Prediction of potential inhibitors of the dimeric SARS-CoV-2 main proteinase through the MM/GBSA approach

Martiniano Bello (bellomartini@gmail.com)
Instituto Politécnico Nacional, México
https://orcid.org/0000-0002-9686-0755

Research Article

Keywords: SARS-CoV-2, Proteinase, SARS-CoV, Docking, MD simulations

Posted Date: April 6th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-21205/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Journal of Molecular Graphics and Modelling on April 6th, 2020. See the published version at https://doi.org/10.1016/j.jmgm.2020.107762.
Abstract

Since the emergence of SARS-CoV-2, to date, no effective antiviral drug has been approved to treat the disease, and no vaccine against SARS-CoV-2 is available. Under this scenario, the combination of two HIV-1 protease inhibitors, lopinavir and ritonavir, has attracted attention since they have been previously employed against the SARS-CoV main proteinase (Mpro) and exhibited some signs of effectiveness. Recently, the 3D structure of SARS-CoV-2 Mpro was constructed based on the monomeric SARS-CoV Mpro and employed to identify potential FDA-approved small inhibitors against SARS-CoV-2 Mpro, allowing the selection of 15 drugs among 1903 approved drugs to be employed. In this study, we performed docking of these 15 approved drugs against the recently solved X-ray crystallography structure of SARS-CoV-2 Mpro (PDB ID: 6LU7) in the monomeric and dimeric states; the latter is the functional state that was determined in a biological context, and these were submitted for MD simulations coupled with the MM/GBSA approach to obtain insight into the inhibitory activity of these compounds. Similar studies were performed with lopinavir and ritonavir coupled to monomeric and dimeric SARS-CoV Mpro and SARS-CoV-2 Mpro to compare the inhibitory differences. Our study provides the structural and energetic basis of the inhibitory properties of lopinavir and ritonavir on SARS-CoV Mpro and SARS-CoV-2 Mpro, allowing us to identify two FDA-approved drugs that can be used against SARS-CoV-2 Mpro. This study also demonstrated that drug discovery requires the dimeric state to obtain good results.

1. Introduction

In December 2019, another outbreak of acute respiratory disease caused by a novel coronavirus was reported in Wuhan, China [1,2]. Analysis of the complete genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV–2) demonstrated that it belongs to betacoronavirus, but it is different from severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East Respiratory coronavirus (MERS-CoV), which caused previous epidemics [1]. This new disease was named coronavirus disease 2019 (COVID–19), previously known as novel coronavirus [2019-nCoV], by the World Health Organization. COVID–19 was first reported in China, and it has now spread quickly to distant nations, including France and the USA. The number of cases within and outside China are increasing abruptly, and no drug has proved to be effective. Therefore, it is crucial to discover and develop drugs to treat the disease. An alternative treatment for COVID–19 is the combination of two HIV–1 protease inhibitors, lopinavir and ritonavir, which was an effective therapy previously used against SARS-CoV [3]. Previous theoretical studies demonstrated that lopinavir and ritonavir form stable complexes with the SARS-CoV main proteinase (SARS-CoV Mpro), with similar affinity [4]. Similar to SARS-CoV Mpro, the main proteinase of SARS-CoV–2 (SARS-CoV–2 Mpro) exhibits a crucial role in the proteolytic activity of replicase polyproteins, which are indispensable for viral replication. In addition, an alignment of SARS-CoV Mpro and SARS-CoV-2 Mpro shows that they share a high percentage of sequence identity (≥ 95%). Several theoretical studies have been performed to identify inhibitors against SARS-CoV Mpro. Xu et al. constructed a three-dimensional homology model of SARS-CoV–2 Mpro based on SARS-CoV Mpro and screened it against 1903 drug inhibitors via protein modeling and virtual screening, highlighting nelfinavir as a potential inhibitor against SARS-CoV–2 Mpro [5]. Using X-ray crystallography, the structure of SARS-CoV–2 Mpro has recently been solved in complex with the inhibitor N3 (PDB ID: 6LU7), revealing that its structural topology is similar to that of other CoV proteinases. SARS-CoV–2 Mpro is built in a homodimer conformation, formed of three domains: domains 1 (residues 8–101) and 2 (residues 102–184) are β-barrels, and domain 3 (residues 201–306) comprises mainly α-helices. Inhibitor N3 is stabilized at the active site by conserved residues (H41 and C145) involved in the catalytic activity of the enzyme and located between domains 1 and 2, in a similar manner to that observed for other CoV proteinases [4]. Although previous studies have considered the monomeric state of SARS-CoV Mpro or SARS-CoV-2 Mpro to search for new inhibitors [5,6] or to understand the molecular basis of inhibitor recognition [4], kinetic studies have indicated that the active form of the SARS CoV main proteinase corresponds to a homodimer [7], suggesting significant conformational differences between the monomer
and dimeric states and indicating that drug discovery combining docking and MD simulations should be performed using the homodimeric conformation instead of the monomer. In the present research, the crystallographic dimeric structure of SARS-CoV–2 Mpro was docked against 15 FDA-approved drugs identified in a previous study [5] and then submitted to MD simulations coupled to the MM/GBSA approach to dissect the structural and energetic basis of molecular recognition considering the monomeric and dimeric states. In addition, comparative analysis was performed for dimeric SARS-CoV–2 Mpro and SARS-CoV Mpro coupling to lopinavir and ritonavir, which have been shown to be an effective therapy against SARS-CoV Mpro.

2. Methods

2.1 Starting data and preparation systems

Seventeen FDA-approved small drugs, indomethacin (DB00328), naftazone (DB13680), ofloxacin (DB01165), zopiclone (DB01198), sofosbuvir (DB08934), pitavastatin (DB08860), eszopiclone (DB00402), perampanel (DB00220), fenoterol (DB01288), azelastine (DB00972), celecoxib (DB00482), nelfinavir (DB00228), praziquantel (DB01058), ondansetron (DB00904), lemborexant (DB11951), lopinavir (DB01601) and ritonavir (DB00503), were downloaded from DrugBank version 5.0 [8] and optimized at the AM1 level employing Gaussian 09W [9]. The X-ray crystallography structures of SARS-CoV–2 Mpro (PDB ID: 6LU7) and SARS-CoV Mpro (PDB ID: 2GX4) were used to construct the protein-ligand complexes.

2.2 Molecular docking

The seventeen FDA-approved small drugs were docked on monomeric and dimeric SARS-CoV–2 Mpro using AutoDock Tools 1.5.6 and AutoDock 4.2 programs [10]. Lopinavir and ritonavir were docked on monomeric and dimeric SARS-CoV Mpro. In the previous docking calculation, hydrogen atoms were added to the ligand, and protein atoms and Kollman and Gasteiger partial charges were assigned for the receptor and ligand, respectively. The grid box was centered on the receptor with grid points in the x, y and z of 70 x 70 x 70 Å, respectively, with a grid spacing of 0.375 Å. The ligand place was optimized using a Lamarckian genetic algorithm. The protein-ligand conformation with the lowest binding energies was selected as the initial conformer to start MD simulations. The docking protocol was validated by reproducing the experimental binding mode of co-crystallized ligands on SARS-CoV–2 Mpro (PDB ID: 6LU7) and SARS-CoV Mpro (PDB ID: 2GX4).

MD simulations

MD simulations were carried out using the AMBER16 package [11] and the ff14SB force field [12]. The force field of ligands was performed considering AM1-BCC atomic charges and the general Amber force field (GAFF) [13]. Each complex generated through docking was neutralized with 0.10 M NaCl and then solvated using the TIP3P water model [14] in a dodecadic box of 12.0 Å. Previously, MD simulations for each complex were minimized through 1000 steps for the steepest descent and 3000 steps for the conjugate gradient. Then, the systems were heated through 200 ps, the density was equilibrated through 200 ps, and finally, the systems were equilibrated by 600 ps of constant pressure equilibration at 310 K. Once the systems were equilibrated, MD simulations were run for 100 ns with triplicate experiments using an NPT ensemble at 310 K. The electrostatic forces were described by the particle mesh Ewald method [15], and a 10 Å cutoff was chosen for the van der Waals interactions. The SHAKE algorithm [16] was used to constrain bond lengths at their equilibrium values. Temperature and pressure were maintained using the weak-coupling algorithm [17]. The results were analyzed using AmberTools16. Images were built using PyMOL [18].
Binding free energy and per-residue decomposition calculations

The MM/GBSA [19,20] method was employed to calculate the binding free energy (ΔG_{bind}) values between the receptor and ligand and to calculate per-residue decomposition analysis. To this end, 500 snapshots at time intervals of 100 ps were selected over the equilibrated time, removing all counterions and water molecules with a salt concentration of 0.10 M [21]. ΔG_{bind} and per-residue decomposition calculations were determined as described elsewhere [22], and the ΔG_{bind} values represent the average values of triplicate simulation experiments.

3. Results And Discussion

3.1 Docking between ligands and monomeric SARS-CoV–2 M$_{\text{pro}}$

Docking studies between ligands and SARS-CoV–2 M$_{\text{pro}}$ showed that all ligands: indomethacin (Fig. S1A), naftazone (Fig. S1B), ofloxacin (Fig. S1C), zopiclone (Fig. S1D), sofosbuvir (Fig. S1E), pitavastatin (Fig. S1F), eszopiclone (Fig. S2A), perampanel (Fig. S2B), fenoterol (Fig. S2C), azelastine (Fig. S2D), celecoxib (Fig. S2E), nelnavir (Fig. S2F), praziquantel (Fig. S3A), ondansetron (Fig. S3B), and lemborexant (Fig. S3C) reached the catalytic binding site of SARS-CoV–2 M$_{\text{pro}}$ (Supplementary material, Figs. S1-S3). These ligands were mostly stabilized by H41, F140, N142, C145, H163, H164, M165, E166, Q189 and R188 residues through nonpolar interactions. H41, S46, Y54, F140, L141, N142, G143, S144, C145, H163, H164, E166 and D187 established polar interactions through backbone or side chain atoms with some of the compounds: indometachin (Fig. 1A), naftazone (Fig. S1B), ofloxacin (Fig. S1C), zopiclone (Fig. S1D), sofosbuvir (Fig. S1E), pitavastatin (Fig. S1F), perampanel (Fig. S2B), fenoterol (Fig. S2C), azelastine (Fig. S2D), praziquantel (Fig. S3A), ondansetron (Fig. S3B), and lemborexant (Fig. S3C). The residues stabilizing the ligands were mostly distributed between domains 1 (residues 8–101) and 2 (residues 102–184), and the interactions established were similar to those observed in the co-crystallized complex between the SARS-CoV–2 M$_{\text{pro}}$ ligand and the inhibitor N3 (PDB ID: 6LU7), highlighting the interactions with conserved residues (H41 and C145) involved in the catalytic activity of the enzyme [23].

3.2 Docking of lopinavir or ritonavir with monomeric SARS-CoV–2 M$_{\text{pro}}$ and SARS-CoV M$_{\text{pro}}$

Docking studies show that lopinavir and ritonavir on SARS-CoV–2 M$_{\text{pro}}$ and SARS-CoV M$_{\text{pro}}$ reached the catalytic site of both systems (Supplementary material, Figs. S3D-G). On SARS-CoV–2, lopinavir (Fig. S3D) and ritonavir (Fig. S3E) were mostly stabilized by T25, T26, H41, F140, L141, N142, G143, H163, E166, D187, Q189 and R188 residues through nonpolar interactions, whereas ritonavir established polar interactions with the side chain of S46 (Fig. S3E). On SARS-CoV M$_{\text{pro}}$, lopinavir (Fig. S3F) and ritonavir (Fig. S3G) are mostly stabilized by T25, A46, M49, L141, S144, E166 and Q189 through nonpolar interactions, while ritonavir formed polar interactions with the sidechain of Q189 (Fig. S3G).

Comparative analysis between the coupling of lopinavir or ritonavir on SARS-CoV–2 M$_{\text{pro}}$ and SARS-CoV M$_{\text{pro}}$ showed that T25, S/A46, Y/M49, L141, S144, E166 and Q189 are present in the stabilization of ligands on SARS-CoV–2 M$_{\text{pro}}$ and SARS-CoV M$_{\text{pro}}$. In addition, these compounds are better stabilized on SARS-CoV–2 M$_{\text{pro}}$ than on SARS-CoV M$_{\text{pro}}$. All these docking-predicted complexes were submitted to MD simulation in the monomeric and dimeric states to validate their stabilization at the catalytic sites of SARS-CoV–2 M$_{\text{pro}}$ and SARS-CoV M$_{\text{pro}}$.

3.3 Convergence of MD simulations
RMSD and Rg studies showed that monomeric SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\) in their free and bound states reached equilibrium between 10 and 20 ns with average values that oscillated between 1.6 ± 0.2 and 3.8 ± 0.2 Å for RMSD and 21.9 ± 0.2 and 23.1 ± 0.2 Å for Rg (Table S1, Supplementary material). Dimeric SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\) in their free and bound states reached equilibrium among 10 to 30 ns with average values that ranged between 1.5 ± 0.1 and 2.2 ± 0.2 Å for RMSD and 25.8 ± 0.2 and 26.1 ± 0.2 Å for Rg (Table 2, Supplementary material). Therefore, for further analyses, the first 30 ns were discarded from the 100 ns simulation for each monomer and dimer simulations.

3.4 MD simulations of ligands with monomeric SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\)

MD simulations show that indomethacin, ofloxacin, fenoterol, nelfinavir, praziquantel and ritonavir) lost interactions at the catalytic site of SARS-CoV–2 M\(^{\text{pro}}\). In contrast, naftazone (Fig. 1A), zopiclone (Fig. 1B), sofosbuvir (Fig. 1C), pitavastatin (Fig. 1D), eszopiclone (Fig. 1E), perampanel (Fig. 1F), azelastine (Fig. 2A), celecoxib (Fig. 2B), ondansetron (Fig. 2C), and lemborexant (Fig. 2D) maintained interactions with the catalytic site of SARS-CoV–2 M\(^{\text{pro}}\). These compounds were mainly stabilized by M49, M165 and Q189 residues through nonpolar interactions. However, S46, G143, S144, H163, M165, C145, E166, P168, D187, T190 and Q192 formed polar interactions with backbone or side chain atoms with some of the compounds, including naftazone (Fig. 1A), zopiclone (Fig. 1B), T190 (Fig. 1C), pitavastatin (Fig. 1D), eszopiclone (Fig. 1E), perampanel (Fig. 1F), azelastine (Fig. 2A), celecoxib (Fig. 2B), ondansetron (Fig. 2C), and lemborexant (Fig. 2D).

3.5 MD simulations of lopinavir or ritonavir with monomeric SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\)

MD simulations showed that ritonavir lost interactions with the catalytic site of SARS-CoV–2, whereas lopinavir maintained the interactions with the catalytic site (Fig. 2E). Lopinavir was mostly stabilized by hydrophobic residues (M49, M165 and Q189) similar to those present in the fifteen repositioned compounds (Figs. 1 and 2), while it established polar interactions with the side chain of S46 (Fig. 2E). On SARS-CoV M\(^{\text{pro}}\), lopinavir and ritonavir were mainly stabilized by L27, H41, A46, M49 and C145 through hydrophobic interactions, whereas lopinavir formed polar interactions with backbone atoms of A46 (Fig. 2F), and ritonavir formed polar interactions with the side chain of N142 (Fig. 2G).

Analyses between the coupling of lopinavir or ritonavir on SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV–2 M\(^{\text{pro}}\) showed that only hydrophobic contacts with M49 were shared in the stabilization of the fifteen repositioned compounds on SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\). In addition, the stabilization of these compounds was better on SARS-CoV–2 M\(^{\text{pro}}\) than on SARS-CoV–2 M\(^{\text{pro}}\).

3.6 MD simulations of ligands with dimeric SARS-CoV–2 M\(^{\text{pro}}\) and SARS-CoV M\(^{\text{pro}}\)

In contrast, with the observations with monomeric SARS-CoV–2 and SARS-CoV M\(^{\text{pro}}\), MD simulations for most of the dimeric systems showed that all the ligands remained on both subunits of the dimer, except for the complexes between indomethacin, ofloxacin and lemborexant with SARS-CoV–2 M\(^{\text{pro}}\), in which these compounds only remained at one of the catalytic sites of SARS-CoV–2 M\(^{\text{pro}}\). Indomethacin coupled to subunit 2 (Fig. 3A), naftazone bound to subunits 1 and
2 (Fig. 3B and 3C), ofloxacin bound to subunit 1 (Fig. 3D), and zopiclone coupled to subunits 1 and 2 (Fig. 3E and 3F). Sofosbuvir bound at subunits 1 and 2 (Fig. 4A and 4B), pitavastatin bound at subunits 1 and 2 (Fig. 4C and 4D), and eszopiclone bound at subunits 1 and 2 (Fig. 4E and 4F). Perampanel coupled at subunit 1 or 2 (Fig. 5A and 5B), fenoterol bound at subunit 1 or 2 (Fig. 5C and 5D), and azelastine bound at subunits 1 and 2 (Fig. 5E and 5F). Ondansetron bound at subunits 1 and 2 (Fig. 7A and 7B), and lemborexant bound at subunit 2 (Fig. 7C). These compounds were mainly stabilized by L27, H41, M49, N142, C145 and M165 through nonpolar interactions. T25, H41, T45, S46, L141, N142, G143, F140, S144, H163, H164, M165, E166, Q192, and Q189 formed polar interactions with backbone or side chain atoms with some of these compounds: naftazone (Fig. 3B), ofloxacin (Fig. 3D), zopiclone (Fig. 3E and 3F), sofosbuvir (Fig. 4A and 4B), pitavastatin (Fig. 4C and 4D), eszopiclone (Fig. 4E and 4F), perampanel (Fig. 5A and 5B), fenoterol (Fig. 5C and 5D), azelastine (Fig. 5F), celecoxib (Fig. 6A and 6B), nelnavir (Fig. 6C and 6D), praziquantel (Fig. 6E and 6F), ondansetron (Fig. 7A and 7B) and lemborexant (Fig. 7C). Comparison of the residues stabilizing these ligands in the monomeric (Fig. 1 and 2) versus dimeric SARS-CoV–2 M_{pro} and SARS-CoV M_{pro} (Figs. 3 and 7) revealed that the repositioned compound was better stabilized in the dimeric state than in the monomeric state. In addition, only in the complexes using the dimeric system, the presence of interactions with conserved residues (H41 and C145) involved in the catalytic activity was observed (Huang et al., 2004).

3.7 MD simulations of lopinavir or ritonavir with dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro}

MD simulations showed that lopinavir at subunits 1 (Fig. 7D) and 2 (Fig. 7E) and ritonavir at subunits 1 (Fig. 7F) and 2 (Fig. 8A) were maintained interactions at the catalytic site of SARS-CoV–2. Ritonavir and lopinavir were generally stabilized by four residues (M49, M165, L167 and Q189), whereas only lopinavir formed polar interactions with backbone atoms and side chain atoms of T90 and Q189 (Fig. 7E). On SARS-CoV M^{pro}, lopinavir coupled at subunits 1 (Fig. 8B) and 2 (Fig. 8C) and ritonavir coupled at subunit 1 (Fig. 8D) were mostly stabilized by H41, M49, M165 and Q189 through hydrophobic interactions. Similar nonpolar and polar interactions were observed for the fifteen repositioned compounds (Figs. 3–7), except for L167. Comparative analysis of the residues stabilizing ritonavir and lopinavir in the monomeric (Fig. 2) versus dimer SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} (Figs. 7 and 8) showed that ritonavir is stabilized by similar hydrophobic residues (M49 and M165) in the monomeric and dimeric states, whereas only two residues (H41 and M49) are shared in the stabilization of lopinavir in the monomeric and dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro}.

3.8 Binding free energy calculations

Differences in affinity for the complexes between ligands and monomeric and dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems were calculated using the MM/GBSA approach, showing that all the bindings are energetically favorable and guided through nonpolar interactions, van der Waals energy (ΔE_{vdw}) and the nonpolar free energy of desolvation (ΔG_{npol,sol}). Binding free energy (ΔG_{bind}) values for the ligands coupled at the monomeric SARS-CoV–2 M^{pro} show the following tendency: perampanel > lopinavir > ondansetron > pitavastatin > zopiclone > azelastine > sofosbuvir = eszopiclone > celecoxib > lemborexant (Table 1). However, a higher affinity towards monomeric SARS-CoV M^{pro} was exhibited by lopinavir than by ritonavir. Comparison of ΔG_{bind} values for the affinity of repositioned compounds with ritonavir or lopinavir shows that perampanel was able to inhibit monomeric SARS-CoV M^{pro} in a similar manner to lopinavir and ritonavir, which diffuses in the first nanoseconds of MD simulations (see section 3.5). Comparisons between the affinity of lopinavir or ritonavir for SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems showed that these two compounds exhibit a higher affinity by SARS-CoV than by SARS-CoV–2.
ΔG_{bind} values for the ligands coupled on the first subunit of dimeric SARS-CoV–2 M^{pro} show the following tendency: perampanel > lopinavir > praziquantel > ritonavir > ofloxacin > azelastine > zopiclone > eszopiclone > fenoterol > pitavastatin > nelfinavir = celecoxib > sofosbuvir > ondansetron > naftazone. The ligands coupled at the second subunit showed the following order: nelfinavir > lopinavir > praziquantel > perampanel > azelastine > ritonavir > eszopiclone > fenoterol > ondansetron > pitavastatin > zopiclone > sofosbuvir > celecoxib > lemborexant > indomethacin > naftazone (Table 2). Based on this analysis, it is evident that perampanel and praziquantel can be proposed as anti-COVID–19 clinical drugs, whereas nelfinavir could also exhibit moderate activities against COVID–19. Interestingly, perampanel and praziquantel also exhibit a similar affinity to lopinavir and a higher affinity than ritonavir, both known inhibitors of SARS-CoV M^{pro} (Vastag et al., 2003). A comparison of the ΔG_{bind} values of lopinavir and ritonavir on SARS-CoV M^{pro} versus SARS-CoV–2 M^{pro} indicated that these compounds exhibit a higher affinity for SARS-CoV–2 M^{pro} than for SARS-CoV–2 M^{pro}. In addition, a comparison between the monomeric versus dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems shows that although the employment of the monomeric system allowed us to identify perampanel and lopinavir as good inhibitors of SARS-CoV–2, it did not permit to the identification with praziquantel nelfinavir and ritonavir, highlighting the suitability of employing the dimeric system for drug discovery.

3.9 Per-residue free energy decomposition

An analysis of the residues contributing to the ΔG_{bind} values for complexes with monomeric and dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems resulted in 5 to 11 residues (Table 3–6). An analysis of the residue stabilizing complexes between ligands and monomeric SARS-CoV–2 and SARS-CoV M^{pro} systems showed that H41, M49, M165 and Q189 were present in most of the complexes (Table 3), but only H41 and M165 were present for perampanel, the compound with the highest affinity for monomeric SARS-CoV–2 (Table 1); instead, it was stabilized by N142, G143, S144 and C145, which together with M165, contributed the most to the ΔG_{bind} value. M49 and M165 were present in the stabilization of lopinavir, the second-best compound, in the monomeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems.

For the dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} systems, H41, M49 and M165 were present in the stabilization of almost all the complexes (Table 4–6). From these three residues, the energetic contribution of H41 and M49 was only present in one of the subunits for the complex between SARS-CoV–2 M^{pro} and perampanel (Table 5). H41 was present in both subunits of the complex between SARS-CoV–2 M^{pro} and praziquantel, and M49 was present only in subunit 1 for perampanel (Table 5). H41 and M49 were present in the complexes of SARS-CoV–2 M^{pro} with nelfinavir (Table 5) and lopinavir (Table 6). M49 was present in the complex of SARS-CoV–2 M^{pro} with ritonavir (Table 6).

As observed for the complex between perampanel and monomeric SARS-CoV–2 M^{pro} (Table 3), N142, G143, S144 and C145, together with M165, contributed the most to the ΔG_{bind} value (Table 2) on both subunits of dimeric SARS-CoV–2 M^{pro} (Table 5). For praziquantel, the energetic contribution of M49 was only observed for one of the subunits, whereas participation of H41 and M165 was observed for both subunits, and as observed for perampanel, in which N142, G143, S144, C145 and M165 contributed importantly to the ΔG_{bind} value (Table 2). For nelfinavir, the participation of H41, M49 and M165 was seen only in one of the subunits, the one with the higher affinity (Table 2), where it was also observed for the energetic contribution of D187, Q189, T190, A191 and Q192, which contributed importantly to the ΔG_{bind} value (Table 2). Energetic contributions of H41, M49 and M165 residues were observed for complexes of lopinavir with the dimeric SARS-CoV–2 M^{pro} and SARS-CoV M^{pro} (Table 6). Significant participation of P168, D187, Q189 and T190 was also observed but only for interactions at subunit 2 of the dimeric SARS-CoV–2 M^{pro} in complex with lopinavir (Table 6), whereas Q189 contributed importantly to the ΔG_{bind} value in both subunits of the dimeric SARS-CoV M^{pro} (Table 6).
Energetic contributions of M49 and M165 were observed for complexes of ritonavir with dimeric SARS-CoV–2 Mpro and of H41 M49 and M165 with dimeric SARS-CoV Mpro (Table 6). It was also observed that there was significant participation of P168, Q189 and A191 for interactions of ritonavir at subunit 1 of dimeric SARS-CoV–2 Mpro and of D166, L167, P168, and Q189 for ritonavir at subunit 1 of dimeric SARS-CoV Mpro. Overall, this analysis supports the importance of two conserved residues (H41 and C145) (Nukoolkarn et al., 2008) in the stabilization of different inhibitors and highlights the importance of other residues (M49, N142, G143, S144, M165, D187, Q189, T190, A191 and Q192) in ligand stabilization.

3.10 Principal component analysis

PCA was performed to provide a quantified estimation of the differences in mobility. To this end, the trace of the diagonalized covariance matrix of the backbone atomic positional fluctuations was determined for the free and bound SARS-CoV–2 Mpro and SARS-CoV Mpro systems (Table 7). Based on this analysis, the values for free and bound monomeric SARS-CoV–2 Mpro and SARS-CoV Mpro systems suggested that only the binding of sofosbuvir and lopinavir to monomeric SARS-CoV–2 Mpro was not coupled to conformational changes of monomeric SARS-CoV–2 Mpro. The binding of naftazone, pitavastatin, eszopiclone, perampanel, azelastine, celecoxib, ondansetron and lemborexant was linked to a decrease in the conformational mobility of monomeric SARS-CoV–2 Mpro, and the conformational reduction would be coupled to an increase in the ΔG_{bind} value (Table 1), due to an unfavorable entropy component. The binding of zopiclone was coupled to an increase in the conformational mobility, which contributed to a decrease in the ΔG_{bind} value due to a favorable entropy component. The binding of lopinavir and ritonavir was linked to a decrease in the conformational mobility of monomeric SARS-CoV–2 Mpro, which would also be linked to an increase in the ΔG_{bind} value observed in Table 1.

Analysis of the covariance values for free and bound dimeric SARS-CoV–2 Mpro and SARS-CoV Mpro systems (Table 7) indicates that the binding of naftazone, zopiclone, sofosbuvir, eszopiclone, perampanel, azelastine, nelnavir, praziquantel, lemborexant and lopinavir was not linked to important conformational changes of dimeric SARS-CoV–2 Mpro, which means that their coupling with receptors would not impact the affinity observed in Table 2. The binding of ofloxacin, pitavastatin and fenoterol contributed to a decrease in conformational mobility, and the coupling of indomethacin, celecoxib, ondansetron and ritonavir was linked to an increase in dimeric SARS-CoV–2 Mpro. However, the binding of lopinavir and ritonavir on dimeric SARS-CoV Mpro was not linked to conformational changes for lopinavir and an increase in the mobility of this receptor, which also means that their coupling on dimeric SARS-CoV Mpro did not impact the affinity observed in Table 2. Overall, this analysis shows that the binding of the best compounds on monomeric SARS-CoV–2 Mpro or SARS-CoV Mpro more importantly impacts the ΔG_{bind} value estimated for each ligand due to the conformational changes coupled to the binding, whereas the affinity trends observed for the best compounds on the dimeric systems were not affected.

4. Conclusion

The combination of the structural data and the docking and MD simulations coupled with the MM/GBSA approach provided us with structural and energetic information to describe the binding of fifteen FDA-approved drugs, which were identified as potential inhibitors of monomeric SARS-CoV–2 Mpro by employing homology modeling, repurposing methods, docking simulations and short MD simulations. In this research, we first performed the docking of these 15 FDA-approved drugs by employing the recently elucidated crystallographic structure of monomer and dimeric SARS-CoV–2 Mpro; then, 100-ns-long MD simulations coupled to the MM/GBSA approach were performed to compare results...
using both monomeric versus dimeric states, where the latter corresponds to the functional state. Additionally, similar studies were performed, including two known HIV–1 protease inhibitors, lopinavir and ritonavir, which have been previously employed as an effective therapy against SARS-CoV M\text{pro}, to compare the inhibitory differences. Our results identified perampanel (best compound), praziquantel (second best compound) and nelnavir (third best compound) as potential inhibitors of dimeric SARS-CoV–2 M\text{pro}, and these ligands also showed similar inhibitory properties than those of lopinavir and better inhibitory properties than those of ritonavir. Furthermore, comparative analysis of the affinity of lopinavir and ritonavir on SARS-CoV–2 M\text{pro} and SARS-CoV M\text{pro} revealed that both compounds showed a higher affinity to SARS-CoV–2 M\text{pro}. Our study also demonstrates that to obtain more confident drug discovery results, it is better to employ the dimeric state than the monomeric state since ligand binding on the monomer is coupled to conformational changes that contribute to the impact of the ΔG_{bind} value. In addition, this study demonstrates for the first time that the coupling of ligands on dimeric SARS-CoV–2 M\text{pro} is linked to differences in the binding affinity in both subunits that may be characteristic of cooperativity.

Acknowledgements

The work was supported by grants from CONACYT (CB-A1-S–21278) and SIP/IPN (20201015).

References

1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W., A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England journal of medicine 2020.
2. Lu, H.; Stratton, C. W.; Tang, Y.-W., Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle. J. Med. Virol. 2020.
3. Vastag, B., 2003. Old drugs for a new bug: influenza, HIV drugs enlisted to fight SARS. JAMA 290, 1695–1696.
4. Nukoolkarn, V., Lee, V. S., Malaisree, M., Aruksakulwong, O., & Hannongbua, S. (2008). Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CLpro inhibitors. Journal of theoretical biology, 254(4), 861–867.
5. Xu, Z., Peng, C., Shi, Y., Zhu, Z., Mu, K., Wang, X., & Zhu, W. (2020). Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv.
6. Sang, peng; Tian, Shuhui; Meng, Zhaohui; Yang, Liquan (2020): Insight Derived from Molecular Docking and Molecular Dynamics Simulations into the Binding Interactions Between HIV–1 Protease Inhibitors and SARS-CoV–2 3CLpro. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11932995.v1
7. Graziano, V., McGrath, W. J., Yang, L., & Mangel, W. F. (2006). SARS CoV Main Proteinase: The Monomer– Dimer Equilibrium Dissociation Constant. Biochemistry, 45(49), 14632–14641.
8. Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M., DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46 (D1), D1074–D1082
9. Frisch MJT, GW Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J,
Tables

Table 1. Binding free energy components for complexes between ligands and monomeric SARS-CoV-2 Mpro and SARS-CoV Mpro systems (in units of kcal/mol).
System	ΔE_{vdw}	ΔE_{ele}	$\Delta G_{ele,sol}$	$\Delta G_{npol,sol}$	DG_{mmgbsa}
SARS-CoV2					
Naftazone	-22.4 ± 2.7	-5.5 ± 1.0	15.8 ± 5.0	-2.9 ± 0.30	-15.0 ± 3.0
Zopiclone	-38.0 ± 2.5	-127.0 ± 11.0	141.0 ± 5.0	-3.9 ± 0.30	-27.9 ± 3.0
Sofosbuvir	-37.5 ± 4.0	-22.0 ± 5.0	37.0 ± 4.0	-4.5 ± 0.4	-27.0 ± 3.0
Pitavastatin	-35.0 ± 5.0	6.7 ± 2.0	4.9 ± 1.0	-4.8 ± 0.3	-28.2 ± 5.0
Eszopiclone	-37.0 ± 2.0	-109.0 ± 10.0	123.0 ± 10.0	-4.0 ± 0.3	-27.0 ± 3.0
Perampanel	-39.0 ± 3.0	-27.0 ± 5.0	39.0 ± 5.0	-4.0 ± 0.2	-31.0 ± 3.0
Azelastine	-36.0 ± 3.0	-107.0 ± 15.0	120.0 ± 14.0	-4.3 ± 0.3	-27.3 ± 3.0
Celecoxib	-31.0 ± 3.0	-11.0 ± 4.0	25.0 ± 3.0	-4.3 ± 0.4	-21.3 ± 4.0
Ondansetron	-40.0 ± 2.0	-16.0 ± 4.0	31.0 ± 3.0	-4.1 ± 0.2	-29.1 ± 3.0
Lemborexant	-32.0 ± 5.0	-4.0 ± 3.0	19.0 ± 3.0	-4.2 ± 0.5	-21.2 ± 5.0
Lopinavir	-44.0 ± 5.0	-36.0 ± 11.0	56.0 ± 10.0	-5.9 ± 0.5	-29.9 ± 5.0
SARS-CoV					
Lopinavir	-51.0 ± 5.0	-10.0 ± 5.0	33.0 ± 4.0	-7.0 ± 0.6	-35.0 ± 4.0
Ritonavir	-40.0 ± 6.0	-9.0 ± 2.0	28.0 ± 6.0	-5.0 ± 0.8	-26.0 ± 5.0

Table 2. Binding free energy components for complexes between ligands and dimeric SARS-CoV-2 M$^{\text{pro}}$ and SARS-CoV M$^{\text{pro}}$ systems (in units of kcal/mol).
System	ΔE_{vdw}	ΔE_{ele}	$\Delta G_{ele,sol}$	$\Delta G_{pol,sol}$	DG_{mmbbsa}
SARS-CoV$_{sub1}$-indomethacin	ND	ND	ND	ND	ND
SARS-CoV$_{sub2}$-indomethacin	-31.7 ± 4.0	85.3 ± 11.0	-68.8 ± 10.0	-4.1 ± 0.40	-19.30 ± 3.0
SARS-CoV$_{sub1}$-naftazone	-22.17 ± 4.0	-32.7 ± 11.0	40.47 ± 7.0	-3.0 ± 0.30	-17.40 ± 3.0
SARS-CoV$_{sub2}$-naftazone	-26.38 ± 2.0	-26.2 ± 5.0	36.54 ± 4.0	-3.2 ± 0.20	-19.24 ± 3.0
SARS-CoV$_{sub1}$-ofloxacin	-32.27 ± 4.0	-50.4 ± 11.0	58.0 ± 11.0	-4.0 ± 0.40	-28.67 ± 4.0
SARS-CoV$_{sub2}$-ofloxacin	ND	ND	ND	ND	ND
SARS-CoV$_{sub1}$-zopiclone	-37.8 ± 3.0	-114.0 ± 10.0	130.0 ± 10.0	-3.9 ± 0.40	-25.78 ± 3.0
SARS-CoV$_{sub2}$-zopiclone	-38.4 ± 3.0	-117.5 ± 12.0	134.6 ± 13.0	-3.7 ± 0.30	-25.0 ± 4.0
SARS-CoV$_{sub1}$-sofosbuvir	-34.6 ± 5.0	-20.27 ± 9.0	40.0 ± 8.0	-4.6 ± 0.60	-19.51 ± 5.0
SARS-CoV$_{sub2}$-sofosbuvir	-37.4 ± 5.0	-20.0 ± 9.0	38.1 ± 8.0	-4.6 ± 0.60	-23.94 ± 6.0
SARS-CoV$_{sub1}$-pitavastatin	-36.5 ± 3.0	62.7 ± 22.0	-44.2 ± 10.0	-5.0 ± 0.40	-23.0 ± 5.0
SARS-CoV$_{sub2}$-pitavastatin	-40.4 ± 3.0	46.9 ± 12.0	-27.0 ± 6.0	-4.7 ± 0.30	-25.20 ± 4.0
SARS-CoV$_{sub1}$-eszopiclone	-38.1 ± 4.0	-123.5 ± 14.0	142.2 ± 14.0	-3.9 ± 0.40	-23.30 ± 4.0
SARS-CoV$_{sub2}$-eszopiclone	-41.1 ± 3.0	-154.9 ± 21.0	172.0 ± 22.0	-3.9 ± 0.30	-27.90 ± 3.0
SARS-CoV$_{sub1}$-perampanel	-46.2 ± 3.0	-25.0 ± 4.0	39.1 ± 3.0	-5.6 ± 0.20	-37.70 ± 3.0
SARS-CoV$_{sub2}$-perampanel	-42.6 ± 2.0	-23.9 ± 4.0	39.8 ± 3.0	-5.0 ± 0.20	-31.70 ± 2.0
SARS-CoV$_{sub1}$-fenoterol	-33.4 ± 3.0	-120.8 ± 12.0	136.6 ± 12.0	-4.6 ± 0.50	-23.1 ± 5.0
SARS-CoV$_{sub2}$-fenoterol	-33.4 ± 3.0	-118.8 ± 10.0	129.0 ± 10.0	-4.4 ± 0.20	-27.60 ± 4.0
SARS-CoV$_{sub1}$-azelastine	-34.4 ± 4.0	-106.7 ± 12.0	118.0 ± 12.0	-3.9 ± 0.40	-27.0 ± 3.0
SARS-CoV$_{sub2}$-azelastine	-39.27 ± 3.0	-127.7 ± 15.0	142.0 ± 15.0	-4.63 ± 0.30	-29.6 ± 3.0
SARS-CoV$_{sub1}$-celecoxib	-34.42 ± 3.0	-14.4 ± 3.0	30.9 ± 3.0	-4.7 ± 0.30	-22.62 ± 3.0
SARS-CoV$_{sub2}$-celecoxib	-30.59 ± 4.0	-20.0 ± 4.0	33.0 ± 3.0	-4.54 ± 0.50	-22.13 ± 4.0
SARS-CoV$_{sub1}$-nelfinavir	-34.42 ± 3.0	-14.4 ± 3.0	30.9 ± 3.0	-4.7 ± 0.30	-22.62 ± 3.0
SARS-CoV$_{sub2}$-nelfinavir	-48.73 ± 4.0	-175.06 ± 13.0	184.7 ± 10.0	-5.9 ± 0.30	-44.99 ± 5.0
SARS-CoV$_{sub1}$-praziquantel	-43.60 ± 4.0	-18.01 ± 3.0	31.3 ± 3.0	-4.8 ± 0.30	-35.11 ± 3.7
SARS-CoV$_{sub2}$-praziquantel	-43.60 ± 4.0	-18.01 ± 3.0	31.3 ± 3.0	-4.8 ± 0.30	-35.11 ± 3.7
SARS-CoV$_{sub1}$-ondansetron	-30.0 ± 5.0	-5.77 ± 5.0	20.8 ± 5.0	-3.4 ± 0.50	-18.37 ± 5.0
SARS-CoV$_{sub2}$-ondansetron	-37.9 ± 5.0	-15.13 ± 4.0	30.0 ± 4.0	-3.9 ± 0.50	-26.93 ± 5.0
SARS-CoV$_{sub1}$-lemborexant	ND	ND	ND	ND	ND
SARS-CoV$_{sub2}$-lemborexant	-34.1 ± 4.0	-5.42 ± 4.0	21.6 ± 3.0	-4.5 ± 0.50	-22.42 ± 4.0
SARS-CoV$_{sub1}$-lopinavir	-49.3 ± 4.0	-15.2 ± 5.0	34.9 ± 4.0	-6.2 ± 0.44	-35.80 ± 4.0
SARS-CoV$_{sub2}$-lopinavir	-56.9 ± 4.0	-18.8 ± 6.0	40.6 ± 5.0	-7.2 ± 0.50	-42.30 ± 4.0
SARS-CoV$_{sub1}$-ritonavir	-45.8 ± 5.0	-10.5 ± 4.0	32.5 ± 4.0	-5.5 ± 0.70	-29.30 ± 5.0
SARS-CoV$_{sub2}$-ritonavir	-47.9 ± 6.0	-9.0 ± 3.0	34.2 ± 5.0	-5.8 ± 0.80	-28.50 ± 5.0

Table 3. Per-residue free energy for complexes between ligands and monomeric SARS-CoV-2 $^{\text{Mpro}}$ and SARS-CoV $^{\text{Mpro}}$ (values kcal/mol).
Table 4. Per-residue free energy for complexes between ligands and dimeric SARS-CoV-2 M_{pro} (values kcal/mol).
Residue	Lig1_{sub2}	Lig2_{sub1}	Lig2_{sub2}	Lig3_{sub1}	Lig4_{sub1}	Lig4_{sub2}	Lig5_{sub1}	Lig5_{sub2}	Lig6_{sub1}	Lig6_{sub2}	Lig7_{sub1}	Lig7_{sub2}
T25												-0.891
L27	-0.185	-0.529	-0.447	-0.591	-0.684	-0.663	-0.675	-0.662	-0.568			
H41	-2.507	-0.544	-0.611	-1.752	-0.672	-0.611	-1.079	-0.486	-2.520	-0.838		
C44									-1.719			
T45	-0.586								-3.105			
S46	-0.578								-1.761			
M49	-1.110	-2.972		-1.486	-0.874	-1.452	-1.543	-0.860				
L50								-1.449				
F140	-0.610	-0.992	-0.871	-1.352				-1.256	-1.284			
L141	-0.961		-1.546	-2.391				-1.987	-1.465			
N142	-1.456	-1.911	-1.567	-1.208	-0.642	-0.714	-0.854	-2.523	-0.962	-0.777		
G143		-1.335	-1.460	-0.849	-1.369		-1.462	-0.841	-1.191			
S144	-0.502	-0.717	-0.648	-0.859	-1.844			-0.132	-1.269	-1.106		
C145	-1.592	-1.855	-1.125	-1.876	-2.287	-0.746	-0.596	-0.637	-1.960	-2.133		
H163	-0.466	-0.925	-2.322	-1.626	-1.403	-0.709	-0.191		-1.465	-1.622		
H164		-1.565	-1.065									
M165	-1.069	-0.748	-0.776	-1.732	-1.258	-2.432	-0.554	-2.578	-1.654			
D166		-2.040	-3.466	-0.604				-2.836	-4.313			
L167									-0.572			
R188									-1.492			
Q189								-1.521	-1.129	-2.417		

Indomethacin=lig1, naftazone=lig2, ofloxacin=lig3, zopiclone=lig4, sofosbuvir=lig5, pitavastatin=lig6, eszopiclone=lig7. Sub1 and Sub2 denote subunits 1 or 2 of dimeric SARS-CoV-2 M_{pro}.

Table 5. Per-residue free energy for complexes between ligands and dimeric SARS-CoV-2 M_{pro} (values kcal/mol).
Residue	Lig8_{sub1}	Lig8_{sub2}	Lig9_{sub1}	Lig9_{sub2}	Lig10_{sub1}	Lig10_{sub2}	Lig11_{sub1}	Lig11_{sub2}	Lig12_{sub1}	Lig12_{sub2}	Lig13_{sub1}	Lig13_{sub2}
T25	-1.271	-0.527										
L27	-0.776	-0.633	-0.737	-1.097	-0.572	-1.929	-0.141	-0.517	-0.831	-0.725		
H41	-1.038	-0.528		-1.898	-0.611	-2.726	-0.556	-0.833	-1.449	-1.328		
V42										-0.622		
T45												-0.544
S46												-0.531
M49	-1.669	-0.776	-2.057	-1.981								
L50	-1.151						-1.216	-2.325	-1.516			-0.761
F140	-0.849	-0.918			-1.214							-0.627
L141												-0.526
N142	-2.929	-2.445	-2.018	-1.194								-0.795
G143	-2.328	-2.454	-0.792				-0.650					-1.684
S144	-1.672	-1.517				-1.247						-1.486
C145	-1.566	-2.232	-1.109		-0.913	-1.598	-0.518					-3.112
H163			-1.652	-0.707								-2.718
H164						-0.708	-0.560					
M165	-2.233	-1.841	-1.661	-3.722	-1.750	-1.667	-1.248	-3.034	-1.805	-1.984	-1.903	
D166	-1.017	-0.950	-4.882									-0.849
L167												-0.702
P168												-0.778
D187												-1.468
R188												-1.468
Q189							-1.367					-1.468
T190												-1.468
A191												-2.158
Q192												-1.391

perampanel=lig8, fenosterol=lig9, azelastine=lig10, celecoxib=lig11, nelfinavir=lig12, praziquantel=lig13. Sub1 and Sub2 denote subunits 1 or 2 of dimeric SARS-CoV-2 M_{Pro}.

Table 6. Per-residue free energy for complexes between ligands and dimeric SARS-CoV-2 M_{Pro} and SARS-CoV M_{Pro} (values kcal/mol).
Residue	Lig14_{sub1}	Lig14_{sub2}	Lig15_{sub2}	Lig16_{sub1}	Lig16_{sub2}	Lig17_{sub1}	Lig17_{sub2}	*Lig16_{sub1}	*Lig16_{sub2}	*Lig17_{sub1}
T25								-0.614		
T26										
L27						-0.662	-0.741			
H41	-0.613	-2.124	-0.890	-1.138		-1.425	-0.757	-0.723		
C44							-0.985			
S/A*46		-0.639	-0.699				-0.821	-0.604		
D48							-0.848			
M49		-2.513	-2.100	-2.211	-1.038	-2.367	-1.900	-2.314	-1.748	
L50							-0.513	-0.875	-0.554	
P52								-0.998		
L141	-0.859	-0.750								
N142	-0.654									
G143							-0.710			
C145	-0.598	-0.561					-0.663			
H163							-2.762			
M165	-1.787	-2.814	-0.647	-2.208	-3.300	-1.912	-1.979	-0.840	-1.234	-3.112
D166					-0.703				-1.830	
L167				-0.700	-0.525	-0.850				-1.533
P168				-1.495	-2.062				-0.610	-1.946
H172				-0.549						
D187				-1.562	-0.778	-0.885			-0.764	
R188				-0.843	-0.599	-0.972				
Q189	-0.709	-0.968	-1.951	-1.809	-0.785	-1.353	-1.069	-1.712		
T190				-1.138	-0.782					
A191							-1.398	-0.543		
Q192								-0.514		

Ondansetron=lig14, lemborexant=lig15, lopinavir=lig16, and ritonavir=lig17. *denotes complexes between dimeric SARS-CoV M̃_{pro} with lopinavir (lig16*) and ritonavir (lig17*). Sub1 and Sub2 denote subunit 1 or 2 of dimeric SARS-CoV-2 M̃_{pro} or SARS-CoV M̃_{pro}.

Table 7. Trace of the diagonalized covariance matrix of the backbone atoms for free and bound dimeric SARS-CoV2 and SARS-CoV M̃_{pro} systems
System	Covariance (nm²)
Dimeric SARS-CoV2 M^{pro}	16.2
SARS-CoV2_{apo}	16.2
SARS-CoV2_{indomethacin}	20.8
SARS-CoV2_{naftazone}	15.0
SARS-CoV2_{ofloxacin}	12.0
SARS-CoV2_{zopiclone}	16.0
SARS-CoV2_{sofosbuvir}	16.3
SARS-CoV2_{pitavastatin}	13.2
SARS-CoV2_{eszopiclone}	15.3
SARS-CoV2_{perampanel}	17.4
SARS-CoV2_{fenoterol}	13.5
SARS-CoV2_{azelastine}	16.0
SARS-CoV2_{celecoxib}	18.4
SARS-CoV2_{nelfinavir}	15.9
SARS-CoV2_{praziquantel}	14.9
SARS-CoV2_{ondansetron}	20.9
SARS-CoV2_{lemborexant}	16.2
SARS-CoV2_{lopinavir}	15.2
SARS-CoV2_{ritonavir}	23.4
Dimeric SARS-CoV M^{pro}	21.0
SARS-CoV_{apo}	20.9
SARS-CoV_{lopinavir}	25.1

Supplemental Figures

Fig.1S. Binding conformation of complexes between ligands and monomeric SARS-CoV2 M^{pro}. Maps of interaction complexes between monomeric SARS-CoV2 M^{pro} and indomethacin (A), naftazone (B), ofloxacin (C), zopiclone (D), sofosbuvir (E) and pitavastatin (F). Binding conformations correspond to the protein-ligand complex obtained through docking studies. Receptor is depicted in green cartoon representation, interacting residues are depicted in green stick, and ligand is showed in ball and stick representation. Figure was built with PyMOL 0.99rc6.

Fig. 2S. Binding conformation of complexes between ligands and monomeric SARS-CoV2 M^{pro}. Maps of interaction complexes between monomeric SARS-CoV2 M^{pro} and eszopiclone (A), perampanel (B), Fenoterol (C), azelastine (D), celecoxib (E), and nelfinavir (F).

Fig. 3S. Binding conformation of complexes between ligands and monomeric SARS-CoV2 and SARS-CoV M^{pro}. Maps of interaction complexes between monomeric SARS-CoV2 M^{pro} and praziquantel (A), ondansetron (B), lemborexant (C), lopinavir (D) and ritonavir (E). Maps of interaction complexes between monomeric SARS-CoV M^{pro} and lopinavir (F) and ritonivir (G)

Figures
Figure 1

Binding conformation of complexes between ligands and monomeric SARS-CoV-2 Mpro. Maps of the interaction of monomeric SARS-CoV-2 Mpro with naftazone (A), zopiclone (B), sofosbuvir (C), pitavastatin (D), eszopiclone (E), and perampanel (F). Each complex corresponds to the most populated conformation obtained thorough MD simulation. The receptor is represented in a green cartoon representation, the interacting residues are depicted in green sticks, and the ligand is shown in a ball and stick representation. The figure was built with PyMOL [18].
Figure 2

Binding conformation of complexes between ligands and monomeric SARS-CoV-2 Mpro and SARS-CoV Mpro. Diagrams of the interaction of complexes of monomeric SARS-CoV-2 Mpro with azelastine (A), celecoxib (B), ondansetron (C) and lemborexant (D) and lopinavir (E). Diagrams of the interaction of monomeric SARS-CoV Mpro with lopinavir (F) and ritonavir (G).
Figure 3

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 Mpro. Indomethacin coupled to subunit 2 (A), naftazone bound to subunits 1 (B) and 2 (C), ofloxacin bound to subunit 1 (D), and zopiclone coupled to subunits 1 (E) and 2 (F) of dimeric SARS-CoV-2 Mpro.
Figure 4

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 Mpro. Sofosbuvir bound at subunits 1 (A) and 2 (B), pitavastatin bound at subunits 1 (C) and 2 (D), and eszopiclone bound at subunits 1 (E) and 2 (F) of dimeric SARS-CoV-2 Mpro.
Figure 5

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 Mpro. Perampanel bound at subunits 1 or 2 (A and B), fenoterol bound at subunits 1 or 2 (Fig. C and D), and azelastine bound at subunits 1 and 2 (Fig. E and F) of dimeric SARS-CoV-2 Mpro.
Figure 6

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 Mpro. Celecoxib bound at subunits 1 and 2 (A and B), nelfinavir bound at subunits 1 and 2 (Fig. 6C and 6D), and praziquantel bound at subunits 1 and 2 (Fig. 6E and 6F) of dimeric SARS-CoV-2 Mpro.
Figure 7

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 Mpro. Ondansetron bound at subunits 1 and 2 (A and B), lemborexant bound at subunit 2 (C), lopinavir at subunits 1 (D) and 2 (E) and ritonavir at subunit 1 (F) of dimeric SARS-CoV-2 Mpro.
Figure 8

Binding conformation of complexes of ligands with dimeric SARS-CoV-2 and SARS-CoV Mpro. Ritonavir bound at subunit 2 (A) of dimeric SARS-CoV-2 Mpro. Lopinavir coupled at subunits 1 (B) and 2 (C) and ritonavir at subunit 1 (D) of dimeric SARS-CoV Mpro.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- fig2S.png
- fig3S.png
- fig1S.png