Detection of Phenotypic Variations and Biotypes of *Staphylococcus aureus* Obtained from Cattle Mastitic Milk

Pragya Nathiya*, Kumar Gaurav, Diwakar, Sandeep Kumar Sharma and A.K. Kataria

Department of Veterinary Microbiology and Biotechnology, RAJUVAS, Bikaner, Rajasthan-334001, India

Corresponding author

Abstract

The present study was designed to find variations among *Staphylococcus aureus* on the basis of cultural and biochemical properties. From 59 samples of cattle clinical mastitic milk, 28 isolates were obtained and confirmed by species specific primers targeted against 23S rRNA with an amplicon of 1250bp. The genotypically confirmed isolates were subjected to determine phenotypic variations among them. In our study total seven biotypes were detected with variations in pigment production, haemolysis pattern and coagulase production.

Keywords

Staphylococcus aureus, Cattle, Phenotypic variations, Biotypes, Mastitis

Introduction

Mastitis is one of the most important diseases affecting production in dairy industry worldwide and causes both direct and indirect losses to dairy farming (Petrovski *et al.*, 2006). *Staphylococcus aureus* is the main causative agent responsible for clinical mastitis in cattle (Kateete *et al.*, 2010). The organism exhibits variation on phenotypic properties and hence typing approaches are of significant importance to identify and understand the distribution of *S. aureus* strains among dairy herds. From the past few years, phenotypic methods such as antibiotic resistance typing, biotyping and phage typing are being used for typing of *S. aureus* isolates (Wilson, 1987; Dallal *et al.*, 2010). To biotype and characterize *S. aureus*, phenotypic methods like pigment production, coagulase production and haemolysis are easy, rapid and economical techniques for epidemiological investigations (Momtaz *et al.*, 2011). The present study was designed to determine the biotypes on the basis of various pigment production, haemolysis, coagulase production and their ability to ferment mannitol.

Materials and Methods

Collection of samples

A total of 59 milk samples from cows irrespective of breed and age, with clinical
mastitis were collected directly from teats in sampling tube, each about 5-10 ml in amount and then immediately taken to laboratory over ice for further processing on the same day. These animals belonged to different localities of Bikaner (Rajasthan).

Isolation and identification of Staphylococcus aureus

The organisms were isolated and identified as described by Cowan and Steel (1975) and Quinn et al., (1994). Briefly, milk sample was swabbed on nutrient agar medium and then incubated overnight at 37°C. Next day different bacterial colonies were closely observed for their morphology, colour and consistency. Gram’s staining, oxidase test and catalase test were used as primary identification tests and further the cultures were processed for confirmation by 23S rRNA gene-based genotyping. For genotypic confirmation a set of species specific primers was used viz. forward - 5’-ACG GAG TTA CAA AGG ACG AC-3’ and reverse - 5’-AGC TCA GCC TTA ACG AGT AC-3’(Straub et al., 1999).

Biotyping of Staphylococcus aureus

All genotypically confirmed isolates were further studied for cultural and biochemical properties. The isolates were cultured on mannitol salt agar and 5% sheep blood agar and incubated for 24-48 h at 37°C. Coagulase production test was carried out in tubes for production of free enzyme using human plasma according to Quinn et al., (1994). Biotypes were determined as per biotyping methodology described by Devriese (1984).

Results and Discussion

In the present study, out of 59 milk samples, 28 *Staphylococcus aureus* isolates were obtained with a recovery of 47.45% as confirmed by species specific PCR method targeted against 23S rRNA with an amplicon of 1250 bp (Fig. 1).

Of the 28 isolates, seven biotypes were detected on the basis of pigment production, mannitol fermentation, haemolysis on blood agar and coagulase production (Table 1). *Staphylococcus aureus* isolates of the biotype-4 were found more prevalent (42.85%) whereas biotype-1, 3 and 6 were found with minimum prevalence (3.57%). All biotypes were mannitol fermenters (Fig. 2).

Out of seven biotypes, five biotypes produced golden yellow pigmentation (biotype-2, 3, 4, 5 and 6) while biotype-1 produced yellow pigmentation (3.57%) and biotype-7 produced white pigmentation (10.71%). Only biotype-3 was negative coagulase production in tube coagulase test (Fig. 3).

In present investigation, out of the total biotypes, biotype-5 produced complete haemolysis, biotype-1 and 4, produced incomplete haemolysis (Fig. 4) and biotype-6 produced both (complete and partial) haemolysis whereas biotype-2, 3 and 7 did not produce any haemolysis. When biotypes (1, 4 and 6) with incomplete and both haemolysis were incubated at 4⁰C to study hot-cold lysis, biotype-4 did not show hot-cold lysis whereas biotype-1 converted to complete haemolysis (hot-cold lysis) from incomplete haemolysis and biotype-6 from both haemolysis (complete and partial) changed to complete haemolysis.

In the present investigation, a biotyping, was used to determine phenotypic variations among *Staphylococcus aureus* isolates which may be used for epidemiological surveillance. The prevalence rate (47.45%) obtained in this study is in agreement with Seyoum et al., (2017) who reported 42.9% occurrence of *S. aureus* from clinical mastitis milk samples of cattle.
Table 1 Cultural and biochemical variations among *Staphylococcus aureus* isolates via biotyping

S. N.	Biotype	Isolate (n)	Pigment Production	Mannitol Fermentation	5% Sheep Blood agar Haemolysis Phenomena	Hot Cold lysis Phenomena	Coagulase Production
1.	Biotype 1	CM2 (1)	Yellow	Fermentative	Incomplete (Convert into Complete haemolysis)	Positive	
2.	Biotype 2	CM1, CM12, CM16, CM20, CM26, CM28 (6)	Golden yellow	Fermentative	Negative	Negative	Positive
3.	Biotype 3	CM27 (1)	Golden yellow	Fermentative	Negative	Negative	Negative
4.	Biotype 4	CM3, CM5, CM6, CM9, CM11, CM13, CM15, CM17, CM19, CM21, CM23, CM25 (12)	Golden yellow	Fermentative	Incomplete	Absent	Positive
5.	Biotype 5	CM4, CM8, CM14, CM18 (4)	Golden yellow	Fermentative	Complete	Complete	Positive
6.	Biotype 6	CM7 (1)	Golden yellow	Fermentative	Both present	Positive	
7.	Biotype 7	CM10, CM22, CM24 (3)	White	Fermentative	Negative	Negative	Positive

Fig. 1 Agarose gel electrophoresis of amplicons of 23S rRNA ribotyping of *S. aureus* isolated from cattle with clinical mastitis
Fig. 2 Mannitol fermentation by *S. aureus* isolated from cattle with clinical mastitis on Mannitol salt agar

Fig. 3 Tube coagulase test for *S. aureus* isolates obtained from cattle with clinical mastitis with human plasma
Fig.4 Partial haemolysis by *S. aureus* isolated from cattle with clinical mastitis on Sheep blood agar

The mannitol fermentation of isolates on MSA obtained in our study is similar to earlier observations of Lange *et al.*, (1999), Sanjiv *et al.*, (2008), Sharma *et al.*, (2013) and Jahan *et al.*, (2015) who had also isolated *S. aureus* from different sources like subclinical mastitis milk, clinical mastitic milk, nasal discharge from pneumonic camels and raw cow milk, respectively. The observations made in this study is in accordance with the study of Pumipunto *et al.*, (2017) who reported sensitivity of MSA fermentation is 100% effective in detection of *S. aureus*. The production of staphyloxanthin—a membrane bound carotenoid pigment imparts colour to the colonies in variable amounts (Clauditz *et al.*, 2006) and protects *S. aureus* against oxidative stress. In this study only biotype 1 comprising of a single isolate and biotype 7 comprising of three isolates were recorded as yellow and white, respectively, while all other five biotypes were recorded with golden yellow pigment. Study on 143 of *S. aureus* isolates from humans and bovine raw milk samples in an Iranian province also showed that 85, 38 and 20 isolates produced purple, yellow and white coloured colonies (Alini *et al.*, 2016). El-Jakee *et al.*, (2010) isolated *S. aureus* from mastitic cows and buffalo and obtained three types of pigments viz. golden yellow, creamy and white. Qureshi and Kataria (2006) also characterized *S. aureus* from skin wounds in camel with colony pigmentation as golden yellow, yellow and white. Bhati *et al.*, (2016) obtained 38 *S. aureus* from subclinical mastitis in cattle and recorded 35 isolates with golden yellow pigmentation and three with white colonies. Hence, mannitol fermentation and pigment production can be effective tests to find variations among isolates.

In our results 27 of the 28 isolates were coagulase positive which is similar to the results reported by Kateete *et al.*, (2010) who reported 29 out of 32 *S. aureus* positive for human plasma. Sanjiv *et al.*, (2008) also reported coagulase negative *S. aureus* isolates from clinical mastitis in cattle from the same area of study. However, other workers (Khichar and Kataria, 2015; Al-Ratha and Sekhi, 2016 and Bhati *et al.*, 2016) did not record coagulase negative isolates from cattle mastitis. The results of haemolysis corroborated earlier reports by Yadav *et al.*, (2015) who investigated 32 *S. aureus* isolates
from milk of cattle and buffalo with clinical mastitis of which five, 20, four and three showed complete, partial, both and no haemolysis, respectively, on 5% sheep blood agar. The results in our study showed hot-cold haemolysis similar to reports of Bhati et al., (2016) who observed 33.33% of 12 isolates from subclinical mastitis in cattle to show hot-cold lysis.

Phenotypic variations among *Staphylococcus aureus* obtained from bovine mastitis were recorded and biotyping can be an important tool to study variations among *S. aureus*.

Acknowledgment

We acknowledge the support and facilities provide Dean College of Veterinary and Animal Sciences, Bikaner, Rajasthan University of Veterinary and Animal Sciences, Bikaner for this study.

References

Alni RH, Mohammadzadeh A, Mahmoodi P (2016). Biotyping of *Staphylococcus aureus* strains isolated from humans and bovine raw milk samples in Hamedan province. Int J Health Life Sci. 2(2):e74158.

Al-Ratha HA and Sekhi RJ (2016). The correlation between coagulase production and DNase, phosphatas, type of hemolysis produced by mastitis *Staphylococcus aureus* isolates and its susceptibility to some antibiotics. J. Genet. Environ. Resour. Conserv. 4(2):94-99.

Bhati T, Nathawat P, Sharma SK, Rathore P and Kataria AK (2016). Cultural biochemical and haemolytic properties of *Staphylococcus aureus* isolated from cases of subclinic mastitis in cattle. Int. J. Dev. Res. 06(07):8371-8375.

Clauditz A, Resch A, Wieland KP, Peschel A and Gotz, F. (2006). Staphyloxanthin plays a role in the fitness of *Staphylococcus aureus* and its ability to cope with oxidative stress. Infect. Immun. 74(8):4950-4953.

Cowan ST and Steel KJ (1975). Cowan and Steel's Manual for the identification of medical bacteria. Cambridge University Press, Cambridge.

Dallal MMS, Salehipour Z, Eshraghi S, Mehrabadi JF, Bakhtiari R. (2010). Occurrence and molecular characterization of *Staphylococcus aureus* strains isolated from meat and dairy products by PCR RFLP. Ann. Microbiol. 60(2):189-96.

Devriese LA (1984). Simplified system for biotyping *Staphylococcus aureus* strains isolated from different animal species. J Appl Bacteriol. 56(2):215-20.

El-Jakee JKAH, Zaki ER and Farag RS (2010). Properties of enterotoxigenic *S. aureus* Isolated from mastitic cattle and buffaloes in Egypt. J Am Sci. 6(11):170-178.

Jahan M, Rahman M, Parvej MS, Chowdhury SMZH, Haque ME, Talukder MAK and Ahmed, S (2015). Isolation and characterization of *Staphylococcus aureus* from raw cow milk in Bangladesh. J Adv Vet Anim Res. 2(1):49-55.

Kateete DP, Kimani CN, Katabazi FA, Okeng A, Okee MS, Nanteza A, Joloba ML and Najjuka FC (2010). Identification of *Staphylococcus aureus*: DNase and mannitol salt agar improve the efficiency of the tube coagulase test. Ann Clin Microbiol Antimicrob. doi:10.1186/1476-0711-9-23.

Khichar V and Kataria AK (2015). Characterisation of *Staphylococcus aureus* of cattle clinical mastitis milk origin for coagulase. International
Journal of Veterinary Science & Research. 1(1):1-5.
Lange C, Cardoso M., Senczek D and Schwarz S (1999). Molecular subtyping of *Staphylococcus aureus* isolates from cases of bovine mastitis in Brazil. Vet Microbiol 67:127-141.
Momtaz H, Tajbakhsh E, Rahimi E, Momeni M (2011). Coagulase gene polymorphism of *Staphylococcus aureus* isolated from clinical and subclinical bovine mastitis in Isfahan and Chaharmahal va Bakhtiari provinces of Iran. Comp Clin Path. 20(5):51922.
Petrovski KR, Trajcev M and Buneski M. (2006). A review of the factors affecting the costs of bovine mastitis. J S Afr Vet Assoc. 77(2):52–60.
Pumipuntu N, Kulpeanprasit S, Santajit S, Tun Yong W, Kong-ngoent T, Hinthong W and Indrawattana N (2017). Screening method for *Staphylococcus aureus* identification in subclinical bovine mastitis from dairy farms. Vet. World. 10(7):721.
Quinn PJ Carter ME, Markey BK and Carter GR (1994). *Clinical Veterinary Microbiology*. Wolfe Publishing, Mosby-Year Book Europe Ltd. Lynton House, 7-12. Tavistock Square, London WCH 9LB, England.
Qureshi S and Kataria AK (2006). Identification of biotypes of *Staphylococcus aureus* isolates of camel origin. Indian Veterinary Medicine Journal.
Sanjiv K, Kataria AK, Sharma R and Singh G (2008). Epidemiological typing of *Staphylococcus aureus* by DNA restriction fragment length polymorphism of *coa* gene. Veterinarski Arhiv. 78(1):31-38.
Seyoum B, Kefyalew H and Mukatir Y (2017). Prevalence, Associated Risk Factors and Antimicrobial Susceptibility of *Staphylococcus aureus* Isolated from Bovine Mastitic Milk in and Around Asella Town, Ethiopia. Adv Biol Res 11(5):295-301.
Sharma SK, Nathawat P, Bhati T, Mohammed N, Chaudhary S, Raj R, Solanki S and Kataria AK (2013). Characterization of *Staphylococcus aureus* isolated from nasal discharge from pneumonic camels (*Camelus dromedarius*). Animal Biology & Animal Husbandry International Journal of the Bioflux Society. 5(1):38-43.
Straub JA, Hertel C and Hammers WP (1999). A 23S rRNA target polymerase chain reaction based system for detection of *Staphylococcus aureus* in meat starter cultures and dairy products. J Food Prot. 62(10):1150-1156.
Wilson K (1987). Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2(4):2-4.
Yadav R, Sharma SK, Yadav J, Bhati T, and Kataria AK (2015). Phenotypic and genotypic haemolysin properties of *Staphylococcus aureus* obtained from milk of cattle and buffalo with clinical mastitis. Journal of pure & applied microbiology. 9(1):349-355.

How to cite this article:

Pragya Nathiya, Kumar Gaurav, Diwakar, Sandeep Kumar Sharma and Kataria, A.K. 2018. Detection of Phenotypic Variations and Biotypes of *Staphylococcus aureus* Obtained from Cattle Mastitic Milk. *Int.J.Curr.Microbiol.App.Sci.* 7(09): 2450-2456.
doi: https://doi.org/10.20546/ijcmas.2018.709.304