Metazoan Parasites (Crustacea, Digenea and Monogenea) from Atlantic Black Skipjack Euthynnus alleteratus: A Checklist

Cláudio G da Silva*, Naibe C de Figueiredo¹ and Guelson B da Silva²

¹Pós-graduação em Produção Animal, Centro de Ciências Agrárias, Universidade Federal Rural do Semi-Árido, Brasil
²Professor do Curso de Engenharia de Pesca, Centro de Ciências Agrárias, Universidade Federal Rural do Semi-Árido, Brasil

Submission: February 23, 2018; Published: March 26, 2018

*Corresponding author: CG da Silva, Laboratório de Sanidade Aquática, Centro de Ciências Agrárias, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brasil, E-mail: giovaniolsi@hotmail.com

Abstract
A checklist of the metazoan parasites of host fish Atlantic black skipjack (Euthynnus alleteratus) was compiled from parasitological records published between 1967 and 2018. The checklist is arranged alphabetically, providing valid names and authorities of the parasite species, its capture sites, author(s) and date of published records. A total of 18 valid species are listed from E. alleteratus. Parasite species where host data are missing or where the parasite was found not associated with a E. alleteratus not are included.

Keywords: Checklist; Fish parasites; Crustacea; Digenea; Monogenea

Introduction
The dispersion pattern of the parasites has been considered of great importance to the population dynamics of the parasite-host relationship [1,2]. Are the parasitic abundance dependent processes influence on survival and fertility of hosts [3].

Bullard et al. [4] mentioned that the behaviour of forming shoals facilitates the horizontal dispersion of the larvae in some species of fish. Various studies have been conducted over the years to determine the diversity and relative effect of parasitism in the world [5].

Parasites are now recognized as important components in global biodiversity [6], helping to understand the biology, survival, host population structure and ecosystem functioning, directly influencing fish populations by mortality or indirectly in reducing fecundity, behavioral changes, reduced swimming speed or increased risk of predation by the host [7].

The parasites Crustaceans are the most diverse and ubiquitous subphylum of arthropods in the seas. Most of the crustacean parasites are ectoparasites of a wide range of marine invertebrate and vertebrate organisms [8]. Monogeneans are a group of largely ectoparasitic members of the phylum Platyhelminthes. These worms are considered to be among the most host-specific parasites in fish, commonly found on fins, body skin, gills, gill chambers, buccal cavity, cornea and nostrils of their host [9]. Digeneans have a ventral or postero-ventral sucker, sometimes absent and the adults are primarily parasites of the gut, but they also occur free or encapsulated in the tissues of the vertebrates [10,11].

The Atlantic black skipjack Euthynnus alleteratus (Rafinesque, 1810) is a pelagic scombrid fish that inhabits the coastal tropical and subtropical waters of both sides of the Atlantic Ocean [12]. In the world, there is no checklist of parasites that infest the host fish Euthynnus alleteratus, which can generate deficiencies for the understanding of new studies.

This study is a start in correcting this deficiency by giving an updated checklist of the Metazoan parasites that infest the host fish Euthynnus alleteratus, using current and, as far as is possible to determine, correct nomenclature, can be a useful tool for studying the parasite distribution as well as the general parasite diversity in E. alleteratus, and it may also be an important tool for planning research activities in marine fish parasitology.

Methods
To compile the list parasites of Atlantic black skipjack Euthynnus alleteratus in the world, the records were obtained by searching the SciELO, Web of Science, Scopus, Springer, Elsevier, in the Portal of Periodicals CAPES / MEC and the mechanism of search of Google Scholar. To compile the data of the parasitic fauna of Atlantic black skipjack (E. alleteratus) data were compiled from the following studies: Palombi [13]; Cressey & Cressey [14]; Hendrix [15]; Fuentes [16]; Alves & Luque [17]; Chisholm & Whittington [18] and Mele et al. [12].
Checklist

This metazoan parasite checklist includes only Crustacea, Digenea and Monogenea. This checklist was compiled from records published between 1949 and 2016, covering a total of 7 papers. The papers analysed by us recorded 26 valid species parasitizing *E. alletteratus*. Reports of seven parasites that had not been identified to the species level were included in this checklist. Parasite species where host data are missing or where the parasite was found not associated with a *E. alletteratus* are not included. The results are presented as a list of parasite species in *E. alletteratus* (Table 1). The specific distribution of species in the host fish is also recorded.

Table 1: Checklist of the metazoan parasites of Atlantic black skipjack *Euthynnus alletteratus* (Parasite-Host list).

Parasite Species	Location	Author And Record
Monogenea		
Capsala gouri	Northwest Atlantic Ocean	Chisholm & Whittington [18]
Capsala magronum	Southwest Atlantic Ocean	Chisholm and Whittington [18]
Capsala manteri	Mediterranean Sea	Mele et al. [12]
	Central-eastern Atlantic Ocean	Chisholm & Whittington [18]
	Central-western Atlantic Ocean	Chisholm & Whittington [18]
	Southwest Atlantic Ocean	Chisholm & Whittington [18]
Capsala onchidiocotyle	Northwest Atlantic Ocean	Chisholm & Whittington [18]
Hexostoma euthynnii	Southwest Atlantic Ocean	Alves & Luque [17]
Hexostoma thunninae	Mediterranean Sea	Mele et al. [12]
	Mediterranean Sea	Palombi [13]
	Mediterranean Sea	Palombi [13]
	Southwest Atlantic Ocean	Alves & Luque [17]
Metapseudaxine ventrosicula	Southwest Atlantic Ocean	Alves & Luque [17]
Neohexostoma mochima	Southwest Atlantic Ocean	Zambrano [16]
Udonella caligorum	Northwest Atlantic Ocean	Hendrix (1994)
Digenea		
Didymocystis sp. 1	Mediterranean Sea	Mele et al. [12]
Didymocystis sp. 2	Mediterranean Sea	Mele et al. [12]
Didymozoinii sp.	Mediterranean Sea	Mele et al. [12]
Didymozoon sp.	Mediterranean Sea	Mele et al. [12]
Neonematobothrium cf. kawakawa	Mediterranean Sea	Mele et al. [12]
Lobatozoon multisacculatum	Southwest Atlantic Ocean	Alves & Luque [17]
Melanocystis cf. kawakawa	Mediterranean Sea	Mele et al. [12]
Oesophagocystis sp. 1	Mediterranean Sea	Mele et al. [12]
Oesophagocystis sp. 2	Mediterranean Sea	Mele et al. [12]
Crustacea		
Caligus bonito	Northwest Atlantic Ocean	Cresssey & Cresssey [14]
	Southwest Atlantic Ocean	Alves & Luque [17]
	Mediterranean Sea	Mele et al. [12]
Caligus coryphaenae	Central-western Atlantic Ocean	Cresssey & Cresssey [14]
Caligus pelamydis	Southwest Atlantic Ocean	Alves & Luque [17]
Caligus productus	Northwest Atlantic Ocean	Cresssey & Cresssey [14]
Ceratocolax euthynnii	Mediterranean Sea	Mele et al. [12]
Unicolax collateralis	Mediterranean Sea	Mele et al. [12]
Pseudocycnus appendiculatus	Mediterranean Sea	Mele et al. [12]
	Northwest Atlantic Ocean	Cresssey & Cresssey [14]
	Central-western Atlantic Ocean	Alves & Luque [17]
	Southwest Atlantic Ocean	Mele et al. [12]
Isopoda gen. sp.	Southwest Atlantic Ocean	Alves & Luque [17]
It is noticed the importance of literature review works, since it facilitates the work of future researchers, when there is a checklist of a certain species. During the research, it is understood that there are few researches in the branch of parasitology and mainly in Brazil there are few reports of parasite works of fish of the species *E. alletteratus*, even with this species inhabiting the entire Brazilian coast.

References

1. Carvalho AR, Martins RT, Bellei PM, de Souza Lima S (2017) Aspectos ecológicos da helmintofauna de *Hoplias malabaricus* (Bloch, 1794) (Characiformes, Erythrinidae) da Represa Dr. João Penido (Juiz de Fora-MG, Brasil). Revista Brasileira de Zootecnicás 18(1).
2. Penczykowski RM, Laine AL, Koskella B (2016) Understanding the ecology and evolution of host-parasite interactions across scales. Evolutionary Applications 9(1): 37-52.
3. Visser MD, Schnitzer SA, Muller-Landau HC, Jongejans E, de Kroon H, et al. (2017) Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J Ecol 101: 1-4.
4. Bullard SA, Goldstein RJ, Hocking R, Jewell J (2003) A new geographic locality and three new host records for *Neobenedenia melleni* (MacCallum) (Monogenea: Capsalidae). Gulf and Caribbean Research 15(1): 1-4.
5. Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, et al. (2012) The magnitude of global marine species diversity. Curr Biol 22: 2189-2202.
6. Cavalcanti ETS, Nascimento WS, Takemoto RM, Alves LC, Chellappa S (2013) Ocorrência de crustáceos ectoparasitos no peixe ariacó, *Lutjanus synagris* (Linnaeus, 1758) nas águas costeiras do Rio Grande do Norte. Biota Amazônica 3: 94-99.
7. Longshaw M, Fear PA, Numd AD, Cowx I, Feist SW (2010) The influence of parasitism on fish population success. Fisheries Management and Ecology 17: 426-434.
8. Rohde K (2005) Marine parasitology. CABI Publishing, Wallingford, UK, pp.1-590.
9. Costa EF, Chellappa S (2016) First record of *Amphipyrrhocotyle chlorosomocales* Hargis, 1957 (Monogenea, Polyopisthocotylea, Gastrocotylidae) in the South Atlantic Ocean. Brazilian Journal of Oceanography 64(1): 101-104.
10. Cribb TH (2005) Digenea (endoparasitic flukes). In: Rohde K (Ed.), Marine parasitology. CABI Publishing, Wallingford, UK, 76-86.
11. Bray RA, Gibson DJ, Jones A (2008) Keys to the Trematoda. Vol. 3. CABI International and Natural History Museum, Wallingford, UK, 1-848.
12. Mele S, Pennino MG, Piras MC, Macias D, Gómez-vives MJ, et al. (2016) Ecology of the Atlantic black skipjack *Euthynnus alletteratus* (Osteichthyes: Scombridae) in the western Mediterranean Sea inferred by parasitological analysis. Parasitology 143(10): 1330-1339.
13. Palombi A (1949) I trematodi d'Italia. Parte I. Trematodi monogenetici. Arch Zool Ital 34: 204-400.
14. R. Cressey HB (1980) Parasitic copepods of mackerel and tuna-like fishes (Scombridae) of the world. Smithsonian Contrib Zool 311: 1-186.
15. Hendrix SS (1994) Marine flora and fauna of the eastern United States. Platyhelminthes: Monogenea. NOAA Technical Report NMSF 121, USA.
16. Fuentes Zambrano JL (1997) *Neohexostoma mochimae* n. sp. y *Pseudochauhanea elegans* n. sp. (Monogenea) dos nuevas especies de parásitos de peces de la Bahía de Mochima, Venezuela. Bol Inst Oceanogr Venezuela 36: 45-52.
17. Alves DR, Luque JL (2006) Ecologia das comunidades de metazoários parasitos de cinco espécies de escombrídeos (Perciformes: Scombridae) do litoral do estado do Rio de Janeiro, Brasil. Rev Bras Parasitol 15: 167-181.
18. Chisholm LA, Whittington ID (2007) Review of the Capsalinae (Monogenea: Capsalidae). Zootaxa 1559: 1-30.