Chemical and Mineralogical Composition of Water-Bearing Materials of the Kuldur Geothermal Reservoir (Jewish Autonomous Region)

L A Lyamina¹, N A Kharitonova¹², A A Karabtsov²

¹Moscow State University. M.V. Lomonosov St. Lenin Mountains, 1, Moscow, 119991
²DVGI FEB RAS, ul. Prospect 100th Anniversary of Vladivostok, 159, Vladivostok, 690022

E-mail: lyamina-96@list.ru, tchenat@mail.ru, karabzov@fegi.ru

Abstract. This article provides results of mineralogical and geochemical studies of granodiorites of the Kuldur low-mineralized thermal water reservoir. The site of geological and groundwater studies belongs to the Pionerskii massif located within the Lesser Khingan block of the Bureya composite terrain. Granitoids of the Tyrma-Bureya assemblage in the Pionerskii massif are considered to have formed in the early Mesozoic era, not in the late Paleozoic era, as deemed before. Granitoids of the assemblage under study were likely formed in the geodynamic backdrop of the collision of the North Asian and Sino-Korean cratons.

1. Introduction
This study is dedicated to granitoids of the Tyrma-Bureya assemblage in the Pionerskii massif located in the central part of the Bureya composite terrain. According to results of geochronological studies, the age of materials in this assemblage is similar to the age of granitoids in the Nizhnestoibinskii, Talakan, and Ust-Dikanskii massifs.

Even state-of-the-art geological studies leave a range of controversial issues regarding the age of plutons in the Lesser Khingan block and the geodynamic circumstances of their formation. According to the studies of Tyrma-Bureya assemblage's granitoids in the northern part of the Bureya massif, A.A. Sorokin et al. determined that the massif age (U-Pb dating applied to zircon) is 218-185 ± 1 m ny years [3, 9, 12], i.e. the massifs formed in the Mesozoic era, not in the Paleozoic era, as deemed before.

This article is dedicated to a study of chemical and mineralogical composition of water-bearing materials, as they directly affect composition of the Kuldur reservoir's thermal waters, and groundwater conditions of circulation and thermal spring formation.

To fulfill this goal, we had to and collected a rather large amount of factual evidence about the studied region, analyzed and processed the collected data.

2. Geologic composition of the region
The geological composition of this territory is rather complex due to the fact that the Jewish Autonomous Region is located at the juncture of the Bureya massif's Lesser Khingan block and the Sikhote-Alin fold belt. Intensively positioned and unevenly metamorphically altered terrigenous-
carbonate Proterozoic and Cambrian sequences, facies-changing Cretaceous volcanites, and intrusive formations of different age are widespread. The Kuldur nitric geothermal reservoir is located in the Bureya composite massif adjacent to the 400 km2 Pionerskii granite massif. The Pionerskii massif belongs to phase II of the Tyrma-Bureya assemblage ($\gamma_2\delta_5C_2^3-t$) (Fig. 1), and is represented by quartz diorites, granodiorites, and granites. Phase 3 leucogranite stocks ($l_4\gamma_4C_2^3-t$) were discovered in the head of the Kuldur river; also, there are leucogranite dikes, pegmatite and aplite veins breaking intrusive bodies of the Tyrma-Bureya assemblage. Granodiorites prevail in the thermal water discharge area. These are light-gray or almost white (when enriched by biotite) medium-grained (less frequently - coarse-grained) and in most cases porphyritic minerals mottled with dark-colored minerals.

![Granodiorite massif outcrop with dikes 10 km up the Kuldur river.](image)

Figure 1. Granodiorite massif outcrop with dikes 10 km up the Kuldur river.

Stratified formations in the area are represented by Upper Archean Amur metamorphic rocks, Upper Riphean-Lower Cambrian Khingan terrigenous and carbonaceous formations, Cretaceous terrigenous and volcanic formations, Oligocene-Miocene and Pliocene-Quaternary loose deposits, and Miocene basaltoids.

In this area, the best manifested are north-east trending faults, the predominant one being the Khingan-Olono Fault. This fault is parallel to the deep-earth Khingan Fault. In the southern part of the area under consideration, there is large latitudinal Olono Fault that crosses the area from West to East. This fault is observed in the Olono River valley.

The Kuldur geothermal reservoir is adjacent to the Meridional Fault area where it coincides with the North-East-trending feathering fault steeply dipping (70-85$^\circ$) on the eastern side.

The surrounding formations within the tectonic fault in the Kuldur reservoir are hydrothermally altered and often feature caverns, as well as fractures filled with secondary minerals. Cavern and fracture walls are covered with deposits of secondary minerals of different generations (calcite, quartz, hydrous micas, etc.). The formations surrounding the orifice appear a practical aquifuge in comparison with permeability of the formations immediately inside the discharge orifice.

There are few North-West-trending faults, and they do not affect the area's structural geometry significantly.

The surrounding formations located within the discontinuous fault are hydrothermally altered, feature caverns and fractures filled with secondary minerals, such as calcite, quartz, or hydrous micas.
3. Study methods
The phase II formations of the Tyrma-Bureya assemblage were for the first time subjected to a whole range of mineralogical and chemical studies. Solid rocks were sampled during the field works at the Kuldur reservoir in 2018.

We used an Agilent 7500 spectrometer (Agilent Techn., USA) to analyze chemical composition of formation samples using the ICP-MS method (Be, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, Mo, Cd, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th, U) at the analytical chemistry laboratory of the Far East Geological Institute of the Far Eastern Branch of the Russian Academy of Sciences (Vladivostok, analyst - E.V. Elovskii). We used an iCAP 7600 Duo spectrometer to determine the primary elements of solid rock material samples using the atomic emission spectroscopy (Vladivostok, analysts - G.A. Gorbach, E.A. Tkalina, N.V. Khurkalo).

We also studied mineral and chemical composition of formations at the X-ray laboratory (guided by A.A. Karabtsov) using a JXA-8100 electron probe microanalyzer for wavelength/energy-dispersive spectroscopy (Japan) and a Rigaku MiniFlex II X-ray diffractometer (Rigaku, Japan).

4. Study results
Water-bearing materials are represented by variously altered granitoids (Fig. 2) characterized by massive and partly gneissose structures [8].

Figure 2. Granodiorite sample from the Kuldur reservoir. A - a gneissose-structured granitoid, sample K-1; B - a massive-structured granitoid, sample K-2.

The main rock-forming leucocratic minerals of the granodiorites under consideration are quartz (Q), potassium feldspar (PFS) and plagioclase (Pl). Biotite is a primary melanocratic rock-forming mineral. The secondary minerals formed as a result of hydrothermal processes include calcite, chlorite, epidote, and muscovite.

As mass fractions of SiO₂ and Na₂O + K₂O are 61-63% and 5.5-6%, respectively (table 1), the Pionerskii massif’s formations are classified as granodiorites according to the TAS diagram [1]. Petrochemical peculiarities of formations include slightly increased concentrations of Al₂O₃ and Fe₂O₃_tot.
Table 1. Mass fractions of the primary elements in samples of the Kuldur geothermal reservoir’s water-bearing materials.

Sample No.	SiO₂	TiO₂	Al₂O₃	Fe₂O₃	MnO	MgO	CaO	Na₂O	K₂O	P₂O₅	H₂O loss on ignition	Σ	
K-1	61.16	0.72	17.64	5.68	0.09	2.10	4.49	3.68	2.10	0.18	0.30	1.39	99.52
K-2	63.28	0.63	17.21	5.06	0.07	1.80	4.23	3.50	2.51	0.16	0.30	0.85	99.60

Biotite is poorly chloritized (although the replacement covered more than 1%). Sometimes they are characterized by granophyric structure, which is why we may assume that granitoids crystallized in hypabyssal conditions.

Myrmekites are observed at the rims of plagioclase and potassium feldspar aggregates (Fig. 3).

One of the granitoid phases is characterized by development of a pyroxene-corniferous association (Fig. 4), which indicates pyroxene amphibolitization in the event of autometamorphism. All the formations under consideration were intensively altered at about the same time as tectonic deformations as identified in granites by distinct dislocations and corrugation of plagioclase crystals.

Figure 3. Myrmekites. K-1 sample.

Figure 4. A - pyroxene-corniferous association in granites; B - tectonic deformations in granites.

Амфибол Amphibole
Пироксен Pyroxene
Плагиоклаз Plagioclase
Кварц Quartz
Биотит Biotite
Dark-colored minerals are replaced with chlorite and epidote. The replacement degree varies from 0 to 95%. At the same time, leucocratic granite components are intensively replaced with sericite; potassium and sodium feldspar is perthitic and pelitized. Biotite and apatite relics survive the replacement process; it ought to be mentioned that sometimes ore mineral rims visually similar to opacitization form metasomatically around apatite.

Epidote is one of the minerals that accompany chlorite in the process of hydrothermal alteration of earth materials; it forms in various amount in microcline-like minerals and other granitoids.

Replacement of dark-colored minerals in granite is accompanied by loss of bivalent metals and formation of calcite-chlorite microruns.

The share of accessory minerals in samples may reach 5-10%. In the formations under study, the most widespread accessory minerals are apatite and zircon. Titanite, titanium oxides, and pyrite are found less frequently (Fig. 5).

Figure 5. Concentration of accessory minerals in K-1 and K-2 samples.

The concentration of rare-earth metals (REM) in granodiorites of the Pionerskii massif varies from 0.43 ppm to 44.56 ppm. We performed C1 chondrite normalization of formations [17]. The REM distribution graph is rather steep (Fig. 6) [2] explained by lightweight REM enrichment; the La_{nr}/Yb_n ratio is 11.8 and 14.2, respectively.

REM lighting is explained by the presence of plagioclase and titanite. For this type of formations, there are no clear manifestations of Ce and Eu anomalies. The Eu/Eu* (europium) increment is 0.58.

As long as La_{nr}/Yb_n > 1, and there is no europium anomaly, we may assume presence of a REM- and Y-concentrating mineral [15]. For instance, this is the reason why the La_{nr}/Yb_n ratio is high for tonalite-trondhjemite-granodiorite assemblage formations resulting from metabasite melting at P ≥ 10-15 kbar in equilibrium with garnetiferous restite [10].

The La/Nb (2.44) and Ce/Y (2.86) ratios demonstrate that the Pionerskii massif's formations are closer to the trend of mixing with crust substrates, which is why we may talk about mantle-crust interaction here [15].

Figure 6. Graph: REM distribution in the Pionerskii massif's granodiorites.
According to the Sr/Y ratio and Y, the formations under study belong to the field covering formations of typical volcanic arcs (andesites, rhyolites, dacites).

According to the diagram compiled by J. Pearce [16], we may imagine the geodynamical circumstances of formation of granitoids of the massif under study. Such elements as Rb, Y, and Nb were selected for identification. The studied samples ended up in the lower part of the VAG field; this corresponds to oceanic-island-arc granitoids [14]. According to paleoreconstructions of the Late Paleozoic and Early Mesozoic eras, the Solonkerskii Ocean [5, 6, 7] was consumed, and the North Asian and Sino-Korean cratons collided in the Early Triassic period. This may have promoted numerous granitoids intrusions in the Early Mesozoic era [10, 13, 18].

The authors express profound gratitude to G.A. Chelnakov and I.V. Bragin for their enormous contribution to geological and groundwater studies and sampling, as well as to N.I. Ekimova, M.A. Ushkova, and N.V. Zarubina for their help to and discussion with the authors of this study, as well as for analytical studies.

References
[1] Andreeva E D, Bogatikov O A, Borodaevskaya M B, Gonshakova V I 1981 Classification and nomenclature of igneous rocks (M.) Nedra 160 p
[2] Balashov Yu A 1976 The geochemistry of rare earth elements (M.) Nauka 694 p
[3] Buchko I V, Sorokin A A, Kudryashov N M 2013 Late Paleozoic gabbroids of the Malohingan Terrane (Eastern part of the Central Asia folded belt): age, geochemistry, tectonic position Pacific Geology vol 30 4 pp 21–31
[4] Gusev A I 2014 Geochemical features of granitoids of the Sarakokshinsky plagiogranite massif of the Altai Mountains International Journal of Applied and Basic Research 2 pp 59-64
[5] Didenko A N, Mossakovskiy A A, Pechersky D M, et al 1994 Geodynamics of the Paleozoic oceans of Central Asia Geology and Geophysics vol 35 (7-8) pp 59-75
[6] Larin A M, Sorokin A A, Kotov A B, Salnikova E B, Velikoslavinsky S D, Buchko I V 2005 Correlation of age boundaries of the Mesozoic magmatism of the northern and southern frames of the eastern flank of the Mongol-Okhotsk folded belt Geodynamic evolution of the lithosphere of the Central Asian mobile belt (from the ocean to the continent) T 2 (Irkutsk) IZK SB RAS pp 19-22
[7] Parfenov L M, Berzin N A, Khanchuk A I et al 2003 Model for the formation of orogenic zones of Central and North-East Asia Pacific Geology vol 22(6) p 7-41
[8] Perchuk A L, Safonov O G, Sazonova L V and others 2015 Fundamentals of the petrology of magmatic and metamorphic processes (M.: KDU; University Book) 472 p
[9] Sorokin A A, Kotov A B, Salnikov E B and others 2010 Granitoids of the Tyrmo-Bureya complex of the northern part of the Bureya-Jiamusi superterrane of the Central Asian folded belt: age and geodynamic position Geology and Geophysics vol 51 5 pp 717-728
[10] Sorokin A A, Kudryashov N M, Sorokin A P 2002 Fragments of the Paleozoic active margins of the southern border of the Mongol-Okhotsk belt (on the example of the northeastern part of the Argun Terrane, Amur Region) Dokl. RAS vol 387(3) pp 382-386
[11] Sorokin A A, Kudryashov N M, Li Jinyi et al 2004 Early Paleozoic granitoids of the eastern margin of the Argun Terrane (Amur Region): first geochronological and geochemical data (Petroleum) vol 12(4) pp 414-424
[12] Sorokin A A, Kudryashov N M, Li Jinyi 2004 U-Pb geochronology of granitoids of the October complex of the Mamyn Terrane (Amur Region) Pacific Geology vol 23(5) pp 54-67
[13] Sorokin A A, Yarmolyuk V V, Kotov A B et al 2004 Geochronology of the Triassic-Jurassic granitoids of the southern framing of the Mongol-Okhotsk fold belt and the problem of Early Mesozoic granite formation in Central and East Asia Dokl. RAS 399(2) pp 227-231
[14] Timofeev V Yu, Kazan A Yu, Ardyukov D G et al 2011 On the rotation parameters of the Siberian domain and its eastern frame in different geological eras Pacific. Geology vol 30 4 pp 21–31
[15] Turkina O M 2014 Lectures on the geochemistry of manmatic and metamorphic processes (Novosibirsk: RIC NSU) 118 p
[16] Pearce J A, Harris N B W, Tindle A G 1984 Trace element discrimination diagrams for the tectonic interpretation of granitic rocks J. Petrol. vol 25 pp 956–983
[17] Sun S S, McDonough W F 1989 Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes Magmatism in the ocean basin Geol. Soc. Sp. Pub. 42 Blackwell Scientific Publ. pp 313-346
[18] Wu F-Y, Jahn B-M, Wilde S, Sun D-Y 2000 Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China Tectonophysics vol 328 pp 89-113

Acknowledgments
The study was supported by the Russian Foundation for Basic Research (projects 18-05-00445 and 19-55-50002).