To the Editor:

We read with great interest the work of Adegunsoye and colleagues showing a significant association between enlarged mediastinal lymph nodes (MLNs) on chest computed tomography and survival in patients with interstitial lung diseases (ILDs) (1). They report a 66% prevalence of enlarged MLNs according to the type of ILD, with various potential causes of development as previously pointed out. The authors raise the hypothesis that enlarged MLNs may be reflective of underlying immunologic phenomena in lung tissue, which in turn contribute to the pathophysiology of disease progression in pulmonary fibrosis. However, we suggest that the potential involvement of environmental exposures in ILDs, particularly anthracosis, should be discussed. Anthracosis caused by coal dust and other environmental factors such as air pollution, biomass fuels used extensively for cooking (“hut lung”), and cigarette smoking is also known to be a source of damage in pulmonary alveolar proteinosis does not necessarily imply idiopathic disease. Lancet Respir Med 2018;6:448.

Copyright © 2019 by the American Thoracic Society

Prognostic Impact of Mediastinal Lymph Nodes in Interstitial Lung Diseases: Is Environmental Exposure the Offender?

Warda Khamis, M.D.*
Olivia Freynet, M.D.
Lucile Sese, M.D.
Jean-François Bernaudin, M.D., Ph.D.
Hilario Nunes, M.D., Ph.D.
Service de Pneumologie
Hôpital Avicenne
Assistance Publique-Hôpitaux de Paris
Inserm 1272
Université Paris 13
Bobigny, France

*Corresponding author (e-mail: warda.khamis@aphp.fr).

References

1. Adegunsoye A, Oldham JM, Bonham C, Hrusch C, Nolan P, Klech W, et al. Prognosticating outcomes in interstitial lung disease by mediastinal lymph node assessment: an observational cohort study with independent validation. Am J Respir Crit Care Med [online ahead of print] 14 Sep 2018; DOI: 10.1164/rccm.201804-0761OC.

2. Khanna D, Denton CP, Jahreis A, van Laar JM, Frech TM, Anderson ME, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): a phase 2, randomised, controlled trial. Lancet 2016;387:2630–2640.

3. Ngom A, Dumont P, Diot P, Lemarié E. Benign mediastinal lymphadenopathy in congestive heart failure. Chest 2001;119:653–656.

4. Marie I, Gehanno JF, Bubenheim M, Duval-Modeste AB, Joly P, Dominique S, et al. Prospective study to evaluate the association between systemic sclerosis and occupational exposure and review of the literature. Autoimmun Rev 2014;13:151–156.

5. Winterbottom CJ, Shah RJ, Patterson KC, Kreider ME, Panettieri RA Jr, Rivera-Lebrón B, et al. Exposure to ambient particulate matter is associated with accelerated functional decline in idiopathic pulmonary fibrosis. Chest 2018;153:1221–1228.

6. Ronsmans S, Nemery B. The presence of autoimmune antibodies in pulmonary alveolar proteinosis does not necessarily imply idiopathic disease. Lancet Respir Med 2018;6:448.

Author disclosures are available with the text of this letter at www.atsjournals.org.

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Germ (dgerm@thoracic.org).

Originally Published In Press as DOI: 10.1164/rccm.201811-2209LE on January 17, 2019
By D. Gern

Reply to Lescoat et al. and to Khamis et al.

From the Authors:

We welcome the interest shown by Lescoat and colleagues and Khamis and colleagues in our publication (1), and thank the authors for their letters. Although the clinical value of plasma biomarkers is well established in many chronic disease states, we recognize that limitations exist regarding their use in prognostication of outcomes. As alluded to by Lescoat and colleagues, the magnitude of the prognostic effect for individual plasma biomarkers will likely vary across diverse forms of interstitial lung disease (ILD) and at different thresholds. Indeed, circulating plasma biomarker levels may be lower relative to biomarker concentrations within specific organs that are directly involved in tissue repair and homeostasis. Also, the extent of disease activity that typically occurs across multiple extrapulmonary organs, such as those affected in connective tissue disease associated with ILD, may accentuate this variation.

With regard to IL-6, it has been suggested that this cytokine has a bidirectional role in the pathogenesis of lung fibrosis. Whereas IL-6 blockade at an early inflammatory stage can accelerate lung fibrosis, blockade at an early fibrotic stage may ameliorate subsequent fibrogenesis (2). These factors could conceivably account for the potentially favorable results that are observed when IL-6 is therapeutically targeted in scleroderma-associated ILD (3). We did find that mean plasma IL-6 levels were nonsignificantly decreased in subjects with enlarged mediastinal lymph nodes (MLNs) in our study, but chose to report median plasma cytokine values in our comparative analyses because these values are less subject to the influence of outliers (1). In both our primary and replication cohorts, the median plasma IL-6 levels did not differ by MLN size (Figure 1) and did not predict mortality risk. We therefore reiterate that we cannot conclude from the data presented in our study that IL-6 might be protective in fibrotic ILD, and agree with Lescoat and colleagues that further study of the blockade of IL-6 in clinical trials is warranted (1).

References

1. Adegunsoye A, Oldham JM, Bonham C, Hrusch C, Nolan P, Klejch W, et al. Prognosticating outcomes in interstitial lung disease by mediastinal lymph node assessment: an observational cohort study with independent validation. Am J Respir Crit Care Med [online ahead of print] 14 Sep 2018; DOI: 10.1164/rcrm.201804-0761OC.
2. Kirchner J, Broll M, Müller P, Pomjanski N, Biesterfeld S, Liermann D, et al. CT differentiation of enlarged mediastinal lymph node due to anthracosis from metastatic lymphadenopathy: a comparative study proven by endobronchial US-guided transbronchial needle aspiration. Diagn Interv Radiol 2015;21:128–133.
3. Ley B, Collard HR. Epidemiology of idiopathic pulmonary fibrosis. Clin Epidemiol 2013;5:483–492.
4. Lee SH, Kim DS, Kim YW, Chung MP, Uh ST, Park CS, et al. Association between occupational dust exposure and prognosis of idiopathic pulmonary fibrosis: a Korean national survey. Chest 2015;147:465–474.
5. Pinheiro GA, Antao VC, Wood JM, Wassell JT. Occupational risks for idiopathic pulmonary fibrosis mortality in the United States. Int J Occup Environ Health 2008;14:117–123.
6. Gold LS, Ward MH, Dosemeci M, De Roos AJ. Systemic autoimmune disease mortality and occupational exposures. Arthritis Rheum 2007;56:3189–3201.

Figure 1. (A) Box plots depicting IL-6 (pg/ml) levels stratified by MLN size (mm) in patients with ILD within the UCHICAGO (n = 116) and UCDAVIS (n = 118) cohorts. Comparison of cytokine concentrations in patients with MLN < 10 mm and MLN ≥ 10 mm, using the Wilcoxon signed-rank test for matched nonparametric data in 10,000 bootstrap replications to improve precision at the 95% confidence interval level. (B) Box plots depicting NT-proBNP (pg/ml) levels stratified by MLN size (mm) in patients with ILD within the UCHICAGO cohort (n = 628). For clarity, NT-proBNP data points for two subjects (16.116 and 22.812 pg/ml) are not depicted. Group comparisons for unmatched nonparametric data were conducted using the Pearson chi-squared test for equality of the medians between patients with MLN ≥ 10 mm (purple) and MLN < 10 mm (gray). ILD = interstitial lung disease; MLN = mediastinal lymph node; NT-proBNP = N-terminal pro–B-type natriuretic peptide; UCDAVIS = University of California, Davis; UCHICAGO = University of Chicago.

This article is open access and distributed under the terms of the Creative Commons Attribution-Non-Commercial-No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Gern (dgern@thoracic.org).

Supported by NIH R21AI126031, NIH K23HL138190, NIH R01AI125644, and NIH R01HL130796.

Originally Published in Press as DOI: 10.1164/rcrm.201811-2208LE on January 17, 2019.