Muscarinic receptor signaling in the pathophysiology of asthma and COPD
Reinoud Gosens*1,2,3, Johan Zaagsma1, Herman Meurs1 and Andrew J Halayko2,3

Address: 1Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands, 2Departments of Physiology & Internal Medicine, University of Manitoba, Winnipeg, MB, Canada and 3Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, MB, Canada

Email: Reinoud Gosens* - rgosens@mich.ca; Johan Zaagsma - j.zaagsma@rug.nl; Herman Meurs - h.meurs@rug.nl; Andrew J Halayko - ahalayk@cc.umanitoba.ca

* Corresponding author

Abstract
Anticholinergics are widely used for the treatment of COPD, and to a lesser extent for asthma. Primarily used as bronchodilators, they reverse the action of vagally derived acetylcholine on airway smooth muscle contraction. Recent novel studies suggest that the effects of anticholinergics likely extend far beyond inducing bronchodilation, as the novel anticholinergic drug tiotropium bromide can effectively inhibit accelerated decline of lung function in COPD patients. Vagal tone is increased in airway inflammation associated with asthma and COPD; this results from exaggerated acetylcholine release and enhanced expression of downstream signaling components in airway smooth muscle. Vagally derived acetylcholine also regulates mucus production in the airways. A number of recent research papers also indicate that acetylcholine, acting through muscarinic receptors, may in part regulate pathological changes associated with airway remodeling. Muscarinic receptor signalling regulates airway smooth muscle thickening and differentiation, both in vitro and in vivo. Furthermore, acetylcholine and its synthesizing enzyme, choline acetyl transferase (ChAT), are ubiquitously expressed throughout the airways. Most notably epithelial cells and inflammatory cells generate acetylcholine, and express functional muscarinic receptors. Interestingly, recent work indicates the expression and function of muscarinic receptors on neutrophils is increased in COPD. Considering the potential broad role for endogenous acetylcholine in airway biology, this review summarizes established and novel aspects of muscarinic receptor signaling in relation to the pathophysiology and treatment of asthma and COPD.

Introduction
Acetylcholine is the primary parasympathetic neurotransmitter in the airways, and is traditionally associated with inducing airway smooth muscle contraction and mucus secretion. Parasympathetic activity is increased in airway inflammation, which is the basis for the use of anticholinergic therapy in asthma and chronic obstructive pulmonary disease (COPD) [1]. Anticholinergics constitute a particularly important bronchodilator therapy in COPD, as vagal tone appears to be the only reversible component of airflow limitation in this condition [1]. Recent evidence indicates that acetylcholine production in the airways is
Muscarinic receptor regulation of airway smooth muscle tone

Airway smooth muscle expresses abundant muscarinic M₃ and M₃ receptors, roughly in a 4:1 ratio [8]. Despite its lower expression levels, the G_q coupled muscarinic M₃ receptor is the primary subtype responsible for bronchial and tracheal smooth muscle contraction; this is evident from the functional affinities of a variety of subtype selective antagonists in airway tissues from diverse species, including humans [8-11] (Table 1). In addition, muscarinic M₃ receptor -, but not M₂ receptor-knockout mice lack both methacholine and vagally induced bronchoconstriction in vitro [12]. Nonetheless, some pharmacological studies have suggested a small role for G_q – coupled M₃ receptors in mediating airway smooth muscle contraction in the peripheral airways [13,14]. Muscarinic receptor regulation of airway smooth muscle tone is enhanced in asthma and COPD by two major mechanisms: first, increased expression and enhanced function of signaling molecules essential for muscarinic receptor mediated airway smooth muscle contraction; and second, exaggerated release of neuronal acetylcholine due to neuronal mechanisms associated with inflammation.

Table 1: Affinity profiles of selective and nonselective muscarinic receptor antagonists for muscarinic M₂ and M₃ receptors.

	M₂	M₃	
4-DAMP	7.8	9.0	[8, 11]
AQ-RA 741	8.3	7.5–6.6	[135]
Gallamine	6.5	4.3	[8]
DAU 5884	6.6	8.7	[14]
Methoctramine	7.5	6.5	[8]
Pirenzepine	6.2	6.8	[8, 11]
AF-DX 116	7.0	5.6–6.3	[8, 11]
Ipratropium	9.7[†]	9.7[†]	[5]
Tiotropium	10.7[†]	11.0[†]	[5]

* Data represent binding affinities (pK_i) for cardiac muscarinic M₂ receptors.
Data represent functional affinities (pA₂) to methacholine-induced contraction of tracheal and bronchial preparations.
† Data represent binding affinities (pK_i) to cloned human muscarinic receptor subtypes.

Intracellular signaling in airway smooth muscle

Muscarinic receptors induce airway smooth muscle contraction through a number of intracellular signaling mechanisms; most of these are well described and have been reviewed extensively [4,15,16]. These include a number of recently identified cascades that are of specific interest to airway inflammation in asthma and COPD (Figure 1). Several researchers have postulated that enhanced Ca²⁺ signaling underpins the genesis of obstructive airways diseases that are associated with airway hyperreactivity [17,18]. In part, this is based on observations from animal models, for example airway smooth muscle cells obtained from hyperresponsive Fisher rats show elevated Ca²⁺ responses when compared to the less responsive Lewis rats [19]. Several studies have also shown that isolated airway smooth muscle preparations from asthma and COPD patients respond with increased maximal force generation to contractile stimulation in vitro [20-24]. Thus, intrinsic abnormalities that contribute to cholinergic hyperreactivity may exist in at least a proportion of asthmatics and COPD patients.

Although the altered expression of the postjunctional muscarinic M₃ receptor on airway smooth muscle cells is not a feature of airway hyperreactivity to inhaled methacholine, changes in downstream signaling from these receptors may be a contributing factor [16]. In addition to activating phospholipase Cβ1 (PLC), which leads to inositol 1,4,5-trisphosphate (IP₃) production necessary for triggering release of intracellular Ca²⁺ stores, muscarinic receptors also regulate signaling pathways involving CD38, cyclic ADP ribose (cADPR) and ryanodine receptor channels that can play an important role in airway smooth muscle Ca²⁺ homeostasis [25] (Figure 1). The CD38/cADPR pathway contributes significantly to muscarinic receptor mediated changes in lung compliance and resistance, as evident in CD38 knockout mice [26]. Initial studies suggest that this pathway may be activated selectively by muscarinic M₂ receptors [27], though other studies suggest that muscarinic M₃ rather than M₃ receptors are coupled to cADPR production [28]. Several pro-inflammatory cytokines, including IL-1β [29], IL-13 [30],
TNF-α [31] and IFN-γ [32] can increase CD38 expression, ADP-ribosyl cyclase activity, and Ca²⁺ responses to cholinergic agonists in airway smooth muscle. TNF-α and IL-1β also increase Gᵢ and G_q alpha protein expression in airway smooth muscle, which could account for increased Ca²⁺ responses and contraction [33,34]. Furthermore, treatment of airway smooth muscle strips with IL-13 or TNF-α for extended periods, induces hyperresponsiveness to cholinergic agonists [35,36]. Contraction of airway smooth muscle is regulated by Ca²⁺ dependent and Ca²⁺ independent mechanisms. Ca²⁺ independent mechanisms are characterized by augmented contraction at a fixed Ca²⁺ concentration; this phenome-
non is referred to as Ca2+ sensitization [37]. Regulation of Ca2+ sensitivity by cholinergic agonists is an important step in airway smooth muscle contraction (Figure 1). The RhoA/Rho-kinase cascade, a key regulatory pathway of Ca2+ sensitivity in airway smooth muscle, can be activated by both muscarinic M\textsubscript{2} and muscarinic M\textsubscript{3} receptors [38,39]. RhoA and Rho-kinase augment agonist-induced contraction primarily by inactivating myosin light chain phosphatase (MLCP), although direct effects on myosin light chain phosphorylation and on actin cytoskeletal dynamics have also been described [40]. MLCP is inhibited by the direct phosphorylation of its regulatory myosin binding subunit by Rho kinase. MLCP is also inhibited by binding to the phosphoprotein CPI-17, which is targeted for phosphorylation by both Rho kinase and PKC (see [37] for detailed review on the role of Rho-kinase in airway hyperresponsiveness). The anti-spasmodic effects of Rho-kinase inhibition are distinctly smaller than their relaxant effects on a pre-established cholinergic contraction, indicating that the RhoA/Rho-kinase pathway is particularly important in maintaining a sustained contraction to cholinergic agonists [41-43].

In experimental models of inflammatory airway disease, muscarinic receptor-linked signaling pathways that regulate Ca2+ sensitivity of airway smooth muscle cells appear to be enhanced. Both RhoA and CPI-17 expression are increased in rats exposed to repeated allergen challenge [44,45]. Furthermore, allergic sensitization by itself, without subsequent allergen exposure, appears to be sufficient to induce an increase in RhoA expression [46]. Cytokines, including TNF\textalpha, have been identified as contributors to increased RhoA abundance [47]. In line with these observations, cholinergic agonist-induced RhoA translocation to the membrane, RhoA-mediated Ca2+ sensitization, and contraction are increased in bronchial smooth muscle from rats and mice exposed to repeated allergen challenge [45,48,49]. Recent observations indicate that the same is true for cigarette smoke induced airway hyperresponsiveness in rat bronchial smooth muscle [50], which could be of significant importance to the pathophysiology of COPD. Effects of lipopolysaccharide (LPS) on cholinergic reactivity of airway smooth muscle have also been described [51]; however, it is yet to be established what mechanisms exactly mediate this change.

Neuronal mechanisms

In addition to postjunctional mechanisms that involve muscarinic receptor signaling in airway smooth muscle cells, neuronal mechanisms are important, and they also appear to be affected in inflammatory airways disease (Figure 2). Neuronal acetylcholine is synthesized by the enzyme choline acetyl transferase (ChAT), stored in vesicles, and released upon membrane depolarization. Once released, the functional effects of acetylcholine are terminal primarily by acetylcholinesterase (AChE) in the synaptic cleft. AChE activity is decreased in tracheal smooth muscle homogenates from ragweed pollen sensitized dogs [52]; this represents a mechanism to increase and prolong the action of acetylcholine on postjunctional target cells, such as airway smooth muscle cells, in allergic airways diseases. In addition, mediators of inflammation can enhance the release of acetylcholine from vagal nerve endings, an effect mediated through prejunctional facilitatory receptors. Examples include tachykinins, prostaglandins and thromboxane A\textsubscript{2} [53]. Furthermore, the autoinhibitory prejunctional muscarinic M\textsubscript{2} receptor, that limits acetylcholine release under normal conditions (Figure 2), is dysfunctional in several experimental models of airways disease including allergen exposure, viral infection, and ozone exposure [54,55]. M\textsubscript{2} autoreceptors have also been reported to be dysfunctional in some, but not all asthmatics [56,57]. In addition, asthmatics with active viral infections show greater bronchodilator responses to inhaled anticholinergics, suggesting an increased vagal tone [58]. Nonetheless, in patients with stable COPD the M\textsubscript{2} autoreceptor appears to function normally [59]. Distinct mechanisms underlie the M\textsubscript{2} autoreceptor dysfunction. In guinea pigs, ozone and allergen-induced M\textsubscript{2} dysfunction is mediated by eosinophils that are recruited to airway nerves, and secrete major basic protein, that acts as an allosteric muscarinic M\textsubscript{2} receptor antagonist [55]. Viral infections, which may play a role in both asthma and COPD, induce M\textsubscript{2} dysfunction through neutriinidases that cleave portions of the M\textsubscript{2} receptor, and through as yet incompletely characterized mechanisms involving macrophages, CD8+ lymphocytes, and possibly IFN-\gamma [60].

Cholinergic neurotransmission in the parasympathetic ganglia is regulated by nicotinic receptors in conjunction with muscarinic M\textsubscript{2} receptors, whereas ganglionic release of acetylcholine from preganglionic nerves is under regulation of M\textsubscript{2} autoreceptors [61,62] (Figure 2). Though the M\textsubscript{2} autoreceptor can be dysfunctional in allergic airway inflammation, as described above, currently no evidence suggests that ganglionic muscarinic M\textsubscript{2} receptor expression is altered [63]. However, several inflammatory mediators facilitate ganglionic neurotransmission, including tachykinins, histamine, bradykinin and prostaglandins [64]. Airway ganglia function to filter the signals from the rapidly firing preganglionic neurons; therefore facilitation of ganglionic transmission by inflammatory mediators is likely of significance in the regulation of airway tone [53].

Most of the afferent nerve fibres in the airways are C-fibers, which are present throughout the airways, from the larynx down to the lung parenchyma. C-fibers respond to stimuli such as heat and cold, but can also be activated by inflammatory mediators, resulting in reflex bronchoconstriction, mucus production and cough [65]. The localiza-
tion of the reflex mechanism can be central and local, and may contribute considerably to the increased vagal tone in COPD, and to airway hyperreactivity in asthma and COPD [65,66]. Several inflammatory mediators, including histamine, prostanoids, thromboxane A2, bradykinin, serotonin and tachykinins are known to stimulate sensory nerve fibres [67]. Afferent sensory nerve endings project to the subepithelial layer in healthy airways, but may be exposed to the airway lumen upon the induction of epithelial damage by mediators such as eosinophil-derived major basic protein [68]. This is considered an important
mechanism in the regulation of vagally mediated airway hyperresponsiveness.

Muscarinic receptor regulation of mucus hypersecretion

The production of airway mucus in the central airways is under cholinergic control, and plays an important role in asthma and COPD [69,70]. Airway mucus is a protective film that serves to prevent inhaled particles from damaging the airway epithelium. It is composed of electrolytes, water and contains high amounts of mucins [69]. Mucins are glycoproteins that are responsible for the high viscosity of mucus; the primary mucins found in airway mucus are of the MUC5AC and MUC5B isoforms. Mucus secreting cells in the central airways include goblet cells, which are embedded in the epithelium, and submucosal glands that are in connection to the airway lumen. Acetylcholine is the dominant neurotransmitter involved in mucus secretion in the central airways [71] (Figure 2). Thus, electrical field stimulation increases mucus production in bronchial preparations, which is sensitive to atropine and tetradotoxin [72]. Airway submucosal glands are likely the primary source of this vagally regulated mucus production. Submucosal glands are innervated, and express functional muscarinic M₃ and M₄ receptors, roughly in a 1:2 ratio [73,74]. The muscarinic M₄ receptor is the predominant receptor that mediates mucus secretion, whereas electrolyte and water secretion are probably mediated by muscarinic M₃ receptors in cooperation with M₁ receptors [72,75]. Goblet cells can also produce mucus in response to muscarinic receptor stimulation, albeit at relatively high concentrations of agonist [71].

Mucus hypersecretion is a pathological feature seen in both asthma and COPD that contributes significantly to airflow limitation by obstructing the airways [76]. The composition of mucus in asthma and COPD is generally altered, with higher expression of the low charge isoform MUC5B, particularly in COPD, and with the expression of small amounts of the insoluble MUC2; in COPD the ratio of mucus cells to serous cells in the submucosal glands is also increased [69]. Since mucus production in the central airways is, to a large extent, vagally mediated, acute airway inflammation can regulate mucus hypersecretion by augmenting acetylcholine release in the same way as described in the previous section. In addition, cholinergic receptor stimulation interacts synergistically with epidermal growth factor (EGF) on mucus cell activation in airway submucosal glands [77]. Since EGF is thought to regulate goblet cell hyperplasia and mucus gland hypertrophy in asthma and COPD [78,79], this may have additional implications for the effects of muscarinic receptors on this pathology. Indeed, muscarinic receptor stimulation transactivates the EGF receptor in conjunctival goblet cells, which is involved in mucin production by these cells [80]. In addition, based on observations in experimental animal models, repeated administration of the muscarinic agonists pilocarpine and methacholine can promote goblet cell hyperplasia and mucus gland hypertrophy [81]. This raises the real possibility that excessive release of endogenous acetylcholine could promote remodeling of mucus secreting cells in asthma and COPD, but this still needs to be assessed in human subjects.

Muscarinic receptor regulation of airway inflammation

Traditionally, acetylcholine is not considered to regulate airway inflammation. Recruited inflammatory cells distribute throughout the lung, and are not primarily localized to vagal nerves. Early studies suggested that blood lymphocytes and peripheral polymorphonuclear leukocytes do not express functional muscarinic receptors [82]. This view is changing, however. Accumulating evidence demonstrates that acetylcholine and its synthesizing enzyme choline acetyltransferase (ChAT) are present not only in airway nerves, but localize to epithelial and endothelial cells, smooth muscle cells, lymphocytes, macrophages, mast cells, eosinophils and neutrophils as well [2,62]. Furthermore, rigorous investigation has now revealed that most inflammatory cells express functional muscarinic receptors (Table 2). These findings suggest that acetylcholine can regulate inflammatory processes by paracrine and/or autocrine mechanisms [83-86]. Notably, elevated levels of acetylcholine have been noted in skin biopsies from patients with atopic dermatitis, a condition often associated with bronchial asthma [87].

Mild asthma and stable COPD show distinct patterns in the nature of airway inflammation. Stable COPD is characterized by pulmonary infiltration of neutrophils, cytotoxic (CD8⁺) T lymphocytes, monocytes and macrophages, whereas in mild asthma, Th2 (CD4⁺) lymphocytes and eosinophils show a distinct increase. The nature and extent of the airway inflammation are, however, dependent on severity of the disease, as in COPD and acute severe asthma both neutrophils and CD8⁺ T lymphocytes are key contributors to disease pathology [88].

There is considerable evidence that the non-neuronal cholinergic system plays a role in lymphocytes, although its relative importance to airway physiology is not yet established. Mononuclear leukocytes, consisting mainly of lymphocytes, express ChAT mRNA and protein, contain ACh and express muscarinic and nicotinic receptors. The expression profile of muscarinic receptors shows high individual variability, although all 5 classes (M₁-M₅) of muscarinic receptors have been detected [83]. Muscarinic receptor agonists increase cytosolic Ca²⁺ both in human T-
and B-cell lines in an atropine-sensitive manner, and increase c-fos mRNA expression in response to the muscarinic agonist oxotremorine [89]. The latter effect is sensitive to 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) methobromide, but not to pirenzepine or AF-DX 116, which is consistent with the involvement of muscarinic M₃ receptors (Table 1). Furthermore, phytohemagglutinin (a T-cell activator) increased ChAT mRNA [90] in stimulated mononuclear leukocytes. The significance of these observations is that muscarinic receptors and non-neuronal acetylcholine could contribute to lymphocyte proliferation and cytokine release, with obvious implications for airway inflammation in asthma and COPD. Furthermore, it is established that muscarinic receptors play an important role in regulating cytotoxicity of T lymphocytes [92]. Future studies are needed, however, to characterize the expression and function of the non-neuronal cholinergic system in lymphocytes that have infiltrated the lungs and in T lymphocytes that adopted a specific CD8⁺ or CD4⁺ phenotype.

A recent study by Profita et al. [93] investigated the expression of muscarinic M₁, M₂ and M₃ receptors in sputum cells obtained from healthy controls, smokers, and patients with COPD. In this study, all three subtypes of muscarinic receptors were observed in macrophages and neutrophils of all patient groups. M₁ receptors were expressed in low abundance in eosinophils from COPD patients, but not from healthy controls. Importantly, the expression of muscarinic M₃ receptors on macrophages is significantly increased in COPD patients, whereas muscarinic M₂ receptor expression is decreased. The expression of muscarinic M₁ receptors on macrophages, and the expression of M₁ and M₃ receptors on neutrophils tended to be increased, though this did not reach statistical significance. Functional studies showed that acetylcholine induced the release of significant amounts of leukotriene B₄ and activated the p42/p44 MAP kinase pathway in sputum cells from COPD patients [93]. Neutrophil chemotactic activity induced by acetylcholine was also increased in COPD. These results are entirely consistent with a study demonstrating that bovine alveolar macrophages release eosinophil, monocyte and neutrophil chemotactic activities in response to acetylcholine, with probably a predominant involvement of leukotriene B₄ [94]. These observations clearly reveal that regulated expression of muscarinic receptor subtypes is a feature of inflammatory cells that migrate to the airways, though the precise functional impact of dynamic receptor expression on these cells needs to be elucidated.

In addition to its direct effects on inflammatory cells, acetylcholine may also trigger chemokine and cytokine release from structural cells. Bronchial epithelial cells release eosinophil, monocyte and neutrophil chemotactic factors.
activity in response to acetylcholine [95,96]. Consistent with the previously mentioned findings, there appears to be an important role for leukotriene B4 in these effects. Acetylcholine is also known to induce the release of GM-CSF from human bronchial epithelial cells by a mechanism that involves nicotinic receptors [97]. Since the expression of non-neuronal acetylcholine is relatively high in bronchial epithelial cells [98], these results could implicate a role for epithelial acetylcholine in initiating inflammatory responses.

Muscarinic receptors on airway smooth muscle cells may play a profound role in regulating airway inflammation: a recent study demonstrates that the muscarinic receptor agonist carbachol increases inflammatory gene transcription in bovine tracheal smooth muscle strips [99]; quantitative RT-PCR analysis demonstrates that carbachol can modulate expression of a number of genes, including IL-8, cyclo-oxygenase (COX) 1 and 2 and urokinase type plasminogen activator (PLAU); and, carbachol markedly augments pro-inflammatory gene expression induced by sinusoidal length oscillation, with synergistic effects on IL-6, IL-8 and COX 2 and to a lesser extent PLAU and CCL-2 [99]. Collectively these studies suggest acetylcholine is an autocrine or paracrine hormone that may be involved in regulating inflammation at a number of cellular sites in the airways (Table 2). At this point, evidence is lacking however to indicate a direct involvement of non-neuronal acetylcholine in the pathophysiology of asthma and COPD and future studies are clearly warranted within this area.

Muscarinic receptor regulation of airway remodeling

Chronic inflammatory conditions of the airways are usually associated with the development of structural changes of the airways; a phenomenon commonly referred to as airway remodeling. Airway remodeling is seen in both asthma and COPD, albeit the nature, localization and extent of the remodeling are variable (Table 3). Airway remodeling is progressive, both in asthma and COPD, and the extent of structural change correlates with disease severity [100-102]. Based on these considerations, it is believed that most structural changes, e.g. increased airways smooth muscle mass and mucus gland hypertrophy, contribute to a progressive increase in disease severity over time and to the irreversible decline in lung function in patients with chronic disease. Some structural changes on the other hand, including matrix deposition in the airway wall, are not necessarily detrimental, but may actually protect the diseased airway from airway closure by increasing airway wall stiffness [103,104]. Clearly a complex relationship exists between airway structure and function. Indeed, at present there is considerable ongoing research effort using in vitro, ex vivo, and in vivo systems to clarify key structural determinants of airway and lung function in health and disease.

Contractile agonists acting on G-protein coupled receptors are increasingly being recognized as key contributors to airway remodeling in asthma. Cysteinyl leukotrienes have received significant attention in this regard: the capacity for anti-leukotrienes to prevent allergen-induced airway inflammation, mucus production and occlusion, goblet cell hyperplasia, and most notably airway fibrosis and airway smooth muscle thickening have been described [105-109]. Acetylcholine, on the other hand, has not generally been considered to be a crucial determinant of structural changes in the airways. However, recent findings are changing this view. Indeed, there may be a prominent regulatory role for endogenous acetylcholine in promoting allergen-induced airway remodeling [4,110]. In the following sections the potential contribution of acetylcholine to specific components of airway remodelling are being discussed.

Mesenchymal cell proliferation

Muscarinic receptor stimulation induces profound proliferation of primary cultured human lung fibroblasts [111]. In addition, though stimulation of muscarinic receptors is

Table 3: Airway remodeling in asthma and COPD. Muscarinic receptors and acetylcholine play significant roles in airway smooth muscle remodeling, and possibly in goblet cell hyperplasia and mucus gland hypertrophy. Their involvement in other aspects of airway remodeling is less well explored.

	Asthma	COPD
Airway smooth muscle	Hyperplasia [121, 139]	Increased ASM mass [140]
muscle (ASM)	Hypertrrophy [101, 139]	Hypercontractility [23]
	Hypercontractility [20-22, 24]	
Mucus production	Goblet cell hyperplasia [141]	Goblet cell hyperplasia [142]
	Mucus gland hypertrophy [143]	Mucus gland hypertrophy [142]
Vascularure	Pulmonary vascular remodeling thickened [76]	Pulmonary vascular remodeling thickened [76]
Basement membrane	Subepithelial collagen deposition thickened [101, 147]	Airway wall fibrosis [76]
Extracellular matrix	(Myo)fibroblast accumulation	Loss of alveolar walls [76]
not sufficient to induce airway smooth muscle proliferation; muscarinic receptor agonists augment responses to epidermal growth factor (EGF) and platelet-derived growth factor (PDGF), in both human and bovine airway smooth muscle [112,113]. This augmentation is considerable: the dose-response curve to PDGF is shifted both upward and leftward, indicating that muscarinic receptors increase the mitogenic response to any PDGF concentration. Moreover, muscarinic agonists can potentiate the mitogenic response of myocytes in response to low concentrations of PDGF that would otherwise be insufficient to stimulate cell growth. The inhibitory profile of a range of subtype-selective antagonists (4-DAMP and DAU5884, but not gallamine) demonstrates the exclusive involvement of muscarinic M3 receptors in this effect [112] (Table 1). The importance of this potentiating effect is demonstrated in vivo: repeated exposures of sensitized guinea pigs to ovalbumin increases airway smooth muscle mass in the small, non-cartilaginous airways, which is largely inhibited by treatment with the anticholinergic agent tiotropium bromide [3]. In contrast, tiotropium bromide itself had no effect on airway smooth muscle mass, either in the cartilaginous or non-cartilaginous airways, which corroborates the in vitro findings that muscarinic receptor stimulation by itself is not sufficient to induce mitogenic responses.

The mechanisms that underlie the pro-mitogenic effects of muscarinic receptor stimulation have not yet been studied in detail. However, several intracellular signaling pathways have been identified that regulate the synergistic mitogenic interaction of other GPCR agonists with growth factors in airway smooth muscle (Figure 3). These pathways are not necessarily the same for every GPCR agonist; however, those studies do offer some important clues. The GPCR agonist thrombin augments EGF-induced proliferation through a pathway involving G_{pr} phosphatidylinositol-3-kinase, Akt and p70S6kinase [114]. Although thrombin is mitogenic by itself and therefore presumably differs in its signaling profile from muscarinic receptor agonists, this pathway is of interest as synergistic activation of p70S6kinase by carbachol and EGF has been noted in human airway smooth muscle cells [112]. This mitogenic synergism might also involve PKC; this enzyme is responsible for the potentiating effects of the GPCR agonist bradykinin with EGF in airway smooth muscle [115], and regulates p70S6kinase activity [116,117]. PKC also regulates p42/p44 MAP kinase activation by muscarinic receptor agonists in airway smooth muscle [4]. The involvement of the small G protein RhoA in synergism induced by GPCR agonists and growth factors should also be considered [118], which is interesting given that RhoA expression is increased in animal models of asthma and COPD, as discussed before. Clearly, further studies are required to unravel in detail the signaling pathways involved in the potentiating effects of muscarinic receptor agonists on growth factor-induced airway smooth muscle proliferation.

Mesenchymal cell differentiation

Mediators that drive contractile protein expression (e.g. TGF-β) are thought to play an important role in the differentiation of proliferating mesenchymal cells into mature airway smooth muscle cells, in airway smooth muscle cell hypertrophy, and in myofibroblast accumulation [119,120]. These responses, together with smooth muscle cell proliferation, contribute to increased airway smooth muscle mass in asthma, and possibly in COPD [101,119,121,122]. Increased expression of contractile apparatus associated proteins likely plays an important role in determining both airway bronchoconstrictor responsiveness and the extent of airway remodeling in asthma and COPD (Table 3) [110].

Mesenchymal cells from all individual airway wall compartments (adventitial fibroblasts, airway smooth muscle cells, mucosal fibroblasts) can be induced to acquire a more contractile phenotype, characterized by increases in smooth muscle specific protein expression, such as smooth muscle (sm)-α-actin, sm-myosin heavy chain (MHC) and desmin [123-125]. Induction of contractile protein gene transcription and protein translation in airway smooth muscle cells and fibroblasts is regulated by at least two pathways: the RhoA/Rho-kinase pathway and the phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/p70S6kinase pathway [122,126] (Figure 3). There also appears to be a parallel and significant role for PKC as a modulator of the contribution of these pathways in the control of smooth muscle specific gene transcription, and protein accumulation [110,127]. Both the RhoA and PI3K pathways can be activated by muscarinic receptor agonists [43,112], and may be involved in mediating effects of muscarinic receptor agonists on SM22 and sm-MHC promoter activity [128]. Muscarinic receptor stimulation also leads to increased levels of sm-α-actin and sm-MHC mRNA in intact bovine tracheal smooth muscle strips, an effect that was also linked to mechanical strain applied to the strips [129]. Inhibition of PKC leads to an increase in RhoA-dependent transcription of SM22 and smMHC promoters [127]. Since PKC is strongly activated by muscarinic receptor agonists, therefore the contribution of this signaling pathway in the control of smooth muscle gene transcription needs to be established more clearly. In addition, Ca^{2+}-dependent pathways, induced by high concentrations of muscarinic receptor agonists, modulate smooth muscle specific contractile protein expression and contractility in organ-cultured bovine tracheal smooth muscle strips [130]. This indicates that the effects of muscarinic receptors are under tight control of multiple pathways. Future
studies are clearly warranted in this area to better understand the interplay between the multiple pathways induced by muscarinic receptors, and their significance as determinants of airway smooth muscle differentiation and cellular hypertrophy.

Repeated exposures of sensitized guinea pigs to ovalbumin cause a ~4-fold increase in pulmonary sm-MHC expression with little effect on sm-α-actin expression [3]. Since sm-MHC is a far more stringent marker for mature airway smooth muscle cells than sm-α-actin, which is a more general marker for lung cells of mesenchymal origin [125], these results indicate that maturation of differentiated mesenchymal cells may have occurred in this model. Indeed, the contractile response of tracheal smooth muscle strips to methacholine was increased in the allergen challenged animals, whereas muscle mass in the large airways had not changed. Treatment of these animals with tiotropium bromide significantly inhibited the ovalbumin-induced sm-MHC expression and increases in tracheal contractility, indicating that endogenous acetylcholine contributes to these effects [3]. Collectively,
these studies point to an important role for acetylcholine and muscarinic receptors in mesenchymal cell remodeling in allergic airways disease. The effects of muscarinic receptor antagonists on airway wall remodeling in animal models of COPD have not yet been investigated.

Other aspects of airway remodeling
Evidence of the involvement of muscarinic receptor stimulation in other aspects of airway remodeling in asthma and COPD is scarce, mainly because this has not yet received sufficient attention to date. Since G-protein coupled receptor signaling has been associated with extracellular matrix production [131] and pulmonary vascular smooth muscle cell proliferation [132], effects of muscarinic receptor agonists on extracellular matrix remodeling and pulmonary vascular remodeling could be envisaged, though entirely speculative at this point. In addition, a role for muscarinic receptors in goblet cell hyperplasia and mucus gland hypertrophy has been postulated (see section on mucus hypersecretion). Future studies are clearly required to investigate the effects of muscarinic receptors on these aspects of airway remodeling.

Therapeutic implications
Collectively, the observations we have discussed in this review suggest significant hitherto unexpected therapeutic implications. Thus, anticholinergic therapy could achieve far reaching and significant controller effects for chronic asthma and COPD that extend its capacity as reliever medications to promote bronchodilation. Based on the findings and considerations presented above, it could be envisaged that anticholinergics inhibit airway inflammation and limit airway remodeling, retarding the progressive decline in lung function in asthma and COPD patients.

Indeed, a recent study indicates that tiotropium bromide induces a marked reduction in lung function decline of COPD patients [6]. Although this study was retrospective, the results of this study were remarkable: the mean decline in FEV₁ in one year was 58 ml in the placebo group vs. 12 ml in the tiotropium group. This reduction has not been observed with ipratropium bromide in COPD patients [133]. Tiotropium bromide is also superior to ipratropium bromide on other aspects, both with respect to spirometry, health related quality of life and number of exacerbations in COPD patients [134]. In view of our own recent findings using a guinea pig model of ongoing allergic asthma [3], showing that tiotropium bromide protects against allergen-induced increases in airway smooth muscle thickening, contractile protein accumulation and tracheal hypercontractility, the drug tiotropium bromide might also be effective in slowing or preventing airway remodeling in chronic asthma. Future studies are required to translate these findings to asthma patients, however.

Conclusion
Acetylcholine is a parasympathetic neurotransmitter and an autocrine or paracrine hormone that regulates airway smooth muscle contraction, mucus production, airway inflammation and airway remodeling. The release of acetylcholine, and the expression of several effector systems central in muscarinic regulation of airway function are enhanced in asthma and COPD, suggesting that the effects of acetylcholine could contribute significantly to the pathophysiology of these obstructive airways diseases. Recent clinical and experimental findings support this hypothesis, suggesting that anticholinergics, most notably the long-acting tiotropium bromide, could achieve reductions in airway remodeling and lung function decline in addition to its effects as a bronchodilator.

Authors’ contributions
RG participated in the design of the article and drafted the manuscript. AJH, JZ and HM participated in the design of the article, assisted in drafting the manuscript and revised it critically for important intellectual content. All authors approved the final manuscript.

Acknowledgements
The Manitoba institute of Child Health (MICH), National Training Program in Allergy and Asthma (NTPAA), Sick Kids Foundation/Institute of Human Development, Child and Youth Health (#XG05-011), Canadian Institutes of Health Research, and the Netherlands Asthma Foundation are all greatly acknowledged for their financial contributions. RG is the recipient of a Marie Curie Outgoing International Fellowship (MOIF-2005-008823). AJH is supported by a Canadian Institutes of Health Research New Investigator Award.

References
1. Gross NJ, Skorodin MS: Role of the parasympathetic system in airway obstruction due to emphysema. N Engl J Med 1984, 311:421-423.
2. Wessler IK, Kirkpatrick CJ: The non-neuronal cholinergic system: an emerging drug target in the airways. Pulm Pharmacol Ther 2001, 14:421-434.

3. Gosens R, Boa IS, Zaagsma J, Meurs H: Protective effects of tiotropium bromide in the progression of airway smooth muscle remodeling. Am J Respir Crit Care Med 2005, 171:1096-1102.

4. Gosens R, Zaagsma J, Groote Bronhaar M, Nelemans A, Meurs H: ACh-induced calcium mobilization: a novel regulatory component of airway smooth muscle remodeling. Eur J Pharmacol 2004, 500:193-201.

5. Disse B, Speck GA, Römering KL, Witek TJ Jr, Hammer R: Tiotropium (Spiriva): mechanistic considerations and clinical profile in obstructive lung disease. Life Sci 1999, 64:457-464.

6. Inokuto A, Takah D, Menjoge S, Keats S: One-year analysis of longitudinal changes in spirometry in patients with COPD receiving tiotropium. Pulm Pharmacol Ther 2005, 18:75-81.

7. Racke K, Juergens UR, Matthiesen S: Control by cholinergic mechanisms. Eur J Pharmacol 2006, 533:57-68.

8. Roffel AF, Eltzna CR, Zaagsma J: Muscarinic M2 receptors in bovine tracheal smooth muscle: discrepancies between binding and function. Eur J Pharmacol 1988, 153:73-82.

9. Ten Berge RE, Roffel AF, Zaagsma J: The interaction of selective and non-selective antagonists with pre- and postjunctional muscarinic receptor subtypes in the guinea pig trachea. Eur J Pharmacol 1993, 233:279-284.

10. van Nieuwestadt RA, Herricks PA, Hayer J, van der Meer van Roosnek WA, Breukink HJ, Nijkamp FP: Characterization of muscarinic receptor subtypes in guinea pig trachea. Eur J Pharmacol 2004, 513:1-44.

11. Struckmann N, Schwerin S, Wiegand S, Gschnell A, Yamada M, Wess J: Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 2004, 18:711-713.

12. Struckmann N, Schwering S, Wiegan A, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV: Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol 2003, 64:1444-1451.

13. Roffel AF, Eltzna CR, Zaagsma J: Cholinergic control of the guinea pig lung. Mol Pharmacol 1993, 50:267-279.

14. Roffel AF, Meurs H, Zaagsma J: Identification, localization and function of muscarinic receptor subtypes in the airways. In Muscarinic Receptors in Airways Diseases Edited by: Zaagsma J, Meurs H, Roffel AF. Birkhäuser-Verlag, Basel: 2001; 63-87.

15. Roffel AF, Meurs H: Muscarinic control of airway smooth muscle responsiveness. In: Muscarinic Receptors in Airways Diseases Edited by: Zaagsma J, Meurs H, Roffel AF. Basel: Birkhäuser Verlag; 2001:63-87.

16. Zaagsma J, Roffel AF, Meurs H: Modulation of calcium signaling by inter-leukin-13 in human airway smooth muscle: role of CD38/cyclic adenosine diphosphate ribose pathway. Am J Respir Cell Mol Biol 2004, 31:36-43.

17. Tilba O, Panettieri RA Jr, Tilba S, Walshe TF, Amrani Y: Tumor necrosis factor-alpha differentially regulates the expression of proinflammatory genes in human airway smooth muscle cells by activation of interferon-beta-dependent CD38 pathway. Mol Pharmacol 2004, 66:322-329.

18. Tilba O, Cidowlski J, Amrani Y: CD38 expression is insensitive to steroid action in cells treated with TNFα and IFNβ by a mechanism involving the upregulation of glucocorticoid receptor β isoform. Mol Pharmacol 2005.

19. Hotta K, Emara CV, Hirshman CA: TNF-α upregulates Gip and Gipralpha protein expression and function in human airway smooth muscle cells. Am J Physiol 1999, 276:L405-411.

20. Hakonarson H, Herrick DJ, Serrano PG, Grunstein MM: Mechanism of cytokine-induced modulation of beta-adrenergic receptor responsiveness in airway smooth muscle. J Clin Invest 1996, 97:2593-2600.

21. Chen H, Tilba O, Van Besien CR, Panettieri RA Jr, Amrani Y: TNF-α [alpha] modulates murine tracheal rings responsiveness to G-protein-coupled receptor agonists and KCl. J Appl Physiol 2003, 95:684-687.

22. Tilba O, Deshpande D, Chen H, Van Besien C, Kannan M, Panettieri RA Jr, Amrani Y: IL-13 enhances agonist-evoked calcium signals and contracile responses in airway smooth muscle. Br J Pharmacol 2003, 140:1159-1162.

23. Grosse R, Schafauda D, Nelemans SA, Halayko AJ: Rhokinase as a drug target for the treatment of airway hyperresponsiveness in asthma. Mini Rev Med Chem 2006, 6:339-348.

24. Harishman CA, Lande B, Croxton TL: Role of M2 muscarinic receptors in airway smooth muscle contraction. Life Sci 1999, 65:1443-1448.

25. Lutz S, Freichel-Blohmquist A, Yang Y, Rumennik U, Jakobs KH, Schmidt M, Wieland T: The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. FASEB J 2005, 19:1134-1139.

26. Yoshii A, Iizuka K, Dobashi K, Hori K, Harada T, Nakazawa T, Morii M: Relaxation of contracted rabbit tracheal and human bronchial smooth muscle by Y-27632 through inhibition of Ca2+ sensitization. Am J Respir Cell Mol Biol 1999, 20:1190-1200.

27. Janssen LJ, Wallot J, Lu-Chao H, Tazzeo T: Muscarinic excitation-contraction coupling mechanisms in tracheal and bronchial smooth muscle. J Appl Physiol 2001, 91:1148-1157.

28. Gosens R, Schafauda D, Meurs H, Zaagsma J, Nelemans SA: Role of Rhokinase in maintaining airway smooth muscle contractile phenotype. Eur J Pharmacol 2004, 483:71-78.

29. Sakai H, Chiba Y, Hirano T, Misawa M: Possible involvement of CPI-17 in augmented bronchial smooth muscle contraction in antigen-induced airway hyper-responsive rats. Mol Pharmaco 2005, 68:145-151.

30. Chiba Y, Takada Y, Miyamoto S, MitsuSaio M, Karake J, Misawa M: Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in anti-
phothemagglutinin, a T-cell activator. J Neuroimmunol 1998, 82:101-107.

91. Fujii T, Watanabe Y, Inoue T, Kawashima K: Upregulation of mRNA encoding the MS muscarinic acetylcholine receptor in human T- and B-lymphocytes during immunological responses. Neurochem Res 2003, 28:423-429.

92. Strom TB, Deisseroth A, Morganoth J, Carpenter CB, Merrill JP: Alteration of the cytotoxic action of sensitized lymphocytes by cholinergic agents and activators of adenylate cyclase. Proc Natl Acad Sci USA 1972, 69:2997-2999.

93. Profta M, Giorgi RD, Sala A, Bonanno A, Riccobono L, Mirabella F, Profita M, Giorgi RD, Sala A, Bonanno A, Riccobono L, Mirabella F, Sciarra AM: Muscarinic receptor antagonists, involviment and evaluation in airway remodeling in COPD patients. Allergy 2005, 60:1361-1369.

94. Sato E, Koyama S, Okubo Y, Kubo K, Sekiguchi M: Acetylcholine stimulates alveolar macrophages to release inflammatory cell chemoattract activity. Am J Physiol 1998, 274:L970-979.

95. Fujii T, Watanabe Y, Inoue T, Kawashima K: Upregulation of mRNA encoding the MS muscarinic acetylcholine receptor in human T- and B-lymphocytes during immunological responses. Neurochem Res 2003, 28:423-429.

96. Sato E, Koyama S, Okubo Y, Kubo K, Sekiguchi M: Acetylcholine stimulates bronchial epithelial cells to release neutrophil and monocyte chemoattract activity. Am J Physiol 1992, 262:L466-471.

97. Klapproth H, Rake K, Wessler I: Acetylcholine and nicotine stimulate the release of granulocyte-macrophage colony stimulating factor from cultured human bronchial epithelial cells. Neumonology and Bacteriology 1998, 357:472-475.

98. Prosokogi B, Sekhon HS, Jia Y, Savchenko V, Blakely RD, Lindstrom J, Spindel ER: Acetylcholine is an autocrine or paracrine hormone synthesized and secreted by airway bronchial epithelial cells. Endocrinology 2004, 145:2498-2506.

99. Kanefsky J, Lenburg M, Hai CM: Protein kinase C iso-enzymes: Induction of airway smooth muscle pr.

100. Kanefsky J, Lenburg M, Hai CM: Cholinergic Receptor and Cyclic Stretch-Mediated Inflammatory Gene Expression in Intact ASM. Am J Respir Cell Mol Biol 2006, 34:417-425.

101. Bai TR, Cooper J, Koelmeyer T, Pare PD: The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:2645-2653.

102. McParland BE, Macklem PT, Pare PD: Airway wall remodeling: friend or foe? Am J Physiol 2003, 95:432-434.

103. Bai TR, Knight DA: Structural changes in the airways in asthma: observations and consequences. Clin Sci (Lond) 2005, 108:463-477.

104. Salmon M, Walsh DA, Huang TJ, Barnes PJ, Leonard TB, Hay DW: Role of cysteinyl leukotrienes in airway smooth muscle cell DNA synthesis after repeated allergen exposure in sensitized Brown Norway rats. Br J Pharmacol 1999, 127:1151-1158.

105. Ihaku D, Cameron L, Suzuki M, Melet S, Martin J, Hamid O, Monte- lukast, a leukotriene receptor antagonist, inhibits the late airway response to antigen, airway eosinophilia, and IL-5 expressing cells in Brown Norway rats. J Allergy Clin Immunol 1999, 104:1147-1154.

106. Wang CG, Du T, Xu LJ, Martin JG: Role of leukotriene D4 in allergen-induced increases in airway smooth muscle in the rat. Am Rev Respir Dis 1993, 148:413-417.

107. Holgate ST, Peters-Golden M, Panettieri RA, Henderson WR Jr: Roles of cysteinyl leukotrienes in airway inflammation, smooth muscle function, and remodeling. J Allergy Clin Immunol 2003, 111:518-34, discussion 534:16.

108. Henderson WR Jr, Chu SJ, Tsoo SM, Chiang GK, Jones F, Jonas M, Pae C, Wang H, Chi EY: A role for cysteinyl leukotrienes in arinway remodeling in a mouse asthma model. J Am J Respir Crit Care Med 2002, 165:108-116.

109. Halayko AJ, Tran T, Ji SY, Yamashita A, Gossens R: Airway smooth muscle phenotype and function: interaction with current asthma therapies. Inflimm Allergy Drug Targets 2006 in press.

110. Matthiesen S, Kempsen S, Bahalayan A, Juergens UR, Rake K: Muscarinic Stimulation of Human Lung Fibroblast Proliferation. Proceedings of the British Pharmacological Society 2005, 3(437) [http://www.p3online.org/abstracts/Vol3Issue4Abs0337P.pdf].

111. Krymova VP, Ornin E, Esterhaj AJ, Benovic JL, Panettieri RA Jr, Penn RB: Mechanisms of proliferation synergy by receptor tyrosine kinase and G protein-coupled receptor activation in human airway smooth muscle. Am J Respir Cell Mol Biol 2000, 23:546-554.

112. Gossens R, Nelemans SA, Grootte Bromhaar MM, McKay S, Zaagman J, Meurs H: Muscarinic M3-receptors mediate cholinergic synergism of mitogenesis in airway smooth muscle. Am J Respir Cell Mol Biol 2003, 28:257-262.

113. Billington CK, Kong KC, Bhattsharaya R, Wedegaertner PB, Panettieri RA Jr, Chan TO, Penn RB: Cooperative Regulation of p70S6 Kinase by Receptor Tyrosine Kinases and G Protein-Coupled Receptors Augments Airway Smooth Muscle Growth. Biochemistry 2005, 44:14595-14605.

114. Gossens R, Grootte Bromhaar MM, Maarsingh H, ten Damme A, Paes M, Zaagman J, Meurs H: Airway smooth muscle cell plasticity in mild to moderate asthma. Am J Physiol Lung Cell Mol Physiol 2006, 290:L756-767.

115. Fujii T, Watanabe Y, Inoue T, Kawashima K: Upregulation of mRNA encoding the MS muscarinic acetylcholine receptor in human T- and B-lymphocytes during immunological responses. Neurochem Res 2003, 28:423-429.

116. Ediger TL, Schulte NA, Murphy Tj, Toews ML: Transcription factor activation and mitogenic synergism in airway smooth muscle cells. Eur Respir J 2003, 21:759-769.

117. Gossens R, Nelemans SA, Grootte Bromhaar MM, Maarsingh H, ten Damme A, Paes M, Zaagman J, Meurs H: Airway smooth muscle cell plasticity in mild to moderate asthma. Am J Physiol Lung Cell Mol Physiol 2006, 290:L756-767.

118. Morishima Y, Nomura A, Uchida Y, Noguchi Y, Sakamoto T, Ishii Y, Totsu Y, Masuyama K, Zhang MJ, Hirano K, Mochizuki M, Ohtsuka M, Sekizawa K: Triggering the induction of myofibroblast and fibrogenesis by airway epithelial shedding. Am J Respir Cell Mol Biol 2001, 24:1-11.

119. Woodherrt PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, Carter R, Wong HH, Cadbury PS, Fahy JV: Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Cell Mol Biol 2004, 31:1001-1006.

120. Halayko AJ, Sarthaw, Kesten GL, McConville J, Tam J, Camoretti-Mercado B, Forsythe SM, Hershenson MB, Solway J: Phosphatidyli nositol-3 kinase/mammalian target of rapamycin/p70S6K regulates contractile protein accumulation in airway myo- cyte differentiation. Am J Respir Cell Mol Biol 2004, 31:266-275.

121. Halayko AJ, Solway J: Mechanisms of pathogenic plasticity in smooth muscle cells. J Appl Physiol 2001, 90:358-368.

122. Yamashita A, Varos A, McNeill K, Steimack GL, Unruh H, Soussi-Gounni A, Halayko AJ: Phenotype diversity of mesenchymal cells from compartments of the human airway wall. Am J Physiol Lung Cell Mol Physiol 2003, 358:L364-368.

123. Halayko AJ, Salari M, Xous A, Stephens NL: Markers of airway smooth muscle cell phenotype. Am J Physiol 1996, 276:1204-1210.

124. Liu H, Halayko AJ, Fernandes DJ, Harmon GS, McCaulay JA, Kamienowski P, McConville J, Fu Y, Forsythe SM, Kogut P, Bellam S, Dowell M, Churchill J, Lesso H, Kassiri K, Mitchell RW, Hershenson MB, Camoretti-Mercado B, Solway J: The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. J Cell Sci 2000, 113:29-37.

125. Wang L, Liu HW, McNeil K, Steimack G, Scott JE, Halayko AJ: Mechanical strain inhibits airway smooth muscle gene transcription via protein kinase C signaling. Am J Respir Cell Mol Biol 2004, 31:54-61.

126. Halayko AJ, Kassiri K, Varos A, Hillier CT, Wang L, Solway J, Halayko AJ: Gaq-receptor coupled signaling induces RHO-dependent transcription of smooth muscle specific genes in cultured canine airway myocytes. Am J Respir Cell Mol Biol 2002, 165A:A670.
129. Wahl M, Eddinger TJ, Hai CM: Sinusoidal length oscillation- and receptor-mediated mRNA expression of myosin isoforms and alpha-SM actin in airway smooth muscle. Am J Physiol Cell Physiol 2004, 287:C1697-1708.

130. Gosens R, Bromhaar MM, Tonkes A, Schaafsma D, Zaagmsa J, Nelemans SA, Meurs H: Muscarinic M3 receptor-dependent regulation of airway smooth muscle contractile phenotype. Br J Pharmacol 2004, 141:943-950.

131. Asakura T, Ishii Y, Chibana K, Fukuda T: Leukotriene D4 stimulates collagen production from myofibroblasts transformed by TGF-beta. J Allergy Clin Immunol 2004, 114:310-315.

132. Mandegar M, Fung YC, Huang W, Remillard CV, Rubin LJ, Yuan JX: Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004, 68:75-103.

133. Anthonisen NR, Connnett JE, Kiley JP, Altose MD, Bailey WC, Buist AS, Conaway WAb Jr, Enright PL, Kanner RE, O'Hara P, Owens GR, Scanlon PD, Tashkin DP, Wise RA: Effects of smoking intervention and the use of an inhaled anticholinergic bronchodilator on the rate of decline of FEV1. The Lung Health Study. JAMA 1994, 272:1497-1505.

134. Vincken W, van Noord JA, Greeffhors AP, Bantje TA, Kesten S, Korducki L, Cornelissen PJ: Improved health outcomes in patients with COPD during 1 yr's treatment with tiotropium. Eur Respir J 2002, 19:209-216.

135. Roffel AF, Hamstra JJ, Elzinga CR, Zaagmsa J: Selectivity profile of some recent muscarinic antagonists in bovine and guinea-pig trachea and heart. Arch Int Pharmacodyn Ther 1994, 328:82-98.

136. Reinheimer T, Mohlig T, Zimmermann S, Hohle KD, Wessler I: Muscarinic control of histamine release from airways. Inhibitory M1-receptors in human bronchi but absence in rat trachea. Am J Respir Crit Care Med 2000, 162:534-538.

137. Reinheimer T, Baumgartner D, Hohle KD, Racke K, Wessler I: Acetylcholine via muscarinic receptors inhibts histamine release from human isolated bronchi. Am J Respir Crit Care Med 1997, 156:389-395.

138. Hagforsen E, Einarsson A, Aronsson F, Nordlind K, Michaelsson G: The distribution of choline acetyltransferase- and acetylcholinesterase-like immunoreactivity in the palmar skin of patients with palmoplantar pustulosis. Br J Dermatol 2000, 142:234-242.

139. Ebina M, Takahashi T, Chiba T, Motomiya M: Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis 1993, 148:720-726.

140. Saecta M, Di Stefano A, Turato G, Facchini FM, Corbino L, Mapp CE, Maestrelli P, Cacciò A, Fabbri LM: CD8+ T-lymphocytes in peripheral airways of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003, 167:1250-1256.

141. Shimura S, Andoh Y, Haraguchi M, Shirato K: Continuity of airway goblet cells and intraluminal mucus in the airways of patients with bronchial asthma. Eur Respir J 1996, 9:1395-1401.

142. Rogers DF: Mucociliary dysfunction in COPD: effect of current pharmacotherapeutic options. Pulm Pharmacol Ther 2005, 18:1-8.

143. Charan NB, Baile EM, Pare PD: Bronchial vascular congestion and angiogenesis. Eur Respir J 1997, 10:173-180.

144. Santos S, Peinado VI, Ramirez J, Morales-Blanch J, Bastos R, Roca J, Rodriguez-Roisin R, Barbera JA: Enhanced expression of vascular endothelial growth factor in pulmonary arteries of smokers and patients with moderate chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003, 167:1250-1256.

145. Kranenburg AR, De Boer WI, Alagappan VK, Sterk PJ, Sharma HS: Enhanced bronchial expression of vascular endothelial growth factor and receptors (Flk-1 and Flt-1) in patients with chronic obstructive pulmonary disease. Thorax 2005, 60:106-113.

146. Kranenburg AR, De Boer WI, Van Krieken JH, Mooi WJ, Walters JE, Saxena PR, Sterk PJ, Sharma HS: Enhanced expression of fibroblast growth factors and receptor FGFR-1 during vascular remodeling in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2002, 27:517-525.

147. Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR: Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 1990, 3:507-511.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp