Effect of TiO$_2$ nanotubes with TiCl$_4$ treatment on the photoelectrode of dye-sensitized solar cells

Teen-Hang Meen1*, Yi-Ting Jhuo1, Shi-Mian Chao2, Nung-Yi Lin3, Liang-Wen Ji3, Jenn-Kai Tsai1, Tien-Chuan Wu1, Wen-Ray Chen1, Walter Water1 and Chien-Jung Huang4

Abstract

In this study, we used the electrochemical anodization to prepare TiO$_2$ nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO$_2$ nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 µm. After titanium tetrachloride (TiCl$_4$) treatment, the walls of TiO$_2$ nanotubes were coated with TiO$_2$ nanoparticles. XRD patterns showed that the oxygen-annealed TiO$_2$ nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO$_2$ nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 µm, respectively. After TiCl$_4$ treatment, the efficiency of TiO$_2$ nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of R_k (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO$_2$ nanotubes were treated with TiCl$_4$. These results indicate that TiO$_2$ nanotubes treated with TiCl$_4$ can increase the surface area of TiO$_2$ nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.

Keywords: TiO$_2$ nanotube arrays, dye-sensitized solar cells, TiCl$_4$ treatment

Background

Dye-sensitized solar cells (DSSCs) have received considerable attention lately because they are cost-effective and environmentally friendly with efficiencies comparable to those of the traditional silicon-based cells [1]. Generally, granular titanium dioxide powder is commonly used in dye-sensitized solar cell light anode structure. The sol–gel method is used to produce porous film structure, but small pores form between particles of the transmission path of clutter, resulting in a more dye adsorption capacity and low clutter of electron transfer path. The path is too long and will make the leakage current and the probability of electron recombination, thus affecting the overall conversion efficiency of solar cells. The titanium dioxide nano-tubular structure of high surface area and large aspect ratio can be beneficial to the dye adsorption, and more rules of order can be reduced when the electron and hole in the transmission probability of recombination. TiO$_2$ nanotubes have been synthesized by various methods including hydrothermal method [2], seeded growth [3], template-assisted deposition [4], and anodization [5]. Especially, anodization is a relatively simple method for synthesizing large-area and self-organized TiO$_2$ nanotube arrays [6-8]. In this paper, we used the electrochemical anodization to prepare TiO$_2$ nanotubes arrays with different thickness and applied them on the photoelectrode of dye-sensitized solar cells. The TiO$_2$ nanotubes and solar cells were investigated by field-emission scanning electron microscopy, X-ray diffraction (XRD), I-V characteristic analyses, and electrochemical impedance spectroscopy (EIS) to study the effect of titanium tetrachloride (TiCl$_4$) treatment on the photoelectrode of TiO$_2$ nanotubes for dye sensitized solar cells.

Methods

In this study, the growth of nanotubes was anodized on Ti foils (purity of 99.6%, thickness of 0.2 mm) by constant current at 15 mA in the ethylene glycol solution containing 0.3 wt.% NH$_4$F and 2 vol.% deionized water kept at 20°C. The anodized TiO$_2$ nanotubes were

* Correspondence: thmeen@nfu.edu.tw
1Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan
Full list of author information is available at the end of the article

© 2012 Meen et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
annealed in oxygen at 450°C for 60 min. For the treatment of TiCl₄, TiO₂ nanotubes were immersed in 0.2 M TiCl₄ solution for 1 h and annealed in air at 350°C for 30 min. Pt counter electrodes were prepared by coating with a drop of H₂PtCl₆ solution and heating at 400°C for 15 min [9]. To adsorb N3 dye, TiO₂ nanotubes were immersed in 3×10⁻⁴ M solution containing N3 dye and ethyl alcohol at 45°C for 8 h in the oven. The working electrodes were then rinsed with ethanol. Electrolyte solution is adopted from Everlight Chemical Industrial Corporation (ESE-20). The electrode was assembled into a sandwich-type open cell using platinum plate as a counter electrode. Both electrodes were spaced by a kind of polymer films. The thickness was 60 μm, and the size of TiO₂ working electrode was 0.25 cm² (0.5 ×0.5 cm). The surface morphology of the TiO₂ nanotubes was observed by scanning field emission electron microscopy. Structural analysis was carried out by powder

Figure 1 SEM images of TiO₂ nanotubes. (a) Top view and (b) side view before TiCl₄ treatment, and (c) top view and (d) side view after TiCl₄ treatment.

Figure 2 XRD patterns of TiO₂ nanotubes.
X-ray diffraction (XRD). The ultraviolet–visible absorption spectrum of the TiO$_2$ electrodes was observed by a UV–vis spectrophotometer. The current–voltage characteristics and impedance of samples were measured by Keithley 2400 source meter (Keithley Instruments Inc., Cleveland, OH, USA), and EIS was determined under simulated sunlight with white light intensity, $P_L = 100$ mW/cm2.

Results and discussion

Figure 1 shows the SEM images of the TiO$_2$ nanotubes before and after TiCl$_4$ treatment. Clearly, after the samples were treated with TiCl$_4$, the walls of TiO$_2$ nanotubes were coated with TiO$_2$ nanoparticles, which could increase the surface area of TiO$_2$. In order to explore the impact of annealing gas on the properties of TiO$_2$ nanotubes, the samples were carried out with XRD characterization. XRD patterns of TiO$_2$ nanotubes are shown in Figure 2. It is found that the as-formed TiO$_2$ nanotubes are amorphous and are converted to anatase after annealing. The oxygen annealed TiO$_2$ nanotubes have a better anatase phase than that annealed in air. After the treatment of TiCl$_4$, TiO$_2$ nanotubes also show a good anatase phase. Figure 3 shows the current–voltage characteristics of DSSCs with the electrodes of different lengths of TiO$_2$ nanotubes without TiCl$_4$ treatment. The parameters for the short-circuit current density (J_{sc}), the open circuit potential (V_{oc}), the fill factor, and the overall conversion efficiency (η) are listed in Table 1. From the results of Figure 3 and Table 1, it is found that the best conversion efficiency of DSSCs is 4.35%, while the length of TiO$_2$ nanotubes is 20 μm.

The result of conversion efficiency is quite higher than the previous reports [10-12]. This may be due to the length of TiO$_2$ nanotubes in this study, which is quite longer than those of the previous reports. It is advantage to adsorb N3 dye on the TiO$_2$ nanotubes. Figure 4 shows the current–voltage characteristics of DSSCs with the electrodes of different lengths of TiO$_2$ nanotubes after TiCl$_4$ treatment. The parameters for the J_{sc}, the V_{oc}, the fill factor, and the η are listed in Table 2. From the results of Figure 4 and Table 2, it is found that the best conversion efficiency of DSSCs can be improved up to 6.58%, while the length of TiO$_2$ nanotubes is 20 μm.

In order to study the effect of TiCl$_4$ treatment on the transport properties of TiO$_2$ nanotubes, the analysis of EIS for TiO$_2$ nanotubes has been investigated. Figure 5 shows the spectra of EIS for the dye-sensitized solar cells with and without TiCl$_4$ treatment. The simulation of equivalent circuit is referred to the previous reports [13-15]. The parameter R_k, which is represented by charge transfer resistance related to recombination of electrons, is also listed in Table 3. The value of R_k decreases from 26.1 to 17.4 Ω after TiCl$_4$ treatment. These results indicate that the effect of TiCl$_4$ treatment

Sample (μm)	V_{oc} (V)	J_{sc} (mA/cm2)	V_{m} (V)	I_{m} (mA/cm2)	FF (%)	η (%)
10	0.63	9.56	0.44	7.29	53.63	3.21
20	0.63	12.92	0.43	10.12	53.61	4.35
30	0.61	13.89	0.41	10.59	51.11	4.34
Figure 4 The I-V curves of DSSCs with different lengths of TiO₂ nanotubes after TiCl₄ treatment.

Table 2 The parameters of current–voltage characteristics for DSSCs with different lengths of TiO₂ nanotubes after TiCl₄ treatment

Sample (μm) with TiCl₄	\(V_{oc} \) (V)	\(J_{sc} \) (mA/cm²)	\(V_m \) (V)	\(I_m \) (mA/cm²)	FF (%)	\(\eta \) (%)
10	0.63	14.03	0.44	11.06	54.77	4.81
20	0.66	19.27	0.46	14.30	52.00	6.58
30	0.64	16.97	0.43	12.67	50.15	5.45

Figure 5 Spectra of EIS for the dye-sensitized solar cells with and without TiCl₄ treatment.
Table 3 The parameters of EIS calculated from Figure 5 for dye-sensitized solar cells with and without TiCl4 treatment

Sample	\(K_{\text{eff}}\) (s\(^{-1}\))	\(\tau_{\text{eff}}\) (s)	\(R_s\) (\(\Omega\))	\(R_{\text{ct}}\) (\(\Omega\))	\(R_{\text{ct}}\) (\(\Omega\))	\(\eta\) (%)
20 \(\mu\)m without TiCl4	0.97	1.03	7.35	3.35	26.1	4.35
20 \(\mu\)m with TiCl4	1.44	0.69	7.54	2.86	17.4	6.58

on TiO\(_2\) nanotubes can increase the surface area of TiO\(_2\) and the adsorption of N3 dye, resulting in better transport properties of TiO\(_2\) nanotubes and the improvement of conversion efficiency for DSSCs.

Conclusions

In summary, we prepared TiO\(_2\) nanotube arrays by electrochemical anodization to apply on the electrode of dye-sensitized solar cell. After TiCl\(_4\) treatment, the walls of TiO\(_2\) nanotubes were coated with TiO\(_2\) nanoparticles. It can increase the surface area of TiO\(_2\) and the adsorption of N3 dye, resulting in better transport properties of TiO\(_2\) nanotubes and the improvement of conversion efficiency of DSSCs.

Abbreviations

DSSCs: Dye-sensitized solar cells; EIS: Electrochemical impedance spectroscopy; \(I-V\) characteristics: Current–voltage characteristics; \(J_{sc}\): Short-circuit current density; \(\eta\): Overall conversion efficiency; TiCl\(_4\): Titanium tetrachloride; \(V_{oc}\): Open circuit potential; XRD: X-ray diffraction.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

THM wrote this manuscript. YTJ and NYL carried out the preparation of samples. SMC and LWJ carried out the XRD measurements. JKT and TCW carried out the \(I-V\) measurements. WRC, WW, and CJH carried out the EIS measurements. All authors read and approved the final manuscript.

Acknowledgment

This research is supported by the National Science Council, R.O.C., under contract nos. NSC 100-2622-E-150-014-CC3 and NSC 100-2221-E-150-058.

Author details

1Department of Electronic Engineering, National Formosa University, Yunlin 632, Taiwan. 2Department of Electrical Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan. 3Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan. 4Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan.

Received: 16 July 2012 Accepted: 9 October 2012 Published: 23 October 2012

References

1. Aliev Y, Fan ZY: Dye-sensitized solar cells using TiO\(_2\) nanoparticles transformed from nanotube arrays. J Mater Sci 2010, 46:2902–2906.
2. Tsai CC, Teng HS: Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment. Chem Mater 2004, 16:4352–4358.
3. Tian ZR, Vogt JA, Liu J, Mckenzie B, Xu HF: Large oriented arrays and continuous films of TiO\(_2\)-based nanotubes. J Am Chem Soc 2003, 125:13264–13265.
4. Sander MS, Cote MJ, Gu W, Kle B M, Tripp CP: Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater 2004, 16:2052–2057.
5. Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC: Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2003, 16:3331–3334.
6. Mor GK, Varghese OK, Paulose M, Mukherjee N, Grimes CA: Fabrication of tapered, conical-shaped titania nanotubes. J Mater Res 2003, 18:2588–2593.
7. Macak JM, Tuszyhia H, Schmuki P: High-aspect-ratio TiO\(_2\) nanotubes by anodization of titanium. Angew Chem Int Ed 2005, 44:2100–2102.
8. Yang Y, Wang X, Li L: Synthesis and growth mechanism of graded TiO\(_2\) nanotube arrays by two-step anodization. Materials Science and Engineering B 2008, 149:58–62.
9. Ito S, Murakami TN, Comte P, Liska P, Grätzell C, Nazareuddin MK, Grätzell M: Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 2008, 516:4613–4619.
10. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA: Use of highly-ordered TiO\(_2\) nanotube arrays in dye-sensitized solar cells. Nano Lett 2006, 6:215–218.
11. Roy P, Kim D, Lee K, Speeck A, Schmuki P: TiO\(_2\) nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010, 2:45–59.
12. Ho SY, Ju C, Cheng CC, Karhivel S, Li CY, Li WR: Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells. Nanoscale Res Lett 2012, 7:147.
13. Kern R, Sastrawar R, Ferber J, Stangl R, Luther J: Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions. Electrochim Acta 2002, 47:4213–4225.
14. Han L, Koide N, Chiba Y, Islam A, Mitate T: Modeling of an equivalent circuit for dye-sensitized solar cells: improvement of efficiency of dye-sensitized solar cells by reducing internal resistance. Comptes Rendus Chimie 2006, 9:645–651.
15. Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S: Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 2006, 110:13872–13880.

doi:10.1186/1556-276X-7-579

Cite this article as: Meen et al: Effect of TiO\(_2\) nanotubes with TiCl\(_4\) treatment on the photoelectrode of dye-sensitized solar cells. Nanoscale Research Letters 2012 7:579.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at springeropen.com