EC₅S Ubiquitin Complex Is Recruited by KSHV Latent Antigen LANA for Degradation of the VHL and p53 Tumor Suppressors

Qi-Liang Cai, Jason S. Knight, Suhbash C. Verma, Philip Zald, Erle S. Robertson*

Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, Philadelphia, Pennsylvania, United States of America

Cellular protein degradation pathways can be utilized by viruses to establish an environment that favors their propagation. Here we report that the Kaposi’s sarcoma–associated herpesvirus (KSHV)-encoded latency-associated nuclear antigen (LANA) directly functions as a component of the EC₅S ubiquitin complex targeting the tumor suppressors von Hippel-Lindau (VHL) and p53 for degradation. We have characterized a suppressor of cytokine signaling box-like motif within LANA composed of an Elongin B and C box and a Cullin box, which is spatially located at its amino and carboxyl termini. This motif is necessary for LANA interaction with the Cul5–Elongin BC complex, to promote polyubiquitylation of cellular substrates VHL and p53 in vitro via its amino- and carboxyl-terminal binding domain, respectively. In transfected cells as well as KSHV-infected B lymphoma cells, LANA expression stimulates degradation of VHL and p53. Additionally, specific RNA interference–mediated LANA knockdown stabilized VHL and p53 in primary effusion lymphoma cells. Thus, manipulation of tumor suppressors by LANA potentially provides a favorable environment for progression of KSHV-infected tumor cells.

Introduction

Kaposi’s sarcoma–associated herpesvirus (KSHV) is a DNA tumor virus of the rhadinovirus subfamily associated with rare endothelial and lymphoid cancers which was first discovered in Kaposi’s sarcoma (KS) lesions in 1994 [1]. It is also tightly linked to other lymphoproliferative disorders including primary effusion lymphoma (PEL) and multicentric Castleman’s disease [2,3]. The rate of KS disease is increased by immunosuppression in both organ transplant patients and AIDS patients [4]. The KSHV-encoded latency-associated nuclear antigen (LANA) is initially identified as a DNA binding, nuclear transcription factor that also contributes to KSHV latent replication by maintaining the viral episome and is also involved in regulation of latency [5–8]. LANA targets downstream viral promoters through both direct DNA binding [9,10] and formation of protein complexes with at least four other cellular DNA binding transcription factors: CREB, CBP, Sp1, and STAT3 [11–15]. LANA also interacts physically with a number of cellular proteins, such as p53, pRB, and GSK3β, resulting in inhibition of p53-mediated apoptosis, chromosome instability, derepression of Rb-transcriptional activities, and dysregulation of β-catenin and the Wnt signaling pathway [16–19].

Protein ubiquitylation is important for regulation of a range of cellular processes in eukaryotes, including signal transduction, development, apoptosis, cell cycle progression, endocytosis, and immune response [20–22]. Many pathogens such as HPV (E6 deregulates p53) and HIV (Vif targets APOBEC3G) [23,24] have evolved numerous strategies to control protein degradation by mimicking, blocking, or redirecting the activity of the ubiquitin system [25]. In the ubiquitin proteolytic pathways, there are two distinct steps as follows: the covalent attachment of multiple ubiquitin molecules to the protein substrate and the degradation of the ubiquitylated protein by the 26S proteasome complex [22]. The system responsible for ubiquitin attachment consists of several components that act in concert. Using ATP as a substrate, a ubiquitin-activating enzyme E1 (i.e., Ub1) catalyzes the formation of a thioester bond between itself and ubiquitin and then transfers the activated ubiquitin to a ubiquitin-conjugating enzyme E2 (i.e., Ub5a), which together with a ubiquitin-protein ligase E3 or not specifically transfers ubiquitin to the target protein [21,26,27]. The E3 ligase is generally thought to be a group of multisubunit complexes which are mostly responsible for substrate specific recognition [21]. To date, this group consists of a superfamily of E3 ligase complex including the following: (1) SCF (Skp1-Cul1-F-box)—in this complex, Skp1 links the scaffold protein Cullin
Synopsis

Ubiquitin is a small 8.5-kDa polypeptide with 76 amino acids which is highly conserved in eukaryotes. Cellular proteins destined for degradation are covalently linked to ubiquitin by a process called ubiquitylation. This highly regulated process controls a broad range of fundamental cellular functions, including signal transduction, development, and apoptosis. Many pathogens invade host cells by mimicking, blocking, or redirecting the activity of the cellular ubiquitin system. Understanding the unique biological functions targeted by these pathogens is a key goal in developing strategies for prevention and protection against their invasions. This report describes a unique functional role of the latency-associated nuclear antigen (LANA) encoded by Kaposi’s sarcoma–associated herpesvirus, a large DNA virus that persists in primary effusion lymphoma and multicentric Castleman’s disease. LANA can modulate hypoxia-inducible factor 1α activities by down-regulation of the critical tumor suppressors von Hippel-Lindau (VHL) and p53 in B lymphoma cells. In this pathway, LANA directly mimics and serves as an adaptor molecule for a specific E3 ubiquitin complex through an unconventional protein motif, to stimulate the ubiquitylation and degradation of both VHL and p53. This is of fundamental importance because it raises the interesting question as to whether this process is linked to regulation of infection and pathogenesis by tumor viruses associated with human cancers.

Interaction with LANA. This can contribute to a disruption of the induced antiviral state during the KSHV latent infection.

Results

Identification of LANA as an Elongin BC Interacting Protein

Previously, to identify binding partners for KSHV-encoded latent protein LANA, a yeast two-hybrid screen was performed using LANA as bait, together with a cDNA library from human endothelial cells. One cDNA identified in this screen was found to encode Elongin C. Since Elongin C has been shown to directly bind to BC-box containing proteins which usually interact with Elongin B and C complex (Elongin

Figure 1. LANA Associates with the Elongin BC Complex

(A) The amino-terminal domain of LANA directly interacts with Elongin C but not Elongin B in vitro. The cDNA encoding N (1–340 aa), C (762-1162 aa), or NC (1–327 929-1162 aa) truncation of LANA with myc tagged were expressed in a coupled transcription/translation system in the presence of [35S]methionine. Aliquots (20 μl) of the translation products were pulled down by GST, GST–Elongin C, or GST–Elongin B, respectively. The pulldown complex as well as a 1-μl aliquot of the transcription/translation reaction (Input) were fractionated by SDS-PAGE, and detected by a Phosphorimag. The proteins of GST and GST fused with Elongin B or Elongin C were shown by Coomassie staining in the right panel. (B) Elongin C is critical for LANA binding to Elongin B. In vitro produced and [35S]-labeled proteins LANA N (1–340 aa), Elongin C, and Elongin B were incubated with anti-myc antibodies. The interacting complexes were resolved by SDS-PAGE and examined by a Phosphorimag. (C) LANA associates with Elongin BC complex in KSHV-infected cells. Cell lysates of BCBL-1, DG-75, BJAB, or BJAB with KSHV infection (K-BJAB) were subjected to IP against LANA, Elongin C, and Elongin B (Elo. B). DOI: 10.1371/journal.ppat.0020116.g001
The association of LANA with Elongin C in yeast is likely to also involve Elongin B. To confirm the binding results from the yeast two-hybrid screen, we examined in vitro binding assays of Elongin BC to LANA. In in vitro translated ^[35S]-labeled methionine, different truncated forms (N: 1–340 amino acids [aa], C: 762–1162 aa, and NC: 1–327 aa) of LANA with myc tag were incubated with glutathione S-transferase (GST)-fused Elongin B (Elo. B) or Elongin C (Elo. C) beads. As shown in Figure 1A, LANA did not bind Elongin B, whereas it clearly bound to Elongin C. Moreover, the amino-terminal domain of LANA predominately interacted with Elongin C. This was further confirmed by reverse immunoprecipitation (IP) using a myc-tagged LANA N truncated polypeptide (Figure 1B, lanes 5 and 6). In further experiments, association between LANA and the Elongin BC complex was assessed in co-IP experiments. Interestingly, Elongin B efficiently precipitated with the amino-terminal domain of LANA only when incubated along with Elongin C (Figure 1B, compare lanes 6 and 7).

To specifically address the question as to whether or not LANA does associate with the Elongin BC complex in KSHV-infected cells, co-IP assays were done in PEL cells positive for KSHV as well as an isogenic set of BJAB cell lines with and without KSHV infection. The results of this assay nicely showed that LANA associates with Elongin B as well as Elongin C in the PEL cell line BCBL-1 as well as in a KSHV-infected BJAB cell line (Figure 1C). This suggests that LANA does exist in complex with Elongin BC in KSHV-positive cells.

The LANA/Elongin BC Complex Interacted with a Cul5/Rbx1 Module

The Elongin BC complex was shown to be involved in ubiquitylation as a component of the ECS E3 complex. To determine whether the Elongin BC complex could function as an adaptor which links LANA to a Cullin/Rbx1 module, thus reconstructing an E3 ubiquitin ligase complex, IP assays against myc tag were performed on lysates of Saos-2 cells cotransfected with hemagglutinin (HA)-Rbx1 and HA-Cullin (Cul2 or Cul5) in the presence or absence of myc-tagged LANA expression vectors (Figure 2A). The results showed that LANA did not associate with the Cul2/Rbx1 module. However, LANA did assemble with the Cul5/Rbx1 module (Figure 2A). Further experiments with or without Elongin BC coexpression demonstrated that LANA–Elongin BC complex did assemble with the Cul5/Rbx1 module to reconstitute a multiprotein complex containing LANA, Elongin BC, Rbx1, and Cul5 (Figure 2B) and the Elongin BC complex can increase the affinity of LANA interaction with Cul5 and Rbx1 module (Figure 2B).

The SOCS-Box–Like Motif Is Essential for LANA Association with Cul5–Elongin BC Complex

A well-known family of Elongin BC–interacting proteins, including VHL tumor suppressor and SOCS proteins, has been recently identified as SOCS-box proteins [30]. These proteins directly interact with Elongin BC through their conserved BC-box motif ([A(P/S/T)]L-x3-C-x3-(A/I/L/V)] and associate with Cullin proteins through the conserved Cul-box motif [ΦxxLPxP] [30]. Moreover, the two Cul boxes, the Cul2 box and the Cul5 box, are specific for distinguishing binding with the different Cullin proteins (Cul2 or Cul5). To determine whether LANA interacts with Elongin BC and the Cullin protein through its SOCS-box motif, we first aligned the sequence of LANA with VHL and SOCS (1, 2, and 3) proteins. Our analysis showed that LANA probably also contains an SOCS-box–like motif based on the hydrophobic homology of consensus sequences. However, the BC box and Cul box in this viral SOCS-box motif are atypical as distinguished from the BC box which is usually close to the Cul box found in SOCS-box motifs of cellular proteins. In KSHV LANA these motifs were separately located from each other in the amino-terminal and the carboxyl-terminal domains. Furthermore, in contrast to the VHL Cul2 box and SOCS protein Cul5 box, the LANA Cul box was significantly similar to the Cul box of the SOCS protein family. This supports the evidence of LANA associated with Cul5, not Cul2, protein in the IP assay above. Additionally, the ORF73 homolog of LANA encoded by other gammaherpesviruses, including the rhesus monkey rhadinovirus (RRV) or herpesvirus saimiri (HVS A11 and C488), also contains a similar SOCS-box–like motif (Figure 3A).

To confirm that LANA associates with Elongin BC and Cul5 protein through its BC-box and Cul box motif, the corresponding site-specific mutation and deletion of the LANA SOCS-box–like motifs were generated. Co-IP assays using different LANA mutants showed that the BC-box motif deletion mutant resulted in a failure of LANA to bind with the Elongin BC complex (Figure 3B). Additionally, LANA

![Figure 2. The LANA–Elongin BC Complex Assemble with the Cul5/Rbx1 Module](https://www.plospathogens.org/article/10.1371/journal.ppat.0020116.g002)
Figure 3. LANA Associates with the Elongin BC Complex and Cul5 through the SOCS-Box–Like Motif

(A) KSHV LANA contains a putative SOCS-box motif which includes a consensus of BC-box and Cul-box motifs. Upper panels show hydrophobic sequence alignment of the BC-box and Cul-box motifs from viral LANA and cellular SOCS-box–containing proteins that bind Elongin BC and Cullin proteins individually. Conserved residues with similarity are shaded in the upper panel. Lower panels show ORF73 proteins from other gammaherpesvirus contain an SOCS-box–like motif which is similar to KSHV LANA. HVS, herpesvirus saimiri; RRV, rhesus monkey rhadinovirus. The site mutations of LANA in leucine (L) and/or cystine (C) are indicated with underlining.

(B) LANA associates with the Elongin BC complex through the BC-box motif. Saos-2 cells were transfected with expression vector encoding the indicated proteins. The WT LANA and its mutant with BC-box (ΔBC) deletion and point mutation (LPCF, L213G or C217G) within BC box were compared. Since LANA lost its normally top bands (approximately 230 kDa) in the L213G mutant, another two lower bands of LANA (between 190 kDa and 230 kDa) were specifically present. The lysates underwent IP and IB assays as described previously. RD, relative density.

(C) LANA associates with Cul5 through the Cul-box motif. Saos-2 cells were transfected with expression vector encoding the indicated proteins. The WT LANA with Cul-box (ΔCul) or SOCS-box (ΔSOCS) deletion was compared. The lysates underwent IP and IB assays as described previously. Crude extracts (left panels) and immune complexes (right panels) are shown.

(D) LANA assembles with Elongin BC complex and Cul5/Rbx1 module to reconstitute a multiprotein complex with E3 ubiquitin ligase activity. Left panel shows the LANA–Elongin BC–Cul5–Rbx1 complex had ubiquitin ligase activity. The cell lysates of WT LANA (Figure 3C, lane 4) or SOCS-box–like motif deletion mutant (Figure 3C, lane 3) as control was subjected to anti-myc immunoaffinity purification. The purified LANA immune complex (IC) was incubated with various combinations of Uba1 (E1), Ubc5a (E2), and GST-ubiquitin (GST-Ub) in the absence or presence of ATP, to assess its ability to stimulate ubiquitylation in vitro. The proteins were separated by SDS-PAGE and IB using anti-GST antibodies. Right panel shows SOCS-box–like motif deletion reduced the capacity of LANA to induce polyubiquitylation. Saos-2 cells were transfected with WT LANA or its SOCS mutant. After 24-h transfection, cells were treated with MG132 (0.5 μM) for 2 h. Lysates were subjected to IB against Ub or myc antibodies.

DOI: 10.1371/journal.ppat.0020116.g003
The LANA–Elongin BC Complex Is Capable of Assembling with Cul5/Rbx1 Module to Reconstitute an E3 Ubiquitin Ligase

To investigate whether the LANA–Elongin BC–Cul5–Rbx1 complex possesses ubiquitin ligase activity, the complex was immunoaffinity purified and assayed for its ability to activate formation of polyubiquitin chains by the E2 ubiquitin-conjugating enzyme Ubc5a in the presence of ATP, the E1 ubiquitin-activating enzyme Uba1, and GST-ubiquitin. As shown in Figure 3D, the LANA–Elongin BC–Cul5–Rbx1 complex stimulated formation of a ladder suggesting polyubiquitylation of the GST-ubiquitin, whereas the LANA SOCS-box mutant did not (Figure 3D, left panel, lanes 6 and 7). As expected, formation of polyubiquitin conjugates depended on the presence of the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and ATP (Figure 3D). In addition, in vivo proteasome inhibitor assays further showed that WT LANA was capable of significantly enhancing polyubiquitylation activities when compared to that of the LANA ASOCS mutant (Figure 3D, right panel, lanes 2 and 3).

Elongin BC Binding Increases Stability of LANA Expressed in Cells

During our studies, we observed that the levels of WT LANA coexpressed with Elongin BC were consistently increased. Therefore, to determine whether this increase in levels of WT LANA could be attributed at least in part to potential stabilization of LANA by Elongin BC, WT LANA or the SOCS-box–like motif deletion mutant (ASOCS) was transiently expressed in Saos-2 cells with or without Elongin BC. Twenty-four hours after transfection, cyclohexamide was added to cultures to block further protein synthesis, and the rate of decay of WT and mutant LANA protein was measured by Western blot analysis. The results showed that the level of WT LANA protein remained constant for at least 24 h after treatment of cyclohexamide to cells cotransfected with LANA and Elongin BC, whereas the level of mutant LANA SOCS-box mutant did not (Figure 3D, left panel, lanes 5 and 7). As expected, formation of polyubiquitin conjugates depended on the presence of the E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme, and ATP (Figure 3D). In addition, in vivo proteasome inhibitor assays further showed that WT LANA was capable of significantly enhancing polyubiquitylation activities when compared to that of the LANA ASOCS mutant (Figure 3D, right panel, lanes 2 and 3).
WT LANA, the ASOS LANA mutant exhibited similar instability in the presence or absence of cotransfected Elongin BC (unpublished data), suggesting a requirement for the SOCS-box–like motif of LANA for enhanced stability.

Levels of the Tumor Suppressors p53 and VHL Are Significantly Reduced in LANA-Expressing Cells

To determine the effect of LANA on targeted protein degradation, we examined the endogenous levels of some cellular tumor suppressors (such as p53 and VHL) expression in KSHV-positive (BCBL-1, JSC-1, BC-3, and BC-1) and -negative (BJAB, Louckes, and DG75) cell lines. Similar to previous studies which showed that p53 protein expression was decreased in KSHV-positive cells [17], our Western blot analysis of four KSHV-positive PEL cell lines showed that p53 levels were significantly reduced compared to KSHV-negative B cell lines (Figure 5A). Additionally, the levels of the HIF-1α suppressor protein VHL were also decreased in KSHV-positive cells (Figure 5A). To avoid the inconsistency of genotype among different cell lines, we also compared the levels of p53 and VHL in cell lines with the same genotypic background BJAB and KSHV-infected BJAB. The resulting data further confirmed that levels of the tumor suppressor proteins p53 and VHL did dramatically reduce after the KSHV infection (Figure 5B). To determine that the results for both p53 and VHL inhibition was associated with LANA, stable 293 cell lines expressing LANA were generated. Similar results of tumor suppressor p53 and VHL inhibition by LANA were observed when immunoblotting (IB) assays were performed (Figure 5C). To further confirm the role of LANA on p53 and VHL inhibition, LANA in the KSHV-positive BCBL-1 cell line was knocked down by the introduction of small interference RNA specifically against LANA. Again, analysis using IB assays showed that the tumor suppressors p53 and VHL were greatly rescued on inhibition of LANA expression (Figure 5D, left panel). Furthermore, no obvious change was observed for p53 and VHL mRNA transcripts after LANA transcripts were decreased, supporting the hypothesis that LANA can induce the degradation of p53 and VHL proteins (Figure 5D, right panel).

LANA Mediates the Degradation of p53 and VHL through Ubiquitylation

We wanted to explore whether the potential mechanism for LANA-mediated degradation of the tumor suppressors p53 and VHL was related to LANA recruitment of the EC5S ubiquitin E3 ligase complex. As p53 was shown to interact with the carboxyl-terminal domain of LANA [17], we first determined the binding domain of LANA with in vitro [35S]-labeled methionine translated proteins using the p53 protein as a positive control. The results of the in vitro pulldown assays showed that distinct from LANA binding to p53 through its carboxyl-terminal domain, the region of LANA binding to VHL was located in the amino-terminal domain using in vitro IP assays (Figure 6A). Supporting in vivo IP assays further confirmed that full-length LANA was associated with the tumor suppressors p53 and VHL (Figure 6B).

To determine the extent of the involvement of LANA recruitment of the EC5S E3 ligase for degradation of p53 and VHL, we utilized the specific SOCS-box mutant of LANA which lacks association with the EC5S complex. The constructs expressing p53, HA-ubiquitin (Ub), and WT LANA or its SOCS-deleted mutant were cotransfected into Saos-2 cells.

Figure 6. Distinct Domains of LANA Interact with Tumor Suppressors p53 and VHL

(A) The amino-terminal domain of LANA binding VHL and carboxyl-terminal domain binding p53 in vitro. The cDNA encoding N (1–340 aa), C (762-1162 aa), and NC (1–327 929-1162 aa) LANA with myc tag, HA-VHL, and p53 were translated in a coupled transcription/translation system in the presence of [35S]methionine. Fifteen-microliter aliquots of the translation products were immunoprecipitated with anti-myc antibodies. Immunoprecipitated proteins (IP) and a 1-μl aliquot of the transcription/translation reaction (Input) were fractionated by SDS-PAGE and detected by autoradiography. RD, relative density. (B) LANA is associated with p53 and VHL in cells. Saos-2 cells were cotransfected with expression vector encoding the indicated proteins. The lysates underwent IP using anti-myc antibodies. Crude extracts (left panels) and immune complexes (right panels) were separated by SDS-PAGE and IB with antibodies indicated. Asterisk indicates IgG heavy chain.

DOI: 10.1371/journal.ppat.0020116.g006
The Western blot data showed that ubiquitylation of p53 in the presence of LANA was dramatically increased but minimally so when the ΔSOCS mutant of LANA was coexpressed (Figure 7A, left panel, lanes 4 and 6). Similarly, WT LANA also can induce VHL polyubiquitylation more efficiently when compared to the ΔSOCS mutant in VHL-deficient cell line 786-O (Figure 7A, right panel, lanes 10 and 12). Unexpectedly, the level of LANA could be seen to be decreased when p53 was coexpressed (Figure 7A, compare lane 5 with lanes 3 and 4) and slightly decreased when VHL was coexpressed (Figure 7A, compare lane 11 with lanes 10 and 12). This indicated that although LANA can mediate degradation of the tumor suppressors p53 and VHL through interaction with its amino and carboxyl-terminal domains, the tumor suppressors p53 and VHL are also likely to contribute to regulation of LANA levels, as both are components of two separate E3 ligase complexes that may also regulate LANA's activity, and these activities may functionally compete in virally infected cells [29,44].

To detect the specificity of LANA for targeting p53 and VHL for degradation, in vitro, LANA–Elongin BC–Cul5 complex ubiquitylation assays were performed using purified GST-p53 or GST-VHL as substrates. The results showed that only WT LANA could specifically recruit ubiquitin complex to induce GST-p53 or GST-VHL polyubiquitylation, but not its SOCS-deleted mutant or vector control in this in vitro assay (Figure 7B).

Aberrantly Expressed LANA Conquers p53 or VHL Function as Components of E3 Ubiquitin Complexes Leading to Their Degradation

As both p53 and VHL are components of two separate E3 ubiquitin complexes, we wanted to determine whether aberrantly expressed LANA can conquer p53 and VHL functions as components of E3 ubiquitin complex leading to their degradation in KSHV-infected cells. We tested the interaction of the tumor suppressor p53 or VHL with LANA at different expression levels, as well as the effect on one of their downstream effectors proteins, HIF-1α [29,44]. As expression of LANA was increased without exogenous p53 or VHL coexpression, we found that LANA reduced levels of p53 and VHL in a dose-dependent manner (Figure S1A and S1B, right panels). As expected, when p53 was coexpressed with LANA and HIF-1α with increasing concentrations of p53, the levels of LANA as well as of HIF-1α levels were reduced, which was similar to expression of p53 and HIF-1α alone (Figure S1A, left panels). Similarly, increasing concentrations of VHL also inhibit LANA expression in a dose-dependent manner (Figure S1B, left panels). To determine the functional consequences of LANA on HIF-1α transcriptional activities in the context of p53 and VHL, reporter assays were performed using an HIF-1α response element reporter in various cell lines. The reporter assays further confirmed that the transcriptional activity of HIF-1α was strikingly reduced when p53 and VHL were cotransfected, whereas increased levels of LANA coexpressed rescued HIF-1α transcriptional activity most likely through targeting and degrading the HIF-1α suppressors p53 and VHL (Figure S2). Therefore, these results suggested that LANA expression is involved in regulating the degradation of the tumor suppressors p53 and VHL during KSHV-mediated oncogenesis, thus inhibiting their suppressive effects on HIF-1α transcriptional activities.

Discussion

In humans, targeting regulators of angiogenesis to proteasome-mediated degradation in virus-infected cells is getting increasing attention. The KSHV-encoded latent protein LANA was originally identified as a major viral antigen whose expression plays a crucial role in replication and maintenance of the viral episomes in PEL cells [6,48–51]. Here we demonstrated that the KSHV-encoded LANA protein interacts with the Elongin BC complex through the binding of Elongin C to the LANA BC-box motif located within its amino terminus. The LANA–Elongin BC complex was capable of assembling with a Cullin/Rbx1 module to reconstitute a multiprotein complex with ubiquitin ligase activity. Furthermore, the facts that LANA only associated with Cul5, and not with Cul2, and that a mutation in the Cul-box motif of LANA at its carboxyl terminus abolished Cul5 binding in the absence of Elongin BC indicate that LANA can directly interact with Cul5. Interaction of the Elongin BC complex with the BC box markedly increased the stability of LANA protein, suggesting that it may be necessary to protect LANA from degradation in order to assemble the functional E3 ubiquitin ligase complex, as previously proposed for SOCS-box family proteins [52,53]. Thus, our results suggest that LANA can recruit the Elongin BC complex and Cul5/Rbx
module through its SOCS-box-like motif to function as an EC5S ubiquitin ligase. Binding of the Elongin BC complex served to stabilize LANA, and binding to Cul5 provided a bridge to recruit Rbx1 and activate the ubiquitin-conjugating process.

Ubiquitin conjugation to protein substrates is strictly regulated by the specificity of the ubiquitin–protein E3 ligase complex. Therefore, identification of key regulators of angiogenesis in human cancers targeted for proteasomal degradation and mediated by KSHV-encoded LANA is highly significant. Previous evidence has shown that HIF-1α is a critical regulator of numerous cellular growth factors and can also function as a regulator of tumor angiogenesis, growth, and metastasis and is commonly overexpressed in a number of human cancers [43,54–56]. Recently, VHL and p53 have been demonstrated to be involved in the regulation of HIF-1α through ubiquitin-mediated degradation [29,44]. In this study, we present data to show that the levels of the HIF-1α-suppressor protein VHL were dramatically decreased in KSHV-positive compared with KSHV-negative cells. Additionally, the tumor suppressor protein p53 was also significantly reduced in KSHV-infected cells as previously reported [17]. The WT LANA, but not mutant deleted for the SOCS-box motif, facilitated VHL, and p53 ubiquitylation, suggesting that LANA is involved in the degradation of these HIF-1α-suppressor molecules and can function as an adaptor molecule to the EC5S ubiquitin ligase complex which contributes to the rescue of HIF-1α. These findings shed light on the unique property of KSHV latently infected KS lesions predominantly seen in the lower extremities in elderly patients in whom oxygen is typically poor [57].

Interestingly, both Cul2 and Cul5 are known to be involved in ECS-type E3 ubiquitin ligase complex. As to why LANA preferentially associates with the Cul5 and not the Cul2 protein, our data suggest that the Cul-box motif as well as additional sequences in the vicinity located in the carboxyl terminus of LANA may be important in this selection process. The Cul5–Elongin BC complex was shown to interact with a number of SOCS-box-containing proteins, such as MUF1, ASB2, and the SOCS family of proteins [45,47,38]. Although the mechanism by which Cul5 functions in these processes remains unclear, some viral proteins recruiting Cul5-containing ECS ubiquitin ligase have been shown to regulate the turnover of molecules involved in cell-cycle control, such as adenosivirus E4 orf6 [59] and the HIV vif-1 proteins [46]. Here the interaction of LANA with Cul5 further emphasizes a role for Cul5 in the regulation of virus-mediated dysregulation of cell growth and oncogenesis.

A major difference between the SOCS-box motif of KSHV LANA and the consensus SOCS-box sequence of cellular proteins is the greater distance between the BC box and the Cul5 box in this motif [30]. Our data strongly suggest that this specific characteristic of the SOCS-box-like motif in ORF73 proteins encoded by other gammaherpesviruses is highly conserved and that this structure allows LANA greater flexibility for interaction with the Elongin C and Culin proteins to achieve its function. The fact that LANA can bind to VHL and p53 via its amino- and carboxyl-terminal domains, respectively, inducing their degradation, is consistent with this hypothesis (Figure 8).

It is noteworthy to mention that the cellular tumor suppressors VHL and p53 can also inhibit the ability of the viral protein LANA to regulate HIF-1α levels when they are highly expressed, as they can also act as adaptors of EC2S– and SCF-type E3 ligase complex, respectively. Thus, the utilization of VHL-deficient 786-O cells or p53-deficient Saos-2 cells was critical for clearly defining the functional role of LANA in the regulation of VHL and p53 [29,44]. This also indicates that the balance between the cellular mechanisms usurped by KSHV and the host cellular defense mechanisms is critical for determination of cell fate. The higher levels of LANA expression in KSHV-infected cells are likely to be crucial to subdue the cellular defenses during KSHV infection (Figure S3), and this is consistent with the fact that LANA is highly expressed in KS and PEL cells [60–62].

This study reinforces the view that regulation of protein degradation is an important mechanism for the control of angiogenesis and oncogenesis during KSHV latent infection.

Materials and Methods

Plasmids, cell lines, and culture. Constructs expressing LANA full length and its truncated LANAS–1340 (N), LANAS702–1162 (C), and LANAS–327/929–1162 (NC) in the pAA3 vector were described previously [63]. Constructs expressing LANA with 212–222 aa (BC box), 1085–1091 aa (Cul box), or 212–229 1085–1091 (SOCS box) aa deletion or site mutation (L213G, C217G, and L213PC217F) in pAA3 were prepared by PCR mutagenesis. pAA3/p53 was constructed by Jason S. Knight. GST-p53 was as described previously [64]. Plasmids pCEP4/HIF-1α and pCEP4 were provided by Gregg L. Semenza (Johns Hopkins University School of Medicine, Baltimore, Maryland, United States). Plasmid pCMV/HA-VHL was provided by William G. Kaelin (Howard Hughes Medical Institute, Chevy Chase, Maryland, United States). Multimeric hypoxia response element (HRE) in pGL2-Basic vector was a gift from Craig B. Thompson (University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States). Plasmid pcDNA3/HA-Rbx1 was provided by Yue Xiong (University of Rochester Lineberger Cancer Center, Rochester, New York, United States). pcDNA3/HA-Ub was provided by George Mosialos (Alexander Fleming Biomedical Sciences Research Center, Vari, Greece). VR1012/Ha-Cul2 and VR1012/Ha-Cul3 were provided by Xiao-Fang Yu (Johns Hopkins University School of Medicine), T7-Elongin B in pcDNA3.1, His-HPC4-Elongin C in pcDNA3.1, GST-ubiquitin in pGEX-4-T-2, myc-Uba1-His in pET-23b, and His-hUbc5a-Flag in pRSETB were provided by Joan W. Conaway (University of Kansas

Figure 8. A Model for KSHV LANA Assembles EC5S Ubiquitin Complex to Target Downstream Substrates for Degradation

LANA is predicted to form a complex with Cul5/Rbx1 that interacts with Elongin BC but not LANA ASOCS (Cul box and BC box) mutant. LANA acts as adapter to link substrates which bind at its amino (1) or carboxyl (2) -terminal domain (like VHL and p53) to EC5S ubiquitin complex and induces the pathway of ubiquitin E1 activation, E2 conjugation, and substrate polyubiquitylation as well as 26S proteasome–mediated degradation.

DOI: 10.1371/journal.ppat.0020116.g008
Medical Center), GST-VHL (54-213) in pGEX-2T-3 was provided by Bill Kaelin (Howard Hughes Medical Institute). Constructs HA–Elongin B, HA–Elongin C, GST–Elongin B, and GST–Elongin C were obtained from Elongin B and Elongin C PCR products cloned into pCNA3HA and pGEX-2T vectors, respectively.

Real-time PCR. VHL-null cell line 786-O was kindly provided by Volker H. Haase (University of Pennsylvania Medical School). Human osteosarcoma p53-null cell line Saos-2 was obtained from Jon Aster (Brigham and Women’s Hospital, Boston, Massachusetts, United States). B)AB, DG75 and Loukès KSHV-negative cell types and BC-3, BCBL-1, [SC-1 and BC-1] KSHV-positive cell types were maintained in RPMI 1640 medium (Invitrogen, Carlsbad, California, United States) with 7% FBS, 4 μM 1-glutamine, penicillin, and streptomycin. The other cells were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen) supplemented with 5% fetal bovine serum, penicillin, and streptomycin. B)AB cells latently infected with KSHV were maintained in RPMI 1640 medium supplemented with 10% FBS and resolved of the EBV by Michael Chase (Bill Kaelin, Howard Hughes Medical Institute). Construct HA–Elongin B and Elongin C PCR products cloned into pSIREN vector according to the manufacturer’s instructions (Promega, Madison, Wisconsin, United States) and GST-ubiquitin, GST–Elongin B, or GST–Elongin C was expressed in the absence of LANA (2 μg) underwent IB with protein A/G Sepharose for 1-h incubation. After three washes with binding buffer and two washes with a buffer containing 40 mM HEPES-NaOH (pH 7.9), 60 mM potassium acetate, 1 mM MgCl₂, 0.5 mM EDTA, 10% glycerol, and 1% Nonidet P-40, and 0.3 mM DTT with protease inhibitor), proteins were eluted in sample buffer (50 mM Tris-HCl, 6 M Urea, 10% SDS, and 2.5 mM GST) in a 15-μl reaction containing 4 mM HEPES-NaOH (pH 7.9), 6 mM potassium acetate, 5 mM MgCl₂, 1 mM EDTA, 10% glycerol, and 2 mM DTT, the beads were mixed with 500 ng of Uba1, 1.4 μg of Ub, 1 μg of His-GST, 2.5 μg of GST-C (GST-VHL) in 15-μl reaction containing 4 mM HEPES-NaOH (pH 7.9), 6 mM potassium acetate, 5 mM MgCl₂, 1 mM DTT, and 1.5 mM ATP. Reaction mixtures were incubated for 1 h at 30 °C. Reaction products were fractionated by SDS-PAGE and analyzed by IB with anti-GST antibody.

RT-PCR. RT-PCR was used to compare the mRNA levels of p53 or VHL in BCBL-1 cells with LANA knockdown or without. Total RNA was isolated by using TRIzol reagent (Invitrogen) following the manufacturer’s instructions. Briefly, RT-PCR was performed in a total volume of 20 μl containing 10 mM Tris-HCl (pH 8.3), 1.5 mM MgCl₂, 200 μM concentration of each deoxynucleotide triphosphate, 2 μM concentration of each primer, 2 μl of randomly primed cDNA, and 0.5 unit of AmpliTaq (Applied Biosystems, Foster City, California, United States). Primers for desired gene (LANA, 5 ’-ATG ACT TGG CAA ACA CAC CGT AAG-3 ’; p53, 5 ’-CTTCCTGGA AAT CAC TCAGAG-3 ’; and 5 ’-GTCTTCTTT CTG CAAT CTCCGC-3 ’; p53, 5 ’-CTTCCTGGA AAT CAC TCAGAG-3 ’; and 5 ’-GGCA GATAG GCG CAC AGA ATC-3 ’) were included in some PCRs where indicated. PCR was done on an MJ Research Opticon II thermocycler (Waltham, Massachusetts, United States) by first heating the reaction at 94 °C for 5 min and then cycling the reaction 35 times with conditions set as 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 30 s. Five microliters of the amplification products were analyzed by electrophoresis on 2% agarose gel and visualized after staining with ethidium bromide.

 Luciferase reporter assay. Luciferase reporter assays were performed after transient transfection of each construct as a reporter plasmid by following the manufacturer’s protocol. Briefly, at 48 h posttransfection, 10 million transfected cells from each sample were harvested and subsequently washed once with PBS (Invitrogen), followed by lysis with 200 μl of reporter lysis buffer (Promega, Madison, Wisconsin, United States). A 40-μg total protein of the lysate was washed with 100 μl of luciferase assay buffer, luminescence was measured by the Opticom Luminometer (MGM Instruments, Hamden, Connecticut, United States) for 10 s. Relative luciferase activity was expressed as fold activation relative to the reporter construct alone. The results shown represent experiments performed in triplicate.

Supporting Information

Figure S1. Aberrant Expression of LANA Conquers p53 or VHL as a Component of E3 Ubiquitin Complex for Degradation. Tumor suppressor p53 (A) and VHL (B) competes with LANA. 786-O and Saos-2 cell lines were individually transfected with different doses (0, 1, 5, 10 μg) of LANA or cotransfected HIF-1α (5 μg) with different doses (0, 1, 5, 10 μg) of p53 (or VHL) in the presence or absence of LANA (2 μg) as indicated. Cell lysates (40 μg) underwent IB assays against myc (p53 or LANA), HA (VHL), and β-actin as described previously. The data show that LANA can inhibit endogenous p53 or
VHL in a dose-dependent manner, but higher-level exogenous p53 or VHL also can inhibit LANA expression and further suppress HIF-1α. Relative density (RD) of VHL, p53, and LANA protein was shown in lower panels.

Found at DOI: 10.1371/journal.ppat.0020116.sg001 (92 KB PDF).

Figure S2. LANA Attenuates the Inhibition of p53 and VHL to Regulate the Transcriptional Activities of HIF-1α

(A) BJAB, (B) 786-O, and (C) Sao-2 cells were cotransfected individually as indicated (10 μg of LANA, 5 μg of VHL, and 5 μg of p53). The multimeric hypoxia response element (HRE) promoter with luciferase reporter was used to detect the transcriptional activity of HIF-1α affected by VHL and p53. The transfected cell lysates underwent luciferase reporter assay as described previously. The data showed the LANA attenuates the inhibition of VHL or p53 to HIF-1α to increase transcription of HRE-containing promoter. The transcriptional activity of HIF-1α was expressed as the fold activation relative to activity with responding reporter construct alone (control). Means and standard deviations from three independent experiments are shown.

Found at DOI: 10.1371/journal.ppat.0020116.sg002 (19 KB PDF).

Figure S3. Proposed Model for Viral Protein LANA Interacts with Cellular Protein VHL and p53

During virus invasion, KSHV-encoded LANA is aberrantly expressed and possesses cellular EC5 ubiquitin complex to induce tumor suppressors VHL and p53 for degradation. In the other hand, the housekeeper genes encoded proteins in host cells together perform regular cellular mechanism, like VHL, EC5 and p53 SCF ubiquitin pathway, to defense against infection via inhibiting viral protein expression.

References

1. Chang Y, Ceserman E, Pessin MS, Lee F, Culpepper J, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposis sarcoma. Science 266: 1865–1869.

2. Boshoff C, Schulz TF, Kennedy MM, Graham AK, Fisher C, et al. (1995) Kaposis sarcoma-associated herpesvirus infects endothelial and spindle cells. Nat Med 1: 1274–1278.

3. Arvanitakis I, Mesri EA, Nador RG, Said JW, Asch AS, et al. (1996) Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposis sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 88: 2648–2654.

4. Hayward GS (1999) Human herpesvirus 8 latent-state gene expression and apoptosis in Kaposis sarcoma lesions. J Natl Cancer Inst 91: 1705–1707.

5. Watanabe T, Sugaya M, Atkins AM, Aquilino EA, Yang A, et al. (2003) Kaposis sarcoma-associated herpesvirus latency-associated nuclear antigen inhibits apoptosis in Kaposi’s sarcoma lesions. J Natl Cancer Inst 95: 2648–2654.

6. Garber AC, Shu MA, Hu J, Renne R (2001) DNA binding and modulation of gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75: 7882–7892.

7. Renne R, Barry C, Dittmer D, Compitello N, Brown PO, et al. (2001) Modulation of cellular and viral gene expression by the latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus. J Virol 75: 458–468.

8. Lan K, Kappers DA, Verma SC, Robertson ES (2004) Kaposis sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen inhibits lytic replication by targeting Rta. A potential mechanism for virus-mediated control of latency. J Virol 78: 6585–6594.

9. Ballestas ME, Kaye KM (2001) Kaposis sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cistron terminal repeat (TR) sequence and specifically binds TR DNA. J Virol 75: 3250–3258.

10. Srinivasan V, Komatsu T, Ballestas ME, Kaye KM (2004) Definition of sequence requirements for latency-associated nuclear antigen 1 binding to Kaposis sarcoma-associated herpesvirus DNA. J Virol 78: 14033–14038.

11. Lin C, Soto H, Gwack Y, Chung J, et al. (2009) Latency-associated nuclear antigen of Kaposis sarcoma-associated herpesvirus (human herpesvirus-8) binds ATAF1/CREB2 and inhibits its transcriptional activation activity. Gen Virol 81: 2645–2652.

12. Krishna A, Young DB, Liao G, Greene D, Hayward SD (2000) Human herpesvirus 8 LANA interacts with proteins of the mSin3 corepressor complex and negatively regulates Epstein-Barr virus gene expression in dually infected PEL cells. J Virol 74: 9637–9645.

13. Ando H, Chicheportiche F, Brent G, Reitman R (2002) The Kaposis sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: Role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood 99: 649–654.

Found at DOI: 10.1371/journal.ppat.0020116.sg003 (14 KB PDF).

Accession Numbers

The National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov) accession numbers are KSHV (NC_003409), LANA (U22064), Elongin C (BC013809), Elongin B (BC065000), Cullin 2 (NM_000359), Cullin 5 (NM_003478), Rbx 1 (BC001466), VHL (NM_198156), p53 (NM_000546), and HIF-1α (U22431).

Acknowledgments

We are grateful to Bala Chandran, Bill Kaelin, Craig B. Thompson, George Mosialos, Gregg L. Semenza, Joan W. Conway, Jon Aster, Laura Lagouge, Volker Haase, William E. Lane, Xiao-Fang Yu, and Yue Xiong for providing reagents. Special thanks go to members of the Robertson lab for suggestions and supports.

Author contributions. ESR supervised the overall design and execution of all experiments from initiation to submission of the manuscript. QLC designed and executed the experiments. JSK, SCV, and PZ assisted in performing some of the experiments and analysis of the data. ESR, AI067037, and DE17383 (to ESR). ESR is a scholar of the Leukemia and Lymphoma Society of America.

Competing interests. The authors have declared that no competing interests exist.
Forukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5: 1001–1007.

Xu L, Wei Y, Rebold J, Vaglio P, Shin TH, et al. (2003) BTB proteins are substrate-specific adapters in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425: 316–321.

Pintard L, Willems A, Peter M (2004) Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J 23: 1681–1687.

Pintard L, Willems J, Willems A, Johnson JL, Srsyko M, et al. (2003) The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin ligase. Nature 425: 311–316.

Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M (2004) Control of the SCF (Skp2-Cks1) ubiquitin ligase by the APOC3 (Cdhl1) ubiquitin ligase. Nature 428: 190–193.

Wertz IE, O’Rourke KM, Zhang Z, Dornan D, Arndt D, et al. (2004) Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303: 1371–1374.

Lorenzo ME, Jung JU, Ploegh HL (2002) Kaposi’s sarcoma-associated herpesvirus K3 utilizes the ubiquitin-proteasome system in routing class major histocompatibility complexes to late endocytic compartments. J Virol 76: 5522–5531.

Coscoy L, Sanchez DJ, Ganem D (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155: 1265–1273.

Cadwell K, Coscoy L (2005) Ubiquitination on nonsine residues by a viral E3 ubiquitin ligase. Science 309: 127–130.

Goto E, Ishido S, Sato Y, Ohgimoto S, Ohgimoto K, et al. (2003) c-MIR, a human E3 ubiquitin ligase, is a functional homolog of herpesvirus proteins MIR1 and MIR2 and has similar activity. J Biol Chem 278: 14657–14668.

Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: Its protein stability and biological functions. Exp Mol Med 36: 1–12.

Semenza GL (2002) HIF-1 and human disease: One highly involved factor. Nat Rev Cancer 2: 84–97.

Harris AL (2002) Hypoxia: A key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

Ravi R, Monkerjee B, Bhujwalla ZM, Sutter CH, Artemov D, et al. (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14: 34–44.

Kamura T, Burian D, Yan Q, Schmidt SL, Lane WS, et al. (2001) Muf1, a novel Elongin BC-interacting leucine-rich repeat protein that can assemble with Cul5 and Rbx1 to reconstitute an ubiquitin ligase. J Biol Chem 276: 14657–14668.

Yarchoan R, Davis IA (2002) Development of Kaposi’s sarcoma at the site of a biopsy. N Engl J Med 347: 763–764 author reply 763–764.

Brower CS, Sato S, Tomomori-Sato C, Kamura T, Pause A, et al. (2002) Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbx1 to reconstitute a ubiquitin ligase. Proc Natl Acad Sci U S A 99: 10353–10358.

Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, et al. (2001) Degradation of p53 by adenovirus E3orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 15: 3104–3117.

Kedes DH, Lagunoff M, Renne R, Ganem D (1997) Identification of the gene encoding the major latency-associated nuclear antigen of the Kaposi’s sarcoma-associated herpesvirus. J Clin Invest 100: 2606–2610.

Kellam P, Boshoff C, Whitby D, Matthews S, Weiss RA, et al. (1997) Identification of a major latent nuclear antigen, LNA-1, in the human herpesvirus 8 genome. J Hum Virol 1: 19–29.

Raienbow L, Platt GM, Simpson GR, Savic R, Gao SJ, et al. (1997) The 222- to 234-kilodalton latent nuclear protein (LNA) of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) is encoded by orf73 and is a component of the latency-associated nuclear antigen. J Virol 71: 5915–5921.

Verma SC, Borah S, Robertson ES (2004) Latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus up-regulates transcription of human telomerase reverse transcriptase promoter through interaction with transcription factor Sp1. J Virol 78: 10348–10359.

Borah S, Verma SC, Robertson ES (2004) ORF73 of herpesvirus saimiri, a viral homolog of Kaposi’s sarcoma-associated herpesvirus, modulates two cellular tumor suppressor proteins p53 and pRB. J Virol 78: 10353–10347.

Chen L, Lagunoff M (2005) Establishment and maintenance of Kaposi’s sarcoma-associated herpesvirus latency in B cells. J Virol 79: 14383–14391.