A Neutral “Aluminocene” Sandwich Complex: η^1- versus η^5- Coordination Modes of a Pentaarylborole with ECp* ($E = Al, Ga$; Cp* = C$_5$Me$_5$)

Christian P. Sindlinger* and Paul Niklas Ruth

anie_201907749_sm_misellaneous_information.pdf
Table of Contents

Supporting Information

Table of Contents

Experimental Details ... S2
- General Information .. S2
- NMR spectroscopy .. S2
- Mass spectrometry .. S2
- Starting materials and reagents .. S2

Synthesis and Analytical Data .. S3
- \(\eta^5\{1-(3',5'\text{-} \text{Bis}-(\text{trifluoromethyl})\text{-} \text{phenyl})\text{-}2,3,4,5\text{-} \text{tetrakis}(3',5'\text{-} \text{di-tert.} \text{-} \text{butylphenyl})\text{-} \text{borole}\}\text{-} \eta^5\text{-Cp^*}-\text{Aluminocene} \) .. S3
- \(\eta^1\{1-(3',5'\text{-} \text{Bis}-(\text{trifluoromethyl})\text{-} \text{phenyl})\text{-}2,3,4,5\text{-} \text{tetrakis}(3',5'\text{-} \text{di-tert.} \text{-} \text{butylphenyl})\text{-} \text{borole}\}\text{-} \eta^1\text{-Cp^*}-\text{Gallium} \) .. S13

Crystallographic Details .. S23
- Data Acquisition and Processing .. S23
- Crystallographic and Refinement Details 1 .. S23
- Refinement Details 2 .. S24

Computational Details .. S25
- Structure Optimisation, Frequency Calculation and Thermochemical Approximations S25
- Summary GIAO-NMR computations ... S26
- Frontier Orbital Depictions .. S28
- Topology Analyses .. S28
- NBO and NRT Analyses .. S30

XYZ-coordinates of optimised structures .. S31

Literature ... S34
Experimental Details

General Information

All manipulations requiring handling under inert conditions were carried out under argon atmosphere using standard Schlenk techniques or an MBraun Glovebox with an Ar atmosphere. Benzene was obtained from an MBraun SPS and stored over molecular sieves, toluene and ether were distilled from sodium and degassed. Hexane and pentane were distilled from Na/K alloy. THF was distilled from potassium. Benzene-^{d6} and toluene-^{d8} were distilled from potassium, degassed and stored in a glove box.

Elemental analyses were performed by the Analytisches Labor, Institut für Anorganische Chemie, Universität Göttingen.

NMR spectroscopy

NMR spectra were recorded with either a Bruker Avance III 400 NMR spectrometer equipped with a 5 mm BBFO ATM probe head and operating at 400.13 (1^H), 100.61 (13^C), 128.38 (19^F) and 376.45 MHz (19^F) along with a variable temperature set-up or a Bruker Avance Neo 400 NMR spectrometer with a CryoProbeProdigy BB ATM probe head operating at 400.25 MHz (1^H) or a Bruker AVIII HD 500 NMR spectrometer with a CryoProbeProdigy ATM probe head and operating at 500.13 (1^H) and 130.35 MHz (27^{Al}). Chemical shifts are reported in δ values in ppm relative to external Me₄Si and, if not otherwise stated, referenced using the chemical shift of the respective solvent signal. The proton and carbon signals were assigned where possible via a detailed analysis of 1^H–1^H COSY, 1^H–1^H NOESY, 1^H–13^C HSQC, 1^H–13^C HMBC NMR spectra.

Young-type teflon-valve borosilicate NMR tubes have been used throughout the study.

Mass spectrometry

Mass spectra were recorded by the Zentrale Analytik within the Faculty of Chemistry, Göttingen applying a Liquid Injection Field Desorption Ionisation-technique on a JEOL accuTOF instrument with an inert-sample application setup under argon atmosphere. The injection capillary was washed several times with dry, distilled and inertly injected toluene before the samples were injected. Samples usually had a concentration of 1 – 2 mmol/L in toluene and were prepared in a glovebox.

Starting materials and reagents

1-(3',5'-Bis-(trifluoromethyl)phenyl)-2,3,4,5-tetrakis(3',5'-di-tert.-butylphenyl)-borole was prepared as previously reported.\[^2\]

Cp*SiMe\(_3\)[\(^{31}\)] Cp*AlBr\(_2\)[\(^{41}\)] (Cp*Al)\(_2\)[\(^{41}\)] and Cp*Ga[\(^{55}\)] were prepared along procedures as reported in the literature. (AlCp*)\(_4\) was recrystallised twice from benzene. GaCp* was distilled and stored at −40°C in a freezer.
Synthesis and Analytical Data

η^5-[1-(3',5'-Bis-(trifluoromethyl)phenyl)-2,3,4,5-tetakis(3',5'-di-tert.-butylphenyl)-borole]- η^5-Cp*-Aluminocene

In a glovebox, to a suspension of (AlCp*)₄ (30 mg, 46.3 μmol, 0.25 eq) in benzene (3 mL), an intensely green solution of 1-(3',5'-Bis-(trifluoromethyl)phenyl)-2,3,4,5-tetakis(3',5'-di-tert.-butylphenyl)-borole A (190.3 mg, 0.185 mmol, 1 eq) in dry, degassed benzene (1 mL) was added at ambient temperature and the mixture was stirred for 72h. Over the course of the slow reaction, undissolved (Cp*Al)₄ is continuously dragged into solution and the mixture slowly turns yellow. ¹H-NMR spectroscopic examination reveals clean conversion. The solvent is removed under reduced pressure and the pale-yellow residue is dissolved in toluene (ca. 2-3 mL). The solution is stored at –40°C for two days. Fractions of crystalline yield can be collected and drying under vacuum gives a combined yield of η^5-[1-(3',5'-Bis-(trifluoromethyl)-phenyl)-2,3,4,5-tetakis(3',5'-di-tert.-butylphenyl)-borole]-η^5-Cp*-Aluminocene (1) (180 mg, 0.151 mmol, 82%) of a colourless to pale yellow crystalline material. Crystals grow from saturated benzene solutions at ambient temperature or toluene or hexane solutions at –40°C.

NMR: ¹H (400.25 MHz, 298.2K, C₆D₆, C₆D₆-H at 7.15 ppm): 7.93 (br s, 2H, o-H₃), 7.79 (br s, 1H, p-

η^5-H₃), 7.29 (t, JHH = 1.8 Hz, 2H, p-H₃₂,₃), 7.25 (t, JHH = 1.8 Hz, 2H, p-H₃₄), 6.97 (br s, 4H, o-H₃₂,₃), 6.89 (br s, 4H, o-H₃₂,₃), 2.16 (s, 15H, Cp*-Me), 1.19 (s, 36H, Ar₂,₅-C(Me₃)), 1.16 (s, 36H, Ar₃,₄-C(Me₃)).

¹³C[¹H] (100.61 MHz, 300K, C₆D₆) solvent signal at 128.0 ppm): 149.8 (m-C₃₉), 149.7 (m-C₃₉), 144.2 (broad, ipso-C₃₉), 138.5 (ipso-C₃₉), 135.9 (ipso-C₃₉), 135.7 (br q, JCF = 3 Hz, o-C₃₉), 130.1 (q, JCF = 32 Hz, m-C₃₉), 128.4 (s, putatively borole-C₃₉), 126.6 (o-C₃₉), 126.1 (superimposed with quartet at 124.8 ppm, o-C₃₉₂,₃), 124.8 (q, JCF = 273 Hz, CF₃), 119.2 (p-C₃₉₄,₅), 119.1 (m, p-C₃₉), 118.5 (p-C₃₉₂,₃), 118.0 (br s, putatively borole-C₃₉), 117.7 (Cp*-C₃₉), 117.7 (Cp*-C₃₉), 34.8 (Ar₂,₅-C(Me₃)), 34.7 (Ar₃,₄-C(Me₃)), 31.58 (Ar₃,₄-C(Me₃)), 31.55 (Ar₂,₅-C(Me₃)), 11.5 (Cp*-C₃₉).

¹¹B (128.38 MHz, 298.3K, C₆D₆): 24.6 (broad, $\omega_{1/2} = \text{ca.} 1050$ Hz); (128.38 MHz, 198.2 K, toluene-d₆): 17.3 (broad, $\omega_{1/2} = \text{ca.} 500$ Hz).

¹⁹F[¹H] (376.45 MHz, 298.4K, C₆D₆): –62.45.

²⁷Al (130.35 MHz, 298.2K, C₆D₆): –86.2 (broad, $\omega_{1/2} = \text{ca.} 2650$ Hz).

Elemental Analysis: C₇₈H₉₀BF₆Al calcd C 78.63, H 8.63; observed C 78.68, H 8.63.

LIFDI-MS: calcd exact mass: 1190.78 m/z; observed m/z: 1189.7 (20%), 1190.7 (100%), 1191.7 (80%), 1192.7 (30%), 1193.7 (10%).
Crystallographic details

Crystals grow from concentrated benzene solutions at ambient temperature or toluene or hexane solutions at −40°C. Numerous attempts to change the crystallisation conditions have been made.

Crystals from benzene, toluene and hexane have been examined on a diffractometer. All crystals did not reveal reflections at higher resolutions than ca. 1.2 Å. Closer examination of the structures revealed that the crystals tend to be twinned and systematically reveal in all cases a disorder of the whole molecule which accounts for the poor resolutions. The data clearly allow the identification of the key structural fragment of an aluminium atom that is located in the center between the borole- and Cp-rings and thus confirms the \(\eta^5 \)-coordination mode. Modelling of the severe disorder lead to a rather poor data-to-parameter ratio.

Opposed to ambient atmosphere the crystals suspended in oil rapidly lose any crystallinity and crystal examination and picking was only efficiently possible using an XTEMP-setup.

For further detail of the refinement and modelling of the structure please see below (Crystallographic Section).

Crystal crop from benzene:

![Crystal crop from benzene](image1)

Crystal crop from toluene:

![Crystal crop from toluene](image2)
	1 from Toluene	1 from Benzene	1 from Hexane
CCDC number	1935771	not deposited	not deposited
empirical formula	C₇₈H₁₀₂AlBF₆ + solvent	C₇₈H₁₀₂AlBF₆ + solvent	C₇₈H₁₀₂AlBF₆ + solvent
formula weight	1191.38	1191.38	1191.38
T / K	100(2)	100(2)	100(2)
λ / Å	0.71073	0.71073	0.71073
crystal system	monoclinic	monoclinic	monoclinic
space group	P₂₁/n	P₂₁/n	P₂₁/n
a / Å	14.770(4)	14.763(2)	14.665(2)
b / Å	17.075(5)	7.123(2)	16.908(2)
c / Å	34.408(10)	33.817(3)	33.643(3)
β / °	97.27(2)	97.82(2)	102.37(2)
V / Å³	8608(4)	8469(2)	8148(2)
Z	4	4	4
ρ / Mg m⁻³	0.919	0.934	0.971
μ / mm⁻¹	0.070	0.071	0.074
F(000)	2568	2568	2568
crystal size / mm⁻³	0.415 x 0.309 x 0.100	0.416 x 0.121 x 0.100	0.305 x 0.143 x 0.061
θ range / °	1.193 to 18.122	1.216 to 15.897	1.239 to 18.012
index ranges	-12 ≤ h ≤ 12	-11 ≤ k ≤ 11	-8 ≤ k ≤ 12
	-14 ≤ k ≤ 14	0 ≤ l ≤ 13	-14 ≤ k ≤ 14
	-29 ≤ l ≤ 30	0 ≤ l ≤ 26	-29 ≤ l ≤ 29
refl. Collected	75486	63300	13076
indep. reflections/ Rint	5992 / 0.0692	4052 / 0.0458	5609 / 0.0419
completeness to θmax	99.4 %	99.7 %	99.8 %
data/restraints/parameters	5992 / 8425 / 1276	4052 / 8469 / 1276	5609 / 8645 / 1276
GooF	1.044	1.077	1.355
final R indices [I>2sigma(I)]	0.0830 / 0.2047	0.0959 / 0.2246	0.1096 / 0.3132
R indices (all data)	0.1024 / 0.2193	0.1023 / 0.2283	0.1520 / 0.3463
largest diff. peak and hole / eÅ⁻³	0.399 / -0.264	0.241 / -0.188	0.470 and -0.421
absorption correction	multiscan	multiscan	multiscan
twin fractions	-	0.918 / 0.082	-
SQUEEZE: Vsolv / Å³	1856	1734	1374
SQUEEZE: Vsolv / Vcell	22 %	20 %	17 %
SQUEEZE: number of e⁻	544	466	312
11B-NMR spectrum (background suppressed) of 1-[3',5'-CF3][2](C8H3)][2.3.4.5-[3',5'-tBu2](C8H3)][borole x AlCp* in C6D6
(standard borosilicate nmr tube)
11B-NMR spectrum (background suppressed) of 1-[3',5'-(CF3)2(C6H3)],2,3,4,5-[3',5'-iBu2(C6H3)]-borole x AlCp* in toluene-d8 at -75°C (standard borosilicate nmr tube)

27Al NMR spectrum of 1-[3',5'- (CF3)2(C6H3)],2,3,4,5-[3',5'-iBu2(C6H3)]-borole x GaCp* in C6D6

27Al NMR spectrum of 1-[3',5'- (CF3)2(C6H3)],2,3,4,5-[3',5'-iBu2(C6H3)]-borole x AlCp* in C6D6

standard borosilicate nmr tubes
VT-1H-NMR stackplot of Aluminium-complex 1 in toluene-d6, Referenced to toluene-d6 at 2.08 ppm.

30°C

15°C

5°C

-5°C

-15°C

-25°C

-35°C

-45°C

-55°C

-65°C

-75°C

ppm
VT-1H-NMR stackplot of Aluminium-complex 1 in toluene-d_8. Referenced to toluene-d_8 at 2.08 ppm.
Plots of the LIFDI-MS spectra
In a glovebox, to an intensely green solution of \(1-\{(3',5'\text{-Bis(trifluoromethyl)}\text{phenyl})-2,3,4,5\text{-tetrakis(3',5'\text{-di-tert.\}}\text{-butylphenyl})\text{-borole}\} \) (158.2 mg, 0.154 mmol, 1 eq) in dry, degassed benzene (2 mL) was added a solution of \(\text{GaCp}^*\) (31.5 mg, 0.153 mmol, 1 eq) in benzene (1 mL) at ambient temperature. Once and the mixture immediately changed from green to a bright orange-red. \(^1H\)-NMR spectroscopic examination reveals clean conversion. The solvent is removed under reduced pressure and the orange residue is dried for several hours to give the product 2 in virtually quantitative yield (188 mg, 0.152 mmol, 99%) as an orange solid. The compound is very soluble in hydrocarbons. Crystals were grown by concentrating benzene solutions through slow evaporation of the solvent at ambient temperature. Small fractions of crystalline material can also be obtained from storage of very concentrated solutions in pentane at \(-40^\circ\text{C}\).

NMR:

\(^1H\) (400.13 MHz, 298.2K, \(\text{C}_6\text{D}_6\) at 7.15 ppm): 7.86 (br s, 2H, \(\alpha\text{-H}_{\text{ar1}}\)), 7.64 (br s, 1H, \(\rho\text{-H}_{\text{ar1}}\)), 7.23 (t, \(4J_{HH}=1.9\text{ Hz}, 2H, \rho\text{-H}_{\text{ar3,4}}\)), 7.17 (t, \(4J_{HH}=1.8\text{ Hz}, 2H, \rho\text{-H}_{\text{ar2,5}}\)), 7.11 (d, \(4J_{HH}=1.8\text{ Hz}, 4H, \rho\text{-H}_{\text{ar2,5}}\)), 6.97 (d, \(4J_{HH}=1.9\text{ Hz}, 4H, \rho\text{-H}_{\text{ar3,4}}\)), 1.89 (s, 15H, \(\text{Cp}^*\text{-Me}\)), 1.17 (s, 36H, \(\text{Ar}_{3,4}\text{-C(Me)3}\)), 1.12 (s, 36H, \(\text{Ar}_{2,5}\text{-C(Me)3}\)).

\(^13C\{^1H\} (100.62 MHz, 298.7K, \(\text{C}_6\text{D}_6\), solvent signal at 128.0 ppm): 151.2 (borole \(\text{C}_{3,4}\)), 150.7 (broad, \(ipso\text{-C}_{\text{ar1}}\)), 150.2 (\(m\text{-C}_{\text{ar3,4}}\)), 149.7 (\(m\text{-C}_{\text{ar2,5}}\)), 149.6 (borole \(\text{C}_{2,5}\)), 140.1 (\(ipso\text{-C}_{\text{ar2,5}}\)), 140.0 (\(ipso\text{-C}_{\text{ar3,4}}\)), 135.8 (br q, \(\alpha\text{-C}_{\text{ar1}}\)), 130.4 (q, \(JC=32\text{ Hz}, m\text{-C}_{\text{ar1}}\)), 125.1 (\(\alpha\text{-C}_{\text{ar3,4}}\)), 124.6 (\(\alpha\text{-C}_{\text{ar2,5}}\)), 124.5 (q, \(JC=273\text{ Hz}, CF_3\)), 119.4 (m, \(\rho\text{-C}_{\text{ar1}}\)), 119.34 (\(\rho\text{-C}_{\text{ar3,4}}\)), 119.29 (\(\rho\text{-C}_{\text{ar2,5}}\)), 114.3 (\(\text{Cp}^*\text{-CMe}\)), 34.7 (\(\text{Ar}_{3,4}\text{-C(Me3)}\)), 34.6 (\(\text{Ar}_{2,5}\text{-C(Me3)}\)), 31.7 (\(\text{Ar}_{3,4}\text{-C(Me3)}\)), 31.5 (\(\text{Ar}_{2,5}\text{-C(Me3)}\)), 9.6 (\(\text{Cp}^*\text{-CMe}\)).

\(^11B\) (128.38 MHz, 298.2K, \(\text{C}_6\text{D}_6\)): 7.3 (broad, \(\omega_{z/2}=ca.\ 1550\text{ Hz}\)); (128.38 MHz, 223.1 K, toluene-\(d_8\)): −0.4 (broad; due to superimposition with background no meaningful linewidth assignment possible).

\(^19F\{^1H\} (376.45 MHz, 298.3 K, \(\text{C}_6\text{D}_6\)): −62.46.

Elemental Analysis: \(C_{78}H_{102}BF_9\text{Ga}\) calcd C 75.91, H 8.33; observed C 75.60, H 8.50.

LIFDI-MS: calcd exact mass: 1232.72 m/z; observed only m/z patterns of the free borole (minor) and [borole × \(H_2O\)] (major).
Crystallographic details

Crystals suitable for X-ray analysis grow from benzene solutions carefully concentrated at ambient temperature by evaporation and storage of the very concentrated liquid for a few days.

Opposed to ambient atmosphere the crystals suspended in oil rapidly lose colour and crystallinity, and crystal examination and picking was performed using an XTEMP-setup.

Crystal crop from benzene:
Tabulated crystallographic data for 2.

Compound	2	
CCDC number	1935772	
Empirical formula	C_{78}H_{102}BGaF_{6} \times (C_{6}H_{6})	
Formula weight	1312.23	
T [K]	100(2)	
Λ [Å]	0.71073 (Mo, Kα)	
Crystal system	orthorhombic	
Space group	Pbca	
a [Å]	17.4388(13)	
b [Å]	29.760(2)	
c [Å]	29.925(3)	
α [°]	90	
β [°]	90	
γ [°]	90	
V [Å³]	15531(2)	
Z	8	
ρ [Mg m\(^{-3}\)]	1.122	
μ [mm\(^{-1}\)]	0.41	
F(000)	5616	
Crystal size [mm\(^3\)]	0.36 \times 0.13 \times 0.11	
Theta range [°]	1.4 – 27.9	
Index ranges		
–21 ≤ h ≤ 22		
–30 ≤ k ≤ 39		
–35 ≤ l ≤ 39		
Refl. collected	76338	
Indep. refl. / [R(int)]	18542/0.058	
Completeness to θ\(_{max}\)	99.8%	
Data/restraints/parameter	18542/1003/912	
GooF	1.01	
Final R indices		
[I > 2σ(I)]	R1 / wR2	
0.045 / 0.114		
R indices (all data)		
R1 / wR2		
0.080/0.099		
Largest diff. peak & hole [eÅ\(^{-3}\)]	0.52/–0.36	
Absorption correction	multiscan	
Plots of the NMR spectra

1H-NMR-spectrum of 1-(3',5'-((CF3)2(C6H3))-2,3,4,5-(3',5'-tBu2(C6H3))-borole x GaCp* in C6D6
referenced to C6D5H at 7.15 ppm

Figure 1: NMR spectrum of 1-(3',5'-((CF3)2(C6H3))-2,3,4,5-(3',5'-tBu2(C6H3))-borole x GaCp* in C6D6

*pentane

1H-NMR-spectrum of 1-(3',5'-((CF3)2(C6H3))-2,3,4,5-(3',5'-tBu2(C6H3))-borole x 1.1 eq GaCp*
referenced to (C6D5)CD2H at 2.08 ppm

Figure 2: NMR spectrum of 1-(3',5'-((CF3)2(C6H3))-2,3,4,5-(3',5'-tBu2(C6H3))-borole x 1.1 eq GaCp
1H-NMR-spectrum of 1-[3',5'-(CF₃)₂(C₆H₃)]2-2,3,4,5-[3',5'-iBu₂(C₆H₃)]-borole x GaCp⁺ in toluene-d₈ at -50°C. *# referenced to (CD₃)CD₂H at 2.08 ppm

* putatively free GaCp⁺

13C(1H)-NMR-spectrum of 1-[3',5'-CF₃(C₆H₃)]2-2,3,4,5-[3',5'-iBu₂(C₆H₃)]-borole x GaCp⁺ in C₆D₆
*# referenced to C₆D₆ at 128.0 ppm

q: indicates quartet signals from fluorine coupling

pentane
19F{1H}-NMR-spectrum of 1-[3',5'-((CF3)2)(C6H3)]-2,3,4,5-(3',5'-iBu2)(C6H3))-borole x GaCp* in C6D6

11B-NMR spectrum (background suppressed) of 1-[3',5'-((CF3)2)(C6H3)]-2,3,4,5-(3',5'-iBu2)(C6H3))-borole x GaCp* in C6D6
^{11}B-NMR spectrum (background suppressed) of 1-hexyl-2,3,4,5-tetraakis(2,6-diisopropylphenyl)-1,4-borole x GaCp in toluene-d8 at -50°C.
VT-1H-NMR stackplot of Gallium-complex 2 in toluene-d\textsubscript{6}. Referenced to toluene-d\textsubscript{6} at 2.08 ppm.

- 20°C
- 10°C
- 0°C
- -10°C
- -20°C
- -30°C
- -40°C
- -50°C
- -60°C
- -70°C

\begin{tabular}{c}
ppm
8.6
8.4
8.2
8.0
7.8
7.6
7.4
7.2
7.0
6.8
6.6
\end{tabular}
VT-1H-NMR stackplot of Gallium-complex 2 in toluene-d$_4$, Referenced to toluene-d$_4$ at 2.08 ppm.

20°C

10°C

0°C

-10°C

-20°C

-30°C

-40°C

-50°C

-60°C

-70°C

ppm
Plots of the LIFDI-MS spectra

Control Experiment (Free Borole in Toluene)

No signals (e.g. GaCp* derivatives) were detected in the lower mass region 0 - 800 m/z
Crystallographic Details
Data Acquisition and Processing

X-ray data for 1, and 2 were collected on Bruker APEX II CCD diffractometers with either Mo Kα radiation from a IµS or spinning anode source. The data were integrated using SAINT implemented in Brukers APEX3 programme suite. SADABS or TWINABS were used for multi-scan absorption correction. Structure solution was performed with SHELXT and refined using SHELXL along the graphical user interphase of ShelXle. In some cases DSR has been applied to treat disordered solvent molecules. All hydrogen atoms were placed with a riding model. Further details on the individual data sets are tabulated in the analytical section of each compound. All structures were deposited with the CCSD.

Crystallographic and Refinement Details 1

Crystals of compound 1 were obtained from three different solvents (toluene, benzene and hexane) from concentrate solutions at ambient or low temperature (~40°C). The crystals are stable under argon atmosphere but lose their crystallinity under ambient conditions in inert oil within minutes. Crystals were therefore mounted with an XTEMP device.

As the crystals of 1 from benzene were twinned, the two reciprocal lattices were sorted using RLATT from within the Bruker Apex 3 2018.7-2 GUI. All three datasets were integrated using SAINT 8.38A.

All three structures showed disorder within the solvent molecules in solvent accessible voids and within the majority (the entire borole sub unit) of the structure itself, which in consequence results in very poor intensity of reflections with a resolution higher than about 1.2 Å. To fit the solvent molecules with as little parameters as possible, the solvent molecules within the moieties were fitted using the SQUEEZE model, as implemented in PLATON.

The disorder of the Ph* and XylF groups were treated differently. The Ph* moiety was modelled using a modified mesityl group as included in the DSR programme with all the non tert-butyl methyl group positions being refined as a rigid-body. The positions of the bound methyl groups were refined freely (see figure on the right).

Within the five membered borole unit, C₃ and C₅ positions were restrained to have similar 1,2 and 1,3 distances. The resulting target symmetry of the restraints would be equivalent to a mirror plane through the boron atom and the opposing carbon-carbon bond. All C-C distances from the borole ring to the outer substituents were refined to be equivalent as well. All tert-butyl groups were restrained to have similar 1,2 and 1,3 distances. Equivalent restraints were applied to the trifluoromethyl groups.

Atomic displacement parameters of atoms within the disordered borole moiety were refined to be have similar Uij components to their neighbours (SIMU). Additionally, rigid body restraints for the atomic displacement parameters were applied to these atoms (RIGU).

With the very similar electron density pattern of a (C-Ph*) vs a (B-XylF) moiety, the quasi five-fold symmetry, as well as the disorder, pose the question, whether there are additional orientations. All putative combinations of boron positions for the two disorders were evaluated, with the reported structures showing a significantly lower R-value than the alternatives. The difference can, in large part, be attributed to the fit of the CF₃ groups. The model should therefore represent the two main positions of the borole moiety. However, due to the nature of the disorder and the limited resolution, additional minor occupation where the ring overlaps but is rotated differently, cannot be ruled out.

Despite the considerable efforts the resulting data-to-parameter ratio was still low for all three structures. This is an inherent result from the structure itself, as already mentioned before. However, the derived features are similar between all three structures and consistent with all other experimental and especially theoretical results.
Tabulated values for the key structural features of the “Aluminocene” 1 from various data sets. Please note, that there are differences of the Al–B distances in Disorder 1 and Disorder 2. This may indicate that the exact assignment/modelling of (C-Ph*) vs.(B-Xyl)-units may be incomplete.

1 from Toluene

	Disorder 1	Disorder 2	Disorder 1	Disorder 2	Disorder 1	Disorder 2
occupation / %	49.0(2)	51.0(2)	59.4(3)	40.6(3)	63.7(2)	36.3(2)
d(Al - B) / Å	2.31(2)	2.13(2)	2.24(2)	2.08(6)	2.25(2)	2.15(2)
d(Al - Cₐ,1) / Å	2.25(2)	2.00(2)	2.20(2)	2.01(3)	2.12(2)	2.25(2)
d(Al - Cₛ,2) / Å	2.10(2)	2.22(2)	2.11(3)	2.27(4)	2.23(2)	2.02(2)
d(Al - Cₛ,1) / Å	2.19(2)	2.17(2)	2.15(3)	2.20(5)	2.18(2)	2.30(2)
d(Al - Cₛ,2) / Å	2.12(2)	2.32(2)	2.12(2)	2.35(3)	2.20(2)	2.15(2)
d(B - Cₐ,1) / Å	1.54(2)	1.53(2)	1.54(2)	1.55(4)	1.54(2)	1.53(2)
d(B - Cₛ,1) / Å	1.53(2)	1.54(2)	1.54(2)	1.56(4)	1.55(2)	1.56(2)
d(Cₛ,1 - Cₛ,2) / Å	1.46(2)	1.47(2)	1.45(2)	1.48(3)	1.46(2)	1.46(2)
d(Cₛ,1 - Cₛ,2) / Å	1.47(2)	1.47(2)	1.45(2)	1.48(3)	1.45(2)	1.46(2)
d(Cₛ,2 - Cₛ,2) / Å	1.42(2)	1.41(2)	1.42(2)	1.42(4)	1.44(2)	1.43(2)

Depictions of the disordered borole subunit within the molecule 1. Part 1 (Blue), Part 2 (orange). The second fragment is a borole unit rotated by ca. 36° with an inversion of the paddlewheel tilt of the aryl groups. This major disorder, along with further disorder within the t-Bu groups causes the low resolution of the obtainable data.

Refinement Details 2

The structure contains one molecule of lattice benzene, which is disordered modelled using SIMU, RIGU and SAME commands. Two tert.-butyl groups and a CF₃ group are disordered and each modelled over two positions using SIMU, RIGU and SAME commands.
Computational Details

Structure Optimisation, Frequency Calculation and Thermochemical Approximations

For thermochemical approximations, structures were optimised with Gaussian09.D01\cite{14} applying the BP86 functional\cite{15} and Grimmes D3 dispersion correction\cite{16} with def2-SVP\cite{17} basis sets on all elements. Frequency calculations were performed on these structures and absence of imaginary frequencies confirmed true local minima on the potential energy surface. Thermochemical corrections stem from these calculations. Single point energies were calculated on these structures using a def2-TZVP basis set on all atoms.

Gaussian09 Thermochemistry BP86-D3/def2-TZVP	kcal/mol							
Hartree ---	E0	E0+ZVPE	H\(^N\)	G\(^N\)	dE\(\Delta\)	dE0+ZVPE	dH\^*	dG\^*
AlCp\(^*\)	-632.722537	-632.508421	-632.493222	632.54852				
GaCp\(^*\)	-2315.39782	-2315.18444	-2315.16894	-2315.2255				
A	-3268.97933	-3267.62881	-3267.54704	-3267.74717				
1	-3901.79893	-3900.23013	-3900.13451	-3900.35853				
2	-5584.42566	-5582.85951	-5582.76234	-5582.99003				
A + AlCp\(^*\) ➔ 1	-0.09707216	-0.09296516	-0.09425416	-0.06203816	-60.91	-58.30	-59.15	-39.43
A + GaCp\(^*\) ➔ 2	-0.04850441	-0.04625641	-0.04635541	-0.02036841	-30.44	-29.03	-29.09	-12.75

[a] Thermochemical corrections stem from BP86-D3-def-SVP optimisation and frequency calculations.
Summary GIAO-NMR computations

Computational examination was performed using ORCA (version 4.1).[18] For numerical accuracy, a gridsize of “5” and a final step gridsize of “6” is applied. GIAO-NMR spectroscopic properties were calculated as implemented as the default in ORCA4.1 applying RIJK-PBE[19] functional on structures previously optimised using the RI-BP86-D3BJ-def2TZVP/i model chemistry.[15, 17, 20] Input structures were based on X-ray structures of 2 and A. For NMR calculations of the reference set of small molecules, def2-TZVPP basis sets were chosen for B, Al and Ga and def2-TZVP for all other elements. For the rather large molecules 1 and 2, def2-TZVPP basis sets were chosen for B, Al and Ga, while a def2-TZVP basis was chosen for the core carbon atoms (namely borole C$_\alpha$ and C$_\beta$ positions, the ipso-C$_{ipso}$ atom as well as the inner cyclopentadienyl carbon atoms). A def2-SVP basis set was applied for all other atoms.

The reported 11B-NMR chemical shifts are referenced against the σ_{iso} values obtained for Et$_2$O-BF$_3$ with $\delta_{ref} = 0$ ppm.

The reported 27Al-NMR chemical shifts are referenced against the σ_{iso} values obtained for [Al(H$_2$O)$_6$]$^{3+}$ with $\delta_{ref} = 0$ ppm.

The reported 13C-NMR chemical shifts are internally referenced against the averaged σ_{iso} values of the five cyclopentadienyl signals with $\delta_{ref} = \delta_{calc}$ ppm.

\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
& $\sigma_{iso,calc}$ & $\delta_{iso,calc}$ & δ_{exp} \\
\hline
27Al-NMR & & & \\
[Al(H$_2$O)$_6$]$^{3+}$ & 579.3 (ref) & 0 (ref) & 0 (ref) \\
[AlCl$_6$] & 458.8 & 120.5 & 115.2 [21] \\
[Cp*$_2$Al]$^+$ & 691.8 & -112.5 & -102.9 [21] \\
tBu_3$Al & 299.5 & 279.8 & 255 [22] \\
\hline
11B-NMR & $\sigma_{iso,calc}$ & $\delta_{iso,calc}$ & δ_{exp} \\
BF$_3$(OEt)$_2$ & 101.2 (ref) & 0 (ref) & 0 (ref) \\
[Cp*$_2$B]$^+$ & 151.7 & -50.5 & -41.3 [22] \\
[Cp*$_2$BMe] & 27.8 & 73.4 & 81.9 [22] \\
\hline
1 & 669.3 & -90 & -86.2 \\
2 & 102.1 & -0.9 & -0.4 [223] \\
\hline
\end{tabular}
\caption{Experimental and calculated σ_{iso} and δ_{calc} values for selected compounds.}
\end{table}

\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& & 13C-NMR & & & & & 13C-NMR & & & \\
& & Cp* CMe & C$_\alpha$ & C$_\beta$ & ipso- & Cp* CMe & C$_\alpha$ & C$_\beta$ & ipso- & \\
& & & & & C$_{ipso}$ & & & & C$_{ipso}$ & \\
& & $\sigma_{iso,calc}$ & & & & & $\sigma_{iso,calc}$ & & & \\
\hline
1 & 63.6 & 181.3[20] (62.7, 62.8, 60.3, 66.5, 65.8) & 64.6 (62.1) & 55.2 (55.17, 55.29) & 36.5 & 66.8 & 181.3[20] (66.8, 65.9, 67.3, 64.6, 69.6) & 31.2 (32.4, 29.9) & 29.4 (32.9, 25.8) & 29.5 \\
2 & 117.7 (ref) & 117.9 & 126.1 & 144.8 & 114.3 (ref) & 149.9 & 151.7 & 151.6 \\
\hline
\end{tabular}
\caption{Experimental and calculated $\sigma_{iso,calc}$ values for selected compounds.}
\end{table}

For NMR calculations of the reference set of small molecules, def2-TZVPP basis sets were chosen for B, Al and Ga and def2-TZVP for all other elements. For the rather large molecules 1 and 2, def2-TZVPP basis sets were chosen for B, Al and Ga, while a def2-TZVP basis was chosen for the core carbon atoms (namely borole C$_\alpha$ and C$_\beta$ positions, the ipso-C$_{ipso}$ atom as well as the inner cyclopentadienyl carbon atoms). A def2-SVP basis set was applied for all other atoms.

The reported 11B-NMR chemical shifts are referenced against the σ_{iso} values obtained for Et$_2$O-BF$_3$ with $\delta_{ref} = 0$ ppm.

The reported 27Al-NMR chemical shifts are referenced against the σ_{iso} values obtained for [Al(H$_2$O)$_6$]$^{3+}$ with $\delta_{ref} = 0$ ppm.

The reported 13C-NMR chemical shifts are internally referenced against the averaged σ_{iso} values of the five cyclopentadienyl signals with $\delta_{ref} = \delta_{calc}$ ppm.

\begin{table}[h!]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
& & 13C-NMR & & & & & 13C-NMR & & & \\
& & Cp* CMe & C$_\alpha$ & C$_\beta$ & ipso- & Cp* CMe & C$_\alpha$ & C$_\beta$ & ipso- & \\
& & & & & C$_{ipso}$ & & & & C$_{ipso}$ & \\
& & $\sigma_{iso,calc}$ & & & & & $\sigma_{iso,calc}$ & & & \\
\hline
1 & 63.6 & 181.3[20] (62.7, 62.8, 60.3, 66.5, 65.8) & 64.6 (62.1) & 55.2 (55.17, 55.29) & 36.5 & 66.8 & 181.3[20] (66.8, 65.9, 67.3, 64.6, 69.6) & 31.2 (32.4, 29.9) & 29.4 (32.9, 25.8) & 29.5 \\
2 & 117.7 (ref) & 117.9 & 126.1 & 144.8 & 114.3 (ref) & 149.9 & 151.7 & 151.6 \\
\hline
\end{tabular}
\caption{Experimental and calculated $\sigma_{iso,calc}$ values for selected compounds.}
\end{table}

[a] The external reference 13C $\sigma_{iso,calc}$ value for SiMe$_4$ was calculated to be 186.9 ppm.
Figure SI Plots of δ_{exp} vs δ_{calc} to allow for an estimation of the reliability of the model chemistry to describe the NMR-chemical shift.
Frontier Orbital Depictions

Selected canonical frontier orbitals from BP86 calculations (vide supra) are shown. All drawn at an isosurface value of 0.04 a.u. using the programme ChemCraft for visualisation. All hydrogen atoms are omitted for the sake of clarity.

Compound 1 \(\eta^5\-\{(\text{PhC})_4\text{BXyl}\}, \eta^5\-\text{Cp}^*\-\text{Al(III)} \)

![LUMO+2, HOMO, HOMO-1](image)

Compound 2 \(\eta^1\-\{(\text{PhC})_4\text{BXyl}\}, \eta^5\-\text{Cp}^*\-\text{Ga(I)} \)

![LUMO, HOMO](image)

Topology Analyses

Topology analyses and Bader Charge-analyses were carried out using the Multiwfn programme or AIMAll on the RIBP86-D3BJ-def2TZVP wave function files obtained from ORCA.

![AIMAll plots for molecular excerpts of the topological analysis of compound 1 (left) and 2 (right)](image)

Figure S1 AIMAll plots for molecular excerpts of the topological analysis of compound 1 (left) and 2 (right). In both cases a contour plot of the Laplacian of the electron density \(\nabla^2 \rho(r) \) through the molecule’s central plane \(\{E-\text{B-}[\text{C}_5\text{F}_3\text{C}_5\text{H}_{3\text{prim}}]\} \) is also depicted. Bond critical points are depicted in green, ring critical points are depicted in red and cage critical points are depicted in blue. Blue lines indicate positive Laplacian (area of charge depletion), maroon dotted lines indicate negative Laplacian (area of charge concentration).
To shed further light onto the structure analysis of the aluminium sandwich complex further analyses were carried out. The results from topology analyses did not differ between wavefunctions obtained from BP86 or PBE0 functional calculations and no qualitative change between def-SVP basis sets and def2-TZVPP basis sets were observed. In all cases same CP and bonding path were found giving the same molecular graphs. We further investigated the parent all hydro substituted η^5,η^5-($\mathrm{C}_4\mathrm{BH}_5$),$\mathrm{C}_5\mathrm{H}_5$ Al complex. Structures have been optimised using both BP86 and PBE0 functional and def2-TZVPP basis sets. No imaginary frequencies were found confirming minimum structures. The geometries obtained are summarised in the following Figure.

Figure S1 Structural features of the optimised geometries for parent borole/Cp “aluminocenes”.

Some features of the QTAIM analyses for both calculations are depicted below. The isodensity surfaces show that electron density around the boron atom is significantly reduced when compared to the densities at C_α but also C_β.

Figure S1 Structural features of the optimised geometries for parent borole/Cp “aluminocenes”.

Some features of the QTAIM analyses for both calculations are depicted below. The isodensity surfaces show that electron density around the boron atom is significantly reduced when compared to the densities at C_α but also C_β.
Figure S1 AIMAll plots for (C₄BH₅)Al(C₅H₅) from PBE0-def2TZVPP (left) and BP86-def2TZVPP calculations. BCP (green), RCP (red) and CCP (blue).

Bader charges for model complex (C₄BH₅)Al(C₅H₅)

	BP86	PBE0	
Al1	2.2460	2.3647	
Borole	B2	1.6350	1.7559
	C3	-1.0462	-1.0989
	C4	-0.2460	-0.2645
	C5	-0.2455	-0.2631
	C6	-1.0455	-1.0998
	H7	-0.6122	-0.6447
	H8	0.0146	0.0122
	H9	0.0201	0.0190
	H10	0.0200	0.0193
	H11	0.0143	0.0116
	sum	-1.4914	-1.5531
Cp	C12	-0.2179	-0.2417
	C13	-0.1622	-0.1869
	C14	-0.1766	-0.1846
	C15	-0.2533	-0.2360
	C16	-0.2826	-0.2740
	H17	0.0596	0.0613
	H18	0.0583	0.0613
	H19	0.0583	0.0614
	H20	0.0610	0.0622
	H21	0.0634	0.0637
Cp	sum	-0.7919	-0.8133
Total	sum	-0.0373	-0.0017

NBO and NRT Analyses

NBO and NRT analyses were performed using NBO7 on a [C₄BH₅]²⁺ structure optimised using ORCA BP86-D3BJ and def2-TZVPP basis set.²⁸
Using ORCA4.1 RI-BP86-D3BJ-def2TZVP/j model chemistry

Optimised Structure of compound 1

Using ORCA4.1 RI

XYZ-coordinates of optimised molecules

C 8.163665000 14.559286000 21.705280000
H 8.933650000 14.486616000 22.797110000
H 7.119711000 14.756768000 23.848930000
C 7.939396000 10.364285000 18.361313000
C 8.857187000 11.252515000 19.406085000
H 9.510403000 7.816246000 20.894390000
H 9.339610000 10.364285000 20.427762000
H 9.411704000 8.956364000 20.091157000
F 10.059950000 9.5504014000 20.636599000
H 9.397189000 7.817408000 21.757801000
H 7.805500000 11.873660000 21.655945000
H 7.804200000 12.207290000 21.543400000
H 3.110911000 10.691110000 15.458095000
H 5.968420000 11.570935000 14.705225000
H 12.752610000 3.048866000 21.408500000
H 5.842060000 10.548713000 15.510780000
H 6.167420000 10.160260000 16.675041000
H 5.797630000 9.303665000 20.786606000
H 4.176212000 10.095432000 21.919673000
H 1.714605000 13.232240000 15.084517000
H 7.715465000 13.289890000 14.180616000
F 8.566878000 14.129460000 14.830580000
C 7.697740000 14.059776000 13.622011000
C 7.805115000 14.474600000 19.100747000
C 5.589280000 14.473460000 18.271319000
C 6.350732000 13.628260000 18.745074000
C 6.781300000 17.265104000 17.285219000
C 5.269420000 17.585842000 16.975926000
H 6.001636000 14.182385000 17.172471000
C 6.918400000 15.562090000 16.602129000
C 6.707724000 17.150640000 18.229900000
H 7.526440000 17.004916000 17.184480000
H 6.955290000 17.480070000 19.804022000
H 7.388130000 16.726661000 18.493154000
H 8.915536000 15.518620000 19.638152000
C 11.287260000 16.604200000 19.933060000
C 10.635850000 14.083250000 20.094365000
C 11.283570000 15.544810000 20.655924000
C 10.635850000 15.111010000 21.999486000
H 10.428824000 17.494987000 21.079415000
H 12.241850000 12.227830000 21.037831000
F 12.241850000 17.494987000 21.079415000
H 12.241850000 17.494987000 21.079415000
H 12.241850000 17.494987000 21.079415000
H 12.241850000 17.494987000 21.079415000
Atom	x (Å)	y (Å)	z (Å)
C	12.764559	8.825600	19.043780
H	13.742540	8.347040	18.892170
H	12.095390	8.037870	19.353209
H	12.869530	9.117610	19.902651
C	12.764559	8.825600	19.043780
H	13.742540	8.347040	18.892170
H	12.095390	8.037870	19.353209
H	12.869530	9.117610	19.902651

Optimised Structure of (C\(_4\)BH\(_5\))Al(C\(_5\)H\(_5\)) (PBE0-def2TZVPP)

Atom	x (Å)	y (Å)	z (Å)
C	9.536778	10.026770	20.644800
C	9.298470	12.947411	18.497036
H	10.154652	10.043267	21.533093
H	9.406129	7.833405	20.338824
C	11.351094	8.959050	20.002398
H	11.335230	11.743284	16.374383
H	12.407433	9.583030	18.643545
C	9.136480	8.259740	20.002398
H	10.293815	10.034740	18.617609
B	8.246239	10.669300	18.698756
C	9.100340	11.160290	19.886710
C	12.082790	10.931940	20.698533
H	8.053319	8.354040	18.137440
C	11.827546	8.788939	17.692980
H	8.111104	8.959050	16.693746
C	11.631101	10.883430	16.954392
C	12.820790	10.931940	20.698533
C	12.407433	9.583030	18.643545
C	9.298470	10.026770	20.644800
H	10.154652	10.043267	21.533093
H	9.406129	7.833405	20.338824

Optimised Structure of (C\(_4\)BH\(_5\))Al(C\(_5\)H\(_5\)) (BP86-def2TZVPP)

Atom	x (Å)	y (Å)	z (Å)
C	9.136480	8.259740	20.002398
H	10.293815	10.034740	18.617609
B	8.246239	10.669300	18.698756
C	9.100340	11.160290	19.886710
C	12.082790	10.931940	20.698533
H	8.053319	8.354040	18.137440
C	11.827546	8.788939	17.692980
H	8.111104	8.959050	16.693746
C	11.631101	10.883430	16.954392
C	12.820790	10.931940	20.698533
C	12.407433	9.583030	18.643545
H	10.140118	10.643370	21.474796
H	9.081225	12.313720	19.701370
H	10.140118	10.643370	21.474796
H	9.650956	10.129750	20.820370
H	8.239770	7.981784	18.582760
C	11.696840	8.743647	17.363027
C	11.388520	9.842710	16.514910
C	11.783200	11.037270	17.170620
C	12.346780	10.689310	18.432860
C	12.306110	9.259140	18.554920
H	11.487050	7.698168	17.163180
H	10.861450	9.786180	15.576300
H	11.621250	12.047520	16.808616
H	12.732402	11.377650	19.178298
H	12.661940	8.677293	19.390240

Optimised Structure of (C\(_4\)BH\(_5\))\(_2\) (BP86-def2TZVPP)

Atom	x (Å)	y (Å)	z (Å)
B	8.246239	10.669300	18.698756
C	9.136480	8.259740	20.002398
H	10.154652	10.043267	21.533093
H	9.406129	7.833405	20.338824
Literature

[1] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795-1818.
[2] T. Heitkemper, C. P. Sindlinger, Chem. Eur. J. 2019, 25, 6628-6637.
[3] Z. J. Tonzetich, R. Eisenberg, Inorg. Chim. Acta 2003, 345, 340-344.
[4] a) M. Schormann, K. S. Klimek, H. Hatop, S. P. Varkey, H. W. Roessky, C. Lehmann, C. Röpken, R. Herbst-Ilmer, M. Noltemeyer, J. Solid State Chem. 2001, 162, 225-236; b) S. Schulz, H. W. Roessky, H. J. Koch, G. M. Sheldrick, D. Stalke, A. Kuhn, Angew. Chem. Int. Ed. Engl. 1993, 32, 1729-1731.
[5] P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammier, Organometallics 1998, 17, 1305-1314.
[6] SAINTv8.30C, Bruker AXS, WI, USA, Madison, 2013.
[7] L. Krause, R. Herbst-Ilmer, G. M. Sheldrick, D. Stalke, J. Appl. Crystallogr. 2015, 48, 3-10.
[8] SADABS, G. M. Sheldrick, University of Göttingen, Göttingen, 2008.
[9] G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3.
[10] G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3.
[11] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr. 2011, 44, 1281-1284.
[12] D. Kratzert, I. Krossing, J. Appl. Crystallogr. 2018, 51, 928-934.
[13] A. Spek, Acta Crystallographica Section C 2015, 71, 9-18.
[14] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford, CT, USA, 2009.
[15] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100; b) J. P. Perdew, W. Yue, Phys. Rev. B 1986, 33, 8800-8802.
[16] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
[17] a) A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835; b) F. Weigend, R. Ahlrichs, Phys. Chem. Phys. 2005, 7, 3297-3305.
[18] a) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 73-78; b) F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327.
[19] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
[20] K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124.
[21] R. W. Schurko, I. Hung, C. L. B. Macdonald, A. H. Cowley, J. Am. Chem. Soc. 2002, 124, 13204-13214.
[22] a) R. Benn, A. Ruffinska, H. Lehmkuhl, E. Janssen, C. Krüger, Angew. Chem. 1983, 95, 808-809; b) R. Benn, E. Janssen, H. Lehmkuhl, A. Ruffinska, J. Organomet. Chem. 1987, 333, 155-168.
[23] R. W. Schurko, I. Hung, S. Schaff, C. L. B. Macdonald, A. H. Cowley, J. Phys. Chem. A 2002, 106, 10096-10107.
[24] ChemCraft, G. A. Zhurko, Version 1.7., 2014.
[25] R. F. W. Bader, Atoms in Molecules A Quantum Theory, Oxford University Press, Oxford, 1990.
[26] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592.
[27] AIMall, T. A. Keith, TK Gristmill Software, Overland Parks KS USA, 2019.
[28] a) F. Weinhold, C. R. Landis, E. D. Glendening, *J. Am. Chem. Soc.* **2019**, *141*, 4156-4166. ; b) NBO7, E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, F. Weinhold, Theoretical Chemical Institute, University of Wisconsin Madison, **2018**.