First measurement of quarkonium polarization in nuclear collisions at the LHC

ALICE Collaboration

A R T I C L E I N F O
Article history:
Received 9 June 2020
Received in revised form 10 February 2021
Accepted 12 February 2021
Available online 22 February 2021
Editor: M. Dosier

A B S T R A C T
The polarization of inclusive J/ψ and Υ(1S) produced in Pb-Pb collisions at √sNN = 5.02 TeV at the LHC is measured with the ALICE detector. The study is carried out by reconstructing the quarkonium through its decay to muon pairs in the rapidity region 2.5 < y < 4 and measuring the polar and azimuthal angular distributions of the muons. The polarization parameters λθ, λφ and λφθ are measured in the helicity and Collins-Soper reference frames, in the transverse momentum interval 2 < pT < 10 GeV/c and pT < 15 GeV/c for the J/ψ and Υ(1S), respectively. The polarization parameters for the J/ψ are found to be compatible with zero, within a maximum of about two standard deviations at low pT, for both reference frames and over the whole pT range. The values are compared with the corresponding results obtained for pp collisions at √s = 7 and 8 TeV in a similar kinematic region by the ALICE and LHCb experiments. Although with much larger uncertainties, the polarization parameters for Υ(1S) production in Pb-Pb collisions are also consistent with zero.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction
Quarkonia, bound states of charm (c) and anticharm (c̄), or bottom (b) and antibottom (b̄) quarks, represent an important tool to test our understanding of quantum chromodynamics (QCD), since their production process involves both perturbative and non-perturbative aspects. At high energy, the creation of the heavy quark-antiquark pair is a process that can be described using a perturbative QCD approach, due to the large value of the charm and bottom quark masses (mc ≈ 1.3 GeV/c², mb ≈ 4.2 GeV/c²) [1]. However, the subsequent formation of the bound state is a non-perturbative process that can be described only by empirical models or effective field theory approaches. Among those, models based on Non-Relativistic QCD (NRQCD) [2] give the most successful description of the production cross section, as measured at high-energy hadron colliders (Tevatron, RHIC, LHC) [3–14]. In the NRQCD approach, the non-perturbative aspects are parameterized via long-distance matrix elements (LDME), corresponding to the possible intermediate color, spin and angular momentum states of the evolving quark-antiquark pair. The values of LDMEs need to be fitted on a subset of the available measurements and can be then considered as universal quantities, in the sense that they can be used in the calculation of production cross sections and other observables corresponding, for example, to different collision systems and energies. Other theory approaches, as the Color Singlet Model [15], the Color Evaporation Model [16] and the kT-factorization [17] are also used to describe the quarkonium production process.

Among the various charmonium states, the J/ψ meson, with quantum numbers JPC = 1−+, was the first to be discovered. It is surely the most studied, also due to the sizeable decay branching ratio to dilepton pairs (5.961 ± 0.033%) for the μ⁺μ⁻ channel) [1]) that represents an excellent experimental signature. While the J/ψ production cross sections are well reproduced by NRQCD-based models, it was soon realized that describing the measured polarization of this state represents a much more difficult problem [18]. The polarization, corresponding to the orientation of the particle spin with respect to a chosen axis, can be accessed via a study of the polar (θ) and azimuthal (φ) production angles, relative to that axis, of the two-body decay products in the quarkonium rest frame. Their angular distribution W(θ, φ) is parameterized as

\[
W(\theta, \phi) \propto \frac{1}{3 + \lambda_\theta} \times \left(1 + \lambda_\theta \cos^2 \theta + \lambda_\phi \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi \right),
\]

(1)

with the polarization parameters \(\lambda_\theta\), \(\lambda_\phi\) and \(\lambda_{\theta\phi}\) corresponding to various combinations of the elements of the spin density matrix of J/ψ production [19]. In particular, the two cases (\(\lambda_\theta = 1, \lambda_\phi = 0, \lambda_{\theta\phi} = 0\)) and (\(\lambda_\theta = -1, \lambda_\phi = 0, \lambda_{\theta\phi} = 0\)) correspond to the so-called transverse and longitudinal polarizations, respectively.
leading order, the high-\(p_T\) production is dominated by gluon fragmentation and therefore the \(J/\psi\) would be expected to be transversely polarized [18]. However, the results from the CDF experiment at Tevatron showed that the \(J/\psi\) exhibits a very small polarization [20,21], an observation which was impossible to reconcile with the NRQCD prediction. As of today, on the experimental side, accurate results on inclusive and prompt (i.e., removing contributions from b-quark decays) \(J/\psi\) polarization have become available at LHC energies [22–25]. They confirm that this state shows little or no polarization in a wide rapidity (up to \(y = 4.5\)) and transverse momentum region (from 2 to 70 GeV/c), with the exception of the LHCb measurements at \(\sqrt{s} = 7\) TeV [24], where the value \(\lambda_0 = -0.145 \pm 0.027\), corresponding to a weak longitudinal polarization, was obtained in the interval \(2 < p_T < 15\) GeV/c and \(2 < y < 4.5\), in the helicity frame (its definition will be given later in Sec. 3). On the theory side, a huge effort was pursued in order to move to a complete next-to-leading order (NLO) description of the \(J/\psi\) production process [26,27], and to the calculation of the polarization variables [28,29]. Further important progress includes a quantitative evaluation of the contribution of feed-down processes (\(J/\psi\) coming from the decay of \(\chi_c\) and \(\psi(2S)\) states) on the polarization observables [30]. It was shown that at NLO there are rather large cancellations between contributions corresponding to the different possible combinations of the spin and angular momentum of the intermediate \(c\bar{c}\) states, reaching a more satisfactory description of the absence of polarization observed in the data [31]. However, those descriptions usually require the inclusion of both cross section and polarization results in the fit of the LDME, leading to a more limited predictive power on the polarization observables and to large variations in the values of the extracted LDME values, depending on the set of data used for their determination. Finally, the description of the \(J/\psi\) production in the NRQCD framework was recently extended to the low-\(p_T\) region, and the polarization parameters were studied in a color glass condensate (CGC) + NRQCD formalism, obtaining a fair agreement with LHC data at forward rapidity [32].

Measurements of the polarization parameters are also available for several bottomonium states, and in particular for the \(\Upsilon(1S), \Upsilon(2S)\) and \(\Upsilon(3S)\) resonances, which were shown to exhibit little or no polarization at LHC energies [33–35]. Approaches similar to that adopted for charmonium, which also need to take into account the rather complex feed-down decay structure for these states, lead to a fair agreement with the experimental results [36].

In this Letter, we move a step forward by presenting the first measurement of \(J/\psi\) and \(\Upsilon(1S)\) polarization in ultrarelativistic heavy-ion interactions performed by the ALICE Collaboration by studying Pb–Pb collisions at \(\sqrt{s_{NN}} = 5.02\) TeV. Such collisions represent an important source of information for the investigation of the phase diagram of QCD [37], and in particular for the study of the properties of the quark-gluon plasma (QGP), a state of matter where quarks and gluons are not confined inside hadrons [38]. Among the experimental observables studied in heavy-ion collisions the suppression of heavy quarkonium production is a fundamental signal, since QGP formation prevents the binding of the heavy-quark pair due to the screening of the color charge [39] and, more generally, has strong effects on the spectral functions [40]. At LHC energies, another mechanism, corresponding to the (re)generation of charmonium states in the QGP and/or when the system hadronizes, becomes relevant [41,42]. In particular at low \(p_T\), due to the large charm-quark multiplicity (> 100 pairs in a central Pb–Pb collision). The presence of a deconfined system may in principle affect also the polarization of quarkonium states. In Ref. [43] the observation of a partial transverse polarization for the \(J/\psi\) was predicted in case of QGP formation, due to a modification of the non-perturbative effects in the high energy-density phase. More generally, the observed prompt \(J/\psi\) are known to be a mixture of direct production and decay products from higher-mass charmonium states (\(\psi(2S), \chi_c\)). In nuclear collisions, since suppression effects are expected to affect more strongly the less bound states, the relative contribution of direct and feed-down production would change with respect to that in pp collisions, and the overall measured polarization may be different according to the potentially different polarization of the various states [44,45]. On the other hand, the contribution of the regeneration mechanism in the \(J/\psi\) formation process by recombination of uncorrelated \(c\bar{c}\) pairs is likely to give rise to unpolarized production at low \(p_T\). Finally, the possible presence of polarization is known to strongly affect the acceptance for \(J/\psi\) detection in the dilepton decay (up to 20–30% in ALICE [22]), and its measurement is an important requisite for an unbiased evaluation of the absolute yields in nuclear collisions. A first measurement of \(\Upsilon(1S)\) polarization in Pb–Pb collisions is also presented in this Letter, even if the corresponding candidate sample is smaller by a factor \(\sim 30\), leading to larger uncertainties. For such a state, considerations similar to those discussed for the \(J/\psi\) should hold, except that the contribution of the regeneration mechanism should be negligible due to the much lower multiplicity of bottom quarks with respect to charm.

The next sections of the Letter are organized as follows. Section 2 contains a short description of the experimental apparatus and some details on the data sample used in this analysis. The analysis procedure and the evaluation of systematic uncertainties are presented in Sec. 3, while the results on the \(J/\psi\) and \(\Upsilon(1S)\) polarization parameters \(\lambda_0, \lambda_\phi\) and \(\lambda_{\phi p}\) are shown in Sec. 4. The conclusions are presented in Sec. 5.

2. Experimental setup and data sample

The measurement described in this Letter is performed with the ALICE detector [46,47], whose main components are a central barrel and a forward muon spectrometer. The latter covers the pseudorapidity region \(-4 < \eta < -2.5\) and is used to detect muon pairs from quarkonium decays [48]. The muon spectrometer includes a hadron absorber made of concrete, carbon and steel with a thickness of 10 interaction lengths, followed by five tracking stations (cathode-pad chambers), with the central one embedded inside a dipole magnet with a 3 T m field integral. Downstream of the tracking system, an iron wall filters out the remaining hadrons as well as low-momentum muons originating from pion and kaon decays, and is followed by two trigger stations (resistive plate chambers). Another forward detector, the V0 [49], composed of two scintillator arrays located at opposite sides of the interaction point (IP) and covering the pseudorapidity intervals \(-3.7 < \eta < -1.7\) and \(2.8 < \eta < 5.1\), provides the minimum bias (MB) trigger which is given by a coincidence of signals from the two sides. Among the central barrel detectors, the two layers of the Silicon Pixel Detector (SPD), with \(|\eta| < 1.4\) coverage, and corresponding to the inner part of the ALICE Inner Tracking System (ITS) [50], are used to determine the position of the interaction vertex. Finally, the Zero Degree Calorimeters (ZDC) [51], located on either side of the IP at \(\pm 112.5\) m along the beam axis, detect spectator nucleons emitted at zero degrees with respect to the LHC beam axis and are used to reject electromagnetic Pb–Pb interactions.

The analysis is based on events where, in addition to the MB condition, two opposite-sign tracks are detected in the triggering system of the muon spectrometer (dimuon trigger). The dimuon trigger selects tracks each having a transverse momentum above a threshold nominally set at \(p_T = 1\) GeV/c, corresponding to the value for which the single-muon trigger efficiency reaches 50% [52]. The single-muon trigger efficiency reaches a plateau value of 98% at \(\sim 2.5\) GeV/c.

The events are further characterized according to their centrality, i.e., the degree of geometric overlap of the colliding nuclei. It is estimated by means of a Glauber model fit to the V0 signal am-
3. Data analysis

The \(J/\psi \) and \(\Upsilon(1S) \) candidates are formed by combining opposite-sign muons reconstructed using the tracking algorithm described in Ref. [48]. In order to reject tracks at the edge of the spectrometer acceptance, the condition \(-4 < \eta_\mu < -2.5 \) is required. In addition, tracks must have a radial transverse position at the end of the absorber in the range \(17.6 < R_{\text{abs}} < 88.9 \) cm. This selection is applied to remove tracks passing through the inner and denser part of the absorber, which are strongly affected by multiple scattering. For each muon candidate, a match between tracks reconstructed in the tracking system and track segments in the muon trigger system is required.

The \(J/\psi \) polarization parameters \(\lambda_\alpha, \lambda_\phi \) and \(\lambda_{\alpha\phi} \) are studied as a function of transverse momentum in the intervals \(2 < p_T < 4, 4 < p_T < 6 \) and \(6 < p_T < 10 \) GeV/c. For each \(p_T \) interval, a two-dimensional (2D) grid of dimuon invariant-mass spectra is created, corresponding to intervals in \(\cos \theta \) and \(\phi \), where \(\theta \) and \(\phi \) are the polar and azimuthal emission angles, respectively, of the decay products in the \(J/\psi \) rest frame, with respect to the reference axis. More in detail, the 2D grid covers the fiducial region \(-0.8 < \cos \theta < 0.8 \) (17 intervals), \(0.5 < \phi < \pi - 0.5 \) rad (8 intervals, assuming a symmetric distribution around \(\phi = \pi \)), with the choice of the boundaries as well as the width of the intervals dictated by acceptance considerations.

The analysis is performed choosing two different reference systems for the determination of the angular variables. In the Collins-Soper (CS) frame the \(z \)-axis is defined as the bisector of the angle between the direction of one beam and the opposite of the direction of the other one in the rest frame of the decaying particle, allowing therefore an evaluation of the polarization parameters with respect to the direction of motion of the colliding hadrons. In the helicity (HE) reference frame the \(z \)-axis is given by the direction of the decaying particle in the center-of-mass frame of the collision, and therefore the polarization can be evaluated with respect to the momentum direction of the \(J/\psi \) itself. The \(\phi = 0 \) plane is the one containing the two beams in the \(J/\psi \) rest frame.

For each dimuon invariant-mass spectrum, the \(J/\psi \) raw yield is obtained by means of a binned maximum likelihood fit in the interval \(2.1 < m_{\mu\mu} < 4.9 \text{ GeV/c}^2 \). The background continuum is parameterized with a Gaussian distribution whose width varies linearly with the mass or, alternatively, with a fourth degree polynomial function times an exponential. The \(J/\psi \) signal is modeled with a pseudo-Gaussian function or with a Crystal Ball function with asymmetric tails on both sides of the peak [55].

The \(J/\psi \) mass is kept free in the fits, while for each interval \((i, j)\) in \((\cos \theta, \phi)\) the width is fixed to \(\sigma_{i,j}^{\psi} = \sigma_{i,j}^{\psi,\text{MC}} \cdot (\sigma_{i,j}^{\psi}/\sigma_{i,j}^{\psi,\text{MC}}) \), i.e., scaling the resonance width extracted from Monte Carlo (MC) simulations \((\sigma_{i,j}^{\psi})_{\text{MC}} \) by the ratio between the width obtained by fitting the angle-integrated spectrum in data \((\sigma_{i,j}^{\psi})_{\text{MC}} \) and MC \((\sigma_{i,j}^{\psi})_{\text{MC}} \) for the \(p_T \) interval under consideration. The parameters of the non-Gaussian tails of the resonance are kept fixed to the MC values. The \(\psi(2S) \) contribution, although comparatively negligible, is also taken into account in the fits, with its width and mass fixed in each fit to those of the \(J/\psi \) according to the relations \(\sigma_{i,j}^{\psi(2S)} = \sigma_{i,j}^{\psi} \cdot (\sigma_{i,j}^{\psi(2S)}/\sigma_{i,j}^{\psi}) \) and \(m_{\psi(2S)} = m_{\psi} + m_{\text{PDG}} - m_{\psi} \), with the Particle Data Group (PDG) masses taken from Ref. [1]. In Fig. 1 (left) an example of a fit to the invariant-mass spectrum in the \(J/\psi \) mass region is shown. Due to the stability of the extracted \(J/\psi \) parameters (mass, width), the fits were carried out directly on the sum of the 2015 and 2018 invariant mass spectra.

The \(J/\psi \) raw yields as a function of the angular variables are then corrected by the product of the acceptance and detector efficiency \((A \times e)\), which is evaluated as a function of \(\cos \theta \) and \(\phi \) on a 2D grid via MC simulations. The \(J/\psi \) are generated according to \(p_T \) and \(y \) distributions directly tuned on data [56] via an iterative procedure [57], and their decay muons are propagated inside a realistic description of the ALICE setup, based on GEANT 3.21 [58]. The misalignment of the detection elements and the time-dependent status of each electronic channel during the data taking period are taken into account as well. In the \(J/\psi \) generation an isotropic distribution of decay products, corresponding to the assumption of no polarization, is adopted. Due to the choice of relatively small \((\cos \theta, \phi)\) intervals, the \(A \times e \) values for each interval are quite insensitive to the specific angular distribution assumed in the generation.

The three polarization parameters \(\lambda_\alpha, \lambda_\phi \) and \(\lambda_{\alpha\phi} \) are obtained through \(\chi^2\)-minimization fits of the 2D \(J/\psi \) distributions, cor-
rected for acceptance and efficiency, according to Eq. (1). For each combination of signal and background shape used in the fit to the dimuon invariant-mass spectra, a separate evaluation of the polarization parameters is carried out and their average is taken as the best estimate. The statistical uncertainty is given by the average of the statistical uncertainties of the 2D fits, while the root mean square of the results provides the systematic uncertainty on the signal extraction, with the absolute values ranging between 0.002 and 0.039. The overall procedure described above was checked beforehand with a MC closure test. The 2D fits on the $(\cos \theta$, $\phi)$ distributions only allow a determination of the absolute value of λ_{ϕ}, due to the presence of $\sin 2\phi$ in the corresponding term that induces an ambiguity in its sign. It is checked that the values of λ_{ϕ} and λ_θ are stable against the choice of the sign of the $\lambda_{\phi\theta}$ term. In the following the $\lambda_{\phi\theta}$ values corresponding to the choice of a positive sign are quoted. Fig. 2 illustrates an example of the fit to the angular distributions. For better visibility, both the distribution and the fitted function are projected along one dimension.

In addition to the systematic uncertainty related to the choice of the mass shapes for signal and background, several other sources are taken into account. First, an alternative procedure for extracting the J/ψ signal is carried out, by keeping its width as a free parameter in the invariant-mass fits. The corresponding results for the polarization parameters are then obtained and the averages of the values corresponding to fixing the width or not are taken as the central values for λ_{ϕ}, λ_θ and $\lambda_{\phi\theta}$. Half the difference between the results obtained with free or MC-anchored widths is then considered as a further systematic uncertainty related to the signal extraction. This uncertainty is found to be the leading contribution to the total absolute systematic uncertainty on the polarization parameters, and ranges between 0.001 and 0.063, the latter value corresponding to the uncertainty on $\lambda_{\phi\theta}^{\text{HE}}$ for $2 < p_T < 4$ GeV/c.

Another source of systematic uncertainty is related to the evaluation of the trigger efficiency. The muon trigger response function as a function of the single muon transverse momentum p_T^μ can be obtained via MC or with a procedure based on data [59]. Small deviations are found for $p_T^\mu < 2$ GeV/c which induce an effect on $A \times \varepsilon$ for the J/ψ. Therefore, the polarization parameters are recalculated with $A \times \varepsilon$ values weighted in such a way to account for the deviations. The variation of the polarization parameters between the different trigger efficiency estimates is taken as the related systematic uncertainty, with values ranging from 0.001 to 0.043, the highest values being found for $\lambda_{\phi\theta}^{\text{HE}}$ in $2 < p_T < 4$ GeV/c. The systematic uncertainty related to the evaluation of the muon tracking efficiency is found to be negligible for this analysis, allowing a significant reduction of the total systematic uncertainty with respect to previous pp analyses [23]. Indeed, although the difference between efficiencies calculated via MC or from data [59] is of the order of 2%, a detailed investigation has shown no dependence on the angular variables and therefore no effect on the polarization parameters.

Finally, the systematic uncertainty induced by the choice of the p_T and y distributions used as an input for the calculation of $A \times \varepsilon$ is evaluated testing alternative p_T and y parameterizations, which are obtained by varying within their uncertainties the default distributions directly tuned on Pb–Pb data. The polarization parameters extracted with the modified values of $A \times \varepsilon$ are compared with those obtained with the default input shapes and the corresponding systematic uncertainty extracted in this way is found to range between 0.001 and 0.030, with the largest value assigned to $\lambda_{\phi\theta}^{\text{HE}}$ for $2 < p_T < 4$ GeV/c. The influence of the choice of the angular distributions of the J/ψ decay products for the $A \times \varepsilon$ calculation is also investigated by means of an iterative procedure on these input distributions. The effect is found to be negligible, also due to the fact that the 2D correction procedure on the angular variables is by definition relatively insensitive to the specific choice of the corresponding distributions. A summary of the values of all the absolute systematic uncertainties, which are considered as uncorrelated as a function of p_T, is reported in Table 1. The total systematic uncertainties are obtained, for each parameter and p_T interval, as the quadratic sum of the values.

A similar procedure is followed for the extraction of the $\Upsilon(1S)$ polarization parameters. Due to the smaller candidate sample, integrated values over the kinematic interval $2.5 < y < 4$, $2.5 < p_T < 15$ GeV/c are obtained. The main difference with respect to the 2D approach followed for the J/ψ is the use of a simultaneous fit to the 1D angular distributions [23], after integration over the other variables. The requirement $p_T^\mu > 2$ GeV/c, which helps reducing the combinatorial background, is included [60]. The $\Upsilon(1S)$ signal extraction in the various $\cos \theta$ and ϕ intervals is performed by means of invariant-mass fits (see the right panel of Fig. 1 for an example). The functions chosen for the resonances are the same as in the J/ψ analysis (pseudo-Gaussian or Crystal Ball), the mass value is fixed to that obtained from a fit to the integrated invariant-mass distribution, while the width for each angular interval is fixed to the MC value scaled by the ratio of the widths between data and MC for the angle-integrated distributions. The tail parameters are fixed to MC values. The small contribution from $\Upsilon(2S)$ is also included in the fits [60]. The background continuum is parameterized with a Gaussian distribution whose width varies linearly with the mass.
Table 1
Summary of the absolute systematic uncertainties on the evaluation of the J/ψ polarization parameters. All the uncertainties are considered as uncorrelated as a function of p_T.

p_T (GeV/c)	Helicity	Collins-Soper						
	Signal extr.	J/ψ width	Trigger eff.	Input MC	Signal extr.	J/ψ width	Trigger eff.	Input MC
$λ_λ$								
$< p_T < 4$	0.030	0.063	0.043	0.030	0.026	0.040	0.015	0.019
$4 < p_T < 6$	0.017	0.046	0.040	0.024	0.002	0.052	0.018	0.007
$6 < p_T < 10$	0.039	0.005	0.018	0.017	0.022	0.001	0.011	0.006
$λ_φ$								
$< p_T < 4$	0.007	0.030	0.004	0.002	0.024	0.010	0.020	0.003
$4 < p_T < 6$	0.003	0.035	0.003	0.003	0.002	0.010	0.020	0.003
$6 < p_T < 10$	0.002	0.009	0.001	0.002	0.005	0.013	0.011	0.002
$λ_λφ$								
$< p_T < 4$	0.021	0.029	0.024	0.001	0.013	0.010	0.017	0.015
$4 < p_T < 6$	0.007	0.011	0.017	0.006	0.002	0.042	0.010	0.015
$6 < p_T < 10$	0.020	0.019	0.007	0.008	0.007	0.042	0.003	0.013

Table 2
J/ψ polarization parameters, measured for Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, in the helicity and Collins-Soper reference frames in the rapidity interval $2 < y < 4$. The first uncertainty is statistical and the second systematic.

p_T (GeV/c)	Helicity	Collins-Soper						
	Signal extr.	J/ψ width	Trigger eff.	Input MC	Signal extr.	J/ψ width	Trigger eff.	Input MC
$λ_λ$								
$< p_T < 4$	0.218 ± 0.060 ± 0.087	−0.157 ± 0.049 ± 0.058						
$4 < p_T < 6$	0.151 ± 0.071 ± 0.068	−0.057 ± 0.059 ± 0.055						
$6 < p_T < 10$	−0.070 ± 0.068 ± 0.047	−0.008 ± 0.063 ± 0.026						
$λ_φ$								
$< p_T < 4$	−0.029 ± 0.017 ± 0.031	0.061 ± 0.015 ± 0.033						
$4 < p_T < 6$	−0.013 ± 0.019 ± 0.036	0.047 ± 0.024 ± 0.023						
$6 < p_T < 10$	0.047 ± 0.021 ± 0.010	0.024 ± 0.032 ± 0.018						
$λ_λφ$								
$< p_T < 4$	−0.124 ± 0.028 ± 0.043	−0.090 ± 0.027 ± 0.029						
$4 < p_T < 6$	−0.059 ± 0.030 ± 0.021	−0.040 ± 0.034 ± 0.046						
$6 < p_T < 10$	−0.025 ± 0.031 ± 0.030	0.018 ± 0.035 ± 0.044						

Table 3
$γ(15)$ polarization parameters in the helicity and Collins-Soper reference frames measured in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in the rapidity interval $2.5 < y < 4$ and for transverse momentum $p_T < 15$ GeV/c. The first uncertainty is statistical and the second systematic.

Helicity	Collins-Soper	
$λ_λ$	−0.090 ± 0.395 ± 0.101	0.418 ± 0.526 ± 0.178
$λ_φ$	−0.094 ± 0.072 ± 0.020	−0.141 ± 0.087 ± 0.033
$λ_λφ$	−0.074 ± 0.099 ± 0.020	0.017 ± 0.113 ± 0.024

or, alternatively, with a second degree polynomial function times an exponential. The systematic uncertainty on the signal extraction is calculated with the same procedure adopted for the J/ψ. An uncertainty related to the choice of the signal width has also been considered, taken as the half-difference between the results obtained with the prescription described above and using as an alternative prescription the pure MC values. The uncertainty on the trigger efficiency is negligible, due to the additional requirement on the single-muon transverse momentum which select a p_T-region where the trigger efficiency is very high and its evaluation via data and MC is consistent. Finally, the procedure for the determination of the uncertainty related to the $γ(15)$ kinematic distributions used in the MC is the same as for the J/ψ. The total systematic uncertainties for the $γ(15)$ analysis are reported in Table 3, together with the results.

4. Results

The polarization parameters for J/ψ inclusive production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in the helicity and Collins-Soper reference frames are shown in Fig. 3 and the corresponding numerical values are reported in Table 2. In Fig. 3, $λ_λ$, $λ_φ$ and $λ_λφ$ are also compared with the LHCb [24] and ALICE [23] measurements in pp collisions at $\sqrt{s} = 7$ and 8 TeV, respectively.

For all the p_T intervals and in both reference frames the values of the polarization parameters exhibit at most slight deviations from zero. In particular, $λ_λφ$ indicates a slight transverse polarization at low p_T (∼2.1σ effect, calculated using the Gaussian approximation), while $λ_λ$ shows a weak longitudinal polarization (∼2.1σ). When increasing p_T, the central values of $λ_λ$ become close to zero. All values of $λ_λ$, $λ_φ$ and $λ_λφ$ are, in absolute value, smaller than 0.1, except for $λ_λφ$, which is −0.124 at low p_T and deviates from zero by ∼2.4σ.

When comparing with the pp results, no significant difference is found with respect to ALICE results at $\sqrt{s} = 8$ TeV, which are compatible with zero. A significant difference is found with respect to the higher-precision LHCb results at $\sqrt{s} = 7$ TeV, reaching 3.3σ in the interval $2 < p_T < 4$ GeV/c in the helicity reference frame, where pp data [24] indicate a small but significant degree of longitudinal polarization, while the Pb–Pb results favor a slightly transverse polarization. In Pb–Pb collisions at LHC energies, a significant fraction of the detected J/ψ originates from the recombinations of c̅ and c̅ pairs in the QGP phase or when the system hadronizes. Moreover, the contribution from higher-mass charm states decaying to J/ψ could vary between pp and Pb–Pb due to different suppression effects for each state in nuclear collisions. Therefore, the observed hint for a different polarization in pp and Pb–Pb might be a reflection of the different production and suppression mechanisms in the two systems, but more precise data, along with quantitative theory estimates, are needed for a definite conclusion. It should also be noted that the ALICE results refer to inclusive production, while LHCb has measured prompt J/ψ. However, as discussed in Ref. [22], the size of the non-prompt component is small in the covered p_T region (of the order of 15% at high p_T) and its polarization was also measured to be small by CDF ($λ_φ \approx −0.1$ [21]), implying that the net effect of this source on inclusive J/ψ polarization should be negligible.

In Table 3 the values of the $γ(15)$ polarization parameters are shown. The $λ_λ$ values are consistent with zero, with large uncertainties that prevent a firm conclusion on the absence of polarization in nuclear collisions. The $λ_φ$ and $λ_λφ$ values are also consistent with zero. The relatively smaller uncertainties for these parameters are related to a more uniform acceptance distribution as a function of the azimuthal angular variable.
5. Conclusions

The first measurement of the polarization parameters for J/ψ production in nuclear collisions at LHC energies was carried out by the ALICE Collaboration in Pb–Pb interactions at $\sqrt{s_{NN}} = 5.02$ TeV. The λ_ϕ, λ_θ, and $\lambda_{\phi\theta}$ parameters were evaluated in the helicity and Collins-Soper reference frames in the rapidity interval $2.5 < y < 4$ and in the transverse momentum interval $2 < p_T < 10$ GeV/c. All the parameter values are close to zero, with a $\sim 2.1\sigma$ indication for a small transverse polarization in the helicity frame at low p_T, and a corresponding indication for a small longitudinal polarization in the Collins-Soper frame ($\sim 2.1\sigma$ effect). When comparing these results with pp data taken at higher energy at the LHC, an interesting feature is a significant difference in λ_{ϕ}^{HE} with respect to the LHCb results which showed instead a small longitudinal polarization in a similar kinematic domain. This first result obtained for J/ψ in nuclear collisions and described in this Letter represents therefore a starting point for future studies connecting such features with the known differences in the production mechanisms between pp and nucleus–nucleus collisions. Results were also obtained for the first time for the $\Upsilon(1S)$ polarization, integrated over p_T and y, showing, within the large uncertainties of the measurement, values compatible with the absence of polarization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Österreichische Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science and Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cuabaerangia, Cuba; Ministry of Education, Youth and Sports of the Czech Republic; The Danish Council for Independent Research \| Natural Sciences, the Villum Fonden and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Énergie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCIICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Perú; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Sumeranee University of Technology (SUT), National Science and Technology Development Agency (NSDTA) and Office of the Higher Education Commission under RUJ project of Thailand, Thailand; Turkish Atomic Energy Agency (TAE TK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51 (1995) 1125–1171, arXiv:hep-ph/9407339.

References

[1] Particle Data Collaboration, M. Tanabashi, et al., Review of particle physics, Phys. Rev. D 98 (3) (2018) 030001.

[2] G.T. Bodwin, E. Braaten, G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125–1171, arXiv:hep-ph/9407339.
ALICE Collaboration

S. Acharya 141, D. Adamova 95, A. Adler 74, J. Adolfsson 81, M.M. Aggarwal 100, G. Aglieri Rinella 34, M. Agnello 30, N. Agrawal 10, 54, Z. Ahammed 141, S. Ahmad 16, S.U. Ahn 76, Z. Akbar 51, A. Akimov 92, M. Al-Turany 107, S.N. Alam 40, 141, D.S.D. Albuquerque 122, D. Aleksandrov 88, B. Alessandro 59, H.M. Alfanda 6, R. Alfaro Molina 71, B. Ali 16, Y. Ali 14, A. Alici 10, 26, 34, N. Alizadehvandchi 125, A. Alkin 2, 34, J. Alme 21, T. Altenkamer 21, I. Altsybeev 113, M.N. Anaan 6, C. Andrei 48, D. Andreou 34, A. Andronic 144, M. Angeli 34, V. Anguelov 104, C. Anson 15, T. Antičić 108, F. Antinori 57, P. Antonioli 54, N. Apadula 80, L. Aphetgetche 115, H. Appelshäuser 88, S. Arcelli 26, R. Arnaldi 59, M. Arratia 80, I.C. Arsene 20, M. Arslan 104, A. Augustinus 34, R. Averbeck 107, S. Aziz 78, M.D. Azmi 16, A. Badala 56, Y.W. Baek 41, S. Bagnasco 59, X. Bai 107, R. Bailhache 115, D. Balewski 28, N. Bastid 134, S. Basu 143, G. Batigne 115, B. Batyunov 75, D. Baur 49, J.L. Bazo Alba 112, I.G. Bearden 89, J.P. Behar 115, J. Belmonte 145, C. Benedetti 146, C. Bedda 63, N.K. Behera 61, I. Bellikov 136, A.D.C. Bell Hechavarria 144, F. Bellini 34, R. Bellwied 125, V. Belyaev 93, G. Bencivenga 145, S. Beole 25, A. Bercuci 48, Y. Berdnikov 98, D. Berenyi 145, R.A. Bertens 130, D. Berzina 59, M.G. Besoiu 57, L. Betev 34, A. Bhisai 101, I.R. Bhat 101, M.A. Bhat 3, H. Bhatt 49, B. Bhattacharjee 42, A. Bianchi 25, L. Bianchi 25, N. Bianchi 52, J. Bielcik 37, J. Bieliková 95, A. Bilandzic 105, G. Biro 140, R. Biswas 3, S. Biswas 3, J.T. Blair 119, D. Blau 88, C. Blume 68, G. Boca 139, F. Bock 96, A. Bogdanov 93, S. Boi 23, J. Bok 61, L. Boldizsár 145, A. Bolozdynya 93, M. Bombara 38, G. Bonomi 140, H. Borel 137, A. Borissov 93, H. Bossy 144, E. Botta 25, L. Bratrud 68, P. Braun-Munzinger 107, M. Bregant 121, M. Broz 37, E. Bruna 59, G.E. Bruno 33, 106, M.D. Buckland 127, D. Budnikov 105, H. Buesching 68, S. Bufalino 30, O. Bugnion 115, P. Buhler 114, P. Buncic 34, Z. Buthelezi 72, 131, J.B. Butt 14,
C. Kuhn 136, P.G. Kuiper 90, L. Kumar 100, S. Kundu 86, P. Kurashvili 85, A. Kurepin 62, A.B. Kurepin 62, A. Kuryakin 109, S. Kushpil 95, J. Kvapil 111, M.J. Kweon 61, J.V. Kwon 147, S.L. La Pointe 39, P. La Rocca 27, Y.S. Lai 80, M. Lamanna 34, R. Langoy 129, K. Lapidus 34, A. Lardeux 20, P. Larionov 52, E. Laudi 34, R. Lavicka 37, T. Lazareva 113, R. Lea 28, L. Leardini 104, J. Lee 133, S. Lee 147, S. Lehner 114, J. Lehrbach 35, R.C. Lemmon 94, I. León Monzón 120, E.D. Lesser 19, M. Lettrich 34, P. Lévai 145, X. Li 12, X.L. Li 6, J. Lien 129, R. Lieta 111, B. Lim 17, V. Lindenstruth 39, A. Lindner 48, C. Lippmann 107, M.A. Lisa 97, A. Liu 19, J. Liu 127, S. Liu 97, W.J. Llope 143, I.M. Lofnes 21, V. Loginov 93, C. Loizides 96, P. Loncar 35, J.A. Lopez 104, X. Lopez Torres 8, J.R. Luhde 144, M. Lunardon 28, G. Luparello 60, Y.G. Ma 40, A. Maevskaya 62, M. Mager 34, S.M. Mahmood 20, T. Mahmoud 43, A. Mair 136, R.D. Majka 146, M. Malaeve 98, Q.W. Malik 20, L. Malinina 75, D. Mal’kevich 92, P. Malzacher 107, G. Mandaglio 32, 56, V. Manko 98, F. Manso 134, V. Manzari 53, Y. Mao 5 M. Marchisone 135, J. Marès 66, G.V. Margiaglio 24, A. Margotti 54, A. Marin 107, C. Markert 119, M. Marquard 58, C.D. Martin 24, N.A. Martin 104, P. Martinengo 34, J.L. Martinez 125, M.I. Martinez Garcia 115, S. Masciocchi 107, M. Masera 25, A. Masoni 55, L. Massacrier 78, E. Masson 115, A. Mastroserio 53, 138, A.M. Mathis 105, O. Matonoha 81, P.F.T. Matuoka 121, A. Matyja 118, C. Mayer 118, F. Mazzaschi 25, M. Mazzioli 53, M.A. Mazzoni 58, A.F. Mechler 98, F. Meddi 22, Y. Melikyan 62, 93, A. Menchaca-Rocha 21, C. Mengke 6, E. Meninno 29, 114, A.S. Menon 125, M. Menes 13, S. Mihlange 124, Y. Mikaev 133, L. Micheletti 23, L.C. Migliorin 135, D.L. Mihaylov 105, K. Mikhailov 75, R.A. Nair 85, B.K. Nandi 49, R. Nania 10, 54, E. Nappi 53, M.U. Naru 14, A.F. Nassirpour 81, N. Nattrass 130, R. Nayak 49, T.K. Nayak 86, S. Nazarenko 109, A. Neagoo 20, R.A. Negrao De Oliveira 68, L. Nellen 69, S.V. Neson 36, G. Neskov 39, D. Nesterov 113, L.T. Neumann 142, B.S. Nielsen 89, S. Nikolaeve 88, S. Nikiulin 88, V. Nikulin 98, F. Noferini 10, 54, P. Nomokonov 75, J. Norman 79, 127, N. Novitzky 133, P. Nowakowski 142, A. Nyanin 88, J. Nystrand 21, M. Ogino 82, A. Ohlson 81, 104, J. Oleniacz 42, A.C. Oliveira Da Silva 130, M.H. Oliver 146, C. Oppedissing 39, A. Ortiz Velasquez 69, A. Oskarsson 81, J. Otwinowski 118, K. Oyama 82, Y. Pachmayer 104, V. Pacic 89, S. Padhan 49, D. Pagano 140, P. Paic 69, J. Pan 143, S. Panebianco 137, P. Pareek 50, 141, J. Park 61, J.E. Parkkila 126, S. Parmar 100, S.P. Pathak 125, B. Paul 23, J. Pazzini 140, H. Pei 6, T. Peitzmann 63, X. Peng 6, L.G. Pereira 70, H. Pereira Da Costa 137, D. Persenko 88, G.M. Perez 8, S. Perrin 137, Y. Pestov 4, V. Petřáček 37, M. Petrovic 48, R.P. Pezzi 70, S. Piano 60, M. Pikna 13, P. Pillot 115, O. Pinazza 34, 54, L. Pinsky 125, C. Pinto 27, S. Pisano 10, 52, D. Pistone 56, M. Ploskoń 80, M. Planinic 99, F. Pluiquet 68, M.G. Poghosyan 96, B. Polichtchouk 91, N. Poljak 99, A. Pop 48, S. Portebeau-Houssais 134, V. Pozdniakov 75, S.K. Prasad 3, R. Preghenella 54, F. Prino 59, C.A. Pruneau 143, I. Pshenichnov 62, M. Puccio 34, J. Putschke 143, S. Qiu 90, L. Quaglia 25, R.E. Quishpe 125, S. Ragoni 111, S. Raha 5, S. Rajput 101, J. Rak 126, A. Rakotozafindrabe 133, L. Ramello 31, F. Rami 144, S.A.R. Ramirez 45, R. Raniwala 102, S. Raniwala 102, S.S. Rásänen 44, R. Rath 50, V. Ratza 43, I. Ravasenga 90, K.F. Read 96, 130, A.R. Redelbach 39, K. Redlich 85, vi, A. Rehman 21, P. Reiche 68, F. Reidt 34, X. Ren 6, R. Renfordt 68, Z. Rescakova 38, K. Reygers 104, A. Riabov 98, V. Riabov 98, T. Richert 81, 89, M. Richter 20, P. Riedler 34, W. Riegler 34, F. Riggi 27, C. Ristea 67, S.P. Rode 50, M. Rodríguez Cahuantzi 45, K. Røed 20, R. Rogalev 91, E. Rogochaya 75, D. Rohr 34, D. Rührich 21, P.F. Rojas 45, P.S. Rokita 142, F. Ronchetti 52, A. Rosano 56, E.D. Rosas 69, K. Roslon 142, P. Rosnet 134, A. Rossi 28, 57, A. Rotondi 139, A. Roy 50, P. Roy 110, O.V. Rueda 81, R. Rui 24, B. Rumyantsev 75, A. Rustamov 87, E. Ryabinin 88, Y. Ryabov 98, A. Rybicki 118, H. Rytkonen 126, O.A.M. Saarimaki 44, R. Sadek 115, S. Sadhukhan 141, S. Sadovskly 91, K. Šafařík 37, S.K. Saha 141, B. Sahoo 49, P. Sahoo 49, R. Sahoo 50, S. Sahoo 65, P.K. Sahu 65, J. Saini 141, S. Sakai 133, S. Sambyal 101, V. Samsonov 93, 98, D. Sarkar 140, N. Sarkar 141, P. Sarma 42, V.M. Sarti 105, M.H.P. Sas 63, E. Scapparone 54, J. Schambach 119, H.S. Scheid 68, A. Schiav 48, R. Schicker 104, A. Schmah 104, C. Schmidt 107, H.R. Schmid 103, M.O. Schmidt 104, M. Schmid 103, N.V. Schmidt 68, 96, A.R. Schmier 130, J. Schukraft 89, Y. Schutz 136, K. Schwar 107, K. Schweda 107, G. Scilo 26, E. Scomparin 59, J.E. Seger 15, Y. Sekiguchi 132, D. Sekihata 132, I. Selyuzhenkov 93, 107, S. Senyukov 136, D. Serebryakov 62, A. Sevcenco 67, A. Shabanov 62, A. Shabetta 115, R. Shahoyan 34, W. Shaikh 110, A. Shangaraev 91, A. Sharma 100, A. Sharma 101, H. Sharma 118.
