Progress in human pluripotent stem cell-based modeling systems for neurological diseases

Hana Hříbková, Jana Zelinková, and Yuh-Man Sun

Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic

ABSTRACT
Human pluripotent stem cell (hPSC)-based modeling offers the potential for studying human diseases using human systems. An increasing number of studies in numerous fields demonstrate that hPSC-based disease systems capture disease specific pathophysiology occurring in vivo. A widespread deployment of hPSC systems is foreseeable. Even the field of psychiatric disorders (for example, schizophrenia and autism), which lags behind due to complex underlying causes, such as the inaccessibility of brain cells for assessments and the absence of reliable models, has been embracing the hPSC-based disease system. However, despite hPSCs holding great potential, it is imperative to validate how faithful hPSC-based neural developmental modeling is in recapitulating the developmental process in vivo. Our recent study demonstrated that the hPSC-based system mimicked the process of neural development and the system reserved neural stem cell (NSC) niches similar to those residing in the ventricular region of the cortex. In this article, we will first comment on an array of factors that affect hPSC-based neural differentiation and summarize the intricate regulatory signaling pathways that regionalize neuronal cell types. Finally, we review successful studies in brain-related diseases using hPSC-based modeling with 3-D systems.

KEYWORDS
3-D culturing; cell fate decision; hPSC-based disease modeling; human pluripotent stem cell; neural developmental modeling

Before the discoveries of human pluripotent stem cells (hPSCs), scientists primarily used animal modeling systems to study human diseases. However, it became apparent that in most cases animal models cannot faithfully recapitulate human diseases. Some systematic reviews in animal modeling pointed out the poor quality of animal research and the difficulty in extrapolating from animal data to humans. With the advent of hPSC technologies, the scientific community sees modeling human diseases in a different light. Researchers have been harnessing and adopting the power and properties of hPSCs to investigate human disorders using human systems. The potential of PSCs as disease modeling systems has been widely received in many fields judging by the exponential increase in publications. For example, in cancer, cardiovascular, Diabetes Mellitus, eyes, the prostate and bladder, blood, and brain-related diseases. We are stem cell biologists with pragmatic views and we believe in the value hPSC-based systems can bring, not only to disease research fields but also to developmental biology.

In this article, we comment on our observations while establishing hPSC-based neural developmental modeling systems. There are numerous factors that affect the neural differentiation of hPSCs. They include coating materials, sources of materials, ways of handling, the density and form (single-cell or clump) of plating out, methods of preparing cells (enzymatic, EDTA, or mechanical), the timing and protocols of differentiation induction, and culturing systems (e.g. 2-D, 3-D, or EBs). Although a myriad of factors determining cell fates have been reported from different laboratories, a consensus emerged that neural differentiation from PSCs toward the cortical (or anterior) fate is the default. To obtain other neural fates, regionalized factors (or patterning signals) are indispensable. It has been reported that long-term expanded human ESC-derived neural stem cells undergo posteriorization with progressive loss of anterior markers from early to later passages, suggesting posteriorization of an initially anterior regional phenotype appears to be a common property for both ESC- and iPSC-derived neural stem cell lines.
have listed some of the factors that were used to generate various types of neurons from different brain regions in Table 1.

Intriguingly, the listed studies show that different laboratories used different protocols with or without pattern signaling to generate the same type of neurons, for example, glutamatergic neurons. This suggests that the derived glutamatergic neurons might reflect their origins in different regions of the brain. Do they possess different characteristics or activities? It remains to be elucidated. Moreover, many laboratories adopted different paradigms to promote the maturity of neurons, in which BNDF was one of the most commonly used neurotrophic factors. It should be cautioned that maturing neurons by supplementing neurotrophic factors might obscure bona fide pathophenotypes. For example, BNDF has been suggested to be one of causative factors in schizophrenia. Therefore, if iPSC-derived neurons supplemented with BNDF for modeling schizophrenia are used, undoubtedly inadvertent consequences will ensue. For this reason, to pursue the investigation of schizophrenia, we set up a protocol for neuron derivation from hPSCs in the absence of neurotrophic factors.16 We were able to detect electrophysiological activities at around 70–80 d of differentiation and a few neurons showed action potentials. Over 60% of derived neurons exhibited action potentials over 120-day differentiation. However, the number of neurons dwindled as differentiation proceeded, which was accompanied with an increase in the number of astroglial cells. The cause of neuron loss might be attributed to detaching from

Table 1. A summary of protocols used to derive neurons from human pluripotent stem cells.

TYPE OF NEURONS	COATING	CULTURING	PROTOCOL FOR NEURAL DIFFERENTIATION	NEURAL MATURATION	REF.
Cortical neurons	Non-adherent	3-D spheres	KSR/NIM + LDN193189 + SB431542 + XAV939	NB medium + BDNF + GDNF	37
Glutamatergic neurons	Matrigel	Monolayer	PSC/NIM + LDN193189 + SB432542 + cyclopamine + FGF2	NIM + BDNF	46
	Laminin or FBS	EB + attachment	NIM + Dorosomorphin + SB431542	NDM + cAMP + IGF + BDNF + GDNF	5
	Laminin or PLO	EB + attachment	Basic neural medium free of morphogens	Basic neural medium free of morphogens	49
GABAergic neurons	Matrigel	Monolayer	N2B27 + SB431542	N2B27	16, 29
	Laminin or PLO	EB + attachment and neural stem cell lines		Co-culturing with mouse astrocytes	
	Laminin or PLO	EB + attachment	NIM + SHH or purmorphamine	NB medium + VPA, BDNF, GDNF, IGF, AA, cAMP	26
Dopaminergic neurons	Matrigel	Neurospheres	NMM + SB431542 + dorosomorphin	NMM + SHH, FGF8 + BDNF + GDNF + cAMP + AA	4
	Laminin or PLO	EB + attachment	Basic neural medium free of morphogens	Basic neural medium + FGF8 + SHH	49
	CellStart	EB + attachment	NIM + FGF2	NB medium + SHH + FGF8 + BDNF + GDNF + TGF-β3 + AA + cAMP	42, 43
	hESC coculture on hMSS-Wnt cells	Monolayer	SRM/N2 + noggin	N2 + SHH + FGF8 + BDNF + AA	40
Cholinergic neurons	Matrigel	Neurospheres	NMM + SB431542 + dorosomorphin	In NMM from day 15 to day 27	4
	Non-adherent	EB	CDM + SB431542	NEM + SB431542 + FGF2 + EGF + heparin	8
Cerebellar Purkinje neurons	Matrigel	Neurospheres	NMM + SB431542 + dorosomorphin	In NMM from day 15 to day 45	4
Motor neurons	Non-adherent	3-D spheres	KSR/NIM LDN193189 + SB431542 + RA + SHH + BDNF	NB media + BDNF + GDNF + CNTF	37
	Laminin or PLO	EB + attachment	Basic neural medium free of morphogens	Basic neural medium + RA + SHH	49

KSR (KnockOut™ Serum Replacement medium); NIM (neural induction medium); LDN193189 (BMP inhibitor); SB431542 (activin/TGF-binhibitor); XAV939 (Wnt signaling inhibitor); NB (NeuroBasal medium); BDNF (brain-derived neurotrophic factor); GDNF (glial cell-derived neurotrophic factor); PSC (Pluripotent Stem Cell medium); Cyclopamine (Hedgehog signaling pathway inhibitor); PLO (poly-L-ornithine); FGF2 (fibroblast growth factor 2); EB (embryoid body); FBS (fetal bovine serum); dorosomorphin (BMP inhibitor); NDM (neural differentiation medium); cAMP (cyclic AMP); IGF (insulin growth factor); N2B27 (N2B27 medium); PSC (Pluripotent Stem Cell medium); SHH (Sonic hedgehog); purmorphamine (Sonic hedgehog agonist); VPA (valproic acid); AA (ascorbic acid); NMM (neuronal maintenance medium); FGF8 (fibroblast growth factor 8); TGF-β3 (Transforming Growth Factor-β3); hESC (human Embryonic Stem Cells); hMSS-Wnt (mouse stromal cell line MSS-Wnt1); SRM (Serum Replacement Medium); N2 (N2 medium); noggin (BMP inhibitor); CDM (chemically defined media); NEM (Neural Expansion Media); RA (retinoic acid)
dishes or dying out due to long-term culturing. In general, we found that the matrigel-coated surface produced more astroglial cells than the laminin-coated surface. Nevertheless, the former rendered a better cell adhesion.

It is well received that 3-D systems are advantageous over 2-D systems in terms of mimicking in-vivo microenvironments. We would like to point out an interesting phenomenon during hPSC-based neural differentiation. We often observe the formation of 3-D aggregates in our 2-D monolayer culturing systems (matrigel- or laminin-coated surfaces) during the process of neural differentiation either from hPSCs, hNSCs, or neural rosettes (Fig. 1). These 3-D aggregates have a capacity to form spheres. We postulate that the more primitive cells have a higher capacity for forming 3-D aggregates, which might reflect their characteristics in vivo. Our study suggests the end cells derived from 2-D systems are not less useful than those from 3-D systems regarding the recapitulation of neural development. Moreover, our system

![Figure 1](image)

Figure 1. A 3-D aggregate captured during neuronal differentiation from human neural rosettes using a 2-D system. This suggests that cells interact within a 3-D environment during a 2-D culturing system. Human ESCs were plated onto Matrigel-coated plates at 1000 cells/cm², and changed to N2B27 medium supplemented with 20 μM SB431542 next day, which was then replaced with fresh N2B27 medium every other day. Neural rosettes, which formed around 9-day differentiation, were harvested and transferred onto Matrigel or Laminin-coated plates. Aggregates are normally formed 2 weeks after transfer. Scale: 10X.

Table 2. A summary of studies in brain-related diseases using 3-D systems.

Name of 3-D MODEL	SOURCE	COATING	CULTURING	MODELING	OUTCOME	REF.
Forebrain-specific organoids 3-D neuro-spheroids	hiPSCs	Matrigel	Spinning bioreactor	Zika virus infection and microcephaly	Zika virus causes increased cell death and reduced proliferation	36
	hiPSCs	Hydrogel	Hydrogel	Alzheimer disease	BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels	23
Cerebral organoids	hiPSCs hESCs	Matrigel	Spinning bioreactor	Fetal neocortex	Gene expression programs remarkably similar to those of the fetal tissue	6
	hiPSCs hESCs	Matrigel	Spinning bioreactor	Microcephaly	Progenitor zones in patient-derived tissues display premature neural differentiation at the expense of early progenitor	21
	hESC	Non	Flask bioreactors	Zika virus infection and microcephaly	Zika virus activates Toll-like receptor 3, which triggers apoptosis and attenuates neurogenesis	11
Cortical spheroid	hiPSCs	Non	Non-adherent conditions in the absence of extracellular scaffolding	Pyramidal neurons	Electrophysiologically mature, displaying spontaneous activity, and formation of functional synapses	34
3-D neural aggregates	hmNPC	poly-L-ornithin-fibronectin	Stirred culture systems with orbital shaking	The imaging of human differentiated 3-D neural aggregates	3-D CNS cell model can be enhanced by imaging techniques	17
3-D multicellular spheroids system	hpAs hpBECs hpPs	Non	Hanging droplet culture plates	The blood brain barrier	The complex interplay of endothelial cells, pericytes, and astrocytes in the cerebral microvasculature	45
Telencephalic organoid	hiPSCs	Non	Free-floating tridimensional (3-D) culture method	Autism spectrum disorders	Overproduction of GABAergic inhibitory interneurons caused by increased FOX1 gene expression	28
Brain organoids	hiPSCs	Matrigel	Spinner flask	Zika virus infection	Infected organoids were 40% smaller compared with controls after 11 days	15
	hiPSCs chiPSCs	Matrigel	Spinning bioreactor	Zika virus in birth defects	A significant decrease in the number of PAX6-expressing neural progenitor cells and differentiated neurons	9
Midbrain organoids	hiPSCs hESC	Non	Orbital shaker	Midbrain tissues	A long-lived nervous tissue containing mature dopaminergic neurons	44

Table 2 - A summary of studies in brain-related diseases using 3-D systems.

- **hESCs** - human Embryonic Stem Cells; **hiPSCs** - human induced Pluripotent Stem Cells; **hmNPC** - human midbrain-derived Neural Progenitor Cells; **hpAs** - human cerebral Astrocytes; **hpBECs** - primary human Brain microvascular; **Endothelial Cells** hpPs - human brain vascular Pericytes; **chiPSCs** - chimpanzee induced pluripotent Stem Cells.
can, more or less, achieve what the 3-D system can do and the derived cells can be examined straight away without further processing (e.g., frozen section).16 Additionally, the neural development occurred naturally in our system without interference by BDNF and NT3 needed in some 3-D systems, which might mask the phenotypes of neuro-development. Nevertheless, it is not our intention to promote 2-D systems over 3-D systems. The advance of 3-D culturing has benefited the studies in brain-related diseases, which are shown in Table 2.

In conclusion, although perfect human disease models are beyond our reach, the hPSC-based system is one valid alternative. However, it is still a long way for hPSCs to generate perfect human disease models, especially for brain-related diseases, perhaps the advance of 3-D systems might bring it one step closer.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

[1] Abdelalim EM, Bonnefond A, Bennaceur-Griscelli A, Froguel P. Pluripotent stem cells as a potential tool for disease modeling and cell therapy in diabetes. Stem Cell Rev 2014; 10:327-37; PMID:24577791; https://doi.org/10.1007/s12015-014-9503-6

[2] Bajpai R, Coppola G, Kaul M, Talantova M, Cimadamore F, Nilbratt M, Geschwind DH, Lipton SA, Terskikh AV. Molecular stages of rapid and uniform neuralization of human embryonic stem cells. Cell Death Differ 2009; 16:807-25; PMID:19282867; https://doi.org/10.1038/cdd.2009.18

[3] Bebarta V, Luyten D, Heard K. Emergency medicine animal research: does use of randomization and blinding affect the results? Acad Emerg Med 2003; 10:684-7; PMID:12782533; https://doi.org/10.1111/j.1553-2712.2003.tb00056.x

[4] Begum AN, Guoynes C, Cho J, Hao J, Lutfy K, Hong Y. Rapid generation of sub-type, region-specific neurons and neural networks from human pluripotent stem cell-derived neurospheres. Stem Cell Rev 2015; 15:731-41; PMID:26613348; https://doi.org/10.1007/s12015.2015.0014

[5] Boisvert EM, Denton K, Lei L, Li X-J. The specification of telencephalic glutamatergic neurons from human pluripotent stem cells. Journal of Visualized Experiments: JoVE 2013; (74):50321; https://doi.org/10.3791/50321

[6] Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, Knoblich JA, Lachmann R, Pääbo S, Huttner WB, Treutlein B. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 2015; 112:15672-7; PMID:26644564; https://doi.org/10.1073/pnas.1508055112

[7] Colleoni S, Gallia C, Giannelli SG, Armentero MT, Blandini F, Broccoli V, Lazzari G. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors. Exp Cell Res 2010; 316:1148-58; PMID:20171210; https://doi.org/10.1016/j.yexcr.2010.02.013

[8] Crompton LA, Byrne ML, Taylor H, Kerrigan TL, Bru-Mercier G, Badger JL, Barbuti PA, Jo J, Tyler SJ, Allen SJ, Kunath T, Cho K, Caldwell MA. Stepwise, non-adherent differentiation of human pluripotent stem cells to generate basal forebrain cholinergic neurons via hedgehog signaling. Stem Cell Res 2013; 11:1206-21; PMID:24013066; https://doi.org/10.1016/j.scr.2013.08.002

[9] Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL, Guimarães KP, Benazzato C, Almeida N, Pignatari GC, Romero S, et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016; 534:267-71; PMID:27279226

[10] Curry EL, Moad M, Robson CN, Heer R. Using induced pluripotent stem cells as a tool for modeling carcinogenesis. World J Stem Cells 2015; 7:461-9; PMID:25815129; https://doi.org/10.4252/wjsc.v7.i2.461

[11] Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, Eroshkin AM, Rana TM. Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell 2016; 19:258-65; PMID:27162029; https://doi.org/10.1016/j.stem.2016.04.014

[12] Elkhazny E, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev 2008; 22:152-65; PMID:18198334; https://doi.org/10.1101/gad.161620

[13] Falk A, Heine VM, Harwood AJ, Sullivan PF, Peitz M, Brüstle O, Shen S, Sun YM, Glover JC, Posthuma D, Djurovic S. Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 2016; 21:1321-34; PMID:27324182; https://doi.org/10.1038/mp.2016.100

[14] Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, Wiskow O, Tailor J, Trotter M, Pollard S, Smith A, Brüstle O. Capture of Neuroepithelial-Like Stem Cells from Pluripotent Stem Cells Provides a Versatile System for In Vitro Production of Human Neurons. PLoS One 2012; 7:e29597; PMID:22272239; https://doi.org/10.1371/journal.pone.0029597

[15] Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P, Delvecchio R, Nascimento JM, Brindeiro R, Dvořák P, Sun YM. Stage-specific roles of FGF2 signaling in human neural development. Stem Cell Rev 2016; 17:330-41; PMID:27608170; https://doi.org/10.1016/j.scr.2016.08.012
Gualda EJ, Simão D, Pinto C, Alves PM, Brito C. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy. Front Cell Neurosci 2014; 8:221-31; PMID:25161607; https://doi.org/10.3389/fncel.2014.00221

Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH. Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol 2012; 25:125-30; PMID:22357218; https://doi.org/10.1097/WCO.0b013e3283518226

Kenter MJ, Cohen AF. Establishing risk of human experimentation with drugs: lessons from TGN1412. Lancet 2006; 368:1387-91; PMID:17046471; https://doi.org/10.1016/S0140-6736(06)69562-7

Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, Nagae G, Ueda K, Nakazaki K, Kamikubo Y, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 2012; 119:6234-42; PMID:22592606; https://doi.org/10.1182/blood-2011-07-367441

Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501:373-9; PMID:23995685; https://doi.org/10.1038/nature12517

Lee HK, Velazquez Sanchez C, Chen M, Morin PJ, Wells JM, Hanlon EB, Xia W. Three dimensional Human Neuro-spheroid model of Alzheimer’s disease based on differentiated induced pluripotent stem cells. PLoS One 2016; 11:e0163072; PMID:27684569; https://doi.org/10.1371/journal.pone.0163072

Liang P, Du J. Human induced pluripotent stem cell for modeling cardiovascular diseases. Regen Med Res 2014; 24; PMID:25984332; https://doi.org/10.1186/2050-490X-2-4

Lysy PA, Weir GC, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 2012; 1:150-9; PMID:23197762; https://doi.org/10.5966/sctm.2006-0070

Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang SC. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 2012; 10:455-64; PMID:22424902; https://doi.org/10.1016/j.stem.2012.01.021

Magri R, Zasso J, Conti L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front Cell Neurosci 2015; 8:440; PMID:25610370; https://doi.org/10.3389/fncel.2014.00440

Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, et al. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell 2015; 162:375-90; PMID:26186191; https://doi.org/10.1016/j.cell.2015.06.034

Matulka K, Lin HH, Hribková H, Uwanogho D, Dvorák P, Sun YM. PTP1B is an effector of activin signalling and regulates neural specification of embryonic stem cells. Cell Stem Cell 2013; 13:706-19; PMID:24139759; https://doi.org/10.1016/j.stem.2013.09.016

Moad D, Pal D, Hepburn AC, Williamson SC, Wilson L, Lako M, Armstrong L, Hayward SW, Franco OE, Cates JM, et al. A novel model of urinary tract differentiation, tissue regeneration, and disease: reprogramming human prostate and bladder cells into induced pluripotent stem cells. Eur Urol 2013; 64:753-61; PMID:23582880; https://doi.org/10.1016/j.eururo.2013.03.054

Nishi M, Akutsu H, Kudo A, Kimura H, Yamamoto N, Umezawa A, Lee SW, Ryo A. Induced cancer stem-like cells as a model for biological screening and discovery of agents targeting phenotypic traits of cancer stem cell. Oncotarget 2014; 5:8665-80; PMID:25228591; https://doi.org/10.18632/oncotarget.2356

Pankratz MT, Li XJ, Lavaute TM, Lyons EA, Chen X, Zhang SC. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage. Stem Cells 2007; 25:1511-20; PMID:17332508; https://doi.org/10.1634/stemcells.2006-0707

Panopoulos AD, Belmonte JC. Induced pluripotent stem cells in clinical hematology: potentials, progress, and remaining obstacles. Curr Opin Hematol 2012; 19:256-60; PMID:22555392; https://doi.org/10.1097/MOH.0b013e32835c78f

Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park J-Y, O’Rourke NA, Nguyen KD, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12:671-8; PMID:26005811; https://doi.org/10.1038/nmeth.3415

Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I. Where is the evidence that animal research benefits humans? BMJ 2004; 328:514-7; PMID:14988196; https://doi.org/10.1136/bmj.328.7438.514

Qian X, Nguyen HN, Song MM, Hadiorno C, Ogden SC, Hambuck C, Yao B, Hamersky GR, Jacob F, Zhong C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell Stem Cell 2013; 13:706-19; PMID:24139759; https://doi.org/10.1016/j.stem.2013.01.003

Rourke NA, Nguyen KD, Huber N, Kim CH, Park J-Y, O’Rourke NA, Nguyen KD, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 2015; 12:671-8; PMID:26005811; https://doi.org/10.1038/nmeth.3415

Schadt EE, Buchanan S, Brennand KJ, Merchant KM. Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders. Front
Pharmacol 2014; 5:252-67; PMID:25520658; https://doi.org/10.3389/fphar.2014.00252

[39] Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 2012; 15:477-86; PMID:22306606; https://doi.org/10.1038/nn.3041

[40] Sonntag KC, Pruszak J, Yoshizaki T, van Arensbergen J, Sanchez-Pernaute R, Isacson O. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 2007; 25:411-8; PMID:17038668; https://doi.org/10.1634/stemcells.2006-0380

[41] Sundstrom LE. Thinking inside the box: To cope with an increasing disease burden, drug discovery needs biologically relevant and predictive testing systems. EMBO Reports 2007; 8(Suppl 1):S40-S43; https://doi.org/10.1038/sj.embor.7400939

[42] Swistowski A, Peng J, Han Y, Swistsowska AM, Rao MS, Zeng X. Xeno-free defined conditions for culture of human embryonic stem cells, neural stem cells and dopaminergic neurons derived from them. PLoS One 2009; 4:e6233; PMID:19597550; https://doi.org/10.1371/journal.pone.0006233

[43] Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 2010; 28:1893-904; PMID:20715183; https://doi.org/10.1002/stem.499

[44] Tieng V, Stoppini L, Villy S, Fathi M, Dubois-Dauphin M, Krause KH. Engineering of midbrain organoids containing long-lived dopaminergic neurons. Stem Cells Dev 2014; 23:1535-47; PMID:24576173; https://doi.org/10.1089/scd.2013.0442

[45] Urich E, Patsch C, Aigner S, Graf M, Iacone R, Freskgard PO. Multicellular self-assembled spheroidal model of the blood brain barrier. Sci Rep 2013; 3:1500-7; PMID:23511305; https://doi.org/10.1038/srep01500

[46] Vazin T, Ball KA, Lu H, Park H, Ataeijannati Y, Head-Gordon T, Poo MM, Schaffer DV. Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer’s disease. Neurobiol Dis 2014; 62:62-72; PMID:24055772; https://doi.org/10.1016/j.nbd.2013.09.005

[47] Wiley LA, Burnight ER, Songstad AE, Drack AV, Mullins RF, Stone EM, Tucker BA. Patient-specific induced pluripotent stem cells (iPSCs) for the study and treatment of retinal degenerative diseases. Prog Retin Eye Res 015; 44:15-35; PMID:25448922; https://doi.org/10.1016/j.preteyeres.2014.10.002

[48] Yang C, Al-Aama J, Stojkovic M, Keavney B, Trafford A, Lako M, Armstrong L. Cardiac disease modeling using Induced Pluripotent Stem Cells. Stem Cells 2015; 33:2643-51; PMID:26033645; https://doi.org/10.1002/stem.2070

[49] Zeng H, Guo M, Martins-Taylor K, Wang X, Zhang Z, Park JW, Zhan S, Kronenberg MS, Lichtler A, Liu HX, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One 2010; 5:e11853; PMID:20686615; https://doi.org/10.1371/journal.pone.0011853

[50] Zheng A, Li Y, Tsang SH. Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert Opin Biol Ther 2015; 15:391-402; PMID:25613576; https://doi.org/10.1517/14712598.2015.1006192