STATIONARY ELECTROCHEMICAL MACHINING SIMULATION APPLYING TO PRECISION TECHNOLOGIES

V.P. Zhitnikov, N.M. Sherykhalina, S.S. Porechny
Ufa State Aviation Technical University, Ufa, Russian Federation
E-mail: zhitnik@mail.ru, n_she@mail.ru, porechny@mail.ru

The modification of statement of electrochemical formation problem is offered for mathematical modelling of the precision technologies. As an example the process of cutting with a plate electrode-tool is considered. For the description of the technologies with high localization of the processes a stepwise function of current efficiency is used. It realizes for simulation of the anode dissolution process in passivating electrolytes under short impulse current. This function determines the movement rate of the anode boundary in the areas of an active electrochemical dissolution and also it defines the boundaries of the areas where dissolution is absent. The stationary and limiting-stationary machining problems are formulated and solved on the base of the offered model. The limiting model describes the maximum localization process. The stationary problem is characterized by the presence of anode surface part, on which the current density is equal to a critical value. Investigations in the whole range of ratio of the maximal and critical values of electrical field strength on the anode surface are carried out.

Keywords: electrochemical shaping; stepwise function; process localization; stationary model.

Introduction

The electrochemical machining (ECM) is widely applied in different industry fields, so, the investigation of electrochemical shaping is the problem of great interest [1–4]. For the purpose of machining precision increase the different technologies are used, which enlarge the dissolution localization. Passivating electrolytes and pulse ECM with vibrating electrode-instrument (ET) have been applied for this during the recent years. The using of short current impulses can also promote localization increase [5–7]. This requires the development of new mathematical models and solution of new problems statement.

1. Localization Characteristic

For localization analysis of electrochemical machining the simulation problem of the processes taking place in special inter-electrode space (IES) is considered. IES consists of two parts [8] with different magnitude of inter-electrode gap S and S_1 (Fig. 1).

![Fig. 1. Interelectrode space scheme](image-url)
Every part represents a space filled with electrolyte. The voltage pulse of rectangular form is given on the electrodes, and electrochemical dissolution of anode material takes place.

The ECM simulation is based on the Faraday’s law, according to which the rate of electrochemical dissolution V_{ecm} of machining surface (the anode) is equal to [9]

$$V_{ecm} = k\eta j^2, \quad k = \kappa \varepsilon / \rho,$$

where ε is an electrochemical equivalent, ρ is a density of dissolved metal, j is a current density on the anode boundary, κ is an electrolyte conductivity, $\eta = \eta(j)$ is a current efficiency (a part of current participating in the metal dissolution reaction).

The dependence of dissolution rate on current density (1) is also valid for the impulse ECM, but the proportionality coefficient k is decreased by a factor of Q, where Q is an impulse porosity.

It is important that the greater the relative velocities difference $|V_{ecm}|/V_{ecm}$ is at the different areas of IES, higher localization of the process takes place and the ET form is copied more accurately. Different factors as gas secretion on the electrodes surfaces, heating and impurity of electrolyte, electrode potentials variation and so on, affect the localization process.

Consider an ideal process when the anode and cathode potentials and η are constant magnitudes and gas secretion is absent. In this case

$$L_1 = \frac{1}{V_{ecm}} \frac{dV_{ecm}}{dS} = -\frac{1}{S}. \quad (2)$$

And now we consider the case when the electrode potentials and current efficiency are the functions of current density j. Then the current density is defined by the implicit function

$$j = \frac{\kappa U - \varphi(j)}{S}, \quad \frac{dj}{dS} = -\frac{j}{S} \left(1 + \frac{\kappa}{S} \frac{d\varphi}{dj}\right)^{-1},$$

where $\varphi(j)$ is an overall electrodes potential, S is an inter-electrode gap, U is a voltage. In this case we find the relation similar to (2)

$$L_2 = \frac{1}{V_{ecm}} \frac{dV_{ecm}}{dS} = -\frac{1}{S} \left(1 + \frac{j}{\eta} \frac{d\eta}{dj}\right) \left(1 + \frac{\kappa}{S} \frac{d\varphi}{dj}\right)^{-1}. \quad (3)$$

It is convenient to use the ratio of (3) to (2) as a dimensionless parameter characterizing localization [8]

$$k_{loc} = \frac{L_2}{L_1} = \left(1 + \frac{j}{\eta} \frac{d\eta}{dj}\right) \left(1 + \frac{\kappa}{S} \frac{d\varphi}{dj}\right)^{-1}. \quad (4)$$

It follows from (4) that the value $k_{loc} < 1$ for $\eta = \text{const}$, $d\varphi/dj > 0$, i.e. this process has smaller value of the localization coefficient than the ideal one. It means, that the rates difference of dissolution for such a process is smaller than for the ideal one. It requires the greater allowance for a prescribed copying accuracy. On the other hand, the value $k_{loc} > 1$ for $d\eta/dj > 0$, $\varphi = \text{const}$. Therefore, the real dependences of the current efficiency and electrode potentials have an antipodal influence the localization coefficient.
The physical-chemical effects appear for commensurability of impulses duration with characteristic duration of capacity charges of the double electric layers of the electrodes surfaces and activation period. It has important premises for the copying accuracy increase. The dependences of the anode potentials on current density for the different impulse duration are shown in Fig. 2.

![Graph showing current efficiency](image)

Fig. 2. Experimental dependences of the anode potential of chrome steel on current density under normal conditions in 8% water solution of NaNO₃ are for different impulse duration: 1 - 1 μs, 2 - 5 μs, 3 - 10 μs, 4 - 50 μs

The current efficiency is defined by following

$$\eta(j, \varphi_a) = \begin{cases}
0, & \varphi_a < \varphi_{cr}, \\
\eta(j), & \varphi_a \geq \varphi_{cr}.
\end{cases} \quad (5)$$

The dissolution begins when the potential reaches some threshold value φ_{cr}, and the time that necessary for it depends on the local current density. So, dissolution begins later for a little current density that leads to the increase of the localization process.

2. **Current Efficiency Approximation and Main Assumptions**

On the investigation ECM process the scheme of copying of hemispherical ET surface onto a plane billet surface is under consideration [8]. The scheme contains the most complex aspects of operations of electrochemical copying and it assumes the existence of convenient analytical solution. The ration of the value h/d (h is the hole depth, d is its width) to h_i/d_i for the ideal sphere segment is used as the parameter characterizing copying accuracy. One can see from Fig. 3 that there is optimal impulses duration for which the localization of the dissolution process is maximal.

The charge quantity is the same at the very experiment of spherical surface copying. The activating electrolyte (5% solution NaCl) is applied for the decrease of the current efficiency influence. The profiles and the appearance (enlarged by a factor of 25) of surfaces machined by the hemispherical ET are presented in Fig. 4.

The current efficiency dependence on current density $\eta(j)$ is used for ECM simulation for consideration of various factors, influencing on the dissolution process and directly (as follows from (4)) determines the localization coefficient of the process. Thus, the steeper this dependence in working zone is, the higher the localization coefficient becomes. Now, we do not know a reliable method of theoretical determination of $\eta(j)$ function. Thus, the experimental method of such dependences determination is appearing to be the most available (Fig. 5).
Fig. 3. Dependence of the copying accuracy on the current impulse duration

Fig. 4. Profiles and appearance of machined surfaces for different impulses duration t_{imp}

Fig. 5. Experimental dependences of the current efficiency on the current density obtained: a – from [10], b – from [11]

Previously, this dependence was approximated by a hyperbola [12], a quadratic-fractional function [13] or a piecewise linear function [14].

As it is shown above, at impulse duration about several microseconds in the beginning of the impulse the potential relaxation takes place and at this moment the dissolution of metal does not proceed. The experiment shows that in such machining method the regions of intensive and weak dissolution have more sharp borders.

In connection with it the dependence of current efficiency on the current density is modelled in [15] by the stepwise function
\[\eta(j) = \begin{cases}
\eta_0, & j > j_1, \\
\forall \eta \in [0, \eta_0], & j = j_1, \\
0, & j < j_1.
\end{cases} \tag{6} \]

The similar model was used in [16].

Note, that that model (6) does not contradict the experimental data (Fig. 5), because the real dependence on passivating electrolytes contains the region of sharp change of current while the current density approaches to some threshold value \(j_1 \).

The most localization can be achieved if machining is realized for the current density closed to \(j_1 \) but exceeding this value, as it follows from (4).

In this case, the steepness of the dependence of current efficiency on current density according to (4) has more influence on the localization coefficient than the dependence on potential magnitude. Moreover, the determination of real dependences on electrode potentials represents a complex problem both theoretically and practically. In this connection the models with equipotential electrodes but taking into account dependence (6) are under consideration. These models describe the processes that have nearly maximum localization.

Let us assume that the impulses are rather short and there is no essential electrolyte heating and gas filling. In this case, the electrolyte is a uniform in space and time and methods of the theory of functions of a complex variable can be applied for the analysis process.

3. ECM Stationary Model

Consider as an example the stationary shaping problem of the machining surface under cutting with a plate ET moving vertically downwards with a constant velocity \(V_{et} \). It is supposed, that the machining surface \(ADB \) acquires the stationary form. The cross-cut of IES is shown in Fig. 6 a. The ET is presented as the cut \(A'CB' \). It is necessary to find the vector field of strength in IES and the shape of machining surface \(AFDGB \).

![Diagram of IES domain](image)

Fig. 6. The shape of IES domain: a – physical plane; b – complex potential plane; c – strength hodograph plane

Let \(Z = X + iY \). Consider a complex potential \(W = \Phi + i\Psi \) (\(\Phi \) is a potential of electrical field, \(\Psi \) is a stream function). The electric field strength is determined by the derivative...
and the current density \(j = \kappa E \) according to the Ohm’s law. Thus, the problem is reduced to the definition of the conform mapping of the IES domain of the physical plane onto domain of the plane \(W \).

The potential \(\Phi \) is considered to be constant on the boundary corresponding to ET and machining surface (\(\Phi = -U \) on ET, \(\Phi = 0 \) on machining surface). The stream function \(\Psi \) has a constant values on every streamline. That is why the domain corresponding to the IES on the complex potential plane is a vertical band (Fig. 6 b). As far as the machining surface is equipotential, the strength vector is a normal to the electrode surface at its every point.

The dependence of current efficiency on the strength is modeled by the stepwise function (6).

We consider only the right part of IES by virtue of its symmetry (Fig. 6 c). In this case the two domain are formed different types of boundary conditions on the machining surface. The first domain \(FDG \), in which the strength exceeds \(E_1 = j_1 / \kappa \) because of proximity to ET, is characterized by the stationary condition [9] (by the equality of dissolution velocity \(V_{ecm} \) and projection of the velocity \(V_{et} \) on the normal to the machining surface) \(|E| = -E_0 \sin \theta \), where \(\theta \) is an angle of inclination of the strength vector to \(X \)-axis, \(E_0 \) is the strength module at the point \(D \). On the plane of strength hodograph \(\bar{E} = dW / dZ = |E| e^{-i\theta} \) a circle arc with the radius \(E_0 / 2 \) and the center at the point \(iE_0 / 2 \) corresponds to this section (Fig. 6 c). The magnitude \(E_0 \) is determined from equality of the dissolution velocity condition to the ET movement velocity at the point \(\theta = V_{et} / (k\gamma_0) \).

The second domain \(GB \) and the symmetrical domain \(AF \) are characterized by the constant strength modulo \(|\bar{E}| = E_1 \). The circle arc of the radius \(E_1 \leq E_0 \) with the center at the origin of coordinate corresponds to this part on the plane \(\bar{E} \).

On the boundary section \(BC \) corresponding to the ET surface the strength vector has an angle of inclination to the \(X \)-axis \(\theta = 0 \). The strength is infinite at the point \(C \). Then a horizontal ray corresponds to this section on the hodograph plane. On the stream line \(CD \) \(\theta = -\pi / 2 \). The vertical ray corresponds to it on the \(\bar{E} \) plane.

Let us introduce the parametric planes \(t_1 = E_0 / \bar{E} \) and \(\zeta \) (the semi-ring). Their domains are shown in Fig. 7 a, b.

The function \(t_1 (\zeta) \) is presented as a sum of the known function with given singularities, taking into account the solution properties, and the Laurent series

\[
t_1 = -\frac{1}{\pi} \ln \zeta + \sum_{m=1}^{\infty} d_m \left(\zeta^m - \zeta^{-m} \right).
\]

We find \(W (\zeta) \) as

\[
W = W_0 + i \sum_{m=1}^{\infty} c_m \left(\zeta^m - \zeta^{-m} \right), \quad W_0 = \frac{2iU}{\pi} \ln \left[\frac{p \zeta - 1}{\zeta - p} \left(-i \sqrt{\zeta} \right) \right],
\]

where \(W_0 (\zeta) \) is the function mapping the semicircle of the plane \(\zeta \) onto the half-band of the plane \(W \). For \(\zeta = pe^{i\sigma} \)

\[
W_0 = \frac{2iU}{\pi} \left[\ln \left(1 - p^2 e^{i\sigma} \right) - \ln \left(2\sqrt{p} \sin \frac{\sigma}{2} \right) \right].
\]
Setting the imaginary part of (8) for $\zeta = pe^{i\sigma}$ equal to 0 and expanding $\ln(1 - p^2 e^{i\sigma})$ into Taylor series, we obtain

$$c_m = \frac{2U}{\pi} \frac{1}{m} \frac{p^{2m}}{p^m + p^{-m}}.$$

Thus

$$W = \frac{2iU}{\pi} \left[\ln(1 - p\zeta + i\sqrt{\zeta}) + \sum_{m=1}^{\infty} \frac{1}{m} \frac{p^{2m}}{p^m + p^{-m}} (\zeta^m - \zeta^{-m}) \right].$$

Let us find the derivatives $dW/d\zeta$ and dZ/dW

$$\frac{dW}{d\zeta} = \frac{2iU}{\pi} \left(\frac{-p}{1 - p\zeta} + \frac{1}{2\zeta} - \frac{1}{\zeta - p} + \frac{1}{\zeta} \sum_{m=1}^{\infty} \frac{p^{2m}}{p^m + p^{-m}} (\zeta^m + \zeta^{-m}) \right), \quad \frac{dZ}{dW} = \frac{1}{E} = \frac{t_1}{E_0}.$$

Then

$$Z(\zeta) = \int_{1}^{\zeta} \frac{t_1}{E_0} \frac{dW}{d\zeta} d\zeta = \frac{1}{E_0} \int_{1}^{\zeta} \left[-\frac{1}{\pi} \ln \zeta + \sum_{m=1}^{\infty} d_m (\zeta^m - \zeta^{-m}) \right] dW(\zeta) d\zeta. \quad (9)$$

The problem is reduced to the definition of the Laurent series coefficients d_m (7) by the collocation method from the condition $|t_1(p e^{i\sigma})| = \alpha = E_0/E_1$ for $0 \leq \sigma \leq \pi$ and numerical integration by formula (9) for calculation of machining surface shape. The points $\sigma_m = \pi m/(2n)$ are chosen for this purpose and the system of nonlinear equations $|t_1(p e^{i\sigma_m})| = \alpha$, $m = 1, \ldots, n$ is formed and solved by the Newton’s method with step regulation.

4. Numerical Results

The stationary surface shapes are presented in Fig. 8 a, where curves 0 – 6 correspond to $\alpha = 1, 0, 1, 1, 1, 3, 1, 5, 2, 3, \infty$. The scale unit is the magnitude $S = U/E_0$. The dependence of the V-shaped edge s_f on $1/\alpha = E_1/E_0$ is shown in Fig. 8 b. Note, that the relation of the magnitude of lateral gap to the scale unit is equal to $s_l = S_l/S = \alpha$.

The value of the V-shaped edge $s_f = 0.49826686$ for $\alpha = 2$ is obtained with high accuracy (about 8 decimal digits) for the comparison with solution results of other model problems.
Fig. 8. The solution results: a – the machining surface shapes; b – the dependence of the front gap on the ratio $1/\alpha$

For $\alpha \to \infty$ the whole machining surface is the stationary formation domain. In this case the solution is written as [9]

$$Z = -\frac{i}{E_0} \frac{(W + U)^2}{2U}.$$

The lateral gap is equal to $s_f = 1/2$.

For $\alpha \to 1$, on the contrary, the domain of the limiting formation $|\vec{E}| = E_1$ occupies the whole machining surface and the limiting stationary solution is formed. It is given by [9]

$$Z = i \frac{4U}{\pi E_1} \ln \cos \frac{\pi}{4U} (W + U), \quad s_f = \frac{2}{\pi} \ln 2 \approx 0, 4413.$$

Note, that limiting stationary mode differs from the ordinary limiting one as far as for stationary mode the IES shape is reserved at the coordinate system connected with moving ET.

Conclusion

The offered model of ECM with the stepwise function of current efficiency allows to shape the investigation for the highest localization of the dissolution process. The problems of stationary and limit-stationary ECM are formulated and solved for this purpose. The investigations show that the groove width which is formed as a result of cutting with the plate electrode tool significantly depends on ratio of maximum and critical values of electrical field strength on the anode surface. It is important for technology development of the precision electrochemical machining.

Acknowledgements. This work was financially supported by the Russian Foundation for Basic Research (Project code 17-07-00356).
References
1. McGough J.A. *Principles of Electrochemical Machining*. London, Chapman and Hall Ltd., 1974.
2. Davydov A.D., Kozak E. *Vysokoskorostnoe jelektrohimicheskoie formoobrazovanie* [High Speed Electrochemical Shaping]. Moscow, Nauka, 1990.
3. Datta M., Landolt D. Fundamental Aspects and Applications of Electrochemical Microfabrication. *Electrochimica Acta*, 2000, vol. 45, pp. 2535-2558. DOI: 10.1016/S0013-4686(00)00350-9
4. Rajurkar K.P., Sundaram M.M., Malshe A.P. Review of Electrochemical and Electrodischarge Machining. *Procedia CIRP*, 2013, vol. 6, pp. 13-26. DOI: 10.1016/j.procir.2013.03.002
5. Kenney J.A., Hwang G.S. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution. *Nanotechnology*, 2005, vol. 16, no. 7, pp. 309-313. DOI: 10.1088/0957-4484/16/7/001
6. Rajurkar K.P., Levy G., Malshe A., Sundaram M.M., McGough J., Hu X., Resnick R., DeSilva A. Micro and Nano Machining by Electro-Physical and Chemical Processes. *CIRP Annals – Manufacturing Technology*, 2006, vol. 55, pp. 643-666. DOI: 10.1016/j.cirp.2006.10.002
7. Forster R., Schoth A., Menz W. Micro-ECM for Production of Microsystems with a High Aspect Ratio. *Microsystem Technologies*, 2005, vol. 11, pp. 246-249. DOI: 10.1007/s00542-004-0374-7
8. Idrisov T.R., Zaitsev A.N., Zhitnikov V.P. Estimation of the Process Localization at the Electrochemical Machining by Microsecond Pulses of Bipolar Current. *Journal of Materials Processing Technology*, 2004, vol. 149, pp. 479-485. DOI: 10.1016/j.jmatprot.2003.10.049
9. Klokov V.V. *Jelektrohimicheskie formoobrazovanie* [Electrochemical Shaping]. Kazan, Kazan State University, 1984.
10. Sedykin F.V., Orlov B.P., Matasov V.F. [Investigation of the Anode Current Efficiency at Electrochemical Machining Using Steady and Pulse Voltage]. *Tekhnologija mashinostroenija* [Engineering Technology], 1975, vol. 39, pp. 3-10. (in Russian)
11. Mannapov A.R., Zhitnikov V.P., Porechny S.S. Semi-Empirical Mathematical Model of the Nonstationary Process of Pulse Electrochemical Machining with Vibrating Electrode-Tool at Locally One-Dimensional Approximation. *Vestnik USATU (scientific journal of Ufa State Aviation Technical University)*, 2011, vol. 15, no. 3, pp. 60-66. (in Russian)
12. Kotlyar L.M., Minakutdinov N.M. Anode Shape Determination with Allowance for Electrolyte Properties in Problems of Dimensional Electrochemical Machining of Metals. *Journal of Applied Mechanics and Technical Physics*, 2003, vol. 44, pp. 450-454. DOI: 10.1023/A:1023405925874
13. Karimov A.H., Klokov V.V., Filatov E.I. *Metody rascheta jelektrohimicheskih formoobrazovaniy* [Methods of Electrochemical Machining Calculation]. Kazan, Kazan State University, 1990.
14. Volgin V.M., Lyubimov V.V., Gnudina I.V., Davydov A.D., Kabanova T.B. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode. *Procedia CIRP*, 2016, vol. 55, pp. 65-70. DOI: 10.1016/j.procir.2016.08.031
15. Zhitnikov V.P., Oshmarina E.M., Fedorova G.I. The Use of Discontinuous Functions for Modeling the Dissolution Process of Steady-State Electrochemical Shaping. *Russian Mathematics*, 2010, vol. 54, no. 10, pp. 67-70. DOI: 10.3103/S1066369X10100099
16. Kotlyar L.M., Minazeddinov N.M. Modeling of Electrochemical Machining with the Use of Curvilinear Electrode and a Stepwise Dependence of the Current Efficiency on the Current Density. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, pp. 127–135. DOI: 10.1134/S0021894416010144

Received April 10, 2017

УДК 51-74

ДОИ: 10.14529/mmp170402

МОДЕЛИРОВАНИЕ СТАЦИОНАРНОЙ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ПРИМЕНИТЕЛЬНО К ПРЕЦИЗИОННЫМ ТЕХНОЛОГИЯМ

В.П. Житников, Н.М. Шерыхалина, С.С. Поречный

Уфимский государственный авиационный технический университет, г. Уфа, Российская Федерация

Предложена модифицированная постановка задачи электролитического формообразования для математического моделирования предCISIONных технологических процессов. В качестве примера рассмотрен процесс резки пластинчатым электрод-инструментом. Для описания технологий с высокой локализацией процесса растворения используется ступенчатая функция выхода по току для моделирования анодного растворения в пассивирующих электролитах при коротких импульсах тока. Эта функция определяет скорость движения анодной границы в области активного электролитического растворения, а также границы зоны, где растворение отсутствует. С помощью этой модели сформулированы задачи стационарного и предельно-стационарного формообразования. Предельная модель описывает процесс с максимальной локализацией. Стационарная модель характеризуется наличием участка анодной границы, на котором плотность тока имеет критическое значение. Проведены исследования во всем диапазоне соотношений максимального и критического значений напряженности на поверхности анода.

Ключевые слова: ступенчатая функция; локализация процесса; стационарная модель.

Литература

1. McGeough, J.A. Principles of Electrochemical Machining / J.A. McGeough. – London: Chapman and Hall Ltd., 1974.
2. Давыдов, А.Д. Высокоскоростное электролитическое формообразование / А.Д. Давыдов, Е. Козак. – М.: Наука, 1990.
3. Datta, M. Fundamental Aspects and Applications of Electrochemical Microfabrication / M. Datta, D. Landolt. // Electrochimica Acta. – 2000. – V. 45. – P. 2535–2558.
4. Rajurkar, K.P. Review of Electrochemical and Electrodischarge Machining / K.P. Rajurkar, M.M. Sundaram, A.P. Malshe // Procedia CIRP. – 2013. – V. 6. – P. 13–26.
5. Kenney, J.A. Electrochemical Machining with Ultrashort Voltage Pulses: Modelling of Charging Dynamics and Feature Profile Evolution / J.A. Kenney, G.S. Hwang // Nanotechnology. – 2005. – V. 16, № 7. – P. 309–313.
6. Rajurkar, K.P. Micro and Nano Machining by Electro-Physical and Chemical Processes / K.P. Rajurkar, G. Levy, A. Malshe, M.M. Sundaram, J. McGeough, X. Hu, R. Resnick, A. DeSilva // CIRP Annals-Manufacturing Technology. – 2006. – V. 55, № 2. – P. 643–666.

7. Forster, R. Micro-ECM for Production of Microsystems with a High Aspect Ratio / R. Forster, A. Schoth, W. Menz // Microsystem Technologies. – 2005. – V. 11, № 4. – P. 246–249.

8. Idrisov, T.R. Estimation of the Process Localization at the Electrochemical Machining by Microsecond Pulses of Bipolar Current / T.R. Idrisov, A.N. Zaitsev, V.P. Zhitnikov // Journal of Materials Processing Technology. – 2004. – V. 149. – P. 479–485.

9. Клюков, В.В. Электрохимическое формообразование / В.В. Клюков. – Казань: Казанский государственный университет, 1984.

10. Седькин, Ф.В. Исследование анодного тока при электрохимической обработке при постоянном и импульсном напряжении / Ф.В. Седькин, Б.П. Орлов, В.Ф. Матасов // Технология машиностроения. – 1975. – Т. 39. – С. 3–10.

11. Маннапов, А.Р. Полуэмпирическая математическая модель стационарного процесса импульсной электрохимической обработки в вибрирующем электрод-инструменте в локально-одномомерном приближении / А.Р. Маннапов, В.П. Житников, С.С. Поречный // Вестник Уфимского государственного авиационного технического университета. – 2011. – Т. 15, № 3. – С. 60–66.

12. Котляр, Л.М. Определение формы анода с учетом свойств электролита в заданном электрохимическом размерной обработке металлов / Л.М. Котляр, Н.М. Миназетдинов // Прикладная механика и техническая физика. – 2003. – Т. 44, № 3. – С. 179–184.

13. Каримов, А.Х. Методы расчета электрохимического формообразования / А.Х. Каримов, В.В. Клюков, Е.И. Филатов. – Казань: Казанский государственный университет, 1990.

14. Volgin, V.M. Effect of Current Efficiency on Electrochemical Micromachining by Moving Electrode / V.M. Volgin, V.V. Lynibimov, I.V. Guindina, A.D. Davydov, T.V. Kabanova // Procedia CIRP. – 2016. – V. 55. – P. 65–70.

15. Житников, В.П. Исследование разрывных функций для моделирования растворения при стационарном электрохимическом формообразовании / В.П. Житников, Е.М. Ошмарина, Г.И. Федорова // Известия Вузов. Математика. – 2010. – № 10. – С. 77–81.

16. Котляр, Л.М. Моделирование электрохимического формообразования с использованием криволинейного электрода при ступенчатой зависимости выхода по току от его плотности / Л.М. Котляр, Н.М. Миназетдинов // Прикладная механика и техническая физика. – 2016. – Т. 44, № 1. – С. 146–155.

Владимир Павлович Житников, доктор физико-математических наук, профессор, кафедра «Вычислительная математика и кибернетика», Уфимский государственный авиационный технический университет (г. Уфа, Российская Федерация), zhitnik@mail.ru.

Наталья Михайловна Шерыхалина, доктор технических наук, доцент, кафедра «Вычислительная математика и кибернетика», Уфимский государственный авиационный технический университет (г. Уфа, Российская Федерация), n_sher@mail.ru.

Сергей Сергеевич Поречный, кандидат физико-математических наук, доцент, кафедра «Высокопроизводительные вычислительные технологии и системы», Уфимский государственный авиационный технический университет (г. Уфа, Российская Федерация), porechny@mail.ru.

Поступила в редакцию 10 апреля 2017 г.