Magnetsim, Fluctuations and Mechanism of High-Temperature Superconductivity

Takashi Yanagisawa1, Izumi Hase2, Mitake Miyazaki1, Kunihiko Yamaji1

1Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba 305-8568, Japan
2Hakodate National College of Technology, 14-1 Tokura, Hakodate 042-8501, Japan

E-mail: t-yanagisawa@aist.go.jp

Abstract. We investigate the ground state of the two-dimensional d-p model (three-band Hubbard model) by using a variational Monte Carlo method. The superconducting condensation energy is evaluated for the Gutzwiller-BCS wave function. We show that there is a crossover between strongly and weakly correlated regions as the level difference between d and p orbitals increases. The gap function and the condensation energy can be large in the crossover region. This result indicates a possibility of high-temperature superconductivity in the two-dimensional d-p model.

1. Introduction
The research of mechanism of high-temperature superconductivity has attracted much attention since the discovery of cuprate high-temperature superconductors[1, 2]. Because it has been established that the Cooper pairs of cuprate high-temperature superconductors have the d-wave symmetry, the electron correlation plays an important role for the appearance of superconductivity. It is primarily important to clarify the phase diagram of electronic states in the CuO$_2$ plane contained commonly in cuprate high-temperature superconductors. The CuO$_2$ plane consists of oxygen atoms and copper atoms. The electronic model for this plane is the d-p model (or three-band Hubbard model)[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. An interaction with a large energy scale is necessary for the realization of high-temperature superconductivity. It has been argued whether the on-site Coulomb repulsive interaction induces superconductivity for the two-dimensional single-band Hubbard model[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] and ladder model[31, 32, 33].

It is also expected that there is a superconducting phase in the two-dimensional d-p model. It is, however, difficult to obtain a clear evidence of superconductivity in the two-dimensional d-p model because the energy gain by introducing the superconducting gap is very small for the Gutzwiller-BCS wave function[8, 13]. Does this mean that there is no superconductivity in the d-p model? The purpose of this paper is to reexamine the stability of the superconducting state in the d-p model by using the variational Monte Carlo method. Numerous works performed so far have focused on the region where the energy difference between d and p levels are located closely each other. This is because there has been a suggestion that the superconducting critical temperature T_c increases as the d-p level difference decreases[34].
2. Hamiltonian

The three-band model that explicitly includes oxygen p and copper d orbitals contains the parameters \(U_d, U_p, t_{dp}, t_{pp}, t'_d, \epsilon_d \) and \(\epsilon_p \). Our study is within the hole picture and the Hamiltonian is written as

\[
H_{dp} = \epsilon_d \sum_{i,\sigma} d_{i\sigma}^\dagger d_{i\sigma} + \epsilon_p \sum_{i,\sigma} \left(p_{i+z/2\sigma}^\dagger p_{i+z/2\sigma} + p_{i+y/2\sigma}^\dagger p_{i+y/2\sigma} \right)
+ t_{dp} \sum_{i,\sigma} \left[d_{i\sigma}^\dagger \left(p_{i+z/2\sigma} + p_{i+y/2\sigma} - p_{i-z/2\sigma} - p_{i-y/2\sigma} \right) + \text{h.c.} \right]
+ t_{pp} \sum_{i,\sigma} \left[\left(p_{i+y/2\sigma}^\dagger p_{i-z/2\sigma} - p_{i+y/2\sigma}^\dagger p_{i-z/2\sigma} \right) \right]
- p_{i-y/2\sigma}^\dagger p_{i+z/2\sigma} + p_{i-y/2\sigma}^\dagger p_{i+z/2\sigma} + \text{h.c.}]
+ t'_d \sum_{\langle i,j \rangle,\sigma} \left(d_{i\sigma}^\dagger d_{j\sigma} + \text{h.c.} \right) + U_d \sum_i d_{i\sigma}^\dagger d_{i\sigma}^\dagger d_{i\sigma} d_{i\sigma}. \tag{1}\]

\(d_{i\sigma} \) and \(d_{i\sigma}^\dagger \) represent the operators for the d hole, \(p_{i+z/2\sigma} \) and \(p_{i+y/2\sigma} \) denote the operators for the p holes at the site \(R_{i+z/2} \), and in a similar way \(p_{i+y/2\sigma} \) and \(p_{i+y/2\sigma}^\dagger \) are defined. \(t_{dp} \) is the transfer integral between adjacent Cu and O orbitals and \(t_{pp} \) is that between nearest p orbitals. \(\langle \langle ij \rangle \rangle \) denotes a next nearest-neighbor pair of copper sites. \(t'_d \) was introduced to reproduce the Fermi surface [35] in several cuprate superconductors such as \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_8+\delta [36] \) and \(\text{Tl}_2\text{Ba}_2\text{CuO}_{6+\delta} [37] \). \(U_d \) is the strength of the on-site Coulomb repulsion between d holes. In this paper we neglect \(U_p \) among p holes because \(U_p \) is small compared to \(U_d \) [38, 39, 40, 41]. In the low-doping region, \(U_p \) will be of minor importance because \(p \)-hole concentration is small[42]. The parameter values were estimated as, for example, \(U_d = 10.5, U_p = 4.0 \) and \(U_{dp} = 1.2 \) in eV[39] where \(U_{dp} \) is the nearest-neighbor Coulomb interaction between holes on adjacent Cu and O orbitals. We neglect \(U_{dp} \) because \(U_{dp} \) is small compared to \(U_d \). We use the notation \(\Delta_{dp} = \epsilon_p - \epsilon_d \). The number of sites is denoted as \(N \), and the total number of atoms is \(N_a = 3N \). The energy unit is given by \(t_{dp} \).

3. Superconducting wave function

We examine the superconducting ground state of the two-dimensional d-p model by using the variational Monte Carlo method. The wave function is the Gutzwiller-projected wave function given as

\[
\psi_G = P_G \psi_0, \tag{2}\]

where \(P_G \) is the Gutzwiller operator to control the double occupancy of d holes:

\[
P_G = \prod_i \left[1 - (1 - g) n_{d_i\uparrow} n_{d_i\downarrow} \right]. \tag{3}\]

\(g \) is a variational parameter in the range from 0 to unity. \(n_{d_{i\sigma}} = d_{i\sigma}^\dagger d_{i\sigma} \) is the number operator for d holes. \(\psi_0 \) is the Fermi sea where the lowest band is occupied up to the Fermi energy \(\mu \). To represent a superconducting state, we take \(\psi_0 \) as the BCS wave function

\[
\psi_{BCS} = \prod_k (u_k + v_k a_k^{\dagger} a_{-k}^{\dagger}) |0\rangle, \tag{4}\]

where \(a_k^{\dagger} \) indicates the creation operator of the state in the lowest band with the momentum \(k \) which is represented by a linear combination of d and p electron operators \(d_{k\sigma} \) and \(p_{k\sigma} \). The
We calculate the superconducting condensation energy Δ satisfying the gap Δ_{opt} is the ground-state energy with the gap Δ and Δ is a variational parameter that is optimized to give the lowest ground energy. The Projected-BCS wave function is written as

$$\psi_S = P_N P_G \psi_{\text{BCS}},$$

where P_N is a projection operator which extracts only the states with a fixed total hole number. In actual evaluations, we can use the method in Ref.[13]. We can also use the wave function obtained by performing the particle-hole transformation for down-spin holes[30, 43]:

$$P_G \psi_{\text{BCS}} = P_G \prod_k (u_k \beta_k^\dagger + v_k \alpha_k^\dagger) |\bar{0}\rangle,$$

where $\beta_k = \alpha_{-k}$ and $\alpha_k = \alpha_{k^*}$, $|\bar{0}\rangle$ denotes the vacuum for newly defined α and β particles satisfying $\alpha_k |\bar{0}\rangle = \beta_k |\bar{0}\rangle = 0$.

We use the variational Monte Carlo method in the evaluation of the ground-state energy[8]. We calculate the superconducting condensation energy $\Delta E = E(\Delta \to 0) - E(\Delta_{\text{opt}})$ where $E(\Delta)$ is the ground-state energy with the gap Δ and Δ_{opt} is the value of optimized superconducting gap Δ.

We show the condensation energy as a function of Δ in Fig.1 where calculations were carried out on an 8 x 8 lattice with 192 atoms. The parameters that we used are $t_{pp} = 0.4$, $u_d = 10$, $U_p = 0$ and $t_d' = 0$ in units of t_{dp}. We put 76 holes on the lattice and we set $\Delta_{dp} = \epsilon_p - \epsilon_d = 2, 4$ and 8. As shown in Fig.1, the condensation energy ΔE becomes extremely large as the level difference Δ_{dp} increases. When $\Delta_{dp} = 2$, ΔE is very small and thus it is not easy to determine the condensation energy by numerical calculations. In contrast, surprisingly, ΔE turns out to be very large when Δ_{dp} is large. This indicates that the superconducting state is more stabilized in the strongly correlated region in accordance with the phenomenon in the single-band Hubbard model[30]. The existence of high-temperature superconductivity is suggested when the level difference Δ_{dp} is large.

Let us investigate the behavior of ΔE when the level difference Δ_{dp} increases further. We show the optimized gap amplitude Δ as a function of Δ_{dp} in Fig.2 where the band parameters are the same as in Fig.1. The figure indicates that there is a maximum in the optimized gap function as a function of Δ_{dp} in the large-Δ_{dp} region.

4. Discussion

The condensation energy ΔE exhibits a maximum with a large value, indicating that there occurs a crossover between strongly and weakly correlated regions. This crossover is quite similar to that in the two-dimensional Hubbard model[30]. A large fluctuation presumably exists in the crossover region. This indicates a possibility of high-temperature superconductivity in the d-p model. A crossover from weakly to strongly coupled systems is universal phenomenon that exists ubiquitously in the world. For example, the Kondo effect exhibits a universal logarithmic anomaly that appears as a crossover when the system approaches the strong coupling region (low temperature region) from the weak coupling region (high temperature region)[44, 45, 46, 47, 48, 49]. A two-impurity Kondo problem also shows a crossover[50, 51, 52]. There may be a class of phenomena that shows a crossover between weakly and strongly interacting regions. This class may include, for example, QCD[53], BCS-BEC crossover[54], Hubbard model, sine-Gordon model[55, 56, 57] and the Kosterlitz-Thouless transition.
Figure 1. Superconducting condensation energy as a function of the gap function for \(\Delta_{dp} = 2, 4 \) and 8 in units of \(t_{dp} \). Numerical calculations were carried on \(8 \times 8 \) lattice with 76 holes. The band parameters are \(t_{pp} = 0.4, t_{dp}' = 0, U_d = 10 \) and \(U_p = 0 \). We used the Gutzwiller-BEC function in eq.(5) where the hole number is fixed to be 76.

Figure 2. Superconducting gap as a function of the level difference \(\Delta_{dp} \equiv \epsilon_p - \epsilon_d \). Numerical calculations were performed on \(8 \times 8 \) lattice with 76 holes. The band parameters are \(t_{pp} = 0.4, t_{dp}' = 0, U_d = 10 \) and \(U_p = 0 \). The upper curve was calculated by using the Gutzwiller-BEC function in eq.(5) and the lower one is by the wave function in eq.(6).

5. Summary
We investigated the ground state of the two-dimensional Hubbard model on the basis of the variational Monte Carlo method. The superconducting condensation energy was calculated by using the Gutzwiller-projected BCS wave function. Although the condensation energy \(\Delta E \) is very small when the level difference between \(d \) and \(p \) orbitals is small, \(\Delta E \) increases as the level difference increases, suggesting a possibility of high-temperature superconductivity. It would be better to examine the \(d-p \) model by using improved wave functions[30, 35, 58, 59, 60, 61]. The Mott transition based on the \(d-p \) model was investigated with improved wave function[35]. A crossover for the antiferromagnetic correlation can be explored on the basis of improved wave functions.

References
[1] J. G. Bednorz and K. A. Müller 1986 Z. Phys. B64 189.
[2] The Physics of Superconductor (Vol.I and Vol.II) edited by K. H. Bennemann and J. B. Ketterson (Springer-Verlag, Berlin, 2003).
[3] V. J. Emery 1987 Rev. Phys. Rev. Lett. 58 2794.
[4] J. E. Hirsch, E. Y. Loh, D. J. Scalapino and S. Tang 1989 Phys. Rev. B39 243.
[5] R. T. Scalettar, D. J. Scalapino, R. L. Sugar, and S. R. White 1991 Phys. Rev. B44 770.
[6] A. Oguri, T. Asahata and S. Maekawa 1994 Phys. Rev. B49 6880.
[7] S. Koikegami and K. Yamada 1994 J. Phys. Soc. Jpn. 69 768.
[8] T. Yanagisawa, S. Koike and K. Yamaji 2001 Phys. Rev. B64 184509.
[9] S. Koikegami and T. Yanagisawa 2001 J. Phys. Soc. Jpn. 70 3499.
[10] T. Yanagisawa, S. Koike and K. Yamaji 2003 Phys. Rev. B67 132408.
[11] S. Koikegami and T. Yanagisawa 2003 Phys. Rev. B67 134517.
[12] S. Koikegami and T. Yanagisawa 2006 J. Phys. Soc. Jpn. 75 034715.
[13] T. Yanagisawa, M. Miyazaki and K. Yamaji 2009 J. Phys. Soc. Jpn. 78 013706.
[14] C. Weber, A. Lauchi, F. Mila and T. Giamarchi 2009 Phys. Rev. Lett. 102 017005.
[15] B. Lau, M. Berciu and G. A. Sawatzky 2011 Phys. Rev. Lett. 106 036401.
[16] C. Weber, T. Giamarchi and C. M. Varma 2014 Phys. Rev. Lett. 112 117001.
[17] S. Tamura and H. Yokoyama 2016 Phys. Procedia 81 5.
[18] S. Zhang, J. Carlson and J. E. Gubernatis 1997 Phys. Rev. B55 7464.
[19] S. Zhang, J. Carlson and J. E. Gubernatis 1997 Phys. Rev. Lett. 78 4486.
[20] T. Nakanishi, K. Yamaji and T. Yanagisawa 1997 J. Phys. Soc. Jpn. 66 294.
[21] K. Yamaji, T. Yanagisawa, T. Nakanishi and S. Koike 1998 Physica C304 225.
[22] K. Yamaji, T. Yanagisawa and S. Koike 2000 Physica B284-288 415.
[23] N. Bult 2002 Advances in Phys. 51 1587.
[24] H. Yokoyama, Y. Tanaka, M. Ogata and H. Tsuchiura 2004 J. Phys. Soc. Jpn. 73 1119.
[25] H. Yokoyama, M. Ogata and Y. Tanaka 2006 J. Phys. Soc. Jpn. 75 114706.
[26] T. Aimi and M. Imada 2007 J. Phys. Soc. Jpn. 76 113708.
[27] T. Yanagisawa 2008 New J. Phys. 10 023014.
[28] T. Yanagisawa 2013 New J. Phys. 15 033012.
[29] T. Yanagisawa, M. Miyazaki and K. Yamaji 2014 J. Mod. Phys. 4 33.
[30] T. Yanagisawa 2016 J. Phys. Soc. Jpn. 85 114707.
[31] R. M. Noack, S. R. White and D. J. Scalapino 1995 EPL 30 163.
[32] T. Yanagisawa, Y. Shimoi and K. Yamaji 1995 Phys. Rev. B52 R3860.
[33] T. Nakano, K. Kuroki and S. Onari 2007 Phys. Rev. B76 014515.
[34] G.-Q. Zheng, Y. Kitaoka, K. Ishida and K. Asayama 1995 J. Phys. Soc. Jpn. 64 2524.
[35] T. Yanagisawa and M. Miyazaki 2014 EPL 107 27004.
[36] K. McElroy et al. 2003 Nature 422 592.
[37] N. E. Hussey et al. 2003 Nature 425 814.
[38] C. Weber, K. Haule and G. Kotliar: Phys. Rev. B78 (2008) 134519.
[39] M. S. Hybertsen, M. Schluter and N. E. Christensen: Phys. Rev. B39 (1989) 9028.
[40] H. Eskes, G. A. Sawatzky and L. F. Feiner: Physica C160 (1989) 424.
[41] A. K. McMahan, J. F. Annett and R. M. Martin: Phys. Rev. B42 (1990) 6268.
[42] H. Eskes and G. Sawatzky: Phys. Rev. B43 (1991) 119.
[43] T. Yanagisawa, S. Koike and K. Yamaji 1999 J. Phys. Soc. Jpn. 68 3608.
[44] J. Kondo 2012 The Physics of Dilute Magnetic Alloys (Cambridge University Press, Cambridge).
[45] K. G. Wilson 1975 Rev. Mod. Phys. 47 773.
[46] Y. Nagaoka 1965 Phys. Rev. 138 A1112.
[47] J. Zittartz and E. Müller-Hartmann 1968 Z. Phys. 212 380.
[48] T. Yanagisawa 2012 J. Phys. Soc. Jpn. 81 094713.
[49] T. Yanagisawa 2015 J. Phys. Soc. Jpn. 84 074705.
[50] C. Jayaprakash, H. R. Krishna-murthy and J. W. Wilkins 1981 Phys. Rev. Lett. 47 737.
[51] B. A. Jons and C. M. Varma 1989 Phys. Rev. B40 324.
[52] T. Yanagisawa 1989 J. Phys. Soc. Jpn. 60 29.
[53] R. K. Ellis, W. J. Stirling and B. R. Webber 1996 QCD and Collider Physics (Cambridge University Press, Cambridge).
[54] P. Nozieres and S. Schmitt-Rink 1985 J. Low Temp. Phys. 59 195.
[55] R. Rajaraman 1989 Solitons and Instantons (North-Holland, Amsterdam).
[56] J. Solyom 1979 Adv. Phys. 28 201.
[57] T. Yanagisawa 2016 EPL 113 4001.
[58] T. Yanagisawa, S. Koike and K. Yamaji 1998 J. Phys. Soc. Jpn. 67 3867.
[59] T. Yanagisawa 2007 Phys. Rev. B75 224503.
[60] D. Baeriswyl, D. Eichenberger and M. Mentesbashvii 2009 New J. Phys. 11 075010.
[61] R. Sato and H. Yokoyama 2016 J. Phys. Soc. Jpn 85 074701.