Snaefellsjökull volcano-centred ice cap landsystem, West Iceland

David J.A. Evans, Marek Ewertowski, Chris Orton, Charlotte Harris and Snævarr Guðmundsson

1. Introduction

Snaefellsjökull is typical of the many small mountain-centred icefields and ice caps in Iceland and indeed the North Atlantic region in that it is rapidly thinning and receding from its historical Little Ice Age maximum limit, having profound effects on the generation of freshwater for surrounding communities. Emerging on the forelands of these Icelandic mountain glaciers are landform-sediment assemblages that represent the process-form relationships (landsystems) of upland cryosphere settings as well as records of changing glacier dynamics triggered by recent climate change. Mapping these forelands has facilitated a greater understanding of the range of upland icefield landsystems and their dynamics, specifically at, and since, the Little Ice Age. To date, Icelandic upland landsystem models or exemplars have related to plateau icefield settings (e.g. Brynjólfsson, Schomacker, & Ingólfsson, 2014; Evans, 2010; Evans, Twigg, & Shand, 2006, 2015a) and cirque glaciers (Brynjólfsson, Ingólfsson, & Schomacker, 2013) but volcano-centred ice cap landsystems have not been assessed in a holistic way. A 1:10,526 scale map (Main Map) of Snaefellsjökull is presented here as the first landsystem exemplar of volcano-centred ice caps, relevant specifically to the Icelandic landscape but also more widely to glaciierized volcanic terrains globally.

2. Study area and methods

Snaefellsjökull (64°48’N, 23°47’W) is located in western Iceland, on the westernmost tip of the Snaefellsnes Peninsula (Figure 1) and became known as the fictional route to the underwater after Jules Verne’s 1864 novel Journey to the centre of the earth. The multi-lobed ice cap covers an area of almost 12.5 km². It occupies the summit and fills the caldera of an active stratovolcano that reaches a maximum elevation of 1446 m above sea level (Thordarson & Larsen, 2007). The volcano is a stratovolcano-tuya hybrid formed in the trans-current fault-zone of the North Atlantic spreading ridge (Hards, Kempton, Thompson, & Greenwood, 2000; Thordarson & Larsen, 2007). The highly variable volcanic conditions associated with this hybrid feature makes the geology of the area relatively complex (Figure 2), characterized by a suite of mildly alkali basalts and peralkaline rhyolites that are geochemically similar to those from the Icelandic Torfajökull volcano (Hards et al., 2000; MacDonald, McGarvie, Pinkerton, Smith, & Palacz, 1990). Volcanic activity over the last 0.7–0.8 Ma is represented by early-, late- and post-glacial stages of landform development (Hardarson & Fitton, 1991; Kristjansson, Johannesson, Eiriksson, & Gudmundsson, 1988) but the majority of the Snaefellsjökull volcano is covered by post-glacial tephra deposits that are less than 10,000 years old (Figure 2(b)), even though the oldest dated rocks date back to 842 ka (Jóhannesson, Flores, & Jonsson, 1981; Kokfelt, Hoernle, Lundstrom, Hauff, & van den Bogaard, 2009). Three large post-glacial tephra deposits have been radiocarbon dated to 7–9 ka BP, 3960 and 1750 years BP (Steinthorsson, 1967). Very prominent in this respect is the blanket of light brown pumice and tephra that lies on the outer forelands of the eastern and northeastern margins of the ice cap, a deposit...
The glacier forelands were mapped using colour aerial photographs taken by the Icelandic survey company SAMSYN in 2002. After the photographs were orthorectified and mosaicked using Agisoft Photoscan Professional Edition, mapping was undertaken on a coloured ink film overlain on the orthophotograph. The mapping involved the simultaneous interpretation of surface materials and landforms based on ground truth fieldwork in summer 2010 and the viewing of stereoscopic images at the desk top. The orthophotograph processing and contour generation were both performed in ESRI ArcGIS and contours then overlain on the surficial geology and geomorphology. Extensive areas of volcanically related landforms and deposits that lie beyond the glacial materials in the mapped area are depicted by the orthophotograph. A similar approach is taken with the glacier surface, which is represented by the orthophotograph in order to depict ice structures such as crevasses and debris bands. The map overlay containing the base data was manually digitized on a large format CalComp tablet digitizer using MapData vector digitizing software. The digitized vector files for the base data were converted from MapData format into ArcInfo ‘generate’ format for importing into Adobe Illustrator. The map is at a scale of 1:10,526 when printed on an A0 sheet.

3. Surficial geology and glacial geomorphology of Snæfellsjökull

The mapped area (Main Map) is subdivided into one anthropogenic and nine natural surficial geology units, in addition to bedrock and glacier ice. Bedrock, residuum and paraglacial deposits also comprise the area beyond the historical Little Ice Age limit, as depicted using the orthophotograph.

3.1. Bedrock and residuum

The bedrock of the map area is characterized by the mildly alkali basalts and peralkaline rhyolites, pumice and tephra that have been extruded and erupted from the stratovolcano during several lava flow events (Figure 2(b)). Geomorphologically these materials are organized in sheets, cones and long leveed flow lobes (see orthophotograph area on Main Map) typical of emplacement on steep mountain slopes or volcano margins, very prominent when viewed from the south coast (Figure 1). As these volcanic materials are prone to rapid post-depositional weathering, especially at altitudes where freeze-thaw is prevalent, many rock surfaces have been broken down in situ to produce a predominantly thin (<50 cm) veneer of residuum. The scale of mapping is not appropriate to the reproduction of the many small patches of residuum in areas of bedrock and vice versa. Hence the bedrock
and residuum map units are described as containing localized patches of other materials, including old (pre-Little Ice Age) weathered till veneers. The residuum classification in such areas of high relief also includes locally gullied colluvium derived from in situ volcanic deposits. At many locations, proglacial and lateral meltwater has incised channels into less resistant lithologies, especially in pumice sheets.

3.2. Till and moraines

The most extensive surface material on the forelands is a predominantly strongly fluted, clast-rich till (Main Map), which is generally less than 2 m thick but locally thickens into recessional push and lateral moraines that are unlikely to contain ice cores (Figure 3). The till, which comprises lower fissile and upper massive...
components (Figure 3(a)), locally thins to reveal heavily striated bedrock protuberances which also display roche moutonnée forms in areas of stepped bedrock profiles (Figure 3(b)). Bedrock steps are locally visible through the thin fluted till cover. Bouldery flutings locally extend down flow from abraded bedrock steps, indicating that plucking has been effective at the glacier bed, especially where basalt lava overlies less coherent pumice, as occurs on the Jökulhálsjökull foreland, for example. Some flutings on the foreland of Hýrningsjökull display a remarkable curvilinear plan form (Figure 3(c)), the origin of which is uncertain but potentially related to late stage

Figure 3. Characteristics of the till and moraine surficial map unit: (a) vertical profile log displaying typical subglacial till characteristics of the till and moraine map unit based upon exposures on the foreland of Jökulhálsjökull (Dmn (s) = massive, matrix-supported diamicton displaying shearing; Gm = massive or structureless gravels); (b) roche moutonnée form on a bedrock step emerging from beneath the thin till cover on the Jökulhálsjökull foreland; (c) aerial photograph (SAMSYN, 2002) extract of the foreland of Hýrningsjökull, showing flutings, some with curvilinear plan forms (bottom right), extending to the Little Ice Age hummocky moraine belt.

Figure 4. Aerial photograph (SAMSYN, 2002) extract showing the recent ice-cored moraine developing around the margin of Blágilsjökull.
topographic flow constraints on basal ice. Both the bedrock erosional features and the well-developed flutings indicate that large areas of the outlet glacier beds were temperate and hence subglacial deformation and sliding was in operation at the Little Ice Age maximum (Benn, 1994; Evans, Ewertowski, & Orton, 2015b). The extension of the flutings to the Little Ice Age ice-cored moraine ridge complexes (see section 3.4) constitutes a landform assemblage typical of former polythermal glacier margins identified elsewhere in Icelandic mountain icefields (Evans, 2010, 2011; Evans, Twigg, & Orton, 2010, 2015a). Patches of non-fluted till veneer and occasional boulder spreads (‘trimline moraines’ sensu Ó Cofaigh, Evans, & England, 2003) exist on the distal sides of some ice-cored moraine belts, where they constitute the Little Ice Age maximum limit. These thin deposits are thought to represent the totally de-iced outer margins of the Little Ice Age ice-cored terrain (see Section 3.4). Recent moraine construction is evident in some discontinuous, low amplitude push ridges and ice-cored ridges located less than 100 m from the glacier margins (Figure 4); where ice content is higher this grades into recent ice-cored moraine (see Section 3.4). Localized exposures through the push ridges reveal deformed stratified sediments indicative of recent glacier advance into proglacial outwash, potentially driven by the mid to late 1990s positive mass balance trends recognized throughout Iceland (e.g. Bennett & Evans, 2012; Bradwell, Dugmore, & Sugden, 2006; Evans & Hiemstra, 2005; Evans, Shand, & Petrie, 2009, 2015b).

3.3. Glacitectonized pumice moraines

The outermost historical (Little Ice Age) moraines on the forelands of Jökulhálsjökull and Hýrningsjökull are composed entirely of pumice granules. Although these ridges have been heavily dissected by meltwater, they still display an arcuate plan form that parallels the former glacier margin (Main Map; Figure 5). Localized excavations related to mining provide exposures through the deposits and reveal that the pumice is well stratified and locally heavily deformed (Figure 6). Folds and faults indicate that stress was imparted from the west and hence the moraines were constructed by the glacitectonic compression of pre-existing pumice sheets that originally blanketed the eastern slopes of the mountain. The proximal slopes of the pumice moraines are draped by the feather edge of the more recent, basalt boulder-rich hummocky terrain/ice-cored moraine (see Section 3.4), indicating that the glacier snouts have thrust the pumice sheets proglacially and then deposited farther-travelled basalt debris as ice-cored controlled or hummocky moraine and push moraines partially over the pumice moraines (Figure 6). Exposures through the areas of thinner basalt-rich debris reveal that stratified pumice underlies large areas of the forelands, indicating that the eastern slopes of the volcano were draped by pumice prior to the Little Ice Age advance.

3.4. Ice-cored hummocky terrain and thicker bouldery drift

The Little Ice Age limits on the forelands of the ice cap are demarcated by arcuate assemblages of thick, basalt-rich bouldery drift and ice-cored hummocky terrain (Figure 7; Main Map); on the forelands of Jökulhálsjökull and Hýrningsjökull these lie inside glacitectonized pumice moraines (Figures 5 and 6). Ice cores are obvious where glacier ice is exposed but elsewhere it is assumed based upon buried ice indicators such as large tension cracks, water-filled kettle holes and surface saturation and retrogressive flow slide activity (Figure 7). The hummocky terrain displays numerous discontinuous but substantial linear ridges which could be either individual push features and/or controlled moraine (sensu Evans, 2009). This map unit also includes areas of densely spaced push moraines where ice content is uncertain and hence either a controlled moraine or a push moraine origin is possible. Minimal former ice content is evident wherever flutings can be traced through the bouldery surface material, which is classified as ‘thicker boulder drift’ because it is clearly visibly distinct from the normal fluted till (Figure 7(e)). Interesting features on the proximal side of the ice-cored hummocky terrain on the east Bláfjölsjökull foreland are large kettle-like depressions into which dry stream beds terminate abruptly, indicating that the depressions acted as sink holes or sumps (Main Map). Meltwater appears to have fed numerous proglacial channels and linear sandar beyond the Little Ice Age limit. These features are further evidence of melting ice cores within the Little Ice Age outer moraine belt. Recent ice-cored moraine, which is being fed by supraglacial controlled debris ridges/englacial debris bands, occurs around the margins of most of the outlet glacier lobes but is best developed around the margin of Bláfjölsjökull (Figures 4 and 7(f), Main Map). Together with the most recent push moraines (see Section 3.2), this moraine belt possibly marks the position of the mid to late 1990s advance margin, a feature identified at a range of locations around Iceland (e.g. Bennett & Evans, 2012; Bradwell et al., 2006; Evans et al., 2009, 2015b; Evans & Hiemstra, 2005).

3.5. Overridden moraines

Small areas of the fluted forelands, especially on the Bláfjölsjökull foreland, are characterized by discontinuous arcuate chains of low amplitude ridges (Figure 8), which are interpreted as overridden moraines (sensu Evans, Archer, & Wilson, 1999, 2009, 2015a; Evans & Orton, 2014; Evans & Twigg, 2002; Krüger, 1994).
Also very prominent on the west side of the Blágilsjökull foreland is a high relief ridge that appears to be a former lateral moraine partially superimposed on to an elongate bedrock promontory. As this feature is locally fluted and draped by recent recessional moraines it is interpreted as an overridden lateral moraine whose main ridge is denoted by the dotted line symbol on the Main Map. Like similar features mapped widely over deglaciated Little Ice Age forelands around Iceland, the overridden moraines of Snæfellsjökull likely date to pre-LIA ice margins overrun during the LIA advance.

3.6. Glaciﬂuvial deposits

Glaciﬂuvial processes have mostly produced linear spreads of outwash sands and gravels conﬁned to narrow valleys, channels and gorges incised into the steep slopes of the volcano (Main Map). Largely discontinuous ribbon sandar also occur on the ﬂuted till surfaces as do occasional esker ridges, especially on the foreland of Blá-gilsjökull. Debris-ﬂow-fed alluvial fans/aprons have also been produced by glacial meltwater on steeper slopes.

3.7. Alluvial fan slackwater deposits

A veneer of ﬁne-grained alluvial fan deposits occurs in the small upland basin that lies between the northwest corner of the Little Ice Age maximum limit of Blágilsjökull and the amphitheatre-like hollow of the east side of the Bárðarkista mountain. These deposits record a short period of drainage damming or slackwater development which back-ﬁlled the amphitheatre ﬂoor when the glacier margin encroached on the lower slopes of the mountain some 400 m to the northeast. Surface channels on the sediments document incision by marginal meltwater after the slackwater had drained and these can be traced northwards into incised and terraced outwash that was deposited in and around residuum-covered bedrock highs and pumice mounds at, and just beyond, the Little Ice Age limit.

3.8. Paraglacial deposits

Small areas inside the Little Ice Age limit have been subject to slope processes, whereby glacial sediments and freshly exposed bedrock have been reworked during the period immediately following glacier recession. As these processes are conditioned by deglaciation, they are classiﬁed as paraglacial deposits (sensu Ballantyne 2002a, 2000b). These deposits largely comprise debris-ﬂow fans and scree. Small areas of in situ bedrock too small to depict at the map scale are also included.

3.9. Made ground

Substantial areas of made ground occur on the east side of the iceﬁeld, on Jökulháls, where pumice moraines have been quarried. The pumice was transported originally via sluice networks down to the south coast where it was processed for use in the concrete industry from 1937 until sometime in the latter half of the twentieth century. Other small quarries appear to have been excavated for road building material on the F570 mountain track.

4. The volcano-centred ice cap landsystem

The spatial distribution of landforms is consistent throughout the forelands of the various outlet lobes...
of the Snæfellsjökull ice cap and hence constitutes a landsystem signature for independent volcano-centred ice caps. Specifically this signature comprises extensive areas of ice-cored moraine, developed at the limit of the Little Ice Age readvance and located distal to extensive areas of fluted till and glacially abraded bedrock with occasional eskers. This association has now been widely documented across Iceland, especially in upland settings on the deglaciated forelands of plateau icefields, where it is regarded as a landsystem product of former polythermal snout conditions at the Little Ice Age maximum (e.g. Evans, 2010, 2011; Evans et al., 2010, 2015a). The occurrence of proglacially thrust materials, in this case pumice sheets on the east flanks of the volcano, has been documented also in such polythermal settings, for example, at Eiríksjökull, Iceland (ice-contact fans/aprons; Evans, Ewertowski, & Orton, 2015a) and northwest Ellesmere Island, Arctic Canada (proglacial lake sediments and outwash; Evans, 1989; Evans & England, 1991; Ó Cofaigh et al., 2003), where pre-existing deformable materials are susceptible to thrust block development.

Figure 6. Cross sections through the surficial map units of the outer forelands of Hynningsjökull (a) and Jökulhálsjökull (b), displaying the morphostratigraphic relationships of the Little Ice Age moraines on the eastern side of the ice cap.
The delivery of bouldery till and glacigenic debris to the Little Ice Age maximum limit to construct ice-cored and controlled moraine was facilitated by the efficient plucking of vertically jointed basaltic lavas, which in many places stratigraphically overlie less coherent pumice sheets. The horizons identified within the fluted till (Figure 3(a)) are typical of sub-glacially deformed tills identified elsewhere in Icelandic temperate snout settings (e.g. Boulton & Hindmarsh, 1987; Evans, 2000; Evans & Hiemstra, 2005; Evans & Twigg, 2002) and hence the fluted terrain of the Snæfellsjökull forelands is regarded as diagnostic of a deforming and sliding bed that transported debris to the frozen snout zones, thereby feeding controlled moraine development (sensu Evans, 2009) at the Little Ice Age maximum. Linear ridges within the ice-cored hummocky terrain are most likely the manifestation of such controlled moraine but other inset, parallel ridges developed on the proximal and fluted margins of the thicker bouldery drift are more likely to be push moraines constructed in the smaller volumes of englacial debris released by snout melt-out. Hence
the frozen snout conditions became less proficient in constructing moraine ridges during the early stages of Little Ice Age recession and did not become effective again until the colder climate of the mid to late 1990s, when ice-cored moraine was again constructed at the more restricted snouts.

Conclusions

A 1:10,526 scale map of the Little Ice Age landform-sediment associations on the forelands of the outlet lobes of Snaefellsjökull constitute a landsystem signature for independent volcano-centred ice caps. The landsystem comprises an outer zone of ice-cored moraine in front of which is a locally developed set of proglacially thrust pumice deposits. The ice-cored moraine, documenting former frozen snout conditions, passes proximally into bouldery drift and push moraines and then a large area of flutings and glacially abraded bedrock, indicative of temperate basal ice conditions. This style of landform zonation is widely recognized throughout Iceland on mountain glacier forelands and records former polythermal conditions at the Little Ice Age maximum. Although this landsystem is an exemplar relevant specifically to the Icelandic landscape, it is also more widely relevant to glacierized volcanic terrains globally.

Software

Aerial photographs were orthorectified and mosaicked using Agisoft Photoscan Professional Edition. Orthophoto processing and contour generation were performed in ESRI ArcGIS. Adobe Illustrator was used to draw the map and Adobe Photoshop was used for glacier and background image manipulation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

Fieldwork at Snaefellsjökull was made possible by generous financial support from the Royal Geographical Society and a Land Rover from the Gordon Foundation. ME was supported by a Marie Curie Intra European Fellowship, 7th Framework Programme [REA agreement number 299130].

ORCID

Marek Ewertowski http://orcid.org/0000-0002-0422-2327

References

Ballantyne, C. K. (2002a). Paraglacial geomorphology. Quaternary Science Reviews 21, 1935–2017.
Ballantyne, C. K. (2002b). A general model of paraglacial landscape response. The Holocene 12, 371–376.
Benn, D. I. (1994). Fluted moraine formation and till genesis below a temperate glacier: Slettmarkbreen, Jotunheimen, Norway. Sedimentology 41, 279–292.
Bennett, G. L., & Evans, D. J. A. (2012). Glacier retreat and landform production on an overdeepened glacier foreland: The debris-charged glacial landsystem at Kvíárjökull, Iceland. Earth Surface Processes and Landforms, 37, 1584–1602.
Boulton, G. S., & Hindmarsh, R. C. A. (1987). Sediment deformation beneath glaciers: Rheology and geological consequences. Journal of Geophysical Research, 92, 9059–9082.
Bradwell, T., Dugmore, A. J., & Sugden, D. E. (2006). The little ice age glacier maximum in Iceland and the North Atlantic Oscillation: Evidence from Lambatungnajökull, southeast Iceland. Boreas, 35, 61–80.
Brynjólfsson, S., Ingólfsson, Ó., & Schomacker, A. (2013). Surge fingerprints of cirque glaciers at Tröllaskagi peninsula, North Iceland. Jökull, 62, 153–168.
Brynjólfsson, S., Schomacker, A., & Ingólfsson, Ó. (2014). Geomorphology and the Little Ice Age extent of the Drangsjökull ice cap, NW Iceland, with focus on its three surge-type outlets. Geomorphology, 213, 292–304.

Evans, D. J. A. (1989). The nature of glacial and tectonic structures and sediments at sub-polar glacier margins, northwest Ellesmere Island, Canada. Geografska Annaler. Series A, Physical Geography, 71A, 113–123.

Evans, D. J. A. (2000). A gravel outwash/deformation till continuum, Skalafellsjökull, Iceland. Geografska Annaler, Series A: Physical Geography, 82, 499–512.

Evans, D. J. A. (2009). Controlled moraines: Origins, characteristics and palaeoglaciological implications. Quaternary Science Reviews, 28, 183–208.

Evans, D. J. A. (2010). Controlled moraine development and debris transport pathways in polythermal plateau icefields: Examples from Tunngarfellsjökull, Iceland. Earth Surface Processes and Landforms, 35, 1430–1444.

Evans, D. J. A. (2011). Glacial landsystems of Satujökull, Iceland: A modern analogue for glacial landsystem overprinting by mountain icecaps. Geomorphology, 129, 225–237.

Evans, D. J. A., Archer, S., & Wilson, D. J. H. (1999). A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers. Quaternary Science Reviews, 18, 13–41.

Evans, D. J. A., & England, J. H. (1991). Canadian landform examples 19: High Arctic thrust block moraines. The Canadian Geographer/Le Géographe canadien 35, 93–97.

Evans, D. J. A., Ewertowski, M., & Orton, C. (2015a). Eiríksjökull plateau icefield landsystem, Iceland. Journal of Maps. doi:10.1080/17445647.2015.1072448

Evans, D. J. A., Ewertowski, M., & Orton, C. (2015b). Fláajökull (north lobe), Iceland: Active temperate piedmont lobe glacial landsystem. Journal of Maps. doi:10.1080/17445647.2015.1073185

Evans, D. J. A., & Hiemsta, J. F. (2005). Till deposition by glacier submarginal, incremental thickening. Earth Surface Processes and Landforms, 30, 1633–1662.

Evans, D. J. A., & Orton, C. (2014) Heinabergsjökull and Skalafellsjökull, Iceland: Active temperate piedmont lobe and outwash head glacial landsystem. Journal of Maps. doi:10.1080/17445647.2014.919617

Evans, D. J. A., Shand, M., & Petrie, G. (2009). Maps of the snout and proglacial landsforms of Fjallsjökull, Iceland (1945, 1965, 1998). Scottish Geographical Journal, 125, 304–320.

Evans, D. J. A., & Twigg, D. R. (2002). The active temperate glacial landsystem: A model based on Breiðamerkurjökull and Fjallsjökull, Iceland. Quaternary Science Reviews, 21, 2143–2177.

Evans, D. J. A., Twigg, D. R., & Orton, C. (2010). Satujökull glacial landsystem, Iceland. Journal of Maps, 6, 639–650.

Evans, D. J. A., Twigg, D. R., & Shand, M. (2006). Surficial geology and geomorphology of the Porisjökull plateau icefield, west-central Iceland. Journal of Maps, 2, 17–29.

Hardarson, B. S., & Fitzit, J. G. (1991). Increased mantle melting beneath Snaefellsjökull volcano during Late Pliocene deglaciation. Nature, 33, 62–64.

Hards, V. L., Kempton, P. D., Thompson, R. N., & Greenwood, P. B. (2000). The magmatic evolution of the Snaefell volcanic centre: an example of volcanism during incipient rifting in Iceland. Journal of Volcanology and Geothermal Research, 99, 97–121.

Jóhannesson H., Flores R. M., & Jonsson J. (1981). A short account of the Holocene tephrochronology of the Snaefellsjökull central volcano, western Iceland. Jokull, 9, 23–30.

Kirkbridge, M. P., & Dugmore, A. J. (2006). Responses of mountain ice caps in central Iceland to Holocene climate change. Quaternary Science Reviews, 25, 1692–1707.

Kokfelt, T. F., Hoernle, K., Lundstrom, C., Hauff, F., & van den Bogaard, C. (2009). Time-scale for magmatic differentiation at the Snaefellsjökull central volcano, western Iceland: Constraints from U-Th-Pa-Ra disequilibria in post-glacial lavas. Geochemica et Cosmochemica Acta, 73, 1120–1144.

Kristjansson L., Jóhannesson H., Eiriksson, J., & Gudmundsson, A. I. (1988). Brunhes–Matuyama palaeomagnetism in three lava sections in Iceland. Canadian Journal of Earth Sciences, 25, 215–225.

Krüger, J. (1994). Glacial processes, sediments, landforms and stratigraphy in the terminus region of Myrdalsjökull, Iceland. Folia Geographica Danica, 21, 1–233.

MacDonald, R., McGarvie, D. W., Pinkerton, H., Smith, R. L., & Palacz, Z. A. (1990). Petrogenetic evolution of the Torfajökull volcanic complex, Iceland. 1. Relationship between the magma types. Journal of Petrology, 31, 429–459.

Matthews, J. A., & Briffa, K. R. (2005). The ‘Little Ice Age’: A re-evaluation of an evolving concept. Geografska Annaler 87A, 17–36.

Ó Cofaigh, C., Evans, D. J. A., & England, J. (2003). Ice-marginal terrestrial landsystems: Sub-polar glacier margins of the Canadian and Greenland high arctic. In D. J. A. Evans (Ed.), Glacial landsystems (pp. 44–64). London: Arnold.

Steinthorsson S. (1967). Two new C-14 dates of peat samples below tephra layers of the Snaefellsjökull central volcano. Natturufæðingarinn, 37, 236–238.

Thordarson, T., & Larsen, G. (2007). Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43, 118–152.