THE CLASSIFICATION OF QUASI-ALTERNATING MONTESINOS LINKS

AHMAD ISSA

ABSTRACT. In this note, we complete the classification of quasi-alternating Montesinos links. We show that the quasi-alternating Montesinos links are precisely those identified independently by Qazaqzeh-Chbili-Qublan and Champanerkar-Ordin. A consequence of our proof is that a Montesinos link L is quasi-alternating if and only if its double branched cover is an L-space, and bounds both a positive definite and a negative definite 4-manifold with vanishing first homology.

1. INTRODUCTION

Quasi-alternating links were defined by Ozsváth-Szabó [OS05, Definition 3.1] as a natural generalisation of the class of alternating links.

Definition 1. The set Q of quasi-alternating links is the smallest set of links satisfying the following:

- The unknot U belongs to Q.
- If L is a link with a diagram containing a crossing c such that
 1. both smoothings L_0 and L_1 of the link L at the crossing c, as in Figure 1, belong to Q,
 2. $\det(L_0), \det(L_1) \geq 1$, and
 3. $\det(L) = \det(L_0) + \det(L_1)$,
then L is in Q. The crossing c is called a quasi-alternating crossing.

![Figure 1. L and its two resolutions L_0 and L_1 in a neighbourhood of c.](image)

Ozsváth-Szabó showed that the class of non-split alternating links is contained in Q [OS05, Lemma 3.2]. Moreover, quasi-alternating links share a number of properties with alternating links; we list a few of these. For a quasi-alternating link L:

(i) L is homologically thin for both Khovanov homology and knot Floer homology [MO08].
(ii) The double branched cover $\Sigma(L)$ of L is an L-space [OS05, Proposition 3.3].
(iii) The 3-manifold $\Sigma(L)$ bounds a smooth negative definite 4-manifold W with $H_1(W) = 0$ [OS05, Proof of Lemma 3.6].
For some further properties see [LO15], [QC15], [Ter15] and [ORS13, Remark after Proposition 5.2].

Due to their recursive definition, it is difficult in general to determine whether or not a link is quasi-alternating. For example, there still remain examples of 12-crossing knots with unknown quasi-alternating status [Jab14]. Champanerkar-Kofman [CK09] showed that the quasi-alternating property is preserved by replacing a quasi-alternating crossing with an alternating rational tangle. They used this to determine an infinite family of quasi-alternating pretzel links, which Greene later showed is the complete set of quasi-alternating pretzel links [Gre10].

Qazaqzeh-Chbili-Qublan [QCQ15] and Champanerkar-Ording [CO15] independently generalised the sufficient conditions on pretzel links to obtain an infinite family of quasi-alternating Montesinos links. This family includes all examples of quasi-alternating Montesinos links found by Widmer [Wid09]. Furthermore, it was conjectured by Qazaqzeh-Chbili-Qublan that this family is the complete set of quasi-alternating Montesinos links. We mention that Watson [Wat11] gave an iterative surgical construction for constructing all quasi-alternating Montesinos links.

Some necessary conditions to be quasi-alternating in terms of the rational parameters of a Montesinos link were obtained in [QCQ15] and [CO15] based on the fact that a quasi-alternating link is homologically thin. Further conditions are described in [CO15] coming from the fact that the double branched cover of a quasi-alternating link is an L-space. Some additional restrictions were found in [QC15].

Our main result is the following theorem which states that the quasi-alternating Montesinos links are precisely those found by Qazaqzeh-Chbili-Qublan [QCQ15] and Champanerkar-Ording [CO15]:

Theorem 1. Let \(L = M(e; t_1, \ldots, t_p) \) be a Montesinos link in standard form, that is, where \(t_i = \frac{\alpha_i}{\beta_i} > 1 \) and \(\alpha_i, \beta_i > 0 \) are coprime for all \(i = 1, \ldots, p \). Then \(L \) is quasi-alternating if and only if

1. \(e < 1 \), or
2. \(e = 1 \) and \(\frac{\alpha_i}{\alpha_i - \beta_i} > \frac{\alpha_j}{\beta_j} \) for some \(i, j \) with \(i \neq j \), or
3. \(e > p - 1 \), or
4. \(e = p - 1 \) and \(\frac{\alpha_i}{\alpha_i - \beta_i} < \frac{\alpha_j}{\beta_j} \) for some \(i, j \) with \(i \neq j \).

As a corollary of our proof we obtain the following characterisation of the Montesinos links \(L \) which are quasi-alternating in terms of their double branched covers \(\Sigma(L) \):

Corollary 1. A Montesinos link \(L \) is quasi-alternating if and only if

1. \(\Sigma(L) \) is an L-space, and
2. there exist a smooth negative definite 4-manifold \(W_1 \) and a smooth positive definite 4-manifold \(W_2 \) with \(\partial W_i = \Sigma(L) \) and \(H_1(W_i) = 0 \) for \(i = 1, 2 \).

Note that in Corollary 1 and throughout, we assume all homology groups have \(\mathbb{Z} \) coefficients.

In light of this corollary, Theorem 1 can also be seen as a classification of the L-space Seifert fibered spaces over \(S^2 \) which bound both positive and negative definite 4-manifolds with vanishing first homology. To what extent Corollary 1 generalises to non-Montesinos links remains an interesting question.
This work also gives a classification of the Seifert fibered space formal L-spaces. The notion of a formal L-space was defined by Greene and Levine [GL16] as a 3-manifold analogue of quasi-alternating links. In fact, the double branched cover of a quasi-alternating link is an example of a formal L-space. In [LS17], Lidman and Sivek classified the quasi-alternating links of determinant at most 7. In fact, they show that the formal L-spaces M^3 with $|H_1(M)| \leq 7$ are precisely the double branched covers of quasi-alternating links with determinant at most 7. In this same direction, as a consequence of Corollary 1, we have the following.

Corollary 2. A Seifert fibered space over S^2 is a formal L-space if and only if it is the double branched cover of a quasi-alternating link.

Corollary 1 also seems significant given the recent independent characterisations of alternating knots by Greene [Gre17] and Howie [How17]. A non-split link is alternating if and only if it bounds negative definite and positive definite spanning surfaces (which are the checkerboard surfaces). The double branched cover of B^4 over such a surface is a definite 4-manifold of the appropriate sign. Generalising this, a quasi-alternating link has the property that it bounds a pair of surfaces in B^4 with double branched covers a positive definite and a negative definite 4-manifold (these surfaces cannot be embedded in S^3 in general). Corollary 1 shows that among Montesinos links with double branched covers which are L-spaces, this property characterises those which are quasi-alternating.

Our approach to proving Theorem 1 follows that of Greene [Gre10] on the determination of quasi-alternating pretzel links. One of Greene’s main strategies is as follows. Suppose L is a quasi-alternating Montesinos link such that $\Sigma(L)$ is the oriented boundary of the standard negative definite plumbing X^4. Since the property of being quasi-alternating is closed under reflection, by property (iii) above, $-\Sigma(L) = \Sigma(\overline{L})$ bounds a negative definite 4-manifold W with $H_1(W) = 0$. By Donaldson’s theorem [Don87], the smooth closed negative definite 4-manifold $X \cup W$ has diagonalisable intersection form. Hence, $H_2(X)/\text{Tors} \hookrightarrow H_2(X \cup W)/\text{Tors}$ is an embedding of the intersection lattice of X into the standard negative diagonal lattice. Moreover, using that $H_1(W)$ is torsion free, it is shown that if A is a matrix representing the lattice embedding then A^T must be surjective.

When L is a pretzel link of a certain form, Greene analyses the possible embeddings of the intersection lattice of X into a negative diagonal lattice and shows that the aforementioned surjectivity condition cannot hold, and hence the link cannot be quasi-alternating. Our main contribution is to argue for more general Montesinos links L that there is no lattice embedding for which A^T is surjective. Key to our argument are some results on lattice embeddings by Lecuona-Lisca [LL11]. The condition we obtain combined with an obstruction based on $\Sigma(L)$ being an L-space leads to the precise necessary conditions to complete the determination of quasi-alternating Montesinos links.

2. Preliminaries

We briefly recall some material on Montesinos links and plumbings. See [CO15] or [BZH14] for further detail on Montesinos links, and [NR78] for more on plumbings. The Montesinos link $M(e; t_1, \ldots, t_p)$, where $t_i = \frac{\alpha_i}{\beta_i} \in \mathbb{Q}$ with $\alpha_i > 1$ and β_i coprime integers, and e is an integer, is given by the diagram in Figure 2. In the figure, each box labelled t_i represents the corresponding rational tangle. The 0 rational tangle is shown in Figure 3. Introducing an additional positive (resp. negative) half-twist to the bottom of an a/b rational tangle produces a rational tangle represented by $a/b + 1$ (resp. $a/b - 1$), see Figure 3. Rotating (in either direction) a rational tangle represented by $t \in \mathbb{Q} \cup \{1/0\}$
by 90 degrees produces the rational tangle represented by $-1/t$. The rational tangle represented by any $a/b \in \mathbb{Q} \cup \{1/0\}$ can be obtained from the 0 rational tangle by a sequence of these two operations. See [Cro04] for a more thorough treatment of rational links. Note however that an a/b rational tangle with our conventions corresponds to a b/a rational tangle in [Cro04].

We also note that with our conventions for a Montesinos link $M(e; t_1, \ldots, t_p)$, the integer e has opposite sign to that used by Champanerkar-Ording [CO15], and agrees with that of Qazaqzeh-Chbili-Qublan [QCQ15] and Greene [Gre10].

![Diagram](image1.png)

Figure 2. The Montesinos link $M(e; t_1, \ldots, t_p)$ where a box labelled t_i represents a rational tangle corresponding to t_i. The crossing type of the $|e|$ crossings depends on the sign of e, with the two possibilities shown on the left.

![Diagram](image2.png)

Figure 3. From left to right: the 0 rational tangle, an abstract representation of a a/b rational tangle, the $a/b + 1$ rational tangle, and the $-b/a$ rational tangle.

The Montesinos link $M(e; t_1, \ldots, t_p)$ is isotopic to $M(e + 1; t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_p)$ where $t'_i = \frac{\alpha_i}{\beta_i + \alpha_i}$, and is also isotopic to $M(e - 1; t_1, \ldots, t_{i-1}, t'_i, t_{i+1}, \ldots, t_p)$, where $t'_i = \frac{\alpha_i}{\beta_i - \alpha_i}$. Hence, a Montesinos link is isotopic to one in *standard form*, that is, of the form $M(e; t_1, \ldots, t_p)$ where $t_i > 1$ for all i.
Let \(L = M(e; t_1, \ldots, t_p) \) where \(t_i < -1 \) for all \(i \). Note that any Montesinos link can be put into this form. For each \(i \), there is a unique continued fraction expansion

\[
t_i = \lbrack a_i^1, \ldots, a_i^{h_i} \rbrack := a_1^i - \frac{1}{a_2^i - \frac{1}{\ddots - \frac{1}{a_{h_i}^i}}},
\]

where \(h_i \geq 1 \) and \(a_j^i \leq -2 \) for all \(j \in \{1, \ldots, h_i\} \).

![Figure 4. The weighted star-shaped plumbing graph \(\Gamma \).](image)

The double branched cover \(\Sigma(L) \) of \(L \) is the oriented boundary of the 4-dimensional plumbing \(X_\Gamma \) of \(D^2 \)-bundles over \(S^2 \) described by the weighted star-shaped graph \(\Gamma \) shown in Figure 4. We call \(\Gamma \) the standard star-shaped plumbing graph for \(L \). The \(i \)th leg of \(\Gamma \) corresponding to \(t_i \) is the linear subgraph generated by the vertices labelled with weights \(a_1^i, \ldots, a_{h_i}^i \). The degree \(p \) vertex labelled with weight \(e \) is called the central vertex. Denote the vertices of \(\Gamma \) by \(v_1, v_2, \ldots, v_k \). The zero-sections of the \(D^2 \)-bundles over \(S^2 \) corresponding to each of \(v_1, \ldots, v_k \) in the plumbing together form a natural spherical basis for \(H_2(X_\Gamma) \). With respect to this basis, the intersection form of \(X_\Gamma \) is given by the weighted adjacency matrix \(Q_\Gamma \) with entries \(Q_{ij} \), \(1 \leq i, j \leq k \) given by

\[
Q_{ij} = \begin{cases}
w(v_i), & \text{if } i = j \\
1, & \text{if } v_i \text{ and } v_j \text{ are connected by an edge} \\
0, & \text{otherwise}
\end{cases}
\]

where \(w(v_i) \) is the weight of vertex \(v_i \). We call \((\mathbb{Z}^k, Q_\Gamma)\) the intersection lattice of \(X_\Gamma \) (or of \(\Gamma \)).

3. Results

Equivalent sufficient conditions for a Montesinos link to be quasi-alternating were given in [CO15, Theorem 5.3] and [QCQ15, Theorem 3.5]. The goal of this section is to prove Theorem 1 which states that these sufficient conditions for a Montesinos link to be quasi-alternating are also necessary conditions.

Lemma 1. Let \(L = M(e; t_1, \ldots, t_p) \), \(p \geq 3 \), be a Montesinos link in standard form, i.e. where \(t_i = \frac{\alpha_i}{\beta_i} > 1 \) and \(\alpha_i, \beta_i > 0 \) are coprime for all \(i \). Suppose that \(e \leq p - 2 \) and
$e - \sum_{i=1}^{p} \frac{1}{t_i} > 0$ (in particular $e \geq 1$). Then $\Sigma(L)$ is not an L-space, and therefore L is not quasi-alternating.

Proof. The reflection of L is given by $\overline{L} = M(e'; t'_1, \ldots, t'_p) = M(-e; -t_1, \ldots, -t_p)$. The space $\Sigma(\overline{L})$ is the oriented boundary of a plumbing X_Γ corresponding to the standard star-shaped plumbing graph Γ for \overline{L}. Since $e' - \sum_{i=1}^{p} \frac{1}{t'_i} = - \left(e - \sum_{i=1}^{p} \frac{1}{t_i} \right) < 0$, by [NR78, Theorem 5.2], X_Γ has negative definite intersection form.

Since X_Γ is negative definite and Γ is almost-rational, by [Ném05, Theorem 6.3] we have that $\Sigma(\overline{L})$ is an L-space if and only if X_Γ is a rational surface singularity (more generally, see [Ném15]). Note that Γ is almost-rational since by sufficiently decreasing the weight of the central vertex we obtain a plumbing graph satisfying $-w(v) \geq \deg(v)$ for all vertices v, where $w(v)$ denotes the weight of v, and such a graph is rational (for details see [Ném05, Example 8.2(3)]).

Laufer’s algorithm [Lau72, Section 4] can be used to determine whether the negative definite plumbing X_Γ is a rational surface singularity as follows. Let v_1, \ldots, v_k be the vertices of Γ and for $i \in \{1, \ldots, k\}$, let $[\Sigma_{v_i}] \in H_2(X_\Gamma)$ be the spherical class naturally associated to v_i. The algorithm is as follows (see [Sti08, Section 3] for a similar formulation).

1. Let $K_0 = \sum_{i=1}^{k} [\Sigma_{v_i}] \in H_2(X_\Gamma)$.
2. In the ith step, consider the pairings $\langle PD[K_i], [\Sigma_{v_j}] \rangle$, for $j \in \{1, \ldots, k\}$. Note that these pairings may be evaluated using the adjacency matrix Q. If for some j the pairing is at least 2 then the algorithm stops and X_Γ is not a rational surface singularity. If for some j, the pairing is equal to 1, then set $K_{i+1} = K_i + [\Sigma_{v_j}]$ and go to the next step. Otherwise all pairings are non-positive, the algorithm stops and X_Γ is a rational surface singularity.

Applying Laufer’s algorithm to X_Γ, we claim that the algorithm terminates at the 0th step. To see this, note that for v the central vertex of Γ, $\langle PD[K_0], [\Sigma_v] \rangle = p - e$ (each vertex adjacent to v contributes 1, the central vertex contributes $-e$). By assumption $e \leq p - 2$, so $\langle PD[K_0], [\Sigma_v] \rangle = p - e \geq 2$. Hence, the algorithm terminates, we conclude that X_Γ is not a rational surface singularity and hence $\Sigma(\overline{L})$ is not an L-space. Therefore $\Sigma(L)$ is not an L-space. □

The following lemma will provide an obstruction to a Montesinos link being quasi-alternating.

Lemma 2 ([Gre10, Lemma 2.1]). Suppose that X and W are a pair of 4-manifolds, $\partial X = -\partial W = Y$ is a rational homology sphere, and $H_1(W)$ is torsion-free. Express the map $H_2(X)/\text{Tors} \to H_2(X \cup W)/\text{Tors}$ with respect to a pair of bases by the matrix A. This map is an inclusion, and A^T is surjective. In particular, if some k rows of A contain all the non-zero entries of some k of its columns, then the induced $k \times k$ minor has determinant ± 1.

The following two technical lemmas will be useful when we apply the obstruction to being quasi-alternating based on Lemma 2.

Lemma 3 ([LL11, Lemma 3.1]). Suppose $-1/r = [a_1, \ldots, a_n]$ and $-1/s = [b_1, \ldots, b_m]$ where $r + s = 1$. Consider a weighted linear graph Ψ having two connected components, Ψ_1 and Ψ_2, where Ψ_1 consists of n vertices v_1, \ldots, v_n with weights a_1, \ldots, a_n and Ψ_2 of m vertices w_1, \ldots, w_m with weights b_1, \ldots, b_m. Moreover, suppose that there is an embedding
of the lattice \((\mathbb{Z}^{n+m}, Q_\Psi)\) into \((\mathbb{Z}^k, -\text{Id})\), with basis \(e_1, \ldots, e_k\). For \(S\) a subset of vertices of \(\Psi\), define

\[U_S = \{ e_i | e_i \cdot v \neq 0 \text{ for some } v \in S \} . \]

Suppose further that \(e_1 \in U_{v_1} \cap U_{v_2}\) and \(U_\Psi = \{ e_1, \ldots, e_k \}\). Then \(U_{v_1} = U_{v_2}\) and \(k = n + m\).

Lemma 4 ([LL11, Lemma 3.2]). Let \(-1/r = [a_1, \ldots, a_n]\) and \(-1/s = [b_1, \ldots, b_m]\) be such that \(r + s \geq 1\). Then there exists \(n_0 \leq n\) and \(m_0 \leq m\) such that \(-1/r_0 = [a_1, \ldots, a_{n_0}]\) and \(-1/s_0 = [b_1, \ldots, b_{m_0}]\) satisfy \(r_0 + s_0 = 1\).

Theorem 1. Let \(L = M(e; t_1, \ldots, t_p)\) be a Montesinos link in standard form, that is, where the latter is written in standard form and \(1 \in \mathbb{Z}^n\). It may assume that both \(e\) and \(p\) are not quasi-alternating. If \(p \geq 2\), we need to prove that this implies that \(L\) is not quasi-alternating. Thus, assume none of the conditions are satisfied, in particular \(p \geq 2\).

By [Sav02, Section 1.2.3] (see also [CO15, Proposition 4.1]), we have that

\[\det(L) = |\alpha_1 \ldots \alpha_p (e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i})| . \]

If \(p = 2\), since none of the conditions are satisfied we must have \(e = 1\) and \(\frac{\alpha_i}{\alpha_i - \beta_i} = \frac{\alpha_i}{\beta_i}\). Hence, \(\det(L) = |\alpha_1 \alpha_2 (1 - \frac{\beta_1}{\alpha_1} - \frac{\beta_2}{\alpha_2})| = 0\), and so \(L\) is not quasi-alternating (in fact \(L\) must be the two component unlink). For the remainder of the argument we assume that \(p \geq 3\), and \(\det(L) \neq 0\), that is, \(e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i} \neq 0\).

First consider the case \(1 < e < p - 1\). The reflection of \(L\) is given by

\[\overline{L} = M \left(-e, -\frac{\alpha_1}{\beta_1}, \ldots, -\frac{\alpha_p}{\beta_p} \right) = M \left(p - e, \frac{\alpha_1}{\alpha_1 - \beta_1}, \ldots, \frac{\alpha_p}{\alpha_p - \beta_p} \right) , \]

where the latter is written in standard form and \(1 < p - e < p - 1\). Moreover, we see that a reflection reverses the sign of \(e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i}\), and thus by a reflection if necessary we may assume that \(e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i} > 0\). Then by Lemma 1, \(\Sigma(L)\) is not an L-space, so \(L\) is not quasi-alternating.

It remains to consider the cases \(e = 1\) and \(e = p - 1\). By a reflection if necessary we may assume that \(e = 1\). Note that conditions (2) and (4) are equivalent under a reflection. We assume that condition (2) is not satisfied. We need to prove that this implies that \(L\) is not quasi-alternating. If \(e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i} > 0\) then by Lemma 1, \(\Sigma(L)\) is not an L-space, and therefore \(L\) is not quasi-alternating.

Otherwise \(e - \sum_{i=1}^{p} \frac{\beta_i}{\alpha_i} < 0\). We have that

\[L = M \left(1; \frac{\alpha_1}{\beta_1}, \ldots, \frac{\alpha_p}{\beta_p} \right) = M \left(1 - p; \frac{\alpha_1}{\beta_1 - \alpha_1}, \ldots, \frac{\alpha_p}{\beta_p - \alpha_p} \right) , \]

where \(\frac{\alpha_i}{\beta_i - \alpha_i} < -1\) for all \(i\).
The double branched cover $\Sigma(L)$ of L is therefore the boundary of a plumbing 4-manifold X_Γ on the standard star-shaped planar graph Γ with central vertex of weight $-(p - 1)$ and legs corresponding to the fractions $\frac{\alpha_i}{\beta_i}$, $i \in \{1, \ldots, p\}$. Our assumption that $e - \sum_{i=1}^p \frac{\beta_i}{\alpha_i} < 0$ implies that X_Γ is negative definite [NR78, Theorem 5.2]. Suppose for the sake of contradiction that L is quasi-alternating. Then L is quasi-alternating and $-\Sigma(L) = \hat{\Sigma(L)}$ bounds a negative definite 4-manifold W with $H_1(W) = 0$ [OS05, Proof of Lemma 3.6]. By Donaldson’s theorem [Don87], the smooth closed negative definite 4-manifold $X_\Gamma \cup W$ has diagonalisable intersection form. Thus, the map $H_2(X_\Gamma)/\text{Tors} \rightarrow H_2(X_\Gamma \cup W)/\text{Tors}$ induced by the inclusion map is an embedding of the intersection lattice (\mathbb{Z}^k, Q_Γ) of X_Γ into the standard negative diagonal lattice $(\mathbb{Z}^n, -\text{Id})$ for some n. Denote by e_1, \ldots, e_n a basis for $(\mathbb{Z}^n, -\text{Id})$.

We use the lattice embedding to identify elements of (\mathbb{Z}^k, Q_Γ) with their image in $(\mathbb{Z}^n, -\text{Id})$. For convenience, we will not distinguish between a vertex of Γ and the vector it corresponds to in the lattice. The central vertex v of Γ has weight $-(p - 1)$, and so $v \cdot e_i \neq 0$ for at most $p - 1$ values of $i \in \{1, \ldots, n\}$. Thus, by applying an automorphism if necessary, we may assume that v pairs non-trivially with precisely e_1, \ldots, e_m where $m \leq p - 1$. Since there are p legs, by the pigeonhole principle there must exist some e_j, where $j \in \{1, \ldots, m\}$, and two distinct vertices v_1, v_2 adjacent to v with $v_1 \cdot e_j \neq 0$ and $v_2 \cdot e_j \neq 0$. Without loss of generality we assume that $j = 1$ and that for $i \in \{1, 2\}$, the vertex v_i belongs to the ith leg of Γ, i.e. corresponding to the fraction $\frac{\alpha_i}{\beta_i}$.

Since we are assuming condition (2) does not hold, we have that $\frac{\alpha_i}{\alpha_i - \beta_i} \leq \frac{\alpha_i}{\beta_i}$ for all i, j with $i \neq j$. In particular, we have $\frac{\alpha_1}{\alpha_1 - \beta_1} \leq \frac{\alpha_2}{\beta_2}$. Rearranging this gives $\frac{\alpha_1}{\alpha_1} + \frac{\beta_2}{\beta_2} \leq 1$. Note that the two legs correspond to the fractions $-1/r = -\frac{\alpha_1}{\alpha_1 - \beta_1} = [a_1^1, \ldots, a_1^{k_1}]$ and $-1/s := -\frac{\alpha_2}{\alpha_2 - \beta_2} = [a_2^1, \ldots, a_2^{k_2}]$, where $r, s \in \mathbb{Q}$, and where our notation is as in Section 2. Thus, we have that $r + s = 2 - \frac{\beta_1}{\alpha_1} - \frac{\beta_2}{\alpha_2} \geq 1$. Since $r + s \geq 1$, by Lemma 4 there exist $h'_1 \leq h_1$ and $h'_2 \leq h_2$ such that $-1/r_0 = [a_1^1, \ldots, a_1^{h_1'}]$ and $-1/s_0 = [a_2^1, \ldots, a_2^{h_2'}]$ with $r_0 + s_0 = 1$.

Let Ψ be the union of the linear graph containing the first h'_1 vertices of the first leg (where we count vertices in a leg starting away from the central vertex), and the linear graph containing the first h'_2 vertices of the second leg. By restricting our embedding of (\mathbb{Z}^k, Q_Γ), we have an embedding of the sublattice corresponding to Ψ into $(\mathbb{Z}^n, -\text{Id})$. The image of this embedding is contained in a sublattice $(\mathbb{Z}^d, -\text{Id})$ of $(\mathbb{Z}^n, -\text{Id})$ spanned by $\{e_i \in \mathbb{Z}^n \mid e_i \cdot v \neq 0 \text{ for some vertex } v \text{ of } \Psi\}$. Hence U_Ψ consists of d elements (see Lemma 3 for definition of U_Ψ). Let v_1, v_1 be the two vertices of Ψ adjacent to the central vertex in Γ. By our choice of the two legs of Γ which contain the vertices of Ψ, we know that $e_j \in U_{v_1} \cap U_{v_1}$ for some $j \in \{1, \ldots, n\}$. This shows that the hypothesis of Lemma 3 are satisfied, hence we conclude that $d = h'_1 + h'_2$.

Let A be the matrix representing the embedding (\mathbb{Z}^k, Q_Γ) into $(\mathbb{Z}^n, -\text{Id})$. Then the $h'_1 + h'_2$ columns of A corresponding to the vertices of Ψ are supported in $d = h'_1 + h'_2$ rows of A corresponding to the d-dimensional sublattice of $(\mathbb{Z}^n, -\text{Id})$. Denote this $d \times d$ minor by B. Then $-B^T B$ is a matrix for the intersection form of the plumbing corresponding to Ψ. Hence $-B^T B$ is a presentation matrix for $H_1(Y)$ where Y is the boundary of the (disconnected) plumbing corresponding to Ψ. The 3-manifold Y is the disjoint union of two lens spaces, each given by surgery on the unknot with framings $-1/r_0 < -1$ and $-1/s_0 < -1$ respectively. Therefore $|\det(B)|^2 = |H_1(Y)| > 1$ contradicting Lemma 2. Thus, L is not quasi-alternating.

\textbf{Corollary 1.} A Montesinos link L is quasi-alternating if and only if
(1) $\Sigma(L)$ is an L-space, and
(2) there exist a smooth negative definite 4-manifold W_1 and a smooth positive definite 4-manifold W_2 with $\partial W_i = \Sigma(L)$ and $H_1(W_i) = 0$ for $i = 1, 2$.

Proof. This is a corollary of the proof of Theorem 1. Suppose first that L is quasi-alternating. By [OS05, Proposition 3.3], $\Sigma(L)$ is an L-space. Furthermore, $\Sigma(L)$ must bound a negative definite 4-manifold W_1 with $H_1(W_1) = 0$ [OS05, Proof of Lemma 3.6]. Applying this to the reflection of L which is also quasi-alternating, we get that $\Sigma(L)$ also bounds a positive definite 4-manifold W_2 with $H_1(W_2) = 0$. For the converse, note that these two necessary conditions are the only conditions used to obstruct a Montesinos link from being quasi-alternating in the proof of Theorem 1.

As a consequence, we obtain a classification of the Seifert fibered spaces which are formal L-spaces. Before stating it, we recall the definition of a formal L-space. We say that a triple (Y_1, Y_2, Y_3) of closed, oriented 3-manifolds form a triad if there is a 3-manifold M with torus boundary, and three oriented curves $\gamma_1, \gamma_2, \gamma_3 \subset \partial M$ at pairwise distance 1, such that Y_i is the result of Dehn filling M along γ_i, for $i = 1, 2, 3$.

Definition 2. The set \mathcal{F} of formal L-spaces is the smallest set of rational homology 3-spheres such that

(1) $S^3 \in \mathcal{F}$, and
(2) if (Y, Y_0, Y_1) is a triad with $Y_0, Y_1 \in \mathcal{F}$ and

$$|H_1(Y)| = |H_1(Y_0)| + |H_1(Y_1)|,$$

then $Y \in \mathcal{F}$.

Corollary 2. A Seifert fibered space over S^2 is a formal L-space if and only if it is the double branched cover of a quasi-alternating link.

Proof. Let L be a quasi-alternating Montesinos link. Then the double branched cover of L is a Seifert fibered space over S^2. Ozsváth and Szabó show that the double branched cover of a quasi-alternating link is an L-space [OS05, Proposition 3.3]. Their proof in fact shows that the double branched cover of a quasi-alternating link is a formal L-space. Hence $\Sigma(L)$ is a formal L-space Seifert fibered space over S^2.

Now let M be a formal L-space Seifert fibered space over S^2. Then M is the double branched cover of a Montesinos link L. Ozsváth and Szabó’s in [OS05, Proof of Lemma 3.6] show that the double branched cover of a quasi-alternating link bounds both a positive definite, and a negative definite 4-manifold with vanishing first homology. However, their proof in fact shows this for all formal L-spaces. Hence $M = \Sigma(L)$ is a formal L-space bounding positive and negative definite 4-manifolds with vanishing first homology. Thus, Corollary 1 implies that L is quasi-alternating.

Acknowledgements

I would like to thank Cameron Gordon for his support and helpful conversations, and Duncan McCoy for his suggestions and many helpful comments. I would also like to thank the referee for useful feedback.
References

[BZH14] Gerhard Burde, Heiner Zieschang, and Michael Heusener. Knots, volume 5 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, extended edition, 2014.

[CK09] Abhijit Champanerkar and Ilya Kofman. Twisting quasi-alternating links. Proc. Amer. Math. Soc., 137(7):2451–2458, 2009.

[CO15] Abhijit Champanerkar and Philip Ording. A note on quasi-alternating Montesinos links. J. Knot Theory Ramifications, 24(9):1550048, 15, 2015.

[Cro04] Peter R. Cromwell. Knots and links. Cambridge University Press, Cambridge, 2004.

[Don87] S. K. Donaldson. The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differential Geom., 26(3):397–428, 1987.

[GL16] Joshua Evan Greene and Adam Simon Levine. Strong Heegaard diagrams and strong L-spaces. Algebr. Geom. Topol., 16(6):3167–3208, 2016.

[Gre10] Joshua Greene. Homologically thin, non-quasi-alternating links. Math. Res. Lett., 17(1):39–49, 2010.

[Gre17] Joshua Evan Greene. Alternating links and definite surfaces. Duke Math. J., 166(11):2133–2151, 2017.

[How17] Joshua A. Howie. A characterisation of alternating knot exteriors. Geom. Topol., 21(4):2353–2371, 2017.

[Jab14] Slavik Jablan. Tables of quasi-alternating knots with at most 12 crossings. arXiv:math-gt/1404.4965v2, 2014.

[Lau72] Henry B. Laufer. On rational singularities. Amer. J. Math., 94:597–608, 1972.

[LL11] Ana G. Lecuona and Paolo Lisca. Stein fillable Seifert fibered 3-manifolds. Algebr. Geom. Topol., 11(2):625–642, 2011.

[LO15] Paolo Lisca and Brendan Owens. Signatures, Heegaard Floer correction terms and quasi-alternating links. Proc. Amer. Math. Soc., 143(2):907–914, 2015.

[LS17] Tye Lidman and Steven Sivek. Quasi-alternating links with small determinant. Math. Proc. Cambridge Philos. Soc., 162(2):319–336, 2017.

[MO08] Ciprian Manolescu and Peter Ozsváth. On the Khovanov and knot Floer homologies of quasi-alternating links. In Proceedings of Gökova Geometry-Topology Conference 2007, pages 60–81. Gökova Geometry/Topology Conference (GGT), Gökova, 2008.

[Ném05] András Némethi. On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds. Geom. Topol., 9:991–1042, 2005.

[Ném15] András Némethi. Links of rational singularities, L-spaces and LO fundamental groups. arXiv:math-gt/1510.07128v1, 2015.

[NR78] Walter D. Neumann and Frank Raymond. Seifert manifolds, plumbing, μ-invariant and orientation reversing maps. In Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977), volume 664 of Lecture Notes in Math., pages 163–196. Springer, Berlin, 1978.

[ORS13] Peter S. Ozsváth, Jacob Rasmussen, and Zoltán Szabó. Odd Khovanov homology. Algebr. Geom. Topol., 13(3):1465–1488, 2013.

[OS05] Peter Ozsváth and Zoltán Szabó. On the Heegaard Floer homology of branched double-covers. Adv. Math., 194(1):1–33, 2005.

[QC15] Khaled Qazaqzeh and Nafaa Chbili. A new obstruction of quasi-alternating links. Algebr. Geom. Topol., 15(3):1847–1862, 2015.

[QCQ15] K. Qazaqzeh, N. Chbili, and B. Qublan. Characterization of quasi-alternating Montesinos links. J. Knot Theory Ramifications, 24(1):1550002, 13, 2015.

[Sav02] Nikolai Saveliev. Invariants for homology 3-spheres, volume 140 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2002. Low-Dimensional Topology, I.

[Sti08] András I. Stipsicz. On the \mathfrak{p}-invariant of rational surface singularities. Proc. Amer. Math. Soc., 136(11):3815–3823, 2008.

[Ter15] Masakazu Teragaito. Quasi-alternating links and Kauffman polynomials. J. Knot Theory Ramifications, 24(7):1550038, 17, 2015.

[Wat11] Liam Watson. A surgical perspective on quasi-alternating links. In Low-dimensional and symplectic topology, volume 82 of Proc. Sympos. Pure Math., pages 39–51. Amer. Math. Soc., Providence, RI, 2011.

[Wid09] Tamara Widmer. Quasi-alternating Montesinos links. J. Knot Theory Ramifications, 18(10):1459–1469, 2009.
Department of Mathematics, The University of Texas At Austin, Austin, TX, 78712, USA

E-mail address: aissa@math.utexas.edu