The solution of the complete nontrivial cycle intersection problem for permutations

Vladimir Blinovsky*

Instituto de Matematica e Estatistica, USP,
Rua do Matao 1010, 05508-090, Sao Paulo, Brazil
Institute for Information Transmission Problems,
B. Karetnyi 19, Moscow, Russia
vblinovs@yandex.ru

Abstract
We prove the Complete nontrivial cycle \(t \)– intersection problem for permutations of finite set.

I Introduction

Let \(\Omega(n) \) be the set of permutations of \([n]\). We say that two permutations \(p_1, p_2 \in \Omega(n) \) are \(t \)– intersect if they have at least \(t \) common cycles. The main problem we consider here is obtaining the maximal cardinality of \(t \)– cycle intersection family \(\mathcal{A} \) from \(\Omega(n) \), such that \(\mathcal{A} \) contains less than \(t \) common cycles, we call such set nontrivial intersecting. Family of \(t \)– cycle intersecting permutations of \([n]\) we denote \(\Omega(n, t) \), and family of nontrivial \(t \)– cycle intersecting by \(\tilde{\Omega}(n, t) \).

We say that \(i \) is fixed in the permutation \(p \in \Omega(n) \) if it contains singleton cycle \(\{i\} \). Denote \(f(p), p \in \mathcal{P}(n) \) the set of points from \([n]\) fixed by \(p \). Denote also \(G(\mathcal{A}) = \{f(p) : p \in \mathcal{A}\}, \mathcal{A} \in \Omega(n) \).

*The author was supported by FAPESP (2012/13341-8, 2013/07699-0) and NUMEC/USP (Project MaCLinC/USP)
Let

\[M(n, t) = \max \{|A| : A \subset \Omega(n, t)\}, \]
\[\tilde{M}(n, t) = \max \{|A| : A \in \tilde{\Omega}(n, t)\}. \]

Let

\[f(n) = n! \sum_{i=0}^{n} \frac{(-1)^i}{n!} \]

be the number of permutations on the set \([n]\) that do not have singletons. One can easily show that

\[\frac{n!}{e} - 1 < f(n) < \frac{n!}{e} + 1. \]

Denote

\[\gamma(\ell) = \frac{\sum_{i=0}^{n-\ell+1} f\left(n - \frac{\ell+2}{2} + 1 - i\right) \binom{n-\ell+1}{i}}{\sum_{i=0}^{n-\ell} f\left(n - \frac{\ell+2}{2} - i\right) \binom{n-\ell}{i}}. \]

In [9] was proved the following complete cycle \(t\)–intersecting problem for finite permutation.

Theorem 1 Let \(t \geq 2\), and let \(\ell = t + 2r\) be the largest number not greater that \(n\) satisfying the relation

\[\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1. \tag{1} \]

then

\[M(n, t) = \sum_{i=t+r}^{t+2r} \binom{t + 2r}{i} \sum_{j=0}^{n-t-2r} \binom{n-t-2r}{j} f(n - i - j). \tag{2} \]

Note that value \(M(n, t)\) in (2) is equal

\[M(n, t) = \max_{r \leq (n-t)/2} \sum_{i=t+r}^{t+2r} \binom{t + 2r}{i} \sum_{j=0}^{n-t-2r} \binom{n-t-2r}{j} f(n - i - j), \]

where max is taken over \(\ell\), satisfying (1). For \(t = 1\) it is proved in [2],[3], that

\[M(n, 1) = (n - 1)!. \]

Let \(2^n\) is the family of subsets from \([n]\) and \(\binom{n}{k}\) be the family of \(k\)–element subsets from \([n]\). Let also \(I(n, t)\) be the set of \(t\)–intersecting (in the set
theoretical sense) subsets \(\mathcal{A}\) of \([n]\), \(I(n,k,t)\) be the set of \(t\)-intersecting \(k\)-element subsets of \([n]\) and \(\bar{I}(n,t)\), \(\bar{I}(n,k,t)\) the corresponding families of nontrivial \(t\) intersecting families (\(|\cap_{A \in \mathcal{A}} A| < t\)). Denote
\[
\bar{M}(n,k,t) = \max_{A \in \bar{I}(n,k,t)} |A|.
\]
Hilton and Milner proved in \([6]\)

Theorem 2

\[
\bar{M}(n,k,t) = \binom{n-1}{k-1} - \binom{n-k-1}{k-1} + 1, \quad n > 2k.
\]

For \(t > 1\) P.Frankl \([7]\) proved

Theorem 3 For sufficiently large \(n > n_0(k,t)\)

- If \(t + 1 \leq k \leq 2t + 1\), then \(\bar{M}(n,k,t) = |\nu_1(n,k,t)|\), where
 \[
 \nu_1(n,k,t) = \left\{ V \in \binom{[n]}{k} : |[t+2] \cap V| \geq t + 1 \right\},
 \]

- If \(k > 2t + 1\), then \(\bar{M}(n,k,t) = |\nu_2(n,k,t)|\), where
 \[
 \nu_2(n,k,t) = \left\{ v \in \binom{[n]}{k} : [t] \subset V, \ V \cap [t+1,k+1] \neq \emptyset \right\}
 \cup \left\{ [k+1] \setminus \{i\} : i \in [t] \right\}.
 \]

In \([4]\) problem of determining \(\bar{M}\) was solved completely for all \(n,k,t\):

Theorem 4 If \(2k - t < n \leq (t + 1)(k - t + 1)\), then
\[
\bar{M}(n,k,t) = M(n,k,t),
\]
if \((t + 1)(k - t + 1) < n\) and \(k \leq 2t + 1\), then
\[
\bar{M}(n,k,t) = |\nu_1(n,k,t)|,
\]

- if \((t + 1)(k - t + 1) < n\) and \(k > 2t + 1\), then
 \[
 \bar{M} = \max\{|\nu_1(n,k,t)|, |\nu_2(n,k,t)|\}.
 \]
Note also that value $M(n, k, t)$ determined for all n, k, t by R. Ahlswede and L. Khachatrian in the paper [5]. Before formulating our main result, let’s make some additional definitions. Denote

$$
\mathcal{H}_i = \left\{ H \in \binom{[t+i]}{t+1} : [t] \subset H \right\} \\
\cup \left\{ H \in \binom{[t+i]}{t+i-1} : [t+1, t+i] \subset H \right\}.
$$

For $C \subset 2^{[n]}$, denote $U(C)$ the minimal upset, containing C and by $\mu(C)$ the set of its minimal elements. Main result of this work is the proof of the following

Theorem 5

- If

$$
\max \left\{ \ell = t + 2r : \frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1 \right\} > t,
$$

then

$$
\tilde{M}(n, t) = M(n, t),
$$

- if

$$
\max \left\{ \ell = t + 2r : \frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1 \right\} = t,
$$

then

$$
\tilde{M}(n, t) = \max \{ \nu_1(n, t), \nu_2(n, t) \},
$$

where

$$
\nu_i(n, t) = \sum_{S \in U(\mathcal{H}_i)} f(n - |S|).
$$

II Proof of the main Theorem

Define fixing procedure $F(i, j, p)$, $i \neq j$ on the set of permutations $p \in \mathcal{P}(n)$:

$$
F(i, j, p) = \begin{cases}
(p \setminus p_i) \cup \{i\}, p_i \setminus \{i\}, & j = p(i), \\
p, & \text{otherwise},
\end{cases}
$$

where p_i is cycle from p which contains i.

Then fixing operator on the set $\mathcal{A} \subset \Omega(n, t)$ is defined as follows ($p \in \mathcal{A}$)

$$F(i, j, p, \mathcal{A}) = \begin{cases} F(i, j, p), & F(i, j, p) \notin \mathcal{A}, \\ p, & F(i, j, p) \in \mathcal{A}. \end{cases}$$

At last define operator

$$\mathcal{F}(i, j, \mathcal{A}) = \{F(i, j, p, \mathcal{A}); p \in \mathcal{A}\}$$

It is easy to see, that fixing operator $\mathcal{F}(i, j, \mathcal{A})$ preserve volume of \mathcal{A} and its t− intersection property. At last note, that making shifting operation finitely number of times for different i, j we obtain from the set \mathcal{A} compressed set, which has the property that for all $i \neq j \in [n]$

$$\mathcal{F}(i, j, \mathcal{A}) = \mathcal{A}$$

and arbitrary pair of permutations p_1, p_2 from the compressed \mathcal{A} intersect by at least t fixed points.

Next define (usual) shifting procedure $L(v, w, p)$, $1 \leq v < w \leq n$ as follows. Let $p = \{\{j_1, \ldots, j_{q-1}, v, j_{q+1}, \ldots, \tilde{j}_s\}, \ldots, \{w\}, \pi_1, \ldots, \pi_c\} \in \mathcal{A}$, then

$$L(v, w, p) = \{j_1, \ldots, j_{q-1}, w, j_{q+1}, \ldots, \tilde{j}_s\}, \ldots, \{v\}, \pi_1, \ldots, p_s\}.$$

If $p \in \mathcal{A}$ does not fix v we set

$$L(v, w, p) = p.$$

Now define shifting operator $L(v, w, p, \mathcal{A})$ as follows

$$L(v, w, p, \mathcal{A}) = \begin{cases} L(v, w, p), & L(v, w, p) \notin \mathcal{A}, \\ p, & L(v, w, p) \in \mathcal{A}. \end{cases}$$

At last we define operator $\mathcal{L}(v, w, \mathcal{A})$

$$\mathcal{L}(v, w, \mathcal{A}) = \{L(v, w, \mathcal{A}); p \in \mathcal{A}\}.$$

It is easy to see that operator $\mathcal{L}(v, w, \mathcal{A})$ does not change the volume of \mathcal{A} and preserve t− cycle intersection property. Later we will show (Statement [H]) that this operator preserve t− cycle nontrivial intersection property. Also it is easy to see that after finite number of operations we come to the compressed t− intersection set \mathcal{A} of the volume for which

$$L(v, w, \mathcal{A}) = \mathcal{A}, \ 1 \leq v < w \leq n$$
and each pair of permutations form \mathcal{A} $t-$ intersect by fixed elements. Next we consider only such sets \mathcal{A}. We denote the family of fixed compressed $t-$ cycle (nontrivial) intersecting sets of permutations by $L\Omega(n, t)$ ($L\tilde{\Omega}(n, t)$). Also note that such sets \mathcal{A}, have the property that all sets from \mathcal{A} have s common cycles iff $|\cap_{p \in \mathcal{A}} f(p)| = s$. Also we assume that all set of permutations considered next are left compressed.

Denote by $\Omega_0(n, t)$ set of partitions \mathcal{A} such that $|\cap_{p \in \Omega_0(n, t)} f(p)| = 0$.

Statement 1

$$\tilde{M}(n, k) = \max_{\mathcal{A} \in L\tilde{\Omega}(n, t)} |\mathcal{A}|, \quad (3)$$

$$M_0(n, t) = \max_{\mathcal{A} \in \Omega_0(n, t)} |\mathcal{A}| = \tilde{M}(n, t).$$

And moreover $\mathcal{A} \in \tilde{\Omega}(n, t)$, $|\mathcal{A}| = \tilde{M}(n, t)$ then $\mathcal{A} \in \Omega_0(n, t)$.

Proof. First we prove (3). Let $\mathcal{A} \in \tilde{\Omega}(n, t)$, $|\mathcal{A}| = \tilde{M}(n, k)$. Then either $L(v, w, \mathcal{A}) \in \tilde{\Omega}(n, t)$ or $L(v, w, \mathcal{A}) \in \Omega(n, t) \setminus \tilde{\Omega}(n, t)$. In the first case we continue shiftings. Assume that second case occur. We can assume the $\cap_{p \in \mathcal{A}} f(p) = [t - 1]$, $v = t, w = t + 1, \cap_{p \in L(v, w, \mathcal{A})} f(p) = [t]$. Because \mathcal{A} is maximal, then

$$\{p \in \Omega(n, t) : [t + 1] \subset f(p)\} \subset \mathcal{A}. \quad (4)$$

There are $p_1, p_2 \in \mathcal{A}$ such that

$$f(p_1) \cap [t + 1] = [t]$$

and

$$f(p_2) \cap [t + 1] = [t - 1] \cup \{t + 1\}.$$

Next we apply shifting $L(v, w, \mathcal{A})$ for $1 \leq v < w \leq n$, $v, w \not\in \{t, t + 1\}$. Then

$$\cap_{p \in L(v, w, \mathcal{A})} f(p) = [t - 1].$$

Thus we can assume that $L(v, w, \mathcal{A}) = \mathcal{A}$ \forall $1 \leq v < w \leq n$, $v, w \not\in \{t, t + 1\}$ and

$$f(p_1) = [a] \setminus \{t + 1\}, \ a \geq t, \ a \neq t + 1,$$

$$f(p_2) = [b] \setminus \{t\}, \ b > t.$$

From here and (3) it follows that

$$C = U(\{[t - 1] \cup C : \ C \subset [t, \min\{a, b\}]\}) \subset \mathcal{A}$$
and C and for all $1 \leq v < w \leq n$, $L(v, w, C) = C$. Thus $|\cap_{p \in A} f(p)| < t$.

Now we prove second part of the Statement. Assume that $A \subset \hat{\Omega}(n, t) \setminus \Omega_0(n, t)$ and $A = |\hat{M}(n, t)|$. We can suppose that A is shifted and $\{1\} \in f(p), \forall p \in A$. Also we can assume that $A \in L\hat{\Omega}(n, t)$. Consider $p \in \Omega(n, t)$: $f(p) = \{2, \ldots, n - 1\}$. Next we show that $p \in A$, which leads to the contradiction of the maximality of A. Suppose that there exists an $p_1 \in A$ such that $|\{2, n - 1\} \cap f(p_1)| \leq t - 1$.

We can assume that $f(p_1) = [t] \cup \{n\}$. But then $p_2 : f(p_2) = [t - 1] \cup \{n\}$ and hence $p_3 : f(p_3) = [t]$ also belongs to A. But then $|f(p_3) \cap f(p_2)| = t - 1$ which is contradicting of the $t-$ intersection property of A.

Let $g(A)$ is the family of subsets of $[n]$ such that $A = U(g(A))$. If A is maximal, then we can assume that $g(A)$ is upset and $g^*(A)$ is the set of its minimal elements. Let $G(A)$ be the family of all such $g(A)$. It is easy to see, that $A \in \Omega(n, t)$ ($\hat{\Omega}(n, t)$) iff $g(A) \in I(n, t)$ ($g(A) \in \hat{I}(n, t)$). We can assume that $g(A)$ is left compressed. Denote

$$s^+(a = (a_1 < \ldots < a_j)) = a_j,$$
$$s^+(g(A)) = s^+(\mu(g(A))) = \min_{a = (a_1 < \ldots < a_j) \in g(A)} a_j,$$
$$s_{\min}(A) = \min_{g(A)} s^+(g(A)).$$

It is easy to see that $A \in L\Omega(n, t)$ is a disjoint union

$$A = \bigcup_{f \in g(A)} V(f),$$

where

$$V(f) = \{A \in 2^n : A = f \cup B, B \in [s^+(f), n]\},$$

and if $f \in g(A) : s^+(f) = s^+(g(A))$, then the set of permutations generated by only f is

$$A_f = (U(f) \setminus U(g(A) \setminus \{f\})) = V(f). \tag{5}$$

Note also a simple fact that if $f, f_2 \in g(A)$ and $i \notin f_1 \cup f_2$, $j \in f_1 \cap f_2$, $i < j$, then

$$|f_1 \cap f_2| \geq t + 1.$$
clear we repeat in Lemma all conditions which we consider as default before.

Lemma 1 Let $A \in L\tilde{\Omega}(n, t)$, $|A| = \tilde{M}(n, t)$ and $g(A) \in G(A)$ is such that $s^+(g(A)) = s_{\min}(G(A))$, then for some $i \geq 2$

$$g(A) = H_i.$$

Let $\ell = s^+(g(A))$, $g_0(A) = \{g \in g(A): s^+(g) = \ell\}$, $g_1(A) = g(A) \setminus g_0(A)$. It is easy to see that $\ell > t + 1$. From above it follows that if $f_1, f_2 \in g_0(A)$ and $|f_1 \cap f_2| = t$, then $|f_1| + |f_2| = \ell + t$. Denote

$$\left| \bigcap_{f \in g_1(A)} f \right| = \tau.$$

Consider consequently tow cases $\tau < t$ and $\tau \geq t$.

Let’s assume at first that $\tau < t$. Consider the partition

$$g_0(A) = \bigcup_{t < i < \ell} R_i, R_i = g_0(A) \cap \left(\begin{array}{c} [\ell] \\ i \end{array}\right).$$

Denote

$$R'_i = \{f \subset [\ell - 1]: f \cup \{\ell\} \in R_i\}.$$

As above from left compressedness of the set $g(A)$ it follows that for

$$f_i \in R'_i, f_j \in R'_j, i + j \neq \ell + t, |f_i \cap f_j| \geq t.$$

Next we show that $R_i = \emptyset$.

Assume at first that $\forall R_i \neq \emptyset$ we have $R_{\ell+t-i} = \emptyset$, then

$$g' = (g(A) \setminus g_0(A)) \cup \bigcup_{t < i < \ell} R'_i \in \tilde{I}(n, k)$$

and

$$|U(g')| \geq |A|, s^+(g') < s^+(g(A))$$

which contradict our assumptions.

Now assume that $R_i, R_{\ell+t-i} \neq \emptyset$. Let’s at first $i \neq (\ell + t)/2$. Consider new sets

$$\varphi_1 = g_1(A \cup (g_0(A) \setminus (R_i \cup R_{\ell+t-i}))) \cup R'_i,$$

$$\varphi_2 = g_1(A \cup (g_0(A) \setminus (R_i \cup R_{\ell+t-i}))) \cup R'_{\ell+t-i}.$$
We have $\varphi_j \in \tilde{I}(n, k)$. Thus
$$\mathcal{A}_i = U(\varphi_i) \in \tilde{\Omega}(n, t).$$

We will show that under last assumption
$$\max_{j=1,2} |\mathcal{A}_i| > |\mathcal{A}|,$$ \hfill (6)

and come to contradiction. Using (5) it is easy to see that:
\[
|\mathcal{A} \setminus \mathcal{A}_1| = |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-\ell-t+i-j),
\]
\[
|\mathcal{A}_1 \setminus \mathcal{A}| \geq |R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-i-j+1),
\]
\[
|\mathcal{A} \setminus \mathcal{A}_2| = |R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-i-j),
\]
\[
|\mathcal{A}_2 \setminus \mathcal{A}| \geq |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-\ell-t+i-j+1).
\]

From these equalities follows that if (6) is not valid then
\[
|R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-\ell-t+i-j) \geq |R_i| \sum_{j=0}^{n-\ell} f(n-i-j+1)
\]
and
\[
|R_i| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-i-j) \geq |R_{\ell+t-i}| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-\ell-t+i-j+1).
\]

Because $f(n+1) > f(n), n > 0$ last two inequalities couldn’t be valid together. This contradiction shows that $R_i = \emptyset, i \neq (\ell + t)/2$.

Now consider the case $i = (\ell+t)/2$. By pigeon-hole principle there exists a $k \in [\ell - 1]$ and a $\mathcal{S} \subset R'_{(\ell+t)/2}$ such that $k \notin B, B \in \mathcal{S}$ and
\[
|\mathcal{S}| \geq \frac{\ell-t}{2(\ell-1)} |R'_{(\ell+t)/2}|. \hfill (7)
\]

Hence as before we have $|B_1 \cap B_2| \geq t, B_1, B_2 \in \mathcal{S}$ and
\[
f' = (g(\mathcal{A}) \setminus R_{(\ell+t)/2}) \cup \mathcal{S} \in \tilde{I}(n, k).\]
Next we show that

\[|U(f')| > |A|. \tag{8} \]

Consider the partition

\[A = G_1 \cup G_2, \]

where

\[G_1 = U(g(A) \setminus R(\ell+t)/2), \]
\[G_2 = U(R(\ell+t)/2) \setminus U(g(A) \setminus R(\ell+t)/2). \]

Consider also partition

\[U(f') = G_1 \cup G_3, \]

where

\[G_3 = U(S) \setminus U(g(A) \setminus R(\ell+t)/2). \]

We should show that

\[|G_3| > |G_2|. \tag{9} \]

We have

\[|G_2| = |R(\ell+t)/2| \sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f \left(n - \frac{\ell + t}{2} - j \right) \]

and

\[|G_3| \geq |S| \sum_{j=0}^{n-\ell+1} \binom{n-\ell+1}{j} f \left(n - \frac{\ell + t}{2} - j + 1 \right) . \]

Hence for (9) to be true it is sufficient that

\[\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) > 1. \]

The last inequality is true since otherwise, if

\[\frac{\ell - t}{2(\ell - 1)} \gamma(\ell) \leq 1 \]

for some \(\ell > t \), then by \([3]\) \(\tilde{M}(n, k) = M(n, k) \). Hence \(R_{\ell+t}/2 = \emptyset \).

Now consider the case \(\tau \geq t \). We have

\[\bigcap_{f \in g_1(A)} f = [\tau], \]
\[
\ell = s^+(g(A)) > \tau
\]
and for all \(f \in g_0(A) \),
\[
|F \cap [\tau]| \geq \tau - 1,
\]
if \(|f \cap [\tau]| = \tau - 1\), then \([\tau + 1, \ell] \in f\).

Let’s show that \(\tau \leq t + 1 \).

If \(\tau \geq t + 2 \), then for \(f_1, f_2 \in g(A) \),
\[
|f_1 \cap f_2[\tau]| \geq \tau - 2 \geq t
\]
and thus denoting \(g'_0(A) = \{ f \subset [\ell - 1] : f \cup \{\ell\} \in g(A) \} \), we have
\[
\varphi = (g(A) \setminus g_0(A)) \cup g'_0(A) \in \tilde{I}(n, k)
\]
and
\[
|U(\varphi)| \geq |A|,
\]
\[
s^+(\varphi) < \ell.
\]

This gives the contradiction of minimality of \(\ell \).

Assume now that \(\tau = t + 1 \). Then must be \(\ell = t + 2 \), otherwise using above argument (deleting \(\ell \) from each element of \(g_0(A) \) we come to generating set \(\varphi \in \tilde{I}(n, k) \) for which \(|U(\varphi)| \geq |A| \) and \(s^+(\varphi) < \ell \). It is clear that \(\tau = t + 1 \) and \(\ell = t + 2 \), then \(g(A) = H_2 \).

At last consider the case \(\tau = t \). Denote \(g'_0(A) = \{ f \in g_0(A) : |f \cap [t]| = t - 1 \} \). We have
\[
g'_0(A) \subset \{ f \subset [\ell] : |f \cap [t]| = t - 1, [t + 1, \ell] \subset f \}
\]
and for \(f \in g(A) \setminus g'_0(A) \) we have \([t] \subset f \) and \(|f \cap [t + 1, \ell]| \geq 1 \). Hence
\[
U(g(A)) \subset U(A_{\ell-t}).
\]

and because \(A \) is maximal \(g(A) = \mathcal{H}_{\ell-t} \). Family \(\mathcal{H}_{n-t} \) is trivially \(t \)-intersecting, so we can assume that \(i < n - t \). Denote \(S_i = |U(\mathcal{H}_i)| \). Next prove that if \(S_i < S_{i+1} \), then \(S_{i+1} < S_{i+2} \). We have
\[
S_i = (n - i)! - \sum_{j=0}^{n-t-i} \binom{n-t-i}{j} f(n-t-j) + t \sum_{j=0}^{n-t-i} f(n-t-i-j+1)
\]
and we should show that from inequality
\[
\sum_{j=0}^{n-t-i-1} \binom{n-t-i-1}{j} f(n-t-j+1) \geq t \sum_{j=0}^{n-t-i-1} \binom{n-t-i-1}{j} f(n-t-j-i+1)
\]
(10)
follows
\[
\sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j+1) \geq t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j-i).
\]
(11)
We rewrite inequality (10) as follows
\[
\sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j+1) + \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j) \geq t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j-i) + t \sum_{j=0}^{n-t-i-2} \binom{n-t-i-2}{j} f(n-t-j-i+1).
\]
From here it is clear that if (11) is true then (10) is also true. From here and expressions for \(S_2\) and \(S_{n-t-1}\) follows the statement of the Theorem. In [9] was shown that
\[
\sum_{j=0}^{n-\ell} \binom{n-\ell}{j} f(n-\ell+1-j) \geq 1 + \ell - t + (n-\ell) \frac{\ell-t}{\ell-t+2}.
\]
For \(\ell = t+2\) rhs of the last inequality is equal to \(1 + \frac{n-t}{2}\). It follows, that for sufficiently large \(n\) and fixed \(t\)
\[
S_2 = (n-t)! - f(n-t) - f(n-t-1) + t > S_{n-t-1} = (n-t)!
\]
\[
- \sum_{j=0}^{n-t-2} \binom{n-t-2}{j} f(n-t-j) + t \sum_{j=0}^{n-t-2} \binom{n-t-2}{j} f(n-t-j-1)
\]
and hence for \(n > n_0(t)\)
\[
\tilde{M}(n,t) = (n-t)! - f(n-t) - f(n-t-1) + t.
\]

References

[1] C.Y.Ku and D.Renshaw, Erdös-Ko-Rado Theorems for Permutations and Set Partitions, Comb. Theory, Ser. A, 2008, vol.115, no.6, pp. 1008-1020.
[2] P.J. Cameron and C.Y. Ku, Intersecting Families of Permutations, European J. Combin., 2003, vol. 24, no. 7, pp. 881-890.

[3] B. Larose and C. Malvenuto, Stable Sets of Maximal Size in Kneser-type Graphs, European J. Combin., 2004, vol. 25, no. 5, pp. 657-673.

[4] R. Ahlswede and L. Khachatrian, The Complete Nontrivial Intersection Theorem for Systems of Finite Sets, J. of Comb. Theory, Ser. A, 1996, vol. 76, pp. 121-138.

[5] R. Ahlswede and L. Khachatrian, The Complete Intersection Theorem for Systems of Finite Sets, European J. Combin., 1997, vol. 18, pp. 125-136.

[6] A. J. W. Hilton and E. C. Milner, Some Intersection Theorems for Systems of Finite Sets, Quart. J. Math. Oxford, 1967, vol. 18, pp. 369-384.

[7] P. Frankl, On Intersecting Families of Finite Sets, J. Combin. Theory, Se. A, 1978, vol. 24, pp. 146-161.

[8] R. Ahlswede and V. Blinovsky, Lectures in Advances in Combinatorics, Berlin: Springer, 2008.

[9] V. Blinovsky, Intersection Theorem for Finite Permutations, Problems of Inform. Th., 2011, vol. 47, pp. 34-45.