The problem of orbital relaxation in computational core-hole spectroscopies, including x-ray absorption and x-ray photoionization, has long plagued linear response approaches, including equation-of-motion coupled cluster with singles and doubles (EOM-CCSD). Instead of addressing this problem by including additional electron correlation, we propose an explicit treatment of orbital relaxation via the use of “transition potential” reference orbitals, leading to a transition-potential coupled cluster (TP-CC) family of methods. One member of this family in particular, TP-CCSD(1/2), is found to essentially eliminate the orbital relaxation error and achieve the same level of accuracy for core-hole spectra as is typically expected of EOM-CCSD in the valence region. These results show that very accurate x-ray absorption spectra for molecules with first-row atoms can be computed at a cost essentially the same as that for EOM-CCSD.
I. INTRODUCTION

The use of x-ray spectroscopies has long been a mainstay in the study of the structure and composition of ordered materials. More recently, x-ray ionization, absorption, and (inelastic) scattering have been applied to molecular systems, both in solution and in the gas phase. Coupled cluster linear response (LR-CC, or equivalently equation-of-motion coupled cluster—EOM-CC) techniques are a natural method to apply to such “core-ionized” and “core-excited” (collectively “core-hole”) states, given their immense success in the description of valence excitations. Linear response based on density functional theory (TD-DFT) has been shown to describe core-hole states rather poorly because of large self-interaction errors.

Several density functionals have been tuned to reproduce x-ray absorption spectra at the expense of a quantitative description of the ground state electronic structure, while range-separated functionals also somewhat decrease the self-interaction error. Alternatively, the ∆Kohn-Sham method, which separately performs (quasi-)variational optimizations of both the ground and core-hole states has been shown to accurately reproduce absorption and ionization spectra in many cases, but suffers from convergence difficulties and the need to compute transition properties in a non-orthogonal framework. As a compromise, the family of “transition-potential” DFT (TP-DFT) methods eschews both linear-response and state-specific orbital optimization by performing a single calculation with fractional orbital occupation, and is strongly motivated theoretically as an approximation to Slater’s Transition State method.

While TP-DFT has been successful in many cases, errors in both peak positions and intensities remain that can prevent a firm assignment of the spectrum in some cases. EOM-CC has been shown to smoothly and rapidly reduce errors as the excitation level and basis set quality are increased; in particular, inclusion of triple excitations and the use of an augmented triple-zeta basis set (possibly with the addition of explicit Rydberg basis functions) is sufficient for accuracy of better than 0.1 eV (when relativistic effects are included) in absolute energies. The inclusion of triple excitations is particularly crucial as the orbital relaxation effects for core-hole states are exceptionally large. We have recently shown that a perturbative treatment of triple excitations in the excited state (EOM-CCSD*) is sufficient to reproduce the effect of full triple excitations to high accuracy. Even so, the additional
expense of triple excitations, especially considering that such an effect is not typically re-
quired in valence calculations at a similar level of accuracy, motivates the search for an
effective EOM-CC method that can accurately treat core-hole states at a purely singles and
doubles level.

In this paper, we present a potential candidate method, transition-potential coupled
cluster (TP-CC), that blends the best features of both TP-DFT and EOM-CC in order to
fulfill the need for an economical and yet accurate EOM-CC method for treating core-hole
states.

II. THEORETICAL METHODS

A. Equation-of-Motion Coupled Cluster Theory

Equation-of-motion coupled cluster7–9 as well as the closely-related linear response cou-
pled cluster theory4–6 start with an exponential parametrization of the ground state,

\[E_{CC} = \langle 0 | e^{-\hat{T}} \hat{H}_N e^{\hat{T}} | 0 \rangle = \langle 0 | \hat{H} | 0 \rangle = 0 = \langle P | \hat{H} | 0 \rangle \]

where the cluster operator \(\hat{T} \) is a pure excitation operator and \(| 0 \rangle \) and \(| P \rangle \) denote the
reference determinant and set of excited determinants, respectively. Practical coupled cluster
calculations require a truncation of the cluster operator and the set of excited determinants; in
this work, a truncation at the level of single and double excitations (CCSD) is adopted. This
leads to the following definitions of \(\hat{T} \) and \(| P \rangle \), as well as the standard definition of the
normal-ordered Hamiltonian \(\hat{H}_N \),

\[\hat{H}_N = \sum_{pq} t^p_q \{ p^\dagger q \} + \frac{1}{4} \sum_{pqrs} v^{pq}_{rs} \{ p^\dagger q^\dagger s r \} \]

\[\hat{T} = \sum_{ai} t^a_i a^\dagger i + \frac{1}{4} \sum_{abij} t^{ab}_{ij} a^\dagger b^\dagger ji \]

\[| P \rangle = | S \rangle \oplus | D \rangle \]

\[= (a^\dagger i | 0 \rangle) \oplus (a^\dagger b^\dagger ji | 0 \rangle) \]
We use the standard notations: $pqrs$ refer to creation/annihilation operators of arbitrary spin-orbitals, while ab refer specifically to virtual spin-orbitals and ij to occupied spin-orbitals (with respect to $|0\rangle$). Braces denote normal ordering; note that \hat{T} is implicitly normal ordered.

From this ground state, the m-th excited state is parametrized by a linear excitation operator \hat{R}_m, a right eigenvector of the similarity-transformed Hamiltonian \bar{H}, and the corresponding excitation energy ω_m is determined as the corresponding eigenvalue,

$$\omega_m \hat{R}_m |0\rangle = (\bar{H} - E_{CC}) \hat{R}_m |0\rangle = [\bar{H}, \hat{R}_m] |0\rangle$$

$$\hat{R}_m = r_0 + \sum a_i r_i a_i \hat{b}^\dagger j i + \frac{1}{4} \sum ab ij r_{ab} a_i \hat{b}^\dagger j i$$

The excitation energies obtained with EOM-CC are precisely equal to the poles of the linear response function of the coupled cluster ground state (LR-CC). These two theories only disagree in the definition of transition properties such as oscillator strengths. In the length gauge, the EOM-CC dipole oscillator strength is given as an expectation value of the dipole operator,

$$f_m(\text{EOM-CC}) = \frac{2m_e \omega_m}{3\hbar^2} \sum_{\alpha=x,y,z} M_{m,\alpha}$$

$$M_{m,\alpha} = \langle 0 | \hat{L}_0 \mu_\alpha \hat{R}_m |0\rangle \langle 0 | \hat{L}_m \mu_\alpha \hat{R}_0 |0\rangle$$

where $\mu_\alpha = e^{-\hat{T}} \mu_\alpha e^{\hat{T}}$ and μ_α is the electronic dipole moment operator along the α Cartesian axis. Because \bar{H} is non-Hermitian, it has distinct left eigenvectors \hat{L}_m. The ground state eigenvectors are $\hat{R}_0 = 1$ and $\hat{L}_0 = (1 + \hat{\Lambda})$ with $\hat{\Lambda}$ being the usual coupled cluster amplitude response operator. In the linear response formalism, the square transition moments $M_{m,\alpha}$ are computed from the residual of the corresponding pole in the response function. This gives rise to an additional term that incorporates the response of the excitation amplitudes r to the electric field. In most circumstances this additional contribution is very small and can be safely neglected, and we do so in this work.

In contrast to the DFT linear response (TD-DFT) formalism, correlation of the excited state, which includes orbital relaxation effects, is explicitly included in the excitation operator \hat{R}_m, while in TD-DFT the exchange-correlation functional must account for such
effects. For core-hole states, the stark difference in length scales between valence and core-hole correlation effects leads to large self-interaction errors (SIEs) that fail to cancel between ground and excited states. An explanation of these errors in terms of orbital relaxation is also useful, as the ground state Kohn-Sham orbitals that define the model system fail to sufficiently approximate the core-hole state. While EOM-CC explicitly accounts for such effects, an accurate treatment of them requires sufficient correlation in \hat{R}_m which is only present at the triple excitation level.

When applied to core-excited and core-ionized states, which are in fact resonances embedded in the valence ionization continuum, EOM-CC typically encounters convergence problems. One solution to this problem is the core-valence separation (CVS), first introduced by Cederbaum and Schirmer, and adapted to EOM-CC by Coriani and Koch. In this approach, pure valence excitations or ionizations are excluded from the linear response manifold, which both restores convergence and eliminates spurious couplings to the (badly) discretized continuum determinants. All EOM-CC methods considered here use the CVS.

B. Transition-Potential Density Functional Theory

The TP-DFT theory is an approximation to Slater’s Transition State (TS) method, which in turn is ultimately derived from ΔKohn-Sham (or ΔDFT). In the latter approach, separate DFT calculations are performed for the initial and final states, and the resulting energies are simply subtracted,

$$\omega_{\Delta KS} = E_f - E_i$$

Given a suitable homotopy that connects the orbitals of the initial and final states by a continuous parameter λ (with $\lambda = 0$ in the initial state and $\lambda = 1$ in the final state), the energy difference can be written as,

$$\omega_{\Delta KS} = \int_0^1 \frac{dE(\lambda)}{d\lambda} d\lambda$$

Now, assume that the initial and final states differ only by a single excitation, that is, we can identify a (spin-)orbital ϕ_1 that has an occupation $n_1 = 1$ in the initial state and 0 in the final state, and another orbital ϕ_2 that has occupation $n_2 = 0$ in the initial state and 1 in the final state, while all other orbitals have the same occupation (1 or 0) in both states.
Note that the actual (spatial) orbitals need not be the same in both states, only that they can be uniquely identified via the homotopy. Thus,

\[
\frac{dE(\lambda)}{d\lambda} = \frac{\partial E(\lambda)}{\partial n_1} \frac{\partial n_1}{\partial \lambda} + \frac{\partial E(\lambda)}{\partial n_2} \frac{\partial n_2}{\partial \lambda}
\]

\[
= -\frac{\partial E(\lambda)}{\partial n_1} + \frac{\partial E(\lambda)}{\partial n_2}
\]

Janak’s theorem then provides the necessary partial derivatives \(\frac{\partial E}{\partial n_i} = \epsilon_i \) from which we can arrive at,

\[
\omega_{\Delta KS} = \int_0^1 \left[\epsilon_2(\lambda) - \epsilon_1(\lambda) \right] d\lambda
\]

\[
\approx \epsilon_2(1/2) - \epsilon_1(1/2)
\]

where the second step is Slater’s TS which is the first-order approximation to the exact energy difference (the mid-point rule).

The TS method typically provides a good estimate of the excitation energies, even for core-hole states, but is complicated by the need to converge a half-electron state (with \(n_1 = n_2 = 1/2 \)), especially with regard to the partial occupation of the virtual orbital. In a sufficiently diffuse basis set, typical methods to converge such a state, e.g. using the maximum overlap method, are prone to failure. For high-quality \(\Delta KS \) calculations, more elaborate methods such as orthogonality-constrained DFT or constrained variational excited state optimization can be employed. Instead, the transition-potential (TP) approach further approximates TS by setting the virtual orbital occupation to zero, i.e. \(\omega_{\Delta KS} \approx \epsilon_2(n_1 = 1/2, n_2 = 0) - \epsilon_1(n_1 = 1/2, n_2 = 0) \). The advantages of TP over TS are 1) the half-electron state (in this case a half-core-hole—HCH—state) can be more reliably converged, and 2) the same half-electron state may be used for excitations to any virtual orbital. In the context of XAS (NEXAFS), this means that the entire spectrum due to excitation of a particular core orbital may be obtained in a single calculation.

The selection of a half-electron state is derived via simple one-point approximation of the energy difference integral, but it can also be rationalized from an error cancellation perspective. In TD-DFT, the ground state can be considered well-described (i.e. described as well as the chosen exchange-correlation functional is capable of), but the description of the excited state is hampered by orbital relaxation/SIE. If we were to start from the optimized core-hole state and compute the ground state energy using linear response, the
opposite would be true. However, by starting from the half-core-hole state, errors in both directions are largely canceled.

While the TS/TP-DFT method computes the energies using well-justified approximations to the exact ΔKS energy difference, there is not a corresponding set of approximations for the transition moments. Typically, a simple formula based on the sudden approximation is employed,

$$f_{1\rightarrow 2}(\text{TP-DFT}) = \frac{2m_e(\epsilon_2 - \epsilon_1)}{3\hbar^2} \sum_{\alpha=x,y,z} M_{1\rightarrow 2,\alpha}$$

$$M_{1\rightarrow 2,\alpha} = 2|\langle \phi_2 | \hat{\mu}_\alpha | \phi_1 \rangle|^2$$

Instead of a specific state label m, the particular transition is determined by the orbitals ϕ_1 and ϕ_2. Because only the core spin-orbital of one spin (typically β spin) is half-occupied, the factor of two in $M_{1\rightarrow 2,\alpha}$ is necessary to account for the “missing” α spin component which is identical due to spin symmetry for a closed-shell reference configuration. Starting from an unrestricted open-shell configuration, distinct α and β excitation spectra would need to be computed.

C. Transition-Potential Coupled Cluster

The error cancellation perspective on the TP-DFT approach suggests a possible route for ameliorating the orbital relaxation error in EOM-CC as well. CVS-EOM-CCSD reliably overshoots both vertical core-excitation and core-ionization energies by 1–2 eV (see results below). Thus, the effect of triple excitations, which largely eliminates the orbital relaxation error, always acts to stabilize the final state. Now, let us examine the effect of substituting the ground state Hartree–Fock orbitals with another set of orbitals that explicitly include some amount of core-hole relaxation: first, the use of non-Hartree–Fock orbitals of course raises the reference energy, as the HF orbitals are variationally optimized; while CC is not variational, arbitrary changes to the orbitals also typically raise the CC energy. This should be especially true for highly non-optimal orbitals that include core relaxation. Second, the explicit inclusion of core relaxation should stabilize the final core-excited or core-ionized state at the CCSD level, in a similar manner as the inclusion of triple excitations. This stabilization effect is expected to increase in proportion to the amount of explicit relaxation included in the orbitals.
The first effect is, in isolation, a degradation in the physical description of the ground state. However, since the increase in energy of the ground state has the same effect on the vertical energy differences as a lowering of the final state, both effects of substituting the orbitals in practice act in concert. Therefore, there should be some set of partially-relaxed orbitals that combines partial destabilization of the ground state with partial stabilization of the excited state that, combined, reproduce the full orbital relaxation effect, but at the CCSD level. To this end, we have defined a family of “transition-potential coupled cluster” (TP-CC) methods, which vary in two ways. First, the choice of how much relaxation to include in the orbitals is parametrized by λ as in the previous section. Second, the particular orbitals are obtained from a fractional-occupation SCF (here B3LYP) calculation with either a partial core hole (as in TP-DFT), or a partial core excitation to a virtual orbital (which we call XTP as in Ref. [25]). These TP-CCSD(λ) and XTP-CCSD(λ) methods, apart from the non-standard choice of orbitals, are simply standard CVS-EOM-CCSD calculations.

III. COMPUTATIONAL DETAILS

The (X)TP-CCSD(λ) methods were implemented via a combination of the Psi432 and CFOUR33 program packages. Specifically, we utilized the PSIXAS plugin34 for Psi4 to generate fractional core-hole or core-excited orbitals, using the B3LYP functional and ionizing or exciting $\lambda/2$ electrons of each spin in the selected core orbital. Excited electrons were promoted to the LUMO in each case. We modified the PSIXAS plugin to produce basis set (GENBAS) and molecular orbital (OLDMOS) files suitable for use in CFOUR. We also modified the CFOUR symmetry analysis code to prevent any reorientation or translation of the molecule in order to exactly match Psi4’s reference frame. In CFOUR, the reference orbitals were first reoccupied in the standard Aufbau ordering. Since the resulting determinant is clearly not a Hartree–Fock solution we included the NON-HF=ON keyword in the CFOUR input file, and also requested semicanonicalization of the orbitals. Then, a standard CVS-EOM-CCSD calculation is performed, including all non-Hartree–Fock terms. Oscillator strengths were calculated using the expectation value formalism described above.

The test set consisted of all 1s principal core ionizations and four core excitations (for each 1s orbital) of H$_2$O, CO, HCN, HF, HOF, HNO, CH$_2$, CH$_4$, NH$_3$, H$_3$CF H$_3$COH, H$_2$CO, H$_2$CNH, and H$_2$NF. The core excitations were selected as those for which we could
reliably converge all methods tested, which typically consisted of the first four excitations of
dominant single excitation character. Double excitations were specifically avoided as EOM-
CCSD is known to describe them quite poorly even in the valence case. All calculations
utilized the aug-cc-pCVTZ basis set with all electrons correlated, except for H$_2$O where
aug-cc-pCVQZ was used. In order to avoid complications due to missing relativistic effects,
basis set incompleteness (particularly for Rydberg core excitations), geometric effects, and
data quality and availability, which would all be a concern when comparing directly to
experimental data, we have used full CVS-EOM-CCSDT as a benchmark. Carbone et
al.27 showed that CCSDT is typically within 100 meV of the experimental (vertical) core
excitation energies, while Liu. et al.26 showed similar results for core ionization potentials. In
addition to CVS-EOM-CCSD, TP-CCSD($\frac{1}{2}$), TP-CCSD($\frac{1}{4}$), XTP-CCSD($\frac{1}{2}$), and XTP-
CCSD($\frac{1}{4}$) values, we have also expanded the CVS-EOM-CCSD* results from Ref.28 to
encompass the larger test set used here. These results are included as an “aspirational
yardstick”, since that method was previously found to reproduce the full CVS-EOM-CCSDT
results rather well.

IV. RESULTS AND DISCUSSION

In the following discussion, the “shortened” names of the CVS-EOM methods will be used,
e.g. CCSDT = CVS-EOM-CCSDT. The distribution of “absolute” (i.e. unmodified vertical)
excitation energy deviations from CCSDT are depicted in Figure 1. The absolute energy
deviation for a method X is calculated as $E(X) - E($CCSDT$)$ where E is a vertical core
excitation energy or core ionization potential. The “relative” excitation energy deviations
are depicted in Figure 2 These deviations are determined from excitation energies adjusted
such that the lowest excitation energy for each edge is equal to 0 (this is essentially a shift
of the entire spectrum; note that the shift is different for each method, and is applied before
computing the deviations). One relative core excitation out of four is trivially zero after
adjustment; these values are not included in the statistics. Since the methods should make
similar errors in the ionization potential energies and excitation energies, the relative errors
should be smaller due to error cancellation. A similar shift is commonly applied when
comparing to experimental data. Finally, the distribution of computed ionization potentials
is depicted in Figure 3 In each figure, the distribution of the energy deviations is fit to a
Figure 1: Normal error distributions for core excitation energies. Iterative EOM-CC methods are denoted by dotted lines, perturbative EOM-CC methods by dashed lines, and TP-CC methods by solid lines.

Gaussian (normal distribution).

A. CCSD and CCSD*

As reported in previous studies, CCSD systematically overestimates all core excitation energies. The large orbital relaxation energy is challenging for a purely linear response method due to the localized nature of the core hole, and absolute errors of 1–3 eV remain at the CCSD level. In comparison, EOM-CCSD typically reproduces EOM-CC3 vertical valence excitation energies to within 0.3 eV. A simple triples correction to the excited (core-hole) state only (CCSD*) nearly eliminates the deviation with respect to CCSDT, indicating that the leading high-order correlation effects in the upper state (which correspond to orbital relaxation) are the primary source of error. Residual errors in CCSD* are potentially indicative of improvement in the correlation of both the ground and excited states, and are of a similar magnitude to triples effects in valence excitations, and so the CCSD*
values likely represent a “best estimate” of the effect of orbital relaxation alone.

B. TP-CCSD(\(\frac{1}{2}\)) and XTP-CCSD(\(\frac{1}{2}\))

The choice of \(\lambda = \frac{1}{2}\) can be expected to be a reasonable first-order estimate of the optimal error-cancellation point for TP-CC methods. Note that while a half-core-hole is provably optimal as a single-point approximation in the TS- and TP-DFT methods, there is no such formal argument for TP-CC. Nonetheless, these calculations show significantly better agreement with CCSDT in comparison to the CCSD calculations with standard Hartree-Fock orbitals. The absolute error distributions can be seen in Figure 1 where the distribution for TP-CCSD(\(\frac{1}{2}\)) has a similar shape to CCSD* but with slightly smaller average error. XTP-CCSD(\(\frac{1}{2}\)) reduces the average error even more, to below 0.1 eV, but exhibits approximately twice the variability of CCSD*. Figure 2 shows the relative error distribution, where the distribution for XTP-CCSD(\(\frac{1}{2}\)) is almost identical to CCSD* but again with slightly lower
average error. XTP-CCSD(\(1/2\)) provides similar statistical deviations, although the standard deviation is slightly increased over both TP-CCSD(\(1/2\)) and CCSD*. Similarly to the absolute excitation energies, both TP-CCSD(\(1/2\)) and XTP-CCSD(\(1/2\)) show an improvement over CCSD for core ionization potentials, with XTP-CCSD(\(1/2\)) again showing a smaller average error but larger standard deviation in comparison with TP-CCSD(\(1/2\)). The ionization potential distribution for these methods is shown in Figure 3. CCSD* and TP-CCSD(\(1/2\)) have very similar distributions, but TP-CCSD(\(1/2\)) does not attain quite as small a standard deviation. As with excitation energies, evaluating relative ionization energies, specifically ionization “chemical shifts”\(^{26}\) relative to a standard, may further reduce the average and standard deviation of the error.

Both TP-CC methods significantly improve on CCSD, and for shifted spectra, account for essentially all of the orbital relaxation energy (using CCSD* as a yardstick). Additionally, the improvement when considering shifted rather than absolute spectra shows that TP-CC additionally benefits from error cancellation within the spectrum. While CCSD also

\[\text{Figure 3: Normal error distributions for core ionization energies. Iterative EOM-CC methods are denoted by dotted lines, perturbative EOM-CC methods by dashed lines, and TP-CC methods by solid lines.}\]
displays the same benefit, there are still residual errors as large as 1 eV, while TP-CC maintains deviation from full CCSDT within 0.3 eV, closely matching the performance of CCSD in the valence region. The XTP-CC variant was introduced with the idea that the use of a neutral reference state for determining the orbitals should balance a tendency toward over-contraction that might be expected from a fractionally-charged system. However, at $\lambda = 1/2$ this seems not to be the case. Upon a closer investigation of the individual data (see Supporting Information), it can be seen that XTP-CC does in fact slightly improve the description of valence resonances (e.g. $1s \rightarrow \pi^*$), but slightly worsens the description of Rydberg states (the standard deviation is increased by $\sim 80\%$, although the mean error is actually reduced). Rydberg states are less sensitive to correlation and a balanced description of valence and Rydberg states is a hallmark of a “good” method. XTP-CC, where the fractional electron is placed in the LUMO, which is typically a valence anti-bonding orbital, seems to lose this balance.

The simple choice of $\lambda = 1/2$ seems to do a remarkably good job of almost entirely eliminating the orbital relaxation error for both core excitation energies and core ionization potentials. However, a finer tuning of the λ parameter may further decrease either the average error or variability (standard deviation) of the method. In particular, TP-CCSD($1/2$) seems to slightly underestimate absolute energies while CCSD overestimates, indicating that a slightly smaller value of λ might offer further improvement. While it would be impractical to tune λ for each individual system (and largely defeat the purpose of an ab initio method like EOM-CC), a close inspection of the results shows that, for example, the standard deviation of the core excitation energies does increase monotonically on going from C to F. While this, to some extent, reflects the increase in energy scale, it may also indicate that different elements require slightly different optimal λ values. We will explore optimization of λ in a future publication, but for now it seems that $\lambda = 1/2$ is a good default value.

C. TP-CCSD($1/4$) and XTP-CCSD($1/4$)

In addition to $\lambda = 1/2$, we also tried $\lambda = 1/4$, $\lambda = 3/4$, and even $\lambda = 1$ TP-CC calculations, in order to understand the tradeoff between ground state destabilization and final state stabilization. The latter two choices resulted in a lack of convergence of the ground state coupled cluster equations in all cases. This is not surprising, given that the choice of very
different reference orbitals will induce large cluster amplitudes. In the case of \(\lambda = 1 \), we would even expect \(\hat{T}_1 \) amplitudes on the order of 1, which would completely destabilize the (truncated) coupled cluster procedure. While \(\lambda = 1/2 \) is clearly a good choice for TP-CC, it is worthwhile to also examine \(\lambda = 1/4 \).

The absolute excitation energy distributions (Figure 1) for TP-CCSD(\(1/4 \)) and XTP-CCSD(\(1/4 \)) sit nicely between those of CCSD and CCSD*/(X)TP-CCSD(\(1/2 \)), both in terms of average error as well as standard deviation. This shows that there is still some error cancellation between the initial and final state effects, although the cancellation is incomplete. The relationship of XTP-CCSD(\(1/4 \)) to TP-CCSD(\(1/4 \)) seems to mirror that of XTP-CCSD(\(1/2 \)) and TP-CCSD(\(1/2 \)), with the former in each case having a slightly higher standard deviation. Moving to relative excitation energies (Figure 2) shows a very similar situation, as does looking at ionization energies (Figure 3). In each case, XTP-CCSD(\(1/4 \)) performs slightly worse than its TP-CCSD(\(1/4 \)) counterpart. In contrast to \(\lambda = 1/2 \), where XTP-CC did in fact decrease the average error for valence and even Rydberg states (although it simultaneously increased the standard deviation of the latter), the average errors for all states increase by approximately 0.1 eV in XTP-CCSD(\(1/4 \)) compared to TP-CCSD(\(1/4 \)). The standard deviations are also slightly higher across the board, although only very slightly unlike with XTP-CCSD(\(1/2 \)). Although we have only sampled \(\lambda = 1/4 \) and \(\lambda = 1/2 \) thus far, it seems that the error cancellation properties of TP-CC vary in fairly direct proportion with the fraction of electron ionized in the core orbital.

D. Oscillator Strengths

Because TP-CC is, computationally, identical to a standard EOM-CC calculation, it is simple to compute oscillator strengths, here in the expectation value formalism. We have also added full EOM-CCSDT transition properties in the development version of CFOUR, and so we can benchmark the effect of transition-potential orbitals on this important property. EOM-CCSD*, as a perturbative correction to EOM-CCSD, does not provide corrected oscillator strengths. The absolute deviations in the dimensionless oscillator strengths, defined in analogy to the absolute excitation and ionization energy deviations, are depicted statistically in Figure 4. In addition, we have computed the deviations for relative oscillator strengths, which have been normalized separately for each spectrum such that the most
intense transition has unit strength; the statistics for these relative deviations are depicted in Figure 5 as percentages.

The deviations of absolute oscillator strengths (Figure 4) seem to indicate a similar improvement over CCSD as seen in the case of absolute excitation energies. The average errors decrease sharply on going from CCSD to (X)TP-CCSD(1/2) to (X)TP-CCSD(1/4), with a fairly linear dependence on λ. Additionally, the XTP-CC methods evince slightly higher standard deviations as in the case of the energies. However, these statistics are largely dominated by the more intense peaks in the spectrum, often the excitations to valence anti-bonding orbitals. Instead, looking at the rescaled intensities (Figure 5) shows a rather different effect. Here, the deviations represent the normalized deviation, with the most intense peak set at unity. This measure was chosen rather than relative intensity changes for each peak, because in the latter case large relative changes of very weak transitions (which are ultimately much less important to the overall assignment) would dominate the statistics. Instead, a spectrum-wide normalization, like the spectrum-wide energy shift in Figure 2, puts all spectra on an equal footing while preserving the relative importance of...
Figure 5: Normal error distributions for relative oscillator strengths. Iterative EOM-CC methods are denoted by dotted lines, and TP-CC methods by solid lines. The TP-CCSD(1/4) and XTP-CCSD(1/4) curves overlap.

Each peak in the spectrum. In this case, we can see that the improvement of the TP-CC methods over CCSD is even more pronounced, with a 3–4× reduction in standard deviation, and essentially zero average deviation. Interestingly, XTP-CCSD(1/2) now performs very slightly better than TP-CCSD(1/2).

The significant improvement of TP-CC oscillator strengths over CCSD is very encouraging, as obtaining the correct relative intensities is often nearly as important to fully assigning a spectrum as the transition energies. While the calculations here do not include the necessary diffuse orbitals in order to directly compare the Rydberg states to experiment, it is most likely that the improved performance of TP-CC will prove important for properly predicting Rydberg spectra, in addition to the usually more intense valence peaks. The improvement of TP-CC oscillator strengths also suggests that other one-electron properties, such as multipole moments, may also be improved relative to CCSD, although this is beyond the scope of the current study.
E. Statistical Analysis

In the preceding sections, it is assumed that the deviations in each category (absolute/relative excitation energies, ionization potentials, and absolute/relative oscillator strengths) represent a normal distribution. In order to test this assumption, we have constructed normal quantile-quantile (Q-Q) plots. In this approach, all observations (deviations) within a category are sorted and then plotted against the inverse cumulative normal distribution (ICDF) for a set of uniformly-distributed probability values. For the ith sorted observation out of n (starting with 1), the probability value $p_i = (i - 0.5)/n$ is input to the ICDF $Q(p) = \sqrt{2}\text{erf}^{-1}(2p - 1)$ to obtain the value to plot against. For a true normal distribution, the Q-Q plot is a straight line; thus, we perform a linear regression and report the R^2 values as the “normality” scores. These values, in addition to estimated skewness and excess kurtosis of the distributions are given in Table I.

The distributions for absolute excitation energy deviations are all highly normal, with at most a slight skew towards positive deviations. Moving to relative excitation energies shows additional deviations from normality. The most pronounced deviation is for XTP-CCSD($1/2$), which exhibits a significant positive skew, but also a large excess kurtosis, indicating a sharp distribution, but with a long tail of outliers towards the positive end. The excess kurtosis for CVS-EOM-CCSD* is also somewhat positive, while CVS-EOM-CCSD* has a fairly negative excess kurtosis, indicating a more flattened distribution. Despite a more tightly peaked distribution for XTP-CCSD($1/2$), the long positive tail is concerning for routine application; a similar effect is seen in the larger maximum errors for XTP-CCSD($1/2$) compared to TP-CCSD($1/2$). The ionization potential distributions are almost all flattened (with the exception of TP-CCSD($1/2$)), with excess kurtosis ranging from -0.63 to -1.19 (essentially a uniform distribution). The distributions are slightly skewed (positively, except for CVS-EOM-CCSD*), but it seems clear that a normal distribution is sufficient for capturing the overall improvement of the TP-CC methods.

The distributions for oscillator strength deviations are much more non-normal. In particular, the relative oscillator strengths exhibit extremely large excess kurtosis, suggesting much more sharply peaked distributions that the standard deviation in Figure 5 would seem to indicate, but with long tails in both directions (more to the positive for CVS-EOM-CCSD and (X)TP-CCSD($1/4$)). The primary outliers seem to be the fluorine edge of CH$_3$F as well...
	Absolute Excitation Energies \((n = 92)\)	Relative Excitation Energies \((n = 69)\)	Ionization Potentials \((n = 23)\)	Absolute Oscillator Strengths \((n = 90)\)	Relative Oscillator Strengths \((n = 67)\)
CVS-EOM-CCSD	0.97	0.97	0.95	0.90	0.59
CVS-EOM-CCSD*	0.97	0.94	0.96	–	–
TP-CCSD\((1/2)\)	0.99	0.98	0.97	0.73	0.77
XTP-CCSD\((1/2)\)	0.98	0.88	0.95	0.72	0.80
TP-CCSD\((1/4)\)	0.95	0.94	0.93	0.87	0.59
XTP-CCSD\((1/4)\)	0.96	0.96	0.96	0.88	0.60

(a) “Normality” values for each data category. See text for details.

CVS-EOM-CCSD	0.33	0.12	0.24	0.90	3.39
CVS-EOM-CCSD*	0.24	0.69	-0.58	–	–
TP-CCSD\((1/2)\)	0.26	0.42	0.52	1.94	-0.97
XTP-CCSD\((1/2)\)	0.29	1.62	0.48	1.97	-0.05
TP-CCSD\((1/4)\)	0.74	-0.42	0.50	1.21	2.29
XTP-CCSD\((1/4)\)	0.69	-0.59	0.55	1.14	2.34

(b) Estimated skewness values for each distribution.

CVS-EOM-CCSD	-0.48	-0.87	-1.19	-0.04	15.40
CVS-EOM-CCSD*	0.59	1.02	-0.18	–	–
TP-CCSD\((1/2)\)	-0.33	0.42	0.56	3.20	10.43
XTP-CCSD\((1/2)\)	-0.77	1.62	-0.83	3.28	9.21
TP-CCSD\((1/4)\)	-0.27	-0.42	-1.03	0.91	15.30
XTP-CCSD\((1/4)\)	-0.13	-0.59	-0.63	0.68	16.08

(c) Estimated excess kurtosis values for each distribution.

Table I: Statistical measures measuring deviations from a normal distribution. See Table Ia for column headings. Significant deviations from normality are highlighted.
as the oxygen edge of CH$_3$OH. In the former case, the most intense peak in most calculated spectra is a Rydberg 3p transition; inclusion of additional diffuse basis functions would likely decrease the intensity of this and the other Rydberg peaks and so should lead to better overall accuracy. The absolute oscillator strengths are somewhat more well-behaved, but still with significant tails to the positive side.

V. CONCLUSIONS AND FUTURE WORK

Core ionization and core excitation energies for a variety of small molecules were calculated with several “traditional” equation-of-motion coupled cluster methods: CVS-EOM-CCSD, -CCSD*, and -CCSDT, as well as with a range of proposed transition-potential coupled cluster methods, (X)TP-CCSD(λ), in which a fractionally-ionized or -excited reference state is employed. In comparison to full CVS-EOM-CCSDT, TP-CCSD($\frac{1}{2}$) seems to account for essentially all of the orbital relaxation energy. CVS-EOM-CCSD* was used as an “aspirational yardstick” in this study, as previous work showed that a simple non-iterative triples correction in the final state was able to account for the relaxation error, and TP-CCSD($\frac{1}{2}$) indeed achieves similar statistical error measures. The XTP-CC variant, in which the fractional core electron is promoted to the LUMO, does not measurably improve on TP-CC, despite expectations that a neutral reference state should provide more balanced orbitals (especially virtual orbitals). TP-CCSD($\frac{1}{4}$) was also tested, and has intermediate performance between CCSD and TP-CCSD($\frac{1}{2}$), while TP-CCSD($\frac{3}{4}$) and TP-CCSD(1) calculations were seen to diverge.

Overall, TP-CCSD($\frac{1}{2}$) is about as accurate for core-excited states as EOM-CCSD is for valence states, with deviations from full CVS-EOM-CCSDT within a few tenths of an eV. TP-CCSD intensities are also much improved over CVS-EOM-CCSD, and in particular considering normalized spectra the reduction in deviations is between three- and four-fold. The ability of a relatively simple modification of “vanilla” CVS-EOM-CCSD, using only non-standard reference orbitals, to accurately predict core ionization and core excitation energies is an exciting prospect, especially as the computational cost of TP-CCSD is essentially the same as CVS-EOM-CCSD and scales rigorously with system size n as $\mathcal{O}(n^6)$.

While this study looks at only a few choices of λ (the fraction of electron to remove from the core orbital), it would be interesting to pursue optimizing λ, possibly in an element-
specific manner. In addition, B3LYP orbitals are used here, in order to capture some effect of electron correlation on the fractionally-occupied reference state. In future work, we plan to assess the use of plain Hartree–Fock orbitals which would allow for a simpler native implementation in CFOUR. Additionally, we are interested in applying TP-CCSD to the case of transient x-ray absorption (tr-NEXAFS, alternatively UV pump/x-ray probe or PP-NEXAFS); the ability of the TP orbitals to simultaneously describe valence excitations is of highest importance. Lastly, the application of TP-CCSD to larger molecules and direct comparison with experimental spectra is necessary to fully explore the potential benefits of our proposed method.

ACKNOWLEDGMENTS

This work was supported by a generous start-up grant from Southern Methodist University. All calculations were performed on the ManeFrame II computing system at SMU. We would also like to thank Dr. Christopher Ehlert for his work on PSIXAS which made this project possible.

DATA AVAILABILITY

The data that supports the findings of this study are available within the article and its supplementary material.

REFERENCES

1Paul van der Heide. X-Ray Photoelectron Spectroscopy: An Introduction to Principles and Practices. John Wiley & Sons, 2011.
2Dorota Koziej and Serena DeBeer. Application of Modern X-ray Spectroscopy in Chemistry—Beyond Studying the Oxidation State. Chem. Mater., 29(17):7051–7053, 2017.
3Patrick Norman and Andreas Dreuw. Simulating X-ray Spectroscopies and Calculating Core-Excited States of Molecules. Chem. Rev., 118(15):7208–7248, 2018.
4Hendrik J. Monkhorst. Calculation of properties with the coupled-cluster method. Int. J. Quantum Chem., 12(S11):421–432, 1977.
5D. Mukherjee and P. K. Mukherjee. A response-function approach to the direct calculation of the transition-energy in a multiple-cluster expansion formalism. Chemical Physics, 39(3):325–335, 1979.

6Henrik Koch and Poul Jørgensen. Coupled cluster response functions. J. Chem. Phys., 93(5):3333, 1990.

7Hideo Sekino and Rodney J. Bartlett. A linear response, coupled-cluster theory for excitation energy. Int. J. Quantum Chem., 26(S18):255–265, 1984.

8J. F. Stanton and R. J. Bartlett. The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. J. Chem. Phys., 98(9):7029, 1993.

9Donald C. Comeau and Rodney J. Bartlett. The equation-of-motion coupled-cluster method. Applications to open- and closed-shell reference states. Chem. Phys. Lett., 207:414–423, 1993.

10E. K. U. Gross and W. Kohn. Time-Dependent Density-Functional Theory. In Per-Olov Löwdin, editor, Advances in Quantum Chemistry, volume 21 of Density Functional Theory of Many-Fermion Systems, pages 255–291. Academic Press, 1990.

11Giuseppe Brancato, Nadia Rega, and Vincenzo Barone. Accurate Density Functional Calculations of Near-Edge X-Ray and Optical Absorption Spectra of Liquid Water Using Nonperiodic Boundary Conditions: The Role of Self-Interaction and Long-Range Effects. Phys. Rev. Lett., 100(10):107401, 2008.

12Guangde Tu, Zilvinas Rinkevicius, Olav Vahtras, Hans Ågren, Ulf Ekström, Patrick Norman, and Vincenzo Carravetta. Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra. Phys. Rev. A, 76(2):022506, 2007.

13Patrick J. Lestrange, Phu D. Nguyen, and Xiaosong Li. Calibration of Energy-Specific TDDFT for Modeling K-edge XAS Spectra of Light Elements. J. Chem. Theory Comput., 11(7):2994–2999, 2015.

14Yifan Jin and Rodney J. Bartlett. Accurate computation of X-ray absorption spectra with ionization potential optimized global hybrid functional. J. Chem. Phys., 149(6):064111, 2018.

15Nicholas A. Besley, Michael J. G. Peach, and David J. Tozer. Time-dependent density functional theory calculations of near-edge X-ray absorption fine structure with short-
range corrected functionals. *Phys. Chem. Chem. Phys.*, 11(44):10350–10358, 2009.

16M. Stener, A. Lisini, and P. Decleva. Density functional calculations of excitation energies and oscillator strengths for C1s → Π* and O1s → Π* excitations and ionization potentials in carbonyl containing molecules. *Chemical Physics*, 191(1):141–154, 1995.

17Osamu Takahashi and Lars G. M. Pettersson. Functional dependence of core-excitation energies. *J. Chem. Phys.*, 121(21):10339–10345, 2004.

18Nicholas A. Besley, Andrew T. B. Gilbert, and Peter M. W. Gill. Self-consistent-field calculations of core excited states. *J. Chem. Phys.*, 130(12):124308, 2009.

19Francesco A. Evangelista, Philip Shushkov, and John C. Tully. Orthogonality Constrained Density Functional Theory for Electronic Excited States. *J. Phys. Chem. A*, 117(32):7378–7392, 2013.

20Prakash Verma, Wallace D. Derricotte, and Francesco A. Evangelista. Predicting Near Edge X-ray Absorption Spectra with the Spin-Free Exact-Two-Component Hamiltonian and Orthogonality Constrained Density Functional Theory. *J. Chem. Theory Comput.*, 12(1):144–156, 2016.

21Diptarka Hait and Martin Head-Gordon. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn–Sham Approach. *J. Phys. Chem. Lett.*, 11(3):775–786, 2020.

22Ching-Han Hu and Delano P. Chong. Density functional computations for inner-shell excitation spectroscopy. *Chemical Physics Letters*, 262(6):729–732, 1996.

23L. Triguero, L. G. M. Pettersson, and H. Ågren. Calculations of near-edge x-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. *Phys. Rev. B*, 58(12):8097–8110, 1998.

24L. Triguero, O. Plashkevych, L. G. M. Pettersson, and H. Ågren. Separate state vs. transition state Kohn-Sham calculations of X-ray photoelectron binding energies and chemical shifts. *Journal of Electron Spectroscopy and Related Phenomena*, 104(1):195–207, 1999.

25Georg S. Michelitsch and Karsten Reuter. Efficient simulation of near-edge x-ray absorption fine structure (NEXAFS) in density-functional theory: Comparison of core-level constraining approaches. *J. Chem. Phys.*, 150(7):074104, 2019.

26Junzi Liu, Devin Matthews, Sonia Coriani, and Lan Cheng. Benchmark Calculations of K-Edge Ionization Energies for First-Row Elements Using Scalar-Relativistic Core–Valence-Separated Equation-of-Motion Coupled-Cluster Methods. *J. Chem. Theory Comput.*, 22
27Johanna P. Carbone, Lan Cheng, Rolf H. Myhre, Devin Matthews, Henrik Koch, and Sonia Coriani. An analysis of the performance of coupled cluster methods for K-edge core excitations and ionizations using standard basis sets. In Advances in Quantum Chemistry, volume 79, pages 241–261. Elsevier, United Kingdom, 2019.

28Devin A. Matthews. EOM-CC methods with approximate triple excitations applied to core excitation and ionisation energies. Mol. Phys., 0(0):1–8, 2020.

29L. S. Cederbaum, W. Domcke, and J. Schirmer. Many-body theory of core holes. Phys. Rev. A, 22(1):206–222, 1980.

30A. Barth and J. Schirmer. Theoretical core-level excitation spectra of N2and CO by a new polarisation propagator method. J. Phys. B: At. Mol. Phys., 18(5):867–885, 1985.

31Sonia Coriani and Henrik Koch. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework. J. Chem. Phys., 143(18):181103, 2015.

32Daniel G. A. Smith, Lori A. Burns, Andrew C. Simmonett, Robert M. Parrish, Matthew C. Schieber, Raimondas Galvelis, Peter Kraus, Holger Kruse, Roberto Di Remigio, Asem Alenaizan, Andrew M. James, Susi Lehtola, Jonathon P. Misiewicz, Maximilian Scheurer, Robert A. Shaw, Jeffrey B. Schriber, Yi Xie, Zachary L. Glick, Dominic A. Sirianni, Joseph Senan O’Brien, Jonathan M. Waldrop, Ashutosh Kumar, Edward G. Hohenstein, Benjamin P. Pritchard, Bernard R. Brooks, Henry F. Schaefer, Alexander Yu. Sokolov, Konrad Patkowski, A. Eugene DePrince, Uğur Bozkaya, Rollin A. King, Francesco A. Evangelista, Justin M. Turney, T. Daniel Crawford, and C. David Sherrill. PSI4 1.4: Open-source software for high-throughput quantum chemistry. J. Chem. Phys., 152(18):184108, 2020.

33Devin A. Matthews, Lan Cheng, Michael E. Harding, Filippo Lipparini, Stella Stopkowicz, Thomas-C. Jagau, Péter G. Szalay, Jürgen Gauss, and John F. Stanton. Coupled-cluster techniques for computational chemistry: The CFOUR program package. J. Chem. Phys., 152(21):214108, 2020.

34Christopher Ehlert and Tillmann Klamroth. PSIXAS: A Psi4 plugin for efficient simulations of X-ray absorption spectra based on the transition-potential and ∆-Kohn–Sham method. J. Comput. Chem., 41(19):1781–1789, 2020.
Marta L. Vidal, Xintian Feng, Evgeny Epifanovsky, Anna I. Krylov, and Sonia Coriani. New and Efficient Equation-of-Motion Coupled-Cluster Framework for Core-Excited and Core-Ionized States. *J. Chem. Theory Comput.*, 15(5):3117–3133, 2019.

Marko Schreiber, Mario R. Silva-Junior, Stephan P. A. Sauer, and Walter Thiel. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3. *J. Chem. Phys.*, 128(13):134110, 2008.