A note on the universal separable Banach space with an unconditional Schauder basis with constant K

JOANNA GARBULIŃSKA-WĘGRZYN*

Institute of Mathematics, Jan Kochanowski University (POLAND)

jgarbulinska@ujk.edu.pl

January 31, 2018

Abstract

Using the technique of Fraïssé theory we construct a universal object in the class of separable Banach spaces with an unconditional Schauder basis with constant K.

MSC (2010) Primary: 46B04. Secondary: 46M15, 46M40.

Keywords: Unconditional Schauder basis, rational spaces, isometry.

1 Introduction

A Banach space X is complementably universal for a given class of Banach spaces if X belongs to this class and every space from the class is isomorphic to a complemented subspace of X.

In 1969 Pełczyński [11] constructed a complementably universal Banach space for the class of Banach spaces with a Schauder basis. In 1971 Kadec [6] constructed a complementably universal Banach space for the class of spaces with the bounded approximation property (BAP). In the same year Pełczyński [9] showed that every Banach space with BAP is complemented in a space with a basis. Pełczyński & Wojtaszczyk [12] constructed in 1971 a universal Banach space for the class of spaces with a finite-dimensional decomposition. Applying Pełczyński’s decomposition argument [10], one immediately concludes that all three universal spaces are isomorphic. It is worth mentioning a negative result of Johnson & Szankowski [5] saying that no separable Banach space can be complementably universal for the class of all separable Banach spaces. The author in [4] presented a natural extension property that describes an isometric version

*Research of the second author was supported by NCN grant DEC-2013/11/N/ST1/02963.
of the Kadec-Pelczyński-Wojtaszczyk space. The constructed space is unique, up to isometry, for the class of Banach spaces with finite-dimensional decomposition and is isomorphic to the Kadec-Pelczyński-Wojtaszczyk space. In [1] we construct a Banach space with a normalized monotone unordered Schauder basis containing an \(\varepsilon \)-isometric copy of any Banach space with a normalized monotone unordered Schauder basis.

This note is generalization of the results from [1] to class of Banach space with unconditional normalized Schauder basis with constant \(K \).

2 Preliminaries

All Banach spaces considered in this paper are separable. Consequently, all Schauder bases in Banach spaces are countable.

2.1 Definitions

Let \(x_b : B \to X \) be a function from some set \(B \) to a Banach space \(X \). We say that a series \(\sum_{b \in B} x_b \) converges to an element \(x \in X \) if for any \(\varepsilon > 0 \) there exists a finite set \(F \subset B \) such that for any finite set \(E \subset B \) with \(F \subset E \) we get \(\| x - \sum_{b \in E} x_b \| < \varepsilon \). In this case we say that \(x \) is the sum of the series \(\sum_{b \in B} x_b \). A series \(\sum_{b \in B} x_b \) in a Banach space is convergent if and only if it is Cauchy in the sense that for every \(\varepsilon > 0 \) there exists a finite set \(F \subset B \) such that for any subsets \(C, D \subset B \) containing \(F \) it is easy to see that for any convergent series \(\sum_{b \in B} x_b \) and any \(C \subset B \) the subseries \(\sum_{b \in C} x_b \) is Cauchy and hence is convergent in the Banach space \(X \).

By an unconditional base in a Banach space \(X \) we understand any subset \(B \subset X \) such that for each element \(x \in X \) there exists a unique function \(x_b : B \to \mathbb{R} \) such that the series \(\sum_{b \in B} x_b \cdot b \) converges to \(x \). Equivalently, base in a Banach space is an unconditional if there exist a constant \(K \) such that \(\| \sum_{b \in C} x_b \| \leq K \| \sum_{b \in B} x_b \| \) for any convergent series \(\sum_{b \in B} x_b \) and its subseries with \(C \subset B \). In this case the smallest constant \(K \) is called basis constant. Unconditional basis with basis constant \(K = 1 \) are well-known as monotonic Schauder basis.

Let \(K \geq 1 \) be a fixed real number. By a \(K \)-based Banach space we understand a pair \((X, B_X)\) consisting of a Banach space \(X \) and a normalized unconditional Schauder basis \(B_X \) for \(X \) with basic constant \(\leq K \). A \(K \)-based Banach space \((X, B_X)\) is a subspace of a \(K \)-based Banach space \((Y, B_Y)\) if \(X \subseteq Y \) and \(B_X = X \cap B_Y \).

A finite dimensional \(K \)-based Banach \((X, B_X)\) is rational if its unit ball is a convex polyhedron spanned by finitely many vector whose coordinates in the basis \(B_X \) are rational.
2.2 Categories

Let \mathcal{K} be a category. For two objects A, B of the category \mathcal{K}, by $\mathcal{K}(A, B)$ we will denote the set of all \mathcal{K}-morphisms from A to B. A subcategory of \mathcal{K} is a category \mathcal{L} such that each object of \mathcal{L} is an object of \mathcal{K} and each arrow of \mathcal{L} is an arrow of \mathcal{K}.

A category \mathcal{L} is cofinal in \mathcal{K} if for every object A of \mathcal{K} there exists an object B of \mathcal{L} such that the set $\mathcal{K}(A, B)$ is nonempty. A category \mathcal{K} has the amalgamation property if for every objects A, B, C of \mathcal{K} and for every morphisms $f \in \mathcal{K}(A, B)$, $g \in \mathcal{K}(A, C)$ we can find an object D of \mathcal{K} and morphisms $f' \in \mathcal{K}(B, D)$, $g' \in \mathcal{K}(C, D)$ such that $f' \circ f = g' \circ g$.

In this paper we shall work in the category \mathcal{K}, whose objects are K-based Banach spaces. For two K-based Banach spaces (X, B_X), (Y, B_Y), a morphism of category \mathcal{K} is a linear continuous operator $T : X \to Y$ such that $T(B_X) \subseteq B_Y$. A morphism $T : X \to Y$ of the category \mathcal{K} is called an isometry if $\|T(x)\|_Y = \|x\|_X$ for any $x \in X$.

2.3 Amalgamation

In this section we prove that the category \mathcal{K} has the amalgamation property.

Lemma 1. (Amalgamation Lemma) Let X, Y, Z be K-based Banach spaces and $j : Z \to X$, $i : Z \to Y$ be isometries. Then there exist a K-based Banach space W and isometries $j' : Y \to W$ and $i' : X \to W$ such that $i' \circ j = j' \circ i$. Moreover, if the K-based Banach spaces X, Y, Z are finite-dimensional (rational), then so is the K-based Banach space W.

Proof. Let (X, B_X), (Y, B_Y), (Z, B_Z) be K-based Banach spaces. Without loss of generality we may assume that $Z = X \cap Y$, $B_Z = B_X \cap B_Y$ and the isometries i, j are identity inclusions.

Consider the direct sum $X \oplus Y$ of the Banach space X, Y endowed with the norm $\|(x, y)\| = \|x\|_X + \|y\|_Y$. Let $W = (X \oplus Y)/\Delta$ be the quotient by the subspace $\Delta = \{(z, -z) : z \in Z\}$.

We define linear operators $i' : X \to W$ and $j' : Y \to W$ by $i'(x) = (x, 0) + \Delta$ and $j'(y) = (0, y) + \Delta$.

Repeating the argument from Lemma 1 in [1] we can show that i' and j' are isometries.

We prove that the basis of W is unconditional with basis constant K. Without loss of generality we may assume that $B_Z = B_X \cap B_Y$ and the isometries i, j are identity inclusions.

We shall identify X and Y with their images $i'(X)$ and $j'(Y)$ in W. In this case the union $B_W = B_X \cup B_Y$ is a normalized Schauder basis for W.

Given any w and a finite subset D of B_W we should prove the upper bound

$$\frac{1}{K} \left\| \sum_{b \in D} w_b \cdot b \right\| \leq \left\| \sum_{b \in B_W} w_b \cdot b \right\|,$$
where \((w_b)_{b \in B_W}\) are the coordinates of \(w = \sum_{b \in B_W} w_b \cdot b\) in the basis \(B_W\).

Write \(D = D_Z \cup D_X \cup D_Y\), where \(D_Z = D \cap B_Z = D \cap B_X \cap B_Y\), \(D_X = D \setminus B_Y\) and \(D_Y = D \setminus B_X\).

Taking into account that the norms of the \(K\)-based Banach spaces \(X, Y\) have basis constant \(K\), we obtain:

\[
\| \sum_{b \in B_W} w_b b \|_W = \inf \left\{ \| \sum_{b \in B_X \setminus B_Y} w_b b + \sum_{b \in B_X \cap B_Y} w' b \|_X + \| \sum_{b \in B_X \cap B_Y} w'' b + \sum_{b \in B_Y \setminus B_X} w_b b \|_Y : \right.
\]

\[
\sum_{b \in B_X \cap B_Y} (w_b'' + w_b''')b = \sum_{b \in B_X \cap B_Y} w_b b \}
\geq \frac{1}{K} \inf \left\{ \| \sum_{b \in D_X} w_b b + \sum_{b \in D_Z} w' b \|_X + \| \sum_{b \in D_Z} w'' b + \sum_{b \in D_Y} w_b b \|_Y : \right.
\]

\[
\sum_{b \in D_Z} (w_b' + w_b''')b = \sum_{b \in D_Z} w_b b \}
\geq \frac{1}{K} \inf \left\{ \| \sum_{b \in D_X} w_b b + \sum_{b \in B_X \cap B_Y} w_b b \|_X + \| \sum_{b \in B_X \cap B_Y} w'' b + \sum_{b \in B_Y \cap B_Y} w_b b \|_Y : \right.
\]

\[
\sum_{b \in B_X \cap B_Y} (w_b' + w_b''')b = \sum_{b \in D_Z} w_b b \}
= \frac{1}{K} \| \sum_{b \in D} w_b b \|_W
\]

This completes the proof. \(\square\)

3 Rational universality

The inverse of a bijective \(\varepsilon\)-isometry is again an \(\varepsilon\)-isometry.

Definition 1. A \(K\)-based Banach space \(X\) is called *rationally universal* if each finite dimensional \(K\)-based subspace of \(X\) is rational and for any finite-dimensional rational \(K\)-based Banach space \(A\) and subspace \(A' \subset A\), any isometry \(f' : A' \to X\) can be extended to an isometry \(f : A \to X\).

Denote by \(\mathcal{F}\) the subcategory of \(\mathcal{R}\) whose objects are rational finite-dimensional \(K\)-based Banach spaces and morphisms are linear isometries of such spaces. Obviously, up to isomorphism the category \(\mathcal{F}\) contains countably many objects. By Lemma 1, the category \(\mathcal{F}\) has the amalgamation property. We now use the concepts from [7] for
constructing a “generic” sequence in \(F \). First of all, a sequence in a fixed category \(\mathcal{C} \) is formally a covariant functor from the set of natural numbers \(\omega \) into \(\mathcal{C} \). A sequence \((X_n)_{n \in \omega}\) of objects of the category \(F \) is called a chain if each space \(X_n \) is a subspace of the \(K \)-based Banach space \(X_{n+1} \). It is easy to see that each sequence in \(K \) is isomorphic to a chain \((X_n)_{n \in \omega}\) of finite-dimensional rational \(K \)-based Banach spaces.

Definition 2. A chain of \((U_n)_{n \in \omega}\) of objects of the category \(F \) is Fraïssé if for any \(n \in \omega \), and any morphism \(f : U_n \to Y \) of \(F \), there exist \(m > n \) and a morphism \(g : Y \to U_m \) of the category \(F \) such that \(g \circ f : U_n \to U_m \) is the identity inclusion of \(U_n \) to \(U_m \).

The name “Fraïssé sequence”, as in [7], is motivated by the model-theoretic theory of Fraïssé limits developed by Roland Fraïssé [3]. One of the results in [7] is that every countably cofinal category with amalgamation has a Fraïssé sequence. Applying this general result to our category \(F \) we get:

Theorem 1 ([7]). The category \(F \) has a Fraïssé sequence.

From now on, we fix a Fraïssé sequence \((U_n)_{n \in \omega}\) in \(F \), which can be assumed to be a chain of finite-dimensional rational \(K \)-based Banach spaces. Let \(\mathbb{U} \) be the completion of the union \(\bigcup_{n \in \omega} U_n \) and \(B_{\mathbb{U}} = \bigcup_{n \in \omega} B_{U_n} \).

Lemma 2. \((\mathbb{U}, B_{\mathbb{U}})\) is a \(K \)-based Banach space.

Proof. We have to prove that \(B_{\mathbb{U}} = \bigcup_{n \in \omega} B_{U_n} \) is a normalized unconditional Schauder basis with basis constant \(K \) for \(\mathbb{U} \). For each \(n \) the spaces \(U_n \) are \(K \)-based Banach spaces, so \(\|b\| = 1 \) for every \(b \in U_n \). This shows that \(B_{\mathbb{U}} \) is normalized. The fact that \(B_{\mathbb{U}} \) is an unconditional Schauder basis with basis constant \(K \) follows from Lemma 6.2 and Fact 6.3 in [2].

Definition 1 and the construction of the \(K \)-based Banach space \(\mathbb{U} \) implies the following theorem.

Theorem 2. The \(K \)-based Banach space \(\mathbb{U} \) is rationally universal.

The following theorem can be proved by a standard back-and-forth method, see Theorem 3 in [1].

Theorem 3. Any rationally universal \(K \)-based Banach spaces \(X, Y \) are isometric.

4 Almost universality

A linear operator \(f \) between Banach spaces \(X \) and \(Y \) is called an \(\varepsilon \)-isometry for a positive real number \(\varepsilon \), if

\[
(1 + \varepsilon)^{-1} \cdot \|x\|_X < \|f(x)\|_Y < (1 + \varepsilon) \cdot \|x\|_X
\]

for every \(x \in X \setminus \{0\} \).
Definition 3. A K-based Banach space X called \textit{almost-universal} if for any $\varepsilon > 0$ and finite dimensional K-based Banach space A, any ε-isometry $f' : A' \to X$ defined on a subspace $A' \subset A$ can be extended to a ε-isometry $f : A \to X$.

The following three theorems can be proved by analogy with Theorems 4, 5, 6 in [1].

\textbf{Theorem 4.} Any rational universal K-based Banach space X is almost-universal.

\textbf{Theorem 5.} Let U and V be almost-universal K-based Banach spaces and $\varepsilon > 0$. Each ε-isometry $f : X \to V$ defined on a finite-dimensional K-based subspace X of the K-based Banach space U can be extended to a bijective ε-isometry $\bar{f} : U \to V$.

\textbf{Theorem 6.} For any $\varepsilon > 0$, every K-based Banach space X can be ε-isometrically embedded into the almost-universal K-based Banach space U.

\textbf{Acknowledgments}

The author would like to thank Taras Banakh for valuable remarks and comments.

\textbf{References}

[1] T. Banakh, J. Garbulińska-Węgrzyn, \textit{The universal separable Banach space with a monotone unordered basis}, preprint, \url{arxiv.org/pdf/1801.07433}

[2] M. Fabian, P. Halaba, P. Hájek, V. Montesinos Santalucia, J. Pelant, V. Zizler, \textit{Functional Analysis and Infinite-Dimensional Geometry}, Springer, 2001.

[3] R. Fraïssé, \textit{Sur quelques classifications des systèmes de relations}, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182.

[4] J. Garbulińska, \textit{Isometric uniqueness of a complementably universal Banach space for Schauder decompositions}, Banach J. Math. Anal. \textbf{8}:1 (2014) 211–220.

[5] W.B. Johnson, A. Szankowski, \textit{Complementably universal Banach spaces}, Studia Math. \textbf{58} (1976) 91–97.

[6] M. I. Kadec, \textit{On complementably universal Banach spaces}, Studia Math. \textbf{40} (1971) 85–89.

[7] W. Kubiś, \textit{Fraïssé sequences: category-theoretic approach to universal homogeneous structures}, Ann. Pure Appl. Logic \textbf{165} (2014) 1755–1811.

[8] W. Kubiś, S. Solecki, \textit{A proof of uniqueness of the Gurariǐ space}, Israel J. Math. \textbf{195} (2013), 449–456.
[9] A. Pełczyński, *Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basis*, Studia Math. 40 (1971) 239–243.

[10] A. Pełczyński, *Projections in certain Banach spaces*, Studia Math. 19 (1960) 209–228.

[11] A. Pełczyński, *Universal bases*, Studia Math. 32 (1969) 247–268.

[12] A. Pełczyński, P. Wojtaszczyk, *Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces*, Studia Math. 40 (1971) 91–108.