Thermodynamics and Kinetic Modeling of the ZnSO₄·H₂O Thermal Decomposition in the Presence of a Pd/Al₃O₃ Catalyst

Gabriela V. T. Kurban, Artur S. C. Rego, Nathalli M. Mello, Eduardo A. Brocchi, Rogério C. S. Navarro and Rodrigo F. M. Souza

Department of Chemical & Materials Engineering (DEQM), Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), R. Marquês de São Vicente 225, Rio de Janeiro 22541-900, RJ, Brazil; gabikurban@hotmail.com (G.V.T.K.); art_serpa@hotmail.com (A.S.C.R.); nathalli.mello@hotmail.com (N.M.M.); ebrocchi@puc-rio.br (E.A.B.); navarro@puc-rio.br (R.C.S.N.)

* Correspondence: rsouza@puc-rio.br

Abstract: The sulfur–iodine thermochemical water-splitting cycle is a promising route proposed for hydrogen production. The decomposition temperature remains a challenge in the process. Catalysts, such as Pd supported on Al₂O₃, are being considered to decrease reaction temperatures. However, little is known regarding the kinetic behavior of such systems. In this work, zinc sulfate thermal decomposition was studied through non-isothermal thermogravimetric analysis to understand the effect of a catalyst within the sulfur–iodine reaction system context. The findings of this analysis were also related to a thermodynamic assessment. It was observed that the presence of Pd/Al₂O₃ modified the reaction mechanism, possibly with some intermediate reactions that were suppressed or remarkably accelerated. The proposed model suggests that zinc sulfate transformation occurred in two sequential stages without the Pd-based material. Activation energy values of 238 and 368 kJ mol⁻¹ were calculated. In the presence of Pd/Al₂O₃, an activation energy value of 204 kJ mol⁻¹ was calculated, which is lower than observed previously.

Keywords: zinc sulfate; thermal decomposition kinetics; Pd catalyst

1. Introduction

Over the last few decades, the question regarding how energy systems must be updated to reduce carbon emissions and to lower their contribution to climate change has become increasingly urgent. This can be observed in reports issued by international agencies, such as the United Nations [1], and studies on the affordability and security of these future systems, as published by Sencar et al. [2]. In this context, hydrogen presents itself as a potential cleaner fuel compared to carbon-based fossil fuels, as only water results from H₂ combustion. Thus, research devoted to the production and storage routes of this resource is considered strategic for sustainable development [3,4].

Chemical processing routes for H₂ production are diverse [5–11]. However, not all methods are based on renewable sources, and the most relevant alternatives explored so far are based on methane decomposition [12,13] or thermochemical water-splitting cycles [14]. For the latter, the sulfur–iodine cycle has been extensively studied [15–24]. The water-splitting cycle is a three-step process, in which sulfuric acid thermal decomposition occurs in the third step. This step represents an energy challenge concerning sulfur dioxide and oxygen formation, prompting investigations of methods that can convert sulfate-bearing materials at lower temperatures [25]. Therefore, a promising alternative for H₂ production at lower temperatures is the metal oxide–metal sulfate thermochemical water-splitting cycle [26]. From this perspective, zinc sulfate turns out to be a strong candidate among the different metal sulfates, as it has a high yield, low cost, and low toxicity [27].

The use of catalysts has been studied for the H₂SO₄ decomposition process during the initial development of sulfur-based thermochemical hydrogen production cycles. General
Atomic tested a wide range of materials [16]. Pt, Fe$_2$O$_3$, V$_2$O$_5$, Cr$_2$O$_3$, CuO, MnO$_2$, CoO, and NiO have been used with various supports, where the most efficient were Pt, Fe$_2$O$_3$, and CuO. More recent studies [17,28–31] also show that Pt and Pd catalysts supported on metal oxides are a promising alternative due to their high potential for catalytic activity.

In this context, metal sulfate decomposition has been proposed as a feasible alternative. Some of these salts may decompose at lower temperatures than sulfuric acid or do not require manipulating a highly reactive liquid material. Prosini et al. [32] studied the use of nickel sulfate, while in the work of Tizzoni et al. [33], iron sulfate was tested as a possible sulfur precursor. The same sulfates were also investigated in the work of Bhosale et al. [26,34], who also studied the use of zinc sulfate. However, the high decomposition temperatures found in these systems seem to hinder their large-scale application. Therefore, some alternatives in the field of heterogeneous catalysis have been recently proposed, such as the one presented by Soto-Díaz et al. [27], who employed catalysts with Pd supported on a SiC or Al$_2$O$_3$ matrix.

As kinetic data can have an essential role in understanding every chemical process, several authors have performed experimental studies on the thermal decomposition of zinc sulfates [35–39], reporting activation energy values between 96 and 350 kJ·mol$^{-1}$ for different decomposition models and apparent orders between 0 and 1.1. However, there is a paucity of information on the effects of incorporating catalytic materials on the kinetic parameters of these thermal decomposition processes. Consequently, there is a lack of information about the behavior of the reaction system through a more quantitative approach, with one reported work so far for MgSO$_4$.7H$_2$O thermal decomposition [40]. Nevertheless, this sulfate tends to decompose directly into its oxide in a manner that is novel to systems in which an intermediate is formed (e.g., ZnO·2ZnSO$_4$ from ZnSO$_4$ and FeSO$_4$ from Fe$_2$(SO$_4$)$_3$).

In the present work, zinc sulfate was processed both in the presence and in the absence of a Pd/Al$_2$O$_3$ catalyst. This salt was chosen for this study since it is a promising candidate for use in H$_2$ production processes because of its lower decomposition temperature compared with other sulfates. It is recognized that an intermediate compound is formed as the decomposition progresses. Until now, there have been no kinetic studies dedicated to understanding the effect of a catalyst on the kinetics of this thermally stimulated process. Therefore, the purposes of the present work are multifold. The first objective was to develop a detailed thermodynamic study in which intermediate formation is assessed using its weight fraction at equilibrium (wt.%). The second goal was to develop a kinetic analysis based on a graphical modeling approach to estimate the process parameters with and without the Pd/Al$_2$O$_3$ material. The third objective was to analyze and understand the catalyst effect on the reaction system behavior based on the previously detailed thermodynamic findings. A kinetic study based on thermogravimetric data (TGA) was performed to accomplish these tasks.

2. Materials and Methods

2.1. Thermodynamic Study

Thermodynamic calculations were performed to understand the equilibrium behavior of the reaction system as a function of temperature. The data are presented in diagrams of varying nature, equilibrium composition and predominance diagrams, constructed using HSC Chemistry software v.9.9.2.3 for the MS Windows environment [41].

2.2. Thermogravimetric Analysis and Kinetic Modeling

Figure 1 presents the experimental methodology, described in detail in the work of Kurban [42], which was applied in this study to perform a kinetic modeling assessment of ZnSO$_4$ thermal decomposition in the presence and absence of a Pd/Al$_2$O$_3$ catalyst.
Thermogravimetric analyses of zinc sulfate monohydrate thermal decomposition were performed to measure the conversion achieved as a function of time during dynamic runs conducted under a N₂ atmosphere (20 mL·min⁻¹) at a heating rate of 10 °C·min⁻¹. The TGA tests were conducted in a Netzsch instrument model STA 449 F3 Jupiter and covered a temperature range from 25 to 1000 °C. Around 5 mg of pure sulfate (P.A., Sigma-Aldrich, St. Louis, MO, USA) and mixtures with Pd/Al₂O₃ were used, using a 1:1 mass ratio between sulfate and catalyst in the latter case. The Pd/Al₂O₃ catalyst was prepared following the methodology presented by Mello [43]. The kinetic modeling carried out in the present work was based on Equation (1) [44,45], where Tr, φ, and f represent the reference temperature, heating rate, and thermal decomposition conversion at a specific time (t), respectively.

\[
(\phi t + Tr)^2 \frac{df}{dt} = -n \left(\frac{(\phi t + Tr)^2 \frac{df}{dt}}{1 - f} \right) + \frac{Ea\phi}{R} \quad (1)
\]

Experimental conversion values were first fitted (α and β are adjustable parameters) to a sigmoidal function (Equation (2)) to analytically calculate the first- (∂f/∂t) and second-order time derivatives (∂²f/∂t²). In Equation (2), parameters α and β were estimated based on a simplex algorithm applied to a least-squares function of the differences between experimental and calculated conversion values.

\[
f = \frac{1}{1 + \exp(-\alpha(t - \beta))} \quad (2)
\]

With these derivative values in hand, the global activation energy (Ea) and apparent reaction order (n) were determined after the linearization of the TGA data by employing Equation (1) and subsequently performing linear regression analysis. The n value is

![Figure 1. Flowchart describing the modeling algorithm for the calculations of the kinetic parameters.](image-url)
determined by the slope, and Ea is calculated through the evaluation of its linear coefficient. For each analysis, the modeling quality was determined by the value of the correlation coefficient (R^2) calculated for each dataset. This methodology was recently successfully applied for the thermal decomposition modeling of MgSO$_4$ [40] and potassium alum [46] reaction systems.

3. Results
3.1. Thermodynamic Modeling

Figure 2 presents the equilibrium compositions for the gas and pure species as a function of the temperature. The initial condition used was 1 mol of ZnSO$_4$·H$_2$O with N$_2$ in the initial phase for stability improvement. It can be observed that sulfate dehydration takes place until 400 °C. Based on the gas-phase behavior, anhydrous sulfate starts to transform to ZnO·2ZnSO$_4$ at approximately 500 °C, with SO$_2$ and SO$_3$ evolution. After 600 °C, the system enters into competitive, or more likely sequential, decomposition reactions with the onset of ZnO production. The intermediate is present in the reaction system until 1000 °C. Complete sulfate conversion is achieved at 1200 °C. It can be observed that some species considered for the equilibrium composition simulations are not present in the graphical result.

To further understand the behavior of the ZnSO$_4$ thermal decomposition process, Figure 3 shows the predominance diagrams of the Zn-S-O reaction system as a function of temperature. For that purpose, pO$_2$ was fixed at negligible levels (1 × 10$^{-20}$ bar). Thermodynamically, the system must go through the formation of ZnO·2ZnSO$_4$ to decompose ZnSO$_4$ into ZnO. It seems that there is no direct reaction from this sulfate into its oxide for the presented temperature range. Moreover, considering that the process would be typically conducted in furnaces with continuous gas flow, with simultaneous removal of reaction products, it is expected that the equilibrium is shifted. Consequently, there is a possibility that the transformations (ZnSO$_4$ into ZnO·2ZnSO$_4$ and then into ZnO) occur at lower temperatures than those indicated by the equilibrium lines for the reaction between these phases.

3.2. Thermogravimetric Analysis and Kinetic Modeling

Following the described methodology, Figure 4 presents the samples’ thermal behavior through weight loss (wt.%) and DTG. It is important to mention that the presented results were calculated by subtracting the thermal behavior of the Pd/Al$_2$O$_3$ sample from the signal. Regarding the pure sulfate sample, it can be observed that around 250 °C, there is a mass loss close to 10 wt.%, which can be explained by the elimination of hydration water (one mole per mole of sulfate—Equation (3)). These temperatures agree with thermodynamic predictions (Figures 1 and 2) and the previous literature [47,48], suggesting that above 250 °C, anhydrous sulfate should be the most stable zinc-bearing species. For higher temperatures, it is observed that the system behaves as a sequential process with two well-defined steps. The first step (Equation (4)—700 to 800 °C) accounts for a mass loss of around 25 wt.%, as has already been observed in earlier studies [47,49], representing the formation of an intermediate phase (such as ZnO·2ZnSO$_4$), which further decomposes in the range between 800 and 950 °C (Equation (5)), resulting in a relative weight loss of 55%.

\[
\begin{align*}
\text{ZnSO}_4 \cdot \text{H}_2\text{O} & \rightarrow \text{ZnSO}_4 + \text{H}_2\text{O} \\
\text{ZnSO}_4 & \rightarrow \frac{1}{3}\text{ZnO} \cdot 2\text{ZnSO}_4 + \frac{1}{3}\text{SO}_3(\text{g}) \\
\frac{1}{3}\text{ZnO} \cdot 2\text{ZnSO}_4 & \rightarrow \text{ZnO} + \frac{2}{3}\text{SO}_3(\text{g})
\end{align*}
\]
Figure 2. Equilibrium compositions for ZnSO₄·H₂O thermal decomposition: (a) gas-phase behavior; (b) pure species behavior.

Therefore, compared to decomposition in the absence of the Pd/Al₂O₃ catalyst, incorporating this material should substantially affect the observed reaction mechanism (Equation (6)).

\[
\text{ZnSO}_4 \rightarrow \text{ZnO} + \text{SO}_2(g) + \frac{1}{2}\text{O}_2(g)
\] (6)

Moreover, it can be observed that complete conversion is achieved at lower temperatures (decreasing by almost 100 °C for the pure sulfate sample) and agrees with the decrease of 85 °C reported by Soto-Diaz et al. [27]. This finding could reflect improved kinetics, which is also suggested by comparing each DTG signal.

Figures 5 and 6 present the kinetic modeling results for the thermal decomposition of pure ZnSO₄ and ZnSO₄ with the Pd/Al₂O₃ catalyst. For the former, the sample mass variation is segmented in two steps to describe the reaction system behavior better.
3.2. Thermogravimetric Analysis and Kinetic Modeling
Following the described methodology, Figure 4 presents the samples’ thermal behavior through weight loss (wt.%). It is important to mention that the presented results were calculated by subtracting the thermal behavior of the Pd/Al₂O₃ sample from the signal. Regarding the pure sulfate sample, it can be observed that around 250 °C, there is a mass loss close to 10 wt.%, which can be explained by the elimination of hydration water (one mole per mole of sulfate—Equation (3)). These temperatures agree with thermodynamic predictions (Figure 1 and Figure 2) and the previous literature [47,48], suggesting that above 250 °C, anhydrous sulfate should be the most stable zinc-bearing species. For higher temperatures, it is observed that the system behaves as a sequential process with two well-defined steps. The first step (Equation (4)—700 to 800 °C) accounts for a mass loss of around 25 wt.%, as has already been observed in earlier studies [47,49], representing the formation of an intermediate phase (such as ZnO·2ZnSO₄), which further decomposes in the range between 800 and 950 °C (Equation (5)), resulting in a relative weight loss of 55%.

Therefore, compared to decomposition in the absence of the Pd/Al₂O₃ catalyst, incorporating this material should substantially affect the observed reaction mechanism (Equation (6)).

Moreover, it can be observed that complete conversion is achieved at lower temperatures (decreasing by almost 100 °C for the pure sulfate sample) and agrees with the decrease of 85 °C reported by Soto-Diaz et al. [27]. This finding could reflect improved kinetics, which is also suggested by comparing each DTG signal. Figures 5 and 6 present the kinetic modeling results for the thermal decomposition of pure ZnSO₄ and ZnSO₄ with the Pd/Al₂O₃ catalyst. For the former, the sample mass variation is segmented in two steps to describe the reaction system behavior better.

Figure 3. Predominance diagram for Zn-S-O system as a function of temperature and log pSO₂.

Figure 4. Thermogravimetric analyses of the thermal decomposition of ZnSO₄·H₂O in the presence and absence of Pd/Al₂O₃: (a) weight loss as a function of temperature; (b) DTG signal.
Figure 5. Graphical adjustments for thermal decomposition of ZnSO₄·H₂O: (a) segmentation of the sample mass variation; (b) conversion fraction of Step 1 as a function of temperature; (c) conversion fraction of Step 2 as a function of temperature; (d) linearization of conversion data associated with Step 1 segment; (e) linearization of conversion data associated with Step 2 segment.
Figure 6: Graphical adjustments for thermal decomposition of ZnSO$_4$·H$_2$O in the presence of Pd/Al$_2$O$_3$: (a) conversion fraction as a function of temperature; (b) linearization of conversion data.

In both cases, the model seems to be well fitted, as the R^2 values between experimental (scatter) and model (continuous line) datasets are close to unity. These results support and are consistent with the determined kinetic parameters of the thermal decomposition of pure zinc sulfate and the mixture of ZnSO$_4$ and Pd/Al$_2$O$_3$ catalyst. The results are displayed in Table 1.

Table 1. Estimated kinetic parameters and corresponding correlation coefficient (R^2).

Sample	Step	n	E_a (kJ·mol$^{-1}$)	R^2
ZnSO$_4$	1	1.76	238	0.979
ZnSO$_4$ + Pd/Al$_2$O$_3$	2	1.79	368	0.989
ZnSO$_4$ + Pd/Al$_2$O$_3$	1	1.69	204	0.997

The energy value associated with the single step observed in the catalyst presence (direct decomposition to ZnO) indeed has a much lower magnitude than the one determined for the first (intermediate formation) and second (intermediate thermal decomposition) when the catalyst is absent. Therefore, the results strongly suggest that the action of Pd/Al$_2$O$_3$ during zinc sulfate thermal decomposition is as expected for a catalyst, providing a new molecular path (possibly without ZnO·2ZnSO$_4$ formation through its rapid transformation) for the direct chemical transformation from sulfate to oxide with more favorable kinetics (lower E_a). Moreover, it is interesting to note that the apparent reaction order was almost constant and close to a value of 1.7 for both samples. In regard to the pure sulfate thermal decomposition, it is interesting to observe that the global activation energies calculated for the first (238 kJ·mol$^{-1}$) and second (368 kJ·mol$^{-1}$) stages lie in the range of prior literature values (209–385 kJ·mol$^{-1}$), as reported by Straszko et al. [47], Ingraham and Marier [49], and Tagawa and Saijo [50].

The decomposition of zinc sulfate results in ZnO production, involving the intermediate product ZnO·2ZnSO$_4$, compatible with the results obtained in the works of many authors [36–38, 47, 50–53]. Moreover, the intermediate step is not observed in the presence of the catalyst, as also evidenced in the work of Soto-Diaz et al. [27].

In the work of Mello et al. [40], who also used the Pd/Al$_2$O$_3$ catalyst, it was observed that palladium tended to oxidize and initiate the formation of PdO up to approximately 900 °C in the reaction system and then dissociate, returning to the metallic form at higher temperatures. According to O’Keefe et al. [54] and Barbarossa et al. [17], the oxide’s catalytic activity forms in the decomposition of sulfur trioxide. Through the decomposition temperature observed in the TGA/DTG experiments and the similarity to MgSO$_4$ decomposition gas products, it can be inferred that in the ZnSO$_4$ system, the formation of PdO
occurs and interacts with its gaseous products, thus changing the reaction mechanism that was previously described in two stages.

An apparent change in the mechanism was also observed by Mu and Perlmutter [38] when adding carbon material to the decomposition mixture. The authors performed a series of decomposition studies involving different sulfates, observing a reduction in the decomposition temperature in all cases. Furthermore, in a more detailed study of ZnSO$_4$, the decomposition temperature decreased as the carbon/sulfate molar ratio increased. In addition, the TGA results of these experiments do not show the apparent presence of an intermediate compound in the decomposition process.

The results of the kinetic analysis indicate a reduction in the activation energy when using the Pd/Al$_2$O$_3$ catalyst. Not only did the material reduce the energy required for the decomposition of ZnSO$_4$ (about 30 kJ·mol$^{-1}$), but it also eliminated the energy needed for a second step in the decomposition process, which accounted for a massive reduction in the global activation energy. In their study, Narayan et al. [35] observed that the decomposition of zinc sulfate heptahydrate presented a decrease in the activation energy when using a platinum crucible (227 kJ·mol$^{-1}$) instead of a ceramic one (298 kJ·mol$^{-1}$). The authors concluded that platinum affected the equilibrium between SO$_2$, SO$_3$, and O$_2$, which involved the decomposition of zinc sulfate. Moreover, the authors reported that other effects, such as particle size, hydration, and carrier gas, can impact the kinetic data of the thermogravimetric study.

4. Conclusions

The achieved results suggest that the thermal decomposition of monohydrate zinc sulfate under an inert atmosphere (N$_2$) first proceeds through hydration water removal (250–300 $^\circ$C), followed by the thermal decomposition of anhydrous zinc sulfate (ZnSO$_4$) (700–930 $^\circ$C), which develops in two steps. The first one is associated with the formation of an intermediate phase (ZnO·2ZnSO$_4$) (700–800 $^\circ$C), and the second one is related to the thermal decomposition of this species generated previously (800–850 $^\circ$C). These findings agree with earlier literature works and are corroborated by TGA mass balances and thermodynamic calculations. Both steps’ apparent reaction order and activation energy were determined from the dynamic TGA data analysis, with the former being close to 1.7 in both cases, and the latter equal to 238 kJ·mol$^{-1}$ and 368 kJ·mol$^{-1}$ for steps 1 and 2, respectively. These last values proved to be consistent with earlier evaluations from the literature. In the presence of Pd/Al$_2$O$_3$, it can be said that the reaction mechanism changed appreciably, and a sole step was identified in the TGA signal, which could be associated with the direct conversion of the sulfate (ZnSO$_4$) to the oxide (ZnO). As expected for the action of a catalyst, Pd/Al$_2$O$_3$ enabled a different molecular path for the decomposition reaction with improved kinetics (degradation starts almost 100 $^\circ$C earlier), with a global activation energy of 204 kJ·mol$^{-1}$, which is much lower than the values determined for pure ZnSO$_4$. For the other thermal events studied in the present paper, the apparent reaction order for the catalytic decomposition was also close to 1.7. The catalytic activity of Pd/Al$_2$O$_3$ evidenced in this paper regarding the thermal decomposition of ZnSO$_4$ could also be present for other sulfates, motivating further studies. Processes can be improved by lowering the decomposition temperatures, such as those reported in thermochemical water-splitting cycles.

Author Contributions: Conceptualization, R.F.M.S. and R.C.S.N.; methodology, R.F.M.S., R.C.S.N., and G.V.T.K.; software, R.C.S.N., G.V.T.K., A.S.C.R., and N.M.M.; validation, G.V.T.K., A.S.C.R., and N.M.M.; formal analysis, G.V.T.K.; investigation, R.F.M.S., R.C.S.N., and G.V.T.K.; resources, R.F.M.S. and E.A.B.; data curation, G.V.T.K.; writing—original draft preparation, R.F.M.S., G.V.T.K., A.S.C.R., and N.M.M.; writing—review and editing, R.F.M.S., R.C.S.N., A.S.C.R., and N.M.M.; supervision, R.F.M.S. and R.C.S.N.; project administration, R.F.M.S.; funding acquisition, R.F.M.S. and E.A.B. All authors have read and agreed to the published version of the manuscript.
Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Moreover, the project received funds from the Vice-Reitoria para Assuntos Acadêmicos da Pontifícia Universidade Católica do Rio de Janeiro (VRAc/PUC-Rio), the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) throughout its execution. The APC was funded by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) – Project “Intensificação da produtividade científica do programa de Pós-graduação em Engenharia de Materiais e Processos Químicos e Metalúrgicos da PUC-Rio” (Edital 12/2019).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.

Acknowledgments: The authors acknowledge their gratitude to Fátima Maria Zanon Zotin and the Catalysis Research Group of the Universidade do Estado do Rio de Janeiro (UERJ) for providing the first sample of the Pd/Al₂O₃ material, which inspired the use of this type of catalyst in our project. It is also important to recognize Instituto Tecnológico Vale (ITV) for its support for the project concerning sulfate reductive decomposition. The institute’s contribution was essential for consolidating a research initiative for future developments in sulfates thermal decomposition.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 11 December 2015. Part One: Proceedings; United Nations: Paris, France, 2016; p. 42.
2. Sencar, M.; Pozeb, V.; Krope, T. Development of EU (European Union) Energy Market Agenda and Security of Supply. Energy 2014, 77, 117–124. [CrossRef]
3. Hanley, E.S.; Deane, J.; Gallachóir, B.Ó. The Role of Hydrogen in Low Carbon Energy Futures–A Review of Existing Perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3027–3045. [CrossRef]
4. Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen Energy, Economy and Storage: Review and Recommendation. Int. J. Hydrog. Energy 2019, 44, 15072–15086. [CrossRef]
5. Cavaliere, P.D.; Perrone, A.; Silvello, A. Water Electrolysis for the Production of Hydrogen to Be Employed in the Ironmaking and Steelmaking Industry. Metals 2021, 11, 1816. [CrossRef]
6. Wang, B.; Peng, Y.; Yao, S. Oxidative Reforming of N-Heptane in Gliding Arc Plasma Reformer for Hydrogen Production. Int. J. Hydrog. Energy 2019, 44, 22831–22840. [CrossRef]
7. Ismail, A.A.; Bahnemann, D.W. Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review. Sol. Energy Mater. Sol. Cells 2014, 128, 85–101. [CrossRef]
8. Safari, F.; Dincer, I. A Review and Comparative Evaluation of Thermochemical Water Splitting Cycles for Hydrogen Production. Energy Convers. Manag. 2020, 212, 112182. [CrossRef]
9. Nouruzi, N.; Dinari, M.; Mokhtari, N.; Farajzadeh, M.; Gholipour, B.; Rostamnia, S. Selective Catalytic Generation of Hydrogen over Covalent Organic Polymer Supported Pd Nanoparticles (COP-Pd). Mol. Catal. 2020, 493, 110577. [CrossRef]
10. Alamgholiloo, H.; Rostamnia, S.; Hassankhani, A.; Liu, X.; Eftekhari, A.; Hasanzadeh, A.; Zhang, K.; Karimi-Maleh, H.; Khaksar, S.; Varma, R.S.; et al. Formation and Stabilization of Colloidal Ultra-Small Palladium Nanoparticles on Diamine-Modified Cr-MIL-101: Synergic Boost to Hydrogen Production from Formic Acid. J. Colloid Interface Sci. 2020, 567, 126–135. [CrossRef]
11. Doustkhah, E.; Mohtasham, H.; Farajzadeh, M.; Rostamnia, S.; Wang, Y.; Arandiyan, H.; Assadi, M.H.N. Organosiloxane Tunability in Mesoporous Organosilica and Punctuated Pd Nanoparticles Growth; Theory and Experiment. Microporous Mesoporous Mater. 2020, 293, 109832. [CrossRef]
12. Abbas, H.F.; Wan Daud, W.M.A. Hydrogen Production by Methane Decomposition: A Review. Int. J. Hydrog. Energy 2010, 35, 1160–1190. [CrossRef]
13. Ashik, U.P.M.; Wan Daud, W.M.A.; Abbas, H.F. Production of Greenhouse Gas Free Hydrogen by Thermocatalytic Decomposition of Methane—A Review. Renew. Sustain. Energy Rev. 2015, 44, 221–256. [CrossRef]
14. Syed Muhammad, A.F.; Awad, A.; Saidur, R.; Masiran, N.; Salam, A.; Abdullah, B. Recent Advances in Cleaner Hydrogen Productions via Thermo-Catalytic Decomposition of Methane: Admixture with Hydrocarbon. Int. J. Hydrog. Energy 2018, 43, 18713–18734. [CrossRef]
15. Onuki, K.; Kubo, S.; Terada, A.; Sakaba, N.; Hino, R. Thermochemical Water-Splitting Cycle Using Iodine and Sulfur. Energy Environ. Sci. 2009, 2, 491–497. [CrossRef]
16. Norman, J.; Mysels, K.; Sharp, R.; Williamson, D. Studies of the Sulfur-Iodine Thermochemical Water-Splitting Cycle. *Int. J. Hydrog. Energy* 1982, 7, 545–556. [CrossRef]

17. Barbarossa, V.; Bratti, S.; Diamanti, M.; Sau, S.; Demaria, G. Catalytic Thermal Decomposition of Sulphuric Acid in Sulphur–Iodine Cycle for Hydrogen Production. *Int. J. Hydrog. Energy* 2006, 31, 883–890. [CrossRef]

18. Brown, L.; Besenbruch, G.; Lentsch, R.; Schulz, K.; Funk, J.; Pickard, P.; Marshall, A.; Showalter, S. High Efficiency Generation of Hydrogen Fuels Using Nuclear Power; General Atomics: San Diego, CA, USA, 2003; p. 814014.

19. O’Keefe, D.; Allen, C.; Besenbruch, G.; Brown, L.; Norman, J.; Sharp, R.; McCorkle, K. Preliminary Results from Bench-Scale Testing of a Sulfur-Iodine Thermochemical Water-Splitting Cycle. *Int. J. Hydrog. Energy* 1982, 7, 381–392. [CrossRef]

20. Cerri, G.; Salvini, C.; Corgnale, G.; Giovannelli, A.; De Lorenzo Manzano, D.; Martinez, A.O.; Le Duigou, A.; Borgard, J.-M.; Mansilla, C. Sulfur–Iodine Plant for Large Scale Hydrogen Production by Nuclear Power. *Int. J. Hydrog. Energy* 2010, 35, 4002–4014. [CrossRef]

21. Duigou, A.; Borgard, J.; Larousse, B.; Doizi, D.; Allen, R.; Ewan, B.; Hpriestman, G.; Elder, R.; Devonshire, R.; Ramos, V. HYTHEC: An EC Funded Search for a Long Term Massive Hydrogen Production Route Using Solar and Nuclear Technologies. *Int. J. Hydrog. Energy* 2007, 32, 1516–1529. [CrossRef]

22. Murphy, J.E.; O’Connell, J.P. Process Simulations of HI Decomposition via Reactive Distillation in the Sulfur–Iodine Cycle for Hydrogen Manufacture. *Int. J. Hydrog. Energy* 2012, 37, 4002–4011. [CrossRef]

23. Cho, W.-C.; Park, C.-S.; Kang, K.-S.; Kim, C.-H.; Bae, K.-K. Conceptual Design of Sulfur–Iodine Hydrogen Production Cycle of Korea Institute of Energy Research. *Nucl. Eng. Des.* 2009, 239, 501–507. [CrossRef]

24. Leybros, J.; Gilardi, T.; Saturnin, A.; Mansilla, C.; Carles, P. Plant Sizing and Evaluation of Hydrogen Production Costs from Advanced Processes Coupled to a Nuclear Heat Source. Part I: Sulfur–Iodine Cycle. *Int. J. Hydrog. Energy* 2010, 35, 1008–1018. [CrossRef]

25. Kaur, H.; Wang, M.; Gorensek, M.B.; Chen, C.-C. Thermodynamic Modeling of the Hybrid Sulfur (HyS) Cycle for Hydrogen Production. *Fluid Phase Equilib.* 2018, 460, 175–188. [CrossRef]

26. Bhosale, R.; Kumar, A.; AlMomani, F.; Gupta, R.B. Solar Thermochemical ZnO/ZnSO4 Water Splitting Cycle for Hydrogen Production. *Int. J. Hydrog. Energy* 2017, 42, 23474–23483. [CrossRef]

27. Soto-Díaz, O.; Orozco-Mena, R.E.; Róman-Aguirre, M.; Romero-Paredes, H.; Camacho-Dávila, A.A.; Ramos-Sánchez, V.H. Metal Sulfate Decomposition Using Green Pd-Based Catalysts Supported on γAl2O3 and SiC: A Common Step in Sulfur-Family Thermochemical Cycles. *Int. J. Hydrog. Energy* 2019, 44, 12309–12314. [CrossRef]

28. Ginosar, D.M.; Rollins, H.W.; Petkovic, L.M.; Burch, K.C.; Rush, M.J. High-Temperature Sulfuric Acid Decomposition over Complex Metal Oxide Catalysts. *Int. J. Hydrog. Energy* 2009, 34, 4065–4073. [CrossRef]

29. Petkovic, L.M.; Ginosar, D.M.; Rollins, H.W.; Burch, K.C.; Pinheiro, P.J.; Farrell, H.H. Pt/TiO2 (Rutile) Catalysts for Sulfuric Acid Decomposition in Sulfur-Based Thermochemical Water-Splitting Cycles. *Appl. Catal. A Gen.* 2008, 338, 27–36. [CrossRef]

30. Karagiannakis, G.; Agrafiots, C.C.; Zygogianni, A.; Pagkoura, C.; Konstandopoulos, A.G. Hydrogen Production via Sulfur-Based Thermochemical Cycles: Part 1: Synthesis and Evaluation of Metal Oxide-Based Candidate Catalyst Powders for the Sulfuric Acid Decomposition Step. *Int. J. Hydrog. Energy* 2011, 36, 2831–2844. [CrossRef]

31. Ginosar, D.M.; Petkovic, L.M.; Glenn, A.W.; Burch, K.C. Stability of Supported Platinum Sulfuric Acid Decomposition Catalysts for Use in Thermochemical Water-Splitting Cycles. *Int. J. Hydrog. Energy* 2007, 32, 482–488. [CrossRef]

32. Prosin, P.; Cento, C.; Giaconia, A.; Caputo, G.; Sau, S. A Modified Sulfur–Iodine Cycle for Efficient Solar Hydrogen Production. *Int. J. Hydrog. Energy* 2009, 34, 1218–1225. [CrossRef]

33. Tizzoni, A.C.; Corsaro, N.; D’Ottavi, C.; Licoccia, S.; Sau, S.; Tarquini, P. Oxygen Production by Intermediate Metal Sulphates in Sulphur-Based Thermochemical Water Splitting Cycles. *Int. J. Hydrog. Energy* 2015, 40, 4065–4083. [CrossRef]

34. Bhosale, R.R.; Kumar, A.; van den Broeke, L.J.P.; Gharbia, S.; Dardor, D.; Jilani, M.; Folady, J.; Al-Fahiki, M.S.; Tarsad, M.A. Solar Hydrogen Production via Thermochemical Iron Oxide–Iron Sulfate Water Splitting Cycle. *Int. J. Hydrog. Energy* 2015, 40, 1639–1650. [CrossRef]

35. Narayan, R.; Tabataiba-Raisi, A.; Antal, M.J. A Study of Zinc Sulfate Decomposition at Low Heating Rates. *Ind. Eng. Chem. Res.* 1988, 27, 1050–1058. [CrossRef]

36. Ibáñez, J.; Wentworth, W.E.; Batten, C.F.; Chen, E. Kinetics of the Thermal Decomposition of Zinc Sulfate. *Rev. Int. Des Hautes Temp. Des Reactif.* 1984, 21, 113–124.

37. Ducarroi, M.; Romeroparedes, H.; Steinmetz, D.; Sibieude, F.; Tmar, M. On the Kinetics of the Thermal Decomposition of Sulfates Related with Hydrogen Water Splitting Cycles. *Int. J. Hydrog. Energy* 1984, 9, 579–585. [CrossRef]

38. Mu, J.; Perlmutter, D.D. Thermal Decomposition of Inorganic Sulphates and Their Hydrates. *Ind. Eng. Chem. Proc. Des. Dev.* 1981, 20, 640–646. [CrossRef]

39. Koltà, G.A.; Askar, M.H. Thermal Decomposition of Some Metal Sulphates. *Thermochim. Acta* 1975, 11, 65–72. [CrossRef]

40. Mello, N.M.; Rego, A.S.C.; Brocchi, E.A.; de Campos, J.B.; Moura, F.J.; Souza, R.F.M. Effect of an Alumina Supported Palladium Catalyst on the Magnesium Sulfate Decomposition Kinetics. *Mat. Res.* 2020, 23, e20200344. [CrossRef]

41. Roine, A. *HSC Chemistry 9*; Metso-Outotec: Pori, Finland, 2019.

42. Kurban, G.V.T. Decomposição Térmica Do Sulfato de Zinco Na Presença de Agentes Modificadores Do Mecanismo Reacional. Master’s Thesis, Department of Chemical and Materials Engineering—Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil, 2019.
43. Mello, N.M. Estudo Cinético Da Reação de Redução Do NO Pelo CO Em Catalisador de Paládio Suportado Em Alumina. Master’s Thesis, Chemistry Institute—State University of Rio de Janeiro, Rio de Janeiro, Brazil, 2017.

44. Speyer, R.F. Thermal Analysis of Materials; Materials Engineering; Marcel Dekker: New York, NY, USA, 1994; ISBN 978-0-8247-8963-3.

45. Vachuška, J.; Vobořil, M. Kinetic Data Computation from Non-Isothermal Thermogravimetric Curves of Non-Uniform Heating Rate. Thermochim. Acta 1971, 2, 379–392. [CrossRef]

46. Rego, A.S.C.; Marprates, C.V.B.; Silva, T.S.X.; Neto, J.G.; Navarro, R.C.S.; Souza, R.F.M.; Brocchi, E.A. KAl(SO4)2 Thermal Decomposition Kinetics Modeling through Graphical and PSO Methods. J. Mater. Res. Technol. 2021, 14, 1975–1987. [CrossRef]

47. Straszko, J.; Olszak-Humienik, M.; Mozejko, J. Kinetics of Thermal Decomposition of ZnSO4·H2O. Thermochim. Acta 1997, 292, 145–150. [CrossRef]

48. Rego, A.S.C.; Marprates, C.V.B.; Silva, T.S.X.; Neto, J.G.; Navarro, R.C.S.; Souza, R.F.M.; Brocchi, E.A. KAl(SO4)2 Thermal Decomposition Kinetics Modeling through Graphical and PSO Methods. J. Mater. Res. Technol. 2021, 14, 1975–1987. [CrossRef]

49. Ingraham, T.R.; Marier, P. Kinetics of the Thermal Decomposition of ZnSO4 and ZnO2ZnSO4. Can. Metall. Q. 1967, 6, 249–261. [CrossRef]

50. Tagawa, H.; Saijo, H. Kinetics of the Thermal Decomposition of Some Transition Metal Sulfates. Thermochim. Acta 1985, 91, 67–77. [CrossRef]

51. Ingraham, T.R.; Kellogg, H.H. Thermodynamic Properties of Zinc Sulfate, Zinc Basic Sulfate, and the System Zn-S-O; Reprint; Department of Mines and Technical Surveys: Ottawa, ON, Canada, 1963; p. R122.

52. Krikorian, O.; Shell, P. The Utilization of ZnSO4 Decomposition in Thermochemical Hydrogen Cycles. Int. J. Hydrog. Energy 1982, 7, 463–469. [CrossRef]

53. Gimzewski, E.; Wyatt, P.A.H. The Isothermal Decomposition of Metal Sulphate Powders in High Vacuum. Thermochim. Acta 1981, 44, 125–130. [CrossRef]

54. O’keefe, D.R.; Norman, J.H.; Williamson, D.G. Catalysis Research in Thermochemical Water-Splitting Processes. Catal. Rev. 1980, 22, 325–369. [CrossRef]