A Randomized, Double-Blind, Placebo-Controlled Trial of Camici nal in Parkinson’s Disease

Sarah L. Marrinan, MBBS, FRCP, MD, 1,2 Tal Otiker, MSc, 3 Lakshmi S. Vasiat, PharmD, 5 Rachel A. Gibson, PhD, 3 Bhopinder K. Sarai, BSc (Hons), 5 Matthew E. Barton, PhD, 4 Duncan B. Richards, BM, BCh, DM, FRCP, 5 Per M. Hellström, MD, PhD, 5 Dag Nyholm, MD, PhD, 7 George E. Dukes, PharmD, 4 and David J. Burn, MD, FRCPB

1Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, United Kingdom 2Newcastle University, Institute of Ageing and Health, Newcastle upon Tyne, United Kingdom 3GlaxoSmithKline R&D, Stevenage, United Kingdom 4GlaxoSmithKline R&D, Research Triangle Park, North Carolina, United States 5GlaxoSmithKline, Cambridge, United Kingdom 6Department of Medical Sciences, Uppsala University, Uppsala, Sweden 7Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden 8Newcastle University, Institute of Neurosciences, Newcastle upon Tyne, United Kingdom

ABSTRACT

Background: Delayed gastric emptying may impair L-dopa absorption, contributing to motor fluctuations. We evaluated the effect of camici nal (GSK962040), a gastropre kinetic, on the absorption of L-dopa and symptoms of PD.

Methods: Phase II, double-blind, placebo-controlled trial. Participants were randomized to receive camicinal 50 mg once-daily (n = 38) or placebo (n = 20) for 7 to 9 days.

Results: L-dopa exposure was similar with coadministration of camici nal compared to placebo. Median time to maximum L-dopa concentration was reduced, indicating more rapid absorption of L-dopa. Camici nal resulted in significant reduction in OFF time (~2.31 hours; 95% confidence interval: ~3.71, ~0.90), significant increase in ON time (+1.88 hours; 95% confidence interval: 0.28, 3.48) per day, and significant decrease in mean total MDS-UPDRS score (~12.5; 95% confidence interval: ~19.67, ~5.29). Camici nal treatment was generally well tolerated.

Conclusions: PD symptom improvement with camici nal occurred in parallel with more rapid absorption of L-dopa. This study provides evidence of an improvement of the motor response to L-dopa in people with PD treated with camici nal 50 mg once-daily compared with placebo, which will require further evaluation.

© 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Key Words: Parkinson’s disease/parkinsonism; Clinical trials Randomized controlled (CONSORT agreement)

Delayed gastric emptying (GE) affects more than 70% of PD patients. 1,2 Levodopa is rapidly absorbed in the proximal small bowel. If GE is delayed, the absorption of L-dopa is impaired and may result in delayed ON and motor fluctuations. 3,4 Gastropre kinetics may enhance GE, L-dopa absorption, and motor function. 3,8 Camici nal is a motilin receptor agonist, which enhances GE in healthy volunteers and patients with diabetic gastroparesis. 9,10

The primary outcome of this study was to evaluate the effect of camici nal on L-dopa pharmacokinetics (PK) in patients with PD. We hypothesized that camici nal would improve GE resulting in increased L-dopa absorption, earlier L-dopa peak concentrations, increased drug exposure, and better control of motor and nonmotor symptoms. 11 We also evaluated the safety of camici nal in PD.

Materials and Methods

This was a multicenter (11), international (UK, Europe, Australia) phase II randomized, double-blind, placebo-controlled study. It was conducted in accordance with the Declaration of Helsinki and registered on www.clinicaltrials.gov (NCT01602549). Eligible patients were randomized 2:1 to receive camici nal (50 mg once-daily) or placebo.

There was a screening period of 1 to 21 days, a 7- to 9-day treatment period, and a 14-day follow-up period.

The primary outcome of the study was change in L-dopa pharmacokinetics. Secondary outcomes included change in GE, motor, and nonmotor symptoms. Camici nal safety and tolerability were also evaluated.

Initially this was a dose-ranging study where participants were to receive camici nal 25, 50, or 125 mg.
However, after an interim review and concerns about the development potential of the 125-mg dose, the protocol was amended to compare a single strength of camical (50 mg) with placebo. One patient received camical 125 mg before this amendment and is included in the adverse events (AEs) summary.

Patients (40–80 years old) diagnosed with idiopathic PD according to the UK Brain Bank Criteria (modified H & Y stage II-IV) with suboptimal motor control on l-dopa-based treatment were eligible. Motor fluctuations were defined as wearing-off, peak-dose dyskinesias, and delayed or absent ON periods that impacted functional status or quality of life. Incapacitating peak-dose or biphase dyskinesias were an exclusion criterion. Patients were required to have a stable l-dopa therapy regimen for at least 4 weeks preceding screening, and therapies were not altered during the study period. Patients were suitable for participation if their GE T1/2 at screening was ≥70 minutes, as determined by the 13C-Gastric Emptying Breath Test (GE BT; Cairn Diagnostics, Brentwood, TN). Significant gastric pathology or surgery or use of medications influencing upper gastrointestinal motility within a week of study participation were exclusion criteria.

Patients attended 5 visits: screening, first dosing (day 1), mid-point review (day 4 ± 1), final dosing (day 8 ± 1), and follow-up (day 14 ± 2 after final dose).

At the screening, first, and final dosing visits, patients attended in the morning, fasted and in a functionally defined OFF state. Patients took their usual L-dopa-based medication (time 0) after the study medication (time -90 minutes). They received a standardized GEBT test meal (time -10 minutes) and did not ingest any additional food for the 240-minute study period.

Plasma samples were obtained at predetermined time points for l-dopa pharmacokinetics analysis; area under the concentration-time curve (AUC), maximal concentration (Cmax), and time to Cmax (Tmax) were calculated.

The full MDS-UPDRS was assessed at baseline and change from baseline GE T1/2 and changes from baseline in MDS-UPDRS were analyzed by a mixed-model analysis of variance (ANOVA), from which point estimates and 95% confidence intervals (CIs) for the ratio, “camical 50 mg: Placebo” were calculated. Change from baseline to day 8 in l-dopa Tmax was analyzed using a Wilcoxon rank-sum test.

Statistical Analysis

Analyses were performed on the “All Subjects” population: participants who received at least one dose of study medication. The planned sample size was calculated using data from Hauser and colleagues. Assuming the mean (standard deviation) of dose-normalized l-dopa AUC₀₋₄ to be 48.65 (18.93) ng.h/mL/mg, corresponding to a coefficient of variation of 38.9%, the planned sample size of 45 subjects (camical 30, placebo 15) was powered (90% power, 5% alpha) to detect a 1.5-fold change in mean AUC₀₋₄.

An interim analysis was performed after 16 completed subjects to assess futility and re-estimate sample size. At the interim analysis, the probability that the camical to placebo fold change in l-dopa AUC₀₋₄ was calculated. If this probability was greater than 70%, the study would stop. Futility criteria were not met. The sample size was increased to 58. Additional assessments were included in a revised protocol (“ON”/“OFF” symptoms at the screening visit to allow for baseline comparisons and MDS-UPDRS 3 assessments for evaluation of motor symptoms at the subject defined “ON” time).

Pharmacokinetic Analysis

Pharmacokinetic parameters were calculated by noncompartmental methods using Phoenix WinNonlin (v. 6.2; Certara) for baseline and days 1 and 8. l-dopa exposure parameters (AUC₀₋₄, Tmax) were dose-normalized by dividing the parameter value by the equivalent l-dopa dose in mg based on each subject’s individual l-dopa-based regimen. These parameters were log-transformed and analyzed using a mixed-model analysis of variance (ANOVA), from which point estimates and 95% confidence intervals (CIs) for the ratio, “camical 50 mg: Placebo” were calculated. Change from baseline to day 8 in l-dopa Tmax was analyzed using a Wilcoxon rank-sum test.

Efficacy Analysis

An estimation approach was used for all efficacy endpoints. The point estimate and corresponding 95% CI for the difference “camical - Placebo” were constructed, using the residual error from the model fitted. Change from baseline GE T1/2 and changes from baseline in MDS-UPDRS were analyzed by a mixed-model ANOVA.

For the purpose of statistical analysis, diary categories of ON without dyskinesia and ON with nontroublesome dyskinesia were combined to a single category referred to as “ON.” The change from baseline in awake hours spent ON and OFF was analyzed separately using an analysis of covariance (ANCOVA) model with the baseline measurement included as a covariate.

Results

Twenty patients were randomized to placebo and 38 to camical. One subject from the placebo group withdrew consent. One patient receiving camical was withdrawn because of noncompliance. Baseline demographics and disease characteristics of the groups were comparable.

There was no significant difference in l-dopa AUC (0-t) or Cmax when camical was coadministered on days 1 or 8. However, the Tmax occurred
approximately 23 minutes sooner on day 8 with camical versus placebo. Median Tmax on day 8 was reduced from 120 minutes (range, 18-216) to 90 minutes (range, 18-210; \(P < 0.186 \)).

GE T1/2 was reduced by 5.3 minutes (95% CI: -6.9, 17.6) in the camical group compared to placebo from baseline to day 8.

Compared to placebo, treatment with camical resulted in a significant improvement from baseline of approximately 13 points (95% CI: 5, 20) in the total MDS-UPDRS scores. MDS-UPDRS subsection scores improved from baseline to day 8 in the camical group versus placebo: part I (4 points; 95% CI: 2, 5), part II (2 points; 95% CI: 0, 5), and part III (5 points, 95% CI: 0, 10). On day 8, at 4 hours postdose, the mean MDS-UPDRS part III score was 9 points (95% CI: 3, 15) lower for the camical group than the placebo group.

Camical resulted in a significant increase in the number of hours/day spent in the ON state (+1.88 hours; 95% CI: 0.28, 3.48) and a significant reduction in time spent in the OFF state (-2.31 hours; 95% CI: -3.71, -0.90) compared to placebo (Table 1).

There was a correlation between reduction in L-dopa Tmax and improvements in OFF time \((r = 0.31; P < 0.05; \text{Fig. 1})\). Regression of change from baseline in Tmax against change in OFF time estimates that, on average, a 1-hour reduction in Tmax led to a 50-minute reduction in OFF time. A similar correlation was observed between a reduction in Tmax and an increase in ON time.

Overall, camical pharmacokinetics were similar to those observed in previously in healthy volunteers and diabetic subjects with gastroparesis.\(^9,10\)

Reported AEs were similar in both groups, the most frequent being headache and fatigue. Two subjects receiving camical reported nonfatal serious adverse events: pruritus and circulatory collapse (not related to camical).

Discussion

Although there was similar L-dopa drug exposure between the two groups, the median L-dopa Tmax in the camical group occurred, on average, 60 minutes earlier than in the placebo group. This suggests that although camical co administration did not increase overall L-dopa exposure, it did result in more rapid time to maximal plasma concentration. However, the precision of the Tmax and Cmax estimates may be low given that the L-dopa plasma concentrations were assessed only every 30 minutes. This could be further explored in the future with more frequent PK sampling.

Patients who received camical reported less OFF and more ON time compared to those receiving placebo, a statistically significant improvement which may also be clinically significant.\(^14\) Reduction in OFF time was greater than might have been predicted from the modest change in GE, possibly reflecting the heterogeneity of gastric motility, disease progression, or potentially another pharmacological mechanism.

Significant improvements in MDS-UPDRS scores were observed in patients who received camical, most likely explained by the decrease in L-dopa Tmax.

Tolerability of camical 50 mg once-daily for 7 to 9 days was similar to placebo. Two AEs of dyskinesia occurred in the camical group, an effect that could

TABLE 1. Change from baseline to end of treatment period in number of hours spent daily in each symptoms state

State	Placebo (n = 17)	Camical 50 mg (n = 36)	Adjusted Mean Difference: Camical 50 mg - placebo (95% CI)
OFF	0.99 (–0.17, 2.14)	-1.32 (–2.11, –0.53)	-2.31 (~3.71, –0.90)
ON	-0.82 (–2.13, 0.50)	1.06 (0.15, 1.96)	1.88 (0.28, 3.48)
OFF without dyskinesia	-0.37 (–2.12, 1.37)	0.73 (–0.47, 1.93)	1.11 (~1.01, 3.22)
ON with nontroublesome dyskinesia	-0.47 (–1.52, 0.59)	0.34 (~0.39, 1.06)	0.80 (~0.48, 2.09)
ON with troublesome dyskinesia	-0.12 (–0.38, 0.15)	0.20 (0.02, 0.39)	0.32 (~0.01, 0.64)

The adjusted means and differences were estimated using an ANCOVA model fitting treatment and baseline amount of hours spent daily in ON/OFF state as main effects.
be expected to occur from a more rapid drug absorption (shorter time to T_{max}).

Although we found a trend toward more rapid GE in the camicinal group, this was not statistically significant. GE assessed by GEBT over a 4-hour period may not be of sufficient sensitivity to distinguish subtle changes in emptying rates.

Limitations of this study include inability to precisely assess T_{max} or to accurately determine “time to ON” attributed to sampling frequency and study design. Thus, the mechanism(s) by which camicinal leads to motor improvement remains uncertain. With the relatively small sample size and short duration of treatment, it was not possible to determine whether the observed benefits were a true drug effect.

This is the first report that the motilin receptor agonist camicinal may improve the motor response to L-dopa in PD with motor fluctuations. Camcinal may improve motor fluctuations by shortening the time to peak L-dopa plasma concentration. Camcinal represents a promising adjunctive therapeutic option worthy of further evaluation in a larger study.

References

1. Cloud LJ, Greene JG. Gastrointestinal features of Parkinson’s disease. Curr Neurol Neurosci Rep 2011;11:379-384.
2. Heetun ZS, Quigley EM. Gastroparesis and Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 2012;18:433-440.
3. Doi H, Sakakibara R, Sato M, et al. Plasma levodopa peak delay and impaired gastric emptying in Parkinson’s disease. J Neurol Sci 2012;319:86-88.
4. Muller T, Erdmann C, Bremen D, et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin Neuropharmacol 2006;29:61-67.
5. Djaldetti R, Koren M, Ziv I, Achiron A, Melamed E. Effect of cisapride on response fluctuations in Parkinson’s disease. Mov Disord 1995;10:81-84.
6. Neera WD, Sanchez V, Mena MA, Deyebenes JG. The effects of cisapride on plasma L-DOPA levels and clinical response in Parkinson’s disease. Mov Disord 1995;10:66-70.
7. Nishikawa N, Nagai M, Tsuji T, Iwaki H, Yabe H, Nomoto M. Coadministration of domperidone increases plasma levodopa concentration in patients with Parkinson disease. Clin Neuropharmacol 2012;35:182-184.
8. Soykan I, Sarosiek I, Shifflett J, Wootten GF, McCallum RW. Effect of chronic oral domperidone therapy on gastrointestinal symptoms and gastric emptying in patients with Parkinson’s disease. Mov Disord 1997;12:952-957.
9. Dukes GE, Barton M, Dewit O, et al. Safety/tolerability, pharmacokinetics (PK), and effect on gastric emptying (GE) with 14-days repeat oral dosing of the motilin receptor agonist, GSK962040, in healthy male and female volunteers. Presented at the 4th Joint Society International Meeting in Neurogastroenterology and Motility (NGM), August 23-29, 2010; Boston, MA.
10. Hellstrom PM, Tack J, Johnson LV, et al. The pharmacodynamics, safety and pharmacokinetics of the motilin agonist, camcinal, in type 1 diabetes mellitus with slow gastric emptying. Br J Pharmacol 2016;173:1768-1777.
11. Merims D, Djaldetti R, Melamed E. Waiting for ON: a major problem in patients with Parkinson disease and ON/OFF motor fluctuations. Clin Neuropharmacol 2003;26:196-198.
12. Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease—a clinicopathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181-184.
13. Hauser RA, Hsu A, Kell S, et al. Extended-release carbidopa-levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol 2013;12:346-356.
14. Schrag A, Sampaio C, Counsell N, Poewe W. Minimal clinically important change on the unified Parkinson’s disease rating scale. Mov Disord 2006;21:1200-1207.