Title	Multi-channel Kondo Models in non-Abelian Quantum Hall Droplets (Topological Aspects of Solid State Physics)
Author(s)	Fiete, Gregory
Citation	物性研究 (2009), 91(6): 688-688
Issue Date	2009-03-20
URL	http://hdl.handle.net/2433/142896
Type	Departmental Bulletin Paper
Textversion	publisher

Kyoto University
Emergent paramagnetic phases in Zn-paratacamite

Michael Lawler
University of Toronto

Recently, there has been much experimental progress in the search for new quantum paramagnetic phases of matter through successful fabrication of frustrated spin 1/2 magnets. In this talk, I will focus on one such material: a quasi-two-dimensional family of layered spin 1/2 kagome lattice systems \(\text{Zn}_x\text{Cu}_{4-x}(\text{OH})_6\text{Cl}_2 \) dubbed "Zn-paratacamite". Remarkably, at \(x=1 \) this material shows no sign of magnetic order down to the lowest temperatures studied. It is therefore considered one of the leading candidate systems for hosting a quantum spin liquid phase. In the undoped \(x=0 \) limit, two thermodynamic phase transitions are observed and the new phases are the subject of this talk. I will argue that the lowest temperature phase has Neel order induced by a frustration relieving structural distortion observed in this doping regime. By quantum disordering this Neel phase, I will argue that the intermediate temperature paramagnetic phase is a valence-bond-solid. Lastly, I will present predictions for future X-ray and inelastic neutron scattering experiments which can test our theory.

Multi-channel Kondo Models in non-Abelian Quantum Hall Droplets

Gregory Fiete
Caltech

We study the coupling between a quantum dot and the edge of a non-Abelian fractional quantum Hall state which is spatially separated from it by an integer quantum Hall state. Near a resonance, the physics at energy scales below the level spacing of the edge states of the dot is governed by a \(k \)-channel Kondo model when the quantum Hall state is a Read-Rezayi state at filling fraction \(\nu = 2 + k/(k + 2) \) or its particle-hole conjugate at \(\nu = 2 + 2/(k + 2) \). The \(k \)-channel Kondo model is channel isotropic even without fine tuning in the former state; in the latter, it is generically channel anisotropic. In the special case of \(k = 2 \), our results provide a new venue, realized in a mesoscopic context, to distinguish between the Pfaffian and anti-Pfaffian states at filling fraction \(\nu = 5/2 \).