Epidemiology of *Chlamydia trachomatis* in the Middle East and north Africa: a systematic review, meta-analysis, and meta-regression

Alex Smolak¹, Hiam Chemaitelly², Joumana G Hermez, Nicola Low, Laith J Abu-Raddad

Summary

Background The epidemiology of *Chlamydia trachomatis* in the Middle East and north Africa is poorly understood. We aimed to provide a comprehensive epidemiological assessment of *C trachomatis* infection in the Middle East and north Africa.

Methods We did a systematic review of *C trachomatis* infection as well as a meta-analysis and meta-regression of *C trachomatis* prevalence. We searched PubMed and Embase, as well as regional and national databases up to March 13, 2019, using broad search terms with no language or year restrictions. Any document or report including biological measures for *C trachomatis* prevalence or incidence was eligible for inclusion. We extracted all measures of current (genital or rectal), recent, and ever infection with *C trachomatis*. We estimated pooled average prevalence in different populations using random-effects meta-analysis. Factors associated with prevalence and sources of between-study heterogeneity were determined using meta-regression.

Findings We identified a total of 1531 citations, of which 255 reports contributed to 552 *C trachomatis* prevalence measures from 20 countries. No incidence measures were identified. Pooled prevalence of current genital infection was 3·0% (95% CI 2·3–3·8) in general populations, 2·8% (1·0–5·2) in intermediate-risk populations, 13·2% (7·2–20·7) in female sex workers, 11·3% (9·0–13·7) in infertility clinic attendees, 12·4% (7·9–17·7) in women with miscarriage, 12·4% (9·4–15·7) in symptomatic women, and 17·4% (12·5–22·8) in symptomatic men. Pooled prevalence of current rectal infection was 7·7% (4·2–12·0) in men who have sex with men. Substantial between-study heterogeneity was found. Multivariable meta-regression explained 29·0% of variation. Population type was most strongly associated with prevalence. Additional associations were found with assay type, sample size, country, and sex, but not with sampling methodology or response rate (about 90% of studies used convenience sampling and >75% had unclear response rate). There was no evidence for temporal variation in prevalence between 1982 and 2018.

Interpretation *C trachomatis* prevalence in the Middle East and north Africa is similar to other regions, but higher than expected given its sexually conservative norms. High prevalence in infertility clinic attendees and in women with miscarriage suggests a potential role for *C trachomatis* in poor reproductive health outcomes in this region.

Funding National Priorities Research Program from the Qatar National Research Fund (a member of Qatar Foundation).

Copyright © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction

With more than 100 million incident infections every year,1 *Chlamydia trachomatis* is one of the most common sexually transmitted infections (STIs) worldwide.2,3 Although curable, control and early detection of *C trachomatis* infection are challenged by its largely asymptomatic nature.4 Untreated *C trachomatis* infection is associated with serious reproductive tract conditions including pelvic inflammatory disease, ectopic pregnancy, infertility among women, and epididymitis among men.4,5

Despite burdensome sequelae, STI control has long languished on health policy agendas. The 2030 Agenda on Sustainable Development6 aims to remedy this situation and led to WHO’s Global Health Sector Strategy on STIs.7 The strategy proposes an integrated approach for STI prevention and control that addresses core Sustainable Development Goals, mainly through securing universal access to sexual and reproductive health-care services and rights.7,8 The first strategic direction of this STI Strategy is “the need to understand the sexually transmitted infection epidemic and response as a basis for advocacy, political commitment, national planning, resource mobilization and allocation, implementation, and programme improvement.”9

The epidemiology of STIs, including *C trachomatis*, remains poorly understood in the Middle East and north Africa—a region comprising 10% of the world’s population.6,10 Here, political and sociocultural sensitivities have set STIs low on countries’ public health agendas, resulting in limited capacity for surveillance and programmes targeting sexual health, despite the possibility of a hidden disease burden.9 For example, the prevalence of primary infertility in the Middle East and north Africa, based on demographic and reproductive health surveys, has been
Evidence before this study
In a context of continuing stigma and political and sociocultural sensitivities, the Middle East and north Africa region has a dearth of epidemiological data about sexually transmitted infections. The prevalence of Chlamydia trachomatis and its distribution among populations at differing levels of risk of exposure remain largely unknown. A PubMed search using the search criteria (“Chlamydia”[MeSH] AND “Review”[Publication Type]) identified no systematic review and meta-analysis of regional scope for all subpopulations for this infection in the Middle East and north Africa or elsewhere.

Added value of this study
Using rigorous state-of-the-art methodologies with current empirical evidence, this study provided the first comprehensive epidemiological assessment of C. trachomatis infection in the Middle East and north Africa. The study searched diverse sources of data, beyond international electronic databases, and identified a large volume of published and unpublished data, some of which now appears in the literature for the first time. The scope of evidence allowed analyses that found revealing associations relevant for the Middle East and north Africa and elsewhere. Unexpectedly, given this region’s sexually conservative norms, the study estimated a C. trachomatis prevalence of 3% in the population at large, similar to estimates from other regions. The study also documented high C. trachomatis prevalence levels in infertility clinic attendees and in women with miscarriage, with odds of infection three-times higher than in the general population.

Implications of all the available evidence
There is a substantial C trachomatis infection and disease burden in the Middle East and north Africa that is neglected and poorly recognised despite its social and economic toll in a region comprising 10% of the world’s population. C. trachomatis infection appears to be consistently associated with infertility and poor reproductive health outcomes in this region, yet these conditions are not linked to the possibility of an underlying infectious cause. The Middle East and north Africa is far from achieving WHO’s Global Health Sector Strategy on Sexually Transmitted Infections, 2016–21. The findings of this study provide a scientific foundation to develop an evidence-informed public health response against C. trachomatis and its burdensome sequelae. The challenge will be to implement effective targeted, culturally appropriate, and gender-specific programmes to tackle C. trachomatis infection and improve sexual health in general.

Methods
Search strategy and selection criteria
We did a systematic review as well as a meta-analysis and meta-regression. We followed systematic review methods proposed by the Cochrane Collaboration,33 and report findings following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines (appendix pp 5–6). We did exhaustive searches using PubMed and Embase, regional and national databases (WHO Index Medicus for the Eastern Mediterranean region, Iraqi Academic Scientific Journals database, and Iranian Scientific Information Database), abstract archives of International AIDS Society Conferences,34 as well as country-level and international organisations’ reports available through the Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project database.35

Our searches were done up to March 13, 2019, using broad search terms (MeSH/Emtree terms exploded to cover all subheadings and free-text terms) with no language or year restrictions. The appendix (p 7) summarises the search criteria and search terms used. The Middle East and north Africa were defined as 23 countries extending from Morocco in the west to Pakistan in the east (appendix p 8). This definition for the Middle East and north Africa follows earlier convention applied in HIV and hepatitis C research,36–22 and is based on definitions by WHO, UNAIDS, and the World Bank.

Search results were checked for duplicates using Endnote (version 8.2). We screened titles and abstracts of unique citations. Full texts of citations deemed relevant or potentially relevant were retrieved for further screening by AS and HC. Any document or report including biological measures for C. trachomatis prevalence or incidence, or both, based on primary data was eligible for inclusion. Case reports, case series, editorials, commentaries, reviews, and reports about military personnel stationed in the Middle East and North Africa, but not from these countries, were excluded. Reference lists of literature reviews and all relevant articles were hand-searched for additional eligible reports.

In this Article, the term report refers to a document (article, conference abstract, or country-level report) containing outcome measures of interest (ie, prevalence or incidence) for one or more populations, and the term study refers to details of a specific outcome measure in a specific population. Consequently, one report could contribute multiple studies and one study could be published in different reports. Duplicate study results were included only once using the most detailed report.

Data analysis
Data from relevant reports were extracted by AS with input from LJA-R. Independent extraction was done by
HC, and discrepancies were settled by consensus, or by contacting authors. Data from non-English articles were extracted from the full text by native speakers.

We extracted all measures of current (genital or rectal), recent, and ever infection with C trachomatis. We stratified data according to the study population’s risk of exposure to C trachomatis or clinical manifestations (panel). Populations were defined as per original study authors’ specific population definition and inclusion criteria (such as for infertile populations or women with miscarriage). We classified women and men as symptomatic only if there was an indication for the presence of C trachomatis-related signs and symptoms. We subsequently synthesised data by type of assay used for C trachomatis detection and summarised these data using medians and ranges.

Studies applying the same assay to different biological specimens were included only once, based on a sequential order that prioritised, for women, C trachomatis detection in endocervical swabs, followed by vaginal and urine samples; and for men, detection in urethral swabs, followed by urine and semen samples. Studies applying nucleic acid amplification test (NAAT) and culture to the same biological specimen were included separately given our interest in studying their contribution to heterogeneity in C trachomatis prevalence, and in generating STI-estimation correction factors based on assay type.23–25 Studies applying other antigen detection assays to the same biological specimen were included only once based on assay sensitivity (direct fluorescence and enzyme-linked immunosassays on genital samples were prioritised over Giemsa staining).

We excluded studies using tissue specimens from the upper genital tract, or including less than ten participants. We stratified the analyses by sex where relevant. Studies reporting only an overall measure for men and women were classified according to the predominant sex in the sample.

We did risk of bias and precision assessments. Informed by the Cochrane approach,19 we classified studies as having low versus high risk of bias for each of three quality domains assessing rigour of sampling methodology (probability based vs non-probability based), type of C trachomatis ascertainment (biological assay vs other, such as self-report), and response rate (≥80% response rate or ≥80% of target sample size reached [the latter for studies using respondent-driven sampling] vs <80%). Studies with unavailable information about any given domain were classified as having unclear risk of bias for that domain. Studies were considered of higher precision if 200 participants or more underwent testing for C trachomatis, which was judged as an acceptable level of precision assuming a mean prevalence of 3% in the general population.

We produced forest plots to visualise estimates of prevalence and 95% CIs for each at-risk population, stratified by type of assay. Pooled average prevalence and 95% CIs were then estimated using meta-analysis for each stratum. A Freeman-Tukey type arcsine square-root transformation was first applied to stabilise variances of prevalence measures.26,27 Measures were then weighted using the inverse-variance method,28,29 before being pooled using a DerSimonian-Laird random-effects model.28 This model assumes a normal distribution for true effect sizes (ie, prevalence) across studies, which factors in sampling variation and true between-study heterogeneity.30

We did heterogeneity assessment using Cochran’s Q statistic to confirm existence of heterogeneity across studies,31 to quantify magnitude of between-study variation that is due to true differences in effect size rather than chance, and prediction interval to estimate the 95% CI of the distribution of true effect sizes.31,32 We did subgroup meta-analyses whenever five studies or more were available, using the R software (version 3.4.2).22 We did random-effects meta-regression analyses to identify sources of between-study heterogeneity and estimated the magnitude of their association with prevalence. We included risk of bias and precision domains in the meta-regression analyses. We considered the
following predictors a priori: at-risk population (panel), assay type (NAAT, culture, other assays detecting current infection, serological assays detecting anti-\textit{C trachomatis} immunoglobulins of class IgG, IgM, IgA, immunoglobulins not specified, and unclear), sampling methodology (non-probability-based sampling \textit{vs} probability-based sampling), sample size (<200 \textit{vs} \geq 200 participants), response rate (\geq 80\% \textit{vs} <80\% and unclear), year of publication, year of data collection, country (Egypt, Iran, Pakistan, and remaining countries; Egypt, Iran, and Pakistan being the most populous in the Middle East and north Africa),33 and sex (women \textit{vs} men; men-to-women transgenders who were biologically males were considered as men).

Studies that assessed \textit{C trachomatis} prevalence using different diagnostics or biomarkers were included independently. Missing values for year of data collection were imputed using data for year of publication adjusted...
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Kadi et al (1990)	Algeria	Cross-sectional	69	W	Gynaecology clinic	Gynaecology clinic attendees	Serum	MIF (IgG)	17.4%
Kadi et al (1990)	Algeria	Cross-sectional	180	W	Hospital	Women seeking rubella tests	Serum	MIF (IgG)	26.6%
Abdel Monem et al (2005)	Egypt	Case-control	20	W	Antenatal clinic	Pregnant women	Endocervical	Culture	15%
Aboul Atta and Ibrahim (1995)	Egypt	Case-control	20	M	Hospital	Controls in STI study	Urethral	DFA	5%
Badary (1996)	Egypt	Case-control	32	W	Gynaecology clinic	Fertile women	Endocervical	DFA	12.5%
Berry and El Shabrawy (1996)	Egypt	Case-control	30	W	Family planning clinic	Family planning clinic attendees	Serum	EIA (IgG)	3.3%
Diab (1993)	Egypt	Case-control	30	W	Antenatal clinic	Women with full-term delivery	Serum	EIA (IgG)	0
Draz et al (2018)	Egypt	Case-control	14	W	Gynaecology clinic	Healthy women	Endocervical	DFA	0
El-Sayed et al (2002)	Egypt	Cross-sectional	108	W	Family planning clinic	Family planning clinic attendees	Urine	NAAT	2.8%
El-Sayed et al (2002)	Egypt	Cross-sectional	604	W	Antenatal clinic	Antenatal clinic attendees	Urine	NAAT	1.3%
Mosbah and Nabil	Egypt	Case-control	90	W	Hospital	Pregnant women with pre-eclampsia	Endocervical	NAAT	4.4%
Mosbah and Nabil (2016)	Egypt	Case-control	90	W	Hospital	Normotensive pregnant women	Endocervical	NAAT	0
Mousa (1990)	Egypt	Cross-sectional	50	W	Gynaecology clinic	Gynaecology clinic attendees	Endocervical	NAAT	2%
Nada et al (2015)	Egypt	Case-control	100	W	Gynaecology clinic	Gynaecology clinic attendees	Endocervical	NAAT	2%
Sullam et al (2001)	Egypt	Cross-sectional	1344	W	Community	Household survey of women	Endocervical	ELISA	4.2%
Zaki (1989)	Egypt	Cross-sectional	100	W	Antenatal clinic	Pregnant women	Endocervical	Culture	3%
Ahmadi et al (2016)	Iran	Case-control	109	W	Family planning clinic	Family planning clinic attendees	Endocervical	NAAT	11.9%
Ahmadi et al (2018)	Iran	Case-control	165	M	Clinic	Fertile men	Semen	NAAT	0.6%
Ahmadi et al (2018)	Iran	Cross-sectional	4274	W	Primary health-care centre	Primary health-care centre clinic attendees	Endocervical	Culture	1%
Badami and Salari (2001)	Iran	Cross-sectional	250	W	Family planning clinic	Family planning clinic attendees	Serum	DFA	0.8%
Badami and Salari (2001)	Iran	Cross-sectional	250	W	Family planning clinic	Family planning clinic attendees	Serum	DFA	3.2%
Baghchehsaraei et al (2011)	Iran	Cross-sectional	328	W	Gynaecology clinic	Gynaecology clinic attendees	Serum	EIA (IgM)	10.3%
Bagheri et al (2018)	Iran	Case-control	60	W	Fertility centre	Pregnant women	Vaginal	NAAT	0
Bagheri et al (2018)	Iran	Case-control	60	W	Fertility centre	Pregnant women	Serum	ELISA (IgA)	6.7%
Bagheri et al (2018)	Iran	Case-control	60	W	Fertility centre	Pregnant women	Serum	ELISA (IgG)	1.7%
Behroozi (2001)	Iran	Case-control	400	W	Antenatal clinic	Pregnant women	Unclear	DFA	2.8%
Chamiari-Tabriz et al (2008)	Iran	Cross-sectional	991	W	Community	Married women	Urine	NAAT	12.8%
Cheraghi et al (2014)	Iran	Cross-sectional	1448	W	Health centres	Non-pregnant women	Endocervical	Unclear	0.2%
Dehghan et al (2017)	Iran	Case-control	250	W	Antenatal clinic	Antenatal clinic attendees	Urine	NAAT	0
Dehghan et al (2017)	Iran	Case-control	250	W	Antenatal clinic	Antenatal clinic attendees	Serum	EIA (IgA)	0
Dehghan et al (2017)	Iran	Case-control	250	W	Antenatal clinic	Antenatal clinic attendees	Serum	EIA (IgM)	0
Dehghan et al (2017)	Iran	Case-control	250	W	Antenatal clinic	Antenatal clinic attendees	Serum	EIA (IgG)	12.8%
Goshayeshi et al (2015)	Iran	Case-control	30	W	Fertility centre	Fertile women	Endocervical	NAAT	3.3%
Haghighi Hasanabad et al (2013)	Iran	Cross-sectional	399	W	Antenatal clinic	Pregnant adolescents	Unclear	NAAT	12.3%
Jahromi et al (2010)	Iran	Case-control	200	W	Gynaecology clinic	Women with full-term delivery	Endocervical	DFA	5.2%
Javannard et al (2018)	Iran	Cross-sectional	210	W	Gynaecology clinic	Women undergoing routine pap smear	Endocervical	NAAT	11.4%

(Table 1 continues on next page)
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Joolayi et al (2017)62	Iran	Case-control	Convenience	125 W Hospital	Pregnant women	Vaginal NAAT	1.6%		
Joolayi et al (2017)62	Iran	Case-control	Convenience	125 W Hospital	Pregnant women	Serum ELISA (IgM)	1.6%		
Joolayi et al (2017)62	Iran	Case-control	Convenience	125 W Hospital	Pregnant women	Serum ELISA (IgG)	0		
Kajbaf and Gholamrezaedd (1998)63	Iran	Case-control	Convenience	50 W Antenatal clinic	Antenatal clinic attendees	Endocervical DFA	4%		
Kajbaf and Gholamrezaedd (1998)63	Iran	Case-control	Convenience	50 W Antenatal clinic	Antenatal clinic attendees	Serum ELISA (IgG)	6%		
Kamaryabi (2009)64	Iran	Case-control	Convenience	35 W Gynaecology clinic	Pregnant women	Serum ELISA (IgM)	20%		
Khezerdoust et al (2009)63	Iran	Cross-sectional	Convenience	1114 W Antenatal clinic	Pregnant women	Serum ELISA (IgG)	2.9%		
Masashi et al (2014)66	Iran	Case-control	Convenience	200 W Antenatal clinic	Pregnant women	Endocervical DFA	3.5%		
Masashi et al (2014)66	Iran	Case-control	Convenience	200 W Antenatal clinic	Pregnant women	Endocervical NAAT	8.7%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	70 W Antenatal clinic	Pregnant women	Serum ELISA (unclear)	4.3%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	250 W Family planning clinic	Healthy women	Endocervical DFA	0.8%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	104 W Antenatal clinic	Antenatal clinic attendees	Endocervical NAAT	5.8%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	239 W Hospital	Pregnant women	Endocervical NAAT	15.5%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	222 W Antenatal clinic	Pregnant women	Serum ELISA (IgM)	1.8%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	222 W Antenatal clinic	Pregnant women	Serum ELISA (IgG)	5.0%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	222 W Antenatal clinic	Pregnant women	Serum NAAT	8.5%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	91 W Hospital	Pregnant women	Serum ELISA (IgG)	28.6%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	518 W Gynaecology clinic	Gynaecology clinic attendees	Endocervical NAAT	7.1%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	70 W Antenatal clinic	Pregnant women	Serum ELISA (IgG)	4.3%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	70 W Antenatal clinic	Antenatal clinic attendees	Endocervical NAAT	10.0%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	70 W Antenatal clinic	Antenatal clinic attendees	Endocervical Culture	8.6%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	100 W Antenatal clinic	Pregnant women	Serum ELISA (IgM)	2%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	100 W Antenatal clinic	Pregnant women	Serum ELISA (IgG)	18%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	30 W Gynaecology clinic	Women with full-term delivery	Urine NAAT	4.7%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	30 W Gynaecology clinic	Women with full-term delivery	Urine NAAT	4.4%		
Ministry of Health and Medical Education (2008)67	Iran	Case-control	Convenience	100 M Urology clinic	Asymptomatic men	Urine NAAT	4%		
Ministry of Health and Medical Education (2008)67	Iran	Cross-sectional	Convenience	76 W Gynaecology clinic	Pregnant women	Vaginal NAAT	10.5%		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	40 W Antenatal clinic	Women with full-term delivery	Serum ELISA (IgM)	0		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	40 W Antenatal clinic	Women with full-term delivery	Serum ELISA (IgG)	7.5%		
Ministry of Health and Medical Education (2008)67	Iraq	Cross-sectional	Convenience	198 W Hospital	Women with full-term delivery	Serum ELISA (IgG)	3.7%		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	24 W Hospital	Pregnant women	Serum ELISA (IgM)	0		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	24 W Hospital	Pregnant women	Serum ELISA (IgG)	8.3%		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	30 W Hospital	Women with full-term delivery	Serum ELISA (unclear)	0		
Ministry of Health and Medical Education (2008)67	Iraq	Case-control	Convenience	17 W Hospital	Pregnant women	Serum ELISA (IgM)	14.0%		

(Table 1 continues on next page)
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Al-Hamdani et al (2010) 83 Iraq	Case-control	Convenience	17 W	Hospital	Pregnant women	Serum	ELISA (IgG)	40%	
Al-Hamdani et al (2010) 83 Iraq	Case-control	Convenience	17 W	Hospital	Pregnant women	Serum	ELISA (IgA)	14%	
Al-Husseinei et al (2009) 84 Iraq	Case-control	Convenience	100 W	Family planning clinic	Family planning clinic attendees	Serum	IFAT (unclear)	5%	
Al-Husseinei et al (2009) 84 Iraq	Case-control	Convenience	100 W	Family planning clinic	Family planning clinic attendees	Endocervical	ELFA	4%	
Ali and Al-Kazaz (2018) 85 Iraq	Case-control	Convenience	13 M	Clinic	Fertile men	Semen	NAAT	0	
Alkhafaf (2013) 86 Iraq	Case-control	Convenience	122 W	Hospital	Married women	Serum	ELISA (IgG)	4%	
Alkhafaf (2013) 86 Iraq	Case-control	Convenience	168 W	Hospital	Unmarried woman	Serum	ELISA (IgG)	10%	
Hwaid et al (2013) 87 Iraq	Case-control	Simple random sampling	91 W	Antenatal clinic	Pregnant women	Serum	ELISA (IgG)	0	
Hwaid et al (2013) 87 Iraq	Case-control	Simple random sampling	91 W	Antenatal clinic	Pregnant women	Serum	ELISA (IgM)	4%	
Ismail and Ali (2012) 88 Iraq	Case-control	Convenience	50 W	Laboratories	General population women	Serum	ELISA (IgM)	4%	
Ismail and Ali (2012) 88 Iraq	Case-control	Convenience	50 W	Laboratories	General population women	Serum	ELISA (IgG)	10%	
Ismail and Ali (2012) 88 Iraq	Case-control	Convenience	50 W	Laboratories	General population women	Serum	ELISA (IgA)	5%	
Mohammed et al (2022) 89 Iraq	Case-control	Convenience	23 W	Gynaecology clinic	Gynaecology clinic attendees	Endocervical	NAAT	0	
Mohammed et al (2022) 89 Iraq	Case-control	Convenience	20 W	Gynaecology clinic	Gynaecology clinic attendees	NAAT	0		
Mohammed et al (2022) 89 Iraq	Case-control	Convenience	20 W	Gynaecology clinic	Gynaecology clinic attendees	Serum	ELISA (IgG)	0	
Yahya and Al-Siraj (2009) 90 Jordan	Cross-sectional	Convenience	296 M	Laboratory	Fertile men	Serum	Culture	0	
Abu Sarah et al (2013) 97 Jordan	Case-control	Convenience	61 M	Urology clinics	Fertile men	Urine	NAAT	1%	
Al-Ramahi et al (2008) 98 Jordan	Case-control	Convenience	146 W	Gynaecology clinic	Gynaecology clinic attendees	Endocervical	NAAT	0	
As'ad (2004) 99 Jordan	Cross-sectional	Convenience	144 W	Family planning clinic	Asymptomatic women	Vaginal	NAAT	0	
Al-Wadi et al (2003) 100 Jordan	Case-control	Convenience	61 M	Urology clinic	Non-urethritis patients	Urine	NAAT	0	
Al-Wadi et al (2003) 100 Jordan	Case-control	Convenience	39 M	Urology clinic	Non-urethritis patients	Urine	NAAT	0	
Mahfuz et al (2008) 101 Jordan	Cross-sectional	Convenience	186 W	Gynaecology clinic	Family planning clinic attendees	Endocervical	NAAT	0	
Jordan Ministry of Health (2004) 102 Jordan	Cross-sectional	Convenience	213 W	Hospital	Asymptomatic women	Endocervical	NAAT	0	
Al-Awadhi et al (2018) 103 Kuwait	Cross-sectional	Convenience	65338 W	Laboratory	Women undergoing pap smear 1997–2005	Endocervical	NAAT	0	
Al-Awadhi et al (2018) 103 Kuwait	Cross-sectional	Convenience	56105 W	Laboratory	Women undergoing pap smear 2006–14	Endocervical	NAAT	0	
Al-Sweih et al (2011) 104 Kuwait	Cross-sectional	Convenience	5938 W	Primary health-care centre	Kuwaiti women	Vaginal	NAAT	1%	
Al-Sweih et al (2011) 104 Kuwait	Cross-sectional	Convenience	2601 W	Primary health-care centre	Expatriate women	Vaginal	NAAT	2%	
Al-Sweih et al (2011) 104 Kuwait	Cross-sectional	Convenience	188 M	Gynaecology clinic	Fertile men	Semen	NAAT	3%	
Dee et al (2000) 105 Lebanon	Cross-sectional	Multistage random sampling	506 W	Community	Ever-married women	Endocervical	ELISA	0	
Hancali et al (2015) 106 Morocco	Cross-sectional	Convenience	760 W	Family planning clinic	Family planning clinic attendees in 1999	Unclear	NAAT	4%	
Hancali et al (2015) 106 Morocco	Cross-sectional	Convenience	256 W	Family planning clinic	Family planning clinic attendees in 2011	Unclear	NAAT	4%	

*(Continued from previous page)
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
(Continued from previous page)									
Hulstein et al (2018)	Morocco	Cross-sectional	Simple random sampling	163	M Community	General population men	Serum	IFAT (IgG)	31%
Hulstein et al (2018)	Morocco	Cross-sectional	Simple random sampling	174	W Community	General population women	Serum	IFAT (IgG)	37%
Morocco Ministry of Health	Morocco	Cross-sectional	Convenience	323	W Antenatal clinic	Pregnant women	Urine	NAAT	27%
Morocco Ministry of Health	Morocco	Cross-sectional	Convenience	518	W Family planning clinic	Family planning clinic attendees	Urine	NAAT	5%
The Middle East and North	Morocco	Cross-sectional	Convenience	252	W Antenatal clinic	Pregnant women	Unclear	NAAT	36%
Africa HIV/AIDS Epidemiology	Morocco	Cross-sectional	Convenience	537	W Family planning clinic	Family planning clinic attendees	Unclear	NAAT	3%
Synthesis Project (2017)	Morocco	Cross-sectional	Convenience	81	W Hospital	Pregnant women	Serum	MIF (unclear)	14%
Radouani et al (1998)	Morocco	Case-control	Convenience	200	M Hospital	Blood donors	Serum	MIF (unclear)	5%
Radouani et al (1998)	Morocco	Case-control	Convenience	200	M Hospital	Blood donors	Serum	MIF (unclear)	5%
Takourt et al (1995)	Morocco	Case-control	Convenience	200	M Hospital	Blood donors	Serum	MIF (unclear)	5%
Takourt et al (1995)	Morocco	Case-control	Convenience	200	M Hospital	Blood donors	Serum	MIF (unclear)	10%
Mir et al (2009)	Pakistan	Cross-sectional	Multistage systematic random	2383	M Community	General population men	Urine	NAAT	0
Wasti et al (1997)	Pakistan	Cross-sectional	Convenience	300	W	Antenatal clinic and family	Endocervical	DFA	3%
Al-Thani et al (2013)	Qatar	Cross-sectional	Convenience	133	W	Primary health-care centre	Endocervical	NAAT	5%
Al-Thani et al (2013)	Qatar	Cross-sectional	Convenience	218	W Primary health-care centre	Non-Qatari women	Endocervical	NAAT	5%
Alzahrani et al (2010)	Saudi Arabia	Cross-sectional	Simple random sampling	95	W Antenatal clinic	Pregnant women	Endocervical	ELISA	10%
Awad et al (2013)	Saudi Arabia	Cross-sectional	Convenience	144	W Gynaecology clinic	Antenatal clinic attendees	Urine	NAAT	11%
Bashir (1987)	Saudi Arabia	Cross-sectional	Convenience	100	W Primary health-care centre	Primary health-care centre	Serum	MIF (IgG)	0
Bashir (1987)	Saudi Arabia	Cross-sectional	Convenience	100	M Primary health-care centre	Primary health-care centre	Serum	MIF (IgG)	2%
Ghazi et al (2006)	Saudi Arabia	Cross-sectional	Simple random sampling	1600	W Antenatal clinic	Saudi pregnant women	Serum	ELISA (IgG)	8%
Ghazi et al (2006)	Saudi Arabia	Cross-sectional	Simple random sampling	1460	W Antenatal clinic	Saudi pregnant women	Serum	ELISA (IgM)	1.5%
Hossein (1988)	Saudi Arabia	Cross-sectional	Convenience	112	M Hospital	Blood donors	Serum	MIF (IgM)	0
Hossein (1988)	Saudi Arabia	Cross-sectional	Convenience	112	M Hospital	Blood donors	Serum	MIF (IgG)	1.8%
Kamel (2013)	Saudi Arabia	Randomised controlled trial	Convenience	100	W Antenatal clinic	Antenatal clinic attendees	Serum	ELISA (IgG)	4%
Massoud et al (1993)	Saudi Arabia	Case-control	Convenience	100	W Hospital	Asymptomatic women	Serum	NAAT	0
Massoud et al (1993)	Saudi Arabia	Case-control	Convenience	100	M Hospital	Asymptomatic men	Serum	NAAT	2%
Ismail et al (1990)	Somalia	Cross-sectional	Convenience	194	W Community	Women	Endocervical	EIA	12.4%

(Table 1 continues on next page)
The search identified a total of 1531 citations: 509 through PubMed, 557 through Embase, and 465 through regional databases. Three reports were subsequently excluded. In total, 255 reports contributing 552 prevalence measures met the eligibility criteria for inclusion, but no incidence measures were identified.

Evidence covered 20 (87%) of 23 countries, encompassing a total of 256 769 C. trachomatis test results (tables 1 and 2; appendix pp 9–14). Iran contributed the largest number of measures or studies (n=176), followed by Egypt (n=89), Iraq (n=72), Saudi Arabia (n=45), Pakistan (n=42), and Morocco (n=32). Most studies assessed current infection (n=318), whereas the rest reported different serological measures (n=211), such as ever infection (anti-C trachomatis IgG; n=117). Details of C. trachomatis testing protocol were specified in 424 (77%) of 552 studies; 320 (75%) of the 424 used commercial assays, 62 (15%) used in-house validated tests, 29 (7%) used culture, and 13 (3%) used a non-validated in-house test.

In general populations (n=137), prevalence of current genital infection ranged from 0 to 19·9% with a median of 3·0%, whereas ever infection prevalence ranged from 0 to 37·9% with a median of 4·7% (tables 1 and 3). In populations at high risk (n=40), current infection prevalence in female sex workers (n=20) ranged from 0·9% to 72·9% with a median of 8·4%, whereas ever infection prevalence ranged from 19·8% to 100% with a median of 90·0% (tables 2 and 3). In men who have sex with men (including male sex workers and male-to-female transenders; n=20), current infection prevalence ranged from 0 to 8·8% with a median of 1·2% for genital infections and from 3·6% to 18·3% with a median of 6·3% for rectal infections, but no ever infection measure was identified.

Table 1: Studies reporting Chlamydia trachomatis prevalence in general populations in the Middle East and north Africa

Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
(Continued from previous page)									

Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†	
Ismail et al (1990)	Somalia	Cross-sectional	Convenience	189	M	Community	Men	Urethral	EIA	6%
Nur et al (2000)	Somalia	Cross-sectional	Convenience	54	M	Hospital	Blood donors	Serum	EIA (IgG)	22%
WHO (2005a)	Somalia	Cross-sectional	Convenience	4723	W	Antenatal clinic	Pregnant women	Urine	NAAT	17%
WHO (2005b)	Somalia	Cross-sectional	Convenience	509	W	Antenatal clinic	Pregnant women	Urine	NAAT	34%
Ahmed et al (2018)	Sudan	Case-control	Convenience	93	W	Hospital	Healthy pregnant women	Serum	ELISA (IgG)	0%
Ahmed et al (2018)	Sudan	Case-control	Convenience	93	W	Hospital	Pregnant women with pre-eclampsia	Serum	ELISA (IgG)	0%
Almoth et al (2000)	Sudan	Case-control	Convenience	139	W	Antenatal clinic	Antenatal clinic attendees	Serum	EIA (IgG)	36%
Oktash et al (2004)	Sudan	Cross-sectional	Convenience	151	W	Antenatal clinic	Pregnant women	Endocervical and urethral	EIA	19%
Alkayer et al (2017)	Syria	Case-control	Convenience	21	W	Hospital	Pregnant women	Serum	ELISA (IgG)	47%
Ghazal-Aswad et al (2006)	United Arab Emirates	Cross-sectional	Multistage cluster sampling	727	W	Clinics	Primary health-care centre and clinic attendees	Endocervical and urethral	EIA	25%

DFA=direct fluorescent assay. EIA=enzyme immunoassay. ELFA=enzyme-linked fluorescence assay. IFA=indirect fluorescent antibody test. M=men or sample predominantly of men. NAAT=nucleic acid amplification test. STI=sexually transmitted infection. W=women or sample predominantly of women. *Non-probability sampling refers to a sampling method in which the data collection process does not allow individuals to have equal chance of being selected; an example is convenience sampling for which individuals are selected on the basis of ease of accessibility (first-come first-served basis). **Probability-based sampling refers to a sampling method in which data collection process is based on a random selection of study participants; an example is random sampling from a sampling frame. †The extracted prevalence measure is for the baseline measurement.
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Algeria	Cross-sectional	Convenience	44	W	Community	Female sex workers	Serum	MIF (IgG)	100%
Egypt	Cross-sectional	Convenience	52	W	Community	Female sex workers	Urine	NAAT	7.7%
Egypt	Cross-sectional	Convenience	80	M	Community	Men who have sex with men	Urine	NAAT	8.8%
Iran	Cross-sectional	Convenience	116	W	Community	Female sex workers	Endocervical	Culture	6.9%
Iran	Cross-sectional	Convenience	154	W	Community	Female sex workers	Serum	MIF (IgG)	29.2%
Iran	Cross-sectional	Convenience	154	W	Community	Female sex workers	Serum	MIF (IgM)	94.2%
Iran	Cross-sectional	Convenience	91	W	Mixed	Female sex workers	Serum	ELISA (IgG)	19.8%
Iran	Cross-sectional	Convenience	278	W	Community	Female sex workers	Vaginal	NAAT	9%
Iran	Cross-sectional	Convenience	1337	W	Community	Female sex workers	Vaginal	NAAT	6%
Iraq	Case-control	Convenience	30	W	STI clinic	Women with multiple partners	Endocervical	ELFA	30%
Iraq	Case-control	Convenience	30	W	STI clinic	Women with multiple partners	Serum	IFAT (unclear)	36.7%
Morocco	Cross-sectional	Convenience	519	W	NGOs	Female sex workers	Endocervical and vaginal	NAAT	20.7%
Morocco	Cross-sectional	Convenience	141	W	STI clinic	Female sex workers	Endocervical and urine	NAAT	22.7%
Morocco	Cross-sectional	Convenience	368	W	Community	Female sex workers in Agadir	Endocervical	NAAT	22.4%
Morocco	Cross-sectional	Convenience	247	M	Community	Men who have sex with men in Agadir	Urine	NAAT	5.4%
Morocco	Cross-sectional	Convenience	252	M	Community	Men who have sex with men in Marrakech	Urine	NAAT	6.5%
Pakistan	Cross-sectional	Convenience	426	M	Community	Female sex workers in Rawalpindi	Endocervical	NAAT	1.7%
Pakistan	Cross-sectional	Convenience	107	W	Community	Female sex workers in Abbottabad	Endocervical	NAAT	0.9%
Pakistan	Cross-sectional	Convenience	195	M	Community	Male sex workers in Rawalpindi (Bantha)	Urine	NAAT	0
Pakistan	Cross-sectional	Convenience	195	M	Community	Male sex workers in Rawalpindi (Khotki)	Rectal	NAAT	4.7%
Pakistan	Cross-sectional	Convenience	364	M	Community	Male sex workers in Rawalpindi (Khotki)	Urine	NAAT	0
Pakistan	Cross-sectional	Convenience	364	M	Community	Male sex workers in Rawalpindi (Khotki)	Rectal	NAAT	3.6%
Pakistan	Cross-sectional	Convenience	253	M	Community	Male sex workers in Rawalpindi (Khusra)	Urine	NAAT	0
Pakistan	Cross-sectional	Convenience	253	M	Community	Male sex workers in Rawalpindi (Khusra)	Rectal	NAAT	9.9%
Pakistan	Cross-sectional	Convenience	83	M	Community	Male sex workers in Abbottabad (Bantha)	Urine	NAAT	1.2%
Pakistan	Cross-sectional	Convenience	83	M	Community	Male sex workers in Abbottabad (Bantha)	Rectal	NAAT	4.9%
Pakistan	Cross-sectional	Convenience	20	M	Community	Male sex workers in Abbottabad (Khotki and Khusra)	Urine	NAAT	0
Pakistan	Cross-sectional	Convenience	20	M	Community	Male sex workers in Abbottabad (Khotki and Khusra)	Rectal	NAAT	6.3%
Pakistan	Cross-sectional	Convenience	730	W	Community	Female sex workers in Lahore	Endocervical	NAAT	7.7%
Pakistan	Cross-sectional	Convenience	2531	M	Drop in centre	Men who have sex with men in Lahore	Unclear	Unclear	35.2%
Pakistan	Cross-sectional	Systematic random sampling	383	W	Red-light	Female sex workers in Lahore	Endocervical	NAAT	11%
Pakistan	Cross-sectional	Snowball	348	W	Community	Female sex workers in Karachi	Endocervical	NAAT	5.2%

(Table 2 continues on next page)
Rehan et al (2009)\(^{14}\) 141 Pakistan Cross-sectional Respondent-driven sampling 395 M Community Male sex workers in Lahore Urethral NAAT 1·5%
Rehan et al (2009)\(^{14}\) 141 Pakistan Cross-sectional Snowball 396 M Community Male sex workers in Karachi Urethral NAAT 1·2%
Rehan et al (2009)\(^{14}\) 141 Pakistan Cross-sectional Snowball 394 M Community Male sex workers in Karachi Rectal NAAT 10·4%
Rehan et al (2009)\(^{14}\) 141 Pakistan Cross-sectional Systematic random cluster sampling 197 M Community Hijras in Karachi Urethral NAAT 0
Rehan et al (2009)\(^{14}\) 141 Pakistan Cross-sectional Systematic random cluster sampling 198 M Community Hijras in Lahore Urethral NAAT 1·5%
Znazen et al (2010)\(^{142}\) 142 Tunisia Cross-sectional Convenience 188 W Community Female sex workers Endocervical NAAT 72·9%
Znazen et al (2010)\(^{142}\) 142 Tunisia Cross-sectional Convenience 183 W Community Female sex workers Serum MIF (IgG) 85·8%
Abdel Aleem et al\(^{143}\) 143 Egypt Case-control Convenience 144 W Infertility clinic Women with mixed infertility diagnosis Serum ELISA (IgG) 52%
Abdel Aleem et al\(^{143}\) 143 Egypt Case-control Convenience 104 M Infertility clinic Men with unclear infertility diagnosis Serum ELISA (IgG) 24%
Abdel Monem et al (2005)\(^{14}\) 143 Egypt Case-control Convenience 150 W Infertility clinic Women with unclear infertility diagnosis Endocervical Culture 24%
Abdel Monem et al (2005)\(^{14}\) 143 Egypt Case-control Convenience 150 W Infertility clinic Women with unclear infertility diagnosis Endocervical EIA 22·7%
Abdella et al (2015)\(^{144}\) 143 Egypt Case-control Convenience 50 W Infertility clinic Women with idiopathic infertility Serum ELISA (IgM) 4%
Abdella et al (2015)\(^{144}\) 143 Egypt Case-control Convenience 50 W Infertility clinic Women with idiopathic infertility Serum ELISA (IgG) 36%
Abdella et al (2015)\(^{144}\) 143 Egypt Case-control Convenience 50 W Infertility clinic Women with idiopathic infertility Endocervical NAAT 6%
Azab and Hassouna (2008)\(^{145}\) 145 Egypt Cross-sectional Convenience 70 W Infertility clinic Nearly half of women with TFI Serum ELISA (IgG) 28·6%
Badary (1996)\(^{146}\) 145 Egypt Case-control Convenience 60 W Infertility clinic Women with idiopathic infertility Endocervical DFA 33%
Berry and El Shabrawy (1996)\(^{146}\) 145 Egypt Case-control Convenience 70 W Infertility clinic Women with unclear infertility diagnosis Serum EIA (IgG) 18·6%
Elkayal et al (2015)\(^{144}\) 145 Egypt Case-control Convenience 100 W Infertility clinic Women with mixed infertility diagnosis Endocervical ELISA 3%
Elkayal et al (2015)\(^{144}\) 145 Egypt Case-control Convenience 100 W Infertility clinic Women with mixed infertility diagnosis Endocervical NAAT 3%
El Sayed et al (1997)\(^{147}\) 145 Egypt Cross-sectional Convenience 22 W Infertility clinic Women with TFI Serum MIF (IgG) 81·8%
El Sayed et al (1997)\(^{147}\) 145 Egypt Cross-sectional Convenience 78 W Infertility clinic Women without TFI Serum MIF (IgG) 7·7%
Inhorn and Buss (1993)\(^{148}\) 145 Egypt Case-control Convenience 83 W Hospital Majority of women without TFI Unclear Unclear 33%
Makled et al (2013)\(^{149}\) 145 Egypt Cross-sectional Simple random sampling 27 W Infertility clinic Women with TFI Serum ELISA (IgG) 85·2%
Makled et al (2013)\(^{149}\) 145 Egypt Cross-sectional Simple random sampling 51 W Infertility clinic Women without TFI Serum ELISA (IgG) 13·7%
Nada et al (2015)\(^{145}\) 145 Egypt Case-control Convenience 100 W Infertility clinic Women with idiopathic infertility Endocervical NAAT 15%
Sadik et al (1993)\(^{145}\) 145 Egypt Case-control Convenience 43 W Infertility clinic Infertile women in infertile couples with sperm antibodies Unclear DFA 18·6%
Sadik et al (1993)\(^{145}\) 145 Egypt Case-control Convenience 37 W Infertility clinic Women partners in infertile couples with sperm antibodies Unclear DFA 18·9%
Sadik et al (1993)\(^{145}\) 145 Egypt Case-control Convenience 62 M Infertility clinic Men partners in infertile couples with sperm antibodies Unclear DFA 19·4%

(Table 2 continues on next page)
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
(Continued from previous page)									
Sadek et al (1993)150 Egypt Case-control Convenience 18 M Infertility clinic Infertile men in infertile couples with sperm antibodies Unclear DFA 22.2%									
Siam and Hefzy (2012)151 Egypt Case-control Convenience 90 W Gynaecology clinic Women with idiopathic infertility Serum ELISA (IgG) 20%									
Siam and Hefzy (2012)151 Egypt Case-control Convenience 90 W Gynaecology clinic Women with idiopathic infertility Urine NAAT 4.4%									
Younis et al (2000)152 Egypt Cross-sectional Convenience 30 W Infertility clinic Women with TFI Serum MIF (IgG) 46.7%									
Younis et al (2000)152 Egypt Cross-sectional Convenience 14 W Infertility clinic Women without TFI Serum MIF (IgG) 50.0%									
Zaitun and Zaitoun (1990)153 Egypt Cross-sectional Convenience 20 W Infertility clinic Women with TFI Serum Unclear 25%									
Zaitun and Zaitoun (1990)153 Egypt Cross-sectional Convenience 30 W Infertility clinic Women without TFI Serum Unclear 3.3%									
Zaki (1988)154 Egypt Cross-sectional Convenience 100 W Infertility clinic Women with unclear infertility diagnosis Endocervical Culture 7%									
Zytoon (1994)155 Egypt Cross-sectional Convenience 75 W Infertility clinic Women with mixed infertility diagnosis Endocervical Culture 65.3%									
Ahmadi et al (2018)49 Iran Case-control Convenience 165 M Infertility clinic Men with male factor infertility Semen NAAT 4.2%									
Badami and Salari (2001)51 Iran Case-control Convenience 125 W Infertility clinic Women with unclear infertility diagnosis Serum DFA 8.8%									
Badami and Salari (2001)51 Iran Case-control Convenience 125 W Infertility clinic Women with unclear infertility diagnosis Serum Unclear 20.8%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Urine NAAT 4.8%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Urine NAAT 4.4%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Serum EIA (IgM) 4%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Serum ELISA (IgA) 0									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Serum ELISA (IgG) 15.6%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 W Infertility clinic Women with mixed infertility diagnosis Serum EIA (IgM) 1.2%									
Dehghan et al (2017)57 Iran Case-control Convenience 250 M Infertility clinic 40% of men had male factor infertility Serum ELISA (IgA) 0									
Dehghan et al (2017)57 Iran Case-control Convenience 250 M Infertility clinic 40% of men had male factor infertility Serum ELISA (IgG) 18%									
Golshani et al (2007)59 Iran Cross-sectional Convenience 200 M Infertility clinic Majority of men had male factor infertility Semen NAAT 18.0%									
Goshayeshi et al (2015)60 Iran Case-control Convenience 100 W Infertility clinic Women with unclear infertility diagnosis Endocervical NAAT 21.0%									
Hajikhani et al (2013)61 Iran Cross-sectional Convenience 51 W Infertility clinic Women with TFI Endocervical Culture 3.9%									
Hajikhani et al (2013)61 Iran Cross-sectional Convenience 51 W Infertility clinic Women with TFI Endocervical NAAT 11.7%									
Joolayi et al (2017)62 Iran Case-control Convenience 32 W Infertility clinic Women with TFI Vaginal NAAT 9.4%									
Joolayi et al (2017)62 Iran Case-control Convenience 68 W Infertility clinic Women with ovarian and other infertility Vaginal NAAT 2.9%									
Joolayi et al (2017)62 Iran Case-control Convenience 32 W Infertility clinic Women with TFI Serum ELISA (IgM) 9.4%									
Joolayi et al (2017)62 Iran Case-control Convenience 68 W Infertility clinic Women with ovarian and other infertility Serum ELISA (IgM) 4.4%									

(Table 2 continues on next page)
Country	Study design	Sampling	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Joolayi et al (2017)	Iran	Case-control	32 W	Infertility clinic	Women with TFI	Serum	ELISA (IgG)	0	
Joolayi et al (2017)	Iran	Case-control	68 W	Infertility clinic	Women with ovarian and other infertility	Serum	ELISA (IgG)	0	
Kajbaf and Gholamnezhad (1998)	Iran	Case-control	101 W	Infertility clinic	Women with mixed infertility diagnosis	Endocervical DFA	7.9%		
Kajbaf and Gholamnezhad (1998)	Iran	Case-control	101 W	Infertility clinic	Women with mixed infertility diagnosis	Serum	ELISA (IgG)	17.8%	
Kalantar et al (2007)	Iran	Cross-sectional	91 W	Infertility clinic	Majority of women had female factor infertility	Serum	ELISA (IgG)	0	
Kalantar et al (2007)	Iran	Cross-sectional	91 W	Infertility clinic	Majority of women had female factor infertility	Vaginal NAAT	0		
Kamyabi (2009)	Iran	Case-control	35 W	Gynaecology clinic	Women with mixed infertility diagnosis	Serum	ELISA (IgG)	22.9%	
Mansour Ghanaie (2014)	Iran	Cross-sectional	135 W	Infertility clinic	Majority of women without TFI	Endocervical NAAT	19.3%		
Ministry of Health and Medical Education (2008)	Iran	Case-control	46 W	Infertility clinic	Women with unclear infertility diagnosis	Serum	ELISA (IgG)	23.9%	
Ministry of Health and Medical Education (2008)	Iran	Case-control	150 W	Infertility clinic	Women with idiopathic infertility	Endocervical DFA	15.3%		
Ministry of Health and Medical Education (2008)	Iran	Case-control	150 W	Infertility clinic	Women with idiopathic infertility	Endocervical NAAT	32%		
Ministry of Health and Medical Education (2008)	Iran	Case-control	125 W	Infertility clinic	Women with unclear infertility diagnosis	Endocervical DFA	8.8%		
Ministry of Health and Medical Education (2008)	Iran	Cross-sectional	100 M	Infertility clinic	Men with unclear infertility diagnosis	NAAT	9%		
Moazenechi et al (2018)	Iran	Cross-sectional	1080 M	Infertility clinic	Men with unclear infertility diagnosis	Serum	ELISA (IgA)	4.3%	
Moazenechi et al (2018)	Iran	Cross-sectional	1080 M	Infertility clinic	Men with unclear infertility diagnosis	Semen	NAAT	10%	
Moussavi et al (2014)	Iran	Case-control	104 W	Infertility clinic	Women with unclear infertility diagnosis	Endocervical NAAT	4.8%		
Nan Bakhsh et al (2008)	Iran	Cross-sectional	144 W	Infertility clinic	Women with mixed infertility diagnosis	Serum	ELISA (IgG)	11.1%	
Nikbakht et al (2008)	Iran	Case-control	125 W	Infertility clinic	Women with TFI	Unclear	ELISA (unclear)	23.2%	
Peivandi et al (2009)	Iran	Cross-sectional	110 W	Infertility clinic	Majority of women with TFI	Serum	MIF (IgG)	24.5%	
Rashidi et al (2007)	Iran	Cross-sectional	300 W	Infertility clinic	Women with mixed infertility diagnosis	Unclear	ELISA (unclear)	32.3%	
Rashidi et al (2013)	Iran	Case-control	44 W	Infertility clinic	Women with TFI	Urine	NAAT	4.5%	
Rashidi et al (2013)	Iran	Case-control	190 W	Infertility clinic	Women with ovarian and other infertility	Urine	NAAT	14.2%	
Rashidi et al (2013)	Iran	Case-control	44 W	Infertility clinic	Women with TFI	Serum	ELISA (IgM)	2.3%	
Rashidi et al (2013)	Iran	Case-control	190 W	Infertility clinic	Women with ovarian and other infertility	Serum	ELISA (IgM)	0.5%	
Rashidi et al (2013)	Iran	Case-control	44 W	Infertility clinic	Women with TFI	Serum	ELISA (IgG)	9.1%	
Rashidi et al (2013)	Iran	Case-control	190 W	Infertility clinic	Women with ovarian and other infertility	Serum	ELISA (IgG)	8.4%	
Sadpour et al (2012)	Iran	Cross-sectional	120 M	Infertility clinic	Men with male factor infertility	Semen	NAAT	3%	

(Table 2 continues on next page)
Table 2 Continued from previous page

Country	Study design	Sampling	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†	
Sattari et al (2017)	Iran	Case-control	Convenience	184	W	Infertility clinic	Majority of women without TFI	Serum	ELISA (IgM)	5.4%
Sattari et al (2017)	Iran	Case-control	Convenience	184	W	Infertility clinic	Majority of women without TFI	Serum	ELISA (IgG)	35.9%
Siahkali and Amini (2018)	Iran	Cross-sectional	Convenience	60	M	Infertility clinic	Men with idiopathic infertility	Semen	NAAT	5.0%
Abid and Al-Zwaid (2015)	Iraq	Case-control	Convenience	61	M	Infertility clinic	Women with mixed infertility	Serum	ELISA (IgG)	30.0%
Ahmed (2012)	Iraq	Case-control	Convenience	47	W	Infertility clinic	Women with unclear infertility diagnosis	Endocervical NAAT	29.8%	
Al-Husseinei et al (2009)	Iraq	Case-control	Convenience	54	W	Infertility clinic	Women with unclear infertility diagnosis	Endocervical ELFA	9.3%	
Al-Husseinei et al (2009)	Iraq	Case-control	Convenience	54	W	Infertility clinic	Women with unclear infertility diagnosis	Serum	IFAT (unclear)	11.1%
Ali and Al-Kazaz (2018)	Iraq	Case-control	Convenience	63	M	Clinic	Men with male factor infertility	Semen	NAAT	17.4%
Al-Kattan and Mohammed (2013)	Iraq	Cross-sectional	Convenience	54	W	Infertility clinic	Women with TFI or adhesions	Serum	ELISA (IgG)	51.9%
Al-Kattan and Mohammed (2013)	Iraq	Cross-sectional	Convenience	67	W	Infertility clinic	Women without TFI or endometriosis	Serum	ELISA (IgM)	86.6%
Dawood (2011)	Iraq	Cross-sectional	Convenience	30	W	Hospital	Women with unclear infertility diagnosis	Serum	ELISA (IgA)	3.3%
Dawood (2011)	Iraq	Cross-sectional	Convenience	30	W	Hospital	Women with unclear infertility diagnosis	Serum	ELISA (IgG)	53.3%
Dawood (2011)	Iraq	Cross-sectional	Convenience	100	W	Hospital	Women with unclear infertility diagnosis	Endocervical NAAT	30.0%	
Ismail and Ali (2012)	Iraq	Case-control	Convenience	52	W	Infertility clinic	Women with unclear infertility diagnosis	Serum	ELISA (IgG)	29.9%
Ismail and Ali (2012)	Iraq	Case-control	Convenience	52	W	Infertility clinic	Women with unclear infertility diagnosis	Serum	ELISA (IgM)	42.3%
Ismail and Ali (2012)	Iraq	Case-control	Convenience	52	W	Infertility clinic	Women with unclear infertility diagnosis	Serum	ELISA (IgA)	3.8%
Mohammed et al (2017)	Iraq	Case-control	Convenience	80	W	Gynaecology clinic	Women with mixed infertility diagnosis	Endocervical NAAT	13.8%	
Mohammed et al (2017)	Iraq	Case-control	Convenience	80	W	Gynaecology clinic	Women with mixed infertility diagnosis	Serum	ELISA (IgG)	2.5%
Yahya and Al-Siraj (2009)	Iraq	Cross-sectional	Convenience	296	M	Laboratory	Men with unclear infertility diagnosis	Serum	Culture	4.0%
Abusarah et al (2013)	Jordan	Case-control	Convenience	81	M	Gynaecology clinic	Men with male factor infertility	Urine	NAAT	4.9%
Al-Ramahi et al (2008)	Jordan	Case-control	Convenience	66	W	Infertility clinic	Women with idiopathic infertility	Endocervical NAAT	3.0%	
Al-Ramahi et al (2008)	Jordan	Case-control	Convenience	19	W	Infertility clinic	Women with TFI	Endocervical NAAT	0.0%	
Al-Ramahi et al (2008)	Jordan	Case-control	Convenience	38	W	Infertility clinic	Women with male factor infertility	Endocervical NAAT	7.9%	
Al-Ramahi et al (2008)	Jordan	Case-control	Convenience	29	W	Infertility clinic	Women with male factor infertility	Endocervical NAAT	3.4%	
Al-Sweih et al (2012)	Kuwait	Case-control	Convenience	127	M	Infertility clinic	Men with unclear infertility diagnosis	Semen	NAAT	3.9%
Radouani et al (1998)	Morocco	Case-control	Convenience	200	M	Infertility clinic	Majority of men had male factor infertility	Serum	MIF (unclear)	21.5%
Radouani et al (1998)	Morocco	Case-control	Convenience	81	W	Infertility clinic	Women with unclear infertility diagnosis	Serum	MIF (unclear)	44.4%

(Table 2 continues on next page)
Country	Study design	Sampling*	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Al Subhi et al (2013)	Oman	Cross-sectional	Convenience	51 W	Infertility clinic	Women with TFI	Endocervical	EIA	5.9%
Al Subhi et al (2013)	Oman	Cross-sectional	Convenience	167 W	Infertility clinic	Women without TFI	Endocervical	EIA	4.8%
Qayum and Khalid-bin-Saleem (2013)	Pakistan	Cross-sectional	Convenience	80 W	Gynaecology clinic	Women with unclear infertility diagnosis	Urine	Unclear	7.5%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	69 W	Infertility clinic	Women undergoing IVF in 2000	Serum	ELISA (IgM)	11.6%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	268 W	Infertility clinic	Women undergoing IVF in 2001	Serum	ELISA (IgM)	23.9%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	316 W	Infertility clinic	Women undergoing IVF in 2002	Serum	ELISA (IgM)	33.5%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	399 W	Infertility clinic	Women undergoing IVF in 2003	Serum	ELISA (IgM)	9.3%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	586 W	Infertility clinic	Women undergoing IVF in 2004	Serum	ELISA (IgM)	4.6%
Al-Hindi et al (2010)	Palestine	Cross-sectional	Convenience	316 W	Infertility clinic	Women undergoing IVF in 2005	Serum	ELISA (IgM)	2.8%
Abdul Jabbar (1990)	Saudi Arabia	Cross-sectional	Convenience	13 W	Infertility clinic	Women with TFI	Endocervical	DFA	53.8%
Abdul Jabbar (1990)	Saudi Arabia	Cross-sectional	Convenience	18 W	Infertility clinic	Women without TFI	Endocervical	DFA	11.1%
Abdul Jabbar (1990)	Saudi Arabia	Cross-sectional	Convenience	34 M	Infertility clinic	Men with unclear infertility diagnosis	Urethral	DFA	26.4%
Alfarraj et al (2015)	Saudi Arabia	Case-control	Convenience	100 W	Infertility clinic	Women with mixed infertility diagnosis	Endocervical	NAAT	8.0%
Hossain (1988)	Saudi Arabia	Cross-sectional	Convenience	41 W	Gynaecology clinic	Women with unclear infertility diagnosis	Serum	MIF (IgM)	0
Hossain (1988)	Saudi Arabia	Cross-sectional	Convenience	41 W	Gynaecology clinic	Women with unclear infertility diagnosis	Serum	MIF (IgG)	16.7%
Kamel (2013)	Saudi Arabia	Randomised controlled trial	Convenience	640 W	Gynaecology clinic	Women with unclear infertility diagnosis	Endocervical	Culture	12.0%
Kamel (2013)	Saudi Arabia	Randomised controlled trial	Convenience	640 W	Gynaecology clinic	Women with unclear infertility diagnosis	Serum	ELISA (IgA)	5%
Sabra and Al-Harbi (2014)	Tunisia	Cross-sectional	Convenience	148 M	Infertility clinic	Men with male factor infertility	Semen	Giemsa stain	8.1%
Almoath et al (2005)	Sudan	Case-control	Convenience	81 W	Infertility clinic	More than half of women with TFI	Serum	EIA (IgG)	14%
Alkayer et al (2017)	Syria	Case-control	Convenience	23 W	Hospital	Women with mixed infertility diagnosis	Serum	ELISA (IgG)	17.1%
Gdoura et al (2001a)	Tunisia	Cross-sectional	Convenience	92 M	Infertility clinic	Men with unclear infertility diagnosis	Urethral	NAAT	18.5%
Gdoura et al (2001b)	Tunisia	Cross-sectional	Convenience	92 M	Infertility clinic	Men with unclear infertility diagnosis	Serum	MIF (IgG)	9.8%
Gdoura et al (2001a)	Tunisia	Cross-sectional	Convenience	92 M	Infertility clinic	Men with unclear infertility diagnosis	Urethral	DFA	4.3%
Gdoura et al (2001a)	Tunisia	Cross-sectional	Convenience	92 M	Infertility clinic	Men with unclear infertility diagnosis	Urethral	Culture	11.1%
Gdoura et al (2001a)	Tunisia	Cross-sectional	Convenience	92 M	Infertility clinic	Men with unclear infertility diagnosis	Urethral	Unclear	8.7%
Gdoura et al (2001b)	Tunisia	Cross-sectional	Convenience	92 W	Infertility clinic	Partners of infertile men	Endocervical	NAAT	26.1%
Country	Study design	Sampling	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
---------------	--------------	--------------	-------------	-----	---------------	----------------------------	----------	------------	-------------
Tunisia	Cross-sectional	Convenience	92	W	Infertility clinic	Partners of infertile men	Serum	MIF (IgG)	17.4%
Tunisia	Cross-sectional	Convenience	104	M	Infertility clinic	Men with male factor infertility	Urine	NAAT	39.4%
Tunisia	Cross-sectional	Convenience	85	M	Infertility clinic	Men with unclear infertility diagnosis	Semen	NAAT	15.2%

Women with miscarriage (or abortion of unknown cause)

Country	Study design	Sampling	Sample size	Sex	Study context	Population characteristics	Specimen	Assay type	Prevalence†
Egypt	Cross-sectional	Convenience	100	W	Gynaecology clinic	Presenting with abortion	Endocervical Culture	5%	
Iran	Case-control	Convenience	109	W	Family planning clinic	Spontaneous abortion	Endocervical NAAT	22.9%	
Iran	Cross-sectional	Convenience	70	W	Hospital	Recent or recurrent miscarriage	Vaginal NAAT	1.4%	
Iran	Case-control	Convenience	97	W	Fertility centre	Recent or recurrent miscarriage	Vaginal NAAT	11.3%	
Iran	Case-control	Convenience	97	W	Fertility centre	Recent or recurrent miscarriage	Serum ELISA (IgA)	2.1%	
Iran	Case-control	Convenience	97	W	Fertility centre	Recent or recurrent miscarriage	Serum ELISA (IgG)	4.1%	
Iran	Case-control	Convenience	220	W	Gynaecology clinic	Spontaneous abortion	Endocervical DFA	25.5%	
Iran	Cross-sectional	Convenience	84	W	Hospital	Presenting with abortion	Unclear Unclear	2.3%	
Iran	Case-control	Convenience	125	W	Hospital	Recent or recurrent abortion	Endocervical DFA	7.2%	
Iran	Case-control	Convenience	77	W	Gynaecology clinic	Spontaneous abortion	Urine NAAT	9.3%	
Iran	Cross-sectional	Convenience	124	W	Gynaecology clinic	Presenting with abortion	Vaginal NAAT	15.3%	
Iraq	Case-control	Convenience	79	W	Hospital	Presenting with abortion	Serum ELISA (IgG)	6.4%	
Iraq	Case-control	Convenience	60	W	Antenatal clinic	Recent or recurrent miscarriage	Serum ELISA (IgM)	38.3%	
Iraq	Case-control	Convenience	60	W	Antenatal clinic	Recent or recurrent miscarriage	Serum ELISA (IgG)	33.3%	
Iraq	Case-control	Convenience	60	W	Hospital	Recurrent miscarriage	Serum ELISA (unclear)	0	
Iraq	Case-control	Convenience	89	W	Family planning clinic	Recent or recurrent abortion	Endocervical ELFA	12.4%	
Iraq	Case-control	Convenience	89	W	Family planning clinic	Recent or recurrent abortion	Serum IFAT (unclear)	14.6%	
Iraq	Case-control	Convenience	123	W	Hospital	Spontaneous abortion	Serum ELISA (IgG)	17.1%	
Iraq	Cross-sectional	Convenience	120	W	Hospital	Recent or recurrent abortion	Endocervical NAAT	17.5%	
Iraq	Case-control	Convenience	120	W	Hospital	Recent or recurrent abortion	Serum ELISA (IgG)	14.2%	
Iraq	Case-control	Convenience	62	W	Gynaecology clinic	Three or more miscarriages	Serum ELISA (IgM)	16.1%	
Iraq	Case-control	Convenience	34	W	Gynaecology clinic	Less than three miscarriages	Serum ELISA (IgM)	29.4%	
Iraq	Cross-sectional	Convenience	184	W	Gynaecology clinic	Presenting with abortion	Serum ELISA (IgG)	21.2%	
Iraq	Cross-sectional	Convenience	184	W	Gynaecology clinic	Presenting with abortion	Serum ELISA (IgG)	8.2%	
Saudi Arabia	Cross-sectional	Convenience	12	W	Hospital	Recurrent miscarriage	Endocervical Culture	16.7%	

(Continued from previous page)

(Continued from previous page)
High prevalence was observed in infertility clinic attendees, for both women and men (n=135), in which current infection prevalence ranged from 0 to 65·3% with a median of 9·2%, whereas ever infection prevalence ranged from 0 to 85·2% with a median of 18·6% (tables 2 and 3). Similarly, high prevalence was observed in women with miscarriage (n=27), in which current infection prevalence ranged from 1·4% to 25·5% with a median of 14·2%, whereas ever infection prevalence ranged from 0·1% to 33·3% with a median of 14·2% (tables 2 and 3).

Table 3 summarises the prevalence for other at-risk populations, and table 2 and the appendix (pp 9–14) include the full data.

The summarised and study-specific risk of bias and precision assessments are shown in the appendix (pp 15–27). Briefly, 166 (30·1%) of 552 prevalence measures were based on samples including 200 participants or more, and were classified as having higher precision. Although convenience sampling was the most common sampling methodology (495 [89·7%] of 552), probability-based sampling methods, such as respondent-driven sampling, are of increasing use for populations at high risk of bias in two or more quality domains. Response rate was, however, unclear for 417 (75·5%) of 552 studies. Prevalence studies were overall of reasonable quality; only eight (1·4%) of 552 had high risk of bias in two or more quality domains.

Table 3 shows the meta-analyses’ results for the pooled average C trachomatis prevalence for each at-risk population, stratified by type of assay used for infection ascertainment. Current infection prevalence was estimated at 3·0% (95% CI 2·3–3·8) in general populations, 2·8% (1·0–5·2) in populations at intermediate risk, 13·2% (7·2–20·7) in female sex workers, 1·2% (0·2–2·8) for genital infections and 7·7% (4·2–12·0) for rectal infections in men who have sex with men, 11·3% (9·0–13·7) in infertility clinic attendees, 12·4% (7·9–17·7) in women with miscarriage, 12·4% (9·4–15·7) in symptomatic women, and 17·4% (12·5–22·8) in symptomatic men.

Meanwhile, pooled average prevalence of ever infection was estimated at 6·9% (4·3–10·0) in general populations, 1·4% (0·8–2·4) in populations at intermediate risk, 80·9% (43·8–100) in female sex workers, 21·5% (16·3–27·2) in infertility clinic attendees, 12·4% (6·6–19·5) in women with miscarriage, 37·1% (22·4–53·0) in women with ectopic pregnancy, 22·7% (15·4–31·0) in symptomatic women, and 16·9% (9·4–25·8) in symptomatic men (table 3).

Evidence for heterogeneity in C trachomatis prevalence estimates was observed; p values for Cochran’s Q statistic was <0·0001 in most meta-analyses (table 3). Prediction intervals were generally wide affirming high heterogeneity. P was also mostly more than 70%, indicating that most variability is due to true differences in effect size across studies rather than chance.

Figures 2 and 3 and the appendix (pp 28–40) summarise the results of subgroup meta-analyses in various sub-populations. These data show the results stratified by sex or by genital versus rectal infection (the latter only for men who have sex with men), for studies reporting current infection prevalence based on NAAT and those reporting ever infection prevalence, as well as by assay type for studies reporting current infection prevalence. Subgroup meta-analyses in infertile populations stratified by infertility diagnosis and by assay type are shown in the appendix (pp 41–42).
Table 4 summarises results of the meta-regression analyses. In the univariable analyses, at-risk population, assay type, sampling methodology, sample size, year of publication, year of data collection, country, response rate, and sex were associated with prevalence at p≤0·2. Alignment with meta-regression underlying assumption

Studies (n)	Samples	C trachomatis positive (median [range])	Pooled average C trachomatis prevalence (estimate [95% CI])	Heterogeneity measures				
	Tested	C trachomatis positive	Q (p value)*	I² (95% CI)	Prediction interval‡			
General populations								
Current genital infection								
NAAT	48	25 397	748	2.9% (0-15.5)	3.1 (2.2-4.2)	714.3 (p=0.0001)	91.4% (89.4-93.0)	0.0-12.4
Culture	4	4464	55	5.8% (1.0-15.0)	4.3 (0.3-11.4)	22.5 (p=0.0001)	86.6% (67.7-94.5)	0.0-50.9
Other§	23	128 013	328	3.5% (0-19.9)	2.4 (1.6-3.4)	722.3 (p=0.0001)	97.0% (95.2-97.5)	0.0-7.2
Overall current genital infection	75	157 874	1131	3.0% (0-19.9)	3.0 (2.3-3.8)	2703.5 (p=0.0001)	97.3% (96.9-97.6)	0.0-10.9
Anti-C trachomatis immunoglobulins								
IgG (ever infection)	35	5877	525	4.7% (0-37.9)	6.9 (4.3-10.0)	226.1 (p=0.0001)	86.7% (82.2-90.1)	0.0-30.2
IgM (recent infection)	13	2843	74	1.6% (0-14.0)	1.8 (0.3-3.9)	77.7 (p=0.0001)	84.6% (75.1-90.4)	0.0-12.4
IgA	4	377	12	4.3% (0-40.4)	6.2 (0-21.6)	37.8 (p=0.0003)	92.1% (82.9-96.3)	0.0-93.7
Not specified (IgG, IgM, or IgA)	9	1081	61	4.5% (0-14.8)	4.3 (1.9-7.4)	34.5 (p=0.0001)	76.8% (55.7-87.8)	0.0-17.3
Unclear	1	250	8	3.2 (1.4-6.2)	--	--	--	--
Populations at intermediate risk								
Current genital infection								
NAAT	12	2815	69	1.5% (0-38.0)	2.6 (0.8-5.2)	117.4 (p=0.0001)	75.6% (56.0-86.5)	0.0-16.1
Culture	--	--	--	--	--	--	--	--
Other§	1	308	15	--	4.9 (2.8-7.9)	--	--	--
Overall current genital infection	13	3123	84	2.0% (0-38.0)	2.8 (1.0-5.2)	127.0 (p=0.0001)	90.6% (85.7-93.8)	0.0-15.8
Anti-C trachomatis immunoglobulins								
IgG (ever infection)	1	1041	15	--	1.4 (0-8.2.4)	--	--	--
IgM (recent infection)	--	--	--	--	--	--	--	--
IgA	--	--	--	--	--	--	--	--
Not specified (IgG, IgM, or IgA)	--	--	--	--	--	--	--	--
Unclear	--	--	--	--	--	--	--	--
Populations at high risk								
Female sex workers								
Current genital infection								
NAAT	12	4877	590	8.4% (0-97.9)	12.9 (6.5-21.0)	602.1 (p=0.0001)	98.2% (97.6-98.6)	0.0-52.0
Culture	1	116	8	--	6.9 (3.0-13.1)	--	--	--
Other§	1	30	9	--	30.0 (14.7-49.4)	--	--	--
Overall current genital infection	14	5023	607	8.4% (0-97.9)	13.2 (7.2-20.7)	611.7 (p=0.0001)	97.9% (97.3-98.3)	0.0-50.9
Anti-C trachomatis immunoglobulins								
IgG (ever infection)	4	472	364	90.0% (19.8-100)	80.9 (43.8-100.0)	209.9 (p=0.0001)	98.6% (97.7-99.1)	0.0-100.0
IgM (recent infection)	1	154	45	--	29.2 (22.2-37.1)	--	--	--
IgA	--	--	--	--	--	--	--	--
Not specified (IgG, IgM, or IgA)	1	30	11	--	36.7 (19.9-56.1)	--	--	--
Unclear	--	--	--	--	--	--	--	--
Men who have sex with men								
Current genital infection								
NAAT	12	2680	51	12.8% (0-8.8)	1.2 (0.2-2.8)	76.2 (p=0.0001)	85.6% (76.5-91.1)	0.0-9.5
Culture	--	--	--	--	--	--	--	--
Other§	--	--	--	--	--	--	--	--
Current rectal infection								
PCR	7	1506	129	6.3% (3.6-18.3)	7.7 (4.2-12.0)	40.6 (p=0.0001)	85.2% (71.5-92.3)	0.0-24.9
Overall current infection	19	4186	180	3.6% (0-18.3)	3.0 (1.2-5.4)	231.8 (p=0.0001)	92.2% (89.3-94.4)	0.0-17.9

(Table 3 continues on next page)
Studies (n)	Samples	C. trachomatis prevalence (median [range])	Pooled average C. trachomatis prevalence (estimate [95% CI])	Heterogeneity measures
	Tested	Tested C. trachomatis positive	Q (p value)*	I² (95% CI) Prediction interval‡
(Continued from previous page)				
Anti-C. trachomatis immunoglobulins				
IgG (ever infection)	-	-	-	-
IgM (recent infection)	-	-	-	-
IgA	-	-	-	-
Not specified (IgG, IgM, or IgA)	-	-	-	-
Unclear	1	2531	890	-
Infertility clinic attendees				
Current genital infection				
NAAT	37	4653	539	8.0% (0–39.4)
Culture	7	1149	176	9.5% (1.1–65.3)
Other§	20	1844	203	10.2% (3.0–53.8)
Overall current genital infection	64	7646	918	9.2% (0–65.3)
Anti-C. trachomatis immunoglobulins				
IgG (ever infection)	37	3608	689	18.6% (0–85.2)
IgM (recent infection)	17	3145	332	4.6% (0–86.7)
IgA	6	2302	82	3.6% (0–5.0)
Not specified (IgG, IgM, or IgA)	5	760	211	23.2% (11.1–44.4)
Unclear	6	430	73	14.8% (3.3–33.0)
Women with miscarriage				
Current genital infection				
NAAT	6	597	87	13.3% (1.4–22.9)
Culture	2	112	7	10.9% (5.0–16.7)
Other§	3	434	76	12.4% (7.2–25.5)
Overall current genital infection	11	1143	170	12.4% (1.4–25.5)
Anti-C. trachomatis immunoglobulins				
IgG (ever infection)	7	675	84	14.2% (4.1–33.3)
IgM (recent infection)	5	352	82	21.2% (0–38.3)
IgA	1	97	2	-
Not specified (IgG, IgM, or IgA)	2	149	13	7.3% (0–14.6)
Unclear	1	84	2	-
Women with ectopic pregnancy				
Current genital infection				
NAAT	2	54	20	37.5% (30.0–45.0)
Culture	1	24	1	-
Other§	-	-	-	-
Overall current genital infection	-	-	-	-
Anti-C. trachomatis immunoglobulins				
IgG (ever infection)	2	54	20	-
IgM (recent infection)	1	24	1	-
IgA	-	-	-	-
Not specified (IgG, IgM, or IgA)	-	-	-	-
Unclear	-	-	-	-
Symptomatic women				
Current genital infection				
NAAT	49	14398	1123	8.0% (0–68.0)
Culture	10	2951	752	12.9% (0.7–69.4)
Other§	31	4796	729	14.7% (0–89.3)

(Table 3 continues on next page)
of normal random effects was confirmed through normal probability plots (appendix p 43). Graphical illustrations of the fitted regression line for year of publication and year of data collection are shown in the appendix (p 44). Only at-risk population, assay type, sample size, country, and sex remained associated with Chlamydia trachomatis prevalence in a multivariable model. No evidence was found for a temporal variation in prevalence (p=0.281 for year of publication), for sampling methodology (p=0.347), or for response rate (p=0.237). This model explained 29.0% of prevalence variation.

Relative to general populations, the adjusted odds ratio (aOR) was 11·28 (95% CI 5·78–22·01) for women with ectopic pregnancy, 4·93 (1·03–23·52) for women with ectopic pregnancy, 4·16 (1·72–10·08) for men who have sex with men, 3·39 (2·47–4·87) for symptomatic women, and 1·39 (1·00–1·94) for populations at intermediate risk. Other factors associated with Chlamydia trachomatis prevalence were women versus men (aOR 1·61, 95% CI 1·05–2·46), Pakistan versus other Middle East or North African countries (0·39, 0·22–0·69), ever infection (anti-Chlamydia trachomatis IgG; 2·17, 1·54–3·06) and current infection prevalence using assays other than NAAT or culture versus NAAT (1·47, 1·02–2·13), and studies with higher (≥200 participants) versus lower precision (0·63, 0·48–0·83).

Discussion

We provided a comprehensive assessment of Chlamydia trachomatis epidemiology in the Middle East and north Africa. Unexpectedly, given this region’s sexually conservative norms and low observed levels of several viral STIs, C. trachomatis current infection prevalence was 3% in the population at large, similar to WHO prevalence estimates for the Western Pacific region (about 4%) and European region (about 3%), where broad C. trachomatis control programmes, including opportunistic testing, are standard in some high-income countries, but higher than that for South-east Asia region (about 1·5%) and lower than that for the African region (about 5%) and the region of the Americas (about 5·5%). This high prevalence suggests substantial infection and disease burden that needs to be tackled through sexual health and STI-specific programmes, for both women and men. Although these findings were based on a volume of epidemiological evidence, most studies used convenience for this region of about 3% in 2012 and about 3·5% in 2016. The prevalence was also in line with WHO estimates for the Western Pacific region (about 4%) and European region (about 3%), where broad C. trachomatis control programmes, including opportunistic testing, are standard in some high-income countries, but higher than that for South-east Asia region (about 1·5%) and lower than that for the African region (about 5%) and the region of the Americas (about 5·5%). This high prevalence suggests substantial infection and disease burden that needs to be tackled through sexual health and STI-specific programmes, for both women and men.
sampling (about 90%) or had unclear response rate (>75%). Meta-regression, however, did not identify an effect for these factors on observed prevalence. A summary of this study and its results in Arabic language can be found in the appendix (p 4).

Although infection prevalence in the population at large suggests active transmission networks for \textit{C} trachomatis and other STIs, it might not necessarily reflect prevalent sexual risk behaviours. This outcome might reflect, at least in part, poor access to and utilisation of STI services—there is very limited capacity in the Middle East and north Africa for STI prevention and treatment, not to mention \textit{C} trachomatis screening and broader sexual health programmes. As observed elsewhere, such as in Alaskan Eskimo populations and populations in South Pacific Islands, poor \textit{C} trachomatis diagnosis and specific treatment can result in unusually high prevalence, probably because \textit{C} trachomatis is largely asymptomatic, and if untreated, shedding can persist even for years, thereby increasing the potential for reinfection within couples and for transmission in the population.

The high prevalence found in populations at high risk such as female sex workers, in context of evidence suggesting strong partial immunity against reinfection, is consistent with the important role of commercial sex networks in infection transmission. Independent evidence supports existence of hidden pockets of high sexual-risk behaviour driving STI incidence in the Middle East and north Africa. Among male STI patients, 77% in Kuwait and 80% in Somalia reported paying a female sex worker for sex, and among migrant workers in Pakistan 22% reported sex with a female sex worker. Higher levels of sexual-risk behaviour and emerging HIV epidemics have been also documented among men who have sex with men, male sex workers, and male-to-female transgenders in systematic reviews. Sexual networks, however, remain poorly investigated in the Middle East and north Africa, owing to cultural sensitivities.

The possible role of \textit{C} trachomatis infection in poor reproductive health outcomes remains unappreciated and neglected by the public health establishment in the Middle East and north Africa, despite substantial social and economic implications for women and their families. A main finding of this study is the high current \textit{C} trachomatis infection prevalence in infertility clinic attendees, with odds of infection three-times higher than in the general population. By contrast, studies among infertility clinic attendees in Europe usually show that current \textit{C} trachomatis infection is uncommon, but serological evidence of past infection, assumed to have resulted in fallopian tube scarring, is common. This finding suggests a role for \textit{C} trachomatis in infertility in the Middle East and north Africa. Indeed, this region appears to have the highest rate of primary infertility worldwide, which remains unexplained. The Middle East and north Africa is also a region where infertility has multiple detrimental sociocultural consequences, and where several countries have had rapidly declining fertility rates to even below replacement level. The prevalence of current \textit{C} trachomatis infection was also high in women.
with miscarriage and in pregnant women—similar to that found in pregnant women in low-income and middle-income countries elsewhere.220–222 This stigmatised and largely asymptomatic infection might not be visible to the public eye, but its reproductive health sequelae are visible, even if not explicitly linked to the underlying cause.

C trachomatis prevalence in women was higher than in men (two-times higher odds). This difference possibly reflects a longer duration of infection in women, considering that infection in men is more symptomatic (nearly two-times higher prevalence in symptomatic men than in symptomatic women), and therefore more likely to be treated. Ever infection (anti-C trachomatis IgG) prevalence was two-times higher than current infection prevalence, but the epidemiological relevance of ever infection prevalence might be limited given challenges in **C trachomatis** serology interpretation.219

The Middle East and north Africa is burdened by **C trachomatis** infection, but the public health response remains rudimentary and far from achieving WHO’s Global Health Sector Strategy on STIs.8 Evidence for some differences in **C trachomatis** prevalence by country has been reported, but remarkably, no evidence was found for a variation in prevalence over time (1982–2018). Lingering STI stigma prevents those infected from accessing proper health care, including those most at risk. The role of screening and treatment for asymptomatic **C trachomatis** within established programmes, such as for family planning, primary health care, or HIV, needs careful consideration given the cost and uncertain effect on prevalence at modest levels of uptake.223

Current STI surveillance focused on inefficient routine case reporting is not capturing the reality of the transmission dynamics.221 Although routine case reporting could be improved with more consistency and universality in reporting and emphasis on aetiological approaches,221 its usefulness for a robust long-term evaluation of infection trends is rather limited. Sentinel surveillance of different at-risk populations should be explored, as recommended by the WHO Global Health Sector Strategy on STIs,4 to better identify outbreaks or emerging epidemics, strategically direct resources for prevention, treatment, and control, and monitor and evaluate STI programmes.224 The recent progress in HIV surveillance in the Middle East and north Africa, in the form of repeated rounds of HIV-integrated biobehavioural surveillance surveys,222,223 should be extended to STIs.224,225

Our study has important but unavoidable limitations. Quantity and quality of available data varied by country and population, particularly for populations at high risk where most data came from only a few countries—eg, most studies of men who have sex with men were from the Middle East and north Africa.225,226 The wide array of diagnostics used for ascertainment might have also introduced detection bias. Factors that might have contributed to differences in **C trachomatis** positivity rates across studies include sampling variation and potential selection bias, spatial or temporal variability in prevalence, and possibly unreported underlying comorbidities. This study did not assess other STIs that might have also contributed to infertility, pregnancy-related morbidity, and other health conditions in women with **C trachomatis** infection. Such

Table

Study	Positive (n/N)	Prevalence (%CI)	Weight (%)
Men			
Shakhaki and Amini (2018)	3/60	5.0 (3.0–13.9)	2.6
Ali and Al-Karaz (2018)	11/93	17.5 (9.1–29.1)	2.6
Abusarar et al (2013)	4/81	4.9 (1.4–12.2)	2.7
Sellami et al (2014)	13/85	15.3 (8.4–24.7)	2.7
Gouda et al (2001a)	17/92	18.5 (11.3–27.9)	2.8
Ministry of Health and Medical Education (2008)	9/100	9.0 (4.2–16.4)	2.8
Total	269/2527	10.4 (6.6–14.9)	36.9

Figure 3: Meta-analysis of studies reporting **Chlamydia trachomatis** current infection prevalence assessed using nucleic acid amplification test in infertility clinic attendees in the Middle East and north Africa

Data are stratified by sex. Error bars are 95% CI.
potential biases might have contributed to some of the unexplained heterogeneity observed in the prevalence levels. Given potential limitations in the representativeness of the prevalence measures as well as heterogeneity across studies, the calculated pooled prevalence should be interpreted as a pooled average, rather than strictly

Studies (n)	Samples (n)	Univariable analyses	Variance explained R²	Multivariable analysis					
		OR (95% CI)	p value	LR test p value					
		Adjusted OR (95% CI)	p value	LR test p value					
Population									
General	137	168,302	1.00 (ref)	<0.0001	19.0%				
		-	-	-	1.00 (ref)	-	<0.0001		
Populations at intermediate risk	14	4154	0.70 (0.32-1.54)	0.374	-	-	1.81 (0.79-4.33)	0.157	
Female sex workers	20	5679	8.99 (4.57-17.71)	<0.0001	-	-	11.28 (5.78-22.01)	<0.0001	
Men who have sex with men	20	6717	0.83 (0.42-1.64)	0.591	-	-	4.16 (1.72-10.08)	0.002	
Infertility clinic attendees	135	17,891	3.77 (2.67-5.31)	<0.0001	-	-	3.39 (2.41-4.77)	<0.0001	
Women with miscarriage	27	2500	3.53 (1.94-6.40)	<0.0001	-	-	2.78 (1.57-4.93)	0.001	
Women with ectopic pregnancy	3	78	8.25 (1.58-43.08)	0.012	-	-	4.93 (1.03-23.52)	0.045	
Symptomatic women	140	29,402	3.74 (2.66-5.26)	<0.0001	-	-	3.47 (2.47-4.87)	<0.0001	
Symptomatic men	56	22,036	5.76 (3.68-9.03)	<0.0001	-	-	7.17 (4.05-12.68)	<0.0001	
Assay type									
NAAT (current infection)	197	64,083	1.00 (ref)	-	<0.0001	7.1%	1.00 (ref)	-	<0.0001
Culture (current infection)	29	13,536	1.92 (1.05-3.50)	0.034	-	-	1.10 (0.62-1.95)	0.742	
Other (current infection)	92	137,924	1.90 (1.30-2.79)	<0.0001	-	-	1.47 (1.02-2.13)	0.041	
Anti-Chlamydia trachomatis immunoglobulins									
IgG (ever infection)	117	14,935	2.99 (2.10-4.26)	<0.0001	-	-	2.17 (1.54-3.06)	<0.0001	
IgM (recent infection)	49	7890	1.17 (1.72-9.19)	0.517	-	-	0.90 (0.57-1.40)	0.627	
IgA	16	3141	0.92 (0.42-2.02)	0.386	-	-	0.78 (0.39-1.56)	0.481	
Not specified (IgG, IgM, or IgA)	29	6146	2.81 (2.66-5.26)	<0.0001	-	-	2.25 (1.54-3.06)	<0.0001	
Unclear	23	9114	2.53 (1.80-4.94)	<0.0001	-	-	1.49 (0.81-2.75)	0.200	
Sampling methodology									
Non-probability-based sampling	495	227,208	1.00 (ref)	-	<0.0001	3.5%	1.00 (ref)	-	0.347
Probability-based sampling	57	29,561	0.37 (0.24-0.56)	<0.0001	-	-	0.80 (0.50-1.27)	0.347	
Sample size									
<200	386	37,282	1.00 (ref)	-	<0.0001	6.0%	1.00 (ref)	-	0.001
≥200	166	223,987	0.42 (0.32-0.56)	<0.0001	-	-	0.63 (0.48-0.83)	0.001	
Response rate									
≥80%	112	38,732	1.00 (ref)	-	0.187	0.1%	1.00 (ref)	-	0.237
<80% or unclear	440	218,037	0.80 (0.57-1.12)	0.187	-	-	0.83 (0.61-1.13)	0.237	
Year of publication									
2009 or earlier	552	256,769	0.96 (0.95-0.98)	<0.0001	<0.0001	4.4%	0.99 (0.98-1.01)	0.281	
Year of data collection	552	256,769	0.96 (0.95-0.98)	<0.0001	<0.0001	4.2%	-	-	
Country									
Other Middle East or north African countries	245	189,529	1.00 (ref)	-	<0.0001	5.2%	1.00 (ref)	-	0.013
Egypt	89	7434	1.58 (1.08-2.31)	0.018	-	-	1.05 (0.73-1.51)	0.774	
Iran	176	38,647	0.80 (0.59-1.08)	0.145	-	-	0.90 (0.68-1.19)	0.472	
Pakistan	42	21,159	0.31 (0.19-0.52)	<0.0001	-	-	0.39 (0.22-0.69)	0.002	
Sex									
Men	133	42,393	1.00 (ref)	-	0.131	0.2%	1.00 (ref)	-	0.029
Women	419	214,376	1.27 (0.93-1.74)	0.131	-	-	1.61 (1.05-2.46)	0.029	

Adjusted R² in the final multivariable model was 29.0%. LR=likelihood ratio. NAAT=nucleic acid amplification test. OR=Odds ratio. *Predictors with p≤0.2 in the univariable model were considered significant. †Predictors with p≤0.05 in the multivariable model were considered significant. ‡Other assays detecting current infection such as direct fluorescence assays, Giemsa staining, and enzyme-linked immunoassays applied to genital samples. §Includes assays such as enzyme-linked immunosassay and micro-immunofluorescence. ¶Non-probability sampling refers to a sampling method in which the data collection process does not allow individuals to have equal chance of being selected; an example is convenience sampling for which individuals are selected on the basis of ease of accessibility (first-come first-served basis).127,128 Probability-based sampling refers to a sampling method in which data collection process is based on a random selection of study participants; an example is random sampling from a sampling frame.128 Another example of probability-based sampling is respondent-driven sampling, which is a sampling method specifically designed to sample hard-to-reach populations and is based on chain referral with the probability of selection calculated at each step in the network to produce adjusted prevalence estimates.129 Only year of publication was considered for the multivariable meta-regression analysis because of collinearity with year of data collection.

Table 4: Results of meta-regressions to identify associations and sources of between-study heterogeneity for Chlamydia trachomatis prevalence in the Middle East and north Africa
an estimate of the mean prevalence in the considered population or subpopulation.

In conclusion, *C. trachomatis* current infection prevalence in the population at large in the Middle East and north Africa is at 3%, similar to other regions, but higher than expected given these countries’ sexually conservative norms. The high prevalence (>10%) in infertility clinic attendees and in women with miscarriage, provides suggestive evidence for the potential role of *C. trachomatis* in poor reproductive outcomes in the Middle East and north Africa. In the context of very limited programming for sexual health and STIs, our findings highlight an important, yet neglected and poorly recognised infection and disease burden, despite the social and economic impact. There is an urgent need for targeted and culturally appropriate programmes promoting sexual health for different at-risk populations. Tackling this infection with appropriate interventions is essential to control disease sequelae, to address the WHO Global Health Strategy on STIs, and to accomplish key health Sustainable Development Goals.

Contributors

AS contributed to the study design, did the systematic searches of the literature, selection of studies for inclusion, and the data extraction and data analyses. HC contributed to the study design, double extracted the data, updated the systematic review, and did the data analyses. AS and HC wrote the first draft of the paper. JGH contributed to identification of unpublished data. NL contributed to the data extraction, analyses, and drafting of the Article. LJA-R conceived and led the design of the study, data extraction, data analyses, and drafting of the Article. All authors contributed to discussion and interpretation of the results and to the writing of the manuscript. All authors have read and approved the final manuscript.

Declaration of interests

We declare no competing interests.

Acknowledgments

This study was funded by the National Priorities Research Program (grant number 9-0403-008) from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at Weill Cornell Medicine-Qatar, Cornell University, Qatar Foundation-Education City, Doha, Qatar. The statements made herein are solely the responsibility of the authors. The publication of this Article was funded by the Qatar National Library. We thank Adona Canlas and Ashwini Deshmukh for their assistance with locating full-text articles, and Ghina Muntaz and Vajihel Akbarzadeh for their assistance with translating manuscripts from foreign languages.

References

1. WHO. Baseline report on global sexually transmitted infection surveillance 2012. Geneva: World Health Organization, 2013. http://www.who.int/reproductivehealth/publications/rrts/9789241563895/en/ (accessed March 9, 2014).
2. Holmes KK. Sexually transmitted diseases, 4th ed. New York: McGraw-Hill Medical, 2008.
3. Newman L, Rowley J, Vander Hoorn S, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. *PLoS One* 2015; 10: e0143304.
4. WHO. Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. Geneva: World Health Organization, 2003.
5. Michorl R, McClaskey EL, WinklerPrins VJ. *Chlamydia trachomatis* infections: screening, diagnosis, and management. *Am Fam Physician* 2012; 86: 1127–32.
6. Rekart ML, Gilbert M, Meza R, et al. Chlamydia public health programs and the epidemiology of pelvic inflammatory disease and ectopic pregnancy. *J Infect Dis* 2013; 207: 30–38.
7. UN General Assembly. Transforming our world: the 2030 Agenda for Sustainable Development. 2015. https://sustainabledevelopment.un.org/content/documents/2152Sustainable%20Development%20 Goals.pdf (accessed June 6, 2017).
8. WHO. Global health sector strategy on sexually transmitted infections, 2016–2021. Geneva: World Health Organization, 2016.
9. Abu-Raddad LJ, Ghanem KG, Feizzadeh A, Setayesh H, Calleja JM, Riedner G. HIV and other sexually transmitted infection research in the Middle East and north Africa: where are we going? *Sex Transm Infect* 2013; 89 (suppl 3): ii1–4.
10. Abu-Raddad LJ, Hilini N, Muntaz G, et al. Epidemiology of HIV infection in the Middle East and north Africa. *AIDS* 2010; 24 (suppl 2): S21–25.
11. Abu-Raddad LJ, Akala FA, Semiini L, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and north Africa: time for strategic action. *Middle East and North Africa HIV/AIDS Epidemic Synthesis Project. Washington DC: The World Bank Press*, 2010.
12. Mascarinhas MN, Flaxman SR, Boerma T, Vanderpool S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. *PLoS Med* 2012; 9: e1001356.
13. Higgins JP, Green S. Cochrane Collaboration. Cochrane handbook for systematic reviews of interventions. Chichester: Blackwell-Whittle, 2008.
14. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med* 2009; 6: e1000097.
15. International AIDS Society. Abstract archives of international aids society conferences. 2016. http://www.abstract-archive.org/ (accessed July 17, 2017).
16. Abu-Raddad LJ, World Bank. Characterizing the HIV/AIDS epidemic in the Middle East and north Africa: time for strategic action. *Washington DC: World Bank*, 2010.
17. Muntaz G, Hilini N, McFarland W, et al. Are HIV epidemics among men who have sex with men emerging in the Middle East and north Africa? A systematic review and data synthesis. *PLoS Med* 2010; 8: e1000444.
18. Muntaz GR, Weiss HA, Thomas SL, et al. HIV among people who inject drugs in the Middle East and north Africa: systematic review and data synthesis. *PLoS Med* 2014; 11: e1001663.
19. Harfouche M, Chemaitelly H, Mahmoud S, et al. Epidemiology of hepatitis C virus among hemodialysis patients in the Middle East and north Africa: systematic synthesis, meta-analyses, and meta-regressions. *Epidemiol Infect* 2017; 145: 3243–63.
20. Mahmoud S, Al-Kanaan Z, Chemaitelly H, Chaabna K, Konyuomian JP, Abu-Raddad LJ. Hepatitis C virus genotypes in the Middle East and north Africa: distribution, diversity, and meta-regressions. *J Med Virol* 2018; 90: 1–214.
21. Harfouche M, Chemaitelly H, Konyuomian JP, et al. Hepatitis C virus viremic rate in the Middle East and north Africa: systematic synthesis, meta-analyses, and meta-regressions. *PLoS One* 2017; 12: e0187171: 55–23.
22. Chemaitelly H, Mahmoud S, Chaabna K, Konyuomian JP, Muntaz GR, Abu-Raddad LJ. The epidemiology of hepatitis C virus in the World Health Organization Eastern Mediterranean region: implications for strategic action. *2019. World Health Organization Report (in press)*.
23. El-Kettani A, Mahiane G, Bennani A, et al. Trends in adult chlamydia and gonorrhea prevalence, incidence and urethral discharge case reporting in Morocco over 1995–2015: estimates using the spectrum-sexually transmitted infection model. *Sex Transm Infect* 2017; 44: 557–64.
24. Smolak A, Rowley J, Nagelkerke N, et al. Trends and predictors of syphilis prevalence in the general population: pooled analyses of 1193 prevalence measures including 136 million syphilis tests. *Clin Infect Dis* 2018; 66: 1184–91.
25. Korenromp EL, Mahiane G, Rowley J, et al. Estimating prevalence trends in adult gonorrhea and syphilis in low- and middle-income countries with the spectrum-5TI model: results for Zimbabwe and Morocco from 1995 to 2016. *Sex Transm Infect* 2017; 93: 599–606.
32 Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat 1950; 21: 607–11.
37 Miller JI. The inverse of the Freeman–Tukey double arc sine transformation. Am Stat 1978; 32: 138.
48 Barendregt JJ, Doi SA, Lee YY, Norman RE, Vor T. Meta-analysis of prevalence. J Epidemiol Community Health 2015; 67: 974–78.
32 DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–88.
44 Borenstein M. Introduction to meta-analysis. Chichester: John Wiley & Sons, 2009.
51 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–58.
28 Coren team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2017.
32 UN Population Division. World population prospects 2017. https://population.un.org/wpp/ (accessed July 10, 2018).
32 StataCorp. Stata statistical software: release 14. College Station: StataCorp LP, 2014.
32 Kadi Z, Bouguermouh A, Djenoua T, Allouache A, Dali S, Hadji N. Chlamydia genital infection in Algiers: a sero-epidemiological survey. Trans R Soc Trop Med Hyg 1990; 84: 865–63.
32 Abdel Monem AA, Bassyouni M, Soliman MY, Ahmed SR, Abdel Hafez HA. Chlamydia trachomatis antigens detection in female infertility. El-Minia Med Bull 2005; 16: 104–12.
32 Aboul Atta HNE, Ibrahim AH. Role of Chlamydia and mycoplasma in the etiology of non-gonococcal urogenital in men. Egypt J Microbiol 1995; 4: 355–60.
32 Badary MS. Study of the role of cervical chlamydial infection in unexplained infertility and mucopurulent cervicitis. Egypt J Microbiol 1996; 5: 431–38.
32 Berry ME, El Shabrawy A. Chlamydia trachomatis infection and related to female infertility. Egypt J Med Microbiol 1996; 5: 297–304.
32 Diab KM. Gonococcal and chlamydial infections in Egyptian women with ectopic pregnancy. New Egypt J Med 1993; 8: 1006–10.
32 Drez EI, Hassan AM, Khalil HS, Elomary MA. Evaluation of pelvic inflammatory disease potential in cholinesterase inhibitor postmenopausal females. Environ Sci Pollut Res Int 2018; 25: 10818–25.
32 El-Sayed N, Abdallah M, Abdel Mobdy A, et al. Evaluation of selected reproductive health infections in various Egyptian population groups in Greater Cairo, Cairo: Egypt Ministry of Health and Population, 2002.
32 Mosbah A, Nabeel Y. Helicobacter pylori, Chlamydiae pneumoniae and trachomatis as probable etiological agents of pre eclampsia. J Matern Fetal Neonatal Med 2016; 29: 1667–72.
32 Moura A, The association between Chlamydia trachomatis and cervical intra-epithelial neoplasia. Zagazig Med Assoc J 1990: 3: 41–46.
32 Nada AM, Hassan FM, Al-Azhary NH. Detection of Chlamydia trachomatis in patients with unexplained infertility: a case control study. Egypt J Med Microbiol 2015; 24: 35–38.
32 Sullam SA, Mahfouz AA, Dabbous NS, el-Barrawy M, el-Said MM. Reproductive tract infections among married women in Upper Egypt. East Mediterr Health J 2001; 7: 139–46.
32 Zakia SA. Prevalence of endocervical genital mycoplasmas and Chlamydia trachomatis in infertile, abortive and pregnant women in Alexandria. Bull Alex Fac Med 1989; 25: 1031–44.
32 Ahmadi A, Khodabandehlo M, Ramazanazadeh R, et al. The relationship between Chlamydia trachomatis genital infection and spontaneous abortion. J Reprod Infertil 2016; 17: 110–16.
32 Ahmadi MH, Mirsalehi A, Sadighi Gilani MA, Bahador A, Afraz K. Association of asymptomatic Chlamydia trachomatis infection with male infertility and the effect of antibiotic therapy in improvement of semen quality in infected fertile men. Andrologia 2018; 50: e12944.
32 Ahmadinia E, Kharaghani R, Maleki A, et al. Prevalence and associated factors of genital and sexual transmitted infections in married women of Iran. Oman Med J 2016; 31: 439–45.
32 Badami N, Salari MH. Rate of Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum in infertile females and control group. Iran J Public Health 2003; 32: 57–60.
32 Baghehsaraei H, Amini B, Hosssaini M. Prevalence of infection with Neisseria gonorrhoeae and Chlamydia trachomatis in women visitors of gynecology and obstetrics clinics in Sanjan Province of Iran. Afr J Microbiol Res 2011; 5: 2447–50.
32 Bagheri S, Roghanian R, Golbang N, Golbang P, Esfahani MH. Molecular evidence of Chlamydia trachomatis infection and its relation to miscarriage. Int J Fertil Steril 2018; 12: 152–56.
32 Behroozi R. Epidemiology of Chlamydia trachomatis infections in pregnant women of the hospitals of Tehran University of Medical Sciences. J Nuwt Midifeiry Sci 2001; 1: 14–20.
32 Chaman-Tabarz L, Jedri TM, Zarzai H, et al. A molecular survey of Chlamydia trachomatis infection in married women: a cross sectional study on 991 women. Tehran Univ Med J 2008; 66: 498–91.
32 Cheraghli M, Rahimi Z, Parsa S. Prevalence of cervical-vaginal infections in the pap-smear samples in Iran. Glob J Health Sci 2014; 16: 201–06.
32 Delghani ML, Aftaftoonian A, Talebi AR, Eley A, Pacey AA. Relationship between Chlamydia trachomatis and Mycoplasma genitalium infection and pregnancy rate and outcome in Iranian infertile couples. Andrologia 2017; 49.
32 Goshyavesi L, Vahid Roudsari F, Ghaeani K, Nosrati H, Amel Jamehdar S. Pilot prevalence of Chlamydia trachomatis by PCR in female infertile referred to study center of infertility in Mashhad, Iran South Med J 2015; 38: 92–99.
32 Haghighi Hasanabad M, Bahador A, Mohammadzadeh M, Haghighi F. Prevalence of Chlamydia trachomatis, Neisseria gonorrhoeae and Ureaplasma urealyticum in pregnant women of Salsvezat, Iran. Sex Transm Infect 2013; 89 (suppl 1): A233–34.
32 Jahnzini AS, Farjami MR, Mogharrab F, et al. Chlamydia trachomatis in women with full-term deliveries and women with abortion. Am J Med Di 2010; 6: 66–69.
32 Javannard D, Behravan M, Ghanadkaﬁ A, Salehabadi A, Ziae A, Namazi MH. Detection of Chlamydia trachomatis in pap smear samples from south Khorasan province of Iran. Int J Fertil Steril 2018; 12: 31–36.
32 Joolayi F, Navidifar T, Jaffari RM, Amin M. Comparison of Chlamydia trachomatis infection among infertile and fertile women in Ahvaz, Iran: a case-control study. Int J Reprod Biomed (Yazd) 2017; 15: 713–18.
32 Kajfaz MJ, Gholamnezhad A. Prevalence of Chlamydia trachomatis antigen and antibody in infertile women in Ahvaz. Iran J Biomed 1999; 2: 45–48.
32 Kamaly Z. The survey of anti Chlamydia antibody in infertile women undergoing diagnostic laparoscopy in Afzalipour medical centre, Kerman—Iran. Int J Gynaecol Obstet 2009; 105: S218.
32 Klzerzdousst S, Hagh Elahi E, Roustani S, Badami N, Naghizadeh MM, Jafari-Moghadam M. Comparison of genital Chlamydia trachomatis infection incidence between women with infertility and healthy women in Iran using PCR and immunofluorescence methods. Jundishapur J Microbiol 2016; 7: e9450.
32 Farhoudi B, Kamali K, Rajalpoor Z. Situation analysis of sexually transmitted infections in the Islamic Republic of Iran 2008. Tehran: Ministry of Health and Medical Education, 2008.
32 Meidani M. Frequency of Chlamydia trachomatis infection in asymptomatic males based on PCR in Tehran, Iran. Int Urogynecol J Pelvic Floor Dysfunct 2009; 20 (suppl 3): S460–61.
32 Moussavi A, Ramzeanzadeh R, Farhadifar F, et al. Detection of Chlamydia trachomatis in fertile and infertile women in Sanandaj by PCR. Iran J Public Health 2014; 43: 63.
32 Pourabbas B, Rezaei Z, Marandeh J, Shahian M, Alborzi A. Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infections among pregnant women and eye colonization of their neonates at birth time. Shiraz, Southern Iran. BMC Infect Dis 2018; 18: 477.
32 Rashdi BH, Chaman-Tabarz L, Hagholli F, et al. Effects of Chlamydia trachomatis infection on fertility; a case-control study. J Reprod Infertil 2013; 16: 67–72.
32 Rohi E, Ghasemi K, Khamenei A, Ghorbani M, Alborzi A. Comparison of Chlamydia trachomatis infection incidence between women with infertility and healthy women in Iran using PCR and immunofluorescence methods. Jundishapur J Microbiol 2016; 7: e9450.
Prevalence of Chlamydia trachomatis among women with genital infection in northeast of Iran in 2011. Iran J Obstet Gynecol Infertil 2015; 18: 1–6.

Sattari M, Ghiami Rad M, Ghasemzadeh A, Mohammadoghli Reihan Z. Frequency of anti-Chlamydia trachomatis antibodies in infertile women referred to Tabriz Al-Zahra hospital. Int J Reprod Biomed (Yazd) 2017; 15: 17–20.

Sisakht AJ, Omidfar N, Mohamadkhani N, Karimpoorfar M, Kargar M, Shoktopour M. Assessing the presence of Chlamydia trachomatis genome in pregnant women with spontaneous abortion using polymerase chain reaction method in Yasuj: first report from southwest of Iran. J Educ Health Promot 2017; 6: 45.

Yeganeh O, Jeedi-Tehrani M, Yaghmaie M, et al. A survey on the prevalence of Chlamydia trachomatis and Mycoplasma genitalium infections in asymptomatic and asymptomatic men referring to urology clinic of Labbafinejad Hospital, Tehran, Iran. Iran Red Crescent Med J 2015; 13: 140–44.

Zahiri Z, Mansouri S, Saffari F, Mansouri G. Frequency of Chlamydia trachomatis, Mycoplasma genitalium, and Ureaplasma urealyticum isolated from vaginal samples of women in Kerman. Arch Clin Infect Dis 2018; 13: e65334.

Abdulkheder NA, Yusuf MG, Sadiq AM. Detection of immunological markers for Chlamydia trachomatis and Trichomonas vaginalis infection in women with obstetric complications in Najaf, Iraq. J Al-Qadisiyah Pure Sci 2014; 14: 1–25.

Abdul-Karim ET, Abdul-Muhymen N, Al-Saadie M. Chlamydia trachomatis and rubella antibodies in women with full-term deliveries and women with abortion in Baghdad. East Mediterr Health J 2009; 15: 1407–11.

Abdullahi FT. Study the role of Chlamydia trachomatis in ectopic pregnancy in Iraqi women. J Biotechnol Res Cent 2012; 6: 19–25.

Ahmed DW. Effects of interleukin-2 (IL-2) and interleukin-6 (IL-6) in recurrent spontaneous abortion (RSA). Iraq J Pharm Sci 2008; 17: 74–79.

Al-Hamadi SM, Shermun HA, Kadhim HS, Yasser H. Prevalence of anti-chlamydial immunoglobulins in pregnant women in Al-Kadhimiya Teaching Hospital. J Coll Tract 2010; 1: 59–70.

Al-Husseinei RK, Kadaeri KM, Al-Janabi IA, Fathee MiM. ELFA and IFAT techniques to detect chlamydial infections in Baghdad women and its effect on the immunoglobulins level. J Facult Sci Baghdad 2009; 51: 192–97.

Ali MH, Al-Kazaz AA. Molecular detection of Chlamydia trachomatis infection among males with abnormal semen. Iraqi J Sci 2018; 59: 2005–11.

Alkhafaf D. Prevalence of Chlamydia trachomatis in infertile ofinfertile males using real time-pcr and comparison with other methods. Iraqi J Sci 2017; 58: 1437–46.

Yahla M, Al-Siraj D. Study of genital Mycoplasma and Chlamydia trachomatis which presence in infertile males. Al-Taqania 2009; 22: A23–31.

Aburasrah FA, Awad ZM, Charvalos E, Shehab AI. Molecular detection of potential sexually transmitted pathogens in semen and urine specimens of fertile and fertile males. Diagn Microbiol Infect Dis 2013; 77: 283–86.

Al-Ramahi M, Mahafzah A, Saleh S, Fram K. Prevalence of Chlamydia trachomatis infection in infertile women at a university hospital in Jordan. East Mediterr Health J 2008; 14: 1148–54.

Aashad A. National AIDS program, final report sexually transmitted infections (STI) prevalence study, Jordan. 2004.

Awad ZM, Al-Amarat AA, Shehabai AA. Prevalence of genital chlamydial infection in symptomatic and asymptomatic Jordanian patients. Int J Infect Dis 2003; 7: 206–09.

Mahafzah AM, Al-Ramahi MQ, Aasa’d AM, El-Khatteeb MS. Prevalence of sexually transmitted infections among sexually active Jordanian females. Sex Transm Infect 2008; 85: 607–10.

Jordan Ministry of Health. Prevalence of reproductive tract infections in women attending selected urban OB/GYN clinics in Jordan. 2004.

Al-Awadhi R, Al-Shaher A, Al-Juwaizer A, George SS, Sharma P, Kapila K. Prevalence of infectious organisms observed in cervical smears between 1997–2014 at Mulashar Al-Kabir Hospital, Kuwait. Sultan Qaboos Univ Med J 2018; 18: e324–28.

Al-Sweih NA, Khan S, Rotimi VO. Prevalence of Chlamydia trachomatis and Neisseria gonorhoeae among asymptomatic women attending the Capital Health region clinics in Kuwait. Sex Transm Infect 2011; 38: 793–97.

Al-Sweih NA, Al-Fadli AH, Omri AE, Rotimi VO. Prevalence of Chlamydia trachomatis, Mycoplasma hominis, Mycoplasma genitalium, and Ureaplasma urealyticum infections and seminal quality in infertile and fertile men in Kuwait. J Androlology 2012; 33: 1233–29.

Deeb ME, Awad J, Yeretian JS, Kaspar HG. Prevalence of reproductive tract infections, genital prolapse, and obesity in a rural community in Lebanon. Bull World Health Organ 2003; 81: 639–45.

Hancali A, Bellaji B, Jensane S, et al. Trend of STIs prevalence among women and men in Morocco between 1999 to 2011. Sex Transm Infect 2015; 91: A155.

Hulstein SH, Matser A, Alberts CJ, et al. Differences in Chlamydia trachomatis seroprevalence between ethnic groups cannot be fully explained by socioeconomic status, sexual healthcare seeking behavior or sexual risk behavior: a cross-sectional analysis in the HAlby Life in an Urban Setting (HELLUS) study. BMC Infect Dis 2018; 18: 612.

Morocco Ministry of Health. Etude de prévalence IST chez les femmes consultantes en SMI/PI à la Wilaya de Rabat, Rapport final, Programme National de lutte contre les IST/SIDA. Rabat: Morocco Ministry of Health, 2001.

Alu-Raddad LJ. Additional data points from the Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project database. Tehran: Infectious Disease Epidemiology Group. 2017.

Rodouani F, Takbort B, Ibrahimiy S, Sekkat S, Guinnet R, Benzlimane A. Contribution of Chlamydia trachomatis infection to infertility. Rev Fr Gynecol Obstet 1998; 93: 442–46.

Takbort B, Rodouani F, Benchekroun A, et al. Seroprevalence of Chlamydia trachomatis infection in STD consultants in Morocco. Bull Soc Pathol Exot 1995; 88: 194–98.

Mir AM, Wajid A, Reichenbach L, Khan M. STI prevalence and associated factors among urban men in Pakistan. Sex Transm Infect 2009; 85: 199–200.

Wasti S, Ashfaq MK, Ishaq R, Hamid R. Prevalence of chlamydial infection in females attending antenatal and family planning clinics in Karachi Pakistan. Aust N Z J Obstet Gynaecol 1997; 37: 462–65.

Al-Thani A, Abdul-Rahim H, Alabasi E, et al. Prevalence of Chlamydia trachomatis infection in the general population of women in Qatar. Sex Transm Infect 2013; 89 (suppl 3): ii57–60.

Alzahrani AJ, Oleseb OE, Hassam MI, Alnshahmi AA. Screening of pregnant women attending the antenatal care clinic of a tertiary hospital in eastern Saudi Arabia for Chlamydia trachomatis and Neisseria gonorhoeae infections. Indian J Sex Transm Dis AIDS 2010; 31: 81–86.

Awad NS, Said MM, Mohamed AA, El-Tarraz AE. Detection of some sexually transmitted bacterial infection using molecular genetic technique. World J Med Sci 2013; 9: 142–46.

Bashi SA. Chlamydial infection in Riyadh, Saudi Arabia: a sero-epidemiological survey. Saudi Med J 1987; 4: 387–90.

Glazzi HO, Daghistani MH, Mohamed MF. Seropositivity of Chlamydia trachomatis among Saudi pregnant women in Makkah. J Family Community Med 2006; 13: 61–64.

Hossain A. Serologic diagnosis of Chlamydia trachomatis infections. Int J Gynaecol Obstet 1998; 27: 377–80.

Kamel RM. Screening for Chlamydia trachomatis infection among infertile women in Saudi Arabia. Int J Womens Health 2013; 5: 277–84.

Massoud M, Nowtir A, Salah M, Saleh WA. Chlamydial infection in Riyadh, Saudi Arabia. J Egypt Public Health Assoc 1991; 66: 411–19.

Ismail SO, Ahmed HJ, Jama MA, et al. Syphilis, gonorhoea and genital chlamydial infection in a Somali village. Genitourin Med 1990; 66: 70–75.
119 Nur YA, Groen J, Elmi AM, Ott A, Osterhus AD. Prevalence of serum antibodies against bloodborne and sexually transmitted agents in selected groups in Somalia. *Epidemiol Infect* 2000; 124: 137–45.
120 WHO. Central South: the 2004 first national second generation HIV/AIDS/STI sentinel surveillance survey. Geneva: World Health Organization, 2005a.
121 WHO. The 2004 first national second generation HIV/AIDS/STI sentinel surveillance survey. Geneva: World Health Organization, 2005b.
122 Ahmed MA, Hassan NG, Omer ME, Rostami A, Rayis DA, Adam I. Helicobacter pylori and *Chlamydia trachomatis* in Sudanese women with pre-eclampsia. *J Matern Fetal Neonatal Med* 2018; published online Oct 14. DOI: 10.1080/14767058.2018.1553738.
123 Almroth L, Elmusharaf S, El Hadi N, et al. Primary infertility after genital mutilation in girlhood in Sudan: a case-control study. *Lancet* 2017; 390: 43–47.
124 Ortasmi OH, El Khidr I, Hierieka E. Prevalence of HIV, syphilis, *Chlamydia trachomatis*, Neisseria gonorrhoeae, Trichomonas vaginalis and candidiasis among pregnant women attending an antenatal clinic in Khartoum, Sudan. *J Obstet Gynecol 2004*; 24: 513–15.
125 Alkawer SM, Yazi HN, Khanin A. The prevalence of serum IgG antibody to *Chlamydia trachomatis* in infertile women at the university hospital, Syria. *Res J Pharm Technol* 2005b.
126 Ghazal Awad S, Badrinath P, Osman NA, Abdul-Khalik S, Raaschou T. Is there a correlation between vaginal chlamydia infection and cervical smear abnormalities? A community-based study in the Al-Ain district, United Arab Emirates. *J Obstet Gynaecol Res* 2006; 32: 63–67.
127 Explorable. Non-probability sampling. 2009. https://explorable.com/non-probability-sampling (accessed April 10, 2019).
128 Glen S. Probability sampling: definition, types, advantages and disadvantages. 2015. https://www.statisticshowto.datasciencecentral.com/probability-sampling/ (accessed April 10, 2019).
129 Johnston LG. Responsive driven sampling (RDS). 2014. http://www.lisajohnston.com/responsive-driven-sampling (accessed April 10, 2019).
130 Darougar S, Aramesh B, Gibson JA, Trehanie JD, Jones BR. Chlamydial genital infection in prostitutes in Iran. *Br J Vener Dis* 1983; 59: 53–55.
131 Kassaian N, Ataei B, Yaran M, Babak A, Shoaei P, Aminzadeh F. Prevalence of sexually transmitted infections (STI) among selected MSM and transgenders in 5 cities of Pakistan. *Sex Transm Infect* 2017; 93 (suppl 2): A18.
163 Rashidi B, Shahrokh Tehranizadeh E, Aliae F. Prevalence of antichlamydial antibody status in fertile patients. Int J Fertil Steril 2007; 1: 15–18.
164 Sadpour P, Bahador A, Asgar S, Bagheri R, Chamani-Tabrizi L. Detection of Chlamydia trachomatis and Mycoplasma genitalium in semen samples of fertile men using multiplex PCR. Tehran Univ Med J 2013; 70: 623–29.
165 Siahkali AP, Amini K. Identification of herpes simplex virus, Chlamydia trachomatis, and Mycoplasma genitalium in infertile seminal fluid samples using multiplex-PCR in Kerman province, Iran (2016). Iran J Obstet Gynecol Infertil 2018; 21: 69–74.
166 Ahid A, Al-Zwaid AJ. Chlamydial antibodies, pro-inflammatory cytokines and bacterial significance among infertile women. Med J Babylon 2015; 12: 943–62.
167 Ahmed ST. Detection of Chlamydia trachomatis using polymerase chain reaction (PCR). Al-Mustansiriyyah J Sci 2012; 23: 35–42.
168 Al-Kattan SAA, Mohamed RA. Laparoscopic finding and Chlamydia trachomatis infection in infertile women. Med J Tikrit 2013; 19: 315–24.
169 Dawood SD. Chlamydia trachomatis in Iraqi women with infertility. Iraq J Biotechnol Bull 2008; 14: 16–20.
170 Al Suhbi T, Al Jashnini RN, Al Khaduri M, Gowri V. Prevalence of tubal obstruction in the hysterosalpingogram of women with primary and secondary infertility. J Reprod Infertil 2013; 14: 214–16.
171 Qayum M, Khalid-bin Saleem M. Prevalence of Chlamydia trachomatis among asymptomatic women. J Ayub Med Coll Abbottabad 2013; 25: 28–30.
172 Al-Hindi A, Al-Helou T, Al-Helou Y. Seroprevalence of Toxoplasma gondii, cytomegalovirus, rubella virus and Chlamydia trachomatis among infertile women attending in vitro fertilization center, Gaza strip, Palestine. J Egypt Soc Parasitol 2010; 40: 451–58.
173 Abdul Jabbar HS. Chlamydiial infection in Saudi infertile patients. Med J Riyadh 2000; 12: 4–7.
174 Alfarraj DA, Somly AM, Alssum RM, Abotalih ZM, El-Sayed AA, Al-Mandeel HH. The prevalence of Chlamydia trachomatis infection among Saudi women attending the infertility clinic in Central Saudi Arabia. Saudi Med J 2015; 36: 61–66.
175 Sabra SMM, Al-Harbi MS. An influential relationship of seminal fluid microbial infections and infertility. Tuf Region, KSA. World J Med Sci 2014; 10: 32–37.
176 G douza R, Daoudi F, Bouzid F, et al. Detection of Chlamydia trachomatis in semen and urethral specimens from male members of infertile couples in Tunisia. Eur J Contracept Reprod Health Care 2001; 6: 102–07.
177 G douza R, Keskes-Ammar L, Bouzid F, El-Fe F, Hamammi A, Orfilla J, Chlamydia trachomatis and male infertility in Tunisia. Eur J Contracept Reprod Health Care 2001; 6: 102–07.
178 G douza R, Khachou W, Anznar Keskes L, et al. Assessment of Chlamydia trachomatis. Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. J Andrology 2008; 29: 198–206.
179 Sellami H, Nznzoun A, Sellami A, et al. Molecular detection of Chlamydia trachomatis and other sexually transmitted bacteria in semen of male partners of infertile couples in Tunisia: the effect on semen parameters and spermatozoa apoptosis markers. PLoS One 2014; 9: e99093.
180 Ahmadi A, Khodabandehloo M, Ramazanzadeh R, et al. The relationship between Chlamydia trachomatis genital infection and spontaneous abortion. J Reprod Infertil 2016; 17: 110–16.
181 Bagheri S, Roghanian R. Evaluation of Chlamydia trachomatis incidence in women who had abortion in Isfahan. Iran J Public Health 2014; 43: 63.
182 Masshia A, Khoshkhoñgh Pahlahvani MRM, Sedighi Kasmaie P, Vazid Youssefi J. Study of the reasons of miscarriage abortions in the subjects who approached Kamali Hospital, Kharaj in Iran. J Reprod Med Endocrinol 2010; 7: 346.
183 Salari MH, Badami N. The rate of Chlamydia trachomatis, Mycoplasma hominis and Ureaplasma urealyticum in females and habitual abortion. ACTA Medicra Iranica 2002; 40: 79–82.
184 Al-Nuaimy WA, Al-Jandeel T. Immunological and molecular study of Chlamydia trachomatis as causative agent of abortion in Al-Muthanna province. Iraqi J Vet Sci 2018; 42: 99–104.
185 Salman YJ. Chlamydia trachomatis antibodies cross reaction with seropositive Toxoplasma gondii and cytomegalovirus among women with abortion and outcomes of congenital abnormalities in Kirkuk City. Tikrit J Pure Sci 2016; 21: 1–5.
186 Harbord RM, Higgins JPT. Meta-regression in Stata. Stata J 2008; 8: 493–519.
187 Vaghtzesh SM, Nasrallah GK, Al-Absi ES, et al. Herpes simplex virus type 2 seroprevalence among different national populations of Middle East and north African men. Sex Transm Infect 2018; 45: 882–87.
188 Abu-Raddad LJ, Schiffer JT, Ashley R, et al. HSV-2 serology can be predictive of HIV epidemic potential and hidden sexual risk behavior in the Middle East and north Africa. Epidemics 2010; 2: 173–82.
189 Vaccarella S, Bruni L, Seoul M. Burden of human papillomavirus infections and related diseases in the extended Middle East and north Africa region. Vaccine 2013; 31(26): 3458–68.
190 Rowley J, Hoorn SV, Korenromp E, et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 2019, published online July 4. ID:BE18.218651.
191 Sonnenberg P, Clifton S, Reddows S, et al. Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 2013; 382: 1795–806.
192 CDC, National Center for Health Statistics. National health and nutrition examination survey data, 1999–2014. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx (accessed Sept 25, 2017).
193 Redmond SM, Alexander-Kissig K, Woodhall SC, et al. Genital chlamydial prevalence in Europe and non-European high income countries: systematic review and meta-analysis. PLoS One 2015; 10: e0115753.
194 Tooney KE, Rafferty MP, Stamm WE. Unrecognized high prevalence of Chlamydia trachomatis cervical infection in an isolated Alaskan Eskimo population. JAMA 1987; 258: 53–56.
195 Walsh MS, Hope E, Isaia L, et al. Prevalence of Chlamydia trachomatis infection in Sanoan women aged 18 to 29 and assessment of possible risk factors: a community-based study. Trans R Soc Trop Med Hyg 2015; 109: 245–51.
196 Stamm WE. Chlamydia trachomatis infections of the adult. In: Holmes KK, Sparling FP, Stamm WE, et al, eds. Sexually transmitted diseases, 4th edn. New York: McGraw Hill Medical, 2008: 575–93.
197 Molano M, Meijer CJ, Weiderpass E, et al. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis 2005; 191: 907–16.
198 Heijne JC, Herzog SA, Althaus CL, Low N, Kretzschmar M. Case and partnership reproduction numbers for a curable sexually transmitted infection. J Theor Biol 2013; 331: 38–47.
199 Ormör R, Chemaitely H, Alhaisl CA, Abu-Raddad LJ. Does infection with Chlamydia trachomatis induce long-lasting partial immunity? Insights from mathematical modelling. Sex Transm Infect 2019; 95: 115–21.
200 Al-Mutairi N, Joshi A, Nour-ElDin O, Sharma AK, El-Adawy I, Rijhwani M. Clinical patterns of sexually transmitted diseases, associated sociodemographic characteristics, and sexual practices in the Farawania region of Kuwait. Int J Dermatol 2005; 46: 594–99.
201 Ismail SO, Ahmed HJ, Grillner L, Hederstedt Issa BA, Bygdeman S. Sexually transmitted diseases in men in Mogadishu, Somalia. Int J STD AIDS 1999; 1: 102–06.
202 Fasel A, Clelund J. Migrant men: a priority for HIV control in Pakistan? Sex Transm Infect 2006; 82: 307–10.
203 Murtnaz GR, Riedner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and north Africa. Curr Opin HIV AIDS 2014; 9: 383–91.
204 Inhorn MC. Quest for conception: gender, infertility and Egyptian medical traditions. Philadelphia, PA: University of Pennsylvania Press, 1994.
205 Zaranyak H, Sholkamy H, Yousin N, Khattab H. Women’s health problems and spontaneous abortion: a holistic policy perspective. Int J Gynaecol Obstet 1997; 58: 13–21.
206 Eggert-Kruse W, Buhlinger-Gopfarth N, Rohr G, et al. Antibodies to Chlamydia trachomatis in semen and relationship with parameters of male fertility. Hum Reprod 1996; 11: 1048–17.
screening and treatment of pregnant women in Port Haiti.

Joseph Davey DL, Shull HI, Billings JD, W

Urology 1101–06.

Rashad H, Osman M. Nuptiality in Arab countries: changes and economics in the M

Cairo: American University in Cairo Press, 2003; 20–50.

Muñoz M, Socolov D, Mares M, et al. Bacteriological agents which play a role in the development of infertility. Acta Microbiol Immunol Hung 2013; 60: 41–53.

Faour M. Fertility policy and family planning in the Arab countries. Stud Fam Plann 1989; 20: 234–63.

Rashad H, Khadr Z. The demography of the Arab region: new challenges and opportunities. In: Human capital: population implications. In: Cairo papers in social science. Hopkins NS, ed. Cairo: American University in Cairo Press, 2003; 20–50.

Bristow CC, Mathelier P, Ocheretina O, et al. Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis screening and treatment of pregnant women in Port-au-Prince, Haiti. Int J STD AIDS 2017; 28: 1130–34.

Cabeza J, Garcia PJ, Segura E, et al. Feasibility of Chlamydia trachomatis screening and treatment in pregnant women in Lima, Peru: a prospective study in two large urban hospitals. Sex Transm Infect 2015; 91: 7–10.

Joseph Davy DL, Shull HI, Billings JD, Wang D, Adachi K, Klausner JD. Prevalence of curable sexually transmitted infections in pregnant women in low- and middle-income countries from 2010 to 2015: a systematic review. Sex Transm Infect 2016; 43: 450–58.

Nguyen M, Le GM, Nguyen HTT, Nguyen HD, Klausner JD. Acceptability and feasibility of sexually transmitted infection screening among pregnant women in Hanoi, Vietnam. Sex Health 2019; 16: 133–38.

Wynn A, Ramogola-Masire D, Gaolebale P, et al. Prevalence and treatment outcomes of routine Chlamydia trachomatis, Neisseria gonorrhoeae and Trichomonas vaginalis testing during antenatal care, Gaborone, Botswana. Sex Transm Infect 2018; 94: 230–35.

Syred J, Engler B, Campbell L, Bartaip S, Sheringham J. Exploration of gender differences of Chlamydia trachomatis infection amongst young people reveals limitations of using sexual histories to assess risk in high-prevalence areas. Int J STD AIDS 2014; 25: 564–70.

Horner PJ, Wills GS, Reynolds R, et al. Effect of time since exposure to Chlamydia trachomatis on chlamydia antibody detection in women: a cross-sectional study. Sex Transm Infect 2013; 89: 398–403.

Hocking JS, Temple-Smith M, Guy R, et al. Population effectiveness of opportunistic chlamydia testing in primary care in Australia: a cluster-randomised controlled trial. Lancet 2018; 392: 1813–22.

WHO. Strategies and laboratory methods for strengthening surveillance of sexually transmitted infections 2012. Geneva: World Health Organization, 2012. http://www.who.int/reproductivehealth/publications/rtis/9789241504478/en/ (accessed Aug 9, 2014).

Bozicevic I, Riedner G, Calleja J. M. HIV surveillance in MENA: recent developments and results. Sex Transm Infect 2013; 89 (suppl 3): iii11–16.

Ayyoub HH, Awad SF, Abu-Raddad LJ. Use of routine HIV testing data for early detection of emerging HIV epidemics in high-risk subpopulations: a concept demonstration study. Infect Dis Model 2018; 3: 373–84.

Reintjes R, Wiessing L. 2nd-generation HIV surveillance and injecting drug use: uncovering the epidemiological ice-berg. Int J Public Health 2007; 52: 166–72.

Hessini L. Abortion and Islam: policies and practice in the Middle East and north Africa. Reprod Health Matters 2007; 15: 75–84.

Shapiro GK. Abortion law in Muslim-majority countries: an overview of the Islamic discourse with policy implications. Health Policy Plan 2014; 29: 483–94.