Plant expression of NifD protein variants resistant to mitochondrial degradation

Robert S. Allen*1, Christina M. Gregg*1, Shoko Okada2, Amratha Menon2, Dawar Hussain3, Vanessa Gillespie4, Ema Johnston4, Rosangela Deville5, Andrew C. Warden5, Matthew Taylor5, Keren Byrne6, Michelle Colgrave6,7 and Craig C. Wood2,8

*Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, Canberra, ACT 2600, Australia; 1Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, Canberra, ACT 2600, Australia; 2Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Biosciences Precinct, St. Lucia, Brisbane, QLD 4067, Australia; and 3Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Queensland Biosciences Precinct, St. Lucia, QLD 4067, Australia

Edited by Éva Kondorosi, Hungarian Academy of Sciences, Biological Research Centre, Szeged, Hungary, and approved August 11, 2020 (received for review February 7, 2020)

To engineer Mo-dependent nitrogenase function in plants, expression of the structural proteins NifD and NifK will be an absolute requirement. Although mitochondria have been established as a suitable eukaryotic environment for biosynthesis of oxygen-sensitive enzymes such as NifH, expression of NifD in this organelle has proven difficult due to cryptic NifD degradation. Here, we describe a solution to this problem. Using molecular and proteomic methods, we found NifD degradation to be a consequence of mitochondrial endoprotease activity at a specific motif within NifD. Focusing on this functionally sensitive region, we designed NifD variants comprising between one and three amino acid substitutions and distinguished several that were resistant to degradation when expressed in both plant and yeast mitochondria. Nitrogenase activity assays of these resistant variants in Escherichia coli identified a subset that retained function, including a single amino acid variant (Y100Q). We found that other naturally occurring NifD proteins containing alternate amino acids at the Y100 position were also less susceptible to degradation. The Y100Q variant also enabled expression of a NifD(Y100Q)-linker–NifK translational polyprotein in plant mitochondria, confirmed by identification of the polyprotein in the soluble fraction of plant extracts. The NifD(Y100Q)–linker–NifK retained function in bacterial nitrogenase assays, demonstrating that this polyprotein permits expression of NifD and NifK in a defined stoichiometry supportive of activity. Our results exemplify how protein design can overcome impediments encountered when expressing synthetic proteins in novel environments. Specifically, these findings outline our progress toward the assembly of the catalytic unit of nitrogenase within mitochondria.

nitrogenase | metabolic engineering | synthetic biology | mitochondria | protein engineering

Industrial nitrogen fixation is the largest contributor to the world’s population expansion over the past century (1). It is remarkable that this chemical process requiring high temperature (>400 °C) and pressure (150 atm) can be accomplished at room temperature by the bacterial enzyme nitrogenase. Harnessing this enzyme for ammonia production in plants has been a longstanding goal of biotechnology (2). More recently, increasing environmental pollution associated with fertilizer production and usage, as well as food-security concerns, has lent urgency to this aspiration (3).

Nitrogenase is one of the most complex metalloproteins known in nature (4). The mature enzyme contains an FeMo cofactor (FeMoco) at the active site within an α2 heterotetramer comprising NifD and NifK subunits. The Fe protein, also denoted here as NifH, is required for electron transfer to NifDK. Nitrogenase biosynthesis and function also require a range of Nif proteins for assembly of the metal clusters and electron transport to NifH (5). In addition to this biosynthetic complexity, both NifDK and NifH are irreversibly destroyed by oxygen (6).

Recently, several significant advances in engineering nitrogenase componentry in eukaryotes have been made. First, expression and ex vivo function of NifH in yeast mitochondria and plant chloroplasts have validated these organelles as suitable for reconstitution of oxygen-sensitive nitrogenase components (7–9). However, activity of plant chloroplast-expressed NifH is low and requires either substantially reducing ambient oxygen concentrations or harvesting material during the nonphotosynthetic dark period (8). NifB, another oxygen-sensitive enzyme and an essential component of metal-cluster biogenesis, has also been successfully produced in yeast mitochondria and been shown to accumulate NifB-co, a precursor for FeMoco (10, 11). Finally, individual expression of 16 Nif proteins from Klebsiella oxytoca in plant mitochondria has demonstrated the feasibility of targeting all of the biosynthetic and structural Nif proteins to this organelle, although mitochondrial processing and expression was suboptimal for certain Nif proteins (12).

Despite advances in producing functional NifH and NifB within mitochondria, expression of NifD remains a problem in both yeast and plants (12, 13). In yeast mitochondria, Bürén and colleagues (13) were able to produce NifDK tetramers, but it was...
observed that the NifD protein was susceptible to degradation, producing a truncated protein of ∼48 kDa. This degradation product also copurified with the NifDK tetramer, possibly accounting for the lack of NifDK function. Our previous work targeting *K. oxytoca* NifD to plant mitochondria has also identified the same degradation phenomenon, with the occurrence of an ∼48-kDa NifD degradation band as a dominant product. In addition to degradation, we were also unable to express NifD in *Nicotiana benthamiana* at a similar abundance as NifK. This imbalance presented a further problem, as these catalytic partners are required to be expressed in a 1:1 stoichiometric ratio for optimal nitrogenase activity. To address this problem, we designed a translational NifD-linker–NifK polypeptide, allowing expression of the polypeptide in a 1:1 stoichiometric ratio. Although function of our polypeptide was untested, similar translational fusion strategies between NifD and NifK have retained a degree of function (14, 15). These encouraging results indicated that translational fusions of Nif proteins can both simplify the genetic componentry and retain nitrogenase function.

Here, we address the issue of NifD degradation within plant mitochondria. Using molecular and proteomic analyses, we discovered that a specific motif within NifD is cleaved by the mitochondrial processing peptidase (MPP) to produce a smaller product. We found that this site of degradation lies within one of the most functionally sensitive regions of the protein. To design variants that were both resistant to degradation and functional, we considered NifD protein diversity, structure, and the substrate specificity of the MPP. Finally, we show that a translational fusion of NifD and NifK that is resistant to degradation enables expression of a soluble polypeptide in mitochondria, which when assayed in *Escherichia coli* retains nitrogenase function.

Results

NifD Is Subject to Secondary Cleavage within Plant Mitochondria.

Previous attempts to express NifD in mitochondria of *N. benthamiana* produced an ∼59-kDa NifD protein of low abundance and a distinct lower-molecular mass product of ∼48 kDa (12). This ∼48-kDa product could be undesirable for several reasons, including interference with formation of the NifDK catalytic unit. We first wanted to test whether differing mitochondrial targeting peptides (MTPs) or constitutive promoter combinations may influence the accumulation of this secondary product. For this purpose, we reconfigured our cloning protocols to the Gold- enGate system to allow easier interchangeability of these components (16, 17) (SI Appendix, Fig. S1 and Tables S1 and S2 and Dataset S1). We then coinfilttered *N. benthamiana* leaves with various MTP::NifD::HA constructs together with MTP::NifK. Western blot analysis of protein extracts from the infiltrated leaf cells revealed that all constructs produced some correctly processed NifD, although for most constructs, we observed another upper band that corresponded to an unprocessed form of NifD that was not imported into the mitochondria or processed by the MPP. Most importantly, however, the ∼48-kDa product previously observed was still present for all NifD-expressing constructs, regardless of promoter or MTP (Fig. 1A). The accumulation of this ∼48-kDa degradation product was also independent of whether MTP::NifD was infiltrated as a single gene vector, coinfilttered with MTP::NifK (as independent vectors), or infiltrated together with MTP::NifK on a multigene vector (SI Appendix, Fig. S2). The degradation product was also observed in leaves in stably transformed *Arabidopsis thaliana* (Fig. 1A).

To determine the origin of the ∼48-kDa product, we considered two possibilities, downstream translation or protein degradation. The *nifD* gene contains several downstream *ATG* codons which could lead to an ∼48-kDa translation product. Therefore, the second to fifth *ATG* codons downstream of the *NifD* start codon were replaced with alternate codons, and this protein was expressed as an MTP fusion construct in *N. benthamiana* (pRA30; SI Appendix, Fig. S1 and Table S1). However, the ∼48-kDa product was still present in *N. benthamiana* protein (SI Appendix, Fig. S3), refuting the hypothesis that it arose from downstream *ATG* translation. Therefore, we concluded that the ∼48-kDa product was degraded NifD protein.

We assessed whether NifD degradation was a consequence of targeting the protein to the mitochondria. To test this, we made two cytosolic NifD constructs, HA::NifD and HA::NifD::HA, with the latter allowing the detection of any potential C-terminal degradation products (Fig. 1B). We found that *N. benthamiana* protein extracts from both constructs produced a discrete band of the size expected for the full-length NifD protein. MTP::NifD::HA products are designated as follows: open triangle, unprocessed; filled triangle, correctly processed; asterisk, secondary C-terminal ∼48-kDa cleavage product; and hash, secondary N-terminal cleavage product at ∼13 kDa. The band at ∼21 kDa is an unspecific background band.

![Fig. 1](https://www.pnas.org/cgi/doi/10.1073/pnas.2002365117 Allen et al.)

Fig. 1. A mitochondrial endoprotease degrades NifD. (A) Western blots (α-HA and α-NifK) of protein extracts after introduction of MTP::NifD::HA and MTP::NifK constructs into *N. benthamiana* and *A. thaliana*. Coinfiltration with MTP::NifK is indicated by + or –. A series of different promoters and MTPs were used to target each construct to mitochondria (SI Appendix, Fig. S1 and Tables S1 and S2 and Dataset S1). Open and filled triangles indicate unprocessed and processed forms of FA51::NifD::HA, respectively. An asterisk indicates the ∼48-kDa NifD secondary product. (B) Western blots (α-HA) of protein extracts for cytosolic HA::NifD and HA::NifD::HA or mitochondria (FA51::NifD::HA and FA51::NifD::HA::NifD targeted NifD constructs. A schematic of the constructs is shown (not to scale). Red dashed arrows indicate C- and N-terminal cleavage products found for FA51::NifD::HA. Red shaded boxes represent an approximate area (not to scale) where cleavage was predicted to occur based on the sizes of the degradation products. MTP::NifD::HA products are designated as follows: open triangle, unprocessed; filled triangle, correctly processed; asterisk, secondary C-terminal ∼48-kDa cleavage product; and hash, secondary N-terminal cleavage product at ∼13 kDa. The band at ∼21 kDa is an unspecific background band.

23166 | www.pnas.org/cgi/doi/10.1073/pnas.2002365117
these results demonstrated that the degradation of MTP::NifD was a consequence of mitochondrial targeting.

Cleavage of NifD within Plant Mitochondria Occurs via Site-Specific Endoprotease Activity. We next determined whether NifD degradation was a consequence of exoprotease or endoprotease activity. Given that we could detect an NifD C-terminal HA-tagged degradation product, detection of a corresponding N-terminal degradation product could confirm endoprotease activity. Accordingly, a construct was introduced into *N. benthamiana*, where an HA tag was also included directly after the MTP, **MTP::HA::NifD::HA** (Fig. 1B). Thus, endo-specific cleavage could be expected to produce two HA-tagged products—the longer, ∼48-kDa C-terminal product seen previously in MTP::NifD::HA extracts and a shorter, ∼13-kDa N-terminal product. Western blot analysis of protein extracts revealed a specific shorter, ∼13-kDa N-terminal product and the longer, ∼48-kDa C-terminal product (Fig. 1B). This result demonstrated that the cleavage of MTP::NifD was site-specific, and not a result of exoprotease degradation from the N terminus. We therefore describe this ∼48-kDa product as a “secondary cleavage product,” arising from endopeptidase activity at a region downstream of the MTP processing site.

The Secondary Cleavage Region within NifD Is Characteristic of an MPP Processing Site. The results of the experiments described above indicated that secondary cleavage of MTP::NifD was a consequence of mitochondrial targeting and occurred at a specific location within the NifD sequence. As we could not precisely distinguish this location based on the sizes of the degradation products, we first designed a series of MTP::NifD variants, each with a block of five consecutive amino-acid substitutions (alanine/glycine scanning) within the approximate region (amino acids 49 to 108) of secondary cleavage within NifD (Fig. 2A). We wanted to test if any of these variants (NifD variants 1 to 12) would disrupt secondary cleavage.

Of the 12 variants tested, protein extracts for 10 still produced the ∼48-kDa secondary cleavage product (Fig. 2A). However, variants 10 and 11 were conspicuous in showing no ∼48-kDa cleavage product and a higher abundance of the corresponding processed product at ∼56 kDa. Based on the substitutions in NifD variant 10 and 11, we concluded that a specific region of the NifD protein within the amino acid sequence RAGRRNYYG was required for the secondary cleavage of NifD in mitochondria. Using the MitoFates prediction program (18), we found that NifD contained a predicted MPP cleavage site in this region, after the asparagine residue, RAGRRNYYTG. This motif has similarities to the typical “2R” motif found in ∼55% of mitochondrial targeted proteins (Fig. 2B and SI Appendix, Fig. S4 A–D). Therefore, this secondary cleavage site within NifD appeared similar to an MPP cleavage motif.

Isolation of the NifD Degradation Product Identifies the Specific Site of Endoprotease Cleavage. To determine the N-terminal sequence of the degradation product, the ∼48-kDa fragment was gel-excision and subjected to proteomic analysis (**SI Appendix**). In total, eight specific NifD peptides were identified downstream of the region identified from the alanine/glycine scanning approach described above (Fig. 2C). No peptide was found for the complete tryptic peptide RNYTGYGSGVGFSTGTNFTSDFOER; however, the expected mass of the shorter peptide YYTTGYGSGVGFSTGTLNTSDFQER was positively identified. Therefore, this shorter peptide must have arisen from cleavage of the NifD sequence within the RRNYY sequence—between the asparagine (N) and tyrosine (Y) residues, followed by the tryptic digestion in the analysis. This analysis showed that the actual size of the degradation product is 44.5 kDa, and this degradation band runs slightly slower at ∼48 kDa on the sodium dodecyl sulfate (SDS)/polyacrylamide gel. The identification of the cleavage site by this proteomic analysis concurred with the alanine/glycine scanning approach described above and precisely matched the in silico prediction as an MPP cleavage site.

Design and Functional Validation of NifD Variants Resistant to Mitochondrial Degradation. Although we could abolish secondary cleavage of NifD via five amino-acid modifications at the site of MPP activity, it was likely that such changes would disrupt function. We aimed to introduce discrete changes within NifD to potentially reduce or eliminate cleavage while maintaining function. Our design was guided by structural modeling and examining the sequence diversity of other naturally occurring NifD sequences at positions corresponding to RAGRRNY ytG of *K. oxytoca*. Our focus was on replacing amino acids in position −3 to +3 relative to the cleavage site (RRN1YYT). We modeled modifications that would potentially disrupt cleavage while minimizing introduction of adverse interactions, such as steric clashes, or disruptions to existing hydrogen bonds or electrostatic interactions.

The crystal structure of the MoFe protein from *Klebsiella pneumoniae* revealed that the MPP secondary cleavage site within NifD is in close proximity to FeMoco and NifK (Fig. 3A). Specifically, Arg97 interacts with the bridging S5 sulfido ligand of FeMoco and is thought to stabilize the more reduced edge of the cluster (19). Arg98 is involved in a network of hydrogen-bonding and electrostatic interactions within NifD and also interacts with Asp516 of the NifK protein. Asn99 accepts a hydrogen bond from Arg97, and Tyr100 interacts with both Arg98 of NifD and Asp516 of NifK, thus contributing to the thermostability of NifDK. We therefore created variants which contained substitutions in the less functionally sensitive residues Tyr101 and Thr102 (i.e., variants Y101F, T102A, and Y101F/T102A). As we were not confident that these variants described would prevent cleavage by MPP, we also included variants that substituted amino acids Arg98 and other sites (R98K, R98KY101F, R98K/T102A, R98KY101F/T102A, and R98KY101A/T102A), recognizing that these may not be functional.

A second approach involved the analysis of the sequence diversity among naturally occurring NifD sequences. For this analysis, we set of 1,476 naturally occurring putative NifD sequences from a range of bacterial and archaeal sources was extracted from the Interpro database (20) (**SI Appendix, Table S3**). The sequences were aligned and visualized by using ALVIS (21) (Fig. 3B). The alignment revealed that both Arg97 and Arg98 were completely conserved, which is not surprising, given their proximity to FeMoco. Overall, the alignment also showed that sequence conservation decreased from residue Asn99 to Thr102 (**SI Appendix, Table S3**). Accordingly, we also designed variants where these residues were replaced with the second-most-common residues from the set of NifD sequences, i.e., N99H, Y100Q, Y101A, and T102V, respectively. Additionally, amino acids 100 and 101 were replaced with the third- and fourth-most-common residues, i.e., Y101F, T102A, and Y101F/T102A. As we were not confident that these variants described would prevent cleavage by MPP, we also designed variants that substituted amino acids Arg98 and other sites (R98K, R98KY101F, R98K/T102A, R98KY101F/T102A, and R98KY101A/T102A), recognizing that these may not be functional.

In total, 19 substitution variants were designed (Fig. 4), and these were co-infiltrated as MTP::NifD::HA variant constructs into *N. benthamiana* with MTP::NifK, and leaf protein was analyzed by Western blotting. We identified several variants (Fig. 4A) that did not produce the secondary cleavage product (Y100Q, Y100Q/Y101T, N99HY100K/Y101G, Y100K, Y100K/Y101A, R98KY102A, R98KY101F/T102A, and R98KY101A/Y102A). Most remarkably, two variants of this degradation-resistant set had single-amino-acid substitutions at the Y100 residue, Y100Q and Y100K. We also assessed NifD–Y100Q in the absence of NifK and found that resistance to degradation was unaffected (**SI Appendix, Fig. S5**). Interestingly, some
variants showed degradation, despite prediction software indicating otherwise (e.g., R98A) (18).

To confirm that the proteins were indeed located in mitochondria of N. benthamiana, we performed a mitochondrial purification using an affinity-tag-based technique similar to those reported (22, 23). We designed a fusion protein with a Twin-streptag consisting of mTurquoise fluorescent protein and metaxin, a mitochondrial outer membrane protein (Twin-strep::mTurquoise::metaxin). The expression of this construct allowed the rapid purification of mitochondria by using streptavidin magnetic beads (SI Appendix, Fig. S6A and B). When we coexpressed MTP::NifD or MTP::NifD-Y100Q with NifK and purified plant mitochondria using the metaxin fusion protein, Western blot analysis showed that for MTP::NifD, the degradation product was accumulating in mitochondria, while for MTP::NifD-Y100Q, only correctly processed NifD was detected (SI Appendix, Fig. S6C). These results confirm that MTP::NifD and the degradation-resistant variant MTP::NifD(Y100Q) are imported into the plant mitochondria.

We next wanted to assess the functional consequences of these mutations that provided resistance to NifD degradation. For this purpose, we utilized a nitrogen-fixing E. coli strain harboring a modified K. oxytoca nitrogenase gene cluster (MIT v2.1) (24) (Fig. 4B and SI Appendix, Fig. S7). Within MIT v2.1, we introduced mutations in NifD corresponding to a selection of the

![Fig. 2.](https://www.pnas.org/ cgi/doi/10.1073/pnas.2002365117)

Fig. 2. Discovery of the NifD degradation region reveals a characteristic MPP site. (A) Western blots (α-HA) of protein extracts after introduction of MTP::NifD::HA genetic constructs coinfiltrated with MTP::NifK into N. benthamiana leaf cells. Constructs were based on FAy51::NifD::HA (wild-type NifD), except wild-type amino acids were substituted in five amino acid alanine/glycine blocks (variants [var] 1 to 12). The initial region for broad coverage with alanine/glycine scanning is shown schematically at the top (not to scale), with the wild-type NifD sequence, and underneath the corresponding five amino-acid changes for each individual construct. MTP::NifD::HA bands are designated by open and filled triangles for unprocessed and correctly processed forms, respectively; the asterisk indicates the secondary cleavage product. (B) Comparison of amino acids 95 to 104 of NifD with a typical −2R MPP cleavage motif. The motif was visualized by using selected sequences from Δicp55 and wild-type A. thaliana, previously identified by Carrie et al. (27) and Huang et al. (26). For a complete set of mitochondrial cleavage sites, refer to SI Appendix, Fig. S4. Numbers at the top refer to the amino-acid position relative to the cleavage site. The sequences shown here contain a conserved Arg residue in position −2, characteristic of a −2R MPP cleavage site. NifD also contains an Arg in position −2 relative to the experimentally determined cleavage site. (C) A schematic of the MS identification of peptides from the degradation product. Eight peptides (red boxes; not to scale) were identified. The most N-terminal peptide is shown in detail in red, identifying the precise cleavage site shown by scissors.

![Fig. 3.](https://www.pnas.org/ cgi/doi/10.1073/pnas.2002365117)

Fig. 3. (A) Location of the proposed secondary cleavage site RRNYYT shown in the crystal structure of the MoFe protein from K. pneumoniae (Protein Data Bank ID code1QGU). NifD is shown in blue, and NifK is shown in green. FeMoco is shown as spheres. The residues of the proposed cleavage site are represented by sticks. The cleavage site is in proximity to FeMoco and close to the interface of NifD and NifK. The numbering of NifD amino acids within the crystal structure was adjusted to correspond to the numbering of the full-length sequence, which contains two methionine residues at the start of these sequences. (B) ALVIS analysis of the amino acid (aa) distribution based on 1,476 putative NifD proteins around the proposed secondary cleavage site. The y axis shows the amino acid residue, and the x axis shows the position of the corresponding residues in K. oxytoca. The residues of the K. oxytoca NifD sequence "RAGRRNYYT" are shown above in blue. Sequences that contain a Gin and Lys in position 100 are shown in purple and green, respectively. Amino acid residues that were present in variants are shown above (H99, K100, Q101, T101, A101, G101, and V102). SI Appendix, Table S3 lists the frequency distribution of the equivalent residues of K. oxytoca RRNYYT in detail.
plants. For this approach, we designed an NifD−linker−NifK GoldenGate-based construct by placing the HA epitope within the linker peptide, avoiding any extension to the C-terminal of NifK. We then introduced the Y100Q variation into MTP::NifD−linker−NifK. To distinguish processing at the canonical MTP cleavage site, a third construct was made that contained a modified MTP with alanine substitutions at the canonical cleavage site to avoid cleavage by the MPP (alaMTP::NifD−linker−K). Finally, a cytosolic control construct was designed that contained a His-tag instead of the MTP (6xHis::NifD−linker−K) (Fig. 5B and SI Appendix, Tables S1 and S2). Protein produced from this construct approximated the size of correctly processed MTP::NifD−linker−K protein.

These constructs were infiltrated separately into N. benthamiana leaves, and protein fractions were analyzed by Western blot. Total protein extracts of MTP::NifD(Y100Q)−linker−K produced a single band that aligned with the cytosolic NifD−linker−K and migrated faster than the control for the unprocessed protein (Fig. 5A). This migration speed corresponded to correctly processed and undergraded MTP::NifD(Y100Q)−linker−K polyprotein. By contrast, the MTP::NifD−linker−K construct produced two lower bands indicative of degradation. Interestingly, while MTP::NifD::HA was incompletely processed, the MTP::NifD(Y100Q)−linker−K polyprotein was completely processed at the canonical MPP processing site within the MTP (Fig. 5A).

The NifD−Linker−NifK Polyprotein is Soluble in Plant Mitochondria and Functional in E. coli. Solubility of nitrogenase proteins within mitochondria is considered a prerequisite for function. However, a recent report has indicated that targeting Azotobacter vinelandii NifB to the mitochondria produced an insoluble protein (11). Therefore, we assessed the solubility of our mitochondria-targeted plant-expression variants tested above. We then measured nitrogenase activity of these variants via an acetylene reduction assay (ARA). From our analysis, we identified three variants that retained function similar to wild-type levels (Y100Q, Y100Q/Y101T, and Y100K) and others that either had diminished or negligible activity levels (Fig. 4B).

Fig. 4. Identification and functional analysis of cleavage-resistant NifD variants. (A) Western blot (α-HA) of protein extracts after introduction of MTP::NifD::HA variant constructs into N. benthamiana leaf cells coinfiltrated with MTP::NifK. Discrete amino acid changes compared to wild type are shown in bold/yellow, and variants found to be degradation resistant are identified by a red +. Open and filled triangles designate unprocessed and correctly processed forms of MTP::NifD, respectively; the asterisk indicates the secondary cleavage product. (B) ARAs of nitrogenase activity with variants tested above. A subset of the same modifications tested above were individually introduced into MIT v2.1, and ethylene was measured. Error bars represent the SEM from at least two biological replicates. A depiction of the MIT v2.1 assay is shown, where substitutions to NifD are incorporated into the nitrogenase cluster (for further details, see SI Appendix, Fig. S7). Negative controls contained no MIT v2.1 cluster, and positive controls included the cluster with the wild-type NifD sequence. Ppm, parts per million.

Fig. 5. MTP::NifD(Y100Q)−linker−NifK polyprotein is degradation-resistant, soluble, correctly processed in plant mitochondria, and functional when expressed in E. coli. (A) Western blots (α-HA) of protein extracts after introduction of NifD genetic constructs into N. benthamiana leaf cells.

Plant Biology
NifD proteins. After preparing soluble and insoluble NifD protein fractions from the same leaf spots used for total protein (Materials and Methods), we visualized the proportions of proteins in these fractions by Western blot. Whereas cytosolic NifD (HA::NifD) was mostly soluble and mitochondrial MTP::NifK coexpressed with MTP::NifD accumulated partially in the soluble fraction (SI Appendix, Fig. S8 A and B), we were unable to detect MTP::NifD in the soluble fraction (Fig. S4). In contrast, we were surprised to discover that more of the NifD(Y100Q)–linker–NifK polyprotein was observed in the soluble fraction than in the insoluble fraction. Therefore, fortuitously, the NifD(Y100Q)–linker–NifK polyprotein was both resistant to the secondary cleavage and predominantly soluble in plant mitochondria.

We assessed the function of the NifD–linker–NifK polyprotein by introducing the same linker as used for plant expression between the native NifD and NifK proteins from MIT v2.1 and tested for nitrogenase function via ARA. We also introduced the Y100Q variation into this NifD–linker–NifK polyprotein in MIT v2.1. We found that both the NifD–linker–NifK and degradation-resistant NifD(Y100Q)–linker–NifK proteins retained wild-type levels of activity (Fig. 5C). Finally, although the ARA serves as a proxy for nitrogenase activity, we wanted to test directly for nitrogen-fixing ability by use of a 15N2 assay. For both NifD–linker–NifK and NifD(Y100Q)–linker–NifK, 15N2 reduction was lower, but not significantly (P = 0.1238 and P = 0.8304, respectively). These results demonstrate that this mutation allows N2 fixation for the NifDK polyprotein.

The Y100Q Variation within NifD Prevents Secondary Cleavage in Yeast Mitochondria. Yeast have proven a useful model for testing expression and assembly of nitrogenase components in mitochondria (7, 13, 25); however, the problem of NifD degradation has also been reported when expressing A. vinelandii NifD in this organelle. Notably, A. vinelandii NifD contains the same RRNYYT motif that enables MPP cleavage of K. oxytoca NifD in plant mitochondria. We wanted to determine whether K. oxytoca NifD also was similarly degraded when expressed in yeast mitochondria and, secondly, whether the Y100Q variation could protect NifD from any possible degradation. For this, we made yeast-expression vectors targeting K. oxytoca NifD to either the cytosol, 6×His::NifD, HA, or the mitochondrial matrix, MTP::NifD::HA. We also made a yeast-expressed version of the NifD(Y100Q) variation, MTP::NifD(Y100Q)::HA (Fig. 6 and SI Appendix, Fig. S9). Besides being expressed via the GAL4 promoter/terminator, these NifD proteins were otherwise identical to their plant equivalents.

The yeast constructs were expressed in Saccharomyces cerevisiae, and total protein was analyzed via Western blot. We found that both plant- and yeast-expressing K. oxytoca NifD cytosolic constructs produced a band of the size expected for cytosolic expression of full-length NifD, and no C-terminal degradation products were observed (Fig. 6). However, MTP::NifD produced an intense, smaller band of the same size as the plant-degradation product, whereas much less full-length NifD was produced by this construct. This result indicated that K. oxytoca NifD degradation was occurring in yeast mitochondria, possibly at the same RRNYYT motif as occurs in plant mitochondria. Notably, the NifD Y100Q mutation within NifD targeted to yeast mitochondria enabled a much higher level of correctly processed NifD to accumulate (Fig. 6), although smaller products were also observed for all proteins targeted to yeast mitochondria. Together, these results indicated that the wild-type NifD protein from K. oxytoca is degraded in the same region when targeted to yeast or plant mitochondria, and secondary cleavage is greatly reduced by the Y100Q variation, resulting in a higher abundance of the full-length NifD protein.

Natural Variants of the RRNY Motif Are Less Susceptible to MPP Cleavage in Plant Mitochondria. Since the K. oxytoca NifD variants Y100Q and Y100K were resistant to mitochondrial cleavage in plant mitochondria, we investigated whether NifD proteins from other diazotrophs containing a glutamine or lysine residue in this position were also resistant. To choose representative sequences, we created a sequence-similarity network that grouped similar NifD sequences into different subgroups and analyzed which amino acid was present in position 100, where position 100 corresponds to the numbering in K. oxytoca NifD (SI Appendix, Fig. S10 A and B). We then chose three representative sequences from subgroups that contained a glutamine or lysine residue in position 100—i.e., NifD from Chlorobium tepidum, Desulfovirgula ferrireducens, and Desulfovibrio vulgaris—and assessed their susceptibility to mitochondrial degradation. We also chose three NifD proteins that contained tyrosine in position 100—i.e., NifD from A. vinelandii, Azospirillum brasilense, and Sinorhizobium fredii. The latter three proteins were expected to be cleaved by the MPP, as they contain the same RRNYY motif as NifD from K. oxytoca. For each NifD sequence, a construct was prepared that contained MTP::FA51 at the N terminus and an HA tag at the C terminus (MTP::NifD::HA). These constructs were coexpressed in N. benthamiana leaves with their corresponding NifK protein, which contained an HA tag at its N terminus (MTP::HA::NifK).

Western blot analysis showed that the ratio of correctly processed NifD and the C-terminal degradation product varied for all six NifD proteins (Fig. 7). The expression level of A. brasilense NifD was extremely low, and bands corresponding to A. brasilense NifD were hardly detectable. However, further blots revealed that A. brasilense NifD was degraded as expected (Fig. 7 and SI Appendix, Fig. S11). For both A. vinelandii NifD and S. fredii NifD, a degradation product of the expected size was observed, indicating MPP cleavage at the proposed site. Interestingly, our analysis in plant mitochondria found a second C-terminal product for A. vinelandii NifD, which was not
observed in yeast mitochondria (13). No ~48-kDa degradation product was detected for *D. ferrireducens* NifD or *D. vulgaris* NifD. For *C. tepidum* NifD, another product was detected; however, a product of the same size was also found for cytotoxic *C. tepidum* NifD (SI Appendix, Fig. S11). This indicates that this product does not originate from cleavage by the MPP. Overall, NifD sequences that contained a glutamate or lysine residue in position 100 were less susceptible to degradation by the MPP.

Discussion

Mitochondria have potential as an organelle capable of supporting nitrogenase function (7); however, both NifD degradation and insolubility within plant mitochondria present bottlenecks. Our modifications to NifDK have produced a soluble protein that is resistant to secondary cleavage within plant mitochondria and retains nitrogenase function. This study demonstrates that impediments to the transfer of bacterial proteins to novel environments can be overcome by protein design guided by natural variation.

Several strands of evidence imply that the secondary cleavage of NifD is due to the activity of the MPP. First, the identified secondary cleavage site (RRNYY) contains the hallmark of a canonical MPP processing site, namely, the presence of an arginine at position −2 in relation to the scissile bond, characteristic of cleavage motifs found in the majority of matrix-targeted proteins (26). Second, disruption of this site by alanine/glycine scanning, such that the region no longer resembles a canonical MPP cleavage site, prevents the secondary cleavage of NifD. Finally, targeting of NifD to the cytosol, which does not contain an MPP, either in yeast or plants, prevents secondary cleavage.

The fact that the cryptic MPP site resides in one of the most functionally sensitive regions within NifD presented a challenge to engineer or find natural variants that simultaneously avoided cleavage, yet retained function. Guided by structural analysis and natural variation between NifD sequences, we designed several variants of *K. oxytoca* NifD at the secondary cleavage site that prevented NifD degradation in plant mitochondria and retained function [e.g., NifD(Y100Q)]. Interestingly, some of these NifD variants were predicted to be cleaved by the MPP based on in silico modeling (18). Conversely, other variants that were predicted to be resistant to MPP cleavage were degraded. Our results show that, although in silico predictions are a useful guide, these are ultimately constrained by the fact there is no absolute consensus for an MPP cleavage site (27).

We have also identified several naturally occurring NifD proteins that were much less susceptible to degradation than the NifD proteins from the classic diazotrophic model organisms *K. oxytoca* and *A. vinelandii*. This result accords with our findings using synthetic *K. oxytoca* variants, where replacement of the tyrosine at position 100 provided resistance to MPP activity. More broadly, this result demonstrates that it is also possible to exploit the natural diversity of NifD proteins to reduce degradation within plant mitochondria. This is conceptually similar to approaches taken by Burén et al. (10, 11), where the natural diversity of NifB sequences was explored to identify soluble versions for expression within mitochondria.

We identified that degradation of *K. oxytoca* NifD also occurs in yeast mitochondria and that MPP cleavage was reduced by incorporating the Y100Q variation. As *A. vinelandii* NifD also contains an identical internal RRNYY site, it is likely that the degradation seen for *A. vinelandii* NifD, when expressed in yeast observed previously (13), is a consequence of secondary cleavage at this site. Therefore, we expect that an *A. vinelandii* NifD containing the Y100Q mutation would improve the abundance of full-length NifD. As the degradation of *A. vinelandii* NifD has been suggested to present a possible bottleneck to the formation of the correct NifDK heterotetramer, it will be of interest to see if a degradation-resistant variant of *A. vinelandii* NifD may help overcome this problem.

It has been suggested that the degradation product of NifD, when targeted to yeast mitochondria, could arise from the incorrect maturation of the NifDK tetramer (13). For both plant and yeast mitochondria-targeted NifD, we can now discount this possibility, as, even in the absence of NifK, the NifD(Y100Q) variant was; although an NifD variant may be misfolded, it is not necessarily cleaved by the MPP. Since the RRNYY site is buried within NifD in the correctly assembled NifDK tetramer, NifD would likely need to be unfolded or misfolded for cleavage to occur. While the cleavage site could be exposed to the MPP in a misfolded protein that has accumulated in mitochondria, another possibility seems more likely: During mitochondrial import, proteins unfold to be transported through the outer- and inner-membrane transport complexes (28). Therefore, we favor a model where the MPP cleaves the RRNYY motif within the NifD protein when it enters the mitochondrial matrix in an unfolded state.

We have previously observed that, despite use of the same MTP, certain MTP::Nif proteins are processed less efficiently than others (12), and NifD clearly falls into this category. *K. oxytoca* NifD and NifD(Y100Q) were only partially processed at the canonical MPP cleavage site within the MTP. Here, we consider two possible explanations for this phenomenon. Either MTP::Nif is imported into the mitochondrial matrix, but is not well recognized by the MPP; or a proportion of MTP::Nif is not imported and, thus, not accessible to the MPP. Our results from the mitochondrial purification indicate that the latter case is more likely, as we did not observe a band for unprocessed NifD in purified mitochondria. However, the translocation fusion of NifD to NifK enabled complete processing of the polyprotein, for reasons that remain unclear. That processing efficiency was improved by fusing the NifK protein to NifD is remarkable.
particularly as this synthetic polyprotein (120 kDa) is at the upper size limit of endogenous proteins transported to plant mitochondria (26). Even larger Nif polyproteins have been shown to function in *E. coli* and may provide a means to simplify expression and provide correct stoichiometry (15). It is, therefore, encouraging that mitochondria appear capable of importing and processing larger synthetic proteins, and it will be interesting to test the upper size limits for other nitrogenase polyproteins.

We found that *K. oxytoca* NiFD is insoluble when targeted to plant mitochondria, both in the presence and absence of NiFK. However, NiFD was soluble in the cytosol, even in the absence of NiFK. These observations suggest that the mitochondrial environment itself or the mitochondrial targeting of NiFD leads to misfolding of the protein. Several other Nif proteins have been shown to be insoluble in yeast or plant mitochondria (11, 29). Remarkably, the translational fusion of NiFD to NiFK led to a soluble polyprotein within the mitochondria. It is possible that linking these proteins has allowed rapid association of the NiFD and NiFK components into their native heterotetrameric structure within the mitochondrial matrix. Given that the function of our *K. oxytoca* NiFDK polyprotein was not significantly affected in *E. coli*, this further suggests that our rationally designed linker allows for correct folding and assembly of the structure required for function.

Although significant progress has been made toward reconstituting nitrogenase components within mitochondria, many challenges lie ahead, such as the assembly of the nitrogenase metalloclusters, the modulation of *nif* gene-expression levels, and the availability of molybdenum (30). Furthermore, advances in engineering nitrogenase in yeast mitochondria, such as the formation of active NiFH and NiFB (7, 10), are yet to be realized in plants. In this study, we identified the reason for NiFD degradation in mitochondria and have presented solutions using either synthetic or natural variants of NiFD. We have also resolved both inefficient mitochondrial processing and solubility of NiFD by fusing it to NiFK using a rationally designed linker. This is a major advance in the field of nitrogenase engineering, as it allows the stable expression of the key structural protein within plant mitochondria. Further work can now focus on the assembly of the P cluster and FeMoco required for nitrogenase function.

To our knowledge, the MPP-dependent protein instability described here has not been previously observed in plant metabolic engineering. For future organelle engineering, and especially when engineering prokaryotic proteins into eukaryotic hosts, it will be important to investigate whether these proteins contain motifs that can interfere with successful targeting and protein stability in the organelle of interest. Special attention should be given to potential cleavage sites that could lead to protease-mediated degradation.

Materials and Methods

Construction of Vectors. Vectors for *N. benthamiana* and *A. thaliana* expression were based on the GoldenGate parts and tool kit (17) and assembled by using the GoldenGate assembly protocol (16). Nonstandard components and NiFD variant sequences for plant expression vectors were generated by DNA synthesis. Full parts descriptions are described in Dataset S1. For yeast-expression constructs, NiFD flanking sequences were amplified from SN10, SN114, and SN196 by using primers containing KpnI (forward) and SacI (reverse) restriction sites for cloning into the yeast-expression vector pYES2. For cloning of NiFD variant sequences within Mlh2 in yeast expression vectors, which were generated by DNA synthesis. Full parts descriptions are described in Dataset S1. For yeast-expression constructs, NiFD flanking sequences were amplified from SN10, SN114, and SN196 by using primers containing KpnI (forward) and SacI (reverse) restriction sites for cloning into the yeast-expression vector pYES2. For cloning of NiFD variant sequences within Mlh2 in yeast expression vectors, which were generated by DNA synthesis.
mixed with an equivalent amount of 2x SDS buffer. The 2x SDS buffer contained 250 mM Tris-HCl (pH 6.8), 8% (w/v) SDS, 40% (v/v) glycerol, 120 mM β-D-1-thiogalactopyranoside (Merck) (BGH) broom phenol blue. After the second centrifugation step, the supernatant of sample 2 was discarded. The pellet is referred to as the insoluble fraction. The pellet was resuspended in 300 μL of 4x SDS buffer, and 300 μL of solubility buffer was added. Samples for the total, insoluble, and soluble fractions were heated at 95 °C for 3 min and then centrifuged at 12,000 × g for 2 min. A total of 20 μL of the supernatant containing the extracted polypyrrole was loaded on a NuPAGE Bis-Tris 4 to 12% gel (Thermo Fisher Scientific) for gel electrophoresis and Western blot analysis, as described by ref. 12. The NifK antibody used in these experiments was donated by Yuichi Fujita, Nagoya University, Nagoya, Japan. It is a polyclonal antibody, which was raised in rabbit against 6xHis-NifK recombinant proteins from Leptolyngbya boryana and was used at 1:5,000 dilution. The isolotate dehydrogenase antibody (Agrisera) was used at 1:2,000 dilution.

Sequence Alignment and Visualization of NifD Sequences. A total of 1,751 NifD sequences (family IPR005972, nitrogenolytic molybdenum iron protein alpha chain) were extracted on 12 December 2018 from the InterPro database (20). Removal of duplicate sequences resulted in a set of 1,476 unique sequences. The sequences were aligned by using the multiple-sequence alignment plugin, aMAFFT (version 7) (32). The FT-NS-2 (33) was used with default parameters. The aligned sequences were visualized by using ALVIS (interactive nonaggregative visualization and explorative analysis of multiple sequence alignments) (21).

Acetylene Reduction and 15N Assays Using the pMITv2.1 System in E. coli. Cells of E. coli strain JM109 were transformed with the plasmids pMIT v2.1 (or one of the recombinant derivatives being tested) (114), which conferred resistance to the antibiotics chloramphenicol and spectinomycin, respectively, as described in ref. 33. The transformed cells were selected by growth on LB medium (1.0 g tryptone, 5 g yeast extract, and 10 g NaCl) containing chloramphenicol (34 mg/L) and spectinomycin (80 mg/L). Transformed cells were grown aerobically overnight at 37 °C in LB medium with antibiotics to an optical density of 1.0. The cultures were centrifuged at 10,000 × g for 1 h. The supernatant was decanted, and the cells were resuspended in one volume of an induction medium which was free of N sources, containing 25 g/L NaHPO4, 3 g/L KH2PO4, 0.25 g/L MgSO4·7H2O, 1 g/L NaCl, 0.1 g/L CaCl2·2H2O, 2.9 mg/L FeCl3, 0.25 mg/L Na2MoO4·2H2O, and 20 g/L sucrose (minimal medium) supplemented with 1.5 mL/L 10% serine, 600 μL/L 0.5% Casamino acids, 5 mg/mL biotin, and 10 μg/mL para-aminobenzoic acid (15). For ARAs, the medium was sparged with argon gas for 20 min prior to mixture with cells. Nitrogen-fixation bacteria and amino acid stock solutions were filtered-sterilized under argon. For induction of nif genes, the medium was supplemented with isopropyl-β-D-1-thiogalactopyranoside at a final concentration of 0.1, 0.5, or 1.0 mM, unless otherwise stated, generally 1.0 mM. The cell suspensions were transferred to 3.5-cm2 culture flasks and capped with gas-tight rubber seals using a crimp-lock system, and the headspace was sparged with pure argon gas for 20 min. The suspensions were then incubated at 30 °C with shaking at 200 rpm for 5 h. After this, ARAs were started by the injection of 0.5 cm3 of pure CH4 (BOC gases, instrument grade; final concentration 10% CH4 in argon) and further incubation for 18 h. Production of ethylene at the final time was measured by gas chromatography with flame ionization detection (GC-FID) using an Agilent 6890N GC instrument. Headspace samples (0.5 cm3) were removed and manually injected into a splitless injector on a 1:10 split mode. The instrument was operated under the following parameters: inlet and FID temperatures of 200 °C, average velocity for the carrier of 35 cm/s, and isothermal oven temperature at 120 °C. A RT-Alumina Bond/MAPD column (30 m × 0.32 mm × 0.5 μm) was used with a 5-μm particle trap column coupled to the detector end. Analytical performance of the instrument was assessed by running suitable blanks and standards. Under these conditions, ethylene emitted from the column at about 2.3 min and acetylene at about 3.1 min. For 15N measurements, the cells were grown and resuspended in the induction medium as described for the ARAs. The tubes were sparged with nitrogen for 20 min and incubated at 30 °C with shaking at 200 rpm for 48 h. After induction, 0.5 mL of 15N gas (Sigma-Alrich; 98% atom) was injected into the 3.5-cm3 vial and incubated at 30 °C with shaking at 200 rpm for 48 h. After incubation, 100 μL of cells from each tube was freeze-dried in a tin capsule with inert chromosorb for 48 h in a desiccator at room temperature, weighed, and analyzed by using a SerCon hydra 20-20 isotope ratio mass spectrometer. δ15N values were calculated as per the method of Montoya et al. (34).

Data Availability. All study data are included in the article and SI Appendix.

ACKNOWLEDGMENTS. We thank Liam Thammavongsa for performing the 15N measurements; Yuichi Fujita (Nagoya University) for donation of the NifK antibody; Christopher Voigt (MIT) for the donation of the pMITv2.1 vector;レビュー; and Rob Defeyter, Trevor Rapson, Donald Gardiner, and Katharina Belt for their critical reviews of the manuscript. This work was supported by Cotton Seed Producers Ltd. Pty.

References 1. V. Smil, Detonator of the population explosion. Nature 400, 415 (1999). 2. R. W. F. Hardy, U. D. Havelka, Nitrogen fixation research: A key to world food? Science 188, 633–643 (1975). 3. A. Good, Toward nitrogen-fixing plants. Science 359, 869–870 (2019). 4. M. M. Ribbe, Y. H., K., O. Hodson, B. Hedman, Biosynthesis of nitrogen metalloclusters. Chem. Rev. 114, 4063–4080 (2014). 5. S. Burén, E. Jiménez-Vicente, C. Echavarri-Erasun, L. M. Rubio, Biosynthesis of nitrogenase cofactors. Chem. Rev. 120, 4921–4968 (2020). 6. R. R. Eady, B. E. Smith, K. A. Cook, J. R. Postgate, Nitrogenase of Klebsiella pneumoniae 5360 (2003). 7. S. Burén, E. Jiménez-Vicente, C. Echavarri-Erasun, L. M. Rubio, Biosynthesis of nitro- genase in Leptolyngbya boryana and was used at 1:5,000 dilution. 8. Á. Eseverri et al., Use of synthetic biology tools to optimize the production of active nitrogenase FeMo cofactor in chloroplasts of tobacco leaf cells. Plant Biotechnol. J. 18, 1882–1896 (2020). 9. N. B. Ileve, J. Groat, J. M. Staub, M. Stephens, Expression of active subunit of nitroge- nase via integration into plant organellar genome. PLoS One 11, e0160951 (2016). 10. S. Burén et al., Biosynthesis of the nitrogenase active-site cofactor precursor NifB·co in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 116, 20758–20768 (2019). 11. S. Burén, X. Jiang, G. López-Torpeón, C. Echavarri-Erasun, L. M. Rubio, Purification and in vitro activity of mitochondria targeted nitrogenase cofactor maturase NifB. Front. Plant Sci. 15, 1567 (2017). 12. R. S. Allen et al., Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front. Plant Sci. 8, 287 (2017). 13. S. Burén et al., Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Synth. Biol. 6, 1043–1055 (2017). 14. M.-H. Suh, L. Pulakat, N. Gavini, Functional expression of a fusion-dimeric MoFe protein of nitrogenase from Leptolyngbya boryana. ACS Synth. Biol. 8, S535–S540 (2019). 15. D. Zhao, T. Jiao, K. Temme, D. Zhao, C. A. Voigt, Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci. U.S.A. 109, 7085–7090 (2012). 16. S. J. P. Montoya, M. Voss, P. Kahler, D. G. Capone, A simple, high precision, high-sensitivity tracer assay for N(2) fixation. Appl. Environ. Microbiol. 62, 986–993 (1996).