Multiplayer Rock-Paper-Scissors

Charlotte Aten

University of Rochester

2018
We will view the game of RPS as a magma. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where $f(x, y)$ is the winning item among $\{x, y\}$.

	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s
A selection game is a game consisting of a collection of items A, from which a fixed number of players n each choose one, resulting in a tuple $a \in A^n$, following which the round’s winners are those who chose $f(a)$ for some fixed rule $f : A^n \to A$. RPS is a selection game, and we can identify each such game with an n-ary magma $A := (A, f)$.
Properties of RPS

The game RPS is

1. conservative,
2. essentially polyadic,
3. strongly fair, and
4. nondegenerate.

These are the properties we want for a multiplayer game, as well.
Properties of RPS: Conservativity

We say that an operation $f: A^n \rightarrow A$ is conservative when for any $a_1, \ldots , a_n \in A$ we have that $f(a_1, \ldots , a_n) \in \{a_1, \ldots , a_n\}$. We say that A is conservative when each round has at least one winning player.
We say that an operation $f : A^n \rightarrow A$ is *essentially polyadic* when there exists some $g : \text{Sb}(A) \rightarrow A$ such that for any $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$. We say that A is essentially polyadic when a round’s winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item.
Let A_k denote the members of A^n which have k distinct components for some $k \in \mathbb{N}$. We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have
\[
|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|.
\]
We say that A is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.
We say that f is *nondegenerate* when $|A| > n$. In the case that $|A| \leq n$ we have that all members of $A_{|A|}$ have the same set of components. If A is essentially polyadic with $|A| \leq n$ it is impossible for A to be strongly fair unless $|A| = 1$.
The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.
The only “valid” RPS variants for two players use an odd number of items.

Theorem

Let A be a selection game with $n = 2$ which is essentially polyadic, strongly fair, and nondegenerate and let $m := |A|$. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.
Definition (RPS magma)

Let $A := (A, f)$ be an n-ary magma. When A is conservative, essentially polyadic, strongly fair, and nondegenerate we say that A is an RPS *magma*. When A is an n-magma of order m with these properties we say that A is an RPS(m, n) *magma*. We also use RPS and RPS(m, n) to indicate the classes of such magmas.
Theorem

Let A be a selection game with n players and m items which is essentially polyadic, strongly fair, and nondegenerate. For all primes $p \leq n$ we have that $p \nmid m$. Conversely, for each pair (m, n) with $m \neq 1$ such that for all primes $p \leq n$ we have that $p \nmid m$ there exists such a selection game.
Since \(A \) is nondegenerate we must have that \(m > n \).
Since \(A \) is strongly fair we must have that
\[
|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k| \quad \text{for all } k \in \mathbb{N}.
\]
As the \(m \) distinct sets \(f^{-1}(a) \cap A_k \) for \(a \in A \) partition \(A_k \) and are all the same size we require that \(m \mid |A_k| \).
When \(k > n \) we have that \(A_k = \emptyset \) and obtain no constraint on \(m \).
Proof (Forward Direction)

When $k \leq n$ we have that A_k is nonempty. As we take A to be essentially polyadic we have that $f(x) = f(y)$ for all $x, y \in A_k$ such that $\{x_1, \ldots, x_n\} = \{y_1, \ldots, y_n\}$. Let B_k denote the collection of unordered sets of k distinct elements of A. Note that the size of the collection of all members $x \in B_k$ such that $\{x_1, \ldots, x_n\} = \{z_1, \ldots, z_k\}$ for distinct $z_i \in A$ does not depend on the choice of distinct z_i. This implies that for a fixed $k \leq n$ each of the m items must be the winner among the same number of unordered sets of k distinct elements in A. We have that $|B_k| = \binom{m}{k}$ so we require that $m \mid |B_k| = \binom{m}{k}$ for all $k \leq n$.
Proof (Forward Direction)

Let

\[d(m, n) := \gcd \left(\left\{ \binom{m}{k} \mid 1 \leq k \leq n \right\} \right). \]

Since \(m \mid \binom{m}{k} \) for all \(k \leq n \) we must have that \(m \mid d(m, n) \). Joris, Oestreicher, and Steinig showed that when \(m > n \) we have

\[d(m, n) = \frac{m}{\text{lcm}(\{ k^{\varepsilon_k(m)} \mid 1 \leq k \leq n \})} \]

where \(\varepsilon_k(m) = 1 \) when \(k \mid m \) and \(\varepsilon_k(m) = 0 \) otherwise. Since we have that \(m \mid d(m, n) \) and \(d(m, n) \mid m \) it must be that \(m = d(m, n) \) and hence

\[\text{lcm} \left(\left\{ k^{\varepsilon_k(m)} \mid 1 \leq k \leq n \right\} \right) = 1. \]

This implies that \(\varepsilon_k(m) = 0 \) for all \(2 \leq k \leq n \). That is, no \(k \) between 2 and \(n \) inclusive divides \(m \). This is equivalent to having that no prime \(p \leq n \) divides \(m \), as desired.
Our numerical condition also allows us to fix the number of items m and ask how many players n may use that number of items.

Theorem

*Given a fixed m there exists an RPS(m, n) magma if and only if $n < t(m)$ where $t(m)$ is the least prime dividing m.***
The class RPS is not closed under taking subalgebras. The French variant is a subalgebra of Rock-Paper-Scissors-Spock-Lizard. The class of RPS magmas is as far from being closed under products as possible.

Theorem

Let A and B be nontrivial RPS n-magmas with $n > 1$. The magma $A \times B$ is not an RPS magma.

This can be done by showing that the product $A \times B$ is not conservative.
Current Directions

1. Geometric interpretation as in tournaments.
2. Asymptotics on conservativity.
3. Properties of clones. Note the connection with cyclic/symmetric groups.
Thank you.