The problem of fixing the axisymmetric elements on the example of pulley mounting on the shaft

G Domek¹, A Kołodziej² and I Dziubek²

¹ Kazimierz Wielki University, Department of Mechatronics, Chodkiewicza 30, 85-062 Bydgoszcz, Poland
² Higher Vocational State School in Kalisz, Nowy Świat 4, 62-800 Kalisz, Poland

E-mail: gdomek@ukw.edu.pl

Abstract. The paper present the problem of permanent fixing of the axisymmetric elements relative position on the example of pulley mounting on the shaft. A method of permanent and quick fixing of pulleys on shafts has been sought for years. A number of detachable and inseparable joint solutions are available. The authors are looking for an inseparable solution allowing for quick assembly in serial production conditions. The quality of this connection is important for the geometry of the transmission gear, as it has a significant impact on the quality of the transmission gear operation and the belt life.

1. Introduction

One of challenges for belt gear designers is the development of a method for quick fixing of pulleys on shafts. This would allow to reduce the transmission gear replacement time, and is also important for serial production of machines and systems using toothed belts as well as in belt conveyor, rollers, conveyor, robotics and manufacturing systems etc. [1, 2]. The pulley mounting must be durable and correct in terms of its position in plane, alignment, etc. (figure 1).

Figure 1. Drive in coffee machine.

This is part of a broader problem of connecting axisymmetric elements. It concerns the production of large-size systems as well as micromechanism. Connections of this type are burdened with errors of
different kind. This can negatively affect the operation of the entire transmission gear and the system. All kinds of inaccuracies prevent increasing the linear speed of the belt, positioning and displacement accuracy [3, 4].

2. Pulley mounting errors
One of the advantages of belt transmission gears is the ability to work in "twisted" position. This means that the belt can work in tandem with pulleys lying in different planes. However, these types of transmission gears require precise wheel mounting while mounting errors in these gears can result in transmission gear damage. The most common errors include: twisting of the pulleys, displacement of planes, misalignment on the shaft, etc. [2, 5].

Pulley mounting errors can cause pulley run-out or whirling, which can also cause quick bearing damage.

![Figure 2. Measurement of pulley from car engine regulation system.](image)

The accuracy of the wheel's performance has a significant influence on the quality of wheel mounting. As studies show, especially the wheels produced in large series are far from ideal [6, 7]. The drawing shows the wheel and treadmill geometry errors (figure 2).

3. Basic system for pulley mounting on the shaft
The basic methods of mounting pulleys on the shaft include a hole with a key (the pulley is secured with a screw on the shaft). However, adapter sleeves and self-locking sleeves are most commonly used. Dimensional standards of such sleeves have been established and one can easily select a right pulley (figure 3, with a code on pulley and taper). The distinction between adapter and self-locking sleeves is based on the method of introducing compression stress between the pulley and the shaft. Such stress can be introduced in series production by keying fit with or without thermal deformation of the pulley [8, 9].

The mounting method depends to a large extent on the material the pulley and they are made of different materials (figures 1, 3).
Plastic wheels require additional bush fitting, in which case the sleeve is mounted on the shaft with close fit, while its connection to the rest of the pulley is of form-fitting nature. Scratches are made on its surface – by knurling, threading or it in the form of a polygon. In any case, the aim is to achieve quick and secure mounting of the sleeve in the plastic [10].

Measurements of the shaft on which the wheel is to be mounted indicate significant inaccuracies in its geometry. In conjunction with the wheel bore, interference and visible places are visible. Such a connection will cause stresses in the connection but also cause the displacement of the center of
rotation of the wheel O by the value dL, which will negatively affect the coupling in the gearbox (figure 4) [11, 12].

4. Modelling of fast axisymmetric connections

Experimental tests have confirmed that when mounting a pulley on a shaft made of elastic materials, it is often sufficient to introduce stress that does not exceed the yield point. Yet in the case of metal-plastic connections, that stress must be exceeded. The metal part is properly shaped so that permanent strain occurs in the material [13, 14]. The torque between the pulley and the shaft is transmitted by form-fitting coupling.

Regardless of the type of coupling present in the gearbox, the wheel after mounting should be at the point O. Hypothetical center of rotation that does not introduce errors in rotation. Any change in the position dL introduces errors in the cooperation of the wheel and the belt and has an impact on the friction force T, pressure force N, and thus on the stress S occurring in the belt, speed v, and on the state of coupling [1, 2] with the pulley (figure 5):

$$\frac{S_1}{S_2} = f(\sigma_k, \sigma_p, K_W, A_{kp}, Y, Z, dL)$$ \hspace{1cm} (1)

where: K_W – belt pitch utilization factor, σ_k – cord deformation (extension and twist), σ_p – belt material deformation causing belt tooth height change σ_{ph} and the width change σ_{pw} as well as shape change σ_{ps}, A_{kp} – adhesion factor for cord, belt material and additional materials, Y – the toothed belt pitch to toothed pulley pitch ratio, Z – belt and pulley wear of volumetric Z_v and energetic Z_e type and point O fault of position, $dL \to 0$.

5. Conclusion

Research on quick mounting of pulleys on axles and shafts indicate the advantages of solutions where the surfaces are shaped so that permanent surface strain occurs during assembly. The connection made in this way is an inseparable connection. In series production, especially of micro transmission gears,
neither disassembly of the belt nor the pulleys is provided for. The transmission gears in motor vehicles, installed in the power steering, braking, seat, door and sunshine roof control systems etc. are examples of such applications. Research indicates how important is the quality of pulley mounting for the efficiency of a belt transmission, which is why in series production it should be done with the utmost care.

6. References

[1] Domek G and Wilczyński M 2018 Modelling a timing belt pitch MATEC Web of Conferences 254 01011
[2] Domek G, Kołodziej A, Wilczyński M and Krawiec P 2017 The problem of cooperation of a flat belts with elements of mechatronic systems 55th International Scientific Conference on Experimental Stress Analysis 2017 - EAN 2017 May 30th - June 1st 2017 Nový Smokovec Slovakia Book of abstracts ed T Kula, P Frankovsky, R Hunady, J Bocko, F Trebuna and J Kostka (Košice: Technical University of Kosice) pp 706–711
[3] Krawiec P 2010 Numerical analysis of geometrical characteristics of machine elements obtained through CMM scanning Progress in Industrial Mathematics (Berlin;Heidelberg: Springer) pp 925–930
[4] Krawiec P, Domek G, Warguła Ł, Waluś K and Adamiec J 2018 The application of the optical system ATOS II for rapid prototyping methods of non-classical models of cogbelt pulleys MATEC Web of Conferences 157 01010
[5] Krawiec P, Grzelka M, Krocak J, Domek G and Kołodziej A 2019 A proposal of measurement methodology and assessment of manufacturing methods of nontypical cog belt pulleys Measurement 132 182–190
[6] Dyja R, Gawronska E, Grosser A, Jerusza P and Sczygiol N 2016 Estimate the impact of different heat capacity approximation methods on the numerical results during computer simulation of solidification Engineering Letters 24 237–245
[7] Łazarska M, Woźniak T, Ranachowski Z, Trafascki A and Domek G 2017 Analysis of acoustic emission signals at austempering of steels using neural networks Metals and Materials International 23 426–433
[8] Kopas P, Blatnický M, Sága M and Vaško M 2017 Identification of mechanical properties of weld joints of AlMgSi0.7Fe25 aluminium alloy Metalurgija 56 99–102
[9] Wilczyński D, Malujda I, Görecki J and Domek G 2019 Experimental research on the process of cutting transport belts MATEC Web of Conferences 254 05014
[10] Macko M et al 2017 The use of CAD applications in the design of shredders for polymers MATEC Web of Conferences 157 02027
[11] Wojtkowiak D, Talaśka K, Malujda I and Domek G 2018 Estimation of the perforation force for polymer composite conveyor belts taking into consideration the shape of the piercing punch The International Journal of Advanced Manufacturing Technology 98 2539–2561
[12] Wojtkowiak D, Talaśka K, Malujda I and Domek G 2018 Analysis of the influence of the cutting edge geometry on parameters of the perforation process for conveyor and transmission belts MATEC Web of Conferences 157 01022
[13] Sága M, Kopas P and Uhričik M 2018 Modeling and experimental analysis of the aluminium alloy fatigue damage in the case of bending - torsion loading Procedia Engineering 48 599–606
[14] Wilczyński M and Domek G 2019 Influence of tension layer quality on mechanical properties of timing belts MATEC Web of Conferences 254 05010