Ribosomal Multi-Operon Diversity: An Original Perspective on the Genus Aeromonas

Frédéric Roger1, Brigitte Lamy1,2,3, Estelle Jumas-Bilak1,4, Angeli Kodjo3,5, the colBVH study group6, Hélène Marchandin1,2*

1 UMR 5119 ECOSYM, Équipe Pathogènes et Environments, U.F.R. des Sciences Pharmaceutiques et Biologiques, Université Montpellier 1, Montpellier, France,
2 Laboratoire de Bactériologie, Hôpital Arnaud de Villeneuve, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France,
3 Groupe d’Etude Français des Aeromonas (GFA), Lyon, France,
4 Laboratoire d’Hygiène hospitalière, Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France,
5 CNRS UMR 5557 Ecologie microbienne, VetAgro Sup Campus de Lyon, Université Claude Bernard Lyon 1, Marcy-l’Étoile, France,
6 ColBVH, Collège de bactériologie, virologie et hygiène des hôpitaux généraux, le Chesnay, France

Abstract

16S rRNA gene (rrs) is considered of low taxonomic interest in the genus Aeromonas. Here, 195 Aeromonas strains belonging to populations structured by multilocus phylogeny were studied using an original approach that considered Ribosomal Multi-Operon Diversity. This approach associated pulsed-field gel electrophoresis (PFGE) to assess rrn operon number and distribution across the chromosome and PCR-temporal temperature gel electrophoresis (TTGE) to assess rrs V3 region heterogeneity. Aeromonads harbored 8 to 11 rrn operons, 10 operons being observed in more than 92% of the strains. Intraspecific variability was low or null except for A. salmonicida and A. aquariorum suggesting that large chromosomal rearrangements might occur in these two species while being extremely rarely encountered in the evolution of other taxa. rrn operon number at 8 as well as PFGE patterns were shown valuable for taxonomic purpose allowing resolution of species complexes. PCR-TTGE revealed a high rate of strains (41.5%) displaying intragenomic rrs heterogeneity. Strains isolated from human samples more frequently displayed intragenomic heterogeneity than strains recovered from non-human and environmental specimens. Intraspecific variability ranged from 0 to 76.5% of the strains. The observation of species-specific TTGE bands, the recovery of identical V3 regions in different species and the variability of intragenomic heterogeneity (1–13 divergent nucleotides) supported the occurrence of mutations and horizontal transfer in aeromonad rrs evolution. Altogether, the presence of a high number of rrn operon, the high proportion of strains harboring divergent rrs V3 region and the previously demonstrated high level of genetic diversity argued in favor of highly adaptable capabilities of aeromonads. Outstanding features observed for A. caviae supported the ongoing process of adaptation to a specialized niche represented by the gut, previously hypothesized. 16S rRNA gene is an informative marker in the genus Aeromonas for both evolutionary and polyphasic taxonomic studies provided that multi-Operon fingerprinting approaches are used.

Introduction

The genus Aeromonas groups waterborne gram-negative bacilli considered as opportunistic pathogens for a wide range of animals including humans. Currently, 25 species are recognized in the genus. 16S rRNA (rrs) gene is considered as a non-informative marker in the genus because most species shared more than 99% of their nucleotide positions [1–4]. Considering this low polymorphism, several attempts have been made to identify species by 16S rRNA gene-restriction fragment length polymorphism (RFLP) [5,6] but atypical patterns [7,8] that were later explained by sequence heterogeneities among 16S rRNA gene copies in a same genome [9,10] impaired this approach. Due to these limits, 16S rRNA gene sequence was subsequently scarcely studied in the genus Aeromonas and multilocus sequence analysis is now the reference approach to structure populations and describe new species in the genus [2–4,11–13].

Beside the sequence polymorphism, ribosomal operons display diversity in terms of copy number and copy heterogeneity in bacterial genomes [14,15]. The genus Aeromonas is a valuable example that illustrates such diversity. Eight to ten copies of the 16S rRNA genes have been reported in totally sequenced Aeromonas genomes [16–19] and significant intragenomic micro-heterogeneities have been suggested using different approaches [9,10,20].

Here we evaluated the “Ribosomal Multi-Operon Diversity” (RiMOD), i.e., the diversity of the chromosomal rrn copy organisation and heterogeneity, towards taxonomy and evolution of aeromonads. For this purpose, we used pulsed-field gel electrophoresis to determine rrn operon number and distribution across the chromosome and PCR-temporal temperature gel electrophoresis (TTGE) to assess rrs heterogeneity in a population of Aeromonas field isolates and reference strains from diverse origins.
previously structured by multilocus phylogenetic analysis (MLPA) [13]. We reported the features of rs heterogeneity at the intrapopulation, intraspecific and intragenomic levels, and the variability of rrn number and chromosomal distribution at both inter- and intra-specific levels. Our approach showed that ribosomal diversity when studied at the multi-oporin family level is an informative marker regarding evolution and taxonomy in the genus Aeromonas. In addition, we showed that RiMOD study results supported the structure in species complexes previously suggested for the genus Aeromonas on the basis of other genetic and genomic traits [13] and more generally related to “generalist” bacterial pathogens with sympatric lifestyles [21].

Materials and Methods

Bacterial Strains

Strain collection was as described in Roger et al. [13]. Briefly, a total of 195 strains of Aeromonas spp., including 62 type and reference strains were analyzed. Origin distribution of these strains reflected the different bacterial lifestyles in the genus with 115, 39 and 41 isolates recovered from human clinical samples, non-human animal samples and environmental samples, respectively. The strain collection included type strains of 25 species and a representative strain of hybridization group (HG) 11. Using MLPA, the population was distributed in eleven species corresponding to Aeromonas aliasaccharophila (n = 3), Aeromonas aquariorum (n = 8), Aeromonas caviae (n = 34), Aeromonas hydrophila (n = 35), Aeromonas pandaei (n = 2), Aeromonas media (n = 6), Aeromonas piscicola (n = 5), Aeromonas salmonicida (n = 8), Aeromonas sobria (n = 5), Aeromonas tecta (n = 5), Aeromonas veronii (n = 71). Fourteen species were represented by their type strain only: Aeromonas heitarum, Aeromonas bivalvium, Aeromonas dierwa, Aeromonas encheleia, Aeromonas enteropelogenes/trota, Aeromonas encunehropila, Aeromonas flavialis, Aeromonas molluscum, Aeromonas popoffii, Aeromonas sanarelli, Aeromonas simiae, Aeromonas schuermansii, Aeromonas taizovensis and Aeromonas zivili. Finally, the strain CCM 1271 was representative of an unknown taxon (Table S1).

In silico Analysis

Complete genome sequences of strains A. hydrophila subsp. hydrophila ATCC 7963 (GenBank accession number NC_000949), A. salmonicida subsp. salmonicida A445 (NC_009348), and A. veronii B565 (NC_015424) were analyzed in silico for rs copy number, rs position determination and rs sequence heterogeneity using Biological sequence alignment editor (BioEdit) programme version 7.0.9 [22] (http://www.mbio.ncsu.edu/bioedit/bioedit.html).

PFGE

Genomic DNA was prepared in agarose plugs as previously described by Miranda et al. [23] and adapted by Roger et al. [13]. DNA was digested at 37°C with 1 U of the intronic endonuclease I-Ceu (New England BioLabs, Hertfordshire, United Kingdom) according to the manufacturer’s recommendations. I-Ceu fragments were resolved using a CHEF-DRII apparatus (Bio-Rad Laboratories, Hercules, CA) in a 0.8% agarose gel in 0.5X Tris-Borate-EDTA (TBE) buffer added with 50 μM of thiourea at 4.5 V/cm and at 10°C. Pulse ramps were 60 to 10 s for 35 h. The gel was stained with ethidium bromide and photographed under UV light. Number of rrn copies was deduced from the number of I-Ceu-generated fragments. Sizes determined in this study were measured by comparison with lambda concatemer (New England BioLabs) used as size standard.

PCR-TTGE

Amplification by PCR of a 199 bp-fragment overlapping the 16S rDNA variable region V3 and TTGE were performed as described previously [24]. Bands were cut out of the gel, DNA was amplified using HDA1 and HDA2 primers as previously described and PCR products were sequenced on an Applied Biosystems automatic sequencer (Cogenics) by using the forward primer HDA1 [24]. Bands for which no interpretable sequences were obtained were subjected to a second run of PCR-TTGE followed by a re-sequencing as described above. TTGE bands were visually detected and analyzed by migration distance measuring after standardization. Each band with distinct distance of migration was designated by a number and TTGE profiles were indicated by a combination of band numbers separated by a + sign. A specifically designed ladder corresponding to a mix of V3 region amplification products from different strains showing PCR-TTGE pattern 1+4+15+30 was loaded on all the TTGE gels. The presence of more than one TTGE band, i.e., 16S rRNA gene V3 region copies with distinct sequences, in an isolate will be referred hereafter as harboring intragenomic heterogeneity, while the presence of different TTGE bands in different isolates of a species will be referred to as intraspecific heterogeneity.

Statistical Analyses

Qualitative variables were compared with the Chi-square test with the Bonferroni’s correction where required; a P value ≤0.05 was considered to reflect significance. All computations were done with R project software (http://www.r-project.org).

Results

rrs Sequence Diversity and Heterogeneity

The 195 strains of the collection were studied by 16S rRNA gene PCR-TTGE. Representative patterns are shown in Figure S1. Fifty-seven PCR-TTGE patterns associating bands with 34 different migration distances were observed in the population (Table 1, Table S1). Multiband TTGE patterns, revealing rrs heterogeneity, were more frequently observed (n = 45, 78.9%) than patterns composed by a unique band (n = 12, 21.1%). Among the 195 strains, 81 (41.5%) showed heterogeneity between their rrs copies. Up to four bands were combined within a pattern; however, the 2-band patterns were the most frequently observed (n = 27, 60% of the 45 heterogeneous patterns). Patterns with 3 or 4 different bands (13 and 5 patterns, respectively) were less frequently observed. Heterogeneity frequency differed significantly between the groups of isolates recovered from human, animal and environmental samples (P value = 0.01), V3 rrs heterogeneity being observed in 51.3% of isolates from human origin (59 of the 115 strains) compared to 28.2% of non-human animal isolates (11 of the 39 strains) and 26.8% of environmental isolates (11 of the 41 strains). Difference in heterogeneity frequency between strains purchased from collections and field isolates was not significant (P value = 0.078).

Among the 34 TTGE bands with visually distinct migration distances observed for the overall population, 29 were confirmed as distinct by sequencing. For 15 of these bands, sequences were obtained after the first run of PCR-TTGE (GenBank accession numbers JX014439-JX014453) while for the 14 other bands a second run of PCR-TTGE was required (GenBank accession number JX453432-JX453445). Sequences could not be obtained for the 5 remaining bands because sequences were either unrealizable due to very faint bands or resulted in uninterpretable bulk sequences despite the second run of PCR-TTGE. These 5 bands were observed in 8 strains belonging to 4 taxa (Table 1).
Table 1. Occurrence and distribution of the 34 PCR-TTGE bands observed among the *Aeromonas* population.

PCR-TTGE band	Occurrence in the population/number of taxa with band occurrence (n/n)	Number of patterns with band	Occurrence of band according to the taxon (n)
1	42/4	15	A. veronii (n = 71)
2	6/4	2	A. hydrophila (n = 35)
3	32/6	14	A. caviae (n = 34)
4	47/7	18	A. aquatorium (n = 8)
5	3/1	1	A. sobria (n = 5)
6	1/1	1	A. allosaccharophila (n = 3)
7	3/2	2	A. piscicida (n = 3)
8	1/2	1	A. trota (n = 3)
9	1/1	1	A. jandaei (n = 2)
10	2/1	2	A. betarium
11	78/5	11	A. diversa
12	2/1	2	A. encheleia
13	4/2	1	A. entropelogenes
14	1/1	1	A. equitigranosa
15	21/8	10	A. flavialis
16	1/1	1	A. molluscum
17	3/1	1	A. salmonicida
18	10/3	7	A. sapphira
19	1/1	1	A. schuberti
20	3/1	3	A. tecta
21	4/1	4	A. trota
22	1/1	1	A. trota
23	1/1	1	A. jandaei
24	1/1	1	A. jandaei
25	1/1	1	A. jandaei
26	1/1	1	A. jandaei
27	1/1	1	A. jandaei

Strain CCM 1271				
HG11	1			

Ribosomal Multi-Operon Diversity in *Aeromonas* spp.
PCR-TTGE band^a	Occurrence in the population/ number of taxa with band occurrence (n/n)	Number of patterns with band^b	Occurrence of band according to the taxon (n)^c																											
	A. veronii (n = 71)	A. hydrophila (n = 35)	A. caviae (n = 34)	A. aquariorum (n = 8)	A. salmonicida (n = 8)	A. media (n = 6)	A. sobria (n = 5)	A. piscicida (n = 3)	A. tecta (n = 3)	A. jandaei n = (2)	A. betaron	A. diversa	A. encheleia	A. enterothogastrica	A. ecorenophila	A. flavialis	A. mollisarcum	A. popoffii	A. sanarellii	A. ritual	A. simiae	A. schubertii	A. taiwanensis	A. trota	HG11	Strain CCM 1271				
29	1/1																													29
30	20/8	4																												30
31	1/1																													31
32	1/1																													32
33	1/1																													33
35	2/2																													35
36	1/1																													36
37	1/1																													37
38	5/1																													38
39	1/1																													39
40	1/1																													40

^aBold type indicates bands which were successfully sequenced (GenBank accession numbers JX014439-JX014453 and JX453432-JX453445).

^bBold type indicates that all patterns with the corresponding band showed heterogeneity.

^cBold and italics, bands only found in one taxon; bold and underlined, bands found in all representatives of a taxon for taxa including more than one strain (bold, italics and underlined combined for band 38 in A. sobria).

doi:10.1371/journal.pone.0046268.t001
Figure 1. Number of \(rrr \) operons and PCR-TTGE patterns for the 195 \textit{Aeromonas} strains of the study. Results are presented according to the structure of the population observed in multilocus phylogenetic analysis (MLPA). Unrooted maximum-likelihood tree was based on concatenated sequences of five housekeeping genes (\textit{gltA}, \textit{gyrB}, \textit{rpoB}, \textit{tsf} and \textit{zipA} genes), as described in Roger et al. [13]. Only type and references strains are indicated within clades on the tree. The horizontal lines show genetic distance, the scale bar indicating the number of substitutions per nucleotide position. The numbers at the nodes are support values estimated with 100 bootstrap replicates. Only bootstrap values >70 are indicated on the tree. When all members of a clade shared identical features, the common \(rrr \) operon number and/or PCR-TTGE pattern was indicated. * The \textit{A. caviae} clade included the type strain \textit{A. caviae CECT 838'} displaying an external position to other members of the \textit{A. caviae} clade in the tree.

doi:10.1371/journal.pone.0046268.g001
The 49 patterns with full band sequencing displayed heterogeneity between V3 rrs copies ranging from 1 to 13 nucleotides (151 nt-alignment) (Table S1). The diversity of bands and profiles surpassed the number of taxa identified by MLPA in the collection, revealing variation of V3 rrs content in a same species.

When compared with multilocus phylotaxonomy, 23 of the 34 PCR-TTGE bands were specifically associated with all or some strains of a species while absent from all other taxa, indicating that some 16S rRNA gene copies can discriminate among *Aeromonas* species (Table 1 and Figure 1). The remaining 11 bands were shared by patterns of strains belonging to up to 8 taxa (e.g., bands 15 and 30) showing that strains from different species may harbor identical V3 region rrs copies. Diversity of patterns observed between strains belonging to a given species was mostly related to intragenomic V3 rrs copy heterogeneity. Among species represented by more than one strain, *A. caviae* and *A. media* showed the highest proportion of strains with heterogeneous TTGE patterns (76.5% and 66.7%, respectively), followed by *A. hydrophila*, *A. aquariorum* and *A. veronii* (48.6%, 37.5% and 29.6%, respectively) while none of the *A. salmonicida*, *A. sobria*, *A. allosaccharophila*, *A. piscicola*, *A. testa*, and *A. jandaei* displayed sequence heterogeneity (Table 1). The type strains of 7 other species displayed rrs V3 region sequence heterogeneity: *A. encheleia*, *A. enteropelogenes* *roma*, *A. fluvialis*, *A. molluscum*, *A. popoffii*, *A. sanarellii* and *A. taiwanensis* while no heterogeneity was found for the 7 remaining species *A. bestiarum*, *A. bicalcium*, *A. diversa*, *A. eutrenophila*, *A. rivulus*, *A. simiae*, and *A. schuberti*, as well as for the strains HG11 CECT 4253 and CCM 1271 (Table 1).

Regarding the 3 most represented species in our population, all *A. hydrophila* isolates harbored the band 1 that was associated or not with 10 different other bands (Table 1). Similarly, all *A. caviae* isolates shared the band 4 associated or not with 10 other bands. For *A. veronii*, band 11 was present in all the strains but one (strain AK241), associated or not with 6 other bands. *A. caviae* displayed the highest level of profile diversity, 17 patterns being observed among the 34 strains (0.5 pattern per strain) compared to *A. hydrophila* (11 patterns, 0.31 pattern per strain) and *A. veronii* (8 patterns, 0.11 pattern per strain) (Table 1). Heterogeneity frequency differed significantly between the three main species (*P* value = 0.00008), particularly when *A. caviae* was compared to *A. veronii* (*P* value = 0.000078) while difference was slightly significant between *A. hydrophila* and *A. veronii* (*P* value = 0.046). In spite of the low number of strains studied, it is noteworthy that none of the 6 isolates belonging to *A. media* shared an identical pattern (Table 1, Table S1) and that the 8 isolates of *A. aquariorum* showed a diversity of TTGE patterns similar to that of *A. caviae* (0.5 pattern per strain).

In addition to the high rate of *A. caviae* isolates with heterogeneous rrs copies, we observed among strains displaying V3 region rrs heterogeneity that TTGE profiles formed of 3 or 4 bands were significantly more frequent in *A. caviae* (16 out of 21 strains) than in other taxa (*P* value = 0.00048). These patterns were particularly found in *A. caviae* isolated from human clinical samples (12 of the 16 strains), mainly from gut-related specimens (10 out of 12 strains). However, strains recovered from other origins were underrepresented among the *A. caviae* isolates of our collection (10 strains from non-human and environmental samples, and 6 strains from human specimens not related to the gut) (Table S1). Identical complex PCR-TTGE patterns, e.g., 1+4+18 for *A. caviae* strains BVH63 and BVHB4 and 3+4+11 for *A. caviae* strains BVH19 and BVH4 were observed in strains isolated from geographically distant French regions. Another outstanding example is represented by the pattern 3+4+18 observed for the two environmental *A. caviae* strains CCGU 48892 isolated from water in Sweden in 2004 and AK234 recovered from wastewater treatment lagoon in France in 2006. Beside *A. caviae* members, the strains displaying 3- or 4-band TTGE patterns were *A. molluscum* and *A. enteropelogenes* type strains, one *A. hydrophila* strain from human wound and two *A. media* strains from snail and oyster (Table S1).

High rrs Copy Number with Low Structural Variability in *Aeromonas*

PFGE patterns were obtained for 189 strains giving for the first time a whole perspective of rrs copy number and distribution across the chromosome for about 20 not yet investigated *Aeromonas* species, as well as intraspecific variability data. PFGE patterns obtained for all the type and reference strains of this study are shown in Figure S2. The population displayed 8 to 11 I-Cell-restricted DNA fragments corresponding to 8 to 11 rrs operons. However, the variability in the whole genus was low, more than 92% of the strains displaying 10 rrs operons (n = 175). Species and/or strains harboring 8 (n = 3), 9 (n = 8) or 11 (n = 5) rrs operons were rare and no particular feature could be identified for these bacteria being either recovered from human (n = 5), non-human (n = 6) or environmental (n = 3) samples (Table S1). Intraspecific variability in rrs operon number was observed for *A. salmonicida*, *A. aquariorum*, *A. caviae* and *A. veronii* strains (Figure 1, Table S1) but the most notable variability was observed for *A. salmonicida* and *A. aquariorum* with 50% and 25% of the strains harboring 9 rrs operons, respectively. Finally, no correlation could be drawn here between rrs operon number and rrs V3 region heterogeneity due to the low number of strains harboring 8, 9 or 11 operons.

Beside variability in copy number, variability in size of I-Cell fragments, i.e., variability in location of rrs on the chromosome, was also observed in the population. Variability in the size of the largest I-Cell fragment could not be precisely measured using the migration conditions applied herein. Considering the 3 complete genome sequences, the largest fragment size variation was 2950±70 kb (2.4%) (3019 kb for the *A. hydrophila*, 2885 kb for the *A. salmonicida* and 3001 kb for the *A. veronii* strains), a value in agreement with sizes previously evaluated to 2900 kb for *A. hydrophila* strain JMP636 [25] using PFGE-based experiment. Based on this low variability in size, we assumed that excluding this fragment from pattern comparison would not greatly affect both intra- and interspecific diversity analysis. Despite this...
limitation, we showed that most *Aeromonas* species had a quite specific I-GeU fingerprint with exception of *A. aquaronium*, which displayed a roughly similar pattern to the one observed for *A. hydrophila* (Figure 2, Figure S2, Table S1). Another notable exception was *A. multidosal* that displayed highly diverse *rrn* chromosomal repartition (Figure S2, Table S1). We also evaluated the variability of *rrn* chromosomal distribution at the species level for the main species represented by a large number of strains, *A. hydrophila*, *A. caviae* and *A. veronii* (Figure 2). For the 6 genetic fragments analyzed, the coefficient of variation of the mean size varied from 5.2% to 13.3%. The fragment with the most variable size varied according to the species. *A. veronii* was the most variable species for the size of fragments B, D and E, while *A. caviae* was the most variable species for fragments A and C, and *A. hydrophila* for fragment F. Regardless of the species, A and B fragments appeared the most stable in size. Despite this intraspecific variability, the size of most genomic fragments enabled to distinguish a species from others (Figure 2).

RiMOD Fits the Taxonomy of Aeromonads

RiMOD has been confronted to the current taxonomy of the genus *Aeromonas* including recent taxonomic changes. Firstly, several recently characterized species such as *A. taiovanensis*, *A. sanarellii* and *A. fuscata* [2,3] displayed clearly distinct features in both PFGE and TTGE-based analyses (Table S1, Figure 1, Figure S2). The proposal of *A. diversa* including *Aeromonas* sp. HG13, so-called *Aeromonas* group 501, as a distinct species from *A. schuberti* [26] was supported in PCR-TTGE by different *rss* V3 regions. These 2 species displayed B *rrn* operons, as observed for the MLPA-related species *A. simiae* (Figure 1), but their PFGE fingerprints were clearly individualized (Table S1, Figure S2). Moreover, the suggestion that *A. hydrophila* subsp. *anaerogenes* and *A. caviae* are conspecific [27] was supported by the RiMOD results, *A. hydrophila* subsp. *anaerogenes* strain CECT 4221 displaying a *rrn* operon PFGE fingerprint related to those observed in members of the *A. caviae* clade and the 3+4 PCR-TTGE pattern never observed in the *A. hydrophila* clade members (Figure 1, Figure S2).

Several taxonomic reappraisals were supported by one method of the RiMOD approach. In particular, we distinguished *A. hydrophila* from *A. aquaronium*, a species proposed in 2008 on the basis of gyrB and *rpoD* gene phylogey to accomodate members of the subspecies *A. hydrophila* subsp. *thalensis* [28]. Although PFGE fingerprinting did not distinguish *A. aquaronium* from *A. hydrophila*, PCR-TTGE clearly showed that *rss* V3 region was discriminative between the 2 species, band 3 being found in all *A. aquaronium* isolates while absent from all *A. hydrophila* strains (Table 1, Figures 1 and 2, Table S1, Figure S2).

Additional arguments were also given here on controversial issues recently reviewed by Janda & Abbott [29]. *A. ichthiosmia* and *A. culiciola* considered as later synonyms of *A. veronii* [30] shared similar PFGE patterns and displayed PCR-TTGE patterns mainly (pattern 11) or exclusively (pattern 4+11) observed in the *A. veronii* clade. (Table S1, Figure S2). Previous suggestions to unify the two pairs of taxa *A. enteroicogenes* and *A. trota* on one hand, and *A. encheliaca* and *HG11* on the other hand could hardly be addressed and discussed here because one strain only for each taxon was included in the study. We noted that *A. enteroicogenes* and *A. trota* displayed closely related *rrn* operon PFGE fingerprints and specific TTGE patterns, i.e., 3+4+36 and 4+15, respectively, not shared by any other strain of the collection despite all bands forming these patterns with the exception of the band 36 were present in other species. Similarly, *A. encheliaca* and strain representative of *HG11* respectively displayed TTGE patterns 1+30 and 15+30 formed by bands found in other taxa but showed distinct *rrn* operon PFGE patterns (Table 1, Figure S2). For *A. allosacharophila*, our results supported the unification of the species with *A. veronii* as suggested by DNA-DNA hybridization experiment and contrarily to MLPA results because strains shared similar *rrn* operon PFGE patterns and harbored main TTGE bands differing by a unique variable position (band 13 in the 3 *A. allosacharophila* strains and band 11 found in 70 out of the 71 *A. veronii* isolates of the study) (Table 1, Figure 1). Of note, the only *A. veronii* isolate lacking band 11 had a PCR-TTGE pattern 13. Although the number of *A. allosacharophila* strains studied in this work was too low to be conclusive, these observations together with previous results leading to controversy on the taxonomic status of this species [29] may suggest that *A. allosacharophila* is at the starting time of speciation.

In addition, previous MLPA results suggested that the species *A. media* could be polyphyletic containing yet-undescribed taxa [13] and that strain CCM 1271 probably represent an unknown *Aeromonas* taxon [11,13]. Here, we confirmed the heterogeneity of genetic and genomic features of the 6 studied *A. media* strains (Figure 1, Table S1, Figure S2) and showed that strain CCM 1271, referenced in the Czech Collection of Microorganisms as *A. bestiarum*, shared the TTGE pattern 30 with *A. bestiarum*, *A. salmonicida* and *A. piscicola* (Table 1) but presented a PFGE fingerprint distinct from those observed for these 3 species by the number and/or the chromosomal repartition of *rrn* operons (data not shown).

Results obtained for *A. harmanana*, a species further shown not to belong to the genus *Aeromonas* [31,32] confirmed its distant relationship to members of the studied population by showing a specific and unique PCR-TTGE band (data not shown) and a *rrn* skeleton not clearly resolved in the conditions appropriate to the study of *Aeromonas* spp. but confidently formed by 6 or 7 operons (Figure S2).

Discussion

Striking Diversity in Ribosomal Genes of Aeromonads

We described an outstanding diversity in ribosomal genes in a representative population of aeromonads. This result is paradoxical considering that the majority of species in the genus shared more than 99% of their nucleotide positions when 16S *rrn* gene is directly sequenced from whole genomic DNA. The diversity described herein concerns both the number and the polymorphism of *rrn* copies and is therefore underestimated when the whole 16S *rrn* gene sequence that reflects the mix of sequences from a multigenic family is studied. Indeed, we confirmed on a large panel of strains the high *rrn* copy number in *Aeromonas* spp. previously published, i.e., 9 operons in most *A. salmonicida* [16,18] and 10 operons in *A. hydrophila* subsp. *hydrophila* strain ATCC 7966 [17], *A. culiciola* strain MTCC 3249 [33] and *A. veronii* strain B565 [19].

The *rrn* operons in aeromonads are to be considered as a multi-operon family given the number of operon copies and their diversity. As shown in a previous study, we confirmed that PCR-TTGE is a powerful approach to study the rate of bacterial isolates with *rrn* heterogeneity in large natural populations [24]. In this previous study conducted on *Veillonella* spp. that displayed 4 *rrn* copies, all the bands observed in TTGE were successfully sequenced after a single run of PCR-TTGE [24]. For aeromonads, interpretable sequences were obtained for 44% of the bands only after a single run of PCR-TTGE and 15% of the bands remained unsequenced after a double run. We assumed that this was related to the high number of *rrn* operons in aeromonads leading to band cross-contamination during the electrophoresis step and thereby constituted a limitation of the method when applied to bacteria harboring a high number of *rrn* operons. Sequences obtained for
29 TTGE bands showed up to 13 variable positions between \(rs \) V3 region copies in a genome, a number exceeding the 1 to 10 microheterogeneities (0.06 to 0.66% of divergence) observed through chromatograms of the nearly complete \(16S \) rRNA gene sequences by Alperi et al. [10] and the number of divergent nucleotides (2 to 5) observed between \(rs \) copies for the 3 strains with complete genome sequences.

V3 \(rs \) region analysis revealed an unexpectedly high rate of \(Aeromonas \) strains displaying \(rs \) intragenomic heterogeneity compared with previously published studies based on other methodological approaches [9,10]. Indeed, we showed that 41.5% of the strains included in our study displayed \(rs \) V3 region heterogeneity while microheterogeneities were suspected from atypical RFLP patterns in only 8.1% of the 999 \(Aeromonas \) strains examined by Alperi et al. [10], and in 21% of the 92 strains studied by Morandi et al. [9]. We suspected this rate to be even higher because the PCR-TTGE approach is limited by the size of the amplified fragment that can migrate in TTGE, i.e., approximately 200 bp. Although the V3 region is one of the most variable regions among the \(16S \) rRNA gene [34], intragenomic heterogeneity may still be underestimated when the V3 region alone is studied as shown by the \textit{in silico} analysis of the three totally sequenced genomes. Indeed, \(rs \) microheterogeneity was observed in the 3 strains, \(A. hydrophila \) \textit{subsp. hydrophila} strain ATCC7966 harbored 3 different \(rs \) copies among 10 resulting from up to 2 divergent nucleotides; \(A. veronii \) strain B563 harbored 5 different \(rs \) copies among 10 (3 divergent nucleotides), and \(A. salmonicida \) \textit{subsp. salmonicida} strain A449 showed the highest level of intragenomic heterogeneity with 5 distinct \(rs \) copies among 9 differing by up to 5 nucleotides. Using V3 region \(rs \) PCR-TTGE, intragenomic heterogeneity would have been observed in the \(A. salmonicida \) strain only, one of the 5 polymorphic nucleotides being located in the V3 region while overlooked in the other two strains because none of the divergent nucleotides were located in the targeted variable region. This was confirmed here by the one band PCR-TTGE pattern observed for the type strain of \(A. hydrophila \) \textit{subsp. hydrophila} purchased from another strain collection. Of note, \(A. salmonicida \) complete genome sequence showed the existence of \(rs \) heterogeneity within the V3 region for strain A449 not detected in strains included in our study.

Diverse RFLP patterns have been observed for \(A. veronii \), \(A. media \) and \(A. encheleai \) in a study investigating 62 reference strains belonging to 13 species while other species included in the study were thought to harbor conserved \(16S \) rRNA genes [7]. Further studies suspected or demonstrated that \(16S \) rRNA gene intragenomic heterogeneity is encountered in a wider range of species within the genus (for a review, see [10]). We demonstrated that intragenomic \(rs \) heterogeneities occurred in half of the taxa included in our study and firstly described the occurrence of such microheterogeneities in the recently described taxa \(A. fluvialis \), \(A. sanarellii \), and \(A. taimonensis \). We also confirmed microheterogeneities previously suspected in some taxa such as \(A. tatau \) [10,35]. The rate of isolates displaying diversity of the \(rs \) V3 region copies varied according to the taxon considered. Among the 3 main clades, \(A. caviae \) displayed the highest number of isolates with V3 \(rs \) heterogeneity in agreement with a previous RFLP-based study [10]. However, we found that \(A. media \) was the species displaying the highest intraspecific \(rs \) V3 region diversity, each of the 6 strains displaying its own pattern, before \(A. aquariorum \), \(A. caviae \), \(A. hydrophila \) and then \(A. veronii \), thereby differing from the distribution observed by Alperi et al. after RFLP patterns analysis [10].

RIOM D and Aeromonad Evolution

\(rrn \) distribution across the chromosome, mainly stable within and different between species, reflected evolutionary relationships between aeromonads. Among the 3 main clades, patterns observed for \(A. hydrophila \) and \(A. caviae \) were more similar while those observed for \(A. veronii \) were more distinct and this reflected the relationships observed in the MLPA-based tree. In contrast, closely related species in the MLPA-based tree that may represent more recently emerging species, such as \(A. allosacharophila \) compared to \(A. veronii \) and \(A. aquariorum \) compared to \(A. hydrophila \), were indistinguishable using this approach. This suggested that comparison of \(16S-CooL \) fingerprints may reflect phylogenetic relationships in the genus \(Aeromonas \) and allow recognition and/or delineation of species complexes, from which novel lineages or novel species may emerge.

It is generally admitted that intragenomic \(16S \) rRNA gene heterogeneity is due to mutations after gene duplication or to horizontal gene transfer (HGT) [36,37], followed by a lack of intragenomic concerted evolution [38]. In the genus \(Streptomyces \), it has been suggested that copies differing by one or two nucleotides originate from mutations while copies differing by more than 5 nucleotide positions and found in another species more likely originate from HGT [39]. Besides, the occurrence of hybrid events in \(16S \) rRNA gene sequences was previously demonstrated in the form of gene crossovers [9,40].

All together, the observation of species-specific bands, the recovery of identical V3 region in different species and intragenomic heterogeneity of \(rs \) V3 copies differing by one to 13 nucleotides argue for the existence of the two modes of \(rs \) evolution in the genus \(Aeromonas \). As an example, bands 3 and 18 found in some \(A. caviae \) strains, each differing by one nucleotide from the band 4 found in all \(A. caviae \) strains, were probably generated by mutation while band 1 differing by 12 nucleotides from band 4 was probably transferred to \(A. caviae \) by HGT. We showed that \(rs \) V3 region HGT defined by more than 5 divergent nucleotidic positions, was detected in 23 PCR-TTGE patterns observed in 7 species (Table S1). Our results also supported a non-random occurrence of some particular heterogeneous patterns because unrelated isolates shared identical patterns made of a combination of bands generated by mutations or by mutations and HGT, e.g., patterns 3+4+18 and 1++18 in \(A. caviae \).

It is noteworthy that the concerted evolution as a mode of homogenization of copies in multigenic families is not efficient for most strains in aeromonads. Homogenization of copies is a spontaneous mechanism that occurs by homologous recombination among closely related sequences. The rate of isolates harboring divergent \(rs \) copies in aeromonads suggested a selective pressure that maintains differences in their sequences. This is also the case for the maintenance of a high number of \(rrn \) operons in spite of the associated metabolic cost [41].

RIOM D and Lifestyles in Aeromonads

Harboring about 10 \(rrn \) operons is highly atypical compared with bacteria in general and particularly with other well-known waterborne human opportunistic pathogens such as \textit{Pseudomonas aeruginosa} for which genome sequencing revealed 4 \(rrn \) operons only. According to the ribosomal RNA operon copy number database (rimdb, consulted on February the 16th, 2012) [42], 8 to 11 operons have been reported in only 46 out of 782 species (6%). Focusing on bacteria harboring 10 \(rrn \) operons other than \textit{Aeromonas} revealed 13 species distributed among 7 genera and clustering in few phylogenetic lineages, i.e., 6 families (\textit{Clostridiaceae}, \textit{Peptococcaceae}, \textit{Bacillaceae}, \textit{Aeromondaceae}, \textit{Psychromonadaceae} and \textit{Shewanellaceae}) belonging to 2 phyla (\textit{Firmicutes} and \textit{Proteobacteria}).
Within the class Gammaproteobacteria, *Aeromonas* spp. shared common characteristics with members of the genus *Shewanella* (0 to 11 *rrn* operons recorded among the 16 entries available in the rrndb for the genus), a genus found in highly diverse aquatic environments and considered as a human emerging opportunistic pathogen [43–45]. It has been proposed that sequence modifications among 16S rRNA gene copies provide a fine-tuning of the ribosome function to optimize bacterial niche fitness [46]. Similarly, it could be hypothesized that a high number of 16S rRNA gene copies and a high rate of isolates with intragenomic heterogeneity could be features involved in maintaining functional diversity of *Aeromonas* spp. in environment, animal and human microbiota.

Here, *A. caviae* displayed outstanding characteristics, i.e., the highest number of isolates with V3 *rrs* heterogeneity and the highest diversity in the heterogeneity types. These features significantly different from those observed in other species may be related to a particular lifestyle and an ongoing process of adaptation of this species to a particular niche that could be represented, as previously hypothesized, by the gut [13]. It was also noteworthy that among the 71 *A. veronii* studied strains, the 22 *A. veronii* isolates displaying *rrs* heterogeneity were all recovered from human samples except for two strains recovered from animal samples while all strains isolated from environmental specimens (*n* = 20) had identical V3 *rrs* region copies. More generally, we showed that isolates recovered from human samples more frequently displayed V3 *rrs* heterogeneity than isolates recovered from samples from non-human origin according to previous results of Alperi et al. [10].

RiMOD data confirmed and completed the vision of aeromonads as a bacterial population structured in species complexes, an organization associated with bacteria displaying sympatric lifestyles, i.e., a high level of horizontal gene transfers, a large pan-genome, a large genome, and a significant number of ribosomal operons, and a behavior of generalist opportunistic pathogen [21].

Taxonomic Considerations

Taxonomy of the genus *Aeromonas* has greatly evolved over the past decades following advances in methods applied to infer relationships between members of the genus. The bulk 16S rDNA sequencing was shown to be insufficiently discriminatory between tightly related species [1–4]. The use of 16S rDNA gene PCR-RFLP has then been proposed for species identification [5,6]. However, considering the endonucleases used in 16S rRNA gene PCR-RFLP, the intragenomic divergent positions identified in this study within the V3 region modified the number of *Alu* restriction sites in 16% of the strains (32 strains belonging to 7 taxa and displaying 15 different TTGE patterns), as well as the number of *Nar* restriction sites in the type strain of *A. encheleia* (data not shown), thereby leading to atypical restriction patterns and possible misidentification of the strains as also previously underlined [7–10]. Thus, the high intragenomic heterogeneity of the different *rrs* sequences and the intraspecific *rrs* variability, sometimes exceeding the interspecific variability, blurred the 16S rRNA-based studies that were progressively replaced or implemented by single housekeeping gene analysis and further by multilocus sequence analysis [2–4,11–13]. However, some conflicting results may arise from the use of different approaches. For example, *A. alliosaccharophila* existence is still controversial despite DNA-DNA hybridization values to *A. veronii* strain CECT 4247T (= ATCC 35624T) have been reevaluated to 78–82% by Huys et al. [30]. Based on single housekeeping gene (gyrB, cpe60, tsf or zihA)-based studies, the taxon occupied a closely related but robust external position to the *A. veronii* clade supporting the separation of the two taxa [13,47,48]. Similar results have been observed with MLPA studies [11,13]. Recently, a hypothesis that could support at least in part some controversial taxonomic data was proposed based on the evolution mode of *Aeromonas* spp. Some taxa subjected to controversy may correspond to lineages emerging from species complexes and for which signs of starting speciation are detected or not according to the characteristic investigated and to the method used [13,21,49]. RiMOD study supported this hypothesis for *A. alliosaccharophila*.

Here, we showed that *rrs* heterogeneity patterns might inform on taxonomic relationships between species because some PCR–TTGE bands were specific of some species despite HGT. On the other hand, large-scale chromosome structure has previously been described as a sensitive indicator of phylogenetic relationships between bacteria [50–53] but it received little attention in the polyphyletic strategy used for taxonomic studies in the genus *Aeromonas*. In this study, *rrn* operon number at 8 as well as *rrn* operon PFGE fingerprints were valuable for taxonomic purpose, allowing taxonomic resolution of species complexes. To our knowledge, only the study by Umelo & Trust on *A. salmonicida* previously showed that I-Ceu digestion fingerprints could help identify related strains and thus help to better classify and subdivide the atypical strains [16]. Combining both approaches for studying RiMOD supported current taxonomy including recent taxonomic changes in the genus *Aeromonas* and was especially useful here to identify heterogeneity within MLPA clades such as *A. salmonicida* and *A. media* clades. The latter species warrant further investigations to search whether they are robust groups including atypical strains or groups submitted to a tempo of evolution associated to a high rate of speciation or a strong selective pressure generating diversity within the group, or polyphyletic taxa. We therefore assumed that RiMOD approach proposed herein could be useful to complement the polyphyletic strategy used for isolate characterization within the genus *Aeromonas*.

The 16S *rrn* gene is often criticized because this marker provides a limited point of view on the bacterial evolution. However, 16S rRNA-based hierarchical system is considered to be the backbone of prokaryote taxonomy that was globally confirmed by phylogenomics. The main pitfalls of 16S rRNA-based phylogeny is the low amount of genetic information explored regarding genome size and the multigenic organisation that lead to blurred information when bulk DNA is sequenced. However, multigene family is an exception in bacterial genome and therefore the maintaining of several heterogeneous 16S *rrn* loci as observed in aeromonads is probably not trivial. In this study, we showed that 16S *rrn* multigenic organisation should no longer be considered as a pitfall that confuse relationships among aeromonads but rather be exploited in all the dimensions of its diversity, which probably reflects major mechanisms involved in the generalist pathogen lifestyle [21], as previously observed for other *Aeromonas* genetic and genomic traits [54].

Supporting Information

Figure S1 TTGE profiles of amplified 16S rRNA gene V3 region for *Aeromonas* spp. strains. A) Lanes 1–12, *A. veronii* isolates ADV103, BVH61, ADV109, ADV119, ADV125, ADV127, ADV129, ADV130, ADV131, ADV133, ADV135, and ADV137b; lane 13, *A. bivalvium* CECT 7113T. Profiles are indicated at the bottom of the figure. Arrows indicated the position of the four TTGE bands constituting the *A. molluscorum* type strain pattern. B) 13 *Aeromonas* spp. type and reference strains. Names of strains are indicated at the top of the figure. Each TTGE band number is noted on the band, L, ladder with 1+4+15+30 profile. (TIF)
Figure S2: PFGE migration of genomic DNA digested by I-Cell for Aeromonas spp. strains. A) 37 type and reference strains of Aeromonas spp., and A. shermani DSM 17443T. Names of strains and names of main clades are indicated on the top and bottom of the figure, respectively. Lambda ladder was used as molecular size marker (lanes M). Sizes are indicated in kilobases (kb). B) Lane 1, A. hydrophila subsp. dhakensis CIP 102750 (now A. aquatatorium); lane 2, A. hydrophila subsp. hydrophila CECT 8391T; lane 3, A. hydrophila subsp. ranae CIP 102795; lane 4, A. aquatatorium CECT 7293T; lane 5, A. caviae strain ADV118; lane 6, A. caviae strain ADV121; lane 7, A. caviae CECT 8387T; lane 8, A. media CECT 4422T; lane 9, A. allocaecatorchilum CECT 41990T; lane 10, A. cucicola CIP 107765T (now A. veronii); lane 11, A. ichthiosoma CECT 4486T (now A. veronii); lane 12, A. veronii biovar sobria CECT 4247T; lane 13, A. veronii biovar sobria LMG 13067; lane 14, A. media strain BVH40; lane 15, A. media strain AK202; lane 16, A. media strain AK211. Lambda ladder was used as molecular size marker (lanes M). Sizes are indicated in kilobases (kb).

(TIF)

Table S1: PCR-TTGE pattern, rrs V3 region heterogeneity and rrs operon number for the 195 Aeromonas strains of the study according to multilocus phylogenetic clade determined in Roger et al. [13].

(OCX)
Ribosomal Multi-Operon Diversity in *Aeromonas* ssp.

15. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rRNA operons. J Bacteriol 186: 2629–2635.

16. Umelo E, Trust TJ (1998) Physical map of the chromosome of *Aeromonas salmonicida* and genomic comparisons between *Aeromonas* strains. Microbiol 144: 2141–2149.

17. Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, et al. (2006) Genome sequence of *Aeromonas hydrophila* ATCC 7966T: jack of all trades. J Bacteriol 188: 9272–9292.

18. Reith ME, Singh RK, Curtis B, Boyd JM, Bourvich A, et al. (2008) The genome of *Aeromonas salmonicida* subs. *salmonicida* A449: insights into the evolution of a fish pathogen. BMC Genomics 9: 427.

19. Li Y, Liu Y, Zhou Z, Huang H, Ren Y, et al. (2011) Complete genome sequence of *Aeromonas veronii* strain B565. J Bacteriol 193: 3309–3309.

20. Tacao M, Moura A, Alves A, Henriques I, Saavedra MJ, et al. (2005) Evaluation of 16S rDNA- and gyrB-DGGE for typing members of the genus *Aeromonas*. FEMS Microbiol Lett 246: 11–18.

21. Georgiadis K, Rasool D (2010) Defining pathogenic bacterial species in the genomic era. Front Microbiol 1: 131.

22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.

23. Miranda G, Kelly C, Solorzano F, Leanos B, Coria R, et al. (1996) Use of pulsed-field gel electrophoresis typing to study an outbreak of infection due to *Serratia marcescens* in a neonatal intensive care unit. J Clin Microbiol 34: 3138–3141.

24. Michon AL, Aujoulat F, Roudiere L, Soulier O, Zorgniotti S., et al. (2010) The gyrase operon copy number of *Aeromonas veronii* ATCC 7966T: jack of all trades. J Bacteriol 188: 8272–8290.

25. Dodd HN, Pemberton JM (1998) Construction of a physical and preliminary genetic map of *Aeromonas diversa* JMP636. Microbiology 144: 3087–3096.

26. Martínez-Murcia AJ, Saavedra MJ, Mota VR, Maier T, Stackebrandt E, et al. (2007) The nonrandom microheterogeneity of 16S rRNA genes in *Vibrio splendidus* may reflect adaptation to versatile lifestyles. FEMS Microbiol Lett 294: 207–215.

27. Aujoulat F, Roger F, Bourdier A, Lothlé A, Lamy G, et al. (2012) From environment to man: genome evolution and adaptation of human opportunistic bacterial pathogens. Genes 3: 191–232.

28. Santoyo G, Romero D (2005) Gene conversion and concerted evolution in *Aeromonas* ssp. sp. nov., isolated from aquaria of ornamental fish. Int Microbiol 10: 61–64.

29. Marchandin H, Jumas-Bilak E, Gay B, Teyssier C, Jean-Pierre H, et al. (2003) *Aeromonas* sp. strain A449: insights into the evolution of a fish pathogen. BMC Genomics 12: 237.

30. Dikow RB (2011) Genome-level homology and phylogeny of *Shewanella*. Int J Syst Evol Microbiol 61: 1237.

31. Holt HM, Gahrn-Hansen B, Braun B (2005) *Shewanella alga* and *S. putrefaciens*: clinical and microbiological characteristics. Clin Microbiol Infect 11: 347–352.

32. Holt HM, Gahrn-Hansen B, Braun B (2005) *Shewanella putrefaciens*: clinical and microbiological characteristics. Clin Microbiol Infect 11: 347–352.

33. Lamy B, Kodjo A, colBVH study group, Laurent F (2009) Prospective study to determine the incidence of infection due to *Aeromonas sharmana* spring. Int J Syst Evol Microbiol 59: 1343–1347.

34. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rRNA operons. J Bacteriol 186: 2629–2635.

35. Roca I, Josep E, Aloy P, Pons J, Castells M, et al. (2006) Phylogenetic analysis of the genus *Aeromonas* based on two housekeeping genes. Int J Syst Evol Microbiol 56: 1511–1515.

36. Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete *Thermomonospora aromae* and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol 181: 5201–5209.

37. van Berkum P, Terweeke Z, Paulin L, Suomalainen S, Lindstrom K, et al. (2003) Discordant phylogenies within the *rrn* loci of *Rhizobium*. J Bacteriol 185: 2901–2908.

38. Santoyo G, Romero D (2005) Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29: 169–183.

39. Ueda K, Seki T, Kondo T, Yoshida T, Katoaka M (1999) Two distinct mechanisms cause heterogeneity of 16S rDNA. J Bacteriol 181: 78–82.

40. Sneath PH (1993) Evidence from *Aeromonas* for genetic crossing-over in ribosomal sequences. Int J Syst Bacteriol 43: 626–629.

41. Klapprich JA, Dunbar JM, Schmidt TM (2008) DNA/DNA hybridization number reflects ecological strategies of bacteria. Appl Environ Microbiol 74: 1329–1333.

42. Saavedra MJ, Perea V, Foutes MC, Martins C, Martinez-Murcia A (2007) Phylogenetic identification of *Aeromonas* strains isolated from carcasses of pig as new members of the species *Aeromonas aquariorum*. Antonie Van Leeuwenhoek 91: 159–167.

43. Lamy B, Kodjo A, colBVH study group, Laurent F (2009) Prospective study to determine the incidence of infection due to *Aeromonas sharmana* spring. Int J Syst Evol Microbiol 59: 1343–1347.

44. Dikow RB (2011) Genome-level homology and phylogeny of *Shewanella*. Int J Syst Evol Microbiol 61: 1237.

45. Sharma KK, Kalawat U (2010) Emerging infections: *Shewanella* - a series of five cases. J Lab Physicians 2: 61–65.

46. Jensen S, Frost P, Torvick VL (2009) The nonrandom microheterogeneity of 16S rRNA genes in *Vibrio splendidus* may reflect adaptation to versatile lifestyles. FEMS Microbiol Lett 294: 207–215.

47. Saavedra MJ, Perea V, Foutes MC, Martins C, Martinez-Murcia A (2007) Phylogenetic identification of *Aeromonas* strains isolated from carcasses of pig as new members of the species *Aeromonas aquariorum*. Antonie Van Leeuwenhoek 91: 159–167.

48. Lamy B, Laurent F, Kodjo A (2010) Validation of a partial *rrsB* gene sequence as a phylogenetic identification of aeromonads isolated from environmental sources. Can J Microbiol 56: 217–228.

49. Silver AC, Williams D, Faucher J, Horneman AJ, Gogarten JP, et al. (2011) Complex evolutionary history of the *Aeromonas* genus revealed by host interaction and DNA sequence data. PLoS One 6: e16751.

50. Li SL, Schryvers AB, Sanderson KE, Johnston RN (1999) Bacterial phylogenetic clusters revealed by genome sequence. J Bacteriol 181: 6747–6755.

51. Marchandin H, Jumas-Bilak E, Gay B, Teyssier C, Jean-Pierre H, et al. (2003) Phylogenetic analysis of some *Shewanella* subbranch members isolated from human clinical specimens: description of *Mycobacterium micacenum* sp. nov. Int J Syst Evol Microbiol 53: 547–553.

52. Roca I, Josep E, Aloy P, Pons J, Castells M, et al. (2006) Phylogenetic analysis of the genus *Aeromonas* based on two housekeeping genes. Int J Syst Evol Microbiol 56: 1905–1909.

53. Marchandin H, Jumas-Bilak E, Jean-Pierre H, Carlier JP, Teyssier C, Bernad K, et al. (2005) Distinctive features of *Mycobacterium micacenum* sp. nov., isolated from human clinical samples. Int J Syst Evol Microbiol 55: 2471–2478.

54. Zheng JF, Liu GR, Liu SL (2006) Phylogenetically clustered of rhizobia by genome structure: application to unclassified Rhizobiaceae. J Environ Sci 18: 530–536.

55. Santoyo G, Romero D (2005) Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Rev 29: 169–183.