Coexistence of Oncogenic Human Papillomavirus Genotypes in Condylomata Acuminata among Children and Adolescents

Enklajd MARSELA1, Angelika J. FISCHBECK1, Johannes A. HILDEBRAND1, Rui AOKI1, Lars E. FRENCH1, Andreas WOLLENBERG1, Elisa SCHMOECKEL2 and Markus REINHOLZ*1

1Department of Dermatology and Allergy, and 2Institute of Pathology, Ludwig Maximilian University (LMU), DE-80337 Munich, Germany.
*E-mail: markus.reinholz@med.uni-muenchen.de
Accepted Jan 9, 2020; Epub ahead of print Jan 17, 2020

More than 40 out of 200 identifiable human papillomavirus (HPV) types specifically infect the epithelia of the anogenital tract (1). Consequently, these HPV infections can manifest as condylomata acuminata (CA), also known as genital warts, which usually appear as flesh-coloured, verrucous papules or plaques in the perianal area (2). HPV types are divided into “low risk” (lr) and “high risk” (hr, oncogenic) types, based on the associated risk of neoplastic transformation (3). Although it is the most common sexually transmitted disease worldwide (4), recent studies suggest that the majority of affected children acquire HPV infection from non-sexual contact (5, 6). Therefore, the debate about HPV infection in children is moving away from the mode of transmission, and is concentrating more on the prevalence of HPV (7). Epidemiological data on CA in children are difficult to assess, and the prevalence of this condition in juvenile patients remains unknown (2). The main goals of this retrospective study were to define the epidemiological characteristics and the HPV genotype distribution in a group of juvenile patients presenting with CA in our university hospital.

MATERIALS AND METHODS

Following ethical approval (UE No. 17-167) granted by the Ethics Committee of Ludwig-Maximilian-University (LMU), Munich, Germany, patient data were collected from the pathology database of LMU. A total of 17 patients, all 18 years of age or younger, presenting with histologically confirmed CA between 2003 and 2017, were retrospectively included for further analysis. Tissue samples of 13 matching patients with histologically normal anogenital skin were examined as controls. Differentiation according to sex, age and localization of the sample collection, was performed. DNA was extracted from formalin-fixed paraffin-embedded tissue in the form of 10-μm thick unstained slides. Amplification of HPV-DNA was performed by PCR using 2 pairs of primers obtained from the LCD-Array HPV Type 3.5 kit (Chipron GmbH, Berlin, Germany). Amplified HPV-DNA was used for hybridization with the LCD-Array HPV Type 3.5 kit detecting 32 α-HPV types (6, 11, 16, 18, 31, 33, 35, 39, 42, 44, 45, 51, 52, 53, 54, 56, 58, 59, 61, 62, 66, 67, 68, 70, 72, 73, 81, 82, 83, 84, 90, 91) according to the manufacturer’s instructions, evaluated using the company’s SlideReader V12 software (Chipron GmbH, Berlin Germany).

RESULTS

Out of the 17 patients with CA, 4 were males (23.5%) and 13 females (76.5%), age range 2–18 years, mean age of all patients 12.6 years. All male patients presented with CA in the perianal region, while the penile shaft was not affected. The youngest boy was 8 years old and the oldest 17 years old. On the other hand, the manifestations of CA in female patients were more variable, with the most common being in perianal (38.5%), cervical (23.1%), vulvar (23.1%) and vaginal (15.4%) areas. In addition, in the patient group under the age of 14 years, 6 out of 7 (85.7%) children presented with genital warts in the perianal area. The predominantly affected anatomical regions in the patient group aged 14 years or older were cervix, vulva and vagina (70.0%) (Table SI1).

Overall, HPV-DNA was detected in all 17 patients presenting with CA. Slightly more than half of these patients (52.9%) were infected with hrHPV types in addition to the lrHPVs. The most commonly identified hrHPV type was HPV 16, which was present as a coinfection in 6 patients (35.3%) with CA, and in only one healthy patient (7.7%) as a single infection (Fig. 1). In 7 (53.8%) healthy control samples no HPV-DNA could be detected. lrHPVs could be identified in healthy controls, which, however, remained at a much lower rate (38.5%) compared with the CA skin samples (100.0%). HPV 6 was by far the most commonly detected type (94.1%), followed by HPV 11 (23.5%), in children with CA (Table 1).

DISCUSSION

This study revealed hrHPV coinfection in more than half of the juvenile patients with CA (52.9%) and in only one (7.7%) control patient. Notwithstanding the increase in reporting, data from paediatric anogenital samples in the literature remain sparse and often contradictory. This can...
be explained by different socio-demographic profiles of the
populations studied, the limited number of cases, the sensi-
tivity of the HPV test and the quality of the analysis itself
(7, 8). A 7-year study of children under the age of 12 years
reported hrHPV (type 16) detection in only 1, and hrHPVs
(type 6 and 11) in 11 of the 40 patients undergoing wart
excision and HPV genotyping by PCR (9). Another review
of nearly 200 children with confirmed HPV-DNA in their
CA lesions reported a detection rate of only 4% for HPV
16 or 18 and 56% for HPV 6 or 11 (7). In comparison with
the previous reports, the rate of oncogenic HPV subtypes
detected in our current study must be regarded as remarka-
ble high. The main reasons for this could be selection bias
due to the small sample cohort originating from a tertiary
referral hospital, as well as the inclusion of adolescents up
to the age of 18 years into our analysis, who have a higher
probability of becoming sexually active. Furthermore, the
modern microarray-based genotyping used in this study
may have higher sensitivity and specificity for identifica-
tion of a wider range of hrHPV subtypes compared with
the technologies applied in the aforementioned studies.

In our analysis we were also able to assess the HPV
detection rate of anogenital skin lesions of control patients
without CA. However, due to the retrospective design of
this study, we were unable to conduct follow-up visits
to determine the natural course of the HPV infections in
our patients. The current study was also limited by the
relatively low number of patients in the analyses and the
lack of information about underlying diseases or probable
causes of infection.

Given that sexual transmission is more likely with cer-
vical and vaginal warts (1), this transmission mode should
be considered in our study for children 14 years of age or
older in particular, who were predominantly affected in
these anatomical regions. Previous reports have shown
that other methods of transmission may account for the
majority of HPV infections in paediatric patients (5, 6).
Children may acquire HPV during non-sexual contact with
a caregiver (heteroinoculation), from themselves (autoi-
noculation), perinatally or prenatally, or by transmission
via fomites, such as contaminated towels or underwear,
which can occur at any age (5, 6).

The mean age of children and adolescents presenting
with CA ranged from 2.8 to 5.6 years in one study (2),
and spontaneous regression has been reported in only half
of the cases in another (10). The other half of estimated
children with persistent CA would have to wait until the
age of 9 years for HPV vaccination (11, 12). Interestingly,
we observed a surge in the prevalence of coinfections with
persisting hrHPV subtypes in patients with CA after the
age of 8 years. Oncogenic HPV types, especially HPV 16,
have a longer time to clearance than other subtypes (13),
and these factors may directly promote HPV-associated
oncogenesis in the future.

The results of our study show a high prevalence of on-
cogenic HPV types in juvenile CA samples. Our findings
suggest that juvenile patients with CA bear the risk of a
coinfection or sequential infection with hrHPV. Therefore,
special follow-up methods for children with HPV-positive
family members or caregivers, as well as lowering the age
for HPV vaccination, should be assessed in larger studies.

ACKNOWLEDGEMENTS

The authors would like to thank Ursula Puchta and Latifa Birrou
for technical assistance.

Conflicts of interest. MR received speaker’s honoraria from MSD,
GSK and MEDA/Mylan. The other authors have no conflicts of
interest to declare.

REFERENCES

1. Trottier H, Franco EL. The epidemiology of genital human pa-
pillomavirus infection. Vaccine 2006; 24 Suppl 1: S1–15.
2. Sinclair KA, Woods CR, Sinal SH. Venereal warts in children.
Pediatr Rev 2011; 32: 115–121; quiz 121.
3. Stanley M. Prophylactic HPV vaccines: prospects for eliminating
ano-genital cancer. Br J Cancer 2007; 96: 1320–1323.
4. de Camargo CC, Tasca KI, Mendes MB, Miot HA, de Souza Ldo
R. Prevalence of anogenital warts in men with HIV/AIDS and as-
sociated factors. Open AIDS J 2014; 8: 25–30.
5. Jones V, Smith SJ, Omar HA. Nonsexual transmission of anogenital
warts in children: a retrospective analysis. Sci World J 2007; 7:
1896–1899.
6. Sinclair KA, Woods CR, Kirse DJ, Sinal SH. Anogenital and res-
piratory tract human papillomavirus infections among children:
age, gender, and potential transmission through sexual abuse.
Pediatrics 2005; 116: 815–825.
7. Syrjanen S. Current concepts on human papillomavirus infections
in children. Am J Clin Dermatol 2005; 6: 313–329.
8. Syrjanen S, Puranen M. Human papillomavirus infections in
children: the potential role of maternal transmission. Crit Rev
Oral Biol Med 2000; 11: 259–274.
9. Marcoux D, Nadeau K, McCuaig C, Powell J, Oligny LL. Pediatric an-
genital warts: a 7-year review of children referred to a tertiary-care
hospital in Montreal, Canada. Pediatr Dermatol 2006; 23: 199–207.
10. Allen AL, Siegfried EC. The natural history of condyloma in child-
ren. J Am Acad Dermatol 1998; 39: 951–955.
11. Robinson CL, Bernstein H, Romero JR, Szilagyi P. Advisory Com-
mittee on Immunization Practices recommended immunization
schedule for children and adolescents aged 18 years or younger
United States, 2019. MMWR Morb Mortal Wkly Rep 2019; 68:
112–114.
12. Takla A, Wiese-Posselt M, Harder T, Meerpohl JJ, Robl-Mathieu
– United States, 2019. MMWR Morb Mortal Wkly Rep 2019; 68:
112–114.
13. Moreira ED, Jr, Giuliano AR, Palefsky J, Flores CA, Goldstone S,
Ferris D, et al. Incidence, clearance, and disease progression of
genital human papillomavirus infection in heterosexual men. J
Infect Dis 2014; 210: 192–199.

Table I. Frequency distribution of human papillomavirus genotypes
in juvenile condylomata acuminata vs. control genital skin samples

Human papillomavirus genotypes	Condylomata acuminata	Control
16 +6/11/42/73/90	6 (35.3)	1a (7.7)
33 +6/90	1 (5.9)	0 (0)
51 +6/90	1 (5.9)	0 (0)
58 +6/11	1 (5.9)	0 (0)
6/11/62	8 (47.1)	5 (38.5)
HPV-negative	0 (0)	7 (53.8)
Total	17 (100)	13 (100)
hrHPV-positive	9 (52.9)	1 (7.7)

aOne control patient carried only high-risk human papillomavirus 16 without low-
risk human papillomavirus (n = 13).