Comparison of hemostatic efficacy and cytotoxicity of three ferric subsulfate- and chitosan-based styptics in different formulations using a rat tail bleeding model

Jae-Young Byun¹, Soojung Lee²,³, Jeong Ik Lee²,³,⁴, Hun-Young Yoon¹,²,*

Departments of ¹Veterinary Surgery and ⁴Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea

Regeniks Co., Ltd. Seoul, Korea

³Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Korea

(Received: May 18, 2018; Accepted: July 12, 2018)

Abstract: This study was conducted to compare the hemostatic efficacy of three ferric subsulfate- and chitosan-based styptics as a powder and a gel containing ferric subsulfate and chitosan (FSC-PO and FSC-G, respectively) and a soaked pad containing ferric subsulfate and lidocaine (FSL-SP) using a rat tail bleeding model. The cytotoxicity of the styptics against L-929 mouse fibroblasts was also evaluated using a cell counting kit-8 assay. Four groups of 10 rats each were assigned to the three different styptics and a non-treated control groups. Rat tail tips were transected, after which styptics were applied with pressure. The wounds were observed for hemostasis for 3 min, then irrigated with saline to check for recurrent hemorrhage. L-929 mouse fibroblasts were exposed to extracts of the styptics (100 mg/mL) and their dilutions (1:10, 1:100, and 1:1,000). FSC-PO and FSC-G more effectively controlled initial hemorrhage (p = 0.033). Additionally, FSC-PO and FSC-G more effectively maintained hemostasis than the control group (p = 0.02 and p < 0.01, respectively). However, all styptics showed enhanced cytotoxicity against L-929 cells in a dose-dependent manner. Therefore, although FSC-PO and FSC-G would be recommended to control hemorrhage, the benefits of styptics must be balanced against the clinical significance of their cytotoxicity.

Keywords: chitosan, ferric subsulfate solution, hemostasis, hemostatics, immunologic cytotoxicity

Introduction

Hemorrhage continues to be a leading cause of preventable death in patients with trauma in both human and veterinary medicine [21, 24]. Uncontrolled hemorrhage renders the patient more vulnerable to hypothermia, acidosis, and coagulopathy and increases the risk of morbidity and late mortality from sepsis and multiple organ failure [21].

The traditional theoretical approach to the hemostatic system divides it into primary hemostasis (vasoconstriction and platelet plug formation), secondary hemostasis (coagulation), and fibrinolysis (breakdown of the clot) [5, 27]. Vasoconstriction is the first mechanism of hemostasis controlled by the damaged vascular endothelium, which reduces the blood flow through the affected area and limits the amount of blood loss [5]. Primary hemostasis is the process whereby circulating platelets interact with the vascular surface, results in platelet activation and release of von Willebrand factor, which promotes adherence of platelets to the vessel wall [10, 38]. Secondary hemostasis is the process by which coagulation factors are activated and greatly enhance fibrin formation [5]. Consequently, blood clots are formed and stabilized [10].

Styptics is a specific locally acting hemostatic agent that works by contracting tissue or blood vessels. As a styptic agent, ferric subsulfate has been widely used for minor surgical procedures or small wounds in dermatology, dentistry, and gynecology in human medicine over the past few years [32, 37]. It is thought to occlude vessels via protein precipitation through the dual action of its acidity and the oxidizing capacity of its subsulfate group [11, 36]. It is effective in coagulating blood at the site of skin or mucosal biopsies [36], or it may be used for crown and bridge impressions [12]. Its low pH resists bacterial contamination [32]. However, ferric subsulfate may cause refractory pigmentation of skin and an inflammatory reaction that may persist for weeks at the site of damage [29].

Poly-N-acetyl glucosamine, also known as chitin or chitosan, is a naturally occurring polysaccharide found in the exoskeleton of crustaceans [13, 32]. Chitosan has been widely studied in the biomedical field and found to be highly...
biocompatible, biodegradable, and nontoxic [2]. The hemo-
static properties of chitosan involve agglutination of red
blood cells as well as vasoconstriction [14, 34]. Numerous
studies have demonstrated its effectiveness as a hemostatic
agent in controlling arterial and venous hemorrhage, as well
as in coagulopathy in patients [1, 7, 30].

Cell culture systems are convenient, controllable, and
repeatable methods to assess the biological response of
chemicals [28]. A number of classical in vitro assays using
reagents such as thiazolyl blue tetrazolium bromide (MTT
assay), lactic dehydrogenase (LDH assay), and tetrazolium
salts (WST-8; cell counting kit [CCK]-8 assay), are widely
used for the assessment of the cytotoxicity [20]. The CCK-8
assay is the most common in vitro nanotoxicity test and was
used in the current study [20]. It detects living cells based on
the amount of formazan formed by active mitochondria [28].

Styptics is commonly used in veterinary medicine to stop
bleeding from nail and beak trimming, and small wounds on
the skin. Although styptic agents are applied directly to the
blood vessels or tissues, to the best of our knowledge, there
is no published report evaluating the efficacy or cytotoxicity
of currently used agents or those under development.

Therefore, the aim of this study was to compare the hemo-
static efficacy of three ferric subsulfate- and chitosan-based
styptics using a rat tail bleeding model, and evaluate their
cytotoxicity against L-929 mouse fibroblasts using the CCK-
8 assay.

Materials and Methods

Animals

Forty Sprague-Dawley female rats weighing 96 to 134 g,
age 4 weeks, were purchased from Orient Bio (Korea) and
acclimatized to the environment for 1 week. They were housed
individually in cages under constant environmental condi-
tions (23 ± 2°C, temperature; 55 ± 5% humidity; and 12-h
light/dark cycle) with free access to food and water. This
study was reviewed and approved by the Institutional Ani-
mal Care and Use Committee of Konkuk University (approval
No. KU16186-1 and KU17111-1).

Styptic materials

As the test substances, three different styptic products for
animals that have been currently used or under study were
selected. The three types of styptics as a powder and a gel
containing ferric subsulfate and chitosan (FSC-PO and FSC-
G, respectively), and a pad soaked in a solution containing
ferric subsulfate and lidocaine (FSL-SP) were used.

In vivo evaluation of hemostatic efficacy

A previously reported rat-tail bleeding model [6] was used
with modifications. The animals were randomly assigned to
groups of 10 rats each as the three different styptics and
control groups. The rats were anesthetized by intraperitoneal
injections of 40 to 75 mg/kg ketamine (Yuhan, Korea) and 5
to 10 mg/kg xylazine (Bayer Korea, Korea). Each rat was
placed in sternal recumbency. Tails of rats with a diameter of
2 mm were transected (Fig. 1A), and 50 mg of each test
agent was applied to the wounds with pressure of 0.1 N using
a mechanical push-pull gauge (NK-10; Aliyiqi, China) for 10
sec (Fig. 1B). In the control group, a comparable degree of
compression was applied without any styptic. The wounds
were observed for initial hemostasis by blotting with What-
man No. 1 filter paper at intervals of 10 sec for up to 3 min
(Fig. 1C). Care was taken to avoid detaching the blood clots
formed on the cut surface. Three minutes after complete
hemostasis, the wounds were irrigated with 10 mL lukewarm
normal saline for 10 sec to check recurrent hemorrhage. The
rats were categorized as having achieved hemostasis or non-
hemostasis after the application of pressure, and hemor-
rhagic or non-hemorrhagic after saline irrigation, respectively.

Fig. 1. Evaluation of hemostatic efficacy of three styptics using a rat tail bleeding model. (A) Tails of rats at a diameter of 2 mm were
transected. (B) Each test agent (50 mg) was applied to the wounds with pressure of 0.1 N using mechanical push-pull gauge. In the
control group, equal compression was applied without any styptic. (C) Wounds were observed for initial hemostasis by blotting with
Whatman No. 1 filter paper at intervals of 10 sec for up to 3 min.
In vitro analysis of the cytotoxicity

Preparation of extracts: Styptic agents were incubated in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco, USA) supplemented with 10% fetal bovine serum (FBS, GenKen, USA) and 1% antibiotic-antimycotic solution (Antianti 100X; Gibco) for 24 h at 37°C. The extract was prepared according to the International Standards Organization (ISO) 10993-5 [16] and 10993-12 [18] (ratio of specimen weight to extraction medium volume was 100 mg/mL) and designated as 100%. The 100% extract was serially diluted with the same medium to 1:10, 1:100, and 1:1,000 (10%, 1%, and 0.1%, respectively). For cytotoxicity testing, all extracts were centrifuged at 572 x g for 5 min and then filtered using a sterile 0.22 µm syringe filter.

Cell culture: L-929 mouse fibroblasts (Korean Cell Line Bank, Korea) were grown in RPMI 1640 medium with 10% FBS and 1% antibiotic-antimycotic solution in a humidified atmosphere of 5% CO2 at 37°C. The cells were subcultured every 2–3 days, seeded in 96-well plates (SPL Life Sciences, Korea) at a density of 10,000 cells/100 µL of medium per well, and incubated for 24 h to allow attachment.

Cell viability (CCK-8 assay): The viability of L-929 cells was detected using the CCK-8 assay (Abbkine, China) according to the manufacturer’s recommendations. For treatments, the growth medium was gently removed, and 100 µL of the undiluted (100%) and three (10%, 1%, and 0.1%) concentrations of the extracts were added separately to the L-929 cells. Furthermore, 0.9% normal saline and 1% sodium hydroxide (NaOH) served as the negative and positive controls, respectively. After a 24 h exposure, the medium was replaced with fresh medium, and 10 µL CCK-8 solution was added to each well, followed by a 2 h incubation. The optical density (OD) of each well was read at a wavelength of 450 nm to assess the cell viability using a plate reader (SpectraMax 190; Molecular Devices, USA). The cell viability was calculated as follows:

\[
\text{Cell viability (\%)} = \frac{\text{OD(experiment)} - \text{OD(blank)}}{\text{OD(control)} - \text{OD(blank)}} \times 100.
\]

Statistical analysis

All statistical analyses were performed using the SPSS Statistics 24.0 (IBM, USA) for Windows. All data were tested for normality using the Shapiro-Wilk test. Fisher’s exact test was performed to identify significant differences between the results of the efficacy of hemostasis. Cell viability data are expressed as means ± SD, and were analyzed using a one-way analysis of variance (ANOVA) followed by a multiple comparison test using the Tukey honest significant difference post-hoc test to investigate statistically significant differences in cytotoxicity among groups. P values < 0.05 indicated statistically significant differences for all comparisons.

Results

Hemostatic efficacy

The total outcomes of the hemostatic analysis for all the styptic and control groups are shown in Table 1. Initial hemostasis was achieved in 10, 10, and 5 rats among the FSC-PO, FSC-G, and FSL-SP rats in each group. No initial hemostasis was observed in the control group. Hemostasis was improved with all styptics compared to the control group (p < 0.01). The rate of initial hemostasis in the FSL-SP group

Table 1. Hemostatic outcomes of styptic treatment for tail bleeding in rats

| Outcome                  | FSC-PO (n = 10) | FSC-G (n = 10) | FSL-SP (n = 10) | Control (n = 10) |
|--------------------------|-----------------|----------------|-----------------|-----------------|
| Initial hemostasis*      | 10/10           | 10/10          | 5/10            | 0/10            |
| Recurrent hemorrhage†     | 1/10            | 0/10           | 4/10            | 7/10            |

Data were analyzed by Fisher’s exact test compared with *control (p < 0.05) and †FSL-SP (p < 0.05). FSC-PO, powder containing ferric subsulfate and chitosan; FSC-G, gel containing ferric subsulfate and chitosan; FSL-SP, soaked pad containing ferric subsulfate and lidocaine. *Initial hemostasis is considered to occur when bleeding stops within 3 min after compression. †Recurrent hemorrhage is considered to occur when re-bleeding is observed when the wound is irrigated with saline 3 min after complete hemostasis.
was significantly lower than that in the FSC-PO and FSC-G groups \((p = 0.033)\). Recurrent hemorrhage after saline irrigation developed in one, four, and seven rats in the FSC-PO, FSL-SP, and control groups, respectively. All rats in the FSC-G treatment group did not develop recurrent hemorrhage \((n = 10)\). Hemostasis was significantly maintained in the FSC-PO and FSC-G groups compared with the control group \((p = 0.02 \text{ and } p < 0.01, \text{ respectively})\).

### Cell viability

The results of the effects of various concentrations of FSC-PO, FSC-G, and FSL-SP on the L-929 cells are displayed in Table 2. As compared with the normal saline-treated group, all the styptic-treated cells showed a significant reduction in viability \((p < 0.01, \text{ Fig. 2})\). The percentages of viable cells varied from 85.04\% to 5.88\%, 79.33\% to 7.34\%, and 70.12\% to 8.01\% in the FSC-PO, FSC-G, and FSL-SP groups, respectively depending on the concentrations. All test agents induced dose-dependent cytotoxicity against L-929 cells \((p < 0.05, \text{ Fig. 2})\). At the same concentration, the percentage of viable cells in the FSL-SP was significantly lower than that in the FSC-G 10\% extract \((p = 0.016)\) and FSC-PO 0.1\% extract \((p = 0.042, \text{ Fig. 3})\).

### Discussion

In the present study, the three ferric subsulfate-containing styptics tested effectively ameliorated hemorrhage in a rat tail bleeding model. Since the French pharmacist Leon Monsel pioneered the discovery of the styptic qualities of ferric subsulfate in 1852, ferric subsulfate has been used as a coagulating and hemostatic agent for minor surgical procedures in dermatology, dentistry, and gynecology [12, 37]. Although the exact hemostatic mechanism of ferric subsulfate is still controversial, it is believed to be due to the denaturation and agglutination of blood proteins by ferric ions [29]. The reaction of blood with ferric and sulfate ions and the acidic pH of ferric subsulfate solution result in the agglutination of blood proteins, which then form plugs that occlude the capillary orifices [27, 29].

The hemostatic efficacy of ferric subsulfate solution can be augmented by increasing its viscosity [25, 32]. Kuwahara et al. [25] stated that thicker material enhanced coagulation and control of wounds created during dermatologic surgery than thinner material did, and recommended leaving the container of ferric subsulfate solution open to create a thick paste over time. In the present study, three styptics were used in different formulations, and FSL-SP was soaked in a runny solution that showed the lowest viscosity among the three styptic agents when applied to the wounds. FSL-SP showed less efficacy than FSC-PO and FSC-G did in controlling initial hemorrhage. This result supports the previous study by Kuwahara et al. [25] showing that the hemostatic efficacy of ferric subsulfate is viscosity-dependent.

In this study, the styptics containing chitosan were effec-

### Table 2. L-929 cell viability values (mean ± SD) of cell counting kit-8 assay

| Groups          | Concentration (%) | Percentage of viable cell (%)* |
|-----------------|-------------------|-------------------------------|
| Normal saline   | 0.9               | 100 ± 3.81                    |
| NaOH            | 1                 | 1.76 ± 0.66*                  |
|                 | 100               | 5.88 ± 2.73*                  |
| FSC-PO          | 1                 | 30.13 ± 7.83*                 |
|                 | 0.1               | 53.33 ± 6.64*                 |
|                 | 100               | 85.04 ± 4.57*                 |
| FSC-G           | 10                | 7.34 ± 2.98*                  |
|                 | 1                 | 52.45 ± 8.58*                 |
|                 | 0.1               | 79.33 ± 7.81*                 |
|                 | 100               | 8.01 ± 2.20*                  |
| FSL-SP          | 10                | 20.64 ± 6.56*                 |
|                 | 1                 | 51.58 ± 3.55*                 |
|                 | 0.1               | 70.12 ± 8.83*                 |

*Data are mean ± SD. It was analyzed Tukey honest significant difference test compared with a normal saline-treated control group \((p < 0.01)\), b next lower concentration \((p < 0.05)\), c FSC-G 10% extract \((p < 0.05)\), and d FSC-PO 0.1% extract \((p < 0.05)\).

![Fig. 3. Viability of L-929 cells exposed to different concentrations of each styptic for 24 h. The same concentrations of styptic extract significantly reduced cell viability FSL-SP compared to FSC-G 10% extract (B) and FSC-PO 0.1% extract (D). Data are means ± SD. There was no significant difference among the styptics at 100% extract (A) and 1% extract (C) \((p > 0.05)\). *Compared with FSC-G 10% extract \((p < 0.05)\). †Compared with FSC-PO 0.1% extract \((p < 0.05)\).](image-url)
tive in achieving and maintaining hemostasis. The hemo-
static properties of chitosan involve strong hemagglutination
caused by its protonated amine groups that attract red blood
cells as well as vasoconstriction [34]. Chitosan also absorbs
fibrinogen and plasma proteins, which enhances platelet aggre-
gation [34]. Unlike other hemostatic agents, chitosan does
not require the normal hemostatic pathway and continues to
function even when anticoagulants such as heparin are
present [30]. Numerous studies have demonstrated the effec-
tiveness of chitosan as a hemostatic agent in controlling hem-
orrhage from peritoneal abrasions, splenic lacerations, and
lingual injury [7, 13, 22]. In this study, the difference in
hemostatic efficacy between FSC-PO, FSC-G, and FSL-SP
could be explained by the chitosan content that enhances
hemostatic property in addition to the viscosity of the hemo-
static agent. In addition, FSC-PO and FSC-G were effective in
maintaining hemostasis even after blood clots had been
washed away by the saline solution, which could be explained
by the hemostatic action of chitosan, including mechanical
occlusion of direct vasoconstriction.

The CCK-8 assay detects viable cells by assessing the
activity of mitochondrial succinate dehydrogenases based on
the formation of formazan dye [8]. As the cells lose viability
(metabolic activity) and mitochondrial function decreases,
the ability of CCK-8 to convert the tetrazolium salt to the
formazan product decreases [33]. Mitochondrial succinate
dehydrogenase is sensitive to local changes in ion concentra-
tions and ion flux [33]. Therefore, different concentrations of
chemicals and chemical mixtures have been used to estimate
the cytotoxicity in various studies [20, 33]. In this study, the
cytotoxicity of the three styptics was estimated at four differ-
ent concentrations, and various toxicity results in L-929 cells
were obtained.

Despite the advantage of hemostasis, complications of using
ferric subsulfate including erythema, dermal fibrosis, and fer-
rugination (permanent deposition of ferric salts creating a
gray to brown dyspigmentation at the site of application)
have been reported [3, 32, 35]. Ferric subsulfate may increase
melanocyte activity, resulting in postinflammatory hyperpig-
mentation, and increase the risk of infection [3, 14, 26, 35].
Additionally, ferric subsulfate damages bone and delays
wound healing if left in situ [19, 27]. Although several complica-
tions were reported, cytotoxicity assessments of styptics
containing ferric subsulfate have not been performed.

In this study, all the styptics showed dose-dependent cyto-
toxity against L-929 cells. Although the exact mechanism
of the cytotoxicity of styptics has not been elucidated, pH is
considered an important factor. Low extracellular pH increases
the influx of lactate, and the intracellular acidosis proceeds
[4]. Increased intracellular lactate concentration may have a
negative effect on mitochondrial energy production and the
cell function [4]. Several publications reported low pH of fer-
rice subsulfate solution approximately between pH 1 and pH 2
[29, 36]. In the present study, the acidic property of ferric
subsulfate seemed to induce the cytotoxicity, although pH
measurement of the extract is required.

FSL-SP contains additional lidocaine that is a commonly
used local anesthetics for pain management [17]. Recently,
questions about the safety of local anesthetics have been
raised [17]. Chu et al. [9] reported the extreme toxicity of
bupivacaine on human chondrocytes in vitro. Miyazaki et al.
[31] reported that lidocaine decreased the viability and pro-
etoglycan production of bovine articular chondrocytes in a
concentration-dependent manner. Lidocaine exhibited both
time- and dose-dependent toxicity on cultivated mature human
chondrocytes [17]. Although the exact mechanism of it’s
local anesthetic toxicity has not been clarified, lidocaine may
affect mitochondrial energetics, resulting in mitochondrial
damage that can induce either apoptosis or necrosis with less
severe injuries leading to apoptosis [15, 23]. In this study, the
cell viability following FSL-SP treatment was decreased
compared to that of cells treated with FSC-G 10% and FSC-
PO 0.1% extracts, respectively. The potential toxicity of
lidocaine could contribute to the lower viability of FSL-SP-
treated cells than cells treated with other styptics.

In conclusion, three ferric subsulfate- and chitosan-based
styptics were found to be effective in treating hemorrhage in
a rat tail bleeding model. As FSC-PO and FSC-G appeared
to be efficacious in achieving and maintaining hemostasis,
their uses can be recommended. However, the cytotoxicity of
all the styptics against L-929 mouse fibroblasts increased in a
dose-dependent manner. Therefore, the hemostatic benefits of
styptics must be balanced against the clinical significance of
their cytotoxicity.

References

1. Alam HB, Uy GB, Miller D, Koustova E, Hancock T, Inocencio R, Anderson D, Llorente O, Rhee P. Comparative
analysis of hemostatic agents in a swine model of lethal
groin injury. J Trauma 2003, 54, 1077-1082.
2. Anitha A, Rani VVD, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R. Synthesis, charac-
terization, cytotoxicity and antibacterial studies of chitosan, O-
carbomethyl and N,O-carbomethyl chitosan nanoparticles.
Carbohydr Polym 2009, 78, 672-677.
3. Armstrong RB, Nichols J, Panchance J. Punch biopsy
wounds treated with Monsel’s solution or a collagen matrix.
A comparison of healing. Arch Dermatol 1986, 122, 546-549.
4. Borregaard N, Herlin T. Energy metabolism of human
neutrophils during phagocytosis. J Clin Invest 1982, 70, 550-
557.
5. Brooks J. Coagulopathies and thrombosis. In: Ettinger SJ,
Felman EC (eds.). Textbook of Veterinary Internal Medicine:
Disease of the Dog and Cat. 5th ed. pp. 1829-1841, WB
Saunders, Philadelphia, 2000.
6. Broze GJ Jr, Yin ZF, Lasky N. A tail vein bleeding time
model and delayed bleeding in hemophilic mice. Thromb
Haemost 2001, 85, 747-748.
7. Chan MW, Schweitzberg SD, Demcheva M, Vournakis J, Finkelsztein S, Connolly RJ. Comparison of poly-N-acetyl
glucosamine (P-GlcNAc) with absorbable collagen (Actifoam),
and fibrin sealant (Bolheal) for achieving hemostasis in a swine model of splenic hemorrhage. J Trauma 2000, 48, 454-459.

8. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 2011, 200, 201-210.

9. Chu CR, Izzo NJ, Coyle CH, Papas NE, Logar A. The in vitro effects of bupivacaine on articular chondrocytes. J Bone Joint Surg Br 2008, 90, 814-820.

10. Donahue SM, Otto CM. Thromboelastography: a tool for measuring hypercoagulability, hypocoagulability, and fibrinolysis. J Vet Emerg Crit Care (San Antonio) 2005, 15, 9-16.

11. Epstein E, Mailbach HL. Monsel’s solution. History, chemistry and efficacy. Arch Dermatol 1964, 90, 226-228.

12. Fischer DE. Tissue management: a new solution to an old problem. Gen Dent 1987, 35, 178-182.

13. Fukasawa M, Abe H, Masaoka T, Orita H, Horikawa H, Campeau JD, Washio M. The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model. Surg Today 1992, 22, 333-338.

14. Howe N, Cherpelis B. Obtaining rapid and effective hemostasis. Part I. Update and review of topical hemostatic agents. J Am Acad Dermatol 2013, 69, 659.e1-659.e17.

15. Irwin W, Fontaine E, Agnolucci L, Penzo D, Betto R, Borototto S, Reggiani C, Salvati G, Bernardi P. Bupivacaine myotoxicity is mediated by mitochondria. J Biol Chem 2002, 277, 12221-12227.

16. International Organization for Standardization (ISO). ISO 10993-5:2009. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. ISO, Geneva, 2009.

17. Jacobs TF, Vansintjian PS, Roels N, Herregods SS, Verbruggen G, Herregods LL, Almqvist KF. The effect of Lidocaine on the viability of cultivated mature human cartilage cells: an in vitro study. Knee Surg Sports Traumatol Arthrosc 2011, 19, 1206-1213.

18. Jansen T, Wallin RF. A practical guide to ISO 10993-12: sample preparation and reference materials. North American Science Associates, Northwood, 1998.

19. Jeansonne BG, Boggs WS, Lemon RR. Ferric sulfate hemostasis: effect on osseous wound healing. II. With curettage and irrigation. J Endod 1993, 19, 174-176.

20. Jiao G, He X, Li X, Qiu J, Xu H, Zhang N, Liu S. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv 2015, 5, 53240-53244.

21. Kheirabadi BS, Edens JW, Terrazas IB, Estep JS, Klemcke HG, Dubick MA, Holcomb JB. Comparison of new hemostatic granules/powders with currently deployed hemostatic products in a lethal model of extremity arterial hemorrhage in swine. J Trauma 2009, 66, 316-328.

22. Klokkevold PR, Fukayama H, Sung EC, Bertolami CN. The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits. J Oral Maxillofac Surg 1999, 57, 49-52.

23. Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998, 60, 619-642.

24. Kunio NR, Riha GM, Watson KM, Differding JA, Schreiber MA, Watters JM. Chitosan based advanced hemostatic dressing is associated with decreased blood loss in a swine uncontrolled hemorrhage model. Am J Surg 2013, 205, 505-510.

25. Kuwahara RT, Craig SR, Amonette R. More on Monsel’s solution. Dermatol Surg 2000, 26, 979-980.

26. Larson PO. Topical hemostatic agents for dermatologic surgery. J Dermatol Surg Oncol 1988, 14, 623-632.

27. Lemon RR, Steele PJ, Jeansonne BG. Ferric sulfate hemostasis: effect on osseous wound healing. I. Left in situ for maximum exposure. J Endod 1993, 19, 170-173.

28. Lönroth EC, Dahl JE. Cytotoxicity of liquids and powders of chemically different dental materials evaluated using dimethylthiazol diphenyltetrazolium and neutral red tests. Acta Odontol Scand 2003, 61, 52-56.

29. Miller DT, Roque DM, Santin AD. Use of Monsel solution to treat obstetrical hemorrhage: a review and comparison to other topical hemostatic agents. Am J Obstet Gynecol 2015, 212, 725-735.

30. Millner R, Lockhart AS, Marr R. Chitosan arrests bleeding in major hepatic injuries with clotting dysfunction: an in vivo experimental study in a model of hepatic injury in the presence of moderate systemic heparinisation. Ann R Coll Surg Engl 2010, 92, 559-561.

31. Miyazaki T, Kobayashi S, Takeno K, Yamaota T, Meir A, Baba H. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism. Knee Surg Sports Traumatol Arthrosc 2011, 19, 1198-1205.

32. Palm MD, Altman JS. Topical hemostatic agents: a review. Dermatol Surg 2008, 34, 431-445.

33. Putnam KP, Bombrick DW, Doolittle DJ. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol In Vitro 2002, 16, 599-607.

34. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 1997, 34, 21-28.

35. Sawchuk WS, Friedman KJ, Manning T, Pinnell SR. Delayed healing in full-thickness wounds treated with aluminum chloride solution: a histologic study with evaporimetry correlation. J Am Acad Dermatol 1988, 15, 982-989.

36. Spitzer M, Chernys AE. Monsel’s solution-induced artifact in the uterine cervix. Am J Obstet Gynecol 1996, 175, 1204-1207.

37. Wagner WR, Pachence JM, Ristich J, Johnson PC. Comparative in vitro analysis of topical hemostatic agents. J Surg Res 1996, 66, 100-108.

38. Whalen J, Tuman KJ. Monitoring hemostasis. Int Anesthesiol Clin 1996, 34, 195-213.