A comprehensive review on phytochemistry and pharmacology of genus *Kopsia*: monoterpenoid alkaloids – major secondary metabolites

Nguyen Quang Hop\(^a\) and Ninh The Son\(^b\)\(^*\)\(^c\)

Kopsia belongs to the family Apocynaceae, which was originally classified as a genus in 1823. *Kopsia* consists of medicinal plants that can be traditionally used to treat rheumatoid arthritis, pharyngitis, tonsillitis, and dropsy. More than one hundred and twenty-five publications have been documented relating to the phytochemical and pharmacological results, but a systematic review is not available. The goal of this study is to compile almost all of the secondary metabolites from the plants of genus *Kopsia*, as well as the coverage of their pharmacological research. The document findings were conducted via reliable sources, including Web of Science, Sci-Finder, Science Direct, PubMed, Google Scholar, and publishers, while four words "*Kopsia*", "monoterpenoid alkaloids", "Phytochemistry" and "Pharmacology" are key factors to search for references. Most *Kopsia* secondary metabolites were collected. A total of four hundred and seventy-two, including four hundred and sixty-six monoterpenoid alkaloids, five triterpenoids, and one sterol, were summarized, along with their resource. *Kopsia* monoterpenoid alkaloids presented in various skeletons, but aspidofractinines, eburnamines, and chanofruticosinates are the three major backbones. Mersinines and pauciflorines are new chemical classes of monoterpenoid alkaloids. With the rich content of monoterpenoid alkaloids, *Kopsia* constituents were also the main objects in pharmacological studies since the plant extracts and isolated compounds were proposed for antimicrobial, anti-inflammatory, anti-allergic, anti-diabetic, anti-manic, anti-nociceptive, acetylicholinesterase (AChE) inhibitory, cardiovascular, and vasorelaxant activities, especially cytotoxicity.

1. Introduction

Natural products are chemical substances created by living organisms and found in nature. In the medicinal chemistry field, this concept is usually limited to secondary metabolites.\(^1\) The pharmacological studies on potential bioactive agents tend to find that lead molecules for drug development could arise from natural resources.

Kopsia belongs to the subfamily Rauvolfioideae of the family Apocynaceae.\(^2\) This genus, containing about 30 species, is widely distributed in Southeast Asia, China, Australia, and some islands of the Western Pacific.\(^3,4\) *Kopsia* plants are recognized as a fertile reservoir of novel and bioactive secondary metabolite type alkaloids. Therefore, they have been traditionally used in each country. Chinese folk medicine deals with the use of parts of *K. officinalis* Tsiaing & P. T. Li to treat rheumatoid arthritis, pharyngitis, tonsillitis, and dropsy.\(^4\) In Malaysia, the roots of four species, *K. larutensis* King & Gamble, *K. macrophylla* Hook.f., *K. singapurenensis* Ridl., and *K. paucifora* Hook.f., were applied as a poultice to ulcerate noses in tertiary syphilis.\(^5,6\) *Kopsia* constituents are also well-known in pharmacological discoveries, in which they have a wide spectrum of pharmacological effects such as anticancer and anti-manic activities.\(^6,7\)

Recently, the search for bioactive molecules from the genus *Kopsia* has drawn lots of interest to natural product chemists and pharmacists.\(^8\)–\(^1\) Though there have been a variety of experimental studies, an overview of phytochemical and pharmacological assessments is not available now. The current review provides notes on basic knowledge about phytochemical research and sheds light on the pivotal role of *Kopsia* constituents in pharmacological examinations. More than one hundred twenty-five relevant publications have been used, as well as the data collection is from the 1950s to now.

2. Phytochemistry

Since the 1950s, a large number of phytochemical studies on *Kopsia* plants have been published. To some extent, this current paper provides basic knowledge about the isolation processes of *Kopsia* secondary metabolites. The results related to experimental reports are primarily based on chromatographic
approaches, such as silica gel chromatography or HPLC procedure (high performance chromatography column), whereas the NMR structural elucidation of isolated compounds is due to the most utilization of spectral methods, such as 1D/2D-NMR, mass spectroscopy (MS), ultraviolet-visible (UV-Vis), optical rotation (OR), infrared (IR), circular dichroism (CD) and comparisons with previous literature. Among recorded thirty species, nineteen plants, including K. arborea, K. dasyrachis, K. deverrei, K. flavida, K. fruticosa, K. grandifolia, K. griffithii, K. hainanensis, K. jasminiflora, K. lancebracteolata, K. lapidiflora, K. larutensis, K. macrophylla, K. officinalis, K. pauciflora, K. profunda, K. singapurensis, K. teoi, and K. terengganensis, have been most widely utilized for phytochemical investigations. More than four hundred seventy metabolites were collected and tabulated in Table 1 and Fig. 1–9. Significantly, four hundred sixty-six isolated compounds have been categorized as monoterpenic alkaloids, in which they have induced a diversity of chemical skeletons, including aspidofractinines 1–204, chano-frutosinates 205–241, aspidospermingines 242–248, danuphylines 249–252, eburnamines 253–301, auammlines 302–322, sarpagines 323–326, aphydophyllines 327–331, strychnosin 332–356, stemmadenine 357, mersinines 358–378, pauciflorines 379–390, skytanthines 391–400, rhiadinols 401–409, lundurines 410–426, aspidospermas 427–431, catharinenines 432–436, leuconoxines 437–442, pericines 443–446, alstonines 447–449, quebrachamines 450–452, arbophyllines 453–454, arboflorines 455–456, andrasinines 457–458, corynantheines 459–460, carbolines 461–462, arbophyllidine 463, mersicarepine 464, azepane-fused tetrahydro-β-carboline 465, and andranginine 466. In each group, the name of the compound was alphabetically ordered in an arrangement. The similar chemical classes will be placed close to each other.

2.1. Aspidofractinines

Aspidofractinines are the largest phytochemical class of isolated alkaloids from the genus Kopsia. As shown in Table 1, more than two hundred aspidofractinines have been isolated to date, and they derive from various parts of K. arborea, K. dasyrachis, K. fruticosa, K. grandifolia, K. griffithii, K. hainanensis, K. jasminiflora, K. larutensis, K. macrophylla, K. officinalis, K. pauciflora, K. profunda, K. singapurensis, and K. teoi.47–79,81 From Fig. 1, Kopsia aspidofractinines 1–204 occurred in both monomer and dimer forms, but they did not bind to sugar units. Aspidofractinines 1–204 have been generally associated with the esterification at nitrogen N-1 and carbon C-16, carbonylation at carbon C-5, epoxidation at carbons C-11 and C-12, and hydroxylation, or methylation at carbons C-11, C-12, C-16, C-17, and C-18. It was found that 5,22-dioxygenopane (17), kopsamine (39), kopsamine N-oxide (40), kopsanone (41), kopsifine (73), kopsilongine (91), kopsinonic acid (117), kopsinilam (124), kopsinine (126), kopsinine-N(4)-oxide (127), pleiocarpine (189), and (--)venalstonine (201) might be seen as characteristic metabolites in the group of Kopsia aspidofractinines. For instance, compound 126 was recorded to appear in K. arborea twig and stem bark, K. dasyrachis stem, K. fruticosa stem bark, K. jasminiflora stem bark, K. grandifolia stem bark, K. griffithii leaf and stem bark, K. hainanensis leaf, stem, stem bark and twig, K. larutensis stem, stem bark and leaf, K. officinalis root, stem, twig, leaf and fruit, K. singapurensis stem bark and leaf, K. pauciflora stem, stem bark and leaf, and K. teoi stem bark, whereas its N(4)-oxide (127) presented in K. dasyrachis stem, K. griffithii stem bark, K. hainanensis stem and leaf, K. officinalis fruit and leaf, K. pauciflora stem, and K. singapurensis bark.5,7–9,11,13–19,21–25,26,28,32,36,42,43,48,51,55,66,68–72

Taking phytochemical studies into account, a new bisindole alkaloid arbolodinine A (1) was isolated from K. arborea stem bark.8 Based on NMR, MS, and ECD data, compound 1 was a product by the combination of two aspidofractinines units, and its biosynthetic pathway was structurally formulated from precursor 126. Aspidofractinine (2) can be found in K. arborea stem bark, K. hainanensis twigs and leaves, and K. officinalis stem,9–11,13,14,15,16 but aspidofractinin-1,3-dicarboxylic acid (4) was only detected in K. officinalis stem.17 [28,5β]-Aspidofractin-16-ol (3) was a new 16-alcohol derivative found in K. officinalis leaves for the first time, and then was detected in K. hainanensis twigs and leaves.9,12,13 Compounds 5–9 have shared the same feature of carbomethoxylation at nitrogen N-1,14–19 in which N-carbomethoxy-11-hydroxy-12-methoxykopsiline (5) and N-carbomethoxy-11-methoxy-12-hydroxykopsiline (6) were two new metabolites in nature.14–16 Dasyracrine (10) containing isokopnine skeleton was one of the new metabolites present in the 95% ETOH extract of K. dasyrachis stem.18 In contrast to compounds 5–9, the next compounds decarbomethoxykopsiline (11), decarbomethoxyisokopsiline (12), decarbomethoxykopsinol (13), N(1)-decarbomethoxykopsiline (14), Nα-demethoxy carbonyl-12-methoxykopsiline (15), and 10-demethoxykopsidasinine (16) are associated with the decarbomethoxylation at nitrogen N-116,18,19,20,21 Among them, compounds 13, 15, and 16 were new in nature. 11,12-Dimethoxykopsiline (18) was a known metabolite found in K. dasyrachis leaves, but 11,12-dimethoxykopsiline (19) was a new one in the stem bark of K. pauciflora stem bark.22,23 Similarly, 16-epi-kopsinine (20), 16-epi-kopsilinam (21), 16-epi-17α-hydroxy-14,15-kopsinine (22), 14,15-β-epoxyskopin (23), N(1)-formylkopsinonic acid (24), N(1)-formylkopsinonic acid-N(4)-oxide (25), frucitosamine (26), frucitosamine A (27), and frucicosine (28) were new aspidofractinines, and found in genus Kopsia for the first time.11,20,24,29,31,37,39 The known metabolite 11-hydroxykopsilongine (29) has been detected in both the fruit and leaf of K. officinalis,12,25 while 11-hydroxykopsiline (30), 5β-hydroxykopsiline (31), and 15-hydroxykopsiline (32) were first isolated from polar extracts of K. teoi leaf, K. jasminiflora stem bark, and K. singapurensis root, respectively.24,34,35 Two known compounds 33 and 34 were products of 15α and 17α-hydroxylation of kopsiline, respectively (Fig. 1). In the meantime, the structure of the new metabolite 35 is closely related to kopsiline by 17α-OH and olefinic double bond at carbons C-14 and C-15.44 For a long time, Ruangrungsi et al. (1987) successfully isolated two new aspidofractinines, named jasminiflorine (36) and kopsijasminone (89), from the MeOH extract of K. jasminiflora leaves, whereas
No.	Compounds	Species	References	
1	Arbolodinine A	K. arborea stem bark	8	
2	Aspidofractine	K. arborea stem bark, K. hainanensis twig and leaf, K. officinalis stem	9–11	
3	(2β,5β)-Aspidofractinin-16-ol	K. hainanensis twig and leaf, K. officinalis leaf	9, 12 and 13	
4	Aspidofractinine-1,3-dicarboxylic acid	K. officinalis stem	11	
5	N-Carbomethoxy-11-hydroxy-12-methoxykopsinylane	K. griffithii leaf, K. officinalis twig, leaf and fruit	14–16	
6	N-Carbomethoxy-11-methoxy-12-hydroxykopsinylane	K. officinalis fruit	14	
7	N[1]-Carbomethoxy-11, 12-dimethoxykopsinylane	K. griffithii leaf, K. officinalis fruit	14, 15 and 17	
8	N-Carbomethoxy-12-methoxykopsinylane	K. officinalis fruit	14	
9	N-Carbomethoxy-5,22-dioxokopsane	K. dasyrachis stem, K. paciflora stem	18 and 19	
10	Dasyrachine	K. arborea stem bark, K. dasyrachis stem	10 and 18	
11	Decarbomethoxykopsine (demethoxycarbonylkopsin)	K. fruticosa leaf, K. officinalis leaf and twig	16 and 20	
12	Decarbomethoxyisokopsine	K. fruticosa leaf	20	
13	Decarbomethoxykopsine	K. arborea twig, K. dasyrachis stem, K. paciflora leaf, K. officinalis leaf	11, 18, 19, 21 and 22, stem and stem bark	
14	N[1]-Decarbomethoxykopsamine	K. arborea stem twig, K. hainanensis stem and leaf, K. paciflora leaf, K. singapurensis leaf	7, 10, 22 and 23	
15	N[1]-Demethoxy-carbonyl-12-methoxykopsine	K. jasminiflora stem bark, K. officinalis leaf and twig	16, 24 and 25	
16	10-Demethoxykopsidasinine	K. jasminiflora	26	
17	5,22-Dioxokopsane	K. hainanensis stem bark and twig, K. macrophylla bark, K. officinalis leaf	11, 12, 14, 16, 19 and 19, root, stem, twig and fruit, K. paciflora stem bark	27–29
18	11,12-Dimethoxykopsamine	K. dasyrachis leaf	30	
19	11,12-Dimethoxykopsinylane	K. paciflora stem bark	22	
20	16-epi-Kopsinine	K. fruticosa stem bark, K. officinalis stem, K. singapurensis leaf	11, 31 and 32	
21	16-epi-Kopsinilam	K. jasminiflora stem bark	24	
22	16-epi-17α-Hydroxy-Δ⁴⁻¹⁵⁻kopsinine	K. teo stem bark and leaf	33	
23	14,15-β-Epoxypokspingine	K. teo leaf	34	
24	N[1]-Formylkopsinonic acid	K. singapurensis root	35 and 36	
25	N[1]-Formylkopsinonic acid-N(4)-oxide	K. singapurensis root	35 and 36	
26	Fruticosamine	K. fruticosa leaf, K. jasminiflora leaf	20 and 37–41	
27	Fruticosamine A	K. fruticosa leaf	41	
28	Fruticosine	K. jasminiflora leaf, K. fruticosa leaf, K. officinalis twig	20 and 37–42	
29	11-Hydroxykopsiavidine	K. officinalis fruit and leaf	13 and 25	
30	11-Hydroxykopsipingine	K. teo leaf	34	
31	5β-Hydroxykopsinine	K. jasminiflora stem bark	24	
32	15-Hydroxykopsamine	K. singapurensis root	35 and 36	
33	15α-Hydroxykopsinine	K. arborea stem bark; K. fruticosa leaf and stem bark, K. singapurensis leaf	10, 31 and 36	
34	17α-Hydroxykopsinine	K. teo stem bark	43	
35	17α-Hydroxy-Δ⁴⁻¹⁵⁻kopsinine	K. singapurensis stem bark and leaf, K. teo stem and stem bark	23, 32, 34 and 44–48	
36	Jasminiflorine	K. jasminiflora leaf	40	
37	Kopsamidine A	K. arborea stem bark	10	
38	Kopsamidine B	K. arborea stem bark	10	
39	Kopsamine	K. arborea twig and stem bark, K. dasyrachis stem and leaf, K. officinalis stem, root, leaf and fruit, K. griffithii leaf, K. paciflora stem and stem bark, K. singapurensis leaf and root, K. teo stem bark	10, 13–15, 17–19, 21, 25, 30, 36, 43, 49 and 50	
40	Kopsamine N-oxide	K. arborea stem bark; K. dasyrachis stem and leaf, K. officinalis fruit, K. griffithii leaf, K. paciflora stem, K. singapurensis root	10, 14, 15, 17–19, 30, 36, 49 and 51	
41	Kopsanone	K. arborea stem bark; K. fruticosa stem bark, K. jasminiflora stem bark, K. hainanensis stem bark, K. paciflora stem and stem bark, K. officinalis fruit	10, 14, 19, 22, 24, 29, 31	
42	Kopsaporine	K. singapurensis stem bark, K. teo stem and stem bark	32, 34, 44 and 45	
43	Kopsiafrutine A	K. fruticosa aerial part	52	
44	Kopsiafrutine B	K. fruticosa aerial part	52	
45	Kopsiafrutine C	K. fruticosa aerial part	52	
46	Kopsiafrutine D	K. fruticosa aerial part	52	
47	Kopsiafrutine E	K. fruticosa aerial part	52	
48	Kopsiahainanin A	K. hainanensis twig and leaf	53	
49	Kopsiahainanin B	K. hainanensis twig and leaf	53	
50	Kopsiahainanin C	K. hainanensis twig and leaf	53	
No.	Compounds	Species	References	
-----	------------------------------	----------------------------------	------------	
51	Kopsiahainanin D	K. hainanensis twig and leaf	53	
52	Kopsiahainanin E	K. hainanensis twig and leaf	53	
53	Kopsiahainanin F	K. hainanensis twig and leaf	53	
54	Kopsiahainin A	K. hainanensis twig and leaf	54	
55	Kopsiahainin B	K. hainanensis twig and leaf	54	
56	Kopsiahainin C	K. hainanensis twig and leaf	54	
57	Kopsiahainin D	K. hainanensis twig and leaf	54	
58	Kopsiahainin E	K. hainanensis twig and leaf	54	
59	Kopsiaofficeine A	K. officinalis aerial part	55	
60	Kopsiaofficeine B	K. officinalis aerial part	55	
61	Kopsiaofficeine C	K. officinalis aerial part	55	
62	Kopsiarborines A	K. arborea aerial part	56	
63	Kopsidarine	K. singapurensis leaf	48	
64	Kopsidamine	K. dasyrychis leaf	57	
65	Kopsidamine-N-oxide	K. dasyrychis leaf	57	
66	Kopsidamine	K. dasyrychis leaf	57	
67	Kopsidine A	K. singapurensis leaf, K. teoi leaf and stem bark	34, 43, 45, 48 and 58	
68	Kopsidine B	K. teoi leaf	34, 45 and 58	
69	Kopsidine C	K. singapurensis leaf, K. teoi leaf	34, 48 and 58	
70	Kopsidine C N-oxide	K. singapurensis leaf	48	
71	Kopsidine D	K. singapurensis leaf, K. teoi leaf	32, 34 and 58	
72	Kopsidine E	K. arborea bark	59	
73	Kopsifine	K. arborea stem bark, K. dasyrychis stem, K. hainanensis twig, K. officinalis stem, K. pauciflora stem and stem bark, K. singapurensis root	10–12, 18, 22, 49 and 60	
74	Kopsiflorine	K. arborea stem bark; K. dasyrychis stem, K. hainanensis stem and leaf, K. officinalis leaf	7, 10, 12, 13, 18 and 61	
75	Kopsiflorine N(4)-oxide	K. dasyrychis stem	18	
76	Kopsifoline A	K. fruticosa leaf and aerial part, K. singapurensis leaf	31, 36, 52, 62 and 63	
77	Kopsifoline B	K. fruticosa leaf	31, 62 and 63	
78	Kopsifoline C	K. fruticosa leaf	31, 62 and 63	
79	Kopsifoline D	K. fruticosa leaf	31 and 63	
80	Kopsifoline E	K. fruticosa leaf	31 and 63	
81	Kopsifoline F	K. fruticosa leaf	31 and 63	
82	Kopsifoline G	K. hainanensis stem	64	
83	Kopsihainin B	K. hainanensis stem	65	
84	Kopsihainin C	K. hainanensis stem	65	
85	Kopsihainin D	K. hainanensis twig	12	
86	Kopsihainin E	K. hainanensis twig	12	
87	Kopsihainin F	K. hainanensis twig	12	
88	Kopsijasminine	K. teoi stem bark	43	
89	Kopsijasmine	K. jasminiflora leaf	40	
90	Kopsilarutensinine	K. larutensis stem bark and leaf	66	
91	Kopsilongine	K. arborea twig and stem bark, K. dasyrychis stem, K. griffithii leaf and stem bark, K. officinalis leaf, K. pauciflora stem	10, 13, 15, 17–19, 21, 22 and 32	
92	Kopsilongine-N-oxide	K. singapurensis leaf	32	
93	Kopsiloscin A	K. singapurensis leaf	32	
94	Kopsiloscin B	K. singapurensis leaf	32	
95	Kopsiloscin C	K. singapurensis leaf and stem bark	32 and 48	
96	Kopsiloscin D	K. singapurensis leaf	32	
97	Kopsiloscin E	K. singapurensis leaf	32	
98	Kopsiloscin F	K. singapurensis leaf	32	
99	Kopsiloscin G	K. singapurensis stem bark and leaf	23 and 48	
100	Kopsiloscin H	K. singapurensis stem bark	23	
101	Kopsiloscin I	K. hainanensis stem and leaf, K. singapurensis stem bark	7 and 23	
102	Kopsiloscin J	K. singapurensis leaf	23	
103	Kopsimaline A	K. singapurensis leaf	23	
104	Kopsimaline B	K. singapurensis leaf	23	
105	Kopsimaline C	K. singapurensis leaf	23	
106	Kopsimaline D	K. singapurensis leaf	23	
107	Kopsimaline E	K. singapurensis leaf	23	
108	Kopsimaline F	K. singapurensis leaf	48	
No.	Compounds	Species	References	
-----	---------------------------	--	------------	
109	Kopsinarine	*K. dasyrachis* stem, *K. hainanensis* twig	12, 18	
110	Kopsine	*K. dasyrachis* stem, *K. fruticosa* leaf	18, 20, 38, 39, 41 and 67	
111	Kopsinganol	*K. singapurensis* stem bark, *K. teoi* stem, bark and leaf	32, 34, 43, 45, 47 and 48	
112	Kopsingingine	*K. singapurensis* leaf and stem bark, *K. teoi* stem, bark and leaf	32-34, 44, 45 and 48	
113	Kopsinginine	*K. teoi* stem and bark	34, 43–45 and 47	
114	Kopsinginol	*K. teoi* stem and bark	34, 45 and 47	
115	Kopsinidine A	*K. arborea* stem bark	10	
116	Kopsinidine B	*K. arborea* stem bark	10	
117	Kopsinonic acid (kopsinic acid)	*K. hainanensis* stem bark, *K. officinalis* stem, twig and leaf, *K. singapurensis* bark and leaf	11, 13, 16, 24, 29 and 36	
118	Kopsinine	*K. singapurensis* leaf	23	
119	Kopsinidine A	*K. arborea* stem bark, *K. officinalis* leaf	10 and 25	
120	Kopsinidine B	*K. arborea* stem bark, *K. officinalis* leaf	10 and 25	
121	Kopsinidine C	*K. officinalis* leaf and twig	16	
122	Kopsinidine D	*K. officinalis* leaf and twig	16	
123	Kopsinidine E	*K. officinalis* leaf and twig	16	
124	Kopsiniam	*K. hainanensis* stem bark and twig, *K. jasminiflora* stem bark, *K. officinalis* stem, twig, leaf and fruit	11, 12, 14, 16, 24 and 29	
125	Kopsisinolate	*K. hainanensis* stem and leaf	7	
126	Kopsinine	*K. arborea* twig and stem bark, *K. dasyrachis* stem, *K. fruticosa* stem, *K. singapurensis* stem bark and leaf, *K. grandifolia* stem bark, *K. griffithii* stem bark, *K. jasminiflora* stem bark, *K. kopsinoides* stem bark, *K. jasminiflora* stem bark, *K. hainanensis* stem, bark and leaf, *K. singapurensis* stem bark and leaf, *K. fruticosa* stem, *K. hainanensis* stem, bark and leaf, *K. officinalis* stem bark and leaf, *K. teoi* stem and leaf, *K. pauci* stem, bark and leaf, *K. teoi* stem and leaf, *K. officinalis* fruit and leaf, *K. pauci* stem and leaf, *K. singapurensis* stem bark and leaf, *K. officinalis* stem, twig, leaf and fruit, *K. singapurensis* stem bark and leaf, *K. pauci* stem and leaf, *K. teoi* stem and leaf	7, 13, 15, 18, 25 and 36	
127	Kopsinine-N(4)-oxide	*K. dasyrachis* stem, *K. griffithii* stem bark, *K. hainanensis* stem and leaf, *K. officinalis* fruit and leaf, *K. pauci* stem, *K. singapurensis* stem bark and leaf	7, 13, 15, 18, 25 and 36	
128	Kopsinine methochloride	*K. officinalis* leaf and twig	16	
129	Kopsinine B	*K. officinalis* leaf and twig	16	
130	Kopsinine F	*K. hainanensis* stem and leaf	7	
131	Kopsinitaritine A	*K. singapurensis* leaf, *K. teoi* leaf	34, 48, 73 and 74	
132	Kopsinitaritine B	*K. singapurensis* leaf, *K. teoi* leaf	34, 48, 73 and 74	
133	Kopsinitaritine C	*K. teoi* leaf	34, 73 and 74	
134	Kopsinitaritine D	*K. teoi* leaf	34 and 74	
135	Kopsinitaritine E	*K. teoi* stem bark	43	
136	Kopsinol	*K. teoi* stem and bark	34, 45 and 47	
137	(--) Kopsinoline	*K. hainanensis* stem bark, *K. officinalis* stem, twig and leaf	11, 16 and 29	
138	Kopsiofifitine A	*K. officinalis* stem	11	
139	Kopsiofifitine B	*K. officinalis* stem	11	
140	Kopsiofifitine C	*K. officinalis* stem	11	
141	Kopsiofifitine D	*K. officinalis* stem	11	
142	Kopsiofifitine E	*K. officinalis* stem	11	
143	Kopsiofifitine F	*K. officinalis* stem	11	
144	Kopsiofifitine L	*K. officinalis* stem	75	
145	Kopsinofine	*K. singapurensis* leaf	23	
146	Kopsonoline	*K. teoi* stem	43	
147	Kopsoninone	*K. teoi* stem	43	
148	Lahadinine A	*K. pauci* leaf	76	
149	Lahadinine B	*K. pauci* leaf	76	
150	Mersingine A	*K. singapurensis* leaf, *K. teoi* leaf	34, 49 and 74	
151	Mersingine B	*K. teoi* leaf	34 and 74	
152	N(1)-Methoxy carbonyl-11,12-dimethoxykopsinaline	*K. arborea* stem bark, *K. pauci* stem	10, 19 and 51	
153	N(1)-Methoxy carbonyl-11,12-methoxylendioxypsinaline	*K. officinalis* leaf, twig and stem, *K. pauci* stem and leaf	11, 16, 42, 51, 69 and 76	
154	N(1)-Methoxy carbonyl-11,12-methylenedioxy-Δ16,17-kopsinidine	*K. profunda* stem	4	
155	N(1)-Methoxy carbonyl-12-methoxy-Δ16,17-kopsinidine	*K. griffithii* leaf, *K. pauci* stem, *K. profunda* stem and leaf, *K. teoi* stem	4, 17, 19, 43, 51 and 77	
156	N(1)-Methoxy carbonyl-12-methoxykopsinidine	*K. officinalis* root, stem, twig, leaf and fruit, *K. pauci* stem	11, 16, 25, 51 and 69	
Table 1 (Contd.)

No. Compounds	Species	References	
157	N(1)-Methoxycarbonyl-11,12-methylenedioxy-\(\Delta^{16,17}\)-kopsinine (4)-oxide	K. profunda stem and leaf	77
158	N(1)-Methoxycarbonyl-12-hydroxy-\(\Delta^{16,17}\)-kopsinine	K. pauciflora stem, K. profunda stem and leaf	19 and 77
159	N(1)-Methoxycarbonyl-12-methoxy-\(\Delta^{16,17}\)-kopsinine (4)-oxide	K. profunda stem and leaf	77
160	11-Methoxykopsingingine	K. tei leaf	34
161	11-Methoxypseudoisinol	K. dasyrachis stem, K. officinalis stem and leaf	11, 13 and 18
162	11-Methoxypseudoisinol N(4)-oxide	K. dasyrachis stem	18
163	11-Methoxy-12-hydroxy-kopsinol	K. tei leaf	34
164	12-Methoxykopsidasinine	K. griffithii leaf	17
165	(--)12-Methoxykopsinaline	K. officinalis leaf and twig	13, 16, 42 and 69
166	12-Methoxykopsine	K. arborea leaf, K. jasminiflora stem bark, K. officinalis root and stem, K. pauciflora leaf	11, 22, 24 and 78
167	12-Methoxy-10-demethoxykopsidasinine	K. griffithii leaf, K. pauciflora stem	15, 51
168	12-Methoxypleiocarpine	K. dasyrachis stem and leaf, K. hainanensis stem and leaf, K. griffithii, K. pauciflora leaf, K. jasminiflora stem bark	7, 15, 17-19 and 30
169	(--)Methylenedioxy-11,12-kopsinol	K. arborea twig	7
170	(4)-Methylkopsininate	K. officinalis leaf and twig	16
171	11,12-Methylenedioxykopsaporine	K. singapurensis bark, K. tei stem, stem bark and leaf	33, 34 and 79
172	(--)11,12-Methylenedioxykopsinaline	K. dasyrachis stem, K. officinalis root, stem, leaf, twig and fruit	11, 16, 18, 25 and 69
173	11,12-Methylenedioxykopsinol N(4)-oxide	K. griffithii stem bark, K. officinalis stem, twig and leaf	11, 15 and 16
174	K. arborea stem bark, K. dasyrachis stem, K. officinalis stem, K. pauciflora stem bark	K. pauciflora stem bark	11, 18 and 22
175	Nitaphylline	K. tei leaf	34, 46 and 80
176	5-Oxokopsininc acid	K. jasminiflora stem bark, K. officinalis twig and leaf	16 and 24
177	Paucidactine A	K. pauciflora stem bark	19
178	Paucidactine B	K. arborea stem bark, K. pauciflora stem bark	10 and 19
179	Paucidactine C	K. arborea stem bark, K. pauciflora stem bark	10 and 19
180	Paucidactine D	K. pauciflora stem bark	19
181	Paucidactine E	K. pauciflora stem bark	19
182	Paucidactinine	K. pauciflora stem bark	19
183	Pauclusidine	K. pauciflora stem bark	19
184	Pauclidirinine	K. pauciflora stem bark	19
185	Pauclidirisine	K. pauciflora stem bark	19
186	Paucliduridine	K. officinalis stem, K. pauciflora stem bark	11 and 19
187	Pauclifinine	K. pauciflora stem and bark	22 and 76
188	Pauclifinine-N-oxide	K. pauciflora leaf	76
189	Pleiocarpine	K. arborea stem bark, K. dasyrachis stem and leaf, K. griffithii leaf, K. officinalis fruit, K. pauciflora stem, K. jasminiflora stem bark, K. officinalis twig and leaf, K. pauciflora stem bark	10, 14, 15, 17-19, 25
190	Pleiocarpine N-oxide	K. pauciflora stem	19
191	Pseudokopsinine	K. pauciflora leaf and stem bark	22
192	5,6-Secokopsinine	K. jasminiflora stem bark	24
193	Singaporentine A	K. singapurensis leaf	36
194	Singapurensine A	K. singapurensis leaf	79
195	Singapurensine B	K. singapurensis leaf	79
196	Singapurensine C	K. singapurensis leaf	79
197	Singapurensine D	K. singapurensis leaf	79
198	Venacarpine A	K. fruticosa leaf, K. singapurensis bark	31 and 36
199	Venacarpine B	K. fruticosa leaf	31
200	Venalstonidine	K. arborea stem bark	10
201	(--)Venalstonine	K. arborea stem bark, K. fruticosa stem bark, K. lapidilecta stem and leaf	10, 31, 36 and 81
202	Yunnanofficine A	K. officinalis leaf	25
203	Yunnanofficine B	K. officinalis leaf	25
204	Yunnanofficine D	K. officinalis leaf	25

Chanosfruticosinates

205	Chanosfruticosic acid	K. officinalis leaf and twig	16
206	N\(_\text{2}\)-Decarbomethoxy chanosfruticosic acid	K. hainanensis stem and leaf	7
207	11,12-Dimethoxydanuphylline	K. fruticosa aerial part	3
208	Flavisiamine A (prunifoline D)	K. arborea leaf, K. flavida leaf	82-84
209	Flavisiamine B	K. flavida leaf	83
No.	Compounds	Species	References
210	Flavisiamine C	*K. arborea* leaf, *K. flavida* leaf	83 and 84
211	Flavisiamine D (prunifoline E)	*K. arborea* leaf and stem bark, *K. flavida* leaf	10 and 82–84
212	Flavisiamine E	*K. flavida* leaf	41
213	Flavisiamine F	*K. flavida* leaf	41
214	12-Hydroxylprunifoline A	*K. lancebacteolata* stem	85
215	12-Hydroxylprunifoline C	*K. lancebacteolata* stem	85
216	Kopreatin A	*K. arborea* leaf	84
217	Kopsia A (methyl chanofruticosinate)	*K. dasyrachis* leaf, *K. hainanensis* stem and leaf, *K. officialis* leaf, twig, and stem, *K. pauciflora* leaf	7, 13, 16, 22, 25, 30, 75 and 86
218	Kopsia B (des-Ne-methoxy carbonyl) chanofruticosin-methylster	*K. officialis* leaf	86
219	Kopsia C (6,7-methylenedioxy chanofruticosin-methylster or methyl 11,12-methylenedioxy chanofruticosin)	*K. arborea* leaf and stem bark, *K. dasyrachis* leaf, *K. flavida* leaf, *K. officialis* stem and leaf, *K. pauciflora* stem bark and leaf	10, 16, 22, 30, 75, 84, and 86
220	Kopsihainanine A	*K. hainanensis* leaf and stem	6
221	Kopsihainanine B	*K. hainanensis* leaf and stem	6
222	12-Methoxy chanofruticosin acid	*K. officialis* leaf and twig	16
223	Methyl chanofruticosin N(4)-oxide	*K. hainanensis* stem and leaf	7
224	Methyl 11,12-dimethoxy chanofruticosin	*K. arborea* leaf, *K. flavida* leaf, *K. officialis* leaf	13, 22, 25, 82, 88 and 89
225	Methyl N1-decarbomethoxy chanofruticosin	*K. arborea* leaf and stem bark, *K. dasyrachis* leaf, *K. flavida* leaf, *K. officinalis* twig, leaf and stem, *K. pauciflora* leaf	7, 10, 16, 25, 30, 41, 42, 65, 75, 82–84 and 87
226	Methyl N1-decarbomethoxy chanofofruticosin N(4)-oxide	*K. hainanensis* stem and leaf	7
227	Methyl 12-methoxy-N1-decarbomethoxy chanofofruticosin	*K. arborea* leaf, *K. flavida* leaf	83, 84, 88 and 89
228	Methyl 12-methoxy chanofofruticosin	*K. arborea* leaf and stem bark, *K. flavida* leaf, *K. officinalis* stem, twig and leaf, *K. pauciflora* leaf	10, 16, 22, 75, 82, 84, 88 and 89
229	Methyl 11,12-methylenedioxy-N1-decarbomethoxy chanofofruticosin	*K. arborea* stem bark and leaf, *K. dasyrachis* leaf, *K. flavida* leaf, *K. officinalis* twig and stem, *K. pauciflora* leaf and stem bark	10, 16, 22, 25, 30, 42, 75, 82–84 and 87–89
230	Methyl 11,12-methylenedioxy-N1-decarbomethoxy-Δ14,15-chanofofruticosin	*K. arborea* stem bark and leaf, *K. flavida* leaf, *K. hainanensis* stem and leaf	7, 10, 82–84 and 87
231	Methyl (2β,11β,12β,19αs)-6,7-didehydro-8,21-dioxo-11,21-cycloaspidospermidine-2-carboxylate	*K. officinalis* leaf	13
232	Methyl 3-oxo-12-methoxy-N1-decarbomethoxy-14,15-didehydro chanofofruticosin	*K. flavida* leaf	89
233	Methyl 3-oxo-11,12-methylenedioxy-N1-decarbomethoxy-14,15-didehydro chanofofruticosin	*K. flavida* leaf	89
234	Δ1,2-Methyldemethoxy carbonyl chanofofruticosin	*K. officinalis* leaf	25
235	11,12-Methylenedioxy chanofofruticosin acid	*K. officinalis* leaf and twig	16
236	3-Oxo-11,12-dimethoxy-N6-decarbomethoxy-14,15-didehydro chanofofruticosin	*K. fruticosa* aerial part	3
237	N(4)-Oxide prunifoline D	*K. lancebacteolata* stem	85
238	Prunifoline A	*K. arborea* leaf	82
239	Prunifoline B	*K. arborea* leaf	82 and 84
240	Prunifoline C	*K. arborea* leaf, *K. fruticosa* leaf	41 and 82
241	Prunifoline F	*K. arborea* leaf	82
242	Aspidospermine	*K. pauciflora* leaf	22
243	(+)-1,2-Dehydroaspidospermine	*K. pauciflora* leaf	22
244	Eburenine	*K. arborea* aerial part	90
245	Kopsioficine G	*K. officinalis* stem	11
246	Kopsiunnanine G	*K. arborea* aerial part	90
247	Vincadiformine	*K. arborea* twig and stem bark, *K. officinalis* stem and fruit	10, 11, 14 and 21
248	Vincadiformine N(4)-oxide	*K. officinalis* stem	11

Aspidospermines

No.	Compounds	Species	References
249	Danuphyline	*K. dasyrachis* leaf	30 and 91
250	Danuphyline B	*K. arborea* leaf	78
251	11,12-De(methylenedioxy) danuphyline	*K. officinalis* leaf	13
No.	Compounds	Species	References
-----	----------------------------	----------------------------------	------------
252	Kopsihainin A	*K. hainanensis* stem	65
253	(−)-Demethyloropleiomutine		
254	(+)-Eburnamenine	*K. pauci* twig, *K. pauciflora* stem	18 and 19
255	(−)-Eburnamenine	*K. arborea* twig and stem bark	19 and 22
256	(+)-Eburnamine	*K. hainanensis* stem	29
257	(−)-Eburnamine	*K. arborea* twig, *K. hainanensis* twig and stem bark, *K. pauciflora* stem and stem bark, *K. singapurensis* stem bark, *K. terengganensis* bark	5, 9, 15, 19, 22, 23, 50, 51, 66, 68, 70, 77, 90 and 92
258	(−)-Eburnaminol	*K. larutensis* stem, *K. terengganensis* bark	68 and 92
259	(+)-Eburnamonine	*K. arborea* parental, *K. dasyrachis* stem, *K. griffithii* leaf, *K. jasmini* leaf and stem bark, *K. officinalis* leaf and stem twig, *K. pauciflora* stem and stem bark, *K. officinalis leaf and twig, *K. officinalis root and stem bark, *K. officinalis stem and twig, *K. officinalis leaf*	5, 13, 15, 17–19, 42, 51, 68, 70, 90 and 93
260	(+)-Eburnamine (N(4)-oxide)	*K. larutensis* leaf and stem	5 and 70
261	(−)-Eburnamonine	*K. jasminiflora* stem bark	24
262	(−)-O-Ethyleburnamine	*K. arborea* parental, *K. larutensis* stem	70 and 90
263	(+)-Ethylisoeburnamine	*K. arborea* aerial part	77
264	16α-Hydroxy-19-o xoeburnamine	*K. officinalis* leaf	25
265	16β-Hydroxy-19-o xoeburnamine	*K. officinalis* leaf	25
266	(+)-19(R)-Hydroxyeburnamine	*K. dasyrachis* stem	18 and 93
267	19-Hydroxy(−)-eburnaminol	*K. arborea* twig, *K. larutensis* leaf, *K. officinalis* twig, *K. pauciflora* stem and stem bark, *K. officinalis leaf and stem twig, *K. officinalis stem and twig, *K. officinalis leaf and twig, *K. officinalis root and stem bark, *K. officinalis leaf*	5, 7 and 42
268	(+19R)-19-Hydroxyeburnamine	*K. officinalis leaf, *K. pauciflora* stem and stem bark	13, 19 and 22
270	(−)-19(R)-Hydroxyeburnamenine	*K. pauciflora* stem	19
271	(−)-19(R)-19-Hydroxyisoeburnamine	*K. dasyrachis* stem, *K. officinalis* leaf	13 and 18
272	(−)-19(R)-Hydroxy-O-ethylisoeburnamine	*K. pauciflora* stem	19
273	19(S)-Hydroxy-D14-vicamone	*K. jasminiflora* stem bark	24
274	(+)-Isoeburnamine		
275	(−)-Isoeburnamine	*K. officinalis* root	28 and 69
276	16-Isoeburnamine [(+)-methylisoeburnamine)]	*K. arborea* aerial part, *K. officinalis* stem	75 and 90
277	(+)-Kopsoflavin	*K. hainanensis, *K. officinalis* root	28 and 29
278	Kopsioflavine H	*K. officinalis* stem	75
279	Kopsioflavine I	*K. officinalis* stem	75
280	Kopsioflavine J	*K. officinalis* stem	75
281	Kopsioflavine K	*K. officinalis* stem	75
282	Kopsoflavin	*K. dasyrachis* stem, *K. pauciflora* stem	19 and 93
283	(−)-Larutenin	*K. larutensis* stem	68
284	Larutenin	*K. larutensis* leaf and stem, *K. officinalis leaf, *K. pauciflora* leaf, *K. terengganensis* bark	5, 13, 18, 19, 22, 23, 29, 51, 68, 70, 90, 92 and 93
285	Larutenine A	*K. pauciflora* stem and stem bark, *K. teoi* stem bark and leaf, *K. woodii* stem bark and leaf, *K. officinalis root, *K. officinalis leaf and twig, *K. officinalis stem and stem bark, *K. terengganensis* bark	19 and 22
286	Larutenine B	*K. pauciflora* stem and stem bark	19 and 22
287	Melohonine B	*K. hainanensis* twig and leaf	9
288	(−)-Methyleneburnamine	*K. arborea* aerial part	90
289	(−)-Norpleiomutine	*K. dasyrachis* stem, *K. macrophylla* bark, *K. pauciflora* stem and stem bark, *K. terengganensis* bark	18, 19, 22, 27 and 51
290	(+)-O-Methyleneburnamine	*K. officinalis* stem	75
291	(−)-O-Methylisoeburnamine [(O-methylvincol)]	*K. hainanensis* twig and leaf, *K. officinalis* stem	9 and 75
292	(−)-19-Oxoeburnamine	*K. pauciflora* stem and stem bark, *K. officinalis* twig	19 and 22
293	19-Oxo-(−)-eburnamine	*K. jasminiflora* stem bark, *K. officinalis* twig	24 and 42
294	(−)-19-Oxoeburnamine	*K. pauciflora* stem	19
295	1-Methyl-16-epi-vicamol	*K. hainanensis* twig and leaf	9
296	20-Oxo-eburnamenine	*K. officinalis* root, leaf and stem	25, 50 and 75
297	Phutdonginin	*K. arborea* twig	21
298	Terengganensine A	*K. terengganensis* bark	92
299	Terengganensine B	*K. terengganensis* bark	92
300	Δ14-Vicamone	*K. jasminiflora* stem bark	24
301	Yunnanoffine C	*K. officinalis* leaf	25
No.	Compounds	Species	References
-----	-------------------------------	---	-----------------------
302	Akoummidine	K. arborea stem bark, K. singapurensis root, stem bark and leaf	10, 23, 32, 48 and 49
303	Akoummiline	K. macrophylla bark, K. teoi stem and stem bark	27, 34, 43, 45 and 47
304	Akoummiline N(4)-oxide	K. griffithii stem bark	15
305	ψ-Akoummigine	K. fruticosa stem bark	31
306	Deacetylakoummiline (rhazimol)	K. deverrei stem bark, K. griffithii leaf and stem bark, K. macrophylla	15, 17, 23, 27, 34, 45, 47 and 94
307	Dregamine	K. macrophylla bark	27
308	16-epi-akoummiline	K. singapurensis leaf, stem bark and root, K. teoi stem bark	23, 32, 36, 43 and 48
309	16-epi-deacetylakoummiline	K. deverrei stem bark, K. griffithii stem bark, K. fruticosa stem bark, K. singapurensis stem bark, K. teoi stem and stem bark	15, 23, 31, 34, 48, 49, 94
310	16-epi-deacetylakoummiline-N(4)-oxide	K. griffithii stem bark, K. singapurensis stem bark	15 and 36
311	16-Hydroxyethyl-pleiocarpamine	K. deverrei stem bark, K. fruticosa stem bark, K. singapurensis stem bark and K. teoi stem bark	23, 31, 43, 36 and 94
312	N-Methylpleiocarpamine	K. singapurensis root	36
313	5-Methoxystictamine	K. hainanensis twig and leaf	9
314	Rhazimal	K. arborea stem bark	10
315	Rhazinaline N(4)-oxide	K. griffithii stem bark	10
316	Rhazinoline	K. arborea stem bark	15
317	Picralinal	K. hainanensis twig and leaf	9
318	Picramicine	K. fruticosa stem bark, K. singapurensis stem bark	23 and 31
319	Pleiocarpamine	K. dasyrychis stem, K. deverrei stem bark, K. fruticosa stem bark, K. singapurensis stem bark, K. teoi stem bark	18, 31, 36, 43 and 94
320	Pleiocarpamine methochloride	K. officinalis leaf and twig	16
321	Pleiomalicicine	K. hainanensis twig and leaf	9
322	Singoparentinidine	K. singapurensis root	35 and 36
323	10-Hydroxy-vincaffine	K. hainanensis twig and leaf	9
324	Perivine	K. officinalis root and stem	50
325	Tabernaemontanine	K. macrophylla bark	27
326	Vincadifline	K. hainanensis twig and leaf	9
327	Aspidodyasycarpiene	K. singapurensis root and stem bark, K. teoi stem and stem bark	23, 32, 34, 36, 43, 48 and 49
328	Aspidophylline A	K. singapurensis stem bark	32
329	Aspidophylline B	K. singapurensis stem bark	48
330	Lonicerine	K. fruticosa stem bark, K. singapurensis stem bark and K. teoi stem and stem bark	23, 31–34, 36, 43 and 48
331	Vincophylline	K. singapurensis leaf	32
332	Akoummicine	K. pauciflora leaf	22
333	Arbolodinine B	K. arborea stem bark	8
334	Arbolodinine C	K. arborea stem bark	8
335	(E)-Condylcarpine	K. arborea aerial part, K. pauciflora leaf	22 and 95
336	(E)-Condylcarpine N-oxide	K. arborea aerial part	95
337	14z-Hydroxycondylcarpine	K. deverrei stem bark, K. singapurensis stem bark	23 and 94
338	14z-Hydroxy-N(4)-methylcondylcarpine	K. singapurensis root	35 and 36
339	14(S)-Hydroxy-19(R)-methoxytubotaiwine	K. jasminiflora stem bark	24
340	Isocondylcarpine	K. arborea aerial part	95
341	Isocondylcarpine N-oxide	K. arborea aerial part	95
342	Kopsiyunnanine A	K. arborea aerial part, K. officinalis aerial part	96 and 97
343	Kopsiyunnanine I	K. arborea aerial part	98 and 99
344	Kopsiyunnanine J1	K. arborea aerial part	99 and 100
345	Kopsiyunnanine J2	K. arborea aerial part	99 and 100
346	Kopsiyunnanine L	K. arborea aerial part	101 and 102
347	Kopsiyunnanine M	K. arborea aerial part	95
348	Kopsiyunnanine F1	K. arborea aerial part	101 and 102
349	Kopsiyunnanine F2	K. arborea aerial part	95
350	Kopsiyunnanine F3	K. arborea aerial part	95
Table 1 (Contd.)

No.	Compounds	Species	References
351	Leuconicine B	K. arborea aerial part	98
352	19(β)-Methoxytubotaiwine	K. arborea aerial part and stem bark, K. jasminiflora stem bark	10, 24 and 95
353	19(β)-Methoxytubotaiwine	K. arborea aerial part and stem bark, K. hainanensis twig	10, 12 and 95
354	Mossambine	K. singapurensis stem bark	23
355	Precondylocarpine	K. pauciflora leaf	22
356	Tubotaiwine	K. arborea aerial part, K. hainanensis stem and bark	29, 64 and 95

Stemmadenine

| 357 | Stemmadenine | K. pauciflora leaf | 22 |

Mersinines

358	Mersidasesine A	K. singapurensis leaf	103
359	Mersidasesine B	K. singapurensis leaf	103
360	Mersidasesine C	K. singapurensis leaf	103
361	Mersidasesine D	K. singapurensis leaf	103
362	Mersidasesine E	K. singapurensis leaf	103
363	Mersidasesine F	K. singapurensis leaf	103
364	Mersidasesine G	K. singapurensis leaf	103
365	Mersifoline A	K. singapurensis leaf	103
366	Mersifoline B	K. singapurensis leaf	103
367	Mersifoline C	K. singapurensis leaf	103
368	Mersilongine	K. singapurensis leaf	23 and 104
369	Mersilosine	K. singapurensis leaf	103 and 105
370	Mersilosine A	K. singapurensis leaf	103
371	Mersilosine B	K. singapurensis leaf	103
372	Mersinaline	K. singapurensis leaf	23 and 106
373	Mersinine A	K. fruticosa leaf, K. singapurensis leaf	103 and 105, 107
374	Mersinine B	K. singapurensis leaf	103 and 105
375	Mersinine C	K. singapurensis leaf	103
376	Mersiphylines A	K. singapurensis leaf	108
377	Mersiphylines B	K. singapurensis leaf	108
378	Mersirachine	K. singapurensis leaf	23 and 106

Pauciflorines

379	11,12-Demethoxy-16-deoxypauciflorine	K. officinalis stem and leaf	109
380	20-Deoxypopiasminilam	K. jasminiflora leaf	40
381	Kopsiarborines C	K. arborea aerial part	56
382	Kopsiasminilam	K. jasminiflora leaf	40
383	Δ⁴-Kopsiasminilam	K. jasminiflora leaf	40
384	Kopsiofine A	K. officinalis stem and leaf	109
385	Kopsiofine B	K. officinalis stem and leaf	109
386	Kopsiofine C	K. officinalis stem and leaf	109
387	Pauciflorine A	K. pauciflora leaf	110
388	Pauciflorine B	K. pauciflora leaf	110
389	Pauciflorine C	K. pauciflora leaf	22
390	Pauciflorine	K. pauciflora leaf	22

Skytanthines

391	Kinabalurine A (kinabalurine)	K. pauciflora leaf	111 and 112
392	Kinabalurine B	K. pauciflora leaf	112
393	Kinabalurine C	K. pauciflora leaf	112
394	Kinabalurine D	K. pauciflora leaf	112
395	Kinabalurine E	K. pauciflora leaf	112
396	Kinabalurine F	K. pauciflora leaf	112
397	Kinabalurine G	K. dasycrachis leaf	30
398	Kopsilactone	K. macrophylla bark	27
399	Kopsirachine	K. dasycrachis leaf	30 and 113
400	Kopsone	K. macrophylla bark	27

Rhazinilams

401	5,21-Dihydrorhazinilam	K. arborea stem bark, K. singapurensis stem bark and leaf	10, 23 and 48
402	Kopsiyunnanine C	K. arborea aerial part, K. officinalis aerial part	96 and 114
403	Kopsiyunnanine C2	K. arborea aerial part, K. officinalis aerial part	96 and 114
Table 1 (Contd.)

No. Compounds	Species	References
404 Kopsiyunnanine C3	*K. arborea* aerial part, *K. officinalis* aerial part	96 and 114
405 Leuconolam	*K. griffithii* leaf and stem bark, *K. hainanensis* twigs, stems and leaves, *K. officinalis* leaf, *K. pauciflora* leaf, *K. singapurensis* stem bark	7, 9, 12, 15, 17, 22, 23, 25 and 32
406 O-Methyleuconolam	*K. arborea* stem bark, *K. hainanensis* twig, *K. officinalis* stem	10, 12 and 87
407 Rhazinal	K. dasyrachis stem	32
408 Rhazinicine	*K. arborea* stem bark, K. dasyrachis stem, *K. singapurensis* root	10, 18, 49 and 60
409 Rhazinilam	*K. arborea* aerial part and stem bark, *K. officinalis* leaves and twigs, *K. pauciflora* leaves and stem bark, *K. singapurensis* leaf, bark and stem bark, *K. teoi* stem, stem bark and leaf	32-34, 36, 45, 47, 48 and 114

Lundurines

No. Compounds	Species	References
410 Epilapidilectinol	K. lapidilecta stem and bark	81
411 Grandilodine A	K. grandifolia stem bark	72
412 Grandilodine B	K. grandifolia stem bark	72
413 Grandilodine C	K. grandifolia leaf	72
414 Isolapidilectin A	K. grandifolia leaf, K. lapidilecta stem and bark	72 and 81
415 Lapidilectam	K. grandifolia stem bark, K. lapidilecta stem and bark	72 and 81
416 Lapidilectine A	K. grandifolia stem bark, K. lapidilecta bark, stem and leaf	72 and 115
417 Lapidilectine B	K. grandifolia stem bark, K. lapidilecta bark, stem and leaf	72 and 115
418 Lapidilectinol	K. lapidilecta stem and bark	81
419 Lundurine A	K. tenuis leaf	71
420 Lundurine B	K. tenuis leaf	71
421 Lundurine C	K. tenuis leaf	71
422 Lundurine D	K. tenuis leaf	71
423 Tenuisine A	K. tenuis leaf	116 and 117
424 Tenuisine B	K. tenuis leaf	71, 116 and 117
425 Tenuisine C	K. tenuis leaf	71, 116 and 117
426 Tenuiphylline	K. tenuis leaf	71 and 117

Aspidospermas

No. Compounds	Species	References
427 Buchtienine	K. griffithii leaf and stem bark	15 and 17
428 Corynantheol	K. hainanensis twig and leaf	9
429 19,20-Dihydroisositsirikine	K. officinalis stem	75
430 Dihydrocorynantheol	K. hainanensis twig and leaf	9
431 16(R)-19,20-E-Isositsirikine	K. griffithii leaf, K. pauciflora leaf	15, 17 and 22

Catharinensines

No. Compounds	Species	References
432 Catharinenine	K. pauciflora leaf	22
433 Kopsirensine A	K. pauciflora leaf	22
434 Kopsirensine B	K. pauciflora leaf	22
435 Kopsirensine C	K. pauciflora leaf	22
436 Kopsiyunnanine B	*K. arborea* aerial part, *K. officinalis* aerial part	96 and 97

Leuconoxines

No. Compounds	Species	References
437 Arbolocrine	*K. arborea* stem bark	10 and 118
438 Arboloscline A	K. pauciflora leaf	22
439 Leuconodine D	K. officinalis stem	75
440 Leuconodine F (6-oxoleuconoxine)	K. griffithii leaf, K. pauciflora leaf	22 and 43
441 Leuconoxine	*K. arborea* stem bark, K. griffithii leaf and stem bark, K. pauciflora stem, stem bark and leaf, K. singapurensis stem bark, K. teoi stem bark	15, 17, 19, 22, 23 and 43
442 Melodinine E	K. arborea twig	21

Percines

No. Compounds	Species	References
443 Percidine	*K. arborea* stem bark	10 and 118
444 Percine	*K. arborea* stem bark	10
445 Percine N-oxide	*K. arborea* stem bark	10
446 Valparicine	*K. arborea* stem bark	119 and 120

Alstonines

No. Compounds	Species	References
447 Oxyohimban-16-carboxy acid	*K. officinalis* stem	75
448 (−)-Tetrahydroalstonine	*K. arborea* stem bark, K. dasyrachis stem, K. griffithii leaf, K. officinalis root, twigs and leaves, K. larutensis stem bark and leaf, K. 32, 42, 43, 66 and 69	10, 15, 17–19, 23, 25, 65, 66, 67, 68 and 69
Kopsamidines A–B (37–38) were separated from the acidic EtOH extract of *K. arborea* stem bark. To search for bioactive metabolites from *Kopsia* plants, Long et al. (2018) isolated five new aspidofractinines kopsiafrutines A–E (43–47) from the 80% EtOH extract of *K. fruticosa* aerial part. Eleven new analogs, kopsiahainains A–F (48–53) and kopsiahainains A–E (54–58) were among the new compounds found in the 80% EtOH extract of *K. hainanensis* twigs and leaves. In another approach, chromatographic separation of the 95% EtOH extract of *K. officinalis* aerial part can lead to the isolation of three new metabolites (59–61), which named kopsiyunnanine D (450) and kopsiyunnanine H (451) from the 80% EtOH extract of *K. arborea* aerial part, the new compound kopsiarborines A (62) was isolated. Three new metabolites, kopsidasine (64), kopsidasine-N-oxide (65), and kopsidasinine (66) were separated from *K. dasyrachis* leaves and structurally confirmed by the NMR analysis and Hofmann reaction. Thirteen previously undescribed metabolites kopsamidines A–D (67–70), kopsinitarines B–D (132–134), mersingines A–B (150–151), 11-methoxykopsingine (160), 11-methoxy-12-hydroxy-kopsinol (163), 11,12-...
methylenedioxykopsaporine (171), and nitaphylline (175) have further been observed in K. teoi leaf, while its stem bark also contained seven other new compounds kopsinganol (111), kopsinginine (113), kopsinginol (114), kopsinol (136), kopsinarine (74), kopsinarine (75), and kopsonoline (146). Kopsidarine (63), kopsidine C N-oxide (70), and singaporentine A (193) were three new compounds existed in K. singapurensis leaf, whereas its bark encompassed four new others singapurensines A–D (194–197). In two years 2007 and 2008, primarily based on CC approach, Subramaniam et al. successfully isolated nineteen new aspidofractinines, including kopsilongine-N-oxide (92), kopsilosines A–J (93–102), kopsinalines A–F (103–108), kopsinicline (118), and kopsofoline (145) from K. singapurensis leaf or stem bark (Table 1 and Fig. 1). Kopsiflorine (74) is now available in the genus Kopsia, but its N(4)-oxide (75) and kopsinarine (109) were new in
nature and were found in *K. dasyrachis* stem. Six indole alkaloidal constituents kopsifolines A–F (76–81) with unprecedented hexacyclic carbon skeleton were detected in the acidic EtOH extract of *K. fruticosa* leaves. Kopsifoline G (82) and kopsihainains B–F (83–87) were purified as new alkaloids from the stem or twig extracts of *K. hainanensis*. Among the isolated compounds, kopsijasminine (88) and kopsilartensine (90) were also identified to be two new aspidofractinines derived from the stem bark of *K. teei* and *K. larutensis*, respectively. The earliest report by Guggisberg *et al.* (1963) identified that kopside (110) was a new and major component of *K. fruticosa* leaves, and it was then isolated frequently. In a phytochemical research on the acidic EtOH extract of *K. arborea* stem bark, five new aspidofractinines, kopsinidines A–B (115–116), kopsinidines A–B (119–120), and paucidactine C (179) were isolated. Phytochemical analysis aided by NMR structural elucidation on the CHCl₃ and n-BuOH extracts of *K. officinalis* leaf and twig has resulted in the isolation of eight new compounds kopsinidines C–E (121–123), N(1)-methoxycarbonyl-11,12-methoxynedioxycopsideinoline (153), N(1)-methoxycarbonyl-12-methoxycopsideinoline (156), N(4)-methylkopsininate (170), (−)-11,12-methoxynedioxycopsideinoline (172), and 5-oxokopsinic acid (176), in addition to seven known compounds kopsilamin (124), kopsinine (126), kopsinine methochloride (128), kopsinine B (129), (−)-kopsinine (137), (−)-12-methoxycopsideinoline (165), and 11,12-methoxynedioxycopsideinoline N(4)-oxide (173). Among the isolates from *K. hainanensis* stem and leaves, the new compound kopsininate (125) itself displayed an interesting feature since it contained a carboxylate group (δ_C 181.6 ppm in CD3OD). Besides known compounds, the application of NMR and MS tools would take a good advance in the natural product chemistry field, by which the chemical structures of seven new aspidofractinines kopsioflavismines A–F and L (138–144) from *K. officinalis* stem and three new analogs yunnanoffines A–C (202–204) from *K. officinalis* leaf have been determined. Aspidofractinines were further observed in other *Kopsia* plants. For instance, apart from known compounds, five new derivatives N(1)-methoxycarbonyl-11,12-methylenedioxy-Δ₁₆,₁₇-kopsinine (154), N(1)-methoxycarbonyl-12-methoxy-Δ₁₆,₁₇-kopsinine (155), N(1)-methoxycarbonyl-11,12-methylenedioxy-Δ₁₆,₁₇-kopsinine N(4) oxide (157), N(1)-methoxycarbonyl-12-hydroxy-Δ₁₆,₁₇-kopsinine (158), and N(1)-methoxycarbonyl-12-methoxy-Δ₁₆,₁₇-kopsinine N(4) oxide (159) were characteristics of *K. profunda*, or lahadinines A–B (143–146), 12-methoxy-10-demethoxycopsideinane (167), paucidactine D-E (180–181), paucidactinine (182), paucidactinine (183), paucidactinine (184), paucidactinine (185), paucidactinine (186), paucidactinine (187), and paucifinone-N-oxide (188) were new metabolites isolated from the parts of *K. pauciflora*.

2.2. Chanofruticosinates, aspidospermines, and danuphyllines

In general, *Kopsia* chanofruticosinate derivatives 205–241 have in general a similarity in the chemical structural skeleton with aspidofractinines (Table 1 and Fig. 2). However, fragment C-2–C-16–C-17–C-20 in aspidofractinines was replaced by a carbon bridge between C-6 and C-20 in chanofruticosinates. To date, these phytochemicals often occurred in *K. arborea*, *K. dasyrachis*, *K. fruticosa*, *K. flavida*, *K. hainanensis*, *K. lancibracteolata*, *K. officinalis*, and *K. pauciflora*. In Table 1, kopsia A (217), kopsia C (219), methyl 11,12-dimethoxychanofruticosinate (224), methyl N₁-decarbomethoxychanofruticosinate (225), methyl 12-methoxychanofruticosinate (228), methyl 11,12-methylenedioxy-N₁-decarbomethoxychanofruticosinate (229), and methyl 11,12-methylenedioxy-N₁-decarbomethoxy-Δ₁₄,₁₅-chanofruticosinate (230) were major components in the group of *Kopsia* chanofruticosinates. Analyzing chemical composition further, the rich alkaloid fraction of *K. officinalis* leaf and twig have also contained five new derivatives, chanofruticosinic acid (205), kopsias A–C (217–219), 12-methoxychanofruticosinic acid (222), and methyl (2β,11β,12β,19ız)-6,7-didehydro-8,21-dioxo-11,21-cycloaspidospermidine-2-carboxylate (231). According to the phytochemical report of Chen and partners, N₁-decarbomethoxy chanofruticosinic acid (206), kopsihainanines A–B (220–221), methyl chanofruticosinate N(4)-oxide (223), and methyl N₁-decarbomethoxy chanofruticosinate N(4)-oxide (226) were previously unrecorded compounds and found in *K. hainanensis* stem and leaf for the first time. The application of HPLC chromatographic procedure to the 70% EtOH extract of *K. fruticosa* aerial part has resulted in the isolation of two new substances, 11,12-dimethoxydanuphylline (207) and 3-oxo-11,12-dimethoxy-N₁-decarbomethoxy-14,15-didehydrochanofruticosinate (236). The MeOH extract of *K. flavida* leaf consisted of serial new alkaloids type chanofruticosinates flavisiamines A–F (208–213). Besides known compounds, the chromatographic isolation of the alcoholic extracts of *K. arborea* leaves has allowed to identify the appearance of seven new methyl chanofruticosinate alkaloids, kopreasin A (216), and prunifolines A–F (208, 210, and 238–241). Finally, three new derivatives 12-hydroxylprunifoline A (214), 12-hydroxylprunifoline A (215), and N(4)-oxide prunifoline D (3) were purified from the 70% EtOH extract of *K. lancibracteolata* stem.

Regarding aspidospermines, the acidic EtOH extract of *K. pauciflora* leaf contained aspidospermine (242), and its (+)-1,2-dehydro derivatives (243). A phytochemical report conducted by Wu *et al.* (2010) revealed that the MeOH extract of *K. arborea* aerial part was characterized by the presence of the new aspidospermine kopsiyunnanine G (246), and known compound eburneine (244). Similarly, new compound kopsioflavicine G (245), together with two known ones, vincadifformine (247) and vincadifformine N(4)-oxide (248) represented for *K. officinalis* stem.

Only four indole alkaloids danuphyllines 249–252 were found in *Kopsia* plants, in which danuphylline (249), danuphylline B (250), 11,12-de(methylenedioxy)danuphylline (251), and kopsihainin A (252) were separated from *K. dasyrachis* leaf, *K. arborea* leaf, *K. officinalis* leaf, and *K. hainanensis* stem, respectively (Table 1 and Fig. 2). All these isolates were new in nature. Similar to aspidofractinine derivatives, chanofruticosinates, aspidospermines, and danuphyllines were
unique chemical classes found in the family Apocynaceae. Especially, danuphylline derivatives were only detected in *Kopsia*, thereby they can be used as chemical markers to recognize this genus.

2.3. Eburnamines

As can be seen from Table 1 and Fig. 3, eburnamines are also a crucial phytochemical class of the genus *Kopsia*. Forty-nine compounds 253–301 were isolated to date, and they were mainly derived from *K. arborea*, *K. dasyrachis*, *K. griffithii*, *K. hainanensis*, *K. hainanensis*, *K. jararacophora*, *K. larutensis*, *K. macrophylla*, *K. officinalis*, *K. pauciflora*, *K. singapuresensis*, *K. teoi*, and *K. terengganensis*.5,13,18,19,22,29,33,51,68,70,90,92,93 *Kopsia* eburnamines appeared in both monomer and dimer forms, but not to have connected with sugar units. (−)-Eburnamenine (255), (−)-eburnamine (257), (+)-eburnamone (259), (+)-isoeburnamine (274), and larutenine (284) were isolated frequently, e.g., compound 274 was detected in *K. arborea* aerial part, *K. dasyrachis* stem, *K. hainanensis* stem bark, *K. larutensis* leaf, stem and stem bark, *K. teoi* stem bark and leaf, *K. officinalis* leaf, *K. pauciflora* stem and stem bark, and *K. terengganensis* bark.5,13,18,19,22,29,33,51,68,70,90,92,93

−Demethylnorpleiomutine (253), (−)-eburnaminol (258), (−)-O-ethyleburnamine (262), 19-hydroxy-(−)-eburnamone (267), (−)-19(R)-hydroxyisoeburnamine (268), (−)(19R)-19-hydroxyeburnamine (269), (−)(19R)-19-hydroxyisoeburnamine (271), (−)-kopsoffine (277), kopsoffinol (282), (−)-norpleiomutine (289), (−)-O-methylisoeburnamine (291), and 19-oxo-(−)-eburnamone (293) were found in two or three *Kopsia* plants (Table 1). (−)-Eburnamenine (254), (+)-eburnamine (256),

Fig. 2 Chanofruticosinates, aspidospermines and danuphylines from genus *Kopsia*. © 2022 The Author(s). Published by the Royal Society of Chemistry RSC Advances, 2022, 12, 19171–19208 | 19185
(-)-eburnamine (261), (+)-ethylisoeburnamine (263), 16α-hydroxy-19-oxoeburnamine (264), 16β-hydroxy-19-oxoeburnamine (265), melohenenine B (287), (-)-methyleburnamine (288), (+)-O-methyleburnamine (290), and O-methyl-16-epi-vincanol (295), and Δ\(^{14}\)-vicamone (300) have never been observed in genus Kopsia before. Especially, (-)-eburnaminol (258), (+)-eburnamine N(4)-oxide (260), (+)-(19R)-hydroxyeburnamine (266), (-)-(19R)-hydroxyisoeburnamine (268), (−)-(19R)-hydroxyeburnamenine (270), (−)-(19R)-hydroxyisoeburnamenine (271), (−)-(19R)-hydroxy-O-ethylisoeburnamine (272), (−)-isoeburnamine (275), kopsofficines H–K (278–281), (+)-larutensine (283), larutenine (284), larutenines A–B (285–286), (−)-norploiomutine (289), (+)-19-oxoeburnamine (292), (−)-19-oxoisoeburnamine (294), 20-oxo-eburnamenine (296), phutdonginin (297), terengganensines A–B (298–299), and yunnanonine C (301) were new in literature and isolated from genus Kopsia for the first time. Eburnamines is now abundant in genus Kopsia, but this chemical class was only found in the family Apocynaceae.

2.4. Akuammilines, sarpagines, and aspidophyllines

A total of twenty-one akuammilines 302–322 have been outlined in Table 1 and Fig. 4. K. arborea, K. dasyrachis, K. deverrei, K. fruticosa, K. griffithii, K. hainanensis, K. macrophylla, K.
offficinalis, K. singapurensis, and K. teoi were main resource of these phyto-constituents.9,10,15–17,23,27,32,34–36,43,45,47–49 Previous studies revealed that deacetylakuammiline (306), 16-epi-deacetylakuammiline (309), 16-hydroxymethyl-pleiocarpamine (311), and pleiocarpamine (319) were likely to be major akuammilines in genus \textit{Kopsia}.

The first compound akuammidine (302) was originated from \textit{K. arborea} stem bark, \textit{K. singapurensis} root, stem bark, and leaves, while akuammiline (303) presented in the aerial part of \textit{K. macrophylla} and \textit{K. teoi}.10,23,27,32,34,43,45,47–49 Akuammiline N(4)-oxide (304) and 16-epi-deacetylakuammiline-N(4)-oxide (310) were reported to be two new derivatives, which were separated from the rich alkaloidal fraction of \textit{K. griffithii} stem bark.15 \textit{ψ}-Akuammigine (305), dregamine (307), \textit{N}-methylpleiocarpamine (312), 5-methoxystrictamine (313), rhazimal (314), rhazinaline N(4)-oxide (315), picralinal (317), pleiocarpamine methochloride (320), and pleiomalicine (321) were isolated from genus \textit{Kopsia} for the first time.9,10,15,16,27,31,36 Lastly, two new metabolites, rhazinoline (316) and singaporentinidine (322), were purified from the extracts of \textit{K. arborea} stem bark, \textit{K. singapurensis} root, respectively.10,35

A list of four alkaloidal sarapgines 323–326 has been updated in Table 1 and Fig. 4.9,27,50 Vincadiffline (326) was a well-known metabolite, but its 10-hydroxy derivative (323) was a new compound in the literature, and both of them were isolated from the MeOH extract of \textit{K. hainanensis}.9 Perivine (324) and tabernaemontanine (325) were two known sarapgines derived from \textit{K. offficinalis} root and stem and \textit{K. macrophylla} bark, respectively.27,50

Resemble sarapgines, aspidophylline derivatives are not available in genus \textit{Kopsia}. A total of five isolates 327–331 were summarized in Table 1 and Fig. 4.2,3,31–34,36,43,48,49
Aspidodascarpine (327) was recorded by various authors and was detected in *K. singapurensis* root and stem bark, *K. teoi* stem, and stem bark. Two new phyto constituents aspidophyllines A–B (328–329), were determined to exist in *K. singapurensis* stem bark, while the new analog vincophylline (331) was found in its leaves. It can be concluded that lonicerine (330) was a major component in the group of aspidophyllines because it has occurred in various *Kopsia* plants such as *K. fruticosa* stem bark, *K. singapurensis* bark and stem bark, and *K. teoi* stem, stem bark and leaf.

Fig. 5 Strychnoses and stemmadenine from genus *Kopsia*.
2.5. Strychnoses

Compounds 332–357 have been fallen into the group of alka-
loidal strychnos derivatives (Table 1 and Fig. 5). Similar to
aspidofractinines and eburnamines, Kopsia strychnoses were
presented in both mono-or dimer forms, and they were mainly
sourced from K. deverri, K. hainanensis, K.jasminiflora, K. offici-
cinalis, K. pauciflora, K. singapurensis, especially K. arborea.8,10,12,22–24,29,35,36,64,94–102 Significantly, except for akuam-
icine (332), (E)-condylocarpine (335), (E)-condylocarpine N-
oxide (336), leuconicine B (351), precondylocarpine (355), and
tubotaiwine (356), the remaining compounds were new in
nature.

By the analysis of NMR, MS, and CD data, two isolated
dimeric compounds, arbolodinines B-C (333–334), were eluci-
dated as bulk novel strychnoses, which were derived from K. arborea stem bark.8 Compound 335 is a known compound,23,95
but its 14α-hydroxy and 14(5)-hydroxy-19(R)-methoxy derivatives
337–338 were new in the literature and first were isolated from
K. deverri stem bark and K. singapurensis root, respectively.35,94
Mossambine (354) was another new strychnos found in K. sin-
gapurensis stem bark.23 K. arborea aerial part has so far
distributed thirteen new compounds, isocondylocarpine (340),
isocondylocarpine N-oxide (341), kopsiyunnanes A, I, J1–J2, I, M, and F1–F3 (342–350), 19(5)-methoxytubotaiwine (352),
and 19(5)-methoxytubotaiwine (353).10,95–98,100,101 The well-known
compound tubotaiwine (356) was characteristic of K. arborea
aerial part, K. hainanensis stem and stem bark, but its 14(5)-
hydroxy-19(R)-methoxy derivative 339 isolated from the MeOH
extract of K. jasminiflora stem bark has been determined as
a new metabolite.24,29,64,95 Stemmadenine (337) from K. pauci-
flora leaves was the only stemmadenine detected in the genus
Kopsia.22

2.6. Mersinines and pauciflorines

Mersinines with tetracyclic quinolinic skeleton are a new
subclass of monoterpenoid indole alkaloids, which were only
found in the plants genus Kopsia. Kopsia mersinines 358–378
were only detected in K. singapurensis leaves and occasionally in
K. fruticosa leaves (Table 1 and Fig. 6).23,103–106 Of particular
interest, all these isolates were novel compounds in literature.
Searching for cytotoxic agents from plants, sixteen novel mer-
inines, comprising of mersidasines A-G (358–364), mersifo-
lines A-C (365–367), mersilosine (369), mersilosines A-B (370–371), and mersinines A-C (373–375) were isolated from the
acidic EtOH extract of K. singapurensis leaf.103 Their stereo-
chemistry was confirmed by NMR, IR, UV, and X-ray analysis. K. singapurensis leaf has further been shown to contain five novel
congener, mersilongine (368), mersinaline (372), mersiphyl-
lines A-B (376–377), and mersirachine (378).23,106,108

It is similar to mersinines, Kopsia pauciflorines 379–390 have
induced interest since all isolates were novel in the literature,
except for 11,12-demethoxy-16-deoxypauciflorine (379). K. arborea, K. jasminiflora, K. officinalis, and K. pauciflora might be
a reservoir of this chemical class.22,40,56,109,110

Fig. 6 Mersinines and pauciflorines from genus Kopsia.
Besides aspidofractinines, the MeOH extract of *K. jasminiflora* leaf has associated with the presence of three novel pau-ciflorines 20-deoxykopsijasminilam (380), kopsijasminilam (382), and Δ^{14}kopsijasminilam (383). In addition to known compound 379, three novel derivatives, kopsiofines A–C (384–386) were arisen from the 95% EtOH extract of *K. officinalis* dried stem and leaves. Pauciflorines A–B (387–388) reached 0.22 and 0.03 g kg^{-1} in *K. pauciflora* leaf. In the meantime, two other novel compounds, pauciflorine C (389) and paucifoline (390), were minor components in the acidic EtOH extract of *K. pauciflora* leaves. It is possible to conclude that mersinines and pauciflorines could be used as chemical indicators to distinguish the genus *Kopsia* and other genera of the family Apocynaceae.

2.7. Skytanthines, rhazinilams, and lundurines

It is recognized that the unique chemical class of skytanthines can be arranged as a new group of alkaloids. These phytochemicals were isolated from Apocynaceae *Skytanthus acutus* for the first time in 1960. From Table 1 and Fig. 7, ten new skytanthines 391–400 have been summarized. The extracts of *K. dasyrachis* and *K. macrophylla*, especially *K. pauciflora*, are accompanied by the presence of this type. Two publications in 1996 and 1997 by Kam and partners successfully reported the structures of serial new skytanthines kinabalurines (Serious) and other genera of the family Apocynaceae.
A–F (391–396) from *K. pauciflora* leaves,\(^{111,112}\) while their following congener *kinabalurine* G (397) was derived from *K. dasyrachis* leaf.\(^{109}\) Significantly, the novel alkaloidal *kopsirachine* (399) isolated from *K. dasyrachis* leaves was determined to be a hybrid compound by the combination of catechin and skytanthine.\(^{111}\) After being run Sephadex LH-20 and silica gel CC, a new monoterpene alkaloids containing a lactone ring, kopsilactone (398), and other new monoterpene alkaloids possessing 2-azabicyclo[3.3.1] backbone, kopsone (400), were isolated from the MeOH extract of *K. macrophylla* bark.\(^{27}\) Based on these findings, skytanthines can be seen as chemical evidence to determine the close relationship among Apocynaceae plants, especially between genera *Skytanthus* and *Kopsia*.

Rhazinilam (409) is an alkaloid discovered in the Apocynaceae plant *Melodinus australis* in 1965.\(^{124}\) It was then isolated from the shrub of the other Apocynaceae plant *Rhazya stricta* as well as other organisms.\(^{125}\) This compound was established as a main component in the group of *Kopsia* rhazinilams since it was found in *K. arborea* aerial parts and stem bark, *K. officinalis* leaf and twig, *K. pauciflora* leaf and stem bark, *K. singapurensis* leaf, bark and stem bark, and *K. teoi* stem, stem bark and leaf.\(^{13,16,22,23,25,32–34,36,45,47,48,114}\) Leuconolam (405) can be also seen as another main component because of its occurrence in *K.
griffithii leaves and stem bark, K. hainanensis twig, stem and leaf, K. officinalis leaf, K. pauciflora leaves, and K. singapurensis stem bark. As shown in Table 1, known compound 5,21-dihydrorhizainilam (401) existed in K. arborea stem bark and K. singapurensis stem bark and leaves. From Fig. 7, three new compounds, kopsiunnannines C1–C3 (402–404), which were isolated from the aerial part of K. arborea and K. officinalis, established the same backbone with rhizainilam (409). O-Methylleuconolam (406) and rhazinal (407) were two well-known compounds, but their congener rhizainine (408) separated from K. arborea stem bark, K. dasyrrhachis stem, and K. singapurensis root was a new derivative. To the best of our knowledge, rhazinalms were only observed in the family Apocynaceae, as well as the plants of three genus Melodinus, Rhazya, and Kopsia being the main resources.

Kopsia lundurines 410–426 have generally been formed by the combination of an indole ring and a lactam ring through an eight-ring member (Fig. 7). Notably, all of these seventeen compounds were novel in nature, and the three plants, K. lapidilecta, K. grandifolia, and K. tenuis, are the main reservoirs (Table 1).

Awang and partners also isolated and identified six novel pauciflorines, epilapidilectinol (410), isolapidilectine A (414), lapidilectan (415), lapidilectines A-B (416–417), and lapidilectinol (418) from aerial part of K. lapidilecta. Three novel indole alkaloids, grandilodies A–C (411–413) were extracted from the EtOH extract of K. grandifolia stem bark or leaves with the yield ranging from 0.07 to 3.18%, and their chemical structures were proved by NMR, MS, and X-ray spectral data. The eight remainders, including lundurines A–B (419–422), tenuisine A–C (423–425), and tenuiphylline (426), were novel lundurines presented in the K. tenuis leaf. In which compounds 423–425 were unprecedented dimers, while compound 426 is unique due to the incorporation between aspidofractinilte and lundurine units. As of a consequence, Kopsia lundurines, especially compounds 423–426, could be seen as significant chemotaxonomic agents.

2.8. Aspidospermas, catharinensines, leuconoxines, perincines, alstonines, and quebrachamines

Alkaloid type aspidospermas were named following the name of the genus Aspidosperma (family Apocynaceae). With regard to genus Kopsia, five known isolates 427–431 were summarized in Table 1 and Fig. 8. It turns out that buchtilin (427) was presented in either the leaf or stem of K. griffithii. The MeOH extract of K. hainanensis twig and leaf consisted of two aspidospermas, corynantheol (428) and dihydrocorynantheol (430). Only K. officinalis stem was found to contain 19,20-dihydroisoretinosidine (429), while its congener 16(R)-19,20-E-isoretinosidine (431) has been observed in the leaf of both K. griffithii and K. pauciflora. Therefore, alkaloidal aspidospermas are usefully chemotaxonomic agents to confirm the close relationship between the genus Kopsia and other genera in the family Apocynaceae.

Catharinensines, which belong to the group of oxindole alkaloids, can be found in several higher plants, such as Peschiera catharinensis. In Kopsia plants, five catharinensines 432–436 were detected (Table 1 and Fig. 8). Phytochemical research conducted by Gan and partners revealed that the use of mobile phase CHCl3–MeOH is appropriate to isolate alkaloidal catharinensines. By this approach, three new compounds, kopsiresines A–C (433–435), together with known analog catharinensine (432), have been successfully purified from the acidic EtOH extract of K. pauciflora leaves. New catharinensine kopsiunnannine B (436) was first collected as a light yellow solid from the alcoholic extract of K. officinalis aerial part, and then was detected in the K. arborea aerial part.

Phytochemical studies on Kopsia plants have also led to the isolation of alkaloid leuconoxines 437–442, and their structures were compiled in Fig. 8. Leuconoxine (441) was described as a major component since it occurred in K. arborea stem bark, K. griffithii leaf and stem bark, K. pauciflora stem, stem bark and leaf, K. singapurensis stem bark, K. teoi stem bark. Arbolocide (437) was one of the new compounds in K. arborea stem bark, while melodinine E (442) was a known metabolite extracted from its twigs.

To find bioactive molecules from medicinal plants, four alkaloids type perincines, including two new compounds pericidine (443) and pericine N-oxide (445) and two known analogs pericine (444) and valparicine (446) were isolated (Table 1 and Fig. 8). All of these isolates originated from K. arborea stem bark.

To the best of our knowledge, only three compounds 447–449 were classified as alkaloid alstonines (Table 1 and Fig. 8). Oxoyohimban-16-carboxy acid (447) derived from K. officinalis stem has never been isolated from the genus Kopsia before. The major component (−)-tetrahydroalstonine (448) appeared in K. arborea stem bark, K. dasyrrhachis stem, K. griffithii leaf, K. officinalis root, twig and leaf, K. larutensis stem bark and leaf, K. pauciflora stem, stem bark and leaf, K. singapurensis stem bark; K. teoi stem bark. Compound 449, a pseudiodoindoxyl derivative of compound 448, was identified to be a new constituent from the acidic EtOH extract of K. pauciflora leaves.

In the same manner, there are only three quebrachamines from the genus Kopsia till now (Table 1 and Fig. 8). Quebrachamine (452) is now abundant in nature and can be found in K. arborea aerial parts, K. hainanensis twigs and leaves, K. officinalis roots, and K. pauciflora leaves. However, kopsiunnannines D and H (450–451) from K. arborea aerial part were confirmed to be two new analogs.

2.9. Others indole alkaloids and non-alkaloids

Phytochemical studies on Kopsia plants also recorded the appearance of other alkaloidal types (Table 1 and Fig. 9). Chromatographic procedure on the acidic MeOH extract of K. arborea...
bark has resulted in the isolation of three new metabolites, arbophyllines A–B (453–454) and arbophyllidine (463). Arboflorine (453) from K. arborea stem bark was a known alkaloid type arboflorine, but its new analog kopsiyunnanine E (456) was detected in the aerial part of K. arborea and K. officinalis.10,96,99,121 Besides the main constituents, the EtOH extract of K. paciflora leaves has composed of a new component, andransinine A (458), along with a known one andransinine (457).22 New corynane theines arboricine (459) and arboricine (460) were found in both the leaves and stem of K. arborea.10,120 The new carboline harmane (461) was presented in both leaves and stem of K. griffithii, but the new congener harmicine (462) was only detected in its leaves.15,17 To find bioactive compounds from plants, mersicarpine (464) was first isolated from K. arborea stem bark.10 It was then further found in K. pauciflora leaves and K. singapurensis stem bark.8,22 Two final alkaloids, a new alkaloid type, azepane-fused tetrahydro-b-carboline kopsiyunnanine K (463) and a known alkaloid type andranginine (466), were constituents of K. arborea aerial part.182

To date, there have not been many results on the separation of non-alkaloidal constituents from the plants of the genus Kopsia. A phytochemical report from Shan and partner (2017) identified that the n-hexane extract of K. singapurensis dried leaf and bark has accompanied with the existence of five triterpenoids β-amyrin (467), β-amyrin acetate (468), β-amyrone (469), lupeol (470), lupeol acetate (471), and one sterol stigmasterol (472) (Table 1 and Fig. 10).122 This is the first time to observe these compounds in the genus Kopsia.

Taken together, despite the fact that there have been preliminary chemotaxonomic and synthetic reviews,127,128 This is the first time that we provide fully information on phytochemical separation, a detailed list of almost isolated compounds, chemical classification, botanical resource, and the great value of Kopsia monoterpene alkaloids in botanical and chemical relationship.

3. Pharmacological activities

Cytotoxic, antimicrobial, anti-inflammatory, anti-diabetic, cardiovascular, vasorelaxant, and other positive properties have been studied utilizing Kopsia secondary metabolites and extracts in pharmacological research. In Table 2, a summary of prior pharmacological appraisals on Kopsia plant materials is presented in detail.
3.1. Cytotoxic activity

It is obvious to the view that monoterpene alkaloids are the major phytochemicals in Kopsia plants so that cytotoxic experiments using Kopsia constituents may be thought of as a big content in pharmacological development. Six alkaloidal constituents 39–40, 73, 302, 327, and 408 from K. singapurensis root were submitted to cytotoxic assay against NIH/3T3, HL-60, and HeLa cells. Among them, kopsiline (73) induced the lowest CD50 value of 0.9 μg mL⁻¹ against HL-60 cells in referencing with the positive control vincristine (CD50 1.8 μg mL⁻¹).

Kopsiafrutine E (47) possessing hydroxyl groups at carbons C-14 and C-15 demonstrated as the most bioactive compound against HS-1, HS-4, SCL-1, A-431, BGC-823, MCF-7, and W-480 with the IC50 values of 7.3–9.5 μM. Meanwhile, its congeners kopsiafrutinines C–D (45–46) containing a hydroxyl group at carbon C-15 have shown to associate with the respective IC50 values of 10.3–12.5 and 11.8–13.8 μM, but kopsiafrutinines A–B (43–44) and kopsifoline A (76) did not inhibit cancer cell growth (IC50 > 20 μM). In the same way, the following new aspidofractinines kopsiahainanins A–B (48–49) with a lactone bridge have induced the respective IC50 values of 9.4–11.7 and 12.2–15.9 μM against A-549, BGC-823, HepG-2, HL-60, MCF-7, SMCC-7721, and W-480 cells. However, four new analogous kopsiahainanins C–F (50–53) accompanied by the IC50 values of >20 μM.

From Table 2, new aspidofractinines kopsiahainanins A–E (54–58) were also further examined by cytotoxic test towards BGC-823, HepG-2, MCF-7, SGC-7901, SK-MEL-2, and SK-OV-3 cancer cells. It evidenced that compounds 56–57 demonstrated strong activity with IC50 values of ≤10 μM. Similarly, in the N(4)-oxide group, new alkaloid 237 possessed the IC50 values from 7.2 to 8.9 μM to inhibit BGC-823, HepG-2, MCF-7, SGC-7901, and SK-MEL-2 cells, but new metabolites 214–215 was inactive (IC50 > 20 μM).

The new metabolite kopsiaofficines C (61) showed the IC50 values of <10 μM towards cancer cell lines 95-D, A-549, ATCC, H-464, H-460, H-292, and SPCA-1, and was better than its analogs 59 (10 < IC50 ≤ 20 μM) and 60 (IC50 > 20 μM). The bulk dimeric molecule arbolodinidine B (333) successfully controlled the growth of HT-29, MCF-7, PC-3, KB (VJ300), MDA-MB-231, HCT-116, and A-549 with the IC50 values ranging from 1.3 to 9.6 μg mL⁻¹, while arbolodinines A and C (1 and 334) failed to do so.

Rhazinilam (409) itself displayed the potential application in cancer treatments because its strong inhibitory capacity to A-549 and HT-29 cells (IC50 0.35 μM), kopsiyunnanines A–C (402–404) indicated moderate activities (IC50 4.67–8.89 μM), but both kopsiyunnanine D (450) and (−)-quebrachamine (452) were inactive (≥30 μM). Novel alkaloidal arbophyllidine (463) suppressed HT-29 cell growth with the IC50 value of 6.2 μM, but the novel metabolite arbophyllinine A (453) failed to inhibit. Six non-alkaloidal constituents 467–472 were also subjected to cytotoxic assay, in which their IC50 values ranged from 14.5 to 22.5 μg mL⁻¹.

Vincristine, a renowned chemotherapy medication, is usually used in combining with other drugs to treat many types of cancers. In this scenario, experiments using a combination of Kopsia alkaloids and vincristine for anticancer treatments also bring out significant results. In VJ300 cells, kopsiflorine 74 (10 μg mL⁻¹) showed reversal of multiple drug resistance (MDR) by suppressing the bound of [3H]azidopine to P-glycoprotein. Alkaloidal compounds 88, 102–107, 411, 413, 417, 434, and 438 exhibited no appreciable cytotoxic activity against KB (VJ300) cells. However, they possessed IC50 values of 0.39–38.7
Compounds	Models Effect	Positive control Effect	References
Anti-cancer activity			
39	*In vitro* CD₅₀ > 60 µg mL⁻¹/NIH/3T3 and HeLa cells CD₅₀ = 6.9 µg mL⁻¹/HL-60 cells	Vincristine CD₅₀ > 60 µg mL⁻¹/NIH/3T3 cells CD₅₀ = 1.8 µg mL⁻¹/HL-60 cells CD₅₀ = 0.4 µg mL⁻¹/HeLa cells	49
40	*In vitro* CD₅₀ > 60 µg mL⁻¹/NIH/3T3, HL-60 and HeLa cells Vincristine		49
43	*In vitro* IC₅₀ = 33.7 µM/HS-1 cells IC₅₀ = 28.4 µM/HS-4 cells IC₅₀ = 32.4 µM/SCL-1 cells IC₅₀ = 29.7 µM/A-431 cells IC₅₀ = 30.9 µM/BGC-823 cells IC₅₀ = 27.1 µM/MCF-7 cells IC₅₀ = 31.2 µM/W-480 cells	Adiamycin IC₅₀ = 17.8 µM/HS-1 cells IC₅₀ = 24.7 µM/HS-4 cells IC₅₀ = 21.8 µM/SCL-1 cells IC₅₀ = 33.7 µM/A-431 cells IC₅₀ = 28.4 µM/BGC-823 cells IC₅₀ = 37.6 µM/MCF-7 cells IC₅₀ = 14.1 µM/W-480 cells	52
44	*In vitro* IC₅₀ = 34.9 µM/HS-1 cells IC₅₀ = 29.9 µM/HS-4 cells IC₅₀ = 33.1 µM/SCL-1 cells IC₅₀ = 30.1 µM/A-431 cells IC₅₀ = 35.5 µM/BGC-823 cells IC₅₀ = 31.2 µM/MCF-7 cells IC₅₀ = 32.6 µM/W-480 cells	Adiamycin IC₅₀ = 17.8 µM/HS-1 cells IC₅₀ = 24.7 µM/HS-4 cells IC₅₀ = 21.8 µM/SCL-1 cells IC₅₀ = 33.7 µM/A-431 cells IC₅₀ = 28.4 µM/BGC-823 cells IC₅₀ = 37.6 µM/MCF-7 cells IC₅₀ = 14.1 µM/W-480 cells	52
45	*In vitro* IC₅₀ = 12.4 µM/HS-1 cells IC₅₀ = 12.3 µM/HS-4 and BGC-823 cells IC₅₀ = 12.9 µM/SCL-1 cells IC₅₀ = 11.8 µM/A-431 cells IC₅₀ = 12.6 µM/MCF-7 cells IC₅₀ = 13.8 µM/W-480 cells	Adiamycin IC₅₀ = 17.8 µM/HS-1 cells IC₅₀ = 24.7 µM/HS-4 cells IC₅₀ = 21.8 µM/SCL-1 cells IC₅₀ = 33.7 µM/A-431 cells IC₅₀ = 28.4 µM/BGC-823 cells IC₅₀ = 37.6 µM/MCF-7 cells IC₅₀ = 14.1 µM/W-480 cells	52
46	*In vitro* IC₅₀ = 11.6 µM/HS-1 cells IC₅₀ = 11.4 µM/HS-4 cells IC₅₀ = 12.1 µM/SCL-1 cells IC₅₀ = 10.3 µM/A-431 cells IC₅₀ = 11.7 µM/BGC-823 cells IC₅₀ = 10.4 µM/MCF-7 cells IC₅₀ = 12.5 µM/W-480 cells	Adiamycin IC₅₀ = 17.8 µM/HS-1 cells IC₅₀ = 24.7 µM/HS-4 cells IC₅₀ = 21.8 µM/SCL-1 cells IC₅₀ = 33.7 µM/A-431 cells IC₅₀ = 28.4 µM/BGC-823 cells IC₅₀ = 37.6 µM/MCF-7 cells IC₅₀ = 14.1 µM/W-480 cells	52
47	*In vitro* IC₅₀ = 7.3 µM/HS-1 cells IC₅₀ = 8.6 µM/HS-4 and MCF-7 cells IC₅₀ = 8.2 µM/SCL-1 cells IC₅₀ = 9.5 µM/A431 cells IC₅₀ = 8.9 µM/BGC-823 cells IC₅₀ = 9.2 µM/W-480 cells	Adiamycin IC₅₀ = 17.8 µM/HS-1 cells IC₅₀ = 24.7 µM/HS-4 cells IC₅₀ = 21.8 µM/SCL-1 cells IC₅₀ = 33.7 µM/A-431 cells IC₅₀ = 28.4 µM/BGC-823 cells IC₅₀ = 37.6 µM/MCF-7 cells IC₅₀ = 14.1 µM/W-480 cells	52
48	*In vitro* IC₅₀ = 11.3 µM/A-549 cells IC₅₀ = 9.4 µM/BGC-823 cells IC₅₀ = 10.1 µM/HepG-2 cells IC₅₀ = 11.1 µM/HL-60 cells IC₅₀ = 10.4 µM/MCF-7 cells IC₅₀ = 9.7 µM/SMMC-7721 cells IC₅₀ = 11.7 µM/W-480 cells	Doxorubicin IC₅₀ = 0.02 µM/A-549, HepG-2 and W-53 480 cells IC₅₀ = 0.01 µM/BGC-823 cells IC₅₀ = 0.03 µM/HL-60 cells IC₅₀ = 0.04 µM/SMMC-7721 cells	53
49	*In vitro* IC₅₀ = 12.7 µM/A-549 cells IC₅₀ = 12.2 µM/BGC-823 cells IC₅₀ = 12.8 µM/HepG-2 cells IC₅₀ = 13.8 µM/HL-60 cells IC₅₀ = 14.3 µM/MCF-7 and SMMC-7721 cells IC₅₀ = 15.9 µM/W-480 cells	Doxorubicin IC₅₀ = 0.02 µM/A-549, HepG-2 and W-53 480 cells IC₅₀ = 0.01 µM/BGC-823 cells IC₅₀ = 0.03 µM/HL-60 cells IC₅₀ = 0.04 µM/SMMC-7721 cells	53
50	*In vitro* IC₅₀ = 31.9 µM/A-549 cells IC₅₀ = 31.2 µM/BGC-823 cells IC₅₀ = 30.7 µM/HepG-2 cells IC₅₀ = 32.2 µM/HL-60 cells IC₅₀ = 28.1 µM/MCF-7 cells	Doxorubicin IC₅₀ = 0.02 µM/A-549, HepG-2 and W-53 480 cells IC₅₀ = 0.01 µM/BGC-823 cells IC₅₀ = 0.03 µM/HL-60 cells IC₅₀ = 0.04 µM/SMMC-7721 cells	53
Compounds	Models	Effect	
-----------	--------	--------	
In vitro	IC$_{50}$ = 29.9 μM/SMMC-7721 cells		
	IC$_{50}$ = 27.6 μM/W-480 cells		
51	Doxorubicin	IC$_{50}$ = 0.02 μM/A-549, HepG-2 and W-	
	480 cells		
	IC$_{50}$ = 0.01 μM/BGC-823 cells		
	IC$_{50}$ = 0.03 μM/HL-60 cells		
	IC$_{50}$ = 0.04 μM/SMMC-7721 cells		
52	Doxorubicin	IC$_{50}$ = 0.02 μM/A-549, HepG-2 and W-	
	480 cells		
	IC$_{50}$ = 0.01 μM/BGC-823 cells		
	IC$_{50}$ = 0.03 μM/HL-60 cells		
	IC$_{50}$ = 0.04 μM/SMMC-7721 cells		
53	Doxorubicin	IC$_{50}$ = 0.02 μM/A-549, HepG-2 and W-	
	480 cells		
	IC$_{50}$ = 0.01 μM/BGC-823 cells		
	IC$_{50}$ = 0.03 μM/HL-60 cells		
	IC$_{50}$ = 0.04 μM/SMMC-7721 cells		
54	Doxorubicin	IC$_{50}$ = 0.02 μM/BGC-823 cells	
	54		
	IC$_{50}$ = 0.01 μM/HepG-2 and SK-OV-3 cells		
	IC$_{50}$ = 0.06 μM/MCF-7 cells		
	IC$_{50}$ = 0.05 μM/SGC-7901 cells		
	IC$_{50}$ = 0.03 μM/SK-MEL-2 cells		
55	Doxorubicin	IC$_{50}$ = 0.02 μM/BGC-823 cells	
	54		
	IC$_{50}$ = 0.01 μM/HepG-2 and SK-OV-3 cells		
	IC$_{50}$ = 0.06 μM/MCF-7 cells		
	IC$_{50}$ = 0.05 μM/SGC-7901 cells		
	IC$_{50}$ = 0.03 μM/SK-MEL-2 cells		
56	Doxorubicin	IC$_{50}$ = 0.02 μM/BGC-823 cells	
	54		
	IC$_{50}$ = 0.01 μM/HepG-2 and SK-OV-3 cells		
	IC$_{50}$ = 0.06 μM/MCF-7 cells		
	IC$_{50}$ = 0.05 μM/SGC-7901 cells		
	IC$_{50}$ = 0.03 μM/SK-MEL-2 cells		
57	Doxorubicin	IC$_{50}$ = 0.02 μM/BGC-823 cells	
	54		
	IC$_{50}$ = 0.01 μM/HepG-2 and SK-OV-3 cells		
	IC$_{50}$ = 0.06 μM/MCF-7 cells		
	IC$_{50}$ = 0.05 μM/SGC-7901 cells		
	IC$_{50}$ = 0.03 μM/SK-MEL-2 cells		
58	Doxorubicin	IC$_{50}$ = 0.02 μM/BGC-823 cells	
	54		
	IC$_{50}$ = 0.01 μM/HepG-2 and SK-OV-3 cells		
	IC$_{50}$ = 0.06 μM/MCF-7 cells		
	IC$_{50}$ = 0.05 μM/SGC-7901 cells		
	IC$_{50}$ = 0.03 μM/SK-MEL-2 cells		
59	Doxorubicin	IC$_{50}$ = 24.7 μM/95-D cells	
	55		
	IC$_{50}$ = 21.8 μM/A-549 cells		
	IC$_{50}$ = 33.7 μM/ATCC cells		
	IC$_{50}$ = 22.3 μM/H-446 cells		
Table 2 (Contd.)

Compounds	Models	Effect	Positive control	References

- **IC₅₀** = 13.3 μM/H-460 cells
- **IC₅₀** = 12.6 μM/H-292 cells
- **IC₅₀** = 13.9 μM/SPCA-1 cells

60 *In vitro*
IC₅₀ = 46.8 μM/95-D cells
IC₅₀ = 47.1 μM/ATCC cells
IC₅₀ = 46.6 μM/H-446 cells
IC₅₀ = 45.9 μM/H-292 cells

- Doxorubicin

61 *In vitro*
IC₅₀ = 9.5 μM/95-D cells
IC₅₀ = 8.6 μM/A-549 cells
IC₅₀ = 9.3 μM/ATCC and H-292 cells
IC₅₀ = 9.4 μM/H-446 cells
IC₅₀ = 9.2 μM/H-460 cells
IC₅₀ = 9.7 μM/SPCA-1 cells

- Doxorubicin

73 *In vitro*
CD₅₀ = 20.7 μg mL⁻¹/NIH/3T3 cells
CD₅₀ = 0.9 μg mL⁻¹/HL-60 cells
CD₅₀ = 36.5 μg mL⁻¹/HeLa cells

- Vincristine
CD₅₀ > 60 μg mL⁻¹/NIH/3T3 cells
CD₅₀ = 1.8 μg mL⁻¹/HL-60 cells
CD₅₀ = 0.4 μg mL⁻¹/HeLa cells

74 *In vitro*
To suppress the binding of β[3]azidopine to P-glycoprotein

76 *In vitro*
IC₅₀ = 67.3 μM/HS-4 cells
IC₅₀ = 74.2 μM/A-431 cells
IC₅₀ = 66.2 μM/W-480 cells

- Adamycin

88 *In vitro*
IC₅₀ = 38.7 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

93 *In vitro*
IC₅₀ = 19.5 μg mL⁻¹/KB cells
IC₅₀ = 18.0 μg mL⁻¹/KB (VJ300)
IC₅₀ = 3.80 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

102 *In vitro*
IC₅₀ = 15.0 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

103 *In vitro*
IC₅₀ = 3.9 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

104 *In vitro*
IC₅₀ = 13.0 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

105 *In vitro*
IC₅₀ = 18.2 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

106 *In vitro*
IC₅₀ = 9.2 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

107 *In vitro*
IC₅₀ = 18.0 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

214 *In vitro*
IC₅₀ = 29.7 μM/BGC-823 cells
IC₅₀ = 37.6 μM/HepG-2 cells
IC₅₀ = 35.8 μM/MCF-7 cells
IC₅₀ = 36.8 μM/SGC-7901 cells
IC₅₀ = 36.5 μM/SPCA-1 cells

- Doxorubicin

215 *In vitro*
IC₅₀ = 32.1 μM/BGC-823 cells
IC₅₀ = 29.8 μM/HepG-2 cells
IC₅₀ = 31.9 μM/MCF-7 cells
IC₅₀ = 27.9 μM/SGC-7901 cells
IC₅₀ = 33.3 μM/SPCA-1 cells

- Doxorubicin

CIS17 *In vitro*
IC₅₀ = 8.6 μM/BGC-823 cells
IC₅₀ = 7.2 μM/HepG-2 cells
IC₅₀ = 8.3 μM/MCF-7 cells
IC₅₀ = 8.2 μM/SGC-7901 cells
IC₅₀ = 8.9 μM/SPCA-1 cells

- Cisplatin

282 *In vitro*
IC₅₀ = 9.7 μg mL⁻¹/PC-3 cells

- **IC₅₀** = 15.9 μg mL⁻¹/HCT-116 cells
- **IC₅₀** = 14.1 μg mL⁻¹/MCF-7 cells
- **IC₅₀** > 25 μg mL⁻¹/A-549 and KB (VJ300) cells
- **IC₅₀** = 8.6 μg mL⁻¹/KB (VJ300) + 0.1 μg mL⁻¹ vincristine

289 *In vitro*
IC₅₀ = 7.1 μg mL⁻¹/PC-3 cells
IC₅₀ = 7.6 μg mL⁻¹/HCT-116 cells

- Cisplatin

© 2022 The Author(s). Published by the Royal Society of Chemistry
RSC Adv., 2022, 12, 19171–19208 | 19197
Compounds	Models Effect	Positive control Effect	References
IC₅₀ = 9.7 µg mL⁻¹/MCF-7 cells	Vincristine IC₅₀ = 4.2 µg mL⁻¹/MCF-7 cells	Verapamil IC₅₀ = 4.7 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	302
IC₅₀ = 20.4 µg mL⁻¹/A-549 cells	Vincristine IC₅₀ = 4.3 µg mL⁻¹/A-549 cells	302	
IC₅₀ = 23 µg mL⁻¹/KB (VJ300) cells	Vincristine IC₅₀ = 6.3 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	302	
IC₅₀ = 4.80 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine		302	
CD₅₀ > 60 µg mL⁻¹/NIH/3T3 cells		327	
CD₅₀ = 30.2 µg mL⁻¹/HL-60 cells		327	
CD₅₀ = 2.8 µg mL⁻¹/HeLa cells		327	
CD₅₀ = 6.4 µg mL⁻¹/NIH/3T3 cells	Vincristine CD₅₀ = 60 µg mL⁻¹/NIH/3T3 cells	49	
CD₅₀ > 60 µg mL⁻¹/NIH/3T3 cells		49	
CD₅₀ = 1.8 µg mL⁻¹/HL-60 cells		49	
CD₅₀ = 0.4 µg mL⁻¹/HeLa cells		49	
CD₅₀ = 7.5 µg mL⁻¹/HeLa cells	Vincristine CD₅₀ = 60 µg mL⁻¹/NIH/3T3 cells	333	
CD₅₀ = 6.0 µg mL⁻¹/HL-60 cells		333	
CD₅₀ = 2.1 µg mL⁻¹/HeLa cells		333	
CD₅₀ = 1.3 µg mL⁻¹/HT-29 cells	Vincristine CD₅₀ = 6.6 µg mL⁻¹/HT-29 cells	366	
IC₅₀ = 4.9 µg mL⁻¹/MCF-7 cells		366	
IC₅₀ = 4.7 µg mL⁻¹/PC-3 cells		366	
IC₅₀ = 7.0 µg mL⁻¹/MDA-MB-231 cells	Vincristine IC₅₀ = 8.8 µg mL⁻¹/HT-29 cells	367	
IC₅₀ = 7.3 µg mL⁻¹/HCT-116 cells		367	
IC₅₀ = 9.6 µg mL⁻¹/A-549 cells		367	
IC₅₀ = 3.0 µg mL⁻¹/KB (VJ300) cells	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	366	
IC₅₀ = 3.70 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 8.8 µg mL⁻¹/HT-29 cells	367	
IC₅₀ = 7.0 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 6.6 µg mL⁻¹/HT-29 cells	373	
IC₅₀ = 4.1 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	374	
IC₅₀ = 3.2 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	375	
IC₅₀ = 11.2 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	375	
IC₅₀ = 5.38 µM/A-549 cells	Docetaxel IC₅₀ = 4.95 × 10⁻⁴ µM/A-549 cells	402	
IC₅₀ = 4.67 µM/HT-29 cells		402	
IC₅₀ = 7.44 µM/A-549 cells		403	
IC₅₀ = 6.39 µM/HT-29 cells		403	
IC₅₀ = 8.21 µM/A-549 cells	Docetaxel IC₅₀ = 4.95 × 10⁻⁴ µM/A-549 cells	404	
IC₅₀ = 8.89 µM/HT-29 cells		404	
IC₅₀ = 0.24 µg mL⁻¹/KB cells	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	407	
IC₅₀ = 0.25 µg mL⁻¹/KB (VJ300) cells		407	
IC₅₀ = 0.30 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine		407	
CD₅₀ = 20.8 µg mL⁻¹/NIH/3T3 cells	Vincristine CD₅₀ > 60 µg mL⁻¹/NIH/3T3 cells	408	
CD₅₀ > 60 µg mL⁻¹/HL-60 cells		408	
CD₅₀ = 2.9 µg mL⁻¹/HeLa cells		408	
IC₅₀ = 0.19 µg mL⁻¹/KB cells	Vincristine CD₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	408	
IC₅₀ = 0.25 µg mL⁻¹/KB (VJ300) cells		408	
IC₅₀ = 0.34 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine		408	
IC₅₀ = 0.35 µM/A-549 and HT-29 cells	Docetaxel IC₅₀ = 4.95 × 10⁻⁴ µM/A-549 cells	409	
IC₅₀ = 1.25 µg mL⁻¹/KB cells		409	
IC₅₀ = 2.50 µg mL⁻¹/KB (VJ300) cells		409	
IC₅₀ = 1.85 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine		409	
IC₅₀ = 4.35 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	411	
IC₅₀ = 4.11 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	413	
IC₅₀ = 0.39 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	417	
IC₅₀ = 21.8 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	434	
IC₅₀ = 15.0 µg mL⁻¹/KB cells	Vincristine IC₅₀ = 1.0 µg mL⁻¹/KB (VJ300)	437	
IC₅₀ = 11.0 µg mL⁻¹/KB (VJ300) cells		437	
IC₅₀ = 3.8 µg mL⁻¹/KB (VJ300) + 0.1 µg mL⁻¹ vincristine		437	
Table 2 (Contd.)

Compounds	Models	Effect	Positive control	Effect	References
438	In vitro	IC_{50} = 6.4 μg mL^{-1}/KB (VJ300) + 0.1 μg mL^{-1}	Vincristine	IC_{50} = 1.0 μg mL^{-1}/KB (VJ300)	22
446	In vitro	IC_{50} = 0.25 μg mL^{-1}, Jurkat cells	Vincadiflornine	IC_{50} = 21.8 μg mL^{-1}/Jurkat cells	10
		IC_{50} = 3.6 μg mL^{-1}/KB cells		IC_{50} = 10.2 μg mL^{-1}/KB cells	
		IC_{50} = 0.75 μg mL^{-1}/KB (VJ300) cells		IC_{50} = 6.3 μg mL^{-1}/KB (VJ300) cells	
		IC_{50} = 0.46 μg mL^{-1}/KB (VJ300) + 0.1 μg mL^{-1}		IC_{50} = 4.5 μg mL^{-1}/KB (VJ300) + 0.1 μg mL^{-1}	
450 and 452	In vitro	IC_{50} > 30 μM/A-549 cells	Docetaxel	IC_{50} = 4.95 × 10^{-4} μM/A-549 cells	114
		IC_{50} = 30 μM/HT-29 cells		IC_{50} = 3.34 × 10^{-4} μM/HT-29 cells	
463	In vitro	IC_{50} = 6.2 μM/HT-29 cells			59
467	In vitro	IC_{50} = 15.5 μg mL^{-1}/MCF-7 cells			122
468	In vitro	IC_{50} = 22.5 μg mL^{-1}/MCF-7 cells			122
469	In vitro	IC_{50} = 21.5 μg mL^{-1}/MCF-7 cells			122
470	In vitro	IC_{50} = 17 μg mL^{-1}/MCF-7 cells			122
471	In vitro	IC_{50} = 26 μg mL^{-1}/MCF-7 cells			122
472	In vitro	IC_{50} = 14.5 μg mL^{-1}/MCF-7 cells			122

Anti-microbial activity

14

IC_{50} = 31.3 μg mL^{-1}/E. coli, E. carotovra, B. subtilis, Ampicillin B. cereus, and S. aureus	Sanguinarine	MIC = 100 μg mL^{-1}/E. coli and E. carotovra
MIC = 15.5 μg mL^{-1}/E. carotovra	Netilmicin	MIC = 12.5 μg mL^{-1}/B. subtilis
EC_{50} = 33.3 μg mL^{-1}/R. solani	Mildothane	MIC = 25.0 μg mL^{-1}/B. cereus and S. aureus
EC_{50} = 29.2 μg mL^{-1}/P. italicum		
EC_{50} = 16.3 μg mL^{-1}/F. oxysporum f. sp. Cubense		
EC_{50} = 31.8 μg mL^{-1}/F. oxysporum f. sp. Niveum		

43

IC_{50} = 11 mm/K. pneumoniae	Sanguinarine	MIC = 10 mm/K. pneumoniae
IC = 9 mm/C. glabrata, E. cloacae and S. mutans	Netilmicin	IC = 8 mm/C. epidermidis and S. viridans
IC = 8 mm/S. epidermidis and S. dysenteriae		IC = 24 mm/E. coli
IC = 7 mm/C. albicans, C. tropicalis and P. aeruginosa		IC = 22 mm/E. cloacae
IC = 12 mm/P. aeruginosa and S. mutans		IC = 23 mm/P. aeruginosa and S. dysenteriae
IC = 11 mm/E. coli	Sanguinarine	IC = 25 mm/S. mutans and S. viridans
IC = 10 mm/C. glabrata	Netilmicin	IC = 21 mm/S. aureus
IC = 9 mm/E. cloacae, S. aureus and S. dysenteriae		IC = 8 mm/S. epidermidis and K. pneumoniae
IC = 8 mm/C. albicans, K. pneumoniae and S. epidermidis		IC = 24 mm/E. coli
IC = 7 mm/C. tropicalis and S. viridans		IC = 22 mm/E. cloacae

45

IC_{50} = 0.77 mM/K. pneumoniae	Sanguinarine	IC_{50} = 0.87 mM/S. viridans
IC_{50} = 0.89 mM/E. coli	Netilmicin	IC_{50} = 0.97 mM/S. aureus and S. epidermidis
IC_{50} = 1.01 mM/P. aeruginosa		IC_{50} = 0.97 mM/E. cloacae
IC_{50} = 0.97 mM/E. cloacae		IC_{50} = 1.01 mM/P. aeruginosa
IC_{50} = 1.13 mM/S. mutans		IC_{50} = 1.18 mM/C. tropicalis
IC_{50} = 1.18 mM/C. tropicalis		IC_{50} = 2.68 mM/S. dysenteriae
IC_{50} = 2.87 mM/C. albicans		IC_{50} = 3.09 mM/C. glabrata
IC_{50} = 23 mm/P. aeruginosa		IC = 23 mm/P. aeruginosa and S. dysenteriae
IC_{50} = 0.27 mM/K. pneumoniae		IC = 25 mm/S. mutans and S. viridans

46

| IC_{50} = 0.72 mM/E. coli | Sanguinarine | IC_{50} = 0.82 mM/S. mutans |
| IC = 20 mm and MIC = 0.72 mM/E. coli | | IC = 25 mm/S. mutans and S. viridans |
Compounds	Models Effect	Positive control	References	
In vitro	IZ = 20 mm and MIC = 0.91 mM/S. epidermidis	Netilmicin	**RSC Advances Review 47 (Contd.)**, 2022,	52
	IZ = 20 mm and MIC = 1.03 mM/S. dysenteriae			
	IZ = 20 mm and MIC = 1.11 mM/S. viridans			
	IZ = 20 mm and MIC = 1.18 mM/P. aeruginosa			
	IZ = 19 mm and MIC = 1.20 mM/E. cloaca			
	IZ = 20 mm and MIC = 1.23 mM/C. tropicalis and S. aureus			
	IZ = 17 mm and MIC = 1.52 mM/C. glabrata			
	IZ = 21 mm and MIC = 1.37 mM/K. pneumoniae and C. albicans			
	IZ = 17 mm and MIC = 2.87 mM/C. albicans			
In vitro	IZ = 24 mm and MIC = 0.15 mM/E. coli	Sanguinarine	IZ = 25 mm/S. mutans and S. viridans	52
	IZ = 24 mm and MIC = 0.20 mM/S. epidermidis			
	IZ = 23 mm and MIC = 0.22 mM/C. glabrata			
	IZ = 23 mm and MIC = 0.30 mM/C. tropicalis			
	IZ = 24 mm and MIC = 0.30 mM/S. dysenteriae and C. albicans			
	IZ = 24 mm and MIC = 0.25 mm/S. aureus	Netilmicin	IZ = 21 mm/S. aureus	52
	IZ = 24 mm and MIC = 0.27 mM/E. cloaca			
	IZ = 24 mm and MIC = 0.32 mM/P. aeruginosa			
	IZ = 23 mm and MIC = 0.37 mM/K. pneumoniae			
	IZ = 23 mm and MIC = 0.87 mm/S. viridans			
In vitro	IZ = 24 mm and MIC = 0.12 mM/K. pneumoniae	Netilmicin	IZ = 25 mm and MIC = 0.009 mM/K. pneumoniae	53
	IZ = 24 mm and MIC = 0.12 mM/S. dysenteriae			
	IZ = 24 mm and MIC = 0.13 mM/P. aeruginosa			
	IZ = 23 mm and MIC = 0.15 mM/E. cloaca			
	IZ = 23 mm and MIC = 0.16 mM/S. epidermidis			
	IZ = 24 mm and MIC = 0.18 mm/S. aureus			
	IZ = 24 mm and MIC = 0.23 mm/E. coli			
In vitro	IZ = 24 mm and MIC = 0.14 mm/K. pneumoniae	Netilmicin	IZ = 25 mm and MIC = 0.009 mM/K. pneumoniae	53
	IZ = 23 mm and MIC = 0.16 mM/P. aeruginosa			
	IZ = 24 mm and MIC = 0.17 mM/S. aureus			
	IZ = 22 mm and MIC = 0.18 mm/S. dysenteriae			
	IZ = 24 mm and MIC = 0.19 mm/E. cloaca			
	IZ = 23 mm and MIC = 0.19 mm/S. epidermidis			
	IZ = 24 mm and MIC = 0.26 mm/E. coli			
In vitro	IZ = 18 mm and MIC = 0.94 mm/P. aeruginosa	Netilmicin	IZ = 23 mm and MIC = 0.015 mM/P. aeruginosa	53
	IZ = 17 mm and MIC = 1.10 mM/E. cloaca			
	IZ = 17 mm and MIC = 1.12 mm/K. pneumoniae and S. dysenteriae			
	IZ = 18 mm and MIC = 1.20 mm/S. aureus			
	IZ = 19 mm and MIC = 1.23 mm/S. epidermidis			

Table 2

© 2022 The Author(s). Published by the Royal Society of Chemistry
Compounds	Models Effect	Positive control Effect	References
IZ = 18 mm and MIC = 1.32 mM/E. coli		IZ = 25 mm and MIC = 0.004 mM/S. epidermidis	53
51 In vitro IZ = 17 mm and MIC = 0.92 mM/P. aeruginosa	Netilmicin	IZ = 23 mm and MIC = 0.015 mM/P. aeruginosa	53
IZ = 18 mm and MIC = 1.01 mM/E. cloacae		IZ = 22 mm and MIC = 0.011 mM/E. cloacae	
IZ = 19 mm and MIC = 1.02 mM/S. dysenteriae		IZ = 23 mm and MIC = 0.011 mM/S. dysenteriae	
IZ = 18 mm and MIC = 1.09 mM/K. pneumoniae		IZ = 25 mm and MIC = 0.009 mM/K. pneumoniae	
IZ = 19 mm and MIC = 1.15 mM/S. epidermidis		IZ = 25 mm and MIC = 0.004 mM/S. epidermidis	
IZ = 20 mm and MIC = 1.18 mM/S. aureus		IZ = 21 mm and MIC = 0.005 mM/S. aureus	
IZ = 17 mm and MIC = 1.24 mM/E. coli		IZ = 24 mm and MIC = 0.015 mM/E. coli	
52 In vitro IZ = 17 mm and MIC = 1.19 mM/K. pneumoniae	Netilmicin	IZ = 25 mm and MIC = 0.009 mM/K. pneumoniae	53
IZ = 18 mm and MIC = 1.21 mM/E. coli		IZ = 24 mm and MIC = 0.015 mM/E. coli	
IZ = 17 mm and MIC = 1.21 mM/P. aeruginosa		IZ = 23 mm and MIC = 0.015 mM/P. aeruginosa	
IZ = 17 mm and MIC = 1.31 mM/E. cloacae		IZ = 22 mm and MIC = 0.011 mM/E. cloacae	
IZ = 15 mm and MIC = 1.31 mM/S. dysenteriae		IZ = 23 mm and MIC = 0.011 mM/S. dysenteriae	
53 In vitro IZ = 16 mm and MIC = 0.99 mM/K. pneumoniae	Netilmicin	IZ = 25 mm and MIC = 0.009 mM/K. pneumoniae	53
IZ = 18 mm and MIC = 1.01 mM/S. dysenteriae		IZ = 23 mm and MIC = 0.011 mM/S. dysenteriae	
IZ = 17 mm and MIC = 1.24 mM/P. aeruginosa		IZ = 23 mm and MIC = 0.015 mM/P. aeruginosa	
IZ = 15 mm and MIC = 1.31 mM/E. coli		IZ = 24 mm and MIC = 0.015 mM/E. coli	
IZ = 17 mm and MIC = 1.32 mM/E. cloacae		IZ = 22 mm and MIC = 0.011 mM/E. cloacae	
74 In vitro IZ = 9.7 mm/S. aureus	Kanamycin sulfate	IZ = 24.7 mm/S. aureus	12
76 In vitro IZ = 13 mm/S. aureus	Kanamycin sulfate	IZ = 24.7 mm/S. aureus	12
IZ = 12 mm/S. epidermidis		IZ = 24.7 mm/S. aureus	12
IZ = 9 mm/ C. albicans and C. glabrata		IZ = 24.7 mm/S. aureus	12
IZ = 8 mm/C. tropicalis, S. mutans and S. dysenteriae		IZ = 24.7 mm/S. aureus	12
IZ = 7 mm/E. coli and K. pneumoniae		IZ = 24.7 mm/S. aureus	12
85 In vitro IZ = 11.2 mm/S. aureus	Kanamycin sulfate	IZ = 24.7 mm/S. aureus	12
86 In vitro IZ = 9.1 mm/S. aureus	Kanamycin sulfate	IZ = 24.7 mm/S. aureus	12
87 In vitro IZ = 10.3 mm/S. aureus	Kanamycin sulfate	IZ = 24.7 mm/S. aureus	12
206 In vitro MIC = 15.5 μg mL⁻¹/E. coli, Erwinia carotovra, Bacillus subtillis, B. cereus, and S. aureus	Ampicillin	MIC = 100 μg mL⁻¹/E. coli and E. carotovra	7
MIC = 7.8 μg mL⁻¹/E. carotovra	Mildothane	MIC = 12.5 μg mL⁻¹/B. subtillis	
EC₅₀ = 21.9 μg mL⁻¹/R. solani		MIC = 25.0 μg mL⁻¹/B. cereus and S. aureus	
EC₅₀ = 19.4 μg mL⁻¹/P. italicum		EC₅₀ = 17.0 μg mL⁻¹/R. solani	
EC₅₀ = 15.2 μg mL⁻¹/F. oxysporum f. sp. Cubense		EC₅₀ = 7.8 μg mL⁻¹/P. italicum	
EC₅₀ = 43.8 μg mL⁻¹/F. oxysporum f. sp. Niveum		EC₅₀ = 57.0 μg mL⁻¹/F. oxysporum f. sp. Cubense	
		EC₅₀ = 101.0 μg mL⁻¹/F. oxysporum f. sp. Niveum	
Compounds	Models Effect	Positive control	References
--------------------	--	---------------------------	------------
267 and 297	**In vitro** MIC = 32 µg mL⁻¹/E. coli		21
Anti-inflammatory activity			
11	**In vitro** IC₅₀ = 25.4 µM/T cell inhibition	Ketotifen fumarate	16
170	**In vitro** IC₅₀ = 21.6 µM/T cell inhibition	Ketotifen fumarate	16
222	**In vitro** IC₅₀ = 27.8 µM/T cell inhibition	Ketotifen fumarate	16
409	**In vitro** IC₅₀ = 1.0 µM/T cell inhibition	Ketotifen fumarate	16
219, 225, 228,	The inhibitory effects on IL-1β and TNF-α, and	Ketotifen fumarate	75
279–280, 291, and	PGE2 were comparable with positive control		
439	**In vitro**		
	Anti-allergic activity		
90	**In vitro** IC₅₀ = 3.73 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
126	**In vitro** IC₅₀ = 7.06 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
257	**In vitro** IC₅₀ = 5.51 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	129
448	**In vitro** IC₅₀ = 11.78 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
	The MeOH extract in vitro		
	IC₅₀ = 2.17 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
	The MeOH extract in vitro of K. larutensis bark		
	IC₅₀ = 3.82 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	129
	The MeOH extract in vitro of K. arborea bark		
	IC₅₀ = 3.01 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
	The MeOH extract in vitro of K. larutensis leaf		
	IC₅₀ = 2.58 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	129
	The MeOH extract in vitro of K. arborea leaf		
	IC₅₀ = 1.61 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	66
	The MeOH extract in vitro of K. arborea root		
	IC₅₀ = 4.32 µg mL⁻¹/histamine and β-hexosaminidase inhibition in RBL-2H3 cell	Ketotifen fumarate	129
	Anti-diabetic activity		
29	**In vitro** EC₅₀ = 24.5 µM/glucose-evoked podocyte injury inhibition	Astragaloside IV EC₅₀ = 15.4 µM/glucose-evoked podocyte injury inhibition	25
126	**In vitro** EC₅₀ = 3.0 µM/glucose-evoked podocyte injury inhibition	Astragaloside IV EC₅₀ = 15.4 µM/glucose-evoked podocyte injury inhibition	25
224	**In vitro** EC₅₀ = 10.2 µM/glucose-evoked podocyte injury inhibition	Astragaloside IV EC₅₀ = 15.4 µM/glucose-evoked podocyte injury inhibition	25
264	**In vitro** EC₅₀ = 12.0 µM/glucose-evoked podocyte injury inhibition	Astragaloside IV EC₅₀ = 15.4 µM/glucose-evoked podocyte injury inhibition	25
405	**In vitro** EC₅₀ = 3.80 µM/glucose-evoked podocyte injury inhibition	Astragaloside IV EC₅₀ = 15.4 µM/glucose-evoked podocyte injury inhibition	25
379 and 384–386	**In vitro** IC₅₀ > 50 µM/α-glucosidase inhibition		109
AChE inhibitory activity			
39	**In vitro** MIR = 12.5 µg/AChE inhibition	Galanthamine MIR = 0.004 µg/AChE inhibition	21
220	**In vitro** IC₅₀ = 12.5 µg/AChE inhibition		6
221	**In vitro** IC₅₀ = 12.5 µg/AChE inhibition		6
Cardiovascular and vasorelaxant activities

Compounds	Models	Effect	Positive control	References
Anti-manic activity				
165	In vitro	IC_{50} = 12.5 mg mL\(^{-1}\)/anti-manic activity in Drosophila		
Anti-tussive activity		88% Cough inhibition/citric acid activated Guinea pig cough model		
126	In vivo	Interaction to μ-opioid receptor		
250	In vivo	76% Cough inhibition/citric acid activated Guinea pig cough model		
Anti-nociceptive activity	The alkaloidal extract of K. macrophylla	To decrease in the number of contortion and stretching via peripheral mechanism		
Cardiovascular and vasorelaxant activities	In vivo	To decrease arterial blood pressure and heart rate		131
112				84
208	In vivo	13% Relaxation occurred rat aorta ring		
210	In vivo	24% Relaxation occurred rat aorta ring		
211	In vivo	26% Relaxation occurred rat aorta ring		
216	In vivo	28% Relaxation occurred rat aorta ring		
219	In vivo	40% Relaxation occurred rat aorta ring		
225	In vivo	41% Relaxation occurred rat aorta ring		
227	In vivo	15% Relaxation occurred rat aorta ring		
228	In vivo	37% Relaxation occurred rat aorta ring		
229	In vivo	19% Relaxation occurred rat aorta ring		
239	In vivo	23% Relaxation occurred rat aorta ring		

μg mL\(^{-1}\) against KB (VJ300) cells in the presence of 0.1 μg mL\(^{-1}\) vincristine. Subramaniam et al. (2007) reported that kopsilose A (93), rhazinilam (409), especially two alkaloids rhazinal (407) and rhazinine (408), showed inhibition to both KB, KB (VJ300), and KB (VJ300) + 0.1 μg mL\(^{-1}\) vincristine.

Dimeric alkaloid norpleiomutine (282) exhibited cytotoxicity to PC-3, HCT-116, MCF-7, A-549, KB (VJ300), especially in terms of KB (VJ300) + 0.1 μg mL\(^{-1}\) vincristine, better than its analogous dimer kopsofinol (289). This can be explained by the functionality of OH group at carbon C-19. Most Kopsia mersinines seem not to be anticancer agents. However, novel compounds 366–367 and 373–375 also established the significant cytotoxicity to reserve MDR in drug-resistant KB (VJ300) with the IC_{50} values of 3.2–11.2 μg mL\(^{-1}\). Valparicine (446) would be superior to the positive control vincadifformine in a cytotoxic assay against Jurkat cell growth. In addition, this compound and arboloscleine (437) showed positive signals to resist the growth of KB (VJ300) and KB (VJ300) + 0.1 μg mL\(^{-1}\) vincristine (Table 2).

3.2. Anti-microbial activity

Nowadays, microbial resistance to well-known antibiotics has caused major concern about the treatment of infectious diseases. A vast amount of studies has recently been conducted to determine possible answers. Phytochemicals have been shown to exhibit antibacterial activity against sensitive and resistant infections through various approaches. To have a look at the IZ (inhibitory zone) and MIC values of Kopsia constituents (Table 2), compounds 43–47, 48–53, and 76 are not only potential anticancer molecules but also useful antimicrobial agents. Especially, kopsiafrutine E (47) with the MIC values of 0.15–1.14 mM established a remarkable antimicrobial effect against twelve pathogenic microorganisms, including two Gram positive bacteria Staphylococcus aureus and S. epidermidis, five Gram negative bacteria Escherichia coli, Enterobacter cloacae, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Shigella dysenteriae, three fungi Candida albicans, C. tropicalis, and C. glabrata, and two oral pathogens Streptococcus mutans and S. viridans. Likewise, compounds 48–49 showed strong antimicrobial activity with MIC values of less than 0.3 mM against seven bacteria E. cloacae, E. coli, K. pneumoniae, P. aeruginosa, S. aureus, S. dysenteriae, and S. epidermidis.

In another assessment, kopsiflorine (74) and kopsihainins D–F (85–87) showed suppression towards the Gram positive bacterium Staphylococcus aureus with IC50 values ranging from 9.7 to 11.2 mm, but compounds 3, 17, 73, 109, 124, 405, and 406 were inactive. In an antimicrobial assay against E. coli, Erwinia carotovora, Bacillus subtilis, B. cereus, and S. aureus, two best agents N-decarboxymethoxypsamine (14) and N_{1}-decarboxymethoxy chanofruticosic acid (206) were associated with the MIC values of 7.8–15.5 and 15.5–31.3 μg mL\(^{-1}\), respectively.

These two molecules further showed antifungal activity against ...
Rhizoctonia solani, Penicillium italicum, Fusarium oxysporum f. sp. Cubense, and F. oxysporum f. sp. Niveum (Table 2). Lastly, two eburnamines 19-hydroxy-(−)-eburnonamine (267) and phutdongin (297) showed moderate activity against the growth of *E. coli* with the same MIC value of 32 μg mL⁻¹.21

3.3. Anti-inflammatory activity

Inflammation is a part of the complicated biological reaction of living bodies to harmful stimuli such as irradiation, physical injury, metabolic stress, and infection.13–15 *K. officinalis* constituents are such useful agents to treat autoimmune diseases due to their inhibition of human T cell proliferation and proinflammatory cytokines.16 Indeed, *K. officinalis* constituents decarbomethoxykopsin (11), N(4)-methylkopsininate (170), 12-methoxychanofruticosinic acid (222), and rhanzilam (409) inhibited T cell growth with the IC₅₀ values of 25.4, 21.6, 27.8, and 1.0 μM, respectively.16 The best molecule 409 also responded to the arrest in the G2/M phase of the T cell cycle and caused a decrease in IL-6 and IL-17 levels in activated T cells.16

The secretion of cytokines IL-1β and TNF-α or PGE2 levels has mainly caused inflammatory reactions. When LPS-stimulated RAW 264.7 cells, at the concentration of 5 μg mL⁻¹, kopsia C (219), methyl N₁-decarbomethoxychanofruticosinate (225), methyl 12-methoxychanofruticosin (228), kopsiicoficines I-J (279–280), (++)-O-methylubarnaminc (290), (−)-O-methylisobarnamine (291), and leuconodine D (439) have remarkable anti-inflammatory effects on IL-1β and TNF-α, and PGE2, and comparable with positive control dexamethasone at the concentration of 10 μg mL⁻¹.75

3.4. Anti-allergic and antiadipic activities

Naturally occurring compounds have been recognized as potential antiallergic agents. In an experiment against histamine and β-hexosaminidase in RBL-2H3 cells, the IC₅₀ values of 3.73–11.78 μg mL⁻¹ were assigned to four alkaloids kopsilartensine (90), kopsinine (126), (−)-eburnamine (257), and (−)-tetrahydroalstonine (448).66 In the same model against histamine and β-hexosaminidase in RBL-2H3 cells, in contrast to the MeOH extract of *K. arborea* leaves, the MeOH extracts of *K. larutensis* bark and root were found better than those of *K. arborea* bark and root (Table 2).26,129

For antiadipic activity, among tested compounds for the high glucose-evoked podocyte injury inhibition, the EC₅₀ values were orderly run as kopsinine 126 (3.0 μM) > leuconolam 405 (3.8 μM) > methyl 11,12-dimethoxychanofruticosinate 224 (10.2 μM) > 16α-hydroxy-19-oxoeburnaminc 264 (12.0 μM) > reference compound astragaloside IV (15.4 μM) > 11-hydroxykopsilonginc 29 (24.5 μM).25 However, four pauciflorine derivatives 11,12-demethoxy-16-deoxypaubiclin (379) and kopsiicofines A-C (384–386) failed to suppress enzyme α-glucosidase (IC₅₀ > 50 μM).109

3.5. AChE inhibitory, anti-manic, anti-tussive, and anti-nociceptive activities

In Alzheimer’s disease treatment based AChE inhibitory examination, kopsamine (39) has the minimum inhibitory requirement (MIR) value of 12.5 μg, as compared with that of the reference compound galanthamine (MIR 0.004 μg).21 Meanwhile, two novel chanofruticosinates, kopsiicofinanes A–B (220–221), displayed weak AChE inhibitory activity with the respective IC₅₀ values of 38.5 and 50.6 μM.66 (−)–12-Methoxykopsinamine (165) with the IC₅₀ value of 12.5 mg mL⁻¹, showed anti-manic activity in *Drosophila*.61

Kopsinine 126 (70 mg kg⁻¹, i.p.) and methyl N₁-decarbomethoxychanofruticosinate 225 (250 mg kg⁻¹, i.p.) exhibited 88 and 76% cough inhibition in the antitussive assays when citric acid activated guinea pig cough model.65 In addition, anti-tussive effect of compound 126 was due to its interaction with δ-opioid receptors.65

The alkaloidal extract of *K. macrophylla* (400 mg kg⁻¹, p.o.) was responsible for a decrease in the number of contortions and stretching via the peripheral mechanism in anti-nociceptive assays when acetic acid stimulated pain in mice, but it has no effect in anti-pyretic assay.138

3.6. Cardiovascular and vasorelaxant activities

Cardiovascular disease (CVD) refers to a group of illnesses affecting the heart and blood arteries. CVD is the largest cause of death worldwide with 17.9 million deaths (32.1%) in 2015.136 Drug discovery for CVD started from the 19th century at least.137 To consider *Kopsia* constituents for cardiovascular treatment, at doses of 0.2–10.0 mg kg⁻¹ intravenous injection, kopsingine (112) caused decreases in arterial blood pressure and heart rate when hypertensive mice were anesthetized.135 However, kopsparine (42) was reasonable for blood pressure increase, and kopsidine A (67) with the deletion of the methoxy group did not alter the responsible hypotension.133

Vasodilators can be used for cerebral vasospasm and hypertension treatments, as well as to enhance peripheral circulation.138,139 Flavisanimines A, C, and D (208 and 210–211), kopreasin A (216), methyl 11,12-methylenedioxychanofruticosinate (219), methyl N₁-decarbomethoxychanofruticosinate (225), methyl 12-methoxy-N₁-decarbomethoxychanofruticosin (227), methyl 12-methoxychanofruticosinate (228), methyl 11,12-methylenedioxy-N₁-decarbomethoxychanofruticosinate (229), methyl 11,12-methylenedioxy-N₁-decarbomethoxy-A₁₄₁₅-chanofruticosinate (230), and prunifoline B (239) at the concentration of 3 × 10⁻³ M showed a moderate vasorelaxant effect of 14–41% when phenylephrine (3 × 10⁻⁷ M) precontracted rat aortic rings.84

4. Conclusion and future perspectives

To a certain extent, our comprehensive review establishes a panel of useful information on phytochemistry and pharmacology of the genus *Kopsia*. Since the 1950s, about nineteen *Kopsia* plants were used in phytochemical investigations, and more than four hundred seventy secondary metabolites have been isolated. Among 472 isolated compounds, monoterpen alkaloids (466 compounds) accounted for 98.73%. *Kopsia* monoterpen alkaloids have been fallen into about 30 structural skeletons, but aspidofractinines (204 compounds),
eburnamines (48 compounds), and chanofruticosinates (37 compounds) predominated over. Various compounds were isolated from Kopsia plants for the first time. Many chemical classes of isolated compounds, such as mersinines and pauciflorines, can be seen as newly alkaloidal classes and were useful for chemotaxonomy. Some metabolites, such as kopsamine (39), kopsinine (126), (-)-eburnamine (257), (+)-isoeburnamine (274), rhazinilam (409), and (-)-tetrahydroalstonine (448), are characteristic metabolites of genus Kopsia. It also evidenced that Kopsia plant extracts and isolated compounds have induced a variety of pharmacological results, e.g., antimicrobial, anti-inflammatory, anti-diabetic, cardiovascular, vasorelaxant activities, especially cytotoxicity. With the great cytotoxic values, monoterpine alkaloids derived from Kopsia plants are promising anticancer agents in drug development programmes. However, studies on in vivo apoptotic mechanism, bioavailability, and metabolic approaches seem not available. To this end, no research was carried out to determine toxic effects of Kopsia plant extracts and their constituents. Therefore, it is necessary to deal with the extensive clinical studies to confirm the effects of Kopsia constituents on humans.

This review will be especially useful in offering fundamental insights into the medicinal usefulness of Kopsia plants. Furthermore, this evaluation can be used as a reference for clinical medication, long-term development, and plant consumption.

Abbreviations

Abbreviation	Description
HPLC	High performance liquid chromatography
MS	Mass spectrum
CC	Column chromatography
IC_{50}	Half-maximal inhibitory concentration
IZ	Inhibitory zone
MDR	Multidrug resistance
MIR	Minimum inhibitory requirement
MIC	Minimum inhibitory concentration
LPS	Lipopolysaccharide
AChE	Acetylcholinesterase
NIH/3T3	Normal mouse fibroblast cells
HL-60	Human promyelocytic cells
HeLa	Human cervical cancer cells
HS-1, HS-4, SCL-1, and A-431	Dermatomas
BGC-823	Human gastric carcinoma cells
MCF-7	Human breast cancer cells
W-480	Colon cancer cells
HepG-2	Human hepatocellular carcinoma cells; SMMC-7721 cells
SGC-7901	Human gastric adenocarcinoma cells
SK-MEL-2	Human skin cancer cells
SK-OV-3	Ovarian cancer cells
A-549, 95-D, ATCC, H-446, H-460 and H-292, and SPCA-1	Lung cancer cells
PC-3	Colorectal cancer cells
Jurkat	Human prostate cancer cells
KB	Human T lymphocyte cells
KB	Epidermoid carcinoma cells

Conflicts of interest

The authors declare no conflict of interest, financial or otherwise.

References

1. D. A. Williams, W. O. Foye and T. L. Lemke, *Natural products. Foye's principles of medicinal chemistry*, Lippincott Williams Wilkins, Philadelphia, 5th edn, 2002, ch. 1.
2. J. W. Kadereit and V. Bittrich, *Flowering Plants. Eudicots*, Springer, 2018.
3. J. Hu, X. Mao, L. Zhang, N. Jin, S. Yin, T. Peng and J. Shi, *Chem. Nat. Compd.*, 2019, 55, 502–505.
4. T. S. Kam and O. S. Tan, *Phytochemistry*, 1990, 29, 2321–2322.
5. T. S. Kam, P. S. Tan and C. H. Chuah, *Phytochemistry*, 1992, 31, 2936–2938.
6. J. Chen, J. J. Chen, X. Yao and K. Gao, *Org. Biomol. Chem.*, 2011, 9, 5334–5536.
7. J. Chen, M. L. Yang, J. Zeng and K. Gao, *Phytochem. Lett.*, 2014, 7, 156–160.
8. S. K. Wong, J. S. Y. Yeap, C. H. Tan, K. S. Sim, S. H. Lim, Y. Y. Low and T. S. Kam, *Tetrahedron*, 2021, 78, 131802.
9. T. He, Y. D. Wang, F. R. Li, S. Y. He, Q. M. Cui, Y. P. Liu, T. R. Zhao and G. G. Cheng, *Biochem. Syst. Ecol.*, 2020, 93, 104159.
10. K. H. Lim, O. Hiraku, K. Komiyama, T. M. Koyano, M. Hayashi and T. S. Kam, *J. Nat. Prod.*, 2007, 70, 1302–1307.
11. T. Z. Xie, Y. L. Zhao, W. G. Ma, Y. F. Wang, H. F. Yu, B. W. Wang, H. Z. Xin, P. F. Zhu, Y. P. Liu and X. D. Luo, *Chin. J. Org. Chem.*, 2020, 40, 679–687.
12. Y. Yang, W. J. Zhuo, Y. X. Zhao, W. H. Dong, W. L. Mei and H. F. Dai, *Planta Med.*, 2012, 78, 1881–1884.
13. H. Zhou, H. P. He, N. C. Kong, Y. H. Wang, X. D. Liu and X. J. Hao, *Helv. Chim. Acta*, 2006, 89, 515–519.
14. J. J. Zheng, Y. L. Zhou and Z. H. Huang, *Acta Chin. Sin.*, 1989, 2, 168–175.
15. T. S. Kam, K. M. Sim, T. Koyano and K. Komiyama, *Phytochemistry*, 1999, 50, 75–79.
16. T. Zeng, X. Y. Wu, S. X. Yang, W. C. Lai, S. D. Shi, Q. Zou, Y. Liu and L. M. Li, *J. Nat. Prod.*, 2017, 80, 864–871.
17. T. S. Kam and K. M. Sim, *Phytochemistry*, 1998, 47, 145–147.
18. T. S. Kam, G. Subramaniam and W. Chen, *Phytochemistry*, 1999, 51, 159–169.
19. W. S. Yap, C. Y. Gan, K. S. Sim, S. H. Lim, Y. Y. Low and T. S. Kam, *J. Nat. Prod.*, 2016, 79, 230–239.
126 A. R. Araujo, C. Kascheres, F. Fujiwara and A. J. Marsaioli, *Phytochemistry*, 1984, **23**, 2359–2363.

127 T. Sevenet, L. Allorge, B. David, K. Awang, A. Hamid, C. Kan-Fan, J. C. Quirion, F. Remy, H. Schaller and L. E. Teo, *J. Ethnopharmacol.*, 1994, **41**, 1471–1483.

128 B. Qin, Y. Wang, X. Wang and Y. Jia, *Org. Chem. Front.*, 2021, **8**, 369–383.

129 M. S. Shahari, K. Husain, E. Kumolosasi and N. F. Rajab, *Nat. Prod.: Indian J.*, 2017, **13**, 1–7.

130 W. Reanmongkol, S. Subhadhirasakul, S. Thienmontree, K. Thanyapanit, J. Kalnaowakul and S. Sengsui, *Songklanakarin J. Sci. Technol.*, 2005, **27**, 509–516.

131 S. L. Mok, K. Yoganathan, T. M. Lim and T. S. Kam, *J. Nat. Prod.*, 1998, **61**, 328–332.

132 G. Z. Li, Y. H. Hu, D. Y. Li, Y. Zhang, H. L. Guo, Y. M. Li, F. Chen and J. Xu, *Neurotoxicology*, 2020, **81**, 161–171.

133 N. T. Son, L. T. Anh, D. T. T. Thuy, N. D. Luyen, T. T. Tuyen, H. T. M. Duong and N. M. Ha, *Nat. Prod. Commun.*, 2021, **16**, 1–6.

134 N. T. Son, L. T. Anh, D. T. T. Thuy, N. D. Luyen, T. T. Tuyen and P. T. Hai, *Z. Naturforsch., C: J. Biosci.*, 2022, **77**, 207–218.

135 N. T. T. Linh, N. T. T. Ha, N. T. Tra, L. T. T. Anh, N. V. Tuyen and N. T. Son, *Mini-Rev. Med. Chem.*, 2021, **21**, 273–287.

136 H. Wang, M. Naghavi, C. Allen, R. M. Barber, Z. A. Bhutta, A. Carter, *et al.*, *Lancet*, 2016, **388**, 1459–1544.

137 F. B. Alberti, *Bull. Roy. Coll. Surg. Engl.*, 2013, **95**, 168–169.

138 S. Saponara, M. Durante, O. Spiga, P. Mugnai, G. Sgaragli, T. T. Huong, P. N. Khanh, N. T. Son, N. M. Cuong and F. Fusi, *Br. J. Pharmacol.*, 2016, **173**, 292–304.

139 F. Fusi, M. Durante, G. Sgaragli, P. N. Khanh, N. T. Son, T. T. Huong and N. M. Cuong, *Planta Med.*, 2015, **81**, 298–304.