Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

J C Bueno Sanchez and K Dimopoulos

Physics Department, Lancaster University, Lancaster LA1 4YB, UK
E-mail: j.buenosanchez@lancaster.ac.uk and k.dimopoulos1@lancaster.ac.uk

Received 30 August 2007
Accepted 12 October 2007
Published 9 November 2007

Online at stacks.iop.org/JCAP/2007/i=11/a=007
doi:10.1088/1475-7516/2007/11/007

Abstract. Curvaton reheating is studied in non-oscillatory models of inflation, with the aim of obtaining bounds on the parameters of curvaton models and finding out whether low scale inflation can be attained. Using a minimal curvaton model, it is found that the allowed parameter space is considerably larger than in the case of the usual oscillatory inflation models. In particular, inflation with a Hubble scale as low as 1 TeV is comfortably allowed.

Keywords: inflation, cosmology of theories beyond the SM

ArXiv ePrint: 0707.3967
1. Introduction

Inflation is to date the most compelling solution for the horizon and flatness problems of big bang cosmology. Recently, observational data at high precision have confirmed that structure formation and the CMB anisotropy are due to the existence of superhorizon curvature perturbations, which need an acausal mechanism to be created and, therefore, are further evidence of inflation.

The majority of inflationary models suggest that inflation took place at energy comparable to that of grand unification. This is because, in most inflationary models, the curvature perturbations are due to the quantum fluctuations of the inflaton field; the field controlling the dynamics of inflation. In this case the inflationary energy scale is

\[V^1/4 = 0.027\epsilon^{1/4}m_P, \]

where \(m_P = 2.4 \times 10^{18} \text{ GeV} \) is the reduced Planck mass and \(\epsilon \equiv -\dot{H}/H^2 \) is one of the so-called slow-roll parameters, where \(H \equiv \dot{a}/a \) with \(a \) being the scale factor and the dot denoting the derivative with respect to time. In the above, \(* \) denotes the epoch when the cosmological scales exit the horizon during inflation. For inflation to occur one needs \(\epsilon < 1 \), which is equivalent to \(\ddot{a} > 0 \). In slow-roll models of inflation \(\epsilon \ll 1 \), which means \(H \simeq \text{constant} \). However, slow-roll inflation is not exactly de Sitter expansion, because it has to end for the hot big bang to begin. Therefore in many models \(\epsilon \), albeit small, is not tiny. In particular, in so-called large-field models (e.g. chaotic inflation) \(\epsilon_* \sim 1/N_* \) [2], where \(N_* \) is the remaining number of inflation e-folds when the cosmological scales exit the horizon. \(N_* \) ranges between 40 and 65 for inflation scales between grand unification and big bang nucleosynthesis (BBN). Hence, from equation (1) we see that \(V_*^{1/4} \sim 10^{15-16} \text{ GeV} \). Exceptions to this rule exist, where \(\epsilon \) is exponentially suppressed due to appropriate features of the scalar potential. Examples are so-called small-field models such as hilltop inflation [3] and A-term inflation [4]. In many cases, however, such models are fine-tuned (e.g. see [5] for A-term inflation).

However, in recent years, advances in string theory have turned the attention at progressively lower energy scales. In particular, large extra dimensions suggest that the fundamental scale may by much smaller than \(m_P \) and the scale of grand unification,
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

possibly near the electroweak scale instead (e.g. see [6]). This means that the hot big bang cannot be extended up to grand unification energies and so inflation must take place at lower scale. Moreover, in the search for the inflaton field, the most promising candidates are either flat directions in supersymmetric theories or string moduli fields, which correspond to the size and shape of the compactified extra dimensions. However, in the MSSM and its extensions the corresponding scales are typically much less than the grand unified scale. Similarly, for string moduli one expects the scalar potential to vary significantly (i.e. $\delta V/V \sim 1$) over distances of order $\sim m_P$ in field space, which means that the typical scale for modular inflation is $V_{*}^{1/4} \sim \sqrt{m_{3/2}m_P} \sim 10^{10.5}$ GeV (i.e. $H_* \sim 1$ TeV) for moduli with masses of order $m_{3/2} \sim 1$ TeV, such as string axions. Recently, many possibilities for inflation in string theory have arisen in the context of the string landscape [7]. For example, metastable supersymmetric vacua [8] may account for the vacuum density of inflation. This sets the value of V_* at the supersymmetry breaking scale which corresponds to the above mentioned scale or lower. This is why there has been growing interest in achieving inflation at low energy scales.

One way to liberate inflation from the constraint in equation (1) is to consider that the curvature perturbations generated by inflation are due to the quantum fluctuations of a field other than the inflaton, in which case equation (1) turns into an upper bound [9]. This, so-called curvaton field does not influence the dynamics of inflation but becomes important after inflation has ended, when it imprints its curvature perturbation onto the Universe [10]. Under this hypothesis, it is possible to relax this constraint substantially when the curvaton model is specially designed to do so [11, 12]. However, generically, for a minimal curvaton model, there is still a lower bound on the inflationary scale of order $V_{*}^{1/4} \gtrsim 10^{12}$ GeV (i.e. $H_* \gtrsim 10^6$ GeV) [13], when considering inflation, which ends through oscillations of the inflaton field, as usually assumed.

In this paper we show that, for a minimal curvaton model, the inflation scale can be substantially lower when considering a non-oscillatory (NO) model of inflation. In such a model the inflaton corresponds to a flat direction with runaway behaviour, typical, for example, of the scalar potential of the so-called geometric string moduli fields. In such models, after inflation ends, the Universe remains dominated by the inflaton field which is now fast rolling down its runaway scalar potential [14]. Since the inflaton does not oscillate and does not decay after the end of inflation, reheating occurs by other means1. Recently, a curvaton field has been assumed to be responsible for reheating in NO inflation models [15]–[17]. However, up to now the parameter space for the inflationary scale (in particular low scale inflation) has not been studied.

2. Lower bound on the Hubble scale

We begin by outlining the particulars of NO inflation. In NO models, after the end of inflation, the inflaton field becomes dominated by its kinetic density $\rho_\phi \simeq \rho_{\text{kin}} \equiv \frac{1}{2}\dot{\phi}^2$ [14]. The equation of motion for the field becomes $\ddot{\phi} + 3H\dot{\phi} \simeq 0$, which is oblivious to the scalar potential and suggests that $\rho_\phi \propto a^{-6}$. This gives rise to a period of so-called kination, where $a \propto t^{1/3}$ [18]. Because the dilution of the inflaton’s density is so drastic, 1 NO models have been particularly useful for quintessential inflation (e.g. see [15, 16] and references therein) because the inflaton field can survive until today and be responsible for the dark energy at present.
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

the Universe can be reheated by the thermal bath due to the decay products of a curvaton field, which also accounts for the density perturbations in the Universe [17]. We should stress here that our treatment below is independent of the NO inflation model since the scalar potential for the inflaton sector is negligible during the evolution of the curvaton field.

We consider a minimal curvaton scenario where the curvaton field σ is characterized by the scalar potential

$$V(\sigma) = \frac{1}{2}m^2\sigma^2. \quad (2)$$

In order to act as a curvaton σ must undergo particle production during inflation. Hence, it needs to be effectively massless. This implies the bound $m < H_\star$. An even tighter bound, however, is due to spectral index considerations. Indeed, for the curvaton we have [10]

$$n_s - 1 \simeq 2(\eta - \epsilon), \quad (3)$$

where

$$\eta \equiv \frac{m^2_P}{V_\star} \frac{\partial^2 V}{\partial \sigma^2} \simeq \frac{1}{3} \left(\frac{m}{H_\star} \right)^2, \quad (4)$$

with $V_\star \simeq 3H^2_\star m^2_P$ being the density during inflation. Now, low scale inflation generates negligible tensor perturbations. Observations suggest that, for negligible tensor perturbations, the perturbation spectrum is red, with $n_s = 0.95 \pm 0.04$ [19]. However, if ϵ were tiny, equations (3) and (4) suggest that the spectrum would be blue as $n_s > 1$. Hence, the only way to achieve a red spectrum is to consider a sizable ϵ (corresponding to large-field inflation models), whose contribution dominates η. Therefore, m must satisfy the bound

$$m \lesssim 0.1H_\star, \quad (5)$$

so that $2\eta \lesssim 0.01$.

We assume that the inflaton’s contribution to the curvature perturbation is negligible, as is the norm under the curvaton hypothesis [10]. In any case, it is difficult to obtain a sizable curvature perturbation from the inflaton in low scale inflation [9] (see, however, [4]). Since the Universe is reheated by the decay products of the curvaton which dominate the scalar field background, the observed curvature perturbation $\zeta = 4.8 \times 10^{-5}$ is entirely due to the curvaton, i.e.

$$\zeta = \zeta_\sigma \equiv -\frac{H}{\rho_\sigma} \frac{\delta \rho_\sigma}{\rho_\sigma} \bigg|_{dec} = \frac{1}{3} \frac{\delta \rho_\sigma}{\rho_\sigma} \bigg|_{dec} = \frac{2}{3} \frac{\delta \sigma}{\sigma} \bigg|_{dec} = \frac{2}{3} \frac{\delta \sigma}{\sigma} \bigg|_{osc} \simeq \frac{2}{3} \frac{\delta \sigma}{\sigma} \bigg|_{*} \simeq \frac{H_\star}{3\pi\sigma_\star} \Rightarrow \sigma_\star \sim \frac{H_\star}{\zeta}, \quad (6)$$

where we used that, before its decay (denoted as ‘dec’), the curvaton undergoes quasi-harmonic oscillations in the scalar potential of equation (2), so that $\rho_\sigma = 2\overline{V(\sigma)} \propto a^{-3}$ [20], where $\overline{V(\sigma)}$ is the average value of the potential density over many oscillations. Since the oscillating curvaton satisfies the same linear equation of motion as its oscillating perturbation, (namely $\ddot{\sigma} + 3H\dot{\sigma} + m^2\sigma = 0$) the fractional perturbation $\delta\sigma/\sigma$ remains...
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

constant and equal to its value at the onset of the oscillations, denoted as ‘osc’. Before the onset of the oscillations, both the value of the field and its perturbation are frozen so the fractional perturbation remains constant again and equal to its value at horizon exit, denoted by ‘*’. As is the case with particle production of scalar fields, the value of the curvaton perturbation at horizon exit is determined by the Hawking temperature: \(\delta\sigma = H_*/2\pi \). Note that equation (6) implies that \(\sigma_* \gg H_* \), which guarantees that the curvature perturbations are predominantly Gaussian [10].

After the end of inflation, the inflaton becomes kinetically dominated, while the curvaton remains frozen because \(m \ll H_* \) and its motion is overdamped. This means that the density parameter of the curvaton \(\Omega \equiv \rho_\sigma/\rho \) scales as \(\Omega \propto a^6 \) until \(H(t) \) drops down to \(H \sim m \), when the curvaton unfreezes and begins its quasi-harmonic oscillations. At this time we have

\[
\Omega_{\text{osc}} \sim \left(\frac{\sigma_*}{m_p} \right)^2. \tag{7}
\]

After the onset of the oscillations, the curvaton density decreases as \(\rho_\sigma \propto a^{-3} \) so that \(\Omega \propto a^3 \).

Now, there are two possibilities, depending on whether the curvaton decays before its density dominates the Universe or afterwards. Let us assume firstly that the curvaton decays before domination. In this case, using that during kination \(a \propto H^{-1/3} \), one readily obtains that the curvaton density parameter at the time of curvaton decay is

\[
\Omega_{\text{dec}} \sim \frac{m}{\Gamma} \left(\frac{\sigma_*}{m_p} \right)^2, \tag{8}
\]

where \(\Gamma \) is the curvaton decay rate. The decay products of the curvaton redshift as relativistic matter \(\rho_\gamma \propto a^{-4} \), which means that their density parameter grows as \(\Omega_\gamma \propto a^2 \). Reheating is achieved when this density parameter reaches unity and the Universe becomes dominated by the thermal bath of the curvaton decay products. Using that \(H_{\text{dom}} \sim T^2_{\text{reh}}/m_p \), it is easy to find

\[
T_{\text{reh}} \sim \sqrt{m_p \Gamma} \left(\frac{m}{\Gamma} \right)^{3/4} \left(\frac{H_*}{\zeta m_p} \right)^{3/2}, \tag{9}
\]

where we also employed equation (6) and we denote with ‘dom’ the epoch when the inflaton’s density becomes subdominant. From the above and using also that \(\Gamma \geq H_{\text{dom}} \) and \(T_{\text{reh}} > T_{\text{BBN}} \) we obtain the bound

\[
H_* > (10\zeta^2)^{1/3}(T^2_{\text{BBN}} m_p)^{1/3} \sim 10 \text{ GeV}, \tag{10}
\]

where we also considered equation (5) and demanded that reheating occurs before BBN; the latter corresponding to temperature \(T_{\text{BBN}} \sim 1 \text{ MeV} \). Thus, we see that inflation with \(H_* \sim 1 \text{ TeV} \) can be accommodated with a minimal curvaton model.

Let us consider, now, the case when the curvaton decays after it dominates the Universe. In this case the oscillating curvaton dominates when

\[
H_{\text{dom}} \sim m \left(\frac{\sigma_*}{m_p} \right)^2. \tag{11}
\]
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

Reheating is, now, achieved at the decay of the curvaton, so that

\[T_{\text{reh}} \sim \sqrt{m_P \Gamma}. \] \hspace{1cm} (12)

Using that \(\Gamma \leq H_{\text{dom}} \) and also \(T_{\text{reh}} > T_{\text{BBN}} \), we arrive once more at the bound in equation (10), where we also considered equation (5).

3. Other bounds on the parameters

Additional bounds on the parameters are obtained as follows. Assuming that the curvaton decays predominantly into fermions, its decay rate can be written as \(\Gamma = g^2 m \), where \(g \) is the coupling of the curvaton to its decay products. The expected range for this coupling is

\[\frac{m}{m_P} \lesssim g \lesssim 1, \] \hspace{1cm} (13)

where the lower bound is due to gravitational decay.\(^2\)

Assume at first that the curvaton decays before domination. Then, from equation (9), we have \(T_{\text{reh}} \propto \Gamma^{-1/4} \). Consequently, combining the lower bound in equation (13) with the requirement that \(T_{\text{reh}} > T_{\text{BBN}} \) and equation (9), we obtain the bound

\[H_* \gtrsim \zeta (T^2_{\text{BBN}} m_P)^{1/3} \sim 1 \text{ GeV}, \] \hspace{1cm} (14)

which is weaker than the bound in equation (10). Also, using that \(T_{\text{reh}} > T_{\text{BBN}} \), equation (9) results in

\[g < \frac{m_P m}{T^2_{\text{BBN}}} \left(\frac{H_*}{\zeta m_P} \right)^3 \lesssim 10^{41} \zeta^{-3} \left(\frac{H_P}{m_P} \right)^4, \] \hspace{1cm} (15)

where we used equation (5) in the last inequality. Comparing this bound with the lower bound in equation (13) it can be easily verified (with the help of equation (14)) that there is always parameter space for \(g \). Using also that \(g \lesssim 1 \lesssim 0.1 H_* / m \) according to equations (5) and (13), it can be shown that the bound in equation (15) is tighter that the upper bound in equation (13) only for \(H_* < 10 \) TeV. Finally, since in the case of decay before domination we have \(\Gamma \geq H_{\text{dom}} \sim T^2_{\text{reh}} / m_P \), employing equation (9) the upper bound in equation (13) suggests

\[\sigma_* \lesssim m_P \Rightarrow H_* \lesssim \zeta m_P \sim 10^{14} \text{ GeV}, \] \hspace{1cm} (16)

where we also used equation (6).

Now, let us consider the case when the curvaton decays after domination, where \(T_{\text{reh}} \) is given by equation (12). Combining the requirement that \(T_{\text{reh}} > T_{\text{BBN}} \) with the upper bound in equation (13) and using also equation (5), one finds the trivial bound \(H_* > 10 T^2_{\text{BBN}} / m_P \), which is much weaker than the bound in equation (10). The

\(^2\) For values of \(g \) near the upper bound in equation (13) radiative corrections to the scalar potential may become important. In the case of non-supersymmetric theories such corrections to the potential in equation (2) are quartic (i.e. \(\delta V \sim g^4 \sigma^4 \ln(\sigma / M) \)) and can dominate the potential if \(g \gtrsim 10^{-2} \) and \(\sigma \) is large enough. If this is so we would depart from the minimal curvaton model analysed in this paper. However, in supersymmetric theories radiative corrections to the potential in equation (2) are typically quadratic (i.e. \(\delta V \sim g^2 m^2 \sigma^2 \ln(\sigma / M) \)) \cite{21} and remain subdominant even for relatively large values of \(g \).
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

corresponding lower bound on g is

$$g > \frac{T_{\text{BBN}}}{\sqrt{m_{\text{Pl}}m}} \geq \sqrt{10} \left(\frac{m_{\text{Pl}}}{H_*} \right)^{1/2} \frac{T_{\text{BBN}}}{m_{\text{Pl}}},$$

(17)

which is tighter than the lower bound in equation (13) if $m < (T_{\text{BBN}}^2 m_{\text{Pl}})^{1/3}$. Finally, combining the condition $\Gamma < H_{\text{dom}}$ with the lower bound in equation (13) one ends up again with the bound in equation (16).

In summary the allowed range for the inflationary Hubble scale is

$$10 \text{ GeV} \leq H_* \leq 10^{14} \text{ GeV},$$

(18)

while, for the decay coupling, the allowed range is

$$\max \left\{ \frac{T_{\text{BBN}}}{\sqrt{m_{\text{Pl}}m}}, \frac{m}{m_{\text{Pl}}} \right\} \lesssim g \lesssim \min \left\{ 1, \frac{m_{\text{Pl}}}{m}, \left(\frac{\sigma_*}{m_{\text{Pl}}} \right)^3 \right\}.$$

(19)

Another set of bounds is due to the possible overproduction of gravitational waves (GWs) due to inflation. If inflation is followed by a phase whose equation of state is stiffer than radiation, the spectrum of relic gravitons features a spike (the slope grows with the frequency) for modes re-entering the horizon during the stiff phase [22]. Since in NO models there is a phase of kination right after inflation, high frequency gravitons re-entering the horizon during kination may disrupt BBN by increasing H. To avoid this, we require [15, 22]

$$I \equiv h^2 \int_{k_{\text{BBN}}}^{k_*} \Omega_{\text{GW}}(k) \, d \ln k \lesssim 2 \times 10^{-6},$$

(20)

where $\Omega_{\text{GW}}(k)$ is the GW density fraction with physical momentum k and $h = 0.73$ is the Hubble constant H_0 in units of 100 km s$^{-1}$ Mpc$^{-1}$. Using the spectrum $\Omega_{\text{GW}}(k)$ as computed in [22], the above constraint can be written as [15]

$$I \simeq h^2 \alpha_{\text{GW}} \Omega_\gamma(k_0) \frac{1}{\pi^3 m_{\text{Pl}}^2} \left(\frac{H_*}{H_{\text{dom}}} \right)^{2/3},$$

(21)

where $\alpha_{\text{GW}} \simeq 0.1$ is the GW generation efficiency during inflation and $\Omega_\gamma(k_0) = 2.6 \times 10^{-5} h^{-2}$ is the density fraction of radiation at present on horizon scales.

If the curvaton field decays before domination, using $H_{\text{dom}} \sim T_{\text{reh}}^2 / m_{\text{Pl}}$ and equation (9), the bound in equation (20) becomes

$$\frac{H_*}{m} \left(\frac{\Gamma}{H_*} \right)^{1/3} \lesssim 24 \zeta^{-2} \sim 10^{10}.$$

(22)

If the curvaton decays after domination, using equations (11) and (12), the bound in equation (20) becomes

$$\frac{H_*}{m_{\text{Pl}}} \left(\frac{H_*}{\Gamma} \right)^{1/3} \lesssim 1.$$

(23)

The above bounds may truncate further the ranges in equations (18) and (19).
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

4. Specific examples

Let us quantify the above with a couple of specific examples. Firstly, let us choose $H_\ast \sim 1$ TeV and $m \sim 100$ GeV so that the bound in equation (5) is saturated. In this case equation (6) suggests that $\sigma_\ast \sim 10^8$ GeV. Using this, equation (19) becomes $10^{-13} \lesssim g \lesssim 10^{-4}$. Using equation (11) we find $H_{\text{dom}}/\Gamma \sim 10^{-20}/g^2$, which means that the curvaton decays before domination if $10^{-10} \lesssim g \lesssim 10^{-4}$, whereas it decays after domination if $10^{-13} \lesssim g \lesssim 10^{-10}$. In the former case, equation (9) gives $T_{\text{reheating}} \sim g^{-1/2} \times 10^{-5}$ GeV, while in the latter case equation (12) gives $T_{\text{reheating}} \sim g \times 10^{10}$ GeV. Hence, the allowed range for the reheating temperature is 1 MeV $< T_{\text{reheating}} \lesssim 1$ GeV. Since $\Gamma = g^2 m$, it is straightforward to check that the bounds in equations (22) and (23) are satisfied in the range shown in equation (19).

Now, let us choose $\sigma_\ast \sim m_\text{p}$ and $m \sim 100$ GeV, corresponding to a string axion as curvaton. In this case equation (6) suggests that $H_\ast \sim 10^{14}$ GeV, which saturates the bound in equation (16) and corresponds to inflation at the grand unified scale. Using this, equation (19) becomes $10^{-13} \lesssim g \lesssim 1$. Then, equation (11) gives $H_{\text{dom}}/\Gamma \sim g^{-2} \gtrsim 1$. This means that the curvaton has to decay at or after domination. Thus, from equation (12) we have $T_{\text{reheating}} \sim g \times 10^{10}$ GeV, which results in the range 1 MeV $< T_{\text{reheating}} \lesssim 10^{10}$ GeV. This time, however, the GW constraint turns out to be much tighter. Because the curvaton decays at or after domination, we need to use equation (23). With the chosen values, the bound can only be satisfied with $g \sim 1$, which saturates the upper bound in equation (13). Thus, the reheating temperature has to be $T_{\text{reheating}} \sim 10^{10}$ GeV, which seriously challenges gravitino constraints.3

5. Conclusions

In conclusion, we have studied in detail the parameter space for the inflation scale in NO models with a minimal curvaton scenario being responsible for reheating the Universe as well as for the curvature perturbations. We have shown that low scale inflation with H_\ast as low as 10 GeV is feasible in this case, regardless of whether the curvaton decays before or after dominating the Universe. Our results are independent of the particular form of the NO inflation model because, during the curvaton evolution, the inflaton sector is oblivious to the scalar potential, since it is dominated by the kinetic density of the inflaton.

Acknowledgments

We would like to thank David H Lyth for useful comments. This work was supported (in part) by the European Union through the Marie Curie Research and Training Network ‘UniverseNet’ (MRTN-CT-2006-035863) and by STFC (PPARC) Grant PP/D000394/1.

References

[1] Liddle A R and Lyth D H, 2000 Cosmological Inflation and Large Scale Structure (Cambridge: Cambridge University Press)
[2] Alabidi L and Lyth D H, 2006 J. Cosmol. Astropart. Phys. JCAP05(2006)016 [SPIRES]
 Alabidi L and Lyth D H, 2006 J. Cosmol. Astropart. Phys. JCAP08(2006)013 [SPIRES]

3 Note also that, for such a large coupling, non-perturbative channels of decay may become important for the curvaton, in which case the dependence of the decay rate on the coupling $\Gamma(g^2)$ becomes more complicated [23].
Curvaton reheating allows a TeV Hubble scale in non-oscillatory inflation

[3] Boubekeur L and Lyth D H, 2005 J. Cosmol. Astropart. Phys. JCAP07(2005)010 [SPIRES]
Kohri K, Lin C M and Lyth D H, 2007 Preprint 0707.3826 [hep-ph]

[4] Allahverdi R, Enqvist K, Garcia-Bellido J and Mazumdar A, 2006 Phys. Rev. Lett. 97 191304 [SPIRES]
Allahverdi R, Enqvist K, Jokinen A and Mazumdar A, 2006 J. Cosmol. Astropart. Phys. JCAP10(2006)007 [SPIRES]

[5] Bueno Sanchez J C, Dimopoulos K and Lyth D H, 2007 J. Cosmol. Astropart. Phys. JCAP01(2007)015 [SPIRES]

[6] Arkani-Hamed N, Dimopoulos S and Kachru S, 2005 Preprint hep-th/0501082

[7] Cline J M, 2006 Preprint hep-th/0612129

[8] Bergerhoff B, Lindner M and Weiser M, 1999 Phys. Lett. B 469 61 [SPIRES]
Abel S A, Chu C S, Jaeckel J and Khoze V V, 2007 J. High Energy Phys. JHEP01(2007)089 [SPIRES]
Abel S A, Jaeckel J and Khoze V V, 2007 J. High Energy Phys. JHEP01(2007)015 [SPIRES]
Fischler W, Kaplanovsky V, Krishnan C, Mannelli L and Torres M A C, 2007 J. High Energy Phys. JHEP03(2007)107 [SPIRES]

Craig N J, Fox P J and Wacker J G, 2007 Phys. Rev. D 75 085006 [SPIRES]

[9] Dimopoulos K, 2003 Phys. Rev. D 68 123509 [SPIRES]

[10] Lyth D H and Wands D, 2002 Phys. Lett. B 524 5 [SPIRES]
Moroi T and Takahashi T, 2001 Phys. Lett. B 522 215 [SPIRES]
Moroi T and Takahashi T, 2002 Phys. Lett. B 539 303 [SPIRES] (erratum)

[11] Dimopoulos K, Lyth D H and Rodriguez Y, 2005 J. High Energy Phys. JHEP02(2005)055 [SPIRES]
Postma M, 2004 J. Cosmol. Astropart. Phys. JCAP05(2004)002 [SPIRES]

[12] Dimopoulos K and Lazarides G, 2006 Phys. Rev. D 73 023525 [SPIRES]

[13] Lyth D H, 2004 Phys. Lett. B 579 239 [SPIRES]

[14] Felder G N, Kohman L and Linde A D, 1999 Phys. Rev. D 60 103505 [SPIRES]

[15] Dimopoulos K, 2006 Phys. Rev. D 73 123506 [SPIRES]

[16] Bueno Sanchez J C and Dimopoulos K, 2007 J. Cosmol. Astropart. Phys. JCAP10(2007)002 [SPIRES]
[hep-th/0606223]

[17] Feng B and Li M z, 2003 Phys. Lett. B 564 169 [SPIRES]
Liddle A R and Urena-Lopez L A, 2003 Phys. Rev. D 68 043517 [SPIRES]
Campuzano C, del Campo S and Herrera R, 2006 Phys. Lett. B 633 149 [SPIRES]

[18] Spokoiny B, 1993 Phys. Lett. B 315 40 [SPIRES]
Joyce M and Prokopec T, 1998 Phys. Rev. D 57 6022 [SPIRES]

[19] Spergel D N et al (WMAP Collaboration), 2007 Astrophys. J. Suppl. 170 377 [astro-ph/0603449]

[20] Turner M S, 1983 Phys. Rev. D 28 1243 [SPIRES]

[21] Lyth D H and Riotto A, 1999 Phys. Rep. 314 1 [SPIRES]

[22] Giovannini M, 1999 Phys. Rev. D 60 123511 [SPIRES]

[23] Podolsky D I, Felder G N, Kohman L and Peloso M, 2006 Phys. Rev. D 73 023501 [SPIRES]
[hep-ph/0507096]