Citation for published version (APA):
O'Mahony, M. P., Niebel, T., & Saam, M. (2017). The contribution of intangible assets to sectoral productivity growth in the EU. REVIEW OF INCOME AND WEALTH, 63(s1), s49-s67. https://doi.org/10.1111/roiw.12248
The Contribution of Intangible Assets to Sectoral Productivity Growth in the EU

Thomas Niebel∗ Mary O’Mahony† Marianne Saam‡

This paper has been accepted for publication in the Review of Income and Wealth, October 2015

Abstract

In this paper we report on new data on intangible investment at the level of 1-digit NACE industries of 10 EU countries. The data are constructed as a sectoral breakdown of the INTAN-Invest database, which contains measures of intangible investment at the level of the aggregate business sector. With the sectoral data we assess the contribution of intangibles to productivity growth based on growth accounting and econometric estimation of production functions. The growth accounting contribution of intangibles to labor productivity growth is generally highest in manufacturing and finance. The estimated output elasticity of intangibles lies between 0.1 and 0.2, above factor shares but considerably below values found in previous research using aggregate data.

JEL Classification Numbers: E22, J24, O47.

Keywords: Intangible Assets, Labor Productivity, Growth Accounting, Panel Regressions.

∗ZEW Mannheim.
†King’s College London and University of Birmingham.
‡Corresponding author: Centre for European Economic Research (ZEW) Mannheim. Address: L 7.1, D-68161 Mannheim, E-mail: saam@zew.de, Phone: +49 621 1235-285, Fax:-333. This paper was written as part of the SER-VICEGAP project. This project was funded by the European Commission, Research Directorate General as part of the 7th Framework Programme, Theme 8: Socio-Economic Sciences and Humanities. Grant Agreement no: 244 552. The paper uses data constructed by the authors in the FP 7 project INDICSER, Grant Agreement no: 244 709. For further projects of the authors see www.zew.de/staff_msa and www.zew.de/staff_tni as well as the ZEW annual report under www.zew.de. Part of this research was undertaken during a research visit at the Groningen Growth and Development Centre (GGDC), University of Groningen. We thank Robert Inklaar, Marcel Timmer and Reitze Gouma for their hospitality and helpful suggestions. We also benefitted from discussions with Irene Bertschek, Massimiliano Iommi, Cecilia Jona-Lasinio, Bettina Peters, Hannu Piekkola, Christian Rammer, Felix Roth, and Patrick Schulte and from comments by participants at the SEEK conference at ZEW and the e-Frame workshop on intangible assets. All remaining errors are ours.
1 Introduction

During the past two decades, growth in aggregate productivity has been quite unevenly distributed across the advanced economies. While earlier research explored the effect of differences in ICT investment and in multifactor productivity, more recent work considers the role that investment in intangible assets plays in explaining cross-country differences in labor productivity growth. A small part of intangible investments such as software are included in standard national accounts data and in international data provided, e.g., by the EU KLEMS project (O’Mahony and Timmer, 2009). Most intangible assets, however, such as Research and Development (R&D), organizational capital and training are to date not treated as investment in national accounts (although R&D is to be added according to the new 2008 System of National Accounts). Following the pioneering work by Corrado, Hulten and Sichel (2005, 2009) in estimating total intangible investments for the U.S., estimates of intangible assets at the aggregate level of European countries have recently become available through the INTAN-Invest platform (Corrado et al., 2012). To date there are few estimates available at the sector level.

In this paper we make a first attempt to quantify the importance of intangible assets, defined from the perspective of national accounting, at the sector level for European countries. We provide a better understanding of the contribution of intangible assets to sectoral productivity growth in three ways. First, we construct a new sectoral breakdown of intangible assets at the level of NACE1 1-digit industries for 10 European countries (Section 3).2 Second, we present descriptive and growth accounting evidence for 10 countries on the magnitude of intangible investment and its contribution to labor productivity growth across sectors (Section 4). Third, we estimate the output elasticity of intangibles econometrically and compare the results with those obtained in growth accounting (Section 5).

The growth accounting calculations presented below reveal a non-negligible contribution of intangible assets to productivity growth, but with significant variation across sectors and countries. The econometric estimates suggest values for the output elasticity of intangibles that are greater than factor shares, suggesting the possibility of spillovers from investing in intangible assets. However, the coefficients are much lower than previous results found using aggregate measures of intangibles.

2 Related Research

While the concept of intangible capital has been used in economic research for a long time, the explicit attempt to quantify it in a way that can be integrated into national accounts was undertaken only recently. Corrado et al. (2005) made the main contribution setting out the approach for categorizing and quantifying intangible capital at the level of the national economy. In particular they set out criteria for treating some expenditures as investment rather than as intermediate inputs and adjust output to be consistent with this changed treatment of inputs. Corrado et al. (2009) construct intangible capital estimates for the U.S. and use them in a growth accounting framework. Including previously

1 Nomenclature statistique des activités économiques dans la Communauté européenne - statistical classification of economic activities in the European Community.

2 Measures of intangibles assets at the industry level were also constructed for Belgium, Hungary, Ireland and Sweden but complete growth accounting data are not available for these countries.
unmeasured inputs generally lowers the measured growth in multifactor productivity (MFP) and raises the measured contribution of capital inputs to growth in labor productivity. With their data, Corrado et al. (2009) find that the contribution of intangible capital to growth in labor productivity is about equal to the contribution of tangibles. After accounting for intangibles, capital instead of MFP constitutes the dominant source of growth. Internationally comparable data on intangibles for aggregate economic activity have been constructed based on the approach by Corrado et al. (2005) in the projects INNODRIVE (Piekkola, 2011) and COINVEST, funded by the European Commission, and by The Conference Board. Recently the three teams published harmonized data on intangibles at the country level on the platform INTAN-Invest (Corrado et al., 2012). This platform initially presented data on intangible investments and capital stocks for all EU25 countries, Norway and the US for the aggregate market sector for the period 1995 to 2005. These data have been extended in some countries to 2009. Sectoral estimates were only produced by these projects for a few EU countries (see Haskel et al., 2010, Haskel and Pesole, 2011 and Crass et al., 2014). Some sector estimates have also been developed for non-EU countries, e.g. Baldwin et al. (2012) for Canada and Fukao et al. (2009) for Japan. In this paper we provide a first sectoral breakdown of intangible assets data for a larger set of European countries, using internationally consistent data. The approach follows that of Corrado et al. (2012) and uses the INTAN-Invest aggregate numbers as control totals, thus maintaining consistency with this previous work.

The paper also constructs estimates of sectoral intangible capital stocks and use these to gauge their impact on growth at the sector level. The idea that organisational changes and other forms of intangible investment such as workforce training are necessary to gain significant productivity benefits from adopting new technology has been in the literature for some time (see e.g. Bertschek and Kaiser, 2004; Black and Lynch, 2001; Bresnahan et al., 2002 in the context of the information technology revolution). However, the econometric literature on the relationship between intangibles and labor productivity at the macroeconomic level is just beginning to emerge. Roth and Thum (2013) use INNODRIVE data for the aggregate of the nonfarm business sector of 13 European countries to estimate a production function including intangibles. When accounting for intangibles, investment instead of multifactor productivity becomes the dominant source of growth. The coefficient of intangible investment of about one quarter turns out to be much higher than the coefficient identified by this asset’s factor share in growth accounting. Using the INTAN-Invest data, Corrado et al. (2014) find a coefficient of similar, in some specifications even larger, magnitude. They formally investigate the presence of spillovers that are suspected if the estimated marginal product of a factor exceeds the marginal product implied by the factor remuneration under competitive markets. Their results strongly support the possibility of spillovers. Moreover, they find evidence of a complementarity between intangible assets at the aggregate level and ICT capital at the sectoral level. The main limitations of this previous work using aggregate measures of intangibles are the small number of observations available for econometric estimation and the lack of information on heterogeneity of intangible assets across industries. O’Mahony and Peng (2011) was one of the first to investigate the impact of intangible assets using industry data. Their analysis is limited to investment in firm-specific human capital accumulated by training. In line with the work at the country level, the authors find evidence of an output elasticity of firm-specific human capital exceeding its factor share. The construction of broad

3 http://www.conference-board.org/data/intangibles/.
measures of intangible capital stocks at the sector level allows us to go beyond the previous literature in both measuring the contributions of these assets to output growth using a growth accounting method and to investigate the presence of spillovers through more robust econometric estimation that takes account of variations across sectors.

3 Data Construction

3.1 Sources and Methods

The data for our analysis cover 10 European countries and 10 sectors (listed in Table 1) for the period 1995 to 2007.

[Place Table 1 here]

The sectoral data on intangible assets were compiled by the authors within the INDICSER project and cover eight types of assets, listed in Table 2.

[Place Table 2 here]

The aggregate business sector control totals for computing the sectoral measures of intangible investment were taken from the INTAN-Invest database described by Corrado et al. (2012), supplemented by data from the INNODRIVE project database. We then apply sectoral information to these control data to obtain estimates for investment in individual assets at the level of 1-digit industries of the NACE rev. 1.1 classification (listed in Table 1). Aggregate scientific R&D is broken down by sector based on information from the OECD (ANalytical) Business Enterprise Research and Development databases (OECD ANBERD and BERD). The R&D producing sector (NACE group K73) provides research activities for firms situated in other industries of the business sector (purchased R&D). A considerable amount of R&D intangibles in K73 thus ought to be counted as purchased and not as own-account intangible R&D capital. To avoid double counting R&D in K73 is split up by proportions from use tables at purchasers’ prices from the World Input-Output Database (WIOD). Investment in firm-specific human capital (FSHK) is split up among sectors using data on training costs, time spent on training and opportunity cost of training (for details see O’Mahony, 2012). New product development costs in the financial industry (NFP) from INTAN-Invest can be entirely allocated to sector J. We consider as purchased assets investments in purchased new architectural and engineering designs (Arch), market research (MKTR), advertising expenditure (ADV) and organizational structures (OKp). We employ proportions from use tables at purchasers’ prices from the World Input-Output Database (WIOD) described by Timmer (2012, ed.) and Dietzenbacher et al. (2013) to construct the sectoral breakdown of the aggregate values for these assets. We assume that for every category the weight of an industry in the total purchase of assets of a particular category equals the weight of that industry in the purchase of services from industry K74, other business services, which includes marketing, architecture advertising and consulting. Since K74 includes other sub-industries not relevant
for intangibles we conducted sensitivity analysis with more precise NACE rev. 1.1 matrices, and show that the impact of this assumption is generally quite small. However these more detailed matrices are not available across countries (see on-line Appendix). No sectoral information exists to independently calculate the own-account part of designs, marketing and advertising investment. We therefore assume that the industry breakdown of own-account expenditure for these three assets equals their proportion of purchased assets. In line with the principles used in INTAN-Invest, 20 percent of managers’ wages are counted as own-account development of organizational structures (OKo).

For the construction of real intangible capital, investments are in general deflated with an index based on the deflator for value added from the EU KLEMS database. This follows the convention in the previous studies mentioned above, as no explicit deflators for intangible assets exist to date. There are initial efforts to estimate specific investment price indices for intangibles (e.g. R&D investment price indices by Corrado et al., 2011 for the UK and by Copeland and Fixler, 2012 for the US) but no estimates exist yet for the set of countries covered in this paper. The one exception employed here is training capital which is partly constructed using estimates of opportunity costs (wages) of workers being trained and hence uses an earnings deflator (see O’Mahony, 2012). The detailed methodology for the construction of the sectoral intangible measures and the resulting adaptation of output and capital is described in the on-line Appendix. Tables 3 and 4 present descriptive statistics for the sectoral intangible data, which are discussed further below.

For the growth accounting and econometric analysis the data on output, non-ICT tangible capital, ICT capital and labor input are taken from the EU KLEMS database (O’Mahony and Timmer, 2009). In this analysis we follow the convention of including software as part of ICT capital so this broad category includes some intangibles as well as the tangible assets computer hardware and communications equipment. In addition two other intangible assets currently included in national accounts, mineral oil exploration and artistic originals are included as part of non-ICT capital (other assets in Table 2). This is to facilitate comparisons with previous work originating from the EU KLEMS project.

3.2 Computation of Input and Output Measures

The industry-specific intangible capital stock series A_t are constructed using the well-known Perpetual Inventory Method (PIM):

$$A_{k,j,t} = (1 - \delta_k)A_{k,j,t-1} + I_{k,j,t}/Ip_t$$

where $I_{k,j,t}$ is nominal investment in intangible capital. Nominal investment is deflated by Ip_t, which is the same for all industries j and intangible assets k (except training). It is based on the value added price index for the total business sector (BS). δ_k is the time- and industry-invariant depreciation rate of asset k taken from Corrado et al. (2012) – these depreciation rates are listed in Table 2. The initial capital stock in year 1995 is derived from the following formula:

$$A_{k,j,1995} = Iq_{k,j,1995}/(\delta_k + \bar{g})$$

where $Iq_{k,j,1995}$ is the real investment in 1995 in intangible asset k, \bar{g} is the average growth rate of real value added in the total business sector between 1991 and 1999 (1995 – 1999 for the Czech Republic
and Hungary) and δ_k is again the depreciation rate of asset k.\(^4\)

Because of the inclusion of intangible investment we have to adjust several EU KLEMS input and output variables. We adjust nominal value added as follows:

$$VA_{adj,j,t} = VA_{j,t} + \sum_{k \in INT} I_{k,j,t}.$$ \(3\)

An adjusted value added deflator $VA_{P_{adj},j,t}$ is calculated as:

$$\Delta \ln VA_{P_{adj},j,t} = \bar{v}_{VA,j,t} \Delta \ln VA_{P,j,t} + \bar{v}_{INT,j,t} \Delta \ln I_{p_INT},$$ \(4\)

where $\bar{v}_{VA,j,t}$ is the two-period average share of nominal value added VA in adjusted value added and $\bar{v}_{INT,j,t}$ the two-period average share of nominal intangible investment I_{INT} in adjusted value added. The purchased intangibles (OKp, Arch, MKTR and ADV) increase value added in industry j due to the reduced amount of intermediate inputs. Gross output remains the same. The own-account intangibles (OKo, FSHK, NFP, and R&D) increase gross output and therefore value added of industry j (for an elaborate discussion see, e.g., Statistisches Bundesamt, 2009, page 60). We also have to recalculate the internal rate of return. First we compute the industry-specific adjusted total capital compensation:

$$CAP_{adj,j,t} = VA_{adj,j,t} - LAB_{j,t}$$ \(5\)

where VA_{adj} denotes adjusted value added and LAB labor compensation. The nominal rate of return i for industry j is then defined as:

$$i_{j,t} = \frac{CAP_{adj,j,t} + \sum_k (p^I_{k,j,t} - p^I_{k,j,t-1}) A_{k,j,t} - \sum_k p^I_{k,j,t} \delta_{k,i} A_{k,j,t}}{\sum_k p^I_{k,j,t-1} A_{k,j,t}}$$ \(6\)

where $p^I_{k,j,t}$, $\delta_{k,j}$ and $A_{k,j,t}$ are the investment price index, the depreciation rate and the real stock of all tangible and intangible assets k, respectively. Table 2 gives a list of the 16 assets covered. Based on this internal rate of return $i_{j,t}$, we calculate the asset-specific user costs of capital $q_{k,j,t}$ for all tangible and intangible assets:

$$q_{k,j,t} = p^I_{k,j,t-1} i_{j,t} + p^I_{k,j,t} \delta_{k,i} - \left[p^I_{k,j,t} - p^I_{k,j,t-1} \right].$$ \(7\)

The compensation of all assets is derived according to the following relation:

$$CAP_{adj,k,j,t} = q_{k,j,t} A_{k,j,t}.$$ \(8\)

The industry-specific growth rate of new intangible capital services (K_{int}) is calculated as follows:\(^6\)

$$\Delta \ln K_{int,j,t} = \ln K_{int,j,t} - \ln K_{int,j,t-1} = \sum_{k \in INT} w^I_{k,j,t} \Delta \ln A_{k,j,t}$$ \(9\)

\(^4\) The estimates are not overly sensitive to the growth rates of real value added as previous growth is small relative to the high depreciation rates of intangibles.

\(^5\) We also recalculate the standard EU KLEMS internal rate of return for industries D, G, I as their numbers are based on sub-industries.

\(^6\) Similar calculations are used for ICT and non-ICT capital.
with $w_{k,j,t}^{\text{INT}}$ denoting the two-period average share of intangible asset k in total intangible capital compensation:

$$w_{k,j,t}^{\text{INT}} = \frac{q_{k,j,t}A_{k,j,t}}{\sum_{k \in \text{INT}} q_{k,j,t}A_{k,j,t}}. \quad (10)$$

The aggregation of input and output volumes to the total business sector (BS) is based on the Törnquist quantity index described in O’Mahony and Timmer (2009):

$$\Delta \ln K_{\text{int,BS},t} = \bar{\mu}_{j,t}^{\text{INT}} \sum_j \Delta \ln K_{\text{int,j},t} \quad (11)$$

with $\bar{\mu}_{j,t}^{\text{INT}}$ being the two-period average share of industry j in business sector intangible capital compensation.

3.3 Descriptive Statistics

A first way to evaluate our breakdown of the INTAN-Invest data is to see how the aggregate values of new intangible assets are distributed across sectors (Table 3). In most countries, the largest part of overall intangible investment is concentrated in the manufacturing sector (D). In Germany and Finland, the share exceeds 50 percent. However it is lower in the other countries and only 22 percent in the UK. The business service sector (K71t74) and wholesale and retail trade (G) exhibit higher shares than the remaining sectors. Looking at industry investment in intangibles relative to value added (Table 4) allows us to control for the effect of industry size. We observe that the share of manufacturing (D) and business services (K71t74) remains high. In contrast the high share of total intangibles attributed to the wholesale and retail trade industry (G) is close to average when considered relative to value added. All countries except the Czech Republic and Germany display an above average share of intangible investment in manufacturing and business services. In seven countries, financial intermediation also exhibits a share that exceeds the average.

Looking at the shares of intangible investment per category (on-line Appendix Tables B1 to B10) in each industry reveals that the high overall intangible investment in manufacturing is mainly driven by R&D, which has the lowest depreciation rate. Financial services have a category of intangible investment unique to that industry that accounts for 10 to 30 percent of its total intangible investment and is also assumed to have a comparatively low depreciation rate. High contributions to growth in other sectors show little systematic relation to investment into particular assets. In the UK, we observe a high share of investment in own-account organizational capital in several industries. Since the occupational classification in the UK tends to label more workers as managers than observed in other countries, we cannot completely exclude the possibility of measurement error here, which has to be addressed by future data construction (for alternative measures of own-account organizational capital, see also Squicciarini and Le Mouel, 2012). Business services in the UK also exhibit a higher share of R&D investment than observed in other countries.

[Place Tables 3 - 4 here]
Previous research has shown that growth accounting data, including those from the EU KLEMS data base, exhibit high variation in the internal rates of return as calculated by equations such as (6) above. Oulton and Rincón-Aznar (2005) point out that variation is particularly implausible across sectors. When recalculating internal rates with intangibles, we observe that the variation is reduced somewhat but not in any substantial way. In an overall sample of 1430 observations, the mean internal rate of return falls from 12.4 percent to 11.8 percent with the standard deviation being reduced from 15.2 percent to 12.0 percent. Some outlier values are reduced. The maximal rates observed in Finland, Spain and the UK decline by more than ten percentage points. The strongest decline in average rates of return is observed in those sectors with the highest averages, which are the construction sector (with the average declining from 20.9 to 17.9 percent) and the financial sector (with the average declining from 32.4 to 25.0 percent). Including intangibles indeed reduces implausible variation, but the effect remains moderate (see Inklaar, 2010 with similar results for the US). External rates of return should be considered as an alternative in future work on intangibles. Still sensitivity of growth accounting results on intangible capital to different rates of return might be limited because of the large part of user cost accruing to depreciation. Niebel and Saam (forthcoming) find similar results for ICT capital, for which asset price decline and depreciation represent a large part of user cost.

4 Growth Accounting

4.1 Method
We use the established growth accounting methodology (see, e.g. Inklaar et al., 2005) decomposing growth in value added (VA) per hour worked in industry j in country c at time t into the contributions of inputs per hour worked and multifactor productivity. We use the value added measure that is augmented by intangible assets. Inputs per hour worked are ICT capital per hour worked, non-ICT capital per hour worked, new intangible assets per hour worked and labor services \(H \) divided by the number of hours worked \(L \), which represents a measure of labor quality (\(LQ \)). The factor income shares of inputs are represented by \(\pi_{\text{ict}}^{input}_{c,j,t} \), \(\pi_{\text{nict}}^{input}_{c,j,t} \), \(\pi_{\text{int}}^{input}_{c,j,t} \), and \(\pi_{\text{H}}^{input}_{c,j,t} \). In the empirical implementation we use two-period averages to measure them. By definition they sum up to one: \(\pi_{\text{ict}}^{input}_{c,j,t} + \pi_{\text{nict}}^{input}_{c,j,t} + \pi_{\text{int}}^{input}_{c,j,t} + \pi_{\text{H}}^{input}_{c,j,t} = 1 \). Growth-accounting then decomposes growth in value added per hour worked, in the following way:

\[
\Delta \ln \left(\frac{VA}{L} \right)_{c,j,t} = \pi_{\text{ict}}^{input}_{c,j,t} \Delta \ln \left(\frac{K_{\text{ict}}}{L} \right)_{c,j,t} + \pi_{\text{nict}}^{input}_{c,j,t} \Delta \ln \left(\frac{K_{\text{nict}}}{L} \right)_{c,j,t} + \pi_{\text{int}}^{input}_{c,j,t} \Delta \ln \left(\frac{K_{\text{int}}}{L} \right)_{c,j,t} + \pi_{\text{H}}^{input}_{c,j,t} \Delta \ln LQ_{jit} + \Delta \ln MFP_{c,j,t}.
\]

\((12) \)

4.2 Results at the Sectoral Level
We present growth accounting results for the 10 EU in (Figure 1) – detailed Tables are available in the on-line Appendix (Tables B11-B20). In all Tables we represent growth accounting results including intangibles in output and inputs and, for comparison, growth in labor productivity that is not adjusted for intangibles (LP*).
First comparing across countries, Italy and Spain have relatively low contribution of intangible assets to labor productivity growth and these are also the two countries that display the lowest average annual growth in labor productivity between 1995 and 2007. In France, the Netherlands and Austria, the contribution of intangibles is higher and labor productivity also shows medium growth over the period. In contrast Germany and Denmark show lower contributions of intangible assets, although their growth in labor productivity is about average for the sample. High growth in labor productivity is observed in the UK (2.8 percent), Finland (3.6 percent) and the Czech Republic (4.0 percent) and the first two also show the highest values of the aggregate contribution of intangibles to labor productivity growth with 0.5 percentage points in the UK and 0.6 percentage points in Finland. Thus it appears that slow growing countries were less likely than fast growing ones to invest in intangible assets.

When looking across industries, financial intermediation and manufacturing stand out as those with the largest contributions of intangible assets to labor productivity growth. These sectors have high contributions in many countries and in Spain and Germany other sectors show very small contributions. However financial intermediation and manufacturing do not dominate everywhere. In Italy the low contribution in the manufacturing sector (0.1 percentage points) is particularly striking. In the Czech Republic, the contribution of intangibles turns out to be low in manufacturing and unusually high in construction. The data also show a high contribution for business services in several countries, most notably, in the Netherlands and the UK. In the UK, wholesale and retail trade (G) and hotels and restaurants (H) achieve values that are larger than in other countries. Finland also shows relatively high contributions in sector G as does Spain relative to its aggregate business sector contributions.

Overall the results show important variation in the contribution of intangibles to labor productivity growth both at the level of industries and at the level of countries. In order to compare the strength of variation in these two dimensions, we compute coefficients of variation of the average contribution of intangibles to labor productivity growth at both levels. We first average over industries and consider variation at the country level. The coefficient of variation amounts to 0.46. If we take the average contribution at the level of the business sector, instead of the unweighted mean, the coefficient of variation changes only marginally (0.47). We compare the country variation to the coefficient of variation at the industry level, where the average contribution of intangibles for each industry is computed as an unweighted mean across countries. Here the coefficient of variation amounts to 0.65. Overall then these simple calculations suggest variation in the contribution of intangibles to labor productivity growth is higher at the industry than at the country level. But with the standard deviation being nearly half as large as the mean, variation at the country level plays an important role, too.

The estimates in Table B11-B20 also, tentatively suggest that countries/industries with high contributions from other knowledge inputs (ICT, labor quality and MFP) also appear to show high intangibles contributions. The correlation between the contributions of ICT capital and intangible capital across countries and industries is high at 0.44 and there is also a significant contribution between labor quality and intangibles (0.27). The correlation between MFP and intangibles, at 0.13 is positive but not large. Recent work by Chen et al. (2014) investigates the extent to which the effect of intangibles varies with the ICT intensity of the industries, thus looking at a source of complementarities. They find that the output elasticity of intangible assets varies between 2 percent for the industries at the lowest quartile of ICT intensities and 15 percent at the highest quartile.
Overall the growth accounting results suggest that intangible assets make a substantial contribution to labor productivity growth, although the extent of this varies by industry and country. Note also that when estimating the impact of intangibles, value added growth is adjusted to take account of the transfer of intangible expenditures from intermediates to investment. The final columns of Tables B11-B20 suggest this has a small positive impact on labor productivity growth, of the order of 0.1-0.2 percentage points.

5 Econometric Analysis

5.1 Econometric Specification

Growth accounting assesses the contribution of inputs to labor productivity growth under the assumptions of factor payment at marginal productivity and constant returns to scale. In econometric estimations of the production function we assess marginal productivity without tying it to the value of factor shares. There may be several reasons why the output elasticity of a factor deviates from its income share: errors in the measurement of output and inputs, non-constant returns to scale, imperfect competition, or effects of unmeasured complementarities or spillovers (see Stiroh (2002) for a discussion concerning the output elasticity of ICT). While it goes beyond the scope of the present paper to discriminate between these drivers, our results can at least give an indication of whether intangible assets are a plausible candidate for complementarities and spillovers at the industry level.

The few papers that previously estimated the coefficient of intangible assets in a production function using aggregate data found surprisingly high values for the output elasticity of intangibles, exceeding the factor share twofold or more (Roth and Thum, 2013, Corrado et al., 2014). We investigate to what extent this result carries over to the industry level.

If the marginal productivities of inputs do not coincide with factor shares, there are no a priori reasons to assume constant returns to scale. Therefore we estimate a sectoral Cobb-Douglas production function for value added with three types of assets and labor services as inputs, allowing for variation in the neutral technology parameter $A_{c,j,t}$ across countries c, industries j and time t as well as for non-constant returns to scale. Taking logs and first differences we obtain the following equation in growth rates:

$$\Delta \ln VA_{c,j,t} = \mu_t + \mu_{c,j} + \beta^{ict} \Delta \ln K_{ict_{c,j,t}} + \beta^{nict} \Delta \ln K_{nict_{c,j,t}} + \beta^{int} \Delta \ln K_{int_{c,j,t}} + \beta^H \Delta \ln H_{c,j,t} + \epsilon_{c,j,t}.$$ \hspace{1cm} (13)

Since the equation is written in first differences, country-industry dummies or fixed effects reflect neutral productivity trends that are specific to the single industries in particular countries. Time dummies μ_t allow for a non-constant component in technical change. The error term is denoted as $\epsilon_{c,j,t}$. The coefficients for the different inputs (in logarithms) correspond to their output elasticities. Under constant returns to scale they would sum up to one: $\beta^{ict} + \beta^{nict} + \beta^{int} + \beta^H = 1$.

An equivalent formulation of equation (13) is useful in testing if the output elasticity of intangible assets significantly exceeds their factor shares. Solving equation (12) for MFP growth and replacing growth in value added by the specification of the production function (equation (13)) yields:
\[
\Delta \ln MFP_{c,j,t} = \mu_t + \mu_{c,j} + (\beta^{ict} - \pi^{ict})\Delta \ln K^{ict}_{c,j,t} + (\beta^{nict} - \pi^{nict})\Delta \ln K^{nict}_{c,j,t} \\
+ (\beta^{int} - \pi^{int})\Delta \ln K^{int}_{c,j,t} + (\beta^{H} - \pi^{H})\Delta \ln H_{c,j,t} + \nu_{c,j,t},
\]

(14)

where the \(\pi^x\) are averages across country, industry and time for input \(x\). The error term is denoted as \(\nu_{c,j,t}\). This specification has been used previously to estimate potential spillovers from ICT and intangibles (Stiroh, 2002, Corrado et al., 2014). If the regression coefficients of inputs significantly differ from zero, the output elasticities significantly differ from factor shares. Here we just report the results for equation (13) - the results using (14) are reported in the on-line Appendix.

We use four different estimators to estimate the production function (and equivalently the MFP equation). This follows a standard approach of starting from a general specification and then relaxing some assumptions to check for robustness of the estimated coefficients controlling for country and industry heterogeneity. Differences in productivity levels across countries and industries are eliminated in all specifications since the equations are expressed in first differences. A specification in first differences rather than in levels was chosen in order to estimate roughly the same relationship as is analyzed by the growth accounting method. As a baseline specification we consider a pooled OLS regression. With the least squares dummy variable specification (LSDV) we control independently for country-specific and industry-specific rates of technical change. In addition, we use fixed-effects (FE) panel regressions with each country industry combination as panel identifiers, giving more weight to growth patterns specific to industries within particular countries. Finally we attempt to control for endogeneity by employing a system-GMM dynamic panel regression, commonly used in production function estimations. With this approach, we aim at controlling for the endogeneity of inputs. It uses second-order (t-2) and third-order lags (t-3) as instruments for all input growth variables and again country-industry combinations as panel identifiers (see, e.g., Dobbelaere and Mairesse, 2013). Following Kahn and Lim (1998), all regressions are weighted by the average number of hours worked between 1995 and 2007 in countries and industries. This approach seems to be appropriate as we expect the data from smaller industries to be noisier. When estimating the Cobb-Douglas function, we test for constant returns to scale (CRS).

5.2 Results

Estimates of the production function (13) are presented in Tables 5 and 6 with the equivalent MFP equation (14) results reported in the on-line Appendix. The coefficient of intangible assets is positive and significant in all regressions. The returns to scale implied by the estimated production function are decreasing (In the MFP regressions the coefficients on non-ICT capital and labor services are negative – see on-line Appendix). As Stiroh (2005) notes (referring to own results and to Griliches and Mairesse, 1998), low estimates of returns to scale and occasionally insignificant coefficients for capital inputs are typical for panel estimations of production functions. Decreasing returns are a feature of the production function both including and excluding intangible capital.

Since inputs are highly correlated with time, allowing for time-varying technical progress may result in over-controlling so time dummies were not included in these regressions. If progress does not follow any smooth pattern over time, there is a risk that it eliminates a part of the dynamic effects that
should be attributed to inputs. Since we estimate equations in first differences, these specifications still allow for neutral factor-augmenting technical change at a constant rate (Tables 5 and 6). In each table we compare the estimation that includes intangibles in inputs and outputs with the estimation without intangibles.

With the inclusion of intangible assets, the coefficients on inputs decline in most specifications. In the MFP regressions (see on-line Appendix) intangible assets now exhibit a significant coefficient in all but one specification. If we consider that the fixed effects and the system-GMM specification account best for sectoral heterogeneity, we obtain an output elasticity between 0.12 and 0.18 that exceeds the factor share by about half. While we thus find some indication that the output elasticity of intangible assets exceeds their factor share, the values we observe lie below the values of 0.25 to 0.55 found in previous research using aggregate measures (Roth and Thum, 2013, Corrado et al., 2014).

In the growth accounting results, the contribution of intangibles to labor productivity growth varies notably across sectors. In order to account for sectoral heterogeneity in the econometric analysis, we estimate all specifications with intangibles separately for the goods producing sector (industries C to F) and the service sector. The limited number of observations prevents us from estimating production functions for more disaggregated sectors.

In most specifications the coefficients on intangible capital are similar across the two broad sectors. The GMM results show marginally higher coefficients in services but even here there is no significant difference across the two sectors. In the MFP regressions, the coefficients on intangible capital, although positive, are only significant in the GMM specification. Assuming that this method correctly accounts for endogeneity, the coefficient of intangibles would exceed the factor share by 0.10 in the goods producing sectors and by 0.15 in services. The insignificant coefficient for conventional capital and the negative coefficient for labor are direct consequences of the decreasing returns to scale found in the production function estimation in Table 6, since decreasing returns imply that factor shares exceed output elasticities for at least some inputs. This feature of the production function should caution against taking these results as more than preliminary evidence. Future work should investigate heterogeneity, complementarity and lagged adjustments in more detail.

The fact that there is little difference in the coefficients of intangibles across sectors is not necessarily at odds with the higher growth accounting contribution observed in manufacturing. The growth accounting contribution depends on both the output elasticity (measured by the factor share) and the increase in intangible assets. If net investment is higher the contribution to growth is higher even at equal output elasticities. Overall the results are suggestive of a significant contribution of intangible investment to growth but at magnitudes much lower than found in the previous literature.
6 Conclusion

In this paper we have investigated the importance of investment in intangible assets for labor productivity growth at the sectoral level based on the construction of a sectoral breakdown of the INTAN-Invest data. Growth accounting for 10 EU countries shows the contribution of intangibles to labor productivity growth to be higher in manufacturing than in services, in line with previous single country findings at the sectoral level, e.g. Chun et al. (2012) for Japan, Goodridge et al. (2012) for the UK and Crass et al. (2014) for Germany. The high contribution of manufacturing is associated with a high share of intangible investment in value added in this sector. A large part of its intangible investment falls into the category R&D. In addition to the investment being higher, the assumed relatively low depreciation rate of R&D capital may have an effect on the high contribution of intangibles to productivity growth in manufacturing. Meanwhile services are responsible for the high contribution of intangibles observed in the UK. The UK exhibits higher shares of intangible investment in value added in business services and financial intermediation than other countries.

Our results partly confirm evidence from previous studies using intangible measures at the country level or partial measures of intangibles at the sectoral level, which suggests that the output elasticity of intangibles exceeds its factor share. With values between 0.10 and 0.18, we find that the output elasticity of intangibles is, however, lower than the values of 0.25 – 0.55 found with country-level measures in Roth and Thum (2013) and Corrado et al. (2014). In some specifications we do not find any significant difference between the output share of intangibles and their factor income share.

With the currently available data at the level of 1-digit industries of the NACE rev. 1.1 classification we consider that our sectoral breakdown reveals useful first insights on the sectoral distribution of intangible assets, the change in econometric results when using sectoral instead of aggregate data and the measurement challenges lying ahead. While some further adjustments may be feasible with NACE rev. 2 data, which are not yet available for all necessary components, we expect that a major step beyond the limitations currently faced will only be possible by building up sectoral estimates directly from national accounts and micro data. A reference set of sectoral data will most likely emerge in the future from intertwined efforts by research teams at several institutions, as was the case with the aggregate data on the INTAN-Invest platform.

In addition more work is needed on developing better methodologies to measure prices and service lives. An important challenge will be to find out whether the result that manufacturing industries have a higher contribution of intangibles to growth remains robust, or whether the assets typically used in service industries are currently just harder to capture. On the analytical side, future research should revisit the issue of spillovers and complementarities of intangible assets using sectoral data.
References

Baldwin, J. R., Gu, W. and Macdonald, R. (2012), ‘Intangible Capital and Productivity Growth in Canada’, The Canadian Productivity Review 29.

Bertschek, I. and Kaiser, U. (2004), ‘Productivity Effects of Organizational Change: Microeconometric Evidence’, Management Science 50(3), 394–404.

Black, S. E. and Lynch, L. M. (2001), ‘How To Compete: The Impact Of Workplace Practices And Information Technology On Productivity’, The Review of Economics and Statistics 83(3), 434–445.

Bresnahan, T. F., Brynjolfsson, E. and Hitt, L. M. (2002), ‘Information Technology, Workplace Organization, and the Demand for Skilled Labor: Firm-Level Evidence’, The Quarterly Journal of Economics 117(1), 339–376.

Chen, W., Niebel, T. and Saam, M. (2014), Are Intangibles More Productive in ICT-Intensive Industries? Evidence from EU Countries, ZEW Discussion Paper No. 14-070.

Chun, H., Fukao, K., Shoichi, H. and Tsutomu, M. (2012), Measurement of Intangible Investments by Industry and its Role in Productivity Improvement Utilizing Comparative Studies Between Japan and Korea, RIETI Discussion Paper Series 12-E-037, Research Institute of Economy, Trade and Industry (RIETI).

Copeland, A. and Fixler, D. (2012), ‘Measuring the Price of Research and Development Output’, Review of Income and Wealth 58(1), 166–182.

Corrado, C., Goodridge, P. and Haskel, J. (2011), Constructing a Price Deflator for R&D: Calculating the Price of Knowledge Investments as a Residual, Imperial College Business School Working Papers 9028, Imperial College, London.

Corrado, C., Haskel, J. and Jona-Lasinio, C. (2014), Knowledge Spillovers, ICT and Productivity Growth, CEPR Discussion Papers 10057, Centre for Economic Policy Research (CEPR).

Corrado, C., Haskel, J., Jona-Lasinio, C. and Iommi, M. (2012), ‘Intangible Capital and Growth in Advanced Economies: Measurement Methods and Comparative Results’. Working Paper, June, available at http://www.intan-invest.net.

Corrado, C., Hulten, C. and Sichel, D. E. (2005), Measuring Capital and Technology: An Expanded Framework, in C. Corrado, J. Haltiwanger and D. E. Sichel, eds, ‘Measuring Capital in the New Economy’, University of Chicago Press, pp. 11–46.

Corrado, C., Hulten, C. and Sichel, D. E. (2009), ‘Intangible Capital and US Economic Growth’, Review of Income and Wealth 55(3), 661–685.

Crass, D., Licht, G. and Peters, B. (2014), Intangible Assets and Investments at the Sector Level - Empirical Evidence for Germany, in A. Bounfour and T. Miyagawa, eds, ‘Intangibles, Market Failure and Innovation Performance’, Springer International Publishing.
Dietzenbacher, E., Los, B., Stehrer, R., Timmer, M. P. and de Vries, G. (2013), ‘The Construction of World Input–Output Tables in the WIOD Project’, Economic Systems Research 25(1), 71–98.

Dobelaere, S. and Mairesse, J. (2013), ‘Panel Data Estimates of the Production Function and Product and Labor Market Imperfections’, Journal of Applied Econometrics 28(1), 1–46.

Fukao, K., Miyagawa, T., Mukai, K., Shinoda, Y. and Tonogi, K. (2009), ‘Intangible Investment in Japan: Measurement and Contribution to Economic Growth’, Review of Income and Wealth 55(3), 717–736.

Goodridge, P., Haskel, J. and Wallis, G. (2012), UK Innovation Index: Productivity and Growth in UK Industries, CEPR Discussion Papers 9063, Centre for Economic Policy Research (CEPR).

Griliches, Z. and Mairesse, J. (1998), Production Functions: The Search for Identification, in S. Strøm, ed., ‘Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium’, Vol. 31, Cambridge University Press, pp. 169–203.

Haskel, J., Goodridge, P., Pesole, A., Awano, G., Franklin, M. and Kastrinaki, Z. (2010), Innovation, Knowledge Spending and Productivity Growth in the UK, in COINVEST Project Report, Deliverable D 10, pp. 207–284. Available at http://www.coinvest.org.uk/pub/CoInvest/CoInvestProjects/COINVEST_217512_D10.pdf.

Haskel, J. and Pesole, A. (2011), Within-Country Analysis of Intangible Assets and Investments at Sector-Level, in COINVEST Project Report, Deliverable D 10, pp. 93–132. Available at http://www.coinvest.org.uk/pub/CoInvest/CoinvestProjects/COINVEST_217512_D10.pdf.

Inklaar, R. (2010), ‘The Sensitivity of Capital Services Measurement: Measure all Assets and the Cost of Capital’, Review of Income and Wealth 56(2), 389–412.

Inklaar, R., O’Mahony, M. and Timmer, M. P. (2005), ‘ICT and Europe’s Productivity Performance: Industry-Level Growth Account Comparisons with the United States’, Review of Income and Wealth 51(4), 505–536.

Kahn, J. A. and Lim, J.-S. (1998), ‘Skilled Labor-Augmenting Technical Progress in US Manufacturing’, The Quarterly Journal of Economics 113(4), 1281–1308.

Niebel, T. and Saam, M. (forthcoming), ‘ICT and Growth: The Role of Rates of Return and Capital Prices’, Review of Income and Wealth.

O’Mahony, M. (2012), ‘Human Capital Formation and Continuous Training: Evidence for EU Countries’, Review of Income and Wealth 58(3), 531–549.

O’Mahony, M. and Peng, F. (2011), Workforce Training, Intangible Investments and Productivity in Europe: Evidence from EU KLEMS and the EU LFS, Servicegap Discussion Paper No. 1. Available at http://servicegap.org/80-sg/publications/72-discussionpaper1.html.

O’Mahony, M. and Timmer, M. P. (2009), ‘Output, Input and Productivity Measures at the Industry Level: The EU KLEMS Database’, Economic Journal 119(538), F374–F403.
Oulton, N. and Rincón-Aznar, A. (2005), Rates of Return and Alternative Measures of Capital Input: 14 Countries and 10 Branches, 1971-2005, in M. Mas and R. Stehrer, eds, ‘Industrial Productivity in Europe: Growth and Crisis’, Edward Elgar, pp. 307–337.

Piekkola, H. (2011), Intangible Capital - INNODRIVE Perspective, in H. Piekkola, ed., ‘Intangible Capital - Driver of Growth in Europe’, Vol. 167 of Proceedings of the University of Vaasa. Reports.

Roth, F. and Thum, A.-E. (2013), ‘Intangible Capital and Labor Productivity Growth: Panel Evidence for the EU from 1998-2005’, Review of Income and Wealth 59(3), 486–508.

Squicciarini, M. and Le Mouel, M. (2012), Defining and Measuring Investment in Organisational Capital: Using US Microdata to Develop a Task-Based Approach, OECD Science, Technology and Industry Working Papers No. 2012/05, OECD Publishing.

Statistisches Bundesamt (2009), National Accounts - Gross Domestic Products in Germany in Accordance with ESA 1995 - Methods and Sources - Version Following Revision 2005, Statistisches Bundesamt, Wiesbaden. Subject-Matter Series 18, Series S. 22.

Stiroh, K. J. (2002), ‘Are ICT Spillovers Driving the New Economy?’, Review of Income and Wealth 48(1), 33–57.

Stiroh, K. J. (2005), ‘Reassessing the Impact of IT in the Production Function: A Meta-Analysis and Sensitivity Tests’, Annales d’Économie et de Statistique pp. 529–561.

Timmer, M. P. (2012, ed.), ‘The World Input-Output Database (WIOD): Contents, Sources and Methods’. Available at http://www.wiod.org/database/index.htm.
Tables and Figures

Table 1: Industry and Country Coverage

Industry Code	Description	Country Code	Country
A-B	Agriculture, Hunting, Forestry and Fishing	AUT	Austria
C	Mining and Quarrying	CZE	Czech Republic
D	Total Manufacturing	DNK	Denmark
E	Electricity, Gas and Water Supply	ESP	Spain
F	Construction	FIN	Finland
G	Wholesale and Retail Trade	FRA	France
H	Hotels and Restaurants	GER	Germany
I	Transport and Storage and Communications	ITA	Italy
J	Financial Intermediation	NLD	Netherlands
K71-74	Renting of Machinery and Equipment and Other Business Activities	UK	United Kingdom
O	Other Community, Social and Personal Services		

Table 2: List of Assets

Acronym	Description	Depreciation Rate
INT	New intangibles	.150
R&D	Scientific Research and Development	.400
FSHK	Firm-Specific Human Capital	.200
NFP	New Product Development Costs in the Financial Industry	.200
Arch	New Architectural and Engineering Designs	.550
MKTR	Market Research	.550
ADV	Advertising Expenditure	.550
O Ko	Own-Account Development of Organizational Structures	.400
O kp	Purchased Organizational Structures	.400
ICT	ICT assets	.315
IT	Computing Equipment	.115
CT	Communications Equipment	.315
Soft	Software	.315
NonICT	Non-ICT assets	.92 - .229
TranEq	Transport Equipment	.94 - .149
OMach	Other Machinery and Equipment	.023 - .051
O Con	Total Non-Residential Investment	.011
R Struc	Residential Structures	.094 - .149

Note: Depreciation rates for new intangible assets are taken from [Corrado et al. (2012, page 25)](#).
"New" intangibles are those not yet included in national accounts. ICT and Non-ICT assets are those covered by national accounts data in the EU KLEMS database.
Table 3: Summary Statistics: Share of Industry j in Total Intangible Investment - Mean of Years 1995-2007

Industry	AUT	CZE	DNK	ESP	FIN	FRA	GER	ITA	NLD	UK
AtB	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01
C	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01
D	0.39	0.30	0.34	0.39	0.61	0.34	0.57	0.35	0.32	0.23
E	0.01	0.02	0.01	0.03	0.02	0.02	0.02	0.01	0.02	0.01
F	0.05	0.08	0.10	0.07	0.03	0.05	0.03	0.05	0.04	0.05
G	0.16	0.16	0.18	0.12	0.08	0.13	0.09	0.21	0.14	0.14
H	0.02	0.03	0.01	0.03	0.01	0.01	0.01	0.02	0.02	0.03
I	0.05	0.05	0.06	0.08	0.06	0.06	0.03	0.07	0.09	0.09
J	0.09	0.09	0.07	0.11	0.06	0.10	0.10	0.07	0.09	0.15
K71t74	0.17	0.22	0.16	0.12	0.09	0.25	0.13	0.16	0.22	0.22
O	0.04	0.04	0.05	0.04	0.03	0.03	0.02	0.04	0.04	0.06

BS | 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00| 1.00|

Source: EU KLEMS Release 2009, INTAN-Invest and INDICSER - own calculations.

Table 4: Summary Statistics: Share of Intangible Investment in Adjusted Value Added - Mean of Years 1995-2007

Industry	AUT	CZE	DNK	ESP	FIN	FRA	GER	ITA	NLD	UK
AtB	0.01	0.02	0.03	0.01	0.01	0.01	0.03	0.00	0.03	0.04
C	0.05	0.04	0.00	0.04	0.08	0.05	0.08	0.03	0.02	0.03
D	0.09	0.06	0.11	0.07	0.13	0.12	0.12	0.06	0.12	0.11
E	0.03	0.02	0.03	0.04	0.05	0.07	0.04	0.02	0.06	0.06
F	0.03	0.07	0.09	0.03	0.03	0.05	0.03	0.03	0.05	0.07
G	0.06	0.06	0.07	0.04	0.05	0.06	0.04	0.06	0.06	0.09
H	0.02	0.06	0.03	0.01	0.06	0.03	0.03	0.02	0.05	0.07
I	0.04	0.03	0.04	0.03	0.04	0.05	0.03	0.03	0.07	0.09
J	0.08	0.13	0.07	0.07	0.11	0.11	0.10	0.05	0.08	0.17
K71t74	0.10	0.14	0.10	0.06	0.07	0.10	0.06	0.06	0.10	0.13
O	0.05	0.07	0.06	0.04	0.04	0.05	0.03	0.05	0.06	0.11

BS | 0.07| 0.06| 0.07| 0.04| 0.08| 0.08| 0.07| 0.05| 0.08| 0.10|

Source: EU KLEMS Release 2009, INTAN-Invest and INDICSER - own calculations.
Table 5: Production Function Estimation, Full Sample - Dependent Variable: Growth Rate of Value Added

With Intangibles	Without Intangibles							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Δ ln(ICT Cap. Serv.)	0.052*** (0.015)	0.058*** (0.016)	0.054*** (0.016)	0.056*** (0.021)	0.060*** (0.017)	0.063*** (0.016)	0.060*** (0.017)	0.052** (0.021)
Δ ln(N.ICT Cap. Serv.)	0.089** (0.045)	0.087** (0.037)	0.085** (0.042)	-0.042 (0.093)	0.105** (0.048)	0.088** (0.036)	0.090** (0.042)	0.004 (0.092)
Δ ln(Intan. Cap. Serv.)	0.137*** (0.035)	0.099*** (0.032)	0.120*** (0.032)	0.174*** (0.052)	0.359*** (0.051)	0.388*** (0.062)	0.334*** (0.060)	0.656*** (0.119)
Δ ln(Labor Services)	0.317*** (0.045)	0.363*** (0.060)	0.309*** (0.057)	0.538*** (0.115)	0.041** (0.019)	0.039** (0.018)	0.054 (0.020)	0.041** (0.019)
L.Δ ln(Value Added)	0.007** (0.003)	0.007 (0.006)	0.008*** (0.002)	0.008** (0.003)	0.010*** (0.003)	0.010 (0.006)	0.011*** (0.002)	0.012*** (0.004)
Constant	0.007 0.014** 0.010*** 0.007	0.010*** -0.011** 0.008*** 0.003						

Clustered standard errors by country-industry combination in parentheses, * p<0.10, ** p<0.05, *** p<0.01.

Note: POLS = pooled OLS regression, LSDV = least squares dummy variable regression, FE = fixed-effects regression, SGMM = system-GMM regression, ICT Cap. Serv. = ICT capital services, N.ICT Cap. Serv. = non-ICT capital services, Intan. Cap. Serv. = intangible capital services.

Source: EU KLEMS Release 2009, INTAN-Invest and INDICISER - own calculations.

Table 6: Production Function Estimation, by Broad Sector - Dependent Variable: Growth Rate of Value Added Including Intangibles

Goods Producing Sector	Service Sector
(1) (2) (3) (4) (5) (6) (7) (8)	
Δ ln(ICT Cap. Serv.)	0.033 (0.028)
Δ ln(N.ICT Cap. Serv.)	0.032 (0.123)
Δ ln(Intan. Cap. Serv.)	0.155*** (0.046)
Δ ln(Labor Services)	0.413*** (0.082)
L.Δ ln(Value Added)	0.106 (0.076)
Constant	0.007 (0.006)

Clustered standard errors by country-industry combination in parentheses, * p<0.10, ** p<0.05, *** p<0.01.

Note: POLS = pooled OLS regression, LSDV = least squares dummy variable regression, FE = fixed-effects regression, SGMM = system-GMM regression, ICT Cap. Serv. = ICT capital services, N.ICT Cap. Serv. = non-ICT capital services, Intan. Cap. Serv. = intangible capital services.

Source: EU KLEMS Release 2009, INTAN-Invest and INDICISER - own calculations.
Figure 1: Average Contribution of Intangible Capital to Labor Productivity Growth - Unweighted Average Across Industries Countries and Across Countries - 1995-2007

Source: Source: EU KLEMS Release 2009, INTAN-Invest and INDICSER - own calculations.