MUTZ-3 Langerhans cell maturation and CXCL12 independent migration in reconstructed human gingiva
Kosten, I.J.; Spiekstra, S.W.; de Gruijl, T.D.; Gibbs, S.

Published in:
Altex-Alternatives To Animal Experimentation

DOI:
10.14573/altex.1510301

Citation for published version (APA):
Kosten, I. J., Spiekstra, S. W., de Gruijl, T. D., & Gibbs, S. (2016). MUTZ-3 Langerhans cell maturation and CXCL12 independent migration in reconstructed human gingiva. Altex-Alternatives To Animal Experimentation, 33(4), 423-434. DOI: 10.14573/altex.1510301
Research Article

MUTZ-3 Langerhans Cell Maturation and CXCL12 Independent Migration in Reconstructed Human Gingiva

Ilona J. Kosten¹, Sander W. Spiekstra¹, Tanja D. de Gruijl² and Susan Gibbs¹,³

Departments of ¹Dermatology and ²Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; ³Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands

Summary

Here we describe a reconstructed full thickness human oral mucosa (gingiva) equivalent with integrated Langerhans cells (GE-LC) and use it to compare LC activation and migration from oral versus skin epithelium. The physiologically representative models consist of differentiated reconstructed epithelium (keratinocytes and Langerhans-like cells derived from the MUTZ-3 cell line) on a fibroblast-populated collagen hydrogel, which serves as a lamina propria for gingiva and dermis for skin. Topical exposure of GE-LC and the skin equivalent (SE-LC) to subtoxic concentrations of the allergens cinnamaldehyde, resorcinol and nickel sulfate resulted in LC migration out of the epithelia. Neutralizing antibody to CXCL12 blocked allergen-induced LC migration in SE-LC but not in GE-LC. Also, gingival fibroblasts secreted very low amounts of CXCL12 compared to skin fibroblasts, even when stimulated with rhTNFα or rhIL-1α. Surprisingly, cinnamaldehyde exposure of GE-LC resulted in an increase in MUTZ-3 LC and CD83 mRNA in the hydrogel but did not result in an increase in CD1a⁺ cells in the collagen hydrogel (as was observed for SE-LC). These results indicate that in gingiva, upon allergen exposure, MUTZ-3 LC migrate in a CXCL12 independent manner from epithelium to lamina propria and in so doing mature by becoming CD1a⁺ and increasing CD83⁺ mRNA. These physiologically relevant in vitro models, which not only are human but which also resemble specific tissues, may aid in the identification of factors regulating immune stimulation, which in turn will aid the development of therapeutic interventions for allergy and inflammation, anti-cancer vaccines as well as improving diagnostics for skin and oral allergy.

Keywords: dendritic cell, skin equivalent, gingiva equivalent, in vitro, allergen

1 Introduction

Skin and oral mucosa (e.g., gingiva, buccal mucosa, palate) are both fully immunologically competent tissues participating in the induction and effector phase of the immune response. They both are constantly exposed to harmful environmental factors, such as pathogens and allergens, and therefore both play a key barrier role in maintaining homeostasis and regulating immune responses. However, evidence suggests that these two tissues react differently to insults arising from the environment. For example, whereas nickel exposure via the skin can result in sensitization, oral exposure, e.g., in the form of dental braces, has been shown to induce specific tolerance (van Hoogstraten et al., 1992). This would suggest that skin is immune-stimulatory and oral mucosa tolerogenic and suggests differential roles for residential cells (e.g., keratinocytes (KC), fibroblasts and dendritic cells (DC)) residing in these tissues resulting in different cross-talk between cells within skin and oral tissue. Even so, allergies within the oral cavity have also been reported, e.g., nickel and palladium allergy caused by dental restorative materials (Muris et al., 2009).
Although animals, in particular mice, are extensively used as skin research and testing models, misleading conclusions can be drawn due to very clear differences between human and animal immunology. This is illustrated by the fact that extensive differences have been reported between human and mouse DC subsets (Shortman and Liu, 2002; van de Ven et al., 2011). Importantly, no suitable animal models exist to study oral immunity and, in particular, no oral animal models exist to identify potentially hazardous substances which come into contact with the oral cavity (e.g., ingredients of toothpastes, mouth wash, dental restorative materials).

Within Europe there is an increasing drive to refine, reduce and to replace (3Rs) animal tests with in vitro alternatives wherever possible (EU Cosmetic Products Regulation (EC) No 1223/2009). With regards to skin, a number of in vitro models are available to investigate DC biology, in particular in the area of human safety and risk assessment of chemicals, and for testing novel drugs and therapeutic strategies (Roggen, 2014; dos Santos et al., 2009; Gibbs et al., 2013). Since large pieces of skin are regularly available from routine surgical procedures (e.g., abdominal dermolipectomy), fresh human skin explants provide a very relevant model to study Langerhans cell (LC) biology in situ (Ouwehand et al., 2008, 2010; Jacobs et al., 2006; Lindenberg et al., 2013; Oosterhoff et al., 2013). Even so, the logistics around getting fresh tissue to the laboratory, the short viability of the tissue ex vivo (48 h) and the extremely limited size of oral mucosa (gingiva) biopsies, which are also often infected with microorganisms, provide profound limitations to implementing these tissues directly as a research tool.

As a first step towards overcoming these limitations, skin and gingiva equivalents (SE, GE, respectively) have been developed. For example, reconstructed epidermis is now used as a validated method for identifying corrosive and irritant chemicals (Fentem et al., 1998; Spielmann et al., 2007). Also, a limited number of studies describe oral mucosa equivalents (Gibbs and Ponec, 2000; Macneil et al., 2011; Moharamzadeh et al., 2012). Significant applications of engineered oral mucosa include clinical transplantation (Vriens et al., 2008), in vitro investigations of the interaction of materials with oral mucosa (Moharamzadeh et al., 2008, 2009), oral disease modelling (Andrian et al., 2007; Claveau et al., 2004; Rouablia and Deslauriers, 2002; Yadv et al., 2011), and evaluation of drug delivery systems (Hearden et al., 2012). However, none of these reconstructed models contain DC, and therefore their application as in vitro testing models is limited. Only one study has described integration of DC into a mucosa equivalent, and notably these were derived from primary CD34+ cells isolated from fresh cord blood, which creates a major logistical problem as well as donor variation (Sivard et al., 2003). Therefore, in this study, we developed a full thickness oral mucosa model with integrated human Langerhans-like cells derived from the human MUTZ-3 cell line.

The first phase in the activation of the immune system in both skin and oral mucosa after environmental assault involves triggering of the epithelium and connective tissue (known as dermis in skin and lamina propria in mucosa) to initiate LC migration out of the epithelium. The exact role of these migrated LC has yet to be established. With regards to skin sensitization, LC are recognized as an important immune stimulatory cell subset (Kimber et al., 2011). However, strong evidence now exists for LC also having an immune regulatory role related to induction and maintenance of tolerance (Shkolovskaya et al., 2011). Whatever their function, clearly LC migration from the epithelium (epidermis) into the underlying dermis, as a first step en route to the draining lymph node, is pivotal for the orchestration of skin immune responses. With regards to oral mucosa, extremely little is known about mechanisms underlying LC migration due to the extreme scarcity of available healthy human tissue for functional analysis.

For skin, the key cytokines and chemokines involved in LC maturation and migration out of the epidermis and into the underlying dermis after topical exposure to harmful pathogens and contact allergens has been described in detail by us and others (Kosten et al., 2015b; Cumberbatch et al., 2003; Griffith et al., 2005; Oosterhoff et al., 2013; Ouwehand et al., 2008; Kimber et al., 2008). Pro-inflammatory cytokines (e.g., TNFα, IL-α, IL-18) are rapidly released by epidermal cells and trigger the secretion of many chemokines from cells residing in the dermis, thus initiating the inflammatory response (Kosten et al., 2015a). One of these chemokines is CXCL12, which is secreted by dermal fibroblasts (Ouwehand et al., 2008). CXCL12-secretion by fibroblasts coincides with up-regulation of its receptor, CXCR4, on the surface of maturing LC, thus enabling the LC to migrate in a chemotactic manner from the epidermis into the dermis (Ouwehand et al., 2008). It is currently unknown whether this CXCL12/CXCR4-axis is also pivotal for activated LC migration in oral mucosa.

We have previously described a human immune-competent skin equivalent that consists of a fully differentiated reconstructed epidermis containing DC derived from the MUTZ-3 cell line, on a fibroblast populated collagen hydrogel (Ouwehand et al., 2011b; Kosten et al., 2015b). MUTZ-3 is an acute myeloid leukemic-derived human cell line with CD34+ proliferating progenitor cells that can be differentiated into LC (MUTZ-3 LC) in a cytokine dependent fashion. MUTZ-3 LC closely resemble their native counterparts, both phenotypically and functionally (Kosten et al., 2015b; Masterson et al., 2002; Santegoets et al., 2008). Indeed, in the past we have shown in skin equivalents with integrated Langerhans Cells (SE-LC) that upon allergen exposure MUTZ-3 LC mature and migrate in a CXCL12 dependent manner from the epidermis to the dermis, whereas upon irritant exposure MUTZ-3 LC migrate in a CCR5 dependent manner and undergo an IL-10 dependent phenotypic switch into a macrophage-like cell in the dermis, closely mimicking our observations in excised skin (Kosten et al., 2015b; Ouwehand et al., 2008, 2011b). Recently, we described a full thickness oral gingiva equivalent (GE) consisting of a reconstructed epithelium on a fibroblast populated collagen hydrogel (lamina propria) and shown that the GE secrete negligible amounts of key chemokines involved in LC migration in skin (Kosten et al., 2015a). In this study we have incorporated MUTZ-3 LC into the epithelium of this GE (GE-LC). We show that migration of maturing MUTZ-3
LC in the GE-LC model after allergen exposure is CXCL12-independent in contrast to the CXCL12-dependent MUTZ-3 LC migration in SE-LC. Our results emphasize the need for physiologically relevant models which are not just of human origin but which also resemble the individual tissues that are exposed to environmental hazards.

2 Materials and methods

2.1 Cell culture

Human adult skin and gingiva were obtained after informed consent from patients undergoing abdominal dermolipectomy or wisdom tooth extraction, respectively, and used in an anonymous fashion in accordance with the “Code for Proper Use of Human Tissues” as formulated by the Dutch Federation of Medical Scientific Organizations (http://www.fmwv.nl) and following procedures approved by the institutional review board of the VU University Medical Center. Skin and gingiva samples were not donor matched.

Epithelial keratinocytes (KC)

Adult skin and gingiva KC were isolated and cultured under similar conditions. KC were isolated from 3-6 mm punch biopsies essentially as described earlier (Kroeze et al., 2012). KC were pooled and cultured in KC medium (Dulbecco’s Modified Eagle Medium (DMEM) (Lonza, Basel, Switzerland)/Ham’s F-12 (Gibco, Grand Island, USA) (3:1) containing 1% UltroserG (BioSepra S.A. Cergy-Saint-Christophe, France), 1% penicillin-streptomycin (Gibco), 1 μmol/l hydrocortisone, 1 μmol/l isoproterenol, 0.1 μmol/l insulin and containing 2 ng/ml keratinocyte growth factor (KGF) for the skin or 2 ng/ml epithelial growth factor (EGF) for the gingiva at 37°C, 7.5% CO2. Cultures were passaged when 90% confluent, using 0.5 mM EDTA/0.05% trypsin (Gibco) and used for experiments at passage 2. Skin and gingiva KC were kept in culture for the same period of time (10-12 days) to eliminate confounding culture aging effects. 2-3 donors were pooled for each experiment. Skin and gingiva keratinocytes were not derived from the same donors.

Fibroblasts

Adult skin and gingiva fibroblasts were isolated and cultured under identical conditions. In short, fibroblasts were enzymatically isolated from 3-6 mm punch biopsies and were cultured in DMEM containing 1% UltroserG, 1% penicillin-streptomycin at 37°C, 5% CO2. Cultures were passaged when 90% confluent and used for experiments at passage 3. Skin and gingiva fibroblasts were cultured for the same period of time (28-35 days) to eliminate confounding culture aging effects. 2-3 donors were pooled for each experiment. Skin and gingiva fibroblasts were not derived from the same donors.

MUTZ-3 cell line

The MUTZ-3 progenitor cell line (Deutsche Sammlung von Mikroorganismen und Zellkulturen [DSMZ], Braunschweig, Germany) was maintained and differentiated into LC as previously described (Masterson et al., 2002; Ouwehand et al., 2008). Maturation was induced by a cytokine maturation cocktail consisting of 100 ng/ml hIL-6, 50 ng/ml hTNFa, 25 ng/ml hIL-1β (Strathmann Biotec, Hamburg, Germany) and 1 μg/ml PGE2 (Sigma Chemical Co, St Louis, MO, USA) for at least 24 h. Cells were cultured at 37°C, 5% CO2, 95% humidity. MUTZ-3 LC were labelled with carboxyfluorescein succinimidyl ester (CFSE) as described previously (Kosten et al., 2015b).

SE-LC and GE-LC culture

Reconstruction of the human SE or GE containing MUTZ-3 LC was achieved by co-seeding CFSE labelled MUTZ-3 LC (1x10⁶ cells) with KC (0.5x10⁶ cells) onto fibroblast-populated collagen gels as previously described (Kosten et al., 2015b). Cells were submerged for 3 days in KC medium containing 1 ng/ml KGF for SE or 1 ng/ml EGF for GE. To induce epithelial differentiation, the constructs were lifted to the air-liquid interface and cultured for 7 days in KC medium containing 1x10⁻⁵ M L-carnitine, 1x10⁻² M L-serine, and 50 μg/ml ascorbic acid, as well as 2 ng/ml KGF for SE or 2 ng/ml EGF for GE. Unless otherwise stated, all additives were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2 Chemical exposure of SE-LC and GE-LC

Finn Chamber filter paper discs of 11 mm diameter (Epitest, Oy, Finland) for SE-LC or gauze filters of 12 mm diameter for GE-LC (03-150/38, Sefar Nitex, Heiden, Switzerland) were impregnated with allergens ecamaldehyde (CA; CAS# 104-55-2), resorcinol (CAS# 108-46-3) or nickel (II) sulfate hexahydrate (NiSO⁴·6H₂O) or nickel (II) sulfate (vehicle 0.1% DMSO/w/v in H₂O), or the corresponding vehicle (H₂O or 0.1% DMSO v/v in H₂O). Chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). The chemical or vehicle impregnated discs were applied topically to the cultures for 16 h at 37°C, 7.5% CO₂ in a non-toxic concentration in order to maintain viability and functionality of LC. Prior to performing experiments dose finding was performed to find the chemical concentration which resulted in no more than a 5% decrease in metabolic activity compared to unexposed cultures as determined by MTT assay (data not shown) (Gibbs et al., 2013). To enable higher throughput dose screening, SE and GE were used for this screening without integrated LC. For SE and GE, dose finding between 0.5-300 mM identified 1 mM and 0.75 mM CA (vehicle 0.1% DMSO), respectively, as optimal non-cytotoxic concentrations which were considerably lower than for ex vivo tissue (see below) due to the short term (1 week air exposed) in vitro culture of tissue equivalents. Chemical concentration was lower for GE than SE due to the lack of cornification (stratum corneum) in GE. For resorcinol and nickel sulfate, dose finding between the range of 15-600 mM resorcinol (vehicle 0.1% DMSO) and 10-400 mM nickel sulfate (vehicle H₂O) identified 15 mM and 10 mM, respectively, as optimal concentrations for GE.

2.3 Ex vivo skin and gingival explants

All fat was carefully removed from healthy human abdominal skin. Pieces of skin or gingiva of approximately 0.3 cm² were
placed on 3.0 μm polyester membrane transwell inserts in a 12 well plate (3462, Corning, Inc., New York, NY, USA) and topically exposed for 3 h to the vehicle as a control or CA (40 mM) in DMSO (applied at less than 0.1% v/v) at 37°C, 7.5% CO₂, 95% humidity. This chemical concentration was identified in dose response experiments (data not shown) as the highest chemical concentration where no visible detrimental change in tissue histology was observed by light microscopy. After the 3 h incubation in MEM-alpha (Gibco, Grand Island, NY, USA) supplemented with 1% penicillin-streptomycin, 2 mM L-glutamine (Invitrogen) and 50 μM 2-mercaptoethanol (Merck, Whitehouse Station, NJ, USA) at 37°C, 7.5% CO₂, 95% humidity, explants were harvested and snap-frozen or embedded in paraffin for immunohistochemical analysis.

2.4 Immunohistochemical staining
All procedures for paraffin embedded sections were performed as previously described (Ouwehand et al., 2008, 2011b). In brief, antigen–reticulum was performed using citrate buffer followed by incubation overnight with primary monoclonal antibodies directed against CD1a (mouse IgG1 clone MTB1, MONX10315, Monosan), Langerin (mouse IgG2b clone 12D6, NCL-Langerin, Leica) or HLA-DR (mouse IgG1 clone TAL.1B5, Dako). After washing and incubating with human anti-mouse conjugated to HRP, the slides were incubated with 3-amino-9-ethylcarbazole as the chromogen. All sections were counter-stained with Mayer’s haematoxylin. Negative controls were prepared by substituting the primary antibody with an isotype control antibody. Haematoxylin and eosin staining was used for morphological analysis. The sections were embedded in Aquatex®.

2.5 Transwell chemotactic assay
This assay was performed essentially as described previously (Ouwehand et al., 2008). In brief, human fibroblasts, either from adult human skin or adult human gingiva (1x10⁶ cell/well) were allowed to adhere overnight in the lower chamber of a 24 transwell culture plate (3421, Corning). Either immature MUTZ-3 LC (iLC) or cytokine matured MUTZ-3 LC (mLC) (5x10⁴ cell/well) were placed in the transwell insert (5 μm pore size, 3421, Corning). Lower chambers without fibroblasts were used as a control. Migrating MUTZ-3 LC entering the lower chamber were analyzed by flow cytometry after 16 h incubation at 37°C, 5% CO₂, 95% humidity.

2.6 Quantitation of LC in epithelial sheets
The number of LC in epithelial sheets was quantified as described previously (Ouwehand et al., 2011b). In short, after removal of the epithelium from the collagen gel with fine forceps, the density of LC in the epithelia sheets was determined by incubating sheets for at least 1 h (max. overnight) with 50 μl/ml PE-labelled anti-CD1a or anti-HLA-DR (BD Pharmingen, San Diego, CA, USA). Subsequently, the epidermal sheets were examined using a fluorescence microscope (Nikon Eclipse 80i), G-2a Ex510-560, DM575, BA590. The LC density was calculated by determining the measured fluorescence index with Image J software, and is expressed as CD1a fluorescence intensity.

2.7 Cytokine exposure and neutralization experiments
Exposure to rhTNFα or rhIL-1α
Subconfluent fibroblast monolayer cultures, grown in 6 well plates, were exposed to serial dilutions of rhTNFα or rhIL-1α (0, 100 or 200 International Units / ml) (Strathmann Biotech, Hamburg, Germany) for 4 h in 1.5 ml medium, after which time the cells were washed with PBS and new medium was added. After 24 h the culture supernatant was harvested and stored at -20°C for ELISA analysis.

CXCL12 neutralization assays
For blocking experiments 7 μg/ml goat anti-human CXCL12 (AF-310-NA, R&D Systems, Minneapolis, MN, USA) was added to the culture medium of SE-LC or GE-LC 30 min prior to chemical exposure (optimal blocking concentration was previously determined) (Ouwehand et al., 2008, 2010), according to the manufacturer’s data sheet. Isotype control to assess non-specific reactions was added at 7 μg/ml goat IgG (6-001-F, R&D Systems).

2.8 ELISA
The Duoset CXCL12 Development kit (R&D Systems) was used as described by the suppliers.

2.9 Flow cytometry
The number and phenotype of migrated MUTZ-3 LC was determined by flow cytometry in the SE-LC and GE-LC after disrupting the collagen gels with collagenase as described previously (Ouwehand et al., 2011b; Kosten et al., 2015b). Cell staining was performed using mouse anti-human CD1a-PE (IgG1, BD Pharmingen, San Diego, CA, USA). Isotype control to assess non-specific binding was mouse IgG1-PE (BD Pharmingen). Cells were washed in PBS containing 0.1% bovine serum albumin and 0.1% sodium azide, incubated with antibodies for 30 min and resuspended in the same buffer for FACS analysis on a FACSCalibur flow cytometer (Becton Dickinson, San Jose, CA, USA). The data were subsequently analyzed using CellQuestPro software.

Quantitation: an excess amount of Flow-Count fluorospheres (Beckman Coulter, Fullerton, CA) was added before analysis with a FACScan flow cytometer (Becton Dickinson, San Jose, CA, USA) to the cells isolated from the collagen hydrogel as previously described (Ouwehand et al., 2008; Kosten et al., 2015b). The data were subsequently analyzed using CellQuestPro software.

2.10 RT-qPCR
Epithelium was removed from the GE collagen hydrogel using fine forceps. Total RNA was isolated from the GE collagen hydrogel and RT-qPCR analysis was performed as described previously (Kosten et al., 2015b). cDNA was amplified by PCR using the following primer kits: RT² qPCR Primer Assay for
human CD83 and as housekeeping genes RT² qPCR Primer Assay for human GAPDH and HPRT.

2.11 Statistical analysis

Differences between cytokine secretion of unexposed keratinocytes or fibroblasts and rhTNFα or rhIL-1α exposed fibroblasts were determined using the Mann-Whitney test. Differences between the amount of LC in SE or GE were determined using the unpaired Student’s t-test. Differences between the amounts of migrated CFSE labelled cells in GE were determined using the paired Student’s t-test. Differences were considered significant when p < 0.05.

3 Results

3.1 Allergen exposure initiates LC migration in ex vivo skin and gingiva

In order to confirm that LC migrate from gingiva epithelium to the underlying lamina propria (LP) upon allergen exposure in a similar manner to epidermis-to-dermis migration in skin, human gingiva and skin biopsies were exposed to the contact allergen CA. Vehicle-exposed tissue was used as a control. For both gingiva and skin, CD1a⁺ and Langerin⁺ LC were already observed in the LP and dermis, respectively, after 3 h exposure to CA, whereas no migration occurred after vehicle exposure (Fig. 1).

Fig. 1: Ex vivo LC migration upon exposure to allergen cinnamaldehyde

LC migration in skin and gingival tissue sections is shown after topical exposure to vehicle (0.1% DMSO) or CA (40 mM) for 3 h. Immunohistochemical staining with CD1a and Langerin is shown. Arrows point to representative positive, red stained LC. Skin: 200x magnification; scale bar represents 50 μm. Gingiva: 100x magnification; scale bar represents 100 μm. Representative photographs from 3 independent experiments, each with a different donor, are shown.

Fig. 2: MUTZ-3 LC migrate towards soluble mediators secreted by skin and gingival fibroblasts

Skin (S; grey bars) or gingival fibroblasts (G; black bars) were seeded into the lower chamber of a transwell system and immature MUTZ-3 LC (iLC) or mature MUTZ-3 LC (mLC) were placed in the upper chamber for 16 h. Spontaneous migration in the absence of fibroblasts is represented by white bars. The percentage of CD1a⁺ LC migrating into the lower transwell chamber was determined by flow cytometry. Data represent the average of at least 6 individual experiments ± SEM: **p < 0.01 and ***p < 0.001 were calculated using the Mann-Whitney t-test.**
3.3 Allergen exposure induces LC migration in tissue-engineered skin and gingiva equivalents

The gingiva equivalent with integrated MUTZ-3 LC was compared with its previously described skin counterpart (Ouwehand et al., 2011b). Both models consisted of a reconstructed differentiated epithelium on a fibroblast populated collagen hydrogel, which functions as the dermis or LP, respectively (Fig. 1). Immunohistochemical staining of tissue sections with CD1a, Langerin and HLA-DR showed MUTZ-3 LC present in the epithelium of gingiva as well as in skin (Fig. 3B). Further immunostaining of isolated gingival epithelial sheets showed CD1a+ and HLA-DR+/CFSE+ cells distributed evenly throughout the epithelium (Fig. 3C).

Next the SE-LC and GE-LC were topically exposed for 16 h to the highest non-toxic concentration of the allergen CA (skin: 1 mM; gingiva: 0.75 mM), a chemical known to induce migration and maturation of LC in both skin and oral mucosa (Fig. 1) (Wray et al., 2000). In both SE-LC and GE-LC,
3.4 LC migration in gingiva is CXCL12 independent

In order to determine whether the LC migration in gingiva was CXCL12-dependent as it is in skin, a neutralizing antibody to CXCL12 was added to the culture medium of SE-LC and GE-LC constructs 30 min prior to and during exposure to CA (Fig. 4). Anti-CXCL12 was able to completely inhibit CXCL12-mediated migration of CD1a+ MUTZ-3 LC from the epidermis in SE-LC in line with our previous observations (Ouwehand et al., 2011b; Kosten et al., 2015b) for SE-LC (Ouwehand et al., 2011b; Kosten et al., 2015b) (Fig. 4B). Exposure to the vehicle control did not result in a significant change in the density of MUTZ-3 LC as compared to unexposed SE-LC or GE-LC. Decreased MUTZ-3 LC densities in the epithelium were consistent with an allergen induced epithelium-to-dermis or LP migration of the maturing MUTZ-3 LC in the SE-LC and GE-LC (Fig. 1 and 4).
Fig. 5: Gingival fibroblasts secrete very low amounts of CXCL12 compared to skin fibroblasts
Secretion of CXCL12 by fibroblasts upon exposure to serial dilutions of pro-inflammatory cytokines rhTNFα and rhIL-1α. Skin fibroblasts: black bars; gingiva fibroblasts: white bars. Data represent the average of at least 3 individual experiments ± SEM; *, p < 0.05; **, p < 0.01 (Mann-Whitney t-test).

Fig. 6: MUTZ-3 LC become CD1a⁻, increase CD83 transcripts and show CXCL12 independent migration into the collagen hydrogel after allergen exposure
SE-LC and GE-LC were unexposed or exposed to vehicle or cinnamaldehyde (CA) (skin: 1 mM; gingiva: 0.75 mM) for 16 h in the presence of a neutralizing antibody against CXCL12 or its isotype control. The collagen hydrogel was then separated from the epithelium and migrated MUTZ-3 LC assessed by flow cytometry or RT-qPCR.
A) Relative number of CD1a⁺ MUTZ-3 LC compared to unexposed, isotype exposed SE-LC or GE-LC.
B) RT-qPCR shows increased number of CD83 transcripts in the GE collagen hydrogel; data represent the average of at least 4 individual experiments.
C) Relative number of migrated CFSE⁺ MUTZ-3 LC in the GE collagen hydrogel. Except for B), data represent the average of 6 individual experiments ± SEM; *, p < 0.05 (Mann-Whitney t-test).
migration in gingiva, in contrast to skin, is not dependent on the CXCR4 / CXCL12 axis for a wide variety of allergens (CA: hapten; resorcinol: pro-hapten and nickel sulfate: metal allergen).

In order to investigate this further, we next determined whether gingival fibroblasts were able to secrete the pivotal chemokine CXCL12. Gingival fibroblasts secreted only very low amounts of CXCL12 compared to skin derived fibroblasts (unexposed gingiva: 0.02 ng/ml; unexposed skin: 2 ng/ml), even when stimulated with rhTNFα or rhIL-1α (Fig. 5). Taken together, these results indicate that MUTZ-3 LC in GE-LC migrate in a CXCL12 independent manner after topical exposure to the contact sensitizer CA.

3.5 Migrated MUTZ-3 LC in GE-LC are CD1α+/CD83+

Next we determined the phenotype of the migrated MUTZ-3 LC entering the collagen hydrogel after CA exposure by flow cytometric and PCR analysis (Fig. 6). In line with previous results (Ouwehand et al., 2011b; Kosten et al., 2015b), CA exposure of SE-LC resulted in CD1α+ LC migrating into the dermis as indicated by an increase in the relative number of CD1α+ LC in the collagen gel. Furthermore, incubation with anti-CXCL12 totally abolished this increase in CD1α+ cells in the dermis, in line with blocking migration of CD1α+ cells out of the epidermis (c.f. Fig. 4). Surprisingly, CA exposure of GE-LC did not result in an increase in CD1α+ cells in the collagen hydrogel (Fig. 6A) but did result in an increase in CD83 transcripts (Fig. 6B), suggesting that the migrated MUTZ-3 LC have matured. Additionally, the migration of the CFSE labelled MUTZ-3 LC could not be blocked with anti-CXCL12 (Fig. 6C). These results indicate that in gingiva, upon CA exposure MUTZ-3 LC migrate in a CXCL12 independent manner into the LP and in doing so mature and become CD1α+/CD83+.

4 Discussion

In this study we describe the first full thickness oral mucosa (gingiva) equivalent with integrated Langerhans cells derived from the MUTZ-3 cell line. It enables oral LC development, maturation and migration to be investigated in a human, physiologically relevant model. We previously described the unique plasticity of the MUTZ-3 cell line. MUTZ-3 are able to differentiate in a cytokine dependent manner into DC-SIGN-expressing dermal DC or into Langerin-expressing LC (Masterson et al., 2002; van de Ven et al., 2011), which in turn are able to prime specific T cell responses (Santegoets et al., 2008). Furthermore, MUTZ-3 LC are functional when incorporated into full thickness skin equivalents. Upon topical irritant exposure, MUTZ-3 LC migrate in a CCL5 dependent manner into the dermis where they undergo an IL-10 dependent phenotypic change to a macrophage-like cell within the dermal compartment (Kosten et al., 2015b). In contrast, upon topical allergen exposure epidermal MUTZ-3 LC mature and migrate in a CXCL12 dependent manner (Ouwehand et al., 2011b). We now show that in oral mucosa, in contrast to skin, maturing MUTZ-3 LC (increased CD83+ mRNA transcripts) migrate in a CXCL12 independent manner and in doing so become CD1α+ in the LP upon allergen exposure.

In this present study we show that, similar to skin, mLC are able to migrate towards soluble factors secreted by gingiva fibroblasts. Since iLC did not migrate towards fibroblasts, we can conclude that LC migration is regulated by differential chemokine receptor expression on maturing LC compared to iLC, which in turn enables the LC to migrate specifically towards chemokines secreted by gingiva fibroblasts as well as skin fibroblasts (Kosten et al., 2015b; Ouwehand et al., 2008). However, even after stimulation with rhIL-1α or rhTNFα, gingiva fibroblasts secreted much less CXCL12, which is a pivotal chemokine for skin epidermis-to-dermis migration. This, together with the finding that anti-CXCL12 was unable to block migration, indicates that an as yet unknown chemokine / receptor pair is responsible for LC epithelium-to-LP migration in oral gingiva after allergen exposure. Indeed recently, we have shown that GE (without LC), topically exposed to an allergen or an irritant, secrete negligible amounts of key cytokines and chemokines (IL-18, CCL2, CCL20, CXCL12) involved in LC migration compared to skin, whereas the general inflammatory cytokine CXCL8 was secreted at similar levels by SE and GE (Kosten et al., 2015a). These results further support our current findings that the cytokines and chemokines triggering innate immunity and LC migration are very different in skin and gingiva. However, others have reported that gingival fibroblasts are indeed able to secrete (low amounts of) CXCL12 upon stimulation with rhTNFα, and also that biospies obtained from periodontal diseased tissue show increased CXCL12 expression, indicating that CXCL12 may yet be involved in oral immunity, e.g., in lymphocyte infiltration rather than LC migration (Hosokawa et al., 2005).

It was found that upon entering the LP of GE-LC, the migrating MUTZ-3 LC quickly lost their CD1α expression. This was in contrast to skin, in which the migrating LC still clearly expressed CD1α after 16 h. Our finding is in line with those of others who reported that gingiva LC have a lower CD1α expression in comparison to skin LC (Novak et al., 2011). This strongly indicates a difference in antigen presentation in the oral mucosa as compared to skin (Cutler and Jotwani, 2006). Also, in contrast to skin where antigen presentation takes place in the draining lymph nodes, it has been reported that oral LC present antigens to T cells in the oral lymphoid foci within the LP, indicating that oral LC may not need to travel to nearby draining lymph nodes, i.e., tonsils in order to induce an immune response (Cutler and Jotwani, 2006). This would make an up-regulation of CXCR4 or CCR7 and their respective chemokine ligands (CXCL12, CCL19 and CCL21) (Lin et al., 1998; Ouwehand et al., 2008, 2010) possibly obsolete in gingiva. Whether or not a suspended state of iLC can conclude that LC migration is regulated by differential chemokine receptor expression on maturing LC compared to iLC, which in turn enables the LC to migrate specifically towards chemokines secreted by gingiva fibroblasts as well as skin fibroblasts (Kosten et al., 2015b; Ouwehand et al., 2008). However, even after stimulation with rhIL-1α or rhTNFα, gingiva fibroblasts secreted much less CXCL12, which is a pivotal chemokine for skin epidermis-to-dermis migration. This, together with the finding that anti-CXCL12 was unable to block migration, indicates that an as yet unknown chemokine / receptor pair is responsible for LC epithelium-to-LP migration in oral gingiva after allergen exposure. Indeed recently, we have shown that GE (without LC), topically exposed to an allergen or an irritant, secrete negligible amounts of key cytokines and chemokines (IL-18, CCL2, CCL20, CXCL12) involved in LC migration compared to skin, whereas the general inflammatory cytokine CXCL8 was secreted at similar levels by SE and GE (Kosten et al., 2015a). These results further support our current findings that the cytokines and chemokines triggering innate immunity and LC migration are very different in skin and gingiva. However, others have reported that gingival fibroblasts are indeed able to secrete (low amounts of) CXCL12 upon stimulation with rhTNFα, and also that biospies obtained from periodontal diseased tissue show increased CXCL12 expression, indicating that CXCL12 may yet be involved in oral immunity, e.g., in lymphocyte infiltration rather than LC migration (Hosokawa et al., 2005).

It was found that upon entering the LP of GE-LC, the migrating MUTZ-3 LC quickly lost their CD1α expression. This was in contrast to skin, in which the migrating LC still clearly expressed CD1α after 16 h. Our finding is in line with those of others who reported that gingiva LC have a lower CD1α expression in comparison to skin LC (Novak et al., 2011). This strongly indicates a difference in antigen presentation in the oral mucosa as compared to skin (Cutler and Jotwani, 2006). Also, in contrast to skin where antigen presentation takes place in the draining lymph nodes, it has been reported that oral LC present antigens to T cells in the oral lymphoid foci within the LP, indicating that oral LC may not need to travel to nearby draining lymph nodes, i.e., tonsils in order to induce an immune response (Cutler and Jotwani, 2006). This would make an up-regulation of CXCR4 or CCR7 and their respective chemokine ligands (CXCL12, CCL19 and CCL21) (Lin et al., 1998; Ouwehand et al., 2008, 2010) possibly obsolete in gingiva. Whether or not a suspended state of iLC (no up-regulation of CXCR4, CCR7, CD86) in the oral cavity would actively induce tolerance still has to be determined. However, Jotwani et al. suggested that oral LCs that have taken up antigen mature only partially and migrate into the basa lamina (Jotwani et al., 2001; Jotwani and Cutler, 2003). However, we did find that MUTZ-3 LC migrating into the LP...
of GE-LC, in addition to becoming CD1a+, became mRNA CD83+. This is in line with our previous findings and those of others who reported HLA-DR+ DC subsets in human tonsils that lack CD1a expression (Summers et al., 2001; Lundberg et al., 2013), indicating that migration to the draining lymph nodes cannot be ruled out. Most likely the loss of CD1a upon migration is caused by differences in the LP in GE vs. dermis in the SE, consistent with our previous observations that the phenotype of migrating DC is highly plastic and dependent on the cytokine balance in the tissue microenvironment (de Gruijl et al., 2006; Ouwehand et al., 2011a).

Our study is an in vitro study using cultured GE-LC and therefore, even though this is a highly advanced technical model, we do have to recognize its limitations (e.g., lack of vasculature and diverse infiltrating immune cell subsets) when studying the complex mechanisms involved in regulating human immunity. However, the model is most suitable for studying DC biology and DC responses to substances which influence the innate immune system. Importantly, our study clearly emphasizes that physiologically relevant models that not only allow us but which also resemble specific tissues are needed if we are to identify factors regulating immune activation and tolerization, which in turn will aid the development of therapeutic interventions for allergy and inflammation, anti-cancer vaccines as well as improving diagnostics for skin and oral allergy. Importantly, since many drugs are administered orally due to the greater efficiency of uptake in oral mucosa caused by its lower barrier competency compared to skin, our results hold great promise for implementation of relevant oral mucosa test models in this context.

References

Allam, J. P., Stojanovski, G., Friedrichs, N. et al. (2008). Distribution of Langerhans cells and mast cells within the human oral mucosa: New application sites of allergens in sublingual immunotherapy? Allergy 63, 720-727. http://dx.doi.org/10.1111/j.1398-9995.2007.01611.x

Andrian, E., Mostefaoui, Y., Rouabhia, M. and Grenier, D. (2007). Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 211, 56-62. http://dx.doi.org/10.1002/jcp.20894

Claveau, I., Mostefaoui, Y. and Rouabhia, M. (2004). Basement membrane protein and matrix metalloproteinase deregulation in engineered human oral mucosa following infection with Candida albicans. Matrix Biol 23, 477-486. http://dx.doi.org/10.1016/j.matbio.2004.08.006

Cumberbatch, M., Dearman, R. J., Griffiths, C. E. and Kimber, I. (2003). Epidermal Langerhans cell migration and sensitisation to chemical allergens. APMIS 111, 797-804. http://dx.doi.org/10.1034/j.1600-0463.2003.11107811.x

Cutler, C. W. and Jotwani, R. (2006). Dendritic cells at the oral mucosal interface. J Dent Res 85, 678-689. http://dx.doi.org/10.1177/154405910608500801

de Gruijl, T. D., Sombroek, C. C., Lougheed, S. M. et al. (2006). A postmigrational switch among skin-derived dendritic cells to a macrophage-like phenotype is predetermined by the intracutaneous cytokine balance. J Immunol 176, 7232-7242. http://dx.doi.org/10.4049/jimmunol.176.12.7232

dos Santos, G. G., Reinders, J., Ouwehand, K. et al. (2009). Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol 236, 372-382. http://dx.doi.org/10.1016/j.taap.2009.02.004

Fentem, J. H., Archer, G. E., Balls, M. et al. (1998). The ECVAM international validation study on in vitro tests for skin corrosivity. 2. Results and evaluation by the management team. Toxicol In Vitro 12, 483-524. http://dx.doi.org/10.1016/S0887-2333(98)00019-8

Gibbs, S., Corsini, E., Spiekstra, S. W. et al. (2013). An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol 272, 529-541. http://dx.doi.org/10.1016/j.taap.2013.07.003

Gibbs, S. and Ponec, M. (2000). Intrinsic regulation of differentiation markers in human epidermis, hard palate and buccal mucosa. Arch Oral Biol 45, 149-158. http://dx.doi.org/10.1016/S0003-9969(99)00116-8

Griffiths, C. E., Dearman, R. J., Cumberbatch, M. and Kimber, I. (2005). Cytokines and Langerhans cell mobilisation in mouse and man. Cytokine 32, 67-70. http://dx.doi.org/10.1016/j.cyto.2005.07.011

Heerden, V., Sankar, V., Hull, K. et al. (2012). New developments and opportunities in oral mucosal drug delivery for local and systemic disease. Adv Drug Deliv Rev 64, 16-28. http://dx.doi.org/10.1016/j.addr.2011.02.008

Hosokawa, Y., Hosokawa, I., Ozaki, K. et al. (2005). CXCL12 and CXCR4 expression by human gingival fibroblasts in periodontal disease. Clin Exp Immunol 141, 467-474. http://dx.doi.org/10.1111/j.1365-2249.2005.02852.x

Jacobs, J. J., Lehe, C. L., Hasegawa, H. et al. (2006). Skin irritants and contact sensitizers induce Langerhans cells migration and maturation at irritant concentration. Exp Dermatol 15, 432-440. http://dx.doi.org/10.1111/j.0906-6705.2006.00420.x

Jotwani, R., Palucka, A. K., Al-Quotub, M. et al. (2001). Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: In situ, in vivo, and in vitro studies. J Immunol 167, 4693-4700. http://dx.doi.org/10.4049/jimmunol.167.8.4693

Jotwani, R. and Cutler, C. W. (2003). Multiple dendritic cell (DC) subpopulations in human gingiva and association of mature DCs with CD4+ T-cells in situ. J Dent Res 82, 736-741. http://dx.doi.org/10.1177/154405910308200915

Kimber, I., Cumberbatch, M., Dearman, R. J. et al. (2000). Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 142, 401-412. http://dx.doi.org/10.1046/j.1365-2133.2000.03349.x

Kimber, I., Basketter, D. A., Gerberick, G. F. et al. (2011).
Chemical allergy: Translating biology into hazard characterization. *Toxicol Sci* 120, Suppl 1, S238-S268. http://dx.doi.org/10.1093/toxsci/kfq346

Kosten, I. J., Buskermolen, J. K., Spiekstra, S. W. et al. (2015a). Gingiva equivalents secrete negligible amounts of key chemokines involved in Langerhans Cell migration compared to skin equivalents. *J Immunol Res* 2015, 1-11. http://dx.doi.org/10.1155/2015/627125

Kosten, I. J., Spiekstra, S. W., de Gruijl, T. D. and Gibbs, S. (2015b). MUTZ-3 derived Langerhans cells in human skin show differential migration and phenotypic plasticity after allergen or irritant exposure. *Toxicol Appl Pharmocol* 287, 35-42. http://dx.doi.org/10.1016/j.taap.2015.05.017

Kroeze, K. L., Boink, M. A., Sampat-Sardjoepersad, S. C. et al. (2012). Autocrine regulation of re-epithelialization after wounding by chemokine receptors CCR1, CCR10, CXCR1, CXCR2, and CXCR3. *J Invest Dermatol* 132, 216-225. http://dx.doi.org/10.1038/jid.2011.245

Lin, C. L., Suri, R. M., Rahdon, R. A. et al. (1998). Dendritic cell chemotaxis and transendothelial migration are induced by distinct chemokines and are regulated on maturation. *Eur J Immunol* 28, 4114-4122. http://dx.doi.org/10.1002/(SICI)1521-4141(199812)28:12<4114::AID-EJIMMU4114>3.0.CO;2-C

Lindenberg, J. J., Oosterhoff, D., Sombroek, C. C. et al. (2013). IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation. *PLoS One* 8, e70237. http://dx.doi.org/10.1371/journal.pone.0070237

Lundberg, K., Albrect, A. S., Nelissen, I. et al. (2013). Transcriptional profiling of human dendritic cell populations and models – unique profiles of in vitro dendritic cells and implications on functionality and applicability. *PLoS One* 8, e52875. http://dx.doi.org/10.1371/journal.pone.0052875

Macneil, S., Shepherd, J. and Smith, L. (2011). Production of tissue-engineered skin and oral mucosa for clinical and experimental use. *Methods Mol Biol* 695, 129-153. http://dx.doi.org/10.1007/978-1-60761-984-0_9

Masterson, A. J., Sombroek, C. C., de Gruijl, T. D. et al. (2002). MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. *Blood* 100, 701-703. http://dx.doi.org/10.1182/blood.V100.2.701

Moharamzadeh, K., Brook, I. M., van Noort, R. et al. (2008). Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. *J Mater Sci Mater Med* 19, 1793-1801. http://dx.doi.org/10.1007/s10856-007-3321-1

Moharamzadeh, K., Franklin, K. L., Brook, I. M. and van Noort, R. (2009). Biologic assessment of antiseptic mouthwashes using a three-dimensional human oral mucosal model. *J Periodontol* 80, 769-775. http://dx.doi.org/10.1902/jop.2009.080610

Moharamzadeh, K., Colley, H., Murdoch, C. et al. (2012). Tissue-engineered oral mucosa. *J Dent Res* 91, 642-650. http://dx.doi.org/10.1177/0022034511435702

Muris, J., Kleverlaan, C. J., Feilzer, A. J. and Valentine-Thom, E. (2009). Reactivity to sodium tetrachloropalladate (Na2[PdCl4]) compared to PdCl2 and NiCl2 in lymphocyte proliferation tests. *Allergy* 64, 1152-1156. http://dx.doi.org/10.1111/j.1398-9995.2009.01963.x

Novak, N., Bieber, T. and Allam, J. P. (2011). Immunological mechanisms of sublingual allergen-specific immunotherapy. *Allergy* 66, 733-739. http://dx.doi.org/10.1111/j.1398-9995.2010.02535.x

Oosterhoff, D., Heusinkveld, M., Lougheed, S. M. et al. (2013). Intradermal delivery of TLR agonists in a human explant skin model: Preferential activation of migratory dendritic cells by polyribosinic-polyribocytidic acid and peptidoglycans. *J Immunol* 190, 3338-3345. http://dx.doi.org/10.4049/jimmunol.1200598

Ouweward, K., Santegoets, S. J., Bruynzeel, D. P. et al. (2008). CXCL12 is essential for migration of activated Langerhans cells from epidermis to dermis. *Eur J Immunol* 38, 3050-3059. http://dx.doi.org/10.1002/eji.200833834

Ouweward, K., Scheper, R. J., de Gruijl, T. D. and Gibbs, S. (2010). Epidermis-to-dermis migration of immature Langerhans cells upon topical irritant exposure is dependent on CCL2 and CCL5. *Eur J Immunol* 40, 2026-2034. http://dx.doi.org/10.1002/eji.200940150

Ouweward, K., Oosterhoff, D., Breetveld, M. et al. (2011a). Irritant-induced migration of Langerhans cells coincides with an IL-10-dependent switch to a macrophage-like phenotype. *J Invest Dermatol* 131, 418-425. http://dx.doi.org/10.1038/jid.2010.336

Ouweward, K., Spiekstra, S. W., Waaijman, T. et al. (2011b). Technical advance: Langerhans cells derived from a human skin cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. *J Leukoc Biol* 90, 1027-1033. http://dx.doi.org/10.1189/jlb.0610374

Roggen, E. L. (2014). In vitro approaches for detection of chemical sensitization. *Basic Clin Pharmacol Toxicol* 115, 32-40. http://dx.doi.org/10.1111/bcpt.12202

Rouabhia, M. and Deslauriers, N. (2002). Production and characterization of an in vitro engineered human oral mucosa. *Biochem Cell Biol* 80, 189-195. http://dx.doi.org/10.1139/o01-237

Santegoets, S. J., Gibbs, S., Kroeze, K. et al. (2008). Transcriptional profiling of human skin-resident Langerhans cells and CD1a+ dermal dendritic cells: Differential activation states suggest distinct functions. *J Leukoc Biol* 84, 143-151. http://dx.doi.org/10.1189/jlb.06107750

Shklovskaya, E., O’Sullivan, B. J., Ng, L. G. et al. (2011). Autocrine regulation of re-epithelialization after allergen or irritant exposure. *Proc Natl Acad Sci U S A* 108, 18049-18054. http://dx.doi.org/10.1073/pnas.1110076108

Shortman, K. and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. *Nat Rev Immunol* 2, 151-161. http://dx.doi.org/10.1038/nri746
Sivard, P., Dezutter-Dambuyant, C., Kanitakis, J. et al. (2003). In vitro reconstructed mucosa-integrating Langerhans' cells. Exp Dermatol 12, 346-355. http://dx.doi.org/10.1034/j.1600-0625.2003.00108.x

Spielmann, H., Hoffmann, S., Liebsch, M. et al. (2007). The ECVAM international validation study on in vitro tests for acute skin irritation: Report on the validity of the EPISKIN and EpiDerm assays and on the skin integrity function test. Altern Lab Anim 35, 559-601.

Summers, K. L., Hock, B. D., McKenzie, J. L. and Hart, D. N. (2001). Phenotypic characterization of five dendritic cell subsets in human tonsils. Am J Pathol 159, 285-295. http://dx.doi.org/10.1016/S0002-9440(10)61694-X

van de Ven, R., van den Hout, M. F., Lindenberg, J. J. et al. (2011). Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 118, 2502-2510. http://dx.doi.org/10.1182/blood-2011-03-344838

van Hoogstraten, I. M., Boden, D., von Blomberg, M. E. et al. (1992). Persistent immune tolerance to nickel and chromium by oral administration prior to cutaneous sensitization. J Invest Dermatol 99, 608-616. http://dx.doi.org/10.1111/1523-1747.ep12668010

Vriens, A. P., Waaizman, T., van den Hoogenband, H. M. et al. (2008). Comparison of autologous full-thickness gingiva and skin substitutes for wound healing. Cell Transplant 17, 1199-1209. http://dx.doi.org/10.3727/096368908787236521

Wray, D., Rees, S. R., Gibson, J. and Forsyth, A. (2000). The role of allergy in oral mucosal diseases. QJM 93, 507-511. http://dx.doi.org/10.1093/qjmed/93.8.507

Yadev, N. P., Murdoch, C., Saville, S. P. and Thornhill, M. H. (2011). Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis. Microb Pathog 50, 278-285. http://dx.doi.org/10.1016/j.micpath.2010.11.009

Conflict of interest
S. Gibbs is co-founder of A-Skin BV which is a spin-off company (SME) of the VU University Medical Center. The other authors have no conflicts of interest.

Acknowledgments
This study was financed by the VU University Medical Center, Amsterdam, The Netherlands

Correspondence to
Susan Gibbs, PhD
Department of Oral Cell Biology, ACTA
Room 11N69
Gustav Mahlerlaan 3004
1081 HZ Amsterdam, The Netherlands
Phone: +31 205980181
e-mail: s.gibbs@acta.nl