Dopamine-receptor blocking agent-associated akathisia: a summary of current understanding and proposal for a rational approach to treatment

Shaina Musco, Vivian McAllister and Ian Caudle

Abstract: Dopamine-receptor blocking agent-associated akathisia (DRBA-A) is an adverse effect that can significantly limit the use of these important medications for the treatment of a variety of psychiatric diseases, yet there is no unifying theory regarding its pathophysiology. This knowledge gap limits clinicians’ ability to effectively manage DRBA-A and mitigate negative outcomes in an already vulnerable patient population. Based on a review of the current literature on the subject, it is hypothesized that dopaminergic and noradrenergic signaling is perturbed in DRBA-A. Accordingly, it is proposed that the optimal agent to manage this extrapyramidal symptom should increase dopamine signaling in the affected areas of the brain and counteract compensatory noradrenergic signaling via antagonism of adrenergic or serotonergic receptors.

Keywords: akathisia, antipsychotic, dopamine receptor blocking agent, extrapyramidal symptom, mechanism, treatment

Received: 19 November 2019; revised manuscript accepted: 2 June 2020.

Introduction
In their 1977 publication, psychiatrists Robert Belmaker and David Wald described their experience after receiving a single dose of 5 mg intravenous haloperidol. They reported experiencing a myriad of debilitating symptoms, including anxiety and “profound inner restlessness” that rendered them unable to work for more than 36 hours.1 This anecdote clearly demonstrates the consequences of the common yet often underappreciated side effect of dopamine receptor blocking agents (DRBAs) known as akathisia.

Akathisia is a psychomotor syndrome involving subjective feelings of agitation and dysphoria, accompanied by repetitive and/or purposeless movement and symptoms of cognitive dysfunction such as selective attention deficit, perceptual disorder, and impaired coping responses.2-4 Akathisia may develop at different time points during treatment with DRBAs. Acute akathisia has a relatively rapid onset and short duration, and is associated with intense dysphoria.5 Chronic akathisia persists beyond 6 months and is generally associated with less severe feelings of restlessness than during the acute phase.5 This discussion will focus on acute and chronic akathisia as opposed to tardive akathisia, which is more closely related to tardive dyskinesia and may develop via a different mechanism.5

Akathisia can be detected using the Barnes Akathisia-Rating Scale (BARS),6 yet it is still frequently overlooked or misdiagnosed.5,7-9 Symptoms can develop soon after DRBA administration, and may continue despite intervention. Patients often experience the effects of DRBA-associated akathisia (DRBA-A) within days to weeks of taking the medication, and lingering symptoms can persist even after a dose reduction.10 The effects of DRBA-A can greatly impact daily functioning and wellbeing. Akathisia severity was found to be negatively correlated with quality of life in patients with schizophrenia,11 and those with DRBA-A demonstrated significantly lower quality of life than those who regularly took DRBAs without

Ther Adv Psychopharmacol 2020, Vol: 10: 1–13
DOI: 10.1177/2045125320937575
© The Author(s), 2020.
Article reuse guidelines: sagepub.com/journals-permissions

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License
(https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
experiencing akathisia. Other significant consequences of DRBA-A include treatment non-adherence, worsening psychiatric symptoms, and suicidality. Though the rates of DRBA-A are high, data on morbidity and mortality is scarce.

Discussion

Current understanding of pathophysiology

DRBAs block dopamine signaling via dopamine D2 receptors. In specific areas of the brain, this dopamine receptor antagonism confers a therapeutic effect, but in the striatum it can trigger extrapyramidal symptoms (EPS) such as akathisia. D2 receptor occupancy is believed to be paramount in understanding the development of DRBA-related EPS, which also includes dystonia, parkinsonism, and tardive dyskinesia. It has been observed that when > 80% of these receptors are occupied by DRBAs, this risk of EPS substantially increases. Along these lines, genotyping results among patients with schizophrenia have revealed an increased rate of DRBA-A with the use of second generation agents in those possessing a genetic variation associated with reduced striatal dopamine D2 receptor density, which would allow for this occupancy threshold to be surpassed more readily. Other patient-specific risk factors for DRBA-A include young age, male gender, and concomitant substance use, while medication-related factors such as the use of high potency DRBAs, rapid DRBA dose escalation, and DRBA polytherapy can also increase the risk of akathisia.

It is generally believed that the first generation of DRBA medications developed in this class (e.g., chlorpromazine, haloperidol, perphenazine) confer a greater risk of EPS than second-generation agents. First-generation DRBAs are high potency striatal D2 receptor antagonists, whereas second-generation agents bind more loosely and can be rapidly displaced from D2 by intrinsic dopamine, thereby ameliorating movement symptoms. Nigrostriatal dopamine D2 receptor affinity and occupancy, as well as upregulation of the D2 receptor, have been correlated with the severity of EPS. In vivo neuroimaging studies support the association between EPS and dopamine D2/3 receptor binding in the substantia nigra.

Second-generation DRBAs also block serotonin 5-HT2A receptors, which normally inhibit dopaminergic neurotransmission, thereby resulting in dopaminergic upregulation in the nigrostriatal region. The ratio of 5-HT2A:D2 antagonism is believed to be another dynamic influencing a DRBA’s tendency to produce EPS, as greater 5-HT2A receptor antagonism can mitigate the effects of EPS caused by dopamine blockade in the ventral striatum. The relative “EPS advantage” of second-generation agents is touted as producing multiple clinical benefits, but movement side effects can still occur in second-generation agents despite lower D2 receptor occupancy.

The risk of akathisia, for instance, may be comparable or even greater in second-generation agents. Akathisia does not correspond well with other types of EPS in terms of symptom severity and treatments, suggesting that there are other important mechanisms underlying its development. It is theorized that compensatory overstimulation of this region may result in “senseless” behaviors and feelings of dysphoria observed with akathisia.

Incidence rates of DRBA-A vary among different agents in the second generation class (Table 2). For example, quetiapine is often considered to be “akathisia-sparing”, while aripiprazole has been associated with higher risks of DRBA-A development. Despite being structurally related to aripiprazole and demonstrating a similar magnitude of D2 receptor antagonism, brexpiprazole is believed to have lower rates of DRBA-A. This may be due to brexpiprazole possessing greater binding affinity for the 5-HT2A receptor than aripiprazole.

Indeed, greater 5-HT2A compared with D2 receptor antagonism appears to negatively correlate with DRBA-A risk. Aripiprazole has serotonin 5-HT2A blocking effects that are less potent than D2, while quetiapine, which is associated with lower rates of DRBA-A, binds 5-HT2A to a greater extent than D2. This preferential binding to 5-HT2A over D2 is most striking with clozapine (Table 3). Although DRBA-A from clozapine appears to be a rare clinical occurrence, there have been case reports of patients who both developed DRBA-A from clozapine and experienced a reduction of DRBA-A symptoms from clozapine.
Serotonin receptor activity has also been linked to risk of DRBA-A caused by first-generation agents. Patients with schizophrenia and reduced 5-HT$_{1B}$ receptor density were found to develop more frequent and severe akathisia when taking haloperidol compared with those with normal 5-HT$_{1B}$ receptor density.88

Treatment mechanisms

Strategies for managing DRBA-A include psychosocial and pharmacological interventions.5 Expert consensus guidelines recommend lowering the dosage of the DRBA, switching to an antipsychotic carrying lower akathisia risk (such as quetiapine), or initiating a short-term adjunctive medication as initial treatment options for DRBA-A.90–92 If it is safe to do so, decreasing the dose by 50% or completely discontinuing the DRBA may be required to relieve symptoms of akathisia.31 If medications are used to treat DRBA-A, response rates for the commonly used agents propranolol and mirtazapine have been found to be 30% and 43.3%, respectively.93

Table 1. Description of different types of EPS and other movement disorders that can be associated with the use of DRBA.

Description	Akathisia$^{8,23,31-40}$	Dystonia$^{29,33-36,41-43}$	Parkinsonism$^{23,29,33-36,44}$	Tardive Dyskinesia$^{29,33-36,41,45-49}$
Feeling of internal restlessness, pacing	Sustained abnormal postures and muscle spasm	Bradykinesia, tremor, rigidity, postural instability	Choreic or stereotypic repetitive movements (often orofacial)	
Prevalence range (first-generation)	5–75%	2–90%	30%	20–32%
Prevalence range (second-generation)	1–27%	1–14%	2–33%	2–13%
Onset	Hours to days	Hours to days	Weeks	Months to years
Young age	Young age	Old age	Old age	
Female gender	Male gender	Female gender	Female gender	
Parkinsonism	Male gender	Acute/early EPS	Non-Caucasian race	
Bipolar depression	Dystonia (personal or family history)	Old age	Affective disorder	
Substance use	Substance use	Cognitive deficit	Substance use	
Brain damage				
Palliative care				
High potency DRBAs				
Naïve to DRBAs				
Rapid DRBA dose increase				
DRBA polytherapy				
Parenteral route of administration				
Abrupt DRBA discontinuation				
Common Pharmacological Treatment	Propranolol 10–60 mg BID	Benztropine 1–2 mg PO or IM	Benztropine 1–2 mg BID	Valbenazine 40–80 mg daily
	Benztropine 1–2 mg BID	Diphenhydramine 25–50 mg PO or IM	Trihexyphenidyl 5–15 mg divided 3–4 times per day	Deutetrabenazine 6 mg BID
	Amantadine 100 mg 2–3 times per day			

This table was compiled using information from resources referenced throughout the manuscript. These references are cited in the column header. Prevalence ranges are based on the lowest and highest observed prevalence reported in the literature.

BID, twice daily; DRBAs, dopamine receptor blocking agents; EPS, extrapyramidal symptoms; IM, intramuscular injection; PO, by mouth.
In general, support for the use of many DRBA-A treatments is based on anecdotal and empirical findings, often using data derived from studies with small sample sizes. Evidence for the use of the beta-blocking medication propranolol in treating DRBA-A dates back to the 1980s, making it one of the most well-studied treatments. Doses of 60–120 mg/day have been demonstrated to be effective and well-tolerated for reducing DRBA-A symptoms.94–97 The hypothetical mechanism of action, shared by the alpha-2 agonist clonidine,98 is suppression of compensatory noradrenergic signaling that may trigger psychomotor activation associated with akathisia. D2 stimulation in the locus ceruleus normally inhibits norepinephrine outflow,99 so it follows that reduced dopamine signaling caused by DRBAs subsequently increases norepinephrine signaling in the midbrain as part of a feedback response.65 Noradrenergic antagonists such as propranolol and clonidine likely act...
by suppressing this excessive sympathetic response. Pramipexole, a dopamine agonist, is currently being studied to treat akathisia and other types of extrapyramidal symptoms related to DRBA therapy. It acts not only to directly restore dopamine signaling in the ventral striatal region, but also to suppress noradrenergic overstimulation. These agents should be used with caution, however, as dopamine agonism carries with it the risk of exacerbating psychotic symptoms.

Recent literature has called into question the predominance of propranolol in the treatment of DRBA-A. Comparative studies have shown cyproheptadine, zolmitriptan, and vitamin B6 produce similar levels of DRBA-A symptom reduction when compared with a range of doses (40–120 mg/day) of propranolol. Serotonin 5-HT2A receptor antagonists, such as mirtazapine, trazodone, fluvoxamine, zolmitriptan, mianserin, and cyproheptadine represent another class of treatments for DRBA-A. Blocking this receptor likely plays a role in reducing symptoms by increasing downstream dopamine signaling in areas of the brain affected by DRBAs. Though selective serotonin reuptake inhibitors (SSRIs) generally increase serotonergic neurotransmission and can precipitate akathisia, fluvoxamine possesses weak dopamine reuptake inhibition properties that have been shown to offset the resultant dopaminergic decrease. Mirtazapine, mianserin, and cyproheptadine also share antihistamine effects (Table 4), which may produce sedation and thereby ameliorate symptoms of akathisia.

Anticholinergic medications are commonly used to treat other forms of extrapyramidal symptoms related to DRBA therapy, such as dystonia and parkinsonism, and may be useful when akathisia is present in combination with these types of EPS. The purported mechanism of anticholinergics in the treatment of DRBA-A is restoration of dopamine signaling in areas of the brain where it is depleted by DRBAs. Specifically, D2 receptors located on cholinergic interneurons in the basal ganglia, which normally inhibit acetylcholine release, can activate the extrapyramidal pathway when blocked. This pathophysiologic theory is supported by the reduced rates of EPS seen with clozapine, which has greater intrinsic anti-muscarinic anticholinergic activity than other DRBAs. Excessive cholinergic outflow can be counteracted with the administration of agents such as benztpine, diphenhydramine, and trihexyphenidyl. Unfortunately, the use of anticholinergics is limited by adverse effects such as those related to cardiovascular, gastrointestinal, and cognitive dysfunction.

Combination therapy with propranolol and a benzodiazepine such as diazepam can also be effective in reducing DRBA-A symptoms. Benzodiazepines are believed to counteract gamma-aminobutyric acid (GABA) inhibition caused by DRBAs. One proposed mechanism of DRBA-A is via downregulation of GABA signaling in the pallidus through the blockade of D2 receptors. 5-HT2A receptor antagonism may also decrease GABA signaling in the prefrontal cortex, which would offer an explanation as to why akathisia is still observed at high rates with second-generation DRBAs. In addition to correcting GABA hypofunctioning, benzodiazepines may also act via GABAergic depression of the central nervous system to reduce physical and psychological symptoms of agitation associated with DRBA-A.

Short (1–2 week) courses of clonazepam and lorazepam have been associated with a reduction in DRBA-A symptoms. Intravenous diazepam can rapidly relieve DRBA-A symptoms, making it an acceptable option in the acute setting. However, the adverse effect profile, risk of overdose, and abuse potential of benzodiazepines make them far less attractive options for routine chronic and/or preventative treatment of DRBA-A. Gabapentin enacarbil is another pharmacotherapy option that acts by potentiating GABA signaling and is associated with relatively fewer risks compared with benzodiazepines. Treatment with gabapentin enacarbil has been shown to significantly decrease the severity of DRBA-A within 2 weeks at doses similar to those recommended for restless leg syndrome. Amantadine is an antagonist of the N-methyl-D-aspartate (NMDA) receptor that opposes glutamatergic signaling similarly to GABA, and has also been found to be effective in treating DRBA-A.

Other treatments for DRBA-A have various mechanisms of action. Preladenant works by antagonism the adenosine receptor and has been studied to treat DRBA-A. Reduced iron levels were found to correlate with DRBA-A development in patients with schizophrenia, and the administration of IV iron produces a reduction in DRBA-A symptoms. Heavy smoking has been associated with fewer instances of DRBA-A.
Among patients with schizophrenia when compared with light smokers. Accordingly, the administration of nicotine patches has been found to significantly reduce DRBA-A symptoms in non-smoking inpatients. Vitamin B6 significantly reduces subjective symptoms of restlessness, distress, and global symptoms of DRBA-A compared with placebo. Vitamin B6 is important for the synthesis of dopamine, serotonin, and GABA. This treatment may also act outside of the neurotransmitter system to reduce symptoms via free radical scavenging. Another antioxidant that may be useful for the treatment of DRBA-A is N-acetyl cysteine, which significantly

Table 4. Net neurotransmitter effects of compounds that have demonstrated efficacy in the treatment of dopamine-receptor blocking agent-associated akathisia (DRBA-A).

Compound	Acetylcholine	Dopamine	GABA	Glutamate	Histamine	Norepinephrine	Serotonin
Amantadine	NA	+	NA	–	NA	NA	NA
Benztrapine	–	+	NA	NA	–	NA	NA
Clonazepam	NA	+	+	–	NA	NA	NA
Clonidine	NA	NA	NA	NA	NA	–	NA
Cypromethadine	–	NA	NA	NA	–	NA	–
Diazepam	NA	+	+	NA	NA	NA	NA
Diphenhydramine	NA	–	NA	NA	–	NA	NA
Fluvoxamine	NA	+	NA	NA	NA	NA	+
Gabapentin	NA	NA	+	–	NA	NA	NA
Lorazepam	NA	+	+	NA	NA	NA	NA
Mianserin	NA	+	NA	NA	–	+	+
Mirtazapine	NA	+	NA	NA	–	+	+
Pramipexole	NA	+	NA	NA	NA	–	+
Propranolol	NA	NA	NA	NA	–	–	+
Trazodone	NA	NA	NA	NA	–	–	+
Trihexyphenidyl	–	+	NA	NA	NA	NA	NA
Zolmitriptan	NA	NA	NA	NA	NA	NA	+

*Assume doses used to treat akathisia. DRBAs, dopamine receptor blocking agents.

Legend:

- No significant activity
- Stimulation
- Inhibition

Sources: PubChem, Micromedex, Lundbeck Institute, Stahl’s Prescriber Guides, & StatPearls.
decreases akathisia when used adjunctively in patients with schizophrenia taking DRBAs.143

Conclusion

DRBA-A is a prevalent and potentially serious adverse effect of medications that are used widely in the field of psychiatry. It is crucial that DRBA-A is screened for in all patients prescribed these agents throughout all time points in their treatment. An accurate description of possible symptoms, including both common and uncommon presentations, must be provided to patients at the initiation of therapy so that they are aware of what to possibly expect. Any new motor or psychiatric symptoms resembling anxiety should include DRBA-A as a differential diagnosis.

The prevailing theory holds that dopamine hypofunctioning in the ventral striatal region of the brain is implicated in the pathophysiology of EPS such as akathisia, though this is likely not the only significant mechanism as rates of DRBA-A remain high in second generation DRBAs despite their comparatively lower dopamine D2 blocking potency than first generation agents. Figure 1 attempts to visualize neural circuits implicated in DRBA-A and illustrate their interactions in the pathophysiology of this drug-induced phenomenon.

While dopamine neurotransmission via the nigrostriatal pathway is believed to be important for other types of EPS, akathisia may more heavily involve alterations in the mesolimbic pathway. A deficiency in dopamine signaling via the former results in movement dysfunction, while effects on the latter can be linked to goal-directed behavior. Interruption in dopamine outflow through the ventral striatum may underlie agitation and obsessive-compulsive types of thoughts and behaviors unique to akathisia, such as purposeless and/or repetitive movements.

Noradrenergic signaling is likely also important in the pathogenesis of DRBA-A, and is already central to the treatment paradigm. It has been established that dopamine blockade by DRBAs can result in norepinephrine overactivity,144 and thus it is reasonable to correlate this sympathetic response with the physical and psychological manifestation of akathisia. Consequently, it is key that any treatment for DRBA-A involve suppression of this system, by way of either alpha-1 receptor antagonism, alpha-2 agonism, or beta antagonism.

The development of new treatments for DRBA-A is relevant as traditional treatments are not always effective.92 Based on the mechanisms of currently available therapies for DRBA-A, an effective agent should increase dopamine signaling in the affected areas of the brain (either via anticholinergic, serotonin receptor antagonism, or direct dopamine receptor stimulatory activity) and counteract compensatory noradrenergic signaling via one of the pathways mentioned previously. When balancing the two effects, a higher priority should be placed on noradrenergic inhibition than dopamine stimulation in order to avoid exacerbating psychotic symptoms. Therapies with significant GABAergic, anticholinergic, and/or antihistamine effects may have less impact on psychiatric symptoms (both beneficial and detrimental) than those with dopaminergic effects, but should generally be avoided due side effect burden. Ultimately, the
management of DRBA-A should be a collaborative effort between patient and provider, and the benefit versus risk should be carefully weighed for any medications used.

Conflicts of interest statement
The authors declare that there is no conflict of interest.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Shaina Musco https://orcid.org/0000-0002-6040-8425

References
1. Belmaker RH and Wald D. Haloperidol in normals. Br J Psychiatry 1977; 131: 222–223.
2. Lohr JB, Eidt CA, Abdurrazzaq Alfaraj A, et al. The clinical challenges of akathisia. CNS Spectr 2015; 20(Suppl. 1): 1–14; quiz 5–6.
3. Kim JH and Byun HJ. Association of subjective cognitive dysfunction with akathisia in patients receiving stable doses of risperidone or haloperidol. J Clin Pharm Ther 2007; 32: 461–467.
4. Sachdev PS and Brune M. Animal models of acute drug-induced akathisia - a review. Neurosci Biobehav Rev 2000; 24: 269–277.
5. Kane JM, Fleischhacker WW, Hansen L, et al. Akathisia: an updated review focusing on second-generation antipsychotics. J Clin Psychiatry 2009; 70: 627–643.
6. Barnes TR. A rating scale for drug-induced akathisia. Br J Psychiatry 1989; 154: 672–676.
7. Hirose S. The causes of underdiagnosing akathisia. Schizophr Bull 2003; 29: 547–558.
8. Forcen FE. Akathisia: is restlessness a primary condition or an adverse drug effect? Curr Psychiatry 2015; 14: 14–18.
9. Walker L. Sertraline-induced akathisia and dystonia misinterpreted as a panic attack. Psychiatr Serv 2002; 53: 1477–1478.
10. Juncal-Ruiz M, Ramirez-Bonilla M, Gomez-Arnau J, et al. Incidence and risk factors of acute akathisia in 493 individuals with first episode non-affective psychosis: a 6-week randomised study of antipsychotic treatment. Psychopharmacology (Berl) 2017; 234: 2563–2570.
11. Awad AG, Voruganti L and Heslegrave R. A conceptual model of quality of life in schizophrenia: description and preliminary clinical validation. Qual Life Res 1997; 6: 21–26.
12. Browne S, Clarke M, Gervin M, et al. Quality of life after treatment for a first presentation of schizophrenia. Schizophr Res 2000; 1: 301.
13. Velligan DI, Weiden PJ, Sajatovic M, et al. The expert consensus guideline series: adherence problems in patients with serious and persistent mental illness. J Clin Psychiatry 2009; 70(Suppl. 4): 1–46; quiz 7–8.
14. Jouini L, Ouali U, Ouanes S, et al. What about the hidden face of Akathisia? Eur Psychiatry 2017; 41(Suppl): S688.
15. Baynes D, Mulholland C, Cooper SJ, et al. Depressive symptoms in stable chronic schizophrenia: prevalence and relationship to psychopathology and treatment. Schizophr Res 2000; 45: 47–56.
16. Majadas S, Olivaes J, Galan J, et al. Prevalence of depression and its relationship with other clinical characteristics in a sample of patients with stable schizophrenia. Compr Psychiatry 2012; 53: 145–151.
17. Cheng HM, Park JH and Hernstadt D. Akathisia: a life-threatening side effect of a common medication. BMJ Case Rep 2013; 2013: bcr2012007713.
18. Cem Atbasoglu E, Schultz SK and Andreassen NC. The relationship of akathisia with suicidality and depersonalization among patients with schizophrenia. J Neuropsychiatry Clin Neurosci 2001; 13: 336–341.
19. Seemuller F, Lewitzka U, Bauer M, et al. The relationship of Akathisia with treatment emergent suicidality among patients with first-episode schizophrenia treated with haloperidol or risperidone. Pharmacopsychiatry 2012; 45: 292–296.
20. Reutfors J, Clapham E, Bahmanyar S, et al. Suicide risk and antipsychotic side effects in schizophrenia: nested case-control study. Hum Psychopharmacol 2016; 31: 341–345.
21. Miller CH and Fleischhacker WW. Managing antipsychotic-induced acute and chronic akathisia. Drug Saf 2000; 22: 73–81.
22. Snyder S, Greenberg D and Yamamura HI. Antischizophrenic drugs and brain cholinergic receptors: affinity for muscarinic sites predicts
extrapyramidal effects. Arch Gen Psychiatry 1974; 31: 58–61.

23. Barnes TR and McPhillips MA. Novel antipsychotics, extrapyramidal side effects and tardive dyskinesia. Int Clin Psychopharmacol 1998; 13(Suppl. 3): 49–57.

24. Schillevoort I, Herings RMC, Hugenholtz G, et al. Antipsychotic-induced extrapyramidal syndromes in psychiatric practice: a case-control study. Pharm World Sci 2005; 27: 285–289.

25. de Greef R, Maloney A, Olsson-Gisleskog P, et al. Dopamine D2 occupancy as a biomarker for antipsychotics: quantifying the relationship with efficacy and extrapyramidal symptoms. The AAPS Journal 2010; 13: 121–132.

26. Leucht S, Wahlbeck K, Hamann J, et al. New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. Lancet 2003; 361: 1581–1589.

27. Nordström A-L, Farde L, Wiesel FA, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33: 227–235.

28. Remington G and Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry 1999; 60(Suppl 10): 15–19.

29. Casey DE. Pathophysiology of antipsychotic drug-induced movement disorders. J Clin Psychiatry 2004; 65(Suppl 9): 25–28.

30. Lawford B, Barnes M, Swagell C, et al. DRD2/ANKK1 Taq1A (rs 1800497 C>T) genotypes are associated with susceptibility to second generation antipsychotic-induced akathisia. J Psychopharmacol 2013; 27: 343–348.

31. Keller DM, Myhre KE, Dowben JS, et al. Biological perspectives: akathisia: ants in your pants. Perspect Psychiatr Care 2013; 49: 149–151.

32. Naguy A. Akathisia–A psychopharmacologic treatment “menu”. Asia Pac Psychiatr 2017; 9.

33. Pierre JM. Extrapyramidal symptoms with atypical antipsychotics: incidence, prevention and management. Drug Saf 2005; 28: 191–208.

34. Divac N, Prostran M, Jakovec I, et al. Second-generation antipsychotics and extrapyramidal adverse effects. Biomed Res Int 2014; 2014: 656370.

35. Blair DT and Dauner A. Extrapyramidal symptoms are serious side-effects of antipsychotic and other drugs. Nurse Pract 1992; 17: 56, 62–64, 67.

36. Dayalu P and Chou KL. Antipsychotic-induced extrapyramidal symptoms and their management. Expert Opin Pharmacother 2008; 9: 1451–1462.

37. Berna F, Misrahi D, Boyer L, et al. Akathisia: prevalence and risk factors in a community-dwelling sample of patients with schizophrenia. Results from the FACE-SZ dataset. Schizophr Res 2015; 169: 255–261.

38. Kurlawala Z and Vatsalya V. Heavy alcohol drinking associated akathisia and management with quetiapine XR in alcohol dependent patients. J Addict 2016; 2016: 6028971.

39. Wielenga-Boiten JE and Ribbers GM. Akathisia—rare cause of psychomotor agitation in patients with traumatic brain injury: case report and review of literature. J Rehabil Res Dev 2012; 49: 1349–1354.

40. Musco S, Rueckert L, Myers J, et al. Characteristics of patients experiencing extrapyramidal symptoms or other movement disorders related to dopamine receptor blocking agent therapy. J Clin Psychopharmacol 2019; 39: 336–343.

41. Shirzadi AA and Ghaemi SN. Side effects of atypical antipsychotics: extrapyramidal symptoms and the metabolic syndrome. Harv Rev Psychiatry 2006; 14: 152–164.

42. Spina E, Sturiale V, Valvo S, et al. Prevalence of acute dystonic reactions associated with neuroleptic treatment with and without anticholinergic prophylaxis. Int Clin Psychopharmacol 1993; 8: 21–24.

43. van Harten PN, Hoek HW and Kahn RS. Acute dystonia induced by drug treatment. BMJ 1999; 319: 623–626.

44. Gershnik OS. Drug-induced parkinsonism in the aged. Recognition and prevention. Drugs Aging 1994; 5: 127–132.

45. Kulkarni SK and Naidu PS. Pathophysiology of atypical antipsychotics: extrapyramidal symptoms or other movement disorders related to dopamine receptor blocking agent therapy. J Clin Psychopharmacol 2019; 39: 336–343.

46. Steiner M, Sturm A, Bar T, et al. Prevalence and risk factors in a community-dwelling sample of patients with schizophrenia. Schizophr Res 2015; 169: 255–261.

47. Correll CU, Kane JM and Citrome LL. Epidemiology, prevention, and assessment of tardive dyskinesia in adults with schizophrenia: current concepts and future perspectives. Drugs Today (Barc) 2003; 39: 19–49.

48. Coplan J, Gugger JJ and Tasleem H. Tardive dyskinesia from atypical antipsychotic agents in patients with mood disorders in a clinical setting. J Affect Disord 2013; 150: 868–871.
49. Correll CU and Schenk EM. Tardive dyskinesia and new antipsychotics. *Curr Opin Psychiatry* 2008; 21: 151–156.

50. Jeste DV, Lacro JP, Bailey A, et al. Lower incidence of tardive dyskinesia with risperidone compared with haloperidol in older patients. *J Am Geriatr Soc* 1999; 47: 716–719.

51. Kapur S and Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics?: A new hypothesis. *Am J Psychiatry* 2001; 158: 360–369.

52. Tarsy, Baldessarini and Tarazi. Effects of newer antipsychotics on extrapyramidal function. *CNS Drugs* 2002; 16: 23–45.

53. Tuppurainen H, Kuikka JT, Viinamaki H, et al. Extrapyramidal side-effects and dopamine D(2/3) receptor binding in substantia nigra. *Nord J Psychiatry* 2010; 64: 233–238.

54. Stahl SM. *Stahl's essential psychopharmacology: neuroscientific basis and practical applications*. 4th ed. Cambridge University Press, New York, 2013, p. 626.

55. Suzuki H and Gen K. The relationship between the plasma concentration of blonanserin, and its plasma anti-serotonin 5-HT2A activity/anti-dopamine D2 activity ratio and drug-induced extrapyramidal symptoms. *Psychiatry Clin Neurosci* 2012; 66: 146–152.

56. Ennis C, Kemp JD and Cox B. Characterisation of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum. *J Neurochem* 1981; 36: 1515–1520.

57. Huttunen M. The Evolution of the serotonin-dopamine antagonist concept. *J Clin Psychopharmacol* 1995; 15(Suppl. 1): 4S–10S.

58. Matsui-Sakata A, Ohtani H and Sawada Y. Pharmacokinetic-pharmacodynamic analysis of antipsychotics-induced extrapyramidal symptoms based on receptor occupancy theory incorporating endogenous dopamine release. *Drug Metab Pharmacokinet* 2005; 20: 187–199.

59. Tandon R and Jibson MD. Extrapyramidal side effects of antipsychotic treatment: scope of problem and impact on outcome. *Ann Clin Psychiatry* 2002; 14: 123–129.

60. Tandon R. Safety and tolerability: how do newer generation “atypical” antipsychotics compare? *Psychiatr Q* 2002; 73: 297–311.

61. Demyttenaere K, Detraux J, Racagni G, et al. Medication-induced akathisia with newly approved antipsychotics in patients with a severe mental illness: a systematic review and meta-analysis. *CNS Drugs* 2019; 33: 549–566.
74. U.S. Food and Drug Administration. Rexulti (brexpiprazole) [package insert]. Otsuka Pharmaceutical Co., Ltd.: Tokyo, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205422s002lbl.pdf (2015, accessed October 14, 2019).

75. U.S. Food and Drug Administration. Vraylar (cariprazine) [package insert]. Actavis Pharma, Inc.: NJ, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/204370lbl.pdf (2015, accessed October 14, 2019).

76. U.S. Food and Drug Administration. Clozaril (clozapine) [package insert]. HLS Therapeutics (USA), Inc.: PA, https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/019758s084lbl.pdf (2017, accessed October 14, 2019).

77. U.S. Food and Drug Administration. Fanapt (iloperidone) [package insert]. Vanda Pharmaceuticals, Inc.: Rockville, MD, https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/022192lbl.pdf (2009, accessed October 14, 2019).

78. U.S. Food and Drug Administration. Latuda (lurasidone) [package insert]. Sunovion Pharmaceuticals, Inc.: MA, https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/200603lbls10s11.pdf (2013, accessed October 14, 2019).

79. U.S. Food and Drug Administration. Seroquel (quetiapine) [package insert]. AstraZeneca Pharmaceuticals LP., DE, https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020639s064lbl.pdf (2013, accessed October 14, 2019).

80. U.S. Food and Drug Administration. Invega (paliperidone) [package insert]. Ortho-McNeil-Janssen Pharmaceuticals, Inc., NJ, https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021999s018lbl.pdf (2010, accessed October 14, 2019).

81. U.S. Food and Drug Administration. Risperdal (risperidone) [package insert]. Ortho-McNeil-Janssen Pharmaceuticals, Inc., NJ, https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020272s056,020588s044,021346s033,021444s03 lbl.pdf (2009, accessed October 14, 2019).

82. U.S. Food and Drug Administration. Geodon (ziprasidone) [package insert]. Pfizer, Inc., NY, https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020825s035,020919s023lbl.pdf (2008, accessed October 14, 2019).

83. U.S. Food and Drug Administration. Propranolol (Lopressor) [package insert]. Pfizer, Inc., NY, https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/021619s001lbl.pdf (2008, accessed October 14, 2019).

84. Poyurovsky M and Weizman A. Serotonin-based pharmacotherapy for acute neuroleptic-induced akathisia: a new approach to an old problem. Br J Psychiatry 2001; 179: 4–8.

85. Grover S and Sahoo S. Clozapine induced akathisia: a case report and review of the evidence. Indian J Pharmacol 2015; 47: 234–235.

86. Pondé MP and Freire ACC. Increased anxiety, akathisia, and suicidal thoughts in patients with mood disorder on aripiprazole and lamotrigine. Case Rep Psychiatry 2015; 2015: 1–4.

87. Patchan KM, Richardson C, Gopal V, et al. The risk of suicide after clozapine discontinuation: cause for concern. Ann Clin Psychiatry 2015; 27: 253–256.

88. Grubor M, Zivkovic M, Sagud M, et al. HTR1A, HTR1B, HTR2A, HTR2C and HTR6 gene polymorphisms and extrapyramidal side effects in haloperidol-treated patients with schizophrenia. Int J Mol Sci 2020; 21: 2345.

89. Correll CU. From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry 2010; 25(Suppl. 2): S12–S21.

90. Javed A, Arthur H, Curtis L, et al. Practical guidance on the use of lurasidone for the treatment of adults with schizophrenia. Neurol Ther 2019; 8: 215–230.

91. Taylor D, Barnes TRE and Young AH. The maudsley prescribing guidelines in psychiatry. 13th ed. Hoboken, NJ: Wiley, 2018.

92. Poyurovsky M. Acute antipsychotic-induced akathisia revisited. Br J Psychiatry 2010; 196: 89–91.

93. Hieber R, Dellenbaugh T and Nelson LA. Role of mirtazapine in the treatment of antipsychotic-induced akathisia revisited. Br J Psychiatry 2010; 196: 89–91.

94. Hieber R, Dellenbaugh T and Nelson LA. Role of mirtazapine in the treatment of antipsychotic-induced akathisia. Ann Pharmacother 2008; 42: 841–846.

95. Lipinski JF Jr, Zubenko GS, Cohen BM, et al. Propranolol in the treatment of neuroleptic-induced akathisia. Am J Psychiatry 1984; 141: 412–415.

96. Kramer MS, Gorkin R and DiJohnson C. Treatment of neuroleptic-induced akathisia
with propranolol: a controlled replication study. *Hillside J Clin Psychiatry* 1989; 11: 107–119.

97. Irwin M, Sullivan G and Van Putten T. Propranolol as a primary treatment of neuroleptic-induced akathisia. *Hillside J Clin Psychiatry* 1988; 10: 244–250.

98. Zubenko GS, Cohen BM, Lipinski JF Jr, et al. Use of clonidine in treating neuroleptic-induced akathisia. *Psychiatry Res* 1984; 13: 253–259.

99. Chernoloz O, El Mansari M and Blier P. Sustained administration of pramipexole modifies the spontaneous firing of dopamine, norepinephrine, and serotonin neurons in the rat brain. *Neuropsychopharmacology* 2009; 34: 651–661.

100. ClinicalTrials.gov. Li H and Yu W. A pilot study of pramipexole to treat extrapyramidal symptoms induced by antipsychotics NCT03430596. 2018. https://clinicaltrials.gov/ct2/show/NCT03430596 (accessed 10 March 2019).

101. Sethuram K and Gedzior J. Akathisia: case presentation and review of newer treatment agents. *Psychiatr Ann* 2014; 44: 391–396.

102. Fischel T, Hermesh H, Aizenberg D, et al. Cyproheptadine versus propranolol for the treatment of acute neuroleptic-induced akathisia: a comparative double-blind study. *J Clin Psychopharmacol* 2001; 21: 612–615.

103. Avital A, Gross-Isseroff R, Stryjer R, et al. Zolmitriptan compared to propranolol in the treatment of acute neuroleptic-induced akathisia: a comparative double-blind study. *Eur Neuropsychopharmacol* 2009; 19: 476–482.

104. Shams-Alizadeh N, Bakhshayesh H, Rezaei F, et al. Effect of vitamin B6 versus propranolol on antipsychotic-induced akathisia: a pilot comparative double-blind study. *Iran J Pharm Res* 2018; 17(Suppl): 130–135.

105. Wilson MS II. Mirtazapine for akathisia in bipolar disorder. *J Clin Psychopharmacol* 2005; 25: 394–395.

106. Ranjan S, Chandra PS, Chaturvedi SK, et al. Atypical antipsychotic-induced akathisia with depression: therapeutic role of mirtazapine. *Ann Pharmacother* 2006; 40: 771–774.

107. Poyurovsky M and Weizman A. Very low-dose mirtazapine (7.5 mg) in treatment of acute antipsychotic-associated akathisia. *J Clin Psychopharmacol* 2018; 38: 609–611.

108. Poyurovsky M, Bergman J, Pashinian A, et al. Beneficial effect of low-dose mirtazapine in acute antipiprazole-induced akathisia. *Int Clin Psychopharmacol* 2014; 29: 296–298.

109. Praharaj SK, Kongasseri S, Behere RV, et al. Mirtazapine for antipsychotic-induced acute akathisia: a systematic review and meta-analysis of randomized placebo-controlled trials. *Ther Adv Psychopharmacol* 2015; 5: 307–313.

110. Poyurovsky M, Pashinian A, Weizman R, et al. Low-dose mirtazapine: a new option in the treatment of antipsychotic-induced akathisia. A randomized, double-blind, placebo- and propranolol-controlled trial. *Biol Psychiatry* 2006; 59: 1071–1077.

111. Stryjer R, Rosenzwaig S, Bar F, et al. Trazodone for the treatment of neuroleptic-induced acute akathisia: a placebo-controlled, double-blind, crossover study. *Clin Neuropsychopharmacol* 2010; 33: 219–222.

112. Furuse T and Hashimoto K. Fluvoxamine for aripiprazole-associated akathisia in patients with schizophrenia: a potential role of sigma-1 receptors. *Ann Gen Psychiatry* 2010; 9: 11.

113. Miodownik C, Lerner V, Stassenko N, et al. Vitamin B6 versus mianserin and placebo in acute neuroleptic-induced akathisia: a randomized, double-blind, controlled study. *Clin Neuropsychopharmacol* 2006; 29: 68–72.

114. Pringsheim T, Gardner D, Addington D, et al. The assessment and treatment of antipsychotic-induced akathisia. *Can J Psychiatry* 2018; 63: 719–729.

115. Nepal H, Black E and Bhattacharai M. Self-harm in sertraline-induced akathisia. *Prim Care Companion CNS Disord* 2016; 18.

116. Riegel AC and Kalivas PW. Neuroscience: lack of inhibition leads to abuse. *Nature* 2010; 463: 743–744.

117. Rincon-Cortes M, Gagnon KG, Dollish HK, et al. Diazepam reverses increased anxiety-like behavior, social behavior deficit, and dopamine dysregulation following withdrawal from acute amphetamine. *Neuropsychopharmacology* 2018; 43: 2418–2425.

118. Hara K and Sata T. Inhibitory effect of gabapentin on N-methyl-D-aspartate receptors expressed in Xenopus oocytes. *Acta Anaesthesiol Scand* 2007; 51: 122–128.

119. Tanda G, Bassareo V and Di Chiara G. Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens of the rat. *Psychopharmacology (Berl)* 1996; 123: 127–130.

120. Nakayama K, Sakurai T and Katsuh H. Mirtazapine increases dopamine release in
prefrontal cortex by 5-HT1A receptor activation. *Brain Res Bull* 2004; 63: 237–241.

121. Maj J, Palider W and Rawlow. Trazodone, a central serotonin antagonist and agonist. *J Neural Transm* 1979; 44: 237–248.

122. Downs AM, Fan X, Donsante C, et al. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. *Neurobiol Dis* 2019; 125: 115–122.

123. Iqbal N, Lambert T and Masand P. Akathisia: problem of history or concern of today. *CNS Spectr* 2007; 12(9 Suppl. 14): 1–13.

124. Lim SA, Kang UJ and McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. *Front Synaptic Neurosci* 2014; 6: 22.

125. Strange PG. Antipsychotic drugs: importance of dopamine receptors for mechanisms of therapeutic actions and side effects. *Pharmacol Rev* 2001; 53: 119–133.

126. Adler LA, Peselow E, Rosenthal M, et al. A controlled comparison of the effects of propranolol, benztropine, and placebo on akathisia: an interim analysis. *Psychopharmacol Bull* 1993; 29: 283–286.

127. Vinson DR and Drotts DL. Diphenhydramine for the prevention of akathisia induced by prochlorperazine: a randomized, controlled trial. *Ann Emerg Med* 2001; 37: 125–131.

128. Salem H, Nagpal C, Pigott T, et al. Revisiting antipsychotic-induced akathisia: current issues and prospective challenges. *Curr Neuropharmacol* 2017; 15: 789–798.

129. Ofatza S, Bakay H, Cekic E, et al. Atypical antipsychotics induced chronic akathisia: a case report. *Journal of Mood Disorders* 2014; 4: 175.

130. Abi-Saab WM, Bubser M, Roth RH, et al. 5-HT2 receptor regulation of extracellular GABA levels in the prefrontal cortex. *Neuropsychopharmacology* 1999; 20: 92–96.

131. Lima AR, Soares-Weiser K, Bacaltchuk J, et al. Benzodiazepines for neuroleptic-induced acute akathisia. *Cochrane Database Syst Rev* 2002; 1: Cd001950.

132. Bartels M, Heide K, Mann K, et al. Treatment of akathisia with lorazepam. An open clinical trial. *Pharmacopsychiatry* 1987; 20: 51–53.

133. Hirose S and Ashby CR. Immediate effect of intravenous diazepam in neuroleptic-induced acute akathisia: an open-label study. *J Clin Psychiatry* 2002; 63: 524–527.

134. Fontanella CA, Campo JV, Phillips GS, et al. Benzodiazepine use and risk of mortality among patients with schizophrenia: a retrospective longitudinal study. *J Clin Psychiatry* 2016; 77: 661–667.

135. Takeshima M, Ishikawa H, Kanbayashi T, et al. Gabapentin enacarbil for antipsychotic induced akathisia in schizophrenia patients: a pilot open-labeled study. *Neuropsychiatr Dis Treat* 2018; 14: 3179–3184.

136. ClinicalTrials.gov. Merck Sharp & Dohme Corp. Study of preladenant for the treatment of neuroleptic induced akathisia. NCT00693472. 2007. (accessed 10 March 2019).

137. Kuloglu M, Atmaca M, Üstündag B, et al. Serum iron levels in schizophrenic patients with or without akathisia. *Eur Neuropsychopharmacol* 2003; 13: 67–71.

138. Cotter PE and O’Keeffe ST. Improvement in neuroleptic-induced akathisia with intravenous iron treatment in a patient with iron deficiency. *J Neurol Neurosurg Psychiatry* 2007; 78: 548.

139. Barnes M, Lawford BR, Burton SC, et al. Smoking and schizophrenia: is symptom profile related to smoking and which antipsychotic medication is of benefit in reducing cigarette use? *Aust N Z J Psychiatry* 2006; 40: 575–580.

140. Anfang MK and Pope HG Jr. Treatment of neuroleptic-induced akathisia with nicotine patches. *Psychopharmacology* 1997; 134: 153–156.

141. Lerner V, Bergman J, Statensko N, et al. Vitamin B6 treatment in acute neuroleptic-induced akathisia: a randomized, double-blind, placebo-controlled study. *J Clin Psychiatry* 2004; 65: 1550–1554.

142. Cadet JL and Lohr JB. Possible involvement of free radicals in neuroleptic-induced movement disorders. Evidence from treatment of tardive dyskinesia with vitamin E. *Ann N Y Acad Sci* 1989; 570: 176–185.

143. Berk M, Copolov D, Dean O, et al. N-acetyl cysteine as a glutathione precursor for schizophrenia—a double-blind, randomized, placebo-controlled trial. *Biol Psychiatry* 2008; 64: 361–368.

144. Piercey MF, Smith MW and Lum-Ragan JT. Excitation of noradrenergic cell firing by 5-hydroxytryptamine1A agonists correlates with dopamine antagonist properties. *J Pharmacol Exp Ther* 1994; 268: 1297–1303.