Rapid Microwave-Assisted Synthesis and Electrode Optimization of Organic Anode Materials in Sodium-Ion Batteries

Aamod V. Desai, Daniel N. Rainer, Atin Pramanik, Joel M. Cabañero Jr., Russell E. Morris,* and Anthony Robert Armstrong*
Supporting Information

Rapid microwave-assisted synthesis and electrode optimization of organic anode materials in sodium-ion batteries

Aamod V. Desai, Daniel N. Rainer, Atin Pramanik, Joel M. Cabañero Jr., Russell E. Morris*
and A. Robert Armstrong*
Figure S1. Calculated PXRD pattern for Na$_2$NDC (Ref. S1) compared to as-synthesized phase of Na-NDC (MW).

Figure S2. SEM images for pristine phase of Na-NDC (MW).
Figure S3. TGA profile for Na-NDC (MW).

Figure S4. VT-PXRD patterns for Na-NDC (MW) recorded in air for stepwise heating from 25 °C (pink) to 500 °C (dark blue), and a measurement after cooling back to 25 °C (purple).
Figure S5. Comparison of PXRD profiles for products at different ratios of the precursors.

Figure S6. Comparison of PXRD profiles for products from different sodium salts.
Figure S7. PXRD patterns for Na-BDC (MW) and Na-BPDC (MW) compared with calculated patterns calculated from crystal structures of Na$_2$BDC (Refcode: QQQDHD01, Ref. S2) and NaHBDC (Refcode: BEBFIY, Ref. S3) or Na$_2$BPDC (Refcode: MOFTUY, Ref. S4) and NaHBPDC (Refcode: MOFVAG, Ref. S4).

Figure S8. PXRD pattern for air-dried phase of Na-NDC (MW) electrode prepared using PVDF binder (red) and the phase after heating under vacuum at 80 °C overnight, compared to that of pristine phase of Na$_2$NDC (MW).
Figure S9. Charge/discharge curves for Na-NDC (MW) cycled at 25 mA g$^{-1}$ from 0.05-2.5 V in an electrode (60% Active, 30% Super C65, 10% PVDF) prepared by using PVDF as the binder.

Figure S10. SEM images for the recrystallized phase of Na-NDC (MW).
Figure S11. PXRD pattern for recrystallized phase of Na-NDC (MW) from water (red) and after heating the recrystallized phase under vacuum at 110 °C overnight (blue), compared to the pristine phase (gray).

Figure S12. TGA profile for recrystallized phase of Na-NDC (MW).
Figure S13. SEM images for air-dried electrode with composition – 60% active, 30% Super C65, 10% CMC binder.

Figure S14. PXRD pattern for air-dried phase of Na-NDC (MW) electrode prepared using CMC binder (red) and the phase after heating under vacuum at 110 °C overnight, compared to that of calculated phase of Na₂NDC (gray) (Ref. S1).
Figure S15. SEM images for air-dried electrode with 60% active material, 30% Super C65 and 10% sodium alginate as binder.

Figure S16. Discharge capacities for cells cycled from 0.05-2.5 V at 25 mA g\(^{-1}\) in electrodes prepared from CMC and sodium alginate with composition – 60% active, 30% Super C65, 10% binder.
Figure S17. Differential capacity plot for Na-NDC (MW) cycled at 25 mA g\(^{-1}\) from 0.05-2.5 V in an electrode prepared by using CMC as the binder (60% Active, 30% Super C65, 10% CMC).

Figure S18. a) Differential capacity for 3\(^{\text{rd}}\) cycle and b) discharge capacities for 50 cycles of electrode prepared using 90% conductive carbon (Super C65) and 10% CMC binder, cycled at 25 mA g\(^{-1}\) between 0.05-2.5 V. As the capacity stabilises at ~112 mAh g\(^{-1}\), an approximate maximum capacity contribution for electrodes prepared using 30% conductive carbon would be ~37.33 mAh g\(^{-1}\).
Figure S19. Discharge capacities for Na-NDC (MW) cycled at two different current rates – 200 mA g\(^{-1}\) and 500 mA g\(^{-1}\), for 75 cycles between 0.05-2.5 V.

Figure S20. SEM images for air-dried electrode with composition – 80% active, 10% Super C65 and 10% CMC binder.
Figure S21. Discharge capacity and Coulombic efficiency for cell cycled at 25 mA g$^{-1}$ between 0.05-2.5 V with electrode composition – 70% Active, 20% Super C65, 10% CMC.

Figure S22. Discharge capacity and Coulombic efficiency for cell cycled at 25 mA g$^{-1}$ between 0.05-2.5 V with electrode composition – 80% Active, 10% Super C65, 10% CMC.
References:
[S1] J. M. Cabanero, V. Pimenta, K. C. Cannon, R. E. Morris, A. R. Armstrong, ChemSusChem 2019, 12, 4522.
[S2] J. A. Kaduk, Acta Crystallogr. Sect. B Struct. Sci. 2000, 56, 474.
[S3] S. H. Dale, M. R. J. Elsegood, Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2003, 59, 475.
[S4] A. Choi, Y. K. Kim, T. K. Kim, M. S. Kwon, K. T. Lee, H. R. Moon, J. Mater. Chem. A 2014, 2, 14986.