Mathema, B; Andrews, JR; Cohen, T; Borgdorff, MW; Behr, M; Glynn, JR; Rustomjee, R; Silk, BJ; Wood, R (2017) Drivers of Tuberculosis Transmission. The Journal of infectious diseases, 216 (suppl6).S644–S653. ISSN 0022–1899 DOI: https://doi.org/10.1093/infdis/jix354

Downloaded from: http://researchonline.lshtm.ac.uk/4645841/

DOI: 10.1093/infdis/jix354
Measuring tuberculosis transmission is exceedingly difficult, given the remarkable variability in the timing of clinical disease after *Mycobacterium tuberculosis* infection; incident disease can result from either a recent (ie, weeks to months) or a remote (ie, several years to decades) infection event. Although we cannot identify with certainty the timing and location of tuberculosis transmission for individuals, approaches for estimating the individual probability of recent transmission and for estimating the fraction of tuberculosis cases due to recent transmission in populations have been developed. Data used to estimate the probable burden of recent transmission include tuberculosis case notifications in young children and trends in tuberculin skin test and interferon γ-release assays. More recently, *M. tuberculosis* whole-genome sequencing has been used to estimate population levels of recent transmission, identify the distribution of specific strains within communities, and decipher chains of transmission among culture-positive tuberculosis cases. The factors that drive the transmission of tuberculosis in communities depend on the burden of prevalent tuberculosis; the ways in which individuals live, work, and interact (eg, congregate settings); and the capacity of healthcare and public health systems to identify and effectively treat individuals with infectious forms of tuberculosis. Here we provide an overview of these factors, describe tools for measurement of ongoing transmission, and highlight knowledge gaps that must be addressed.

Keywords. tuberculosis, transmission, epidemiology, estimating transmission, transmission amplifiers.
differentiating between other respiratory tract infections in settings where clinical diagnosis remains standard practice) [11]. Given these complexities, including the independent nature of these parameters, the relative contributions of highly infectious individuals versus apparently asymptomatic but infectious individuals in settings of high tuberculosis endemicity is uncertain.

This article, an output of a workshop entitled “How Do We Measure Tuberculosis Transmission Better,” discusses the main themes of the measurement of tuberculosis transmission and specific drivers of tuberculosis transmission, the characterization of infectious and susceptible individuals, and how we can use this information to model and halt tuberculosis transmission. The overarching goal of the workshop was to identify research gaps to address as a critical step in the development of novel interventions to stop tuberculosis transmission in high-incidence settings.

FACTORS INFLUENCING TUBERCULOSIS TRANSMISSION

The probability that an individual with tuberculosis will transmit *M. tuberculosis* to others is determined by many factors. First, individuals with more severe pulmonary tuberculosis may emit higher numbers of infectious droplet nuclei by producing droplets at an elevated rate [12, 13]. The rate of droplet production may be affected by the frequency and vigor of coughing and by pathology-related factors that allow pathogens to escape into the airway (eg, cavities) [14]. Recent work suggests that measures of cough aerosol production may identify individuals more likely to contribute to community transmission [15, 16]. Closer proximity and longer duration of contact between an infectious source case and susceptible individuals increase the risk of transmission. Delays in the diagnosis of tuberculosis or initiation of adequate treatment increase the prevalence of infectious tuberculosis, thereby also increasing the probability of onward transmission [17, 18]. Contributions to treatment delay include individual healthcare-seeking behavior, structural barriers to healthcare access, and rapidity of diagnosis and treatment initiation within the health system.

Second, environmental factors that may increase the risk of infection include closed indoor spaces with limited air circulation and minimal UV light exposure, which provide an ideal environment for airborne particles containing *M. tuberculosis* to remain viable and infectious. Humidity also affects the settling and evaporation of droplet nuclei and thus likely affects the risk of infection [12].

Third, host factors may increase an individual’s risk of progression to active pulmonary disease after infection. Host-related determinants of disease risk include HIV infection [19], diabetes [20], smoking [21], excess alcohol use [22], and malnutrition [23]. The degree of infectiousness of the inoculum (ie, dose) also may influence the likelihood of disease [24]. Young children and infants, having both recent exposure by nature and a higher risk of rapid progression, can act as sentinel populations for ongoing transmission. However, they rarely contribute to ongoing transmission, owing to their decreased infectiousness [25, 26]. In older populations, incident tuberculosis is a less reliable measure of ongoing transmission because of difficulties in identifying the timing of infection and distinguishing between reactivation of latent infection and early active disease [10].

MEASUREMENT OF TUBERCULOSIS TRANSMISSION

Four main approaches are used to measure tuberculosis transmission and identify its drivers. The first approach is case notification rates, which are used to identify countries and regions in which the risk of tuberculosis is high [27]. Notification rates also may yield temporal trends in transmission [28]; furthermore, they can be used to identify the heterogeneity of risk in subpopulations, such as a higher risk in low-incidence settings among foreign-born persons, prisoners, and those experiencing homelessness [29], as well as heterogeneity of risk among community locations within high-incidence settings (eg, public transportation [30], churches [31], schools [32, 33], bars [31], and slums [34–36]). Second, one can estimate the risk of being infected and identify risk factors for being infected. This approach uses the tuberculin skin test and interferon γ-release assays to identify infections. Estimates of trends in the annual risk of infection have been derived from repeated surveys, often including primary school children [37–39]. Repeated surveys have shown a higher risk of infection among adolescents than among children of primary school age [40, 41]. However, repeated cross-sectional studies are sensitive to prior changes in transmission at earlier ages, although rever- sion of tuberculin skin test and interferon γ-release assay findings may result in an underestimate of *M. tuberculosis* infection rates. Furthermore, in high transmission settings, repeat infection episodes cannot be easily identified with these types of infection assays that provide some measure of cumulative exposure. To estimate newly acquired infection, screening for *M. tuberculosis* infection can also be done in contact investigations and among high-risk groups, such as immigrants from high-burden countries or healthcare workers. Since molecular strain typing became available in the 1990s [42], a third approach, assessing the genotypic links between presumed index tuberculosis cases and their presumed secondary cases, has become possible. At the population level, methods such as n – 1 and other modeling-based techniques have been developed to estimate levels of recent transmission, based on genotypic clustering [43–46]. Molecular epidemiological studies have also confirmed that adolescents are a high-risk group for tuberculosis transmission, established the importance of nosocomial transmission [34], and identified other risk factors for recent transmission, including urban residence, homelessness [47], and exposure to crowded settings, such as prisons [48, 49]. Over time, the resolution of strain typing has improved; whole- genome sequencing (WGS) now provides the ultimate ability to distinguish strains on the basis of single nucleotide differences, as
described in the next section below [50]. It is worth noting that the first and third methods depend in part on transmission and in part on the risk of progression from infection to disease. A fourth and indirect approach has been the characterization of source cases. Traditionally, measures of bacillary load based on sputum smear and the presence and extent of pulmonary cavitation have been used to estimate the infectiousness of source cases as a proxy for the expected number of infected contacts and secondary cases [51]. More recently, new measures of infectiousness have been developed [4, 6].

Other approaches to identify drivers of transmission have included contact surveys [32] and a recently developed method combining time and motion studies with measurement of CO₂ in air as a measure of exhaled air [30]. These methods and their application and limitations are described in another article in this issue.

ASSESSING TRANSMISSION BY USING MOLECULAR AND GENOMIC EPIDEMIOLOGICAL METHODS

Since the MDR-TB outbreaks in the 1990s in the United States, genotyping of *M. tuberculosis* isolates has been a critical element for studying tuberculosis transmission [44, 52]. A crucial aspect in understanding the transmission patterns of tuberculosis is the ability to track the frequency and spread of specific strains in the population [53]. Although previous genotyping methods (eg, IS6110-based restriction fragment–length polymorphism analysis and mycobacterial interspersed repetitive units variable number of tandem repeats analysis) are informative, these methods have limited discriminatory power. Newer methods, which are able to examine much more of the genome, suggest that some genotype matches between two patients’ isolates might not indicate recent transmission. Therefore, outbreaks confirmed by molecular methods in the 1990s and 2000s may have overestimated the number of cases that were truly part of a transmission chain [54]. The enhanced level of discrimination achieved by WGS is particularly important for characterizing the actual diversity of strains within a given lineage or genotype that appear to be closely related and for helping to rule out recent transmission when epidemiologic links have not been established [54]. The continual decline in costs, increased computing power, and ease of data sharing have facilitated access to WGS as a tool for investigating tuberculosis transmission.

Phylogenetic analysis using WGS data can detail strain relatedness at unprecedented levels of granularity (ie, single-nucleotide polymorphisms [SNPs]). Such data have been used to support estimates of levels of incident tuberculosis due to transmission in a variety of settings [1, 2, 54, 55]. A key question is: what levels of genetic variation are suggestive of transmission? The level of WGS data–based similarity (ie, the threshold of SNP differences) that is sufficient to consider two isolates related has proven difficult to establish. Most large-scale studies to date have used empirical SNP difference cutoffs, typically supported by epidemiological investigations [1, 55]. There are a number of factors to consider in determining levels of genetic variation in support of transmission. The average mutation rate in *M. tuberculosis* is estimated at 0.3–0.5 SNPs.genome/year between patient samples. However, considerable within-host variation has been noted in serial patient isolates, as well as in specimens from discrete environments of the lung [56–60]. The mutation rate also may vary on the basis of *M. tuberculosis* lineage or host characteristics, such as HIV coinfection [56–59]. More recently, methods to infer person-to-person transmission by using genomic information that consider within-host variation [61] and account for the complex and variable nature of case sampling (ie, undersampling) have been developed [62]. However, factors that impact heterogeneity are likely to be dependent on individual-level (eg, HIV status) and ecological-level (eg, force of infection) factors. A study by Chengalroyen et al details the presence of differentially culturable *M. tuberculosis* with mixed genotypes that vary by HIV status, a finding that warrants further investigation [63].

IDENTIFYING AND DEFINING TUBERCULOSIS OUTBREAKS

Tuberculosis outbreaks typically present the clearest evidence of tuberculosis transmission, as they are often spatiotemporally restricted and involve shared epidemiological attributes. A first question is whether an unexpected number of tuberculosis cases, clustered by space and time, is indeed an outbreak. Epidemiologic studies have shown that tuberculosis does not afflict all susceptible individuals equally; therefore, an aggregation of individuals with risk factors for tuberculosis, such as in a hospital or prison, may actually represent a pseudo-outbreak. To establish that there has been *M. tuberculosis* spread from a source patient to multiple secondary cases, investigators can use molecular or genomic typing methods to demonstrate clonal dissemination.

By studying tuberculosis outbreaks defined by strain typing methods, it is possible to ask whether there are host, pathogen, and environmental factors significantly associated with recently transmitted disease. A caveat is that the study duration should account for *M. tuberculosis* latency (eg, a 1-year study cannot define risk factors for becoming infected and developing disease in 18 months). As such, molecular epidemiologic investigations of tuberculosis outbreaks do not measure transmission completely. Instead, they identify risk factors for the subset of new infections that rapidly progress to culture-confirmed tuberculosis. For defining a preventive intervention, this may be valuable information. However, such findings may be insufficient for understanding all of the determinants contributing to the original transmission events.

An important consideration when investigating risk factors for being a case in an outbreak defined by strain typing methods is whether the source is truly known. When grouping together index and secondary cases on the basis of a shared genotype, some individuals may have smear-negative pulmonary disease.
These cases, which most likely reflect primary disease in secondary cases, might be included in a risk-factor analysis of the environment but excluded from an investigation of source predictors of transmission. Such approaches risk certain limitations. If, for example, the index and five secondary cases are included in the analysis of the environment, is one truly obtaining six independent measurements that can go into a statistical model? Or is the same environmental factor (eg, household or prison ward) being repeated six times? And if the secondary cases are excluded, how confident are we that the first case or the epidemiologically suspected index that we included is truly the one that initiated the outbreak? It is well established that an infant with tuberculosis triggers a source investigation to identify the adult with contagious tuberculosis; in a larger outbreak, the directionality of transmission may not always be apparent. For instance, in an apparent outbreak of 50 culture-confirmed tuberculosis cases in northern Canada, WGS identified six subgroups of clonal spread; in one, an individual brought to medical attention as a contact was later found to be a source case, based on cavitary, smear-positive disease and WGS data [64]. Given that WGS defines outbreak-related cases better than older strain typing modalities but also suggests a putative directionality of transmission (ie, based on the accumulation of SNPs relative to most common recent ancestor), it is possible that a refined understanding of the drivers of transmission in epidemiologically well-defined settings will emerge from the application of this technology. However, SNP-based definitions to support transmission in relatively short time scales are not well established and are likely to be contextually dependent (ie, high-incidence versus low-incidence areas).

A final consideration that has received limited attention is the characteristics of the inoculum. Classically, the most-contagious patients are those who cough and those with untreated, smear-positive and cavitary disease. As these parameters are readily estimated by history (cough and treatment) and relatively simple tests (microscopy and radiography), it remains practical to use them to help guide patient care, as well as a standard for estimating infectivity (however an insensitive tool it might be) to guide public health assessments, including in children, people with HIV infection, and patients with extrapulmonary disease (although the sensitivity of smear microscopy falls to <50% in these groups). But several questions exist. Are these independent indicators or merely correlated measures of the same process (ie, density of bacteria being spread from a patient)? Is the number of bacteria in the liquid phase of sputum an appropriate proxy for the number of bacteria expired in air from an individual with tuberculosis? Can we use genome equivalents from PCR-based assays to more accurately quantify bacterial burden in sputum, as a continuous rather than dichotomous variable? Answering these questions may additionally help to evaluate new therapies for treatment of tuberculosis.

HETEROGENEITY OF TRANSMISSION: WHERE IS TUBERCULOSIS TRANSMITTED?

Several studies conducted in Africa have estimated the proportion of transmission occurring within households. In comparing genotypes of cases occurring within households or community settings, Verver et al estimated that <20% of infections were acquired within the household [65]. A study from South Africa used social contact diaries and portable CO$_2$ monitors to infer exposures in a township with a high tuberculosis burden; an estimated 16% of infections occurred within households [32], which was confirmed by molecular epidemiologic findings [66]. Martinez et al performed a meta-analysis of studies reporting $M.\text{tuberculosis}$ infection among children in households with and without a household contact to estimate the population attributable fraction of household exposure [67]; their estimate of 14% (95% confidence interval, 11.6%–16.3%) was consistent with estimates from these other approaches in settings where the tuberculosis incidence is high [32, 66]. In addition, Glyn et al conducted surveillance for >13 years in a district in rural Malawi, using contact questionnaires and WGS; they found that a minority of tuberculosis cases could be attributed to infection from known contacts [68]. Overall, it appears that in medium-burden and high-burden areas, the majority of tuberculosis transmission occurs outside of households and may not necessarily be attributed to known close contacts; this suggests that the population-level impact of contact investigations, as a control measure in these areas, warrants further consideration (see the subsection “Areas of High Tuberculosis Incidence” below) [69]. Nevertheless, a regionally and culturally appropriate, balanced approach is needed; at the patient level, contact investigations are likely to yield a greater proportion of new tuberculosis cases than any other case finding approach.

However, determining where tuberculosis transmission specifically occurs outside of households is considerably more challenging. The potential for airborne transmission to occur even during brief exposures, combined with the variable periods of latency, make establishing specific tuberculosis transmission linkages exceptionally difficult. Despite these challenges, certain specific settings have been identified as substantial contributors to tuberculosis risk. Nosocomial transmission was a major driver of MDR-TB outbreaks in the United States, Spain, and Italy in the 1990s [70–73]; hospital-associated transmission was also responsible for the explosive dissemination of XDR-TB in a rural South African district in the mid-2000s [74]. Homeless shelters have been frequently identified as drivers of tuberculosis outbreaks [75]. Prisons have similarly been sources of not only incident outbreaks in low-burden countries [76] but also high levels of endemic transmission in low-income and middle-income countries [77]. Using national tuberculosis notification data from Brazil, Bourdillon et al found that >25% of all incident cases among men aged 20–29 years occurred within prisons, where notification rates were 31 times greater than in the general population [1, 78]. Other
Areas of High Tuberculosis Incidence

In high-incidence areas, both epidemiologic and molecular studies have consistently shown that the majority of tuberculosis transmission does not come from known contacts [65, 66, 68, 82–87]. For example, in northern Malawi, estimates based on case-control studies, RFLP-based studies, and studies using WGS all concluded that the proportions of tuberculosis cases attributable to known contacts was <15% [68, 83, 84]. Perhaps most surprising was the finding that more than half of the individuals with tuberculosis who had contact with a smear-positive case in their household or in a close family member had a different strain than that contact, showing that this person was not the source of their infection [68, 84].

These findings raise questions on the timing of infection(s) and where most infections are occurring. Work on the dynamics of aerosols suggests that infections are likely to be occurring mainly in indoor areas where air exchange is limited [4, 88]. This may include places where people are crowded together, although direct evidence is currently limited [66, 89]. Lack of ventilation may contribute to the high tuberculosis incidence in colder areas, such as the Western Cape of South Africa, and may have contributed to the spread of tuberculosis in Europe a century ago. It may also explain the paradoxical finding that tuberculosis incidence may be lower than expected among poorer families in rural Africa; they are less likely than those who are less poor to have glass windows, meet indoors, or use minibuses [90, 91]. In estimating setting-specific proportions of individuals with tuberculosis who transmit disease, the higher risk due to close, indoor contact needs to be balanced against the frequency of such contacts; more transmissions may occur from many low-risk contacts than from fewer high-risk ones [92].

Many areas of high tuberculosis incidence also have a high HIV prevalence. Clinics that provide HIV care can be potential amplifiers of tuberculosis epidemics when patients with undiagnosed tuberculosis mix with immunologically susceptible individuals. However, the effect of HIV itself on transmission appears to be more complex. Patients with tuberculosis who are infected with HIV are less likely to have smear-positive disease, and even those with smear-positive disease may transmit less than those who are HIV negative [66, 84]. This may be because they seek treatment or die earlier, shortening the duration of infectiousness. Nevertheless, because a high proportion of tuberculosis cases are HIV positive, they may contribute a large proportion of transmission events [84]. A study of tuberculosis among gold miners found that incidence increased following the HIV epidemic among HIV-negative and HIV-positive South African miners, showing that M. tuberculosis transmission increased overall [93]. Antiretroviral therapy, which reduces the risk of tuberculosis in HIV-infected individuals [94], has reduced tuberculosis incidence at the population level (at least in the short term) [95, 96]. However, even when antiretroviral therapy is available, transmission indices may remain high. A study in KwaZulu Natal, South Africa, a HIV endemic setting, found that despite high antiretroviral therapy coverage among XDR-TB patients with HIV, upwards of 70% of cases were attributed to recent transmission [2]. Of note, a similar proportion (approximately 70%) of MDR-TB cases due to transmission was reported from Shanghai, China, where the prevalence of HIV infection is relatively low [1]. These studies of drug-resistant tuberculosis suggest that transmission is the driving force of tuberculosis incidence in areas of high and low HIV prevalence.

The effects of different genotypes on transmission can be studied in high-incidence areas where M. tuberculosis genotypes are not concentrated in particular population subgroups. For example, there is some evidence from contact and molecular clustering and network studies that lineage 2 (East-Asian/Beijing) and perhaps lineage 3 (East-African Indian) are more transmissible, whereas lineage 1 (Indo-Oceanic) and lineages 5 and 6 (the Mycobacterium africanum strains) are the least likely to transmit and cause disease [57, 97]. This fits with the wide geographical reach of Beijing strains [98], compared with the more limited distribution of M. africanum.

A major limitation to the study of transmission in high-incidence areas is the low sampling fraction (typically due to diagnostic delays or infrastructural limitations) and the representativeness of cases in the study to all infectious tuberculosis in the population. In these settings, the proportion of undiagnosed but diagnosable tuberculosis cases that contribute to transmission is likely substantial [7]. Finally, measurement of transmission is more challenging in high-burden settings, as incident outbreaks may be obscured by the background multiplicity of circulating strains.

Areas of Low Tuberculosis Incidence

Key aspects of recent transmission, particularly measures of its relative size and scope, may be more readily discernible in...
Drivers of Tuberculosis Transmission

low-incidence areas, where discrete chains of transmission can be identified or estimated. Furthermore, where resources are dedicated to universal genotyping of all culture-confirmed cases and tuberculosis molecular surveillance is formally established, additional insight is possible through the combined use of clinical, epidemiologic, and molecular data at the patient level [45, 46]. For example, the estimate that approximately 14% of United States cases are attributed to recent transmission is a valuable indicator. These proportions are markedly higher among US-born persons (27%), compared with non-US-born persons (8%). However, considerable demographic and geographic heterogeneity in these estimates also exists, implying that specific subpopulations might be prioritized for targeted intervention.

A key goal is to detect and interrupt transmission early enough to prevent incident genotypes from becoming epidemiologically entrenched in the population. In the United States, molecular surveillance [99] to detect and characterize clusters that may represent recent transmission has facilitated progress toward this goal [100]. In tandem, rapid uptake of technologies for WGS and phylogenetic analysis of select clusters that likely represent recent transmission has shown considerable promise in more precisely identifying outbreaks and outbreak-related cases. Thus, focused interventions to interrupt transmission and avoidance of unnecessary, resource-intensive investigations can often be effectively accomplished.

Even within low-incidence areas, however, high-incidence settings have been identified. Large clusters of prevalent genotypes can become entrenched due to prolonged, uncontrolled transmission within relatively closed populations of persons with limited access to clinical and public health services. Examples include long-standing outbreaks among urban homeless populations in major US cities [47] and impoverished rural settings with minority and indigenous populations [101]. In such settings, the ability to distinguish cases due to the reactivation of remotely acquired infection from cases of recent transmission with rapid progression to disease is often confounded by minimal strain diversity, even at the level of SNPs [102]. Thus, health officials must epidemiologically investigate local drivers of transmission so that prevention measures to find and treat latent *M. tuberculosis* infection and active case finding to characterize and interrupt transmission can be prioritized and accomplished effectively.

DISCUSSION

We have presented evidence that the drivers of tuberculosis transmission in high-burden and low-burden settings appear markedly different. In high-burden settings, a large proportion of tuberculosis cases are due to recent transmission, and the burden of disease among infants and children is considerable. In contrast, the major proportion of tuberculosis in low-burden settings results from remote transmission, and the age distribution of tuberculosis is skewed toward older ages. In settings with lower burdens of tuberculosis, chains of transmission are more easily identified, whereas in settings with high tuberculosis burden, it is often more difficult to distinguish individual chains of transmission from the large quantity of background transmission. Institutional amplifiers, such as homeless shelters and prisons, may exist in both low-burden and high-burden settings. Within the extremes of tuberculosis burden, however, there remains considerable heterogeneity in transmission. It is possible therefore to view transmission as part of a continuum. In high-burden settings, endemic transmission results from a complex interplay between community and institutional amplifiers, resulting in generalized endemic tuberculosis. With improvement in general socioeconomic factors, endemic tuberculosis continues to be transmitted in an increasingly smaller number of sites, resulting in more localized endemic tuberculosis restricted to subpopulations. As the proportion of the population affected by endemic transmission reduces further, it becomes easier to identify incident outbreaks, which often result from a highly infectious case in specific enabling environments. Thus, the expected transition in the nature of transmission would be a spectrum from long-standing (prevalent) outbreaks and endemic transmission occurring through institutional and community amplifiers, together with unrecognized, incident outbreaks occurring in higher-burden areas, to incident outbreaks increasingly being detected predominantly in lower-burden areas. A summary of key factors influencing transmission is depicted in Figure 1.

Owing to the relative ease of measuring tuberculosis transmission between contacts made within the confined household environment, household transmission and case notification rates in children have been used as end points to quantify the population-level impact of transmission control measures. However, household transmission in high-burden settings has been shown to represent a relatively small proportion of all tuberculosis transmissions. This may be because the highly associative mixing of a small number of household members does not necessarily reflect the actual transmission drivers resulting from an array of community and institutional tuberculosis amplifiers. Whereas household contact studies might reflect populations with relatively homogeneous tuberculosis transmission risk, the actual heterogeneity of tuberculosis transmission increases the complexity of the household-to-population transmission relationships. Transmission within institutions, such as homeless shelters and prisons, contributes significantly to population burden. Identification and control in sites with the highest transmission risks appears to provide a disproportionate benefit for tuberculosis control.

The tuberculosis caseload observed within subpopulations and settings may confound estimates of recent transmission, including both infection and progression to disease risks. However, newer technologies can help distinguish true outbreaks from pseudo-outbreaks. For example, the use of proximity detection (eg, global positioning system mapping) or carbon dioxide monitoring has helped identify socioeconomic hot spots of transmission, including public transportation, churches, schools, and bars [103]. Molecular methods, such as WGS, offer
greatly improved resolution, compared with earlier genotyping methods, which have overestimated true transmission chains. Nonetheless, molecular methods remain limited to patients with culture-positive sputum specimens and still require interpretation within a framework of conventional epidemiology. Moreover, studies that rely on a passive case detection system are likely undersampling all of the infectious cases that remain undiagnosed but diagnosable [7, 104]. The contribution of such cases to tuberculosis incidence has yet to be determined.

In summary, it is important to recognize the heterogeneity of tuberculosis transmission in determining effective control strategies for a population (Figure 1). While tuberculosis treatment has a survival benefit for the patient with tuberculosis, it can also decrease the prevalence of tuberculosis in a community. However, population-level tuberculosis control strategies to interrupt transmission need to be targeted at the overall transmission pathways that predominate. When endemic tuberculosis is widespread, the focus should be on identifying specific community and institutional tuberculosis amplifiers and hot spots of transmission. In localized endemic tuberculosis, case finding and environmental control measures should target highly burdened subpopulations. In incident outbreaks, early molecular identification, control of source cases with treatment for active disease, and identification of high-risk contacts would be favored. Gaps in our knowledge of the factors driving transmission (Figure 2), including the contribution of the infective inoculum, the role of differentially culturable bacilli, the spectrum of infectiveness of tuberculosis sources, and how *M. tuberculosis* bacilli phenotypically adapt to survive outside the infected host, will need to be addressed.

Figure 1. Factors influencing transmission.

Figure 2. Some key questions relevant for transmission studies.
Notes

Acknowledgments. We thank the workshop participants and session chairs, for valuable discussions; Dr N. Sarita Shah, for reviewing earlier versions of the manuscript; staff at the Division of AIDS, National Institute of Allergy and Infectious Disease, particularly Ms Kathleen Muldoon, for editorial and administrative assistance; and Zelda Moran, for technical assistance in manuscript preparation.

Disclaimer. The views expressed in this article represents the authors opinion and not necessarily that of the National Allergy and Infectious Disease or National Institutes of Health.

Financial support. This work is supported by the Division of AIDS, National Institute of Allergy and Infectious Disease, National Institute of Health, Department of Health and Human Services (contract HHSN272201100001G [Research Support Services for the Division of AIDS]); the Bill and Melinda Gates Foundation; the Centers for Disease Control and Prevention; and the South African Medical Research Council.

Supplement sponsorship. This work is part of a supplement sponsored by the Centers for Disease Control and Prevention and the National Institutes of Health.

Potential conflicts of interest. R. R. is contracted by Kelly Services, which receives federal funds through government contract with the National Institutes of Health. All other authors report no potential conflicts All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retrospective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis 2017; 17:275–84.
2. Shah SN, Auld SC, Brust IC, et al. Transmission of extensively drug-resistant tuberculosis in South Africa. N Engl J Med 2017; 376:243–53.
3. Yates TA, Khan PY, Knight GM, et al. The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infect Dis 2016; 16:227–38.
4. Wood R, Morrow C, Barry CE 3rd, et al. Real-time investigation of tuberculosis transmission: developing the respiratory aerosol sampling chamber (RASC). PLoS One 2016; 11:e0146568.
5. Fennelly KP, Martiny JW, Fulton KE, Orme IM, Cave DM, Heffels LB. Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiosity. Am J Respir Crit Care Med 2004; 169:604–9.
6. Fennelly KP, Jones-López EC, Ayakaka I, et al. Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am J Respir Crit Care Med 2012; 186:450–7.
7. Dowdy DW, Basu S, Andrews JR. Is passive diagnosis enough? The impact of subclinical disease on diagnostic strategies for tuberculosis. Am J Respir Crit Care Med 2013; 187:543–51.
8. Esmal H, Barry CE 3rd, Young DR, Wilkinson RJ. The ongoing challenge of latent tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130437.
9. Esmal H, Lai RP, Lesosky M, et al. Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-[18F]fluoro-D-glucose positron emission and computed tomography. Nat Med 2016; 22:1090–3.
10. Barry CE 3rd, Bosshoff HI, Dartois V, et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 2009; 7:845–55.
11. Storla DG, Yimer S, Bjune GA. A systematic review of delay in the diagnosis and treatment of tuberculosis. BMC Public Health 2008; 8:15.
12. Wells WF, Ratcliffe HL, Grumb C. On the mechanics of droplet nuclei infection; quantitative experimental air-borne tuberculosis in rabbits. Am J Hyg 1948; 47:11–28.
13. Riley RL, Wells WF, Mills CC, Nyka W, Mclean RL. Air hygiene in tuberculosis: quantitative studies of infectivity and control in a pilot ward. Am Rev Tuberc 1957; 75:420–31.
14. Kaplan G, Post FA, Moreira AL, et al. Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 2003; 71:7999–108.
15. Jones-López EC, Acuña-Villaorduña C, Soebandrio M, et al. Cough aerosols of Mycobacterium tuberculosis in the prediction of incident tuberculosis disease in household contacts. Clin Infect Dis 2016; 63:10–20.
16. Jones-López EC, Namugoga O, Mumbova F, et al. Cough aerosols of Mycobacterium tuberculosis predict new infection: a household contact study. Am J Respir Crit Care Med 2013; 187:1007–15.
17. Harris TG, Sullivan Meissner J, Poops D. Delay in diagnosis leading to nosocomial transmission of tuberculosis at a New York City health care facility. Am J Infect Control 2013; 41:155–60.
18. Cheng S, Chen W, Yang Y, et al. Effect of diagnostic and treatment delay on the risk of tuberculosis transmission in Shenzhen, China: an observational cohort study. 1993–2010. PLoS One 2013; 8:e67516.
19. Corbett EL, Stekete RW, ter Kuile FO, Latif AS, Kamali A, Hayes RJ. HIV-1/ AIDS and the control of other infectious diseases in Africa. Lancet 2002; 359:2177–87.
20. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med 2008; 5:e152.
21. Lin HH, Ezatti M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med 2007; 4:e20.
22. Lönnroth K, Williams BG, Stallin D, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis - a systematic review. BMC Public Health 2008; 8:289.
23. Menon S, Rossi R, Nshimiyumukiza L, Wusiman A, Zdraueva N, Eldin MS. Convergence of a diabetes mellitus, protein energy malnutrition, and TB epidemic: the neglected elderly population. BMC Infect Dis 2016; 16:361.
24. Fennelly KP, Jones-López EC. Quantity and Quality of Inhaled Dose Predicts Immunopathology in Tuberculosis. Front Immunol 2015; 6:313.
25. Swaminathan S, Rukha B. Pediatric tuberculosis: global overview and challenges. Clin Infect Dis 2010; 50(Suppl 3):S184–94.
26. Cruz AT, Starke JR. Pediatric tuberculosis. Pediatr Rev 2010; 31:13–25; quiz -6.
27. World Health Organization (WHO). Global tuberculosis report 2015. Geneva, Switzerland: WHO. 2015.
28. Hermans S, Boule A, Caldwell J, Pienaar D, Wood R. Temporal trends in TB notification rates during ART scale-up in Cape Town: an ecological analysis. J Int AIDS Soc 2015; 18:20240.
29. Broekmans MJ, Migliori GB, Rieder HL, et al.; World Health Organization, International Union Against Tuberculosis and Lung Disease, and Royal Netherlands Tuberculosis Association Working Group. European framework for tuberculosis control and elimination in countries with a low incidence. Recommendations of the World Health Organization (WHO), International Union Against Tuberculosis and Lung Disease (IUATLD) and Royal Netherlands Tuberculosis Association (KNCV) Working Group. Eur Respir J 2002; 19:765–75.
30. Andrews JR, Morrow C, Wood R. Modeling the role of public transportation in sustaining tuberculosis transmission in South Africa. Am J Epidemiol 2013; 177:556–61.
31. Murray EJ, Marais BJ, Mans G, et al. A multidisciplinary method to map potential tuberculosis transmission ‘hot spots’ in high-burden communities. Int J Tuberc Lung Dis 2009; 13:767–74.
32. Andrews JR, Morrow C, Walensky RP, Wood R. Integrating social contact and environmental data in evaluating tuberculosis transmission in a South African township. J Infect Dis 2014; 210:597–603.
33. Andrews JR, Hatherill M, Mahomed H, et al. The dynamics of Quantiferon-TB gold in-tube conversion and reversion in a cohort of South African adolescents. Am J Respir Crit Care Med 2015; 191:584–91.
34. Woldeye Y, Lukoye D, Lugeba IB, Mugabe F, Sekadde M, Musoke P. Epidemiology of tuberculosis in children in Kampala district, Uganda, 2009–2010; a retrospective cross-sectional study. BMC public health 2015; 15:967.
35. Pereira AGl, Medronho RdA, Escosteguy CC, Valencia LIO, Magalhães MdAFM. Spatial distribution and socioeconomic context of tuberculosis in Rio de Janeiro, Brazil. Revista de saude publica 2015; 49:1–8.
36. Koenig SP, Rouzier V, Vilbrun SC, et al. Tuberculosis in the aftermath of the 2010 earthquake in Haiti. Bull World Health Organ 2015; 93:498–502.
37. Stryblo K, Meijer J, Sutherland J. The transmission of tubercle bacilli: its trend in a human population. Bull World Health Organ 1969; 41:137–78.
38. Odihambo J, Borgdorff M, Kammbh F, et al. Tuberculosis and the HIV epidemic: increasing annual risk of tuberculous infection in Kenya, 1986–1996. Am J Public Health 1999; 89:1078–82.
39. Kritzinger FE, den Boon S, Verver S, et al. No decrease in annual risk of tuberculosis infection in endemic area in Cape Town, South Africa. Trop Med Int Health 2009; 14:136–42.
40. Sutherland J, Bleiker M, Meijer J, Stryblo K. The risk of tuberculosis infection in the Netherlands from 1967 to 1979. Tubercle 1983; 64:241–53.
41. Nagelkerke N, Heesterkamp S, Borgdorff M, Broekmans J, Van Houwelingen H. Semi-parametric estimation of age-time specific infection incidence from serial prevalence data. Stat Med 1999; 18:307–20.
42. van Embden JD, Cave MD, Crawford JT, et al. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 1993; 31:406–9.
43. Kasae P, Mathema B, Kelton WD, Azman AS, Pennington J, Dowdy DW. A novel tool improves existing estimates of recent tuberculosis transmission in settings of sparse data collection. PLoS One 2015; 10:e0144137.

Drivers of Tuberculosis Transmission JID 2017;216 (Suppl 6) • S651
44. Small PM, Hopewell PC, Singh SP, et al. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 1994; 330:1703–9.

45. France AM, Grant J, Kammerer JS, Navin TR. A field-validated approach using surveillance and genotyping data to estimate transmission attributable to recent transmission in the United States. Am J Epidemiol 2015; 182:799–807.

46. Yuen CM, Kurbatova EV, Click ES, Cavanaugh JA, Cegielski JP. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance. PLoS One 2013; 8:e83006.

47. Friedman TR, Sherman LF, Maw KL, et al. Multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiological and clinical outcomes. JAMA 1996; 276:1229–35.

48. Rullán JV, Herrera D, Cano R, et al. Nosocomial transmission of multidrug-resistant Mycobacterium tuberculosis in Spain. Emerg Infect Dis 1996; 2:125–9.

49. Moro ML, Gori A, Errante I, et al. An outbreak of multidrug-resistant tuberculosis involving HIV-infected patients of two hospitals in Milan, Italy. Italian Multidrug-Resistant Tuberculosis Outlook Study Group. AIDS 1998; 12:1095–102.

50. Gandhi NR, Weissman D, Moodley P, et al. Nosocomial transmission of extensively drug-resistant tuberculosis in a rural hospital in South Africa. J Infect Dis 2013; 207:9–17.

51. Nardell E, McInnis B, Thomas B, Weidhaas S. Exogenous re-infection with tuberculosis in a shelter for the homeless. N Engl J Med 1986; 315:150–5.

52. Valwy SE, Greffinger RB, Papania M, et al. Multidrug-resistant tuberculosis in the New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 1996; 275:452–7.

53. Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN. Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 2006; 19:658–85.

54. Roetzer A, Diel R, Kohl TA, et al. Whole genome sequencing versus traditional genotyping for the investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med 2013; 10:e1001387.

55. Walker TM, Ip CL, Harrell RH, et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis 2013; 13:137–46.

56. Lieberman TD, Wilson D, Misra R, et al. Genomic diversity in autopsy samples recovered within 24 hours of death indicates of HIV-associated Mycobacterium tuberculosis. Nat Med 2016; 22:1470–4.

57. Guerra-Assuncao J, Crampin AC, Houben RM, et al. Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area. Elife 2015; 4.

58. Ford CR, Shah RR, Maeda MK, et al. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat Genet 2013; 45:784–90.

59. Bryant JM, Schürch AC, van Deutekom H, et al. Inferring patient-to-patient transmission of Mycobacterium tuberculosis from whole genome sequencing data. BMC Infect Dis 2013; 13:110.

60. O'Neill MB, Mortimer TD, Pepperell CS. Diversity of Mycobacterium tuberculosis across evolutionary scales. PLoS Pathog 2015; 11:e1005257.

61. Didelot X, Gardy J, Colpin C. Bayesian inference of infectious disease transmission from whole-genome sequence data. Mol Biol Evol 2014; 31:1869–79.

62. Didelot X, Fraser C, Gardy J, Colpin C. Genomic infectious disease epidemiology in partially sampled and ongoing outbreaks. Mol Biol Evol 2017; 34:997–1007.

63. Chengalrayen MD, Beukes GM, Gordhan BG, et al. Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am J Respir Crit Care Med 2016; 194:1532–40.

64. Lee RS, Radomski N, Proulx JF, et al. Re-emergence and amplification of tuberculosis in the Canadian arctic. J Infect Dis 2015; 211:1905–14.

65. Verber S, Warren RM, Munch Z, et al. Proportion of tuberculosis transmission that takes place in households in a high-incidence area. Lancet 2004; 363:212–4.

66. Middelkoop K, Mathema B, Myler L, et al. Transmission of tuberculosis in a South African community with a high prevalence of HIV infection. J Infect Dis 2015; 211:53–61.

67. Martineau L, Shen Y, Mupere E, Kizza A, Hill PC, Whalen CC. Transmission of Mycobacterium tuberculosis in households and the community: a systematic review and meta-analysis. Am J Epidemiol 2017; 185:1327–39.

68. Glynn JR, Guerra-Assuncao J, Houben RM, et al. Whole genome sequencing shows a low proportion of tuberculosis disease is attributable to known close contacts from whole-genome sequence data. Mol Biol Evol 2014; 31:1866–72.

69. Kasaie P, Andrews JR, Kelton WD, Dowdy DW. Timing of tuberculosis transmission and the impact of household contact tracing. An agent-based simulation model. Am J Respir Crit Care Med 2014; 189:455–52.

70. Control CID. Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons–Florida and New York, 1988–1991. MMWR Morb Mortal Wkly Rep 1991; 40:585.

71. Dysart TR, Sherman LF, Maw KL, et al. Multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiological and clinical outcomes. JAMA 1996; 276:1229–35.
98. Glynn JR, Kremer K, Borgdorff MW, Pujades Rodriguez M, van Soolingen D; European Concerted Action on New Generation Genetic Markers and Techniques for the Epidemiology and Control of Tuberculosis. Beijing/W genotype Mycobacterium tuberculosis and drug resistance. Emerg Infect Dis 2006; 12:736–43.

99. Ghosh S, Moonan PK, Cowan L, Grant J, Kammerer S, Navin TR. Tuberculosis genotyping information management system: enhancing tuberculosis surveillance in the United States. Infect Genet Evol 2012; 12:782–8.

100. Teeter LD, Vempaty P, Nguyen DT, et al.; Tuberculosis Epidemiologic Studies Consortium. Validation of genotype cluster investigations for Mycobacterium tuberculosis: application results for 44 clusters from four heterogeneous United States jurisdictions. BMC Infect Dis 2016; 16:594.

101. Tollefson D, Blass E, Fanning A, Redd JT, Barker K, McCray E. Burden of tuberculosis in indigenous peoples globally: a systematic review. Int J Tuberc Lung Dis 2013; 17:1139–50.

102. Lee RS, Radomski N, Proud JF, et al. Population genomics of Mycobacterium tuberculosis in the Inuit. Proc Natl Acad Sci U S A 2015; 112:13609–14.

103. Andrews JR, Morrow C, Walensky RP, Wood R. Integrating social contact and environmental data in evaluating tuberculosis transmission in a South African township. J Infect Dis 2014; 210:597–603.

104. Wood R, Middelkoop K, Myer L, et al. Undiagnosed tuberculosis in a community with high HIV prevalence: implications for tuberculosis control. Am J Respir Crit Care Med 2007; 175:87–93.