Latest Results from the CUORE Experiment

QNP 2022

Samantha Pagan on behalf of the CUORE Collaboration
Unanswered questions about neutrinos

of neutrinos species

Neutrino Type	Mass Difference
ν_1	$\geq 1 \text{eV}^2$
ν_2	$\simeq 2.5 \times 10^{-3} \text{eV}^2$
ν_3	$\simeq 7.4 \times 10^{-3} \text{eV}^2$

Sterile Neutrinos

https://www.nevis.columbia.edu/daedalus/motiv/sterile.html

Cosmological Models

https://plancksatellite.org.uk/results/first-full-sky-image/

Neutrino Mass Scale

- ν_1, ν_2, ν_3
- d, s, b
- u, c, t
- e, μ, τ

[2013 Snowmass Neutrino report: https://arxiv.org/pdf/1310.4340.pdf](https://arxiv.org/pdf/1310.4340.pdf)

Majorana or Dirac

- Neutrinoless Double Beta Decay
- Could explain matter anti matter asymmetry

https://cuore.lngs.infn.it/en/about/physics

Mass Hierarchy

- Normal hierarchy (NH)
- Inverted hierarchy (IH)

[Credit: JUNO Collaboration / JGU-Mainz](https://www.juno-experiment.org/)

CUORE

S.Pagan

QNP 2022
Unsolved questions about neutrinos

of neutrinos species

Species	Mass Difference
ν_1	Δm^2_{12}
ν_2	Δm^2_{23}
ν_3	Δm^2_{34}
ν_4	$\geq 1 \text{ eV}^2$

Sterile Neutrinos

https://www.nevis.columbia.edu/daedalus/motiv/sterile.html

Neutrino Mass Scale

Cosmological Models

https://plancksatellite.org.uk/results/first-full-sky-image/

Majorana or Dirac

- Neutrinoless Double Beta Decay
- Could explain matter anti matter asymmetry

https://cuore.lngs.infn.it/en/about/physics

Mass Hierarchy

- Normal hierarchy (NH)
- Inverted hierarchy (IH)

Credit: JUNO Collaboration / JGU-Mainz

2013 Snowmass Neutrino report: https://arxiv.org/pdf/1310.4340.pdf
Double Beta Decay (2νββ)

\[(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e\]

Standard model process

Precise measurement and spectral shape inform nuclear models

Example Isotopes: 76Ge, 82Se, 100Mo, 128Te, 130Te, 136Xe (even mass number)

Measured Half-life: \sim1017-1022 yrs
Neutrinoless Double Beta Decay (0νββ)

\[(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e\]

Violates the conservation of total lepton number, beyond the SM process.

Implies a Majorana neutrino.

Example Isotopes: ^{76}Ge, ^{82}Se, ^{100}Mo, ^{130}Te, ^{136}Xe

Half life limits: $\sim 10^{25}$-10^{26} years
Neutrinoless Double Beta Decay: Signal

Image Credit: J. Torres
$$\frac{1}{T_{1/2}^{0\nu}} = G_{0\nu}^{0\nu}(Q,Z) \cdot |M_{0\nu}|^2 \cdot |<m_{\beta\beta}>|^2$$

Phase space factor

Effective Majorana mass

Nuclear Matrix element

$$m_{\beta\beta}^2 = |\sum_i U_{ei}^2 m_{\nu_i}|^2$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

https://www.particlebites.com/?m=201609
ββ Isotopes

Experiments using various isotopes: ^{76}Ge, ^{130}Te, ^{136}Xe, ^{82}Se, ^{100}Mo,

Q-value:
Higher is preferable

$2\nu\beta\beta$ background $\propto \frac{1}{Q_{\beta\beta}^5}$

Isotopic abundance:
Higher is preferable

Zuber, J.Phys.Conf.Ser. 578 (2015) 1, 012007
ββ Isotopes

Experiments using various isotopes: ^{76}Ge, ^{130}Te, ^{136}Xe, ^{82}Se, ^{100}Mo,

Q-value:
Higher is preferable

$2\nu\beta\beta$ background $\propto \frac{1}{Q_{\beta\beta}^5}$

Isotopic abundance:
Higher is preferable

![Graph showing isotopic abundances and Q-values](Image credits: J. Torres)

Zuber, J. Phys. Conf. Ser. 578 (2015) 1, 012007

QNP 2022
Experiments using various isotopes: ^{76}Ge, ^{130}Te, ^{136}Xe, ^{82}Se, ^{100}Mo,

Q-value:
Higher is preferable

$2\nu\beta\beta$ background $\propto \frac{1}{Q_{\beta\beta}^5}$

Isotopic abundance:
Higher is preferable

Zuber, J.Phys.Conf.Ser. 578 (2015) 1, 012007
^{130}Te

Q-value: 2528 keV

High isotopic abundance of 33.8% can use natural crystals

$^{130}\text{Te} \rightarrow ^{130}\text{Xe} + 2e$

Zuber, J.Phys.Conf.Ser. 578 (2015) 1, 012007
We would like to acknowledge support from the U.S. Department of Energy Office of Science contract No. DE-SC0019368 and DE-SC0012654 and the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1752134.
CUORE: The Cryogenic Underground Observatory forRare Events

Source/detector: 130Te

988 TeO$_2$ crystals

Gran Sasso National Laboratory (LNGS), L’Aquila, Italy
Average depth: ~3600 m.w.e.

Cryogenic calorimeters-bolometers
CUORE: The Cryogenic Underground Observatory for Rare Events

19 towers with 13 floors of 4 crystals each

TeO$_2$ natural abundance crystal
5.00×5.00×5.00 cm3, 750 g each
Total 130Te mass: 206 kg

Custom dilution refrigerator, nested vessels, and 5 pulse tubes

Operated at ~10 mK

Surrounding lead, and roman lead shielding

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)
Bolometers: Operating Principle

Particle interaction increase crystal temperature

Thermal coupling to 10 mK heat bath

Neutron Transmutation Doped (NTD) Ge thermistors

\[C_V(T) \propto T^3 \]

\[R(T) = R_0 e^{\sqrt{\frac{\Delta E}{C_V}} \frac{T_0}{T}} \]

\[\Delta T = \frac{\Delta E}{C_V} \approx 100 \frac{\mu K}{MeV} \]

E. E. Haller, J. Appl. Phys. 77, 2857-2878 (1995)
CUORE Sensitivity

\[S \propto a_I \sqrt{\frac{mt}{B \Delta E}} \]

- Isotopic abundance
- Mass \(m \)
- Time \(t \)
- Backgrounds \(B \)
- Energy Resolution \(\Delta E \)

\(10^{-2} \text{ cts/(KeV} \cdot \text{kg} \cdot \text{y)} \)

\(\sim 1\% \text{ at } Q_{\beta\beta} \)
Evolution of cryogenic $0
\nu\beta\beta$ bolometers

Running period

$\tau_{0.1/2}$ (90% C.L.) [yr]

Rev. Sci. Instrum. 89, 121502 (2018)
CUORE Construction Photos
CUORE 1 Tonne·Year Results
CUORE Data Taking: 1 Tonne·Year Results

Began data taking in 2017

Stable operations, ~ 50kg·yr/month

Exposure (tonne·yr)

- Total TeO$_2$ exposure
- Analysis exposure (before cuts)
- Cryogenic maintenance

Adams, D.Q. et al. (CUORE Collaboration), Nature 604, 53-58 (2022)
1 Tonne-Year Energy Spectrum

TeO$_2$ exposure: 1038.4 kg·yr

Adams, D.Q. et al. (CUORE Collaboration), *Nature* 604, 53-58 (2022)
1 Tonne-Year Backgrounds

![Graph showing physics data with Q_{ββ} highlighted]

- **Physics data**
 - Base cuts
 - Base cuts + AC
 - Base cuts + AC + PSD

Near sources:
- Crystals, copper holders, foil, 2νββ, crystal impurities, ^{238}U ^{232}Th chains

Far Sources:
- Shields, Cryostat, Decays in ^{238}U and ^{232}Th chains

Externals Sources:
- Environmental muons, γs, and neutrons

*Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)*
1 Tonne·Year Background Fit Results

Nuisance Parameters: Analysis efficiency, energy bias, energy resolution, $Q_{\beta\beta}$, 130Te abundance

Best fit to [2490,2575] keV

Unbinned Bayesian analysis using Bayesian Analysis Toolkit (BAT)

No evidence of $0\nu\beta\beta$

Background-only model:

$b = 1.49(4) \times 10^{-2} \text{ counts/(keV⋅kg⋅yr)}$ (90 % C. I.)

Best fit signal-plus-background model:

$\Gamma_{0\nu} = (0.9 \pm 1.4) \times 10^{-26} \text{ yr}^{-1}$

Fit Parameters: $\Gamma_{0\nu}$, background index, background slope, 60Co rate

CUORE
Exposure: 1038 kg.yr

Best fit (global mode)

90% CI limit on $\Gamma_{0\nu}$

Fit without $0\nu\beta\beta$ component
Bayesian Median Exclusion Sensitivity

10^4 toy-MC spectra with background only model

Fit spectra with signal+bkg model and extract 90% C.I. limit

Median exclusion sensitivity

\[T_{1/2} = 2.8 \times 10^{25} \text{ yr} \ (90\% \ C.I.) \]

72% Probability to get a more stringent limit given current sensitivity

Adams, D.Q. et al. (CUORE Collaboration), *Nature* 604, 53-58 (2022)
CUORE 1 Tonne-Year $0\nu\beta\beta$ Limit

Adams, D.Q. et al. (CUORE Collaboration), *Nature* 604, 53-58 (2022)

$T^{0\nu}_{1/2} > 2.2 \times 10^{25}$ yr (90\% C.I.)
CUORE 0νββ Limit and Sensitivity

Adams, D.Q. et al. (CUORE Collaboration), Nature 604, 53-58 (2022)

CUORE 1 Tonne Limit:
\[m_{\beta\beta} < 90-305 \text{ meV} \]

CUORE Sensitivity (5 yrs)
\[m_{\beta\beta} < 50 - 130 \text{ meV} \]

\[(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) \cdot |M^{0\nu}|^2 \cdot \frac{|<m_{\beta\beta}|^2}{m_e} \]
Other rare decay searches
2νββ Decay Measurement

CUORE Background Model

Geant 4 simulation combined with CUORE detector response

62 simulated sources: Including 2νββ decay in the crystals and contaminants

Produces multiplicity, time resolution, energy dependent trigger efficiencies

The CUORE Collaboration. *Phys. Rev. Lett.* 126:171801 (2021)
The most precise determination of $^{130}\text{Te} \ 2\nu\beta\beta$ decay half-life

$$T_{1/2}^{2\nu} = 7.71^{+0.08}_{-0.06} \text{(stat.)}^{+0.12}_{-0.15} \text{(syst.)} \times 10^{20} \text{ yr}$$

Bayesian analysis performed on single crystal events using background model and MC. Spectral fit from 350 keV to 2.8 MeV.

The CUORE Collaboration. *Phys. Rev. Lett.* 126:171801 (2021)
Other Recent CUORE Results

All results are the most stringent limits on these searches in Te

Double beta decay of 130Te to the first 0^+ excited state of 130Xe

- $0\nu\beta\beta$: $(T_{1/2})^{0\nu}_{0^+} > 5.9 \times 10^{24}$ yr (90% C.I.)
- $2\nu\beta\beta$: $(T_{1/2})^{2\nu}_{0^+} > 1.3 \times 10^{24}$ yr (90% C.I.)

Adams, D.Q. et al. (CUORE Collaboration) Euro. Phys. J. C 81, 567 (2021) https://doi.org/10.1140/epjc/s10052-021-09317-z

128Te $0\nu\beta\beta$

$0\nu\beta\beta$ decay in an additional Te isotope of high isotopic abundance

- $(T_{1/2}) > 3.6 \times 10^{24}$ yr (90% CI).

Adams, D.Q. et al. (CUORE Collaboration) Phys.Rev.C 105 (2022) 065504 https://doi.org/10.1103/PhysRevC.105.065504

120Te Neutrinoless β^+/EC

Additional mechanism of $\beta\beta$

- 120Te β^+/EC: $T_{1/2} > 2.9 \times 10^{22}$ yr (90% C.I.)

Adams, D.Q. et al. (CUORE Collaboration) Phys.Rev.C 105 (2022) 065504 https://doi.org/10.1103/PhysRevC.105.065504
What comes after CUORE?
CUPID and $0\nu\beta\beta$

CUPID: CUORE Upgrade with Particle IDentification

LNGS Gran Sasso National Laboratory

Source/detector: ^{100}Mo
Signal: Peak at 3035 KeV

Upgraded Technology/Systems:
- Scintillating Bolometers
- Particle Identification
- Muon Veto

Baseline Background: 10^{-4} cts/(keV·kg·yr)

Baseline Sensitivity: $m_{\beta\beta} < 10^{-17}$ meV
Baseline projected sensitivity covers the inverted ordering region

CUPID Baseline Sensitivity: \(m_{\beta\beta} < 10^{-17} \text{ MeV} \)
Summary

- CUORE is the first tonne-scale operating cryogenic 0νββ decay experiment
- CUORE is stably operating and aims to collect 5 yr of livetime data
- 1 tonne·yr of CUORE data has been analyzed for 0νββ decay
- CUORE has the leading limit on 2νββ of 130Te
- CUORE’s science program includes multiple rare events searches
- CUPID will build off of the CUORE technology and infrastructure to reach greater sensitivity and cover the inverted ordering region for the 0νββ
Thank you!

Visit https://cuore.lngs.infn.it/en/about/physics for more information!
Back up slides
1 Tonne-Year Parameters and Efficiencies

Parameter	Value
Number of datasets	15
Dead channels	4
Active channels	~934
TeO$_2$ exposure	1038.4 kg·yr
130Te exposure	288 kg·yr
FWHM at Q$_{\beta\beta}$	7.8(5) keV
Trigger threshold	~10 keV
Analysis threshold	40 keV

Efficiency name	% efficiency	Description
oνββ containment	(88.350 ± 0.090)%	Probability for an oνββ event to be M1 and fully contained in the ROI. From MC.
Trigger and energy	96.418(2)%	Includes: trigger, event reconstruction, and pile up
reconstruction		
Multiplicity/	99.3(1)%	Correctly tagging a single crystal event
Anticoincidence		
Pulse shape analysis	96.4(2)%	Efficiency for a good physical pulse to pass pulse shape discrimination cuts
All cuts except	92.4(2)%	Products of the terms above, propagated in quadrature
containment		

Adams, D.Q. et al. (CUORE Collaboration), *Nature* **604**, 53-58 (2022)
Systematics

Implemented as additional nuisance parameters to the fit

Parameter	Dependence	Method/Prior
Analysis efficiency I	Dataset	Gaussian
Analysis efficiency II	Global	Gaussian
Energy bias	Dataset	Fit residual peaks in physics spectrum from literature value with 2nd order polynomial
Energy resolution	Dataset	Fit ratio of FWHM in physics and calibration data with 1st order polynomial
Qbb	Global	Gaussian
130Te isotopic fraction	Global	Gaussian