Malaria coinfection with Neglected Tropical Diseases (NTDs) in children at Internally Displaced Persons (IDP) camp in Benin City, Nigeria

Evelyn U. Edosomwan, Ikponmwosa O. Evbuomwan,*, Cynthia Agbalalah, Samuel O. Dahunsi, Blessing I. Abhulimen-Iyoha

a Department of Animal and Environmental Biology, University of Benin, Benin City, Nigeria
b Applied Biology and Biotechnology Programme, Department of Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria
c Department of Microbiology, Landmark University, Omu-Aran, Kwara State, Nigeria
d Department of Child Health, University of Benin Teaching Hospital, Benin City, Nigeria

ARTICLE INFO

Keywords:
Zoology
Public health
Infectious disease
Prevalence
Plasmodium falciparum
Entamoeba histolytica
Polyparasitism
Hygiene

ABSTRACT

Malaria and Neglected Tropical Diseases (NTDs) are highly endemic in poorer countries of the world. The research investigated the prevalence of parasitic infections among children in Internally Displaced Persons (IDP) camp in Benin City. Faecal, urine and blood specimen were collected from 184 children (100 males and 84 females) aged 6–15. Blood samples were prepared using thick film method and analyzed microscopically. Direct smear technique was employed for faecal sample and sedimentation method to concentrate ova from the urine sample. Ten species of parasites were identified in this study. The predominant species were Plasmodium falciparum (67.93%), Entamoeba histolytica (67.93%) and Giardia duodenalis (59.78%). Plasmodium falciparum and E. histolytica were most prevalent in both sexes, with P. falciparum infecting 68% males and 67.86% females while E. histolytica infected 66% males and 70.24% females (P = 0.24). Mixed infections with blood and intestinal parasites were recorded in 41.18% in age group 5–10 and 47.90% in age group 11–15 (P < 0.5). Also, mixed infections with blood and intestinal parasites were detected in 45% males and 50% females (P = 0.51). Urinary schistosomiasis was recorded in 28.80% of the participants. Parasitic infections especially P. falciparum malaria and amoebiasis were predominant among the children. Therefore, our findings call for specific intervention programmes to reduce parasite intensity and morbidity in the children. Environmental and personal hygiene should be implemented in order to curb parasitosis in the study area.

1. Introduction

Malaria and Neglected Tropical Diseases (NTDs), including intestinal parasitic infections (IPIs) and schistosomiasis, are highly endemic in developing nations of the world and remain a serious public health issue in sub-Saharan Africa, especially in impoverished and poor sanitary settings, with tremendous consequences for development (Yamey, 2002; Tchuenté et al., 2013; Kwenti et al., 2016). About 3.3 billion people worldwide are at risk of being infected with malaria and developing disease (Abossier et al., 2017). In 2018, about 228 million malaria cases and 405,000 deaths globally were recorded (WHO, 2019a). The burden is heaviest in the sub-Saharan African Region, with more than 80% of all malaria deaths, and children ages 1–4 years account for 78% of all deaths (Murray et al., 2012; WHO, 2019a; Nätä and Effert, 2019).

Plasmodium falciparum, out of the five human malaria parasites, is the most virulent and prevalent species in Africa where it was responsible for about 214 million clinical cases and 438,000 deaths recorded all over the world in the year 2015 (WHO, 2015; Bhatt et al., 2015). Primarily IPIs are caused by helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm), protozoans (Entamoeba histolytica, Giardia duodenalis and Balantidium coli) or both (Harhay et al., 2010; Odo et al., 2016). The severity of intestinal parasitic infections (IPIs) is more pronounced in areas in Asian, Latin American and sub-Sahara African countries lacking potable water supply, good personal and environmental hygiene, and have rapid growth in human population (Mohammed et al., 2015). These infections predominate in children and 12% of the global disease burden is reported among children within 5–14 years of age in developing countries (Awasthi et al., 2003).

* Corresponding author.
E-mail address: io.evbuomwan@gmail.com (I.O. Evbuomwan).

https://doi.org/10.1016/j.heliyon.2020.e04604
Received 19 May 2020; Received in revised form 3 July 2020; Accepted 28 July 2020
2045-8440/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ascaris lumbricoides causes about 1.2 billion infections worldwide and T. trichiura and hookworm disease accounts for 795 million and 740 million (Alum et al., 2010). High prevalence of IPIs has been observed among school-going children in sub-Saharan African countries including: 84.6% in Nigeria (Awu-Waada, 2008), 90% in Central Sudan (Ahmed et al., 2010), 50.0% in Rwanda (Emile et al., 2013), 48.7% in Tanzania (Speich et al., 2013) and 84.7% in Burkina Faso (Erismann et al., 2016). Malaria coinfection with IPIs predominates in sub-Saharan African countries due to their overlapping distribution (Hotz et al., 2009).

Human schistosomiasis or bilharziasis is a freshwater small-transmitted intravascular debilitating disease caused by blood-dwelling parasitic dimorphic Schistosoma trematode worms (Gryseels et al., 2006; Chen et al., 2020). Essentially, the disease is grouped into two: urogenital schistosomiasis and intestinal schistosomiasis based on the organs affected (Njunda et al., 2017). Basically, six major species infect man—Schistosoma haematobium (etiological agent of urogenital schistosomiasis), S. intercalatum, S. mekongi, S. japonicum, S. mansoni and S. guineensis (etiological agents of intestinal schistosomiasis)—however, S. haematobium, S. japonicum and S. mansoni are most pathogenic (Steinmann et al., 2006; Chuah et al., 2019). Not less than 240 million people are affected by schistosomiasis globally and about 200,000 deaths recorded yearly (Thietot-Laurent et al., 2013; Hotz et al., 2014; WHO, 2019b). Approximately 90% of the cases occur in Africa of which nearly two-thirds are caused by S. haematobium (Hotz and Kamarth, 2009; Vos et al., 2012). Nigeria has the highest prevalence among the 75 countries in which the disease is endemic (Uchendu et al., 2017; WHO, 2019b). In Nigeria, a prevalence of 9.5% was reported by the Federal Ministry of Health (2015). Other studies conducted in Maiduguri and Anambra, Nigeria, reported prevalence of 14.5% and 15.7% respectively (Joseph et al., 2010; Ugochukwu et al., 2013).

Evaluating the endemic level of parasitic infections in populations exposed to the disease is of utmost necessity in order to formulate specific and appropriate intervention programmes. There is dearth of empirical estimates of parasitic infections in the camp therefore; this research sought to determine the prevalence of malaria with NTD coinfection in children in IDP camp, Benin City, Nigeria. The outcome of this research will help the management of the camp in appropriate intervention programmes to tackle these diseases.

2. Materials and methods

2.1. Study location and population

The camp is located in a forested area in Ovia North-East Local Government Area of Edo State (06°38’41” N and 05°34’48” E) under the management of the International Christian Centre (ICC). Large part of the area has been converted to intensive agricultural system. Two distinct climatic conditions characterized the area-wet season (April–October) and dry season (November–March). Annual precipitation and temperature are relatively high averaging about 2000 mm and 22–36 °C respectively. The current vegetation cover of unplanted areas consists of a mosaic of abandoned farms, mainly grasslands, plantain and cassava.

Pupils from primary 1–5 in the camp were selected and participated in the survey. A total number of 250 pupils volunteered to take part in the study.

2.2. Ethical statement

The protocol for the current study was approved by the ethical review committee of the University of Benin Teaching Hospital, Benin City, Nigeria. The study was conducted with strict compliance to standard ethical guidelines. Approved consent was taken from the coordinator and other relevant authorities in the camp including the teachers and parents/guardians of the children before specimens were collected. Additionally, informed consent was sought and obtained from the children who were adequately informed of the importance of the study prior to the collection of specimen. Appropriate treatments were administered to infected children.

2.3. Sample collection

Faecal and urine samples were obtained from the children into labelled, sterile wide-mouthed screw-capped plastic bottles (supplied to them) with instructions on how each sample is to be taken. Blood sample was collected by finger pricking using sterile disposable lancets on the slides to screen for malaria. The method of stool and urine collection was explained to the children as well as their teachers and a single specimen was collected from each individual. The specimen bottles were labelled with the names, sexes and classes of the pupils. Specimens were stored in 10% formalin for parasitological analysis.

2.4. Questionnaire survey

Structured questionnaires were used to collect the clinical and sociodemographic information of the children on a standard form including age and gender and other anthropometric data.

2.5. Exclusion criteria

Children within 6–15 years were eventually selected for the exercise while those within 0–5 years were excluded because it will be difficult for them to submit samples (blood, faecal and urine).

2.6. Sample preparation and examination

2.6.1. Coproparasitological analysis

Direct smear method was used. A spatula was used to mix a small amount of the specimen with saline and iodine to make smooth thin preparations with each covered with a slip. Saline preparations were made for larvae, helminth eggs, ciliates, cysts and oocysts while iodine was used to examine the nuclei of cysts. Thereafter, they were observed using x10 and x40 magnifications of a compound light microscope.

2.6.2. Examination of urine and blood specimens

The sedimentation technique (Cheesbrough, 2006) was adopted to concentrate ova from the urine samples. Two millilitres (2ml) of properly mixed urine was transferred into a tube and centrifuged at 2500 rpm for 5 min and left to settle. The supernatant was decanted and a minute amount of the pellet pipetted onto a microscopic slide, covered with a cover slip and observed microscopically for detection of S. haematobium ova. Blood examination was carried out by thick film preparations (Giemsa, 1902) and observed microscopically, using immersion oil.

2.7. Data analysis

Results were analyzed using Chi-square of SPSS v22. Chi-square test from the contingency tables was employed to analyze the differences in the prevalence of infection between ages and sex. The data were represented in tables, charts and percentage.

3. Results

3.1. Anthropometric characteristics of study population

Two hundred and fifty (250) children volunteered to take part in the study but 184 pupils submitted complete samples i.e., blood, faecal and urine samples and were finally used for the study.

The selected population was divided into two age groups: 6–10 years and 11–15 years. The ages range from 6 to 15 years with 17 (9.23%) of the children being 6–10 years old and 167 (90.76%) were 11–15 years old. The mean ages in the five classes were: Primary one 13.46 ± 1.426, Primary two 14.80 ± 1.166, Primary three 13.72 ± 1.176, Primary four
Intestinal parasites were recovered from 5 (29.41%) in age group 5 were recorded in 16 (16%) males and 24 (28.57%) females (Figure 2). Parasites only (28%) males and 10 (11.90%) females were infected with intestinal and urinary parasites respectively. Lastly, 28 (50%) females. Also, 11 (11%) of male and 8 (9.52%) of females were blood and intestinal parasites were detected in 45 (45%) males and 42 (42%) females. The least prevalent parasite was Isospora belli (1.63%) which was reported in 2 (2%) males and 1 (1.19%) female (Table 1). This study showed that P. falciparum malaria (67.93%) and amoebiasis (67.93%) were most prevalent in both sexes. A total of 100 males and 84 females participated in this study. Out of these, P. falciparum was reported in 68 (68%) males and 57 (67.86%) females and E. histolytica in 66 (66%) males and 59 (70.24%) females. The least prevalent parasite was I. belli which was reported in 2 (2%) males and 1 (1.19%) female (P = 0.24).

As presented in Table 2, A. lumbricoides, P. falciparum, G. duodenalis, E. histolytica, E. coli, S. stercoralis, S. haematobium and Hookworms were reported in male and females in the age groups but I. belli was only recorded in females 6–10 years age group while in males 11–15years age group (P < 0.5).

3.3. Mixed infections of malaria with NTDs co-infection

The prevalence of multi-parasitism in the different age groups (6–10 and 11–15 years) is presented in Figure 1. Of the 17 participants in age group 6–10 years; blood, urinary and intestinal parasites were recovered from 3 (17.65%) and 37 (22.16%) of 167 in age group 11–15 years. Intestinal and blood parasites were reported in 7 (41.18%) in age group 5–10 years and 80 (47.90) in age group 11–15 years. Besides, both intestinal and urinary parasites were reported in 2 (11.76%) in age group 5–10 years and 17 (10.18) in age group 11–15 years. Furthermore, only intestinal parasites were recovered from 5 (29.41) in age group 5–10 years and 33 (13.17) in age group 11–15 years (P < 0.5).

Table 1. Prevalence of parasites and sex distributions among the children.

Parasites	Total (184)	Males (100)	Females (84)	P value
	% Positive	% Positive	% Positive	
Plasmodium falciparum	125 (67.93)	68 (68)	57 (67.86)	0.24
Entamoeba histolytica	125 (67.93)	66 (66)	59 (70.24)	
Giardia duodenalis	110 (59.78)	62 (62)	48 (57.14)	
E. coli	87 (47.28)	38 (38)	49 (58.33)	
Ascaris lumbricoides	63 (34.24)	34 (34)	29 (34.52)	
Hookworms	59 (32.07)	32 (32)	27 (32.14)	
Schistosoma haematobium	53 (28.80)	22 (22)	31 (36.90)	
Strongyloides stercoralis	58 (31.52)	33 (33)	25 (29.76)	
Trichuris trichiura	33 (17.93)	17 (17)	16 (19.05)	
Isospora belli	3 (1.63)	2 (2)	1 (1.19)	

4. Discussion

The current survey, to the best of our knowledge, is one of the few researches to be carried out in the IDP camp in Benin City, Nigeria, in the past years, with regards to epidemiological survey of parasitic diseases. Multiparasitism predominates in developing nations and the parasites involved may interact (Christensen et al., 1988; Cox, 2001), thus this research determined the rate of malaria coinfection with Neglected Tropical Diseases. The findings from this research showed high preponderance of parasitic infections including *Plasmodium falciparum* (67.93%), *Entamoeba histolytica* (67.93%) and *Giardia duodenalis* (59.78%) suggesting poor standard of living and low level of both personal and environmental hygiene in the camp (Ukoli, 1984; Smyth, 1996).

The high rate of *P. falciparum* malaria (67.93%) observed in this survey is similar to 61.1% observed among IDPs in Sudan by Eshag et al. (2020) but higher than 58% recorded by Brooks et al. (2017a) among children in IDP camp in the Democratic Republic of the Congo. It also markedly deviated from 17% documented by Charchuk et al. (2016) and 11.4% by Zhou et al. (2016) among displaced persons in the DRC and Myanmar respectively. Besides, in normal populations, the prevalence rate also corresponds with Getie et al. (2015) who recorded 71.7% in Ethiopia and Babamale et al. (2018) with 63.7% prevalence in Nigeria but higher than 41.7% reported by Teh et al. (2018) in Cameroon. The presence of female *Anopheles* mosquitoes and infected blood as well as bushes and small bodies of standing water are significant in the epidemiological study of malaria. The camp is surrounded by bushes and trees which serve as suitable habitat for vectors of malaria and these children relax and play in the open fields which results in multiple bites from mosquitoes. These predisposing factors probably led to the high rate of malaria documented in this research.

There was no variation in malaria prevalence according to sex (68% for male and 67.86% for females) corresponding with related surveys by Brooks et al. (2017a) and Ajakaye and Ibukunoluwa (2020) among displaced persons in the DRC and Nigeria respectively. This shows that gender is not a determinant of susceptibility to malaria infection (Nanvyt et al., 2017). This probably resulted because both sexes were exposed equally to predisposing factors to *P. falciparum* malaria. Contrarily, Zhou et al. (2016) and Eshag et al. (2020) documented significantly higher prevalence in internally displaced male children in Myanmar and Sudan respectively whereas Brooks et al. (2017b) recorded slightly higher prevalence in females in IDP camp in the DRC. Additionally, no significant difference in the rate of malaria infection among the different age groups was documented in the current study agreeing with past studies (Sousa-Figueiredo et al., 2012; Okoli and Solomon, 2014). This was different from the survey carried out by Brooks et al. (2017b) who observed higher infection rate among younger displaced
children in the DRC; and Zhou et al. (2016) and Ajakaye and Ibukunoluwa (2020) who documented higher infections among older children in Myanmar and Nigeria respectively. In the current study, age had no influence on malaria prevalence. The high malaria prevalence reported in the different age groups suggests the absence of community acquired immunity among the children (Nanvyat et al., 2017). The different rate of malaria infection in the age groups and sexes as reported by these surveys could be attributed to different factors including the state of the camp, environmental/sanitary conditions which the children in the camps were exposed to and control schemes such as the use of insecticide treated nets.

E. histolytica was positive in the 67.93% of the participants in this survey similar to 69.87% reported by Hassan and Mero (2020) among displaced persons in Iraq but far higher than 6 and 23.5% recorded by Ahmed et al. (2015) and Ayuba et al. (2019) among IDPs in Pakistan and North-Central part of Nigeria respectively. It did agree with previous results of Alwabr and Al-Moayed (2016) in Yemen and Erismann et al. (2016) in Burkina Faso, who observed 64 and 66.5% prevalence, respectively. Lower prevalence 0.1 and 20.4% were documented by Kostopoulou et al. (2020) and Ngui et al. (2020) in Greece and Malaysia respectively in surveys conducted among normal populations. The high rate of amoebiasis reported in this research clearly indicates low level of personal and environmental hygiene of the children as well as the food handlers, since the widespread of intestinal parasitic infections is connected with unhygienic practices (Odo et al., 2016; Hailegebriel, 2017). The disparity in prevalence of this protozoan parasite among different authors might be associated with the degree of contaminants present in drinking water sources, environmental sanitation and personal hygiene of the children (Hailegebriel, 2017). Since the persons arrived at the camp at different times; this could have also contributed to the high rate of amoebiasis reported in this study noting that some of them could have brought their infections to the camp while the none infected ones could have been infected in the camp.

Furthermore, the rate of amoebiasis was marginally higher in females (70.24%) than in males (66%) affirming the reports of previous researches that both genders are evenly exposed to *E. histolytica* (Akingbade et al., 2013; Erismann et al., 2016) but disagreed with Ahmed (2013) who reported higher infection in males than females and Ajayi et al. (2017) who documented higher preponderance among females. This infection was also slightly recorded more in children less than 11 years of age.

Table 2. Distribution of parasites among the different age groups.

Age groups	6–10 years	11–15 years	Total			
	Males (% +ve)	Females (% +ve)	Males (% +ve)	Females (% +ve)	Total	
Total no. examined	7	10	17	93	74	167
Plasmodium falciparum	7 (100)	5 (50)	12 (70.59)	61 (65.59)	50 (70.27)	113 (67.66)
Entamoeba histolytica	6 (85.71)	6 (60)	12 (70.59)	60 (64.52)	53 (71.62)	113 (67.66)
E. coli	4 (57.14)	7 (70)	11 (64.71)	34 (36.54)	42 (56.76)	76 (45.51)
Giardia duodenalis	3 (42.86)	5 (50)	8 (47.06)	59 (63.44)	43 (58.11)	102 (61.08)
Ascaris lumbricoides	2 (28.57)	5 (50)	7 (41.18)	32 (34.41)	24 (32.43)	56 (33.53)
Strongyloides stercoralis	3 (42.86)	2 (20)	5 (29.41)	30 (32.26)	23 (31.08)	53 (31.74)
Schistosoma haematobium	1 (14.29)	2 (20)	3 (17.65)	21 (22.58)	29 (39.19)	50 (29.94)
Hookworms	1 (14.29)	1 (10)	2 (11.76)	31 (33.33)	26 (35.26)	57 (34.13)
Trichuris trichiura	0 (0)	3 (30)	3 (17.65)	17 (18.28)	13 (17.57)	30 (17.96)
Isospora belli	0 (0)	1 (10)	1 (5.88)	2 (2.15)	0 (0)	2 (1.20)
P. falciparum	7 (100)	5 (50)	12 (70.59)	61 (65.59)	50 (70.27)	113 (67.66)
P. ovale	1 (14.29)	1 (10)	2 (11.76)	31 (33.33)	26 (35.26)	57 (34.13)
P. malariae	2 (28.57)	5 (50)	7 (41.18)	32 (34.41)	24 (32.43)	56 (33.53)
P. knowlesi	3 (42.86)	2 (20)	5 (29.41)	30 (32.26)	23 (31.08)	53 (31.74)
P. vivax	3 (42.86)	2 (20)	5 (29.41)	30 (32.26)	23 (31.08)	53 (31.74)
P. gallinaceum	3 (42.86)	2 (20)	5 (29.41)	30 (32.26)	23 (31.08)	53 (31.74)

Figure 1. Prevalence of multi-parasitism according to age groups.
age laying credence to the fact that children in this age group (6–10 years) spend much of their leisure time outdoors, play on the ground and make contact with contaminated soil, bite their nails and eat indiscriminately with unwashed hands (Ahmed, 2013; Ajayi et al., 2017). This report is in consonance with those of Odo et al. (2016) and Ahmed (2013) but differs from that of Houmsou et al. (2009) and Hailegebriel (2017) who recorded more infections in older children (age group 12–14 years).

Schistosomiasis haematobia was observed in 28.80% of the participants in this study. It was at variance with 51% observed in a survey carried out by Beltrame et al. (2017) in African refugees arriving Italy, and 8 and 9% respectively reported by Quandelacy et al. (2010) and Posey et al. (2007) among Sudanese refugees in the United States of America. It agreed with 26.09% observed by Kabiru et al. (2013) and 27.27% by Bello et al. (2014) among normal populations in Nigeria. The children in the camp are not allowed to go to the streams, rivers, nearby ponds and wells to draw water; this probably led to the low rate of urinary schistosomiasis observed in this survey. The camp gets its water from a borehole that is constructed within its premises. This prevents the children from coming into contact with the snail intermediate host that could be in abundance in these water bodies. Females (36.90%) were more infected with schistosomiasis haematobia than males (22%). This could have been related to females having more contacts with water that could possibly be contaminated back in their respective states when they engage in activities such as washing, cooking and drawing water from wells and other sources of water. This deviated from the studies of Liao et al. (2011) and Otuneme et al. (2014), who recorded higher prevalence in males. It was also observed to be more prevalent in older children supporting the reports of Federal Ministry of Health (2015) and Uchendu et al. (2017) in Nigeria; and Ntonifor et al. (2015) in Cameroon. A contradictory report was recorded by Njunda et al. (2017) who documented higher prevalence in children below 10 years.

Multiple infections were observed in both sexes and in the different age groups. Mixed infection with blood and intestinal parasites were recorded in both sexes (45% males and 50% females) and in the age groups (41.18% in age group 5–10 and 47.90% in age group 11–15) probably heightened by the presence of the aetiological agents of these infections in the camp. A similar occurrence was recorded by previous studies (Midzi et al., 2008; Degarege et al., 2012). The findings of positive association between intestinal parasites and *P. falciparum* infections among the children might be related to the presence of socio-economic, environmental and behavioral factors that can increase the risk of concurrent infection with both intestinal parasites and *Plasmodium* spp. (Brooker et al., 2007). Additionally, the high prevalence of *P. falciparum* malaria among children co-infected with intestinal parasites could be linked to down regulation of their immune system (Salazar-Castanón et al., 2014), paving way for *P. falciparum* to enter into the host and multiply at a faster rate (Degarege et al., 2016).

5. Conclusion

The results observed in this study are of great significance with regards to controlling malaria and NTDs in children in the camp on the rationale that school-aged children in this camp are at considerable risk especially with intestinal parasites. Therefore, measures to prevent children from infection with intestinal parasites, such as improved personal and environmental sanitation, adequate disposal of excrement, hygiene education and access to clean drinkable water, should be promoted, as school-aged children represent the main reservoirs for intestinal parasites transmission (Kennedy and Kelly, 2009; Speich et al., 2016). Nevertheless, *E. histolytica* and *E. coli* may not be completely eradicated from the camp as their cysts are able to withstand adverse environmental conditions for long period of time. Therefore, we recommend integration of different WASH (Water, Sanitation and Hygiene) intervention programmes to reduce parasite intensity and manage potential risks from parasitic infections thus reducing morbidity in the children (Kennedy and Kelly, 2009; Speich et al., 2016). Implementation of WASH intervention programmes and appropriate health-seeking activities are highly important if sustained control and elimination of parasitic infections are to be achieved (Hopkins, 2016).

Parasitic coinfection and interaction need further studies in order to understand their mechanisms and public health importance. Since the same individual may be coinfected with different species of parasite with
one affecting the severity of the other, it would be of great significance to implement integrated control programmes that render multiple treatments against several parasitic infections at the same time and also reduce poverty (Briand et al., 2005).

Declarations

Author contribution statement

E. Edosomwan: Conceived and designed the experiments; Performed the experiments; Wrote the paper. I. Ebvosomwan: Analyzed and interpreted the data; Wrote the paper. C. Agbalalah: Performed the experiments. S. Dahunsi: Analyzed and interpreted the data. B. Adebimben-lyoha: Contributed reagents, materials, analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Abosie, A., Kasahahn, A.B., Yohannes, T., Abera, A., 2017. Prevalence of asymptomatic Plasmodium falciparum and Plasmodium vivax malaria carriage among schoolchildren of malaria endemic areas of Mirab Abaya district, Southern Ethiopia. J. Parasitol. Vector Biol. 9 (1), 1–7.

Ahmed, A.M., Affii, A.A., Malik, E.M., Adam, I., 2010. Intestinal protozoa and intestinal helminthic infections among schoolchildren in Central Sudan. Asian Pac. J. Trop. Med. 3 (4), 292–293.

Ahmed, F.A., 2013. Intestinal parasites among primary school children in urban and rural tanta, Gharbia, Government. Egypt. Egypt. J. Exp. Biol. 9 (2), 257–262.

Ahmed, W., Ahmad, M., Ullah, R., Shah, F., Ullah, S., 2015. Pervasiveness of intestinal protozoan and worm infection in IDPs’ (North Waziristan agency, KPK-Pakistan) children of 6-16 years. J. Pakistan Med. Assoc. 65 (9), 943–945.

Ajakaye, O.G., Ikubunoluwa, M.R., 2020. Prevalence and risk of malaria, anaemia and malnutrition among children in IDPs camp in Edo State, Nigeria. Parasite Epidemiology and Control 8, e00127.

Ajayi, M.B., Sani, A.H., Ezeugu, S.M.C., Afocha, E.E., Adesesan, A.A., 2017. Intestinal parasitic infection and body mass index among school children in Oshodi, Lagos, Nigeria. Adv. Cytol. Pathol. 2 (2), 44–49.

Akingbade, O.A., Akinjini, A.A., Ezechukwu, U.S., Okonkwo, P.O., Okonko, I.O., 2013. Prevalence of intestinal parasites among children with diarrhoea in Abeokuta, Ogun state, Nigeria. Researcher 5 (9), 66–73.

Alum, A., Rubino, J., Ljaz, M., 2010. The global war against intestinal parasites -should reduce poverty (Briand et al., 2005).

Brooker, S., Akhwale, W., Pullan, R., Estambale, B., Clarke, S.E., Snow, R.W., Hotez, P.J., 2007. Epidemiology of Plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anaemia, and prospects for combining control. Am. J. Trop. Med. Hyg. 77, 88–96.

Brooks, H.M., Pullan, M.K.J., Claude, K.M., Mocanu, V., Hawkes, M.T., 2017a. Use and diurese of malaria bed nets in an internally displaced persons camp in the Democratic Republic of the Congo: a mixed-methods study. PloS One 12 (9), e0185290.

Brooks, H.M., Pullan, M.K.J., Claude, K.M., Houston, S., Hawkes, M.T., 2017b. Malaria in an internally displaced persons camp in the democratic republic of the Congo. Clin. Infect. Dis. 65 (3), 529–530.

Charchuk, R., Pullan, M.K., Claude, K.M., Houston, S., Hawkes, M.T., 2016. Burden of malaria is higher among children in an Internal Displacement Camp compared to a neighbouring village in the Democratic Republic of the Congo. Malar. J. 15 (1), 431.

Cheesbrough, M., 2006. District Laboratory Practice in Tropical Countries. Cambridge University Press, pp. 193–198.

Chen, Y., Hui, B.R., Li, X., He, X., Jing, Z., Cheng, G., 2020. Preliminary evaluation of the diagnostic potential of Schistosoma japonicum extracellular vesicle proteins for Schistosomiasis japonica. Acta Trop. 201, 105184.

Christensen, N.O., Furu, P., Kurtzhals, J., Odaibo, A., 1988. Heterologous synergistic interactions in concurrent experimental infection in the mouse with Schistosoma mansoni, Echinostoma revolutum, Babesia microti, and Trypanosoma brucei. Parasitol. Res. 74, 544–551.

Chua, C., Gobert, G.N., Lafit, B., Heo, C.C., Leow, C.Y., 2019. Schistosomiasis in Malaysia: a review. Acta Trop. 190, 137–143.

Cox, F.E.G., 2001. Concomitant infections, parasites and immune responses. Parasitology 122, 23–38.

Degarwe, A., Legesse, M., Melesh, G., Aninet, H., Erko, M., 2012. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect. Dis. 12, 291.

Degarwe, A., Veledar, E., Degarwe, D., Erko, B., Nacher, M., Madhiavanan, P., 2016. Plasmodium falciparum and soil-transmitted helminth co-infections among children in sub-Saharan Africa: a systematic review and meta-analysis. Parasites Vectors 9, 344.

Emile, N., Bosco, N., Karine, B., 2013. Prevalence of intestinal parasitic infections and associated risk factors among Kigali Institute of Education students in Kigali, Rwanda. Trop. Biomed. 30 (4), 718–726.

Erittman, S., Diagbogou, S., Odermatt, P., Knoblauch, A., Gerold, J., Shrestha, A., Grissom, T., et al., 2016. Prevalence of intestinal parasitic infections and associated risk factors among schoolchildren in the plateau Central and Centre-Ouest regions of Burkina Faso. Parasit. Vectors 9, 554.

Esag, H.A., Elneer, E., Nahied, E., Talib, M., Muhajir, A.E.M.A., Ibrahim, I.K., et al., 2020. Molecular epidemiology of malaria parasite amongst patients in a displaced people’s camp in Sudan. Trop. Med. Health 48, 3.

Federal Ministry of Health, 2015. Report on Epidemiological Mapping of Schistosomiasis and Soil Transmitted Helmintiasis in 19 States and the FCT, Nigeria.

Getie, S., Wondimeneh, Y., Getnet, G., Workineh, M., Worku, L., Kassu, A., Mokes, B., 2015. Prevalence and clinical correlates of Schistosoma mansoni co-infection among malaria infected patients, Northwest Ethiopia. BMC Res. Notes 8, 480.

Giems, G., 1902. F Giemsa, G., 1902. F Giemsa.

Gryseels, B., Paul, M.K., Claude, K.M., Houston, S., Hawkes, M.T., 2016. Neglected tropical diseases in Africa: a new paradigm. Int. Health. 8 (1), 17–19.

Harhay, M., Horton, J., Olliro, P., 2010. Epidemiology and control of human schistosomiasis among schoolchildren in Oshodi, Lagos, Nigeria. Adv. Cytol. Pathol. 2 (2), 44–49.

Hassan, A.O., Mero, W.M., 2020. Prevalence of intestinal parasitic infections and associated risk factors among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC Infect. Dis. 17, 11.

Hailegebriel, T., 2017. Prevalence of intestinal parasitic infections and associated risk factors among students at Dona Berber primary school, Bahir Dar, Ethiopia. BMC Infect. Dis. 17, 362–369.

Harby, M., Horton, J., Olliro, P., 2010. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev. Anti-Infect. Ther. 8 (2), 219–234.

Hassan, A.O., Mero, W.M., 2020. Prevalence of intestinal parasites among displaced people living in displacement camps in Dubok Province/Iran. Internet J. Microbiol. 17 (1).

Hicks, I., Evbuomwan: Analyzed and interpreted the data; Wrote the paper.

Hopkins, A.D., 2016. Neglected tropical diseases in Africa: a new paradigm. Int. Health. 8 (1), 28–33.

Hotez, P.J., Alvarado, M., Basaine, M.G., Bolliger, I., Bourne, R., Boussinesq, M., Brener, S.J., et al., 2014. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Neglected Trop. Dis. 8 (7), e2865.

Hotez, P.J., Fenwick, A., Savio, L., Molyneux, D.H., 2009. Rescuing the bottom billion: The case for a new paradigm of neglected tropical diseases. Lancet 373, 1570–1575.

Hotez, P.J., Kamath, A., 2009. Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden. PLoS Neglected Trop. Dis. 3 (8), e702. 2014. Heliyon 6 (2020) e04604.
Joseph, M.B., Gaij, B., Baba, M.M., Thilza, I.B., 2010. Incidence of schistosomiasis in primary school pupils with particular reference to Schistosoma haematobium in Maiduguri. Researcher 2, 31–36.

Kabiru, M., Mohammed, R.A., Ikeh, E.I., Aziai, I., Julisa, O., Fahiyi, J.P., 2013. Prevalence and intensity of Schistosoma haematobium infection: a community based survey among school children and adult in Wamako town, Sokoto State, Nigeria. Int. J. Trop. Med. Publ. Health 2 (1), 12–21.

Kenny, J.M., Kelly, P., 2009. Protozoal gastrointestinal infections. Medicine 37, 599–602.

Kostopoulos, D., Claeirebout, E., Arvanitis, D., Ligda, P., Cassert, S., Sotiraki, S., 2020. Identifying human enteric parasitic infections in Greece, with focus on Giardia and Cryptosporidium. Exp. Parasitol. 211, 107964.

Kventi, T.E., Nkume, F.A., Tanje, A.T., Kventi, T.D.B., 2016. The Effect of intestinal parasitic infection on the clinical outcome of malaria in coinfected children in Cameroon. PLoS Neglected Trop. Dis. 10 (4), e0004673.

Liao, C.-W., Sukhati, H., Nara, T., Yubouchi, A., Chou, C.-M., Jian, Y.-J., Huang, Y.-C., et al., 2011. Prevalence of Schistosoma haematobium infection among schoolchildren in remote areas devoid of sanitation in Northwestern Swaziland, Southern Africa. Jpn. J. Infect. Dis. 64, 322–326.

Midzi, N., Sangweme, D., Zinyowera, S., Mapingure, M.P., Brouwer, K.C., Munatsi, A., Mutapi, F., et al., 2008. The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 102, 1039–1045.

Mohammed, K., Abdullah, M., Omar, J., 2015. Intestinal parasitic infection and assessment of risk factors in North-western Nigeria: a Community Based Study. LJMPS 4 (2), 141–145.

Murray, C.J., Rosenfeld, L.C., Lim, S.S., Andrews, K.G., Foreman, K.J., Haring, D., Midzi, N., Sangweme, D., Zinyowera, S., Mapingure, M.P., Brouwer, K.C., Munatsi, A., Mutapi, F., et al., 2008. The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans. R. Soc. Trop. Med. Hyg. 102, 1039–1045.

Njunda, A.L., Ndzi, E.N., Assob, J.C.N., Kamga, H.-L.F., Kwenti, E.T., 2017. Prevalence of intestinal parasites among school children in barrage, Magba sub-division of Cameroon. BMC Publ. Health 17, 618.

Quandelacy, T.M., Riekkol, A., Franco-Paredes, C., 2010. Prevalence of untreated schistosomiasis among Sudanese refugees: ‘The Lost Boys of Sudan’ in the United States. Bol. Med. Hosp. Infant. Mex. 67, 503–506.

Salazar-Castanon, V.H., Legoretta-Herrera, M., Rodriguez-Sosa, M., 2014. Helminth parasites alter protection against Plasmodium infection. BioMed Res. Int. 2014, 913696.

Smyth, J.D., 1996. Animal Parasitology, third ed. Cambridge University Press,, UK, pp. 236–246.

Souza-Figueiredo, J.C., Gamboa, D., Pedro, J.M., Fançony, C., Langa, A.J., Magalhães, R.J.S., Stothard, J.R., et al., 2012. Epidemiology of malaria, schistosomiasis, geohelminths, anemia and malnutrition in the context of a demographic surveillance system in Northern Angola. PloS One 7 (4), e33189.

Speich, B., Groll, D., Fürst, T., Uitzinger, J., Keiser, J., 2016. Effect of sanitation and water treatment on intestinal protozoa infection: a systematic review and meta-analysis. Lancet Infect. Dis. 16, 87–99.

Speich, B., Marti, H., Ame, S., Ali, S., Bogoch, I., Uitzinger, J., Albonico, M., et al., 2013. Prevalence of intestinal protozoan infection among school-aged children on Pemba Island, Tanzania, and effect of single-dose albendazole, nitazoxanide and albendazole-nitazoxanide. Parasitol. Vectors 6 (3).

Steinmann, P., Keiser, J., Bos, R., Tanner, M., Uitzinger, J., 2006. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6 (7), 411–425.

Tchuené, L.-A.T., Noumedem, C.D., Ngassam, P., Kenfack, C.M., Gipwe, N.F., Dankoni, E., Tarini, A., et al., 2013. Mapping of schistosomiasis and soil-transmitted helminthiasis in the regions of Littoral, North-West, South and South-West Cameroon and recommendations for treatment. BMC Infect. Dis. 13, 602.

Teh, R.N., Sumbele, I.U.N., Meduke, N.D., Ojung, S.T., Kimbi, H.K., 2018. Malaria parasitaemia, anemia and malnutrition in children less than 15 years residing in different altitudes along the slope of Mount Cameroon: prevalence, intensity and risk factors. Malar. J. 17, 336.

Thiotot-Laurent, S.A., Boisier, J., Robert, A., Meunier, B., 2013. Schistosomiasis chemotherapy. Angew Chem. Int. Ed. Engl. 52 (31), 7936–7956.

Uchendu, O., Oladoyin, V., Idowa, M., Adeyera, O., Olabisi, O., Oluwatosin, O., Leigh, G., 2017. Urinary schistosomiasis among vulnerable children in rehabilitation home in Ibadan, Oyo State, Nigeria. BMC Infect. Dis. 17, 487.

Ugokwukwu, D.O., Ovwurid, C.O.E., Onuala, F.O.U., Doe, I.N.S., Opara, F.N., Nwemsi, U.C., 2013. Endemicity of schistosomiasis in some parts of Anambra State. Nigeria J. Med. Lab. Diagnosis 4, 54–63.

Ukoli, F.M.A., 1984. Introduction to Parasitology in Tropical Africa. John Wiley & Sons, Ltd, Chichester, UK, pp. 227–267.

Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., et al., 2016. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380 (9859), 2163–2196.

World Health Organization, 2019b. World Health Organization. Schistosomiasis fact sheet. Available from: http://www.who.int/mediacentre/factsheets/fs115/en/.

World Health Organization, 2015. World Malaria Report 2015. WHO Press, Geneva, Switzerland.

World Health Organization, 2019a. World Malaria Report, 2019. WHO Press, Geneva, Switzerland.

Yamey, G., 2002. The world’s most neglected diseases. BMJ 325, 176–177.

Zhou, G., Lo, E., Zhong, D., Wang, X., Wang, Y., Malia, S., Lee, M.-C., et al., 2016. Impact of interventions on malaria in internally displaced persons along the China-Myanmar border: 2011–2014. Malar. J. 15, 471.

Quandelacy, T.M., Riekkol, A., Franco-Paredes, C., 2010. Prevalence of untreated schistosomiasis among Sudanese refugees: ‘The Lost Boys of Sudan’ in the United States. Bol. Med. Hosp. Infant. Mex. 67, 503–506.