INTRODUCTION

Cilia can be divided into primary/nonmotile cilia and secondary/motile cilia, and they have similar structures but distinct functions. The primary cilium is an immotile microtubule-based structure that protrudes from the cell surface and is distributed in almost all vertebrate cell types. In cells, cillum acts as an antenna and plays a pivotal role in chemical sensation, signal transduction, and control of organogenesis.1–4 Defects in the assembly and functions of cilia result in a variety of congenital disorders, known as ciliopathies, characterized by the high heterogeneity of clinical manifestations. Ciliopathies can involve most major tissues and organs and cause a broad spectrum of phenotypes, including skeletal malformations, retinal degeneration, polycystic kidney, infertility, and intellectual disability.5–8

Jeune asphyxiating thoracic dystrophy (JATD), also known as asphyxiating thoracic dystrophy or Jeune syndrome (MIM 208500), was first described in 1955,9 and is characterized by skeletal anomalies, primarily shortened ribs and limbs, brachydactyly and variable polydactyly. The estimated incidence of this disease is about 1 in 126,000 live births.10 JATD belongs to the ciliopathy diseases

A novel WDR60 variant contributes to a late diagnosis of Jeune asphyxiating thoracic dystrophy in a Chinese patient: A case report

Xiangzhong Zhao1 | Aihua Sui1 | Li Cui2 | Zhiying Liu1,3 | Ruixiao Zhang3 | Yue Han3 | Leping Shao3

1Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
2Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
3Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China

Correspondence
Leping Shao, Department of Nephrology, The Affiliated Qingdao Municipal Hospital of Qingdao University, No.5 Donghai Middle Road, Qingdao 266071, China.
Email: lepingshao@163.com

Funding information
National Natural Science Foundation of China, Grant/Award Number: 81873594

Abstract
We report a Chinese patient with JATD presenting a mild skeletal phenotype and with renal insufficiency as the initial symptom of the disease. A novel homozygous c.2789C>T (p.S930L) variant in the WDR60 gene was identified. Our report will help to improve awareness and diagnosability for this disease.

KEYWORDS
ciliopathies, Jeune asphyxiating thoracic dystrophy, renal failure, skeletal ciliopathies, WDR60 gene
spectrum-skeletal ciliopathies. In addition to JATD, skeletal ciliopathies also encompass short-rib polydactyly syndromes (SRPS; MIM 611263, MIM613091, MIM 263520, MIM 269860, MIM 614091), Mainzer-Saldino syndrome (MZSDS; MIM 266920),11 Sensenbrenner syndrome or cranio-ectodermal dysplasia (CED; MIM 218330),12 oral-facial-digital syndrome 4 (OFD4; MIM 258860), and Ellis-van Creveld syndrome (EVC; MIM 225500).10,12 Apart from distinctive skeletal changes, these diseases often give rise to the involvement of extraskeletal organs, and cause extraskeletal phenotypes including polycystic kidney disease, retinal degeneration, and cardiac, liver, and brain anomalies.6,10,14,24

The causative link between JATD and variants in several genes involved in the assembly and transport of cilia has been well established.13,15,16 The association of the WDR60 gene, also known as DYNC2I1, with ciliopathies was recognized for the first time in 2013.17 The WDR60 protein acts as a dynein intermediate chain required for retrograde intraflagellar transport in cilia.18,19 Variants in WDR60 can cause either SRPS or JATD phenotypes. To date, only five different variants have been identified, and no case has been reported in the Chinese population.13,17,20 Here, we describe a Chinese patient with JATD presenting a mild skeletal phenotype, and with renal insufficiency as the initial symptom of the disease. A homozygous c.2789C>T (p.S930L) variant in the WDR60 gene was identified in the patient. Both parents were heterozygous for the variant, confirming segregation in the family. This report will expand the phenotypic spectrum caused by WDR60 variants and contribute to improving awareness and diagnosability for this disease.

2 | CASE PRESENTATION

The proband was a 46-year-old male patient from healthy consanguineous parents. At approximately 38 years old, he was admitted to a local hospital for dizziness. Examination and laboratory data on admission showed that the blood pressure was 200/110 mmHg, and the serum Cr was 1200 μmol/L. The diagnoses of hypertension and chronic kidney disease (stage 5) were made according to his clinical features and biochemical data at that time. Then, an antihypertensive therapy was taken by administration of antihypertensive drugs to control the blood pressure within the normal range (approximately 140–150 mmHg/90 mmHg), and regular hemodialysis was adopted to improve the survival status and prognosis. One year ago, he was hospitalized to our hospital because of dizziness, headache, and alalia, and brain CT demonstrated hemorrhage in his left brain. Notably, physical examination on admission in our hospital showed disproportional limb shortening, with normal height (170.0 cm), while he presented conspicuous small chest and short extremities with brachydactyly accompanied by deformed teeth (Figure 1). In addition, routine fundoscopy revealed the concurrent existence of bilateral retinitis pigmentosa in this patient (Figure 2). According to the abovementioned clinical signs and the history of kidney failure, the patient was reassessed and the diagnosis of JATD was proposed. Clinical features and representative biochemical data are shown in Table 1. The pedigree is shown in Figure 3.

To confirm the diagnosis, genetic analysis was performed after the patient and his family members gave informed consent. The study protocol was approved by the Ethics Committee of the Affiliated Hospital of Qingdao

FIGURE 1 Clinical and radiological features of the JATD proband. (A) The proband manifested with a small chest, short extremities with short fingers and toes, and deformity teeth. (B) X-rays of the proband show shortening of the ribs, fingers and toes.
University. Genomic DNA was extracted from peripheral blood leukocytes using a Blood Genome DNA Extraction KitUSA. High-throughput sequencing was used to analyze all the exon regions and adjacent intronic regions of JATD/SRPS-associated genes that have been reported previously, including CEP120, DYNC2H1, EVC, EVC2, IFT43, IFT80, IFT122, IFT140, IFT172, NEK1, TTC21B, WDR19, WDR34, WDR35, and WDR60. After raw data processing, reads that passed were then mapped to the human reference genome (UCSC hg19) using the Burrows Wheeler Aligner (University of California, Santa Cruz, CA, USA). The variant call file (VCF) containing the detected variants was annotated with Variant Effect Predictor v83 and the dbNSFP (Database for Nonsynonymous SNPs’ Functional Predictions) v3.1. After the selection process, a novel homozygous variant c.2789C>T (p.S930L) in exon 24 of the WDR60 gene was found in the proband and the heterozygous variant was detected in his parents and his daughter. The variant was then confirmed by sanger sequencing verification (Figure 4). No other pathogenic variants were identified in the other genes, and c.2789C>T variant was not found in one hundred unrelated healthy subjects. According to guidelines from the American College of Medical Genetics and Genomics (ACMG, 2015), the variant was preliminarily determined to be likely pathogenic (PM2 + PM3 + PP3 + PP4). PM2: The frequency in normal population database is 0.0003, which is low-frequency variation; PM3: recessive in trans; PP3: protein function predicted as harmful, benign, harmful and harmful, by prediction software SIFT, polyphen-2, Mutation taster, and GERP++, respectively; PP4: patient’s phenotype or family history support that this is indeed the causative variant in the patient.

Table 1 Clinical features and biochemical data of the patient on admission to our hospital for the first time.

Clinical characteristics	Proband	Normal range
Age (years)	45	—
Gender	Male	—
Height (cm)	170.0	167.1 (average)
Weight (kg)	60	—
BP (mmHg)	163/66	100–120/60–80
eGFR (ml/min)	7.52	90–120
BUN (mmol/l)	12.58	3.1–8
Serum Cr (µmol/l)	921.11	57–97
Uric Acid (µmol/l)	259.15	208–428
Urine gravity (anuria)	1.005–1.025	
Urine pH (anuria)	4.6–8.0	
Proteinuria (anuria)	—	

Abbreviations: BP, blood pressure; BUN, blood urea nitrogen; Cr, creatinine; GFR = glomerular filtration rate, eGFR was estimated by the MDRD formula.

Figure 3 Pedigree of the Chinese family with JATD. □, male ○, female; ■, male patient; ●, female patient; ↗, proband.
primary cilium. Skeletal ciliopathies are common forms of ciliopathies, which can be classified into different subtypes according to the clinical manifestations. In addition to the common signs of skeletal development abnormalities, each subtype has its own unique feature different from others.10

As the important subtypes of skeletal ciliopathies, the clinical manifestations of JATD and SRPS are highly similar. They both manifest as short ribs, narrow chest, short fingers (toes), with or without polydactyly.6,17 These signs are usually accompanied by extraskeletal phenotypes such as retinopathy and fibrocystic changes in the liver and kidney. However, the SRPS phenotype is usually more severe than JATD and often leads to embryonic developmental disorders and perinatal death, with a short survival period. However, the relative survival rate of JATD is higher and, approximately 40%, could survive to adulthood.13,15

In the present report, the proband was an adult patient and displayed a mild phenotype of skeletal abnormalities, such as a relatively small thoracic cage, which is less conspicuous than that in neonate cases, possibly attributed to the improvement of respiratory function with age. Since short fingers (toes) of the extremities are very conspicuous in the patient and no other typical radiological features, such as cone-shaped epiphyses, can be distinguished in the patient's radiographs, this further illustrates the high variability of JATD manifestations. It is worth noting that, for this patient, the extraskeletal phenotype-progressive renal failure and retinal degeneration were considerably more noticeable than the skeletal changes, which were not a major concern until visiting our hospital. Notably, the proband's only sibling died of respiratory failure at infancy without definite diagnosis. It is estimated that 60% of JATD cases are accompanied by lethal respiratory distress after birth.14 Once they overcome respiratory dysfunction through careful nursing at the early stage after birth, the survival rate of infants will be improved. A total of 30% of the surviving JATD patients developed end-stage renal disease, and 50% of the JATD cases presented retinal alterations similar to the proband in this report; however, the age of onset of extrasosseous manifestations is still unassessed to date.14,25

To make a definite diagnosis and find the pathogenic gene, a JATD/SRPS panel including fifteen genes was screened by high-throughput sequencing, a novel homozygous variant c.2789C>T (p.S930L) in exon 24 of the WDR60 gene was found, and multiple sequence alignment indicated the evolutionary conservation of the p.S930L among different species (Figure 4). In silico analysis by four software programs highly suggested that the variant was a pathogenic form. Current evidence has proven that WDR60 variants can cause varying degrees of phenotypes of JATD or SRPS.13,17,20 Moreover, one report also confirmed the destructive effect of WDR60 variation on cilia structure and assembly by immunofluorescence in fibroblasts derived from the affected patient.17 In our case, the patient was in a very serious condition and denied biopsy, so we could not acquire in vivo evidence of variant disrupting ciliogenesis from this patient. Even so, we have made a point variant mouse model and we will provide a more intensive investigation of the pathogenic mechanism of the c.2789C>T variant in future studies.

In summary, in this report, we identified a novel homozygous variant c.2789C>T (p.S930L) in a JATD patient
with late diagnosis. This report will help to expand our understanding of this disease and enrich the mutational spectrum of the WDR60 gene.

AUTHOR CONTRIBUTIONS
L.S. conceived and designed the experiments. X.Z., L.C., and A.S. performed the experiments. Z.L., R.Z., and Y.H. performed the data analyses. X.Z. wrote the manuscript. L.S. revised the manuscript. All authors have reviewed the final manuscript and approved submitting for publication.

ACKNOWLEDGMENTS
We thank all subjects for their participation.

FUNDING INFORMATION
This research was supported by the Natural Science Foundation of China (81873594). The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

CONFLICT OF INTEREST
The authors declare no competing interests.

DATA AVAILABILITY STATEMENT
The datasets used and/or analyzed in the current study are available from the corresponding author on reasonable request.

ETHICS STATEMENT
The study was approved by the Ethics Committee of the affiliated hospital of Qingdao University (No. 20190317). Informed consent was obtained from guardians of the subject.

CONSENT
Written informed consent was obtained from the patient for publication of this Case Report and any accompanying images. A copy of the written consent is available for review by the Editor of this journal.

PERMISSION TO REPRODUCE MATERIAL FROM OTHER SOURCES
Not available.

CLINICAL TRIAL REGISTRATION
Not available.

ORCID
Leping Shao https://orcid.org/0000-0003-3493-2714

REFERENCES
1. Elliott KH, Brugmann SA. Sending mixed signals: Cilia-dependent signaling during development and disease. Dev Biol. 2019;447(1):28-41. http://www.ncbi.nlm.nih.gov/pubmed/29548942
2. Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet. 2010;11(5):331-344. http://www.ncbi.nlm.nih.gov/pubmed/20395968
3. Christensen ST, Northorst SK, Mogensen JB, Pedersen LB. Primary Cilia and Coordination of Receptor Tyrosine Kinase (RTK) and Transforming Growth Factor beta (TGF-beta) Signaling. Cold Spring Harb Perspect Biol. 2017;9(6):a028167. http://www.ncbi.nlm.nih.gov/pubmed/27638178
4. Guggolzidou P. Wnt and planar cell polarity signaling in cystic renal disease. Organogenesis. 2014;10(1):86-95. http://www.ncbi.nlm.nih.gov/pubmed/24162855
5. Lee JE, Gleson JG. A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 2011;3(9):1-9.
6. McMenemy-Leo AM, Wheeler L, Marshall MS, et al. Homozygous variant in C21orf2 in a case of Jeune syndrome with severe thoracic involvement: Extending the phenotypic spectrum. Am J Med Genet A. 2017;173(6):1698-1704. http://www.ncbi.nlm.nih.gov/pubmed/28422394
7. Chen CP, Ko TM, Chang TY, et al. Prenatal diagnosis of short-rib polydactyly syndrome type III or short-rib thoracic dysplasia 3 with or without polydactyly (SRTD3) associated with compound heterozygous mutations in DYNC2H1 in a fetus. Taiwan J Obstet Gynecol. 2018;57(1):123-127. http://www.ncbi.nlm.nih.gov/pubmed/29458881
8. Wang L, Dynlacht BD. The regulation of cilium assembly and disassembly in development and disease. Development. 2018;145(18):dev51407. http://www.ncbi.nlm.nih.gov/pubmed/30224385
9. Jeune MBC, Carron R. Asphyxiating thoracic dystrophy with familial characteristics. Arch Fr Pediatr. 1955;12:886-891.
10. Handa A, Voss U, Hammarsjo A, Grigelioniene G, Nishimura G. Skeletal ciliopathies: a pattern recognition approach. Jpn J Radiol. 2020;38(3):193-206. http://www.ncbi.nlm.nih.gov/pubmed/31965514
11. Oud MM, Latour BL, Bakey Z, et al. Cellular ciliary phenotyping indicates pathogenicity of novel variants in IFT140 and confirms a Mainzer-Saldino syndrome diagnosis. Cilia. 2018;7:1. http://www.ncbi.nlm.nih.gov/pubmed/30479745
12. Lin AE, Traum AZ, Sahai I, et al. Sensenbrenner syndrome (Cranioeutodermal dysplasia): clinical and molecular analyses of 39 patients including two new patients. Am J Med Genet A. 2013;161A(11):2762-2776. http://www.ncbi.nlm.nih.gov/pubmed/24123776
13. Cossu C, Incani F, Serra ML, et al. New mutations in DYNC2H1 and WDR60 genes revealed by whole-exome sequencing in two unrelated Sardinian families with Jeune asphyxiating thoracic dystrophy. Clin Chim Acta. 2016;455:172-180. http://www.ncbi.nlm.nih.gov/pubmed/26874042
14. Baujat G, Huber C, El Hokayem J, et al. Asphyxiating thoracic dysplasia: clinical and molecular review of 39 families. J Med Genet. 2013;50(2):91-98. http://www.ncbi.nlm.nih.gov/pubmed/23339108
15. Schmidts M, Arts HH, Bongers EM, et al. Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement. J Med Genet. 2013;50(5):309-323. http://www.ncbi.nlm.nih.gov/pubmed/23456818

16. McInerney-Leo AM, Harris JE, Leo PJ, et al. Whole exome sequencing is an efficient, sensitive and specific method for determining the genetic cause of short-rib thoracic dystrophies. Clin Genet. 2015;88(6):550-557. http://www.ncbi.nlm.nih.gov/pubmed/25492405

17. McInerney-Leo AM, Schmidts M, Cortes CR, et al. Short-rib polydactyly and Jeune syndromes are caused by mutations in WDR60. Am J Hum Genet. 2013;93(3):515-523. http://www.ncbi.nlm.nih.gov/pubmed/23910462

18. Patel-King RS, Gilberti RM, Hom EF, King SM. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell. 2013;24(17):2668-2677. http://www.ncbi.nlm.nih.gov/pubmed/23864713

19. Toropova K, Zalyte R, Mukhopadhyay AG, Mladenov M, Carter AP, Roberts AJ. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol. 2019;26(9):823-829. http://www.ncbi.nlm.nih.gov/pubmed/31451806

20. Kakar N, Horn D, Decker E, et al. Expanding the phenotype associated with biallelic WDR60 mutations: Siblings with retinal degeneration and polydactyly lacking other features of short rib thoracic dystrophies. Am J Med Genet A. 2018;176(2):438-442. http://www.ncbi.nlm.nih.gov/pubmed/29271569

21. Shaheen R, Schmidts M, Faqeih E, et al. A founder CEP120 mutation in Jeune asphyxiating thoracic dystrophy expands the role of centriolar proteins in skeletal ciliopathies. Hum Mol Genet. 2015;24(5):1410-1419. http://www.ncbi.nlm.nih.gov/pubmed/2361962

22. Kessler K, Wunderlich I, Uebe S, et al. DYNC2LI1 mutations broaden the clinical spectrum of dynein-2 defects. Sci Rep. 2015;5:11649. http://www.ncbi.nlm.nih.gov/pubmed/26130459

23. Rix S, Calmont A, Scambler PJ, Beales PL. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet. 2011;20(7):1306-1314. http://www.ncbi.nlm.nih.gov/pubmed/21227999

24. D’Asdia MC, Torrente I, Consoli F, et al. Novel and recurrent EVC and EVC2 mutations in Ellis-van Creveld syndrome and Weyers acrofacial dysostosis. Eur J Med Genet. 2013;56:80-87. http://www.ncbi.nlm.nih.gov/pubmed/23220543

25. Tuysuz B, Baris S, Aksoy F, Madazli R, Ungur S, Sever L. Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A. 2009;149A(8):1727-1733. http://www.ncbi.nlm.nih.gov/pubmed/19610081

How to cite this article: Zhao X, Sui A, Cui L, et al. A novel WDR60 variant contributes to a late diagnosis of Jeune asphyxiating thoracic dystrophy in a Chinese patient: A case report. Clin Case Rep. 2022;10:e06561. doi: 10.1002/ccr3.6561