Chemical and biological progress of *Podocarpus nagi*

Yang Yang1,2*, Jianping Yong1* and Canzhong Lu1,3*

1Xiamen Institute of Rare-earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
2Shanghai Tech University, Shanghai, 201210, China
3Fujian Institute of Research on the Structure of Matter, Haixi Institute, Chinese Academy of Sciences, Fuzhou, 350002, China

Abstract

Podocarpus nagi is a tree belonging to the family of Podocarpaceae, which has ever been used for treatment of trauma, stop-bleeding, fractures, knife wounds, gunshot wounds, body odor, eye diseases, colds and rheumatoid arthritis in clinic. Some compounds have been isolated and their biological activities were also evaluated. This review briefly describes the progress of the chemical components and biological activities of *podocarpus nagi*; for providing a reference for the researchers.

Introduction

Podocarpus nagi (named Zhubai in Chinese) is a tree belonging to the family of Podocarpaceae, widely distributed in the South District of the Yangtse River, such as Jiangxi, Zhejiang, Fujian, Hunan, Guangxi and Guangdong, etc. In Nanping, Sanming and Zhangzhou of Fujian Province, there are small-scaled natural communities or artificial enclosure planting of *Podocarpus nagi*, which is a native tree species of local place. The branches of *Podocarpus nagi* are excellent materials for building, furniture and craft. The oil content of its seeds is higher and can be used for edible after being refined or directly used industrially [1]. Some compounds and biological activities have been studied. In this mini-review, we briefly describe the progress of the chemical components and biological activities of *podocarpus nagi*.

Chemical components of ** *Podocarpus nagi

According to the reported literatures, there are many active components in the branches, leaves and seeds of *Podocarpus nagi*, which include volatile oils, terpenoids, cypress lactones, flavonoids, lignin and cyclic peptides. The main components of essential oil in the leaves of *Podocarpus nagi* are elemene, cadinene, β-palindolene, pinene and caryophyllene.

Volatile oils

Yang Rongbin et al. [2] extracted the volatile oil from the leaves of *Podocarpus nagi* grown in Guangzhou, Guangdong Province, and identified the components and contents by GC-MS. The results showed that the main components are (-)-α-pinene (5.59%), β-elemene (9.57%), (10.04%), 4-isopropenylidene-1-vinylmenthene (53.82%); He Daohang et al. [3] extracted volatile oil from the leaves of *Podocarpus nagi* grown in Zengcheng district of Guangdong Province, and identified the components and contents by GC-MS. The results showed that the main components are spathulenol, cadinenol, α-cadinol, α-pinene, 3-thujene, β-elemene, γ-elemene, β-cadinene, aromadendrene, germacrene D, γ-muurolene, α-caryophyllene, δ-cadinene, β-caryophyllene, β-cadinene, viridiflorene. The authors also extracted the volatile oil from the branches of *Podocarpus nagi* and identified the components and contents by GC-MS. The results showed that the main components are 1-hepten-3-ol, α-pinene, 3-thujene, caryophyllene, β-cadinene, α-caryophyllene, germacrene B, eremophilene, α-amorphene, γ-cadinene, δ-cadinene. By comparison the results reported by Yang Rongbin and He Daohang [2,3], there are much difference between the components and contents of volatile oil, the reasons can be due to the *Podocarpus nagi* growing the different places; Liao Zeyong et al. [5] extracted volatile oil from the peel and nutshell of *Podocarpus nagi* fruits and identified the components and contents by GC-MS, respectively. The results showed that the volatile oil is very low in peel, while the volatile oil is higher in nutshell.

From the results reported above, we can know that the main components of the volatile oil are terpenes.

Flavonoids

It was reported that the seeds of *Podocarpus nagi* contained biflavonoids: sciadopitysin and amentoflavone -4', 4', 7', tetramethylether [6]. Wang Qiuxiang et al. [7] isolated the amentoflavone, bilobetin, podocarpusflavone A, quercetin, (-)-catechin from the leaves of *Podocarpus nagi*. Xu Yaming et al. [8] isolated isoginkgetin from the leaves of *Podocarpus nagi*. The structures of flavonoids listed in figure 1.

Correspondence to: Jianping Yong, Xiamen Institute of Rare-earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China, Tel: +86-591-63173162; E-mail: jpyong@fjirsm.ac.cn

Canzhong Lu, Fujian Institute of Research on the Structure of Matter, Haixi Institute, Chinese Academy of Sciences, Fuzhou, 350002, China, Tel: +86-591-83705794; E-mail: calu@fjirsm.ac.cn

Key words: Podocarpus nagi, chemical components, biological activities

Received: September 10, 2018; **Accepted**: September 28, 2018; **Published**: October 10, 2018

doi: 10.15761/BRR.1000118

ISSN: 2515-9186
Yang Y (2018) Chemical and biological progress of *Podocarpus nagi*

Steroids

Wang Qiuxiang et al. [7] obtained 5α,6β-sitosterol from the leaves of *Podocarpus nagi*, which widely exists in many kinds of plant.

Sugar and glycosides

It was reported that the seeds of *Podocarpus nagi* contain polysaccharide compounds such as nagilactone A-1-β-D-glucoside, ethyl-β-D-glucopyranoside, nagilactone glycoside A and sucrose [6,9].

Lactone compounds

It was reported [6,7,9] that the seeds of *Podocarpus nagi* contain nagilactone A,B,C, 15-hydroxynagilactone D, 15-methoxy-carbonylnagilactone D, 1-deoxy-2α-hydroxynagilactone A, 3β-hydroxynagilactone A, 1-deoxy-2β,3β-epoxynagilactone A. *Podocarpus nagi* stem bark contains 16-hydroxypodolide, 2,3-dihydro-16-hydroxypodolide, 2β,3β-epoxypodolide, 2,3-dihydrotripolide, 2,3-dehydro-16-hydroxynagilactone F, nagilactone I, 16-hydroxynagilactone E, 2α-hydroxynagilactone F, nagilactone E, 1-deoxy-2,3-dehydronagilactone A, 1-deoxynagilactone A, 1-deoxy-2,3-dehydronagilactone A, stem bark contains nagilactone C,D,I,J, 16-hydroxynagilactone E. The structures of representative nagilactones showed in figure 2.

Other components isolated from *Podocarpus nagi*

Wang Qiuxiang et al. [7] isolated prinsepiol from the leaves of *Podocarpus nagi*. According to the literatures reported, there are organic acids in the oil of the seeds of *Podocarpus nagi*, the nutmeg acid, palmitic acid, stearic acid, oleic acid, 9,12-linoleic acid, paullinic acid, eicosadienoic acid, carbonium are included [8,10]. We also extracted the oil of the seeds of *Podocarpus nagi* planted in Yangli town of Fujian province and analyzed its components, and palmitic acid, palmitic acid, octanoic acid, stearic acid, oleic acid, linoleic acid, peanut acid, arachidonic acid, α-linolenic acid, arachidonic acid, behenic acid, lignoceric acid are detected.

Biological activities

It was reported that the leaves and bark of *Podocarpus nagi* can emit the odor similar to clove, which can repel the mosquitoes. In addition, as a kind of traditional Chinese herbal medicine, *Podocarpus nagi* exhibits hemostasis, bone setting and detumescentce. As a kind of folk medicine of Yao nationality, *Podocarpus nagi* can also be used to treat trauma, stop-bleeding, fractures, knife wounds, gunshot wounds, body odor, eye diseases and colds, etc. The fresh barks or roots of *Podocarpus nagi* were also used to treat the rheumatoid arthritis [5,6,11].

Figure 1. Representative structures of flavonoids isolated from Podocarpus nagi

- Sciadopitysin
- Amentoflavone -4', 4', 7, 7'-tetramethylether
- Amentoflavone
- Bilobetin
- Quercetin
- Catechin
- Podocarpusflavone A

Biomed Res Rev, 2018

doi: 10.15761/BRR.1000118

Volume 2(3): 2-5
Yang Y (2018) Chemical and biological progress of *Podocarpus nagi*

Figure 2. The structures of representative nagilactones

Figure 3. Podolactones isolated from *Podocarpus nagi* with anti-inflammatory activity
Anticancer activity

Xu Yaming et al. [7] reported that mgilactone A, 1-deoxy-2β,3β-epoxynagilactone A and 1-deoxy-2α,4β-dioxynagilactone towards the leukemia, the results showed that these compounds exhibited cytotoxicity against P388 cell lines, and the inhibitions of these three compounds against P388 cell lines are 73, 88.5 and 97.4% respectively at the concentration of 10 μg/mL. While the inhibition of mgilactone B towards P388 cell lines is 98.6% [9]. Lee et al. [12] reported that amentoflavone exhibited higher inhibition to phospholipase C. Liao Ze Yong et al. studied the volatile oil from the peel and shell of Podocarpus nagi fruit towards nasopharyngeal carcinoma line CNE. The results showed that the inhibitions of volatile oil from the pericarp towards nasopharyngeal carcinoma line CNE are (22.62 ± 0.54)%, (52.55 ± 2.83)%, (73.24 ± 1.79)% (84.18 ± 3.37)% at the concentrations of 20,40,80,100, 120μg/mL respectively, while the inhibitions of volatile oil from shell towards nasopharyngeal carcinoma line CNE are (18.37 ± 1.13)%, (23.74 ± 0.52)%, (38.55 ± 1.04)%, (42.96 ± 2.15)%, (68.14 ± 2.06)% at the concentrations of 20,40,80,100, 120 μg/mL respectively.

Anti-bacterial activity

Kubo tested the 2α-hydroxyagilactone F against saccharomyces beer yeast and the result showed that it exhibited stronger inhibitory activity against saccharomyces beer yeast and its MIC was 800 μg/mL. Nagilactone C, nagilactone D, nagilactone E also exhibited inhibitory effects on fungi. Tartalol exhibited stronger inhibitory activity against staphylococcus aureus, while tartalol and totarol exhibited peculiar inhibitory activity against Gram-positive bacteria, and norderpenoid dilactone showed peculiar activity against saccharomyces cerevisiae, blastomyces albicans and pityrosporum (Malassezia) ovale [13-18].

Antiviral and other activities

Matsuki et al reported that bilobetin exhibited potent antiviral activity against Epstein-Barr virus, and also stronger against carcinogen than that of vitamin A acid [19]. Feng Zheling et al. isolated some podolactones from Podocarpus nagi and evaluated their anti-inflammatory effect. The results showed that compounds 1 and 2 (Figure 3) significantly inhibited Nitric Oxide (NO) production on LPS-stimulated RAW264.7 macrophages, with IC50 values of 0.18 ± 0.04 and (Figure 3) significantly inhibited Nitric Oxide (NO) production on LPS-isolated some podolactones from and evaluated their carcinogen than that of vitamin A acid [19]. Feng Zheling et al. studied the volatile oil from the peel and shell of Podocarpus nagi fruit towards nasopharyngeal carcinoma line CNE. The results showed that the inhibitions of volatile oil from the pericarp towards nasopharyngeal carcinoma line CNE are (22.62 ± 0.54)%, (52.55 ± 2.83)%, (73.24 ± 1.79)% (84.18 ± 3.37)% at the concentrations of 20,40,80,100, 120μg/mL respectively, while the inhibitions of volatile oil from shell towards nasopharyngeal carcinoma line CNE are (18.37 ± 1.13)%, (23.74 ± 0.52)%, (38.55 ± 1.04)%, (42.96 ± 2.15)%, (68.14 ± 2.06)% at the concentrations of 20,40,80,100, 120 μg/mL respectively.

References

1. Chinese flora editorial board of chinese academy of sciences (1987) Flora of China. Beijing: Science Press 7: 404-405.
2. Yang RB, Yuan XJ, Du HG (2008) Analysis of volatile oil in Podocarpus nagi leaves by GC-MS. Asian-Pacific Traditional Medicine 4: 51-52.
3. He DH, Pang Y, Ren SX, Li GH, Song SY (2005) Chemical constituents of volatile oil from podocarpus fleuryi hickel. Chemistry and Industry of Forest Products 25: 119-121.
4. Hu WJ, Yang YH, Pi XT (2014) Analysis and comparison of the constituents of volatile oil from the peels and twigs of podocarpus nagi. Journal of West China Forestry Science 43:133-138.
5. Liao ZY, Wei W (2015) Studies on volatile constituents and their anti-tumor activities from the peel and shell of podocarpus nagi fruits. Herald of Medicine 34: 609-612.
6. State Administration of Traditional Chinese Medicine Editorial Board (1999) Zhong Hua Ben Cao. Shanghai: Shanghai Scientific & Technical Publishers. 813 -817.
7. Xu YM, Fang SD, He QM (1990) The chemical constituents from podocarpus fleuryi hickel. Acta Botanica Sinica 32: 302-306.
8. Xu YM, Fang SD (1989) Chemical Composition of Podocarpaceae. Anti-Tumor Chemical Composition in Podocarpus nagi. Acta Chimica Sinica 47: 1080.
9. Xu YM, Fang SD, He QM (1991) The structure of a new biflavone from podocarpus fleuryi. Acta Botanica Sinica 33: 162-163.
10. Dai B (2009) Chinese modern Yao medicine. Nanning: Guangxi science and Technology Publishers. 257-259.
11. Lee HS, Oh WK, Kim BY, Ahn SC, Kang DO, et al. (1996) Inhibition of phospholipase cgamma 1 activity by amentoflavone isolated from selaginella tamariscina. Planta Med 62: 293 -296. [Crossref]
12. Kubo I, et al. (1991) Two nor-diterpenedilactones from podocarpus nagi. Phytochemistry, 30: 1964-1965.
13. Kubo I, Ying BP, (1991) A bionorditerpenedilactone from Podocarpus nagi. Phytochemistry 30: 3476-3477.
14. Kubo I, Himejima M, Ying BP (1991) An antifungal norditerpene dilactone from Podocarpus nagi. Phytochemistry 30: 1467-1469.
15. Kubo I, Muroi H, Himejima M (1992) Antibacterial activity of totarol and its potentiation. J Nat Prod 55: 1436-1440. [Crossref]
16. Ying BP, Kubo I. (1993) Norditerpene dilactones from Podocarpus nagi. Phytochemistry 34: 1107-1110.
17. Xuan LJ, Xu YM, Fang SD (1995) Three diterpene dilactone glycosides from Podocarpus nagi. Phytochemistry 39: 1143-1145. [Crossref]
18. Matsuki. (1990) Study on Inhibition of EB Virus by Active ingredient in Ginkgo biloba. Acta Botanica Sinica 32: 257-259.
19. Feng ZL, Zhang T, Liu JX, Chen XP, et al. (2018) New podolactones from the seeds of Podocarpus nagi and their anti-inflammatory effect. J Nat Med. [Crossref]
20. Gui YZ, Yao S, Yan H, Lu L, Yu CY, et al. (2016) A novel small molecule liver X receptor transcriptional regulator, nagilactone B, suppresses atherosclerosis in apoE-deficient mice. Cardiovasc Res 112: 502-514. [Crossref]
21. Berger A, Monnard I, Baur M, Charbonnet C, Safonova I, et al. (2002) Epidermal anti-inflammatory properties of 5,11,14 20:3 Effects on mouse ear edema, PGE2 levels in cultured keratinocytes, and PPAR activation. Lipids Health Dis 1: 1-12. [Crossref]
Yang Y (2018) Chemical and biological progress of *Podocarpus nagi*

22. Yong JP, Lu CZ, Wu X (2015) Potential anticancer agents I. synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity. *Anticancer Agents Med Chem* 15: 131-136. [Crossref]

23. Yong J, Lu C, Wu X (2015) Synthesis and Biological Evaluation of Quinazoline Derivatives as Potential Anticancer Agents (II). *Anticancer Agents Med Chem* 15: 1326-1332. [Crossref]

24. Yong JP, Lu CZ, Wu XY (2014) Synthesis of isoxazole moiety containing ferrocenederivatives and preliminarily in vitro anticancer activity. *Med Chem Commun* 5: 968-972.

25. Lu CZ, Yong JP (2012) Quinazoline derivatives and application thereof. PCT/WO2013143319A1; U. S patent: 9193718B2; EP 2752413B1; ZL201210526123.X.

26. Lu CZ, Yong JP (2012) Thieno [2,3-d] Pyrimidine derivatives, preparation method and use Therop. PCT/WO2014043866A1; U. S patent: 9434741B2; EP 2835372B1; ZL2012103495083.

27. Yong J, Lu C (2012) Ferrocene drivatives, preparation method and use thereof. U. S. patent:9736731B1.

28. Yong JP, Wu XY, Lu CZ (2014) Chemical constitutes isolated from the fruits of *Lonicera maackii* (Rupr.) *Maxim Chem Nat Compd* 50: 765-766.

29. Yong JP, Lu CZ, Huang SJ (2014) Chemical constitutes isolated from the flower and fruits of *Lonicera maackii* (Rupr.) *Maxim Chem Nat Compd* 50:945-947.

30. Yong JP, Lu C Z, Wu XY (2015) Chemical components isolated from the roots of *Morinda officinalis*. *Chem Nat Compd* 50: 548-549.

Copyright: ©2018 Yang Y. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.