Implications for cosmology from ground-based Cosmic Microwave Background observations

Ke Wang and Qing-Guo Huang

Abstract. Cosmic Microwave Background (CMB) anisotropy encodes a lot of information about our Universe. In this paper we take the ground-based CMB observations (GCMB), including the South Pole Telescope (SPT), SPTpol and the Atacama Cosmology Telescope Polarimeter (ACTPol), as a new probe to the CMB anisotropy independent of two satellite observations, i.e. Wilkinson Microwave Anisotropy Probe (WMAP) and Planck. The combination of current GCMB data is consistent with WMAP and Planck. In the spatially flat ΛCDM model, the Hubble constant is $H_0 = 69.72 \pm 1.63 \text{ km/s/Mpc}$ at 68% confidence level (CL). Combining with baryon acoustic oscillation (BAO) and the Pantheon sample of Type Ia supernovae (SN), we find that $H_0 = 68.40 \pm 0.58 \text{ km/s/Mpc}$ (68% CL) in the spatially flat ΛCDM cosmology which has a tension with local measurement given by Riess et al. in 2019 at 3.7σ level, and $\Omega_k = -0.0013 \pm 0.0039$ and $N_{\text{eff}} = 2.90 \pm 0.41$ (68% CL) in the extended cosmological models.

Keywords: cosmological parameters from CMBR, CMBR experiments, CMBR polarisation, reionization

ArXiv ePrint: 1912.05491
1 Introduction

The free streaming of photons from the last scattering surface preserves the acoustic oscillations of the photon-baryon fluid in the early universe, which results in the temperature anisotropy of cosmic microwave background (CMB). Moreover, the quadrupole radiation with large and small wavenumber can be polarized at recombination and reionization epoch respectively, which leads to the polarization anisotropy of CMB. Therefore, measurements of the temperature and polarization anisotropy of CMB provide the information about the primordial perturbations, the ionization history, the composition and evolution of the Universe and its geometry.

So far, two CMB anisotropy final data releases from Wilkinson Microwave Anisotropy Probe (WMAP) satellite [1] and Planck satellite [2] respectively have confirmed the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Here the ground-based CMB observations (GCMB), including the South Pole Telescope (SPT) [3], SPTpol [4] and the Atacama Cosmology Telescope Polarimeter (ACTPol) [5], is taken as a new probe to the CMB anisotropy approximately independent of WMAP and Planck. More precisely, GCMB includes the CMB temperature anisotropy power spectrum (TT) over the multipole range 650 < ℓ < 3000 from the 2500-square-degree SPT-SZ survey [3], the E-mode polarization angular auto-power spectrum (EE) and temperature-E-mode cross-power spectrum (TE) of CMB over the multipole range 50 < ℓ < 8000 from the 500-square-degree SPTpol data [4], and the two-season temperature and polarization angular power spectra over the multipole range 350 < ℓ < 4125 measured by ACTPol from 548-square-degree of sky [5]. Since SPT-SZ survey covered a ∼ 2500 deg2 region of sky between declinations (dec) of −65° and −40° and right ascensions (RA) of 20 h and 7 h, SPTpol survey field is a 500 deg2 patch of sky spanning 4 h of RA, from 22 h to 2 h, and 15° of dec, from −65° and −50°, ACTPol covered 548 deg2 with coordinates −7.2° < dec < 4° and 23 h < RA < 3 h and BICEP2/Keck Array CMB polarization experiments [6] covered a ∼ 400 deg2 region of sky centered at RA 0 h and dec −57.5°, there is an overlap between SPT and BICEP2/Keck Array CMB polarization experiments in sky coverage. Therefore we exclude data from BICEP2/Keck Array, but there is almost no correlation between SPT-SZ (or SPTpol) and ACTPol for TT (or EE) spectrum in GCMB data.
Furthermore, in order to break the degeneracies among the cosmological parameters, we will also combine the baryon acoustic oscillation (BAO) data and the Pantheon sample of Type Ia supernovae (SN) data. The BAO data includes the SDSS DR7 Main Galaxy Sample (MGS) [7], the Six-degree-Filed Galaxy Survey (6dFGS) [8], the anisotropic BAO analysis from Baryon Oscillation Spectroscopic Survey (BOSS) data release 12 (DR12) [9], the correlations of quasar sample in extended Baryon Oscillation Spectroscopic Survey (eBOSS) data release 14 (DR14) [10] and the correlations of Lyα absorption in eBOSS DR14 [11]. The ‘Pantheon Sample’ consisting of a total of 1048 SN Ia ranging from $0.01 < z < 2.3$, which can be separated into five subsamples: PS1 with 279 SN Ia ($0.03 < z < 0.068$) [12], SDSS with 335 SN Ia ($0.04 < z < 0.42$) [13, 14], SNLS with 236 SN Ia ($0.08 < z < 1.06$) [15, 16], Low-z with 172 SN Ia ($z < 0.08$) [17–24] and HST with 26 SN Ia ($z > 1$) [25–29].

In this paper we will constrain the cosmological parameters from GCMB and combining with BAO and SN data by using the 2019 July version of the Markov Chain Monte Carlo (MCMC) package CosmoMC [30]. The following part is organized as follows. In section 2, the base ΛCDM model constraints from the combination of ground-based experiments are presented. In section 3, we consider two one-parameter extensions to the base ΛCDM model and then their parameter constraints are given. A brief summary is given in section 4.

2 Constraints on the base ΛCDM cosmology

First of all, we focus on the standard spatially-flat six-parameter ΛCDM cosmology which is also denoted by the base ΛCDM in literature. The six parameters in this model are

\[\{\Omega_b h^2, \Omega_c h^2, 100\theta_{\text{MC}}, \tau, \ln(10^{10} A_s), n_s\}, \]

where $\Omega_b h^2$ is the physical density of baryons today, $\Omega_c h^2$ is the physical density of cold dark matter today, θ_{MC} is the ratio between the sound horizon and the angular diameter distance at last scattering, τ is the Thomson scatter optical depth due to reionization, A_s is the amplitude of the power spectrum of primordial curvature perturbations at the pivot scale $k_0 = 0.05$ Mpc$^{-1}$, and n_s is the spectral index of the scalar fluctuations. Assuming flat priors for all of these parameters and setting the R-1 convergence value as 0.01, we adopt MCMC to work out the parameter estimations which are summarized in table 1. Here we also list the results from WMAP and Planck. The contour plots for the cosmological parameters in the base ΛCDM cosmology are given in figure 1.

Table 1. ΛCDM model parameter constraints at 68% CL from GCMB, WMAP and Planck.

Parameter	Priors for GCMB	GCMB	WMAP	Planck
$\Omega_b h^2$	[0.005, 0.1]	0.02250 ± 0.00038	0.02264 ± 0.00050	0.02236 ± 0.00015
$\Omega_c h^2$	[0.001, 0.99]	0.1148 ± 0.0039	0.1138 ± 0.0045	0.1202 ± 0.0014
$100\theta_{\text{MC}}$	[0.5, 10]	1.04193 ± 0.00075	1.04023 ± 0.00222	1.04090 ± 0.00031
$\ln(10^{10} A_s)$	[1.61, 3.91]	3.007$^{+0.024}_{-0.053}$	3.091$^{+0.005}_{-0.031}$	3.045$^{+0.016}_{-0.018}$
n_s	[0.8, 1.2]	0.9643 ± 0.0154	0.9734 ± 0.0124	0.9649 ± 0.0044
τ	[0.01, 0.8]	<0.0807 (95%)	0.0885 ± 0.0141	$0.0544^{+0.0070}_{-0.0081}$
From both table 1 and figure 1, roughly speaking, the GCMB is consistent with both WMAP and Planck, and the precision of current GCMB data is comparable with WMAP, but worse than Planck.

2.1 Hubble constant

The Hubble constant H_0 denotes the expansion rate of the Universe at present. In 2018, Planck final data release [2] implies

$$H_0 = 67.27 \pm 0.60 \text{ km/s/Mpc}$$ (2.2)

in spatially-flat ΛCDM cosmology at 68% confidence level (CL) which has an around 4.4σ tension with local measurement by Riess et al. in [31], namely

$$H_0 = 74.03 \pm 1.42 \text{ km/s/Mpc}$$ (2.3)
Figure 2. Constraints on H_0 as a derived parameter of the base-ΛCDM model, from WMAP (red), GCMB (blue), GCMB+BAO+SN (grey), and Planck (green). And the cyan bands correspond to the local Hubble constant measurement from [31].

at 68% CL. In [32], the authors found that $H_0 = 69.7 \pm 1.7 \text{ km/s/Mpc}$ from $\ell < 1000$ Planck data and $H_0 = 64.1 \pm 1.7 \text{ km/s/Mpc}$ from $\ell \geq 1000$ Planck data. It implies that the tension between Planck data and local measurement may mainly come from the Planck data at small scales. And the measurement on H_0 from large-scale data $\ell < 1000$ of Planck is nicely consistent with WMAP data, i.e. $H_0 = 70.7 \pm 2.2 \text{ km/s/Mpc}$. Here, GCMB including high-ℓ CMB data provides an independent CMB measurement on small scales, and we find

$$H_0 = (69.72 \pm 1.63) \text{ km/s/Mpc},$$

at 68% CL, which is consistent with both WMAP and $\ell < 1000$ Planck data. See figure 2.

Furthermore, in order to break the degeneracy among the cosmological parameters, we take some low-redshift data, such as BAO and SN, into account. Combining GCMB, BAO and SN data, we obtain a 0.9% constraint, i.e.

$$H_0 = (68.40 \pm 0.58) \text{ km/s/Mpc}$$

at 68% CL. See figure 3 in detail. It indicates that the determination of H_0 from GCMB+BAO+SN is consistent with Planck [2], WMAP+BAO [33] and low-redshift data only [34, 35]. Our result imply that there is a strong tension on the Hubble constant between all of CMB data and local measurement. In a word, this tension may come from some unknown systematic errors, or the new physics beyond the standard cosmology [36–50] etc.

2.2 Reionization optical depth

Since the average observed CMB power spectrum amplitude scales with the parameter combination $A_s e^{-2\tau}$, there is a strong degeneracy between A_s and τ. It is also the case for GCMB, as shown in figure 4. The reionization occurred at around $z \sim 10$, and then the
Figure 3. Comparison of the base ΛCDM model parameter constraints from WMAP (red), GCMB (blue), GCMB+BAO+SN (grey), and Planck (green).

Figure 4. Constraints on τ, $\ln(10^{10}A_s)$ and $10^9A_s e^{-2\tau}$ in the base ΛCDM model from GCMB.

large-scale anisotropies in polarization are sensitive to τ. Unfortunately, in GCMB data, the E-mode polarization spectrum of SPTpol over the multipole range $50 < \ell < 8000$ are not so useful to significantly constrain the optical depth τ. Therefore, GCMB itself cannot provide a good constraint on the optical depth, namely

$$\tau < 0.0807 \quad (2.6)$$

at 95% CL, which is still consistent with the optical depth constrained by the large-scale polarization measurements from final Planck release.

2.3 Anti-correlation between n_s and Ω_bh^2

From table 1 and figure 1, we see that GCMB prefers a red-tilted scalar power spectrum whose spectral index is

$$n_s = 0.9643 \pm 0.0154 \quad (2.7)$$

at 68% CL. It implies that the scalar power spectrum should be suppressed with ℓ increasing. Due to the most distinctive imprints on spectra on scales $\ell < 1000$ leaved by Ω_bh^2 which affect the relative heights of odd peaks and even peaks, there is a mild correlation between n_s and
Figure 5. Constraints on the extension to the base ΛCDM model with an additional parameter Ωₖ from GCMB (the color points and the dashed contours) and GCMB+BAO+SN (grey).

Ωₖh² for WMAP and Planck. However, there is a mild anti-correlation, instead of correlation, between nₛ and Ωₖh² for GCMB as shown in figure 1. The reason is that the spectrum of GCMB covers a much higher multipole range than that of WMAP and Planck, and a higher value of Ωₖh² enhances the spectra on very small scales by reducing the diffusion length (or increasing the damping wavenumber), which can be compensated by a redder-tilted scalar power spectrum.

3 Extensions to the base ΛCDM model

Even though the spatially-flat six-parameter standard cosmology is consistent with GCMB, it is still worthy exploring whether there are some clues for new physics in the data. Here we consider two one-parameter extensions to the base ΛCDM model, i.e. the spatial curvature energy density Ωₖ and the effective number of relativistic degree of freedom Nₑff.

3.1 Spatial curvature

How to explain the flatness of our Universe is one of the crucial motivations for inflationary cosmology [51–53] (see [54, 55] for some recent investigations). In general, inflationary models have a large number of e-folds, and hence our Universe should be very closed to spatially flat.

Due to the geometric degeneracy, CMB data only cannot constrain the spatial curvature Ωₖ and the Hubble constant H₀ well. From GCMB data only, we find a slight preference for an open Universe which drives the value of H₀ towards a larger value, namely

$$\Omega_k = 0.0218 \pm 0.0107,$$
$$H_0 = (85.12 \pm 8.83) \text{ km/s/Mpc},$$

at 68% CL. See figure 5 as well. On the other hand, it is well-known that the addition of probes of late time physics can break the geometric degeneracy effectively. Here we gives the constraints on Ωₖ and H₀ from GMCB+BAO+SN dataset as follows

$$\Omega_k = -0.0013 \pm 0.0039,$$
$$H_0 = (68.25 \pm 0.75) \text{ km/s/Mpc},$$
Figure 6. Constraints on the extension to the base ΛCDM model with an additional parameter N_{eff} from GCMB (the blue) and GCMB+BAO+SN (grey). The cyan bands show the local Hubble parameter measurement $H_0 = (74.03 \pm 1.42) \text{ km/s/Mpc}$ from [31].

at 68% CL. See the grey contours in figure 5. We see that a spatially-flat Universe is preferred at high statistical CL once the BAO and SN datasets are combined.

3.2 Effective number of relativistic species

The total energy density of radiation in the Universe is

$$\rho_{\text{rad}} = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{\frac{4}{3}} N_{\text{eff}} \right] \rho_\gamma, \quad (3.5)$$

which is a sum of the CMB photon energy density ρ_γ and the energy density of standard model (SM) neutrinos if $N_{\text{eff}} = 3.046$. Here the neutrino mass are considered to be small [56, 57]. If $N_{\text{eff}} > 3.046$, it may imply the existence of extra relativistic degree of freedom.

In this subsection, we explore the constraints on N_{eff} from GCMB. Our results are illustrated in figure 6. For $N_{\text{eff}} > 3.046$, GCMB data prefer higher values of H_0 because higher value of N_{eff} yields a smaller sound horizon at recombination and the Hubble constant need rise to keep the acoustic scale fixed at the observed value. More precisely, the constraints on N_{eff} and H_0 are

$$N_{\text{eff}} = 3.08 \pm 0.49, \quad (3.6)$$
$$H_0 = (69.95 \pm 3.80) \text{ km/s/Mpc}, \quad (3.7)$$

at 68% CL from GCMB data, and

$$N_{\text{eff}} = 2.90 \pm 0.41, \quad (3.8)$$
$$H_0 = (67.60 \pm 2.26) \text{ km/s/Mpc}, \quad (3.9)$$

at 68% CL by combing GCMB data with BAO and SN data. Our results imply that more (or less) relativistic degree of freedom may relax (or aggravate) the tension on the Hubble constant between the local measurement and the global fitting from CMB.
4 Summary

In this paper, we constrain the cosmological parameters in the six-parameter spatially-flat ΛCDM cosmology from the current GCMB data. Compared to the results from WMAP and Planck, we find that these three CMB observations are consistent with each other. In particular, CMB datasets systematically prefer a lower value of the Hubble constant in the base ΛCDM cosmology compared to the local measurement [31]. Moreover, due to the lack of polarization anisotropy data on the very large scales, there is a strong degeneracy between A_s and τ for GCMB, and due to the complete “damping tail” of CMB ranging from $1000 < \ell < 3000$, there is an anti-correlation between n_s and $\Omega_b h^2$ for GCMB. In addition, we did not find any evidence for the physics beyond the base ΛCDM cosmology.

Acknowledgments

We acknowledge the use of HPC Cluster of Tianhe II in National Supercomputing Center in Guangzhou and HPC Cluster of ITP-CAS. This work is supported by grants from NSFC (grant No. 11975019, 11690021, 11991053, 11947302), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB23000000, XDA15020701), and Key Research Program of Frontier Sciences, CAS, Grant NO. ZDBS-LY-7009.

References

[1] WMAP collaboration, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: final maps and results, *Astrophys. J. Suppl.* 208 (2013) 20 [arXiv:1212.5225] [SPIRE].

[2] PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [SPIRE].

[3] K.T. Story et al., A Measurement of the Cosmic Microwave Background damping tail from the 2500-square-degree SPT-SZ survey, *Astrophys. J.* 779 (2013) 86 [arXiv:1210.7231] [SPIRE].

[4] SPT collaboration, Measurements of the temperature and E-mode polarization of the CMB from 500 square degrees of SPTpol data, *Astrophys. J.* 852 (2018) 97 [arXiv:1707.09353] [SPIRE].

[5] ACTPOL collaboration, The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters, *JCAP* 06 (2017) 031 [arXiv:1610.02360] [SPIRE].

[6] BICEP2, Keck Array collaboration, BICEP2/Keck Array x: constraints on primordial gravitational waves using Planck, WMAP and new BICEP2/Keck observations through the 2015 season, *Phys. Rev. Lett.* 121 (2018) 221301 [arXiv:1810.05216] [SPIRE].

[7] A.J. Ross et al., The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at $z = 0.15$, *Mon. Not. Roy. Astron. Soc.* 449 (2015) 835 [arXiv:1409.3242] [SPIRE].

[8] F. Beutler et al., The 6dF galaxy survey: baryon acoustic oscillations and the local Hubble constant, *Mon. Not. Roy. Astron. Soc.* 416 (2011) 3017 [arXiv:1106.3366] [SPIRE].

[9] BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, *Mon. Not. Roy. Astron. Soc.* 470 (2017) 2617 [arXiv:1607.03155] [SPIRE].

[10] J. Hou et al., The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic clustering analysis in configuration-space, *Mon. Not. Roy. Astron. Soc.* 480 (2018) 2521 [arXiv:1801.02656] [SPIRE].
[11] V. de Sainte Agathe et al., Baryon acoustic oscillations at \(z = 2.34 \) from the correlations of \(\text{Ly} \alpha \) absorption in eBOSS DR14, \textit{Astron. Astrophys.} \textbf{629} (2019) A85 [arXiv:1904.03400] [SPIRE].

[12] D.M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed sne ia from Pan-STARRS1 and cosmological constraints from the Combined Pantheon Sample, \textit{Astrophys. J.} \textbf{859} (2018) 101 [arXiv:1710.00845] [SPIRE].

[13] J.A.Frieman et al., The Sloan Digital Sky Survey-II supernova survey: technical summary, \textit{Astron. J.} \textbf{135} (2008) 338 [arXiv:0708.2749] [SPIRE].

[14] R. Kessler et al., First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: hubble diagram and cosmological parameters, \textit{Astrophys. J. Suppl.} \textbf{185} (2009) 32 [arXiv:0908.4274] [SPIRE].

[15] SNLS collaboration, Supernova constraints and systematic uncertainties from the first 3 years of the Supernova Legacy Survey, \textit{Astrophys. J. Suppl.} \textbf{192} (2011) 1 [arXiv:1104.1443] [SPIRE].

[16] SNLS collaboration, SNLS3: constraints on dark energy combining the supernova legacy survey three year data with other probes, \textit{Astrophys. J.} \textbf{737} (2011) 102 [arXiv:1104.1444] [SPIRE].

[17] A.G. Riess et al., \(BVRI \) light curves for 22 type-IA supernovae, \textit{Astron. J.} \textbf{117} (1999) 707 [astro-ph/9810291] [SPIRE].

[18] S. Jha et al., Ubri light curves of 44 type-IA supernovae, \textit{Astron. J.} \textbf{131} (2006) 527 [astro-ph/0509234] [SPIRE].

[19] M. Hicken et al., Improved dark energy constraints from \(\sim 100 \) New CfA supernova type Ia light curves, \textit{Astrophys. J.} \textbf{700} (2009) 1097 [arXiv:0901.4804] [SPIRE].

[20] M. Hicken et al., CfA3: 185 Type Ia supernova light curves from the CfA, \textit{Astrophys. J.} \textbf{700} (2009) 331 [arXiv:0901.4787] [SPIRE].

[21] M. Hicken et al., CfA4: light curves for 94 type Ia supernovae, \textit{Astrophys. J. Suppl.} \textbf{200} (2012) 12 [arXiv:1205.4493] [SPIRE].

[22] C. Contreras et al., The Carnegie Supernova Project: first photometry data release of low-redshift type Ia supernovae, \textit{Astron. J.} \textbf{139} (2010) 519 [arXiv:0910.3330] [SPIRE].

[23] G. Folatelli et al., The Carnegie Supernova Project: analysis of the first sample of low-redshift type-Ia supernovae, \textit{Astron. J.} \textbf{139} (2010) 120 [arXiv:0910.3317] [SPIRE].

[24] M.D. Stritzinger et al., The Carnegie Supernova Project: second photometry data release of low-redshift type Ia supernovae, \textit{Astron. J.} \textbf{142} (2011) 156 [arXiv:1108.3108] [SPIRE].

[25] SUPERNOVA COSMOLOGY Project collaboration, The Hubble space telescope cluster supernova survey: V. Improving the dark energy constraints above \(z > 1 \) and building an early-type-hosted supernova sample, \textit{Astrophys. J.} \textbf{746} (2012) 85 [arXiv:1105.3470] [SPIRE].

[26] A.G. Riess et al., New Hubble space telescope discoveries of type Ia supernovae at \(z \geq 1 \): narrowing constraints on the early behavior of dark energy, \textit{Astrophys. J.} \textbf{659} (2007) 98 [astro-ph/0611572] [SPIRE].

[27] J.A. Frieman et al., The Sloan Digital Sky Survey-II supernova survey: technical summary, \textit{Astron. J.} \textbf{135} (2008) 338 [arXiv:0708.2749] [SPIRE].

[28] O. Graur et al., Type-Ia supernova rates to redshift 2.4 from CLASH: the cluster lensing and supernova survey with Hubble, \textit{Astrophys. J.} \textbf{783} (2014) 28 [arXiv:1310.3495] [SPIRE].

[29] A.G. Riess et al., Type Ia supernova distances at redshift > 1.5 from the Hubble Space Telescope multi-cycle treasury programs: the early expansion rate, \textit{Astrophys. J.} \textbf{853} (2018) 126 [arXiv:1710.00844] [SPIRE].
Quantifying discordance in the 2015 Planck CMB spectrum, Astrophys. J. 818 (2016) 132 [arXiv:1611.00055] [SPIRE].

Constraints on Large Magellanic Cloud Cepheid standards provide a 1% foundation for the Hubble constant and stronger evidence for physics beyond ΛCDM, Astrophys. J. 876 (2019) 85 [arXiv:1903.07603] [SPIRE].

G.E. Addison et al., Quantifying discordance in the 2015 Planck CMB spectrum, Astrophys. J. 818 (2016) 132 [arXiv:1611.00055] [SPIRE].

X. Zhang and Q.-G. Huang, Constraints on H_0 from WMAP and BAO measurements, Commun. Theor. Phys. 71 (2019) 826 [arXiv:1812.01877] [SPIRE].

X. Zhang, Q.-G. Huang and X.-D. Li, Tight H_0 constraint from galaxy redshift surveys: combining baryon acoustic oscillation measurements and Alcock-Paczynski test, Mon. Not. Roy. Astron. Soc. 483 (2019) 1655 [arXiv:1801.07403] [SPIRE].

X. Zhang and Q.-G. Huang, Measuring H_0 from low-z datasets, Sci. China Phys. Mech. Astron. 63 (2020) 290402 [arXiv:1911.09439] [SPIRE].

Q.-G. Huang and K. Wang, How the dark energy can reconcile Planck with local determination of the Hubble constant, Eur. Phys. J. C 76 (2016) 506 [arXiv:1606.05965] [SPIRE].

M. Liu et al., Can non-standard recombination resolve the Hubble tension?, Sci. China Phys. Mech. Astron. 63 (2020) 290405 [arXiv:1912.00190] [SPIRE].

S. Kumar and R.C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, Phys. Rev. D 94 (2016) 123511 [arXiv:1608.02454] [SPIRE].

S. Vagnozzi et al., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503 [arXiv:1701.08172] [SPIRE].

W. Lin and M. Ishak, Cosmological discordances II: Hubble constant, Planck and large-scale-structure data sets, Phys. Rev. D 96 (2017) 083532 [arXiv:1708.09813] [SPIRE].

E. Di Valentino, E.V. Linder and A. Melchiorri, Vacuum phase transition solves the H_0 tension, Phys. Rev. D 97 (2018) 043528 [arXiv:1710.02153] [SPIRE].

R.-Y. Guo, L. Zhang, J.-F. Zhang and X. Zhang, Constraints on brane inflation after Planck 2015: impacts of the latest local measurement of the Hubble constant, Sci. China Phys. Mech. Astron. 62 (2019) 30411 [arXiv:1801.02187] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

S. Vagnozzi et al., Constraints on the sum of the neutrino masses in dynamical dark energy models with $w(z) \geq -1$ are tighter than those obtained in ΛCDM, Phys. Rev. D 98 (2018) 083501 [arXiv:1801.08553] [SPIRE].

E. Di Valentino, D.E. Holz, A. Melchiorri and F. Renzi, The cosmological impact of future constraints on H_0 from gravitational-wave standard sirens, Phys. Rev. D 98 (2018) 083523 [arXiv:1806.07463] [SPIRE].

E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Interacting dark energy after the latest Planck, DES and H_0 measurements: an excellent solution to the H_0 and cosmic shear tensions, arXiv:1908.04281 [SPIRE].

M. Escudero and S.J. Witte, A CMB search for the neutrino mass mechanism and its relation to the H_0 tension, Eur. Phys. J. C 80 (2020) 294 [arXiv:1909.04044] [SPIRE].
[50] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Nonminimal dark sector physics and cosmological tensions, *Phys. Rev. D* **101** (2020) 063502 [arXiv:1910.09853] [INSPIRE].

[51] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, *Adv. Ser. Astrophys. Cosmol.* **3** (1987) 139 [INSPIRE].

[52] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, *JETP Lett.* **30** (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. **30** (1979) 719].

[53] A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, *Adv. Ser. Astrophys. Cosmol.* **3** (1987) 149 [INSPIRE].

[54] J. Li and Q.-G. Huang, Inflation model selection revisited, *Sci. China Phys. Mech. Astron.* **62** (2019) 120412 [arXiv:1906.01336] [INSPIRE].

[55] J. Li, Z.-C. Chen and Q.-G. Huang, Measuring the tilt of primordial gravitational-wave power spectrum from observations, *Sci. China Phys. Mech. Astron.* **62** (2019) 110421 [arXiv:1907.09794] [INSPIRE].

[56] Q.-G. Huang, K. Wang and S. Wang, Constraints on the neutrino mass and mass hierarchy from cosmological observations, *Eur. Phys. J. C* **76** (2016) 480 [arXiv:1512.05899] [INSPIRE].

[57] L. Xu and Q.-G. Huang, Detecting the neutrinos mass hierarchy from cosmological data, *Sci. China Phys. Mech. Astron.* **61** (2018) 039521 [arXiv:1611.05178] [INSPIRE].