Data Article

Ecotoxicity and genetic toxicity data from a pulp mill bleaching effluent treated with anaerobic digestion and advanced oxidation process (AOP)

Tatiana R. Chaparro a, *, Juan Gabriel Rueda-Bayona b

a Military University, Civil Engineering Department, Environmental Sanitation Laboratory, Water and Energy (AyE) Research Group, Bogotá, Carrera 11 No.101- 80, Colombia
b Military University, Civil Engineering Department, Civil Engineering, Water and Energy (AyE) Research Group, Bogotá, Carrera 11 No.101- 80, Colombia

ARTICLE INFO

Article history:
Received 22 November 2019
Received in revised form 31 December 2019
Accepted 10 January 2020
Available online 16 January 2020

Keywords:
Allium cepa L.
Anaerobic treatment
Ceriodaphnia spp
Daphnia spp
Ozone
Ozone/UV

ABSTRACT

Wastewater treatment contributes to environmental sustainable development indicators such as clean water and sanitation, then, is imperative to improve the mechanisms and process of contaminant removals. The sewage and industrial effluents are the major contributors of pollutants in land and water discharges, and are necessary to enrich the available data for having reference parameters for plant designing and optimization. The physical and chemical assays alone could not be considered sufficient to assess properly the plant performance because complex mixtures demand ecological and biological parameters for a holistic evaluation. Hence, the ecotoxicity and the genetic toxicity measurement become an important tool to complement the conventional water quality parameters, but these parameters are not widely reported in the open access literature. Despite of several studies showed ecotoxicity and the genetic toxicity data, these could be considered not sufficient because the resulted information is derived from single compounds. Considering the scarce data mentioned above this article presents data on the genetic an ecological toxicity of an anaerobic effluent post-treated with ozone and ozone/UV generated by Chaparro et al. [1] and Chaparro and Pires [2].

© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail addresses: adela.rodriguez@unimilitar.edu.co, tatianna.rodriguez@gmail.com (T.R. Chaparro).

https://doi.org/10.1016/j.dib.2020.105141
2352-3409 © 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The Table 1 resumes the main values derived from the ecotoxicology assays and the Table 2 presents the main characteristic of these measurements. The raw data of the acute and chronic toxicity are shown in: Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19. The genetic toxicity was evaluated with the meristematic region of the Allium cepa L roots. The data is gathered in a Excel sheet file available in the Mendeley data website which can be found with the title "Ecotoxicity and genetic toxicity data (Allium cepa) from a bleaching wastewater treated on an anaerobic process and Ecotoxicity and genetic toxicity data of an anaerobic effluent pos-treated with ozone and ozone/UV respectively. Finally, Fig. 1 and Fig. 2 show images of the main genetic effects observed after the treatments.

1. Data

The Table 1 resumes the main values derived from the ecotoxicology assays and the Table 2 presents the main characteristic of these measurements. The raw data of the acute and chronic toxicity are shown in: Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19. The Genetic toxicity was evaluated considering the results of the Chromosome aberrations index (CA), variation of the mitotic index (IM) and mutagenic effects as number of micronucleus (MN). The data is gathered in a Excel sheet file available in the Mendeley data website which can be found with the title “Ecotoxicity and genetic toxicity data (Allium cepa) from a bleaching wastewater treated on an anaerobic process and “Ecotoxicity and genetic toxicity data of an anaerobic effluent pos-treated with ozone and ozone/UV” respectively. Finally, Fig. 1 and Fig. 2 show images of the main genetic effects observed after the treatments.

Table 1
Main values of the Acute and Chronic toxicity.

Treatment	EC₅₀	EC₅₀	ICP₍₂₅₎	ICP₍₂₅₎
Raw WW	5.47	7.42	4.93	5.52
Anaerobic effluent	5.36–5.59	7.24–7.62	3.82	Not available
Anaerobic effluent	59.95	67.6	3.42–4.54	15.45–30.59
Ozone effluent	52.71–68.20	61–74	16.22	18.31
Ozone effluent	65.98	79.58	15.50–16.65	17.19–18.68
O₃/UV effluent	60.12–72.41	76.47–82.84	16.41	13.79
O₃/UV effluent	57.61–71.20	73.97–82.39	15.99–17.03	13.22–14.61
Table 2
Main requirements for the maintenance of the cultures during the ecotoxicity assessment.

Requirements	Daphnia similis	Ceriodaphnia dúbia/silvestrii
Assay	Static	semi-static
Duration	48 hours	7 days
Temperature	20 ± 5 °C	
Photoperiod/light intensity.	16h light: 8h dark 500–1000 lux	
Volume of samples	10 mL	15 mL
Minimum number of dilutions with replicates	Five more controls	
Number of replicates per dilution.	4	10
Feeding	Not	Yes
Water of dilution	Reconstituted water tank	
Test organism age	6h–24h	
Number of organisms per replicate	5	1
Renewal of the test solution	Not	Every 2 days
Evaluation criteria	Mortality/Immobility	Reproduction/Survival
Test Acceptance Criteria	>90% survival of organisms in the control	>80% survival and >15 neonates/female control.

Table 3
Acute toxicity of industrial bleaching effluent (test 1).

Sample	Concentration (%)	number exposed	Mortalities a
1	5	20	0
2	5.8	20	18
3	6.9	20	20
4	8.8	20	20
5	10	20	20

a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 = 5.472590; lower confidence interval (95%) = 5.36; upper confidence interval (95%) = 5.59.

Table 4
Acute toxicity of industrial bleaching effluent (test 2).

Sample	Concentration (%)	number exposed	Mortalities a
1	5.7	20	0
2	6.9	20	2
3	8.3	20	20
4	10	20	20

a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 = 7.4268293; lower confidence interval (95%) = 7.24; upper confidence interval (95%) = 7.62.

Table 5
Chronic Toxicity of industrial bleaching effluent (test 1).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooled a mean response
1	10	0	13.5	3.064	13.5
2	10	3.8	12.3	6.977	12.3
3	10	4.5	11.6	7.106	11.6
4	10	5.4	10.3	6.516	10.3
5	10	6.5	8.7	4.498	8.7

a Statistical validation. Linear Interpolation Estimate = 5.5203; Entered P Value = 25; number of resampling = 80; Resamples Generated = 71, those resamples not used had estimates above the highest concentration; The Bootstrap Estimates Mean = 4.9619; standard deviation = 0.9109; No Confidence Limits can be produced since the number of resamples generated is not a multiple of 40; resampling time in Seconds = 0.00; random Seed: 435879320.
The raw industrial wastewater was obtained from a kraft pulp mill with ECF sequence (Elemental Chlorine Free) located in Sao Paulo state—Brazil. Further information about the characteristics of this effluent can be found in Chaparro and Pires [3]. The pulp mill was treated biologically in a horizontal anaerobic immobilized biomass reactor (HAIB) for 306 days with an organic volumetric load of 2.33 kgCOD/m³.day and an hydraulic retention time of 25 h. The effluent from this reactor was subjected to ozone and ozone/UV oxidation tests without prior pH adjustment. The pH of the HAIB reactor effluent

2. Experimental design, materials, and methods

The raw industrial wastewater was obtained from a kraft pulp mill with ECF sequence (Elemental Chlorine Free) located in Sao Paulo state—Brazil. Further information about the characteristics of this effluent can be found in Chaparro and Pires [3]. The pulp mill was treated biologically in a horizontal anaerobic immobilized biomass reactor (HAIB) for 306 days with an organic volumetric load of 2.33 kgCOD/m³.day and an hydraulic retention time of 25 h. The effluent from this reactor was subjected to ozone and ozone/UV oxidation tests without prior pH adjustment. The pH of the HAIB reactor effluent
was close to 8.6. The samples were taken at regular intervals during the experimental period to evaluate the ecotoxicity and the genetic toxicity. Ecotoxicity assays were conducted according to the Brazilian standards [4,5], which were expressed in acute and chronic toxicity units using the linear interpolation method [6,7]. Table 2 shows a brief summary of the main requirements for the acute and chronic toxicity bioassays.

Table 10
Chronic Toxicity of HAIB reactor effluent (test 3).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooled mean response
1	9	0	7.667	1.323	7.667
2	10	12.5	1.4	1.35	1.4
3	10	25	0	0	0

* a Statistical validation. Linear Interpolation Estimate = 3.8231; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80, those resamples not used had estimates above the highest concentration; The Bootstrap Estimates Mean = 3.8683; standard deviation = 0.2846; resampling time in Seconds = 0.00; random Seed: -181298520.

Table 11
Chronic Toxicity of HAIB reactor effluent (test 3).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooled mean response
1	10	0	11.1	6.999	12.824
2	7	11.85	15.286	5.345	12.824
3	10	17.7	9.8	5.673	9.9
4	10	26.6	10	6.146	9.9
5	10	40	2.1	2.807	2.1

* a Statistical validation. Linear Interpolation Estimate = 27.0851; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80; the Bootstrap Estimates Mean = 23.1732; standard deviation = 5.4741; resampling time in Seconds = 0.00; random Seed: -1470801740. lower confidence interval (95%) = 15.4527; upper confidence interval (95%) = 30.5956.

Table 12
Acute toxicity of industrial bleaching effluent treated with ozone/UV (test 1).

Sample	Concentration (%)	number exposed	Mortalities
1	6.25	20	0
2	12.50	20	0
3	25.00	20	0
4	50.00	21	3
5	100.00	20	20

* a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 64.04; lower confidence interval (95%) = 57.61; upper confidence interval (95%) = 71.20.

Table 13
Acute toxicity of industrial bleaching effluent treated with ozone/UV (test 2).

Sample	Concentration (%)	number exposed	Mortalities
1	20.00	20	0
2	30.00	20	0
3	44.00	19	0
4	66.00	20	2
5	100.00	20	20

* a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 77.97; lower confidence interval (95%) = 73.79; upper confidence interval (95%) = 82.39.
Table 14
Acute toxicity of industrial bleaching effluent treated with ozone (test 1).

Sample	Concentration (%)	number exposed	Mortalitiesa
1	6.25	20	0
2	12.50	20	0
3	25.00	20	0
4	50.00	20	2
5	100.00	20	20

a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 65.97; lower confidence interval (95%) = 60.12; upper confidence interval (95%) = 72.41.

Table 15
Acute toxicity of industrial bleaching effluent treated with ozone (test 2).

Sample	Concentration (%)	number exposed	Mortalitiesa
1	20.00	19	0
2	30.00	20	0
3	44.00	18	0
4	66.00	20	1
5	100.00	20	20

a Statistical validation. Spearman-Karber trim = 0; Spearman-Karber estimates = eC50 79.59; lower confidence interval (95%) = 76.47; upper confidence interval (95%) = 82.84.

Table 16
Chronic Toxicity of industrial bleaching effluent treated with ozone (test 1).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooleda mean response
1	9	0	7.67	1.323	8.68
2	10	12.50	9.60	4.40	8.68
3	10	25.00	1.40	1.51	1.40

a Statistical validation. Linear Interpolation Estimate = 16.2256; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80; The Bootstrap Estimates Mean = 16.1503; standard deviation = 0.3784; lower confidence interval (95%) = 15.5014; upper confidence interval (95%) = 16.6576. resampling time in Seconds = 0.00; random Seed: -347644830.

Table 17
Chronic Toxicity of industrial bleaching effluent treated with ozone (test 2).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooleda mean response
1	10	0	12.6	2.989	13
2	10	15.8	13.4	4.624	13
3	10	23.7	2.8	2.348	2.8
4	10	35.55	1.1	0.876	1.1

a Statistical validation. Linear Interpolation Estimate = 18.3172; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80; The Bootstrap Estimates Mean = 18.1233; standard deviation = 0.7975; lower confidence interval (95%) = 17.1929; upper confidence interval (95%) = 18.6884. resampling time in Seconds = 0.00; random Seed: -27183750.

Table 18
Chronic Toxicity of industrial bleaching effluent treated with ozone/UV (test 1).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooleda mean response
1	9	0	7.667	1.323	8.421
2	10	12.5	9.1	2.644	8.421
3	10	25	1.7	1.829	1.7

a Statistical validation. Linear Interpolation Estimate = 16.4154; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80; The Bootstrap Estimates Mean = 16.3993; standard deviation = 0.3723; lower confidence interval (95%) = 15.9225; upper confidence interval (95%) = 17.0320. resampling time in Seconds = 0.00; random Seed: -5333658.
Table 19
Chronic Toxicity of industrial bleaching effluent treated with ozone/UV (test 2).

Sample	Number of Replicates	Concentration (%)	Mean response	Standard deviation	Pooled mean response
1	10	0	12.6	2.989	15.85
2	10	10	19.1	7.43	15.85
3	10	20	5.4	2.797	5.4
4	10	40	0	0	0

a Statistical validation. Linear Interpolation Estimate = 13.7919; Entered P Value = 25; number of resampling = 80; Resamples Generated = 80; The Bootstrap Estimates Mean = 13.8374; standard deviation = 0.5653; lower confidence interval (95%) = 13.2224; upper confidence interval (95%) = 14.6104. resampling time in Seconds = 0.00; random Seed: -119261604.

Fig. 1. Cells in root tips of *Allium cepa* exposed with bleaching effluents and the HAIB reactor. (a) normal cellular division, anaphase, metaphase, interphase. (b) Disturbed metaphase with break. (c) Telophase with bridge. (d) Anaphase with loss and bridge. (e) Micronucleus. (f) Binucleus cells and multiple nuclear lesions.
The genetic toxicity was performed according to the modified version of the Grant’s protocol [8]. The Genotoxicity index was evaluated based on the Chromosome aberrations (CA), Cytotoxicity was calculated through the mitotic index (MI) and the Mutagenic effect was assessed based on the micronucleus (MN) as follows:

\[CA = \frac{\text{number of cells with CA}}{\text{total number of observed cells}} \times 100 \]

\[MI = \frac{\text{number of dividing cells}}{\text{total number of observed cells}} \times 100 \]

\[MN = \frac{\text{number of cells with MN}}{\text{total number of observed cells}} \times 100 \]

Fig. 2. Cells in root tips of *Allium cepa* exposed with ozone and ozone/UV (a) Telophase with bridge and anaphase with bridge and break. b) Metaphase with loss. C) Vacuolized cell.

The genetic toxicity was performed according to the modified version of the Grant’s protocol [8]. The Genotoxicity index was evaluated based on the Chromosome aberrations (CA), Cytotoxicity was calculated through the mitotic index (MI) and the Mutagenic effect was assessed based on the micronucleus (MN) as follows:

\[CA = \frac{\text{number of cells with CA}}{\text{total number of observed cells}} \times 100 \]

\[MI = \frac{\text{number of dividing cells}}{\text{total number of observed cells}} \times 100 \]

\[MN = \frac{\text{number of cells with MN}}{\text{total number of observed cells}} \times 100 \]
Finally, the statistical analysis considered the non-parametric Kruskal–Wallis applied by means of the BioEstat 5.0 software (https://bioestat.software.informer.com/5.0/).

Acknowledgments

This work was funded by São Paulo Research Foundation (FAPESP) for the Doctoral grant to Prof. Tatiana R Chaparro. The authors also acknowledge to the Department of Biology of Institute of Bioscience of UNESP-Rio Claro (SP/Brazil) and Centre of Water Resources and Applied Ecology-CRHEA of University of Sao Paulo (SP/Brazil) for the assistance on the bioassays.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105141.

References

[1] T.R. Chaparro, C.M. Botta, E.C. Pires, Biodegradability and toxicity assessment of bleach plant effluents treated anaerobically, Water Sci. Technol. 62 (2010), https://doi.org/10.2166/wst.2010.944.
[2] T.R. Chaparro, E.C. Pires, Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill, Water Sci. Technol. 71 (2015), https://doi.org/10.2166/wst.2014.527.
[3] T.R. Chaparro, E.C. Pires, Anaerobic treatment of cellulose bleach plant wastewater : chlorinated organics and genotoxicity removal, Braz. J. Chem. Eng. 28 (4) (2011), https://doi.org/10.1590/S0104-66322011000400008.
[4] ABNT (Associação Brasileira de Normas Técnicas), Aquatic Ecotoxicology — Acute Toxicity — Method of Assay with Daphnia Spp. — Cladocera, Crustácea, ABNT, NBR 12713, Rio de Janeiro, 2004 (in Portuguese).
[5] A. (Associação B. de N. Técnicas), Aquatic Ecotoxicology — Chronic Toxicity — Method of Assay with Ceriodaphnia sp. — Cladocera, Crustácea, ABNT, NBR 13373, Rio de Janeiro, 2005 (in Portuguese).
[6] T.R. Hamilton M.A., R.C. Russo, Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays, Environ. Sci. Technol. 11 (1977) 714–719.
[7] E.P.A. Environmental, R.L.M. 55804, A Linear Interpolation Method for Sublethal Toxicity: the Inhibition Concentration (ICp) Approach. (Version 2.0), Duluth, 1993.
[8] W.F. Grant, Chromosome aberration assays in barley (Hordeum vulgare) a report of the U.S. environmental protection agency Gene-Tox program, Mutat. Res. Genet. Toxicol. 99 (1982) 13–36, https://doi.org/10.1016/0165-1110(82)90028-8.