On Gerstenhaber’s theorem for spaces of nilpotent matrices over a skew field

Clément de Seguins Pazzis∗†

May 3, 2014

Abstract

Let K be a skew field, and K_0 be a subfield of the central subfield of K such that K has finite dimension q over K_0. Let V be a K_0-linear subspace of $n \times n$ nilpotent matrices with entries in K. We show that the dimension of V is bounded above by $q \frac{n^2}{2}$, and that equality occurs if and only if V is similar to the space of all $n \times n$ strictly upper-triangular matrices over K. This generalizes famous theorems of Gerstenhaber and Serezhkin, which cover the special case $K = K_0$.

AMS MSC: 15A03, 15A30

Keywords: nilpotent matrices, Gerstenhaber theorem, skew fields.

1 Introduction

In this article, we let K be an arbitrary skew field, and K_0 be a subfield of the central subfield of K over which K has finite dimension q. The set K^n is always endowed with its canonical structure of right-K-vector space. We denote by $M_{n,p}(K)$ the set of all $n \times p$ matrices with entries in K, endowed with its canonical structure of vector space over K_0. We set $M_n(K) := M_{n,n}(K)$, and denote by $\text{GL}_n(K)$ its group of invertible elements. We denote by $\text{NT}_n(K)$ the set of all strictly upper-triangular matrices of $M_n(K)$.

∗Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Mathématiques de Versailles, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
†e-mail address: dsp.prof@gmail.com
The transpose of a matrix M is denoted by M^T, and its trace by $\text{tr}(M)$. The relation of similarity between matrices is denoted by \simeq and is naturally extended to subsets of $M_n(\mathbb{K})$.

A linear subspace \mathcal{V} of $M_n(\mathbb{K})$ (over \mathbb{K}_0) is called nilpotent when all its elements are nilpotent matrices. In that case, we note that, for every $P \in \text{GL}_n(\mathbb{K})$, the set $P \mathcal{V} P^{-1}$ is a nilpotent linear subspace of $M_n(\mathbb{K})$ with the same dimension as \mathcal{V}.

In his first entry in a series of four landmark papers [1], Murray Gerstenhaber studied the structure of such nilpotent subspaces. Here is his most famous result:

Theorem 1 (Gerstenhaber, Serezhkin). Assume that \mathbb{K} is commutative, and let \mathcal{V} be a nilpotent linear subspace of the \mathbb{K}-vector space $M_n(\mathbb{K})$. Then $\dim_\mathbb{K} \mathcal{V} \leq \binom{n}{2}$, and equality occurs if and only if \mathcal{V} is similar to $\text{NT}_n(\mathbb{K})$.

Our main aim here is to prove the following generalization to skew fields:

Theorem 2. Let \mathcal{V} be a nilpotent linear subspace of $M_n(\mathbb{K})$ (over \mathbb{K}_0). Then:

(a) $\dim_{\mathbb{K}_0} \mathcal{V} \leq q \binom{n}{2}$.

(b) If $\dim_{\mathbb{K}_0} \mathcal{V} = q \binom{n}{2}$, then \mathcal{V} is similar to $\text{NT}_n(\mathbb{K})$.

If \mathbb{K} is finite (and therefore commutative), choosing \mathbb{K}_0 as its prime subfield yields the following corollary:

Corollary 3. Assume \mathbb{K} is finite with cardinality p. Let \mathcal{V} be a subgroup of $(M_n(\mathbb{K}), +)$ in which every matrix is nilpotent. Then $\# \mathcal{V} \leq p^{\binom{n}{2}}$, and equality occurs only if \mathcal{V} is similar to $\text{NT}_n(\mathbb{K})$.

At the time of [1], Gerstenhaber was actually able to prove Theorem 1 only for fields with at least n elements, mostly because his methods relied on the use of polynomials. A lot of progress has been made since then: we now have elementary and elegant proofs of the inequality statement that are valid for every field [3, 2], and the case of equality has been obtained for an arbitrary field by V.N. Serezhkin [7] (for fields with more than two elements, we now have a shorter proof based upon Jacobson’s generalization of Engels’s theorem, see [3]).
Recent progress on the topic must be signaled here: in [5], the inequality statement of Theorem 1 has been extended to linear subspaces of $M_n(K)$ with a trivial spectrum, i.e., which consist solely of matrices with no non-zero eigenvalue in K. The study of such spaces is motivated by its connection with the affine subspaces of matrices with a rank bounded below by some fixed integer. More recently [4], a classification of the linear subspaces of $M_n(K)$ with a trivial spectrum and the maximal dimension $\binom{n}{2}$ has been discovered for fields with more than two elements: for such fields, Theorem 1 appears as an easy consequence of it (see Section 5 of [4]). Finally, in [6], we have been able to prove a theorem similar to Gerstenhaber’s for linear subspaces of matrices with exactly one eigenvalue in an algebraic closure of K.

Both [4] and [6] are based upon a new technique which we will call the diagonal-compatibility method. The purpose of this paper is to demonstrate how this strategy can be used to obtain Theorem 2 with essentially no prior knowledge on the topic. In particular, this will yield an alternative proof of Theorem 1 (in the course of the proof, we will point out to some shortcuts for the case $K = K_0$). Note that in some cases (e.g., K is commutative and separable over K_0), the line of reasoning of [3] may be adapted with some effort by using the trace of K over K_0; this however fails to yield our more general theorem, so we will not use this strategy.

Our key lemma, which is proven in Section 2, is a variation of Proposition 10 of [5]. It will help us prove both points in Theorem 2 first, point (a) in Section 3 and then point (b) in the longer Section 4.

For to simplify the case $K = K_0$, we recall the following classical result, which is proven in [2, 3]. We give a simple proof of it.

Lemma 4. Assume that K is commutative, and let A and B be two nilpotent matrices of $M_n(K)$ such that $A + B$ is nilpotent. Then $\text{tr}(AB) = 0$.

Proof. For $M = (m_{i,j})_{1 \leq i, j \leq n}$, we denote by $c_2(M)$ the coefficient in front of t^{n-2} in the characteristic polynomial of M. Using $c_2(M) = \sum_{1 \leq i < j \leq n} m_{i,i} m_{i,j} m_{j,i} m_{j,j}$, one finds the formula

$$\forall (M, N) \in M_n(K)^2, \quad c_2(M + N) - c_2(M) - c_2(N) = \text{tr}(M) \text{tr}(N) - \text{tr}(MN). \quad (1)$$

As A, B and $A + B$ are nilpotent, we find $\text{tr}(A) = \text{tr}(B) = 0$ and $c_2(A) = c_2(B) = c_2(A + B) = 0$, which yields $\text{tr}(AB) = 0$. \qed
2 The key lemma

Definition 1. Let \(V \) be a subset of \(M_n(\mathbb{K}) \). A vector \(X \in \mathbb{K}^n \) is called \(V \)-adapted if it is non-zero and no matrix of \(V \) has \(X \mathbb{K} \) as its column space.

Lemma 5. Let \(V \) be a subset of \(M_n(\mathbb{K}) \) which is closed under addition and contains only nilpotent matrices, and denote by \((e_1, \ldots, e_n) \) the canonical basis of the \(\mathbb{K} \)-vector space \(\mathbb{K}^n \). Then one of the vectors \(e_1, \ldots, e_n \) is \(V \)-adapted.

The proof is largely similar to that of Proposition 10 in [5].

Proof. The result is trivial for \(n = 1 \). We use an induction, assuming, given an integer \(n \geq 2 \), that the result holds for the integer \(n - 1 \). Let \(V \) be a subset of \(M_n(\mathbb{K}) \) which is closed under addition and contains only nilpotent matrices. We assume that none of \(e_1, \ldots, e_n \) is \(V \)-adapted.

For \((i, j) \in [1, n]^2 \), we denote by \(E_{i,j} \) the matrix of \(M_n(\mathbb{K}) \) with a zero entry everywhere except at the \((i, j) \)-spot where the entry is 1. Denote by \(W \) the subset of \(V \) consisting of its matrices with a zero \(n \)-th row. Every \(M \in W \) may be written as

\[
M = \begin{bmatrix}
K(M) & \mathbb{I}_{(n-1)\times 1} \\
[0]_{1 \times (n-1)} & 0
\end{bmatrix}
\]

with \(K(M) \in M_{n-1}(\mathbb{K}) \), so that \(K(W) \) consists of nilpotent matrices and is obviously closed under addition. By induction, we know that there is some \(i \in \{1, n-1 \} \) such that \(e_i \) is \(K(W) \)-adapted (identifying \(\mathbb{K}^{n-1} \) with the subspace \(\mathbb{K}^{n-1} \times \{0\} \) of \(\mathbb{K}^n \) in the usual way). However, we have assumed that \(e_i \) is not \(V \)-adapted, therefore some matrix \(M \) of \(V \) has all rows zero except the \(i \)-th. Then \(M \in W \), and as \(e_i \) is \(K(W) \)-adapted, we find that \(K(M) = 0 \). Thus, \(M = a E_{i,n} \) for some \(a \in \mathbb{K} \setminus \{0\} \).

Now, the same argument may be applied to \(PVP^{-1} \) for any \(n \times n \) permutation matrix \(P \). By doing so, we find a map \(f : [1, n] \to [1, n] \) and a list \((a_1, \ldots, a_n) \in (\mathbb{K} \setminus \{0\})^n \) such that \(V \) contains \(a_k E_{f(k),k} \) for all \(k \in [1, n] \). Let us choose a cycle for \(f \), i.e. a list \((i_1, \ldots, i_p) \) of pairwise distinct elements of \([1, n] \) such that \(f(i_1) = i_2, \ldots, f(i_{p-1}) = i_p \) and \(f(i_p) = i_1 \). To obtain such a cycle, one notes that some element in the sequence \((f^i(1))_{i \geq 0} \) appears several times, to the effect that one may choose non-negative integers \(i < j \), with \(j - i \) minimal, such that \(f^i(1) = f^j(1) \); then \((i_1, \ldots, i_p) := (f^i(1), \ldots, f^{j-1}(1)) \) is a cycle for \(f \).

Then, the matrix \(M := \sum_{k=1}^p a_{i_k} E_{f(i_k),i_k} \) belongs to \(V \) and satisfies \(M^{p} e_{i_1} = e_{i_1} \left(\prod_{k=1}^p a_{i_{p+1-k}} \right) \). This shows that \(M \) is non-nilpotent, which is a contradiction.
This *reductio ad absurdum* yields that some e_j is V-adapted, which concludes the proof by induction.

3 Proving the inequality statement

Now, we use Lemma 3 to obtain point (a) of Theorem 2 just as Proposition 10 was used to obtain Theorem 9 in [5].

Again, we use an induction on n. The case $n = 1$ is trivial. Let V be a nilpotent linear subspace of the \mathbb{K}_0-vector space $M_n(\mathbb{K})$. First of all, we know that some e_i is V-adapted. Replacing V with PV^{-1} for a well-chosen permutation matrix P, we may assume that e_n is V-adapted. In that case, we write every matrix of V as

$$M = \begin{bmatrix} K(M) & C(M) \\ L(M) & a(M) \end{bmatrix},$$

where $K(M), C(M), L(M)$ are respectively $(n-1) \times (n-1), (n-1) \times 1, 1 \times (n-1)$ matrices, and $a(M) \in \mathbb{K}$. Set

$$W_1 := \{ M \in V : C(M) = 0 \}.$$

Any $M \in W_1$ is nilpotent, which yields that $a(M) = 0$ and $K(M)$ is nilpotent. Moreover, that e_n is V-adapted yields:

$$\forall M \in W_1, K(M) = 0 \Rightarrow M = 0.$$

Using the rank theorem, one finds

$$\dim_{\mathbb{K}_0} V = \dim_{\mathbb{K}_0} K(W_1) + \dim_{\mathbb{K}_0} C(V).$$

As $K(W_1)$ is a nilpotent \mathbb{K}_0-linear subspace of $M_n(\mathbb{K})$ and $C(V) \subset \mathbb{K}^{n-1}$, the induction hypothesis yields

$$\dim_{\mathbb{K}_0} V \leq q \left(\frac{n-1}{2} \right) + q(n-1) = q \left(\frac{n}{2} \right).$$

Thus, point (a) of Theorem 2 is proven by induction on n.

4 Solving the case of equality

Here, we prove point (b) of Theorem 2 by induction on n. The case $n = 1$ is trivial.
4.1 The case $n = 2$

This case is trivial if $K = K_0$ but otherwise needs an explanation. Let A, B be non-zero nilpotent matrices of $M_2(K)$ such that $A + B$ is nilpotent. Assume that $\text{Ker} \ A \neq \text{Ker} \ B$. Then $K^2 = \text{Ker} \ A \oplus \text{Ker} \ B$, and we may therefore find a basis (f_1, f_2) of the K-vector space K^2 such that $f_1 \in \text{Ker} \ A$ and $f_2 \in \text{Ker} \ B$. This yields some $P \in \text{GL}_2(K)$ and some $(a, b) \in (K \setminus \{0\})^2$ such that

$$PAP^{-1} = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad PBP^{-1} = \begin{bmatrix} 0 & 0 \\ b & 0 \end{bmatrix}.$$

Therefore $P(A + B)P^{-1} = \begin{bmatrix} 0 & a \\ b & 0 \end{bmatrix}$, which is a non-singular matrix. This is a contradiction.

Now, let V be a q-dimensional linear subspace of the K_0-vector space $M_2(K)$ in which every matrix is nilpotent. Choose $A \in V \setminus \{0\}$. Then we have just shown that every non-zero matrix of V vanishes on $\text{Ker} \ A$. Choosing a basis (g_1, g_2) of the K-vector space K^2 with $g_1 \in \text{Ker} \ A$, we find a non-singular matrix $P \in \text{GL}_2(K)$ such that every matrix of PVP^{-1} has a zero first column. As PVP^{-1} is nilpotent, we deduce that $PVP^{-1} \subset \text{NT}_2(K)$, and the equality of dimensions yields $PVP^{-1} = \text{NT}_2(K)$.

4.2 Setting things up for $n \geq 3$

In the rest of the proof, we assume that $n \geq 3$ and that point (b) of Theorem 2 holds for any nilpotent linear subspace of the K_0-vector space $M_{n-1}(K)$.

Let V be a nilpotent K_0-linear subspace of $M_n(K)$ with dimension $q \binom{n}{2}$. Seing V as a set of linear endomorphisms of the right-K-vector space K^n, what we need is to find a basis (e'_1, \ldots, e'_{n}) of the K-vector space K^n in which the operators in V are represented exactly by the strictly upper-triangular $n \times n$ matrices. Our method is to construct such a basis step-by-step. Equivalently, we will replace successively V with similar linear subspace of matrices in order to simplify V more and more, until we finally find the space $\text{NT}_n(K)$. Let us quickly lay out the sequence of choices that we will make:

- We will start by choosing the last vector e'_n among the vectors that are V-adapted. Then we will choose a basis (e'_1, \ldots, e'_{n-1}) of the quotient space $K^n/(e'_nK)$ that is well-suited to V. Those first two operations will be done within the current section.
• At this point, each one of the vectors e'_1, \ldots, e'_{n-1} will be well determined up to addition of a vector of $e'_n \mathbb{K}$.

• A reasonable choice of e'_2, \ldots, e'_{n-1} will then be obtained (Section 4.3).

• A reasonable choice of e'_1 will come last, after a more extensive inquiry (in the end of Section 4.4).

In the rest of the proof, we denote by (e_1, \ldots, e_n) the canonical basis of the \mathbb{K}-vector space \mathbb{K}^n. As in Section 3, we lose no generality in assuming that e_n is \mathcal{V}-adapted. With the same notation as in Section 3, we deduce from the equality

\[
\dim_{\mathbb{K}_0} \mathcal{V} = q \binom{n}{2} \quad \text{and} \quad \dim_{\mathbb{K}_0} C(\mathcal{V}) = q(n-1).
\]

Set

\[\mathcal{V}_{ul} := K(\mathcal{W}_1)\]

(the subscript “ul” stands for “upper left”). Using the induction hypothesis, we deduce that:

(A) There exists $Q \in \text{GL}_{n-1}(\mathbb{K})$ such that $Q \mathcal{V}_{ul} Q^{-1} = \text{NT}_{n-1}(\mathbb{K})$.

(B) $C(\mathcal{V}) = \mathbb{K}^{n-1}$.

Setting $P_1 := Q \oplus 1$ and replacing \mathcal{V} with $P_1 \mathcal{V} P_1^{-1}$ leaves conditions (A) and (B) unchanged and does not modify the assumption that e_n is adapted to the space under consideration. Therefore, we may now assume, in addition to those properties:

(A’) $\mathcal{V}_{ul} = \text{NT}_{n-1}(\mathbb{K})$.

4.3 Corner-compatibility and special matrices in \mathcal{V}

Here, we will repeat part of the strategy of Section 4.2. Let $M \in \mathcal{V}$ and assume that M vanishes on e_2, \ldots, e_n. Then $M \in \mathcal{W}_1$. Using $K(M) \in \text{NT}_{n-1}(\mathbb{K})$, we find $K(M) = 0$ and therefore $M = 0$. It follows that e_1 is \mathcal{V}^T-adapted.

For any $M \in \mathcal{V}$, we now write:

\[
M = \begin{bmatrix}
 b(M) & R(M) \\
 [?]_{(n-1) \times 1} & I(M)
\end{bmatrix},
\]
where $R(M)$ and $I(M)$ are respectively $1 \times (n-1)$ and $(n-1) \times (n-1)$ matrices, and $b(M) \in \mathbb{K}$. We set
\[
W_2 := \{ M \in \mathcal{V} : R(M) = 0 \},
\]
which is a nilpotent linear subspace of the \mathbb{K}_0-vector space $M_n(\mathbb{K})$. Thus $b(M) = 0$ for every $M \in W_2$, and $\mathcal{V}_{lr} := I(W_2)$ is a nilpotent linear subspace of the \mathbb{K}_0-vector space $M_{n-1}(\mathbb{K})$ (the subscript "lr" stands for "lower-right"). Finally, as ϵ_1 is \mathcal{V}^T-adapted, we find that
\[
\forall M \in W_2, \ I(M) = 0 \Rightarrow M = 0.
\]
Using the rank theorem, we deduce that
\[
dim_{\mathbb{K}_0} \mathcal{V} = dim_{\mathbb{K}_0} \mathcal{V}_{lr} + dim_{\mathbb{K}_0} R(\mathcal{V}).
\]
As in Section 4.2, equality $dim_{\mathbb{K}_0} \mathcal{V} = q \binom{n}{2}$ and the induction hypothesis yield:

(C) There exists $Q' \in GL_{n-1}(\mathbb{K})$ such that $\mathcal{V}_{lr} = Q' \mathcal{V}_{n-1}(\mathbb{K}) (Q')^{-1}$.

We aim at modifying \mathcal{V} once more so as to keep (A’) and (B) while sharpening (C).

Remark 1. In the rest of the proof, every matrix of $M_n(\mathbb{K})$ will be written as a block matrix with the following shape:
\[
\begin{bmatrix}
? & ? & ? \\
? & ? & ? \\
? & ? & ? \\
\end{bmatrix},
\]
where the question marks in the corners represent scalars.

Let us find some special matrices in \mathcal{V}. First of all, (A’) yields:

(D) There are \mathbb{K}_0-linear mappings $\varphi : M_{1,n-2}(\mathbb{K}) \to M_{1,n-2}(\mathbb{K})$ and $f : M_{1,n-2}(\mathbb{K}) \to \mathbb{K}$ such that, for every $L \in M_{1,n-2}(\mathbb{K})$, the space \mathcal{V} contains
\[
A_L := \begin{bmatrix}
0 & L & 0 \\
0 & 0 & 0 \\
f(L) & \varphi(L) & 0 \\
\end{bmatrix}.
\]
Let \(C \in M_{n-2,1}(\mathbb{K}) \). By (B), we know that \(V \) contains a matrix of the form

\[
\begin{bmatrix}
? & ? & 0 \\
? & ? & C \\
? & ? & ?
\end{bmatrix}.
\]

By summing it with a matrix of type \(A_L \), we may assume furthermore that its first row has the form \([? \ 0 \ \cdots \ 0]\); in that case this row is zero as explained above. Therefore, \(V \) contains a matrix of the following form:

\[
\begin{bmatrix}
0 & 0 & 0 \\
? & ? & C' \\
? & ? & ?
\end{bmatrix}.
\]

On the other hand, we know from (A') that, for every \(U \in NT_{n-2}(\mathbb{K}) \), the subspace \(V \) contains a matrix of the form

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & U & 0 \\
? & ? & 0
\end{bmatrix}.
\]

We shall now use those observations to prove the following:

Claim 1. There exists a row matrix \(L \in M_{1,n-2}(\mathbb{K}) \) such that, for \(Q_1 := \begin{bmatrix} I_{n-2} & [0]_{(n-2)\times 1} \\ L & 1 \end{bmatrix} \), one has \(Q_1 V_L Q_1^{-1} = NT_{n-1}(\mathbb{K}) \).

Proof. Let us consider a matrix \(Q' \) given by property (C). Denote by \((e_1, \ldots, e_{n-1})\) the canonical basis of the \(\mathbb{K} \)-vector space \(\mathbb{K}^{n-1} \). Then \(V_L x \subseteq Q' \text{span}_\mathbb{K}(e_1, \ldots, e_{n-2}) \) for every \(x \in \mathbb{K}^{n-1} \). Using the matrices of type (2), we find that \(V_L e_{n-1} \) contains a \(q(n-2) \)-dimensional subspace of the \(\mathbb{K}^q \)-vector space \(\mathbb{K}^{n-1} \). Therefore \(V_L e_{n-1} = Q' \text{span}_\mathbb{K}(e_1, \ldots, e_{n-2}) \), and in particular \(V_L e_{n-1} \) is an \((n-2)\)-dimensional \(\mathbb{K} \)-linear subspace of \(\mathbb{K}^{n-1} \). Moreover, \(V_L e_{n-1} \) has a trivial intersection with \(e_{n-1} \mathbb{K} \) since every matrix of \(V \) is nilpotent. This yields a \(\mathbb{K} \)-linear

map \(u : \mathbb{K}^{n-2} \to \mathbb{K} \) such that \(V_L e_{n-1} = \{(y, u(y)) \mid y \in \mathbb{K}^{n-2}\} \). Writing \(u \) as \((y_1, \ldots, y_{n-2}) \mapsto a_1 y_1 + \cdots + a_{n-2} y_{n-2}\) for some \((a_1, \ldots, a_{n-2}) \in \mathbb{K}^{n-2}\), we set \(L := [-a_1 \ \cdots \ -a_{n-2}] \) and \(Q_1 := \begin{bmatrix} I_{n-2} & [0]_{(n-2)\times 1} \\ L & 1 \end{bmatrix} \). As \(V_L x \subseteq V_L e_{n-1} \) for every \(x \in \mathbb{K}^{n-1} \), we deduce that the last row of every matrix of \(U := Q_1 V_L Q_1^{-1} \) is zero.

We now wish to prove that \(U = NT_{n-1}(\mathbb{K}) \). First of all, any matrix \(N \) of \(U \) may be written as

\[
N = \begin{bmatrix}
T(N) & [?]_{(n-2)\times 1} \\
[0]_{1 \times (n-2)} & 0
\end{bmatrix}
\]

where \(T(N) \) is an \((n-2) \times (n-2)\)-matrix.
Then \(T(U) \) is a nilpotent linear subspace of the \(\mathbb{K}_0 \)-vector space \(M_{n-2}(\mathbb{K}) \).

With the shape of \(Q_1 \) and the matrices of type \([3] \), we find that \(T(U) \) contains \(NT_{n-2}(\mathbb{K}) \). As \(\dim_{\mathbb{K}_0} T(U) \leq q \left(\binom{n-2}{2} \right) = \dim_{\mathbb{K}_0} NT_{n-2}(\mathbb{K}) \) by point (a) in Theorem \([2] \), we deduce that \(T(U) = NT_{n-2}(\mathbb{K}) \). It follows that \(U \subset NT_{n-1}(\mathbb{K}) \), and the equality of dimensions over \(\mathbb{K}_0 \) then yields \(U = NT_{n-1}(\mathbb{K}) \), which finishes the proof.

With \(Q_1 \) given by Claim \([1] \) we set \(P_2 := 1 \oplus Q_1 \) and replace \(V \) with \(P_2 V P_2^{-1} \).

Then all the preceding properties are unchanged, but we now have the improved:

\((C')\) \(V_{1r} = NT_{n-1}(\mathbb{K}) \).

Applying that property to the matrices of type \([2] \) and \([3] \), we find the following properties:

\((E)\) There is a \(\mathbb{K}_0 \)-linear map \(h : NT_{n-2}(\mathbb{K}) \rightarrow \mathbb{K} \) such that, for every \(U \in NT_{n-2}(\mathbb{K}), \) the space \(V \) contains the matrix

\[
E_U := \begin{bmatrix}
0 & 0 & 0 \\
0 & U & 0 \\
h(U) & 0 & 0
\end{bmatrix}.
\]

\((F)\) There are two \(\mathbb{K}_0 \)-linear maps \(\psi : M_{n-2,1}(\mathbb{K}) \rightarrow M_{n-2,1}(\mathbb{K}) \) and \(g : M_{n-2,1}(\mathbb{K}) \rightarrow \mathbb{K} \) such that, for every \(C \in M_{n-2,1}(\mathbb{K}), \) the space \(V \) contains the matrix

\[
B_C := \begin{bmatrix}
0 & 0 & 0 \\
\psi(C) & 0 & C \\
g(C) & 0 & 0
\end{bmatrix}.
\]

Finally, for every \(a \in \mathbb{K}, \) property (B) yields that \(V \) contains a matrix with entry \(a \) at the \((1, n) \)-spot: subtracting matrices of type \(A_L \) and \(B_C \) from such a matrix yields that \(V \) contains a matrix of the form

\[
J_a = \begin{bmatrix}
? & 0 & a \\
? & ? & 0 \\
? & ? & ?
\end{bmatrix}.
\]
4.4 Analyzing \(\varphi, \psi \), and performing the last change of basis

Claim 2. For every \(L \in M_{1,n-2}(K) \), there exists \(a_L \in K \) such that \(\varphi(L) = a_L L \). For every \(C \in M_{n-2,1}(K) \), there exists \(b_C \in K \) such that \(\psi(C) = C b_C \).

Proof. Let \((L, C) \in M_{1,n-2}(K) \times M_{n-2,1}(K) \) be such that \(LC = 0 \).

Setting \(M := A_L + B_C \), we compute
\[
M^2 = \begin{bmatrix}
L\psi(C) & 0 & 0 \\
? & ? & 0 \\
? & ? & \varphi(L)C
\end{bmatrix}.
\]

As \(M \in V \), we know that \(M^2 \) is nilpotent and therefore
\[
\varphi(L)C = 0 \quad \text{and} \quad L\psi(C) = 0.
\]

If we fix \(L \in M_{1,n-2}(K) \), varying \(C \) yields that the annihilator of the row matrix \(\varphi(L) \) contains that of \(L \), and therefore \(\varphi(L) = a_L L \) for some \(a_L \in K \). The same line of reasoning yields the second part of Claim 2. \(\square \)

Claim 3. There is a scalar \(\lambda \in K \) such that
\[
\forall (L, C) \in M_{1,n-2}(K) \times M_{n-2,1}(K), \quad \varphi(L) = \lambda L \quad \text{and} \quad \psi(C) = -C \lambda.
\]

Proof. By Claim 2 there are endomorphisms \(\varphi_1, \ldots, \varphi_{n-2} \) of the \(K_0 \)-vector space \(K \) such that
\[
\forall L = \begin{bmatrix} l_1 & \cdots & l_{n-2} \end{bmatrix} \in M_{1,n-2}(K), \quad \varphi(L) = \begin{bmatrix} \varphi_1(l_1) & \cdots & \varphi_{n-2}(l_{n-2}) \end{bmatrix}.
\]

Applying Claim 2 to the row matrices in which all the entries are equal, we find \(\varphi_1 = \cdots = \varphi_{n-2} \). As the same line of reasoning applies to \(\psi \), we obtain two endomorphisms \(u \) and \(v \) of the \(K_0 \)-vector space \(K \) such that
\[
\forall L = \begin{bmatrix} l_1 & \cdots & l_{n-2} \end{bmatrix} \in M_{1,n-2}(K), \quad \varphi(L) = \begin{bmatrix} u(l_1) & \cdots & u(l_{n-2}) \end{bmatrix}
\]
and
\[
\forall C = \begin{bmatrix} c_1 & \cdots & c_{n-2} \end{bmatrix}^T \in M_{n-2,1}(K), \quad \psi(C) = \begin{bmatrix} v(c_1) & \cdots & v(c_{n-2}) \end{bmatrix}^T.
\]

Let \((a, b) \in K^2 \), and set \(L_0 := \begin{bmatrix} a & 0 & \cdots & 0 \end{bmatrix} \in M_{1,n-2}(K) \) and \(C_0 := \begin{bmatrix} b & 0 & \cdots & 0 \end{bmatrix}^T \in M_{n-2,1}(K) \). We notice that \(M := A_{L_0} + B_{C_0} \) stabilizes the
\(\mathbb{K}\)-subspace \(\text{span}_\mathbb{K}(e_1, e_2, e_n)\) and induces an endomorphism of it represented by \(N = \begin{bmatrix} 0 & a & 0 \\ v(b) & 0 & b \\ ? & u(a) & 0 \end{bmatrix}\). Then \(N\) is a \(3 \times 3\) nilpotent matrix, and therefore \(N^3 = 0\).

One computes that the entry of \(N^3\) at the \((1, 2)\)-spot is \(a(v(b)a + bu(a))\). For \(a \neq 0\), this yields
\[v(b) a + b u(a) = 0,\]which is also obviously true for \(a = 0\).

Set now \(\lambda := u(1)\). Taking \(a = 1\) in (4) yields:
\[v(b) = -b \lambda \]for all \(b \in \mathbb{K}\). Thus, \(v(1) = -\lambda\), and taking \(b = 1\) in (4) yields \(u(a) = \lambda a\) for all \(a \in \mathbb{K}\). This finishes the proof of Claim 3.

Remark 2. In the case \(\mathbb{K} = \mathbb{K}_0\), Claim 3 has a far more simple proof. Indeed, Claim 2 then readily yields a pair \((\lambda, \mu) \in \mathbb{K}^2\) such that \(\forall (L, C) \in M_{1, n-2}(\mathbb{K}) \times M_{n-2, 1}(\mathbb{K})\), \(\varphi(L) = \lambda L\) and \(\psi(C) = \mu C\); as \(\mathbb{K}\) is commutative, we find \(\text{tr}(A_L B_C) = 0\) for every \((L, C) \in M_{1, n-2}(\mathbb{K}) \times M_{n-2, 1}(\mathbb{K})\), and hence \(\mu + \lambda = 0\).

Now, we perform one last change of basis. We set \(P := \begin{bmatrix} 1 & 0 & 0 \\ 0 & I_{n-2} & 0 \\ -\lambda & 0 & 1 \end{bmatrix} \in \text{GL}_n(\mathbb{K})\) and we replace \(V\) with \(P V P^{-1}\). Note then that all properties (A'), (B), (C'), (D), (E) and (F) still hold, but we now have a simplified form for the matrices of type \(A_L\) and \(B_C\):
\[
\forall (L, C) \in M_{1, n-2}(\mathbb{K}) \times M_{n-2, 1}(\mathbb{K})\), \(A_L = \begin{bmatrix} 0 & L & 0 \\ 0 & 0 & 0 \\ f(L) & 0 & 0 \end{bmatrix}\) and \(B_C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & C \\ g(C) & 0 & 0 \end{bmatrix}\).

From there, our aim is to prove that \(\mathcal{V} = \mathcal{N} T_n(\mathbb{K})\). In order to do so, we will show that all the matrices of type \(A_L\), \(B_C\), \(E_U\) and \(J_a\) are strictly upper-triangular. This will prove the inclusion \(\mathcal{N} T_n(\mathbb{K}) \subset \mathcal{V}\), and the equality of dimensions over \(\mathbb{K}_0\) will help us complete the proof. We start by showing that \(f\) and \(g\) vanish everywhere.

4.5 The vanishing of \(f\) and \(g\)

Claim 4. One has \(f = 0\) and \(g = 0\).
Proof. We claim that
\[
\forall (L, C) \in M_{1,n-2}(K) \times M_{n-2,1}(K), \quad LC \neq 0 \Rightarrow f(L) + g(C) = 0.
\] (5)
Let indeed \((L, C) \in M_{1,n-2}(K) \times M_{n-2,1}(K)\) be such that \(LC \neq 0\); setting \(M := A_L + B_C\), we compute \(M^3 e_1 = e_1 (LC(f(L) + g(C)))\) and [5] follows as \(M^3\) is nilpotent.

- Assume that \(n \geq 4\). Let \(L \in M_{1,n-2}(K)\). As \(n - 2 \geq 2\), we may choose \(C \in M_{n-2,1}(K) \setminus \{0\}\) such that \(LC = 0\), and then we may choose \(L_1 \in M_{1,n-2}(K)\) such that \(L_1 C = 1\). Then \((L + L_1)C = 1\), which yields \(f(L + L_1) = -g(C) = f(L_1)\). Thus, \(f(L) = 0\). The same line of reasoning yields \(g = 0\).

- Assume that \(n = 3\) and \(\#K > 2\). Let \(x \in K\). Then we may choose \(y \in K \setminus \{0, -x\}\), so that \(y \neq 0\) and \(x + y \neq 0\). Therefore, \(f(x + y) = -g(1) = f(y)\), and hence \(f(x) = 0\). The same line of reasoning yields \(g = 0\).

- Assume finally that \(n = 3\) and \(\#K = 2\), so that \(K_0 = K \simeq F_2\). Then, \(f(1) = g(1)\). Assume that \(f(1) = 1\). Then \(V\) contains the matrices

\[
A := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
\]

and a matrix of the form

\[
J = \begin{bmatrix} a & 0 & 1 \\ b & c & 0 \\ d & e & f \end{bmatrix}.
\]

Note that \(K\) is commutative, thus Lemma 4 yields \(\text{tr}(AJ) = \text{tr}(BJ) = 0\), and hence \(b = e = 1\). As \(J\) is nilpotent, we also have \(\text{tr}(J) = 0\), and hence \(f = a + c\). Using \(\forall t \in K, \ t^2 = t\) and \(2t = 0\), we finally compute:

\[
\forall (x, y) \in K^2, \quad 0 = \det(J + xA + yB) = 1 + cd + (a + c) y + a x + d xy.
\]

This yields both \(cd = 1\) and \(d = 0\), a contradiction.

Therefore, \(f(1) = g(1) = 0\), and so \(f = 0\) and \(g = 0\), as claimed. \(\square\)
4.6 The vanishing of \(h \)

Claim 5. One has \(h = 0 \).

Proof. Let \(U \in \text{NT}_{n-2}(\mathbb{K}) \) be such that \(U^2 = 0 \). Set \(L_0 := \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} \in \text{M}_{1,n-2}(\mathbb{K}) \) and \(C_0 := L_0^T \), so that \(L_0 U C_0 = 0 \) and \(L_0 C_0 = 1 \). Setting \(M := A L_0 + B C_0 + EU \), one checks that \(M^3 e_n = e_n h(U) \), and therefore \(h(U) = 0 \).

In particular, \(h(E_{i,j} a) = 0 \) for every \(a \in \mathbb{K} \) and every \((i, j) \in [1, n-2]^2\) with \(j > i \) (where \(E_{i,j} \) is the matrix with all entries zero except at the \((i, j)\)-spot where the entry is 1). As \(h \) is additive, we deduce that \(h \) vanishes everywhere on \(\text{NT}_{n-2}(\mathbb{K}) \). \(\square \)

4.7 The matrices of type \(J_a \)

4.7.1 Simplifying the \(J_a \) matrices

Let us sum up. For every triple \((L, C, U) \in \text{M}_{1,n-2}(\mathbb{K}) \times \text{M}_{n-2,1}(\mathbb{K}) \times \text{NT}_{n-2}(\mathbb{K})\), the space \(\mathcal{V} \) contains the matrices

\[
A_L = \begin{bmatrix} 0 & L & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad B_C = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & C \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad E_U = \begin{bmatrix} 0 & 0 & 0 \\ 0 & U & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

Adding an appropriate \(E_U \) to each matrix of type \(J_a \), one finds \(\mathbb{K}_0 \)-linear maps \(\alpha : \mathbb{K} \rightarrow \mathbb{K}, \beta : \mathbb{K} \rightarrow \mathbb{K}, \gamma : \mathbb{K} \rightarrow \mathbb{K}, L_1 : \mathbb{K} \rightarrow \text{M}_{1,n-2}(\mathbb{K}), C_1 : \mathbb{K} \rightarrow \text{M}_{n-2,1}(\mathbb{K}), T : \mathbb{K} \rightarrow \text{LT}_{n-2}(\mathbb{K}) \) (where \(\text{LT}_{n-2}(\mathbb{K}) \) denotes the set of lower-triangular matrices of \(\text{M}_{n-2}(\mathbb{K}) \)) such that, for every \(a \in \mathbb{K} \), the subspace \(\mathcal{V} \) contains

\[
J_a := \begin{bmatrix} \alpha(a) & 0 & a \\ C_1(a) & T(a) & 0 \\ \beta(a) & L_1(a) & \gamma(a) \end{bmatrix}.
\]

Our aim in what follows is to prove:

Claim 6. All the maps \(\alpha, \beta, \gamma, L_1, C_1 \) and \(T \) vanish everywhere on \(\mathbb{K} \).

We have to distinguish between two cases, the main problem being the handling of fields with two elements.

14
4.7.2 Proof of Claim 6: the case $\mathbb{K} = \mathbb{K}_0$

We assume $\mathbb{K} = \mathbb{K}_0$. In particular, \mathbb{K} is commutative, which allows us to use Lemma 4 to obtain $\text{tr}(J_1A_L) = 0$, $\text{tr}(J_1B_C) = 0$ and $\text{tr}(J_1E_U) = 0$ for all $(L, C, U) \in M_{1,n-2}(\mathbb{K}) \times M_{n-2,1}(\mathbb{K}) \times NT_{n-2}(\mathbb{K})$. Therefore, $L_1(1) = 0$, $C_1(1) = 0$ and $T(1)$ is a diagonal matrix. Every diagonal entry of $T(1)$ is an eigenvalue of J_1, and hence $T(1) = 0$. Then J_1 induces an endomorphism of $\text{span}_\mathbb{K}(e_1, e_n)$ whose matrix in (e_1, e_n) is $N = \begin{bmatrix} \alpha(1) & 1 \\ \beta(1) & \gamma(1) \end{bmatrix}$. This last matrix must be nilpotent, and hence $\alpha(1) = -\gamma(1)$ and $\beta(1) = -\gamma(1)^2$ (as $\text{tr} N = 0$ and $\text{det} N = 0$). Choose finally $(L, C) \in M_{1,n-2}(\mathbb{K}) \times M_{n-2,1}(\mathbb{K})$ such that $LC \neq 0$, and set $M := J_1 + A_L + B_C$. One checks that $M^3e_1 = -\gamma(1)^2LC e_1$, and hence $\gamma(1) = 0$. Therefore, the maps α, β, γ, L_1, C_1 and T all vanish on 1; since they are \mathbb{K}-linear, Claim 6 is proven in the case $\mathbb{K} = \mathbb{K}_0$.

4.7.3 Proof of Claim 6: the case $\#\mathbb{K} > 2$

We assume here that $\#\mathbb{K} > 2$, which holds whenever $\mathbb{K}_0 \subseteq \mathbb{K}$.

Fix $a \in \mathbb{K}$. Let $C_0 \in M_{n-2,1}(\mathbb{K}) \setminus \{0\}$. Let $x \in \mathbb{K}$. We consider the non-zero vector $X := \begin{bmatrix} x \\ C_0 \\ 0 \end{bmatrix}$ of \mathbb{K}^n. The \mathbb{K}_0-vector space $\mathcal{V}X$ must intersect $X \mathbb{K}$ trivially as all the elements of \mathcal{V} are nilpotent. Thus $\dim_{\mathbb{K}_0} \mathcal{V}X \leq (n-1)q$. However, for every $(L, C) \in M_{1,n-2}(\mathbb{K}) \times M_{n-2,1}(\mathbb{K})$, we have

$$A_LX = \begin{bmatrix} LC_0 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad B_CX = \begin{bmatrix} 0 \\ C \\ 0 \end{bmatrix}$$

Varying L and C then yields the inclusion $\mathbb{K}^{n-1} \times \{0\} \subset \mathcal{V}X$. Since $\dim_{\mathbb{K}_0} \mathcal{V}X \leq (n-1)q = \dim_{\mathbb{K}_0}(\mathbb{K}^{n-1} \times \{0\})$, we deduce that $\mathcal{V}X = \mathbb{K}^{n-1} \times \{0\}$. However, the last entry of J_nX is $\beta(a)x + L_1(a)C_0 + \gamma(a)$, and therefore:

$$\forall x \in \mathbb{K}, \quad \beta(a)x + L_1(a)C_0 + \gamma(a) = 0.$$

We deduce that $L_1(a)C_0 + \gamma(a) = 0$ and $\beta(a) = 0$, which yields:

$$\forall C \in M_{n-2,1}(\mathbb{K}) \setminus \{0\}, \forall y \in \mathbb{K} \setminus \{0\}, \quad L_1(a)Cy + \gamma(a) = 0.$$

As $\#\mathbb{K} > 2$, we deduce that $\gamma(a) = 0$ and

$$\forall C \in M_{n-2,1}(\mathbb{K}) \setminus \{0\}, \quad L_1(a)C = 0.$$
Varying C then yields $L_1(a) = 0$.

Let again $C_0 \in M_{1,n-2}(\mathbb{K}) \setminus \{0\}$, and set $Y := \begin{bmatrix} 1 \\ C_0 \\ 0 \end{bmatrix}$. For every $(L,C) \in M_{1,n-2}(\mathbb{K}) \times M_{n-2,1}(\mathbb{K})$, we have

$$A_L^T Y = \begin{bmatrix} 0 \\ L^T \\ 0 \end{bmatrix} \quad \text{and} \quad B_C^T X = \begin{bmatrix} 0 \\ 0 \\ C^T C_0 \end{bmatrix}.$$

As above, varying C and L yields $V^T Y = \{0\} \times \mathbb{K}^{n-1}$. The first entry of $J_a^T Y$ is $\alpha(a) + C_1(a)^T C_0$ and it must be 0. Again, varying C_0 yields both $\alpha(a) = 0$ and $C_1(a) = 0$.

Let $U \in \text{NT}_{n-2}(\mathbb{K})$. For every $t \in \mathbb{K}_0$, the matrix $E_U + tJ_a$ is nilpotent and stabilizes the \mathbb{K}-vector space span$_{\mathbb{K}}(e_2,\ldots,e_{n-1})$, with an induced endomorphism represented in (e_2,\ldots,e_{n-1}) by $U + tT(a)$. It follows that $\text{NT}_{n-2}(\mathbb{K}) + \mathbb{K}_0 T(a)$ is a nilpotent \mathbb{K}_0-linear subspace of $M_{n-2}(\mathbb{K})$. If $T(a) \neq 0$, then we have a contradiction with point (a) of Theorem 2. Therefore $T(a) = 0$, and Claim 6 is proven.

4.8 Conclusion

We have shown that, for every list $(L,C,U,a) \in M_{1,n-2}(\mathbb{K}) \times M_{n-2,1}(\mathbb{K}) \times \text{NT}_{n-2}(\mathbb{K}) \times \mathbb{K}$, the additive group V contains all four matrices

$$\begin{bmatrix} 0 & L & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & C \\ 0 & U & 0 \end{bmatrix}, \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

It follows that V contains $\text{NT}_{n}(\mathbb{K})$. As $\dim_{\mathbb{K}_0} V = q \binom{n}{2} = \dim_{\mathbb{K}_0} \text{NT}_{n}(\mathbb{K})$, we conclude that $V = \text{NT}_{n}(\mathbb{K})$. This completes our proof of point (b) of Theorem 2.

Acknowledgement

The author would like to thank Alexander Guterman for his outstanding effort in helping him understand the essence of Serezhkin’s proof.
References

[1] M. Gerstenhaber, On nilalgebras and linear varieties of nilpotent matrices (I), *Amer. J. Math.* **80** (1958) 614-622.

[2] G.W. MacDonald, J.A. MacDougall, L.G. Sweet, On the dimension of linear spaces of nilpotent matrices, *Linear Algebra Appl.* **437** (2012) 2210-2230.

[3] B. Mathes, M. Omladič, H. Radjavi, Linear spaces of nilpotent matrices, *Linear Algebra Appl.* **149** (1991) 215-225.

[4] C. de Seguins Pazzis, Large affine spaces of non-singular matrices, *Trans. Amer. Math. Soc.* **365** (2013) 2569-2596.

[5] C. de Seguins Pazzis, On the matrices of given rank in a large subspace, *Linear Algebra Appl.* **435-1** (2011) 147-151.

[6] C. de Seguins Pazzis, Spaces of matrices with a sole eigenvalue, *Lin. Multilin. Alg.* **60-10** (2012) 1165-1190.

[7] V.N. Serezhkin, Linear transformations preserving nilpotency (in Russian), *Izv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk* **125** (1985) 46-50.