Genome wide association analysis identifies genetic variants associated with reproductive variation across domestic dog breeds and uncovers links to domestication

Julie Baker Phillips1,2, Samuel A. Smith1,3,4, Maddison L. Johnson1, Patrick Abbot1, John A. Capra1,5,6 and Antonis Rokas1,5,6,*

1Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America
2Department of Biological Sciences, Cumberland University, Lebanon, TN, United States of America
3Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02912, United States of America
4Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, United States of America
5Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, United States of America
6Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America

\textbf{Short title:} Investigating the genetic basis of reproductive traits across dog breeds

\textbf{Keywords:} life history; artificial selection; trade-off; preterm birth; prematurity; pregnancy

\textbf{*Corresponding Author:} antonis.rokas@vanderbilt.edu
Abstract

The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity, and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, *Canis lupus familiaris* is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits – cesarean section rate (*n* = 97 breeds), litter size (*n* = 60), stillbirth rate (*n* = 57), and gestation length (*n* = 23) – from primary literature and breeders’ handbooks. By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome wide association analyses for these four reproductive traits, using body mass and kinship among breeds as co-variates. We identified 14 genome-wide significant associations between these traits and genetic loci, including variants near *CACNA2D3* with gestation length, *MSRB3* with litter size, *SMOC2* with cesarean section rate, *MITF* with litter size and still birth rate, *KRT71* with cesarean section rate, litter size, and stillbirth rate, and *HTR2C* with stillbirth rate. Some of these loci, such as *CACNA2D3* and *MSRB3*, have been previously implicated in human reproductive pathologies. Many of the variants that we identified have been previously associated with domestication-related traits, including brachycephaly (*SMOC2*), coat color (*MITF*), coat curl (*KRT71*), and tameness (*HTR2C*). These results raise the hypothesis that the artificial selection that gave rise to dog breeds also shaped the observed variation in their reproductive traits. Overall, our work...
establishes the domestic dog as a system for studying the genetics of reproductive biology and disease.
Introduction

Mammals exhibit wide variation in traits associated with reproduction (1-3). For example, gestation length can range from 12 days in the Gray dwarf hamster, *Cricetulus migratorius*, to 21 months in the African bush elephant, *Loxodonta africana* (4-6); neonate size can range from less than one gram in the shrew family (Soricidae), to more than a metric ton in the baleen whales (Balaenopteridae) (4,6); and neonates can be either precocial (e.g., cricotid rodents, rabbits, and canids) or altricial (e.g., hystricomorph rodents, ungulates, and cetaceans) (1). This variation in reproductive traits also extends to methods of implantation (7), structure of the placenta (8,9), and lactation strategies (10,11). Not surprisingly, many reproductive traits also exhibit substantial intra-specific variation (5). For example, many mammals exhibit intraspecific variation in gestation length, including primates (12), rat and rabbits (13), as well as the domesticated cattle (14) and thoroughbred horses (15). Similarly, body fat percentages, which are associated with the energetics of reproduction, vary greatly between wild and captive baboons, and intraspecific variation among captive lemurs can vary from 8 – 41% (16).

The existence of phenotypic variation in reproductive traits is well established, and can inform our understanding of the factors that shape patterns of survival and reproduction in both agricultural (17-20) and human populations (21). Not surprisingly, most genome wide association (GWAS) studies of reproductive traits focus on economically important traits in domesticated species, such as reproductive seasonality in rabbits (17), infertility in pigs (18), and dairy traits in cattle (19). GWAS studies focused on understanding human reproductive biology and its associated pathologies have also shed light on the genetic
basis of reproductive traits, including birth weight (22) and gestational duration or length (23-25). For example, maternal variation in six genomic loci (ADCY5, AGTR2, EBF1, EEFSEC, RAP2C, and WNT4) is associated with gestational duration and preterm birth (25). While these studies contribute to our understanding of the genetic architecture of reproductive traits, we still understand very little about the molecular pathways underlying this variation and are unable to explain the majority of the heritability in reproductive traits (26-29).

To address this challenge, we studied the genetics of reproductive traits in a powerful new model system: the domestic dog. The dog is well-suited to this question, because the domestication bottleneck followed by intense artificial selection and inbreeding imposed over the past 300 years has led to the generation of more than 340 recognized breeds that exhibit dramatic morphological variation (30-32). Domestic dog breeds also show substantial variation in their reproductive traits. For example, Pomeranians and Norfolk Terriers typically have only 2 pups per litter, whereas Dalmatians and Rhodesian Ridgebacks typically sire 8-9 pups per litter (33). Similarly, 80 – 90% of French Bulldogs and Boston Terriers are born via cesarean section due to cephalopelvic disproportion, whereas only 2 – 3% of Australian Shepherds and Shar Peis require cesareans (34). Recent analyses have begun to study the genetic mechanisms that underlie the remarkable morphological variation between modern dog breeds in diverse traits such as snout length, ear erectness, and tail curliness (35-38), as well as genetic disease (39).
To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four reproductive traits, namely cesarean section rate, litter size, stillbirth rate, and gestation length. We synthesized data from the primary literature and breeders' handbooks to obtain coverage of between 23 (trait) and 97 (trait) dog breeds, as well as body mass data from 101 dog breeds. By matching our phenotypic data to genome-wide genotypic data from the Cornell Veterinary Biobank, we performed GWAS analyses and identified 14 genetic loci that are significantly associated with these reproductive traits (using body mass as a co-variate). Several of these variants are in or near genes previously implicated in human reproduction-related pathologies. The majority of the variants that we discovered to be significantly associated with reproductive trait variation are also associated with domestication-related traits. For example, we found that: variation in a gene previously identified to be involved in brachycephaly is also significantly associated with rates of cesarean sections; variation in a gene previously associated with docility is also associated with stillbirth rates; and variation in genes previously linked to coat phenotypes, such as color and curliness, is also associated with several reproductive traits. These results suggest that selection for breed-specific morphological traits during dog domestication may have also directly or indirectly influenced variation in reproductive traits. More broadly, our results establish the domestic dog as a tractable system for studying the genetics of reproductive traits and underscore the potential for cryptic interactions between reproductive and other traits favored over the course of adaptation.

Results
To identify SNPs that are significantly associated with four reproductive traits in domestic dog breeds, we conducted across-breed GWAS analyses using a multivariate linear mixed model implemented in the program GEMMA (Zhou & Stephens, 2012). Number of individuals and distribution of breed varied with analysis. After filtering for MAF (MAF < 0.05; 10,804 SNPs were excluded) and linkage disequilibrium (34,240 additional SNPs were excluded), 115,683 SNPs were included in the GWAS analysis for each reproductive trait. To validate our GWAS approach and analytical choices, we first used our collected values for body mass, a trait whose genetic associations have been previously extensively studied in dogs (36,37). As expected, our analysis recovered the major genes associated with dog breed body mass variation, including $IGF1$ ($P = 2.1 \times 10^{-31}$), $SMAD2$ ($P = 1.2 \times 10^{-17}$) and $IGF2BP2$ ($P = 5.1 \times 10^{-11}$) (Supplementary Figure 1, Supplementary Table 2).

Four genetic loci significantly associate with cesarean section rate

To examine whether there is variation in cesarean section rate among breeds, we first identified cesarean section rate values for a total of 97 of the 162 dog breeds with genotypic data (Supplementary Table 1). The cesarean section rate values were derived from a British survey across 151 breeds covering 13,141 bitches, which had whelped 22,005 litters over the course of a 10 year period (34). The frequency of cesarean sections was estimated as the percentage of litters reported to be born by cesarean section. Among the 97 breeds with overlapping genetic data, the median cesarean section rate is 17.1%, with a minimum of 0% in Curly Coated Retrievers and Silky Terriers and a maximum of 92.3% in Boston Terriers (Supplementary Figure 3A).
To identify SNPs that are significantly associated with the observed variation in cesarean section rate across domestic dog breeds, we conducted an across-breed GWAS analysis using 115,683 SNPs and cesarean section values across 95 dog breeds (Figure 1A, Supplementary Figure 2A). We identified four significant SNPs, three of which mapped to genes, namely paralemmin 3 (PALM3, uncorrected $P = 1.4 \times 10^{-9}$), sparc-related modular calcium-binding protein 2 (SMOC2, uncorrected $P = 2.0 \times 10^{-7}$), and keratin 71 (KRT71, uncorrected $P = 2.9 \times 10^{-7}$), and a fourth that mapped to the intergenic region between the CD36 glycoprotein and a lincRNA (uncorrected $P = 9.7 \times 10^{-8}$; Figure 1A).

The first significantly associated SNP (chromosome 1: 55,983,871) is found in the intron between exons 13 and 14 of SMOC2, a gene that is associated with brachycephaly in dogs (38,40); variation in SMOC2 accounts for 36% of facial length variation in dogs (41). In humans, SMOC2 is highly expressed in endometrium as well as other reproductive tissues, including the fallopian tubes, ovaries and cervix (Figure 2) (42). The 3’ intronic location of the SNP raises the possibility that it might be regulatory (43).

The second SNP is found in the 3’ UTR of PALM3, which is a member of the paralemmin gene family that also includes PALM1, PALM2, and PALMD (palmdelphin); members of this family are implicated in plasma membrane dynamics and as modulators of cellular cAMP signaling in the brain (44,45). The function of PALM3 may be slightly different from the rest of the genes in the family, with recent work suggesting that PALM3 is a binding protein of the single immunoglobulin IL-1 receptor-related molecule (SIGIRR), which is a negative
regulator of Toll-Interleukin-1 receptor signaling (46). In humans, **PAlM3** is primarily expressed in the membranes of the stomach, kidney, parathyroid gland and epididymis (Figure 2) (42). The SNP (chromosome 20: 48,454,259) that is significantly associated with cesarean section rate is found in the first intron of the **PAlM3** gene, suggesting that it might be involved in regulatory actions typically observed in 5' introns (43).

The third SNP (chromosome 27: 2,539,211) results in a missense mutation of exon 2 of **KRT71**, which belongs to a family of keratin genes specifically expressed in the inner root sheath of hair follicles (47). Prior analysis in dogs identified variation in gene **KRT71**, along with variation in genes **RSPO2** and **FGF5**, accounting for most coat phenotypes (48), such as curliness.

The fourth significant SNP (chromosome 18: 20,272,961) is found in the intergenic region between the **CD36** gene and a lincRNA (ENSCAFG00000034312). The protein product of CD36 is the fourth major glycoprotein of the platelet surface and serves as a receptor for thrombospondin in platelets (49). Other known functions include transport of long chain fatty acids (50).

Six genetic loci significantly associate with litter Size

To examine whether there are SNPs that are significantly associated with variation in litter size among breeds, we retrieved litter size data from 10,810 litters of 224 breeds registered in the Norwegian Kennel Club (33). For these data, we were able to obtain average number of pups per litter values for 60 of the 162 dog breeds with overlapping
genetic data (Supplementary Table 1). Among these 60 breeds, median litter size is 5.55 pups, with a maximum 8.9 in Rhodesian Ridgebacks and a minimum of 2.4 in Pomeranians (Supplementary Figure 3B).

To identify SNPs, and genes proximal to them, that are significantly associated with the observed variation in litter size across domestic dog breeds, we conducted an across-breed GWAS analysis using 115,683 SNPs and litter size data from 60 dog breeds (Figure 1B, Supplementary Figure 2B). We identified three significant SNPs intersecting three genes, namely keratin 71 (KRT71, uncorrected $P = 2.2 \times 10^{-8}$), RNA Terminal Phosphate Cyclase-Like 1 (RCL1, uncorrected $P = 2.6 \times 10^{-8}$) and microphthalmia-associated transcription factor (MITF, uncorrected $P = 3.5 \times 10^{-7}$). The KRT71 SNP is the same variant that associated with variation in cesarean section rate described above. Another three significant SNPs were found in intergenic regions; two were nearby genes MSRB3 (methionine sulfoxide reductase B3, uncorrected $P = 1.3 \times 10^{-7}$) and MSANTD1 (Myb/SANT DNA binding domain containing, uncorrected $P = 1.5 \times 10^{-9}$), respectively. The final variant was near an RNA of unknown function (ENSCAFG00000021196, uncorrected $P = 3.8 \times 10^{-10}$).

The RCL1 SNP (chromosome 1: 93,189,363) is found in the intron between exons 7 and 8. RCL1 functions in the maturation of 18s RNA (51) and is associated with cervical cancer; one role of the gene in this cancer pathology is thought to involve the regulation of insulin receptors (51). Additionally, a rare missense variation in RCL1 was recently associated with depression (52).
The MITF SNP (chromosome 20: 21,848,176) is found in the intron between exons 4 and 5. MITF plays an integral role in the development of neural crest-derived melanocytes and optic cup-derived retinal pigment epithelial cells. In human melanocytes, MITF is a regulator of DIAPH1, a member of the formin gene family whose members are highly expressed in reproductive tissues and have been associated with a variety of reproductive phenotypes (53-57). DIAPH1 expression is increased in spontaneous term and preterm labor myometrial tissues (58). In domesticated animals, MITF is a well characterized gene associated with coat color (36,59). In humans, MITF is expressed in melanocytes, as well as reproductive tissues including the endometrium and cervix (Figure 2)(42).

Another SNP (chromosome 10: 8,114,328) significantly associated with litter size is found in the intergenic region downstream of MSR B3, whose protein product catalyzes the reduction of methionine-R-sulfoxides to methionine and repairs oxidatively damaged proteins (60,61). In humans, mutations in MSR B3 are associated with deafness (62). Epigenetic changes of MSR B3 in the fetus during pregnancy may affect length of gestation, with increased DNA methylation correlated with increased gestational age (63,64).

Furthermore, MSR B3 shows an increase in mRNA expression in ripe (at term) versus unripe human uterine cervix, implying that MSR B3 functions to ripen the cervix before the onset of labor (65). In previous morphological studies in dogs, MSR B3 is associated with ear erectness (36).
The last SNP (chromosome 6: 61,062,626) that is significantly associated with litter size is located downstream of MSANTD1, which is part of a gene network believed to aid in cell-to-cell signaling and interaction, hematological system development and function, and immune cell trafficking (66). MSANTD1 has been identified in two independent studies as a candidate gene for the determination of black coat color in goats (67,68).

Five genetic loci significantly associate with stillbirth rate

To examine whether there are SNPs that are significantly associated with variation in stillbirth rate among breeds, we retrieved data for stillbirth rates for 57 of the 162 dog breeds (Supplementary Table 1). The data covers 10,810 litters of 224 breeds registered in the Norwegian Kennel Club and defines perinatal mortality as the sum of stillborn puppies and puppies that died during the first week after birth (69). Among these 57 breeds with overlapping genomic data, the median stillbirth rate is 4.2 pups, with a maximum rate of 12.3% in Saint Bernards and a minimum of 0% in Basenjis and Italian Greyhounds (Supplementary Figure 3C).

To test if any SNPs are significantly associated with the observed variation in stillbirth rate across domestic dog breeds, we conducted an across-breed GWAS analysis using 115,683 SNPs and stillbirth rate data from 56 dog breeds (Figure 1C, Supplementary Figure 2C). We identified five significant SNPs; four intersecting 4 genes, namely nuclear protein body SP140 (SP140, uncorrected $P = 2.8 \times 10^{-8}$), 5-Hydroxtryptamine receptor 2C (HTR2C, uncorrected $P = 2.0 \times 10^{-7}$), keratin 71 (KRT71, uncorrected $P = 3.2 \times 10^{-9}$), and microphthalmia-associated transcription factor (MITF, uncorrected $P = 1.4 \times 10^{-7}$), and
one in an intergenic region near a snoRNA (ENSCAFG00000027305, uncorrected $P = 1.3 \times 10^{-7}$) of unknown function. The KRT71 SNP associated with variation in stillbirth rate is the same one as that associated with variation in cesarean section rate and litter size described above. Similarly, the MITF SNP associated with variation in stillbirth rate is the same as that associated with litter size.

The SP140 SNP (chromosome 25: 42,482,266) resides in the intro between exons 4 and 5. SP140 is the lymphoid-restricted homolog of SP100 expressed in mature B cells, as well as some T cells (70). High levels of SP140 mRNA are detected in human spleen and peripheral blood leukocytes, but not other human tissues (Bloch et al., 1996). SP140 expression has been implicated in innate response to immunodeficiency virus type 1 (71). Finally, SP140 was the gene showing the largest difference in expression level between normal and preeclamptic placentas (72).

The HTR2C SNP (chromosome X: 87,378,551) is located in the intron between exons 3 and 4. HTR2C is one of the most important and extensively studied serotonin receptors (73). HTR2C has ten fixed SNP differences between dogs and wolves, and also belongs to the behavioral fear response (74). Additionally, HTR2C is differentially expressed in the brain between tame and aggressive mice and foxes (75), providing additional evidence for its involvement in the tame behaviors of domesticated dogs (74).

Four genetic loci significantly associate with gestation length
To examine whether there is variation in gestation length among breeds, we identified individual gestation length averages by breed predominantly in breeder handbooks.

Utilizing breeders' handbooks, we were able to identify gestation length means for a total of 23 of the 162 dog breeds that we had genotypic data for (Supplementary Table 1). Among these 23 breeds, the median gestation length is 62.2 days, with a maximum length of 65.3 in beagles and a minimum of 60.1 in the Alaskan Malamute (Supplementary Figure 3D).

To identify SNPs, and genes proximal to them, that are significantly associated with the observed variation in gestation length across domestic dog breeds, we conducted an across-breed GWAS analysis using 115,683 SNPs and gestation length data from 23 dog breeds (Figure 1D, Supplementary Figure 2D). Our analysis identified six significantly associated SNPs that mapped to 4 genes, namely solute carrier family 9 (SLC9A8, uncorrected $P = 3.7 \times 10^{-11}$), calcium channel, voltage-dependent, alpha-2/delta Subunit 3 (CACNA2D3, uncorrected $P = 3.1 \times 10^{-7}$), microtubule associated tumor suppressor candidate 2 (MTUS2, uncorrected $P = 3.6 \times 10^{-7}$), and helicase family member 1 (HFM1, uncorrected $P = 4.0 \times 10^{-7}$), and two lincRNAs (ENSCAFG00000037743, uncorrected $P = 4.4 \times 10^{-7}$, and ENSCAFG00000039067, uncorrected $P = 1.6 \times 10^{-7}$) whose function is unknown.

The first significantly associated SNP (chromosome 24: 36,399,705) resides in intron 78 of SLC9A8, an integral transmembrane protein that exchanges extracellular Na+ for intracellular H+. SLC9A8 serves multiple functions, including intracellular pH homeostasis,
cell volume regulation, and electroneutral NaCl absorption in epithelia (76). Knockout male
mice have impaired luteinizing hormone-stimulated cAMP production and are infertile,
despite normal morphology of their reproductive system and normal behavior (77).

SLC9A8 is expressed ubiquitously (Figure 2) (42), an expression pattern suggestive of
involvement in housekeeping functions.

The second SNP (chromosome 20: 35,206,774) is found in the intron between exons 26 and
27 of CACNA2D3. This gene is one of four members of the alpha-2/delta subunit three
family of the voltage-dependent calcium (Ca2+) channel complex, regulating the influx of
Ca2+ ions entering the cell upon membrane polarization (78). The regulation of calcium is a
fundamental process relevant to life at fertilization, and subsequent control of
development and differentiation of cells (79). In previous studies in humans, CACNA2D3 is
differentially methylated in the amnion between normal and preeclamptic pregnancies
(80) and in blood between extreme preterm and term infants at birth (55,81). Additionally,
CACNA2D3 is one of four genes recently described as influencing cranial morphology in
human populations (82). In other domesticated animals, CACNA2D3 is downregulated by
Colony Stimulating Factor 2 (CSF2) in the trophoectoderm of pregnant cattle, which
increases the ability of the preimplantation embryo to advance to the blastocyst stage (83).
In the closely related wolf, CACNA2D3 is under diversifying selection associated with
environmental adaptations to altitude (84-86).

The third significantly associated SNP (chromosome 25: 10,481,606) falls in a large
intronic region of the MTUS2 gene. The protein product of MTUS2 is cardiac zipper protein
(CAZIP), a member of a class of proteins that interact with angiotensin II receptor interacting proteins (ATIP) (87). *MTUS2* plays a role in the development and function of the heart and nervous system in vertebrates (88).

The fourth SNP (chromosome 6: 57,457,184) is located in the 3' intron of *HMF1*, a DNA helicase that confers genome integrity in germline tissues (89). *HMF1* plays a role in meiotic recombination implying a major evolutionary role through the creation of diverse offspring. In mice, deletion of *HMF1* eliminates a major fraction of crossover events (90), whereas in cattle *HMF1* is associated with both fertility and milk production in Holstein cattle (91), as well as with alteration of global recombination rates in Holstein, Holstein-Friesian, Jersey, and crossbred individuals (92).

Discussion

Mammals exhibit a great deal of variation in their reproductive traits, yet remarkably little is known about the genetic basis of these traits. To begin to address this, we used GWAS analyses to examine the genetic basis of four reproductive traits (cesarean section rate, stillbirth rate, litter size, and gestation length) across up to 97 domestic dog breeds. We identified several significant genetic associations for each trait (Figure 1).

Six of the 14 genetic variants that we found to be associated with reproductive trait variation have been previously identified to be involved in diverse traits associated with dog domestication (Table 2), such as brachycephaly and coat curl and color, suggesting that selection for signature traits of dog breeds may have also directly or indirectly influenced
variation in reproductive traits. For example, one of the variants that we found to be associated with cesarean section rate is in an intron of \textit{SMOC2}, a gene previously associated with brachycephaly in dogs \cite{40,41}. Brachycephaly, the shortening and widening of the muzzle and skull, is present in several “fighting” breeds such as Boxer, Boston Terrier, and Bulldog, and is thought to have been originally artificially selected on the basis that a shorter and wider cranial shape would enhance the dog’s biting power \cite{93}. Interestingly, one of the traits that associated with brachycephaly is cephalopelvic disproportion \cite{94}, a significant medical condition that can result in the death of both the litter and the bitch due to the inability of the pups to pass through the pelvic canal. The negative effects of cephalopelvic disproportion are alleviated by cesarean section, which not only allows these breeds to reproduce but also enables the continued application of artificial selection for the most extreme cranial morphology \cite{40}. Whether the \textit{SMOC2} variant identified directly influences parturition and birth timing in dogs (in humans, \textit{SMOC2} is highly expressed in several reproductive tissues; see Figure 2 and Ref. \cite{42}) or indirectly leads to adverse pregnancy outcomes (e.g. brachycephalic cranial morphology leading to cesarean section) remains unknown. It is highly likely, however, that the association between \textit{SMOC2} and brachycephaly came first, paving the way for the subsequent association of both with cesarean section rate.

Several of the significantly associated genes that we identified in dogs appear to also be associated with reproductive phenotypes in humans. This suggests the possibility that the artificial selection that gave rise to dog breeds may have also contributed to the observed variation in their reproductive traits. For example, a member of the gene family for a
subunit of the voltage-dependent calcium channel complex, *CACNA2D3*, which is associated with gestation length in our study, has been shown to be both differentially methylated in amnion between normal and preeclamptic human pregnancies (80), and in blood between extreme preterm and term infants at birth (55,81). Furthermore, expression of *MSR B3*, which is associated with litter size in our study, is elevated in ripe (at term) versus unripe human uterine cervix and may be involved in the onset of labor (65). Finally, a few of the other genes significantly associated with reproductive traits (*SMOC2* and *MITF*) are also known to be expressed in human reproductive tissues (42) (Figure 2).

Methods

Genotypic and Phenotypic Data. To identify SNPs that are significantly associated with reproductive traits, we used a previously published data set containing 160,727 SNPs from 4,342 individual dogs across 162 breeds genotyped using the Illumina 173k CanineHD array that were downloaded from http://datadryad.org/resource/doi:10.5061/dryad.266k4 (35,95). Following the original authors, SNPs with a genotyping rate (i.e., the proportion of genotypes per marker with non-missing data) below 95% and heterozygosity ratios (i.e., the ratio of the number of heterozygous SNPs divided by the number of non-reference homozygous SNPs) below 0.25 or above 1.0 were removed.

Phenotypic reproductive trait data for litter size (number of pups), cesarean rate, stillbirth rate, and gestation length across 128 breeds were collected from a variety of breeder’s handbook and primary journal articles (33,69,94,96-104) (see also Supplementary
We also included body mass as a control trait. Each breed was assigned the average breed value for each phenotype; the full list of the values for all four reproductive traits and body mass across the 128 breeds is provided in supplementary table 1. For the body mass control, our collected trait values overlapped with the genotypic data for 101 breeds corresponding to 3,384 individuals (Table 1). For the reproductive traits, our collected cesarean section rate trait values overlapped with the genotypic data for 95 breeds (3,194 individuals), our litter size trait values for 60 breeds (2,617 individuals), our stillbirth rate values for 56 breeds (2,590 individuals), and our gestation length values for 23 breeds (1,908 individuals) (Table 1).

Genome Wide Association (GWAS) Analyses. To test SNPs for associations with the four reproductive traits of interest, we conducted a GWAS analysis for each individual trait using body mass as a covariate, and accounting for kinship, as well as for body mass as a proof of concept. All GWAS analyses were run using a linear-mixed model as implemented in the program GEMMA, version 0.94 (105). Numerous studies have shown that the vast majority of morphological, ecological and physiological traits vary as a function of an organism’s body mass (106-108) as well as a function of kinship (35,36). Most notably for the purpose of this study, body mass has been previously shown to be strongly correlated with litter weight (109-111), neonate weight (109-112), and gestation length (6,109,110,113,114).

To ensure our analysis reflected the reproductive trait of interest and not SNPs associated with body mass, we used body mass as a covariate for all reproductive trait analyses. To be
able to do so, we pruned our genotypic data so that they included only dog breeds (and individuals) for which we had both body mass and reproductive trait of interest values (see Supplementary Table 1).

To account for population stratification, we calculated a kinship matrix of the included breeds using GEMMA and included it as a random effect in each association analysis. Each value of a kinship matrix describes the probability that a particular allele from two randomly chosen individuals at a given locus is identical by descent (115). Finally, to control for inflated \(P \) value significance from the testing of multiple hypotheses, we used a significance threshold of \(P = 4.3 \times 10^{-7} \) (Bonferroni cutoff of \(\alpha = 0.05, N = 115,574 \)) for all analyses. All reported \(P \) values are uncorrected Wald’s \(P \) values as calculated in PLINK.

Finally, to reduce potential error stemming from SNP misidentification in our analyses, we included only SNPs with a minor allele frequency (MAF) > 0.05, since SNPs with very low minor allele frequencies are more prone to error due to the small number of samples that have the called nucleotide. Furthermore, we pruned SNPs not in complete or near-complete linkage disequilibrium using a variance inflation factor of 10, using the PLINK command --indep 100 10 10 (116).

To gain insight into the genetic elements putatively involved with the traits of interest, we mapped all SNPs found to be significantly associated with each trait of interest using custom perl and R scripts to the CanFam3.1.87 dog genome assembly (117,118). Transcript IDs were mapped to gene names using bioconductor biomaRt interface to the ENSEML
biomart (119). If the significant SNP was outside gene boundaries, we reported the nearest
upstream or downstream gene. Manhattan plots and quantile-quantile plots were
generated using R 3.1.2 (120) with the qqman package (121). Calculation of the λ inflation
parameter, a metric of any existing systematic bias in the data set, was calculated using the
GenABEL R package (122) and was used to interpret Type I error rate in the multiple
testing of GWAS analyses (123).

Acknowledgements

We thank members of the Rokas lab and members of the March of Dimes Prematurity
Research Center Ohio Collaborative for useful discussions of this work.

Funding Statement

This research was supported by the March of Dimes through the March of Dimes
Prematurity Research Center Ohio Collaborative (to A.R., P.A. and J.A.C) and by the
Burroughs Wellcome Fund (to J.A.C and A.R.). MLJ received partial support through a
Littlejohn Summer Research Scholarship at Vanderbilt University. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.
Table 1. Numbers of breeds and individuals with overlapping phenotypes and genotypes included in our analysis.

Trait	Number of Overlapping Breeds	Number of Overlapping Individuals
Body Mass	101	3,384
Cesarean Section Rate	97	3,194
Litter Size	60	2,617
Stillbirth Rate	57	2,590
Gestation Length	23	1,908
Table 2. Summary of genes that contain or are adjacent to the SNPs that are significantly associated with variation in reproductive traits across dog breeds.

Gene ID	Gene Name	Chr.	rs Number	Variant	Reproductive Trait(s)	Domestication-related Trait(s)
SMOC2	SPARC related modular calcium	1	rs21966904	Non-coding (Intron 13)	Cesarean section rate	Brachycephaly (Dogs)
	binding 2					
PALM3	paralemmin 3	20	rs22853767	Non-coding (3’ UTR)	Cesarean section rate	-
KRT71	keratin	27	rs23373415	Coding (exon 2)	Cesarean section rate, litter size, stillbirth rate	Coat phenotypes (Dogs)
CD36	CD36 glycoprotein	18	rs22664051	Intergenic variant	Cesarean section rate	-
	(downstream)					
RCL1	RNA terminal phosphate cyclase	1	rs21894066	Non-coding (Intron 7)	Litter size	-
Gene	Description	Chromosome	rs Number	Type	Trait/Feature	Species/Feature
--------	---	------------	-----------	-----------------------------	--	--
MITF	melanogenesis associated transcription factor	20	rs20848176	Coding (exon 5)	Litter size, stillbirth rate	Coat color (Dogs)
MSRB3	methionine sulfoxide reductase B3	10	rs22060533	Intergenic variant (downstream)	Litter size	Ear erectness (Dogs)
MSANTD1	Myb/SANT DNA binding domain containing	6	rs9084938	Intergenic variant (downstream)	Litter size	Black coat color (Goats)
SP140	nuclear protein body SP140	25	rs8856304	Non-coding (intron 4)	Stillbirth rate	
HTR2C	5-hydroxytryptamine receptor 2	X	rs24622199	Non-Coding (intron 2)	Stillbirth rate	Tameness (Dogs, Foxes, Mice)
SLC9A8	solute carrier family 9 member A8	24	rs23219089	Non-coding (intron 7)	Gestation length	
CACNA2D3	calcium voltage-	20	rs22853845	Non-coding	Gestation	Blastocyst
Gene	Description and Location	Gestation Length	Development (Cattle)			
------------------	--------------------------	------------------	----------------------			
MTUS2	microtubule associated tumor suppressor candidate 2	25	Gestation length			
	(intron 6)					
HFM1	ATP dependent DNA helicase homolog	6	Fertility and milk production (Cattle)			
	(intron 4)					
Figure Legends

Figure 1. Significant GWAS results for reproductive traits in domestic dogs.
Manhattan plots showing the statistical significance of each SNP as a function of genomic position for (A) cesarean section rate (n = 3,194 individuals, n = 97 breeds), (B) litter size (n = 2,617 individuals, n = 60 breeds), (C) stillbirth (n = 2,590 individuals, n = 57 breeds), and (D) gestation length (n =1,908 individuals, n = 23 breeds). Horizontal line indicates the significance threshold at $P = 4.3 \times 10^{-7}$. Significant SNPs are labels with the intersecting or nearest gene. Plots were generated in R using the qqman package.

Figure 2. Gene expression in human female reproductive tissues of genes that contain or are adjacent to SNPs significantly associated with reproductive traits in domestic dogs. Raw data were obtained from the Human Protein Atlas database (42).
Supplementary Material

Supplementary Figure 1. Recapitulation of SNPs associated with body mass in 101 domesticated dog breeds. (A) Body mass distribution for 101 breeds. (B) Manhattan plots showing the statistical significance of each SNP as a function of genomic position for body mass. Plot generated in R using the qqman package. (C) Quantile-quantile plot showing the effectiveness of the stratification correction ($\lambda = 1.17$). Plot generated in R; inflation factor was calculated using the GenABEL package implemented in R.

Supplementary Figure 2. Distribution of phenotypic values of the four reproductive traits examined in this study across dog breeds. (A) cesarean section rate ($n = 97$ breeds), (B) litter size ($n = 60$ breeds), (C) stillbirth rate ($n = 57$ breeds), and (D) gestation length ($n = 23$ breeds). Plots were generated in R using the gglplot2 package.

Supplementary Figure 3. Quantile-quantile plots for the GWAS analyses of the four reproductive traits. The range for the inflation factor (λ) for all GWAS analyses is between 1.05 – 1.09, indicating the effectiveness of the stratification correction. (A) cesarean section rate ($\lambda = 1.05$), (B) litter size ($\lambda = 1.05$), (C) stillbirth rate ($\lambda = 1.05$), and (D) gestation length ($\lambda = 1.09$). Plots generated in R, and inflation factors were calculated using the GenABEL package implanted in R.

Supplementary Table 1. Summary of raw phenotypes for breeds included in analysis.
Supplementary Table 2. Summary of top 50 SNPs associated with body mass.

Supplementary Table 3. Summary of top 50 SNPs associated with cesarean section rate.

Supplementary Table 4. Summary of top 50 SNPs associated with litter size.

Supplementary Table 5. Summary of top 50 SNPs associated with stillbirth rate.

Supplementary Table 6. Summary of top 50 SNPs associated with gestation length.
References

1. Derrickson EM. Comparative reproductive strategies of altricial and precocial eutherian mammals. Funct Ecol. 1992;6(1):57–65.

2. Harrison RM. Reproduction in Mammals: General Overview. Chichester, UK: John Wiley & Sons, Ltd; 2001.

3. Behringer RR, Eakin GS, Renfree MB. Mammalian diversity: gametes, embryos and reproduction. Reprod Fertil Dev. 2006;18(2):99–9.

4. Jones KE, Bielby J, Cardillo M, Fritz SA, O'Dell J, Orme CDL, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology. Ecological Society of America; 2009;90(9):2648.

5. Kiltie RA. Intraspecific Variation in the Mammalian Gestation Period. Journal of Mammalogy. 1982;63(4):646–52.

6. Martin RD, MacLarnon AM. Gestation Period, Neonatal Size and Maternal Investment in Placental Mammals. Nature. 1985;313(5999):220–3.

7. Cross JC, Werb Z, Fisher SJ. Implantation and the placenta: key pieces of the development puzzle. Science. 1994 Dec 2;266(5190):1508–18.

8. Enders AC, Carter AM. What Can Comparative Studies of Placental Structure Tell Us?—A Review. Placenta. 2004 Apr;25:S3–S9.

9. Elliot MG, Crespi BJ. Phylogenetic Evidence for Early Hemochorial Placentation in Eutheria. Placenta. Elsevier Ltd; 2009 Nov 1;30(11):949–67.

10. Pond CM. The Significance of Lactation in the Evolution of Mammals. Evolution. 1977 Mar;31(1):177–99.

11. Lefèvre CM, Sharp JA, Nicholas KR. Evolution of Lactation: Ancient Origin and Extreme Adaptations of the Lactation System. http://dxdoiorg/101146/annurev-genom-082509-141806. Annual Reviews; 2010 Sep 7;11(1):219–38.

12. Cross JF, Martin RD. Calculation of gestation period and other reproductive parameters for primates. Dodo: Journal of the Jersey Wildlife Preservation Trust. Durrell Wildlife Conservation Trust; 1981;18:30–43.

13. Hudson R, Cruz Y, Lucio A, Ninomiya J, Martínez-Gómez M. Temporal and behavioral patterning of parturition in rabbits and rats. Physiol Behav. 1999 Jun;66(4):599–604.

14. Burris MJ, Blunn CT. Some factors affecting gestation length and birth weight of beef cattle. J Anim Sci. American Society of Animal Science; 1952;11(1):34–41.
15. Davies Morel MCG, Newcombe JR, Holland SJ. Factors affecting gestation length in the Thoroughbred mare. Animal Reproduction Science. 2002 Dec 16;74(3-4):175–85.

16. Dufour DL, Sauther ML. Comparative and evolutionary dimensions of the energetics of human pregnancy and lactation. Am J Hum Biol. Wiley-Blackwell; 2002 Aug 21;14(5):584–602.

17. Carneiro M, Piorno V, Rubin C-J, Alves JM, Ferrand N, Alves PC, et al. Candidate genes underlying heritable differences in reproductive seasonality between wild and domestic rabbits. Animal Genetics. 2015 May 22;46(4):418–25.

18. Sironen A, Uimari P, Nagy S, Paku S, Andersson M, Vilkki J. Knobbed acrosome defect is associated with a region containing the genes STK17b and HECW2 on porcine chromosome 15. BMC Genomics. BioMed Central; 2010 Dec 9;11(1):699.

19. Bolormaa S, Pryce JE, Hayes BJ, Goddard ME. Multivariate analysis of a genome-wide association study in dairy cattle. Journal of Dairy Science. Elsevier; 2010 Aug 1;93(8):3818–33.

20. Maltecca C, Gray KA, Weigel KA, Cassady JP, Ashwell M. A genome-wide association study of direct gestation length in US Holstein and Italian Brown populations. Animal Genetics. 2011 May 6;42(6):585–91.

21. Walker R, Gurven M, Hill K, Migliano A, Chagnon N, De Souza R, et al. Growth rates and life histories in twenty-two small-scale societies. Am J Hum Biol. 2006;18(3):295–311.

22. Horikoshi M, Beaumont RN, Day FR, Warrington NM, Kooijman MN, Fernandez-Tajes J, et al. Genome-wide associations for birth weight and correlations with adult disease. Nature. 2016 Sep 28;538(7624):248–52.

23. Plunkett J, Doniger S, Orabona G, Morgan T, Haataja R, Hallman M, et al. An Evolutionary Genomic Approach to Identify Genes Involved in Human Birth Timing. Barsh GS, editor. PLoS Genetics. 2011 Apr 14;7(4):e1001365.

24. Zhang H, Baldwin DA, Bukowski RK, Parry S, Xu Y, Song C, et al. A genome-wide association study of early spontaneous preterm delivery. Genet Epidemiol. 2015 Mar;39(3):217–26.

25. Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, et al. Genetic Associations with Gestational Duration and Spontaneous Preterm Birth. N Engl J Med. 2017 Sep 21;377(12):1156–67.

26. Cassady JP, Johnson RK, Pomp D, Rohrer GA, Van Vleck LD, Spiegel EK, et al. Identification of quantitative trait loci affecting reproduction in pigs. J Anim Sci. 2001 Mar;79(3):623–33.
27. Langlois B, Blouin C, Chaffaux S. Analysis of several factors of variation of gestation loss in breeding mares. Animal. 2012 Aug 9;6(12):1925–30.

28. Johanson JM, Berger PJ, Tsuruta S, Misztal I. A Bayesian threshold-linear model evaluation of perinatal mortality, dystocia, birth weight, and gestation length in a Holstein herd. Journal of Dairy Science. 2011 Jan;94(1):450–60.

29. Bagnicka E, Wallin E, Łukaszewicz M, Ådnøy T. Heritability for reproduction traits in Polish and Norwegian populations of dairy goat. Small Ruminant Research. 2007 Apr;68(3):256–62.

30. Neff MW, Rine J. A Fetching Model Organism. Cell. 2006 Jan;124(2):229–31.

31. Beale H, Ostrander EA. Sizing up dogs. Current Biology. Elsevier; 2012 May 8;22(9):R315–6.

32. Marsden CD, Ortega-Del Vecchyo D, O'Brien DP, Taylor JF, Ramirez O, Vilà C, et al. Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci USA. 2016 Jan 5;113(1):152–7.

33. Borge KS, Tønnessen R, Nødtvedt A, Indrebø A. Litter size at birth in purebred dogs-a retrospective study of 224 breeds. Theriogenology. 2011 Mar 15;75(5):911–9.

34. Evans KM, Adams VJ. Proportion of litters of purebred dogs born by caesarean section. J Small Anim Pract. Blackwell Publishing Ltd; 2010 Feb;51(2):113–8.

35. Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, et al. Complex disease and phenotype mapping in the domestic dog. Nature Communications. Nature Publishing Group; 1AD;7:1–11.

36. Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, et al. A Simple Genetic Architecture Underlies Morphological Variation in Dogs. Hoekstra HE, editor. Plos Biol. Public Library of Science; 2010 Aug 10;8(8):e1000451.

37. Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Pielberg GR, Sigurdsson S, et al. Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds using Selection Mapping. Akey JM, editor. PLoS Genetics. Public Library of Science; 2011 Oct 13;7(10):e1002316.

38. Marchant TW, Johnson EJ, McTeir L, Johnson CI, Gow A, Liuti T, et al. Canine Brachycephaly Is Associated with a Retrotransposition-Mediated Missplicing of SMOC2. Curr Biol. Elsevier; 2017 Jun 5;27(11):1573–6.

39. Karlsson EK, Lindblad-Toh K. Leader of the pack: gene mapping in dogs and other model organisms. Nature Publishing Group. Nature Publishing Group; 2008 Sep;9(9):713–25.
40. Bannasch D, Young A, Myers J, Truvé K, Dickinson P, Gregg J, et al. Localization of Canine Brachycephaly Using an Across Breed Mapping Approach. Fairhead C, editor. PLoS ONE. Public Library of Science; 2010 Mar 10;5(3):e9632.

41. Marchant TW, Johnson EJ, McTeir L, Johnson Cl, Gow A, Liuti T, et al. Canine Brachycephaly Is Associated with a Retrotransposon-Mediated Missplicing of SMOC2. Current Biology. Elsevier Ltd; 2017 May 22;:1–35.

42. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. American Association for the Advancement of Science; 2015 Jan 23;347(6220):1260419–9.

43. Rose AB. Intron-mediated regulation of gene expression. Curr Top Microbiol Immunol. 2008;326:277–90.

44. Basile M, Lin R, Kabbani N, Karpa K, Kilimann M, Simpson I, et al. Paralemmin interacts with D3 dopamine receptors: implications for membrane localization and cAMP signaling. Arch Biochem Biophys. 2006 Feb 1;446(1):60–8.

45. Kutzleb C, Sanders G, Yamamoto R, Wang X, Lichte B, Petrasch-Parwez E, et al. Paralemmin, a prenyl-palmitoyl-anchored phosphoprotein abundant in neurons and implicated in plasma membrane dynamics and cell process formation. J Cell Biol. The Rockefeller University Press; 1998 Nov 2;143(3):795–813.

46. Chen X, Wu X, Zhao Y, Wang G, Feng J, Li Q, et al. A novel binding protein of single immunoglobulin IL-1 receptor-related molecule: Paralemmin-3. Biochem Biophys Res Commun. 2011 Jan 28;404(4):1029–33.

47. Langbein L, Rogers MA, Praetzel S, Winter H, Schweizer J. K6irs1, K6irs2, K6irs3, and K6irs4 Represent the Inner-Root-Sheath-Specific Type II Epithelial Keratins of the Human Hair Follicle1. J Invest Dermatol. Elsevier Masson SAS; 2003 Jan 1;120(4):512–22.

48. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, et al. Coat variation in the domestic dog is governed by variants in three genes. Science. American Association for the Advancement of Science; 2009 Oct 2;326(5949):150–3.

49. Tandon NN, Kralisz U, Jamieson GA. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion. J Biol Chem. 1989 May 5;264(13):7576–83.

50. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. American Society for Clinical Investigation; 2001 Sep;108(6):785–91.

51. Lyng H, Brøvig RS, Svendsrud DH, Holm R, Kaalhus O, Knutstad K, et al. Gene expressions and copy numbers associated with metastatic phenotypes of uterine
cervical cancer. BMC Genomics. BioMed Central; 2006 Oct 20;7(1):268.

52. Amin N, de Vrij FMS, Baghdadi M, Brouwer RWW, van Rooij JGJ, Jovanova O, et al. A rare missense variant in RCL1 segregates with depression in extended families. Molecular Psychiatry. Nature Publishing Group; 2017 Mar 21;58:1323.

53. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS, et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev. 2006 Dec 15;20(24):3426–39.

54. Lamm KYB, Johnson ML, Baker Phillips J, Muntifering MB, James JM, Jones HN, et al. Inverted formin 2 regulates intracellular trafficking, placentation, and pregnancy outcome. Elife. eLife Sciences Publications Limited; 2018 Jan 8;7:742.

55. Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, et al. Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med. BioMed Central; 2013;5(10):96.

56. Elovitz MA, Brown AG, Anton L, Gilstrop M, Heiser L, Bastek J. Distinct cervical microRNA profiles are present in women destined to have a preterm birth. Am J Obstet Gynecol. Elsevier; 2014 Mar 1;210(3):221.e1–221.e11.

57. Montenegro D, Romero R, Kim SS, Tarca AL, Draghici S, Kusanovic JP, et al. Expression patterns of microRNAs in the chorioamniotic membranes: a role for microRNAs in human pregnancy and parturition. J Pathol. John Wiley & Sons, Ltd; 2009 Jan;217(1):113–21.

58. Lartey J, Smith M, Pawade J, Strachan B, Mellor H, Bernal AL. Up-Regulation of Myometrial RHO Effector Proteins (PKN1 and DIAPH1) and CPI-17 (PPP1R14A) Phosphorylation in Human Pregnancy Is Associated with Increased GTP-RHOA in Spontaneous Preterm Labor. Biol Reprod. Oxford University Press; 2007 Jun 1;76(6):971–82.

59. Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y, et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep. Nature Publishing Group; 2016 Dec 9;6:1–10.

60. Brot N, Weissbach I, Werth J, Weissbach H. Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA. National Academy of Sciences; 1981 Apr;78(4):2155–8.

61. Kim H-Y, Gladyshev VN. Characterization of mouse endoplasmic reticulum methionine-R-sulfoxide reductase. Biochem Biophys Res Commun. 2004 Aug 6;320(4):1277–83.

62. Ahmed ZM, Yousaf R, Lee BC, Khan SN, Lee S, Lee K, et al. Functional null mutations
of MSRB3 encoding methionine sulfoxide reductase are associated with human
deafness DFNB74. Am J Hum Genet. 2011 Jan;88(1):19–29.

Lee H, Jaffe AE, Feinberg JI, Tryggvadottir R, Brown S, Montano C, et al. DNA
methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with
gestational age at birth. International Journal of Epidemiology. 2012
Feb;41(1):188–99.

Schierding W, O'Sullivan JM, Derraik JGB, Cutfield WS. Genes and post-term birth:
late for delivery. BMC Res Notes. BioMed Central; 2014 Oct 14;7(1):720.

Hassan SS, Romero R, Tarca AL, Nhan-Chang C-L, Vaisbuch E, Erez O, et al. The
transcriptome of cervical ripening in human pregnancy before the onset of labor at
term: identification of novel molecular functions involved in this process. J Matern
Fetal Neonatal Med. 2009 Dec;22(12):1183–93.

Yu F, Shen X-Y, Fan L, Yu Z-C. Genome-wide analysis of genetic variations assisted
by Ingenuity Pathway Analysis to comprehensively investigate potential genetic
targets associated with the progression of hepatocellular carcinoma. Eur Rev Med
Pharmacol Sci. 2014;18(15):2102–8.

Benjelloun B, Alberto FJ, Streeter I, Boyer F, Coissac E, Stucki S, et al. Characterizing
neutral genomic diversity and selection signatures in indigenous populations of
Moroccan goats (Capra hircus) using WGS data. Front Genet. Frontiers Media SA;
2015;6:4447.

Wang X, Liu J, Zhou G, Guo J, Yan H, Niu Y, et al. Whole-genome sequencing of eight
goat populations for the detection of selection signatures underlying production
and adaptive traits. Sci Rep. Nature Publishing Group; 2016 Dec 12;6(1):38932.

Tønnessen R, Borge KS, Nødtvedt A, Indrebø A. Canine perinatal mortality: A cohort
study of 224 breeds. THE. Elsevier; 2012 Jun 1;77(9):1788–801.

Bloch DB, la Monte de SM, Guigauri P, Filippov A, Bloch KD. Identification and
characterization of a leukocyte-specific component of the nuclear body. J Biol Chem.
1996 Nov 15;271(46):29198–204.

Madani N, Millette R, Platt EJ, Marin M, Kozak SL, Bloch DB, et al. Implication of the
lymphocyte-specific nuclear body protein Sp140 in an innate response to human
immunodeficiency virus type 1. J Virol. American Society for Microbiology (ASM);
2002 Nov;76(21):11133–8.

Heikkilä A, Tuomisto T, Häkkinen S-K, Keski-Nisula L, Heinonen S, Ylä-Herttuala S.
Tumor suppressor and growth regulatory genes are overexpressed in severe early-
onset preeclampsia--an array study on case-specific human preeclamptic placental
tissue. Acta Obstet Gynecol Scand. Munksgaard International Publishers; 2005
Jul;84(7):679–89.
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. Wiley Subscription Services, Inc., A Wiley Company; 2009 Jul 5;150B(5):601–37.

Li Y, vonHoldt BM, Reynolds A, Boyko AR, Wayne RK, Wu D-D, et al. Artificial selection on brain-expressed genes during the domestication of dog. Molecular Biology and Evolution. 2013 Aug;30(8):1867–76.

Kukekova AV, Johnson JL, Teiling C, Li L, Oskina IN, Kharlamova AV, et al. Sequence comparison of prefrontal cortical brain transcriptome from a tame and an aggressive silver fox (Vulpes vulpes). BMC Genomics. Third. BioMed Central; 2011 Oct 3;12(1):482.

Xu H, Chen H, Dong J, Lynch R, Ghishan FK. Gastrointestinal distribution and kinetic characterization of the sodium-hydrogen exchanger isoform 8 (NHE8). Cell Physiol Biochem. Karger Publishers; 2008;21(1-3):109–16.

Xu H, Chen H, Li J, Zhao Y, Ghishan FK. Disruption of NHE8 expression impairs Leydig cell function in the testes. American Journal of Physiology- Cell Physiology. American Physiological Society; 2015 Feb 15;308(4):C330–8.

Jin Y, Cui D, Ren J, Wang K, Zeng T, Gao L. CACNA2D3 is downregulated in gliomas and functions as a tumor suppressor. Mol Carcinog. 2017 Mar;56(3):945–59.

Berridge MJ, Bootman MD, Lipp P. Calcium—a life and death signal. Nature. 1998 Oct 15;645–8.

Suzuki M, Maekawa R, Patterson NE, Reynolds DM, Calder BR, Reznik SE, et al. Amnion as a surrogate tissue reporter of the effects of maternal preeclampsia on the fetus. Clin Epigenetics. BioMed Central; 2016;8(1):67.

Eidem HR, Ackerman WE, McGary KL, Abbot P, Rokas A. Gestational tissue transcriptomics in term and preterm human pregnancies: a systematic review and meta-analysis. BMC Med Genomics. BioMed Central; 2015 Jun 5;8(1):27.

Paternoster L, Zhurov AI, Toma AM, Kemp JP, St Pourcain B, Timpson NJ, et al. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position. Am J Hum Genet. 2012 Mar 9;90(3):478–85.

Ozawa M, Sakatani M, Dobbs KB, Kannampuzha-Francis J, Hansen PJ. Regulation of gene expression in the bovine blastocyst by colony stimulating factor 2. BMC Res Notes. BioMed Central; 2016 Apr 29;9(1):250.

Pilot M, Greco C, vonHoldt BM, Jędrejewska B, Randi E, Jędrejewski W, et al. Genome-wide signatures of population bottlenecks and diversifying selection in
European wolves. Heredity. Nature Publishing Group; 2014 Apr;112(4):428-42.

Schweizer RM, vonHoldt BM, Harrigan R, Knowles JC, Musiani M, Coltman D, et al. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol. 2016 Jan;25(1):380-402.

Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. Akey JM, editor. PLoS Genetics. 2014 Jul;10(7):e1004466.

Rodrigues-Ferreira S, Nahmias C. An ATIPical family of angiotensin II AT2 receptor-interacting proteins. Trends Endocrinol Metab. 2010 Nov;21(11):684-90.

Puy Du L, Beqqali A, Monshouwer-Kloots J, Haagsman HP, Roelen BAJ, Passier R. CAZIP, a novel protein expressed in the developing heart and nervous system. Dev Dyn. Wiley-Liss, Inc; 2009 Nov;238(11):2903-11.

Tanaka K, Miyamoto N, Shouguchi-Miyata J, Ikeda J-E. HFM1, the human homologue of yeast Mer3, encodes a putative DNA helicase expressed specifically in germ-line cells. DNA Sequence. 2009 Jul 11;17(3):242-6.

Guiraldelli MF, Eyster C, Wilkerson J, Dresser ME, Pezza RJ. Mouse HFM1/Mer3 is required for crossover formation and complete synopsis of homologous chromosomes during meiosis. Hawley RS, editor. PLoS Genetics. Public Library of Science; 2013 Mar;9(3):e1003383.

Pimentel ECG, Bauersachs S, Tietze M, Simianer H, Tetens J, Thaller G, et al. Exploration of relationships between production and fertility traits in dairy cattle via association studies of SNPs within candidate genes derived by expression profiling. Animal Genetics. Blackwell Publishing Ltd; 2011 Jun;42(3):251-62.

Kadri NK, Harland C, Faux P, Cambisano N, Karim L, Coppieters W, et al. Coding and noncoding variants in HFM1, MLH3, MSH4, MSH5, RNF212, and RNF212B affect recombination rate in cattle. Genome Research. Cold Spring Harbor Lab; 2016 Oct;26(10):1323–32.

Ellis JL, Thomason J, Kebreab E, Zubair K, France J. Cranial dimensions and forces of biting in the domestic dog. J Anat. Blackwell Publishing Ltd; 2009 Mar 1;214(3):362–73.

Evans KM, Adams VJ. Proportion of litters of purebred dogs born by caesarean section. Journal of Small Animal Practice. 2010 Feb;51(2):113–8.

Hayward JJ, Castelhano MG, Oliveira KC, Corey E, Balkman C, Baxter TL, et al. Data from: Complex disease and phenotype mapping in the domestic dog. Dryad Data Repository [Internet]. Available from: http://dx.doi.org/10.5061/dryad.266k4
96. Chatdarong K, Tummaruk P, Sirivaidyapong S, Raksil S. Seasonal and breed effects on reproductive parameters in bitches in the tropics: a retrospective study. J Small Anim Pract. Blackwell Publishing Ltd; 2007 Aug;48(8):444–8.

97. Concannon P, Whaley S, Lein D, Wissler R. Canine gestation length: variation related to time of mating and fertile life of sperm. Am J Vet Res. 1983 Oct;44(10):1819–21.

98. Eilts BE, Davidson AP, Hosgood G, Paccamonti DL, Baker DG. Factors affecting gestation duration in the bitch. Theriogenology. 2005 Jul;64(2):242–51.

99. Evans JM, White K. The Book of the Bitch. Interpet; 1997. 1 p.

100. Gavrilovic BB, Andersson K, Linde Forsberg C. Reproductive patterns in the domestic dog—A retrospective study of the Drever breed. Theriogenology. 2008 Sep;70(5):783–94.

101. Okkens AC, Hekerman TWM, de Vogel JWA, van Haaften B. Influence of litter size and breed on variation in length of gestation in the dog. Veterinary Quarterly. 1993 Dec;15(4):160–1.

102. Son CH, Jeong KA, Kim JH, Park IC, Kim SH, Lee CS. Establishment of the prediction table of parturition day with ultrasonography in small pet dogs. J Vet Med Sci. 2001 Jul;63(7):715–21.

103. Kim BS, Son CH. Time of initial detection of fetal and extra-fetal structures by ultrasonographic examination in Miniature Schnauzer bitches. J Vet Sci. The Korean Society of Veterinary Science; 2007 Sep;8(3):289–93.

104. Linde Forsberg C, Wikström C, Lundeheim N. Matings by season.

105. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics. 2012 Jun 17;44(7):821–4.

106. Gould SJ. Allometry and size in ontogeny and phylogeny. Biol Rev Camb Philos Soc. 1966 Nov;41(4):587–640.

107. Kleiber M. Body size and metabolism. Hilgardia. 1932 Jan;6(January):315–53.

108. Shingleton A. Allometry: the study of biological scaling. Nature Education Knowledge. 2010;3(10):2.

109. Sacher GA, Staffeldt EF. Relation of gestation time to brain weight for placental mammals: implications for the theory of vertebrate growth. Am Nat. JSTOR; 1974;963:593–615.

110. Blueweiss L, Fox H, Kudzma V, Nakashima D, Peters R, Sams S. Relationships between body size and some life history parameters. Oecologia. Springer;
1978;37(2):257–72.

Tuomi J. Mammalian reproductive strategies: a generalized relation of litter size to body size. Oecologia. Springer; 1980;45(1):39–44.

Ross C. The intrinsic rate of natural increase and reproductive effort in primates. Journal of Zoology. Wiley Online Library; 1988;214(2):199–219.

Kihlström JE. Period of Gestation and Body-Weight in Some Placental Mammals. Comp Biochem Physiol. 1972;43(NA3):673–&.

Phillips JB, Abbot P, Rokas A. Is Preterm Birth a Human-Specific Syndrome? Evolution, Medicine, and Public Health. 2015 Jun 14.

Lange K. Mathematical and Statistical Methods for Genetic Analysis. New York, NY: Springer Science & Business Media; 2002. 1 p.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics. 2007 Sep;81(3):559–75.

Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005 Dec 8;438(7069):803–19.

Hoeppner MP, Lundquist A, Pirun M, Meadows JRS, Zamani N, Johnson J, et al. An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts. Chadwick BP, editor. PLoS ONE. Public Library of Science; 2014 Mar 13;9(3):e91172.

Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2013.

Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv. Cold Spring Harbor Laboratory; 2014 May 14::005165.

AulchenkoYS,RipkeS,IsaacsA,vanDuijnCM.GenABEL:anRlibraryforgenome-wideassociationanalysis. Bioinformatics. Oxford University Press; 2007 May 15;23(10):1294–6.

Rao TJ, Province MA. A Framework for Interpreting Type I Error Rates from a Product-Term Model of Interaction Applied to Quantitative Traits. Genet Epidemiol. 2016 Feb 1;40(2):144–53.
A. Cesarean Section

- PALM3
- SMOC2
- CD36
- KRT71

B. Litter Size

- miscRNA
- ENSCAFg00000021196
- MSANTD1
- RCL1
- MSRB3
- MITF
- KRT71

C. Stillbirth

- snoRNA
 - ENSCAFg00000027305
- SP140*
- MITF*
- HTR2C

D. Gestation Length

- lincRNA
 - ENSCAFg00000037743
- HFM1
- CACNA2D3
- MTUS2
- lincRNA
 - ENSCAFg00000039067
- SLC9A8
| Gene | Level of Expression (transcripts per million) |
|----------|---|
| SP140 | 0 |
| SMO2 | 50 |
| SLC9A8 | 100 |
| RCL1 | 150 |
| PALM3 | >200 |
| MTUS2 | 0 |
| MSRB3 | 0 |
| MSANTD1 | 50 |
| MITF | 150 |
| KRT71 | 100 |
| HTR2C | 0 |
| HFM1 | >200 |
| CD36 | >200 |
| CACNA2D3 | >200 |

Tissue Type
- Breast
- Cervix/Uterus
- Endometrium
- Fallopian Tube
- Ovary
- Placenta