Resorption analysis of deproteinized cancellous bovine bone

Masayuki NARUKAWA¹, Osamu SUZUKI², Mitsuori MAYAHARA¹, Eisaku IMAMURA¹,³, Yoshitoki TAKAGI¹, Takashi FUNAE¹, Yuusuke MAKINO¹, Retsu OHKI¹ and Masanori NAKAMURA¹

¹ Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555 Japan
² Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
³Division of Oral Surgery, Yokohama General Hospital, 2201-5 Tetsumachi, Aoba-ku, Yokohama, Kanagawa 225-0025, Japan

Corresponding author, Masanori NAKAMURA; E-mail: masanaka@dent.showa-u.ac.jp

Commercially available deproteinized cancellous bovine bone (DPBB) has been indicated as non-absorbable bone filling materials. Stoichiometric hydroxyapatite (HA) was not resorbed by osteoclasts while calcium-deficient and carbonate-rich apatite converted from octacalcium (OCP hydrolysate) was resorbed by osteoclasts. We analyzed the chemical composition of DPBB and compared the tissue reactions around two materials after implantation into mouse bone marrow. X-ray diffraction analysis and Fourier transform infrared spectroscopy showed that DPBB was a carbonate-rich apatite. Micro-CT analysis indicated the massive bone formation on both materials at 2 weeks, then gradually resorbed. At 12 weeks, osteoclasts were directly attached to both materials. The ultrastructure of ruffled borders on DPBB was identical to osteoclasts resorbing normal bone while ruffled border on OCP hydrolysate showed irregular shape. These results indicated that DPBB was the absorbed material and that the structure of ruffled border of osteoclasts might be regulated by the size or orientation of HA.

Keywords: Deproteinized cancellous bovine bone, Octacalcium phosphate, Osteoclast, Transmission electron microscopy

INTRODUCTION

In oral and maxillofacial surgery, bone grafting is needed to recover bone defects due to malformation, cysts, or tumors. For dental implant installation, sinus lifting has been selected to augment bone volume in the case of highly atrophic alveolar ridge, particularly in the maxillary molar region. Autogenous bone grafting has been performed in many of these cases as “gold standard” for the long time. However, another operation field must be required to get bone grafts, which increases the risk of morbidity. Various biomaterials and/or growth factors have been investigated as alternative clinical methods for many years.

Deproteinized cancellous bovine bone (DPBB) has been reported as a non-absorbed bone filling material and is used for dental implants and other treatments. Stoichiometric ceramic hydroxyapatite (HA) is also used as a bone filling material for various surgical treatments. Previous studies showed that the grafted bone was absorbed by osteoclasts, while osteoclasts could not absorb the chemically equivalent HA.

HA in bone and tooth is a calcium-deficient and carbonate-containing HA. Octacalcium phosphate is the precursor of HA and convert to calcium-deficient and carbonate-containing HA during hydrolysis in vivo. We previously indicated that the octacalcium phosphate (OCP) implanted into mouse calvaria converted to the calcium-deficient and carbonate-containing HA. We also indicated that this converted HA was resorbed by active osteoclasts. These results strongly suggest that the resorption by osteoclasts might be dependent on the chemical composition of HA. Recent studies indicated the existence of osteoclasts on the implanted DPBB. However, there are few reports on the precise structure of osteoclasts on DPBB.

Therefore, in this study, we first analyzed the chemical composition of DPBB and then, compared the tissue reaction of DPBB and OCP after implantation into mouse bone marrow.

MATERIALS AND METHODS

Characterization of DPBB

X-ray diffraction analysis (XDA) and Fourier transform infrared spectroscopy (FTIS) were used to characterize DPBB (particle size 0.5–1 mm, Bio-Oss, Geistlich, Wolhusen, Switzerland). Powder XRD patterns of the synthetics were obtained by a scanning step with Cu Ka X-rays on a Rigaku Electrical (Tokyo, Japan), RAD-2B diffractometer at 40 kV, 20 mA. FTIR spectra of the synthetics were obtained using a diffuse reflectance attachment to a Jasco FT/IR 350 (Jasco, Tokyo, Japan).

Approximately 500 spectral scans were usually conducted over the range of 4,000–400 cm⁻¹ with a resolution of 4 cm⁻¹. The calcium and phosphorus contents of the synthetics were determined with an atomic absorption spectrophotometer and colorimetry and acid phosphate was determined using a previously reported procedure after pyrolysis of the solid at 600°C for 24 h under atmospheric conditions.

Procedure of the material implantation into bone marrow

Male ICR mice (8 weeks old) were obtained from Sankyo Laboratories (Tokyo, Japan) and maintained under specific pathogen-free conditions. A total of 45 mice...
RESULTS

Characteristics of DPBB
XDA analysis indicated the diffraction pattern of DPBB. Diffraction angle showed a peak at 26, 29, 32–35, 41, 46–53 degrees (Fig. 1a), which was approximately the same as HA. FTIR analysis indicated that the infrared
absorption spectrum (IR spectrum) showed a peak in 560–600, 870, 960, 1,030–1,130, and 1,410–1,460 cm\(^{-1}\). Thus, 560–600, 960 and 1,030–1,130 cm\(^{-1}\) were the same as the peak of the IR spectrum of the HA, while 870 and 1,410–1,460 cm\(^{-1}\) showed the peak of carbonic acid, which indicated that DPBB was the calcium-deficient and carbonate apatite.

Micro-CT analysis
At 2 weeks after the surgery, trabecular bones were formed in the bone marrow space without the implantation of OCP hydrolysate or DPBB (Fig. 2a), which decreased with the progress of time (Figs. 2b, c). At 12 weeks, most trabecular bones disappeared and the burr hole formed by the drill was completely recovered by the cortical bone (Fig. 2c).

In the case of OCP hydrolysate or DPBB implanted group, the bone formation could not be clearly detected at 2 weeks after the surgery (Figs. 2d, g). At 4 weeks, newly formed bone was detected on the implanted materials (Figs. 2e, h). The volume of newly formed bone showed a tendency to decrease 12 weeks later (Figs. 2f, i).

Histological and histochemical analysis of bone formation and resorption on the implanted materials
In the control group without implantation, trabecular bone was formed in the bone marrow space, which was resorbed by osteoclast at 2 weeks after the surgery (Figs. 3a, d). At 4 weeks, bone volume of the trabecular bone in the bone marrow tended to decrease by active osteoclast resorption (Figs. 3b, e). At 12 weeks, most of trabecular bones were disappeared in the bone marrow space (Figs. 3c, f).

In the case of OCP hydrolysate implanted group, most of the implanted OCP hydrolysate was covered by the newly formed bone at 2 weeks after the surgery (Fig. 4a). Many TRAP-positive osteoclasts were attached to the newly formed bone surface and resorbed bone (Fig. 4d).
In the DPBB implanted group, active bone formation was detected at 2 weeks after the surgery (Fig. 5a). However, some areas of DPBB were still not covered by bone and TRAP positive osteoclasts attached to newly formed bone and DPBB (Fig. 5d). At 4 and 12 weeks, active bone formation could not be detected, and TRAP positive osteoclasts attached to bone and DPBB as described by the results at 2 weeks after the surgery (Figs. 5b, c, e, f).

Ultrastructural analysis of osteoclast on DPBB and OCP hydrolysate

Multinucleated osteoclasts were directly attached on the surface of DPBB and OCP hydrolysate (Figs. 6a, b). Osteoclasts attached to both materials and showed the well-developed clear zones and ruffled borders, which indicated the active resorption of DPBB and OCP hydrolysate (Figs. 6a, b). However, the ultrastructure of ruffled border of osteoclast were quite different between the two groups. Osteoclasts attached to OCP hydrolysate developed the elongated processes and showed large spaces between each process (Fig. 6c). Ruffled border of osteoclast attached to DPBB consisted of finger-type and plate-type processes (Fig. 6d), which were the commonly detected structures of osteoclasts resorbing normal bone.

Decalcified DPBB were comprised of crystal ghosts of HA (Fig. 6b). However, DPBB under the ruffled border was filled with granular materials (Figs. 6b, d).

DISCUSSION

Bone marrow contains mesenchymal stem cells and osteoblast precursor cells, and also is the hematopoietic organ. In this study, massive bone formation was detected in all groups until 2 weeks after the surgery. Subsequently, newly formed bone in the bone marrow was rapidly resorbed by osteoclasts to probably ensure the hematopoietic space. Therefore, bone marrow is the
suitable site for the analysis of active bone formation and resorption. We histologically examined the bone marrow reaction by OCP hydrolysate or DPBB implantation.

One of the requirements as the bone filling material is the rapid bone induction on the material and subsequent replacement of the recipient’s own bone by the resorption of the material. The bone induction on the OCP hydrolysate was faster than that on the DPBB. We previously indicated the rapid osteoinduction on OCP, which might result by the upregulation of calcium concentration around the OCP microenvironment and subsequent induction of BMPs by macrophages. As OCP hydrolysate is a calcium-deficient HA prepared through OCP hydrolysis and the chemical characteristics is almost similar to DPBB, the bone formation progressed equally between OCP hydrolysate and DPBB.

After 4 weeks, active osteoclastic resorption of bone and the implanted materials was detected. Interestingly, the ultrastructure of ruffled border of osteoclast was quite different depending on the implanted materials. Ruffled border of osteoclasts facing OCP hydrolysate showed irregular shape of cell processes, whereas ruffled border facing DPBB consisted of finger-type and plate-type processes. Domon and Wakita clearly described the ultrastructure of ruffled border of in vivo osteoclasts.

The crystal size and the orientation of HA was also different between the two materials. OCP hydrolysate is formed by the conversion from OCP, which are plate-like structures with several μm length and submicron in width. The length and width of HA in bone was much smaller than OCP hydrolysate.

Osteoclasts attached to DPBB had well-developed ruffled border. However, typical Howship lacunae could not be detected. DPBB just beneath the ruffled border of osteoclasts consisted of fine granular materials different from typical crystal ghosts, which indicated the resorption of DPBB by osteoclasts. However, the resorption activity of osteoclasts was much lower than those facing normal bone. This suggests that the structure of ruffled border might be regulated by the size and the orientation of HAs in the mineralized tissues.

It has been reported that bone matrix participates in the differentiation and the activity of osteoclasts. Henriksen et al. also indicated that the age of the bone plays an important role in controlling osteoclast-mediated resorption, with significantly higher levels of osteoclast differentiation and resorption on aged bones when compared to young bones. DPBB is the product from burnt up bone. Therefore, the material which adhered to the surface of HA might be comprised of serum proteins. Although the details of absorbed materials on HA are still uncertain, the resorption activity of osteoclasts attached to DPBB and OCP hydrolysate might be regulated not by HA but some substitute adhering to HA.

REFERENCES
1) Dario LJ, English R Jr. Chin bone harvesting for autogenous grafting in the maxillary sinus: a clinical report. Pract Periodontics Aesthet Dent 1994; 6: 87-91.
2) Tripplett RG, Schow SR. Autologous bone grafts and endosseous implants: complementary techniques. J Oral Maxillofac Surg 1996; 54: 486-494.
3) Garg AK. Augmentation grafting of the maxillary sinus for placement of dental implants: anatomy, physiology, and procedures. Implant Dent 1999; 8: 36-46.
4) Krekmanov L, Heimdal A. Bone grafting to the maxillary sinus from the lateral side of the mandible. Br J Oral Maxillofac Surg 2000; 38: 617-619.
5) Steinberg B, Padwa BL, Boyne P, Kahlan L. State of the art in oral and maxillofacial surgery: treatment of maxillary hypoplasia and anterior palatal and alveolar clefts. Cleft Palate Craniofac J 1999; 36: 283-291.
6) Auleda J, Bianchi A, Tibau R, Rodriguez-Cano O. Hernia through iliac crest defects. A report of four cases. Int Orthop 1995; 19: 367-369.
7) Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holton P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg 2005; 87A: 716-720.
8) Kolomvos N, Iatrou I, Theologie-Lygidakis N, Tzerbos F, Schoinohoriti O. Iliac crest morbidity following maxillofacial bone grafting in children: a clinical and radiographic prospective study. J Craniomaxillofac Surg 2010; 38: 293-302.
9) Nóia CF, Ortega-Lopes R, Olate S, Duque TM, de Moraes M, Mazzonetto R. Prospective clinical assessment of morbidity after chin bone harvest. J Craniomaxillofac Surg 2011; 41: 2195-2198.
10) Kent JN, Quinn JH, Zide MF, Guerra LR, Boyne PJ. Alveolar ridge augmentation using nonresorbable hydroxyapatite with or without autogenous cancellous bone. J Oral Maxillofac Surg 1983; 41: 629-642.
11) Block MS, Kent JN. Long-term radiographic evaluation of hydroxyapatite-augmented mandibular alveolar ridges. J Oral Maxillofac Surg 1984; 42: 793-796.
12) Rothstein SS, Paris DA, Zacek MP. Use of hydroxyapatite for the augmentation of deficient alveolar ridges. J Oral Maxillofac Surg 1984; 42: 224-230.
13) Barkhordar RA, Meyer JR. Histologic evaluation of a human periapical defect after implantation with tricalcium phosphate. Oral Surg Oral Med Oral Pathol 1986; 61: 201-206.
14) Piché JE, Graves DT. Study of the growth factor requirements of human bone-derived cells: a comparison with human fibroblasts. Bone 1989; 10: 131-138.
15) Rosenlicht J. Methods for treating the failing root-form dental implant. Dental Implant Update 1991; 2: 16-19.
16) Taschieri S, Del Fabbro, M, Testori T, Weinsteins R. Efficacy of xenogeneic bone grafting with guided tissue regeneration in the management of bone defects after surgical endodontics. J Oral Maxillofac Surg 2007; 65: 1121-1127.
17) Moon JW, Sohn DS, Heo JU, Kim JS. Comparison of two kinds of bovine bone in maxillary sinus augmentation: a histomorphometric study. Implant Dent 2015; 24: 19-24.
18) Dein M, Ochi M, Adachi N, Nishimori M, Yokota K. Artificial bone grafting [calcium hydroxyapatite ceramic with an interconnected porous structure (IP-CHA)] and core decompression for spontaneous osteonecrosis of the femoral condyle in the knee. Knee Surg Sports Traumatol Arthrosc 2008; 16: 753-758.
19) Lew KS, Othman R, Ishikawa K, Yeoh FY. Macroporous bioceramics: a remarkable material for bone regeneration. J Biomater Appl 2012; 27: 345-358.
20) Kahnberg KE, Rasmussen L, Mohammadi S. An experimental rabbit model for studying the healing of onlay bone grafts. Swed Dent J 1998; 22: 15-21.
21) Le Lor’c’h-Bukiet I, Tulusane JF, Llorens A, Lesclous P, Parietal
bone as graft material for maxillary sinus floor elevation: structure and remodeling of the donor and of recipient sites. Clin Oral Implants Res 2005; 16: 244-249.

22) Krukowski M, Kahn AJ. Inductive specificity of mineralized bone matrix in ectopic osteoclast differentiation. Calcif Tissue Int 1982; 34: 474-479.

23) Lorenz J, Kubesch A, Korzinskas T, Barbeck M, Landes C, Sader RA, et al. TRAP-Positive multinucleated giant cells are foreign body giant cells rather than osteoclasts: results from a split-mouth study in humans. J Oral Implantol 2015; 41: e257-e266.

24) Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. TRAP-Positive multinucleated giant cells are foreign body giant cells rather than osteoclasts: results from a split-mouth study in humans. J Oral Implantol 2015; 41: e257-e266.

25) Suzuki O, Nakamura M, Miyasaka Y, Kagayama M, Sakurai M. Bone formation on synthetic precursors of hydroxyapatite. Tohoku J Exp Med 1991; 164: 37-50.

26) Suzuki O, Kamakura S, Katagiri T, Nakamura M, Zhao B, Honda Y, et al. Bone formation enhanced by implanted octacalcium phosphate involving conversion into Ca-deficient hydroxyapatite. Biomaterials 2006; 27: 2671-2681.

27) Kamakura S, Sasano Y, Homma-Ohki H, Nakamura M, Suzuki O, Kagayama M, et al. Multinucleated giant cells recruited by implantation of octacalcium phosphate (OCP) in rat bone marrow share ultrastructural characteristics with osteoclasts. J Electron Microsc 1997; 46: 397-403.

28) Tadjedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 2003; 30: 261-270.

29) Duda M, Pajak J. The issue of bioresorption of the Bio-Oss xenogeneic bone substitute in bone defects. Ann Univ Mariae Curie Sklodowska Med 2004; 59: 269-277.

30) Hirayama B, Anada T, Shiwaku Y, Miyatake N, Tsuchiya K, Nakamura M, et al. Immune cell response and subsequent bone formation induced by implanted octacalcium phosphate in a rat tibia defect. RSC Adv 2016; 6: 57475-57484.

31) Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 2006; 345: 1155-1160.

32) Domon T, Wakita M. Electron microscope study of osteoclasts with special reference to the three-dimensional structure of the ruffled border. Arch Histol Jpn 1986; 49: 593-602.

33) Domon T, Wakita M. A three-dimensional reconstruction of the ruffled border of osteoclasts. Arch Histol Cytol 1989; 52: 1-13.

34) Suzuki O. Transitory nature of octacalcium phosphate in physiological milieu and its osteoinductive property. Phosphorus Research Bulletin 2009; 23: 31-34.

35) Eppell SJ, Tong W, Katz JL, Kuhn L, Glimcher MJ. Shape and size of isolated bone mineralites measured using atomic force microscopy. J Orthop Res 2001; 19: 1027-1034.

36) Soysa NS, Alles N, Aoki K, Ohya K. Osteoclast formation and differentiation: an overview. J Med Dent Sci 2012; 59: 65-74.

37) Yao Z, Xing L, Qin C, Schwarz EM, Boyce BF. Osteoclast precursor interaction with bone matrix induces osteoclast formation directly by an interleukin-1-mediated autocrine mechanism. J Biol Chem 2008; 283: 9917-9924.

38) Henriksen K, Leeming DJ, Byrjalsen I, Nielsen RH, Sorensen MG, DziegIEL MH, et al. Osteoclasts prefer aged bone. Osteoporos Int 2007; 18: 751-759.