Justificativa e delineamento do estudo “Tocilizumabe em pacientes com COVID-19 moderado a grave: estudo aberto, multicêntrico, randomizado, controlado” (TOCIBRAS)

Rationale and design of the “Tocilizumab in patients with moderate to severe COVID-19: an open-label multicentre randomized controlled” trial (TOCIBRAS)

RESUMO

Introdução: Os marcadores pró-inflamatórios desempenham papel importante na severidade de pacientes com COVID-19. Assim, terapêuticas anti-inflamatórias são agentes interessantes para potencialmente combater a cascata inflamatória descontrolada em tais pacientes. Delineamos um ensaio para testar tocilizumabe em comparação com o tratamento padrão, tendo como objetivo melhorar os desfechos por meio da inibição da interleucina 6, um importante mediador inflamatório na COVID-19.

Métodos e análises: Este será um estudo aberto multicêntrico, randomizado e controlado, que comparará os desfechos de pacientes tratados com tocilizumabe mais tratamento padrão com o tratamento padrão isoladamente em pacientes com COVID-19 moderada a grave. Como critérios de inclusão, serão exigidos dois dos quatro critérios a seguir: doses de dímero D acima de 1.000ng/mL, proteína C-reativa acima de 5mg/dL, ferritina acima de 300mg/dL e desidrogenase lática acima do limite superior do normal. O objetivo primário será comparar a condição clínica no dia 15, conforme avaliação por meio de escala ordinal de 7 pontos aplicada nos estudos de COVID-19 em todo o mundo. O desfecho primário será avaliado por regressão logística ordinal assumindo razões de propensão proporcionais ajustadas pelas variáveis de estratificação (idade e sexo).

Ética e disseminação: O TOCIBRAS foi aprovado pelos comitês de ética locais e central (nacional) do Brasil em conformidade com as atuais diretrizes e orientações nacionais e internacionais. Cada centro participante obteve aprovação do estudo por parte de seu comitê de ética em pesquisa, antes de iniciar as inscrições no protocolo. Os dados derivados deste ensaio serão publicados independentemente de seus resultados. Se tiver sua efetividade comprovada, esta estratégia terapêutica poderá aliviar as consequências da resposta inflamatória na COVID-19 e melhorar os resultados clínicos.

Descritores: Coronavírus; Tocilizumabe; Covid-19; SARS-COV-2

Identificador no ClinicalTrials.gov: NCT04403685

INTRODUÇÃO

No final de 2019, o surto de um coronavírus na cidade de Wuhan, na China, chegou às manchetes quando começaram a surgir casos de pneumonia grave e óbitos. (1) O novo vírus foi inicialmente denominado 2019-nCoV, e pouco se sabia sobre sua patogênese, transmissibilidade e taxas de letalidade. (1,2) Os casos começaram a espalhar-se pela China e, em 2020, ultrapassou as fronteiras, vindo a atingir todos os continentes (exceto Antártida). Em fevereiro de 2020, a Organização Mundial da Saúde (OMS) adotou para o vírus o nome oficial de
SARS-CoV-2 (em vez de 2019-nCoV) e a síndrome a ele associada foi denominada COVID-19, sendo declarada pandemia em meados de março. Em junho de 2020, já tinham sido relatados quase 9 milhões de casos em todo o mundo, com 470 mil óbitos. No Brasil, os primeiros casos foram relatados no final de fevereiro, e, em junho de 2020, o país acumulava mais de 1 milhão de casos e 50 mil óbitos.

O desenvolvimento de uma pneumonia que progride para síndrome da resposta inflamatória sistêmica (systemic inflammatory response syndrome - SIRS) e falência de múltiplos órgãos indica que as citocinas pró-inflamatórias são contribuintes significantes para a morbidade e a mortalidade na infecção por SARS-CoV-2. O rápido aumento de citocinas observado na terapia com receptor de antígeno quimérico (CAR-T) é proposto como elemento essencial na rápida deterioração clínica. A SIRS da infeção por SARS-CoV-2 é proposta como elemento crítico na rápida deterioração clínica. (7-9) A SIRS da infecção, quando é desencadeada uma série de sinais pró-inflamatórios, levando ao comprometimento respiratório e à falência de múltiplos órgãos. Após o SARS-CoV-2 inicialmente ligar-se com o receptor da enzima conversora de angiotensina 2 (ACE2), diversos tipos celulares são infectados nos sistemas respiratório, gastrintestinal, neurológico, endotelial e reticuloendotelial, levando ao surgimento de uma ampla variedade de quadros clínicos, que variam desde os oligossintomáticos até a falência de múltiplos órgãos e óbito. (10-15) Os fatores de risco clínicos e laboratoriais associados com desfechos piores vêm sendo reconhecidos à medida que a pandemia se desenvolve mundialmente. (16-18)

A infeção e a ativação de macrófagos, inicialmente nos pulmões e, depois, sistêmica, vem emergindo como fonte essencial de citocinas pró-inflamatórias como interferon gama (IFN-γ), interleucina (IL-2, IL-12, IL-1RA e ligante de interferon gama (IFN-γ) e interleucina (IL) 6, IL-12, IL-1RA e ligante de interferon gama (IFN-γ), interleucina (IL) 6, IL-12, fator de necrose tumoral (TNF), IL-1RA e ligante de quimiocinas (CXCL)10, dentre outras. (19) Outros sistemas, como a cascata de coagulação, são ativados pela crescente resposta inflamatória, levando a eventos trombóticos e hemorrágicos, tanto pulmonares quanto sistêmicos. (19,20) Essa destruição de múltiplos sistemas desencadeada pelo SARS-CoV-2 é hoje reconhecida como elemento crítico de sua patogênese e tem direcionado as estratégias terapêuticas que podem bloquear suas consequências mais letais. Por exemplo, um fármaco antigo, etoposido, e diversas outras abordagens focalizadas surgiram como consequência da ativação de macrófagos, inclusive o uso de terapêuticas anticitocinas, antiquimiocinas, anticomplemento, inibidores de Janus quinases (JAK) e da tirosina quinase de Bruton (BTK). (8,21) É provável que, se ativas, essas terapêuticas serão incrementais e em estratégia combinada com antivirais, anticoagulantes ou, possivelmente, plasma de convalescentes, proporcionarão uma abordagem terapêutica. (22-24)

O tocilizumabe é um inibidor da IL-6 aprovado para o tratamento da artrite reumatoide, arterite de células gigantes e síndrome de liberação de citocinas durante a CAR-T. (25,26) Dados preliminares demonstram que o tocilizumabe e outros bloqueadores de IL-6 podem desempenhar um papel nos casos graves de SIRS, porém seu papel na COVID-19 ainda não foi confirmado, e seu uso deve ser considerado experimental. (27,28) Considerando-se seu modo de ação, é plausível que o tocilizumabe seja ativo em pacientes com SIRS já estabelecida (que poderia piorar) em comparação com o uso precoce durante o ciclo de infecção, ainda sem atividade inflamatória demonstrável. Assim, com a finalidade de testar essa hipótese, planejamos um ensaio no qual tocilizumabe será avaliado para evitar as consequências mais letais da SIRS relacionada à COVID-19. Para investigar os efeitos de uma resposta inflamatória em curso, delineamos um ensaio randomizado, controlado, que compara a eficácia de tocilizumabe mais o tratamento padrão com o tratamento padrão isoladamente em pacientes com quadro clínico moderado a grave de infecção por SARS-CoV-2 com necessidade de suplementação de oxigênio e aumento dos marcadores inflamatórios sistêmicos. A exigência de haver elevação dos marcadores inflamatórios sistêmicos, em nessa hipótese, selecionará melhor os pacientes com maior probabilidade de obter benefício com a utilização dessa estratégia.

MÉTODOS

Delineamento do estudo

O TOCIBRAS (Tocilizumabe em pacientes com COVID-19 moderado a grave: estudo aberto, multicêntrico, randomizado, controlado) foi desenvolvido em conformidade com as diretrizes SPIRIT (Apêndice 1) e registrado no sítio ClinicalTrials.gov sob o número NCT04403685. O TOCIBRAS é um ensaio aberto, em grupos paralelos, de superioridade, multicêntrico, randomizado e controlado com o objetivo primário de demonstrar que o tocilizumabe, quando acrescentado ao tratamento padrão, é superior ao tratamento padrão isoladamente para pacientes com COVID-19 moderada a grave (Figura 1). A Coalizão COVID-19 Brasil é quem conduz este estudo; trata-se de uma rede cooperativa de pesquisa que compreende os seguintes hospitais: BP - A Beneficência...
Figura 1 - Esquema de inclusão, intervenções e avaliações. D = dia.

Portuguesa de São Paulo, HCor-Hospital do Coração, Hospital Israelita Albert Einstein, Hospital Sírio-Libanês, Hospital Alemão Oswaldo Cruz, Hospital Moinhos de Vento, Brazilian Clinical Research Institute (BCRI) e a Brazilian Research in Intensive Care Network (BRICNet) (Apêndice 2).

Critérios de elegibilidade

Critérios de inclusão

1. Diagnóstico confirmado de infecção por SARS-CoV-2.
2. Tomografia computadorizada (ou radiografia) do tórax com achados compatíveis com COVID-19.
3. Mais de 3 dias de sintomas relacionados à COVID-19.
4. Idade de 18 anos ou mais.
5. Necessidade de suplementação de oxigênio para manter pressão parcial de oxigênio (SpO₂) acima de 93% ou necessidade de ventilação mecânica por menos de 24 horas antes da randomização.
6. Dois ou mais dos seguintes critérios inflamatórios:
 i. Dímero D acima de 1.000ng/mL.
 ii. Proteína C-reativa (PCR) acima de 5mg/dL.
 iii. Ferritina acima de 300mg/dL.
 iv. Desidrogenase láctica (DHL) acima do limite superior do normal.

Critérios de exclusão

1. Necessidade de ventilação mecânica por 24 horas ou mais antes da randomização.
2. Hipersensibilidade ao tocilizumabe.
3. Pacientes sem perspectiva terapêutica ou sob cuidados paliativos.
4. Infecção ativa não controlada (além da COVID-19).
5. Contagem de neutrófilos abaixo de 0,5 x 10⁹/L.
6. Contagem de plaquetas abaixo de 50 x 10⁹/L.
7. Hepatopatia, cirrose ou elevação da aspartato transaminase (AST) ou alanina aminotransferase (ALT) acima de cinco vezes o limite superior do normal.
8. Nefropatia com filtração glomerular estimada abaixo de 30mL/min/1,72m² (escores Modification of Diet in Renal Disease - MDRD ou Chronic Kidney Disease Epidemiology Collaboration - CKD-EPI).
9. Mulheres amamentando.
10. Gravidez.
11. Outras condições clínicas que contraindiquem a utilização de tocilizumabe, a critério do médico responsável.

Desfechos

Objetivo primário

Avaliar os efeitos de tocilizumabe mais o tratamento padrão em comparação com o tratamento padrão isoladamente na condição clínica no dia 15, conforme medido com a escala ordinal de 7 pontos, em pacientes adultos hospitalizados com COVID-19 moderada a grave. A escala ordinal de 7 pontos aplicada no estudo é a seguinte:

1. Paciente não hospitalizado, sem limitações de suas atividades.
2. Paciente não hospitalizado, com limitações de suas atividades.
3. Paciente no hospital, sem suplementação de oxigênio.
4. Paciente no hospital, com suplementação de oxigênio.
5. Paciente sob ventilação mecânica.
6. Óbito.

Objetivos secundários

Avaliar os efeitos do tratamento com tocilizumabe mais o tratamento padrão em comparação com o tratamento padrão em pacientes adultos hospitalizados com COVID-19, nos seguintes desfechos:

1. Mortalidade por todas as causas desde a randomização até o dia 28.
2. Mortalidade hospitalar.
3. Grau de disfunção de órgãos avaliadas com o Sequential Organ Failure Assessment (SOFA) no dia 8 e no dia 15 após a randomização.
4. Condição clínica nos dias 8 e 29 após a randomização com utilização da escala ordinal de 7 pontos.
5. Dias sem ventilador dentro dos 29 dias.
6. Tempo até independência de suporte com oxigênio dentro dos 29 dias.
7. Tempo de permanência no hospital.
8. Incidência de infecções secundárias.
9. Ocorrência de eventos tromboembólicos (acidente vascular cerebral, infarto do miocárdio, trombose venosa profunda e tromboembolismo pulmonar).
10. Incidência de eventos adversos (EA).

Objetivos exploratórios secundários

1. Avaliar a associação de marcadores inflamatórios e citocinas com os desfechos clínicos.
2. Avaliar os parâmetros cinéticos e hemostáticos, marcadores inflamatórios, citocinas, citometria no sangue periférico, hemograma completo e testes de função renal e hepática
3. Avaliar a depuração viral de SARS-CoV-2 no dia 8.

Os seguintes exames exploratórios serão realizados e correlacionados com os desfechos clínicos:
- Mensuração dos biomarcadores dimero D, PCR, DHL, ferritina, IL-6, TNF-α, receptor IL-2 (CD25) e IL-10.
- Citometria no sangue periférico para células T (CD4+, CD8+ e subpopulações de células T duplo-negativas), B (transicionais, virgens, células sem mudança de memória de classe, células com mudança de memória de classe e células plasmáticas) e NK (CD16+/CD56-, CD16+/CD56+ e CD16-/CD56++), linfócitos, monocitos (clássicos, intermediários e não clássicos), células dendríticas plasmocitoides e mieloides, eosinófilos, basófilos e neutrófilos.
- Estudos de coagulação, tempo de protrombina/tempo de tromboplastina parcial ativada (PT/PTT), fibrinogênio, wWF, cofator de ristocetina e fator 8.

Os detalhes referentes à metodologia para todos estes exames são apresentados no apêndice 3.

Intervenções

O uso concomitante de hidroxicloroquina, azitromicina, corticosteroides ou outras terapias é permitido neste ensaio como parte do tratamento padrão, se as diretrizes/protocolos da instituição incluírem esses agentes como parte do tratamento padrão de pacientes com COVID-19. São permitidos antibióticos a qualquer momento durante o estudo, a critério do médico responsável. O tratamento padrão para COVID-19 não foi ainda definido, de forma que os investigadores podem aplicar o que considerarem seu padrão de abordagem para esses pacientes, segundo as políticas locais.

Após concederem seu consentimento para participar, os pacientes elegíveis serão randomizados para receber tocilizumabe mais tratamento padrão (n = 75) ou tratamento padrão isoladamente (n = 75). No braço experimental, o tocilizumabe será administrado como dose única em infusão venosa de 8mg/kg. A dose máxima é de 800mg. Para permitir o uso de uma dose homogênea entre os centros, se aplicará a seguinte escala com base no peso corpóreo:
- < 50kg - 8mg/kg/dose.
- De 50 a 56kg - 400mg/dose.
- De 57 a 68kg - 500mg/dose.
- De 69 a 81kg - 600mg/dose.
- De 82 a 93kg - 700mg/dose.
- ≥ 94kg a 800mg/dose (dose máxima).

Não se procederá ao ajuste da dose para casos de comprometimento da função renal ou hepática. As reações relacionadas à infusão serão tratadas com anti-histamínicos e corticosteroides, conforme necessário, e relatadas como EA. Todas as infusões serão administradas em pacientes hospitalizados em uma enfermaria comum ou na unidade de terapia intensiva.

Randomização

Os participantes serão designados ao acaso ou para o grupo experimental (tocilizumabe) ou para o controle (tratamento padrão), em uma proporção 1:1 considerando blocos (2, 4, 6 e 8) com variação aleatória aplicando a idade (< 60 e ≥ 60 anos) e sexo como estratos, conforme um programa de randomização gerado por computador. Será gerada uma sequência aleatória por um estatístico não envolvido com o cuidado dos pacientes e utilizando um algoritmo do programa R 3.6.3. (29)

A ocultação da alocação é assegurada pelo sistema com acesso pela web (REDCap) que só mostra a designação para o grupo de estudo após o participante ter sido adequadamente registrado no sistema do ensaio e cumprido todos os critérios para elegibilidade. (30,31)

Ocultação

Pacientes, investigadores e cuidadores não serão cegos quanto ao tratamento designado. Os avaliadores de desfechos clínicos e estatísticos que realizarão as análises não estarão envolvidos nas equipes de cuidado dos pacientes, e serão independentes dos centros de tratamento.
Coleta, gestão e análise dos dados

Os dados do estudo serão colhidos e geridos com utilização de ferramentas eletrônicas de captura de dados Research Electronic Data Capture (REDCap), hospedados no hospital BP - A Beneficência Portuguesa de São Paulo. (30,31) A REDCap é uma plataforma segura, com base na rede, delineada para apoiar a captura de dados para pesquisas, e que fornece uma interface intuitiva para captura validada de dados; vias de auditoria para acompanhar a manipulação dos dados e procedimentos de exportação; procedimentos automatizados de exportação para baixar dados continuos para pacotes estatísticos comuns e procedimentos para integração de dados e interoperacionalidade com fontes externas.

Os dados serão inseridos pela equipe local do estudo, que terá acesso designado individual do centro, não transferível. Um número limitado de membros da equipe terá acesso ao estudo no REDCap e existirá um formulário de delegação apropriado relativo à sua interação com a plataforma e a inserção de dados. Os dados serão mantidos no servidor da instituição, com os requisitos de segurança recomendados pelo consórcio REDCap. As funcionalidades do sistema incluem o registro de pacientes, a ocultação dos códigos de randomização 24 horas por dia, a inserção de dados, a limpeza de dados, a exportação de dados para análise estatística e a adjudicação de eventos. Os estudos laboratoriais clinicamente relevantes serão realizados em tempo real, enquanto os pertinentes à lista de exploratórios serão analisados mais tarde, a partir do soro ou plasma congelado. Os dados referentes aos parâmetros primário e secundários serão incluídos no REDCap nos momentos apropriados. O Comitê Independente de Monitoramento de Dados (CIMD) terá pleno acesso aos dados do estudo.

Os dados de seguimento para este estudo são colhidos até o dia 28. Um estudo de seguimento por 1 ano de todos os pacientes hospitalizados inscritos em ensaios da Coalizão continuará o seguimento dos pacientes inscritos neste estudo que aceitarem tomar parte. Os pacientes que morrerem durante este período serão considerados no momento do óbito, e os ainda hospitalizados serão seguidos no estudo até a alta, antes de serem inscritos no estudo em longo prazo. Serão utilizados contatos por telefone ou outros meios de comunicação para assegurar o máximo de retenção durante o seguimento. Esperamos uma grande taxa de retenção até o dia 29, dado que a maioria dos pacientes ainda estará em recuperação do episódio recente de pneumonia viral. A adesão será monitorada pela reconciliação da coleta de dados específicos do protocolo e as inserções no REDCap.

Análise estatística

Tamanho da amostra

Considerando um desfecho ordinal com sete estágios, com probabilidades de 30%, 20%, 8%, 8%, 4%, 15%, 15%, respectivamente para os estágios de 1 a 7 no modelo de razões de propensão (odds ratio) de probabilidades acumuladas para os níveis de desfecho, uma amostra com 75 participantes por braço (150 casos) tem poder de 80% para detectar razão de propensão de 0,44, com nível de significância de 5%.

Métodos estatísticos

A análise principal seguirá o princípio intenção de tratar. O parâmetro primário será avaliado pela regressão logística ordinal, assumindo razões de propensão proporcionais ajustadas pelas variáveis de estratificação (idade e sexo). Os modelos de regressão logística avaliarão os desfechos binários acumulados. Se a proporcionalidade das propensões não se mantiver na análise final, planejamos mudar um desfecho primário para um parâmetro binário, juntando as categorias 1 a 5 e 6 a 7 (vivo versus falecido ou em ventilação mecânica). Os desfechos secundários serão avaliados por regressão linear generalizada com utilização de distribuições apropriadas. Todos os modelos serão ajustados por idade, e os resultados serão apresentados com seus intervalos de confiança de 95% para os efeitos das medidas. As análises de subgrupos serão apresentadas como forest plots avaliados com termos de interação do grupo e seguindo as variáveis: idade (< 60 ou > 60 anos), sexo, tipos de comorbidades (cardiovascular, pulmonar, hepática, renal, obesidade, hipertensão arterial, câncer e diabetes) e marcadores inflamatórios do estudo que estiverem alterados. As análises serão conduzidas com o programa R. (29)

Monitoramento

Será realizada uma análise parcial quando 50% das inclusões forem alcançadas (n = 75). A análise parcial será conduzida por um CIMD, que analisará os dados de eficácia e segurança, ritmo de recrutamento, adesão ao protocolo, qualidade dos dados e perdas de seguimento. Tais dados serão fornecidos ao comitê pelo centro coordenador do estudo, por meio de um relatório. Serão aplicados o método de Lan DeMets e limites de O’Brien Fleming como critério predefinido para interrupção do estudo. Se o comitê recomendar a
continuação do recrutamento, o estudo prosseguirá até a conclusão (n = 150).

Eventos adversos

Definem-se EAs como qualquer ocorrência clínica indesejável, inclusive exacerbação de uma condição preexistente, em um participante durante o desenvolvimento de um ensaio clínico. O evento não precisa, necessariamente, ter um nexo causal com o tratamento.

Um EA sério é definido como qualquer EA que resulte em óbito, ofereça risco imediato à vida, resulte em incapacidade persistente ou significante, demande ou prolongue a hospitalização do paciente, ou é um evento clínico importante que, com base em avaliação médica apropriada, poderia ameaçar a vida do paciente ou demandar intervenção cirúrgica para prevenir um dos demais resultados acima listados. Eventos adversos classificados como sérios serão notificados dentro de 24 horas ao centro coordenador.

Os EAs serão graduados segundo a versão mais recente dos critérios *Common Terminology Criteria for Adverse Events* (CTCAE). Um monitoramento mensal avaliará a integridade da triagem, critérios de inclusão e relato de dados dos centros quanto à sua adequação e coerência. A cada 15 dias será aplicada uma metodologia estatística para procurar incoerências e erros nos dados.

Considerando-se as características biológicas do tocilizumabe, os EAs a seguir serão de interesse específico e serão registrados:

- Infecções secundárias.
- Anemia.
- Anormalidades nos testes hepáticos.
- Diverticulite.
- Herpes zóster.
- Cefaleia.
- Hemorragia.
- Eventos tromboembólicos.
- Toxicidades sérias relacionadas à infusão.

Ética e disseminação

O estudo TOCIBRAS foi aprovado pelos comitês de ética locais e pelo comitê central (nacional), segundo as atuais diretrizes/orientações nacionais e internacionais. A Comissão Nacional de Ética em Pesquisa (Conep) é a entidade brasileira que regula os padrões éticos para pesquisa clínica. O TOCIBRAS foi desenvolvido e será conduzido sob as normas estabelecidas pela Conep, que adota padrões éticos internacionais para pesquisa clínica. Cada centro participante teve aprovação do estudo por seus comitês de ética locais antes de dar início às inscrições para o protocolo. Uma primeira emenda ao protocolo foi submetida aos comitês de ética local e central, para esclarecer tópicos que não estavam claros na versão original do protocolo. Essa emenda não modificou os parâmetros primários ou secundários, delineamento do estudo e análise parcial. Os critérios de inclusão se mantiveram inalterados, com a única exceção do limite do tempo de intubação de até 24 horas antes da inscrição no protocolo, visto que o benefício de uma estratégia anti-inflamatória, inclusive com tocilizumabe, é provavelmente antes que a SIRS se esteabeleça completamente.

Os investigadores delegados neste estudo obterão o Termo de Consentimento Livre e Esclarecido. O estudo só inclui pacientes adultos, e assim não inclui o consentimento de menores. Uma vez assinado o Termo de Consentimento Livre e Esclarecido, este será guardado pela equipe do centro de estudo. Quando não for possível obter a assinatura de um Termo de Consentimento Livre e Esclarecido em razão das condições clínicas do paciente ou por outros impedimentos logísticos, será temporariamente permitido o consentimento por meio de áudio verificável para fins de entrada no estudo. O processo de gravação em áudio é aplicado conforme as diretrizes da Conep no Brasil nos casos de estudos em COVID-19, em função da eventual impossibilidade de se obter a assinatura do Termo de Consentimento Livre e Esclarecido em tempo real tendo em vista o andamento da pandemia e das importantes restrições às visitas e permanência de acompanhantes na enfermarias ou na unidade de terapia intensiva para pacientes com COVID-19. Uma vez que as circunstâncias permitam, o Termo de Consentimento Livre e Esclarecido será assinado pelo paciente ou por um parente próximo, e acrescentado aos registros do paciente. O médico discutirá os riscos, benefícios e dificuldades relativos à participação no estudo e responderá a todas as perguntas. Essa conversa será documentada nos registros médicos pelo médico encarregado e refletirá o conhecimento do paciente a respeito do estudo e seu consentimento.

O TOCIBRAS é um estudo independente iniciado pelo investigador, conduzido pela Coalizão COVID-19 Brasil. As análises laboratoriais exploratórias serão realizadas e patrocinadas pelo Laboratório Fleury de São Paulo. Uma doação por parte do Instituto Votorantim permitiu a compra do tocilizumabe para este estudo.

Os dados derivados deste estudo serão publicados, independentemente dos resultados. O conjunto de
dados será analisado de maneira independente por estatísticos não envolvidos com as equipes relacionadas com a inserção dos dados e o cuidado dos pacientes nos centros participantes. A política de publicação seguirá a dos centros participantes da Coalizão. Os locais de publicação incluirão reuniões/conferências médicas e submissões a publicações revisadas por pares. Dependendo dos resultados, os resultados preliminares poderão ser divulgados por meio de nota à imprensa, caso se determine serem para o bem do interesse público. Os investigadores do TOCIBRAS redigirão o manuscrito, que será aprovado por todos os autores antes de qualquer submissão.

CONCLUSÃO

Os resultados deste estudo lançarão luz sobre o potencial papel de uma estratégia de bloqueio de interleucinas em pacientes com COVID-19 moderada a grave. Além de muitas outras abordagens com terapêuticas com anticitocinas em COVID-19, nosso estudo seleciona pacientes com um quadro clínico de resposta inflamatória sistêmica em curso, como é evidenciado pelos marcadores inflamatórios séricos, o que pode tornar esta estratégia mais eficaz. Nossa hipótese é de que o tocilizumabe pode ser mais ativo nos estágios mais precoces da resposta inflamatória (que tende a ocorrer na segunda semana da infecção), antes que se estabeleça completamente, com comprometimento de múltiplos órgãos. Essa abordagem difere, por exemplo, das estratégias com antivirais, nas quais se espera o benefício mais significativo nos estágios iniciais da infecção (primeira semana). Assim, o estudo foi delineado para detectar uma diferença da ação do tocilizumabe mais tratamento padrão em comparação com o tratamento padrão isoladamente nessa "janela" na evolução da doença na COVID-19 moderada a grave. Como na maior parte dos estudos com COVID-19, foi necessário pressupor alguns dados com relação às diferenças previstas entre os tratamentos, em função da escassez e da inconsistência dos dados disponíveis por ocasião do desenvolvimento do protocolo, com relação aos resultados em pacientes com COVID-19. Contudo, incluímos um delineamento robusto e diversos parâmetros clínicos e laboratoriais exploratórios secundários, o que nos permitirá detectar se existe uma ação do tocilizumabe nessa população de pacientes. Nossa pesquisa complementará todas as demais abordagens anti-inflamatórias em desenvolvimento para aliviar as consequências da COVID-19.

Pontos fortes e limitações do estudo

- O delineamento como estudo randomizado e controlado permite a obtenção de conclusão mais clara a respeito da ação do tocilizumabe na COVID-19.
- A população bem definida de pacientes com maior propensão a desenvolver complicações inflamatórias de COVID-19 pode estabelecer o subgrupo de pacientes nos quais é necessária uma abordagem anti-inflamatória potente.
- A escala ordinal de 7 pontos é um parâmetro robusto para ensaios em COVID-19.
- O estudo não tem um delineamento cego, o que representa um ponto fraco em seu delineamento.
- O n total é relativamente pequeno para um ensaio controlado, com poder estatístico mais limitado.

CONTRIBUIÇÃO DOS AUTORES

DLC Farias, J Prats, P Scheinberg e VC Veiga formularam o conceito do estudo, redigiram o protocolo, recrutaram os pacientes e redigiram o manuscrito; AB Cavalcanti, RG Rosa, FR Machado, FG Zampieri, O Berwanger, LCP Azevedo, RD Lopes, A Avezum, L Kawano-Dourado, CG Castro Júnior tomaram parte no desenvolvimento do protocolo, aprovaram a versão final para o grupo Coalizão COVID-19 Brasil, recrutaram pacientes, tomaram parte nas discussões da análise inicial e revisaram o manuscrito; CZ Oliveira desenvolveu a base de dados REDCap e cuidou de todos os assuntos relacionados com a coleta de dados; LP Damiani realizará a análise estatística; LEC Andrade, AF Sandez, MC Pintão coordenaram a coleta de amostras exploratórias e realizarão as análises exploratórias, assim como cooperaram no desenvolvimento do protocolo e das discussões das análises parciais e revisaram o manuscrito.

FINANCIAMENTO

O presente estudo foi financiado pela Coalizão COVID-19 Brasil. As análises laboratoriais exploratórias serão conduzidas e financiadas pelo Laboratório Fleury, em São Paulo. Uma doação do Instituto Votorantim foi fornecida para a compra das doses de tocilizumabe para o estudo. Este estudo não recebeu qualquer verba específica de qualquer agência de financiamento dos setores público, comercial ou sem fins lucrativos.
ABSTRACT

Introduction: Pro-inflammatory markers play a significant role in the disease severity of patients with COVID-19. Thus, anti-inflammatory therapies are attractive agents for potentially combatting the uncontrolled inflammatory cascade in these patients. We designed a trial testing tocilizumab versus standard of care intending to improve the outcomes by inhibiting interleukin-6, an important inflammatory mediator in COVID-19.

Methods and analysis: This open-label multicentre randomized controlled trial will compare clinical outcomes of tocilizumab plus standard of care versus standard of care alone in patients with moderate to severe COVID-19. Two of the following four criteria are required for protocol enrolment: D-dimer > 1,000ng/mL; C reactive protein > 5mg/dL, ferritin > 300mg/dL, and lactate dehydrogenase > upper limit of normal.

The primary objective will be to compare the clinical status on day 15, as measured by a 7-point ordinal scale applied in COVID-19 trials worldwide. The primary endpoint will be assessed by an ordinal logistic regression assuming proportional odds ratios adjusted for stratification variables (age and sex).

Ethics and dissemination: The TOCIBRAS protocol was approved by local and central (national) ethical committees in Brazil following current national and international guidelines/directives. Each participating center had the study protocol approved by their institutional review boards before initiating protocol enrolment. The data derived from this trial will be published regardless of the results. If proven effective, this strategy could alleviate the consequences of the inflammatory response in COVID-19 patients and improve their clinical outcomes.

Keywords: Coronavirus; Tocilizumab; Covid-19; SARS-CoV-2

ClinicalTrials.gov Identifier: NCT04403685

REFERÊNCIAS

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-35.
2. Cohen J, Normile D. New SARS-like virus in China triggers alarm. Science 2020;367(6475):234-5.
3. Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ. 2020;368:m1036.
4. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. [cited 2020 June 23]. Available from: https://covid19.who.int/
5. Mehta P, Martin JCM. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62.
6. Zhang Y, Gao Y, Qiao L, Wang W, Chen D. Inflammatory response cells during acute respiratory distress syndrome in patients with coronavirus disease 2019 (COVID-19). Ann Intern Med. 2020 Apr 13;120:0027. Online ahead of print.
7. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4.
8. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020;20(5):277.
9. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368(6490):473-4.
10. Park MD. Macrophages: a Trojan horse in COVID-19? Nat Rev Immunol. 2020;20(6):351.
11. Shang L, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A. 2020;117(21):11727-34.
12. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endothelitis in COVID-19. Lancet. 2020;395(10234):1417-8.
13. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3.e3.
14. Zuber AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 2020 May 29. Online ahead of print.
15. Fu L, Wang B, Yuan T, Chen X, Ao Y, Fitzpatrick T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: a systematic review and meta-analysis. J Infect. 2020;80(6):656-65.
16. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):1-11.
17. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62.
18. Esai Selvan M. Risk factors for death from COVID-19. Nat Rev Immunol. 2020;20(7):407.
19. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endotheliitis, thrombosis, and angiogenensis in Covid-19. N Engl J Med. 2020;383(2):120-8.
20. von Weyhmen CH, Kaufmann I, Nef F, Kremers M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395(10241):e109.
21. Hanszi K, Azudane S, Belaloui G. Etoposide-based therapy for severe forms of COVID-19. Med Hypotheses. 2020;142:109826. Online ahead of print.
22. Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature. 2020 May 21. Online ahead of print.
23. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA. 2020 Jun 3:e2001044. Online ahead of print.
24. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020;135(23):2033-40.
25. Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhi S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(6):1036-45.e9.
26. Scott LJ. Tocilizumab: a review in rheumatoid arthritis. Drugs. 2017;77(17):1865-79.
27. Gritt G, Raimondi F, Ripamonti D, Biva I, Landi F, Albergotti L, et al. IL-6 signalling pathway inactivation with siltuximab in patients with COVID-19 respiratory failure: an observational cohort study. medRxiv 2020.04.01.20048561. doi: https://doi.org/10.1101/2020.04.01.20048566.
28. Antwi-Amaobeng D, Kanji Z, Ford B, Beutler BD, Riddle MS, Siddiqui NA, et al. Early evidence of pronounced anticoagulation. Blood. 2020;135(23):2033-40.
Apêndice 1 - SPIRIT 2013 checklist

Section/item	Item	Description	Page
Administrative information			
Title	1	Descriptive title identifying the study design, population, interventions, and, if applicable, trial acronym	1
Trial registration	2a	Trial identifier and registry name. If not yet registered, name of intended registry	1.2
	2b	All items from the World Health Organization Trial Registration Data Set	1
Protocol version	3	Date and version identifier	1
Funding	4	Sources and types of financial, material, and other support	11
Roles and responsibilities	5a	Names, affiliations, and roles of protocol contributors	1
	5b	Name and contact information for the trial sponsor	1, 11
	5c	Role of study sponsor and funders, if any, in study design; collection, management, analysis, and interpretation of data; writing of the report; and the decision to submit the report for publication, including whether they will have ultimate authority over any of these activities	4, 11, 16
	5d	Composition, roles, and responsibilities of the coordinating centre, steering committee, endpoint adjudication committee, data management team, and other individuals or groups overseeing the trial, if applicable (see Item 21a for data monitoring committee)	16
Introduction			
Background and rationale	6a	Description of research question and justification for undertaking the trial, including summary of relevant studies (published and unpublished) examining benefits and harms for each intervention	3, 4
	6b	Explanation for choice of comparators	4
Objectives	7	Specific objectives or hypotheses	4, 5
Trial design	8	Description of trial design including type of trial (eg, parallel group, crossover, factorial, single group), allocation ratio, and framework (eg, superiority, equivalence, noninferiority, exploratory)	4, 6
Methods: participants, interventions, and outcomes			
Study setting	9	Description of study settings (eg, community clinic, academic hospital) and list of countries where data will be collected. Reference to where list of study sites can be obtained	4
Eligibility criteria	10	Inclusion and exclusion criteria for participants. If applicable, eligibility criteria for study centres and individuals who will perform the interventions (eg, surgeons, psychotherapists)	4, 5
Interventions	11a	Interventions for each group with sufficient detail to allow replication, including how and when they will be administered	6, 7
	11b	Criteria for discontinuing or modifying allocated interventions for a given trial participant (eg, drug dose change in response to harms, participant request, or improving/worsening disease)	NA
	11c	Strategies to improve adherence to intervention protocols, and any procedures for monitoring adherence (eg, drug tablet return, laboratory tests)	6, 7
	11d	Relevant concomitant care and interventions that are permitted or prohibited during the trial	6, 7
Outcomes	12	Primary, secondary, and other outcomes, including the specific measurement variable (eg, systolic blood pressure), analysis metric (eg, change from baseline, final value, time to event), method of aggregation (eg, median, proportion), and time point for each outcome. Explanation of the clinical relevance of chosen efficacy and harm outcomes is strongly recommended	5, 6
Participant timeline	13	Time-schedule of enrolment, interventions (including any run-ins and washouts), assessments, and visits for participants. A schematic diagram is highly recommended	15
Sample size	14	Estimated number of participants needed to achieve study objectives and how it was determined, including clinical and statistical assumptions supporting any sample size calculations	8
Recruitment	15	Strategies for achieving adequate participant enrolment to reach target sample size	7
Methods: Assignment of interventions (for controlled trials)			
Allocation:			
Sequence generation	16a	Method of generating the allocation sequence (eg, computer-generated random numbers), and list of any factors for stratification. To reduce predictability of a random sequence, details of any planned restriction (eg, blocking) should be provided in a separate document that is unavailable to those who enrol participants or assign interventions	7
Allocation concealment mechanism	16b	Mechanism of implementing the allocation sequence (eg, central telephone; sequentially numbered, opaque, sealed envelopes), describing any steps to conceal the sequence until interventions are assigned	7
Implementation	16c	Who will generate the allocation sequence, who will enroll participants, and who will assign participants to interventions	7
Blinding (masking)	17a	Who will be blinded after assignment to interventions (eg, trial participants, care providers, outcome assessors, data analysts), and how	7
	17b	If blinded, circumstances under which unblinding is permissible, and procedure for revealing a participant’s allocated intervention during the trial	7
Justificativa e delineamento do estudo “Tocilizumabe em pacientes com COVID-19 moderado a grave”

Methods: Data collection, management, and analysis

Methods: Data collection, management, and analysis	
Data collection methods	
18a Plans for assessment and collection of outcome, baseline, and other trial data, including any related processes to promote data quality (eg, duplicate measurements, training of assessors) and a description of study instruments (eg, questionnaires, laboratory tests) along with their reliability and validity, if known. Reference to where data collection forms can be found, if not in the protocol	5,6
18b Plans to promote participant retention and complete follow-up, including list of any outcome data to be collected for participants who discontinue or deviate from intervention protocols	NA
Data management	
19 Plans for data entry, coding, security, and storage, including any related processes to promote data quality (eg, double data entry; range checks for data values). Reference to where details of data management procedures can be found, if not in the protocol	7,8
Statistical methods	
20a Statistical methods for analyzing primary and secondary outcomes. Reference to where other details of the statistical analysis plan can be found, if not in the protocol	8
20b Methods for any additional analyses (eg, subgroup and adjusted analyses)	NA
20c Definition of analysis population relating to protocol non-adherence (eg, as randomized analysis), and any statistical methods to handle missing data (eg, multiple imputations)	NA

Methods: monitoring

Methods: monitoring	
Data monitoring	
21a Composition of data monitoring committee (DMC); summary of its role and reporting structure; statement of whether it is independent of the sponsor and competing interests; and reference to where further details about its charter can be found, if not in the protocol. Alternatively, an explanation of why a DMC is not needed	8,9
21b Description of any interim analyses and stopping guidelines, including who will have access to these interim results and make the final decision to terminate the trial	9
Harms	
22 Plans for collecting, assessing, reporting, and managing solicited and spontaneously reported adverse events and other unintended effects of trial interventions or trial conduct	9
Auditing	
23 Frequency and procedures for auditing trial conduct, if any, and whether the process will be independent of investigators and the sponsor	8

Ethics and dissemination

Ethics and dissemination	
Research ethics approval	
24 Plans for seeking research ethics committee/institutional review board (REC/IRB) approval	2,10
Protocol amendments	
25 Plans for communicating important protocol modifications (eg, changes to eligibility criteria, outcomes, analyses) to relevant parties (eg, investigators, REC/IRBs, trial participants, trial registries, journals, regulators)	10
Consent or assent	
26a Who will obtain informed consent or assent from potential trial participants or authorized surrogates, and how (see item 32)	10
26b Additional consent provisions for collection and use of participant data and biological specimens in ancillary studies, if applicable	NA
Confidentiality	
27 How personal information about potential and enrolled participants will be collected, shared, and maintained to protect confidentiality before, during, and after the trial	10
Declaration of interests	
28 Financial and other competing interests for principal investigators for the overall trial and each study site	11
Access to data	
29 Statement of who will have access to the final trial dataset, and disclosure of contractual agreements that limit such access for investigators	NA
Ancillary and post-trial care	
30 Provisions, if any, for ancillary and post-trial care, and for compensation to those who suffer harm from trial participation	NA
Dissemination policy	
31a Plans for investigators and sponsor to communicate trial results to participants, healthcare professionals, the public, and other relevant groups (eg, via publication, reporting in results databases, or other data-sharing arrangements), including any publication restrictions	NA
31b Authorship eligibility guidelines and any intended use of professional writers	11
31c Plans, if any, for granting public access to the full protocol, participant-level dataset, and statistical code	NA

Appendices

Appendices	
Informed consent materials	
32 Model consent form and other related documentation provided to participants and authorized surrogates	NA
Biological specimens	
33 Plans for collection, laboratory evaluation, and storage of biological specimens for genetic or molecular analysis in the current trial and for future use in ancillary studies, if applicable	NA

Apêndice 2 - Steering committee

COALITION COVID-19 Brazil VI Investigators

Viviane Cordeiro Veiga, Phillip Scheinberg, Danielle Leão Cordeiro de Farias, João Prats, Alexandre Biasi Cavalcanti, Flávia Ribeiro Machado, Regis Goulart Rosa, Otávio Berwanger, Luciano César Pontes de Azevedo, Renato Delascio Lopes, Álvaro Avezum, Leticia Kawano-Dourado, Claudio Galvão for the COALITION COVID-19 Brasil VI Investigators.
Apêndice 3 - Exploratory laboratory testing

This appendix includes the details in the methodology of exploratory laboratory testing as part of the secondary endpoints. As it relates to interleukins testing, the measurement of the cytokines IL-6, TNFα, IL-10, as well as the IL-2 receptor (CD25), will be performed by capture ELISA system. Briefly, the serum samples will be incubated in an appropriate dilution in polystyrene plates pre-coated as monoclonal antibodies against the cytokine of interest for 30 minutes. After washing, there will be incubation with peroxidase-labelled monoclonal antibody for 30 minutes. After a new wash, there will be incubation with 3,3', 5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2). After 10 minutes, the reaction will be stopped by adding 1N H2SO4 and each well will be evaluated by spectrophotometry at wavelength 450nm.

As it relates to the flow cytometric studies, all samples will be collected in tubes containing K3 EDTA as anticoagulant. Cells in suspension (2x10^6 cells in 100 µL per tube) from the peripheral blood samples will be stained with monoclonal antibodies (MAb) directed against cell surface markers using a stain-lyse-and-then-wash, direct immunofluorescence technique. The following panel of 8-color combinations of monoclonal antibodies (MAbs)—fluorescein isothiocyanate (FITC)/phycoerythrin (PE)/peridinin chlorophyll protein (PerCP-Cy5.5)/ PE–cyanine 7 (PE-Cy7)/allophycocyanin (APC)/APC-H7/Brilliant Violet 421 (BV421)/Violet 500 (V500) — will be used in all cases: IgM/CD10/CD20/CD19/IgD/CD38/CD27/CD45, D57/CD26/CD3/CD25/CD279/CD8/CD4/CD16/CD123/CD34/CD56/CD19+CD14/HLA-DR/CD45 and CD8+Ig(K)/CD56+Ig(L)/CD3/CD19+TCR-gamma-delta/CD5/CD38/CD20+CD4/CD38. A tube containing Ig isotype controls for FITC/PE/PerCP-Cy5.5/PE-Cy7/APC/APC-H7/BV421/V500 will be performed in all cases. The source of MAbs will be as follows: Ig isotype controls, CD3, CD4, CD8, CD5, CD10, CD14, CD16, CD19, CD20, CD25, CD26, CD33, CD34, CD38, CD45, CD56, CD57, CD123, CD279, TCR-gamma-delta, IgD, Ig(K), Ig(L) are from Becton Dickinson Biosciences (BDB), San Jose, CA, USA; HLA-DR are from Biolegend, San Diego, CA, USA; and IgM from Beckman Coulter, Indianapolis, USA. Data acquisition will be performed immediately after completion of sample staining, using a FACScyto flow cytometer and the FACSuite software (BDB). For each sample, data from at least 3 x 10^5 events per tube will be acquired. The Infinicyt software (Cytognos, SL, Salamanca, Spain) was used for the analysis of flow cytometry data. Daily instrument quality control was performed using CS&T beads (BDB) to ensure consistent determination of fluorescence intensity during the study.

In relation to the coagulation the following will be performed. All samples will be collected in tubes containing citrate 3,2% as anticoagulant. Tubes will be centrifuged at 2,200 g and plasma was aliquoted and stored at -80°C. For analysis, samples will be thawed at 37°C for 20 minutes. All assays will be performed on ACL TOP 750 analyser (Instrument Laboratories, Bedford, USA) according to standard protocols. The PT will be performed using Hemosil® RecombiPlasntin 2G, PTT and factor 8 assays will be performed using Hemosil® Synthasil and Hemosil® Factor VIII deficient plasma. Factor VIII assay will be performed using a single-point assay (1/20 dilution in buffer). Fibrinogen will be performed using Hemosil® QFA Thrombin (Bovine) reagent by Clauss method. Von Willebrand assay will be performed using Hemosil® VWF: Ag and ristocetin cofactor assay will be performed using Hemosil® VWF:Rco, all immunoturbidimetric tests. All reagents are from Instrument Laboratories (IL, Bedford, USA).