PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma

Lin Yang, Li-Ge Kuang, Hua-Chuan Zheng, Jin-Yi Li, Dong-Ying Wu, Su-Min Zhang, Yan Xin

INTRODUCTION
PTEN/MMAC1/TEP1 gene (phosphatase and tensin homology deleted from chromosome ten/mutated in multiple advanced cancer 1/TGF-β-regulated and epithelial cell enriched phosphatase 1) was the firstly defined tumor suppressor which product acted as phosphatase and shared extensive homology with cytoskeletal protein, mapping to human chromosome 10q23.3. PTEN encoding product could not only dephosphorylate the phosphatidylinositol-3, 4, 5-triphosphate (PIP3), but also be involved in cytoskeletal reconstruction and cellular mobility[1-6]. Recently, many studies showed there were several putative mechanisms relating to tumor suppression as follows: inhibiting cell invasion and metastasis by dephosphorylating focal adhesion kinase (FAK); inhibiting cell apoptosis and increasing cell growth by dephosphorylating PIP3; restraining cell differentiation by inhibiting mitogen-activated protein kinase (MAPK) signal pathway[7-9]. Mutation or abnormal expression of PTEN protein occurred commonly in multiple tumors and significantly correlates with tumorigenesis and progression of different malignancies[10-20]. It was reportedly suggested that deletion or mutation of PTEN could enhance the expression of vascular epithelial growth factor (VEGF) and stimulate the proliferation of microvessels in tumor tissues, which in turn closely correlated with tumor invasion and metastasis[21-25].

Gastric carcinoma was one of the commonest malignancies in the world, and even the most frequent in China[26-28]. Although the achievement of early diagnosis and treatment have somewhat improved the patients’ outcome, gastric cancer still remains the major killer among Chinese because the mechanisms of its tumorigenesis and progression were unclear[29]. In this study, we detected the expression of PTEN proteins in gastric cancer and its adjacent noncancerous mucosa, compared PTEN protein expression with its pathologically biological behaviors, and discussed the relationship between the expression of PTEN and VEGF in order to explore the role of PTEN gene product in tumorigenesis and progression of gastric cancer, and to provide scientific foundation for evaluating prognosis of gastric carcinoma.

MATERIALS AND METHODS
Pathology
One hundred and eighty-four cases of surgically removed specimens of gastric carcinoma were collected from Cancer Institute, China Medical University. This study included 102 cases of adjacent normal mucosa, 63 cases of adjacent IM and 6 cases of adjacent dysplasia. According to clinical staging, 37 cases were early, and 147 cases advanced. According to metastasis, 124 cases were accompanied with lymph node metastasis, 6 with liver metastasis (4 of them with lymph node metastasis) and 2 with ovary metastasis. All gastric specimens were classified according to the Lauren’s and WHO’s histological classification criteria.

Immunohistochemistry
All specimens were fixed in 4 % formaldehyde solution,
embedded in paraffin and incised into 5 μm sections. The rabbit anti-human polyclonal antibody against PTEN (ready to use) and mouse anti-human monoclonal antibody against VEGF (ready to use) were purchased from Maxim Biotech. SABC complex kit was from Boster Biotech. For negative control, sections were incubated with PBS (0.01 mol/L, pH7.4) instead of the primary antibodies.

Evaluation of PTEN and VEGF expression
Clearly brown staining was restricted to cytoplasm, which was considered as positive for PTEN or VEGF. Slides were scored semi-quantitatively based on staining intensity and distribution. Two pathologists assessed the positive rate according to the percent of positive cells in all counted cells from 5 randomly selected representative fields. The degree of staining was graded in the light of proportion of positive cells as follows: negative (-), positive rate <5 %; weakly positive (+); 5-25 %; moderately positive (++): 25-50 %; strongly positive (+++~++++): >50 %.

Statistical analysis
Statistical evaluation was performed by chi-square test to differentiate the rates between two groups. P-value less than 0.05 was considered as statistically significant. SPSS 10.0 software was employed to analyze all data.

RESULTS
PTEN was expressed in normal mucosa, intestinal metaplasia, dysplasia and carcinoma of the stomach at the rate of 100 % (102/102), 98.5 % (65/66), 66.7 % (4/6), 47.8 % (88/184), respectively. Dysplasia and carcinoma expressed less frequent than normal mucosa or intestinal metaplasia (P<0.01) (Table 1, Figure 1,2).

	n	PTEN expression	%	
“Normal” mucosa	102	102	0	100.0
Intestinal metaplasia	66	65	1	98.5
Dysplasia	6	4	2	66.7
Carcinoma	184	88	96	47.8

Table 1 PTEN expression in normal mucosa, intestinal metaplasia, dysplasia and carcinoma of the stomach

“Compared with “normal” mucosa or intestinal metaplasia, P <0.01 (modified χ²=18.729, 7.115); *Compared with “normal mucosa or intestinal metaplasia, P <0.01 (χ²=80.106, 52.499)

Positive rate of PTEN in advanced gastric carcinoma (AGC) was 42.9 % (63/147), lower than in early one (EGC)(67.6 %, 25/37) (P<0.01). In 124 cases with lymph node metastasis, 50 expressed PTEN protein (40.3 %), whose positive rate of PTEN was higher than those without lymph node metastasis (63.3 %, 38/60) (P<0.01). 41.5 percent of 118 diffuse-type gastric cancers expressed PTEN, less than that of intestinal-type ones (51.8 %, 37/70). Signet ring cell carcinoma expressed PTEN protein at the lowest level (25.0 %, 7/28), more than well and moderately differentiated adenocarcinoma (61.8 %, 21/34) (P<0.01).

None of the gastric normal mucosa showed expression of VEGF, while 75.0 percent of gastric carcinoma expressed it (45/60) (P<0.05) (Figure 3,4). The PTEN-positive cases expressed VEGF at the rate of 78.1 % (25/32), whereas PTEN-negative ones did it at the rate of 71.4 % (20/28). Both rates were not significantly different by statistical analysis (P>0.05).

Figure 1 PTEN protein was restricted to cytoplasm. It was moderately expressed in normal mucosa (below), while decreased in IM (left top) and dysplasia (right), (20×)

Figure 2 Well differentiated papillary-tube adenocarcinoma showed weakly positive expression of PTEN protein (40×)

Figure 3 Mucinous adenocarcinoma of the stomach moderately expressed VEGF (20×)

Figure 4 SRC showed strongly positive expression of VEGF protein (40×)
Table 2 Relationship between expression of PTEN and the biological behaviors of gastric carcinoma

Clinopathological staging	PTEN expression				
	n	+	++	++++	-
Early	37	25	12	67.6	
Advanced	147	63	84	42.9	
Lymph node metastasis					
+	124	50	74	40.3	
-	60	38	22	63.3	
Lauren’s classification					
Intestinal type	64	37	27	57.8	
Diffused type	118	49	96	41.5	
Mixed type	2	2	0	100.0	
WHO’s histological classi					
Papillary adenocarcinoma	20	10	10	50.0	
Well-differentiated adenocarcinoma	9	5	4	55.6	
Moderated-differentiated adenocarcinoma	25	16	9	64.0	
Poorly-differentiated adenocarcinoma	85	39	64	45.9	
Undifferentiated adenocarcinoma	5	3	2	60.0	
Signet ring-cell carcinoma(SRC)	28	7	21	25.0	
Mucinous adenocarcinoma	10	6	4	60.0	
Carcinoid	1	1	0	-	
Squamous cell carcinoma	1	1	0	-	

*Compared with early gastric carcinoma, P <0.01(χ²=26.504); a
*Compared with non-lymph node metastasis, P <0.01(χ²=8.580); b
*Compared with intestinal-type gastric carcinoma, P <0.05(χ²=4.416); c
*Compared with well and moderately differentiated gastric carcinoma, P <0.01(χ²=8.380)

DISCUSSION

Deletion or down-regulation of tumor suppressing genes plays an important role in the multiple steps of tumorigenesis and progression of gastric carcinoma. Previous studies on the relationship between alteration of tumor suppressor genes and the development of gastric carcinoma focused on p53\[11,12\], p16\[13\], p27\[14\], p33 (ING1)\[15\], RB\[16\], DCC\[17\] etc. However, few reports were involved in the newly discovered tumor suppressor gene-PTEN in tumorigenesis and progression of gastric carcinoma.

As a tumor-suppressing gene, PTEN makes great contribution to cellular differentiation, reproduction and apoptosis, as well as cellular adhesion and mobility. Some studies showed down-regulation of PTEN protein expression due to genetic changes like mutation, loss of heterozygosity, hypermethylation in gastric cancer, prostate cancer and breast cancer\[2,14,16,19,20\]. Our results showed that decreased expression of PTEN during the courses of normal mucosa→intestinal metaplasia→dysplasia→carcinoma. Gastric dysplasia or carcinoma expressed less PTEN than normal mucosa or intestinal metaplasia (P<0.01), revealing that genetic changes of PTEN gene may play an important role in malignant transition of epithelial cells of gastric mucosa.

Low expression of PTEN gene product was involved in clinopathological stage and metastasis of stomach neoplasms. We found that 42.9 percent of AGC expressed PTEN, less than EGC (P<0.01). Positive rate of PTEN was lower in gastric cancer with than without lymph node metastasis (40.3 % vs 63.3 %, P<0.01). One of the six liver metastases showed negative expression of PTEN in primary or liver metastasis, while the other five cases with liver metastasis showed reduced expression of PTEN protein. These results were similar to other kinds of tumors\[30-36\]. It is suggested that deletion or reduced expression of PTEN protein probably facilitate the metastatic ability of gastric cancer cells. Hwang et al. found that PTEN could enhance mobility and metastasis of tumor cells by regulating matrix metalloproteinases (MMPs) and VEGF\[47\]. There was another report that PTEN dephosphorated FAK so as to be involved in cellular adhesion\[45\]. Deletion or reduced expression of PTEN could result in decreasing cellular adhesion, increasing synthesis of MMPs and VEGF, which subsequently contributed to invasion and angiogenesis of cancer cells. These biological effects possibly underlay prelude of invasion and metastasis of tumor. Our results revealed that reduced expression of PTEN was implicated in progression of gastric cancer probably by decreasing cellular adhesion, increasing cellular mobility and angiogenesis and could act as an objective marker to reflect the biological behaviors of gastric cancer.

In addition, signet ring cell carcinoma showed the lowest expression of PTEN among histological classifications, less than well and moderately differentiated adenocarcinoma (P<0.01), suggesting that decreased expression of PTEN was closely associated with carcinogenesis of signet ring cell carcinoma. Diffuse-type cancer showed less expression of PTEN at the rate of 41.5 % than intestinal-type one. (P<0.05). In this sense, it supported that there were different tumorigenic pathways between diffuse and intestinal-type gastric carcinoma. Diffuse-type gastric cancer, main part of which was signet ring cell carcinoma, showed diffusely invasive growth pattern. It is possible that down-regulation of PTEN could affect the function of cellular skeleton, mobility and adhesion of cancer cells.

Some reports suggested that decreased expression of PTEN encoding product could down-regulate PI3K/AKT pathway, leading to increasing synthesis of VEGF induced by hypoxia inducing factor-1 (HIF-1)\[48-50\]. Our study showed that 75.0 percent of gastric carcinomas expressed VEGF (45/60), significantly more than normal mucosa (0/5) (P<0.05), indicating that VEGF was up-regulated in gastric cancer. But PTEN was down-regulated in gastric cancer. Both PTEN and VEGF showed negative correlation, which was not statistically significant (P>0.05). The relationship between expression of both PTEN and VEGF in tumorigenesis and progression of gastric cancer need proving by amplifying the sample.

In all, loss or reduced expression of PTEN protein occurred commonly in gastric carcinogenesis. Altered expression of PTEN contributed to progression of gastric cancer by increasing cell adhesion, angiogenesis, cell mobility and so on. It was suggested that PTEN could be a useful marker for pathologically biological behaviors of gastric carcinoma. However, the role of PTEN gene and its encoding protein in tumorigenesis and progression of gastric cancer need further investigation.

REFERENCES

1. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 1997; 15: 356-362
2. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SL, Puc J, Miliareis C, Rodgers L, McCombie R, Bigner SH, Giovannucci E, Ittmann M, Tycko B, Hilsboosh H, Wligler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997; 275:1943-1947
3. Li DM, Sun H. TEP1, encoded by a candidate tumor suppressor
locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res 1997; 57: 2124-2129.

4 Cantley LC, Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci U S A 1999; 96: 4240-4245.

5 Wu X, Senecal K, Neshat MS, Whang YE, Sawyers CL. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/AKT signaling pathway. Proc Natl Acad Sci U S A 1998; 95: 15587-15591.

6 Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5-trisphosphate and AKT/protein kinase B signaling pathway. Proc Natl Acad Sci U S A 1999; 96: 6169-6204.

7 Maehama T, Taylor GS, Dixon JE. PTEN and myotubularin: novel phosphatidylinositol phosphatases. Annu Rev Biochem 2001; 70: 247-279.

8 Besson A, Robbins SM, Yong VW. PTEN/MMAC1 TEPI in signal transduction and tumorigenesis. Eur J Biochem 1999; 263: 605-611.

9 Waite KA, Eng C. Protein PTEN: form and function. Am J Hum Genet 2002; 70: 629-844.

10 Tanno S, Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor 1 receptor expression and promotes in vivo human pancreatic cancer cell growth. Cancer Res 2001; 61: 598-603.

11 Rubin MA, Gerstein A, Reid K, Bostwick DG, Cheng L, Parsons R, Papadopoulos N. 11q23.3 loss of heterozygosity is higher in lymph node positive (pT2-3N+) versus lymph node negative (pT2-3N0) prostate cancer. Hum Pathol 2000; 31: 504-508.

12 Depowski PL, Rosenthal SI, Ross JS. Loss of expression of the PTEN gene protein product is associated with poor outcome in (pT2-3,N0) prostate cancer. Cancer Res 1998; 58: 1834-1839.

13 Meng Q, Goldberg ID, Rosen EM, Fan S. Inhibitory effects of Indole-3-carbinol on invasion and migration in human breast cancer cell lines. Breast Cancer Res Treat 2000; 63: 147-152.

14 Garcia JM, Silva JM, Dominguez G, Gonzalez R, Navarro A, Carretero L, Provencio M, Espana P, Bonilla F. Allelic loss of the 13q14.3 locus in primary lung cancer with distant metastasis. Lung Cancer 1999; 25: 87-93.

15 Dillan DO, Howe CL, Bosari S, Costa JA. The molecular biology of breast cancer: accelerating clinical applications. Crit Rev Oncog 1998; 9: 125-140.

16 Lin WM, Forgacs E, Warshal DP, Yeh IT, Martin JS, Ashfaq R, Gomez R, Kwong YL, Howe CL, Bosari S, Costa J. The molecular biology of breast cancer: accelerating clinical applications. Crit Rev Oncog 1998; 9: 125-140.

17 Shao X, Tandon R, Samara G, Kanik H, Yano H, Close LG, Parsons R, Sato T. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer 1998; 77: 684-688.

18 Hosoya Y, Gemma A, Sendai K, Kurimoto F, Uematsu K, Hibino S, Yoshimura A, Shibuya M, Kudoh S. Alteration of the PTEN/MMAC1 gene locus in primary lung cancer with distant metastasis. Lung Cancer 1999; 25: 87-93.

19 Celebi JT, Shendrik I, Silvers DN, Peacocke M. Identification of PTEN mutations in metastatic melanoma specimens. J Med Genet 2000; 37: 653-657.

20 Tsao H, Zhang X, Fowlkes K, Haluska FG. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous. Cancer Res 2000; 60: 1800-1804.

21 Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor-mediated signaling and angiogenic effects. J Biol Chem 2002; 277: 10760-10766.

22 Ferrara N, Gerber HP. The role of vascular endothelial growth factors in angiogenesis. A. da Haemolit 2001; 106: 148-156.

23 Harmsy JH, Bouchier-Hayes D. Vascular endothelial growth factor (VEGF), a survival factor for tumour cells: implications for anti-angiogenic therapy. Bioessays 2002; 24: 280-283.

24 Lin R, LeCouter J, Kowaljik J, Ferrara N. Characterization of endocrine gland-derived vascular endothelial growth factor signalin in adrenal cortex capillary endothelial cells. J Biol Chem 2002; 277: 8724-8729.

25 Dias S, Choy M, Altaloto K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002; 99: 2179-2184.

26 Inoki K, Shiomi T, Hashimoto G, Enomoto H, Nakamura H, Makino K, Ikeda E, Takata S, Kobayashi K, Okada Y. Connexin tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J 2002; 16: 219-221.

27 Umeda N, Ozaki H, Hayashi H, Kondo H, Uchida H, Oshima K. Non-parallel increase of hepatocyte growth factor and vascular endothelial growth factor in the eyes with angiogenic and nonangiogenic fibroproliferation. Ophthalmic Res 2002; 34: 43-47.

28 Suzumia T, Takahara N, Suzumia I, Ishikii K, Ueki K, Leitges M, Aiello LP, King GL. Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci U S A 2002; 99: 721-726.

29 Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533-543.

30 Chen XY, van Der Hulst RW, Shi Y, Xiao SD, Tytgat GN, Ten Kate FJ. Comparison of precancerous conditions: atrophy and intestinal metaplasia in Helicobacter pylori gastritis among Chinese and Dutch patients. J Clin Pathol 2001; 54: 367-370.

31 Gunther T, Schneider-Strock R, Hackel C, Kasper HU, Pross M, Hackelsberger A, Lippert H, Roessner A. Mdm2 gene amplification in gastric cancer correlation with expression of Mdm2 protein and p53 alterations. Mod Pathol 2000; 13: 621-626.

32 Liu XP, Tsuchinski K, Tsumishi M, Oga A, Kawauchi S, Furuya T, Sasaki K. Expression of p53 protein as a prognostic indicator of reduced survival time in diffuse-type gastric carcinoma. Pathol Int 2001; 51: 440-444.

33 Jang TJ, Kim DI, Shin YM, Chang HK, Yang CH. p16(INK4a) Promoter hypermethylation of non-tumorous tissue adjacent to gastric cancer is correlated with glandular atrophy and chronic inflammation. Int J Cancer 2001; 93: 629-634.

34 Migaldi M, Zunarelli E, Spamberto A, Locenta P, Ventura L, De Gaetani C. P27Kip1 expression and survival in NO gastric carcinoma. Pathol Res Pract 2001; 197: 231-236.

35 Oki E, Maehara Y, Tokunaga E, Kakayi K, Sugimachi K. Reducing expression of p33 (ING1) and the relationship with p53 expression in human gastric cancer. Cancer Lett 1999; 147: 157-162.

36 Lee WA, Woo DK, Kim YI, Kim WH. p53, p16 and RB expression in adenosquamous and squamous cell carcinomas of the stomach. Pathol Res Pract 1999; 195: 747-752.

37 Yoshida Y, Itoh F, Endo T, Hinoda Y, Imai K. Decreased DCX mRNA expression in human gastric cancers is clinicopathological significant. Int J Cancer 1998; 79: 634-639.

38 Kang YH, Lee HS, Kim WH. Promoter methylation and silencing of PTEN in gastric carcinoma. Lab Invest 2002; 82: 285-291.

39 Lee JJ, Soria JC, Hassan KA, El-Naggar AK, Tang X, Liu DD, Hong WK, Mao L. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg 2001; 127: 1441-1445.

40 Verma RS, Manikal M, Conte RA, Godex CJ. Chromosomal basis of adenocarcinoma of the prostate. Cancer Invest 1999; 17: 441-447.

41 McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, Sellers WR. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 1999; 59: 4293-4296.

42 Vistica D, Wirtzfeld V, Marrocco L, Tossini A, Zamponi C, Lista F. Is exon 5 of the PTEN/MMAC1 gene a prognostic marker in aplastic glomoma? Neurosurg Rev 2001; 24: 97-102.

43 Nokazi M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H, Ishii N, Van Meir EG. Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neurooncol 1999; 1: 124-137.

44 Minaguchi T, Yoshikawa H, Oda K, Ishino T, Yasugi T, Onda T,
Nakagawa S, Matsumoto K, Kawana K, Taketani Y. PTEN mutation located only outside exons 5, 6, and 7 is an independent predictor of favorable survival in endometrial carcinomas. Clin Cancer Res 2001; 7: 2636-2642

45 Tada K, Shiraishi S, Kamiryo T, Nakamura H, Hirano H, Kuratsu J, Kochi M, Saya H, Ushio Y. Analysis of loss of heterozygosity on chromosome 10 in patients with malignant astrocytic tumors: correlation with patient age and survival. J Neurosurg 2001; 95: 651-659

46 Mills GB, Lu Y, Kohn EC. Linking molecular therapeutics to molecular diagnostics: inhibition of the FRAP/RAFT/TOR component of the PI3K pathway preferentially blocks PTEN mutant cells in vitro and in vivo. Proc Natl Acad Sci USA 2001; 98: 10033-10033

47 Hwang PH, Yi HK, Kim DS, Nam SY, Kim JS, Lee DY. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett 2001; 172: 83-91

48 Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 2001; 21: 3995-4004

49 Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW, Semenza GL. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res 2000; 60: 1541-1545

50 Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14: 391-396