The role of low-lying resonances for the $^{10}\text{Be}(p, \alpha)^7\text{Li}$ reaction rate and implications for the formation of the Solar System

A. Sieverding, 1, 4 J. S. Randhawa, 2 D. Zetterberg, 1, 3 R. J. deBoer, 2 T. Ahn, 2 R. Mancino, 4, 5 G. Martínez-Pinedo, 5, 4 and W. R. Hix 1, 3

1 Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354, USA
2 Department of Physics and The Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556 USA
3 Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
4 Institut für Kernphysik (Theoriezentrum), Fachbereich Physik, Technische Universität Darmstadt, Schlossgartenstraße 2, 64298 Darmstadt, Germany
5 GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany

(Dated: June 15, 2022)

Evidence for the presence of short-lived radioactive isotopes when the Solar System formed is preserved in meteorites, providing insights into the conditions at the birth of our Sun. A low-mass core-collapse supernova had been postulated as a candidate for the origin of ^{10}Be, reinforcing the idea that a supernova triggered the formation of the Solar System. We present a detailed study of the production of ^{10}Be by the ν process in supernovae, which is very sensitive to the reaction rate of the major destruction channel, $^{10}\text{Be}(p, \alpha)^7\text{Li}$. With data from recent nuclear experiments that show the presence of a resonant state in ^{11}B at ≈ 193 keV, we derive new values for the $^{10}\text{Be}(p, \alpha)^7\text{Li}$ reaction rate which are significantly higher than previous estimates. We show that, with the new $^{10}\text{Be}(p, \alpha)^7\text{Li}$ reaction rate, a low mass CCSN is unlikely to produce enough ^{10}Be to explain the observed $^{10}\text{Be}/^9\text{Be}$ ratio in meteorites, even for a wide range of neutrino spectra considered in our models. These findings point towards spallation reactions induced by solar energetic particles in the early Solar System as the origin of ^{10}Be.

I. BACKGROUND

The presence of now-extinct, short-lived ($T_{1/2} < 10\text{ Myr}$) radioactive nuclei (SLRs) in the early Solar System (ESS) has been revealed by systematic anomalies in the abundances of their stable daughter isotopes [1, 2] in meteorites. Since their lifetimes are shorter than the timescales on which the composition of the interstellar medium homogenizes, these radioactive isotopes must have been injected into the Solar System by a nearby nucleosynthesis event or they must have been produced in-situ. Precisely determined abundance ratios of SLRs, thus, provide a very powerful tool to understand the birth environment of our Sun [3]. The requirement to consistently explain all the observed values, however, challenges theoretical models and enrichment scenarios and there is an ongoing debate about the sources of individual isotopes (see [4] for a recent review).

Recent research has added evidence to the idea that core-collapse supernovae (CCSNe) trigger star formation [5–7], making such events prime candidates for the origin of SLRs, as already suggested more than 40 years ago by Cameron and Truran [8]. The isotope ^{10}Be with a half-life of $T_{1/2} = 1.4\text{ Myr}$ [9] has mostly been studied in the context of non-thermal, in-situ nucleosynthesis due to cosmic rays or high energy particles from the Sun in its early phases. Such processes have been shown to possibly produce enough ^{10}Be to explain the ESS value [10–14], but rely on assumptions about the cosmic ray spectra, the properties of young stellar objects, and mixing in the ESS. However, ^{10}Be is also produced by the ν process in CCSN explosions [15], i.e., by the interactions of high energy neutrinos emitted from the nascent proto neutron star with nuclei in the outer shells of the massive star. The relevant reactions are the neutral-current reaction $^{12}\text{C}(\nu_e, \nu_e pp)^{10}\text{Be}$ and the charged-current reaction $^{12}\text{C}(\bar{\nu}_e, e^+np)^{10}\text{Be}$. In these reactions, interactions with high-energy neutrinos from the tail of the distribution populate high-lying states of ^{12}C and ^{12}B that decay by multi-particle emission. These transitions are usually dominated by the giant resonances and the total cross-section is constrained by sum rules [16], making it relatively insensitive to the details of the nuclear structure. The neutrino spectra from the CCSN are, however, a major uncertainty for the production channel.

Banerjee et al. [17] have pointed out that a low-mass CCSN is particularly favorable as source for SLRs in the ESS because the yields of O, Mg, Si, Ca, Fe, and Ni increase steeply with the progenitor mass and would lead to anomalies in the abundances of stable isotopes, which are, however, not observed. They have further demonstrated that such a low-mass CCSN of a 11.8 M_\odot progenitor still produces a sufficient yield of ^{10}Be to simultaneously explain the $^{10}\text{Be}/^9\text{Be}$, $^{41}\text{Ca}/^{40}\text{Ca}$ and $^{107}\text{Pd}/^{108}\text{Pd}$ isotopic ratios without creating an over-abundance of any of the other SLRs for which abundance ratios have been determined (with the exception of ^{60}Fe if the recent, low values from [18, 19] are assumed). This 11.8 M_\odot model is thus a plausible source for ^{10}Be in the ESS.
A major uncertainty for the production of ^{10}Be in CCSNe is the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate. The commonly used values for the rate from the JINA-REACLIB library [20][21] are estimates from Wagoner [22], based on very little experimental information. Therefore, this rate is quite uncertain but it has been shown to have a significant impact on the ^{10}Be yields [23]. Our study provides a thorough discussion of the sensitivity of ^{10}Be production in CCSNe to the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate, using a range of stellar progenitors and different models of the neutrino spectra. We further identify $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ as the next important reaction and discuss the role of the neutrino-induced reaction $^{10}\text{Be}(\nu_e,e^-)^{10}\text{B}$. Using the results of recent experiments that elucidate the lowest nuclear levels of the compound nucleus ^{11}B, we derive an updated nuclear reaction rate for $^{10}\text{Be}(p,\alpha)^7\text{Li}$ that is significantly higher than the rate commonly used in previous calculations. For the most plausible CCSN model, we show that the new rate reduces the ^{10}Be yield significantly, making it insufficient to explain the ^{10}Be abundance in the ESS within the uncertainties of the reaction rate and CCSN neutrino emission.

This article is organized as follows: First, in Section II we briefly describe the supernova models and reaction network. In Section III we first describe the general processes relevant for the nucleosynthesis of ^{10}Be and discuss the sensitivity to the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ rate, as well as the role of the $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ and $^{10}\text{Be}(\nu_e,e^-)^{10}\text{B}$ reactions. In Section IV we derive the new $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate and discuss the impact on the yields and implications for the ESS in Section V. Finally we conclude in Section VI.

II. SUPERNOVA MODEL

In the following we briefly describe the supernova models and nuclear reaction network used for this study.

To include the dependence on the stellar progenitor model, we use four CCSN and progenitor models that have been studied in Ref. [24], covering stars with zero-age-main-sequence masses of 13 M_\odot, 15 M_\odot, 20 M_\odot, and 25 M_\odot and an initial composition of solar metallicity [25]. Stellar evolution and the explosions have been calculated assuming spherical symmetry with the KEPLER hydrodynamics and stellar evolution code [26, 27]. The explosions are driven by a parameterized piston tuned to yield explosion energies of 1.2×10^{51} erg.

The models do not track the neutrino emission and we thus use the parameterization from Ref. [15] for the neutrino luminosity and assume the spectra to be constant. For the local neutrino flux at time t and radius $r(t)$ we assume

$$\Phi_\nu(t) = \frac{L_0}{4\pi r(t)^2} e^{-t/\tau_\nu}$$

with a timescale of $\tau_\nu = 3$s and the luminosity L_0 adjusted to obtain a total energy of 3×10^{52} erg distributed equally among the six neutrino species. The spectra are assumed to be Fermi-Dirac distributions with chemical potential $\mu_\nu = 0$ and characterized with a constant spectral temperature T_ν, related to the average neutrino energy as $\langle E_\nu \rangle \approx 3.15 \times T_\nu$. Since the neutrino spectra are a major uncertainty for the production of ^{10}Be we explore two cases that generously cover the range of typical neutrino energies found in current simulations (e.g. [28–30]):

- High E_ν, with $T_{\nu_e} = 4$ MeV, $T_{\bar\nu_e} = 5$ MeV, $T_{\nu_x} = T_{\bar\nu_x} = 6$ MeV
- Low E_ν, with $T_{\nu_e} = 2.8$ MeV, $T_{\bar\nu_e} = T_{\nu_x} = T_{\bar\nu_x} = 4$ MeV,

where ν_μ ($\bar{\nu}_\mu$) represent μ and τ neutrinos (antineutrinos).

In practice, the reaction network uses normalized, spectrum-averaged cross sections $\langle \sigma_\nu \rangle$ tabulated as a function of T_ν that are calculated from the energy-dependent cross section $\sigma_\nu(E_\nu)$ as:

$$\langle \sigma_\nu \rangle(T_\nu) = \int_0^\infty \sigma_\nu(E_\nu)f_\nu(E_\nu,T_\nu) dE_\nu, \quad (2)$$

with the normalized distribution function

$$f_\nu(E_\nu,T_\nu) = \frac{N}{T_\nu^2\nu} \frac{E_\nu^2}{1 + \exp [E_\nu/T_\nu]}.$$

where $N = 2/(3\zeta(3)) \approx 0.55$.

In this study we also include the 11.8 M_\odot progenitor model from Ref. [17] that has been used as the basis for a 3D CCSN simulation [31]. For this progenitor we use a 1D explosion model from Ref. [23], which has been tuned to give a much lower explosion energy of 0.2×10^{51} erg that is consistent with the 3D simulation. We combine this model with the parameterized neutrino exposure described above and additionally include the neutrino emission from the simulation. Note that we do not apply the corrections of Ref. [23], which decrease $\langle E_\nu \rangle$. The average neutrino energies predicted by the simulation are between the parameterized high E_ν and low E_ν cases and evolve with time. The simulation only covers the first 1.3 s after core bounce and we extrapolate the neutrino luminosities as in [23] with an exponential decrease with $\tau_\nu = 2$s, and a linear decrease of the neutrino energies, reaching zero at 10 s after bounce.

The explosion trajectories are post-processed with the open-source reaction network code XNet[32], including about 2000 nuclear species, nuclear reactions from the JINA-REACLIB database [20] and most neutrino-nucleus reactions as in Ref. [24]. The neutrino reactions on ^{12}C, which are especially important for the production of ^{10}Be are taken from shell-model calculations of Ref. [33].

^{10}Be is produced by neutrino irradiation of ^{12}C, mainly via the neutral current reaction $^{12}\text{C}(\nu_\mu,\nu'_\mu pp)^{10}\text{Be}$ and
FIG. 1. Peak temperature profiles for the supernova models used here. The C shell, where the production of \(^{10}\text{Be}\) occurs, is highlighted in gray. The peak temperature in the C shell ranges from 0.6 to 1.5 GK.

The charged-current reaction \(\nu \rightarrow \bar{\nu} + np\)^{10}\text{Be}. The charged current contribution makes the production sensitive to effects of neutrino flavor conversions \([23, 33]\), which transform high energy \(\bar{\nu}\) into \(\bar{\nu}_e\), increasing the contribution of the charged-current channel. Similar effects have been discussed previously in the context of the CCSN \(\nu\) process \([34–36]\). Therefore, in Section V we also consider a complete swap of \(\bar{\nu}_e \leftrightarrow \bar{\nu}_x\) to estimate the maximal effect of flavor transformations.

The current version of the JINA-REACLIB library does not include a reaction rate for \(^{10}\text{Be}(p, n)^{10}\text{B}\) but Kusakabe et al. \([34]\) have calculated the rate with the statistical model and they do not find a noticeable impact on the nucleosynthesis yields. Their values for the reaction rate are more than an order of magnitude lower than the \(^{10}\text{Be}(p, \alpha)^7\text{Li}\) reaction rate and we did not consider it in our calculations.

III. PRODUCTION OF \(^{10}\text{Be}\) AND SENSITIVITY STUDY

A. Overview

To understand the sensitivity of \(^{10}\text{Be}\) yields to the nuclear reaction rates, we illustrate in the following the processes that contribute to the production and destruction of \(^{10}\text{Be}\). As \(^{10}\text{Be}\) is produced from \(^{12}\text{C}\) via neutrino-induced reactions, the initial mass fraction \(X\) of \(^{12}\text{C}\) determines the parts of the CCSN ejecta where \(^{10}\text{Be}\) can be produced. For the five CCSN models that we study here, the peak temperature in the C-shell ranges from 0.6 GK to 1.5 GK. This is illustrated in Fig. 1 which shows the peak temperature for all the models with the C shell highlighted as thick gray lines. In the following we describe the \(^{10}\text{Be}\) production for our calculations with the 15 \(M_\odot\) model in more detail as an example. The qualitative picture is similar for all the progenitor models.

The top panel of Fig. 2 shows the pre-supernova mass fraction profile of \(^{12}\text{C}\) as well as \(^{20}\text{Ne}, ^{16}\text{O}\) and \(^{4}\text{He}\) for the 15 \(M_\odot\) progenitor model. The O/Ne shell below a mass coordinate of around 2.2 \(M_\odot\) has been processed by C-shell burning, leading to a reduced mass fraction of \(^{12}\text{C}\) and an increase of \(^{20}\text{Ne}\). The region with \(X(^{12}\text{C}) > 0.05\), starting at a mass coordinate around 2.2 \(M_\odot\) (corresponding to a radius of 15,000 km) is shown with a gray background and we will refer to this region as the C shell in the following. The bottom of the C shell is depleted in \(^4\text{He}\), i.e., \(X(^4\text{He}) < 0.01\), and this region is further shaded in dark gray. Above 2.25 \(M_\odot\), \(\alpha\) particles are left and in a narrow region \(X(^{12}\text{C}) > X(^{16}\text{O})\). The \(^4\text{He}\) mass fraction gradually increases toward the He shell. The bottom of the He shell, up to 2.9 \(M_\odot\), also contains a low level of \(^{12}\text{C}\).

The final mass fraction of \(^{10}\text{Be}\) at 200 s after the explosion is shown in the middle panel of Fig. 2 and it is strongly peaked at the He-free bottom of the C shell. The bottom panel shows the time-integrated net reaction fluxes of the two dominant destruction reactions, \(^{10}\text{Be}(p, \alpha)^7\text{Li}\) and \(^{10}\text{Be}(\alpha, n)^{13}\text{C}\). The integrated net flux of a reaction \(A \rightarrow B\) is defined as

\[
\mathcal{F}_{A \rightarrow B} = \int_{t_0}^{t_{\text{exp}} \nu} \dot{y}_{A \rightarrow B}(t) + \dot{y}_{B \rightarrow A}(t) \, dt,
\]

where the integral covers the whole duration of the calculation, i.e., 200 s, \(\dot{y}_{A \rightarrow B}(t)\) and \(\dot{y}_{B \rightarrow A}(t)\) are the change of the abundance of \(A\) due to the forward and inverse reactions, respectively, at a given time. The magnitude of the integrated flux of the destructive reactions is larger than the final abundances of \(^{10}\text{Be}\), indicating that only a fraction of the produced abundance survives. Fig. 2 shows that we can distinguish between two regions that are indicated by the light and dark gray regions:

1. The bottom of the C shell, where \(^4\text{He}\) has been depleted almost completely, dominates the final yield of \(^{10}\text{Be}\) and \(^{10}\text{Be}(p, \alpha)^7\text{Li}\) is the most important destructive nuclear reaction.

2. In the outer C shell a significant mass fraction of \(^4\text{He}\) is still present and \(^{10}\text{Be}(\alpha, n)^{13}\text{C}\) is the dominant destructive reaction, limiting the contribution of this region to the production of \(^{10}\text{Be}\).

The \(^{10}\text{Be}\) yield is largest at the bottom of the C shell because at higher enclosed mass values, even though \(X(^{12}\text{C})\) is higher, \(^4\text{He}\) becomes more abundant and therefore destroys \(^{10}\text{Be}\) via the \(^{10}\text{Be}(\alpha, n)^{13}\text{C}\) reaction. At the bottom of the C shell, free protons need to be released first to inhibit the production of \(^{10}\text{Be}\). In addition to nuclear reactions and photo-disintegration activated by
FIG. 2. Mass fraction profile of the 15 M_{\odot} model. The top panel shows the pre-supernova mass fractions of several important isotopes to indicate the star’s compositional layers. The middle panel shows the profiles of the 10Be mass fraction at 200 s (Final) and at the time of shock arrival, i.e., when the peak temperature is reached. Note that this time is different for each location. The bottom panel shows the absolute value of the integrated net reaction fluxes as defined in Eq. (4) due to the two most important destructive reactions.

the shock, neutrino-induced reactions, such as the neutral current reaction 16O(ν_x, ν_x^\primep)15N, play an important role as a proton source. In particular at later times, when the temperature is too low for photo-disintegration, neutrino reactions continue to provide protons. The neutrino reactions are also important proton sources in the outer C shell and the bottom of the He shell, where the peak temperatures are low. Before the shock hits, the temperature is relatively low, allowing the neutrino interactions to build up 10Be. When the shock hits, the destructive reactions are most effective while the temperature remains high. Free protons are quickly consumed, suppressing the 10Be(p, α)7Li reaction and allowing the 10Be abundance to recover. Due to neutrino-interactions, the proton abundance also increases again. In cases where the temperature remains high for long enough or when the reaction rate is enhanced, the destructive reaction becomes active again, leading to a decrease of the 10Be mass fraction at late times. This possibility of late-time destruction is important for the impact of an enhanced reaction rate as illustrated in Fig. 4 and is discussed in more detail below. Most of the 10Be yield is only produced after the shock has passed. This is illustrated by the middle panel of Fig. 2, which shows that the 10Be mass fraction at the time when the peak temperature is reached is much smaller than the final mass fraction everywhere in the C shell. At the bottom of the He shell, however, where 12C is also present, the peak temperature is too low for the efficient destruction of the SLR by the SN shock. Here, the final 10Be mass fraction is lower than the mass fraction at the time of shock arrival, illustrating that the (p, α) reaction continues to be active after the shock has passed.

FIG. 3. Impact of the variation of the 10Be(p, α) reaction rate on the 10Be yields and ratio relative to the result with the JINA-REACLIB reaction rate. The upper two panels are for high E_ν and the lower two panels for low E_ν. The results with the neutrino spectra from the 3D simulation of the 11.8 M_{\odot} model is also included in the upper panel (11.8 M_{\odot} *).
The relative contribution of the bottom of the C shell varies with progenitor mass due to different sizes of the shells, different temperatures and distance from the proto neutron star as well as differences in the initial composition. For the 11.8 M_{\odot} model about 50% of the total 10Be yield is provided by the He-free bottom of the C shell. For the 15 M_{\odot} model the contribution of the bottom of the C shell is almost 70%.

In the 25 M_{\odot} model, the O/Ne shell, which is much larger in terms of mass than the C shell, has a 12C mass fraction that is higher by almost an order of magnitude compared to the 15 M_{\odot} model. Therefore, for the 25 M_{\odot} model, the O/Ne shell contributes 80% of the 10Be yield.

B. Sensitivity to 10Be$(p,\alpha)^7$Li

To explore the sensitivity of the 10Be yield to the 10Be$(p,\alpha)^7$Li rate, we perform post-processing reaction network calculations including a global, i.e., temperature-independent, multiplier R for this rate. The existence of resonances can have a large impact, as we will show in Section V. Therefore, we explore a large range, increasing and decreasing the rate by factors 2, 10 and 50 relative to the JINA-REACLIB value. The inverse reaction, 7Li(α,p), is strongly suppressed due to the negative Q-Value and Coulomb barrier. Furthermore, the mass fraction of 7Li does not exceed 10^{-7}, making it a relatively rare target. Thus, for the conditions relevant here, we assume the reverse reaction to be negligible and keep its rate unchanged for the sensitivity analysis. The effect of the inverse reaction is included in Section V.

Fig. 3 shows the 10Be yield as a function of the reaction rate multiplier for the five stellar models considered here. The top panel shows the results for high E_ν and the bottom panel the results for low E_ν. The neutrino spectra from the 11.8 M_{\odot} simulation are time-dependent, but tend to be in between the high and low energy cases and the results are included in the top panel.

For a suppression of the 10Be$(p,\alpha)^7$Li reaction, i.e., for $R < 1$, the yields moderately increase. The increase is limited by the 10Be$(\alpha,n)^{13}$C reaction, which eventually becomes dominant. The bottom panel of Fig. 2 shows that the reaction flux through 10Be$(p,\alpha)^7$Li is at most one order of magnitude higher than the flux through 10Be$(\alpha,n)^{13}$C. The latter reaction can thus be expected to become dominant if $R \lesssim 0.1$. Accordingly, in Fig. 3 we only see a small increase of the yield from $R = 0.1$ to $R = 0.02$.

For the 11.8 M_{\odot} model with high E_ν, the increase relative to the results with the default reaction rate is largest, reaching a factor of 3.5 for $R = 0.02$. For all other models, the ratio of the yield relative to the yield with the default reaction rate ranges from a factor of 2.0 to 2.7. Ref. [23] found that turning off the 10Be$(p,\alpha)^7$Li reaction completely increases the yield by a factor 3, which is consistent with the range of values we find here.

An increase of the 10Be$(p,\alpha)^7$Li rate, i.e., $R > 1$ in Fig. 3, efficiently reduces the yield. As explained above, the 10Be$(p,\alpha)^7$Li reaction is still active after the shock has passed and reduces the peak mass fraction of 10Be. Given a sufficiently high temperature and high rate, the reaction will tend to destroy practically all of the 10Be. For an individual trajectory, an increase of R reduces the peak 10Be mass fraction that is accumulated after the shock and it also extends the time during which the destruction operates after the production has ceased. This makes the final yield very sensitive to R. Figure 5 illustrates the strong impact of the enhancement of the rate and it also shows that the effect is most pronounced at the bottom of the C shell, where the temperature is highest. For $R = 10$, only $8-15\%$ ($18-35\%$) of the yield with the default rate are left, with high (low) E_ν. In relative terms, the reduction is largest for the 25 M_{\odot} model because of the large contribution from the O/Ne shell and the higher peak temperature which enhances the reaction.

As R increases, 10Be is more effectively destroyed at high temperatures, shifting the main production to lower temperatures. Furthermore, the 10Be$(p,\alpha)^7$Li reaction also remains effective at a lower temperature and thus at later times, when protons from thermonuclear reactions are increasingly rare. Both of these effects make the role of neutrino-induced reactions as proton sources more important for larger R. As a consequence, the yields decrease faster with R for high E_ν than for low E_ν, as shown by the ratios in Figure 3.

The role of neutrinos as a proton source also leads to the effect that the 10Be yields with high E_ν become lower than the results with low E_ν for higher values of R, which is visible when comparing the upper and lower panel of Fig. 3. This effect is more clearly illustrated in Fig. 4 which shows the time evolution of the 10Be and proton.
mass fractions for a zone at $2.32 \, M_\odot$ in the $15 \, M_\odot$ model for $R = 50$ comparing the high E_ν and low E_ν cases. The arrival of the SN shock is marked as a gray vertical line when most of the initially produced ^{10}Be is destroyed. The final mass fraction is determined by the production after the shock has passed. With high E_ν the proton mass fraction is significantly higher, allowing the enhanced $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction to reduce the ^{10}Be mass fraction even at 10 s, when the temperature has dropped to 0.4 GK. As a result, even though the peak mass fraction of ^{10}Be reached at 6 s is higher for high E_ν, the final mass fraction is higher for low E_ν because of the lower proton abundance. Note that this inversion does not occur with the default $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate, because the reaction is too slow at low temperatures. For the $15 \, M_\odot$ model, this effect becomes only noticeable for $R = 50$, when the yield is $3.5 \times 10^{-12} \, M_\odot$ for high E_ν and $5.3 \times 10^{-12} \, M_\odot$ with low E_ν.

The effect is more pronounced for the $11.8 \, M_\odot$ model because it has a much lower explosion energy and peak temperatures are generally lower, increasing the importance of neutrinos to provide protons. For example, for the $11.8 \, M_\odot$ model with $R = 10$, the high E_ν case actually results in the lowest yield among all models for this value of R, which is $1.3 \times 10^{-11} \, M_\odot$. For comparison, the yield is $2.8 \times 10^{-11} \, M_\odot$ with the neutrino spectra from the simulation and $2.1 \times 10^{-11} \, M_\odot$ with low E_ν. The yield with the neutrino spectra from the simulation is highest, because the neutrino temperatures decrease with time and the luminosities decrease faster, reducing the proton mass fraction at late times. This illustrates the complex interplay between the sensitivity to the reaction rate and the sensitivity to the neutrino spectra in the ν process.

In Section III A we have shown that the He-free bottom of the C shell dominates the yields for the JINAREACLIB reaction rate. Since the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction is the main destructive channel in that region, its relative contribution to the total yield decreases first as R increases. This is illustrated in Fig. 5 for the $15 \, M_\odot$ model and shows that the He-rich, outer C shell already becomes the dominant production region for $R = 10$. For different progenitors the differences in the relative contributions of the different shells and the different temperatures in the respective regions determine the details of the behaviour of the yield as a function of R. The overall trend, however, is very similar for all the models, with a slight increase of the yield for $R < 1$ and a much steeper decrease for $R > 1$.

C. Sensitivity to $^{10}\text{Be}(\alpha,n)^{13}\text{C}$

The reaction $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ has already been mentioned in Ref. [33] as most important destructive reaction using, however, an older and much higher value of the rate. With the currently recommended rate in the JINA-REACLIB library we find it to be the second most important destruction channel for ^{10}Be after $^{10}\text{Be}(p,\alpha)^7\text{Li}$. Fig. 2 shows that $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ is generally dominant in the outer regions, where α particles are leftover from incomplete He-burning. The reaction limits the contribution from this region to the total ^{10}Be yield. The default reaction rate in the JINA-REACLIB database is up to a factor 100 lower than the values in STARLIB [37]. Due to this large difference, we explore a global variation of the reaction rate from the JINA-REACLIB database by factors 10 and 50 up and down, while keeping the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate from the JINA-REACLIB library. Increasing the $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ reaction rate by a factor 50 (10) for the $15 \, M_\odot$ model with high E_ν reduces the yield from $1.7 \times 10^{-10} \, M_\odot$ by a factor 1.9 (1.4) to $0.9 \times 10^{-10} \, M_\odot$ ($1.2 \times 10^{-10} \, M_\odot$). Suppressing the reaction rate by a factor 50 (10), on the other hand yields an increase by a factor 1.6 (1.4), to $2.7 \times 10^{-10} \, M_\odot$ ($2.3 \times 10^{-10} \, M_\odot$) of ^{10}Be. Based on this, we estimate the overall uncertainty due of the ^{10}Be yields due to this reaction rate to be up to a factor of 2. Thus, for a full understanding of the ^{10}Be production in CCSNe, a re-evaluation of experimental constraints on the cross section for $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ or a direct measurement is highly desirable.

D. Sensitivity to $^{10}\text{Be}(\nu_\epsilon,\epsilon^-)^{10}\text{B}$

The reaction $^{10}\text{Be}(\nu_\epsilon,\epsilon^-)^{10}\text{B}$ may contribute to the destruction of ^{10}Be [23]. An estimate of the cross section was previously provided in the global compilation of neutrino cross sections of Ref. [24]. Here, we improve it by combining shell-model calculations and experimental data. From the beta-decay data of the mirror nucleus of ^{10}Be, ^{10}C, we expect that ν_ϵ absorption on ^{10}Be will have
a large Gamow-Teller (GT) contribution to the 1^+ state at 718 keV in 10B, $\log ft = 3.0426(7)$, $B(GT) = 5.573(9)$ \cite{ref38}. In addition, we expect a Fermi contribution to the 0^+ state at 1.740 keV. To determine whether other states may further enhance the cross section, we have performed a shell model calculation with the code NATHAN \cite{ref39} employing the Cohen-Kurath interaction \cite{ref40}. The theoretical GT matrix elements have been reduced by a quenching factor $q = 0.82$ \cite{ref41}. We find that the GT transition at 718 keV dominates the cross section at the relevant neutrino energies. No noticeable reduction of the 10Be yield is found, even assuming $T_{\nu e} = 6$ MeV, because the abundance of 10Be is never large enough to allow for a noticeable number of interactions. For completeness, we provide the values of the spectrum averaged cross-sections in Table I.

$T_{\nu e}$ (MeV)	$\langle \sigma_{\nu e} \rangle (10^{-42} \text{cm}^2)$
2.8	14.6
3.5	22.8
4.0	29.7
5.0	46.2
6.4	73.2
8.0	105.3
10.0	141.3

IV. NEW 10Be(p,α)7Li REACTION RATE

The 10Be(p,α)7Li reaction proceeds through the 11B compound nucleus where states above the proton emission threshold play an important role. Current estimates of the 10Be(p,α)7Li reaction rate are based on estimates by Wagoner \cite{ref22} and it is the default reaction rate in JINA-REACLIB. We refer to this rate as the REACLIB rate hereafter. While the REACLIB rate was based on a constant S-factor approximation, this reaction is expected to be dominated by isolated resonances in the Gamow window. In recent years, states near the proton threshold in 11B have gained significant attention as they can explain the puzzling β^-p^+ decay in 11Be. A recent experiment, which directly measured the protons and their energy distribution, shows that the decay proceeds sequentially through a narrow resonance [$E = 11425(20)$ keV, $\Gamma = 12(5)$ keV, $J^\pi = (1/2^+, 3/2^+)$] in 11B \cite{ref42}. Preceeding this experiment, it was shown that Shell Model Embedded in the Continuum (SMEC) calculations strongly favor the $J^\pi=1/2^+$ assignment over $3/2^+$ \cite{ref43}. This $1/2^+$ resonance at ≈ 193 keV (11B $S(p) = 11228$ keV), proves to be most crucial for the 10Be(p,α)7Li reaction rate as it is well within the Gamow window and provides the dominant contribution to 10Be(p,α)7Li reaction rate throughout, as discussed in detail below.

In this work, we have re-evaluated the 10Be(p,α)7Li reaction rate using the R-matrix approach using the code AZURE2 \cite{ref44, ref45}. For the R-matrix calculations, other than the known energy levels in 11B above the proton emission threshold, we have included the recently observed 11.425 MeV state (193 keV $1/2^+$ resonance, discussed above), which is one of the main highlights of this work. In addition, we have also included a $3/2^+$ state at 11.490 MeV, predicted by Refsgaard et al. \cite{ref46} to explain the β-delayed α-spectrum from 11Be and later discussed by Okolowicz et al. \cite{ref47}.

All energy levels considered for the current R-matrix calculations and corresponding parameters are shown in Table II. Energies of the states and partial widths are adopted from the NNDC database wherever possible \cite{ref47}. In the absence of data, reduced widths are adopted as $\approx 0.01\gamma_0^2$, where γ_0^2 is the Wigner limit \cite{ref48}. The results of the R-matrix calculations are shown in Fig. 6 where the upper panel shows the astrophysical S-factor as a function of center-of-mass energy and the lower panel shows the reaction rate versus temperature. Fig. 6 (upper panel) shows the S-factor with and without the 193 keV resonance contribution. The cross section without the 193 keV resonance (red line) is dominated in the Gamow window (90 keV-410 keV) by the low energy tail of the broader, higher lying $1/2^+$ resonance ($E_x = 12.55$ MeV).

![FIG. 6. R-matrix calculations to assess the impact of the 193 keV $1/2^+$ resonance on the 10Be(p,α) reaction cross section. The upper panel shows the S-factor and the lower panel the reaction rate as a function of temperature. Results without the 193 keV $1/2^+$ resonance are shown (red line) as well several results assuming different resonance widths and assumptions about the interference with the $3/2^+$ resonance (see text). For comparison, the rate from \cite{ref22} is also shown (green dashed line). The result with $\Gamma_\alpha = 6$ keV, $\Gamma_p = 6$ keV, (+) is the new recommended rate.](image-url)
When the 193 keV 1/2+ resonance is included (magenta and blue lines), the cross section in the Gamow window is completely dominated by this resonance and is several orders of magnitude higher. Moreover, the effect of a 3/2+ state at 11.490 MeV, which is included in the calculations, is negligible for the overall cross-section. We also considered the interference between the 1/2+ states where (-+) and (++) represents the different relative signs of channels and found that this did not have a significant effect on the reaction rate.

Fig. 6 (lower panel) shows the comparison of new reaction rates, with and without the 193 keV 1/2+ state, as well as to the REACLIB rate [20] (green dotted line) in the temperature range relevant for the production of 10Be as indicated in Fig. 1. A maximum predicted rate (Magenta line) is obtained when the 193 keV 1/2+ resonance is included with its maximum strength ($\Gamma_p = 6$ keV, $\Gamma_\alpha = 6$ keV). Here, it is worth mentioning that from the recent resonant elastic scattering experiment 10Be(p,p), which confirms the presence of the 193 keV 1/2+ resonance, R-matrix calculations reproduce the data well only if $\Gamma_p = 6$ keV, $\Gamma_\alpha = 6$ keV [49]. Therefore, these widths are based on recent experimental results and we refer to this rate as the new recommended rate in the following. To assess the sensitivity of the reaction rate to the partial widths of the resonance at 193 keV, we also considered another extreme. The lower predicted rate (black line), which includes the 1/2+ resonance but with a smaller strength resulting from $\Gamma_p = 11$ keV and $\Gamma_\alpha = 1$ keV. This rate hereafter is referred as minimum rate. The difference between our recommended reaction rate and the minimum rate is what we refer to as the current uncertainty in the 10Be(p,α)7Li reaction rate. The minimum rate and the recommended rate are factors of ~ 200 to ~ 1000 higher compared to the rate derived without the 193 keV 1/2+ resonance, respectively. This shows that the 193 keV resonance has a large impact on the 10Be(p,α)7Li reaction rate in the Gamow window relevant for CCSNe. Compared to the REACLIB rate, our minimum and recommended rate are higher by a factor of ≈ 6 and ≈ 20 in the Gamow window.

For the nucleosynthesis calculations in Section V, we consider both, the recommended and minimum rates to estimate the impact of the remaining uncertainty in 10Be(p,α)7Li reaction rate.

V. IMPACT OF THE NEW 10Be(p,α)7Li REACTION RATE

A. Impact on Supernova Yields

The new 10Be(p,α)7Li reaction rate is based on the updated nuclear data as described in Section IV. Our recommended rate is factor of ~ 20 higher compared to the REACLIB rate. The reaction network calculations use the parameterization given in Appendix A and include the rate for the inverse reaction, 7Li(α,p)10Be, using detailed balance. The inverse reaction is only noticeable with high E_ν and results in an increase in the yield by less than 20%.

Figure 7 summarizes the range of 10Be yields obtained with the new reaction rates for the five progenitor models and compares the high and low E_ν cases. The results with the REACLIB rate are shown for comparison. From Figure 7, the 10Be yield trend shows that the yield increases with increasing progenitor mass from 15 M_\odot to 35 M_\odot because the amount of material in the C shell increases. As noted by [17], however, the yields for the progenitors from 11.8 M_\odot to 15 M_\odot are relatively similar. For high E_ν the yield even decreases slightly from 11.8 M_\odot to 15 M_\odot. This is because the 11.8 M_\odot model assumes a lower explosion energy, leading to lower peak temperatures that favor the survival of 10Be. The spread in the 10Be yields with the minimum and recommended rate for a given E_ν model is indicated by the colored bands and represents the impact of current uncertainty in the 10Be(p,α)7Li reaction rate. This band is slightly narrower with low E_ν compared to high E_ν due to the role of neutrino-induced reactions as proton sources. Compared to the results with the REACLIB rate, using the new recommended reaction rate and high E_ν, the 10Be yield is decreased by factors of $\sim 13-33$ (4-10). This significant change shows that the 10Be(p,α)7Li reaction is indeed a major destruction channel of 10Be in CCSNe and challenges the scenario in which 10Be was injected by a nearby Supernova into the ESS.

B. Implications for Early Solar System

A major problem in reconciling theoretical CCSN nucleosynthesis yields with the abundances of SLRs in the ESS is the absence of anomalies in the isotopic composition of common stable isotopes. This excludes most CCSNe [50], except for those from low-mass progenitors with low explosion energies as the origin of the SLRs [17]. Banerjee et al. [17] have further demonstrated that a 11.8 M_\odot progenitor produces a sufficient yield of 10Be to simultaneously explain the 10Be/9Be, 41Ca/40Ca and 107Pd/108Pd inferred isotopic ratios, identifying this model as a favorable candidate to explain the ESS SLR abundances. Therefore, we focus in the following on this model and show that, with the new reaction rate discussed above, the yield of the 11.8 M_\odot model is insuffi-

TABLE II. Levels included in the R-matrix calculations.

Energy (MeV)	J^+	partial widths (keV)
11.272	9/2+	$\Gamma_p=10^{-17}$, $\Gamma_\alpha=110$
11.425	1/2+	$\Gamma_p=6.11$, $\Gamma_\alpha=6.1$
11.490	3/2+	$\Gamma_p=10^{-4}$, $\Gamma_\alpha=93$
11.600	5/2+	$\Gamma_p=10^{-5}$, $\Gamma_\alpha=90$, $\Gamma_\alpha=90$
11.893	5/2-	$\Gamma_p=10^{-4}$, $\Gamma_\alpha=94$
12.040	7/2+	$\Gamma_p=10^{-5}$, $\Gamma_\alpha=500$, $\Gamma_\alpha=500$
12.550	1/2+	$\Gamma_p=100$, $\Gamma_\alpha=105$
10Be yield (fraction of the CCSN ejecta incorporated into the proto-solar cloud) and $\Delta = 1$ Myr, which allows us to match the measured ESS ratios of 41Ca/40Ca and 107Pd/108Pd for the 11.8 M_\odot model, which is also consistent with constraints from CCSN remnant evolution models and the requirements for the injection of material from the shock into the proto-solar cloud [17]. Note that neither 41Ca nor 107Pd are significantly affected by the neutrino spectra or the reaction rates discussed here. With these parameters, the observed 10Be/9Be ESS ratio, $(3 - 9) \times 10^{-4}$ [52] requires yields in the range $(1.5 - 4.6) \times 10^{-10} M_\odot$.

In order to fully cover the range of uncertainties of the neutrino spectra we calculate the 10Be yield for five different models. We took different assumptions about the neutrino spectra, including low E_ν (Model-1), the spectra from the simulation [31] (Model-2), and high E_ν (Model-3). We also include estimates for the maximum impact of neutrino flavor transformations by assuming a complete swap of the ν_τ and $\bar{\nu}_\tau$ spectra by flavor transformations. These yield values are also shown in Figure 8, together with band representing the required 10Be yields to match the inferred 10Be/9Be ratio. For both values of the 10Be(p,α)7Li reaction rate, the highest 10Be yields result from the high E_ν case with flavor transformations (Model-5), whereas the lowest yields result from the low E_ν case (Model-1). This shows that all the models, even with the most optimistic neutrino spectra and the minimum 10Be(p,α)7Li reaction rate, fall short of the required 10Be yield in this scenario. These findings seem to favor non-thermal processes or in-situ production as main contributors for 10Be in the ESS.
VI. CONCLUSIONS

We have studied the production of ^{10}Be by the ν process in CCSN explosions for a range of progenitors and for different models of the neutrino spectra, to investigate the role of the $^{10}\text{Be}(p,\alpha)^7\text{Li}$, $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ and $^{10}\text{Be}(\nu_e,e^-)^{10}\text{B}$ reactions as ^{10}Be destruction channels. An enhanced $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate significantly reduces the yields of this SLR and it changes the relationship between the neutrino spectra and the net ^{10}Be yield. The large uncertainty of the $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ reaction rate can change the ^{10}Be yield by a factor of 2, making it the second most important reaction, after the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction, as a destruction channel for ^{10}Be in CCSNe.

We re-evaluated the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate using R-matrix calculations based on updated nuclear data including the recently observed low energy resonance at 193 keV in the compound nucleus ^{11}B [42]. We show that this resonance makes the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate significantly larger (up to a factor of 20) than the rate in the JINA-REACLIB database. With our recommended rate, the ^{10}Be yields are up to a factor of 33 lower than those obtained with the default REACLIB rate. However, further experimental constraints on the proton and alpha widths of the 193 keV resonance are necessary to narrow down the range of calculated ^{10}Be yields. We show that, with current CCSNe models and the estimated uncertainty of the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction rate and neutrino spectra, a nearby low-mass CCSN ($11.8 M_\odot$ model) cannot explain the $^{10}\text{Be}/^{9}\text{Be}$ ratio in agreement with other isotopic ratios inferred from meteorites. These findings point towards non-thermal, in-situ production of ^{10}Be in the ESS. We encourage the further refinement in the prediction of CCSN neutrino spectra (including flavor transformations), as well as experiments to constrain the properties of 193 keVresonance in the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction and the $^{10}\text{Be}(\alpha,n)^{13}\text{C}$ reaction rate to further constrain our findings.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program. Research at Oak Ridge National Laboratory is supported under contract DE-AC05-00OR22725 from the U.S. Department of Energy to UT-Battelle, LLC. JSR, RJD and TA were supported by National Science Foundation through Grant No. Phys-2011890. RJD utilized resources from the Notre Dame Center for Research Computing and was supported by the Joint Institute for Nuclear Astrophysics through Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements). RM and GMP acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 279384907 – SFB 1245 “Nuclei: From Fundamental Interactions to Structure and Stars”.

This research made extensive use of numpy [53], matplotlib [54] and of the SAO/NASA Astrophysics Data System (ADS).

Appendix A: $^{10}\text{Be}(p,\alpha)^7\text{Li}$ rate: REACLIB fit parameters

In the REACLIB reaction rate library, thermonuclear reaction rates are described as a function of temperature in GK, T, by a seven parameter fit as

$$\langle \sigma v \rangle(T) = \exp \left[a_0 + \left(\sum_{i=1}^{5} a_i T^{2i-5} \right) + a_6 \ln(T) \right].$$

(A1)

Resonant and non-resonant contributions need to be fitted by separate sets of parameters. Table IV gives the fit parameters for the minimum and recommended rate for the $^{10}\text{Be}(p,\alpha)^7\text{Li}$ reaction discussed in IV. Each fit consists of two sets of seven parameters, for the resonant and non-resonant contributions. The fit is illustrated for the recommended rate in Fig. 9. Deviations of the fit from the R-matrix calculation are less than 5% for temperatures higher than 0.3 GK. The parameters for the reverse reaction rate can be obtained from the forward reaction by detailed balance by replacing $a_0^{rev} = a_0 - 2.2375$ and $A^{rev} = a_{1} - 29.7539$. The other parameters $a_{2..6}$ remain the same [55].
TABLE IV. Fit parameters for the minimum and recommended rate. Each rate consists of a resonant and non-resonant contribution.

	Minimum	Recommended		
	resonant	non-resonant	resonant	non-resonant
a0	18.83813	30.40055	20.01675	29.05572
a1	-2.236187	0.0	-2.236187	0.0
a2	0.0	-11.32177	0.0	-11.25624
a3	0.0	-9.265300	0.0	-3.687460
a4	0.0	3.559158	0.0	0.7607396
a5	0.0	-0.5154761	0.0	-0.5154761
a6	-1.5	-2/3	-1.5	-2/3

[1] T. Lee, D. A. Papanastassiou, and G. J. Wasserburg, Aluminum-26 in the early solar system: fossil or fuel?, Astrophys. J. Lett. 211, L107 (1977).
[2] J. H. Reynolds, Determination of the Age of the Elements, Phys. Rev. Lett. 4, 8 (1960).
[3] N. Dauphas and M. Chaussidon, A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk, Annu. Rev. of Earth and Planet. Sci. 39, 351 (2011).
[4] M. Lugaro, U. Ott, and Á. Kereszturi, Radioactive nuclei from cosmochronology to habitability, Prog. Part. Nucl. Phys. 102, 1 (2018).
[5] C. Zucker, A. A. Goodman, J. Alves, S. Bialy, M. Foley, J. S. Speagle, J. Großschedl, D. P. Finkbeiner, A. Burkert, D. Khimey, and C. Swiggum, Star formation near the Sun is driven by expansion of the Local Bubble, Nature 601, 334 (2022).
[6] J. C. Forbes, J. Alves, and D. N. C. Lin, A Solar System formation analogue in the Ophiuchus star-forming complex, Nature Astronomy 5, 1009 (2021).
[7] M. G. H. Krause, A. Burkert, R. Diehl, K. Fierlinger, B. Gaczkowski, D. Kroeckl, J. Ngoumou, V. Roccatagliata, T. Siegert, and T. Preibisch, Surround and Squash: the impact of superbubbles on the interstellar medium in Scorpius-Centaurus OB2, Astron. Astrophys. 619, A120 (2018).
[8] A. Cameron and J. Truran, The supernova trigger for formation of the solar system, Icarus 30, 447 (1977).
[9] J. Chmeleff, F. von Blanckenburg, K. Kossert, and D. Jakob, Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting, Nuclear Instruments and Methods in Physics Research B 288, 192 (2010).
[10] K. Fukuda, H. Hiyagon, W. Fujiya, N. Takahata, T. Kagoshima, and Y. Sano, Origin of the Short-lived Radionuclide 10Be and Its Implications for the Astronomical Setting of CAI Formation in the Solar Protoplanetary Disk, Astrophys. J. 886, 34 (2019).
[11] V. Tatischeff, J. Duprat, and N. de Sévéville, Light-element Nucleosynthesis in a Molecular Cloud Interacting with a Supernova Remnant and the Origin of Beryllium-10 in the Protosolar Nebula, Astrophys. J. 796, 124 (2014).
[12] J. Duprat and V. Tatischeff, Energetic Constraints on In Situ Production of Short-Lived Radionuclides in the Early Solar System, Astrophys. J. Lett. 671, L69 (2007).
[13] S. J. Desch, J. Connolly, Harold C., and G. Srinivasan, An Interstellar Origin for the Beryllium-10 in Calcium-rich, Aluminum-rich Inclusions, Astrophys. J. 602, 528 (2004).
[14] T. Lee, F. H. Shu, H. Shang, A. E. Glassgold, and K. E. Rehm, Protostellar Cosmic Rays and Extinct Radioactivities in Meteorites, Astrophys. J. 506, 898 (1998).
[15] S. E. Woosley, D. H. Hartmann, R. D. Hoffman, and W. C. Haxton, The ν-process, Astrophys. J. 356, 272 (1990).
[16] K. G. Balasi, K. Langanke, and G. Martínez-Pinedo, Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis, Progress in Particle and Nuclear Physics 85, 33 (2015).
[17] P. Banerjee, Y.-Z. Qian, A. Heger, and W. C. Haxton, Evidence from stable isotopes and 10Be for solar system formation triggered by a low-mass supernova, Nature Commun. 7, 13639 (2016).
[18] H. Tang and N. Dauphas, Low 56Fe Abundance in Semarkona and Sahara 99555, Astrophys. J. 802, 22 (2015).
[19] H. Tang and N. Dauphas, Abundance, distribution, and origin of 56Fe in the solar protoplanetary disk, Earth and Planet. Sci. Lett. 359, 248 (2012).
[20] R. H. Cyburt, A. M. Anthon, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, The JINA REACLIB Database: Its Recent Updates and Impact on Type-I X-ray Bursts, Astrophys. J. Suppl. Ser. 189, 120 (2010).
[21] https://reaclib.jinaweb.org/index.php.
[22] R. V. Wagoner, Synthesis of the Elements Within Objects Exploding from Very High Temperatures, Astrophys. J. Suppl. Ser. 18, 247 (1969).
[23] A. Sieverding, B. Müller, and Y. Z. Qian, Nucleosynthesis of an 11.8 M☉ Supernova with 3D Simulation of the Inner Ejecta: Overall Yields and Implications for Short-lived Radionuclides in the Early Solar System, Astrophys. J. 904, 163 (2020).
[24] A. Sieverding, G. Martínez-Pinedo, L. Huther, K. Langanke, and A. Heger, The ν-Process in the Light of an Improved Understanding of Supernova Neutrino Spectra, Astrophys. J. 865, 143 (2018).
