THE CARDINALITY OF THE SUBLATTICE OF CLOSED IDEALS OF OPERATORS BETWEEN CERTAIN CLASSICAL SEQUENCE SPACES

D. FREEMAN, TH. SCHLUMPRECHT AND A. ZSÁK

Abstract. Theorem A and Theorem B of [1] state that for $1 < p < \infty$ the lattice of closed ideals of $\mathcal{L}(\ell_p, \ell_0)$, $\mathcal{L}(\ell_p, \ell_\infty)$ and of $\mathcal{L}(\ell_1, \ell_p)$ are at least of cardinality 2^ω. Here we show that the cardinality of the lattice of closed ideals of $\mathcal{L}(\ell_p, \ell_0)$, $\mathcal{L}(\ell_p, \ell_\infty)$ and of $\mathcal{L}(\ell_1, \ell_p)$, is at least 2^{2^ω}, and thus equal to it.

In [1] we construct 2^ω operators from ℓ_p to ℓ_0 which generate distinct closed operator ideals in $\mathcal{L}(\ell_p, \ell_0)$. Here we show that we can naturally choose a subset of those operators of size 2^ω such that not only does each operator generate a distinct closed operator ideal, but each subset of these operators also generates a distinct closed operator ideal. Hence there are in fact 2^{2^ω} distinct closed operator ideals in $\mathcal{L}(\ell_p, \ell_0)$.

Let $1 \leq p < \infty$. For appropriately chosen sequences (u_n) and (v_n) in \mathbb{N} we constructed a uniformly bounded sequence (T_n) of operators $T_n : \ell_2^{u_n} \to \ell_\infty^{v_n}$ given by appropriately scaled RIP matrices, and defined for $M \subset \mathbb{N}$ the operator $T_M : U = (\oplus_{n \in \mathbb{N}} \ell_2^{u_n})_{\ell_p} \to V = (\oplus_{n \in \mathbb{N}} \ell_\infty^{v_n})_{\ell_0}$, $(x_n) \mapsto Q_M(T_n(x_n) : n \in \mathbb{N})$, where $Q_M : V \to V$ is the canonical projection onto the coordinates in M.

For Banach spaces X, Y, W, Z, and for a set of operators $T \subset \mathcal{L}(W, Z)$, we let $\mathcal{J}^T(X, Y)$ be the closed ideal of $\mathcal{L}(X, Y)$ generated by T. Thus $\mathcal{J}^T(X, Y)$ is the closure in $\mathcal{L}(X, Y)$ of

$$\left\{ \sum_{j=1}^n A_j S_j B_j : n \in \mathbb{N}, (S_j)_{j=1}^n \subset T, (A_j)_{j=1}^n \subset \mathcal{L}(Z, Y), (B_j)_{j=1}^n \subset \mathcal{L}(X, W) \right\}.$$

We write $\mathcal{J}^T(X, Y)$ instead of $\mathcal{J}^T(X, Y)$ if $T = \{T\}$.

For infinite subsets M, N of \mathbb{N}, [1] Theorem 1] states that:

2010 Mathematics Subject Classification. 47L20 (primary), 47B10, 47B37 (secondary).

The first author was supported by grant 353293 from the Simons Foundation.

The second author’s research was supported by NSF grant DMS-1912897.
(i) If \(M \setminus N \) is infinite then \(T_M \not\in \mathcal{J}^{T_N}(U, V) \).
(ii) if \(N \setminus M \) is finite then \(\mathcal{J}^{T_N} \subset \mathcal{J}^M(U, V) \).

Moreover, the proof of [1, Theorem 1] shows that if \(M \setminus N \) is infinite, then there is a functional \(\Phi \in \mathcal{L}(U, V)^* \), \(\|\Phi\| \leq 1 \), with \(\Phi(T_M) = 1 \) and \(\Phi|_{\mathcal{J}^{T_N}(U, V)} = 0 \), which means that \(\operatorname{dist}(T_M, \mathcal{J}^{T_N}(U, V)) \geq 1 \). It follows from the proof of [1, Theorem 6] (see also the subsequent remark) that if \(W \) is a Banach space containing \(c_0 \) and \(J : V \to W \) is an isomorphic embedding, then we also have \(\operatorname{dist}(J \circ T_M, \mathcal{J}^{T_N}(U, W)) \geq c \), where \(c = \|J^{-1}\|^{-1} \).

Using now the same approach as in [2], we can easily deduce the following corollary.

Corollary 1. Let \(W \) be a Banach space containing \(c_0 \). Then the cardinality of the lattice of closed ideals of \(\mathcal{L}(U, W) \) is at least \(2^{2\omega} \). In particular, for \(1 < p < \infty \), the cardinality of the lattice of closed ideals of \(\mathcal{L}(\ell_p, c_0) \) and of \(\mathcal{L}(\ell_p, \ell_\infty) \) is \(2^{2\omega} \).

Proof. Since \(V \cong c_0 \) and \(U \sim \ell_p \) when \(p > 1 \), we need only to prove the first statement. Let \(\mathcal{C} \) be a family of infinite subsets of \(\mathbb{N} \) whose cardinality is \(2^\omega \) and whose elements are pairwise almost disjoint, i.e., if \(M \neq N \) are in \(\mathcal{C} \) then \(N \cap M \) is finite. For \(\mathcal{A} \subset \mathcal{C} \) we put \(\mathcal{T}(\mathcal{A}) = \{T_M : M \in \mathcal{A}\} \) and \(\mathcal{J}(\mathcal{A}) = \mathcal{J}^{\mathcal{T}(\mathcal{A})}(U, W) \). We claim that for any two nonempty subsets \(\mathcal{A} \) and \(\mathcal{B} \) of \(\mathcal{C} \), we have \(\mathcal{J}(\mathcal{A}) \neq \mathcal{J}(\mathcal{B}) \). Indeed, without loss of generality we can assume that \(\mathcal{A} \setminus \mathcal{B} \neq \emptyset \). Let \(M \in \mathcal{A} \setminus \mathcal{B} \) and let \(J : V \to W \) be an isomorphic embedding. We show that \(\operatorname{dist}(J \circ T_M, \mathcal{J}(\mathcal{B})) \geq c \) where \(c = \|J^{-1}\|^{-1} \). Since \(J \circ T_M \in \mathcal{J}(\mathcal{A}) \), this shows that \(\mathcal{J}(\mathcal{A}) \neq \mathcal{J}(\mathcal{B}) \).

Let \(n \in \mathbb{N} \), \((N_j)_{j=1}^n \subset \mathcal{B} \), \((A_j)_{j=1}^n \subset \mathcal{L}(V, W) \) and \((B_j)_{j=1}^n \subset \mathcal{L}(U) \). Put \(N = \bigcup_{j=1}^n N_j \). We have \(A_j T_N B_j = A_j Q_N T_N B_j \) for \(j = 1, 2, \ldots, n \), and hence \(\sum_{j=1}^n A_j T_N B_j \in \mathcal{J}^{T_N}(U, W) \). Since \(M \setminus N \) is infinite, it follows that

\[
\|J \circ T_M - \sum_{j=1}^n A_j T_N B_j\| \geq \operatorname{dist}(J \circ T_M, \mathcal{J}^{T_N}(U, W)) \geq c .
\]

Since \(\mathcal{J}(\mathcal{B}) \) is the closure of the set of operators of the form \(\sum_{j=1}^n A_j T_N B_j \), the proof is complete. \(\square \)

Remark. A very simple duality argument (see [1, Proposition 7] and [1, Theorem 8]) shows that for \(1 < q < \infty \), the lattice of closed ideals of \(\mathcal{L}(\ell_1, \ell_q) \) is also of cardinality \(2^{2\omega} \). The same is true in \(\mathcal{L}(\ell_1, (\bigoplus_{n \in \mathbb{N}} \ell_2)^{c_0}) \).

In [2] it was shown that the cardinality of the set closed ideals of \(\mathcal{L}(L_p) \), \(1 < p < \infty \), is \(2^{2\omega} \). Note that the Hardy space \(H_1 \) and its
The predual VMO can be seen as the “well behaved” limit cases of the L_p-spaces. For example ℓ_2 is complemented in both spaces, and H_1 contains a complemented copy of ℓ_1 and VMO a complemented copy of c_0 (cf. [3] and [1 page 125]), and thus we deduce the following corollary.

Corollary 2. The cardinality of the lattice of closed ideals of $L(VMO)$ and $L(H_1)$ is 2^{2^ω}.

References

[1] Freeman, Daniel, Schlumprecht, Thomas, and Zsák, Andras, Closed ideals of operators between the classical sequence spaces Bull. Lond. Math. Soc. (2017) 5, 859–876.

[2] Johnson, William B., and Schechtman, Gideon, The number of closed Ideals in $L(L_p)$, preprint.

[3] Müller, Paul F. X., A family of complemented subspaces in VMO and its isomorphic classification, Israel J. Math., (2003), 134, 289–306.

[4] Müller, Paul F. X., Isomorphisms between H^1 spaces, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], 66, Birkhäuser Verlag, Basel, (2005) PAGES = xiv+453.

D. Freeman, Department of Mathematics and Statistics, St Louis University, St Louis, MO 63103 USA.
daniel.freeman@slu.edu

Th. Schlumprecht, Department of Mathematics, Texas A&M University, College Station, TX 77843, USA and Faculty of Electrical Engineering, Czech Technical University in Prague Zikova 4, 166 27, Prague, Czech Republic.
t-schlumprecht@tamu.edu

A. Zsák, Peterhouse, Cambridge, CB2 1RD, United Kingdom.
a.zsak@dpmms.cam.ac.uk