Local and Regional Anesthesia: Clinical Considerations

Diego Eduardo Saavedra Mayorga¹, Miguel Angel Flores Delgado², Héctor Zúñiga-Gazcón³, Jorge Eduardo Escobedo Arriazola⁴, Myrna Lizeth Cuevas Meléndez⁵, Félix Osuna Gutiérrez⁶

¹Departamento de Anestesiología, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico de Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México
²Departamento de Cirugía, Unidad Médica de Alta Especialidad (UMAE), Hospital de Especialidades (HE), Centro Médico de Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México
³Universidad Autónoma de Tamaulipas. Tamaulipas, México
⁴Institution: Autonomous University of Guadalajara, Guadalajara, Jalisco, Mexico

ABSTRACT

Local and regional anesthesia, in discrepancy to systemic, general anesthesia, involves the reversible deadening of a specific region of the body to help any sensation of pain. Pain may be blocked on different situations of its signal transduction pathway, e.g., at the point of origin, along the jitters, or in the brain. Consequently, local and regional anesthesia can be divided into local topical and infiltration anesthesia, regional supplemental whim-whams blocks (PNB), and neuraxial anesthesia (e.g., spinal and epidural). Local anesthesia can be combined with general anesthesia, allowing the boluses of anesthetic and analgesic medicines to be reduced during surgery, and may exclude the need for other measures to achieve sufficient anesthesia (depending on the timeframe of surgery, threat profile, case's concurrence). In general, local anesthesia carries lower threat than general anesthesia, as essential body functions (e.g., respiration) aren't affected.

ARTICLE DETAILS

Published On: 22 August 2022

Available on: https://ijmscr.org/

INTRODUCTION

Local anesthetics (LAs) are medicines that block the sensation of pain in the region where they're administered. LAs act by reversibly blocking the sodium channels of whim-whams filaments, thereby inhibiting the conduction of whim-whams impulses. whim-whams filaments that carry pain sensation have the lowest periphery and are the first to be blocked by LAs. Loss of motor function and sensation of touch and pressure follow, depending on the duration of action and cure of the LA used. LAs can be sneaked into skin/subcutaneous apkins to achieve local anesthesia or into the epidural/subarachnoid space to achieve regional anesthesia (e.g., spinal anesthesia, epidural anesthesia)¹,²,³

Some LAs (lidocaine, prilocaine, tetracaine) are effective on topical operation and are used before minor invasive procedures (venipuncture, bladder catheterization, endoscopy/laryngoscopy). LAs are divided into two groups grounded on their chemical structure. The amide group (lidocaine, prilocaine, mepivacaine, etc.) is safer and, hence, further generally used in clinical practice. The ester group (procaine, tetracaine) has a advanced threat of causing antipathetic responses or systemic toxin and is, thus, reserved for cases with known disinclinations to medicines of the amide group. Overdose or unintentional injection of an LA into a blood vessel can beget systemic toxin, which substantially affects the CNS (tinnitus, seizures, etc.) and the CVS (bradycardia, arrhythmias, etc.).⁴,⁵
Indications
Local anesthetic agents have a big range of clinical uses:

Topical application (lidocaine, tetracaine, prilocaine), useful in children, e.g., in form of a lidocaine patch, before performing minor invasive procedures, such as venipuncture or intravenous catheter placement. As a gel prior to catheterizing the bladder (as a lubricant and as an LA). As a mouth gargle/spray, prior to performing indirect laryngoscopy, endoscopy, in pharyngitis with odynophagia, etc.

Infiltration
Into the skin/subcutaneous tissue; for skin surgery (skin biopsy, suturing, foreign body extraction, etc.). Into the epidural space for epidural anesthesia. Into the subarachnoid space for spinal anesthesia.

Peripheral nerve block
Local anesthetic is injected near a specific nerve or nerve bundle.

Technique
The patient is placed in a comfortable position that is tolerable for him or and allows the physician to access the relevant nerve easily. Hygiene: hand disinfection, sterile gloves, sterile face mask, utensils for wipe disinfection of the puncture site afterward, (if catheter is inserted, also sterile gown and sterile fenestrated drape). Ultrasound: ultrasound-guided needle advancement towards the target nerve.

Nerve stimulation test
There are 2 approaches to inject the local anesthetic drugs: Single-shot technique: A single dose of the local anesthetic drug is injected (e.g., bupivacaine). Catheter placement with the advantage of repeated/continuous administration of anesthetic drugs.

Epidural anesthesia
Local anesthetics with or without opioids and alpha-adrenergic agonists are injected into the epidural space and act on the spinal nerve roots.

Procedure
May be performed at any vertebral level (cervical, thoracic and lumbar spine). Needle inserted into the epidural space always looking to be between the ligamentum flavum and dura mater. Approaches to inject the local anesthetic: Catheter placement, which has the advantage of repeated/continuous administration of anesthetic drugs (most commonly performed). Single-shot technique.
Local and Regional Anesthesia: Clinical Considerations

Indications
Used for a variety of surgeries of the lower body (e.g., cesarean delivery, hernia repair, appendectomy, prostate and bladder surgeries, knee surgery), during labor, perioperatively, chronic pain management (e.g., spinal stenosis, disk herniation). ⁸

Contraindications
Uncorrected hypovolemia, increased intracranial pressure, infection at the puncture site, coagulopathy, spinal deformities, sepsis, systemic bacteremia, amniotic infection syndrome, neurological deficits caused by, e.g., disk prolapse, paraplegic syndrome, and multiple sclerosis. ⁸

Complications
Pain at the injection site, dural puncture, spinal-epidural hematoma, epidural abscess, hypotension. ⁸
Pathophysiology: sympathetic blockade causes vasodilation and decreases venous return → reduced cardiac output. ⁸
Clinical features: hypotension, dizziness, lightheadedness, and nausea shortly after administering anesthetic. ⁸
Diagnostics: clinical diagnosis. ⁸
Treatment: IV fluid resuscitation + small doses of epinephrine. ⁸

Spinal anesthesia
Local anesthetics with or without opioids and alpha-adrenergic agonists are injected into the cerebrospinal fluid (CSF) in the lumbar spine and act directly on the spinal cord. ⁹

Combined spinal and epidural anesthesia (CSE)
Combines the advantages of spinal anesthesia (rapid action, motoric block) with the advantages of epidural anesthesia (favorable post-operative pain management via an epidural catheter). ⁹
Plays a major role in obstetrics and orthopedics. ⁹
Indications: used for a variety of lower extremity, lower abdominal, pelvic, and perineal procedures (e.g., cesarean delivery, hip and knee replacement). ⁹
- C-section: Th4–6 (mamillary line) ¹⁰
- Pelvic, urethral, and renal pelvic surgery: Th6–8 (xiphoid) ¹⁰
- Transurethral surgery including stretching of the bladder, vaginal birth, hip surgery: Th10 (navel) ¹⁰
- Transurethral surgery without stretching of the bladder: L1 (inguinal ligament) ¹¹
- Knee and foot surgery: L2/3 ¹¹
- Perineal surgery: S2–5

CONCLUSIONS
Local anesthesia is one of the most widely used procedures when performing multiple surgical approaches. The complete understanding of the procedure as well as the agents used in it is important to be able to treat possible complications and understand the mechanisms involved in the operation of these techniques.

REFERENCES
I. Lambert JJ. Local/Topical Anesthetics. In: Raghavendra M Local/Topical Anesthetics. New York, NY: WebMD. https://emedicine.medscape.com/article/2172060. March 20, 2014. Accessed July 16, 2022
II. Becker DE, Reed KL. Local anesthetics: review of pharmacological considerations. Anesth Prog. 2012; 59(2); p.90-102. doi: 10.2344/0003-3006-59.2.90.
III. Christie LE, Picard J, Weinberg GL. Local anaesthetic systemic toxicity. Contin Educ Anaesth Crit Care Pain. 2015; 15(3): p.136-142. doi: 10.1093/bjaceaccp/mku027. Open in Read by QxMD
IV. UCL. An introduction to pain pathways and mechanisms.
url: https://www.ucl.ac.uk/anaesthesia/StudentsandTrainees/IntrotoPainPathwaysandMechanisms Accessed: July 16, 2022
V. Campagna JA, Carter C. Clinical Relevance of the Bezold–Jarisch Reflex.
http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1943118.
VI. Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest .2010; 120(11): p.3760-3772. doi: 10.1172/JCI42843.
VII. Gadsden J. Local Anesthetics: Clinical Pharmacology and Rational Selection.
http://www.nysora.com/regional-anesthesia/foundations-of-ra/3492-local-anesthetics-clinical-pharmacology-and-rational-selection.html.
VIII. Becker DE, Reed KL. Essentials of local anesthetic pharmacology. Anesth Prog. 2006; 53(3): p.98-108. doi:10.2344/00033006(2006)53[98:EOLAP]2.0.C O:2.
IX. Hsu DC. Subcutaneous Infiltration of Local Anesthetics. In: Post TW, ed. UpToDate. Waltham, MA: UpToDate. http://www.uptodate.com/contents/subcutaneous-infiltration-of-local-anesthetics.
X. Gimeno AM, Errando CL. Neuropal axial regional anaesthesia in patients with active infection and sepsis: a clinical narrative review. Turk J Anaesthisol Reanim. 2018; 46(1): p.8-14. doi: 10.5152/TJAR.2018.12979.
XI. The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Chapter 3: Local Anesthetics.
url: http://www.dvcipm.org/files/maraa/703/2014/corale/lev/2172060. March 20, 2014. Accessed July 16, 2022.

836 Volume 02 Issue 08 August 2022

Corresponding Author: Félix Osuna Gutiérrez