The differential rotation of ϵ Eri from MOST data

H.-E. Fröhlich

Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Received 2007 Nov 2, accepted 2007 Nov 5
Published online 2007

Key words stars: individual (Epsilon Eridani) – stars: rotation – starspots – methods: data analysis – methods: statistical

From high-precision MOST photometry spanning 35 days the existence of two spots rotating with slightly differing periods is confirmed. From the marginal probability distribution of the derived differential rotation parameter k its expectation value as well as confidence limits are computed directly from the data. The result depends on the assumed range in inclination i, not on the shape of the prior distributions. Two cases have been considered: (a) The priors for angles, inclination i of the star and spot latitudes β_1, β_2, are assumed to be constant over i, β_1, β_2. (b) The priors are assumed to be constant over $\cos i, \sin \beta_1, \sin \beta_2$. In both cases the full range of inclination is considered: $0^\circ \leq i \leq 90^\circ$. Scale-free parameters, i.e. periods and spot areas (in case of small spots) are taken logarithmically. Irrespective of the shape of the prior, k is restricted to $0.03 \leq k \leq 0.10$ (one-σ limits). The inclination i of the star is photometrically ill-defined.

1 Introduction

In late-type stars with their deep convection zones non-uniform rotation is driven by the action of the Coriolis force on that convective turbulence (cf. Kitchatinov & Rüdiger 1993). Now quantitative models of differential rotation for the Sun and solar-like stars are available (Rüdiger & Kitchatinov 2005; Küker & Rüdiger 2005; Küker [these proceedings]) which should be compared with real stars.

The outcome of these theoretical efforts is a lapping time which is for a given main-sequence star nearly independent of its rotation period (in the case of the Sun, a G2 dwarf, roughly 100 days).

Precision photometry of a spotted star with spots differing in latitude allows a direct measurement of the differential rotation parameter k. It parameterizes the surface rotation. With P_{eq} denoting the equatorial rotation period that at latitude β is $P_{\beta} = P_{eq}/(1 - k \sin^2 \beta)$.

Here the MOST data (Croll et al. 2006; Croll 2006) of the star ϵ Eri have been reanalyzed in a Bayesian framework. The motivation was to get realistic error estimates by computing k’s marginal distribution and to find out, how it depends on the chosen prior. In the essence a Bayesian approach explores the whole likelihood mountain in the N-dimensional parameter space. It looks not only to the most probable set of parameter values, but provides expectation values. Moreover, from a marginal distribution reliable confidence limits can be easily derived.

2 The MOST data

The MOST photometric satellite (Walker et al. 2003) observed three consecutive rotations of ϵ Eri in 2005. The data consist of 492 data points, one point per orbit of the satellite. The point-to-point precision of the data is 50 ppm rms (i.e. ± 0.00005 mag). The rectified light curve (Fig. 1) spanning 35 days shows an overall variation of a hundredth of a magnitude.
3 A Bayesian data analysis

In the case of two circular spots the light curve is determined by nine parameters: two periods, two epochs, two latitudes, two areas, and the inclination of the star. The parameters specifying limb darkening and spot rest intensity are assumed to be given (cf. Croll et al. 2006).

There are nuisance parameters: an offset in the photometric zero point and a long term trend in the data. With these two parameters introduced shifting the light curve vertically and even adding a trend does not alter the results. The flux error is considered a Gaussian with unknown variance. Integrating away that error is considered a Gaussian with unknown variance.

The result, especially the star’s inclination \(i\), depends on the prior distribution functions. In the following it is assumed that rotational frequencies as well as spot areas (if small compared with the star), i.e. parameters missing a characteristic scale, have constant priors if taken logarithmically. Two cases are considered: In Case A the prior is assumed constant over the inclination \(i\) and the spot latitudes \(\beta_1\) and \(\beta_2\) as in the Croll (2006) paper. In Case B it is assumed constant over \(\cos i\), \(\sin \beta_1\), \(\sin \beta_2\), respectively. An inclination prior constant over \(\cos i\) means that nothing is a priori known about the orientation of the rotational axis. A latitude prior constant over \(\sin \beta\) takes into account that there are more possibilities to locate by chance a spot near the equator than near the poles.

In order to explore the likelihood mountain over a nine-dimensional parameter space the Markov chain Monte Carlo (MCMC) method (cf. Press et al., 2007) has been applied. The results should be therefore best compared with the analysis of the MOST data by Croll (2006), who has employed that MCMC technique.

A set of 64 Markov chains was generated. Each chain has performed \(10^7\) steps. After a burn-in period of 1000 steps every 1000th successful step has been recorded to suppress the correlation between successive steps. For modeling light curves Budding’s star-spot model (1977) has been used.

4 Results

Expectation values and modes as well as one-\(\sigma\) confidence limits are presented in Table 1, augmented by the solution of Croll (2006; his “Wide Prior” Case). The Case-B probability distributions for the parameters \(k\) and \(i\) are shown in Figs. 2 and 3, respectively. Especially the inclination parameter \(i\) proves ill-defined by photometry alone. There is no strong correlation between \(i\) and \(k\) (Fig. 4).

The differences between the two cases A and B are marginal, i.e. the outcome is rather insensitive to the shape of the prior. Most important is the restriction of the inclination \(i\) to values between \(15^\circ\) and \(40^\circ\) in the “Wide Prior” Case of the Croll MCMC analysis. (The marginalized likelihood of \(i\), the last plot of his Fig. 3, indicates that inclinations beyond \(40^\circ\) are not ruled out.) Here the whole range, \(0^\circ \leq i \leq 90^\circ\), is taken into account. It includes a second peak in the likelihood mountain: \(i \approx 72^\circ\), \(\beta_1 \approx 61^\circ\), \(\beta_2 \approx 73^\circ\). This high-\(i\) solution is even more probable, by a factor of 4.6, then the best low-\(i\) solution (\(i \approx 24^\circ\), \(\beta_1 \approx 14^\circ\), \(\beta_2 \approx 25^\circ\)).

Contrary to the Croll solution the second spot is always visible.

By fitting spectroscopic measurements (2000/2001) to a spot/plage model Biazzo et al. (2007) find two spots but larger than ours. By the way, this could be due to the lower temperature contrast between spot and photosphere these
Table 1 Results: Given are the expectation values, the modes (Case B) and 1σ errors. Periods P are in days, epochs are with regard to $E = $ HJD - 2,451,545. Note that the Case-A i and β_1 are both bi-modal. To give only one interval, for once the 90% confidence region is chosen.

parameter	Case A mean i	Case B mean i	Croll (2006) mode i
differential rotation k	0.083$^{+0.012}_{-0.005}$	0.089$^{+0.012}_{-0.004}$	0.053$^{+0.004}_{-0.008}$
inclination i	46$^{+6}_{-26}$	44$^{+6}_{-11}$	36$^{+6}_{-19}$
1st latitude β_1	35$^{+1}_{-25}$	33$^{+1}_{-9}$	25$^{+1}_{-9}$
2nd latitude β_2	51$^{+2}_{-12}$	48$^{+8}_{-18}$	48$^{+8}_{-18}$
1st radius γ_1	5$^{+1}_{-1}$	5$^{+1}_{-1}$	4.9$^{+1}_{-1}$
2nd radius γ_2	7$^{+1}_{-1.5}$	7$^{+1}_{-1.3}$	6.6$^{+1}_{-1.3}$
1st period P_1	11.349$^{+0.037}_{-0.046}$	11.349$^{+0.037}_{-0.034}$	11.35$^{+0.03}_{-0.03}$
2nd period P_2	11.554$^{+0.020}_{-0.020}$	11.554$^{+0.019}_{-0.020}$	11.55$^{+0.02}_{-0.02}$
1st epoch E_1	1230.43$^{+0.20}_{-0.20}$	1230.41$^{+0.19}_{-0.22}$	1230.43$^{+0.20}_{-0.22}$
2nd epoch E_2	1226.47$^{+0.11}_{-0.12}$	1226.46$^{+0.11}_{-0.12}$	1226.47$^{+0.11}_{-0.12}$

Fig. 4 The parameters of differential rotation k and inclination i are somewhat correlated (Case B).

authors have found. Perhaps the spots are persistent. The stated spot latitudes, $\beta_1 \approx 21^\circ$ and $\beta_2 \approx 48^\circ$, are within the uncertainties of our estimate.

Equatorial rotational period ($P_{eq} = 11.2$ d) and radius ($0.72 R_\odot$) of ε Eri are well known. So in principle spectroscopic determinations of the projected rotational velocity may restrict the inclination i. Unfortunately, ε Eri rotates slowly. Saar & Osten (1997) find $v \sin i \approx 1.7 \pm 0.3$ km/s. This leads to $\sin i = 0.5 \pm 0.3$ hinting at the low-i solution, but is too uncertain as to constrain the range of i values very much. A recent compilation by Valenti & Fischer (2005) gives $v \sin i \approx 2.4 \pm 0.5$ km/s. This favours an inclination close to 50°.

One should note that the planetary companion (Hatzes et al. 2000) as well as a 130 AU dust ring show both an inclination distinctly below 30°, namely 26°2 (Benedict et al. 2006) and $\approx 25^\circ$ (Greaves et al. 2005), respectively.

5 Conclusions

As expected, with $0.03 \leq k \leq 0.10$, the estimated differential rotation parameter k proves smaller than that of the Sun ($k_\odot \approx 0.2$). The horizontal shear is $0.017 \leq \delta \Omega \leq 0.056$ rad/d, the lapping time 130 d. An independent estimate of the star’s inclination would exclude either the low-i solution or the high-i one and would help to constrain k even more.

Acknowledgments: The author thanks the MOST team for the ε Eri data and W.W. Weiss from Vienna for valuable discussions.

References

Benedict, G.F., McArthur, B., Gatewood, G., et al.: 2006, AJ 132, 2206
Biazzo, K., Frasca, A., Henry, G.W., Catalano, S., Marilli, E.: 2007, ApJ 656, 474
Budding, E.: 1997, Ap&SS 48, 207
Croll, B., Walker, G.A.H., Kuschnig, R., et al.: 2006, ApJ 648, 607
Croll, B.: 2006, PASP 118, 1351
Greaves, J.S., Holland, W.S., Wyatt, M.C., et al.: 2005, ApJ 619, L187
Hatzes, A.P., Cochran, W.D., McArthur, B., et al.: 2000 ApJ 544, L145
Kitchatinov, L.L., Rüdiger, G.: 1993, A&A 276, 96
Kükker, M., Rüdiger, G.: 2005, AN 326, 265
Kükker, M.: 2007, this volume
Lewis, A., Bridle, S.: 2002, PhRvD 66, 103511
Rüdiger, G., Kitchatinov, L.L.: 2005, AN 326, 379
Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: 2007, Numerical Recipes, 3rd Edition, Cambridge University Press
Saur, S.H., Osten, R.A.: 1997, MNRAS 284, 803
Valenti, J.A., Fischer, D.A.: 2005, ApJS 159, 141
Walker, G., Matthews, J., Kuschnig, R., et al.: 2003, PASP 115, 1023