Hidden $Sp(2s + 1)$- or $SO(2s + 1)$-symmetry and new exactly solvable models in ultracold atomic systems

Yuzhu Jiang1,2, Junpeng Cao1 and Yupeng Wang1

1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China

E-mail: yupeng@iphy.ac.cn

Received 10 March 2011, in final form 4 July 2011
Published 2 August 2011
Online at stacks.iop.org/JPhysA/44/345001

Abstract

The high-spin ultracold atomic models with a special form of contact interactions, i.e. the scattering lengths in the total spin-2, 4, \ldots channels are equal, but may be different from that in the spin-0 channel, are studied. Those models have either $U(1) \otimes Sp(2s + 1)$-symmetry for the fermions or $U(1) \otimes SO(2s + 1)$-symmetry for the bosons, and the generators are found to be magnetic multipole operators. Based on the symmetry analysis, a class of exactly solvable models is proposed and solved via the Bethe ansatz. The ground states and excitations for repulsive fermions are also discussed.

PACS numbers: 02.30.Ik, 03.75.Mn, 67.85.Bc

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently, the study of cold atoms with high spin has aroused much attention in the fields of atomic, molecular, optical and condensed matter physics. Due to the spin exchange interactions, many interesting spin ordered states arise and the phase diagrams of these systems are very rich. For instance, in the spin-1 spinor Bose–Einstein condensations, the bosons are found to form pairs and the pairs condense even in the repulsive regime [1–3]. In experiments, by using atom cooling and trapping techniques, one can prepare the high-spin cold atomic systems, such as 7Li, 23Na, 87Rb with hyperfine spin 1 [4–10]; 53Cr with hyperfine spin 3/2 [11] and 40K, 173Yb, 43Ca, 87Sr, 133Cs with higher ones [12–17]. Using Feshbach resonance [18, 19] and confinement induced resonance [20] techniques, the interactions among the atoms can be manipulated. In theoretical approaches, the low-energy effective models of the dilute ultracold atomic systems are the quantum gas with contact interactions, and the spin exchanging interactions should also be considered for systems with internal degrees of freedom [21, 22].
Symmetry analysis plays a very important role in studying quantum many-body systems. Physical properties such as the ground state manifold and order parameters are closely related to the symmetry of a system [23–25]. The analysis of the symmetry can give some hints for suitable approximation and to study the physics such as phase diagrams in the framework of mean-field theory. In cold atomic systems with delta function interactions, the symmetric or anti-symmetric properties of the identical particles restrict the forms of spin exchange interactions. Effective spin exchanging interactions only take place in the channels with a symmetric spatial wavefunction. Such properties may make the systems have intrinsic symmetries in the spin sector. For example, in the spin-3/2 system, the $SO(5)$ symmetry is found [26].

Strong quantum fluctuations and correlations make the physics of a one-dimensional (1D) system quite different from the ones of higher dimensions. Exact solution is a good starting point to study these systems, since it can give conclusive results. The 1D atomic $SU(2s + 1)$ symmetric quantum gases, with s the spin of the particles, are integrable either for Bose–Fermi mixtures with equal masses of each species or for pure fermionic or bosonic gases [27–37]. In these models, the spin exchange interactions are not considered. However, they usually cannot be neglected in experiments, and many novel ordered states are induced by the spin exchange. Motivated by this consideration, we proposed a $SO(3)$ integrable spin-1 bosonic model [38] and a $Sp(4)$ integrable spin-3/2 fermionic model [39], where the spin exchange interactions are considered.

To find 1D delta function interacting cold atomic integrable models with spin exchange interactions, spin chain models are important reference points. It is easy to find the corresponding integrable spin chain from an integrable cold atomic model with delta function. However, it is very hard to find integrable atomic models from integrable spin chains, e.g. the Takhtajan–Babujian model with spin larger than 1.

The $Sp(2s + 1)$ and $SO(2s + 1)$-symmetric models are studied widely in the discussion of pairing problems and the long-range interaction integrable models [40–45], and spin chain integrable models with such symmetry and the related algebraic methods are discussed in [46, 47]. Kennedy and Batchelor give the integrable $Sp(2s + 1)$ and $SO(2s + 1)$ models with spin exchange interactions in forms of projection operators [48, 49], and these models have corresponding integrable cold atomic gas models, which are discussed here.

In this paper, we discuss the symmetry and integrability of some diluted cold atomic models with contact spin exchange interaction. For a special interaction form of atoms with hyperfine spin s, the fermionic system with half-odd spin is found to have $U(1) \otimes Sp(2s + 1)$ symmetry while the bosonic system with integer spin is found to have $U(1) \otimes SO(2s + 1)$ symmetry. The generators of the corresponding algebra are constructed by the magnetic multipole operators. Based on the symmetry analysis, we propose a new class of exactly solvable atomic models in one dimension.

2. Model and symmetry

For the delta function interaction models of dilute cold atomic gases with hyperfine spin s, the spin exchange interaction between two particles i and j is usually written as spin projection operators \hat{P}_{ij}^{l} in different channels with total spin-l ($l = 0, 1, 2, \ldots, 2s$). Nontrivial scattering processes occur only in the even l channels because of the symmetry or anti-symmetry behavior of the wavefunctions. To study the behavior of such systems away from
the $SU(2s+1)$ symmetry point, we consider a simple case, i.e. all the scattering lengths of nonzero l channels are the same. The Hamiltonian reads
\begin{equation}
\hat{H} = -\sum_{i=1}^{N} \nabla_{r_{ij}}^{2} + \sum_{ij \neq j} \left[c_{1} \hat{P}_{ij}^{0} + c_{2} \sum_{l=2,4,\ldots} \hat{P}_{ij}^{l} \right] \vec{\delta}(r_{i} - r_{j}).
\end{equation}

Here, N is the number of atoms, r_{i} is the position of the ith atom, c_{1} is the interaction strength in the spin-0 channel and c_{2} is the one in the other channels.

The two-body scattering in the system (1) is quite interesting. There are two kinds of scattering processes in the spin sector. One is $|s, m; s, m'\rangle\langle s, m' ; s, m| + h.c.$ provided by two-particle permutation as shown in figure 1(a). Here, m and m' are the spins along the z direction, and $m, m' = s, s - 1, \ldots, -s$. In this process, the particle numbers \hat{N}_{m} with different m are invariant. As a consequence, the total spin \hat{S} and total particle number \hat{N} are also conserved. The other scattering process is $|s, m; s, -m\rangle\langle s, -m' ; s, -m'| + h.c.$ provided by the projector operator \hat{P}_{ij}^{0} as shown in figure 1(b). In this process, two particles with opposite spins scatter into another pair, and the absolute value $|m'|$ can be unequal to $|m|$. Obviously, this process does not affect the total particle number \hat{N}, but it destroys the invariability of \hat{N}_{m}. Therefore, the particle number \hat{N}_{m} is no longer conserved. Nevertheless, after careful consideration, we find that $\hat{J}_{m} = \hat{N}_{m} - \hat{N}_{-m}$ with $m = s, s-1, \ldots$ and $m \geq 0$ are still invariant. The invariance of \hat{J}_{m} means that the total spin $\hat{S} = \sum_{m} m \hat{J}_{m}$ is still a good quantum number. Besides, some of the magnetic multipole operators are also invariant. The multipole operators are observable physical quantities and can be defined in the form of irreducible tensors:
\begin{equation}
\hat{T}_{m}^{l} = \sqrt{(l+m)!(l-m)!/(2l)!} \left(\prod_{j=1}^{l-1} \sum_{m_{j}} \hat{s}_{m_{j}} \right) \hat{s}_{m-l},
\end{equation}
\begin{equation}
m = -l, -l+1, \ldots, l, l = 1, 2, \ldots, 2s.
\end{equation}

Here, $\hat{s}_{-1} = (\hat{s}_{x} - i\hat{s}_{y})/\sqrt{2}$, $\hat{s}_{0} = \sqrt{2}\hat{s}_{z}$, $\hat{s}_{1} = -(\hat{s}_{x} + i\hat{s}_{y})/\sqrt{2}$, $\hat{s}_{\alpha} (\alpha = x, y, z)$ are the spin operators of one particle, $m_{j} = -1, 0, 1$, and the sum Σ' means $|m - \sum_{j} m_{j}| < l - j$ for any j. The total multipole operators for N particles are $\hat{M}_{m}^{l} = \sum_{j=1}^{N} \hat{T}_{m}^{l}$, where \hat{M}_{m}^{l} is the l-rank multipole operator of the ith particle. It can be proved that the multipole operators with odd rank are commutative with the Hamiltonian
\begin{equation}
\left[\hat{V}, \hat{M}_{m}^{l} \right] = 0,
\end{equation}
where $\hat{V} = \sum_{i \neq j} \left(c_{1} \hat{P}_{ij}^{0} + c_{2} \sum_{l=2,4,\ldots} \hat{P}_{ij}^{l} \right)$, and thus are the conserved quantities of the system (1). This can be understood from the two-body scattering processes. If we only consider...
the process of permutation, all multipole operators are commutative with the spin part of the Hamiltonian, since the exchanges of spins have no effect on the magnetic properties. However, the scattering processes of \hat{P}_{ab}^0 make the magnetic quadrupole change.

The odd rank multipole operators can be used to construct the generators Y of $Sp(2s + 1)$ (half odd s) and $SO(s, s + 1)$ (integer s) algebras

$$\hat{Y}_m = i\hat{T}_m^I$$ (odd I). (4)

For the odd rank-l multipole operators are commutative with the spin part of Hamiltonian (3), the corresponding symmetries hold for the system (1). The algebras $so(s, s + 1)$ and $so(2s + 1)$ have the same complex extensions $so(2s + 1, \mathbb{C})$, so that if a model possesses $SO(s, s + 1)$ symmetry, it must have $SO(2s + 1)$ symmetry. There is also a $U(1)$ symmetry for the coordinate part; then, the system (1) has $U(1) \otimes Sp(2s + 1)$ symmetry for the fermionic case and $U(1) \otimes SO(2s + 1)$ symmetry for the bosonic case.

There are three homomorphisms $Sp(2) \simeq SU(2)$, $SO(3) \simeq SU(2)$ and $Sp(4) \simeq SO(5)$. For the case $s = 1/2$, only one channel \hat{P}_{ab}^0 is involved; the model in the spin sector has $SU(2)$ ($Sp(2)$) symmetry. For the cases $s = 1$ and $3/2$, two channels \hat{P}_{ab}^0 and \hat{P}_{ab}^2 are involved. When $s = 1$, the model has $SU(2)$ ($SO(3)$) symmetry, and when $s = 3/2$ the system has $SO(5)$ ($Sp(4)$) symmetry, which are consistent with the results obtained in [26].

When $c_1 = c_2$, the symmetry of the system (1) in the spin sector degenerates into the $SU(2s + 1)$ one, where all the interaction strengths in different channels are the same. The interaction of the spin part is the spin permutation operator up to a constant. The permutation operator acting on the symmetric wavefunctions gives eigenvalue 1, and the one acting on the anti-symmetric wavefunctions gives -1. Thus, the effective interaction is just the contact interaction and all magnetic multipoles are conserved. This can also be explained from the view that only the permutation operators are involved in the scattering process. In the form of multipole operators, the $(2s + 1)^2 - 1$ generators of the $SU(2s + 1)$ group read $\hat{Y}_{jm} = i^{m}(\hat{T}_{m} + \hat{T}_{-m})/2$ and $\hat{\psi}_{jm} = i^{m+1}(\hat{T}_{m} - \hat{T}_{-m})/2$.

3. Exactly solvable models

In one dimension, it is well known that at the $SU(2s + 1)$ symmetry point, the model is integrable. As we showed in the spin-1 [38] and spin-3/2 [39] cases, there is indeed another integrable point. For the $Sp(2s + 1)$ or $SO(2s + 1)$-invariant Hamiltonian (1), we construct the following exactly solvable model by constricting the parameters c_1 and c_2:

$$\hat{H}_{int} = -\sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} + \sum_{j=1}^{N} \hat{V}_{ij} \delta(x_i - x_j),$$ (5)

$$\hat{V}_{ij} = (-1)^{2s+1} \left[s + \frac{1}{2} - (-1)^{2s} \right] c \hat{P}_{ij}^0 + c \sum_{l=2, 4, 6, \ldots} \hat{P}_{ij}^l.$$ (6)

With the standard coordinate Bethe ansatz method, the wavefunction of the system (5) is assumed as

$$\Psi_E = \sum_{Q, \mathcal{P}} \Theta(Q) A_{m_1, \ldots, m_N} (Q, \mathcal{P}) e^{i \sum_{k_1, \ldots, k_N} k_{Q_{i, k}} x_{Q_{i, k}}},$$ (7)

Here, m_i is the spin component along the z-direction of the ith particle, $m_i = s, s-1, \ldots, -s$ and $k_i (i = 1, 2, \ldots, N)$ are the quasi-momenta carried by the particles. Q and \mathcal{P} are all $N!$ permutations of $\{1, 2, \ldots, N\}$, and $Q_i (\mathcal{P})$ is the ith number of the permutation $Q (\mathcal{P})$. $\Theta(Q) = \prod_{i=1}^{N} \Theta(x_{Q_{i}} - x_{Q_{i+1}})$ is a continuous multiplication of the step function $\theta(x)$. When
x \geq 0, \theta(x) = 1, \text{ and otherwise } \theta(x) = 0. \text{ Thus, } the \text{ function } \Theta \text{ divides the coordinate space into } N! \text{ intervals.}

The two-particle scattering occurs at the interface of two adjacent coordinate intervals \(Q' = \{Q_1, Q_2, \ldots, Q_{\xi-1}, Q_{\xi}, Q_{\xi+1}, Q_{\xi+2}, \ldots, Q_N\} \) and \(Q'' = \{P_1, P_2, P_{\xi-1}, P_{\xi}, P_{\xi+1}, P_{\xi+2}, \ldots, P_N\} \).

\(\hat{A}(Q, P) = \hat{\xi}_{s_{1},s_{1+1}}(k_{v_{s+1}} - k_{v_{s}}\hat{A}(Q', P'), \tag{8} \)

\(Q_{\xi} = a, Q_{\xi+1} = b \) and \(\hat{A} \) is the vector denotation of superposition coefficients \(A_{m_{1}, \ldots, m_{n}} \). In the system (5), the wavefunction should be continuous and the first-order derivative of the wavefunction with respect to coordinates should be discontinuous. Solving the Schrödinger equation and using the symmetry or antisymmetry condition, we can obtain the scattering matrix. For the \(S_{\mathrm{P}}(2s+1) \)-invariant fermionic model, the two-body scattering matrix is

\[
\hat{S}_{ab}^{(s)}(\lambda) = \sum_{k=1}^{s} \hat{P}_{ab}^{2k-1} + \sum_{k=1}^{s} \frac{\lambda - ic}{\lambda + ic} \hat{P}_{ab}^{2k} + \frac{\lambda - (s + 1)ic}{\lambda + (s + 1)ic} \hat{P}_{ab}^{-0}.
\]

\[
\hat{S}_{ab}^{(s)}(\lambda) = \sum_{k=1}^{s} \hat{P}_{ab}^{2k-1} + \sum_{k=1}^{s} \frac{\lambda - ic}{\lambda + ic} \hat{P}_{ab}^{2k} + \frac{\lambda - (s + 1)ic}{\lambda + (s + 1)ic} \hat{P}_{ab}^{-0}.
\]

The scattering matrices (10) and (11) are different. In order to prove the integrability of the bosonic and fermionic models uniformly, we introduce the \(R \)-matrix for these two kinds of symmetries by the following mapping:

\[
\hat{R}_{ab}^{(s)}(\lambda) = \begin{cases}
-\hat{P}_{ab} \hat{S}_{ab}^{(s)}(\lambda) & \text{(half odd)} \\
\hat{a}(\lambda) - \hat{b}(\lambda) \hat{P}_{ab} \hat{S}_{ab}^{(s)}(-\lambda) & \text{(integer odd)}
\end{cases}
\]

where \(\hat{b}(\lambda) = ic/(\lambda + ic) \) and \(\hat{a}(\lambda) = \lambda/(\lambda + ic) \). With this mapping, the explicit form of the \(R \)-matrix is

\[
\hat{R}_{ab}^{(s)}(\lambda) = \hat{b}(\lambda) \hat{I} + \hat{a}(\lambda) \hat{P}_{ab} - (2s + 1) \epsilon^{(s)}(\lambda) \hat{P}_{ab}^{0}.
\]

Here, \(\hat{I} \) is a unitary operator and \(\epsilon^{(s)}(\lambda) \) is a scalar function depending on \(s \):

\[
\epsilon^{(s)}(\lambda) = (-1)^{2s} \hat{b}(\lambda) \hat{a}(\lambda) [s + 1/2 + (-1)^{2s+1}].
\]

The last term in (13), \(- (2s + 1) \epsilon^{(s)}(\lambda) \hat{P}_{ab}^{0}\), is a representation of the Temperley–Lieb algebra and the \(R \)-matrix (13) satisfies the Yang–Baxter equation [44, 45, 50, 51]

\[
\hat{R}_{ab}(\lambda) \hat{R}_{bc}(\mu + \lambda) \hat{R}_{ab}(\mu) = \hat{R}_{bc}(\mu) \hat{R}_{ab}(\lambda + \mu) \hat{R}_{bc}(\lambda).
\]

In the proof, the following relations have been used:

\[
\hat{P}_{ab}^{0} \hat{P}_{bc} = (2s + 1) \hat{P}_{ab}^{0} \hat{P}_{ac}, \quad \hat{P}_{ab} = \sum_{k=0}^{2s} (-1)^{2s-k} \hat{P}_{ab}^{k}.
\]

Since there are two invariant mappings, \(\hat{R}(\lambda) \mapsto f(\lambda) \hat{R}(\lambda) \) and \(\hat{R}(\lambda) \mapsto \hat{R}(-\lambda) \), for the Yang–Baxter equation (15) [52], Hamiltonian (5) is integrable.

The \(R \)-matrix defined in equation (13) only has two sets of solutions of the Yang–Baxter equation (15). One set is \(\epsilon^{(s)} = 0 \) where the system has \(SU(2s + 1) \) symmetry. In this case, there are no effective spin exchange interactions. The other set is equation (14). The system has

\[
J. \text{ Phys. A: Math. Theor. 44 (2011) 345001} \quad \text{Y. Jiang et al}
\]
$Sp(2s+1)$ symmetry for half-odd s and $SO(2s+1)$ symmetry for integer s. The corresponding integrable spin chains are Kennedy–Batchelor models in [48, 49]. When $s = 1/2$, the $Sp(2)$-invariant integrable model is discussed in [29, 30]; when $s = 1$, the $SO(3)$-invariant integrable model is discussed in [38] and when $s = 3/2$, the $Sp(4)$-symmetry integrable model is discussed in [39].

The integrable model (5) has one tunable interacting parameter c. For the $Sp(2s+1)$ fermionic model, the interaction is repulsive when $c > 0$ and is attractive when $c < 0$. For the $SO(2s+1)$ bosonic model, the interaction in the spin-0 channel is attractive and that in other channels is repulsive when $c > 0$, while the interaction in the spin-0 channel is repulsive and is attractive in other channels when $c < 0$. To obtain the exact energy spectrum of the system, we need to determine all the values of quasi-momenta k_j. This can be done by solving the eigenvalue problem given by the periodic boundary condition, in which we can obtain the Bethe ansatz equations.

4. Exact solutions

For the integrable systems with high symmetry, the exact solutions are usually obtained by using the nested algebraic Bethe ansatz method. The Bethe ansatz equations of integrable quantum gas models are composed of the ones of the coordinate part, i.e. $U(1)$ symmetry, and the ones given by the spin part. The spin sector usually has nesting integrable symmetries for high spin models. Using the method suggested in [53, 54], we can obtain the Bethe ansatz equations for the $Sp(2s + 1)$ model (C_n type algebra, $n = s + 1$) and the $SO(2s + 1)$ model.

For the $Sp(2s+1)$ ($s > 1/2$) case, there are $s + 3/2$ sets of coupled equations. When $s > 3/2$, the equations are

$$e^{ik_j l} = \prod_{j=1}^{M^{(i)}} \lambda_j - \lambda_j^{(0)} + i\frac{s}{2}, \quad j = 1, 2, \ldots, N, \quad (17)$$

$$\prod_{i=1}^{M^{(j+1)}} \frac{\lambda_j^{(j+1)} - \lambda_j^{(j+1)} + i\frac{s}{2}}{\lambda_j^{(j)} - \lambda_j^{(j)} - i\frac{s}{2}} \prod_{i=1}^{M^{(j-1)}} \frac{\lambda_j^{(j-1)} - \lambda_j^{(j-1)} - i\frac{s}{2}}{\lambda_j^{(j)} - \lambda_j^{(j)} + i\frac{s}{2}} = \prod_{j \neq j'}^{M^{(i)}} \frac{\lambda_j - \lambda_{j'} + ic}{\lambda_j - \lambda_{j'} - ic},$$

$$l = s, s - 1, \ldots, s/2, \quad j = 1, 2, \ldots, M^{(i)}, \quad (18)$$

$$\prod_{j=1}^{M^{(j+2)}} \frac{\lambda_j^{(j+2)} - \lambda_j^{(j+2)} + ic}{\lambda_j^{(j+2)} - \lambda_j^{(j+2)} - ic} \prod_{j=1}^{M^{(j-2)}} \frac{\lambda_j^{(j-2)} - \lambda_j^{(j-2)} + ic}{\lambda_j^{(j-2)} - \lambda_j^{(j-2)} - ic} = \prod_{j \neq j'}^{M^{(i)}} \frac{\lambda_j - \lambda_{j'} + ic}{\lambda_j - \lambda_{j'} - ic}, \quad j = 1, 2, \ldots, M^{(i)}, \quad (19)$$

$$\prod_{j=1}^{M^{(j+2)}} \frac{\lambda_j^{(j+2)} - \lambda_j^{(j+2)} + ic}{\lambda_j^{(j+2)} - \lambda_j^{(j+2)} - ic} \prod_{j=1}^{M^{(j-2)}} \frac{\lambda_j^{(j-2)} - \lambda_j^{(j-2)} + ic}{\lambda_j^{(j-2)} - \lambda_j^{(j-2)} - ic} = \prod_{j \neq j'}^{M^{(i)}} \frac{\lambda_j - \lambda_{j'} + 2ic}{\lambda_j - \lambda_{j'} - 2ic}, \quad j = 1, 2, \ldots, M^{(i)}. \quad (20)$$

Here, $M^{(i)}$ is the number of rapidity $\lambda^{(i)}$, $M^{(2s+1)} = N$, $\lambda^{(s+1)} = k_j$ and L is the length of the system. When $s = 3/2$, the Bethe ansatz equations reduce to the ones obtained in [39]. When $s = 1/2$, the system (5) reduces to the $Sp(2)$-invariant spin-1/2 Fermi gas, and the Bethe ansatz equations are as given in [29].

For the $SO(2s + 1)$ bosons, the Bethe ansatz equations have $s + 1$ sets, and when $s > 1$ they are

$$e^{ik_j l} = \prod_{j=1}^{N} \frac{k_j - k_j + ic}{k_j - k_j - ic} \prod_{j=1}^{M^{(i)}} \frac{k_j - \lambda_j^{(0)} - i\frac{s}{2}}{k_j - \lambda_j^{(0)} + i\frac{s}{2}}, \quad j = 1, 2, \ldots, N. \quad (21)$$

$J. Phys. A: Math. Theor. 44 (2011) 345001$

Y Jiang et al
The total spin is of the thermodynamic properties of the system can be obtained. If the temperature tends to zero, only the rapidities of the atoms are frozen, i.e. k_j. Since the string distributions are symmetric around the real axis, the total momentum is

$$E = \sum_{j=1}^{N} k_j^2, \quad K = \sum_{j=1}^{N} k_j. \quad (24)$$

The total spin is $S = sN - \sum_{i} M_i^{(1)}$.

Obviously, the Bethe ansatz equations of the present system are different from the $SU(2s + 1)$ ones. The physical properties can be obtained from the solutions of the Bethe ansatz equations. For example, solutions of the $SO(3)$-invariant spin-1 bosonic model show that there are bound states in the regimes of $c > 0$ and $c < 0$ [38], so there always exist attractive interactions in some scattering channels.

5. Repulsive fermions

For the repulsive fermionic models, detailed analysis of the Bethe ansatz equations shows that all quasi-momenta k are real, which means there are no charge bound states, and the spin rapidities $\lambda^{(l)}$ form strings. In the thermodynamic limit, the string solutions read

$$\lambda^{(l)}_{n,z,j} = \lambda^{(l)}_{n,z} + (n + 1 - 2j)i\epsilon/2, \quad j = 1, 2, \ldots, n, \quad 3/2 \leq l \leq s, \quad (25)$$

$$\lambda^{(l/2)}_{n,z,j} = \lambda^{(l/2)}_{n,z} + (n + 1 - 2)j\epsilon, \quad j = 1, 2, \ldots, n. \quad (26)$$

Here, $\lambda^{(l)}_{n,z}$ denotes the real parts of the n-string rapidities, $z = 1, 2, \ldots, M_n^{(k)}$, and $M_n^{(k)}$ is the number of n-strings for $\lambda^{(l)}$. Based on the above string hypothesis, the finite temperature thermodynamic properties of the system can be obtained. If the temperature tends to zero, only the real rapidities and 2-strings for $\lambda^{(l)} (3/2 \leq l \leq s)$ are left in the ground state. When the momenta of atoms are frozen, i.e. $k_j = 0$, the models reduce to be the integrable $Sp(2s + 1)$ spin chains [48]. So, only the real rapidities and the 2-strings of $\lambda^{(l)} (3/2 \leq l \leq s)$ are left in the spin chains at the ground state. This result coincides with the discussion by Martins et al [54, 55].

Substituting these solutions into the Bethe ansatz equations and taking the thermodynamic limit, we obtain the coupled integral equations. Solving these equations, we obtain the numbers of the i-string $\lambda^{(l)}$ analytically as

$$M_{1}^{(l)} = \frac{l - 1/2}{s + 1/2} N, \quad M_{2}^{(l)} = \frac{s - l + 1}{s + 1/2} N \quad (l > 3/2), \quad M_{1}^{(l/2)} = N/2. \quad (27)$$

Thus, the numbers of $\lambda^{(l)}$ are $M^{(l)} = N(l > 3/2), M^{(l/2)} = N/2$, and the conserved quantities $J_0 = 0$ in the ground state. The total spin is zero, so that the ground state is a spin singlet state. Since the string distributions are symmetric around the real axis, the total momentum K
of the ground state is also zero. The dressed energy of charge rapidities \(k \) in the ground state satisfies the equations

\[
\epsilon(k) = k^2 - \mu + \hat{D}^{(s+1)} \ast \epsilon^-(k), \quad \epsilon^{(l)}(k) = \hat{D}_l^{(l)} \ast \epsilon^-(k), \quad l = s, s-1, \ldots, 1/2.
\] (28)

Here, \(\mu \) is the chemical potential, \(\ast \) is an integral operation defined by \(\hat{w} \ast y(x) = \int w(x-x')y(x')dx' \) and \(\epsilon^-(k) \) is the negative part of the dressed energy \(\epsilon^-(k) = \epsilon(k), |k| < Q \).

\(Q \) is the Fermi point which is determined by the particle density \(n = N/L \). The kernels \(D(k) \) of integral operators \(\hat{D} \) in equations (28) are

\[
D(k) = \hat{a}_{1/2} \ast D_1^{(1)}(k) + \hat{a}_1 \ast D_2^{(1)}(k),
\] (29)

\[
D_1^{(l)}(k) = \frac{1}{(2s+1)c} \sin \left(\frac{2l-1}{2s+1} \pi \right),
\] (30)

\[
D_2^{(l)}(k) = \hat{D}_l^{(s-l+3/2)} \ast D_1^{(1)}(k), \quad 3/2 \leq l \leq s,
\] (31)

\[
D_1^{(1/2)}(k) = \frac{1}{(2s+3)c \cosh[\pi k/(c(s+3/2))]}.
\] (32)

where \(a_i(x) = tc/[\pi(x^2 + tc^2)] \). The dressed energies for models with spin-5/2 and -9/2 when \(c = 1 \) and \(n = 1 \) are shown in figure 2.

The physical properties of such 1D systems are controlled by the parameter \(\gamma = c/n \) [27]. When \(\gamma \rightarrow \infty \), we obtain the density of charge rapidities, energy and the Fermi point in the strong repulsive limit as

\[
\rho(k) = \frac{1}{2\pi} \quad (|k| \leq Q), \quad \rho(k) = 0 \quad (|k| > Q), \quad E = \frac{1}{3\pi}Q^3, \quad Q = n\pi.
\] (33)
When $\gamma \to 0$, the system degenerates into the free fermions and we have
\[
\rho(k) = \frac{2s + 1}{2\pi} \quad (|k| \leq Q), \quad \rho(k) = 0 \quad (|k| > Q), \quad E = \frac{2s + 1}{3\pi}Q^3, \quad Q = \frac{n\pi}{2s + 1}. \tag{34}
\]

Adding holes and strings into the ground state, we can get the excited state of Hamiltonian (5). For the charge sector, the addition of a hole with quasi-momentum $|k| < Q$ and string with quasi-momentum $|k| > 0$ will give us the charge–hole excitation. The excitation spectra of spinor excitations are more interesting in these models. In this case, holes could be added into the strings already existing in the ground state, while strings could be added for the other ones. For these excitations are collective, these changes will affect the numbers of other strings. Such effects are represented in the restriction of the Bethe ansatz equations. Assuming that $m^{(i)}_n$ are the numbers of holes for n-strings $\lambda^{(i)}$ added, $m^{(i)}_n'$ are the numbers of high strings and $\Delta M^{(i)}_n$ are the number changing of corresponding strings, then the restriction is
\[
\Delta M^{(i)}_n = -\frac{s - l + 1}{2} \delta_{n,2} m^{(i)}_n - \delta_{n,2} m^{(i)}_n'
\]
\[
+ \sum_{j=1}^{l} \frac{s - j + 1}{2s + 1} \sum_{n'=1}^{2} \left[(2l - 1)C_{n,n'}^{(i)} - (s + l)C_{n,n'}^{(i)} \right] m^{(i)}_n
\]
\[
+ \sum_{j=\frac{l}{2}}^{l} \frac{s - l + 1}{2s + 1} \sum_{n'=1}^{2} \left[(2j - 1)C_{n,n'}^{(i)} - (s + j)C_{n,n'}^{(i)} \right] m^{(i)}_n', \quad n = 1, 2, \tag{35}
\]
\[
\Delta M^{(1/2)}_n = -\sum_{j=\frac{l}{2}}^{l} \frac{s - j + 1}{2} m^{(i)}_n - m^{(1/2)}_n. \tag{36}
\]

Here, $m^{(i)}_n$ are the total numbers of the strings added. For $l \neq 1/2$, $m^{(1/2)}_n = \sum_{j=1}^{l} m^{(1/2)}_j$, while for $l = 1/2$, $m^{(1/2)}_n = \sum_{j=1}^{l} m^{(1/2)}_j$. The matrices C^1 and C^2 are
\[
C^1 = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}, \quad C^2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \tag{37}
\]

From the framework of the Bethe ansatz method, the numbers of strings should be integer; thus, only proper choices of m give the low-energy excitations. The possible choices can be found from equations (35) and (36).

The strong correlation of one-dimensional systems makes the spin excitation split into spinons with fractional spins. In the language of the Bethe ansatz method, the quasi-particles are holes and strings. From equations (35) and (36), we learn that the spin carried by the holes and strings added is
\[
S = \sum_{j=\frac{l}{2}}^{l} \left[\frac{1}{2} (s + l)(s - l + 1)m^{(i)}_j + \sum_{j=1}^{l} (2 - j)m^{(i)}_j \right]
+ \frac{1}{2} \left(s + \frac{1}{2} \right)^2 m^{(1/2)}_j + \sum_{j=\frac{l}{2}+1}^{l} (1 - j)m^{(1/2)}_j. \tag{38}
\]

The holes added for the real $\lambda^{(i)}$ strings of $l \geq 3/2$ do not affect the spin, and they are always neutral, while the other holes carry spins. Table 1 gives some of the possible low-energy excitations of spin-5/2 repulsive fermions. The spins of the excitations are listed in the last
Table 1. Some possible excitations ($s = 5/2$).

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$m_{1/2}$	3	2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
$m_{3/2}$	0	1	0	0	0	0	2	0	1	0	2	4	0	1	3	0	2	4	6
$m_{5/2}$	0	1	3	0	0	2	2	1	1	1	0	0	0	0	0	0	0	0	
$m_{1/2}$	0	0	0	0	1	0	1	0	0	1	0	1	0	3	2	1	0	0	0
m_{1}	0	1	0	0	0	0	0	0	1	0	0	0	2	1	1	0	0	0	0
spin	0	7	0	0	4	5	4	5	7	8	9	10	9	11	12	12	13	14	15

Figure 3. The dispersion relation of the excited state listed in table 1. Here $c = 1$ and $n = 1$.

row of the table. The momenta and energies carried by the holes and strings can also be calculated based on the above discussion. The spectra for the excitations in table 1 are shown in figure 3. A 2-string hole of $\lambda^{(5/2)}$ carries the lowest excited energy. The single hole carries spin-$5/2$.

The low temperature specific heat is determined by single charge (hole) excitations at the Fermi surface. For the repulsive $Sp(2s + 1)$ fermions here, the low temperature specific heat is given by

$$C = \frac{\pi}{3} TL \left(\frac{1}{v_F} + \sum_{l=1/2}^{s} \frac{1}{v_1^{(l)}} + \sum_{l=3/2}^{s} \frac{1}{v_2^{(l)}} \right) ,$$

(39)

where v_s are the velocities of the holes given by $v(\lambda) = \epsilon'(\lambda)/2\pi \rho(\lambda), v_F$ is the Fermi velocity contributed by the charge (hole) of $k = Q$ and $v_n^{(l)}$ is the spinwave velocity contributed by the hole of $\lambda_n^{(l)}$ at $\lambda_n^{(l)} \to \infty$. The low temperature specific heat of the $SU(2s + 1)$ model has a similar expression with equation (39). It is well known that the spinwave velocities of the $SU(2s + 1)$ model are equal to each other [56]. However, they are different in the $Sp(2s + 1)$ models here. When $\gamma \gg 1$, we can find that the Fermi velocity and spinwave velocities are

$$v_F \approx 2n\pi, \quad v_1^{(l)} \approx \frac{2n^2\pi^3}{3c(s/2 + 1/4)}, \quad v_2^{(l)} \approx \frac{2n^2\pi^3}{3c(s + 3/2)}, \quad s > l > \frac{1}{2}.$$

(40)
$v_{1}^{1/2}$ and $v_{2}^{1/2}$ are lower than the others. This indicates that the low temperature behavior of the repulsive fermions here is different from the $SU(2S + 1)$ repulsive fermions and they have different low energy effective models.

6. Conclusion

In conclusion, we find that there is a hidden symmetry of the high-spin cold atomic systems with a special interaction form away from the $SU(2S + 1)$ symmetry point. Based on the symmetry analysis, a new class of integrable models for cold atoms with arbitrary spin is proposed. The ground state and the excitations of repulsive fermions are also discussed briefly.

Acknowledgments

We would like to thank Professor Shu Chen, Xi-Wen Guan, Zhong-Qi Ma, M T Batchelor and G V Shlyapnikov for beneficial discussions. This work was supported by the NSFC, the Knowledge Innovation Project of CAS and the National Program for Basic Research of MOST.

References

[1] Law C K, Pu H and Bigelow N P 1998 Quantum spins mixing in spinor Bose–Einstein condensates Phys. Rev. Lett. 81 5257
[2] Mukerjee S, Xu C and Moore J E 2006 Topological defects and the superfluid transition of the $s = 1$ spinor condensate in two dimensions Phys. Rev. Lett. 97 120406
[3] Mueller E J, Ho T L, Ueda M and Baym G 2006 Fragmentation of Bose–Einstein condensates Phys. Rev. A 74 033612
[4] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Evidence of Bose–Einstein condensation in an atomic gas with attractive interactions Phys. Rev. Lett. 75 1687
[5] Bradley C C, Sackett C A and Hulet R G 1997 Bose–Einstein condensation of lithium: observation of limited condensate number Phys. Rev. Lett. 78 985
[6] Stumper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H-J, Stenger J and Ketterle W 1998 Optical confinement of a Bose–Einstein condensate Phys. Rev. Lett. 80 2027
[7] Stumper-Kurn D M, Miesner H-J, Chikkatur A P, Inouye S, Stenger J and Ketterle W 1998 Reversible formation of a Bose–Einstein condensate Phys. Rev. Lett. 81 2194
[8] Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Production of two overlapping Bose–Einstein condensates by sympathetic cooling Phys. Rev. Lett. 78 586
[9] Barrett M D, Sauer J A and Chapman M S 2001 All-optical formation of an atomic Bose–Einstein condensate Phys. Rev. Lett. 87 010404
[10] Paredes B, Widera A, Murg V, Mandel O, Folling S, Cirac I, Shlyapnikov G V, Hansch T W and Bloch I 2004 Tonks–Girardeau gas of ultracold atoms in an optical lattice Nature 429 277
[11] Chicheraud R, Pouderous A, Barbé R, Laburthe-Tolra B, Maresta E, Vernac L, Keller J-C and Gorceix O 2006 Simultaneous magneto-optical trapping of bosonic and fermionic chromium atoms Phys. Rev. A 73 035406
[12] DeMarco B and Jin D S 1999 Onset of Fermi degeneracy in a trapped atomic gas Science 285 1703
[13] Takasu Y, Fukuhara T, Kitagawa M, Kamakura M and Takahashi Y 2006 Quantum-degenerate gases of ytterbium atoms Laser Phys. 16 713
[14] Witte A, Kisters T, Riehle F and Helmcke J 1992 Laser cooling and deflection of a calcium atomic beam J. Opt. Soc. Am. B 9 1030
[15] Xu X, Loftus T H, Hall J L, Gallagher A and Ye J 2003 Cooling and trapping of atomic strontium J. Opt. Soc. Am. B 20 968
[16] Söding J, Güröy-Ödelin D, Desbiolles P, Ferrari G and Dalibard J 1998 Giant spin relaxation of an ultracold cesium gas Phys. Rev. Lett. 80 1869
[17] Ma Z-Y, Foot C J and Cornish S L 2004 Optimized evaporative cooling using a dipole potential: an efficient route to Bose–Einstein condensation J. Phys. B: At. Mol. Opt. Phys. 37 5187
[18] Inouye S, Andrews M R, Stenger J, Miesner H-J, Stamper-Kurn D M and Ketterle W 1998 Observation of Feshbach resonances in a Bose–Einstein condensate Nature 392 151
[19] Dickerscheid D B M, Khuwaja U A, van Oosten D and Stoof H T C 2005 Feshbach resonances in an optical lattice Phys. Rev. A 71 043604
[20] Bergeman T, Moore M G and Olshanii M 2003 Atom–atom scattering under cylindrical harmonic confinement: numerical and analytic studies of the confinement induced resonance Phys. Rev. Lett. 91 163201
[21] Ho T-L 1998 Spinor Bose condensates in optical traps Phys. Rev. Lett. 81 742
[22] Ohmi T and Machida K 1998 Bose–Einstein condensation with internal degrees of freedom in alkali atom gases J. Phys. Soc. Japan 67 1822
[23] Wu C 2005 Competing orders in one-dimensional spin-3/2 fermionic systems Phys. Rev. Lett. 95 266404
[24] Chen S, Wu C, Zhang S-C and Wang Y 2005 Exact spontaneous plaquette ground states for high-spin ladder models Phys. Rev. B 72 214428
[25] Wu C 2006 Hidden symmetry and quantum phases in spin-3/2 cold atomic systems Mod. Phys. Lett. B 20 1707
[26] Wu C, Hu J-P and Zhang S-C 2003 Exact so(5) symmetry in the spin-3/2 fermion gas Phys. Rev. Lett. 91 186402
[27] Lieb E H and Liniger W 1963 Exact analysis of an interacting Bose gas: I. The general solution and the ground state Phys. Rev. 130 1605
[28] Lieb E H 1963 Exact analysis of an interacting Bose gas: II. The excitation spectrum Phys. Rev. 130 1616
[29] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction Phys. Rev. Lett. 19 1312
[30] Yang C N 1968 s matrix for the one-dimensional n-body problem with repulsive or attractive δ-function interaction Phys. Rev. 168 1920
[31] Sutherland B 1968 Further results for the many-body problem in one dimension Phys. Rev. Lett. 20 98
[32] Zhou Y K 1988 Algebraic Bethe ansatz for the nonlinear Schrödinger model: I. Multicomponent fields J. Phys. A: Math. Gen. 21 2391
[33] Zhou Y K 1988 Algebraic Bethe ansatz for the nonlinear Schrödinger model: II. Mixed fermion and boson fields J. Phys. A: Math. Gen. 21 2399
[34] Lai C K and Yang C N 1971 Ground-state energy of a mixture of fermions and bosons in one dimension with a repulsive δ-function interaction Phys. Rev. A 3 393
[35] Lai C K 1974 Thermodynamics of a mixture of fermions and bosons in one dimension with a repulsive delta-function potential J. Math. Phys. 15 954
[36] Fu F-C, Wu Y-Z and Zhao B-H 1987 Quantum inverse scattering method for multicomponent non-linear Schrödinger model of bosons or fermions with repulsive coupling J. Phys. A: Math. Gen. 20 1173
[37] Fan H, Fu F-C and Zhao B-H 1989 Quantum inverse scattering method for the nonlinear Schrödinger model of fermions with attractive interaction J. Phys. A: Math. Gen. 22 4835
[38] Cao J, Jiang Y and Wang Y 2007 Paired state in an integrable spin-1 boson model Europhys. Lett. 79 30005
[39] Jiang Y, Cao J and Wang Y 2009 Exact solutions of an SO(5)-invariant spin-(3/2) fermi gas model Europhys. Lett. 87 10006
[40] Gaudin M 1976 Diagonalization of a class of spin Hamiltonians J. Phys. 37 1087
[41] Dukelewsky J, Pittel S and Sierra G 2004 Colloquium: exactly solvable Richardson–Gaudin models for many-body quantum systems Rev. Mod. Phys. 76 643
[42] Schuricht D and Rachel S 2008 Valence bond solid states with symplectic symmetry Phys. Rev. B 78 014430
[43] Tu H-H, Zhang G-M and Xiang T 2008 Class of exactly solvable $so(n)$ symmetric spin chains with matrix product ground states Phys. Rev. B 78 094404
[44] Zamolodchikov A B and Zamolodchikov A B 1979 Factorized s-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models Ann. Phys. 120 253
[45] Berg B, Karowski M, Weisz P and Kurak V 1978 Factorized s-matrices in two dimensions Nucl. Phys. B 134 125
[46] Reshetikhin N Y 1985 Hamiltonian structures for integrable field-theory models: I. Models with $o(n)$ and $sp(2k)$ symmetry on a one-dimensional lattice Theor. Math. Phys. 63 455
[47] Reshetikhin N Y 1985 Integrable models of quantum one-dimensional magnets with $o(n)$ and $sp(2k)$ symmetry Theor. Math. Phys. 63 555
[48] Kennedy T 1992 Solutions of the Yang–Baxter equation for isotropic quantum spin chains J. Phys. A: Math. Gen. 25 2809
[49] Batchelor M T and Yung C M 1994 Comment on ‘solutions of the Yang–Baxter equation for isotropic quantum spin chains’ J. Phys. A: Math. Gen. 27 5033
[50] Cheng Y, Ge M L and Xue K 1991 Yang–Baxterization of braid group representations Commun. Math. Phys. 136 195
[51] Martins M J and Ramos P B 1994 A note on graded Yang–Baxter solutions as braid-monoid invariants J. Phys. A: Math. Gen. 27 L703
[52] Kulish P P and Sklyanin E K 1982 Solutions of the Yang–Baxter equation J. Sov. Math. 19 1596
[53] Martins M J and Ramos P B 1997 The algebraic Bethe ansatz for rational braid-monoid lattice models Nucl. Phys. B 500 579
[54] Martins M J 2002 The thermodynamic limit and the finite-size behaviour of the fundamental \(sp(2n) \) spin chain Nucl. Phys. B 636 583
[55] Martins M J 1991 Fractional strings hypothesis and non-simple laced integrable models J. Phys. A: Math. Gen. 24 L159
[56] Schlottmann P 1997 Exact results for highly correlated electron systems in one dimension Int. J. Mod. Phys. B 11 355