REVIEW

Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction

Shanmin Zhenga,b,†, Jiawei Guob,†, Fangyuan Chengb, Zhengquan Gaoc, Lei Dub, Chunxiao Menga,*, Shengying Lib,d,*, Xingwang Zhangb,*

aSchool of Life Sciences, Shandong University of Technology, Zibo 255000, China
bState Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
cSchool of Pharmacy, Binzhou Medical University, Yantai 264003, China
dLaboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

Received 8 November 2021; received in revised form 5 January 2022; accepted 17 January 2022

KEY WORDS
Natural product biosynthesis; Algal pharmaceuticals; Cytochrome P450 enzymes; Algae; Light-driven bioproduction

Abstract Algae are a large group of photosynthetic organisms responsible for approximately half of the earth’s total photosynthesis. In addition to their fundamental ecological roles as oxygen producers and as the food base for almost all aquatic life, algae are also a rich source of bioactive natural products, including several clinical drugs. Cytochrome P450 enzymes (P450s) are a superfamily of biocatalysts that are extensively involved in natural product biosynthesis by mediating various types of reactions. In the post-genome era, a growing number of P450 genes have been discovered from algae, indicating their important roles in algal life-cycle. However, the functional studies of algal P450s remain limited. Benefitting from the recent technical advances in algae cultivation and genetic manipulation, the researches on P450s in algal natural product biosynthesis have been approaching to a new stage. Moreover, some photoautotrophic algae have been developed into “photo-bioreactors” for heterologous P450s to produce high-value added pharmaceuticals and chemicals in a carbon-neutral or carbon-negative manner. Here, we comprehensively review these advances of P450 studies in algae from 2000 to 2021.

*Corresponding authors. Tel./fax: +86 532 58632496.
E-mail addresses: mengchunxiao@126.com (Chunxiao Meng), lishengying@sdu.edu.cn (Shengying Li), zhangxingwang@sdu.edu.cn (Xingwang Zhang).
†These authors made equal contributions to this work.
Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2022.01.013
2211-3835 © 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cytochrome P450 enzymes (P450s) are a superfamily of heme (iron protoporphyrin) proteins that are broadly distributed in human, animals, plants, algae, fungi, bacteria, archaea and even viruses\(^1\)\(^\text{-}\)\(^4\). The name of “P450” is given owing to their distinctive spectroscopic absorption maximum at 450 nm upon its reduced heme-iron center bound with carbon monoxide\(^5\). Along with the explosion of genome sequencing data, a fast increasing number of P450-encoding genes, up to now more than 300,000, have been discovered from various organisms, which have greatly advanced our understanding on the important evolutionary, physiological and catalytic roles of the P450 superfamily\(^6\)\(^,\)\(^7\). It is now well known that P450s are extensively involved in both primary and secondary metabolisms\(^8\)\(^\text{-}\)\(^13\). For instance, many prokaryotic and eukaryotic P450s undertake essential physiological functions such as participating in the synthesis of membrane sterols, phytobrines and signaling molecules\(^14\). Meanwhile, the P450s from human or other higher animals are capable of mediating the degradation of drugs, toxins and other xenobiotics\(^1\). Moreover, a tremendous number of P450s from plants and microorganisms (both bacteria and fungi) are frequently found to play essential roles in natural product biosynthesis\(^15\)\(^,\)\(^16\).

During the biosynthesis of natural products, generally, P450s implement their functions by catalyzing the common monoxygenation (e.g., hydroxylation and epoxidation) reactions to decorate the core structure, improve the aqueous solubility of products, and provide chemical handles for further modifications\(^17\). Intriguingly, in an increasing number of cases, P450s have been found capable of mediating diverse “uncommon” reactions for skeleton construction, including C–X (X = C/N/S) bond formation/scission, ring formation/expansion/contraction and even more vagarious reactions, which dramatically expand the chemical space of natural products\(^18\)\(^\text{-}\)\(^21\). As a result, the P450-mediated reactions greatly increase the diversity of both the chemical structures and biological activities of natural products. Thus, the ubiquitous and versatile P450 enzymes have been recognized as one of the most significant biocatalysts in natural product biosynthesis and pharmaceutical bioproduction\(^22\)\(^,\)\(^23\).

Algae are a polyphyletic group of aquatic organisms that include species from the microscopic unicellular cyanobacteria to the giant kelps up to tens of meters in length\(^22\)\(^,\)\(^24\). Most of the algal species are photosynthetic organisms, which are responsible for roughly 50% of the total photosynthesis on the earth\(^25\)\(^,\)\(^26\). Meanwhile, algae play their fundamental ecological roles by acting as oxygen producers and the food base for almost all aquatic life. Also, upon decades of natural organic chemistry studies, algae have been recognized as a rich source of high-value bioactive natural products\(^27\)\(^\text{-}\)\(^29\). Recent genome and transcriptome analyses have discovered numerous P450 genes involved in the basic life cycle of both cyanobacteria and eukaryotic algae. However, compared with other organisms, the knowledge on the functions of algal P450s still remains limited\(^30\). Fortunately, recent technical advances in algal cultivation and genetic manipulation have led to more and more functional characterization of algal P450s\(^29\)\(^,\)\(^30\).

Furthermore, with the rapid development of synthetic biology, the photoautotrophic algae are expected to be used as “photobioreactors” for heterologous P450s to produce high-value-added products in a carbon-neutral or carbon-negative manner\(^31\). Specifically, for the reducing power-driven P450 reactions, in theory, the algal photosystem derived electrons can be directly employed to drive their catalytic cycle, thus circumventing the requirement of the complex redox partner systems and the precious reducing force NAD(P)H. Such solar-energy-driven P450-reaction systems have been successfully constructed in several algal species, in which the biosynthesis of target compounds can be fueled by the excess excitation energy during photosynthesis.

Herein, we will not only comprehensively review the important advances of algal P450 studies on natural product biosynthesis and photo-driven P450 reactions designed in algae, but also analyze the current questions/challenges and the future prospects of P450 studies in algae, aiming to inspire more cost-effective, eco-friendly and sustainable algae-based bioproduction of chemicals and pharmaceuticals in the future.

2. Algal P450 catalytic processes

Generally, the P450-mediated monooxygenation reactions follow a common equation of \(R \rightarrow R^* + 2 \text{H}^+ + 2 \text{e}^- \rightarrow R^\cdot + 2 \text{H}_2\text{O} \)\(^32\). To initiate the reaction, two electrons originated from NAD(P)H need to be delivered to the heme-iron reactive center of P450 with the aid of redox partner protein(s) (Fig. 1)\(^33\). Therefore, according to the importance of redox partner(s), the algal P450 catalytic systems can be classified into two major types (types I and II; Fig. 1). The prokaryotic algae (i.e., cyanobacteria) adopt the three-component type I P450 catalytic system, in which the redox partners include a FAD-containing ferredoxin reductase (FDR) and a small iron-sulfur ([Fe–S]) protein ferredoxin (Fdx). By contrast, the eukaryotic algae mainly possess the Type II P450 catalytic system, wherein the P450 enzyme employs a single FAD/FMN-containing flavoprotein, referred to as cytochrome P450 reductase (CPR), to transfer the reducing equivalents. Compared with the Type I system that all the elements are cytosolically soluble proteins, the type II algal P450s and their cognate CPRs are usually endomembrane-associated proteins (Fig. 1)\(^35\). This difference has led to thriving functional studies of prokaryotic P450s, while greatly limited the corresponding researches on higher algal P450s due to the technical difficulties associated with the heterologous overexpression of membrane-bound proteins\(^35\).

Thereafter, the P450 sequentially accepts the two electrons shuttled from NAD(P)H by redox partner(s) to activate the inert \(O_2\) at the heme-iron reactive center and inserts a single “O” atom to the bound substrate (R–H) to yield R–OH (Fig. 1). The detailed P450 catalytic cycle has been described in many recent reviews\(^3,4,12,36\). Briefly, the intact catalytic process could be divided into two halves: in the first half cycle, the substrate-bound heme-iron center accepts two electrons, a \(O_2\) molecule, and a pair of protons to generate the highly reactive species compound I (CpdI); and in the second half cycle, CpdI triggers the important “hydrogen-abstraction” process against the substrate R–H to...
produce the substrate radical (R) and CpdII; then, the “OH rebound” reaction occurs to quench the R and generate the monooxygenation product R–OH (Fig. 1). It is worth noting that for many P450s, the catalytic cycle can be shortcut to the peroxide shunt pathway when using H2O2 as the sole oxygen and electron donor, in which H2O2 directly activates the resting heme-Fe(III) to the ferric enzyme can directly cleave the peroxo bond, leading to the formation of CpdIII and the fatty acid alkoxyl radical (RO$^\cdot$), and finally yields the epoxyalcohol or allene oxide products (Fig. 1).38

3. Cyanobacterial P450s in natural product biosynthesis

Cyanobacteria, also referred to as blue-green algae, are a class of prokaryotic algae ubiquitously distributed in fresh and saline waters.39 Cyanobacteria are thought to be the oldest photosynthetic organisms that played a central role during the evolution of life by contributing to the oxygenation of the early earth. Interestingly, they are also an abundant source of bioactive natural products, including polyketides (PKs), non-ribosomal peptides (NRPs), terpenoids and the hybrids thereof40. Genome mining revealed that cyanobacteria represent a huge arsenal of P450s, which may function as indispensable roles in both primary and secondary metabolisms41. In this section, we will summarize the identified P450-catalyzed reactions involved in cyanobacterial natural product biosynthesis (Table 1).

3.1. All-trans-retinoic acid

All-trans-retinoic acid (I) is a naturally occurring vitamin A-derived pharmaceutical that is highly effective in the treatment of acute promyelocytic leukemia, and it shows the potential to treat some autoimmune diseases, such as psoriasis, systemic lupus erythematosus, inflammatory arthritis, and ulcerative colitis.42,43 Genome mining of Synechocystis sp. PCC 6803 revealed a function unknown P450 named CYP120A144. In an earlier study, CYP120A1 was proposed to participate in the transformation of I based on bioinformatics analysis and the co-crystal structure with 145. Later, an in vitro bioassay, using the microsomal fraction of the recombinant Saccharomyces cerevisiae WAT11 expressing CYP120A1, showed that CYP120A1 is indeed capable of hydroxylating C16 and C17 of I to form 2 and 3 respectively (Fig. 2A)46. It is noteworthy that CYP120A1 is the first identified retinoic acid-metabolizing enzyme of non-animal origin.45

3.2. Type A malyngamides

Type A malyngamides are a family of marine cyanobacteria derived natural products that have potent anticancer and anti-inflammatory activities.47 Recently, malyngamide I (4) and malyngamide C (5) were isolated from the cyanobacterial strains Okeania hirsute PAB and PAP respectively, and their biosynthetic pathways were characterized based on in vitro studies. On the early stage, the carbon skeleton is assembled by a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) to form 6 and 7 with the aid of several tailoring enzymes. Next, P450 MgcT catalyzes the C4–C9 oxidation of 6 to produce the epoxidation product, which is further hydroxylated at the C8 position by another P450 MgcU to form the precursor of 4 in the strain PAB (Fig. 2B). Similarly, in O. hirsute PAP, the MgcT counterpart P450 MgiT was considered responsible for the C4–C9 epoxidation of 7 to produce 5 (Fig. 2B).48

3.3. Cryptophycins

Cryptophycins, as exemplified by cryptophycin 2 (8), are a class of peptolide natural products isolated from the lichen cyanobacterial symbiont Nostoc sp. ATCC 53789 and Nostoc sp. GSV224.49 They are potent anticancer agents by stimulating cellular microtubule instability, inhibiting microtubule assembly, and inducing tubulin self-association.50 In the biosynthetic study of 8, a P450 enzyme CrpE was characterized to mediate the formation of the characteristic β-epoxy ring at the C2=C3 double bond towards the substrate cryptophycin 4 (9) (Fig. 2C), based on the in vitro enzymatic assay using the purified CrpE protein expressed in the recombinant Escherichia coli.51 In addition, CrpE...
can also convert the 9-analoues, 10–13, to the corresponding epoxidation products 14–17 in vitro (Fig. 2C), indicative of a broad substrate spectrum 52.

3.4. Hectochlorin

Hectochlorin (18) is another peptolide product identified from marine cyanobacteria *Lyngbya maajuscula* and shows remarkable antifungal and cytotoxic properties. Biosynthetically, 18 is produced by a PKS-NRPS hybrid assembly-line, during which the elongating substrates are tethered to a peptidyl carrier protein (PCP) 53. A few P450s have been reported to be capable of mediating the online oxidations, of which the P450’s substrate is linked to an acyl carrier protein (ACP) or PCP, thus involving the protein–protein interactions during the substrate recognition process. The biosynthetic gene cluster of 18 encodes two P450s HctG and HctH 53. According to bioinformatics analysis and the biocatalytic principles, HctG/HctH were proposed to catalyze such an online hydroxylation at the C3 position of the PCP-tethered substrate 19 to form 20, prior to the NPRS-mediated cyclopeptide formation (Fig. 2D) 53.

3.5. Fatty acids

The ω-hydroxylated fatty acids are important starting materials in chemical, pharmaceutical, and cosmetic industries 54. However, the regioselective ω-hydroxylation of the inert terminal sp² C–H bond in a hydrocarbon chain is thermodynamically disfavored for chemical synthesis. Some P450s have long been found to hold the capacity of mediating such ω-hydroxylation reactions towards various fatty acid substrates 55,56. Genome mining of the freshwater cyanobacterium *Anabaena* sp. PCC 7120 revealed an unknown P450 named CYP110 57,58. Protein sequence analysis indicated the high similarity of CYP110 with the mammalian known P450 named CYP110 57,58. Protein sequence analysis indicated the high similarity of CYP110 with the mammalian

3.6. Polyhalogenated aromatics

Apart from the common monoxygenation reactions, P450s can also mediate various complex structure-shaping reactions. Enzymatic aromatic/phenolic couplings are fascinating reactions in natural product biosynthesis, because these regio- and/or stereoselective transformations are highly challenging in chemical synthesis. Polyhalogenated aromatics represent a class of anthropogenic chemicals that are widely used in agriculture 59. Intriguingly, this class of molecules have also been isolated from some marine microorganisms, such as the marine cyanobacterium *Fischerella ambigua* 108b originated polychlorinated triphenyl product 23 and biphenyl products 24 and 25 59. The biosynthetic gene cluster of 23–25 was recently revealed by genome mining, which is comprised of ten genes including two P450 genes (AB2 and AB3). Based on in vivo precursor feeding experiments, AB2 and AB3 were elucidated to the corresponding epoxidation products 14–17 in vitro (Fig. 2C), indicative of a broad substrate spectrum 52.

Table 1 The functions of algal P450s.

P450	Biosynthetic pathway	Function	In vitro/in vivo characterization	Source	Prokaryotic (P)/ Eukaryotic (E)	Ref.
AB2	Polychlorinated biphenyls/triphenyls	C–C or C–O biaryl ring coupling	Y/Y	*F. ambigua* 108b	P	60
AB3	Polychlorinated biphenyls/triphenyls	C–C or C–O biaryl ring coupling	Y/Y	*F. ambigua* 108b	P	60
CypE	Cryptophycin 2	Epoxidation	Y/-	*Nostoc* sp. ATCC 53789 and *Nostoc* sp. GSV224	P	51
CYP120A1	All-trans-retinoic acid	Hydroxylation	Y/-	*Synechocystis* sp. PCC 6803	P	44–46
CYP110	Long-chain saturated fatty acids	Hydroxylation	Y/-	*Anabaena* sp. PCC 7120	P	62,63
CkeCYP97A1	Xanthophylls	Hydroxylation	Y/-	*Chlorella kessleri*	E	112
DbcYP97A	Xanthophylls	Hydroxylation	Y/-	*Dunaliella bardawil*	E	80
DbcYP97B	Xanthophylls	Hydroxylation	Y/-	*D. bardawil*	E	80
DbcYP97C	Xanthophylls	Hydroxylation	Y/-	*D. bardawil*	E	80
ESEAS	Epoxycarotenoids	Epoxidation	Y/-	*Ectocarpus siliculosus*	E	75
EgCYP97H1	Xanthophylls	Hydroxylation	Y/-	*Euglena gracilis*	E	81
HaCYP97A	Xanthophylls	Hydroxylation	Y/-	*Haematococcus pluvialis*	E	78
HaCYP97B	Xanthophylls	Hydroxylation	Y/-	*H. pluvialis*	E	78
HaCYP97C	Xanthophylls	Hydroxylation	Y/-	*H. pluvialis*	E	78
HctG	Hectochlorin	Hydroxylation	Y/-	*Lyngbya majuscula*	P	53
HctH	Hectochlorin	Hydroxylation	Y/-	*L. majuscula*	P	53
KfAOS	Jasmonates	Epoxidation	Y/-	*Klebsormidium flaccum*	E	74
LxLB	Lyngbyatoxin A	C–N bond formation	Y/-	*Lyngbya majuscula*	P	66
MgcE	Malyngamide I	Epoxidation	Y/-	*Okeania hirsute* strains PAB	P	48
MgcU	Malyngamide I	Hydroxylation	Y/-	*O. hirsute* strains PAB	P	48
MgiT	Malyngamide I	Epoxidation	Y/-	*O. hirsute* strains PAP	P	48
P450NS	Oxidized germacrene A	Oxidative cyclization	Y/-	*Nostoc* sp. PCC 7120	P	57,58
PrCHY1	Xanthophylls	Hydroxylation	Y/-	*Porphyra umbilicalis*	E	113
PrCYP97B1	Xanthophylls	Hydroxylation	Y/-	*Phaeodactylum tricornutum*	E	114
PrCYP97B2	Xanthophylls	Hydroxylation	Y/-	*P. tricornutum*	E	114
catalyze the C3–C3' or C3–O1' coupling of the monomer 26 to form 24 and 25, and the O1–C4/C6'–C3' coupling of 26 and 27 to yield 23 (Fig. 3A). The in vitro reconstituted enzymatic reactions disclosed more catalytic details, of which AB2 and AB3 can both catalyze the formation of 24 and 25, but AB2 tends to produce 24 while AB3 prefers the production of 25. Moreover, the co-incubation of AB2 and AB3 with the monomers 26 and 27 generated the tri-phenol product 23 (Fig. 3A).

Mechanistically, the P450-catalyzed aromatic/phenolic coupling reactions are considered to undergo a biradical coupling pathway. In this case, AB2/AB3 primarily abstracts a single hydrogen from the phenolic hydroxyl group of 26 or 27 to yield oxygen radicals i or ii, which can undergo the electron rearrangement to give the corresponding carbon radical iii and iv. Then, two molecules of iii couple to yield 24, while i and iii couple to produce 25. As for the formation of 23, after the generation of v from i and iv, AB2/AB3 further abstracts the H6' to give a new radical vi, which couples with iii to yield the tri-polymers product (Fig. 3A).

3.7. Germacrene A

Germacrene A (28), derived from the precursor of farnesyl pyrophosphate (29), is a general biosynthetic intermediate of many bioactive sesquiterpenes, such as englerin A and guaianolide, in both plants and microorganisms. In a genome mining study of the cyanobacterium Nostoc sp. PCC 7120, a sesquiterpene synthase (NS1) was found to be able to biosynthesize 28. Stepwise heterologous expression of NS1 and the co-clustered P450NS in E. coli revealed that P450NS could mediate an uncommon oxidative cyclization of 28 to yield the more hydrophilic product 30 (Fig. 3B). It was proposed that P450NS first epoxidizes the C5–C6 double bond to produce the unstable intermediate i, which could undergo C–O bond heterolysis to give ii. Eventually, 30 is generated after intramolecular electron rearrangement and ring-closure of ii (Fig. 3B).

3.8. Lyngbyatoxin A

Lyngbyatoxin A (31) is an indole alkaloid cyanotoxin that can activate the protein kinase C (PKC) isozyme, and also a potent irritant and vesicant, as well as a carcinogen. Biogenetically, the C–N bond formation is of special interest since such a C–H amination reaction is infrequently occurring in nature. The biosynthetic gene cluster of 31 was mined from a Hawaiian cyanobacterium strain Lyngbya majuscula, which contains a P450 encoding gene ltxB. Based on the in vitro reconstituted enzymatic reaction, LtxB was determined to mediate the conversion of the

![Figure 2](image)

Figure 2 The monoxygenation reactions catalyzed by cyanobacterial P450s. (A) The all-trans-retinoic acid (1) hydroxylation reactions catalyzed by CYP120A1 from Synechocystis sp. PCC 6803. (B) The epoxidation and hydroxylation reactions catalyzed by different P450s during the biosynthesis of malyngamides 4 and 5. (C) The CrpE-catalyzed epoxidation reactions of cryptophycin 4 (9) and 9 analogues (10–13). (D) The online hydroxylation catalyzed by P450 HctG/HctH during the biosynthesis of 18. (E) The ω-hydroxylation of fatty acid catalyzed by CYP110.
substrate 32 to 33 by catalyzing the rare C4–N13 bond formation reaction. To explore the substrate tolerance of LtxB, several analogues of 32 were synthesized and reacted with LtxB in vitro. Intriguingly, all these analogues could be converted into the corresponding C4–N coupling products (34–38, Fig. 3C). Recently, the mechanistic study of TleB, a homologous protein of LtxB from Streptomyces, was conducted by crystal structure analysis, revealing a biradical-coupling process (route 1, Fig. 3C) or an alternative carbocation involved nucleophilic pathway (route 2, Fig. 3C). Moreover, in a following study, it was revealed that TleB could also catalyze a C–S bond formation towards the substrate S-analogue 39 to yield 40 (Fig. 3D). These results together prove LtxB/TleB to be potential biocatalysts for generation of the C4–N/C4–S bond containing products.

4. Eukaryotic algal P450s in natural product biosynthesis

Eukaryotic algae encompass diverse photosynthetic species ranging from unicellular microalgae to multicellular giant kelps. Continuous natural product prospecting has revealed that eukaryotic algae are also an important source of bioactive compounds. The most attractive merit is that some eukaryotic algae can produce abundant bioactive carotenoid-like pigments and halogenated natural products. A recent genome survey disclosed the high diversity of P450s in eukaryotic algae. However, due to the technical limitations in laboratory cultivation and gene-manipulation of eukaryotic algae, the progress on these membrane-bound P450s remains limited, especially for the P450s from giant kelps. In this part, a limited number of eukaryotic algal P450s and their catalytic reactions will be reviewed (Table 1).

4.1. Jasmonates

Jasmonates, taking the 12-oxo-phytodienoic acid (41) and jasmonic acid (42) as examples, are important hormones distributed in plants and algae. They are also potential therapeutic agents for several types of cancer. During the biosynthesis of 41 and 42, the fatty acid-derived peroxide oxylipins, such as 13-hydroperoxy-(E,Z,Z)-9,11,15-octadecatetraenoic acid (43), are the key intermediates. The P450 KfAOS was identified as a CYP74 family member involved in jasmonate biosynthesis from the green microalgae Klebsormidium flaccidum. Functional characterization revealed that KfAOS is able to convert 43 into the oxylipin allene.
oxide (44, Fig. 4A). Then, the unstable product 44 undergoes a spontaneous rearrangement to form 41, and such a transformation can be accelerated by an allene oxide cyclase (Fig. 4A). In another study, the CYP74-related P450 ESEAS (CYP5164B1) from the brown algae *Ectocarpus siliculosus* was found to catalyze a similar reaction. As reported, ESEAS is capable of transforming both (9S,10E,12Z)-9-hydroxy-10,12-octadecadienoic acid (45) and (9Z,11E,13S)-13-hydroxy-9,11-octadecadienoic acid (46) into the corresponding epoxyalcohol products 47 and 48, respectively (Fig. 4B).

Intriguingly, neither redox partners nor electron donor is required for these CYP74-catalyzed reactions. As for the catalytic mechanism, it is proposed that after binding with the fatty acid hydroperoxide (49), the heme-Fe(III) of CYP74 (KfAOS or ESEAS) homolytically cleaves the O–O bond to give a [RO]* radical (50) and CpdII (Fe(IV)–OH). Then, the [RO]* radical reacts with the adjacent double bond to form the epoxy species and relocates the radical to the α-carbon, forming the carbon radical 51. Thereafter, the [HO*] of CpdII rebinds to 51 to yield the epoxyalcohol product 52 (for ESEAS). Alternatively, CpdII further abstracts a hydrogen from the α-carbon of 51 to afford the allene oxide product 53 and release a water molecule (for KfAOS) (Fig. 4C). Thus, this is a unique class of P450s to catalyze unusual isomerization reactions instead of the normal oxygenation reactions, because no additional electron and oxygen is introduced into the catalytic cycle.

4.2. Xanthophylls

Xanthophylls, such as lutein (54), are a large class of oxygen-containing carotenoid pigments that play important protecting roles in photosynthesis of eukaryotic algae and higher plants.

![Figure 4](image-url)
Figure 4 The reactions catalyzed by eukaryotic algal P450s and the related enzymatic mechanism (in box). (A) The oxylipin allene oxide (44) epoxidation catalyzed by KfAOS from the green microalgae *Klebsormidium flaccidum* during the formation of 41 and 42. (B) The epoxidation reactions catalyzed by ESEAS from the brown algae *Ectocarpus siliculosus*. (C) The putative mechanisms of KfAOS and ESEAS. (D) The hydroxylation reactions of α-carotene (55), α-cryptoxanthin (56) and zeinoxanthin (57) catalyzed by DbCYP97C from the green alage *Dunaliella bardawil* during the biosynthesis of lutein (54). (E) The hydroxylation reaction of β-cryptoxanthin (59) catalyzed by EgCYP97H1 from *Euglena gracilis*. (F) The CYP51 mediated 14α-demethylation reaction during sterol biosynthesis.
Physiologically, **54** and its structural analogues can absorb excess light energy to prevent photo-damages to host organisms. Xanthophylls also have health benefits and therapeutic potentials against neurologic, ophthalmologic, oral, allergic and immune diseases. Biosynthetically, **54** is derived from α-carotene (**55**) with two hydroxylation steps. A recent study on carotene hydroxylases from the green algae *Dunaliella bardawil* revealed a group of P450s (DbCYP97A, DbCYP97B, and DbCYP97C) are responsible for the C4/C5' hydroxylation of **55** to form **54** (Fig. 4D). According to the functional complementation experiments in *E. coli*, the catalytic preferences of the three P450s were revealed: DbCYP97A and DbCYP97C showed a high catalytic activity toward the β-ring and ε-ring of **55** to yield α-cryptoxanthin (**56**) and zeinoxanthin (**57**), respectively; while DbCYP97B displayed minor hydroxylation activity toward the β-ring of **55** (Fig. 4D). Interestingly, unlike other eukaryotic P450s, the CYP97 proteins lack a transmembrane helix, thus being peripherally bound to the membrane. In addition, another CYP97 member EgCYP97H1 from *Euglena gracilis* was characterized as a β-carotene mono-hydroxylase, which hydroxylates the C4 position of β-carotene (**58**) to form β-cryptoxanthin (**59**, Fig. 4E). Notably, this is the first example that a P450 functions as a β-carotene hydroxylase.

4.3. Sterols

Sterols are important structural and regulatory components in eukaryotes. As observed in plants, CYP51 is a necessary P450 for sterol biosynthesis by catalyzing the 14α-demethylation of obtusifoliol (**60**) to yield 61, via the putative geminal diol and carbocation intermediates (Fig. 4F). However, the algal CYP51 had not been investigated until a recent study carried out in *Nannochloropsis oceanica*. As reported, addition of the CYP51 inhibitor tebuconazole (TEB) into the culture of *N. oceanica* led to the accumulation of the major biosynthetic intermediate of sterols. Accordingly, CYP51 in *N. oceanica* was proposed to play a similar role as the homologous P450s in other eukaryotic organisms.

In summary, as for the algal P450-mediated biosynthesis of essential metabolites, analogous P450-catalyzed reactions can also be found in other non-algal organisms. For example, the all-trans-retinoic acid (1) metabolizing reaction can be accomplished by both the cyanobacterial P450 CYP120A1 and some human P450s (Fig. 2A); the C–N bond formation mediated by cyanobacterial P450 LtxB also occurs in *Streptomyces* (Fig. 3C); and the uncommon rearrangement reactions catalyzed by the eukaryotic algal CYP74 family member have also been elucidated in other higher plants (Fig. 4A–C). These cross-species functional similarities may suggest some evolutionary relationship between algal and non-algal organisms. By contrast, there also exist some algae-specific reactions that have not been observed in other organisms, such as the tripolymer production co-mediated by the cyanobacterial P450s AB2 and AB3 (Fig. 3A). Besides, algae have evolved many unique P450s giving rise to the specialized natural products of algal characteristics, as exemplified by **4**, **5**, **8**, and **18**. With no doubt, these algal P450s significantly expand the catalytic diversity of the whole P450 superfamily.

5. Algae as photo-bioreactors of heterologous P450s

Algae are photoautotrophic organisms that can use the solar energy and recycle CO₂ to synthesize primary and secondary metabolites (Fig. 5), but the solar-to-biomass energy conversion rate is quite low with the energy converting efficiencies only ranging from 1% to 2%. In fact, in the photosynthetic pathway, the photosystem II can efficiently absorb the solar energy for photolysis of water molecule to generate electrons for downstream metabolic pathways. However, the total cellular biosynthetic electron-demand is far less than the produced electrons. Therefore, theoretically, these excessively absorbed solar energy can be further utilized by introducing heterogenous catalytic elements provided that they can interact with the photosystem proteins to acquire electrons.

With regard to P450s, considering the facts that 1) the P450-catalyzed reactions need to consume a lot of NAD(P)H to gain the reducing power (electrons) to drive the catalytic cycle (Fig. 1); 2) excess reducing power is generated during algal photosynthesis; and 3) P450s can use the photosynthesis-associated Fdxs to shuttle the required electrons (Fig. 5), a methodology which can channel the excess reducing power from the algal photosystem to the P450 catalytic system would be highly valuable for heterologous P450s to produce high-value products by directly using the solar energy. Technically, a heterologous P450 can be readily fused with the photosynthetic system by anchoring it into the thylakoid membrane that harbors the whole photosynthetic pathway (Fig. 5). For instance, a eukaryotic membrane-bound P450 can be directly anchored into the prokaryotic thylakoid membrane by its native membrane-associated N-terminal sequence; while the prokaryotic Type I P450 could be re-located into the thylakoid membrane by fusing it with the subunit of photosystem protein (Fig. 5). Based on this strategy, several light-driven P450 reaction systems have been successfully developed in different algal species. In this section, we will discuss the state-of-the-art algal photo-bioreactors for light-driven P450 reactions.

5.1. Caffeic acid

Caffeic acid (**62**), a phenolic natural product synthesized by all plant species, shows antioxidant, anti-inflammatory and anticancer activities and is widely used in cosmetics industry. At present, the commercial **62** is chemically synthesized, which is suffering from the low yield and serious environmental concerns. The P450 CYP98A3 (C3H) from *Arabidopsis thaliana* was identified as a caffeic acid synthase by hydroxylating the C3 position of p-coumaric acid (**63**). Previously, functional expression of C3H failed in a bacterial host due to its instability, low abundance, and membrane-bound nature. In a pilot study, the possibility of using cyanobacterium as a “photo-bioreactor” to produce **62** was explored. When the codon-optimized C3H-encoding gene was introduced into *Synechocystis* sp. PCC 6803, the plant P450 was successfully expressed and located onto the thylakoid membrane. Together with other biosynthetic enzymes, the expected product **62** was produced in the cyanobacterium under the photosynthetic growth conditions (Fig. 5). This study demonstrated the algal thylakoid to be a suitable platform for studying the membrane-bound P450s.

5.2. Dhurrin

Dhurrin (**64**) is a cyanogenic glycoside produced by many plants, which could comprise up to 30% of the dry mass of etiolated sorghum seedlings. Compound **64** exhibits strong antimicrobial properties while its cytotoxicity also discourages herbivory of some insects and animals. CYP79A1 is involved in the biosynthetic pathway from *Sorghum bicolor* that converts L-
tyrosine (65) into the N—OH bearing product 66. When the soluble catalytic domain of CYP79A1 was fused with the cyanobacterial photosystem I derived subunit to locate it onto thylakoid, the eukaryotic P450 was successfully expressed in Synechococcus sp. PCC 7002; and it showed the light-dependent activity both in vitro and in vivo (Fig. 5) 95. During the biosynthesis of 64, another P450 named CYP71E1 can further oxidize 66 into the nitrile-carrying compound 67. Thus, to achieve total biosynthesis of 64, CYP79A1 and CYP71E1 were co-expressed in Synechocystis sp. PCC 6803, and the results showed that the reconstituted activities of the two P450s were strictly light dependent. When the glycosyltransferase UGT85B1 was further introduced, the final product 64 was successfully produced in the cyanobacterial host (Fig. 5) 95. In another study, CYP79A1 was also successfully expressed in the eukaryotic green algae Chlamydomonas reinhardtii. As expected, after the CYP79A1 encoding gene was incorporated into the chloroplast genome of C. reinhardtii, the P450 enzyme was stably expressed and located in the chloroplast membrane 94.

5.3. Artificial chemicals

In addition to bioactive natural products, the cyanobacterial hosts have also been developed to produce high-value chemicals by running the light-driven P450 reactions. Cyclohexanol (68) is a key precursor in chemical/pharmaceutical industry for the production of ε-caprolactone, adipic acid and several polymers 103. However, 68 is intricate to acquire through chemical synthesis mainly due to the difficulty in the inert sp³ C—H bond activation; thus, enzymatic synthesis provides an alternative solution to address this issue 64. A P450 enzyme CYP-CHX from Acidovorax sp. CHX100 was previously identified to be such a hydroxylase that can hydroxylate cyclohexane (69) to 68 105. To achieve the production of 68, the P450 was expressed in the cyanobacterium Synechocystis sp. PCC 6803, and gram-scale of 68 was successfully produced by supplying 69 to the recombinant cyanobacterial culture (Fig. 5). Essentially, it was confirmed that the production of 68 was light dependent 96.

5.4. Pollutant degradation

The numerous man-made chemicals, such as the widely used pesticides and antibiotics, have greatly promoted social development in the last century. However, the environmental pollution caused by artificial chemicals also threatens the living world. The ubiquitously distributed algae have been designed as pollutant degrading-hosts by expressing biocatalysts which can mediate biodegradation reactions. Atrazine (70) is one of the most widely used pesticides in the world, and has been recognized as a serious environmental pollutant 107. Previous studies have shown that the human or mammalian P450 CYP1A1 has the capacity of converting 70 into the desisopropylated and deethylated product of atrazine (71), both in vitro and in vivo 108,109. When CYP1A1 from Rattus norvegicus (brown rat) was expressed in the cyanobacterium Synechococcus sp. PCC 7002, it was found that the protein could be located onto thylakoid membrane through its native N-terminal membrane-bound domain. Importantly, Synechococcus sp. PCC 7002 expressing CYP1A1 successfully degraded 70 into 71 in a light-dependent manner (Fig. 5) 107.

Taken together, these results demonstrate the great potential of both cyanobacteria and eukaryotic algae as light-driven P450 bioreactors and biosynthetic platforms for the production of high-value added pharmaceuticals/chemicals (or the degradation of pollutants) in a cost-effective and eco-friendly manner. Intriguingly, a recent study showed that the expression of the above-mentioned CYP1A1 in Synechococcus elongatus PCC 7942 led to not only an improvement of P450 activity, but also a significant increase in the quantum efficiency of photosystem 9. It was hypothesized that the introduced heterologous metabolism might provide an outlet for the excessively captured energy, thus reducing the flow to the photoprotective pathways of energy consumption. Such a balance on the absorbed light energy and metabolic capacity is physiologically important for the photosynthetic microorganism.

Despite these significant progresses, there remain a number of substantial obstacles to develop the algal “bioreactors” into “cell-factories” for industrial applications. The major problem is the low
catalytic efficiency when expressing the heterologous P450s in algae. Therefore, increasing the compatibility of the heterologous P450s with the photosystem, thus improving the electron utilizing efficiency for P450s from photosystem, would become one of the main directions of P450 photo-bioreactor improvement in the future\(^7\). At present, some efforts have optimized the electron transfer from photosystem I to P450 by fusion-expression of P450 and Fdx\(^{28,41}\), or through lowering the affinity of Fdx and FNR by point mutation of FNR to redirect the electrons to P450s\(^{111}\). We envision that more pathbreaking strategies/approaches are required and will emerge to solve this central problem associated with the algal photo-driven P450 bioreactors or cell-factories.

6. Questions and challenges

In the post-genome era, big data analysis of algal genomes and transcriptomes has helped revealing more roles of P450s in algal living activities including both primary and secondary metabolisms. However, when comparing with other organisms, such as human, mammals, plants, fungi and bacteria, our understanding on the functions and mechanisms of algal P450s is very limited. Despite the recent significant progresses on algal P450s as summarized in this review, the breakthrough in algal P450 studies has yet to come due to some unsolved bottlenecks, especially for the eukaryotic algal P450s. The main problems associated with algal P450 functional studies lies in: 1) For cyanobacteria, genome-editing remains a time-consuming task because of its low growth rate. For some species of diploid or multiploid, the genetic manipulation is even more complicated. Besides, the expression levels of heterologous P450 genes in cyanobacteria are usually low, thus leading to inefficient synthesis of the products of interest; 2) For eukaryotic algae, genetic manipulation and heterologous P450 expression are even more difficult due to the cellular and genomic complexity, low growth rate, membrane-bound protein limitation, and unavailability of the whole genomic blueprints (especially for giant kelps); 3) For both cyanobacteria and eukaryotic algae, genome mining and biosynthetic gene cluster analysis revealed that many P450 genes are not clustered with other biosynthetic genes, making it difficult to predict and identify their catalytic functions\(^{28,41}\); and 4) even though the current studies have shown great potential for algae as the light-driven “bioreactors” in the production of useful pharmaceuticals/chemicals, the productivity and compatibility of algal hosts for heterologous P450 expression are still too low to be applied in practical applications.

7. Conclusions and prospects

Algae are a huge group of life on the earth and play essential roles in global balance- and energy-cycles. P450s are one of the key catalytic elements for algae by mediating various common and uncommon reactions\(^3\). Functional and mechanistic characterization of algal P450s will provide us the knowledge on what they do and how they work in the native metabolic networks of algae. In turn, the knowledge would enable us to employ these algal P450 biocatalysts or the algal photosynthetic platform to produce natural and unnatural but useful products, such as pharmaceuticals and fine chemicals, with the accumulating methodologies and tools of synthetic biology. In recent years, more algal P450s have been functionally and mechanistically elucidated, which expands our understandings on catalytic diversity of the whole P450 superfamily. In addition, the photosynthetic algae have shown their great potential as “photo-bioreactors” for heterogenous P450s of different origins to produce high-value products.

Finally, we conclude that P450 studies in algae are still on the early stage. Comparing with other organisms, there currently lacks a general model strain for either prokaryotic or eukaryotic algal P450 studies. However, once developed, an algal platform strain might be advantageous over \(E. coli\) and \(Saccharomyces cerevisiae\) because it would optimally have all the necessary elements, including the endomembrane system, excess \(O_2\) supply, and different sources of reducing power, for P450 expression and functionalization. It is still questionable whether the native algal P450s can directly interact with the photosystem to channel the solar energy derived electrons to drive their catalytic cycles; and whether the Fdx-associated photosystem can be universally used as a general electron donor of P450s to replace the functionality of redox partner proteins and NAD(P)H. Taken together, we anticipate that the studies on algal P450s and “photo-bioreactors” will become more popular and feasible in the near future, along with the expansion of the synthetic biology toolbox, and the development of higher-throughput omics technologies and higher-efficiency genome-editing methods.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2020YFA0907900), the National Natural Science Foundation of China (32000039, 32025001, 31972815 and 42176124), the Natural Science Foundation of Shandong Province (ZR2019ZD20, ZR2019ZD17 and ZR2020ZD23), the Fundamental Research Funds of Shandong University (2019GN031), and the Scientific Research Fund of Binzhou Medical University (BY2021KYQD25).

Author contributions

Xingwang Zhang, Shengying Li, and Chunxiao Meng conceived the review. Shanmin Zheng, Jiawei Guo and Fangyuan Cheng summed up the literatures and prepared the manuscript. Xingwang Zhang, Shengying Li, Zhengquan Gao and Lei Du revised the manuscript. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors declare no competing financial interest.

References

1. Nelson DR. Cytochrome P450 diversity in the tree of life. \(BBA-Proteins\) \& \(Proteom\) 2018;1866:141–54.
2. Montellano PROD. \(Cytochrome\) P450-structure, mechanism, and biochemistry. 4th ed. Switzerland: Springer; 2015.
3. Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. \(Nat Prod Rep\) 2017;34:1061–89.
4. Zhang X, Guo J, Cheng F, Li S. Cytochrome P450 enzymes in fungal natural product biosynthesis. \(Nat Prod Rep\) 2021;38:1047–228.
5. Robert FO, Pandhal J, Wright PC. Exploiting cyanobacterial P450 pathways. \(Curr Opin Microbiol\) 2010;13:301–6.
6. Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, et al. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from \(Streptomyces venezuelae\). \(J Biol Chem\) 2006;281:26289–97.
2842 Shanmin Zheng et al.

7. Cryle MJ, Schlichting I. Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the P450(BioII) ACP complex. Proc Natl Acad Sci U S A 2008;105:15696–701.

8. Kettendorf JD, Sherman DH. The methymycin/pikromycin pathway: a model for metabolic diversity in natural product biosynthesis. Bioorg Med Chem 2009;17:2137–46.

9. Murphy CD. Drug metabolism in microorganisms. Biotechnol Lett 2015;37:19–28.

10. Theis T, Backhaus T, Bossmann B, Grimm L. Xenobiotic biotransformation in uncellular green algae. Involvement of cytochrome P450 in the activation and selectivity of the pyridazine pro-herbicide metflurazon. Plant Physiol 1996;112:361–70.

11. Wrighton SA, Stevens JC. The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol 1992;22:1–21.

12. Rudolf JD, Chang CY, Ma M, Shen B. Cytochromes P450 for natural product biosynthesis in streptomyces: sequence, structure, and function. Nat Prod Rep 2017;34:1141–72.

13. Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. Plant cytochrome P450 plasticity and evolution. Mol Plant 2014;7:1244–65.

14. Riddick DS, Ding X, Wolf CR, Porter TD, Pandey AV, Zhang QY, et al. NADPH-cytochrome P450 oxidoreductase: roles in physiology, pharmacology, and toxicology. Drug Metab Dispos 2013;41:12–23.

15. Montellano PROD, VossB JJD. Oxidizing species in the mechanism of cytochrome P450. Nat Prod Rep 2002;19:477–93.

16. Guengerich FP. Mechanisms of cytochrome P450 substrate oxidation: MiniReview. J Biochem Mol Toxicol 2010;21:163–8.

17. Ahmed RA, He M, Aftab RA, Zheng S, Nagi M, Bakri R, et al. Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production. Sci Rep-UK 2017;7:8118–27.

18. Shi Y, Jiang Z, Hu X, Gu R, Jiang B, et al. The cytochrome P450 catalyzing C=S bond formation in S-heterocyclization of chuxangynin biosynthesis. Angew Chem Int Ed 2021;60:15399–404.

19. Zhang X, Xu X, You C, Yang C, Guo J, Sang M, et al. Biosynthesis of chuxangynin featuring a deubiquitinase-like sufratransferase. Angew Chem Int Ed 2021;60:24418–23.

20. Morita I, Mori T, Mitsuhashi T, Hoshino S, Taniguchi Y, Kituchi T, et al. Exploiting a C=N bond forming cytochrome P450 mono-oxygenase for C=S bond formation. Angew Chem Int Ed 2020;59:3988–93.

21. Grogan G. Hemoprotein catalyzed oxygenations: P450s, UPOs, and progress toward scalable reactions. JACS Au 2021;1:1312–29.

22. Dixit RB, Suseela MR. Cyanobacteria: potential candidates for drug discovery. Anton Leeuw Int J G 2013;103:947–51.

23. Khandal MJ, Ninza N, Padayachee T, Chen W, Yu JH, Nelson DR, et al. Comprehensive analyses of cytochrome P450 monoxygenases and secondary metabolite biosynthetic gene clusters in cyanobacteria. Int J Mol Sci 2020;21:6556–71.

24. Napoli JL. Physiological insights into all-trans-retinoic acid biosynthesis. BBA-Mol Cell Biol 2012;1821:152–67.

25. Idres N, Marill J, Flexor MA, Chabot GB. Activation of retinoic acid receptor-dependent transcription by all-trans-retinoic acid metabolites and isomers. J Biol Chem 2002;277:31491–8.

26. Ke N, Baudry J, Makris TM, Schuler MA, Sligar SG. A retinoic acid binding cytochrome P450: CYP120A1 from Synechocystis sp. PCC 6803. Arch Biochem Biophys 2005;436:110–20.

27. Kuhnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I. Crystal structures of substrate-free and retinoic acid-bound cyano-bacterium cytochrome P450 CYP120A1. Biochemistry 2008;47:6552–9.

28. Alder A, Bigler P, Werck-Reichhart D, Al-Babili S. In vitro characterization of Synechocystis CYP120A1 revealed the first nonanal retinoic acid hydrolase. FEBS J 2009;276:5416–31.

29. Richard DA, Joseph J, Barchi Jr , Kuniyoshi Masayuki, Moore Richard E, Mynderse JS. Structure of malyngamide C. J Org Chem 1985;50:2859–62.

30. Moss NA, Leao T, Rankin MR, McCullough TM, Qu P, Korobeynikov A, et al. Ketoreductase domain dysfunction expands chemodiversity: malyngamide biosynthesis in the cyanobacterium Okeania hirsuta. ACS Chem Biol 2018;13:3385–95.

31. Lassen LM, Nielsen AZ, Ziersen B, Gnanesakaran T, Møller BL, Jensen PE. Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. ACS Synth Biol 2014;3:1–12.

32. Meunier B, de Visser SP, Shaik S. Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 2004;104:3947–80.

33. Paine MJ, Scruton NS, Munro AW, Gutierrez A, Roberts GC, Wolf CR. Electron transfer partners of cytochrome P450. In: Cytochrome P450-structure, mechanism, and biochemistry. Boston: Springer; 2005. p. 115–48.

34. Montellano PROD. Cytochrome P450: structure, mechanism, and biochemistry. 3rd ed. New York: Springer; 2005.

35. Hausjell J, Halbwirth H, Spadut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep 2018;38:1290–302.

36. Podust LM, Sherman DH. Diversity of P450 enzymes in the biosynthesis of natural products. Nat Prod Rep 2012;29:1251–66.

37. Jiang Y, Li S. Catalytic function and application of cytochrome P450 enzymes in biosynthesis and organic synthesis. Chin J Org Chem 2018;38:2307–23.

38. Brash AR. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes. Phytochemistry 2009;70:1522–31.

39. Lawton LA, Codd GA. Cyanobacterial (blue-green-algal) toxins and their significance in UK and European waters. Water Environ J 1991;5:460–5.

40. Dixit RB, Suseela MR. Cyanobacteria: potential candidates for drug discovery. Anton Leeuw Int J G 2013;103:947–51.

41. Khumalo MJ, Nzuza N, Padayachee T, Chen W, Yu JH, Nelson DR, et al. Comprehensive analyses of cytochrome P450 monoxygenases and secondary metabolite biosynthetic gene clusters in cyanobacteria. Int J Mol Sci 2020;21:6556–71.

42. Lee WR, Jayasundera W, Palma CM, Schmieder A, Chih-Hsien L. Comparative genomics reveals the adaptations underlying the cyanobacterium Synechocystis sp. PCC 6803. Bioinformatics 2008;24:384–93.
Cytochrome P450s in algae

53. Ramaswamy AV, Sorrels CM, Gerwick WH. Cloning and biochemical characterization of the hecetochlorin biosynthetic gene cluster from the marine cyanobacterium _Lyngbya majuscula_. _J Nat Prod_ 2007;70:1977–86.

54. Liu X, Sheng J, Curtiss 3rd R. Fatty acid production in genetically modified cyanobacteria. _Proc Natl Acad Sci U S A_ 2011;108:6899–904.

55. Ramaswamy AV, Sorrels CM, Gerwick WH. Cloning and biochemical characterization of the hecetochlorin biosynthetic gene cluster from the marine cyanobacterium _Lyngbya majuscula_. _J Nat Prod_ 2007;70:1977–86.

56. Liu X, Sheng J, Curtiss 3rd R. Fatty acid production in genetically modified cyanobacteria. _Proc Natl Acad Sci U S A_ 2011;108:6899–904.

57. Lambers PJ, McLaughlin S, Papin S, Trujillo-Provencio C, Rynearson 2nd AJ. Developmental rearrangement of cytochrome c550 homolog of the _Anabaena_ sp. strain PCC 7120 nifD element. _J Bacteriol_ 1990;172:6981–90.

58. Torres S, Fjeldland CR, Lambers PJ. Alkane-induced expression, substrate binding profile, and immunolocalization of a cytochrome P450 encoded on the nifD excision element of _Anabaena_ 7120. _BMC Microbiol_ 2005;5:5–16.

59. Van den Berg M, Birnbaum L, Bosveld AT, Brunstrom B, Cook P, Feeley M, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. _Environ Health Perspect_ 2002;106:773–92.

60. Duell ER, Milzarek TM, El Omari M, Linares-Otayo LJ, Schäferle TF, König GM, et al. Identification, cloning, expression and functional interrogation of the biosynthetic pathway of the polychlorinated triphenyls ambigol A–C from _Fischerella ambigua_ 108th. _Org Chem Front_ 2020;7:3193–201.

61. Agarwal V, El Gamal AA, Yamanaka K, Poth D, Kersten RD, Schorn M, et al. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. _Nat Chem Biol_ 2014;10:640–7.

62. Bovwmeester HJ, Kotte J, Verstappen FW, Alftg IG, de Kraker JW, Wallaart TE. Isolation and characterization of two germaricene A synthase cDNA clones from _Chlorella pyrenoidosa_. _Plant Physiol_ 2002;129:134–44.

63. Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C. Identification of sesquiterpene synthases from _Nostoc punctiforme_ PCC 73102 and _Nostoc sp_. strain PCC 7120. _J Bacteriol_ 2008;190:6084–96.

64. Harada H, Shindo K, Iki K, Teraoka A, Okamoto S, Yu F, et al. Efficient functional analysis system for cyanobacterial or plant cytochromes P450 involved in sesquiterpene biosynthesis. _Appl Microbiol Biotechnol_ 2011;90:467–76.

65. Irie K, Hirota M, Hagiwara N, Koshimizu K, Hayashi H, Murao S, et al. The Epstein-Barr virus early antigen inducing indole alkaloids, (±)-indolactam V and its related compounds, produced by _Actinomadura_ sp. L6367. _Agric Biol Chem_ 1989;53:3381–90.

66. Huyhn MU, Elston MC, Hernandez NM, Ball DB, Kajiyama S, Irie K, et al. Enzymatic production of (±)-indolactam V by _LtxB_, a cytochrome P450 monoxygenase. _J Nat Prod_ 2010;73:71–4.

67. Hiraoka M, Shimada S, Uenosono M, Masuda M. A new green-tide forming alga, _Ulva ohnoi_ Hiraoka et Shimada sp. nov. (Ulvales, Ulvophyceae) from Japan. _Phycol Res_ 2004;52:17–29.

68. Horner RA, Garrison DL, Plamley FG. Harmful algal blooms and red tide problems on the US west coast. _Limnol Oceanogr_ 1997;42:1076–88.

69. Wang BG, Gloer JB, Ji NY, Zhao JC. Halogenated organic molecules of _Rhodolomelaceae_ origin: chemistry and biology. _Chem Rev_ 2013;113:3632–85.

70. Wei X, Hu H, Tong H, Gmitter FG. Profiles of gene family members related to carotenoid accumulation in citrus genus. _J Plant Biol_ 2017;60:1–10.

71. Gauthier ML, Pickering CR, Miller CJ, Fordyce CA, Chew KL, Berman HK, et al. p38 regulates cytochrome-2 in human mammary epithelial cells and is activated in premalignant tissue. _Cancer Res_ 2005;65:1792–9.

72. Stumpe M, Feusner I. Formation of oxylipins by CYP74 enzymes. _Phytochemistry_ 2006;62:869–904.

73. Ohta D, Mizutani M. Redundancy or flexibility: molecular diversity of the electron transfer components for P450 monoxygenases in higher plants. _Front Biosci_ 2004;9:1587–97.

74. Koeduka T, Ishizaki K, Mwenda CM, Hori K, Sasaki-Seikimoto Y, Ohta H, et al. Biochemical characterization of allene oxide synthases from the liverwort _Marchantia polymorpha_ and green microalgae _Klebsormidium flaccidum_ provides insight into the evolutionary divergence of the plant CYP74 family. _Planta_ 2015;242:1175–86.

75. Toporkova YY, Fatykhova VS, Gogolev YV, Khairutdinov BI, Mukhtarova LS, Grechkin AN. Epoxycarotenoid synthase of _Ectocarpus siliculosus_. First CYP74-related enzyme of oxylipin biosynthesis in brown algae. _Bba-Mol Cell Biol_ 2017;1862:167–75.

76. Rieter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, Potin P, et al. Transcriptomic and metabolomic analysis of copper stress acclimation in _Ectocarpus siliculosus_ highlights signaling and tolerance mechanisms in brown algae. _BMC Plant Biol_ 2014;14:116–32.

77. Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R. Different roles of alpha- and beta-branched xanthophylls in photosystem assembly and photoprotection. _J Biol Chem_ 2007;282:35056–68.

78. Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, et al. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. _BMC Genom_ 2013;14:457–76.

79. Liang MH, Zhu J, Jiang JG. Carotenoids biosynthesis and cleavage-related genes from bacteria to plants. _Crit Rev Food Sci Nutr_ 2018;58:2314–33.

80. Liang MH, Xie H, Chen HH, Liang ZC, Jiang JG. Functional identification of two types of carotene hydroxylases from the green alga _Dunaliella bardawil_ rich in lutein. _ACS Synth Biol_ 2020;9:1246–53.

81. Nakamura R, Nishimura T, Ishikawa T, Imaiishi H. Physiological role of beta-carotene monohydroxylase (CYP79H1) in carotenoid biosynthesis in _Euglena gracilis_. _Plant Sci_ 2019;278:80–7.

82. Qi X, Bakht S, Qin B, Leggett M, Hemmings A, Mellon F, et al. A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. _Frontiers Plant Sci_ 2019;10:3604–8.

83. Lamb DC, Kelly DE, Kelly SL. Molecular diversity of sterol 14alpha-demethylase substrates in plants, fungi and humans. _FEBS Lett_ 1998;425:263–5.

84. Lu Y, Zhou W, Wei L, Li J, Jia J, Li F, et al. Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oelaginous microalga _Nannochloropsis oceanica_. _Biotechnol Biofuels_ 2014;7:81–95.

85. Topletz AR, Thatcher JE, Zelter A, Lutz JD, Tay S, Nelson WL, et al. Comparison of the function and expression of CYP26A1 and CYP26B1, the two retinoic acid hydroxylases. _Biochem Pharmacol_ 2012;83:149–63.

86. He F, Morii T, Morita I, Nakamura H, Albvova M, Hoshino S, et al. Molecular basis for the P450-catalyzed C–N bond formation in _in vitro_ _indolactam_ biosynthesis. _Nat Chem Biol_ 2019;15:1206–13.

87. Lee DS, Noche P, Hamberg M, Raman CS. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. _Nature_ 2008;455:363–8.

88. Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. _Plant Sci_ 2009;177:272–80.

89. Santos-Merino M, Torrado A, Davis GA, Rottig A, Bibby TS, Kramer DM, et al. Improved photosynthetic capacity and photosystem I oxidation via heterologous metabolism engineering in cyanobacteria. _Proc Natl Acad Sci U S A_ 2021;118:1–9.
101. Kim YH, Kwon T, Yang HJ, Kim W, Youn H, Lee JY, et al. Gene expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis sp. PCC 6803 for the biosynthesis of caffeic acid. J Appl Physcol 2016;26:219–26.

102. Xue Y, He Q. Cyanobacteria as cell factories to produce plant secondary metabolites. Front Bioeng Biotechnol 2015;3:57–62.

103. Sibbesen O, Koch B, Halkier BA, Moller BL. Isolation of the heme-protein P450 from Pseudomonas aeruginosa NCIMB 12458. FEBS Lett 1986;195:149–53.

104. Schuchardt U, Cardoso D, Sercheli R, Pereira R, Cruz R, Guerreiro MC, et al. Cyclohexane oxidation continues to be a challenge. Biocatalysis 2001;1:11–17.

105. Salamanca D, Karande R, Schmid A, Dobslaw D. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100. Appl Microbiol Biotechnol 2015;99:6889–97.

106. Hoschek A, Toepel J, Kochkeppel A, Karande R, Buhler B, Schmid A. Light-dependent and aeration-independent gram-scale conversion of cyclohexane to cyclohexanol by CYP450 harboring Synechocystis sp. PCC 6803. Biotechnol J 2019;14:724–33.

107. Berepiki A, Hitchcock A, Moore CM, Bibby TS. Tapping the unused potential of photosynthesis with a heterologous electron sink. ACS Synth Biol 2016;5:1369–75.

108. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y. Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides atrazine and simazine. J Agric Food Chem 2005;53:8557–64.

109. Inui H, Shiota N, Motoi Y, Ido Y, Inoue T, Kodama T, et al. Expression and functional characterization of two cytochrome P450 carotenoid monooxygenases from Phaeodactylum tricornutum. FEBS Lett 2005;579:44–9.

110. Mellor SB, Nielsen AZ, Burow M, Motawia MS, Jakubauskas D, Wiegand K, Lobbert P, et al. Remodeling of photosynthetic electron transport in Synechocystis sp. PCC 6803 for future hydrogen production from water. BBA-Bioenergetics 2020;1861:148208–18.

111. Cui H, Yu X, Wang Y, Cui Y, Li X, Liu Z, et al. Gene cloning and expression of a novel carotenoid hydroxylase (CYP97C) from the green alga Haematococcus pluvialis. J Appl Physcol 2013;26:91–103.

112. Yang LE, Huang XQ, Hang Y, Deng YY, Lu QQ, Lu S. The P450-type carotene hydroxylase PuCHY1 from Porphyra maxima suggests the evolution of carotenoid metabolism in red algae. J Integr Plant Biol 2014;56:902–15.