relaxation and decoherence rates, we introduce pseudo-spin operators $P_2 = (1/2)(|+\rangle\langle+| - |+\rangle\langle-| - |\rangle\langle+| + |\rangle\langle-|)$ and $P_\pm = |\pm\rangle\langle\mp|$. Using spin conservation, we obtain after a straightforward calculation that $P_2(t) = (1/2)(\langle|\rangle e^{-\gamma_{-} t} + |\rangle e^{-\gamma_{+} t})$, if the system is prepared at $t = 0$ in the state $|\rangle$, and $P_\pm(t) = (1/\sqrt{2})(|\rangle e^{-\gamma_{-} t} + |\rangle e^{-\gamma_{-} t})$, if the system is prepared in the state $(1/\sqrt{2})(|\rangle + |\rangle)$. As a result we find for the two different initial preparations that $P_2(t) \sim e^{-t/4}$ and $P_\pm(t) \sim e^{\Delta t} e^{-t/2L^2}$, where $\Delta = E_+ - E_-$ is the quasienrgy splitting and the spin relaxation/decoherence rates are given by

$$\Gamma_1 = \Gamma_+ , \quad \Gamma_2 = \frac{1}{2} \Gamma_1 + \frac{1}{2} \Gamma_- .$$

This result shows that the dominant part to $\Gamma_{1/2}$ is given by the broadening Γ_+ of the spin-up state $|+\rangle$, whereas the broadening Γ_- of the spinpolaron state $|\rangle$ enters only into the pure dephasing term of longitudinal fluctuations and can be neglected.

E. Dispersion relation

The dispersion relation $\omega_J(k)$ can be constructed from the resonance of the single particle spectral density $A_\sigma(k,\omega)$ at $\omega = \omega_J(k)$. The number of k values is restricted by the lattice size L.

IV. RESULTS

In nearly all cases we have chosen $L = 48$, which is suitable from two different points of view. First, physically, we are especially interested in finite systems, which would more closely resemble, e.g., nanotubes in the real world. And second, from the point of view of computational cost, it is not convenient to take larger systems into account, since we already needed up to 3000 DMRG states in some of the calculations, which is a large number considering the number of executed calculations. All calculations are done with high computational precision, partly up to machine precision. We set $t = 1$ in all calculations.

A. Phase diagram

We will first investigate the influence of Coulomb interaction on the ground state of the Kondo lattice model. The phase diagrams of the KLM (without Coulomb interaction) are well established and shows two different phases, an FM and a PM one, see Fig. 3. The PM phase lies in the lower-right triangular of the phase diagram and for all other values of J and $\alpha < 1$ the KLM has an FM ground state. Especially for $N = 1$ it was shown that the KLM is FM for any J. As can be seen from Fig. 4 applying a finite onsite Coulomb interaction shifts the phase boundary downwards for all values of n. This is consistent with the analysis of Ref. 20, where a higher crossover temperature has been predicted in the presence of Coulomb interaction. However, we note that the two mechanisms are quite different. Whereas in Ref. 20 the local nuclear spins have been treated quasiclassically due to their large effective spin, the present analysis is in the full quantummechanical regime of local spins with spin $1/2$. Roughly speaking the present result is consistent with the Stoner picture of ferromagnetism, where
a finite Coulomb interaction leads to the preference of a fully spin-polarized state for the itinerant electrons. This state coincides with the qualitative picture of spin-polaron states pointing into the opposite direction of the local spins, see Fig. 2a.

For finite nearest neighbor Coulomb interaction \(V \) we find the qualitatively different result, that the phase boundary is shifted downwards for \(n \lesssim 0.4 \) and upwards for \(n \gtrsim 0.4 \) and therefore crosses the phase boundary of the KLM without Coulomb interaction. For small fillings this can be explained in the same way as for the onsite Coulomb interaction case. For filling \(n > 0.4 \) the electrons are relatively close to each other and therefore strongly influenced by \(V \). The possibility to occupy the same site with two electrons of opposite spin does not lead to an increasing energy due to Coulomb interaction and increases the kinetic energy at the same time. Therefore, in this regime, the unordered state becomes more favorable.

Summarizing, the onsite and nearest neighbor Coulomb interaction are concurring for small \(n < 0.4 \) and behave competitively for large \(n > 0.4 \). These results are pictured in Fig. 3. The solid blue line is the phase boundary of the non-interacting KLM. If Coulomb interaction is switched on, the phase boundary is lowered for all values of \(n \) (dashed dark blue line). For \(U = 0 \) and \(V \) finite, the phase boundary is lowered for small \(n \) and raised above the non-interacting case phase boundary for larger \(n \).

B. Susceptibilities

For small \(J \) the order of the local spins manifests itself also in the static electron spin susceptibility. As was shown in Ref. [24] the effective coupling between the local spins for small \(J \) is

\[
J_{\text{RKKY}} \propto -\chi^\pm(\omega = 0, k, J, U). \tag{5}
\]

Therefore the order of the local spin lattice should correspond to the absolute maximum of the static electron spin susceptibility. In Fig. 4 we show this for two extreme cases with \(L = 48 \) and \(N = 6 \). The first case (solid black line in the figure) with \(U = 0, V = 0 \) has a PM ground state and shows the susceptibility in the non-interacting case. It has an absolute maximum at \(\frac{2\pi}{k_F} \). In this case FM order becomes dominant.

C. Dispersion relation

We calculated the dispersion relation of a \(\uparrow \)-electron in a KLM with \(L = 48, N = 4, J = 0.5 \) and \(U = V = 0 \).
TABLE I. k-dependence of relaxation rates for $N = 2$ for different values of J and U.

k ($\pi/(L+1)$)	$J=0.5$, $U=0$	$J=0.5$, $U=0.2$	$J=0.3$, $U=0$	$J=0.3$, $U=0.2$
1	0.00097 ± 0.00003	0.00220 ± 0.00009	0.00035 ± 0.00001	0.00146 ± 0.00006
2	0.00128 ± 0.00002	0.00299 ± 0.00005	0.00470 ± 0.00004	0.00198 ± 0.00004
3	0.00166 ± 0.00003	0.00403 ± 0.00005	0.00066 ± 0.00002	0.00280 ± 0.00007
4	0.00204 ± 0.00005	0.0048 ± 0.0001	0.00077 ± 0.00002	0.00333 ± 0.00008

The result is shown in Fig. 6. It shows a cosine shaped dispersion, which leads to the conclusion that the electron behaves more or less like a free electron, only slightly affected by the presence of the local spin lattice. This can be explained by the fact that a \uparrow-electron cannot flip its spin directly by an exchange process with a local spin due to spin conservation. In contrast, a \downarrow-electron can do so, leading to the formation of spinpolarons, which can lower their energy by this process and obtain a larger effective mass leading to a sharper dispersion relation. However, as shown in the next section, the life-time broadening of \uparrow-electrons is generally larger than those of \downarrow-electrons, since the decay processes for spinpolarons start in higher order in J than those for \uparrow-electrons.

D. Quasiparticle life-times

From the electronic spectral density $A_+(k, \omega)$ we obtain the quasiparticle life-time broadenings Γ_+ in dependence of J, U, k and N. As we calculate the Green’s function $G_+(k, \omega)$ in frequency space, we obtain two branches: The $c_{k\uparrow}$- and the $c_{k\downarrow}$-branch, respectively. The first one corresponds to an additional electron placed in a certain k-mode and interacting with the other electrons and the local spins. The second type addresses the spin up-part of the already existing electrons in the system. Therefore the two branches address two different sets of states in the spectrum of the Hamiltonian. Here we are interested in the first case only, since we would like to know, what happens to a spin up electron brought into the system in addition to the other electrons.
1. Decay rate dependence on \(k \)

In Tab. I we show decay rates of a spin up electron added to the \(N = 2 \) ground state. For all sets of \(U \) and \(J \) we find that the decay rate increases with increasing \(k \) as long as \(k \) is smaller than \(2k_F \). Here we give an explanation considering momentum conservation and phase space arguments. In the FM ground state the lowest electronic orbitals in \(k \) space are occupied up to \(2k_F \) by the available electrons all with spin down. A state with wave vector \(k \) has quasimomentum \(\pm k \) due to the open boundary conditions. An additionally superimposed spin up electron with a certain wave vector \(k_1 \) has to change to the state \(k_2 > 2k_F \) in order to flip its spin, see Fig. 4. This decay channel can only happen if a magnon is absorbed with wave vector \(q = |k_1 \pm k_2| \). Such magnons are present in the ground state because each spinpolaron state consisting of a spin down electron with wave vector \(k \) has a small admixture of spin up states with wave vector \(|k \pm q| \) and a local magnon in state \(q \). Smaller values of \(k_1 \) decreases the number of magnons with small wave vector \(q = |k_1 - k_2| \) to enable this process. This can be quantified by the magnon density per electron \(m_q = \langle S_{-}^{+} S_{+}^{-} \rangle / N \) (see Fig. 6) and further by the accumulated magnon density

\[
\rho_{k_1} = \sum_{\sigma = \pm} \sum_{0 < q < \pi} \sum_{|k_1 \pm k_2| < \pi} m_q ,
\]

which is shown in Fig. 7, and clearly states that the number of suitable magnons increases with increasing \(k_1 \) even above \(2k_F \) until it falls off finally. This result qualitatively reflects the decay rate for the spin up electron shown in Fig. 10 for a KLM with \(L = 48 \), \(N = 4 \), \(J = 0.5 \) and \(U = V = 0 \). The decay rate first increases for small \(k \) as indicated by the accumulated magnon density. For values above \(2k_F \) the decay rate even surpasses the values at \(2k_F \) until it decreases finally for larger values of \(k \). We note that this is only a qualitative explanation since other decay channels involving absorption of many magnons are present as well.

The discussed process for the decay of the spin up electron is essentially an exchange process between a spin up electron in state \(k_1 \) and a spinpolaron in state \(k \). The spinpolaron provides the magnon with wave vector \(q = |k_1 \pm k_2| \) to flip the spin up electron from state \(k_1 \to k_2 \), leaving the spinpolaron as a spin up electron in state \(|k \pm q| \). As a result, by mediation of a local magnon, the spins of two electrons have been exchanged, whereas the local spin lattice is unaffected. This spin exchange process is the essential process leading to a large life-time broadening of the spin-up electrons if many electrons are present in the system. In contrast, the spinpolaron states have life-time broadenings, which are several orders of magnitude smaller compared to those of the spin-up states. The reason is that the spinpolaron-spinpolaron interaction is rather weak and can only be mediated via multi-magnon processes.

2. Decay rate dependencies on \(U, J, N \)

In this section we will explain how the quasiparticle decay rate of the spin up state depends on \(U, J \) and \(N \) and why the found tendencies are to be expected. The results for these cases are shown in Tab. II.

Let us first consider the \(J \)-dependency. Picking one of the columns and considering only one of the two \(U \)-values we immediately recognize that the decay rate shrinks with decreasing \(J \). The exchange strength \(J \) determines the time scale on which spins will flip, therefore with decreasing \(J \) flipping will be suppressed and the rate-de-
creases. We note that this is different for the decay rate of
the spinpolaron, where an increasing J stabilizes each pola-
laron and makes it insensitive to interactions with other
electrons. For small J close to or even in the PM phase
the decay rate of the spin up state increases notably, see
$N = 4$. This is natural, since in a paramagnetically or-
dered system many additional decay channels will open
up.

Considering the U dependence we find that with in-
creasing U the rate increases in most cases. In section
\[V.A\] we have found that an onsite Coulomb interaction
has the tendency to order the local spins ferromagneti-
cally. The additional spin up electron tries to align parallel
to the other electrons to minimize interaction energy
from the Coulomb potential. This infers a larger decay
rate, if U becomes larger. Therefore this tendency here
complies with the influence of the onsite Coulomb inter-
action found above. Only when a finite U triggers the
crossover from the PM to the FM phase, the rate de-
creases with increasing U, see $N = 4$ and $J = 0.3$. This
is obvious since in the PM phase the phase space argu-
ments presented in section \[IV.D.1\] are no longer valid and
many more decay channels are possible.

If we increase the number of electrons N in the system
and keep the quasimomentum k fixed we find that the
decay decreases with increasing N, for small N deep in
the FM phase. This can be explained analog to the dis-
cussion in section \[IV.D.1\]. In the ground state, all initially
available electrons fill the spinpolaron-band successively
up to $2k_F$ mainly in the spin down state. An additional
spin up electron can be added to any k-mode. In Tab. \[III\]
we considered the lowest state $k = \pi/(L + 1)$ in all cases.
Considering one of the rows the electron number is in-
creased from left to right and with each electron more in
the ground state the respectively next higher k-mode is
occupied by this additional electron. As a consequence,
as shown in section \[IV.D.1\] by increasing N we decrease
the number of magnons suitable for scattering processes
and therefore the decay rate has to decrease. However,
in competition to this effect, increasing N means also
approaching the PM phase. Then we expect that differ-
ent and also more decay channels open up, which should
lead to an increasing decay rate. This can be seen in
Tab. \[III\] for $J = 0.8$ between $N = 6$ and $N = 12$. We
have also calculated lifetimes for $N = 7, 9, 10, 11$ (not
shown), showing that the decay rates are monotonically
increasing with increasing N for large N. For values of
N close to half-filling of the conduction band and large
values of J, such that we can switch between PM and
FM phase, we find decay rates of the order of 0.01. As
a consequence, the decay rate depends nonmonotonically
on N, it decreases for small values of N deep in the FM
phase and increases for larger values of N when the PM
phase is approached.

Nonetheless we find the sweet spot of the system by
decreasing the number of electrons going from $N = 4$ to
$N = 3$ electrons at $J = 0.1$. There we find that the de-
cay rate of the spin up electron decreases by two orders of
magnitude when comparing the rates in the PM and FM
phase. Still it is important to note that a minimum num-
ber of electrons in the system is important to maintain
the FM order, especially at finite temperatures.

V. DISCUSSION

In this work we discussed the phase diagram and the
spin relaxation properties of the 1d spin-1/2 Kondo lat-
tice model with Coulomb interaction. We found that a
finite onsite or nearest neighbor interaction favors a FM
order of the local spin lattice for small enough electronic
densities. This gives further strong support to the anal-
ysis of Refs. 2,20, where similar results have been found
in 2d semiconductor systems and C_{13} carbon nanotubes.
It provides a pathway to achieve a spontaneous and full
polarization of the nuclear spins by lowering the temper-
ature below the critical one. This configuration is desir-
able for applications in quantum information processing,
since it reduces the spin relaxation and decoherence rates
of the electronic spins. It is important to notice that a
finite crossover temperature can only be expected, if the
density of electrons is finite. Thus, many electrons are
necessary to achieve the FM state. Once the FM state is
achieved, one can in principle perform quantum informa-
tion processing by realizing quantum dots with external
gates on time scales which are small compared to the time
the nuclear spins need to return to the PM phase. If this
is possible one can effectively realize a system consisting
of one single electron $N = 1$ in contact with a ferromag-
netically ordered nuclear spin lattice. In this case the spin
up state and the spinpolaron are exact eigenstates, i.e.,
the ideal situation with $\Gamma_{\pm} = 0$ is achieved. In this paper
we discussed the spin relaxation properties for $N > 1$, i.e.
we analysed the question whether the spins in a many-
body system could possibly be used as candidates for
spin qu-bits. In Ref. 17 we already found that spinpo-
larons are indeed very long living states, indicating that
the spinpolaron-spinpolaron interaction is rather weak.
However, in this paper we found that the spin up state is
strongly influenced by exchange interaction between the
spin up and spinpolaron states. This exchange process
does not require any finite energy and, therefore, can not
even be suppressed by application of a finite magnetic
field. We analysed in detail the dependence of Γ_{\pm} on the
Coulomb interaction U, the exchange interaction J, the
particle number N and the quasimomentum k. In the
FM phase we found that the rate decreases for smaller
values of U, J, k, and larger values for N, unless we ap-
proach the PM phase. For appropriate parameter sets
we have shown that the life-time of spin up states can
be two orders of magnitude larger in the FM phase than
in the PM phase. However, compared to the life-time of
spin down spinpolaron states, their life-time is orders of
magnitudes smaller, regardless of the chosen parameter
regime in the FM phase.
ACKNOWLEDGMENTS

We thank D. Loss for valuable discussions. H. Schoeller, U. Schollwöck and S. Smerat acknowledge the support from the DFG-Forscherguppe 912 on “Coherence and relaxation properties of electron spins”.

* [Sebastian.Smerat@physik.uni-muenchen.de]

1. H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuemmeth, D. Marcus, C. H. Stwertka, S. K. Watson, and C. M. Marcus, Nature Phys. 5, 321 (2007).
2. B. Braunecker, P. Simon, and D. Loss, Phys. Rev. Lett. 102, 116403 (2009).
3. F. Reininghaus, T. Korb, and H. Schoeller, Phys. Rev. Lett. 97, 026803 (2006).
4. V. Rodrigues, J. Bettini, P.C. Silva, and D. Ugarte, Phys. Rev. Lett. 91, 096801 (2003).
5. I. V. Krive, R. I. Shekhter, and M. Jonson, Low Temp. Phys. 32, 887 (2006).
6. H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69, 809 (1997).
7. J. R. Schrieffer, and P. A. Wolff, Phys. Rev. B 149, 491 (1966).
8. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. of Th. Physics 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957).
9. H. Tsunetsugu, M. Sigrist, and K. Ueda, Phys. Rev. B 47, 8345 (1993).
10. G. Honner and M. Gulacsi, Phys. Rev. Lett. 78, 2180 (1997).
11. I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M. Gulacsi, Phil. Mag. Lett. 81, 869 (2001).
12. I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M. Gulacsi, Phys. Rev. B 65, 52410 (2002).
13. M. Sigrist, H. Tsunetsugu, and K. Ueda, Phys. Rev. Lett. 67, 2211 (1991).
14. S. Trebst, H. Monien, A. Grzesik, M. Sigrist, Phys. Rev. B 73, 165101 (2006).
15. P. Richmond, J. Phys. C: Solid St. Phys. 3, 2402 (1970).
16. B.S. Shastry, and D.C. Mattis, Phys. Rev. B 24, 5340 (1981).
17. S. Smerat, U. Schollwöck, I.P. McCulloch and H. Schoeller Phys. Rev. B 79, 235107 (2009).
18. P. Simon and D. Loss, Phys. Rev. Lett. 98, 156401 (2007).
19. N. Shibata, T. Nishino, K. Ueda, and C. Ishii, Phys. Rev. B 53, R8828 (1996).
20. M. Gulacsi, A. Bussmann-Holder, and A. R. Bishop, Phys. Rev. B 71, 214415 (2005).
21. N. D. Mermin, and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
22. P. Bruno, Phys. Rev. Lett. 87, 137203 (2001).
23. D. Loss and D.P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
24. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, and L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1455 (2007).
25. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
26. S. R. White, Phys. Rev. B 48, 10345 (1993).
27. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
28. U. Schollwöck, Annals of Physics, doi:10.1016/j.aop.2010.09.012 (published online) (2010).
29. I. P. McCulloch, Journal of Stat. Mech.: Theory and Experiment 2007, P10014 (2007).
30. T. D. Kühner, S. R. White, Phys. Rev. B 60, 335 (1999).
31. E. Jeckelmann, Phys. Rev. B 66, 45114 (2002).
32. Z. Soos, and S. Ramasesha, J. Chem. Phys 90, 1067 (1989).
33. S. Ramasesha, S. Pati, H. Krishnamurthy, Synth. Met. 85, 1019 (1997).
34. W.A. Coish, J. Fischer, and D. Loss, Phys. Rev. B 77, 125329 (2008).