From Assessment to Implementation: Design Considerations for Scalable Decision-Support Solutions in Sustainable Urban Development

V Bukovszki¹, D Apró², A Khoja³, N Essig⁴ and A Reith⁵

¹ 38 Kisfaludy utca, Budapest 1082, Hungary, bukovszki.viktor@abud.hu
² 8 Türr István utca, Budapest 1052, Hungary, aprodiana@gmail.com
³ 4 Untere Sandstrasse, 96049 Bamberg, Germany, khoja@essigplan.com
⁴ 4 Untere Sandstrasse, 96049 Bamberg, Germany, essig@essigplan.com
⁵ 38 Kisfaludy utca, Budapest 1082, Hungary, reith.andras@abud.hu

bukovszki.viktor@abud.hu

Abstract. Cities have to face the challenges of steady population growth, the related increase in energy and resource demands, intensifying climate change impacts and rapid technological development. To handle these complex challenges and promote sustainable development, the smart city approach – data-driven planning based on emergent ICT technologies – has been gaining prevalence. However, the lack of shared standards, frameworks, and evidence-based decision-support tools limit the collaboration among smart city actors and the utility of the mainly business-driven technical solutions. This study explores the scalability of indicator systems into a shared framework for smart and sustainable cities by practice-based research during the development of the SmartCEPS project. SmartCEPS is an assessment system and maturity model based on key performance indicators (KPIs) for small- and medium-size European cities. In its architecture, indicators are organized in a causal network capable of capturing synergies, co-benefits and payoffs of decisions; structural metadata provides the means for a gradual customisation of the system; and finally, the indicator pool is scalable by complexity, ensuring different levels of detail in assessments. The study concludes that gradual customisation, network organisation, and open-ended scalability are the proxies for developing decision-support instruments from KPIs.

1. Introduction

The contemporary challenges that cities have to face are complex and interconnected. Constant population growth and rapid urbanization result increased energy and resource demands, and also enhance corresponding emissions that are to be handled, for which cities should be managed sustainably to meet these increased needs. Furthermore, due to the intensifying climate change impacts, cities should become more resilient to withstand stress. In addition, rapid technological development might impose further risks and challenges to cities (e.g. cyber-attacks, network overload, interruption or malfunction of services etc.) [1,2]. To handle these complex challenges and promote sustainable development, the smart city approach – data-driven planning based on emergent ICT technologies – has been gaining prevalence throughout Europe [3].
Cities are intricate and multidimensional system-networks, and due to the differences stemming from their geographic, economic and cultural circumstances, there are no one-size-fit-all urban development solutions. Therefore mindful planning and evidence-based development decisions would be needed, in which ICT technologies have a significant role due to the size and complexity of hard and soft urban infrastructures. However, the lack of common understanding of the smart city concept, shared standards, frameworks, and decision-support tools [4] limit the collaboration among smart city actors and the utility of technical solutions.

There is a gap between ICT solution providers and cities in the understanding of local needs and matching solutions, prompting the development of smart and sustainable city standards, frameworks, strategies and indicator systems. However broad frameworks (e.g. ISO37120, UN SDGs, STAR Communities etc.) are too global for practical implementation [5]; city-specific smart city frameworks that are difficult to replicate; while supplier-driven frameworks that are streamlined to boost sales of ICT products and services, do nothing to fill this gap [6–8]. Moreover only large cities can afford their bespoke framework, while smaller cities depend on standards and risk mitigation not to miss out. Yet nearly half of the EU population lives in city regions with less than a population of 500,000 [9], an upper threshold of medium-size in the European context [10].

These frameworks depend on the design of their underlying performance indicator scheme. In practice, they are siloed, steady-state lists of indicators which are either too generic [5], or too specific to a type of city [3,11], or a specific sector [12,13]. In addition, they are not able to provide common platform and shared language for stakeholders, and not able to provide assistance throughout the whole cycle from action planning to implementation and management of solutions [9]. Their application as a planning tool is severely limited by data scarcity [14], and their inability to capture synergies, complex trade-offs, or analyse different scenarios [14,15].

To be able to produce the standards that support the smart transition of small-, medium sized cities, it is necessary to investigate indicators in the context of the systems they are built in. Is there an architecture in which in which a steady-state list of indicators can function as instruments of decision-support? If so, which aspects of this architecture enable decision-support?

To answer this question, this study explores transforming indicator systems into a shared framework for smart and sustainable cities by practice-based research during the development of the SmartCEPS project. SmartCEPS is an assessment system based on key performance indicators (KPIs) for small- and medium-size European cities. A framework is developed within the project to assess the performance of these cities and to carry forward this assessment to an action plan, implementation and follow-up. Developing SmartCEPS faces the same issues that emerged from scientific discourse on performance-measurement: standardisation, participation, specificity, data scarcity, interactions – all of which hinder the ‘performance’ of performance indicators as actionable tools of decision-support. On this premise, the specific design decisions that respond to these challenges are proxies of transitioning from KPIs to KPI-based decision support, to which we can assess KPI systems and frameworks in general. As a constrained generalisation of design decisions bound to the SmartCEPS project, the proxies answer the research question, fulfilling the criteria of a practice-based research [16,17].

The article is structured as follows: section 2.1 introduces the KPI development process in SmartCEPS; 2.2 describes the methodological adjustments to bridge the gap between KPIs decision-support; part 3 showcases the what the resulting system does; and part 4 reflects on how and under what limitations did design decisions answer the research question.

2. Methodology

2.1. KPI development process

The research question is answered by identifying and generalising specific design decisions which address the shortcomings of KPI systems from a decision-support perspective. Indicator development consists of a collection of information potentially relevant for the objectives of the use-case, a selection process filtering this information pool according to use-case-specific criteria, and an organisation of the filtered pool into an analytic framework (Figure 1) [15,18,19].
Figure 1. General process of KPI system development.

In SmartCEPS, the process began with collecting a pool of over 3000 KPIs covering a wide range of topics related to the assessment of smart and sustainable cities from 34 similar international projects (e.g. CityKeys, CASBEE, ISO 37120, etc.). After cleaning the indicator pool of explicit duplicates, a top-down selection process was conducted. This meant evaluating the applicability of the KPI candidates in the context of city assessment, and a verification of conformity to project objectives. A focus group of planners, architects and economists iteratively assessed the applicability of candidates based on methods in existing criteria frameworks:

- **Usable**: KPI can be measured/calculated without excessive work on behalf of the user [20].
- **Reliable**: The result provided to the user can be trusted to support decision making effectively, minimizing the risk of high deviations in the results [20,21].
- **Comparable**: It is possible to define (conditional) benchmarks for scoring [22].
- **Relevant**: KPI should be aligned to the measured subject [20].
- **Simple**: KPI should be simple and easy to understand [20,21,23].
- **Influenceable**: KPI result can be influenced through action [21,23].

The objective of SmartCEPS is to supply an urban consulting service that builds on diagnosing and developing cities in the domains of “smart”, “sustainable”, “investment attractive” and “entrepreneurship friendly”. These domains were chosen as they reflect the interdependence of economic activity and a sustainability-oriented smart city paradigm (Table 1). Conformity was assessed by using the discourse in international agencies and industrial standards to break down these domains to the abstraction and complexity level of KPIs and cross-checking their thematic correspondence.

Definition	References
Sustainable city	A sustainable city adopts a government model that seeks to integrate and balance its social, economic and environmental aspects to ensure its resources meet its current and future demands and aspirations.
Smart City	Smart city is an urban management approach built on the collection, generation, processing, management, storage application and promotion of information. In smart cities, awareness and informed decision making is distributed across the technical, human and organizational systems of the city to support specifying and achieving sustainability goals.
Investment attractiveness	Investment attractiveness is one type of attractiveness targeted to attract business to a specific location and act as catalyst to reach sustainability goals. Attractiveness is perceived as the available urban resources, the city’s ability to maintain them and attract the new ones, to navigate the city on an optimal development course.
Entrepreneurship friendliness	The level and quality of attention paid by cities to improve upon given and out-of-scale conditions at the local level to develop a positive and differentiated approach to attract and retain firms and corporate locators, and to support their business needs by reducing barriers, costs and risk uncertainties in all forms.

Table 1. Main definitions for KPI selection
2.2. Methodological adjustments for decision-support
Developing a range of relevant KPIs corresponds to the level of descriptive analytics, as they are an interpretable, repeatable, comparable quantification and classification of data [38]. Decision-support systems however integrate diagnostic, predictive and prescriptive capabilities [38]. Therefore, while organising the final pool of KPIs into an analytic framework, methodological adjustments are gathered from disciplines with more mature decision-support methods.

2.2.1. Information scaling. To be able to make inferences in a data-scarce working environment, principles of differential diagnostics (DDx) were applied, which entails systematically producing data based on initial assessments [39]. Information in the analytic framework is structured into three sets based on complexity: for the baseline, input data is statistical data readily available from public databases; for a second set, input data is produced remotely from surveys, research, and big data; while the final set of KPIs require sensors, specialists or on-field investigations to assess.

2.2.2. Relationships. To develop an assessment methodology capable of identifying synergies, co-benefits, payoffs, and other interactions among performances, the indicators are organised in a causal network. Causal chains break down linear relationships into: drivers, pressures, states, impacts, and responses [40]. Causal networks are multiple chains that interact with each other [18]. In mathematical terms, SmartCEPS will deploy its KPIs organised in a weighted, directed acyclic graph based on stochastic, causal relationships between or among performances. Edge weights will represent the impact of a change in the source indicator has on the target indicator, applied to given conditions.

2.2.3. Architectural considerations. Finally, a higher-level analytic system will involve more classes of information than just KPIs, but KPIs will roll through the whole planning and implementation process. A variety of actors—and also cities—with different stakes and language engage in urban development, and a decision-support system must be able to make sense of their actions in the context of urban performance and make sense of urban performance in the sense of their actions [15].

In SmartCEPS, KPIs and other entities are indexed with multiple types of structural metadata. A simple, hierarchic classification of KPIs allows their quick legibility for less engaged users and navigability for all users. A set of keywords used as tags for multiple entities respond to divergent user types. The themes in the hierarchy are based on the breakdown of project domains (see 2.1.), while the pool of tags are expanded together with various user groups after system release.

In addition to structural metadata, supplementary data describing the local peculiarities of cities are assigned to KPIs. These are labelled contextual metadata, which are either stable, non-KPI information on cities, such as population, or other KPIs. The role of contextual metadata is to describe conditions under which a KPI for a given city is benchmarkable, and thus comparable, making the resulting analytic framework customisable.

3. Results: the SmartCEPS analytic framework
The final pool of indicators after both selection procedures include 222 objects, of which 37 constitute the core indicator set, a baseline available for most European cities from public databases. The hierarchical classification of KPIs structure them into 8 themes and 29 topics (Table 2).

KPIs are grouped into core, advanced and premium based on their complexity outlined in 2.2.1. For core KPIs, the database was filled up from Eurostat, ESPON and OpenStreetMap, while an initial set of potential data sources were identified for advanced and premium. Investigating KPIs on the lower-complexity group can be used to identify KPIs that critical to expand upon. KPIs from the higher-complexity level that are connected to these are flagged as targets for further investigations.

Due to the causal network structure, assessments within SmartCEPS are different forms of network analysis or simulation. After the information set is complete, the systems uses high-level city goals to filter the list of KPIs of interest. In a diagnostic analysis, the system ranks all KPIs by their score and impact on this filtered network. In a predictive analysis, the impact of single measures on certain KPIs are estimated, while the impact is transmitted to all other KPIs via edge weights and an attenuation factor (via the causal network structure described in 2.2.2.).
Table 2. KPI classification hierarchy

Themes	Topics
Mobility	access to transport, sustainable transport systems, smart mobility
Infrastructure	access to infrastructure, smart infrastructure
Environment	ecosystem, ambient pollution, waste
Inhabitants	education, health and care, innovation, civic engagement, social justice
Economy	economic performance, growth potential, smart economy, international embeddedness, clustering, sustainable economy
Governance	open government, e-government, safety, governance awareness, smart targets
Energy transition	energy and mitigation, sustainable infrastructure transition
Built environment	smart building, sustainable building, sustainable urban development

During the planning process, tags provide the common underlying language among different actors, and from one information entity to the other. Municipalities, stakeholders and citizens use tag-based surveys to define their priorities, while solution providers classify their products with tags. Tags are bundled in groups based on the user type or their framework of origin. Given the bottom-up nature of tag development, at this stage the UN domains of sustainable development are added as tags [41].

Although the analytic framework is centred around KPIs, they are positioned in a relational database with links to other information entities, namely: solution providers, solutions, measures, projects. Entities have direct links to their neighbours: solution providers deliver certain solutions, which can be built into projects, which bundle different measures, while measures have impacts on KPIs. Additionally, all share the same framework of thematic, structural metadata that couples one entity to another in an indirect way, and contextual metadata, which describe the conditions of their applicability.

Based on the key steps taken during the development of SmartCEPS we argue that gradual customisation, causal network organisation, and open-ended scalability are the proxies for KPI design in the urban management context. (Table 3).

Table 3. Generalisation of critical design decisions

KPI system challenges (section 1)	Methodological adjustments (section 2)	Critical design decisions (section 3)	Proxies for KPI-based decision-support
Standardisation-customisation	Methods and metadata for mediation	Contextual metadata	Gradual customisation
Standardisation-customisation	Methods and metadata for mediation	Common structural metadata	Gradual customisation
Complexity of interactions	Relationships, KPI roles, interactions.	Acyclic digraph KPI organisation	Expressed causal relationships
Practicality & solution gap	Relationships, KPI roles, interactions.	Impact-based edge weighing	Expressed causal relationships
Aggregation losses	Relationships, KPI roles, interactions.	Impact-based node weighing	Expressed causal relationships
Standardisation-customisation & Data scarcity	Procedure for information set expansion	Complexity and impact-based KPI phasing	Scalloptability & open-ended design
4. Discussion

The most difficult technical challenge for indicator systems is the standardisation-customisation conundrum, which is amplified for smaller cities given their variety [42]. In SmartCEPS the set of indicators are filterable by their keywords, which makes it so that a ranking of KPIs is practically negotiated by the wider public. This can be considered during diagnosis – certain tags pose as “symptoms”. Contextual metadata on the other hand provide automatic means customisation by excluding KPIs from comparison when necessary, and by adding weights to locally more relevant KPIs in their network. This would not be possible if the KPIs were not organised in an impact-network in the first place. To generalise, the solution is a form of customisable standard [43], providing three layers: a standardised KPI set for comparison, an automated customisation for contextual constraints, and a negotiated customisation for local constraints. It must be noted that accepting rules regarding automated customisation must rely on a consensus mechanism in a wider community of professionals.

It is the KPI network structure that makes SmartCEPS actionable: it fulfils diagnostic and predictive levels of analytics by calculating how impacts of interventions or events cascade throughout city performance. The connections afford the phasing of information as per DDx principles, and node weighing gives an impact-based method to aggregate KPI scores in indices both for the entire system, or for specific keywords. Much of the success of the KPI system hinges on the accuracy of the estimation of impact size, timeliness, and conditions. The challenges of building the blueprints for network alone is complex issue beyond the scope of this paper, but it is worthwhile to mention that filling up the blueprint with information is a task for an entire field of professionals. As mentioned before, city assessment is decades behind medicine in terms of literature that provides input for running differential diagnostics. By building a framework based on the knowledge we have, the project unlocks a vast research challenge and opportunity to fill up the library of urban diagnostics.

It must be noted that choosing the range of indicators, the topics covered, the indicator definition, the metadata, the method for weighing, scoring, benchmarking, aggregating, and displaying are all steps that introduce bias, and a black box mindset will concentrate the source of subjectivity to a few professionals [19,44]. With the more open-ended SmartCEPS framework, the system is continuously validated, but this raises the issue of generalising local solutions and projects into measures that will have to be solved by some form of consensus mechanism.

5. Conclusion

The goal of this research was to find which design decisions are necessary to upgrade KPI-based assessment schemes to mature systems of urban decision-support. By building an analytic framework, the scope of the gap in the field has become clearer: the relationships among the many dimensions describing urban performance, and the specification of how treatment delivers performance. Such a highly interdisciplinary, and complex knowledge system can be only built through co-ordinated, collaborative effort. SmartCEPS aims to be a fluid, semi-open source framework for a community of smart city professionals who are dedicated to support cities in evidence-based decision-making, and for interested citizens who partake in it.

In this wider context, data-driven solutions and indicators provide the content to talk about, while this study provides the basics for a working environment in which different actors can talk about it and accumulate our knowledge on how their cities work. It is thus important to explore a shift from the knowledge we produce to how we produce it – to be able to accelerate the resources for evidence-based decision making in urban planning and management.

Acknowledgments

The SmartCEPS project has received funding from the European Union’s Eurostars-2 joint programme with co-funding from European Union Horizon 2020 research and innovation programme under reference no. E! 10243/14/Q. Project no. NEMZ_15-1-2016-0028 has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the NEMZ-15 funding scheme.
References

[1] United Nations Human Settlements Programme 2009 Planning Sustainable Cities: Global Report on Human Settlements 2009 ed N D Mutizwa-Mangiza (London: Earthscan/ UN-HABITAT)

[2] U.S: Department of Homeland Security – National Protection and Programs Directorate 2015 the Future of Smart Cities: Cyber-Physical Infrastructure Risk

[3] European Parliament, Directorate-General for Internal Policies P D A 2014 Mapping Smart Cities in the EU

[4] Albino V, Berardi U and Dangelico R M 2015 Smart Cities: Definitions, Dimensions, Performance, and Initiatives J. Urban Technol. 22 3–21

[5] Klopp J M and Petretta D 2016 Can we actually agree on indicators to measure urban development? Cityscape

[6] Poole S 2014 The truth about smart cities: ‘In the end, they will destroy democracy’” Guard.

[7] Robinson R 2015 6 inconvenient truths about Smart Cities Urban Technol.

[8] Barns S 2018 Smart cities and urban data platforms: Designing interfaces for smart governance City, Cult. Soc. 12 5–12

[9] Nordregio 2004 Potentials for polycentric development in Europe Co-financed by the European Community through the Interreg III ESPON (Stockholm)

[10] Giffinger R, Fertner C, Kramar H, Kalasek R, Pilcher-Milanovic N and Meijers E 2007 Smart cities Ranking of European medium-sized cities October 16 13–8

[11] Shen L Y, Jorge Ochoa J, Shah M N and Zhang X 2011 The application of urban sustainability indicators – A comparison between various practices Habitat Int. 35 17–29

[12] Chang D L, Sabatini-Marques J, da Costa E M, Selig P M and Yigitcanlar T 2018 Knowledge-based, smart and sustainable cities: a provocation for a conceptual framework J. Open Innov. Technol. Mark. Complex. 4 5

[13] Bibri S E and Krogstie J 2017 Smart sustainable cities of the future: An extensive interdisciplinary literature review Sustain. Cities Soc. 31 183–212

[14] Simon D 2015 Cities respond: Testing the urban SDG indicators | Citiscop

[15] Mori K and Christodoulou A 2012 Review of sustainability indices and indicators: Towards a new City Sustainability Index (CSI) Environ. Impact Assess. Rev. 32 94–106

[16] Smith H and Dean R T T A-T T- 2009 Practice-led research, research-led practice in the creative arts BK – https://ecu.on.worldcat.org/oclc/643339144

[17] Hannula M, Suoranta J, Vadén T, Suomen taideakatemia. and Göteborgs universitet. 2005 Artistic research : theories, methods and practices (Academy of Fine Arts)

[18] Niemeijer D and de Groot R S 2008 A conceptual framework for selecting environmental indicator sets Ecol. Indic. 8 14–25

[19] EPA 1996 Process for Selecting Indicators and Supporting Data: Second Edition Draft (Washington, DC)

[20] Macdonald G 2011 Criteria for Selection of High-Performing Indicators A Checklist to Inform Monitoring and Evaluation (Atlanta, GA)

[21] BASSI L and MCMURRER D 2005 Developing Measurement Systems for Managing in the Knowledge Era Organ. Dyn. 34 185–96

[22] Ministry of Environment 2003 Environmental Performance Indicators Guideline for Organizations

[23] van Oudenhoven A P E, Petz K, Alkemade R, Hein L and de Groot R S 2012 Framework for systematic indicator selection to assess effects of land management on ecosystem services Ecol. Indic. 21 110–22
[24] UN Habitat 2009 *PLANNING SUSTAINABLE CITIES* GLOBAL REPORT ON HUMAN SETTLEMENTS 2009 vol 136

[25] UN Habitat 2011 *Hot Cities: battle-ground for Climate Change*

[26] Brundtland G H 1987 *Report of the World Commission on Environment and Development: Our Common Future*

[27] Department of Economic and Social Affairs 2013 *World Economic and Social Survey 2013 Sustainable Development Challenges* (United Nations)

[28] United Nations 2015 *Transforming our world: The 2030 agenda for sustainable development.* (General Assembly 70 Session)

[29] Gibson D V., Kozmetsky G and Smilor R W 1992 *The Technopolis phenomenon: smart cities, fast systems, global networks* (Rowman & Littlefield Publishers)

[30] Hall P 2000 Creative Cities and Economic Development *Urban Stud.* 37 639–49

[31] Harrison C, Eckman B, Hamilton R, Hartswick P, Kalagnanam J, Paraszczak J and Williams P 2010 Foundations for Smarter Cities *IBM J. Res. Dev.* 54 1–16

[32] Belanche D, Casaló L V. and Orús C 2016 City attachment and use of urban services: Benefits for smart cities *Cities* 50 75–81

[33] Clark G, Kippenberg G, Europe U, De Jong R and Uk U 2014 *Business-Friendly and Investment-Ready Cities City Government and the Local Business Growth and Investment Climate*

[34] Snieska V and Zykiene I 2015 City Attractiveness for Investment: Characteristics and Underlying Factors *Procedia – Soc. Behav. Sci.* 213 48–54

[35] Nielsen B B, Asmussen C G and Weatherall C D 2017 The location choice of foreign direct investments: Empirical evidence and methodological challenges *J. World Bus.* 52 62–82

[36] Ahmad N and Hoffman A 2007 *A Framework for Addressing and Measuring Entrepreneurship*

[37] Szerb L, Acs Z J, Autio E, Ortega-Argiles R and Komlosi E 2013 REDI: The Regional Entrepreneurship and Development Index-Measuring regional entrepreneurship Final report (Brussels, Belgium)

[38] Hagerty J 2016 2017 *Planning Guide for Data and Analytics*

[39] Lawler D F 2017 Differential diagnosis in archaeology. *Int. J. Paleopathol.* 19 119–23

[40] Gilbert R and Tanguay H 2000 *Brief Review of Some Relevant Worldwide Activity and Development of an Initial Long List of Indicators.*

[41] United Nations 2014 Prototype Global Sustainable Development Report (New York)

[42] lecturer Ruxandra Irina POPESCU U 2007 Challenges and solutions for the development of small and medium sized cities within the European Union *Adm. si Manag. Public* 9 120–5

[43] Abbate T, Cesaroni F, Cinici M C and Villari M 2018 Business models for developing smart cities. A fuzzy set qualitative comparative analysis of an IoT platform *Technol. Forecast. Soc. Change*

[44] Blank S 2013 Why the Lean Start-Up Changes Everything