Conjugated linoleic acid does not affect digestion and absorption of fat and starch—a randomized, double-blinded, placebo-controlled parallel study

Jarosław Walkowiak¹, Klaudia Malikowska¹, Aleksandra Głąpa¹, Paweł Bogdański², Ewa Fidler-Witoń¹, Monika Szulińska¹, Izabela Chudzicka-Strugała¹, Anna Miśkiewicz-Chotnicka¹, Edyta Małdy³ and Aleksandra Lisowska¹

¹ Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland
² Department of Education and Obesity Treatment and Metabolic Disorders, Poznan University of Medical Sciences, Poznan, Poland
³ Department of Medical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
⁴ Department of Physiology, Poznan University of Medical Sciences, Poznan, Poland

E-mail: jarwalk@ump.edu.pl

Keywords: ¹³C mixed triglyceride breath test, ¹³C starch breath test, ¹³C bicarbonate breath test, obesity, overweight

Abstract

Objective: Conjugated linoleic acid (CLA) is known as a potent agent for altering body weight and composition. However, its effect on the process of digestion is still unknown. The aim of this study has been to elucidate the effect of a 3-month supplementation with CLA on starch and fat digestion and absorption in humans. Approach: The study included 74 obese and overweight adults who were randomized to receive 3.0 g of CLA or sunflower oil as placebo daily for 3 months. Digestion and absorption of fat and starch was assessed using non-invasive breath tests with a stable¹³C isotope (cumulative percentage dose recovery, CPDR) before and after the supplementation period. To exclude the effect of oxidation, in addition total energy expenditure (TTE) was measured by a ¹³C bicarbonate breath test. Results: The changes in CPDR values (ΔCPDR median (interquartile range)) were no different between subjects from the CLA group and the placebo group (fat: −0.2 (−9.1–4.1) versus 0.6 (−7.0–8.0), p < 0.4796; starch: −1.3 (−9.5–2.4) versus −1.0 (−5.1–1.7), p < 0.5520, respectively). The incidence of negative and positive values of ΔCPDR was no different between groups [for fat: 53.1% versus 46.7%, RR 1.195, 95% CI 0.804–1.882] and for starch: 67.7% versus 56.7%, RR 1.195, (95% CI 0.804–1.777)]. The changes in TTE did not differ between the CLA and the placebo group (respectively 1 (48; 267) versus −8 (−120;93) kcal; p < 0.2728). Conclusion: Supplementation with CLA for 3 months did not affect fat and starch digestion assessed by ¹³C mixed triglyceride breath test and ¹³C starch breath test.

Introduction

Excess weight and obesity is the consequence of a long-term positive energy balance that is frequently related with excessive intake of saturated fat or simple carbohydrates. The state of being overweight or obese leads to serious health implications such as type 2 diabetes mellitus and cardiovascular disease. Therefore, new therapeutic options for successful body mass reduction and maintenance of the obtained effects are needed. Conjugated linoleic acids (CLA) have recently gained much interest as a promising supplement for improving body weight and composition [1].

CLA, a polyunsaturated fatty acid, is known for its anti-carcinogenic and anti-atherogenic properties [1]. CLA is made by bacteria in the process of linoleic acid isomerization or desaturation of 11-trans octadecenoic acid [2]. CLA constitutes a mixture of geometric and positional isomers of linoleic acid, of which the most prevalent in the diet is cis-9, trans-11 octadecadienoic acid, and the less frequent is the trans-10, cis-12 isomer. These two isomers can be found in commercially available CLA products; however, the anti-obesity effect is attributed to the trans-10, cis-12 isomer [3].

Numerous animal studies indicate that CLA influences body composition. Most researchers found that...
CLA decreases body fat; however, the results differ between species [4–6]. The evidence from randomized clinical trials proves that long-term CLA supplementation causes weight loss in humans, but of minor clinical relevance (at most 5% of baseline weight) [1, 7]. Other research shows that CLA supplementation reduces fat mass, although these studies have varied with regard to the dose, the type of isomer, and study duration [8, 9]. Therefore, as to the purported benefits of CLA in humans, the results are contradictory. Nevertheless, CLA has been reported to play a beneficial role in lipid metabolism via the activation of enzymes such as lipoprotein lipase and carnitine-palmitoyl-transferase-1. Its supplementation reduces lipogenesis and enhances the lipolysis and β-oxidation of fatty acids in animal models [10, 11]. CLA may also inhibit the differentiation of adipocytes and prevent fatty acid accumulation in adipose tissue [10, 12]. Studies on animals and humans report inconsistent results regarding CLA’s impact on glucose homeostasis [13]. CLA supplementation seems to have no effect on glucose or insulin levels, purportedly because of transient metabolic changes [14–16].

Many potential effects of CLA have been studied to date; however, no data regarding its influence on fat and starch digestion or absorption are so far available. Therefore, the aim of our study is to evaluate its impact in overweight and obese subjects using the reliable methods of 13C mixed triglyceride (MTG-BT) and starch 13C breath test (S-BT).

Methods

Study population

The study comprised 74 adults with BMI ≥ 25 kg m⁻². Volunteers were recruited in The Obesity and Overweight Treatment Clinic of Poznań University of Medical Sciences, Poznań, Poland. The eligibility criteria included females over 18 years old and BMI ≥ 25 kg m⁻². The exclusion criteria were as follows: chronic systemic disease (excluding hypertension), gastrointestinal diseases (e.g. celiac disease), type 2 diabetes mellitus, and pregnancy. Before the study commenced, subjects were examined by a physician. Subjects who used CLA and other dietary supplements (green tea, mulberry leaves, chitosan, phaseolamin, prebiotics and probiotics) and medications (e.g. orlistat, metformin, acarbose) interfering with fat and starch digestion and/or absorption within the preceding month were also excluded. Subjects were instructed to maintain habitual diets. Diets were recorded before and during the intervention period. Energy and macronutrient intake was calculated to assure the subjects did not change their eating habits.

Randomization and blinding

The protocol of the study was previously described by Madry et al [17]. Subjects were assigned to receive placebo or CLA by a nurse unrelated to the study, according to a computer-generated randomization list (block size = 6) generated by an independent researcher. The study was conducted in parallel design with an allocation ratio of 1:1. No changes to methods were made after the trial’s commencement. To implement the random allocation sequentially numbered containers were used. All personnel (investigators, care givers, assessors and data analyst) involved in the study and all participants were unaware of the study group assignments until the end of the study.

Intervention

Each participant from the CLA subgroup was given 3.0 g of 80% CLA (50:50 trans-10, cis-12 isomers and cis-9, trans-11) daily for 3 months. Women were instructed to administer two capsules of the provided product three times a day with a meal. Likewise, volunteers from the placebo group consumed capsules containing 3.0 g of sunflower oil per day. Both intervention products were in identical transparent capsules packed in similar blisters. The intervention product was kindly provided by a pharmaceutical company (Olimp Laboratories, Dębica, Poland).

Outcome measures

Evaluation of fat and starch digestion as well as absorption was performed using a MTG-BT and S-BT, respectively. We assumed that the cumulative percentage dose recovery (CPDR) values reflected the process of digestion and absorption [18]. For the assessment of the changes in fat and carbohydrate digestion and absorption, the difference of CPDR after and before the supplementation period (ΔCPDR) was calculated. To evaluate total energy expenditure (TEE) a 13C bicarbonate breath test (B-BT) was performed [kcal/day].

MTG-BT procedure

The test was carried out after overnight fasting. Each of the study participants received a test meal containing 150 mg of 13C mixed triglyceride and 12.5 g of butter (fat content: 82%) mixed on a roll (50 g). Breath samples were obtained at baseline (fasting) and at half hour intervals (6 h) after ingestion of the test meal [19].

S-BT procedure

The baseline breath sample was obtained after an overnight fast. Afterwards, subjects received test meals containing naturally 13C-rich cornflakes (50 g) with low-fat milk (100 ml). Breath samples were obtained fasting (baseline) and every 30 min up to 4 h after the test meal [20, 21].
B-BT procedure

In the TEE assessment a dose of 50 mg of 13C bicarbonate was administrated orally after dissolution in about 125–150 ml of warm fruit tea. Breath samples were acquired from each subject over a total timespan of 3 h [22].

Breath tests were performed before and after the 3-month CLA or placebo supplementation period. The subjects did not receive either CLA or a placebo to the test meal. Both tests were performed one week apart. The subjects avoided eating food naturally abundant with 13C (kiwi fruit, pineapple, cane sugar,
The level of the statistical significance before and after the supplementation period.

Table 2. Values of cumulative percentage dose recovery (CPDR) after mixed triglyceride breath test for placebo and conjugated linoleic acid (CLA) intervention before (pre) and after 3 months of supplementation (post).

	CLA	Placebo	p value
	Median (1st–3rd quartile) Mean ± SEM	Median (1st–3rd quartile) Mean ± SEM	
Pre	22.6 (14.0–29.8) 23.3 ± 1.9	21.3 (15.1–25.7) 20.0 ± 1.6	0.3337
Post	20.9 (17.4–25.8) 22.1 ± 1.6	20.0 (16.3–25.7) 21.1 ± 1.6	0.6393
p value	0.5372	0.7711	

Table 3. The increment values of cumulative percentage dose recovery (CPDR) after mixed triglyceride breath tests for conjugated linoleic acid (CLA) and placebo.

	CLA	Placebo	p value
	Δ CPDR		
	Median (1st–3rd quartile)	Mean ± SEM	
CLA	–0.2 (−9.1–4.1) 0.6 (−7.0–8.0)	0.4796	
Placebo	−1.2 ± 1.8	1.2 ± 2.0	

The level of the statistical significance before and after the supplementation period.

The values of CPDR before and after supplementation in the groups receiving the CLA intervention and placebo did not differ significantly (table 2). The changes in CPDR values (ΔCPDR median [interquartile range]) were no different between subjects from the CLA and placebo groups (table 3). The incidence of negative and positive values of ΔCPDR was no

Table 3. The increment values of cumulative percentage dose recovery (CPDR) after mixed triglyceride breath tests for conjugated linoleic acid (CLA) and placebo.

	CLA	Placebo	p value
	Δ CPDR		
	Median (1st–3rd quartile)	Mean ± SEM	
CLA	–0.2 (−9.1–4.1) 0.6 (−7.0–8.0)	0.4796	
Placebo	−1.2 ± 1.8	1.2 ± 2.0	

The level of the statistical significance before and after the supplementation period.

The level of the statistical significance before and after the supplementation period.

The values of CPDR before and after supplementation in the groups receiving the CLA intervention and placebo did not differ significantly (table 2). The changes in CPDR values (ΔCPDR median [interquartile range]) were no different between subjects from the CLA and placebo groups (table 3). The incidence of negative and positive values of ΔCPDR was no
Table 4. The number of subjects with positive and negative values of changes in cumulative percentage dose recovery (CPDR) after the mixed triglyceride breath test for conjugated linoleic acid (CLA) and placebo group.

Group	Negative ΔCPDR (% of subjects with negative ΔCPDR)	Positive ΔCPDR (% of subjects with negative ΔCPDR)	Relative risk (95% CI)*	p value
CLA group (n = 32)	17 (53.1)	15 (46.9)	1.1384 (0.6889–1.8822)	0.6130
Placebo group (n = 30)	14 (46.7)	16 (53.3)		

*CI denotes confidence interval.

Table 5. The values of cumulative percentage dose recovery (CPDR) in starch breath test for placebo and conjugated linoleic acid (CLA) intervention before and after 3 months of supplementation.

Group	Median (1st–3rd quarter)	Mean ± SEM	P value
CLA	14.2 (12.1–18.5)	15.2 ± 1.0	0.0919
Placebo	13.7 (12.1–17.5)	15.0 ± 1.2	0.6518

Group	Median (1st–3rd quarter)	Mean ± SEM	P value
CLA	11.5 (9.3–17.6)	12.5 ± 1.2	0.2369
Placebo	13.4 (11.9–17.7)	14.0 ± 1.1	

The effect of CLA in humans is still widely disputed[2]. Onakpoya et al revealed that long-term CLA intake significantly reduced body weight and, to a lesser extent, body fat, as compared to placebo[7]. Similarly, Whigham et al showed a modestly significant fat loss in 15 eligible trials[1].

According to various research studies, the safe CLA dose ranges from 3 to 6 g per day. In our study, we used 3 g of CLA, which is comparable to most studies[24–26]. Blankson et al proved that a higher amount (>3.4 g CLA per day) does not imply better weight reduction results[27]. The study evaluated the effect of a 12-week CLA intake on a similar study group using four various doses of CLA (1.7, 3.4, 5.1 or 6.8 g) and with olive oil as a placebo (9 g). Significant differences in the reduction of body mass were obtained only in the groups assigned to receive 3.4 g and 6.8 g of CLA, but the study included additional physical activity concomitant to the study; thus, it is difficult to discern the real influence of CLA.

The results of animal studies assessing different stages of fat metabolism are inconclusive[28, 29]. In vivo fatty acids β-oxidation could be evaluated by carnitine-palmitoyltransferase activity (CPT). CPT is a

Discussion

The effect of CLA in humans is still widely disputed worldwide. Herein, we attempt to elucidate for the first time the impact of a 3-month intake of CLA on metabolism of fat and starch. This study indicates that CLA does not exert any significant effect in this respect.

Previous investigations differ widely in their designs. The dosage, composition as well as duration of the CLA treatment, as well as subjects’ health conditions may considerably affect the study outcomes in humans. A meta-analysis by Onakpoya et al revealed that long-term CLA intake significantly reduced body weight and, to a lesser extent, body fat, as compared to placebo[7]. Similarly, Whigham et al showed a modestly significant fat loss in 15 eligible trials[1].

Different between the subgroups studied (table 4). The incidence of decreased digestion and absorption was no different in subjects in the CLA subgroup compared with those of the placebo subgroup (53.12% versus 46.67%, RR 1.1384, 95% CI 0.6889 to 1.8822).

S-BT

The level of starch digestion and absorption was reflected by the CPDR values. The values of CPDR before and after supplementation in groups receiving CLA intervention and placebo did not differ significantly (table 5). The changes in CPDR values (ΔCPDR median [interquartile range]) were no different between subjects from the CLA and the placebo groups (table 6). The incidence of negative and positive values of ΔCPDR was no different between the subgroups studied (table 7). The incidence of decreased digestion and absorption was no different between participants from the CLA subgroup and participants from the placebo subgroup (67.74% versus 56.67%, RR 1.1954, 95% CI 0.8044 to 1.7765).

B-BT

The TEE before and after supplementation in the CLA and placebo groups did not differ (table 8). No changes in TEE (Δ) were observed between subjects from CLA and placebo groups (table 9).
Table 7. The number of subjects with positive and negative values of changes in cumulative percentage dose recovery (CPDR) in starch breath test for placebo and conjugated linoleic acid (CLA).

	Negative ΔCPDR (% of subjects with negative ΔCPDR)	Positive ΔCPDR (% of subjects with positive ΔCPDR)	Relative risk (95% CI)	p value
CLA group (n = 31)	21 (67.7)	10 (32.3)	1.1954 (0.8044–1.7765)	0.3722
Placebo group (n = 30)	17 (56.7)	13 (43.3)		

*CI denotes confidence interval.

Table 8. The values of total energy expenditure [kcal/day] measured by 13C bicarbonate breath test before and after 3-month intervention.

	CLA	Placebo	p value
Median (1st–3rd quartile)			
Pre	2503 (2248–2650)	2454 ± 42	
Post	2522 (2392–2593)	2514 ± 38	
Mean ± SEM			0.2170

Table 9. The values of changes in total energy expenditure measured by 13C bicarbonate breath test for conjugated linoleic acid (CLA) and placebo group.

	Δ Total energy expenditure (kcal/day)	p value	
	CLA	Placebo	
Median (1st–3rd quartile)			0.2729
Mean ± SEM	1 (–48; 267)	–8 (–120; 93)	
	60 ± 36	–18 ± 38	

mitochondrial rate limiting enzyme controlling the β-oxidation process. Rahman et al indicated that a 4-week intake of CLA increased CPT in a non-insulin-dependent diabetes mellitus model (perirenal fraction of visceral-adipose tissue, red gastrocnemius muscle, liver, brown adipose tissue) [28]. The study used a homogenate fraction of different tissues to represent overall fatty acid oxidation. Martin et al, however, documented that a 6-week diet containing 1% of CLA did not affect β-oxidation in skeletal and cardiac muscles [29]. Based on another mice model it was suggested that CLA (in the form of free fatty acids as well as triacylglycerols) may promote a mild increase in energy expenditure, while increased energy losses in excreta reflect decreased nutrient absorption [30, 31].

Assuming that both effects are present in humans, one could expect unchanged breath test results in this study. However, in that case it should be accompanied by weight losses in the CLA group, which were not observed in our trial [17]. To exclude the effect of oxidation, in this study we performed B-BT, which is a non-invasive and reliable method providing results in accordance with indirect calorimetry as the gold standard [32, 33]. We did not observe any differences in TEE changes in the course of CLA supplementation. Reports on different animal models raise a question as to which species mimic the human model best and what is the appropriate CLA dose per kg of body weight [30, 31, 34], which in animal models is far higher. Our results suggest that the impact of CLA on metabolic processes in humans remains unclear.

The present study attempts to assess the impact of 3-month CLA intake on starch and fat digestion and the subsequent absorption using a valid method of MTG-BT and S-BT. The method uses molecules of two stearic acids and 13C octanoic acid to serve as a labelled tracer through the process of hepatic β-oxidation and formation of 13CO2. During the 6 h of the test procedure, the dose of 13C recovered in the exhaled air is registered as a measure of intestinal lipolysis [35]. The other method, S-BT, measures CO2 in breath that comes from metabolized glucose previously hydrolyzed from starch [36]. Our study used cornflakes as a test meal. Starch from corn is digested in the small intestine, absorbed, then metabolized in the liver and transported to the lungs. No data are available referring to the impact of long-term CLA supplementation on carbohydrate digestion and absorption in humans so far. Some studies indicate that CLA can improve glucose tolerance and balance hyperinsulinemia in the animal model (obese-diabetic insulin resistant, prediabetic animals on a high-fat diet) [37, 38]. The study by Farina et al documented that CLA increases glucose oxidation and also enhances glucose uptake as well as incorporation into the rat muscle [39]. On the other hand, serum glucose levels have not changed in any of the animal studies [40–42].

The limitations of the study include the potential lack of full patients’ compliance, which we tried to minimize. The participants were called on the phone three times during the 3 months to provide motivation and ensure the subjects follow the regime. Additionally, women were asked to bring empty packages and to maintain a 90 day calendar to monitor the supplementation. Other limitations involve the fact that gut
microbiota was not assessed and that some of the patients consumed fermented foods during the study (fermented dairy products, sauerkraut). Nevertheless, these constituted a subject’s typical diet, which was the same for all groups studied and was unaltered throughout the study period. Lastly, our results are applicable only to women who also meet the inclusion and exclusion criteria of this trial. MTG-BT and S-BT were created to assess digestion and absorption, however the potential influence of other processes, e.g. liver metabolism and gastric emptying, cannot be excluded. Therefore further studies are needed to confirm the present findings.

Conclusions

Numerous studies have attempted to elucidate the effect of CLA. The results of our study, which is a randomized, placebo-controlled, double-blind nutritional intervention, indicate that 3-month CLA intake apparently does not influence digestion or absorption of either fat or starch in overweight and obese humans. Although this subject needs further investigation.

Acknowledgments

The study was financed by the Nutricia Foundation (grant number 504-06-0110315-000-15-07588). The authors declare no competing financial interests.

Author contributions

JW, EM & AL designed the experiment; KM, AG, PB, EFW, MS, ICS, AMC & AL performed the research; JW supervised the study; JW, KM, AG & AL created database and analyzed data; JW, AG, KM & AL wrote the manuscript; EM & PB provided revisions. All authors reviewed and approved the manuscript.

References

[1] Whigham L D, Watras C A and Schoeller D A 2007 Efficacy of conjugated linoleic acid for reducing fat mass: a meta-analysis in humans Am. J. Clin. Nutr. 85 1203–11
[2] Lehnen T E, da Silva M R, Camacho A, Marcadenti A and Lehnen A M 2015 A review on effects of conjugated linoleic fatty acid (CLA) upon body composition and energetic metabolism J. Int. Soc. Sports Nutr. 12 36
[3] Pariza M W, Park Y and Cook M E 2001 The biologically active isomers of conjugated linoleic acid Prog. Lipid Res. 40 283–98
[4] Ostrowska E, Muralitharan M, Cross R F, Bauman D E and Lehnen A M 1999 Dietary conjugated linoleic acids increase lean tissue and decrease fat deposition in growing pigs J. Nutr. 129 2037–42
[5] Kim M R, Park Y, Albright K J and Pariza M W 2002 Differential responses of hamsters and rats fed high-fat or low-fat diets supplemented with conjugated linoleic acid Nutr. Res. 22 715–22
[6] Szymczyk B, Pisulewski P M, Szczurek W and Hanczakowski P 2001 Effects of conjugated linoleic acid on growth performance, feed conversion efficiency, and subsequent carcass quality in broiler chickens Br. J. Nutr. 85 465–73
[7] Onakpoya I J, Posadzki P, Watson L K, Davies L A and Ernst E 2012 The efficacy of long-term conjugated linoleic acid (CLA) supplementation on body composition in overweight and obese individuals: a systematic review and meta-analysis of randomized controlled clinical trials Eur. J. Nutr. 51 127–34
[8] Gaulier J-M et al 2005 Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans J. Nutr. 135 778–84
[9] Gaulier J-M et al 2004 Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans Am. J. Clin. Nutr. 79 1118–25
[10] Churruca I, Fernández-Quintela A and Portillo M P 2009 Conjugated linoleic acid isomers: differences in metabolism and biological effects BioFactors Oxf. Engl. 35 105–11
[11] Xu X, Storkson J, Kim S, Sugimoto K, Park Y and Pariza M W 2003 Short-term intake of conjugated linoleic acid inhibits lipoprotein lipase and glucose metabolism but does not enhance lipolysis in mouse adipose tissue J. Nutr. 133 663–7
[12] Kang K, Liu W, Albright K J, Park Y and Pariza M W 2003 trans–10, cis–12 CLA inhibits differentiation of 3T3-L1 adipocytes and decreases PPAR gamma expression Biochem. Biophys Res. Commun. 303 795–9
[13] Kim J H, Kim Y, Kim Y J and Park Y 2016 Conjugated linoleic acid: potential health benefits as a functional food ingredient Annu. Rev. Food Sci. Technol. 7 221–44
[14] Bhatta K, Barua A, Banu J, Rahman M, Causey J and Fernandes G 2006 Biological effects of conjugated linoleic acids in health and disease J. Nutr. Biochem. 17 789–810
[15] Dilzer A and Park Y 2012 Implication of conjugated linoleic acid (CLA) in human health Crit. Rev. Food Sci. Nutr. 52 488–513
[16] McCorrie T A, Keaveney E M, Wallace J M W, Binns N and Livingstone M B E 2011 Human health effects of conjugated linoleic acid from milk and supplements Nutr. Res. Rev. 24 206–27
[17] Madry E et al 2016 Twelve weeks CLA supplementation decreases the hip circumference in overweight and obese women. A double-blind, randomized, placebo-controlled trial Acta Sci. Pol. Technol. Aliment. 15 107–13
[18] Lisowska A et al 2011 Antibiotic therapy and fat digestion and absorption in cystic fibrosis Acta Biochim Pol. 58 345–7
[19] Walkowiak J et al 2013 Single dose of green tea extract decreases lipid digestion and absorption from a test meal in humans Acta Biochim Pol. 60 481–3
[20] Jóźefczuk J et al 2017 Mulberry leaf extract decreases digestion and absorption of starch in healthy subjects—a randomized, placebo-controlled, crossover study Adv. Med. Sci. 62 302–6
[21] Lochocka K et al 2015 Green tea extract decreases starch digestion and absorption from a test meal in humans: a randomized, placebo-controlled crossover study Sci. Rep. 5 12015
[22] Lochocka K et al 2014 Clinical outcomes of conjugated linoleic acid supplementation in the overweight and the obese: a study protocol J. Med. Sci. 4 318–21
[23] Moher D et al 2010 CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Brit. Med. J. 340 c669
[24] Carvalho R F, Uehara S K and Rosa G 2012 Microencapsulated conjugated linoleic acid: a reduction in subcutaneous fat mass and body fat percentage in overweight and obese men Acta Biochim Pol. 60 481–3
[25] Aliashargh F, Beigi M A, Efekhari M and Hasanazadeh J 2014 The effect of conjugated linoleic acids and omega-3 fatty acids supplementation on lipid profile in atherosclerosis Adv. Biomed. Res. 3 115
[26] Lopez-Plaza B et al 2013 Effects of milk supplementation with conjugated linoleic acid on weight control and body composition in healthy overweight people Nutr. Hosp. 28 2090–8
[27] Blankson H, Stakkestad J A, Fagertun H, Thom E, Wadstein J and Gudmundsen O 2000 Conjugated linoleic acid reduces body fat mass in overweight and obese humans J. Nutr. 130 2943–8
[28] Rahman S M et al 2001 Effects of conjugated linoleic acid on serum leptin concentration, body-fat accumulation, and beta-oxidation of fatty acid in OLETF rats Nutrition 17 385–90
[29] Martin J C et al 2000 Effects of conjugated linoleic acid isomers on lipid-metabolizing enzymes in male rats Lipids. 35 91–8
[30] Terpstra A H M, Beynen A C, Everts H, Kocsis S, Katan M B and Zock P L 2002 The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta J. Nutr. 132 940–5
[31] Terpstra A H M et al 2003 Dietary conjugated linoleic acids as free fatty acids and triacylglycerols similarly affect body composition and energy balance in mice J. Nutr. 133 3181–6
[32] Junghans P, Jentsch W and Derno M 2008 Non-invasive 13C bicarbonate tracer technique for measuring energy expenditure in men—a pilot study E-SPEN Eur E-J Clin Nutr Metab. 3 e46–51
[33] Leigh Richards M and Davies P S 2001 Energy cost of activity assessed by indirect calorimetry and a 13CO2 breath test Med. Sci. Sports Exerc. 33 834–8
[34] Moya-Camarena S Y and Belury M A 2009 Species differences in the metabolism and regulation of gene expression by conjugated linoleic Acid. Nutr. Rev. 57 336–40
[35] Weaver L T, Amari S and Swart G R 1998 13C mixed triglyceride breath test Gut. 43 (Supplement 3) S13–9
[36] Symonds E L, Kritas S, Omari T I and Butler R N 2004 A combined 13CO2/H2 breath test can be used to assess starch digestion and fermentation in humans J. Nutr. 134 1193–6
[37] Wargent E et al 2005 Prolonged treatment of genetically obese mice with conjugated linoleic acid improves glucose tolerance and lowers plasma insulin concentration: possible involvement of PPAR activation Lipids Health Dis. 4 3
[38] Henriksen E J et al 2003 Isomer-specific actions of conjugated linoleic acid on muscle glucose transport in the obese Zucker rat Am. J. Physiol. Endocrinol. Metab. 285 E98–105
[39] Farintha A C et al 2014 Conjugated linoleic acid improves glucose utilization in the soleus muscle of rats fed linoleic acid-enriched and linoleic acid-deprived diets Nutr. Res. 34 1092–100
[40] Poirier H et al 2005 Hyperinsulinaemia triggered by dietary conjugated linoleic acid is associated with a decrease in leptin and adiponectin plasma levels and pancreatic beta cell hyperplasia in the mouse Diabetologia 48 1059–65
[41] Jourdan T, Djaouti L, Demizieux L, Gresti J, Vergès B and Degrace P 2009 Liver carbohydrate and lipid metabolism of insulin-deficient mice is altered by trans-10, cis-12 conjugated linoleic acid J. Nutr. 139 1901–7
[42] Poirier H, Shapiro J S, Kim R J and Lazar M A 2006 Nutritional supplementation with trans-10, cis-12-conjugated linoleic acid induces inflammation of white adipose tissue Diabetes 55 1634–41