Assessment of the Use of Preoperative CT Scan Image for Predicting Lymph Nodes for Resection of Colorectal Cancer: A Retrospective Study

Amin Elzaki

Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia

Keywords
Preoperative CT scan · Lymph nodes · Predictive value · Diagnostic accuracy · Colorectal cancer

Abstract
Introduction: Colorectal cancer (CRC) is the most common cancer that accounts for nearly 10% of the cancers, with 1.36 million people worldwide. Nodal status (N-stage) evaluation was inferior between observers, which considered CT scanning a good N-stage. We hypothesized that CRC patients’ preoperative CT scan imaging predicts the nodal and metastatic stage. Methods: This noninterventional retrospective study was carried out using patients’ medical records, including medical history and results of diagnostic tests, and preoperative clinical and pathological stages. All direct identifiers have been removed from all patient data. This study included 96 patients who underwent resection curative surgery for CRC at the Tertiary Hospital, Sudan, between March 2009 and December 2020. Results: The median age was 69 years (47–74 years), and 49 (51.04%) were female. The tumor stage of the patients was 4, 11, 74, and 7 as T1, T2, T3, and T4, respectively. A total of 38 patients with a malignant spread in lymph nodes were observed, and the median lymph node count was 11 (range 4–52). Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, positive predictive value (PPV), negative predictive value (NPV), and accuracy calculated for the malignant lymph nodes were 75.56% (95% CI: 60.46–87.12%), 45.10% (95% CI: 31.13–59.66%), 1.38 (95% CI: 1.02–1.86), 0.54 (95% CI: 0.30–0.98), 54.84% (95% CI: 47.38–62.09%), 67.65% (95% CI: 53.53–79.15%), and 59.38% (95% CI: 48.87–69.29%), respectively. Conclusion: The preoperative CT scan images were used to predict lymph nodes with a diagnostic accuracy of 59.38% for N-stage in patients with CRC.
bowel habits, anemia, occult blood, and rectal bleeding [5–7]. CRC's pathology begins from the aberrant crypt, evolving into a neoplastic precursor lesion called polyp and exacerbated into advanced CRC [5–7]. During surgery of colorectal resection, to localize and ensure the colorectal tumor were used many techniques (colono-
scopic metallic clips, intraoperative ultrasound, preoperative CT colonography) recently [8–11]. There are many risk factors of CRC, published in many recent literatures, and some of them are obesity, lack of physical activity, tobacco and alcohol consumption, aging, and recurrent bowel inflammatory [1, 2].

The computed tomography (CT) scan is the imaging method used to detect polyps and CRC [12]. It is used for locoregional and distant staging accuracy and helps guide the treatment decision [12–14]. However, an MRI scan is used routinely to identify the locoregional stage of CRC [15]. Locoregional staging for CRC using CT scans is crit-
ical because neoadjuvant systemic therapy can downsize locally advanced tumors [12–15]. Recent studies indicate that the preoperative examination of patients with CRC using CT scanning is essential to diagnose the primary tumor and distant metastases [16]. However, the preoperative CT scan is theoretically applicable for the prediction of lymph node involvement. Besides that, the classification of tumor-node-metastasis TNM staging, histo-
logical subtyping, grading, perineural, venous invasion, and tumor-based markers is increasingly being recognized. Moreover, many pathologists and radiologists have commonly used the TNM classification for the staging of CRC [17–19].

Recent reports indicate that the accuracy of CT scans for preoperative CRC staging ranges from 48% to 77% [20–22]. However, many reports suggest limitations of CT staging such as failure to distinguish conclusive meta-
static nodes, nodes overlap with tumor and unreliability of the depth of tumor invasion via colonic wall. Notably, clinical studies indicate excellent outcomes for evaluating tumor invasion grade with poor sensitivity, specificity, and diagnostic odds ratios to evaluate nodal status (N-stage). In particular, nodal status (N-stage) evaluation was very poor between observers, which considered CT scanning reasonable N-stage [20–22].

We hypothesized that CRC patients’ preoperative CT scan imaging predicts the nodal and metastatic stage re-
lating to the accuracy, sensitivity, specificity, positive predict-
dictive value (PVV), and negative predictive value (NPV). The primary aim of our study was to assess the reliability of CT scan imaging predicting the histological N- and M-stage.

Materials and Methods

This non-interventional retrospective study was carried out using patients’ medical records, including medical history and results of diagnostic tests, and preoperative clinical and pathological stages. All direct identifiers have been removed from all patient data. This study included 96 patients who underwent resection curative surgery for CRC at the Tertiary Hospital, Sudan between March 2009 and December 2020.

Patients with rectal cancer, chemotherapy, neoadjuvant radio-
therapy, distant metastases, and not scanned preoperatively were excluded from this study. The radiologist received data only the endoscopic location of the primary tumor and no other information about the patients. The radiologist has reviewed all the preoperative CT scans independently and was filled out the case record form. Based on the radiological positive nodal status from the ear-
lier studies, the regional lymph nodes of >1 cm and clusters of ≥3 cm lymph nodes were scored as N+. In contrast, the nonappear-
ance of clustered or enlarged lymph nodes was scored as N0 [23–
25]. Moreover, the radiologist has recorded the information on the use of either oral or intravenous contrast. We ensured that all the participants were filled out their case recorded form and confirmed any disagreement with the radiologist prior to statistical analysis.

The lymph nodes were examined carefully with dissection of the specimen without any fat-clearing techniques and palpation, and findings for each variable were recorded on a standard pro-
forma. Based on the original Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 criteria, lymph nodes were classified preoperatively. A metastatic tumor with one or more lymph nodes was considered as N+. Moreover, the significant variables such as the number of large lymph nodes, the total number of lymph nodes, and enhancing lymph nodes were also recorded. The distinction between subgroup analysis was performed and confirmed with the TNM classification system (tumor [T] stage, nodal [N] stage, and metastases [M]). The histology of the re-
sected colonic specimen was used as the standard. Patients with T1 or T2 tumors on CT scans were classified as good radiological cancer, and T3 or T4 tumors were classified as poor radiological cancer.

CT Scanning

The preoperative CT scanning was performed for all the participants using a CT scanner with slice thickness 5, 3, and 2 mm, pixel size 0.47, and reconstruction matrix 512. The CT scan image was taken with sufficient quality to analyze, and impaired images with motion or metal prostheses were repeated, and the repetition of the sequence was a part of the scanning protocol. Radiologists examined all CT scans on 3 mm axial sliced images, and the maximum short axis in the axial plane was measured.

Statistical Analysis

All the data were statistically analyzed using the SPSS 22.0 (SPSS Inc., Chicago, III, DE, USA). All the variables such as sensi-
tivity, specificity, accuracy, true positive (TP), false positive (FP), true negative (TN), false negative (FN), interobserver agreement, PVV, and NPV were calculated on all cases.
Results

Baseline Characteristics of the Study Population

The baseline characteristics of the patients are shown in Table 1. A total of 127 patients have undergone resection of CRC between March 2009 and December 2020 in our hospital. Out of these 127 patients, there were 96 patients included based on the inclusion criteria. The median age was 69 years (ranges 47–74 years), and 49 (51.04%) were female.

Based on the histological confirmation of the colonic section, the tumor stage of the patients was 2, 11, 74, and 7 as T1, T2, T3, and T4, respectively. Notably, a higher percentage of tumors (39.58%) were located in the sigmoid colon region, and a minor percentage of the tumors (8.33%) were found in the descending colon region. Similarly, the nodal stage of the patients was 53, 25, and 18 as N0, N1, and N2, respectively. Remarkably, a higher percentage of tumors without metastases stages (83.33%) were observed.

Lymph Nodes in Preoperative Imaging

A total of 38 patients with a malignant spread in lymph nodes were observed, and the median lymph node count was 11 (range 4–52).

CT Scan Accuracy for Lymph Node Metastasis

The predicted and actual abnormal and normal rates of the CT scan are shown in Table 2. The predicted and actual abnormal and normal rates of the CT scan were found as 34 TPs, 28 FPs, 23 TNs, and 11 FNs. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, PPV, NPV, and accuracy calculated for the malignant lymph nodes were 75.56% (95% CI: 60.46–87.12%), 45.10% (95% CI: 31.13–59.66%), 1.38 (95% CI: 1.02–1.86), 0.54 (95% CI: 0.30–0.98), 54.84% (95% CI: 47.38–62.09%), 67.65% (95% CI: 53.53–79.15%), and 59.38% (95% CI: 48.87–69.29%), respectively.

Subgroup analysis of the predicted and actual abnormal and normal differences between the combined samples N1 + N0 and N2 + N0 disease is shown in Table 3. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, PPV, NPV, and accuracy calculated for the distinction between N1-N0 disease were 72.97% (95% CI: 55.88–86.21%), 48.78% (95% CI: 32.88–64.87%), 1.42 (95% CI: 1.00–2.04), 0.55 (95% CI: 0.30–1.03), 47.44% (95% CI: 36.01–59.07%), 56.25% (95% CI: 47.35–64.76%), and 66.67% (95% CI: 51.94–78.73%), respectively. Similarly, for N2 versus N0 disease, we observed that sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, PPV, NPV, and accuracy of the subgroup analysis of the predicted and actual abnormal and normal differences between combined samples M1 + M0 were 75.68% (95% CI: 58.80–88.23%), 41.18% (95% CI: 24.65–59.30%), 1.29 (95% CI: 0.92–1.80), 0.59 (95% CI: 0.29–1.18), 58.33% (95% CI: 50.03–66.19%), 60.87% (95% CI: 43.68–75.73%), and 59.15% (95% CI: 46.84–70.68%), respectively.

Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, PPV, NPV, and accuracy of the subgroup analysis of the predicted and actual abnormal and normal differences between combined samples M1 + M0 were 75.68% (95% CI: 58.80–88.23%), 41.18% (95% CI: 24.65–59.30%), 1.29 (95% CI: 0.92–1.80), 0.59 (95% CI: 0.29–1.18), 58.33% (95% CI: 50.03–66.19%), 60.87% (95% CI: 43.68–75.73%), and 59.15% (95% CI: 46.84–70.68%), respectively.

Preoperative CT Scan and Colorectal Cancer

Dubai Med J 2022;5:171–176
DOI: 10.1159/000525390
173
were 70.83% (95% CI: 55.94–83.05%), 35.42% (95% CI: 22.16–50.54%), 1.10 (95% CI: 0.83–1.45), 0.82 (95% CI: 0.46–1.48), 52.31% (95% CI: 45.39–59.14%), 54.84% (95% CI: 40.39–68.51%), and 53.12% (95% CI: 42.66–63.39%), respectively (Table 4).

Discussion

Our findings demonstrated the use of preoperative CT scan images to predict lymph nodes with a diagnostic accuracy of 59.38% for N-stage in patients with CRC. Despite significant research with emerging technology, the reliability of preoperative CT scan imaging for predicting the histological N- and M-stage remains elusive. Consistent with earlier studies, our findings also failed to improve the accuracy and other variables [8, 15, 23, 25].

Voluminous reports indicate that preoperative CT scan supports histopathological confirmation in making treatment decisions and modifies clinical management in patients with CRC [26–28]. Moreover, a preoperative CT scan often relates to the diagnosis of metastases of the liver. We excluded patients with rectal cancer, chemotherapy, neoadjuvant radiotherapy, and distant metastases to investigate whether, contrary to conventional, preoperative CT staging could help predict outcomes. Little to few published data are available on the preoperative CT scan for predicted tumor stage with clinical outcomes. The presence of small-study effects [8] should also not be discounted. Although our analysis was performed over a period of 10 years, variability in the accuracy of our estimates might be observed as patient size increases. CT scans are also limited in their ability to distinguish lymph nodes that contain tumors.

The pathological TNM classic system of N-stage to CT staging was examined carefully with a standard proforma [17, 18]. The accuracy of N-stage prediction was 66.67% (N1 + N0) and (29) 59.15% (N2 + N0) with sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, PPV, and NPV of 72.97% versus 75.68%, 48.78% versus 41.18%, 1.42 versus 1.29, 0.55 versus 0.59, 47.44% versus 58.33%, and 56.25% versus 60.87%, respectively (Table 4).

Table 3. Subgroup analysis of patients N1 + N0 and N2 + N0
CT scan N+
CT scan N−
Sensitivity, %
Specificity, %
Positive likelihood ratio
Negative likelihood ratio
Positive predictive value, %
Negative predictive value, %
Accuracy, %

Table 4. Subgroup analysis of patients M1 + M0
CT scan N+
CT scan N−
Sensitivity, %
Specificity, %
Positive likelihood ratio
Negative likelihood ratio
Positive predictive value, %
Negative predictive value, %
Accuracy, %
blinded analyzed, and all the preoperative CT scans were examined. In particular, the preoperative CT scanning was performed with slice thicknesses 5, 3, and 2 mm. We found that subgroup analysis of N-stage with preoperative CT scan with slice thicknesses 3 and 2 mm had significant clinical outcomes than the slice thickness 5. Our findings indicate that emerging techniques with multislice and advanced CT scan images with multidimensional reconstruction may improve resolution and image quality to predict the N-staging.

Assessment of the lymph nodes using the preoperative CT scan image has several limitations and difficulties [8, 15, 22, 29, 30]. In particular, there are more inconsistent in the benchmarks for describing lymph nodes as metastatic in the preoperative CT scan image [8, 15, 22, 23, 29, 30]. Defining the radiological positive lymph nodes varies by size, morphology, clustered form, irregular borders, and combinations. Identification of benign with enlarged lymph nodes due to inflammation is challenging. In this context, there is rare literature on the relationship between the size of the lymph node and malignancy. Our findings provide evidence that the accuracy, specificity, sensitivities, and predictive value of preoperative CT scan images are poor, which could be the reason for the size of overlapping lymph nodes between benign and malignant. These findings were consistent with similar results relating to the MRI scan [29, 30, 32].

We observed a significant number of false-positive and false-negative lymph nodes, which could concern the clusters of three or more lymph nodes and the benign and metastasis: notably, bias in the radiological identification of positive lymph nodes and bias in describing or defining the lymph nodes. For instance, if a radiologist observed one or two small lymph nodes and superintended the third one with a more diminutive size. These findings might be that a significant number of preoperative CT scan images were N+, whereas these were probably not reported initially as N+. On the other hand, the patients may have large tumors with radiological positive lymph nodes and extended liver metastasis compared to patients with a small tumor or without distant metastasis.

Statement of Ethics

This study was conducted in accordance with the Declaration of Helsinki and was approved by the Scientific and Research Ethics Committee of AAU-FRSMI-0034/19 on March 1, 2019. The confidentiality of the patient data was ensured. Owing to the retrospective nature of the study, the need for written informed consent was waived according to the Scientific and Research Ethics Committee and the policy of the Tertiary Hospital, Sudan.

Conflict of Interest Statement

The author has no conflicts of interest to declare.

Funding Sources

This research received no external funding.

Author Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Data Availability Statement

The data that support the findings of this study are not publicly available due to their containing information that could compromise the privacy of research participants but are available from the corresponding author A.E.
References

1. Saad El Din K, Loree JM, Sayre EC, Gill S, Brown CJ, Dau H, et al. Trends in the epidemiology of young-onset colorectal cancer: a worldwide systematic review. BMC Cancer. 2020;20(1):288.

2. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89–103.

3. Sung H, Ferlay J, Soerjomataram I, Laversanne M, Siegel RL, Torre LA, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Pract. 2021;71(3):209–49.

4. Xie YH, Chen YX, Fang YJ. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5(1):22.

5. Holtedahl H, Borgquist L, Donker GA, Buninx F, Weller D, Campbell C, et al. Symptoms and signs of colorectal cancer, with differences between proximal and distal colon cancer: a prospective cohort study of diagnostic accuracy in primary care. BMC Fam Pract. 2021;22(1):148.

6. Smith D, Ballal M, Hodder R, Soin G, Selvachandran SN, Cade D. Symptomatic presentation of early colorectal cancer. Ann R Coll Surg Engl. 2006;88(2):185–90.

7. Inada R, Nagaoka T, Watanabe A, Yagi T, Mori Y, Kondo Y, et al. Comparison of outcomes between symptomatic and asymptomatic patients with colorectal cancer: a propensity score-matched analysis of surgical invasiveness, medical costs and oncological outcomes. BMJ Open Gastroenterol. 2017;4(1):e000146.

8. Acuna SA, Elmi M, Shah PS, Coburn NG, Quereshy FA. Preoperative localization of colorectal cancer: a systematic review and meta-analysis. Surg Endosc. 2017;31(6):2366–79.

9. Akgül O, Çetinkaya E, Erös S, Tuz M. Role of surgery in colorectal cancer liver metastases. World J Gastroenterol. 2014;20(26):8113–22.

10. Devoto L, Celentano V, Cohen R, Khan J, Chand M. Colorectal cancer surgery in the very elderly patient: a systematic review of laparoscopic versus open colorectal resection. Int J Colorectal Dis. 2017;32(9):1237–42.

11. Dumoulin FL, Hildenbrand R. Endoscopic resection techniques for colorectal neoplasia: current developments. World J Gastroenterol. 2019;25(3):300–7.

12. Pickhardt PJ. Imaging and screening for colorectal cancer with CT colonography. Radiol Clin North Am. 2017;55(6):1183–96.

13. Obaro AE, Burling DN, Plumb AA. Colon cancer screening with CT colonography: logistics, cost-effectiveness, efficiency and progress. Br J Radiol. 2018;91(1090):20180307.

14. Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016;11:967–76.

15. Kijima S, Sasaki T, Nagata K, Utano K, Lefor AT, Sugimoto H. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J Gastroenterol. 2014;20(45):16964–75.

16. Tan CH, Iyer R. Use of computed tomography in the management of colorectal cancer. World J Radiol. 2010;2(5):151–8.

17. Nagtegaal ID, Tot T, Jayne DG, McShane P, Nihlberg A, Marshall HC, et al. Lymph nodes, tumor deposits, and TNM: are we getting better? J Clin Oncol. 2011;29(18):2487–92.

18. Akagi Y, Fukushima T, Mizobe T, Shiratsuchi I, Byu Y, Yoshida T, et al. Challenges in staging systems for colorectal cancer: clinical significance of metastatic lymph node number in colorectal cancer and mesorectal extension in rectal cancer. Digestion. 2010;82(3):192–7.

19. Wang L, Hirano Y, Heng G, Ishii T, Kondo H, Hara K, et al. Prognostic utility of apical lymph node metastasis in patients with left-sided colorectal cancer. In Vivo. 2020;34(5):2981–9.

20. Dighe S, Blake H, Koh MD, Swift I, Arnaout A, Temple L, et al. Accuracy of multidetector computed tomography in identifying poor prognostic factors in colorectal cancer. Br J Surg. 2010;97(9):1407–15.

21. Horton KM, Abrams RA, Fishman EK. Spiral CT of colon cancer: imaging features and role in management. Radiographics. 2000;20(2):419–30.

22. Chamadol N, Ninpiethoon T, Bhudhisawasd V, Pairojkul C. The role of CT scan in preoperative staging of colorectal carcinoma. J Med Assoc Thai. 2005;88(12):1847–53.

23. Filippone A, Ambrosini R, Fuschi M, Marinelli T, Genovei D, Bonomo L. Preoperative T and N staging of colorectal cancer: accuracy of contrast-enhanced multi-detector row CT colonography: initial experience. Radiology. 2004;231(1):83–90.

24. Chi YK, Zhang XP, Li J, Sun YS. To be or not to be: significance of lymph nodes on pre-treatment CT in predicting survival of rectal cancer patients. Eur J Radiol. 2011;77(3):473–7.

25. Smith NJ, Bees N, Barbachano Y, Norman AR, Swift RJ, Brown G. Preoperative computed tomography staging of nonmetastatic colorectal cancer predicts outcome: implications for clinical trials. Br J Cancer. 2007;96(7):1030–6.

26. Kerner VA, Oliver GC, Eisenstat TE, Rubin RJ, Salvati EP. Is preoperative computerized tomography useful in assessing patients with colorectal carcinoma? Dis Colon Rectum. 1993;36(11):1050–3.

27. Barton JB, Langdale LA, Cummins JS, Stelzer M, Lyngc DC, Mock CN, et al. The utility of routine preoperative computed tomography scanning in the management of veterans with colon cancer. Am J Surg. 2002;183(5):499–503.

28. Machuley DC, Lyngc DC, Langdale LA, Stelzer M, McC, Mock CN, Billingsley KG. Clinical utility and cost-effectiveness of routine preoperative computed tomography scanning in patients with colon cancer. Am J Surg. 2005;189(5):512–7; discussion 517.

29. Acunas B, Rozanes I, Acunas G, Celik L, Sayi I, Gokmen E. Preoperative CT staging of colon carcinoma (excluding the recto-sigmoid region). Eur J Radiol. 1999;32(1):150–3.

30. Frency P, Marks WM, Ryan JA, Bolen JW. Colorectal carcinoma evaluation with CT: preoperative staging and detection of postoperative recurrence. Radiology. 1986;158(2):347–53.

31. Zerhouni EA, Rutter C, Hamilton SR, Balfe DM, Megibow AJ, Francis IR, et al. CT and MR imaging in the staging of colorectal carcinoma: report of the Radiologic Diagnostic Oncology Group II. Radiology. 1996;200(2):443–51.

32. Brown G, Richards CJ, Bourne MW, Newcombe RG, Radcliffe AG, Dallimore NS, et al. Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology. 2003;227(2):371–7.