Research Article
Chemical Fingerprint and Metabolic Profile Analysis of Tianshu Tablets by Ultra-High Performance Liquid Chromatography/Quadrupole-Time of Flight Mass Spectrometry

Lin Chen,1 Renhao Chen,1 Hui Ouyang,2 Qi Wang,1 Zhifeng Li,1 Yulin Feng,2 and Shilin Yang2

1College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
2State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China

Correspondence should be addressed to Zhifeng Li; lizhifeng1976@hotmail.com and Yulin Feng; fengyulin2003@126.com

Received 29 June 2019; Accepted 3 October 2019; Published 23 October 2019

Academic Editor: Eliseo Herrero-Hernández

Copyright © 2019 Lin Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, the chemical fingerprinting of traditional Chinese medicines and the metabolites in these compounds has been a hot topic. In the present study, the chemical fingerprint of Tianshu tablets (TST) and the metabolic characteristics of compounds in rats after intragastric administration were studied by ultra-high performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry (UPLC/Q-TOFMS). In a preliminary study, 77 chemical components in TST were determined by comparison with retention times, accurate molecular mass, and characteristic fragment ions of the known compounds in the literature and some well-known compounds were analyzed in detail, and the fragmentation pathways for parishins B, gastrodin A, and cnidilide or neocnilide were specifically analyzed. After intragastric administration of TST (4g/kg) to rats, a total of 61 compounds were detected in plasma samples, including 7 prototypes and 54 metabolites. After further analysis, it was found that these metabolites were subjected to glucuronidation, sulfation, methylation, hydroxylation, dehydrogenation, or mixed metabolic processes. Hydroxylation and glucuronidation were finally confirmed as the main metabolic pathways. This is the first research on the chemical fingerprint and metabolites of TST, which lays a foundation for further investigation of TST.

1. Introduction

In recent years, traditional Chinese medicine (TCM) has attracted increasing attention worldwide by virtue of its applications. Da Chuanxiong Formula (DCXF) is a well-known and extensively used traditional Chinese medicine (TCM) decoction for the treatment of migraine caused by blood stasis and wind-heat syndrome. It is composed of two herbs, namely, Chuanxiong (Chuanxiong rhizoma) and Tianma (Gastrodiae rhizoma), with a crude weight ratio of 4:1. Tianshu tablets (TST) are a representative DCXF preparation that is widely used in clinics for treating the blood stasis type of headache and migraine [1–3].

Phytochemical and pharmacological investigations of DCXF have shown that phenols, organic acids, phthalides, and nitrogen-containing compounds are the major active ingredients [4]. At present, several qualitative studies on the main components of DCXF have been performed [5–8]. One study used LC-Q-TOF/MS to identify 17 different components in a 50% ethanol extract of DCXF [5]. In one study, three compounds of Chuanxiong and eight components of Tianma were identified by HPLC-DAD-MSn [6]. Two continuous studies showed that 10 different compounds were detected in rat plasma after intragastric administration of DCXF active components, including 6 compounds from Chuanxiong and 4 compounds from Tianma [7, 8]. These four studies were based on samples of a 50% ethanol extract from a 4:1 mixture of the two herbs or active ingredients from a single crude herb. In one study, 38 components were identified or preliminarily identified from a Tianshu capsule...
by means of HPLC, LC-DAD-MSN, and LC-DAD-ESI IT-TOF/MS analysis, although Tianshu tablets and Tianshu capsules are two different dosage forms [9]. This research is still very important because of its different applicability. This study enriches our understanding of the components of DCXF and studies the metabolites of TST for the first time.

In our study, 77 chemical components of TST were preliminarily determined by a comparison with retention time, accurate molecular mass, and characteristic fragment ions of known compounds in the literature. Furthermore, UPLC/Q-TOF MS was used to analyze the plasma of rats after oral administration of TST. A total of 61 compounds were identified or preliminarily identified, including 7 prototypes and 54 metabolites.

2. Experimental

2.1. Chemicals and Materials. Some reference standards (pyroglutamic acid, 5-(hydroxymethyl)furoic acid, and parishin B) for *Gastrodia rhizoma* were isolated and purified in our laboratory, and other standards (uridine, gastrodin A, and neocnilide) were purchased from the National Institutes for Food and Drug Control (Beijing, China). Purities of the standards were above 98% by HPLC analysis. HPLC-grade acetonitrile, methanol, and formic acid were purchased from Fisher Scientific (MA, USA). Deionized water was purchased by a Milli-Q Water purification system (Millipore, MA, USA). High-purity nitrogen (99.99%) and helium (99.999%) were purchased from Gas Supplies Center of Peking University Health Science Center (Beijing, China).

Gastrodia rhizoma and *Chuanxiong rhizoma* were purchased from Tian Heng pharmacy (Beijing, China). All herbal materials were authenticated by Professor Bei Wu (Nanchang Institute for Food and Drug Control). TianShu tablets were prepared according to Chinese Pharmacopoeia 2015 Edition [1].

2.2. Animals and Drug. Sprague–Dawley rats (male, 12–14 weeks; 200–240 g) were provided by Hunan SJA Laboratory Animal Co., Ltd. Protocols for all animal experiments were approved. Animals were kept in a controlled environment for 3 days and fasted for 12 h before experiments. TST was dissolved in a 9 g/L NaCl solution (NS) (250 mg/ml) and administered by oral gavage at a dose of 1000 mg/kg (equivalent to 4 g of crude drug per kg) body weight.

2.3. Sample Collection and Pretreatment. After oral administration of TST, blood samples were collected at 30, 60, and 120 min (n = 5) in an Eppendorf tube with heparin sodium and then centrifuged (16000 rpm) at 4°C for 10 min. The supernatant was then separated, and all samples were stored at −80°C immediately until analysis. The protocol for sample preparation is described below: 1 mL plasma was mixed with 5 mL methanol, vortexed for 5 min, and centrifuged at 16000 rpm at 4°C for 20 min. The supernatant was then centrifuged at 16000 rpm for 10 min at 4°C. The supernatant was transferred to a vial, and 10 μL was injected for LC-MS analysis. All samples were filtered through a membrane (0.22 μm pore size). At the same time, in order to eliminate the influence of matrix, blank plasma was added to participate in the analysis.

2.4. UPLC/QTOF-MS Conditions. UPLC/QTOF-MS analysis was performed on a Shimadzu LC-30 AD system (Kyoto, Japan) coupled with an AB SCIEX Triple-TOF 5600 mass spectrometer (Foster City, CA, USA). All samples were separated on an Acquity UPLC C18 column (100 mm × 2.1 mm, 1.7 μm, Waters, USA) with a flow rate of 0.3 mL/min at 40°C. The mobile phase consisted of aqueous 0.1% formic acid (A) and 0.1% formic acid in acetonitrile (B). The gradient elution program for TST was set at 0–3.0 min, 5–8% B; 3.0–10.0 min, 8–15% B; 10.0–18 min, 15–20% B; 18–22 min, 20–35% B; 22–37 min, 35–45% B; 37–43 min, 45–95% B; and 43–48 min, 95–95% B. The gradient elution program for the plasma samples was set at 0–2.0 min, 5% B; 2.0–25.0 min, 5–95% B; and 25.0–30.0 min, 95–95%. The equilibration time was 5 min. The conditions for the ion source were as follows: compounds in TST were measured using the total ion chromatograms in negative and positive ion ESI-MS mode in the mass range m/z 50–1250, but plasma samples were analyzed only in positive ion ESI-MS mode. The other operating parameters were optimized as follows: source temperature, 500°C; ion spray voltage, 4500 V; gas 1, 50 psi; gas 2, 50 psi; curtain gas, 45 psi; decluttering potential, 100 V; and collision energy was set to 40 (15) eV.

2.5. Data Process. TST compounds from the extracts and metabolites data were acquired by full scan, which rely on dynamic background subtraction (DBS) and multiple mass defect filtering (MMDF) and includes some compounds with very low concentrations (MDF window was set to ±50 mDa around the mass defects of the templates and over a mass range of ±50 Da around the filter template masses).

Analysis of data on TST compounds in extracts and metabolites was performed using a variety of data mining tools, including extract ion chromatograms (XIC) of PeakView®1.6 (AB SCIEX, CA, USA), MMDF, and NLF&DPLs of Metabolitepilot™1.5 (AB SCIEX, Foster City, CA, USA). All compounds were analyzed after removal of the matrix effects.

3. Results and Discussion

3.1. Optimization of LC/MS Conditions. In order to obtain the best analytical data, our analysis builds upon another recent study [10]. The separation conditions, supplements, and chromatographic columns were optimized at the beginning of the experiment. Firstly, in order to obtain sharp peaks and reduce the pressure on the UPLC column, methanol was used as the mobile phase instead of acetonitrile. At the same time, 0.1% formic acid was added to improve peak shape and ionization of the analytes. The gradient was improved, and it was shown that the
compounds in TST could be separated within 48 minutes, while plasma samples could be separated within 30 minutes (the specific methods can be found in Section 2.4). In addition, in order to obtain the most abundant mass spectrometry information, the collision energy was optimized. The results showed that when the collision energy rose to 40 eV, the main fragments were seen, but when the energy reached 55 eV, the second order fragments were too fragmented to be easily analyzed. Therefore, a collision energy of 40 eV was selected. As for UPLC/Q-TOF MS, mass spectra were recorded in both positive and negative detection modes.

3.2. UPLC/Q-TOF MS Analysis of TST Extracts. To characterize the chemical constituents of TST, a fast, efficient, and reliable UPLC/Q-TOF MS method was established. By virtue of the high resolution and speed of UPLC and the accurate mass measurement of the TOF MS, a total of 77 compounds were identified. The mass spectra of these components were examined in negative ion mode and positive ion mode. The total ion chromatogram (TIC) of TST in positive and negative ion modes are shown in Figures 1 and 2. Details of the identified components are summarized in Table 1.

Through analysis, it was found that the 77 compounds contained 19 organic acids, 9 nitrogen-containing compounds, 11 glucosides, 8 phenols, 24 phthalides, and 6 other compounds. The numbering information of these compounds is shown in Figure 3.

3.2.1. Chemical Fingerprint of TST in Negative Ion Modes. According to the literature, the main components of Tianma are phenols and organic acids [9]. However, there are also glycosides in the components of Tianma [12]. Many characteristic components of Tianma were analyzed and identified in the negative ion mode. Because the structures of organic acids and phenols are relatively simple, the characteristic glycoside compounds X18 and X23 were identified here and the chromatographic and spectral data for compounds X18 and X23 were preliminarily characterized by referring to the literature and reference materials.

Peak X18 gave an [M−H]− ion at m/z 447.1508. Peak X18 produced MS2 base peaks at m/z 269.1028 and 161.0449 corresponding to [M-H-179 Da]−. This suggests that Peak X18 may contain a glucose group and a fructose group. Therefore, we deduced that the molecular structure likely contains sucrose. According to literature reports [12] and reference standards, we identified Peak X18 as gastrodin A. Peak X23 gave a [M-H]− ion at m/z 727.2091 and had characteristic fragment ions at m/z 459.1156, 441.1045, 423.0937, 397.1142, 369.1188, and 217.0496. Based on previous studies [12] and a reference standard, Peak X23 was identified as parishin B. The characteristic fragmentation patterns of gastrodin A and parishin B are described in Figures 4(a) and 4(b).

3.2.2. Chemical Fingerprint of TST in Positive Ion Modes. The analysis of the positive ion mode results showed that the characteristic components of Chuanxiong, including phthalides, were present. Here, compound Y27 was selected for analysis, and the chromatographic and spectral data of this compound were analyzed by comparison with the literature and reference materials. The cleavage pathway of phenyl peptides in Chuanxiong was also analyzed.

Peak Y27 gave a [M+H]+ ion at m/z 195.1378 and fragment ions at m/z 177.1344, 149.1309, and 107.0550. According to previous literature reports [9] and a reference standard, we identified peak Y27 as cnidilide or neocnidilide. The characteristic fragmentation pattern of Y27 is shown in Figure 4(c).

According to our analysis, the main components of Tianma in negative ion mode were organic acids, phenols, and glycosides, with mainly phthalides detected in positive ion mode. The specific pyrolysis fragments were similar to the standards.

3.3. Detection and Identification of the Metabolites of TST in Rat Plasma. In order to identify as many potential pharmacologically active compounds as possible in TST, metabolic profiling of TST in rat plasma was performed. Compounds absorbed in vivo can be further metabolized by a variety of enzymes through oxidation, hydrolyzation, methylation, glucuronidation, and sulfation. Only peaks that were detected in the dosed plasma samples but not in blank samples were considered as probable metabolites. The mass spectra of the metabolites were examined in positive ion mode. These were further analyzed by using Peakview 1.2 to identify expected and unexpected metabolites from different metabolic pathways, and their structures were identified by tandem MS. We selected senkyunolide D or 4,7-dihydroxy-3-butylphthalide and senkyunolide A as examples of the structural identification process. The metabolites of these compounds and others are summarized in Table 2, and their TIC and extract ion chromatogram (EICs) are shown in Figures 5–8.

Metabolite M1, which eluted at 9.75 min, formed a molecular ion of [M+H]+ at m/z 223.0963 corresponding to C12H14O4. M1 was found to have major fragment ions in common with senkyunolide D, so M1 is most likely senkyunolide D or 4,7-dihydroxy-3-butylphthalide. Metabolite M2, which eluted at 10.78 min, formed a molecular ion of [M+H]+ at m/z 253.1071 corresponding to C13H16O5. The characteristic production of m/z 235.0963 and 221.0839 was generated by loss of 18 Da and 18 + 14 Da, which implied loss of a H2O group and methyl group. Other product ions were identical to that of M1. Therefore, M2 may be a metabolite of senkyunolide D after hydroxyl and methyl conjugation. Metabolite M3, which eluted at 9.2 min, formed a molecular ion of [M+H]+ at m/z 303.0535 corresponding to C12H13SO4. Its major fragment ions at m/z 285.0430 and 205.0858 were generated by the loss of 18 Da and 18 + 80 Da, which implied a H2O group and sulfate group. Other product ions were identical to that of M1. Therefore, M3 may be a metabolite of senkyunolide D following sulfation. Metabolite M4, which eluted at 10.6 min, formed a molecular ion of [M+H]+ at m/z 399.1285 corresponding to C18H22O10. Its major fragment ion (m/z 223.0969) was
generated by a loss of 176 Da, which implied a glucuronide group. Other product ions were identical to that of M1. Therefore, M4 might be a metabolite of senkyunolide D after glucuronidation. Metabolites M5 and M6 appear to correspond to M4 plus 2 Da or 16 Da, respectively. The product ions m/z 225.4427 and m/z 227.0584 have both lost 176 Da.
Peak	RT (min)	Formula	Error (ppm)	[M–H] Calculated (m/z) Measure	Intensity	Product ions	Identification	Structure class	Ref.		
X1a	0.98	C₇H₁₂O₆	−1.2	191.0561	191.0599	86129	Quinic acid	Organic acids	[10]		
X2	1.07	C₄H₄O₂	0.9	191.0197	191.0199	423157	Citric acid	Organic acids	[10]		
X₃b	1.07	C₇H₁₂N₂O₆	−1	243.0623	243.0620	5161	Uridine	Nitrogen-containing compounds			
X₄b	1.08	C₃H₂NO₃	3	128.0353	128.0357	24352	Pyroglutamic acid	Organic acids	[11]		
X₅b	1.36	C₉H₁₂O₄	1.1	141.0193	141.0195	3248	5-(Hydroxymethyl) furoic acid	Organic acids			
X6	1.36	C₁₀H₁₃N₅O₅	2.4	282.0844	282.0851	1153	Guanosine	Nitrogen-containing compounds			
X7	1.63	C₁₃H₁₆O₇	−1.1	285.0980	285.0977	1505	Gastrodin	Glycosides	[12]		
X8	2.03	C₂H₂O₂	0.7	153.0193	153.0195	16114	Protocatechuic acid	Organic acids	[13]		
X₉	4.02	C₂H₂O₃	2.5	137.0244	137.0248	31464	3,4-Dihydroxy benzaldehyde	Phenols	[14]		
X₁₀	4.70	C₁₉H₂₄O₁₃	1.7	459.1144	459.1152	283440	Parishin E or G	Glycosides	[12]		
X₁₁	5.09	C₁₆H₁₈O₉	0.8	353.0878	353.0881	109164	4-Caffeoylquinic acid	Organic acids	[15]		
X₁₂	5.13	C₁₇H₂₃N₃O₅S	0.5	412.1184	412.1186	11210	S-(4-Hydroxybenzyl)-glutathione	Nitrogen-containing compounds	[12]		
X₁₃	5.24	C₂₀H₃₃N₃O₁₂S	2.3	574.1712	574.1726	7677	S-(4-Hydroxybenzyl)-glutathione glucose	Nitrogen-containing compounds	[12]		
X₁₄	5.34	C₆H₁₀O₄	−0.2	181.0506	181.0506	2573	4-(2-Hydroxyethoxy) benzoic acid	Organic acids			
X₁₅	5.58	C₂H₂O₂	4.3	121.0295	121.0302	50808	3-P-Hydroxybenzaldehyde	Phenols	[14]		
X₁₆	5.64	C₁₀H₁₂O₄	0.9	179.0350	179.0352	80360	Caffeic acid	Organic acids	[13]		
X₁₇	5.99	C₁₀H₁₄O₄	3	167.0350	167.0355	275549	Vanillic acid	Organic acids	[12]		
X₁₈b	7.31	C₁₉H₂₆O₁₂	0.4	447.1508	447.1510	14270	Gastrodin A	Glycosides	[12]		
X₁₉	7.68	C₁₇H₁₉N₅O₅	−1.6	372.1313	372.1307	2202	p-Hydroxybenzyl adenosine	Nitrogen-containing compounds	[12]		
X₂₀	7.73	C₁₁H₈O₃	0.5	151.0401	151.0402	7660	Vanilline	Phenols			
X₂₁	8.62	C₁₁H₂₉O₉	−0.7	367.1035	367.1032	21071	3-Feruloylquinic acid	Organic acids	[16]		
X₂₂	8.94	C₉H₁₀O₃	−0.8	165.0557	165.0566	2085	L-(-)-Phenyllactic acid	Organic acids			
Peak	RT (min)	Formula	Error (ppm)	[M+H]+ Calculated	(m/z) Measure	Intensity	Product ions	Identification	Structure class	Ref.	
------	---------	---------	-------------	------------------	---------------	-----------	-------------	---------------	----------------	-----	
X23	9.11	C_{32}H_{46}O_{19}	4.9	727.2091	727.2151	122722	459.1156, 441.1045, 423.0937, 397.1142, 369.1186, 217.0496	Parishin B	Glycosides	[13]	
X24	9.78	C_{33}H_{42}O_{20}	4	757.2197	757.2227	659	178.0265, 149.0591, 134.0372	Parishin H or M	Glycosides	[12]	
X25	10.00	C_{16}H_{16}O_{4}	0.7	193.0506	193.0508	97733	441.0958, 243.0943, 397.1169, 161.0403	Ferulic acid	Organic acids	[13]	
X26	10.02	C_{21}H_{22}O_{13}	0	487.1457	487.1457	4684	459.1156, 441.1045, 423.0937, 397.1142	Parishin O or N	Glycosides	[12]	
X27	10.05	C_{32}H_{40}O_{19}	4.9	727.2091	727.2151	122722	459.1156, 441.1045, 423.0937, 397.1142, 369.1186, 217.0496	Parishin C	Glycosides	[12]	
X28	10.71	C_{14}H_{14}O_{5}S	−2.2	261.0591	261.0585	777	205.8269, 167.8694, 137.0057	4,4′-Dihydroxybenzyl sulfoxide	Phenols	[14]	
X29	11.74	C_{14}H_{14}O_{5}S	−2.2	223.0612	223.0607	2431	108.0226, 179.0713	Sinapic acid	Organic acids	[13]	
X30	12.20	C_{2}H_{6}O_{3}	2.5	137.0244	137.0248	31464	229.0860, 123.0452, 121.0288, 107.0511	p-Hydroxybenzoic acid	Phenols	[14]	
X31	13.21	C_{23}H_{20}O_{25}	4.7	995.3038	995.3107	39727	727.2129, 441.1065, 423.0915, 397.1119	Parishin Glycosides	[12]		
X32	13.56	C_{20}H_{26}O_{8}	0.2	391.1398	391.1399	6858	229.0860, 123.0452, 121.0288, 123.0452, 107.0511, 93.0357, 71.0265	Bis-(4-hydroxybenzyl)-ether-mono-β-D-glucopyranoside	Glycosides	[14]	
X33	14.13	C_{25}H_{22}O_{12}	2.6	515.1195	515.1208	91406	353.0879, 335.0781, 191.0558, 179.0345, 173.0450, 161.0240	3,4-Dicaffeoylquinic acid isomer	Organic acids	[15]	
X34	16.48	C_{25}H_{22}O_{12}	2.6	515.1195	515.1208	91406	353.0879, 335.0781, 191.0558, 179.0345, 173.0450, 161.0240	3,4-Dicaffeoylquinic acid isomer	Organic acids	[15]	
X36	17.42	C_{2}H_{6}O_{3}	−0.8	151.0765	151.0763	1891	139.0217	4-(Ethoxymethyl)phenol	Phenols	[14]	
X37	23.89	C_{14}H_{14}O_{2}S	−4	245.0642	245.0632	2498	139.0217	Bis(4-hydroxybenzyl) sulfide	Phenols	[14]	
X38	32.90	C_{6}H_{8}O_{3}	−1	163.0401	163.0399	4130	145.0279, 135.0455, 119.0493, 91.0184, 77.0443	p-Hydroxycinnamic acid	Organic acids	[15]	
X39	39.73	C_{4}H_{12}O_{4}S	−0.2	277.1445	277.1445	5380	233.1544, 206.8262	Dibutyl phthalate	Phenols	[14]	
Y1	1.05	C_{2}H_{2}N_{6}	−1.8	136.0618	136.0615	46698	nd	Adenine	Nitrogen-containing compounds	Nitrogen-containing compounds	[16]
Y2	1.08	C_{10}H_{13}N_{5}O_{4}	1.5	268.1040	268.1044	174357	136.0623, 119.0360, 113.0129	Adenosine	Nitrogen-containing compounds	Nitrogen-containing compounds	[16]
Y3	1.09	C_{6}H_{11}NO_{3}	−1.9	182.0812	182.0808	34675	nd	Tyrosin	Nitrogen-containing compounds	Nitrogen-containing compounds	[16]
Y4	8.60	C_{24}H_{32}N_{4}O_{6}S	−0.5	520.1748	520.1746	7896	308.0836, 285.0913, 233.0591, 179.0486, 162.0208, 107.0485	(2)-g-L-[N-(4-Hydroxy benzyl)] glutamyl-L-[s-(4-hydroxybenzyl)] cysteinylglycine 3-Carboxyethyl-phthalide	Nitrogen-containing compounds	Organic acids	[16]
Y5	9.77	C_{10}H_{10}O_{4}	−0.8	193.0495	193.0494	14081	178.0257, 150.0323, 133.0281, 122.0361	Nitrogen-containing compounds	Nitrogen-containing compounds	[16]	
Peak	RT (min)	Formula	Error	[M–H] Calculated	[M–H] Measure	Intensity	Product ions	Identification	Structure class	Ref.	
------	---------	----------	--------	-------------------	----------------	-----------	--------------	----------------	----------------	------	
Y6	10.55	C₁₂H₁₈O₅	−0.1	243.1227	243.1227	13011	165.0909, 151.0381, 137.0949	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxy phthalide Senkyunolide H or I or ligustilidiol or cis-6,7-dihydroxy-ligustilide	Organic acids		
Y7	10.55	C₁₂H₁₆O₄	−0.5	225.1121	225.1119	21174	207.1023, 165.0557, 151.0376, 137.0954	Senkyunolide R or S	Phthalides [9]		
Y8	11.94	C₁₂H₁₆O₅	−0.8	241.1071	241.1069	1918	150.0677, 107.0497, 71.0498	Senkyunolide G or K or Z-6,7-epoxyligustilide	Phthalides [9]		
Y9	13.27	C₁₂H₁₆O₃	0.1	209.1172	209.1172	288915	153.0544, 149.0593, 135.0473, 121.1006, 117.0709	Senkyunolide J or N or R2	Phthalides [9]		
Y10	13.27	C₁₂H₁₆O₄	0.4	227.1278	227.1279	102387	163.1104, 153.0543, 149.0961, 119.0860, 107.0484, 79.054	Senkyunolide H or I or ligustilidiol or cis-6,7-dihydroxy-ligustilide	Phthalides [9]		
Y11	16.56	C₁₂H₁₆O₃	−0.6	207.1016	207.1015	1327567	189.0917, 165.0550, 146.0732, 133.0653, 119.0841, 105.0693	Senkyunolide F or chuanxiongol	Phthalides [9]		
Y12	16.57	C₁₂H₁₆O₄	−0.9	225.1121	225.1119	39845	165.0533, 133.0658, 128.0619, 91.0532, 77.0402	Senkyunolide H or I or ligustilidiol or cis-6,7-dihydroxy-ligustilide	Phthalides [9]		
Y13	17.87	C₁₂H₁₆O₄	−0.2	223.0965	223.0966	23855	177.0921, 149.0591, 121.0308, 103.0523, 77.0401	Senkyunolide D or 4,7-dihydroxy-3-butylphthalide	Phthalides [9]		
Y14	18.08	C₁₂H₁₆O₃	−0.1	207.1016	207.1015	425060	189.0901, 165.0558, 161.0948, 128.0620, 105.0701, 91.0549, 77.0393	Senkyunolide F or chuanxiongol	Phthalides [9]		
Y15	19.53	C₁₈H₂₈O₈	0.3	373.1857	373.1858	45450	211.1335, 193.1228, 147.1172, 105.0702, 79.0577	Ligusticoside A	Glycosides [17]		
Y16	21.97	C₁₂H₁₂O₂	−0.5	189.0910	189.0910	151946	128.0623, 115.0544, 105.0702, 91.0551, 77.0388	Butyldienephthalide isomer	Phthalides [9]		
Y17	23.67	C₁₂H₁₄O₄	0.3	223.0965	223.0966	43428	177.0899, 167.0387, 149.0227, 121.0278, 91.0541, 77.0382, 152.0611, 128.0618, 115.0529, 105.0341, 91.0537, 77.0394	Butyldienephthalide isomer	Phthalides [9]		
Y18	24.29	C₁₂H₁₂O₂	0	189.0910	189.0910	305525	207.1020, 189.0907, 161.0364, 133.0640, 119.0840, 91.0533, 187.0745, 168.0574, 144.0573, 131.0493, 115.0541, 103.0552, 91.0533, 77.0401	Senkyunolide L	Phthalides [18]		
Y19	24.50	C₁₂H₁₄O₂	−0.9	191.1067	191.1067	340079	117.0688, 91.0560, 77.0396	3-Butylphthalide or Z-ligustilide or E-ligustilide	Phthalides [9]		
Y20	26.27	C₁₂H₁₅ClO₃	−0.5	243.0783	243.0781	21244	207.0120, 189.0907, 161.0364, 133.0640, 119.0840, 91.0533, 187.0745, 168.0574, 144.0573, 131.0493, 115.0541, 103.0552, 91.0533, 77.0401	Senkyunolide B or C	Phthalides [9]		
Y21	26.63	C₁₂H₁₂O₃	0.6	205.0859	205.0860	90627	175.1090, 105.0691	2-(1-Oxopentyl)-benzoic	Organic acids		
Y22	27.74	C₁₃H₁₄O₃	−0.6	221.1172	221.1171	4804	115.0541, 103.0552, 91.0533, 77.0401	Senkyunolide L	Phthalides [18]		
Peak	RT (min)	Formula	Error (ppm)	[M–H] Calculated	(m/z) Measure	Intensity	Product ions	Identification	Structure class	Ref.	
------	---------	---------	-------------	------------------	----------------	----------	-------------	----------------	----------------	------	
Y23	27.90	C₁₂H₁₂O₃	0.6	205.0859	205.0860	90627	187.0745, 168.0574, 144.0573, 131.0493, 115.0541, 103.0552, 91.0533, 77.0401	Senkyunolide B or C	Phthalides [9]		
Y24	28.65	C₁₂H₁₆O₂	0.7	193.1223	193.1225	227337	153.0704, 145.1007, 135.0440, 117.0695, 91.0548, 77.0391	Senkyunolide A	Phthalides [9]		
Y25	29.49	C₁₂H₁₄O₂	0.3	191.1067	191.1067	348972	173.0961, 145.1008, 130.0773, 117.0694, 91.0548, 77.0392	3-Butylphthalide or Z-Ligustilide or E-Ligustilide	Phthalides [9]		
Y26	32.06	C₁₂H₁₂O₂	–0.5	189.0910	189.0910	39396	152.0611, 128.0615, 115.0545, 91.0554	Butylenephthalide isomer	Phthalides [9]		
Y27a	32.89	C₁₂H₁₈O₂	–0.8	195.1380	195.1378	686098	173.1344, 149.1309, 79.0550	Cnidilide or neoCnidilide	Phthalides [9]		
Y28	33.04	C₁₂H₁₄O₂	0.3	191.1067	191.1067	637725	147.1167, 137.0590, 119.0498, 91.0544, 77.0389, 65.0383	3-Butylphthalide or Z-Ligustilide or E-Ligustilide	Phthalides [9]		
Y29	33.64	C₁₂H₁₂O₂	–0.2	189.0910	189.0910	401466	147.1167, 137.0590, 119.0498, 91.0544, 77.0389, 65.0383	Butylenephthalide isomer	Phthalides [9]		
Y30	35.24	C₁₂H₁₂O₂	–0.7	197.1536	197.1535	21102	177.1344, 149.1309, 79.0550	3,7-Dimethyl-3-acetate-1,6-octadiene-3-ol acetate	Others		
Y31	36.15	C₁₂H₁₂O₂	0.9	317.2475	317.2478	12477	281.2253, 211.1524, 187.1501, 159.1179, 149.1329, 117.0717, 81.0720	Pregnenolone	Others		
Y32	36.37	C₂₂H₂₆O₅	0.1	397.2010	397.2010	71592	191.1064, 173.0954, 155.0852, 145.1003, 128.0625, 117.0715, 105.0724, 91.0544, 77.0392	Chuanxiongdiolide A or B	Others [19]		
Y33	38.22	C₂₂H₂₆O₅	0.4	397.2010	397.2010	66000	191.1064, 173.0954, 155.0852, 145.1003, 128.0625, 117.0715, 105.0724, 91.0544, 77.0392	Chuanxiongdiolide A or B	Others [19]		
Y34	39.08	C₂₂H₂₆O₅	–0.4	401.2323	401.2321	20533	279.1401, 261.1264, 211.1524, 187.1501, 159.1179, 149.1329, 117.0717, 81.0720	Chuanxiongdiolide R2 or chuanxiongdiolide B	Others [20]		
Y35	39.48	C₁₇H₂₄O₄	0.8	293.1747	293.1750	22471	191.1068, 173.0958, 163.1120, 149.0601, 135.0440, 91.0546, 77.0392	Senkyunolide M or Q	Phthalides [9]		
Y36	41.42	C₂₄H₃₀O₄	–0.1	383.2217	383.2217	1160225	193.1229, 175.1111347.1159, 137.0587, 119.0871, 93.0687	Senkyunolide P or 3,8-Dihydro-diligustilide or angelicide or Z,Z′,Z′,Z′-Diligustilide	Phthalides [9]		
Y37	41.52	C₂₄H₃₂O₄	0.1	385.2373	385.2374	627373	367.2247, 349.2092, 321.2178, 293.1915, 193.1229, 175.1111347.1159, 137.0587, 119.0871, 93.0687	Chuanxiongdiolide A	Others [20]		
Y38	41.88	C₂₄H₃₂O₄	0.1	381.2060	381.2061	4796897	191.1070, 173.0955, 163.1126, 149.0596, 135.0437, 91.0551, 79.0549	Levistolide A or senkyunolide O or tokinolide B or riligustilide	Phthalides [9]		

*a“X” in negative ion mode and “Y” in negative-positive mode. bCompared with reference standards.
Figure 3: Information about classification of compounds in TST.

Figure 4: Continued.
Therefore, **M5** might be a metabolite of senkyunolide D after hydrogenation and glucuronidation, while **M6** might be a metabolite of senkyunolide D after hydroxylation and glucuronidation (metabolites of **M1** and extract ion chromatograms (EICs) are shown in Figure 6).

Metabolite **M27**, which eluted at 14.81 min, formed a molecular ion of [M+H]⁺ at m/z 193.1222 corresponding to C₁₂H₁₆O₂. A major fragment ion was shared with senkyunolide A, suggesting that **M27** is prototype of senkyunolide A. Metabolite **M28**, which eluted at 14.81 min, formed a molecular ion of [M+H]⁺ at m/z 223.1328 corresponding to C₁₃H₁₈O₃. Its major fragment ions m/z 205.1224 and 191.1060 were generated by loss of 18 Da and 18 + 14 Da, which implied loss of a H₂O group and methyl group. Other product ions were identical to that of **M27**. Based on the possible metabolic reactions, **M28** might be a metabolite of senkyunolide A after hydroxylation and methylation. Metabolite **M29**, which eluted at 10.35 min, formed a molecular ion of [M+H]⁺ at m/z 372.1475 corresponding to C₁₇H₂₅O₆NS. Its major fragment ions m/z 293.0893 and 191.1074 were generated by loss of 163 Da and 163 + 18 Da, which implied loss of an acetylcysteine group

![Figure 4: MS/MS spectra and the proposed fragmentation pathways.](image-url)

(a) Parishin B in negative ion mode. (b) Gastrodin A in negative ion mode. (c) Cnidilide or neocnidilide in positive ion mode.
No.	Parent compounds	Metabolic pathways	Formula	tR (min)	[M+H]+ (m/z)	Error (ppm)	Product ions
1	4,7-Dihydroxy-3-butylphthalide, senkyunolide D	Prototype	C_{12}H_{14}O_{4}	9.75	223.0965	223.0963	177.0899, 167.0387, 149.0226, 121.0278, 91.0541
2	4,7-Dihydroxy-3-butylphthalide, senkyunolide D	Hydroxyl and methyl conjugation	C_{13}H_{16}O_{4}	10.78	253.1071	253.1071	235.0963, 221.0829, 202.0596, 193.0489, 179.0332, 175.0579, 150.0301, 121.0268, 285.0430, 205.0858, 187.0753, 177.0904, 149.0244, 121.0283, 91.0534
3	4,7-Dihydroxy-3-butylphthalide, senkyunolide D	Sulfate conjugation	C_{12}H_{14}SO_{7}	9.2	303.0533	303.0535	223.0969, 205.0847, 177.0883, 167.0331, 149.0233, 121.0315
4	4,7-Dihydroxy-3-butylphthalide, senkyunolide D	Glucuronide conjugation	C_{18}H_{22}O_{10}	10.6	399.1286	399.1285	225.4427, 207.1017, 189.0924, 172.0884, 165.0548, 141.0170, 119.0851, 113.0288
5	4,7-Dihydroxy-3-butylphthalide, senkyunolide D	Hydrogenation and glucuronide conjugation	C_{18}H_{24}O_{10}	8.67	401.1442	401.1444	227.0584, 221.0824, 165.0929, 137.0955, 123.0434
6	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Prototype	C_{12}H_{18}O_{5}	7.76	243.1227	243.1225	165.0909, 151.0414, 137.0951, 123.0431, 107.0499, 91.0546, 85.0648
7	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Methyl conjugation	C_{13}H_{20}O_{5}	10.01	257.1384	257.1381	221.1211, 207.0993, 171.1364
8	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Cystein conjugation	C_{15}H_{23}O_{6}NS	7.67	346.1319	346.1319	328.1222, 310.1111, 264.1056, 238.0916, 223.0771, 207.1018, 165.0923, 137.0955
9	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Oxidation and cystein conjugation	C_{17}H_{25}O_{8}NS	5.97	404.1374	404.1372	327.0911, 247.1337, 229.1216, 151.0746
10	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	N-Acetyl-L-cysteine conjugation	C_{15}H_{23}O_{7}NS	9.47	362.1268	362.1267	327.0911, 247.1337, 229.1216, 151.0746
11	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Hydroxyl and glucuronide conjugation	C_{16}H_{22}O_{10}	5.97	404.1374	404.1372	205.0833, 171.1364
12	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	Desat and S-GSH conjugation	C_{22}H_{33}O_{11}N_{35}	4.39	548.1909	548.1921	473.1636, 419.1465, 205.0860
13	3-Butyl-3-hydroxy-4,5,6,7-tetrahydro-6,7-dihydroxyphthalide	H_{2}O conjugation	C_{12}H_{20}O_{6}	4.65	261.1333	261.1320	261.1310
14	3-Carboxyethylphthalide	Prototype	C_{10}H_{10}O_{4}	7.28	193.0495	193.0490	178.0257, 150.0323, 133.0277, 122.0361, 105.0338, 77.0388
15	3-Carboxyethylphthalide	Methyl conjugation	C_{11}H_{12}O_{4}	11.52	207.0652	207.0646	147.0441, 131.0502, 103.0546, 91.0533
16	3-Carboxyethylphthalide	Glucuronide conjugation	C_{16}H_{16}O_{10}	5.51	369.0816	369.0822	193.0493
17	3-Carboxyethylphthalide	Hydroxyl and glucuronide conjugation	C_{16}H_{16}O_{11}	5.72	385.0765	385.0758	209.0455
18	3-Carboxyethylphthalide	Hydrogenation	C_{10}H_{16}O_{4}	7.64	195.0652	195.0651	177.0547, 149.0609, 145.0276, 134.0354, 117.0309, 89.0395
Table 2: Continued.

No.	Parent compounds	Metabolic pathways	Formula	tR (min)	[M+H]+ (m/z)	Error (ppm)	Product ions
					Calculated	Measure	
19	Cnidilide, neocnilide	Prototype	C12H18O2	16.14	195.1380	195.1377	1.5
		Methyl conjugation	C13H20O2	15.63	209.1536	209.1537	0.4
21	Cnidilide, neocnilide	Acetyl conjugation	C14H20O3	12.45	237.1485	237.1483	0.1
		Hydroxyl and acetyl conjugation	C14H20O4	14.26	253.1434	253.1435	0.4
23	Cnidilide, neocnilide	Oxidation and cystein conjugation	C13H20O4NS	10.07	314.1421	314.1424	1.1
		Hydroxyl and glucuronide conjugation	C18H26O9	9.62	387.1650	387.1650	0.1
25	Cnidilide, neocnilide	2Hydroxyl and glucuronide conjugation	C14H26O4	8.02	403.1599	403.1598	0.2
26	Cnidilide, neocnilide	2Hydroxyl conjugation	C12H18O4	8.68	227.1278	227.1279	0.7
27	Senkyunolide A	Prototype	C12H16O2	14.81	193.1223	193.1222	0.5
28	Senkyunolide A	Hydroxyl and methyl conjugation	C13H18O3	15.85	223.1329	223.1326	1.2
29	Senkyunolide A	Hydroxyl and acetylcysteine conjugation	C13H25O4NS	10.35	372.1475	372.1475	0.1
30	Senkyunolide A	Carboxyl and glucuronide conjugation	C18H22O4	10.6	399.1286	399.1285	0.3
31	Senkyunolide A	2Hydroxyl and glucuronide conjugation	C18H24O4	8.67	401.1442	401.1444	0.3
32	Senkyunolide A	H2O conjugation	C12H14O3	10.54	211.1329	211.1327	0.9
33	Senkyunolide A	2Hydroxyl conjugation	C12H16O4	9.56	225.1121	225.1119	0.1
34	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Prototype	C12H16O3	12.79	209.1172	209.1173	0.3

177.1350, 149.1348, 125.0599, 107.0873, 97.0640, 91.0550, 79.0543
193.0211, 167.1088
153.0917, 121.0648, 68.9961
177.0257
235.1340, 193.0856, 157.1012, 135.0816
268.1343, 193.1185
211.1330, 193.1223, 175.1129, 147.1168, 121.0368
227.1287, 209.1174, 191.1065, 171.1373, 163.1123, 153.0549, 145.1025, 141.0186, 135.1164, 121.0995, 191.1057, 163.1115, 153.0554, 145.1001, 135.0444, 105.0705, 91.0541
175.1118, 147.1170, 137.0580, 119.0848, 105.0710, 91.0556, 77.0393
205.1224, 191.1060, 149.0235, 135.0429, 121.0279, 105.0697, 91.0542, 77.0397
330.1375, 284.1322, 267.1048, 239.0756, 209.1169, 191.1074, 162.0210, 153.0540, 130.0492
223.0969, 205.0847, 177.0883, 159.0293, 149.0233, 131.0840, 85.0275
225.1127, 207.1017, 189.0924, 172.0884, 165.0548, 141.0170, 119.0851, 113.0288, 85.0265, 73.0295, 193.1225, 175.1096
147.1156, 129.0700, 105.0693, 93.0692, 79.0548
207.1013, 189.0914, 165.0537, 133.0637, 105.0706, 91.0536, 81.0713
153.0686, 149.0594, 145.0984, 135.0472, 105.0693, 91.0562, 77.0409
No.	Parent compounds	Metabolic pathways	Formula	tR (min)	[M+H]⁺ (m/z) Calculated	Error (ppm)	Product ions
35	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Methyl conjugation	C₁₃H₁₄O₄	15.85	223.1329	223.1326	191.1060, 173.0946, 149.0355, 135.0429, 105.0697, 91.0542, 79.0551
36	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Acetyl conjugation	C₁₄H₁₄O₄	15.99	251.1278	251.1276	177.1261, 149.0593, 69.0014, 57.0752
37	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Hydroxyl and acetyl conjugation	C₁₄H₁₄O₅	12.27	267.1227	267.1226	249.1137, 193.0479, 189.0582, 135.0435, 119.0846
38	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Taurine conjugation	C₁₃H₁₃O₃NS	9.02	328.1213	328.1214	207.1015, 189.0911, 165.0541, 161.0955, 147.0814, 133.0644, 119.0859, 91.0538
39	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	N-Acetyl-L-cysteine conjugation	C₁₇H₁₃O₃NS	11.15	370.1319	370.1320	211.1330, 193.1223, 175.1129, 147.1168, 121.0638, 91.0546, 79.0562
40	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Hydrogenation and glucuronide conjugation	C₁₈H₂₆O₉	9.62	387.1650	387.1650	207.1010, 164.0390, 122.0273, 105.0347, 79.0529
41	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Hydroxyl and acetyl conjugation	C₁₇H₁₃O₃NS	8.79	388.1425	388.1422	267.1015, 225.1127, 207.1017, 189.0924, 172.0844, 141.0170, 113.0228, 85.0265, 73.0295
42	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Hydroxyl and glucuronide conjugation	C₁₈H₂₄O₁₀	8.67	401.1442	401.1444	227.0584, 221.0824
43	Senkyunolide G, senkyunolide K,Z-6,7-epoxyligustilide	Carboxyl and glucuronide conjugation	C₁₈H₂₂O₁₁	8.92	415.1235	415.1238	439.1552, 385.1429, 282.1160, 260.1071, 207.0921, 179.0484, 162.0221, 144.0103, 116.0174, 76.0218, 441.1694, 387.1593, 284.1315, 209.1173, 191.1055, 162.0212, 144.0109, 116.0175, 84.0447, 193.1225, 175.1096, 151.0737, 147.1156, 129.0700, 121.0641, 105.0693, 93.0693, 91.0546, 77.0398, 177.0906, 149.0590, 145.0880, 105.0329, 91.0556, 77.0394, 209.1169, 191.1057, 163.1115, 153.0554, 145.1001, 135.0444, 105.0705, 91.0541, 77.0388, 65.0402, 55.0198
and H$_2$O group. Other product ions were identical to that of M$_{27}$. Therefore, M$_{29}$ may be a metabolite of senkyunolide A after hydroxyl and acetylcysteine conjugation. Metabolite M$_{30}$, which eluted at 10.60 min, formed a molecular ion of [M+H]$^+$ at m/z 399.1285 corresponding to C$_{18}$H$_{22}$O$_{10}$. Its major fragment ions m/z 223.0969, 205.0847, and 177.0883 were generated by the loss of 176 Da, 176 + 18 Da, and 176 + 18 + 28 Da, which implied loss of a glucuronide group.

Table 2: Continued.

No.	Parent compounds	Metabolic pathways	Formula	tR (min)	[M+H]$^+$ (m/z)	Error (ppm)	Product ions
49	Senkyunolide G, senkyunolide K, Z-6,7-epoxyligustilide	Demethyl and carboxyl conjugation	C$_{12}$H$_{14}$O$_5$	9.79	239.0914, 239.0915	0.4	221.0816, 193.0885, 179.0336, 165.0173, 161.0227, 128.0633, 109.0292, 77.0376
50	Senkyunolide G, senkyunolide K, Z-6,7-epoxyligustilide	2hydrogenation and 2hydroxyl conjugation	C$_{12}$H$_{18}$O$_5$	7.76	243.1227, 243.1225	-0.7	225.1135, 207.1017, 179.1084, 165.0909, 151.0414, 137.0951, 123.0431, 95.0486
51	Senkyunolide G, senkyunolide K, Z-6,7-epoxyligustilide	Aromatic hydrocarbon oxidation	C$_{13}$H$_{18}$O$_5$	11.38	255.1227, 255.1222	-2.1	195.1024, 135.0798, 131.0870
52	Senkyunolide J,N,R$_2$	Prototype	C$_{12}$H$_{18}$O$_4$	8.68	227.1278, 227.1279	0.7	163.1115, 153.0554, 145.1001, 107.0705, 91.0541, 79.0544, 65.0402, 55.0198
53	Senkyunolide J,N,R$_2$	Methyl conjugation	C$_{13}$H$_{20}$O$_4$	11.42	241.1434, 241.1433	-0.6	225.1135, 207.1017, 179.1084, 165.0909, 151.0414, 137.0951, 123.0431, 95.0486
54	Senkyunolide J,N,R$_2$	Hydroxyl and methyl conjugation	C$_{13}$H$_{20}$O$_5$	10.01	257.1384, 257.1381	-1	221.1211, 207.0993, 165.0913, 161.0984, 137.0951, 123.0434, 93.0699, 79.0549, 67.0538
55	Senkyunolide J,N,R$_2$	Glycine conjugation	C$_{14}$H$_{21}$O$_5$N	7.49	284.1493, 284.1495	0.8	238.1464, 209.1195, 191.1065, 163.1151, 153.0546, 135.1157, 117.0704, 91.0562, 76.0410, 57.0711
56	Senkyunolide J,N,R$_2$	Cystein conjugation	C$_{15}$H$_{23}$O$_5$NS	8.48	330.1370, 330.1375	1.7	209.1147, 181.1211, 153.0555, 126.0211, 108.0102, 91.0549
57	Senkyunolide J,N,R$_2$	Taurine conjugation	C$_{15}$H$_{25}$O$_5$NS	7.56	334.1319, 334.1319	0	328.1222, 310.1111, 264.1056, 238.0916, 207.1018, 195.0853, 165.0923, 137.0955
58	Senkyunolide J,N,R$_2$	Oxidation and cystein conjugation	C$_{15}$H$_{25}$O$_6$NS	7.67	346.1319, 346.1319	0	207.1010, 164.0390, 107.0491, 122.0273, 105.0347
59	Senkyunolide J,N,R$_2$	N-Acetyl-L-cysteine conjugation	C$_{17}$H$_{25}$O$_5$NS	8.29	388.1425, 388.1422	-0.6	227.1287, 209.1174, 191.1065, 163.1123, 153.0549, 145.1025, 135.1164, 121.0995, 93.0712
60	Senkyunolide J,N,R$_2$	Glucuronide conjugation	C$_{18}$H$_{26}$O$_{10}$	8.02	403.1599, 403.1598	-0.2	459.1795, 405.1696, 387.1582, 369.1490, 341.1469, 302.1438, 284.1303, 284.1303, 241.0913, 209.1157, 191.1075
61	Senkyunolide J,N,R$_2$	S-GSH conjugation	C$_{22}$H$_{25}$O$_{10}$N$_3$S	4.96	534.2116, 534.2113	-0.6	
H$_2$O group, and CO group. Other product ions were identical to that of M$_{27}$. Therefore, M$_{30}$ may be a metabolite of senkyunolide A following carboxylation and glucuronidation. Metabolite M$_{31}$, which eluted at 8.67 min, formed a molecular ion of [M+H]$^+$ at m/z 401.1444 corresponding to C$_{18}$H$_{24}$O$_{10}$. Its major fragment ions m/z
225.1127, 207.1017, and 189.0924 were generated by loss of 176 Da, 176 + 18 Da, and 176 + 18 + 18 Da, which implied loss of a glucuronide group and two H2O groups. Other product ions were identical to that of M27. Therefore, M31 might be a metabolite of senkyunolide A after 2 hydroxylation events and glucuronidation. Metabolite M32, which eluted at 10.54 min, formed a molecular ion of [M+H]+ at m/z 211.1327 corresponding to C12H18O3. Its major fragment ions were m/z 193.1225 and 175.1096. An m/z of 193.1225 (loss of 18 Da) corresponds to senkyunolide...
A, suggesting that M32 might be a metabolite of senkyunolide A after H2O conjugation. Metabolite M33, which eluted at 9.56 min, formed a molecular ion of [M+H]+ at m/z 225.1119 corresponding to C12H16O4. Its major fragment ions m/z 207.1013 and 189.0914 were generated by loss of 18 Da and 18+18 Da, which implied loss of one or two H2O groups. Other product ions were identical to that of M27. Therefore, M33 might be a metabolite of senkyunolide A after 2 hydroxylation events (metabolites of M27 and extracted ion chromatograms (EICs) are shown in Figure 7).

Sixty-one metabolites were identified in rat plasma. Through the analysis of these 61 metabolites, it was found that hydroxylation and glucuronidation were the main metabolic ways following oral administration of TST. From the identified metabolites, it can be speculated that after absorption of TST by human blood, most of the compounds undergo hydroxylation and glucuronidation, which allow TST to play a positive role in the treatment of migraine and blood stasis headaches. This provides a basis for follow-up research on the medical uses of TST. At the same time, from the information obtained on the metabolites, it can be seen that the main metabolites in positive ion mode of TST are concentrated as chuanxiong lactones, but there are no effective metabolites from Tianma. It is possible that Tianma metabolites are mainly present in the negative ion mode of plasma or in feces, urine, and bile, which requires further study.

4. Conclusion

In this study, UPLC/Q-TOF MS was used to comprehensively determine the chemical fingerprint and metabolic profile of TST after intragastric administration. In the analysis of the chemical constituents of TST, 77 compounds were identified, including 39 compounds identified in negative ion mode and 38 compounds identified in positive ion mode. In order to elucidate the mass spectrometric pyrolysis law of the main compounds in TST, gastrodin A, parishin B, and cnidilide or neocnilide were specifically analyzed, and the results were completely consistent with the results in reference standards and the reported literature. And 61 metabolites of TST in rat plasma were detected, which were mainly metabolites of 7 compounds. Two prototypes (senkyunolide D or 4,7-dihydroxy-3-butylyphthalide and senkyunolide A) and their metabolites were analyzed in detail, which showed hydroxylation and glucuronidation were the main metabolic pathways following oral administration. This study expanded our understanding of the chemical constituents of TST, studied its metabolic spectrum for the first time, and clarified its main metabolic pathway in plasma, which will lay the foundation for follow-up studies of the pharmacological mechanism of TST.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest in publication of this study.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 81560638), Young Scientists Training Project of Jiangxi Province (no. 20162BCB23003), Jiangxi Province 5511 R&D Projects (no. 20165BCB19009), Jiangxi Province Talent Project (no. [2016]332), Nanchang Innovative Talent Team (no. [2018]274), and Research Projects of Traditional Chinese Medicine of Jiangxi Provincial Health Department (no. 2016A018).

References

[1] Chinese Pharmacopoeia Commission, Chinese Pharmacopoeia, Vol. 1, China Medical Science Press, Beijing, China, 2010.
[2] W. Xia, M. Zhu, Z. Zhang et al., “Effect of Tianshu capsule in treatment of migraine: a meta-analysis of randomized control trials,” Journal of Traditional Chinese Medicine, vol. 33, no. 1, pp. 9–14, 2013.
[3] L. Zhao, H. Ouyang, and Q. Wang, “Chemical fingerprint analysis and metabolic profiling of 50% ethanol fraction of lomatogonium rotatum by ultra-performance liquid chromatography/quadrupole–time of flight mass spectrometry,” Biomedical Chromatography, vol. 33, 2019.
[4] L. Wang, J. Zhang, Y. Hong et al., “Phytochemical and pharmacological review of da chuanxiong formula: a famous herb pair composed of chuanxiong rhizoma and gastodirce rhizoma for headache,” Evidence-Based Complementray and Alternative Medicine, vol. 2013, Article ID 425369, 16 pages, 2013.
[5] S. M. Ni, D. W. Qian, E. X. Shang, J. A. Duan, J. M. Guo, and Y. P. Tang, "Analysis of chemical composition of dachuanxiong fang by ultra performance liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry," Chinese Journal of Experimental Traditional Medical Formulas, vol. 16, no. 1, pp. 40–45, 2010.
[6] L. Shen, X. Lin, Y. Hong et al., “Study on HPLC characteristic fingerprint of active components of dachuanxiong fang in plasma and cerebrospinal fluid,” China Journal of Chinese Materia Medica, vol. 37, no. 13, pp. 2017–2021, 2012.
[7] Y. Wei, X. Lin, N. Zhang et al., “UPLC-MS analysis of constituents of dachuanxiong fang active parts absorbed into blood,” China Journal of Chinese Materia Medica, vol. 36, no. 9, p. 1245, 2011.
[8] W. Yuan-Feng, Z. Ning, L. Xiao et al., “Release characteristics in vitro and pharmacokinetics of Da Chuanxiong Fang multiunit drug delivery system in rats,” Acta Pharmaceutica Sinica, vol. 46, no. 9, pp. 1150–1155, 2011.
[9] L. Juanjuan, G. Huimin, C. Liangmian et al., “Chemical profiling of an antimigraine herbal preparation, Tianshu capsule, based on the combination of HPLC, LC-DAD-MS”, and LC-DAD-ESI-IT-TOF/MS analyses,” Evidence-Based Complementray and Alternative Medicine, vol. 2014, Article ID 580745, 11 pages, 2014.
[10] D. Gao, B. Wang, Z. Huo et al., “Analysis of chemical constituents in an herbal formula Jitong Ning Tablet,” Journal of
[11] L. I. Wen-Lan, J. Bai, Z. Sun et al., "Material base of in vivo invigorating Qi and enriching blood of Bazhen decoction by HPLC-ESI-MS," *Chinese Herbal Medicines*, vol. 4, no. 4, pp. 282–286, 2012.

[12] Z. Li, Y. Wang, H. Ouyang et al., "A novel dereplication strategy for the identification of two new trace compounds in the extract of Gastrodia elata using UHPLC/Q-TOF-MS/MS," *Journal of Chromatography B*, vol. 988, pp. 45–52, 2015.

[13] D. Kammerer, A. Claus, R. Carle, and A. Schieber, "Polyphenol screening of pomace from red and white grape varieties (*Vitis vinifera* L.) by HPLC-DAD-MS/MS," *Journal of Agricultural and Food Chemistry*, vol. 52, no. 14, pp. 4360–4367, 2004.

[14] C. Schieber, L. Wang, X. Liu, M. Cheng, and H. Xiao, "Chemical fingerprint and metabolic profile analysis of ethyl acetate fraction of Gastrodia elata by ultra performance liquid chromatography/quadrupole-time of flight mass spectrometry," *Journal of Chromatography B*, vol. 1011, pp. 233–239, 2016.

[15] M. Keabetswe, K. Bradley, S. Paul et al., "A metabolomics-guided exploration of the phytochemical constituents of vernonia fastigiata with the aid of pressurized hot water extraction and liquid chromatography-mass spectrometry," *Molecules*, vol. 22, no. 8, p. 1200, 2017.

[16] C. Miao, S. Wu, B. Luo, J. Wang, and Y. Chen, "A new sesquiterpenoid from *Ligusticum chuanxiong* Hort," *Fitoterapia*, vol. 81, no. 8, pp. 1088–1090, 2010.

[17] X.-L. Chang, Z.-Y. Jiang, Y.-B. Ma, X.-M. Zhang, K. W. K. Tsim, and J.-J. Chen, "Two new compounds from the roots of *Ligusticum chuanxiong*," *Journal of Asian Natural Products Research*, vol. 11, no. 9, pp. 805–810, 2009.

[18] M. Ruan, Y. Li, X. Li, J. Luo, and L. Kong, "Qualitative and quantitative analysis of the major constituents in Chinese medicinal preparation Guan-Xin-Ning injection by HPLC-DAD-ESI-MSn," *Journal of Pharmaceutical and Biomedical Analysis*, vol. 59, pp. 184–189, 2012.

[19] Y. Li, S. Peng, Y. Zhou, K. B. Yu, and L. S. Ding, "Two new phthalides from *Ligusticum chuanxiong*," *Planta Medica*, vol. 72, no. 7, pp. 652–656, 2006.

[20] J. Huang, X.-Q. Lu, C. Zhang et al., "Anti-inflammatory ligustilides from *Ligusticum chuanxiong* hort," *Fitoterapia*, vol. 91, pp. 21–27, 2013.