FORMAL GROUPS AND GEOMETRIC QUANTIZATION

JACK MORAVA

ABSTRACT. The complex projective spaces, considered as prequantized symplectic manifolds, are roughly to the complete symmetric functions as those projective spaces, regarded as complex-oriented manifolds, are to Newton’s power sums.

Introduction

This paper is concerned with the statistical mechanics of a commutative algebra $B_* \subset B_* \otimes \mathbb{R}$ of cobordism classes of geometrically prequantized symplectic manifolds, which is to some extent well-understood [3,16]: B_* is naturally isomorphic to the bordism ring $\text{MU}_* CP_\infty$ of compact complex-oriented manifolds carrying a suitable complex line bundle with connection, and the principal technical result below is an explicit formula [Prop 3.1] for the (injective) Hurewicz homomorphism

$$h : B_* \cong \text{MU}_* CP_\infty \to H_*(CP_\infty; H_*(ext{MU}, \mathbb{Z})) \cong S_* \otimes \mathbb{Z}[b(n) \mid n \geq 1]$$

which identifies these manifolds in terms of their characteristic numbers I. This formula is easily accessible by modern homotopy theory, though it may not be so familiar; the point is that in our case this homomorphism has an interesting interpretation as a kind of partition function, analogous to the construction which assigns to a Riemannian manifold (M, g), the trace of its heat kernel $\exp(t \Delta_g)$ [1,2,5,8,12,21 ...]. An essentially equivalent corollary is that (as observed by Friedrich and McKay [6,7], Miščenko’s logarithm

$$\log_{\text{MU}}(z) = \sum_{k \geq 1} \frac{CP_{k-1} z^k}{k} \in \text{MU}^2(CP_\infty)$$

for complex cobordism can be regarded as a kind of cumulant generating function (or Helmholtz free energy, or as (the negative of) a kind of Shannon entropy) for B_*.

Date: January 2020.

1991 Mathematics Subject Classification. 53D50, 55N22, 57R17.

1Here S_* is the ring of classical symmetric functions, and $b(n)$ is the nth divided power of an element b. Further technical definitions will be provided soon.
§I, algebraic and geometric preliminaries

1.1 For our purposes, a geometrically prequantized symplectic manifold \([4]\) will be a \(2n\)-dimensional closed compact smooth manifold \((V, L, \nabla_L, j)\) together with a Hermitian complex line bundle \(L\) with connection \(\nabla_L\) on \(V\), with symplectic (i.e., closed and nondegenerate) connection form \(\omega = j\Omega(\nabla_L)\) (with \([\omega/2\pi i] \in H^2_{\text{dr}}(V)\) equal to the Chern class \(c_1(L)\) of the line bundle \(L : V \to \mathbb{C}P_{\infty}\) (or, equivalently, classified by a map to the Narasimhan-Ramanan space \(BT\) of bundles with Hermitian connection)). There is a contractible space of almost-complex structures \(\{ j \in \text{End}(T_V) | j^2 = -1 \}\) on \(V\), compatible with \(\omega\) in the sense that \(\omega(j-, -)\) is a Riemannian metric, and we assume that such a \(j\) has been chosen. The associated Liouville volume \(\omega^n/n!\) defines a class in \(H^2_{\text{dR}}(V)\) Poincaré dual to the orientation class in \(H_{2n}(V; \mathbb{Z})\). This will usually be summarized as the assertion that \((V, \omega)\) is a (prequantized) symplectic manifold. Relaxing the integrality condition on \(\omega\) defines the real completion \((B \otimes \mathbb{R})_*\) of \(B_*\).

Following VL Ginzburg [8,9 Th. H.10], a cobordism

\[W : (V_0, \omega_0) \to (V_1, \omega_1) \]

between two such manifolds is a compact \((2n + 1)\)-dimensional manifold \(W\) together with a Hermitian line bundle \(L : W \to BT\) with connection, which restricts to the given line bundle with connection on \(\partial W = V^0_0 \coprod V_1\). We furthermore assume that the kernel of the curvature form \(\omega_L : T_W \to T^*_W\) is a real line bundle on \(W\), trivial on \(\partial W\). This defines the (monoidal) cobordism category of geometrically prequantized manifolds, whose cobordism ring is known:

Theorem: The map

\[B_* \ni [V, L, \nabla_L, j] \to [V, j, L] \in MU_* \mathbb{C}P_{\infty} \]

defines an isomorphism \([3,16]\) of (evenly graded, commutative) torsion-free algebras.

Remark: Data of the sort described above can be used to define various (almost Kähler, Spin\(^c\) Dirac, twisted signature . . .) elliptic differential operators, which behave nicely with respect to products and cobordisms; the work [12] of Liu and Xu, for example, was one of the main motivations for this paper. Symplectomorphism groups are generally infinite-dimensional, however, so it seems unreasonable to expect a close analog of the rich spectral theory of the classical Laplace-Beltrami operator in this context. But even if we may not be able to hear the shape of a prequantized manifold, we can at least hear its cobordism class.

1.2.1 It will useful to have some examples. We will regard the complex projective spaces \(\mathbb{C}P_n = (\mathbb{C}^\times - 0)/\mathbb{C}^\times\) as symplectic manifolds \(\mathbb{C}P_n(\omega)\)
when endowed with the Fubini-Study symplectic form

$$\omega = \frac{i}{2} \partial \bar{\partial} \log |z|^2 \in \Omega^2(\mathbb{C}P_n),$$

with canonical line bundle pulled back along the standard inclusion

$$i_n : \mathbb{C}P_n \rightarrow \bigcup_{n \geq 0} \mathbb{C}P_n := \mathbb{C}P_\infty \cong BT.$$

More generally, \(\mathbb{C}P_n(m\omega) \) will be defined by the line bundle \(L \otimes m \) with symplectic form \(m\omega \), \(m \in \mathbb{Z}^\times > 0 \). Let \(b_{\text{MU}} = [i_n : \mathbb{C}P_n \rightarrow \mathbb{C}P_\infty] \in \text{MU}_n \mathbb{C}P_\infty \) and define the generating function

$$b_{\text{MU}}(z) = 1 + \sum_{n \geq 1} b_{n} z^n,$$

where \(b_{n} = b_{n}(1)/n! \) is a divided power.

Steenrod’s cycle class homomorphism

$$h : MU_* X \rightarrow H_*(X, \mathbb{Z})$$

sends a bordism class \(\kappa = [x : M \rightarrow X] \in MU_*(X) \) to \(x_*[M] \), where \([M] \in H_{2n}(M; \mathbb{Z}) \) is the orientation class. Thus

$$h(b_{n}^{\text{MU}}) = i_n^*[\mathbb{C}P_n] \in H_{2n}(\mathbb{C}P_\infty; \mathbb{Z}).$$

The composition

$$H_*(M; \mathbb{Z}) \xrightarrow{[\omega^n]} H_*(M; \mathbb{R}) \xrightarrow{\mu^{-1}(\cdot)^{-1}} H^*_{\text{dR}}(M) \xrightarrow{\iota_*} H^*_{\text{dR}}(M)$$

sends \([M] \in H_{2n}(M; \mathbb{Z}) \) to the Riemannian (hence, in our case, Liouville) volume

$$([\frac{\omega^n}{n!}])[M] = \text{vol}(M, \omega);$$

thus the cycle map sends \(\kappa \) to Weyl’s leading term in the asymptotic expansion [21] for the trace of the heat kernel \(\exp(t\Delta_g) \) of \((M, \omega) \).

§II Characteristic numbers

2.1

Ravenel and Wilson [19] describe \(\text{MU}_* \mathbb{C}P_\infty \) as follows:

2 We will try to be careful with gradings, which can play a rather subtle role. If \(A_* \) is a \(\mathbb{Z} \)-graded module, then \(A^* = A_{-\cdot} \). We will use graded book-keeping indeterminates, \(e.g., z_0, z_1, \ldots \) of cohomological degree +2.
Theorem As an algebra,
\[\text{MU}_* \mathbb{C}P_\infty \cong \text{MU}_*[b_n^{\text{MU}} \mid n \geq 1]/(b_0^{\text{MU}}(z_0) \cdot b_1^{\text{MU}}(z_1) = b^{\text{MU}}(z_0 + \text{MU} z_1)) \, . \]

It is also a cocommutative Hopf \(\text{MU}_* \)-algebra, with coproduct \(\Delta b^{\text{MU}}(z) = (b^{\text{MU}} \otimes 1)(z) \otimes_{\text{MU}} (1 \otimes b^{\text{MU}})(z) \).

This is closely related to work \([11]\) of Katz. Here
\[z_0 + \text{MU} z_1 = \exp_{\text{MU}}(\log_{\text{MU}}(z_0) + \log_{\text{MU}}(z_1)) \]
(with \(\exp_{\text{MU}} \) the formal inverse of \(\log_{\text{MU}} \)) is Quillen’s formal group law for complex cobordism; recall that \(\text{MU}_* \mathbb{C}P_\infty = \text{MU}_* \) is polynomial over \(\mathbb{Z} \) with one generator of each even degree \([15,18]\), and that (following work of Thom)

\[\text{it is generated over } \mathbb{Q} \text{ (but not } \mathbb{Z} \text{) by the classes } [\mathbb{C}P_n]. \]

2.2 A generator \(b_{(1)} : S^2 = \mathbb{C}P_1 \to \mathbb{C}P_\infty \) of \(\pi_2 \mathbb{C}P_\infty \) defines a homotopy associative map from the free topological monoid generated by the two-sphere, to \(\mathbb{C}P_\infty \), for example with the Segre product. Work of IM James \([20]\) shows this map to be stably equivalent to a map from \(\Omega S^3 \to \mathbb{C}P_\infty \).

In fact a level one projective representation of the loop group \(\text{LSU}(2) \) on a separable Hilbert space \(\mathcal{H} \) defines a continuous homomorphism
\[\Omega \text{SU}(2) \to \text{PGL}_\mathbb{C}(\mathcal{H}) \simeq \mathbb{C}P_\infty \]
[17] inducing a homomorphism
\[\text{MU}_* \Omega \text{SU}(2) \cong \text{MU}_*[b] \to \text{MU}_*[b_n^{\text{MU}} \mid n \geq 1] \cong \text{MU}_* \mathbb{C}P_\infty \]
of Hopf algebras, taking the class of the adjoint \(b : S^2 \to \Omega S^3 \) of the identity map \(S^1 \wedge S^2 \to S^3 \) to \(b_{(1)} \). Similarly, the embedding
\[\text{MU}_* \mathbb{C}P_\infty = \text{MU}_*[c] \to \text{MU}_* \Omega \text{SU}(2) \cong \text{MU}_*[c_n \mid n \geq 1] \]
(of the formal group on the left into the completed ring of divided powers on the right) represents an analog of an exponential map for a formal Lie group. From now on we will identify \(b_{(1)} \) and \(b \).

2.3 The Hurewicz homomorphism
\[\h : \text{MU}_* X \cong \pi_*(X \wedge \text{MU}) \to H_*(X \wedge \text{MU}; \mathbb{Z}) \cong H_*(X; \mathbb{Z}) \otimes_{\text{S}_*} \]
(where \(H_*(\text{MU}; \mathbb{Z}) \cong H_*(\text{BU}; \mathbb{Z}) \cong \text{S}_* \) is regarded as the classical algebra \(\mathbb{Z}[h_i \mid i \geq 1] \) of complete symmetric functions) can be identified, when \(H_*(X; \mathbb{Z}) \) is torsion-free, with the map which sends \(\nu = [x : M \to X] \) to
\[\h(\nu) \in \text{Hom}(H^*(\text{BU}), H_*(X)) \cong H_*(X) \otimes H_*(\text{BU}) \]
defined by
\[\h(\nu)(\alpha) = x_* D_M \nu^*(\alpha) ; \]
where $\nu : M \to BU$ classifies the stable normal bundle of M, and $D_M : H^*(M; \mathbb{Z}) \to H_{2n-4}(M; \mathbb{Z})$ is the Poincaré duality map3.

Following Thom and Milnor, the Hurewicz homomorphism $MU_*(pt) \to H_*(BU; \mathbb{Z})$ is injective, and Quillen’s work implies that the image of the formal group law on $MU^\ast CP_\infty$ is isomorphic to the additive group over $H^*(CP_\infty; H_*(BU))$; see [14] for an elegant account. It follows in particular that the characteristic number class $h(CP_{k-1})$ is divisible by k.

Composition with the morphism $[1 : MU \to HZ] \in H^0(MU; \mathbb{Z})$ of spectra yields Steenrod’s cycle map

$$h : MU_\ast CP_\infty \xrightarrow{h} H_\ast CP_\infty \otimes S_\ast \xrightarrow{\varepsilon} H_\ast CP_\infty$$

($\varepsilon(h_i) = 0$, $i > 0$) sending $b_n^{MU} \mapsto i_n \cdot D_{CP_n}(c_1) = b_{(n)}$; more generally, we can think of h as sending (V, ω) to its Liouville volume.

§III Conclusion and final remarks

3.1 To state the result below we need some notation for partitions $\pi = 1^{r_1}2^{r_2} \ldots$ of

$$n = |\pi| = \sum_{k \geq 1} kr_k .$$

We write r_\ast for the vector (r_1, r_2, \ldots) of repetitions in π and $r = r(\pi) = \sum_{k \geq 1} r_k$ for their sum, and

$$\binom{r}{r_\ast} = \frac{r(\pi)!}{\prod r_k!}$$

for the associated multinomial function. For example, $r_\ast = n, 0, \ldots \Rightarrow r = n, r_\ast = 0, \ldots, 0, 1 \Rightarrow r = 1$.

Proposition

$$b^{MU}(z) = \exp(b \log_{MU}(z)) \in ((MU \otimes \mathbb{Q})_\ast CP_\infty)[[z]]$$

and hence

$$h(b_n^{MU}) = \sum_{|\pi| = n} \binom{r}{r_\ast} \prod_{k \geq 1} (k^{-1} h(CP_{k-1}))^{r_k} b(r) \in S_\ast \otimes \mathbb{Z}[b_\ast] .$$

3From here on, integral (co)homology coefficients will often be omitted. The Chern classes of the tangent bundle (up to a sign) equal the classes defined by complete symmetric functions of roots of the normal bundle ν. Chern-Weil theory presents these global invariants in terms of local curvature forms.
Proof Let \(\kappa(z) = \log b^{\mu}(z) = bz + \ldots \), where \(\log(1 - x) = -\sum_{k \geq 1} \frac{z^k}{k} \) : then \(\kappa(z_0 + \mu z_1) = \kappa(z_0) + \kappa(z_1) \). If now \(z_i = \exp_{\mu}(w_i) = w_i + \ldots \), \(i = 0, 1 \), then \(\exp_{\mu}(w_0 + w_1) = z_0 + \mu z_1 \), so \(\kappa \circ \exp_{\mu}(w_0 + w_1) = \kappa \circ \exp_{\mu}(w_0) + \kappa \circ \exp_{\mu}(w_1) \) and hence \(\kappa \circ \exp_{\mu}(w) = bw \), i.e. \(b^{\mu}(\exp_{\mu}(w)) = \exp(bw) \), so

\[
b^{\mu}(z) = \exp(b \log_{\mu}(z)) = \exp(b \sum_{k \geq 1} \frac{\mu^{k-1}}{k} z^k) ;
\]

but it is elementary [13 I §2.14] that this maps to

\[
\sum_{n \geq 1, |n| = n} \binom{r}{r_\ast} \prod_{i \geq 1} \frac{(k^{-1} \mu(CP_{k-1}))^{r_k}}{r_k!} \cdot (\sum r_k)! \cdot \frac{b^{k} \mu}{(\sum r_k)!} \cdot z^n \in (S_\ast(b \ast))(z) .
\]

This can be reformulated as a

Corollary If \(t \in \mathbb{R}_+ \) then

\[
CP_n(t\omega) = t^n \cdot \text{vol}(CP_n, \omega) + \cdots + t \cdot n^{-1} \text{vol}(CP_1, \omega) \in (B \otimes \mathbb{R})_*,
\]

(analogous to a heat kernel expansion). \(\square \)

3.2 Such relations are familiar from the theory of symmetric functions. If

\[
E(z) = \prod_{i \geq 1} (1 + x_i t) = \sum_{k \geq 0} e_k t^k
\]

\[
H(z) = \prod_{i \geq 1} (1 - x_i t)^{-1} = \sum_{k \geq 0} h_k t^k
\]

then \(E(z)H(-z)^{-1} = 1 \), while

\[
H'(t)/H(t) = \sum_{k \geq 1} p_k t^k
\]

with \(p_k = \sum_{i \geq 1} x_i^k \), so

\[
H(t) = \exp(\sum_{k \geq 1} \frac{p_k}{k} t^k) .
\]

This suggests a formal analogy in which the symplectic cobordism class of \(CP_k(\omega) \) is to the complete symmetric function \(h_k \) as \(bCP_{k-1} \) is to the power sum \(p_k \), with \(b \) playing the role of the inverse temperature \(\beta = 1/kT \) in statistical mechanics.
FORMAL GROUPS AND GEOMETRIC QUANTIZATION

REFERENCES

1. M Atiyah, R Bott, V Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279 - 330
2. ——, ——, The moment map and equivariant cohomology, Topology 23 (1984) 1 – 28 (§6)
3. A Baker, Some calculations with Milnor hypersurfaces and an application to Ginzburg’s symplectic bordism ring, Glasgow University Mathematics preprint 94/54
4. S Bates, A Weinstein, Lectures on the geometry of quantization, Berkeley Mathematics Lecture Notes 8, AMS (1997)
5. N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Springer Grundlehren 298 (1992)
6. R Friedrich, J McKay, Free probability and complex cobordism, C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011) 116 - 122.
7. ——, Formal groups, Witt vectors and free probability, arXiv:1204.6522
8. P Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Mathematics Lecture Series 11, Publish or Perish (1984)
9. VL Ginzburg, Calculation of contact and symplectic cobordism groups, Topology 31 (1992) 767 – 773
10. V Guillemin, VL Ginzburg, Y Karshon, Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs 98, AMS (1992)
11. N Katz, Formal groups and p-adic interpolation, in Journées Arithmétiques de Caen, Astérisque No. 41 - 42, Soc. Math. France (1977) 55 - 65
12. Kefeng Liu, Hao Xu, Heat kernel coefficients on Kähler manifolds, arXiv:1311.5510
13. I G Macdonald, Symmetric functions and Hall polynomials, 2nd ed, Oxford Mathematical Monographs, Clarendon (1995)
14. A Mathew, Quillen’s theorem . . . and the Hurewicz map . . . , https://amathew.wordpress.com/2012/05/28...
15. J Milnor, On the cobordism ring Ω∗ and a complex analogue, Amer. J. Math. 82 (1960) 505 - 521
16. J Morava, Cobordism of symplectic manifolds and asymptotic expansions, Proc. Steklov Inst. Math. 1999 (225) 261 - 268, arXiv:math/9908070
17. T Nikolaus, C Sachse, C Wockel, A smooth model for the string group, arXiv:1104.4288
18. D Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations. Advances in Math. 7 (1971) 29 - 56
19. DC Ravenel, W S Wilson, The Hopf ring for complex cobordism, J. Pure & Applied Algebra 9 (1976/77) 241 – 280
20. N Ray, Loops on the 3-sphere and umbral calculus, in Algebraic topology(Evanston, IL, 1988), 297 - 302, Contemp. Math. 96, AMS (1989)
21. H Weyl, Über die asymptotische Verteilung der Eigenwerte, Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen (1911) 110 - 117

DEPARTMENT OF MATHEMATICS, THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND 21218

E-mail address: jack@math.jhu.edu