CLASSICAL LIMIT OF QUANTUM BORCHERDS-BOZEC ALGEBRAS

ZHAOBING FAN, SEOK-JIN KANG, YOUNG ROCK KIM*, AND BOLUN TONG

Abstract. Let g be a Borcherds-Bozec algebra, $U(g)$ be its universal enveloping algebra and $U_q(g)$ be the corresponding quantum Borcherds-Bozec algebra. We show that the classical limit of $U_q(g)$ is isomorphic to $U(g)$ as Hopf algebras. Thus $U_q(g)$ can be regarded as a quantum deformation of $U(g)$. We also give explicit formulas for the commutation relations among the generators of $U_q(g)$.

Introduction

The quantum Borcherds-Bozec algebras were introduced by T. Bozec in his research of perverse sheaves theory for quivers with loops [1, 2, 3]. They can be treated as a further generalization of quantum generalized Kac-Moody algebras. Even though they use the same Borcherds-Cartan data, the construction of the quantum groups are quite different.

More precisely, the quantum Borcherds-Bozec algebras have more generators and defining relations than quantum generalized Kac-Moody algebras. For each simple root α_i with imaginary index, there are infinitely many generators $e_{il}, f_{il}(l \in \mathbb{Z}_{>0})$ whose degrees are l multiples of α_i and $-\alpha_i$. Bozec deals with these generators by treating them as similar positions as divided powers $\theta_i^{(l)}$ in Lusztig algebras.

Bozec gave the general definition of Lusztig sheaves for arbitrary quivers (possibly with multiple loops) and constructed the canonical basis for the positive half of a quantum Borcherds-Bozec algebra in terms of simple perverse sheaves (cf. [15]). In [2], he studied the crystal basis theory for quantum Borcherds-Bozec algebras. He defined the notion of Kashiwara operators and abstract crystals, which provides an important framework for Kashiwara’s grand-loop argument (cf. [11]). He also gave a geometric construction of the crystal for the negative half of a quantum Borcherds-Bozec algebra based on the theory of Lusztig perverse sheaves associated to quivers with loops (cf. [12, 9]), and gave a geometric

2010 Mathematics Subject Classification. 17B37, 17B67, 16G20.

Key words and phrases. quantum Borcherds-Bozec algebra, classical limit, commutation relation Borcherds-Bozec algebra.

* Corresponding author. All authors have equal contributions.
realization of generalized crystals for the integrable highest weight representations via Nakajima’s quiver varieties (cf. [16, 10]).

For a Kac-Moody algebra \(g \), G. Lusztig showed that the integrable highest weight module \(L \) over \(U(\mathfrak{g}) \) can be deformed to those integrable highest weight module \(L \) over \(U_q(\mathfrak{g}) \) in such a way that the dimensions of weight spaces are invariant under the deformation (cf. [14, 6]). Let \(\mathcal{A} = \mathbb{Q}[q, q^{-1}] \) be the Laurent polynomial rings, Lusztig constructed a \(\mathcal{A} \)-subalgebra \(U_\mathcal{A} \) of \(U_q(\mathfrak{g}) \) generated by divided powers and \(k_i^\pm \), and defined a \(U_\mathcal{A} \)-submodule \(L_\mathcal{A} \) of \(L \). He proved that \(F_0 \otimes_{\mathcal{A}} L_\mathcal{A} \) is isomorphic to \(L \) as \(U(\mathfrak{g}) \)-modules, where \(F_0 = \mathcal{A} / I \) and \(I \) is the ideal of \(\mathcal{A} \) generated by \((q - 1) \).

In [5, Chapter 3], J. Hong and S.-J. Kang modified Lusztig’s approach to show that the \(U_q(\mathfrak{g}) \) is a deformation of \(U(\mathfrak{g}) \) as a Hopf algebra and show that a highest weight \(U(\mathfrak{g}) \)-module admits a deformation to a highest weight \(U_q(\mathfrak{g}) \)-module. They used the \(\mathbb{A}_1 \)-form of \(U_q(\mathfrak{g}) \) and highest weight \(U_q(\mathfrak{g}) \)-module, where \(\mathbb{A}_1 \) is the localization of \(\mathbb{Q}[q] \) at the ideal \((q - 1)\). We can see that \(\mathcal{A} = \mathbb{Q}[q, q^{-1}] \subseteq \mathbb{A}_1 \).

In this paper, we study the classical limit theory of quantum Borcherds-Bozec algebras. We first review some basic notions of Borcherds-Bozec algebras and quantum Borcherds-Bozec algebras. For their representation theory, the readers may refer to [7, 8]. As we show in Appendix, the commutation relations between \(e_{il} \) and \(f_{jk} \) are rather complicated. For the aim of classical limit, we need another set of generators. Thanks to Bozec, there exists an alternative set of primitive generators in \(U_q(\mathfrak{g}) \), which we denote by \(s_{il} \) and \(t_{il} \). They satisfy a simpler set of commutation relations

\[s_{il} t_{jk} - t_{jk} s_{il} = \delta_{ij} \delta_{lk} \tau_{il} (K_i^l - K_i^{-l}) \]

for some constants \(\tau_{il} \in \mathbb{Q}(q) \). Using Lusztig’s approach, we prove that these generators also satisfy the Serre-type relations (cf. [13, Chapter 1]).

In Section 3, we define the \(\mathbb{A}_1 \)-form of quantum Borcherds-Bozec algebras and their highest weight representations. We show that the triangular decomposition of \(U_q(\mathfrak{g}) \) carries over to \(\mathbb{A}_1 \)-form. In Section 4, we study the process of taking the limit \(q \to 1 \). Let \(U_1 = \mathbb{Q} \otimes_{\mathbb{A}_1} U_{\mathbb{A}_1} \) be a \(\mathbb{Q} \)-algebra, where \(U_{\mathbb{A}_1} \) is the \(\mathbb{A}_1 \)-form of \(U_q(\mathfrak{g}) \). We prove that the classical limit \(U_1 \) of \(U_q(\mathfrak{g}) \) is isomorphic to the universal enveloping algebra \(U(\mathfrak{g}) \) as Hopf algebras, and when we take the classical limit, the Verma module and highest weight modules of \(U_q(\mathfrak{g}) \) tend to those Verma module and highest weight modules of \(U(\mathfrak{g}) \), respectively. Finally, we give the concrete commutation relations between the generators \(e_{il} \) and \(f_{jk} \) of \(U_q(\mathfrak{g}) \) in Appendix, they have an interesting combinatorial structure.

Acknowledgements. Z. Fan is partially supported by the NSF of China grant 11671108 and the Fundamental Research Funds for the central universities GK2110260131. S.-J. Kang was supported by Hankuk University of Foreign Studies Research Fund. Y. R. Kim
was supported by the Basic Science Research Program of the NRF (Korea) under grant No. 2015R1D1A1A01059643.

1. Borcherds-Bozec algebras

Let I be an index set possibly countably infinite. An integer-valued matrix $A = (a_{ij})_{i,j \in I}$ is called an even symmetrizable Borcherds-Cartan matrix if it satisfies the following conditions:

(i) $a_{ii} = 2, 0, -2, -4, \ldots$,
(ii) $a_{ij} \in \mathbb{Z}_{\leq 0}$ for $i \neq j$,
(iii) there is a diagonal matrix $D = \text{diag}(r_i \in \mathbb{Z}_{>0} | i \in I)$ such that DA is symmetric.

Set $I^{re} := \{i \in I | a_{ii} = 2\}$, the set of real indices and $I^{im} := \{i \in I | a_{ii} \leq 0\}$, the set of imaginary indices. We denote by $I^{iso} := \{i \in I | a_{ii} = 0\}$ the set of isotropic indices.

A Borcherds-Cartan datum consists of

(a) an even symmetrizable Borcherds-Cartan matrix $A = (a_{ij})_{i,j \in I}$,
(b) a free abelian group $P^\vee = (\bigoplus_{i \in I} \mathbb{Z} h_i) \oplus (\bigoplus_{i \in I} \mathbb{Z} d_i)$, the dual weight lattice,
(c) $\mathfrak{h} = \mathbb{Q} \otimes \mathbb{Z} P^\vee$, the Cartan subalgebra,
(d) $P = \{\lambda \in \mathfrak{h}^* | \lambda(P^\vee) \subseteq \mathbb{Z}\}$, the weight lattice,
(e) $P^\vee = \{h_i \in P^\vee | i \in I\}$, the set of simple coroots,
(f) $\Pi = \{\alpha_i \in P | i \in I\}$, the set of simple roots, which is linearly independent over \mathbb{Q} and satisfies

$$\alpha_j(h_i) = a_{ij}, \quad \alpha_j(d_i) = \delta_{ij} \quad \text{for all } i, j \in I.$$

(g) for each $i \in I$, there is an element $\Lambda_i \in P$ such that

$$\Lambda_i(h_j) = \delta_{ij}, \quad \Lambda_i(d_j) = 0 \quad \text{for all } i, j \in I.$$

The $\Lambda_i(i \in I)$ are called the fundamental weights.

We denote by

$$P^+ := \{\lambda \in P | \lambda(h_i) \geq 0 \text{ for all } i \in I\}$$

the set of dominant integral weights. The free abelian group $Q := \bigoplus_{i \in I} \mathbb{Z} \alpha_i$ is called the root lattice. Set $Q_+ = \sum_{i \in I} \mathbb{Z}_{\geq 0} \alpha_i$ and $Q_- = -Q_+$. For $\beta = \sum k_i \alpha_i \in Q_+$, we define its height to be $\text{ht}(\beta) := \sum k_i$.
There is a non-degenerate symmetric bilinear form $(\ , \)$ on \mathfrak{h}^* satisfying

$$(\alpha_i, \lambda) = r_i \lambda(h_i) \text{ for all } \lambda \in \mathfrak{h}^*,$$

and therefore we have

$$(\alpha_i, \alpha_j) = r_ia_{ij} = r_ia_{ji} \text{ for all } i, j \in I.$$

For $i \in I^r$, we define the simple reflection $\omega_i \in GL(\mathfrak{h}^*)$ by

$$\omega_i(\lambda) = \lambda - \lambda(h_i)\alpha_i \text{ for } \lambda \in \mathfrak{h}^*.$$

The subgroup W of $GL(\mathfrak{h}^*)$ generated by ω_i ($i \in I^r$) is called the Weyl group of g. One can easily verify that the symmetric bilinear form $(\ , \)$ is W-invariant.

Let $I^\infty := (I^r \times \{1\}) \cup (I^m \times \mathbb{Z}_{>0})$. For simplicity, we will often write i for $(i, 1)$ if $i \in I^r$.

Definition 1.1. The Borcherds-Bozec algebra g associated with a Borcherds-Cartan datum $(A, P, \Pi, P^\vee, \Pi^\vee)$ is the Lie algebra over \mathbb{Q} generated by the elements $e_{il}, f_{il} ((i, l) \in I^\infty)$ and \mathfrak{h} with defining relations

$$[h, h'] = 0 \text{ for } h, h' \in \mathfrak{h},$$

$$[e_{ik}, f_{jl}] = k \delta_{ij} \delta_{kl} h_i \text{ for } i, j \in I, k, l \in \mathbb{Z}_{>0},$$

$$[h, e_{jl}] = l\alpha_j(h)e_{jl}, \quad [h, f_{jl}] = -l\alpha_j(h)f_{jl},$$

$$(ad e_{ij})^{1-lai}(e_{jl}) = 0 \text{ for } i \in I^r, i \neq (j, l),$$

$$(ad f_{ij})^{1-lai}(f_{jl}) = 0 \text{ for } i \in I^r, i \neq (j, l),$$

$$[e_{ik}, e_{jl}] = [f_{ik}, f_{jl}] = 0 \text{ for } a_{ij} = 0.$$

Let $U(g)$ be the universal enveloping algebra of g. Since we have the following equations in $U(g)$

$$(adx)^m(y) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} x^{m-k}yx^k \text{ for } x, y \in U(g), m \in \mathbb{Z}_{>0},$$

we obtain the presentation of $U(g)$ with generators and relations given below.

Proposition 1.2. The universal enveloping algebra $U(g)$ of g is an associative algebra over \mathbb{Q} with unity generated by $e_{il}, f_{il} ((i, l) \in I^\infty)$ and \mathfrak{h} subject to the following defining
relations
\[hh' = h'h \quad \text{for} \quad h, h' \in \mathfrak{h}, \]
\[e_{ik}f_{jl} - f_{jl}e_{ik} = k \delta_{ij} \delta_{kl} h_i \quad \text{for} \quad i, j \in I, k, l \in \mathbb{Z}_{>0}, \]
\[he_{jl} - e_{jl}h = l\alpha_{jl}(h) e_{jl}, \quad hf_{jl} - f_{jl}h = -l\alpha_{jl}(h) f_{jl}, \]
\[(1.2) \]
\[\sum_{k=0}^{1-l_{aij}} (-1)^k \binom{1-l_{aij}}{k} e_i^{1-l_{aij}-k} e_{jl} e_i^k = 0 \quad \text{for} \quad i \in I^e, i \neq (j, l), \]
\[\sum_{k=0}^{1-l_{aij}} (-1)^k \binom{1-l_{aij}}{k} f_i^{1-l_{aij}-k} f_{jl} f_i^k = 0 \quad \text{for} \quad i \in I^e, i \neq (j, l), \]
\[e_{ik}e_{jl} - e_{jl}e_{ik} = f_{ik}f_{jl} - f_{jl}f_{ik} = 0 \quad \text{for} \quad a_{ij} = 0. \]

The universal enveloping algebra \(U(\mathfrak{g}) \) has a Hopf algebra structure given by
\[\Delta(x) = x \otimes 1 + 1 \otimes x, \]
\[\varepsilon(x) = 0, \]
\[S(x) = -x \quad \text{for} \quad x \in \mathfrak{g}, \]
where \(\Delta : U(\mathfrak{g}) \to U(\mathfrak{g}) \otimes U(\mathfrak{g}) \) is the comultiplication, \(\varepsilon : U(\mathfrak{g}) \to \mathbb{Q} \) is the counit, and \(S : U(\mathfrak{g}) \to U(\mathfrak{g}) \) is the antipode.

Furthermore, by the Poincaré-Brikhoff-Witt Theorem, the universal enveloping algebra also has the triangular decomposition
\[(1.3) \]
\[U(\mathfrak{g}) \cong U^-(\mathfrak{g}) \otimes U^0(\mathfrak{g}) \otimes U^+(\mathfrak{g}), \]
where \(U^+(\mathfrak{g}) \) (resp. \(U^0(\mathfrak{g}) \) and \(U^-(\mathfrak{g}) \)) be the subalgebra of \(U(\mathfrak{g}) \) generated by the elements \(e_{il} \) (resp. \(\mathfrak{h} \) and \(f_{il} \)) for \((i, l) \in I^\infty \).

In [7], Kang studied the representation theory of the Borcherds-Bozec algebras. We list some results that we will use later.

Proposition 1.3. [7] \(\]
(a) Let \(\lambda \in P^+ \) and \(V(\lambda) = U(\mathfrak{g})v_\lambda \) be the irreducible highest weight \(\mathfrak{g} \)-module. Then we have
\[f_i^{\lambda(h_i)+1}v_\lambda = 0 \quad \text{for} \quad i \in I^e, \]
\[f_i v_\lambda = 0 \quad \text{for} \quad (i, l) \in I^\infty \quad \text{with} \quad \lambda(h_i) = 0. \]
(b) Every highest weight \(\mathfrak{g} \)-module with highest weight \(\lambda \in P^+ \) satisfying (1.5) is isomorphic to \(V(\lambda) \).
Let q be an indeterminate and set
\[q_i = q^{r_i}, \quad q^{(i)} = q^{\frac{\alpha_i \cdot \alpha_i}{2}}. \]
Note that $q_i = q^{(i)}$ if $i \in I^r$. For each $i \in I^r$ and $n \in \mathbb{Z}_{\geq 0}$, we define
\[[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! = \prod_{k=1}^{n} [k]_i, \quad \left[\frac{n}{k} \right]_i = \frac{[n]_i!}{[k]_i! [n-k]_i!} \]
and set $F_A = \{ x \in F \mid |x| \in A \}$.

Let $\mathcal{F} = \mathbb{Q}(q) \langle f_{il} \mid (i, l) \in I^\infty \rangle$ be the free associative algebra over $\mathbb{Q}(q)$ generated by the symbols f_{il} for $(i, l) \in I^\infty$. By setting $\deg f_{il} = -l\alpha_i$, \mathcal{F} becomes a \mathbb{Q}_--graded algebra. For a homogeneous element u in \mathcal{F}, we denote by $|u|$ the degree of u, and for any $A \subseteq \mathbb{Q}_-$, set $\mathcal{F}_A = \{ x \in \mathcal{F} \mid |x| \in A \}$.

We define a twisted multiplication on $\mathcal{F} \otimes \mathcal{F}$ by
\[(x_1 \otimes x_2)(y_1 \otimes y_2) = q^{-(|x_2|_l|y_1|_l)} x_1 y_1 \otimes x_2 y_2, \]
and equip \mathcal{F} with a co-multiplication δ defined by
\[\delta(f_{il}) = \sum_{m+n=l} q_{il}^{-mn} f_{im} \otimes f_{in} \text{ for } (i, l) \in I^\infty. \]

Here, we understand $f_{i0} = 1$ and $f_{il} = 0$ for $l < 0$.

Proposition 2.1. [1, 2] For any family $\nu = (\nu_{il})_{(i, l) \in I^\infty}$ of non-zero elements in $\mathbb{Q}(q)$, there exists a symmetric bilinear form $(\ , \)_L : \mathcal{F} \times \mathcal{F} \rightarrow \mathbb{Q}(q)$ such that
(a) $(x, y)_L = 0$ if $|x| \neq |y|$,
(b) $(1, 1)_L = 1$,
(c) $(f_{il}, f_{il})_L = \nu_{il}$ for all $(i, l) \in I^\infty$,
(d) $(x, yz)_L = (\delta(x), y \otimes z)_L$ for all $x, y, z \in \mathcal{F}$.

Here, $(x_1 \otimes x_2, y_1 \otimes y_2)_L = (x_1, y_1)_L(x_2, y_2)_L$ for any $x_1, x_2, y_1, y_2 \in \mathcal{F}$.

From now on, we assume that
\[\nu_{il} \in 1 + q\mathbb{Z}_{\geq 0}[[q]] \text{ for all } (i, l) \in I^\infty. \]

Then, the bilinear form $(\ , \)_L$ is non-degenerate on $\mathcal{F}(i) = \bigoplus_{l \geq 1} \mathcal{F}_{-l\alpha_i}$ for $i \in I^{im} \setminus I^{iso}$.
Let \(\hat{U} \) be the associative algebra over \(\mathbb{Q}(q) \) with \(\mathbf{1} \) generated by the elements \(q^h \) \((h \in P^\vee) \) and \(e_{il}, f_{il} \) \(((i,l) \in I^\infty) \) with defining relations

\[
q^0 = 1, \quad q^h q^{h'} = q^{h+h'} \quad \text{for } h, h' \in P^\vee,
\]

\[
q^h e_{jl} q^{-h} = q^{\alpha_j(h)} e_{jl}, \quad q^h f_{jl} q^{-h} = q^{-\alpha_j(h)} f_{jl} \quad \text{for } h \in P^\vee, (j,l) \in I^\infty.
\]

(2.2)

\[
\sum_{k=0}^{1-l a_{ij}} (-1)^k \left[1 - \frac{la_{ij}}{k} \right] e_i^{1-l a_{ij}-k} e_{jl}^{k} = 0 \quad \text{for } i \in I^e, i \neq (j,l),
\]

\[
\sum_{k=0}^{1-l a_{ij}} (-1)^k \left[1 - \frac{la_{ij}}{k} \right] f_i^{1-l a_{ij}-k} f_{jl}^{k} = 0 \quad \text{for } i \in I^e, i \neq (j,l),
\]

\[
e_{ik} e_{jl} - e_{jl} e_{ik} = f_{ik} f_{jl} - f_{jl} f_{ik} = 0 \quad \text{for } a_{ij} = 0.
\]

We extend the grading by setting \(|q^h| = 0 \) and \(|e_{il}| = l \alpha_i \).

The algebra \(\hat{U} \) is endowed with the co-multiplication \(\Delta: \hat{U} \to \hat{U} \otimes \hat{U} \) given by

\[
\Delta(q^h) = q^h \otimes q^h,
\]

\[
\Delta(e_{il}) = \sum_{m+n=l} q^{mn}_{(i)} e_{im} \otimes K_i^{-m} e_{in},
\]

\[
\Delta(f_{il}) = \sum_{m+n=l} q^{-mn}_{(i)} f_{im} K_i^n \otimes f_{in},
\]

(2.3)

where \(K_i = q^{h_i}(i \in I) \).

Let \(\hat{U}^{\leq 0} \) be the subalgebra of \(\hat{U} \) generated by \(f_{il} \) and \(q^h \), for all \((i,l) \in I^\infty \) and \(h \in P^\vee \), and \(\hat{U}^+ \) be the subalgebra generated by \(e_{il} \) for all \((i,l) \in I^\infty \). In [1], Bozec showed that one can extended \((\ , \)_L \) to a symmetric bilinear form \((\ , \)_L \) on \(\hat{U} \) satisfying

\[
(q^h, 1)_L = 1, \quad (q^h, f_{il})_L = 0,
\]

(2.4)

\[
(q^h, K_j)_L = q^{-\alpha_j(h)},
\]

\[
(x, y)_L = (\omega(x), \omega(y))_L \quad \text{for all } x, y \in \hat{U}^+,
\]

where \(\omega: \hat{U} \to \hat{U} \) is the involution defined by

\[
\omega(q^h) = q^{-h}, \quad \omega(e_{il}) = f_{il}, \quad \omega(f_{il}) = e_{il} \quad \text{for } h \in P^\vee, (i,l) \in I^\infty.
\]

For any \(x \in \hat{U} \), we shall use the Sweedler’s notation, and write

\[
\Delta(x) = \sum x_{(1)} \otimes x_{(2)}.
\]
Following the Drinfeld double process, we define \(\tilde{U} \) as the quotient of \(\hat{U} \) by the relations
\[
\sum (a(1), b(2)) L \omega(b(1)) a(2) = \sum (a(2), b(1)) L a(1) \omega(b(2)) \quad \text{for all } a, b \in \hat{U}^{\leq 0}
\]

Definition 2.2. Given a Borcherds-Cartan datum \((A, P, \Pi, P^\vee, \Pi^\vee)\), the quantum Borcherds-Bozec algebra \(U_q(g)\) is defined to be the quotient algebra of \(\tilde{U}\) by the radical of \((\ , \)_L \) restricted to \(\tilde{U}^- \times \tilde{U}^+\).

Let \(U^+(\text{resp. } U^-)\) be the subalgebra of \(U_q(g)\) generated by \(e_{il}\) (resp. \(f_{il}\)) for all \((i, l) \in I^\infty\). We will denote by \(U^0\) the subalgebra of \(U_q(g)\) generated by \(q^h\) for all \(h \in P^\vee\). It is easy to see that \(q^h(h \in P^\vee)\) is a \(\mathbb{Q}(q)\)-basis of \(U^0\).

In [8], Kang and Kim showed that the co-multiplication \(\Delta : \hat{U} \rightarrow \hat{U} \otimes \hat{U}\) passes down to \(U_q(g)\) and with this, \(U_q(g)\) becomes a Hopf algebra. They also proved the quantum Borcherds-Bozec algebra has a triangular decomposition.

Theorem 2.3. [8] The the quantum Borcherds-Bozec algebra \(U_q(g)\) has the following triangular decomposition:
\[
U_q(g) \cong U^- \otimes U^0 \otimes U^+.
\]

By the defining relation (2.5), we obtain complicated commutation relations between \(e_{il}\) and \(f_{jk}\) for \((i, l), (j, k) \in I^\infty\). We will derive explicit formulas for these complicated commutation relations in Appendix A. But, as we already see in (1.2), the commutation relations in the universal enveloping algebra \(U(g)\) of Borcherds-Bozec algebra \(g\) are rather simple
\[
e_{ik} f_{jl} - f_{jl} e_{ik} = k \delta_{ij} \delta_{kl} h_i \quad \text{for } i, j \in I, k, l \in \mathbb{Z}_{>0}.
\]

Thanks to Bozec, there exists another set of generators in \(U_q(g)\) called primitive generators. They satisfy a simpler set of commutation relations, and we shall prove that these generators also satisfy all the defining relations of \(U_q(g)\) described in (2.2).

We denote by \(C_l\) (resp. \(P_l\)) the set of compositions (resp. partitions) of \(l\), and denote by \(\eta : U_q(g) \rightarrow U_q(g)\) the \(\mathbb{Q}\)-algebra homomorphism defined by
\[
\eta(e_{il}) = e_{il}, \eta(f_{il}) = f_{il}, \eta(q^h) = q^{-h}, \eta(q) = q^{-1} \quad \text{for } h \in P^\vee, (i, l) \in I^\infty.
\]

As usual, let \(S : U_q(g) \rightarrow U_q(g)\) and \(\epsilon : U_q(g) \rightarrow \mathbb{Q}(q)\) be the antipode and the counit of \(U_q(g)\), respectively. Then, we have the following proposition.

Proposition 2.4. [1, 2] For any \(i \in I^m\) and \(l \geq 1\), there exist unique elements \(t_{il} \in U^-_{-l\alpha_i}\) and \(s_{il} = \omega(t_{il})\) such that
(1) $Q(q) \langle f_{il} \mid l \geq 1 \rangle = Q(q) \langle t_{il} \mid l \geq 1 \rangle$ and $Q(q) \langle e_{il} \mid l \geq 1 \rangle = Q(q) \langle s_{il} \mid l \geq 1 \rangle$,
(2) $(t_{il}, z)_L = 0$ for all $z \in Q(q) \langle f_{i1}, \cdots, f_{il-1} \rangle$,
$(s_{il}, z)_L = 0$ for all $z \in Q(q) \langle e_{i1}, \cdots, e_{il-1} \rangle$.
(3) $t_{il} - f_{il} \in Q(q) \langle f_{ik} \mid k < l \rangle$ and $s_{il} - e_{il} \in Q(q) \langle e_{ik} \mid k < l \rangle$,
(4) $\eta(t_{il}) = t_{il}$, $\eta(s_{il}) = s_{il}$,
(5) $\delta(t_{il}) = t_{il} \otimes 1 + 1 \otimes t_{il}$, $\delta(s_{il}) = s_{il} \otimes 1 + 1 \otimes s_{il}$,
(6) $\Delta(t_{il}) = t_{il} \otimes 1 + K_i^l \otimes t_{il}$, $\Delta(s_{il}) = s_{il} \otimes K_i^{-l} + 1 \otimes s_{il}$,
(7) $S(t_{il}) = -K_i^{-l}t_{il}$, $S(s_{il}) = -s_{il}K_i^l$.

If we set $\tau_{il} = (t_{il}, t_{il})_L = (s_{il}, s_{il})_L$, we have the following commutation relations in $U_q(\mathfrak{g})$

$$s_{il}t_{jk} - t_{jk}s_{il} = \delta_{ij}\delta_{lk}\tau_{il}(K_i^l - K_i^{-l}).$$

Assume that $i \in I^{im}$ and let $c = (c_1, \cdots, c_m)$ be an element in C_I or in P_I. We set

$$t_{i,c} = \prod_{j=1}^m t_{icj} \text{ and } s_{i,c} = \prod_{j=1}^m s_{icj}.$$

Notice that $\{t_{i,c} \mid c \in C_I\}$ is a basis of $\mathcal{F}_{-\lambda_i}$.

For $i \in I^{iso}$ and $c, c' \in P_I$, if $c \neq c'$, then by induction, we have

$$(t_{i,c}, t_{i,c'})_L = (s_{i,c}, s_{i,c'})_L = 0.$$

For $i \in I^{im}\setminus I^{iso}$ and $c, c' \in C_I$, if the partitions obtained by rearranging c and c' are not equal, then we have

$$(t_{i,c}, t_{i,c'})_L = (s_{i,c}, s_{i,c'})_L = 0.$$

For each $i \in I^{re}$, we also use the notation t_{i1} and s_{i1}. Here we set

$$t_{i1} = f_{i1}, \quad s_{i1} = e_{i1}.$$

Sometimes, we simply write t_i (resp. s_i) instead of t_{i1} (resp. s_{i1}) in this case. By mimicking Definition 1.2.13 in [13], we have the following definition.

Definition 2.5. For every $(i, l) \in I^\infty$, we define the linear maps $e'_{i,l}, e''_{i,l} : \mathcal{F} \rightarrow \mathcal{F}$ by

$$e'_{i,l}(1) = 0, \quad e'_{i,l}(t_{jk}) = \delta_{ij}\delta_{lk} \text{ and } e'_{i,l}(xy) = e'_{i,l}(x)y + q^{(|x|_\alpha)}xe'_{i,l}(y)$$
$$e''_{i,l}(1) = 0, \quad e''_{i,l}(t_{jk}) = \delta_{ij}\delta_{lk} \text{ and } e''_{i,l}(xy) = q^{(|y|_\alpha)}e''_{i,l}(x)y + xe''_{i,l}(y)$$

for any homogeneous elements x, y in \mathcal{F}.

Proposition 2.6.

(a) For any \(x, y \in \mathcal{F} \), we have
\[
(t_{il}y, x)_L = \tau_{il}(y, e'_{i,l}(x))_L, \quad (yt_{il}, x)_L = \tau_{il}(y, e''_{i,l}(x))_L
\]
(b) The maps \(e'_{i,l} \) and \(e''_{i,l} \) preserve the radical of \((\ _, _)_L \).
(c) Let \(x \in U^- \), we have

(i) If \(e'_{i,l}(x) = 0 \) for all \((i, l) \in I^\infty \), then \(x = 0 \).
(ii) If \(e''_{i,l}(x) = 0 \) for all \((i, l) \in I^\infty \), then \(x = 0 \).

Proof. (a) For any homogeneous element \(x \in \mathcal{F} \). We first show that
\[
\delta(x) = t_{il} \otimes e'_{i,l}(x) + \sum_{w \neq (i,l)} t_w \otimes y_w, \tag{2.12}
\]
where if \(w = (j_1, t_1) \cdots (j_r, t_r) \) is a word in \(I^\infty \), \(t_w = t_{(j_1,t_1)} \cdots t_{(j_r,t_r)} \) and \(y_w \) is an element in \(\mathcal{F} \) depending on \(w \).

Since \(e'_{i,l} \) is a linear map, it is enough to check (2.12) by assuming that \(x \) is a monomial in \(t_{jk} \). Fix \((i, l) \in I^\infty \). We use induction on the number of \(t_{il} \) that appears in \(x \). If \(x \) contains no \(t_{il} \), then \(e'_{i,l}(x) = 0 \) and there is no term of the form \(t_{il} \otimes - \). Now assume that \(x \) contains \(t_{il} \), then we can write \(x = x_1 t_{il} x_2 \) for some monomials \(x_1, x_2 \) such that \(x_1 \) doesn’t contains \(t_{il} \). So we have
\[
e'_{i,l}(x) = e'_{i,l}(x_1 t_{il} x_2) = q^{(|x_1|,\alpha_i)} x_1 e'_{i,l}(t_{il} x_2) = q^{(|x_1|,\alpha_i)} x_1 x_2 + q^{(-|\alpha_i|,\alpha_i)} t_{il} e'_{i,l}(x_2). \tag{2.13}
\]

On the other hand
\[
\delta(x) = \delta(x_1)(t_{il} \otimes 1 + 1 \otimes t_{il}) \delta(x_2). \tag{2.14}
\]
By induction hypothesis, the term \(t_{il} \otimes - \) only appear in
\[
(1 \otimes x_1)(t_{il} \otimes 1)(1 \otimes x_2) + (1 \otimes x_1)(1 \otimes t_{il})(t_{il} \otimes e'_{i,l}(x_2)), \tag{2.15}
\]
which is equal to
\[
t_{il} \otimes q^{(|x_1|,\alpha_i)} x_1 x_2 + t_{il} \otimes q^{-(|x_1|,\alpha_i)} x_1 t_{il} e'_{i,l}(x_2) = t_{il} \otimes q^{(|x_1|,\alpha_i)} x_1 x_2 + q^{-|\alpha_i|,\alpha_i} t_{il} e'_{i,l}(x_2). \tag{2.16}
\]
This shows (2.12).

Similarly, we can show that
\[
\delta(x) = e''_{i,l}(x) \otimes t_{il} + \sum_{w \neq (i,l)} z_w \otimes t_w. \tag{2.17}
\]
Since \(e'_{i,l} \) and \(e''_{i,l} \) are linear maps, the equations (2.12) and (2.17) hold for any \(x, y \in \mathcal{F} \).
For any $c \in \mathcal{C}_d$, we have $(t_{il}, t_{ic})_L = \delta_{(l),c} \tau_{il}$. Thus

\[(t_{iy}, x)_L = \tau_{il}(y, e'_{il}(x))_L, \quad (yt_{il}, x)_L = \tau_{il}(y, e''_{il}(x))_L\]

for any $x, y \in \mathcal{T}$.

(b) Since $\tau_{il} = (t_{il}, t_{il})_L \neq 0$, our assertion follows.

(c) Note that each monomial ends with some t_{jk}'s. By (a), if $e''_{il}(x) = 0$ for all $(i, l) \in I^\infty$, then x belongs to the radial of $(,)_L$, which is equal to 0 in U^-. \square

For any $i \in I^\text{re}$ and $n \in \mathbb{N}$, we set

\[i_i^{(n)} = \frac{t_i^n}{[n]_!}. \]

By a similar argument as [13, 1.4.2], we have the following Lemma.

Lemma 2.7. We have

\[(2.19) \quad \delta(t_i^{(n)}) = \sum_{p+p'=n} q_i^{-pp'} t_i^{(p)} \otimes t_i^{(p')} \]

for any $i \in I^\text{re}$ and $n \in \mathbb{N}$.

Proposition 2.8. For any $i \in I^\text{re}$, $(j, l) \in I^\infty$, and $i \neq (j, l)$, we have

\[\sum_{p+p'=1-\alpha_{ij}} (-1)^{p} t_i^{(p)} t_j l_i^{(p')} = 0 \]

in $U_q(\mathfrak{g})$.

Proof. If $i \in I^\text{re}$, we have $a_{ij} = \frac{2(\alpha_i, \alpha_j)}{(\alpha_i, \alpha_i)}$. Set

\[R_{i,(j,l)} = \sum_{p+p'=1-\alpha_{ij}} (-1)^{p} t_i^{(p)} t_j l_i^{(p')}. \]

By (2.6), we only need to show that $e''_{\mu}(R_{i,(j,l)}) = 0$ for all $\mu \in I^\infty$. It is clear that

\[e''_{\mu}(R_{i,(j,l)}) = 0 \quad \text{if} \quad \mu \neq i, (j, l). \]

By the definition of e''_{i}, we have

\[e''_{i}(t_i^{(p)} t_j l_i^{(p')}) = q^{(\alpha_i, -p' \alpha_j)} e''_{i}(t_i^{(p)}) t_j l_i^{(p')} + t_i^{(p)} t_j e''_{i}(t_i^{(p')}) \]

\[= q^{-p'(\alpha_i, \alpha_j)} q^{(1-p') \alpha_j} t_i^{(p'-1)} t_j l_i^{(p')} + q^{(1-p') \alpha_j} t_i^{(p')} t_j l_i^{(p'-1)}. \]
Thus

\[e''_i(R_{i,j,l}) = \sum_{p+p'=1-l_{a_{ij}}} (-1)^p q^{-p(\alpha_i,\alpha_i)} q^{-(\alpha_i,\alpha_{ij})} q_i^{(1-p)} t_i^{(p-1)} t_{jl} t_i^{(p')} \]

\[+ \sum_{p+p'=1-l_{a_{ij}}} (-1)^p q_i^{(1-p')} t_i^{(p)} t_{jl} t_i^{(p'-1)} \]

\[= \sum_{0 \leq p \leq 1-l_{a_{ij}}} (-1)^p q^{-(1-l_{a_{ij}}-p)(\alpha_i,\alpha_i)} q^{-(\alpha_i,\alpha_{ij})} q_i^{(1-p)} t_i^{(p-1)} t_{jl} t_i^{(1-l_{a_{ij}}-p)} \]

\[+ \sum_{0 \leq p \leq 1-l_{a_{ij}}} (-1)^p q_i^{(l_{a_{ij}}+p)} t_i^{(p)} t_{jl} t_i^{(-l_{a_{ij}}-p)}. \]

The coefficient of \(t_i^{(p)} t_{jl} t_i^{(-l_{a_{ij}}-p)} \) in the first sum of (2.21) is

\[(-1)^{p+1} q^{-(l_{a_{ij}}-p)(\alpha_i,\alpha_i)} q^{-(\alpha_i,\alpha_{ij})} q_i^{-(1-p)} \]

\[= (-1)^{p+1} q^{(\frac{2(\alpha_i,\alpha_j)}{(\alpha_i,\alpha_i)})+(p)(\alpha_i,\alpha_i)-(l(\alpha_i,\alpha_j)+(-p)(\alpha_i,\alpha_i))} \]

\[= (-1)^{p+1} q^{(\alpha_i,\alpha_j)+\frac{p(\alpha_i,\alpha_i)}{2}} \]

\[= (-1)^{p+1} q_i^{(l_{a_{ij}}+p)}. \]

Hence, we have \(e''_i(R_{i,j,l}) = 0. \)

By the definition of \(e''_j \), we have

\[e''_{jl}(t_i^{(p)} t_{jl} t_i^{(p')}) = q^{-(\alpha_j,\alpha_{ij})} e''_j(t_i^{(p)} t_{jl}) t_i^{(p')} = q^{-(\alpha_j,\alpha_{ij})} t_i^{(p)} t_i^{(p')} \]

So

\[e''_{jl}(R_{i,j,l}) = \sum_{0 \leq p \leq 1-l_{a_{ij}}} (-1)^{1-l_{a_{ij}}-p} q^{-(\alpha_j,\alpha_{ij})} t_i^{(1-l_{a_{ij}}-p)} t_i^{(p')}. \]

By [13, 1.3.4], we obtain

\[\sum_{0 \leq p' \leq 1-l_{a_{ij}}} (-1)^{1-l_{a_{ij}}-p'} q^{-(\alpha_j,\alpha_{ij})} t_i^{(-l_{a_{ij}}-p')} \left[1 - \frac{l_{2(\alpha_i,\alpha_j)}}{p'} \right] = 0. \]

Hence, we get \(e''_{jl}(R_{i,j,l}) = 0. \) This finishes the proof.
By the above arguments, we have primitive generators $t_{il}((i,l) \in \mathcal{I}^\infty)$ in U^- of degree $-l\alpha_i$ and $s_{il}((i,l) \in \mathcal{I}^\infty)$ in U^+ of degree $l\alpha_i$ satisfying

\begin{equation}
(2.25) \quad s_{il}t_{jk} - t_{jk}s_{il} = \delta_{ij}\delta_{kl}\tau_{il}(K^l_i - K^{-l}_i),
\end{equation}

\begin{equation}
(2.26) \quad \sum_{k=0}^{1-l\alpha_i} (-1)^k \left[1 - l\alpha_{ij} \right] t_i^{1-l\alpha_{ij}-k} t_{jl}^k = 0 \quad \text{for } i \in \mathcal{I}_re, i \neq (j,l).
\end{equation}

By using the involution ω, we get

\begin{equation}
(2.27) \quad q^h t_{ij} q^{-h} = q^{-l\alpha_j(h)} t_{ij}, \quad q^h s_{ij} q^{-h} = q^{l\alpha_j(h)} s_{ij} \quad \text{for } h \in P^\vee, (j,l) \in \mathcal{I}^\infty,
\end{equation}

and

\begin{equation}
(2.28) \quad [t_{ik}, t_{jl}] = [s_{ik}, s_{jl}] = 0 \quad \text{for } a_{ij} = 0.
\end{equation}

3. A_1-form of the quantum Borcherds-Bozec algebras

We consider the localization of $\mathbb{Q}[q]$ at the ideal $(q - 1)$:

\begin{equation}
(3.1) \quad A_1 = \{ f(q) \in \mathbb{Q}(q) \mid f \text{ is regular at } q = 1 \} = \{ g/h \mid g, h \in \mathbb{Q}[q], h(1) \neq 0 \}
\end{equation}

Let \mathbb{J}_1 be the unique maximal ideal of the local ring A_1, which is generated by $(q - 1)$. Then we have an isomorphism of fields

\[A_1/\mathbb{J}_1 \cong \mathbb{Q}, \quad f(q) + \mathbb{J}_1 \mapsto f(1). \]

Note that, for $i \in \mathcal{I}_re$, $[n]_i$ and $\left[\begin{array}{c} n \\ k \end{array} \right]_i$ are elements of $\mathbb{Z}[q, q^{-1}] \subseteq A_1$. For any $h \in P^\vee$, $n \in \mathbb{Z}$, we formally define

\[(q^h; n)_q = \frac{q^h q^n - 1}{q - 1} \in U^0. \]
Definition 3.1. We define the A_1-form, denote by U_{A_1} of the quantum Borcherds-Bozec algebra $U_q(g)$ to be the A_1-subalgebra generated by the elements s_{it}, T_{il}, q^h and $(q^h; 0)_q$, for all $(i, l) \in I^\infty$ and $h \in P^\vee$, where

\begin{equation}
T_{il} = \frac{1}{\tau_{il} q_{il}^2 - 1} t_{il} \text{ for } (i, l) \in I^\infty.
\end{equation}

Let $U_{A_1}^+$ (resp. $U_{A_1}^-$) be the A_1-subalgebra of U_{A_1} generated by the elements s_{it} (resp. T_{il}) for $(i, l) \in I^\infty$, and $U_{A_1}^0$ be the subalgebra of U_{A_1} generated by q^h and $(q^h; 0)_q$ for $(h \in P^\vee)$.

Lemma 3.2.

(a) $(q^h; n)_q \in U_{A_1}^0$ for all $n \in \mathbb{Z}$ and $h \in P^\vee$.
(b) $K_i^l - K_i^{-l} q_{i}^{2l - 1} \in U_{A_1}^0$.

Proof. It is straightforward to check that

\begin{equation}
(q^h; n)_q = q^n (q^h; 0)_q + \frac{q^n - 1}{q - 1},
\end{equation}

\begin{equation}
\frac{K_i^l - K_i^{-l}}{q_{i}^{2l - 1}} = \frac{q - 1}{q_{i}^{2l - 1}} (1 + K_i^{-l}) \frac{K_i^l - 1}{q - 1}.
\end{equation}

The lemma follows. \hfill \Box

The next proposition shows that the triangular decomposition (2.6) of $U_q(g)$ carries over to its A_1-form.

Proposition 3.3. We have a natural isomorphism of A_1-modules

\begin{equation}
U_{A_1} \cong U_{A_1}^- \otimes U_{A_1}^0 \otimes U_{A_1}^+
\end{equation}

induced from the triangular decomposition of $U_q(g)$.

Proof. Consider the canonical isomorphism $\varphi : U_q(g) \cong U^- \otimes U^0 \otimes U^+$ given by multiplication. By (2.25) and (2.27), we have the following commutation relations

\begin{align}
s_{it}(q^h; 0)_q &= (q^h; -l\alpha_i(h)) q_{s_{it}}, \\
(q^h; 0)_q T_{il} &= T_{il}(q^h; -l\alpha_i(h)), \\
s_{it} T_{jk} - T_{jk} s_{it} &= \delta_{ij} \delta_{lk} \frac{K_i^l - K_i^{-l}}{q_{i}^{2l - 1}}.
\end{align}

Combining with (3.2), we can see that the image of φ lies inside $U_{A_1}^- \otimes U_{A_1}^0 \otimes U_{A_1}^+$. \hfill \Box
The representation theory of quantum Borcherds-Bozec algebras has been studied by Kang and Kim in [8]. In the following sections, we will use some notions defined in [8], which are similar to those in classical representation theory of quantum groups.

Fix \(\lambda \in P \), let \(V^q \) be a highest weight \(U_q(\mathfrak{g}) \)-module with highest weight \(\lambda \) and highest weight vector \(v_\lambda \). Then we have the \(\Lambda_1 \)-form for the highest weight modules.

Definition 3.4. The \(\Lambda_1 \)-form of \(V^q \) is defined to be the \(U_{\Lambda_1} \)-module \(V_{\Lambda_1} = U_{\Lambda_1} v_\lambda \).

By the definition of highest weight module and \(V_{\Lambda_1} \), it is easy to see that \(V_{\Lambda_1} = U_{\Lambda_1}^- v_\lambda \). The highest weight \(U_q(\mathfrak{g}) \)-module \(V^q \) has the weight space decomposition

\[
V^q = \bigoplus_{\mu \leq \lambda} V^q_{\mu},
\]

where \(V^q_{\mu} = \{ v \in V^q \mid q^{\alpha_1} v = q^{\mu(h)} v \ \text{for all} \ h \in P^+ \} \). For each \(\mu \in P \), we define the weight space \((V_{\Lambda_1})_{\mu} = V_{\Lambda_1} \cap V^q_{\mu} \). The following proposition shows that \(V_{\Lambda_1} \) also has the weight space decomposition.

Proposition 3.5. \(V_{\Lambda_1} = \bigoplus_{\mu \leq \lambda} (V_{\Lambda_1})_{\mu} \)

Proof. The proof is the same as [5, Proposition 3.3.6]. \(\square \)

Proposition 3.6. For each \(\mu \in P \), the weight space \((V_{\Lambda_1})_{\mu} \) is a free \(\Lambda_1 \)-module with \(\text{rank}_{\Lambda_1}(V_{\Lambda_1})_{\mu} = \dim_{\mathbb{Q}(q)} V^q_{\mu} \).

Proof. We first show that \((V_{\Lambda_1})_{\mu} \) is finite generated as an \(\Lambda_1 \)-module. Since we have \(V_{\Lambda_1} = U_{\Lambda_1}^- v_\lambda \), every element in \(V_{\Lambda_1} \) is a polynomial of \(T_{i_1} \cdots T_{i_p} v_\lambda \) with coefficients in \(\Lambda_1 \). Assume that \(\lambda = \mu + \alpha \) for some \(\alpha \in \mathbb{Q}_+ \). Then for each \(v \in \Lambda_1 \) with weight \(\mu \), \(v \) must be a \(\Lambda_1 \)-linear combination of \(\{ T_{i_1} \cdots T_{i_p} v_\lambda \mid l_1 \alpha_1 + \cdots + l_p \alpha_p = \alpha \} \), which is a finite set.

Let \(\{ T_{l} v_\lambda \} \) be a \(\mathbb{Q}(q) \)-basis of \(V^q_{\mu} \), where \(T_l \) are monomials in \(T_{i_l} \). The set \(\{ T_{l} v_\lambda \} \) certainly belongs to \((V_{\Lambda_1})_{\mu} \) and is also \(\Lambda_1 \)-linearly independent. So we have \(\text{rank}_{\Lambda_1}(V_{\Lambda_1})_{\mu} \geq \dim_{\mathbb{Q}(q)} V^q_{\mu} \). Let \(\{ u_1, \cdots, u_p \} \) be an \(\Lambda_1 \)-linearly independent subset of \((V_{\Lambda_1})_{\mu} \). Consider a \(\mathbb{Q}(q) \)-linear dependence relation

\[
c_1(q) u_1 + \cdots + c_p(q) u_p = 0, \ c_k(q) \in \mathbb{Q}(q) \ \text{for} \ k = 1, \cdots, p.
\]

Multiplying some powers of \(q - 1 \) if needed, we may assume that all \(c_k(q) \in \Lambda_1 \), which implies that \(c_k(q) = 0 \) for all \(k = 1, \cdots, p \). Hence \(u_1, \cdots, u_p \) are linearly independent over \(\mathbb{Q}(q) \) and \(\text{rank}_{\Lambda_1}(V_{\Lambda_1})_{\mu} \leq \dim_{\mathbb{Q}(q)} V^q_{\mu} \), which completes the proof. \(\square \)

Corollary 3.7. The \(\mathbb{Q}(q) \)-linear map \(\varphi : \mathbb{Q}(q) \otimes_{\Lambda_1} V_{\Lambda_1} \rightarrow V^q \) given by \(c \otimes v \mapsto cv \) is an isomorphism.
4. Classical limit of quantum Borcherds-Bozec algebras

Define the \(\mathbb{Q} \)-linear vector spaces
\[
U_1 = (A_1/j_1) \otimes_{A_1} U_{A_1} \cong U_{A_1}/j_1 U_{A_1},
\]
\[
V^1 = (A_1/j_1) \otimes_{A_1} V_{A_1} \cong V_{A_1}/j_1 V_{A_1}.
\]
Then \(V^1 \) is naturally a \(U_1 \)-module. Consider the natural maps
\[
U_{A_1} \to U_1 = U_{A_1}/j_1 U_{A_1},
\]
\[
V_{A_1} \to V^1 = V_{A_1}/j_1 V_{A_1}.
\]
The passage under these maps is referred to as taking the classical limit. We will denote by \(\overline{\imath} \) the image of \(\imath \) under the classical limit. Notice that \(q \) is mapped to 1 under these maps.

For each \(\mu \in P \), set
\[
V^1_\mu = (A_1/j_1) \otimes_{A_1} (V_{A_1})_\mu.
\]
Then we have

Proposition 4.1.

(a) \(V^1 = \bigoplus_{\mu \leq \lambda} V^1_\mu \).

(b) For each \(\mu \in P \), \(\dim \mathbb{Q} V^1_\mu = \text{rank}_{A_1} (V_{A_1})_\mu = \dim \mathbb{Q} (q) V^q_\mu \).

Let \(\overline{\imath} \in U_1 \) denote the classical limit of the element \((q^h; 0)_q \in U_{A_1} \). As in [5], we have the following lemma.

Lemma 4.2.

(i) For all \(h \in P^\vee \), we have \(\overline{q^h} = 1 \).

(ii) For any \(h, h' \in P^\vee \), \(\overline{h + h'} = \overline{h} + \overline{h'} \). Hence, we have \(\overline{nh} = n\overline{h} \) for \(n \in \mathbb{Z} \).

Define the subalgebras \(U^0_1 = \mathbb{Q} \otimes U^0_{A_1} \) and \(U^\pm_1 = \mathbb{Q} \otimes U^{\pm}_{A_1} \). The next theorem shows that we can define a surjective homomorphism from the universal enveloping algebra \(U(g) \) to \(U_1 \), and as a \(U(g) \)-module, \(V^1 \) is a highest weight module with highest weight \(\lambda \in P \) and highest weight vector \(\overline{\nu} \).

Theorem 4.3.

(a) The elements \(\overline{s_{il}}, \overline{T_{il}}((i, l) \in I^\infty) \) and \(\overline{\imath} = (i \in P^\vee) \) satisfy the defining relations of \(U(g) \). Hence there exists a surjective \(\mathbb{Q} \)-algebra homomorphism \(\psi : U(g) \to U_1 \) sending \(e_{il} \) to \(\overline{s_{il}} \), \(f_{il} \) to \(\overline{T_{il}} \), \(h \) to \(\overline{\imath} \). In particular, the \(U_1 \)-module \(V^1 \) has a \(U(g) \)-module structure.

(b) For each \(\mu \in P \), \(h \in P^\vee \), the element \(\overline{\imath} \) acts on \(V^1_\mu \) as scalar multiplication by \(\mu(h) \). So \(V^1_\mu \) is the \(\mu \)-weight space of the \(U(g) \)-module \(V^1 \).
(c) As a $U(\mathfrak{g})$-module, V^1 is a highest weight module with highest weight $\lambda \in P$ and highest weight vector \overline{v}_λ.

Proof. (a) Since\[\frac{K_i^l - K_i^{-l}}{q_i^2 - 1} = \frac{q - 1}{q_i^2 - 1} (1 + K_i^{-l}) \frac{K_i^l - 1}{q - 1}, \]
when we take classical limit, we get\[\frac{K_i^l - K_i^{-l}}{q_i^2 - 1} = \frac{1}{2r_i} \cdot 2 \cdot l_i \overline{h}_i = l_i \overline{h}_i. \]
By (2.25), we have the following equation in U_1
\[\overline{s}_{il} \overline{T}_{jk} - \overline{T}_{jk} \overline{s}_{il} = \delta_{ij} \delta_{lk} \overline{h}_i, \]
and it is the same as the commutation relations in $U(\mathfrak{g})$.

Since we have\[q^h s_{jl} = q^{l \alpha_j(h)} s_{jl} q^h, \quad q^h T_{jl} = q^{-l \alpha_j(h)} T_{jl} q^h \quad \text{for } h \in P^\vee, (j,l) \in I^\infty, \]
we get\[\frac{q^h - 1}{q - 1} s_{il} = s_{il} \frac{q^{l \alpha_i(h)} q^h - 1}{q - 1} \]
and
\[\frac{q^h - 1}{q - 1} s_{il} - s_{il} \frac{q^h - 1}{q - 1} = s_{il} \frac{q^{l \alpha_i(h)} - 1}{q - 1} q^h. \]
Thus $\overline{h} \overline{s}_{il} - \overline{s}_{il} \overline{h} = l \alpha_i(h) \overline{s}_{il}$. Similarly, we have
\[\overline{h} \overline{T}_{il} - \overline{T}_{il} \overline{h} = -l \alpha_i(h) \overline{T}_{il}. \]

It is easy to check the commutation relations
\[[\overline{T}_{ik}, \overline{T}_{jl}] = [\overline{s}_{ik}, \overline{s}_{jl}] = 0 \quad \text{for } a_{ij} = 0. \]

For $i \in I^\text{re}$, we have
\[[n_{i}]_i = n \quad \text{and} \quad \binom{n}{k}_i = \binom{n}{k} \]
Hence the remaining Serre relations follow.

(b) For $v \in (V_{\overline{h}_1})_\mu$ and $h \in P^\vee$, we have $(q^h; 0) v = \frac{q^{\mu(h) - 1}}{q - 1} v$. Hence when we take the classical limit, we obtain $\overline{h} v = \mu(h) v$.

(c) As a $U(\mathfrak{g})$-module, by (2), we have $h \overline{v}_\lambda = \overline{h} \overline{v}_\lambda = \lambda(h) \overline{v}_\lambda$ in V^1 for all $h \in P^\vee$. For each $(i,l) \in I^\infty$, $s_{il} \overline{v}_\lambda$ is zero. Therefore, $V^1 = U_1 \overline{v}_\lambda = U^- (\mathfrak{g}) \overline{v}_\lambda$ and hence V^1 is a highest weight module with highest weight $\lambda \in P$ and highest weight vector \overline{v}_λ. □
Combining Proposition 4.1 (b) and Theorem 4.3 (b), we have \(\text{ch} V^1 = \text{ch} V^q \). For a dominant integral weight \(\lambda \in P^+ \), the irreducible highest weight \(U_q(\mathfrak{g}) \)-module \(V^q(\lambda) \) has the following property.

Proposition 4.4. [8] Let \(\lambda \in P^+ \) and \(V^q(\lambda) \) be the irreducible highest weight module with highest weight \(\lambda \) and highest weight vector \(v_\lambda \). Then the following statements hold.

(a) If \(i \in I^r \), then \(f_i^{\lambda(h_i)+1} v_\lambda = 0 \).

(b) If \(i \in I^m \) and \(\lambda(h_i) = 0 \), then \(f_{ik} v_\lambda = 0 \) for all \(k > 0 \).

We now conclude that the classical limit of the irreducible highest weight \(U_q(\mathfrak{g}) \)-module \(V^q(\lambda) \) is isomorphic to the irreducible highest \(U(\mathfrak{g}) \)-module \(V(\lambda) \).

Theorem 4.5. If \(\lambda \in P^+ \) and \(V^q \) is the irreducible highest weight \(U_q(\mathfrak{g}) \)-module \(V^q(\lambda) \) with highest weight \(\lambda \), then \(V^1 \) is isomorphic to the irreducible highest weight module \(V(\lambda) \) over \(U(\mathfrak{g}) \) with highest weight \(\lambda \).

Proof. By Proposition 4.4, if \(i \in I^r \), then \(T_i^{\lambda(h_i)+1} v_\lambda = 0 \); if \(i \in I^m \) and \(\lambda(h_i) = 0 \), then \(T_{ik} v_\lambda = 0 \) for all \(k > 0 \). Therefore, \(V^1 \) is a highest weight \(U_q(\mathfrak{g}) \)-module with highest weight \(\lambda \) and highest weight vector \(\overline{v}_\lambda \) satisfying:

(a) If \(i \in I^r \), then \(f_i^{\lambda(h_i)+1} \overline{v}_\lambda = T_i^{\lambda(h_i)+1} \overline{v}_\lambda = 0 \).

(b) If \(i \in I^m \) and \(\lambda(h_i) = 0 \), then \(f_{ik} \overline{v}_\lambda = T_{ik} \overline{v}_\lambda = 0 \) for all \(k > 0 \).

Hence \(V^1 \cong V(\lambda) \) by Proposition 1.3. \(\square \)

By Proposition 4.1 (b), the character of \(V^q(\lambda) \) is the same as the character of \(V(\lambda) \), which is given by (see, [7, 3])

\[
\text{ch} V(\lambda) = \frac{\sum_{w \in W} \epsilon(w) e^{w(\lambda) + \rho - \rho(S_\lambda)}}{\prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\dim g_\alpha}}
\]

\[
(4.5) = \frac{\sum_{w \in W} \sum_{s \in F_\lambda} \epsilon(w) \epsilon(s) e^{w(\lambda + \rho - s) - \rho}}{\prod_{\alpha \in \Delta_+} (1 - e^{-\alpha})^{\dim g_\alpha}}.
\]

Theorem 4.6. The classical limit \(U_1 \) of \(U_q(\mathfrak{g}) \) is isomorphic to the universal enveloping algebra \(U(\mathfrak{g}) \) as \(\mathbb{Q} \)-algebras.

Proof. By Theorem 4.3 (a), we already have an epimorphism \(\psi : U(\mathfrak{g}) \to U_1 \) sending \(e_{il} \) to \(\overline{e}_{il} \), \(f_{il} \) to \(\overline{f}_{il} \), \(h \) to \(\overline{h} \), respectively. So it is sufficient to show that \(\psi \) is injective.

We first show that the restriction \(\psi_0 \) of \(\psi \) to \(U^0(\mathfrak{g}) \) is an isomorphism of \(U^0(\mathfrak{g}) \) onto \(U^0_1 \). Note that \(\psi_0 \) is certainly surjective. Since \(\chi = \{ h_i \mid i \in I \} \cup \{ d_i \mid i \in I \} \) is a \(\mathbb{Z} \)-basis of the free \(\mathbb{Z} \)-lattice \(P^\vee \), it is also a \(\mathbb{Q} \)-basis of the Cartan subalgebra \(\mathfrak{h} \). Thus any element of
$U^0(g)$ may be written as a polynomial in χ. Suppose $g \in \text{Ker}\psi_0$. Then, for each $\lambda \in P$, we have

$$0 = \psi_0(g) \cdot \varpi_\lambda = \lambda(g)\varpi_\lambda,$$

where v_λ is a highest weight vector of a highest weight $U_q(g)$-module of highest weight λ and $\lambda(g)$ denotes the polynomial in $\{\lambda(x) \mid x \in \chi\}$ corresponding to g. Hence, we have $\lambda(g) = 0$ for every $\lambda \in P$. Since we may take any integer value for $\lambda(x)(x \in \chi)$, g must be zero, which implies that ψ_0 is injective.

Next, we show that the restriction of ψ to $U^-(g)$, denote by ψ_-, is an isomorphism of $U^-(g)$ onto U^+_1. Suppose $\text{Ker}\psi_- \neq 0$, and take a non-zero element $u = \sum a_\zeta f_\zeta \in \text{Ker}\psi_-$, where $a_\zeta \in \mathbb{Q}$ and f_ζ are monomials in f_{il}'s $(i, l) \in I^\infty$. Let N be the maximal length of the monomials f_ζ in the expression of u and choose a dominant integral weight $\lambda \in P^+$ such that $\lambda(h_i) > N$ for all $i \in I$. The kernel of the $U^-(g)$-module homomorphism $\varphi : U^-(g) \to V^1$ given by $x \mapsto \psi(x) \cdot \varpi_\lambda$ is the left ideal of $U^-(g)$ generated by $f_{i}^{\lambda(h_i)+1}(i \in I^e)$ and f_{il} for $i \in I^m$ with $\lambda(h_i) = 0$. Because of the choice of λ, it is generated by $f_{i}^{\lambda(h_i)+1}$ for all $i \in I^e$.

Therefore, $u = \sum a_\zeta f_\zeta \notin \text{Ker}\varphi$. That is, $\psi_-(u) \cdot \varpi_\lambda = \psi(u) \cdot \varpi_\lambda \neq 0$, which is a contradiction. Therefore, $\text{Ker}\psi_- = 0$ and $U^-(g)$ is isomorphic to U^+_1.

Similarly, we have $U^+(g) \cong U^+_1$. Hence, by the triangular decomposition, we have the linear isomorphisms

$$U(g) \cong U^-(g) \otimes U^0(g) \otimes U^+(g) \cong U^+_1 \otimes U^-_1 \otimes U^+_1 \cong U_1,$$

where the last isomorphism follows from Proposition 3.3. It is easy to see that this isomorphism is actually an algebra isomorphism. \hfill \Box

We now show that U_1 inherits a Hopf algebra structure from that of $U_q(g)$. It suffices to show that U_{\hbar_1} inherits the Hopf algebra structure from that of $U_q(g)$. Since we have

\begin{equation}
\begin{aligned}
\Delta(T_{il}) &= T_{il} \otimes 1 + K_{il} \otimes T_{il}, \quad \Delta(s_{il}) = s_{il} \otimes K_{il}^{-1} + 1 \otimes s_{il}, \\
\Delta(q^h) &= q^h \otimes q^h, \\
S(T_{il}) &= -K_{il}^{-1}T_{il}, \quad S(s_{il}) = -s_{il}K_{il}, \quad S(q^h) = q^{-h}, \\
\epsilon(T_{il}) &= \epsilon(s_{il}) = 0, \quad \epsilon(q^h) = 1,
\end{aligned}
\end{equation}
we get
\begin{equation}
\Delta((q^h;0)_q) = \frac{q^h \otimes q^h - 1 \otimes 1}{q - 1} = (q^h;0)_q \otimes 1 + q^h \otimes (q^h;0)_q,
\end{equation}
\begin{equation}
S((q^h;0)_q) = (q^{-h};0)_q,
\end{equation}
\begin{equation}
\epsilon((q^h;0)_q) = 0.
\end{equation}

Hence the maps \(\Delta: U_{\mathbb{A}_1} \rightarrow U_{\mathbb{A}_1} \otimes U_{\mathbb{A}_1}, \epsilon: U_{\mathbb{A}_1} \rightarrow \mathbb{A}_1, \) and \(S: U_{\mathbb{A}_1} \rightarrow U_{\mathbb{A}_1} \) are all well-defined and \(U_{\mathbb{A}_1} \) inherits a Hopf algebra structure from that of \(U_q(\mathfrak{g}) \).

Let us show that the Hopf algebra structure of \(U_1 \) coincides with that of \(U(\mathfrak{g}) \) under the isomorphism we have been considering. Taking the classical limit of the equations in (4.6) and in (4.7), we have
\begin{equation}
\Delta(T_{\mathfrak{gl}}) = T_{\mathfrak{gl}} \otimes 1 + 1 \otimes T_{\mathfrak{gl}}, \quad \Delta(\bar{\mathfrak{gl}}) = \bar{\mathfrak{gl}} \otimes 1 + 1 \otimes \bar{\mathfrak{gl}}, \quad \Delta(\bar{h}) = \bar{h} \otimes 1 + 1 \otimes \bar{h},
\end{equation}
\begin{equation}
S(T_{\mathfrak{gl}}) = -T_{\mathfrak{gl}}, \quad S(\bar{\mathfrak{gl}}) = -\bar{\mathfrak{gl}}, \quad S(\bar{h}) = -\bar{h},
\end{equation}
\begin{equation}
\epsilon(T_{\mathfrak{gl}}) = \epsilon(\bar{\mathfrak{gl}}) = \epsilon(\bar{h}) = 0.
\end{equation}

This coincides with (1.3). Therefore, we have the following corollary.

Corollary 4.7. The classical limit \(U_1 \) of \(U_q(\mathfrak{g}) \) inherits a Hopf algebra structure from that of \(U_q(\mathfrak{g}) \) so that \(U_1 \) and \(U(\mathfrak{g}) \) are isomorphic as Hopf algebras over \(\mathbb{Q} \).

Since \(U^-(\mathfrak{g}) \cong U_1^- \), by the same argument in [5, Theorem 3.4.10], we have the following theorem when we take the classical limit on the Verma module over \(U_q(\mathfrak{g}) \).

Theorem 4.8. [5] If \(\lambda \in P \) and \(V^q \) is the Verma module \(M^q(\lambda) \) over \(U_q(\mathfrak{g}) \) with highest weight \(\lambda \), then its classical limit \(V^1 \) is isomorphic to the Verma module \(M(\lambda) \) over \(U(\mathfrak{g}) \) with highest weight \(\lambda \).
APPENDIX A.

We shall provide an explicit commutation relations for e_{ik} and f_{jl}, for $(i, k), (j, l) \in I^\infty$ in $U_q(g)$. Recall that, we have the co-multiplication formulas

$$\Delta(f_{jl}) = \sum_{m+n=l} q_{(i)}^{-mn} f_{im} K_i^n \otimes f_{in}.$$

Then, the defining relation (2.5) yields the following lemma.

Lemma A.1. [8] For any $i, j \in I$ and $k, l \in \mathbb{Z}_{>0}$, we have

(a) If $i \neq j$, then e_{ik} and f_{jl} are commutative.

(b) If $i = j$, we have the following relations in $U_q(g)$ for all $k, l > 0$

$$\sum_{m+n=k} q_{(i)}^{n(m-s)} \nu_{in} e_{is} f_{im} K_i^{n-s} = \sum_{m+n=k} q_{(i)}^{n(m-s)} \nu_{in} f_{im} e_{is} K_i^n. \tag{A.1}$$

Since we have

$$K_i^n e_{im} K_i^{-n} = q_{(i)}^{2mn} e_{im},$$

$$K_i^n f_{im} K_i^{-n} = q_{(i)}^{-2mn} f_{im}.$$

We can modify the equations (A.1) as the following form

$$\sum_{m+n=k} q_{(i)}^{n(s-m)} \nu_{in} K_i^{n-s} e_{is} f_{im} = \sum_{m+n=k} q_{(i)}^{n(s-m)} \nu_{in} K_i^n f_{im} e_{is}. \tag{A.2}$$

If $i \in I^\text{re}$, then $k = l = 1$ and $m = s$, so there are only one commutation relation in this case

$$e_i f_i + \nu_1 K_i^{-1} = f_i e_i + \nu_1 K_i. \tag{A.3}$$

If $i \in I^\text{im}$ (we omit the notation “i” in this case for simplicity), we first assume that $k = l$. By (A.2), we have

$$k = l = 1, \quad e_1 f_1 + \nu_1 K^{-1} = f_1 e_1 + \nu_1 K,$$

$$k = l = 2, \quad e_2 f_2 + \nu_1 K^{-1} e_1 f_1 + \nu_2 K^{-2} = f_2 e_2 + \nu_1 K f_1 e_1 + \nu_2 K^2,$$

$$\ldots$$

$$k = l = n, \quad e_n f_n + \nu_1 K^{-1} e_{n-1} f_{n-1} + \ldots + \nu_{n-1} K^{1-n} e_1 f_1 + \nu_n K^{-n} = f_n e_n + \nu_1 K f_{n-1} e_{n-1} + \ldots + \nu_{n-1} K^{n-1} f_1 e_1 + \nu_n K^n. \tag{A.4}$$

By direct calculation, we can write \(e_n f_n - f_n e_n \) in the following way
\[
e_n f_n - f_n e_n = \alpha_1 f_{n-1} e_{n-1} + \alpha_2 f_{n-2} e_{n-2} + \cdots + \alpha_{n-1} f_1 e_1 + \alpha_n,
\]
where
\[
\begin{align*}
\alpha_1 &= \nu_1(K - K^{-1}), \\
\alpha_2 &= \nu_2(K^2 - K^{-2}) - \nu_1 K^{-1} = \nu_2(K^2 - K^{-2}) - \nu_1^2 K^{-1}(K - K^{-1}), \\
\alpha_3 &= \nu_3(K^3 - K^{-3}) - \nu_1 K^{-1} = \nu_3(K^3 - K^{-3}) - \nu_1 K^{-1} + (\nu_1^3 - \nu_1^2)K^{-2}(K - K^{-1}), \\
\alpha_n &= \nu_n(K^n - K^{-n}) - \nu_1 K^{-1} = \nu_n(K^n - K^{-n}) - \nu_1 K^{-1} - \nu_2 K^{-2}(K - K^{-1}) - \cdots - \nu_{n-1} K^{-(n-1)} K^{-1}.
\end{align*}
\]

If \(m \in \mathbb{N} \) and \(c = (c_1, \ldots, c_d) \) is a composition of \(m \) (i.e. \(c \in \mathcal{C}_m \)), then we set \(\nu_c = \prod_{k=1}^d \nu_k \) and \(\|c\| = d \).

By induction, we have
\[
e_n f_n = \sum_{p=1}^{n} \left\{ \sum_{r=1}^{p} \left[\nu_r \vartheta_{p-r} K^{r-p}(K^{r} - K^{-r}) \right] \right\} f_{n-p} e_{n-p} + f_n e_n,
\]
where \(\vartheta_m = \sum_{c \in \mathcal{C}_m} (-1)^{\|c\|} \nu_c \). For example, \(\vartheta_4 = \nu_4^4 - 3\nu_1^2 \nu_2 + 2\nu_1 \nu_3 + \nu_2^2 - \nu_4 \).

Next, we assume that \(k - l = t \), then \(m - s = t \). By (A.2), we get
\[
\sum_{n=0}^{l} q_{(i)}^{-n} \nu_n K^{-n} e_{l-n} f_{k-n} = \sum_{n=0}^{l} q_{(i)}^{-n} \nu_n K^n f_{k-n} e_{l-n}.
\]
Hence, we have
\[
e_l f_k + q_{(i)}^{-l} \nu_1 K^{-1} e_{l-1} f_{k-1} + \cdots + q_{(i)}^{-(l-1)} \nu_{l-1} K^{-(l-1)} e_{1} f_{t+1} + q_{(i)}^{-l} \nu_l K^{-l} f_t = f_k e_l + q_{(i)}^{l} \nu_1 K f_{k-1} e_{l-1} + \cdots + q_{(i)}^{l} \nu_{l-1} K^{l-1} f_{t+1} e_1 + q_{(i)}^{l} \nu_l K^l f_t.
\]
We substitute \(K \) by \(q_{(i)}^l K \) in formula (A.6) and obtain
\[
e_l f_k = \sum_{p=1}^{l} \left\{ \sum_{r=1}^{p} \left[\nu_r \vartheta_{p-r} (q_{(i)}^l K)^{r-p} ((q_{(i)}^l K)^r - (q_{(i)}^l K)^{-r}) \right] \right\} f_{k-p} e_{l-p} + f_k e_l.
\]
Finally, we assume that \(l - k = t \), then \(s - m = t \). By (A.2), we get
\[
\sum_{n=0}^{k} q_{(i)}^{n} \nu_{n} K^{-n} e_{l-n} f_{k-n} = \sum_{n=0}^{k} q_{(i)}^{-n} \nu_{n} K^{n} f_{k-n} e_{l-n}.
\]
Hence, we have
\[
e_{l} f_{k} + q_{(i)}^{t} \nu_{1} K^{-1} e_{l-1} f_{k-1} + \cdots + q_{(i)}^{(l-1)t} \nu_{l-1} K^{-(l-1)} e_{l+1} f_{1} + q_{(i)}^{lt} \nu_{l} K^{-l} e_{l} = f_{k} e_{l} + q_{(i)}^{-t} \nu_{1} K f_{k-1} e_{l-1} + \cdots + q_{(i)}^{-(l-1)t} \nu_{l-1} K^{l(l-1)} f_{1} e_{l+1} + q_{(i)}^{-lt} \nu_{l} K^{l} e_{l}.
\]
We substitute \(K \) by \(q_{(i)}^{-t} K \) in formula (A.6) and obtain
\[
(A.8) \quad e_{l} f_{k} = \sum_{p=1}^{k} \left\{ \sum_{r=1}^{p} \left[\nu_{r} \vartheta_{p-r} (q_{(i)}^{-t} K)^{r-p} ((q_{(i)}^{-t} K)^{r} - (q_{(i)}^{-t} K)^{-r}) \right] \right\} f_{k-p} e_{l-p} + f_{k} e_{l}.
\]
Combine the formulas (A.6), (A.7), and (A.8), we have the following statement.

Proposition A.2. For \(i \in \mathbb{N}^{m} \), we have the following commutation relations for all \(k, l > 0 \)
\[
e_{l} f_{k} - f_{k} e_{l} = \sum_{p=1}^{\min\{k, l\}} \left\{ \sum_{r=1}^{p} \left[\nu_{r} \vartheta_{l-p-r} (q_{(i)}^{-k-l} K_{1})^{r-p} ((q_{(i)}^{-k-l} K_{1})^{r} - (q_{(i)}^{-k-l} K_{1})^{-r}) \right] \right\} f_{k-p} e_{l-r} + f_{k} e_{l}.
\]
Where \(\vartheta_{l-p-r} = \sum_{c \in c_{p-r}} (-1)^{\|c\|} \nu_{ic} \).

References

[1] T. Bozec, *Quivers with loops and perverse sheaves*, Math. Ann. 362 (2015), 773-797.

[2] T. Bozec, *Quivers with loops and generalized crystals*, Compositio Math. 152 (2016), 1999-2040.

[3] T. Bozec, O. Schiffmann, E. Vasserot, *On the number of points of nilpotent quiver varieties over finite fields*, arXiv:1701.01797.

[4] Z. Fan, Y. Li, *Two-parameter quantum algebras, canonical bases and categorifications*, Int. Math. Res. Not. 16 (2015), 7016-7062.

[5] J. Hong, S.-J. Kang, *Introduction to Quantum Groups and Crystal Bases*, Graduate Studies in Mathematics 42, Amer. Math. Soc., 2002.

[6] J.C. Jantzen, *Lectures on Quantum Groups*, Graduate Studies in Mathematics, vol.6, Amer. Math. Soc., 1996.

[7] S.-J. Kang, *Borcherds-Bozec algebras, root multiplicities and the Schofield construction*, Communications in Contemporary Mathematics 21 (2019), no.3.

[8] S.-J. Kang, Y. R. Kim *Quantum Borcherds-Bozec algebras and their integrable representations*, arXiv:1912.06115.
[9] S.-J. Kang, M. Kashiwara, O. Schiffmann, Geometric construction of crystal bases for quantum generalized Kac-Moody algebras, Adv. Math. 222 (2009), 996–1015.

[10] S.-J. Kang, M. Kashiwara, O. Schiffmann, Geometric construction of highest weight crystals for quantum generalized Kac-Moody algebras, Math. Ann. 354 (2012), 193–208.

[11] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.

[12] M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9–36.

[13] G. Lusztig, Introduction to quantum groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010

[14] G. Lusztig, Quantum deformation of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237–249.

[15] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.

[16] Y. Saito, Crystal bases and quiver varieties, Math. Ann. 324 (2002), 675–688.

Harbin Engineering University, Harbin, China
E-mail address: fancz@ksu.edu

Korea Research Institute of Arts and Mathematics, Asan-si, Chungcheongnam-do, 31551, Korea
E-mail address: soccerkang@hotmail.com

Graduate School of Education, Hankuk University of Foreign Studies, Seoul, 02450, Korea
E-mail address: rocky777@hufs.ac.kr

Harbin Engineering University, Harbin, China
E-mail address: tbl_2019@hrbeu.edu.cn