Mechanistic Hypotheses on Colorectal Cancer and Red Meat Intake: A Review

Reggie Surya
Food Technology Department, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
E-mail: reggie.surya@binus.edu

Abstract. Red meat is classified as probably carcinogenic to humans by International Agency for Research on Cancer (IARC) based on evidence on how it may affect the development of colorectal cancer, the third most common cancer worldwide. A plethora of scientific experiments prevailing to establish a positive association between red meat and colorectal cancer suggested different mechanistic hypotheses in order to explain such a phenomenon. This paper aims to discuss major hypotheses related to how red meat consumption may lead to colorectal cancer. Such hypotheses involve the role of natural compounds present in red meat (such as lipid, protein, N-glycolylneuraminic acid and heme iron) and neoformed substances during meat processing (such as heterocyclic amines, polyaromatic hydrocarbons and N-nitroso compounds).

Keywords: colorectal cancer, red meat, hemoglobin

1. Introduction
Colorectal cancer (CRC) is ranked third among the most frequent cancers worldwide, making up approximately 10% of all cancer cases and 9% of global mortality by cancer across the globe. It tends to develop more commonly in men than in women. Its incidence rate is higher in affluent and developed countries, where 60% of cases were reported [1-2]. The survival rate is relatively low, with about 50% of CRC patients survived in 10 years following first diagnostics. Several factors determining the survival rate of CRC patients comprise how advanced the cancer stage is, the possibility of cancer removal, and general health conditions of the patients [3].

World Cancer Research Fund (WCRF) in its latest Continuous Update Project (CUP) in 2018 identified and established risk factors regarding CRC, among which physical activity appears to be the only convincing factor decreasing CRC risk whereas processed meat, alcoholic drinks, body fatness and adult attained height are considered as convincing factors increasing CRC risk. Red meat consumption is categorized a factor that probably increases the risk of CRC [1]. World Health Organization (WHO) defines red meat as all mammalian muscle, including beef, pork, veal, lamb, mutton, goat and horse. In 2015, The International Agency for Research on Cancer (IARC), the cancer agency of WHO, classified red meat as probably carcinogenic to humans (Group 2A) based on strong mechanistic evidence supporting carcinogenic effects of red meat and limited evidence of red meat causing cancer in humans [4]. The latest meta-analysis study regrouping cohort and case control studies was conducted by WCRF and American Institute for Cancer Research (AICR) in order to...
establish a dose-response relationship between CRC and red meat intake. The results concluded an increased CRC risk of 17% (95% CI 1.05-1.31) related to daily red meat intake of 100 g [5].

This paper aims to decipher different major hypotheses on how red meat intake can cause CRC based on existing studies on humans and experiment animals. These hypotheses consist of: (1) diets high in fat correlate positively with insulin resistance or fecal bile acids that promote carcinogenesis, (2) carcinogenic heterocyclic amines and polyaromatic hydrocarbons are formed during meat processing at high temperature, (3) carcinogenic N-nitroso compounds are formed during meat processing and in human body through fermentation by colic bacteria, (4) N-glycolyneuraminic acid naturally present in red meat incites inflammation in the colon, and (5) heme iron naturally present in red meat promotes carcinogenesis directly through its oxidative potential and indirectly through lipoperoxidation that may influence fecal water toxicity [6-7]. All the hypotheses evoked in this paper are summarized in Figure 1.

![Figure 1](image_url)

Figure 1. Summary model for mechanistic hypotheses regarding colorectal cancer and red meat intake

2. Lipid

The implication of lipid as an etiologic factor for CRC is related to the concept of diet rich in fat increasing the secretion of abrasive bile acid in intestinal lumen [8]. Besides, certain bacteria present in the colon are able to degrade bile acids into carcinogenic N-nitroso compounds (NOC) [9]. High-fat diet is closely related to obesity and insulin resistance, convincing risk factors of CRC [1]. Insulin resistance is associated with the increase of tumor supporting factors in the blood such as free fatty acids, glucose, insulin and IGF-1 (insulin-like growth factor 1) that may promote carcinogenesis by augmenting the proliferation and reducing the apoptosis of cancer cells [10-11].

To demonstrate the link between high-fat diet and colon tumorigenesis, several *in vivo* experiments using rats have been conducted. Some of them prevailed to show such a link [12-15] while some of them failed [16-21], resulting in puzzling discrepancy. Concerning epidemiological studies on high-fat diet and CRC in humans, the results are quite controversial. The latest meta-analysis study summarizing 18 studies reported that dietary fats and fatty acids had no effects on the risk of CRC in humans [22].
3. Heterocyclic amines and polycyclic aromatic hydrocarbons
Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds formed during meat processing at high temperature. HCAs are generated through pyrolysis of create(ni)ne with certain amino acids at high temperature, for instance during cooking. Fried, broiled and barbecued meat has been shown to contain high amounts of HCAs. The most abundant HCAs in meat appear to be2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,9-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx) [23-25]. HCAs have been reported in vivo to induce colon cancer in rodents and monkeys [26]. PAHs are generated from incomplete combustion of organic compounds. Benzo[a]pyrene (BaP), the most well-studied PAH, is mutagenic and carcinogenic to animals. In humans, BaP is able to form DNA adducts in colon cells, thus disrupting their genetic processes [27]. Following Phase I detoxification system involving cytochromes p450 (CYP1A1 and CYP1A2), transformed BaP turns out to be able to cause mutations on p53, a tumor suppressor gene [28]. In most cases, PAHs enter the human body through consuming smoked meat (notably barbecued meat) and inhaling tobacco smoke [29]. BaP has also been shown to induce colon tumorigenesis in mice [30-31].

Some epidemiological studies on correlation between HCAs, PAHs and CRC in humans showed positive correlation [32-34] while some did not [35-36]. However, the latest meta-analysis concluded a convincing association of HCAs and BaP with CRC risk as follows: PhIP relative risk of 1.20 (95% CI 1.12-1.29), MeIQx relative risk of 1.20 (95% CI 1.08-1.34) and BaP relative risk of 1.15 (95% CI 1.04-1.27) [37]. In addition, polymorphisms on gene CYP1 A2 (cytochrome p450 1A2, a phase I enzyme) and NTA1 (N-acetyl transferase, a phase II enzyme) were shown to result in individuals that were more prone to colorectal carcinogenesis related to cooked meat compared to those not exerting such phenomena [38-39].

4. N-nitroso compounds
Processed meat products include bacon, ham, sausages, jerky, salami, corned beef and meat-based sauces. WHO has classified processed meat as carcinogenic to humans (Group 1 carcinogen) [4]. Nitrite (NO₂⁻) in the form of its salt is often added in the production of processed meat as a curing agent; to enhance color and flavor, prevent spoilage and inhibit microbial growth. Despite its advantageous properties, nitrite can generate carcinogenic N-nitroso compounds (NOCs) through a reaction with secondary amines and N-alkylamides. Some well-studied NOCs are nitrosamides, nitrosamines, nitrosyl iron (FeNO) and S-nitrosothiols. NOCs are able to alkylate DNA bases, thus disrupting normal DNA functions and promoting tumorigenesis [40]. Humans can be exposed to NOCs either exogenously or endogenously. The exogenous route consists mainly in consuming processed meats, smoked fish, cheese or beers in which NOCs are already present [41]. Endogenously, intestinal flora are able to derive NOCs from the ingested nitrates via amino acid decarboxylation [40]. Heme present in red meat can also facilitate the formation of NOCs in human gastrointestinal tract [42]. Since the formation of NOCs in the processed meat involves oxidation, ascorbic acid, due to its antioxidant properties, is often added to prevent the formation of NOCs [43].

Studies in laboratory animals reported that processed meat intake resulted in high concentration of NOCs excreted in the feces, but without any evidence of colon tumorigenesis [44-47]. In humans, the increase of fecal NOCs following the consumption of red meat and processed meat was associated with the risk of rectal cancer [40, 48-50]. However, the latest meta-analysis study reported no significant association between dietary nitrite with CRC [51]. IARC categorized ingested nitrite under conditions that may result in endogenous nitrosation in as probably carcinogenic to humans (Group 2A)[4, 52].

5. N-glycolylneuraminic acid
Sialic acids are monosaccharides that are abundantly present on vertebrate cell surfaces that are involved in cell-cell and cell-extracellular matrix interactions. Two derivatives of sialic acids include...
N-acetylneuraminic acid (NANA) and N-glycolyneuraminic acid (NGNA). NANA can be converted to NGNA by enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH) [53-54].

The gene expressing CMAH has been irreversibly mutated in humans throughout the evolution and, thus, human cell surface contains only NANA but not NGNA [55]. Nevertheless, NGNA is present on the cell surface of other mammals, including those providing red meat. Despite the human genetical inability to synthesize NGNA, this molecule is somehow detected in the surface of human cells, especially in malignant tissues on which NGNA can be found in extremely higher amount. The intake of mammalian muscle (including red meat) is suspected to be the source of NGNA incorporation in human tissues. Since NGNA is not recognized by human immune system, incorporated NGNA triggers the production of anti-NGNA auto-antibodies that persistently provokes inflammatory reactions in the colon known as xenosialitis [53]. Studies using CMAH-KO mice have demonstrated that xenosialitis due to NGNA ingestion was positively linked to colon tumorigenesis [56-57].

6. Heme iron
The majority of iron in human body exists in the form of heme iron constituting hemoglobin, the red pigment responsible for meat color [58-59]. Heme iron has been shown to possess cytotoxic and hyperproliferative properties towards colonic cells in rats [60]. Luminal iron is able to govern intestinal tumorigenesis following the loss of Adenomatous polyposis coli (APC) gene that marks the transformation of normal cells into preneoplastic ones [61]. The latest meta-analysis study revealed a positive association between heme iron and CRC with a relative risk of 1.15 (95% CI 1.04-1.26) [62]. Interestingly, an in vivo study attempted to weigh the relative contribution of three different hypotheses on CRC and red meat intake (heme iron, NOCs and HCAs) and its results affirmed that only heme iron was associated with the tumor promotion in the colon of rats without any additive or synergistic effects with HCAs or NOCs [47].

In general, heme iron can mediate CRC through three different mechanisms: (1) heme itself is able to generate oxidative stress, (2) heme induces lipid peroxidation in red meat and/or in the gut, thus leading to the formation of CRC-promoting compounds, and 3) heme catalyzes the formation of NOCs in human gut [7, 62].

6.1. Direct effects of heme on tumorigenesis
Hemoglobin has been shown to generate free radicals and exert genotoxic properties when cultured with human colorectal carcinoma cells (HT29 and SW480) and primoculture of colonocytes [63-64]. Generally, such a stress is compensated by cellular hyperproliferation, a risk factor of cancer [65].

Heme iron is a potent oxidant that generates oxidative stress through the formation of extra- and intracellular reactive oxygen species (ROS). When uptaken into cells, heme is degraded by enzyme heme oxygenase-1 (HO-1), releasing biliverdin, carbon monoxide (CO) and ferrous ion(Fe²⁺). Biliverdin is then rapidly converted to bilirubin by biliverdin reductase. The neofomed bilirubin can counteract ROS owing to its powerful antioxidant activity. Fe²⁺, in the presence of ferrooxidase, reduces ROS while being oxidized to less reactive ferric ions (Fe³⁺). However, in case of insufficient bilirubin, Fe²⁺ can react with endogenous hydrogen peroxide (H₂O₂), thus generating ROS that can provoke DNA damage and mutation [66-68]. This mechanism could explain how heme may induce CRC in a direct manner [69].

6.2. Indirect effects of heme on tumorigenesis
Indirectly, heme can promote colorectal carcinogenesis by catalyzing endogenous reactions such as lipid peroxidation and N-nitrosation, thus resulting in the formation of neoformed cyto- and genotoxic compounds that could be responsible for colorectal carcinogenesis. In general, the deleterious effects of such compounds can be inhibited by calcium or chlorophyll by heme-trapping mechanism [70-74].

As previously mentioned, following the consumption of processed meat, heme can catalyze the reaction between nitrites and amines or amides to form endogenous NOCs. Vitamin C and vitamin E
are able to inhibit the reaction [75-78]. NOCs exert their genotoxic properties by inducing DNA damage and mutation. For instance, in rat colon carcinoma, N-methyl-N-nitrosurea can trigger G→A transitions in the oncogenic gene K-RAS [79]. Moreover, nitrosated glycine induced mutation in tumor suppressor gene p53 in yeast[80]. Mutations on both K-RAS and p53 genes are involved in the development of colon cell malignancy [81].

As a potent oxidant, heme is able to catalyze the oxidation of polyunsaturated fatty acids (PUFAs) known as lipid peroxidation. Such a reaction leads to the formation of a myriad of reactive compounds, including but not limited to aldehydes. Some of the major aldehyde products derived from lipid peroxidation found in the fecal extract of rats fed with PUFA and heme iron are malon dialdehyde (MDA), 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) [82-84]. While MDA can form DNA adducts [85-87], HNE appears to be the most cytotoxic towards preneoplastic colon cells compared to MDA and HHE[88]. HNE has been demonstrated to be more cytotoxic towards normal colon cells compared to preneoplastic ones harboring mutation on APC gene, thus favoring CRC promotion via a Darwinian natural selection-like mechanism [47]. This process has been suggested to involve gut microbiota and Nrf2 (nuclear factor erythroid 2-related factor 2), a transcription factor regulating the expression of antioxidant proteins that protect against oxidative damage[88-90]. Interestingly, consuming food rich in antioxidants such as α-tocopherol and polyphenols has been scientifically proven to limit lipid peroxidation in human gut [91-93].

7. Conclusions
The decision taken by IARC to classify red meat as probably carcinogenic to humans has been a milestone in public health. Based on the existing meta-analysis studies, the carcinogenicity of red meat is mainly due to its heme iron, meaning that red meat possesses carcinogenic properties by its nature, independently on the cooking method. Processing red meat at high temperature can also produce newly formed carcinogenic molecules such as heterocyclic amines and polyaromatic hydrocarbons that have been proven positively associated with colorectal cancer. Despite being probably carcinogenic, it should be realized that red meat also possesses interesting nutritional values beneficial for human health. Removing red meat totally from diet would not be the solution to reduce the incidence of colorectal cancer in a population since it might lead to the increase of undernourished individuals in the population. Public health recommendations and their socialization should be undertaken. WCRF has set a dietary goal recommendation on limiting individual weekly red meat intake to no more than 500 g.

References
[1] World Cancer Research Fund/American Institute for Cancer Research 2018 Diet, Nutrition, Physical Activity and Cancer: A Global Perspective – The Third Expert Report (London: World Cancer Research Fund International)
[2] International Agency for Research on Cancer 2014 World Cancer Report 2014 (Geneva: WHO Press)
[3] National Cancer Institute 2019 https://www.cancer.gov/types/colorectal (retrieved on 9 August 2019)
[4] IARC 2018 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (Geneva: WHO Press)
[5] Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, Norat T 2011 PLoS One 6 e20456
[6] Samraj AN, Pearce OM, Laubli H, Crittenden AN, Bergfeld AK, Banda K, Gregg CJ, Bingman AE, Secrest P, Diaz SL, Varki NM, Varki A 2015 Proc Natl Acad Sci USA 112 542-7.
[7] Santarelli RL, Pierre F, Corpet DE 2008 Nutr Cancer 60 131-44.
[8] Bruce WR 1987 Cancer Res 47 4237-42.
[9] Larsson SC, Wolk A 2006 Int J Cancer 119 2657-64.
[10] Calle EE, Thun MJ 2004 Nat Rev Cancer 4 579-91.
[11] Calle EE, Kaaks R 2004 Oncogene 23 6365-78.
[12] Pence BC, Landers M, Dunn DM, Shen CL, Miller MF 1995 Carcinogenesis 16 1157-60.
[13] Bull AW, Soulier BK, Wilson PS, Hayden MT, Nigro ND 1979 Cancer Res 39 4956-9.
[14] Reddy AJ, George ES, Roberts SK, Tierney AC 1976 J Natl Cancer Inst, 57, 567-9.
[15] Kumar SP, Roy SJ, Tokumoto K, Reddy BS 1990 Cancer Res 50 5761-6.
[16] Nauss KM, Locniskar M, Newberne PM 1983 Cancer Res 43 4083-90.
[17] Nutter RL, Gridley DS, Kettering JD, Goude AG, Slater JM 1983 J Natl Cancer Inst 71 867-74.
[18] Clinton SK, Imrey PB, Mangian HJ, Nandkumar S, Visek WJ 1992 Cancer Res 52 857-65.
[19] Sesink AL, Tertoms DS, Kleibeuker JH, Van Der Meer R 2000 Carcinogenesis 21 1909-15.
[20] Khil J, Gallaher DD 2004 Nutr Cancer 50 55-62.
[21] Zhao LP, Kushi L, Klein RD, Prentice RL 1991 Nutr Cancer 15 169-77.
[22] Kim M, Park K 2018 Nutrients 10 1963.
[23] Sinha R, Knize MG, Salmon CP, Brown ED, Rhodes D, Felton JS, Levander OA, Rothman N 1998 Food Chem Toxicol 36 279-87.
[24] Turesky RJ 2007 Toxicol Lett 168 219-27.
[25] Skog KI, Johansson MA, Jagerstad MI 1998 Food Chem Toxicol 36 879-96.
[26] Sugimura T, Wakabayashi K, Nakagama H, Nagao M 2004 Cancer Sci 95 290-9.
[27] Alexandrov K, Rojas M, Kadlubar FF, Lang NP, Bartsch H 1996 Carcinogenesis 17 2081-3.
[28] Krais AM, Muhlbauer KR, Kucab JE, Chinbuah H, Cornelius MG, Wei QX, Hollstein M, Phillips DH, Arlt VM, Schmeiser HH 2014 Toxicol In Vitro, 29, 34-43.
[29] Phillips DH 1999 Mutat Res 443 139-47.
[30] O'Neill IK, Goldberg MT, el Ghissassi F, Rojas-Moreno M 1991 Carcinogenesis 12 175-80.
[31] Tudek B, Bird RP, Bruce WR 1989 Cancer Res 49 1236-40.
[32] Cross AJ 2010 Food Nutr Sci 3 905-913.
[33] Zheng W, Lee SA 2009 Nutr Cancer 61 437-46.
[34] Abid Z, Cross AJ, Sinha R 2014 Am J Clin Nutr 100 Suppl 1 386S-93S.
[35] Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L 2012 J Cancer 131 E1125-33.
[36] Tabatabaei SM, Heyworth JS, Knuiman MW, Fritschi L 2010 Cancer Epidemiol Biomarkers Prev, 19, 3182-4.
[37] Gongora VM, Matthes KL, Castano PR, Linseisen J, Rohrmann S 2018 Cancer Epidemiology, Biomarkers and Prevention 27 99-109.
[38] Gilsing AM, Berndt SI, Ruder EH, Graubard BI, Ferrucci LM, Burdett L, Weissfeld JL, Cross AJ, Sinha R 2012 Carcinogenesis 33 1332-9.
[39] Wang J et al. 2012 Int J Cancer, 130, 1898-907.
[40] Kuhnle G, Bingham SA 2007 Biochem Soc Trans 35 1355-7.
[41] Lijinsky W 1999 Mutat Res 443 129-38.
[42] Cross AJ, Pollock JR, Bingham SA 2003 Cancer Res 63 2358-60.
[43] Cross AJ, Sinha R 2004 Mol Mutagen 44 44-55.
[44] Mirvish SS, Haorah J, Zhou L, Hartman M, Morris CR, Clapper ML 2003 Carcinogenesis 24 595-603.
[45] Haorah J, Zhou L, Wang X, Xu G, Mirvish SS 2001 J Agric Food Chem 49 6068-78.
[46] Parnaud G, Pignatelli B, Peiffer G, Taché S, Corpet DE 2000 Nutr Cancer 38 74-80.
[47] Bastide NM et al. FH 2015 Cancer Res 75 870-9
[48] Bingham SA, Hughes R, Cross AJ 2002 J Nutr 132 3522S-3525S.
[49] Jooen AM, Kuhnle GG, Aspinall SM, Barrow TM, Lecommandur E, Azqueta A, Collins AR, Bingham SA 2009 Carcinogenesis 30 1402-7.
[50] Zhu Y, Wang PP, Zhao J, Green R, Sun Z, Roehboothan B, Squires J, Buehler S, Dicks E, Zhao J, Cotterchio M, Campbell PT, Jain M, Parfrey PS, McLaughlin JR 2014 Br J Nutr 111 1109-17.
[51] Xie L, Mo M, Jia HX, Liang F, Yuan J, Zhu J 2016 Oncotarget 7 56915-32.
[52] Bouvard V, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, Benbrahim-Tallaa L, Guha N, Mattock H, Straif K 2015 Lancet Oncol 16 1599-600.
[53] Samraj AN, Laubli H, Varki N, Varki A 2014 Oncol 4 33.
[54] Samraj AN, Pearce OM, Laubli H, Crittenden AN, Bergfeld AK, Banda K, Gregg CJ, Bingman AE, Secrest P, Diaz SL, Varki NM, Varki A 2015 Proc Natl Acad Sci U S A 112 542-7.
[55] Varki A 2009 Glycocon J 26 231-45.
[56] Hedlund M, Padler-Karavan V, Varki NM, Varki A 2008 Proc Natl Acad Sci U S A 105 18936-41.
[57] Banda K, Gregg CJ, Chow R, Varki NM, Varki A 2012 J Biol Chem 287 28852-64.
[58] Larsen R, Gouveia Z, Soares MP, Gozzelino R 2012 Front Pharmacol 3 77.
[59] Khan AA, Quigley JG 2011 Biochim Biophys Acta 1813 668-82.
[60] Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R 1999 Cancer Res 59 5704-9.
[61] Radulescu S et al. 2012 Cell Rep 2 270-82.
[62] Bastide NM, Pierre FH, Corpet DE 2011 Cancer Prev Res (Phila) 4 177-84.
[63] Gle M, Klenow S, Sauer J, Wegewitz U, Richter K, Pool-Zobel BL 2006 Mutat Res 594 162-71.
[64] Angeli JP, Garcia CC, Sena F, Freitas FP, Miyamoto S, Medeiros MH, Di Mascio P 2011 Free Radic Biol Med 51 503-15.
[65] Ijsinnessager N, de Wit N, Muller M, Van der Meer R 2012 PLoS One 7 e43260.
[66] Edmunds MC, Czopek A, Wigmore SJ, Kluth DC 2014 Am J Physiol Regul Integr Comp Physiol 306 R10-22.
[67] Ryter SW, Alam J, Choi AM 2006 Physiol Rev 86 583-650.
[68] Kikuchi G, Yoshida T, Noguchi M 2005 Biochem Biophys Res Commun 338 558-67.
[69] Ishikawa S, Tamaki S, Ohata M, Arihara K, Itoh M 2010 Mol Nutr Food Res 54 1182-91.
[70] Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R 2001 Carcinogenesis 22 1653-9.
[71] Pierre F, Tächê S, Petit CR, Van der Meer R, Corpet DE 2003 Carcinogenesis 24 1683-90.
[72] Pierre F, Santarelli R, Tächê S, Guéraud F, Corpet DE 2008 Br J Nutr 99 1000-6.
[73] de Vogel J, Jonker-Termont DS, Katan MB, Van der Meer R 2005 J Nutr 135 1995-2000.
[74] de Vogel J, Jonker-Termont DS, van Lieshout 2005 Carcinogenesis 26 387-93.
[75] Mirvish SS 1975 Toxicol Appl Pharmacol 31 325-51.
[76] Mirvish SS 1975 Ann NY Acad Sci 258 175-80.
[77] Mirvish SS 1986 Cancer 58 1842-50.
[78] Hughes R, Cross AJ, Pollock JR, Bingham S 2001 Carcinogenesis 22 199-202.
[79] Jacoby RF, Alexander RJ, Raicht RF, Brasitus TA 1992 Carcinogenesis 13 45-9.
[80] Lewin MH, Bailey N, Bandaletova T, Bowman R, Cross AJ, Pollock J, Shuker DE, Bingham SA 2006 Cancer Res 66 1859-65.
[81] Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D 2009 Nat Rev Cancer 9 489-99.
[82] Ayala A, Monoz MF, Arguelles S 2014 Oxid Med Cell Longev 2014 360438.
[83] Marnett LJ 2000 Carcinogenesis 21 361-70.
[84] Gêraud F et al. 2015 Free Radic Biol Med 83 192-200.
[85] Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ 2003 Biol Chem 278 31426-33.
[86] Marnett LJ 1999 Mutat Res 424 83-95.
[87] Basu AK, Marnett LJ 1983 Carcinogenesis 4 331-3.
[88] Dalleau S, Baradat M, Guéraud F, Huc L 2013 Cell Death Differ 20 1615-30.
[89] Martin OC, Lin C, Naud N, Tächê S, Raymond-Letron I, Corpet DE, Pierre FH 2015 Nutr Cancer 67 119-25.
[90] Surya R et al. 2016 Carcinogenesis 37 635-45.
[91] Prasad KN, Edwards-Prasad J 1992 Am Coll Nutr 11 487-500.
[92] Ross JA, Kasum CM 2002 Ann Rev Nutr 22 19-34.
[93] Gorelik S, Ligumsky M, Kohen R, Kanner J 2008 FASEB J 22 41-6.