Framework to assess technology readiness of lithium-ion battery to fulfill the safety standard: IEC 62660-3:2016 (case study: smart lithium battery of UNS product)

K Fachriansyah1*, F Fakhma2 and E Pujiyanto3

1 Department of Industrial Engineering, Sebelas Maret University, Surakarta, Indonesia
2,3 Quality System Laboratory, Department of Industrial Engineering, Sebelas Maret University, Surakarta, Indonesia

Email: kfachri16@gmail.com

Abstract. Electric vehicles are one of the ways to solve the problem of air. Electric vehicles have a very vital component which is the battery as a source of power for other components. The type of battery that has the best performance for electric vehicles is the lithium-ion battery. Reliability and safety present significant challenges in lithium-ion batteries. Thus, lithium-ion product standards are important to guarantee the quality of lithium battery products. The International Electrotechnical Commission (IEC) published a lithium battery standard product regulation in document IEC 62660-3:2016, that provide a basic level of safety test methodology and criteria with general versatility, serves a function in common primary testing of lithium-ion cells to be used in variety of battery systems. This paper aims to identify the technological readiness of Universitas Sebelas Maret (UNS) lithium-ion enterprise to fulfill the lithium battery product standards by modifying the Quality Functional Deployment (QFD). Several production processes in technoware and humanware are not compatible with lithium battery standard, but all production processes in infoware and orgaware are compatible with lithium battery standard.

1. Introduction
The source of air pollution in the world is motorized vehicles [1]. One of the ways to overcome the problem of air pollution is to present an electric vehicle. The battery is a vital component of electric vehicles, because the battery is a source of power from the components of the electric vehicles [2]. The various types of batteries used in electric vehicles, and lithium batteries have the highest performance compared to other types of batteries [3]. Battery safety is a rather complex and sophisticated problem, and the safety of lithium-ion battery in vehicle is a priority of automotive industry [4]. The availability of international standards regarding secondary lithium-ion cell safety requirements have been developed by world organizations, the one of them is International Electrotechnical Commission (IEC) published IEC 62660-3:2016 standard. The standard is concerning in secondary lithium-ion cells for electric vehicles on safety requirements. Nevertheless, achieving a good level of safety and reliability is now a goal for global large-scale distributed energy management systems [5].

In addition to meet the standard criterias for the battery production process, the readiness of technological readiness in the production process must also be considered. Many people avoid technology because they are uncomfortable, not ready to use technology [6][7]. Technology readiness refers to the human tendency to use new technology to achieve goals both at work and in everyday life.
In accordance with the systematic approach to technology, the components of technological system include technoware, humanware, infoware, and orgaware must be kept out of date. This study purpose to identify each stage of the production in Universitas Sebelas Maret (UNS) lithium battery plant against the standard lithium battery product. furthermore, to provide recommendations for improvement component technologies to fulfill the quality requirements of IEC 62660-3:2016. This study was conducted in the production process at Universitas Sebelas Maret (UNS) battery plant. The UNS lithium plant sells lithium battery using make-to-order production system. The name of lithium battery product commercialized by UNS is SMART UNS-Lithium Battery. The specifications of SMART UNS-Lithium Battery are presented in Table 1.

Material	Cathode	LFP	NCA	NMC
Electrical conductivity (V)	LiFePO₄	3.4	3.6	3.6
Current capacity (Ah/Kg)	LiNiCoAlO₂	160	180	180
Energy density/weight (Wh/Kg)	LiNiMnCoO₂	544	648	648
Energy density/volume (Wh/L)		1,953	3,110	3,110

2. Methodology

According to Noor, Quality Function Deployment (QFD) is a methodology that translates the needs and desires of consumers into a product/service design that has certain technical requirements and quality characteristics [9]. This method is identify the Voice of Customer (VOC) [10]. QFD consists of

Table 1. SMART UNS-Lithium Battery product specification

Material	Cathode	LFP	NCA	NMC
Electrical conductivity (V)	LiFePO₄	3.4	3.6	3.6
Current capacity (Ah/Kg)	LiNiCoAlO₂	160	180	180
Energy density/weight (Wh/Kg)	LiNiMnCoO₂	544	648	648
Energy density/volume (Wh/L)		1,953	3,110	3,110

According to Noor, Quality Function Deployment (QFD) is a methodology that translates the needs and desires of consumers into a product/service design that has certain technical requirements and quality characteristics [9]. This method is identify the Voice of Customer (VOC) [10]. QFD consists of
The steps of methodology is presented in Figure 3. First step is identify lithium product standard. After that, lithium battery production processes are identified. Third, the existing sophistication of technology component (technoware, humanware, infoware, and orgaware) in every process is measured to get TL, HL, IL, and OL. Fourth, experts are asked to give TS, HS, IS, and OS value. TS, HS, IS, and OS value is minimum sophistication level of IEC’s quality requirement that needs to be fulfilled. Fifth, the relationship between every production process with the quality requirement in IEC 62660-3:2016 is evaluated. Sixth, the importance between production production processes is evaluated by using pairwise comparison technique. Seventh, ATL, AHL, AIL, AOL, ATS, AHS, AIS, and AOS are calculated based on relationship matrix, importance weighting TL, HL, IL, OL, TS, HS, IS, and OS. Thus, the gap between ATL with ATS, AHL with AHS, AIL with AIS, and AOL with AOS.
3. Results
The process of producing lithium batteries is based on survey results can be identified are (1) mixing, (2) coating, (3) pressing, (4) slitting, (5) nickel tab welding, (6) winding, (7) welding into sleeves, (8) grooving, (9) cap welding, (10) electrolyte filling, (11) punching, (12) grading, (13) sorting, and (14) delivery.

To get TL, HL, IL, and OL score, a degree sophistication degree from UNESCAP (1989). The model has range score from 1 to 9, which the basic technological component has score 1 and the most advanced technological components has a score 9 with field survey and interview was taken to get TL, HL, IL, and OL score. Furthermore, two experts from electric vehicle technical committee and lithium battery researcher was asked to give TS, HS, IS, and OS to every production process. ATL, AHL, AIL, AOL, ATS, AHS, AIS, and AOS score is recapitulated in Table 2.

To find correlation between lithium battery standard k and production process j, a correlation matrix is used. A correlation value of 0, 1, 3 and 9 shows that the correlation between lithium battery standard k and production process j have no, weak, medium, and high correlation respectively. Two experts was asked to give the correlation value (C_{kj}) in relationship matrix. The correlation value is recapitulated in Table 3.

Every production process has a different importance weighting to create overall lithium battery product. The importance weighting between production process j is estimated by pairwise comparison technique, with two experts make the comparison judgment. In Table 4 is recapitulation of the pairwise comparison (W_{ij}) technique.

| Table 2. ATL, AHL, AIL, AOL, ATS, AHS, AIS, and AOS score |
|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|
| Production Process | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| TL | 4.5 | 5.5 | 4.0 | 4.0 | 2.0 | 5.5 | 2.5 | 3.0 | 2.5 | 4.5 | 3.0 | 5.5 | 6.0 | 1.5 |
| HL | 4.0 | 5.5 | 4.0 | 4.0 | 4.5 | 4.0 | 4.0 | 4.5 | 5.0 | 4.0 | 4.0 | 5.0 | 4.5 | 4.0 |
| IL | 4.5 | 4.5 | 4.0 | 4.5 | 4.5 | 4.0 | 4.5 | 4.0 | 5.0 | 4.0 | 5.0 | 4.5 | 4.0 | 4.0 |
| OL | 5.0 | 5.0 | 4.0 | 3.5 | 4.5 | 5.5 | 3.5 | 4.0 | 3.0 | 5.0 | 3.5 | 4.0 | 3.5 | 3.5 |
| TS | 4.0 | 4.0 | 4.0 | 3.5 | 3.0 | 4.5 | 3.0 | 3.0 | 3.5 | 3.5 | 5.0 | 4.0 | 1.5 | 1.5 |
| HS | 3.0 | 3.5 | 3.0 | 3.0 | 4.5 | 3.5 | 3.5 | 3.0 | 3.5 | 4.5 | 3.0 | 5.0 | 3.5 | 2.5 |
| IS | 4.0 | 4.5 | 4.0 | 4.0 | 4.5 | 4.0 | 4.5 | 4.0 | 4.5 | 4.0 | 4.5 | 4.0 | 4.0 | 3.0 |
| OS | 3.0 | 3.5 | 3.0 | 3.0 | 3.5 | 3.0 | 3.5 | 3.0 | 3.5 | 3.0 | 3.0 | 3.0 | 3.0 | 2.5 |

| Table 3. Correlation value in relationship matrix |
|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| No. k | No. j | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 1 | 9.0 | 9.0 | 3.0 | 1.0 | 9.0 | 9.0 | 5.2 | 1.0 | 3.0 | 9.0 | 1.0 | 0 | 0 | 3.0 |
| 2 | 9.0 | 9.0 | 3.0 | 1.0 | 9.0 | 9.0 | 5.2 | 3.0 | 3.0 | 9.0 | 1.0 | 0 | 0 | 3.0 |
| 3 | 9.0 | 9.0 | 3.0 | 1.0 | 9.0 | 9.0 | 5.2 | 3.0 | 3.0 | 9.0 | 1.0 | 0 | 0 | 3.0 |
| 4 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 1.0 | 0 | 0 | 1.0 |
| 5 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 1.0 | 0 | 0 | 1.0 |
| 6 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 0 | 3.0 | 0 | 1.0 |
| 7 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 0 | 3.0 | 0 | 1.0 |
| 8 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 0 | 3.0 | 0 | 1.0 |
| 9 | 9.0 | 9.0 | 1.7 | 1.0 | 9.0 | 9.0 | 9.0 | 1.0 | 3.0 | 9.0 | 0 | 30 | 0 | 1.0 |
Lithium’s technoware, humanware, infoware, and orgaware gap is defined as when raw technoware lithium is lower than raw technoware standard, raw humanware lithium is lower than raw humanware standard, raw infoware lithium is lower than raw infoware standard, and raw orgaware lithium is lower than raw orgaware standard respectively. Before determining the gap, we need to calculate ATL, AHL, AIL, AOS, ATS, AHS, AIS, and AOS by Equations (1)-(8). Technoware, humanware, infoware, and orgaware gap is identified when the value between raw lithium and raw standard is negative. If the value between raw lithium and raw standard is positive, the production process meets the lithium standard. Raw technoware lithium, raw humanware lithium, raw infoware lithium, raw orgaware lithium, raw technoware standard, raw humanware standard, raw infoware standard, and raw orgaware standard can be calculated by Equations (9)-(16). But before calculated the gap, we need to estimate the importance weighting between lithium standard by using pairwise comparison based on two experts. The result of importance weighting between lithium standard is showed in Table 5 and the result of calculation by Equation (9)-(16) is showed in Table 6, Table 7, Table 8, and Table 9.

\[\text{ATL}_j = \sum_k W_k x TL_{kj} \]
(1)

\[\text{AHL}_j = \sum_k W_k x HL_{kj} \]
(2)

\[\text{AIL}_j = \sum_k W_k x IL_{kj} \]
(3)

\[\text{AOL}_j = \sum_k W_k x OL_{kj} \]
(4)

\[\text{ATS}_j = \sum_k W_k x TS_{kj} \]
(5)

\[\text{AHS}_j = \sum_k W_k x HS_{kj} \]
(6)

\[\text{AIS}_j = \sum_k W_k x IS_{kj} \]
(7)

\[\text{AOS}_j = \sum_k W_k x OS_{kj} \]
(8)

Raw Technoware Standard = \[\sum_k C_{kj} x W_k x TS_{kj} x NW_j \]
(9)

Raw Humanware Standard = \[\sum_k C_{kj} x W_k x HL_{kj} x NW_j \]
(10)

Raw Infoware Standard = \[\sum_k C_{kj} x W_k x IL_{kj} x NW_j \]
(11)

Raw Orgaware Standard = \[\sum_k C_{kj} x W_k x OL_{kj} x NW_j \]
(12)

Raw Technoware Lithium = \[\sum_k C_{kj} x W_k x TL_{kj} x NW_j \]
(13)

Raw Humanware Lithium = \[\sum_k C_{kj} x W_k x HL_{kj} x NW_j \]
(14)

Raw Infoware Lithium = \[\sum_k C_{kj} x W_k x IL_{kj} x NW_j \]
(15)

Raw Orgaware Lithium = \[\sum_k C_{kj} x W_k x OL_{kj} x NW_j \]
(16)

Table 4. Importance weighting of the production process
No.
Importance (%)

Table 5. Importance weighting of the lithium standard
No.
Importance (%)

Table 6. Technoware gap
Production Process
Raw Technoware Standard
Raw Technoware Lithium
Gap
From the result of gap calculation, in the technoware gap there are four production processes are not sophisticated enough to fulfill the lithium battery standard, there are nickel tab welding process, welding into sleeves process, cap welding process, and punching process. In the humanware gap there are two production processes are not sophisticated enough to fulfill the lithium battery standard, there are nickel tab welding process and grading process. In the infoware and orgaware gap that compatible to fulfill all lithium battery standard.

4. Analysis
The result show that all technological components in production process are partially compatible with lithium battery standard. In another hand, several production processes in technoware and humanware are not compatible with battery lithium standard, but the production processes in infoware and orgaware are compatible with battery lithium standard. There are several reasons why lithium battery technoware and humanware do not sophisticate enough to fulfill the standard. The first reason is standards that are still considered less important for their business. The second is because the business is relatively new, so it still needs to be adjusted to existing standards. The last is lack of knowledge and financial to conduct training and improve the sophistication of machines and tools. Those three reasons are main problems for lithium battery plant to improve their compatibility with standard.

Production process No. 1, 2, 5, 6, 7, and 10 has high correlation value with lithium battery standard. Thus, improvement of production process No. 1, 2, 5, 6, 7, and 10 have high impact to fulfill lithium battery standard requirement.

References
[1] Siami L, Sofyan A and Frazila Russ B 2014 Perhitungan penurunan beban emisi pencemaran udara dari pembangunan jalur tol jorr w2 DKI Jakarta. *J. Teknik Lingkungan* 20 2.
[2] Afif Muhammad T, Pratiwi and Ilham Ayu P 2015 Analisa perbandingan baterai lithium-ion, lithium polymer, lead acid dan nickel-metal hydride pada penggunaan mobil listrik-

Table 7. Humanware gap

Production Process	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Raw Humanware Standard	3.00	3.50	0.65	0.33	4.50	3.50	3.24	0.41	1.17	4.50	0.15	0.92	0	0.37
Raw Humanware Lithium	4.00	5.50	0.87	0.44	4.00	4.50	3.71	0.55	1.50	5.00	0.20	0.74	0	0.67
Gap	1.00	2.00	0.22	0.11	-0.50	1.00	0.46	0.14	0.33	0.50	0.05	-0.18	0	0.30

Table 8. Infoware gap

Production Process	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Raw Infoware Standard	4.00	4.50	0.87	0.44	4.00	4.50	3.71	0.55	1.33	4.50	0.20	0.83	0	0.45
Raw Infoware Lithium	4.50	4.50	0.98	0.44	4.50	4.50	3.71	0.61	1.33	5.00	0.20	0.92	0	0.60
Gap	0.50	0	0.11	0	0.50	0	0	0.07	0	0.50	0	0.09	0	0.15

Table 9. Orgaware gap

Production Process	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Raw Orgaware Standard	3.00	3.50	0.65	0.33	3.00	3.50	2.78	0.41	1.00	3.50	0.15	0.55	0	0.37
Raw Orgaware Lithium	5.00	5.00	0.87	0.44	4.50	5.50	3.24	0.55	1.00	5.00	0.17	0.74	0	0.52
Gap	2.00	1.50	0.22	0.11	1.50	2.00	0.46	0.14	0	1.50	0.02	0.18	0	0.15
review. J. Rekasaya Mesin 6 2.

[3] Wang Yang N 2019 Power battery performance detection system for electric vehicles. Procedia Computer Science 154 759-763.

[4] Hollmotz L 2013 Safety of lithium ion batteries in vehicles – state of the art, risk, dan trends. 23rd International Technical Conference on the Enhanced Safety of Vehicle (ESV): Research Collaboration to Benefits Safety of All Road Users.

[5] Liao Z, Zhang S, Li K, Zhang G, and Habetler T G 2019 A survey of method for monitoring and detecting thermal runaway of lithium-ion batteries. Journal of Power Sources 436

[6] Lin J S C and Hsieh P L 2007 The influence of technology readiness on satisfaction and behavioral intentions toward self-service technologies. Computers in Human Behavior 23 1597–1615.

[7] Meuter M L, Ostrom A L, Bitner M J and Roundtree R 2003 The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research 56 899–906.

[8] Smith R and Sharif N 2007 Understanding and acquiring technology assets for global competition. Technovation 27 643-649.

[9] Noor Asep Muhamad 2000 Pengembangan komputer software quality function deployment Procceding Pertemuan Ilmiah BKSTI.

[10] Suhendar E and Suroto 2014 Penerapan metode quality function deployment (QFD) dalam upaya peningkatan kualitas pelayanan akademik pada UB. Faktor Exacta 7 372-386.

[11] Cohen L 1995 Quality Function Deployment : “How To Make QFD For You”. Menlo Park: Addison-Wesley Publishing Company.

[12] International Electrotechnical Commission, “IEC 62660-3:2016 Secondary Lithium-Ion Cells for Propulsion of Electric Road Vehicles Part 3: Safety Requirement”, 2016.