Quantum Computing for Neutrino-nucleus Scattering with NISQ Devices

Andy C. Y. Li (Fermilab Quantum Institute)

Quantum Computing User Forum at ORNL

21 April 2020

Alessandro Roggero (UW)
Andy C. Y. Li (Fermilab)
Joseph Carlson (LANL)
Rajan Gupta (LANL)
Gabriel N. Perdue (Fermilab)

preprint: arXiv:1911.06368
(accepted by Physical Review D)
Neutrino-nucleus scattering

- Accelerator Neutrino Experiments, e.g. DUNE

- Simulate scattering cross sections to predict detector efficiency and backgrounds
Simulate response function and cross sections

- Dynamical linear response function

\[S(\omega, \hat{O}) = \sum_{\nu} |\langle \phi_{\nu} | \hat{O} | \phi_0 \rangle|^2 \delta(E_{\nu} - E_0 - \omega) = \int dt \langle \phi_0 | \hat{O}^\dagger e^{-i(\hat{H}-E_0-\omega)t} \hat{O} | \phi_0 \rangle \]

Nuclei: \(\hat{H} | \phi_{\nu} \rangle = E_{\nu} | \phi_{\nu} \rangle \)
ground state: |\phi_0\rangle

- \(S(\omega, \hat{O}) \rightarrow \) inclusive cross sections

- Sample the final nuclei state |\phi_{\nu}\rangle \rightarrow \) semi-exclusive cross sections

- Quantum advantage: bigger nuclei, wide range of kinematics
Starting point: pionless effective field theory

\[H = 2DtA - t \sum_{f=1}^{N_f} \sum_{f',i,j}^{M} \left[c_{i,f}^\dagger c_{j,f} + c_{i,f}^\dagger c_{j,f}^\dagger \right] \]

Kinetic energy

\[+ \frac{1}{2} C_0 \sum_{f \neq f'}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} \]

Attractive 2-body contact interaction \((C_0 < 0)\)

\[+ \frac{D_0}{6} \sum_{f \neq f' \neq f''}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} n_{i,f''} \]

Repulsive 3-body interaction \((D_0 > 0)\) to avoid collapse into deeply bound state

- Approximately reproduce binding of 3 and 4 nucleons

 [Phys. Lett. B 772 839-848 (2017), PRL 124 143402 (2020)]

- Simple model for initial study and quantum resource estimation

 – Future: need interactions involving virtual pions for accurate prediction
Dynamic linear response quantum algorithm

\[S(\omega, \hat{O}) = \sum_{\nu} |\langle \phi_{\nu} | \hat{O} | \phi_{0} \rangle|^2 \delta(E_{\nu} - E_{0} - \omega) \]

\[= \sum_{\nu} |\langle \phi_{\nu} | \psi_{\hat{O}} \rangle|^2 \delta(E_{\nu} - E_{0} - \omega) \langle \phi_{0} | \hat{O}^\dagger \hat{O} | \phi_{0} \rangle \]

Prob. of \(|\psi_{\hat{O}} \rangle \) in eigenbasis \(|\phi_{\nu} \rangle \) \(\rightarrow \) QPE

Ground state meas.

1. Qubit encoding: represent the system by qubits

2. State preparation: \(|\psi_{\hat{O}} \rangle \)

3. Quantum phase estimation of \(|\psi_{\hat{O}} \rangle \) with \(\hat{U} = e^{i(\hat{H} - E_{0})} \)

4. Measure ancilla qubits: probability distribution \(\rightarrow S(\omega, \hat{O}) \)
(nuclei state by measuring the encoding qubits)

Complexity

\[|\psi_{\hat{O}} \rangle = \frac{\hat{O} |\phi_{0} \rangle}{\sqrt{\langle \phi_{0} | \hat{O}^\dagger \hat{O} | \phi_{0} \rangle}} \]
Qubit encoding efficiency

- Nucleons (fermions) \rightarrow qubits

- General mapping: Jordan-Wigner, Bravyi-Kitaev [1], etc.

- Special case of fixed nucleons: lattice-location encoding
 nucleon 1: $|1\rangle_{N1} = |0\rangle_{q0}|0\rangle_{q1}, |2\rangle_{N1} = |0\rangle_{q0}|1\rangle_{q1}, \ldots$
 nucleon 2: $|1\rangle_{N2} = |0\rangle_{q2}|0\rangle_{q3}, |2\rangle_{N2} = |0\rangle_{q2}|1\rangle_{q3}, \ldots$
 ...

- Efficiency: A nucleons on a lattice with M sites and N_f fermion mode per site

 JW, BK : $N_f \times M$ qubits

 Lattice-location : $A \log_2 M$ qubits

\[
H = 2DtA - t \sum_{f=1}^{N_f} \sum_{i,j}^{M} \left[c_{i,f}^\dagger c_{j,f} + c_{i,f}^\dagger c_{j,f} \right] \\
+ \frac{1}{2} C_0 \sum_{f \neq f'}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} \\
+ \frac{D_0}{6} \sum_{f \neq f' \neq f''}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} n_{i,f''},
\]

[1]: Ann. Phys. 298, 210 (2002)
Quantum phase estimation

- QFT and Control-U circuits
 \(\hat{U} = e^{i(\hat{H} - E_0)} \): system propagator

- QFT: gate cost = $O(N^2)$
 N: number of ancilla qubits

- U circuits: Trotter decompositions
 - $U_1(\tau) = e^{-i\tau K} e^{-i\tau V}$
 - $U_2^{K+V}(\tau) = e^{-i\tau K/2} e^{-i\tau V} e^{-i\tau K/2}$
 - $U_2^{V+K}(\tau) = e^{-i\tau V/2} e^{-i\tau K} e^{-i\tau V/2}$

- Control-U circuits: replace gates by their controlled version

Superposition

\[
\begin{align*}
|0\rangle & \rightarrow H |0\rangle \rightarrow \cdots \\
|0\rangle & \rightarrow H |0\rangle \rightarrow \cdots \\
|0\rangle & \rightarrow H |0\rangle \rightarrow \cdots \\
|\psi\rangle & \rightarrow C - U^0 |\psi\rangle \rightarrow C - U^1 |\psi\rangle \rightarrow \cdots \rightarrow C - U^{N-1}
\end{align*}
\]

Controlled U Operations

\[
\begin{align*}
H = 2D t A - t \sum_{f=1}^{N_f} \sum_{i=1}^{M} \left[c_{i,f}^j c_{j,f} + c_{i,f}^j c_{j,f} \right]
+ \frac{1}{2} C_0 \sum_{f \neq f'} \sum_{i=1}^{N_f} n_{i,f} n_{i,f'}
+ \frac{D_0}{6} \sum_{f \neq f' \neq f''} \sum_{i=1}^{N_f} n_{i,f} n_{i,f'} n_{i,f''}
\end{align*}
\]

- K: kinetic energy
- V: potential energy
- Diagonal in qubit basis after JW
Gate counts of quantum phase estimation

- Gate counts based on 2 gates
 - CNOT: control-not, two-qubit gate
 - R_Z: rotation-Z, single-qubit gate

- Quadratic decomposition: favorable

- Gate counts $\rightarrow \sim 10^{10}$
 - Final 99% fidelity: $1 - e^{\frac{\ln 0.99}{10^{10}}}$
 $\rightarrow \sim 10^{-12}$ gate error rate
 - Need error-corrected qubits for full linear response algorithm simulating realistic model
NISQ implementation of modified linear response algorithm

1. Qubit encoding: small # of nucleons
 - Lattice-location encoding

2. State preparation: \(|\psi_\hat{\theta}\rangle = \frac{\hat{\theta}|\phi_0\rangle}{\sqrt{\langle \phi_0 | \hat{\theta}^\dagger \hat{\theta} | \phi_0 \rangle}} \)
 - Approximated low-energy state \(|\tilde{\phi}_0\rangle \) by a variational ansatz

3. Quantum phase estimation of \(|\psi_\hat{\theta}\rangle \) with \(\hat{U} = e^{i(\hat{H} - E_0)} \)
 - Time evolution by \(\hat{U}(t) = e^{i(\hat{H} - E_0)t} \) on a pretrained initial state

4. Measure ancilla qubits: probability distribution \(\rightarrow S(\omega, \hat{O}) \)
 - Directly measure \(S(\omega, \hat{O}) = \int dt \langle \phi_0 | \hat{O}^\dagger e^{-i (\hat{H} - E_0 - \omega)t} \hat{O} | \phi_0 \rangle \) (no ancilla qubits)
4-qubit proof-of-principle experiment

• Triton toy model:
 – 3 nucleons with one chosen to be static on a 2 by 2 lattice
 – 2 effective nucleons ($A = 2$, $N_f = 2$, $M = 4$)
 – Two-nucleon dynamics incorporates important information about nuclear response ([arXiv:1909.06400](https://arxiv.org/abs/1909.06400))

• Lattice-location encoding: $A \log M = 4$ qubits
 – In comparison, JW needs $N_f M = 8$ qubits

\[
H = 2DtA - t \sum_{f=1}^{N_f} \sum_{i,j}^{M} \left[c_{i,f}^\dagger c_{i,f} + c_{i,f}^\dagger c_{i,f}^\dagger\right] \\
+ \frac{1}{2} C_0 \sum_{f\neq f'}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} \\
+ \frac{D_0}{6} \sum_{f\neq f'\neq f''}^{N_f} \sum_{i=1}^{M} n_{i,f} n_{i,f'} n_{i,f''}
\]

IBMQ Poughkeepsie

\[
C_0 = U, D_0 = -4U
\]
State preparation with a variational ansatz

• 2-parameter variational ansatz $|\phi(\vec{\theta})\rangle$

• Trained by a noiseless simulator to minimized the energy $E(\vec{\theta}) = \langle \phi(\vec{\theta})|H|\phi(\vec{\theta})\rangle$

• Optimized state: $|\tilde{\phi}_0\rangle = \hat{O}|\phi_0\rangle$ (low-energy state)

• Run the pretrained circuit on the IBM QPU

• QPU shows a promising result with error mitigation (readout error mitigation and noise extrapolation)
Time evolution with 1 Trotter step

- 1st order Trotter’s step: $U(\tau) = e^{-i\tau K} e^{-i\tau V}$

- Initial state: pretrained state $|\tilde{\phi}_0\rangle$

- 3-body contact with: $C_3(\tau) = |\langle 0000|U(\tau)\tilde{\phi}_0\rangle|^2$
 $|0000\rangle$: all nucleons at site 1

\[
H = 8t + \frac{U}{2} - 2t \sum_{k=1}^{4} X_k - \frac{U}{4} (Z_1 Z_4 + Z_2 Z_3) - \frac{U}{4} \sum_{i<j<k} Z_i Z_j Z_k
\]
Result of 1-Trotter-step time evolution

- Expt. result: 3-week-window collection
- Output: considerable change from run to run
- Error is noticeable for a single Trotter’s step → cannot do multiple Trotter’s steps
- Error mitigation is insufficient to bring down the error
Promising result and further studies needed

1. Qubit encoding: small # of nucleons
 - Lattice-location encoding

2. State preparation: $|\psi_\tilde{\phi}\rangle = \frac{\hat{\phi}_0}{\sqrt{\langle \phi_0 | \hat{\phi}^\dagger \hat{\phi} | \phi_0 \rangle}}$
 - Approximated low-energy state $|\tilde{\phi}_0\rangle$ by a variational ansatz

3. Quantum phase estimation of $|\psi_\tilde{\phi}\rangle$ with $\hat{U} = e^{i(\hat{H} - E_0)}$
 - Time evolution by $\hat{U}(t) = e^{i(\hat{H} - E_0)t}$ on a pretrained initial state

4. Measure ancilla qubits: probability distribution $\rightarrow S(\omega, \hat{O})$
 - Directly measure $S(\omega, \hat{O}) = \int dt \langle \phi_0 | \hat{\phi}^\dagger e^{-i(\hat{H} - E_0 - \omega)t} \hat{O} | \phi_0 \rangle$

Further studies on error mitigation, hardware improvement
Overview

• Quantum algorithm for dynamic linear response $S(\omega, \hat{D})$
 – Inclusive/exclusive cross sections of neutrino-nucleus scattering
 – Components: state preparation and quantum phase estimation
 – Full scale studies with realistic model: potentially an important application of error-corrected quantum computer

• NISQ implementation
 – Components: ground state preparation and time evolution
 – Promising result with today hardware
 – Linear response of simple models: near-term applications with error mitigation strategies implemented and hardware improvement