Enhancing the interlayer adhesive force in twisted multilayer MoS$_2$ by thermal annealing treatment

Ke Jin, Dameng LIU and Yu Tian
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People’s Republic of China
E-mail: ldm@tsinghua.edu.cn

Received 13 May 2015, revised 6 August 2015
Accepted for publication 20 August 2015
Published 17 September 2015

Abstract
Few-layer MoS$_2$ has recently gained great attention owing to its remarkable mechanical and photoelectric properties, which are strongly influenced by the interactions and relative orientations between layers. Here, we report on Raman scattering measurements of twisted MoS$_2$ flakes prepared by exfoliation and nondestructive transfer. Thermal annealing treatment can effectively enhance the interlayer coupling of twisted MoS$_2$ and lead to a van der Waals (vdW) interaction between two stacked layers. We have roughly calculated the interlayer coupling force by a diatomic chain model (DCM) and found that the interlayer adhesive force increased by \sim20% compared with no-treatment samples. We additionally found that the non-Bernal stacking structure of MoS$_2$ induces a weakening in the interlayer coupling. This study could promote the development of novel semiconductors, optoelectronic devices, and superlubricity materials.

Keywords: molybdenum disulphide (MoS$_2$), twisted MoS$_2$, thermal annealing, interlayer coupling, Raman spectroscopy

(Some figures may appear in colour only in the online journal)

1. Introduction
With the fast progress of graphene research, the unique properties of other two-dimensional (2d) layered materials have also attracted considerable interest [1–4]. While graphene has outstanding mechanical [5–8] and electronic properties [9, 10], the lack of a bandgap limits its application in logic circuits and optoelectronics devices [11, 12]. As an alternative to graphene, molybdenum disulphide (MoS$_2$) is a semiconductor with an indirect bandgap of 1.2 eV in its bulk form [13] and transforms into a direct bandgap semiconductor with a strong photoluminescence (PL) when the thickness is reduced to a monolayer [14, 15]. Moreover, field effect transistors (FETs) made on monolayer MoS$_2$ present a large mobility up to 200 cm2 V$^{-1}$ s$^{-1}$ and a high current on/off ratio of 10^8 [16–18].

Not only does few-layer MoS$_2$ have attractive optical and electronic properties similar to monolayer MoS$_2$ [15], it also exhibits van der Waals (vdW) interactions at the interlayers [19]. The interlayer coupling and band structure of a few-layer 2d layered material can be modified by varying its microstructure including the relative twist angle and stacking order, which result in new mechanical and photoelectric behaviors [20–22]. As a prototypical layered material, twisted MoS$_2$ where the layers are rotated by a relative angle has received much attention in recent years. Castellanos-Gomez et al [23] folded MoS$_2$ layers with elastic substrates and found reduced interlayer coupling and enhanced photoluminescence emission yield in twisted MoS$_2$. Liu et al [24] grew MoS$_2$ bilayers with twist angles of $\theta = 0^\circ$, 15$^\circ$, 60$^\circ$ using chemical vapour deposition (CVD) and researched how the interlayer couplings evolved with the twist angle. Through tuning the coupling strength, we fabricate twisted MoS$_2$ materials, which have high optical absorption and superior optoelectronic
properties. In order to improve the contact and enhance the interlayer coupling, Zhou \textit{et al} [25] tapped the samples by atomic force microscopy (AFM) and Tongay \textit{et al} [26] conducted a vacuum thermal annealing process. In addition, the applications of the 2d layered material/MoS$_2$ vdW heterostructure in electronics and optoelectronics have also attracted immense research interest recently [27–29].

In this paper, we present a report on thermal-enhanced interlayer coupling of twisted MoS$_2$ flakes. Then, mechanical cleavage and atomically nondestructive transfer techniques are applied to prepare the non-Bernal-stacked MoS$_2$ samples which have fewer lattice defects than the CVD’s [30, 31]. Since the MoS$_2$ flakes were exposed to ambient oxygen, water vapor and other impurities during the transfer fabrication process, the removal of contaminants is necessary for making two pristine MoS$_2$ flakes contact with each other closely [32, 33]. We find that the thermal annealing can make a contribution to cleaning the residue between two layers and producing a strong interlayer van der Waals interaction. Raman scattering for samples of (1L+1L), (1L+2L), (1L+3L), (1L+4L) layers both before and after the thermal annealing at 260 °C are carried out. The shifts of characteristic peaks in Raman spectroscopy demonstrate that the thermal annealing treatment is an effective approach to enhance the interlayer coupling of twisted MoS$_2$. These results demonstrate that our techniques offer the possibility of fabricating twisted MoS$_2$ flakes with different layer numbers and stacking structures to modify their mechanical and photoelectric properties.

2. Experiment

We prepared ultrathin MoS$_2$ layers by using mechanical cleavage technique that was applied to fabricating graphene. Mono- and few-layer MoS$_2$ flakes were exfoliated from bulk MoS$_2$ crystals (SPI Supplies) with Scotch tape and then deposited onto the Si/SiO$_2$ substrates [34, 35]. The thickness of MoS$_2$ samples was firstly estimated through the different optical contrasts. Then, we relied on the Raman spectroscopy measurement to accurately determine the number of layers [36–38]. For NL-MoS$_2$ (N = 1–4), we could use the frequency difference $\Delta \omega (A_{1g} - E_{2g}) = 25.8 - 8.4/N$ to identify the layer number N [4].

After obtaining the pristine MoS$_2$ flakes from mono-layer (1L) to quadri-layer (4L), the atomically nondestructive transfer technique was employed to fabricate the twisted MoS$_2$ samples which were stacked following the non-Bernal stacking. A PMMA layer was first spin-coated on the pristine MoS$_2$ flake, then followed by soaking it in 14wt% KOH solution in order to dissolve the SiO$_2$ film and obtain the PMMA-supported MoS$_2$ sample. After that, the PMMA-supported MoS$_2$ was mechanically transferred onto another pristine MoS$_2$ flake followed by removing the PMMA layer [32, 39, 40]. Our fabrication technique could precisely control the relative position between two pristine MoS$_2$ flakes.

Figures 1(a) and (b) show a sketch of the twisted MoS$_2$ structure and figure 1(c) shows an optical micrograph of the twisted MoS$_2$ flake.

A Raman Jobin-Yvon HR800 system was applied for the Raman scattering measurement. The MoS$_2$ samples were excited with a solid-state laser operating at a wavelength of 532 nm and a spectral resolution of \sim0.6 cm$^{-1}$. To avoid laser-induced sample heating, we used a low laser power of \sim0.15 mW [41, 42]. The size of our samples was larger than 5 μm and all measurements were performed at room temperature and in an air ambient environment.

For the thermal annealing, the MoS$_2$ samples were placed into the quartz tube at the centre of a furnace, and annealed at 260 °C for 40 minutes in a nitrogen environment. Temperature ramp rate was kept at 10 °C min$^{-1}$. After the annealing treatment, the furnace was slowly cooled down to room temperature before the samples were taken out.

3. Results and discussion

Raman spectroscopy has been proven to be a powerful and nondestructive tool to determine the number of layers, as well as to characterize the structural and vibrational properties of atomically 2d layered materials, such as graphene and MoS$_2$ [37, 43]. As shown in figure 2(a), there are two characteristic Raman active modes at \sim386 cm$^{-1}$ (E$_{2g}^\pm$) and \sim403 cm$^{-1}$ (A$_{1g}$) in the Raman spectrum of monolayer MoS$_2$. The E$_{2g}^\pm$ mode corresponds to an in-plane optical vibration of Mo and S atoms, while the A$_{1g}$ mode corresponds to an out-of-plane optical vibration of the S atoms [38] (as shown in the inset in figure 2(a)). An increase in the number of layers results in the stiffening of the A$_{1g}$ mode, which is found to arise from stronger restoring forces on the S atoms caused by the increase of interlayer van der Waals interaction [37]. On the contrary, the E$_{2g}^\pm$ mode softens with increasing thickness due to long-range Coulomb interlayer forces or stacking-induced structural changes [44]. The frequency difference between the two modes exhibits a prominent dependence on the layer thickness which also relates to the interlayer interaction, so we can finally use the frequency difference to estimate the strength of interlayer coupling in MoS$_2$ flakes: the larger the difference, the stronger the coupling strength [23].

For the (1+n)L(n = 1, 2, 3, 4) twisted MoS$_2$ samples, which we denote as (1+n)L-MoS$_2$, the evolution of two Raman active modes is similar to the pristine MoS$_2$ flakes. That is, when n is increased from 1 to 4, the E$_{2g}^\pm$ mode shows a red shift of \sim1.5 cm$^{-1}$ while the A$_{1g}$ mode is blue shifted by \sim3 cm$^{-1}$. In addition, the frequency difference between E$_{2g}^\pm$ and A$_{1g}$ modes of (1+n)L-MoS$_2$ lies in between the one measured for 1L and nL pristine MoS$_2$. This means that the change emerges from the interlayer interaction after stacking two pristine MoS$_2$ layers by a rotational angle and the interlayer coupling results in distinctive lattice vibrational frequencies of non-Bernal-stacked MoS$_2$. Figure 2(b) displays the evolution of frequency difference between the two Raman
modes as a function of the number of layers. The disparity between the frequency difference of \((1+n)L\)-\(t\) and pristine \(MoS_2\) reduces as the layer number is increased. This indicates that the influence of varying stacking structure weakens with increasing sample thickness. Furthermore, the line widths of the \(A_{1g}\) Raman mode also show a similar trend with the layer number for pristine and twisted \(MoS_2\), as shown in figures 2(c) and (d). The \(A_{1g}\) mode line width of twisted \(MoS_2\) reaches the maximum at \((1+2)L\) and that of pristine \(MoS_2\) at \(2L\). This result may relate to the varying force constants induced by structural changes of the \(MoS_2\) material [44]. In contrast, the line widths of \(E_{2g}\) mode nearly remain constant both for pristine and twisted \(MoS_2\).

We detected two characteristic peaks in the Raman spectrum of \((1+n)L\)-\(t\)-\(MoS_2\) \((n = 1, 2, 3, 4)\), but their frequency difference was close to \(nL\) pristine \(MoS_2\), which demonstrated that the 1L and \(nL\) pristine \(MoS_2\) flakes were partially in contact with each other. This is because some contaminants, such as moisture or adsorbents, existed between the two pristine \(MoS_2\) flakes, leading to a weakening of the interlayer coupling. In order to remove the residue between twisted \(MoS_2\) layers and enhance the interlayer coupling, the samples were annealed in an nitrogen environment at 260 °C for 40 min [45, 46]. After that, we performed the same Raman spectroscopy measurement on the annealed \(MoS_2\) flakes. Figure 3(a) shows the frequency difference between \(E_{2g}\) and \(A_{1g}\) modes as a function of layer number. In comparison with figure 2(b), the frequency difference of \((1+n)L\)-\(t\) \(MoS_2\) clearly increases after annealing treatment. The shifts in Raman characteristic peaks indicate the enhancement of interlayer coupling and the significant vdW interaction between two stacked \(MoS_2\) layers. Moreover, for samples of the same thickness, the frequency difference of twisted \(MoS_2\) is less than the pristine \(MoS_2\). This demonstrates that the interlayer coupling of the non-Bernal-stacked \(MoS_2\) is weaker than the perfectly stacked \(MoS_2\). Figures 3(b) and (c) show the Raman modes’ line widths of annealed \(MoS_2\) samples. Unlike the room temperature samples, the \(A_{1g}\) mode line widths of twisted and pristine \(MoS_2\) show different tendencies with layer number after annealing. For the annealed twisted \(MoS_2\), the line widths of the \(A_{1g}\) mode decrease monotonically with the increasing sample thickness. This may imply that the residues are efficiently removed after thermal annealing and the two pristine \(MoS_2\) flakes interact with each other to produce a stronger interlayer coupling, thereby inducing the change of interlayer force constants.

Since a \(MoS_2\) layer consists of S and Mo – two types of atom – we employ a diatomic chain model (DCM) to roughly calculate the interlayer coupling force of \((1+n)L\)-\(t\)-\(MoS_2\) \((n = 1, 2, 3, 4)\) [47]. According to the lattice structure of pristine \(MoS_2\) layers, we can express its linear chain model as shown in figure 4(a). Then, the lattice vibrations of \(MoS_2\) are approximated to simple harmonic motions and described by the interaction force constants between two atoms. In order to simplify the calculation, we assume that only the nearest-neighbor interlayer has an interaction [48]. However, owing to the change of stacking order, the interlayer coupling
between the non-Bernal-stacked layers may not be the same as the pristine Bernal-stacked layers49. We denote t_a as the force constant per unit area between the two nearest S planes in two twisted interface layers and s_a as the force constant per unit area between the nearest S and Mo planes in two twisted sub-layers adjacent to the interface. The force constant per unit area between Bernal-stacked layers away from the interface is denoted as s_s and s_m respectively for S–S planes and S–Mo planes, which are determined by pristine MoS$_2$. In 1L-MoS$_2$, we measure the frequencies of E_{2g1} and A_{1g} modes ~ 402.8 cm$^{-1}$ and 385.8 cm$^{-1}$. Then, the dynamical matrix can be constructed and analytically solved to get s_s and s_m. Similarly, s_s and s_m are obtained by fitting a NL-MoS$_2$ dynamical matrix and numerically solving47. The force constant values of pristine MoS$_2$ are shown in table 1(a) and other calculation values are also given for comparison. The calculation results are in good agreement with other references43, 47, 50, 51. For twisted MoS$_2$, the interlayer force constants are illustrated in figure 4(b) taking (1+2)L for example and then the dynamical matrix can be constructed as follows,

\[
\begin{bmatrix}
\alpha_{ss} & \alpha_{sm} & m_s \omega_s^2 - \alpha_{sm} - \alpha_{st} & \alpha_{st} & m_s \omega^2 - \alpha_{st} - \alpha_t \\
\alpha_{sm} & m_{Mo} \omega^2 - \alpha_{sm} - \alpha_{st} & \alpha_{st} & m_s \omega^2 - \alpha_{st} - \alpha_t & \alpha_{t} \\
\alpha_{st} & m_{Mo} \omega^2 - \alpha_{st} - \alpha_{sm} & \alpha_{sm} & m_{Mo} \omega^2 - \alpha_{sm} - \alpha_{ss} & \alpha_{ss} \\
\alpha_{sl} & m_s \omega^2 - \alpha_{ss} - \alpha_{sm} & \alpha_{sm} & m_s \omega^2 - 2 \alpha_{sm} & \alpha_{s} \\
\alpha_{sl} & m_{Mo} \omega^2 - 2 \alpha_{sm} & \alpha_{sm} & m_{Mo} \omega^2 - \alpha_{sm} & \alpha_{m} \\
\end{bmatrix}
\]

\[m_s, (m_{Mo})\] is the atomic mass per unit area of S (Mo), $m_s = 0.6 \times 10^{-7}$ g cm$^{-2}$ and $m_{Mo} = 1.8 \times 10^{-7}$ g cm$^{-2}$. Based on the experimental E_{2g1} and A_{1g} modes frequencies.
of twisted MoS$_2$, we fit the interlayer force constants both parallel and perpendicular to the basal plane, which are summarized in table 1(b).

The interlayer force constants in the parallel direction determine the E_{2g}^{1} vibration mode corresponding to shear forces, while those in the perpendicular direction determine the A_{1g} vibration mode corresponding to adhesive force. As shown in table 1(b), the interlayer adhesive force has increased by $\sim 20\%$ after the thermal annealing treatment, indicating a thermal-enhanced interlayer coupling. These values also suggest that the shear force of the interface between the twisted layers is weaker than the Bernal-stacked layers. Moreover, compared to pristine MoS$_2$, the adhesive force between S–S planes in the twisted interface increases $\sim 9\%$ due to the modification of interlayer coupling, whereas there is almost no change in the adhesive force between S–Mo planes next to the interface.

4. Conclusion

In conclusion, MoS$_2$ structures with twisted layers were fabricated by mechanical exfoliation and atomically non-destructive transfer technique. We develop an approach for enhancing the interlayer coupling of twisted MoS$_2$ by the thermal annealing at elevated temperatures. We find that the thermal treatment can effectively promote the MoS$_2$ layers’ interface and enhance the interlayer coupling. The interlayer coupling forces of twisted MoS$_2$ are roughly calculated by a DCM model to verify the enhancement. The values show that the interlayer adhesive force increased by $\sim 20\%$ after annealing treatment, which is in good agreement with our predictions. We use Raman scattering measurements to study the evolution of E_{2g}^{1} and A_{1g} Raman active modes in twisted MoS$_2$ flakes. We observe an increase of frequency difference between the two Raman modes with increasing number of layers, the same as pristine MoS$_2$. However, for the equal layers, the frequency difference of twisted MoS$_2$ is less than the pristine MoS$_2$, indicating that the interlayer coupling
The results shown here open the door to the modification of the mechanical and photoelectric properties of MoS$_2$ materials by engineering the twisting angle and stacking structure between the MoS$_2$ layers. The study can be further utilized in developing optoelectronic devices and superlubricity materials.

Acknowledgments

The authors are grateful for financial support from the National Program on Key Basic Research Project (Grant No. 2011CB707603), the National Natural Science Foundation of China (Grant No. 51105222), and Beijing Research Program (Grant No. 100322002).

References

[1] Novoselov K S and Castro Neto A H 2012 Two-dimensional crystals-based heterostructures: materials with tailored properties Phys. Scr. T146 014006

[2] Xu M, Liang T, Shi M and Chen H 2013 Graphene-like two-dimensional materials Chem. Rev. 113 3766–98

[3] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Electronics and optoelectronics of two-dimensional transition metal dichalcogenides Nat. Nanotechnology 7 699–712

[4] Zhang X, Qiao X F, Shi W, Wu J B, Jiang D S and Tan P H 2015 Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material Chem. Soc. Rev. 44 2757–85

[5] Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene Science 321 385–8

[6] Gómez-Navarro C, Burghard M and Kern K 2008 Elastic Properties of Chemically Derived Single Graphene Sheets Nano Lett. 8 2045–9

[7] Klementz A, Pastewka L, Balakrishna S G, Caron A, Bennewitz R and Moseler M 2014 Atomic scale mechanisms of friction reduction and wear protection by graphene Nano Lett. 14 7145–52

[8] Gao Y and Hao P 2009 Mechanical properties of monolayer graphene under tensile and compressive loading Physica E 41 1561–6

[9] Avouris P 2010 Graphene: electronic and photonic properties and devices Nano Lett. 10 4285–94

[10] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Electronic transport in two-dimensional graphene Rev. Mod. Phys. 83 407–70

[11] Zhang W et al 2011 Opening an electrical band gap of bilayer graphene with molecular doping ACS Nano 5 7517–24

[12] Wang T H, Zhu Y F and Jiang Q 2013 Bandgap opening of bilayer graphene by dual doping from organic molecule and substrate J. Phys. Chem. C 117 12873–81

[13] Frey G L, Elani S, Homyonfer M, Feldman Y and Tenne R 1998 Optical-absorption spectra of inorganic fullerene-like MS$_2$(M=Mo, W) Phys. Rev. B 57 6666–71

[14] Splendiani A et al 2010 Emerging photoluminescence in monolayer MoS$_2$ Nano Lett. 10 1271–5
Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Atomically thin MoS2: a new direct-gap semiconductor Phys. Rev. Lett. 105 136805

Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Single-layer MoS2 transistors Nat. Nanotechnology 6 147–50

Newaz A K M et al 2013 Electrical control of optical properties of monolayer MoS2 Solid State Commun. 155 49–52

Chan M Y et al 2013 Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates Nanoscale 5 9572–6

Han S W et al 2011 Band-gap transition induced by interlayer van der Waals interaction in MoS2 Phys. Rev. B 84 045409

Brown L, Hovden R, Huang P, Wojcik M, Muller D A and Park J 2012 Twinning and twisting of Tri- and bilayer graphene Nano Lett. 12 1609–15

Cong C and Yu T 2014 Evolution of Raman G and G’ modes in folded graphene layers Phys. Rev. B 89 235430

Cong C and Yu T 2014 Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers Nat. Commun. 5 4709

Castellanos-Gomez A, van der Zant H S J and Steele G A 2014 Folded MoS2 layers with reduced interlayer coupling Nano Res. 7 572–8

Liu K et al 2014 Evolution of interlayer coupling in twisted molybdenum disulfide bilayers Nat. Commun. 5 4966

Zhou K-G, Withers F, Cao Y, Hu S, Yu G and Casiraghi C 2014 Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2D crystal-based heterostructures ACS Nano 8 9914–24

Tongay S et al 2014 Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers Nano Lett. 14 3185–90

Fang H et al 2014 Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides Proc. Natl. Acad. Sci. 111 6198–202

Deng Y et al 2014 Black phosphorus–monolayer MoS2 van der Waals heterojunction p–n diode ACS Nano 8 8292–9

Bertolazzi S, Krasnozhon D and Kis A 2013 Nonvolatile memory cells based on MoS2/graphene heterostructures ACS Nano 7 3246–52

Zhang Y et al 2014 Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrolytically applications ACS Nano 8 8617–24

Wang X, Feng H, Wu Y and Jiao L 2013 Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition J. Am. Chem. Soc. 135 5304–7

Chiu M H et al 2014 Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking ACS Nano 8 9649–56

Plechinger G, Schrettenbrunner F X, Eroms J, Weiss D, Schüller C and Korn T 2012 Low-temperature photoluminescence of oxide-covered single-layer MoS2 Phys. Status Solidi RRL 6 126–8

Novoselov K S et al 2005 Two-dimensional atomic crystals Proc. Natl Acad. Sci. USA 102 10451–3

Bonaccorso F, Lombardo A, Hasan T, Sun Z, Colombo L and Ferrari A C 2012 Production and processing of graphene and 2d crystals Mater. Today 15 564–89

Chakraborty B, Matte H S S R, Sood A K and Rao C N R 2013 Layer-dependent resonant Raman scattering of a few layer MoS2 J. Raman Spectrosc. 44 92–6

Li H et al 2012 From bulk to monolayer MoS2: evolution of Raman Scattering Adv. Funct. Mater. 22 1385–90

Plechinger G, Heydrich S, Eroms J, Weiss D, Schüller C and Korn T 2012 Raman spectroscopy of the interlayer shear mode in few-layer MoS2 flakes Appl. Phys. Lett. 101 101906

Lin Y C et al 2012 Wafer-scale MoS2 thin layers prepared by MoO3 sulfuration Nanoscale 4 6637–41

Zheng J, Najmaei S, Lin H and Lou J 2014 MoS2 atomic layers with artificial active edge sites as transparent counter electrodes for improved performance of dye-sensitized solar cells Nanoscale 6 5279–83

Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S and Steele G A 2012 Laser-thinning of MoS2: on demand generation of a single-layer semiconductor Nano Lett. 12 3187–92

Najmaei S, Liu Z, Ajayan P M and Lou J 2012 Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses Appl. Phys. Lett. 100 013106

Zeng H, Zhu B, Liu K, Fan J, Cui X and Zhang Q M 2012 Low-frequency Raman modes and electronic excitations in atomically thin MoS2 films Phys. Rev. B 86 241301(R)

Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S 2010 Anomalous lattice vibrations of single- and few-layer MoS2 ACS Nano 4 2695–700

Wu J et al 2013 Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air Small 9 3314–9

Zheng C, Johnson A, Hsu C L, Li L J and Shih C K 2014 Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending Nano Lett. 14 2443–7

Zheng X et al 2013 Raman spectroscopy of shear and layer breathing modes in multilayer MoS2 Phys. Rev. B 87 245413

Tan P H et al 2012 The shear mode of multilayer graphene Nat. Mater. 11 294–300

Wu J et al 2014 Resonant Raman spectroscopy of twisted multilayer graphene Nat. Commun. 5 5309

Zhao Y et al 2013 Interlayer breathing and shear modes in few- to multilayer MoS2 and WSe2 Nano Lett. 13 1007–15

Boukhicha M, Calandra M, Measson M-A, Lancellotti A and Shukla A 2013 Anharmonic phonons in few-layer MoS2: Raman spectroscopy of ultralow energy compression and shear modes Phys. Rev. B 87 195316