Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way

Claudia María García-Cuellar¹, Rene Hernández-Delgadillo², Juan Manuel Solis-Soto³, Irene Meester³, Yesennia Sánchez-Pérez¹, Sergio Eduardo Nakagoshi-Cepeda², María Angelia Akemi Nakagoshi-Cepeda², Shankararaman Chellam⁴ and Claudio Cabral-Romero²

Abstract
Objective: Analyze the antitumor capacity of cetylpyridinium chloride (CPC) on human breast tumor cells, and the possible action mechanism.
Material and methods: The human breast tumor cells MCF-7 and no-tumor breast cells MCF-10A were exposed to CPC under various condition (concentration and duration). Cell viability was measured with MTT assay, the LIVE/DEAD assay, and fluorescence microscopy. Membrane permeability after CPC exposure was evaluated by Calcein AM assay, mitochondrial morphology with a MitoView staining, and genotoxicity with the comet assay and fluorescence microscopy.
Results: CPC was cytotoxic to both MCF-7 and MCF-10A as of a 24-h exposure to 0.1 µM. Cytotoxicity was dose-dependent and reached 91% for MCF-7 and 78% for MCF-10A after a 24-h exposure to 100 µM CPC, which outperformed the positive control doxorubicin in effectiveness and selectivity. The LD50 of CPC on was 6 µM for MCF-7 and 8 µM for MCF-10A, yielding a selectivity index of 1.41. A time response analysis revealed 64% dead cells after only 5 min of exposure to 100 µM CPC. With respect to the action mechanisms, the comet assay did not reveal genome fragmentation. On the other hand, membrane damage was dose-dependent and may also affect mitochondrial morphology.
Conclusion: Cetylpyridinium chloride inhibits MCF-7 cell growing in a non-selective way as of 5 min of exposure. The action mechanism of CPC on tumor cells involves cell membrane damage without change neither mitochondrial morphology nor genotoxicity.

Keywords
Antitumor activity, cetylpyridinium chloride, human breast cancer, chemotherapy, quaternary ammonium salts, LD50 assay

Date received: 28 June 2021; revised: 12 November 2021; accepted: 11 March 2022

Introduction
Breast cancer constitutes the main type of cancer in women worldwide; about 1/9 women in the world will suffer breast cancer during their life time. Although the mortality from breast cancer has dropped in the United States and Europe, it is still among the main diseases associated to high rates of women mortality in USA.¹,² Breast cancer is typically diagnosed by screening or because of detection of a symptom (palpable mass) leading to a clinical test.³ A detailed diagnostic test is achieved by using the “triple test”: breast exploration, mammography, and histological test. The employment of this protocol allows confirming the
diagnostic of breast cancer in 95% of cases.4 Young healthy woman tend to have smaller, non-metastasized tumors that can be surgically removed with breast conservation.5 After diagnosis, surgery constitutes the first alternative of treatment, followed of radiation, or chemotherapy; depending of the stage and localization of the tumor.6 Over the last decades, medical developments have shown that breast cancer is a huge challenge to overcome. The employment of cytotoxic chemotherapy in advanced and early-stage breast cancer has made important progress in the last 10 years.7 However, antitumor agents like doxorubicin, cisplatin, and docetaxel have adverse side effects due to cytotoxicity to non-malignant tissues.8–10 This is an important reason for breast cancer patients to stop chemotherapy.

1-hexadecylpyridinium (Cetylpyridinium) chloride is a cationic surfactant composed by quaternary nitrogen bind to hydrophobic side chains.11,12 It is employed to remove emulsified oil from waste water and their bactericidal potential is associated with the side chain and is more effective when the alkyl chain contains more than 12 carbon atoms.13 Recently, it was shown that CPC induce AMP-activated kinase and exhibited antitumor activity on glioblastoma cells.14 Although CPC has been consumed through mouthwashes for a long time, its antitumor and cytotoxic potential has not yet been extensively studied. Therefore, we studied the antitumor activity of CPC and verified whether the action mechanism involved genotoxicity or damage to membranes and/or mitochondria.

Material and methods

CPC preparation and dilutions

CPC (Sigma-Aldrich Corporation, St. Louis, MO, USA) was freshly pass into solution in sterile ultra-pure water, obtaining a concentrated suspension of 1 mM and it was stored at room temperature. Before each experiment, the CPC stock was diluted and it has pH 7.9 in all concentrations analyzed.

Cell culture and drug exposure

The MCF-7 cell line (ATCC; HTB-22; Rockville, MD, USA) and the non-tumorigenic cell line MCF-10A (ATCC; CRL-10317; Rockville, MD, USA) were cultured as previously reported.15 Briefly, the cells were grown in DMEM culture media added with 10% fetal bovine serum (Gibco-Invitrogen, Carlsbad, CA, USA), and antibiotics at 37°C with 5% CO2. MCF-7 or MCF-10A cells were seeded in 96-well plates (1 × 104 cells in 100 µL DMEM per well) and were incubated at 37°C with 5% CO2 for 24 h to form a monolayer on the bottom of well. After that, the culture media is changed by one including the testing drug; CPC (concentration range, 0.1–100 µM; concentrations as indicated in results) and incubated at 37°C, 5% CO2 for different time periods (5 min. or 1, 2, 4, and 24 h), as previously described.15,16 Doxorubicin (DOX; Doxolem, Teva Lab, Madrid, Spain) at 500 µM was employed as cytotoxicity control, while a drug-free culture served as a growth control.

MTT assay, LD50 assay, and time response analysis

To assess cell viability, MTT test (Biotium, Hayward, CA, USA) was used to measure CPC antitumor potential. OD570 were determined to obtain the reduced MTT after CPC treatment. The average of triplicates were showed as cell viability percentage.

Following the above methodology, the LD50 of CPC on MCF-7 and MCF-10A cells was obtained by MTT cell viability assays after incubation with CPC (range: 1–10 µM; duration 24 h). The mean of three independent experiments was obtained to assess the veracity of results.

For time response analysis, MTT test was employed to measure cell viability/mortality rate of cells 24-h-exposed to 100 µM CPC or 500 µM DOX (positive control) for 5, 60, 120, and 240 min. Drug-free cells served as growth control. The experiment was performed in triplicate and average of data was showed as percentage of cell viability.

LIVE/DEAD assay

Cell viability and morphology of MCF-7 cells were analyzed after drug exposure using the LIVE/DEAD assay (Biotium Hayward, CA, USA) and fluorescence microscopy (FLM).17,18 After a 24-h drug exposure (0, 10, and 100 µM CPC, 500 µM DOX) and a triple wash with PBS (pH 7.4), cells were incubated in the dark for 0.5 h at 37°C with 100 µL live/dead staining suspension. Finally, cells were observed with an EVOS Cell Imaging System (Thermo Fisher Scientific, CA, USA) using FITC and rhodamine filters.

Cell membrane assays

The cell membrane integrity of tumor cells was analyzed by Calcein AM assays (Biotium Hayward, CA, USA) and fluorescence microscopy.19,20 CPC at a final concentration of 0–100 µM were added to MCF-7 cultures for 24 h. After drug exposure, cells were washed with PBS and stained for 0.5 h in the dark at 37°C with 2 µM calcein AM (final concentration). Cells were observed with an EVOS Cell Imaging System (Thermo Fisher Scientific, CA, USA) using a FITC filter. Only living cells with an integral cell membrane retain the fluorescent signal in the cytoplasm.

MitoView assay

The MitoView assay was used to verify whether CPC damages MCF-7 cells. After a 24 h exposition to 0 (negative control), 5, or 100 µM CPC, or 500 µM docetaxel (DTX); MCF-7 mitochondria were stained with 100 nM
MitoView dye (Biotium Hayward, CA, USA) for 1 h at 37°C with 5% of CO₂. MCF-7 mitochondria were observed with an EVOS microscope (Thermo Fisher Scientific, CA, USA) using a FITC filter.

Comet assay

The OxiSelect™ Comet Assay Kit (Cell Biolabs, INC, San Diego, CA, USA) was used to verify whether CPC is genotoxic on MCF-7 cells. Briefly, after an overnight drug exposure to 0, 5, or 100 µM CPC or 100 µM etoposide (Sigma-Aldrich Corporation, St. Louis, MO, USA) employed as positive control, MCF-7 were collected and washed with PBS. DNA was stained with DAPI (1 µL/mL, final concentration: 100 µL/well). The slides were observed with an EVOS microscope (Thermo Fisher Scientific, CA, USA) using a DAPI filter.

Statistical analysis

A two-way analysis of variance (ANOVA) was employed to analyze data among groups. A significance level of α = 0.05 was considered. The selectivity index (SI) was measured with the formula: SI = IC50 no cancer cells/IC50 cancer cells.

Results

Antitumor activity of CPC

CPC was cytotoxic to both MCF-7 and MCF10A at all concentrations tested in a dose-dependent way (Figure 1). At the lowest concentration tested (0.1 µM), cytotoxicity was over 20%; at the highest concentration (100 µM) the cytotoxicity was 92% for MCF-7 and 77% for MCF-10A. In comparison, the cytotoxicity of the positive control, 500 µM DOX, was 86% for MCF-7 and 82% for MCF-10A. Thus, CPC had a five times higher antitumor activity than DOX. The effect of CPC on both kinds of breast human cells was dose-dependent.

LIVE/DEAD assay

To corroborate CPC cytotoxicity on breast cancer cells, LIVE/DEAD assays were carried out to verify cell death due to CPC. A 24-h exposition to 100 µM CPC depleted MCF-7 cells, while exposure to 10 µM CPC was less severe and similar to the effect of the positive cytotoxicity control of 500 µM DOX (Figure 2). There was no cell death in drug-free MCF-7 cultures (Figure 2; MCF-7). Altogether, these results confirm the results of the MTT assays.

Time response analysis

So far, survival or cytotoxicity assays were performed after a 24-h drug exposure. To evaluate whether CPC acts faster on MCF-7 cells, a time-response analysis with the MTT assay was carried out. Exposure to 100 µM CPC for 5 min reduced MCF-7 survival by 60% (Figure 3). Longer exposures increased toxicity to 70% after an hour and to over 80% after the longest exposure time of 4 h (Figure 3). Thus, it seems that 100 µM CPC acts fast and requires only 5 min to kill over 50% of the cells.
Next, MTT assays were applied after a 1-h exposure to different concentrations of CPC to determine the LD50 value. The LD50 was 6 µM for MCF-7 and 8 µM for MCF-10A (Figure 4). These data confirm a dose-dependent phenomenon and a 80% toxicity at 10 µM CPC (Figure 4).

Selectivity index

The selectivity index (SI) constitutes the proportion between cytotoxic amount of a molecule versus its beneficial bioactive concentration. The SI of CPC, determined in vitro with MCF-10A and MCF-7 cells, was 1.41 (Figure 4). This low SI indicates that CPC is only slightly selective for tumor cells in comparison to healthy cells and a relevant aspect with for the possible clinical application of CPC.

Effect of CPC on cell membranes of tumor cells

To verify possible action mechanisms of CPC its effect of CPC on cell membrane of MCF-7 cells was analyzed by the calcein AM assay and fluorescence microscopy. Increasing quantities of CPC promote the exit of fluorescent calcein from MCF-7 cells after 24-h-exposition in a dose-response way (Figure 5). These results suggest that CPC alter the cell membrane integrity of MCF-7 in a dose-response phenomenon.

Effect of CPC on MCF-7 mitochondrial morphology

Another possible action mechanism that was assessed was mitochondrial damage. Hereto, mitochondria were visualized with MitoView after a 24-h exposure to toxic concentrations (10 or 100 µM CPC, and 500 µM DTX). Compared to a drug-free control, the positive control DTX modified...
Figure 3. Time response of CPC on MCF-7 cells. Cell survival of MCF-7 was analyzed by the MTT test post exposition to 100 µM CPC for 5, 60, 120, or 240 min. Error bars indicating mean ± SD (n = 3).

Figure 4. Determination of LD50 of CPC on human breast cancer cell line MCF-7. The effect of 24-h exposition to 1–10 µM CPC on MCF-7 cell survival. Error bars indicating mean ± SD (n = 3).
both the morphology and distribution of MCF-7 mitochondria. In contrast, exposure to CPC changed neither the distribution nor the morphology of mitochondria (Figure 6).

CPC genotoxicity

Genotoxicity was a third action mechanism that was explored. Comet assays with etoposide as a positive control of genotoxicity showed the classic stela that reveal the fragmentation of genomic DNA of tumor cells (Figure 7). In contrast, no such stela were observed after exposure to toxic concentrations of CPC (Figure 7). The drug-free control MCF-7 cells presented healthy nuclei with their typical circular shape (Figure 7). When fluorescence intensity was measured the results showed that all CPC concentrations analyzed (6–100 µM) promote 25%, 35%, or 50% of fluoresce signal in comparison with etoposide (positive control of genotoxicity). Altogether these results suggest that genomic DNA is not the main target of CPC in their antitumor effect, but it can be a synergic phenomenon to promote dead cell.

Discussion

CPC is a cationic surfactant with a quaternary amine that is employed in personal hygiene products such as toothpaste and mouthwash.23 There is ample evidence about the beneficial effects of CPC on gingival inflammation and plaque reduction.24–27 Besides, CPC seems to have antiviral properties. CPC blocked the replication of herpes simplex virus in gingival fibroblasts28 and inhibited the assembly of capsid proteins of hepatitis B virus.29 However, it has been reported that CPC is cytotoxic to human epithelial cells by prompting cellular killing through apoptosis activated by caspase-3. Furthermore, CPC interfered with alveolar surfactant activity due to their alkyl chain.30 CPC also causes skin irritation and decreases cell survival exponentially post CPC skin exposition.31 CPC treatment in animal models promote the secretion of proinflammatory cytokines, mainly TNF-α, leading to pulmonary inflammation.23 Also, it has been reported that CPC inhibited osteoclast differentiation in a dose-response way.32 All these adverse effects of CPC must be considered in clinical applications to treat chronic diseases.

In this work, we analyzed the antitumor properties of CPC on MCF-7 cells. Tumor cell growth was reduced as of a 24-h exposition to 0.1 µM CPC. Cytotoxicity of CPC on MCF-7 cells was corroborated by LIVE/DEAD assays where death cells stained red. The LD50 value of CPC on MCF-7 was 6 µM, which is nearly identical to the LD50 of doxorubicin.33 Previously, it has been reported that CPC
kills glioblastoma cells with a higher efficacy than current standard temozolomide. Our data confirmed a recent report on dose-dependent CPC cytotoxicity on MCF-7. Unfortunately, this study did not evaluate the effect of CPC on non-tumorigenic cells. We found that the LD50 of CPC for non-tumorigenic MCF-10A cells was 8 µM. An SI of 1.41 suggests that CPC is only slightly more selective for tumor cells than non-tumorigenic cells. It has been reported that the conjugation of DOX to α-linolenic and docosahexaenoic acids reduces its cytotoxic effect and increases its SI. A conjugation of CPC to hyaluronic acid present in a mouthrinse did not lead to significant differences in plaque reduction as compared to a group using a mouth supplemented with chlorhexidine.

Based on time-response experiments, more than 60% of the cytotoxicity occurred within a 5 min-exposure to 100 µM CPC. Importantly, we found that CPC decreased the cell growth of non-tumorigenic human breast MCF-10A cells. This result suggests that CPC has, like DOX, DTX, and cisplatin, a low selectivity for tumor cells. This finding is consistent with extensive literature on the cytotoxicity of CPC.

Previously, it has been reported that 0.05% CPC is effective to get antiplaque and antigingivitis effects. 0.05% CPC equals to 1400 µM. In this study the range of final concentrations 0.1–100 µM CPC were analyzed to determine its antitumor effect. If we take the higher concentration used in this work (100 µM), it means that 14× time-less has been employed to inhibit the MCF-7 cell growth in comparison with antiplaque and antigingivitis effects.

Based on calcein AM assays, the action mechanism of CPC involves cell membrane damage. A 24-h exposure to 10–100 µM CPC, allowed the loss of fluorescent calcein AM, which suggests a violation of cell membrane integrity. In contrast, mitochondrial morphology and distribution of
MCF-7 were not altered after a 24-h exposure to 10–100 µM CPC. Others reported that CPC decreases ATP synthesis in a dose-response manner with higher effect at a final concentration of 10 µM. In our study, a 24-h exposure to 10 µM CPC reduced the cell viability of MCF-7 with 81% and the one of MCF-10A with 57%. Fewer cells after CPC treatment could explain lower ATP levels. CPC was not genotoxic to human breast cancer cells. A 24-h exposure to 6–100 µM CPC did not promote DNA fragmentation as compared to the positive genotoxic control etoposide. This finding supports previous findings by Grabińska-Sota, who did not found genotoxicity among different quaternary ammonium salts. Altogether, our results suggest that CPC has antitumor activity in a fast and dose-dependent way. Cell damage may be the action mechanism. On the other hand, the cytotoxicity to non-tumorigenic cells must be taken in account for a future clinical application. As a perspective, the conjugation of CPC to other molecules may reduce its cytotoxic effect and could be an interesting way to increase its biocompatibility.

Conclusions

Cetylpyridinium chloride inhibits the survival of human breast tumor cells in a fast, dose-response and non-selective manner. The cytotoxic action mechanism of CPC involves cell membrane damage without alterations in mitochondrial distribution and morphology nor genotoxicity.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The authors want to thank to CONACyT for the grant A1-S-20148; an approved project by the Sectorial Fund for Education Research.

ORCID iD

Claudio Cabral-Romero https://orcid.org/0000-0002-2657-0111

References

1. DeSantis C, Ma J, Bryan L and Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin 2014; 64: 52–62.
2. Harbeck N and Gnant M. Breast cancer. Lancet 2017; 389: 1134–1150.
3. McDonald ES, Clark AS, Tchou J, Zhang P and Freedman GM. Clinical diagnosis and management of breast cancer. J Nucl Med 2016; 57: 9S–16S.
4. Fuller MS, Lee CI and Elmore JG. Breast cancer screening: an evidence-based update. Med Clin North Am 2015; 99: 451–468.
5. Radecka B and Litwiniuł M. Breast cancer in young women. Ginekol Pol 2016; 87: 659–663.
6. Maughan KL, Lutterbie MA and Ham PS. Treatment of breast cancer. Am Fam Physician 2010; 81: 1339–1346.
7. Hassan MS, Ansari J, Spooner D and Hussain SA. Chemotherapy for breast cancer (review). Oncol Rep 2010; 24: 1121–1131.
8. Alexander CM, Dabrowiak JC and Maye MM. Investigation of the drug binding properties and cytotoxicity of DNA-capped nanoparticles designed as delivery vehicles for the anticancer agents doxorubicin and actinomycin D. Bioconjucg Chem 2012; 23: 2061–2070.
9. Chovanc M, Abu Zaid M, Hanna N, El-Kouri N, Einhorn LH and Albany C. Long-term toxicity of cisplatin in germ-cell tumor survivors. Ann Oncol 2017; 28: 2670–2679.
10. Bayo J, Avivô V, Toscano F and Jiménez F. Toxicity of docetaxel, carboplatin, and trastuzumab combination as adjuvant or neo-adjuvant treatment for her2 positive breast cancer patients and impact of colony-stimulating factor prophylaxis. Breast J 2018; 24: 462–467.
11. Gilbert P and Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol 2005; 99: 703–715.
12. Mao X, Auer DL, Buchalla W, et al. Cetylpyridinium chloride: mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob Agents Chemother 2020; 64: e00576-20.
13. Maris P. Modes of action of disinfectants. Rev Off Int Epizoot 1995; 14: 47–55.
14. Allen SA, Datta S, Sandoval J, et al. Cetylpyridinium chloride is a potent AMP-activated kinase (AMPK) inducer and has therapeutic potential in cancer. Mitochondrion 2020; 50: 19–24.
15. Hernandez-Delgadillo R, García-Cuéllar CM, Sánchez-Pérez Y, et al. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine 2018; 13: 6089–6097.
16. Liu Y, Peterson DA, Kimura H, et al. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem 1997; 69: 581–593.
17. Matossian MD, Burks HE, Elliott S, et al. Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model. BMC Cancer 2019; 19: 205–205.
18. Sena-Lopes Â, Remião MH, Alves MSD, et al. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine 2018; 13: 6089–6097.
19. Jang YY, Cho D, Kim SK, et al. An improved flow cytometry-based natural killer cytotoxicity assay involving calcein AM staining of effector cells. Ann Clin Lab Sci 2012; 42: 42–49.
20. Jonsson B, Liminga G, Csoka K, et al. Cytotoxic activity of calcein acetoxymethyl ester (calcein/AM) on primary cultures of human haematological and solid tumours. Eur J Cancer 1996; 32A: 883–887.
21. Ostling O and Johanson KJ. Microelecctrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 1984; 123: 291–298.
22. Indrayanto G, Putra GS and Suhud F. Chapter Six. Validation of in-vitro bioassay methods: application in herbal drug research. In: Al-Majed AA (ed.) Profiles of drug substances.
excipients and related methodology. Amsterdam: Academic Press, 2021, pp.273–307.

23. Kim H, Yoo J, Lim YM, et al. Comprehensive pulmonary toxicity assessment of cetlypyridinium chloride using A549 cells and Sprague-Dawley rats. *J Appl Toxicol* 2021; 41: 470–482.

24. Haps S, Slot DE, Berchier CE and Van der Weijden GA. The effect of cetlypyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: a systematic review. *Int J Dent Hyg* 2008; 6: 290–303.

25. Herrera D, Escudero N, Pérez L, et al. Clinical and microbiological effects of the use of a cetlypyridinium chloride dentifrice and mouth rinse in orthodontic patients: a 3-month randomized clinical trial. *Eur J Orthod* 2018; 40: 465–474.

26. Teng F, He T, Huang S, et al. Cetlypyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. *Int J Oral Sci* 2016; 8: 182–190.

27. Savas S, Kucukyılmaz E, Celik EU and Ates M. Effects of different antibacterial agents on enamel in a biofilm caries model. *J Oral Sci* 2015; 57: 367–372.

28. Alvarez DM, Duarte LF, Corrales N, Smith PC and González PA. Cetlypyridinium chloride blocks herpes simplex virus replication in gingival fibroblasts. *Antiviral Res* 2020; 179: 104818.

29. Seo HW, Seo JP, Cho Y, Ko E, Kim YJ and Jung G. Cetlypyridinium chloride interaction with the hepatitis B virus core protein inhibits capsid assembly. *Viruses Res* 2019; 263: 102–111.

30. Kanno S, Hirano S, Kato H, Fukuta M, Mukai T and Aoki Y. Benzalkonium chloride and cetlypyridinium chloride induce apoptosis in human lung epithelial cells and alter surface activity of pulmonary surfactant monolayers. *Chem Biol Interact* 2020; 317: 108962.

31. Kano S and Sugibayashi K. Kinetic analysis on the skin disposition of cytotoxicity as an index of skin irritation produced by cetlypyridinium chloride: comparison of in vitro data using a three-dimensional cultured human skin model with in vivo results in hairless mice. *Pharm Res* 2006; 23: 329–335.

32. Zheng T, Chen L, Noh ALSM and Yim M. Cetlypyridinium chloride inhibits receptor activator of nuclear factor-κB ligand-induced osteoclast formation. *Biol Pharm Bull* 2013; 36: 509–514.

33. Figueroa D, Asaduzzaman M and Young F. Effect of chemotherapeutics and tocopherols on MCF-7 breast adenocarcinoma and KGN ovarian carcinoma cell lines in vitro. *Biomed Res Int* 2019; 2019: 6146972.

34. Mielczarek-Puta M, Struga M and Roszkowski P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). *Med Chem Res* 2019; 28: 2153–2164.

35. Tadakamadla SK, Bharathwaj VV, Duraiswamy P, Sforza C and Tartaglia GM. Clinical efficacy of a new cetlypyridinium chloride-hyaluronic acid-based mouthrinse compared to chlorhexidine and placebo mouthrinses-A 21-day randomized clinical trial. *Int J Dent Hyg* 2020; 18: 116–123.

36. Pugazhendhi A, Edison TNJI, Velmurugan BK, Jacob JA and Karuppusamy I. Toxicity of doxorubicin (dox) to different experimental organ systems. *Life Sci* 2018; 200: 26–30.

37. Lin GH, Voss KA and Davidson TJ. Acute inhalation toxicity of cetlypyridinium chloride. *Food Chem Toxicol* 1991; 29: 851–854.

38. Hrubec TC, Seguin RP, Xu L, et al. Altered toxicological endpoints in humans from common quaternary ammonium compound disinfectant exposure. *Toxicol Rep* 2021; 8: 646–656.

39. Rahman B, Alkawas S, Al Zubaidi EA, et al. Comparative antiplaque and antigingivitis effectiveness of tea tree oil mouthwash and a cetlypyridinium chloride mouthwash: a randomized controlled crossover study. *Contemp Clin Dent* 2014; 5: 466–470.

40. Grabińska-Sota E. Genotoxicity and biodegradation of quaternary ammonium salts in aquatic environments. *J Hazard Mater* 2011; 195: 182–187.