On graded stable derived categories of isolated Gorenstein quotient singularities

Kazushi Ueda

Abstract
We show the existence of a full exceptional collection in the graded stable derived category of a Gorenstein isolated quotient singularity using a result of Orlov [Orl09]. We also show that the equivariant graded stable derived category of a Gorenstein Veronese subring of a polynomial ring with respect to an action of a finite group has a full strong exceptional collection, even if the corresponding quotient singularity is neither isolated nor Gorenstein.

1 Introduction

Let \(A = \bigoplus_{d=0}^{\infty} A_d \) be a \(\mathbb{N} \)-graded Noetherian ring over a field \(k \). The ring \(A \) is said to be connected if \(A_0 = k \). A connected ring \(A \) is Gorenstein with parameter \(a \) if \(A \) has finite injective dimension as a right module over itself and

\[
\mathbb{R}\text{Hom}_A(k, A) = k(a)[-n].
\]

Here \(\bullet(a) \) denotes the shift of \(\mathbb{Z} \)-grading and \(\bullet[-n] \) is the shift in the derived category. The graded stable derived category is the quotient category

\[
D^b_{\text{sing}}(\text{gr } A) = D^b(\text{gr } A)/D^b_{\text{perf}}(\text{gr } A)
\]

of the bounded derived category \(D^b(\text{gr } A) \) of finitely-generated \(\mathbb{Z} \)-graded right \(A \)-modules by the full triangulated subcategory \(D^b_{\text{perf}}(\text{gr } A) \) consisting of perfect complexes. Here, an object of \(D^b(\text{gr } A) \) is perfect if it is quasi-isomorphic to a bounded complex of projective modules. Stable derived categories are introduced by Buchweitz [Buc87] motivated by the theory of matrix factorizations by Eisenbud [Eis80]. Stable derived categories are also known as triangulated categories of singularities, introduced by Orlov [Orl04] based on an idea of Kontsevich to study B-branes on Landau-Ginzburg models.

Let \(R = k[x_1, \ldots, x_{n+1}] \) be a polynomial ring in \(n+1 \) variables over a field \(k \). We equip \(R \) with a \(\mathbb{Z} \)-grading such that \(\deg x_i = 1 \) for all \(i \). Let \(G \) be a finite subgroup of \(SL_{n+1}(k) \) whose order is not divisible by the characteristic of \(k \). Assume that the natural action of \(G \) on the affine space \(\mathbb{A}^{n+1} = \text{Spec } R \) is free outside of the origin. This assumption is equivalent to the condition that the invariant subring \(A = R^G \) has an isolated singularity at the origin [IY08 Corollary 8.2]. Two examples of the stable derived categories of \(A \) are studied by Iyama and Yoshino [IY08] and Keller, Murfet and Van den Bergh [KMVdB11]. The general case is studied by Iyama and Takahashi [IT].

Let \(d \in \mathbb{N} \) be a divisor of \(n+1 \) and \(B = \bigoplus_{i=0}^{\infty} A_{id} \) be the \(d \)-th Veronese subring of \(A \). We prove the following in this paper:
Theorem 1.1. The stable derived category $D^b_{\text{sing}}(\gr B)$ has a full exceptional collection.

The full exceptional collection given in Theorem 1.1 is strong when $d = n + 1$. One the other hand, a result of Iyama and Takahashi [IT, Theorem 1.7] gives a full strong exceptional collection for $d = 1$. The proof of Theorem 1.1 is based on the existence of a full strong exceptional collection in the derived category of coherent sheaves on the stack $\text{Proj} B = [(\text{Spec} B \setminus 0)/G_m]$ and a result of Orlov [Orl09, Theorem 2.5.(i)].

Next we discuss equivariant graded stable derived categories. Let A be an N-graded connected Gorenstein ring with parameter $a > 0$ and G be a finite group acting on A whose order is not divisible by the characteristic of k. The crossed product algebra $A \rtimes G$ is the vector space $A \otimes k[G]$ equipped with the ring structure

$$(a_1 \otimes g_1) \cdot (a_2 \otimes g_2) = a_1 \cdot g_1(a_2) \otimes g_1 \circ g_2,$$

where $k[G]$ is the group ring of G. A right $A \rtimes G$-module is often called a G-equivariant A-module. The crossed product algebra $A \rtimes G$ inherits a grading from A so that the degree zero part is given by the group ring; $(A \rtimes G)_0 = k[G]$. This graded ring is not connected if G is non-trivial.

Let $\gr^G A$ be the abelian category of finitely-generated \mathbb{Z}-graded right $A \rtimes G$-modules and $\tor^G A$ be its Serre subcategory consisting of finite-dimensional modules. The quotient abelian category is denoted by $\qgr^G A = \gr^G A/\tor^G A$. If A is commutative, then $\qgr^G A$ is equivalent to the abelian category $\coh^G(\text{Proj} A)$ of G-equivariant coherent sheaves of the stack $\text{Proj} A = [(\text{Spec} A \setminus 0)/G_m]$. Let $\text{Irrep}(G) = \{\rho_0, \ldots, \rho_r\}$ be the set of irreducible representations of G where ρ_0 is the trivial representation. For any $k \in \mathbb{Z}$, the image of the graded $A \rtimes G$-module $A(k) \otimes \rho_i$ by the projection functor $\pi : \gr A \rtimes G \rightarrow qgr^G A$ will be denoted by $\mathcal{O}(k) \otimes \rho_i$. The following is a straightforward generalization of [Orl09, Theorem 2.5.(i)]:

Theorem 1.2. There is a full and faithful functor $\Phi : D^b_{\text{sing}}(\gr^G A) \rightarrow D^b(\qgr^G A)$ and a semiorthogonal decomposition

$$D^b(\qgr^G A) = \langle \mathcal{O} \otimes \rho_0, \ldots, \mathcal{O} \otimes \rho_r, \mathcal{O}(1) \otimes \rho_0, \ldots, \mathcal{O}(1) \otimes \rho_r, \ldots, \mathcal{O}(a - 1) \otimes \rho_0, \ldots, \mathcal{O}(a - 1) \otimes \rho_r, \Phi D^b_{\text{sing}}(\gr^G A) \rangle.$$

Let $R = k[x_1, \ldots, x_{n+1}]$ be a polynomial ring in $n + 1$ variables and $A = \bigoplus_{d=0}^{\infty} R_d$ be the d-th Veronese subring. We assume that d is a divisor of $n + 1$ so that A is Gorenstein with parameter $a = (n + 1)/d$. Let G be any finite subgroup of $GL_{n+1}(k)$ whose order is not divisible by the characteristic of k. We have the following corollary of Theorem 1.2.

Theorem 1.3. The stable derived category $D^b_{\text{sing}}(\gr^G A)$ has a full strong exceptional collection.

The organization of this paper is as follows: In Section 2, we study $\text{Proj} B$ for the Veronese subring B of the invariant ring and prove Theorems 1.1. We prove Theorem 1.2 in Section 3 which immediately gives Theorem 1.3. We discuss a few examples in Section 4.

Acknowledgment: I thank Akira Ishii for valuable discussions. This work is supported by Grant-in-Aid for Young Scientists (No.20740037).
2 Invariant subrings

Let \mathcal{D} be a triangulated category and $\mathcal{N} \subset \mathcal{D}$ be a full triangulated subcategory. The right orthogonal to \mathcal{N} is the full subcategory $\mathcal{N}^\perp \subset \mathcal{D}$ consisting of objects M such that $\text{Hom}(N, M) = 0$ for any $N \in \mathcal{N}$. The left orthogonal to \mathcal{N} is defined similarly by $\text{Hom}(M, N) = 0$ for any $N \in \mathcal{N}$. A full triangulated subcategory \mathcal{N} of a triangulated category \mathcal{D} is left admissible if any $X \in \mathcal{D}$ sits inside a distinguished triangle $N \to X \to M \to N$ such that $N \in \mathcal{N}$ and $M \in \mathcal{N}^\perp$. Right admissible subcategories are defined similarly. A sequence $(\mathcal{N}_1, \ldots, \mathcal{N}_n)$ of full triangulated subcategories is a weak semiorthogonal decomposition if there is a sequence $\mathcal{N}_1 = \mathcal{D}_1 \subset \mathcal{D}_2 \subset \cdots \subset \mathcal{D}_n = \mathcal{D}$ of left admissible subcategories such that \mathcal{N}_p is left orthogonal to \mathcal{D}_{p-1} in \mathcal{D}_p. The decomposition is orthogonal if $\text{Hom}(N, M) = 0$ for any $N \in \mathcal{N}_i$ and $M \in \mathcal{N}_j$ with $i \neq j$.

Let k be a field and \mathcal{D} be a k-linear triangulated category. An object E of \mathcal{D} is exceptional if $\text{Hom}(E, E')$ is spanned by the identity morphism and $\text{Ext}^i(E, E) = 0$ for $i \neq 0$. A sequence (E_1, \ldots, E_r) of exceptional objects is an exceptional collection if $\text{Ext}^i(E_j, E_\ell) = 0$ for any i and any $1 \leq \ell < j \leq r$. An exceptional collection is strong if $\text{Ext}^i(E_j, E_\ell) = 0$ for any $i \neq 0$ and any $1 \leq j \leq \ell \leq r$. An exceptional collection is full if the smallest full triangulated subcategory of \mathcal{D} containing it is the whole of \mathcal{D}.

Let G be a finite subgroup of $\text{SL}_{n+1}(k)$ acting freely on $\mathbb{A}^{n+1} \setminus \{0\}$. We assume that the order of G is not divisible by the characteristic of the base field k. The set of irreducible representations of G will be denoted by $\text{Irrep}(G) = \{\rho_0, \ldots, \rho_r\}$ where ρ_0 is the trivial representation. Let further $R = k[x_1, \ldots, x_{n+1}]$ be the coordinate ring of \mathbb{A}^{n+1} and $A = R^G$ be the invariant subring. Equip R with the \mathbb{N}-grading such that $\deg x_i = 1$ for all $i = 1, \ldots, n+1$, which induces an \mathbb{N}-grading on A. This defines a \mathbb{G}_m-action on $\text{Spec} A$, and let

$$Y := \text{Proj} A = [(\text{Spec} A \setminus \{0\})/\mathbb{G}_m] = [(\text{Spec} R \setminus \{0\}/G)/\mathbb{G}_m]$$

be the quotient stack. The abelian category $\text{coh}^G \mathbb{P}^n$ of G-equivariant coherent sheaves on \mathbb{P}^n is equivalent to the abelian category $\text{coh} Y$ of coherent sheaves on Y, which in turn is equivalent to the quotient category

$$\text{qgr} A = \text{gr} A/\text{tor} A$$

of the abelian category $\text{gr} A$ of finitely-generated \mathbb{Z}-graded A-modules by the Serre subcategory consisting of finite-dimensional modules [Orl09 Proposition 2.17]. Note that G-action on \mathbb{P}^n may not be free.

The following theorem is due to Beilinson:

Theorem 2.1 (Beilinson [Be˘ı78]). $D^b \text{coh} \mathbb{P}^n$ has a full strong exceptional collection

$$(\mathcal{O}_{\mathbb{P}^n}, \mathcal{O}_{\mathbb{P}^n}(1), \ldots, \mathcal{O}_{\mathbb{P}^n}(n))$$

consisting of line bundles.

As an immediate corollary to Theorem 2.1, we have the following:

Corollary 2.2. $D^b \text{coh}^G \mathbb{P}^n$ has a full strong exceptional collection

$$(\mathcal{O}_{\mathbb{P}^n} \otimes \rho_0, \ldots, \mathcal{O}_{\mathbb{P}^n} \otimes \rho_r, \mathcal{O}_{\mathbb{P}^n}(1) \otimes \rho_0, \ldots, \mathcal{O}_{\mathbb{P}^n}(1) \otimes \rho_r, \ldots, \mathcal{O}_{\mathbb{P}^n}(n) \otimes \rho_0, \ldots, \mathcal{O}_{\mathbb{P}^n}(n) \otimes \rho_r).$$
Let d be a divisor of $n+1$ and $B = \bigoplus_{i \in \mathbb{Z}} A_{id}$ be the d-th Veronese subring of $A = R^G$. Let further $G_d = G/T_d$ be the quotient of G by the diagonal subgroup $T_d = \{ \zeta \cdot \text{id}_{k^{n+1}} \in G \mid \zeta^d = 1 \}$ consisting of d-th roots of unity. Then B is the invariant subring $(R^{(d)})^{G_d}$ of the d-th Veronese subring $R^{(d)}$ of $R = k[x_1, \ldots, x_{n+1}]$, and one has
\[X := \text{Proj } B = \left[(\text{Spec } R^{(d)}) \setminus \{ 0 \} / G_d \right]/\mathbb{G}_m. \]

The group T_d is a cyclic group whose order e is a divisor of d. If T_d is non-trivial, then G_d is not a subgroup of $SL_{n+1}(k)$ but a subgroup of its quotient $SL_{n+1}(k)/T_d$, and the line bundle $\mathcal{O}_{\mathbb{P}^n}(1)$ does not have a G_d-linearization. On the other hand, the line bundle $\mathcal{O}_{\mathbb{P}^n}(e)$ does have a G_d-linearization and descends to a line bundle $\mathcal{O}_X(e)$ on X.

Recall that the root stack $\sqrt{\mathcal{L}/X}$ of a line bundle \mathcal{L} on a stack X is the stack whose object over $\varphi : T \to X$ is a line bundle \mathcal{M} on T together with an isomorphism $\mathcal{M}^\otimes e \cong \varphi^* \mathcal{L}$ [AGV08, Cad07]. The morphism $G \to G_d$ of finite groups induces a morphism $p : Y \to X$ of quotient stacks, and the isomorphism $\phi : \mathcal{O}_Y(1)^\otimes e \cong \pi^* \mathcal{O}_X(e)$ of line bundles gives an identification of Y with the root stack $\sqrt{\mathcal{O}_X(e)/X}$. It follows that there is an orthogonal decomposition
\[D^b \text{coh } Y = \langle p^* D^b \text{ coh } X, \mathcal{O}_Y(1) \otimes p^* D^b \text{ coh } X, \cdots, \mathcal{O}_Y(e-1) \otimes p^* D^b \text{ coh } X \rangle \quad (2.1) \]
of the derived category [IU Lemma 4.1].

The invariant ring A is Gorenstein with parameter $\deg x_1 + \cdots + \deg x_{n+1} = n+1$ by Watanabe [Wat74, Theorem 1], and its Veronese subring B is Gorenstein with parameter $a = (n+1)/d$ by Goto and Watanabe [GW78, Corollary 3.1.5]. The following theorem is due to Orlov:

Theorem 2.3 ([Orl09 Theorem 2.5.(i)]). If B is a Gorenstein ring with parameter $a > 0$, then there is a full and faithful functor $\Phi : D^b_{\text{sing }}(\text{gr } B) \to D^b(\text{qgr } B)$ and a semiorthogonal decomposition
\[D^b(\text{qgr } B) = \langle \pi B, \ldots, \pi(B(a-1)), \Phi D^b_{\text{sing }}(\text{gr } B) \rangle, \]
where $\pi : \text{gr } B \to \text{qgr } B$ is the natural projection functor.

Now we prove Theorem [1.1] First consider the case $d = 1$. Recall that the right mutation of an exceptional collection is given by
\[(E, F) \mapsto (F, R_F E) \]
where $R_F E$ is the mapping cone
\[R_F E = \{ E \to \text{hom}(E, F)^\vee \otimes F \}. \]
See [Rud90] and references therein for more about mutations of exceptional collections. Write $E_{i,j} = \mathcal{O}_Y(i) \otimes \rho_j$ and perform successive right mutations

$$(E_{0,0}, \ldots, E_{0,r}, E_{1,0}, \ldots, E_{1,r}, \ldots, E_{n,0}, \ldots, E_{n,r})$$

$$\mapsto (E_{0,0}, \ldots, E_{0,r-1}, E_{1,0}, R_{E_1}, E_{0,r}, E_{1,1}, \ldots, E_{1,r}, \ldots, E_{n,0}, \ldots, E_{n,r})$$

$$\mapsto (E_{0,0}, \ldots, E_{0,r-2}, E_{1,0}, R_{E_1}, E_{0,r-1}, \ldots, R_{E_{1},0}, E_{1,1}, \ldots, E_{1,r}, \ldots, E_{n,0}, \ldots, E_{n,r})$$

$$\mapsto \ldots$$

$$\mapsto (E_{0,0}, E_{1,0}, R_{E_1}, E_{0,1}, \ldots, R_{E_{1},0}, E_{0,r}, E_{1,1}, \ldots, E_{1,r}, \ldots, E_{n,0}, \ldots, E_{n,r})$$

$$\mapsto \ldots$$

$$\mapsto (E_{0,0}, E_{1,0}, E_{2,0}, R_{E_2}, E_{1,0}, E_{2,1}, \ldots, E_{2,r}, \ldots, E_{n,0}, \ldots, E_{n,r})$$

$$R_{E_2} E_{1,1}, \ldots, R_{E_2} E_{1,r}, E_{2,1}, \ldots, E_{n,r})$$

$$\mapsto \ldots$$

$$\mapsto (E_{0,0}, E_{1,0}, \ldots, E_{n,0}, R_{E_{n,0}} \cdots R_{E_{1,0}}, E_{0,1}, \ldots, R_{E_{n,0}} \cdots R_{E_{1,0}}, E_{0,r}, E_{1,1}, \ldots, R_{E_{n,0}}, E_{1,r}, E_{2,1}, \ldots, E_{n,r})$$

$$= (E_{0,0}, E_{1,0}, \ldots, E_{n,0}, F_{0,1}, \ldots, F_{0,r}, \ldots, F_{n,1}, \ldots, F_{n,r})$$

where

$$F_{i,j} = R_{E_{n,0}} R_{E_{n-1,0}} \cdots R_{E_{1,0}} E_{i,j}.$$

Since $\pi(A(i)) = \mathcal{O}_Y(i) \otimes \rho_0 = E_{i,0}$ for any $i \in \mathbb{Z}$, it follows that $D^b_{\text{sing}}(\text{gr} A)$ is equivalent to the full triangulated subcategory of $D^b(\text{gr} A)$ generated by the exceptional collection

$$(F_{0,1}, \ldots, F_{0,r}, F_{1,1}, \ldots, F_{1,r}, \ldots, F_{n,1}, \ldots, F_{n,r}).$$

This proves Theorem 1.1 in the case $d = 1$.

Now we discuss the case $d > 1$. Since an exceptional is indecomposable and the decomposition in (2.1) is not only semiorthogonal but orthogonal, each exceptional object in the full strong exceptional collection $(E_{0,0}, \ldots, E_{n,r})$ on Y belongs to one of orthogonal summands in (2.1). It follows that the exceptional collection in Corollary 2.2 is divided into e copies of an exceptional collection, each of which is pulled-back from X and tensored with $\mathcal{O}_Y(i)$ for $i = 0, \ldots, e - 1$. Let $(E_{i,j})_{(i,j) \in \Lambda}$ be the exceptional collection generating the summand $p^* D^b \text{coh} X$ in the orthogonal decomposition in (2.1). Since e divides d, the collection $(\mathcal{O}_Y, \mathcal{O}_Y(d), \ldots, \mathcal{O}_Y((a-1)d)) = (p^* \mathcal{O}_X, p^* \mathcal{O}_X(d), \ldots, p^* \mathcal{O}_X((a-1)d))$ is a part of this collection. On the other hand, one has $\pi(B(i)) = \mathcal{O}_X(d_i)$ for any $i \in \mathbb{Z}$ since B is the d-th Veronese subring. Now one can move these objects to the left by mutation, and Theorem 1.1 follows from Theorem 2.3 just as in the $d = 1$ case.

When $d = n + 1$, then B is Gorenstein with parameter 1, and one does not need any mutation, so that $D^b_{\text{sing}}(\text{gr} B)$ has a full strong exceptional collection.

One can generalize the story to the case with arbitrary weights $\deg x_i = a_i$ and a finite subgroup $G \subset SL_{n+1}(k)$ with a free action on $\mathbb{A}^{n+1} \setminus 0$ commuting with the \mathbb{G}_m-action. The category $\text{gr} A$ is equivalent to the category of coherent sheaves on the weighted projective space $\mathbb{P}(a_1, \ldots, a_{n+1})$, the Beilinson collection is given by $(\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(a_1 + \cdots + a_{n+1}))$, and the Gorenstein parameter of the polynomial ring is $a = a_1 + \cdots + a_{n+1}$. The case $d = a_1 + \cdots + a_{n+1}$ and $G = 1$ is discussed in [Ued08].
Proof of Theorem 1.2. We need to show the existence of a full and faithful functor $\Phi : D^b_{\text{sing}}(\text{gr} A \times G) \to D^b(qgr A \times G)$ and a semiorthogonal decomposition

$$D^b(qgr A \times G) = \langle \mathcal{O} \otimes \rho_0, \ldots, \mathcal{O} \otimes \rho_r, \ldots, \mathcal{O}(a-1) \otimes \rho_0, \ldots, \mathcal{O}(a-1) \otimes \rho_r, \Phi D^b_{\text{sing}}(\text{gr} A \times G) \rangle.$$

Since A is Gorenstein, A has finite injective dimension as left and right module over itself. It follows that $A \times G$ also has finite injective dimension as left and right module over itself, and one has mutually inverse equivalences

$$D = \mathbb{R} \text{Hom}_{A \times G}(\bullet, A \times G) : D^b(\text{gr} G A)^\circ \to D^b(\text{gr} G A^\circ),$$

$$D^\circ = \mathbb{R} \text{Hom}_{(A \times G)^\circ}(\bullet, A \times G) : D^b(\text{gr} G A^\circ)^\circ \to D^b(\text{gr} G A).$$

of triangulated categories, where \bullet° denotes the opposite rings and categories.

For an integer i, let $\mathcal{S}_{< i}$ be the full subcategory of $D^b(\text{gr} G A)$ consisting of complexes of torsion modules concentrated in degrees less than i. In other words, it is the full triangulated subcategory of $D^b(\text{gr} G A)$ generated by $k(e) \otimes \rho$ for $e < -i$ and $\rho \in \text{Irrep}(G)$, where $k(e) \otimes \rho$ is the e-shift of the $A \times G$-module which is isomorphic to ρ as a G-module and annihilated by $A_+ = \bigoplus_{i=1}^{\infty} A_i$. One can show just as in [Orl09, Lemma 2.3] that $\mathcal{S}_{< i}$ is left admissible in $D^b(\text{gr} G A)$ and the left orthogonal is the derived category $D^b(\text{gr} G A_{\geq i})$ of graded $G \times G$ modules M such that $M_p = 0$ for any $p < i;

$$D^b(\text{gr} G A) = \langle \mathcal{S}_{< i}, D^b(\text{gr} G A_{\geq i}) \rangle. \tag{3.1}$$

Let further $\mathcal{P}_{< i}$ be the full subcategory of $D^b(\text{gr} G A)$ generated by projective modules $A(m) \otimes \rho$ for $m > -i$ and $\rho \in \text{Irrep}(G)$. One can also show

$$D^b(\text{gr} G A) = \langle D^b(\text{gr} G A_{\geq i}), \mathcal{P}_{< i} \rangle \tag{3.2}$$

just as in [Orl09, Lemma 2.3]. The proof of [Orl09, Lemma 2.4] carries over verbatim to the G-equivariant case, and gives weak semiorthogonal decompositions

$$D^b(\text{gr} G A_{\geq i}) = \langle \mathcal{D}_i, \mathcal{S}_{\geq i} \rangle, \tag{3.3}$$

$$D^b(\text{gr} G A_{\leq i}) = \langle \mathcal{P}_{\leq i}, \mathcal{T}_i \rangle \tag{3.4}$$

where \mathcal{D}_i and \mathcal{T}_i are equivalent to $D^b(qgr G A)$ and $D^b_{\text{sing}}(\text{gr} G A)$ respectively. (3.1) and (3.3) shows that $\mathcal{S}_{\geq i}$ is right admissible in $D^b(\text{gr} G A)$. The functor D takes the subcategory $\mathcal{S}_{\geq i}(A)$ to the subcategory $\mathcal{S}_{< -i-a+1}(A^\circ)$, so that the right orthogonal $\mathcal{S}_{\leq i}(A)$ is sent to the left orthogonal $\mathcal{P}_{< -i-a+1}(A^\circ)$. The latter subcategory coincides with the right orthogonal $\mathcal{P}_{\leq -i-a+1}(A^\circ)$ by (3.1) and (3.2). The functor D° takes the right orthogonal $\mathcal{P}_{\leq -i-a+1}(A^\circ)$ to the left orthogonal $\mathcal{P}_{\geq i+a}(A)$, so that one has an equality

$$\mathcal{S}_{\geq i} = \mathcal{P}_{\geq i+a} \tag{3.5}$$

3 Crossed product algebras

Let A be an \mathbb{N}-graded connected Gorenstein ring with parameter $a > 0$ and G be a finite group acting on A. We assume that the characteristic of the base field k does not divide the order of G. The set of irreducible representations of G will be denoted by $\text{Irrep}(G) = \{\rho_0, \ldots, \rho_r\}$ where ρ_0 is the trivial representation.
of subcategories of $D^b(\text{gr}^G A)$. One has a weak semiorthogonal decomposition

$$D^b(\text{gr}^G A) = \langle S_{<i}, D_i, S_{\geq i} \rangle$$

by (3.1) and (3.3), which gives

$$D^b(\text{gr}^G A) = \langle P_{\geq i+a}, S_{\geq i}, D_i \rangle$$

by (3.5). Since Gorenstein parameter a is positive, the subcategory $P_{\geq i+a}$ is not only right orthogonal but also left orthogonal to $S_{<i}$, and one obtains a weak semiorthogonal decomposition

$$D^b(\text{gr}^G A) = \langle S_{\geq i}, P_{\geq i+a}, D_i \rangle.$$ \hspace{1cm} (3.6)

On the other hand, (3.1) and (3.4) gives a weak semiorthogonal decomposition

$$D^b(\text{gr}^G A) = \langle S_{\geq i}, P_{\geq i}, T_i \rangle.$$ \hspace{1cm} (3.7)

By combining (3.6), (3.7) and

$$P_{\geq i} = \langle P_{\geq i+a}, A(-i-a+1) \otimes \rho_0, \ldots, A(-i-a+1) \otimes \rho_r, \ldots, A(-i) \otimes \rho_0, \ldots, A(-i) \otimes \rho_r \rangle,$$

one obtains

$$D_i = \langle A(-i-a+1) \otimes \rho_0, \ldots, A(-i-a+1) \otimes \rho_r, \ldots, A(-i) \otimes \rho_0, \ldots, A(-i) \otimes \rho_r, T_i \rangle,$$

and Theorem 1.2 follows by setting $i = -a + 1$. \hfill \Box

Let $A = \bigoplus_{i \in \mathbb{Z}} R_{id}$ be the d-th Veronese ring of $R = k[x_1, \ldots, x_{n+1}]$ for a divisor d of $n+1$, and G be a finite subgroup of $GL_{n+1}(k)$ whose order is not divisible by the characteristic of k. Theorem 1.3 is an immediate consequence of Theorem 1.2.

Proof of Theorem 1.3. The graded ring A is Gorenstein with parameter $a = (n+1)/d$, and one has an equivalence

$$qgr^G A \cong \text{coh}^G \mathbb{P}^n$$

of abelian categories. The derived category $D^b(\text{coh}^G \mathbb{P}^n)$ has a full strong exceptional collection

$$(O_{\mathbb{P}^n} \otimes \rho_0, \ldots, O_{\mathbb{P}^n} \otimes \rho_r, O_{\mathbb{P}^n}(1) \otimes \rho_0, \ldots, O_{\mathbb{P}^n}(1) \otimes \rho_r, \ldots, O_{\mathbb{P}^n}(n) \otimes \rho_0, \ldots, O_{\mathbb{P}^n}(n) \otimes \rho_r).$$

Theorem 1.2 shows that the full subcategory of $D^b(\text{coh}^G \mathbb{P}^n)$ generated by

$$(O_{\mathbb{P}^n}(a) \otimes \rho_0, \ldots, O_{\mathbb{P}^n}(a) \otimes \rho_r, O_{\mathbb{P}^n}(a+1) \otimes \rho_0, \ldots, O_{\mathbb{P}^n}(a+1) \otimes \rho_r, \ldots, O_{\mathbb{P}^n}(n) \otimes \rho_0, \ldots, O_{\mathbb{P}^n}(n) \otimes \rho_r)$$

is equivalent to $D^b_{\text{sing}}(\text{gr}^G A)$, and Theorem 1.3 is proved. \hfill \Box
4 Examples

We discuss a few examples in this section. Let us first consider the case when \(G \subset SL_2(\mathbb{C}) \) is the binary dihedral group of type \(D_4 \). The invariant subring \(A = \mathbb{C}[x_1, x_2]^G \) is generated by three elements \(u, v \) and \(w \) of degrees 4, 8 and 10 satisfying \(u^5 + uv^2 + w^2 = 0 \). One has \(\text{Irrep}(G) = \{ \rho_0, \rho_1, \rho_2, \rho_3, \rho_4 \} \) and the quiver describing the total morphism algebra of the full strong exceptional collection \((\mathcal{O} \otimes \rho_0, \ldots, \mathcal{O}(1) \otimes \rho_4) \) is given as follows:

\[
\begin{align*}
\mathcal{O} \otimes \rho_0 & \quad \mathcal{O} \otimes \rho_1 & \quad \mathcal{O} \otimes \rho_2 & \quad \mathcal{O} \otimes \rho_3 & \quad \mathcal{O} \otimes \rho_4 \\
\mathcal{O}(1) \otimes \rho_0 & \quad \mathcal{O}(1) \otimes \rho_1 & \quad \mathcal{O}(1) \otimes \rho_2 & \quad \mathcal{O}(1) \otimes \rho_3 & \quad \mathcal{O}(1) \otimes \rho_4
\end{align*}
\]

Since the Gorenstein parameter of \(A \) is two, we have to remove \(\mathcal{O} \otimes \rho_0 \) and \(\mathcal{O}(1) \otimes \rho_0 \) from the left. The object \(\mathcal{O} \otimes \rho_0 \) can be removed without any mutation, and when we remove \(\mathcal{O}(1) \otimes \rho_0 \), only \(\mathcal{O} \otimes \rho_2 \) will be affected, which will be turned into

\[R_{\mathcal{O} \otimes \rho_2} \mathcal{O} \otimes \rho_0 = \{ \mathcal{O} \otimes \rho_2 \to \mathcal{O}(1) \otimes \rho_0 \}. \]

The resulting quiver is given as follows:

\[
\begin{align*}
\mathcal{O} \otimes \rho_1 & \quad R_{\mathcal{O} \otimes \rho_2} \mathcal{O}(1) \otimes \rho_0 & \quad \mathcal{O} \otimes \rho_3 & \quad \mathcal{O} \otimes \rho_4 \\
\mathcal{O}(1) \otimes \rho_1 & \quad \mathcal{O}(1) \otimes \rho_2 & \quad \mathcal{O}(1) \otimes \rho_3 & \quad \mathcal{O}(1) \otimes \rho_4
\end{align*}
\]

The resulting full exceptional collection is strong in this case, and the corresponding quiver is a disjoint union of two Dynkin quivers of type \(D_4 \).

Now let us take a Veronese subring of \(A \). Since the Gorenstein parameter of \(A \) is two, only the second Veronese subring \(B = \bigoplus_{i \in \mathbb{Z}} A_{2i} \) is Gorenstein, which has Gorenstein parameter one. Since \(A \) has no odd components, \(B \) is isomorphic to \(A \) as an algebra, and only the grading is changed. The stack \(\text{Proj} B = \left(\text{Spec} B \setminus 0 \right)/\mathbb{G}_m \) is a weighted projective line \(\mathbb{X}_{2,2,2} \) in the sense of Geigle and Lenzing [GL87] with three orbifold points of order 2, which is obtained from \(\text{Proj} A \) by the inverse root construction (i.e. by removing the generic stabilizer). It follows that \(D^b \text{qgr} A \) is equivalent to the direct sum of two copies of \(D^b \text{qgr} B \), and \(D^b \text{qgr} B \) is equivalent to the full subcategory of \(D^b \text{qgr} A \) generated by half of the full strong exceptional collection in \(D^b \text{qgr} A \) shown below:

\[
\begin{align*}
\mathcal{O} \otimes \rho_0 & \quad \mathcal{O} \otimes \rho_1 & \quad \mathcal{O} \otimes \rho_3 & \quad \mathcal{O} \otimes \rho_4 \\
\mathcal{O}(1) \otimes \rho_2 & \quad \mathcal{O}(1) \otimes \rho_2 & \quad \mathcal{O}(1) \otimes \rho_3 & \quad \mathcal{O}(1) \otimes \rho_4
\end{align*}
\]

Since the Gorenstein parameter of \(B \) is one, \(D^b_{\text{sing}}(\text{gr} B) \) is equivalent to the full subcategory of \(D^b(\text{qgr} B) \) generated by the exceptional collection obtained from the above
collection by removing $\mathcal{O} \otimes \rho$, which gives a Dynkin quiver of type D_4:

$$
\begin{array}{ccc}
\mathcal{O} \otimes \rho_1 & \mathcal{O} \otimes \rho_3 & \mathcal{O} \otimes \rho_4 \\
\downarrow & \downarrow & \downarrow \\
\mathcal{O}(1) \otimes \rho_2 & \\
\end{array}
$$

On the other hand, the crossed product algebra $R \rtimes G$ with $R = \mathbb{C}[x_1, x_2]$ is regular, so that $D^b_{\text{sing}}(\text{gr} R^{(2)})$ is zero. The graded stable derived category $D^b_{\text{sing}}(\text{gr} R^{(2)})$ of the second Veronese subring $R^{(2)} \rtimes G$ is equivalent to the full subcategory of $D^b(\text{gr} R^{(2)}) \cong D^b \text{coh}^G \mathbb{P}^1$ generated by the strong exceptional collection

$$(\mathcal{O}(1) \otimes \rho_0, \mathcal{O}(1) \otimes \rho_1, \ldots, \mathcal{O}(1) \otimes \rho_4)$$

by Theorem 1.3, which is just the direct sum of five copies of the derived category of finite-dimensional vector spaces.

Next we consider the case when $G = \langle \exp(2\pi \sqrt{-1}/3) \cdot \text{id}_{\mathfrak{a}^3} \rangle$ is a cyclic subgroup of $SL_3(k)$ of order three. The total morphism algebra of the full strong exceptional collection $(\mathcal{O} \otimes \rho_0, \ldots, \mathcal{O}(2) \otimes \rho_2)$ in $D^b \text{coh}^G \mathbb{P}^2$ is given as follows:

$$
\begin{array}{ccc}
\mathcal{O} \otimes \rho_0 & \mathcal{O}(1) \otimes \rho_1 & \mathcal{O}(2) \otimes \rho_2 \\
\mathcal{O} \otimes \rho_1 & \mathcal{O}(1) \otimes \rho_2 & \mathcal{O}(2) \otimes \rho_0 \\
\mathcal{O} \otimes \rho_2 & \mathcal{O}(1) \otimes \rho_0 & \mathcal{O}(2) \otimes \rho_1 \\
\end{array}
$$

Note that this is the disjoint union of three copies of the Beilinson quiver for \mathbb{P}^2. The full exceptional collection in $D^b_{\text{sing}}(\text{gr} A)$ is obtained from the above collection by removing $\mathcal{O} \otimes \rho_0$, $\mathcal{O}(1) \otimes \rho_0$ and $\mathcal{O}(2) \otimes \rho_0$. To remove the second and the third object, we can mutate the above collection as

$$
\begin{array}{ccc}
\mathcal{O} \otimes \rho_0 & \mathcal{O}(1) \otimes \rho_1 & \mathcal{O}(2) \otimes \rho_2 \\
\mathcal{O}(2) \otimes \rho_0 & \mathcal{O}(3) \otimes \rho_1 & \mathcal{O}(4) \otimes \rho_2 \\
\mathcal{O}(1) \otimes \rho_0 & \mathcal{O}(2) \otimes \rho_1 & \mathcal{O}(3) \otimes \rho_2 \\
\end{array}
$$

so that the three objects $\mathcal{O} \otimes \rho_0$, $\mathcal{O}(1) \otimes \rho_0$ and $\mathcal{O}(2) \otimes \rho_0$ can safely be removed from the left to obtain three copies of the generalized Kronecker quiver

$$
\bullet \equiv \equiv \equiv \bullet
$$
with three arrows. On the other hand, the third Veronese subring $B = \bigoplus_{i \in \mathbb{Z}} A_{3i}$ is Gorenstein with parameter one and satisfies $\text{Proj} B = \mathbb{P}^3$, so that $D^b_{\text{sing}}(\text{gr} B)$ is equivalent to the derived category of modules over the generalized Kronecker quiver with three arrows. These results are in complete agreement with the works of Iyama and Yoshino [IY08], Keller, Murfet and Van den Bergh [KMvdBI11], and Iyama and Takahashi [IT].

The stable derived category of $R \rtimes G$ for the above G and $R = \mathbb{C}[x_1, x_2, x_3]$ is zero again, and that of its third Veronese subring $R^{(3)} \rtimes G$ is equivalent to the full subcategory of $D^b_{\text{qgr}} G^{(3)} \cong D^b_{\text{coh}} \mathbb{P}^2$ generated by the strong exceptional collection

$$(O(1) \otimes \rho_0, O(1) \otimes \rho_1, O(1) \otimes \rho_2, O(2) \otimes \rho_0, O(2) \otimes \rho_1, O(2) \otimes \rho_2)$$

which happens to be equivalent to $D^b_{\text{sing}}(\text{gr} A)$ above.

Theorem 1.2 can be useful also in other contexts. An integer $n \times n$ matrix $(a_{ij})_{i,j=1}^n$ defines a polynomial

$$W = \sum_{i=1}^n x_1^{a_{i1}} \cdots x_n^{a_{in}},$$

which is called invertible if the origin is an isolated singularity. They play a pivotal role in transposition mirror symmetry of Berglund and Hübsch [BH93], which attracts much attention recently. See e.g. [Kra] and references therein for more on invertible polynomials and mirror symmetry.

Any invertible polynomial is weighted homogeneous, and the choice of a weight is unique up to multiplication by a constant. The quotient ring $A = k[x_1, \ldots, x_n]/(W)$ is Gorenstein with parameter

$$a = \deg x_1 + \cdots + \deg x_n - \deg W.$$

If a is positive, then for any group G of symmetries of W, one has a semiorthogonal decomposition in Theorem 1.2. One can also prove an analogue of [Orl09, Theorem 2.5.(ii),(iii)] for $a \leq 0$ just as in Theorem 1.2. A typical example is the case when G is a subgroup of the group

$$G^{\text{max}} = \{(\alpha_1, \ldots, \alpha_n) \in (k^\times)^n \mid \alpha_1^{a_{11}} \cdots \alpha_n^{a_{1n}} = \cdots = \alpha_1^{a_{n1}} \cdots \alpha_n^{a_{nn}} = 1\}$$

of maximal diagonal symmetries of W, but one can also deal with other cases such as the action of the symmetric group \mathfrak{S}_n on the Fermat polynomial $W = x_1^m + \cdots + x_n^m$.

References

[AGV08] Dan Abramovich, Tom Graber, and Angelo Vistoli, Gromov-Witten theory of Deligne-Mumford stacks, Amer. J. Math. 130 (2008), no. 5, 1337–1398. MR 2450211 (2009k:14108)

[Bei78] A. A. Beilinson, Coherent sheaves on \mathbb{P}^n and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69. MR MR509388 (80c:14010b)
[BH93] Per Berglund and Tristan Hübsch, *A generalized construction of mirror manifolds*, Nuclear Phys. B 393 (1993), no. 1-2, 377–391. MR MR1214325 (94k:14031)

[Buc87] Ragnar-Olaf Buchweitz, *Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings*, Available from https://tspace.library.utoronto.ca/handle/1807/16682, 1987.

[Cad07] Charles Cadman, *Using stacks to impose tangency conditions on curves*, Amer. J. Math. 129 (2007), no. 2, 405–427. MR 2306040 (2008g:14016)

[Eis80] David Eisenbud, *Homological algebra on a complete intersection, with an application to group representations*, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35–64. MR MR570778 (82d:13013)

[GL87] Werner Geigle and Helmut Lenzing, *A class of weighted projective curves arising in representation theory of finite-dimensional algebras*, Singularities, representation of algebras, and vector bundles (Lambrrecht, 1985), Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR MR915180 (89b:14049)

[GW78] Shiro Goto and Keiichi Watanabe, *On graded rings. I*, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707 (81m:13021)

[IT] Osamu Iyama and Ryo Takahashi, *Tilting and cluster tilting for quotient singularities*, arXiv:1012.5954.

[IU] Akira Ishii and Kazushi Ueda, *The special McKay correspondence and exceptional collection*, arXiv:1104.2381.

[IY08] Osamu Iyama and Yuji Yoshino, *Mutation in triangulated categories and rigid Cohen-Macaulay modules*, Invent. Math. 172 (2008), no. 1, 117–168. MR 2385669 (2008k:16028)

[KMVdB11] Bernhard Keller, Daniel Murfet, and Michel Van den Bergh, *On two examples by Iyama and Yoshino*, Compos. Math. 147 (2011), no. 2, 591–612. MR 2776613

[Kra] Marc Krawitz, *FJRW rings and Landau-Ginzburg mirror symmetry*, arXiv:0906.0796.

[Orl04] D. O. Orlov, *Triangulated categories of singularities and D-branes in Landau-Ginzburg models*, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262. MR MR2101296

[Orl09] Dmitri Orlov, *Derived categories of coherent sheaves and triangulated categories of singularities*, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston Inc., Boston, MA, 2009, pp. 503–531. MR 2641200 (2011c:14050)
[Rud90] A. N. Rudakov, *Exceptional collections, mutations and helices*, Helices and vector bundles, London Math. Soc. Lecture Note Ser., vol. 148, Cambridge Univ. Press, Cambridge, 1990, pp. 1–6. MR MR1074777 (93a:14016)

[Ued08] Kazushi Ueda, *Triangulated categories of Gorenstein cyclic quotient singularities*, Proc. Amer. Math. Soc. **136** (2008), no. 8, 2745–2747. MR MR2399037 (2009h:18024)

[Wat74] Keiichi Watanabe, *Certain invariant subrings are Gorenstein. I, II*, Osaka J. Math. **11** (1974), 1–8; ibid. 11 (1974), 379–388. MR 0354646 (50 #7124)

Kazushi Ueda
Department of Mathematics, Graduate School of Science, Osaka University,
Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan.

e-mail address : kazushi@math.sci.osaka-u.ac.jp