TAKING NOTES ON THE FLY HELPS LANGUAGE PRE-TRAINING

Qiyu Wu¹, Chen Xing²∗, Yatao Li³, Guolin Ke³, Di He³, Tie-Yan Liu³
¹Peking University
²College of Compute Science, Nankai University
³Microsoft Research
qiyu.wu@pku.edu.cn
xingchen1113@gmail.com
{yatli, guolin.ke, dihe, tyliu}@microsoft.com

ABSTRACT

How to make unsupervised language pre-training more efficient and less resource-intensive is an important research direction in NLP. In this paper, we focus on improving the efficiency of language pre-training methods through providing better data utilization. It is well-known that in language data corpus, words follow a heavy-tail distribution. A large proportion of words appear only very few times and the embeddings of rare words are usually poorly optimized. We argue that such embeddings carry inadequate semantic signals. They could make the data utilization inefficient and slow down the pre-training of the entire model. To solve this problem, we propose Taking Notes on the Fly (TNF). TNF takes notes for rare words on the fly during pre-training to help the model understand them when they occur next time. Specifically, TNF maintains a note dictionary and saves a rare word’s context information in it as notes when the rare word occurs in a sentence. When the same rare word occurs again in training, TNF employs the note information saved beforehand to enhance the semantics of the current sentence. By doing so, TNF provides a better data utilization since cross-sentence information is employed to cover the inadequate semantics caused by rare words in the sentences. Experimental results show that TNF significantly expedite the BERT pre-training and improve the model’s performance on downstream tasks. TNF’s training time is 60% less than BERT when reaching the same performance. When trained with same number of iterations, TNF significantly outperforms BERT on most of downstream tasks and the average GLUE score.

1 INTRODUCTION

Unsupervised language pre-training, e.g., BERT (Devlin et al., 2018), is shown to be a successful way to improve the performance of various NLP downstream tasks. However, as the pre-training task requires no human labeling effort, a massive scale of training corpus from the Web can be used to train models with billions of parameters (Raffel et al., 2019), making the pre-training computationally expensive. As an illustration, training a BERT-base model on Wikipedia corpus requires more than five days on 16 NVIDIA Tesla V100 GPUs. Therefore, how to make language pre-training more efficient and less resource-intensive, has become an important research direction in the field (Strubell et al., 2019).

Our work aims at improving the efficiency of language pre-training methods. In particular, we study how to speed up pre-training through better data utilization. It is well-known that in a natural language data corpus, words follow a heavy-tail distribution (Larson, 2010). A large proportion of words appear only very few times and the embeddings of those (rare) words are usually poorly optimized (Bahdanau et al., 2017; Gong et al., 2018; Khassanov et al., 2019; Schick & Schütze, 2020). Unlike previous works that sought to merely improve the embedding quality of rare words, we argue that the existence of rare words could also slow down the training process of other model

∗Equal Contribution. Work done during an internship at Microsoft Research Asia.
COVID-19 has cost thousands of lives.

What is COVID-19? dollars? donuts? puppies? tomatoes?

COVID-19 has cost thousands of lives.

Note that “COVID-19” is a rare word, while also the only key information for the model to rely on to fill in the blank with the correct answer “lives”. As the embedding of the rare word “COVID-19” is poorly trained, it doesn’t carry adequate semantic information to make the model understand what it means. Therefore, the Transformer lacks necessary input signal to predict “lives”. Empirically, we observe that around 20% of the sentences in the corpus contain at least one rare word. The large proportion of such sentences could cause severe data utilization problem for language pre-training due to the lack of necessary semantics for sentence understanding. Therefore, learning from the masked language modelling tasks using these data may make the pre-training inefficient. Moreover, completely removing those sentences with rare words is not an applicable choice since it will significantly reduce the size of the training data and hurt the final model performance.

Our method to solve this problem is motivated by how humans manage information. Note-taking is an useful skill which can help people recall information that would otherwise be lost, especially for those new concepts during learning (Makany et al., 2009). If people take notes when facing a rare word that they don’t know, in next time when the rare word appears, they can refer to the notes to better understand the sentence. For example, we may meet the following sentence somewhere beforehand: The COVID-19 pandemic is an ongoing global crisis. From the sentence, we can realize that “COVID-19” is related to “pandemic” and “global crisis” and record the connection in the notes. When facing “COVID-19” again in the masked language modelling task above, we can refer to the note of “COVID-19”. It is easy to see that once “pandemic” and “global crisis” are connected to “COVID-19”, we can understand the sentence and predict “lives” more easily, as illustrated in Figure 1. Mapped back to language pre-training, we believe for rare words, explicitly leveraging cross-sentence information is helpful to enhance semantics of the rare words in the current sentence to predict the masked tokens. Through this more efficient data utilization, we can obtain more efficient training of the model parameters.

Motivated by the discussion above, we propose a new learning approach called “Taking Notes on the Fly” (TNF) to improve data utilization for language pre-training. Specifically, we maintain a note dictionary, where the keys are rare words and the values are historical contextual representations of them. In the forward pass, when a rare word w appears in a sentence, we query the value of w in the note dictionary and use it as a part of input. In this way, the semantic information of w saved in the note can be encoded together with other words through the model. Besides updating model parameters, we also update the note dictionary. In particular, we define the note of w in the current sentence as the mean pooling over the contextual representation of the words nearby w. Then we
update \(w\)’s value in the note dictionary by a weighted linear combination of \(w\)’s previous value and \(w\)’s note in the current sentence. TNF introduces little computational overhead at pre-training since the note dictionary is updated on the fly during the forward pass. Furthermore, different from the memory-augmented neural networks (Santoro et al., 2016; Guu et al., 2020), the note dictionary is only used to improve the training efficiency of the model parameters, while not served as a part of the model. When the pre-training is finished, we discard the note dictionary and use the trained Transformer encoder during the fine-tuning of downstream tasks, same as all previous works.

We conduct experiments in the BERT-base setting. Results show that TNF significantly expedite the BERT pre-training and improve the model’s performance on downstream tasks. TNF’s training time is 60\% less than BERT when reaching the same performance. When trained with same number of iterations, TNF outperforms the backbone methods on both the average score of multiple tasks and the majority of individual tasks. We also observe that even in the downstream tasks where rare words only take a neglectable proportion of the data (i.e. 0.47\%), TNF also outperforms baseline methods with a large margin. It indicates that TNF improves the pre-training of the entire model.

2 RELATED WORK

Efficient BERT pre-training. The massive energy cost of language pre-training (Strubell et al., 2019) has become an obstacle to its further developments. There are several works aiming at reducing the energy cost of pre-training. Gong et al. (2019) observes that parameters in different layers have similar attention distribution, and propose a parameter distillation method from shallow layers to deep layers. Another notable work is ELECTRA (Clark et al., 2019), which develops a new task using one discriminator and one generator. The generator corrupts the sentence, and the discriminator is trained to predict whether each word in the corrupted sentence is replaced or not. Orthogonal to them, we focus on improving pre-training efficiency by finding ways to utilize the data corpus better. Therefore, it can be applied to all of the methods above to further boost their performances.

Representation of rare words. It is widely acknowledged that the quality of rare words’ embeddings are significantly worse than that of popular words. Gao et al. (2019) provides a theoretical understanding of this problem, which illustrates that the problem lies in the sparse (and inaccurate) stochastic optimization of neural networks. Several works attempt to improve the representation of rare words using linguistic priors (Luong et al., 2013; El-Kishky et al., 2019; Kim et al., 2016; Santos & Zadrozny, 2014). But the improved embedding quality is still far behind that of popular words (Gong et al., 2018). Sennrich et al. (2015) develops a novel way to split each word into sub-word units. However, the low-frequency sub-word units are still difficult to train (Ott et al., 2018). Due to the poor quality of rare word representations, the model built on top of it suffers from inadequate input semantic signals which leads to inefficient training. We try to bypass the problem of poor rare word representations by leveraging cross-sentence information to enhance input semantic signals of the current sentence for better model training.

Memory-augmented BERT. Another line of work close to ours is using memory-augmented neural networks in language pre-training. Févry et al. (2020) and Guu et al. (2020) define the memory buffer as an external knowledge base of entities for better open domain question answering tasks. Khandelwal et al. (2019) constructs the memory for every test context at inference, to hold extra token candidates for better language modeling. Similar to other memory-augmented neural networks, the memory buffer in these works is a model component that will be used during inference. Although sharing general methodological concepts with these works, the goal and details of our method are different from them. Specially, our note dictionary is only maintained in pre-training for efficient data utilization. At fine-tuning, we ditch the note dictionary, hence adding no extra time or space complexity to the backbone model.

3 TAKING NOTES ON THE FLY

3.1 PRELIMINARIES

In this section, we use the BERT model as an example to introduce the basics of the model architecture and training objective of language pre-training. The BERT (Bidirectional Encoder Representation
from Transformers) model is developed on a multi-layer bidirectional Transformer encoder, which takes a sequence of the word semantic information (token embeddings) and order information (positional embeddings) as input, and outputs the contextual representations of words and the whole sentence.

Each Transformer layer is formed by a self-attention sub-layer and a position-wise feed-forward sub-layer, with a residual connection [He et al., 2016] and layer normalization [Ba et al., 2016] applied after every sub-layer. The self-attention sub-layer is referred to as "Scaled Dot-Product Attention" in Vaswani et al. [2017], which produces its output by calculating the scaled dot products of the values, i.e.,

\[\text{Attention}(Q, K, V) = \text{Softmax}(\frac{QK^T}{\sqrt{d}})V. \] (1)

\(Q \) (Query), \(K \) (Key), \(V \) (Value) are the hidden representations outputted from the previous layer and \(d \) is the dimension of the hidden representations. Transformer also extends the aforementioned self-attention layer to a multi-head version in order to jointly attend to information from different representation subspaces. The multi-head self-attention sub-layer works as follows,

\[\text{Multi-head}(Q, K, V) = \text{Concat}(\text{head}_1, \cdots, \text{head}_H)W^O \] (2)

\[\text{head}_k = \text{Attention}(QW^Q_k, KW^K_k, VW^K_k), \] (3)

where \(W^Q_k \in \mathbb{R}^{d \times d_K} \), \(W^K_k \in \mathbb{R}^{d \times d_K} \), \(W^V_k \in \mathbb{R}^{d \times d_V} \) are projection matrices. \(H \) is the number of heads. \(d_K \) and \(d_V \) are the dimensions of the key and value separately.

Following the self-attention sub-layer, there is a position-wise feed-forward (FFN) sub-layer, which is a fully connected network applied to every position identically and separately. The FFN sub-layer is usually a two-layer feed-forward network with a ReLU activation function in between. Given vectors \(\{h_1, \ldots , h_n\} \), a position-wise FFN sub-layer transforms each \(h_i \) as FFN\((h_i) = \sigma(h_iW_1 + b_1)W_2 + b_2\), where \(W_1, W_2, b_1 \) and \(b_2 \) are parameters.

BERT uses the Transformer model as its backbone neural network architecture and trains the model parameters with the masked language model task on large text corpora. In the masked language model task, given a sampled sentence from the corpora, 15% of the positions in the sentence are randomly selected. The selected positions will be either replaced by special token [MASK], replaced by random picked tokens or remains the same. The objective of BERT pre-training is to predict words at the masked positions correctly given the masked sentences. As this task requires no human labeling effort, large scale data corpus is usually used to train the model. Empirically, the trained model, served as a good initialization, significantly improves the performance of downstream tasks.

3.2 Training BERT by Taking Notes on the Fly

As presented by many previous works, the poorly-updated embeddings of rare words usually lack adequate semantic information. This could cause data utilization problem given the lack of necessary semantic input for sentence understanding, thus making the pre-training inefficient. In this section, we propose a method called Taking Notes on the Fly (TNF) to mitigate this problem. During pre-training, TNF takes cross-sentence signals as notes for rare words to help the model understand them when they appear next time. We describe TNF on top of BERT for convenience. While we would like to note that TNF can be further applied to any language pre-training methods.

The Construction of Note Dictionary. To enrich the semantic information of rare words for a better understanding of the sentence, we explicitly leverage cross-sentence signals for those words. We first build a note dictionary NoteDict from the data corpus, which maintains a note representation (value) for each word (key). Since we target at rare words, the words in the dictionary are of low frequency. However, the frequency of the words in the dictionary should not be extremely low either. It is because if the word appears only once in the corpus, there will be no “cross-sentence signal” to use. Additionally, the note dictionary also shouldn’t take too much memories in practice. With all these factors taken into consideration, we define keys as those words with occurrences between 100 and 500 in the data corpus. The data corpus roughly contains 3.47B words in total and the size of NoteDict is about 200k.
Maintaining Note Dictionary. When we meet a rare word in a training sentence, we record the contextual information of its surrounding words in the sentence as its note. In detail, given a training sentence, each word will be first pre-processed into sub-word units following standard pre-processing strategies (Sennrich et al., 2015). Therefore, given a processed sequence of sub-word units (tokens), a rare word can occupy a contiguous span of tokens. For a rare word w that appears both in the input token sequence $x = \{x_1, \cdots, x_i, \cdots, x_n\}$ and NoteDict, we denote the span boundary of w in x as (s, t), where s and t are the starting and ending position. We define the note of w for x as

$$
\text{Note}(w, x) = \frac{1}{2k + t - s} \sum_{j=s-k}^{t+k} c_j,
$$

where each $c_j \in \mathbb{R}^d$ is the output of the Transformer encoder on position j and served as the contextual representation of x_j. k is half of the window size that controls how many surrounding tokens we want to take as notes and save their the semantics. If we refer to the example in the introduction, the contextual representations of “pandemic” and “global crisis” are summarized in the note of “COVID-19”. Note that the calculation of Note(w, x) is on the fly as we can obtain Note(w, x) during the forward pass using the current model. Therefore, there is no additional computational cost.

With the Note(w, x) calculated with Equation 4 for the current sentence x, we can now update w’s note saved in NoteDict to include the latest semantics. In particular, we updates w’s value in NoteDict using exponential moving average. In this way, at any occurrence of w during pre-training, its contextual information from all previous occurrences can be leveraged and used.

$$
\text{NoteDict}(w) = (1 - \gamma) \cdot \text{NoteDict}(w) + \gamma \cdot \text{Note}(w, x),
$$

where $\gamma \in (0, 1)$ is the discount factor.

1 When $k = 0$, Note(w, x) only contains BERT outputs at the token positions of the rare word w. One may think using such contextual information is enough to help the model training. However, we empirically find that using our proposed method with $k = 0$ doesn’t perform well. One possible reason is that when the rare word is not masked, the BERT outputs at the corresponding positions still carry merely the poorly-updated word embedding information of w through the residual connections, which is not helpful for other sentences. Therefore, we use a relatively larger k, e.g., we find setting $k = 16$ gives the best performance.

2 All values in NoteDict are randomly initialized using the same way as word/positional embeddings.
Leveraging Note Dictionary for Pre-training. NoteDict explicitly contains surrounding contexts for rare words. We use such information as a part of the input to the Transformer encoder. For any masked token sequence $x = \{x_1, \cdots, x_i, \cdots, x_n\}$, we first find all rare words that appear in both NoteDict and x. Assume there are m rare words satisfying the conditions, denoted as $\{(w_j, s_j, t_j)\}_{j=1}^m$ where s_j and t_j are the boundary of w_j in x. At the i-th position, the input to the model is defined as

$$input_i = \begin{cases} (1 - \lambda) \cdot (\text{pos}_emb_i + \text{token}_emb_i) + \lambda \cdot \text{NoteDict}(w_j) & \exists j, s.t. s_j < i < t_j, \\ \text{pos}_emb_i + \text{word}_emb_i & \text{otherwise.} \end{cases}$$

(6)

λ is a hyper-parameter controlling the degree to which TNF relies on historical context representations (notes) for rare words. We empirically set it as 0.5.

In the standard Transformer model, at position i, the input to the first Transformer layer is the sum of the positional embedding pos_emb_i and the token embedding token_emb_i. In Equation 6, we specifically deal with the case where the token x_i is originated from a rare word w_j in NoteDict. We first query w_j in NoteDict and then weight-averages its value $\text{NoteDict}(w_j)$ with the token embedding token_emb_i and positional embedding pos_emb_i. In such a way, the historical contextual information of rare word w_j in NoteDict(w_j), can be processed together with other words in the current sentence in the stacked Transformer layers, which can help the model to better understand the input sequence. Figure 2 gives a general illustration of TNF in pre-training.

Fine-tuning. Our goal is to make the training of the model (e.g., the parameters in the Transformer encoder) more efficient. To achieve this, we leverage cross-sentence signals of rare words as notes to enrich the input signals. To verify whether the Transformer encoder is better trained with TNF, we purposely remove the NoteDict for fine-tuning and only use the trained encoder in the downstream tasks. First, in such a setting, our method can be fairly compared with previous works, such as vanilla BERT pre-training, as the fine-tuning processes of both methods are exactly the same. Second, by doing so, our model occupies no additional space in deployment, which is an advantage compared with existing memory-augmented neural networks (Santoro et al. 2016, Guu et al. 2020). We also conduct an ablation study on whether to use NoteDict during fine-tuning. Details can be found in Section 4.

4 Experiments

To verify the efficiency and effectiveness of TNF, we conduct experiments and evaluate pre-trained models on fine-tuning downstream tasks. All codes are implemented based on fairseq (Ott et al. 2019) in PyTorch (Paszke et al. 2017). All models are run on 16 NVIDIA Tesla V100 GPUs with mixed-precision (Micikevicius et al. 2017).

4.1 Experimental Setup

We use BERT (Devlin et al. 2018) as the backbone language pre-training method and implement TNF on top of it. We call the method BERT-TNF for ease of reference. While we also note that TNF is method-agnostic and can be easily applied to any other language pre-training methods such as ELECTRA (Clark et al. 2019). The detailed setting of the experiment is shown below.

Pre-training Task and Data Corpus. Following BERT (Devlin et al. 2018), we use the English Wikipedia corpus and BookCorpus (Zhu et al. 2015) for pre-training. By concatenating these two datasets, we obtain a corpus with roughly 16GB in size similar with (Devlin et al. 2018). We also follow a couple of consecutive pre-processing steps: segmenting documents into sentences by Spacy, normalizing, lower-casing, tokenizing the texts by Moses decoder, applying byte pair encoding (BPE) (Sennrich et al. 2015) with the vocabulary size set as 32,678. We use masked language modeling as the objective of pre-training. We remove the next sentence prediction task and use FULL-SENTENCES mode to pack sentences as suggested in RoBERTa (Liu et al. 2019). The masked probability is set to 0.15 with whole word masking. After masking, we

\[\text{https://spacy.io}\]
Model architecture and hyper-parameters. We use BERT-base (110M parameters) (Devlin et al., 2018) architecture for all experiments. BERT-base consists of 12 Transformer layers. For each layer, the hidden size is set to 768 and the number of attention head (H) is set to 12. We use the same pre-training hyper-parameters for both BERT and BERT-TNF. All models are pre-trained for 1000k steps with batch size 256 and maximum sequence length 512. We use Adam (Kingma & Ba, 2014) as the optimizer, and set its hyperparameter ϵ to 1e-6 and (β_1, β_2) to (0.9, 0.98). The peak learning rate is set to 1e-4 with a 10k-step warm-up stage. After the warm-up stage, the learning rate decays linearly to zero. We set the dropout probability to 0.1 and weight decay to 0.01. There are three additional hyper-parameters for BERT-TNF, half window size k, discount factor λ and weight γ. We set k as 16, λ as 0.5, γ as 0.1 for the main experiment. All hyper-parameter configurations are reported in Table 1.

Fine-tuning. We fine-tune the pretrained models on GLUE (General Language Understanding Evaluation) (Wang et al., 2018) to evaluate the performance of the pretrained models. We follow previous work to use nine tasks in GLUE, including CoLA, RTE, MRPC, STS, SST, QNLI, QQP, and MNLI. For evaluation metrics, we report Matthews correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. We use the same optimizer (Adam) with the same hyper-parameters as in pre-training. Following previous work, we search the learning rates during the fine-tuning for each downstream task. The details are listed in Table 1. For fair comparison, we do not apply any published tricks for fine-tuning. Each configuration is run five times with different random seeds, and the median of these five results on the validation set is calculated as the final performance of one configuration. We report the best number over all configurations for each task.

	Pre-training	Fine-tuning
Max Steps	1M	-
Max Epochs	-	5 or 10
Learning Rate	1e-4	1e-5, 2e-5, 3e-5, 4e-5, 5e-5
Batch Size	256	32
Warm-up Ratio	0.01	0.06
Sequence Length	512	512
Learning Rate Decay	Linear	Linear
Adam ϵ	1e-6	1e-6
Adam (β_1, β_2)	(0.9, 0.98)	(0.9, 0.98)
Dropout	0.1	0.1
Weight Decay	0.01	0.01
k of BERT-TNF	16	-
λ of BERT-TNF	0.5	-
γ of BERT-TNF	0.1	-

Table 1: Hyper-parameters for the pre-training and fine-tuning on both BERT and BERT-TNF.

Dataset	BERT	BERT-TNF	BERT-TNF-F	BERT-TNF-U
MNLI	84.883	85.099	85.021	85.099
QNLI	91.374	90.808	90.830	90.818
QQP	93.103	93.295	93.068	93.070
SST	56.072	60.134	60.034	59.282
CoLA	87.853	89.231	88.317	88.846
MRPC	72.806	72.292	71.292	72.264
RTE	66.750	68.764	67.680	68.846
STS	88.345	83.754	83.371	83.312
Avg.	82.470	83.754	83.371	83.312

Table 2: Performance of different models on downstream tasks. Results show that BERT-TNF outperforms BERT on not only the average GLUE score, but on the majority of individual tasks. We also list the performance of two variants of BERT-TNF. Both of them leverage the node dictionary during fine-tuning. Specifically, BERT-TNF-F uses fixed note dictionary, and BERT-TNF-U updates the note dictionary as in pre-training. Both models outperforms the baseline BERT model while perform slightly worse than BERT-TNF.

replace 80% of the masked positions with [MASK], 10% by randomly sampled words, and keep the remaining 10% unchanged.
4.2 Results and Analysis

TNF improves pre-training efficiency. Figure 3 shows for both BERT and BERT-TNF, how the pre-training loss, pre-training validation loss and average GLUE score change as pre-training proceeds. From Figure 3 (a) and (b), we can see that as the training proceeds, BERT-TNF’s pre-training loss and validation loss is constantly lower than BERT. It indicates that TNF has accelerated BERT through the entire pre-training process. We can also notice from Figure 3 (a) and (b) that the gap between the losses of BERT and BERT-TNF keeps increasing during pre-training. A possible explanation of this phenomenon is that the qualities of notes would improve with pre-training. Therefore, the notes that TNF takes for rare words could contain better semantic information to help the encoder as the training goes.

From Figure 3 (c), we can see that the average GLUE score of BERT-TNF is also larger than the baseline through most of the pre-training. BERT-TNF’s GLUE score at 400k iteration is even competitive to the GLUE score of BERT at 1000k iteration. It means that to reach the same final performance of BERT, BERT-TNF can save 60% of pre-training time. If models are trained on 16 NVIDIA Tesla V100 GPUs, BERT-TNF can reach BERT’s final performance within 2 days while it takes BERT 5.7 days.

TNF improves the model’s performance. BERT models are severely under-trained (Liu et al., 2019). Therefore, training faster usually indicates better final performance given the same amount of pre-training time. In Table 2, we present the performance of the BERT-TNF and BERT models when the pre-training finished, i.e., at 1M updates. We can see from the table that BERT-TNF not only outperforms BERT on the average GLUE score with a large margin (1.3 points), but also outperforms it on the majority of sub-tasks. BERT-TNF’s performance improvement against the baseline is most prominent on sub-tasks with smaller datasets. Among all 8 sub-tasks, RTE has the smallest training set which contains 2.5k training samples in total (Wang et al., 2018). On RTE, BERT-TNF obtains the biggest performance improvement (more than 6 points) compared with the baseline. On the other two small-data sub-tasks, CoLA and MRPC, BERT-TNF also outperforms the baseline with considerable margins (4 and 2 points). This indicates that TNF pre-training can indeed provide a better initialization point for fine-tuning, especially on downstream tasks with smaller data sizes.

4.3 Ablation Study

Empirical analysis on whether to keep notes during fine-tuning. As mentioned in Section 3, when fine-tuning on downstream tasks, TNF doesn’t use the note dictionary. One may wonder what the downstream task performance would be like if we keep the note dictionary in fine-tuning. To check this, we test two TNF’s variations for comparison. The first variation is denoted as BERT-TNF-F, in which we fix the noted dictionary and use it in the forward pass during fine-tuning as described in Equation 6. The second variation is denoted as BERT-TNF-U. In BERT-TNF-U, we not only use the note dictionary, but also update the note representations using Equation 5.

All results are listed in Table 2. The results show that both BERT-TNF-F and BERT-TNF-U outperform BERT. This indicates that TNF, no matter if we keep the notes at fine-tuning or not,
Table 3: Experimental results on the sensitivity of BERT-TNF’s hyper-parameter k. Results show that except the result of BERT-TNF with $k=0$, when fixing λ and γ, BERT-TNF with different values of k all show obvious improvements on average GLUE score compared with the baseline. As long as k is larger than 4, BERT-TNF’s performance is not very sensitive to k.

can boost its backbone pre-training method’s performance. Moreover, we also observe that their performances are both slightly worse than BERT-TNF. We hypothesize the reason behind can be the discrepancy of the pre-training and fine-tuning data. We notice that the proportion of rare words in downstream tasks are too small (from 0.47% to 2.31%). When the data distribution of the pre-training data set is very different from the downstream data sets, notes of rare words in pre-training might be not very effective in fine-tuning.

Sensitivity of hyper-parameters. We also conduct experiments to check if TNF’s performance is sensitive to the introduced new hyper-parameters. Empirically, we observe the value of the half window size k are important while λ and γ are not very sensitive. The experimental results using different k are shown in Table 3. We can see that using a relatively larger k is usually a better choice, which indicates that using a window with $k > 0$, the dictionary can contain more contextual information of rare words. We also tried fixing k and tuning λ and γ. We empirically find that with λ in range (0.4, 0.6) and γ in range (0.01, 0.2), our method can produce similar performance. Therefore, BERT-TNF is robust to λ and γ.

5 Conclusion

In this paper, we focus on improving the data utilization for more efficient language pre-training through the lens of the word frequency. We argue the large proportion of rare words and their poorly-updated word embeddings could slow down the entire pre-training process. Towards this end, we propose Taking Notes on the Fly (TNF). TNF alleviates the heavy-tail word distribution problem by taking temporary notes for rare words during pre-training. In TNF, we maintain a note dictionary to save historical contextual information for rare words when we meet them in training sentences. Through this way, when rare words appear again, we can leverage the cross-sentence signals saved in their notes to enhance semantics to help pre-training. TNF saves 60% of training time for BERT when reaching the same performance. If trained with the same number of updates, TNF outperforms original BERT pre-training by a large margin in downstream tasks.

6 Acknowledgments

We would like to thank Caiming Xiong for the insightful discussions.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Tom Bosc, Stanislaw Jastrzebski, Edward Grefenstette, Pascal Vincent, and Yoshua Bengio. Learning to compute word embeddings on the fly. arXiv preprint arXiv:1706.00286, 2017.
Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training text encoders as discriminators rather than generators. In *International Conference on Learning Representations*, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

Ahmed El-Kishky, Frank Xu, Aston Zhang, and Jiawei Han. Parsimonious morpheme segmentation with an application to enriching word embeddings. In *2019 IEEE International Conference on Big Data (Big Data)*, pp. 64–73. IEEE, 2019.

Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom Kwiatkowski. Entities as experts: Sparse memory access with entity supervision. *arXiv preprint arXiv:2004.07202*, 2020.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Representation degeneration problem in training natural language generation models. *arXiv preprint arXiv:1907.12009*, 2019.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu. Frage: Frequency-agnostic word representation. In *Advances in neural information processing systems*, pp. 1334–1345, 2018.

Linyuan Gong, Di He, Zhiuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of bert by progressively stacking. In *International Conference on Machine Learning*, pp. 2337–2346, 2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-augmented language model pre-training. *arXiv preprint arXiv:2002.08909*, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770–778, 2016.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization through memorization: Nearest neighbor language models. *arXiv preprint arXiv:1911.00172*, 2019.

Yerbolat Khassanov, Zhiping Zeng, Van Tung Pham, Haihua Xu, and Eng Siong Chng. Enriching rare word representations in neural language models by embedding matrix augmentation. *arXiv preprint arXiv:1904.03799*, 2019.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language models. In *Thirtieth AAAI conference on artificial intelligence*, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *CoRR*, abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical machine translation. In *ACL*, 2007.

Ray R Larson. Introduction to information retrieval. *Journal of the American Society for Information Science and Technology*, 61(4):852–853, 2010.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019.

Minh-Thang Luong, Richard Socher, and Christopher D Manning. Better word representations with recursive neural networks for morphology. In *Proceedings of the Seventeenth Conference on Computational Natural Language Learning*, pp. 104–113, 2013.

Tamás Makany, Jonathan Kemp, and Itiel E Dror. Optimising the use of note-taking as an external cognitive aid for increasing learning. *British Journal of Educational Technology*, 40(4):619–635, 2009.
Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision training. *arXiv preprint arXiv:1710.03740*, 2017.

Myle Ott, Michael Auli, David Grangier, and Marc’ Aurelio Ranzato. Analyzing uncertainty in neural machine translation. *arXiv preprint arXiv:1803.00047*, 2018.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. *arXiv preprint arXiv:1904.01038*, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *arXiv preprint arXiv:1910.10683*, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning with memory-augmented neural networks. In *International conference on machine learning*, pp. 1842–1850, 2016.

Cicero D Santos and Bianca Zadrozny. Learning character-level representations for part-of-speech tagging. In *Proceedings of the 31st international conference on machine learning (ICML-14)*, pp. 1818–1826, 2014.

Timo Schick and Hinrich Schütze. Rare words: A major problem for contextualized embeddings and how to fix it by attentive mimicking. In *AAAI*, pp. 8766–8774, 2020.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. *CoRR*, abs/1508.07909, 2015. URL http://arxiv.org/abs/1508.07909.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in nlp. *arXiv preprint arXiv:1906.02243*, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pp. 5998–6008, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE: A multi-task benchmark and analysis platform for natural language understanding. *CoRR*, abs/1804.07461, 2018. URL http://arxiv.org/abs/1804.07461.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In *arXiv preprint arXiv:1506.06724*, 2015.