Critical behavior of the correlation function of three-dimensional $O(N)$
models in the symmetric phase

Massimo Campostrini, Paolo Rossi, Andrea Pelissetto, and Ettore Vicari,
Dipartimento di Fisica dell’Universit`a and I.N.F.N., I-56126 Pisa, Italy

We present new strong-coupling series for $O(N)$ spin models in three dimensions, on the cubic and diamond lattices. We analyze these series to investigate the two-point Green’s function $G(x)$ in the critical region of the symmetric phase. This analysis shows that the low-momentum behavior of $G(x)$ is essentially Gaussian for all N from zero to infinity. This result is also supported by a large-N analysis.

1. INTRODUCTION

Three-dimensional $O(N)$-symmetric spin models describe many important critical phenomena in nature: the case $N = 3$ describes ferromagnetic materials, where the order parameter is the magnetization; the case $N = 2$ describes the helium superfluid transition, where the order parameter is the quantum amplitude; the case $N = 1$ (Ising model) describes liquid-vapor transitions, where the order parameter is the density.

In the following we will focus on the low-momentum behavior of the Fourier-transformed correlation function $\tilde{G}(k)$ in the critical region of the symmetric phase, i.e., for

$$ |k| \lesssim 1/\xi, \quad 0 < T/T_c - 1 \ll 1. $$

2. LATTICE MODELS

Let us consider an $O(N)$-symmetric lattice spin models described by the nearest-neighbor action

$$ S = -N\beta \sum_{\text{links}} \vec{s}_{x_l} \cdot \vec{s}_{x_r}, $$

where $\beta = 1/T$, \vec{s} is an N-component real vector, and x_l, x_r are the endpoints of the link. The two-point correlation function is defined by

$$ G(x) = \langle \vec{s}_x \cdot \vec{s}_0 \rangle. $$

In order to simplify the study the critical behavior of $G(x)$, we introduce the dimensionless RG-invariant function

$$ L(k; \beta) \equiv \frac{\tilde{G}(0; \beta)}{G(k; \beta)}. $$

In the critical region of the symmetric phase, $L(k, \beta)$ is a function only of the ratio $y \equiv k^2/M_G^2$, where $M_G \equiv 1/\xi_G$; the second-moment correlation length ξ_G is defined by

$$ \xi_G^2 \equiv \frac{1}{6} \sum_x \frac{x^2 G(x)}{\sum_x G(x)}. $$

M_G is the mass-scale which can be directly observed in scattering experiments. $L(y)$ can be expanded in powers of y around $y = 0$:

$$ L(y) = 1 + y + l(y), \quad l(y) = \sum_{i=2}^{\infty} c_i y^i. $$

$l(y)$ parameterizes the difference from a generalized Gaussian propagator. The coefficients c_i can be expressed as the critical limit of appropriate dimensionless RG-invariant ratios of the spherical moments

$$ m_2 = \sum_x x^2 G(x). $$

Another interesting quantity related to the low-momentum behavior of G is the ratio $s = M^2/M_G^2$, where M is the mass-gap of the theory. Its critical value is $s^* = -y_0$, where y_0 is the zero of $L(y)$ closest to the origin.
In the large-N limit, $l(y)$ is depressed by a factor of $1/N$. The coefficients c_i can be obtained from a $1/N$ expansion in the continuum:

$$
c_2 \simeq -\frac{0.0044486}{N}, \quad c_3 \simeq -\frac{0.0001344}{N},
$$

$$
c_4 \simeq -\frac{0.00000658}{N}, \quad c_5 \simeq -\frac{0.0000040}{N} \ldots
$$

We are presently computing the order $1/N^2$ of the expansion. We expect that the pattern established by the $1/N$ expansion

$$c_1 \ll c_2 \ll 1, \quad i \geq 3
$$

will be followed by all models with sufficiently large N. This implies $s^* - 1 \simeq c_2$; indeed, in the large-N limit,

$$s^* - 1 \simeq -\frac{0.0045900}{N}.
$$

The coefficients c_i can also be computed from an ε-expansion of the corresponding ϕ^4 theory around $d = 4$:

$$c_i \simeq \varepsilon^2 \frac{N + 2}{(N + 8)^2} e_i,
$$

where $\varepsilon = 4 - d$ and

$$e_2 \simeq -0.007520, \quad e_3 \simeq 0.0001919.
$$

3. STRONG-COUPLING EXPANSION

We computed the strong-coupling expansion of $G(x)$ up to 15th order on the cubic lattice, and up to 21st order on the diamond lattice. Our technique for the strong-coupling expansion of $O(N)$ spin models was presented in Ref. [3].

We took special care in the choice of estimators for the “physical” quantities c_i and s^*. This step is very important from a practical point of view: better estimators can greatly improve the stability of the extrapolation to the critical point. Our search for optimal estimators was guided by the requirement of a regular strong-coupling expansion (e.g., no $\ln \beta$ terms) and by the knowledge of the large-N limit (we chose estimators which are “perfect” for $N = \infty$).

The strong-coupling series of the estimators were analyzed by Padé approximants, Dlog-Padé approximants and first-order integral approximants (see Ref. [4] for a review of the resummation techniques; see also Ref. [5]). For diamond lattice models with $N \neq 0$, β_c was not known, and we estimated it from the strong coupling series of the magnetic susceptibility.

Our strong-coupling results on cubic and diamond lattices are compared with the results of the $1/N$ expansion and of the ε-expansion in Table 1. One may notice that universality between cubic and diamond lattice is always confirmed; furthermore, the agreement with the ε-expansion and with the $1/N$ expansion is satisfactory.

The predicted pattern $c_3 \ll c_2 \ll 1$ is verified for all N. We can conclude that the two-point Green’s function is essentially Gaussian for all momenta with $|k^2| \lesssim M^2_G$, and that the small corrections are dominated by the $(k^2)^2$ term.

4. APPROACH TO CRITICALITY

We investigated the approach to criticality, with special attention devoted to anisotropy (violation of rotational invariance). Let us introduce the anisotropy estimators

$$l_4 = \sum_{x,y,z} [f_4(x, y) + f_4(y, z) + f_4(z, x)] G(x, y, z),
$$

$$f_4(x, y) = (x^2 + y^2)^2 - 8x^2y^2;
$$

$$l_{6,1} = \sum_{x,y,z} [f_6(x, y) + f_6(y, z) + f_6(z, x)]
$$

$$\times G(x, y, z),
$$

$$f_6(x, y) = (x^2 + y^2)^3 - 8x^4y^2 + x^2y^4);
$$

$$l_{6,2} = \sum_{x,y,z} [x^6 + y^6 + z^6 - 45x^2y^2z^2] G(x, y, z).
$$

In the critical limit, l_{2j} are depressed with respect to the spherical moments m_{2j}. In the large-N limit one can show that

$$A_{2j,i} \equiv \frac{l_{2j,i}}{m_{2j}} \sim \xi_G^{-2}.
$$

We analyzed the strong-coupling series of

$$B_{2j,i} \equiv \frac{l_{2j,i}}{m_{2j-2}};
$$

$$c_i \simeq -\frac{0.0045900}{N}.
$$

The predicted pattern $c_3 \ll c_2 \ll 1$ is verified for all N. We can conclude that the two-point Green’s function is essentially Gaussian for all momenta with $|k^2| \lesssim M^2_G$, and that the small corrections are dominated by the $(k^2)^2$ term.
Table 1
Comparison of strong-coupling expansion on cubic and diamond lattices with $1/N$ and ε-expansion

N	lattice	$10^4 c_2$	$10^4 c_3$	$10^4 (s^* - 1)$		
0	cubic	$	10^4 c_2	\lesssim 2$	1.2(1)	1.2(3)
	diamond	$	10^4 c_2	\lesssim 1$	1.0(1)	1.0(5)
	ε-expansion	-2.35	0.60			
1	cubic	$-2.9(2)$	1.1(1)	$-2.3(5)$		
	diamond	$-3.1(2)$	1.0(2)	$-2.2(3)$		
	ε-expansion	-2.78	0.71			
2	cubic	$-3.8(3)$	1.1(1)	$-3.5(5)$		
	diamond	$-4.2(3)$	1.1(3)	$-3.5(2)$		
	ε-expansion	-3.01	0.77			
3	cubic	$-4.0(2)$	1.1(2)	$-4.0(4)$		
	diamond	$-4.2(3)$	1.1(3)	$-3.5(2)$		
	ε-expansion	-3.11	0.79			
4	cubic	$-4.1(2)$	1.2(1)	$-4.0(4)$		
	diamond	$-4.7(2)$	1.0(2)	$-4.0(2)$		
	ε-expansion	-3.13	0.80			
	$1/N$	-11.12	3.36	-11.48		
8	cubic	$-3.5(2)$	1.0(2)	$-3.7(3)$		
	diamond	$-4.0(1)$	0.7(5)	$-4.0(4)$		
	ε-expansion	-2.94	0.75			
	$1/N$	-5.56	1.18	-5.74		
16	cubic	$-2.4(2)$	0.7(5)	$-2.7(2)$		
	diamond	$-2.65(5)$	0.5(5)	$-2.9(2)$		
	ε-expansion	-2.35	0.60			
	$1/N$	-2.78	0.84	-2.87		

for all values of N, we found that $B_{2j,i}$ have a finite (but non-universal) $T \to T_c$ limit. This supports the validity of Eq. (15) for all N.

Ratios of $A_{2j,i}$ are universal quantities; we found that at criticality $A_{6,1}/A_4 \simeq 0.95$ and $A_{6,2}/A_{6,1} \simeq 0.75$ (within one per mill) for all N.

REFERENCES
1. A. Aharony, Phys. Rev. B7, 2834 (1974).
2. M. E. Fisher and A. Aharony, Phys. Rev. Lett. 31, 1238 (1973); Phys. Rev. B7, 2818 (1974).
3. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Nucl. Phys. B (Proc. Suppl.) 47 (1995) 755.
4. A. J. Guttmann, “Phase Transitions and Critical Phenomena”, vol. 13, C. Domb and J. Lebowitz eds. (Academic Press, New York).
5. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. D54, 1782 (1996).