Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). Hitherto, sample sizes from different miRNA expression studies in AD are exceedingly small aggravating any biological inference. To overcome this limitation, we investigated six candidate miRNAs in a large collection of brain samples. Brain tissue was derived from superior temporal gyrus (STG) and entorhinal cortex (EC) from 99 AD patients and 91 controls. MiRNA expression was examined by qPCR (STG) or small RNA sequencing (EC). Brain region-dependent differential miRNA expression was investigated in a transgenic AD mouse model using qPCR and FISH. Total RNA sequencing was used to assess differential expression of miRNA target genes. MiR-129-5p, miR-132-5p, and miR-138-5p were significantly downregulated in AD vs. controls both in STG and EC, while miR-125b-5p and miR-501-3p showed no evidence for differential expression in this dataset. In addition, miR-195-5p was significantly upregulated in EC but not STG in AD patients. The brain region-specific pattern of miR-195-5p expression was corroborated in vivo in transgenic AD mice. Total RNA sequencing identified several novel and functionally interesting target genes of these miRNAs involved in synaptic transmission (GABRB1), the immune-system response (HCFC2) or AD-associated differential methylation (SLC16A3). Using two different methods (qPCR and small RNA-seq) in two separate brain regions in 190 individuals we more than doubled the available sample size for most miRNAs tested. Differential gene expression analyses confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis and highlight several novel potentially relevant target miRNAs.

INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease characterized by progressive loss of memory and cognition eventually leading to dementia. While the pathogenic mechanisms underlying AD susceptibility are not yet completely understood, it is well established that susceptibility to AD is determined by the complex interplay of genetic, environmental, and epigenetic factors. High heritability estimates both for late (LOAD) and early (EOAD) onset AD support a crucial role of genetics, but also imply the involvement of non-genetic factors. Namely, heritability for LOAD was estimated to be between 60-80% [1], and for EOAD as >90% [2]. In addition to genetic variants, epigenetic mechanisms, e.g. mediated by DNA methylation (on the transcriptional level) and microRNAs (miRNAs; on the post-transcriptional level), are increasingly recognized to play an important role in the etiology of AD [3–5].

miRNAs are 18–25 nt long RNA molecules that bind to complementary sequence elements in the mRNA transcripts of protein-coding genes (“target genes”) to initiate transcript degradation or translational inhibition and thus repress protein synthesis [6, 7]. Given their important role in the regulation of gene expression, miRNAs became a topic of many studies investigating their regulatory function, role as potential biomarkers, and/or therapeutic targets for a range of human disorders, including AD [8, 9]. The interpretation of these studies is aggravated by various factors such as the use of heterogeneous tissues for the analysis (e.g. different brain regions, different blood cells subpopulations), application of different methods for miRNA quantification and analysis, and use of small sample sizes. Over time, this has led to a vast body of—partially contradicting—literature, which has become increasingly difficult to follow and interpret. To overcome these limitations, we recently conducted a systematic meta-analysis of differential miRNA expression studies in AD and identified 25 miRNAs showing study-wide significant differential expression in brains of AD cases vs. controls [10]. The goal of the present study was to independently assess the top-ranking differentially expressed miRNAs in a large collection of brain samples from AD patients and controls. Specifically, we
determined the expression levels of six miRNAs in two brain regions (entorhinal cortex [EC] and superior temporal gyrus [STG]) collected from the same ~200 individuals using either small RNA sequencing (EC) or TaqMan probe-based qPCR (STG). Moreover, brain-region-specific expression changes for one miRNA were assessed in different brain regions of two AD transgenic mouse models, one to reflect Aβ pathology and one for tau pathology. Lastly, we probed for evidence of differential expression of miRNA targets of all analyzed miRNAs in EC using total RNA sequencing data available from the same individuals.

MATERIALS AND METHODS
Human samples

Snap-frozen, post-mortem human brain tissue from 99 AD patients and 91 elderly control individuals were obtained from the Oxford Brain Bank. These were derived from STG (Brodmann area BA21; typically affected later in the disease process) and EC (Brodmann area BA28; typically affected very early in the disease process; for this region only n = 90 AD and n = 84 controls were available). Thus, the simultaneous analysis of both brain regions allowed the assessment of miRNA expression levels in “early” (EC) vs. “late” (STG) AD regions. The Ethics Committees of Oxford University and University of Lübeck approved the use of human tissues for our study and all participants gave informed consent. The AD patients and healthy controls were part of the longitudinal, prospective Oxford Project to Investigate Memory and Aging (OPTIMA) using protocols which have been described in detail elsewhere [11]. All subjects underwent a detailed clinical history, physical examination, assessment of cognitive function (Cambridge Examination of Mental Disorders of the Elderly (CAMDEX) [12] with the Cambridge Cognitive Examination (CAMCOG) and Mini-Mental State Examination (MMSE) biannually. The pathological diagnosis of AD was made using the Consortium to Establish a Registry for Alzheimer’s disease (CERAD)/National Institutes of Health (NIH) criteria examining beta-amyloid pathology in six cortical regions (frontal, temporal, parietal, occipital, entorhinal, and cingulate gyrus) and Braak staging examining p-tau pathology in three cortical regions (entorhinal, MTG, and occipital) [13–15]. Furthermore, all the controls were tested for any protein deposition or morphological abnormalities. Samples were only included if, additionally, no clinical information suggested the possibility of neurodegenerative disease. All included patients were of white European descent by self-report.

Selection of miRNAs for follow-up analysis

In our recent systematic meta-analyses of differential miRNA expression studies in AD, 25 miRNAs showed study-wide (α = 0.08–0.04) significant differential expression in brain [10]. For the present study, we selected those showing “strong evidence” for differential expression among the top 10 miRNAs. The term “strong evidence” refers to meta-analyses with ≥80% of included studies showing the same direction of effect. In total, six miRNAs were selected: miR-125b-5p, miR-129-5p, miR-132-5p, miR-138-5p, miR-195-5p, and miR-501-3p. In addition, we ran miR-423-5p and let-7b-5p replicates and scaled by the corresponding mean value for let-7b-5p and miR-195-5p (endogenous controls). These values (∆ΔCT) were compared across conditions (AD cases vs. controls). Additionally, per the criteria outlined above were discarded. The remaining target predictions were ranked by cumulative weighted context score (breaking potential ties by aggregate PCT and total context score). For each miRNA, predictions for the six miRNAs selected as candidates for this study were retrieved from TargetScan v7.2 [26]. The predictions for the six miRNAs selected as candidates for this study were extracted by their respective seed region sequences. Predicted target miRNAs that did not qualify for differential expression analyses as per the criteria outlined above were discarded. The remaining target predictions were ranked by cumulative weighted context score (breaking potential ties by aggregate PCT and total context score). For each miRNA, the top 10 predicted target genes were selected for downstream analysis within the total RNA sequencing data. Additionally, all AD-relevant targets listed in Supplementary Table 4 of the Takosius et al. publication [10] were considered, of which seven had sufficient data for differential miRNA analysis, i.e. ADAMTS4, APP, CD2AP, CNTNAP2, FERM1T2, PK2B, and SORL1.

Statistical analysis

All data processing and analyses were performed irrespective of diagnostic class. Comparisons of age, post-mortem intervals (PMI), RIN values, and RNA absorbances between patients and control samples were performed by Welch’s t test, and the comparison of sex distributions was compared by chi-squared tests using R (https://www.R-project.org/). Log-normalized sRNA-seq counts and ∆ΔCT values, respectively, were averaged over replicates and scaled by the corresponding mean value for let-7b-5p and miR-423-5p (endogenous controls). These values (ΔΔCT, in the case of qPCR) were transformed into relative quantity measures (2−ΔΔCT) and compared across conditions (AD cases vs. controls). Additionally, per miRNA and method (qPCR, sRNA-seq), a (Gaussian) generalized linear
All animal experiments were performed according to the "Policies on the Use of Animals and Humans in Neuroscience Research" revised and approved by the Society for Neuroscience in 1995. The conduct of all animal experiments was approved by the Animal Ethics Committee of Huazhong University of Science and Technology.

RESULTS
Demographics and RNA quality assessments
The average age of death was 81.59 years for AD patients and 77.48 years for controls (Welch t test, \(P = 0.0142 \)). The average post-mortem interval (PMI) was 57.07 h for AD cases, and 48.41 h for controls (Welch t test, \(P = 0.054 \) (Table 1)). There was no significant difference in the sex distribution between the AD and the control group (chi-square test, \(P = 0.536 \)). Detailed distributions of Braak stages are given in Table 1. Numbers above are for the larger STG dataset (\(n = 190 \)), values for the EC dataset (\(n = 174 \)) can be found in Table 1.

RIN values ranged between 1.2 (1.2) and 7.8 (6.3), with an average of 3.6 (3.0). Comparison of raw expression data showed that the distribution of Ct values (across all miRNA assays per sample) was similar for samples with lower (RIN < 5) vs. higher RIN values (RIN ≥ 5) (Supplementary Fig. 1). The same was observed for the distribution of average Ct values for endogenous control assays in the samples with lower (RIN < 5) and higher RIN values (RIN > 5) (mean \(C_{\text{RIN<5}} = 23.92 \) vs. mean \(C_{\text{RIN>5}} = 23.99 \), indicating that miRNAs were not majorly affected by RNA degradation (data not shown), in line with Lau et al. [30]. Notwithstanding, we adjusted for differences in average RIN and absorbance values in AD samples vs. controls (RINAD = 3.03 vs. RINCtrl = 4.19; Welch t test, \(P < 0.001 \); A260/280AD = 1.90 vs. A260/280Ctrl = 1.93, Welch t test, \(P < 0.001 \)) in the regression models to account for residual confounding.

Differential miRNA expression analysis in brains of AD cases and controls
Our qPCR-based expression analyses showed that three (i.e. miR-132-5p \([P = 1.75E-21] \), miR-138-5p \([P = 2.82E-04] \), miR-129-5p \([P = 1.54E-08] \)) of the six tested miRNAs, showed evidence for significant differential expression in STG sections in AD cases vs. controls (Table 2). All three miRNAs showed decreased expression levels in AD cases. Likewise, in EC, a significant downregulation of the same three miRNAs in AD patients was observed using a different experimental method (i.e. small RNA sequencing). In addition, we observed miR-195-5p to be significantly upregulated in EC of AD vs. controls (\(P = 8.41E-05 \)), but not in STG (\(P = 0.088 \)). We observed no evidence for differential expression for neither of the two other tested miRNAs in either STG or in EC (Fig. 1, Table 2).

With the exception of miR-125b-5p and miR-501-3p, the direction of expression change was concordant in STG vs. EC for the remaining four miRNAs (Table 2).

Using Braak-staging as diagnostic variable yielded similar results to those obtained in the case vs. control analyses (Supplementary Table 2). In STG, these highlighted miR-129-5p, miR-138-5p, and miR-132-5p as differentially expressed. In EC, these analyses revealed the same three miRNAs and miR-195-5p.

Assessment of brain region-specific expression changes for miR-195-5p in two different AD mouse models
We further examined the expression of miR-195-5p in different brain regions of 6-month-old APP/PS1 and P301S mice to assess whether the region-specific expression difference for this miRNA observed in the human samples can be recapitulated in these models. Consistent with the results observed in the human samples, we observed an upregulation of miR-195-5p in EC of P301S mice vs controls (\(p = 0.0226 \)), but not in hippocampus and temporal cortex (Fig. 2; note that an STG-equivalent structure is not found in rodents). No differences were observed in any of the

Animal work
To confirm the region-specific miRNA expression of mir-195-5p observed in the human samples, we also measured brain expression patterns of miR-195-5p in EC, hippocampus and temporal cortex in two different AD mouse models (P301S and APP/PS1) through qPCR and fluorescence in situ hybridization (FISH). APP/PS1 mice (#34829) and P301S mice (#008169) were purchased from Jackson laboratory, and wildtype littersmates were used as control. All mice were male. The sample size was determined based on relevant previous studies in the field [27–29]. The mice groups were assigned according to animal’s genotyping results without further randomization. The investigators were double-blinded to group allocation for data collection and analysis. Mice were sacrificed at 6 months of age and total RNA, including miRNA, was extracted from brain sections of control and AD mice, and reverse transcription of total RNA, including miRNA, was performed by using a commercial kit (Invitrogen, Life Technologies, Carlsbad, California). The gDNA was removed by using the DNA-free kit (Ambion, Austin, Texas). After loading on HistoBond Slides (VWR, Radnor, Pennsylvania) and baking at 52 °C under the condition of heat preservation and humidiﬁcation. Subsequently, brain slices were incubated with anti-Calbindin D-28k (Swant, #300, diluted in 1:500) and Alexa Fluor 546 (ThermoFisher, diluted in 1:200). The images were collected using a confocal laser scanning microscope (Axio Imager Z2, [Zeiss, Oberkochen, Germany], Motorized Scanning Stage (Maerzhaeuser, Wetzlar, Germany)), and analyzed using Zen Pro. Probes were designed and purchased from Tsingke, China.

Translational Psychiatry (2022) 12:352
analyzed brain regions of APP/PS1 mice vs. controls, indicating that miR-195-5p upregulation might be related to tau pathology, for which P301S is a model. Furthermore, FISH analysis showed that miR-195-5p is mainly increased in EC layer II Calb+ neurons, the most vulnerable neurons in the early stage of AD [31], in P301S but not APP/PS1 mice (Fig. 2). These data suggest that tau burden (rather than Aβ) may be most prominently involved in the abnormal upregulation of miR-195 in the EC of AD.

Meta-analysis of novel differential miRNA expression results with published evidence
To assess the overall evidence of differential expression of the six miRNAs tested here we updated our earlier meta-analyses by combining (1) results from the database of Takousis et al., (2) STG-based results from the current study, and (3) data from additional studies testing any of the six miRNAs for differential miRNA expression in human brain samples not included in our previous report [32, 33].

All updated meta-analyses are shown in Table 2. There are at least three noteworthy observations to be made from these results: First, for all three miRNAs significant in our own brain dataset (i.e. miR-132-5p, miR-138-5p, and miR-129-5p; see above), the statistical evidence increased by several orders of magnitude (2-25x, as judged by P-value) upon meta-analysis. Second, in contrast to these strengthened results, two miRNAs that ranked very high in our previous assessment of the literature [10], i.e. miR-125b-5p and miR-501-3p, were not replicated in our independent brain dataset and, as a result, now only show reduced overall evidence of differential expression upon meta-analysis. We note that of these two miRNAs only miR-501-3p was studied in the newly included paper by Li & Cai, 2021, who found a significant upregulation in AD vs. controls (in agreement with the previous meta-analysis). Notwithstanding, the overall meta-analytic evidence combining all newly available data for this miRNA showed reduced statistical support (P-value 1.56E−06) when compared to our previous study (P-value 2.03E−11). Third, for one miRNA (i.e. miR-195-5p) we observed region-specific differences in differential expression (significant only in EC; see above). As a result, only the meta-analyses using data from EC (p = 2.39E−11; Supplementary Table 3) improved with respect to those from our previous study.

Table 1. Overview of the brain samples analyzed in this study.

	STG	EC		
	AD cases	AD controls	AD cases	AD controls
Total number	99	91	90	84
Sex				
Male/female	50/49	51/40	46/44	44/40
p-value1	0.5360		0.9875	
Age at death				
Average (±SD)	81.59 (8.03)	77.48 (13.76)	82.04 (7.76)	77.70 (13.93)
Median (IQR)	83.00 (77.5-87.00)	81.00 (68.50-88.50)	83.00 (78.00-87.75)	81.00 (68.75-89.00)
Range	61-95	41-100	61-95	41-100
p-value2	0.0142		0.0131	
PMI (h)				
Average (±SD)	57.07 (30.56)	48.41 (30.95)	56.43 (30.56)	49.01 (32.07)
Median (IQR)	48 (30–73.75)	48 (24–48)	48.00 (30–72)	48.00 (24–52)
Range	9–140	5–168	9–140	5–168
p-value2	0.0540		0.1209	
RIN value				
Average (±SD)	3.03 (1.21)	4.19 (1.39)	2.89 (1.05)	3.05 (1.17)
Median (IQR)	2.60 (2.30–3.25)	4.00 (2.95–5.20)	2.65 (2.025–3.775)	3.050 (2.1–3.8)
Range	1.20–7.80	2.10–7.60	1.3–6.0	1.2–6.3
p-value3	<0.001		0.3513	
RNA A260/280				
Average (±SD)	1.90 (0.04)	1.93 (0.04)	1.94 (0.03)	1.95 (0.04)
Median (IQR)	1.89 (1.86–1.94)	1.93 (1.91–1.95)	1.94 (1.91–1.96)	1.95 (1.94–1.96)
Range	1.80–1.99	1.80–2.00	1.84–2.01	1.77–2.06
p-value2	<0.001		0.0068	
Braak Stage				
Stage 0	0	6	0	5
Stage I/II	0	72	0	66
Stage III	0	6	0	6
Stage IV	8	0	8	0
Stage V/VI	91	0	82	0
n.a.	0	7	0	7

STG superior temporal gyrus, EC entorhinal cortex, 1 Pearson’s Chi-squared test with Yates’ continuity correction, 2 Welch Two Sample t test, PMI post-mortem interval, RIN RNA integrity, RNA A260/280 the ratio of absorbance at 260 nm and 280 nm, n.a. not available.
Table 2. Results of targeted miRNA differential expression analysis in two different brain regions.

miRNA	Current study, STG	Current study, EC	Meta-analysis (Takousis et al.)	Meta-analysis (Takos et al.)
	Direction	N (cases, ctrls)	P-value (±SE)	Direction
hsa-miR-132-5p	Down	122 (64, 58)	4.13E-05	Up
hsa-miR-132-3p	Down	122 (64, 58)	4.13E-05	Up
hsa-miR-195-3p	Down	122 (64, 58)	4.13E-05	Up
hsa-miR-195-5p	Down	122 (64, 58)	4.13E-05	Up

(p = 3.74E−07; [10]). Taken together, our novel differential miRNA expression results derived from a large and independent dataset analyzed in combination with previously published data now nominate a revised and partially different set of miRNAs to be most strongly linked to AD in brain.

Differential miRNA target expression assessment in matching total RNA sequencing data

Lastly, we assessed whether and which target genes of the miRNAs tested in our primary small-RNA-seq analysis arm also show evidence for differential expression in the same individuals. MiRNA target predictions were taken from the TargetScan database, which returned informative miRNA predictions except for has-miR-132-5p (family/seed: CCGUGGC). Considering only the top 10 targets (see Methods) for the remaining five candidate miRNAs as well as additional AD-related targets reported in [10] resulted in 53 unique miRNAs (five genes were among the selected targets of two different candidate miRNAs). Five out of these showed evidence for nominally significant differential expression (p < 0.05) according to our total RNA-seq data. We note, however, that none of these nominally significant results attained study-wide significance when controlling for an FDR of 5% across all 53 tests. Differential gene expression results are listed in Supplementary Table 4.

Interestingly, for several of the top (ranked by p-value) differentially expressed miRNAs previous studies had already implicated a potential functional link to AD. Among these are SLC16A3, HCFC2, and GABBR1. Gene SLC16A3 (p-value 0.00347; protein: solute carrier family 16 member 3) is a member of the proton-linked monocarboxylate transporter (MCT) family and is involved in the transport of lactic acid and pyruvate across plasma membranes [34]. This gene has been linked to AD by several independent epigenome-wide association studies (EWAS) where it showed significant association with either Braak stage [3] or AD diagnostic status [35] in human brain samples. Other work recently implied SLC16A3 and other members of the MCT family to show differential expression in AD oligodendrocytes in human brain [36]. HCFC2 (p-value 0.0395; protein: host cell factor 2) encodes one of two proteins which interact with VP16, a herpes simplex virus protein that initiates virus infection [37]. A potential link to AD pathogenesis was recently implied by weighted gene co-expression network analysis suggesting that HCFC2 is one of several factors involved in differential immune cell infiltration in AD prefrontal cortex [38]. Lastly, GABBR1 (p-value 0.0534; protein: gamma-aminobutyric acid type A receptor subunit beta1) encodes a subunit of the GABA-A neurotransmitter receptor that mediates inhibitory synaptic transmission in the central nervous system [39]. In addition, recent in vivo work using transgenic mouse models suggests that GABBR1 may serve as a synaptic receptor for secreted APP (sAPP) providing functional support for the long-sought link between sAPP and synaptic transmission [40]. We note that we restricted our miRNA target gene analyses to only the top 10 targets provided on TargetScan. As a result, this arm of our study is—by design—incomplete and should only be understood as a first exemplary discussion of the potential functional implications of our primary miRNA differential expression experiments.

In addition to the target genes predicted by the TargetScan database, we also investigated whether any of the AD-relevant (i.e. implicated by GWAS) target genes highlighted in our previous work [10] also showed evidence for differential expression in the EC brain sections analyzed here (genes marked by superscript “t” in Supplementary Table 4). While none of the seven tested candidate targets passed the threshold of nominal significance, we note that two (i.e. ADAMTS4 and CNTNAP2) approached significance with p-values of 0.0502 and 0.0687, respectively. All of the remaining five tested AD candidates (i.e. APP, CD2AP, FERM2, PTK2B, and SORL1) showed differential gene expression p-values >0.1.
In this study, we performed well-powered and independent assessments of the most compelling miRNAs previously reported to show differential expression in brains of AD patients. Specifically, we analyzed the expression of six “top” miRNAs from these meta-analyses in two separate cortical regions in a comparatively large dataset using two experimental methods. The results showed evidence for significant differential expression for three out of six miRNAs tested in STG and four out of six in EC. One AD miRNA (miR-195-5p) showed brain region-specific differential miRNA expression, i.e., a significant upregulation in AD in EC but not STG slices from the same individuals, a finding that was corroborated in an AD transgenic mouse model. We updated our previous meta-analyses on these miRNAs with the most current snapshot of miRNA expression data in the field. Specifically, the new meta-analyses considerably strengthened the evidence for four of the six tested miRNAs, i.e., miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p. Interestingly, for the latter, we only observed significant differential expression in EC but not in STG in both human and mouse data, arguing for the need to analyze multiple brain regions in future studies. In contrast, two miRNAs previously showing very strong evidence for differential expression in AD, i.e., miR-125b-5p and miR-501-3p, are no longer among the top of the list. Their drastic drop in significance (and perhaps functional importance) is the result of the size of our dataset, which exceeds the previously published sample sizes for these miRNAs by several-fold, respectively, in nearly all cases. While it remains possible that the non-validation in our dataset reflects a false-negative finding, this appears unlikely given the consistency of our null findings across both brain regions and both molecular methods used. Hence, our data suggest that miR-125b-5p and miR-501-3p may be less relevant in AD pathogenesis than previously thought. Fourth, in addition to using case-control status as predictor variable, we were also able to use Braak-staging as predictor of differential miRNA expression. Overall, this yielded very similar results to those obtained in the case vs. control analyses. In STG, these highlighted miR-129-5p, miR-138-5p, and miR-132-5p as differentially expressed. In EC, these analyses revealed the same three miRNAs and miR-195-5p, which did not show evidence for differential expression in STG in these Braak stage-based analyses. Finally, using differential mRNA expression data derived from total RNA sequencing experiments performed in the same individuals, we identified several functionally interesting target genes of the top differentially expressed miRNAs. AD-relevant functional domains affected include synaptic transmission (GABRB1) and potentially the immune-system response (HCFC2). While for SLC16A3, which showed the strongest evidence of
differential target gene expression in our study, no direct functional connection to AD has been made to date to our knowledge, this gene was recently associated with AD by several brain-based EWAS. Despite the interesting functional candidacy of these and other loci in our list of miRNA target genes (Supplementary Table 4), we note that the differential expression evidence for any of these genes was only significant at a nominal level. Future work in larger data sets needs to assess the role of these and other target mRNAs in AD pathophysiology.

Despite its strengths, our study may also be subject to a number of limitations. First, while our sample size (n=200) was large compared to most previous studies on the topic (medium sample size = 42.5; largest previous meta-analysis sample size for the miRNAs studied = 177; [10]), it may have still been too small to detect minor differences in miRNA expression, so that all or some of our null findings may reflect false negatives. Second, with an average of 3.6 the RIN values of our samples were comparatively low, which may have led to both false positive as well as false-negative results. However, we went to great lengths at accounting for this limitation in our analyses (see methods and results) and found no evidence that low RIN values actually skewed our differential miRNA expression results. Moreover, there are multiple studies reporting that RIN values only had a negligible or no effect on the detection of miRNAs, unlike mRNAs which tend to gradually degrade with decreasing RIN values [41]. In addition, the fact that most of the previous “top” miRNAs actually do show independent replication here also argues against a major impact of low RIN on our study. Notwithstanding, we cannot exclude the possibility that the comparatively small RIN values may have affected some or all of the miRNA differential expression analyses. Third, despite being comparatively comprehensive in both size and scope, our study used RNA extracts from “bulk” brain sections. These comprise a mixture of different cell types (e.g. neurons, immune cells) which may have confounded some of our results. The only bona fide remedy against this potential confounding would be to perform single-cell/single-nucleus RNA sequencing. However, this methodology is currently still comparatively expensive precluding analyses in sample sizes such as ours in the foreseeable future. Lastly, we emphasize that, although the qPCR and RNA sequencing results correspond very highly, we cannot exclude the possibility that the observed differences in miRNA expression between STG and EC for miR-195-5p may actually fully or partially be the result of the underlying methodological differences.

Since our study followed up on previous work, the potential functional implications of the miRNAs highlighted to show consistent and highly significant differential expression here have not changed much and we refer to the discussion of Takouisi et al. for more details. The most interesting aspect in this context is probably the assessment of whether or not the four validated miRNAs of this study target any of the known AD genes as judged by the 2013 GWAS from the IGAP [42]. In the Takouisi et al. report this had revealed a total of seven AD genes for the four miRNAs validated in our study, i.e. ADAMTS4 (miR-129-5p), APP (miR-138-5p and miR-195-5p), CD2AP (miR-195-5p), CNTNAP2 (miR-195-5p), and FERMT2 (miR-138-5p). Comparing the same target predictions to an updated list of AD genes identified from two more recent GWAS [43, 44], as summarized in Bertram and Tanzi [45] did not change these predictions. However, using an extended and even more recent list of GWAS results from the European Alzheimer’s disease DNA biobank (EADB) project published as preprint [46] reveals several new connections, i.e. for ADAM17 & USP6NL (both miR-129-5p), CTSB & EED (miR-138-5p), and ANK3 & PLEKH1A1 (miR-195-5p). Collectively, these results – and those from the miRNA
differential expression analyses newly performed in our EC brain slices – offer a direct link between two different molecular layers both showing involvement in AD pathogenesis using entirely different methodologies. As such, they provide some first functional leads on the potential mechanisms by which the miRNAs found to be differentially expressed in our and previous work may unfold their effects. We note, however, that none of the AD-relevant target genes highlighted above showed strong evidence for differential miRNA expression in our dataset, so that future work is needed to further assess these potential functional implications.

In conclusion, by studying the expression patterns of six previously top-ranked miRNAs across two human brain regions in a sample of ~200 AD patients and controls, we confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis. Future works need to elucidate the exact mechanism how dysregulation of these miRNAs is involved in AD pathogenesis.

REFERENCES

1. Karlsson IK, Esscott-Price V, Gatz M, Hardy J, Pedersen NL, Shoaib M, et al. Measuring heritable contributions to Alzheimer's disease: polygenic risk score analysis with twins. Brain Commun. 2022;4:eFcab308.
2. Wingo TS, Lah JJ, Levey AI, Cutler DJ. Autosomal recessive causes likely in early-onset Alzheimer disease. Arch Neurol. 2012;69:59–64.
3. Smith RG, Pishva E, Shireby G, Smith AR, Roubroeks JAY, Hannon E, et al. A meta-analysis of epigenome-wide association studies in Alzheimer's disease highlights novel differentially methylated loci across cortex. Nat Commun. 2021;12:23517.
4. Hébert SS, de Strooper B. Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci. 2009;32:199–206.
5. Silvestro S, Bramanti P, Mazzone E. Role of miRNAs in Alzheimer's disease and possible fields of application. Int J Mol Sci. 2019;20:1–26.
6. Bartel DP. Metazoan MicroRNAs. Cell 2018;173:20–51.
7. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835–40.
8. Angelucci F, Cechova K, Valis M, Kuca K, Zhang F, Hart J. MicroRNAs in Alzheimer's disease: diagnostic markers or therapeutic agents? Front Pharm. 2019;10:1–9.
9. Ludwig N, Fehlmann T, Kern F, Gogol M, Maetzler W, Deutscher S, et al. Machine learning to detect Alzheimer's disease from circulating non-coding RNAs. Genomics Proteomics Bioinformatics 2019;17:430–40.
10. Takouassi F, Sadlon A, Schulz J, Wohlers I, Dobricic V, Middleton L, et al. Differential expression of microRNAs in Alzheimer's disease brain, blood, and cerebrospinal fluid. Alzheimer's Dement. 2019;15:1468–77.
11. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in controls. Arch Neurol. 2012;69:59–64.
12. Acquarone E, Argyrousi EK, Van Den Berg M, Gulisano W, Fa M, Staniszewski A, et al. Synaptic and memory dysfunction induced by tau oligomers is rescued by up-regulation of the nitric oxide cascade. Mol Neurodegener. 2019;4:14.
13. Hu R, Rodriguez GA, Herman M, Emrani S, Nahmani E, Barrett G, et al. Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer's disease. Neuron 2017;93:533–41.e5.
14. powdy E, Aronin A, Mitchell TL, Pignatelli M, Ryan TJ, Tonegawa S. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease. Nature 2016;531:508–12.
15. Lau P, Bossers K, Janki R, Salta E, Frigerio CS, Barbash S, et al. Alteration of the microRNA network during the progression of Alzheimer's disease. EMBO Mol Med. 2013;5:1613–34.
16. Yassa MA. Ground zero in Alzheimer's disease. Nat Neurosci. 2014;17:146–7.
17. Patrick E, Rajagopal S, Wong HKA, McCabe C, Xu J, Tang A, et al. Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease. Mol Neurodegener. 2017;12:1–13.
18. Li Q, Cai D. Integrated miRNA-Seq and miRNA-Seq study to identify miRNAs associated with Alzheimer's disease using post-mortem brain tissue samples. Front Neurosci. 2021;15:620899.
19. Homo sapiens solute carrier family 16 member 3 (SLC16A3), transcript v - Nucleotide - NCBI [Internet]. Available from: https://www.ncbi.nlm.nih.gov/nucleotide/189025789.
20. Li QS, Sun Y, Wang T. Epigenome-wide association study of Alzheimer's disease replicates 22 differentially methylated positions and 30 differentially methylated regions. Clin Epigenetics. 2020;12:149.
21. Saito ER, Miller JB, Harari O, Cuchaga C, Mihindukulasuriya KA, Kauwe JSDK, et al. Alzheimer's disease alters oligodendrocytic glycolytic and ketolysis gene expression. Alzheimers Dement. 2021;17:1474–86.
22. Homo sapiens host cell factor C2 (HCF2), mRNA - Nucleotide - NCBI [Internet]. Available from: https://www.ncbi.nlm.nih.gov/nucleotide/18901320.
23. Liu C, Zhang X, Chai H, Xu S, Liu Q, Luo Y, et al. Identification of immune cells and key genes associated with Alzheimer's disease. Int J Med Sci. 2022;19:112–25.
24. Homo sapiens gamma-aminobutyric acid type A receptor subunit beta 1 (GA - Nucleotide - NCBI). Available from: https://www.ncbi.nlm.nih.gov/nucleotide/18900812.
25. Rice HC, De Malmazet D, Schreurs A, Frese S, Van Molle I, Volkov AN, et al. Secreted amyloid-β precursor protein functions as a GABA B R1a ligand to modulate synaptic transmission. Science 2019;363:eaao4827.
26. Jung M, Schaefer A, Steiner I, Kerkpiensteffchen C, Stephan C, Erbersdobler A, et al. Robust MicroRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem. 2010;56:998–1006.
27. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet. 2013;45:1452–8.
28. Jansen I, Savage J, Watanabe K, Bryois J, Williams D, Steenberg S, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nat Genet. 2019;51:404–13.
29. Lennon KM, Brinton-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicate Aβ, tau, immunity and lipid processing. Nat Genet. 2019;51:414–30.
30. Bertram L, Tanzi RE. Genomic mechanisms in Alzheimer's disease. Brain Pathol. 2020;30:966–77.
31. Bellenguez C, Küçüktürk F, Jansen I, Andrade V, Moreno-grau S. New insights on the genetic etiology of Alzheimer's and related dementia. Nat Genet. 2022;54:412–36.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the National Science Foundation China (NSFC) as a Joint Sino-German research project "MIRNet-AD", #391523883) to L.B. and L.-Q.Z. Additional support was provided by the...
DFG Research Infrastructure NGS_CC (project 407495230) as part of the Next Generation Sequencing Competence Network (#423957469) and the Cure Alzheimer’s Fund (as part of the CIRCUITS consortium to L.B.). NGS analyses were carried out at the Competence Centre for Genomic Analysis (Kiel). We acknowledge the Oxford Brain Bank, supported by the Medical Research Council (MRC), Brains for Dementia Research (BDR) (Alzheimer Society and Alzheimer Research UK), Autistica UK and the NIHR Oxford Biomedical Research Centre.

AUTHOR CONTRIBUTIONS
LB and CML designed and coordinated the study. Experiments and/or data analysis on human samples were performed by VD, MS, and JS, while LSZ, CWZ, and LQZ contributed with animal experiments and data analysis. JF and SF contributed to transcriptome data generation. LP provided human samples and phenotypes. VD, MS, CML, LB, LSZ interpreted the results. VD drafted the manuscript. MS, LB, and CML reviewed and revised the manuscript. All authors reviewed and commented on subsequent drafts of the manuscript. All authors approved the final manuscript as submitted and published.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-022-02108-4.

Correspondence and requests for materials should be addressed to Lars Bertram.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022