Clinical significance of the ABCB1 and ABCG2 gene expression levels in acute lymphoblastic leukemia

I. Olarte Carrillo, C. Ramos Peñafiel, E. Miranda Peralta, E. Rozen Fuller, J. J. Kassack Ipiña, F. Centeno Cruz, E. Garrido Guerrero, J. Collazo Jaloma, K. Nacho Vargas and A. Martínez Tovar

Laboratorio de Biología Molecular del Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, Mexico

ABSTRACT

Objectives: Acute lymphoblastic leukemia (ALL) is a clonal disease that accounts for 20% of acute leukemias in adults. A high percentage of adult patients (ranging from 70 to 80%) reach complete remission; however, the 5-year survival rate is only 20–40%. One of the main obstacles to treatment success is the drug resistance of leukemic cells. Therefore, our research group analyzed the ABCB1 and ABCG2 gene expression levels in 61 patients diagnosed with ALL and assessed whether the levels affected the clinical parameters and 40-month survival rate.

Methods: The ABCB1 and ABCG2 gene expression levels were analyzed using real-time polymerase chain reaction in 61 patients diagnosed with ALL and 99 healthy donors as controls. The association between ABCB1 and ABCG2 gene expression levels and clinical variables was determined using the Chi-square test and Fisher’s exact test. Overall survival (OS) was determined using the Kaplan–Meier method.

Results: The results showed high ABCB1 and ABCG2 gene levels, which were 4.5 and 2.3 times the levels of healthy donors, respectively. A total of 52% of the study patients expressed high ABCB1 levels and were significantly associated with the high-risk patient group and a decreased 40-month survival rate of 78%. Only 49% of the patients expressed high ABCG2 gene levels. No association was found between the clinical parameters and the ABCG2 gene expression levels.

Conclusions: Early detection of ABCB1 gene expression levels could be important for the diagnosis and monitoring of ALL patients.

KEYWORDS

ABCB1; ABCG2; acute lymphoblastic leukemia

Introduction

Acute lymphoblastic leukemia (ALL) is a malignant disease characterized by deregulation of the normal mechanisms of cellular proliferation, differentiation, and apoptosis inhibition. Its incidence in Mexico is five cases per 100,000 inhabitants [1,2]. The rates of the ALL cure range from 60% to 70% in children and 30% in adults, although they may vary from one country to another [1,2]. Cellular resistance to chemotherapeutic drugs is the main cause of treatment failure in most onco-hematological diseases [3], which translates into high rates of mortality from these conditions. One of the best characterized and perhaps most important mechanisms involved in chemotherapeutic drug resistance is the expression of drug resistance genes of the ATP-binding cassette (ABC) transporter family [4,5]. The ABCB1 gene [also known as multidrug resistance gene 1 (MDR-1)] is located on chromosome 7q21 and consists of 28 exons, encoding a 170-kDa membrane transport protein termed P-glycoprotein (P-gp). P-gp functions as an ATP-dependent efflux pump that transports exogenous and endogenous substrates from inside the cells to the extracellular space. Its normal expression has been identified in various human tissues, including intestinal epithelium, adrenal gland, placenta, kidney, liver, endothelial cells and testicular tissue, and P-gp naturally protects these organs against xenobiotics [8]. P-gp substrates include Adriamycin, daunorubicin, paclitaxel, vincristine, vinblastine, and imatinib. In cancer, P-gp was identified as a protein responsible for resistance to many drugs [6,7]. The ABCG2 gene is located on chromosome 4q22.1 and encodes a 72-kDa membrane transport protein termed breast cancer resistance protein (BCRP) whose function is to expel a wide variety of chemical compounds from tissues, including the brain, kidney, breast, lung, liver, blood–brain barrier, and placenta. Mitoxantrone, methotrexate, cladribine, topotecan, and imatinib are among the chemotherapeutic substrates of this protein.
These drug transporters are reportedly overexpressed in various types of cancer, including breast, lung, liver, brain and prostate cancer, leukemia, and lymphomas, and are a leading cause of drug resistance and treatment failure that contribute to decreased survival rates [8,9]. The clinical impact of the overexpression of these genes in adult ALL patients is controversial [10,11]. The present study shows that the ABCB1 and ABCG2 genes are overexpressed in ALL patients and that ABCB1 overexpression is associated with a worse prognosis and a decreased survival rate.

Materials and methods

Study population

Sixty-one ALL patients were included in this study, and 99 healthy donors as controls were recruited to this study after signing the informed consent form. The healthy donors had a mean age of 43 years (range from 18 to 52 years); 58 patients were men, and 41 were women. The ALL diagnosis was based on morphological findings and corroborated by immunophenotyping. The mean age of the patients was 36 ± 15 years, with a range from 18 to 78 years; 27 patients were men, and 34 were women. Of the 61 patients with ALL, 14 (23%) had lymphadenopathy, 6 (9.8%) had splenomegaly, and 7 (11.5%) had hepatomegaly. The white blood cell (WBC) and platelet counts were 45 x109/L (range 0–245) and 50.18 x109/L (range 7–252), respectively. The predominant immunophenotype was B cell in 58 (95.1%) patients, and only 3 (4.9%) patients had a predominant T cell immunophenotype. Cytogenetic abnormalities were observed in 16 (26.2%) patients, and the presence of the minor BCR–ABL oncogene transcript was identified in 2 out of 58 patients (3.4%). The initial treatment was based on the HGMLAL07 institutional protocols. The induction regimen consisted in administering vinca alkaloids, steroids, and anthracyclines. The use of L-asparaginase was not considered. Central nervous system prophylaxis was performed with the weekly administration of intrathecal chemotherapy during induction, and intermediate methotrexate doses were administered during the consolidation phase. The clinical characteristics of the patients are outlined in Table 1.

RNA extraction and cDNA preparation

Total cellular RNA was extracted from peripheral blood from the patients and controls using the TRizol® Reagent (Life Technologies, Paisley, UK). A total of 2 µg of RNA was used for cDNA synthesis using the Moloney murine leukemia virus (M-MLV) reverse transcriptase (Life Technologies, Paisley, UK).

Real-time polymerase chain reaction (qRT-PCR) analysis

The mRNA expression levels of the ABCB1 (Hs01069047), ABCG2 (Hs0105379), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH; Hs00985689) genes were measured using the TaqMan® gene expression assay (Applied Biosystems, Foster City, CA, USA). The GAPDH gene was used as an endogenous control, and each sample was analyzed in triplicate. The relative expression levels were calculated using the 2−ΔΔCt method with bone marrow as a calibrator. The high and low expression cut-off points were determined by the mean values observed in healthy donors.

Statistical analysis

The association between ABCB1 and ABCG2 gene expression and clinical variables was performed using the Chi-square test and Fisher’s exact test. Overall survival (OS) was determined using the Kaplan–Meier method, and the significance was established using the log-rank test, considering a value of p ≤ 0.05 significant. The statistical software Statistical Package for Social Sciences (SPSS) version 20 (SPSS Inc., Chicago, IL, USA) was used for the statistical analysis.

Results

The relative expression levels of the ABCB1 and ABCG2 genes were analyzed in 61 patients and 99 healthy donors. The results showed high expression, with a 4.5-fold difference in ABCB1 and 2.3-fold difference in ABCG2 (p = 0.001) from the group of healthy donors (Figure 1). The frequencies of patients with ALL with

| Table 1. Clinical-pathologic characteristics of 61 adults with ALL. |
|-----------------------------|-----------------------------|
| **Clinical features** | **Values** |
| Age | Mean ± SD (range) 36 ± 15 (18–78) |
| Median | 32 |
| Sex | M 27 (44.3), F 34 (55.7) |
| Lymphadenopathy (%) | 14 (23) |
| Splenomegaly, 2 cm or larger (%) | 6 (9.8) |
| Hepatomegaly, 2 cm or larger (%) | 7 (11.5) |
| CNS (%) | 5 (8.1) |
| Laboratory data | |
| PB Blast count | Mean ± SD (range) 92 ± 10 (60–100) |
| Median | 94 |
| WBC count, 10⁹/L (range) | 45 (0–245) |
| Hemoglobin level, g/L (range) | 8.24 (2.80–14.20) |
| Platelet count, 10⁹/L (range) | 50.18 (7–252) |
| DHL (range) | 706 (90–4602) |
| Immunophenotype (%) | 58 (95.1) |
| B-lineage | 3 (4.9) |
| Cytogenetics (%) | |
| Unsuccessful karyotype | 25/61 (40.98) |
| Normal karyotype | 20/61 (32.78) |
| Abnormal karyotype | 16/61 (26.22) |
| Molecular biology (%) | 2/58 (3.44) |
| BCR-ABL | |
high expression levels of the ABCB1 and ABCG2 genes were 52% (32/61) and 49% (30/61), respectively.

Possible correlations between ABCB1 and ABCG2 gene overexpression and several prognostic factors of ALL were examined (Tables 2 and 3). The Spearman correlation tests showed a significant positive correlation between the high levels of ABCB1 mRNA expression and the absence of ganglion growth \((p = 0.016) \), the B cell immunophenotype \((p = 0.014) \), the low-risk group \((p = 0.032) \), and a decreased survival rate \((p = 0.001) \). No association was found between the clinical parameters and the ABCG2 gene expression levels. The coexpression of high levels of both genes (ABCB1 and ABCG2) was significant \((p = 0.001) \).

The 40-month OS was assessed based on expression levels. The results showed that the ABCB1 gene expression levels affected the OS of ALL patients \((p \leq 0.05, \text{log-rank test}) \). Of the positive patients with high expression levels, 25/32 (78.1%) died. Conversely, no patient with low expression levels died, whereas 19% (4/21) of the patients who did not express the gene died (Figure 2).

The ABCG2 expression levels had no significant effect on the 40-month OS rate of the ALL patients.

Discussion

The present study analyzed the ABCB1 and ABCG2 gene expression levels in adults diagnosed with ALL. The results demonstrated high variability of the expression levels in each sample tested, which could result from different factors, including environmental agents, benzene exposure, ionizing radiation, heat shock proteins, and the presence of single nucleotide polymorphisms in the promoter region \([12–16] \). The present study found ABCB1 and ABCG2 gene overexpression in 52% and 49% of patients compared with the control group, respectively. The results are similar to other patient series in which high expression

Table 2. Significance of the expression gene ABCB1.

	Negative	High	Low	\(P \)
Age (years)				
<35	10	19	4	
\(\geq 35 \)	11	13	4	
Sex				
Male	9	15	3	
Female	12	17	5	
Hepatomegaly				
Yes	2	3	2	
No	19	29	6	
Splenomegaly				
Yes	2	2	2	
No	19	30	6	
Lymphadenopathy				
Yes	4	5	5	
No	17	27	3	0.016*
Leukocytes				
\(<30 \)	14	22	3	
\(\geq 30 \)	7	10	5	
Serum LDH level \(<500\)	9	19	5	
\(\geq 500 \)	12	13	3	
Immunophenotype				
B Lineage	20	32	6	0.014*
T Lineage	1	2	2	
Cytogenetics				
Successful karyotype	6	14	5	
Normal karyotype	7	11	2	
Abnormal karyotype	8	7	1	
BCR				
Positive	1	3	0	
Negative	20	29	8	
Risk				
High	17	15	6	
Low	4	17	2	0.032*
Response				
Good responder	15	18	5	
Poor responder	6	14	3	
Coexpression				
No coexpression	21	2	1	
ABCB1 and ABCG2	0	30	7	0.001*
Status				
CCR	17	7	8	
Death	4	25	0	0.001*

*Significance level \(p \leq 0.05 \).
levels of 36.7% for the ABCB1 gene and 32% for the ABCG2 gene were reported [15–16]. ABCG2 expression is reportedly 2.4-fold lower in the pediatric population than in adults, and ABCB1 gene expression is higher in the ALL population than in patients with acute myeloid leukemia [17–19].

The association between the ABCB1 gene expression levels and clinical parameters is controversial. The discrepancies in the results of various studies may result from the methods used, including flow cytometry and semi-quantitative RT-PCR [20–26]. No association was found between the ABCG2 expression levels and the clinical parameters, which corroborated Sauerbrey et al., who analyzed 47 patients diagnosed with ALL and 20 patients with relapsed ALL by RT-PCR. The results showed that no correlation existed between the high expression levels and the clinical parameters [20].

The high ABCB1 gene expression levels were associated with a decreased 40-month survival rate compared with the low expression levels (21.8% versus 100%). However, patients with low or negative expression levels showed a higher survival rate in our study due to the response to treatment. These results also corroborated the results of Koorti et al. [17], who reported that high expression levels caused a decreased disease-free survival rate of 55.5% compared with patients with low expression levels (86.6% survival). In another case series, Brozek et al. [26] reported that the functional activity of the ABCB1 protein shortened the 5-year survival rate in 35% of positive patients versus 74% of patients without functional ABCB1 protein expression. This finding may be a result of cells expressing high ABCB1 levels expelling the administered chemotherapeutic agents as a drug resistance measure. No significant association was found between the 5-year survival rate and high ABCG2 expression levels. Cortez et al. [19] reported that low ABCG2 expression levels caused high toxicity in pediatric patients with ALL and were associated with a high risk for death and treatment toxicity.

Table 3. Significance of the expression ABCG2.

	Negative	High	Low	P
Age (years)				
<35	4	18	11	
≥35	6	12	10	
Sex				
Male	3	12	12	
Female	7	18	9	
Hepatomegaly				
Yes	1	4	2	
No	9	26	19	
Splenomegaly				
Yes	2	2	2	
No	8	28	19	
Lymphadenopathy				
Yes	2	7	5	
No	8	23	16	
Leukocytes				
<30	7	16	16	
≥30	3	14	5	
Serum LDH level				
<500	5	15	13	
≥500	5	15	8	
Immunophenotype				
B Lineage	10	28	20	
T-ALL	0	2	1	
Cytogenetics				
Unsuccessful karyotype	4	13	8	
Normal karyotype	3	12	5	
Abnormal karyotype	3	5	8	
BCR				
Positive	0	2	2	
Negative	10	28	19	
Risk group				
High	5	21	12	
Low	5	9	9	
Response				
Good responder	6	15	17	
Poor responder	4	15	4	
Coexpression				
No coexpression	10	6	8	
ABCB1 and ABCG2	0	24	13	0.000(*)
Status				
CCR	6	14	12	
Death	4	16	9	

*Significance level $p \leq 0.05$.

Figure 2. Overall survival in ALL patients based on the ABCB1 and ABCB2 expression levels. The 40-month OS rate is analyzed in patients with high (21%), low (100%), and negative (81%) ABCB1 and ABCB2 gene expression levels, which have no significant relationship with survival ($p = 0.291$).
The results showed that the drug resistance genes ABCB1 and ABCG2 were expressed in adult patients diagnosed with ALL. High ABCB1 expression levels were associated with the risk group and disease status. The ABCG2 expression levels were not associated with any clinical parameter. These ABCB1 gene expression levels led to a 40-month survival rate of 21.8%. Therefore, examining the role of these genes in disease progression is very useful for decision making in ALL treatment.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by CONACYT [162269], Fondos Federales, Dirección de Investigación Hospital General de Mexico [HGM/DI/08/204/04/17], NOVARTIS SA [CSTI571AMX10T].

ORCID
I. Olarte Carrillo http://orcid.org/0000-0002-5374-0534
C. Ramos Peñañuel http://orcid.org/0000-0003-0957-9090
E. Miranda Peralta http://orcid.org/0000-0001-9261-7451
E. Rozen Fuller http://orcid.org/0000-0003-0496-3122
J. J. Kassack Ipira http://orcid.org/0000-0001-5834-1551
F. Centeno Cruz http://orcid.org/0000-0002-3512-4519
E. Gamido Guerrero http://orcid.org/0000-0002-5912-8346
J. Collazo Jaloma http://orcid.org/0000-0003-3165-7286
K. Nacho Vargas http://orcid.org/0000-0003-4447-3793
A. Martínez Tovar http://orcid.org/0000-0002-5713-3731

References
[1] Rivera JM. Advances in acute lymphoblastic leukemia in adults. Curr Opin Oncol. 2011;23(6):692–699.
[2] Arteaga-Ortiz L, Buitrón-Santiago N, Rosas-López A, et al. Acute lymphoblastic leukemia: experience in adult patients treated with hyper CVAD and O195 Protocol, at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Cohort 2003–2007. Rev Invest Clin. 2008;60(6):459–469.
[3] Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011;29(5):532–543.
[4] Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist. 2003;8(5):411–424.
[5] Swerts K, De Moerloose B, Dhooge C, et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer. 2006;42(3):295–309.
[6] Ambudkar AV, Sauna ZE, Gottesman MM, et al. A novel way to spread drug resistance in tumor cells: functional intercellular transfer of P-glycoprotein (ABCB1). Trends Pharmacol Sci. 2005;26(8):385–387.
[7] Marchetti S, Mazzanti R, Beiijnen JH, et al. M. concise review: clinical relevance of drug-drug and herb-drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). The Oncologist. 2007;12(8):927–941.
[8] Abd El-Ghaffar HA, Aladle DA, Farahat SE, et al. P-glycoprotein (P-170) expression in acute leukemias. Hematology. 2006;11(1):35–41.
[9] Suvannasankha A, Minderman H, O’Loughlin KL, et al. Breast cancer resistance protein (BCRP/MXR/ABCG2) in adult acute lymphoblastic leukaemia: frequent expression and possible correlation with shorter disease-free survival. Br J Haematol. 2004;127(4):392–398.
[10] Olarte I, Miranda E, Lopez A, et al. Expression of the gene to multidrug resistance (MDR-1) in patients with acute myeloblastic leukaemia. Rev Med Hosp Gen Mex. 2010;73(4):219–224.
[11] Swirnovsky AI, Shman TV, Serhiyenko TF, et al. ABCB1 and ABCG2 proteins, their functional activity and gene expression in concert with drug sensitivity of leukemia cells. Hematology. 2009;14(4):204–212.
[12] Gregers J, Green H, Christensen U, et al. Polymorphisms in the ABCB1 gene and effect on outcome and toxicity in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015;15(4):372–379.
[13] Farawela HM, Khorsheid MM, Kassem NM, et al. The clinical relevance and prognostic significance of adenosine triphosphate-ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study. J Cancer Res Clin Oncol. 2014;140(8):1323–1330.
[14] Lu Y, Kham SK, Ariffin H, et al. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia. Br J Cancer. 2014;110(6):1673–1680.
[15] Rahgozar S, Moafi A, Abedi M, et al. mRNA expression profile of multidrug-resistant genes in acute lymphoblastic leukemia of children, a prognostic value for ABCA3 and ABCA2. Cancer Biol Ther. 2014;15(1):35–41.
[16] Elseayed GM, Ismail MM, Moneer MM. Expression of P-glycoprotein, cyclin D1 and Ki-67 in acute lymphoblastic leukemia: relation with induction chemotherapy and overall survival. Indian J Hematol Blood Transfus. 2011;27(3):157–163.
[17] Kourti M, Vavatsi N, Gombakis N, et al. Expression of multidrug resistance 1 (MDR1), multidrug-resistance-related protein 1 (MRP1), lungresistanceprotein (LRP), and breastcancerresistanceprotein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukaemia. Int J Hematol. 2007;86(2):166–173.
[18] Jiang X, Wang JS, Fang Q. Gene expression of breast cancer resistance protein in adult acute lymphocytic leukaemia: relation with induction chemotherapy and its clinical significance. Zhongguo ShiYanXue Ye XueZaZhi. 2008;16(1):31–35.
[19] Cortez MA, Scrideli CA, Yunes JA, et al. mRNA expression profile of multidrug resistance genes in childhood acute lymphoblastic leukemia. Low expression levels associated with a higher risk of toxic death. Pediatr Blood Cancer. 2009;53(6):996–1004.
[20] Sauerbrey A1, Sell W, Steinbach D, et al. Expression of the BCRP gene (ABCG2/MXR/ABC2) in childhood acute lymphoblastic leukaemia. Br J Haematol. 2002;118(1):147–150.
[21] Chauhan PS, Bhushan B, Singh LC, et al. Expression of genes related to multiple drug resistance and apoptosis in acute leukemia: response to induction chemotherapy. Exp Mol Pathol. 2012;92(1):44–49.
[22] Valera ET, Scrideli CA, Queiroz RG, et al. Multiple drug resistance protein (MDR-1), multidrug resistance-related
[23] Huh HJ, Park CJ, Jang S, et al. Prognostic significance of multidrug resistance gene 1 (MDR1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) mRNA expression in acute leukemia. J Korean Med Sci. 2006;21(2):253–258.

[24] Annino L, Vegna ML, Camera A, et al. Treatment of adult acute lymphoblastic leukemia (ALL): long-term follow-up of the GIMEMA ALL 0288 randomized study. Blood 2002;99(3):863–871.

[25] Mancini M, Scappaticci D, Cimino G, et al. A comprehensive genetic classification of adult acute lymphoblastic leukemia (ALL): analysis of the GIMEMA 0496 protocol. Blood 2005;105(3):3434–3441.

[26] Brozek J, Bryl E, Ploszynska A, et al. P-glycoprotein activity predicts outcome in childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2009;31(7):493–499.