The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

Fabien Cottier1,2, Martine Raymond3, Oliver Kurzai4, Marianne Bolstad1, Worraaong Leewattanapasuk1, Claudia Jiménez-López5, Michael C. Lorenz5, Dominique Sanglard6, Libuše Váchnová7,8, Norman Pavelka2, Zdena Palkova8, Fritz A. Mühlschlegel1,9,10

1 School of Biosciences, University of Kent, Canterbury, United Kingdom, 2 Singapore Immunology Network, Agency for Science, Technology and Research, Immunos, Singapore, 3 Institute for Research in Immunology and Cancer and Department of Biochemistry, Université de Montréal, Montréal, Quebec, Canada, 4 Septomics Research Centre, Friedrich-Schiller-University and Leibniz-Institute for Natural Products Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany, 5 Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, United States of America, 6 Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland, 7 Institute of Microbiology of the ASCR, v.v.i., Prague, Czech Republic, 8 Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic, 9 Clinical Microbiology Service, East Kent Hospitals University NHS Foundation Trust, Ashford, United Kingdom

Abstract

Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture.

Introduction

Atmospheric carbon dioxide (CO2) with a concentration of 0.039% is not only central to the Earth’s biogeochemical carbon cycle but is also sensed as a signal by many organisms. The nematode and parasite of insects Neospinctera carpocapsae localizes its prey via a CO2 gradient [1], while avoidance behaviour in another nematode, Caenorhabditis elegans [2], or the model organism Drosophila melanogaster is provoked by elevated CO2 [3]. C. elegans detects CO2 via a cGMP-gated ion channel [2] whereas in D. melanogaster CO2 is sensed by a pair of 7 transmembrane domains chemoreceptors localized on specialized sensory neurons [4].

In the fungal kingdom CO2, under its hydrated form bicarbonate (HCO3−), is critical for cellular metabolism. Although hydration of CO2 to HCO3− and a proton occurs spontaneously, this reaction is greatly enhanced by the metalloenzyme Carbonic Anhydrase (CA), which operates at a rate of up to 108 reactions per second [5]. Fungal CAs fix the membrane permeable gas CO2 as HCO3− inside the cell, which is subsequently used as substrate for fundamental carboxylation reactions including the conversion of acetyl-CoA to malonyl-CoA (EC 6.4.1.2), or pyruvate to oxaloacetate (EC 6.4.1.1). The direct relevance of HCO3− synthesis for fungal survival is reflected by the fact that the CA deletion mutants of Candida albicans, Cryptococcus neoformans, Saccharomyces cerevisiae, Sordaria macrospora, Aspergillus fumigatus or Aspergillus nidulans fail to grow in ambient air [6,7,8,9,10]. However, when cultured in a CO2 enriched atmosphere, where sufficient HCO3− is spontaneously formed to meet the metabolic requirements, CAs are optional.

In fungi CO2 is also sensed as a signal to regulate the expression of virulence factors. In the pathogenic yeast C. albicans, high level of CO2 triggers filamentous growth and the white-opaque switch [7,11]. Recently we have shown that in C. albicans CO2/HCO3− is detected by the enzyme adenylyl cyclase Cyr1p which regulates most processes considered essential in C. albicans virulence [7,12]. Here, Cyr1p senses CO2/HCO3− by a lysine residue (position 1373) of the C-terminal catalytic-site [13] potentially linking HCO3−, generated by CA, and cAMP signaling. In humans CAs are involved in medically relevant processes including bone calcification, or renal clear-cell-carcinoma progression; conse-
Author Summary

Skin infection, oral and vaginal thrush, or bloodstream candidiasis are some of the diseases caused by the human pathogen Candida albicans. The high versatility of infection niches reflects the capacity of this yeast to respond to strong variations in its environment such as CO2 concentration. This molecule initiates the regulation of an essential protein: carbonic anhydrase, not through the known adenylyl cyclase CO2 sensor but as we discovered via a novel fungal CO2 sensing pathway involving the transcriptional regulator Rca1p. This protein is additionally implicated in growth, yeast-to-hyphae morphological switch and cell wall stability of C. albicans. The ortholog of Rca1p in Saccharomyces cerevisiae demonstrated a conserved function in the induction of the carbonic anhydrase in low CO2 concentration atmospheres pointing to the broad significance of Rca1p in fungal CO2 sensing.

However, to allow an in-depth analysis of yeast CA expression we developed an antibody directed against C. albicans Nce103p, and additionally constructed a strain expressing a functional tagged CA in S. cerevisiae. SceNce103p::Nce103p::Nce103p-GFP (Figure 1B).

Since the CAs from C. albicans and S. cerevisiae are required for growth in a low but not high CO2 atmosphere we asked whether expression of the enzyme itself is regulated by the availability of this gas. To address this question we performed Western-blot analysis using appropriate antibodies to detect C. albicans CA and CA chimera of S. cerevisiae. Single bands with the predicted molecular weights for CaNce103p (32kDa), and ScNce103p::GFP (34kDa) were detected and we now show for the first time that CA protein expression is highly regulated in both yeast species (Figure 1C). In fact, CA is strongly expressed when yeasts are grown in ambient air but non-detectable when cultured in air enriched with 5.5% CO2, precisely mirroring the requirements for growth of the NCE103 gene in yeast (Figure 1A, B). Furthermore, quantitative real time polymerase chain reaction (qRT-PCR) analysis with reverse transcripts of total RNA extracted from C. albicans and S. cerevisiae grown at low and high CO2 concentrations show a similar regulation of CA transcript when expressions were normalized to ACT1 (Figure 1D), confirming previous reports made in S. cerevisiae [17,18].

CO2 regulation of carbonic anhydrases in yeast is independent of cAMP signaling

We have previously shown that the adenylyl cyclase Cyr1p from C. albicans functions as a major CO2-sensor, promoting the yeast-to-hyphae switch in response to high levels of CO2 [7,13]. We now asked if CO2 regulation of CA expression was similarly coordinated by Cyr1p or cAMP signaling examining CA protein and transcript levels in a strain where both alleles of CYR1 have been deleted (cyr1Δ). Notably, CO2 regulation of both protein and transcript levels of NCE103 remain unaltered in the cyr1Δ strain displaying a pattern of expression identical to the control strain CAI4+pSM2 (Figure 1E). Furthermore, Western-blot or qRT-PCR analysis revealed that supplementation of culture media with exogenous cAMP at concentrations known to mimic Cyr1p activity [19] (10 mM) did not affect CA expression in CAH+pSM2 grown in ambient air (Figure S1). Similarly to C. albicans, addition to the growth media of 10 mM cAMP did not affect the expression of CA protein or transcript in S. cerevisiae (Figure S1). Taken together our data demonstrate that CO2 regulation of CA in C. albicans is independent of the known CO2 sensor Cyr1p and its product cAMP. Furthermore, they strongly support the existence of a novel, cAMP-independent, CO2 signaling pathway in yeast.

The bZIP transcription factor Rca1p is a new regulator of CO2 signaling in C. albicans

To identify the key components of this novel CO2 sensing pathway we systematically screened a C. albicans knock-out library searching for strains with an altered expression of their CA in response to CO2. The library consisted of 158 C. albicans non-essential transcription factor mutants (provided by D. Sanglard). CA protein expression was investigated in each mutant grown in either ambient air or air enriched with 5.5% CO2. Repeated screening identified a single candidate (HZY7-1) that failed to induce CA protein when grown in ambient air. HZY7-1 harbors a mutation in the C. albicans off19.6102 gene. To confirm the HZY7-1 phenotype, we independently inactivated the two off19.6102 alleles in a CAI4 background, using the URA-blaster approach [20], and re-introduced URA3 at its native locus to generate strain rca1Δ. Subsequent to validating gene inactivation by Southern blot and qRT-PCR (Figure S2 and S3), we confirmed a striking loss of

Results

Yeast carbonic anhydrases are expressed according to CO2 availability

The CA, Nce103p, from C. albicans and S. cerevisiae are known to be required for growth in ambient air ([6,7] and Figure 1A, B).
Nce103p protein induction in rca1Δ in ambient air (Figure 2A). We also validated that during the inactivation process, we did not alter the expression of 2 genes partially overlapped by RCA1: orf19.6102 and MVD (Figure S3). In light of these findings we named the gene encoded by orf19.6102: Regulator of Carbonic Anhydrase 1. RCA1 encodes a 283 amino acid (aa) hypothetical protein which contains a conserved basic leucine zipper (bZIP) domain in its C-terminus, required for DNA interaction (Figure S4). Reintroduction of RCA1, either on its own (rca1Δ+RCA1) or tagged at its C-terminus with Haemagglutinin (rca1Δ+RCA1-2HA3), into the rca1Δ strain restored CA protein induction in C. albicans cells exposed to low CO2 level (Figure 2A). These observations were also confirmed by qRT-PCR (Figure 2B).

C. albicans NCE103 induction in an ex vivo virulence model is dependent on Rca1p

In a previous study of transcriptional variation that follow phagocytosis of C. albicans by murine macrophages, NCE103 was found to be mildly induced (~1.9-fold after two hours of coculture [21], while in S. cerevisiae, NCE103 was one of the genes most highly induced by phagocytosis (13.8-fold; [22]). We assayed expression of CaNCE103 in phagocytosed C. albicans cells after one hour of co-culture by qRT-PCR and found an induction of 2.1-fold relative to cells in media alone, even though both populations were exposed to a high-CO2 environment (5.0% in a tissue culture incubator). This change is of similar magnitude, but slightly faster, than observed by microarray. This induction was completely absent in an rca1Δ strain (Figure 2C).

These results indicate that Rca1p regulates CaNCE103 in a physiological environment which could be correlated to a CO2 concentration scarcer within the immune cell due to a limited penetration across multiple membranes, the sequestering activity of the mammalian CAs, or the reduced metabolic production of CO2 in the fungal cell as a result of a shift to slower, and gluconeogenic growth.
CO₂ regulation of carbonic anhydrases by Rca1p orthologs is conserved in *S. cerevisiae*

Since CA expression in *S. cerevisiae* is also controlled by ambient CO₂ levels we investigated the existence of Rca1p orthologs in this yeast. In *S. cerevisiae*, we identified Cst6p (BLAST; Score: 117; E value: 1e⁻²¹⁶) as a potential Rca1p ortholog. Cst6p encodes for a putative 587 aa protein with a bZIP domain in the C-terminus (Figure S4). In order to prove that Cst6p is a yeast CA regulator we constructed the mutants in the *S. cerevisiae* ScNCE103-GFP background (ScNCE103²⁶⁺cst6D). Successful gene inactivation was confirmed by diagnostic PCR and qRT-PCR (Figure S2 and S3). Using anti-GFP antibodies for ScNCE103²⁶⁺cst6D we found that its CA, similar to the *C. albicans* rca1D strain (Figure 2A), was not induced in low ambient CO₂ when compared to the controls (Figure 3A). This regulation in *S. cerevisiae* mutant was also confirmed at transcript level by qRT-PCR (Figure 3B). In the mutant, introduction of a plasmid expressing CST6 restores the expression of Nce103p in air (Figure 3A). Taken together these data show that CO₂ regulation by Rca1p orthologs is conserved in yeast.

CO₂ regulation of NCE103 in *S. cerevisiae* occurs through a specific DNA binding motif

S. cerevisiae Cst6p is a transcription factor previously described to bind a specific DNA motif: TGACGTCA [23]. We identified this motif in the *NCE103* promoters of *S. cerevisiae* (position -285 bp to ATG), but not of *C. albicans*. To assess the role of this motif in CO₂ regulation of CA expression we neutralized it by removing 7 and 4 bases pairs of the TGACGTCA sequence in the promoters controlling Nce103p expression in *S. cerevisiae*. Notably the resulting strains (Scnec103D+ScNCE103²⁶⁺GFP-MUT) failed to induce CA when exposed to low environmental CO₂ (Figure 3B), exactly mirroring the expression pattern displayed by the *S. cerevisiae* cst6D mutants (Figure 3B). In summary, our data show that CO₂ regulation of CAs expression in yeast is controlled by a conserved transcriptional factor, but involves divergent DNA motifs between *S. cerevisiae* and *C. albicans*.

ChIP-chip analysis of Rca1p confirms NCE103 binding and points to a wider role in *C. albicans* CO₂ sensing

To confirm that Rca1p directly binds to the CA promoter, and identify any additional genes it controls, we performed Chromatin Immuno Precipitation on Chip (ChIP-Chip) in air and air enriched with 5.5% CO₂. We introduced the HA-tagged RCA1 allele, described above, into the heterozygous RCA1 mutant (*rca1D/RCA1*). The resulting strain (*rca1D/RCA1+RCA1-HA₃*) expressed one wild-type and the HA-tagged RCA1 copy. Next, we confirmed that CA levels in *rca1D/RCA1+RCA1-HA₃* and in control strain *rca1Δ/RCA1+RCA1* were fully responsive to CO₂ by Western blotting, using anti-Nce103 antibodies (Figure S5). Subsequently, genome-wide location profiling of Rca1-HA₃pi in low and high CO₂ using *C. albicans* whole-genome oligonucleotide tiling arrays [24] produced a total of 182 binding peaks, when the
experiment was carried out in air, and 140 in air enriched with 5.5% CO₂. The presence of GA indicates statistical significance determined by two-sample t test (P<0.05). doi:10.1371/journal.ppat.1002485.g003

Figure 3. Rca1p orthologs regulate NCE103 expression in S. cerevisiae via a TGACGTCA binding motif.

A.
Western blot with extracts from S. cerevisiae ScNCE103-GFP+ pRS316 mutant and the complemented strain (ScNCE103-GFP+ & SC103 Δ pRS316 – C5T6).

B.
qRT-PCR with specific primers were used to calculate the ratio of NCE103 transcript between low (air) and high CO₂ (5.5%) in S. cerevisiae control strain (black column), mutant (white column) and point mutation in the promoter of NCE103 (ScNCE103 Δ ScNCE103-GFP – MUT) (grey column). Data are represented as mean ± SD. Asterisk indicates statistical significance determined by two-sample t test (P<0.05).

Rca1p regulation and role in growth, filamentation and cell wall biogenesis

Since GA is critical for yeast growth in air (Figure 1), and its induction depends on Rca1p, it can be predicted that inactivation of RCA1 should also result in a growth deficiency. Indeed, we observed that rca1Δ has a 77% increase of its generation time compared to the control strain (Figure 5A). This phenotype is not restored in high CO₂ point to a wider role of Rca1p in cell growth which could be set downstream of the CA. The enhanced growth rate of rca1Δ compared to nce103Δ is explained by residual expression of the highly effective carbonic anhydrase. We also confirmed that inactivation of RCA1 does not lead to significant morphological alterations (Figure S6).

Our ChIP-chip data suggest a connection of Rca1p to filamentous growth and cell wall biogenesis, an observation that we confirmed by showing a strong decrease in the morphological response of rca1Δ to serum (Figure 3B and S6) and an increased sensitivity of rca1Δ to Congo red, caffeine and SDS (Figure 5C).

significant association of Rca1p to the promoter of NCE103 in air compared to the high CO₂ environment.

With respect to the other Rca1p associated genes, forty four of the 85 hits were specific to ambient air samples, 19 to enriched CO₂ and 22 shared between the two conditions (Figure 4A). Rca1p binding peaks were directly associated with 4 other putative transcription factor encoding genes (CTA24, TF83, ZCF4 and ZGF22) and 2 genes involved in cell wall biosynthesis (GH2 encoding a chitinase and OCH1 coding for a ß-1,6-mannosyl-transferase). Since both GH2 and OCH1 are involved in C. albicans virulence we selected them to examine the predicted role of Rca1p on their expression by qRT-PCR (Figure 4D).

Transcript levels of GH2 and OCH1 were significantly higher in rca1Δ in air when compared to the control strain (Figure 4D). These data show that in addition to Rca1p's function as activator of CA expression in low CO₂, this regulator can also operate as a repressor.

Remarkably, 46 of the 85 (54%) Rca1p associated genes are presently uncharacterized (Table S1 and S2). Although this observation precludes assigning a significant enrichment of genes to any cellular function, process, component (GO Term Finder, http://www.candidagenome.org/cgi-bin/GO/goTermMapper) or protein families (pfam), it suggests a broader involvement of Rca1p in CO₂ sensing. A similar conclusion can be made following database searches with the TGACGTCA sequence involved in Cst6p binding which was retrieved in 49 promoters of S. cerevisiae genes. Analysis of both lists with GO Slim Mapper coupled to a chi-square test revealed a significant under-representation of genes in the process of RNA metabolic process (P-value: 0.0066) in C. albicans as well as in the response to chemical stimulus process for both C. albicans and S. cerevisiae (respectively P-value 0.0436 and 0.0322) while the latter was over-represented in the budding yeast contrary to C. albicans. However, it is important to note that the number of genes involved was relatively low (respectively 2, 4 and 6). Altogether, these results show that, except for NCE103, no apparent commonality of putative Rca1p targets or pathways can be identified and the large number of uncharacterized genes in the two lists of genes poses limitations to the full elucidation of the impact of these transcriptional factors on yeast cell biology. At the same time, these data could point to the existence of yet undiscovered pathways and underline the intrinsic differences between the two fungal organisms. In summary, our data establish Rca1p as the first regulator of a fungal CA and imply a wider role of this transcription factor in a new fungal CO₂ sensing pathway.

A Novel CO₂ Sensing Pathway in Yeast

Since CA is critical for yeast growth in air (Figure 1), and its induction depends on Rca1p, it can be predicted that inactivation of RCA1 should also result in a growth deficiency. Indeed we observed that rca1Δ has a 77% increase of its generation time compared to the control strain (Figure 5A). This phenotype is not restored in high CO₂ pointing to a wider role of Rca1p in cell growth which could be set downstream of the CA. The enhanced growth rate of rca1Δ compared to nce103Δ is explained by residual expression of the highly effective carbonic anhydrase. We also confirmed that inactivation of RCA1 does not lead to significant morphological alterations (Figure S6).

Our ChIP-chip data suggest a connection of Rca1p to filamentous growth and cell wall biogenesis, an observation that we confirmed by showing a strong decrease in the morphological response of rca1Δ to serum (Figure 3B and S6) and an increased sensitivity of rca1Δ to Congo red, caffeine and SDS (Figure 5C).
These results set Rca1p as an important player of \textit{C. albicans} key biological functions. In \textit{S. cerevisiae}, we were not able to reach identical conclusions as inactivation of \textit{CST6} did not result in enhanced sensitivity to cell-wall perturbing agents. Additionally, only a 20\% increase in generation time was observed for the \textit{cst6} \textit{D} mutant. Notably this phenotype was complemented by growing the strain in elevated CO\textsubscript{2} (Figure 5A). These data confirm that the orthologs of \textit{RCA1} are involved in the regulation of different cell functions further underlining their intrinsic difference emerging from the ChIP-chip and bioinformatic analysis. Interestingly expression levels of the Rca1p orthologues is also variable between the two species (Figure 5D). Using specific primers for each species (\textit{C. albicans} and \textit{S. cerevisiae}), we investigated the level of \textit{RCA1} and \textit{CST6} transcript in low and high CO\textsubscript{2} environment. In \textit{C. albicans}, \textit{RCA1} expression is 2.5 fold higher in hypercapnia compared to normal atmosphere (Figure 5D). In contrast, the \textit{CST6} transcript in \textit{S. cerevisiae} did not display any significant variation of the expression between the two conditions (Figure 5D). While the function as a regulator of carbonic anhydrase is shared among Rca1p orthologs, their regulation in response to environmental CO\textsubscript{2} differs.

Serine 124 is involved in the regulatory function of Rca1p

Sequence comparison of the Rca1p orthologs from \textit{C. albicans} and \textit{S. cerevisiae} identified three putative sites of phosphorylation (Figure S4). We investigated the role of these residues in the function of \textit{C. albicans} Rca1p by complementation of \textit{rca1} \textit{D} with constructs expressing Rca1p with a replacement of serine to alanine in position 124 and 126 (\textit{rca1} \textit{D}+\textit{RCA1}–S124A and \textit{rca1} \textit{D}+\textit{RCA1}–S126A respectively) or serine to glycine in position 222 (\textit{rca1} \textit{D}+\textit{RCA1}–S222G). Loss of serine in position 126 or 222
only partially impact on the CO₂ regulation of Nce103p expression; however mutating serine 124 lead to a striking unresponsiveness to ambient CO₂ resulting in enhanced expression of Nce103p in both air and air enriched with 5.5% CO₂ (Figure 6). Our results point to a critical role of serine 124 for Rca1p activity in response to CO₂ concentrations.

Carbonic anhydrase is differentially expressed in yeast populations

We have previously shown that in C. albicans colonies metabolically-generated CO₂ accumulates and is subsequently used to activate the adenyl cyclase Cyr1p promoting the switch from yeast to filamentous growth essential for pathology [13]. We now substantially expand these results to entire populations of S. cerevisiae taking advantage of the regulation of expression of ScNCE103-GFPp by CO₂. Matching CA protein expression detected by Western blots (Figure 2A), a strong fluorescent signal was recorded in ScNCE103-GFPp cells grown in ambient air but absent in air enriched with 5.5% CO₂ (Figure 7A). Next we visualized Nce103p expression not only in individual cells but an entire fungal colony, monitoring for the first time the flux of CO₂ in a fungal population. Using high resolution two-photon excitation confocal microscopy [28] we examined a cross-section of a ScNCE103-GFP colony grown for 4 days on solid nutrient agar. We observed that cells in the superficial layers, exposed to the low CO₂ concentrations found in ambient air, strongly express the Nce103-GFPp construct; while the internal layers of the colony do not show any significant fluorescence (Figure 7B). Strikingly when grown in a 5.5% CO₂ atmosphere, this gradient was absent, and no fluorescence was observed at any position in the colony. Similarly, no fluorescence was seen in cst6Δ, regardless of the CO₂ concentration or the position in the colony (Figure 7B), indicating that the absence of GFP expression in the center of the ScNCE103-GFPp colony grown in air was unlikely due to a lack of viability or metabolic activity of the corresponding cells. By contrast, our positive control constitutively expressing GFP displays homogenous fluorescence through the cross-section (Figure 7B). In conclusion, our data visualizing the flux of CO₂ inside yeast populations are in full agreement with those generated by Western blot or qRT-PCR in single cells (Figure 1C, D).
Furthermore, they illustrate, with a high level of detail, the capacity of yeast to generate CO2 enriched micro-environments and adjust metabolic expression in a population.

Discussion

Carbon dioxide is a major signal in all organisms ranging from humans to fungi [7,29]. CO2 regulates numerous phenotypes including virulence in the fungal pathogens of humans C. albicans or C. neoformans [7,12]. Here we demonstrate for the first time a novel, cAMP independent, CO2 sensing pathway in the yeast species C. albicans and S. cerevisiae. We report that at the core of this new sensing pathway lies a bZIP transcription factor, Rca1p in C. albicans and its ortholog Cst6p in S. cerevisiae. We show that Rca1p and its orthologs regulate the expression of a major enzyme involved in fungal metabolism, CA, in response to changes in ambient CO2 level. GAs catalyze the synthesis of HCO3⁻, an essential substrate for the cell’s carboxylation reaction that sustains gluconeogenesis, ureagenesis or lipogenesis [30,31]. We hypothesize that CA is critically involved in cellular metabolism and a feedback loop involving Rca1p could exist to regulate its expression (Figure 8). Furthermore, as CA controls the level of HCO3⁻, the regulation of CA expression by cellular metabolism could have an indirect impact on the capacity of the cells to differentiate through activation of the cAMP-PKA pathway.

While HCO3⁻ is an essential cofactor for cellular metabolism in all fungi tested, the fungal requirement for CA is conditional, depending on the environmental CO2 concentration. CA mutants will not grow in ambient air where CO2 is scarce but will thrive in niches where the atmosphere is enriched with this gas [6,7,8,9,10]; the higher concentration allows sufficient spontaneous hydration to HCO3⁻ to serve as substrate for the above carboxylation reactions. Regulation of CA expression by CO2 has been reported for S. cerevisiae, S. macrospora, A. fumigatus and A. nidulans [8,9,17,18] and we extend these observations to C. albicans.

Though the regulation of CA by CO2 has been observed in many fungi, the current work is the first to report the identification of a fungal-specific CO2-responsive transcription factor, Rca1p in C. albicans and of one of its orthologs in S. cerevisiae. We identified Rca1p, a previously uncharacterized bZIP-family DNA binding protein, via a functional genetic screen of a transcription factor knockout library. Rca1p functions by inducing CA protein and transcript when C. albicans faces low ambient CO2 level. Loss of CA induction in high CO2 level could result from a phosphorylation or another posttranslational modification on serine 124 which leads to the inability of Rca1p to bind NCE103 promoter, integrating Rca1p in a signal transduction pathway. The impact of Rca1p in cell growth and cell wall biogenesis, independently of CO2 concentration, points to a general involvement of Rca1p in the cellular metabolism of C. albicans. Rca1p function as CA regulator is conserved in S. cerevisiae, though they also have additional functions: Cst6p has already been shown to be involved in functions such as growth on non-optimal carbon sources [23], and our results now highlight the importance of Cst6p in cellular metabolism via its role as an inducer of CA. However, the impact of Cst6p on cell physiology differs when compared to C. albicans since the cts6Δ mutant growth defect in air is complemented by addition of environmental CO2 for S. cerevisiae. Furthermore the observation that RCA1 expression itself is regulated by CO2 underlines the importance of this regulator outside the scope of CA expression. Notably, Rca1p orthologs can be identified in S. macrospora, A. fumigatus and A. nidulans known to posses CA’s which expression is influenced by ambient CO2 level [8,9].

Importantly, Rca1p is distinct at both the sequence and functional level from the best characterized regulator of eukaryotic CAs, HIF-1α, which induces human CA IX expression in response to hypoxia [15,32]. CA IX leads to extracellular acidification of hypoxic tissue, and is as such abundant in tumors [33]. By contrast C. albicans NCE103, is not regulated by either hypoxia or changes in pH [34]; Figure S7).

Similar to HIF-1α, which binds to the HRE motif present in CA IX promoter [32], the regulation of NCE103 by Rca1p appears to be direct. ChIP-chip and ChIP-qPCR confirmed that Rca1p binds to the CA promoter of C. albicans, specifically under low ambient CO2, leading to the induction of NCE103 expression. An additional 84 genes were associated with Rca1p, suggesting a much broader role of this new CO2 signaling pathway. Although the majority of these genes are currently of unknown function, in depth analysis of two (OCH1 and CHT2) showed Rca1p’s potential to act as both an inducer and repressor of gene expression. This dual function could also be explained by an ability of Rca1p to recruit different co-factors at the associated loci. Using SCOPE [35] and other predictive programs, we obtained a relatively low number of results with significant value regarding binding sites or processes associated to Rca1p and Cst6p. These observations

![Figure 6. Serine 124 is involved in Rca1p function as an inducer of NCE103. Western blot with C. albicans rca1Δ complemented with a wild-type allele, an RCA1 allele mutated in serine 124, serine 126 or serine 222. doi:10.1371/journal.ppat.1002485.g006](image-url)
could be due to a higher complexity in the binding motif of Rca1p to the DNA, as well as on our limited knowledge about genes function (75% of ORF in C. albicans are still considered as uncharacterized; http://www.candidagenome.org). Reflecting the 235 million years [36] of separation between the Candida and Saccharomyces clade, we observed profound divergence in the associated genes of Rca1p and Cst6p. However, the CA remains a conserved target for both species. Such a fundamental wiring re-arrangement between closely related transcriptional factor of C. albicans and S. cerevisiae has already been reported [37].

In S. cerevisiae, CO2 regulation of CA expression by Cst6p involves the TGACGTCA palindrome motif. Database searches with this sequence retrieved the motif in 49 promoter regions of S. cerevisiae, and 40 promoters of C. albicans. While this motif is absent in the NCE103 promoter in C. albicans, it is present in a single gene associated to Rca1p (orf19.4246) demonstrating the lack of motifs conservation between the two species. Interestingly, the promoter of human CA IX presents a bZIP binding motif, TGAGTCA [38], which is closely related to the one identified in S. cerevisiae. Furthermore this motif is the binding sequence of the oncogen C-jun in human, which presents some sequence similarity with Rca1p (Score 42.7, e value 0.005), particularly around the bZIP domain. To date, the expression of CA IX in response to CO2 changes in the body has not been investigated. Our results may point to an additional level of regulation in human CA's; in fact HIF-1α sole predominance in CA IX regulation has recently been questioned [39].

The regulation of CA by CO2 is likely to be complex; however, using a new antibody that we generated, we show that CO2 affects CA proteins levels dramatically – highly induced in normal and undetectable when cells are grown in an elevated CO2 atmosphere. However, CA transcript levels were only decreased by 50% relative to ambient air. This type of regulation may suggest additional levels of post-transcriptional control on CA messenger. Maintaining CA transcripts in high CO2 level would allow a shortened response in CA enzyme synthesis when cells encounter a switch from high to low CO2 atmosphere, thus ensuring sufficient supply of the essential HCO3- ion.

We have begun to uncover the complex physiology associated with variations in CO2 concentrations. C. albicans cells phagocytosed by macrophages induce CA, as seen by qRT-PCR, despite being in a high CO2 (5%) environment, and this is Rca1p-dependent. This suggests that the phagocyte might restrict CO2 availability, as it does for other nutrients. Furthermore, using high resolution two-photon excitation confocal microscopy with GFP-tagged CA’s we visualize for the first time the impact of CO2 build-up on gene expression in single cells but also in entire fungal populations. The data presented in this report not only confirm previous observations made in C. albicans that CO2 is compartmentalized in yeast populations, specifically inducing developmental change [13], but importantly connects micro-environments enriched in CO2 to metabolic specialization of individual members of a fungal populations. However, it is important to also consider the possibility that an unknown, CO2-independent, pathway is involved in the regulation of Nce103p at colony level. CA regulation is exquisitely sensitive to change in CO2 availability in both S. cerevisiae and C. albicans (Figure S8) and our results may be highly applicable to a range of conditions in which fungi expand and act as populations rather than individual cells including the formation of drug-resistant biofilms in pathogenic yeasts such as C. albicans. For S. cerevisiae, biofilms are naturally isolated on fruit surface (grape), and have a major application in industrial fermentation [40,41].

The effects of CO2 on fungal physiology are integrated through more than one regulatory circuit. We previously showed that elevated CO2/HCO3- is sensed by the adenyl cyclase via a lysine residue of the enzymes catalytic core, increasing the production of the second messenger cAMP, thus linking adenyl cyclase and CA in fungal CO2 sensing [7,12]. Adenyl cyclase/cAMP are particularly important mediators of fungal virulence severity.
determinants. Although there is cross-talk between the activities of the two enzymes, we now show that the CO₂ control of CA expression acts independently from the cAMP-PKA pathway. This mechanism has to be compared to the identification of a cAMP-independent CO₂-sensitive pathway involved in white opaque switching which results in Wor1p phosphorylation [42]. However, the putative overlap of these two uncharacterized pathways remains to be defined.

In conclusion, carbon dioxide is sensed in yeast by two independent pathways. One, previously described by us, involves the fungal adenylyl cyclase and cAMP [12]. We have now identified a second pathway and found the transcriptional regulator, Rca1p, at the core of the new pathway in yeast. Activation or inactivation of the transcription factor may involve phosphorylation which ultimately programs cellular metabolism to allow optimal adaptation to the environment inside a macrophage in the case of a fungal pathogen or yeast populations. Investigating the function of the additional Rca1p-associated genes will bring better understanding on how organisms sense the universal gas carbon dioxide.

Materials and Methods

Strains

All strains and plasmids used or constructed in this study are reported in supporting information (Table S3, S4, S5), as is the composition of the respective media and additional protocols (Protocol S1). C. albicans were incubated at 37°C, or 30°C for S. cerevisiae, either in ambient air or air enriched with 5.5% (vol/vol) atmospheric CO₂ (Infors HT Minitron) when required.

Protein extraction and Western blot

Strains were inoculated in 50mL of YPD at OD600 0.1 and grown at the suitable temperature in air or air enriched with CO₂. After 4h, cells were collected and quickly frozen. Samples were disrupted using a Mikro-dismembrator S (Sartorius) and resuspended in 500 µl lysis buffer (50 mM HEPES, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, protease inhibitor [Roche]). Protein concentrations were quantified using Bradford reagent (Sigma). 30 µg of protein were loaded for each sample on a 12% SDS-acrylamide/bis-acrylamide gel, and proteins were transferred to a PVDF membrane (Millipore). Membranes were incubated with the appropriate antibodies diluted as follows: anti-NCE103 at 1:500, anti-LacZ at 1:1000 (Millipore), anti-GFP at 1:2500 (Roche) or anti-Act1p 1:1000 (Sigma). This was followed by a second incubation with a peroxidase tagged antibodies of goat anti-rabbit, diluted 1:2000, (Sigma) for the anti-NCE103, anti-LacZ and anti-Act1 primary antibodies, while a goat anti-mouse, diluted 1:5000 (Sigma), was used for the anti-GFP primary antibody. Luminol Electrochemiluminescence was used to detect signal on the membrane.

qRT-PCR

Culture and samples were prepared in an identical manner as for the protein extraction, apart from total RNA extraction which was carried out with the RNaseasy Kit (Qiagen) according to the manufacturer’s recommendations. Transcripts level were determined by semi quantitative RT-PCR using the iScript One-Step RT-PCR Kit with Syber Green (BioRad). Levels were normalised to ACT1 from the respective species, and calculated using the Delta Ct analysis of the Opticon Monitor 3 software (Bio-Rad).
Values are represented as mean +/- SD from three independent experiments.

Chromatin Immuno Precipitation on Chip

50ml cultures in YPD medium of strains *RCAl/+* (untagged) and *RCAl/+RCAl−*/HA2 (tagged) were inoculated at OD600 0.1 by overnight culture and incubated 4h at 37°C in air or air enriched with 5.5% CO2, 140 rpm. Three independents cultures were grown for each strain in both conditions. The subsequent steps of DNA cross-linking, DNA shearing, chromatin immuno-precipitation (ChiP), DNA labeling with Cy3 or Cy5 dyes, hybridization to intergenic DNA microarrays, and data analysis were conducted exactly as described [42]. Cy5-labeled DNA from the tagged strain (*RCAl/+RCAl−*/HA2) and the corresponding Cy3-labeled DNA from the untagged control strain (*RCAl/+RCAl*) were mixed and hybridized to a *C. albicans* whole-genome tiled oligonucleotide DNA microarray [24]. After hybridization and scanning of the slides (n = 3 for each condition), results were process [43]. Quantile normalization was applied to the data [25]. The parameters used were: a window size of 400 bp, a maximum genomic distance of 60 bp, and a minimum length of 120 bp. The replicate data were combined, and peak finding (i.e., determining the Rca1-HA3 binding sites) was done using a pseudomedian signal threshold of at least 1.5 fold and a P value cutoff of 0.01 [25,44].

ChiP-qPCR

Chromatin Immuno Precipitations were processed according to the above protocol with the identical strains *RCAl/+* (untagged) and *RCAl/+RCAl−*/HA2 (tagged) and growth conditions. The resulting purified DNA was used in quantitative PCR using SYBR Green Master Mix (Applied Biosystems, Inc.) with primers: Ca-ChIP-NCE103-F/Ca-ChIP-NCE103-R for the control *ACT1* promoter (a 195bp region identified to be significantly associated with Rca1p) and Ca-ChIP-Act1-F/Ca-ChIP-Act1-R for the control *ACT1* promoter, a gene without known association for Rca1p. Levels of detection were normalized to *ACT1* and calculated using the Delta Delta Ct method. Values are represented as mean +/- SD from two independent experiments.

Macrophage co-culture experiments

C. albicans wild-type (SC5314) and *rea1A* were grown to log-phase in YPD medium, washed in water, and counted. They were then incubated with J774A.1 macrophages at an MOI of 2:1 (*C. albicans* macrophages) in RPMI10% FBS at 37°C in 5% CO2 in 750 cm3 vented flasks. Control cells were grown in the same media without macrophages at 37°C in 5% CO2. After incubation for one hour, the flasks were rinsed with PBS, then cells were collected by scraping into ice cold water and transferred to conical tubes. They were washed twice more with water, then pellets were frozen on dry ice. RNA was prepared using the Turbo DNA-free kit (Ambion). 50 μg of total RNA were used for each qRT-PCR reaction using the Power SYBR Green reaction system (Invitrogen). Actin (*ACT1*) was used as the normalization control. Primers are listed in supplemental data.

Microscopy

ScNCE103-GFP cells were observed with an Olympus IX-81 fluorescence microscope with a 150 W xenon-mercury lamp and an Olympus 60X Plan NeoFluor oil-immersion objective.

For high resolution two-photon excitation confocal microscopy of entire yeast colonies of ScNCE103-GFP, ScNCE103−/−GFP+cd6Δ and BY4741+pTEF−/−GFP, cells were grown for 4 days on YPD at 28°C. Colonies were then embedded in low-gelling agarose (Sigma-Aldrich) directly on the plates [20]. After solidification, agarose-embedded colonies (an area of approximately 10×10 mm) were sectioned vertically down the middle and transferred to the cover glass. All samples on the cover slip were enclosed with a thick agarose layer to prevent them from drying. Image acquisition was realized following published protocol [20], using 20 x/0.7 water immersion planachromat objective.

Statistical analysis

Statistical analyses were performed using Student’s t test. P values are indicated as detailed in the figure legends. Error bars in figures represent SD.

Supporting Information

Figure S1 Carbonic anhydrase expression is independent of the cAMP-PKA pathway. Using our anti-Nce103p and anti-GFP antibodies, carbonic anhydrase signals are shown in western blots from *C. albicans* (top) and *S. cerevisiae* (bottom). Proteins were extracted from cells grown in YPD for 4h in air (with or without addition of 10 mM dbcAMP to the culture medium) or air enriched with 5.5% CO2. Yeast carbonic anhydrase expression is not influenced by the addition of dbcAMP. The same samples were probed with an anti-actin antibody as control. (TIF)

Figure S2 Strains verification in *C. albicans* and *S. cerevisiae*. A. Southern blot where genomic DNA from strain CA1+pSM2 (1), *rea1A*+*RCAl* (2), *rea1A*+*RCAl−*/HA2 (3), *rea1A* (4), *rea1A*+*RCAl+RCAl* (5 and 6) and *rea1A*+*RCAl+RCAl−*/HA2 (7) were digested by *SalI*, migrated on agarose gel and transferred onto nitrocellulose membrane. Using a *RCAl* probe, expected bands were observed with a signal at 3.8kb for the *RCAl* allele, 4kbkbp for *rea1A*, 8.1 and 8kbp for the introduction of the pSM2-RCA1 and pSM2-RCA1−/HA2 alleles respectively. B) Diagnostic PCR products with primers NCE103-Verif-F and ScNCE-end using genomic *S. cerevisiae* DNA of control strain BY4741 (lane 1) and ScNCE103A (lane 3) as template, or primers Nce.ko.kan-F and NCE103-Verif-R with the respective template on lane 2 and 4. First set of primers hybridize on each side of the cassette, second set confirm presence of the cassette at the right locus. C) Diagnostic PCR products with primers CST6-Verif-F and CST6-Verif-R using genomic *S. cerevisiae* DNA of control strain ScNCE103-GFP (lane 1) and ScNCE103-GFP+cd6Δ (lane 3) as template, or primers ScCST6.ko.kan-F and CST6-Verif-R with the respective template on lane 2 and 4. First set of primers hybridize on each side of the cassette, second set confirm presence of the cassette at the right locus. (TIF)

Figure S3 Verification of gene expression by qRT-PCR. A) qRT-PCR using *RCAl* specific primers and RNA extracted from *C. albicans* control strain and the *RCAl* mutant grown in air. The *rea1A* strains show no significant level of *RCAl* transcript. B) qRT-PCR using ScNCE103 (top) and CST6 (bottom) specific primers and RNA extracted from the *S. cerevisiae* controls, ScNCE103 mutant and CST6 mutant strain grown in air enriched with 5.5% CO2 (top panel) or air (bottom panel). Both mutants show no significant level of ScNCE103 and CST6 transcript compared to the control strain. C) qRT-PCR using ORF19.6103 (top) and MTD (bottom) specific primers and RNA extracted from *C. albicans* control and the *RCAl* mutant grown in air (black columns) or air enriched with 5.5% CO2 (white columns).
Expression of both genes is not significantly different between the control and mutant strain. Data are represented as mean+/− SD from three independent experiments. Asterisk indicates statistical significance determined by two-sample t test (P≤0.05).

(TIF)

Figure S4 Protein alignment of Rca1p and Cst6p sequences. Alignment of C. albicans Rca1p (C.a.) and S. cerevisiae Cst6p (S.c.) sequences by ClustalW2 (http://www.ebi.ac.uk/Tools/cluster2/index.html). “*” “:” and “.” respectively means that the residues of that column are identical in the two sequences, that conserved substitutions occurred, or that semi-conserved substitutions are observed. The bZIP motifs (bold) are present in the C-terminus of each protein. 3 conserved putative serine sites for phosphorylation (underlined) are shown (http://www.cbs.dtu.dk/services/NetPhosYeast/).

(TIF)

Figure S5 The RCA1 heterozygous mutant and complemented strains display a wild-type pattern of Nce103p expression. Carbonic anhydrase signals are shown in western blots from the C. albicans control, RCA1 heterozygous mutant, and the complemented strains. All strains display an identical profile of Nce103p expression. The same samples were probed with an anti-actin antibody as control.

(TIF)

Figure S6 RCA1 inactivation does not impact on cells morphology. Control (CAY4+pSM2) and rca1 mutant (rca1Δ) strain were grown for 2h at 37°C in YPD supplemented or not with 5% horse serum. Representative pictures show identical morphology for both strains in YPD and confirm the inability of the mutant to differentiate into hyphae. Bar corresponds to 5 μm.

(TIF)

Figure S7 C. albicans Nce103p is not regulated by environmental pH. Western blots showing carbonic anhydrase signals from the C. albicans control strain grown in YPD buffered at pH 4 or pH 7 for 4h in air. In both conditions, Nce103p signals are identical.

(TIF)

Figure S8 Nce103p induction is exquisitely sensitive to ambient CO2 availability. Using appropriate antibodies, carbonic anhydrase signals are shown in western blots from S. cerevisiae (top) and C. albicans (bottom). Proteins were extracted from cells grown in YPD for 4h in air or air enriched with 0.5 or 1% CO2. Nce103p signals are detectable in ambient air, and air enriched with 0.5% CO2.

(TIF)

Protocol S1 Detailed protocols about media used in this study, strains and plasmids construction, yeast transformations, Southern blot analysis and the generation of C. albicans Nce103p antibodies, as well as supporting references.

(DOC)

Table S1 Rca1p-HA3 binding in air dataset. The following criteria were used: Log2 pseudo-median signal intensity threshold of ≥0.5 and p-value cut-off of ≤0.01 [12]. Contig19#: The Contig19 number on which a given binding peak is detected using the Tilescope software [12]. Location: Position of the binding peak in the corresponding Contig19 DNA sequence.

References

1. Gaugler CD, Lebeck L, Nakagaki B, Boush GM (1980) Orientation of the entomogenous nematode Neoaplectana carpocapae to carbon dioxide. Environ Entomol 9: 649–652.

2. Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105: 8044–8049.
3. Suh GS, Wong AM, Herxogenous AC, Wang JW, Simon AF, et al. (2004) A single population of olfactory sensory neurones mediates an innate avoidance behaviour in Drosophila. Nature 431: 854–859.

4. Jones WD, Gavrilnov PG, Kados IG, Vosshull LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86–90.

5. Lindskog S (1997) Structure and mechanism of carbonic anhydrase. Pharmacol Ther 74: 1–20.

6. Gotz R, Gnastrau, A, Zimmermann FK (1999) Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 15: 835–864.

7. Klengel T, Liang WJ, Chaloupka J, Rooff C, Schroppel K, et al. (2005) Fungal adenyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15: 2021–2026.

8. Elleuch S, Poggeler S (2009) Beta-carbonic anhydrases play a role in fruiting body development and ascospor germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 75: 1372–1388.

9. Han KH, Chun YH, Figueredo Ble C, Soranzi FM, Savoldi M, et al. (2010) The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Mol Biol Cell 75: 1372–1388.

10. Bahn YS, Cox GM, Perfect JR, Heitman J (2005) Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol 15: 2013–2020.

11. Huang G, Srikantha T, Sahni N, Yi S, Soll DR (2009) CO2 regulates white-to-brown transformation in Candida albicans. Curr Biol 19: 330–334.

12. Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, et al. (2006) Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenyl cyclase Cac1. Eukaryot Cell 5: 103–111.

13. Hall RA, De Soule L, MacCallum DM, Topal H, Eaton R, et al. (2010) CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog 6: e1001193.

14. Neri D, Supuran CT (2011) Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 10: 169–181.

15. Schlicker C, Hall RA, Vullo D, Middelhauve S, Gertz M, et al. (2009) Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol 303: 1207–1220.

16. Schmid A, Supuran CT, Znaidi S, Barker KS, Xu L, Homayouni R, et al. (2007) Genome-wide expression of the Candida albicans Cap1p regulon. Eukaryot Cell 7: 83–90.

17. Schmid A, Supuran CT, Znaidi S, Barker KS, Xu L, Homayouni R, et al. (2007) Interfering with pH regulation in tumors as a novel therapeutic application for inhibitors and activators. Nat Rev Drug Discov 7: 765–776.

18. Schmid A, Supuran CT (2008) Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 7: 765–776.

19. Schmid A, Supuran CT, Znaidi S, Barker KS, Xu L, Homayouni R, et al. (2007) Genome-wide expression of the Candida albicans Cap1p regulon. Eukaryot Cell 7: 83–90.