First report of the Phe1534Cys kdr mutation in natural populations of Aedes albopictus from Brazil

Oscar Alexander Aguirre-Obando¹, Ademir Jesus Martins²,³* and Mário Antônio Navarro-Silva¹

Abstract

Background: Knockdown resistance (kdr), caused by alterations in the voltage-gated sodium channel (Nav), is one of the mechanisms responsible for pyrethroid (PY) resistance. In the Asian tiger mosquito, Aedes albopictus, at least four different mutations were described in the IIIIS6 NaV segment in populations from Asia, North America and Europe. In contrast, in Aedes aegypti at least 12 non-synonymous mutations have been reported at nine different codons, mostly in the IIIS6 and IIIIS6 NaV segments. The Phe1534Cys kdr mutation in the IIIIS6 NaV segment is the most prevalent in populations of Ae. aegypti worldwide, also found in Ae. albopictus from Singapore. Herein, we investigated the DNA diversity corresponding to the IIIS6 and IIIIS6 NaV segments in natural populations of Ae. albopictus from Brazil.

Methods: DNA from eight Brazilian Ae. albopictus natural populations were individually extracted and pooled by states of origin, amplified, cloned and sequenced for the corresponding IIIS6 and IIIIS6 NaV segments. Additionally, samples from each location were individually genotyped by an allelic specific PCR (AS-PCR) approach to obtain the genotypic and allelic frequencies for the 1534 NaV site.

Results: No non-synonymous substitutions were observed in the IIIS6 sequences. However, the Phe1534Cys kdr mutation was evidenced in the Ae. albopictus NaV IIIIS6 segment sequences from Paraná (PR) and Rondônia (RO) states, but not from Mato Grosso (MT) state. The 1534Cys kdr allele varied from 3% (Marilena/PR and Porto Velho/RO) to 10% (Foz do Iguaçu/PR). To our knowledge, this paper reports the first occurrence and provides distribution data of a possible kdr mutation in Ae. albopictus in South America.

Conclusion: The emergence of a likely kdr mutation in Ae. albopictus natural populations is a signal of alert for vector control measures since PY are among the most popular insecticides adopted by residents. Additionally, once the kdr allele is present, its frequency tends to increase faster under exposition to those compounds. Although the Asian tiger mosquito is not incriminated as an important vector of dengue, chikungunya and Zika viruses in South America, its importance in this regard has been extensively discussed since Ae. albopictus is rapidly spreading and can also migrate between sylvatic and urban environments. Therefore, insecticide resistance monitoring initiatives should also be extended to Ae. albopictus in Brazil in order to maintain chemical compounds as an efficient vector control tool when needed.

Keywords: Allele-specific PCR, Chikungunya, Dengue, Pyrethroid resistance, Vector control, Voltage-gated sodium channel, Zika

* Correspondence: ademirjr@ioc.fiocruz.br

1Laboratório de Fisiologia e Controle de Atrópodes Vetores, Instituto Oswaldo Cruz-FIOCRUZ, Av. Brasil 4365, Rio de Janeiro-RJ, PO Box 2104-900, Brazil

2Laboratório de Entomologia Molecular, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil

Full list of author information is available at the end of the article.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

The Asian tiger mosquito, *Aedes albopictus* (Skuse, 1894), presents an important role in the transmission of dengue, chikungunya and Zika viruses as well as filarial nematodes in Asia and Africa [1–7]. So far, *Ae. aegypti*, a species that shares ecological niches with *Ae. albopictus* [8], is the primary vector for these arboviruses in the Americas [9–11]. However, the vectorial capacity/competence of the Asian tiger mosquito in the two continents has been intensively discussed [4, 5, 12–14]. In South America, *Ae. albopictus* was detected for the first time in Brazil (São Paulo state) in 1986 [15] and is currently present in 24 of the 27 Brazilian federal units, around 59% of all municipalities [16].

Several studies are ongoing in order to develop a vaccine against these arboviruses [17, 18], but the current means of control still rely upon vector control population densities: ideally first targeting the elimination of larval breeding site sources and, secondly insecticide application, which has been many times employed as the principal component of vector control strategies [19]. As a consequence, the intense use of these compounds by both the governmental campaigns and citizens (i.e., constant and uncontrolled household self-application) has been selecting resistant populations to practically all classes of insecticides available in public health [20].

Four classes of neurotoxic insecticides, organochlorines (OC), carbamates (CA), organophosphates (OP) and pyrethroids (PY), have been successively enlisted since the 1950s to control mosquito populations [21].

In contrast to *Ae. aegypti*, few reports of insecticide resistance in *Ae. albopictus* are known. Globally, this lack of information about the insecticide resistance status of *Ae. albopictus* is obviously related to its less significant role in arbovirus disease transmission in most of the world, compared to *Ae. aegypti* [22]. However, attention to the control of the Asian tiger mosquito should not be neglected even when both species are present since *Ae. albopictus* is a main connection between sylvatic/rural and suburban landscapes [23]. So far, some PY and one OP are recommended by WHO Pesticide Evaluation Scheme (WHO PES) for adult population vector control programmes [24]. Worldwide, PY are the most common class of insecticides to control adult vector-borne diseases due to their rapid effect (knockdown, similar to DDT), and safety [25]. As a consequence, there are plenty of resistance registers against PY in *Aedes* and *Anopheles* mosquitoes [26, 27], including some *Ae. albopictus* populations [20, 22, 28, 29].

Metabolic alterations and target site insensitivity represent the two major forms of PY resistance [30]. Pyrethroids and OC (DDT) target the voltage-gated sodium channel (NaV) in insects, producing an effect similar to a knockdown [31]. This channel is a transmembrane protein present in the neuronal axons, composed of four homologous domains (I–IV), each with six hydrophobic segments (S1–S6) [32]. Several point mutations were reported in NaV insects, most of which in the IIIS6 and IIIIS6 NaV segments very well related to PY resistance, known as kdr mutations [33, 34]. In *Ae. aegypti*, several kdr mutations were identified, especially at the NaV positions 989, 1011 and 1016 (IIIS6 segment), as well as 1534 (IIIIS6 segment) [35–38]. In *Ae. albopictus*, however, only four alterations were found, at the 1532 and 1534 positions, both in the IIIIS6 segment. The Phe1534Cys kdr mutation, similar to the most frequent kdr mutation in *Ae. aegypti*, was reported in Singapore [39], China [40] and Greece [41]; Ile1532Leu in the USA [42] and China [40, 41], and L1534Ser also in the USA and China [41]. The substitution at the 1532 position (Ile1532Thr) appeared only in the *Ae. albopictus* population from Italy [41].

Given the increasing dispersion of *Ae. albopictus* and the possible role of this insect in the maintenance or even transmission of dengue, chikungunya and Zika viruses, this study was undertaken to investigate the occurrence, frequency and distribution of possible kdr mutations eventually, discovered in the IIIS6 and IIIIS6 NaV segments in Brazilian *Ae. albopictus* natural populations. Herein, we identify the existence of the Phe1534Cys kdr mutation in natural *Ae. albopictus* populations from Brazil.

Methods

Sampling

The collection of *Aedes* spp. from the municipalities of Cianorte, Foz do Iguaçu, Maringá, Marilena, Nova Londrina, Alvorada do Sul (Paraná state), Rondonópolis (Mato Grosso state) and Porto Velho (Rondônia state) followed the instructions of the Brazilian *Ae. aegypti* Insecticide Resistance Monitoring Network (MoReNAa) [43]. Geopolitically, Paraná, Mato Grosso and Rondônia states are part of the South, Central-West and North regions, respectively. Geographical locations as well as years of sampling are represented in Fig. 1. All samples were collected by the dengue vector control programme staff members from each municipality. In all cases ovitraps were installed at least 100 m apart in the peri-domestic area [44]. The samples collected were sent to the Medical Entomology and Veterinary Laboratory of Parana Federal University. The gathered *Aedes* spp. eggs were induced to hatch in the laboratory and reared until adult emergence under controlled conditions (25 ± 1 °C, humidity 80 ± 10% and photoperiod 12:12 h). These adult mosquitoes from each population were species identified following the identification keys of Consoli et al. [45] and Forattini [46]. Recently-emerged *Ae. albopictus* adults from each population were collected for...
molecular analysis. The mosquitoes were individually placed in absolute ethanol (99.5%) and stored at -20 °C.

Amplification, cloning and sequencing of the IIS6 and IIIS6 NaV segments of *Ae. albopictus*

DNA extraction followed Aguirre-Obando et al. [47] guidelines. All the samples from each locality were individually extracted. The amount of 1 μl [20 ng/μl] of each extraction was added to form a DNA pool for each of the three states: Paraná (*n* = 118), Mato Grosso (*n* = 11) and Rondônia (*n* = 37). These DNA pools were used to amplify the genomic region correspondent to the IIS6 and IIIS6 NaV segments, as proposed elsewhere [36, 48]. The employed primers had been previously designed for *Ae. aegypti*: 5para3 (5′-ACA ATG TGG ATC GCT TCC C-3′) and 3para3 (5′-TGG ACA AAA GCA AGG CTA AG-3′) [48], and AaEx31P (5′-TCC CGG GAG GTA AGT TAT TG-3′) and AaEx31Q (5′-GTG GAA TAA GCA TGG AAA TC-3′) [36], respectively, for the IIS6 and IIIS6 NaV segments. Notably, the NaV sequences present high similarity between *Ae. aegypti* and *Ae. albopictus*, and the region of primers annealing were identical.

Polymerase chain reactions (PCR) amplifications were carried out with the USB® FideliTaq™ DNA Polymerase kit (Affymetrix; 0.03 U Taq DNA polymerase and 1× buffer) containing 20 ng/μl of the genomic DNA pool, 1 μM of each primer and 0.25 μM of dNTP in 40 μl of reaction. PCR conditions for both IIS6 and IIIS6 NaV segments were: 95 °C for 5 min, followed by 35 cycles of 95 °C for 30 s, 60 °C for 40 s and 72 °C for 1 min with a final extension step at 72 °C for 5 min. The PCR products were purified using the magnetic beads approach (Agencourt® AMPure® XP, Beckman Coulter, Inc.) from which 2 μl were applied to carry out the ligation reaction with the CloneJet PCR Cloning Kit (Thermo Scientific, Pittsburgh, USA), both in accordance with the manufacturer’s instructions. The volume of 3 μl from the ligation reaction was used to transform *Escherichia coli* DH5α competent cells. Around 200 randomly chosen colonies were inoculated in 1 ml of Circlegrow medium (MP Biomedicals, Santa Ana, USA) with 1 mg/l ampicillin in deep well plates and then incubated for 22 h at 37 °C and 220 rpm. The DNA minipreps followed the alkaline lysis procedure [49]. The sequencing reactions were performed with the Big Dye 3.1 Kit (LifeTechnologies/
Applied Biosystems, California, USA), in compliance with the manufacturer’s instructions, and sequenced on an ABI377 automated sequencer (LifeTechnologies/Applied Biosystems, California, USA) in the DNA sequencing facility of FIOCRUZ (Plataforma de Sequenciamento/ PDTIS/Fiocruz).

Sequence analyses were performed with the software Geneious® (R7.1.3. Biomatters, Auckland, New Zealand) and the Blast platform of NCBI. Only changes in sequences of at least two independent clones were considered, as some of the singletons might represent PCR-induced mutations [48]. The haplotypes in this study were deposited in the GenBank database (accession numbers KX281169–KX281170 and KX371864–KX371865). Mega 6.1 [50] software was used to translate the IIS6 and IIIS6 segments into amino acid sequences to check for the existence of non-synonymous mutations. The codon numbering was determined in accordance with Musca domestica numbering.

Genotyping of the 1534 NaV site of Ae. albopictus

Given the high conservation at the genomic NaV sequence coding for the IIIIS6 segment between Ae. aegypti and Ae. albopictus, we employed the same allele-specific PCR assay (AS-PCR) previously designed for the Phe1534Cys variation in Ae. aegypti [36]. In this reaction, three primers were engaged, one reverse common for both alleles: 5′-GCG GCG GGG GCG GGG CCT CTA CTT TGT T-3′, and two forward allele specific primers: 1534Phe +: 5′-TCT GCT CGT TGA AGT TGT CGA and 1534Cys +: 5′-GCG GGC AGG GCG GGG GCG GGG GGG CCA CTA CTT TGT TAT T-3′. Briefly, the discrimination of the PCR products was possible due to a GC tail attached to the 5′-end of the primers differing in 20 nucleotides between them. Additionally, an increase in the specificity of the reaction was obtained by a transversion in the antepenultimate nucleotide at 3′-end of each allelic specific primer [38, 51, 52]. Around 15 samples from each population were individually genotyped following the protocol described by Linss et al. [37]. All batches of reactions included positive controls for the genotypes Phe/Phe, Cys/Cys and Phe/Cys, taken from DNA of the Ae. aegypti lineages, respectively Rockefeller (Rock), Rock-kdr and a mix of them in equal concentrations. The Ae. aegypti Rockefeller lineage is a standard for vigor and insecticide susceptibility [53], whilst the Rock-kdr is a PY resistant lineage, previously selected in our laboratory for both 1016Lel kdr and 1534Cys kdr mutations in the NaV (for more details see: Brito et al. [54]). The AS-PCR amplicons were evaluated in 10% polyacrylamide electrophoresis gel stained in a Safer dye solution bath (Kasvi: 6x). By analyzing the amplicons, the genotype and allelic frequencies were calculated and the Hardy-Weinberg equilibrium (HW) hypothesis test was carried out [55]. These analyses were conducted in two different ways: first, each municipality was considered and analyzed individually and second, the municipalities from Paraná state were pooled and analyzed together.

Results

In the total sampling, Ae. albopictus represented an average of 6.4% of the eggs collected, the remaining being Ae. aegypti. Table 1 shows some demographic information and the total number of adult mosquitoes obtained from each locality. The yearly number of dengue cases for these municipalities is presented in Additional file 1: Table S1. The locality with the lowest prevalence of Ae. albopictus (1.3%) was Foz do Iguaçu which is also the city with the fewest inhabitants living in a rural area (0.8%). Accordingly, higher prevalence of Ae. albopictus was, in general, observed in the cities with higher human densities in the rural area.

The genomic region corresponding to the IIS6 (294 bp) and IIIS6 (350 bp) NaV segments of Ae. albopictus from three Brazilian states, Rondônia (North region), Mato Grosso (Central-West region) and Paraná (South region), were obtained, amplified and sequenced from a total of 166 mosquitoes. A total of 96 sequences of the IIIS6 NaV segment displayed two distinct haplotypes, differing in only one nucleotide insertion in the intronic region (GenBank: KX281169 and KX281170). Both haplotypes, IIIS6_H1 (52.6%) and IIIS6_H2 (47.4%), were detected in clones representative of all states (Table 2). Figure 2 shows an alignment of the IIIS6 haplotypes reported herein, three genomic sequences of Ae. albopictus available in the GenBank database, from Brazil (FJ479615), Malaysia (KC152045) and Japan (AB827810) as well as one Ae. aegypti haplotype from Brazil (FJ479611), evidencing a high similarity. None of the haplotypes presented non-synonymous substitutions (Fig. 2).

Regarding the IIIIS6 NaV segment, from 96 clone sequences, two haplotypes were also detected in which the only polymorphism was the single nucleotide polymorphism (SNP) TTC/TGC, corresponding to the known Phe1534Cys kdr mutation. The 1534Cys kdr haplotype was present in the IIIIS6 clones of Ae. albopictus from Paraná (20.8%) and Rondônia (3.1%) states but not from Mato Grosso state (Table 2). These sequences were also submitted to the GenBank (KX371864 and KX371865). Figure 3 shows an alignment of the IIIIS6 haplotypes and some of the few homologous regions available in the GenBank for Ae. albopictus, one DNA (AB827824) and two mRNA sequences (KC152046 and AY663382), none of them covering the whole extension of our sequences. A homologous Ae. aegypti sequence...
Table 1 Demographic data and numbers of Aedes aegypti and Aedes albopictus in the locally studied

Municipality	Demographic information	Sampling					
	Inhabitants	Residents in rural area (%)	Area (km²)	Inhabitants/km²	Year of sampling	A. aegypti	A. albopictus
Porto Velho (RO)	428,527	8.8	34,090.9	126	2010	9,203	162 (1.7%)
Rondonópolis (MT)	195,476	3.8	4,159.1	470	2012	1,383	23 (1.6%)
Nova Londrina (PR)	13,067	8.1	269.4	485	2014	236	21 (0.2%)
Alvorada do Sul (PR)	10,283	28.6	424.3	242	2012	219	17 (1.2%)
Cianorte (PR)	69,958	11.0	811.7	862	2012	1,181	262 (1.8%)
Marilena (PR)	6,858	27.3	232.4	29.5	2014	143	16 (1.0%)
Foz do Iguaçu (PR)	256,088	0.8	618.4	414.1	2014	5,544	76 (1.3%)
Maringá (PR)	357,077	1.8	487.1	733.1	2012	13,436	393 (2.8%)

Abbreviations: MT Mato Grosso State, RO Rondonia State, PR Paraná State

Table 2 Distribution and frequency of the IIS6 and IIIS6 NaV haplotypes of Aedes albopictus from Brazil. The frequencies considered the total amount of clones from the respective IIS6 or IIIS6 segments

Haplotype	Haplotype frequency (%)	Total		
	Paraná	Mato Grosso	Rondônia	
IIS6 H1	36.7	5.3	10.6	52.6
IIS6 H2	34.2	4.0	9.2	47.4
IIS6 1534Phe	41.7	12.5	21.9	76.1
IIS6 1534Cys	20.8	0.0	3.1	23.9

(KF527415) was also added to the alignment, demonstrating that the AS-PCR primers developed for the 1534 NaV site of this species is also suitable for these Brazilian Aedes albopictus populations.

Once the Phe1534Cys kdr mutation was evidenced in our samples, we evaluated the allelic and genotype frequencies from each municipality for the 1534 kdr site. The 1534Cys kdr allele ranged from 0 to 10% amongst the six municipalities of Paraná state, 3% in Porto Velho (Rondônia state) and was not present in Rondonópolis (Matto Grosso state) (Fig. 1). In all cases, when the kdr allele was found, it appeared in heterozygosis with no rejection of the HW Equilibrium hypothesis in any case (P > 0.05) (Table 3).

Discussion

A very informative compilation of worldwide insecticide resistance data for vector mosquitoes had been published in 1986 [56]. In that review, native Aedes albopictus populations from Asia already presented resistance to the OC adulticides, DDT and dieldrin (not currently used in vector control programmes), the OP malathion adulticide and the methion larvicide. From 2010 on, new reviews have been focusing on insecticide resistance data on the "dengue vectors" Aedes aegypti and Aedes albopictus [20, 22, 57]. Among these reviews, out of more than 100 evaluated papers, only 35 considered Aedes albopictus, in which resistance to OC, OP (larvicide temephos) and PY was registered in some countries from Asia, Africa, Caribbean and Europe. In South America, especially in Brazil, to our knowledge, only one study has evidenced loss of susceptibility to an insecticide, in this case the larvicide OP temephos in Aedes albopictus [58].

The kdr mutations are highly related to PY resistance in several insect species, including vector mosquitoes, and have been therefore adopted as molecular markers for rapid screening of field populations [33, 59]. To our knowledge, we report here for the first time the Phe1534Cys substitution in the NaV of Aedes albopictus in Brazil. Among the four municipalities where the Phe1534Cys kdr mutations were found, Porto Velho, Maringá and Foz do Iguaçu are large urban centers with high incidence of dengue outbreaks [60–62]. Foz do Iguaçu deserves special attention since it borders Puerto Iguazú (Argentina) and Ciudad del Este (Paraguay). Although we only have data evidencing loss of susceptibility to the OP Temephos larvicide in Brazilian Aedes albopictus populations [58], resistance to both OP and PY was detected in Aedes aegypti from Foz do Iguaçu [58, 62]. This indicates strong selection pressure due to the OP and PY insecticides in that locality which is also likely affecting Aedes albopictus. A similar mutation was previously described in populations from Singapore [39], China [40] and Greece [41]. In this same 1534 position other alterations were described, 1534Leu and 1534Ser in the USA [41, 42] and China [40, 41]. In a study on Aedes albopictus populations from the USA, the status of resistance was confirmed for both OC DDT and OP malathion, but not for the PYs (deltamethrin, phenothrin and prallethrin) although the Phe1534Leu mutation was present [42]. This same mutation could not be correlated to PY resistance in Chinese Aedes albopictus...
populations resistant to the PY deltamethrin. On the other hand, the frequency of Phe1534Ser was significantly higher in the resistant populations than in those found susceptible [41].

Phe1534Cys is the most frequent \textit{kdr} mutation in \textit{Ae. aegypti} populations worldwide and its role to PY resistance is very well defined alone or in conjunction with other Na\textsubscript{v} mutations [63]. Although we do not have reports of pyreicide resistance in \textit{Ae. albopictus} in Brazil, we are aware of the intense selection pressure with these chemical compounds in the country. This is well indicated by the increase in the frequency and spread of \textit{kdr} mutations in \textit{Ae. aegypti}, well related with the intense use of PY in the last decade [37, 64]. The frequency of the 1534Cys \textit{kdr} allele in Brazilian \textit{Ae. albopictus} populations (ranging from 3 to 10%, when found)

\begin{verbatim}
Fig. 2 Nucleotide diversity in the IIS6 Na\textsubscript{v} segment of \textit{Aedes albopictus}. ClustalW alignment for comparing the haplotypes found in this study, IIS6_Hap1 (KX281169) and IIS6_Hap2 (KX281170), with other sequences of \textit{Ae. albopictus} available in GenBank from Brazil (FJ479611), Asia (KC152045) and Japan (AB827810). One haplotype of \textit{Ae. aegypti} (F479611) was included for comparison, but the intron was neglected in order not to disturb the alignment. The sequence AB827810 does not cover the whole extension of this alignment. The translated amino acid sequence is represented by the letters in blue; over the first nucleotide of their corresponding codon. Nucleotides in uppercase letters correspond to the coding region (exons 20 and 21), and those in lower case refer to the intron with the numbering in the alignment inside brackets at the top of each block and single underlined sequences referring to the primers positions. Invariable sites are indicated with dots, otherwise with the alternative nucleotide and gaps with (-).

Fig. 3 Nucleotide diversity in the IIIS6 Na\textsubscript{v} segment of \textit{Aedes albopictus}. ClustalW alignment for comparing the haplotypes found in this study, 1534Phe (K00371864) and 1534Cys (K00371865), with other \textit{Ae. albopictus} sequences available in GenBank: genomic DNA (ABB27824), mRNA (KC152046 and AY663382) and one haplotype of \textit{Ae. aegypti} (KF527415). The three sequences downloaded from GenBank do not cover the whole extension of this alignment. The translated amino acid sequence is represented by the letters in blue; over the first nucleotide of their corresponding codon. Nucleotides in uppercase letters correspond to the coding region (exons 30 and 31) and those in lower case refer to the intron, with the numbering in the alignment inside brackets at the top of each block and single underlined sequences referring to the primers positions. Double underlines indicate the annealing region for the AS-PCR primers. Invariable sites are indicated with dots, otherwise with the alternative nucleotide and gaps with (-). The 1534Cys \textit{kdr} site is indicated with a square.
\end{verbatim}
was low when compared to the findings in Singapore (73%), for instance [39]. Additionally, in our study all insects bearing this mutation were heterozygotes. Anyway, as there was no support for rejecting the HW equilibrium hypothesis, we have no evidence to suggest a possible positive selection for the 1534Cys^{kdr}. In contrast, some <i>Ae. albopictus</i> populations from China and Greece were not under HW equilibrium regarding the 1534 Na_V position, probably due to a heterozygote deficit [41]. As low frequencies of the 1534Cys^{kdr} were found in our study, and considering that there is a selection pressure with PY favoring the homozygous <i>kdr</i> [54] in the studied localities, we suggest that this mutation has just emerged or was introduced very recently in Brazil.

Further phylogenetic analyses incorporating the III6 segment sequences and neutral markers for <i>Ae. albopictus</i> from different parts of the world may help explain whether the Phe1534Cys <i>kdr</i> mutation arose independently in Brazil or migrated from elsewhere. So far, there are few Na_V sequences of <i>Ae. albopictus</i> available. Unfortunately, the publications that described <i>kdr</i> mutations in the Asian tiger mosquito had not deposited their sequences in GenBank [39–42] up to the date when our study was submitted. Actually, there are 14 sequences with part of the III6 Na_V segment of Japanese populations (AB827815–AB827828) (Kawada & Pujiyati, published on GenBank only) but without the intron region, which would be valuable for phylogenetic analysis. More data are needed in order to process such analyses with worldwide samples to infer the origin and dispersion of the <i>kdr</i> mutations.

The AS-PCR approach for detecting the presence and frequency of <i>kdr</i> mutations is suitable as one of the tools for PY resistance surveillance in natural <i>Ae. albopictus</i>. However, prior to carry on this strategy, it is necessary to be aware of the nucleotide diversity in the sequence of the Na_V gene of local populations. A recent survey of <i>Ae. albopictus</i> from several countries, in North America, Europe and Asia, reported that the 1534 Na_V position is highly variable due to the presence of different mutations such as: TTC (Phe) as well as the TGC (Cys), TCC (Ser) and TTG (Leu) [40]. This means that one has to know exactly which alleles in the target population exist before applying an AS-PCR approach, like the one herein. We employed specific primers previously designed for the 1534Phe⁺ (TTC) and 1534Cys^{kdr} (TGC) alleles [36], after having evidenced sequenced clones of III6 segments from Brazilian populations of several localities. Another mutation, two positions upstream from the 1534 site (Ile1532Thr), was found in an <i>Ae. albopictus</i> population from Rome, Italy [41].

It is important to mention that the amount of <i>Ae. albopictus</i> collected in our study might be underestimating the real proportion of this species since the methodologies of vector surveillance by ovitraps are based on <i>Ae. aegypti</i> eg-laying preferences. As <i>Ae. albopictus</i> prefers conditions with more vegetation and is generally more exophilic than <i>Ae. aegypti</i> [65], our samplings may not cover some environments where <i>Ae. albopictus</i> is more common. In Brazil, the most recent national survey on <i>Ae. albopictus</i> distribution considering the annual larval surveys from 2007 to 2014, displayed that the house infestation index (HI) for <i>Ae. aegypti</i> is traditionally higher than that for <i>Ae. albopictus</i>. Nevertheless, from 2007 to 2011 in at least 34 municipalities, the HI ratio values for <i>Ae. albopictus</i> (median: 1.4) were higher than those for <i>Ae. aegypti</i> [16].

Although <i>Ae. albopictus</i> is not incriminated as a dengue, chikungunya or Zika virus vector in South America, it shares ecological niches with <i>Ae. aegypti</i> in urban areas, therefore suffering the same chemical selection pressure [16]. Thus, the 1534Cys^{kdr} allele in this study might have been favorably selected by the constant PY applications in ultralow volume oriented by the Brazilian Dengue Control Programme from 2001 to 2009 [43].

Table 3 Genotype frequency of the 1534 Na_V site of eight <i>Aedes albopictus</i> population from Brazil

Location	Year	N	Genotype frequency	HWE^a	P
Porto Velho (RO)	2010	37	0.95	0.002	0.821
Rondonópolis (MT)	2012	11	0.9	0	–
Cianorte (PR)	2009	16	0.94	0.67	0.784
Foz do Iguaçu (PR)	2009	24	0.79	0.06	0.874
Maringá (PR)	2012	24	0.87	0.06	0.784
Marilena (PR)	2014	16	0.94	0.06	0.784
Nova Londrina (PR)	2014	21	0.9	0	–
Alvorada do Sul (PR)	2014	17	0.9	0	–
PR	2009–2014	118	0.92	0.08	0.768

Abbreviations: MT Mato Grosso State, PR Paraná State, RO Rondonia State

^aHardy-Weinberg Equilibrium: Chi-square test with 1 degree of freedom
an increase and spread of kdr alleles throughout North and South American Aedes aegypti populations [37, 47, 66, 67], may take place with Aedes albopictus as well. Bioassays with field populations, considering distinct genotypes in the NaV gene, must be performed in order to confirm the susceptibility status and the role of these variants in PY resistance.

Conclusions
The presence of a kdr mutation in natural Aedes albopictus populations from distinct regions of Brazil points to the need of special attention also to this species in relation to insecticide resistance monitoring purposes. New alternative tools are now under implementation for Aedes aegypti control in Brazil, such as strains infected with Wolbachia and transgenic sterile lines, aiming respectively, to suppress local mosquito populations [68] or replacement by a lineage refractory to arbovirus infection and transmission [69]. If Aedes albopictus develops the arbovirus transmission role now assumed for Aedes aegypti, it could take its epidemiological place since the Asian tiger mosquito is largely disseminated throughout the country. Therefore, integrated vector control approaches and consistent insecticide resistance monitoring programmes are of prime concern in order to control diseases caused by arboviruses.

Additional file

Additional file 1: Table S1. Number of dengue cases registered in the localities studied. (DOCX 18 kb)

Abbreviations
AS-PCR: Allelic specific PCR; HI: Infestation index; HW: Hardy-Weinberg equilibrium; AS-PCR: Allelic specific PCR; HI: Infestation index; HW: Hardy-Weinberg equilibrium; Insecticide Resistance Monitoring Network; NaV: Voltage-gated sodium channel; kdr: Knockdown resistance; MoReNAa: Brazilian Arbovirus Insecticide Resistance Monitoring Network; KX281169–KX281170 and KX371864–KX371865.

Acknowledgements
We thank the National Microarray Network, the State Department of State Health and the Centro de Zoologia e de Polícia do Estado do Rio de Janeiro and the Instituto Oswaldo Cruz for kindly providing the Escherichia coli competent cells. The figures were kindly ameliorated by Heloisa Diniz (IOC/Fiocruz) and the Center for Zoonosis Control of Foz do Iguaçu for the samples. We are grateful to Dr. David Morales for critical reading the manuscript and to the collaborative work of Lic. Paula Cárdenas and Mitchell Raymond Lishon for the English review.

Funding
This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 140224/2013-0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 2014.01.0148-9), Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT) and the National Institute of Health (NIH U01 AI115595).

Availability of data and materials
The haplotypes reported in this paper have been deposited in the GenBank, and are available under accession numbers KX281169–KX281170 and KX371864–KX371865.

Authors’ contributions
Conceived and designed the experiments: OAAO, AJM and MANS. Performed the experiments: OAAO. Analyzed the data: OAAO, AJM and MANS. Contributed reagents/materials/analysis tools: AJM and MANS. Wrote the paper: OAAO. All authors read and approved the final version of the manuscript.

Competing interests
The authors declare they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Laboratório de Entomologia Médica e Animal, Departamento de Zoologia, Universidade Federal do Paraná, PO Box 2104, Curitiba 80033.010, Paraná, Brazil. 2Laboratório de Virologia e Bioinformática, Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro-RJ, Brasil. 3Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.

Received: 13 August 2016 Accepted: 15 March 2017
Published online: 27 March 2017

References
1. Higgs S, Vanlandingham D. Chikungunya: here today, where tomorrow? Int J Health. 2015;7(1):1–3.
2. Whitehorn J, Kien D, Nguyen N, Nguyen H, Kyrylos PP, Carrington LB, et al. Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: Implications for public health. J Infect Dis. 2015;212(8):1182–90. doi:10.1093/infdis/jiv173.
3. Vega-Rúa A, Zouaui K, Girod R, Failoux A-B, Lourenço-de-Oliveira R. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014;88(11):6294–306.
4. Grard G, Caron M, Mombo I, Nkoghe D, Ondo S, Jiolle D, et al. Zika virus in Gabon (Central Africa) - 2007: A new threat from Aedes albopictus? PLoS Negl Trop Dis. 2014;8(2):e2681.
5. Wong P-S, Li M-Z, Chong C-S, Ng L-C, Tan C-H. Aedes albopictus (Skuse) from ten American countries as a crucial factor in the spread of Chikungunya virus. J Virol. 2014;88(11):6294–306.
6. Musso D, Nilles E, Cao-Lormeau V-M. Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect. 2014;20(10):O595–6.
7. Guchen C, Kramer L, Rivas F. Dicrofilarial infections in Europe. Vector Borne Zoonotic Dis. 2011;11(10):1307–17.
8. Rey J, Lounibos P. Ecologia de Aedes aegypti y Aedes albopictus en América y la transmisión de enfermedades. Biomedica. 2015;35(2):177–85.
9. OPS: Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas, by Country. www.paho.org/hq/index.php?option=com_docman&task=doc_download&Itemid=&gid=29650&lang=en (2015).
10. Accessed 28 Mar 2015.
11. Yakob L, Walker T. Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Glob Health. 2016;4:e148–9.
12. Rowland Jones S. Chikungunya out of the tropical forests and heading our way. Trans R Soc Trop Med Hyg. 2016;110(2):285–6.
13. Dubreuil M, Mouslon L, Moutailler S, Vazeille M, Failoux A-B, Chikungunya virus and Aedes mosquitoes: salva is infectious as soon as two days after infection. PLoS One. 2009;4(6):e8595.
14. Vanlandingham D, Martin E, Mouslon L, Failoux A-B. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after infection. PLoS One. 2009;4(6):e8595.
15. Forattini O. Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev Saude Publica. 1986;20(3):294–5.
16. Carvalho R, Lourenço-de-Oliveira R, Braga I. Updating the geographical distribution and frequency of Aedes aegypti in Brazil with remarks regarding its range in the Americas. Mem Inst Oswaldo Cruz. 2014;109(6):787–96.
17. Lu H, Xu X-F, Gao N, Fan D-Y, Wang J, An J. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: their immunity and protective efficacy in mice. Mol Immunol. 2013;54(2):109–14.
18. Sun W, Eckels K, Putnak J, Lyons A, Vaughn D, et al. Experimental dengue virus challenge of human subjects previously vaccinated with live attenuated tetravalent dengue vaccines. J Infect Dis. 2013;207(5):700–8.
19. WHO. Sustaining the drive to overcome the global impact of neglected tropical diseases: Second WHO report on neglected tropical diseases. Geneva: World Health Organization; 2013.
20. Vontas J, Kioulos E, Pavlidi N, Morou E, della Torre A, Ranson H. Insecticide resistance in the major dengue vectors Aedes albopictus and Aedes aegypti. Pestic Biochem Physiol. 2012;104(2):126–31.
21. Baldachino F, Caputo B, Chandre F, Drago A, della Torre A, Montarsi F, et al. Control methods against invasive Aedes mosquitoes in Europe: a review. Pest Manag Sci. 2015;71:1–8.
22. Smith LB, Kasai S, Scott JG. Pyrethroid resistance in Aedes aegypti. Important mosquito vectors of human diseases. Pestic Biochem Physiol. 2016;133:1–12.
23. Bonizzoni M, Gasperi G, Chen X, James A. The invasive mosquito species et al. Parasites & Vectors 2018;11:23.
24. Lu H, Xu X-F, Gao N, Fan D-Y, Wang J, An J. Preliminary evaluation of DNA vaccine candidates encoding dengue-2 prM/E and NS1: their immunity and protective efficacy in mice. Mol Immunol. 2013;54(2):109–14.
25. Van den Berg H, Zaim M, Yadav R, Soares A, Ameneshewa B, Mnzava A, et al. Resistance mechanisms of Brazilian Aedes aegypti populations from 2003 to 2004. Am J Trop Med Hyg. 2007;77(3):467–77.
26. Ranson H, Lissenden N. Insecticide resistance in African Anopheline mosquitoes: a worsening situation that needs urgent action to maintain protective efficacy in mice. Mol Immunol. 2013;54(2):109–14.
27. Ranson H, Ndung’u P, Dabert P, Scherrer M, Van den Borren J, Mweemba N, et al. Genetic variability and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. J Insect Physiol. 2009;55(1):108–15.
28. Sanburn J, Russo M. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
29. Tamura K, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
30. Okamoto R, Dodgson J. Improved PCR amplification of multiple specific genes (PAMs) using internally mismatched primers. Biotechniques. 1996;20(3):24–26.
31. Jins L, Zhang H, Xhakwana M, Patel S, Umbrias M, Mweemba N, et al. High-throughput SNP genotyping by single-tube PCR with Tim-shift primers. Biotechniques. 2005;39(6):888.
32. Kuno G. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. J Med Entomol. 2010;47(6):957–71.
33. Brito L, Lins J, Lima-Camara T, Beltrão N, Peixoto A, Lima J, et al. Assessing the effects of Aedes aegypti kdr mutations on pyrethroid resistance and its fitness cost. PLoS One. 2013;8(4):e60878.
34. Hart D, Clark A. Principios de genética de poblaciones. 4th ed. ARTMED Editora S.A. Porto Alegre; 2010.
35. Brown A. Insecticide resistance in mosquitoes: a pragmatic review. J Am Mosq Control Assoc. 1986;2:23–40.
36. Hansen N, Burhani J, Lumpy M, Black IV. Insecticide resistance in dengue vectors. Trop Med Parasitol. 2010;11:1–12.
37. Prophiro J, Silva O, Luna J, Piccoli C, Kanis L, Silva M. Aedes aegypti and Aedes albopictus (Diptera: Culicidae): coexistence and susceptibility to insecticides in Brazil with remarks regarding Sanitária no Brasil. Rio de Janeiro: Fiocruz; 1994.
38. Kraemer M, Sinka M, Duda K, Howes RS, Longdon J, Pablos-Mendez A, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:e08347.
66. Vera-Maloof F, Saavedra-Rodriguez K, Elizondo-Quiroga A, Lozano-Fuentes S, Black IV. Coevolution of the Ile1,016 and Cys1,534 mutations in the voltage gated sodium channel gene of Aedes aegypti in Mexico. PLoS Negl Trop Dis. 2015;9(12):e0004263.

67. Alvarez L, Ponce G, Saavedra-Rodriguez K, Lopez B, Flores A. Frequency of V1016I and F1534C mutations in the voltage-gated sodium channel gene in Aedes aegypti in Venezuela. Pest Manag Sci. 2015;71(6):863–9.

68. Dutra H, Dos Santos L, Caragata EP, Silva J, Vilela D, Maciel-de-Freitas R, et al. From lab to field: The influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2015;9(4):e0003689.

69. Carvalho D, Mckemey A, Garziera L, Lacroix R, Donnelly C, Alphey L, et al. Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis. 2015;9(7):e0003864.