SUPPLEMENTARY MATERIAL

Acanthophoraine A, a new pyrrolidine alkaloid from the red alga

Acanthophora spicifera

Jia-Li Lina, Yong-Qian Lianga, Xiao-Jian Liaoa, Jian-Ting Yanga, Dai-Chun Lia, Yu-Ling Huanga, Zhi-Hui Jiangb,\ast, Shi-Hai Xua,\ast, Bing-Xin Zhaoa,\ast

a Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China

b Department of Pharmacy, Guangzhou General Hospital of Guangzhou Military Command, 510010, P. R. China

\ast Corresponding authors

E-mail addresses: zbx840622@163.com; txush@jnu.edu.cn; zh.86.jiang@gmail.com.

Abstract: A new pyrrolidine alkaloid, acanthophoraine A (1), along with six known alkaloids (2-7), had been isolated from the red alga Acanthophora spicifera. The structures of these compounds were identified by spectroscopic analyses. The absolute configuration of 1 was established by ECD calculation. Compound 1 represents the first example of \textit{N}-isobutyl pyrrolidone with an urea arm. The antimicrobial activity of 1 was also evaluated.

Keywords: red alga; Acanthophora spicifera; alkaloids
Contents

Quantum chemical ECD calculations of 1 ... 3

Table S2. ¹H and ¹³C NMR spectral data of 1 (in DMSO-d₆) 4

Figure S2. Key ¹H-¹H COSY and HMBC correlations of 1 4

Figure S3. UV spectrum of 1 ... 5

Figure S4. IR spectrum of 1 ... 5

Figure S5. HR-ESI-MS spectrum of 1 ... 6

Figure S6. ¹H NMR spectrum of 1 ... 6

Figure S7. ¹³C NMR spectrum of 1 .. 7

Figure S8. ¹H-¹H COSY spectrum of 1 ... 7

Figure S9. HSQC spectrum of 1 .. 8

Figure S10. HMBC spectrum of 1 .. 8
Quantum chemical ECD calculations of 1

The molecules of \(5R\)-1 and \(5S\)-1 were converted into SMILES codes before their initial 3D structures were generated with CORINA version 3.4. Conformer databases were generated in CONFLEX version 7.0 using the MMFF94s force-field, with an energy window for acceptable conformers (ewindow) of 5 kcal mol\(^{-1}\) above the ground state, a maximum number of conformations per molecule (maxconf) of 100, and an RMSD cutoff (rmsd) of 0.5Å. Then each conformer of the acceptable conformers was optimized with HF/6-31G(d) method in Gaussian09. Further optimization at the APFD/6-31G(d) level with methanol led the dihedral angles to be got. After that, nine stable conformers (above 1% population) were found out. The optimized conformers were taken for the ECD calculations, which were performed with Gaussian09 (APFD/6-311++G(2d,p)). The solvent effect was taken into account by the polarizable-conductor calculation model (IEFPCM, methanol as the solvent). Comparisons of the experimental and calculated spectra were done with the software SpecDis2,3. It was also used to apply a UV shift to the ECD spectra, Gaussian broadening of the excitations, and Boltzmann weighting of the spectra.

Table S1. Conformers distribution of \(5R\)-1 at the APFD/6-31G(d) level with solvated model

Conformers	Population %	Conformers	Population %	Conformers	Population %
1	32.33	4	7.97	7	4.33
2	24.57	5	6.94	8	3.63
3	12.10	6	6.07	9	2.06

Figure S1. Experimental ECD spectrum of 1 and calculated ECD spectra of \((5R)\)-1 and \((5S)\)-1
(UV correction = 0 nm, band width \(\sigma = 0.3\) eV)
Table S2. 1H and 13C NMR spectral data of 1 (in DMSO-d_6, δ, J in Hz)\(^a\)

No.	δ_H	δ_C
2	-	173.1
3	a 2.24	29.1
	b 2.17	
4	a 2.25	26.1
	b 1.63 m	
5	5.29 m	64.1
6	6.68 d (9.6)	-
7	-	157.8
8	5.62 s	-
1’	a 3.08 dd (13.2, 8.7)	46.4
	b 2.67 dd (13.2, 6.0)	
2’	1.94 m	26.0
3’	0.82 d (6.9)	20.3
4’	0.74 d (6.9)	19.9

\(^a\) Overlapped signals are reported without designating multiplicity.

Figure S2. Key 1H-1H COSY and HMBC correlations of 1.
Figure S3. UV spectrum of 1

Figure S4. IR spectrum of 1
Figure S5. HR-ESI-MS spectrum of 1

Figure S6. 1H NMR spectrum of 1 (300 MHz in DMSO-d_6)
Figure S7. 13C NMR spectrum of 1 (75 MHz in DMSO-d_6)

Figure S8. 1H-1H COSY spectrum of 1
Figure S9. HSQC spectrum of 1

Figure S10. HMBC spectrum of 1