Shrimp AHPND-causing plasmids encoding the PirAB toxins as mediated by pirAB-Tn903 are prevalent in various Vibrio species

Jinzhou Xiao1, Liyuan Liu1, Yiyun Ke1, Xiefei Li1, Yunfei Liu1, Yingjie Pan1,2, Shuling Yan1,3 & Yongjie Wang1,2

Acute hepatopancreatic necrosis disease (AHPND), originally known as early mortality syndrome (EMS), is a newly emerging disease in shrimp. Since its first outbreak in 2009, the disease has caused serious global economic losses in the shrimp farming industry1. It has been confirmed that the bacterium Vibrio parahaemolyticus, which contains a 70-kbp plasmid, is the etiological agent of AHPND1–3. More specifically, the homologues of the Photorhabdus insect-related (Pir) toxins encoded by this plasmid are directly responsible for shrimp mortality in AHPND1,4.

Interestingly, we have isolated a strain of V. owensii, which has been demonstrated as another causative agent of AHPND, in Shanghai, China in our previous study 5. Meanwhile, Kondo et al. also reported an AHPND-causing bacterial strain V. harveyi in Northern Vietnam6. Importantly, these two non-V. parahaemolyticus AHPND-causing strains were found to contain plasmids carrying the genes for homologues of the Pir toxins produced by V. parahaemolyticus. Furthermore, a number of other Vibrio strains have been shown to be involved in causing AHPND in shrimp6–10. However, it remains unclear whether these strains also contain similar AHPND-causing plasmids that might be related to each other.

In order to identify, as well as better understand the evolutionary relationship between toxin genes-encoding plasmids and the corresponding toxin genes, we subjected the AHPND-causing plasmids, the toxin genes and the related whole genome sequences available in GenBank to comprehensive analysis using a variety of bioinformatic approaches. Our results provide novel insights into the diversity, acquisition and evolution of pirAB as well as related plasmids in the Vibrio Harveyi clade.

Materials and Methods
Isolation of the V. owensii SH-14 strain with the natural deletion of the pirAB genes (pirAB⁻).

A single colony was picked and re-suspended in 50 ml fresh TSB15 culture medium (tryptic soy broth supplemented with 1.5% NaCl) after overnight culture of the V. owensii SH-14 isolate (pirAB⁺) on TSA15 plate (tryptic soy agar supplemented with 1.5% NaCl). The bacteria were incubated at 30 °C for 12 hours with 220 rpm shaking.

1College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. 2Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, China. 3Institute of Biochemistry and Molecular Cell Biology, University of Göttingen, Göttingen, Germany. Correspondence and requests for materials should be addressed to Y.W. (email: yjwang@shou.edu.cn)
One ml of the 12 hour-culture was transferred to 50 ml of fresh TSB15 medium, which was cultured as described above. The transfer was repeated for five times.

One hundred microliters of diluted bacterial cells (10^-6 to 10^-9) from each generation (transfer culture) was spread on TSA plate. Single colony was screened for the lack of pirAB by using PCR with AP1-F16/AP2-R1 primer set, and the DNA sequences of PCR products were determined to further confirm the natural deletion of pirAB.

Immmersion-challenging bioassay. Both the pirAB⁺ and the pirAB[−] strains of *V. owensii* SH-14 were used to challenge shrimp *Litopenaeus vannamei*. Thirty SPF shrimp (0.5–2 g) were maintained in tanks containing 19.8 L artificial seawater (13‰ salinity, 27 °C) for 3 days. Two hundred ml of bacterial culture at bacterial density of approximately 10⁶ CFU/ml (OD600 = 0.6–0.8) was added directly to the experimental tanks to obtain an approximate bacterial density of 10⁶ CFU/ml. Shrimp in the negative control group were immersed in sterile TSB15. Three replications were applied to each treatment.

SDS-PAGE and Western Blot. The pirAB⁺ strain and pirAB[−] strain of *V. owensii* SH-14 were cultured separately in TSB15 at 30 °C for 12 hours with 220 rpm shaking. Then, 50 ml of the culture was collected, centrifuged at 6,780 × g for 20 min at 4 °C to remove the cell debris. The crude proteins in supernatant were precipitated by ammonium sulfate (AS) referring to the method described by Sirikhairan and coauthors⁴ with slight modifications. Briefly, AS was added into the supernatants by batches until its concentration reached 40% of saturation (e.g. 11.3 g for 50 ml supernatant) at 0 °C. Proteins were allowed to precipitate for 30 min at 0 °C before centrifugation at 13,500 × g for 20 min at 4 °C to collect pellets. The AS precipitated fraction was re-suspended by adding pre-cooled ddH₂O and kept at −80 °C before use.

After SDS-PAGE, the separated proteins were transferred to PVDF membrane (150 mA, 55 min) and blocked overnight with 5% (wt/vol) non-fat milk in 10 × TBS buffer (40 g NaCl, 1 g KCl, 15 g Tris in 500 mL ddH₂O, pH 7.4) at 4 °C. Subsequently, it was sequentially incubated with the anti-PirAB antibodies³ (rabbit) and the secondary antibody conjugated with AP (alkaline phosphatase) (goat anti rabbit) for 1 h at room temperature. NBT/BICP was used as the chromogenic substrate, and the chemical color reaction was incubated approximately for 5 min.

NGS of the bacterial genome of Vibrio owensii SH14 and the plasmid pVH_{vo}. The genomic DNA of *Vibrio owensii* SH14 was extracted with a TIANamp Bacteria DNA Kit (TIANGEN, Beijing). The extracted DNA samples were sequenced on an Illumina MiSeq sequencer and assembled¹¹ into 120 scaffolds (Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China) as reported previously³. The contigs were mapped using pVPA3-1 (KM067908) as a reference in order to assemble the scaffolds of plasmid pVH_{vo} using Geneious Pro (version 6.1.2; Biomatters Ltd.). Primer sets were designed, and amplicons were sequenced by the Sanger method to fill the gaps and to confirm overlaps between contigs. The prediction and annotation of open reading frames (ORFs) on pVH_{vo} were conducted according to the procedures described previously^{12,13}. Each predicted ORF encompassed a start codon of ATG, had a minimum size of 120 bp, exhibited sequence similarity comparisons of the predicted ORFs to NCBI non-redundant protein sequences (nr) database.

Identification and assembly of pVH plasmids in WGS datasets. To identify pVH plasmids in public dataset, we first established a database of all of the complete AHPND-causing plasmids, i.e. pV A1 (KP324996), pVPA3-1 (KM067908) and pVH_{vo} (KX268305). Then, AHPND toxin genes *pirA* and *pirB* on pVH_{vo} were searched (megablast¹⁴) respectively against NCBI WGS database with search results limited to “*Vibrio*”. WGSs containing *pirA* or *pirB* gene were downloaded and compared to the AHPND-causing plasmid local database mentioned above using local blast¹⁵ (blastn E-value < 10^{−9}). Contigs matching any of the sequences in this local database were assembled respectively using Geneious Pro with the sequence of pVA1 as reference (Highest sensitivity, Fine Tuning: iterate up to 5 times) (version 6.1.2; Biomatters Ltd.). The obtained sequences were checked and corrected manually as needed.

Identification of pirAB-Tn903. To identify transposons on pVH_{vo} plasmid dot-plot (self) was generated with Geneious Pro (version 6.1.2; Biomatters Ltd.) and checked manually. Any inverted sequences flanking the *pirAB* genes or the transposase ORFs were recorded for further analysis. PSI-Blast program¹⁶ was used to search for homologues of transposase encoded in pVH_{vo} within the NCBI non-redundant protein sequences (nr) database. Annotation of transposon was based on its length, inverted repeats and transposase.

To verify the location of *pirAB*-Tn903 within different pVH plasmids assembled in this study, the consistency of sequence identity of the *pirAB* containing contigs, the ORF arrangement of its adjacent contigs and the location of gaps between the ORFs were checked manually.

Identification of pVH-r contigs and complete sequences. To identify pVH-r contigs and complete sequences in public datasets, the sequence of *pnda* in pVH_{vo} was searched (megablast¹⁴) against NCBI nr database and WGS database as limited by the different taxonomic ranks. Sequences that matched *pnda* were downloaded. Their relationship to pVH_{vo} plasmid was identified based on alignment with sequence of pVH_{vo} using Mauve¹⁷.

Identification of pVo-VH plasmid. A mock sequence containing ORF20 and 29 in pVH_{vo} was designed. Nucleotide sequence between these two ORFs in pVH_{vo} was replaced with the same amount of “N” nucleotides. The mock sequence was then searched (megablast¹⁴) against NCBI WGS database with search results limited to “*Vibrio*”. Contigs with hits were downloaded and checked manually based on dot-plot analysis with the sequence...
Results and Discussion

The pirAB genes in V. owensii SH-14 are responsible for shrimp AHPND. A total of 465 colonies were subjected to screening by using PCR detection, which resulted in 18 colonies with the natural deletion of the pirAB genes (4% excision rate). One of these 18 colonies, named the pirAB− V. owensii SH-14 strain, was further verified via Sanger sequencing (Fig. S1) and used in the subsequent bioassay and Western blot test.

Immersion-challenging bioassay showed that the pirAB+ V. owensii SH-14 strain caused severe AHPND in shrimp (up to 90% of mortality). In contrast, the pirAB− V. owensii SH-14 strain revealed no difference in mortality (up to 5%) in comparison to the negative control (Fig. 1A). In addition, based on Western blot assay, the PirA and PirB toxin proteins were detected in the pirAB+ V. owensii SH-14 strain but absent in the pirAB− V. owensii SH-14 strain (Fig. 1B). Taken together, these results clearly indicate, like in V. parahaemolyticus, the pirAB genes in V. owensii are also the toxic ones and responsible for the mortality of the infected shrimp (Fig. 1).

Shrimp AHPND-causing plasmids were identified in various Vibrio species of the Harveyi clade. The complete sequence of AHPND-causing plasmid, named pVHvo (accession no. KX268305), in Vibrio owensii strain SH-14, was obtained using MiSeq and Sanger sequencing. It is 69,142 bp in size with 99 predicted open reading frames (ORFs) (Fig. 2 and Table S1). The sequence of pVHvo revealed 99% identical to the AHPND-causing plasmids of pVPA3-1 (69,168 bp, KMO67908) and pVA1 (70,452 bp, KP324996), which were detected in V. parahaemolyticus1,3 (Fig. 2A and Table S2). Accordingly, these three plasmids were assigned to the same plasmid family tentatively named pVH.

Based on results from data mining, eight datasets of WGSs available in GenBank were found to contain the toxin genes of pirAB (Table S3). The sequences of the contigs (3.1 to 3.5 kb) that contain the pirAB genes were almost identical (>99%) to each other (Fig. 2B). Subsequently, the sequence of pVA1 (KP324996) was used as the reference template to assemble the corresponding plasmids in each of these eight WGSs. The resulting eight potential plasmids contained nearly complete sequences (small gaps exist between some un-overlapped contigs) of 62 to 70 kbp that share 99% of sequence identity with pVHvo (Fig. 2B and Table S3). Each of the sequence of
pirA and B is identical across these 12 plasmids with the only exception of pVHvp7. It had one more base in pirB, which likely resulted from the error rate in NGS.

In addition, pirB, but not pirA, was detected in another WGS (JPLV01000000), but it only contains partial sequence (89%) of pirB and aligns to 57% of the sequence length of pVHvp1 with over 95% identity (Fig. 2B and Table S3). This result could possibly be attributed to variable sequencing quality and depth. In fact, there was no significant difference between this potential plasmid (pVHvp8) and the others analyzed.

Figure 2. Sequence map of the AHPND-associated plasmid pVHvo in V. owensii and sequence identity plot of pVH plasmids. All predicted open reading frames (ORFs) are shown as arrows in different colors. Direction of arrowhead represents the transcriptional orientation. The pndA and mobilization genes are labeled with red asterisks. (A) Sequence identity plot (>99%) of pVHvo (gray), pVPA3-1 (blue) and pVA1 (blue, inner circle). (B) Sequence identity plot (>99%) of pVHvo (gray), pVHvh1 (green), pVHvp1-8 (blue, outer to inner). The sequence of pVHvo was used as reference.
These nine newly discovered plasmids were named pVH_{vo}1 and pVH_{vo}1–8, respectively (Table S3). They were assigned to the same pVH family because they are almost identical to the sequences of pVH_{vo}, pVPA3-1 and pVAY₁. Currently, the pVH plasmid hosts include all known shrimp AHPND-causing Vibrio spp. (Tables S2 and S3). These pathogens are more closely related to each other than to other Vibrio species, and all of them belong to the Vibrio Harveyi clade in the family of Vibrionaceae^{22,23}.

The shrimp AHPND-causing plasmids contain Tn903-like composite transposon. Identical transposons were identified upstream and downstream of the toxin genes (pirAB)-containing region of pVH (Fig. 2 and Fig. S2A). It was characterized as a transposase gene (tnp), and is 1.054 kb in size with 18 bp of terminal inverted repeats (IRs) (Fig. S2A), which are characteristics similar to those of IS903 in Escherichia coli²⁴. However, compared with the E. coli IS903, three point mutations, indicated with parenthesis, were observed in the IRs of 5′GA(ATTGA)CAACAAAGCC′3′ of the Vibrionis IS903²⁴. Moreover, the tnp of the Vibrio IS903 shares 60% of amino acid identity with its homologue counterpart in E. coli (plasmid, accession no. CDF31572.1). However, there was no significant similarity between the two on the nucleic acid level. In contrast, the Vibrio IS903 tnp exhibits 56–97% similarity to its homologues in Shewanella. Taken together, our results indicate an ancient divergence of IS903 in Vibrio and E. coli.

The Vibrio IS903 that was detected on both ends of the pirAB-containing region was characterized by an inverted orientation (Fig. S2A), which is one of the classical features of composite transposon²⁵. Accordingly, the IS903-pirAB-IS903 sequence was classified as the pirAB-Tn903 composite transposon (Fig. S2).

Both ends of the Vibrio Tn903-like composite transposon inserted simultaneously into the ancestral plasmid of pVH at different target sites. Unlike the classical transposons discussed above (Fig. S2B-1 and B-2), direct repeats flanking the insertion sites of the Tn903 in the Vibrio Tn903-like composite transposon were not detected, although a 9 bp of direct repeat (GTTTGTTTC) was found to flank an independent IS903-like Tn903-like composite transposon (Fig. S2B-1 and B-2), direct repeats flanking the insertion sites of the Vibrio IS903 were not detected, although a 9 bp of direct repeat (GTTTGTTTC) was found to flank an independent IS903-like Tn903-like composite transposon (Fig. S2B-3). This suggests that the isolated Vibrio owensi likely hosted an unknown plasmid, named pV-pVH_{vo}, which is related to pVH.

Further analysis of the 7.6 kb of this particular contig (BBLB01000000) revealed that the sequences upstream and downstream of an 885 bp fragment (1,372–2,256 bp), which is absent in pVH_{vo}, shared more than 99% of identity with that of the Tn903-like composite transposon in pVH (Fig. 3B). Both the 5 and 3 prime ends of the ORF, which contains the 885 bp of sequence in the middle, identified within the contig BBLB010000032 are also identical to the ORFs that flanked pirAB-Tn903 in pVH (Fig. 3B). Furthermore, all of these ORFs encode proteins in the methylase family, indicating that the homologue counterpart of this ORF was present within the common ancestor of pVH and pV,V_{vo}, and subsequently split into two insertions of pirAB-Tn903 in the pVH family (Fig. 3C).

Furthermore, given that the 885 bp sequence that corresponds to the insertion site of Tn903 in the pV-pVH plasmid is absent in pVH (Fig. 3B), it is reasonable to speculate that both ends of Tn903 inserted simultaneously into the different target sites that flanked the 885 bp sequence in the ancestor plasmid of pVH (Fig. 3C and Fig. S2B-3). This could have explained the absence of both the 885 bp sequence, as well as the target repeat sequences, in pVH (Fig. 3C and Fig. S2B-3).

Besides Vibrio owensi, V. harveyi and V. parahaemolyticus, similar Tn903-like composite transposons were also detected in either the plasmids or the whole genomes of various strains of V. anguillarum and V. campbellii of the Harveyi clade (LKO212128, CP006700, CP006701, CP006606 and CP006790).

A pVH-related plasmid family is prevalent in various Vibrio species of the Harveyi clade. To better understand whether plasmids that are related to pVH exist, the gene pndA⁺ was used as a hallmark for WGS database search due to its presence in all pVH plasmids described above and its potentially important role in pVH plasmid inheritance¹. With database search restricted to Vibrio (Genus), 32 contigs showing pndA⁺ (84–100% of identity to pVH_{vo}) results were detected in 22 different WGSs. No additional contigs were observed when Vibrio was changed to Vibrionaceae (Family) or Vibrionales (Order) during data mining. After removing the 11 WGSs that contain the pVH described above, 11 WGSs that are pndA⁺, but pirAB[−], were obtained (Table S4). Each of these 11 WGSs encompasses one pndA⁺ contig with a length of 736 to 100,302 bp (Table S4). For the ease of comparison, these 11 contigs were tentatively defined as sequences of a pVH-related plasmid family named pVH-r.

Ten of the pVH-r sequences were found in V. parahaemolyticus except for one that was detected in V. hyugaeensis (Table S4). All of these Vibrio isolates are not the causative agents of shrimp AHPND, even though they belong to the Harveyi clade^{23,26}. This suggests that the pVH-r plasmids are Vibrio Harveyi clade specific. This finding is also in agreement with the host specificity of the pVH family described above.

In addition to pndA, the pVH-r sequences also share several conserved regions with pVH as revealed by sequence alignment analysis (Fig. 4A and S3). Most of the pVH-r sequences share conserved regions similar to the two conjunctive transfer genes clusters^{27,28} presented on pVH with an 89–99% of sequence identity (Fig. 4A and Table S5). As for some short contigs, such as BBLF01000195 and JPKV01000063, similar gene clusters were found in other contigs in their corresponding WGSs with up to 99% of identity to pVH (Fig. 4A and Table S5). Additionally, homologues (78–86% of identity) to the mobilization protein gene (ORF53 on pVH_{vo}) on pVH were also detected in all of these eleven pndA⁺, pirAB[−], WGSs (Figs 4A and S3 and Table S5).

5
Figure 3. Sequence comparison between pVHvo and pVo-VH, and pirAB-Tn903 transposition. (A) Sequence identity plot based on comparing pVo-VH with pVHvo. The outer map is the reference sequence map of pVHvo. Color intensity is proportional to sequence identity. (B) Sequence comparison of pVHvo with contig BBLB01000032 of pVo-VH. Identical regions between them are indicated in gray. Putative ORFs of pVHvo and pVo-VH are shown as arrowed boxes. (C) pirAB-Tn903 transposition. The pirAB-Tn903 inserted into ancestor of pVH at two target sites, which resulted in the deletion of an 885 bp of sequence on the plasmid ancestor.
Figure 4. Sequence comparison between pVH and pVH-r. (A) Sequence identity plot of pVH-r contigs based on comparison to pVHvo. The outer map is the reference sequence map of pVHvo. From outer to inner: pVHvo (gray), AMRZ01000017 (blue), AWHI01000014 (blue), AWIHO1000044 (blue), AWIXO1000468 (blue), AXNR01000072 (blue), BBLF010000195 (red), JPIP01000006 (blue), JPKV01000063 (blue), JPLU01000004 (blue), JPLV01000074 (blue), and LIRR01000030 (blue). (B) Sequence identity plot of the two complete pVH-r plasmids based on comparison to pVHvo. The outer map is the reference sequence map of pVHvo. The color intensity is proportional to sequence identity. (C) Dot plot comparison of pVHvo and pMBL287 indicating the regions containing shared identical sequence. (D) Dot plot comparison of pVHvo and pFORC4 (partial) indicating the regions containing shared identical sequence.
Two plasmids, pFORC4 in *V. parahaemolyticus* (64,049 bp, CP009849) and pMBL287 in *V. alginolyticus* (286,750 bp, CP013487) of the Harveyi clade, are also related to pVH-r (Fig. 4B, Table S6). They contain *pndA*, the conjugative transfer gene clusters, the mobilization protein gene and the IS903-like transposon (absent in pFORC4), but not the *pirAB* toxin genes (Figs 4B and 5 and Table S6).

Notably, except for the conserved regions, large fragments that had no significant similarity with pVH were detected in the pVH-r sequences (Fig. 4 and S3). This suggests that pVH and pVH-r diverged early on from a common ancestor (Fig. 5).

Homologue counterparts of pirB in *V. parahaemolyticus*, *V. harveyi* and *V. owensii* were detected in a non-pVH plasmid in *V. campbellii*. To understand the phylogenetic affiliation of the shrimp AHPND-causing toxin gene, homologues of the PirB protein were investigated using PSI-Blast and then included in phylogenetic analysis. As shown in Fig. 6A, PirB of the pVH family (100% of identity) in *V. parahaemolyticus* (70% of identity), which is also a member of the *Vibrio* Harveyi clade. Thus far, the PirB in *V. campbellii* represents the closest homologue to that identified in pVH. In addition, PirB in *Vibrio* shares a common ancestor with that in *Shewanella violacea* (44% of identity). Interestingly, distantly related PirB homologues, which belong to the same group, were widely detected in different genera of the *Enterobacteriaceae* family. Most of these enterobacterial species are pathogens in insects. Notably, the juvenile hormone esterase-related protein of *Leptinotarsa decemlineata* (28% identity) was found to be homologous to PirB, an observation consistent with that reported by Waterfield et al.27.

Surprisingly, the homologue counterpart of pirB in *V. campbellii* was located within a non-pVH extrachromosomal element named pVc1 (82,408 bp, NZ_BBKW01000191) (Fig. S4). The pVc1 element was determined as the plasmid *Vibrio* in *V. campbellii* was phylogenetically categorized with the pVH IS903 *tnp* in *V. parahaemolyticus*, *V. harveyi* and *V. owensii* (Fig. 6B). Interestingly, similar to the pirB gene, the IS903 *tnp* appears to derive from a common ancestor as the *tnp* in *Shewanella*. Furthermore, the *Vibrio* IS903 *tnp* seems to have originated from *Shewanella* (Fig. 6B). Although the *tnp* genes were coincidently detected to flank the *pirAB* genes in *S. violacea* (Fig. S5), they share no significant similarity with neither the *Vibrio* IS903 *tnp* nor with each other. In addition, no IR associated with transposon was detected in the *tnp* of *S. violacea*.

In conclusion, the AHPND-causing pVH plasmids were identified in three different species of *Vibrio* isolated from different geographical locations at different time (Tables S2 and S3), and a pVH-related plasmid family is prevalent in various *Vibrio* species of the Harveyi clade. The *E. coli* Tn903-like composite transposons are widely detected in a variety of *Vibrio* species of the Harveyi clade (Fig. 5). In contrast to the classical transposons, both
ends of the *Vibrio pirAB*-Tn903 composite transposon appeared to have inserted simultaneously into the ancestor plasmid of the AHPND-causing plasmids of the pVH family at different target sites. Taken together, these findings provide novel insights into the essential role played by the pVH plasmids in the global outbreaks of shrimp AHPND.

References

1. Lee, C. T. *et al.* The opportunistic marine pathogen *Vibrio parahaemolyticus* becomes virulent by acquiring a plasmid that expresses a deadly toxin. *Proc Natl Acad Sci USA* **112**, 10798–10803 (2015).

2. Tran, L. *et al.* Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. *Dis Aquat Organ* **105**, 45–55 (2013).
3. Han, J. E., Tang, K. F., Tran, L. H. & Lightner, D. V. Photoburbus insect-related (Pir) toxin-like genes in a plasmid of Vibrio parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND) of shrimp. *Dis Aquat Organ* **113**, 33–40 (2015).

4. Sirikharin, R. *et al.* Characterization and PCR Detection Of Binary, Pir-Like Toxins from Vibrio parahaemolyticus Isolates that Cause Acute Hepatopancreatic Necrosis Disease (AHPND) in Shrimp. *PLoS One* **10**, e0126987, 10.1371/journal.pone.0126987 (2015).

5. Liu, L. *et al.* Draft Genome Sequence of Vibrio owensii Strain SH-14, Which Causes Shrimp Acute Hepatopancreatic Necrosis Disease. *Genome Announc* **3**, 10.1128/genomeA.01395-15 (2015).

6. Kondo, H., Van, P. T., Dang, L. T. & Hirono, I. Draft Genome Sequence of Non-Vibrio parahaemolyticus Acute Hepatopancreatic Necrosis Disease Strain KC13.17.5, Isolated from Diseased Shrimp in Vietnam. *Genome Announc* **3**, 10.1128/genomeA.00978-15 (2015).

7. Yang, Y. T. *et al.* Draft Genome Sequences of Four Strains of Vibrio parahaemolyticus, Three of Which Cause Early Mortality Syndrome/Acute Hepatopancreatic Necrosis Disease in Shrimp in China and Thailand. *Genome Announc* **2**, 10.1128/genomeA.00816-14 (2014).

8. Gomez-Gil, B., Soto-Rodriguez, S., Lozano, R. & Betancourt-Lozano, M. Draft Genome Sequence of Vibrio parahaemolyticus Strain M6085, Which Causes Severe Mortalities of Shrimps in Mexico. *Genome Announc* **2**, 10.1128/genomeA.00055-14 (2014).

9. Urbanczyk, H., Ogura, Y. & Hayashi, T. Description of a novel marine bacterium, *Vibrio hyugaensis* sp. nov., based on genomic and phenotypic characterization. *Int J Syst Evol Microbiol* **63**, 2742–2751 (2013).

10. Urbanczyk, H., Ogura, Y. & Hayashi, T. Contrasting inter- and intraspecies recombination patterns in the “Harveyi clade” vibrio collected over large spatial and temporal scales. *Genome Biol Evol* **7**, 71–80 (2014).

11. Derbshire, K. M., Hwang, L. & Grindley, N. D. Genetic analysis of the interaction of the insertion sequence IS903 transposase with its terminal inverted repeats. *Proc Natl Acad Sci USA* **64**, 8049–8053 (1987).

12. Urbanczyk, H., Ogura, Y. & Hayashi, T. Contrasting inter- and intraspecies recombination patterns in the “Harveyi clade” vibrio collected over large spatial and temporal scales. *Genome Biol Evol* **7**, 71–80 (2014).

13. Wang, Y., Bininda-Emonds, O. R., van Oers, M. M., Vlak, J. M. & Jehle, J. A. The genome of *Oryctes rhinoceros* nudivirus provides novel insight into the evolution of nuclear arthropod-specific large circular double-stranded DNA viruses. *Virus Genes* **42**, 444–456 (2011).

14. Morgulis, A. *et al.* Database indexing for production MegabLAST searches. *Bioinformatics* **24**, 1757–1764 (2008).

15. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinformatics* **10**, 421, 10.1186/1471-2105-10-421 (2009).

16. Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res* **25**, 3389–3402 (1997).

17. Darling, A. C., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. *Genome Res* **14**, 1394–1403 (2004).

18. Alkhlan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics* **12**, 402, 10.1186/1471-2164-12-402 (2011).

19. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* **5**, 113, 10.1186/1471-2105-5–113 (2004).

20. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol* **30**, 2725–2729 (2013).

21. Han, J. E., Tang, K. F. & Lightner, D. V. Genotyping of virulence plasmid from *Vibrio parahaemolyticus* isolates causing acute hepatopancreatic necrosis disease in shrimp. *Dis Aquat Organ* **115**, 245–251 (2015).

22. Urbanczyk, H., Ogura, Y. & Hayashi, T. Taxonomic revision of *Harveyi clade* bacteria (family Vibrionaceae) based on analysis of whole genome sequences. *Int J Syst Evol Microbiol* **63**, 2742–2751 (2013).

23. Urbanczyk, H., Ogura, Y. & Hayashi, T. Contrasting inter- and intraspecies recombination patterns in the “Harveyi clade” vibrio collected over large spatial and temporal scales. *Genome Biol Evol* **7**, 71–80 (2014).

24. Derbshire, K. M., Hwang, L. & Grindley, N. D. Genetic analysis of the interaction of the insertion sequence IS903 transposase with its terminal inverted repeats. *Proc Natl Acad Sci USA* **64**, 8049–8053 (1987).

25. Young, R., Smith Grillo, D., Isberg, R., Way, J. & Svayan, M. Transposition of the kanamycin-resistance transposon Tn903. *Mol Gen Genet* **178**, 681–689 (1980).

26. Urbanczyk, H., Ogura, Y., Hayashi, T. & Urbanczyk, H. Description of a novel marine bacterium, *Vibrio hyugaensis* sp. nov., based on genomic and phenotypic characterization. *Syst Appl Microbiol* **38**, 300–304 (2015).

27. Waterfield, N., Kamita, S. G., Hammock, B. D. & ffrench-Constant, R. The Photoburbus toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. *FEBS Microbiol Lett* **245**, 47–52 (2005).

Acknowledgements

We thank Prof. Chu-Fang Lo of National Cheng Kung University, Tainan, Taiwan for providing PirAB antibodies. This work was supported partially by the National Natural Science Foundation of China (41376135, 31570112), Doctoral Fund of Ministry of Education of China (20133104110006), Innovation Program of Shanghai Municipal Education Commission (14ZZ144), China, and the Special Fund for the Development of Science and Technology of Shanghai Ocean University (2015).

Author Contributions

Y.W. designed this study. J.X. assembled the sequences and performed related experiments. J.X. and Y.W. analyzed the data. L.L., Y.K., X.L. and Y.L. assembled preliminary sequences. L.L. performed bioassay experiment. Y.P. and S.Y. modified the manuscript. J.X. and Y.W. wrote the manuscript. All authors reviewed the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xiao, J. *et al.* Shrimp AHPND-causing plasmids encoding the PirAB toxins as mediated by pirAB-Tn903 are prevalent in various *Vibrio* species. *Sci. Rep.* **7**, 42177; doi: 10.1038/srep42177 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
