Abstract
The analysis of a single server finite buffer Markovian queuing system with state-independent balking and Markovian reneging has been presented in this paper. Reneging till beginning and reneging till end of service have been considered separately. Closed form expressions of number of performance measures have been presented. Sensitivity analysis has also been performed to examine the variation in performance measures with the variation in system parameters. A numerical example has been presented to demonstrate results derived.

Introduction and Motivation
It has been close to a century that the theory of queues has been developing. In the process, many queuing scenarios have been modeled. Many of such scenarios have been motivated from real life experiences. Of the various characteristics of customer behavior in a typical queuing system, this paper deals with the phenomenon of balking and reneging. These days, customers are very hard pressed for time. Additionally, they desire prompt and efficient service. It is our day-to-day experience where a customer on its arrival to the queuing system decides against joining the queue if there is one already in existence. The act of not joining the queue by the customer and leaving the queuing system is known as balking. Customers may balk due to various reasons. Haight (1957) has provided a rationale, which might influence a person to balk. It relates to the perception of the importance of being served which induces an opinion somewhere in between urgency so that a queue of certain length will not be joined to indifference where a non-zero queue is also joined. Even if a customer does not balk and joins the system, it is very often the case where customers are unwilling to wait as long as it is necessary to complete the act of receiving service. In other words, customers may not be indefinitely patient. Consequently a customer who has joined the system may depart either from the queue or from the service station without completely receiving the service. This is known as reneging. Even though reneging is a common phenomenon in any queuing system, yet it is not very often that one can locate a paper on reneging.

Reneging can be of two types: reneging till beginning of service (henceforth referred to as R_BOS) and reneging till end of service (henceforth referred to as R_EOS). A customer can renege only as long as it is in the queue and this can be observed as R_BOS. It cannot renege once it begins receiving service. A common example is the barbershop. A customer can renege while he is waiting in queue. However once service get starts i.e. hair cut begins, the customer cannot leave till service is over. On the other hand customer can renege not only while waiting in queue but also while receiving service, which can be observed as R_EOS. Such a situation occurs for example in the processing or merchandising of perishable goods.

In this paper we shall analyze the Markovian single server finite buffer queue where an arriving customer may balk as well reneging. A few non-traditional performance measures will also be presented. Basically the aim behind
constructing the additional performance measures is to reflect upon the implications of reneging and balking in the system. Implications of change in system parameters with regard to server utilization will also be discussed.

An early work on reneging was by Barrer (1957) where he considered deterministic reneging with single server markovian arrival and service rates. Customers were selected randomly for service. In his subsequent work, Barrer (1958) also considered deterministic reneging (of both R_BOS and R_EOS) in a multiserver scenario with FCFS discipline. Another early work was by Haight (1959). Ghosal (1963) considered a D/G/1 model with deterministic reneging. Gavish and Schweitzer (1977) also considered a deterministic reneging model with the additional assumption that arrivals can be labeled by their service requirement before joining the queue and arriving customers are admitted only if their waiting plus service time do not exceed some fixed amount. This assumption is met in communication systems. Choudhury (2008) analyzed a single server markovian queuing system with the added complexity of customers who are prone to giving up whenever its waiting time is larger than a random threshold—his patience time. He assumed that these individual patience times were independent and identically distributed exponential random variables. Reneging till beginning of service was considered. A detailed and lucid derivation of the distribution of virtual waiting time in the system was presented. Some performance measures were also presented. Few other attempts at modeling reneging phenomenon include those by Baccelli et al (1984), Kok and Tijms (1985), Martin and Artalejo (1995), Boots and Tijms (1999), Bae et al (2001), Choi et al (2001), Choi Kim and Zhu (2004), Zhang et al (2005), Singh et al (2007), Altman and Yechiali (2008), Kim et al (2008) and Liu and Kulkarni (2008).

Similarly, an early work on balking was by Haight (1957). Haghighi et al (1986) considered a Markovian multiserver queuing model with balking as well as reneging. Each customer had a balking probability which was independent of the state of the system. R_BOS was considered as reneging discipline. Liu et al (1987) considered an infinite server Markovian queuing system with reneging of type R_BOS. Customers had a choice of individual service or batch service: batch service being preferred by the customer. Brandt et al (1998) considered a S-server system with two FCFS queues, where the arrival rates at the queues and the service may depend on number of customers ‘n’ being in service or in the first queue, but the service rate was assumed to be constant for n>s. The customers in the first queue were assumed impatient customers with deterministic reneging. Wang et al (1999) considered the machine repair problem in which failed machines balk with probability (1-b) and renege according to a negative exponential distribution. Another work using the concepts of balking and reneging in machine interference queue has been carried out by Al-Seeidy and Al-Ibraheim (2001).

There have been a few papers in which both balking as well as reneging was considered. Here mention may be made of the papers by Haghighi et al (1986), Zhang et al (2005), El-Paoumy (2008), El-Sherbiny (2008), Shawky and El-Paoumy (2009).

In this paper we discuss the analysis of M/M/1/k model with the additional restriction that a customer may balk as well as reneging. The two types of reneging R_BOS and R_EOS are discussed separately. To the best of our knowledge, an analysis with both types of reneging (of Markovian type) in addition to state independent balking has not been carried out in this model. Even though one can find queuing models of various types analyzed in queuing literature, it is not often that reneging and balking have been analyzed together. Even if these have been dealt with, explicit closed expressions are not available. This paper is an attempt in this direction. Importance of the queuing model stems from the fact that in the classical M/M/1 model," it is assumed that the system can accommodate any number of units. In practice, this may seldom be the case. We have thus to consider the situation such that the system has limited waiting space and can hold a maximum number of k units (including the one being served)" [Medhi (1994)]. As for balking, we assume that each customer has a state independent balking probability. It will be assumed that if the customer on arrival observes the existence of a queue but with system size below finite buffer restriction, the probability that he will balk is ‘p’. It may be noted that our formulation requires that balking is possible only when the system is non-empty. There is no balking from an empty system. We further assume that each customer joining the system has a random patience time following exp (ν) distribution. This patience time commences from the time it joins the systems. In case the reneging distribution is R_BOS, the customer will renege i.e. leave the system in case service does not begin before expiry of this patience time. In case of R_EOS, the customer would renege in case service is not over before the expiry of the patience time. Thus in case of R_EOS, the customer may depart either from the queue or from the service station with partial and incomplete service whereas in case of R_BOS, the customer can reneg only from the queue. The arrival and service patterns are assumed to be Markovian with rates λ and μ respectively.
The rest of the paper is structured as follows. In section 2, we obtain the system state probabilities. In section 3, performance measures are presented. Sensitivity analysis is carried out in section 4. A numerical example is discussed in section 5. Section 6 concludes the paper. Some derivations are given in the appendix which is placed in section 7.

The System State Probabilities:
In this section, the steady state probabilities are derived. Under R_BOS, let p_n denote the probability that there are 'n' customers in the system. Applying the Markov process theory, we obtain the following set of steady state equations.

$$\lambda p_0 = \mu p_1$$ \hspace{1cm} (2.1)

$$\lambda p_0 + (\mu + \nu)p_2 = \lambda (1 - p)p_1 + \mu p_1$$ \hspace{1cm} (2.2)

$$\lambda (1 - p)p_{n-1} + (\mu + n\nu)p_{n+1} = \lambda (1 - p)p_n + \{\mu + (n-1)\nu\}p_n : 2 \leq n \leq k - 1,$$ \hspace{1cm} (2.3)

$$\lambda (1 - p)p_{k-1} = \{\mu + (k-1)\nu\}p_k.$$

Solving recursively, we get (under R_BOS)

$$p_n = \frac{\lambda^n (1 - p)^{n-1}}{\prod_{r=1}^{n} \{\mu + (r-1)\nu\}} p_0 : n = 1, 2 \ldots k,$$ \hspace{1cm} (2.4)

where p_0 is obtained from the normalizing condition $\sum_{n=0}^{k} p_n = 1$ and is given as

$$p_0 = \left[1 + \sum_{n=1}^{k} \frac{\lambda^n (1 - p)^{n-1}}{\prod_{r=1}^{n} \{\mu + (r-1)\nu\}}\right]^{-1}.$$ \hspace{1cm} (2.5)

Under R_EOS, let q_n denote the probability that there are 'n' customers in the system. Proceeding similarly, we obtain the following set of steady state equations.

$$\lambda q_0 = (\mu + \nu)q_1$$ \hspace{1cm} (2.6)

$$\lambda q_0 + (\mu + 2\nu)q_2 = \lambda (1 - p)q_1 + (\mu + \nu)q_1,$$ \hspace{1cm} (2.7)

$$\lambda (1 - p)q_{n-1} + \{\mu + (n+1)\nu\}q_{n+1} = \lambda (1 - p)q_n + (\mu + n\nu)q_n : 2 \leq n \leq k - 1,$$ \hspace{1cm} (2.8)

$$\lambda (1 - p)q_{k-1} = (\mu + k\nu)q_k.$$

Solving, we get (under R_EOS)

$$q_n = \frac{\lambda^n (1 - p)^{n-1}}{\prod_{r=1}^{n} (\mu + r\nu)} q_0 : n = 1, 2 \ldots k,$$ \hspace{1cm} (2.9)

where

$$q_0 = \left[1 + \sum_{n=1}^{k} \frac{\lambda^n (1 - p)^{n-1}}{\prod_{r=1}^{n} (\mu + r\nu)}\right]^{-1}.$$ \hspace{1cm} (2.10)
Performance Measures:
An important measure is ‘L’, which denotes the mean number of customers in the system. To obtain an expression for the same, we note that $L = P'(1)$ where

$$P'(1) = \frac{d}{ds} P(s)|_{s=1}.$$

Here P(S) is the p.g.f. of the steady state probabilities. The derivation of P'(1) is given in the appendix. From (7.1.1) and (7.2.1), the mean system size under two reneging rules are

$$L_{R_{BOS}} = \frac{\lambda - (\mu + \lambda p)(1 - p_0) - \lambda(1 - p) p_k}{\nu},$$

$$L_{R_{EOS}} = \frac{\lambda - (\mu + \lambda p)(1 - q_0) - \lambda(1 - p) q_k}{\nu}.$$

Mean queue size can now be obtained and are given by

$$L_{q(R_{BOS})} = \frac{\lambda - (\mu + \lambda p)(1 - p_0) - \lambda(1 - p) p_k}{\nu},$$

$$L_{q(R_{EOS})} = \frac{\lambda - (\mu - \lambda p)(1 - q_0) - \lambda(1 - p) q_k}{\nu}.$$

Customers arrive into the system at the rate of λ. However all the customers who arrive do not join the system either because of balking or because of finite buffer restriction. The effective arrival rate into the system is thus different from the overall arrival rate and is given by

$$\lambda'(R_{BOS}) = \lambda p_0 + \lambda (1 - p) \sum_{n=1}^{k-1} p_n,$$

$$= \lambda (1 - p)(1 - p_k) + \lambda p p_0,$$

(3.1)

where ‘p_k’ and ‘p_0’ are given in (2.4) and (2.5) respectively.

Similarly

$$\lambda'(R_{EOS}) = \lambda (1 - p)(1 - q_k) + \lambda p q_0,$$

(3.2)

where ‘q_k’ and ‘q_0’ are given in (2.9) and (2.10) respectively.

It is relevant to note here that unlike in the traditional M/M/1 model where it is important that $\lambda < \mu$, something similar need not hold in M/M/1/k model as customers arriving after maximum buffer size has been reached are turned back.

We have assumed that each customer has a random patience time following exp (v). Clearly then the reneging rate of the system would depend on the state of the system as well as the reneging rule. The average reneging rate (avg rr) is a measure of average loss due to reneging. For the two rules of reneging, it is obtained as

$$Avg rr_{R_{BOS}} = \sum_{n=2}^{k} (n-1) p_n$$

$$= \nu \left(L_{R_{BOS}} - (1 - p_0) \right),$$

(3.3)

$$= \frac{\lambda - (\mu + \lambda p)(1 - p_0) - \lambda(1 - p) p_k}{\nu}.$$

$$Avg rr_{R_{EOS}} = \sum_{n=1}^{k} n v q_n$$

$$= \nu L_{R_{EOS}}$$

$$= \frac{\lambda - (\mu + \lambda p)(1 - q_0) - \lambda(1 - p) q_k}{\nu}.$$

(3.4)
To the system manager, customers who balk or renege represent business lost. In totality, customers are lost to the system in three ways, due to finite buffer, due to reneging and due to balking. The management would like to know the proportion of total customers lost in order to have an idea of total business lost.

The mean rate at which customers are lost (under R_BOS) is

$$\lambda - \lambda^e_{(R_\text{BOS})} + \text{avgrr}_{(R_\text{BOS})} = \lambda - \mu(1 - p_0).$$ (3.5)

Similarly the mean rate at which customers are lost (under R_EOS) is

$$\lambda - \lambda^e_{(R_\text{EOS})} + \text{avgrr}_{(R_\text{EOS})} = \lambda - \mu(1 - q_0).$$ (3.6)

These rates help in the determination of proportion of customers lost which is of interest to the system manager as also an important measure of business lost. This proportion (under R_BOS) is given by

$$\frac{\lambda - \lambda^e_{(R_\text{BOS})} + \text{avgrr}_{(R_\text{BOS})}}{\lambda} = 1 - \frac{\mu}{\lambda}(1 - p_0).$$ (3.7)

and the proportion (under R_EOS) is given by

$$\frac{\lambda - \lambda^e_{(R_\text{EOS})} + \text{avgrr}_{(R_\text{EOS})}}{\lambda} = 1 - \frac{\mu}{\lambda}(1 - q_0).$$ (3.8)

The proportion of customers completing receipt of service can now be easily determined from the above proportion.

The customers who leave the system do not receive service. Consequently, only those customers who reach the service station constitute the actual load of the server. From the server’s point of view, this provides a measure of the amount of work he has to do. We shall denote by λ^s, the rate at which customers reach the service station. Then under R_BOS

$$\lambda^s_{(R_\text{BOS})} = \lambda^c_{(R_\text{BOS})}(1 - \text{proportion of customers lost due to reneging out of those joining the system})$$

$$= \lambda^c_{(R_\text{BOS})} \left[1 - \sum_{n=2}^{\infty} (n-1)p_n / \lambda^c_{(R_\text{BOS})}\right]$$

$$= \lambda^c_{(R_\text{BOS})} - \text{avgrr}_{(R_\text{BOS})}$$

$$= \mu(1 - p_0).$$

In case of R_EOS, one needs to recall that customers may renege even while being served and only those customers who renege from the queue will not constitute any work for the server. Then

$$\lambda^s_{(R_\text{EOS})} = \lambda^c_{(R_\text{EOS})}(1 - \text{proportion of customers lost due to reneging from the queue out of those joining the system})$$

$$= \lambda^c_{(R_\text{EOS})} \left[1 - \sum_{n=2}^{\infty} (n-1)q_n / \lambda^c_{(R_\text{EOS})}\right]$$

$$= \lambda^c_{(R_\text{EOS})} - \nu \{L_{R_\text{EOS}} - (1 - q_0)\}$$

$$= \lambda^c_{(R_\text{EOS})} \nu L_{d(\text{R_\text{EOS})}}$$

$$= (\mu - \nu)(1 - q_0).$$
Sensitivity Analysis:
It is interesting to examine and understand how server utilization varies in response to change in system parameters. The four system parameters of interest are λ, μ, v, k. We place below the effect of change in these system parameters on server utilization. For this purpose, we shall follow the following notational convention in the rest of this section.

$p_n(\lambda, \mu, v, k)$ and $q_n(\lambda, \mu, v, k)$ will denote the probability that there are ‘n’ customers in a system with parameters λ, μ, v, k in steady state under R_BOS and R_EOS respectively.

It can be shown that

i) If $\lambda > \lambda_0$ then

$$\frac{p_0(\lambda_1, \mu, v, k)}{p_0(\lambda_0, \mu, v, k)} < 1$$

$$\Rightarrow (\lambda_0 - \lambda_1) + (1-p)\left(\frac{\lambda_0^2 - \lambda_1^2}{\mu}\right) + \ldots + \frac{(1-p)^{k-1}}{\mu(\mu + v)\ldots(\mu + (k-1)v)}(\lambda_0^k - \lambda_1^k) < 0$$

which is true and hence $p_0 \downarrow$ as $\lambda \uparrow$.

ii) If $\mu > \mu_0$ then

$$\frac{p_0(\lambda, \mu_1, v, k)}{p_0(\lambda, \mu_0, v, k)} > 1$$

$$\Rightarrow \lambda_0 \left(\frac{1}{\mu_0} - \frac{1}{\mu_1}\right) + \lambda_0^2 \left(1-p\right)\left\{\frac{1}{\mu_0(\mu_0 + v)} - \frac{1}{\mu_1(\mu_1 + v)}\right\} + \ldots +$$

$$\lambda_0^k \left(1-p\right)^{k-1} \left\{\frac{1}{\mu_0(\mu_0 + v)\ldots(\mu_0 + (k-1)v)} - \frac{1}{\mu_1(\mu_1 + v)\ldots(\mu_1 + (k-1)v)}\right\} > 0$$

which is true and hence $p_0 \uparrow$ as $\mu \uparrow$.

iii) If $v > v_0$ then

$$\frac{p_0(\lambda, \mu, v_1, k)}{p_0(\lambda, \mu, v_0, k)} > 1$$

$$\Rightarrow \lambda_0 \left(\frac{1}{\mu} - \frac{1}{\mu}\right) + \lambda_0^2 \left(1-p\right)\left\{\frac{1}{\mu(\mu + v)} - \frac{1}{\mu(\mu + v)}\right\} + \ldots +$$

$$\lambda_0^k \left(1-p\right)^{k-1} \left\{\frac{1}{\mu(\mu + v)\ldots(\mu + (k-1)v)} - \frac{1}{\mu(\mu + v)\ldots(\mu + (k-1)v)}\right\} > 0$$

which is true and hence $p_0 \uparrow$ as $v \uparrow$.

iv) If $k > k_0$ then

$$\frac{p_0(\lambda, \mu, v, k_1)}{p_0(\lambda, \mu, v, k_0)} < 1$$

$$\Rightarrow \sum_{n=0}^{k_0} \frac{\lambda_0^n}{\prod_{r=1}^{n}(\mu + (r-1)v)} - \sum_{n=1}^{k_0} \frac{\lambda_0^n}{\prod_{r=1}^{n}(\mu + (r-1)v)} < 0$$

which is true and hence $p_0 \downarrow$ as $k \uparrow$.

357
The following can similarly be shown.

v) \(q_0 \downarrow \text{as } \lambda \uparrow \)

vi) \(q_0 \uparrow \text{as } \mu \uparrow \)

vii) \(q_0 \uparrow \text{as } \nu \uparrow \)

viii) \(q_0 \downarrow \text{as } k \uparrow \)

Managerial implications of the above results are obvious.

Numerical Example:

To illustrate the use of our results, we apply them to a queuing problem. We quote below an example from Allen (2005, page 267 and 273).

‘Traffic to a message switching centre for Extraterrestrial Communications Corporation arrives in a random pattern (remember that ‘random pattern’ means exponential interarrival time) at an average rate of 240 messages per minute. The line has a transmission rate of 800 characters per second. The message length distribution (including control characters) is approximately exponential with an average length of 176 characters. Calculate the principal statistical measures of system performance assuming that a very large number message buffers is provided.’

‘Suppose, however, that it is desired to provide only the minimum number of messages buffers required to guarantee that \(p_k < 0.005 \)

How many buffers should be provided?’

This is a design problem. Here \(\lambda = 4/\text{sec} \) and \(\mu = 4.55/\text{sec} \). As required by the switching centre, we examine the minimum number of message buffers with different choices of \(k \). Though not explicitly mentioned, it is necessary to assume reneging and balking. Balking because in telecommunication systems, it is known that an incoming message that sees a workload may be admitted in to the system with a certain probability and rejected otherwise. Rejection implies balking. We shall assume that the balking probability is ‘\(p \)’ (Boxma et al. 2008, has analyzed with a similar motivation).

Further we assume R_BOS because in telecommunication systems it is also known that messages usually have some real time constraints within which the message has to be processed. Messages received after the deadline is considered obsolete and discarded. This can be seen as reneging (Movaghar, 1998 and Boots and Tijms, 1999).

Let us assume alternative possible Markovian reneging rates of \(\nu = 0.1/\text{sec}, \nu = 0.03333/\text{sec} \). Put differently, these rates imply that a message joining the buffer will be alive if processing commences within 10sec and 30sec respectively on the average. We further assume that balking rate is independent of state and is taken as \(p = 0.001 \) (one in 1000 message).

Various performance measures of interest computed under different scenarios are given in Table 1 and 2. These measures were arrived at using a FORTRAN 77 program coded by the authors. Different choices of \(k \) were considered. Results relevant with regard to the requirement that the switching centre should provide only the minimum number of message buffers to guarantee should \(p_k < 0.005 \) are presented in the tables. (All rates in the following tables are per second).

Table 1: Performance Measures assuming \(\lambda = 4, \mu = 4.55, \nu = 0.1 \) and \(p = 0.001 \).

Performance Measure	Size of minimum number of message buffers		
	\(k=13 \)	\(k=14 \)	\(k=15 \)
\(p_k \)	0.00704	0.00478	.00321
\(\lambda^s \) (i.e. arrival rate of customers reaching service station)	3.71285	3.71686	3.71953
Effective mean arrival rate\((\lambda^w) \)	3.96859	3.97759	3.98392
Fraction of time server is idle \((p_0) \)	0.18399	0.18311	0.18252
Average length of queue
	2.55735	2.60725	2.64388
Average length of system
	3.37336	3.42425	3.46136
Mean reneging rate
	0.25573	0.26074	0.26439
Mean rate of customers lost
	0.28715	0.28314	0.28047
Proportion of customers loss due to reneging, balkng and finite buffer
| | 0.07179 | 0.07078 | 0.07012 |

| Table 2: - Performance Measures assuming λ=4, μ=4.55, ν=0.03333 and p=0.001. |
|---------------------------------|-----------------|-----------------|-----------------|
| Performance Measure | Size of minimum number of message buffers |
| | k=18 | k=19 | k=20 |
| p_k (i.e. arrival rate of customers reaching service station) | 0.00505 | 0.00390 | .00299 |
| λ^s (i.e. arrival rate of customers reaching service station) | 3.85368 | 3.85639 | 3.85848 |
| Effective mean arrival rate(λ^s) | 3.97644 | 3.98102 | 3.98463 |
| Fraction of time server is idle (p₀) | 0.15304 | 0.15244 | 0.15198 |
| Average length of queue | 3.68314 | 3.73899 | 3.78476 |
| Average length of system | 4.53009 | 4.58655 | 4.63277 |
| Mean reneging rate¹ | 0.12276 | 0.12462 | 0.12615 |
| Mean rate of customers lost | 0.14632 | 0.14360 | 0.14152 |
| Proportion of customers loss due to reneging, balkng and finite buffer | 0.03658 | 0.03590 | 0.03538 |

In case the reneging behavior follows exp (0.1) distribution, it appears from the tables 1 that an ideal choice of k could be 14 with p_k=0.00478. If the reneging distribution is exp (0.03333), then k=19 appears to be close to the switching centre with p_k=.00390 (table 2).

A few interesting observations can be made from the above tables.
1) The rate of arrival into the system is 4message/sec whereas the actual load of the server (λ^s) is 3.71686 (from table 1 case of k=14). Thus 4-3.71686=0.26398 message/sec are being lost. As a proportion of all message arriving at the centre this amounts to 0.07078 (=0.28314/4) proportion of lost messages. This can be confirmed from the last row of the table.
2) Since λ^s=3.71686, the centre is required to process 3.71686 messages/sec when its capacity is 4.55 messages/sec. The centre is therefore idle for 0.18311(=(4.55-3.71686)/4.55) proportion of time. This corroborates p₀ in table 1 under k=14.

Similar observations can be made for other cases in table 2.

Conclusion:

The analysis of a single server finite buffer Markovian queueing system with state-independent balkng and Markovian reneging has been discussed. Closed form expressions of number of performance measures have been presented. Many of these could be of direct interest to the system manager. To study the change in the system corresponding to change in system parameters, sensitivity analysis has also been presented. A numerical example with design connotations has been discussed to demonstrate results derived. An obvious extension would be the finite buffer multiserver case. Work towards that end is ongoing.

References:
1. Allen, A. (2005). Probability, Statistics and Queuing Theory with Computer Science Application, Second Edition, Academic Press.
2. Altman, E. and Yechiali, U. (2008). Infinite- Server Queues with System’s Additional Tasks and Impatient Customers. Engineering and Informational Science, 22, pp: 477-493.
3. Bae, J., Kim, S. and Lee, E.Y. (2001). The virtual waiting time of the M/G/1 Queue with Impatient Customers. Queuing System, 38, pp: 485-494.
4. Baccelli, F., Boyer, P. and Hebuterne, G. (1984). Single Server queues with Impatients Customers. Adv. Appl. Prob., 16, pp: 887-905.
5. Barrer, D.Y. (1958). Queuing with impatient customers and ordered service. Operations Research, vol.6, pp: 650-656.
6. Barrer, D.Y. (1957). Queuing with impatient customers and indifferent clerks. Operations Research, vol. 5, pp: 644-649.
7. Boots, N.K. and Tijms, H. (1999). A multi server queuing system with impatient customers. Management Science, 45, 3, pp: 444-448.
8. Boxma, O. J., Kella, O., Perry, D. and Prabhu, B.J. (2008). The busy period of an M/G/1 queue with customer impatience. Journal of Applied Probability, Vol. 47, No. 1, pp: 130-145.
9. Brandt, A. and Brandt, M. (1998). On a Two-Queue Priority System with Impatience and its Application to a Call Centre. Konrad-Zuse-Zentrum für Informationstechnik Berlin. pp: 1-28.
10. Choi, B. D., Kim, B. and Chung, J. (2001). M/M/1 Queue with Impatient Customers of Higher Priority. Queuing System, 38, 1, pp: 49-66.
11. Choi, B. D., Kim, B. and Zhu, D. (2004). MAP/C/1 Queue with Constant Impatients Times. Mathematics of Operations Research, 29, 2, pp: 309-325.
12. Choudhury, A. (2008). Impatience in Single Server Queuing Model. American Journal of Mathematical and Management Sciences, Vol. 28, pp: 177-211.
13. El-Paoumy, M. S. (2008). On Poisson Bulk Arrival Queue: M^Y/M/2/N with Balking, Reneging and Heterogeneous Servers. Applied Mathematical Sciences, Vol. 2, No. 24, pp: 1169-1175.
14. El-Paoumy, M.S. and Ismail, M. M. (2009). On a truncated Erlang Queuing System with Bulk Arrivals, Balking and Reneging. Applied Mathematical Sciences, Vol. 3, No. 23, pp: 1103-1113.
15. El-Sherbiny, A. A. (2008). The Non-Truncated Bulk Arrival Queue M^Y/M/1 with renege, Balking, State-Dependent and an Additional Server for Longer Queues. Applied Mathematical Sciences, Vol. 2, No. 15, pp: 747-752.
16. Gavish, B. and Schweitzer, P.J. (1977). The Markovian Queue with Bounded Waiting Time. Management Science, 23, 12, pp: 1349-1357.
17. Ghoshal, A. (1963). Queues with Finite Waiting Time. Operations Research, 11, pp: 919-921.
18. Hagighi, A. Montazer, Medhi, J. and Mohanty, S. G. (1986). On a multi server markovian queuing system with Balking and Reneging. Computer and Operational Research, Vol.13, No. 4, pp: 421-425.
19. Haight, F.A. (1957). Queuing with Balking. Biometrika, 44, pp: 360-369.
20. Haight, F.A. (1959). Queuing with Reneging. Biometrika, 2, pp: 186-197.
21. Ke, J. C. and Wang, K-H. (1999). Cost analysis of the M/M/R machine repair problem with balking, reneging and server breakdowns. Journal of the Operational Research Society, 50, pp: 275-282.
22. Kok, A.G.D and Tijms, H. (1985). A Queuing System with Impatient customers. J. Appl. Prob, 22, pp: 688-696.
23. Liu, L. and Kulkarni, V.G. (2008). Busy Period analysis for M/PH/1 queues with workload dependent Balking. Queuing System, 59, pp: 37-51.
24. Liu, L, Kashyap, B. R. K. and Templeton, J. G. C. (1987). The service system M/M^R/∞ with impatient customers. Queuing System 2, pp: 363-372.
25. Martin, M. and Artalejo, J. R. (1995). Analysis of an M/G/1 Queue with two types of Impatient units. Adv. Appl. Prob., 27, pp: 840-861.
26. Medhi, J. (1994). Stochastic Processes, Second Edition, Wiley Eastern Limited, India.
27. Movaghar, A. (1998). On queuing with customer impatience until the beginning of service. Queuing System, vol. 29, no. 4, pp: 337-350.
28. Showky, A. I. (1997). The single server machine interference model with balking, reneging and an additional server for longer queues. Microelectronics Reliability, Vol. 37, pp: 355-357.
29. Singh, C.J., Kumar, B. and Jain, M. (2007). Single server interdependent queuing model with controllable arrival rates and reneging. Pakistan J. Stat. 23, No. 2, pp: 171-178.
30. Zhang, Y., Yue, d. and Yue, W. (2005). Analysis of an M/M/1/N queue with balking, reneging and server vacations. Proc. Vth. Inter. Symp, pp: 37-47.

Appendix:
Derivation of P’(1) under R_BOS:
From equation (2.3) we have
\[\lambda(1-p)p_{n-1} + (\mu + n\nu)p_{n+1} = \lambda(1-p)p_n + \{\mu + (n-1)\nu\}p_n \]
Now multiplying both sides of the equation by s^n and summing over n
\[\lambda s \sum_{n=2}^{k-1} (1 - p) p_{n-1} s^{n-1} + \frac{1}{s} \sum_{n=2}^{k-1} (\mu + n \nu) p_{n} s^{n} = \lambda s \sum_{n=2}^{k-1} (1 - p) p_{n} s^{n} + \sum_{n=2}^{k-1} (\mu + (n - 1) \nu) p_{n} s^{n} \]

\[\Rightarrow \lambda s \sum_{n=2}^{k-1} p_{n-1} s^{n-1} - \lambda (1 - p) \sum_{n=2}^{k-1} p_{n} s^{n} = \sum_{n=2}^{k-1} (\mu + (n - 1) \nu) p_{n} s^{n} - \frac{1}{s} \sum_{n=2}^{k-1} (\mu + n \nu) p_{n-1} s^{n-1} \]

\[\Rightarrow \lambda s (1 - p) \left[p_{1} s + p_{2} s^{2} + p_{3} s^{3} + \ldots + p_{k-1} s^{k-2} \right] - \lambda (1 - p) \left[p_{2} s^{2} + p_{3} s^{3} + \ldots + p_{k-1} s^{k-2} \right] \]

\[= \left[(\mu + \nu) p_{1} s^{2} + (\mu + 2 \nu) p_{2} s^{3} + \ldots + (\mu + (k - 2) \nu) p_{k-1} s^{k-1} \right] - \left[(\mu + 2 \nu) p_{1} s^{2} + (\mu + 3 \nu) p_{2} s^{3} + \ldots + (\mu + (k - 1) \nu) p_{k-1} s^{k-1} \right] \]

\[\Rightarrow \lambda s (1 - p) \left[p(s) - p_{0} - p_{k-1} s^{k-1} - p_{k} s^{k} \right] - \lambda (1 - p) \left[p(s) - p_{0} - p_{k} s^{k} \right] \]

\[= \left[\mu p(s) - p_{0} - p_{k} s^{k} \right] + \nu \left[\lambda (1 - p) \left[p(s) - p_{0} - p_{k} s^{k} \right] \right] \]

\[- \frac{1}{s} \left[\mu (p_{2} s^{2} + p_{3} s^{3} + \ldots + p_{k-1} s^{k-1}) + \nu \left[p_{2} s^{2} + 2 p_{3} s^{3} + \ldots + (k - 2) p_{k-1} s^{k-2} \right] \right] \]

\[\Rightarrow \lambda s (1 - p) \left[p(s) - p_{0} - p_{k} s^{k} \right] - \lambda (1 - p) \left[p(s) - p_{0} - p_{k} s^{k} \right] \]

\[= \left[\mu p(s) - p_{0} - p_{k} s^{k} \right] + \nu \left[\lambda (1 - p) \left[p(s) - p_{0} - p_{k} s^{k} \right] \right] \]

\[- \frac{1}{s} \left[\mu (p_{2} s^{2} + p_{3} s^{3} + \ldots + p_{k-1} s^{k-1}) + \nu \left[p_{2} s^{2} + 2 p_{3} s^{3} + \ldots + (k - 2) p_{k-1} s^{k-2} \right] \right] \]

\[\Rightarrow \lambda s (1 - p) [p(s) - p_{0} - \lambda (1 - p) p_{1} s^{k}] - \lambda (1 - p) p(s) - \lambda (1 - p) p_{0} \]

\[+ \lambda (1 - p) p_{1} + \lambda (1 - p) p_{k} s^{k} \]

\[= \mu p(s) - \mu p_{0} - \mu p_{k} s^{k} + \nu \left[p(s) - k \lambda p_{k} s^{k} - p_{0} + p_{1} s + p_{k} s^{k} - \frac{\mu}{s} p(s) + \frac{\mu}{s} p_{0} + \mu p_{1} \right. \]

\[+ \mu p_{2} s - \nu p_{0} + 2 \nu s + \frac{\nu}{s} p_{0} + \frac{\nu}{s} p_{1} - \nu p_{2} s \]

\[\Rightarrow \lambda s (1 - p) [p(s) - \lambda (1 - p) p_{0} - \lambda (1 - p) \frac{\mu + (k - 1) \nu}{s} p_{1} s^{k} - \lambda (1 - p) p_{1} s^{k} - \lambda (1 - p) p(s) + \lambda (1 - p) p_{0} \]

\[+ \lambda (1 - p) p_{1} + \lambda (1 - p) p_{k} s^{k} \]

\[= \mu p(s) - \mu p_{0} - \mu p_{k} s^{k} + \nu \left[p(s) - k \lambda p_{k} s^{k} - p_{0} + p_{1} s + p_{k} s^{k} - \frac{\mu}{s} p(s) + \frac{\mu}{s} p_{0} + \mu p_{1} \right. \]

\[+ \mu p_{2} s - \nu p_{0} + 2 \nu s + \frac{\nu}{s} p_{0} + \frac{\nu}{s} p_{1} - \nu p_{2} s \]

\[\Rightarrow \nu p(s) - \lambda s (1 - p) p_{0} = \frac{\nu (1 - s)}{s} \left[p(s) - \lambda (1 - p) s^{k} - \frac{\mu (1 - s)}{s} p_{0} - \frac{\nu (1 - s)}{s} p_{0} \right. \]

\[+ \lambda (1 - s) p_{0} (1 - 1 + p) \]
\[v(1-s)p'(s) = \frac{(1-s)(\nu - \mu + \lambda s(1-p))}{s} p(s) - \lambda (1-p)(1-s)p_k s^k + \frac{(1-s)(\mu - \nu + \lambda sp)}{s} p_0 \]

\[p'(s) = \frac{\lambda s(1-p) - \mu + \nu}{sv} p(s) - \frac{\lambda}{v} (1-p)p_k s^k + \frac{(\mu - \nu + \lambda sp)}{sv} p_0 \]

Now

\[\lim_{s \to 1^{-}} p'(s) = \lim_{s \to 1^{-}} \left[\frac{\lambda s(1-p) - \mu + \nu}{sv} p(s) - \frac{\lambda}{v} (1-p)p_k s^k + \frac{(\mu - \nu + \lambda sp)}{sv} p_0 \right] \]

\[\Rightarrow p'(1) = \frac{\lambda (1-p) - \mu + \nu}{v} - \frac{\lambda}{v} (1-p)p_k + \frac{(\mu - \nu + \lambda p)}{v} p_0 \]

\[= \frac{\lambda}{v} \left(\frac{\mu - \nu + \lambda p}{v} \right)(1-p) - \frac{\lambda(1-p)}{v} p_k \]

\[= \frac{\lambda - (\mu - \nu + \lambda p)(1-p) - \lambda(1-p)}{v} p_k \] \hspace{1cm} (7.1.1)

Derivation of \(Q'(1) \) under R_EOS:

From equation (2.8) we have

\[\lambda(1-p)q_n + (\mu + (n+1)\nu)q_{n+1} = \lambda(1-p)q_n + (\mu + n\nu)q_n \quad \text{for } n=2,3,...,k-1. \]

Multiplying both side of this equation by \(s^n \) and summing over \(n \) from 2 to \(k-1 \) we get

\[\lambda s(1-p)\sum_{n=2}^{k-1} q_n s^{n-1} - \lambda(1-p)\sum_{n=2}^{k-1} q_n s^n = \sum_{n=2}^{k-1} (\mu + n\nu)q_n s^n - \sum_{n=2}^{k-1} (\mu + (n+1)\nu)q_{n+1} s^{n+1} \]

Proceeding similar to the previous section 7.1, we obtain,

\[\Rightarrow Q'(1) = \frac{\lambda - (\mu + \lambda p)(1-p) - \lambda(1-p)}{v} q_k. \] \hspace{1cm} (7.2.1)