Capillaries as a Therapeutic Target for Heart Failure

Yohko Yoshida1, 2, Ippei Shimizu1 and Tohru Minamino1, 3

Yohko Yoshida, Ippei Shimizu and Tohru Minamino are joint senior authors.

1 Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
2 Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
3 Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, Japan.

Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.

Key words: Heart failure, Capillaries, Aging, Senolysis

Introduction

Oxygen and metabolites are delivered through capillaries, and this platform has a critical role in maintaining organ homeostasis. With aging, capillary density was reported to diminish in heart, skeletal muscle, kidney, liver, subdermal or abdominal white adipose tissues, pancreas, testis, thyroid gland, and brown adipose tissue1-5). Aging associates with inhibition in vascular endothelial growth factor-A (VEGF-A) mediated angiogenic signaling, and this was reported to enhance aging phenotype in multiple organs1). Accumulation of evidence indicates a decrease in capillary density accelerates undesirable aspects of aging.

Incidence of heart failure increases with age, and the prognosis of this disorder remains poor. Aged hearts are characterized by fibrosis, inflammation, mitochondrial dysfunction, apoptosis6), and capillary density was reported to decline with aging in rodents and humans2, 7). Studies indicate capillary rarefaction in the left ventricle (LV) has a close connection with functional decline in cardiac tissue8-10). Depending on the systolic or diastolic function of the LV, heart failure can be categorized into two groups. One is described as heart failure with reduced ejection fraction (HFrEF) and the other as heart failure with preserved ejection fraction (HFpEF). Recent studies showed sodium glucose co-transporter2 (SGLT2) inhibitors contributed to the suppression of hospitalization for heart failure both in patients with HFrEF and those with HFpEF11-13). Compared with HFrEF, medication for HFpEF is limited14), and next-generation therapies for this critical disorder should be
urgently established. HfPef in patients increases with age, and this is associated with capillary rarefaction in LV15. Failing hearts based on several etiologies exhibit reduced capillary density. In this review article, we would like to focus on capillarization in cardiac tissues and discuss potential therapies for heart failure, targeting the enhancement of the capillary network in this organ.

1. Capillaries in the Heart with Various Conditions

In humans and other mammalian species, the heart is perfused through coronary circulation. Numerous bifurcations and anastomoses between capillaries create a dense vascular network, and this enables the delivery of nutrients and oxygen into cardiac tissues. Capillary rarefaction develops in hearts with aging or age-related cardiovascular-metabolic disorders, and these would be described in this chapter.

1-1. Aging

Aging is a nonmodifiable risk factor for cardiovascular diseases (CVDs). Aged heart develops functional and structural alterations16, 17. Vasculature is also affected with age, and rodent hearts exhibited capillary rarefaction together with diminished oxygenation capacity7, 18, 19. In C57BL/6J mice, capillary density was reduced in mice aged 18 months compared with those aged 2 months19. Young spontaneously hypertensive rats (SHRs) aged 2.5 months had a normal capillary density in their hypertrophied LV, whereas this declined in older animals aged 7 months20. Rakusan \textit{et al.} compared capillary density in patients with congenital aortic stenosis (AS) among infants, children (aged 9–14 years), or adults20. They concluded that capillary density diminished with age in humans under LV pressure overload21; however, underlying mechanisms are not fully understood. Senescent endothelial cells (ECs) exhibited reduced proliferative capacity together with diminished VEGF-A production21. At a certain level, reactive oxygen species (ROS) is considered to mediate homeostatic effects but, beyond the physiological threshold, initiate to promote unfavorable aspects of aging22. ROS was reported to induce EC apoptosis and capillary rarefaction in the heart23. Aging leads to an increase in decoy receptors for VEGF-A in circulation and suppresses VEGF-A-mediated angiogenic signaling; this was reported to enhance physiological aging in multiple organs, but cardiac tissue was not characterized in this paper19. Recently, Kivela \textit{et al.} reported transforming growth factor-\(\beta\) (TGF-\(\beta\))/ROS/Serpinh1 axis in ECs enhanced mesenchymal features in these cells, promoting cardiac fibrosis and capillary rarefaction19. These studies indicate that mechanisms associated with aging have causal roles for diminished capillary density in the heart, letting this tissue become prone to develop heart failure under stressed condition.

1-2. Obesity/Diabetes and Heart Failure

Obese individuals have a higher risk for developing HfPef than lean subjects, and obese patients with HfPef were reported to show worse exercise capacity than non-obese patients with HfPef24. Patients with HfPef were shown to exhibit capillary rarefaction25, and metabolic stress is reported to reduce capillary density in humans and rodents25-27. In obese humans exhibiting BMI >30, coronary microvascular density was lower than in non-obese individuals25. Wistar–Kyoto rats or C57BL6/NCrSlc mice fed with high-fat diets developed capillary rarefaction in their respective hearts26, 27. Mechanistically, Suda \textit{et al.} showed metabolic stress reduced fibroblast growth factor 2 (FGF-2)/early growth response protein 1 (EGR-1)/VEGF-A signaling, and dipeptidyl peptidase 4 had causal roles for the suppression of this pathway27. Dietary obesity also enhanced capillary rarefaction in C57BL/6J mice, and this was mediated through the activation of TGF-\(\beta\)/ROS/Serpinh1 signaling in ECs, sharing similar pathogenic mechanisms with their chronologically aged mice model19. Individuals with unhealthy obesity, generally characterized by enrichment in visceral adiposity and systemic insulin resistance, predisposes to type 2 diabetes. Approximately 45% of patients with HfPef were reported to have type 2 diabetes28, and overlapping pathologies are considered to exist between diabetes and HfPef29. At end-stage heart failure, cardiac capillary density became lower in patients with diabetes than in patients without diabetes30. The same group also showed transgenic diabetic pig developed capillary rarefaction, and this was ameliorated with the introduction of adeno-associated virus encoding \textit{Vegfa} (AAV-Vegfa). Compared with control diabetic pigs, ejection fraction did not improve in the AAV-Vegfa group30. Interestingly, LV end-diastolic pressure and LV fibrosis were suppressed with the reintroduction of Vegfa, indicating the link between diminished capillary density and enhancement of fibrotic process30. Streptozotocin-induced type 1 diabetic Wistar rats showed that the duration of hyperglycemia negatively correlated with capillary density in the heart31, suggesting glycemic overload as one of the mechanisms for promoting capillary
rarefaction under diabetic conditions.

1-3. Hypertension
In skeletal muscle, it was previously reported that an increase in mean arterial pressure is associated with a decrease in capillary density. Few studies characterized cardiac capillary density in patients with hypertension. Biopsy samples obtained from patients with hypertensive heart disease (HHD), dilated cardiomyopathy (DCM), and renal failure with hemodialysis treatment (HD) showed capillary density as 1162 ± 189, 1238 ± 261, and 997 ± 183 (1/mm²), respectively. In this paper, the percentage of hypertension was 100% in the HHD group, 8.9% in the DCM group, and 89.3% in the HD group. Studies analyzing capillary density in human hearts with AS showed that the capillary density of control adult hearts aged 15–30 years was 2249 ± 85 (1/mm²), which became 2102 ± 103 (1/mm²) in patients with congenital AS at similar age. The capillary density of patients with acquired AS aged 51–86 years was 1671 ± 66 (1/mm²). Through these papers published from different groups, it can be speculated that hypertension is associated with capillary rarefaction in the human heart. Further studies would show direct evidence of capillarization in patients with arterial hypertension. Rodent models with hypertension including Dahl salt-sensitive hypertensive rats or high-salt diet exhibited diminished capillary density in LV. High-salt diet, combined with Ang II administration in C57BL/6 mice, resulted in a decrease in capillary density. Capillary rarefaction also developed in SHRs at 24 weeks of age, but this was comparable at 12 weeks of age. SHRs were shown to exhibit reduced capillary density, but the number of smooth muscle a-actin positive arterioles increased in SHRs than in control Wistar–Kyoto rats. Recent findings from Olianti et al. challenged previous reports by concluding that capillary rarefaction develops in an SHR model. They performed 3D imaging analyses in cardiac tissues and concluded that capillary density increased in SHRs aged 4, 8, 18, and 24 weeks. Microvasculature is constituted with arterioles, capillaries, and venules, and characterization of these with specific cell markers would help us comprehensively understand capillarization in LV under aortic hypertension. Activation of the renin–angiotensin–aldosterone system (RAAS) is one of the chief mechanisms that promote hypertension, and accumulated evidence indicates that suppression of RAAS enhances capillarization in the heart. LV pressure overload initially increased capillarization at compensated phase, and this was followed by capillary rarefaction at decompensated phase heart failure. Controlling blood pressure and suppressing afterload continues to be an important concept to suppress pathologies in the heart.

1-4. Aortic Valve Stenosis
Studies indicate the potential role of capillary rarefaction in the progression of pathologies in AS. LV outflow tract–capillary density of AS patients correlated with aortic valve area. Basal anteroseptal myocardium showed reduced capillarization in severe AS patients. Diminished capillary density associated with female gender, diabetes, obesity, heart failure symptoms, and low LV ejection fraction. As already described, patients with congenital AS exhibited reduced capillary density with chronological aging, and adults with acquired AS had lower capillary density compared with congenital AS children. The thoracic aortic constriction (TAC) model induces LV pressure overload and thereby mimics cardiac stress introduced with AS. In mice, TAC was shown to induce capillary rarefaction in LV. p53 in cardiac tissues or ECs suppressed angiogenic response in LV. ROS enhanced EC apoptosis during LV pressure overload and contributed to the progression of reduced systolic function. These results indicate enhancement of the capillary network in LV would become a therapy for heart failure associated with LV pressure overload.

1-5. Chronic Kidney Disease
Chronic kidney disease (CKD) is an independent risk for CVD. The hearts of experimental uremic Sprague–Dawley rats (5/6 nephrectomy (5/6 NX)) exhibited cardiac hypertrophy, interstitial fibrosis, and reduced capillary density. Nephrectomy-induced capillary rarefaction in the heart was completely inhibited by the administration of moxonidine, a central sympathetic agent, but not by the calcium antagonist nifedipine. Another report showed transcript Vegfa reduced in the heart with 5/6 NX, and this was ameliorated with selective renal sympathetic denervation. These findings indicate that renal dysfunction accelerates capillary rarefaction through sympathetic nervous activation. Another study showed that treatment with an endothelin receptor antagonist normalized microvascular density. Amann et al. tested two angiotensin-converting enzyme (ACE) inhibitors and concluded that ramipril, but not trandolapril, inhibited a decrease in capillary density in a uremic rat model. Additionally, the combination of erythropoietin and ACE inhibitor (enalapril) increased microvascular density in 5/6 NX rats. Mechanistically, a decrease
in oxidative stress and apoptotic signaling contributed to maintaining LV capillary network under uremic condition. Di Marco et al. demonstrated the level of calcineurin increased in the heart with nephrectomy, and an inhibitor for this molecule normalized microvascular density in 5/6 NX rats. They showed that calcineurin inhibitor increased angiogenic or stem cell-related molecules including vascular endothelial growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell factor. In CKD patients, the estimated growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell-related molecules including vascular endothelial that calcineurin inhibitor increased angiogenic or stem cell-related molecules including vascular endothelial growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell factor. In CKD patients, the estimated growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell-related molecules including vascular endothelial growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell factor. In CKD patients, the estimated growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell-related molecules including vascular endothelial growth factor 2 (VEGFR2), survivin, cKit-1, and stem cell factor.

Together with therapy targeting removal of amyloid and fibrosis in the heart compared with controls. In this paper, inhibition of sFlt-1 increased capillary density, myocardial blood volume, and ameliorated diastolic dysfunction in the 5/6 NX model. Several complex mechanisms have roles in reducing capillaries in the heart under renal dysfunction, and further studies are needed to understand pathologies of cardiorenal syndrome.

1-6. Amyloidosis
Cardiac amyloidosis is characterized by the extracellular deposition of insoluble fibrils composed of misfolded proteins called amyloid. The layers of the walls of intramural vessels are progressively infiltrated by the fibrils, eventually leading to microvascular obstruction. The amyloid deposits surrounding myocytes induce oxidative stress and affect the contractile function of these cells. Reduced stroke volume and compliance of the LV wall contribute to decreasing diastolic flow in the intramural vessels. In symptomatic patients with AL or transthyretin amyloidosis, myocyte blood flow became lower than in hypertensive patients exhibiting LV hypertrophy. Recently, Kim et al. showed direct evidence of reduced capillary density in AL amyloidosis patients. They analyzed cardiac biopsy samples and showed capillary density had a negative correlation with NT-proBNP level, amyloid load, LV diastolic, and systolic function. In this paper, the patients exhibiting capillary density of >220/mm² were shown to have a better prognosis than those exhibiting <220/mm². Together with therapy targeting removal of amyloid deposition, whether maintaining capillarization becomes a therapy for amyloidosis remains an open question to be explored.

1-7. Hypertrophic Cardiomyopathy
Myectomy samples showed that capillary density decreased in patients with hypertrophic cardiomyopathy (HCM) compared with control individuals, and interestingly, this showed a negative correlation with left ventricular outflow tract (LVOT) pressure gradient. HCM patients with moderate hypertrophy and LVOT obstruction also showed reduced capillaries in LV compared with control subjects. DBA/2J mouse carrying variants in the two most susceptible genes—Mybpc3 and Myh7—demonstrates the features of HCM, and vessel density was shown to diminish in this mouse model compared with C57BL/6J wild type mice. The fundamental question that remains to be answered is whether enhancing the capillary network reverses or slows down the pathologies in HCM.

2. Role of Senescence-Related Molecules in the Cardiac Capillary Network
Aging or age-related disorders are associated with capillary rarefaction in the heart. Studies indicate age-related mechanisms have causal roles for reducing capillarization in the heart, and these are described in this chapter.

2-1. p53
Chronological aging is associated with a higher prevalence of age-related diseases including heart failure, diabetes, and atherosclerotic disorders. Mechanisms of aging and age-related disorders are complex; however, studies indicate the crucial role of cellular senescence in the progression of these disorders. The p53 protein, which is often described as the “guardian of the genome,” is a transcriptional factor involved in genomic stability. This molecule mediates the protective effect through coordinating DNA repair, cell-cycle regulation, and apoptosis. p53 also has a central role in inducing cellular senescence, and this promotes pathogenesis in age-related disorders. Previous reports showed p53 increased in the aged or failing heart. In mice, LV pressure overload induced capillary rarefaction together with enhanced p53 level in cardiac tissue. Mechanistically, p53 enhanced ubiquitination and proteasomal degradation of hypoxia-inducible factor 1α (HIF-1α), thereby suppressing VEGF-A mediated angiogenesis. Another study showed EC-p53 enhanced capillary rarefaction, tissue fibrosis, and inflammation in the heart during LV pressure overload. Impairment of cardiac angiogenesis by p53 was also observed in other models such as angiotensin II (Ang II)-infused mice. In diabetic rodents, pharmacological inhibition of p53 led to stabilization of HIF-1α, enhanced capillarization, and...
ameliorated cardiac dysfunction \(^{72}\). Inhibition of p53 would contribute to increasing the capillary network in the heart and suppress pathogenesis in the failing heart.

2-2. p21

Protein p21, coded by cyclin-dependent kinase inhibitor 1a (\textit{Cdkn1a}), is a cell-cycle regulator and locates downstream of p53 \(^{73}\). Activation of p21 triggers cellular senescence and apoptosis \(^{74}\). C57BL/6 mice aged 24 months had a level of p21 in cardiac tissues compared with 4-month-old mice \(^{69}\). Controversies exist regarding the role of p21 in capillarization. Systemic depletion of p21 diminished capillary density together with reduced cardiac systolic function \(^{75}\). Another report showed radiation increased breast cancer type 1 susceptibility protein homolog (BRCA1) and p21 level in heart \(^{76}\). EC-specific \textit{Brcal} depletion resulted in reduced p21 and capillary density, indicating the protective effect of EC-BRCA1/p21 mediated DNA repair response in heart \(^{76}\). In the dental pulp, the knockdown of p53 or p21 has led to an increase in capillary density, and studies showed p53/p21 signaling reduced Bmi-1-mediated vasculogenic differentiation of dental pulp stem cells \(^{77}\). It was also reported that p21 negatively regulated the proliferation of old endothelial progenitor cells (EPCs) \textit{in vitro} and \textit{in vivo} settings \(^{78}\). Another study showed that starvation-induced NADPH oxidase (Nox2) upregulation and ROS production promoted EC cycle arrest and apoptosis via the p21 pathway \(^{79}\). The role of p21 in capillarization may be context dependent and different among organs, cells, and disorders.

2-3. p16

p16-INK4a is a cell-cycle regulator encoded by the \textit{Cdkn2a} gene. p16 is widely used as a marker for senescent cells and has been reported to increase with age in cardiomyocytes \(^{80}\), ECs \(^{81}\), and cardiac progenitor cells \(^{82}\). The level of p16 in the heart increased in aged mice \(^{69}\). In humans, the protein levels of p53, p21, and p16 increased in ECs from older individuals (\textasciitilde 60 years old), and those were shown to reduce in older exercising adults (\textasciitilde 57 years old) \(^{81}\). Protein canopy2 (CNPY2) stimulates cell proliferation, and a previous report showed CNPY2-mediated p16 inhibition enhanced capillarization and tissue repair in the heart after myocardial infarction \(^{83}\). Another study showed p16 deletion enhanced capillarization and promoted kidney regeneration after kidney ischemia–reperfusion injury \(^{84}\). Further studies are needed to show the role of p16 in cardiac capillarization.

2-4. Sirtuins

Sirtuins (Sirt1-7) are a family of nicotinamide adenine dinucleotide (NAD) dependent histone deacetylases. NAD reduces with age and NAD administration is considered as a promising target to reverse aging phenotype \(^{85}\). It is well known that sirtuins get activated by NAD, and sirtuins are known to have roles in aging and capillarization \(^{86}\). SIRT1 inhibition induced premature cell senescence in human umbilical vein ECs (HUVECs), whereas overexpression of this molecule prevented them from premature senescence-like phenotype \(^{87}\). The level of NAD was reported to decline with age in skeletal muscle ECs, and this had a causal role in reducing SIRT1 and capillary rarefaction in this organ \(^{88}\). EC-specific Sirt1 knockout mice exhibited capillary rarefaction in the heart and developed diastolic dysfunction \(^{89}\). EC-specific Sirt3 depletion also resulted in diminished capillarization in the heart together with diastolic dysfunction \(^{90}\). Administration of Ang II-induced fibrosis diminished vascular density in the heart, and this was further enhanced with depletion of Sirt3 \(^{91}\). The role of other sirtuins in cardiac capillarization continues to be an interesting topic to be explored.

2-5. AKT

The serine/threonine protein kinase AKT-mediated signaling has critical roles in the regulation of cardiac hypertrophy, contractile function, and coronary angiogenesis \(^{92}\). Mice aged 24–26 months showed high AKT levels in the heart compared with mice aged 3–4 months \(^{93}\). In cardiac tissues, the role of AKT is bidirectional, and a summary of previous papers indicates that the level of AKT signaling should be kept under a certain physiological level for maintaining homeostasis of the heart \(^{94}\). Short-term AKT activation induced physiological hypertrophy with maintained vascular density, suggesting that coronary angiogenesis is enhanced to keep pace with the growth of the myocardium \(^{95}\). By contrast, prolonged AKT activation introduced pathological cardiac hypertrophy, characterized by enhanced fibrosis and capillary rarefaction \(^{96}\). LV pressure overload upregulated AKT signaling, and heterozygous depletion of AKT ameliorated cardiac dysfunction by inhibiting excessive hypertrophic response in the heart together with an increase in vascular density \(^{89}\). In ECs, AKT promotes cell proliferation, survival, permeability, release of nitric oxide (NO), and cell migration \(^{90}\) and is essential for VEGF-mediated angiogenesis \(^{97}\). Gain of AKT signaling in ECs contributed to an increase in endothelial nitric oxide synthase (eNOS)/NO.
pathway, and this contributed to the suppression of EC apoptosis together with enhanced capillarization in LV23. By contrast, EC-AKT is also reported to suppress population doubling and increased p53/p21 levels in these cells98. These studies indicate AKT activation must be cell-targeted and within a certain physiological level.

2-6. Inflammation

Levels of circulating pro-inflammatory molecules, such as interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-\(\alpha\)), and C-reactive protein increase with aging99-103 or in patients with HFpEF104. Endothelial activating markers including ICAM-1 and E-selectin became higher in myocardial samples of a ZSF-1 HFpEF rat model or patients with HFpEF105. Murine LV pressure overload model showed that ICAM-1 has a critical role in the infiltration of inflammatory macrophages into cardiac tissues66. On a cellular level, TNF-\(\alpha\) and IL-6 activate NADPH oxidase (NOX) in the coronary arteriolar wall, and this enhances the production of superoxide anion, decreases NO availability, and inhibits vasodilation106.

Studies analyzing type 1 diabetic mice models concluded that hyperglycemia increased TNF-\(\alpha\) in cardiac tissues, and this promoted capillary rarefaction by enhancing cell death in ECs107. IL-10 was reported to suppress inflammatory response and promote capillary density through the activation of STAT3108 or via the upregulation of heme clearance pathway109 in a murine myocardial infarction model. Controversies remain for the role of inflammation in cardiac capillarization. In an Ang II high salt-induced hypertension model, IL-6 knockout mice had better cardiac ejection fraction, reduced macrophage infiltration, and fibrosis in LV, but capillary density was comparable between the genotypes37. IL-6 knockout mice had reduced capillary density in the heart, together with fibrosis and LV dilatation110. In patients with myocardial infarction, circulating monocytes had a high level of semaphorin3A at day 30 after the onset of this disease111. Heterozygous depletion of semaphorin3A suppressed cardiac inflammation and improved cardiac function; however, no change in capillary density was observed in the knockout mice111. The role of inflammation in the capillary network seems complex and mediate a bidirectional or neutral effect for capillarization in the heart.

2-7. ROS

ROS has central roles in the progression of pathologies in aging or age-related disorders. ROS including superoxide (O\(_2^\cdot\)), hydrogen peroxide (H\(_2\)O\(_2\)), peroxynitrite (OONO\(^-\)), and the hydroxyl radical (HO\(^*\)) are produced through physiological biological activities. At certain levels, they have roles as signaling mediators, however, become toxic in excess and thereby described as oxidative stress. Under physiological conditions, oxidative balance is tightly regulated by prooxidant and antioxidant systems. ROS has been shown to regulate multiple cellular functions in vessels including angiogenesis, EC apoptosis, and vascular tone112, 113. ROS was reported to activate VEGFR2 in ECs and promote angiogenesis114. Low-density lipoprotein (LDL) induced endothelial dysfunction through the activation of lectin-like-oxidized LDL receptor-1 (LOX-1) and excessive ROS, and these led to a decrease in eNOS uncoupling115. ROS derives from several sources including mitochondrial respiratory chain enzymes, xanthine oxidases, lipoxygenases, and NOX proteins. With aging, complex I activity in mitochondria decreased in rats, and this was associated with the capacity of this organelle to produce H\(_2\)O\(_2\)116. NOX2 and NOX4 are predominant forms of NOXs expressed in the heart117. NOX2-derived ROS mediates the antiangiogenic effect, whereas NOX4-derived ROS was reported to have an angiogenic effect. In the brain, Nox2 activation was shown to enhance age-related cerebral capillary rarefaction118. In the hind limb ischemia model, Nox2 depletion resulted in a decrease in ROS level together with an increase in VEGF-A expression119. Studies using endothelial-specific Nox2 overexpression showed NOX2 activation promoted superoxide-driven cardiovascular dysfunction, macrophage recruitment, and adverse remodeling120, 121. By contrast, NOX4 is constitutively active at a low level and induces protective effects in the heart under chronic stress122. Systemic Nox4 knockout mice showed impaired angiogenesis in a hind limb ischemia model123. The Nox4 knockout model exhibited cardiac capillary rarefaction and LV systolic dysfunction during LV pressure overload122. Cardiomyocyte-specific Nox4 overexpression enhanced capillarization and improved LV systolic function122. Mechanistically, Nox4 was shown to increase HIF-1\(\alpha\)/VEGF-A under hypoxic condition122.

3. Pharmaceutical Approach for Enhancing Cardiac Capillary Network

Several types of drugs are reported to suppress pathologies in heart failure, contributing to the inhibition of hospitalization for heart failure, amelioration of symptoms, and improvement in LV...
ejection fraction. In this chapter, we would mainly focus on cardioprotective drugs and show their effects against the capillary network in LV.

3-1. ACEi/ARB/ARNI

Activation of RAAS mediated mainly through Ang II/Ang II receptor type 1 (AT1R) signaling induces myocardial hypertrophy and fibrosis and contributes to the progression of heart failure. RAAS inhibitors reduce HF-related morbidity and mortality. Accumulation of evidence indicates suppression of RAAS leads to enhancement of capillarization in the heart. In type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, an AT1 blocker candesartan ameliorated LV capillary rarefaction and improved diastolic function at 36 weeks of age. Another study by de Boer et al. showed that microvascular density after myocardial infarction (MI) was decreased by cardiomyocyte-specific AT1R overexpression, and one of the AT1 receptor blockers losartan increased LV capillary densification without an increase of VEGF. Another AT1 receptor blocker irbesartan suppressed oxidative stress and EC apoptosis, ameliorated cardiac hypertrophy, and increased capillary density in Dahl salt-sensitive (DS) rats. An ACE inhibitor ramipril enhanced LV capillarization in an SHR. Another ACE inhibitor perindopril increased LV capillary density in DS rats. Perindopril was also reported to enhance LV capillarization in obese Zucker rats. The proangiogenic effect of ACE inhibition is considered partly mediated via the activation of bradykinin receptor/eNOS signaling in ECs. Interestingly, several studies indicate the proangiogenic effect of RAAS.

Subhypertensive dose Ang II/AT1R signaling increased VEGF-A/eNOS pathway and mediated angiogenic response in ischemic hindlimb model. Ang II/VEGF-A axis was also shown to induce the proliferation of EPCs. Enalapril or candesartan both inhibited VEGF-A-induced myocardial angiogenesis and capillarization in the normal heart of C57BL/6 male mice, but functional studies were not conducted to test LV function. LV capillary density was increased at 20 weeks of age in the OLETF diabetic rat model, and candesartan reduced vascular expression of VEGF-A, HIF-1α, and capillary density in these rats. Exercise increased capillarization in the heart, but Ang II infusion showed a trend to reduce this in LV of Sprague–Dawley rats; however, this did not show statistical significance. The roles of RAAS in angiogenic response seems context dependent and are different among models, organs, and time frame of analyses.

Nephrilysin (neutral endopeptidase, NEP) cleaves and inactivates peptide hormones such as glucagon, bradykinin, angiotensin, endothelin-1, and natriuretic peptides. PARADIGM-HF trial-tested angiotensin receptor–nephrilysin inhibitor (ARNI) against enalapril in HFrEF patients, and the ARNI group showed a significant decrease in the risk of death and heart failure hospitalization. In an experimental MI rat model, ARNI increased transcript Vegfa in LV, but this did not associate with an increase in capillary density. Suematsu et al. showed ARNI ameliorated cardiac dysfunction together with an increase in transcript Vegfa in hearts in ApoE KO mice, but capillary density was not characterized in this paper. Further studies are needed to show the role of NEP inhibitors in cardiac capillarization.

3-2. Beta-Blockers and Ivabradine

β-blockers continue to be the first-line therapy for heart failure. Studies indicate the proangiogenic effect of this type of drug in cardiac tissues. A negative correlation between heart rate (HR) and capillary density indicates bradycardia promotes angiogenic response. Bradykinin stimulated VEGF production and facilitated angiogenesis in heart. Reduced HR prolongs diastolic filling, and this triggers an increase in the stretch-associated release of VEGF. Cardiac capillary density was reduced in the renal failure model generated in Sprague–Dawley rats, and metoprolol was shown to ameliorate this. Either ivabradine or metoprolol enhanced LV capillary density in MI rats. Alindidine, another bradycardiac drug, increased VEGF and capillary density in hearts subjected to myocardial infarction. Ivabradine inhibits pacemaker current and reduces HR. Ivabradine was reported to reduce hospitalization of heart failure. In the MI rats, ivabradine administration enhanced capillary density in LV and improved cardiac systolic function.

3-3. SGLT2 Inhibitor

Sodium glucose cotransporter 2 inhibitors (SGLT2i) were initially generated as a therapy for type 2 diabetes, and this class of drugs was shown to significantly reduce the risk of hospitalization for heart failure. SGLT2i also reduced the risk of cardiovascular death or hospitalizations for heart failure in patients without diabetes. Biological effects of SGLT2i are considered multifactorial, and these include a decrease in ROS and inflammation, increase in ketone production, and inhibition of sodium–hydrogen exchange. Several reports focused on the role of SGLT2i in cardiac capillaries. SGLT2 inhibition with empagliflozin (EMPA)
improved coronary microvascular function in prediabetic ob/ob mice156. Another study revealed that EMPA inhibited the mitochondrial fission via AMPK signaling and rescued cardiac microvascular EC injury via ROS inhibition157. Recently, Nakao \textit{et al.} demonstrated that EMPA maintained LV capillarization and improved cardiac function in a murine LV pressure overload model153. EMPA administration reduced ROS-mediated apoptosis in ECs, and together with the activation of AKT/cNOS/NO pathway, EMPA enhanced capillarization in LV under pressure overload23. Whether SGLT2i also enhances capillary density in the human heart continues to be an interesting topic to be explored.

3-4. MRA

The Randomized Aldactone Evaluation Study demonstrated inhibition of mineralocorticoid receptor (MR) led to a 30% decrease in mortality rates in patients with heart failure after myocardial infarction158. Aldosterone is the principal ligand for MR and is known to associate with increased risk for cardiovascular events159. MR activation induces cardiac hypertrophy, inflammation, and fibrosis, and these were blocked via MR inhibition160-163. In a murine MI model, cardiomyocyte-specific MR depletion increased LV capillary density, reduced interstitial fibrosis and inflammation, and improved systolic function161. Deoxycorticosterone acetate administration induced hypertension and LV capillary rarefaction in WT mice, and this was ameliorated in EC-specific MR KO mice162. Another report showed EC-specific MR depletion improved systolic function, but capillary density was comparable between the genotype164. Smooth muscle cell-specific MR knockout mice showed increased capillary density, diminished fibrosis in the heart, and improved cardiac function during LV pressure overload163. Obesity and aging are associated with a dysregulation in MR signaling165, 166. Together with evidence from preclinical studies, MR signaling continues to be an important therapeutic target for heart failure.

3-5. DPP4 Inhibitor

Dipeptidyl peptidase-4 (DPP4) inhibitor is a class of oral antidiabetic agents. The extracellular catalytic domain of DPP4 is responsible for the enzymatic degradation of several peptides, including incretins GLP-1 and GIP, neuropeptides, chemokines, and endogenous growth factors167. Studies indicated DPP4 inhibitors cannot suppress pathologies of heart failure in humans168-170; however, preclinical studies suggest this type of drug enhances cardiac capillary density. In a dietary obese mice model, Suda \textit{et al.} showed linagliptin ameliorated capillary rarefaction in the heart through the activation of the FGF-2/EGFR-1 pathway27. The membrane-bound form of DPP4 was activated in diabetic rats, and this led to a decrease of myocardial stromal cell-derived factor-1α (SDF-1α) concentrations and angiogenesis in hearts171. In these rats, DPP4 suppression reversed cardiac fibrosis, diastolic dysfunction, and increased capillary density together with a restoration of SDF-1α171. Another study also demonstrated that DPP4 inhibitor (PKF275-055) suppressed the biological inactivation of SDF-1, increased mobilization of EPCs, and regenerated cardiac capillaries in ob/ob mice172. Studies analyzing rodents showed DPP4 inhibitors as promising therapies to combat heart failure; however, clinical trials could not show the cardioprotective effect of these drugs168-170. This may be due to differences among humans and rodents, relative differences in the dose of DPP4 inhibitors showing beneficial biological effects among species, or other unknown factors.

3-6. Senolytics

Senescent cells increase in aged tissues, and this is considered to associate with the progression of age-related cardiovascular-metabolic diseases22, 62, 63, 173, 174. Senescence-associated molecules such as p53, p21, and p16 increase in heart with aging, LV pressure overload, myocardial ischemia, and diabetes9, 21, 66, 69, 72. Recent studies testing genetic, as well as pharmacological models, showed elimination of senescent cells, described as “Senolysis,” reverses aging phenotype80, 175-177. This approach provides an attractive therapeutic option for age-related CVDs. Senolytics are agents that can selectively target prosurvival proteins in senescent cells and induce cell death. Dasatinib, Quercetin, and Navitoclax are three major senolytics widely studied in vivo and in vitro178. Besides the genetic senolytic model, these reagents have been shown to improve vascular function179, reduce detrimental features of cardiac aging80 and restore the regenerative capacity of hearts in murine myocardial ischemia, Ang II-infused cardiac hypertrophy, diabetic, or aged model80, 82, 180, 181. Dookun \textit{et al.} showed that clearance of senescent cells with Navitoclax improved cardiac recovery including enhanced angiogenesis after cardiac ischemia–reperfusion injury177. Yu \textit{et al.} showed Quercetin suppressed cardiac vascular rarefaction and improved systolic dysfunction in high-fat diet-fed mice182. The therapeutic potential of senolytics is now tested in humans. Justice \textit{et al.} showed administration of Dasatinib + Quercetin in patients with idiopathic pulmonary fibrosis can improve physical function183.

senescent cells ameliorated cardiac dysfunction in heart failure models, and interestingly, capillary density was also shown to improve with senolysis. Senolytics are now tested in humans, and results have shown a decrease in senescent cells and improvement in clinical symptoms. Many of the senolytics are classified as cancer drugs, and potential side effects are issues to be considered. Exploration of less toxic senolytics continues to be one of the interesting and important research topics. With chronological aging, capillary rarefaction develops in systemic organs, and this is considered to accelerate a functional decrease in these tissues. Exploration of reagents contributing to the enhancement of capillarization would help us find new drugs for age-related disorders including heart failure (Fig. 1 and Table 1).

Hickson et al. tested this combination of drugs in patients with diabetic kidney disease and found senescent cells reduced in subcutaneous adipose tissue184). Recently, Suda et al. showed senolytic vaccination therapy reversed aging phenotype in obesity or atherosclerotic model185). The senolytic approach would open new avenues for therapeutic options for age-related cardiovascular disorders.

4. Discussion

In this review article, we outlined capillarization in the heart under several pathogenic conditions. Capillary rarefaction develops with aging or age-related disorders, and studies indicate that this accelerates the functional decrease in cardiac tissues letting this organ prone to develop heart failure. Age-related mechanisms including p53-mediated cell senescence, sirtuins, AKT signaling, RAAS, chronic inflammation, and excessive ROS had critical roles for maintenance or suppression of capillarization in the heart. Drugs used as first-line therapies for patients with heart failure were reported to contribute to the maintenance of capillarization in the heart. Accumulating evidence indicates β-blockers, RAAS inhibitors, and SGLT2 inhibitors improve the prognosis of heart failure, and studies with rodents show these drugs also contribute to enhancing capillarization in the heart. Recently, approaches with senolysis are highlighted in aging and cardiovascular research. Studies showed specific depletion of senescent cells ameliorated cardiac dysfunction in heart failure models, and interestingly, capillary density was also shown to improve with senolysis. Senolytics are now tested in humans, and results have shown a decrease in senescent cells and improvement in clinical symptoms. Many of the senolytics are classified as cancer drugs, and potential side effects are issues to be considered. Exploration of less toxic senolytics continues to be one of the interesting and important research topics. With chronological aging, capillary rarefaction develops in systemic organs, and this is considered to accelerate a functional decrease in these tissues. Exploration of reagents contributing to the enhancement of capillarization would help us find new drugs for age-related disorders including heart failure (Fig. 1 and Table 1).

COI

Yoshida Y, Shimizu I; None, Minamino T; Scholarship grants from Bourbon corporation.

References

1) Grunewald M, Kumar S, Sharife H, Volinsky E, Gileles-Hillel A, Licht T, Permyakova A, Hinden L, Azar S, Friedmann Y, Kupetz P, Tzuberi R, Anisimov A, Alitalo K, Horwitz M, Leebhoff S, Khoma OZ, Hlushchuk R, Djonov V, Abramovitch R, Tam J and Keshet E: Countering age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science, 2021; 373:
Cerebrovascular Loss in the Normal Aging C57BL/6 Mouse Brain Using in vivo Contrast-Enhanced Magnetic Resonance Angiography. Front Aging Neurosci, 2020; 12: 585218

5) Chen J, Lippo L, Labella R, Tan SL, Marsden BD, Dustin ML, Ramasamy SK and Kusumbe AP: Decreased blood vessel density and endothelial cell subset dynamics during ageing of the endocrine system. EMBO J, 2021; 40: e105242

6) Li H, Hastings MH, Rhee J, Trager LE, Roh JD and Rosenzweig A: Targeting Age-Related Pathways in Heart Failure. Circ Res, 2020; 126: 533-551

2) Rakusan K, Flanagan MF, Geva T, Southern J and Van Praagh R: Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation, 1992; 86: 38-46

3) Urbieia-Caceres VH, Syed FA, Lin J, Zhu XY, Jordan KL, Bell CC, Bentley MD, Lerman A, Khosla S and Lerman LO: Age-dependent renal cortical microvascular loss in female mice. Am J Physiol Endocrinol Metab, 2012; 302: E979-986

4) Hill LK, Hoang DM, Chiriboga LA, Wisniewski T, Sadowski MJ and Wadghiri YZ: Detection of...
7) Iemitsu M, Maeda S, Jesmin S, Otsuki T and Miyauachi T: Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am J Physiol Heart Circ Physiol, 2006; 291: H1290-1298

8) Shimizu, Minamino T, Toko H, Okada S, Ikeda H, Yasuda N, Tateno K, Moriya Y, Yokoyama M, Nojima A, Koh GY, Akazawa H, Shiojima I, Kahn CR, Abel ED and Komuro I: Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Journal of Clinical Investigation, 2010; 120: 1506-1514

9) Sano M, Minamino T, Toko H, Miyauachi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada M, Tomita S, Molkentin JD, Zou Y and Komuro I: p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature, 2007; 446: 444-448

10) Gogiraju R, Xu X, Bochenek ML, Steinbrecher JH, Lehntar SE, Wenzel P, Kessel M, Zeisberg EM, Dobbelstein M and Schafer K: Endothelial p53 deletion impairs angiogenesis and prevents cardiac fibrosis and heart failure induced by pressure overload in mice. J Am Heart Assoc, 2015; 4:

11) Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wiling JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS and Investigators D-T: Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 2019; 380: 347-357

12) Zinnman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE and Investigators E-RO: Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 2015; 373: 2117-2128

13) Anker SD, Butler J, Filippatos G, Feher JF, Bocchi E, Bohm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chiquiure-Veluzenua E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Pina IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamil W, Schmid S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M and Investigators EM-PT: Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med, 2021; 385: 1451-1461

14) McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Cuttiniene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Jerosch-Herold M and Rosenzweig A: Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice. Aging Cell, 2020; 19: e13159

15) Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ and Redfield MM: Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation, 2015; 131: 550-559

16) Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall’Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszen RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ and Lee RT: Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell, 2013; 153: 828-839

17) Biernacka A and Frangogiannis NG: Aging and Cardiac Fibrosis. Aging Dis, 2011; 2: 158-173

18) Roh JD, Houstis N, Yu A, Chang B, Yeri A, Li H, Hobson R, Lerchenmuller C, Vujic A, Chaudhari V, Damilano F, Platt C, Zlotoff D, Lee RT, Shah R, Jerosch-Herold M and Rosenzweig A: Exercise training reverses cardiac aging phenotypes associated with heart failure with preserved ejection fraction in male mice. Aging Cell, 2020; 19: e13159

19) Hemanthakumar KA, Fang S, Anisimov A, Mayranpaa MI, Mervaala E and Kivelä R: Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. Elife, 2021; 10:

20) Tomanek RJ, Searls JC and Lachenbruch PA: Quantitative changes in the capillary bed during developing, peak, and stabilized cardiac hypertrophy in the spontaneously hypertensive rat. Circ Res, 1982; 51: 295-304

21) Li J, Zeng J, Wu L, Tao L, Liao Z, Chu M and Li L: Loss of P53 regresses cardiac remodeling induced by pressure overload partially through inhibiting HIF1alpha signaling in mice. Biochem Biophys Res Commun, 2018; 501: 394-399

22) Lopez-Otin C, Blasco MA, Partridge L, Serrano M and Kroemer G: The hallmarks of aging. Cell, 2013; 153: 1194-1217

23) Nakao M, Shimizu I, Katsuumi G, Yoshida Y, Suda M, Hayashi Y, Ikegami R, Hsiao YT, Okuda S, Soga T and Minamino T: Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload. Sci Rep, 2021; 11: 18384

24) Obokata M, Reddy YNV, Pilaru SV, Melovisky V and Borlaug BA: Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation, 2017; 136: 6-19

25) Campbell DJ, Somаратne JB, Prior DL, Yi M, Kenny JF, Newcomb AE, Kelly DJ and Black MJ: Obesity is associated with lower coronary microvascular density. PLoS One, 2013; 8: e81798

26) Machado MV, Vieira AB, da Conceicao FG, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Jerosch-Herold M and Rosenzweig A: Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome. Exp Physiol, 2017; 102: 1194-1217

27) Suda M, Shimizu I, Yoshida Y, Hayashi Y, Ikegami R, Katsuumi G, Wakasugi T, Yoshida Y, Okuda S, Soga T and Minamino T: Inhibition of dipeptidyl peptidase-4 ameliorates cardiac ischemia and systolic dysfunction by
up-regulating the FGF-2/EGR-1 pathway. PLoS One, 2017; 12: e0182422

28) Echouffo-Tcheugui JB, Xu H, DeVore AD, Schulte PJ, Butler J, Yancy CW, Bhatt DL, Hernandez AF, Heidenreich PA and Fonarow GC: Temporal trends and factors associated with diabetes mellitus among patients hospitalized with heart failure: Findings from Get With The Guidelines-Heart Failure registry. Am Heart J, 2016; 182: 9-20

29) McHugh K, DeVore AD, Wu J, Matsouaka RA, Fonarow GC, Heidenreich PA, Yancy CW, Green JB, Altman N and Hernandez AF: Heart Failure With Preserved Ejection Fraction and Diabetes: JACC State-of-the-Art Review. J Am Coll Cardiol, 2019; 73: 602-611

30) Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Militing H, Dendorfer A, Reichart B, Wolf E and Kupp C: Diabetes Mellitus-Induced Microvascular Destabilization in the Myocardium. J Am Coll Cardiol, 2017; 69: 131-143

31) Ashoff A, Qadri F, Eggers R, Johren O, Raasch W and Dendorfer A: Pigilozazone prevents capillary rarefaction in streptozotocin-diabetic rats independently of glucose control and vascular endothelial growth factor expression. J Vasc Res, 2012; 49: 260-266

32) Hemdan A, Reneland R and Lithell HO: Alterations in skeletal muscle morphology in glucose-tolerant elderly hypertensive men: relationship to development of hypertension and heart rate. J Hypertens, 2000; 18: 559-565

33) Yoshizawa S, Uto K, Nishikawa T, Hagiwara N and Oda H: Histological features of endomyocardial biopsies in patients undergoing hemodialysis: Comparison with dilated cardiomyopathy and hypertensive heart disease. Cardiovasc Pathol, 2020; 49: 107256

34) Yazawa H, Miyachi M, Furukawa M, Takahashi K, Takatsu M, Tsuboi K, Ohtake M, Murase T, Hattori T, Kato Y, Murohara T and Nagata K: Angiotensin-converting enzyme inhibition promotes coronary angiogenesis in the failing heart of Dahl salt-sensitive hypertensive rats. J Card Fail, 2011; 17: 1041-1050

35) Miyachi M, Yazawa H, Furukawa M, Tsuboi K, Ohtake M, Nishizawa T, Hashimoto K, Yokoi T, Koji T, Murate T, Yokota M, Murohara T, Koike Y and Nagata K: Exercise training alters left ventricular geometry and attenuates heart failure in dahl salt-sensitive hypertensive rats. Hypertension, 2009; 53: 701-707

36) Ihori H, Nozawa T, Sobajima M, Shida T, Fukui Y, Fujii N and Inoue H: Waon therapy attenuates cardiac hypertrophy and promotes myocardial capillary growth in hypertensive rats: a comparative study with fluvastatin. Heart Vessels, 2016; 31: 1361-1369

37) Gonzalez GE, Raleh NE, D’Ambrosio MA, Nakagawa P, Liu Y, Leung P, Dai X, Yang XP, Peterson EL and Carretero OA: Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens, 2015; 33: 144-152

38) Caudron J, Mulder P, Nicol L, Richard V, Thuillez C and Dacher JN: MR relaxometry and perfusion of the myocardium in spontaneously hypertensive rats: correlation with histopathology and effect of anti-hypertensive therapy. Eur Radiol, 2013; 23: 1871-1881

39) Pu Q, Larouche I and Schifflin EL: Effect of dual angiotensin converting enzyme/neutral endopeptidase inhibition, angiotensin converting enzyme inhibition, or AT1 antagonism on coronary microvasculature in spontaneously hypertensive rats. Am J Hypertens, 2003; 16: 931-937

40) Olianti C, Costantini I, Giardini F, Lazzi E, Crocini C, Ferrantini C, Pavone FS, Camici PG and Sacconi L: 3D imaging and morphometry of the heart capillary system in spontaneously hypertensive rats and normotensive controls. Sci Rep, 2020; 10: 14276

41) Potente M and Makinen T: Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol, 2017; 18: 477-494

42) Toblli JE, Cao G, DeRosa G, Di Gennaro F and Forcada P: Angiotensin-converting enzyme inhibition and angiogenesis in myocardium of obese Zucker rats. Am J Hypertens, 2004; 17: 172-180

43) Zhu YC, Zhu YZ, Gohlke P, Stauss HM and Ungr T: Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol, 1997; 80: 110A-117A

44) Tresor S, Hermans H, Craps S, Pokrez P, de Zeeuw P, Van Wauwe J, Gillijns H, Veltman D, Wei F, Caluwe E, Gijsbers R, Baatsen P, Staessen JA, Ghersioure B, Carmeliet P, Rega F, Meurs B, Oosterlinck W, Duchenne J, Goetschakck K, Voigt JU, Herregods MC, Herijgers P, Luttun A and Janssens S: Cardiac Microvascular Endothelial Cells in Pressure Overload-Induced Heart Disease. Circ Heart Fail, 2021; 14: e006979

45) Mahmoud M, Chan K, Raman B, Westaby J, Dass S, Petrou M, Sayer R, Ashrafian H, Myerson SG, Karamitos TD, Sheppard MN and Neubauer S: Histological Evidence for Impaired Myocardial Perfusion Reserve in Severe Aortic Stenosis. JACC Cardiovasc Imaging, 2019; 12: 2276-2278

46) Go AS, Chertow GM, Fan D, McCulloch CE and Hsu CY: Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004; 351: 1296-1305

47) Amman K, Wiest G, Zimmer G, Grett N, Ritz E and Mall G: Reduced capillary density in the myocardium of uremic rats--a stereological study. Kidney Int, 2004; 16: 931-937

48) Tornig J, Amann K, Ritz E, Nichols C, Zeier M and Mall G: Arteriolar wall thickening, capillary rarefaction and interstitial fibrosis in the heart of rats with renal failure: the effects of ramipril, nifedipine and moxonidone. J Am Soc Nephrol, 1996; 7: 667-675

49) Amann K, Odoni G, Benz K, Campean V, Jacob J, Hilgers KF, Hartner A, Veelken R and Orth SR: Sympathetic blockade prevents the decrease in cardiac VEGF expression and capillary supply in experimental renal failure. Am J Physiol Renal Physiol, 2011; 300: F105-112

50) Amann K, Munter K, Wessels S, Wagner J, Balajew V,
Hergenroder S, Mall G and Ritz E: Endothelin A receptor blockade prevents capillary/myocyte mismatch in the heart of uremic animals. J Am Soc Nephrol, 2000; 11: 1702-1711

51) Amann K, Gassmann P, Buzello M, Orth SR, Tornig J, Gross ML, Magener A, Mall G and Ritz E: Effects of ACE inhibition and bradykinin antagonism on cardiovascular changes in uremic rats. Kidney Int, 2000; 58: 153-161

52) Gut N, Piecha G, Aldebsi F, Schaefer S, Bekeredjian R, Schirmacher P, Ritz E and Gross-Weissmann ML: Erythropoietin combined with ACE inhibitor prevents heart remodeling in 5/6 nephrectomized rats independently of blood pressure and kidney function. Am J Nephrol, 2013; 38: 124-135

53) Di Marco GS, Reuter S, Kentrup D, Ting L, Ting L, Grabner A, Jacobi AM, Penenstadt H, Baba HA, Tiemann K and Brand M: Cardioprotective effect of calcineurin inhibition in an animal model of renal failure. Eur Heart J, 2011; 32: 1935-1945

54) Di Marco GS, Kentrup D, Reuter S, Mayer AB, Golle L, Tiemann K, Fokker M, Engelbertz C, Breithardt G, Brand E, Reinecke H, Penenstadt H and Brand M: Soluble Flt-1 links microvascular disease with heart failure in CKD. Basic Res Cardiol, 2015; 110: 30

55) Neben-Wittich MA, Wittich CM, Mueller PS, Larson DR, Gertz MA and Edwards WD: Obstructive intramural coronary amyloidosis and myocardial ischemia are common in primary amyloidosis. Am J Med, 2005; 118: 1287

56) Maleszewski JJ: Cardiac amyloidosis: pathology, nomenclature, and typing. Cardiovasc Pathol, 2015; 24: 343-350

57) Dorbala S, Vangala D, Bruyere J, Jr., Quarta C, Kruger J, Padera R, Foster C, Hanley M, Di Carli MF and Falk R: Coronary microvascular dysfunction is related to abnormalities in myocardial structure and function in cardiac amyloidosis. JACC Heart Fail, 2014; 2: 358-367

58) Kim D, Choi JO, Kim K, Kim JS and Jeon ES: Clinical and prognostic implications of capillary density in patients with cardiac light chain amyloidosis. ESC Heart Fail, 2021; 8: 5594-5599

59) Guclu A, Happe C, Eren S, Korkmaz IH, Niessen HW, Klein P, van Slegtenhorst M, Schinkel AF, Michels M, van Rossum AC, Germans T and van der Velden J: Left ventricular outflow tract gradient is associated with reduced capillary density in hypertrophic cardiomyopathy irrespective of genotype. Eur J Clin Invest, 2015; 45: 1252-1259

60) Johansson B, Morner S, Waldenstrom A and Stal P: Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis. Int J Cardiol, 2008; 126: 252-257

61) Ku MC, Kober F, Lai YC, Pohlmann A, Qadri F, Bader M, Carrier I and Niendorf T: Cardiovascular magnetic resonance detects microvascular dysfunction in a mouse model of hypertrophic cardiomyopathy. J Cardiovasc Magn Reson, 2021; 23: 63

62) Shimizu I, Yoshida Y, Suda M and Minamino T: DNA damage response and metabolic disease. Cell Metab, 2014; 20: 967-977

63) Katsuumi G, Shimizu I, Yoshida Y and Minamino T: Vascular Senescence in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med, 2018; 5: 18

64) Shimizu I, Yoshida Y, Katsuno T, Tateno K, Okada S, Moriya J, Yokoyama M, Nojima A, Ito T, Zechner R, Komuro I, Kobayashi Y and Minamino T: p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure. Cell Metab, 2012; 15: 51-64

65) Shimizu I, Yoshida Y, Moriya J, Nojima A, Uemura A, Kobayashi Y and Minamino T: p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol, 2015; 85: 183-198

66) Yoshida Y, Shimizu I, Katsuumi G, Jiao S, Suda M, Hayashi Y and Minamino T: p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol, 2015; 85: 183-198

67) Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F and Komuro I: A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med, 2009; 15: 1082-1087

68) Yokoyama M, Okada S, Nakagomi A, Moriya J, Shimizu I, Nojima A, Yoshida Y, Ichimiya H, Kimamura N, Kobayashi Y, Ohta S, Fruttiger M, Lozano G and Minamino T: Inhibition of endothelial p53 improves metabolic abnormalities related to diabetic obesity. Cell Rep, 2014; 7: 1691-1703

69) Wu L, Liu D, Wu Y, Wei X, Wang Z, Wang Z, Zhang S, Yang H, Yi M and Liu H: p53 mediated transcription of Omi/HtrA2 in aging myocardium. Biochem Biophys Res Commun, 2019; 519: 734-739

70) Ravi R, Mookeree B, Bhijuwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL and Bedi A: Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev, 2000; 14: 34-44

71) Guan A, Gong H, Ye Y, Jia J, Zhang G, Li B, Yang C, Qian S, Sun A, Chen R, Ge J and Zou Y: Regulation of p53 by jagged1 contributes to angiogenesis through over-expression of miR-182 and miR-210 in nasopharyngeal carcinoma. J Cell Sci, 2013; 126: 252-257

72) Ku MC, Kober F, Lai YC, Pohlmann A, Qadri F, Bader M, Carrier I and Niendorf T: Cardiovascular magnetic resonance detects microvascular dysfunction in a mouse model of hypertrophic cardiomyopathy. J Cardiovasc Magn Reson, 2021; 23: 63

73) Shimizu I, Yoshida Y, Suda M and Minamino T: DNA damage response and metabolic disease. Cell Metab, 2014; 20: 967-977

74) Damodaran C, Zhang Z, Keller BB, Zhang C and Cai L: Inhibition of p53 prevents diabetic cardiomyopathy by preventing early-stage apoptosis and cell senescence, reduced glycolysis, and impaired angiogenesis. Cell Death Dis, 2018; 9: 82

75) el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B: WAF1, a potential mediator of p53 tumor suppressor. Cell, 1993; 75: 817-825

76) Spyridopoulos I, Isner JM and Losordo DW: Oncogenic ras induces premature senescence in endothelial cells: role of p21(Cip1/Waf1). Basic Res Cardiol, 2002; 97: 117-124

77) Lee CL, Moding EJ, Cuneo KC, Li Y, Sullivan JM, Mao L, Washington I, Jeffords LB, Rodrigues RC, Ma Y, Das S, Kontos CD, Kim Y, Rockman HA and Kirsch DG: p53 functions in endothelial cells to prevent radiation-induced myocardial injury in mice. Sci Signal, 2012; 5:
Zeng ZM, Du HY, Xiong L, Zeng XL, Zhang P, Cai J, Huang L and Liu AW: BRC1 protects cardiac microvascular endothelial cells against irradiation by regulating p21-mediated cell cycle arrest. Life Sci, 2020; 244: 117342

Zhang Z, Oh M, Sasaki JI and Nor JE: Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death Dis, 2021; 12: 644

Lee SH, Lee JH, Yoo SY, Hur J, Kim HS and Kwon SM: Hypoxia inhibits cellular senescence to restore the therapeutic potential of old human endothelial progenitor cells via the hypoxia-inducible factor-1alpha-TWIST-p21 axis. Arterioscler Thromb Vasc Biol, 2013; 33: 2407-2414

Li JM, Fan LM, George VT and Brooks G: Nox2 regulates endothelial cell cycle arrest and apoptosis via p21cip1 and p53. Free Radic Biol Med, 2007; 43: 976-986

Anderson R, Lagnoado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, Birch J, Salmonowicz H, Ogrodnik M, Jurk D, Proctor C, Correia-Melo C, Victorelli S, Fielder E, Berlinger-Palmini R, Owens A, Greaves LC, Kolsky KL, Parini A, Douin-Echinard V, LeBrasseur NK, Arthur HM, Tual-Chalot S, Schafer MJ, Roos CM, Miller JD, Robertson N, Mann J, Adams PD, Tchkonia T, Kirkland JL, Mialet-Perez J, Richardson GD and Passos JF: Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J, 2019; 38:

Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, Seals DR and Donato AJ: Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol, 2017; 313: H890-H895

Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, Birch J, Salmonowicz H, Ogrodnik M, Jurk D, Proctor C, Correia-Melo C, Victorelli S, Fielder E, Berlinger-Palmini R, Owens A, Greaves LC, Kolsky KL, Parini A, Douin-Echinard V, LeBrasseur NK, Arthur HM, Tual-Chalot S, Schafer MJ, Roos CM, Miller JD, Robertson N, Mann J, Adams PD, Tchkonia T, Kirkland JL, Mialet-Perez J, Richardson GD and Passos JF: Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J, 2019; 38:

Tchkonia T, Kirkland JL, Mialet-Perez J, Richardson GD and Passos JF: Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J, 2019; 38:

Shiojima I and Walsh K: Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev, 2006; 20: 3347-3365

Hua YN, Zhang YM, Ceylan-Isik AF, Wold LE, Nunn JM and Ren J: Chronic akt activation accentuates aging-induced cardiac hypertrophy and myocardial contractile dysfunction: role of autophagy. Basic Research in Cardiology, 2011; 106: 1173-1191

Shimizu I and Minamino T: Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2016; 97: 245-262

Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS and Walsh K: Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest, 2005; 115: 2108-2118

Chaanine AH and Hajjar RJ: AKT signalling in the failing heart. Eur J Heart Fail, 2011; 13: 825-829

Shiojima I and Walsh K: Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res, 2002; 90: 1243-1250

Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H and Komuro I: Akt negatively regulates the in vitro lifespan of human endothelial cells via a p53/p21-dependent pathway. EMBO J, 2004; 23: 212-220

Hsiao YT, Shimizu I, Yoshida Y and Minamino T: Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen, 2022; 42: 2

Alvarez-Rodriguez L, Lopez-Hoyos M, Munoz-Cacho P and Martinez-Taboada VM: Aging is associated with circulating cytokine dysregulation. Cellular Immunology, 2012; 273: 124-132

Zhang B, Li XL, Zhao CR, Pan CL and Zhang Z: Interleukin-6 as a Predictor of the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Epidemiological Studies. Immunological Investigations, 2018; 47: 689-699

Edsfeldt A, Grufman H, Asciutto G, Nitulescu M,
Persson A, Nilsson M, Nilsson J and Goncalves I: Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques. Atherosclerosis, 2015; 241: 443-449

103) Dunlay SM, Weston SA, Redfield MM, Killian JM and Roger VL: Tumor necrosis factor-alpha and mortality in heart failure - A community study. Circulation, 2008; 118: 625-631

104) Cheng JM, Akkerhuis KM, Battes LC, van Vark LC, Hillege HL, Paulus WJ, Boersma E and Kardys I: Biomarkers of heart failure with normal ejection fraction: a systematic review. Eur J Heart Fail, 2013; 15: 1350-1362

105) Franssen C, Chen S, Unger A, Korkmaz HI, Franssen C, De Keulenaer GW, Tschope C, Leite-Moreira AF, Musters R, Niessen HW, Linke WA, Paulus WJ and Hamdani N: Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC Heart Fail, 2016; 4: 312-324

106) Bagi Z: Mechanisms of coronary microvascular adaptation to obesity. Am J Physiol Regul Integr Comp Physiol, 2009; 297: R556-567

107) Vulesevic B, McNeill B, Giacco F, Maeda K, Blackburn NJ, Brownlee M, Milne RW and Suuronen EJ: Methylglyoxal-Induced Endothelial Cell Loss and Inflammation Contribute to the Development of Diabetic Cardiomyopathy. Diabetes, 2016; 65: 1699-1713

108) Krishnamurthy P, Rajasingh J, Lambers E, Qian G, Losordo DW and Kishore R: IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR, Circ Res, 2009; 104: e9-18

109) Gupta R, Liu L, Zhang X, Fan X, Krishnamurthy P, Verma S, Tongers J, Misener S, Ashcherkin N, Sun H, Tian J and Kishore R: IL-10 provides cardioprotection in diabetic myocardial infarction via upregulation of Heme clearance pathways. JCI Insight, 2020; 5:

110) Banerjee I, Fuseler JW, Intwala AR and Baudino TA: IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol, 2009; 296: H1694-1704

111) Rienks M, Carai P, Bitsch N, Schellings M, Vanhaverbeke M, Verjans J, Cuijpers I, Heymans S and Papageorgiou A: Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Res Cardiol, 2017; 112: 42

112) Freed JK and Gutterman DD: Mitochondrial reactive oxygen species and vascular function: less is more. Arterioscler Thromb Vasc Biol, 2013; 33: 673-675

113) Fukai T and Ushio-Fukai M: Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol, 2012; 302: H724-732

114) Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuh R, Levitan I, Fukai T and Ushio-Fukai M: Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol, 2020; 9:

115) Speer T, Owala FO, Holy EW, Zewinger S, Frenzel FL, Stahli BE, Razavi M, Triem S, Cvija H, Rohrer L, Seiler S, Heine GH, Jankowski V, Jankowski J, Camici GG, Akhmedov A, Fiser D, Luscher TF and Tanner FC: Carboxymethylated low-density lipoprotein induces endothelial dysfunction. Eur Heart J, 2014; 35: 3021-3032

116) Petrosillo G, Matera M, Moro N, Ruggiero FM and Paradies G: Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med, 2009; 46: 88-94

117) Zhang M, Perino A, Ghigo A, Hirsch E and Shah AM: NADPH oxidases in heart failure: poachers or gamekeepers? Antioxid Redox Signal, 2013; 18: 1024-1041

118) Fan LM, Geng L, Cahill-Smith S, Liu F, Douglas G, McKenzie CA, Smith C, Brooks G, Channon KM and Li JM: Nox2 contributes to age-related oxidative damage to neurons and the cerebral vasculature. J Clin Invest, 2019; 129: 3374-3386

119) Tojo T, Ushio-Fukai M, Yamaoka-Tojo M, Ikeda S, Patrushev N and Alexander RW: Role of gp91phox (Nox2)-containing NAD(P)H oxidase in angiogenesis in response to hindlimb ischemia. Circulation, 2005; 111: 2347-2355

120) Douglas G, Bendall JK, Crabtree MJ, Tatham AL, Carter EE, Hall AB and Channon KM: Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE(-/-) mice. Cardiovasc Res, 2012; 94: 20-29

121) Murdoch CE, Chauvey S, Zeng L, Yu B, Ivetic A, Walker SJ, Vanhoutte D, Heymans S, Grieve DJ, Cave AC, Brewer AC, Zhang M and Shah AM: Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition. J Am Coll Cardiol, 2014; 63: 2734-2741

122) Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, Aminlou K, Yu B, Dong X, Walker SJ, Brandes RP and Shah AM: NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A, 2010; 107: 18121-18126

123) Schroder K, Zhang M, Benkhoff S, Mh, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah AM and Brandes RP: Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res, 2012; 110: 1217-1225

124) Murphy SP, Ibrahim NE and Januzzi JL, Jr.: Heart Failure With Reduced Ejection Fraction: A Review. JAMA, 2020; 324: 488-504

125) McMurray JJV and Packer M: How Should We Sequence the Treatments for Heart Failure and a Reduced Ejection Fraction?: A Redefinition of Evidence-Based Medicine. Circulation, 2021; 143: 875-877

126) McMurray JJ, Ostergerl J, Swedberg K, Granger CB, Held P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA, Investigators C and Committees: Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet, 2003; 362: 767-771
127) Group CTS: Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med, 1987; 316: 1429-1435

128) Investigators S, Yusuf S, Pitt B, Davis CE, Hood WB and Cohn JN: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med, 1991; 325: 293-302

129) Hayashi T, Sohmiya K, Ukimura A, Endoh S, Mori T, Shimomura H, Okabe M, Terasaki F and Kitaura Y: Angiotensin II receptor blockade prevents microangiopathy and preserves diastolic function in the diabetic rat heart. Heart, 2003; 89: 1236-1242

130) de Boer RA, Pinto YM, Suurmeijer AJ, Pokharel S, Scholtens E, Humler M, Saavedra JM, Boomsma F, van Gilst WH and van Veldhuisen DJ: Increased expression of cardiac angiotensin II type 1 (AT(1)) receptors decreases myocardial microvesSEL density after experimental myocardial infarction. Cardiovasc Res, 2003; 57: 434-442

131) Nako H, Kataoka K, Koibuchi N, Dong YF, Toyama K, Yamamoto E, Yasuda O, Ichijo H, Ogawa H and Kim-Mitsuyama S: Novel mechanism of angiotensin II-induced cardiac injury in hypertensive rats: the critical role of ASK1 and VEGF. Hypertens Res, 2012; 35: 194-200

132) Parenti A, Morbidelli L, Ledda F, Granger HJ and Ziche M: The bradykinin/B1 receptor promotes angiogenesis by up-regulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J, 2001; 15: 1487-1489

133) Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM and Levy BI: Proangiogenic effect of angiotensin-converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res, 2001; 89: 678-683

134) Tamarat R, Silvestre JS, Kubis N, Benessiano J, Duriez M, deGasparo M, Henrion D and Levy BI: Endothelial nitric oxide synthase lies downstream from angiotensin II-induced angiogenesis in ischemic hindlimb. Hypertension, 2002; 39: 830-835

135) Imanishi T, Hano T and Nishio I: Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res, 2004; 27: 101-108

136) Siddiqui AJ, Mansson-Broberg A, Gustafsson T, Grinnemo KH, Dellgren G, Hao X, Fischer H and Sylven C: Antagonism of the renin-angiotensin system can counteract cardiac angiogenic vascular endothelial growth factor gene therapy and myocardial angiogenesis in the normal heart. Am J Hypertens, 2005; 18: 1347-1352

137) Jesmin S, Hattori Y, Sakuma I, Mowa CN and Kitabatake A: Role of ANG II in coronary capillary angiogenesis at the insulin-resistant stage of a NIDDM rat model. Am J Physiol Heart Circ Physiol, 2002; 283: H1387-1397

138) Belabbas H, Salvidea S, Casellas D, Moles JP, Galbes O, Mercer J and Jover B: Contrastng effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats. Am J Physiol Regul Integr Comp Physiol, 2008; 295: R1512-1518

139) Braunwald E: The path to an angiotensin receptor antagonist-neprilysin inhibitor in the treatment of heart failure. J Am Coll Cardiol, 2015; 65: 1029-1041

140) McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, Investigators P-H and Committees: Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med, 2014; 371: 993-1004

141) Pfau D, Thorn SL, Zhang J, Mikush N, Renaud JM, Klein R, deKemp RA, Wu X, Hu X, Sinunas AJ, Young LH and Tirziiu D: Angiotensin Receptor Neprilysin Inhibitor Attenuates Myocardial Remodeling and Improves Infarct Perfusion in Experimental Heart Failure. Sci Rep, 2019; 9: 5791

142) Suematsu Y, Tashiro K, Morita H, Ideishi A, Kuwano T and Miura SI: Angiotensin Receptor Blocker and Neprilysin Inhibitor Suppresses Cardiac Dysfunction by Accelerating Myocardial Angiogenesis in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet. J Renin Angiotensin Aldosterone Syst, 2021; 2021: 9916789

143) Zheng W, Brown MD, Brock TA, Bjercer RJ and Tomanek RJ: Bradycardia-induced coronary angiogenesis is dependent on vascular endothelial growth factor. Circ Res, 1999; 85: 192-198

144) Lei L, Zhou R, Zheng W, Christensen LP, Weiss RM and Tomanek RJ: Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation, 2004; 110: 796-802

145) Ulu N, Henning RH, Goris M, Schoemaker RG and van Gilst WH: Effects of ivabradine and metoprolol on cardiac angiogenesis and endothelial dysfunction in rats with heart failure. J Cardiovasc Pharmacol, 2009; 53: 9-17

146) Lamping KG, Zheng W, Xing D, Christensen LP, Martins J and Tomanek RJ: Bradycardia stimulates vascular growth during gradual coronary occlusion. Arterioscler Thromb Vasc Biol, 2005; 25: 2122-2127

147) Zheng W, Seftor EA, Meininger CJ, Hendrix MJ and Tomanek RJ: Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol, 2001; 280: H909-917

148) Amann K, Hofstetter J, Campean V, Koch A, Gross ML, Veelken R and Ritz E: Nonhypotensive dose of beta-adrenergic blocker ameliorates capillary deficits in the hearts of rats with moderate renal failure. Vircows Arch, 2006; 449: 207-214

149) Swedberg K, Komajda M, Bohm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L and Investigators S: Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 2010; 376: 875-885

150) Wu X, You W, Wu Z, Ye F and Chen S: Ivabradine promotes angiogenesis and reduces cardiac hypertrophy in mice with myocardial infarction. Anatol J Cardiol, 2018; 20: 266-272

151) Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erndu N, Shaw W, Law G, Desai M, Matthews DR and Group CPC: Canagliflozin and Cardiovascular and
adverse remodeling after myocardial infarction. Circulation, 2011; 123: 400-408

162) Lother A, Deng L, Huck M, Furst D, Kowalski J, Esser JS, Moser M, Bode C and Hein L: Endothelial cell mineralocorticoid receptors oppose VEGF-induced gene expression and angiogenesis. J Endocrinol, 2019; 240: 15-26

163) Kim SK, Biwer LA, Moss ME, Man JJ, Aronovitz MJ, Martin GL, Carrillo-Salinas FJ, Salvador AM, Alcaide P and Jaffe IZ: Mineralocorticoid Receptor in Smooth Muscle Contributes to Pressure Overload-Induced Heart Failure. Circ Heart Fail, 2021; 14: e007279

164) Salvador AM, Moss ME, Aronovitz M, Mueller KB, Blanton RM, Jaffe IZ and Alcaide P: Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiol Rep, 2017; 5:

165) Bentley-Lewis R, Adler GK, Perlstein T, Seely EW, Hopkins PN, Williams GH and Garg R: Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J Clin Endocrinol Metab, 2007; 92: 4472-4475

166) Gorini S, Kim SK, Infante M, Mammì C, La Vignera S, Fabbri A, Jaffe IZ and Caprio M: Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging. Front Endocrinol (Lausanne), 2019; 10: 584

167) Bistola V, Lambadiari V, Dimitriadis G, Ioannidis I, Makrilakis K, Tentolouris N, Taspas A and Parissis J: Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors. Heart Fail Rev, 2018; 23: 377-388

168) Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire DK, Pencina MJ, Standl E, Stein PP, Suryawanshi S, Van de Werf F, Peterson ED, Holman RR and Group TS: Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 2015; 373: 232-242

169) Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire DK, Ray KK, Leiter LA, Raz I, Committee S-TS and Investigators: Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med, 2013; 369: 1317-1326

170) Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Lam H, White WB and Investigators: Heart failure and mortality outcomes in patients with type 2 diabetes taking alglucinton versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet, 2015; 385: 2067-2076

171) Shigeta T, Aoyama M, Bando YK, Monji A, Mitsuji T, Takatsu M, Cheng XW, Okumura T, Hirahishi K, Nagata K and Murohara T: Dipeptidyl peptidase-4 modulates left ventricular dysfunction in chronic heart failure via angiogenesis-dependent and -independent actions. Circulation, 2012; 126: 1838-1851

172) Fiordaliso F, Maggioni S, Balconi G, Scharla L, Corneli A, De Luigi A, Figliuzzi M, Antonioli X, Chiabrando C,
Masson S, Cervo L and Latini R: Effects of dipeptidyl peptidase-4 (DPP-4) inhibition on angiogenesis and hypoxic injury in type 2 diabetes. Life Sci, 2016; 154: 87-95

173) Shimizu I and Minamino T: Cellular senescence in cardiac diseases. J Cardiol, 2019; 74: 313-319

174) Palmer AK, Tchekonia T, Lebrasseur NK, Chini EN, Xu M and Kirkland JL: Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. Diabetes, 2015; 64: 2289-2298

175) Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD and van Deursen JM: Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature, 2016; 530: 184-189

176) Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A and Zhou D: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med, 2016; 22: 78-83

177) Dookun E, Walaszczuk A, Redgrave R, Palmowski P, Tual-Chalot S, Suwana A, Chapman J, Jirkovsky E, Donastorg Sosa L, Gill E, Yausep OE, Santin Y, Mialet-Perez J, Andrew Owens W, Grieve D, Spyridopoulos I, Taggart M, Arthur HM, Passos JF and Richardson GD: Clearance of senescent cells during cardiac ischemia-reperfusion injury improves recovery. Aging Cell, 2020; 19: e13249

178) Dookun E, Passos JF, Arthur HM and Richardson GD: Therapeutic Potential of Senolytics in Cardiovascular Disease. Cardiovasc Drugs Ther, 2020;

179) Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchekonia T, Kirkland JL and Miller JD: Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 2016; 15: 973-977

180) Walaszczuk A, Dookun E, Redgrave R, Tual-Chalot S, Victorelli S, Spyridopoulos I, Owens A, Arthur HM, Passos JF and Richardson GD: Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell, 2019; 18: e12945

181) Jia K, Dai Y, Liu A, Li X, Wu L, Lu L, Bao Y and Jin Q: Senolytic Agent Navitoclax Inhibits Angiotensin II-Induced Heart Failure in Mice. J Cardiovasc Pharmacol, 2020; 76: 452-460

182) Yu S, Kim SR, Jiang K, Ogrodnik M, Zhu XY, Ferguson CM, Tchekonia T, Lerman A, Kirkland JL and Lerman LO: Quercetin Reverses Cardiac Systolic Dysfunction in Mice Fed with a High-Fat Diet: Role of Angiogenesis. Oxid Med Cell Longev, 2021; 2021: 8875729

183) Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, Prata L, Masternak MM, Kritchavsky SB, Musi N and Kirkland JL: Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 2019; 40: 554-563

184) Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T and Kirkland JL: Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019; 47: 446-456

185) Suda M, Shimizu I, Katsuumi G, Yoshida Y, Matsumoto N, Hayashi Y, Ikegami R, Yoshida Y, Mikawa R, Katayama A, Wada J, Seki M, Suzuki Y, Iwama A, Nakagami H, Nagasawa A, Morishita R, Sugimoto M, Okuda S, Tsuchida M, Ozaki K, Matsui M and Minamino T: Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nature Aging, 2021;