Durum wheat and allelopathy: toward wheat breeding for natural weed management

Mariagiovanna Fragasso, Anna Iannucci and Roberto Papa*

Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Cereal Research Centre, Foggia, Italy

INTRODUCTION

Competition among plants has been divided into two different biological phenomena: competition in terms of the “removal” of shared or limited resources, such as space, light, water, and/or nutrients; and allelopathy, in terms of chemical interactions between plants (Olofsdotter et al., 2002). Allelopathy appears to have been first noted by the Greek philosopher and botanist Theophrastus as early as 2300 BP (Weir et al., 2004), and it is defined as “the inhibitory effect of a plant (donor) on other plants (receivers) through the release of toxic chemicals produced by the donor plant into the environment that affect a receiving susceptible species” (Olofsdotter et al., 2002). These competitive abilities are genetically controlled and can be affected by the environment in which a plant grows (Olofsdotter et al., 2002). Chemical compounds that have allelopathic effects can have adaptive roles, such as for plant defense and nutrition, and soil fertility (as in the regulation of the soil biota, which affects the organic matter decomposition) (Inderjit et al., 2011). Scientific attentiveness to allelopathy as a breeding tool is a consequence of the economic relevance associated with: (i) the development of herbicide-resistant populations in key weed species (Worthinngton and Reberg-Horton, 2013); (ii) the need for improved weed suppression in organically grown cereals (Hoad et al., 2012); and (iii) the need for low cost weed control for smallholder farmers, especially in developing countries (Toure et al., 2011). For these reasons, an advance in allelopathic potential in crop varieties might have a remarkable impact on both low-input and high-input agricultural systems (Kim and Shin, 2003).

With 620 million tons of wheat grain produced annually worldwide, wheat represents about one-fifth of the calories consumed by humans (United Nations, 2006). Roughly 95% of this wheat is obtained from the hexaploid species Triticum aestivum L. (bread wheat), which is used for making bread, cookies and pastries; the remaining 5% is obtained from the tetraploid durum wheat (Tritium turgidum ssp. durum Desf. em. Husn.). Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Tritium turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum ssp. to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control.

Keywords: allelopathy, wheat, durum wheat, allelochemical, crop allelopathy, weed management, sustainability

CEREAL ALLELOPATHY IN A BREEDING-ORIENTED PERSPECTIVE

A breeding-oriented framework of allelopathy studies requires the characterization of the genetic basis of allelopathy and its diversity, along with the definition of the breeding strategies. In 1996, the International Allelopathy Society includes in allelopathic phenomena any process involving secondary metabolites produced by plants, microorganisms, algae, and fungi that influence the growth and development of agricultural and biological systems. Allelopathy is associated with the release of chemical compounds from plants that “suppress the growth and establishment of other plants in their vicinity” (Inderjit et al., 2011), determining the patterning densities and distribution of various species. In addition, these chemicals can help plants to reinforce their protection system against biotic and abiotic stress, and to promote the regulation of nutrient transformation and assimilation, and soil fertility (Inderjit et al., 2011; Jabran and Farooq, 2007a,b)
Weeds are responsible for heavy yield losses in wheat because of their competition for water, nutrients, and light, and also, as shown for *Avena fatua* L. (wild oats), for their toxic effects. The distribution of grass weeds in cereal crops is usually patchy. Such weed patches can be quite steady over a number of growing cycles, as can weeds such as wild oat, that can cause a 2% yield loss in cereal crops even at low density (one to two plants per m², Carrara et al., 2004). Herbicide treatments achieve the best results in terms of reducing weed biomass, followed by hoeing and harrowing (García-Martin et al., 2007). Even if durum wheat responds differently to some herbicides compared to bread wheat, using conventional farming systems, both crop species require the application of considerable quantities of herbicides, with the same amounts spread throughout the field (Boltani et al., 2011). These are necessary to control the major monocotyledonous and dicotyledonous weeds, such as *Avena fatua* L. (wild oat), *Lolium perenne* L. (annual ryegrass), *Phalaris spp.* L. (canary grass), *Alopecurus myosuroides* Huds. (blackgrass), and *Galium aparine* L. (cleaverswort; Barberi et al., 1997; Carrara et al., 2004; Bertholdsson et al., 2012), as reported by García-Martín et al. (2007) and Barberi et al. (1997).

The other most widespread weeds in wheat crops are reported in Table 1. This list is of particular interest as a reference if we consider that in an experimental design of allelopathic studies, it is important to conveniently select a panel of weeds that are locally relevant (as receiver species), as a function of the induced losses in wheat production, and thus of the economic significance (Worthington and Reberg-Horton, 2013).

ALLELOPATHY AND WHEAT

Table 2 summarizes the various investigations into wheat allelopathy, to the best of our knowledge. Studies on bread wheat allelopathy have included: (i) allelopathy against other crops, weeds (Wu et al., 1999, 2000a,b, 2001a); (ii) isolation and identification of allelopathic agents (Wu et al., 2001a,b,c); (iii) wheat autotoxicity (Wu et al., 2001a, 2007a); (iv) management of residues (Wu et al., 2001a); and (v) genetic variations and genetic markers (Wu, 2005; Wu et al., 2008).

Along these lines, the allelopathic activities of wheat varieties change with respect to the major weeds, which indicates the possibility to exploit this characteristic for the selection of allelopathic varieties to be used in integrated weed management. Some of the classes of allelochemicals for wheat allelopathy have also been defined, such as phenolic acids, hydroxamic acids, and short-chain fatty acids. Also, when wheat straw remains on the soil surface, the undesirable impact of the resultant wheat autotoxicity on agricultural production has been noted (for reviews, please see Wu et al., 2001a, 2008).

In contrast, very little is known about durum-wheat allelopathy. In consideration of allelopathy against other crops, Oueslati (2003) studied the two durum-wheat varieties that are commonly used in northern Tunisia, and tested these for toxicity (heterotoxicity) against bread wheat and barley, with an evaluation of the allelopathic potential of various parts of the durum-wheat plants. This study highlighted the role of durum wheat as a donor plant, that may constitute a risk to crop sequences. Additionally, it has been demonstrated that the allelopathy of durum wheat varies with the source of the extracts, whereby the leaf extracts are the most active. This is in agreement with evidence from bread wheat, where aqueous extracts from residues were shown to suppress barley growth (Hozumi et al., 1974). Here, the negative effects of bread wheat residue allelopathy on the growth of other crops were also shown to vary across wheat varieties (Wu et al., 2001a). Indeed, as also shown by Oueslati (2003), the two durum-wheat varieties tested can lead to slight differences in allelopathic effects on barley and bread wheat. Recently, Fragasso et al. (2012) determined the tolerance of seven durum-wheat cultivars to the allelopathic potential of the rhizosphere soil of wild oat. This study was performed in a growth chamber, using durum-wheat varieties that were seeded and grown in control (non-rhizosphere) and rhizosphere soil of wild oat. The results showed that the degree of inhibition is more evident for the leaves than for root growth, and that it is cultivar dependent.
Table 1 | A list of widespread weeds in wheat crops, with their scientific names, common names, and global geographical distributions. The global distribution is reported in accordance with the AgroAtlas (Afonin et al., 2008; http://www.agroatlas.ru/; n.r., not reported in the AgroAtlas).

Scientific name	Common name	Global geographical distribution
Achillea millefolium L.	Bloodwort	Europe; Asia; Japan; China; Northern America; Australia, and New Zealand
Amaranthus retroflexus L.	Careless weed	North and South America; middle and southern Europe; Mediterranean area; Asia Minor; Iran; China; Japan; Mongolia; northern Africa
Anagallis arvensis L.	Scarlet pimpernel	n.r.
Anthemia arvensis L.	Corn chamomile	European part of Russia; Caucasus; Siberia; Central Asia; Scandinavia; Mediterranean
Avena sterilis L.	Animated oat	n.r.
Capsella bursa-pastoris L.	Shepherd’s purse	Cosmopolitan (this weed is found in all parts of the world except tropical regions)
Cardamine hirsuta L.	Hairy bittercress	n.r.
Chenopodium album L.	Common lambsquarters	Cosmopolitan (this weed is found in all parts of the world)
Cichorium intybus L.	Chicory	n.r.
Cirsium arvense (L.) Scop	Creeping thistle	Europe; Western Asia; North America
Convolvulus arvensis L	Field bindweed	Almost cosmopolitan (Far East, Central Asia, Western Europe, Asia, Northern Africa, Northern and South America)
Equisetum arvense L.	Field horsetail	Europe, Caucasus, Siberia, the Himalaya, Central China, Japan; North America; New Zealand
Lactuca serriola L.	Prickly lettuce	Western Europe (southward of 55 degrees latitude); western Asia; northern Africa
Malva sylvestris L.	Common mallow	n.r.
Polygonum aviculare L.	Prostrate knotweed	Cosmopolitan (this weed is found in all parts of the world)
Polygonum persicaria L.	Smartweed	n.r.
Rumex crispus L.	Curly dock	Europe; North Africa; Turkey; northern Iran, eastern-central Asia; North America
Rumex obtusifolius L.	Bitter dock	n.r.
Silene inflata Sm.	Catchfly	n.r.
Sinapis arvensis ssp. arvensis	Wild mustard	Europe; North Africa; Asia Minor, Iran, Afghanistan; North America
Sillyum marianum (L.) Gaertn.	Milk thistle	n.r.
Solanum nigrum L.	Black nightshade	European part of the Former Soviet Union, the Caucasus, Distributed also in Scandinavia, Europe, Mediterranean; Central Asia, Siberia, Far East, Iran, India, China, Japan; North Africa; North America
Sonchus aper L. (Hill)	Prickly sowthistle	Almost all Western Europe; Asia Minor; Iran, Afghanistan; the Himalaya, Mongolia, South and East Asia, North and South America, Australia
Stellaria media L.	Common chickweed	Europe; Asia; North America
Vaccaria hispanica (Mill) Rauschert	Cowherb	n.r.
Veronica hederifolia L.	Ivy-leaved speedwell	n.r.
Veronica persica Poir.	Winter speedwell	n.r.
Ulmus villosa Roth	Winter witch	Europe; Asia; North Africa; North America

Wild oat is a serious weed that can severely affect the survival and productivity of several crops (Jabran et al., 2010). With regard to specific crop–weed allelopathic interactions, the major information relates to an evaluation of the allelopathic potential of wheat on wild oat. Wheat progenitors (different accessions of Aegilops speltoides Tausch.) were screened for differential seedling allelopathy on the growth of wild oat and lettuce (Hashem and Adkins, 1998; Quader et al., 2001). The evidence showed that wheat plants release a diversity of allelochemicals into the environment. Hydroxamic acid 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and its decomposition product 6-methoxybenzoxazolin-2-one from bread wheat can inhibit root growth and seed germination of wild oat (Pérez, 1990). The mechanism of action of these molecules appears to be related to the combination of cyclic hemiacetal and cyclic hydroxamic acid, which lead to high bioactivity: “as reactions with the electrophilic ring-opened aldehyde form of the hemiacetal and with a multicentered cation generated from N–O fission are likely to occur with bionucleophiles” (Macías et al., 2006).
Table 2 | Overview on the major studies carried out relating to allelochemicals, allelopathic genes, field evaluations, allelopathic bioassays, and breeding programs in wheat.

Aspect investigated	Bread wheat	Durum wheat
Allelochemicals	Short-chain fatty acids (Tang and Waiss, 1978; Lynch et al., 1980; Hariston et al., 1987)	Iannucci et al. (2012) [phenolic acids]
	Phenolic acids (Chaves das Neves and Gaspar, 1990; Gaspar and Chaves das Neves, 1995; Wu et al., 1999;)	
	Hydroxamic acids (Copaja et al., 1991; Nest et al., 1992; Wu et al., 1999; Stochmal et al., 2006)	
	Chaves das Neves and Gaspar (1990) naphthoic acid, azelaic acid and 1,2,3,5-tetra bromobenzene	
	Gaspar and Chaves das Neves (1995) carboxylic acid methyl esters and triterpenoids	
Allelopathic genes and genetic markers	Niemeyer and Jerez (1997) [QTLs controlling hydroxamic acid accumulation]	Wu et al. (2003) [two major QTLs associated with allelopathy on chromosome 2B]
	Wu et al. (2008) [reviewed genetic markers associated with wheat allelopathy]	
	Zuo et al. (2012) [QTLs related to allelopathy and weed competitive ability on chromosomes 1A and 2B]	
Field evaluations	Lemerle et al. (1996) [Australia] (*)	
	Cousens and Mohriani, 1998 [Australia] (*)	
	Lemerle et al. (2001) [Australia] (*)	
	Vandekur and Gill (2004) [Australia] (*)	
	Huel and Hul (1996) [Canada]	
	Mason et al. (2007) [Canada]	
	Masen et al. (2008) [Canada]	
	Bertholdsson (2005) [Sweden] (**)	
	Murphy et al. (2006) [U.S.]	
	Accarelli et al. (2001) [Argentina]	
	Blackshaw (1994) [Canada]	
	Venshoven and Niemann (1993) [Germany] (b)	
	Drews et al. (2009) [Germany] (d)	
	Baryan et al. (1991) [India]	
	Bertholdsson (2011) [Sweden] (**)	
	Champion et al. (1998) [United Kingdom] (w)	
	Seavers and Wright (1999) [United Kingdom] (w)	
	Kornas and F mould Williams (2002) [United Kingdom] (w)	
	Chalais et al. (1996) [U.S.] (d)	
	Wiks et al. (1986) [U.S.] (b)	
	Wiks et al. (2004) [U.S.] (q)	
Allelopathic bioassays	Wu et al. (2000a) [Australia] (*)	Oueslati (2003) [Tunisia]
	Wu et al. (2000b) [Australia] (*)	Fragasso et al. (2012) [Italy]
	Wu et al. (2003a) [Australia] (*)	
	Bertholdsson (2005) [Sweden] (**)	
	Bertholdsson (2007) [Sweden] (**)	
	Niemeyer and Jerez (1997) [Chile]	
	Bertholdsson (2011) [Sweden] (**)	
	Bertholdsson et al. (2012) [Sweden] (**)	
Breed programs	Coleman et al. (2007) [Australia] (**)	
	Mohriani et al. (2002) [Australia] (**)	
	Bertholdsson (2010) [Sweden] (**)	

The symbols “*, **, ***” and “♦, ◎, ♦” denote different phases of the same study, from field evaluations to breeding programs, through the allelopathic bioassays.
The symbols “♦, ◎, *” indicate studies that used the same germplasm.
More generally, phenolic compounds are one of the main groups of substances involved in bread wheat allelopathy (Wu et al., 2001c). Intriguingly, in studies of wild oat allelopathic potential as a donor plant, phenolic compounds appear to be among the key compounds (Iannucci et al., 2012). Indeed, Fragasso et al. (2012) evaluated the tolerance of wheat to the allelopathic potential of wild oat, and indicated the presence of three potential allelochemicals that belong to this chemical class in the rhizosphere soil of the wild oat: p-coumaric acid, syringaldehyde, and vanillin. It is well-known that phenolic compounds can inhibit root elongation and cell division in plants, and can cause changes to cell ultrastructure, thus interfering with the normal growth and development of the whole plant (Li et al., 2010).

WHEAT ALLELOPATHY: WALKING ON THE GENETIC SIDE

Information on the allelopathic diversity among crop species and varieties can be dated back to ancient times. However, studies on the genetic variability of allelopathy in crop cultivars as a target for breeding are relatively recent (Belz, 2007). Spruell (1984) performed a first evaluation of the varietal allelopathic activity of Triticum aestivum L. Hundreds of bread wheat genotypes were shown to vary in their allelopathic activities (Wu et al., 2008a, 2009a,b, Zuo et al., 2007; Saffari and Torabi-Sirchi, 2011). Indeed, Wu et al. (2008b) assessed seedling allelopathy of 453 wheat accessions (from 50 countries) against annual ryegrass, showing different levels of inhibition of root growth of ryegrass, ranging from 9.7 to 90.9%; the continuous distribution of allelopathic activities highlighted among the cultivars indicates a quantitative mode of inheritance. This was confirmed by an assessment of allelopathic compounds produced by the same genotypes. Indeed, in comparison to weakly allelopathic accessions, strongly allelopathic accessions produced significantly higher amounts of allelochemicals (Wu, 2005). Similarly, recently, Fragasso et al. (2012) showed genetic diversity for allelopathic sensitivity among a few varieties of durum wheat.

Direct breeding efforts to improve allelopathy have to date only been reported in rice, where highly allelopathic cultivars are ready to be released (Hu et al., 2008; Kong et al., 2011). Recent technical advances make it possible to locate the genes involved in the control of allelopathic activity and the production of allelochemicals, and to genetically map populations between allelopathic and non-allelopathic accessions, with the final aim being to identify genetic markers associated with allelopathy. In a review on the allelopathic studies in common wheat, Ma (2005) revised the genotypic differences in the allelopathy of wheat toward weeds and other crops. Some effort has been made to map allelopathy genes in wheat (Niemeyer and Jerez, 1997; Wu et al., 2003) and to identify genetic markers (Wu et al., 2008). Niemeyer and Jerez (1997) used wheat aneuploids and wheat substitution lines to suggest the chromosomal location of genes for hydroxamic acid accumulation (4A, 4B, 4D, 5B) and the multigenic control of this character. Wu et al. (2003) used restriction fragment length polymorphism, amplified fragment length polymorphism, and microsatellite markers, and on chromosome 2B, they identified two major quantitative trait loci (QTLs) associated with wheat allelopathy. Wu et al. (2007b) reviewed the genetic markers associated with wheat allelopathy and the plant cytochrome P450s that encode the biosynthesis of wheat allelochemicals. Recently, putative QTLs related to allelopathy and the competitive abilities of weeds were detected on chromosomes 1A and 2B of bread wheat, with possible beneficial insights for the breeding of allelopathic wheat (Zuo et al., 2012). This study also suggested the possibility to identify genetic diversity for these traits also in durum wheat, and the possibility of introgressing the QTLs found in the A and B genomes of bread wheat and durum wheat. Following the common “scale-up” of allelopathic exploitation in crop systems, Table 2 provides an overview of field and laboratory screening protocols, genetic studies, and breeding efforts that have been undertaken to improve allelopathy and competition in wheat. The discovery of additional fine resolution QTLs that control allelopathy in wheat provides the scientific basis for the development of effective molecular markers to be used in marker-assisted selection for allelopathy (Worthington and Reberg-Horton, 2013). In the most recent breeding program, Bertholdsson (2010) used material that originated from a cross between a Swedish cultivar with low allelopathic activity and a Tunisian cultivar with high allelopathic activity. He analyzed the results of a breeding program with bread wheat that determined the efficiency of selection for allelopathy by assessing the ability of the plants to suppress weeds at the field level: highly allelopathic lines obtained from a cross between allelopathic and non-allelopathic parents suppressed weed biomass by 24% more than the non-allelopathic parent in a dry year (12% more in a wet year; Bertholdsson, 2010).

IMPROVING WHEAT COMPETITIVE ABILITY, AND THE CASE FOR DURUM WHEAT

Wu et al. (2001a) provided an overview of the beneficial and unfavorable effects of allelopathy in bread wheat. In particular, the positive implications concern direct (allelochemicals produced during the life cycle) and indirect (plant residues) weed suppression. On the other hand, the critical effects were: autotoxicity and the wheat yield decline in crops grown as part of short rotations; and the detrimental effects of residues on the growth of other crops (Bennett et al., 2012). Comparing these important implications and the present knowledge briefly summarized here, it appears clear how far we are from being able to manage the beneficial and unfavorable effects of wheat allelopathy.

If the “cons” of durum-wheat allelopathy are clearly represented by this partial and fragmentary scientific knowledge, then the relatively “clean slate” that we have to cope with at present probably represents a “pro” given that in the experimental design we have the opportunity to consider also the recent advances in allelopathy studies: the roles of microbes as targets and mediators of allelopathy in plants (Cipollini et al., 2012), the importance of separating allelopathy from resource competition (He et al., 2012; Iannucci et al., 2012); and the “breeding” (Bertholdsson, 2005, 2007; Worthington and Reberg-Horton, 2013) and “ecological genomics” (Ungerer et al., 2006; Weih et al., 2008) dimensions of the allelopathy phenomena.
REFERENCES

Ahn, J. K., Hahn, S. J., Kim, J. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. J Agric. Sci. 92: 162. doi: 10.1017/S0021859600022952

Ahn, J. K., and Chung, I. M. (2000). Allelopathic potential of rice hulls on germination and seedling growth of barnyardgrass. J Agric. Sci. 92: 162. doi: 10.1017/S0021859600022952

Bertholdsson, N.-O. (2004). Varietal differences in the production of allelochemicals by Secale cereale cultivars and downy brome. J Agron. Sci. 86, 649–654. doi: 10.1017/S0021859604000212

Brago, N., Robert, R. E., and Mattie, J. D. (1990). Allelopathy and density in plant communities. Weed Sci. 38, 485–488.

Carrera, M., Compartiti, A., Fobo, P., and Orlando, G. (2007). Weeds communities of winter wheat as influenced by level and rotation management. Weed Sci. 55, 236–243. doi: 10.1614/0043-1745-55[2007]55[236]236x

Bald, R. K. (2007). Allelopathy in crop/weed interactions – an update. Pest Manag. Sci. 63, 308–326. doi: 10.1002/ps.1520

Bennett, A. J., Bending, G. D., Chan-

Bertholdsson, N.-O. (2005). Varietal differences in the production of allelochemicals by Secale cereale cultivars and downy brome. J Agron. Sci. 86, 443–453. doi: 10.1017/S0021859604000212

Bertholdsson, N.-O., Andersson, S. C., and Merker, A. (2012). Allelopathic potential of Triticum spp., cereal spp. and Triticosecale spp. and use of chemical substitutes and transformations to improve weed suppression ability in winter wheat. Plant Breed. 131, 75–80. doi: 10.1111/j.1439-0523.2011.01895.x

Blackburn, R. E. (1994). Differential competitive ability of winter wheat cultivars against downy brome. J Agron. Sci. 86, 449–454. doi: 10.1017/S0021859604000212

Burgo, P., Gibert, R. E., and Mattie, J. D. (1999). Allelopathy and size differences in the production of allelochemicals by Secale cereale. Weed Sci. 47, 485–488.

Carrera, M., Compartiti, A., Fobo, P., Orlando, G. (2007). Weeds communities of winter wheat as influenced by level and rotation management. Weed Sci. 55, 236–243. doi: 10.1614/0043-1745-55[2007]55[236]236x

Bald, R. K. (2007). Allelopathy in crop/weed interactions – an update. Pest Manag. Sci. 63, 308–326. doi: 10.1002/ps.1520

Bennett, A. J., Bending, G. D., Chan-
Jafari, K., Farroqhi, M., Hassani, M., Hafseroo-Bejman, and Ali, M. A. (2010). Wild oat (Avena fatua L.) and canary grass (Phalaris arundinacea L.) resistance against Echinochloa crus-galli. Crop Prot. 29, 211–218. doi: 10.1016/j.cropro.2009.10.005

Jung, W., Kim, K., Ahn, I., Hahn, S., and Chung, J. (2004). Allelopathic potential of rice (Oryza sativa L.) residues against Echinochloa crus-galli. Crop Prot. 23, 211–218. doi: 10.1016/j.cropro.2003.08.019

Kim, K. K., and Shin, H. D. (2003). “The importance of allelopathy in breeding new cultivars,” in Weed Management for Developing Countries. FAO Plant Protection and Production Paper No. 120 (addendum L), ed. R. Labrada (Rome: Food and Agriculture Org.), 195–210.

Kong, C.-H., Chen, X.-H., Hu, E., and Zhang, S.-Z. (2011). Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Manag. Sci. 67, 1100–1106.

Korns, N. E., and Fussell-Williams, R. J. (2002). Effects of winter wheat cultivars and weed seed rate on the biological characteristics of naturally occurring weed flora. Weed Res. 42, 407–426. doi: 10.1111/1365-310X.00052

Lemorte, D., Verboeket, B. G. J. M., Cousens, N. E., and Coombe, N. H. (1996). The potential for selecting wheat varieties strongly inhibiting autumn weeds. Aust. J. Agric. Res. 37, 505–513. doi: 10.1071/AR9960505

Lemorte, D., Gill, G. S. M., Murphy, C. E., Wallace, S. R., Cousens, R. D., and Verboeket, B. G. J. M. (2005). Genetic improvement and agronomy for enhanced wheat competitiveness with weeds. Aust. J. Agric. Res. 56, 527–548. doi: 10.1071/AR04156

Li, J., Lu, C.-H., Xin, Q., Chen, Y., and Duang, J. A. (2010). Phenolics and plant allelopathy. Molecules 15, 8955–8992. doi: 10.3390/molecules15158955

Lynch, J. M., Gaul, K. R., and Dunting, L. M. (1980). On the concentration of arsenic in a soil and its components. Plant Soil 56, 95–98. doi: 10.1007/BF02719298

Mia, Y. (2005). Allelopathic modes of common wheat (Triticum aestivum L.). Weed Biol. Manag. 5, 95–104. doi: 10.1111/j.1440-0207.2005.0164.x

Macías, F. A., Martín, D., Ollero-Bastán, A., Chinchilla, D., Simonet, A. M., and Molinillo, J. A. (2010). Bioactivity-guided isolation of allelochemicals from gramineae: benzoxazinones and related compounds. J. Agric. Food Chem. 58, 951–1000. doi: 10.1021/jf901394a

Mason, H., Gonsiorwende, L., and Spaner, D. (2008). Competitive traits and the stability of wheat cultivars in differing natural weed environments on the northern Canadian Prairies. J. Agric. Sci. 146, 21–33. doi: 10.1017/S002185960701759

Mason, H. E., Novak, A., Frick, B. L., O’Donovan, J. T., and Spaner, D. M. (2007). The weed-competitive ability of Canadian winter red spring wheat cultivars grown under organic management. Crop Sci. 47, 1167. doi: 10.2135/cropsci2006.1109

Mokhtari, S., Galwey, N. W., Cousens, R. D., and Thallinger, G. (2009). The genetic basis of variation among F3 lines in tolerance to competition by grasses (Leersia oryzoides). Euphytica 142, 335–364. doi: 10.1007/s10681-006-0008-3

Murphy, K. M., Davison, J. C., and Jones, S. J. (2008). Relationship among phenotypic growth traits, yield and weed suppression in spring wheat landraces and modern cultivars. Field Crop Res. 105, 115–117. doi: 10.1016/j.fcr.2008.04.004

Neils, D., Copus, A. V., Witton, S. D., and Niemeyer, H. M. (1982). A screen of worldwide wheat cultivars for hydroxydic acid levels and aphid antagonism. J. Appl. Biochem. 121, 11–18. doi: 10.1126/science.185.4148.370

Niu, C., Zhang, C. S., and Waiss, A. C. (2010). “Molecular approaches in wheat allelopathy,” in Proceedings of the 46th European Weed Research Society Symposium, ed. E. Egen (Brasenose: European Weed Research Society), 739–806.

Wells, M., Dixon, U. M., Ronberg-Wilfong, A. C., and Björklam, C. (2008). Integrated agricultural research and crop breeding: allelopathic weed control in cereals and long-term productivity in perennial biomass crops. Agron. Sustain. 97, 90–107. doi: 10.1007/s10681-008-9690-9

Wen, T. L., Park, S. W., and Vissmer, J. M. (2006). Biochemical and physiological mechanisms mediated by allelochemicals. Crit. Rev. Plant Sci. 27, 472–479. doi: 10.1080/07352680903455937
Wu, H., Pratley, J., Lemerle, D., An, M., and Liu, D. (2007a). Autotoxicity of wheat (Triticum aestivum) as determined by laboratory bioassays. Plant Soil 296, 85–93. doi: 10.1007/s11104-007-9292-7

Wu, H., Pratley, J., Lemerle, D., An, M., and Liu, D. L. (2007b). Modern genomic approaches to improve allelopathic capability in wheat (Triticum aestivum). Allelopathy J. 19, 97–108.

Wu, H., Pratley, J., Lemerle, D., and Haig, T. (1999). Crop cultivars with allelopathic capability. Weed Res. 39, 171–180. doi: 10.1046/j.1365-3180.1999.00136.x

Wu, H., Pratley, J. E., Lemerle, D., and Haig, T. (2000a). Laboratory screening for allelopathic potential of wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum). Aust. J. Agric. Res. 51, 259–266. doi: 10.1071/AR00183

Wu, H., Pratley, J. E., Lemerle, D., and Haig, T. (2000b). Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment agar method. Aust. J. Agric. Res. 51, 937–944. doi: 10.1071/AR00017

Wu, H., Pratley, J., Lemerle, D., and Haig, T. (2001a). Allelopathy in wheat (Triticum aestivum). Ann. Appl. Biol. 139, 1–9. doi: 10.1111/j.1744-7348.2001.tb00124.x

Wu, H., Pratley, J., Lemerle, D., and An, M. (2001c). Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydro-7-methoxy-1,4-benzoxazin-3-one. J. Chem. Ecol. 27, 1691–1700. doi: 10.1023/A:1010422727899

Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. (2001d). Allelochemicals in wheat (Triticum aestivum L.): cultivar difference in the exudation of phenolic acids. J. Agric. Food Chem. 49, 3742–3745. doi: 10.1021/jf010111x

Zuo, S., Ma, Y., and Inanaga, S. (2007). Allelopathy variation in dryland winter wheat (Triticum aestivum L.) accessions grown on the Loess Plateau of China for about fifty years. Genet. Resour. Crop Ecol. 54, 1391–1393. doi: 10.1007/s10722-006-9125-3

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 June 2013; accepted: 03 September 2013; published online: 24 September 2013.

Citation: Fragasso M, Iannucci A and Papa R. (2013) Durum wheat and allelopathy: toward wheat breeding for natural weed management. Front. Plant Sci. 4:375. doi: 10.3389/fpls.2013.00375

This article was submitted to Crop Science and Horticulture, a section of the journal Frontiers in Plant Science. Copyright © 2013 Fragasso, Iannucci and Papa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.