DO YOUNG GALAXIES EXIST IN THE LOCAL UNIVERSE? RED GIANT BRANCH DETECTION IN THE METAL-POOR DWARF GALAXY SBS 1415+437

A. Aloisi, R. P. van der Marel, J. Mack, C. Leitherer, M. Sirianni and M. Tosi

Received 2005 June 17; accepted 2005 August 15; published 2005 August 31

ABSTRACT

We present results from an HST/ACS imaging study of the metal-poor blue compact dwarf galaxy SBS 1415+437. It has been argued previously that this is a very young galaxy that started to form stars only \( \lesssim 100 \) Myr ago. However, we find that the optical color-magnitude diagram prominently reveals asymptotic giant branch and red giant branch (RGB) stars. The brightness of the RGB tip yields a distance \( D \approx 13.6 \) Mpc. The color of the RGB implies that its stars must be older than \( \sim 1.3 \) Gyr, with the exact age depending on the assumed metallicity and dust extinction. The number of RGB stars implies that most of the stellar mass resides in this evolved population. In view of these and other HST results for metal-poor galaxies, it seems that the local universe simply may not contain any galaxies that are currently undergoing their first burst of star formation.

Subject headings: galaxies: dwarf — galaxies: evolution — galaxies: individual (SBS 1415+437) — galaxies: irregular — galaxies: stellar content

1. INTRODUCTION

Within the framework of hierarchical formation, dwarf (\( M \lesssim 10^9 M_\odot \)) galaxies are often considered the first systems to collapse, supplying the building blocks for the formation of more massive galaxies through merging and accretion. So present-day dwarfs may have been sites of the earliest star formation (SF) activity in the universe. However, this hypothesis is challenged by the physical properties of blue compact dwarf (BCD) galaxies, which have blue colors indicative of a young stellar population. BCD galaxies are experiencing intense SF (\( 0.01-10 M_\odot \) yr\(^{-1} \); Thuan 1991) but still have a high neutral gas content (\( \gtrsim 10^9 M_\odot \); Thuan & Martin 1981). Oxygen abundances in H II regions generally imply a low metal content, with values in the range \( 12 + \log (O/H) = 7.1-8.3 \) (Izotov & Thuan 1999, hereafter IT99). Some BCD galaxies contain much less heavy elements than the majority of high-\( z \) galaxies. The most metal-poor BCD galaxies [\( 12 + \log (O/H) \approx 7.6 \)] have therefore been pointed out as particularly good candidate “primeval” galaxies in the nearby universe that started to form stars no more than \( \approx 40 \) Myr ago (IT99). This would support the view that SF in low-mass systems has been inhibited until the present epoch (Babul & Rees 1992). In any case, chemically poorly evolved star-forming dwarfs are the best laboratory in which to study SF processes similar to those occurring in the early universe, but with a spatial resolution and sensitivity that are impossible to achieve in high-\( z \) galaxies.

The most direct way to infer the age of a nearby galaxy is to resolve it into individual stars and study the color-magnitude diagram (CMD). The red giant branch (RGB) sequence, formed by evolved stars with ages in excess of \( \sim 1 \) Gyr, is of particular interest. An unambiguous RGB detection implies that SF was already active more than a gigayear ago, whereas absence of the RGB indicates that the system has started forming stars only recently. Here we report results from a new \( V- \) and \( I- \) band imaging study of the metal-poor BCD galaxy SBS 1415+437, performed with the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS).

Together with I Zw 18 (see § 4), SBS 1415+437 may be one of the best candidate primeval galaxies in the local universe. It has an elongated shape with a bright H II region at its southwest tip (see Fig. 1). The systemic velocity corrected for Local Group infall toward Virgo is 851 km s\(^{-1} \) (from the Lyon Extragalactic Database). Ignoring any possible peculiar velocity, this implies a distance \( D = 12.2 \) Mpc and an intrinsic distance modulus \( m - M = 30.42 \) for \( H_0 = 70 \) km s\(^{-1} \) Mpc\(^{-1} \). The galaxy has an oxygen abundance \( 12 + \log (O/H) = 7.59 \pm 0.01 \) (IT99) and was studied in considerable detail by Thuan et al. (1999, hereafter T99). It has a blue integrated color, \( V - I \approx 0.4 \) throughout the main body, indicating that young stars are dominating its light. Its SF regions were studied through UV and optical spectroscopy, stellar population synthesis modeling and chemical abundance determination. T99 concluded from all the combined evidence that SBS 1415+437 is a young galaxy that did not start to make stars until \( \approx 100 \) Myr ago. T99 also presented HST/WFPC2 data that resolved the brightest young stars, but these data were too shallow (\( 1800 \) s in \( V \) and \( 4400 \) s in \( I \)) to reach evolved asymptotic giant branch (AGB) or RGB stars.

2. OBSERVATIONS AND DATA REDUCTION

SBS 1415+437 was observed in HST GO program 9361 using the ACS Wide Field Channel (WFC). The full field of view is \( \approx 200 \times 200 \) arcsec\(^2 \) with a pixel size of \( 0.05 \times 0.05 \) arcsec\(^2 \). Total integration times of \( 20,160 \) s were obtained for each of the filters F606W and F814W. The 16 optimally dithered single exposures per filter were reprocessed with the most up-to-date version of the ACS calibration pipeline. The exposures were registered, corrected for geometric distortion, and co-added with cosmic-ray rejection using the MultiDrizzle software. Figure 1 shows a true-color image created by combining the data from the two filters.

Point-source photometry was performed with the DAOPHOT/ALLSTAR package (Stetson 1987). A spatially variable point-spread function was inferred from the most isolated stars in the target vicinity and was fitted to the detected stars within the galaxy. A master catalog was created by matching peaks in ex-
Fig. 1.—True-color composite image of SBS 1415+437 showing a field of view of 52.5 \times 33.5 \text{arcsec}^2 centered on the target. HST/ACS F606W data (V) are shown in blue, and F814W data (I) in red. North is at about 14\textdegree from horizontal. The inset in the bottom right shows a single-band blowup of a 1 \times 1 \text{arcsec}^2 region to give a sense of the amount of crowding and noise. This region is neither a best case nor a worst case in terms of crowding, but is fairly typical for the main body of the galaxy.

cess of 4 \sigma in a sum of the V and I images, yielding \sim 21,000 detected objects. Because of the large number of dithered exposures, the master catalog is essentially free of instrumental artifacts such as cosmic rays or hot pixels. The vast majority of the detected sources are individual stars in the galaxy, with a small potential contamination from stellar blends and background galaxies (foreground star contamination is predicted to be negligible). We did not remove potentially contaminating sources from our catalog by applying cuts in sharpness or \( \chi^2 \), so as to not run the risk of rejecting bona fide stars in SBS 1415+437 as well. However, we did experiment with rejection strategies of various kinds and found that none of the results presented here depend on this aspect of the analysis.

Photometry was performed at the positions of the objects in the master catalog separately in the V- and I-band images. Aperture corrections were measured from stars in the frame and applied to all photometry. Corrections for imperfect charge transfer efficiency were applied based on extrapolation of the calibration of Riess & Mack (2004). Contamination to F606W by extended H\alpha emission was corrected in the photometric analysis through local background subtraction. Count rates were transformed to the Johnson-Cousins V and I magnitudes using the color-dependent synthetic transformations given by Sirianni et al. (2005), which have been shown to be accurate to \sim 0.02 mag.

The left panel of Figure 2 shows the inferred (\( V - I, I \)) CMD for the full area of the sky covered by the galaxy. The median random errors in the photometry are indicated in the figure. These errors do not account for the possible influence of star blending, which will generally add additional systematic uncertainties. An estimate of the 50% completeness limit is also shown in the figure. This estimate was obtained by fitting the combination of a parameterized completeness function and a model SF history to the observed CMD. The resulting estimate is an average over the galaxy, given that the actual completeness varies spatially depending on the level of crowding. The simple estimates of the errors and completeness in the left panel of Figure 2 suffice for the purposes of the present Letter. In a forthcoming follow-up paper we will present artificial star tests to estimate these quantities more robustly, and also as function of position in the galaxy. That paper will also contain more details about the data reduction and photometric analysis, and will discuss narrowband imaging obtained in the context of the same HST program.

3. CMD ANALYSIS

At bright magnitudes in the CMD (\( I \leq 25 \)), we find the same star types detected previously with WFPC2 (T99): main-sequence stars and their more evolved counterparts, the young supergiants. The combined feature of main-sequence stars and...
blue supergiants (evolved stars at the hot edge of their core He-burning phase) shows up near \( V - I \approx 0.0 \), while red supergiants appear near \( V - I \approx 1.3 \). Our deeper ACS data show, as expected, that these sequences extend down to much fainter magnitudes. But more importantly, the ACS data reveal the unmistakable presence of a much older population. AGB and carbon stars are seen at \( I = 24-26 \), with colors extending from \( V - I \approx 1.2 \) to as much as \( V - I \approx 4.0 \). Below \( I \approx 26.5 \), there is a prominent RGB with a pronounced RGB tip (TRGB).

We used the software developed by one of us (R. P. v. d. M.) and described in Cioni et al. (2000) to determine the TRGB magnitude: 

\[
I_{\text{TRGB}} = 26.67 \pm 0.02 \text{ (random)} \pm 0.03 \text{ (systematic)}.
\]

We also determined the color of the TRGB, using a histogram of the star colors in a magnitude range just below the TRGB: 

\[
(V - I)_{\text{TRGB}} = 1.28 \pm 0.02 \text{ (random)} \pm 0.03 \text{ (systematic)}.
\]

The systematic errors include the uncertainty introduced by the transformations from the ACS filters to the Johnson-Cousins bands, the algorithmic uncertainties associated with finding a discontinuity in the luminosity function, and the fact that this discontinuity is not infinitely steep due to observational uncertainties.

To fit the RGB we use theoretical isochrones from the Padua group, as compiled and transformed to the Johnson-Cousins system by Girardi et al. (2002).\(^5\) The models include a simple synthetic scheme for thermally pulsating AGB evolution. Their metallicity \( Z \) (the mass fraction of metals heavier than helium) samples the range from 0.0001 to 0.03. To constrain the age of the RGB stars with the help of these models, we need some independent knowledge of the metallicity and the internal reddening \( A_V \).

If SBS 1415+437 has the same ratio of oxygen to metals as the Sun, then the observed nebular oxygen abundance can be combined with the most up-to-date solar values 

\[
12 + \log (O/H) = 8.66 \quad \text{and} \quad Z = 0.0122 \quad \text{(Asplund et al. 2005)}
\]

to obtain 

\[
Z = 0.0010.
\]

However, if the galaxy has the same ratio of iron to metals as the Sun then the implied metallicity is only 

\[
Z = 0.0003,
\]

because the H \( \Pi \) regions in SBS 1415+437, like other BCD galaxies, are \( \alpha \)-enhanced compared to the Sun (T99). Either way, the RGB stars probably formed from gas that was more pristine and less metal-enriched than the present-day gas for which nebular abundances are available.

We therefore adopt 

\[
Z = 0.0010
\]
as a fairly firm upper limit to the metallicity of SBS 1415+437.

T99 used the Balmer decrement in a nuclear spectrum to estimate an internal reddening \( A_V = 0.25 \), corresponding to 

\[
E(V - I) = 0.13.
\]

We adopt this as an upper limit to the average extinction suffered by RGB stars, for three different reasons: (1) the nebular gas is usually associated with SF regions, which tend to be inherently more dusty than the regions in which older stars reside (as demonstrated explicitly for the case of the LMC; Zaritsky 1999); (2) the nuclear regions of galaxies often tend to be the most dusty ones; and (3) the T99 estimate did not account for possible Balmer absorption contamination from an underlying evolved population. Given the upper limit to \( E(V - I) \), and taking into account the random and systematic errors, we infer that the true unreddened color of the TRGB must lie in the range 

\[
1.10 \leq (V - I)_{\text{TRGB}} \leq 1.33.
\]

Figure 3 shows contours of the predicted TRGB color in the parameter space of metallicity versus age. The TRGB becomes redder if either age or metallicity is increased. The filled green area shows the region bounded by the available constraints on \( Z \) and \( (V - I)_{\text{TRGB}} \). It shows that the age of the observed red giants might be anywhere between \( \sim 1.3 \) Gyr and the Hubble time. To obtain the youngest ages, one must assume that the dust extinction \( A_V \), and metallicity \( Z \) are at the upper extremes of their allowed ranges.

For reference it is useful to consider one particular model in more detail. Let us choose the model with 

\[
Z = 0.0010 \quad \text{and} \quad A_V = 0
\]

and call this the “standard” model. To reproduce the observed color of the TRGB in this model, the age of the RGB stars must be 2.2 Gyr. The absolute magnitude of the TRGB at this age is 

\[
M_{I,\text{TRGB}} = -3.99
\]

This implies a distance modulus 

\[
M - M_p = 30.66 \quad (D \approx 13.6 \text{ Mpc})
\]

The left panel of Figure 2 overplots in red the RGB for the 2.2 Gyr isochrone on top of the data, showing an excellent fit. The right panel of Figure 2 plots isochrones for other ages in the standard model and also shows good qualitative agreement with the other sequences in the observed CMD. Only the carbon star sequence is not well fit, which is a known shortcoming of these stellar evolution models (Marigo et al. 2003).

The inferred TRGB distance modulus for the standard model has a systematic error of at least 0.1 mag due to uncertainties in the evolutionary calculations (e.g., Bellazzini et al. 2004). There is an additional systematic uncertainty associated with the unknown dust extinction \( 0 \leq A_V \leq 0.12 \). So overall the result agrees well with the value 

\[
M - M_p = 30.42
\]

implied by straightforward application of the Hubble law. It also agrees with a simple estimate that can be obtained from the carbon stars. Their model \( I \)-band magnitude is 

\[
I = 25.78 \pm 0.04
\]

(see Fig. 2). If

![Fig. 3.—Curved solid lines: Contours of constant TRGB color in the parameter space of log Z vs. log (age). The age is expressed in years. The metallicity Z runs from 0.0001 at the bottom of the plot to 0.0122 (the solar metallicity Z, Asplund et al. 2005) at the top of the plot. The contours were calculated from the Padua model isochrones and run from (V - I)$_{TRGB}$ = 1.0 in the bottom left to (V - I)$_{TRGB}$ = 3.6 in the top right, in steps of 0.1. The blue curve corresponds to the actually observed color (V - I)$_{TRGB}$ = 1.28. The red dot on this curve marks the parameter combination for which the RGB is shown in the left panel of Fig. 2. The green area marks the region in which the RGB stars of SBS 1415+437 must reside, given the available constraints on its metallicity and dust extinction.](image-url)
We assume that these carbon stars are on average as luminous as those in the LMC at $m - M = 18.5 \pm 0.1$ (van der Marel & Cioni 2001), then SBS 1415+437 must have $m - M = 30.45 \pm 0.11$ (random). The age and metallicity dependence of the carbon star magnitudes is poorly known, but probably adds at least $-0.2$ mag of systematic error to this estimate. Either way, these agreements provide an independent reason for why the RGB stars in SBS 1415+437 cannot be younger than $\sim 1.3$ Gyr. Not only would such young RGB stars have a TRGB that is bluer than observed, but $M_{\text{TRGB}}$ would also be up to 2 mag fainter than the usual value (Barker et al. 2004) since in the youngest RGB stars, He ignites in nondegenerate cores. The implied TRGB distance modulus of SBS 1415+437 would then be quite inconsistent with the values implied by the Hubble law and the observed carbon star brightnesses. Moreover, for ages below $\sim 1.3$ Gyr, the RGB and its tip cease to be well-defined features in the CMD, in conflict with the observed CMD morphology in the left panel of Figure 2.

At $I = 27$, the observed RGB has a Gaussian $V - I$ dispersion of 0.19 (see Fig. 2, left panel), which is twice the median photometric error. This might be because the photometric random errors underestimate the true errors. Alternatively, the observed RGB width may indicate an intrinsic spread in properties. For the standard model, the observed RGB width can be reproduced with a Gaussian dispersion of either 0.60 dex in $Z$ or 0.31 dex in age. A spread in the extinctions $E(V - I)$ toward individual stars might also contribute toward the observed width.

The mass in evolved stars can be estimated using the best-fitting (2.2 Gyr) isochrone in the standard model. For a Salpeter initial mass function (IMF) from 0.1 to 100 $M_\odot$, only one in $2.4 \times 10^4$ randomly drawn stars is observed in a 1 mag range below the TRGB. Since we actually observe $\sim 2500$ stars there (with $1.0 \leq V - I \leq 1.5$), the galaxy must have $\sim 6 \times 10^7$ stars on this isochrone. The associated mass is $2.1 \times 10^7 M_\odot$ (the average mass per star is 0.35 $M_\odot$ for the adopted IMF). The mass increases if the RGB stars are assumed to be older. T99 estimated the mass in young stars ($\leq 100$ Myr) to be only $1.2 \times 10^6 M_\odot$. Detailed modeling of the SF history will be presented in a forthcoming paper, but preliminary results broadly confirm that at least 80% of the stellar mass of SBS 1415+437 resides in stars with ages $\geq 1.3$ Gyr. The follow-up paper will also address the variations in the SF history along one particular region.

4. CONCLUSIONS AND DISCUSSION

We have used HST/ACS to detect AGB and RGB stars in the metal-poor BCD galaxy SBS 1415+437. The data imply that most of the stellar mass of this galaxy resides in stars older than $\sim 1.3$ Gyr. It was proposed previously that this galaxy (T99), and others like it (IT99), did not form stars more than $\sim 100$ Myr ago. This was based primarily on interpretation of integrated spectra and heavy-element abundances in H II regions. Our results show that such data should be used with caution when addressing the SF history of the underlying stellar population.

Our results add to the growing list of low-metallicity galaxies in which an RGB has been detected with HST, including the BCD galaxies I Zw 36 [12 + log (O/H) = 7.77; $D = 5.9$ Mpc; Schulte-Ladbeck et al. 2001], VII Zw 403 [12 + log (O/H) = 7.69; $D = 4.5$ Mpc; Schulte-Ladbeck et al. 1999], and UGC 4483 [12 + log (O/H) = 7.54; $D = 3.2$ Mpc; Dolphin et al. 2001; Izotov & Thuan 2002] and the Local Group irregular galaxies Leo A [12 + log (O/H) = 7.30; Tolstoy et al. 1998, Schulte-Ladbeck et al. 2002] and SagDIG [12 + log (O/H) = 7.26–7.50; Momany et al. 2005]. The situation for the most metal-poor BCD galaxy, I Zw 18, has been less clear-cut, possibly because it is more metal-poor than any other galaxy studied [12 + log (O/H) = 7.18 ± 0.01; IT99] or because of its larger distance ($D \approx 15$ Mpc). Early HST images did reveal AGB stars in I Zw 18 (e.g., Aloisi et al. 1999; Östlin 2000), but Izotov & Thuan (2004) did not detect an RGB in more recent deeper imaging with ACS. However, the latter result has now been challenged by Momany et al. (2005) based on a better photometric analysis of the same data. They show that many red sources do exist at the expected position of an RGB and that their density in the CMD drops exactly where a TRGB would be expected. Additional HST/ ACS data of I Zw 18 may be needed for a conclusive understanding of its SF history. But either way, the preponderance of the evidence now seems to suggest that the local universe simply may not contain any galaxies that are currently undergoing their first burst of star formation.

Support for proposal 9361 was provided by NASA through a grant from STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555. E. Smith and T. Brown are acknowledged for their advice on the photometric reduction of crowded fields observed with ACS.

REFERENCES

Aloisi, A., Tosi, M., & Greggio, L. 1999, AJ, 118, 302
Asplund, M., Grevesse, N., & Sauval, J. 2005, in ASP Conf. Ser. 336, Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, ed. T. G. Barnes III & F. N. Bash (San Francisco: ASP), 25
Bellazzini, M., Ferraro, F. R., Sollima, A., Pancino, E., & Origlia, L. 2004, A&A, 424, 199
Babul, A., & Rees, M. J. 1992, MNRAS, 255, 346
Barker, M. K., Sarajedini, A., & Harris, J. 2004, ApJ, 606, 869
Cioni, M. R., van der Marel, R. P., Loup, C., & Hading, H. J. 2000, A&A, 359, 601
Dolphin, A. E., et al. 2001, MNRAS, 324, 249
Girardi, L., Bertelli, G., Bressan, A., Chiosi, C., Groenewegen, M. A. T., Marigo, P., Salasnich, B., & Weiss, A. 2002, A&A, 391, 195
Izotov, Y. I., & Thuan, T. X. 1999, ApJ, 511, 639 (IT99)
—____. 2002, ApJ, 567, 875
—____. 2004, ApJ, 616, 768
Marigo, P., Girardi, L., & Chiosi, C. 2003, A&A, 403, 225
Momany, Y., et al. 2005, A&A, 439, 111
Östlin, G. 2000, ApJ, 535, L99
Riess, A., & Mack, J. 2004, ACS Instrument Science Report 2004-006 (Baltimore: STScI)
Schulte-Ladbeck, R. E., Hopp, U., Crone, M. M., & Greggio, L. 1999, ApJ, 525, 709
Schulte-Ladbeck, R. E., Hopp, U., Drozdovsky, I. O., Greggio, L., & Crone, M. M. 2002, AJ, 124, 896
Schulte-Ladbeck, R. E., Hopp, U., Greggio, L., Crone, M. M., & Drozdovsky, I. O. 2001, AJ, 121, 3007
Siriani, M., et al. 2005, PASP in press (astro-ph/0507614)
Stetson, P. B. 1987, PASP, 99, 191
Thuan, T. X. 1991, in Massive Stars in Starbursts, ed. C. Leitherer et al. (Cambridge: Cambridge Univ. Press), 183
Thuan, T. X., Izotov, Y. I., & Foltz, C. B. 1999, ApJ, 525, 105 (T99)
Thuan, T. X., & Martin, G. E. 1981, ApJ, 247, 823
Tolstoy, E., et al. 1998, AJ, 116, 1244
van der Marel, R. P., & Cioni, M.-R. L. 2001, AJ, 122, 1807
Zaritsky, D. 1999, AJ, 118, 2824