Examples of Calabi-Yau threefolds with small Hodge numbers

A O Shishanin

1 Bauman Moscow State Technical University, Moscow, Russia;
2 Lomonosov Moscow State University, Moscow, Russia

E-mail: shishandr@rambler.ru

Abstract. We observe some suitable examples of Calabi-Yau threefolds for heterotic superstring compactifications. It is reasonable to seek CY threefolds with Euler characteristic equals \(\pm 6 \) because of generation’s number. Hosotani mechanism for violations of the gauge group by the Wilson loops requires such CY space has a non-trivial fundamental group. These spaces can be obtained by factoring the complete intersection Calabi-Yau spaces by the free action of some discrete group. Also we shortly discuss cases when discrete groups act with fixed point sets.

1. Introduction

Calabi-Yau (CY) spaces and structures associated with them are one of the most important objects of study in modern mathematical physics. CY spaces appear naturally in areas such as two-dimensional supersymmetric field theories, conformal field theory, topological strings, and mirror symmetry [1]. In string theory [2], [3], [4], [5] CY spaces arise as objects for obtaining reasonable compactifications.

Candelas et al [6] had studied the compactification of \(E_8 \times E_8 \) heterotic string on \(M \times X \). Here \(M \) is 4d Minkowski space and \(X \) is some six-dimensional manifold. They wondered when such a compactification leads to 4d \(N = 1 \) supersymmetric field theory. They demonstrated [6] that supersymmetry requires the existence of a covariant constant spinor on \(X \). The presence of such spinors gives the \(SU(3) \) holonomy group on \(X \). For any n-dimensional Riemann manifold holonomy group is subgroup of \(SO(2n) \). If this manifold is Kähler then holonomy group is subgroup of \(U(n) \). For Calabi-Yau manifolds maximal holonomy group reduces to \(SU(n) \).

The embedding of the spin connection in the heterotic string leads to the violation of the gauge group from \(E_8 \times E_8 \) to \(E_6 \times E_6 \). Adjoint representation of \(E_8 \) with dimension 248 is reducible to the group \(SU(3) \times E_6 \) as

\[
248 = (8,1) + (1,178) + (3,27) + (\bar{3}, \bar{27}).
\]

The generation number of elementary particles equals difference between the number for generation of particles (3,27) and the number for anti-generation of particles (\(\bar{3}, \bar{27} \)). These numbers (3,27) and (\(\bar{3}, \bar{27} \)) equal \(h^{2,1} \) and \(h^{1,1} \) respectively. Thus it turns out that the number for generations of elementary particles is half of Euler characteristic of \(\chi \) \(|h^{2,1} - h^{1,1}| = |\chi|/2 \). Then quest of CY threefolds with \(\chi = \pm 6 \) represents significant interest because of the generation number is expected to be no more than 3. The simplest and most important approach to break \(E_8 \) gauge group is Hosotani mechanism [7], [8]. The Hosotani mechanism uses Wilsonian loops. It requires the fundamental group \(\pi(X) \) of CY threefold \(X \) to be non-trivial.
2. General information about Calabi-Yau spaces

There are many definitions of Calabi-Yau spaces. It is mathematically correct to treat of Calabi-Yau spaces as Kähler manifolds with a trivial canonical class $K = 0$. This means that the holomorphic form of the highest degree Ω has no poles and zeros anywhere. Physically Calabi-Yau spaces are Ricci-flat (zero first Chern class) Kähler-Einstein manifolds.

The low-dimensional examples of Calabi-Yau spaces are torus and famous $K3$-surface. There are many examples of $K3$-surface a quartic in $\mathbb{C}P^3$, the intersection of a quadric and a cubic in $\mathbb{C}P^4$, the intersection of three quadrics in $\mathbb{C}P^5$, a Kummer surface and so on. One important example of CY manifolds is elliptic fibrations. $K3$-surface can be obtain, for instance, as elliptic fibration on weighted projective space

$$ y^2 = x^3 + f(z)x + g(z). $$

If $f(z)$ is polynomial degree 8, $g(z)$ is polynomial degree 12, x has weight 4 and y has weight 6 then this equation defines smooth $K3$-surface. Also we can obtain some $K3$-fibration Calabi-Yau threefold if polynomials $f(z,w)$ and $g(z,w)$ have coordinates z and w on $K3$-surface.

Let recall that Hodge numbers are dimensions of Dolbeault cohomology groups

$$ h^{p,q} = \text{dim} H^{p,q}. $$

For complex manifolds, the numbers $h^{p,q}$ consist some table called the Hodge diamond. The Hodge diamond for CY threefold is defined as

\[\begin{array}{cccccc}
 & & & & & 1 \\
 & & & & 0 & \\
 & & & 1 & h^{1,1} & 1 \\
 & & & 0 & h^{1,1} & 0 \\
 & & & 0 & 0 & \\
 & & & 1 & & \\
\end{array} \]

Hence the Euler characteristic χ equals $2(h^{1,1} - h^{2,1})$. Numbers $h^{1,1}$ are called Kähler moduli and $h^{2,1}$ are complex moduli. Mirror manifold for CY threefold with Hodge numbers $(h^{1,1}, h^{2,1})$ has Hodge numbers $(h^{2,1}, h^{1,1})$.

The most known example of CY threefold is quintic in $\mathbb{C}P^4$. Let $(x_0, x_1, x_2, x_3, x_4)$ homogeneous coordinates in $\mathbb{C}P^4$ then the quintic equation has form

$$ x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 = 0 $$

with $h^{1,1} = 1, h^{2,1} = 101$ and $\chi = -200$.

There are few examples of complete intersections CY (CICY) threefolds in $\mathbb{C}P^N$ for some N. $\mathbb{C}P_N[d_1, …, d_k]_X$ denotes complete intersection of k homogeneous polynomials with d_i degrees in $\mathbb{C}P^N$. Then the total Chern class is given by adjunction formula

$$ c = \frac{(1 + J)^{N+1}}{\prod_{i=1}^{k}(1 + d_i J)} $$

(1)

where J is some 2-form obtained by normalizing the Kähler form. For CY threefolds, the condition zero first Chern class $c_1 = 0$ gives expression

$$ \sum_{i=1}^{k} d_i = k + 1. $$

There are five nonlinear examples of such manifolds the quintic $\mathbb{C}P_4[5]_{-200}$ and $\mathbb{C}P_5[2,4]_{-176}$, $\mathbb{C}P_3[3,3]_{-144}$, $\mathbb{C}P_6[2,2,3]_{-144}$, $\mathbb{C}P_7[2,2,2,2]_{-128}$.

Hübsch notation [9] for CICY threefold is defined N polynomials in $\mathbb{C}P^{i_1} \times \mathbb{C}P^{i_2} \times \cdots \times \mathbb{C}P^{i_n}$
Each column of this table corresponds to a polynomial in $\mathbb{C}P^1 \times \mathbb{C}P^2 \times \cdots \times \mathbb{C}P^n$.

The easiest way to lower the Hodge numbers is by factoring the manifold X_0 by some discrete group Γ.

If Γ has free action on X (without fixed points) then the Euler characteristic of the quotient manifold $X = X_0 / \Gamma$ equals

$$
\chi(X_0) = \frac{\chi(X_0)}{|\Gamma|},
$$

where $|\Gamma|$ is the order of Γ. This equality is true for spaces of odd dimension, as in our case. It can be obtained using the Atiyah-Bott fixed point formula. It is necessary to check the transformation of the form of the highest degree Ω [10]. Number $h^{0,1}$ is usually easy to find. Then the number $h^{1,1}$ of X is given by

$$
h^{1,1} = h^{2,1} + \frac{\chi(X_0)}{2|\Gamma|}.
$$

For example, the quintic is factorized by $\mathbb{Z}_5 \times \mathbb{Z}_5$ and has Euler characteristic -8.

Such way the first example of CY threefold with Euler characteristics $|\chi| = 6$ was constructed by S.T. Yau in 1985 [11]. This CY threefold with $\chi = -6$ is called Tian-Yau space. Let us denote quotient complete intersection Calabi-Yau manifold as QCICY.

3. Tian-Yau space and its twins

There exist complete intersection K_0 in $\mathbb{C}P^3 \times \mathbb{C}P^3$ with table

$$
p^2 \begin{bmatrix} 1 & 3 & 0 \end{bmatrix}^{14,23}, \quad p^3 \begin{bmatrix} 1 & 0 & 3 \end{bmatrix}^{18}.
$$

Let us denote (x_0, x_1, x_2, x_3) four homogeneous coordinates of the first $\mathbb{C}P^3$ and for the second $\mathbb{C}P^3$ homogeneous coordinates (y_0, y_1, y_2, y_3). K_0 is given by polynomials

$$
x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0,
$$

$$
y_0^3 + y_1^3 + y_2^3 + y_3^3 = 0,
$$

$$
x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0.
$$

There is a group \mathbb{Z}_3 with free action. This action is given by $g \in \mathbb{Z}_3$

$$
g: (x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3) \rightarrow (x_0, \alpha^2 x_1, \alpha x_2, \alpha x_3, y_0, \alpha y_1, \alpha^2 y_2, \alpha^2 y_3),
$$

where $\alpha^3 = 1, \alpha \neq 1$. The Tian-Yau space $K_1 = K_0 / \mathbb{Z}_3$ has Hodge numbers $(6,9)$ and Hodge diamond

$$
\begin{array}{cccc}
1 & & & \\
0 & 0 & & \\
0 & 6 & 0 & \\
1 & 9 & 9 & 1 \\
0 & 6 & 0 & \\
0 & 0 & & \\
1 & & & \\
\end{array}
$$

An explanation of obtaining Hodge numbers for Tian-Yau space can be found in [12]. The fundamental group of Tian-Yau space is \mathbb{Z}_3.

Schimmrigk had found another example of factorized CICY with same Hodge numbers and fundamental group [13]. Consider complete intersection in $\mathbb{C}P^2 \times \mathbb{C}P^3$ with table

$$
p^2 \begin{bmatrix} 3 & 0 \end{bmatrix}^{8,35}, \quad p^3 \begin{bmatrix} 1 & 3 \end{bmatrix}^{54}.
$$
This CICY can be factorized by $A \times B$ group. Both group are isomorphic \mathbb{Z}_3. Action of group A is specified by element g_1 of order 3

$$g_1: \mathbb{C}P^2 \times \mathbb{C}P^3 \rightarrow \mathbb{C}P^2 \times \mathbb{C}P^3,$$

$$g_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

This action is free. The group B acts only in $\mathbb{C}P^2$

$$g_2: (x_0, x_1, x_2, y_0, y_1, y_2, y_3) \rightarrow (x_0, \alpha x_1, \alpha^2 x_2, y_0, y_1, y_2, y_3).$$

Here there are three fixed point sets which define three invariant tori

\begin{align*}
&(1,0,0) \times \{y_0^2 + y_1^2 + y_2^3 = 0\}, \\
&(0,1,0) \times \{y_0^3 + y_1^3 + y_2^3 = 0\}, \\
&(0,0,1) \times \{y_0^3 + y_1^3 + y_2^3 = 0\}.
\end{align*}

It is possible to resolve singularities without leaving class of CY threefolds [11].

There is other sample of CY threefold with same Hodge diamond (2). Let us consider bicubic L

$$L = p^2 \mathbb{Z}_{128} \mathbb{Z}_{162}^2.$$

L is factorized by three groups with fixed point acting groups G_1, G_2 and free acting group G_3. Resolved $L/G_1 \times G_2 \times G_3$ has Hodge diamond and fundamental group as Tian-Yau and Schimmrigk spaces.

4. **More modern examples of QCICY**

Many examples of “three generation” manifolds with $\chi = \pm 6$ was constructed in [15]. Two more samples were built by Braun, Candelas and Davies [16]. CICY is denoted in [16] as $Y_{8,44}$. This manifold is defined by following Hübisch table

\[
\begin{pmatrix}
 p^2 & 1 & 1 & 1 & 0 & 0 \\
p^2 & 0 & 0 & 1 & 1 & 1 \\
p^2 & 1 & 1 & 1 & 0 & 0 \\
p^2 & 0 & 0 & 1 & 1 & 1
\end{pmatrix}_{-72}^{8,44}.
\]

Two groups of order 12 act freely on $Y_{8,44}$. One group is abelian \mathbb{Z}_{12}. And other group is non-Abelian dicyclic group DiC_3 (semidirect product \mathbb{Z}_3 and \mathbb{Z}_4). The quotient manifolds for both these groups have Hodge numbers $(h^{1,1}, h^{2,1}) = (1, 4)$. Fundamental groups these manifolds are \mathbb{Z}_{12} and DiC_3 respectively.

A huge number of examples of CY threefolds with small Hodge numbers are given in the table article [17]. Many examples with a non-trivial fundamental group provide quotients for complete intersections of four quadrics $\mathbb{C}P_7[2,2,2,2]_{-128}$.

This conifold transition shifts the Hodge numbers as follows

$$\delta(h^{1,1}, h^{2,1}) = (1, -1).$$

The conifold transition does not change the fundamental group. However, there is a hyperconifold transition [21], [22] that can change the fundamental group.

In this text we have given some examples CY threefolds that are interesting for compactifications of heterotic string theory. Mirror symmetry [1] is an actual way to study Calabi-Yau spaces. Euler characteristic for mirror manifold is same. Therefore, from the modern point of view, it is important to explore mirror manifolds with small Hodge numbers.

Acknowledges

The author is grateful to Maxim Leenson for valuable discussions.
References

[1] Hori K, Katz S, Klemm A, Pandharipande R, Thomas R, Vafa C, Vakil R and Zaslow E 2003 Mirror symmetry (American Mathematical Society)

[2] Polchinski J 1998 String Theory Vol. II: Superstring Theory and Beyond (Cambridge University Press)

[3] Becker K, Becker M and Schwarz J H 2007 String Theory and M-theory: A Modern Introduction (Cambridge University Press)

[4] Green M, Schwarz J H and Witten E 1987 Superstring Theory. Vol 2. (Cambridge University Press)

[5] Greene B 1996 String theory on Calabi-Yau manifolds e-Print hep-th/9702155

[6] Candelas F, Horowitz G T, Strominger A and Witten E 1985 Nucl. Phys. B 258 46

[7] Hosotani Y 1983 Phys. Lett. B 126 309

[8] Witten E 1985 Nucl. Phys. B 258 75

[9] Hübsch T 1992 Calabi-Yau manifolds. A besriary for physicists. (World Scientific Pub)

[10] Davies R 2011 Adv. High Energy Phys. 2011 901898

[11] Yau S T 1985 Compact three dimensional Kahler manifolds with zero Ricci curvature in Proceedings of a symposium on anomalies geometry topology (World Scientific Pub)

[12] Greene B, Kirklin K, Miron P and Ross G 1986 Nucl. Phys. B 278 667

[13] Schimmrigk R 1987 Phys. Lett. B 193 175

[14] Candelas P, de la Ossa X, He YH and Szendroi B 2008 Adv. Theor. Math. Phys. 12 429

[15] Candelas P and Davies R 2010 Fortsch. Phys. 58 383

[16] Braun V, Candelas P and Davies R 2010 Fortsch. Phys. 58 467

[17] Candelas P, Constantin A and Mishra C 2018 Fortsch. Phys. 66 6

[18] Reid M 1987 Mathematische Annalen 278 329

[19] Candelas P, Dale A M, Lutken A, Schimmrigk and Rolf 1988 Nuclear Physics B 298 493

[20] Green P and Hübsch T 1988 Comm. in Math. Phys. 119 431

[21] Davies R 2010 Adv. Theor. Math. Phys. 14 965

[22] Davies R 2011 Nuclear Physics B 850 214