Portal Hypertension in Nonalcoholic Fatty Liver Disease: From Pathogenesis to Clinical Practice

Saut Horas H. Nababan1,2 and Cosmas Rinaldi Adithya Lesmana1,2,3*

1Hepatobiliary Division, Department of Internal Medicine, Dr Cipto Mangunkusumo National General Hospital, Medical Faculty Universitas Indonesia, Jakarta, Indonesia; 2Gastrointestinal Cancer Center, MRCCC Siloam Semanggi Hospital, Jakarta, Indonesia; 3Digestive Disease & GI Oncology Center, Medistra Hospital, Jakarta, Indonesia

Abstract

Portal hypertension in nonalcoholic fatty liver disease (NAFLD) mostly occurs in cirrhotic stage. However, several experimental and clinical studies showed evidence of portal hypertension in NAFLD without significant or advance fibrosis. This early development of portal hypertension in NAFLD is associated with liver sinusoidal contraction by hepatocellular lipid accumulation and ballooning, which is also accompanied by capillarization and dysfunction of liver sinusoidal endothelial cells. Both of these impaired mechanical and molecular components can cause an increase in intrahepatic vascular resistance which lead to the increase of portal pressure in the absence of significant liver fibrosis. Extrahepatic factors such as insulin resistance and gut dysbiosis may also contribute to liver sinusoidal endothelial dysfunction and early portal hypertension in NAFLD. The clinical impact of early portal hypertension in NAFLD is still unclear. However, clinical tools for diagnosis and monitoring of portal hypertension in NAFLD are being investigated to predict high-risk patients and to guide therapy.

Citation of this article: Nababan SHH, Lesmana CRA. Portal Hypertension in Nonalcoholic Fatty Liver Disease: From Pathogenesis to Clinical Practice. J Clin Transl Hepatol 2022; 10(5):979–985. doi: 10.14218/JCTH.2021.00593.

Introduction

NAFLD is a growing problem in western countries as well as in Asian countries. The prevalence of NAFLD has shown an increasing trend globally. A systematic review and meta-analysis by Younossi et al.1 estimated an overall 25.24% global prevalence of NAFLD. The highest prevalence was in the Middle East (31.79%) and South America (30.45%). Another systematic review and meta-analysis by Li et al.2 focusing on Asian studies from 1999 to 2019, showed an increasing trend of NAFLD cases, from 25% in 1995–2005 to 34% in 2012–2017. A higher prevalence of around 51% was reported by a study in an urban population in Indonesia.3 As NAFLD has a close association with multiple metabolic comorbidities, an updated definition using new terminology of metabolic dysfunction-associated fatty liver disease or MAFLD has been suggested. Using MAFLD criteria, a systematic review and meta-analysis by Liu et al.4 showed that among overweight or obese patients, the estimated global prevalence of MAFLD was 30.7%.

Similar to viral or alcohol etiologies, NAFLD can progress to liver cirrhosis. Most patients are asymptomatic until complications of portal hypertension develop. A subset of NAFLD patients can progress to nonalcoholic steatohepatitis (NASH), which is a risk factor of cirrhosis progression and hepatocellular carcinoma (HCC) development.5 According to survey data of the USA’s National Health and Nutrition Examination Survey, there were 2.5-fold and 2-fold increases in the prevalence of NASH cirrhosis and NAFLD-associated advanced fibrosis, respectively, in 2009–2012 compared with 1999–2002.6 Furthermore, in the USA, NASH and alcoholic liver disease are the most common etiologies among liver transplant waiting list registrant without any evidence of HCC.7 The reported prevalence of portal hypertension in compensated advanced liver disease (CALD) because of NASH, defined as a hepatic venous pressure gradient (HVPG) ≥5 mmHg, is 60.9%, while the prevalence of clinically significant portal hypertension (CSPH) defined as an HVPG ≥10 mmHg is 39.1%.8 Mendes et al.9 showed that complications related to CSPH, such as esophageal varices, splenomegaly, portosystemic encephalopathy, and ascites, were present in 25% of NAFLD patients, 88% of whom had already developed cirrhosis or advance fibrosis. Interestingly, it was reported that 12% of NAFLD patient with signs of portal hypertension had no significant fibrosis (F0–F2), but had severe-grade steatosis. In their retrospective analysis, Rodrigues et al.10 found that in 14 of 89 patients with CSPH, mostly were NASH or with nodular regenerative hyperplasia without cirrhosis but with perisinusoidal fibrosis and eight of them had hepatocyte ballooning. The presence of mild portal hypertension, an HVPG of 5–9 mmHg, has...
also been reported in a small number of noncirrhotic NAFLD patients, suggesting that steatosis per se also contributed to increased portal pressure.11–13 The studies suggest that portal hypertension can develop early during the natural history of NAFLD before development of significant fibrosis or cirrhosis. In this review we look into the pathogenesis, diagnosis, and therapy of portal hypertension in NAFLD.

Pathogenesis

General pathogenesis of portal hypertension

Portal hypertension (PH) can be divided into three groups based on the site of resistance, which are presinusoidal, sinusoidal, and post-sinusoidal. Sinusoidal PH is the most common in advanced liver disease of any etiology. The primary change in sinusoidal PH is an increase in intrahepatic vascular resistance (IHVR). The IHVR is mainly caused by distortion of structural components such as fibrosis and regenerative nodules. The structural changes are accompanied by an increase in intrahepatic vascular tone because of endothelial dysfunction secondary to an imbalance of increased vasoconstrictors and decreased vasodilator stimuli. Furthermore, an increase in portal venous inflow because of splanchnic vasodilation and increase in cardiac output further exacerbates the portal pressure. Increase in the portal pressure leads to formation of portosystemic collateral vessels and varices. The evidence suggest that angio-portal pressure leads to formation of portosystemic collaterals which further exacerbates the portal pressure. Increase in the IHVR also contributes to the formation of portosystemic collateral vessels.14

Liver steatosis contributes to the IHVR by sinusoidal compression and capillarization of endothelial cells

The main histopathological features of NAFLD include >5% steatotic hepatocytes with a centrilobular distribution, hepatocyte ballooning, lobular inflammation, and perisinusoidal fibrosis in NASH. With disease progression, fibrous septa, bridging fibrosis, and cirrhosis will eventually develop. Several clinical studies have shown a correlation between steatosis grade and portal pressure in NAFLD patients, and the data suggest that an early increase in portal pressure can occur without any evidence of significant fibrosis.9,11,12 Steatotic changes in NAFLD can contribute to increased portal pressure by sinusoidal compression and reduced vascular compliance, as shown by measurement of portal venous pulsatile flow and flow velocity. Several studies have found a negative correlation between portal venous pulsatility and flow velocity with steatosis and fibrosis grade in NAFLD patients.15–17 Using advanced tools such as intravital microscopy, Davis et al.18 was able to show in real time that the sinusoidal diameter was significantly lower around steatotic hepatocytes in high-fat diet-fed C57BL/6 mice. Using a methionine choline-deficient diet-fed C57BL/6 mice, McCuskey et al.19 reported a significant narrowing of the sinusoidal lumens, especially in the centrilobular region in as early as 3 weeks after feeding began.19 Morphological changes in liver sinusoidal endothelial cells (LSEC) in early NAFLD/NASH have also been reported. In healthy livers, LSECs are fenestrated, porous, and without a basement membrane. Miyao et al.20 reported that as early as 1 week after starting a choline-deficient L-amino acid defined diet (early steatosis model) and 22 weeks after a high-fat diet in a mice (early NASH model), there was a decreased number of endothelial fenestrae. Mice deficient in PLVAP showed a reduced number of LSEC fenestration with impaired passage of chylomicron remnants from sinusoidal into hepatocytes. Lack of chylomicron remnants by the hepatocytes might then stimulate de novo lipogenesis or endogenous cholesterol biosynthesis.23 That, in turn, further augments liver steatosis and an increase in the IHVR. Furthermore, restoration of LSEC porosity by returning to a normal diet or statin administration may reduce portal pressure.24

Liver steatosis contributes to IHVR through sinusoidal endothelial dysfunction

Sinusoidal endothelial dysfunction refers to the inability of LSEC to expand in response to the shear stress of blood flow. It is characterized by diminished bioavailability of vasodilators such as nitric oxide (NO) and increased synthesis of vasoconstrictors such as endothelin-1 (ET-1), resulting in increased intrahepatic vascular resistance (IHVR). Early NAFLD is associated with LSEC dysfunction and increased oxidative stress in the absence of inflammation or fibrosis. Pasarin et al.25 showed that when Wistar Kyoto rats were fed a diet rich in saturated fat for 1 month, the in vivo portal pressure was increased and the Akt-dependent endothelial nitric oxide synthase (eNOS) phosphorylation and NOS activity were decreased in the absence of liver inflammation and fibrosis. There was also a decreased response to vasodilator acetylcholine in isolated liver perfusion experiments. Similar results were also reported by Francque et al.27 in methionine choline-deficient diet-fed rats. They showed that the liver expression of vasoconstrictor ET-1 was significantly increased. In healthy LSECs, NO keeps Kupffer cells and hepatic stellate cells (HSC) in a quiescent state. LSEC dysfunction with diminished NO bioavailability can lead to sinusoidal contraction by activated perisinusoidal HSCs and increased IHVR and portal pressure.14 Diminished NO may in turn aggravate liver steatosis and further increase IHVR. NO can decrease liver steatosis by s-nitrosylation of very long chain acyl coenzyme A dehydrogenase, an enzyme in the liver that catalyzes the oxidation of fatty acids.28 NO is also involved in fatty acid synthesis by controlling mitochondria enyzmes, such as citrate synthase and NADH-cytochrome c oxidoreductase (KI-III) and inhibition of glycerol-3-phosphate acyltransferase (GPAT).29,30 In addition to NO, hedgehog signaling, the expression TGFβ and VEGF by dysfunctional LSEC are also increased and augment HSC activation and sinusoidal contraction.31

Change of liver steatosis is associated with splanchnic vasodilatation

Francque et al.32 showed that in Wistar rats fed a methionine choline-deficient diet, steatosis induced portal hypertension with an increase in mesenteric arterial and portal venous flow, arterial low responsiveness to vasoconstrictors, and decreased mean arterial blood pressure, indicat-
Nababan S.H.H. et al: Portal hypertension in NAFLD

Author (year)	Animal	Histopathology	Note
Dietary model			
Francque et al., 201227	Male Wistar rats methionine choline-deficient diet for 4–8 weeks	Severe steatosis without marked inflammation & fibrosis	No feature of metabolic syndrome. Increased portal pressure
Pasarin et al., 201226	Male Wistar Kyoto rats. Cafeteria diet (65% saturated fat) for 1 month	Steatosis without inflammation and fibrosis	With features of metabolic syndrome. Increased trend of portal pressure (not significant)
Garcia et al., 201834	Male Sprague Dawley rats. High-fat high glucose-fructose diet (30% fat mainly saturated) for 8 weeks	Steatohapatitis with mild or absent fibrosis	With features of metabolic syndrome. Increased portal pressure
Transgenic mice			
Klein et al., 201935	Transgenic TG (mRen2)27(Ren2) hypertensive rats with elevated tissue Angiotensin II	Renin induced liver injury. Steatohepatitis and mild fibrosis	Hypertensive rats, nonobese. Renin induced portal hypertension
Combined			
Cremonese et al., 202036	TGR (mREN2)27 rats with Western diet for 2 or 4 weeks	Steatohapatitis and fibrosis	Obese. Increased portal pressure

NAFLD, nonalcoholic fatty liver disease.

ing the presence of splanchnic vasodilation and hyperdynamic circulation.32

Extrahepatic factors

Insulin resistance is associated with NAFLD through increased adipose tissue lipolysis, with the increase of free fatty acid delivery to hepatocytes. Insulin resistance may also play a role in LSEC dysfunction and contribute to IHVR and portal pressure. Pasarin et al.22 in a study using a rat model of simple steatosis, showed that dose-dependent sinusoidal endothelium vasodilation was blunted in response to insulin in rats fed an HFD. Treatment with metformin, an insulin sensitizer, restored insulin-enhanced endothelium vasodilation in the livers of the HFD-fed rats. In their analysis, Francque et al.33 showed that the homeostatic model assessment for insulin resistance (HOMA-IR), as a parameter of insulin resistance, was significantly higher in NAFLD patients with PH than without PH, independent of liver steatosis and visceral fat.33

Gut dysbiosis has a role in NAFLD disease progression, including the development of portal hypertension. In rat model of NASH, 8 weeks of high-fat and high glucose-fructose feeding induced histological NASH without fibrosis, accompanied by endothelial dysfunction and increased portal pressure. In that rat model of NASH, intestinal microbiome diversity was reduced with significant increase in Firmicutes and decrease in Bacteroidetes. Furthermore, fecal transplantation from control rats reduced portal pressure and IHVR and improvement of endothelial dysfunction.34

Animal models

Several animal models have been used to study portal hypertension in NAFLD (Table 1).26,27,34–36 The models show that portal pressure increases early in NAFLD or NASH in the absence of advanced fibrosis or cirrhosis. Unlike common animal models of cirrhotic portal hypertension, the presence of hyperdynamic circulation and increased portal vein inflow were not consistent evident in diet-induced model.

Clinical aspect

Diagnosis

Currently, hepatic venous pressure gradient (HVPG) is considered the main diagnostic tool for measuring the PPG and is considered the gold standard for measurement of CSPH.37 HVPG is the difference between wedged and free hepatic venous pressure. Limitations of HVPG are invasiveness and availability limited to specialized centers. The reported prevalence of portal hypertension, defined as HVPG >5 mmHg, was lower in nonobese and obese NASH compared with other etiologies of compensated advanced chronic liver disease.8 There was a weaker correlation between wedged hepatic venous pressure and portal pressure in decompensated NASH cirrhosis compared to alcohol or viral-related cirrhosis, suggesting that HVPG might underestimate the portal venous pressure.38 That might be associated with the presence of presinusoidal hypertension or the heterogeneous distribution of steatosis and fibrosis within the liver parenchyma. Another study showed that portal hypertension-related decompensation was associated with lower HVPG levels in advanced NAFLD.39 In NASH cirrhosis, a decrease in HVPG after nonselective beta blocker was not predictor of decompensation or long-term transplant free survival.40 Therefore, routine HVPG measurement may not be an ideal tool for detection and monitoring of portal hypertension in NAFLD or different HVPG cutoff level should be established for NAFLD.41

Some noninvasive tools have been developed for the detection of CSPH through measurement of liver or spleen tissue stiffness. According to the revised Baveno VII criteria, a combination of liver stiffness measurement by transient elastography (TE) ≤15 kPa and platelet count ≥150×10^9/L have sensitivity and negative predictive values of >90% for ruling out CSPH in most etiologies of compensated advanced liver diseases (cALD, TE >10 kPa), including NASH. In viral- and alcohol-related cALD and also in nonobese NASH-related cALD, using a higher cutoff of TE ≥ 25kPa, we can rule in CSPH with specificity and positive predictive value >90%) but not in obese NASH.37 While Baveno VI...
where \(V_{max} \) is the maximum and \(V_{min} \) is the minimum portal VPI can be calculated as \((V_{max} - V_{min}) / V_{max}\).

Baikpour et al. evaluated the diagnostic performance of VPI in 236 cirrhosis patients with various etiologies including NASH (12.3%) and found that VPI could predict portal hypertension and the presence of esophageal varices or high-risk varices. In CALD patients of various etiologies, Colecchia et al. showed that the combined model of Baveno VI criteria + SSM \(\leq 46 \) kPa could rule out high-risk esophageal varices with high sensitivity and negative predictive value. A spleen-dedicated stiffness measurement, using a 100 Hz specific TE probe, has recently been shown to be more accurate for predicting varices or high-risk varices in chronic liver disease.

Several Doppler ultrasound (US) parameters are associated with portal hypertension in chronic liver disease. However, definitive parameters for accurate prediction of portal hypertension in NAFLD are lacking. In NAFLD, steatosis grade is correlated with reduced portal venous blood velocity (lower peak maximum–minimum velocity, mean flow velocity, and portal vein pulsatility index (VPI)) and compensated increase of hepatic arterial flow (lower hepatic arterial resistive index). Using routine Doppler US, portal VPI can be calculated as \((V_{max} - V_{min}) / V_{max}\), where \(V_{max} \) is the maximum and \(V_{min} \) is the minimum pulsed-wave Doppler ultrasound–estimated velocity of portal venous blood. Baikpour et al. showed that lower portal vein pulsatility index (VPI) was associated with higher fibrosis stage in NAFLD and could be used to predict high-risk NAFLD (with \(\geq F2 \) stage liver fibrosis).

Several novel methods have been developed to diagnose portal hypertension, such as subharmonic aided pressure estimation (SHAPE) using contrast enhanced ultrasonography, magnetic resonance (MR) methods, and the endoscopy-ic ultrasound-portal pressure gradient (EUS-PPG). Gupta et al. compared SHAPE to HVPG in diagnosis of portal hypertension. In 125 patients, 18% with \(V_{max} \) and most with chronic hepatitis C, they found that SHAPE had 95% accuracy for detecting CSPH or HVPG \(>12 \) mmHg. MR elastography (MRE) has been studied in NAFLD. A multicenter retrospective study found that liver stiffness assessed by MRE had an area under the curve of 0.707 (95% CI: 0.511–0.902) for differentiating decompensated NAFLD-related cirrhosis, defined as ascites, hepatic encephalopathy or esophageal variceal bleeding, from compensated cirrhosis. Recently, EUS-guided direct measurement of portal vein and hepatic vein pressure under the guidance has been developed. The mean difference of portal vein and hepatic vein pressure is then reported as the PPG. A human pilot study showed excellent correlation between EUS-PPG and HVPG (\(r=0.923 \)).

Endothelial dysfunction contributes to intrahepatic resistance in NAFLD, and von Willebrand factor (VWF-Ag) has been shown to improve the histological features of NASH.
Nababan S.H.H. et al: Portal hypertension in NAFLD

Conclusion

Experimental and clinical evidence suggests that portal hypertension develop early in NAFLD through an increase in IHVR. Both the mechanical component of liver steatosis and the molecular component of liver sinusoidal endothelial dysfunction together with insulin resistance and gut dysbiosis in NAFLD augment IHVR. Furthermore, liver sinusoidal endothelial dysfunction activates HSCs and further augments IHVR via perisinusoidal fibrosis (Fig. 1). HVPG is recommended as the gold standard for diagnosing portal hypertension, but in advanced NAFLD, HVPG might underestimate portal pressure, and decompensation can still occur in a small number of patients with mild HVPG. Noninvasive liver stiffness measurement is considered an alternative to predict CSPH in NAFLD, but obesity might obscure the impact of liver stiffness on portal venous pressure. Further validation is needed for new biomarkers or other noninvasive tools specifically in NAFLD. Lifestyle modification is the first-line therapy for NAFLD and also to control comorbidities, with early data suggesting that body weight loss is also associated with reduction of HVPG levels. Similar to other etiologies, NSBB is also recommended to prevent decompensation and improve survival in NAFLD with CSPH, and statins may decrease portal venous pressure in addition to improvement of dyslipidemia and cardiovascular risk in NAFLD. Future drug development for NAFLD should also address portal hypertension as an important endpoint.

Funding

None to declare.

Conflict of interest

The authors have no conflict of interests related to this publication.

Author contributions

Study concept and design (CRAL), analysis and interpretation of data (SHHN, CRAL), drafting of the manuscript (SHHN, CRAL), critical revision of the manuscript for important intellectual content (SHHN, CRAL), and administrative, technical, or material support, study supervision (CRAL).

References

[1] Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2010;64(1):73–84. doi:10.1002/hep.28431, PMID:26707365.

Fig. 1. Theoretical framework of portal hypertension in NAFLD. LSEC, liver sinusoidal endothelial cell; HSC, hepatic stellate cell; NAFLD, nonalcoholic fatty liver disease.
[2] Li J, Zou B, Yao YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2020;5(4):398–408. doi:10.1016/S2468-1253(19)30039-1, PMID:30802670.

[3] Lesmana GP, Paksa LS, Ingrinani S, Aibaidawi ML, Lesmana LA. Development of non-alcoholic fatty liver disease scoring system among adult medical check-up patients: a large cross-sectional and prospective validation study. Diabetol Metab Syndr Obes 2015;8:213–218. doi:10.2147/DMSO.S80364, PMID:25966072.

[4] Liu J, Ayada I, Zhang X, Wang L, Li Y, Wen T, et al. Estimating Global Prevalence of Metabolic Dysfunction-Associated Fatty Liver Disease in Overweight or Obese Adults. Clin Gastroenterol Hepatol 2022;20(3):e573–e582. doi:10.1016/j.cgh.2021.02.030, PMID:33618024.

[5] Simon TG, Roestraete B, Khalil H, Hapsighzam H, Ludvigsson JF. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut 2017;66(7):1375–1382. doi:10.1136/gutjnl-2020-322788, PMID:33037056.

[6] Kabbany MN, Conjevar-ame Selvakumar PK, Wath K, Lopez A, Akras Z, Neel RP. Prevalence and incidence of non-alcoholic steatohepatitis-associated cirrhosis in the United States: An Analysis of National Health and Nutrition Examination Survey Data. Am J Gastroenterol 2017;112(4):581–587. doi:10.1038/ajg.2017.5, PMID:28185177.

[7] Wong RJ, Singal AK. Trends in Liver Disease Etiology Among Adults Awaiting Liver Transplantation in the United States, 2014-2019. JAMA Netw Open 2020;3(2):e1920294. doi:10.1001/jamanetworkopen.2019.20294, PMID:32022875.

[8] Baikpour M, Ozturk A, Dhyani M, Mercaldo ND, Pierce TT, Grajo JR, et al. Avascular portal hypertension in patients with hepatocellular carcinoma. Liver Int 2020;40(10):2458–2468. doi:10.1111/liv.2020.40.10.2458, PMID:32699375.

[9] Francque S, Verrijken A, Segers P, et al. Formation of fenestrae in murine liver sinusoids depends on plasminogen activator inhibitor-1. Front Physiol 2015;6:990. doi:10.3389/fphys.2015.00990, PMID:26982173.

[10] Bilan S, Kwanten W, Ning Y, et al. Restoration of liver sinusoidal cell phenotypes by statins improves portal haemodynamic Features. PLoS One 2015;10(11):e0143380. doi:10.1371/journal.pone.0143380, e10.1371/journal.pone.0143380.

[11] Cook DH, Berthelot JM, Torres-Arzu M, Salcedo MT, Santiago A, et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology 2018;67(4):1485–1498. doi:10.1002/hep.29646, PMID:29113028.

[12] Cremonese C, Schiraweg R, Uschner FE, Torres S, Tyc O, Ortiz C, et al. Short-term Western Diet Alters Gut Microbiota in Non-alcoholic Fatty Liver Disease Patients. Nutrients 2020;12(10):3193. doi:10.3390/nu12103193, PMID:32928722.

[13] Franchis R, Bosch J, Van Marck E, Herman A, Ramon A, et al. Non-alcoholic steatohepatitis induces non-fibrosis-related portal hypertension associated with splanchic vasodilation and signs of a hyperdynamic circulatory pattern in vitro and in vivo in a rat model. J Hepatol 2020;73(3):365–375. doi:10.1016/j.jhep.2019.12.013, PMID:19840249.

[14] Pasarin M, Abraldes JG, Rodriguez-Villarupa A, La Mura V, Garcia-Pagan JC, Bosch J. Insulin resistance and liver microcirulation in a rat model of early NASH. J Hepatol 2011;55(5):1095–1102. doi:10.1016/j.jhep.2011.01.053, PMID:21356259.

[15] Colecchia A, Ravaioli F, Marasco G, Colli A, Dajti E, Di Biase AR, et al. Pivotal role of early NAFLD. J Hepatol 2011;55(5):1095–1102. doi:10.1016/j.jhep.2011.01.053, PMID:21356259.

[16] Klein S, Kleine CE, Pieper A, Gehrke T, Wernsing E, et al. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim Biophys Acta 2008;1782(3):180–187. doi:10.1016/j.bbagen.2007.10.007, PMID:18204067.

[17] Park H, Kauksh VK, Constant S, Pretinki M, Przybyszewski E, Ruderman NB, et al. Coordination of malonyl-CoA decarboxylase, sn-glycero-3-phosphoryl-cholesterol, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. J Biol Chem 2002;277(36):32571–32577. doi:10.1074/jbc.M201692200, PMID:12066578.

[18] Wilkinson AL, Qureshi M, Shetty S. The Role of Sorbitol Endothelial Cells in the Vascular Changes in Liver Disease. Biochim Biophys Acta 2008;1782(3):180–187. doi:10.1016/j.bbagen.2007.10.007, PMID:18204067.

[19] Park H, Laskin D. Dombrowski F, Lendeckel U, Schultz G, Gardemann A, Keilhoff G. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim Biophys Acta 2008;1782(3):180–187. doi:10.1016/j.bbagen.2007.10.007, PMID:18204067.

[20] Klein S, Kleine CE, Pieper A, Gehrke T, Wernsing E, et al. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim Biophys Acta 2008;1782(3):180–187. doi:10.1016/j.bbagen.2007.10.007, PMID:18204067.

[21] Park H, Laskin D. Dombrowski F, Lendeckel U, Schultz G, Gardemann A, Keilhoff G. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim Biophys Acta 2008;1782(3):180–187. doi:10.1016/j.bbagen.2007.10.007, PMID:18204067.
bined model based on spleen stiffness measurement and Baveno VI criteria to determine risk varices in advanced chronic liver disease. J Hepatol 2018;69(2):308–317. doi:10.1016/j.jhep.2018.04.023, PMID:29729368.

[45] Nagai K, Ogawa Y, Kobayashi T, Iwaki M, Nogami A, Honda Y, et al. Gastroesophageal varices evaluation using spleen-dedicated stiffness measurement by vibration-controlled transient elastography. JGH Open 2022;6(1):11–19. doi:10.1002/jgho.12689, PMID:35071783.

[46] Stefanescu H, Marasco G, Fraquelli M, Rosselli M, Ganne-Carriè N, et al. A novel spleen-dedicated stiffness measurement by FibroScan® improves the screening of high-risk oesophageal varices. Liver Int 2020;40(1):175–185. doi:10.1111/liv.14228, PMID:31444849.

[47] Sabry M, Youssef T, Shaker M, Salama MM, Assem N, Anwar CA. Portal venous and hepatic artery hemodynamic variation in non-alcoholic fatty liver disease. Egypt Liver Journal 2021;11:58. doi:10.1186/s43066-021-00130-7.

[48] Balasubramanian P, Boopathy V, Govindasamy E, Venkatesh BP. Assessment of Portal Venous and Hepatic Artery Hemodynamic Variation in Non-Alcoholic Fatty Liver Disease (NAFLD) Patients. J Clin Diagn Res 2016;10(8):TC07–TC10. doi:10.7860/JCDR/2016/20697.8267, PMID:27656324.

[49] Gupta I, Eisenbrey JR, Machado P, Stanczak M, Wessner CE, Shaw CM, et al. Diagnosing Portal Hypertension with Non-Invasive Subharmonic Pressure Estimates from a US Contrast Agent. Radiology 2021;298(1):104–111. doi:10.1148/radiol.2020202677, PMID:33201789.

[50] Han MAT, Vipani A, Nourreddin N, Ramirez K, Gornbein J, Saouaf R, et al. MR elastography-based liver fibrosis correlates with liver events in nonalcoholic fatty liver patients: A multicenter study. Liver Int 2020;40(9):2242–2251. doi:10.1111/liv.14593, PMID:32652744.

[51] Zhang W, Peng C, Zhang H, Huang S, Shen X, Xu G, et al. EUS-guided portal pressure gradient measurement in patients with acute or subacute portal hypertension. Gastrointest Endosc 2021;93(3):565–572. doi:10.1001/j.gie.2020.06.065, PMID:32651578.

[52] Jirapinyo P, Thompson CC, Ryou M. Effects of endoscopic gastric plication on portal pressure gradient in a patient with nonalcoholic steatohepatitis cirrhosis. VideoGIE 2021;6(11):491–494. doi:10.1016/j.vgie.2021.07.002, PMID:34765839.

[53] Hametner S, Ferlitsch A, Ferlitsch M, Etschmaier A, Schöfl R, Ziach-Jirapinyo P, Thompson CC, Ryou M. Effects of endoscopic gastric plication on portal hypertension in NAFLD. Journal of Clinical and Translational Hepatology 2022;10(5) 979–985.