CANONICAL BASES ARISING FROM QUANTUM SYMMETRIC PAIRS

HUANCHEM BAO AND WEIQIANG WANG

ABSTRACT. We develop a general theory of canonical bases for quantum symmetric pairs \((U, U')\) with parameters of arbitrary finite type. We construct new canonical bases for the simple integrable \(U\)-modules and their tensor products regarded as \(U'\)-modules. We also construct a canonical basis for the modified form of the quantum group \(U'\). To that end, we establish several new structural results on quantum symmetric pairs, such as bilinear forms, braid group actions, integral forms, Levi subalgebras (of real rank one), and integrality of the intertwiners.

CONTENTS

1. Introduction 2
1.1. Background 2
1.2. The goal 3
1.3. What was known? 3
1.4. Main results 4
1.5. Strategy of proofs 7
1.6. The organization 8
2. Quantum groups and canonical bases 8
2.1. The algebras \(\mathfrak{f}\) and \(U\) 9
2.2. Braid group actions and PBW basis 10
2.3. Canonical bases 11
2.4. A based submodule 13
2.5. The parabolic subalgebra \(P\) 14
3. Quantum symmetric pairs: definitions and first properties 16
3.1. The \(\tau\)-root datum 16
3.2. Satake subdiagrams of real rank one 17
3.3. The quantum group \(U'\) over \(\mathbb{Q}(q)\) 18
3.4. Parameters 20
3.5. Levi subalgebras 21
3.6. The bar involution 22
3.7. The modified quantum group 22
3.8. Relation with a parabolic subalgebra 23
4. Symmetries of quantum symmetric pairs 24
4.1. Braid group actions on \(U'\) 25
4.2. Anti-involution \(\varphi\) on \(U\) 26

2010 Mathematics Subject Classification. Primary 17B10.
1. Introduction

1.1. Background. Let \(U = U_q(g) \) be the Drinfeld-Jimbo quantum group with triangular decomposition \(U = U^- U^0 U^+ \). Lusztig [Lu90, Lu91] constructed the canonical basis on an integral \(\mathcal{A} \)-form \(\mathcal{A} U^- \) of \(U^- \) and compatible canonical bases on simple integrable \(U \)-modules \(L(\lambda) \) (using perverse sheaves for general type, or via PBW basis in finite type as well), where \(\mathcal{A} = \mathbb{Z}[q, q^{-1}] \). Kashiwara [Ka91] gave a different algebraic construction of the canonical bases by globalizing the crystal bases at \(q = 0 \).

In [Lu92], Lusztig constructed the canonical bases on the tensor product of a lowest weight module and a highest weight module \(\omega L(\lambda) \otimes L(\mu) \), for dominant integral weights \(\lambda, \mu \in X^+ \). Based on various compatibility of the canonical bases as \(\lambda, \mu \) vary, he further constructed the canonical bases on the modified form \(\hat{U} \). All these constructions fit in the notion of based modules (see [Lu94] for finite type and [BW14] for general type).

Given an involution \(\theta \) on a complex simple Lie algebra \(g \), we obtain a symmetric pair \((g, g^\theta) \), or a pair of enveloping algebras \((U(g), U(g^\theta)) \), where \(g^\theta \) denotes the fix
point subalgebra. The classification of symmetric pairs of finite type is equivalent to the classification of real simple Lie algebras, which goes back to Élie Cartan, cf. [OV]; these classifications are often described in terms of the Satake diagrams; see [Ar62]. Recall a Satake diagram consists of a partition of the nodes of a Dynkin diagram, \(I = I_\bullet \cup I_\circ \), and a (possibly trivial) Dynkin diagram involution \(\tau \); see Table 4.

As a quantization of \((U(g), U(g^\theta))\), a theory of quantum symmetric pairs \((U, U^\dagger)\) of finite type was systematically developed by Letzter [Le99, Le02]. Such \(U^\dagger \) of finite type is constructed from the Satake diagrams. In this theory, \(U^\dagger \) is a coideal subalgebra of \(U \) with parameters (i.e., the comultiplication \(\Delta \) on \(U \) satisfies \(\Delta : U^\dagger \to U^\dagger \otimes U \)) but not a Hopf subalgebra of \(U \), and \(\theta \) is quantized as an automorphism (but not of order 2) of \(U \). The algebra \(U^\dagger \) has a complicated presentation including nonhomogeneous Serre type relations. The quantum symmetric pairs (QSP for short) have been further studied and generalized to the Kac-Moody setting by Kolb [Ko14]. The algebra \(U^\dagger \) on its own will be also referred to as an \(\dagger \)-quantum group.

1.2. The goal. The goal of this paper is to develop systematically a theory of canonical basis for quantum symmetric pairs of arbitrary finite type. Actually several main constructions of this paper work in the Kac-Moody generality, though we shall assume the QSPs are of finite type throughout the paper unless otherwise specified. We shall construct new canonical basis (called \(\dagger \)-canonical basis) on the modified form \(\tilde{U}^\dagger \) of the \(\dagger \)-quantum group \(U^\dagger \) as well as \(\dagger \)-canonical bases on based \(U^\dagger \)-modules, including simple finite-dimensional \(U^\dagger \)-modules and their tensor products.

It is instructive for us to view various original constructions of canonical bases (see [Lu94]) as constructions for the QSPs of diagonal type \((U \otimes U, U)\) or for the degenerate QSP with \(U^\dagger = U \) (i.e., \(I_\bullet = I \)).

Canonical bases have numerous applications including category \(\mathcal{O} \), algebraic combinatorics, total positivity, cluster algebras, categorification, geometric and modular representation theory. It is our hope that the theory of canonical bases arising from QSPs can be further developed, and it will lead to new advances in some of these areas.

1.3. What was known? Let us recall the early effort toward the constructions of canonical bases for a very special case of quantum symmetric pairs, which is of type AIII/AIV with \(I_\bullet = \emptyset \). In [BW13], the authors constructed the intertwiner \(\Upsilon \) (an analogue of the quasi-\(\mathcal{R} \)-matrix in the QSP setting), proved \(\Upsilon \) is integral, and used it to define a new bar involution \(\psi = \Upsilon \circ \psi \) on any based \(U \)-module with a bar involution \(\psi \) to obtain a based \(U^\dagger \)-module. In particular, we obtain the \(\dagger \)-canonical basis on simple integrable \(U \)-modules and their tensor products. An application of such an \(\dagger \)-canonical basis (with a particular choice of parameters) [BW13] was to formulate the Kazhdan-Lusztig theory for (super) type B, which was an open problem for decades.

For type AIII/AIV with \(I_\bullet = \emptyset \), the modified \(\dagger \)-quantum group \(\tilde{U}^\dagger \) and its \(\dagger \)-canonical basis have been obtained in [BKLW, LW15] using flag varieties of type \(B/C \), generalizing the geometric realization of \(U \) by Beilinson-Lusztig-MacPherson [BLM]. The \(\dagger \)-canonical basis of \(U^\dagger \) admits positivity with respect to multiplication and comultiplication [LW15, FL15]. The \(\dagger \)-canonical basis of the quantum symmetric pair \((U, U^\dagger)\) with a different choice of parameters was used in [Bao16] to formulate the Kazhdan-Lusztig
theory for category \mathcal{O} of (super) type D. (Connection between quantum symmetric pair (U, U') and the type D category \mathcal{O} was observed in $\textit{ES13}$ independently from $\textit{BW13}$.)

1.4. Main results. Let us provide a detailed description of the main results.

1.4.1. The \mathfrak{i} quantum groups with parameters (and the quantum groups U) given in $\textit{Le99, Ko14}$ are defined over a field $\mathbb{K}(q^{1/d})$ for a field $\mathbb{K} \supset \mathbb{Q}$ containing some suitable roots of 1 and $d > 1$. Confirming an expectation stated in $\textit{BW13}$, Balagovic and Kolb $\textit{BK15a}$ showed the existence of a bar involution $\psi_{\mathfrak{i}}$ of the \mathfrak{i} quantum groups and determined the constraints on parameters. But for a canonical basis theory, it is more natural to work with algebras over the field $\mathbb{Q}(q)$. In this paper we give a definition of the \mathfrak{i} quantum group $U_{\mathfrak{i}}$ over the field $\mathbb{Q}(q)$ with slightly modified parameters; see Definition 3.5 (also compare $\textit{BK15}$). We further prove (see Lemma 3.10) the parameters can actually be chosen to be in $\mathbb{A} = \mathbb{Z}[q, q^{-1}]$ and the bar map $\psi_{\mathfrak{i}}$ makes sense on the $\mathbb{Q}(q)$-form $U_{\mathfrak{i}}$, as a prerequisite for the theory of \mathfrak{i}-canonical bases.

Denote by ψ the bar involution on U. Note the inclusion map $U_{\mathfrak{i}} \to U$ is not compatible with the two bar maps on $U_{\mathfrak{i}}$ and U. A basic ingredient which we shall need for \mathfrak{i}-canonical basis is the intertwiner Υ for the quantum symmetric pair (U, U').

Theorem A (Theorem 4.8). There is a unique family of elements $\Upsilon_{\mu} \in U_{\mu}^+$ such that $\Upsilon = \sum_{\mu} \Upsilon_{\mu} \in \widehat{U}^+$ intertwines the bar involutions on $U_{\mathfrak{i}}$ and U via the inclusion map and $\Upsilon_0 = 1$; that is, Υ satisfies the following identity (in a completion \hat{U} of U):

$$\psi_{\mathfrak{i}}(u) \Upsilon = \Upsilon \psi(u), \quad \text{for } u \in U_{\mathfrak{i}} \subset U.$$

The element Υ is called the intertwiner of the QSP. (Note that Υ for QSP of type AIII/AIV defined in $\textit{BW13}$ Theorem 2.10 lies in a completion of U^- (not U^+) due to a different convention on the comultiplication Δ.) Theorem A for general QSPs was expected by the authors and verified explicitly for the cases where $\mathbb{I}_\bullet = \emptyset$. A proof in full generality has appeared in the meantime in the work of Balagovic and Kolb $\textit{BK15}$ (where Υ was denoted by Ξ) toward the construction of universal \mathbb{K}-matrix, and so we will not reproduce it here. The intertwiner Υ can be thought as the analog of Lusztig’s quasi-\mathcal{R} matrix Θ, which intertwines the bar involution on U and the bar involution on $U \otimes U$. A twisted version of Θ is indeed the intertwiner for the QSP of diagonal type $(U \otimes U, U)$, where U is realized as the subalgebra of $U \otimes U$ via the coproduct; see Remark 4.10.

1.4.2. Recall Lusztig $\textit{Lu90, Lu94}$ constructed braid group operators $T'_{w,e}$ and $T''_{w,e}$ on U. The braid group action is used in the definition of U^+ when $\mathbb{I}_\bullet \neq \emptyset$.

Proposition B (Proposition 4.2). For any $i \in \mathbb{I}_\bullet$ and $e = \pm 1$, the braid group operators $T'_{i,e}$ and $T''_{i,e}$ restrict to automorphisms of U^+.

In Proposition 4.2 one finds explicit formulas for the actions of $T'_{i,e}$ and $T''_{i,e}$ on the generators of U^+. Different braid group action for some class of U^+ has been constructed in the literature (see $\textit{KP11}$ and references therein). Let W and $W_{\mathbb{I}_\bullet}$ be the Weyl groups.
associated to \(I \) and \(I^\bullet \), and let \(w_0 \) and \(w^\bullet \) denote the longest elements in \(W \) and \(W_{I^\bullet} \), respectively. Using Proposition [B], we prove (see Proposition 4.13)
\[
\Upsilon = T''_{w,e}(\Upsilon) = T''_{w,e}(\Upsilon), \quad \text{for all } w \in W_{I^\bullet}.
\]
Recall the subspace \(U^+(w) = U^+(w,1) \), for \(w \in W \), is defined in [Lu94, 40.2].

Proposition C (Proposition 4.15). The intertwiner \(\Upsilon \) lies in (a completion of) the subspace \(U^+(w_0w^\bullet) \).

The following is one of the key ingredients in our approach toward the canonical bases for quantum symmetric pairs of finite type.

Theorem D (Theorem 5.3). The intertwiner \(\Upsilon \) is integral, that is, we have \(\Upsilon \in \hat{A}U^+ \).

Theorem D is a generalization of the integrality of the quasi-\(R \)-matrix for quantum groups of finite type [Lu94, 24.1.6], and in the special case of QSP of type AIII/AIV with \(I^\bullet = \emptyset \) it was proved in [BW13]. The general case here takes much effort to establish.

1.4.3. The notion of a based \(U \)-module \((M,B)\) with a \(U \)-compatible bar involution \(\psi \) is formulated in [Lu94, Chapter 27]. We are interested in considering \(M \) as a \(U^\dagger \)-module by restriction, with a new bar involution \(\psi^\dagger = \Upsilon \circ \psi \) compatible with the bar map \(\psi \) on \(U^\dagger \). Theorem D implies that \(\psi^\dagger \) preserves the \(A \)-form of the module \(M \).

Theorem E (Theorem 5.7). The based \(U \)-module \((M,B)\) admits a \(\psi^\dagger \)-invariant basis \(\{b^\dagger | b \in B\} \), whose transition matrix with respect to the basis \(B \) is unip-triangular with off-diagonal entries in \(q^{-1}\mathbb{Z}[q^{-1}] \). (We call \(\{b^\dagger | b \in B\} \) the \(\dagger \)-canonical basis of \(M \).)

By the fundamental work of Lusztig and Kashiwara [Lu90, Ka91], any simple integrable \(U \)-module admits a canonical basis and hence is a based module. Similarly, by [Lu92], any tensor product of several simple integrable modules (over \(U \) of finite type) with its canonical basis is a based module. Hence we obtain the following corollary to Theorem E.

Corollary F (Theorems 5.10 and 5.11). Simple integrable \(U \)-modules and their tensor products admit \(\dagger \)-canonical bases.

For type AIII/AIV with \(I^\bullet = \emptyset \), Theorem E and Corollary F were established in [BW13]. The \(\dagger \)-canonical bases in \(V^{\otimes m} \otimes V^* \otimes n \), where \(V \) is the natural representation of \(U \), were used to define the Kazhdan-Lusztig polynomials for Lie superalgebras \(\mathfrak{osp} \) in [BW13, Bao16].

1.4.4. In contrast to \(U \), the qquantum group \(U^\dagger \) admits only a non-symmetric triangular decomposition (which becomes trivial in case \(I^\bullet = \emptyset \)). So the familiar approach toward canonical bases of quantum groups, starting with \(U^- \), is not available in the QSP setting. Besides, there is no obvious integral \(A \)-form of \(U^\dagger \) in general.

We study the modified form \(\hat{U}^\dagger \) of \(U^\dagger \), similar to the modified form \(\hat{U} \) of \(U \). The bar involution \(\psi \) on \(U^\dagger \) extends to a bar involution, again denoted by \(\psi \), on \(U^\dagger \). Even though \(U^\dagger \) is not a subalgebra of \(\hat{U} \), we can still view \(\hat{U} \) as a (left) \(U^\dagger \)-module naturally. We define \(\hat{A}\hat{U}^\dagger \) as the maximal \(A \)-subalgebra of \(\hat{U}^\dagger \) that preserves the integral form \(\hat{A}\hat{U} \).
through the natural action. It is not clear at all from the definition but will be proved in the end that $\check{\mathcal{U}}^t$ is a free \mathcal{A}-module.

Recall [Lu94, Chapter 25] Lusztig’s construction of canonical basis on $\check{\mathcal{U}}$ relies essentially on a projective system of based modules of the form $\check{\nu}L(\lambda + \nu) \otimes L(\mu + \nu)$, for $\lambda, \mu, \nu \in X^+$ as ν varies. We shall formulate a generalization of such projective systems in the QSP setting.

We denote by \mathcal{P} the parabolic subalgebra of $\check{\mathcal{U}}$ associated with $\mathbb{1}_\bullet$, and by $\check{\mathcal{P}}$ the modified form of \mathcal{P}. The intersection of the canonical basis on $\check{\mathcal{U}}$ with $\check{\mathcal{P}}$ forms the canonical basis of $\check{\mathcal{P}}$; cf. [Ka94]. We establish a $\mathbb{Q}(q)$-linear isomorphism $\check{\mathcal{U}}^t \check{1}_\lambda \cong \check{\mathcal{P}}^t \check{1}_\lambda$ (where $\check{\mathcal{X}}$ is an i-weight associated to λ; see §3.1), which allows one to regard $\check{\mathcal{P}}^t \check{1}_\lambda$ as an associated graded of $\check{\mathcal{U}}^t \check{1}_\lambda$.

Denote by η_λ and $\eta_{w\cdot \lambda}$ the highest weight vector and the unique canonical basis element of weight $w\cdot \lambda$ in a simple integrable module $L(\lambda)$, respectively. For $\lambda, \mu \in X^+$, consider the $\check{\mathcal{U}}$-submodule generated by $\eta_{w\cdot \lambda} \otimes \eta_\mu$ in the tensor product $\check{\mathcal{U}}$-module $L(\lambda) \otimes L(\mu)$ (which can be shown is the same as $\check{\mathcal{U}}^t$- and $\check{\mathcal{P}}$-submodule generated by $\eta_{w\cdot \lambda} \otimes \eta_\mu$):

$$L^t(\lambda, \mu) = \check{\mathcal{P}}(\eta_{w\cdot \lambda} \otimes \eta_\mu) = \check{\mathcal{U}}^t(\eta_{w\cdot \lambda} \otimes \eta_\mu).$$

Recall τ is the Dynkin diagram involution for a Satake diagram and we set $\nu^\tau = \tau(\nu)$. The significance of the modules $L^t(\lambda, \mu)$ is that

$$\check{\mathcal{P}}^t_{w\cdot \lambda + \mu} \cong \check{\mathcal{U}}^t_{w\cdot \lambda + \mu} \cong \lim_{\nu} L^t(\lambda + \nu^\tau, \mu + \nu),$$

where the inverse limit is understood as $\nu \mapsto \infty$.

One observes that $L^t(\lambda, \mu)$ is a based $\check{\mathcal{U}}$-module. Kashiwara [Ka94] further established the compatibility between the canonical basis on $\check{\mathcal{U}}$ with the canonical basis on $L^t(\lambda, \mu)$ under the obvious action, which allows a uniform parametrization of the canonical, and hence the i-canonical, basis on $L^t(\lambda, \mu)$. The universal \mathcal{K}-matrix for general QSP was constructed in [BK15], as an analog of Drinfeld’s universal \mathcal{R}-matrix for $\check{\mathcal{U}}$. (In cases when $\mathbb{1}_\bullet = \emptyset$ this was known to the authors, and it is a straightforward generalization of the construction of \mathcal{I} in type AIII/AIV in [BW13].) A slightly different treatment for \mathcal{I} is presented here and it makes sense over the field $\mathbb{Q}(q)$ (instead of the larger field $\mathbb{K}(q^{1/d})$ used in [BK15]). Using the universal \mathcal{K}-matrix we construct in Proposition 6.11 a unique $\check{\mathcal{U}}^t$-homomorphism (for $\nu \in X^+$)

$$\pi = \pi_{\lambda, \mu, \nu} : L^t(\lambda + \nu^\tau, \mu + \nu) \rightarrow L^t(\lambda, \mu), \quad \pi(\eta_{\lambda + \nu^\tau} \otimes \eta_{\mu + \nu}) = \eta_{\lambda} \otimes \eta_\mu.$$

Hence we have constructed a projective system of $\check{\mathcal{U}}^t$-modules $\{L^t(\lambda + \nu^\tau, \mu + \nu)\}_{\nu \in X^+}$. Lusztig’s original construction is recovered in the degenerate case when $\mathbb{1} = \mathbb{1}_\bullet$ and $\check{\mathcal{U}}^t = \check{\mathcal{U}}$.

However in contrast to Lusztig’s results in the quantum group setting we cannot claim the strong form of compatibility of i-canonical bases in the sense that the projection $\pi_{\lambda, \mu, \nu}$ is a based $\check{\mathcal{U}}$-module map. An interesting new phenomenon has already been observed in [BW13 §4.2] for QSP (where two i-canonical basis elements can be mapped to the same nonzero i-canonical basis element).
In this paper we prove an asymptotic compatibility of \mathfrak{v}-canonical bases in the projective system, that is, \mathfrak{v}-canonical basis elements are mapped to \mathfrak{v}-canonical basis elements with the same labels (thanks to [Ka94]) through the projection $\pi_{\lambda,\mu,\nu}$ when $\nu \to \infty$. Together with (1.1), this suffices to construct the \mathfrak{v}-canonical basis on $\hat{U}^1_{w_0\lambda+\mu}$. Actually, the \mathfrak{v}-canonical basis of $\hat{U}^1_{w_0\lambda+\mu}$ is parameterized by the canonical basis of $\hat{P}^1_{w_0\lambda+\mu}$.

Theorem G (Theorem 6.16, Corollary 6.18). The algebra \hat{U} admits a unique \mathfrak{v}-canonical basis \hat{B}, which is asymptotically compatible with the \mathfrak{v}-canonical basis on $L^1(\lambda,\mu)$, for $\lambda,\mu \in X^+$. Moreover, the basis \hat{B} is ψ_λ-invariant, and $A\hat{U}$ is a free A-module with basis \hat{B}.

1.4.5. **Bilinear forms.** Recall there is a non-degenerate symmetric bilinear form [Ka91, Lu94] on each simple integrable module $L(\lambda)$ defined via an anti-involution φ on U, with respect to which the canonical basis is almost orthonormal. We show that φ restricts to an anti-involution on $U^\mathfrak{v}$ (see Proposition 6.6). It follows by Corollary F and Lusztig’s results [Lu94, IV] that the \mathfrak{v}-canonical basis on $L(\lambda) \otimes L(\mu)$ is almost orthonormal with respect to the tensor product bilinear form $(\cdot,\cdot)_{\lambda,\mu}$. We prove in Lemma 6.23 that the bilinear form $(\cdot,\cdot)_{\lambda+\nu,\mu+\nu}$ converges as ν goes to ∞ through the projective system $\{L(\lambda+\nu,\mu+\nu)\}_{\nu \in X^+}$, and hence the limit defines a symmetric bilinear form (\cdot,\cdot) on $\hat{U}^\mathfrak{v}$; see Definition 6.24. The following theorem is a generalization of a similar characterization of the signed canonical basis for modified quantum groups [Lu94, Chapter 26].

Theorem H (Theorems 6.26 and 6.27). The \mathfrak{v}-canonical basis \hat{B} is almost orthonormal with respect to the symmetric bilinear form (\cdot,\cdot) on $\hat{U}^\mathfrak{v}$. Moreover, the signed \mathfrak{v}-canonical basis $(-\hat{B}) \cup \hat{B}$ is characterized by the almost orthonormality, integrality, and ψ_λ-invariance.

1.5. **Strategy of proofs.** Recall $U_q(\mathfrak{sl}_2)$ plays a fundamental role in the crystal and canonical basis theory of Lusztig and Kashiwara. To study the general quantum symmetrical pairs we need to study first in depth the quantum symmetrical pair of real rank one (c.f. [Le04, Section 4]). There are 8 different types of real rank one QSP; see Table 1. We formulate a notion of Levi subalgebras of $U^\mathfrak{v}$ (which are quantum groups by themselves). In particular, a general quantum group is generated by its Levi subalgebras of real and compact rank one. (Here a Levi subalgebra of compact rank one is a copy of $U_q(\mathfrak{sl}_2)$ associated to any $i \in I_\bullet$.)

Note that for QSP of real rank one, $U^+(w_0w_\omega)$ is a relatively small subspace of U^+. Proposition C makes it feasible for us to prove Theorem D for QSP of real rank one through brutal force case-by-case computation. Actually we essentially obtain inductive formulas for Υ in the real rank one cases; see Appendix A.

The proofs of the main theorems are proceeded in the following steps:

1. prove Theorem D for QSP of real rank one via case-by-case computations;
2. prove Theorem E and then Theorem G for QSP of real rank one;
3. prove Theorem D for QSP of arbitrary finite type using Theorem E and Theorem G for QSP of real rank one;
prove Theorem E and then Theorem G for QSP of arbitrary finite type;
(5) prove Theorem H for QSP of arbitrary finite type.

1.6. The organization. The paper is organized as follows. In Section 2 we review various basic constructions for the quantum group U. We study the based submodule $L'((\lambda, \mu))$ of the tensor product $L(\lambda) \otimes L(\mu)$ and the parabolic subalgebra P of U. We establish the compatibility between the canonical basis on the modified form \hat{P} and the canonical basis on $L'((\lambda, \mu))$.

In Section 3 we introduce the ι-root datum associated with a Satake diagram and define the corresponding coideal $Q(q)$-subalgebra U^ι of U with parameters. We also define the modified form \hat{U}^ι and an A-subalgebra \hat{A}^ι.

In Section 4 we prove the braid group operators $T_{w,e}''$ for $w \in W_\iota$ and the anti-involution φ on U restrict to automorphisms and an anti-involution, respectively, of U^ι. We show that Υ lies in (the completion of) the subspace $U^\iota(w_0 w \bullet)$.

In Section 5 we prove the integrality of the intertwiner Υ. The long computational proof for real rank one is given in Appendix A. We then establish the ι-canonical bases on based U-modules. We comment on the validity of several constructions for quantum symmetric pairs of Kac-Moody type. We plan to return in a future work to the construction of ι-canonical bases arising from QSP of Kac-Moody type.

In Section 6 we construct the project system of U^ι-modules $\{L'((\lambda + \nu^\tau, \mu + \nu))\}_{\nu \in \chi^+}$, prove the ι-canonical basis elements stabilize when $\nu \to \infty$, and construct the canonical basis elements of its real and compact rank one subalgebras. We also construct a non-degenerate symmetric bilinear form on \hat{U}^ι, with respect to which the signed canonical basis is shown to be almost orthonormal.

Acknowledgements. HB is partially supported by an AMS-Simons travel grant, and WW is partially supported by an NSF grant. We thank the following institutions whose support and hospitality helped to greatly facilitate the progress of this project: East China Normal University, Institute for Advanced Study, Institute of Mathematics at Academia Sinica, and Max-Planck Institute for Mathematics. We would like to thank Jeffrey Adams, Xuhua He, Stefan Kolb, and George Lusztig for helpful discussions, comments and their interest. An earlier version on the ι-canonical basis construction in the special cases when $\iota_\bullet = \emptyset$ (for finite and affine types) was completed in Spring 2015. Balagovic and Kolb’s work (in their goal of showing the universal \mathcal{X}-matrix provides solutions to the reflection equation) helped to address several foundational issues on QSP raised in our 2013 announcement on the program of canonical basis for general QSP, and we in turn use their results in the current version. We warmly thank them for their valuable contribution.

2. Quantum groups and canonical bases

In this preliminary section, we review the basics and set up notations for quantum groups and their modified forms, braid group actions, and canonical bases. We follow closely the book of Lusztig [Lu94]. We also review the less familiar construction of
parabolic subalgebras and their canonical bases, following [Ka94]. Theorem 2.6 is new in this generality.

2.1. The algebras \(f \) and \(U \). Let \((Y, X, \langle \cdot, \cdot \rangle, \cdots)\) be a root datum of finite type \((\mathbb{I}, \cdot)\) [Lu94, 1.1.1, 2.2.1]. We have a symmetric bilinear form \(\nu, \nu' \mapsto \nu \cdot \nu' \) on \(\mathbb{Z}[\mathbb{I}] \). For \(\mu = \sum_{i \in \mathbb{I}} \mu_i i \in \mathbb{Z}[\mathbb{I}] \), we let \(\text{ht}(\mu) = \sum_{i \in \mathbb{I}} \mu_i \). We have an embedding \(\mathbb{I} \subset X \) \((i \mapsto i')\), an embedding \(I \subset Y \) \((i \mapsto i)\) and a perfect pairing \(\langle \cdot, \cdot \rangle : Y \times X \to \mathbb{Z} \) such that \(\langle i, j' \rangle = \frac{2 \delta_{ij}}{|r_i |} \), for \(i, j \in \mathbb{I} \). The matrix \((\langle i, j' \rangle) = (a_{ij})\) is the Cartan matrix. We define a partial order \(\preceq \) on the weight lattice \(X \) as follows: for \(\lambda, \lambda' \in X \),

\[
\lambda \preceq \lambda' \quad \text{if and only if} \quad \lambda' - \lambda \in \mathbb{N}[\mathbb{I}].
\]

Let \(W \) be the corresponding Weyl group generated by the simple reflections \(s_i \), for \(i \in \mathbb{I} \). It naturally acts on \(Y \) and \(X \). Let \(R^\vee \subset Y \) be the set of coroots. We denote by \(\rho^\vee \in Y \) the half sum of all positive coroots. Let \(R \subset X \) be the set of roots. We denote by \(\rho \in X \) the half sum of all positive roots. Let \(W \) be the corresponding Weyl group with simple reflections \(s_i \) for \(i \in \mathbb{I} \). We denote the longest element of \(W \) by \(w_0 \).

Let \(q \) be an indeterminate. For any \(i \in \mathbb{I} \), we set \(q_i = q^{2i} \). Consider a free \(\mathbb{Q}(q)\)-algebra \(f \) generated by \(\theta_i \) for \(i \in \mathbb{I} \) associated with the Cartan datum of type \((\mathbb{I}, \cdot)\). As a \(\mathbb{Q}(q)\)-vector space, \(f \) has a weight space decomposition as \(f = \bigoplus_{\mu \in \mathbb{N}[\mathbb{I}]} f_\mu \), where \(\theta_i \) has weight \(i \) for all \(i \in \mathbb{I} \). For any \(x \in f_\mu \), we set \(|x| = \mu \).

For each \(i \in \mathbb{I} \), we define \(r_i, i^r \) to be the unique \(\mathbb{Q}(q)\)-linear maps on \(f \) such that

\[
\begin{align*}
\ r_i(1) &= 0, \quad \ r_i(\theta_j) = \delta_{ij}, \quad \ r_i(x) = x \theta_i(x) + q_i^{\mu_i} r_i(x), \\
\ i^r(1) &= 0, \quad \ i^r(\theta_j) = \delta_{ij}, \quad \ i^r(x) = q_i^{\mu_i} \ i^r(x) + i^r(x).
\end{align*}
\]

for all \(x \in f_\mu \) and \(x' \in f_{\mu'} \).

Let \(\langle \cdot, \cdot \rangle \) be the symmetric bilinear form on \(f \) defined in [Lu94, 1.2.3]. Let \(\mathbf{I} \) be the radical of the symmetric bilinear form \(\langle \cdot, \cdot \rangle \) on \(f \). For \(i \in \mathbb{I}, n \in \mathbb{Z} \) and \(s \in \mathbb{N} \), we define

\[
[n]_i = \frac{q^n_i - q^n_{-i}}{q^n_i - q^n_{-i}}, \quad \text{and} \quad [s]_i^n = \prod_{j=1}^s [j]_i.
\]

We shall also use the notation

\[
\left[\begin{array}{c} n \\ s \end{array} \right]_i = \frac{[n]_i^s}{[s]_i^n [n-s]_i^n}, \quad \text{for} \ 0 \leq s \leq n.
\]

It is known [Lu94] that \(\mathbf{I} \) is generated by the quantum Serre relations \(S(\theta_i, \theta_j) \), for \(i \neq j \in \mathbb{I} \), where

\[
S(\theta_i, \theta_j) = \sum_{s=0}^{1-a_{ij}} (-1)^s \left[\begin{array}{c} 1-a_{ij} \\ s \end{array} \right]_i \theta_i^s \theta_j \theta_i^{1-a_{ij} - s}.
\]

Let \(f = f/\mathbf{I} \). We have \(r_\ell(S(\theta_i, \theta_j)) = r^r(S(\theta_i, \theta_j)) = 0 \), for all \(\ell, i, j \in \mathbb{I} \) \((i \neq j)\). Hence \(r_\ell \) and \(r^r \) descend to well-defined \(\mathbb{Q}(q)\)-linear maps on \(f \).

We introduce the divided power \(\theta^{(a)}_i = \theta_i^a/\lfloor a \rfloor_i! \) for \(a \geq 0 \). Let \(\mathcal{A} = \mathbb{Z}[q, q^{-1}] \). Let \(A f \) be the \(\mathcal{A}\)-subalgebra of \(f \) generated by \(\theta_i^{(a)} \) for various \(a \geq 0 \) and \(i \in \mathbb{I} \).
Let \mathbf{U} be the quantum group associated with the root datum (\mathbb{I}, \cdot). The quantum group \mathbf{U} is the associative $\mathbb{Q}(q)$-algebra generated by E_i, F_i for $i \in \mathbb{I}$ and K_μ for $\mu \in \mathbb{Y}$, subject to the following relations:

\[
K_0 = 1, \quad K_\mu K_{\mu'} = K_{\mu+\mu'}, \text{ for all } \mu, \mu' \in \mathbb{Y},
\]

\[
K_\mu E_j = q^{(\mu, j')} E_j K_\mu, \quad K_\mu F_j = q^{-(\mu, j')} F_j K_\mu,
\]

\[
E_i F_j - F_j E_i = \delta_{i,j} \tilde{K}_i - \tilde{K}_{-i}, \quad \frac{q_i - q^{-1}_i}{q_i q_j^{-1}},
\]

\[
S(F_i, F_j) = S(E_i, E_j) = 0, \text{ for all } i \neq j \in \mathbb{I},
\]

where $\tilde{K}_{\pm i} = K_{\pm i}$, and $S(E_i, E_j)$ are defined as in (2.3).

Let $\mathbf{U}^+, \mathbf{U}^0$ and \mathbf{U}^- be the $\mathbb{Q}(q)$-subalgebra of \mathbf{U} generated by $E_i (i \in \mathbb{I})$, $K_\mu (\mu \in \mathbb{Y})$, and $F_i (i \in \mathbb{I})$ respectively. We identify $f \cong \mathbf{U}^-$ by matching the generators θ_i with F_i. This identification induces a bilinear form (\cdot, \cdot) on \mathbf{U}^- and $\mathbb{Q}(q)$-linear maps $r_i, r^{-1}_i (i \in \mathbb{I})$ on \mathbf{U}^-. Under this identification, we let \mathbf{U}^-_μ be the image of f_μ. Similarly we have $\mathbf{f} \cong \mathbf{U}^+$ by identifying θ_i with E_i. We let \mathbf{A}^μ (respectively, \mathbf{A}^μ_+) denote the image of \mathbf{A}^μ under this isomorphism, which is generated by all divided powers $E_i^{(a)} = E_i^a/[a]^i_!$ (respectively, $E_i^{(a)} = E_i^a/[a]^i_!$). The coproduct $\Delta: \mathbf{U} \rightarrow \mathbf{U} \otimes \mathbf{U}$ is defined as follows (for $i \in \mathbb{I}, \mu \in \mathbb{Y}$):

\[
\Delta(E_i) = E_i \otimes 1 + \tilde{K}_i \otimes E_i, \quad \Delta(F_i) = 1 \otimes F_i + F_i \otimes \tilde{K}_{-i}, \quad \Delta(K_\mu) = K_\mu \otimes K_\mu.
\]

The following proposition follows by checking the generating relations, which can also be found in [Lu94] 3.1.3., 3.1.12, 19.1.1].

Proposition 2.1.

1. There is an involution ω of the $\mathbb{Q}(q)$-algebra \mathbf{U} such that $\omega(E_i) = F_i$, $\omega(F_i) = E_i$, and $\omega(K_\mu) = K_{-\mu}$ for all $i \in \mathbb{I}$ and $\mu \in \mathbb{Y}$.
2. There is an anti-involution φ of the $\mathbb{Q}(q)$-algebra \mathbf{U} such that $\varphi(E_i) = q_i^{-1} F_i \tilde{K}_i$, $\varphi(F_i) = q_i^{-1} E_i \tilde{K}_i^{-1}$ and $\varphi(K_\mu) = K_{-\mu}$ for all $i \in \mathbb{I}$ and $\mu \in \mathbb{Y}$.
3. There is an anti-involution σ of the $\mathbb{Q}(q)$-algebra \mathbf{U} such that $\sigma(E_i) = E_i$, $\sigma(F_i) = F_i^*$ and $\sigma(K_\mu) = K_{-\mu}$ for all $i \in \mathbb{I}$ and $\mu \in \mathbb{Y}$.
4. There is a bar involution $\overline{\cdot}$ of the \mathbb{Q}-algebra \mathbf{U} such that $q \mapsto q^{-1}$, $\overline{E_i} = E_i$, $\overline{F_i} = F_i^*$, and $\overline{K_\mu} = K_{-\mu}$ for all $i \in \mathbb{I}$ and $\mu \in \mathbb{Y}$. (Sometimes we denote the bar involution on \mathbf{U} by ψ.)

2.2. Braid group actions and PBW basis. Recall from [Lu94] 5.2.1 that for each $i \in \mathbb{I}, e \in \{\pm 1\}$, and each finite-dimensional \mathbf{U}-module M, linear isomorphisms $T'_{i,e}$ and $T''_{i,e}$ on M are defined: for $\lambda \in X$ and $m \in M_\lambda$, we set

\[
T''_{i,e}(m) = \sum_{a,b,c \geq 0; -a+b-c = (i, \lambda)} (-1)^b q_i^{(b-ac)} E_i^{(a)} F_i^{(b)} E_i^{(c)} m,
\]

\[
T'_{i,e}(m) = \sum_{a,b,c \geq 0; a-b+c = (i, \lambda)} (-1)^b q_i^{(b-ac)} F_i^{(a)} E_i^{(b)} F_i^{(c)} m.
\]
These $T'_{i,e}$ and $T''_{i,e}$ induce automorphisms of U in the same notations such that, for all $u \in U$, $m \in M$, we have $T''_{i,e}(um) = T''_{i,e}(u)T''_{i,e}(m)$, and $T'_{i,e}(um) = T'_{i,e}(u)T'_{i,e}(m)$. More precisely, we have the following formulas for the actions the automorphisms $T'_{i,e}$, $T''_{i,e} : U \to U$ on generators $(i, j \in I, \mu \in Y)$:

$$T'_{i,e}(E_i) = -\tilde{K}_{i,e} F_i, \quad T'_{i,e}(F_i) = -E_i \tilde{K}_{-e,i}, \quad T'_{i,e}(K_\mu) = K_{s_i(\mu)};$$

$$T'_{i,e}(E_j) = \sum_{r+s = -(i,j')} (-1)^r q_i^{e_r} E_i^{(r)} E_j E_i^{(s)} \quad \text{for } j \neq i;$$

$$T'_{i,e}(F_j) = \sum_{r+s = -(i,j')} (-1)^r q_i^{e_r} F_i^{(r)} F_j (s) \quad \text{for } j \neq i;$$

$$T''_{i,-e}(E_i) = -F_i \tilde{K}_{-e,i}, \quad T''_{i,-e}(F_i) = -\tilde{K}_{e,i} E_i, \quad T''_{i,-e}(K_\mu) = K_{s_i(\mu)};$$

$$T''_{i,-e}(E_j) = \sum_{r+s = -(i,j')} (-1)^r q_i^{e_r} E_i^{(r)} E_j E_i^{(s)} \quad \text{for } j \neq i;$$

$$T''_{i,-e}(F_j) = \sum_{r+s = -(i,j')} (-1)^r q_i^{e_r} F_i^{(r)} F_j (s) \quad \text{for } j \neq i.$$

As automorphisms on U and as $\mathbb{Q}(q)$-linear isomorphisms on M, these $T''_{i,e}$ and $T''_{i,e}$ satisfy the braid group relations ([Lu94, Theorem 39.4.3]) of type (\mathbb{I}, \cdot). Hence for each $w \in W$, both $T''_{w,e}$ and $T''_{w,e}$ can be defined independent of the choices of reduced expressions of w. The following proposition can be found in [Lu94, 37.2.4].

Proposition 2.2. The following relations among $T''_{i,e}$ and $T''_{i,e}$ hold (for $i \in I, e = \pm 1$):

1. $\omega T''_{i,e} \omega = T''_{i,e}$ and $\sigma T''_{i,e} \sigma = T''_{i,-e}$, as automorphisms on U,
2. $T''_{i,e}(u) = T''_{i,-e}(u)$ and $T''_{i,e}(u) = T''_{i,-e}(u)$, for $u \in U$.

We shall focus on the automorphisms $T''_{i,+1}$ and $T''_{w,+1}$. Hence to simplify the notation, throughout the paper we shall often write

$$T_i = T''_{i,+1}, \quad \text{and} \quad T_w = T''_{w,+1}.$$

2.3. Canonical bases.

Let $M(\lambda)$ be the Verma module of U with highest weight $\lambda \in X$ and with a highest weight vector denoted by η or η_λ. We define a lowest weight U-module $\omega M(\lambda)$, which has the same underlying vector space as $M(\lambda)$ but with the action twisted by the involution ω given in Proposition 2.1. When considering η_λ as a vector in $\omega M(\lambda)$, we shall denote it by ξ or $\xi_{-\lambda}$.

Let

$$X^+ = \{ \lambda \in X \mid \langle i, \lambda \rangle \in \mathbb{N}, \forall i \in I \}$$

be the set of dominant integral weights. By $\lambda \gg 0$ we shall mean that the integers $\langle i, \lambda \rangle$ for all i are sufficiently large (in particular, we have $\lambda \in X^+$). The Verma module $\overline{M}(\lambda)$ associated to $\lambda \in X^+$ has a unique finite-dimensional simple quotient U-module, denoted by $L(\lambda)$. Similarly we define the U-module $\omega L(\lambda)$ of lowest weight $-\lambda$. We have $\omega L(-w_0 \lambda) = L(\lambda)$. For $\lambda \in X^+$, we let $A_L(\lambda) = \overline{A}^{-\eta}$ and $\omega L(\lambda) = \overline{A} U^+ \xi$ be the A-submodules of $L(\lambda)$ and $\omega L(\lambda)$, respectively.
In [Lu90] and [Ka91], the canonical basis B of \mathfrak{g} is constructed. Recall that we can identify f with both U^- and U^+. For any element $b \in B$, when considered as an element in U^- or U^+ under such identifications, we shall denote it by b^- or b^+, respectively. Subsets $B(\lambda)$ of B are also constructed for each $\lambda \in X^+$ such that $b \mapsto b^- \eta_\lambda$ is a bijection from $B(\lambda)$ to the set of canonical basis of $A L(\lambda)$; similarly $\{b^+ \eta_\lambda \mid b \in B(\lambda)\}$ gives the canonical basis of $\omega L(\lambda)$. We denote by $\mathcal{L}(\lambda)$ the $\mathbb{Z}[q^{-l}]$-submodule of $L(\lambda)$ spanned by $\{b^- \eta_\lambda \mid b \in B(\lambda)\}$. Similarly we denote by $\omega \mathcal{L}(\lambda)$ the $\mathbb{Z}[q^{-1}]$-submodule of $\omega L(\lambda)$ spanned by $\{b^+ \eta_\lambda \mid b \in B(\lambda)\}$.

Recall [Lu94] §4.1 the quasi-\mathcal{R}-matrix $\Theta := \sum_{\mu \in [N]} \Theta_\mu$ is defined in a suitable completion of $U^- \otimes U^+$. For any integrable U-modules M and M', Θ is a well-defined operator on $M \otimes M'$, such that

$$\Delta(u) \Theta (m \otimes m') = \Theta \Delta(u)(m \otimes m') \quad \text{and} \quad \Theta \Theta(m \otimes m') = m \otimes m',$$

for all $m \in M$, $m' \in M'$, and $u \in U$.

Lusztig developed the theory of based U-modules in [Lu94] Chapter 27. The simple integrable $U(\lambda)$ and $\omega U(\lambda)$ are both based U-modules. Given any based U-modules M and M', their tensor product is also a based U-module with the the bar involution $\psi = \Theta \circ (\psi \circ \psi)$. In particular, the tensor product $L(\lambda) \otimes L(\mu) = \omega L(-w_0 \lambda) \otimes L(\mu)$ is a based U-module for $\lambda, \mu \in X^+$ with basis $B(\lambda, \mu)$. Elements in $B(\lambda, \mu)$ are ψ-invariant and of the form

$$b_1^- \eta_\lambda \otimes b_2^- \eta_\mu \in b_1^- \eta_\lambda \otimes b_2^- \eta_\mu + \sum_{|b_1| \geq |b_2|, |b_2| \leq |b_2|} q^{-1} \mathbb{Z}[q^{-1}] b_1^- \eta_\lambda \otimes b_2^- \eta_\mu, b_1 \in B(\lambda), b_2 \in B(\mu).$$

For convenience, we shall declare that $b_1^- \eta_\lambda \otimes b_2^- \eta_\mu = 0$ whenever either $b_1 \notin B(\lambda)$ or $b_2 \notin B(\mu)$, or equivalently whenever either $b_1^- \eta_\lambda = 0$ or $b_2^- \eta_\mu = 0$ for $(b_1, b_2) \in B \times B$.

For $\lambda, \mu \in X^+$, we denote by $\mathcal{L}_{\lambda, \mu}$ the $\mathbb{Z}[q^{-1}]$-submodule of $L(\lambda) \otimes L(\mu)$ spanned by $b_1^- \eta_\lambda \otimes b_2^- \eta_\mu$ for all $(b_1, b_2) \in B(\lambda) \times B(\mu)$. Let $A \mathcal{L}_{\lambda, \mu} = A \otimes \mathbb{Z}[q^{-1}] \mathcal{L}_{\lambda, \mu}$.

Recall [Lu94] Chapter 23 that the modified (or idempotented) form

$$\hat{U} = \bigoplus_{\lambda, \lambda' \in X} \lambda' \mathcal{U}_{\lambda'}$$

is naturally an associative algebra (without unit) where $1\lambda 1\lambda' = \delta_{\lambda, \lambda'} 1\lambda$. The algebra \hat{U} admits a (U, U)-bimodule structure as well. Moreover, any weighted U-module can naturally be regarded as a \hat{U}-module by [Lu94] §23.1.4. Denote by $\hat{A} \hat{U}$ the A-subalgebra of \hat{U} generated by $\hat{A} U^- 1\lambda A U^+$ for various $\lambda \in X$.

For any $w \in W$ and $\lambda \in X^+$, we denote by

$$\eta_{w, \lambda} = \xi_{w, w_0(\lambda)} \in L(\lambda) = \omega L(-w_0 \lambda),$$

the unique canonical basis element of weight $w\lambda$. We shall use later (in Proposition 6.11) the following slight generalization of [Lu94] 27.1.7.

Lemma 2.3. There exists a unique homomorphism of U-modules

$$\chi : L(\lambda + \mu) \rightarrow L(\lambda) \otimes L(\mu)$$

such that $\chi(\eta_{w, \lambda + \mu}) = \eta_{w, \lambda} \otimes \eta_{w, \mu}$ for any (or all) $w \in W$.
Proof. We define $\chi : L(\lambda + \mu) \to L(\lambda) \otimes L(\mu)$ to be the homomorphism of U-modules such that $\chi(\eta_{\lambda+\mu}) = \eta_\lambda \otimes \eta_\mu$. Thanks to [La94 27.1.7], χ is an homomorphism of based modules. For any $w \in W$, $\eta_{w\lambda} \otimes \eta_{w\mu}$ is the unique canonical basis element in $L(\lambda) \otimes L(\mu)$ of weight $w(\lambda + \mu)$, since the weight subspace $(L(\lambda) \otimes L(\mu))_{w(\lambda + \mu)}$ is one-dimensional.

The uniqueness follows from the fact that $\eta_{w(\lambda + \mu)}$ is a cyclic vector of the U-module $L(\lambda + \mu)$. \hfill \-box

We collect the following results from [La94, Chapter 25] in Propositions 2.4-2.5 below. A slight improvement here is that we can use the same χ uniformly thanks to Lemma 2.3.

Proposition 2.4. Let $\lambda, \mu \in X^+$. The U-module homomorphism $\chi : L(\lambda + \mu) \to L(\lambda) \otimes L(\mu)$, $\eta_{\lambda+\mu} \mapsto \eta_\lambda \otimes \eta_\mu$, satisfies the following properties:

1. Let $b \in B(\lambda + \mu)$. We have $\chi(b^{-}\eta_{\lambda+\mu}) = \sum_{b_1, b_2} f(b; b_1, b_2) b_1 \eta_\lambda \otimes b_2 \eta_\mu$, summed over $b_1 \in B(\lambda)$, $b_2 \in B(\mu)$, with $f(b; b_1, b_2) \in \mathbb{Z}[q^{-1}]$. If $b^{-}\eta_\mu \neq 0$, then $f(b; b_1, b_2) = 1$ and $f(b; b_1, b_2) = 0$ for any $b_2 \neq b$. If $b^{-}\eta_\mu = 0$, then $f(b; b_1, b_2) = 0$ for any b_2;
2. Let $b \in B(-w_0(\lambda + \mu))$. We have $\chi(b^{+}\xi_{w_0 \lambda} \otimes b_1 \eta_\mu)$, summed over $b_1 \in B(-w_0 \lambda)$, $b_2 \in B(\mu)$, with $f(b; b_1, b_2) \in \mathbb{Z}[q^{-1}]$. If $b^{+}\xi_{w_0 \lambda} \neq 0$, then $f(b; b_1, b_2) = 1$ and $f(b; b_1, b_2) = 0$ for any $b_2 \neq b$. If $b^{+}\xi_{w_0 \lambda} = 0$, then $f(b; b_1, b_2) = 0$ for any b_2.

Proposition 2.5. Let $\zeta \in X$ and $b_1, b_2 \in B$.

1. There exists a unique element $b_1 \otimes b_2 \in A \bar{U}_1 \zeta$ such that
$$ (b_1 \otimes b_2)(\xi_{w_0 \lambda} \otimes \eta_\mu) = (b_1^{+} \xi_{w_0 \lambda} \otimes b_2) \eta_\lambda $$
for any $\lambda, \mu \in X^+$ such that $b_1 \in B(-w_0 \lambda)$, $b_2 \in B(\mu)$ and $w_0 \lambda + \mu = \zeta$.
2. We have $b_1 \otimes b_2 = b_1 \otimes b_2$.
3. The set $\bar{B} = \{ b_1 \otimes b_2 | \zeta \in X, (b_1, b_2) \in B \times B \}$ forms a (canonical) $\mathbb{Q}(q)$-basis of \bar{U} and an A-basis of $A \bar{U}$.

2.4. A based submodule. The following is a generalization of Kashiwara’s result in [Ka94 Lemma 8.2.1].

Theorem 2.6. Let $w \in W$, and $\lambda, \mu \in X^+$. For any $b \in \bar{B}$, we have
$$ b(\eta_{w\lambda} \otimes \eta_\mu) \in B(\lambda, \mu) \cup \{ 0 \}.$$

Proof. We prove by induction on $k_w = \ell(w_0) - \ell(w) = \ell(w w_0)$. When $k_w = 0$, we have $w = w_0$, this is Lusztig’s theorem (see Proposition 2.5).

Assume $k_w = k > 0$, and let $w w_0 = s_{i_1} s_{i_2} \cdots s_{i_k}$ be a reduced expression. We have
$$ \eta_{w\lambda} \otimes \eta_\mu = E_{i_1}^{(a_1)} E_{i_2}^{(a_2)} \cdots E_{i_k}^{(a_k)} (\eta_{w_0 \lambda} \otimes \eta_\mu),$$
for some $a_i \geq 0$ (uniquely determined by λ and w); moreover, we have $E_{i_1} (\eta_{w_0 \lambda} \otimes \eta_\mu) = 0$.

We define
$$ I_N = \sum_{i \in I} \bar{U} E_i^N + \sum_{i \in I} \bar{U} F_i^N, \quad \text{for } N \in \mathbb{N}. $$
Note that for \(x \in L_{w_\lambda}(\lambda, \mu) \), we have \(I_N(x) = 0 \) for \(N \gg 0 \). Then adapting [Ka94, Lemma 8.2.1] to our setting, we have the following two possibilities (depending on \(\varepsilon_i^\mu(b) \) therein)

\[
b \in \mathcal{U} E_{i_1} \quad \text{or} \quad bE_{i_1}^{(a_1)} \in b' + \mathcal{U} E_{i_1}^{(a_1+1)} + I_N, \text{ for any } N \text{ and some } b' \in \mathcal{B}.
\]

If \(b \in \mathcal{U} E_{i_1} \), we clearly have \(b(\eta_{w_\lambda} \otimes \eta_\mu) = 0 \). If \(bE_{i_1}^{(a_1)} \in b' + \mathcal{U} E_{i_1}^{(a_1+1)} + I_N \), then we have (by taking \(N \gg 0 \))

\[
b(\eta_{w_\lambda} \otimes \eta_\mu) = b' E_{i_2}^{(a_2)} \cdots E_{i_k}^{(a_k)}(\eta_{w_{w_\lambda}} \otimes \eta_\mu) = b'(\eta_{s_{i_1}w} \otimes \eta_\mu).
\]

Since \(\ell(s_{i_1}w_0) = k-1 \), the inductive assumption gives us \(b'(\eta_{s_{i_1}w} \otimes \eta_\mu) \in \mathcal{B}(\lambda, \mu) \cup \{0\} \). This proves the theorem. \(\square \)

Let \(W_{i_\bullet} = \langle s_i \in W | i \in I_\bullet \rangle \) be the Weyl group associated with a subset \(I_\bullet \subset I \). Let \(w_\bullet \) be the longest element in \(W_{i_\bullet} \). For \(\lambda, \mu \in X^+ \), we introduce the following \(\mathcal{U} \)-submodule of \(L(\lambda) \otimes L(\mu) \):

\[
L^i(\lambda, \mu) = \mathcal{U}(\eta_{w_\bullet \lambda} \otimes \eta_\mu).
\]

In case when \(I_\bullet = I \), we have \(L^i(\lambda, \mu) = \omega L(\lambda) \otimes L(\mu) \).

Corollary 2.7. Let \(I_\bullet \subset I \) and \(\lambda, \mu \in X^+ \). Then the \(\mathcal{U} \)-submodule \(L^i(\lambda, \mu) \) is a based submodule of \(L(\lambda) \otimes L(\mu) \) with canonical basis \(\mathcal{B}(\lambda, \mu) \cap L^i(\lambda, \mu) \).

Remark 2.8. The fact that \(L^i(\lambda, \mu) \) is a based submodule of \(L(\lambda) \otimes L(\mu) \) can also be proved by observing that

\[
L^i(\lambda, \mu) = (L(\lambda) \otimes L(\mu))[\geq w_\bullet(\lambda + \mu)]
\]

in the spirit of [Lu94, §27.1.2].

2.5. The parabolic subalgebra \(\mathcal{P} \).

For any \(I_\bullet \subset I \), let \(\mathcal{U}_{I_\bullet} \) be the \(\mathbb{Q}(q) \)-subalgebra of \(\mathcal{U} \) generated by \(F_i(i \in I_\bullet), E_i(i \in I_\bullet) \) and \(K_i(i \in I_\bullet) \). Let \(\mathcal{B}_{I_\bullet} \) be the canonical basis of \(f_{I_\bullet} \) (here \(f_{I_\bullet} \) is simply a version of \(f \) associated to \(I_\bullet \)). Then we have natural identifications \(\mathcal{U}_{I_\bullet}^+ \cong \mathcal{U}_{I_\bullet}^+ \cong f_{I_\bullet} \). As usual, for \(b \in \mathcal{B}_{I_\bullet} \), we shall denote by \(b^- \) the corresponding element in \(\mathcal{U}_{I_\bullet}^- \) and denote by \(b^+ \) the corresponding element in \(\mathcal{U}_{I_\bullet}^+ \) under such identifications.

Let \(\mathcal{P} = \mathcal{P}_{I_\bullet} \) be the \(\mathbb{Q}(q) \)-subalgebra of \(\mathcal{U} \) generated by \(\mathcal{U}_{I_\bullet} \) and \(\mathcal{U}^- \). For \(\lambda \in X^+ \), we denote by \(\omega L^\bullet(\lambda) \) the \(\mathcal{P} \)-submodule of \(\omega L(\lambda) \) generated by \(\xi_{-\lambda} \). Clearly \(\omega L^\bullet(\lambda) \) restricts to a simple \(\mathcal{U}_{I_\bullet}^- \)-module with lowest weight \(-\lambda \), and \(\omega L^\bullet(\lambda) \) admits a canonical basis \(\mathcal{B}_{I_\bullet}(\lambda) = \{ b \in \mathcal{B}(\lambda) | b^+ \xi_{-\lambda} \neq 0 \} = \mathcal{B}_{I_\bullet} \cap \mathcal{B}(\lambda) \).

We introduce the following subalgebra of \(\mathcal{U} \):

\[
\hat{\mathcal{P}} = \bigoplus_{\lambda \in X} \mathcal{P}1_\lambda.
\]

We further set \(\mathcal{A}\hat{\mathcal{P}} = \hat{\mathcal{P}} \cap \mathcal{A}\hat{\mathcal{U}} \).

Recall the canonical basis element \(b_1 \otimes \xi_{b_2} \in \hat{\mathcal{U}} \) from Proposition 2.5.

Proposition 2.9. [Ka94, Theorem 3.2.1] The set \(\hat{\mathcal{P}} \cap \mathcal{B} \) forms a \(\mathbb{Q}(q) \)-basis of \(\hat{\mathcal{P}} \) and an \(\mathcal{A} \)-basis of \(\mathcal{A}\hat{\mathcal{P}} \). Moreover, we have \(\hat{\mathcal{P}} \cap \mathcal{B} = \{ b_1 \otimes \xi_{b_2} | (b_1, b_2) \in \mathcal{B}_{I_\bullet} \times \mathcal{B}, \zeta \in X \} \).
We shall denote
\[\hat{\mathcal{B}}_\pi = \hat{\mathcal{P}} \cap \mathcal{B} = \{ b_1 \diamond \chi b_2 \mid (b_1, b_2) \in \mathcal{B}_\chi \times \mathcal{B}, \chi \in \mathcal{X} \} \]
and refer to it as the canonical basis of \(\hat{\mathcal{P}} \). It follows by construction that
\[\hat{\mathcal{B}}_{\pi \chi} := \hat{\mathcal{B}}_{\pi \chi} \mathcal{1}_\chi = \{ b_1 \diamond \chi b_2 \mid (b_1, b_2) \in \mathcal{B}_\chi \times \mathcal{B} \} \]
forms a (canonical) basis of \(\mathcal{P}_\chi \), for \(\chi \in \mathcal{X} \).

Let \(\chi, \chi' \in \mathcal{X} \) be such that \(\langle i, \chi \rangle = \langle i, \chi' \rangle \) for all \(i \in \mathcal{I}_\pi \). We have the following isomorphism of (left) \(\mathcal{P} \)-modules:
\[
(2.8) \quad p = p_{\chi, \chi'} : \mathcal{P}_\chi \to \mathcal{P}_{\chi'}
\]
such that \(p(1_\chi) = 1_{\chi'} \). The following proposition will be used later on.

Proposition 2.10. Let \(\chi, \chi' \in \mathcal{X} \) such that \(\langle i, \chi \rangle = \langle i, \chi' \rangle \) for all \(i \in \mathcal{I}_\pi \). Then the isomorphism \(p : \mathcal{P}_\chi \to \mathcal{P}_{\chi'} \) in (2.8) preserves the canonical bases. More precisely, for any \((b_1, b_2) \in \mathcal{B}_\chi \times \mathcal{B} \), we have \(p(b_1 \diamond \chi b_2) = b_1 \diamond \chi b_2 \).

Proof. Let \(\mu, \lambda \in \mathcal{X}^+ \) be such that \(\mu - \lambda = \chi \). Let \(\lambda' = \lambda + \chi - \chi' \). Clearly by taking \(\lambda \gg 0 \), we can have \(\lambda' \in \mathcal{X}^+ \). We shall assume \(\lambda \gg 0 \) and \(\lambda' \in \mathcal{X}^+ \).

We have a natural isomorphism of \(\mathcal{P} \)-modules \(\gamma : \omega^* L^\bullet (\lambda) \to \omega^* L^\bullet (\lambda') \), which maps the canonical basis of \(\omega^* L^\bullet (\lambda) \) to the canonical basis of \(\omega^* L^\bullet (\lambda') \). Let us consider the induced isomorphism \(\gamma \otimes \text{id} \) on the tensor product:

\[
\begin{align*}
\omega^* L^\bullet (\lambda) \otimes L(\mu) &\xrightarrow{\gamma \otimes \text{id}} \omega^* L^\bullet (\lambda') \otimes L(\mu) \\
\omega L(\lambda) \otimes L(\mu) &\xrightarrow{\psi} \omega L(\lambda') \otimes L(\mu)
\end{align*}
\]
Notice that the bar involution, \(\bar{\psi} \), on \(\omega L(\lambda) \otimes L(\mu) \) is defined as \(\bar{\psi} = \Theta \circ (\psi \otimes \psi) \), where \(\Theta = \sum_{\mu \in N[I_\pi]} \Theta_{\mu}^\perp \otimes \Theta_{\mu}^+ \). The subspace \(\omega^* L^\bullet (\lambda) \otimes L(\mu) \) is stable under the bar involution \(\bar{\psi} \) and clearly admits a canonical basis \(B(-w_0 \lambda, \mu) \cap (\omega^* L^\bullet (\lambda) \otimes L(\mu)) \). Similarly \(\omega^* L^\bullet (\lambda') \otimes L(\mu) \) admits a canonical basis \(B(-w_0 \lambda', \mu) \cap (\omega^* L^\bullet (\lambda') \otimes L(\mu)) \).

The actions of \(\bar{\psi} \) on \(\omega^* L^\bullet (\lambda) \otimes L(\mu) \) and \(\omega^* L^\bullet (\lambda') \otimes L(\mu) \) are given by the composition \(\sum_{\mu \in N[I_\pi]} \Theta_{\mu}^\perp \otimes \Theta_{\mu}^+ \). Note that \(\gamma \otimes \text{id} \) intertwines the actions of \(\psi \otimes \psi \) on \(\omega^* L^\bullet (\lambda) \otimes L(\mu) \) and \(\omega^* L^\bullet (\lambda') \otimes L(\mu) \). The map \(\gamma \otimes \text{id} \) also commutes with the operator \(\sum_{\mu \in N[I_\pi]} \Theta_{\mu}^\perp \otimes \Theta_{\mu}^+ \), since we have \(\Theta_{\mu}^\perp \in \mathcal{P} \) for \(\mu \in N[I_\pi] \). Hence the map \(\gamma \otimes \text{id} \) intertwines with the bar involutions \(\bar{\psi} \) on \(\omega^* L^\bullet (\lambda) \otimes L(\mu) \) and \(\omega^* L^\bullet (\lambda') \otimes L(\mu) \). It follows by the uniqueness of canonical basis that \(\gamma \otimes \text{id} \) maps the canonical basis on \(\omega^* L^\bullet (\lambda) \otimes L(\mu) \) to the canonical basis on \(\omega^* L^\bullet (\lambda') \otimes L(\mu) \).

The construction above works for all \(\lambda, \mu \gg 0 \) with \(\mu - \lambda = \chi \), and hence the proposition follows from Lusztig’s construction of canonical basis on \(\hat{\mathcal{U}} \) in [Lu94, Theorem 25.2.1] as well as Proposition 2.9.

\(\square \)
3. Quantum symmetric pairs: definitions and first properties

In this section we formulate quantum symmetric pairs \((U, U')\) over \(\mathbb{Q}(q)\) and a modified form of the algebra \(U\). The quantum symmetric pairs of finite type are constructed in terms of Satake diagrams, which specify a subset \(I_\bullet \subset I\) of black nodes and a diagram involution. We introduce admissible subdiagrams of Satake diagrams (of real rank one) and the corresponding Levi subalgebras of \(U\) (of real rank one). We formulate a connection between \(U\) and the parabolic subalgebra of \(U\) associated to \(I_\bullet\).

3.1. The \(\nu\)-root datum. Let \((Y, X, \langle \cdot, \cdot \rangle, \cdots)\) be a root datum of type \((I, \cdot)\). We call a permutation \(\tau\) of the set \(I\) an involution of the Cartan datum \((I, \cdot)\) if \(\tau^2 = \text{id}\) and \(\tau(i) \cdot \tau(j) = i \cdot j\) for \(i, j \in I\). Note we allow \(\tau = 1\). We further assume that \(\tau\) extends to an involution on \(X\) and an involution on \(Y\), respectively, such that the perfect bilinear pairing is invariant under the involution \(\tau\). Such involutions \(\tau\) on \(X\) and \(Y\) exist and are unique for the simply connected or adjoint root datum.

For a subset \(I_\bullet \subset I\), let \(W_{I_\bullet}\) be the parabolic subgroup of \(W\) generated by simple reflections \(s_i\) with \(i \in I_\bullet\). Let \(w_\bullet\) be the longest element in \(W_{I_\bullet}\). Let \(R_\nu\) denote the set of coroots associated to the simple coroots \(I_\nu \hookrightarrow Y\), and let \(R_\bullet\) denote the set of roots associated to the simple roots \(I_\bullet \hookrightarrow X\). Let \(\rho_\nu\) be the half sum of all positive coroots in the set \(R_\nu\), and let \(\rho_\bullet\) be the half sum of all positive roots in the set \(R_\bullet\). We shall write

\[
(3.1) \quad I_\circ = I \setminus I_\bullet.
\]

We recall the following definition of an admissible pair \((I_\bullet, \tau)\) (cf. \([\text{Ko14, Definition 2.3}]\)).

Definition 3.1. A pair \((I_\bullet, \tau)\) consisting of a subset \(I_\bullet \subset I\) and an involution \(\tau\) of the Cartan datum \((I, \cdot)\) is called admissible if the following conditions are satisfied:

1. \(\tau(I_\bullet) = I_\bullet\);
2. The action of \(\tau\) on \(I_\bullet\) coincides with the action of \(-w_\bullet\);
3. If \(j \in I_\circ\) and \(\tau(j) = j\), then \(\langle \rho_\nu j, j' \rangle \in \mathbb{Z}\).

Note that

\[
(3.2) \quad \theta = -w_\bullet \circ \tau
\]

is an involution of \(X\), as well as an involution of \(Y\), thanks to \(\tau \circ w_\bullet \circ \tau = w_\bullet\). (Note our convention on \(\theta\) in \([\text{BW13}]\) differs by a sign from here.)

We introduce

\[
(3.3) \quad X_\nu = X / \tilde{X}, \quad \text{where} \quad \tilde{X} = \{ \lambda - \theta(\lambda) | \lambda \in X \}, \quad Y_\nu = \{ \mu \in Y | \theta(\mu) = \mu \}.
\]

We shall call \(X_\nu\) the \(\nu\)-weight lattice (even though \(X_\nu\) is not always a lattice), and call \(Y_\nu\) the \(\nu\)-root lattice, respectively. For any \(\lambda \in X\) denote its image in \(X_\nu\) by \(\overline{\lambda}\). By definition, there is a well-defined bilinear pairing by abuse of notation

\[
\langle \cdot, \cdot \rangle : Y_\nu \times X_\nu \longrightarrow \mathbb{Z}
\]

defined by \(\langle \mu, \overline{\lambda} \rangle := \langle \mu, \lambda \rangle\), where \(\lambda \in X\) is any preimage of \(\overline{\lambda}\) and \(\mu \in Y_\nu\).
3.2. Satake subdiagrams of real rank one. According to Kolb [Ko14], the admissible pairs of finite type (excluding the trivial case when $\mathbb{I} = 1_{\bullet}$) are in bijection with the Satake diagrams [Ar62] arising from classification of real simple Lie algebras. (Beware that there is a hidden involution on the black dots when the number of black nodes is odd for type DI/DII.) These Satake diagrams, consist of black and white nodes with arrows; the set of black nodes corresponds to \mathbb{I}_{\bullet} and the involution τ is expressed in terms of 2-sided arrows on white nodes. We reproduce from loc. cit. the Satake diagrams in Table 4 at the end of this paper for the reader’s convenience. For the rest of this section, we consider root data $(Y, X, \langle \cdot, \cdot \rangle, \ldots)$ of finite type (\mathbb{I}, \cdot) and an admissible pair $(\mathbb{I}_{\bullet}, \tau)$. The number of τ-orbits of white nodes in a Satake diagram is called its real rank.

Definition 3.2. Let D be a Satake diagram with a set \mathbb{I}_{\circ} of white nodes. Given a $\langle \tau \rangle$-orbit \mathfrak{o} of white nodes in D, the removal of all white nodes in $\mathbb{I}_{\circ} \setminus \mathfrak{o}$ and their adjacent edges in D produces a diagram $D_\mathfrak{o}$. The connected subdiagram of $D_\mathfrak{o}$ containing \mathfrak{o} is call a subdiagram of real rank one (associated to \mathfrak{o}).

By definition, subdiagrams of real rank one of a Satake diagram D are parametrized by the $\langle \tau \rangle$-orbits of white nodes of D.

Example 3.3. The Satake diagram of type $EIII$ has 2 subdiagrams of real rank one: $\circ - \bullet - \bullet$ of type $AIII$, and $\bullet - \circ$ of type DI.

By inspection, there are eight types of local configurations of Satake diagrams of real rank one as listed in Table 1. Note there is no black nodes and the two white nodes are connected in the type AIV for $n = 2$, and so it differs from type $AIII_{11}$.

In Table 2 (where SP stands for symmetric pairs), for each Satake diagram we list the possible Satake subdiagram of real rank one in the sense of Definition 3.2. For several crucial arguments in this paper we shall reduce to the types of real rank one and do case-by-case analysis.

Table 1. Satake diagrams of symmetric pairs of real rank one
Table 2. Subdiagrams of real rank one in Satake diagrams

SP Type	A	AI	AII	AIII	AIV	BI	BII
Local	AI	AII	AII	AIII	AIV	BII	BII

SP Type	CI	CII	DI	DII	DIII	EI	
Local	AI	AII	AII	AIII	AIV	BII	BII

SP Type	EVI	EVII	EVIII	EIX	FI	FII	G
Local	AI	AII	AII	AIII	AIV	DII	AII

In analogy with subdiagrams of real rank one, we call a single black node of a Satake diagram a subdiagram of \textit{compact rank one}.

Definition 3.4. An admissible subdiagram of a Satake diagram D is a full subdiagram whose vertex set is the union of subdiagrams of compact rank one and subdiagrams of real rank one of D.

(Hence there are two kinds of \textit{minimal} admissible subdiagrams of a Satake diagram: (i) subdiagrams of real rank one, and (ii) subdiagrams of compact rank one.)

3.3 The quantum group \mathbf{U}^ι over $\mathbb{Q}(q)$

The permutation τ of \mathbb{I} induces an isomorphism of \mathbf{U}, denoted also by τ, which sends $E_i \mapsto E_{\tau i}$, $F_i \mapsto F_{\tau i}$, and $K_\mu \mapsto K_{\tau \mu}$. Let

$$\theta := T_{w^*} \circ \tau \circ \omega$$

be an automorphism of \mathbf{U}. (As it will not cause confusion, here we abuse notation to use the same θ as in (3.2), which is actually a shadow of the current involution on the (co)weight level.)

Definition 3.5. The algebra \mathbf{U}^ι, with parameters

$$\varsigma_i \in \pm \mathbb{Q}^*, \quad \kappa_i \in \mathbb{Z}[q, q^{-1}],$$

for $i \in \mathbb{I}_0$, is the $\mathbb{Q}(q)$-subalgebra of \mathbf{U} generated by the following elements:

- $F_i + \varsigma_i T_{w^*}(E_{\tau i}) \tilde{K}_i^{-1} + \kappa_i \tilde{K}_i^{-1}$ ($i \in \mathbb{I}_0$),
- K_μ ($\mu \in Y^*$),
- F_i ($i \in \mathbb{I}_\bullet$),
- E_i ($i \in \mathbb{I}_\bullet$).

The parameters are required to satisfy Conditions (3.5)-(3.8):

1. $\kappa_i = 0$ unless $\tau(i) = i, \langle i, j \rangle = 0 \forall j \in \mathbb{I}_\bullet$, and $\langle k, i' \rangle \in 2\mathbb{Z} \forall k = \tau(k) \in \mathbb{I}_0$,
2. $\overline{\kappa}_i = \kappa_i$,
3. $\varsigma_i = \varsigma_{\tau i}$ if $i \cdot \theta(i) = 0$,
4. $\varsigma_i \cdot \varsigma_{\tau i} = (-1)^{(2\rho^\vee \cdot \iota')} q_i^{-\langle i, 2\rho^\vee + w^* \iota' \rangle}$.

By definition, \mathbf{U}^ι contains \mathbf{U}_\bullet^ι as a subalgebra. We have

$$\Delta : \mathbf{U}^\iota \longrightarrow \mathbf{U}^\iota \otimes \mathbf{U},$$
that is, \(U \) is a (right) coideal subalgebra of \(U \). The pair \((U, U')\) is called a \textit{quantum symmetric pair}, as its \(q \rightarrow 1 \) limit is the classical symmetric pair (cf. \cite{Ar62 OV} and references therein). The algebra \(U' \) on its own will be also referred to as the \textit{quantum group}.

\textbf{Remark 3.6.} The foundation of quantum symmetric pairs was established by G. Letzter \cite{Le02 Le03} and Kolb \cite{Ko14} (also see \cite{BK15}). We refer to these papers and the references therein for more original motivations and historical remarks. In the literature, the quantum group \(U' \) was defined over some field \(K(q) \) with \(d > 1 \) and a field \(K \supset Q \) containing some roots of 1 of characteristic zero (see \cite{BK15, Remark 2.3}). To develop a theory of canonical basis, it is natural to formulate the algebra \(U' \) over the field \(Q(q) \) as we did in \cite{BW13}; this is made possible by \cite{BK15, Remark 5.2 and its preceding paragraph, §5.4}.

\textbf{Remark 3.7.} The precise relations between constraints for parameters for \(U' \) in this paper and in \cite{BK15} are as follows. Our notations correspond to those in \cite{BK15, §5} in the following way: \(\kappa_i \leftrightarrow s_i, \varsigma_i \leftrightarrow -c_{i,s}(\tau(i)) \). Our Condition \((3.5)\) is \cite{BK15 (5.7)}, Condition \((3.6)\) is \cite{BK15 (5.15)}, and Condition \((3.7)\) is \cite{BK15 (5.6)} where we use \cite{BK15 (5.2)}. In particular, our formulation does not use their parameters \(c_i, s(\tau(i)) \) separately.

Condition \((3.8)\) (in the presence of \((3.4)\)) implies (but is inequivalent to) \cite{BK15 (5.16)}, if we take into account \cite{BK15 (5.1)-(5.2), Remark 5.2}. More precisely, our condition follows from theirs by imposing the additional condition that their \(c_i \) (or our \(\varsigma_i \)) is a monomial in \(q \) and hence \(c_i = c_i^{-1} \). Our stronger Condition \((3.4)\) is needed for the integral form of \(U' \) and the validity of Proposition 4.6 below (Remark 4.7).

Lemma 3.10 below computes the values of the parameters \(\varsigma_i \) for \(i \in \mathbb{I}_0 \) satisfying \((3.4)\) and \((3.7)-(3.8)\).

We shall write

\[
B_i = \begin{cases}
F_i + s_i T_w(E_{\tau i}) K_i^{-1} + \kappa_i K_i^{-1} & \text{if } i \in \mathbb{I}_0; \\
F_i & \text{if } i \in \mathbb{I}_1.
\end{cases}
\]

As can be found in \cite{Ko14 (7.3)], we derive from definition that, for \(i \in \mathbb{I}_1 \) and \(j \in \mathbb{I}_0 \),

\[
E_i B_j - B_j E_i = \delta_{i,j} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}.
\]

\textbf{Remark 3.8.} A presentation of the algebra \(U' \) with generators \(B_i (i \in \mathbb{I}_0), \ K_\mu (\mu \in Y') \) and \(E_i (i \in \mathbb{I}_0) \) has been obtained in \cite{Le02 Ko14} (see \cite{BK15a, Section 3.2}).

Let \(U'^{-} \) be the subalgebra of \(U' \) generated by \(B_i \) for \(i \in \mathbb{I}_0 \). Let \(U'^{0} \) be the subalgebra of \(U' \) generated by \(K_\mu (\mu \in Y') \). Let \(U'^{+} \) be the subalgebra of \(U' \) generated by \(E_i \) for \(i \in \mathbb{I}_0 \). The following corollary follows from \cite{Ko14 Proposition 6.2} (which goes back to G. Letzter for finite type).

\textbf{Corollary 3.9.} The algebra \(U' \) admits a triangular decomposition, that is, the following multiplication map is a \(\mathbb{Q}(q) \)-linear isomorphism:

\[
m : U'^{-} \otimes U'^{0} \otimes U'^{+} \longrightarrow U'.
\]
(Note that $U_{11}^+ = U_{1*}^+$.)

3.4. **Parameters.** By Remark 3.7, our parameters satisfy stronger constraints than those in [BK15], and in next lemma we ensure the existence of solutions of $\varsigma_i \in \pm q^2$ ($i \in \mathbb{I}_0$) which satisfy Conditions (3.7)–(3.8). As these conditions are local, it suffices to consider the Satake (sub)diagrams of real rank one in Table 3.

Lemma 3.10. The values of ς_i for quantum symmetric pairs of real rank one are given in Table 3.

AII^3	$AIII_{11}$	AIV, $n \geq 2$	BII, $n \geq 2$	CII, $n \geq 3$	DII, $n \geq 4$	FII	
$\pm q_1^{-1}$	$\pm q$	3.11	3.12	$\pm q^{2n-3}$	$\pm q^{n-1}$	$\pm q^{n-2}$	$\pm q^n$

Proof. We shall compute $(-1)^{(2\rho_{\bullet}^\vee,\alpha_i)}q_i^{-(i,2\rho_{\bullet}^\vee + w_{\bullet}^*\tau_1)}$ in (3.8) case by case following Table 1 and the labeling therein. For $i \in \mathbb{I}_1$, we sometimes use the notation α_i (instead of i) for the corresponding element in $\mathbb{I} \subset X$ and use the notation α_i' (instead of i) for the corresponding element in $\mathbb{I} \subset Y$.

For (AI$_1$) We have $(-1)^{(2\rho_{\bullet}^\vee,\alpha_i)}q_i^{-(i,2\rho_{\bullet}^\vee + w_{\bullet}^*\tau_1)} = q_1^{i-2}$. Then we can clearly take $\varsigma_1 = \pm q_1^{-1}$.

For (AI$_3$) We have $\rho_{\bullet}^\vee = \frac{1}{2}\alpha_1^\vee + \frac{i}{2}\alpha_2^\vee$, $\rho_{\bullet} = \frac{1}{2}\alpha_1 + \frac{i}{2}\alpha_3$ and $w_{\bullet}^*\tau_2 = \alpha_1 + \alpha_2 + \alpha_3$. Therefore we have $\langle 2\rho_{\bullet}^\vee,\alpha_2 \rangle = 0$ and $-\langle \alpha_2',2\rho_{\bullet}^\vee + w_{\bullet}^*\tau_2 \rangle = 2$. Hence (3.8) becomes $\varsigma_2^2 = q_2^2$ and we can take $\varsigma_2 = \pm q$ (by noting $q_2 = q$).

For (AIII$_{11}$) Note $\tau(\alpha_1) = \alpha_2$, $q_1 = q$. Condition (3.7) applies in this case and gives us $\varsigma_1 = \varsigma_2$. Also it follows by (3.8) that $\varsigma_1\varsigma_2 = 1$. Hence

\[(3.11) \quad \varsigma_1 = \varsigma_2 = \pm 1.\]

For (AIV) Note $\tau(\alpha_1) = \alpha_n$, $q_1 = q$. We have $\langle 2\rho_{\bullet}^\vee,\alpha_1 \rangle = \langle \alpha_1^\vee,2\rho_{\bullet} \rangle = 2n$, and $\langle \alpha_1^\vee,w_{\bullet}\alpha_n \rangle = -1$. Condition (3.7) does not apply. It follows by (3.8) that

\[(3.12) \quad \varsigma_1\varsigma_n = (-1)^n q^{n-1}.\]

Hence we can choose $\varsigma_1,\varsigma_n \in \pm q^2$.

For (BII) Let $n \geq 2$. We have

$$\rho_{\bullet}^\vee = \sum_{i=2}^{n-1} \frac{(2n-i)(i-1)}{2} \alpha_i^\vee + \frac{n(n-1)}{4} \alpha_n^\vee,$$

$$\rho_{\bullet} = \sum_{i=2}^{n-1} \frac{(2n-i-1)(i-1)}{2} \alpha_i + \frac{(n-1)^2}{2} \alpha_n,$$

$$w_{\bullet}^*\tau(\alpha_1) = \alpha_1 + 2\alpha_2 + \cdots + 2\alpha_{n-1} + 2\alpha_n.$$

Therefore we have $\langle 2\rho_{\bullet}^\vee,\alpha_1 \rangle = -(2n-2)$, $-\langle \alpha_1^\vee,2\rho_{\bullet}^\vee + w_{\bullet}^*\tau_1 \rangle = 3n$, and (3.8) becomes $\varsigma_1^2 = q_1^{2n-3}$. Since $q_1 = q^2$, we can take $\varsigma_1 = \pm q^{2n-3}$.

Remark. This finishes the proof.

κ

the middle node fixed by

τ

we have a quantum symmetric pair

\((U, U^\vee) \) is a Satake diagram itself. We sometimes denote the quantum symmetric pair

\((U_1, U_1^\vee) \) associated to a Satake diagram \(D \) with a root datum \(I \) by \((U_I, U_I^\vee) \). Let \(A \) be an admissible subdiagram (with root datum \(J \)) of the Satake diagram \(D \). Then we have a quantum symmetric pair \((U_J, U_J^\vee) \).

Lemma 3.13. The coideal subalgebra \(U_J^\vee \) of \(U_J \) (whose parameter set is the restriction from the parameter set of \(U^\vee \)) is naturally a subalgebra of \(U^\vee \).
Proof. Let us use notation \tilde{U}_\bullet^μ to indicate we are talking about the algebra U^μ of the root datum \mathcal{J}. Let $i \in \mathbb{I}_0 \cap \mathcal{J}$. Recall from (3.9) that $B_i = F_i + \zeta_i T_{w_i}(E_{ri}) \tilde{K}^{-1}_i$ in U^μ, and $B_i = F_i + \zeta_i T_{w_i}(E_{ri}) \tilde{K}^{-1}_i + \kappa_i \tilde{K}^{-1}_i$ in U^μ_\bullet. A simple key observation here is that $T_{w_i}(E_{ri}) = T_{w_i}(E_{ri})$, which is a direct consequence of the definitions of subdiagrams of real rank one and admissible subdiagrams. The lemma follows. \hfill \square

In light of Lemma 3.13 we make the following definition.

Definition 3.14. A subalgebra of U^μ of the form U^μ_\bullet associated to some admissible subdiagram of D is called a **Levi subalgebra**. (Some reader might prefer to call the subalgebra $U^\mu_\bullet \mathfrak{d} \subseteq U^\mu$ a Levi subalgebra of U^μ.) Associated to a subdiagram of D of real (respectively, compact) rank one, U^μ_\bullet is called a Levi subalgebra of U^μ of real (respectively, compact) rank one.

A Levi subalgebra of U^μ of compact rank one is very simple as it is always isomorphic to $U^\mu_0(\mathfrak{s}\mathfrak{l}_2)$; it is a basic building block here as for quantum groups. Levi subalgebras of U^μ of real rank one, or quantum groups of real rank one, are new (rich and sophisticated) basic building blocks for the theory of quantum symmetric pairs.

3.6. **The bar involution.** The following (or rather its variant on the modified quantum group below) plays a fundamental role in the theory of ι-canonical basis.

Lemma 3.15. There is a unique anti-linear bar involution of the \mathbb{Q}-algebra U^μ, denoted by $\overline{\cdot}$ or $\overline{\psi}_i$, such that

\[
\overline{\psi}_i(q) = q^{-1}, \quad \overline{\psi}_i(B_i) = B_i \quad (i \in \mathbb{I}), \quad \overline{\psi}_i(E_i) = E_i \quad (i \in \mathbb{I}_0), \quad \overline{\psi}_i(K_\mu) = K_{-\mu} \quad (\mu \in Y^\vee).
\]

Remark 3.16. The bar involution for U^μ in the special case of type AIII/AlV (with $\mathbb{I}_0 = \emptyset$) was proved in [BW13] and [ES13] independently. The existence of the bar involutions on a general quantum group U^μ was stated in [BW13 §0.5] and verified by the authors for numerous examples, as it is a prerequisite for the theory of the canonical bases announced therein. A complete proof for Lemma 3.15 was presented in [BK15a] over $\mathbb{K}(q^{1/2})$ for certain field \mathbb{K} containing roots of 1, where they determined the precise constraints on the parameters.

3.7. **The modified quantum group.** Following the by now standard construction in quantum groups [Lu94 IV], we can define a modified version of the quantum groups (this was first considered in [BKLW] in a special case of type AIII/AlV). Let $\lambda', \lambda'' \in X_+$, we set

\[
\lambda' U^\lambda' \lambda'' = U^\mu \bigg/ \left(\sum_{\mu \in Y^\vee} (K_\mu - q^{(\mu, \lambda')}) U^\mu + \sum_{\mu \in Y^\vee} U^\mu (K_\mu - q^{(\mu, \lambda'')}) \right).
\]

Let $\pi_{\lambda', \lambda''} : U^\mu \rightarrow \lambda' U^\lambda' \lambda''$ be the canonical projection. Write $1_{\lambda'} = \pi_{\lambda', \lambda'}(1)$. Let

\[
\hat{U}^\mu = \bigoplus_{\lambda', \lambda'' \in X_+} \lambda' U^\lambda' \lambda''.
\]

Then \hat{U}^μ is naturally an associative algebra (without unit). The algebra \hat{U}^μ admits a (U^μ, U^μ)-bimodule structure as well. Moreover, any weighted (left/right) U^μ-module can naturally be regarded as a (left/right) \hat{U}^μ-module. In particular, the modified
algebra \hat{U} is a (\hat{U}, \hat{U}^*)-bimodule, where the bimodule structure is induced by natural embedding $i: U^i \to \hat{U}$ and the quotient map $X \to X$. For any $1_{\lambda} \in \hat{U}$ and $u \in \hat{U}^i$ (or U^i), we shall denote by $u 1_{\lambda} \in \hat{U}$ the action of u on 1_{λ}. The first part of the following proposition follows by Corollary 3.9, and the second part follows from Lemma 3.15.

Proposition 3.17. The following identities hold:

$$\hat{U}^i = \bigoplus_{\zeta \in X_i} \hat{U}^i \hat{U}^{-1} 1_{\zeta} = \bigoplus_{\zeta \in X_i} \hat{U}^{-1} 1_{\zeta} \hat{U}^i = \bigoplus_{\zeta \in X_i} \hat{U}^i \hat{U}^{-1} 1_{\zeta}.$$

There is a bar involution ψ on the \mathbb{Q}-algebra \hat{U}^i such that $\psi(q) = q^{-1}$ and

$$\psi(B_i 1_{\zeta}) = B_i 1_{\zeta} (i \in \mathbb{I}), \quad \psi(E_i 1_{\zeta}) = E_i 1_{\zeta} (i \in \mathbb{I}), \quad \psi(1_{\zeta}) = 1_{\zeta} (\zeta \in X_i).$$

Remark 3.18. It is possible to consider \hat{U}^i as a subalgebra of certain completion of \hat{U}. But since we only consider weight U^i-modules (i.e., unital modules in the sense of $[Lu94, \S 23.1.4]$) as \hat{U}^i-modules, we prefer to regard \hat{U} as a (\hat{U}^i, \hat{U}^*)-module.

Definition 3.19. We define $\hat{A} \hat{U}^i$ to be the set of elements $u \in \hat{U}^i$, such that $u \cdot m \in \hat{A} \hat{U}$ for all $m \in \hat{A} \hat{U}$. Then $\hat{A} \hat{U}^i$ is clearly a \hat{A}-subalgebra of \hat{U}^i which contains all the idempotents $1_{\zeta} (\zeta \in X_i)$, and $\hat{A} \hat{U}^i = \bigoplus_{\zeta \in X_i} \hat{A} \hat{U}^i 1_{\zeta}$.

Later we shall show that $\hat{A} \hat{U}^i$ is a free \hat{A}-module such that $\hat{U}^i \cong \mathbb{Q}(q) \otimes_{\hat{A}} \hat{A} \hat{U}^i$; see Theorem 6.16(3).

Lemma 3.20. Let $u \in \hat{U}^i$. Then we have $u \in \hat{A} \hat{U}^i$ if and only if $u \cdot 1_{\lambda} \in \hat{A} \hat{U}$ for each $\lambda \in X$.

Proof. If remains to prove the “if” direction. Take $m \in 1_{\lambda}(\hat{A} \hat{U})$, for some $\lambda \in X$. By assumption, we have $u \cdot 1_{\lambda} \in \hat{A} \hat{U}$. Thus we have $u \cdot m = u \cdot (1_{\lambda} m) = (u \cdot 1_{\lambda}) m \in \hat{A} \hat{U}$, and so by definition, $u \in \hat{A} \hat{U}^i$.

Corollary 3.21. Let $u \in \hat{U}^i$. Then we have $u \in \hat{A} \hat{U}^i$ if and only if $u(\hat{A} L(\lambda)) \subset \hat{A} L(\lambda)$ for all $\lambda \in X^+$.

3.8. Relation with a parabolic subalgebra. Let $w = s_{i_1} \cdots s_{i_l}$ be a reduced expression of an element $w \in W$. Then the following elements (for various $c_{ij} \in \mathbb{N}$)

$$E_i^{(c_{ij})} \cdot T_{i_1}^{(c_{i_2})} \cdots T_{i_l} \cdots T_{i_{l-1}}(E_i^{(c_{ij})})$$

form a $\mathbb{Q}(q)$-basis of a subspace $U^+(w)$ of U^+ and a \hat{A}-basis of an \hat{A}-submodule $\hat{A} U^+(w)$ of $\hat{A} U^+$. The sets $U^+(w)$ and $\hat{A} U^+(w)$ depend only on w but not on the choices of reduced expressions of w; our subspace $U^+(w)$ here is denoted by $U^+(w, 1)$ in $[Lu94, 40.2]$. In particular, we have $U^+(w_0) = U^+$ and $\hat{A} U^+(w_0) = \hat{A} U^+$.

Let $w^* = w_0 w_*$. We can identify \hat{P} with the quotient as $\mathbb{Q}(q)$-spaces

$$\hat{P} \cong \hat{U} / \hat{U} U^+(w^*)$$

where $U^+(w^*) = \bigoplus_{\mu \in \mathbb{N} \setminus \{0\}} U^+(w^*) \mu$; Note that $\hat{U} / \hat{U} U^+(w^*) = \hat{U} / \left(\sum_{x, \lambda \in X} \hat{U} x 1_{\lambda} \right)$, where the sum is taken over all homogeneous $x \in U^+$ whose weights are of the form
$|x| = \sum_{i \in I} a_i i$ with $a_i \neq 0$ for some $i \in I$. Thus we can define a left \hat{U} action, which induces a left \hat{U}^\ast action on \hat{P}. For $\lambda \in X$, denote by $p_\lambda = p_{\mu, \lambda}$ the composition map
\[(3.14) \quad \hat{U}^\ast_\lambda 1_\lambda \rightarrow \hat{P}1_\lambda.
\]

Lemma 3.22. Let $\lambda \in X$. The map $p_\lambda = p_{\mu, \lambda} : \hat{U}^\ast_\lambda \rightarrow \hat{P}1_\lambda$ is an isomorphism of left \hat{U}^\ast-modules. Moreover p_λ maps \hat{U}^\ast_λ injectively to $\hat{P}1_\lambda$.

Later in Corollary 6.19 we shall see that $p_\lambda : \hat{U}^\ast_\lambda \rightarrow \hat{P}1_\lambda$ is an isomorphism.

Proof. It is clear by definition that p_λ is a homomorphism of \hat{U}^\ast-modules and that p_λ maps \hat{U}^\ast_λ to $\hat{U}_1 \lambda$ through the composition $\hat{U}^\ast_\lambda \rightarrow \hat{U}1_\lambda \rightarrow \hat{U}1_\lambda$.

It remains to show that $p_\lambda : \hat{U}^\ast_\lambda \rightarrow \hat{P}1_\lambda$ is both surjective and injective. Let us first prove the surjectivity. We know that $\hat{P}1_\lambda$ is spanned by elements of the form $F^{a_1}_1 F^{a_2}_1 \cdots F^{a_s}_s b^1_\lambda$ with $b \in B_1$. We shall proceed by induction on the sum $a = \sum a_i$ to prove that all such elements are in the image of p_λ. The base case $a = 0$ follows from the fact that $U^+ = U^+ \lambda$. To show any $F^{a_1}_1 F^{a_2}_1 \cdots F^{a_s}_s b^1_\lambda$ is in the image of p_λ, we consider
\[(3.15) \quad p_\lambda (B^{a_1}_1 B^{a_2}_1 \cdots B^{a_s}_s b^1_\lambda) = F^{a_1}_1 F^{a_2}_1 \cdots F^{a_s}_s b^1_\lambda + \text{lower terms}.
\]

Now by definition (3.9), we see that the “lower terms” are linear combinations of elements of the form $F^{a_1}_1 F^{a_2}_1 \cdots F^{a_s}_s b^1_\lambda$, where $\sum a'_i < a$ and $b' \in B_s$. The surjectivity follows by induction.

Now we prove the injectivity of p_λ. Recall the triangular decompositions
$U^- \times U^0 \times U^+ \rightarrow U^\ast$ and $U^- \times U^0 \times U^+ \rightarrow U$.

We can find a subset of $J \subset \cup_{n=0}^\infty \mathbb{N}^n$ such that the sets $M' = \{ (i_1, i_2, \ldots) \in J | (i_1, i_2, \ldots) \in J \}$ and $M = \{ F_{i_1} F_{i_2} \cdots | (i_1, i_2, \ldots) \in J \}$ form $Q(q)$-bases of U^- and U^-, respectively ([Ko14 Propositions 6.1, 6.2]). Therefore the set $\{ y b^1 \lambda | y \in M, b \in B_1 \}$ forms a $Q(q)$-basis of U^1_λ. Moreover by examining the leading terms as in (3.15), we see that the set $\{ p_\lambda (y b^1 \lambda) | y \in M, b \in B_1 \}$ forms a $Q(q)$-basis of $\hat{P}1_\lambda$, whence the injectivity of p_λ.

Remark 3.23. There are further intimate connections between the parabolic subalgebra P and the algebra U^\ast. Lemma 6.2 below is another such example. Moreover, the ν-canonical basis for \hat{U}^\ast_λ is parametrized by the canonical basis for $\hat{P}1_\lambda$ (see Theorem 6.16).

4. Symmetries of Quantum Symmetric Pairs

In this section, we show Lusztig’s braid group operators $T_{1,e}^\nu$ and $T_{2,e}^\nu$ for $i \in I$, restrict to automorphisms of U^\ast, and the anti-involution φ on U restricts to an anti-involution of U^\ast. We then prove the intertwiner Y is fixed by the actions of $T_{1,e}^\nu$ and $T_{2,e}^\nu$, for $i \in I$, and this further implies that $Y \in U^+(w_0 w_0)$. We formulate an U^\ast-module isomorphism \mathcal{I} of any integrable U-module over $Q(q)$, improving [BK15] and generalizing [BW13].
4.1. Braid group actions on U^γ. Recall we have $-w_r \circ \tau = \text{id}$ as permutations of the set \mathbb{I}_r. Recall the braid operators T_i and T_w (for $i \in \mathbb{I}$, $w \in W$) on the algebra U.

Lemma 4.1. We have

$$T_i T_{w_r} = T_{w_r} T_{r_i}, \quad \forall i \in \mathbb{I}_r.$$

In particular T_{w_r} commutes with T_i for any $i \in \mathbb{I}_r$.

Proof. Since $s_i w_r = w_r s_r \in W$ has length $\ell(w_r) - 1$, we have $T_i T s_i w_r = T s_i w_r T_{r_i}$, for all $i \in \mathbb{I}_r$. Hence $T_i T_{w_r} = T_i T s_i w_r T_{r_i} = T s_i w_r T_{r_i}$. Also we have

$$T_i T_{w_r}^2 = T w_r T_{r_i} T w_r = T_{w_r}^2 T_{r_i} = T_{w_r}^2 T_i.$$

The lemma is proved. \qed

Let us record the following formulas for future use (cf. [Ko14] Lemma 3.4 [BW13 Lemma 1.4]): for any $i \in \mathbb{I}_r$, recalling Definition 3.1.2, we have

$$T_{w_r^{-1}}(E_i) = -K_{-r_i} F_{r_i}, \quad T_{w_r^{-1}}(F_i) = -E_{r_i} K_{r_i},$$

$$T_{w_r}(E_i) = -F_{r_i} K_{r_i}, \quad T_{w_r}(F_i) = -K_{-r_i} E_{r_i}.$$

(4.1)

Proposition 4.2. For any $i \in \mathbb{I}_r$ and $e = \pm 1$, the braid group operators $T'_{i,e}$ and $T''_{i,e}$ restrict to isomorphisms of U^γ. More explicitly, we have, for $j \neq i,$

$$T'_{i,e}(B_j) = \sum_{r + s = -(i,j')} (-1)^r q_i^{-er} B_i^{(s)} B_j^{(r)},$$

$$T''_{i,-e}(B_j) = \sum_{r + s = -(i,j')} (-1)^r q_i^{-er} B_j^{(r)} B_i^{(s)}.$$

Proof. Let $i \in \mathbb{I}_r$. We shall only prove for $T_i = T''_{i,+1}$, as the other cases are proved by similar computations.

Since s_i preserves Y^γ in (3.3), T_i preserves the subalgebras U_r and U_r^0 of U^γ. Then it remains to check the action of T_i on the generators B_j for $j \in \mathbb{I}_o$. Recall $B_j = F_j + \varsigma_j T_{w_r}(E_{r_j}) K_{r_j}^{-1} + \kappa_j K_{-r_j}^{-1}$. If $\langle i, j' \rangle = \langle r_i, r_j' \rangle = 0$, we have $T_i(B_j) = B_j$ by Lemma 4.1. In particular, if $\kappa_j \neq 0$ (and hence $\langle i, j' \rangle = 0 \forall i \in \mathbb{I}_r$), then $T_i(B_j) = B_j$, $\forall i \in \mathbb{I}_r$.

It remains to consider the case where $i \in \mathbb{I}_r$, $j \in \mathbb{I}_o$ such that $\langle i, j \rangle \neq 0$. Recall by (2.5) that

$$T_i(F_j) = \sum_{r + s = -(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)}, \quad T_i(E_{r_j}) = \sum_{r + s = -(i,j')} (-1)^r q_i^{-er} E_i^{(s)} E_{r_j} E_i^{(r)}.$$

We shall also use the identity

$$(F_i K_i)^s = q_i^{-s(s-1)} F_i^{s} K_i.$$

By Lemma 4.1 and (4.1), we have

$$T_i(B_j) = T_i(F_j) + \varsigma_j T_{w_r} T_{r_i}(E_{r_j}) T_i(K_{-r_j}^{-1})$$

$$= \sum_{r + s = -(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)} + \varsigma_j T_{w_r} \sum_{r + s = -(i,j')} (-1)^r q_i^{-er} E_i^{(s)} E_{r_j} E_i^{(r)} T_i(K_{-r_j}^{-1}).$$
\[\sum_{r+s=-(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)} + \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r (F_i K_i)^{(s)} T_{w_i}(E_{r}) (F_i K_i)^{(r)} \cdot T_i (K_j^{-1}) \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)} + \]

\[\sum_{r+s=-(i,j')} (-1)^s q_i^r (F_i K_i)^{(s)} T_{w_i}(E_{r}) (F_i K_i)^{(r)} \cdot T_i (K_j^{-1}) \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)} + \]

\[\sum_{r+s=-(i,j')} (-1)^s q_i^r (F_i K_i)^{(s)} T_{w_i}(E_{r}) (F_i K_i)^{(r)} \cdot K_j^{-1} T_i \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r F_i^{(r)} F_j F_i^{(s)} + \]

\[\sum_{r+s=-(i,j')} (-1)^s q_i^r (F_i K_i)^{(s)} T_{w_i}(E_{r}) (F_i K_i)^{(r)} \cdot K_j^{-1} F_i \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r B_j F_i^{(s)} \]

\[\sum_{r+s=-(i,j')} (-1)^r q_i^r B_j F_i^{(s)} \]

The proposition follows. \(\square\)

Corollary 4.3. For any \(u \in U^n\), \(e = \pm 1\), and \(i \in I_+\), we have

\[\psi_i(T_{i,e}(u)) = T_{i,-e}^{(i)}(\psi_i(u)). \]

Proof. As \(\psi_i\) and \(T_{i,e}^{(i)}\) are algebra isomorphisms, it suffices to check the identity for \(u\) being generators of \(U^i\). For generators in \(U_{I_+}\) or in \(U^{J_0}\), this follows from \([\text{Lu94}, \S 37.2.4]\). For \(u = B_i\) with \(i \in I_0\), the identity follows from the formulas in Proposition 4.22 and that \(\psi_i(B_i) = B_i\) from Lemma 3.15 \(\square\)

4.2. Anti-involution \(\varphi\) on \(U^i\)

We study the restriction to \(U^i\) of the anti-involution \(\varphi : U \rightarrow U\) in Proposition 2.1.

Lemma 4.4. For all \(i,j \in I\), the following identities hold on \(U\):

\[\varphi(T_{i,e}^{(i)}(E_j)) = (-q_i)^{e(i,j')} T_{i,-e}^{(i)}(\varphi(E_j)), \]

\[\varphi(T_{i,e}^{(i)}(E_j)) = (-q_i)^{-e(i,j')} T_{i,-e}^{(i)}(\varphi(E_j)). \]
Proof. We shall prove the first identity only, as the second one is similar. When \(\langle i, j' \rangle = 0 \), the first identity is trivial.

For \(i = j \), we have

\[
\varphi T_{i,e}''(E_i) = \varphi(-F_i \widetilde{K}_{ei}) = -q_i^{-1} \widetilde{K}_{ei} E_i \widetilde{K}_{-i} = -q_i^{-1+\epsilon(i,i')} E_i \widetilde{K}_{ei} \widetilde{K}_{-i}.
\]

On the other hand, we have

\[
T_{i,-e}'(\varphi(E_i)) = T_{i,-e}'(q_i^{-1} F_i \widetilde{K}_i) = -q_i^{-1} E_i \widetilde{K}_{ei} \widetilde{K}_{-i}.
\]

Hence the first identity for \(i = j \) holds.

For \(i \neq j \) with \(\langle i, j' \rangle \neq 0 \), we have

\[
\varphi \circ T_{i,e}''(E_j) = \varphi \left(\sum_{r+s=-(i, j')} (-1)^r q_i^{-er} E_i^{(s)} E_j^{(r)} \right)
\]

\[
= \sum_{r+s=-(i, j')} (-1)^r q_i^{-er} (q_i^{-1} F_i \widetilde{K}_i)^{(r)} (q_i^{-1} F_j \widetilde{K}_j)(q_i^{-1} F_i \widetilde{K}_i)^{(s)}
\]

\[
= \sum_{r+s=-(i, j')} (-1)^r q_i^{-er} j_i^{(r)} F_j^{(s)} \widetilde{K}_j^{-\langle i, j' \rangle} \widetilde{K}_j
\]

\[
= \sum_{r+s=-(i, j')} (-1)^s q_j^{-1} (-q_i)^{\epsilon(i,j')} q_i^{es} F_i^{(r)} F_j^{(s)} \widetilde{K}_j^{-\langle i, j' \rangle} \widetilde{K}_j
\]

\[
=q_j^{-1} (-q_i)^{\epsilon(i,j')} \sum_{r+s=-(i, j')} (-1)^s q_i^{es} F_i^{(r)} F_j^{(s)} T_i(\widetilde{K}_j).
\]

On the other hand, we have

\[
T_{i,-e}'(\varphi(E_j)) = T_{i,-e}'(q_j^{-1} F_j \widetilde{K}_j)
\]

\[
=q_j^{-1} \sum_{r+s=-(i, j')} (-1)^r q_i^{sr} F_i^{(s)} F_j^{(r)} T_i(\widetilde{K}_j).
\]

This completes the proof of the first identity and the lemma. \(\square \)

Corollary 4.5. For \(i \in I_0 \) and \(e = \pm 1 \), we have

\[
\varphi(T_{i,e}''(E_i)) = (-1)^{(2 \rho \gamma \theta, i') q_i^{e(i, 2 \rho \theta)} T_{w_i,e}''(\varphi(E_i))},
\]

\[
\varphi(T_{i,e}''(E_i)) = (-1)^{(2 \rho \gamma \theta, i') q_i^{-e(i, 2 \rho \theta)} T_{w_i,e}''(\varphi(E_i))}.
\]

Proof. We shall only prove the first identity, as the proof of the second one is similar. Let \(w_i = s_{i_1} s_{i_2} \cdots s_{i_t} \) be a reduced expression of \(w_i \). Write \(w_k = s_{i_k} s_{i_{k+1}} \cdots s_{i_l} \) for \(1 \leq k \leq l \). Note that \(T_{w_k}(E_i) \in U^+ \). Thus applying Lemma 4.4 repeatedly, we have

\[
\varphi(T_{w_i,e}''(E_i)) = (-q_i)^{e(i, w_2(i'))} (-q_{i_2})^{e(i_2, w_3(i'))} \cdots (-q_{i_{t-1}})^{e(i_{t-1}, i')} T_{w_i,e}'(\varphi(E_j))
\]

\[
= (-q_i)^{e(i_2^{-1}(i_1), i')} (-q_{i_2})^{e(i_3^{-1}(i_2), i')} \cdots (-q_{i_{t-1}})^{e(i_t^{-1}(i_{t-1}), i')} T_{w_i,e}'(\varphi(E_j))
\]

\[
= (-1)^{(2 \rho \gamma \theta, i') q_i^{e(i, 2 \rho \theta)}} T_{w_i,e}'(\varphi(E_j)),
\]
where the identity \clubsuit follows from the fact that $\{w_{i+1}^{-1}(\alpha_i)\}_{1 \leq i \leq l}$ consists of all positive roots in Y_\circ and the equality

$$\sum_{k=1}^{l} \frac{i_k \cdot i_k}{2} \langle w_{k+1}^{-1}(i_k), i' \rangle = \frac{i \cdot i}{2} \langle i, 2\rho_\circ \rangle.$$

The equation (4.2) can be verified as follows:

$$\sum_{k=1}^{l} \frac{i_k \cdot i_k}{2} \langle w_{k+1}^{-1}(i_k), i' \rangle = \sum_{k=1}^{l} \frac{i_k \cdot i_k}{2} \langle i_k, w_{k+1}(i') \rangle = \sum_{k=1}^{l} i_k \cdot w_{k+1}(i) = \sum_{k=1}^{l} w_{k+1}^{-1}(i_k) \cdot i = \sum_{k=1}^{l} \frac{i \cdot i}{2} \langle i, w_{k+1}^{-1}(i_k) \rangle = \frac{i \cdot i}{2} \langle i, 2\rho_\circ \rangle,$$

where the identity \heartsuit follows from the W-invariance of the bilinear pairing $\cdot : Z[I] \times Z[I] \to Z$.

Proposition 4.6. The anti-involution ψ on U restricts to an anti-involution ψ on U° such that

$$\psi(E_i) = q_i^{-1}F_i \tilde{K}_i^{-1}, \quad \psi(F_i) = q_i^{-1}E_i \tilde{K}_i^{-1}, \quad \psi(K_\mu) = K_\mu, \quad \forall i \in I_\circ;$$

$$\psi(B_i) = -q_i^{-1}T_{w_\circ}(B_{\tau i}) \cdot \theta(\tilde{K}_i) \tilde{K}_i^{-1}, \quad \forall i \in I_\circ.$$

Proof. Equation (4.3) follows from the formula for ψ on U in Proposition 2.1.

Let us prove (4.4). Recall $B_i = F_i + \varsigma_i T_{w_\circ}(E_{\tau i}) \tilde{K}_i^{-1} + \kappa_i \tilde{K}_i^{-1}$ for $i \in I_\circ$. Then since ψ is an anti-isomorphism on U, we have

$$\psi(B_i) = q_i^{-1}E_i \tilde{K}_i^{-1} + \varsigma_i \tilde{K}_i^{-1} \psi(T_{w_\circ}(E_{\tau i})) + \kappa_i \tilde{K}_i^{-1}$$

$$= q_i^{-1}T_{w_\circ}(E_{\tau i}) \tilde{K}_i^{-1} + \kappa_i \tilde{K}_i^{-1} \cdot \theta(\tilde{K}_i) \tilde{K}_i^{-1}.$$

On the other hand, we have

$$T_{w_\circ}(B_{\tau i}) = T_{w_\circ}^{-1} \left(F_{\tau i} + \varsigma_{\tau i} T_{w_\circ}(E_{\tau i}) \tilde{K}_{\tau i}^{-1} + \varsigma_{\tau i} \tilde{K}_{\tau i}^{-1} \right)$$

$$= \left(-\varsigma_{\tau i} E_{\tau i} + T_{w_\circ}^{-1}(F_{\tau i}) \theta(\tilde{K}_i) - \kappa_{\tau i} \right) \theta(\tilde{K}_i)^{-1}.$$

The formula (4.4) follows now by Corollary 4.5 and a comparison of (4.5)–(4.6).

By Proposition 4.2 we have that $q_i^{-1}T_{w_\circ}(B_{\tau i}) \cdot \theta(\tilde{K}_i) \tilde{K}_i^{-1} \in U^\circ$. Hence ψ maps every generator of U° to elements in U°, and so it is an anti-involution on U°. \qed

Remark 4.7. A more careful read from the proof of Proposition 4.6 shows that the anti-involution $\psi : U \to U$ restricts to an anti-involution on U° if and only if the following conditions hold:

$$\varsigma_i = \pm q_i^{-1} (\text{if } \kappa_i \neq 0), \quad \psi(T_{w_\circ}(E_i)) = q_i^{-1}(i, w_\circ \tau i)^{-1} \varsigma_i^{-1} T_{w_\circ}(\psi(E_i)), \quad \forall i \in I_\circ.
Together with Corollary 4.5, we see that the anti-involution φ on U^i requires Condition (3.8) for the parameters $s_i (i \in I)$.

4.3. The intertwiner. Let \hat{U} be the completion of the $\mathbb{Q}(q)$-vector space U with respect to the following descending sequence of subspaces $U^{-U^0} \left(\sum_{h(t(\mu)) \geq N} U^+_\mu \right)$, for $N \geq 1$. Then we have the obvious embedding of U into \hat{U}. We let \hat{U}^+ be the closure of U^+ in \hat{U}, and so $\hat{U}^+ \subseteq \hat{U}$. By continuity the $\mathbb{Q}(q)$-algebra structure on U extends to a $\mathbb{Q}(q)$-algebra structure on \hat{U}. The bar involution ψ on U extends by continuity to an anti-linear involution ψ on \hat{U}. Recall the i-weight lattice X_i from (3.3).

Theorem 4.8. There exists a unique family of elements $\Upsilon_\mu \in U^+_\mu$, such that $\Upsilon_0 = 1$ and $\Upsilon = \sum_\mu \Upsilon_\mu$ satisfies the following identity (in \hat{U}):

\[
(4.8) \quad \psi\Upsilon = \Upsilon \psi, \quad \text{for all } u \in U^i.
\]

Moreover, $\Upsilon_\mu = 0$ unless $\mu = 0 \in X_i$.

Remark 4.9. This theorem in the special case of type AIII/AIV (with $I = \emptyset$) was first established in [BW13, Theorem 2.10] (generalizing Lusztig’s quasi-R-matrix). The theorem in general was expected by the authors as one of the main building blocks in a program of i-canonical bases arising from general quantum symmetric pairs announced in [BW13, §0.5], since it leads to a new bar involution $\psi\Upsilon$ on based U-modules (see Proposition 5.1); we verified the theorem in the cases when $I = \emptyset$. In the meantime, this theorem has appeared with a complete proof in full generality in Balagović and Kolb [BK15] (where Υ was denoted by X and called a quasi-K-matrix), and so we will not reproduce a proof here. The intertwiner was used in [BK15] to construct the so-called universal K-matrix which provides solutions to the reflection equation, which was their main goal. (Recall Drinfeld’s universal R-matrix for quantum groups can be reconstructed from Lusztig’s quasi-R-matrix [Lu94] and provides solutions to Yang-Baxter equation).

Remark 4.10. It is instructive to view the following familiar cases as two extreme cases of quantum symmetric pairs.

1. When $I = I_*$ (and recall $\tau = -w_*$ on I_*), we have $U^i = U_{i*} = U$, the usual Drinfeld-Jimbo quantum group. In this case, the intertwiner $\Upsilon = 1$.
2. Consider the algebra imbedding $\phi = (\omega \otimes 1) \circ \Delta : U \rightarrow U \otimes U$. One checks that $\phi(U)$ is a coideal subalgebra of $U \otimes U$, and hence we have a quantum symmetric pair of a diagonal type $(U \otimes U, U)$. Then the intertwiner in this case is Lusztig’s quasi-R-matrix twisted by $\omega \otimes 1$. Hence, Lustig’s construction of bar involution and canonical basis on the tensor product modules fits well with our general construction.

Since $\psi\Upsilon(u) = \psi(u)$, for $u \in U_{i*}$, the identity (4.8) implies that

\[
(4.9) \quad u\Upsilon = \Upsilon u, \quad \text{for } u \in U_{i*}.
\]

The following corollary is the same as for [BW13, Corollary 2.13], which follows by the uniqueness of Υ.

Corollary 4.11. We have $\psi(\Upsilon) = \Upsilon^{-1}$.
4.4. Properties of the intertwiner. We now establish several new properties of the intertwiner Υ in connection with braid group action on U^\dagger. They will be used later on to establish the integrality of Υ.

Lemma 4.12. For $\mu \in \mathbb{N}[\mathbb{I}]$, $i \in \mathbb{I}_*$ and $e = \pm 1$, we have

1. $r_i(\Upsilon_{\mu}) = i r(\Upsilon_{\mu}) = 0$;
2. $T_{i,e}''(\Upsilon_{\mu}) \in U^+$ and $T_{i,e}''(\Upsilon_{\mu}) \in U^+$.

Proof. Note by Equation (4.9) and by [Lu94, 3.1.6] that, for Proposition 38.1.6 we can write i

We have s

$F_i \Upsilon_{\mu} - \Upsilon_{\mu} F_i = 0$,

$F_i \Upsilon_{\mu} - \Upsilon_{\mu} F_i = \frac{K_i - i r(\Upsilon_{\mu}) - r_i(\Upsilon_{\mu}) K_i}{q_i - q_i^{-1}}$.

Hence it follows that $r_i(\Upsilon_{\mu}) = i r(\Upsilon_{\mu}) = 0$. Therefore we have $T_{i,1}''(\Upsilon_{\mu}) \in U^+$ and $T_{i,-1}''(\Upsilon_{\mu}) \in U^+$ by [Lu94] Proposition 38.1.6. On the other hand, since Υ_{μ} is homogeneous, we have $T_{i,e}''(\Upsilon_{\mu}) = (-q_i)^{\varepsilon(i, \mu)} T_{i,e}''(\Upsilon_{\mu})$. The lemma follows.

The symmetries $T_{i,e}''$ and $T_{i,e}'''$ extends by continuity to symmetries of \hat{U}.

Proposition 4.13. We have $T_{i,e}''(\Upsilon) = \Upsilon$ and $T_{i,e}'''(\Upsilon) = \Upsilon$ for all $i \in \mathbb{I}_*$, $e = \pm 1$.

Proof. For any $u \in U^\dagger$, applying $T_{i,e}'''$ to Equation (4.8) gives us

(4.10) $T_{i,e}'''(\psi_i(u)) T_{i,e}''(\Upsilon) = T_{i,e}''(\Upsilon) T_{i,e}'''(\psi_i(u))$.

By Corollary 4.3 and by Proposition 2.2(2), we rewrite (4.10) as

(4.11) $\psi_i(T_{i,-e}'''(u)) T_{i,e}'''(\Upsilon) = T_{i,e}'''(\Upsilon) \psi_i(T_{i,-e}'''(u))$.

Since $T_{i,-e}'''$ restricts to an isomorphism of U^\dagger by Proposition 4.2 $T_{i,-e}'''(u)$ can be any element in U^\dagger. Therefore we have

$\psi_i(x) T_{i,e}'''(\Upsilon) = T_{i,e}'''(\Upsilon) \psi_i(x), \text{ for all } x \in U^\dagger$.

It is clear that $T_{i,e}'''(\Upsilon_0) = \Upsilon_0 = 1$. Thanks to Lemma 4.12 and the uniqueness of the intertwiner, we have $\Upsilon = T_{i,e}'''(\Upsilon)$. The other identity is entirely similar.

Remark 4.14. Proposition 4.13 also follows from [BK15, §3.1] if one considers T_i as an element in the algebra of natural transformations of the forgetful functor.

Recall from (3.13) the subspace $U^+(w)$ of U^+, for $w \in W$. Note $\ell(w, w_0) = \ell(w_0) - \ell(w_0)$.

Proposition 4.15. We have $\Upsilon_{\mu} \in U^+(w, w_0)$ for any $\mu \in \mathbb{N}[\mathbb{I}]$.

Proof. If $\mathbb{I}_* = \emptyset$, the statement follows by Theorem 4.8. So let us assume $\mathbb{I}_* \neq \emptyset$. Now choose a reduced expression $s_{i_1} \cdots s_{i_k}$ of w_0 such that $s_{i_1} \cdots s_{i_k} = w_*$ (in particular $i_1 \in \mathbb{I}_*$) and $s_{k+1} \cdots s_{i_k} = w_0 w_0$. We have a PBW basis (3.13) for U^+ associated to this reduced expression of w_0. We have $r_{i_1}(\Upsilon_{\mu}) = 0$ by Lemma 4.12(1), and thus by [Lu94] Proposition 38.1.6 we can write

$$\Upsilon_{\mu} = \sum c(c_{i_2}, \ldots, c_{i_k}) T_{i_2} E_{i_2}^{(c_{i_2})} \cdots (T_{i_k} \ldots T_{i_{k-1}} E_{i_k}^{(c_{i_k})})$$,
for scalars $c_{i_0} \in \mathbb{Q}(q)$. If $\ell(w) = 1$, we are done.

If $\ell(w) > 1$, then $i_2 \in \mathbb{I}_\bullet$. By Proposition 4.13 we have

$$\Upsilon_\mu = \sum c(c_i) T \left(E_{i_2}(c_i) \cdots (T \cdots T_{i_1}(E_{i_1}(c_i))) \right),$$

which, by Lemma 4.12(1) and [Lu94, Proposition 38.1.6], is of the form

$$\Upsilon_\mu = \sum c(0, c_i) T \left(E_{i_2}(c_i) \cdots (T \cdots T_{i_1}(E_{i_1}(c_i))) \right),$$

Repeating the process $\ell(w) = k$ times, we obtain

$$\Upsilon_\mu = \sum c(0, 0, c_{i_{k+1}}, \ldots, c_i) T \left(E_{i_k}(c_{i_{k+1}}) \cdots (T \cdots T_{i_1}(E_{i_1}(c_i))) \right).$$

This shows that $\Upsilon_\mu \in U^+ (w_\bullet w_0)$.

The strong constraint on Υ proved in Proposition 4.15 shall allow us to compute the intertwiner Υ (almost) explicitly and to establish the integrality of Υ in all real rank one cases (as listed in Table 1). See the Appendix for the detailed computation.

4.5. The isomorphism Υ. Consider the automorphism obtained by the composition

$$\vartheta = \sigma \circ \varphi \circ \tau : U \rightarrow U,$$

which sends

$$\vartheta(E_i) = q_{\tau_i} F_{\tau_i} K_{-\tau_i}, \quad \vartheta(F_i) = q_{\tau_i} E_{\tau_i} K_{-\tau_i}, \quad \vartheta(K_\mu) = K_{-\tau_\mu}. \tag{4.12}$$

For any integrable U-module M, we define a new U-module ϑM as follows: ϑM has the same underlying $\mathbb{Q}(q)$-vector space as M but we shall denote a vector in ϑM by ϑm for $m \in M$, and the action of $u \in U$ on ϑM is now given by $u \vartheta m = \vartheta (\vartheta^{-1}(u)m)$. Hence we have

$$\vartheta(u) \vartheta m = \vartheta (um), \quad \text{for } u \in U, m \in M. \tag{4.13}$$

As ϑM is simple if the U-module M is simple, one checks by definition that

$$\vartheta L(\lambda) \cong \omega L(\lambda^\tau).$$

Let

$$g : X \rightarrow \mathbb{Q}(q) \tag{4.14}$$

be a function such that for all $\mu \in X$, we have

$$g(\mu) = g(\mu - i') \cdot (-1)^{(2p_{\tau_i} - 1)} q_i^{(i,2p_{\tau_i})} q_i^{(i,-1)} q_i^{(i,\mu)} q_i^{(i,\mu - i')}, \quad \text{for } i \in \mathbb{I}_\circ, \tag{4.15}$$

$$g(\mu) = -q_i^{(-1)} q_i^{(i,\mu - i')}, \quad \text{for } i \in \mathbb{I}_\bullet. \tag{4.16}$$

Such a function g exists. (Actually we can even construct such a g taking values in A.)

Lemma 4.16. For any $\mu \in X$, we have

$$g(\mu) = g(\mu - w_{\bullet i'}) q_i^{(-1)} q_i^{(i,\mu - w_{\bullet i'})} q_i^{(i,\mu - w_{\bullet i'})}, \quad \text{for } i \in \mathbb{I}_\circ,$$

$$g(\mu) = -q_i^{(-1)} q_i^{(i,\mu - i')}, \quad \text{for } i \in \mathbb{I}_\bullet.$$

Proof. The second identity follows from (4.16) directly. We shall prove now the first one. Let \(i \in \mathbb{I}_0 \). For any \(j \in \mathbb{I}_* \), by definition (4.16), we have

\[
g(\mu - \nu) = g(\mu - \nu + (j, \nu)^j) (-1)^{(j, \nu)} q_j^{2(j, \nu)^2 - (j, \nu) 2(j, \mu - \nu)} = g(\mu - s_j(\nu)) (-1)^{(j, \nu)} q_j^{- (j, \nu) 2(\nu - s_j(\nu), \mu)}.
\]

Then a similar computation as Corollary 4.5 shows that (4.17)

\[
g(\mu - i') = g(\mu - w_* i') (-1)^{(2q_i', i') q_i' - (i, 2q_i')} q_i^{- (i, w_* i')}. \tag{4.17}
\]

Note that since \(\tau i - \tau w_* i \in \mathbb{Z}[\mathbb{I}_*] \subset Y \), we have \(\tau (\tau i - \tau w_* i) = -w_* (\tau i - \tau w_* i) \). Hence we have \(i - w_* i = \tau i - w_* \tau i \in Y \). Then using (4.13), we see Equation (4.17) can be written as

\[
g(\mu) = g(\mu - w_* i') \zeta_i(-1)^{(2q_i', i') q_i' - (i, 2q_i')} q_i^{- (i, w_* i')} (-1)^{(2q_i', i') - (\tau i, 2q_i')} q_{\tau i}^{- (\tau i, w_* i')} q_i{- (i, w_* i)}. \tag{3.8}
\]

Now the desired equation follows from the constraint (3.8) on the parameters \(\zeta_i \).

The function \(g \) induces a \(\mathbb{Q}(q) \)-linear map from any integrable \(\mathbf{U} \)-module \(M \) to itself:

\[
\tilde{g}: M \rightarrow M, \quad \tilde{g}(m) = g(\mu)m, \quad \text{for } m \in M_\mu.
\]

The following lemma is similar to Corollary 4.5 and it can also be read off from the proof of [BK15b, Lemma 2.9].

Lemma 4.17. For \(i \in \mathbb{I}_0 \), we have

\[
T_{w_*} (E_i) = (-1)^{(2q_i', i')} q_i' - (i, 2q_i') T_{w_*}^{-1} (E_i).
\]

Proof. Thanks to [Lu94, §37.2.4], we have

\[
T_j (E_i) = T_{j+1} (E_i) = T_{j-1} (E_i) = (-q_i)^{-(j,i')} T_j^2 (E_i) = (-q_i)^{-(j,i')} T_j^{-1} (E_i).
\]

The rest of the proof is essentially the same as the proof of Corollary 4.5 and will be skipped. \(\square \)

Recall we denote by \(\eta = \eta_\lambda \) the highest weight vector in \(L(\lambda) \). Let \(\eta^* = \eta^*_\lambda \) be the unique canonical basis element in \(L(\lambda) \) of weight \(w_* \lambda \).

Theorem 4.18. For any integrable \(\mathbf{U} \)-module \(M \), we have the following isomorphism of \(\mathbf{U}^1 \)-modules

\[
\mathcal{T} := \mathcal{Y} \circ \tilde{g} \circ T_{w_*}^{-1}: M \rightarrow \vartheta M.
\]

In particular, we have the isomorphism of \(\mathbf{U}^1 \)-modules

\[
\mathcal{T} : L(\lambda) \rightarrow \vartheta L(\lambda^*), \quad \eta^*_\lambda \mapsto \xi_{-\lambda^*}.
\]

Proof. It is clear that \(\mathcal{T} \) is a \(\mathbb{Q}(q) \)-linear isomorphism. Thus it suffices to verify that \(\mathcal{T} \) defines a homomorphism of \(\mathbf{U}^1 \)-modules. We check this on generators.

First for any \(\mu \in \mathbf{Y}^1 \), we have \(\mathcal{Y} \circ \tilde{g} \circ T_{w_*}^{-1} \circ \vartheta (K_\mu) = K_\mu \).

For \(i \in \mathbb{I}_* \), we have \(T_{w_*}^{-1} \circ \vartheta (F_i) = -q_{\tau i}^{-1} F_i K_i^{-2} \) and \(T_{w_*}^{-1} \circ \vartheta (E_i) = -q_{\tau i} E_i K_i^{-2} \).
On the other hand, thanks to Lemma 4.17, we have
\[\vartheta(B_i) = q_{\tau_1}E_{\tau_1}(\widetilde{K}_{\tau_1}) + \zeta_i T_{w_i}(E_{\tau_1})\widetilde{K}_{\tau_1}^{-1} + \kappa_i \widetilde{K}_{\tau_1}^{-1} \]
By Corollary 4.15 we have
\[\vartheta(B_i) = q_{\tau_1}E_{\tau_1}(\widetilde{K}_{\tau_1}) + \zeta_i(-1)(2\rho_\iota,i)_{\forall}^{(i,2\rho_\iota)} T_{w_i}(\rho \circ \sigma(E_{\tau_1}))\widetilde{K}_{\tau_1} + \kappa_i \widetilde{K}_{\tau_1} \]
\[= q_{\tau_1}E_{\tau_1}(\widetilde{K}_{\tau_1}) + \zeta_i(-1)(2\rho_\iota,i)_{\forall}^{(i,2\rho_\iota)} q_i T_{w_i}(F_i) T_{w_i}(\widetilde{K}_{\tau_1}) \widetilde{K}_{\tau_1} + \kappa_i \widetilde{K}_{\tau_1} \]
Therefore we have
\[T_{w_i}^{-1} \circ \vartheta(B_i) = q_{\tau_1}T_{w_i}^{-1}(E_{\tau_1})T_{w_i}^{-1}(\widetilde{K}_{\tau_1}) + \zeta_i(-1)(2\rho_\iota,i)_{\forall}^{(i,2\rho_\iota)} q_i F_i \widetilde{K}_{\tau_1}^{-1} + \kappa_i T_{w_i}^{-1}(\widetilde{K}_{\tau_1}). \]
On the other hand, thanks to Lemma 4.17, we have
\[\psi(B_i) = F_i + \zeta_i^{-1}(2\rho_\iota,i)_{\forall}^{(i,2\rho_\iota)} \kappa_i \widetilde{K}_{\tau_1} \]
\[= F_i + \zeta_i^{-1}(-1)(2\rho_\iota,i)_{\forall}^{(i,2\rho_\iota)} q_i \tau_1 \widetilde{K}_{\tau_1}^{-1}(E_{\tau_1}) \widetilde{K}_{\tau_1} + \kappa_i \widetilde{K}_{\tau_1}. \]
Now by Equation 4.13 and Lemma 4.16 for the function \(g \), for any generator \(u \in U^i \) being either \(B_i(i \in I) \) or \(E_j(j \in I^o) \) and for any \(m \in M_\mu \), we have
\[\Upsilon \circ \overline{g} \circ T_{w_i}^{-1}(\vartheta(um)) = \Upsilon(\overline{g} \circ T_{w_i}^{-1}(u))(\overline{g} \circ T_{w_i}^{-1}(\vartheta(m))) \]
\[= \Upsilon(\psi(u))(\overline{g} \circ T_{w_i}^{-1}(\vartheta(m))) \]
\[= u(\Upsilon \circ \overline{g} \circ T_{w_i}^{-1} \circ \vartheta(m)). \]
In the above we have used \(\Upsilon \psi(u) = \psi_!(u) \Upsilon = u \Upsilon \). This finishes the proof.

Remark 4.19. Such an isomorphism \(\Upsilon \) was first constructed in the special case of quantum symmetric pairs of type AIII/AIV with \(I^o = \emptyset \) [BW13, §2.5, §6.2], and we have generalized the construction to quantum symmetric pairs with \(I^o = \emptyset \) (before the posting of [BK15] in arXiv). In the meantime, (a variant of) such a \(\Upsilon \) was constructed in [BK15] for general quantum symmetric pairs and called a universal \(K \)-matrix, and shown to provide solutions to the quantum reflection equation (just like Drinfeld’s universal \(R \)-matrix provides solutions to Yang-Baxter equation). Our construction of \(\Upsilon \) in this paper uses a twisting by \(\vartheta \), slightly different from the twisting \(\tau \tau_0 \) used in [BK15], so we can take advantage of earlier results (mainly Corollary 4.3). This difference will not alter our further construction, thanks to the uniqueness of the isomorphism of \(U^i \)-modules \(\Upsilon : L(\lambda) \to \omega L(\lambda^\tau), \eta_\lambda^i \mapsto \xi_{-\lambda^\tau} \). A more crucial difference is that our \(g \) takes value in \(\mathbb{Q}(q) \) (instead of \(\mathbb{Q}(q^{1/d}) \) as in [BK15]), which is necessary for construction of \(\iota \)-canonical bases. Later as a consequence of Theorem 5.3 we see that \(\Upsilon \) preserves the \(A \)-forms, i.e., \(\Upsilon : \mathcal{A}L(\lambda) \to \mathcal{A}L(\lambda^\tau) \).

5. Integrality of the Intertwiner and \(\iota \)-Canonical Bases for Modules

In this section, we establish the integrality of the intertwiner \(\Upsilon \). This is first carried out by a case-by-case computation in the real rank one case. In real rank one case,
the integrality of Υ eventually leads to the existence of ℓ-canonical basis of \hat{U}^i, which ensures the existence of (integral) ℓ-divided powers for all $i \in I$. The existence of ℓ-divided powers is then used here to complete the proof of integrality of Υ in the general finite type case. We then construct an ℓ-canonical basis on any simple integrable U-module $L(\lambda)$ as well as on the tensor products of several such simple modules.

5.1. **Bar involution ψ_i on modules.** Recall [Lu94, Chapter 27] has developed a theory of finite-dimensional based U-modules (M, B). The basis B generates a $\mathbb{Z}[q^{-1}]$-submodule \mathcal{M} and an A-submodule $A\mathcal{M}$ of M.

Recall from Lemma 3.15 the bar involution ψ_i on U^i. Recall [BW13, Definition 3.9] that a U^i-module M equipped with an anti-linear involution ψ_i is called involutive (or ℓ-involutive) if

$$\psi_i(um) = \psi_i(u)\psi_i(m), \quad \forall u \in U^i, m \in M.$$

The following proposition is [BW13, Proposition 3.10] verbatim in our more general setting, and we repeat its short proof for the sake of completeness.

Proposition 5.1. Let M be a based U-module with bar involution ψ. Then M is an ℓ-involutive U^i-module with involution

$$(5.1) \quad \psi_i := \Upsilon \circ \psi.$$

Proof. It follows by Theorem 4.8 and (5.1) that $\psi_i(um) = \Upsilon \psi(u)m = \Upsilon \psi_i(u)m = \Upsilon \psi_i(m)$, for all $u \in U^i$ and $m \in M$. Hence M is ℓ-involutive. By Corollary 4.11 we have $\psi_i(\psi_i(m)) = \Upsilon \psi_i(\psi_i(m)) = \Upsilon \Upsilon \psi_i(m) = \Upsilon \Upsilon m = m$. Hence ψ_i is an involution. \qed

Recall Lusztig defined a bar involution ψ on (tensor products of) finite-dimensional simple U-modules (via quasi-\mathcal{R}-matrix); cf. [Lu94, 27.3].

Corollary 5.2. There is a bar involution $\psi_i = \Upsilon \psi$ on the U-module $L(\lambda)$ and on the tensor product U-modules $L(\lambda_1) \otimes \cdots \otimes L(\lambda_r)$, for $\lambda, \lambda_1, \ldots, \lambda_r \in X^+$, and $r \geq 1$.

5.2. **Integrality of the intertwiner.** In this section we prove the integrality of the intertwiner for an arbitrary finite type.

Theorem 5.3.

1. For quantum symmetric pair (U, U^i) of real rank one, the intertwiner Υ is integral; that is, $\Upsilon = \sum_{\mu} \Upsilon_{\mu}$ with $\Upsilon_{\mu} \in A U^+$ for all μ.
2. Let (U, U^i) be any quantum symmetric pair of finite type. Under the assumption of the validity of Theorem 6.10 for all quantum symmetric pairs of real rank one, the intertwiner Υ for (U, U^i) is integral; that is, $\Upsilon = \sum_{\mu} \Upsilon_{\mu}$ with $\Upsilon_{\mu} \in A U^+$ for all μ.

Proof. Part (1) is proved by a tedious though straightforward case-by-case computation in Appendix A.

Let us prove (2). (The reader is supposed to know Theorem 6.16 in the special case of real rank one, which will be established using Part (1) only.) Fix an $i \in \mathbb{N}_0$. There exists a Levi subalgebra U^i_1 of U^i containing B_i of real rank one (see Table 2). Consider $A U^i_1 = \sum_{\zeta \in X} A U^i_1 \zeta$, and the canonical basis elements $B_{i}^{(a)} := (F_{i}^{(a)} \check{\zeta}_1 \check{1}) \in A U^i_1$ (see
Theorem 6.16, for \(a \geq 0 \) and \(\zeta \in X_1 \). We have a natural embedding \(\mathcal{A} \hat{U}_i \hookrightarrow \mathcal{A} \hat{U}^i \). By abuse of notation we shall denote by the same notation \(B_i^{(a)} \) for the image of \(B_i^{(a)} \) in \(\hat{U}^i \). It follows by Theorem 6.16 (for \(\hat{U}_i \)) that \(B_i^{(a)} \in \mathcal{A} \hat{U}^i \).

Denote by \(\mathcal{A} \hat{U}^i \) the \(\mathcal{A} \)-subalgebra of \(\hat{U}^i \) generated by \(B_i^{(a)} \) for \(i \in I_0 \), and \(F_j^{(a)} 1_\zeta, E_j^{(a)} 1_\zeta \) for \(j \in I_1 \), for all \(a \geq 0 \) and \(\zeta \in X_1 \). By Corollary 3.21 \(B_i^{(a)} \) in \(\mathcal{A} \hat{U}^i \) preserves \(\mathcal{A} \mathcal{L}(\lambda) \), for all \(\lambda \in X^+ \). As the other generators of \(\mathcal{A} \hat{U}^i \) clearly preserve \(\mathcal{A} \mathcal{L}(\lambda) \), we have \(\mathcal{A} \hat{U}^i \mathcal{L}(\lambda) \subseteq \mathcal{A} \mathcal{L}(\lambda) \). Actually a stronger statement holds as follows.

Claim (*). We have \(\mathcal{A} \hat{U}^i \eta_\lambda = \mathcal{A} \mathcal{L}(\lambda) \), for \(\lambda \in X^+ \).

A spanning set for \(\mathcal{A} \mathcal{L}(\lambda) \) is given by \(F_{i_1}^{(a_1)} F_{i_2}^{(a_2)} \cdots F_{i_s}^{(a_s)} \eta \) for various \(s \geq 0 \), \(i_j \in I \) and \(a_j \geq 0 \). We shall argue that \(x = F_{i_1}^{(a_1)} F_{i_2}^{(a_2)} \cdots F_{i_s}^{(a_s)} \eta \in \mathcal{A} \hat{U}^i \eta_\lambda \), by induction on the height \(\text{ht}(x) = \sum_{j=1}^s a_j \). We can assume without loss of generality that \(a_1 > 0 \), and so \(x' := F_{i_2}^{(a_2)} \cdots F_{i_s}^{(a_s)} \eta \) lies in \(\mathcal{A} \hat{U}^{(1)} \eta_\lambda \) by the inductive assumption. If \(i_1 \in I_1 \), then \(F_{i_1}^{(a_1)} \in \mathcal{A} \hat{U}^i \) and \(x = F_{i_1}^{(a_1)} x' \in \mathcal{A} \hat{U}^i x' \in \mathcal{A} \hat{U}^i \eta_\lambda \). Assume now \(i_1 \in I_0 \). Define \(y = B_{i_1}^{(a_1)} x' \in \mathcal{A} \hat{U}^i \eta_\lambda \). As \(x - y = (B_{i_1}^{(a_1)} - F_{i_1}^{(a_1)}) x' \in \mathcal{A} \mathcal{L}(\lambda) \) has height less than the height of \(x \), we have \(x - y \in \mathcal{A} \hat{U}^i \eta_\lambda \) by the inductive assumption, and so we also have \(x = y + (x - y) \in \mathcal{A} \hat{U}^i \eta_\lambda \). This proves Claim (*).

The \(\mathcal{A} \)-algebra \(\mathcal{A} \hat{U}^i \) is clearly stable under the bar map \(\bar{\psi}_i \), and recall \(\psi_i(\eta) = \eta \). It follows by Claim (*) and Proposition 5.3 that \(\mathcal{A} \mathcal{L}(\lambda) \) is \(\psi_i \)-invariant. Hence \(\mathcal{A} \mathcal{L}(\lambda) \) is stable under the action of \(\mathcal{Y} = \psi_i \circ \bar{\psi} \). In particular, we have (recall \(w_0 \) is the longest element in \(W \)) \(\mathcal{Y} \eta_{w_0 \lambda} \in \mathcal{A} \mathcal{L}(\lambda) \), for \(\lambda \in X^+ \). By taking \(\lambda \gg 0 \), we conclude that \(\mathcal{Y} \mu \in \mathcal{A} \hat{U}^i \), for each \(\mu \).

Remark 5.4. In the proof above, we only need to assume the validity of Theorem 6.16 for all the Levi subalgebras of \(\mathcal{U}^i \) of real rank one (see Table 2). For example the integrality of \(\mathcal{Y} \) for type FII is not used in the proof of any other quantum symmetric pairs.

Remark 5.5. Logically, the reader should read through the remainder of the paper under the additional assumption of real rank one so Theorem 6.16 for \(\mathcal{U}^i \) of all real rank one (which is the assumption of Theorem 5.3(2)) is established fully. Then the integrality of \(\mathcal{Y} \) for \(\mathcal{U}^i \) of any finite type follows by Theorem 5.3(2).

In the remainder of the paper, we shall use the integrality of \(\mathcal{Y} \) for any finite type freely without mentioning further on the assumption in Theorem 5.3(2), thanks to Remark 5.3.

5.3. v-Canonical bases on based \(\mathcal{U} \)-modules. Recall the quotient map \(X \rightarrow X_1 \), \(\mu \mapsto \bar{\mu} \). We define a partial ordering \(\leq_v \) on \(X \) by letting, for \(\mu', \mu \in X \),

\[
(5.2) \quad \mu' \leq_v \mu \iff \bar{\mu'} = \bar{\mu}, \text{ and } \mu' - \mu \in \mathbb{N}[\bar{I}] \cap \mathbb{N}[w_0 \bar{I}].
\]

Note that if \(\bar{\mu'} = \bar{\mu} \) then \(w_{\bar{\mu'}} \mu' = w_{\bar{\mu}} \mu \) by definition of \(X_1 \). We also define \(\mu' <_v \mu \) if \(\mu' \leq_v \mu \) and \(\mu' \neq \mu \).

We formally extend the partial ordering \(\leq_v \) to any set \(S \) with a natural weight function \(| \cdot | : S \rightarrow X \) (such as \(B(\lambda) \) for \(\lambda \in X^+ \), or any basis \(B \) in a based \(\mathcal{U} \)-module
Note that below, by declaring that
\[b' \leq_t b \iff |b'| \leq_t |b|, \quad \text{for all } b', b \in S. \]

Lemma 5.6. Let \((M, B)\) be a finite-dimensional based \(U\)-module (cf. [Lu94, Definition 27.1.2]). Then we have
\[\psi_t(b) = b + \sum_{b' \in B, b' < b} f(b; b')b', \quad \text{for } f(b; b') \in \mathcal{A}. \]

Proof. Since \(\psi(b) = b\) and \(\psi_t = \Upsilon \psi\), we have
\[\psi_t(b) = \Upsilon(b) = b + \sum_{f(b; b') \in \mathbb{Q}(q)} f(b; b')b', \quad \text{for } f(b; b') \in \mathbb{Q}(q). \]

Note that \(f(b; b') \in \mathcal{A}\) by Theorem 5.3. It follows by Proposition 4.15 that \(f(b; b') = 0\) unless \(|b| - |b'|\) can be written as non-negative linear combination of positive roots with respect both simple systems \(\mathbb{I}\) and \(w_t\mathbb{I}\). The lemma follows.

By applying a standard procedure (cf. [Lu94, Lemma 24.2.1]) to the involution \(\psi_t\) with the help of Lemma 5.6, we have proved the following.

Theorem 5.7. Let \((M, B)\) be a finite-dimensional based \(U\)-module.

1. The \(U^t\)-module \(M\) admits a unique basis (called \(t\)-canonical basis) \(B^t := \{b^t \mid b \in B\}\) which is \(\psi_t\)-invariant and of the form
 \[b^t = b + \sum_{b' \in B, b' < b} t_{b'b'}b', \quad \text{for } t_{b'b'} \in q^{-1}\mathbb{Z}[q^{-1}]. \]

2. \(B^t\) forms an \(A\)-basis for the \(A\)-lattice \(A^t M\) (generated by \(B\)), and forms a \(\mathbb{Z}[q^{-1}]\)-basis for the \(\mathbb{Z}[q^{-1}]\)-lattice \(M\) (generated by \(B\)).

Remark 5.8. When \(\mathbb{I} = \mathbb{I}_t\), we have \(-\mathbb{I} = w_t\mathbb{I}, \ X = X_t\), and hence \(b \leq_t b'\) actually means \(|b| = |b'|\). Therefore, in this case the \(t\)-canonical basis reduces to the usual canonical basis.

Remark 5.9. Similar to Lusztig’s canonical basis, the \(t\)-canonical bases are computable algorithmically. The \(t\)-canonical basis is not homogenous in terms of the weight lattice \(X\), though it is homogenous in \(X_t\).

Recall for \(\lambda \in X^+\), we denote by \(\mathcal{A}L(\lambda)\) (respectively, \(\mathcal{L}(\lambda)\)) the \(A\)-lattice (respectively, the \(\mathbb{Z}[q^{-1}]\)-lattice) spanned by \(\{b^{-\eta}| b \in B(\lambda)\}\). The following theorem is an important special case of Theorem 5.7, since \(L(\lambda)\) is well known [Lu90, Ka91] to be a based \(U\)-module.

Theorem 5.10.

1. For any \(b \in B\), there is a unique element \((b^{-\eta})^t \in L(\lambda)\) which is \(\psi_t\)-invariant and of the form
 \[(b^{-\eta})^t = b^{-\eta} + \sum_{b' < b} q^{-1}\mathbb{Z}[q^{-1}]b^{-\eta}; \]

2. The set \(\{(b^{-\eta})^t|b \in B(\lambda)\}\) forms a \(\mathbb{Q}(q)\)-basis of \(L(\lambda)\), an \(A\)-basis of \(\mathcal{A}L(\lambda)\), and a \(\mathbb{Z}[q^{-1}]\)-basis of \(\mathcal{L}(\lambda)\) (called the \(t\)-canonical basis).
Recall that a tensor product of several finite-dimensional simple U-modules is a based U-module by [Lu94, Theorem 27.3.2, §27.3.6]. Theorem 5.7 also implies the following.

Corollary 5.11. Let $\lambda_1, \ldots, \lambda_r \in X^+$. The tensor product of finite-dimensional simple U-modules $L(\lambda_1) \otimes \ldots \otimes L(\lambda_r)$ admits a unique ψ_i-invariant basis of the form (5.3), where B is understood as Lusztig’s canonical basis on the tensor product.

Recall we write η_b^\bullet or simply η^\bullet for the unique canonical basis element in $L(\lambda)$ of weight $w^\bullet \lambda$. Moreover, by [Lu94, Lemma 39.1.2], we have

$$\eta_b^\bullet = \Upsilon_{w^\bullet \lambda}^{-1}(\eta_b).$$

Some ι-canonical basis elements are easy to identify as follows (even though the ι-canonical basis differs from canonical basis in general, for example, already in the natural \mathfrak{sl}_n-module; cf. [BW13, Remark 5.10]).

Corollary 5.12. For any $b \in B_\iota(\lambda)$, the element $b^\iota - \eta \in L(\lambda)$ is an ι-canonical basis element. In particular, $\eta^\bullet \in L(\lambda)$ is an ι-canonical basis element.

Proof. We already know that $\psi(b^\iota - \eta) = b^\iota - \eta$ by definition. On the other hand, we have $\Upsilon(b^\iota - \eta) = b^\iota - \eta$ for weight reason, by Proposition 4.15. So $\psi_i(b^\iota - \eta) = \Upsilon \psi(b^\iota - \eta) = b^\iota - \eta$. Note η^\bullet is equal to $b^\iota - \eta \in L(\lambda)$ for some particular b. By the uniqueness, a canonical basis element which is ψ_i-invariant must be ι-canonical. The corollary follows. □

5.4. On QSP of Kac-Moody type.

The theory of quantum symmetric pairs of Kac-Moody (KM) type is developed in Kolb [Ko14]. As we follow Lusztig’s book on quantum groups, we shall assume that the root datum is X-regular and Y-regular in the sense of [Lu94]. We briefly comment on the extensions of results in Section 3–5 to QSPs of KM type.

An quantum group of KM type is called *locally finite* if all of its Levi subalgebras of real rank one have Satake diagrams listed in Table 1.

On Section 3 All constructions therein make sense for the quantum symmetric pairs (U, U^ι) of KM type (under the assumption “$\nu_i = 1$ for all $i \in I_\circ$”, which is conjectural to be always true in [BK15a, Conjecture 2.7]). The conjecture “$\nu_i = 1$ for all $i \in I_\circ$” holds for U^ι of locally finite KM type, and the values ς_i are computed as in Table 3.

The study of ι-canonical basis for general KM type leads to the question of studying in depth U^ι of KM type of real rank one.

On Section 4 The statements on braid group action for U^ι make sense for the quantum symmetric pairs (U, U^ι) of KM type and in more general parameters as in [BK15a] (under the assumption “$\nu_i = 1$ for all $i \in I_\circ$” as above). However, the statement on anti-involution φ for U^ι of KM type requires the stronger Condition (3.8) on parameters as explained in Remark 4.7. We refer to Remark 3.7 for the comparison of parameters and their constraints used in this paper and in BK15a.

On Section 5 The construction of ι-canonical bases on based U-modules can be extended to some class of QSP of KM type. We shall return to study the ι-canonical bases arising from QSP of KM type in a separate work.
6. Canonical basis for the modified quantum group \(\hat{U}^\nu \)

In this section we formulate a projective system of \(\hat{U}^\nu \)-modules \(\{ L'(\lambda + \nu, \mu + \nu) \}_{\nu \in X^+} \), and establish the asymptotic compatibility of \(\nu \)-canonical bases between these modules. Then we construct the \(\nu \)-canonical basis on the modified quantum group \(\hat{U}^\nu \) (Theorem 6.16).

6.1. Based modules \(L'(\lambda, \mu) \). In this section we shall consider the based submodule \(L'(\lambda, \mu) = U(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \) of \(\hat{U}(\lambda) \otimes \hat{U}(\mu) \) introduced in [2,7], for \(\lambda, \mu \in X^+ \). Thanks to Corollary 2.7 and Theorem 5.7, we have already known the existence of the \(\nu \)-canonical basis of \(\hat{U}(\lambda) \otimes \hat{U}(\mu) \). The main goal of this subsection is to improve the partial ordering \(\leq \) in Theorem 5.7 (1) for the based module \(L'(\lambda, \mu) \).

Remark 6.1. (1) When \(\mathbb{I}_* = \emptyset \), we have \(L'(\lambda, \mu) \cong L(\lambda + \mu) \) canonically.

(2) When \(\mathbb{I}_* = \mathbb{I} \), we have \(L'(\lambda, \mu) = \nu L(\lambda - w_0 \lambda) \otimes \hat{U}(\mu) \) since \(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu} = \xi_{w_0 \lambda} \otimes \eta^\nu_{\mu} \). Then we are back to Lusztig’s setting [Lu94, Chapter 25].

Lemma 6.2. Let \(\lambda, \mu \in X^+ \). We have

1. \(\hat{U}^\nu(\eta^\nu_{\lambda}) = L(\lambda) \) and \(\hat{U}^\nu(\eta^\nu_{\mu}) = L(\mu) \);

2. \(L'(\lambda, \mu) = \hat{U}^\nu(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) = \hat{U}^\nu(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \).

Proof. Part (1) is a special case of Part (2) by taking \(\lambda = 0 \) or \(\mu = 0 \), and so let us prove (2). It follow by definition that \(L'(\lambda, \mu) = \hat{U}(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \), which is equal to \(\hat{U}(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \), thanks to \(E_i(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) = 0 \) for \(i \in \mathbb{I}_0 \). Since the action of \(\hat{U}^\nu(1_{\mu_\lambda} \otimes \eta^\nu_{\mu}) \) through the projection \(\Theta(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \), it follows by Lemma 6.22 that \(\hat{U}^\nu(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) = \hat{U}^\nu(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \). The lemma is proved.

Lemma 6.3. Let \(\lambda, \mu \in X^+ \). For any \(b \in B_{\nu^*}(\lambda) \), the element \((b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) \in L(\lambda) \otimes \hat{U}(\mu) \) is an \(\nu \)-canonical basis element. In particular, \(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu} = \hat{U}(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \) is an \(\nu \)-canonical basis element.

Proof. To prove the first statement, it suffices to check that \((b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) \) is a Lusztig canonical basis element and \(\psi \)-invariant. Indeed, since \(\psi((b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) = \Theta((b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) = (b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}), (b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) \) is a Lusztig canonical basis element. On the other hand, we have \(\psi_i((b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) = \hat{U}(b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) = (b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) \) for weight reason. Also recall from (5.21) that \(\eta^\nu_{\lambda} = \hat{U}(\eta^\nu_{\lambda}) \) is a canonical basis element of \(L(\lambda) \) in (5.21). The theorem follows.

For \(N \geq 0 \), let \(P(N) \) be the \(\mathbb{Q}(q) \)-subspace of \(\hat{U} \) spanned by elements of the form \(b_1^{-1} b_2^1 \mathbf{1}_* \) for \(\zeta \in X, (b_1, b_2) \in B_{\nu^*} \times B \) such that \(\text{ht}(\nu) \leq N \). It is clear that \(P(N) \cap B \) is a canonical basis of \(P(N) \).

Lemma 6.4. For \(\lambda, \mu \in X^+ \), the subspace \(P(N)(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \) of \(L(\lambda) \otimes \hat{U}(\mu) \) is stable under the action of \(\psi \).

Proof. Observe by Lemma 6.3 that \(\psi_i(b_1^+ b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) = b_1^+ \psi_i(b^{-\eta^\nu_{\lambda}} \otimes \eta^\nu_{\mu}) \) for \((b_1, b) \in B_{\nu^*} \times B \). Hence it suffices to show that \(\psi_i(u(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu})) \in P(N)(\eta^\nu_{\lambda} \otimes \eta^\nu_{\mu}) \), for \(u \in U_{\nu^*} \) with \(\text{ht}(\nu) \leq N \).
We prove this by induction on \(N \). When \(N = 0 \), the statement is trivial. Let us prove for \(u = F_{a_1}^{a_1} F_{a_2}^{a_2} \cdots F_{a_k}^{a_k} \) with \(\sum_{i=1}^{k} a_i = N \) that \(\psi_i (u (\eta_\lambda \otimes \eta_\mu)) \in \mathcal{P} (N) (\eta_\lambda \otimes \eta_\mu) \). We shall compare \(\psi_i (u (\eta_\lambda \otimes \eta_\mu)) \) with \(B_{11}^{a_1} B_{12}^{a_2} \cdots B_{1k}^{a_k} (\eta_\lambda \otimes \eta_\mu) \). Since \(B_i \)'s are \(\psi_i \)-invariant, it follows by (3.9) that
\[
\psi_i (u (\eta_\lambda \otimes \eta_\mu)) \subset B_{11}^{a_1} B_{12}^{a_2} \cdots B_{1k}^{a_k} (\eta_\lambda \otimes \eta_\mu) + \psi_i (\mathcal{P} (N - 1) (\eta_\lambda \otimes \eta_\mu)).
\]
Hence the lemma follows by induction.

Recall the partial order \(\leq \) on \(X \) from (2.1).

Definition 6.5. We define a partial ordering \(\leq_1 \) on \(B \times B \), and hence on \(B_\bullet \times B \) as well by restriction, by letting \((b_1', b_2') \leq_1 (b_1, b_2)\), for \(b, b' \in B \), if and only if Conditions (1)–(3) hold:

1. \(|b_1'| - |b_2'| = |b_1| - |b_2| \) (in \(X \));
2. \((|b_1'| - |b_2'|) - (|b_1| - |b_2|) \in \mathbb{N}[\mathbb{I}] \cap \mathbb{N}[\mathbb{I}]\);
3. \(|b_2'| \leq |b_2| \).

We say \((b_1', b_2') \leq_1 (b_1, b_2)\) if \((b_1', b_2') \leq_1 (b_1, b_2)\) and \((b_1', b_2') \neq (b_1, b_2)\). This partial ordering is compatible with the partial ordering \(\leq_1 \) on \(B \) (by taking \(b_1 = b_1' = 1 \) above).

Lemma 6.6. The partial ordering \(\leq_1 \) on \(B_\bullet \times B \) is downward finite, that is, for any fixed \((b_1, b_2) \in B_\bullet \times B \), there are only finitely many \((b_1', b_2') \in B_\bullet \times B \) such that \((b_1', b_2') \leq_1 (b_1, b_2)\).

Proof. Note that \(|b_1'| \in \mathbb{N}[\mathbb{I}] \) for any \(b_1' \in B_\bullet \). Thanks to Definition 6.5(3), there are only finitely many \(b_2' \in B \), such that \((b_1', b_2') \leq_1 (b_1, b_2)\). Now by Definition 6.5(1), we have \(|b_1'| = |b_1| - |b_2| + |b_2'| \). There are only finitely many \(b_1' \in B_\bullet \) satisfying this condition thanks to (3.3).

Lemma 6.7. Let \(\lambda, \mu \in X^+ \) and let \(\zeta = w^{\bullet} \lambda + \mu \). For any \((b_1, b_2) \in B_\bullet \times B \), we have
\[
\psi_i ((b_1 \otimes \zeta b_2) (\eta_\lambda \otimes \eta_\mu)) = (b_1 \otimes \zeta b_2) (\eta_\lambda \otimes \eta_\mu) + \sum_{(b_1', b_2') < (b_1, b_2)} f(b_1, b_2; b_1', b_2')(b_1 \otimes \zeta b_2)(\eta_\lambda \otimes \eta_\mu),
\]
where \(f(b_1, b_2; b_1', b_2') \in \mathcal{A} \).

Proof. Recall \(\psi = \Upsilon \circ \psi \). By Theorem 5.3 and Lemma 6.4, we have
\[
\psi_i ((b_1 \otimes \zeta b_2) (\eta_\lambda \otimes \eta_\mu)) = \sum_{|b_2'| \leq |b_2|} f(b_1, b_2; b_1', b_2')(b_1 \otimes \zeta b_2)(\eta_\lambda \otimes \eta_\mu),
\]
where \(f(b_1, b_2; b_1', b_2') \in \mathcal{A} \) and \((b_1', b_2') \in B_\bullet \times B \). By similar arguments for Lemma 5.6, we see that \(f(b_1, b_2; b_1', b_2') = 1 \) and \(f(b_1, b_2; b_1', b_2') = 0 \) unless Conditions (1)–(2) in Definition 6.5 Condition (3) in Definition 6.5 follows from Lemma 6.4.

Now we obtain the following refinement of Theorem 5.7 for the based module \(L^* (\lambda, \mu) \).

Proposition 6.8. Let \(\lambda, \mu \in X^+ \) and let \(\zeta = w^{\bullet} \lambda + \mu \) and \(\zeta_i = \zeta \).
(1) For any \((b_1, b_2) \in B_\bullet \times B\), there is a unique element in \(L'(\lambda, \mu)\), denoted by \((b_1 \diamond \delta, b_2)_{\mu, \lambda}\mu, \lambda\) (or by \(((b_1 \diamond \delta, b_2)(\eta^\bullet_\lambda \otimes \eta_\mu))^\dagger \) sometimes), which is \(\psi_1\)-invariant and of the form

\[
(b_1 \diamond \delta, b_2)(\eta^\bullet_\lambda \otimes \eta_\mu) + \sum_{(b_1', b_2') \leq (b_1, b_2)} q^{-1}\mathbb{Z}[q^{-1}](b_1' \diamond \delta, b_2')(\eta^\bullet_\lambda \otimes \eta_\mu).
\]

(2) The set \(B'(\lambda, \mu) = \{(b_1 \diamond \delta, b_2)_{\mu, \lambda}| (b_1, b_2) \in B_\bullet \times B\}\) \(\setminus\{0\}\) forms an \(\mathcal{A}\)-basis of \(L'(\lambda, \mu)\) and a \(\mathbb{Z}[q^{-1}]\)-basis of \(L'(\lambda, \mu)\) (called the \(\nu\)-canonical basis).

Now taking \(\mu = 0\), we obtain the following generalization of Theorem 5.10.

Corollary 6.9. Let \(\lambda \in X^+\). Then we have the \(\nu\)-canonical basis of \(L(\lambda)\) which consists of the nonzero elements of the form \(((b_1 \diamond \delta, b_2)\eta^\bullet_\lambda)^\dagger\) for \((b_1, b_2) \in B_\bullet \times B\).

6.2. A projective system of \(U'\)-modules. We shall give a construction of a projective system of \(U'\)-modules \(\{L'(\lambda + \nu^\tau, \mu + \nu)\}_{\nu \in X^+}\), for fixed \(\lambda, \mu \in X^+\). Our construction essentially reduces to \([Lu94, 25.1.4-5]\) in case that \(I = I_\bullet\).

Lemma 6.10. For any \(\nu \in X^+\), there exists a homomorphism of \(U'\)-modules

\[
\delta_\nu = \delta_{\nu} : L(\nu^\tau) \otimes L(\nu) \rightarrow \mathbb{Q}(q),
\]

such that \(\delta_\nu(\eta^\bullet_\mu \otimes \eta_\nu) = 1\).

Proof. Recall the \(U'\)-isomorphism \(\mathcal{T} : L(\nu^\tau) \rightarrow \omega L(\nu)\) in Theorem 4.18. Define a \(U'\)-homomorphism \(\delta = \delta \circ (\mathcal{T} \otimes \text{id})\), where \(\delta : \omega L(\nu) \otimes L(\nu) \rightarrow \mathbb{Q}(q)\) is the \(U\)-homomorphism defined in \([Lu94, \text{Proposition 25.1.4}]\). Clearly \(\delta(\eta^\bullet_\mu \otimes \eta_\nu) = 1\). \(\square\)

Proposition 6.11. For any \(\lambda, \mu, \nu \in X^+\), there exists a \(U'\)-homomorphism

\[
\pi = \pi_{\lambda, \mu, \nu} : L(\lambda + \nu^\tau) \otimes L(\mu + \nu) \rightarrow L(\lambda) \otimes L(\mu)
\]

such that \(\pi(\eta^\bullet_{\lambda + \nu^\tau} \otimes \eta_{\mu + \nu}) = \eta^\bullet_\lambda \otimes \eta_\mu\). Hence, we have a unique \(U'\)-homomorphism

(6.1)

\[
\pi : L'(\lambda + \nu^\tau, \mu + \nu) \rightarrow L'(\lambda, \mu)
\]

such that \(\pi(\eta^\bullet_{\lambda + \nu^\tau} \otimes \eta_{\mu + \nu}) = \eta^\bullet_\lambda \otimes \eta_\mu\).

Proof. Recall the \(U\)-homomorphism \(\chi\) from Lemma 2.3 and the \(\mathcal{R}\)-matrix \(\mathcal{R}\) associated with \(U\) defined in \([Lu94, \text{§4.1}]\). We define a \(U\)-homomorphism as the composition \(\chi'' = (1 \otimes \mathcal{R} \otimes 1) \circ (\chi \otimes \chi):\)

\[
\chi'' : L(\lambda + \nu^\tau) \otimes L(\mu + \nu) \otimes L(\lambda) \otimes L(\nu) \otimes L(\mu)
\]

\[
\overset{1 \otimes \mathcal{R} \otimes 1}{\rightarrow} L(\nu^\tau) \otimes L(\nu) \otimes L(\lambda) \otimes L(\mu)
\]

such that

\[
\eta^\bullet_{\lambda + \nu^\tau} \otimes \eta_{\mu + \nu} \rightarrow \eta^\bullet_{\nu^\tau} \otimes \eta_\nu \otimes \eta^\bullet_\lambda \otimes \eta_\mu.
\]

Then the \(U'\)-homomorphism \(\pi := (\delta_\nu \otimes \text{id}) \circ \chi''\) satisfies that \(\pi(\eta^\bullet_{\lambda + \nu^\tau} \otimes \eta_{\mu + \nu}) = \eta^\bullet_\lambda \otimes \eta_\mu\). The restriction of \(\pi\) provides a \(U'\)-homomorphism (6.1), and its uniqueness follows from Lemma 6.2. \(\square\)
Proposition 6.12. The homomorphism $\pi : L^r(\lambda + \nu^r, \mu + \nu) \to L^r(\lambda, \mu)$ commutes with the bar involutions ψ_i; that is,

$$\pi \circ \psi_i(m) = \psi_i \circ \pi(m), \quad \text{for all } m \in L^r(\lambda + \nu^r, \mu + \nu).$$

Proof. Thanks to Lemma 6.2, we can write $m = u(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})$ for $u \in U$. Recall that $\psi_i(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu}) = (\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})$ by Lemma 6.3. We have

$$\pi \circ \psi_i(m) = \pi \circ \psi_i(u(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})) = \psi_i(u)\pi(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu}) = \psi_i(u)(\eta_{\lambda} \otimes \eta_{\mu}).$$

We also have

$$\psi_i \circ \pi(m) = \psi_i \circ \pi(u(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})) = \psi_i(u)\psi_i \circ \pi(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu}) = \psi_i(u)(\eta_{\lambda} \otimes \eta_{\mu}).$$

The proposition follows. □

6.3. A stabilization property. Denote by $L^r(\lambda, \mu)$ the $\mathbb{Z}[q^{-1}]$-lattice spanned by the canonical basis (hence also the r-canonical basis) of $L^r(\lambda, \mu)$. By $\lambda \gg 0$ (say, λ is sufficiently large) we shall mean that the integers $\langle i, \lambda \rangle$ for all i are sufficiently large (in particular, we have $\lambda \in X^+$).

Let us first explain the simple idea for this subsection before going to the technical details. We want to study the contraction map π in (6.1) “at the limit $\nu \to \infty$” and ultimately prove Proposition 6.13. But to start with we do not actually know how to show that π maps $L^r(\lambda + \nu^r, \mu + \nu)$ to $L^r(\lambda, \mu)$. (In our QSP setting, we do not have at our disposal the r-counterpart of [Lu94, 25.1.6] which relies on [Lu94, 25.1.2(b), 25.1.4(b)].) We instead study a simpler problem on whether or not the image of $(\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})$ under π lies in $L^r(\lambda, \mu)$, for fixed $(b_1, b_2) \in B \times B$. The idea is to show that $\pi((\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})) \in L^r(\lambda, \mu)$, for λ, μ, ν sufficiently large.

In this section, we often require that $\lambda, \mu \gg 0$ while fixing $\zeta = w_b^r \lambda + \mu \in X$. Note that this is always possible, since we have $\nu + w_b^r(\nu) = 0 \in X$, for any $\nu \in X$. In other words, we can always replace λ with $\lambda + \nu^r$ and μ with $\mu + \nu$, respectively, for $\nu \in X$.

Let $\zeta_i \in X$, $\nu \in X^+$ and $(b_1, b_2) \in B \times B$. Let $\lambda, \mu \in X^+$ be such that $w_b^r \lambda + \mu = \zeta$ for some $\zeta \in X$ with $\zeta \in X$. Then, $\zeta \in X$. Hence $\zeta' = w_b^r(\lambda + \nu^r) + \mu + \nu$ satisfies that $\zeta' = \zeta$. Then, for $\lambda, \mu \gg 0$, the map $\pi_{\lambda, \mu, \nu} : L^r(\lambda + \nu^r, \mu + \nu) \to L^r(\lambda, \mu)$ satisfies

$$\pi_{\lambda, \mu, \nu}((\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu})) \equiv (b_1 \circ \zeta b_2)(\eta_{\lambda} \otimes \eta_{\mu}), \quad \text{mod } q^{-1}L^r(\lambda, \mu).$$

Proof. The symbol “$\lambda \to \infty$” below means that $\langle i, \lambda \rangle$ tends to ∞ for all $i \in I$. In this proof we denote by $\lim_{\lambda, \mu \to \infty}$ the limit where $\lambda, \mu \to \infty$ while fixing $w_b^r \lambda + \mu = \zeta$. We shall proceed in two steps.

(1) First we prove the lemmas in the special case when $b_1 = 1$. We write $b = b_2$ to simplify the notation here. Then we have $1 \circ \zeta b = b - 1 \zeta$. Let

$$\Delta(b^-) = 1 \otimes b + \sum_{b' \neq 1} a(b', b^r) b'^- \otimes b'^- K_{-|b'|}.$$

It follows by (6.1) that

$$\chi''(b^- (\eta_{\lambda + \nu^r} \otimes \eta_{\mu + \nu}))
= (\eta_{\nu^r} \otimes \eta_{\mu}) \otimes b(\eta_{\lambda} \otimes \eta_{\mu}) + \sum a(b', b^r) b'^- (\eta_{\nu^r} \otimes \eta_{\mu}) \otimes b'^- K_{-|b'|}(\eta_{\lambda} \otimes \eta_{\mu}),$$
and hence
\[
\pi_{\lambda, \mu, \nu}(b^{-} (\eta_{\lambda} \otimes \eta_{\mu})) = b^{-} (\eta_{\lambda} \otimes \eta_{\mu}) + \sum_{b' \neq 1} a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) b'' - \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}).
\]

(6.2)

By Theorem 2.6, we have \(b'' (\eta_{\lambda} \otimes \eta_{\mu}) \in B(\lambda, \mu) \cup \{0\} \) for any \(b'' \in B \).

Now if \(1 \neq b'' \in U_{i*} \), we have
\[
\delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) = b'' \left(\delta_{\nu}'(\eta_{\nu} \otimes \eta_{\nu}) \right) = 0.
\]

Therefore we have (if \(b' \neq 1 \))
\[
\begin{align*}
\pi_{\lambda, \mu, \nu}(b'' (\eta_{\nu} \otimes \eta_{\nu})) & = b'' (\eta_{\nu} \otimes \eta_{\nu}) + \sum_{b' \neq 1} a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) b'' - \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}) \\
& = a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) b'' - \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}) = 0.
\end{align*}
\]

(6.3)

If \(b' \notin U_{i*} \), we write \(|b'| = \sum_{i \in I_*} a_{i} i + \sum_{j \in J} c_{j} j \) for \(a_{i}, c_{j} \geq 0 \), and some \(c_{j} \neq 0 \). Then we have
\[
\tilde{K}_{-|b'|} (\eta_{\lambda} \otimes \eta_{\mu}) = \prod_{i \in I_*} q_{i}^{-a_{i}(i, w_{*} \lambda + \mu)} \prod_{j \in J} q_{j}^{-c_{j}(j, w_{*} \lambda + \mu)} (\eta_{\lambda} \otimes \eta_{\mu})
\]
\[
= \prod_{i \in I_*} q_{i}^{-a_{i}(i, w_{*} \lambda + \mu)} \prod_{j \in J} q_{j}^{-c_{j}(j, \lambda)} \prod_{j \in J} q_{j}^{-c_{j}(j, \mu)} (\eta_{\lambda} \otimes \eta_{\mu}).
\]

Since \(w_{*} \lambda + \mu = \zeta_{i} \in X_{*} \), \(\prod_{i \in I_*} q_{i}^{-a_{i}(i, w_{*} \lambda + \mu)} \) depends only on \(\zeta_{i} \) (since \(\mathbb{Z}[I_*] \subset Y^{*} \)) and hence is fixed. Note that \(w_{*} j > 0 \), for \(j \in J \). So we have
\[
\lim_{\lambda, \mu, \nu \to \infty} -s_{\nu', \lambda, \mu} = -\infty.
\]

(6.4)

On the other hand, since \(\nu \) is fixed, we see that
\[
\delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) \in q^{s_{\nu}} \mathbb{Z}[q^{-1}], \quad \text{for some } s_{\nu} \in \mathbb{N}.
\]

We can choose \(s_{\nu} \) to be independent of \(b'' \) thanks to Theorem 2.6 and the finite-dimensionality of \(L^{2}(\nu^{*}, \nu) \).

Note that \(a(b', b'') \) depends only on \(b \) and is independent of \(\lambda, \mu \). Let \(t_{b} \in \mathbb{N} \) such that \(q^{-t_{b}} a(b', b'') \in \mathbb{Z}[q^{-1}] \) for all \(b', b'' \). Therefore we have
\[
\begin{align*}
\pi_{\lambda, \mu, \nu}(b'' (\eta_{\nu} \otimes \eta_{\nu})) & = b'' (\eta_{\nu} \otimes \eta_{\nu}) + \sum_{b' \neq 1} a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) b'' - \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}) \\
& = a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) b'' - \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}) = 0.
\end{align*}
\]

(6.5)

Since there are only finitely many \(b' \leq b \) and \(b'' \leq b \), let \(s_{b', \lambda, \mu} = \min \{ s_{b', \lambda, \mu} | b' \leq b \} \).

Thus the combination of (6.3) and (6.5) implies (recall \(b' \neq 1 \))
\[
\begin{align*}
a(b', b'') \delta_{\nu}'(b'' (\eta_{\nu} \otimes \eta_{\nu})) & \tilde{K}_{-|\nu|} (\eta_{\lambda} \otimes \eta_{\mu}) \in q^{-s_{b', \lambda, \mu} + t_{b} + s_{b'} \mathbb{Z}[q^{-1}] (\eta_{\lambda} \otimes \eta_{\mu}), \quad \text{for all } b' \leq b.
\end{align*}
\]

(6.6)
Equation (6.4) and the finiteness of the set \(\{ s_{\nu', \lambda, \mu} | b' \leq b \} \) imply that
\[
\lim_{\lambda, \mu \to \infty} (-s_{b, \lambda, \mu} + t_b + s_{b'} = (- \lim_{\lambda, \mu \to \infty} s_{b, \lambda, \mu}) + t_b + s_{b'} = -\infty.
\]

Note that \(1 \otimes b = b^{-1} \mathbf{1}_\zeta \) and \(1 \otimes c' b = b^{-1} \mathbf{1}_{c'} \). Summarizing, for \(\lambda, \mu \gg 0 \), we have
\[
\pi_{\lambda, \mu, \nu'}(1 \otimes \mathbf{1}_\zeta b (\eta_{\lambda+\nu} \otimes \eta_{\mu+\nu})) \equiv b^{-1} (\eta_{\lambda} \otimes \eta_{\mu}), \mod q^{-1} \mathcal{L}'(\lambda, \mu).
\]
This finishes the proof in the case when \(b_1 = 1 \).

(2) Now we deal with the general case, by letting \(b_1 \in \mathbf{B}_1 \) and \(b_2 \in \mathbf{B} \) be arbitrarily fixed. We can write
\[
b_1 \otimes b_2 = \sum_{|b_1| \leq |b_1|, |b_2| \leq |b_2|} f(b_1, b_2)' b_1^{+} b_2^{-1} \mathbf{1}_\zeta, \quad f(b_1, b_2) \in \mathcal{A}.
\]

Note that \(f(b_1, b_2) \in \mathcal{A} \) depends only on \(b_1, b_2 \) and \(\zeta = \zeta' \) (by Proposition 2.10).

Since the set \(\{ f(b_1, b_2)' | |b_1| \leq |b_1|, |b_2| \leq |b_2| \} \) is finite, there exists \(s_f \in \mathbb{N} \) such that \(f(b_1, b_2) \in q^{s_f} \mathbb{Z}[q^{-1}] \), for all \(b_1, b_2 \).

The elements \(b_1^{+} \mathbb{1}_\zeta \) commute with the \(\mathbb{U}_1 \)-homomorphism \(\pi_{\lambda, \mu, \nu'} \). Following Equation (6.2) and the notation therein, we have
\[
\pi_{\lambda, \mu, \nu'}\left(b_1^{+} b_2^{-1} (\eta_{\lambda+\nu} \otimes \eta_{\mu+\nu})\right) = b_1^{+} b_2^{-1} (\eta_{\lambda} \otimes \eta_{\mu}) + \sum_{b_2' \neq 1} \alpha(b_2, b_2') \delta_{\nu'}(b_2^{-1} (\eta_{\lambda+\nu'} \otimes \eta_{\mu})) b_1^{+} b_2^{-1} (\eta_{\lambda} \otimes \eta_{\mu}).
\]

Let \(s_{b_1, b_2} \in \mathbb{N} \) be such that \(b_1^{+} b_2^{-1} \mathbf{1}_\zeta \in q^{s_{b_1, b_2}} \mathbb{Z}[q^{-1}] \mathbb{B}_1 \zeta \). By Proposition 2.10, \(s_{b_1, b_2} \) depends only on \(\zeta \), but not on \(\zeta' \), since \((i, \zeta) = (i, \zeta') \) for all \(i \in \mathbb{I}_1 \).

Now for a fixed \(b_2 \in \mathbf{B} \), there are only finitely many \(|b_2'| \leq |b_2| \) (and \(|b_2'| \leq |b_2| \)). Let \(s_{b_1, b_2} = \max \{ s_{b_1, b_2}, \forall b_2' \text{ with } |b_2'| \leq |b_2| \} \). Then we have
\[
'b_1^{+} b_2^{-1} \mathbf{1}_\zeta \in q^{s_{b_1, b_2}} \mathbb{Z}[q^{-1}] \mathbb{B}_1 \zeta, \quad \forall b_2' \text{ with } |b_2'| \leq |b_2|.
\]

Let \(m_{b_1, b_2} = \max \{ s_{b_1, b_2}, \forall b_1, b_2 \text{ with } |b_1| \leq |b_1|, |b_2| \leq |b_2| \} \). Then we have
\[
'b_1^{+} b_2^{-1} \mathbf{1}_\zeta \in q^{m_{b_1, b_2}} \mathbb{Z}[q^{-1}] \mathbb{B}_1 \zeta, \quad \forall b_2' \text{ with } |b_2'| \leq |b_2|, |b_1| \leq |b_1|.
\]

Then thanks to Equation (6.6) and Theorem 2.6 we have, for all \(|b_2'| \leq |b_2| \) and \(b_2' \neq 1 \),
\[
f(b_1, b_2) a(b_2, b_2') \delta_{\nu}(b_2^{-1} (\eta_{\lambda+\nu'} \otimes \eta_{\mu})) b_1^{+} b_2^{-1} (\mathcal{K}_{b_2'} (\eta_{\lambda} \otimes \eta_{\mu}))
\]
\[\in q^{-s_{b_1, b_2} + t_{b_2} + s_{b_2} + m_{b_1, b_2} + s_f} \mathcal{L}'(\lambda, \mu).
\]

We see \(\lim_{\lambda, \mu \to \infty} (-s_{b_2, \lambda, \mu} + t_{b_2} + s_{b_2} + m_{b_1, b_2} + s_f) = -\infty \), for all \(|b_2| \leq |b_2| \) and \(|b_2'| \neq 1 \).

Since there are only finitely many \(|b_2| \leq |b_2| \), we can find \(\lambda, \mu \gg 0 \) such that
\[
\pi_{\lambda, \mu, \nu'} f(b_1, b_2)' b_1^{+} b_2^{-1} (\eta_{\lambda} \otimes \eta_{\mu}), \mod q^{-1} \mathcal{L}'(\lambda, \mu).
\]
Now summarizing, we can find \(\lambda, \mu \gg 0 \) such that
\[
\pi_{\lambda,\mu,\nu} \left((b_1 \otimes \eta_{\lambda,\nu}) \otimes \eta_{\mu,\nu} \right)
= \pi_{\lambda,\mu,\nu} \left(\sum_{b_1, b_2} f(b_1, b_2) (\eta_{\lambda,\nu} \otimes \eta_{\mu,\nu}) \right)
\equiv \sum_{b_1, b_2} f(b_1, b_2) (\eta_{\lambda} \otimes \eta_{\mu}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]
(6.9)
\[
\equiv (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]
The last identity (6.9) follows from Proposition 2.10. This finishes the proof. \(\Box \)

Now we improve Lemma 6.13 by letting \(\nu \in X^+ \) vary.

Lemma 6.14. Let \(\zeta \in X_i \) and \((b_1, b_2) \in B_i \times B\). Then for all \(\lambda, \mu \gg 0 \) such that \(\zeta : w \lambda + \mu = \zeta \) satisfies \(\zeta = \zeta_i \) and for all \(\nu \in X^+ \), we have
\[
\pi_{\lambda,\mu,\nu} \left((b_1 \otimes \eta_{\lambda,\nu}) \otimes \eta_{\mu,\nu} \right) \equiv (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)},
\]
where we have denoted \(\zeta' : w (\lambda + \nu^\tau) + \mu + \nu \).

Proof. Let \(\omega_i \in X \) such that \(\langle j, \omega_i \rangle = \delta_{i,j} \) for \(i, j \in \mathbb{I} \). Now we can apply Lemma 6.13 to \(\nu = \omega_i \) for each \(i \in \mathbb{I} \). Since \(\mathbb{I} \) is a finite set, clearly when \(\lambda, \mu \gg 0 \), we have
\[
\pi : L^i(\lambda + \tau(\omega_i), \nu + \omega_i) \rightarrow L^i(\lambda, \mu), \quad \forall i \in \mathbb{I},
\]
satisfying
\[
\pi_{\lambda,\mu,\omega_i} \left((b_1 \otimes \eta_{\lambda}) \right) \equiv (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]
Now the lemma follows by induction on \(\text{ht}(\nu) \). \(\Box \)

Recall from Proposition 6.8 the \(r \)-canonical basis \(\{(b_1 \otimes \eta_{\lambda}) : ((b_1 \otimes \eta_{\lambda}) \otimes \eta_{\mu,\nu}) \} \) of \(L^i(\lambda, \mu) \).

Proposition 6.15. Let \(\zeta_i \in X_i \) and \((b_1, b_2) \in B_i \times B\). Then for all \(\lambda, \mu \gg 0 \) such that \(\zeta : w \lambda + \mu = \zeta_i \) and for all \(\nu \in X^+ \), we have
\[
\pi_{\lambda,\mu,\nu} \left((b_1 \otimes \eta_{\lambda}) \right) = (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]

Proof. We write \(\zeta' : w(\lambda + \nu^\tau) + \mu + \nu \). Recall from Proposition 6.8 that
\[
\left((b_1 \otimes \eta_{\lambda}) \right) \equiv (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}
\]
\[
+ \sum_{b_1, b_2} q^{-1} \mathbb{Z}[q^{-1}] (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]
Applying Lemma 6.14 to all (finitely many in total thanks to Lemma 6.6) \((b_1', b_2') \in B_i \times B\) such that \(b_1', b_2' \leq (i, b_1, b_2) \), we have
\[
\pi_{\lambda,\mu,\nu} \left((b_1' \otimes \eta_{\lambda}) \right) \equiv (b_1' \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)},
\]
for all \(b_1, b_2 \leq (i, b_1, b_2) \). Hence we have
\[
(6.10) \quad \pi_{\lambda,\mu,\nu} \left((b_1 \otimes \eta_{\lambda}) \right) = (b_1 \otimes \eta_{\lambda}) \pmod{q^{-1} \mathcal{L}^i(\lambda, \mu)}.
\]
We know by Proposition 6.12 that \(\pi_{\lambda, \mu, \nu} \left((b_1 \otimes \zeta) b_2 \right)_{w_\lambda w_\mu w_\nu} \) is \(\psi_t \)-invariant. Therefore the proposition follows by (6.11) and the characterization property in Proposition 6.8(1) of the \(\nu \)-canonical basis element \(\left((b_1 \otimes \zeta) b_2\right)(\eta_\lambda \otimes \eta_\mu)^{\dagger} \).

\[\square \]

6.4. **Canonical basis on** \(\hat{U}^\nu \). We are in a position to construct the \(\nu \)-canonical basis of \(\hat{U}^\nu \). Recall the \(A \)-subalgebra \(\hat{A}^\nu \) of \(\hat{U}^\nu \) from Definition 3.19.

Theorem 6.16. Let \(\zeta_i \in X_i \) and \((b_1, b_2) \in B_i \times B \).

- There is a unique element \(u = b_1 \otimes \zeta_i b_2 \in \hat{U}^\nu \) such that
 \[u(\eta_\lambda \otimes \eta_\mu) = (b_1 \otimes \zeta_i b_2)(\eta_\lambda \otimes \eta_\mu) \in L^\nu(\lambda, \mu), \]
 for all \(\lambda, \mu \geq 0 \) with \(\overline{\nu} + \lambda + \mu = \zeta_i \).
- The element \(b_1 \otimes \zeta_i b_2 \) is \(\psi_t \)-invariant.
- The set \(\hat{B}^\nu = \{ (b_1 \otimes \zeta_i b_2) | \zeta_i \in X_i, (b_1, b_2) \in B_i \times B \} \) forms a \(\mathbb{Q}(q) \)-basis of \(\hat{U}^\nu \) and an \(A \)-basis of \(\hat{A}^\nu \).

Proof. (1) For \(N_1, N_2 \geq 0 \), let \(P^\nu(N_1, N_2) \) be the subspace of \(\hat{U}^\nu \) spanned by elements of the form \(B_i^\nu B_i^\nu \cdots B_i^\nu b_1^\nu \cdots b_2^\nu 1_{\nu} \) for various \(\zeta_i \in X_i \), and \(b \in B_i^\nu \) such that \(\sum_{i=1}^n a_i \leq N_1 \) and \(\text{ht}(b) \leq N_2 \). It is easy to see that \(\psi_t \left(P^\nu(N_1, N_2) \right) = P^\nu(N_1, N_2) \).

Let \(P(N_1, N_2) \) be the \(\mathbb{Q}(q) \)-subspace of \(\hat{P} \) spanned by elements of the form \(b_1 b_2^- 1_{\nu} \) such that \(b_1 \in B_i \) with \(\text{ht}(b_1) \leq N_1 \) and \(b_2 \in B \) with \(\text{ht}(b_2) \leq N_2 \), for various \(\nu \in X \).

Recall the \(\hat{U}^\nu \)-module homomorphism \(p_{\lambda, \nu} \) in Lemma 3.22. Clearly we can assume \(N_1'' \leq N_1 \leq N_1' \) and \(N_2'' \leq N_2 \leq N_2' \). For any \(N_1'', N_2'' \geq 0 \) and \(\nu \in X \), we can find (sufficiently large) \(N_1', N_2' \) and (larger) \(N_1'', N_2'' \) such that

\[P(N_1'', N_2'')1_{\nu} \subset p_{\lambda, \nu}(P(N_1, N_2)) \subset P(N_1', N_2')1_{\nu}. \]

Consider \(\zeta = w_\lambda \lambda + \mu, \) for \(\lambda, \mu \in X \) subject to the constraint \(\overline{\nu} = \zeta_i \). Assume that \(b_1 \otimes \zeta_i b_2 \in P(N_1'', N_2'') \) for all \((b_1, b_2) \leq (b_1, b_2) \). We shall use below the alternative and more informative notation \(((b_1 \otimes \zeta_i b_2)(\eta_\lambda \otimes \eta_\mu))^{\dagger} \) for \((b_1 \otimes \zeta_i b_2)(\eta_\lambda \otimes \eta_\mu) \). Then by Lemma 6.7 and Proposition 6.8 we have

\[((b_1 \otimes \zeta_i b_2)(\eta_\lambda \otimes \eta_\mu))^{\dagger} \in P(N_1'', N_2'')(\eta_\lambda \otimes \eta_\mu). \]

Note that by the definition of \(p_{\lambda, \zeta} \) in Lemma 3.22 we have

\[u(\eta_\lambda \otimes \eta_\mu) = p_{\lambda, \zeta}(u(\eta_\lambda \otimes \eta_\mu)), \quad \text{for} \; u \in \hat{U}^\nu 1_{\zeta}. \]

Therefore by (6.11) there exists an element \(u \in P^\nu(N_1, N_2)1_{\zeta} \) such that

\[u(\eta_\lambda \otimes \eta_\mu) = ((b_1 \otimes \zeta_i b_2)(\eta_\lambda \otimes \eta_\mu))^{\dagger}. \]

Now take \(\lambda, \mu \gg 0 \) so that we have the linear isomorphism

\[P(N_1', N_2')1_{\zeta} \cong P(N_1'', N_2'')(\eta_\lambda \otimes \eta_\mu). \]

Hence it follows by (6.11) that such \(u \in P^\nu(N_1, N_2)1_{\zeta} \) is unique (which in particular does not depend on the choices of \(N_1'', N_1', N_2'', N_2', N_2'' \)). We write \(u = (b_1 \otimes \zeta_i b_2)_{\lambda, \mu}. \)
Now assume we can find another such element $(b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda+\nu^\tau,\mu+\nu} \in P^t(N_1', N_2')1_{\zeta}$ for $\nu \in X^+$ (we can always enlarge $N_1'', N_1, N_1', N_2'', N_2, N_2'$). Proposition 6.15 implies that (for $\lambda, \mu \gg 0$)

$$(b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda+\nu^\tau,\mu+\nu}(\eta_{\lambda} \otimes \eta_\mu) = \pi_{\lambda,\mu,\nu^\tau}(b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda+\nu^\tau,\mu+\nu}(\eta_{\lambda+\nu^\tau} \otimes \eta_{\mu+\nu})^i = ((b_1 \diamond_{\psi_{\zeta}} b_2)(\eta_{\lambda} \otimes \eta_\mu))^i.$$

Therefore by the uniqueness of $(b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda,\mu}$, we have $(b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda,\mu} = (b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda+\nu^\tau,\mu+\nu}$. Hence we can define

$$b_1 \diamond_{\psi_{\zeta}} b_2 = \lim_{\lambda, \mu \to \infty} (b_1 \diamond_{\psi_{\zeta}} b_2)_{\lambda,\mu}.$$

This proves (1).

(2) Since by Lemma 6.2 we have

$$(\psi_\lambda (b_1 \diamond_{\psi_{\zeta}} b_2))(\eta_{\lambda} \otimes \eta_\mu) = \psi_\lambda ((b_1 \diamond_{\psi_{\zeta}} b_2)(\eta_{\lambda} \otimes \eta_\mu)) = (b_1 \diamond_{\psi_{\zeta}} b_2)(\eta_{\lambda} \otimes \eta_\mu),$$

for all $\lambda, \mu \gg 0$. Hence by the uniqueness from (1), we have $\psi_\lambda (b_1 \diamond_{\psi_{\zeta}} b_2) = b_1 \diamond_{\psi_{\zeta}} b_2$. This proves (2).

(3) Let $x \in \hat{A}^1 \hat{U}^t 1_{\psi_{\zeta}}$. We can assume $x \in P^t(N_1, N_2)1_{\psi_{\zeta}}$. Take $\lambda, \mu \in X$ such that $\zeta = w_\infty \lambda + \mu$ satisfies $\zeta = \zeta_i$. Then by definition of $\hat{A}^1 \hat{U}^t$, we have

$$x(\eta_{\lambda} \otimes \eta_\mu) = \sum_{b_1, b_2} f(b_1, b_2)((b_1 \diamond_{\psi_{\zeta}} b_2)(\eta_{\lambda} \otimes \eta_\mu))^i,$$

for $f(b_1, b_2) \in \mathcal{A}$.

Thank to the linear isomorphism $P(N_1', N_2')1_{\psi_{\zeta}} \cong P(N_1', N_2')1_{\zeta}(\eta_{\lambda} \otimes \eta_\mu)$, we have

$$x = \sum_{b_1, b_2} f(b_1, b_2)(b_1 \diamond_{\psi_{\zeta}} b_2).$$

Hence $\{b_1 \diamond_{\psi_{\zeta}} b_2 | (b_1, b_2) \in B_\infty \times B\}$ spans $\mathcal{A}^t \hat{U}^t 1_{\psi_{\zeta}}$. The linear independence can be proved entirely similarly.

Remark 6.17. The condition “$\lambda, \mu \gg 0$” in Theorem 6.16(1) cannot be removed completely in general but can likely be much weakened, as suggested in the case of QSP of type A_1 ($\mathbb{I} = \{i\}$ and $\mathbb{I}_i = \emptyset$) with some particular choice of parameter $\kappa_i \neq 0$ (see [BW13 §4.2] for the case $\kappa_i = 1$). But this condition can be removed for QSP of type A_1 with $\kappa_i = 0$. That is, for any $\lambda, \mu, \nu \in X^+$ and $(b_1, b_2) \in B_\infty \times B$, the map $\pi : L^t(\lambda + \nu^\tau, \mu + \nu) \to L^t(\lambda, \mu)$ sends $(b_1 \diamond_{\psi_{\zeta}} b_2)^\tau_{\lambda+\nu^\tau,\mu+\nu} \to (b_1 \diamond_{\psi_{\zeta}} b_2)^\tau_{\lambda,\mu}$, where $\zeta_i = w_\infty \lambda + \mu$. The proof follows by the same computation as [BW13 Lemma 4.8 and Proposition 4.9].

We conjecture that π maps an r-canonical basis element to an r-canonical basis element or zero for general QSP, and moreover, the strong compatibility could still hold when fixing the parameters properly.

Note $(E_j^{(a)} \diamond_{\psi_{\zeta}} 1) = E_j^{(a)} 1_{\zeta}$, for $j \in \mathbb{I}$.

Corollary 6.18. The A-algebra $\dot{A}\dot{U}^t$ is generated by $1\diamond_i F^{(a)}_i (i \in \mathbb{I})$ and $E^{(a)}_j 1_{\zeta_j} (j \in \mathbb{I}_*^+)$ for various $\zeta_j \in X_j$ and $a \geq 0$. Moreover, $\dot{A}\dot{U}^t$ is a free A-module such that $U^t = \mathbb{Q}(q) \otimes_A \dot{A}\dot{U}^t$.

(These generators of the A-algebra $\dot{A}\dot{U}^t$ are called t-divided powers.)

Proof. Let us denote by V the A-subalgebra of $\dot{A}\dot{U}^t$ generated by $1\diamond_i F^{(a)}_i (i \in \mathbb{I})$ and $E^{(a)}_j 1_{\zeta_j} (j \in \mathbb{I}_*^+).$ Take $\lambda, \mu \in X^+$ such that $\zeta_i = w_i \lambda + \mu$. By an inductive argument entirely similar to the proof of Claim (\ast) in the proof of Theorem 5.3, we have

$$V(\eta_\lambda^* \otimes \eta_\mu) = \dot{A}U(\eta_\lambda^* \otimes \eta_\mu) = \dot{A}P(\eta_\lambda^* \otimes \eta_\mu) = A L^t(\lambda, \mu).$$

Therefore for any $(b_1, b_2) \in B_{1*} \times B$, we have $(b_1 \diamond_i b_2)(\eta_\lambda^* \otimes \eta_\mu) \in V(\eta_\lambda^* \otimes \eta_\mu)$. Retaining the notation from the proof of Theorem 6.16, we further have

$$(b_1 \diamond_i b_2)(\eta_\lambda^* \otimes \eta_\mu) \in \left(V \cap P^t(N_1, N_2)\right)(\eta_\lambda^* \otimes \eta_\mu)$$

for some N_1 and N_2 independent of choices of λ, μ (such that $\zeta_i = w_i \lambda + \mu$). Now taking $\lambda, \mu \to \infty$, following the same argument as in the proof of Theorem 6.16, we conclude that $b_1 \diamond_i b_2 \in V$, that is, every canonical basis element of $\dot{A}\dot{U}^t$ lies in V.

Hence we have $V = \dot{A}\dot{U}^t$, and the corollary follows. \hfill \blacksquare

We have the following improvement of Lemma 3.22.

Corollary 6.19. For $\lambda \in X$, the map $p_{t, \lambda} : \dot{A}\dot{U}^t 1_\lambda^t \rightarrow \dot{A}\dot{P} 1_\lambda$ is an isomorphism of (free) A-modules.

Proof. It remains to prove the surjectivity. We basically rerun the proof of Lemma 3.22 with the help of Corollary 6.18. Let $b \in B_{1*}$. As an analogue of (3.15), we consider (6.12)

$$p_{t}(1\diamond_i F^{(a_1)}_{i_1})(1\diamond_i F^{(a_2)}_{i_2}) \cdots (1\diamond_i F^{(a_s)}_{i_s}) = F^{(a_1)}_{i_1} F^{(a_2)}_{i_2} \cdots F^{(a_s)}_{i_s} b^+ 1_\lambda + \text{ lower terms},$$

where the lower terms are A-linear combination of $F^{(a'_1)}_{j_1} \cdots F^{(a'_t)}_{j_t} b^+ 1_\lambda$ for various $b \in B_{1*}$ and a'_j with $a'_1 + \cdots + a'_t < a_1 + \cdots + a_s$. It follows by an induction on $a_1 + \cdots + a_s$ that $F^{(a_1)}_{i_1} F^{(a_2)}_{i_2} \cdots F^{(a_s)}_{i_s} b^+ 1_\lambda \in p_{t, \lambda}(\dot{A}\dot{U}^t 1_\lambda^t)$. The surjectivity now follows. \hfill \blacksquare

6.5. Canonical bases for Levi subalgebras of U^t. For an admissible subdiagram with root datum $J \subseteq I$, recall the Levi subalgebra U^t_J of U^t from Definition 3.14. Define

$$\dot{U}^t_J = \bigoplus_{\mu \in X_J} U^t_J 1_\mu \subseteq \dot{U}^t.$$

As (U_J, U^t_J) forms a quantum symmetric pair of finite type, all constructions for t-canonical bases so far are applicable. For $\lambda, \mu \in X^+$, we have U^{t}_J-module $L^t_J(\lambda, \mu)$ (which reduces to $L^t(\lambda, \mu)$ when $J = \mathbb{I}$). By construction, we have $L^t_J(\lambda, \mu) \subseteq L^t(\lambda, \mu)$. It follows by the uniqueness in Proposition 6.8 (and its J-variant) that $B^t(\lambda, \mu) \cap L^t_J(\lambda, \mu)$ is the t-canonical basis of $L^t_J(\lambda, \mu)$. Recall from Theorem 6.16 that \dot{B}^t is the t-canonical basis of \dot{U}^t and \dot{U}^t_J admits an t-canonical basis. By the uniqueness in Theorem 6.16 (1) (and its J-variant), the t-canonical basis of \dot{U}^t_J coincides with the subset $\dot{B}^t \cap \dot{U}^t_J$ of
Lemma 6.21. Proof. By (5.4) (or [Lu94, 39.1.2]), for a reduced expression U_f with only finitely many elements $\lambda \in \mathfrak{u}$, by construction, we have $\lambda \in \mathfrak{u}$. Therefore it suffices to prove the lemma for $\lambda \in \mathfrak{u}$. Proposition 6.20.

6.6. Bilinear forms. The results in this subsection generalize [Lu94, Chapter 26].

Recall the anti-involution φ in Proposition 2.1. For $\mathfrak{g} \subset \mathfrak{f}$, let $w_\mathfrak{g}$ be the longest element in the parabolic Weyl group $W_\mathfrak{g}$. Recall [Lu94, Chapter 19] there is a unique symmetric bilinear form $(\cdot, \cdot) = (\cdot, \cdot)_\lambda : L(\lambda) \times L(\lambda) \rightarrow \mathbb{Q}(q)$ such that

1. $(\eta, \eta) = 1$;
2. $(ux, y) = (x, \varphi(uy))$ for all $x, y \in L(\lambda)$ and $u \in U$;
3. $(x, y) = 0$ for $x \in L(\lambda)_\mu$ and $y \in L(\lambda)_{\mu'}$ unless $\mu = \mu'$.

Lemma 6.21. For any $\mathfrak{g} \subset \mathfrak{f}$, let $\eta^\mathfrak{g} = T_{w_\mathfrak{g}}(\eta) \in L(\lambda)$ for $\lambda \in X^+$. Then we have $(\eta^\mathfrak{g}, \eta^\mathfrak{g}) = 1$.

Proof. By (5.4) (or [Lu94, 39.1.2]), for a reduced expression $w_\mathfrak{g} = s_{i_1}s_{i_2} \cdots s_{i_n}$, we have $\eta^\mathfrak{g} = F_{i_1}(a_1)F_{i_2}(a_2) \cdots F_{i_n}(a_n)$. For any $1 \leq k \leq n$, we write $\eta^\mathfrak{g} = F_{i_k}(a_k)F_{i_{k+1}}(a_{k+1}) \cdots F_{i_n}(a_n)\eta$. By construction, we have $E_{k-1}\eta^\mathfrak{g} = F_k\eta^\mathfrak{g} = 0$. Assuming $(\eta^\mathfrak{g}, \eta^\mathfrak{g}) = 1$ for $k \geq 2$, by an easy $U_q(\mathfrak{s}_2)$ computation we have

$$(\eta^\mathfrak{g}_{k-1}, \eta^\mathfrak{g}_{k-1}) = (F_{i_{k-1}}(a_{k-1})\eta^\mathfrak{g}_k, F_{i_{k-1}}(a_{k-1})\eta^\mathfrak{g}_k) = (\eta^\mathfrak{g}_k, \varphi(F_{i_{k-1}}(a_{k-1}))F_{i_{k-1}}(a_{k-1})\eta^\mathfrak{g}_k) = (\eta^\mathfrak{g}_k, \eta^\mathfrak{g}_k) = 1.$$

The lemma follows by downward induction on k. □

For $\lambda, \mu \in X^+$, we define a bilinear pairing $(\cdot, \cdot) = (\cdot, \cdot)_{\lambda, \mu}$ on $L(\lambda) \otimes L(\mu)$, and hence on the subspace $L^i(\lambda, \mu)$ by restriction, by letting $(x \otimes x', y \otimes y')_{\lambda, \mu} = (x, y)_{\lambda}(x', y')_{\mu}$. The following is immediate from Lemma 6.21.

Corollary 6.22. Let $\lambda, \mu \in X^+$. We have $(\eta^\lambda \otimes \eta_\mu, \eta^\lambda \otimes \eta_\mu)_{\lambda, \mu} = 1$.

Lemma 6.23. Let $x, y \in \mathfrak{U}^1_{\lambda, \mu}$. When λ, μ tends to ∞ (with $w_{\mathfrak{g}}\lambda + \mu \in X$, being fixed and equal to ζ_i), $(x(\eta^\lambda \otimes \eta_\mu), y(\eta^\lambda \otimes \eta_\mu))_{\lambda, \mu} \in \mathbb{Q}(q)$ converges in $\mathbb{Q}((q^{-1}))$ to an element in $\mathbb{Q}(q)$.

Proof. As the bilinear form (\cdot, \cdot) on $L^i(\lambda, \mu)$ is defined by restriction from the one on $L(\lambda) \otimes L(\mu)$, we have by [Lu94, 26.2.2] that, for $u, u' \in \mathfrak{U}^i$,

$$(u(\eta^\lambda \otimes \eta_\mu), u'(\eta^\lambda \otimes \eta_\mu))_{\lambda, \mu} = (\eta^\lambda \otimes \eta_\mu, \varphi(u')u'(\eta^\lambda \otimes \eta_\mu))_{\lambda, \mu}.$$

Therefore it suffices to prove the lemma for $x = 1_{\lambda, \mu}$, thanks to Proposition 4.6. Using the triangular decomposition of \mathfrak{U} we can write

$$y1_{w_\mathfrak{g}\lambda + \mu} = \sum_{b_1, b_2 \in B} f(y; b_1, b_2, w_\mathfrak{g}\lambda + \mu) b_1^{-}b_2^{+},$$

with only finitely many $f(y; b_1, b_2, w_\mathfrak{g}\lambda + \mu) \in \mathbb{Q}(q)$ being nonzero. We have

$$(\eta^\lambda \otimes \eta_\mu, y(\eta^\lambda \otimes \eta_\mu))_{\lambda, \mu} = \sum_{(b_2, b_1) \in B_{\lambda, \mu} \times B} f(y; b_1, b_2, w_\mathfrak{g}\lambda + \mu) (\eta^\lambda \otimes \eta_\mu, b_1^{-}b_2^{+}(\eta^\lambda \otimes \eta_\mu))_{\lambda, \mu}.$$
Recall the triangular decomposition $U = U^- U^0 U^+$. Following from the embedding $\iota : U^+ \to U$ and a straightforward computation on the generators, the coefficient $f(y; b_1, b_2, w, \lambda + \mu)$ results from applying $u_1 w, \lambda + \mu$ to $(\eta^\bullet \otimes \eta_{\mu}, b_1 b_2^+ (\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu}$, for some $u \in \{K_{-i}^{-i} K_{-i}^{-i} (i \in \mathbb{C}), K_{-i}^{-i} (\kappa_i \neq 0), K_{\alpha} (\alpha \in \mathbb{C})\}$. Therefore $f(y; b_1, b_2, w, \lambda + \mu)$ converges in $\mathbb{Q}((q^{-1}))$ to an element in $\mathbb{Q}(q)$. Moreover, we have

$$(\eta^\bullet \otimes \eta_{\mu}, b_1 b_2^+ (\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu} = (\varphi(b_1^-) (\eta^\bullet \otimes \eta_{\mu}), b_2^+ (\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu} = 0,$$

unless $b_1, b_2 \in B_*$. For $b_1, b_2 \in B_*$, the bilinear pairing $(\eta^\bullet \otimes \eta_{\mu}, b_1 b_2^+ (\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu}$ converges in $\mathbb{Q}((q^{-1}))$ to an element in $\mathbb{Q}(q)$ since we can regard this bilinear pairing as for $L^1_\mathbb{Q}(\lambda, \mu)$, the $U_\mathbb{Q}_*$-submodule of $L^1(\lambda, \mu)$ generated by $\eta^\bullet \otimes \eta_{\mu}$, and then apply [Lu94] 26.2.3 to \dot{U}_*. The lemma follows.

Definition 6.24. We define a symmetric bilinear form $(\cdot, \cdot) : \dot{U}^1 \times \dot{U}^1 \to \mathbb{Q}(q)$ as follows:

1. For $x \in \dot{U}^1_\mathbb{C}$ and $y \in \dot{U}^1_\mathbb{C}$ with $\zeta_i \neq \zeta_i'$, we let $(x, y) = 0$.
2. For $x, y \in \dot{U}^1_\mathbb{C}$, we let

$$(x, y) = \lim_{(\lambda, \mu) \to \infty} (x(\eta^\bullet \otimes \eta_{\mu}), y(\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu}.$$

(Here $\lim_{(\lambda, \mu) \to \infty}$ is understood as in Lemma 6.23)

We have the following corollary to Lemma 6.23 and its proof.

Corollary 6.25. For all $x, y \in \dot{U}^1$ and $u \in \dot{U}^1$, we have $(ux, y) = (x, \varphi(u)y)$.

Let $A = \mathbb{Q}[[q^{-1}]] \cap \mathbb{Q}(q)$.

Theorem 6.26. The ι-canonical basis \dot{B}^ι of \dot{U}^1 is almost orthonormal in the following sense: for $\zeta_i, \zeta'_i \in X_\iota$, and $(b_1, b_2), (b'_1, b'_2) \in B_* \times B_*$, we have

$$(b_1 \triangleleft_{\zeta_i} b_2, b'_1 \triangleleft_{\zeta'_i} b'_2) \equiv \delta_{\zeta_i, \zeta'_i} \delta_{b_1, b'_1} \delta_{b_2, b'_2}, \quad \text{mod } q^{-1} A.$$

In particular, the bilinear form (\cdot, \cdot) on \dot{U}^1 is non-degenerate.

Proof. The equality is trivial if $\zeta_i \neq \zeta'_i$. Now assume $\zeta_i = \zeta'_i$. For $\lambda, \mu \gg 0$ such that $w, \lambda + \mu = \zeta_i$, we have

$$(b_1 \triangleleft_{\zeta_i} b_2, (\eta^\bullet \otimes \eta_{\mu}), (b'_1 \triangleleft_{\zeta'_i} b'_2, (\eta^\bullet \otimes \eta_{\mu}))_{\lambda, \mu} = (b_1 \triangleleft_{w, \lambda + \mu} b_2, \eta_{\mu}) \times (b'_1 \triangleleft_{w, \lambda + \mu} b'_2, \eta_{\mu}))_{\lambda, \mu} = \delta_{b_1, b'_1} \delta_{b_2, b'_2}, \quad \text{mod } q^{-1} A.$$

The first equation above follows by Theorem 6.16 while the second one follows by Proposition 6.8 and [Lu94] 26.3.1(c). Hence by taking $\lim_{(\lambda, \mu) \to \infty}$ for the above identity and applying Lemma 6.23 (see also Definition 6.24) we conclude that

$$(b_1 \triangleleft_{\zeta_i} b_2, b'_1 \triangleleft_{\zeta'_i} b'_2) \equiv \delta_{b_1, b'_1} \delta_{b_2, b'_2}, \quad \text{mod } q^{-1} A.$$

This proves the theorem. □
The ι-canonical basis \hat{B}' admits the following characterization, whose proof is identical to the proof of [Lu94, Theorem 26.3.1] and hence will be skipped.

Theorem 6.27. Let $\beta \in \hat{U}^\iota$. Then $\beta \in \hat{B}' \cup (-\hat{B}')$ if and only if β satisfies the following three conditions: $\beta \in \mathcal{A}\hat{U}'$, $\psi_i(\beta) = \beta$, and $(\beta, \beta) \equiv 1 \bmod q^{-1}\mathcal{A}$.

Remark 6.28. For type AIII/AIV with $\mathbb{L} = \emptyset$, a geometric construction of the ι-canonical basis of \hat{U} was given in [LW15] (built on the earlier construction in [BKLW]), which is almost orthonormal with respect to some geometric bilinear form. The identification between the algebraic constructions (in this paper) and the geometric constructions of ι-canonical basis and bilinear form on \hat{U} will be addressed elsewhere.

We further expect various positivity properties for ι-canonical bases for some classes of QSP.

Appendix A. Integrality of the Intertwiners of Real Rank One

The goal of this appendix is to provide a proof of Theorem 5.3(1) that the intertwiner Υ lies in (the completion of) the integral form $\mathcal{A}\hat{U}^+$ for all quantum symmetric pairs of real rank one; see Table I.

We shall first establish the integrality of Υ in type AIV and then AIII$_{11}$, which has the involution $\tau|_{\mathbb{I}_5} \neq 1$. These two types are easy and similar to the special case treated in [BW13] (denoted by \hat{U} therein). The integrality of Υ for type AI was essentially known in [BW13, Lemma 4.6]. Then we will establish some general properties of Υ for the remaining types with $\tau|_{\mathbb{I}_5} = 1$. Ultimately it requires a tedious type-by-type analysis to complete the proof for all types with $\tau|_{\mathbb{I}_5} = 1$.

A.1. Type AIV of rank n. We recall the Satake diagram of type AIV from Table I:

```
      1  2  ...  n
```

Proposition A.1. In type AIV, we have $\Upsilon_\mu \in \mathcal{A}\hat{U}^+$ for all $\mu \in N[\mathbb{I}]$.

Proof. Recall that $B_1 = F_1 + \varsigma_1 T_{w_n}(E_n)\tilde{K}^{-1}$ and $B_n = F_n + \varsigma_n T_{w_n}(E_1)\tilde{K}^{-1}$. Note that

$$F_1 T_{w_n}(E_n)\tilde{K}^{-1} = q^{-2} T_{w_n}(E_1)\tilde{K}^{-1} F_1, \quad F_n T_{w_n}(E_1)\tilde{K}^{-1} = q^{-2} T_{w_n}(E_1)\tilde{K}^{-1} F_n.$$

Introduce the divided powers $B_i^{(a)} = B_i^a / [a]!$, for all $i \in \mathbb{I}$ and $a \in \mathbb{N}$. Then we have

(A.1) $B^{(a)}_i = \sum_{s+t=\mu} q^{st} F_i^{(s)}(T_{w_n}(E_n)\tilde{K}^{-1})^{(t)}, \quad B^{(a)}_n = \sum_{s+t=\mu} q^{st} F_n^{(s)}(T_{w_n}(E_1)\tilde{K}^{-1})^{(t)}.$

So $B_i^{(a)}$ are ψ_i-invariant and integral (i.e. $B_i^{(a)} \in \mathcal{A}\hat{U}$), for all $i \in \mathbb{I}$. Now for any $\lambda \in X^+$ and $x \in \mathcal{A}L(\lambda)$, we can write

$$x = \sum c(a_1, \ldots, a_k) B_{i_1}^{(a_1)} \cdots B_{i_k}^{(a_k)} \eta_\lambda, \quad \text{for } c(a_1, \ldots, a_k) \in \mathcal{A}.$$

By Corollary 5.2 and using $\psi_i = \Upsilon \psi$ from (5.1), we have $\Upsilon(x) = \psi_i(\psi(x)) \in \mathcal{A}L(\lambda)$. Taking $x = \xi$ (the lowest weight vector) and $\lambda \gg 0$, we have $\Upsilon_\mu \in \mathcal{A}\hat{U}^+$ for any μ. □
A.2. Type AIII\(_{11}\). Recall the Satake diagram of type AIII\(_{11}\) of real rank one from Table I

\[
\begin{array}{cc}
\circ & \circ \\
1 & 2
\end{array}
\]

Note that the underline Dynkin diagram is not irreducible. We have \(B_i = F_i + \zeta_i E_j \overline{K}_i^{-1}\) for \(1 \leq i \neq j \leq 2\). Defining the divided powers \(f_i^{(a)} = f_i^a / [a]!\) as usual, we have

\[
B_i^{(a)} = \sum_{s+t=a} q^{st} f_i^{(s)} (E_j \overline{K}_i^{-1})^{(t)} \in \mathcal{A}U.
\]

Now we are in a position to use (and choose to omit) the same argument as for Proposition A.1 to obtain the following.

Proposition A.2. In type AIII\(_{11}\), we have \(\Upsilon_\mu \in \mathcal{A}U^+\) for all \(\mu\).

Remark A.3. The integrality of the standard divided powers \(B_i^{(a)} \in \mathcal{A}U\) for \(i \in I_\circ\) in types AIV and AIII\(_{11}\) distinguishes these two types from the remaining ones.

A.3. Type AI\(_1\). Recall the Satake diagram of type AI\(_1\) from Table I

\[
\begin{array}{c}
\circ \\
1
\end{array}
\]

Since there is only one element in \(I\), we shall drop the index 1 and write \(B = F + q^{-1}EK^{-1} + \kappa K^{-1}\). This is the only real rank one case when \(\kappa\) can be non-zero. Set \(\Upsilon = \sum_{c \geq 0} \Upsilon_c\) where \(\Upsilon_c = \gamma_c E^{(c)}\). Proposition A.11 below and its proof are adapted from [BW13, Lemma 4.6] (where \(\kappa = 1\)).

Proposition A.4. In type AI\(_1\), we have \(\Upsilon_c \in \mathcal{A}U^+\) for all \(c \geq 0\).

Proof. Recall from (3.6) we have \(\overline{\kappa} = \kappa\). Equation (4.8) implies that

\[(F + q^{-1}EK^{-1} + \kappa K^{-1})\Upsilon = \Upsilon(F + qEK + \kappa K),\]

which can be rewritten as

\[
\gamma_{c+1} = -(q - q^{-1})q^{-c}(q[c]\gamma_{c-1} + \kappa \gamma_c).
\]

It follows by induction on \(c\) that \(\gamma_c \in \mathcal{A}\), since by definition we know \(\gamma_0 = 1\).

A.4. Generalities when \(\tau|_{I_\circ} = 1\). In this subsection, we assume that the Satake diagrams are real rank one of types with \(\tau|_{I_\circ} = 1\) and \(I_\bullet \neq \emptyset\) (i.e., of types AI\(_3\), BII, CII, DII, FII); see Table I. In all these cases, we have the parameters \(\kappa_i = 0\), for all \(i \in I_\circ\). Let

\[I_0 = \{i\}.
\]

Then following Theorem A.8 we have

\[(A.2) \quad \Upsilon = \sum_{c \in \mathbb{N}} \Upsilon_c,
\]
where $\Upsilon_c = \Upsilon_{c(w^*+i)}$ has weight $c(w^*+i)$. Note that (4.8) implies that $\psi_i(B_1)\Upsilon = \Upsilon\psi(B_1)$, that is,

$$(F_i + s_i T_{w^*} (E_i) \bar{K}_i^{-1}) \Upsilon = \Upsilon (F_i + s_i^{-1} \psi(T_{w^*} (E_i)) \bar{K}_i), \quad F_j \Upsilon = \Upsilon F_j (j \in \mathbb{I}_*)$$

Using [Lu94] Proposition 3.16, we have (for $c \geq 1$ and $j \in \mathbb{I}_*$)

(A.3) $r_i(\Upsilon_c) = -(q_i - q_i^{-1}) \Upsilon_{c-1} \cdot (q_i^{-1} \cdot \psi(T_{w^*} (E_i)))$

(A.4) $\psi^r(\Upsilon_c) = -(q_i - q_i^{-1}) q_i^{i(w^*)} \cdot T_{w^*} (E_i) \Upsilon_{c-1}$

(A.5) $j^r(\Upsilon_c) = r_j(\Upsilon_c) = 0$.

Recall the shorthand notation $w^* = w^* w_0$. Let $\ell(w^*) = k$. Note w^* is of the form

$w^* = s_{i_1} s_{i_2} \cdots s_{i_{k-1}} \cdot s_{i_k}, \quad i_1 = i_k = i \in \mathbb{I}_0$.

Introduce a shorthand notation $T_{i_1i_2\cdots i_{k-1}} = T_{i_1} T_{i_2} \cdots T_{i_{k-1}}$. Applying Proposition 4.15 we have

(A.6) $\Upsilon_c = \sum \gamma_c (c_1, c_2, \ldots, c_k) E_i^{(c_1)} T_{i_1} E_i^{(c_2)} \cdots \left(T_{i_1i_2\cdots i_{k-1}} E_i^{(c_k)} \right)$

We adopt the convention that $E_j^{(a)} = 0$ for any $j \in \mathbb{I}_*$ with $a < 0$, and $\gamma_c (c_1, c_2, \ldots, c_k) = 0$ unless all $c_j \geq 0$. We shall write $\gamma_c = \gamma_c (c_1, c_2, \ldots, c_k)$ when there is no need to specify each component.

The following lemma shall be used extensively in this section.

Lemma A.5. [Jan96] Proposition 8.20] For any $w \in W$, if $w(i') = j' \in X$ for $i, j \in \mathbb{I}$, then we have $T_{w}(E_i) = E_j$.

Lemma A.6. We have

$$T_{w^*}^{-1}(E_i) = T_{i_1i_2\cdots i_{k-1}}(E_i).$$

Proof. We have $w^* s_{i_1} s_{i_2} \cdots s_{i_{k-1}}(i') = -w_0(i') = i'$. The lemma follows by Lemma A.5.

Lemma A.7. Let $c \geq 1$. If we have $\gamma_{c-1} (c_1, c_2, \ldots, c_k) \in \mathcal{A}$ for all (c_1, c_2, \ldots, c_k), then $(1 - q_i)^{-c_1} \gamma_{c-1} (c_1, c_2, \ldots, c_k) \in \mathcal{A}$ for all (c_1, c_2, \ldots, c_k) with $c_1 \geq 1$.

Proof. Using Lemma A.5 and (A.3), we have

$$r_i(\Upsilon_c) = \sum \gamma_c (c_1, c_2, \ldots, c_k) q_i^{c_1 - 1} q_i^{i(w^*+i)} \psi(T_{w^*} (E_i)) \Upsilon_{c-1} \cdot T_{w^*}^{-1}(E_i)$$

$$= -(q_i - q_i^{-1}) \psi(T_{w^*} (E_i)) \Upsilon_{c-1} \cdot T_{w^*}^{-1}(E_i)$$

$$= -(q_i - q_i^{-1}) \psi(T_{w^*} (E_i)) \Upsilon_{c-1} \cdot T_{w^*}^{-1}(E_i)$$

Therefore we have for weight reason that, for $c_1 \geq 1$,

$$\gamma_c (c_1, c_2, \ldots, c_k) q_i^{c_1 - 1} q_i^{i(w^*+i)-c_1}$$

$$= -(q_i - q_i^{-1}) \psi(T_{w^*} (E_i)) \Upsilon_{c-1} \cdot T_{w^*}^{-1}(E_i)$$
that is,
\begin{equation}
\gamma_c(c_1, c_2, \ldots, c_k) = -(q_i - q_i^{-1})q_i^{1-c_i}(-q_i)^{(1, 2, \ldots, k)^{-1}}(c_1 - 1, c_2, \ldots, c_k - 1)[c_k, 1].
\end{equation}
It follows by an induction on \(c_1\) that \((1 - q_i^{-2})^{-c_1}\gamma_c(c_1, c_2, \ldots, c_k) \in A\) as long as \(c_1 \geq 1\).

Remark A.8. We proved a stronger result than just \(\gamma_c(c_1, c_2, \ldots, c_k) \in A\) under our assumption. The importance shall be clear later in this section.

Our strategy is to prove that \(\Upsilon_c \in A^+U\) by induction on \(c\). The base case at \(c = 0\) is always true since we have \(\Upsilon_0 = 1\). For the induction step we shall compute the precise actions of \(r_j\) on \(\Upsilon_c\) for \(j \in \mathbb{I}\) case by case. Then thanks to Lemma A.7, it suffices to prove that
\begin{equation}
\gamma_c(c_1, c_2, \ldots, c_k) \in A \quad \text{for all} \quad c_i, \quad \text{if} \quad (1 - q_i^{-2})^{-c_1}\gamma_c(c_1, c_2, \ldots, c_k) \in A \quad \text{when} \quad c_1 \geq 1.
\end{equation}
This is what we shall do later in this section case by case.

To facilitate the case-by-case analysis below, let us introduce some shorthand notations. For a sequence \(i_1i_2\ldots i_k\) with \(i_j \in \mathbb{I}\), we shall often use the shorthand notation
\[T_{i_1i_2\cdots i_k} = T_{i_1}T_{i_2}\cdots T_{i_k}.\]
In concrete cases below (with labelings as in Table 1), the sequence \(i_1\ldots i_k\) is naturally partitioned into continuously increasing and decreasing subsequences, and we shall insert indices \(i_t\) to indicate the local maxima/minima of the sequence. For example, \(T_{i_1\ldots i_t}\) means the subsequences \(i_1\ldots i_t\) and \(i_t\ldots i_k\) are monotone, and \(T_{i_1\ldots i_t\ldots i_m\ldots i_k}\) means the subsequences \(i_1\ldots i_t, i_t\ldots i_m,\) and \(i_m\ldots i_k\) are monotone, and so on. Here is a concrete example which occurs in Type CII below: the shortand \(23\ldots n - 1\) \(n\) \(n - 1\) \(\ldots\) \(213\) for some \(1 \leq k \leq n\), means \(23\ldots n - 1\) \(n\) \(n - 1\) \(\ldots\) \(213\) \(n\) \(n - 1\) \(\ldots\) \(k\).

For \(x, y \in U^+\), we write
\[\left[x,y\right]_{q_i^{-1}} = xy - q_i^{-1}yx.
\] Since the ring \(A\) is invariant under multiplication by \(q^a\) for any \(a \in \mathbb{Z}\), we shall often use the notation \(q^a\) to indicate \(q\)-powers without computing the precise exponent when it is irrelevant.

A.5. Type AII of rank 3. In this subsection we assume the quantum symmetric pair \((U,U^+)\) is of type AII. We label the Satake diagram as follows:
\[
\begin{array}{c}
\bullet & - & 0 & - & \bullet \\
1 & 2 & 3 \\
\end{array}
\]
Take the reduced expression \(w^* = s_2s_1s_3s_2\). Then we have
\[\Upsilon_c = \sum \gamma(c_1, c_2, c_3, c_4)E_2^{(c_1)} \cdot T_2(E_1^{(c_2)}) \cdot T_2(E_3^{(c_3)}) \cdot T_{213}(E_2^{(c_4)}),\]
where \(c = \frac{1}{2}(c_1 + c_2 + c_3 + c_4)\). (For weight reason \(\Upsilon_c = 0\) if \(c\) is not an integer.)
We then compute the actions of \(r_1 \) and \(r_3 \) on those root vectors. Note that we have

\[
T_2(E_1) = E_2E_1 - q^{-1}E_1E_2; \\
T_2(E_3) = E_2E_3 - q^{-1}E_3E_2; \\
T_{213}(E_2) = (E_2E_1 - q^{-1}E_1E_2)E_3 - q^{-1}E_3(E_2E_1 - q^{-1}E_1E_2).
\]

The following lemmas follow from straightforward computation.

Lemma A.9. We have

\[
E_1 \cdot T_2(E_1) = q^{-1}T_2(E_1) \cdot E_1 \quad \text{and} \quad E_3 \cdot T_2(E_3) = q^{-1}T_2(E_3) \cdot E_3,
\]

\[
E_1 \cdot T_1(E_2) = qT_1(E_2) \cdot E_1 \quad \text{and} \quad E_3 \cdot T_3(E_2) = qT_3(E_2) \cdot E_3,
\]

Lemma A.10. We have

1. \(r_1(T_2(E_1^{(c_1)})) = (1 - q^{-2})E_2 \cdot T_2(E_1^{(c_1-1)}) \);
2. \(r_3(T_2(E_3^{(c_1)})) = 0 \);
3. \(r_1(T_2(E_3^{(c_2)})) = 0 \);
4. \(r_3(T_2(E_3^{(c_3)})) = (1 - q^{-2})E_2 \cdot T_2(E_3^{(c_3-1)}) \);
5. \(r_1(T_{213}(E_2^{(c_1)})) = (1 - q^{-2})T_2(E_3) \cdot T_{213}(E_2^{(c_1-1)}) \);
6. \(r_3(T_{213}(E_2^{(c_2)})) = (1 - q^{-2})T_2(E_1) \cdot T_{213}(E_2^{(c_2-1)}) \).

Proposition A.11. In type AII, we have \(\Upsilon_c \in \mathcal{A} \mathcal{U}^+ \) for all \(c \geq 0 \).

Proof. It suffices to prove the statement (A.8) by the general discussion in (A.4). Let us assume

\[
(1 - q_i^{-2})^{-c_1} \gamma_c(c_1, c_2, \ldots, c_k) \in \mathcal{A} \quad \text{when} \quad c_1 \geq 1.
\]

Since \(r_1(\Upsilon_c) = r_3(\Upsilon_c) = 0 \) by (A.3), we have

\[
0 = \frac{1}{1 - q^{-2}} r_1(\Upsilon_c) = \sum \gamma_c(c_1, c_2, c_3, c_4)[c_3 + 1]E_2^{(c_1)} \cdot T_2(E_1^{(c_2)}) \cdot T_2(E_3^{(c_3+1)}) \cdot T_{213}(E_2^{(c_4-1)}) + \sum \gamma_c(c_1, c_2, c_3, c_4)[c_1 + 1]q^{c_4-c_3}E_2^{(c_1+1)} E_2^{(c_2-1)} \cdot T_2(E_1^{(c_3)}) \cdot T_2(E_3^{(c_4)}) \cdot T_{213}(E_2^{(c_1)}).
\]

It follows that

\[
\gamma_c(c_1, c_2 + 1, c_3 + 1, c_4)[c_1 + 1]q^{c_4-c_3} = -\gamma_c(c_1 + 1, c_2, c_3, c_4 + 1)[c_3 + 1].
\]

Therefore we have

\[
\gamma_c(0, c_2 + 1, c_3 + 1, c_4) = -q^{c_3-c_4} \gamma_c(1, c_2, c_3, c_4 + 1)[c_3 + 1] \in \mathcal{A}.
\]

It follows that \(\gamma_c(c_1, c_2, c_3, c_4) \in \mathcal{A} \) if \(c_1, c_2 \) are not all zero. On the other hand, we have \(\gamma_c(0, 0, c_3, c_4) = 0 \) for weight reason. The proposition follows.

Corollary A.12. We have \(c_1 = c_4 \) and \(c_2 = c_3 \) whenever \(\gamma_c(c_1, c_2, c_3, c_4) \neq 0 \).
A.6. **Type DII of rank \(n \geq 4 \).** In this subsection we assume the quantum symmetric pair \((U, U')\) is of type DII. We label the Satake diagram as is follows:

![Satake Diagram]

We take the reduced expression \(w^* = s_1 \cdots s_{n-2} \cdot s_{n-1} \cdot s_n \cdot s_{n-2} \cdots s_1 \). Therefore we can write \(\Upsilon \) as

\[
\Upsilon_c = \sum \gamma_c(c_1, \ldots, c_{2n-2}) E_1^{(c_1)} \cdot E_2^{(c_2)} \cdots (T_{1...2}(E_1^{(c_{2n-2})})).
\]

For weight reason, we must have \(\gamma_c(c_1, \ldots, c_{2n-2}) = 0 \) unless \(\sum_{i=1}^{2n-2} c_i = c \).

Lemma A.13. For \(k \neq 1 \), we have

\[
r_k(T_{1...i}(E_{i+1}^{(a)})) = \begin{cases}
(1 - q^{-2}) T_{1...(i-1)}(E_i) \cdot (T_{1...i}(E_{i+1}^{(a-1)})), & \text{if } k = i + 1; \\
0, & \text{if } k \neq i + 1.
\end{cases}
\]

Proof. Let us first assume that \(i \leq n - 2 \). The proof is divided into three cases:

1. If \(k \geq i + 2 \), it is clear that \(r_k(T_{1...i}(E_{i+1})) = 0 \).
2. For \(k \leq i \), we have

\[
r_k(T_{1...(k-1)}T_kT_{(k+1)...i}(E_{i+1})) = r_k(T_{1...(k-1)}[E_k, T_{(k+1)...i}(E_{i+1})]_{q^{-1}})
= r_k([T_{1...(k-1)}(E_k), T_{(k+1)...i}(E_{i+1})]_{q^{-1}})
= q^{-1}r_k(T_{1...(k-1)}(E_k)) \cdot T_{(k+1)...i}(E_{i+1})
= q^{-1}T_{(k+1)...i}(E_{i+1}) \cdot r_k(T_{1...(k-1)}(E_k)) = 0.
\]
3. For \(k = i + 1 \), we have (for \(i \leq n - 2 \))

\[
T_{1...i}(E_{i+1}) = T_{1...(i-1)}([E_i, E_{i+1}]_{q^{-1}}) = [T_{1...(i-1)}(E_i), E_{i+1}]_{q^{-1}}.
\]

It follows that

\[
r_{i+1}(T_{1...(i+1)}(E_{i+1})) = (1 - q^{-2})T_{1...(i-1)}(E_i).
\]

Since \(T_i(E_{i+1}) \cdot E_i = q^{-1}E_i \cdot T_i(E_{i+1}) \), we have

\[
r_{i+1}(T_{1...i}(E_{i+1}^{(a)})) = (1 - q^{-2})T_{1...(i-1)}(E_i) \cdot T_{1...i}(E_{i+1}^{(a-1)}).
\]

The case \(i = n - 1 \) is entirely similar to the case \(i = n - 2 \), since \(T_{n-1}(E_n) = E_n \). The lemma follows. \(\square \)

Lemma A.14. For \(i \neq n, n - 1 \) and \(k \neq 1 \), we have

\[
r_k(T_{1...n-i}(E_{i+1}^{(a)})) = \begin{cases}
(1 - q^{-2})T_{1...n-(i+1)}(E_i) \cdot T_{1...n-i}(E_{i+1}^{(a-1)}), & \text{if } k = i \neq n - 2; \\
(1 - q^{-2})T_{1...n}(E_{n-2}) \cdot T_{1...n(n-2)}(E_{n-3}^{(a-1)}), & \text{if } k = i = n - 2; \\
0, & \text{if } k \neq i.
\end{cases}
\]

Proof. The computation is divided into six cases.
(1) For \(k \leq i - 2 \), we have

\[
T_{1 \ldots n-i}(E_{i-1}) = [T_{1 \ldots (k-1)}(E_k), T_{(k+1) \ldots n-i}(E_{i-1})]_{q^{-1}}.
\]

Therefore we have

\[
r_k \left(T_{1 \ldots n-i}(E_{i-1}) \right) = r_k \left([T_{1 \ldots (k-1)}(E_k), T_{(k+1) \ldots n-i}(E_{i-1})]_{q^{-1}} \right)
\]

\[
= q^{-1} r_k(T_{1 \ldots (k-1)}(E_k)) \cdot \left(T_{(k+1) \ldots n-i}(E_{i-1}) \right)
\]

\[
- q^{-1} \left(T_{(k+1) \ldots n-i}(E_{i-1}) \right) \cdot r_k(T_{1 \ldots (k-1)}(E_k)) = 0,
\]

since \(r_k(T_{1 \ldots (k-1)}(E_k)) \) and \(T_{(k+1) \ldots n-i}(E_{i-1}) \) commute.

(2) For \(k = i - 1 \), we consider

\[
T_{1 \ldots n-i}(E_{i-1}) = T_{1 \ldots n-(i+1)}([E_i, E_{i-1}]_{q^{-1}})
\]

\[
= [T_{1 \ldots n-(i+1)}(E_i), T_{1 \ldots i}(E_{i-1})]_{q^{-1}} = [T_{1 \ldots n-(i+1)}(E_i), E_i]_{q^{-1}}.
\]

Then since \(i - 1 \leq i + 1 - 2 \), by Case (1) we have

\[
r_{i-1}(T_{1 \ldots n-i}(E_{i-1})) = q^{-1} r_{i-1}(T_{1 \ldots n-(i+1)}(E_i)) \cdot E_i - q^{-1} E_i \cdot r_{i-1}(T_{1 \ldots n-(i+1)}(E_i)) = 0.
\]

(3) For \(k = i \), following (A.9) we have

\[
r_i(T_{1 \ldots n-i}(E_{i-1})) = T_{1 \ldots n-(i+1)}(E_i) - q^{-2} T_{1 \ldots n-(i+1)}(E_i)
\]

\[
= (1 - q^{-2}) T_{1 \ldots n-(i+1)}(E_i).
\]

More generally we have

\[
r_i(T_{1 \ldots n-i}(E_{i-1}^{(a)})) = (1 - q^{-2}) T_{1 \ldots n-(i+1)}(E_i) \cdot T_{1 \ldots n-i}(E_{i-1}^{(a-1)}).
\]

(4) For \(n - 3 \geq k \geq i + 1 \), we consider

\[
T_{1 \ldots n-k}(E_{i-1}) = T_{1 \ldots n-(k+1)}([E_k, T_{(k+1) \ldots i}(E_{i-1})]_{q^{-1}})
\]

\[
= [T_{1 \ldots n-(k+1)}(E_k), T_{k \ldots (i+1)}(E_i)]_{q^{-1}}.
\]

Note that \(r_k(T_{k \ldots (i+1)}(E_i)) = 0 \) unless \(k = i \). Therefore by Case (2) we have

\[
r_k(T_{1 \ldots n-i}(E_{i-1})) = 0.
\]

(5) For \(k = n - 2 \), we consider that

\[
T_{1 \ldots n-i}(E_{i-1}) = T_{1 \ldots n}([E_k, T_{(k+1) \ldots i}(E_{i-1})]_{q^{-1}}) = [T_{1 \ldots n}(E_k), T_{k \ldots (i+1)}(E_i)]_{q^{-1}}.
\]

Note that \(r_k(T_{k \ldots (i+1)}(E_i)) = 0 \) unless \(k = i \). Therefore by Case (2) we have

\[
r_k(T_{1 \ldots n-i}(E_{i-1})) = 0.
\]

(6) For \(k = n - 1 \) (the case \(k = n \) is similar), we have (true for \(i = n - 2 \) as well)

\[
T_{1 \ldots n-i}(E_{i-1}) = T_{1 \ldots (n-1)}([E_n, T_{(n-2) \ldots i}(E_{i-1})]_{q^{-1}})
\]

\[
= [T_{1 \ldots (n-1)}(E_n), T_{(n-1) \ldots (i+1)}(E_i)]_{q^{-1}}.
\]
Note that since by Lemma A.13
\[r_{n-1}(T_{1\ldots(n-1)}(E_n)) = r_{n-1}(T_{(n-1)\ldots(i+1)}(E_i)) = 0, \]
we have
\[r_{n-1}(T_{1\ldots\cdot i}(E_{i-1})) = 0. \]
This completes the proof. \(\square\)

Remark A.15. The computation for (1)-(4) in the proof of Lemma A.14 is essentially a type \(A\) computation, and will appear very often for the other cases as well.

Lemma A.16. For \(k \neq 1\), we have
\[
r_k(T_{1\ldots\cdot n}(E_{n-2}^{(a)})) = \begin{cases} (1 - q^{-2})T_{1\ldots\cdot(n-1)}(E_n) \cdot T_{1\ldots\cdot n}(E_{n-2}^{(a-1)}), & \text{if } k = n - 1; \\ (1 - q^{-2})T_{1\ldots\cdot(n-2)n}(E_{n-1}) \cdot T_{1\ldots\cdot n}(E_{n-2}^{(a-1)}), & \text{if } k = n; \\ 0, & \text{otherwise}. \end{cases}
\]

Proof. Note that
\[
T_{1\ldots\cdot n}(E_{n-2}) = T_{1\ldots\cdot(n-3)}(q^{-2}E_nE_{n-1}E_{n-2} - q^{-1}E_nE_{n-2}E_{n-1} - q^{-1}E_{n-1}E_{n-2}E_n + E_{n-2}E_{n-1}E_n).
\]
Therefore we have \(r_k(T_{1\ldots\cdot n}(E_{n-2})) = 0\) for \(k < n - 2\), thanks to Lemma A.13. It is easy to see \(r_{n-2}(T_{1\ldots\cdot n}(E_{n-2})) = 0\) as well by a direct computation using Lemma A.13. On the other hand, we have
\[
r_{n-1}(T_{1\ldots\cdot n}(E_{n-2})) = q^{-3}E_n \cdot T_{1\ldots\cdot(n-3)}(E_{n-2}) - q^{-1}E_n \cdot T_{1\ldots\cdot(n-3)}(E_{n-2})
- q^{-2}T_{1\ldots\cdot(n-3)}(E_{n-2}) \cdot E_n + T_{1\ldots\cdot(n-3)}(E_{n-2}) \cdot E_n
= -q^{-2}T_{1\ldots\cdot(n-2)}(E_n) + T_{1\ldots\cdot(n-2)}(E_n)
= (1 - q^{-2})T_{1\ldots\cdot(n-1)}(E_n).
\]
Now since \(E_n \cdot T_n(E_{n-2}) = qT_n(E_{n-2}) \cdot E_n\), we have
\[
r_{n-1}(T_{1\ldots\cdot n}(E_{n-2}^{(a)})) = (1 - q^{-2})T_{1\ldots\cdot(n-1)}(E_n) \cdot T_{1\ldots\cdot n}(E_{n-2}^{(a-1)}).
\]
The computation of \(r_n(T_{1\ldots\cdot n}(E_{n-2}^{(a)}))\) is entirely similar. The lemma follows. \(\square\)

Proposition A.17. For quantum symmetric pairs of type DII of rank \(n \geq 4\), we have \(\Upsilon_c \in \mathcal{A}U^+\) for all \(c \geq 0\).

Proof. Recall by the general discussion in §A.4 it suffices to prove the following statement (which implies (A.3)):
\[
\gamma_c(c_1, \ldots, c_{2n-2}) \in \mathcal{A} \text{ for all } c_i, \text{ if } \gamma_c(c_1, \ldots, c_{2n-2}) \in \mathcal{A} \text{ when } c_1 > 0.
\]
We compare the coefficient of the following terms in the identity \(r_k(\Upsilon_c) = 0\):
\[
E_1^{(c_1)} \cdot T_1(E_2^{(c_2)}) \cdots (T_{1\ldots\cdot 2}(E_1^{(c_{2n-2} - 2)})) \text{ with } c_{k-1} = 1, c_j = 0 \text{ for } j < k - 1.
\]
We obtain that
\[
(1 - q^{-2})\gamma_c(0, \ldots, c_{k-1} = 0, c_k, \ldots) \in (1 - q^{-2}) \sum \gamma_c(\ldots, c_{k-1} = 1, c_k - 1, \ldots) \cdot \mathcal{A}.
\]
Therefore thanks to Lemma [A.14] for the base case, we have inductively:
\[(A.10) \quad \gamma_c(c_1, \ldots) \in \mathcal{A}, \text{ if } c_k > 0.\]
The proposition follows. \(\square\)

A.7. Type BII of rank \(n \geq 2\). In this subsection we assume the quantum symmetric pair \((U, U^\dagger)\) is of type BII. We label the Satake diagram as follows:

\[
\begin{array}{cccccccc}
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & 1 & - & - & - & - & 2 \\
& & & & & & & \\
& & & & & & & \\
& & n-1 & & & & & n \\
\end{array}
\]

Recall we have \(q_i = q^2 = q_n^2\) for \(i \neq n\). Take the reduced expression of \(w^*\) to be
\[
w^* = s_1 \cdot s_2 \cdots s_n \cdot s_2 \cdot s_1.
\]
We write
\[
\begin{align*}
\Upsilon_c &= \sum \gamma_c(c_1, \ldots, c_{2n-1}) E_1^{(c_1)} \cdot T_1 \cdots (E_{2}^{(c_2)} \cdots (T_{12} \cdots (E_1^{(c_{2n-1})})).
\end{align*}
\]
Note that \(\Upsilon_c = 0\) unless \(1 \over 2(\sum c_i) = c\). Recall we have
\[
E_{n-1}T_{n-1}(E_n) = q_{n-1}T_{n-1}(E_n)E_{n-1} = q_n^2T_{n-1}(E_n)E_{n-1},
\]
and \(T_n(E_{n-1})E_n = q_n^{-2}E_nT_n(E_{n-1})\) by a direct computation. The following lemma is a counterpart of Lemma [A.13] We leave the proof to the reader.

Lemma A.18. For \(i \neq n\) and \(k \neq 1\), we have
\[
\begin{align*}
r_k(T_{1\cdots i}(E_{i+1}^{(a)})) &= \begin{cases}
(1 - q_i^{-2}) \cdot T_{1\cdots (i-1)}(E_i) \cdot T_{1\cdots i}(E_i^{(a-1)}), & \text{if } k = i + 1 \neq n; \\
(1 - q_n^{-2})q_i^{1-a} \cdot T_{1\cdots (i-1)}(E_i) \cdot T_{1\cdots i}(E_i^{(a-1)}), & \text{if } k = i + 1 = n; \\
0, & \text{if } k \neq i + 1.
\end{cases}
\end{align*}
\]

Lemma A.19. For \(k \neq 1\), we have
\[
\begin{align*}
r_k(T_{1\cdots n-i}(E_{i-1}^{(a)})) &= \begin{cases}
(1 - q_i^{-2})T_{1\cdots (n-i+1)}(E_i) \cdot T_{1\cdots n-i}(E_i^{(a-1)}), & \text{if } k = i \neq n; \\
q_n(1 - q_n^{-2})T_{1\cdots (n-1)}(E_n) \cdot T_{1\cdots n}(E_{n-1}^{(a-1)}), & \text{if } k = i = n; \\
0, & \text{if } k \neq i.
\end{cases}
\end{align*}
\]

Proof. We present the detail for the case \(k = i = n\). The other cases are similar to Lemma [A.14]. We have
\[
T_{1\cdots (n-2)} \cdot T_{n-1} \cdot T_n(E_{n-1})
\]
\[
= T_{1\cdots (n-2)}(q_n^{-2}E_n^{(2)}E_{n-1} - q_n^{-1}E_nE_{n-1}E_n + E_{n-1}E_n^{(2)})
\]
\[
= q_n^{-2}E_n^{(2)} \cdot T_{1\cdots (n-2)}(E_{n-1}) - q_n^{-1}E_n \cdot T_{1\cdots (n-2)}(E_{n-1}) \cdot E_n + T_{1\cdots (n-2)}(E_{n-1}) \cdot E_n^{(2)}.
\]
Therefore we have
\[
\begin{align*}
r_n(T_{1\cdots n}(E_{n-1})) &= q_n^{-3}E_n \cdot T_{1\cdots (n-2)}(E_{n-1}) - q_n^{-1}T_{1\cdots (n-2)}(E_{n-1}) \cdot E_n \\
&\quad - q_n^{-1}E_n \cdot T_{1\cdots (n-2)}(E_{n-1}) + q_nT_{1\cdots (n-2)}(E_{n-1}) \cdot E_n \\
&= (q_n - q_n^{-1})T_{1\cdots (n-1)}(E_n).
\end{align*}
\]
Note that \(T_n(E_{n-1})E_n = q_n^{-2}E_nT_n(E_{n-1})\). The lemma follows. \(\square\)
Hence thanks to (A.11), we have \(\gamma_c(c_1, \ldots, c_{2n-1}) \in \mathcal{A} \), if \(\gamma_c(c_1, \ldots, c_{2n-2}) \in \mathcal{A} \) when \(c_1 > 0 \).

We divide the proof into two steps.

Proof. Recall we want to prove the statement that
\[
\gamma_c(c_1, \ldots, c_{2n-1}) \in \mathcal{A}, \quad \text{if} \quad \gamma_c(c_1, \ldots, c_{2n-2}) \in \mathcal{A}
\]

We first compare the coefficient of the following terms in the identity
\[
E_1^{(c_1)} \cdot T_1(1) \cdot T_{1\ldots 2}(E_{1}^{(c_{2n-1})}) \quad \text{with} \quad c_{k-1} = 1, c_j = 0 \quad \text{for} \quad j < k - 1.
\]

We have
\[
(1 - q_{k-1}^{-2}) \gamma_c(0, \ldots, c_{k-1} = 0, c_k, \ldots) \in (1 - q_{k-1}^{-2}) \left\{ \gamma_c(0, \ldots, c_{k-1} = 1, c_k, \ldots) \right\} \mathcal{A}.
\]

Therefore inductively we have (thanks to Lemma (A.7))
\[
(1 - q_{k-1}^{-2})^{-1} \gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_k \neq 0 \quad \text{for} \quad k \neq n.
\]

Step 2 Now we compare the coefficient of the following terms in the identity
\[
r_n(T_{c}) = 0 \quad \text{for} \quad j < n - 1.
\]

Hence thanks to (A.11), we have \(\gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_n \neq 0. \) This finishes the proof.

Proposition A.20. For quantum symmetric pairs of type BII of rank \(n \geq 2 \), we have \(\Upsilon_c \in \mathcal{A} U^+ \) for all \(c \geq 0 \).

We have the longest element \(w_0 = w \cdot w^* \) (with \(\ell(w^*) = 4n - 5 \)), where \(w^* \) has the reduced expression
\[
w^* = s_2 s_3 \cdots s_n \cdots s_3 s_2 s_1 s_2 s_3 \cdots s_n \cdots s_3 s_2.
\]

We write
\[
\Upsilon_c = \sum \gamma_c(c_1, \ldots, c_{4n-5}) E_2^{(a_1)} \cdots (T_{2\ldots n-1\ldots n-3}(E_2^{(a_{4n-5})}))
\]
where \(\Upsilon_c = 0 \) unless \(\sum_{i=1}^{4n-5} c_i + c_{n-1} + c_{3n-2} = c \) for weight reason. The proof of the following proposition on the actions of \(r_i \) on divided powers of root vectors is collected in Section (A.9)

Proposition A.21. The following formulae hold in type CII.

1. For \(k > 2 \) and \(k \neq n \), we have
 (a) \(r_k(T_{2\ldots n-1\ldots n-3}(E_k^{(a)})) = (1 - q_k^{-2}) (T_{2\ldots n-1\ldots n-3}(E_k^{(a-1)})) \cdot (T_{2\ldots n-1\ldots n-3}(E_k^{(a-1)})) \);

2. (b) \(r_k(T_{2\ldots n-1\ldots n-3}(E_k^{(a)})) = (1 - q_k^{-2}) (T_{2\ldots n-1\ldots n-3}(E_k^{(a)})) \cdot (T_{2\ldots n-1\ldots n-3}(E_k^{(a-1)})) \);
For quantum symmetric pairs of type CII of rank n.

For the actions of

$$r_k\left(T_{2\cdots n\cdots (k-1)}(E^{(a)}_k)\right)$$

$$(1 - q^{-2}_k) \left(T_{2\cdots n\cdots (k-2)}(E^{(a-1)}_{k-1}) \right) \cdot \left(T_{2\cdots n\cdots (k-1)}(E^{(a-1)}_k) \right)$$

The actions r_k on other root vectors are all 0.

(2) For $k = n$, we have

(a) $r_n\left(T_{2\cdots (n-1)}(E^{(a)}_{n-1})\right)$

$$(1 - q^{-2}_{n-1})(1 - q^{-2}_n)q^{1-a}_n \cdot \left(T_{2\cdots (n-2)}(E^{(2)}_{n-1}) \right) \cdot \left(T_{2\cdots (n-1)}(E^{(a-1)}_{n-1}) \right)$$

(b) $r_n(T_{2\cdots n}(E^{(a)}_{n-1})) = (1 - q^{a-1}_{n-1}) \left(T_{2\cdots (n-2)}(E^{(a-1)}_{n-1}) \right) \cdot \left(T_{2\cdots (n-1)}(E^{(a-2)}_{n-1}) \right)$

(c) $r_n(T_{2\cdots n\cdots 1\cdots (n-1)}(E^{(a)}_{n-1}))$

$$(1 - q^{-2}_{n-1})(1 - q^{-2}_n)q^{1-a}_n \left(T_{2\cdots n\cdots 1\cdots (n-2)}(E^{(2)}_{n-1}) \right) \left(T_{2\cdots n\cdots 1\cdots (n-1)}(E^{(a-1)}_{n-1}) \right)$$

(d) $r_n(T_{2\cdots n\cdots 1\cdots (n-1)}(E^{(a)}_{n-1}))$

$$(1 - q^{a-1}_{n-1}) \left(T_{2\cdots n\cdots 1\cdots (n-2)}(E^{(a-1)}_{n-1}) \right) \cdot \left(T_{2\cdots n\cdots 1\cdots (n-1)}(E^{(a-1)}_{n-1}) \right)$$

(e) the actions of r_n on other root vectors are 0.

(3) For the actions of $r_2 \circ r_1$, we have

(a) $r_2 \circ r_1(T_{2\cdots n\cdots 2}(E^{(a)}_1))$

$$(1 - q^{-2}_2)^2 T_{2\cdots n\cdots 3}(E_2) \cdot T_{2\cdots n\cdots 2}(E^{(a-1)}_1)$$

(b) $r_2 \circ r_1(T_{2\cdots n\cdots 1}(E^{(a)}_2)) = (1 - q^{a-2}_1)q^{a-1}_2 T_{2\cdots n\cdots 1}(E^{(a-1)}_2)$

(c) the action of $r_2 \circ r_1$ on other root vectors are all 0.

Proposition A.22. For quantum symmetric pairs of type CH of rank $n \geq 3$, we have $\Upsilon_c \in \mathfrak{A} U^+$ for all $c \geq 0$.
Proof. First thanks to Lemma [A.7], we know that \((1 - q_2^{-2})^{-c_1} \gamma_{c}(c_1, \ldots) \in \mathcal{A}\) if all \(\gamma_{c-1}(c_1, \ldots) \in \mathcal{A}\) and \(c_1 > 0\). It is clear that \(\gamma_0(c_1, \ldots) \in \mathcal{A}\). Hence it suffices to prove (A.12) \(\gamma_c \in \mathcal{A}\) for all \((c_1, \ldots, c_k)\), assuming \((1 - q_2^{-2})^{-c_1} \gamma_{c}(c_1, \ldots) \in \mathcal{A}\) when \(c_1 > 0\).

We divide the proof into five steps.

Step 1 We compare the coefficient of the following term in the identity \(r_k(\Upsilon_c) = 0\) \((n > k > 2)\):
\[
E_2^{(c_1)} \cdots \left(T_{2\cdots n-1\cdots 3}(E_2^{(c_{4n-5})}) \right) \quad \text{with} \quad c_j = 0 \quad \text{for} \quad j < k - 2, c_{k-2} = 1.
\]

Note that \(q_k = q_{k-1}\) for \(k \neq n\). We obtain that
\[
(1 - q_k^{-2}) q^* \gamma_c(0, \ldots, c_{k-2} = 0, c_{k-1} + 1, \ldots) \in (1 - q_{k-1}^{-2}) q^* \sum \gamma_c(0, \ldots, c_{k-2} = 1, c_{k-1}, \ldots) : \mathcal{A}.
\]

Note that the extra factor \((\cdot \mathcal{A})\) appears when we rewrite the \(r_k(\Upsilon_c)\) in terms of PBW basis. Here the exponents \(c_i (i \neq k - 2, k - 1)\) hidden as \(\ldots\) of course require to be compatible, whose precise values are, however, irrelevant.

Therefore thanks to assumption [A.12], we have inductively
\[
(1 - q_k^{-2})^{-c_k-1} \gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_{k-1} > 0, \quad \text{for} \quad k = 3, \ldots, n - 1.
\]

Step 2 We compare the coefficient of the following term in the identity \(\gamma_n(\Upsilon_c) = 0\):
\[
E_2^{(c_1)} \cdots \left(T_{2\cdots n-1\cdots 3}(E_2^{(c_{4n-5})}) \right) \quad \text{with} \quad c_{n-2} = 2, c_k = 0, \quad \text{for} \quad k < n - 2.
\]
We obtain that
\[
(1 - q_{n-1}^{-2})(1 - q_n^{-2}) q^* \gamma_c(0, \ldots, c_{n-2} = 0, c_{n-1} + 1) \in (1 - q_n^{-2}) q^* \gamma_c(0, \ldots, c_{n-2} = 1, c_{n-1}, c_n + 1) : \mathcal{A} + (1 - q_n^{-2}) q^* \sum \gamma_c(0, \ldots, c_{n-2} = 2, \ldots) : \mathcal{A}.
\]

Therefore thanks to [A.13] (recall \(q_2 = q_{n-1}\)) we have
\[
\gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_{n-1} \neq 0.
\]

Step 3 We then compare the coefficient of the following term in the identity \(\gamma_n(\Upsilon_c) = 0\):
\[
E_2^{(a_1)} \cdots \left(T_{2\cdots n-1\cdots 3}(E_2^{(a_{4n-5})}) \right) \quad \text{with} \quad c_{n-2} = 1, c_k = 0, k < n - 2, k = n - 1.
\]
We obtain that
\[
(1 - q_n^{-2}) q^* \gamma_c(\ldots, c_{n-2} = 0, c_{n-1} = 0, c_n + 1, \ldots) \in (1 - q_n^{-2}) q^* \sum \gamma_c(\ldots, c_{n-2} = 1, \ldots) : \mathcal{A}.
\]

Therefore thanks to [A.13], we have
\[
(1 - q_n^{-2})^{-c_n} \gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_n \neq 0.
\]

Step 4 Now entirely similar to **Step 1**, we can show by using (A.14) that
\[
(1 - q_2^{-2})^{-c_k-1} \gamma_c(c_1, \ldots) \in \mathcal{A}, \quad \text{if} \quad c_{k-1} > 0, k = n + 1, \ldots, 2n - 3.
\]
Lemma A.23. For \(k \neq 2 \), we have

\[
r_k(T_{2\cdots n}(E_{i+1}^{(a)})) = \begin{cases}
(1 - q_i^{-2}) \cdot T_{2\cdots (i-1)}(E_i) \cdot T_{2\cdots i}(E_{i+1}^{(a-1)}), & \text{if } k = i + 1 \neq n; \\
0, & \text{if } k \neq i + 1.
\end{cases}
\]

And if \(k = i + 1 = n \), we have

\[
r_n(T_{2\cdots (n-1)}(E_{n-1}^{(a)})) = (1 - q_{n-1}^{-2})(1 - q_n^{-2})q_{n-1}^{-a} \cdot T_{2\cdots (n-2)}(E_{n-1}^{(a)}) \cdot T_{2\cdots (n-1)}(E_n^{(a-1)}).
\]

Proof. We prove the second identity here, where the other cases are similar to Lemma A.13.

Note that we have

\[
T_{2\cdots (n-1)}(E_{n}) = T_{2\cdots (n-2)}(E_{n-1}^{(2)}) = E_{n-1}^{(2)} - q_{n-1}^{-1}E_{n-1}E_{n-1} + q_{n-2}^{-1}E_{n-1}E_{n-1}^{(2)}.
\]

Therefore we have

\[
r_n(T_{2\cdots (n-1)}(E_{n})) = (1 - q_{n-1}^{-2}) - q_{n-1}^{-2}q_{n-1}^{-1} + q_{n-2}^{-1}q_{n-2}^{-1}T_{2\cdots (n-2)}(E_{n-1}^{(2)})
\]

\[
= (1 - q_{n-2}^{-2})(1 - q_n^{-2})T_{2\cdots (n-2)}(E_{n-1}^{(2)}).
\]

Note that \(q_{n-1}^{-2}E_{n-1} \cdot T_{n-1}(E_{n}) = T_{n-1}(E_{n}) \cdot E_{n-1} \). The lemma follows. \(\square \)

Lemma A.24.

1. For \(k \neq 2 \) and \(i \neq n \) or 2, we have

\[
r_k(T_{2\cdots n}(E_{i+1}^{(a)})) = \begin{cases}
(1 - q_i^{-2})T_{2\cdots (i+1)}(E_i) \cdot T_{2\cdots i}(E_{i+1}^{(a-1)}), & \text{if } k = i; \\
0, & \text{if } k \neq i.
\end{cases}
\]

2. For \(k \neq 2 \), we have

\[
r_k(T_{2\cdots n}(E_{n-1}^{(a)})) = \begin{cases}
(1 - q_n^{-2})q_{n-1}^{-a}T_{2\cdots (n-2)}(E_{n-1}) \cdot T_{2\cdots n}(E_{n-1}^{(a-1)}), & \text{if } k = n; \\
-(1 - q_n^{-2}) \cdot T_{2\cdots (n-1)}(E_n) \cdot T_{2\cdots n}(E_{n-1}^{(a-2)}), & \text{if } k \neq n.
\end{cases}
\]
(3) For \(k \neq 2 \), we have
\[
r_k(T_{2\ldots n-2}(E_1^{(a)})) = 0,
\]
if \(k \neq 1 \), and
\[
r_2 \circ r_1(T_{2\ldots n-2}(E_1^{(a)})) = (1 - q_2^{-2})^2 T_{2\ldots n-3}(E_2) \cdot T_{2\ldots n-2}(E_1^{(a-1)}).
\]

Proof. The proof of (1) is entirely similar to Lemma A.14 and skipped. For (2), we have
\[
T_{2\ldots n}(E_{n-1}) = T_{2\ldots (n-2)} T_{n}^{-1}(E_{n-1})
\]
\[
= T_{2\ldots (n-2)}(-q_n^{-1} E_n E_{n-1} + E_{n-1} E_n)
\]
\[
= T_{2\ldots (n-2)}(E_{n-1}) \cdot E_n - q_n^{-1} E_n \cdot T_{2\ldots (n-2)}(E_{n-1}).
\]
Therefore thanks to Lemma A.23, we have
\[
r_k(T_{2\ldots n}(E_{n-1})) = 0,
\]
for \(k \neq n \), and
\[
r_n(T_{2\ldots n}(E_{n-1})) = (1 - q_n^{-2}) T_{2\ldots (n-2)}(E_{n-1}).
\]
Note that
\[
T_{n-1} T_n(E_{n-1}) = E_{n-1} \cdot T_{n-1} T_n(E_{n-1}) - [2] q_{n-1} T_{n-1}(E_n).
\]
Moreover \(T_{n-1}(E_n) \) \(q \)-commutes with the other two terms:
\[
q_{n-1}^2 E_{n-1} T_{n-1}(E_n) = T_{n-1}(E_n) E_{n-1} \quad \text{and} \quad T_n(E_{n-1}) E_n = q_{n-1} E_n T_n(E_{n-1}).
\]
The claim (2) follows. For (3), we have (for \(k \neq n, 1, 2 \))
\[
T_{2\ldots n-2}(E_1) = T_{2\ldots (k+1)}[E_k, T_{(k-1)\ldots 2}(E_1)]_{q_k^{-1}}
\]
\[
= [T_{2\ldots (k+1)}(E_k), T_1^{-1} \cdot T_{k\ldots 3}(E_2)]_{q_{k-1}}.
\]
Therefore for \(k \neq n, 1, 2 \), we have \(r_k(T_{2\ldots n-2}(E_1)) = 0 \), since
\[
r_k(T_{2\ldots (k+1)}(E_k)) = 0 \quad \text{and} \quad r_k(T_1^{-1} \cdot T_{k\ldots 3}(E_2)) = 0.
\]
On the other hand, we always know \(r_2(T_{2\ldots n-2}(E_1)) = 0 \) and a similar computation as in item (1) (or Lemma A.14), we know \(r_n(T_{2\ldots n-2}(E_1)) = 0 \). So we have
\[
r_k(T_{2\ldots n-2}(E_1)) = 0, \quad \text{for } k \neq 1.
\]
Now we have
\[
T_{2\ldots n-2}(E_1) = T_{2\ldots n-3}(E_2, E_1)_{q_2^{-1}} = [T_{2\ldots n-3}(E_2), T_2(E_1)]_{q_2^{-1}}.
\]
Therefore we have
\[
r_2 \circ r_1(T_{2\ldots n-2}(E_1)) = r_2 \left((1 - q_2^{-2}) T_{2\ldots n-3}(E_2) \cdot E_2 - q_2^{-2} E_2 \cdot T_{2\ldots n-3}(E_2)\right)
\]
\[
= (1 - q_2^{-2})^2 T_{2\ldots n-3}(E_2).
\]
Since \(q_2^{-1} E_2 \cdot T_2(E_1) = T_2(E_1) \cdot E_2 \), we have proved (3). \(\square \)
The following lemma is crucial for the remaining cases.

Lemma A.25. We have $T_1\ldots n\ldots 1(E_i) = E_i$ if $i \neq 1$ (including $i = n$). In particular, we have $T_2\ldots n\ldots 1(E_i) = T_1^{-1}(E_i)$ if $i \neq 1$.

Proof. The lemma follows from the computation that $s_1\ldots n\ldots 1(i') = i'$ for $i \neq 1$ and Lemma A.5. □

Lemma A.26.

1. For $i \neq n$ or 1 and $k > 2$, we have

 $$r_k(T_{2\ldots n\ldots 1\ldots i}(E^{(a)}_{i+1})) = \begin{cases} (1 - q_i^{-2}) \cdot T_{2\ldots n\ldots 1\ldots (i-1)}(E_i) \cdot T_{2\ldots n\ldots 1\ldots i}(E^{(a-1)}_{i+1}), & \text{if } k = i + 1 \neq n; \\ 0, & \text{if } k \neq i + 1. \end{cases}$$

2. For $k = i + 1 = n$, we have

 $$r_n(T_{2\ldots n\ldots 1\ldots (n-1)}(E^{(a)}_n)) = (1 - q_{n-1}^{-2})(1 - q_n^{-2}) q_1^{n-2} T_{2\ldots n\ldots 1\ldots (n-2)}(E^{(2)}_{n-1}) \cdot T_{2\ldots n\ldots 1\ldots (n-1)}(E^{(a-1)}_n).$$

3. For $i = 1$, we have

 $$r_2 \circ r_1(T_{2\ldots n\ldots 1\ldots i}(E^{(a)}_2)) = (1 - q_1^{-2}) q_2^{a-1} T_{2\ldots n\ldots 1\ldots i}(E^{(a-1)}_2),$$

 $$r_k(T_{2\ldots n\ldots 1\ldots i}(E^{(a)}_2)) = 0, \quad \text{if } k \neq 1.$$

4. For $i \neq 1$, we have $r_2 \circ r_1(T_{2\ldots n\ldots 1\ldots i}(E^{(a)}_{i+1})) = 0$.

Proof. The proof follows from Lemma A.23 and the following observation (including $k = n$, since $T_{n-1}T_nT_{n-1}(E_n) = E_n$): $T_{2\ldots n\ldots 1\ldots (k-1)}(E_k) = T_1^{-1}(T_{2\ldots (k-1)}(E_k))$. □

Lemma A.27. Let $k \neq 1$ or 2.

1. For $i \neq n$ or 2, we have

 $$r_k(T_{2\ldots n\ldots 1\ldots i\ldots 1}(E^{(a)}_{i-1})) = \begin{cases} (1 - q_i^{-2}) T_{2\ldots n\ldots 1\ldots (i+1)}(E_i) \cdot T_{2\ldots n\ldots 1\ldots i\ldots 1}(E^{(a-1)}_{i-1}), & \text{if } k = i; \\ 0, & \text{if } k \neq i. \end{cases}$$

2. For $k \neq 2$, we have

 $$r_k(T_{2\ldots n\ldots 1\ldots n}(E^{(a)}_{n-1})) = \begin{cases} (1 - q_n^{-2}) q_{n-1}^{a-1} T_{2\ldots n\ldots 1\ldots (n-2)}(E_{n-1}) \cdot T_{2\ldots n\ldots 1\ldots n}(E^{(a-1)}_{n-1}) - (1 - q_n^{-2}) T_{2\ldots n\ldots 1\ldots (n-1)}(E_n) \cdot T_{2\ldots n\ldots 1\ldots n}(E^{(a-2)}_{n-1}), & \text{if } k = n; \\ 0, & \text{if } k \neq n. \end{cases}$$

3. For $i \neq 2$, we have

 $$r_2 \circ r_1(T_{2\ldots n\ldots 1\ldots i\ldots 1}(E^{(a)}_{i-1})) = 0.$$

Proof. Follows from Lemma A.24 and the following observation: $T_{2\ldots n\ldots 1\ldots i\ldots 1}(E_{i-1}) = T_1^{-1} \cdot T_{2\ldots n\ldots 1\ldots i\ldots 1}(E_{i-1}) = [T_{2\ldots n\ldots i}(E_{i-1}), E_i] q_1^{-1}$. □
A.10. Type FII. We consider the QSP of the following type

\[
\begin{array}{c}
\bullet\rightarrow\bullet\rightarrow\bullet\rightarrow\bullet
\end{array}
\]

Here we use the following reduced expression of \(w^* \) with \(\ell(w^*) = 15 \) (c.f. [He09, §1.5]):

\[
w^* = s_4 s_3 s_2 s_1 s_3 s_2 s_4 s_3 s_2 s_3 s_1 s_2 s_4.
\]

We leave the computation of the actions of the derivations \(r_1, r_2, r_3 \) on all 15 root vectors in Section A.11 and give the summary here. We shall actually need the generalization of the actions of the derivations \(r_1, r_2, r_3 \) on divided powers of root vectors, and also write the results in terms of PBW basis. Most of such generalization are standard.

Proposition A.28. The following formulae hold in type FII.

(1) The actions of \(r_1 \) on all root vectors are given by

(1a) \(r_1(T_{432}(E_1^{(a)})) = (1 - q_2^{-2}) T_{43}(E_2) \cdot T_{432}(E_1^{(a-1)}); \)

(1b) \(r_1(T_{43213}(E_2^{(a)})) = (1 - q_3^{-2})(1 - q_2^{-2})q_3^{-1-a} T_{4321}(E_3^{(2)}) \cdot T_{43213}(E_2^{(a-1)}); \)

(1c) \(r_1(T_{432132}(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-1-a} T_{4321}(E_3) \cdot T_{432132}(E_3^{(a-1)}); \)

(1d) \(r_1(T_{43213243}(E_2^{(a)})) = (1 - q_2^{-2})(1 - q_1^{-2}) T_{43213243}(E_2^{(a-1)}); \)

(1e) \(r_1(T_{4321323432}(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-1-a} T_{4321323432}(E_3^{(a-1)}); \)

(1f) \(r_1(T_{mid} T_{3231}(E_2^{(a)})) = (1 - q_1^{-2}) T_{mid} T_{3231}(E_1) \cdot T_{mid} T_{3231}(E_2^{(a-1)}); \)

(1g) the actions of \(r_1 \) on the other root vectors are 0.

(2) The actions of \(r_2 \) on all root vectors are given by

(2a) \(r_2(T_{43}(E_2^{(a)})) = (1 - q_3^{-2})(1 - q_2^{-2})q_2^{-1-a} T_4(E_3^{(2)}) \cdot T_{43}(E_2^{(a-1)}); \)

(2b) \(r_2(T_{4321}(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-a} T_{43}(E_3) \cdot T_{4321}(E_3^{(a-1)}); \)

(2c) \(r_2(T_{432132}(E_2^{(a)})) = (1 - q_2^{-2}) T_{432132}(E_2^{(a-1)}); \)

(2d) \(r_2(T_{mid} T_{3231}(E_2^{(a)})) = (1 - q_1^{-2}) T_{mid} T_{3231}(E_3) \cdot T_{mid} T_{3231}(E_2^{(a-1)}); \)

(2e) \(r_2(T_{mid} T_{32312}(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-2-a} T_{mid} T_{32312}(E_3) \cdot T_{mid} T_{32312}(E_3^{(a-1)}); \)

(2f) \(r_2(T_{mid} T_{323132}(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-2-a} T_{mid} T_{32312}(E_3) \cdot T_{mid} T_{323132}(E_3^{(a-1)}); \)

(2g) the actions of \(r_2 \) on the other root vectors are 0.

(3) The actions of \(r_3 \) on all root vectors are given by

(3a) \(r_3(T_4(E_3^{(a)})) = (1 - q_1^{-2}) T_4(E_3^{(a-1)}); \)

(3b) \(r_3(T_{323132}(E_4^{(a)})) = q_3^{(a-1)}(1 - q_3^{-2}) T_{323132}(E_3); T_{432132}(E_3); T_{4321323}(E_4^{(a-1)}); \)

(3c) \(r_3(T_{mid} T_3(E_3^{(a)})) = (1 - q_2^{-2}) T_{mid} T_3(E_3); T_{mid} T_3(E_3^{(a-1)}); \)

(3d) \(r_3(T_{mid} T_3(E_2^{(a)})) = (1 - q_3^{-2}) T_{mid} T_3(E_4) \cdot T_{mid} T_3(E_2^{(a-1)}); \)

(3e) \(r_3(T_{mid} T_3(E_3^{(a)})) = (1 - q_2^{-2})q_3^{-a} T_{mid} T_3(E_3) \cdot T_{mid} T_3(E_3^{(a-1)}); \)

(3f) \(r_3(T_{mid} T_3(E_2^{(a)})) = (1 - q_2^{-2}) T_{mid} T_3(E_2^{(a-1)}); \)

(3g) the actions of \(r_3 \) on the other root vectors are 0.
So we have

(3f) \(r_3(T_{mid}T_{323123}(E_4^{(a)})) = (1 - q_3^{-2})T_{mid}T_{323123}(E_3) \cdot T_{mid}T_{323123}(E_4^{(a-1)}) \);

(3g) the actions of \(r_3 \) on the other root vectors are 0.

Proof. Here we explain (3b). The rest is standard. Thanks to Lemma \(\text{[A.37]} \) it is straightforward to compute the action \(r_3(T_{4321323}(E_4^{(a)})) \). Now we just need to rewrite the result in terms of the PBW basis.

Recall

\[
T_3T_2(E_3) \cdot E_3 = E_3 \cdot T_3T_2(E_3) - [2]q_3T_3(E_2).
\]

Note that

\[
T_{323}(E_4) = T_{32}(E_3) \cdot T_3(E_4) - q_3^{-1}T_3(E_4) \cdot T_{32}(E_3).
\]

Therefore we have

\[
T_{323}(E_4) \cdot E_3 = q_3^{-1}T_{32}(E_3) \cdot E_3 \cdot T_3(E_4) - q_3^{-1}T_3(E_4) \cdot E_3 \cdot T_3T_2(E_3) + q_3^{-1}[2]q_3T_3(E_4)T_3(E_2)
\]

\[
= q_3^{-1}E_3 \cdot T_3T_2(E_3) \cdot T_3(E_4) - q_3^{-1}[2]q_3T_3(E_2) \cdot T_3(E_4)
\]

\[
- q_3^{-2}E_3 \cdot T_3(E_4) \cdot T_3T_2(E_3) + q_3^{-1}[2]q_3T_3(E_4) \cdot T_3(E_2)
\]

\[
= q_3^{-1}E_3 \cdot T_3T_2(E_3) \cdot T_3(E_4) - q_3^{-2}E_3 \cdot T_3(E_4) \cdot T_3T_2(E_3).
\]

So we have

\[
T_{323}(E_4)E_3T_{32}(E_3) = q_3^{-1}E_3 \cdot T_3T_2(E_3) \cdot T_3(E_4) \cdot T_3(E_3) - q_3^{-2}E_3 \cdot T_3(E_4) \cdot T_3T_2(E_3)
\]

\[
= q_3^{-2}E_3 \cdot T_3T_2(E_3^2) \cdot T_3(E_4) - q_3^{-3}E_3 \cdot T_3T_2(E_3) \cdot T_3(E_4) \cdot T_3(E_3)
\]

\[
= q_3^{-2}E_3 \cdot T_3(E_4) \cdot (T_3(E_3) \cdot T_3(E_4) - q_3^{-1}T_3(E_4) \cdot T_3(E_3))
\]

\[
= q_3^{-2}E_3 \cdot T_3(E_3) \cdot T_3T_2(E_3).
\]

Therefore we have

\[
T_{4321323}(E_4) \cdot T_{4321}(E_3) \cdot T_{432132}(E_3) = q_3^{-2}T_{4321}(E_3) \cdot T_{432132}(E_3) \cdot T_{4321323}(E_4).
\]

We clearly also have

\[
T_{4321323}(E_4) \cdot T_{43213}(E_2) = q_2^{-1}T_{43213}(E_2) \cdot T_{4321323}(E_4).
\]

The formula (3b) follows. \(\square \)

Proposition A.29. For quantum symmetric pairs of type FII, we have \(T_c \in \mathcal{A} \mathcal{U}^+ \) for all \(c \geq 0 \).

Proof. Let \(\gamma_c = \sum \gamma_c(c_1, \ldots, c_{15})E_4^{(c_1)}T_4(E_3^{(c_2)}) \cdots T_{4321...123}(E_4^{(c_{15})}) \). Recall we want to prove that

\[
\gamma_c(c_1, c_2, \ldots, c_{15}) \in \mathcal{A}, \quad \text{if} \quad (1 - q_3^{-2})^{-c_1}\gamma_c(c_1, c_2, \ldots, c_{15}) \in \mathcal{A} \quad \text{when} \quad c_1 \geq 1.
\]

The proof is entirely similar to the proofs of Propositions \(\text{[A.17]} \) \(\text{[A.20]} \) and \(\text{[A.22]} \). We divide the proof into the following 7 steps.

Step 1 We compare the coefficient of the following term in the identity \(r_3(\gamma_c) = 0 \).

\[
E_4^{(c_1)}T_4(E_3^{(c_2)}) \cdots T_{4321...123}(E_4^{(c_{15})}) \quad \text{with} \quad c_1 = 1.
\]
We obtain that (recall \(q_4 = q_5 = q_6^2 \))
\[
(1 - q_4^{-2}) \gamma_c(0, c_2, \ldots) \in (1 - q_4^{-2}) \gamma_c(1, c_2 - 1, \ldots) \cdot \mathcal{A}.
\]
Therefore we have
\[(A.16) \quad (1 - q_4^{-2})^{-c_2} \gamma_c(0, c_2, \ldots) \in \mathcal{A}, \text{ if } c_2 > 0.
\]

(Step 2) We compare the coefficient of the following term in the identity \(r_2(\Upsilon_c) = 0 \):
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321-123}(E_4^{(c_{15})}) \text{ with } c_1 = 0, c_2 = 2.
\]
We obtain that
\[(1 - q_3^{-2})(1 - q_2^{-2}) \gamma_c(0, 0, c_3, \ldots) \in (1 - q_2^{-2}) \gamma_c(0, 1, c_3 - 1, \ldots) \cdot \mathcal{A}.
\]
Then thanks to (A.16) we have
\[(A.17) \quad \gamma_c(0, 0, c_3, \ldots) \in \mathcal{A}, \text{ if } c_3 > 0.
\]

(Step 3) We compare the coefficient of the following term in the identity \(r_1(\Upsilon_c) = 0 \):
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321-123}(E_4^{(c_{15})}) \text{ with } c_1 = c_2 = 0, c_3 = 1.
\]
We obtain that
\[(1 - q_2^{-2}) \gamma_c(0, 0, 0, c_4, \ldots) \in (1 - q_2^{-2}) \gamma_c(0, 1, 0, c_4 - 1, \ldots) \cdot \mathcal{A}.
\]
Then thanks to (A.17) we have
\[(A.18) \quad \gamma_c(0, 0, 0, c_4, \ldots) \in \mathcal{A}, \text{ if } c_4 > 0.
\]

(Step 4) We compare the coefficient of the following term in the identity \(r_2(\Upsilon_c) = 0 \):
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321-123}(E_4^{(c_{15})}) \text{ with } c_1 = c_4 = c_3 = 0, c_2 = 1.
\]
We obtain that
\[(1 - q_2^{-2}) \gamma_c(0, \ldots, c_5, \ldots) \in (1 - q_2^{-2}) \gamma_c(0, 1, 0, c_5 - 1, \ldots) \cdot \mathcal{A}.
\]
Then thanks to (A.18) we have
\[(A.19) \quad \gamma_c(0, \ldots, c_5, \ldots) \in \mathcal{A}, \text{ if } c_5 > 0.
\]

(Step 6) We compare the coefficient of the following term in the identity \(r_2(\Upsilon_c) = 0 \):
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321-123}(E_4^{(c_{15})}) \text{ with } c_1 = c_2 = c_3 = c_5 = 0, c_4 = 1.
\]
We obtain that
\[(1 - q_1^{-2}) \gamma_c(0, 0, 0, 0, c_6, \ldots) \in (1 - q_1^{-2}) \gamma_c(0, 0, 0, 1, c_6 - 1, \ldots) \cdot \mathcal{A}.
\]
Then thanks to (A.18) we have
\[(A.20) \quad \gamma_c(0, \ldots, c_6, \ldots) \in \mathcal{A}, \text{ if } c_6 > 0.
\]

(Step 7) We compare the coefficient of the following term in the identity \(r_1(\Upsilon_c) = 0 \):
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321-123}(E_4^{(c_{15})}) \text{ with } c_1 = c_2 = c_3 = c_4 = c_6 = 0, c_5 = 1.
\]
We obtain that
\[(1 - q_2^{-2}) \gamma_c(0, \ldots, c_7, \ldots) \in (1 - q_2^{-2}) \gamma_c(0, 0, 0, 1, 0, c_7 - 1, \ldots) \cdot \mathcal{A}.
\]
Then thanks to (A.19) we have
\[(A.21)\quad \gamma_c(0, \ldots, c_7, \ldots) \in \mathcal{A}, \text{ if } c_7 > 0.\]

(Step 8) We compare the coefficient of the following term in the identity \(r_3(\Upsilon_c) = 0:\)
\[E_4^{(c_1)} T_4(E_3^{(c_2)}) \cdots T_{4321 \cdots 123}(E_4^{(c_{15})}) \text{ with } c_1 = c_2 = c_3 = c_4 = c_5 = c_7 = 0, c_6 = 1.\]
We obtain that
\[(1 - q_3^{-4}) \gamma_c(0, \ldots, c_7, \ldots) \in (1 - q_2^{-2}) \gamma_c(0, 0, 0, 0, 0, 1, 0, c_8 - 1, \ldots) \cdot \mathcal{A}.\]
Then thanks to (A.20) we have
\[(A.22)\quad \gamma_c(0, \ldots, c_8, \ldots) \in \mathcal{A}, \text{ if } c_8 > 0.\]
This finishes the proof, since for weight reason we have \(\gamma_c(0, \ldots, 0, c_9, \ldots) = 0.\)

A.11. More computation in type FII. In this subsection we continue to work with type FII and prove Proposition A.28. We compute the actions of \(r_1, r_2\) and \(r_3\) on all 15 root vectors in Lemmas A.30–A.44 below.

Lemma A.30. For the root vector \(E_4\), we have \(r_i(E_4) = 0\) for \(i = 1, 2, 3\).

Lemma A.31. For the root vector \(T_4(E_3)\), we have \(r_i(T_4(E_3)) = 0\) for \(i = 1, 2\), and \(r_3(T_4(E_3)) = (1 - q_4^{-2})E_4\).

Lemma A.32. For the root vector \(T_{43}(E_2)\), we have \(r_i(T_{43}(E_2)) = 0\) for \(i = 1, 3\), and \(r_2(T_{43}(E_2)) = (1 - q_3^{-2})(1 - q_2^{-2})T_4(E_3^{(2)})\).

Lemma A.33. For the root vector \(T_{432}(E_1)\), we have \(r_i(T_{432}(E_1)) = 0\) for \(i = 2, 3\), and \(r_1(T_{432}(E_1)) = (1 - q_2^{-2})T_{433}(E_2)\).

Lemma A.34. For the root vector \(T_{4321}(E_3)\), we have \(r_i(T_{4321}(E_3)) = 0\) for \(i = 1, 3\), and \(r_2(T_{4321}(E_3)) = (1 - q_2^{-2})T_4(E_3)\).

Proof. The lemma follows from the the following computation:
\[T_{4321}(E_3) = T_4 \cdot T_2^{-1}(E_3) = T_4(E_3 E_2 - q_2^{-1}E_2 E_3) = T_4(E_3)E_2 - q_2^{-1}E_2 T_4(E_3).\]

Lemma A.35. For the root vector \(T_{43213}(E_2)\), we have
\[r_1(T_{43213}(E_2)) = (1 - q_3^{-2})(1 - q_1^{-2})T_{4321}(E_3^{(2)});\]
\[r_2(T_{43213}(E_2)) = (1 - q_1^{-2})T_{432}(E_1);\]
\[r_3(T_{43213}(E_2)) = 0.\]

Proof. We have
\[T_{43213}(E_2) = T_{4323}[E_1, E_2]_{q_1^{-1}} = [T_{432}(E_1), E_2]_{q_1^{-1}}\]
\[= T_{432}(E_1) \cdot E_2 - q_1^{-1}E_2 \cdot T_{432}(E_1).\]
Therefore we have
\[r_2(T_{43213}(E_2)) = (1 - q_1^{-2})T_{432}(E_1)\]
and \(r_3(T_{43213}(E_2)) = 0.\)
On the other hand, we have
\[
T_{4321} \left(E_3^{(2)} E_2 - q_3^{-1} E_2 E_3 + q_3^{-2} E_2 E_3^{(2)} \right)
= \left(T_{4321} (E_3^{(2)}) \cdot E_1 - q_3^{-1} T_{4321} (E_3) \cdot E_1 \cdot T_{4321} (E_3) + q_3^{-2} E_1 \cdot T_{4321} (E_3^{(2)}) \right).
\]

Therefore we have \(r_1 (T_{43213} (E_2)) = (1 - q_3^{-2})(1 - q_1^{-2}) T_{4321} (E_3^{(2)}) \).

\[\tag*{\Box}\]

Lemma A.36. For the root vector \(T_{432132} (E_3) \), we have
\[
r_i (T_{432132} (E_3)) = 0, \quad \text{for } i = 2, 3;
\]
\[
r_1 (T_{432132} (E_3)) = (1 - q_2^{-2}) T_{4321} (E_3).
\]

Proof. The lemma follows by the following computation: \(T_{432132} (E_3) = T_{4321} \left(E_3 E_2 - q_2^{-1} E_2 E_3 \right) = T_{4321} (E_3) \cdot E_1 - q_1^{-1} E_1 \cdot T_{4321} (E_3) \).

\[\tag*{\Box}\]

Lemma A.37. For the root vector \(T_{4321323} (E_4) \), we have
\[
r_i (T_{4321323} (E_4)) = 0, \quad \text{for } i = 1, 2;
\]
\[
r_3 (T_{4321323} (E_4)) = (1 - q_3^{-2})^2 T_{43213} (E_3) \cdot T_{432132} (E_3) - (1 - q_3^{-2}) [2] q_3 T_{43213} (E_2).
\]

Proof. Recall that \(T_{4321} (E_4) = E_3 \), since \(s_{4321} (a_4) = a_3 \). We have
\[
T_{4321323} (E_4) = T_{432132} [E_3, E_4] q_3^{-1}
= [T_{432132} (E_3), T_{43213} (E_4)] q_3^{-1}
= T_{432132} (E_3) \cdot T_{43213} (E_4) - q_3^{-1} T_{43213} (E_3) \cdot T_{432132} (E_4)
= T_{432132} (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_{4321} (E_3)
- q_3^{-1} \left(T_{43213} (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_{43213} (E_3) \right) \cdot T_{432132} (E_3).
\]

Therefore by Lemma \[A.36\], we have
\[
r_1 (T_{4321323} (E_4)) = (1 - q_2^{-2}) q_3^{-1} T_{43213} (E_3) \cdot \left(T_{43213} (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_{43213} (E_3) \right)
- (1 - q_2^{-2}) q_3^{-1} \left(T_{43213} (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_{43213} (E_3) \right) \cdot T_{4321} (E_3)
= (1 - q_2^{-2}) T_{43213} \left(q_3^{-1} E_3 E_4 - q_1^{-1} q_3^{-1} E_3 E_4 E_3 - q_3^{-1} E_4 E_3 + q_3^{-2} E_4 E_3^2 \right) = 0,
\]
where the last identity follows from the Serre relation (recall \(q_1 = q_3^2 \)).

On the other hand, by Lemma \[A.34\] we have
\[
r_2 (T_{43213} (E_4)) = r_2 \left(T_{43213} (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_{43213} (E_3) \right)
= (1 - q_2^{-2}) \left(q_3^{-2} T_4 (E_3) \cdot E_3 - q_3^{-1} E_3 \cdot T_4 (E_3) \right) = 0,
\]
where the last follows from the fact that \(T_4 (E_3) \cdot E_3 = q_3 E_3 \cdot T_4 (E_3) \). Therefore
\[
r_2 (T_{4321323} (E_4)) = 0.
\]
Finally, we have
\[r_3 \left(T_{\text{4321323}}(E_4) \right) = T_{\text{432132}}(E_3) \cdot \left(T_{\text{4321}}(E_3) - q_3^{-2} T_{\text{4321}}(E_3) \right) \]
\[- q_3^{-1} \left(q_3^{-1} T_{\text{4321}}(E_3) - q_3^{-3} T_{\text{4321}}(E_3) \right) \cdot T_{\text{432132}}(E_3) \]
\[= (1 - q_3^{-2}) T_{\text{4321}} \left(T_{\text{32}}(E_3) \cdot E_3 - q_3^{-2} E_3 \cdot T_{\text{32}}(E_3) \right) \]
\[= (1 - q_3^{-2})^2 T_{\text{4321}}(E_3) \cdot T_{\text{432132}}(E_3) - (1 - q_3^{-2}) [2q_3 T_{\text{43213}}(E_2)]. \]

The last identity follows from the observation that
\[T_3 T_2(E_3) \cdot E_3 = E_3 \cdot T_3 T_2(E_3) - [2q_3 T_3(E_2)]. \]

Note that \(T_3(E_2) \) \(q \)-commutes with the other two terms:
\[q_3^{-2} E_3 T_3(E_2) = T_3(E_2) E_3 \quad \text{and} \quad T_2(E_3) E_2 = q_2^{-1} E_2 T_2(E_3). \]

The lemma follows. \(\square \)

Lemma A.38. For the root vector \(T_{\text{43213234}}(E_3) \), we have
\[r_i(T_{\text{43213234}}(E_3)) = 0, \quad \text{for} \ i = 1, 2; \]
\[r_3(T_{\text{43213234}}(E_3)) = (1 - q_3^{-2}) T_{\text{4321}}(E_3). \]

Proof. The lemma follows from Lemma [A.34] and the following computation:
\[T_{\text{43213234}}(E_3) = T_{\text{432132}}(E_4) = T_{\text{4323}}(E_4) = [T_{\text{4321}}(E_3), E_3]_{q_3^{-1}}. \]

We shall write \(T_{\text{mid}} = T_4 T_3 T_2 T_1 T_3 T_2 T_3 T_4 \).

Lemma A.39. For the root vector \(T_{\text{mid}} T_3(E_2) \), we have
\[r_1(T_{\text{mid}} T_3(E_2)) = (1 - q_3^{-2})(1 - q_1^{-2}) T_{\text{mid}}(E_3^{(2)}); \]
\[r_2(T_{\text{mid}} T_3(E_2)) = 0; \]
\[r_3(T_{\text{mid}} T_3(E_2)) = (1 - q_3^{-2})(-q_3) T_{\text{4321323}}(E_4). \]

Proof. Since \(s_{\text{mid}}(\alpha_2) = \alpha_1 \), we have \(T_{\text{mid}}(E_2) = E_4 \). Therefore we have
\[T_{\text{mid}} T_3(E_2) = T_{\text{mid}} \left(E_3^{(2)} E_2 - q_3^{-1} E_3 E_2 E_3 + q_3^{-2} E_2 E_3^{(2)} \right) \]
\[= \left(T_{\text{mid}}(E_3^{(2)}) \cdot E_1 - q_3^{-1} T_{\text{mid}}(E_3) \cdot E_1 \cdot T_{\text{mid}}(E_3) + q_3^{-2} E_1 \cdot T_{\text{mid}}(E_3^{(2)}) \right). \]

Then it follows by Lemma [A.38] that
\[r_2(T_{\text{mid}} T_3(E_2)) = 0 \quad \text{and} \quad r_1(T_{\text{mid}} T_3(E_2)) = (1 - q_3^{-2})(1 - q_1^{-2}) T_{\text{mid}}(E_3^{(2)}). \]
Then we have

\[r_3(T_{\text{mid}}T_3(E_2)) = (1 - q_3^{-2}) \left([2]_{q_3}^{-1} q_3 T_{4321}(E_3) \cdot T_{\text{mid}}(E_3) \cdot E_1 + [2]_{q_3}^{-1} T_{\text{mid}}(E_3) \cdot T_{4321}(E_3) \cdot E_1 \right. \\
- q_3^{-1} q_3 T_{4321}(E_3) \cdot E_1 \cdot T_{\text{mid}}(E_3) - q_3^{-1} T_{\text{mid}}(E_3) \cdot E_1 \cdot T_{4321}(E_3) \\
\left. + q_3^{-2} [2]_{q_3}^{-1} q_3 E_1 \cdot T_{4321}(E_3) \cdot T_{\text{mid}}(E_3) + [2]_{q_3}^{-1} q_3^{-2} E_1 \cdot T_{\text{mid}}(E_3) \cdot T_{4321}(E_3) \right) \\
= (1 - q_3^{-2}) \left(q_3 T_{\text{mid}}(E_3) \cdot T_{4321}(E_3) \cdot E_1 \right. \\
- q_3^{-1} q_3 T_{4321}(E_3) \cdot E_1 \cdot T_{\text{mid}}(E_3) - q_3^{-1} T_{\text{mid}}(E_3) \cdot E_1 \cdot T_{4321}(E_3) \\
\left. + q_3^{-2} E_1 \cdot T_{4321}(E_3) \cdot T_{\text{mid}}(E_3) \right) \\
= (1 - q_3^{-2}) \left(- T_{432132}(E_3) \cdot T_{\text{mid}}(E_3) + q_3 T_{\text{mid}}(E_3) \cdot T_{432132}(E_3) \right) \\
= (1 - q_3^{-2})(-q_3)T_{4321323}(E_4).
\]

\[\square \]

Lemma A.40. For the root vector \(T_{4321323432}(E_3) \), we have

\[r_2(T_{4321323432}(E_3)) = 0; \]
\[r_3(T_{4321323432}(E_3)) = (1 - q_3^{-2})T_{432132}(E_3); \]
\[r_1(T_{4321323432}(E_3)) = (1 - q_2^{-2})T_{\text{mid}}(E_3). \]

Proof. We have

\[T_{\text{mid}}T_3T_2(E_3) = T_{\text{mid}}\left(E_3E_2 - q_2^{-1}E_2E_3\right) = T_{\text{mid}}(E_3)E_1 - q_2^{-1}E_1T_{\text{mid}}(E_3). \]

Therefore we have

\[r_3(T_{\text{mid}}T_3T_2(E_3)) = (1 - q_3^{-2}) \left(T_{4321}(E_3) \cdot T_{4321}(E_2) - q_2^{-1}T_{4321}(E_2) \cdot T_{4321}(E_3) \right) \\
= (1 - q_3^{-2})T_{432132}(E_3). \]

\[\square \]

Lemma A.41. For the root vector \(T_{43213234323}(E_1) \), we have

\[r_1(T_{43213234323}(E_1)) = 0, \quad \text{for } i = 1, 3; \]
\[r_2(T_{43213234323}(E_1)) = (1 - q_2^{-2})T_{\text{mid}}T_3(E_2). \]

Proof. Since we have \(s_{\text{mid}}(\alpha_1) = \alpha_2 \), we have \(T_{\text{mid}}(E_1) = E_2 \). We have

\[T_{\text{mid}}T_3T_2T_3(E_1) = T_{\text{mid}}T_3(E_2) \cdot E_2 - q_2^{-1}E_2 \cdot T_{\text{mid}}T_3(E_2). \]

Therefore we have

\[r_2(T_{43213234323}(E_1)) = (1 - q_2^{-2})T_{\text{mid}}T_3(E_2). \]
On the other hand, by Lemma A.39 we have
\[r_1(T_{\text{mid}}T_3T_2T_3(E_1)) = r_1(T_{\text{mid}}^2E_2) \cdot E_2 - q_2^{-1}E_2 \cdot T_{\text{mid}}^2E_2 \]
\[= q_1^{-1}(1 - q_3^{-2})(1 - q_1^{-2})T_{\text{mid}}^2E_2 - q_2^{-1}(1 - q_3^{-2})(1 - q_1^{-2})E_2 \cdot T_{\text{mid}}^2E_2 \]
\[= q_1^{-1}(1 - q_3^{-2})(1 - q_1^{-2}) \left(T_{\text{mid}}(E_2) \cdot T_{\text{mid}}(E_1) - T_{\text{mid}}(E_1) \cdot T_{\text{mid}}(E_2) \right) = 0. \]
Finally we have
\[r_3(T_{\text{mid}}T_3T_2T_3(E_1)) = r_3 \left(T_{\text{mid}}^2E_2 \cdot E_2 - q_2^{-1}E_2 \cdot T_{\text{mid}}^2E_2 \right) \]
\[= (1 - q_3^{-2})(-q_3) \left(q_3^{-2}T_{3231323}(E_1) \cdot T_{3231323}(E_1) \right) \]
\[- q_2^{-1}T_{3231323}(E_1) \cdot T_{3231323}(E_1) = 0. \]

Lemma A.42. For the root vector $T_{\text{mid}}T_3T_2T_3(E_2)$, we have
\[r_1(T_{\text{mid}}T_3T_2T_3(E_2)) = (1 - q_1^{-2})T_{\text{mid}}T_3T_2T_3(E_1); \]
\[r_2(T_{\text{mid}}T_3T_2T_3(E_2)) = (1 - q_3^{-2})(1 - q_2^{-2})T_{\text{mid}}T_3T_2T_3(E_2); \]
\[r_3(T_{\text{mid}}T_3T_2T_3(E_2)) = 0. \]

Proof. We have
\[T_{\text{mid}}T_3T_2T_3(E_2) = T_{\text{mid}}T_3T_2T_3(E_1) \cdot E_1 - q_1^{-1}E_1 \cdot T_{\text{mid}}T_3T_2T_3(E_1). \]
Then it is easy to see that
\[r_3(T_{\text{mid}}T_3T_2T_3(E_2)) = 0 \quad \text{and} \quad r_1(T_{\text{mid}}T_3T_2T_3(E_2)) = (1 - q_1^{-2})T_{\text{mid}}T_3T_2T_3(E_1). \]
On the other hand, we have
\[T_{\text{mid}}T_3T_2T_3T_1(E_2) \]
\[= T_{\text{mid}}^2T_3T_2T_3T_1(E_2) \]
\[= T_{\text{mid}}^3T_3T_2T_1 \left(E_2^2 + q_3^{-1}E_3E_2 + q_3^{-2}E_2^2 \right) \]
\[= T_{\text{mid}}^3T_3T_2(E_2^2) \cdot E_2 - q_3^{-1}T_{\text{mid}}T_3T_2(E_3) \cdot E_2 \cdot T_{\text{mid}}T_3T_2(E_3) + q_3^{-2}E_2 \cdot T_{\text{mid}}T_3T_2(E_3^2). \]
Therefore
\[r_2(T_{\text{mid}}T_3T_2T_3(E_2)) = T_{\text{mid}}^2T_3T_2(E_3^2) - q_3^{-1}q_2^{-1}T_{\text{mid}}T_3T_2(E_3^2) + q_3^{-2}q_2^{-2}T_{\text{mid}}T_3T_2(E_3^2) \]
\[= (1 - q_3^{-2})(1 - q_2^{-2})T_{\text{mid}}T_3T_2(E_3^2). \]
The lemma follows.

Lemma A.43. For the root vector $T_{\text{mid}}T_3T_2T_3(E_3)$, we have
\[r_i(T_{\text{mid}}T_3T_2T_3(E_3)) = 0, \quad \text{for } i = 1, 3; \]
\[r_2(T_{\text{mid}}T_3T_2T_3(E_3)) = (1 - q_1^{-2})T_{\text{mid}}T_3T_2(E_3). \]
Proof. Since $s_2s_1s_3s_2s_3s_1s_2(\alpha_3) = \alpha_3$, where $s_2s_1s_3s_2s_3s_1s_2$ is reduced, we have
\[T_{32312}(E_3) = T_1^{-1}T_2^{-1}(E_3) = T_1^{-1}T_3T_2(E_3). \]
Therefore we have
\[
T_{midT_{32312}}(E_3) = T_{mid}T_3T_2(E_3) \cdot T_{mid}(E_1) - q_1^{-1}T_{mid}(E_1) \cdot T_{midT_3T_2}(E_3)
\]
\[= T_{mid}T_3T_2(E_3) \cdot E_2 - q_1^{-1}E_2 \cdot T_{mid}T_3T_2(E_3). \]
Since we have $s_4s_3s_2s_1s_3s_2(\alpha_2) = \alpha_2$, we have $T_4T_3T_2T_1T_3T_2(E_1) = E_2$. Hence
\[
T_{midT_{32312}}(E_3) = q_2^{-1}r_3(T_{mid}T_3T_2(E_3)) \cdot E_2 - q_1^{-1}E_2 \cdot r_3(T_{mid}T_3T_2(E_3))
\]
\[= q_1^{-1}(1 - q_3^{-2})(T_{432132}(E_3) \cdot E_2 - E_2 \cdot T_{432132}(E_3))
\]
\[= q_1^{-1}(1 - q_3^{-2})(T_{432132}(E_3) \cdot T_{432132}(E_1) - T_{432132}(E_1) \cdot T_{432132}(E_3)) = 0. \]
Since $s_{mid}(\alpha_1) = \alpha_2$, we have $T_{mid}(E_1) = E_2$. Hence On the other hand, we have
\[
r_3(T_{midT_{32312}}(E_3))
\]
\[= q_1^{-1}r_1(T_{mid}T_3T_2(E_3)) \cdot E_2 - q_1^{-1}E_2 \cdot r_1(T_{mid}T_3T_2(E_3))
\]
\[= q_1^{-1}(1 - q_2^{-2})(T_{mid}(E_3) \cdot E_2 - E_2 \cdot T_{mid}(E_3))
\]
\[= q_1^{-1}(1 - q_2^{-2})(T_{mid}(E_3) \cdot T_{mid}(E_1) - T_{mid}(E_1) \cdot T_{mid}(E_3)) = 0. \]
\[\square \]

Lemma A.44. For the root vector $T_{midT_{323123}}(E_4)$, we have
\[
r_i(T_{midT_{323123}}(E_4)) = 0, \quad \text{for } i = 1, 2;
\]
\[
r_3(T_{midT_{323123}}(E_4)) = (1 - q_3^{-2})T_{midT_{32312}}(E_3). \]

Proof. Since we have $s_{mid}s_3s_2s_3s_1s_2(\alpha_4) = \alpha_3$, we have $T_{midT_{32312}}(E_4) = E_3$. Therefore we have
\[
T_{midT_{32312}}(E_4) = T_{midT_{32312}}(E_3) \cdot E_3 - q_3^{-1}E_3 \cdot T_{midT_{32312}}(E_3).
\]
Therefore we have
\[
r_3(T_{midT_{323123}}(E_4)) = (1 - q_3^{-2})T_{midT_{32312}}(E_3).
\]
On the other hand, we have
\[
r_2(T_{midT_{323123}}(E_4))
\]
\[= q_3^{-2}r_2(T_{midT_{32312}}(E_3)) \cdot E_3 - q_3^{-1}E_3 \cdot r_2(T_{midT_{32312}}(E_3))
\]
\[= (1 - q_1^{-2})q_3^{-1}\left(q_3^{-1}T_{midT_{32}}(E_3) \cdot T_{midT_{323}}(E_4) - T_{midT_{323}}(E_4) \cdot T_{midT_{32}}(E_3)\right) = 0. \]
This finishes the proof. \[\square \]

The computation of the actions of r_1, r_2, r_3 on all 15 root vectors is completed.
Table 4. Sataki diagrams of irreducible symmetric pairs

A1	DIII
AII	DIII
AIII	EIII
AIV	EI
BI	EIV
BII	EV
CI	EIV
CII	EVII
CIII	EVIII
DI	EIX
DII	FI

- A1
- AII
- AIII
- AIV
- BI
- BII
- CI
- CII
- DI
- DII

- DIII
- EII
- EIII
- EI
- EI
- EIV
- EV
- EIV
- EIV
- EIV
- EIX
- FI
- FII

- G
CANONICAL BASES ARISING FROM QUANTUM SYMMETRIC PAIRS

REFERENCES

[Ar62] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ. 13 (1962), 1–34.

[Bao16] H. Bao, Kazhdan-Lusztig theory of super type D and quantum symmetric pairs, Preprint, arXiv:1603.05105

[BLM] A. Beilinson, G. Lusztig, and R. MacPherson, A geometric setting for the quantum deformation of GLn, Duke Math. J. 61 (1990), 655–677.

[BK15a] M. Balagovic and S. Kolb, The bar involution for quantum symmetric pairs, Represent. Theory 19 (2015), 186–210.

[BK15] ———, Universal K-matrix for quantum symmetric pairs, arXiv:1507.06276v2, J. Reine Angew. Math. (to appear), DOI 10.1515/crelle-2016-0012.

[BKLW] H. Bao, J. Kujawa, Y. Li, and W. Wang, Geometric Schur duality of classical type, arXiv:1404.4000v3.

[BW13] H. Bao and W. Wang, A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs, arXiv:1310.0103v2.

[BW14] ———, Canonical bases in tensor products revisited, Amer. J. Math. 138 (2016), arXiv:1403.0039

[ES13] M. Ehrig and C. Stroppel, Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality, arXiv:1310.1972.

[FL15] Z. Fan and Y. Li, Positivity of canonical basis under comultiplication, arXiv:1511.02434.

[He09] X. He, A subalgebra of 0-Hecke algebra, J. Algebra 322 (2009), 4030-4039.

[Jan96] J.C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics 6, Amer. Math. Soc, 1996.

[Ka91] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 433–461.

[Ka94] ———, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383–413.

[Ko14] S. Kolb, Quantum symmetric Kac-Moody pairs, Adv. in Math. 267 (2014), 395–469.

[KP11] S. Kolb and J. Pellegrini, Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra 336 (2011), 395-416.

[Le99] G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), 729–767.

[Le02] ———, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras (Cambridge), MSRI publications, 43, Cambridge Univ. Press, 2002, pp. 117–166.

[Le03] ———, Quantum symmetric pairs and their zonal spherical functions, Transformation Groups 8 (2003), 261–292.

[Le04] G. Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. in Math. 189 (2004), 88-147.

[Lu90] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.

[Lu91] ———, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365–421.

[Lu92] ———, Canonical bases in tensor products, Proc. Nat. Acad. Sci. 89 (1992), 8177–8179.

[Lu94] ———, Introduction to Quantum Groups, Modern Birkhäuser Classics, Reprint of the 1993 Edition, Birkhäuser, Boston, 2010.

[LW15] Y. Li and W. Wang, Positivity vs negativity of canonical bases, Proceedings for Lusztig’s 70th birthday conference, Bulletin of Institute of Mathematics Academia Sinica (N.S.), to appear, arXiv:1501.00688v3.

[OV] A. Onishchik and E. Vinberg, Lie groups and algebraic groups, Translated from the Russian by D.A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.
Department of Mathematics, University of Maryland, College Park, MD 20742. Current address: School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
E-mail address: huanchen@math.umd.edu

Department of Mathematics, University of Virginia, Charlottesville, VA 22904
E-mail address: ww9c@virginia.edu