Optimal Partitioned-Interval Detection Binary Quantum Receiver with Practical Devices

Ke Li, Bing Zhu
Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui 230027, China
e-mail: zbing@ustc.edu.cn

Abstract
Partitioned-interval detection binary quantum receiver with non-ideal devices is theoretically analyzed. Using global optimized partition strategy, relatively large gain over standard quantum limit (SQL) is obtained with small partition number for certain mean photon number.

I. INTRODUCTION
In 1970s, based on a full quantum analysis, Helstrom obtained the ultimate lower bound to the error probability of hypothesis test [1]. Since then, many efforts have been devoted to design practical receivers able to approach such a bound [2-8]. Recently, based on Dolinar receiver [2,3] and optimal displacement receiver [4,5], Vilnrotter proposed a new binary quantum receiver with partitioned-interval detection and constant-intensity local lasers [6]. Compared with Dolinar receiver, it is easier to implement interval detection and constant-intensity local lasers [2,3]. And optimal displacement receiver [4,5] is theoretically analyzed. Using global “modified sequence” interpretation [6], we can obtain the ultimate lower bound to the error probability is different. Varying measurement on each segment. In Fig. 1, the signal interval T is partitioned to N disjoint segments t_1, t_2, \cdots, t_N ($t_1+t_2+\cdots+t_N = T$). Each segment corresponds to a coherent state signal $|\pm \alpha_i\rangle$ ($i=1,2,\cdots,N$), which satisfy $|\alpha_i|^2 + |\alpha_i^2|^2 + \cdots + |\alpha_n|^2 = |\alpha|^2$. And $\alpha_i (i=1,2,\cdots,N)$ is the photon counts of each segment. Considering the “modified sequence” interpretation [6], we can obtain iterative equations (1) - (4).

\[
\begin{align*}
&\begin{cases}
\ p_{0,i} = P_0, \\
\ p_{1,i} = P_{0,0},
\end{cases} \\
&\begin{cases}
\ p_{1,i} = P_{0,0}, \\
\ p_{0,i} = 1 - P_{0,1},
\end{cases} \\
&\ p_{0,i} = e^{-\eta(\sqrt{2\xi} + \beta_i \sqrt{\alpha})}, i = 1,2,\cdots,N \\
&\ p_{1,i} = 1 - e^{-\eta(\sqrt{2\xi} + \beta_i \sqrt{\alpha})}, i = 1,2,\cdots,N
\end{align*}
\]

\[
P(C | \alpha_i, \beta_i^*) = p_{0,i} e^{-\eta(\sqrt{2\xi} + \beta_i \sqrt{\alpha})} + p_{1,i} [1 - e^{-\eta(\sqrt{2\xi} + \beta_i \sqrt{\alpha})}]
\]

\[
P_{e,i} = 1 - P(C | \alpha_i, \beta_i^*)
\]

where $p_{0,i}$ ($q=0,1$) is a priori probabilities of hypothesis $H_{q,i}$ of each segment. $P_{e,i}^O$ is the error probabilities of the ODR corresponding to each segment. The optimal displacement $\beta_i = \beta^*_{e,i}$ of each segment can be numerically solved from transcendental equation (2). η, ν, τ, and ξ are quantum efficiency of detector, dark counts of detector, beam splitter transmittance and mode match factor of the ODR, respectively. At the end of the iteration process, the error probability of partitioned receiver with non-ideal factors P_E is obtained,

\[
P_E(t_1,t_2,\cdots,t_N) = P_{e,N}
\]

III. NUMERICAL SIMULATION RESULTS

From equation (5), with different partition strategies, the error probability is different. Varying t_1, t_2, \cdots, t_N numerically, optimal partition strategy can be obtained by minimizing $P_E(t_1, t_2, \cdots, t_N)$. Vilnrotter’s N-segment receiver works by iteratively considering the first ($N-1$) segments of an N-segment receiver as an optimized 2-segment receiver. In addition to Vilnrotter’s partition strategy, another simple strategy is identical partition with equal t_i.
works relatively better than SQL, but with increasing Helstrom bound and the SQL. Form solid lines in fig. 2 (a) the black solid lines and dotted lines represent the 0.001 and non-ideal case, respectively. In both figures, the black solid lines partitioned receiver. Solid line and dashed line corresponds to ideal case for ideal cases (solid lines), non-ideal cases (dashed lines), parameters \(\eta = 1, \nu = 0, \tau = 1, \) and \(\xi = 1, \) while for non-ideal cases (dashed lines), parameters \(\eta = 0.9, \nu = 0.001, \tau = 0.99, \) and \(\xi = 0.995 \) are used. In both figures, the black solid lines and dotted lines represent the Helstrom bound and the SQL. Form solid lines in fig. 2 (a) and (b), we note that in ideal cases, Vilnrotter’s receiver works relatively better than SQL, but with increasing \(N, \) it rapidly approaches its performance limit. When the number \(N \) is larger than 3, the additional performance gain is not obvious with increasing \(N. \) But in non-ideal conditions, as dashed lines in Fig. 2 (a) and (b), the situation is different. When the imperfect factors are considered, the receiver performance is degraded. In this situation, Vilnrotter’s receiver gain over SQL becomes smaller than ideal case. What’s more, for large mean photon number, the error probabilities are even high than SQL.

However, as seen from Fig. 2 (c) and (d), in ideal case, by simpler identical partition with large \(N, \) the receiver performance can surpass Vilnrotter’s receiver performance limit. But in non-ideal cases, the gain is not obvious for small mean photon number.

In order to get more gain with small \(N \) over SQL, global optimized partition strategy is used. As in Fig. 2 (c) and (d), though in ideal case, global optimized partition with small \(N \) (here \(N = 4 \)) is not better than identical partition with large \(N \) (here \(N = 15 \)), in non-ideal case, the former works slightly better than the latter.

IV. CONCLUSIONS

According to the above results, global optimized partition with small \(N \) is preferred for practical high rate implementation. It should be mentioned that, for some higher modulation formats, such as PPM and QPSK, sub-SQL quantum receiver have been experimentally demonstrated [7, 8]. But physically realizable techniques for other modulation formats (such as QAM), and high rate implementation remains a major challenge.

REFERENCES

[1] C. W. Helstrom, Quantum Detection and Estimation Theory, New York: Academic Press, 1976
[2] S. J. Dolinar, “An optimum receiver for the binary coherent state quantum channel,” MIT RLE Quarterly Progress Report, Tech. Rep. 111, pp. 115-120, 1973
[3] R. L. Cook, P. J. Martin, and J. M. Geremia, “Optical coherent state discrimination using a closed-loop quantum measurement,” Nature, vol. 446, pp. 774-777, April 2007.
[4] M. Takeoka and M. Sasaki, “Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers,” Phys. Rev. A, vol 78, pp. 022320, August 2008.
[5] K. Tsujino, D. Fukuda, G. Fujii, S. Inoue, M. Fujiwara, M. Takeoka, and M. Sasaki, “Quantum receiver beyond the standard quantum limit of coherent optical communication,” Phys. Rev. Lett., vol. 106, pp. 250503, June 2011.
[6] V. A. Vilnrotter, “Quantum receiver for distinguishing between binary-coherent-state signals with partitioned-interval detection and constant-intensity local lasers,” NASA IPN Progress Report, vol. 42-189, May 2012.
[7] J. Chen, J. L. Habif, Z. Dutton, R. Lazurus and S. Guha, “Optical codeword demodulation with error rates below the standard quantum limit using conditional nulling receiver,” Nature Photonics, vol. 6, pp. 374-379, June 2012.
[8] F. E. Becerra, J. Fan, G. Baumgartner, J. Goldhar, J. T. Kosloski, A. Migdall, “Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination,” Nature Photonics, published online 6 January 2013.

Fig. 2. The error probability (a), (c) and the gain over SQL (b), (d) of partitioned receiver. Solid line and dashed line corresponds to ideal case and non-ideal case, respectively. In both figures, the black solid lines and dotted lines represent the Helstrom bound and the SQL.

Fig. 2 illustrates the error probability and the gain over SQL of partitioned receiver. For ideal cases (solid lines), we use parameters \(\eta = 1, \nu = 0, \tau = 1, \) and \(\xi = 1, \) while for non-ideal cases (dashed lines), parameters \(\eta = 0.9, \nu = 0.001, \tau = 0.99, \) and \(\xi = 0.995 \) are used. In both figures, the black solid lines and dotted lines represent the Helstrom bound and the SQL. Form solid lines in fig. 2 (a) and (b), we note that in ideal cases, Vilnrotter’s receiver works relatively better than SQL, but with increasing \(N, \)