Gold Nanoshell-Mediated Photothermal Therapy for Facial Pores

Sang Ju Lee¹ 
Jeanne Jung¹ 
Seung Hui Seok² 
Dong Hyun Kim²

¹Yonsei Star Skin & Laser Clinic, Seoul, Korea
²Department of Dermatology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea

Facial pores are a visible topographic feature of skin surfaces and are generally the enlarged openings of pilosebaceous follicles. Enlarged facial pores can be a significant cosmetic problem, particularly for women. Recently, gold nanoshell-mediated photothermal therapy (PTT) has been reported to be effective in treating recurrent acne. The treatment of enlarged facial pores with gold nanoshell-mediated PTT produced excellent results with no side effects. The two cases reported here demonstrate the possibility of gold nanoshell-mediated PTT as a safe and effective treatment for enlarged facial pores.

Key words
Facial pores; Photothermal therapy; Gold nanoshell; Gold microparticle
INTRODUCTION

Facial pores are a visible topographic feature of skin surfaces and are generally the enlarged openings of pilosebaceous follicles. Enlarged facial pores can be a significant cosmetic problem, especially for women.\(^1\)

There are many causes of enlarged facial pores including genetic predisposition, aging, and secondary hormonal changes in individuals, acne scars, and chronic UV exposure, yet most significant contributing factor seem to be excessive sebum secretion.\(^1-3\) Many modalities targeting the sebaceous glands have been developed for the treatment of facial pores and they have been shown to induce selective necrosis of the sebaceous glands. These are photodynamic therapies (PDT), diode laser devices, and nonablative radiofrequency devices.\(^1\)

Photothermal therapy (PTT) is a kind of PDT, refers to the use electromagnetic radiation, commonly in the near infrared (NIR) wavelengths, for the treatment of various medical conditions including cancer.\(^4\) It is considered as the central application of plasmonic nanoparticles in medicine. Among the plasmonic nanomaterials, gold nanoparticles have received considerable attention in PTT due to their high photothermal conversion efficiency, low toxicity, easy synthesis, and functionalization, as well as their easily tuned surface plasmon resonance frequency to the NIR region.\(^5\)

Here, we investigated the utility and safety of gold nanoshell-mediated PTT as a treatment for enlarged facial pores.

CASE REPORT

Case 1

A 25-year-old healthy female presented with facial pores and acne on her face (Fig. 1A). She wanted a procedure without down time. To treat her facial pores, we tried PTT with gold nanoshells. An ampoule of gold nanoshells (3.5 ml/ampoule; Simfle-Stick. Co. Ltd, Daegu, Korea) was applied to the face and sonophoresis (Freezen RF; Medro Medical Division. Co., Ltd., Seoul, Korea) was performed for 10 minutes to increase the delivery of gold nanoshells into the hair follicles. After that we wiped off the residual superficial nanoshells from the skin surface and used a 1064-nm Nd:YAG laser (GentleMax Pro; Candela Corp., Wayland, USA). The laser parameters were fluence 6 J/cm\(^2\), pulse duration 3 msec, without cooling, and 1500 shots of laser pulse were used. No topical anesthesia was applied before the laser treatment. The patient underwent two repeated sessions of PTT with an interval of 1 week. After two sessions of treatment the facial texture and acne were improved, and the enlarged facial pores were markedly reduced (Fig. 1B). The patient was very satisfied with the outcome of the treatment, and the treatment was well tolerated with no major adverse effects.

Case 2

A 26-year-old female presented with facial pores and acne on her cheeks (Fig. 2A). She had no remarkable medical history. After obtaining informed consent, we treated her with the same PTT protocol as described above. An ampoule of gold nanoshells was applied to the face and sonophoresis (Freezen RF) was performed for 10 minutes to increase the delivery of gold nanoshells into the hair follicles. After that we wiped off the residual superficial nanoshells from the skin surface and used a 1064-nm Nd:YAG laser (GentleMax Pro). The laser parameters were fluence 6 J/cm\(^2\), pulse duration 3 msec, without cooling, and 1500 shots of laser pulse were used. No topical anesthesia was applied before the laser treatment. The patient underwent two repeated sessions of PTT with an interval of 1 week. The facial pores showed...
marked improvement without any other treatments after two sessions of PTT (Fig. 2B).

DISCUSSION

Gold nanoshell-mediated PTT facilitates the selective absorption of specially designed gold microparticles into the hair follicles and sebaceous glands using ultrasonic waves, followed by irradiation with a laser to selectively destroy them. Gold nanoshells are less likely to be absorbed by the epidermis and are more selectively absorbed by the hair follicles and sebaceous glands and hair follicles, leaving little risk of pigmentation.

The previous reports show the possibility of gold nanoshell-mediated PTT as an effective treatment for recurrent acne patients. Three sessions of PTT prevented the development of new lesions during a follow-up period of 3-4 months without causing any adverse effects. Potential advantages of gold nanoshell-mediated PTT include a lack of systemic toxicity, minimal local inflammatory side effects, efficient reduction in acne severity after a brief well-tolerated procedure, and long-lasting therapeutic benefit because of targeting sebaceous glands.6-8

In the study of gold nanoshell-mediated PTT, optical imaging visualized gold microparticles, which appeared as hyperreflective columns inside hair follicles that were not detected in the surrounding skin in healthy participants and acne patients. After laser exposure, reflectance confocal microscopy and histology revealed selective perifollicular tissue change.7 On delivery of the nanoshells into the follicles and glands, followed by wiping of superficial nanoshells from the skin surface and exposure of skin to near-infrared laser, the nanoshells localized in the follicles absorb light, get heated, and induce focal thermolysis of the sebaceous glands. The human clinical studies confirmed the efficacy of ultrasonically delivered silica-gold nanoshells in inducing photothermal disruption of sebaceous glands without any collateral damage of the skin.6

We decided to treat the two patients with gold nanoshell-mediated PTT because one of the main causes of enlarged facial pores and acne is hyperactivity of sebaceous glands and gold nanoshell-mediated PTT can selectively damage sebaceous glands.

We think that gold nanoshell-mediated PTT is a very effective treatment for facial pores with little side effects. However, further studies should be conducted to evaluate the efficacy and mechanism of gold nanoshell-mediated PTT in the treatment of facial pores.

ACKNOWLEDGEMENTS

The authors have declared no conflicts of interest and no funding sources.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Lee SJ, Seok J, Jeong SY, Park KY, Li K, Seo SJ. Facial pores: definition, causes, and treatment options. Dermatol Surg 2016;42:277-85.
2. Sugiyama-Nakagiri Y, Sugata K, Iwamura M, Ohuchi A, Kitahara T. Age-related changes in the epidermal architecture around facial pores. J Dermatol Sci 2008;50:151-4.
3. Sugata K, Nishijima T, Kitahara T, Takema Y. Confocal laser microscopic imaging of conspicuous facial pores in vivo: relation between the appearance and the internal structure of skin. Skin Res Technol 2008;14:208-12.
4. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photo-
thermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23:217-28.
5. Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, et al. Plasmonic gold nanoparticles: optical manipulation, imaging, drug delivery and therapy. J Control Release 2019;311-312:170-89.
6. Paithankar DY, Sakamoto FH, Farinelli WA, Kosiritatna G, Blomgren RD, Meyer TJ, et al. Acne treatment based on selective photothermolysis of sebaceous follicles with topically delivered light-absorbing gold microparticles. J Invest Dermatol 2015;135:1727-34.
7. Fuchs CSK, Ortner VK, Mogensen M, Philipsen PA, Haedersdal M. Transfollicular delivery of gold microparticles in healthy skin and acne vulgaris, assessed by in vivo reflectance confocal microscopy and optical coherence tomography. Lasers Surg Med. In press 2019.
8. Fuchs CSK, Bay C, Adatto M, Lomholt H, Haedersdal M. Acne treatment with light absorbing gold microparticles and optical pulses: an open-label European multi-centered study in moderate to moderately severe acne vulgaris patients. Lasers Surg Med 2019;51:686-93.