Telesimulation for COVID-19 Ventilator Management Training With Social-Distancing Restrictions During the Coronavirus Pandemic

Neel Naik¹, Robert Alan Finkelstein¹, Joy Howell¹, Kapil Rajwani¹, and Kevin Ching¹

Abstract

Background. In early 2020, the novel coronavirus pandemic forced communities around the globe to shut down and isolate. Routine graduate medical education activities have also been suspended as resident and fellow physicians-in-training have been re-deployed to support critical patient care services.

Innovation. We developed a two-part hybrid telesimulation model to teach COVID-19 ventilator management strategies while physically separating a group of learners and an instructor from one another. Learners consisted of non-ICU health care providers with limited experience in ventilator management being redeployed to manage ICU level COVID-19 infected patients. In the first week, the video tutorial has been viewed over 500 times and we have facilitated 14 telesimulation sessions, including 48 participants comprised of hospitalists, emergency medicine physicians and physician assistants, pediatric residents, nurses, and a nurse educator.

Conclusion. We believe that the combination of a video tutorial followed by an interactive telesimulation was successful in providing timely education during a coronavirus pandemic. Furthermore, it reinforced the value and flexibility in which simulation education could continue conveniently for learners despite significant restrictions in place during the coronavirus pandemic.

¹NewYork-Presbyterian Hospital/Weill Cornell Medical Center, USA

Corresponding Author:
Kevin Ching, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, 525 East 68th St., New York, NY 10021, USA.
Email: kec9012@med.cornell.edu
Research is needed to assess the efficacy of this **hybrid intervention** in preparing healthcare workers and to determine if the knowledge is successfully transferred to the clinical setting.

Keywords
coronavirus, COVID-19, hybrid intervention, medical education, pandemic, simulation, telesimulation, ventilator management

Background
In early 2020, the novel coronavirus pandemic forced communities around the globe to shut down and isolate (Khanna et al., 2020; Nicola et al., 2020; Park, 2020). In the medical education community, social distancing has transformed classroom and laboratory education into online remote learning while also restricting medical students from participating in direct patient contact activities (Association of American Medical Colleges, 2020; Rose, 2020). Routine graduate medical education activities have also been suspended as resident and fellow physicians-in-training have been re-deployed to support critical patient care services (Accreditation Council for Graduate Medical Education, 2020). Educators have turned to distance education, including asynchronous self-directed learning and online video conferencing technologies to continue meeting the educational needs of learners (Chipps et al., 2012; Haile-Mariam, Koffenberger, Connell, & Widamayer, 2005; Masic, 2008). This is more difficult when it comes to simulation-based educational activities that require group interactions, and thus have largely been cancelled because of social distancing restrictions.

Telesimulation leverages video conferencing technologies to augment remote learning experiences. As defined by McCoy et al. (2017), telesimulation is a “process by which telecommunication and simulation resources are utilized to provide education, training, and/or assessment to learners at an off-site location.” (p 133). These encounters often involve a group of learners, an instructor, and simulation resources situated in different locations linked together by video conferencing technology. When the learners are physically engaged in the same location as the simulation resources, a remote instructor may observe the simulation and provide debriefing expertise from a separate location (Hayden et al., 2018). An alternate configuration of telesimulation reverses this paradigm. Resource-limited learners can participate together in a remote simulation conducted by an instructor via video conferencing technologies at a distant site. In this model, a simulation center leverages its resources and expertise to provide distance education for remote learners who are often gathered in a classroom setting (McCoy et al., 2019; Okrainec et al., 2010). Neither of these methodologies, however, successfully distances all parties involved according to social distancing guidelines during the coronavirus pandemic.

We developed a two-part hybrid model of telesimulation to teach COVID-19 ventilator management strategies while physically separating a group of learners and an
Naik et al.

instructor from one another. Learners consisted of non-ICU health care providers from multiple specialties with limited experience in ventilator management who were being redeployed to manage ICU level COVID-19 infected patients.

Methods

Our innovative education design was developed by simulation educators in the Departments of Emergency Medicine, Medicine, and Pediatrics at Weill Cornell Medical College/NewYork Presbyterian Hospital, and followed best practices in instructional design (Clapper, 2014) separated into two parts. As shown in Figure 1, all learners were required to view a high-yield, 30-minute video tutorial designed to review the fundamentals of ventilator management in COVID-19 patients with acute respiratory failure. Learners then registered to participate in a five-participant post-tutorial remote telesimulation. This allowed participants to practice, process, and apply (Clapper, 2014) what they learned from the video.

In the second part of the training, a high-fidelity adult manikin simulator (HAL S-3201, Gaumard, Florida) was set up inside our simulation center and operated locally by a wireless tablet computer. The manikin’s vital signs were displayed on a monitor that was also wirelessly operated by the same computer. A set of test lungs (TL2 PRO Test Lung System; South Pacific Biomedical, California) was positioned over the manikin’s chest (underneath a gown) and connected to a mechanical ventilator (LTV 1200; Vyaire Medical). A circumferential band was wrapped around the test lungs to mimic the reduced lung compliance of a patient with acute respiratory distress syndrome (ARDS). A portable camera system (Live Capture; B-Line Medical, Washington, DC) was used to provide real-time images of the ventilator and vital sign

Figure 1. Hybrid design of telesimulation innovation.
monitor. This camera system was connected to a laptop with an integrated webcam that provided real-time images of the simulation faculty and manikin’s head and torso. Web video conferencing software (Zoom Video Communications, Inc. San Jose, CA) installed on the laptop was used to create a virtual meeting room for remote participants to join via invitation. The laptop screen was shared with all the participants in the virtual meeting room so that cycling through all three cameras provided views of the manikin (with faculty), vital sign monitor, and ventilator throughout the simulation. Each group of five participants formed a virtual care team assigned to care for a newly intubated adult COVID-19 patient with hypoxemic respiratory failure. The virtual care team was tasked with managing the ventilator in response to the patient’s vital signs, measured ventilator pressures, and arterial blood gas values. A faculty member operated the ventilator locally on camera according to the team’s instructions via the video conference. Directed feedback was used to optimize the achievement of learning objectives in this short session. A 20-minute post-simulation debrief led by the simulation faculty member focused on the team’s clinical decisions in ventilator management and reviewed key concepts, such as low tidal volume ventilation, plateau pressures, and breath-stacking/auto-PEEP (positive end-expiratory pressure). The latter part of the debriefing allowed us to generate feedback about the value of the experience as well.

Discussion

The Center for Disease Control (CDC), local government, and hospital models predicted that the number of critically ill COVID-19 patients requiring mechanical ventilation would overwhelm our available critical care and anesthesiology teams (Ajao et al., 2015; CDC, 2020). For New York City, the epicenter of the virus in the United States, this intense and unprecedented demand required (and continues to require) urgent, effective training to educate non-critical care providers assigned to assist in the care of critically ill and mechanically ventilated COVID-19 patients with ARDS. Consequently, we operationalized our training immediately, but also knew it was necessary to assess how our hybrid, two-part model of telesimulation would be received so we could make iterative changes as needed.

End-of-course feedback suggests that learners found this two-part model of telesimulation innovation very useful. The combination of a video tutorial followed by an interactive telesimulation allowed healthcare providers to participate remotely from their home environment while also scheduling their limited availability during the coronavirus pandemic. In just the first week, the video tutorial has been viewed over 500 times and we have facilitated 15 telesimulation sessions, including 51 participants comprised of hospitalists, emergency medicine physicians and physician assistants, pediatric residents, nurses, and a nurse educator. All participants shared with us that this hybrid model of telesimulation improved their knowledge of ventilator management for COVID-19 ARDS patients. Although these sessions were facilitated through video conferencing, many participants shared with us that the telesimulation felt similar to a typical in-person simulation because they were able to remotely manipulate the
ventilator settings through the faculty at the simulated patient’s bedside. Interestingly, while most participants stated that the education experience was extremely beneficial, some of the comments from the more experienced physicians suggested that they desired the ability to move beyond initiation and adjustment of ventilator settings to troubleshooting acute problems that may arise during a course of mechanical ventilation. These comments may reflect advanced learners (i.e. competent or advanced beginners) or individuals apprehensive about their ability to respond to problematic situations. Typically, telesimulation features a simulation like that in Part II of our experience, where the learner decisions are executed by a person at the bedside of the patient simulator (McCoy et al., 2017). Since operating a ventilator can be a complicated skill to learn, we felt that the requirement for learners to gather knowledge through the Part I video tutorial prior to practicing was especially important. The learners could stop, replay, and view the content at their leisure as many times as they needed to prepare for the telesimulation practice. In fact, many of the learners referenced the video tutorial while making decisions during the simulation.

While telesimulation has been described in the literature previously, there is still minimal research published demonstrating its breadth of utility (McCoy et al., 2017, 2019). Given the overall positive feedback, we believe that this learning session was successful in providing timely education during a coronavirus pandemic. Furthermore, it reinforced the value and flexibility in which simulation education could continue conveniently for learners despite significant restrictions in place during the coronavirus pandemic. As the driver for development of this module was to provide urgent education in the midst of a clinical crisis, we did not formally assess the impact on learning and performance. Explicit research is needed to assess the efficacy of this hybrid intervention in preparing healthcare workers and to determine if the knowledge is successfully transferred to the clinical setting.

Declaration of Conflicting Interests
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

References
Accreditation Council for Graduate Medical Education. (2020, March 18). ACGME response to the Coronavirus (COVID-19). https://www.acgme.org/Newsroom/Newsroom-Details/ArticleID/10111/ACGME-Response-to-the-Coronavirus-COVID-19
Ajao, A., Nystrom, S. V., Koonin, L. M., Patel, A., Howell, D. R., Baccam, P., & Meltzer, M. I. (2015). Assessing the capacity of the US health care system to use additional mechanical ventilators during a large-scale public health emergency. Disaster Medicine and Public Health Preparedness, 9(6), 634–641. https://doi.org/10.1017/dmp.2015.105
Association of American Medical Colleges. (2020). Updated interim guidance for medical students' participation in patient care during the Coronavirus (COVID-19) outbreak. https://www.aamc.org/news-insights/press-releases/updated-interim-guidance-medical-students-participation-patient-care-during-coronavirus-covid-19

Centers for Disease Control and Prevention. (2020). COVID-19Surge spreadsheet-based tool. https://www.cdc.gov/coronavirus/2019-ncov/hcp/covidsurge.html

Chipps, J., Brysiewicz, P., & Mars, M. (2012). A systematic review of the effectiveness of videoconference-based tele-education for medical and nursing education. Worldviews on Evidence-Based Nursing, 9, 78–87. https://doi.org/10.1111/j.1741-6787.2012.00241.x

Clapper, T. C. (2014). Situational interest and instructional design. Simulation & Gaming, 45(2), 167–182. https://doi.org/10.1177/1046878113518482

Haile-Mariam, T., Koffenberger, W., Connell, H. W., & Widamayer, S. (2005). Using distance-based technologies for emergency medicine training and education. Emergency Medicine Clinics, 23(1), 217–229. https://doi.org/10.1016/j. emc.2004.09.003

Hayden, E. M., Khatri, A., Kelly, H. R., Yager, P. H., & Salazar, G. M. (2018). Mannequin-based telesimulation: Increasing access to simulation-based education. Academic Emergency Medicine, 25(2), 144–147. https://doi.org/10.1111/acem.13299

Khanna, R., Cicinelli, M., Gilbert, S., Honavar, S., & Murthy, G. V. (2020). COVID-19 pandemic: Lessons learned and future directions. Indian Journal of Ophthalmology, 68(5), 703–710. https://doi.org/10.4103/ijo.ijo_843_20

Masic, I. (2008). E-learning as new method of medical education. Acta Informatica Medica, 16(2), 102–117. https://doi.org/10.5455/aim.2008.16.102-117

McCoy, C. E., Alrabah, R., Weichmann, W., Langdorf, M. I., Ricks, C., Chakravarthy, B., . . . Lotfipour, S. (2019). Feasibility of telesimulation and google glass for mass casualty triage education and training. The Western Journal of Emergency Medicine, 20(3), 512–519. https://doi.org/10.5811/westjem.2019.3.40805

McCoy, C. E., Sayegh, J., Akrabah, R., & Yarris, L. M. (2017). Tele simulation: An innovative tool for health professions education. AEM Education and Training, 1(2), 132–136. https://doi.org/10.1002/aet2.10015

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., . . . Agha, R. (2020). The socio-economic implications of the coronavirus and COVID-19 pandemic: A review. International Journal of Surgery, 78, 185–193. https://doi.org/10.1016/j.ijsu.2020.04.018

Okrainec, A., Henao, O., & Azzie, G. (2010). Tele simulation: An effective method for teaching the fundamentals of laparoscopic surgery in resource-restricted countries. Surgical Endoscopy, 24, 417–422. https://doi.org/10.1007/s00464-009-0572-6

Park, J. (2020, April 14). Changes in subway ridership in response to COVID-19 in Seoul, South Korea: Implications for social distancing. Cureus, 12(4), e7668. https://doi.org/10.7759/cureus.7668

Rose, S. (2020). Medical student education in the time of COVID-19. Journal of the American Medical Association. Advance online publication. https://doi.org/10.1001/jama.2020.5227

Author Biographies

Neel Naik, MD is an assistant professor of Emergency Medicine at Weill Cornell Medicine New York Presbyterian Hospital, an associate medical director of the Weill Cornell Medicine New York Presbyterian Simulation Center, and a lead educator at the NYP Center for Virtual Care. Dr. Naik specializes in emergency medicine, simulation-based medical education, graduate and interprofessional medical education, and telemedicine.
Robert Alan Finkelstein, MD, CM, is an assistant professor of Emergency Medicine and Pediatrics at Weill Cornell Medicine NewYork Presbyterian Hospital in the Divisions of Pediatric Emergency Medicine and Pediatric Critical Care, and the associate pediatric trauma director at Weill Cornell Medicine NewYork Presbyterian Hospital. Dr. Finkelstein specializes in pediatric emergency medicine, pediatric critical care, pediatric trauma, and simulation-based medical education.

Contact: rof9025@med.cornell.edu

Joy Howell, MD is an associate professor of Pediatrics at Weill Cornell Medicine NewYork Presbyterian Hospital in the Division of Pediatric Critical Care, the assistant dean for Diversity and Student Life, and the program director of the Pediatric Critical Care Medicine Fellowship at Weill Cornell Medicine NewYork Presbyterian Hospital. Dr. Howell specializes in pediatric critical care, simulation-based medical education, graduate, undergraduate, and interprofessional medical education.

Contact: jdh2002@med.cornell.edu

Kapil Rajwani, MD is an assistant professor of Medicine at Weill Cornell Medicine NewYork Presbyterian Hospital, and an associate medical director of the Weill Cornell Medicine NewYork Presbyterian Simulation Center. Dr. Rajwani specializes in critical care medicine, simulation-based medical education, graduate, undergraduate, and interprofessional medical education.

Contact: kar9043@med.cornell.edu

Kevin Ching, MD is an assistant professor of Emergency Medicine and Pediatrics at Weill Cornell Medicine NewYork Presbyterian Hospital in the Division of Pediatric Emergency Medicine, the Medical Director of the Weill Cornell Medicine NewYork Presbyterian Simulation Center, and course director of the Weill Cornell Medicine Transition to Residency Course. Dr. Ching specializes in pediatric emergency medicine, simulation-based medical education, graduate, undergraduate, and interprofessional medical education.

Contact: kec9012@med.cornell.edu