Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: A comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients

Kunchok Dorjee1*, Hyunju Kim2, Elizabeth Bonomo1, Rinchen Dolma3

1 School of Medicine Division of Infectious Diseases, Center for TB Research, Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America, 3 Center for Alcohol and Addiction Studies, Brown University School of Public Health, Brown University, Providence, Rhode Island, United States of America

* kdorjee1@jhmi.edu

Abstract

Introduction
Progression of COVID-19 to severe disease and death is insufficiently understood.

Objective
Summarize the prevalence of risk factors and adverse outcomes and determine their associations in COVID-19 patients who were hospitalized.

Methods
We searched Medline, Embase and Web of Science for case-series and observational studies of hospitalized COVID-19 patients through August 31, 2020. Data were analyzed by fixed-effects meta-analysis using Shore’s adjusted confidence intervals to address heterogeneity.

Results
Seventy-seven studies comprising 38906 hospitalized patients met inclusion criteria; 21468 from the US-Europe and 9740 from China. Overall prevalence of death [% (95% CI)] from COVID-19 was 20% (18–23%); 23% (19–27%) in the US and Europe and 11% (7–16%) for China. Of those that died, 85% were aged ≥60 years, 66% were males, and 66%, 44%, 39%, 37%, and 27% had hypertension, smoking history, diabetes, heart disease, and chronic kidney disease (CKD), respectively. The case fatality risk [% (95% CI)] were 52% (46–60) for heart disease, 51% (43–59) for COPD, 48% (37–63) for chronic kidney disease (CKD), 39% for chronic liver disease (CLD), 28% (23–36%) for hypertension, and 24% (17–33%) for diabetes. Summary relative risk (sRR) of death were higher for age ≥60 years
Introduction

Coronavirus disease-19 (COVID-19) caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) that first emerged in Wuhan, China in late December 2019 has spread with such rapidity and efficiency that in less than 10 months, it has caused more than 36 million cases and million deaths globally [1]. Driven by an urgency to solve the crisis, studies are being published at an unprecedented pace. However, across the publications, prevalence of death, severe disease and their association with epidemiological risk factors have greatly varied [2, 3], with studies showing conflicting results for association of key risk factors such as sex [4–8], smoking [9–12], hypertension [4, 7, 8, 13, 14] and diabetes [4, 7, 8, 13, 14] with COVID-19 disease severity and death. Whether or how cardiovascular risk factors, especially prior hypertension, diabetes and heart disease are associated with acquisition of SARS-CoV-2 and progression to severe disease or death is not understood well [15–18]. Meta-analyses conducted so far on prevalence of epidemiological risk factors and association with disease progression were mostly based on studies from China [9, 11, 18–20] and many of the analyses on prevalence estimates included studies focused on critically ill patients [9, 19], which can overestimate the prevalence and affect generalizability of results. To our knowledge, none of the analyses were restricted to hospitalized COVID-19 patients. Restricting our analysis to hospitalized patients provides an efficient sampling frame to investigate disease progression in relation to risk factors.

Therefore, we undertook a comprehensive systematic review and meta-analysis to investigate the association between key epidemiological factors—age, gender, smoking, hypertension, diabetes, heart disease, chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD) and chronic liver disease (CLD)—and progression to death and severe disease in patients hospitalized due to COVID-19. We additionally compared the 1) the prevalence of risk factors and death in the US-Europe with that of China; 2) the prevalence of co-morbidities at baseline with the general population prevalence, and 3) prevalence of cardiovascular disease, COPD and CKD at baseline with corresponding organ injuries (acute cardiac injury, acute lung injury, and acute kidney injury) during hospital admission.

Methods

Literature search, study selection and data abstraction

We searched Medline, Embase, Web of Science and the WHO COVID-19 database to identify studies published through August 31, 2020 that investigated the risk of severe disease or death...
in hospitalized patients with confirmed COVID-19 disease. We used search terms, ‘coronavirus disease 19’, ‘COVID-19’, ‘severe acute respiratory syndrome coronavirus 2’ and ‘SARS-CoV-2’ for COVID-19 and the string ((characteristics) OR (risk factors) OR (epidemiology) OR (prevalence) OR (intensive care) OR (ventilator) OR (mechanical ventilator) OR (mortality) OR (survivor*) OR (smoking) OR (smoker*)) AND ((COVID-19) OR (COVID) OR (coronavirus)) for studies published between December 15, 2019 and August 31, 2020. We started the search on March 18, 2020 with biweekly search thereafter and final search on August 31, 2020. We included case series and observational studies that described the prevalence of death or severe disease in adult population stratified by risk factors: age, sex, hypertension, diabetes, heart disease, COPD, CKD and CLD. We excluded studies that included non-consecutive patients or exclusively focused on pregnant women, children, and elderly patients. We excluded studies that exclusively studied critically ill patients from calculation of prevalence of death but included them for calculating the association of risk factors with death. Screening of abstracts and full-text reviews were conducted using Covidence (Melbourne, Australia).

Risk factors and outcomes

Primary outcomes were prevalence of death and association of risk factors with death. We extracted data on death as recorded in the publications. We measured prevalence of severe disease and association with risk factors as secondary outcomes. We defined outcome as severe disease for any of 1) the study classified COVID-19 disease as severe or critical, 2) intensive care unit (ICU) admission, 3) acute respiratory distress syndrome, or 4) mechanical ventilation. Severe disease was defined by studies as respiratory rate ≥30 per minute, oxygen saturation ≤93%, and PaO₂/FiO₂ <300 and/or lung infiltrates >50% within 24–48 hours [3]. Critical illness was defined as respiratory failure, shock and/or multiple organ dysfunction or failure [3]. Heart disease as a pre-existing condition was broadly defined by most studies as ‘cardiovascular disease’ (CVD). Additional outcomes were acute cardiac and kidney injury in the hospitalized patients that were defined as such by the studies.

Statistical analysis

We calculated and reported summary estimates from fixed-effects models [21]. We assessed heterogeneity across studies using Cochran’s Q-test (χ^2 p value <0.10) [22] and I^2 statistics (I^2 >30%) [23]. In the presence of heterogeneity, we adjusted the confidence intervals for between-study heterogeneity using the method described by Shore et al. [24]. We presented the results from random effects meta-analysis as well. The meta-analysis was performed in Microsoft® Excel 2020 (Microsoft Corporation, Redmond, WA). We analyzed publication bias using funnel plots and Egger’s tests. Quality of each study was assessed using the Newcastle-Ottawa assessment scales using the PRISMA guidelines. We calculated the following as a part of our analyses: 1) prevalence of severe disease or death, 2) prevalence of risk factors, and 3) relative risk for the association of age, sex, and comorbidities with outcome. When not reported or when unadjusted odds ratio was presented, we calculated the relative risk (95% CI) using the frequencies provided. Adjusted estimates were used where available. Case fatality risk (and case severity risk) for a specific risk factor was calculated as number of deaths (or severe disease) in patients with a risk factor out of all patients possessing the risk factor.
Results

Study characteristics

Initial search yielded 30133 citations. Articles were then screened (Fig 1). We identified 410 articles for full text review, of which 77 studies met inclusion criteria (Table 1) [4–8, 13, 14, 25–94]. The studies were conducted in: China (n = 35), USA (n = 18), Europe (n = 10), rest of Asia (n = 5) and Africa (n = 1). Two studies were prospective, five cross-sectional, and remaining retrospective in nature.

Population and demographics

There were 38,906 total COVID-19 hospitalized patients including 21468 patients from the US and Europe (87% from the US), and 9740 patients from China. Median age was 59 years [IQR: 57–62 years; I² = 58%; n = 62 studies] and 48% [95% CI: 44–53%; I² = 98%; n = 41] were aged ≥60. Fifty-nine percent [95% CI: 57–60%; I² = 98%; n = 75] of the patients were males.

Prevalence of death and severe disease

We calculated an overall prevalence of death of 20% [95% CI: 18–23%; I² = 96%; n = 60], ranging from 1% to 38% across the studies, and of severe disease of 28% [95% CI: 24–33%; I² = 98%; n = 60] for all patients hospitalized due to COVID-19 (Tables 2 and 3). Data on
Table 1. Characteristics of studies to determine prevalence of risk factors and death or severe disease and their associations in patients hospitalized for COVID-19 globally.

Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Aggarwal S et al., 2020 (Diagnosis)	USA	Des Moines	3-1-2020 to 4-4-2020	Retrospective	16	Age, sex, smoking, substance use, obesity, HTN, DM, CVD, COPD, CKD, Cancer	Prevalence of death and primary end point (death, shock, or ICU admission). Association of risk factors with outcome	Unadjusted RR calculated
Argenziano M. G et al., 2020 (BMJ)	USA	New York City	3-11-2020 to 4-6-2020	Retrospective	1,000	Age, sex, ethnicity, smoking, HTN, DM, CVD, COPD, CKD, cancer, HIV, viral hepatitis, cirrhosis	Association of risk factors with disease severity and death.	Adjusted HR
Brill S. E et al., 2020 (BMC Medicine)	UK	Barnet	3-10-2020 to 4-8-2020	Retrospective	450	Age, race, sex, smoking, HTN, DM, CVD, immunosuppression	Prevalence of death. Association of comorbidities with disease severity.	Unadjusted RR calculated
Cao Z et al., 2020 (PLOS ONE)	China	Beijing	1-21-2020 to 2-12-2020	Retrospective	80	Sex, age, HTN, CVD, DM, COPD, smoking	Association of risk factors with disease severity.	Unadjusted RR calculated
CDC (MMWR)	USA	National	2-12-2020 to 3-28-2020	Retrospective	5285	Age, Current Smoker, DM, CVD, COPD, CKD, CLD	Prevalence of ICU admission. Association of risk factors with severe disease (ICU admission).	Unadjusted RR calculated
Chen G et al., 2020 (Journal of Clinical Investigation)	China	Wuhan	December 2019 to 01-27-2020	Retrospective	21	Age, sex, Huanan sea food market exposure, HTN, DM	Prevalence of severe disease. Compared moderate and severe cases based on risk factors.	Unadjusted RR calculated
Chen J et al., 2020 (Journal of Infection)	China	Shanghai	1-20-2020 to 2-6-2020	Retrospective	249	Age, sex	Prevalence of ICU admission. Association of age and sex with ICU admission.	Adjusted OR reported for age and sex
Chen Q et al., 2020 (Infection)	China	Zhejiang province	1-1-2020 to 3-11-2020	Retrospective	145	Age, sex, smoking, exposure history, BMI, HTN, DM, COPD, CKD, Solid tumor, Heart disease, HIV infection	Prevalence of severe disease. Association of risk factors with severe disease.	Unadjusted RR calculated
Chen T et al., 2020 (BMJ)	China	Wuhan, Hubei	1-13-2020 to 2-28-2020	Retrospective	274	Age, sex, sea food market exposure, contact history, smoking HTN, DM, CVD, CHF, heart failure, cancer, HBV, HIV, CKD	Association of risk factors with death.	Unadjusted RR calculated
Chilimuri S et al., 2020 (West J Emerg Med)	USA	New York City	3-9-2020 to 4-9-2020	Retrospective	375	Age, sex, ethnicity, HTN, DM, CVD, COPD, CKD, HIV/AIDS, CLD	Association of risk factors with disease severity and death.	Adjusted OR reported for age, sex and comorbidities
Ciceri F et al., 2020 (Clinical Immunology)	Italy	Milan	2-25-2020 to 5-1-2020	Retrospective	410	Age, sex, ethnicity, BMI, HTN, CVD, DM, COPD, CKD, cancer	Prevalence of death. Association of risk factors with disease severity.	Adjusted HR

(Continued)
Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Cummings MJ et al., 2020 (The Lancet)	USA	New York City	3-2-2020 to 4-1-2020	Prospective	257	Age, sex, race, BMI, HTN, DM, chronic cardiac disease (CHD and CHF), CKD, smoking history, COPD, cancer, HIV, cirrhosis	Association of risk factors with death.	Adjusted HR
Deng Y et al., 2020 (Chin Med J)	China	Wuhan	1-1-2020 to 2-21-2020	Retrospective	116 out of 964	Age, sex, HTN, DM, Heart Disease, Cancer	Association of risk factors with death.	Unadjusted RR calculated
Du R-H et al., 2020 (ERJ)	China	Wuhan, Hubei	1-25-2020 to 2-7-2020	Retrospective	179	Age, sex, HTN, DM, CVD, TB, cancer, CKD or CLD	Prevalence of death. Association of risk factors with death.	Adjusted OR for age ≥65 and CVD. Unadjusted RR calculated for other variables
Escalera-Anteza et al., 2020(Infez Med)	Bolivia	Nationwide	3-2-2020 to 3-29-2020	Retrospective	107	Age, HTN, CVD, DM, obesity, sex	Prevalence of death. Association of risk factors with disease severity.	Adjusted OR reported for age, sex and risk factors
Feng Y et al., 2020 (AJRCCM)	China	Wuhan, Shanghai, Anhui province	1-1-2020 to 2-15-2020	Retrospective	476	Age, age groups, sex, Wuhan exposure, smoking, alcohol, HTN, anti-hypertensives, CVD, DM, cancer, COPD, CKD	Prevalence of death. Association of risk factors with severe disease.	Adjusted HR for HTN, CVD, DM. Unadjusted RR calculated for other variables
Ferguson J et al., 2020 (EID)	USA	Northern California	03-13-2020 to 04-11-2020	Retrospective	72	Sex, race, smoking, HTN, DM, CKD, Heart Disease, COPD	Prevalence of ICU admission. Association of risk factors with severe disease (ICU admission).	Unadjusted RR calculated
Galloway J.B et al., 2020 (Journal of Infection)	UK	London	3-1-2020 to 4-17-2020	Retrospective	1,157	Age, sex, ethnicity, cancer, CKD, DM, HTN, CVD, COPD	Prevalence of death. Association of risk factors with disease severity.	Adjusted HR reported for age and sex
Garibaldi B et al., 2020 (Ann Intern Med)	USA	Maryland Washington DC	3-4-2020 to 6-27-2020	Retrospective	832	Age, sex, alcohol, smoking, BMI, cancer, CVD, COPD, HTN, liver disease, CKD, HIV/AIDS DM	Association of risk factors with disease severity.	Adjusted HR reported for age, ethnicity and BMI
Giacomelli A et al., 2020 (Pharmacol Res)	Italy	Milan	2-21-2020 to 4-20-2020	Prospective	233	Sex, age, smoking, obesity	Prevalence of death. Association of risk factors with disease severity.	Adjusted HR reported for sex, age, and obesity
Gold J et al, 2020 (MMWR)	USA	Georgia	3-1-2020 to 3-30-2020	Retrospective	305	Age, sex, race, HTN, DM, Heart Disease, COPD, CKD, Cancer	Prevalence of patient characteristics, death, and ICU.	Unadjusted RR calculated
Goyal P et al. 2020 (NEJM)	USA	New York City	3-3-2020 to 3-27-2020	Retrospective	393	Age, sex, race, smoking, HTN, DM, COPD, Heart Disease, Asthma	Prevalence of severe disease (mechanical ventilation). Association of risk factors with severe disease.	Unadjusted RR calculated

(Continued)
Table 1. (Continued)

Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Gregoriano C et al., 2020 (Swiss Medical Weekly)	Switzerland	Aarau	2-26-2020 to 4-30-2020	Retrospective	99	Age, sex, smoking, HTN, cancer, CVD, COPD, obesity, DM, rheumatic disease, organ transplant recipient, obstructive sleep apnea	Prevalence of disease endpoints (transfer to ICU and in-hospital mortalities).	Unadjusted OR
Guan et al., 2020 (NEJM)	China	Nationwide	12-11-2019 to 01-31-2020	Retrospective	1099	Age, sex, smoking, exposure to transmission source, HTN, DM, CHD, CKD, COPD, Cancer, HBV, cerebrovascular disease, immunodeficiency	Prevalence of death, composite outcome, (Death/MV/ICU) and severe disease. Association with severe disease and composite outcome.	Unadjusted RR calculated
Guan Wei-Jie, 2020 (ERJ)	China	Nationwide	12-11-2019 to 1-31-2020	Retrospective	1590	Age, sex, smoking, CKD, COPD, HTN, DM, CVD, Cancer, HBV	Prevalence of patient characteristics, death and composite outcome (Death, ICU, MV).	Adjusted HR
Hewitt J et al., 2020 (Lancet)	UK	Nationwide (UK), Italy Modena (Italy)	2-27-2020 to 4-28-2020	Prospective	1,564	Age, sex, smoking, DM, HTN, CVD, CKD	Prevalence of death.	Adjusted HR
Hsu H. E et al., 2020 (Morbidity and Mortality Weekly Report)	USA	Boston	3-1-2020 to 5-18-2020	Retrospective	2,729	Age, sex, ethnicity, COPD, cancer, CKD, cirrhosis, CVD, DM, HIV/AIDS, HTN, obesity, substance use disorder	Association of risk factors with disease severity.	Unadjusted RR calculated
Hu L et al., 2020 (CID)	China	Wuhan	1-8-2020 to 2-20-2020	Retrospective	323	Age, sex, current smoker, HTN, DM, CVD, COPD, CKD, CLD, Cancer	Prevalence of severe (severe and critical) disease. Association of risk factors with disease severity.	Unadjusted RR calculated
Huang C et al., 2020 (The Lancet)	China	Wuhan	12-16-2020 to 1-2-2020	Prospective	41	Age, sex, Huanan seafood market exposure, smoking, HTN, DM, CKD, COPD, CVD, Cancer, CLD	Association of risk factors with severe disease (ICU care).	Unadjusted RR calculated
Hur K et al., 2020 (Otolaryngol Head Neck Surg)	USA	Chicago	3-1-2020 to 4-8-2020	Retrospective	486	Age, sex, BMI, smoking, HTN, DM, CVD, COPD, cancer, immunosuppression, CKD,	Association of risk factors with disease severity.	Adjusted HR (for age, sex, ethnicity BMI, HTN, smoking)
Iaccarino G et al., 2020 (Hypertension)	Italy	Nationwide	3-9-2020 to 4-9-2020	Cross-sectional	1,591	Age, sex, HTN, obesity, DM, COPD, CKD, CVD, cancer	Prevalence of death. Association of risk factors with disease severity.	Adjusted OR
Inciardi R et al., 2020 (Eur Heart J)	Italy	Lombardy	3-4-2020 to 3-25-2020	Retrospective	99	Sex, smoking, HTN, DM, coronary artery disease, COPD, CKD, cancer	Prevalence of death. Association of risk factors with death.	Unadjusted RR calculated
Jang J.G et al., 2020 (Journal of Korean Medical Science)	South Korea	Daegu	2-19-2020 to 4-15-2020	Retrospective	110	Age, sex, CVD, cerebrovascular disease, COPD, dementia, DM, HTN, connective tissue disease liver disease, malignancy, Parkinson’s disease	Association of risk factors with disease severity and death.	Adjusted OR

Continued
Table 1. (Continued)

Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Javanian M et al., 2020 (Rom J Intern Med)	Iran	Mazandaran province	2-25-2020 to 3-12-2020	Retrospective	100	Age, sex, HTN, DM, CVD, CKD, cancer, CLD	Prevalence of death. Association of risk factors with death.	Unadjusted RR calculated
Kalligeros M et al., 2020 (Obesity Journal)	USA	Rhode Island	2-17-2020 to 4-5-2020	Retrospective	103	Age, sex, ethnicity, smoking, BMI (obesity), cancer, CKD, cirrhosis, DM, heart disease (CVD), HTN, lung disease (COPD), transplant	Association of risk factors with disease severity.	Adjusted OR (for age, sex, ethnicity, BMI, DM, HTN, heart disease, lung disease)
Khalil K et al., 2020 (Journal of Infection)	UK	London	3-7-2020 to 4-7-2020	Prospective	220	Age, sex, ethnicity, smoking, COPD, CVD, HTN, hyperlipidemia, DM, CKD, CVA, dementia, liver disease, cancer	Prevalence of death.	Unadjusted RR calculated
Khamis F et al., 2020 (Journal of Infection and Public Health)	Oman	Muscat	2-24-2020 to 4-24-2020	Retrospective	63	Age, sex, smoking, substance use, HTN, DM, CKD, CVD	Prevalence of severe disease and death.	Unadjusted RR calculated
Lendorf M.E et al., 2020 (Danish Medical Journal)	Denmark	North Zealand	3-1-2020 to 5-18-2020	Retrospective	111	Age, sex, BMI, cancer, HTN, CVD, COPD, immunosuppression, CKD, DM, smoking	Association of risk factors with disease severity and death.	Unadjusted RR calculated
Li X et al., 2020 (J Allergy Clin Immunol)	China (Wuhan, Hubei)	Wuhan, Hubei	1-26-2020 to 2-5-2020	Retrospective	548	Age, sex, smoking, HTN, DM, Heart Disease, CKD, Cancer, COPD	Prevalence of death and severe disease.	Unadjusted RR calculated
Liu S et al., 2020 (BMC Infectious Diseases)	China	Jiangsu Province	1-10-2020 to 3-15-2020	Retrospective	625	Sex, age, HTN, DM, CVD	Association of risk factors with severe disease.	Adjusted OR (for age and HTN)
Liu W et al. 2020 (Chin Med J)	China	Wuhan	12-30-2019 to 01-15-2020	Retrospective	78	Age, sex, smoking history, exposure to Huanan seafood market, HTN, diabetes, COPD, cancer	Compared progression group and stabilization group. Progression group defined by progression to severe or critical disease or death.	Unadjusted RR calculated
Nikpouraghdam M et al., 2020 (J Clin Virol)	Iran	Tehran	2-19-2020 to 4-15-2020	Retrospective	2,964	Age, sex, DM, COPD, HTN, CVD, CKD, cancer	Prevalence of death. Association of risk factors with disease severity.	Adjusted OR
Nowak B et al., 2020 (Pol Arch Intern Med)	Poland	Warsaw	3-16-2020 to 4-7-2020	Retrospective	169	Sex, smoking, HTN, DM, CVD, COPD, AKI, cancer	Prevalence of death. Association of risk factors with death.	Unadjusted RR calculated
Okoh A.K et al., 2020 (Int J Equity Health)	USA	Newark	3-10-2020 to 4-20-2020	Retrospective	251	Age, sex, ethnicity, BMI, HTN, DM, CVD, COPD, HIV, CKD, cancer	Prevalence of death. Association of risk factors with disease severity and death.	Adjusted OR
Palaiodimos L et al., 2020 (Metabolism)	USA	New York	3-9-2020 to 3-22-2020	Retrospective	200	Age, sex, race, smoking, HTN, DM, coronary artery disease, COPD, CKD, cancer	Prevalence of death. Association of risk factors with death.	Adjusted OR (provided by the study)

(Continued)
Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Pellaud C et al., 2020 (Swiss Medical Weekly)	Switzerland	Fribourg	3-1-2020 to 5-10-2020	Retrospective	196	Sex, age, HTN, DM, obesity, CVD, COPD, cancer, immunosuppression, smoking	Prevalence of death.	Unadjusted RR calculated
Richardson S et al., 2020 (JAMA)	USA	New York	3-1-2020 to 4-4-2020	Retrospective	5700	Age, sex, race, smoking, HTN, DM, COPD, asthma, coronary artery disease, kidney disease, liver disease, obesity, cancer	Prevalence of ICU admission and death.	Unadjusted RR calculated
Rivera-Izquierdo M et al., 2020 (PLOS ONE)	Spain	Granada	3-16-2020 to 4-10-2020	Retrospective	238	Sex, age, smoking, HTN, DM, CVD, COPD, CKD, active neoplasia, medications	Prevalence of death.	Adjusted HR
Shabrawishi M et al., 2020 (Plos One)	Saudi Arabia	Mecca	3-12-2020 to 4-8-2020	Retrospective	150	Age, sex, HTN, DM, CVD, CKD, hypothyroidism, cancer, CVA, COPD, CLD	Association of risk factors with disease severity and death.	Unadjusted RR calculated
Shahriarirad R et al., 2020 (BMC Infectious Diseases)	Iran	Fars Province	2-20-2020 to 3-20-2020	Multicenter Retrospective	113	Age, sex, HTN, DM, CVD, CKD, malignancy, other immunosuppressive diseases	Prevalence of death.	Unadjusted RR calculated
Shekhar R et al., 2020 (Infectious Diseases)	USA	New Mexico	1-19-2020 to 4-24-2020	Cohort	50	Age, sex, HTN, DM, COPD, alcoholic cirrhosis, alcohol use, obesity	Association of risk factors with disease severity.	Unadjusted RR calculated
Shi Y et al., 2020 (Crit Care)	China	Zhejiang province	Not specified to 02-11-2020	Retrospective	487	Age, sex, smoking, HTN, DM, CKD, CVD, CLD, cancer	Prevalence of and association of risk factors with severe disease	Unadjusted RR calculated
Suleyman G et al., 2020 (JAMA Network)	USA	Metropolitan Detroit	3-9-2020 to 3-27-2020	Retrospective	463	Age, sex, ethnicity, COPD, obstructive sleep apnea, DM, HTN, CVD, CKD, cancer, rheumatologic disease, organ transplant, obesity, smoking	Association of risk factors with disease severity.	Adjusted OR
Sun L et al., 2020 (Journal of Medical Virology)	China	Beijing	1-20-2020 to 2-15-2020	Retrospective	55	Age, sex, exposure, HTN, DM, CVD, Lung Disease, CKD, CLD	Prevalence of severe disease. Association of risk factors with severe disease.	Unadjusted RR calculated
Tambe M et al., 2020 (Indian J Public Health)	India	Pune	3-31-2020 to 4-24-2020	Cross-Sectional	197	Age, sex, HTN, DM, COPD, CVS, ALD, CKD	Association of risk factors with disease severity and death.	Unadjusted RR calculated
Tian S et al., 2020 (Journal of Infection)	China	Beijing	1-20-2020 to 2-10-2020	Retrospective	262	Age, sex, contact history, exposure to Wuhan.	Prevalence of death. Association of severe disease with risk factors.	Unadjusted RR calculated
Tomlins J et al., 2020 (Journal of Infection)	UK	Bristol	3-10-2020 to 3-30-2020	Retrospective	95	Age, sex, HTN, DM, COPD, CVD, cancer, renal disease, gastrointestinal disease, neurological disease	Prevalence of death. Association of risk factors with death.	Unadjusted RR calculated
Turcotte JJ et al., 2020 (PLOS ONE)	USA	Maryland	3-1-2020 to 4-12-2020	Retrospective	117	Age, BMI, sex, DM, obstructive sleep apnea, COPD, CVD, CKD, HTN, smoking, alcohol use, liver disease	Association of risk factors with disease severity and death.	Adjusted OR
Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
--------------------------------------	---------	--------	--------------	--------------	------	----------------------------	---------	------------------------
Wan S et al., 2020 (Journal of Medical Virology)	China	Northeast	1-23-2020 to 2-8-2020	Retrospective	135	Age, sex, smoking, CKD, COPD, HTN, DM, CVD, Cancer, CLD, exposure, travel history	Prevalence of severe disease. Association of risk factors with severe disease.	Unadjusted RR calculated
Wang D et al., 2020 (JAMA)	China	Wuhan	1-1-2020 to 1-28-2020	Retrospective	138	Age, sex, Huanan Seafood Market Exposure, HTN, DM, CVD, COPD, Cancer, CKD, CLD, HIV	Prevalence of death and ICU admission. Association of risk factors with severe disease (ICU care)	Unadjusted RR calculated
Wang R et al., 2020 (Internal Journal of Infectious Diseases)	China	Fuyang	1-20-2020 to 02-09-2020	Retrospective	125	Age, sex, CVD, Cancer	Prevalence of critical disease. Association of age, sex, and smoking with critical disease.	Unadjusted RR calculated
Wang Z et al., 2020 (CID)	China	Wuhan	1-16-2020 to 01-29-2020	Retrospective	69	Age, sex, HTN, DM, CVD, COPD, Cancer, HBV, Asthma	Prevalence of death and severe disease (SpO2<90%). Association of risk factors with severe disease.	Unadjusted RR calculated
Wei Y et al., 2020 (BMC Infectious Diseases)	China	Hubei Province	1-27-2020 to 3-22-2020	Retrospective	276	Age, sex, smoking, obesity, HTN, COPD, CVD, DM, cerebrovascular disease, cancer	Association of risk factors with disease severity.	Unadjusted RR calculated
Wu C et al., 2020 (JAMA Intern Med)	China	Wuhan	12-15-2019 to 01-26-2020	Retrospective	201	Age, sex, HTN, DM, CVD, CKD, Chronic Lung Disease, Cancer, CLD, Sea Food Market Exposure.	Prevalence of ARDS, ICU admission and death. Association of risk factors with severe disease (ARDS) and death.	Unadjusted RR calculated
Yang X et al, 2020 (Lancet Respir Med)	China	Wuhan	12-24-2019 to 1-26-2020	Retrospective	52	Age, sex, exposure, COPD, diabetes, chronic cardiac disease, smoking, malnutrition	Association of risk factors with death.	Unadjusted RR calculated
Yao Q et al., 2020 (Pol Arch Intern)	China	Huanggang, Hubei	1-30-2020 to 2-11-2020	Retrospective	108	Age, sex, smoking, HTN, DM, CVD, CLD, cancer	Prevalence of severe disease and death. Association of risk factors with severe disease and death.	Unadjusted RR calculated
Young BE et al., 2020 (JAMA)	Singapore	Singapore	1-23-2020 to 2-3-2020	Retrospective	18	Age, sex	Prevalence of severe disease (receiving supplemental O2). Association of severe disease with age and sex.	Unadjusted RR calculated
Yu T et al., 2020 (Clinical Therapeutics)	China	Guangdong	January to February 2020	Cross-sectional	95	Age, sex, current smoker	Prevalence of ARDS. Association of age, sex, and smoking with ARDS.	Unadjusted RR calculated
Yu X et al., 2020 (Transboundary and Emerging Diseases)	China	Shanghai	Up to 2-19-2020	Retrospective	333	Age, sex, BMI, smoking, alcohol, exposure, HTN, DM, CVD	Prevalence of death and severe disease (Severe/critical pneumonia). Association of risk factors with severe disease. Adjusted OR for age group, sex, CVD, DM, HTN.	Unadjusted RR calculated
Predictors of COVID-19 adverse outcomes: A meta-analysis

Table 1. (Continued)

Author, year of publication (journal)	Country	Region	Study Period	Study Design	Size	Epidemiological Risk Factor	Outcome	Measures of Association
Zhan T et al., 2020 (J Int Med Res)	China	Wuhan	1-12-2020 to 3-8-2020	Retrospective	405	Age, sex, smoking, alcohol history, CVD, gastrointestinal disease, COPD, CKD, CLD	Association of risk factors with disease severity.	Unadjusted RR calculated
Zhang G et al., 2020 BMC Respiratory Research	China	Wuhan	1-16-2020 to 2-25-2020	Retrospective	95	Age, sex	Prevalence of severe disease, composite endpoint, and death. Association with severe disease.	Unadjusted RR calculated
Zhang J et al., 2020 (Clin Microbiol Infect)	China	Wuhan	1-11-2020 to 2-6-2020	Retrospective	663	Age, sex, COPD, CVD, gastrointestinal disease, CKD, cancer	Prevalence of death. Association of risk factors with disease severity.	Adjusted OR
Zhang JJ et al., 2020 (Allergy)	China	Wuhan	1-16-2020 to 2-3-2020	Retrospective	140	Age, sex, current smoker, past smoker, exposure history, HTN, DM, CVD, COPD, CKD, CLD	Prevalence of severe disease. Association of risk factors with severe disease (ICU admission).	Unadjusted RR calculated
Zhao X-Y et al., 2020 (BMC Inf Dis)	China	Hubei (Non-Wuhan)	1-16-2020 to 2-10-2020	Retrospective	91	Age, sex, DM, COPD, Cancer, Kidney disease	Prevalence of death. Association of risk factors with severe disease	Unadjusted RR calculated
Zheng S et al., 2020 (BMJ)	China	Zhejiang province	1-19-2020 to 2-15-2020	Retrospective	96	Age, sex, HTN, DM, CVD, lung disease, Liver disease, renal disease, malignancy, viral Load, immunocompromise	Prevalence of death and severe disease.	Unadjusted RR calculated
Zheng Y et al., 2020 (Pharmaceutical Research)	China	Shiyan, Hubei	1-16-2020 to 2-4-2020	Retrospective	73	Age, sex, exposure, smoking history, DM, CVD	Prevalence of severe (severe/ critical) disease. Association of smoking and diabetes with severe disease.	Unadjusted RR calculated
Zhou F et al., 2020 (The Lancet)	China	Wuhan	12-29-2019 to 1-31-2020	Retrospective	191	Age, sex, current smoking, exposure history, HTN, DM, CVD, COPD, cancer, CKD	Prevalence of severe disease (ICU admission) and death. Association of risk factors with death.	Adjusted OR for age and CVD. Unadjusted RR calculated for other variables.

CVD, cardiovascular disease; CKD, chronic kidney disease; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease; HTN, hypertension; DM, diabetes mellitus; ICU, intensive care unit; BMI, body mass index; HIV, human immunodeficiency virus; AIDS, acquired immunodeficiency syndrome; RR, relative risk; HR, hazard ratio; OR, odds ratio.

https://doi.org/10.1371/journal.pone.0243191.1001

prevalence of death, severe disease, and risk factors (S1 Table), and association of the risk factors with death (S2 Table) and severe disease (S3 Table) for the individual studies are presented in the supplemental tables.

Predictors of death and severe disease (Tables 2 and 3)

Age and sex. Median age for people who died was 79 years [IQR: 77–80; I² = 89%; n = 28] and who had severe disease was 61 years [IQR: 59–63; I² = 48%; n = 26]. Eighty-five percent [95% CI: 80–89; I² = 76%; n = 18] of the deaths were in people aged ≥ 60 years and 66% [95% CI: 64–69; n = 34] were in males. The CFR (95% CI) was 35% (28–43%) for age≥60 years and 26% (21–32%) for males. Patients aged≥60 years [summary relative risk (sRR): 3.61; 95% CI:
2.96–4.39; I² = 77%; n = 24] and males [sRR: 1.34; 95% CI: 1.22–1.40; I² = 18%; n = 36] had higher risk of death. The risk of severe disease was similarly higher for age > 60 [sRR: 1.57; 95% CI: 1.36–1.80; I² = 85%; n = 29] and males [sRR: 1.26; 95% CI: 1.18–1.35; I² = 38%; n = 47].

Hypertension. The prevalence of hypertension in the COVID-19 patients was 50% [95% CI: 46–54%; I² = 98%; n = 64], with a CFR in hypertensive patients of 28% [95% CI: 23–36%; I² = 97%; n = 29] and a CSR of 44% [95% CI: 37–53%; I² = 95%; n = 39]. Of the COVID-19 patients that died, 66% [95% CI: 61–70%; I² = 83%; n = 29] had hypertension. Hypertensives had higher relative risk of death [sRR: 1.76; 95% CI: 1.58–1.96; I² = 56%; n = 32] and severe disease [sRR: 1.46; 95% CI: 1.28–1.65; I² = 77%; n = 40] compared to non-hypertensives (Fig 2A).

Diabetes. The prevalence of diabetes was 28% [95% CI: 25–31%; I² = 97%; n = 67] with a CFR of 24% [95% CI: 17–33%; I² = 98%; n = 29] and CSR of 43% [95% CI: 38–49%; I² = 99%; n = 30] in the diabetics. Of the COVID-19 patients that died, 33% [95% CI: 32–44%; I² = 83%; n = 29] were diabetics. Diabetes had higher relative risk of death [sRR: 1.50; 95% CI: 1.35–1.66; I² = 58%; n = 33] and severe disease [sRR: 1.48; 95% CI: 1.35–1.63; I² = 59%; n = 44] compared to non-diabetics (Fig 2B).

Cardiovascular disease. The pooled prevalence of CVD was 17% [95% CI: 15–20%; I² = 96%; n = 65] with a CFR of 52% [95% CI: 46–60%; I² = 81%; n = 29] and CSR of 56% [95% CI: 48–65%; I² = 91%; n = 37] among cardiac patients. Of the patients that died, 37% [95% CI: 32–

Table 2. Pooled prevalence of death stratified by epidemiological risk factors in COVID-19 patients hospitalized between December 2019-August 2020.

Risk factor or Outcome	Overall prevalence of risk across studies	Pooled Prevalence of Death (Case Fatality Risk) and Risk Factor	Summary Relative Risk of Death								
	No. of studies	Pooled prevalence of risk factor and death, % (95% CI)	No. of studies	γ γ Case fatality risk (Prevalence of death in risk group), % (95% CI)	No. of studies	γ γ Prevalence of risk factor in persons who died, % (95% CI)	No. of studies	γ γ γ Summary relative risk; 95% CI (Shore adjusted)	Fixed Effects	Random Effects*	Heterogeneity
Death	60	20 (18–23)	N/A								
Age ≥ 60 years	41	48 (44–53)	18	35 (28–43)	85 (80–89)	24	3.61 (2.96–4.39)	1.29 (1.03–1.62)	1.34 (1.24–1.45)	77%; 99; p < 0.01	
Male	75	59 (37–60)	31	26 (21–32)	66 (64–69)	36	1.31 (1.22–1.40)	1.41 (1.12–1.78)	68%; 37; p < 0.01		
Smoking history	41	26 (22–31)	11	27 (24–32)	44 (38–50)	13	1.28 (1.06–1.55)	1.41 (1.12–1.78)	68%; 37; p < 0.01		
Current smoker	21	10 (7–13)	7	21 (14–29)	13 (7–24)	8	1.43 (91–2.26)	1.53 (95–2.45)	78%; 32; p < 0.01		
COPD	52	9 (8–11)	20	51 (36–71)	12 (7–19)	22	1.70 (1.42–2.04)	1.74 (1.43–2.13)	66%; 61; p < 0.01		
Hypertension	64	50 (46–54)	29	28 (23–36)	66 (61–70)	32	1.76 (1.58–1.96)	1.88 (1.66–2.13)	56%; 70; p < 0.01		
Diabetes	67	28 (25–31)	29	24 (17–33)	39 (35–44)	33	1.50 (1.35–1.66)	1.60 (1.42–1.79)	58%; 77; p < 0.01		
Cardiovascular disease	65	17 (15–20)	29	52 (46–60)	37 (32–43)	34	2.08 (1.81–2.39)	2.25 (1.92–2.64)	69%; 106; p < 0.01		
Chronic kidney disease	47	13 (11–16)	18	48 (37–63)	27 (21–34)	23	2.52 (2.11–3.00)	2.39 (1.91–2.99)	72%; 79; p < 0.01		
Chronic Liver Disease	31	2(2–3)	8	39(31–50)	6 (4–8)	9	2.65(1.88–3.75)	1.99 (1.26–3.16)	77%; 35; p < 0.01		

* Case fatality risk of represent total number of people that died in the specific risk group divided by total population in the risk group.
* Prevalence of risk group in dead represent total number of people having the risk group divided by total population that died.

https://doi.org/10.1371/journal.pone.0243191.t002
43%; $I^2 = 83\%$; $n = 29$] had CVD. Patients with CVD had higher relative risk of death [sRR: 2.08; 95% CI: 1.81–2.39; $I^2 = 69\%$; $n = 34$] and severe disease [sRR: 1.54; 95% CI: 1.39–1.72; $I^2 = 77\%$; $n = 38$] compared to patients without CVD (Fig 2C).

Smoking and COPD. The prevalence of any history of smoking in the patients was 26% [95% CI: 22–31%; $I^2 = 98\%$; $n = 41$]. For patients with smoking history, the CFR was 27% [95% CI: 24–32%; $I^2 = 61\%$; $n = 11$] and CSR was 39% [95% CI: 34–46; $I^2 = 78\%$; $n = 27$]. Compared to never smokers, patients with smoking history had higher relative risk of death [sRR: 1.28; 95% CI: 1.06–1.55; $I^2 = 68\%$; $n = 13$] and severe COVID-19 disease [sRR: 1.29; 95% CI: 1.18–1.42; $I^2 = 33\%$; $n = 27$] (Fig 3A). The prevalence of COPD was 9% [95% CI: 8–11%; $I^2 = 94\%; n = 52\%$]. Patients with COPD had a CFR of 51% [95% CI: 43–59%; $I^2 = 0\%$; $n = 21$]; CSR of 43% [95% CI: 35–52%; $I^2 = 84\%$; $n = 24$]; a sRR of death of 1.70 [95% CI: 1.42–2.04; $I^2 = 66\%$; $n = 22$] and of severe disease of 1.71 [95% CI: 1.49–1.97; $I^2 = 84\%$; $n = 29$] (Fig 3B).

Chronic kidney disease. The prevalence of CKD was 13% [95% CI: 11–16%; $I^2 = 96\%; n = 47$] with a CFR of 48% [95% CI: 37–63%; $I^2 = 89\%$; $n = 18$] and CSR of 36% [95% CI: 33–40%; $I^2 = 56\%$; $n = 22$] in CKD patients. CKD was present in 27% [95% CI: 21–34%; $I^2 = 79\%; n = 18$] of all COVID-19 patients that died. CKD patients had higher relative risk of death [sRR: 2.52; 95% CI: 2.11–3.00; $I^2 = 72\%$; $n = 23$] and severe disease [sRR: 1.56; 95% CI: 1.31–1.86; $I^2 = 85\%$; $n = 27$] compared to non-CKD patients (Fig 3C).

Chronic liver disease. The prevalence of CLD was 2% [95% CI: 2–3%; $I^2 = 72\%$; $n = 31$] with a CFR of 39% [95% CI: 31–50%; $I^2 = 0\%$; $n = 8$] and CSR of 43% [95% CI: 32–57%; $I^2 = 5\%$; $n = 12$] in CLD patients. CLD was present in 6% [95% CI: 4–8%; $I^2 = 0\%$; $n = 8$] of the
COVID-19 patients who died. Patients with CLD had higher relative risk of death [sRR: 2.65; 95% CI: 1.88–3.75; I² = 77%; n = 9] and severe disease [sRR: 1.63; 95% CI: 1.23–2.15; I² = 82%; n = 15] compared to non-CKD patients (Fig 3D).

COVID-19 related organ system injury
To understand how pre-existing health conditions may be correlated with the risk of specific organ injury, we calculated the prevalence of acute injury to lung, heart and kidney for studies that reported prevalence of both the pre-existing condition(s) and corresponding organ injury (Fig 4A). Pooled across 12 studies [14, 25, 32, 45, 49, 52, 62, 79], the prevalence of COPD at baseline was 6% [95% CI: 4–11%] and the proportion of patients developing ARDS during hospitalization was 48% [32–73%]. The pooled prevalence of baseline CVD (n = 13 studies) was 11% [95% CI: 9–15%] and that of acute cardiac injury (ACI) during hospitalization was 21% [95% CI: 15–28%] [6, 14, 25, 32, 35, 43, 48, 49, 54, 79, 84]. The prevalence of CKD (n = 12 studies) was 14% [95% CI: 8–26%] and that of acute kidney injury during hospitalization (AKI) was 27% [95% CI: 21–34%] [6, 14, 25, 32, 45, 48, 65, 79].

Regional difference in prevalence of death and risk factors
Upon sub-group analysis, we noted significantly higher prevalence of death and risk factors among COVID-19 patients in the US and Europe than in China (Fig 4B). The prevalence of death was 23% [95% CI: 19–27%; I² = 97%; n = 29] in the US and Europe, and 11% [95% CI: 7–16%; I² = 94%; n = 24] in China. Prevalence of severe disease was 20% [95% CI: 16–25%;
\[I^2 = 98\%; n = 25 \] for US and Europe, and 39\% [95\% CI: 32–47\%; \(I^2 = 97\%; n = 30 \)] for China.

Median age of patients was 65 years [IQR: 63–67 years; \(I^2 = 0\%; n = 24 \)] for the US and Europe and 55 years [IQR: 52–58 years; \(I^2 = 57\%; n = 27 \)] for China. Fifty-two percent [95\% CI: 46–59\%; \(I^2 = 98\%; n = 16 \)] of the patients hospitalized were aged \(\geq 60 \) years in the US and Europe as compared to 36\% [95\% CI: 30–43\%; \(I^2 = 96\%; n = 22 \)] for China. The prevalence of co-morbidities between US-Europe and China differed as follows:

1) US-Europe: HTN = 55\% [95\% CI: 52–57\%]; diabetes = 31\% [95\% CI: 29–34\%]; CVD = 18\% [95\% CI: 15–21\%]; smoking history = 15\% [95\% CI: 11–21\%]; COPD = 9\% [95\% CI: 6–13\%] and

2) China: HTN = 23\% [95\% CI: 20–26\%]; diabetes = 12\% [95\% CI: 10–14\%]; CVD = 16\% [95\% CI: 12–22\%]; smoking history = 11\% [95\% CI: 9–13\%]; CKD = 2.3\% [95\% CI: 1.6–3.4\%] and COPD = 4\% [95\% CI: 3–5\%].

Comorbidities in COVID-19 patients and the general populations in the US and China

In order to gain some understanding of whether patients with comorbidities are at higher risk of COVID-19 infection or hospitalization, we compared the prevalence of comorbidities between COVID-19 patients hospitalized in the US and the prevalence of comorbidities in the general US population. We observed that the prevalence of hypertension (55\%), diabetes (33\%), CVD (17\%), and smoking history (23\%) were substantially higher in the COVID-19 patients than in the general US population (Fig 4C). For the Chinese population, the overall prevalence of hypertension (23\%) and diabetes (12\%) in the COVID-19 patients were similar.
to that of the general Chinese population. However, the prevalence of smoking history (11%), COPD (4%), CKD (2%), and heart disease (16%) in the COVID-19 patients hospitalized in China were unexpectedly lower as compared to their corresponding prevalence in the general Chinese population (Fig 4D).

Sensitivity analyses

The positive associations of age ≥65 years, male sex, smoking history, COPD, hypertension and diabetes with the risk of death in the COVID-19 patients were relatively homogenous ($I^2<70\%$). However, we carried out sensitivity analyses to assess the effects of outliers. For the risk of death for hypertension and smoking history, we removed the study by Yao et al. [86] which showed significantly higher risk compared to other studies; the results for both hypertension [sRR = 1.74; 95% CI: 1.58–1.94] and smoking [sRR:1.24; 95% CI: 1.08–1.42] remained significant. Guan et al. [13] had published a second study with additional patients and reported adjusted estimates for COPD, diabetes and hypertension. We used the adjusted risk estimates for the analyses. For the risk of death with other risk factors (CVD, CKD, and CLD) for Guan et al. [45], we conducted sensitivity analyses by using the counts only from the original study.
The results [sRR (95% CI)] were similar as: CVD = 2.06 [95 CI: 1.80–2.36], CKD = 2.48 [95% CI: 2.09–2.94] and CLD = 2.67 [95% CI: 1.85–3.85].

Small study effects and quality assessment

We observed asymmetry in the funnel plot for studies that reported prevalence of death in COVID-19 patients (Egger’s test p = 0.001) (S1 Fig). On further analysis, the plot remained asymmetrical when restricted to studies from China (Egger’s p = 0.003) but was symmetrical for studies from US-Europe (Egger’s p = 0.160). We observed symmetrical funnel plots with no bias for pooled prevalence severe disease (Egger’s p = 0.128). On average, prospective or retrospective studies scored a score of 6 out of 9 and cross-sectional studies scored 6 out of 10. Many studies did not get a full score because they did not adjust for confounders (age, sex, or other risk factors) or patients remained hospitalized even after the follow-up ended, suggesting inadequate follow-up period (S4 Table).

Discussion

We carried out a comprehensive systematic review and meta-analysis of 77 studies that included 38906 hospitalized patients to investigate the prevalence and risk factors for death and severe disease in COVID-19 patients. We calculated an overall prevalence of death of 20% and severe disease of 28%. Nearly 50% of the patients admitted to hospitals due to COVID-19 were ≥60 years of age and 59% were males. We observed high prevalence of hypertension and diabetes of 50% and 28%, respectively, for the patients. The risk factors were more prevalent in patients who died and were distributed as: age ≥60 years: 85%; males: 66%; hypertension: 66%; diabetes: 39%; heart disease: 37%; CKD: 27%; smoking history: 44%; COPD: 12%, and CLD: 9%. In comparison with the overall prevalence of death of 20% for all COVID-19 hospitalized patients, the CFR was higher for male patients (26%) and for patients having the following risk factors: age ≥60 years (35%), heart disease (52%), COPD (51%), CKD (48%), CLD (39%), hypertension (28%), diabetes (24%), and smoking history (27%). The elevation in the risk of death was statistically significant for age ≥60 (sRR = 3.6; 95% CI: 3.0–4.4), male sex 1.3 (95% CI: 1.2–1.4), smoking history (sRR = 1.3; 95% CI: 1.1–1.6), COPD (sRR = 1.7; 95% CI: 1.4–2.0), heart disease (sRR = 2.1; 95% CI: 1.8–2.4), CKD (sRR = 2.5; 95% CI: 2.1–3.0), hypertension (sRR = 1.8; 95% CI: 1.7–2.1), and diabetes (sRR = 1.5; 95% CI: 1.4–1.7). All of the risk factors we analyzed were positively associated with progression to severe disease as well. The results suggest that older age, male sex and the co-morbidities increase the risk of progression to severe disease and death in COVID-19 patients.

We observed significant difference in the prevalence of death between US-Europe (23%) and China (11%). This lower risk of death from COVID-19 for the hospitalized patients in China may be explained by the lower median age as well as lower prevalence of co-morbidities for COVID-19 patients in China. However, this >200% lower prevalence of death in China is incommensurate with our finding of a higher prevalence of severe disease observed for patients in China (39%) as compared to patients in the US-Europe (20%). Notably, we observed asymmetry in the funnel plot and a statistically significant tests for publication bias or small study effects for the prevalence of death for studies from China that could suggest selective outcome reporting. As such, while the lower median age and prevalence of co-morbidities for COVID-19 patients in China may explain the lower prevalence of death, it is also possible that a selective under-reporting of death had occurred for studies from China. The death toll in China was initially under-reported and later updated on April 17, 2020 [95].

Whether or not cigarette smoking has been associated with SARS-CoV-2 acquisition or progression to severe disease has been strongly debated with studies showing both positive,
null, and inverse association between smoking and COVID-19 \[10, 11, 96–98\]. We found that patients with any history of smoking have both a higher risk of death (RR: 1.28; 95% CI: 1.06–1.55) and severe disease (1.29; 95% CI: 1.18–1.42). The case fatality risk for those with smoking history (27%) was also higher than the overall CFR of 20%. Whereas a higher COVID-19 mortality and morbidity among smokers may be due its causal association with COPD and CVD, Cai et al. \[99\] has also observed upregulation of pulmonary Angiotensin Converting Enzyme 2 (ACE2) gene expression and hence, pulmonary ACE2 receptors in smokers suggesting a direct effect of smoking on COVID-19 susceptibility and disease progression. ACE2 receptors are used by SARS-CoV-2 to translocate intracellularly \[15, 100–104\].

Our results of higher risk of death and severe disease associated with hypertension, diabetes and CVD in COVID-19 patients concurred with most studies conducted to date including studies that specifically investigated these associations \[14, 65, 105, 106\]. However, it is unclear if cardiovascular risk factors including smoking, hypertension, diabetes, heart disease and CKD increases the susceptibility toward SARS-CoV-2 infection in the population \[15, 100, 101, 107\]. On one hand, angiotensin-converting enzyme 2 (ACE2)—by blocking the renin angiotensin aldosterone system (RAAS) and decreasing or countering the vasoconstrictive, proinflammatory and profibrotic properties of angiotensin-II through catalysis of angiotensin-II to angiotensin-(1–7)—have been shown to exert cardiovascular protective effect and prevent acute lung injury from SARS-CoV-2 \[15, 100, 101\]. However, on the other hand, a possible greater expression of ACE2, the functional receptor mediating cellular entry of SARS-CoV-2 in humans, in patients with cardiovascular disease and other comorbidities can lead to increased susceptibility towards infection with SARS-CoV-2 \[108, 109\]. In this context, it would be reasonable to posit that a substantially higher prevalence of cardiovascular comorbidities in the hospitalized patients compared to the prevalence in the general population may suggest elevated risk of acquisition of SARS-CoV-2 for patients with cardiovascular risk factors. To this end, we found that the prevalence of smoking history (23%), hypertension (55%), diabetes (33%) and heart disease (17%) in the hospitalized COVID-19 patients in the US were substantially higher than the corresponding prevalence of smoking (14%) \[110\], hypertension (29%) \[111\], diabetes (13%) \[112\] and heart disease (9%) \[113\] in the general US population that could suggest an association between these comorbidities and risk of SARS-CoV-2 infection or disease progression. However, we note that if the prevalence of these comorbidities in the asymptomatic individuals with COVID-19 in the general population is similar to that of their prevalence in the non-COVID-19 general population, then this difference—the higher prevalence of comorbidities in the hospitalized patients compared to the general population—could simply imply a higher risk of symptomatic infection or hospitalization for individuals having SARS-CoV-2 infection. The prevalence of other risk factors i.e. COPD (9%) and CKD (15%) in the COVID-19 patients in the US was similar to the overall prevalence of COPD (7%) \[114\] and CKD (15%) \[115\] in the country. Generally, we noted a lower prevalence of comorbidities for patients in China. The prevalence of hypertension (23%) and diabetes (12%) in the hospitalized patients in China, which were lower than that of the US, approximate the respective prevalence of hypertension (23%) \[116\] and diabetes (15%) \[117\] in the general population of China. A previous meta-analysis also noted this observation \[19\]. Surprisingly, the prevalence of smoking (11%) in the COVID-19 patients hospitalized in China are inexplicably lower than the corresponding prevalence of smoking (23%) among COVID-19 patients in the US despite a higher prevalence of smoking (47% in Chinese males) \[118\] in the general Chinese population is significantly higher than that of the US. The prevalence of CVD (16%), COPD (4%) and CKD (2%) among COVID-19 patients in China are substantially lower than the corresponding prevalence of CVD (21%) \[119\], COPD (14%) \[120\], and CKD (11%) \[121\] in the general Chinese population. Given these discrepancies, we are unsure whether the lower
prevalence of comorbidities noted for the COVID-19 patients in China are representative of the true prevalence. There was a great sense of urgency and a race to publish data in the early phase of the outbreak. As such, there exists the possibility of substantial under-recording of data on covariables. Had there been under-reporting, the implication would be a higher true prevalence estimate. We do not see reason for any systematic difference in reporting of risk factors based on outcome, or vice-versa, and hence, our summary relative risk estimates for association of risk factors with death or severe disease should not have been affected.

We assessed if patients with specific co-morbidities at baseline had higher risk of specific organ injury from SARS-CoV-2 during hospitalization. While the available data did not allow direct assessment of this relation, we compared the prevalence of comorbidities with the prevalence of corresponding organ system injury for studies that reported both baseline comorbidity and corresponding organ injury. We observed that the risk of acute lung injury/ARDS (48%), ACI (21%), and AKI (27%) were substantially higher than the baseline prevalence of COPD (6%), heart disease (11%) and CKD (14%), respectively. The higher prevalence of acute organ injury than the prevalence of baseline comorbidity simply indicates that ARDS, ACI and AKI were also occurring in patients who did not have a corresponding comorbidity at baseline in addition to people having the comorbidities.

Most studies reported only frequencies of risk factors and did not present adjusted measures for disease severity or death. Given this limitation, the risk ratio we calculated from the frequencies are largely unadjusted estimates. Future studies could additionally present, at the least, age- and sex-adjusted measures for association of risk of comorbidities with death or severe disease. Many studies reported odds ratio for the measure of association between pre-existing conditions and risk of severe disease or death. Odds ratio poorly approximates risk ratio when the disease prevalence is high at baseline. For example, Zhou et al. [14] calculated an odds ratio of 5.4 (95% CI: 0.96–30.4) for risk of death from COPD in COVID-19 patients whereas the risk ratio we calculated from the frequencies presented is RR = 2.47 (95% CI: 1.34–4.55). Prevalence of severe disease or death in COVID-19 patients was high in several studies. Similarly, several meta-analyses calculated odds ratios instead of risk ratios to summarize the risk of disease severity or death in association with risk factors such as smoking, diabetes, hypertension and cardiovascular disease [10, 11, 18], often to be interpreted by media and even by researchers as a measure of relative risk. Lack of rigor in research design, analysis and interpretation could generate inconsistent and ungeneralizable results across studies leading to controversy and confusion around serious public health issues such as that existing for association (or not) of smoking with COVID-19 disease acquisition, severity or death. As publications evolve at a pace that could be overwhelming for researchers and practitioners, we attempted to present a meaningful summary and inference for association of risk factors with death or severe disease from literatures published globally. Additionally, we provide an epidemiological framework for the risk of infection by SARS-CoV-2 based on presence of cardiovascular risk factors. This analysis can inform public health measures for COVID-19 screening and prevention, risk stratification and management of patients in clinical practice, analysis and presentation strategies for research data and inspire etiological investigations.

Conclusion

Epidemiological risk factors for progression of COVID-19 to severe disease and death and for acquisition of SARS-CoV-2, the causal agent for COVID-19, based on presence of pre-existing conditions have been insufficiently understood. Meta-analysis of 77 studies including 39023 COVID-19 patients hospitalized globally revealed case fatality risk of 52% for those having heart disease, 51% for COPD, 48% for CKD, 39% for CLD, 28% for hypertension, 27% for smoking
history, 24% for diabetes, 35% for age ≥ 60 years, and 26% for males. Of all the patients who died, an overwhelming majority (85%) were in people aged ≥ 60 years. Also, of the people who died, 66% were males, 66% had hypertension, 44% had history of smoking, 39% had diabetes, 37% had CVD, 27% had CKD, and 6% had CLD. All of the above risk factors were significantly associated with death and severe disease in the patients hospitalized for COVID-19. The prevalence of ARDS was 48%, ACI 21%, and AKI 28% in the hospitalized patients. A higher prevalence of hypertension, diabetes, smoking and heart disease in the COVID-19 inpatients as compared to that of the general population could imply a higher risk of SARS-CoV-2 infection or disease progression for patients having these risk factors. These findings could inform public health strategies for targeted screening and appropriate control of modifiable risk factors such as smoking, hypertension, and diabetes to reduce morbidity and mortality. Finally, based on the published literature, there were vast differences in the prevalence of death and risk factors for the populations in China and in US-Europe that should be further investigated.

Supporting information

S1 Table. Prevalence of death, severe disease and risk factors in COVID-19 patients (December 2019-August 2020).

S2 Table. Prevalence of death stratified by risk factors in COVID-19 patients (December 2019-August 2020).

S3 Table. Prevalence of severe disease stratified by risk factors in COVID-19 patients (December 2019-August 2020).

S4 Table. Newcastle-Ottawa quality assessment (modified) for studies.

Award of Points: Selection: points were awarded based on representativeness of the exposed group and unexposed group (2 points), ascertainment of exposures (1 point), and demonstration that outcome of interest was not present at the start of the study (1 point). Comparability (2 points): points were awarded based on whether the analyses were adjusted for age, sex, and other risk factors (2 points for adjustment to age and sex). Outcome (3 points): points were awarded based on ascertainment of outcome through record linkage or independent blind assessment (1 point); duration of follow-up (1 point) (hospitalization till discharge); and adequacy of follow up for study population (complete follow up for the patients (vs whether patients were currently under treatment at the time of study report) (1 point), or if the patients currently under admission are excluded from outcome assessment (1 point).

S1 Fig. Publication bias or small study effects for prevalence of death and severe disease.

S1 Checklist. PRISMA 2009 checklist.

Author Contributions

Conceptualization: Kunchok Dorjee.

Data curation: Kunchok Dorjee, Hyunju Kim, Elizabeth Bonomo, Rinchen Dolma.
Formal analysis: Kunchok Dorjee, Hyunju Kim, Elizabeth Bonomo.

Investigation: Kunchok Dorjee, Hyunju Kim, Elizabeth Bonomo, Rinchen Dolma.

Methodology: Kunchok Dorjee, Hyunju Kim, Elizabeth Bonomo, Rinchen Dolma.

Project administration: Elizabeth Bonomo.

Software: Kunchok Dorjee, Elizabeth Bonomo, Rinchen Dolma.

Validation: Hyunju Kim, Elizabeth Bonomo, Rinchen Dolma.

Visualization: Elizabeth Bonomo.

Writing – original draft: Kunchok Dorjee.

Writing – review & editing: Kunchok Dorjee, Hyunju Kim, Elizabeth Bonomo, Rinchen Dolma.

References

1. Johns Hopkins University. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). https://coronavirus.jhu.edu/map.html. Published 2020. Accessed October 8, 2020.

2. Garg S, Kim L, Whitaker M, et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1–30, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(15):458–464. https://doi.org/10.15585/mmwr.mm6915e3 PMID: 32298251

3. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; https://doi.org/10.1001/jama.2020.2648 PMID: 32091533

4. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395 (10239):1763–1770. https://doi.org/10.1016/S0140-6736(20)31189-2 PMID: 32442528

5. Du RH, Liang LR, Yang CQ, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020; 55(6).

6. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020; 146(1):110–118. https://doi.org/10.1016/j.jaci.2020.04.006 PMID: 32294485

7. Palaiodimos L, Kokkinidis DG, Li W, et al. Severe obesity, increasing age and male sex are independently associated with worse in-hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism. 2020; 108:154262. https://doi.org/10.1016/j.metabol.2020.154262 PMID: 32422233

8. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020; 180(7):934–943. https://doi.org/10.1001/jamainternmed.2020.0994 PMID: 32167524

9. Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS One. 2020; 15(5):e0233147. https://doi.org/10.1371/journal.pone.0233147 PMID: 32392262

10. Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med. 2020; 75:107–108. https://doi.org/10.1016/j.ejim.2020.03.014 PMID: 32192856

11. Patanavatch R, Gliant SA. Smoking Is Associated With COVID-19 Progression: A Meta-analysis. Nicotine Tob Res. 2020; 22(9):1653–1656. https://doi.org/10.1093/ntr/ntaa082 PMID: 32399563

12. Rossato M, Russo L, Mazzocut S, Di Vincenzo A, Fioretto P, Vettor R. Current smoking is not associated with COVID-19. Eur Respir J. 2020; 55(6).

13. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020; 55(5). https://doi.org/10.1183/13993003.00547-2020 PMID: 32217650
14. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054–1062. https://doi.org/10.1016/S0140-6736(20)30566-3 PMID: 3217076

15. Akhmerov A, Marban E. COVID-19 and the Heart. Circ Res. 2020; 126(10):1443–1455. https://doi.org/10.1161/CIRCRESAHA.120.317055 PMID: 32252591

16. Schiffri n EL, Flack JM, Ito S, Muntner P, Webb RC. Hypert ension and COVID-19 . Am J Hypertens. 2020; 33(5):373–374. https://doi.org/10.1093/ajh/hpaa057 PMID: 32251498

17. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020; 17(5):259–260. https://doi.org/10.1038/s41569-020-0360-3 PMID: 32139904

18. Li X, Guan B, Su T, et al. Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. Heart. 2020; 106(15):1142–1147. https://doi.org/10.1136/heartjnl-2020-317062 PMID: 32461330

19. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94:91–95. https://doi.org/10.1016/j.ijid.2020.03.017 PMID: 32173574

20. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic literature review and meta-analysis. J Infect. 2020; 81(2):e16–e25. https://doi.org/10.1016/j.jinf.2020.04.021 PMID: 32335169

21. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2 PMID: 3802833

22. Cochran WG. The Combination of Estimates From Different Experiments. Biometrics. 1954; 10 (1):101–129.

23. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002; 21 (11):1539–1558. https://doi.org/10.1002/sim.1186 PMID: 12111919

24. Shore RE, Gardner MJ, Pannett B. Ethylene oxide: an assessment of the epidemiological evidence on carcinogenicity. Br J Ind Med. 1993; 50(11):971–997. https://doi.org/10.1136/oem.50.11.971 PMID: 8280635

25. Aggarwal S, Garcia-Telles N, Aggarwal G, Lippi G, Henry BM. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis. 2020; 7(2):91–96. https://doi.org/10.1515/dx-2020-0046 PMID: 32352401

26. Argenziano MG, Bruce SL, Slater CL, et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: retrospective case series. Brmj. 2020; 369:m1996. https://doi.org/10.1136/bmj.m1996 PMID: 32471884

27. Brill SE, Jarvis HC, Ozcan E, et al. COVID-19: a retrospective cohort study with focus on the over-80s and hospital-onset disease. BMC Med. 2020; 18(1):194. https://doi.org/10.1186/s12916-020-01665-z PMID: 32586323

28. Cao Z, Li T, Liang L, et al. Clinical characteristics of Coronavirus Disease 2019 patients in Beijing, China. PLoS One. 2020; 15(6):e0234764. https://doi.org/10.1371/journal.pone.0234764 PMID: 32556747

29. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5):2620–2629. https://doi.org/10.1172/JCI137244 PMID: 32217835

30. Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect. 2020; 80(5):e1–e6. https://doi.org/10.1016/j.jinf.2020.03.004 PMID: 32171869

31. Chen Q, Zheng Z, Zhang C, et al. Clinical characteristics of 145 patients with corona virus disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection. 2020; 48(4):543–551. https://doi.org/10.1007/s15010-020-01432-5 PMID: 32342479

32. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368:m1091–m1091. https://doi.org/10.1136/bmj.m1091 PMID: 32217558

33. Chilimuri S, Sun H, Alemam A, et al. Predictors of Mortality in Adults Admitted with COVID-19: Retrospective Cohort Study from New York City. West J Emerg Med. 2020; 21(4):779–784. https://doi.org/10.5811/westjem.2020.6.47919 PMID: 32726241

34. Ciceni F, Castagna A, Rovere-Querini P, et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol. 2020; 217:108509. https://doi.org/10.1016/j.clim.2020.108509 PMID: 32535198

35. Deng Y, Liu W, Liu K, et al. Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020; 133(11):1261–1267. https://doi.org/10.1097/CM9.0000000000008824 PMID: 32209899
36. Escalera-Antezana JP, Lizon-Ferrufino NF, Maldonado-Alanoca A, et al. Risk factors for mortality in patients with Coronavirus Disease 2019 (COVID-19) in Bolivia: An analysis of the first 107 confirmed cases. Infez Med. 2020; 28(2):238–242. PMID: 32487789

37. Feng Y, Ling Y, Bai T, et al. COVID-19 with Different Severities: A Multicenter Study of Clinical Features. Am J Respir Crit Care Med. 2020; 201(11):1380–1388. https://doi.org/10.1164/rcrm.202002-0445OC PMID: 32275452

38. Ferguson J, Rosser JI, Quintero O, et al. Characteristics and Outcomes of Coronavirus Disease Patients under Nonsurge Conditions, Northern California, USA, March-April 2020. Emerg Infect Dis. 2020; 26(8).

39. Galloway JB, Norton S, Barker RD, et al. A clinical risk score to identify patients with COVID-19 at high risk of critical care admission or death: An observational cohort study. J Infect. 2020; 81(2):282–288. https://doi.org/10.1016/j.jinf.2020.05.064 PMID: 32479771

40. Garibaldi BT, Fiksel J, Muschelli J, et al. Patient Trajectories Among Persons Hospitalized for COVID-19: A Cohort Study. Ann Intern Med. 2020. https://doi.org/10.7326/M20-3905 PMID: 32960645

41. Giacomelli A, Ridolfo AL, Milazzo L, et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: A prospective cohort study. Pharmacol Res. 2020; 158:104931. https://doi.org/10.1016/j.phrs.2020.104931 PMID: 32446978

42. Gold JAW, Wong KK, Szablewsik CM, et al. Characteristics and Clinical Outcomes of Adult Patients Hospitalized with COVID-19—Georgia, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(18):545–550. https://doi.org/10.15585/mmwr.mm6918e1 PMID: 32379729

43. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical Characteristics of COVID-19 in New York City. N Engl J Med. 2020; 382(24):2372–2374. https://doi.org/10.1056/NEJMc201419 PMID: 3302078

44. Gregoriano C, Koch D, Haubitz S, et al. Characteristics, predictors and outcomes among 99 patients hospitalized with COVID-19 in a tertiary care centre in Switzerland: an observational analysis. Swiss Med Wkly. 2020; 150:w20316. https://doi.org/10.4414/smw.2020.20316 PMID: 32668007

45. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032 PMID: 32109013

46. Hewitt J, Carter B, Viches-Moraga A, et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020; 5(8):e444–e451. https://doi.org/10.1016/S2468-2667(20)30146-8 PMID: 32619408

47. Hsu HE, Ashe EM, Silverstein M, et al. Race/Ethnicity, Underlying Medical Conditions, Homelessness, and Hospitalization Status of Adult Patients with COVID-19 at an Urban Safety-Net Medical Center—Boston, Massachusetts, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(27):864–869. https://doi.org/10.15585/mmwr.mm6927a3 PMID: 32644981

48. Hu L, Chen S, Fu Y, et al. Risk Factors Associated with Clinical Outcomes in 323 COVID-19 Hospitalized Patients in Wuhan, China. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa539 PMID: 32361738

49. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 PMID: 31986264

50. Hur K, Price CPE, Gray EL, et al. Factors Associated With Intubation and Prolonged Intubation in Hospitalized Patients With COVID-19. Otolaryngol Head Neck Surg. 2020; 163(1):170–178. https://doi.org/10.1177/0194599820926840 PMID: 32423368

51. Iaccarino G, Grassi G, Borghi C, Ferri C, Salvetti M, Volpe M. Age and Multimorbidity Predict Death Among COVID-19 Patients: Results of the SARS-RAS Study of the Italian Society of Hypertension. Hypertension. 2020; 76(2):366–372. https://doi.org/10.1161/HYPERTENSIONAHA.120.15324 PMID: 32564693

52. Inciardi RM, Adamo M, Lupi L, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020; 41(19):1821–1829. https://doi.org/10.1093/eurheartj/ehaa386 PMID: 32383763

53. Jang JG, Hur J, Choi EY, Hong KS, Lee W, Ahn JH. Prognostic Factors for Severe Coronavirus Disease 2019 in Daegu, Korea. J Korean Med Sci. 2020; 35(23):e209. https://doi.org/10.3346/jkms.2020.35.e209 PMID: 32537954

54. Javanian M, Bayani M, Shokri M, et al. Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: a retrospective cohort study. Rom J Intern Med. 2020; 58(3):161–167. https://doi.org/10.2478/rjim-2020-0013 PMID: 32396143

55. Kalligeros M, Shehadeh F, Mylona EK, et al. Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. Obesity (Silver Spring). 2020; 28(7):1200–1204. https://doi.org/10.1002/oby.22859 PMID: 32352637
Predictors of COVID-19 adverse outcomes: A meta-analysis

56. Khalil K, Agbontaen K, McNally D, et al. Clinical characteristics and 28-day mortality of medical patients admitted with COVID-19 to a central London teaching hospital. J Infect. 2020; 81(3):e85–e89. https://doi.org/10.1016/j.jinf.2020.06.027 PMID: 32562795

57. Khamis F, Al-Zakwani I, Al Naamani H, et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. J Infect Public Health. 2020; 13(7):906–913. https://doi.org/10.1016/j.jiph.2020.06.002 PMID: 32546437

58. Lendorf ME, Boisen MK, Kristensen PL, et al. Characteristics and early outcomes of patients hospitalised for COVID-19 in North Zealand, Denmark. Dan Med J. 2020; 67(9). PMID: 32800073

59. Liu S, Luo H, Wang Y, et al. Clinical characteristics and risk factors of patients with severe COVID-19 in Jiangsu province, China: a retrospective multicentre cohort study. BMC Infect Dis. 2020; 20(1):584. https://doi.org/10.1186/s12879-020-05314-x PMID: 32762665

60. Liu W, Tao ZW, Wang L, et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin Med J (Engl). 2020; 133(9):1032–1038. https://doi.org/10.1097/CM9.0000000000000775 PMID: 32118640

61. Nikpouraghdam M, Jalali Farahani A, Alishiri G, et al. Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. J Clin Virol. 2020; 127:104378. https://doi.org/10.1016/j.jcv.2020.104378 PMID: 32353762

62. Nowak B, Szymanski P, Pankowski I, et al. Clinical characteristics and short-term outcomes of patients with coronavirus disease 2019: a retrospective single-center experience of a designated hospital in Poland. Pol Arch Intern Med. 2020; 130(5):407–411. https://doi.org/10.20452/pamr.15361 PMID: 32420710

63. Okoh AK, Sossou C, Dangayach NS, et al. Coronavirus disease 19 in minority populations of Newark, New Jersey. Int J Equity Health. 2020; 19(1):93. https://doi.org/10.1186/s12939-020-01028-1 PMID: 32522191

64. Pellaud C, Grandmaison G, Pham Huu Thien HP, et al. Characteristics, comorbidities, 30-day outcome and in-hospital mortality of patients hospitalised with COVID-19 in a Swiss area—a retrospective cohort study. Swiss Med Wkly. 2020; 150:w20314. https://doi.org/10.4414/smw.2020.20314 PMID: 32662869

65. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020; 323(20):2052–2059. https://doi.org/10.1001/jama.2020.6775 PMID: 32320003

66. Rivera-Izquierdo M, Del Carmen Valero-Ubierna M, JL Rd, et al. Sociodemographic, clinical and laboratory factors on admission associated with COVID-19 mortality in hospitalized patients: A retrospective observational study. PLoS One. 2020; 15(6):e0235107. https://doi.org/10.1371/journal.pone.0235107 PMID: 32584868

67. Shabrawishi M, Al-Gethamy MM, Naser AY, et al. Clinical, radiological and therapeutic characteristics of patients with COVID-19 in Saudi Arabia. PLoS One. 2020; 15(6):e0237130. https://doi.org/10.1371/journal.pone.0237130 PMID: 32760107

68. Shahririrad R, Khodamoradi Z, Erfani A, et al. Epidemiological and clinical features of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. BMC Infect Dis. 2020; 20(1):427. https://doi.org/10.1186/s12879-020-05128-x PMID: 32552751

69. Shekhar R, Sheikh AB, Upadhyay S, Atencio J, Kapuria D. Early experience with COVID-19 patients at academic hospital in Southwestern United States. Infect Dis (Lond). 2020; 52(6):596–599. https://doi.org/10.1080/23744235.2020.1774645 PMID: 32476537

70. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to severe COVID-19 and establishment of a host risk score: findings of 487 cases outside Wuhan. Crit Care. 2020; 24(1):108. https://doi.org/10.1186/s13054-020-2833-7 PMID: 32189484

71. Suleyman G, Fadel RA, Malette KM, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020; 3(6):e2012270. https://doi.org/10.1001/jamanetworkopen.2020.12270 PMID: 32543702

72. Sun L, Shen L, Fan J, et al. Clinical features of patients with coronavirus disease 2019 from a designated hospital in Beijing, China. J Med Virol. 2020. https://doi.org/10.1002/jmv.25966 PMID: 32369208

73. Tambe MP, Parande MA, Tapare VS, Borle PS, Lakde RN, Shelke SC. An epidemiological study of laboratory confirmed COVID-19 cases admitted in a tertiary care hospital of Pune, Maharashtra. Indian J Public Health. 2020; 64(Supplement):S183–S187. https://doi.org/10.4103/ijph.IJPH_622_20 PMID: 32496252

74. Team CC-R. Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019—United States, February 12-March 28, 2020.
Predictors of COVID-19 adverse outcomes: A meta-analysis

MMWR Morb Mortal Wkly Rep. 2020; 69(13):382–386. https://doi.org/10.15585/mmwr.mm6913e2 PMID: 32240123

75. Tian S, Hu N, Lou J, et al. Characteristics of COVID-19 infection in Beijing. J Infect. 2020; 80(4):401–406. https://doi.org/10.1016/j.jinf.2020.02.018 PMID: 32112886

76. Tomlins J, Hamilton F, Gunnig S, Sheehy C, Moran E, MacGowan A. Clinical features of 95 sequential hospitalised patients with novel coronavirus 2019 disease (COVID-19), the first UK cohort. J Infect. 2020; 81(2):e59–e61. https://doi.org/10.1016/j.jinf.2020.04.020 PMID: 32353384

77. Turcotte JJ, Meisenberg BR, MacDonald JH, et al. Risk factors for severe illness in hospitalized COVID-19 patients at a regional hospital. PLoS One. 2020; 15(8):e0237558. https://doi.org/10.1371/journal.pone.0237558 PMID: 32785285

78. Wan S, Xiang Y, Fang W, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020; 92(7):797–806. https://doi.org/10.1002/jmv.25783 PMID: 32198776

79. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020: https://doi.org/10.1001/jama.2020.1585 PMID: 32031570

80. Wang R, Pan M, Zhang X, et al. Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis. 2020; 95:421–428. https://doi.org/10.1016/j.ijid.2020.03.070 PMID: 32289566

81. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases With Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020; 71(15):769–777. https://doi.org/10.1093/cid/ciaa272 PMID: 32176772

82. Wei Y, Zeng W, Huang X, et al. Clinical characteristics of 276 hospitalised patients with coronavirus disease 2019 in Zengdu District, Hubei Province: a single-center descriptive study. BMC Infect Dis. 2020; 20(1):549. https://doi.org/10.1186/s12879-020-05252-8 PMID: 32727456

83. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5):475–481. https://doi.org/10.1016/S2213-2600(20)30079-5 PMID: 32105632

84. Yao Q, Wang P, Wang X, et al. A retrospective study of risk factors for severe acute respiratory syndrome coronavirus 2 infections in hospitalized adult patients. Pol Arch Intern Med. 2020; 130(5):390–399. https://doi.org/10.20452/pamw.15312 PMID: 32329978

85. Young BE, Ong SWX, Kalimuddin S, et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA. 2020; 323(15):1488–1494. https://doi.org/10.1001/jama.2020.3204 PMID: 32125362

86. Yu T, Cai S, Zheng Z, et al. Association Between Clinical Manifestations and Prognosis in Patients with COVID-19. Clin Ther. 2020; 42(6):964–972. https://doi.org/10.1016/j.clinthera.2020.04.009 PMID: 32362344

87. Yu X, Sun X, Cui P, et al. Epidemiological and clinical characteristics of 333 confirmed cases with coronavirus disease 2019 in Shanghai, China. Transbound Emerg Dis. 2020; 67(4):1697–1707. https://doi.org/10.1111/ibd.13604 PMID: 32351037

88. Zhan T, Liu M, Tang Y, et al. Retrospective analysis of clinical characteristics of 405 patients with COVID-19. J Int Med Res. 2020; 48(8):30060520949039. https://doi.org/10.1177/030006520949039. PMID: 32865077

89. Zhang G, Zhang J, Wang B, Zhu X, Wang Q, Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective analysis. Respiratory Research. 2020; 21(1):74–74. https://doi.org/10.1186/s12931-020-01338-8 PMID: 32216803

90. Zhang J, Wang X, Jia X, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020; 26(6):767–772. https://doi.org/10.1016/j.cmi.2020.04.012 PMID: 32304745

91. Zhang J-J, Dong X, Cao Y-Y, et al. Clinical characteristics of 140 patients infected by SARS-CoV-2 in Wuhan, China. Allergy. 2020: https://doi.org/10.1111/all.14238 PMID: 32077115

92. Zhao XY, Xu XX, Yin HS, et al. Clinical characteristics of patients with 2019 coronavirus disease in a non-Wuhan area of Hubei Province, China: a retrospective study. BMC Infect Dis. 2020; 20(1):311. https://doi.org/10.1186/s12879-020-05010-w PMID: 32345226

93. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ. 2020; 369:m1443. https://doi.org/10.1136/bmj.m1443 PMID: 32317267

94. Zheng Y, Xiong C, Liu Y, et al. Epidemiological and Clinical Characteristics Analysis of COVID-19 in the Surrounding Areas of Wuhan, Hubei Province in 2020. Pharmacological Research. 2020:104821. https://doi.org/10.1016/j.phrs.2020.104821 PMID: 32360481
95. Qin A. China Raises Coronavirus Death Toll by 50% in Wuhan. The New York Times. April 17, 2020, 2020.

96. National Smoking Rates Correlate Inversely with COVID-19 Mortality. 2020. https://www.medrxiv.org/content/10.1101/2020.06.12.2019285v1. Accessed Oct 6, 2020.

97. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584(7821):430–436. https://doi.org/10.1038/s41586-020-2521-4 PMID: 32640463

98. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: A systemic review and meta-analysis. J Med Virol. 2020. https://doi.org/10.1002/jmv.25889 PMID: 32293753

99. Cai G, Bosse Y, Xiao F, Kheradmand F, Amos CI. Tobacco Smoking Increases the Lung Gene Expression of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020; 201(12):1557–1559. https://doi.org/10.1164/rccm.202003-0693LE PMID: 32329629

100. Clerkin KJ, Fried JA, Raikhelkar J, et al. COVID-19 and Cardiovascular Disease. Circulation. 2020; 141(20):1648–1655. https://doi.org/10.1161/CIRCULATIONAHA.120.046941 PMID: 32200663

101. South AM, Diz DJ, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020; 318(5):H1084–H1090. https://doi.org/10.1152/ajpheart.00217.2020 PMID: 32282825

102. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8(4):e21. https://doi.org/10.1016/S2213-2600(20)30116-8 PMID: 32171062

103. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052 PMID: 32142651

104. Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965):450–454. https://doi.org/10.1038/nature02145 PMID: 14647384

105. Pan W, Zhang J, Wang M, et al. Clinical Features of COVID-19 in Patients With Essential Hypertension and the Impacts of Renin-angiotensin-aldosterone System Inhibitors on the Prognosis of COVID-19 Patients. Hypertension. 2020; 76(3):732–741. https://doi.org/10.1161/HYPERTENSIONAHA.120.15289 PMID: 32654555

106. Zhu L, She ZG, Cheng X, et al. Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab. 2020; 31(6):1068–1077 e1063. https://doi.org/10.1016/j.cmet.2020.04.021 PMID: 32369736

107. Kreutz R, Algharably EAE, Azizi M, et al. Hypertension, the renin-angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc Res. 2020; 116(10):1688–1699. https://doi.org/10.1093/cvr/cvar097 PMID: 32293003

108. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy. 2020.

109. Pinto BGG, Oliveira AER, Singh Y, et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities Associated With Severe COVID-19. J Infect Dis. 2020; 222(4):556–563. https://doi.org/10.1093/infdis/jiaa332 PMID: 32526012

110. Creamer MR, Wang TW, Babb S, et al. Tobacco Product Use and Cessation Indicators Among Adults—United States, 2018. MMWR Morb Mortal Wkly Rep. 2019; 68(45):1013–1019. https://doi.org/10.15585/mmwr.mm6845a2 PMID: 31725711

111. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kruszon-Moran D. Hypertension Prevalence and Control Among Adults: United States, 2015–2016. NCHS Data Brief. 2017(289):1–8. PMID: 29155682

112. United States Centers for Disease Control and Prevention. National Diabetes Statistics Report. Atlanta, GA 2020.

113. Benjamin EJ, Munther P, Alonso A, et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation. 2019; 139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659 PMID: 30700139

114. Biener AI, Decker SL, Rohde F. Prevalence and Treatment of Chronic Obstructive Pulmonary Disease (COPD) in the United States. JAMA. 2019; 322(7):602. https://doi.org/10.1001/jama.2019.10241 PMID: 31429884

115. United States Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2019. https://www.cdc.gov/kidneydisease/pdf/2019_National-Chronic-Kidney-Disease-Fact-Sheet.pdf. Published 2019. Accessed June 7, 2020.
116. Wang Z, Chen Z, Zhang L, et al. Status of Hypertension in China: Results From the China Hypertension Survey, 2012–2015. *Circulation*. 2018; 137(22):2344–2356. https://doi.org/10.1161/CIRCULATIONAHA.117.032380 PMID: 29449338

117. Hu C, Jia W. Diabetes in China: Epidemiology and Genetic Risk Factors and Their Clinical Utility in Personalized Medication. *Diabetes*. 2018; 67(1):3–11. https://doi.org/10.2337/dbi17-0013 PMID: 29263166

118. Wang M, Luo X, Xu S, et al. Trends in smoking prevalence and implication for chronic diseases in China: serial national cross-sectional surveys from 2003 to 2013. *Lancet Respir Med*. 2019; 7(1):35–45. https://doi.org/10.1016/S2213-2600(18)30432-6 PMID: 30482646

119. Ma LY, Chen WW, Gao RL, et al. China cardiovascular diseases report 2018: an updated summary. *J Geriatr Cardiol*. 2020; 17(1):1–8. https://doi.org/10.11909/j.issn.1671-5411.2020.01.001 PMID: 32133031

120. Fang L, Gao P, Bao H, et al. Chronic obstructive pulmonary disease in China: a nationwide prevalence study. *Lancet Respir Med*. 2018; 6(6):421–430. https://doi.org/10.1016/S2213-2600(18)30103-6 PMID: 29650407

121. Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. *Lancet*. 2012; 379(9818):815–822. https://doi.org/10.1016/S0140-6736(12)60033-6 PMID: 22386035