Reducing Higher Order π-Calculus to Spatial Logics

Zining Cao1,2

1Department of Computer Science and Technology
Nanjing University of Aeronautics & Astronautics
Nanjing 210016, China

2State Key Laboratory for Civil Aircraft Flight Simulation
Shanghai Aircraft Design and Research Institute
Shanghai 201210, China

Abstract—In this paper, we show that the theory of processes can be reduced to the theory of spatial logic. Firstly, we propose a spatial logic SL for higher order π-calculus, and give an inference system of SL. The soundness and incompleteness of SL are proved. Furthermore, we show that the structure congruence relation and one-step transition relation can be described as the logical relation of SL formulas. At last we extend all definitions and results of SL to a weak semantics version of SL, called WL.

Keywords—higher order π-calculus; spatial logic; inference system

I. INTRODUCTION

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dissertation [29]. In higher order π-calculus, processes and abstractions over processes of arbitrarily high order, can be communicated. Some interesting equivalences for higher order π-calculus, such as barbed equivalence, context bisimulation and normal bisimulation, were presented in [29]. Barbed equivalence can be regarded as a uniform definition of bisimulation for a variety of concurrent calculi. Context bisimulation is a very intuitive definition of bisimulation for higher order π-calculus, but it is heavy to handle, due to the appearance of universal quantifications in its definition. In the definition of normal bisimulation, all universal quantifications disappeared, therefore normal bisimulation is a very economic characterization of bisimulation for higher order π-calculus. The coincidence among the three weak equivalences was proven [29], [28], [20]. Moreover, this proposition was generalized to the strong bisimulation case [10].

Spatial logic was presented in [12]. Spatial logic extends classical logic with connectives to reason about the structure of the processes. The additional connectives belong to two families. Intensional operators allow one to inspect the structure of the process. A formula $A_1 \mid A_2$ is satisfied whenever we can split the process into two parts satisfying the corresponding subformula A_i, $i = 1, 2$. In the presence of restriction in the underling model, a process P satisfies formula $\nu n.A$ if we can write P as $\langle vn \rangle P'$ with P' satisfying A. Finally, formula \emptyset is only satisfied by the inaction process. Connectives \mid and \otimes come with adjunct operators, called guarantee (\triangleright) and hiding (\otimes) respectively, which allow one to extend the process being observed. In this sense, these can be called contextual operators. P satisfies $A_1 \triangleright A_2$ whenever the spatial composition $\langle \rangle$ of P with any process satisfying A_1 satisfies A_2, and P satisfies $A \otimes n$ if $\langle vn \rangle P$ satisfies A. Some spatial logics have an operator for fresh name quantification [11].

There are lots of works of spatial logics for π-calculus and Mobile Ambients. In some papers, spatial logic was studied on its relations with structural congruence, bisimulation, model checking and type system of process calculi [5], [6], [9], [16], [27].

The main idea of this paper is that the theory of processes can be reduced to the theory of spatial logic.

In this paper, we present a spatial logic for higher order π-calculus, called SL, which comprises some action temporal operators such as $\langle \tau \rangle$ and $\langle a(A) \rangle$, some spatial operators such as prefix and composition, some adjunct operators of spatial operators such as \triangleright and \otimes, and some operators on the property of free names and bound names such as $\otimes\alpha$ and $\otimes\alpha$. We give an inference system of SL, and prove the soundness of the inference system for SL. Furthermore, we show that there is no finite complete inference system for SL. Then we study the relation between processes and SL formulas. We show that an SL formula can be viewed as a specification of processes, and conversely, a process can be viewed as a special kind of SL formulas. Therefore, SL is a generalization of processes, which extend process with specification statements. We show that the structural congruence relation and one-step transition relation can be described as the logical relation of SL formulas. We also show that bisimulations for higher order processes coincide with logical equivalence with respect to some fragment of a sublogic of SL.

Furthermore, we give a weak semantics version of SL, called WL, where the internal action is unobservable. The results of SL are extended to WL, such as an inference system for WL, the soundness of this inference system, and the non-existence of a finite complete inference system for WL.

Finally, we add μ-operator to SL. The new logic is named μSL. We show that WL is a sublogic of μSL and replication operator can be expressed in μSL. Thus μSL is a powerful logic which can express both strong semantics and weak semantics for higher order processes.

This paper is organized as follows: In Section 2, we briefly review higher order π-calculus. In Section 3, we present a spatial logic SL, including its syntax, semantics and inference system. The soundness and incompleteness of the inference

Abstract—In this paper, we show that the theory of processes can be reduced to the theory of spatial logic. Firstly, we propose a spatial logic SL for higher order π-calculus, and give an inference system of SL. The soundness and incompleteness of SL are proved. Furthermore, we show that the structure congruence relation and one-step transition relation can be described as the logical relation of SL formulas. At last we extend all definitions and results of SL to a weak semantics version of SL, called WL.

Keywords—higher order π-calculus; spatial logic; inference system

I. INTRODUCTION

Higher order π-calculus was proposed and studied intensively in Sangiorgi’s dissertation [29]. In higher order π-calculus, processes and abstractions over processes of arbitrarily high order, can be communicated. Some interesting equivalences for higher order π-calculus, such as barbed equivalence, context bisimulation and normal bisimulation, were presented in [29]. Barbed equivalence can be regarded as a uniform definition of bisimulation for a variety of concurrent calculi. Context bisimulation is a very intuitive definition of bisimulation for higher order π-calculus, but it is heavy to handle, due to the appearance of universal quantifications in its definition. In the definition of normal bisimulation, all universal quantifications disappeared, therefore normal bisimulation is a very economic characterization of bisimulation for higher order π-calculus. The coincidence among the three weak equivalences was proven [29], [28], [20]. Moreover, this proposition was generalized to the strong bisimulation case [10].

Spatial logic was presented in [12]. Spatial logic extends classical logic with connectives to reason about the structure of the processes. The additional connectives belong to two families. Intensional operators allow one to inspect the structure of the process. A formula $A_1 \mid A_2$ is satisfied whenever we can split the process into two parts satisfying the corresponding subformula A_i, $i = 1, 2$. In the presence of restriction in the underling model, a process P satisfies formula $\nu n.A$ if we can write P as $\langle vn \rangle P'$ with P' satisfying A. Finally, formula \emptyset is only satisfied by the inaction process. Connectives \mid and \otimes come with adjunct operators, called guarantee (\triangleright) and hiding (\otimes) respectively, which allow one to extend the process being observed. In this sense, these can be called contextual operators. P satisfies $A_1 \triangleright A_2$ whenever the spatial composition $\langle \rangle$ of P with any process satisfying A_1 satisfies A_2, and P satisfies $A \otimes n$ if $\langle vn \rangle P$ satisfies A. Some spatial logics have an operator for fresh name quantification [11].

There are lots of works of spatial logics for π-calculus and Mobile Ambients. In some papers, spatial logic was studied on its relations with structural congruence, bisimulation, model checking and type system of process calculi [5], [6], [9], [16], [27].

The main idea of this paper is that the theory of processes can be reduced to the theory of spatial logic.

In this paper, we present a spatial logic for higher order π-calculus, called SL, which comprises some action temporal operators such as $\langle \tau \rangle$ and $\langle a(A) \rangle$, some spatial operators such as prefix and composition, some adjunct operators of spatial operators such as \triangleright and \otimes, and some operators on the property of free names and bound names such as $\otimes\alpha$ and $\otimes\alpha$. We give an inference system of SL, and prove the soundness of the inference system for SL. Furthermore, we show that there is no finite complete inference system for SL. Then we study the relation between processes and SL formulas. We show that an SL formula can be viewed as a specification of processes, and conversely, a process can be viewed as a special kind of SL formulas. Therefore, SL is a generalization of processes, which extend process with specification statements. We show that the structural congruence relation and one-step transition relation can be described as the logical relation of SL formulas. We also show that bisimulations for higher order processes coincide with logical equivalence with respect to some fragment of a sublogic of SL.

Furthermore, we give a weak semantics version of SL, called WL, where the internal action is unobservable. The results of SL are extended to WL, such as an inference system for WL, the soundness of this inference system, and the non-existence of a finite complete inference system for WL.

Finally, we add μ-operator to SL. The new logic is named μSL. We show that WL is a sublogic of μSL and replication operator can be expressed in μSL. Thus μSL is a powerful logic which can express both strong semantics and weak semantics for higher order processes.

This paper is organized as follows: In Section 2, we briefly review higher order π-calculus. In Section 3, we present a spatial logic SL, including its syntax, semantics and inference system. The soundness and incompleteness of the inference
system of SL are proved. Furthermore, we discuss that SL can be regarded as a specification language of processes and processes can be regarded as a kind of special formulas of SL. Bisimulation in higher order π-calculus coincides with logical equivalence with respect to some fragment of a sublogic of SL. In Section 4, we give a weak semantics version of SL, called WL. We generalize concepts and results of SL to WL. The paper is concluded in Section 5.

II. HIGHER ORDER π-CALCULUS

A. Syntax and Labelled Transition System

In this section we briefly recall the syntax and labelled transition system of the higher order π-calculus. Similar to [28], we only focus on a second-order fragment of the higher order π-calculus, i.e., there is no abstraction in this fragment.

We assume a set N of names, ranged over by a, b, c, ... and a set V ar of process variables, ranged over by X, Y, Z, U, We use E, F, P, Q, ... to stand for processes. Pr denotes the set of all processes.

We first give the syntax for the higher order π-calculus processes as follows:

\[P ::= 0 \mid U \mid \pi.P \mid P_1 | P_2 \mid (\nu a)P \]

π is called a prefix and can have one of the following forms:

\[\pi ::= a(U) \mid \pi(P), \text{ here } a(U) \text{ is a higher order input prefix and } \pi(P) \text{ is a higher order output prefix.} \]

In each process of the form \((\nu a)P\) the occurrence of a is bound within the scope of P. An occurrence of a in a process is said to be free if it does not lie within the scope of a bound occurrence of a. The set of names occurring free in P is denoted fn(P). An occurrence of a name in a process is said to be bound if it is not free, and we write the set of bound names as bn(P), n(P) denotes the set of names of P, i.e., n(P) = fn(P) ∩ bn(P).

Higher order input prefix \(a(U)\).P binds all free occurrences of U in P. The set of variables occurring free in P is denoted fv(P). We write the set of bound variables as bv(P). A process is closed if it has no free variable; it is open if it may have free variables. Prc is the set of all closed processes.

Processes P and Q are α-convertible, P ≡α Q, if Q can be obtained from P by a finite number of changes of bound names and variables. For example, \((\nu b)(\pi(b(U)).U).\langle 0\rangle \equiv\alpha (\nu c)(\pi(c(U)).U).\langle 0\rangle\).

Structural congruence is the smallest congruence relation that validates the following axioms: P|Q ≡ Q|P; (P|Q)|R ≡ P|(Q|R); P|0 ≡ P; (\nu a)|0 ≡ 0; (\nu m)(\nu n)P ≡ (\nu n)(\nu m)P; (\nu a)|(\nu b)Q ≡ (\nu b)Q if a ≠ fn(P).

In [26], Parrow has shown that in higher order π-calculus, the replication can be defined by other operators such as higher order prefix, parallel and restriction. For example, !P can be simulated by RP = (\nu a)(D|\pi(P|D)|0), where D = a(X)|(X|\pi(X)|0).

The operational semantics of higher order processes is given in Table 1. We have omitted the symmetric cases of the parallelism and communication rules.

\begin{align*}
ALP &: \frac{P \xrightarrow{\alpha} P'}{Q \xrightarrow{\alpha} Q'} \quad P \equiv Q, P' \equiv Q' \\
OUT &: \pi(E).P \xrightarrow{\pi(E)} P \\
IN &: a(U).P \xrightarrow{a(E)} P\{E/U\} bn(E) = \emptyset \\
PAR &: \frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \quad bn(\alpha) \cap fn(Q) = \emptyset \\
COM &: \frac{P \xrightarrow{(\nu b)\pi(E)} P' \xrightarrow{\alpha(E)} Q' \quad b \cap fn(Q) = \emptyset}{P|Q \xrightarrow{(\nu b)\pi(E)} P'|Q'} \\
RES &: \frac{P \xrightarrow{\alpha} P'}{(\nu a)P \xrightarrow{\alpha} (\nu a)P'} \quad a \notin n(\alpha) \\
OPEN &: \frac{P \xrightarrow{(\nu c)\pi(E)} P' \quad a \neq b, b \in fn(E) - c}{(\nu b)P \xrightarrow{(\nu b,c)\pi(E)} P'} \\
REP &: \frac{P|P \xrightarrow{\alpha} P'}{\frac{1P \xrightarrow{\alpha} P'}{}}
\end{align*}

Table 1. The operational semantics of higher order π-calculus

B. Bisimulations in Higher Order π-Calculus

Context bisimulation and contextual barbed bisimulation were presented in [29] to describe the behavioral equivalences for higher order π-calculus. Let us review the definition of these bisimulations. In the following, we abbreviate P\{E/U\} as P(E).

Context bisimulation is an intuitive definition of bisimulation for higher order π-calculus.

Definition 1 A symmetric relation R ⊆ Prc × Prc is a strong context bisimulation if P R Q implies:

\begin{enumerate}
\item whenever P \xrightarrow{\tau} P’, there exists Q’ such that Q \xrightarrow{\tau} Q’ and P’ R Q’;
\item whenever P \xrightarrow{a(E)} P’, there exists Q’ such that Q \xrightarrow{a(E)} Q’ and P’ R Q’;
\item whenever P \xrightarrow{(\nu b)\pi(E)} P’, there exists Q’, F, \bar{c} such that Q \xrightarrow{(\nu c)\pi(F)} Q’ and for all C(U) with fn(C(U)) ∩ \{b, \bar{c}\} = \emptyset, (\nu b)(P'|C(E)) R (\nu c)(Q'|C(F)), Here C(U) represents a process containing a unique free variable U.
\end{enumerate}

We write P \sim_{\text{Ct}} Q if P and Q are strongly context bisimilar.

Contextual barbed equivalence can be regarded as a uniform definition of bisimulation for a variety of process calculi.

Definition 2 A symmetric relation R ⊆ Prc × Prc is a strong contextual barbed bisimulation if P R Q implies:

\begin{enumerate}
\item whenever P \xrightarrow{\tau} P’ then there exists Q’ such that Q \xrightarrow{\tau} Q’ and P’ R Q’;
\item whenever P \xrightarrow{a(E)} P’ then there exists Q’ such that Q \xrightarrow{a(E)} Q’ and P’ R Q’;
\item whenever P \xrightarrow{(\nu b)\pi(E)} P’, \exists P’’ \ni \exists P, P \xrightarrow{a(E)} P’, and P \xrightarrow{\pi} P \xrightarrow{(\nu b)\pi(E)} P’.
\end{enumerate}
We write $P \sim_{Ba} Q$ if P and Q are strongly contextual barbed bisimilar.

Intuitively, a tau action represents the internal action of processes. If we just consider external actions, then we should adopt weak bisimulations to characterize the equivalence of processes.

Definition 3 A symmetric relation $R \subseteq P r^e \times P r^e$ is a weak context bisimulation if $P R Q$ implies:

1. Whenever $P \leftrightarrow P'$, there exists Q' such that $Q \leftrightarrow Q'$ and $P' R Q'$;
2. Whenever $P \stackrel{a(E)}{\Rightarrow} P'$, there exists Q' such that $Q \stackrel{a(E)}{\Rightarrow} Q'$ and $P' R Q'$;
3. Whenever $P \stackrel{(v_b)(E)}{\Rightarrow} P'$, there exist Q', F, c such that $Q \stackrel{(v_c)(F)}{\Rightarrow} Q'$ and for all $C(U)$ with $f_n(C(U)) \cap \{b, c\} = \emptyset$, $(v_b)(P'(C(E))) R (v_c)(Q'(C(F)))$. Here $C(U)$ represents a process containing a unique free variable U.

We write $P \approx_{Ct} Q$ if P and Q are weakly contextual bisimilar.

Definition 4 A symmetric relation $R \subseteq P r^e \times P r^e$ is a weak contextual barbed bisimulation if $P R Q$ implies:

1. $P|C R Q|C$ for any C;
2. Whenever $P \Downarrow P'$ then there exists Q' such that $Q \Downarrow Q'$ and $P' R Q'$;
3. $P \downarrow_{\mu}$ implies $Q \downarrow_{\mu}$, where $P \Downarrow P'$ if $P \Rightarrow P'$ and $P' \Downarrow$.

We write $P \approx_{Ba} Q$ if P and Q are weakly contextual barbed bisimilar.

III. LOGICS FOR STRONG SEMANTICS

In this section, we present a logic to reason about higher order π-calculus called SL. This logic extends propositional logic with three kinds of connectives: action temporal operators, spatial operators, operators about names and variables. We give the syntax and semantics of SL. The inference system of SL is also given. We prove the soundness and incompleteness of this inference system. As far as we know, this is the first result on the completeness problem of the inference system of spatial logic. Furthermore, we show that structural congruence, one-step transition relation and bisimulation can all be characterized by this spatial logic. It is well known that structural congruence, one-step transition relation and bisimulation are the central concepts in the theory of processes, and almost all the studies of process calculi are about these concepts. Therefore, our study gives an approach of reducing theory of processes to theory of spatial logic. Moreover, since processes can be regarded as a special kind of spatial logic formulas, spatial logic can be viewed as an extension of process calculus. Based on spatial logic, it is possible to propose a refinement calculus [23] of concurrent processes.

A. Syntax and Semantics of Logic SL

Now we introduce a logic called SL, which is a spatial logic for higher order π-calculus.

Definition 5 Syntax of logic SL

$A ::= \top | \bot | \neg A | A_1 \land A_2 | (\tau) A | (a(A_1)) A_2 | (\langle a \rangle) A_2 | A \Pi_1 A_2 | A_1 \bowtie A_2 | A \circ a | (N x) A | (N X) A | (o \circ a) A | \langle c \rangle A | a \neq b | X | \mu X.A(X)$

where X occurs positively in $A(X)$, i.e., all free occurrences of X fall under an even number of negations.

In $(N x) A$, $(N X) A$, the variables (x) and (X) are bound within the scope of the formula A. We assume that the standard relation \equiv_{α} of α-conversion (safe renaming of bound variables) was defined on formulas, but we never implicitly take formulas “up to α-conversion”: our manipulation of variables via α-conversion steps is always quite explicit. The set $f_n(A)$ of free names in A, and the set $f_{pv}(A)$ of free propositional variables in A, are defined in the usual way. A formula is closed if it has no free variable such as X, and it is open if it may have free variables. SL^e is the set of all closed formulas. In the following, we use $A\{b/a\}$ to denote the formula obtained by replacing all occurrences of a in A by b. Similarly, we use $A[Y/X]$ to denote the formula obtained by replacing all occurrences of X in A by Y. It is easy to see that a process can also be regarded as a spatial formula. For example, process $\pi(E).P$ is also a spatial formula. In this paper, we say that such a formula is in the form of process formula.

Semantics of SL is given as following:

We write such set of processes in which A is true as $[[A]]_{\text{pr}}$, where $e: Var \rightarrow 2^{Pr}$ is an environment. We denote by $e[X \leftarrow W]$ a new environment that is the same as e except that $e[X \leftarrow W]X = W$. The set $[[A]]_S$ is the set of processes that satisfy A with respect to e.

Definition 6 Semantics of logic SL

$[[\top]]_{pr} = Pr$;
$[[\bot]]_{pr} = \emptyset$;
$[[\neg A]]_{pr} = Pr - [[A]]_{pr}$;
$[[A_1 \land A_2]]_{pr} = [[A_1]]_{pr} \cap [[A_2]]_{pr}$;
$[[\tau] A]_{pr} = \{P \mid \exists Q . P \stackrel{\tau}{\rightarrow} Q$ and $Q \in [[A]]_{pr}\}$;
$[[\langle a \rangle A_1 A_2]]_{pr} = \{P \mid \exists P_1 , P_2 . P \stackrel{a(P_1)}{\rightarrow} P_1 , P_1 \in [[A_1]]_{pr} \land P_2 \in [[A_2]]_{pr}\}$;
$[[\Pi_1 A_1 A_2]]_{pr} = \{P \mid \forall R , R \in [[A_1]]_{pr} \exists Q . P \stackrel{a(R)}{\rightarrow} Q$ and $Q \in [[A_2]]_{pr}\}$

$[[\langle c \rangle A_1 A_2]]_{pr} = \{P \mid \exists P_1 , P_2 . P \stackrel{(c \circ \pi(P_1))}{\rightarrow} P_2 , (\nu b)P_1 \in [[A_1]]_{pr} \land P_2 \in [[A_2]]_{pr}\}$

$[[\bowtie A_1 A_2]]_{pr} = \{P \mid \exists P_1 , P_2 . P \stackrel{(\pi(P_1))}{\rightarrow} P_2 , (\nu b)P_1 \in [[A_1]]_{pr} \land P_2 \in [[A_2]]_{pr}\}$

$[[\circ A_1 A_2]]_{pr} = \{P \mid \exists P_1 , P_2 . P \equiv \pi(P_1) . P_2 , P_1 \in [[A_1]]_{pr} \land P_2 \in [[A_2]]_{pr}\}$

$[[\Pi_1 A_1]]_{pr} = \{P \mid P \equiv P.0 \in [[A]]_{pr}\}$
Inference System of SL

Definition 7 \(P \models_{SL} A \) if \(P \in [A]^{\gamma}_{pr} \).

Definition 8 For a set of formulas \(\Gamma \) and a formula \(A \), we write \(\Gamma \models_{SL} A \), if \(A \) is valid in all processes that satisfy all formulas of \(\Gamma \).

For example, the following equations hold in SL:

\[\{ P \mid \forall Y . P \in [A]^{\gamma}_{pr} \} \models \pi(X.A) \]

\[\{ P \mid a \in f_n(P) \} \models \neg \exists a \neg \pi(X.A) \]

\[\{ P \mid X = a \} \models \neg \exists a \neg \pi(X.A) \]

\[\{ P \mid X = a \} \models \neg \exists a \neg \pi(X.A) \]

In SL, formula \(\langle a(A_1) \rangle A_2 \) is satisfied by the processes that can receive a process satisfying \(A_1 \) and then become a process satisfying \(A_2 \). A process satisfies formula \(\langle a(A_1) \rangle A_2 \) if it receive any process satisfying \(A_1 \) and then become a process satisfying \(A_2 \). A process satisfying \(\langle \exists a \rangle A \) is an adjunct operator of \(\exists a \neg \pi(X.A) \).

\[\{ P \mid \forall Y . P \in [A]^{\gamma}_{pr} \} \models \pi(X.A) \]

\[\{ P \mid a \in f_n(P) \} \models \neg \exists a \neg \pi(X.A) \]

\[\{ P \mid X = a \} \models \neg \exists a \neg \pi(X.A) \]

\[\{ P \mid X = a \} \models \neg \exists a \neg \pi(X.A) \]

B. Inference System of SL

Now we list a number of valid properties of spatial logic. The combination of the complete inference system of first order logic and the following axioms and rules form the inference system \(S.L \).

1. \(\alpha \perp \rightarrow \perp \)
2. \(a \odot X. \perp \rightarrow \perp \)
3. \(\pi(T). \perp \rightarrow \perp \)
4. \(\pi(\perp). \top \rightarrow \perp \)
5. \(\perp \setminus a \odot X \rightarrow \perp \)
6. \(\perp \setminus \pi \rightarrow \perp \)
7. \(A \odot \perp \rightarrow \perp \)
8. \(P \rightarrow P \rightarrow \neg A \)
9. \(\perp \odot A \leftrightarrow \top \)
10. \(a \odot \bot \rightarrow \perp \)
11. \(A = B \leftrightarrow \forall \beta(x). A[b/x] \leftrightarrow B[b/x] \)
12. \(a \odot B \leftrightarrow b \odot a \odot A \)
13. \(a \odot B \leftrightarrow b \odot a \odot A \)
14. \(\odot(x) \odot = \perp \)
15. \(\odot(X) \odot = \perp \)
16. \(A[B] \odot B[A] \)
17. \((A[B])C \odot A[B[C]] \)
18. \(A[0] \odot A \)
19. \(a \odot 0 \rightarrow 0 \)
20. \(a \odot B \leftrightarrow b \odot a \odot A \)
21. \(a \odot (\odot a) \odot B \leftrightarrow \odot a \odot B \odot a \odot B \)
22. \(a \odot A \rightarrow (\odot B) \odot B \odot a \odot A \)
23. \(A \odot X.A \rightarrow (\odot Y) \odot X.A[Y/X] \)
24. \(\odot(a) \odot 0 \rightarrow 0 \)
25. \(\odot(a) X \leftrightarrow X \)
26. \(\odot(a) \odot X.A \leftrightarrow \perp \)
27. \(\odot(a) \odot \pi(B). A \leftrightarrow \perp \)
28. \(a \odot b \rightarrow ((\odot a) \odot b) \odot X.A \leftrightarrow b \odot X.(\odot a) \odot A \)
29. \(a \odot b \rightarrow ((\odot a) \odot b) \odot X.A \leftrightarrow b \odot X.(\odot a) \odot A \)
30. \(a \odot A \rightarrow ((\odot a) \odot A) \odot B \leftrightarrow ((\odot a) \odot A) \odot B \)
31. \(a \odot b \rightarrow ((\odot a) \odot b) \odot A \leftrightarrow b \odot A \odot (\odot a) \odot A \)
32. \(\odot(a) \odot A \leftrightarrow \odot(a) \odot A \)
33. \(\odot(a) \odot 0 \rightarrow 0 \)
34. \(\odot(a) X \leftrightarrow X \)
35. \(\odot(a) \odot X.A \leftrightarrow \odot(a) \odot X.A \)
36. \(\odot(a) \odot \pi(B). A \leftrightarrow \odot(a) \odot \pi(B). A \)
37. \(\odot(a) \odot \pi(B). A \leftrightarrow \odot(a) \odot \pi(B). A \)
38. \(\odot(a) \odot \perp \rightarrow \perp \)
39. \(\odot(a) X \leftrightarrow 0 \)
40. \(\odot(a) X \leftrightarrow X \)
41. \(\odot(a) \odot X.A \leftrightarrow \odot(a) \odot X.A \odot (a \neq a \odot A) \)
(42) \((N_x)\pi(B).A \rightarrow \pi((N_x)(x \neq a \land B)).(N_x)(x \neq a \land A)\);
(43) \((N_x)(A|B) \rightarrow (N_x)A|(N_x)B;\)
(44) \((N_x)x \neq a \land \pi \circ A \rightarrow \pi \circ (N_x)A;\)
(45) \((N_X)0 \leftrightarrow 0;\)
(46) \((N_X)X \rightarrow Y;\)
(47) \((N_X)a \land \pi \circ Y.A \leftrightarrow a \land \pi \circ (N_X)A;\)
(48) \((N_X)\pi(B).A \rightarrow \pi((N_X)B).\pi(N_X)A;\)
(49) \((N_X)(A|B) \rightarrow (N_X)A|(N_X)B;\)
(50) \((N_X)\pi \circ A \rightarrow \pi \circ (N_X)A;\)
(51) \(a \circ X.A \land X.X.A \rightarrow a \land X.X.A;\)
(52) \(a \rightarrow (a \land X.A) \land X.X.A;\)
(53) \(\pi(A \lor \pi) \rightarrow a;\)
(54) \(A \rightarrow ((\pi(A) \lor \pi) \lor \pi);\)
(55) \(A \land B \rightarrow B;\)
(56) \(A \rightarrow (B \land B);\)
(57) \(\pi \circ (A \land a) \rightarrow a;\)
(58) \(A \rightarrow (\pi \circ A \land a);\)
(59) \(\langle a \rangle A, A \rightarrow B \vdash \langle a \rangle B;\)
(60) \(a \circ X.A, A \rightarrow B \vdash a \circ X.A;\)
(61) \(\pi(C).A, A \rightarrow B \vdash \pi(C).B;\)
(62) \(\pi(B).A, B \rightarrow A \vdash \pi(C).A;\)
(63) \(\langle \pi(B) \rangle A, C \rightarrow B \vdash \langle \pi(C) \rangle A;\)
(64) \(\langle a[B] \rangle A, C \rightarrow B \vdash \langle a[C] \rangle A;\)
(65) \(A \rightarrow a \circ X.A, A \rightarrow B \vdash B \land a \circ X.A;\)
(66) \(\pi A \rightarrow B \vdash B \land \pi A;\)
(67) \(A \rightarrow B \vdash A \land C \rightarrow B;\)
(68) \(a \circ a.A, A \rightarrow B \rightarrow a \circ a.B;\)
(69) \(\pi \circ (a \circ a) \rightarrow a \circ B;\)
(70) \(\langle \pi(C) \rangle B \rightarrow \langle \pi \circ a \rangle B;\)
(71) \(\pi(B).A \rightarrow \pi(B).A;\)
(72) \(\langle \pi(C) \rangle B \rightarrow \langle \pi \circ a \rangle B;\)
(73) \(\langle a[C] \rangle B \rightarrow \langle a[C] \rangle (A|B);\)
(74) \(a \circ a.U \land \pi \circ a \rightarrow B) \rightarrow \langle a[B] \rangle A \land B / U;\)
(75) \(\langle a \circ a \rangle B \land \pi \circ a \rightarrow B) \rightarrow \langle a[B] \rangle A \land B / U;\)
(76) \(\langle (a \circ a) \rangle B \land \pi \circ a \rightarrow B) \rightarrow \langle (a \circ a) \rangle A \land B / U;\)
(77) \(a \neq B \rightarrow \langle a[C] \rangle B \rightarrow \pi(C) \circ a \rightarrow B \rightarrow \langle (a \circ a) \rangle (A|B);\)
(78) \(\langle \pi(C) \rangle B \rightarrow \langle a[B] \rangle (A|B);\)
(79) \(\langle a \circ a \rangle B \land \pi \circ a \rightarrow B) \rightarrow \langle a[B] \rangle A \land B / U;\)
(80) \(\langle a[B] \rangle A \rightarrow \langle a[B] \rangle A;\)
(81) \(\langle a[B] \rangle A \rightarrow \langle a[B] \rangle A;\)

Intuitively, axiom \(a \circ a.A \rightarrow (N_b)\pi \circ (N_b)A(b/a)\) means that if process \(P\) satisfies \((\forall a)A\) and \(b\) is a fresh name then \(P\) satisfies \((\forall b)A(b/a)\). Axiom \(\pi(B).A \rightarrow \pi(B)A\) means that an output prefix process can perform an output action, which is a spatial logical version of Rule OUT in the labelled transition system of higher order \(\pi\)-calculus. Axiom \((a \circ U.A \land \pi \circ (\pi \circ (\pi \circ B) \rightarrow B)) \rightarrow \langle a[B] \rangle A(B / U)\) means that an input prefix process can perform an input action, which is a spatial logical version of Rule IN in the labelled transition system of higher order \(\pi\)-calculus. Axiom \(((\forall b_1, ..., \forall b_n)B \rightarrow B) \land (\pi(C) \rightarrow C) \rightarrow (((\forall b_1, ..., \forall b_n)C)A) \rightarrow \langle (a[C])B \rightarrow \pi(C) \circ a \rightarrow B \rightarrow (\forall b_1, ..., \forall b_n)C)A\) is a spatial logical version of Rule COM. Other axioms and rules are spatial logical version of structural congruence rules or labelled transition rules similarly.

Definition 9 If \(A_1, ..., A_n\) infer \(B\) is an instance of an inference rule, and if the formulas \(A_1, ..., A_n\) have appeared earlier in the proof, then we say that \(B\) follows from an application of an inference rule. A proof is said to be from \(\Gamma\) to \(A\) if the premise is \(\Gamma\) and the last formula is \(A\) in the proof. We say \(A\) is provable from \(\Gamma\) in an inference system \(AX\), and write \(\Gamma \vdash AX A\), if there is a proof from \(\Gamma\) to \(A\) in \(AX\).

C. Soundness of SL

Inference system of \(SL\) is said to be sound with respect to processes if every formula provable in \(SL\) is valid with respect to processes.

Now, we can prove the soundness of inference system \(S\) of \(SL\):

Proposition 1 \(\Gamma \vdash S\) \(A \Rightarrow \Gamma \vdash SL A\)

Proof. See Appendix A.

D. Incompleteness of SL

The system \(SL\) is complete with respect to processes if every formula valid with respect to processes is provable in \(SL\). For a logic, completeness is an important property. The soundness and completeness provide a tight connection between the syntactic notion of provability and the semantic notion of validity. Unfortunately, by the compactness property [18], the inference system of \(SL\) is not complete.

The depth of higher order processes in \(Pr\), is defined as below:
Definition 10 \(d(0) = 0; d(U) = 0; d(a(U), P) = 1+d(P); d(\pi(E), P') = 1 + d(E) + d(P) ; d(P_1|P_2) = d(P_1)+d(P_2); d((\nu a)P) = d(P). \)

Lemma 1 For any \(P \in Pr \), there exists \(n \), such that \(d(P) = n \).

Proof: Induction on the structure of \(P \).

Proposition 2 There is a unique sound inference system AX such that \(\Gamma \models_{SL} A \Rightarrow \Gamma \vdash_{AX} A \).

Proof: See Appendix B.

E. Spatial Logic as a Specification of Processes

In the refinement calculus [23], imperative programming languages are extended by specification statements, which specify parts of a program "yet to be developed". Then the development of a program begins with a specification statement, and ends with an executable program by refining a specification to its possible implementations. In this paper, we generalize this idea to the case of process calculi. Roughly speaking, we extend processes to spatial logic formulas which are regarded as the specification statements. One can view the intensional operators of spatial logic as the "executable program statements", for example, \(\pi(P).Q \), \(P|Q \) and etc; and view the extensional operators of spatial logic as the "specification statements", for example, \(A \sqsupset B \) and etc. For example, \((b\odot Y.\pi(Y).A_1\triangleright\langle\tau\rangle A_2)\frac{d}{b}(d\odot Y.\pi(B_1).Y\triangleright\langle\tau\rangle B_2)\frac{d}{A} \) represents a specification statement which describes a process consisting of a parallel of two processes satisfying statements \(b\odot Y.\pi(Y).A_1\triangleright\langle\tau\rangle A_2 \) \(\frac{d}{b} \) and \(d\odot Y.\pi(B_1).Y\triangleright\langle\tau\rangle B_2 \) \(\frac{d}{A} \) respectively. Furthermore, \((b\odot Y.\pi(Y).A_1\triangleright\langle\tau\rangle A_2)\frac{d}{b} \) represents a specification which describes a process \(P \) such that \(\pi(P).Q \) satisfies \(A_2 \) for any \(Q \) satisfying \(A_1 \). Similarly, \((d\odot Y.\pi(B_1).Y\triangleright\langle\tau\rangle B_2)\frac{d}{A} \) represents a specification statement which describes a process \(M \) such that \(\tau(N).M \) satisfies \(B_2 \) for any \(N \) satisfying \(B_1 \). We can also define refinement relation on spatial logic formulas. Intuitively, if \(\models_{SL} A \rightarrow B \), then \(A \) refines \(B \). For example, \(a\sqsupset((a\odot X.d.X|\pi(c).0).e.0) \) refines \(a\sqsupset((a|\pi(c).0).d.0|\pi(c).0).e.0) \). Based on spatial logic, one may develop a theory of refinement for concurrent processes. This will be a future research direction for us.

F. Processes as Special Formulas of Spatial Logic

Any process can be regarded as a special formula of spatial logic. For example, \((Na)a\sqsupset(NX)(a\odot X.d.X|\pi(c).0).e.0) \) is a spatial logic formula, which represents the process which is structural congruent to \((\nu a)\langle a.X\rangle.d.X|\pi(c).0).e.0) \). Furthermore, in this section, we will show that structural congruence and labelled transition relation can be reformulated as the logical relation of spatial logical formulas.

Definition 11 The translating function \(T^{PS} \) is defined inductively as follows:

\[
T^{PS}(P) \stackrel{def}{=} P \text{ for process } P \text{ that has no operators of } (\nu a), \text{ or } a(X); \\
T^{PS}(\nu aP) \stackrel{def}{=} (Ha)T^{PS}(P); \\
T^{PS}(a(X)P) \stackrel{def}{=} (aHX)T^{PS}(P).
\]

Lemma 2 \(\models_{SL} A!A \leftrightarrow A \), where \(A \stackrel{def}{=} \neg \mu X. \neg (A \land X) \).

Proof: See Appendix C.

Proposition 3 For any \(P, Q \in Pr\Leftrightarrow P \models_{SL} T^{PS}(Q) \Leftrightarrow Q \models_{SL} T^{PS}(P) \).

Proof: See Appendix D.

Proposition 4 For any \(P, Q \in Pr\Leftrightarrow P \models_{SL} \langle\alpha\rangle T^{PS}(Q) \Leftrightarrow T^{PS}(P) \models_{SL} \langle\alpha\rangle T^{PS}(Q) \).

Proof: See Appendix E.

Although Proposition 2 states that the inference system is not complete, Propositions 3 and 4 show that this inference system is complete with respect to structural congruence and labelled transition relation of processes.

G. Behavioral Equivalence Relation of Spatial Logic

In [9], we introduced a spatial logic called \(L \), and proved that \(L \) gives a characterization of context bisimulation.

Definition 12 [9] Syntax of logic \(L \)

\[
A ::= \neg A | A_1 \land A_2 | \langle\alpha(T)\rangle T | \langle\pi(T)\rangle T | \langle\tau\rangle A | A_1 \triangleright A_2.
\]

It is easy to see that \(L \) is a sublogic of \(SL \).

In [9], we proved the equivalence between \(\sim_{CT} \) and logical equivalence with respect to \(L \).

Proposition 5 [9] For any formula \(A \in L, P \models_{SL} Q \Leftrightarrow \text{for any formula } C \in L, P \models_{SL} A \Leftrightarrow Q \).

Definition 13 \(A \) and \(B \) are behavioral equivalent with respect to \(L \), written \(A \sim_{L} B \), if for any formula \(C \in L \), \(\models_{SL} A \rightarrow C \Leftrightarrow \models_{SL} B \rightarrow C \).

By Proposition 5, it is easy to get the following corollary, which characterizes \(\sim_{CT} \) by \(SL \) property.

Corollary 1 For any formula \(P, Q \in Pr\Leftrightarrow P \sim_{CT} Q \Leftrightarrow P \sim_{L} Q \).

Relation \(\sim_{L} \) is a binary relation on spatial logical formulas. The above results show that \(\sim_{L} \) gives a logical characterization of bisimulation when formulas are in the form of processes. Moreover, relation \(\sim_{L} \) also gives a possibility to generalize bisimulation on processes to that on spatial logical formulas. Since we have discussed that spatial logical formulas can be regarded as specifications of processes, we may get a concept of bisimulation on specifications of processes based on \(\sim_{L} \).

IV. LOGICS FOR WEAK SEMANTICS

In this section, we present a logic for weak semantics, named \(WL \). Roughly speaking, in this logic, action temporal operators \(\langle\tau\rangle, \langle a\langle A\rangle\rangle, \langle a[A]\rangle \) and \(\langle\pi(A)\rangle \) in \(SL \) are replaced by the weak semantics version of operators \(\langle(e)\rangle, \langle(a[A])\rangle, \langle(a[A])\rangle \) and \(\langle\pi(A)\rangle \). Almost all definitions and results of \(SL \) can be generalized to \(WL \).
A. Syntax and Semantics of Logic WL

Now we introduce a logic called WL, which is a weak semantics version of spatial logic.

Definition 14 Syntax of logic WL

\[A :::= T \mid \perp \mid \neg A \mid A_1 \land A_2 \mid \langle\angle
In [5], a type system of processes based on spatial logic was given, where types are interpreted as formulas of spatial logic.

In this paper, we want to show that the theory of processes can be reduced to the theory of spatial logics. We firstly defined a logic SL, which comprises some temporal operators and spatial operators. We gave the inference system of SL and showed the soundness and incompleteness of SL. Furthermore, we showed that structural congruence and transition relation of higher order π-calculus can be reduced to the logical relation of SL formulas. We also showed that bisimulations in higher order π-calculus can be characterized by a sublogic of SL. At last, we propose a weak semantics version of SL, called WL. These results can be generalized to other process calculi. Since some important concepts of processes can be described in spatial logic, we think that this paper may give an approach of reducing the study of processes to the study of spatial logic. The further work for us is to develop a refinement calculus [23] for concurrent processes based on our spatial logic.

ACKNOWLEDGMENT

This work was supported by the Aviation Science Fund of China under Grant No. 20128052064 and the National Natural Science Foundation of China under Grant No. 60873025.

REFERENCES

[1] R. M. Amadio and M. Dam. Reasoning about Higher-order Processes. In TAPSOFT’95, LNCS 915, 1995, pp. 202-216.
[2] R. M. Amadio. On the Reduction of CHOCO-Bisimulation to π-calculus Bisimulation. In CONCUR’93, LNCS 715, 1993, pp. 112-126.
[3] A. Arnold and D. Niwinski. Rudiments of μ-calculus. Studies in Logic, Vol 146, North-Holland, 2001.
[4] M. Baldamus and J. Dingel. Modal Characterization of Weak Bisimulation for Higher-order Processes. In TAPSOFT’97, LNCS 1214, 1997, pp. 285-296.
[5] L. Caires. Spatial-Behavioral Types for Concurrency and Resource Control in Distributed Systems. In Theoretical Computer Science 402(2-3), 2008, pp. 120-141.
[6] L. Caires. Logic and Semantics of Types for Concurrency. In CALCO’07, LNCS, 2007, pp. 16-35.
[7] L. Caires, H.T. Vieira. Extensionality of Spatial Observations in Distributed Systems. In EXPRESS’2006, ENTCS, 2006.
[8] L. Caires. Behavioral and spatial observations in a logic for the π-calculus. In FOSSACS’04, LNCS 2987, 2004, pp. 72-87.
[9] Z. Cao. A Spatial Logical Characterisation of Context Bisimulation. In Proceeding of ASIAN 2006, LNCS 4435, 2006, pp. 232-240.
[10] Z. Cao. More on bisimulations for higher-order π-calculus. In FOSSACS’06, LNCS 3921, 2006, pp. 63-78.
[11] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Theoretical Computer Science, Vol 322(3), 2004, pp. 517-565.
[12] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information and Computation, Vol 186(2), 2003, pp. 194-235.
[13] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, and J.-M. Talbot. The complexity of model checking mobile ambients. In FoSSaCS’01, LNCS 2030, 2001, pp. 152-167.
[14] W. Charatonik, S. Dal Zilio, A. D. Gordon, S. Mukhopadhyay, J.-M. Talbot. Model Checking Mobile Ambients. In Proc. of TACAS’01, LNCS 2044, 2001.
[15] L. Cardelli and A. Gordon. Logical Properties of Name Restriction. In Proc. of TACAS’00, LNCS 2044, 2001.
[16] L. Cardelli and A. Gordon. Anytime, Anywhere, Modal Logics for Mobile Ambients. In Proc. of POPL’00, 2000, pp. 365-377. ACM Press.
[17] G. Conforti and G. Ghelli. Decidability of Freshness and Undecidability of Revelation. In: Proc. of FoSSaCS’04, LNCS 2987, 2004.
[18] C. C. Chang. Model Theory. North-Holland, 1977.
[19] L. Caires and E. Lozes. Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency. In Theoretical Computer Science Volume 358, Issue 2, August 2006, pp. 293 - 314.
[20] A. Jeffrey, J. Rathke. Contextual equivalence for higher-order π-calculus revisited. In Proceedings of Mathematical Foundations of Programming Semantics, Elsevier, 2003.
[21] D. Hirschkoff, E. Lozes, and D. Sangiorgi. Separability, Expressiveness and Decidability in the Ambient Logic. In Proc. of LICS’02, 2002, pp. 423-432. IEEE Computer Society.
[22] D. Hirschkoff. An Extensional Spatial Logic for Mobile Processes. CONCUR’04, LNCS 3170, 2004, pp. 325-339. Springer-Verlag.
[23] C. Morgan, P. Gardiner, K. Robision, and T. Vickers. On the Refinement Calculus. Springer-Verlag, 1994.
[24] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theoretical Computer Science, 114(1), 1993, pp.149-171.
[25] L. Gregory Meredith, Matthias Radestock: Namespace Logic: A Logic for a Reflective Higher-Order Calculus. TGC 2005, 2005, pp. 353-369.
[26] J. Parrow. An introduction to the π-calculus. In J. Bergstra, A. Ponse and S. Smolka editors, Handbook of Process Algebra, North-Holland, Amsterdam, 2001.
[27] D. Sangiorgi. Extensionality and Intensionality of the Ambient Logic. In Proc. of the 28th POPL, 2001, pp. 4-17. ACM Press,
[28] D. Sangiorgi. Bisimulation in higher-order calculi. Information and Computation, 131(2), 1996, pp. 141-178.
[29] D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order paradigms. Ph.D thesis, Department of Computer Science, University of Eindhoven, 1992.
[30] C. Stirling. Modal Logics for Communicating Systems. Theoretical Computer Science, (49), 1987, pp. 311-347.
[31] B. Thomsen, Plain CHOCS: A second generation calculus for higher order processes. Acta Informatica, Vol 30, 1993, pp. 1-59.

Appendix A. Proof of Proposition 1

Proposition 1 $\Gamma \vdash_{SL} A \Rightarrow \Gamma \models_{SL} A$

Proof. It is enough by proving that every axiom and every inference rule of inference system is sound. We only discuss the following cases:

Case (1): Axiom $a \bowtie ((\bowtie a)A)B \leftrightarrow ((\bowtie a)A)a\bowtie B$.

Suppose $P \in [(a \bowtie ((\bowtie a)A)B)]$, then $P \equiv (v_a)(P_1, P_2)$, $a \notin fn(P_1)$, $P_1 \in [A]$ and $P_2 \in [B]$. Therefore we have $P \equiv (v_a)(P_1, P_2) \equiv (P_1 | (v_a)P_2) \in [(\bowtie (a\bowtie a)A)B]$.

Hence $a \bowtie ((\bowtie a)A)B \leftrightarrow ((\bowtie a)A)a\bowtie B$. The inverse case is similar.

Case (2): Axiom $a \not\rightarrow b \rightarrow ((\bowtie a)B).A \rightarrow (\bowtie (\bowtie a)B).A$.

Suppose $a \not\rightarrow b$ and $P \in [(\bowtie (\bowtie a)B).A]$, then $P \equiv \overline{B}(P_1), P_2, a \notin fn(P_1), a \notin fn(P_2), P_1 \in [B]$ and $P_2 \in [A]$. Therefore we have $P_1 \in [(\bowtie (a\bowtie a)A)]$ and $P_2 \in [(\bowtie (\bowtie a)B),(\bowtie (\bowtie a)B)]$. Hence $a \not\rightarrow b \rightarrow ((\bowtie a)B).A \rightarrow (\bowtie (\bowtie a)B).A$. The inverse case is similar.

Case (3): Axiom $(A|A \bowtie B) \rightarrow B$.

Suppose $P \in [(A|A \bowtie B)]$, then $P \equiv P_1 | P_2, P_1 \in [A]$ and $P_2 \in [A \bowtie B]$. Therefore, $P \equiv P_1 | P_2 \in [(A|A \bowtie B)]$. Hence $(A|A \bowtie B) \rightarrow B$.

Case (4): Axiom $A \not\rightarrow (B \bowtie A|B)$.

Suppose $P \in [A|B]$, then for any $Q \in [B], P(Q \in [A|B])$. Hence $A \not\rightarrow (B \bowtie A|B)$.

Case (5): Axiom $(((\bowtie b_1 \ldots \bowtie b_n)B \leftrightarrow B) \land ((\bowtie C \leftrightarrow C)) \rightarrow (((\bowtie b_1 \bowtie \ldots \bowtie b_n)\bowtie B) \rightarrow (\bowtie (b_1 \bowtie \ldots \bowtie b_n)\bowtie C)) (A|B)$.
Suppose \(P \in \{[\tau(b_1\ldots b_n C)A]B] \}, \) then \(P \equiv P_1 P_2, P_1 \to P_1', P_1' \in \{[A], P_2 \in \{[B] \) and \(Q \in \{[C] \). Since \(\tau(b_1, \ldots, b_n)B \leftrightarrow B, \{b_1, \ldots, b_n\} \cap fn(P_2) = \emptyset \). Therefore we have \(P_1 P_2 \to P_1', P_1' \in \{[A], \) and \(Q \in \{[C] \). Hence \((((\tau(b_1\ldots b_n C)B) \leftrightarrow B) \land (((\tau(C) \leftrightarrow C)) \to (((\tau(b_1\ldots b_n C)A)]B) \to ([\tau(b_1\ldots b_n C)C)A])B). \)

Case (6): Axiom \(((\tau(b_1\ldots b_n C)B) \leftrightarrow B) \land (((\tau(C) \leftrightarrow C)) \to (((\tau(b_1\ldots b_n C)A)]A) \to ([\tau(b_1\ldots b_n C)B)A). \)

Suppose \(P \in \{[\tau(b_1\ldots b_n C)A]A\}, \) then \(P \equiv P_1 P_1' \to P_1' \to P_1', P_1' \in \{[A], \) and \(Q \in \{[C] \). Since \(\tau(b_1, \ldots, b_n)B \leftrightarrow B, \{b_1, \ldots, b_n\} \cap fn(P_2) = \emptyset \). Therefore we have \(P_1 P_2 \to P_1', P_1' \in \{[A], \) and \(Q \in \{[C] \). Hence \((((\tau(b_1\ldots b_n C)B) \leftrightarrow B) \land (((\tau(C) \leftrightarrow C)) \to (((\tau(b_1\ldots b_n C)A)]A) \to ([\tau(b_1\ldots b_n C)B)A). \)

Appendix B. Proof of Proposition 2

Proposition 2 There is no finite sound inference system \(AX \) such that \(\Gamma \vdash SL A \Rightarrow \Gamma \vdash AX \).

Proof Let \(\Phi = \{\pi(0), T, \pi(0), \pi(b,0), T, \pi(0), \pi(b,0), \pi(b,0), T, \pi(0), \pi(b,0), \pi(b,0, b,0), T, \ldots \)\). It is easy to see that any finite subset of \(\Phi \) can be satisfied in \(Pr \), but \(\Phi \) cannot be satisfied in \(Pr \). Suppose it is not true, let \(P \) satisfies \(\Phi \). By Lemma 1, there exists \(n \), such that \(d(P) = n \). But for any \(n \), there exists \(\varphi_n \) in \(\Phi \) such that for any \(P \) satisfying \(\varphi_n \), \(d(P) > n \). This contradicts the assumption. Therefore \(\Phi \) cannot be satisfied in \(Pr \).

Suppose there is a finite inference system such that \(\Gamma \vdash SL A \Rightarrow \Gamma \vdash SL A \). Since \(\Phi \) cannot be satisfied in \(Pr \), we have \(\Phi \not\vdash SL \bot \). By the assumption, \(\Phi \vdash SL \bot \). Hence there is a proof from \(\Phi \) to \(\bot \) in \(SL \). Since proof is a finite formula sequence, there is finite many formulas \(\varphi_i \) in \(\Phi \) occur in the proof. Therefore we have \(\land \Phi \vdash SL \bot \), where \(\Phi = \{\varphi_i | \varphi_i \) is in the proof\}. Then by the soundness of inference system of \(SL \), we have that \(\Phi \) is not satisfiable. Since \(\Phi \) is a finite subset of \(\Phi \), this contradicts the assumption. Therefore \(SL \) have no finite complete inference system.

Appendix C. Proof of Lemma 2

Lemma 2 \(\vdash SL A \equiv A \).

Proof Since by the inference system, \(\vdash SL S(\mu X.S(X)) \rightarrow \mu X.S(X) \), we have \(\neg \mu X.S(X) \rightarrow \neg S(\mu X.S(X)) \). Let \(S(X) = \neg (A \neg X) \), then \(\neg \mu X.S(X) = \neg \mu X.\neg (A \neg X) \equiv A \). \(\neg S(\mu X.S(X)) = A \). \(\neg (A \neg X) = A \). Therefore we get \(\vdash SL A \rightarrow \neg (A \neg X) \).

Since by the inference system, \(\vdash SL A \rightarrow \neg (A \neg X) \), we have \(\vdash SL \neg (A \neg X) \rightarrow \neg (A \neg X) \). Let \(T(X) = \neg (A \neg X) \), then \(T(\neg (A \neg X)) \rightarrow \neg (A \neg X) \). Therefore we get \(\vdash SL A \rightarrow \neg (A \neg X) \).

Appendix D. Proof of Proposition 3

Proposition 3 For any \(P, Q \in Pr^c, P \equiv Q \Leftrightarrow P \vdash SL T^P(S)(Q) \) and \(Q \vdash SL T^P(S)(P) \Leftrightarrow P \vdash SL T^P(S)(Q) + T^P(S)(Q) \Leftrightarrow SL T^P(S)(P) \).

Proof It is trivial by the definition that \(P \equiv Q \Leftrightarrow P \vdash SL T^P(S)(Q) \) and \(Q \vdash SL T^P(S)(P) \). By the soundness, \(T^P(S)(P) \vdash SL T^P(S)(Q) \Rightarrow P \vdash SL T^P(S)(Q) \). We only need to prove \(P \vdash Q \Rightarrow T^P(S)(Q) \vdash T^P(S)(Q) \vdash SL T^P(S)(P) + T^P(S)(Q) \)

We only discuss the following cases, other cases are similar or trivial:

Case (1): (\(\pi(0)(\pi(0))P \equiv (\pi(0)(\pi(0))P \) : Since \(m \circ m \circ \pi(0)(\pi(0))P \), we have \(m \circ m \circ \pi(0)(\pi(0))P \). The inverse case is similar.

Case (2): (\(\pi(0)(\pi(0))P \equiv (\pi(0)(\pi(0))P \) if \(a \not\in fn(P) \) : Since \(a \not\in fn(P) \), \(\pi(0)(\pi(0))P \) \(\Leftrightarrow T^P(S)(Q) \). Furthermore, since \(a \circ (\pi(0)(\pi(0))P \). \(\pi(0)(\pi(0))P \) \(\Leftrightarrow T^P(S)(Q) \pi(0)(\pi(0))P \), we have \(\pi(0)(\pi(0))P \). \(\pi(0)(\pi(0))P \).

The inverse case is similar.

Appendix E. Proof of Proposition 4

Proposition 4 For any \(P, Q \in Pr^c, P \rightarrow Q \Leftrightarrow P \vdash SL (\pi(E)).T^P(S)(Q) \Rightarrow T^P(S)(P) \rightarrow SL (\pi(E)).T^P(S)(Q) \).

Proof It is trivial by the definition that \(P \rightarrow Q \Leftrightarrow P \vdash SL (\pi(E)).T^P(S)(Q) \). By the soundness, \(T^P(S)(P) \Rightarrow P \vdash SL (\pi(E)).T^P(S)(Q) \). We only need to prove \(P \rightarrow Q \Rightarrow T^P(S)(P) \rightarrow SL (\pi(E)).T^P(S)(Q) \).

We apply the induction on the length of the inference tree of \(P \rightarrow Q \):

Case (1): if the length of 0, then \(P \rightarrow Q \) is in the form of \(\pi(E).K \rightarrow K \) or \(a(U).K \rightarrow K \{E/U\} \).

Subcase (a): (\(\pi(E).K \rightarrow K \) : Since \(\pi(E) \). \(T^P(S)(K) \rightarrow (\pi(E) \).T^P(S)(K) \), we have \(\pi(E) \).T^P(S)(K) \(\vdash SL (\pi(E) \).T^P(S)(K) \).
Subcase (b): \(a(U), K \xrightarrow{a(E)} K\{E/U\} \): Since \(a(U), T^{PS}(K) \land (\langle \circ \rangle T^{PS}(E) \leftrightarrow T^{PS}(E)) \rightarrow (a[T^{PS}(E)]\{E/U\}) \), we have \(a(U), T^{PS}(K) \models_{SL} (a[T^{PS}(E)]\{E/U\})\).

Case (2): Assume the claim holds if length is \(n \), now we discuss the case that length is \(n+1 \).

Subcase (a): \[
\begin{align*}
M \xrightarrow{(\nu b)(\pi(E))} M' \quad N \xrightarrow{a(E)} N' \quad \overline{b} \cap f_{n}(N) = \emptyset.
\end{align*}
\]

Since \(M \xrightarrow{(\nu b)(\pi(E))} M' \), \(N \xrightarrow{a(E)} N' \), and \(\overline{b} \cap f_{n}(N) = \emptyset \), we have \(T^{PS}(M) \rightarrow (\pi(b \oslash T^{PS}(E))) T^{PS}(M') \), \(T^{PS}(N) \rightarrow (a[T^{PS}(E)]) T^{PS}(N') \) and \((\overline{b} b_{1}, ..., b_{n}) T^{PS}(E) \leftrightarrow T^{PS}(E) \). By the axiom: \((((\overline{b} b_{1}, ..., b_{n}) T^{PS}(N) \models T^{PS}(N)) \land (\langle \circ \rangle T^{PS}(E)) \rightarrow (((\pi(b \oslash T^{PS}(E))) T^{PS}(M)) \models (a[T^{PS}(E)]) T^{PS}(N') \rightarrow (\tau) b_{1} \oslash \ldots \oslash b_{n} \oslash b_{1} \oslash \ldots \oslash b_{n} \oslash (T^{PS}(M')) T^{PS}(N'}). \)

Subcase (b): \[
\begin{align*}
M \xrightarrow{b(E)} M' \quad a \neq n(\alpha).
\end{align*}
\]

Since \(M \xrightarrow{b(E)} M' \) and \(a \neq n(b(E)) \), we have \(T^{PS}(M) \rightarrow (b(T^{PS}(E))) T^{PS}(M') \) and \((\langle \circ \rangle a) T^{PS}(E) \land (\langle \circ \rangle T^{PS}(E)) \leftrightarrow (\pi(a))(T^{PS}(E)) \rightarrow (a \oslash b)(T^{PS}(E))) T^{PS}(M) \rightarrow (b(T^{PS}(E))) T^{PS}(M) \models (a \oslash b)(T^{PS}(M)) \). We have \(T^{PS}(M) \models_{SL} (\tau) b_{1} \oslash \ldots \oslash b_{n} \oslash (b(T^{PS}(E))) T^{PS}(M') \).

Subcase (c): \[
\begin{align*}
M \xrightarrow{(\nu b)(\pi(E))} M' \quad (\nu b)M \xrightarrow{(\nu b \circ \pi(E))} M' \quad a \neq b, \quad b \in f_{n}(E) \rightarrow \overline{c}.
\end{align*}
\]

Since \(M \xrightarrow{(\nu b)(\pi(E))} M' \) and \(a \neq b, \quad b \in f_{n}(E) \rightarrow \overline{c} \), we have \(T^{PS}(M) \rightarrow (\pi(\overline{c} \oslash T^{PS}(E))) T^{PS}(M') \) and \(a \neq b \land (\bigwedge_{i=1}^{n} b \neq c_{i} \land (B \rightarrow (\overline{c} \rightarrow \overline{c}))). \) By the axiom \((a \neq b \land (\bigwedge_{i=1}^{n} b \neq c_{i} \land (E \rightarrow (\overline{c} \rightarrow \overline{c}))) \land (\langle \circ \rangle E \leftrightarrow E)) \rightarrow (b_{1} b c_{1} \oslash \ldots \oslash c_{n} \oslash (T^{PS}(E))) T^{PS}(M') \rightarrow (\pi(b_{1} b c_{1} \oslash \ldots \oslash c_{n} \oslash (T^{PS}(E))) T^{PS}(M')) \), we have \(T^{PS}(P) = b_{1} b c_{1} \oslash \ldots \oslash c_{n} \oslash (T^{PS}(E))) T^{PS}(M') \models_{SL} (\pi(b_{1} b c_{1} \oslash \ldots \oslash c_{n} \oslash (T^{PS}(E))) T^{PS}(M')). \)