Antitumor Effects of Fucoidan on Human Colon Cancer Cells via Activation of Akt Signaling

Yong-seok Han¹,†, Jun Hee Lee²,† and Sang Hun Lee¹,*

¹Soonchunhyang Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul, 336-754, 2Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 626-870, Republic of Korea

Abstract

We identified a novel Akt signaling mechanism that mediates fucoidan-induced suppression of human colon cancer cell (HT29) proliferation and anticancer effects. Fucoidan treatment significantly inhibited growth, induced G1-phase-associated upregulation of p21WAF1 expression, and suppressed cyclin and cyclin-dependent kinase expression in HT29 colon cancer cells. Additionally, fucoidan treatment activated the Akt signaling pathway, which was inhibited by treatment with an Akt inhibitor. The inhibition of Akt activation reversed the fucoidan-induced decrease in cell proliferation, the induction of G1-phase-associated p21WAF1 expression, and the reduction in cell cycle regulatory protein expression. Intraperitoneal injection of fucoidan reduced tumor volume; this enhanced antitumor efficacy was associated with induction of apoptosis and decreased angiogenesis. These data suggest that the activation of Akt signaling is involved in the growth inhibition of colon cancer cells treated with fucoidan. Thus, fucoidan may serve as a potential therapeutic agent for colon cancer.

Key Words: Anticancer effect, Cell cycle arrest, Fucoidan, Human colorectal cancer cells

INTRODUCTION

Colorectal cancer has become an increasing global health concern. It is a leading cause of mortality in men and women, and affects more than one million people worldwide annually (Jemal et al., 2005). The features of the disease usually occur progressively over a protracted period owing to increased genomic instability, which leads to the upregulation of oncogenes and the downregulation of tumor suppressor genes (Samowitz and Slattery, 2002). Studies have shown that major intracellular signaling pathways are altered during tumorigenesis, leading to cell proliferation and survival (Fang et al., 2006).

The inhibition of proliferation and induction of apoptosis in tumor cells is a strategy used in antitumor therapy. The balance between proliferation and apoptosis signaling pathways controls tumor pathogenesis. A number of sulfated polysaccharides (SPs), which are natural products present in numerous brown seaweeds (Ahn et al., 2008), exert potent antitumor activity by inducing cell cycle arrest and apoptosis in several tumor cell lines (Croci et al., 2011; Coura et al., 2012). SP antitumor activity has been the subject of much attention in current research. Fucoidans are a class of fucose-enriched sulfated polysaccharides and are found in the extracellular matrix of brown algae. Fucoidans have various biological activities, including antiviral, anticoagulant, anti-inflammatory, immunomodulatory, anti-angiogenic, and anti-adhesive (Damonte et al., 2004; Cumashi et al., 2007). Furthermore, fucoidan induces antitumor effects in several tumor cell lines, both in vitro and in vivo (Itoh et al., 1993; Lee et al., 2012; Xue et al., 2012).

Akt signaling is activated by growth factors and other extracellular stimuli (Vivanco and Sawyers, 2002); it is involved in cell survival, apoptosis, transcription, and proliferation (Vivanco and Sawyers, 2002; Osaki et al., 2004; Song et al., 2005). The Akt signaling pathway is activated in several human cancers (Sarkar and Li, 2004). Numerous studies suggest that Akt inhibition is related to decreased cell growth and reduced cancer cell migration (Sarkar and Li, 2004), suggesting that Akt inhibition may be an attractive approach for preventing or treating human malignancies (Hill and Hemmings, 2002; Sarkar and Li, 2004). However, Akt activation has been implicated in cell death mediated by natural products in B16F10 murine melanoma and U373 glioblastoma cell lines (Jin et al., 2006).
Thus, the roles of Akt activation and cell cycle regulation in the inhibition of cancer cell proliferation require further investigation. Our study suggests that Akt activation inhibits cell proliferation in fucoidan-treated HT29 colon cancer cells.

MATERIALS AND METHODS

Ethics statement

Experiments were performed on 8-week-old male Balb/C nude mice (Biogenomics, Seoul, Korea, http://www.orient.co.kr) that were maintained under a 12-h light/dark cycle, in accordance with the regulations of Soonchunhyang University, Seoul Hospital. All procedures were performed in accordance with the policies of the Institutional Animal Care and Use Committee of Soonchunhyang University, Seoul Hospital, Korea (IACUC2013-5).

Preparation of fucoidan

Fucoidan extract from the seaweed *Fucus vesiculosus* was obtained from Sigma (St. Louis, MO, USA). Fucoidan powder was dissolved in phosphate-buffered saline (PBS), filter-sterilized through a 0.45-μm pore filter (Sartorius Biotech GmbH, Gottingen, Germany), and stored as fucoidan extract (20 mg/mL) at 4°C until use.

Cell cultures

The human colon cancer HT29 cell line was obtained from the American Type Culture Collection (Manassas, VA, USA). The cells were cultured in one-eighth volume (V; mm³) was calculated using the formula $V=\frac{a×b×h}{2}$. The tumor specimens were fixed in 4% formaldehyde, embedded in paraffin, and cut into 4-μm thick sections for immunohistochemical analysis.

Immunohistochemistry

Immunofluorescent staining was performed using primary antibodies against CD31, VEGF, caspase-3, and proliferating cell nuclear antigen (PCNA) (Santa Cruz Biotechnology), as well as secondary antibodies conjugated with Alexa-488 (Life Technologies, Carlsbad, CA, USA). Nuclei were stained with 4',6-diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA, USA). Immunostained slides were imaged by confocal microscopy (Olympus, Tokyo, Japan).
Statistical analyses
All data were expressed as the mean ± standard error of the mean (SEM). Statistical significance was assessed using the Student’s t test, where p<0.05 was considered significant.

RESULTS
Fucoidan inhibited the proliferation of human colon cancer HT29 cells
To assess the effect of fucoidan on HT29 colon cancer cell viability, an MTT assay was performed to measure cell viability following the treatment of HT29 colon cancer cells with fucoidan (0-100 μg/mL) for 24 h (Fig. 1A). Fucoidan treatment decreased HT29 colon cancer cell viability in a dose-dependent manner, compared with control. In addition, the effects of fucoidan on HT29 colon cancer cell proliferation were investigated using [3H]-thymidine incorporation. Fig. 1B shows that HT29 colon cancer cell proliferation was significantly inhibited after treatment with fucoidan (0-100 μg/mL) for 24 h, compared with control (Fig. 1).

Fucoidan induced G1-phase cell cycle arrest
Cell cycle distribution and DNA content were analyzed in fucoidan-treated HT29 colon cancer cells by flow cytometry. Fucoidan treatment (100 μg/mL) induced a higher population of cells in G0/G1 phase compared with that of control cells; and a concomitant reduction was observed in the population of cells in the S-phases relative to that in control cells (Fig. 2). Next, the effect of fucoidan on cell cycle regulatory proteins, which are functional in the G1-phase, was investigated using immunoblot assay in HT29 colon cancer cells. Fig. 3A shows that fucoidan treatment significantly decreased the expression of cyclin D1, cyclin E, CDK2, and CDK4 in HT29 colon cancer cells in a dose-dependent manner. p21WAF1 has been identified as a negative regulator of the G1- to S-phase transition checkpoint (Harper et al., 1993; Sherr, 1994, 1996). We examined the effect of fucoidan on p21WAF1 expression in HT29 colon cancer cells. Fig. 3C shows that 24-h fucoidan treatment significantly induced p21WAF1 expression in a dose-depen-

Fig. 1. Fucoidan-mediated inhibition of cell viability and cell proliferation in HT29 colon cancer cells. (A) HT29 colon cancer cells were treated with fucoidan (0-100 μg/mL) for 24 h. Cell viability was measured using a modified MTT assay. (B) HT29 colon cancer cells were incubated for 24 h with or without fucoidan as indicated and labeled with [methyl-3H] thymidine at 1 μCi/mL during the last 12 h of the incubation period. Values are expressed as the mean ± SEM of three independent experiments with triplicate dishes. **p<0.01 vs. control.

Fig. 2. Fucoidan-induced G1-phase cell cycle arrest in HT29 colon cancer cells. Cells were treated with 0 (A), 50 (B), and 100 (C) μg/mL fucoidan for 24 h. Flow cytometric analysis was performed to determine the cell cycle distribution in HT29 colon cancer cells treated with fucoidan. (D) Standard quantification of each phase (G0/G1, S, and G2/M) presented as the percent of cell counts. The example shown is representative of four independent experiments. Values are expressed as the mean ± SEM. **p<0.01 vs. control.
Fig. 3. Fucoidan-induced cell cycle arrest was correlated with the upregulation of p21WAF1 in HT29 colon cancer cells. (A and C) HT29 colon cancer cells were treated with fucoidan (0-100 μg/ml) for 24 h. Western blot analysis was performed using cyclin D1, cyclin E, CDK2, CDK4, and p21WAF1 antibodies. The lower panel depicts the mean ± SEM of three independent experiments for each condition, as determined from densitometry relative to β-actin. **p<0.01 vs. control.

Fig. 4. Fucoidan-induced activation of the Akt pathway and Akt inhibitor-mediated reversal of p21WAF1 and CDK expression. (A) HT29 colon cancer cells were treated with fucoidan (100 μg/mL) for various times (0-8 h). The activation of Akt was analyzed by western blot analysis using a phospho-Akt antibody. (B) HT29 colon cancer cells were pretreated for 4 h with an Akt inhibitor (10^-6 M) and then incubated with or without fucoidan for 6 h. The activation of Akt was analyzed by western blot analysis using a phospho-Akt antibody. (C and D) HT29 colon cancer cells were pretreated for 4 h with an Akt inhibitor (10^-6 M) and then incubated with or without fucoidan for 24 h. Western blot analysis was performed with antibodies specific for p21WAF1, CDK2, and CDK4. The lower panel depicts the mean ± SEM of three independent experiments for each condition, as determined from densitometry relative to β-actin. *p<0.05 and **p<0.01 vs. control, #p<0.05 and ##p<0.01 vs. fucoidan only group, $p<0.05 and $$p<0.01 vs. Akt inhibitor only group.
dent manner, compared to control.

Fucoidan induced activation of Akt, and an Akt inhibitor reversed fucoidan-mediated effects on p21WAF1 and CDK expression

Previous studies have suggested that mitogen-activated protein kinase (MAPK: c-Jun N-terminal kinases 1/2 (JNK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p38) and Akt signaling play important roles in cancer cell proliferation (Sarkar and Li, 2004). Here, we wanted to identify the signaling pathway responsible for the inhibitory effect of fucoidan on HT29 colon cancer cell proliferation. Western blot experiments indicated that Akt activation was induced upon fucoidan treatment for 1-6 h (Fig. 4A). In addition, Akt activation was inhibited by an Akt inhibitor (10^{-6} M) (Fig. 4B). These unexpected results suggest that fucoidan inhibits cell proliferation via Akt activation in HT29 colon cancer cells. Next, to determine if fucoidan-mediated Akt activation was associated with the cell cycle regulatory proteins p21WAF1 and CDKs, HT29 colon cancer cells were pretreated with Akt inhibitor (10^{-6} M) or untreated, followed by addition of 100 μg/mL fucoidan. Fig. 4C shows that the fucoidan-mediated increase in p21WAF1 expression was reduced to the same level as in the control after pretreatment with the Akt inhibitor. In addition, the fucoidan-induced decrease in CDK2 and CDK4 protein levels was also reversed by treatment with the Akt inhibitor for 24 h (Fig. 4D).

Fucoidan reduced proliferation and induced apoptosis in tumor tissue

To further confirm the ability of fucoidan to induce apoptosis in vivo, immunohistochemical staining was performed on tissue sections of tumors excised from mice that were treated with various doses of fucoidan 30 days after HT29 colon cancer cell implantation. As illustrated in Fig. 5A, B, fucoidan treatment significantly decreased the number of PCNA-positive cells and increased the number of caspase-3-positive apoptotic cells (Fig. 5C, D). These results suggest that fucoidan has a strong antitumor effect in this colon cancer model and is a potent apoptosis-inducing agent in vivo.

Fucoidan inhibited colon tumor growth in vivo

The prominent inhibitory effect of fucoidan on HT29 colon cancer cell proliferation in vitro suggested that it might suppress tumor growth in vivo. To verify this hypothesis, we subcutaneously inoculated male nude mice with HT29 colon cancer cells. After 30 days, visible tumors developed at the injection sites (8-10 mm³ in size). The tumor-bearing mice were intraperitoneally injected with 5 and 10 mg/kg body weight
Fig. 6. Antitumor effects of fucoidan on colon cancer in vivo. (A) Mice were euthanized 30 days after treatment with fucoidan. Representative images illustrating the different size of tumor tissue injected with fucoidan (5 and 10 mg/kg) after 30 days. (B) The bar graph shows the quantitative analysis of tumor size 30 days after treatment. (C) Standard quantification of tumor size presented as the percent of control. Values are expressed as the mean ± SEM (n=9). **p<0.01 vs. control, ##p<0.01 vs. 5 mg/kg injection group.

Fig. 7. Fucoidan inhibited tumor angiogenesis in vivo. (A) At 30 days after tumor injection, tumor tissue samples were analyzed by immunofluorescence staining to determine VEGF secretion in response to treatment with fucoidan. VEGF secretion was assessed by staining with anti-VEGF antibodies (green) (scale bar=50 μm). (B) At 30 days after tumor injection, tumor tissue samples were analyzed by immunofluorescence staining to determine vessel formation in response to treatment with fucoidan. Vessel formation in tumor tissues was assessed by staining with anti-CD31 antibodies (green) (scale bar=50 μm).
Fucoidan or 0.1 mL normal saline alone (as a control), and seven animals were used in each treatment. This process was repeated every 2 days for 10 administrations. As shown in Fig. 6A, B, fucoidan treatment reduced the tumor volume in mice. Tumor size decreased by 39% ± 2.64% and 7.51% ± 1.17% after injection of 5 and 10 mg/kg fucoidan, respectively (Fig. 6C).

Fucoidan inhibited angiogenesis in tumor tissue

To investigate the effect of fucoidan on angiogenesis in vivo, we analyzed tumors by immunohistochemical staining to measure the expression of VEGF. Immunoreactive VEGF in the tumors decreased after fucoidan treatment (Fig. 7A). In addition, we evaluated CD31 expression in tumors. Fig. 7B shows that CD31 expression was reduced in the tumors of mice treated with fucoidan.

DISCUSSION

Recent reports have chronicled the ability of natural products to inhibit cancer growth (Sarkar and Li, 2004; Boo et al., 2011; Lee et al., 2012). Previous studies have demonstrated the potential of fucoidan, a complex sulfated polysaccharide, as a chemo-preventive or anticancer agent (Itoh et al., 1993; Aisa et al., 2005; Xue et al., 2012). Mechanistic studies have suggested that fucoidan inhibits the growth of tumor cells via the downregulation of signaling pathways such as the ERK, JNK, MAPK, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways (Itoh et al., 1993; Aisa et al., 2005; Xue et al., 2012). In addition, several studies have documented the antitumor effects of fucoidan, which is associated with cell cycle regulation and apoptosis (Aisa et al., 2005; Xue et al., 2012). However, the molecular mechanisms of fucoidan-induced Akt inhibition of cell growth and cell cycle regulation have not previously been investigated. In the present study, we examined the mechanisms involved in fucoidan-mediated inhibition of cell growth through activation of the Akt signaling pathway.

First, we investigated the effects of 0-100 μg/mL fucoidan on HT29 colon cancer cells by using MTT viability and thymidine-incorporation assays. Fucoidan treatment resulted in decreased cell viability and proliferation. Consistent with the results of the present study, previous studies indicated that fucoidan inhibits the growth of various types of cancer cells (Itoh et al., 1993; Aisa et al., 2005; Xue et al., 2012). Moreover, in the present study, fucoidan treatment of HT29 colon cancer cells induced G1-phase cell cycle arrest via increased p21WAF1 expression and decreased levels of cyclinD1/CDK4 and cyclin E/CDK2 expression. These results suggest that p21WAF1 is involved in the inhibition of cell growth and G1-phase cell-cycle arrest and that G1-phase cell cycle arrest is induced by fucoidan (Xue et al., 2013), thus implying that our study is the first systematic investigation to demonstrate the involvement of the p21WAF1-cyclin-CDK machinery in fucoidan-stimulated G1-phase cell cycle arrest.

The Akt signaling pathway regulates the development and progression of various tumors (Hill and Hemmings, 2002; Vivanco and Sawyers, 2002; Song et al., 2005). Several studies have demonstrated the inhibition of cell growth in response to Akt signaling (Hill and Hemmings, 2002; Vivanco and Sawyers, 2002; Osaki et al., 2004; Song et al., 2005). In fact, previous studies have shown that Akt activation is decreased in growth-retarded tumor cells (Hill and Hemmings, 2002; Vivanco and Sawyers, 2002; Osaki et al., 2004; Song et al., 2005). However, the results of our study showed that fucoidan treatment stimulated Akt activation in colon cancer cells. In addition, pretreatment of HT29 colon cancer cells with an Akt inhibitor reversed the fucoidan-induced G1-phase arrest associated with p21WAF1 expression. Subsequently, Akt inhibitor treatment reversed the decreased CDK levels in fucoidan-treated cells. Previous studies supported the notion that Akt inhibition transmitted cell death signals in fucoidan-treated cells (Boo et al., 2011). However, recent reports have shown that Akt activation is involved in the regulation of magnolol-induced growth inhibition in human glioblastoma U373 cells (Chen and Lee, 2013). The results of the present study demonstrate that Akt inhibition reverses the fucoidan-mediated inhibition of cell growth via G1-phase arrest associated with p21WAF1 in HT29 colon cancer cells.

Furthermore, fucoidan potently suppressed proliferation and exhibited anti-angiogenic activity against colon cancer in vivo. Subcutaneous injection of fucoidan in mice bearing colon cancer cells resulted in decreased proliferation; however, fucoidan treatment increased the number of caspase-3-positive cells. In addition, we observed downregulation of VEGF expression in vivo. Suppression of VEGF expression induces a decrease in capillary formation (Koyanagi et al., 2003). Found that over-sulfated fucoidan clearly suppresses the neovascularization observed when Sarcoma 180 cells are implanted in mice. VEGF can promote tumor cell metastasis by triggering cell migration and invasion in an autocrine manner. In our studies, fucoidan suppressed the mitogenic and chemotactic activity of vascular VEGF by preventing VEGF from binding with its cell surface receptor. Fucoidan treatment also resulted in less capillary formation, which was at least partially relevant to the downregulation of VEGF expression. Therefore, further studies are required to provide further evidence.

In conclusion, fucoidan inhibited the growth and angiogenesis of colon cancer in vitro and in vivo. The molecular mechanism of this action involved Akt signaling in fucoidan-treated colon cancer cells. First, fucoidan induced the inhibition of cell growth via p21WAF1-mediated G1-phase cell cycle arrest. Second, fucoidan inhibited tumor growth and angiogenesis of colon cancer in vivo. The results of the present study provide insights into the novel therapeutic effects of fucoidan for the prevention and treatment of colon cancer.

ACKNOWLEDGMENTS

This study was supported by a National Research Foundation (NRF) grant funded by the Korean government (MEST) (2011-0009610). The funders had no role in the study design, data collection or analysis, the decision to publish, or preparation of the manuscript.

REFERENCES

Ahn, G., Hwang, I., Park, E., Kim, J., Jeon, Y. J., Lee, J., Park, J. W. and Jee, Y. (2008) Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. *Mar. Biotechnol. (NY)* 10, 278-289.
Fang, Q., Naidu, K. A., Zhao, H., Sun, M., Dan, H. C., Nasir, A., Kaiser, H. E., Cheng, J. Q., Nicosa, S. V. and Coppola, D. (2006) Ascorbyl stearate inhibits cell proliferation and tumor growth in human ovarian carcinoma cells by targeting the PI3K/AKT pathway. Anticancer Res. 26, 203-209.

Harper, J. W., Adam, G. R., Wei, N., Keyomarsi, K. and Elledge, S. J. (1993) The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805-816.

Hill, M. M. and Hemmings, B. A. (2002) Inhibition of protein kinase B/ Akt. implications for cancer therapy. Pharmacol. Ther. 93, 243-251.

Itoh, H., Noda, H., Amano, H., Zhuang, C., Mizuno, T. and Ito, H. (1993) Antitumor activity and immunological properties of marine algal polysaccharides, especially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 13, 2045-2052.

Jenal, A., Murray, T., Ward, E., Samuels, A., Twari, R. C., Ghafoor, A., Feuer, E. J. and Thun, M. J. (2005) Cancer statistics, 2005. CA Cancer J. Clin. 55, 10-30.

Jin, M. L., Park, S. Y., Kim, Y. H., Park, G., Son, H. J. and Lee, S. J. (2012) Suppression of alpha-MSH and IBMX-induced melanogenesis by cordycepin via inhibition of CREB and MITF, and activation of PI3K/Akt and ERK-dependent mechanisms. Int. J. Mol. Med. 29, 119-124.

Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimenou, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochim. Pharmacol. 65, 173-179.

Lee, H., Kim, J. S. and Kim, E. (2012) Fucoidan from seaweed Fucus vesiculosus inhibits migration and invasion of human lung cancer cell via PI3K-Akt-mTOR pathways. PLoS One 7, e50624.

Osaki, M., Oshimura, M. and Ito, H. (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9, 667-676.

Samowitz, W. S. and Slattery, M. L. (2002) Missense mismatch repair gene alterations, microsatellite instability, and hereditary non-polyposis colorectal cancer. J. Clin. Oncol. 20, 3178; author reply 3178-3179.

Sarkar, F. H. and Li, Y. (2004) Cell signaling pathways altered by natural chemopreventive agents. Mutat. Res. 555, 53-64.

Sherr, C. J. (1994) G1 phase progression: cycling on cue. Cell 79, 551-555.

Sherr, C. J. (1996) Cancer cell cycles. Science 274, 1672-1677.

Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 9, 59-71.

Vivanco, I. and Sawyers, C. L. (2002) The phosphatidylinositol 3-Ki nase AKT pathway in human cancer. Nat. Rev. Cancer 2, 489-501.

Xue, M., Ge, Y., Zhang, J., Liu, Y., Wang, Q., Hou, L. and Zheng, Z. (2013) Fucoidan inhibited 4T1 mouse breast cancer cell growth in vivo and in vitro via downregulation of Wnt/beta-catenin signaling. Nutr. Cancer 65, 460-468.

Xue, M., Ge, Y., Zhang, J., Wang, Q., Hou, L., Liu, Y., Sun, L. and Li, Q. (2012) Anticancer properties and mechanisms of fucoidan on mouse breast cancer in vivo and in vivo. PLoS One 7, e43483.

http://dx.doi.org/10.4062/biomolther.2014.136

232