Synthesis and properties of ferro- and antiferroelectric esters with a chiral centre based on (S)-(+) -3-octanol

Magdalena Żurowska*, Marek Filipowicz, Michał Czerwiński, Mateusz Szala
Institute of Chemistry, Military University of Technology, 00-908 Warsaw, Poland
*Corresponding author: Magdalena Żurowska, e-mail: mzurowska@o2.pl

The structure of the final compounds was confirmed by 1H NMR and 13C NMR nuclear magnetic resonance. NMR spectra were obtained with a Bruker AvanceIII HD 500 MHz spectrometer (field 11.7 T) operating at 500 MHz (1H) and 125 MHz (13C); with CDCl$_3$ as the eluent [19]. NMR spectra of all samples were measured at room temperature. Comparison of NMR spectra confirmed the compliance of real structures with the planned structures. The 1H NMR spectra of new compounds are shown in Figures 10-21.

Figure 10. 1H NMR spectra of compound II.3.(HH) (S) in CDCl$_3$.
Figure 11. 1H NMR spectra of compound II.3.(FF) (S) in CDCl$_3$.

Figure 12. 1H NMR spectra of compound II.4F3(HH) (S) in CDCl$_3$.
Figure 13. 1H NMR spectra of compound II.4F3(HF) (S) in CDCl$_3$.

Figure 14. 1H NMR spectra of compound II.5.(HH) (S) in CDCl$_3$.
Figure 15. 1H NMR spectra of compound II.6.(HH) (S) in CDCl$_3$.

Figure 16. 1H NMR spectra of compound II.5.(HF) (S) in CDCl$_3$.
Figure 17. 1H NMR spectra of compound II.6.(HF) (S) in CDCl$_3$.

Figure 18. 1H NMR spectra of compound II.5.(FF) (S) in CDCl$_3$.
Figure 19. 1H NMR spectra of compound II.6. (FF) (S) in CDCl$_3$.

Figure 20. 1H NMR spectra of compound II.5. (FH) (S) in CDCl$_3$.
Figure 21. 1H NMR spectra of compound II.6.(FH) (S) in CDCl$_3$.