SERPENTINE ENDEMISM IN THE CALIFORNIA FLORA:
A DATABASE OF SERPENTINE AFFINITY

H. D. SAFFORD1,2, J. H. VIERS3, AND S. P. HARRISON2

1 USDA-Forest Service, Pacific Southwest Region, 1323 Club Drive,
Vallejo, CA 94592
hughsafford@fs.fed.us
2 Department of Environmental Science and Policy, University of California,
Davis, CA 95616
3 Information Center for the Environment, DESP, University of California,
Davis, CA 95616

ABSTRACT
We present a summary of a database documenting levels of affinity to ultramafic (“serpentine”) substrates for taxa in the California flora, USA. We constructed our database through an extensive literature search, expert opinion, field observations, and intensive use of accession records at key herbaria. We developed a semi-quantitative methodology for determining levels of serpentine affinity (strictly endemic, broadly endemic, strong “indicator”, etc.) in the California flora. In this contribution, we provide a list of taxa having high affinity to ultramafic/serpentine substrates in California, and present information on rarity, geographic distribution, taxonomy, and lifeform. Of species endemic to California, 12.5% are restricted to ultramafic substrates. Most of these taxa come from a half-dozen plant families, and from only one or two genera within each family. The North Coast and Klamath Ranges support more serpentine endemics than the rest of the State combined. 15% of all plant taxa listed as threatened or endangered in California show some degree of association with ultramafic substrates. Information in our database should prove valuable to efforts in ecology, floristics, biosystematics, conservation, and land management.

Key Words: serpentine, ultramafic, California, endemism, diversity.

INTRODUCTION
Ultramafic rocks, often called “serpentine” by ecologists, botanists and pedologists, underlie more than 6000 km² of the land area of the State of California (Harrison et al. 2000). The edges of continental plates often include bands of these vestiges of oceanic mantle rock, accreted during the geologic process of subduction, and later uplifted and exposed during mountain building and subsequent erosion. Ultramafic rocks and the soils that develop on them are characterized by critically low levels of most principal plant nutrients (N, P, K, Ca), and exceptionally high levels of Mg and Fe and a suite of toxic trace elements including Cr, Ni, and Co. Outcrops of ultramafic rocks support high numbers of edaphic-endemic taxa throughout the world (Brooks 1987). The California serpentine flora is the richest in the temperate zone, and consists of hundreds of species and subspecies that are largely or entirely confined to ultramafic substrates.

Serpentine endemism is a key feature of the diversity of the California flora (Raven and Axelrod 1978; Kruckenberg 2002). Of about 1410 full species endemic to the State (Hickman 1993), Kruckenberg (1984) estimated that about 180 were endemic to serpentine. If these numbers are at least approximately correct, then about 13% of the plant species endemic to California are serpentine endemics. This is a remarkably high number when one considers that only 1.5% of the State is underlain by ultramafic rocks (6000 km²/406,280 km²). In addition, because they tend to have small geographic ranges and because many of them occur in the rapidly urbanizing San Francisco Bay Area, serpentine endemics are overrepresented among the state’s rare, sensitive, and listed plant taxa (Skinner and Pavlik 1994). The ecology of California’s serpentine plants has been extensively studied at the University of California’s Sedgwick Ranch Reserve (e.g., Seabloom et al. 2003; Gram et al. 2004) and McLaughlin Reserve (e.g., Harrison et al. 2003; Safford and Harrison 2004) and Stanford University’s Jasper Ridge Reserve (e.g., McNaughton 1968; Huenneke et al. 1990; Hobbs and Mooney 1991).

Botanists have relied for two decades on the monograph by Arthur Kruckenberg (1984) for most of their information on Californian serpentine-endemic plant taxa. Since then, publication of the Jepson Manual (Hickman 1993), and a proliferation of new botanical research and name changes have left this list in need of updating. Our initial aim was to modify Kruckenberg’s (1984) list, primarily using information from Hickman (1993), to use in our research on diversity patterns (Harrison et al. 2000, 2004). However, it soon became clear that we would have to expand and intensify our search for the best available information. Complicating this effort, plants show a continuum in degrees of serpentine restriction, and are sometimes more restrict-
ed in some parts of their geographic ranges than others, thus contributing to inconsistencies among reports from different sources. This led us to adopt a semi-quantitative procedure for scoring plant taxa on their reported degree of serpentine affinity.

In this contribution, we present a summary of our current database of serpentine affinity in the California flora. The database was constructed via an extensive literature search, expert opinion, field observations, web research, and intensive use of accession records at key herbaria. It provides data on levels of serpentine endemism, rarity, geographic distribution, taxonomy, and lifeform.

Methodology

We began by conducting a database search of the electronic Jepson Manual (Hickman 1993) maintained by the Jepson Herbarium at the University of California-Berkeley (UC-JEPS 2004a). The database was queried for all taxa with “serpentine”, “ultramafic”, or related (e.g., “asbestos soils”) references in the habitat description. Taxa containing “non-serpentine” in the description were removed afterward. We cross-checked the 391 serpentine-related taxa found in the Jepson Manual with Kruckeberg (1984), who listed those taxa he believed to be endemic to ultramafic substrates in California, and those that were either local or regional “serpentine indicators” (i.e., nonendemic taxa whose distributions are nonetheless skewed toward occurrences on ultramafics). Taxonomic updates in the Jepson Manual (Hickman 1993) were applied to the Kruckeberg list (which included 377 taxa after these revisions), and then those taxa not on the Jepson-derived list were added to our database. This resulted in a list of 529 taxa; of these, 287 were not shared between the two sources. We then added to the list a number of taxa that we considered to be likely endemics or indicators but which were not indicated as such by either Kruckeberg (1984) or the Jepson Manual (1993). Finally, published literature (e.g., Meinke and Zika 1992; Nelson and Nelson 2004; Baldwin 1999 and 2001; Barkley 1999; Porter and Johnson 2000; Zika et al. 1998) and the online Jepson Interchange Jepson Flora Project (UC-JEPS 2004b) were consulted for taxonomic revisions and taxa newly described since the publication of the Jepson Manual.

To score the affinity of taxa to ultramafic substrates, we adopted a modification of Kruckeberg’s measures of ultramafic “fidelity”. In his Appendix C, Kruckeberg (1984) used two or three “+”s to signify increasing levels of endemism: three “+”s were attached to taxa with 95–100% of their occurrences found on ultramafics, two “+”s signified taxa with 85–94% fidelity. In his Appendix D, Kruckeberg used one or two exclamation marks (“!!”) to signify increasing levels of fidelity to ultramafic substrates among supposed nonendemic “indicator” taxa. In both appendices, question marks (“?”) were attached to those taxa for which more information was necessary to confidently assign their status. Some of the “tentative” endemics were included in the indicator appendix as well, thus these taxa occur twice in Kruckeberg’s lists.

We combined Kruckeberg’s two scales, and added two levels to yield six levels of ultramafic affinity, where 6 represents a “strict endemic” (≥95% of occurrences on ultramafics), and successively lower values signify lower affinity to the substrate (5 = 85–94% of occurrences; 4 = 75–84%; 3 = 65–74%; 2 = 55–64%; 1 = 45–54%). By this definition, “1” thus represents a species found about half of the time on serpentine. We consider scores between 1 and 2 to indicate “weak indicators”, and a score of about 1 to mean an “indifferent” taxon.

The Kruckeberg fidelity scale crosswalks to ours in the following fashion: “+++” = 6; “++” = 5; “!!” = 3; one “!!” = 2. Those taxa which occurred in both Kruckeberg’s endemic and indicator tables had their two scores averaged: these all fell between “3” and “4” on our scale. For example, *Cu- pressus macnabiana* was rated “+++” in Kruckeberg’s Appendix C (i.e., “6” on our scale), and “!!” [i.e., “2” in our scale] in Appendix D; these were averaged to “4” on our scale.

We attached our categorical levels of ultramafic affinity to all of the species in our hybrid Jepson-Kruckeberg database. In the case of the Kruckeberg taxa, we simply cross-walked the Kruckeberg fidelity codes to our scale as described above, making some adjustments based on more recent taxonomic revisions and combinations. In the case of the Jepson Manual taxa, we were forced to interpret the language used in habitat descriptions to determine levels of affinity. We used the following interpretations of description language to assign affinities: a “6” was assigned where the habitat description categorically stated “serpentine” or “ultramafic” (a “5” if there was some indication that this restriction was not absolute); a “4” was assigned where the modifiers “generally” or “usually serpentine” were used; “especially” or “often” equaled “3”; “sometimes” or “occasionally” equaled “1”. In a few cases, affinity levels were assigned based on ancillary information in the habitat and/or range description rather than on explicit statement of serpentine affinity.

We then conducted a broad survey of the literature, regional botanical experts, and herbaria records to obtain as many sources as possible for each taxon in our database, and to add to the database any taxa we might have overlooked. We manually consulted every species description in a variety of regional and local floras (Clifton 2001; Ertter and Bowerman 2004; Howell 1970; McMinn 1939; Oswald 2002; Smith and Wheeler 1992), and guidebooks to rare and sensitive taxa (Hanson 1999; Hoover et al. 1993; Jimerson et al. 1995; McCarten 1988; McCarten and Rogers 1991; Nakamura and Nelson 2001; Trinity SIPS 2001; USFWS 1998).
We also consulted the CalFlora Online Species Database (CalFlora 2004), and the California Native Plant Society Online Inventory of Rare and Endangered Plants (CNPS 2004). We added columns to our database for each source, and gave scores (1–6, as described above) to each taxon for which a habitat description suggested an ultramafic affinity. Information on serpentine affinity in the CalFlora database is limited to taxa from the Sierra Nevada and to rare taxa statewide, and does not include sufficient information to determine degree of affinity (A. Dennis, personal communication). CalFlora was therefore not treated as a typical “source”, and CalFlora serpentine taxa were simply given a score of 0.5 to be added later to the sum of scores when final ultramafic affinities were calculated (see below). The California Natural Diversity Database (CNDDB) was not searched, as we consulted all of the primary resources originally used to build CNDDB, and the CNPS Online Inventory (see above) is updated from the same contemporary sources as CNDDB.

We calculated preliminary mean affinities for taxa in our database by summing the scores across source columns and adding the CalFlora score (if present), then dividing by the number of sources (not including CalFlora) for the taxon in question. We also calculated the number of sources, the median score, and the standard deviation and standard error of the scores for each taxon. We then sent the database to approximately 40 state and regional experts for their review and input, and asked them to score serpentine affinity using the 1–6 scale for taxa with which they were familiar. These individuals included botanists employed by federal and state land management agencies, universities, museums, non-governmental organizations, and private consulting firms. We received 17 substantive replies, and incorporated their input into an updated database.

The next step was to ensure that we had at least three sources of serpentine affinity for each taxon in our database; given the great differences between the Jepson Manual and Kruckeberg’s list, we felt a third opinion was important. We focused on those taxa for which we had less than three sources, as well as those with high variability in scores. We began by consulting the habitat descriptions in Munz and Keck (1968) for every taxon in our database with less than three sources. We then turned to Herbaria accession records. We searched the online “SMASCH” accession databases of the UC and Jepson Herbariums at UC-Berkeley at (UC- JEPS 2004c) for all taxa with one or two sources, and for all taxa with affinity-score standard deviations ≥ 1.0 (a total of 548 taxa). For any Northern California taxa remaining with less than three sources and/or high variability, we then searched the online accession database of the Biological Sciences Herbarium at Chico State University (CSU-BSH 2004; a total of 164 taxa were searched).

In our online accession database research, we followed the following protocol:

1. We began with the most recent accession records and worked backwards, as habitat descriptions before the mid 1970’s usually lack sufficiently detailed information on substrate and location.

2. We consulted the habitat description for each record. If the description included enough information to determine the substrate, we noted whether it was ultramafic or non-ultramafic. We did not count multiple accession records from the same collecting trip and location as different records.

3. On the average, about ⅓ of the accession records consulted had sufficient information to determine if a collection had been made on ultramafics or not. Not all of these determinations were made simply based on the collector’s habitat description. For example, many California counties do not contain outcrops of ultramafic rocks (e.g., Los Angeles, San Diego, San Bernardino, Modoc). Collections from these counties were coded as “nonserpentine” even where habitat descriptions were missing. Also, collections from well-known collecting locations on ultramafics (e.g., Blue Banks in Glenn County, Red Butte in Siskiyou County, or the mouth of 18-Mile Creek on the Middle Fork Smith River, Del Norte County) were coded as “serpentine” even where habitat descriptions were missing. Finally, where we had trouble getting a sufficient number of records with habitat descriptions, or where it was otherwise critical to get more information, we used location information in the accession record (where it existed) to do further research. We used TOPO! Software (National Geographic Maps 2000) to locate coordinates or named locations and then consulted geological maps (ranging from 1:250,000 to 1:25,000) to determine if the location was on an ultramafic outcrop. Only those occurrences which could be confidently assigned to ultramafics were identified as such.

4. We continued until we had recorded habitat information from at least 10% of the total accession records for the species in question. Our minimum was 10 records, unless there were fewer than 10 records with habitat descriptions and reasonably locatable site information (268/548 taxa had fewer than 10). Our maximum was usually 20, although we went beyond 20 in some cases.

5. We summarized the accession record results for each taxon by dividing the total number of records with sufficient habitat or location information to determine substrate by the number of records recording serpentine/ultramafics, and then multiplied the result by 100 to get a percentage. We then cross-walked the percent value to our scale of ultramafic affinity: 95–100% of records on ultramafics = 6; 85–94% = 5; 75–84% = 4; 65–74% = 3; 55–64% = 2; 45–54% = 1; 35–44% = 0.75; 25–34% = 0.5; 15–24% = 0.25; >0–14% = 0.1; 0 = 0.

Finally, T. Nelson and S. Carothers also used the
Humboldt State University Herbarium to provide information to us on a number of underdocumented taxa from Northwestern California.

In our accession records research, we necessarily assumed that: (1) the taxon itself was correctly identified on the accession record; (2) the substrate was correctly identified by the collector; and (3) ultramafic substrates were neither more nor less likely to be identified correctly (or at all) than other substrates. The last assumption is probably flawed, as serpentine and other “charismatic” substrates—given their close connection to plant endemic taxa and their relative ease of identification—are almost certainly more likely to be identified than “normal” substrates. This could theoretically lead to accession records “overstating” the degree of a taxon’s affinity to ultramafic substrates. In practice, however, we found that the accession records were generally somewhat more conservative than our literature sources vis-à-vis the serpentine affinities of the taxa in our database.

Our final database included 18 columns of information sources for serpentine affinity, plus a column for CalFlora. We summed these affinity values and took their mean (not including CalFlora in the denominator). We also calculated the mean without CalFlora, the median, the standard deviation, and the standard error. We identified each taxon by taxonomic category (pteridophyte, gymnosperm, dicot or monocot), and by lifeform (annual forb, perennial forb, annual graminoid, perennial graminoid, shrub, tree). For rare taxa, we added the rarity rating from the California Native Plant Society Online Database of Rare and Endangered Plants (version 6.04d, 11-12-2004). The following information was also added to the complete database: geographic distribution in California for each taxon (by Jepson Manual geographic subdivisions); elevational range (from Hickman 1993); the geographic distribution of, and number of species of the genus of each taxon (from Mabberly 1996); and the common name (from Hickman 1993, and the Natural Resource Conservation Service PLANTS online database [USDA-NRCS 2005]). Aside from a summary of the geographic distribution, this information is not presented in the current paper, but is available on request from the first author, as are the affinity values calculated for each source.

RESULTS

A summary table of the current database is presented in Appendix 1. Appendix 1 includes 669 taxa, ranging in affinity from 6.25 to 1.00 (some values exceed 6 because they were identified as serpentine taxa in the CalFlora Database). Our full database includes 698 taxa, 29 of which have mean serpentine affinities of < 1; we did not include these taxa in the current paper. The greatest number of sources we located for any single taxon was nine (four taxa). We found eight sources for eight taxa and seven sources for 19 taxa; 587 taxa had between three and six sources. Eighty-one taxa had fewer than three sources (77 with two, three with one). Somewhat more than half of the taxa (387) in our original list had standard deviations for serpentine affinities > 1.0.

Since our serpentine affinities are calculated as the means of multiple sources, our values fall on a continuous scale, rather than in categories. Given this, we recognized taxa with mean affinities > 5.5 as “strict endemics” (analogous to Kruckeberg’s “++”, or taxa with > 95% of their occurrences on ultramafics), and taxa with mean affinities > 4.5 and < 5.5 as “broad endemics” (analogous to Kruckeberg’s “+”, taxa with about 85–94% of their occurrences on ultramafics). Using these definitions, 164 taxa are strict endemics, while 82 taxa are broad endemics, for a total of 246 endemic taxa; 176 of these are full species. Among the remaining taxa, 123 are “strong serpentine indicators” (Kruckeberg 1984), with scores ranging from 2.5 to 3.4 (about 65–74% of their occurrences on ultramafics); 150 are “weak indicators”, falling between 1.5 and 2.4 on our scale (< 55–64% of their occurrences on ultramafics); and 79 fall in a gray area between weak indicators and indifferent taxa (between 1.0 and 1.4 on our scale, or about 50–54% of occurrences. Seventy-one taxa have affinity scores between 3.5 and 4.4 (about 75–84% of their occurrences on ultramafics), and thus represent the transition from strong indicators to broad endemics.

Six families account for more than half of all the endemics: Asteraceae, Liliaceae, Brassicaceae, Polygonaceae, Scrophulariaceae, and Apiaceae (Table 1). The 20 most important plant families among the serpentine endemics are shown in Fig. 1, with the percentage of the serpentine endemic flora that they contribute, as well as the percentage of the total California endemic flora that they contribute. Families that proportionally contribute more to the serpentine endemic flora than to the California endemic flora include Liliaceae, Brassicaceae, Polygonaceae, Linaceae and Caryophyllaceae. Families whose level of endemism is much lower on serpentine than it is statewide include Fabaceae, Poaceae, Boraginaceae, and Rosaceae (Fig. 1).

The most diverse genera in our list of serpentine endemics are *Sreptanthus* (Brassicaceae) and *Erigonum* (Polygonaceae), followed by *Hesperolimon* (Linaceae) and *Arctostaphylos* (Ericaceae) (Table 2). There are 21 genera with at least four taxa among the endemics. These represent 14 plant families, with Asteraceae (four genera among the endemics), Liliaceae (three genera), Scrophulariaceae (two genera) and Brassicaceae (two genera) the only families with multiple genera in the list. Figure 2 compares the contribution of these genera to the serpentine endemic flora with their contribution to the California endemic flora. All but five or six of these genera have a greater level of endemism to serpentine than they have within the State as a
TABLE 1. NUMBERS OF SERPENTINE ENDEMIC AND NEAR ENDEMIC TAXA, BY FAMILY. 1 Strict endemics. 2 Strict endemics plus broad endemics. 3 Strict and broad endemics plus "near endemic" taxa (taxa transitional from strong indicators to broad endemics).

Family	Serpentine affinity score	Total taxa		
	≥5.5	≥4.5	≥3.5	
Asteraceae	26	37	45	106
Liliaceae	15	28	37	85
Brassicaceae	21	26	31	46
Polygonaceae	10	17	19	39
Scrophulariaceae	9	14	18	37
Apiaceae	7	10	13	32
Linaceae	8	9	14	21
Ericaceae	5	8	10	15
Polemoniaceae	6	7	8	15
Caryophyllaceae	5	7	8	18
Fabaceae	4	7	10	21
Lamiaceae	4	6	10	10
Brassicaceae	5	7	13	15
Rhamnaceae	4	5	6	15
Campanulaceae	3	5	8	12
Onagraceae	3	5	7	12
Hydrophyllaceae	4	4	8	15
Rubiaceae	3	4	4	8
Convolvulaceae	1	4	5	6
Cypereaceae	1	4	5	8
Poaceae	1	3	3	19
Portulacaceae	0	3	5	16
Boraginaceae	2	3	10	15
Gentianaceae	2	2	2	6
Iridaceae	2	2	2	6
Malvaceae	2	2	5	9
Salicaceae	2	2	3	5
Garryaceae	1	2	2	5
Rosaceae	1	2	5	10
Cupressaceae	0	2	3	6
Viaceae	0	2	3	5
Asclepiadaceae	1	1	1	3
Berberidaceae	1	1	1	3
Dryopteridaceae	1	1	1	3
Fagaceae	1	1	1	3
Lentibulariaceae	1	1	1	3
Papaveraceae	1	1	1	3
Ranunculaceae	1	1	1	3
Orchidaceae	0	1	1	2
Petidae	0	1	1	2
Verbenaceae	0	1	1	2
Cistaceae	0	0	0	1
Orobanchaceae	0	0	0	1
Pinaceae	0	0	1	1
Plantaginaceae	0	0	1	1
Polygalaceae	0	0	0	1
Primulaceae	0	0	0	1
Sarraceniaceae	0	0	1	1
Saxifragaceae	0	0	1	2
Sterculiaceae	0	0	0	1

Totals 164 246 315 669

whole. These genera include Streptanthus, Hesperolinon, Lomatium and Minuartia. Only one genus (Phacelia) contributes less to the serpentine endemic flora than it does to the State as a whole; Arctostaphylos contributes a similar percentage to both floras (Fig. 2).

Of the taxa in our database, there are 532 dicots (of which 204 are endemic), 119 monocots (38 endemics), 12 gymnosperms (2 endemics) and six pteridophytes (2 endemics). 207 taxa are annual forbs (of which 71 are endemics, including 7 of 14 that can also be perennial/biennial), 383 are perennial forbs (150 endemics, including 7 "annuals" and 6 taxa which can also be shrubs), 24 are perennial graminoids (7 endemics), 64 are shrubs (23 endemics, including 6 taxa shared with the perennial forbs and 1 which assumes both tree and shrub forms), and 12 are trees (2 endemics) (Appendix 1). Of the endemic perennial forbs, 24 are bulb plants (all Liliaceae), 17 are rhizomatous (from ten different Families), three are hemiparasites (Scrophulariaceae), and one is carnivorous (Lentibulariaceae) (Appendix 1).

Using Kruckenberg's (1984) physiographic provinces of California (which correspond more or less to major geographic subdivisions mapped in the Jepson Manual (Hickman 1993)), we found the following geographic distribution of serpentine endemic taxa (Fig. 3): The North Coast, considered in toto (i.e., the Jepson Manual's NCo and NCoR subregions (Hickman 1993)), supports approximately 118 serpentine endemics, with 49 of these restricted to that area. The Klamath Region (Jepson Manual subregion KR), supports 98 endemic taxa, with 54 restricted to that area (including taxa also found in neighboring SW Oregon). The San Francisco Bay Area (Jepson Manual subregion SnFrB plus the sections of NCo and CCo bordering it) supports about 51 endemics, with 24 found only there. The South Coast Ranges, including the Channel Islands and the Santa Ana Mountains (i.e., Jepson Manual subregions CCo, SCoR plus the few ultramafic outcrops that occur in the Jepson SW Region), support 43 total endemics with 24 restricted to that area. The Sierra Nevada (Jepson Manual region SN) support 38 total serpentine endemic taxa, with 21 taxa restricted to the Range (Fig. 3).

Of the 669 taxa in our database, 295 are listed as "rare" or "uncommon" by the California Native Plant Society (CNPS) (Appendix 1). These include 194 of the 246 taxa that we consider to be either strict or broad serpentine endemics. One serpentine endemic taxon, Arctostaphylos hookeri subsp. franciscana, is extinct in the wild and survives only in cultivation. Of the 295 rare or uncommon taxa, 154 are on CNPS List 1b, which lists plants considered threatened or endangered by either the State or Federal governments, as well as unlisted plants which CNPS considers rare enough to warrant listing; 111 of these List 1b plants are serpentine endemics by our definition. Nine taxa (seven endemics) from Appendix 1 are on CNPS list 2, which contains plant taxa that are rare in California but are not restricted completely to the State; all of these taxa are either State listed and threatened or endangered,
or are eligible for listing. Eight taxa (four endemics) in Appendix 1 are found on CNPS list 3, which lists uncommon taxa for which more information is required. Of taxa in Appendix 1, 123 (71 endemics) are on CNPS list 4, which contains taxa of “limited distribution or infrequent throughout a broader area in California”.

Table 2. Genera with more than Three Taxa Endemic to Serpentine.

Genus	Family	Endemic taxa
Streptanthus	Brassicaceae	18
Eriogonum	Polygonaceae	14
Hesperolinon	Linaceae	9
Arctostaphylos	Ericaceae	8
Allium	Liliaceae	7
Lomatium	Apiaceae	7
Packera (Senecio)	Asteraceae	6
Calochortus	Liliaceae	5
Cordylanthus	Scrophulariaceae	5
Arabis	Brassicaceae	4
Calystegia	Convolvulaceae	4
Carex	Cyparrhaceae	4
Castilleja	Scrophulariaceae	4
Cirsium	Asteraceae	4
Erigeron	Asteraceae	4
Fritillaria	Liliaceae	4
Galium	Rubiaceae	4
Lessingia	Asteraceae	4
Minuartia	Caryophyllaceae	4
Monardella	Lamiaceae	4
Phacelia	Hydrophyllaceae	4

Discussion

In 1984, Kruckeberg estimated that the serpentine endemic flora of California numbered approximately 220 taxa (about 180 full species), and that a further 230 taxa were sufficiently associated with ultramafics to be “indicators” of the substrate. Thus, Kruckeberg believed that about 450 taxa were associated with serpentine in California. Although our results suggest that the number of serpentine-associated taxa is closer to 670, they also suggest that Kruckeberg’s (1984) estimate of the number of full-species endemics was remarkably accurate (180 vs. 176). As Kruckeberg’s numbers also suggested, serpentine endemics therefore comprise approximately 12.5% (176/1410) of the plant species endemic to California. Based on numbers from the Jepson Manual (Hickman 1993; R. Moe personal communication), the percentage of serpentine endemics among California endemic species, subspecies and varieties is about 11.4% (246/2153).

Kruckeberg’s (1984) estimates of endemics by California geographic region are somewhat less accurate than his statewide estimate (see Fig. 3), but Kruckeberg’s data sources in the 1970’s and early 1980’s were extremely limited compared to ours. As did Kruckeberg, we found that the North Coast Ranges support more serpentine endemics plants than any other geographic region, but that the Klamath Ranges (and adjoining SW Oregon) support many more restricted endemics than Kruckeberg thought was the case (54 vs. 30). Kruckeberg’s estimates for the numbers of restricted endemics in
FIG. 2. The twenty-one most important genera of serpentine endemic plants (i.e., including strict and broad serpentine endemics), with the percentage of endemic species they contribute to the serpentine endemic flora in California, and to the California endemic flora as a whole.

the North Coast Ranges and the Bay Area are very similar to our numbers (Fig. 3), but he overestimated the number of endemics in the South Coast Ranges (36 vs. 24). Kruckeberg estimated that either 13 or 16 (depending on whether one goes by the text or the tables in Appendix E) endemic taxa were restricted to the Sierra Nevada; we found 21 taxa thus restricted.

Reasons for differences between our numbers and Kruckeberg’s (1984) are many, but belong to two broad categories. The primary reason is quality and quantity of information. In many cases, Kruckeberg’s information had to come through his own field experience, or through hard copy herbarium records, which—before the late 1970’s—were notoriously uninformative when it came to habitat description. In contrast, many data sources we accessed were available electronically and could be queried and retrieved remotely.

The other principal reason for difference is the inevitable discoveries and taxonomic reorganizations that occur over a 20-year period. Kruckeberg’s work came before publication of the Jepson Manual (Hickman 1993), which contained many significant changes in California plant taxonomy. A considerable number of serpentine endemic taxa in the Jepson Manual were wholly unknown to Kruckeberg in 1984. Examples include Calochortus raichei S. Farwig & V. Girard, Minuartia stolonifera T. W. Nelson & J. P. Nelson, Perideridia bacigalupii Chuang & Constance, and Monardella stebbinsii Hardham & J. Bartel. Since the Manual’s publication, there have been further changes (e.g., Barkley 1999; Baldwin 1999; Porter and Johnson 2000). Serpentine endemic taxa named since publication of the Jepson Manual include Harmonia guggolziorum B. G. Baldwin, Carex serpentinicola P. F. Zika, and Silene serpentinicola T. W. Nelson & J. P. Nelson.

As a null hypothesis, one might expect that the distribution of endemic plant taxa across plant families and genera on California serpentines would more or less mirror the distribution of endemics in the State as a whole. Our data demonstrate that this assumption is incorrect at both taxonomic levels, but the root of this difference seems to be largely at the level of genus. A number of families contribute a much higher proportion of the serpentine
 endemic flora than they do of the California endemic flora (Fig. 1), but our database shows that most of these ‘‘anomalies’’ are due to one or two genera within those families (see Fig. 2). Examples include Fritillaria and Allium in Liliaceae, Minuartia in Caryophyllaceae, Streptanthus and Arabis in Brassicaceae, Hesperolinon in Linaceae, and Eriogonum in Polygonaceae. Many of these genera are well-known as foci of neoendemism (i.e., genera with groups of actively and rapidly speciating taxa) (Raven and Axelrod 1978). It is interesting that such prominent California plant families like Scrophulariaceae, Hydrophyllaceae, Boraginaceae, Onagraceae and Polemoniaceae are underrepresented on serpentine substrates. Certain highly diverse genera in California are also proportionally underrepresented as serpentine endemics (e.g., Clarkia, Phacelia, Ceanothus, Gilia, and Mimulus).

As we constructed our database, taxa with high variability in serpentine affinity scores were tagged for further research (e.g., through accession records; see Methodology) so that we might be able to discern taxa that truly varied geographically in their affinities from taxa that simply suffered from inadequate or faulty information. The former were called ‘‘regional indicators’’ by Kruckeberg (1984), i.e., taxa that are considered serpentine endemics or indicators in one part of their range but show less or no affinity for ultramafic substrates in other parts of their range. In his Appendix D, Kruckeberg (1984) tried to summarize where the different regional indicators he had identified occurred on ultramafics. We refer the reader to Kruckeberg (1984) for details on these taxa (most of which also occur in our database), but most regional indicators in our database can be recognized by searching for taxa with: (1) relatively wide geographic distributions, (2) lower mean serpentine affinity scores, and (3) high standard deviations in their affinity scores. Table 3 lists ten examples of regional indicator taxa in our database.

Some of the variability in our serpentine affinity scores is thus due to geographic variation in affinities, but some is also due to inadequate, statistically biased, or even faulty information from our sources. We attempted to offset these sources of variability by including as many sources as possible in our database (and by using accession records), but were not successful in all cases. We consider any taxon with a standard deviation in affinity score > 1.5, or having fewer than three sources, as being in ‘‘need of further research’’; this includes about a third of the taxa in our database. Examples of such taxa include: Lupinus lapidicola—a called a strict serpentine endemic by Kruckeberg (1984) and a strong serpentine indicator by CNPS (2004), and with 2/2 accession records in SMASCH with ultramafic habitat descriptions, but stated as occurring only on granites by the Jepson Manual (Hickman 1993) and Munz and Keck (1973); Phacelia pachelioides—Kruckeberg (1984) and V. Yadon (personal communication) believe this is a strict endemic, but the Jepson Manual is mute on the subject, and only 1/3 accession records in SMASCH are on ultramafics (but the two nonserpentine locations may have misidentified geology given the location); and Allium lacunosum var. lacunosum—both the Jepson Manual and Kruckeberg rate this as a strict endemic, Munz and Keck score it a strong indicator, but SMASCH has only 1/6 records on ultramafics.

Some species had surprising levels of ultramafic affinity. For example, our database includes a number of taxa that we personally have only rarely seen

Table 3. Examples of “Regional” Serpentine Indicators, sensu Kruckeberg (1984).

Taxon	Distribution	Comments
Allium amplectens	CA	CA—broad endemic; Northern CA—weak indicator at best
Aspidotis densa	CA	Marin County—broad endemic; rest of NC—weak to strong indicator; KL—broad endemic to strong indicator, depending on locality; rest of CA—strong indicator
Festuca californica	CA	Northern SN and KL—strong indicator to broad endemic; NC—primarily weak indicator; rest of CA—indifferent
Lupinus onustus	KL, SN	Mendocino County and neighboring NC—broad endemic; rest of NC and SC—strong indicator; KL—weak indicator; SN—weak indicator to indifferent
Pinus jeffreyi	KL, NC, SC, SN	KL and NC—± strict endemic; Westslope of northern SN—strong indicator; rest of CA—indifferent
Quercus vaccinifolia	KL, NC, SN	Mendocino County and neighboring NC—broad endemic; Northern NC and KL—weak indicator; SN—indifferent
Sedum obtusatum	KL, SN	KL and NC—± broad endemic; SN—weak indicator or indifferent
Stachys pycnantha	CA	Marin County—broad endemic to strong indicator; Northern SN—very weak indicator; rest of CA—weak indicator or indifferent
Viola douglasii	CA	Plumas County—endemic; NC—strong indicator; rest of CA—indifferent

1 CA = California, KL = Klamath Ranges, NC = North Coast Ranges, BA = San Francisco Bay Area, SC = South Coast Ranges, SN = Sierra Nevada.
on serpentine (e.g., *Lathyrus vestitus* var. *vestitus*, *Apiastrum angustifolium*, *Emmenanthe penduliflora* var. *penduliflora*). It also includes other taxa which we have characterized as being clearly indifferent to ultramafic substrates, but which scored higher based on our sources (e.g., *Adenostoma fasciculatum*, *Pinus balfouriana* ssp. *balfouriana*). As noted above, some of these “discrepancies” may be due to inadequate or biased data—the ultramafic affinities of these types of taxa will drop as we collect more information. Many of these surprising affinities are probably real however, and they are simply a sign of our limited knowledge of the relationships between California plant life and ultramafic substrates.

In accession records, and in the literature, botanists and ecologists frequently misidentified basic rock types. For example, in accession records we found a number of examples of peridotite being called “volcanics” or even “sandstones”. We also found multiple examples, in accession records as well as in the literature, of gabbro and other basic intrusive rocks being misidentified as ultramafics. Gabbro and “basic” rocks are “mafic” in composition—that is to say, they usually contain visible feldspars and they are geochemically distinct from ultramafic rocks. For example, the average alkali-gabbro contains 4–5 times as much Na as peridotite, 5–10 times as much P, 3–4 times as much K as peridotite, and about ½ as much Mg (Ehlers and Blatt 1982). The famous gabbro outcrops of Eldorado County (Pine Hill) or San Diego County are therefore not ultramafic, even though the effect of the substrate on plant physiognomy and community composition may appear similar. A number of species in our database appear to be primarily, if not exclusively gabbro endemics, but we lacked sufficient information to remove them from our list. These include *Acanthomintha ilicifolia*, *Fremontodendron californicum* ssp. *decumbens*, and *Calochortus weedi* var. *vestitus*.

As has been frequently noted (Mason 1946a, b; Raven and Axelrod 1978; Kruckeberg 1984, 2002; Skinner and Pavlik 1994; McCarten 1997), California’s ultramafic soils support a very high proportion of the State’s rare plants. Based on our database, almost 11% (111/1021) of California’s rare plant taxa are either broadly or strictly restricted to ultramafic substrates; 15% of List 1b taxa (154/1021) show high affinity for ultramafic substrates (i.e., they are endemics or indicators). In northwestern California, 15% of plant taxa managed as “sensitive” by the Forest Service are serpentine endemics, and fully 30% are closely associated with ultramafics (J. K. Nelson and L. Hoover personal communication). In 2002, Kruckeberg wrote that “preservation of serpentine habitats in California is spotty, inadequate, and largely coincidental”. Given the great importance of ultramafic substrates to the richness and distinctiveness of the California flora, the conservation of these unique habitats should be a high priority for land management agencies and private conservation organizations throughout the State.

Our database of serpentine affinity updates, and expands on the widely-used tables of serpentine endemic and “indicator” taxa published in 1984 by Art Kruckeberg in his classic monograph on California serpentine ecology. Our data are also a quantitative synthesis of the qualitative (and usually incomplete) allusions to serpentine affinity contained in habitat descriptions in California floras and flora databases, including Munz and Keck (1973), Hickman (1993), Oswald (2002), the online CalFlora Database (CalFlora 2004), and the California Native Plant Society Online Inventory of Rare and Endangered Plants (CNPS 2004). Our data on serpentine endemicity should prove valuable to efforts in ecology, biosystematics (Baldwin 1995), conservation, and land management. In particular, we hope that our database will help us better understand the nature and degree of serpentine endemism in the California flora, and we hope it will spur the collection of additional, critical information necessary for conserving the rare plants and habitats of ultramafic substrates.

Acknowledgements

We would like to thank the following individuals for providing information on plant affinities to ultramafic substrates: Joe Callizo, Sydney Carothers, Susan Erwin, Linnea Hanson, Lisa Hoover, David Isle, Marla Knight, Niall McCarten, John McRae, Julie Kierstad Nelson, Tom Nelson, Robert Preston, Barbara Williams, and Vern Yadon. Dick Moe of the Jepson Herbarium provided us with data on identities and numbers of taxa endemic to California. Special thanks to Art Kruckeberg and Niall McCarten for comments on early versions of the manuscript.

Literature Cited

Baldwin, B. G. 1995. A new prospect for California botany: integrating biosystematics and phylogenetics. Madrono 42:154–167.

———. 1999. New combinations and new genera in the North American tarweeds. Novon 9:462–471

———. 2001. *Harmonia guggolziiorum* (Compositae-Madinae), a new tarweed from ultramafics of southern Mendocino County, California. Madroño 48:293–297.

Barclay, T. M. 1999. The segregates of *Senecio*, s.l. and *Cacalia*, s.l., in the Flora of North America North of Mexico. Sida 18:661–672.

Brooks, R. R. 1987. Serpentine and its vegetation. Dioscorides Press, Portland, OR.

CalFlora. 2004. CalFlora Species Database (http://www.calflora.org). CalFlora, Berkeley, CA.

Clifton, G. 2001. Plumas County and Plumas National Forest flora. Unpublished flora printed by the Plumas National Forest, Quincy, CA.

CNPS. 2004. California Native Plant Society Online Inventory of Rare and Endangered Plants (http://www.calnet/~levine/cgi-bin/cnps/sensinv.cgi). California Native Plant Society, Sacramento, CA.

CSU-BSH. 2004. Biological Sciences Herbarium at Chico.
ERTTER, B. AND M. L. BOWERMAN. 2004. The flowering plants and ferns of Mount Diablo, California. California Native Plant Society, Sacramento, CA.

ERITTER, B. AND M. L. BOWERMAN. 2004. The flowering plants and ferns of Mount Diablo, California. California Native Plant Society, Sacramento, CA.

GRAM, W. K., E. T. BORER, K. L. COTTINGHAM, E. W. SEABLOOM, V. BOUCHER, B. E. KENDALL, L. GOLDWASSER, F. MICHELL, AND R. S. BURTON. 2004. Distribution of plants in a California serpentine grassland: are rocky hummocks spatial refuges for native plants. Plant Ecology 172:159–171.

EHlers, E. G. AND H. BLATT. 1982. Petrology. W. H. Freeman and Company, San Francisco, CA.

HANSON, L. (ed.). 1999. Plumas National Forest rare plant handbook. USDA-Forest Service Publication R5-BOT-TP-007. USDA-Forest Service, Pacific Southwest Region, Vallejo, CA.

HARRISON, S. K. JR., AND J. F. QUANN. 2000. Climatic and spatial patterns of diversity in the serpentine plants of California. Diversity and Distributions 6:153–161.

HARRISON, S. B. D. INOUE, AND H. D. SAFFORD. 2003. Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conservation Biology 17: 837–845.

HARRISON, S. H. D. SAFFORD, AND J. WAKABAYASHI. 2004. Does the age of exposure of serpentine explain variation in endemic plant diversity in California? International Geology Review 46:235–242.

HICKMAN, J. C. (ed.). 1993. The Jepson Manual. Higher plants of California. University of California Press, Berkeley, CA.

HOBBS, R. J. AND H. A. MOONEY. 1991. Effects of rainfall variability and gopher disturbance on serpentine grassland dynamics. Ecology 72:59–68.

HOOVER, L., S. DANIEL, AND S. MATTHEWS. 1993. A field guide and key to the sensitive plants of Six Rivers National Forest, California. USDA-Forest Service, Six Rivers National Forest, Eureka, CA.

HOWELL, J. T. 1970. Marin flora. Manual of the flowering plants and ferns of Marin County, California, 2nd edition. University of California Press, Berkeley, CA.

HURD, C. L. JR., J. W. DUNN, L. S. HAMBURG, R. M. CREASY, AND P. VITOUSEK. 1990. Effects of soil resources on plant invasion and community structure in California serpentine grassland. Ecology 71:478–491.

JIMERSON, T. J., L. D. HOOVER, E. A. MCGEE, G. DEINITTO, AND R. M. CLEASBY. 1995. A field guide to serpentine plant associations and sensitive plants in northwestern California. USDA-Forest Service Publication R5-ECOL-TP-006. USDA-Forest Service, Pacific Southwest Region, San Francisco, CA.

KRUCKEBERG, A. R. 1984. California serpentine: flora, vegetation, geology, soils and management problems. University of California Press, Berkeley, CA.

———. 2002. Geology and plant life: the effects of landforms and rock types on plants. University of Washington Press, Seattle, WA.

MABBERLY, D. J. 1996. The Plant Book. Cambridge University Press, Cambridge, England.

MASON, H. L. 1946a. The edaphic factor in endemism. I. The nature of environmental influences. Madroño 8: 209–221.

———. 1946b. The edaphic factor in endemism. II. The geographic occurrence of plants of highly restricted patterns. Madroño 8:241–257.

MCCARTEN, N. F. 1988. Rare and endemic plants of Lake County serpentine soil habitats. Endangered Plant Project, California Department of Fish and Game, Sacramento, CA.

———. 1997. North American serpentine flora. In Centres of Plant Diversity, Vol. 3. The Americas. World Wildlife Fund for Nature and IUCN, Oxford, U.K.

MCCARTEN, N. E. AND C. ROGERS. 1991. Habitat management study of rare plants and communities associated with serpentine soil habitats in the Mendocino National Forest. USDA-Forest Service, Mendocino National Forest, Willows, CA.

MCINNER, H. E. 1939. An illustrated manual of California shrubs. University of California Press, Berkeley, CA.

MCNAUGHTON, S. J. 1968. Structure and function in California grasslands. Ecology 49:962–972.

MENKE, H. AND P. F. ZIKA. 1992. A new annual species of Minuartia (Caryophyllaceae) from Oregon and California. Madroño 39:289.

MUNZ, P. A. AND D. D. KECK. 1973. A California flora. University of California Press, Berkeley, CA.

NAKAMURA, G. AND J. K. NELSON. 2001. Illustrated field guide to selected rare plants of Northern California. University of California Agriculture and Natural Resources Publication 3395, Oakland, CA.

NATIONAL GEOGRAPHIC MAPS. 2000. California. Seamless USGS topographic maps on CD-ROM. National Geographic Holdings, San Francisco, CA.

NELSON, T. W. AND J. P. NELSON. 2004. A new species of Silene (Caryophyllaceae) from the serpentes of Del Norte County, California. Madroño 51: 384–386.

USDA-NRCS. 2005. The PLANTS Database, Version 3.5 (http://plants.usda.gov). National Plant Data Center, Baton Rouge, LA.

OSWALD, V. H. 2002. Selected plants of Northern California and adjacent Nevada. Studies From The Herbarium 11, California State University, Chico, CA.

PORTER, J. M. AND L. A. JOHNSON. 2000. A phylogenetic classification of Polemoniaceae. Aliso 19:55–91.

RAVEN, P. H. AND D. I. AXELROD. 1978. Origins and relationships of the California flora. University of California Publications in Botany, Vol. 72. University of California Press, Berkeley, CA.

SAFFORD, H. D. AND S. HARRISON. 2004. Fire effects on plant diversity in serpentine versus sandstone chaparral. Ecology 85: 539–548.

SEABLOOM, E. W., E. T. BORER, V. L. BOUCHER, R. S. BURTON, K. L. COTTINGHAM, L. GOLDWASSER, W. K. GRAM, B. E. KENDALL, AND F. MICHELL. 2003. Competition, seed limitation, disturbance, and reestablishment of California native annual forbs. Ecological Applications 13:575–592.

SKINNER, M. W. AND B. M. PAVLIK. 1994. Inventory of rare and endangered plants of California, 5th ed. California Native Plant Society, Sacramento, CA.

SMITH, G. L. AND C. R. WHEELER. 1992. A flora of the vascular plants of Mendocino County, California. University of San Francisco, San Francisco, CA.

TRINITY SIPS. 2001. Special interest plant species of the Trinity ultramafic region. Funded research proposal by Sierra Pacific Industries, Shasta-Trinity National Forests, California Department of Fish and Game, and University of California–Berkeley. Available from the Forest Botanist, Shasta-Trinity National Forests, Redding, CA.

UC-JEPS. 2004a. The Jepson Manual, online version (http://ucjeps.berkeley.edu/interchange/Literature/...
es.html). University and Jepson Herbaria, University of California, Berkeley, CA.

UC-JEPS. 2004b. Jepson Flora Project (http://ucjeps.berkeley.edu/interchange/Index_newtax.html). University and Jepson Herbaria, University of California, Berkeley, CA.

UC-JEPS. 2004c. Species Management System for California Herbaria (http://www.mip.berkeley.edu/www_apps/smasch/smasch_accession.html). University and Jepson Herbaria, University of California, Berkeley, CA.

U.S. FISH AND WILDLIFE SERVICE. 1998. Draft recovery plan for serpentine soil species of the San Francisco Bay Area. U.S. Fish and Wildlife Service, Portland, OR.

WAGNER, D. W. 1979. Systematics of Polystichum. Pteridologia 1:1–64.

ZIKA, P. F., K. KUYKENDALL, AND B. WILSON. 1998. Carex serpentinicola (Cyperaceae), a new species from the Klamath Mountains of Oregon and California. Madroño 45:261–270.
APPENDIX 1. PLANT TAXA WITH HIGH AFFINITY TO ULTRAMAFIC SUBSTRATES IN CALIFORNIA. Ordered by family and taxon. ¹ Names as in Hickman (1993); names in parentheses are based on more recent revisions (see text for sources). ² Affinity: SE = strict endemic, BE = broad endemic, BE/SI = broad endemic/strong indicator, SI = strong indicator, WI = weak indicator, WI/IN = weak indicator/indifferent. ³ Mean affinity score, including information from CalFlora. ⁴ Sum of all affinity scores, including CalFlora. ⁵ Median of affinity scores. ⁶ Standard deviation of affinity scores. ⁷ Standard error of affinity scores. ⁸ California Native Plant Society rarity codes, from CNPS Inventory of Rare and Endangered Plants of California, 11-2004. ⁹ Geographic distribution: KL = Klamath Ranges, NC = North Coast Ranges, BA = San Francisco Bay Area, SC = South Coast Ranges, SN = Sierra Nevada. ¹⁰ Taxonomic category. ¹¹ carn = carnivorous, cesp = cespitose, hemipar = hemiparasitic, paras = parasitic, rhiz = rhizomatous. See text for more information.

Taxon¹	Family	Aff²	Mean³	Sum⁴	Sources Med.⁵	SD⁶	SE⁷	Rarity⁸	Geog. Dist.⁹	Tax. Cat.¹⁰	Lifeform¹¹
Angelica tomentosa	Apiaceae	SI	2.7	8	3	3.0	1.5	0.9	1 1 1	dicot	perennial forb
Apiastrum angustifolium	Apiaceae	WI	1.5	7.6	5	0.1	2.5	1.1	1 1 1 1	dicot	annual forb
Ligusticum californicum	Apiaceae	WI/IN	1.4	5.75	4	1.4	1.3	0.7	1 1 1	dicot	perennial forb
Lomatium ciliolatum	Apiaceae	SE	6.0	18	3	6.0	0.0	0.0	1 1 1	dicot	perennial forb
Lomatium congdonii	Apiaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b 1	dicot	perennial forb
Lomatium dasycarpum	Apiaceae	BE/SI	3.6	21.5	6	3.5	1.9	0.8	1 1 1	dicot	perennial forb
Lomatium engelmanii	Apiaceae	SE	5.8	34.5	6	6.0	0.8	0.3	4 1 1	dicot	perennial forb
Lomatium hooveri	Apiaceae	SE	5.9	29.5	5	6.0	0.4	0.2	4 1	dicot	perennial forb
Lomatium howellii	Apiaceae	SE	6.1	24.5	4	6.0	0.0	0.0	4 1	dicot	perennial forb
Lomatium macrocarpum	Apiaceae	SE	2.7	8	3	3.0	0.6	0.3	1 1 1	dicot	perennial forb
Lomatium marginatum	Apiaceae	BE	5.0	25	5	6.0	1.4	0.6	1 1 1	dicot	perennial forb
Lomatium observatorium	Apiaceae	WI/IN	1.4	2.75	2	1.4	0.9	0.6	1 1	dicot	perennial forb
Lomatium parvifolium	Apiaceae	SI	3.3	13	4	3.0	2.3	1.1	4 1	dicot	perennial forb
Lomatium repandum	Apiaceae	SI	3.2	12.6	4	3.0	2.4	1.2	4 1	dicot	perennial forb
Lomatium tracyi	Apiaceae	SE	6.1	42.5	7	6.0	0.0	0.0	4 1	dicot	perennial forb
Lomatium triternatum var. triternatum	Apiaceae	SI	2.8	11	4	2.0	2.4	1.2	1	dicot	perennial forb
Sanicula bipinnatifida	Apiaceae	WI	1.8	7.1	4	2.0	1.5	0.7	1 1 1	dicot	perennial forb
Sanicula hoffmannii	Apiaceae	WI	1.8	3.5	2	1.5	2.1	1.5	4	dicot	perennial forb
Sanicula maritima	Apiaceae	WI	2.3	4.5	2	2.0	0.0	0.0	1b 1	dicot	perennial forb
Sanicula peckiana	Apiaceae	BE	5.3	26.5	5	6.0	1.3	0.6	4 1	dicot	perennial forb
Sanicula tracyi	Apiaceae	WI	2.1	8.5	4	1.0	2.6	1.3	1	dicot	perennial forb
Sanicula tuberosa	Apiaceae	WI/IN	1.3	3.75	3	1.0	0.7	0.4	1 1 1	dicot	perennial forb
Tauschia glauca	Apiaceae	BE/SI	3.5	10.5	3	3.0	0.6	0.3	4 1	dicot	perennial forb
Tauschia hartwegii	Apiaceae	WI/IN	1.3	4	3	1.0	1.5	0.9	1 1 1	dicot	perennial forb
Tauschia howellii	Apiaceae	WI	2.3	7	3	1.0	3.2	1.9	1	dicot	perennial forb
Tauschia kelloggii	Apiaceae	SE	2.6	12.75	5	2.0	2.2	1.0	1 1 1	dicot	perennial forb
Taxon	Family	Aff	Mean	Sources Med.	SD	SE	Rarity	Geog. Dist.	Tax. Cat.	Lifeform	
-----------------------	--------------------	------	------	--------------	------	----	--------	-------------	------------	----------	
Asclepias solanoana	Asclepiadae	SE	6.0	42	7	6.0	0.0	0.0	4	1	Dicot
Agoseris heterophylla	Asteraceae	W/I	1.4	4.1	3	1.0	1.5	0.9	1	1	Dicot
Anchistocarpus filagineus	Asteraceae	SI	3.3	13	4	3.0	0.5	0.3	1	1	Dicot
Antennaria argentea	Asteraceae	WI	1.9	7.75	4	0.8	2.7	1.4	1	1	Dicot
Antennaria suffrutescens	Asteraceae	SE	5.6	22.5	4	6.0	1.0	0.5	1	1	Dicot
Arnica cerna	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	4	1	Dicot
Arnica spathulata	Asteraceae	SE	5.5	16.5	3	6.0	1.2	0.7	1	1	Dicot
Aster oregonensis	Asteraceae	W/I	1.1	3.25	3	1.0	0.9	0.5	1	1	Dicot
Balsamorhiza macrolepis var. macrolepis	Asteraceae	W/I	3.7	11	3	4.0	0.6	0.3	1	1	Dicot
Balsamorhiza sericea	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	1	1	Dicot
Brickellia greenii	Asteraceae	BE/SI	3.7	11	3	4.0	0.6	0.3	1	1	Dicot
Cacaliopsis nardosmia	Asteraceae	W/I	1.3	4	3	2.0	1.2	0.7	1	1	Dicot
Calycadenia multianguladosa	Asteraceae	SI	3.1	15.5	5	3.0	1.2	0.6	1	1	Dicot
Calycadenia oppositifolia	Asteraceae	SI	2.6	18	7	2.0	1.6	0.6	1	1	Dicot
Calycadenia pauciflora	Asteraceae	BE	5.3	21	4	5.5	1.0	0.5	1	1	Dicot
Calycadenia truncata	Asteraceae	W/I	2.1	12.5	6	2.5	1.1	0.5	1	1	Dicot
Chaenactis glabriuscula var. glabriuscula	Asteraceae	SI	1.7	5.1	3	2.0	1.5	0.9	1	1	Dicot
Chaenactis glabriuscula var. heterocarpha	Asteraceae	SI	2.5	10	4	2.5	0.6	0.3	1	1	Dicot
Chaenactis suffrutescens	Asteraceae	SE	6.1	30.5	5	6.0	0.0	0.0	1	1	Dicot
Chrysothamnus nauseosus ssp. consimilis	Asteraceae	WI	1.8	8.85	5	2.0	1.5	0.7	1	1	Dicot
Cirsium andrewsii	Asteraceae	WI	1.7	5	3	2.0	0.9	0.5	1	1	Dicot
Cirsium cymosum	Asteraceae	SI	3.0	12	4	2.0	2.0	1.0	1	1	Dicot
Cirsium douglasii var. breweri	Asteraceae	SI	3.0	12	4	3.0	1.6	0.8	1	1	Dicot
Cirsium fontinale var. campylon	Asteraceae	SE	5.9	29.5	5	6.0	0.4	0.2	1	1	Dicot
Cirsium fontinale var. fontinale	Asteraceae	SE	6.1	30.5	5	6.0	0.0	0.0	1	1	Dicot
Cirsium fontinale var. obisponse	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1	1	Dicot
Cirsium hydriphilum var. vaseyi	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1	1	Dicot
Cirsium remotifolium	Asteraceae	W/I	1.0	3.1	3	1.0	1.0	0.5	1	1	Dicot
Coreopsis stillmanii	Asteraceae	SI	2.7	8	3	3.0	0.6	0.3	1	1	Dicot
Crepis pleurocarpa	Asteraceae	WI	2.0	10	5	2.0	0.7	0.3	1	1	Dicot
Ericameria arboreaens	Asteraceae	W/I	1.3	4	3	1.0	1.5	0.9	1	1	Dicot
Ericameria greenei	Asteraceae	WI	2.0	8.1	4	1.5	2.1	1.1	1	1	Dicot
Ericameria ophitidis	Asteraceae	SE	5.5	38.5	7	6.0	1.0	0.4	4	1	Dicot
Appendix 1. Continued.

Taxon	Family	Aff	Mean	Sum	Sources	Med.	SD	SE	Rarity	Geog. Dist.	Tax. Cat.	Lifeform					
Erigeron angustatus	Asteraceae	SE	5.7	28.5	5	6.0	0.9	0.4	1b	1	Dicot	Perennial forb					
Erigeron bloomeri var. nudatus	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	0.0	2	Dicot	Perennial forb					
Erigeron cervinus	Asteraceae	SI	3.3	10	3	4.0	3.1	1.8	1	1	Dicot	Perennial forb (rhiz.)					
Erigeron decumbens var. robustior	Asteraceae	WI	1.5	4.5	3	2.0	1.2	0.7	0.4	1	Dicot	Perennial forb					
Erigeron foliosus var. confinis	Asteraceae	BE/SI	3.7	11	3	3.0	1.2	0.7	1	1	Dicot	Perennial forb					
Erigeron lasseianus var. deficiens	Asteraceae	WI	1.7	5	3	2.0	1.5	0.9	1	1	Dicot	Perennial forb					
Erigeron petrophilus var. sierrensis	Asteraceae	BE	4.8	28.5	3	6.0	2.1	0.8	0.4	1	Dicot	Perennial forb					
Erigeron petrophilus var. viscidulus	Asteraceae	WI	2.4	9.5	4	2.0	0.5	0.3	4	1	Dicot	Perennial forb (rhiz.)					
Erigeron reductus	Asteraceae	WI	2.0	8	4	2.0	1.6	0.8	1	1	Dicot	Perennial forb (rhiz.)					
Erigeron serpentinus	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	0.0	1	Dicot	Perennial forb					
Eriophyllum confertiflorum var. tanacetiflorum	Asteraceae	WI	1.9	3.75	2	1.9	1.6	1.1	1	1	Dicot	Shrub					
Eriophyllum jepsonii	Asteraceae	BE/SI	3.5	17.5	5	3.0	1.5	0.7	4	1	Dicot	Shrub					
Eriophyllum lanatum var. achillaeoides	Asteraceae	WI	2.3	7	3	2.0	0.6	0.3	1	1	Dicot	Shrub					
Eriophyllum lanatum var. lanceolatum	Asteraceae	WI	1.7	5	3	2.0	1.5	0.9	1	1	Dicot	Shrub					
Eriophyllum latilobum	Asteraceae	SE	5.5	16.5	3	6.0	1.2	0.7	1b	1	Dicot	Shrub					
Grindelia hirsutula var. dayi	Asteraceae	WI	1.8	5.25	3	2.0	1.4	0.8	1	1	Dicot	Perennial forb					
Grindelia hirsutula var. hirsutula	Asteraceae	WI/IN	1.2	3.6	3	1.0	1.0	0.5	1	1	Dicot	Perennial forb					
Grindelia hirsutula var. maritima	Asteraceae	WI	1.7	5	3	2.0	0.9	0.5	1b	1	Dicot	Perennial forb					
Gutierrezia californica	Asteraceae	WI	1.8	5.25	3	2.0	1.4	0.8	1	1	Dicot	Perennial forb, Shrub					
Helenium bigelovii	Asteraceae	SE	6.0	18	3	6.0	0.0	0.0	0.0	1	Dicot	Annual forb					
Helenium longilobum	Asteraceae	WI	2.0	6.1	3	3.0	1.7	1.0	1	1	Dicot	Shrub (stem succulent)					
Helenium nigrescens	Asteraceae	WI	1.9	5.75	3	2.0	1.1	0.7	1	1	Dicot	Perennial forb, Shrub					
Helenium whitneyi var. discoidea	Asteraceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1	1	Dicot	Perennial forb					
Helenium whitneyi var. whitneyi	Asteraceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1	1	Dicot	Perennial forb					
Helianthus exilis	Asteraceae	SE	5.7	45.5	8	6.0	1.1	0.4	4	1	Dicot	Annual, Perennial forb					
Helianthus petrophilus	Asteraceae	SE	5.7	45.5	8	6.0	1.1	0.4	4	1	Dicot	Annual, Perennial forb					
Helianthus serpentinus	Asteraceae	SE	5.7	45.5	8	6.0	1.1	0.4	4	1	Dicot	Annual, Perennial forb					
Taxon1	Family	Aff2	Mean3	Sum4	Sources Med.5	SD6	SE7	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11						
--------	--------	------	-------	------	---------------	-----	-----	---------	--------------	-------------	------------						
Hemizonia congesta ssp. calyculata	Asteraceae	WI	1.5	4.5	3	2.0	1.2	0.7	4	1	1	1	1	1	Dicot	Annual forb	
Hemizonia congesta ssp. congesta	Asteraceae	WI/IN	1.3	4	3	2.0	1.2	0.7	1	1	1	1	1	1	Dicot	Annual forb	
Hemizonia congesta ssp. tracyi	Asteraceae	WI	1.8	5.25	3	2.0	0.7	0.4	4	1	1	1	1	1	Dicot	Annual forb	
Hemizonia halliana	Asteraceae	SI	3.0	12	4	3.0	2.4	1.2	1	1	1	1	1	1	Dicot	Annual forb	
Hesperoex sparsi¯ora var. sparsi¯ora	Asteraceae	WI	7.25	4	1.5	1.6	0.8	1	1	1	1	1	1	Dicot	Annual forb		
Heterotheca oregona var. oregona	Asteraceae	WI	2.0	6	3	3.0	1.7	1.0	1	1	1	1	1	1	Dicot	Perennial forb	
Hieracium bolanderi	Asteraceae	BE/SI	3.8	15	4	4.5	2.6	1.3	1	1	1	1	1	1	Dicot	Perennial forb	
Hieracium greenii	Asteraceae	WI	2.2	6.5	3	3.0	1.4	0.8	1	1	1	1	1	1	Dicot	Perennial forb	
Lagophylla glandulosa	Asteraceae	WI	2.0	6.1	3	3.0	1.7	1.0	1	1	1	1	1	1	Dicot	Annual forb	
Lagophylla minor	Asteraceae	BE	4.7	23.5	5	5.0	1.7	0.7	1	1	1	1	1	1	Dicot	Annual forb	
Layia discoidea	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	1	1	1	1	Dicot	Annual forb
Layia jonesii	Asteraceae	BE/SI	3.5	10.5	3	3.0	0.6	0.3	1b	1	1	1	1	1	1	Dicot	Annual forb
Layia septentrionalis	Asteraceae	SI	3.2	19	6	3.5	1.4	0.6	1b	1	1	1	1	1	1	Dicot	Annual forb
Lessingia arachnoidea	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	1	1	1	1	Dicot	Annual forb
Lessingia flaginifolia var. californica	Asteraceae	W/IIN	1.3	4	3	1.0	1.5	0.9	1	1	1	1	1	1	Dicot	Perennial forb, Shrub	
Lessingia hololeuca	Asteraceae	SI	2.5	7.5	3	3.0	1.2	0.7	3	1	1	1	1	1	1	Dicot	Annual forb
Lessingia micradenia var. glabrata	Asteraceae	BE	5.1	30.5	6	5.5	1.3	0.5	1b	1	1	1	1	1	1	Dicot	Annual forb
Lessingia micradenia var. micradenia	Asteraceae	BE	5.3	31.5	6	5.5	1.0	0.4	1b	1	1	1	1	1	1	Dicot	Annual forb
Lessingia nemaclada	Asteraceae	WI	2.0	6	3	2.0	1.0	0.6	1	1	1	1	1	1	1	Dicot	Annual forb
Lessingia occidentalis	Asteraceae	BE/SI	4.1	18.5	4	4.0	1.8	0.9	4	1	1	1	1	1	1	Dicot	Annual forb
Lessingia ramulosa	Asteraceae	BE	5.4	27	5	6.0	1.3	0.6	1	1	1	1	1	1	1	Dicot	Annual forb
Luina hypoleuca	Asteraceae	W/IIN	1.4	4.25	3	2.0	1.0	0.6	1	1	1	1	1	1	1	Dicot	Perennial forb
Madia doris-nilesiae (= Harmonia d.)	Asteraceae	BE	5.4	32.5	6	5.5	0.8	0.3	1b	1	1	1	1	1	1	Dicot	Annual forb
Madia exigua	Asteraceae	WI	1.8	7.25	4	2.0	1.4	0.7	1	1	1	1	1	1	1	Dicot	Annual forb
Madia hallii (= Harmonia h.)	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	1	1	1	1	Dicot	Annual forb
Madia stebbinsii (= Harmonia s.)	Asteraceae	SE	6.1	42.5	7	6.0	0.0	0.0	1b	1	1	1	1	1	1	Dicot	Annual forb
Malacothrix clevelandii	Asteraceae	SI	3.0	9.1	3	3.0	3.0	1.7	1	1	1	1	1	1	1	Dicot	Annual forb
Malacothrix floccifera	Asteraceae	WI	2.1	6.25	3	3.0	1.6	0.9	1	1	1	1	1	1	1	Dicot	Annual forb
Micropus amphibolus	Asteraceae	WI	2.4	7.25	3	1.0	3.1	1.8	1	1	1	1	1	1	1	Dicot	Annual forb
Microrseris douglasii	Asteraceae	W/IIN	1.3	4	3	1.0	0.6	0.3	1	1	1	1	1	1	1	Dicot	Annual forb
Monolepia procidae	Asteraceae	WI	2.4	4.75	2	2.4	2.3	1.6	1	1	1	1	1	1	1	Dicot	Annual forb
Pentachaeta bellidiflora	Asteraceae	WI	2.4	7.25	3	3.0	1.3	0.8	1b	1	1	1	1	1	1	Dicot	Annual forb
Taxon1	Family	Aff2	Mean3	Sum3	Sources Med.4	SD4	SE5	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11						
--------	--------	------	-------	------	---------------	-----	-----	--------	-----------	------------	-----------						
Pyrrocoma racemosa var. congesta	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	2	1	Dicot	Perennial forb					
Pyrrocoma racemosa var. pinetorum	Asteraceae	BE/SI	4.0	16	4	4.5	2.4	1.2	1	1	1	1	Dicot	Perennial forb			
Pyrrocoma racemosa var. racemosa	Asteraceae	WI	1.7	5	3	1.0	2.1	1.2	1	1	1	1	1	Dicot	Perennial forb		
Raillardiella pringlei	Asteraceae	SE	6.0	30	5	6.0	0.0	0.0	1b	1	1	1	1	Dicot	Perennial forb		
Rigiopappus leptoclados	Asteraceae	WI	1.9	7.5	4	2.0	1.3	0.7	1	1	1	1	1	Dicot	Annual forb		
Rudbeckia californica var. glauca	Asteraceae	BE	5.3	21	4	6.0	1.5	0.8	1	1	1	1	Dicot	Perennial forb			
Senecio clevelandii var. clevelandii (= Packera c. v. c.)	Asteraceae	SE	5.8	46.5	8	6.0	0.7	0.3	4	1	1	1	Dicot	Perennial forb			
Senecio clevelandii var. heterophyllus (= Packera c. v. h.)	Asteraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	1	Dicot	Perennial forb			
Senecio eurycephalus var. eurycephalus (= Packera eurycephala var. eurycephala)	Asteraceae	BE/SI	3.8	15	4	3.0	1.5	0.8	1	1	1	1	Dicot	Perennial forb			
Senecio eurycephalus var. lewisriosei (= Packera eurycephala var. lewisriosei)	Asteraceae	SE	5.8	40.5	7	6.0	0.8	0.3	1b	1	1	1	1	Dicot	Perennial forb		
Senecio greenei (= Packera g.)	Asteraceae	BE	5.3	32	6	6.0	1.6	0.7	1	1	1	1	Dicot	Perennial forb			
Senecio tayame (= Packera t.)	Asteraceae	BE	4.9	29.5	6	5.0	1.3	0.5	1b	1	1	1	1	Dicot	Perennial forb		
Senecio macounii (= Packera m.)	Asteraceae	BE	5.1	20.5	4	6.0	2.0	1.0	4	1	1	1	1	Dicot	Perennial forb		
Solidago guiradonis	Asteraceae	SE	6.2	18.5	3	6.0	0.0	0.0	4	1	1	1	Dicot	Perennial forb			
Solidago multiradiata	Asteraceae	WI/IN	1.1	2.1	2	1.1	1.3	1.0	1	1	1	1	Dicot	Perennial forb			
Stebbinsosertis decipiens	Asteraceae	WI	1.8	5.5	3	2.0	0.6	0.3	1b	1	1	1	1	Dicot	Annual forb		
Wyethia bolanderi	Asteraceae	WI	1.5	3	2	1.5	0.7	0.5	1	1	1	1	Dicot	Perennial forb			
Berberis aquifolium var. aquifolium	Berberidaceae	WI	1.6	4.75	3	1.0	1.2	0.7	1	1	1	1	Dicot	Shrub			
Berberis aquifolium var. repens	Berberidaceae	WI	1.7	5	3	1.0	1.2	0.7	1	1	1	1	Dicot	Shrub			
Vancouveria chrysanth	Berberidaceae	SE	6.2	18.5	3	6.0	0.0	0.0	4	1	1	1	1	Dicot	Perennial forb		
Vancouveria planipetala	Berberidaceae	WI	1.7	5	3	1.0	1.2	0.7	1	1	1	1	1	Dicot	Perennial forb		
Cryptantha clevelandii var. dissita	Boraginaceae	BE/SI	4.4	17.5	4	4.5	2.1	1.0	1b	1	1	1	1	Dicot	Annual forb		
Cryptantha excavata	Boraginaceae	WI	1.5	3	2	1.5	2.1	1.5	1	1	1	1	1	Dicot	Annual forb		
Taxon	Family	Aff	Mean	Sum	Sources Med.	SD	SE	Rarity	KL	NC	BA	SC	SN	Tax. Cat.	Lifeform		
-----------------	----------------	-----	------	------	--------------	-----	----	--------	----	----	----	----	----	-----------	----------		
Cryptantha flaccida	Boraginaceae	WI	1.6	4.75	3	2.0	0.7	0.4	1	1	1	1	1	1 Dicot	Annual forb		
Cryptantha hispida	Boraginaceae	SE	6.0	24	4	6.0	0.0	0.0	1	1				1 Dicot	Annual forb		
Cryptantha intermedi	Boraginaceae	W/I	1.4	4.1	3	1.0	1.5	0.9	1	1	1	1	1	1 Dicot	Annual forb		
Cryptantha maritimus	Boraginaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1	1				1 Dicot	Annual forb		
Cryptantha milobakeri	Boraginaceae	SI	3.3	9.75	3	3.0	2.6	1.5	1	1				1 Dicot	Annual forb		
Cryptantha solifera	Boraginaceae	W/I	1.4	4.1	3	1.0	1.5	0.9	1	1				1 Dicot	Perennial forb		
Hackelia bella	Boraginaceae	W/I	1.3	4	3	1.0	1.5	0.9	1	1				1 Dicot	Perennial forb		
Pectocarya pusilla	Boraginaceae	W/I	1.3	2.5	2	1.3	1.1	0.8	1	1	1	1	1	1 Dicot	Annual forb		
Arabis aculeolata	Brassicaceae	SE	6.1	24.5	4	6.0	0.0	0.0	2	1				1 Dicot	Perennial forb		
Arabis constancei	Brassicaceae	SE	5.9	41.5	7	6.0	0.4	0.1	1b					1 Dicot	Perennial forb		
Arabis koehleri var. stipitata	Brassicaceae	SE	5.5	16.5	3	6.0	1.2	0.7	1	1				1 Dicot	Perennial forb		
Arabis macdonaldiana	Brassicaceae	BE	5.4	32.5	6	6.0	1.0	0.4	1b	1				1 Dicot	Perennial forb		
Arabis oregana	Brassicaceae	BE/S	3.8	11.5	3	3.0	2.1	1.2	4	1				1 Dicot	Perennial forb		
Arabis subpinatifida	Brassicaceae	SI	3.2	16	5	3.0	1.6	0.7	1	1				1 Dicot	Perennial forb		
Arabis suffrutescens var. horizontalis	Brassicaceae	SE	3.9	27	7	3.0	1.6	0.6	1	1				1 Dicot	Perennial forb		
Arabis suffrutescens var. suffrutescens	Brassicaceae	SI	2.9	17.5	6	2.5	1.9	0.8	1					1 Dicot	Perennial forb		
Cardamine californica var. cuneata	Brassicaceae	WI	1.9	3.75	2	1.9	1.6	1.1						1 Dicot	Perennial forb		
Cardamine nutallii var. gemmata	Brassicaceae	BE	5.2	15.5	3	5.0	1.0	0.6	1b					1 Dicot	Perennial forb		
Cardamine pachystigma var. dissectifolia	Brassicaceae	BE	5.4	48.5	9	6.0	1.0	0.3	3					1 Dicot	Perennial forb		
Cardamine pachystigma var. pachystigma	Brassicaceae	WI	2.0	6	3	2.0	1.0	0.6	1					1 Dicot	Perennial forb		
Caulanthus amplexicaulis var. barbarae	Brassicaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b					1 Dicot	Annual forb		
Draba aureola	Brassicaceae	SE	2.7	8	3	3.0	0.6	0.3	1b					1 Dicot	Perennial forb		
Draba carnosula	Brassicaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b					1 Dicot	Perennial forb		
Draba howelli	Brassicaceae	WI/I	1.4	4.25	3	1.0	1.4	0.8	1					1 Dicot	Perennial forb		
Erysimum franciscanum	Brassicaceae	SE	3.0	9	3	3.0	0.0	0.0	4					1 Dicot	Perennial forb		
Guillaenia flavescens	Brassicaceae	WI	2.3	9.25	4	2.5	1.6	0.8	1	1				1 Dicot	Annual forb		
Streptanthus albida ssp. albida	Brassicaceae	BE	5.3	31.5	6	6.0	1.3	0.5	1	1				1 Dicot	Annual forb		
Streptanthus albida ssp. peramoenus	Brassicaceae	BE/S	4.3	34.5	8	4.5	1.9	0.7	1b					1 Dicot	Annual forb		
Streptanthus barbatus	Brassicaceae	SE	5.6	28	5	6.0	0.5	0.2	1					1 Dicot	Perennial forb		
Streptanthus barbiger	Brassicaceae	SE	6.0	24	4	6.0	0.0	0.0	4					1 Dicot	Annual forb		
Streptanthus bairachopus	Brassicaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1				1 Dicot	Annual forb		

Taxon refers to the scientific name of the species, *Family* to the family it belongs to, *Aff* to the abbreviation of the abbreviation, *Mean* to the mean value, *Sum* to the sum of the values, *Sources Med.* to the median of the sources, *SD* to the standard deviation, *SE* to the standard error, *Rarity* to the rarity rating, *KL* to the KL value, *NC* to the NC value, *BA* to the BA value, *SC* to the SC value, and *SN* to the SN value. *Tax. Cat.* refers to the taxonomic category, and *Lifeform* refers to the lifeform of the species.
Taxon1	Family	Aff2	Mean3	Sum3	Sources	Med.5	SD6	SE7	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11
Streptanthus brachiatus var. brachiatus	Brassicaceae	SE	5.6	22.5	4	6.0	1.0	0.5	1b	1	Dicot	Annual, Perennial forb
Streptanthus brachiatus var. hoffmanii	Brassicaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual, Perennial forb
Streptanthus breweri var. breweri	Brassicaceae	SE	5.7	40	7	6.0	0.8	0.3	1	1 1 1 1	Dicot	Annual forb
Streptanthus breweri var. hesperidus	Brassicaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb
Streptanthus drepanoides	Brassicaceae	SE	6.1	36.5	6	6.0	0.0	0.0	1	1 1 1 1	Dicot	Annual forb
Streptanthus glandulosus ssp. glandulosus	Brassicaceae	WI	1.9	5.75	3	2.0	1.1	0.7	1	1 1 1	Dicot	Annual forb
Streptanthus glandulosus ssp. pulchellus	Brassicaceae	BE	4.9	24.5	5	6.0	1.8	0.8	1b	1	Dicot	Annual forb
Streptanthus insignis ssp. insignis	Brassicaceae	SI	3.3	20	6	3.0	1.5	0.6	1	1	Dicot	Annual forb
Streptanthus insignis ssp. lyonii	Brassicaceae	SI	3.0	3	3	3.0	—	—	lb	1	Dicot	Annual forb
Streptanthus insignis ssp. elatus	Brassicaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	Dicot	Perennial forb
Streptanthus morrisonii ssp. hirtiflora	Brassicaceae	BE/SI	4.0	20	5	4.0	2.4	1.1	1	1	Dicot	Annual forb
Streptanthus morrisonii ssp. kruckebergii	Brassicaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	Dicot	Annual, Perennial forb
Streptanthus morrisonii ssp. morrisonii	Brassicaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	Dicot	Annual, Perennial forb
Streptanthus niger	Brassicaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	Dicot	Annual forb
Streptanthus polygaloides	Brassicaceae	SE	5.7	28.5	5	6.0	0.9	0.4	1	1 1	Dicot	Annual forb
Streptanthus tortuosus var. suffrutescens	Brassicaceae	WI	1.6	8.2	5	2.0	1.6	0.7	1	1 1 1	Dicot	Annual, Perennial forb
Taxon	Family	Aff	Mean	Sum	Sources Med.	SD	SE	Rarity	Geog. Dist.	Tax. Cat.	Lifeform	
--	----------------	------	------	------	--------------	-----	-----	--------	-------------	-----------	----------	
Streptanthus tortuosus var. tortuosus	Brassicaceae	W/IN	1.4	4.25	3	2.0	1.0	0.6	1	1	1	
Thelypodium brachycarpum	Brassicaceae	SI	3.3	10	3	3.0	0.6	0.3	4	1	1	
Thlaspi californicum	Brassicaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	1	
Thlaspi montanum var. montanum	Brassicaceae	BE/SI	4.4	22	5	4.0	1.5	0.7	1	1	1	
Campanula angustiflora	Campanulaceae	BE/SI	3.9	19.25	5	4.0	2.4	1.1	1	1	1	
Campanula exigua	Campanulaceae	SE	6.0	18	3	6.0	0.0	0.0	1b	1	1	
Campanula rotundifolia	Campanulaceae	BE	5.0	15	3	6.0	1.7	1.0	1		1	
Campanula scabrella	Campanulaceae	SI	2.5	10	4	2.5	1.3	0.6	4	1	1	
Campanula sharpsmithiae	Campanulaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	
Campanula wilkinsiana	Campanulaceae	W/IN	1.0	5	5	0.0	1.7	0.8	1		1	
Githopsis diffusa ssp. candida	Campanulaceae	W/IN	1.0	2	2	1.0	1.4	1.0	1		1	
Githopsis pulchella ssp. campestris	Campanulaceae	WI	1.6	3.25	2	1.6	1.9	1.4	1		1	
Githopsis pulchella ssp. pulchella var. glabra	Campanulaceae	BE/SI	3.8	19	5	3.0	2.0	0.9	1		1	
Githopsis pulchella ssp. serpentinicola	Campanulaceae	BE	5.3	21	4	5.5	1.0	0.5	4	1	1	
Nemacodium montanum	Campanulaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1	1	
Arenaria kingii var. stabiflora	Caryophyllaceae	W/IN	1.4	4.1	3	2.0	1.1	0.6	1		1	
Cerastium arvense	Caryophyllaceae	WI	2.1	8.5	4	0.9	2.6	1.3	1	1	1	
Minuartia californica	Caryophyllaceae	WI	1.7	5	3	2.0	1.5	0.9	1	1	1	
Minuartia cismontana (new taxon)	Caryophyllaceae	WI	1.8	3.5	2	1.8	1.8	1.3	1	1	1	
Minuartia decumbens	Caryophyllaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	
Minuartia douglasii	Caryophyllaceae	SI	3.0	15	5	3.0	0.7	0.3	1	1	1	
Minuartia hewellii	Caryophyllaceae	SE	5.7	28.5	5	6.0	0.9	0.4	1b	1	1	
Minuartia nutallii ssp. gregaria	Caryophyllaceae	SI	3.2	16	5	3.0	1.9	0.9	1		1	
Minuartia rosei	Caryophyllaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	1	
Minuartia stolonifera	Caryophyllaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	1	
Moehringia macrophylla	Caryophyllaceae	SI	2.7	8	3	3.0	0.6	0.3	1	1	1	
Silene antirrhina	Caryophyllaceae	WI/IN	1.1	3.25	3	1.0	0.9	0.5	1	1	1	
Taxon1	Family	Aff2	Mean3	Sum5	Sources Med.5	SD6	SE7	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11	
--------	--------	------	-------	------	---------------	-----	-----	---------	-------------	-------------	------------	
Silene campanulata ssp. campanulata	Caryophyllaceae	BE	5.3 31.5	6	5.5	1.0	0.4	4	1 1	Digot	Perennial forb	
Silene campanulata ssp. glandulosa	Caryophyllaceae	BE/SI	3.8 19	5	3.0	1.3	0.6	1 1	Digot	Perennial forb		
Silene graysi	Caryophyllaceae	WI	1.8 5.5	3	2.0	1.3	0.7	1	Digot	Perennial forb		
Silene hookeri ssp. bolanderi	Caryophyllaceae	BE	4.5 18	4	4.5	1.7	0.9	1 1	Digot	Perennial forb		
Silene hookeri ssp. hookeri	Caryophyllaceae	SI	3.0 12	4	2.5	2.2	1.1	1 1	Digot	Perennial forb		
Silene serpentinicola (new taxon)	Caryophyllaceae	SE	6.0 6	1	6.0	—	—	1	Digot	Perennial forb		
Helianthemum suffrutescens (in H. scoparium in Jepson)	Cistaceae	WI/IN	1.0 2	2	1.0	1.4	1.0	1 3	Digot	Shrub		
Calystegia collina ssp. collina	Convolvulaceae	BE	4.7 33	7	6.0	1.6	0.6	1 1	Digot	Perennial forb		
Calystegia collina ssp. oxyphylla	Convolvulaceae	SE	5.6 33.5	6	6.0	1.2	0.5	4 1	Digot	Perennial forb		
Calystegia collina ssp. trilactyllosa	Convolvulaceae	BE	4.5 18	4	4.5	1.7	0.9	1	Digot	Perennial forb		
Calystegia collina ssp. venusta	Convolvulaceae	WI	4.9 24.5	5	5.0	1.3	0.6	4 1	Digot	Perennial forb		
Calystegia malacophylla	Convolvulaceae	WI	1.5 4.5	3	1.0	1.3	0.8	1 1 1	Digot	Perennial forb		
Convolvulus simulans	Convolvulaceae	BE/SI	3.7 14.75	4	4.0	2.4	1.2	4 1	Digot	Annual forb		
Dudleya abramsii ssp. bettinae	Crassulaceae	SE	6.2 18.5	3	6.0	0.0	0.0	1b 1	Digot	Perennial forb		
Dudleya abramsii ssp. marina	Crassulaceae	SE	6.2 18.5	3	6.0	0.0	0.0	1b 1	Digot	Perennial forb		
Dudleya blochmaniaceae ssp. blochmaniae	Crassulaceae	SE	3.2 9.5	3	3.0	0.0	0.0	1b 1	Digot	Perennial forb		
Dudleya setchellii	Crassulaceae	SE	6.1 24.5	4	6.0	0.0	0.0	1b 1	Digot	Perennial forb		
Parvisedum pentandrum	Crassulaceae	WI	2.0 8.1	4	1.5	2.1	1.1	1 1 1	Digot	Annual forb		
Parvidedum pumilum	Crassulaceae	WI	1.7 5.1	3	2.0	1.5	0.9	1 1	Digot	Annual forb		
Sedum albo-marginatum	Crassulaceae	SE	6.1 42.5	7	6.0	0.0	0.0	1b 1	Digot	Perennial forb		
Sedum eastwoodiae	Crassulaceae	SE	6.1 24.5	4	6.0	0.0	0.0	1b 1	Digot	Perennial forb		
Sedum laxum ssp. flavidum	Crassulaceae	SI	3.1 18.5	6	3.0	0.6	0.3	4 1 1	Digot	Perennial forb		
Sedum laxum ssp. heckneri	Crassulaceae	BE/SI	3.5 10.5	3	3.0	0.6	0.3	4 1 1	Digot	Perennial forb		
Sedum laxum ssp. laxum	Crassulaceae	BE/SI	4.0 16	4	3.5	1.4	0.7	1 1	Digot	Perennial forb		
Sedum obtusatum ssp. obtusatum	Crassulaceae	SI	3.2 16	5	3.0	2.2	1.0	1 1	Digot	Perennial forb		
Sedum radiatum	Crassulaceae	WI	2.0 6	3	2.0	2.0	1.2	1 1 1 1 1	Digot	Annual forb		
Calocedrus decurrens	Cupressaceae	SI	3.0 9	3	3.0	0.0	0.0	1 1 1 1 1	Gymnosp. Tree			
Cupressus bakeri	Cupressaceae	SI	2.6 13	5	3.0	0.5	0.2	4 1	Gymnosp. Tree			
Cupressus lawsoniana	Cupressaceae	SI	3.0 15	5	3.0	0.7	0.3	1 1	Gymnosp. Tree			
Cupressus macnabiana	Cupressaceae	BE	4.7 28	6	4.5	1.2	0.5	1 1	Gymnosp. Tree			
Cupressus sargentii	Cupressaceae	BE	4.9 34	7	5.0	1.2	0.5	1 1 1	Gymnosp. Tree			
Juniperus communis var. jackii	Cupressaceae	BE/SI	4.0 8	2	4.0	2.8	2.0	1	Gymnosp. Shrub			
APPENDIX 1. CONTINUED.

Taxon	Family	Aff	Mean	Sum	Sources	Med.	SD	SE	Rarity	Geog. Dist.	Tax. Cat.	Lifeform
Carex amplexent	Cyperaceae	SI	2.6	10.5	4	2.3	2.9	1.4			1	Monocot
Carex brainerdii	Cyperaceae	WI/IN	1.4	4.25	3	2.0	1.0	0.6	1	1	1	Monocot
Carex gigas	Cyperaceae	BE	4.5	22.5	5	4.0	1.7	0.7	4	1	1	Monocot
Carex mendocinensis	Cyperaceae	BE/SI	3.8	23	6	3.5	1.2	0.5	1	1	1	Monocot
Carex obispoensis	Cyperaceae	BE	4.9	24.5	5	6.0	1.6	0.7	1b	1	1	Monocot
Carex serpentinitoca (new taxon)	Cyperaceae	SE	5.5	11	2	5.5	0.7	0.5	2	1	1	Monocot
Carex serratodens	Cyperaceae	BE	4.9	39	8	5.0	1.1	0.4	1	1	1	Monocot
Carex spissa	Cyperaceae	SI	2.8	8.25	3	2.0	2.9	1.7			1	Monocot
Polystichum lemmunii	Dryopteridaceae	SE	6.0	24	4	6.0	0.0	0.0	1	1	1	Pteridoph.
Polystichum scopolium	Dryopteridaceae	WI	1.7	5.1	3	2.0	1.5	0.9	1	1	1	Pteridoph.
Arctostaphylos bakeri ssp. bakeri	Ericaceae	SE	5.5	27.5	5	6.0	1.3	0.6	1b	1	1	Dicot
Arctostaphylos bakeri ssp. sublaevis	Ericaceae	SE	6.3	12.5	2	6.0	0.0	0.0	1b	1	1	Dicot
Arctostaphylos canescens ssp. sonomensis	Ericaceae	SI	2.5	12.5	5	3.0	1.5	0.7	1b	1	1	Dicot
Arctostaphylos hispida	Ericaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1a	1	1	Dicot
Arctostaphylus hookeri ssp. franciscana	Ericaceae	BE	4.5	22.5	5	4.0	1.1	0.5	4	1	1	Dicot
Arctostaphylus hookeri ssp. montana	Ericaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	Dicot
Arctostaphylus hookeri ssp. ravenii	Ericaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	Dicot
Appendix 1. Continued.

Taxon	Family	Aff²	Mean³	Sum³	Sources	Med.³	SD⁴	SE⁵	Rarity⁶	Geog. Dist.⁷	Tax. Cat.¹⁰	Lifeform¹¹			
Arctostaphylos kumathensis	Ericaceae	BE/SI	3.9	19.5	5	4.0	1.8	0.8	1b	KL NC BA SC SN	Dicot	Shrub			
Arctostaphylos nortensis	Ericaceae	SI	2.8	5.5	2	2.5	0.7	0.5	4	1	Dicot	Shrub			
Arctostaphylos obispoensis	Ericaceae	SE	5.7	28.5	5	6.0	0.9	0.4	4	1	Dicot	Shrub			
Arctostaphylos stanfordiana ssp. raichei	Ericaceae	SI	2.6	10.5	4	3.0	1.7	0.9	1b	1	Dicot	Shrub			
Arctostaphylos viscosa ssp. pulchella	Ericaceae	BE	5.0	25	5	5.0	1.0	0.4	1	1	Dicot	Shrub			
Arctostaphylos viscosa ssp. viscosa	Ericaceae	WI	2.2	10.75	5	3.0	1.2	0.5	1	1	Dicot	Shrub			
Pyrola picta ssp. dentata	Ericaceae	WI	2.0	6	3	3.0	1.7	1.0	1	1	Dicot	Perennial forb (rhiz.)			
Vaccinium coccineum	Ericaceae	BE/SI	3.5	3.5	1	3.0	—	—	3	1	Dicot	Shrub			
Astragalus breviflori	Fabaceae	SI	3.2	15.75	5	3.0	2.0	0.9	4	1	Dicot	Annual forb			
Astragalus claranus (claranus)	Fabaceae	SI	3.0	6	2	3.0	0.0	0.0	1b	1	Dicot	Annual forb			
Astragalus clevelandii	Fabaceae	SE	6.1	24.5	4	6.0	0.0	0.0	4	1	Dicot	Perennial forb			
Astragalus curtipes	Fabaceae	WI	1.8	3.5	2	1.8	1.8	1.3	1	1	Dicot	Perennial forb			
Astragalus macdon	Fabaceae	W/I/IN	1.3	3.75	3	1.0	0.7	0.4	4	1	Dicot	Perennial forb			
Astragalus rattanii var. jeppsonianus	Fabaceae	BE/SI	4.3	25.5	6	4.0	1.2	0.5	1b	1	Dicot	Annual forb			
Astragalus whitneyi var. siskiyouensis	Fabaceae	BE	4.6	23	5	5.0	1.1	0.5	1	1	Dicot	Perennial forb			
Haila stroblina	Fabaceae	SI	2.5	5	2	2.5	2.1	1.5	1b	1	Dicot	Perennial forb			
Lathyrus biflorus	Fabaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Perennial forb			
Lathyrus delnoticus	Fabaceae	BE	5.3	10.5	2	5.0	1.4	1.0	4	1	Dicot	Perennial forb			
Lathyrus vestitus var. vestitus	Fabaceae	WI	1.8	7.2	4	0.6	2.8	1.4	1	1	Dicot	Perennial forb			
Lotus junceus var. junceus	Fabaceae	WI	1.5	3	2	1.5	0.7	0.5	1	1	Dicot	Perennial forb			
Lupinus constancei	Fabaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Perennial forb			
Lupinus lapidicola	Fabaceae	SI	3.0	15	5	3.0	3.0	1.3	4	1	Dicot	Perennial forb			
Lupinus onastus	Fabaceae	SE	3.1	15.25	5	3.0	2.9	1.3	1	1	Dicot	Perennial forb			
Lupinus spectabilis	Fabaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb			
Pedionemum californicum	Fabaceae	BE/SI	4.4	21.75	5	6.0	2.4	1.1	1	1	Dicot	Perennial forb			
Trifolium amoenum	Fabaceae	W/I/IN	1.3	2.5	2	1.0	1.4	1.0	1b	1	Dicot	Annual forb			
Trifolium facatum	Fabaceae	W/I/IN	1.3	4	3	1.0	0.6	0.3	1	1	Dicot	Annual forb			
Trifolium gracilentum var. gracilentum	Fabaceae	W/I/IN	1.0	3.1	3	1.0	1.0	0.5	1	1	Dicot	Annual forb			
Trifolium longipes var. elmeri	Fabaceae	BE	5.3	21	4	6.0	1.5	0.8	1	1	Dicot	Perennial forb			
Trifolium longipes var. oreganum	Fabaceae	BE/SI	4.0	12	3	4.0	2.0	1.2	1	1	Dicot	Perennial forb			
Trifolium microcephalum	Fabaceae	W/I/IN	1.4	7	5	1.0	1.1	0.5	1	1	Dicot	Annual forb			
Trifolium wildenovii	Fabaceae	W/I/IN	1.3	4	3	1.0	0.6	0.3	1	1	Dicot	Annual forb			
Taxon1	Family	Aff2	Mean3	Sump4	Sources Med.5	SD6	SE7	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11				
--------	--------	------	-------	-------	---------------	-----	-----	---------	-------------	-------------	------------				
Lithocarpus densiflorus var. echinoideae	Fagaceae	SI 2.5	12.25	5	1.0	2.5	1.1	1	1	1	1	1	Dicot	Shrub	
Quercus durata var. durata	Fagaceae	SE 5.8	40.5	7	6.0	0.8	0.3	1	1	1	1	1	Dicot	Shrub	
Quercus vaccinifolia	Fagaceae	SI 2.5	12.25	5	2.0	0.2	0.4	1	1	1	1	1	Dicot	Shrub	
Garrya buxifolia	Garryaceae	SE 5.8	29	5	6.0	0.4	0.2	1	1	1	1	1	Dicot	Shrub	
Garrya condonii	Garryaceae	BE 5.0	30	6	5.5	1.3	0.5	1	1	1	1	1	Dicot	Shrub	
Centaurium tricanthum	Gentianaceae	SE 5.5	11	2	5.5	0.7	0.5	1	1	1	1	1	Dicot	Annual forb	
Gentiana setigera	Gentianaceae	SE 5.8	17.5	3	6.0	0.3	0.2	1	1	1	1	1	Dicot	Annual forb	
Swertia fastigiata	Gentianaceae	WI 1.5	3	2	1.5	2	1.5	1	1	1	1	1	Dicot	Annual forb	
Emmenanthe penduliflora var. penduliflora	Hydrophyllaceae	WI 1.8	7	4	2.0	0.5	0.3	1	1	1	1	1	Dicot	Annual forb	
Phacelia breweri	Hydrophyllaceae	SE 5.5	11	2	5.5	0.7	0.5	1	1	1	1	1	Dicot	Annual forb	
Phacelia californica	Hydrophyllaceae	WI/IN 1.4	4.25	3	1.0	1.4	0.8	1	1	1	1	1	Dicot	Annual forb	
Phacelia corymbosa	Hydrophyllaceae	SE 5.5	33	5	6.0	0.8	0.3	1	1	1	1	1	Dicot	Annual forb	
Phacelia dalesiana	Hydrophyllaceae	SE 6.1	30.5	5	6.0	0.0	0.0	4	1	1	1	1	Dicot	Annual forb	
Phacelia distans	Hydrophyllaceae	WI/IN 1.1	2.1	2	1.1	1.3	1.0	1	1	1	1	1	Dicot	Annual forb	
Phacelia divaricata	Hydrophyllaceae	WI 2.3	7	3	3.0	1.2	0.7	1	1	1	1	1	Dicot	Annual forb	
Phacelia egena	Hydrophyllaceae	WI 2.1	6.25	3	3.0	1.6	0.9	1	1	1	1	1	Dicot	Annual forb	
Phacelia greenei	Hydrophyllaceae	SE 6.1	36.5	6	6.0	0.0	0.0	1	1	1	1	1	Dicot	Annual forb	
Phacelia imbricata ssp. imbricata	Hydrophyllaceae	WI 1.7	5	3	1.0	1.2	0.7	1	1	1	1	1	Dicot	Annual forb	
Phacelia leonis	Hydrophyllaceae	BE/SI 3.9	27.5	7	4.0	1.1	1.0	1	1	1	1	1	Dicot	Annual forb	
Phacelia phaceloides	Hydrophyllaceae	BE/SI 4.2	12.5	3	6.0	3.2	1.8	1	1	1	1	1	Dicot	Annual forb	
Phacelia pringlei	Hydrophyllaceae	BE/SI 4.0	12	3	4.0	0.6	0.0	1	1	1	1	1	Dicot	Annual forb	
Phacelia purpurea	Hydrophyllaceae	WI/IN 1.1	2.1	2	1.1	1.3	1.0	1	1	1	1	1	Dicot	Annual forb	
Iris bracteata	Iridaceae	SE 5.8	11.5	2	5.5	0.7	0.5	3	1	1	1	1	Monocot	Annual forb (rhiz.)	
Iris innominata	Iridaceae	SE 5.8	11.5	2	5.5	0.7	0.5	4	1	1	1	1	Monocot	Annual forb (rhiz.)	
Iris macrocephala	Iridaceae	WI/IN 1.1	3.25	3	1.0	0.9	0.5	1	1	1	1	1	Monocot	Annual forb (rhiz.)	
Iris tenuissima ssp. pardiiformis	Iridaceae	WI 1.5	3	2	1.5	2	1.5	1	1	1	1	1	Monocot	Annual forb (rhiz.)	
Acanthomintha duttonii	Lamiaceae	SE 6.1	30.5	5	6.0	0.0	0.0	1	1	1	1	1	Dicot	Annual forb	
Acanthomintha ilicifolia	Lamiaceae	WI/IN 1.3	3	3	0.0	1.7	1.0	1	1	1	1	1	Dicot	Annual forb	
Acanthomintha lanceolata	Lamiaceae	SI 3.4	16.75	5	3.0	2.1	0.9	4	1	1	1	1	Dicot	Annual forb	
Acanthomintha obovata ssp. obovata	Lamiaceae	BE/SI 3.5	10.5	3	3.0	2.5	1.5	4	1	1	1	1	Dicot	Annual forb	
Taxon1	Family	Aff²	Mean³	Sum⁵	Sources Med.⁸	SD⁹	SE10	Rarity¹¹	Geog. Dist.¹²	Tax. Cat.¹³	Lifeform¹⁴				
--------	--------	------	-------	------	----------------	-----	------	----------	-------------	-------------	------------				
Monardella antonina ssp. *benitensis*	Lamiaceae	SE 6.1	24.5	4	6.0	0.0	0.0	4	1	Dicot	Perennial forb (rhiz.)				
Monardella douglasii ssp. *douglasii*	Lamiaceae	SI 3.0	6	2	3.0	1.4	1.0	1	1	1	Dicot	Annual forb			
Monardella follettii	Lamiaceae	SE 5.8	34.5	6	6.0	0.8	0.3	1b	1	Dicot	Shrub				
Monardella palmeri	Lamiaceae	BE 4.8	28.5	6	6.0	2.2	0.9	1b	1	Dicot	Perennial forb (rhiz.)				
Monardella purpurea	Lamiaceae	BE/SI 4.4	22	5	6.0	2.3	1.0	1	1	1	Dicot	Perennial forb (rhiz.)			
Monardella sheltonii	Lamiaceae	SI 3.0	18	6	3.0	1.7	0.7	1	1	1	Dicot	Perennial forb			
Monardella stebbinsii	Lamiaceae	SE 6.1	30.5	5	6.0	0.0	0.0	1b	1	Dicot	Perennial forb				
Monardella viridis ssp. *viridis*	Lamiaceae	BE/SI 4.3	17	4	4.5	2.1	1.0	1	1	Dicot	Perennial forb (bulb)				
Salvia sonomensis	Lamiaceae	WI 1.6	9.5	6	1.5	1.3	0.5	1	1	1	Dicot	Shrub			
Scutellaria antirrhinoides	Lamiaceae	WI 2.3	11.5	5	3.0	1.5	0.7	1	1	1	Dicot	Perennial forb			
Stachys pycnantha	Lamiaceae	WI 2.2	11	5	1.0	2.4	1.1	1	1	1	Dicot	Perennial forb			
Trichostema laxum	Lamiaceae	BE/SI 4.0	16	4	4.5	2.4	1.2	1	1	1	Dicot	Annual forb			
Trichostema rubescens	Lamiaceae	BE 5.4	21.5	4	6.0	1.5	0.8	4	1	1	1	Dicot	Annual forb		
Pinguicula vulgaris ssp. *macroreras*	Lentibulariaceae	SE 6.2	18.5	3	6.0	0.0	0.0	2	1	Dicot	Perennial forb (carn.)				
Allium acuminatum	Liliaceae	WI 1.5	4.5	3	2.0	0.9	0.5	1	1	1	Monocot	Perennial forb (bulb)			
Allium ampelanticus	Liliaceae	WI 2.3	11.25	5	2.0	2.2	1.0	1	1	1	1	Monocot	Perennial forb (bulb)		
Allium bolanderi var. *bolanderi*	Liliaceae	WI/IN 1.1	4.5	4	1.0	0.6	0.3	1	1	1	Monocot	Perennial forb (bulb)			
Allium bolanderi var. *mirabile*	Liliaceae	WI 2.0	4	2	2.0	0.0	0.0	1	1	Monocot	Perennial forb (bulb)				
Allium cratericola	Liliaceae	SI 2.6	15.75	6	2.5	1.9	0.8	1	1	1	Monocot	Perennial forb (bulb)			
Allium crispum	Liliaceae	WI/IN 1.3	3.75	3	1.0	0.7	0.4	1	1	1	Monocot	Perennial forb (bulb)			
Allium diabloense	Liliaceae	SE 6.0	18	3	6.0	0.0	0.0	1	1	1	Monocot	Perennial forb (bulb)			
Allium falcatifolium	Liliaceae	BE/SI 4.2	38	9	4.0	1.6	0.5	1	1	1	Monocot	Perennial forb (bulb)			
Allium finbriatum var. *purdyi*	Liliaceae	BE 5.4	21.5	4	6.0	1.5	0.8	4	1	1	Monocot	Perennial forb (bulb)			
Allium hoffmanii	Liliaceae	SE 6.1	30.5	5	6.0	0.0	0.0	4	1	1	Monocot	Perennial forb (bulb)			
Allium howellii var. *sanbenitense*	Liliaceae	BE/SI 4.0	12	3	4.0	1.0	0.6	1	Monocot	Perennial forb (bulb)					
Taxon²	Family	Aff²	Mean³	Sum⁴	Sources Med.⁵	SD⁶	SE⁷	Rarity⁸	KL	NC	BA	SC	SN	Tax. Cat.⁹	Lifeform¹¹
--------	--------	------	-------	------	---------------	-----	-----	---------	----	----	----	----	----	-----------	-----------
Allium jepsonii	Liliaceae	BE	5.4	37.5	7	6.0	1.0	0.4	1b	1	Monocot	Perennial forb (bulb)			
Allium lacunosum var. lacunosum	Liliaceae	BE/SI	3.8	15.25	4	4.5	2.8	1.4	1	1	Monocot	Perennial forb (bulb)			
Allium lacunosum var. micranthum	Liliaceae	BE/SI	4.3	13	3	6.0	2.9	1.7	1	Monocot	Perennial forb (bulb)				
Allium membranaceum	Liliaceae	WI/IN	1.3	4	3	1.0	1.5	0.9	1	1	Monocot	Perennial forb (bulb)			
Allium obtusum var. conspicuum	Liliaceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1	Monocot	Perennial forb (bulb)				
Allium peninsulare var. franciscanum	Liliaceae	WI	1.8	3.5	2	1.8	1.8	1.3	1b	1	Monocot	Perennial forb (bulb)			
Allium sanbornii var. congdonii	Liliaceae	SE	5.6	22.5	4	6.0	1.0	0.5	4	1	Monocot	Perennial forb (bulb)			
Allium sanbornii var. sanbornii	Liliaceae	SI	3.4	27	8	3.5	2.2	0.8	4	1	Monocot	Perennial forb (bulb)			
Allium serra	Liliaceae	SI	2.6	10.5	4	3.0	1.5	0.7	1	1	Monocot	Perennial forb (bulb)			
Allium sharpsmithiae	Liliaceae	BE	5.1	20.5	4	6.0	2.0	1.0	1b	1	Monocot	Perennial forb (bulb)			
Allium siskiyouense	Liliaceae	SI	2.8	14	5	2.0	1.8	0.8	4	1	Monocot	Perennial forb (bulb)			
Allium tuohamense	Liliaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	Monocot	Perennial forb (bulb)			
Allium unifolium	Liliaceae	WI/IN	1.0	3	3	1.0	1.0	0.6	1	1	Monocot	Perennial forb (bulb)			
Brodiaea californica var. californica	Liliaceae	WI/IN	1.1	4.5	4	1.3	1.0	0.5	1	1	Monocot	Perennial forb (bulb)			
Brodiaea californica var. leptandra	Liliaceae	WI	2.0	4	2	2.0	1.4	1.0	1	Monocot	Perennial forb (bulb)				
Brodiaea coronaria ssp. coronaria	Liliaceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1	1	Monocot	Perennial forb (bulb)			
Brodiaea coronaria ssp. rosea	Liliaceae	SE	5.5	27.5	5	6.0	1.3	0.6	1b	1	Monocot	Perennial forb (bulb)			
Brodiaea pallida	Liliaceae	BE	4.9	19.5	4	5.0	1.5	0.8	1b	1	Monocot	Perennial forb (bulb)			
Brodiaea purdyi	Liliaceae	WI	2.2	11	5	2.0	0.8	0.4	1	1	Monocot	Perennial forb (bulb)			
Brodiaea stellaris	Liliaceae	SE	6.0	18	3	6.0	0.0	0.0	1	Monocot	Perennial forb (bulb)				
Calochortus clavatus var. clavatus	Liliaceae	BE	4.5	13.5	3	4.0	0.6	0.3	4	1	Monocot	Perennial forb (bulb)			
Calochortus coeruleus var. limbratus	Liliaceae	WI	1.5	4.5	3	1.0	1.3	0.8	1	1	Monocot	Perennial forb (bulb)			
Calochortus elegans var. nanus	Liliaceae	WI	2.0	4	2	2.0	1.4	1.0	1	Monocot	Perennial forb (bulb)				
APPENDIX 1. CONTINUED.

Taxon	Family	Aff	Mean	Sum	Sources	Med.	SD	Rarity	Geog. Dist.	Tax. Cat.	Lifeform			
Calochortus greenei	Liliaceae	SE	6.0	12	2	6.0	0.0	0.0	1	1	Monocot	Perennial forb (bulb)		
Calochortus nudus	Liliaceae	WI	2.1	8.5	4	2.5	1.2	0.6	1	1	Monocot	Perennial forb (bulb)		
Calochortus obispoensis	Liliaceae	BE	5.4	21.5	4	6.0	1.5	0.8	1b	1	Monocot	Perennial forb (bulb)		
Calochortus raichei	Liliaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	Monocot	Perennial forb (bulb)		
Calochortus tiburonensis	Liliaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Monocot	Perennial forb (bulb)		
Calochortus umbellatus	Liliaceae	SI	2.9	14.5	5	3.0	1.1	0.5	4	1	Monocot	Perennial forb (bulb)		
Calochortus uniflorus	Liliaceae	WI	1.7	5	3	1.0	1.2	0.7	1	1	Monocot	Perennial forb (bulb)		
Calochortus vestae	Liliaceae	WI	2.0	6	3	2.0	1.0	0.6	1	1	Monocot	Perennial forb (bulb)		
Calochortus weedii var. vestas	Liliaceae	WI/IN	1.0	3	3	0.0	1.7	1.0	1b	1	Monocot	Perennial forb (bulb)		
Chlorogalum angustifolium	Liliaceae	WI	2.4	9.5	4	1.8	2.8	1.4	1	1	Monocot	Perennial forb (bulb)		
Chlorogalum grandiflorum	Liliaceae	BE	5.2	26	5	6.0	1.1	0.5	1b	1	Monocot	Perennial forb (bulb)		
Chlorogalum pomeridianum var. minus	Liliaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1b	1	1	Monocot	Perennial forb (bulb)	
Chlorogalum purpureum var. redactum	Liliaceae	SE	5.5	16.5	3	6.0	1.2	0.7	1b	1	Monocot	Perennial forb (bulb)		
Erythronium californicum	Liliaceae	SI	2.7	8	3	2.0	2.1	1.2	1	1	Monocot	Perennial forb (bulb)		
Erythronium citrinum var. citrinum	Liliaceae	BE/SI	4.3	21.5	5	4.0	0.4	0.2	4	1	Monocot	Perennial forb (bulb)		
Erythronium citrinum var. roderickii	Liliaceae	BE	4.7	37.5	8	4.5	1.4	0.5	1b	1	Monocot	Perennial forb (bulb)		
Erythronium helenae	Liliaceae	BE	4.5	18	4	4.5	1.7	0.9	4	1	Monocot	Perennial forb (bulb)		
Erythronium hendersonii	Liliaceae	SI	2.5	5	2	2.5	3.5	2.5	1	Monocot	Perennial forb (bulb)			
Erythronium howellii	Liliaceae	WI	2.3	7	3	2.0	2.5	1.5	1b	1	Monocot	Perennial forb (bulb)		
Erythronium multiscapoideum	Liliaceae	SI	3.0	15	5	2.0	1.7	0.8	1	Monocot	Perennial forb (bulb)			
Erythronium purpurascens	Liliaceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1	Monocot	Perennial forb (bulb)			
Taxon	Family	Aff²	Mean³	Sum⁴	Sources Med.⁵	SD⁶	Rarity⁷	KL	NC	BA	SC	SN	Tax. Cat.⁸	Lifeform¹¹
---------------------------	------------	------	-------	------	---------------	-----	----------	----	----	----	----	----	-------------	------------
Erythronium tuolumnense	Liliaceae	SI	2.5	5	2	2.5	3.5	2.5					1	Monocot
Fritillaria affinis var. affinis	Liliaceae	WI	2.0	6	3	2.0	0.0	0.0	1	1	1	1	1	Monocot
Fritillaria agrestis	Liliaceae	SI	2.7	13.25	5	2.0	1.6	0.7	4	1	1	1	1	Monocot
Fritillaria biflora var. biflora	Liliaceae	WI	2.3	9	4	2.5	1.7	0.9	1	1	1	1	1	Monocot
Fritillaria biflora var. ineziana	Liliaceae	BE	5.4	21.5	4	6.0	1.5	0.8	1b	1			1	Monocot
Fritillaria eastwoodiae	Liliaceae	WI	2.3	13.5	6	2.0	0.4	0.2	3	1			1	Monocot
Fritillaria falcata	Liliaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1		1	Monocot
Fritillaria glauca	Liliaceae	BE/SI	4.3	17.25	4	5.5	2.7	1.4	1	1			1	Monocot
Fritillaria liliacea	Liliaceae	WI	1.8	7	4	1.5	1.1	0.6	1b	1	1		1	Monocot
Fritillaria pluriflora	Liliaceae	WI	2.4	9.5	4	2.5	1.5	0.7	1			1	1	Monocot
Fritillaria purdyi	Liliaceae	BE	4.5	31.5	7	4.0	1.8	0.7	4	1	1		1	Monocot
Fritillaria recurva var. coccinea	Liliaceae	SI	2.7	8	3	2.0	3.1	1.8	1				1	Monocot
Fritillaria recurva var. recurva	Liliaceae	SI	2.7	8	3	3.0	0.6	0.3	1	1	1		1	Monocot
Fritillaria viridea	Liliaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b			1	1	Monocot
Hastingsia alba	Liliaceae	SI	3.4	17	5	3.0	1.5	0.7	1	1			1	Monocot
Hastingsia serpentinicola	Liliaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1			1	Monocot
Lilium bolanderi	Liliaceae	SE	6.2	18.5	3	6.0	0.0	0.0	4	1			1	Monocot
Lilium kelloggi	Liliaceae	SI	2.5	10	4	2.0	1.9	1.0	1				1	Monocot
Lilium rubescens	Liliaceae	WI	2.0	9.75	5	2.0	1.4	0.6	4		1	1	1	Monocot
Lilium washingtonianum ssp. purpurascens	Liliaceae	BE/SI	3.5	10.5	3	3.0	2.5	1.5	4	1			1	Monocot
Muilla maritima	Liliaceae	WI	2.0	6	3	2.0	1.0	0.6	1	1	1	1	1	Monocot
Odontostomum hartwegii	Liliaceae	SI	2.7	8	3	3.0	0.6	0.3	1			1	1	Monocot
Triteleia bridgesii	Liliaceae	SI	3.3	13	4	3.5	1.7	0.9	1	1	1	1	1	Monocot
APPENDIX 1. CONTINUED.

Taxon1	Family	Aff2	Mean3	Sum4	Sources Med.5	SD6	SE7	Rarity8	Geog. Dist.9	Tax. Cat.10	Lifeform11		
Triteleia crocea var. crocea	Liliaceae	SI	3.3	10	3	3.0	2.5	1.5	4	1	Monocot	Perennial forb	
Triteleia crocea var. modesta	Liliaceae	BE	4.5	22.5	5	4.0	1.5	0.7	4	1	Monocot	Perennial forb	
Triteleia ixioides ssp. cookii	Liliaceae	BE	4.5	13.5	3	6.0	2.9	1	7	1b	Monocot	Perennial forb	
Triteleia pedunculata	Liliaceae	BE/SI	3.8	19	5	3.0	2.2	1	0	1b	Monocot	Perennial forb	
Xerophyllum tenax	Liliaceae	WI	1.6	8	5	1.0	0.9	0.4	1	1	Monocot	Perennial forb (thiz.)	
Zigadenus micranthus var. fontanus	Liliaceae	BE/SI	3.8	23	6	4.0	0.8	0.3	4	1	Monocot	Perennial forb (bulb)	
Zigadenus paniculatus	Liliaceae	WI	1.6	4.75	3	2.0	0.7	0.4	1	1	Monocot	Perennial forb	
Hesperolinon adenophyllum	Linaceae	SE	5.7	28.5	5	6.0	0.9	0.4	1b	1	Dicot	Annual forb	
Hesperolinon bicarpellatum	Linaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Hesperolinon brevifolia	Linaceae	SI	2.5	10	4	2.5	1.5	0.7	1b	1	Dicot	Annual forb	
Hesperolinon californicum	Linaceae	SI	2.8	8.5	3	3.0	0.6	0.3	1	1	Dicot	Annual forb	
Hesperolinon clevelandii	Linaceae	WI	2.0	8	4	2.0	1.8	0.9	1	1	Dicot	Annual forb	
Hesperolinon congestum	Linaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Hesperolinon didymocarpum	Linaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Hesperolinon disjunctum	Linaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1	Dicot	Annual forb	
Hesperolinon drymarioides	Linaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Hesperolinon micranthum	Linaceae	WI	2.4	11.75	5	3.0	1.0	0.4	1	1	Dicot	Annual forb	
Hesperolinon serpentinum	Linaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Hesperolinon sparganum	Linaceae	BE	4.7	14	3	6.0	2.3	1.3	1	1	Dicot	Annual forb	
Hesperolinon tehamense	Linaceae	SE	5.8	34.5	6	6.0	0.8	0.3	1b	1	Dicot	Annual forb	
Linum lewisii	Linaceae	WI/IN	1.3	4	3	1.0	1.5	0.9	1	1	Dicot	Annual forb	
Sidalcea diploscypha	Malvaceae	Malvaceae	2.6	13	5	3.0	2.3	1.0	1	1	Dicot	Annual forb	
Sidalcea hartwegii	Malvaceae	WI	1.6	4.75	3	2.0	0.7	0.4	1	1	Dicot	Annual forb	
Sidalcea hickmani ssp. anomala	Malvaceae	SE	5.6	22.5	4	6.0	1.0	0.5	1b	1	Dicot	Annual forb	
Sidalcea hickmani ssp. viridis	Malvaceae	SE	6.3	12.5	2	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Sidalcea keckii	Malvaceae	SE	3.0	6	2	3.0	2.8	0.2	1	1	Dicot	Annual forb	
Camissonia benitensis	Onagraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Camissonia laevis	Onagraceae	SE	3.0	9	3	3.0	3.0	1.7	1	1	Dicot	Annual forb	
Clarkia arcuata	Onagraceae	WI	2.3	7	3	2.0	0.6	0.3	1	1	Dicot	Annual forb	
Clarkia biloba ssp. biloba	Onagraceae	WI/IN	1.4	2.75	2	1.4	0.9	0.6	1	1	Dicot	Annual forb	
Clarkia breviflora	Onagraceae	BE/SI	3.8	11.5	3	3.0	2.1	1.2	4	1	Dicot	Annual forb	
Clarkia franciscana	Onagraceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot	Annual forb	
Clarkia gracilis ssp. albicaulis	Onagraceae	WI	2.2	6.5	3	2.0	1.0	0.6	1b	1	Dicot	Annual forb	
Clarkia gracilis ssp. tracyi	Onagraceae	BE	5.0	25	5	5.0	1.0	0.4	4	1	Dicot	Annual forb	
Epilobium minutum	Onagraceae	WI	2.0	6	3	2.0	1.0	0.6	1	1	Dicot	Annual forb	
Epilobium oreganum	Onagraceae	BE/SI	3.8	23	6	4.0	2.2	0.9	1	1	Dicot	Annual forb	
Taxon	Family	Aff²	Mean³	Sum⁴	Sources Med.⁵	SD⁶	SE⁷	Rarity⁸	KL	NC	BA	SC	SN
----------------------------	---------------	------	-------	------	--------------	-----	-----	---------	----	----	----	----	----
Epilobium rigidum	Onagraceae	BE	5.1	20.5	4	6.0	2.0	1.0	4	1			
Epilobium siskiyouense	Onagraceae	SE	5.5	38.5	7	6.0	1.0	0.4	1b	1			
Cypripedium californicum	Orchidaceae	BE	4.5	40.5	9	4.0	1.3	0.4	4	1			
Cypripedium fasciculatum	Orchidaceae	SI	2.5	12.25	5	2.0	1.6	0.7	4				
Piperia candida	Orchidaceae	W/I IN	1.2	3.5	3	1.0	1.0	0.6	4				
Orobanche valida ssp. howellii	Orobanchaceae	SI	3.4	13.5	4	3.0	1.3	0.6	4				
Dicentra chrysantha	Papaveraceae	W/I IN	1.1	3.25	3	1.0	0.9	0.5	1				
Dicentra formosa ssp. oregana	Papaveraceae	SE	5.6	22.5	4	6.0	1.0	0.5	4				
Dicentra pauciflora	Papaveraceae	WI	2.2	6.5	3	3.0	1.4	0.8	1				
Eschscholzia hymecoides	Papaveraceae	SI	2.6	7.75	3	1.0	3.1	1.8	4				
Platystemon californicus	Papaveraceae	WI	1.7	5	2	0.6	0.3	1	1				
Picea breweriana	Pinaceae	WI	2.2	6.5	3	3.0	1.4	0.8	1				
Pinus attenuata	Pinaceae	SI	2.5	12.6	5	3.0	2.4	1.1	1				
Pinus balfouriana ssp. balfouriana	Pinaceae	W/I/SI	4.3	26	6	1.5	0.6	1	1				
Pinus coulteri	Pinaceae	W/I IN	1.3	4	3	1.0	1.5	0.9	1				
Pinus jeffreyi	Pinaceae	SI	2.7	8	3	3.0	0.6	0.3	1				
Pinus sabiniana	Pinaceae	W/I IN	1.4	4.25	3	1.0	1.4	0.8	1				
Plantago erecta	Plantainaceae	W/I IN	1.0	3	3	1.0	1.0	0.6	1				
Achnatherum lemmonii var. pubescens	Poaceae	W/I IN	1.0	2	2	1.0	1.4	1.0	1				
Achnatherum nelsonii var. dorei	Poaceae	W/I IN	1.0	2	2	1.0	1.4	1.0	1				
Achnatherum stillmanii	Poaceae	W/I IN	1.1	2.1	2	1.1	1.3	1.0	1				
Agrostis microphylla	Poaceae	W/I IN	1.1	4.25	4	1.1	1.1	0.5	1				
Bromus laevipes	Poaceae	W/I	1.7	65	3	2.0	0.6	0.3	1				
Calamagrostis foliosa	Poaceae	W/I	1.7	5	3	2.0	1.5	0.9	1				
Calamagrostis ophitidis	Poaceae	SE	6.1	24.5	4	6.0	0.0	0.0	4	1	1	1	1

Geog. Dist.
- BE: British Columbia
- SI: Sierra Nevada
- WI: Western Interior
- IN: Intermountain

Taxon Cat.
- 1: Monocot
- 2: Dicot
- 4: Perennial forb (bulb)
- 5: Perennial forb (paras.)

Lifeform
- Tree
- Annual forb
- Gymnosp.

Notes
- Pubescens: pubescent
- (cesp.): (creeping)
- (rhiz.): (rhizomatous)
APPENDIX 1. CONTINUED.

Taxon	Family	Aff	Mean	Sum	Sources	Med.	SD	SE	Rarity	KL	NC	BA	SC	SN	Tax. Cat.	Lifeform
Calamagrostis stricta ssp. *inexpansa*	Poaceae	WI	1.5	3	2	1.5	2.1	1.5	1	1	1	1	1	1	Monocot	
Danthonia californica var. *californica*	Poaceae	SI	3.3	13	4	3.0	2.2	1.1	1	1	1	1	1	1	Monocot	
Elymus trachycaulus ssp. *trachycaulus*	Poaceae	WI	1.6	3.1	2	1.6	2.1	1.5	1	1	1	1	1	1	Monocot	
Festuca californica	Poaceae	WI	2.4	11.75	5	2.0	1.6	0.7	1	1	1	1	1	1	Monocot	
Festuca idahoensis	Poaceae	WI/IN	1.3	5.25	4	1.0	1.2	0.6	1	1	1	1	1	1	Monocot	
Hordeum brachyantherum ssp. *californicum*	Poaceae	SI	3.1	9.25	3	3.0	2.9	1.7	1	1	1	1	1	1	Monocot	
Melica geyeri	Poaceae	WI/IN	1.2	6	5	1.0	0.4	0.2	1	1	1	1	1	1	Monocot	
Poa piperi	Poaceae	BE	5.4	21.5	4	5.5	1.0	0.5	1	1					Monocot	
Poa rhizomata	Poaceae	WI	1.8	3.5	2	1.5	2.1	1.5	4	1					Monocot	
Poa tenerima	Poaceae	SI	3.3	13	4	3.0	1.3	0.6	1	1	1	1	1	1	Monocot	
Scribneria bolanderi	Poaceae	WI	1.7	5.1	3	1.0	2.0	1.2	1	1	1	1	1	1	Monocot	
Valpia microstachys var. *microstachys*	Poaceae	WI	2.3	9.1	4	2.0	2.0	1.0	1	1	1	1	1	1	Monocot	
Collomia diversifolia	Polemoniaceae	SE	5.6	33.5	6	6.0	1.2	0.5	4	1	1				Dicot	
Collomia tinctoria	Polemoniaceae	WI	1.8	7.1	4	2.0	1.5	0.7	1	1	1				Dicot	
Gilia capitata ssp. *capitata*	Polemoniaceae	WI	1.6	4.75	3	1.0	1.2	0.7	1	1					Dicot	
Gilia sinistra ssp. *pinnatisecta*	Polemoniaceae	BE/SI	3.8	19	5	3.0	2.2	1.0	4	1					Dicot	Annual, Perennial forb

KL = Known Location; NC = Near California; BA = Border Area; SC = Southern California; SN = Special Note; SE = Standard Error; Rarity = Rarity of occurrence; Lifeform = Lifeform; Tax. Cat. = Taxonomic Category.
Appendix 1. Continued.

Taxon	Family	Aff	Mean	Sum	Sources	SD	SE	Rarity	KL	NC	BA	SC	SN	Tax. Cat.	Lifeform	
Gilia sinistra ssp. sinistra	Polemoniaceae	SI	2.5	7.5	3	3.0	1.8	1.0	1	1	1			1	Dicot	Annual forb
Linanthus ambiguus	Polemoniaceae	SE	5.8	17.5	3	6.0	0.6	0.3	4	1	1			1	Dicot	Annual forb
Linanthus bolanderi	Polemoniaceae	WI/IN	1.3	2.5	2	1.3	1.1	0.8	1	1	1			1	Dicot	Annual forb
Linanthus dichotomus	Polemoniaceae	SI	2.5	12.35	5	3.0	2.4	1.1	1	1	1	1		1	Dicot	Annual forb
Linanthus latissimus (= Leptosiphon la.)	Polemoniaceae	WI	2.0	6	3	2.0	0.0	0.0	1					1	Dicot	Annual forb
Linanthus linearis (= Leptosiphon li.)	Polemoniaceae	WI	1.6	6.25	4	1.5	1.2	0.6	1	1	1	1		1	Dicot	Annual forb
Navarretia heterodoxa	Polemoniaceae	SI	2.8	14	5	3.0	2.4	1.1	1					1	Dicot	Annual forb
Navarretia jaredii	Polemoniaceae	SE	5.9	23.5	4	6.0	0.5	0.3	4					1	Dicot	Annual forb
Navarretia jepsonii	Polemoniaceae	SE	5.6	22.5	4	5.5	0.6	0.3	4					1	Dicot	Annual forb
Navarretia pubescens	Polemoniaceae	WI	2.0	6	3	2.0	1.0	0.6	1	1	1	1		1	Dicot	Annual forb
Navarretia rosulata	Polemoniaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1	1			1	Dicot	Annual forb
Phlox hirsuta	Polemoniaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1					1	Dicot	Perennial forb
Polemonium chartaceum	Polemoniaceae	WI	1.6	8.1	5	2.0	1.5	0.7	1					1	Dicot	Perennial forb
Polygala cornuta var. cornuta	Polygalaceae	WI	2.3	9	4	2.0	1.3	0.6	1			1		1	Dicot	Perennial forb
Chorizanthe brevii	Polygonaceae	BE	5.4	21.5	4	5.5	1.0	0.5	1					1	Dicot	Annual forb
Chorizanthe palmeri	Polygonaceae	BE	4.9	24.5	5	6.0	1.6	0.7	4					1	Dicot	Annual forb
Chorizanthe uniaristata	Polygonaceae	BE	2.7	10.75	4	2.5	2.0	1.0	1				1	1	Dicot	Annual, Perennial forb
Chorizanthe ventricosa	Polygonaceae	BE	5.3	16	3	6.0	1.2	0.7	4					1	Dicot	Annual forb
Eriogonum alpinum	Polygonaceae	SE	6.1	30.5	5	6.0	0.0	0.0	1	1	1			1	Dicot	Perennial forb
Eriogonum argillosum	Polygonaceae	SI	3.1	12.5	4	3.0	2.6	1.3	4	1	1			1	Dicot	Annual forb
Eriogonum compositum var. compositum	Polygonaceae	WI	1.7	5.1	3	2.0	1.5	0.9	1			1		1	Dicot	Perennial forb
Eriogonum condonii	Polygonaceae	BE	5.1	35.5	7	6.0	1.7	0.7	4					1	Dicot	Shrub
Eriogonum covilleeanum	Polygonaceae	SI	3.0	12	4	3.0	1.6	0.8	1					1	Dicot	Annual forb
Eriogonum dasyanthemum	Polygonaceae	SI	3.0	6	2	3.0	1.4	1.0	1					1	Dicot	Annual forb
Eriogonum denticulatum	Polygonaceae	SI	3.2	9.5	3	3.0	3.0	1.7	4			1		1	Dicot	Perennial forb
Eriogonum elatum var. villosum	Polygonaceae	SI	3.3	13	4	3.5	3.2	1.6	1					1	Dicot	Perennial forb
Eriogonum hirtellum	Polygonaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1			1		1	Dicot	Perennial forb (rhiz.)
Eriogonum hirtiflorum	Polygonaceae	SI	3.3	13	4	3.5	3.2	1.6	1	1	1	1		1	Dicot	Annual forb
Eriogonum kelloggii	Polygonaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1			1		1	Dicot	Perennial forb
Eriogonum libertini	Polygonaceae	SE	6.1	36.5	6	6.0	0.0	0.0	4	1	1			1	Dicot	Perennial forb
Eriogonum luteolum var. caninum	Polygonaceae	SE	5.8	25.5	5	6.0	0.9	0.4	3	1	1			1	Dicot	Annual forb
Appendix 1. Continued.

Taxon1	Family	Aff²	Mean³	Sum³	Sources Med.⁴	SD⁵	SE⁶	Rarity⁷	Geog. Dist.⁸	Tax. Cat.¹⁰	Lifeform¹¹				
Eriogonum luteolum var. luteolum	Polygonaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	1	1	Dicot	Annual forb
Eriogonum nervulosum	Polygonaceae	WI	1.5	4.5	3	1.0	0.6	0.3	4	1	1	1	Dicot	Perennial forb (rhiz.)	
Eriogonum nudum var. indictum	Polygonaceae	WI	2.0	6.0	3	2.0	0.0	0.0	1	1	1	1	Dicot	Perennial forb	
Eriogonum pendulatum	Polygonaceae	WI/IN	1.0	3.0	3	0.0	1.7	1.0	1	1	1	1	Dicot	Perennial forb	
Eriogonum pyrolifolium	Polygonaceae	BE	5.4	32.5	6	6.0	1.2	0.5	4	1	1	1	Dicot	Perennial forb	
Eriogonum strictum var. greenei	Polygonaceae	SE	5.9	29.5	5	6.0	0.4	0.2	4	1	1	1	Dicot	Perennial forb	
Eriogonum strictum var. proliferum	Polygonaceae	SE	6.0	24.0	4	6.0	0.0	0.0	1	1	1	1	Dicot	Perennial forb	
Eriogonum ternatum	Polygonaceae	BE	5.3	26.5	5	6.0	1.3	0.6	4	1	1	1	Dicot	Annual forb	
Eriogonum trichopes var. hooveri	Polygonaceae	SI	3.3	10.0	3	3.0	2.5	1.5	1	1	1	1	Dicot	Annual forb	
Eriogonum tripodium	Polygonaceae	BE	3.5	21.0	6	3.0	1.2	0.5	4	1	1	1	Dicot	Perennial forb	
Eriogonum unbellatum var. argus	Polygonaceae	SI	3.3	10.0	3	3.0	2.5	1.5	1	1	1	1	Dicot	Perennial forb	
Eriogonum unbellatum var. bahiforme	Polygonaceae	BE/SI	3.5	21.0	6	3.0	1.2	0.5	4	1	1	1	Dicot	Perennial forb	
Eriogonum unbellatum var. goodmani	Polygonaceae	SI	3.3	10.0	3	3.0	2.5	1.5	1	1	1	1	Dicot	Perennial forb	
Eriogonum unbellatum var. humistratum	Polygonaceae	BE/SI	4.5	27.25	6	5.0	2.1	0.8	4	1	1	1	Dicot	Perennial forb	
Eriogonum unbellatum var. speciosum	Polygonaceae	BE/SI	4.2	21.0	5	4.0	1.3	0.6	1	1	1	1	Dicot	Perennial forb	
Eriogonum ursinum	Polygonaceae	WI/IN	1.1	2.25	2	1.1	1.2	0.9	1	1	1	1	Dicot	Perennial forb	
Eriogonum vinitceum	Polygonaceae	WI/IN	1.0	3.0	3	1.0	0.0	0.0	0	1	1	1	Dicot	Annual forb	
Polygonum douglasii ssp. majus	Polygonaceae	WI	1.5	4.5	3	2.0	0.9	0.5	1	1	1	1	Dicot	Annual forb	
Polygonum douglasii ssp. spergulariforme	Polygonaceae	WI	3.0	18.25	6	2.5	2.1	0.9	1	1	1	1	Dicot	Annual forb	
Systenotheca vortriedei	Polygonaceae	WI/IN	1.1	2.25	2	1.1	1.2	0.9	1	1	1	1	Dicot	Annual forb	
Claytonia exigua ssp. exigua	Portulacaceae	BE	3.6	18.0	5	3.0	1.3	0.6	1	1	1	1	Dicot	Annual forb	
Claytonia exigua ssp. glauca	Portulacaceae	BE/SI	3.1	15.5	5	3.0	0.2	0.1	1	1	1	1	Dicot	Annual forb	
Taxon	Family	Aff	Mean	Sources	SD	Rarity	KL	NC	BA	SC	SN				
-------	--------	-----	------	---------	----	--------	----	----	----	----	----				
Claytonia saxosa	Portulacaceae	BE/SI	4.4	21.75	5	5.0	2.2	1.0	1	1	Dicot Annual forb				
Lewisia cantalovii	Portulacaceae	WI/IN	1.0	6	6	1.0	1.1	0.4	1b	1	1	Dicot Perennial forb			
Lewisia cotyledon var. cotyledon	Portulacaceae	WI	2.0	6	3	3.0	1.7	1.0	1	1	Dicot Perennial forb				
Lewisia cotyledon var. heckneri	Portulacaceae	WI/IN	1.0	4	4	0.5	1.4	0.7	1	1	Dicot Perennial forb				
Lewisia cotyledon var. howellii	Portulacaceae	WI/IN	1.3	4	3	2.0	1.5	0.9	1	1	Dicot Perennial forb				
Lewisia leana	Portulacaceae	SI	3.0	6	2	3.0	0.0	0.0	1	1	1	Dicot Perennial forb			
Lewisia nevadensis	Portulacaceae	BE	5.3	21	4	6.0	1.5	0.8	1	1	1	Dicot Perennial forb			
Lewisia rediviva	Portulacaceae	WI/IN	1.4	7	5	1.0	1.1	0.5	1	1	1	Dicot Perennial forb			
Lewisia stemmansi	Portulacaceae	BE	4.7	14	3	6.0	2.3	1.3	1b	1	1	Dicot Perennial forb			
Lewisia tripbylla	Portulacaceae	WI	1.7	5	3	2.0	1.5	0.9	1	1	1	Dicot Perennial forb			
Dodecatheon clevelandii ssp. patulum	Primulaceae	SI	3.0	9	3	3.0	0.0	0.0	1	1	1	Dicot Perennial forb			
Adiantum aleuticum	Pteridaceae	WI	2.4	11.75	5	2.0	1.2	0.5	1	1	1	1	1	Pteridoph. Perennial forb	
Aspidotis carlotta-halliae	Pteridaceae	BE	5.3	26.5	5	6.0	1.1	0.5	4	1	1	1	1	Pteridoph. Perennial forb (rhiz.)	
Aspidotis densa	Pteridaceae	SI	3.4	31	9	3.0	1.2	0.4	1	1	1	1	1	Pteridoph. Perennial forb	
Pellaea brachyptera	Pteridaceae	WI	1.5	4.5	3	2.0	0.9	0.5	1	1	1	1	1	Pteridoph. Perennial forb	
Anemone drummondii	Ranunculaceae	WI	2.3	6.75	3	2.0	1.6	0.9	1	1	1	Dicot Perennial forb			
Aquilegia eximia	Ranunculaceae	BE/SI	4.2	25	6	3.5	1.5	0.6	1	1	1	Dicot Perennial forb			
Delphinium hesperium ssp. hesperium	Ranunculaceae	SI	2.7	8	3	3.0	0.6	0.3	1	1	1	1	1	Dicot Perennial forb	
Delphinium nuttallianum	Ranunculaceae	WI/IN	1.4	4.1	3	1.0	1.5	0.9	1	1	1	1	Dicot Perennial forb		
Delphinium parryi ssp. eastwoodiae	Ranunculaceae	BE/SI	3.7	11	3	4.0	2.5	1.5	1	1	1	1	Dicot Perennial forb		
Delphinium uliginosum	Ranunculaceae	SE	5.7	28.5	5	6.0	0.9	0.4	4	1	1	Dicot Perennial forb			
Ceanothus confusus	Rhamnaceae	WI/IN	1.3	2.5	2	1.3	1.1	0.8	1b	1	1	Dicot Shrub			
Ceanothus cuneatus var. cuneatus	Rhamnaceae	WI	1.5	6.1	4	1.5	1.3	0.6	1	1	1	1	1	Dicot Shrub	
Ceanothus diversgens	Rhamnaceae	WI	2.0	4	2	2.0	1.4	1.0	1b	1	1	Dicot Shrub			
Ceanothus ferrisae	Rhamnaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	1	1	Dicot Shrub	
Ceanothus foliosus var. medius	Rhamnaceae	BE/SI	4.0	12	3	3.0	1.7	1.0	1	1	1	1	1	Dicot Shrub	
Ceanothus jeppsonii	Rhamnaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1	1	1	1	Dicot Shrub	
Ceanothus masonii	Rhamnaceae	SI	3.3	6.5	2	3.0	4.2	3.0	1b	1	1	1	1	Dicot Shrub	
Ceanothus papillosus var. roweanus	Rhamnaceae	WI	1.5	3	2	1.5	2.1	1.5	1	1	1	1	1	Dicot Shrub	
Ceanothus pulchra	Rhamnaceae	SE	5.7	28.5	5	6.0	0.9	0.4	1	1	1	1	1	Dicot Shrub	
Ceanothus roderickii	Rhamnaceae	WI	1.7	5	3	2.0	1.5	0.9	1b	1	1	Dicot Shrub			
Ceanothus sonomensis	Rhamnaceae	WI/IN	1.3	4	3	2.0	1.2	0.7	1b	1	1	Dicot Shrub			
Appendix 1. Continued.

Taxon	Family	Aff	Mean	Sum	Sources Med.	SD	SE	Rarity	Geog. Dist.	Tax. Cat.	Lifeform				
Rhamnus californica ssp. occidentalis	Rhamnaceae	SE	6.0	24	4	6.0	0.0	0.0	1	1	1		Dicot Shrub		
Rhamnus tomentella ssp. crassifolia	Rhamnaceae	BE	4.8	19	4	6.0	2.5	1.3	1	1	1		Dicot Shrub		
Rhamnus tomentella ssp. tomentella	Rhamnaceae	WI	1.5	6	4	0.8	1.7	0.8	1	1	1	1	1	Dicot Shrub	
Adenostoma fasciculatum	Rosaceae	WI/IN	1.3	5.2	4	1.1	1.4	0.7	1	1	1	1	Dicot Shrub		
Helodiscus discolor	Rosaceae	WI/IN	1.0	3	3	1.0	1.0	0.6	1	1	1	1	Dicot Shrub		
Horkelia congesta ssp. nemorosa	Rosaceae	BE/SI	3.8	7.5	2	3.5	0.7	0.5	2	1	Dicot Perennial forb				
Horkelia daucifolia	Rosaceae	BE/SI	3.8	15	4	3.0	1.5	0.8	1	1	Dicot Perennial forb				
Horkelia sericata	Rosaceae	SE	5.6	22.5	4	6.0	1.0	0.5	4	1	Dicot Perennial forb				
Horkelia tridentata ssp. flavescens	Rosaceae	SI	3.0	9	3	2.0	1.7	1.0	1	1	Dicot Perennial forb				
Ivesia gordonii	Rosaceae	WI	1.6	3.25	2	1.6	1.9	1.4	1	1	Dicot Perennial forb				
Ivesia pickeringii	Rosaceae	BE	5.4	32.5	6	6.0	1.0	0.4	1b	1	Dicot Perennial forb				
Potentilla crisata	Rosaceae	SI	3.1	12.5	4	3.0	0.0	0.0	1b	1	Dicot Perennial forb				
Sanguisorba officinalis	Rosaceae	BE/SI	4.2	12.5	3	3.0	1.7	1.0	2	1	Dicot Perennial forb				
Galium ambiguum var. ambiguum	Rubiaceae	SI	3.3	10	3	3.0	2.5	1.5	1	1	Dicot Perennial forb				
Galium ambiguum var. siskiyouense	Rubiaceae	SE	5.5	27.5	5	6.0	0.9	0.4	1	1	Dicot Perennial forb				
Galium andrewsii ssp. andrewsiis	Rubiaceae	SI	3.2	16	5	3.0	1.9	0.9	1	1	1	Dicot Perennial forb			
Galium andrewsii ssp. gatense	Rubiaceae	BE	5.1	20.5	4	5.0	0.8	0.4	4	1	Dicot Perennial forb				
Galium andrewsii ssp. intermediate	Rubiaceae	WI/IN	1.4	2.75	2	1.4	0.9	0.6	1	Dicot Perennial forb					
Galium elementis	Rubiaceae	WI/IN	1.0	2	2	1.0	1.4	1.0	1b	1	Dicot Perennial forb				
Galium hardhamiae	Rubiaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	Dicot Perennial forb				
Galium serpentinum ssp. scottiun	Rubiaceae	SE	5.9	29.5	5	6.0	0.4	0.2	1b	1	Dicot Perennial forb				
Salix brevii	Salicaceae	SE	6.0	30	5	6.0	0.0	0.0	1	1	1	Dicot Shrub			
Salix delnotensis	Salicaceae	SE	6.2	18.5	3	6.0	0.0	0.0	4	1	Dicot Shrub				
Salix stichensis	Salicaceae	WI	1.6	4.75	3	1.0	1.2	0.7	1	1	1	1	Dicot Tree, shrub		
Darlingtonia californica	Sarraceniaceae	BE/SI	4.1	32.5	8	4.0	1.4	0.5	4	1	Dicot Perennial forb				
Parnassia californica	Saxifragaceae	WI	2.0	6	3	2.0	0.0	0.0	1	1	1	1	Dicot Perennial forb		
Saxifraga howelli	Saxifragaceae	BE/SI	3.8	7.5	2	3.5	2.1	1.5	4	1	Dicot Perennial forb				
Antirrhinum cornutum	Scrophulariaceae	WI	2.2	11	5	2.0	0.8	0.4	1	Dicot Annual forb					
Antirrhinum leptaleum	Scrophulariaceae	WI	1.6	3.1	2	1.6	2.1	1.5	1	1	Dicot Annual forb				
Taxon\(^1\)	Family	Aff\(^2\)	Mean\(^3\)	Sum\(^4\)	Sources Med.\(^5\)	SD\(^6\)	SE\(^7\)	Rarity\(^8\)	Geog. Dist.\(^9\)	Tax. Cat.\(^{10}\)	Lifeform\(^{11}\)				
-----------	---------------	-----------	------------	-----------	---------------------	--------	--------	-----------	-----------------	-------------------	------------------				
Antirrhinum subcordatum	Scrophulariaceae	BE/SI	4.3	21.5	5	4.0	1.8	0.8	4	1	1	Dicot	Annual forb		
Antirrhinum vexillo-calyculatum	Scrophulariaceae	SI	2.5	20	8	2.5	1.3	0.5	1	1	1	1	1	Dicot	Annual forb
Antirrhinum virga	Scrophulariaceae	SE	2.8	8.5	3	3.0	0.6	0.3	4	1	1	Dicot	Perennial forb		
Castilleja affinis ssp. neglecta	Scrophulariaceae	SE	6.1	30.5	5	6.0	0.0	0.0	4	1	1	1	Dicot	Perennial forb	
Castilleja foliolosa	Scrophulariaceae	WI	2.3	9	4	2.5	1.0	0.5	1	1	1	1	Dicot	Perennial forb	
Castilleja hispida ssp. brevilobata	Scrophulariaceae	SE	6.2	18.5	3	6.0	0.0	0.0	4	1	1	Dicot	Perennial forb		
Castilleja miniata ssp. elata	Scrophulariaceae	BE	4.6	27.5	6	4.5	1.4	0.6	2	1	1	Dicot	Perennial forb		
Castilleja minor ssp. spiralis	Scrophulariaceae	SI	3.3	16.5	5	3.0	2.6	1.2	1	1	1	1	Dicot	Annual forb	
Castilleja pruinosa	Scrophulariaceae	SI	3.2	15.75	5	3.0	1.9	0.8	1	1	1	1	Dicot	Perennial forb	
Castilleja rubicundula ssp. lithospermoides	Scrophulariaceae	WI	2.4	9.75	4	2.0	1.8	0.9	1	1	Dicot	Annual forb			
Castilleja rubicundula ssp. rubicundula	Scrophulariaceae	SE	5.6	28	5	6.0	0.9	0.4	1b	1	1	Dicot	Annual forb		
Collinsia greenei	Scrophulariaceae	BE	5.2	31	6	6.0	1.3	0.5	1	1	1	Dicot	Annual forb		
Collinsia multicolor	Scrophulariaceae	WI/IN	1.1	2.25	2	1.1	1.2	0.9	1b	1	1	Dicot	Annual forb		
Collinsia sparsiflora	Scrophulariaceae	WI	1.7	5	3	1.0	1.2	0.7	1	1	1	1	1	Dicot	Annual forb
Cordylanthus nidularius	Scrophulariaceae	SE	6.2	18.5	3	6.0	0.0	0.0	1b	1	1	1	1	Dicot	Annual forb
Cordylanthus pilosus var. pilosus	Scrophulariaceae	SI	2.5	10	4	2.5	0.6	0.3	1	1	1	Dicot	Annual forb		
Cordylanthus pringlei	Scrophulariaceae	SI	5.6	28	5	6.0	0.9	0.4	1	1	1	Dicot	Annual forb		
Cordylanthus tenuis ssp. brunnus	Scrophulariaceae	BE	5.1	25.5	5	5.0	1.0	0.4	4	1	1	Dicot	Annual forb		
Cordylanthus tenuis ssp. capillaris	Scrophulariaceae	SE	6.1	24.5	4	6.0	0.0	0.0	1b	1	1	1	1	Dicot	Annual forb
Cordylanthus tenuis ssp. tenuis	Scrophulariaceae	WI	2.3	9	4	2.0	0.5	0.3	1	1	1	1	Dicot	Annual forb	
Cordylanthus tenuis ssp. viscidus	Scrophulariaceae	BE	4.5	27	6	4.5	1.4	0.6	1	1	1	1	1	Dicot	Annual forb
Keckiella lemmontii	Scrophulariaceae	WI/IN	1.1	3.25	3	1.0	0.9	0.5	1	1	1	1	1	Dicot	Shrub
Mimulus douglasii	Scrophulariaceae	SI	2.7	13.5	5	3.0	0.5	0.2	1	1	1	1	1	Dicot	Annual forb
Mimulus glaucescens	Scrophulariaceae	BE/SI	3.8	18.75	5	4.0	2.1	0.9	4	1	1	Dicot	Annual forb		
Mimulus laevis (including M. brachiatus)	Scrophulariaceae	SI	2.9	14.25	5	3.0	1.2	0.5	1	1	1	1	1	Dicot	Annual forb
Taxon	Family	Aff²	Mean³	Sum⁴	Sources Med.⁵	SD⁶	SE⁷	Rarity⁸	Geog. Dist.⁹	Tax. Cat.¹⁰	Lifeform¹¹				
---	------------------	------	-------	------	----------------	-----	-----	---------	--------------	-------------	------------				
Mimulus nudatus	Scrophulariaceae	SE	5.6	33.5	6	6.0	1.2	0.5	4	1	Dicot				
Mimulus primuloides ssp. linearifolius	Scrophulariaceae	BE/SI	4.0	16	4	4.5	2.4	1.2	1	1	Dicot				
Orthocarpus pachystachys	Scrophulariaceae	SE	6.0	18	3	6.0	0.0	0.0	1	1	Dicot				
Pedicularis howellii	Scrophulariaceae	SI	2.5	7.5	3	3.0	1.2	0.7	4	1	Dicot				
Penstemon azureus var. azureus	Scrophulariaceae	SI	2.7	8	3	3.0	0.6	0.3	1	1	Dicot				
Penstemon filiformis	Scrophulariaceae	BE	5.0	30	6	5.5	1.3	0.5	1	1	Dicot				
Penstemon parvulus	Scrophulariaceae	BE/SI	3.7	11	3	4.0	0.6	0.3	1	1	Dicot				
Penstemon purpurius	Scrophulariaceae	SI	2.8	11	4	2.0	2.4	1.2	1	1	Dicot				
Triphysaria floribunda	Scrophulariaceae	WI	2.3	6.75	3	2.0	1.9	1.1	1b	1 1	Dicot				
Veronica copelandii	Scrophulariaceae	SE	6.1	24.5	4	6.0	0.0	0.0	4	1	Dicot				
Fremontodendron californicum ssp. decumbens	Sterculiaceae	BE/SI	2.0	8	4	1.5	2.4	1.2	1b	1	Dicot				
Verbena californica	Verbenaceae	BE	4.8	14.5	3	4.0	1.2	0.7	1b	1	Dicot				
Viola cuneata	Violaceae	BE	5.2	31	6	6.0	1.3	0.5	1	1	Dicot				
Viola douglasi	Violaceae	SI	2.8	13.75	5	2.0	2.0	0.9	1 1 1	1	Dicot				
Viola hallii	Violaceae	BE/SI	4.0	16	4	4.0	2.3	1.2	1	1	Dicot				
Viola lobata ssp. lobata	Violaceae	WI	2.3	11.35	5	2.0	2.4	1.1	1	1 1	Dicot				
Viola ocellata	Violaceae	SI	2.5	12.5	5	3.0	0.9	0.4	1 1 1 1	1	Dicot				
Viola primulifolia ssp. occidentalis	Violaceae	BE	5.1	25.5	5	6.0	1.4	0.6	1b	1	Dicot				
Viola purpurea ssp. integrifolia	Violaceae	WI/IN	1.3	4	3	2.0	1.2	0.7	1	1	Dicot				

¹ Taxon: Scientific name of the plant.
² Family: Family name of the plant.
³ Aff: Affinity to serpentine.
⁴ Mean: Mean distance from serpentine.
⁵ Sum: Sum of affinities.
⁶ Sources Med.: Median number of sources.
⁷ SD: Standard deviation of sources.
⁸ SE: Standard error of sources.
⁹ Rarity: Rarity of the plant.
¹⁰ Geog. Dist.: Geographic distribution.
¹¹ Tax. Cat.: Taxonomic category.
¹² Lifeform: Lifeform of the plant.