GEOM-SPIDER-EM: FASTER VARIANCE REDUCED STOCHASTIC EXPECTATION MAXIMIZATION FOR NONCONVEXFINITE-SUM OPTIMIZATION

Gersende Fort† Eric Moulines* Hoi-To Wai†

† Institut Mathématique de Toulouse, Université de Toulouse; CNRS UPS, F-31062 Toulouse Cedex, France
* Centre de Mathématiques Appliquées; Ecole Polytechnique; 91128 Palaiseau Cedex, France
† Department of SEEM; The Chinese University of Hong Kong; Shatin, Hong Kong

ABSTRACT

The Expectation Maximization (EM) algorithm is a key reference for inference in latent variable models; unfortunately, its computational cost is prohibitive in the large scale learning setting. In this paper, we propose an extension of the Stochastic Path-Integrated Differential Estimator EM (SPIDER-EM) and derive complexity bounds for this novel algorithm, designed to solve smooth nonconvex finite-sum optimization problems. We show that it reaches the same state of the art complexity bounds as SPIDER-EM; and provide conditions for a linear rate of convergence. Numerical results support our findings.

Index Terms— Large scale learning, Latent variable analysis, Expectation Maximization, Stochastic nonconvex optimization, Variance reduction.

1. INTRODUCTION

Intelligent processing of large data set and efficient learning of high-dimensional models require new optimization algorithms designed to be robust to big data and complex models era (see e.g. [1][2][3]). This paper is concerned with stochastic optimization of a nonconvex finite-sum smooth objective function

$$\text{Argmin}_{\theta \in \Theta} F(\theta), \quad F(\theta) \overset{\text{def}}{=} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_i(\theta) + R(\theta), \quad (1)$$

when $\Theta \subseteq \mathbb{R}^d$ and F cannot be explicitly evaluated (nor its gradient). Many statistical learning problems can be cast into this framework, where n is the number of observations or examples, \mathcal{L}_i is a loss function associated to example i (most of often a negated log-likelihood), and R is a penalty term promoting sparsity, regularity, etc.. Intractability of $F(\theta)$ might come from two sources. The first, referred to as large scale learning setting, is that the number n is very large so that the computations involving a sum over n terms should be either simply avoided or sparingly used during the run of the optimization algorithm (see e.g. [4]) for an introduction to the bridge between large scale learning and stochastic approximation; see [5][6] for applications to training of deep neural networks for signal and image processing; and more generally, empirical risk minimization in machine learning is a matter for [1]. The second is due to the presence of latent variables: for any i, the function \mathcal{L}_i as a (high-dimensional) integral over latent variables. Such a latent variable context is a classical statistical modeling: for example as a tool for solving inference in mixture models [7], for the definition of mixed models capturing variability among examples [8] or for modeling hidden and/or missing variables (see e.g. applications in text modeling through latent Dirichlet allocation [9], in audio source separation [10][11], in hyper-spectral imaging [12]).

In this contribution, we address the two levels of intractability in the case \mathcal{L}_i is of the form

$$\mathcal{L}_i(\theta) \overset{\text{def}}{=} -\log \int_{Z} h_i(z) \exp \left(\langle s_i(z), \phi(\theta) \rangle - \psi(\theta) \right) \mu(dz). \quad (2)$$

This setting in particular covers the case when $\sum_{i=1}^{n} \mathcal{L}_i(\theta)$ is the negated log-likelihood of the observations (Y_1, \cdots, Y_n), the pairs observation/latent variable (Y_i, Z_i) are independent, and the distribution of the complete data (Y_i, Z_i) given by $(y_i, z) \mapsto h_i(z) \exp \left(\langle s_i(z), \phi(\theta) \rangle - \psi(\theta) \right) \mu(dz)$ is from the curved exponential family. Gaussian mixture models are typical examples, as well as mixtures of distributions from the curved exponential family.

In the framework [1][2], a Majorize-Minimization approach through the Expectation-Maximization (EM) algorithm [13] is standard; unfortunately, the computational cost of the batch EM can be prohibitive in the large scale learning setting. Different strategies were proposed to address this issue [14][15][16][17][18]: they combine mini-batches processing, Stochastic Approximation (SA) techniques (see e.g. [19][20]) and variance reduction methods.

The first contribution of this paper is to provide a novel algorithm, the generalized Stochastic Path-Integrated Differential Estimator EM (g-SPIDER-EM), which is among the variance reduced stochastic EM methods for nonconvex finite-sum optimization of the form [1][2]; the generalizations allow a reduced computational cost without altering the convergence properties. The second contribution is the proof of complexity bounds, that is the number of parameter updates (M-step) and the number of conditional expectations evaluations (E-step), in order to reach ϵ-approximate stationary points; these bounds are derived for a specific form of g-SPIDER-EM: we show that its complexity bounds are the same as those of SPIDER-EM, bounds which are state of the art ones and overpass all the previous ones. Linear convergence rates are proved under a Polyak-Łojasiewicz condition. Finally, numerical results support our findings and provide insights on how to implement g-SPIDER-EM in order to inherit the properties of SPIDER-EM while reducing the computational cost.

Notations For two vectors $a, b \in \mathbb{R}^n$, $\langle a, b \rangle$ is the scalar product, and $\|\cdot\|$ the associated norm. For a matrix A, A^T is its transpose. For a positive integer n, set $[n] \overset{\text{def}}{=} \{1, \cdots, n\}$ and $[0, n] \overset{\text{def}}{=} \{0, \cdots, n\}$. ∇f denotes the gradient of a differentiable function f. The minimum of a and b is denoted by $a \wedge b$. Finally, we use standard big \mathcal{O} notation to leave out constants.
2. EM-BASED METHODS IN THE EXPECTATION SPACE

We begin by formulating the model assumptions:

A1. \(\theta \subseteq \mathbb{R}^d \) is a convex set. \((Z, \mathcal{Z})\) is a measurable space and \(\mu\) is a \(\sigma\)-finite positive measure on \(\mathcal{Z}\). The functions \(R: \theta \to \mathbb{R}\), \(\phi: \theta \to \mathbb{R}^q\), \(\psi: \theta \to \mathbb{R}\), \(s_i: \mathcal{Z} \to \mathbb{R}\), \(h_i: \mathcal{Z} \to \mathbb{R}\) for all \(i \in [n]\) are measurable. For any \(\theta \in \Theta\) and \(i \in [n]\), \(|\mathcal{L}_i(\theta)| < \infty\).

For any \(\theta \in \Theta\) and \(i \in [n]\), define the posterior density of the latent variable \(Z_i\) given the observation \(y_i\):

\[
p_i(z; \theta) \overset{\text{def}}{=} h_i(z) \exp((s_i(z), \phi(\theta)) - (\psi(\theta) + L_i(\theta)))
\]

(3)

Note that the dependence upon \(y_i\) follows through the index \(i\) in the above. Set

\[
s_i(\theta) \overset{\text{def}}{=} \int_{\mathcal{Z}} s(z) p_i(z; \theta)dz, \quad \tilde{s}(\theta) \overset{\text{def}}{=} \sum_{i=1}^{n} s_i(\theta).
\]

A2. The expectations \(s_i(\theta)\) are well defined for all \(\theta \in \Theta\) and \(i \in [n]\). For any \(s \in \mathbb{R}^q\), \(\text{Argmin}_{\theta \in \Theta} \left(\psi(\theta) - (s, \phi(\theta)) + R(\theta)\right)\) is a (nonempty) singleton denoted by \(\{\tilde{T}(s)\}\).

EM is an iterative algorithm: given a current value \(\tau_k \in \Theta\), the next value is \(\tau_{k+1} \leftarrow \tilde{T} \circ s(\tau_k)\). It combines an expectation step which boils down to the computation of \(s(\tau_k)\), the conditional expectation of \(s(z)\) under \(p_i(\cdot; \tau_k)\); and a maximization step which corresponds to the computation of the map \(T\). Equivalently, by using \(T\) which maps \(\mathbb{R}^q\) to \(\Theta\), it can be described in the expectation space (see [21]): given the current value \(s^k \in \tilde{s}(\theta)\), the next value is \(s^{k+1} \leftarrow \tilde{s} \circ T(s^k)\).

In this paper, we see EM as an iterative algorithm operating in the expectation space. In that case, the fixed points of the EM operator \(\tilde{s} \circ T\) are the roots of the function \(h\):

\[
h(s) \overset{\text{def}}{=} \tilde{s} \circ T(s) - s.
\]

EM possesses a Lyapunov function: in the parameter space, it is the objective function \(F\) where by definition of the EM sequence, it holds \(F(\tau_{k+1}) \leq F(\tau_k)\): in the expectation space, it is \(W \overset{\text{def}}{=} F \circ T\) and \(W(s^{k+1}) \leq W(s^k)\) holds. In order to derive convergence bounds, regularity assumptions are required on \(W\):

A3. The functions \(\phi, \psi\) and \(R\) are continuously differentiable on \(\Theta^\circ\), where \(\Theta^\circ\) is a neighborhood of \(\Theta\). \(\Theta\) is continuously differentiable on \(\mathbb{R}^q\). The function \(F\) is continuously differentiable on \(\Theta^\circ\) and for any \(\theta \in \Theta\), \(\nabla F(\theta) = -\nabla \psi(\phi(\theta)) + \nabla \psi(\theta) + \nabla R(\theta)\). For any \(s \in \mathbb{R}^q\), \(B(s) \overset{\text{def}}{=} \nabla (\phi \circ T)(s)\) is a symmetric \(q \times q\) matrix and there exist \(0 < \min_{\text{var}} \leq \max_{\text{var}} < \infty\) such that for all \(s \in \mathbb{R}^q\), the spectrum of \(B(s)\) is in \([\min_{\text{var}}, \max_{\text{var}}]\). For any \(i \in [n]\), \(s_i \circ T\) is globally Lipschitz on \(\mathbb{R}^q\) with constant \(L_i\). The function \(s \mapsto \nabla (F \circ T)(s) = B(s)(\tilde{s} \circ T(s) - s)\) is globally Lipschitz on \(\mathbb{R}^q\) with constant \(LW_i\).

\(\Theta^\circ\) implies that \(W\) has globally Lipschitz gradient and \(\nabla W(s) = -B(s)h(s)\) for some positive definite matrix \(B(s)\) (see e.g. [21] Lemma 2); see also [22] Propositions 1 and 2). Note that this implies that \(\nabla W(s) = 0\) iff \(h(s) = 0\).

Unfortunately, in the large scale learning setting (when \(n \gg 1\)), EM can not be easily applied since each iteration involves \(n\) conditional expectations (CE) evaluations through \(s = n^{-1} \sum_{i=1}^{n} s_i\). Incremental EM techniques have been proposed to address this issue: the most straightforward approach amounts to use a SA scheme with mean field \(h\) since. Upon noting that \(h(s) = E[s_i \circ T(s)] - s\) where \(I\) is a uniform random variable (r.v.) on \([n]^*\), the fixed points of the EM operator \(\tilde{s} \circ T\) are those of the SA scheme

\[
\tilde{S}_{k+1} = \tilde{S}_k + \gamma_{k+1} \left(b^{-1} \sum_{i \in B_{k+1}} s_i \circ T(\tilde{S}_k) - \tilde{S}_k\right)
\]

(6)

where \(\{\gamma_k, k \geq 0\}\) is a deterministic positive step size sequence, and \(B_{k+1}\) is sampled in \([n]^*\) independently from the past of the algorithm. This forms the basis of Online-EM proposed by [13] (see also [23]). Variance reduced versions were also proposed and studied: Incremental EM ([1]–[24]), Stochastic EM with variance reduction ([EM–VR]) [10]. Fast Incremental EM ([17]–[22]) and more recently, Stochastic Path-Integrated Differential Estimator EM (SPIDER-EM) [18].

As shown in [22] section 2.3), these algorithms can be seen as a combination of SA with control variate: upon noting that \(h(s) = h(s) + E[U]\) for any r.v. \(U\) such that \(E[U] = 0\), control variates within SA procedures replace \(\tilde{s}\) with

\[
\tilde{S}_{k+1} = \tilde{S}_k + \gamma_{k+1} \left(b^{-1} \sum_{i \in B_{k+1}} s_i \circ T(\tilde{S}_k) + U_{k+1} - \tilde{S}_k\right)
\]

for a choice of \(U_{k+1}\) such that the new algorithm has better properties (for example, in terms of complexity - see the end of Section 3). Lastly, we remark that the EM assumptions satisfied by many statistical models such as the Gaussian Mixture Model; see [18] for a rigorous justification of these assumptions.

3. THE GEOM-SPIDER-EM ALGORITHM

Data: \(\kappa_{\text{out}} \in \mathbb{N}^*\); \(\tilde{S}_{\text{init}} \in \mathbb{R}^q\); \(\xi_t \in \mathbb{N}^*\) for \(t \in [\kappa_{\text{out}}]^*\); \(\gamma_{t,0} \geq 0, \gamma_{t,0} > 0\) for \(t \in [\kappa_{\text{out}}]^*, k \in [\xi_t]^*\).

Result: The SPIDER-EM sequence: \(\{\tilde{S}_{t,k}\}\).

1. \(\tilde{S}_{t,0} = \tilde{S}_{t,-1} = \tilde{S}_{\text{init}}\); \(\gamma_{t,0} = \gamma_{t,-1} = 0\) for \(t \in [\kappa_{\text{out}}]^*, k \in [\xi_t]^*\).

Algorithm 1: The \(g\)-SPIDER-EM algorithm. The \(\xi_t\)’s are introduced as a perturbation to the computation of \(\tilde{s} \circ T(\tilde{S}_{t,-1});\) they can be null.

The algorithm generalized Stochastic Path-Integrated Differential Estimator Expectation Maximization (\(g\)-SPIDER-EM) described by Algorithm 1 uses a new strategy when defining the approximation of \(\tilde{s} \circ T(\tilde{s})\) at each iteration. It is composed of nested loops: \(\kappa_{\text{out}}\) outer loops, each of them formed with a possibly random number of inner loops. Within the \(t\)th outer loop, \(g\)-SPIDER-EM mimics the identity \(\tilde{s} \circ T(\tilde{S}_{t,k}) = \tilde{s} \circ T(\tilde{S}_{t,k-1}) + \tilde{s} \circ T(\tilde{S}_{t,k}) - \tilde{s} \circ T(\tilde{S}_{t,k-1})\). More precisely, at iteration \(k + 1\), the approximation
$S_{t,k+1}$ of the sum $\bar{s} \circ T(\bar{S}_{t,k})$ is the sum of the current approximation $S_{t,k}$ and of a Monte Carlo approximation of the difference (see Lines [3][4] in Algorithm [1]); the examples s in $B_{t,k+1}$ used in the approximation of $\bar{s} \circ T(\bar{S}_{t,k})$ and those used for the approximation of $\bar{s} \circ T(\bar{S}_{t,k-1})$ are the same - make the approximations correlated and favor a variance reduction when plugged in the SA update (Line [7]). $B_{t,k+1}$ is sampled with or without replacement; even when $B_{t,k+1}$ collects independent samples uniformly in $[n]^{\dagger}$, we have $E[|S_{t,k+1} - F_{t,k}|]$ where $F_{t,k}$ is the sigma-field collecting the randomness up to the end of the outer loop $\#t$ and inner loop $\#k$: the approximation $S_{t,k+1}$ of $\bar{s} \circ T(\bar{S}_{t,k})$ is biased - which property makes the theoretical analysis of the algorithm challenging. This approximation is reset (see Lines [29]) at the end of an outer loop: in the "standard" SPIDER-EM, $S_{t,0} = \bar{s} \circ T(\bar{S}_{t,-1})$ is computed, but this "refresh" can be only partial, by computing an update on a (large) batch $B_{t,0}$ (size b_0) of observations: $S_{t,0} = b_1^{-1} \sum_{t \in B_{t,0}} \bar{s} \circ T(\bar{S}_{t,-1})$. Such a reset starts a so-called epoch (see Line [3]). The number of inner loops $ξ_t$ at epoch $\#t$ can be deterministic $ξ_t$; or random, such as a uniform distribution on $[k_{in}]^{\dagger}$ or a geometric distribution, and drawn prior the run of the algorithm.

Comparing g-SPIDER-EM with SPIDER-EM [18], we notice that the former allows a perturbation $ξ_t$ when initializing $S_{t,0}$. This is important for computational cost reduction. Moreover, g-SPIDER-EM considers epochs with time-varying length $ξ_t$ which covers situations when it is random and chosen independently of the other sources of randomness (the errors $ξ_t$, the batches $B_{t,k+1}$). Hereafter, we provide an original analysis of an g-SPIDER-EM, namely $Geom^{+}\text{-SPIDER-EM}$ which corresponds to the case $ξ_t \sim \xi_t \in [0,\infty]$ being a geometric r.v. on \mathbb{N} w. s. success probability $1 - ρ_t \in (0,1)$: $P(ξ_t = k) = (1 - ρ_t)^{k-1}$ for $k \geq 1$ (hereafter, we will write $ξ_t \sim G^{+}(1 - ρ_t)$). Since $ξ_t$ is also the first success distribution in a sequence of independent Bernoulli trials, the geometric length could be replaced with: (i) at each iteration k of epoch t, sample a Bernoulli r.v. $ξ_t$ with a probability of success $(1 - ρ_t)$; (ii) when the coin comes up head, start a new epoch (see [23][25] for similar ideas on stochastic gradient algorithms).

Let us establish complexity bounds for $Geom^{+}\text{-SPIDER-EM}$. We analyze a randomized terminating iteration Ξ^{+} and discuss how to choose k_{out} and $ξ_t, \cdots, ξ_{t,κ}$ as a function of the batch size n and an accuracy $ε > 0$ to reach $ε$-approximate stationarity i.e. $E[\|h(\bar{S}_{t,\xi_t})\|^2] \leq ε$. To this end, we endow the probability space (Ω, A, P) with the sigma-fields $F_{t,0} = σ(ξ_t)$, $F_{t,0} = σ(F_{t-1,ξ_t}, E_t)$ for $t ≥ 2$, and $F_{t,k+1} = σ(F_{t,k}, B_{t,k+1})$ for $t ∈ [k_{in}]^{\dagger}$, $k ∈ [ξ_t - 1]$. For a r.v. $\Xi_t \sim G^{+}(1 - ρ_t)$, set $E[|φ(ξ_t)|F_{t,0}] = (1 - ρ_t) \sum_{k=1}^{†} k^{1-1} E[φ(k)|F_{t,0}]$ for any bounded measurable function $φ$.

Theorem 1. Assume $ξ_t \sim G^{+} (1 - ρ_t)$, $E[|φ(ξ_t)|F_{t,0}] = (1 - ρ_t) \sum_{k=1}^{†} k^{1-1} E[φ(k)|F_{t,0}]$ for any bounded measurable function $φ$.

\[
\begin{align*}
\frac{v_{\text{min}}(t)}{2(1 - ρ_t)} & \sum_{t=1}^{k_{out}} E[|h(\bar{S}_{t,ξ_{t-1}})|^2F_{t,0}] \\
& \leq W(\bar{S}_{t,0}) - \frac{v_{\text{max}}(t)}{2(1 - ρ_t)} E[|h(\bar{S}_{t,ξ_t})|^2F_{t,0}] + \frac{v_{\text{max}}(t)}{2(1 - ρ_t)} E[|\Delta S_{t,0}|^2F_{t,0}] + \frac{\gamma(t)}{2(1 - ρ_t)} b 2^{1-1} E[|\Delta S_{t,ξ}|^2F_{t,0}] + \frac{N_{t}}{2(1 - ρ_t)} b 2^{1-1} E[|\Delta S_{t,ξ}|^2F_{t,0}].
\end{align*}
\]

where $Δ\bar{S}_{t,ξ} \equiv \bar{S}_{t,ξ} - \bar{S}_{t,ξ-1}, L^2 \equiv \sum_{i=1}^{n} \bar{L}_i$, and

\[
N_{t} \equiv -\frac{\gamma(t)}{2(1 - ρ_t)} E[|\Delta S_{t,ξ}|^2F_{t,0}] + \frac{v_{\text{max}}(t)}{2(1 - ρ_t)} E[|\Delta S_{t,ξ}|^2F_{t,0}].
\]

Theorem [1] is the key result from which our conclusions are drawn; its proof is adapted from [18] section 8 (also see [23]).

Let us discuss the rate of convergence and the complexity of $Geom^{+}\text{-SPIDER-EM}$ in the case: for any $t \in [k_{out}]^{\dagger}$, the number of inner loops is $(1 - ρ_t)^{-1} ≥ k_{in}$, $γ_t = 0$ and $γ_t = \alpha/L$ for $α > 0$ satisfying

\[
v_{\text{min}} - \frac{L_n}{L} - \alpha v_{\text{max}} \frac{k_{in}}{b} (1 - \frac{1}{k_{in}}) > 0.
\]

Linear rate. When $ξ \sim G^{+}(1 - ρ_t)$, we have

\[
ρE[|D_ζ|] ≤ ρE[|D_ζ|] + (1 - ρ)D_0 = E[|D_ζ|] - (1 - ρ)D_0
\]

for any positive sequence $D_0, k ≥ 0$. Theorem [1] implies

\[
E[|h(\bar{S}_{t,ξ_t})|^2F_{t,0}] \leq \frac{2L}{v_{\text{min}}(k_{in}-1)} (W(\bar{S}_{t,0}) - \min W) + \frac{v_{\text{max}} k_{in}}{v_{\text{min}} - 1} E[|ξ_t|^2].
\]

Hence, when $|ξ_t| = 0$ and W satisfies a Polyak-Lojasiewicz condition [29], i.e.

\[
∃γ > 0, ∃ γ_ε > 0, W(s) - min W ≤ τ|∇W(s)|^2
\]

then [39] yields

\[
H_t \equiv E[|h(\bar{S}_{t,ξ_t})|^2F_{t,0}] \leq \frac{2L^2 τ v_{\text{max}}^2}{v_{\text{min}}(k_{in}-1)} E[|\bar{S}_{t,ξ_t-1} - \bar{S}_{t,ξ_t}|]^2,
\]

thus establishing a linear rate of the algorithm along the path $\bar{S}_{t,ξ_t, t \in [k_{out}]^{\dagger}}$ as soon as k_{in} is large enough:

\[
E[H_t] \leq \frac{(2L^2 τ v_{\text{max}}^2)}{v_{\text{min}}(k_{in}-1)} |h(\bar{S}_{t,0})|^2.
\]

Even if the Polyak-Lojasiewicz condition [39] is quite restrictive, the above discussion gives the intuition of the lock-in phenomenon which often happens at convergence: a linear rate of convergence is observed when the path is trapped in a neighborhood of its limit point, which may be the consequence that locally, the Polyak-Lojasiewicz condition holds (see figure [1] in Section [4]).

Complexity for ε-approximate stationarity. From Theorem [1] Eq. [4] and $\bar{S}_{t,ζ_t} = \bar{S}_{t-1,0}$ (here $γ_t, ζ_t = 0$), it holds

\[
v_{\text{min}}(k_{in}-1) E[H_t] \leq E(W(\bar{S}_{t,0}) - W(\bar{S}_{t+1,0})).
\]

Therefore,

\[
\sum_{t=1}^{k_{out}} E[H_t] \leq \frac{2L}{v_{\text{min}}(k_{in}-1)} (W(\bar{S}_{t,0}) - W(\bar{S}_{t+1,0})).
\]

Eq. [10] establishes that in order to obtain an ε-approximate stationary point, it is sufficient to stop the algorithm at the end of the epoch $\#T$, where T is sampled uniformly in $[k_{out}]^{\dagger}$ with $k_{out} = O(ε^{-1} L/k_{in})$ - and return $\bar{S}_{t,ξ_t}$. To do such, the mean number of conditional expectations evaluations is $K_{CE} \equiv n + n^{k_{out}} +$.
2b\kappa_{in, out}; and the mean number of optimization steps is \(K_{\text{Opt}} \equiv k_{\text{out}} + k_{\text{in}} \). By choosing \(k_{\text{in}} = O(\sqrt{n}) \) and \(b = O(\sqrt{n}) \), we have \(K_{\text{CE}} = O(L \sqrt{n} \gamma^{-1}) \) and \(K_{\text{Opt}} = O(L \gamma^{-1}) \). Similar randomized terminating strategies were proposed in the literature: their optimal complexity in terms of conditional expectations evaluations is \(O(\epsilon^{-2}) \) for Online-EM [13], \(O(\epsilon^{-1}) \) for i-EM [14], \(O(\epsilon^{-1} n^{2/3}) \) for sEM-vr [16,17], \(O((\epsilon^{-1} n^{2/3}) \wedge (\epsilon^{-3/2} \gamma^{-1})) \) for FIEM [17,22] and \(O(\epsilon^{-1} \gamma^{3/2}) \) for SPIDER-EM - see [18, section 6] for a comparison of the complexities \(K_{\text{CE}} \) and \(K_{\text{Opt}} \) of these incremental EM algorithms. Hence, Geom-SPIDER-EM has the same complexity bounds as SPIDER-EM, and they are optimal among the class of incremental EM algorithms.

4. NUMERICAL ILLUSTRATION

We perform experiments on the MNIST dataset, which consists of \(n = 6 \times 10^5 \) images of handwritten digits, each with 784 pixels. We pre-process the data as detailed in [22, section 5]: 67 uninformative pixels are removed from each image, and then a principal component analysis is applied to further reduce the dimension; we keep the 20 principal components of each observation. The learning problem consists in fitting a Gaussian mixture model with \(q = 12 \) components: \(\theta \) collects the weights of the mixture, the expectations of the components (i.e. \(g \) vectors in \(\mathbb{R}^{20} \)) and a full \(20 \times 20 \) covariance matrix; here, \(R = 0 \) (no penalty term). All the algorithms start from an initial value \(\hat{\theta}_{\text{init}} = \hat{\theta} \circ T(\theta_{\text{init}}) \) such that \(-F(\theta_{\text{init}}) = -58.3 \), and their first two epochs are Online-EM. The first epoch with a variance reduction technique is epoch \#3, on Fig.1 the plot starts at epoch \#2.

The proposed Geom-SPIDER-EM is run with a constant step size \(\gamma_{t,k} = 0.01 \) (and \(\gamma_{t,0} = 0 \)); \(k_{\text{out}} = 148 \) epochs (which are preceded with 2 epochs of Online-EM); a mini batch size \(b = \sqrt{n} \). Different strategies are considered for the initialization \(S_{t,0} \) and the parameter of the geometric r.v. \(\Xi_t \). In full-geom, \(k_{\text{in}} = \sqrt{n}/2 \) so that the mean total number of conditional expectations evaluations per outer loop is \(2b k_{\text{in}} = n \); and \(\hat{\epsilon}_2 = 0 \) which means that \(S_{t,0} \) requires the computation of the full sum \(\hat{\epsilon} \) over \(n \) terms. In "half-geom", \(k_{\text{in}} \) is defined as in full-geom, but for all \(t \in [k_{\text{out}}]^* \), \(S_{t,0} = (2/n) \sum_{i=1}^{b} \hat{S}_t \circ T(S_{t-1}) \) where \(B_{1,0} \) is of cardinality \(n/2 \); therefore \(\hat{\epsilon}_2 \neq 0 \). In "quad-geom", a quadratic growth is considered both for the mean of the geometric random variables: \(\mathbb{E}[[X]] = \min(n, \max(20b^2, n/50))/2b \); and for the size of the mini batch when computing \(S_{t,0} = b^{t-1} \sum_{i=1}^{b} \hat{S}_t \circ T(S_{t-1}) \) with \(b_0 = \min(n, \max(20b^2, n/50)) \). The g-SPIDER-EM with a constant number of inner loops \(\epsilon_t = \kappa_{in} = n/(2b) \) is also run for comparison: different strategies for \(S_{t,0} \) are considered, the same as above (it corresponds to full-ctt, half-ctt and quad-ctt on the plots). Finally, in order to illustrate the benefit of the variance reduction, a pure Online-EM is run for 150 epochs, one epoch corresponding to \(\sqrt{n} \) updates of the statistics \(\hat{S}_t \), each of them requiring a mini batch \(B_{k+1} \) of size \(\sqrt{n} \) (see Eq.6).

The algorithms are compared through an estimation of the quantile of order 0.5 of \(||h(\hat{S}_{t,\Xi_t})||^2 \) over 30 independent realizations. It is plotted versus the number of epochs \(t \) in Fig.1 and the number of conditional expectations (CE) evaluations in Fig.2. They are also compared through the objective function \(F \) along the path; the mean value over 30 independent paths is displayed versus the number of CE, see Fig.3.

We first observe that Online-EM has a poor convergence rate, thus justifying the interest of variance reduction techniques as shown in Fig.1. Having a persistent bias along iterations when defining \(S_{t,0} \)
5. REFERENCES

[1] K. Slavakis, G.B. Giannakis, and G. Mateos, “Modeling and optimization for big data analytics: (statistical) learning tools for our era of data deluge,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18–31, 2014.

[2] P. Bühlmann, P. Drineas, M. Kane, and M. van der Laan, Handbook of Big Data, Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2016.

[3] W. Härdle, H.H.S Lu, and X. Shen, Handbook of big data analytics, Springer, 2018.

[4] K. Slavakis, S. Kim, and G.B. Mateos, G. Giannakis, “Stochastic Approximation vis-a-vis Online Learning for Big Data Analytics [Lecture Notes],” IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 124–129, 2014.

[5] Y. LeCun, B.H. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard, and L.D. Jackel, “Handwritten digit recognition with a back-propagation network,” in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed., pp. 396–404. Morgan-Kaufmann, 1990.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[7] G.J. McLachlan and D. Peel, Finite mixture models, vol. 299 of Probability and Statistics – Applied Probability and Statistics Section, Wiley, New York, 2000.

[8] J. Jiang, Linear and Generalized Linear Mixed Models and Their Applications, Springer Series in Statistics. Springer, Dordrecht, 2007.

[9] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[10] D. Kounades-Bastian, L. Girin, X. Alameda-Pineda, S. Gannot, and R. Horaud, “A Variational EM Algorithm for the Separation of Time-Varying Convolutive Audio Mixtures,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 8, pp. 1408–1423, 2016.

[11] K. Weisberg, S. Gannot, and O. Schwartz, “An online multiple-speaker doa tracking using the cappE-moulines recursive expectation-maximization algorithm,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 656–660.

[12] B. Lin, X. Tao, S. Li, L. Dong, and J. Lu, “Variational bayesian image fusion based on combined sparse representations,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 1432–1436.

[13] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum Likelihood from Incomplete Data Via the EM Algorithm,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[14] R. M. Neal and G. E. Hinton, A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants, pp. 355–368, Springer Netherlands, Dordrecht, 1998.

[15] O. Cappé and E. Moulines, “On-line Expectation Maximization algorithm for latent data models,” J. Roy. Stat. Soc. B Met., vol. 71, no. 3, pp. 593–613, 2009.

[16] J. Chen, J. Zhu, Y.W. Teh, and T. Zhang, “Stochastic Expectation Maximization with Variance Reduction,” in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., pp. 7967–7977, 2018.

[17] B. Karimi, H.-T. Wai, E. Moulines, and M. Lavielle, “On the Global Convergence of (Fast) Incremental Expectation Maximization Methods,” in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, Eds., pp. 2837–2847. Curran Associates, Inc., 2019.

[18] G. Fort, E. Moulines, and H.T. Wai, “A Stochastic Path-Integrated Differential EstimatoR Expectation Maximization Algorithm,” in Advances in Neural Information Processing Systems 34. Curran Associates, Inc., 2020.

[19] A. Benveniste, P. Priouret, and M. Métivier, Adaptive Algorithms and Stochastic Approximations, Springer-Verlag, Berlin, Heidelberg, 1990.

[20] V. S. Borkar, Stochastic approximation, Cambridge University Press, Cambridge; Hindustan Book Agency, New Delhi, 2008, A dynamical systems viewpoint.

[21] B. Delyon, M. Lavielle, and E. Moulines, “Convergence of a Stochastic Approximation version of the EM algorithm,” Ann. Statist., vol. 27, no. 1, pp. 94–128, 1999.

[22] G. Fort, P. Gach, and E. Moulines, “Fast Incremental Expectation Maximization for non-convex finite-sum optimization: non asymptotic convergence bounds,” Tech. Rep., HAL 02617725v1, 2020.

[23] P. Liang and D. Klein, “Online EM for unsupervised models,” in Proceedings of human language technologies: The 2009 annual conference of the North American chapter of the association for computational linguistics, 2009, pp. 611–619.

[24] A. Gunawardana and W. Byrne, “Convergence theorems for generalized alternating minimization procedures,” J. Mach. Learn. Res., vol. 6, pp. 2049–2073, 2005.

[25] Z. Li, H. Bao, X. Zhang, and P. Richtárik, “PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization,” Tech. Rep., arXiv 2008.10898, 2020.

[26] S. Horvath, L. Lei, P. Richtarik, and M.I. Jordan, “Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization,” Tech. Rep., arXiv 2002.05359, 2020.

[27] S. Ghadimi and G. Lan, “Stochastic First- and Zeroth-Order Methods for Nonconvex Stochastic Programming,” SIAM J. Optimiz., vol. 23, no. 4, pp. 2341–2368, 2013.

[28] G. Fort, E. Moulines, and H.-T. Wai, “GEOM-SPIDER-EM: Faster Variance Reduced Stochastic Expectation Maximization for Nonconvex Finite-Sum Optimization,” Tech. Rep., 2020, supplementary material, available at https://perso.math.univ-toulouse.fr/gfort/publications-2/technical-report/.

[29] H. Karimi, J. Nutini, and M. Schmidt, “Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition,” in Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2016, pp. 795–811.
Supplementary material, paper “GEOM-SPIDER-EM: faster variance reduced stochastic Expectation Maximization for nonconvex finite-sum optimization”

6. PROOF OF THEOREM 1

Let \(\{E_t, t \in [k_{out}]^*\} \) and \(\{B_t,k+1, t \in [k_{out}]^*, k \in [\xi - 1] \} \) be random variables defined on the probability space \((\Omega, \mathcal{A}, \mathbb{P})\). Define the filtrations \(\mathcal{F}_{t,0} \equiv \sigma(E_t), \mathcal{F}_{t,k} \equiv \sigma(F_{t-k,1}, E_t) \) for \(t \geq 2 \), and \(\mathcal{F}_{t,k+1} \equiv \sigma(F_{t,k}, B_t,k+1) \) for \(t \in [k_{out}]^*, k \in [\xi - 1] \).

For \(\rho_t \in (0,1) \), set
\[
\mathbb{E} [\phi(E_t) | \mathcal{F}_{t,0}] \overset{\text{def}}{=} (1 - \rho_t) \sum_{k \geq 1} \rho_{k-1} \mathbb{E} [\phi(k) | \mathcal{F}_{t,k}] ,
\]
for any measurable positive function \(\phi \).

A4. \(\Theta \subseteq \mathbb{R}^d \) is a convex set. \((Z, \mathcal{Z}) \) is a measurable space and \(\mu \) is a \(\sigma \)-finite positive measure on \(\mathcal{Z} \). The functions \(R : \Theta \to \mathbb{R} \), \(\phi : \Theta \to \mathbb{R}^q, \psi : \Theta \to \mathbb{R}, \hat{s}_t : Z \to \mathbb{R}^q, h_i : Z \to \mathbb{R} \) for all \(i \in [n]^* \) are measurable. For any \(\Theta \in \Theta \) and \(i \in [n]^* \), \(|\mathcal{L}_i(\Theta)| < \infty \).

A5. The expectations \(\hat{s}_i(\Theta) \) are well defined for all \(\Theta \in \Theta \) and \(i \in [n]^* \). For any \(s \in \mathbb{R}^q \), Arzgena \(\hat{s}_i(\Theta) - (s, \phi(\Theta)) + R(\Theta) \) is a (non empty) singleton denoted by \(\{\mathcal{T}(s)\} \).

A6. The functions \(\phi, \psi \) and \(R \) are continuously differentiable on \(\Theta^d \), where \(\Theta^d \) is a neighborhood of \(\Theta \). \(T \) is continuously differentiable on \(\mathbb{R}^q \). The function \(F \) is continuously differentiable on \(\Theta^d \) and\(\forall \rho \in \Theta \cap \mathbb{R} \), \(\nabla F(\rho) = -\nabla \phi(\rho)^T \hat{s}(\rho) + \nabla \psi(\rho) + \nabla R(\rho) \)

Lemma 2. Let \(\rho \in (0,1) \) and \(\{D_k, k \geq 0\} \) be real numbers such that \(\sum_{k \geq 0} \rho^k |D_k| < \infty \). Let \(\xi \sim \mathcal{G}(1 - \rho) \). Then \(\mathbb{E}_* [D_{\xi - 1}] = \rho \mathbb{E} [D_0] + (1 - \rho)D_0 = \mathbb{E} [D_0] + (1 - \rho)(D_0 - \mathbb{E}[D_0]) \).

Proof. By definition of \(\xi \),
\[
\mathbb{E} [D_\xi] = (1 - \rho) \sum_{k \geq 1} \rho^{k-1} D_k = \rho^{\xi} (1 - \rho) \sum_{k \geq 1} \rho^k D_k = \rho^{\xi} (1 - \rho) \sum_{k \geq 0} \rho^{k+1} \sum_{i=0}^{k} D_{k-1} = \rho^{\xi} (1 - \rho) \sum_{k \geq 1} \rho^{k-1} D_{k-1} = \rho^{\xi} \mathbb{E} [D_{\xi - 1}] - \rho^{\xi} (1 - \rho) D_0 .
\]
This yields \(\rho \mathbb{E} [D_\xi] = \mathbb{E} [D_{\xi - 1}] - (1 - \rho)D_0 \) and concludes the proof.

Lemma 3. For any \(t \in [k_{out}]^*, k \in [\xi]^*, B_t,k \) and \(\mathcal{F}_{t,k+1} \) are independent. In addition, for any \(s \in \mathbb{R}^q \), \(b \in \mathbb{R} \), \(\mathbb{E} [\sum_{i \in B_t,k} \hat{s}_i \circ \mathcal{T}(s)] = \bar{s} \circ \mathcal{T}(s) \). Finally, assume that for any \(i \in [n]^* \), \(\hat{s}_i \circ \mathcal{T} \) is globally Lipschitz with constant \(L_i \). Then for any \(s, s' \in \mathbb{R}^q \),
\[
\mathbb{E} \left[\left| b \sum_{i \in B_t,k} \left(\hat{s}_i \circ \mathcal{T}(s) - \hat{s}_i \circ \mathcal{T}(s') \right) \right| \right] \leq \frac{1}{B} \left(L^2 ||s - s'||^2 - ||\bar{s} \circ \mathcal{T}(s) - \bar{s} \circ \mathcal{T}(s')||^2 \right) ,
\]
where \(L^2 \overset{\text{def}}{=} \sum_{i=1}^{n} L_i^2 \).

Proof. See [13] Lemma 4; the proof holds true when \(B_t,k \) is sampled with or without replacement.

Proposition 4. For any \(t \in [k_{out}]^*, k \in [\xi - 1] \),
\[
\mathbb{E} [S_{t,k+1} | \mathcal{F}_{t,k}] - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k}) = S_{t,k} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1}) ,
\]
and
\[
\mathbb{E} [S_{t,k+1} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k}) | \mathcal{F}_{t,0}] = \mathcal{E}_t .
\]

Proof. Let \(t \in [k_{out}]^*, k \in [\xi - 1] \). By Lemma [3]
\[
\mathbb{E} [S_{t,k+1} | \mathcal{F}_{t,k}] = S_{t,k} + \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1}) - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1}) .
\]
By definition of \(S_{t,0} \) and of the filtrations, \(S_{t,0} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,-1}) = \mathcal{E}_t \in \mathcal{F}_{t,0} \). The proof follows by induction on \(k \).

Proposition 5. Assume that for any \(i \in [n]^* \), \(\hat{s}_i \circ \mathcal{T} \) is globally Lipschitz with constant \(L_i \). Then for any \(t \in [k_{out}]^*, k \in [\xi - 1] \),
\[
\mathbb{E} \left[||S_{t,k+1} - \mathcal{E}_t | \mathcal{F}_{t,k}||^2 \right] \leq \frac{1}{B} \left(L^2 ||S_{t,k} - \hat{S}_{t,k-1}||^2 - ||\bar{s} \circ \mathcal{T}(\hat{S}_{t,k}) - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1})||^2 \right) \leq \frac{L^2}{B} \gamma^2_{t,k} ||S_{t,k} - \hat{S}_{t,k-1}||^2 ,
\]
where \(L^2 \overset{\text{def}}{=} \sum_{i=1}^{n} L_i^2 \).

Proof. Let \(t \in [k_{out}]^*, k \in [\xi - 1] \). By Lemma [3] Proposition [4] the definition of \(\hat{S}_{t,k+1} \) and of the filtration \(\mathcal{F}_{t,k} \),
\[
S_{t,k+1} - \mathcal{E}_t = S_{t,k+1} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k}) - S_{t,k} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1}) = \sum_{i \in B_t,k} \{ \hat{s}_i \circ \mathcal{T}(\hat{S}_{t,k}) - \hat{s}_i \circ \mathcal{T}(\hat{S}_{t,k-1}) \} = \bar{s} \circ \mathcal{T}(\hat{S}_{t,k}) - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1}) .
\]
We then conclude by Lemma [3] for the first inequality; and by using the definition of \(\hat{S}_{t,k} \) for the second one.

Proposition 6. Assume that for any \(i \in [n]^* \), \(\hat{s}_i \circ \mathcal{T} \) is globally Lipschitz with constant \(L_i \). Then for any \(t \in [k_{out}]^*, k \in [\xi - 1] \),
\[
\mathbb{E} \left[||S_{t,k+1} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k})||^2 \right] \leq \frac{L^2}{B} \gamma^2_{t,k} ||S_{t,k} - \hat{S}_{t,k-1}||^2 + ||S_{t,k} - \bar{s} \circ \mathcal{T}(\hat{S}_{t,k-1})||^2 ,
\]
where \(L^2 \overset{\text{def}}{=} \sum_{i=1}^{n} L_i^2 \).
Let $\rho_t \in (0, 1)$ and $\Xi \sim G^p(1 - \rho_t)$. For any $t \in [k_{out}]^*$, we have $\sum_{k \leq k_{out}} \rho_k \leq \sum_{k \leq k_{out}} \frac{1}{2} \bar{E} \sum_{t, \xi - 1} \left| \sum_{k \leq k_{out}} \rho_k \right|$. This concludes the proof.

By Lemma 2, we have $\rho_t \leq (1 - \rho_t)^{\frac{1}{2}}$ and $\bar{E} \sum_{k \leq k_{out}} \rho_k \leq \bar{E} \sum_{k \leq k_{out}} \frac{1}{2} \bar{E} \sum_{t, \xi - 1} \left| \sum_{k \leq k_{out}} \rho_k \right|$. Thus, we have $\bar{E} \sum_{k \leq k_{out}} \rho_k \leq \bar{E} \sum_{k \leq k_{out}} \frac{1}{2} \bar{E} \sum_{t, \xi - 1} \left| \sum_{k \leq k_{out}} \rho_k \right|$. This concludes the proof.

Lemma 8. For any $h, S, B \in \mathbb{R}^q$ and any $q \times q$ symmetric matrix B, it holds

$-2 \langle Bh, S \rangle = -\langle BS, S \rangle - \langle Bh, h \rangle + \langle B \{h - S\}, h - S \rangle$.

Proposition 9. Assume $A \Phi$ to A. For any $t \in [k_{out}]^*$ and $k \in [\xi_t - 1]$, we have $E \left[W(S_{t,k+1}) \left| F_{t,0} \right. \right] + \frac{\lambda_{\min}}{2} \left| h(S_{t,k+1}) \right|^2 \leq E \left[W(S_{t,k}) \left| F_{t,0} \right. \right] + \frac{\lambda_{\max}}{2} \left| h(S_{t,k}) \right|^2$.

Proof. Since W is continuously differentiable with L_W-Lipschitz gradient, then for any $s, s' \in \mathbb{R}^q$,

$W(s') - W(s) \leq \langle \nabla W(s), s' - s \rangle + \frac{L_W}{2} \left| s' - s \right|^2$.

Set $s' = s + p(s)S$ where $\gamma > 0$ and $S \in \mathbb{R}^q$. Since $\nabla W(S) = -B(s)h(S)$ and S is symmetric, we have $W(s + \gamma S) - W(s) \leq \frac{\gamma}{2} \langle B(S)h(S), h(S) \rangle + \frac{\gamma}{2} \langle B(s)h(s), h(s) \rangle$.

Since $||a||^2 \leq \langle B(s)h(s), h(s) \rangle \leq \langle B(s)h(s), h(s) \rangle + \frac{\lambda_{\max}}{2} \left| h(s) \right|^2$,

$W(s + \gamma S) - W(s) \leq \frac{\gamma}{2} \langle B(s)h(S), S \rangle + \frac{\lambda_{\max}}{2} \left| h(S) \right|^2$.

Applying this inequality with $s \leftarrow \tilde{S}_{t,k}$ and $S \leftarrow S_{t,k+1} - \tilde{S}_{t,k}$, we get $s + \gamma S = \tilde{S}_{t,k+1}$, and then the conditional expectation yield the result.

Proposition 10. Assume $A \Phi$ to A. For any $t \in [k_{out}]^*$,

$W(S_{t+1,0}) - W(S_{t+1,1}) \leq \frac{\gamma_{t+1}}{2} \left(\lambda_{\min} \left| h(S_{t+1,0}) \right|^2 + \lambda_{\max} \left| h(S_{t+1,1}) \right|^2 \right)^2$.

Proof. As in the proof of Proposition 9, we write for any $s, s' \in \mathbb{R}^q$,

$W(s') - W(s) \leq \langle \nabla W(s), s' - s \rangle + \frac{L_W}{2} \left| s' - s \right|^2$.

With Lemma 8, this yields $s' = s + \gamma S$ for $\gamma > 0$ and $S \in \mathbb{R}^q$.

$W(s + \gamma S) - W(s) \leq \frac{\gamma}{2} \langle \lambda_{\min} \left| h(S_{t+1,0}) \right|^2 + \lambda_{\max} \left| h(S_{t+1,1}) \right|^2 \rangle$.

Applying this inequality with $s \leftarrow \tilde{S}_{t+1,0}, S \leftarrow S_{t+1,0} - \tilde{S}_{t+1,1},$ and $h \leftarrow h(s)$ (which yields $s + \gamma S = \tilde{S}_{t+1,0}$).
Theorem 11. Assume $A3$ to $A6$. For any $t \in [k_{out}]^*$, let $\rho_t \in (0, 1)$ and $\xi_t \sim \mathcal{G}^\ast (1 - \rho_t)$. Finally, choose $\gamma_{t+1} = \gamma_t > 0$ for any $t \geq 0$. For any $t \in [k_{out}]^*$,

\[
\frac{\min_{t \in [k_{out}]} \gamma_t}{2(1 - \rho_t)} \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t, 1})\|^2 | F_{t, 0} \right] \leq W(\tilde{S}_{t, 0}) - \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right]
\]

\[
+ \frac{\max_{t \in [k_{out}]} L^2}{2(1 - \rho_t)} \left(\gamma_t \|H_{t, \xi_t, 1} - \tilde{S}_{t, \xi_t, 1}\|^2 \right) - \frac{\gamma_t}{2(1 - \rho_t)} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t} - \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t, \xi_t})\|^2}{2(1 - \rho_t)} \cdot
\]

Proof. Apply Proposition 9 with $k - \zeta_t - 1$ and then set $\xi_t \leftarrow \Xi_t$; this yields

\[
\mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right] + \frac{\min_{t \in [k_{out}]} \gamma_t}{2} \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t, 1})\|^2 | F_{t, 0} \right]
\]

\[
\leq \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t, 1}) | F_{t, 0} \right] + \frac{\max_{t \in [k_{out}]} L^2}{2} \left(\gamma_t \|H_{t, \xi_t, 1} - \tilde{S}_{t, \xi_t, 1}\|^2 \right) - \frac{\gamma_t}{2} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t} - \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t, \xi_t})\|^2}{2} \cdot
\]

Since $\Xi_t \geq 1$ and $\gamma_{t+1} = \gamma_t$ for any $t \geq 1$, we have

\[
\mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right] + \frac{\min_{t \in [k_{out}]} \gamma_t}{2} \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t, 1})\|^2 | F_{t, 0} \right]
\]

\[
\leq \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t, 1}) | F_{t, 0} \right] + \frac{\max_{t \in [k_{out}]} L^2}{2} \left(\gamma_t \|H_{t, \xi_t, 1} - \tilde{S}_{t, \xi_t, 1}\|^2 \right) - \frac{\gamma_t}{2} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t} - \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t, \xi_t})\|^2}{2} \cdot
\]

By Lemma 2 it holds

\[
\mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right] = \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t, 1}) | F_{t, 0} \right]
\]

\[
+ (1 - \rho_t) \left(\mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right] - W(\tilde{S}_{t, 0}) \right)
\]

Furthermore, by Corollary 7 applied with $\gamma_{t, \xi_t} = \gamma_{t+1} = \gamma_t$

\[
(1 - \rho_t) \gamma_t \mathbb{E}_t \left[\|S_{t, \xi_t} - \tilde{S}_{t, \xi_t, 1}\|^2 | F_{t, 0} \right]
\]

\[
\leq \frac{L^2 \rho_t^2}{b} \gamma_t \mathbb{E}_t \left[\|S_{t, \xi_t} - \tilde{S}_{t, \xi_t, 1}\|^2 | F_{t, 0} \right]
\]

\[
+ \frac{L^2 (1 - \rho_t)}{b} \gamma_t^2 \|S_{t, 0} - \tilde{S}_{t, 1}\|^2 + (1 - \rho_t) \gamma_t \|\xi_t\|^2
\]

Therefore,

\[
\frac{\min_{t \in [k_{out}]} \gamma_t}{2} \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t, 1})\|^2 | F_{t, 0} \right]
\]

\[
\leq (1 - \rho_t) W(\tilde{S}_{t, 0}) - (1 - \rho_t) \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right]
\]

\[
+ \frac{\max_{t \in [k_{out}]} L^2}{2} \gamma_t^2 \mathbb{E}_t \left[\|S_{t, \xi_t} - \tilde{S}_{t, \xi_t, 1}\|^2 | F_{t, 0} \right]
\]

\[
+ \frac{\max_{t \in [k_{out}]} L^2}{2} \gamma_t^2 \|S_{t, 0} - \tilde{S}_{t, 1}\|^2 + \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t, \xi_t})\|^2}{2} - \frac{\gamma_t}{2} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t, 1}
\]

This concludes the proof.

Corollary 12 (of Theorem 11). For any $t \in [k_{out}]^*$,

\[
\frac{\gamma_t \rho_t}{(1 - \rho_t)} + \frac{\gamma_t}{2} \frac{\min_{t \in [k_{out}]} \gamma_t}{2} \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t})\|^2 | F_{t, 0} \right]
\]

\[
\leq W(\tilde{S}_{t, 0}) - \mathbb{E}_t \left[W(\tilde{S}_{t, \xi_t}) | F_{t, 0} \right]
\]

\[
- \frac{\gamma_t}{2} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t} - \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t, \xi_t})\|^2}{2} \cdot
\]

Proof. Let $t \in [k_{out}]^*$. By Proposition 10 since $\hat{S}_{t, \xi_t} = \tilde{S}_{t+1, -1}$ we have

\[
- \mathbb{E}_t \left[W(\hat{S}_{t, \xi_t}) | F_{t, 0} \right] \leq - \mathbb{E}_t \left[W(\tilde{S}_{t+1, 0}) | F_{t, 0} \right]
\]

\[
- \frac{\gamma_t + 1}{2} \mathbb{E}_t \left[\|h(\tilde{S}_{t+1, 0})\|^2 | F_{t, 0} \right]
\]

\[
+ \frac{\max_{t \in [k_{out}]} \gamma_t + 1}{2} \mathbb{E}_t \left[\|\xi_t\|^2 | F_{t, 0} \right]
\]

\[
- \frac{\gamma_t + 1}{2} \left(\min_{t \in [k_{out}]} \gamma_t \right) W_{t, \xi_t} - \frac{\max_{t \in [k_{out}]} \|h(\tilde{S}_{t+1, 0})\|^2}{2} \cdot
\]

The previous inequality remains true when $\mathbb{E}_t \left[W(\hat{S}_{t, \xi_t}) | F_{t, 0} \right]$ is replaced with $\mathbb{E}_t \left[W(\tilde{S}_{t+1, 0}) | F_{t, 0} \right]$; and $\mathbb{E}_t \left[\|h(\tilde{S}_{t+1, 0})\|^2 | F_{t, 0} \right] = \mathbb{E}_t \left[\|h(\tilde{S}_{t+1, 0})\|^2 | F_{t, 0} \right]$. The proof follows from Theorem 11 and (see Lemma 2)

\[
\mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t, 1})\|^2 | F_{t, 0} \right] \geq \rho_t \mathbb{E}_t \left[\|h(\tilde{S}_{t, \xi_t})\|^2 | F_{t, 0} \right].
\]