Effect of nano zinc oxide on zinc bioavailability and blood biochemical changes in pre-ruminant lambs

K K SINGH¹, S B MAITY² and A MAITY³

ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284 003 India

Received: 12 July 2017; Accepted: 17 February 2018

Key words: Blood metabolites, Lamb growth, Nano zinc oxide, Zinc bioavailability

Zinc (Zn) is an essential component of a number of metalo-enzymes and transcription factors (O’Dell 2000), which plays significant roles in the metabolism of essential nutrients in animals (Jia et al. 2008). As Zn is not stored in the body, a continuous dietary supply is essential for proper physiological functions (Zalewski et al. 2005). In spite of the low solubility of zinc oxide, it is predominant source of Zn used by the animal feed industry (Wedekind and Baker 1990). Recently, the use of nano zinc oxide (nZnO) for supplementation of ruminant diets has begun but whether nano forms are more effective than normal zinc oxide (ZnO) remains unclear. The transition from micro particles to nanoparticles (< 100 nm in diameter) involves an increment of the surface area, among other changes in properties. A larger surface area of the nanoparticles allows greater solubility which may lead to better utilization in animals. Limited knowledge of the effects of this substance highlights the need to ascertain their possible use as a nutritional supplement in ruminants. Hence an experiment was conducted to see the effect of nZnO on zinc availability and its toxicity, if any, in pre-ruminant lambs.

Twenty pre-ruminant Jalauni male lambs (body weight 4.5 kg, age 25–35 days) were randomly divided into 2 groups each having 10 animals. All the lambs were maintained on similar basal ration consisting of maize grain, mustard cake, mineral mixture and common salt in the ratio of 64:34:1:1, respectively. The lambs of G1 served as control and were supplemented with 60 ppm zinc from ZnO while the lambs of G 2 were given 60 ppm zinc from nZnO (30 nm) in the concentrate mixture over and above available from basal ration (30.06 ppm) for a period of 45 days (ICAR 2013).

Live weight of each animal was recorded weekly. At the end of the experimental period, a digestibility cum metabolism trial of 5 days collection was conducted to evaluate the effect of nZnO on zinc availability as well as blood metabolites in lambs. The chemical composition of biological samples, viz. feed, faeces and urine nitrogen were determined as per AOAC (2000) and their fibre fractions as per Van Soest et al. (1991).

For zinc determination, feed, faeces and urine samples were digested in tri-acid mixture while plasma samples were diluted to 1/5 with deionized water. The analysis was performed using VARIAN AA240 Atomic Absorption Spectrophotometer.

Blood samples were collected in heparinized test tubes before and at the end of experimental feeding to study various plasma metabolites, plasma urea (Rahmatullah and Boyd 1980), creatinine (Wootton 1964) and superoxide dismutase (Sun et al. 1988). Data were analyzed to test the significant differences between means using’t’ test as described by Snedecor and Cochran (1994).

The chemical composition of feed ingredients and basal ration are presented in Table 1. The dry matter intake (DMI) was 215.28 and 218.60 g/d in G1 and G2, respectively, which was similar between groups (Table 2). Jaboli et al. (2013) also observed no effect of supplementary zinc oxide on dry matter intake among groups supplemented with different levels (e.g., 0, 20 and 40 ppm) of zinc oxide and nano zinc oxide in Iranian Angora goat kids. Similarly, supplementation of Zn to a basal diet containing more than 25 mg Zn/kg DM had no effect on DMI in growing lambs (Garg et al. 2008). Intake of CP and TDN followed the trend exhibited by DM intake.

The apparent digestibility coefficient of DM, OM, CP, NDF and ADF was almost similar between the groups (Table 2). Jadhav et al. (2008) reported that supplementation of zinc ranging from 0, 35 and 70 ppm in buffalo calves did not affect the nutrient digestibility. Similarly, there was no difference in the digestibility of CP, EE, NDF, ADF and cellulose in crossbred calves supplemented with 0, 35 and 70 ppm zinc in basal diet containing more than 25 ppm zinc (Mandal et al. 2008). All the animals were in positive N balance, which did not differ between the treatments.

There was no difference in zinc intake (19.50 vs 19.72 mg/d) between the groups (G1 and G2). However, the faecal excretion was significantly (P<0.05) higher in G1 (82.77%)
as compared to G1 (71.04%) without affecting the urinary excretion, which was almost similar (Table 2). This might led to significantly higher zinc retention (4.55 mg/d) in G2 as compared to G1 (2.31 mg/d) and so the absorption coefficient (23.07 vs 11.85%). A similar excretion pattern of zinc had been reported earlier by Singh et al. (2009) in kids. There has been variable effect of different zinc sources on its retention. Jadhav et al. (2008) observed higher zinc retention in buffalo calves supplemented with 0, 35 and 70 ppm zinc from zinc sulphate. Ziva et al. (2010) used three different types of Zn sources (ZnO, ZnCl₂ and nZnO) at levels of 2,000 and 5,000 µg/g DM in the diet of invertebrate animals (Porcellio scaber). They showed that the potential of these compounds for accumulation were similar.

Initial plasma level of zinc was almost similar (0.84 vs 0.79 µg/dl) between the groups (Table 3). However, after 35 days of supplementation there was a significant increase in the plasma zinc level of lambs in both the groups. But the increase was more prominent in G2 (1.85 µg/dl) as compared to G1 (1.25 µg/dl). The higher plasma zinc levels in nZnO (G2) might be due to the greater absorption of nZnO. It has been shown that nano particles are absorbed in duodenum by active transport and nano-elemental forms can cross the small intestine and further distribute into the blood (Hillyer and Albrecht 2001). The findings were in agreement with those of Najafzadeh et al. (2013) who also observed increased serum zinc levels after oral administration of nano zinc oxide in lambs.

The blood biochemical tests e.g. creatinine and superoxide dismutase (SOD) are good indicator of kidney and liver function. If kidney function fails, the creatinine levels will rise and when liver is in dysfunction, the levels of the SOD enzymes will rise. Results (Table 3) clearly indicated that initial and final plasma creatinine and SOD levels were almost similar and within the normal physiological range in both groups and there was no sign of nZnO toxicity in pre-ruminant lambs. Although, no information is available on the topic as such to date. Contrary to our study, Najafzadeh et al. (2013) observed significantly increased creatinine level in the serum of lambs supplemented orally with nano zinc particle at the rate of 20 mg/kg body weight. High serum creatinine levels in lambs may be due to the exposure of high doses (360–400 mg/d) of nZnO. Further, the toxicity of nZnO is reported to be associated with dose and duration of exposure to nano particles (Swain et al. 2016). Whereas, in the present study, the nZnO intake was very low (13 mg/d) as compared to the former (360–400 mg/d), hence no apparent toxicity was observed.

The average daily gain (Table 4) was almost similar (42–43 g/d) between the groups. Consistent with our observation, Jaboli et al. (2013) also did not find any effect of 20 or 40
ppm nZnO on average daily gain in Iranian Angora goat kids fed control diet containing 22 ppm zinc. However, nZnO had been reported to enhance growth performance in poultry (Mishra et al. 2014). As the zinc level (30 ppm) in the basal ration was adequate (Mc Dowell 1985) for normal growth of Jalauni lambs, that might be the reason for non-significant effect on growth performance.

Based on results, in spite of similar effect of both sources of zinc supplementation on nutrient utilization and growth performance, then nZnO significantly improved the Zn availability and plasma Zn levels in pre-ruminant lambs without causing toxicity. Thus, nZnO opens a window for better bio-available zinc source and if possible, to reduce the supplementation cost in future.

SUMMARY

Twenty pre-ruminant Jalauni male lambs (body weight 4.5 kg, age 25–35 days) were randomly divided into 2 groups each having 10 animals. All the lambs were maintained on similar basal ration consisting of maize grain, mustard cake, mineral mixture and common salt in the ratio of 64:34:1:1, respectively. The lambs of G1 served as control and were supplemented with 60 ppm zinc from ZnO while the lambs of G2 were given 60 ppm zinc from nZnO (30 nm) in the concentrate mixture over and above available from basal ration (30.06 ppm) for a period of 45 days. Results indicated that there was no difference in the intake and apparent digestibility coefficient of nutrients between groups. However, the faecal excretion of Zn was significantly (P<0.05) higher in G1 (82.77%) as compared to G2 (71.04%) in spite similar urinary excretion. This led significantly (P<0.05) higher in G2 (1.85 µg/dl) as compared to G1 (1.25 µg/dl) in the plasma Zn levels in pre-ruminant lambs without causing toxicity. Thus, nZnO opens a window for better bio-available zinc source and if possible, to reduce the supplementation cost in future.

REFERENCES

AOAC. 2000. Association of Official Analytical Chemists. Official Methods of Analysis. 16th ed. USDA, Washington, DC.

Garg A K, Vishal M and Dass R S. 2008. Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Animal Feed Science and Technology 144: 82–96.

Hillyer J F and Albrecht R M. 2001. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmacological Science 90: 1927–36.

ICAR. 2013. Nutrient Requirement of Cattle and Buffalo. 1st edn. Indian Council of Agricultural Research, New Delhi.

Jadhav S E, Garg A K and Dass R S. 2008. Effect of graded levels of zinc supplementation on growth and nutrient utilization in male buffalo calves. Animal Nutrition and Feed Technology 8: 65–72.

Jia W, Xiaoping Zh, Wei Zh, Jianbo Ch, Cuihua G and Zhihai J. 2008. Effects of source of supplemental zinc on performance, nutrients digestibility and plasma zinc status in Cashmere goats. Small Ruminant Research 80: 68–72.

Mc Dowell L R. 1985. Nutrient Requirement of Grazing Ruminant in Warm Climate. Academic Press. Inc. California.

Mishra A, Swain R K, Mishra S K, Panda N and Sethy K. 2014. Growth performance and serum biochemical parameters as affected by nano zinc supplementation in layer chickens. Indian Journal of Animal Nutrition 31: 384–88.

Najafzadeh H, Ghereishi S M, Mohammadian B, Rahimi E, Atzalzadeh M R, Kazemivarnamkhasti M and Ganjeadidarani H. 2013. Serum biochemical and histopathological changes in liver and kidney in lambs with zinc oxide nanoparticles administration. Veterinary World 6: 534–37.

O’Dell B L. 2000. Role of zinc in plasma membrane function. Journal of Nutrition 130: 1432–36.

Rahmatullah M and Boyde T R C. 1980. An improvement in determination of urea using diacetylmonoxime method with and without deproteinization. Clinical Chemical Acta 107: 3–9.

Singh K K, Misra A K and Maity S B. 2009. Effect of excess iron in the diet on copper and zinc utilization in growing lambs. Indian Veterinary Journal 86: 66–68.

Snedecor G W and Cochran W G. 1994. Statistical Methods. I B H Publishing Company, Calcutta, India.

Sun Y, Oberley L W and Li Y. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry 34: 497–500.

Swain P S, Rao S B N, Rajendran D, Dominic G and Selvaraju S. 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: a review. Animal Nutrition 2: 134–41.

Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. Journal of Dairy Science 74: 3583–97.

Wedekind K J and Baker D H. 1990. Zinc bioavailability in feed-grade sources of zinc. Journal of Animal Science 68: 684–89.

Wootton I D P. 1964. Micro Analysis in Medical Biochemistry. 4th edn. J and A Churchill Ltd., London. pp 174–175.

Zaboli K, Aliarabi H, Bahari A A and Abbasalipourkabir R. 2013. Role of dietary nano-zinc oxide on growth performance and blood levels of mineral. Journal of Pharmaceutical and Health Sciences 2: 19–26.

Zalewski P D, Al Q T, Dion G, Lata J, Chiara M and Richard E R. 2005. Zinc metabolism in airway epithelium and airway inflammation: basic mechanisms and clinical targets: A review. Pharmacology and Therapeutics 105: 127–49.

Ziva P, Drohne D, Jemec A, Romih T, Zidar P and Bele M. 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology 269: 198–203.