A gene for plant protection: expression of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes

Orlando Borras-Hidalgo1, Claudio Caprari2, Ingrid Hernandez-Estevez1, Giulia De Lorenzo3 and Felice Cervone*1*

1 Center of Biotechnology and Genetic Engineering, La Habana, Cuba
2 Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy
3 Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy

*Correspondence: Felice Cervone, Department of Biology and Biotechnology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy. e-mail: felice.cervone@unicamer.it

INTRODUCTION

Plants that in nature are exposed to biotic stresses often resist to pathogen infection by rapidly activating the innate immune system. An efficient activation of the resistance responses relies on the prompt perception/transduction of signal molecules that are common to many classes of pathogens (pathogen-associated molecular patterns, PAMPs) and are recognized by germline-encoded pattern-recognition receptors (PRRs). Resistant responses are also triggered by race-specific molecules (effectors, Avr products) recognized by specific pathogen genotypes. Usually R-mediated resistance does not last for a long time since pathogens continually evolve more aggressive genotypes. More recently it has been proposed that a PRR-mediated recognition of PAMPs may be utilized to confer to transgenic plants a larger spectrum of disease resistance. Indeed, the Arabidopsis EFR that recognizes the bacterial elongation factor EF-Tu has been shown to confer resistance against several bacteria (Brutus et al., 2010). Resistance against both bacteria or fungi (Brutus et al., 2010; De Lorenzo et al., 2005) and oomycetes (Powell et al., 2000; Ferrari et al., 2003; Agüero et al., 2010) is well established: transgenic tomato and grapevine plants expressing a pear polygalacturonase-inhibiting protein (PGIP) protect tobacco against a fungal pathogen (Rhizoctonia solani) and two oomycetes (Phytophthora parasitica var. nicotianae and Peronospora hyoscyami f. sp. tabacina). The trials were performed in greenhouse conditions for R. solani and P. parasitica and in the field for P. hyoscyami. Our results show that expression of PGIP is a powerful way of engineering a broad-spectrum disease resistance.

Keywords: disease resistance, polygalacturonase inhibitor, oomycetes, plant protection
PGIP is a powerful way of engineering a broad-spectrum disease resistance. PGIP1 from Phaseolus vulgaris L. protects tobacco against an important fungal pathogen (Peronospora tabacina) and two dangerous oomycetes (Phytophthora parasitica var. nicotianae and Pythium insidiosum f. sp. tabacina). Greenhouse conditions were tested for R. solani and P. parasitica var. nicotianae while field trials were carried out for P. hyoscyami f. sp. tabacina. We propose that the use of PGIP is a powerful way of engineering a broad-spectrum disease resistance.

MATERIALS AND METHODS

TRANSGENIC PLANTS

Two independent transgenic lines of Nicotiana tabacum cv. Petit Havana SR1 plants overexpressing PgP12 from P. vulgaris (accession number P39822) have been used in this work and belong to the collection of plants previously characterized (Manfredini et al., 2005). The line indicated here as 2005 corresponds to the line 12.5 described in Manfredini et al. (2005). The normal phenotype of line 2.1 and its ability to revert the dwarf phenotype of transgenic tobacco plants expressing the Aspergillus niger PG II have been previously described (Capodicasa et al., 2004; Manfredini et al., 2005).

DISEASE RESISTANCE ASSAY

Inoculation with R. solani

Transgenic and control tobacco plants (N. tabacum cv. Petit Havana SR1 provided by the Tobacco Research Institute, Cuba) were grown in 6-inch pots containing black turf and rice husk (4:1) and maintained in growth chambers at 23°C. An aggressive isolate belonging to anastomosis group n. 3 of R. solani (kindly provided by the Cuban Research Institute of Plant Health and characterized by sequencing the ITS region that matched the sequence of isolate AG3, GenBank accession number HQ241274.1) was used for inoculations. The isolate was grown on potato dextrose agar at room temperature (22–23°C) for 5 days. Colonized agar plugs were removed and transferred to 250-ml Erlenmeyer flasks containing autoclaved rice grains. The pathogen was allowed to colonize the rice grains for approximately 2 weeks at room temperature and the grains were used to inoculate tobacco. Two-week-old tobacco seedlings were inoculated with approximately six grains onto the surface of the soil according to Elliott et al. (2008). Mock-inoculated untransformed plants were used as controls. Typical symptoms caused by R. solani were monitored visually at 0, 1, 2, and 3 weeks post-inoculation (wpi). Growth of R. solani on tobacco was estimated by quantitative real-time reverse transcription PCR. The extent of colonization was determined by the ratio of transcripts of the constitutively expressed actin gene (measuring the fungal biomass) to the constitutively expressed tobacco 26S rRNA gene (measuring the plant biomass) shown on a linear scale. Amplification products were sequenced and confirmed to correspond to the R. solani actin and the tobacco rRNA transcripts. Disease incidence, which included the percentage of plants exhibiting seedling death and stem rot, was evaluated after 3 wpi according to Elliott et al. (2008). The PCR product generated was sequenced and confirmed the origin. For each time point, three root samples were taken from five plants and the experiment was repeated twice. An arcsine transformation was performed on all percent incidence data before statistical analysis in order to improve homogeneity of variance. Data were analyzed by analysis of variance or general linear model procedures of SAS (SAS Institute, Cary, NC, USA). Significant difference among mean values was determined by Fisher’s least significant difference mean separation at P = 0.05.

Inoculation with P. parasitica var. nicotianae

The pathogen P. parasitica var. nicotianae race 0 used in this study belongs to the Plant Health Institute in Havana and was isolated from naturally infected tobacco plants in Havana fields. The isolate was identified and classified through sequencing the ITS region that matched the sequence of the GenBank isolate with accession number DQ059571.1. The inoculum was prepared by sterilizing and infesting toothpicks with the test organism. Toothpicks were autoclaved in V8 juice for 15 min at 121°C, allowed to cool, placed on Petri plates filled with potato dextrose agar, and inoculated with a 5-mm plug from actively growing cultures of P. parasitica var. nicotianae. Plates were incubated at 27°C in the dark for 18–14 days, allowing the fungus to grow across the plates and into the media-imregnated toothpicks.

During the greenhouse evaluation the tobacco transgenic lines and wild type plants were inoculated by aseptically pushing the infested toothpicks into stems 2–3 cm above the soil line or into root systems near the base of the plant (Sullivan et al., 2005). Greenhouse temperature was ranging from 15 to 25°C during the tests. Uninfested toothpicks acted as controls. Each treatment had 50 plants and was replicated five times. Each transgenic line and wild type plant was kept in separate trays and placed in separate float baths to prevent cross contamination during the experiment. Development of stem lesions was evaluated using a linear scale of 1–10, where 1 was no disease and 10 was a dead plant according to Csinos (1999). The ratings were taken on stems at 10 days post-inoculation. An arcsine transformation was performed on all percent incidence data before statistical analysis in order to improve homogeneity of variance. Data were subjected to analysis of variance or general linear model procedures of SAS (SAS Institute, Cary, NC, USA). Significant difference among means was determined by Fisher’s least significant difference mean separation at P = 0.05.

Resistance to P. hyoscyami f. sp. tabacina

The P. hyoscyami f. sp. tabacina isolate belongs to the Plant Health Institute in Havana and was collected from a tobacco field near Havana, identified and classified through sequencing the ITS region that matched the sequence of the GenBank isolate with accession number DQ67898.1. To determine the performance of tobacco plants expressing PgP12 under field conditions, trials were conducted in the tobacco area in Havana with a high inoculum pressure where P. hyoscyami f. sp. tabacina is a significant problem for tobacco production each year. During cold and wet season of 2009, the two transgenic PgP12 lines and wild type plants were evaluated by planting fifty 8-week-old plants of each line in the tobacco production area. The plants were planted
Borras-Hidalgo et al. PGIP confers resistance against oomycetes

with a random design to look at positional effects in the field and five replicates were made. The percentages of healthy plants were determined, where more than three blue molds spot per leaf was considered as an unhealthy plant at 35 days post-planting. An arcsine transformation was performed on all percent incidence data before statistical analysis in order to improve homogeneity of variance. Data were subjected to analysis of variance or general linear model procedures of SAS (SAS Institute, Cary, NC, USA). Significant difference among means was determined by Fisher’s least significant difference mean separation at \(P = 0.05 \).

RESULTS

One of the genes of common bean (Pvpgip2) encodes the most efficient and wide-spectrum PG inhibitor so far studied (Casasoli et al., 2009). To assess the effectiveness of PvPGIP2 in protecting tobacco against R. solani, P. parasitica var. nicotianae, and P. hyoscyami f. sp. tabacina, two transgenic lines were evaluated. Under greenhouse conditions, the main symptoms caused by R. solani on wild type tobacco were small stem water-soaked lesions that rapidly become brown and sunken, primarily at the level of the soil line or closely above it. Lesions subsequently expanded throughout the stems causing the tissue to turn brown and die. Disease symptoms (both seedling death and stem rot) were severe on wild type plants and very limited and less visible in transgenic lines (Table 1). The two transgenic lines behaved similarly (line 2.1 is shown in Figure 1A as a representative result). Symptom development coincided with an increase of fungal biomass in the colonized roots of the wild type plants while no significant increase of fungal biomass occurred in transgenic plants (Figure 1B).

Under greenhouse conditions the two transgenic tobacco lines expressing Pvpgip2 were also remarkably resistant to the oomycete pathogen P. parasitica var. nicotianae. At 2-week post-inoculation slight disease symptoms appeared on the wild type plants whereas no symptoms were detected on the transgenic plants. However, at 5-week post-inoculation severe disease symptoms (leaf wilting and stem rot) were observed in the wild type plants. All wild type plants died 5 days later. Instead both transgenic lines expressing Pvpgip2 remained healthy and showed a level of resistance similar to Nicotiana species that are naturally highly resistant to P. parasitica var. nicotianae (Figures 2A–D).

Trials were also conducted in the field during the cold and wet season when tobacco blue mold caused by P. hyoscyami f. sp. tabacina constitutes a significant problem in Cuba. Transgenic plants displayed a high level of resistance that was comparable to that of Nicotiana species that are naturally highly resistant to P. hyoscyami f. sp. tabacina (Figure 3).

Genotype name	Disease incidence [%]a	Seedling deathb	Stem rot
Nicotiana tabacum cv. SR1 expressing Pvpgip2 line 2.1	15.8*	17.2*	
Nicotiana tabacum cv. SR1 expressing Pvpgip2 line 2005	42.4†	52.6§	6.2
Nicotiana tabacum cv. SR1 expressing Pvpgip2 line 2.1	4.2†	3.1	

aArcsine-transformed percentage of disease incidence.
bSeedling death was measured at 3 weeks post-inoculation.
cCoefficient of variation (N = 50).

Values designated with the same symbol are not significantly different (\(P > 0.05 \)).

![Figure 1](https://www.frontiersin.org)
Borras-Hidalgo et al. PGIP confers resistance against oomycetes

FIGURE 2 | Evaluation of Pvpgip2 transgenic tobacco plants for resistance against P. parasitica var. nicotianae. Phenotype of transgenic tobacco lines Pvpgip2 2.1 (A), Pvpgip2 2005 (B), and wild type plants (C) on a highly infected soil at 10 days after planting. The development of stem lesions was evaluated using a linear scale of 1–10, where 1 was no disease and 10 was a dead plant according to Csinos (1999). Comparative evaluation of resistance in two transgenic homozygous lines expressing PvPGIP2 and reference genotypes of Nicotiana plants with different degree of resistance in greenhouse conditions (D). Bars represent mean values with standard error (N = 50). Columns designated with the same letter are not significantly different (P > 0.05). The photographs were obtained at 100 cm of distance and are representative of one typical event.

Nicotiana rustica (PI 499174), Nicotiana alata (PI 423346), Nicotiana longiflora (PI 555533), Nicotiana benthamiana (PI 555470), Nicotiana alata (PI 503292), Nicotiana megastophylla (PI 555336).

DISCUSSION
We have shown that the expression of a PGIP gene from common bean in tobacco, i.e., a plant belonging to the economically important family of Solanaceae, confers to transgenic plants a strong resistance against fungi and oomycetes, both in greenhouses and in the field (P. parasitica f. sp. tabacina). Oomycetes are a group of eukaryotic microorganisms that includes some of the most important pathogens of plants. Among these, members of the genus Phytophthora cause enormous economic losses on crop species as well as environmental damages in natural ecosystems (Kamoun, 2006). PGs are produced by Phytophthora spp. and R. solani and are encoded by gene families (Marcus et al., 1986; Göteson et al., 2002; Wu et al., 2008). The PG–PGIP interaction has been characterized in R. solani (Akhgari et al., 2012) while many PG genes have been cloned from Phytophthora spp., but their interaction with PGIP2 of P. vulgaris has not yet been analyzed. However it is possible that the PG–PGIP interaction characterized in vitro does not reflect the situation in vivo. For example, as reported by Joubert et al. (2007), transgenic tobacco plants expressing grapevine PGIP are protected against B. cinerea without any evidence of PG–PGIP interaction in vitro. It is possible that protection is due to effects other than the inhibition of pathogen PGs, caused by the...
Agüero, C. B., Uratsu, S. L., Greve, C., Possell, A. L. T., Laberteix, J. M., Mendlik, C. F., et al. (2015). Evaluation of tolerance to Panama's disease and Bactrocera in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol. Plant Pathol. 6, 45–51.

Alghieri, A. B., Metallek, M., and Zumara, M. R. (2012). Bean polygalacturonase-inhibiting proteins expressed in transgenic Prunus nupus inhibit polygalacturonase from its fungal pathogen Alternaria solani. Plant Sci. 48, 1–9.

Alekshandresen, E., Becker, J. V., Jacobsen, D., Nqauer-Ota, E., Stoyn, C., Donley, K. J., et al. (2011). Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco. BMC Res. Notes 4:693. doi: 10.1186/1756-0500-4-693

Benedetti, M., Legges, C., Foskaia, L., De Lorenzo, G., Podol, M. V., and Cercone, F. (2011). Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering. PloS One 15, 599–607.

Branca, A., Skjøl, F., Mascone, A., Cercone, F., and De Lorenzo, G. (2010). A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc. Natl. Acad. Sci. U.S.A. 107, 9825–9827.

Brescia, F. V., Zabellina, O., Cattaneo, L., Caprani, C., Maitre, R., et al. (2014). Targeted modification of homogalacturonan by transgenic expression of a fungal polygalacturonase alters plant growth. Plant Physiol. 163, 1294–1304.

Cassano, M., Foskaia, L., Spindoli, F., Di Matteo, A., Vella, N., Scalonis, F., et al. (2008). Integration of evolutionary and desorption energy analysis identifies functional sites in a plant immunity protein. Proc. Natl. Acad. Sci. U.S.A. 105, 7666–7671.

Caines, A. (1999). Stem and root resistance to tobacco black shank. Pher. J. 83, 777-780.

De Lorenzo, G., Bruscia, A., Savatini, D. V., Silia, F., and Cercone, F. (2011). Engineering plant resistance by constructing chimeric receptors that recognize the T2 protein. Mol. Plant Microbe Interact. 165, 171–177.

Dinauer, A., Araci, B., Lecci, E., Mat- tix, B., Saiti, G., Tapial, H., et al. (1997). Polygalacturonase-inhibiting proteins (PGIPs) with different specificities are expressed in Pisonova vir- gentia. Mol. Plant Microbe Interact. 10, 852–860.

Di Matteo, A., Foskaia, L., Mattei, R., Saiti, G., Johnson, K. A., Savatini, C., et al. (2003). The crystal structure of PGIP (polygalacturonase-inhibiting protein), a leucine-rich repeat protein involved in plant defense. Proc. Natl. Acad. Sci. U.S.A. 100, 10124–10128.

Elliot, F. E., Lewis, R. S., Shue, H. D., Patterson, W. A., and Nicholson, J. S. (2008). Evaluation of tobacco germplasm for seedling resistance to stem rot and target spot caused by Thaumatophora cucumerina. Plant Dis. 92, 425–430.

Federici, L., Caprani, C., Maitre, R., Savatani, C., Di Matteo, A., De Lorenzo, G., et al. (2001). Structural requirements of endopolygalac- turonase for the interaction with PGIP (polygalacturonase-inhibiting protein). Proc. Natl. Acad. Sci. U.S.A. 98, 13425–13430.

Ferrari, S., Galletti, B., Vaire, D., Cercone, E., and De Lorenzo, G. (2006). Antigenic expression of the Arabidopsis AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances immuno- susceptibility to Botrytis cinerea. Mol. Plant Microbe Interact. 19, 991–995.

Ferrari, S., Vaire, D., Cercone, F., Aranból, F. M., and De Lorenzo, G. (2003). Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell 15, 95–108.

Götz, M., Marshall, L. J., Jones, D. A., and Hardham, A. R. (2002). Characterization and evolutionary analysis of a large polygalacturonase gene family in the eustele pathogen Phytophthora parasitica. Mol. Plant Microbe Interact. 15, 907–912.

Mukammsadze, M., et al. (2012). PGIP confers resistance against oomycetes. Mol. Plant Microbe Interact. 21, 171–177.

FIGURE 3 | Field trials of PgyP1 transgenic tobacco plants for resistance against P. hyoscyami f. sp. tabacina. Quantitative estimation of resistance to P. hyoscyami in different transgenic lines and reference genotypes. Nicotiana plants exhibiting different degrees of natural resistance at 35 days after planting. Bars represent mean values with standard error (N = 5). Columns designated with the same letter are not significantly different (P = 0.05).
Jones, J. D., and Dangl, J. L. (2006). The plant immune system. Nature 444, 323–329.

Joubert, D. A., Kars, I., Wagemakers, L., Kemp, G., Vivian, M. A., et al. (2007). A catalogue of the effector secretome of plant pathogenic oomycetes. Mol. Plant Pathol. 8, 392–402.

Kamoun, S. (2006). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44, 43–60.

Leclercq, S., Bourgon-Carolus, A., Sherwood, E., Postern, N., Dallbeck, D., van Erck, H. P., et al. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat. Biotechnol. 28, 365–369.

Levecq, E., Matteo, B., Caporotica, C., Hemmings, A., Nieu, L., Anvari, B., et al. (1999). The specificity of polygalacturonase-inhibiting protein (PGIP): a single amino acid substitution in the solvent-exposed b-strand/b-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J. 18, 2532–2543.

Lionetti, V., Franceschi, E., Ferrari, S., Volpi, G., Bilocca, D., Galletti, R., et al. (2010). Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. U.S.A. 107, 616–621.

Marcellini, G., Sicilia, F., Ferrari, S., Pontiggia, D., Saho, G., Caprari, C., et al. (2005). Polygalacturonase-inhibiting protein 2 of Phaseolus vulgaris inhibits BcPG1, a polygalacturonase of Botrytis cinerea important for pathogenicity, and protec...

Mazzone, L., Barah, I., Snak, B., Kolbin, Y., and Frideri, A. (1986). Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn. Physiol. Mol. Plant Pathol. 29, 108–119.

Mohammadzadeh, R., Zamani, M., Mortafel, M., Narouzi, F., Jozoubabhi, E., Benedetti, M., et al. (2012). Agrobacterium tumefaciens-mediated introduction of polygalacturonase inhibiting protein 2 gene (PvPGIP2) from Phaseolus vulgaris into sugar beet (Beta vulgaris L.). Aust. J. Crop Sci. 6, 1290–1297.

Pandolfo, A. L., van Kan, J., ten Have, A., Vissers, J., Geuze, I. C., Bottrot, A. B., et al. (2010). Transgenic expression of pear PGIP in tomato limits fungal colonization. Mol. Plant Microbe Interact. 13, 942–950.

Patel, S., Zabotina, O., Di Matteo, A., Miklikien, J. D.,Curr, F., De Lorenzo, G., et al. (2010). Polygalacturonase-inhibiting protein interacts with pectin through a binding site formed by four clustered residues of arginine and lysine. Plant Physiol. 141, 557–564.

Ponciano, M. L., Melton, T. A., and Sullivan, M. J. (2005). Fitness of races 0 and 1 of Phytophthora parasitica var. parasitica Plant Dis. 89, 1220–1228.

Quin, C. H., Yang, H. Z., Liu, F. L., and Wu, C. H., Yan, H. Z., Liu, F. L., and Wu, C. H. (1986). Purification and characterization of a bean polygalacturonase inhibitor in tobacco confers a strong resistance against Rhizoctonia solani and two oomycetes. Front. Plant Sci. 2, 0268. doi: 10.3389/fpls.2012.00268

This article was submitted to Frontiers in Plant Biotechnology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Borras-Hidalgo, Caprari, Hernandez-Estevez, Di Lorenzo and Cervone. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.