Genomic instability due to V(D)J recombination-associated transposition

Yeturu V.R. Reddy, Eric J. Perkins, and Dale A. Ramsden

1Lineberger Comprehensive Cancer Center, 2Curriculum in Genetics and Molecular Biology, and 3Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA

The first step in assembling immunoglobulin and T-cell receptors by V(D)J recombination has similarities to transposon excision. The excised transposon-like element then integrates into DNA targets at random in vitro, but whether this activity significantly threatens the genomic integrity of its host has been unclear. Here, we recover examples where the putative transposon associated with V(D)J recombination integrated into the genome of a pre-B-cell line. Transposition accounted for a surprisingly high proportion (one-third) of integrations, while most of the remaining events had parallels to other aberrant V(D)J recombination pathways linked to oncogenic translocation. In total, transposition occurred approximately once every 50,000 V(D)J recombinations. Transposition may thus contribute significantly to genomic instability.

Keywords: DNA repair; V(D)J recombination; double-strand break repair; transposition

Supplemental material is available at http://www.genesdev.org.

Received March 22, 2006; revised version accepted April 19, 2006.

The mammalian immune system’s mature antigen-specific receptor genes are assembled during lymphocyte development by a rearrangement of separate coding segments [V(D)J recombination]. V(D)J recombination is initiated when the RAG1 and RAG2 proteins cleave chromosomal DNA at a pair of conserved recombination targeting signals that flank coding segments. The non-homologous end-joining [NHEJ] pathway for repair of chromosome breaks then joins the ends of coding segments (coding ends) together to form the mature receptor gene, as well as typically joining signal-containing ends (signal ends) together to generate an extrachromosomal circle [for review, see Gellert 2002]. RAG proteins use a transposase-like mechanism to cleave chromosomal DNA at recombination signals [van Gent et al. 1996]. Importantly, the signal end fragment excised by RAG protein cleavage activity can also be likened to a transposon. It has been demonstrated that RAG proteins can direct the integration of this fragment into DNA targets approximately at random [e.g., Fig. 1A] in vitro [Agrawal et al. 1998; Hiom et al. 1998], in yeast cells [Clatworthy et al. 2003], and even in mammalian cells [Chatterji et al. 2006].

Association of transposition activity with V(D)J recombination suggests a possible source for the oncogenic translocations observed in lymphoid malignancies. Previously, these translocations were attributed in part to aberrant joining of a broken intermediate in V(D)J recombination to a spontaneous break within an oncogene locus. More recently, RAG protein activities that are not targeted by canonical recombination signals have been proposed as a less arbitrary source for the breakpoint in the oncogene locus [Hiom et al. 1998; Raghavan et al. 2004]. With respect to transposition activity, for example, it has been suggested that RAG proteins could initiate recombination at a site within a receptor locus, but then “transpose” one end of the receptor locus double-strand break into a target site near an oncogene (one-ended transposition) [Hiom et al. 1998].

However, whether V(D)J recombination-associated transposition activity could be a significant source of genomic instability is not yet clear. Studies of transposition activity in cellular contexts indicate it is infrequent [Clatworthy et al. 2003; Chatterji et al. 2006], and have been limited to measuring targeting of transposition into artificial episomes: As yet, there is only one clear example where a transposition-event targeted its host genome [Messier et al. 2003]. Therefore, we address here whether or not the transposon-like fragment excised during V(D)J recombination can significantly target its host genome. Moreover, to more closely mimic V(D)J recombination in the whole animal, we used a mouse pre-B-cell line as host, and a chromosomally resident recombination substrate. The substrate was further designed to determine the frequency of genomic integration of the excised fragment as a function of each excision: This is the key measure of the danger posed by V(D)J recombination-associated transposition, as the ex-

4Present address: Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Bioslabs Room 2025, Cambridge, MA 02453, USA.

5Corresponding author.

EMAIL dale_ramsden@med.unc.edu; FAX (919) 966-3015.

Article is online at http://www.genesdev.org/cgi/doi/10.1101/gad.1432706.
Recovery of integrations of a transposon-like fragment. [A] The assay for recovering potential transposon integrations is described. (Boxes) Coding sequence; (filled triangle) 12-type recombination signal [12-RS], [open triangle] 23-type recombination signal [23-RS]; [puro'] intact gene for puromycin resistance; [zeo'GFP] fusion gene that confers zeocin resistance and green fluorescence. In B and C, DNA from subclones resistant to puromycin and zeocin after induction of V(D)J recombination [numbered as in Table 2] were digested with EcoRI [cuts once 5' of the puro' gene] and PstI [cuts only in flanking chromosomal DNA], Southern blotted, and analyzed with a probe from the puro' gene [β] or zeo'GFP gene [C]. DNA from the parental line (P) and the initial clone with unrearranged substrate [clone A] are included for comparison. The mobility of molecular weight markers [in kilobase pairs] are shown at the right of each panel.

Results

The substrate [Fig. 1A] was arranged such that a gene for puromycin resistance [puro'] was interrupted by the putative transposable fragment: an intact gene for zeocin resistance [a zeocin-binding protein—green fluorescent protein fusion, or zeo'GFP], flanked by one each of the pair of recombination targeting signals required for a V(D)J recombination event [a 12-RS [12-type recombination signal] and a 23-RS [23-type recombination signal]]. The puromycin coding sequences flanking the signals were further adjusted to reduce the frequency of junctions that fail to confer puromycin resistance [see Materials and Methods for details]. Puromycin resistance identifies cells that have successfully initiated V(D)J recombination, joined the ends of the puromycin coding region together [analogous to assembling the mature receptor gene], and have excised the potential transposon. The ends of the excised fragment are normally ligated together to form a circle, but this extrachromosomal circle is not maintained as cells continue to grow. Subcloning of cells in both puromycin and zeocin thus enriches for cells where the fragment instead reintegrated into the genome. Additional screening by flow analysis for GFP expression, PCR analysis of DNA, and finally Southern blotting was used to definitively identify clones that had reintegrated the putative transposon associated with substrate V(DJ) recombination [Fig. 1B,C, Supplementary Fig. 1].

The temperature-sensitive Abelson Murine Leukemia virus (ts-AMuLV) line used as a host can be induced in culture to undergo multiple developmental steps analogous to the in vivo transition from pre-B cells to immature B cells [Muljo and Schlissel 2003], including initiation of V(DJ) recombination at its endogenous immunoglobulin κ ([k] light-chain locus [Chen et al. 1994]. Three different recombination substrate-containing clones were generated from the initial ts-AMuLV line, and multiple experiments were performed with each clone. We were unable to detect any significant differences between different clones or experiments in our current sample; thus, only the pooled results are discussed [see Table 1; Materials and Methods for differences in clones and experimental conditions]. In total, 21 subclones were identified that had reintegrated the putative transposon, from a total of 2.2 × 10⁷ cells screened (Table 1). Parallel assessments of cells resistant only to puromycin determined that 2.8 × 10⁵ of the screened cells had undergone productive V(DJ) recombination. The transposon-like fragment associated with V(DJ) recombination thus reintegrates into the genome approximately once every 1.3 × 10⁴ recombination.

The selection scheme used does not distinguish between different integration pathways. However, authentic transposition products have a characteristic structure; thus, the location and junction structure for each integration was determined using inverse PCR (Table 2; Figs. 2–6). In RAG-mediated transposition in vitro, the 3′ ends of the two signals are joined to opposite strands of

Table 1. Frequencies of reintegration

Clone	Cells screened x 10⁶	Puro' cells x 10⁴	No. reintegrations	Efficiency x 10⁻⁵
A	3.0	7.8	6 [3]	7.7 [3.8]
A*	0.6	0.19	2 [1]	11 [5.3]
B	11	8.8	2 [0]	2.3 [0]
C	7.5	11	11 [3]	10 [2.7]
Total	22	28	21 [7]	7.5 [2.5]

Three clones were used, varying as described in Materials and Methods. In one experiment using clone A, cells were exposed to 0.5 Gy γ radiation immediately after induction of recombination.

The number of cells screened expected to be at least puromycin resistant, based on frequencies of resistance to puromycin only determined in parallel assays.

Efficiencies are the reintegration frequency or, in parentheses, transposition frequency, as a fraction of the total puro' cells screened.
Table 2. Location of integration sites

Clone	Integration #	Accession no.	Position	Accession no.	Position
A	1	AC026478	13041	AC026478	13037
A	2	AL606914	41953 re^bc	AL606914	41956 re^bc
C	3	AC141471	184523	AC141471	184519
C	4	AC126023	31830 re^bc	AC126023	31833 re^bc
A	5	AC073553	137778	AC073553	137775
A	6	AC073553	–139000e	AC073553	–139000f
C	7	AC115293	76224a	AC115293	76234a
C	8	AC109232	109804	M29209 env^e	591
C	9	AC126608	103234 re^bc	AF010170 gag^h	2773
C	10	AL604022	31535 re^bc	AL604022	31525 re^bc
A	11	AC109138	164160	AC109138	164242
C	12	ALY591724	2131	AYS91724	2134
C	13	AC079273	45819	AC079273	45821
C	14	AC073561	160089	AC073561	133793
B	15	AYS91616	2521	L80040	1098
B	16	AYS91667	1805	L80040	2066
A	17	AC153615	59540 re^bc	AYS91668	1735 re^bc
C	18	L80040	744 re^bc	AYS91682	1788 re^bc
A	19	AYS91727	1648	AYS91727	383
C	20	L80040	1731 re^bc	AYS91725	1629
C	21	AYS91620	1769 re^bc	AYS91682	1737 re^bc

The initial substrate-containing clone [A, B, or C; see also Table 1] that was used to generate integration-containing subclones.

The position of flanking nucleotides are reported as “rc” (reverse complement) when the 12-RS and 23-RS are inserted in the opposite orientation relative to that of the published sequence.

The flanking sequences recovered for clone #6 by inverse PCR contained only canonical pentanucleotide switch µ repeats, and thus they could be placed in multiple different locations within AC073553. Additionally, Southern analysis indicated germ-line fragment sizes were ~2 kbp larger than that predicted from the sequence in AC073553, in accordance with reports that this region is highly polymorphic in different mouse strains [Marcu et al. 1980]. Further characterization of this clone by Southern analysis allowed us to determine that both 12-RS and 23-RS flanks were located ~1 kbp further away from the heavy-chain intron enhancer than the corresponding flanks of subclone #5, and that the subclone #6 integration was not accompanied by significant (>200 bp) deletion of genomic DNA flanking the integration site. Additionally, we note that at least in the reported switch µ region, the sequence TGGGG is never tandemly repeated, thus, together with the lack of significant deletion as determined by Southern analysis, we argue the structure of the subclone #6 integration is best explained by a transposition event.

Sequences of the microsatellite targeted for integration from the parent clone (clone C) argued for polymorphism in this region relative to accession AC115293, and possibly within the population of clone C as well. The indicated positions were thus determined from a best-fit alignment to sequence from AC115293.

For subclones #8 and #9, the 23-RS flanks contain only sequence from Moloney Murine leukemia virus genes (MoMuLV). There are no pre-existing MoMuLV proviruses near the regions identified by the 12-RS flanks in published sequence, suggesting viral DNA may have “cointegrated” with the zeo^GFP fragment. However, we cannot exclude the possibility that deletion of flanking sequence during integration was sufficient to extend into a distally located provirus, or even that there is a pre-existing proviral integration in this region that is novel to the SP9 line’s strain background.

a target DNA duplex 4–5 base pairs [bp] apart, resulting in the precise insertion of the signal end fragment and a characteristic 4–5 bp direct repeat of flanking target DNA [target site duplication] [Fig. 2A,B]. Six of the 21 integrations had such a structure [Fig. 2A]. In addition, target sequences typically had a locally high GC content, in agreement with previously characterized RAG-mediated transpositions.

a hot spot

The position of flanking nucleotides are reported as “rc” (reverse complement) when the 12-RS and 23-RS are inserted in the opposite orientation relative to that of the published sequence.

The flanking sequences recovered for clone #6 by inverse PCR contained only canonical pentanucleotide switch µ repeats, and thus they could be placed in multiple different locations within AC073553. Additionally, Southern analysis indicated germ-line fragment sizes were ~2 kbp larger than that predicted from the sequence in AC073553, in accordance with reports that this region is highly polymorphic in different mouse strains [Marcu et al. 1980]. Further characterization of this clone by Southern analysis allowed us to determine that both 12-RS and 23-RS flanks were located ~1 kbp further away from the heavy-chain intron enhancer than the corresponding flanks of subclone #5, and that the subclone #6 integration was not accompanied by significant (>200 bp) deletion of genomic DNA flanking the integration site. Additionally, we note that at least in the reported switch µ region, the sequence TGGGG is never tandemly repeated, thus, together with the lack of significant deletion as determined by Southern analysis, we argue the structure of the subclone #6 integration is best explained by a transposition event.

Sequences of the microsatellite targeted for integration from the parent clone (clone C) argued for polymorphism in this region relative to accession AC115293, and possibly within the population of clone C as well. The indicated positions were thus determined from a best-fit alignment to sequence from AC115293.

The flanking sequences recovered for clone #6 by inverse PCR contained only canonical pentanucleotide switch µ repeats, and thus they could be placed in multiple different locations within AC073553. Additionally, Southern analysis indicated germ-line fragment sizes were ~2 kbp larger than that predicted from the sequence in AC073553, in accordance with reports that this region is highly polymorphic in different mouse strains [Marcu et al. 1980]. Further characterization of this clone by Southern analysis allowed us to determine that both 12-RS and 23-RS flanks were located ~1 kbp further away from the heavy-chain intron enhancer than the corresponding flanks of subclone #5, and that the subclone #6 integration was not accompanied by significant (>200 bp) deletion of genomic DNA flanking the integration site. Additionally, we note that at least in the reported switch µ region, the sequence TGGGG is never tandemly repeated, thus, together with the lack of significant deletion as determined by Southern analysis, we argue the structure of the subclone #6 integration is best explained by a transposition event.

Sequences of the microsatellite targeted for integration from the parent clone (clone C) argued for polymorphism in this region relative to accession AC115293, and possibly within the population of clone C as well. The indicated positions were thus determined from a best-fit alignment to sequence from AC115293.
ment recovered from human cells (Messier et al. 2003). Additionally, RAG proteins can mediate a reversal of the initial cleavage reaction by inserting signal ends into hairpin coding end intermediates in vitro (Melek et al. 1998), and, under certain conditions, in vivo (Bogue et al. 1997; Sekiguchi et al. 2001). However, the presence of a target site duplication cannot be used to identify this type of event as a transposition, and inverted repeat sequences are generally associated with chromosome breakage.

We therefore determined if the chromosome 5 inverted repeat sequence was sufficient to target transposition activity in vitro. We incubated a purified RAG protein signal end complex with a plasmid containing a 415-bp fragment of the chromosome 5 sequence as it was prior to integration of the zeo’GFP fragment. Of 16 in vitro transposition products, 12 integrated near the tip of the predicted hairpin, close (within 11 bp) to the cellular integration sites (Fig. 3C). This is a 30-fold greater frequency than would be expected by chance. For comparison, we performed a similar experiment using a chromosome 7 fragment that included the site of an integration that was neither associated with a flanking target site duplication nor an inverted repeat (#8) (Fig. 4). Using the chromosome 7 fragment as a target for in vitro transposition, integration sites were more dispersed (Fig. 3, cf. D and C), and were not generally near the site of cellular integration. Therefore, integration into the chromosome 5 inverted repeat is consistent with transposition targeted to a hairpin-forming sequence.

In sum, there are seven integrations attributable to RAG-mediated transposition, or approximately one transposition every 50,000 V(D)J recombinations (Table 1). We might have expected the remaining events that were not consistent with transposition also to be randomly distributed throughout the genome. Only four of the remaining 14 integrations fit into this category (Fig. 4). The cause of these integrations is unclear, but the most probable explanation is that the zeo’GFP fragment was captured during repair of a spontaneous double-strand break. The remaining 10 events are more easily explained: All of the integration sites for these events were located <60 bp away from sites broken during V(D)J recombination of immunoglobulin (Ig) loci. As described below, these 10 integrations can be further classified as either intermolecular recombinations (Fig. 5) or end donations (Fig. 4), the two aberrant V(D)J recombination pathways previously proposed to cause the translocations associated with lymphoid malignancy (for review, see Roth 2003).

In three of these integrations (Fig. 5A), one of the sig-
nal ends of the zeo′GFP fragment was joined to an Igκ or IgH signal end of the opposite type, generating a precise 12-RS/23-RS-type signal junction. The remaining signal end of the zeo′GFP fragment was imprecisely joined to a Igκ/IgH coding end. These integrations can be attributed to intermolecular recombination. The RAG proteins mistakenly juxtaposed a signal from the Igκ or IgH locus with a signal of opposite type from the zeo′GFP fragment (intermolecular synapsis) [Fig. 5B], triggering cleavage at the Igκ/IgH signal. The zeo′GFP signal may have been part of a signal junction circle that is recleaved as a consequence of the intermolecular synapsis (as shown in Fig. 5B), as there is precedent for secondary recombinations involving a signal within a signal junction [Lewis et al. 1985]. However, we cannot exclude the possibility that signal junction formation is unnecessary, and a zeo′GFP signal end participated in synapsis with, and triggered cleavage of, the IgH signal. In any event, integration is the consequence of the subsequent resolution of all four broken ends by NHEJ, as described in Figure 5B. Importantly, the intermolecular recombinations described here can be likened to those that occur between a signal within an antigen receptor locus and a cryptic signal within an oncogene locus (Fig. 5C), leading to a subset of cancer-causing translocations. In both cases, the critical aberrant step is the inappropriate intermolecular synapsis of signals by RAG proteins.

Seven other examples also involve targeting of integration to Ig loci [Fig. 6A]. However, only one of the 14 junctions from these integrations involves two signals (integration #21), and joining was never precise [numbers of nucleotides deleted from Igκ ends are noted in parentheses in Fig. 6A]. Instead, zeo′GFP signal ends were often perfectly retained and usually joined to ends of Igκ coding segments [coding ends] with short deletions, a pattern consistent with previous examples of NHEJ-dependent joining of comparable ends [Sekiguchi et al. 2001]. Broken intermediates from a single V(D)J recombination event are normally joined by NHEJ to each other (joining in cis): In these seven events, joining in cis apparently failed, both for the signal end intermediates from recombination at the substrate locus, as well as for the intermediates from an independent recombination occurring in parallel within the Igκ locus. Instead, the intermediates from these two independent recombinations were joined to each other in trans [Fig. 6B]. Such events are comparable to oncogenic “end donations,” where intermediates from an antigen receptor recombination are joined to the ends of a double-strand break generated independently within an oncogene locus [Fig. 6C]. The critical aberrant step in both examples is the failure of NHEJ to join broken ends in cis, leading instead to inappropriate joining of broken ends in trans.

Discussion

Integrations of the transposon-like fragment could thus often be explained by one or the other of the two aberrant recombination pathways mechanisms previously associated with oncogenic translocation [intermolecular recombination or end donation]. Does the high proportion [one-third] of transpositions thus implicate transposition activity as an important additional source of oncogenic translocations? The assay described here is specific for integrations involving a signal end pair, a restriction that was essential for definitive identification of transpositions. Recovery of transpositions will thus be favored relative to other integration pathways. However, we will also not score the kinds of transpositions [Hiom et al. 1998] best reconciled with oncogenic translocations [e.g., one-ended transpositions, cycles of integration, and excision]. Indeed, these alternate transposition pathways were initially proposed because they can generate aber-

Figure 4. Other nontargeted integrations. The structures of integration #8–11 are summarized as in Figures 2A and 3A. A possible inserted nucleotide [nontemplated] is noted in lowercase. (*) Sequences flanking the 23-RS for #8 and #9 were derived from Moloney Murine leukemia virus genes, and could not be located near the 12-RS flanks. (See also footnote e of Table 2.)
current recombination activity at Ig loci also led to other biologically relevant aberrant resolutions, allowing us to assess how well transposition competes with such events. Recombination activity was also not excessive, as ~15% of light chain loci [and ~3% of substrate loci] recombined in the 24-h period during which recombination was active. Nevertheless, transposition frequencies in a whole animal could still be significantly different. For example, we might be overestimating transposition in vivo due to characteristics of this transformed cell line model (e.g., probable disruption of DNA damage checkpoints). Alternatively, our assay might underestimate transposition in vivo, as it is unlikely we recover all integrations [the ability to express sufficient zeo’GFP to survive selection is probably highly dependent on integration context].

Is V(D)J recombination-associated transposition an important threat to genomic integrity? At least under conditions where transpositions can be definitively identified, we show it accounts for a high proportion of aberrant V(D)J recombinations. We estimate there are 2.5 \times 10^{-5} events associated with each V(D)J recombination. For comparison, the well-characterized sleeping beauty transposon, which has been engineered to mutating the mouse genome, transposes in embryonic stem cells with similar or lower frequency \([3.5 \times 10^{-5} to 2 \times 10^{-7} events/cell/generation]\) [Luo et al. 1998]. Humans generate several hundred million new lymphocytes/day, with each new lymphocyte requiring at least three V(D)J recombination events. Our data would thus suggest this daily output of lymphocytes is accompanied by as many as 10,000 transpositions: in all likelihood, an important potential source of oncogenic genome rearrangements.

Materials and methods

Constructs and cell lines

The substrate was derived from amplified fragments of pPUR and pTRACER-EF plasmids (Clontech), and assembled as described in Figure 1 within a murine stem cell virus-based retrovirus vector [Cheng et al. 1998]. Diversity in coding junction formation could potentially lead to infrequent puromycin resistance, reducing the sensitivity of our assay. Therefore, since NHEJ often precisely deletes repeated sequence at ends during coding junction formation, we designed the substrate such that the 4 bp of the puromycin coding sequence immediately flanking recombination signals was repeated. Sequencing of coding junctions formed in the absence of selection indicated the puromycin ORF was precisely assembled in three out of five V(D)J recombinations. Retrovirus was prepared by cotransfection of the substrate plasmid together with plasmids expressing gag, pol, and vsv-g genes into 293T cells [Pear et al. 1993]. Virus recovered from the supernatant was used to infect the ts-AMuLV line SP-9 [gift of Y. Chang, University of New Mexico, Albuquerque, NM] [Chang and Brown 1999]. Clones were obtained by limiting dilution plating in media with 100 µg/mL zeocin, and those with unique single-copy integrations were identified by Southern blotting of genomic DNA from zeo’ colonies. The construct used to generate clones A and B possessed a deletion of 1 nucleo-

Figure 6. Integration by end donation. (A) The structure of integrations #15–21 are summarized as in Figures 2–5. Rectangles represent flanking Ig locus coding segments, and triangles represent flanking Ig locus recombination signals. The numbers in parentheses within these symbols refer to the base pairs of the genomic sequence deleted relative to the site of RAG protein cleavage. [*] Sequence flanks a cryptic 23-type signal within the Vr region: CACtGTG (23 bp) AgAAAAACC [nucleotides that match consensus RS in capital letters]. B and C describe how end donation can similarly lead to both integration of the zeo’GFP fragment [β] as well as translocations between receptor loci and onc loci [C]. Boxes represent NHEJ proteins.
tide [nt] within the 23-RS nonconserved spacer. This is within the ±1-bp natural variation of spacer size used in vivo; thus, we continued study of lines made with this construct, but additionally corrected the substrate and generated a line with a consensus spacer size 23-RS [Clone C]. The integrated version of the substrate in Clone A, also has a 400-bp deletion between the 12-bp spacer RS and zeoGFP reading frame that apparently had no significant impact on zeoGFP expression.

Screening colonies

Cells were washed once and V(D)J recombination induced in the absence of both puromycin and zeocin by transfer to 40 °C for 24 h. Induced cultures were then returned to preinduction conditions to recover for 24 h, still without antibiotics. Cells were then subcloned by plating in 96-well plates at 2 × 10^4 cells/plate in media with 5 µg/mL puromycin alone [to determine the frequency of productive V(D)J recombination], or at 10^5 cells/plate in 5 µg/mL puromycin and 100 µg/mL zeocin. Screening by flow analysis indicated a small proportion of subclones that survived in zeocin nevertheless had green fluorescence indistinguishable from background [within 10% of the median fluorescence intensity of the parental line]. This indicates cells can infrequently acquire zeocin resistance by means other than maintenance of the zeoGFP cassette: Later analysis of DNA from selected zeoGFP negative clones by PCR [Supplementary Fig. 3A, P4/P7] confirmed the absence of the zeoGFP cassette. DNA was prepared from the remaining clones and analyzed by PCR to confirm coding junction formation [assembly of a complete germline V(D)J recombination signal–zeoGFP configuration [Supplementary Fig. 3A, P2/P5]].

The majority of puro2−zeo2 clones were eliminated from further analysis when they tested positive for both coding junction and “germline” PCR products, as loss of the “germline” 5′ puro fragment–recombination signal–zeoGFP configuration [Supplementary Fig. 3A, P2/P5].

Characterization of junctions

Junction sequences were cloned by inverse PCR. Briefly, genomic DNA was first enriched for fragments with integrations by separating EcoRI-digested genomic DNA by electrophoresis on a 0.8% agarose gel, followed by recovery of DNA of molecular weight appropriate to species with integrations as determined by prior Southern analysis. This DNA was then digested with HaeIII or MspI, ligated with T4-DNA ligase at 0.25–0.5 µg/mL, amplified by 25 cycles using the 12R1/12F1 and 23F1/23R1 primer pairs [Supplementary Fig. 3B], diluted 50-fold, and amplified again for 25 cycles with 12R2/12F2 and 23F2/23R2 [Supplementary Fig. 3B]. PCR products were then cloned using a TOPO-TA cloning kit (Invitrogen) and sequenced. We then used the sequences derived from inverse PCR to design primers that permitted direct amplification of integration junctions.

PCR primers

The following primers were used for PCR amplifications; their approximate position within our substrate is noted in Supplementary Figure 3: [5′–3′] P1, CCAGCGGGGGAACCGCTCAA CT; P2, CGAAGCTGCAAGAACTCTTCTCACC; P3, CTCCAA TTGCGGATGCGGCTTGC; P4, GTTCAGGCTTGCATT; P5, GGATCTTGGCT; P6, TACTCAGAACATGCGATGGG; P7, GAATTCGTAGGTTTGCAGGG; P8, ATAAACAGTTCTCCAGGTGC GAATGTCAGTC; P9, CGGACTGAGAACAGAGGTGGT; P10, GCCGGCGGCGGCTTACCGTA; P11, TAAGATGACG TCGGATGCC; P12, GAAATCCCCTGTCAGTCAAAC; P13, GACGCAAATGGGCGGTAGGCC; P14, GGAACTCCAAGACGC; P15, ATAAACAGTTCTCCAGGTGC GAATGTCAGTC; P16, CGGACTGAGAACAGAGGTGGT; P17, GCCGGCGGCGGCTTACCGTA; P18, TAAGATGACG TCGGATGCC; P19, GAAATCCCCTGTCAGTCAAAC; P20, GACGCAAATGGGCGGTAGGCC; P21, GGAACTCCAAGACGC; P22, ATAAACAGTTCTCCAGGTGC GAATGTCAGTC; P23, CGGACTGAGAACAGAGGTGGT; P24, GCCGGCGGCGGCTTACCGTA; P25, TAAGATGACG TCGGATGCC; P26, GAAATCCCCTGTCAGTCAAAC; P27, GACGCAAATGGGCGGTAGGCC; P28, GGAACTCCAAGACGC; P29, ATAAACAGTTCTCCAGGTGC GAATGTCAGTC; P30, CGGACTGAGAACAGAGGTGGT; P31, GCCGGCGGCGGCTTACCGTA; P32, TAAGATGACG TCGGATGCC.

Acknowledgments

We thank Kevin Griffin, Ayyappan Nair, and Brett Weed for their assistance, all members of the Ramsden laboratory for helpful comments, and Martin Gellert, Dik van Gent, Jeff Sekelsky, and Sarah Radford for critical reading of the manuscript. This project was supported by a Searle Scholars award, ACS grant RPG-99-192-01-GMC, NIH grants 84442 and 97096, and a Leukemia and Lymphoma Society Scholar award to D.A.R.
References

Agrawal, A., Eastman, O.M., and Schatz, D.G. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744–751.

Bogue, M.A., Wang, C., Zhu, C., and Roth, D.B. 1997. V(D)J recombination in Ku86-deficient mice: Distinct effects on coding, signal, and hybrid joint formation. Immunity 7: 37–47.

Chang, Y. and Brown, M.L. 1999. Formation of coding joints in V(D)J recombination-inducible severe combined immune deficient pre-B cell lines. Proc. Natl. Acad. Sci. 96: 191–196.

Chatterji, M., Tsai, C.L., and Schatz, D.G. 2006. Mobilization of RAG-generated signal ends by transposition and insertion in vivo. Mol. Cell. Biol. 26: 1558–1568.

Chen, Y.Y., Wang, L.C., Huang, M.S., and Rosenberg, N. 1994. An active v-abl protein tyrosine kinase blocks immunoglobulin light-chain gene rearrangement. Genes & Dev. 8: 688–697.

Cheng, L., Du, C., Lavau, C., Chen, S., Tong, J., Chen, B.P., Scollay, R., Hawley, R.G., and Hill, B. 1998. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood 92: 83–92.

Clatworthy, A.E., Valencia, M.A., Haber, J.E., and Oettinger, M.A. 2003. V(D)J recombination and RAG-mediated transposition in yeast. Mol. Cell 12: 489–499.

Gellert, M. 2002. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 71: 101–132.

Gellert, M., Lipsett, M.N., and Davies, D.R. 1962. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. 48: 2013–2018.

Hiom, K., Melek, M., and Gellert, M. 1998. DNA transposition by the RAG1 and RAG2 proteins: A possible source of oncogenic translocations. Cell 94: 463–470.

Lee, G.S., Neiditch, M.B., Sinden, R.R., and Roth, D.B. 2002. Targeted transposition by the V(D)J recombinase. Mol. Cell. Biol. 22: 2068–2077.

Lewis, S., Gifford, A., and Baltimore, D. 1985. DNA elements are asymmetrically joined during the site-specific recombination of κ immunoglobulin genes. Science 228: 677–685.

Luo, G., Ivics, Z., Izsvak, Z., and Bradley, A. 1998. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. 95: 10769–10773.

Marcu, K.B., Banerji, J., Pennacavage, N.A., Lang, R., and Arnheim, N. 1980. 5′ Flanking region of immunoglobulin heavy chain constant region genes displays length heterogeneity in germ lines of inbred mouse strains. Cell 22: 187–196.

Melek, M., Gellert, M., and van Gent, D.C. 1998. Rejoining of DNA by the RAG1 and RAG2 proteins. Science 280: 301–303.

Messier, T.L., O’Neill, J.P., Hou, S.M., Nicklas, J.A., and Finette, B.A. 2003. In vivo transposition mediated by V(D)J recombinase in human T lymphocytes. EMBO J. 22: 1381–1388.

Muljo, S.A. and Schlissel, M.S. 2003. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat. Immunol. 4: 31–37.

Pear, W.S., Nolan, G.P., Scott, M.L., and Baltimore, D. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. 90: 8392–8396.

Raghavan, S.C., Swanson, P.C., Wu, X., Hsieh, C.L., and Lieber, M.R. 2004. A non-B-DNA structure at the Bcl-2 major breakpoint region is cleaved by the RAG complex. Nature 428: 88–93.

Roth, D.B. 2003. Restraining the V(D)J recombinase. Nat. Rev.