Supporting Information for:

Pharmacological characterization of the stick insect *Carausius morosus* Allatostatin-C receptor with its endogenous agonist

Ali Işbilir\(^1\), Burcin Duan Sahbaz\(^1\), Gunes Tunecen\(^1\), Moritz Bünemann\(^4\), Martin J. Lohse\(^2\), Necla Birgül-Iyison\(^1\)*

\(^1\) Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul, Turkey.

\(^2\) Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany.

\(^3\) Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg 97078, Germany.

\(^4\) Department of Pharmacology and Clinical Pharmacy, Philipps-University, 35043, Marburg, Germany.

\(^5\) ISAR Bioscience Institute, Planegg/Munich, 82152, Germany

* Correspondence: birgul@boun.edu.tr

\(^\#\) Current affiliation
TABLE OF CONTENTS

Figure S1: CmorAlstRC-mediated Gi activation is specific to CmorAST-C in HEK293 cells.

Figure S2: ΔN-term and ECL3 mutants of the CmorAlstRC do not have impaired expression and membrane localization.

Figure S3: Evolutionary relationship of *Carausius morosus* Gαi, arrestin and GRK transcripts with mammalian and insect species.

Table S1: Sequence identity of Allatostatin-C from Carausius morosus and other insect species.

Table S2: F test on the logEC50 and Emax values obtained from Figure 3C and Figure 3B.

Table S3: Sequence alignment of the conserved domains of C. morosus Gαi-, arrestin-, and GRK-like transcripts with multiple species.
Figure S1: CmorAlstRC-mediated Gi activation is specific to CmorAST-C in HEK293 cells.

(A) Time lapse FRET microscopy measurements of Gαi2 activation in HEK293 cells expressing CmorAlstRC and Gαi2 FRET sensor, stimulated with AST-A. No FRET change was observed within 60 seconds of superfusion. (B) Cells expressing Gαi2 sensor with pcDNA3 were superfused with CmorAST-C for 60 seconds. No FRET change was detected. Each FRET trace is generated by averaging 3 independent single cell measurements. Error bars represent SD.
Figure S2: ΔN-term and ECL3 mutants of the CmorAlstRC do not have impaired expression and membrane localization.

(A) Expression levels of the C-terminally EYFP-tagged CmorAlstRC and its mutated forms. Bar graphs represent the mean and SD of 3 independent plate reader experiments. (B) Confocal microscopy images of the C-terminally EYFP-tagged ECL3 (B) and ΔN-term (C) mutants of the CmorAlstRC. Each image is representative of 3 independent experiments.
Figure S3: Evolutionary relationship of *Carausius morosus* Gαi, arrestin and GRK transcripts with mammalian and insect species.

Phylogenetic trees represent evolutionary distance of identified *Carausius morosus* Gαi (A), arrestin (B) and GRK (C) transcripts to the genomes of mammalian and insect species (*Carausius morosus, Homo sapiens, Mus musculus, Drosophila melanogaster, Acrhythsion pismum, Zootermopsis nevadensis, Aedes aegypti, Cimex lectularis and Cephus cinctus*).
Description	Max Score	Total Score	Query cover	E Value	Per. Ident.	Accession
Allatostatin C preprohormone-like protein [Daphnia magna]	58.3	58.3	100%	1.00E-08	100	KZS21307.1
Allatostatin C [Cryptotermes secundus]	58.3	58.3	100%	1.00E-08	100	PNF40808.1
allatostatin C [Acyrthosiphon pisum]	58.3	58.3	100%	1.00E-08	100	XP_003244026.1
allatostatin C-like [Myzus persicae]	58.3	58.3	100%	1.00E-08	100	XP_022182906.1
allatostatin C-like [Melanaphis sacchari]	58.3	58.3	100%	1.00E-08	100	XP_025207556.1
allatostatin C [Plautia stali]	58.3	58.3	100%	1.00E-08	100	BAV78790.1
PREDICTED: allatostatin C-like [Polistes canadensis]	58.3	58.3	100%	1.00E-08	100	XP_014598613.1
allatostatin C1/prohormone 1 [Cherax quadricarinatus]	58.3	58.3	100%	1.00E-08	100	AWK57503.1
Allatostatin C Type 2 Precursor protein [Hyalella azteca]	58.3	58.3	100%	1.00E-08	100	KAA0201193.1
allatostatin C-like [Pseudomyrmex gracilis]	58.3	58.3	100%	1.00E-08	100	XP_02096756.1
allatostatin C [Formica exsecta]	58.3	58.3	100%	1.00E-08	100	XP_029677371.1
allatostatin C [Odontomachus brunneus]	58.3	58.3	100%	1.00E-08	100	XP_032688105.1
PREDICTED: allatostatin C-like [Dinoponera quadriceps]	58.3	58.3	100%	1.00E-08	100	XP_014471590.1
allatostatin C [Camponotus floridanus]	58.3	58.3	100%	1.00E-08	100	XP_011252628.1
allatostatin C [Ooceraea biroi]	58.3	58.3	100%	1.00E-08	100	XP_011338324.1
allatostatin C-like [Pogonomyrmex barbatus]	58.3	58.3	100%	1.00E-08	100	XP_011635356.1
allatostatin C [Nylanderia fulva]	58.3	58.3	100%	1.00E-08	100	XP_029159605.1
allatostatin C [Harpeggnathos saltator]	58.3	58.3	100%	1.00E-08	100	XP_011386999.1
putative allatostatin C proprehormone [Daphnia pulex]	58.3	58.3	100%	1.00E-08	100	EFX5706.1
allatostatin C-like [Daphnia magna]	58.3	58.3	100%	1.00E-08	100	XP_032779583.1
TABLE S2
F test on the logEC50 and Emax values obtained from Figure 3C and Figure 3B.

Table S2A) logEC50 of Cmor AST-C

Preferred model	WT vs ECL3mut	WT vs ΔN-ter	ECL3 vs ΔN-ter
p value	<0,0001	<0,0001	0.0019
F (DFn, DFd)	55,22 (1, 84)	32,46 (1, 84)	10,48 (1, 66)

Table S2B) Emax of Cmor AST-C

Preferred model	WT vs ECL3mut	WT vs ΔN-ter	ECL3 vs ΔN-ter
p value	0.5754	0.0004	0.0109
F (DFn, DFd)	0,3161 (1, 84)	13,82 (1, 84)	6,86 (1, 66)

Table S2C) logEC50 of Dmel AST-C

Preferred model	WT vs ECL3mut	WT vs ΔN-ter	ECL3 vs ΔN-ter
p value	<0,0001	0.4916	<0,0001
F (DFn, DFd)	34,57 (1, 66)	0,4784 (1, 66)	30,05 (1, 66)

Table S2D) Emax of Dmel AST-C

Preferred model	WT vs ECL3mut	WT vs ΔN-ter	ECL3 vs ΔN-ter
p value	0.1406	0.0049	0.7579
F (DFn, DFd)	2,224 (1, 66)	8,496 (1, 66)	0,09579 (1, 66)
TABLE S3

Table S3A) Putative receptor binding site of *Carassius morosus* Gai-like aligned with multiple species

query	86	.[1]PLTVC	FPEF.[4]TYEEFAAYIQLKFECLN.	[5]	KHITHTCATAGIIPVFVDAVTDIIFKNL 153	C. morosus Gi		
1AZT_A	304	.[3]KIEDY	FPEF.[17]NRTRAKYFIRDIEFLRIS.	[7]	HCTHIHTCAGTIIPVFVDNDRDIIIQRHML 388	cattle		
12CA_B	286	.[1]SIKKH	FPDF.[5]KLEDVQYRLQCFDNKR.	[4]	KLEYPHTCAITIIPVFHVAKTDIILQENL 353	house mouse		
1CUL_C	290	.[3]KIEDY	FPEF.[17]NRTRAKYFIRDIEFLRIS.	[7]	HCTHIHTCAGTIIPVFVDNDRDIIIQRHML 374	cattle		
1U0H_C	304	.[3]KIEDY	FPEF.[17]NRTRAKYFIRDIEFLRIS.	[7]	HCTHIHTCAGTIIPVFVDNDRDIIIQRHML 388	cattle		
NP_506290	303	.[1]NITPA	FPDY.[4]NYEAAVSKIKQFEALN.	[5]	KFLYMYHTCAITIIPVFVDNDRDIIIQRHML 350	nematode		
CAG08423	307	.[1]HLATY	FPEF.[5]DPGAAQEFILKMYQEQN.	[4]	KFLYHYHTCAITIIPVFVAATKITLRLHNL 374	*Tetraodon nigroviridis*		
AAS92627	289	.[3]KIEDY	.[3]FAYY.	[14]	VRTRAKYFIRDIEFLRIS.	[7]	HCTHIHTCAGTIIPVFVDNDRDIIIQRHML 373	zebrafish
AAQ24336	286	.[1]PINKH	FPDY.[5]DFDAAKKEAYADRIKSN.	[4]	KEIHYNTAHITIIPVFATMDNQDIIQKNL 353	Penicillum marneffi		
AAS38582	289	.[3]KIEDY	.[3]YAMY.	[14]	DVLRAKYFIRDIEFLRIS.	[7]	HCTHIHTCAGTIIPVFVDNDRDIIIQRHML 373	purple urchin

Table S3B) beta - gamma complex interaction site (polypeptide binding site) of *Carassius morosus* Gai-like aligned with multiple species

query	1	FIMVOCGGSKKKMNIKIEGVTAIIFCVALLSgydlvl	--	aeedefNRELIESMKLFSICNskwvetSIILFLNKDL 78	C. morosus Gi
1AZT_A	219	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 296	cattle
12CA_B	201	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQMDL 275	house mouse
1CUL_C	205	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 282	cattle
1U0H_C	219	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 296	cattle
NP_506290	198	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 275	nematode
CAG08423	220	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 296	*Tetraodon nigroviridis*
AAS92627	204	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDM 281	zebrafish
AAQ24336	201	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDM 278	Penicillum marneffi
AAS38582	204	FIMVOCGGSKKKMNIKIEGVTAIIFVVASSynvml	--	redngtNRLQALNLFKSNWTwrliiSVILFNKQDL 281	purple urchin
GenBank Accession	Species	Alignment (Residues)
GFAX01054314_1	Carausius morosus Gi-like	0
NP_001269547.1	Homo sapiens Gi2 isoform_4	60
GFAX01054314_1	Carausius morosus Gi-like	5
NP_001269547.1	Homo sapiens Gi2 isoform_4	120
GFAX01054314_1	Carausius morosus Gi-like	65
NP_001269547.1	Homo sapiens Gi2 isoform_4	180
GFAX01054314_1	Carausius morosus Gi-like	125
NP_001269547.1	Homo sapiens Gi2 isoform_4	240
GFAX01054314_1	Carausius morosus Gi-like	159
NP_001269547.1	Homo sapiens Gi2 isoform_4	274
Table S3D) Sequence alignment of *Carausius morosus* arrestin-like and *Homo sapiens* β-arrestin2 proteins

Accession	Species	Sequence Alignment
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

CAG29306_1_Homo_sapiens_ARRB2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GFAX01134611_1_Carausius_morosus_ARR_v1

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GDB01033192_1_Carausius_morosus_ARR_v2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

CAG29306_1_Homo_sapiens_ARRB2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GFAX01134611_1_Carausius_morosus_ARR_v1

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GDB01033192_1_Carausius_morosus_ARR_v2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

CAG29306_1_Homo_sapiens_ARRB2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GFAX01134611_1_Carausius_morosus_ARR_v1

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

GDB01033192_1_Carausius_morosus_ARR_v2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	

CAG29306_1_Homo_sapiens_ARRB2

Accession	**Species**	**Sequence Alignment**
CAG29306_1_Homo_sapiens_ARRB2	CAG29306_1_Homo_sapiens_ARRB2	
GFAX01134611_1_Carausius_morosus_ARR_v1	GFAX01134611_1_Carausius_morosus_ARR_v1	
GDB01033192_1_Carausius_morosus_ARR_v2	GDB01033192_1_Carausius_morosus_ARR_v2	
