Structural Determinants Underlying the Temperature-sensitive Nature of a Gα Mutant in Asymmetric Cell Division of Caenorhabditis elegans*5

Christopher A. Johnston‡1,3, Katayoun Afshar‡1, Jason T. Snyder‡, Gregory G. Tall‖, Pierre Gönczy‡‖, David P. Siderovski***, and Francis S. Willard†

From the †Department of Pharmacology and *Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, the ‡Swiss Institute for Experimental Cancer Research and §School of Life Sciences, Swiss Federal Institute of Technology, 1066 Lausanne, Switzerland, and the †Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

Heterotrimeric G-proteins are integral to a conserved regulatory module that influences metazoan asymmetric cell division (ACD). In the Caenorhabditis elegans zygote, GOA-1 (Gζ,α) and GPA-16 (Gα) are involved in generating forces that pull on astral microtubules and position the spindle asymmetrically. GPA-16 function has been analyzed in vivo owing notably to a temperature-sensitive allele gpa-16(it143), which, at the restrictive temperature, results in spindle orientation defects in early embryos. Here we identify the structural basis of gpa-16(it143), which encodes a point mutation (G202D) in the switch II region of GPA-16. Using Gαζ1(G202D) as a model in biochemical analyses, we demonstrate that high temperature induces instability of the mutant Gα. At the permissive temperature, the mutant Gα was stable upon GTP binding, but switch II rearrangement was compromised, as were activation state-selective interactions with regulators involved in ACD, including GoLoco motifs, RGS proteins, and RIC-8. We solved the crystal structure of the mutant Gα bound to GDP, which indicates a unique switch II conformation as well as steric constraints that suggest activated GPA-16(it143) is destabilized relative to wild type. Spindle severing in gpa-16(it143) embryos revealed that pulling forces are symmetric and markedly diminished at the restrictive temperature. Interestingly, pulling forces are asymmetric and generally similar in magnitude to wild type at the permissive temperature despite defects in the structure of GPA-16(it143). These normal pulling forces in gpa-16(it143) embryos at the permissive temperature were attributable to GOA-1 function, underscoring a complex interplay of Gα subunit function in ACD.

* This work was supported, in whole or in part, by National Institutes of Health Grant GM074268 (to D. P. S.). This work was also supported by Swiss National Science Foundation Grant 3100A0-102087 (to P. G.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The atomic coordinates and structure factors (code 2EBC) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

‡ The on-line version of this article (available at http://www.jbc.org) contains supplemental Tables 1 and 2 and Movies S1–S6.

†† Both authors contributed equally to this work.

1 Supported by National Institutes of Health Fellowship GM076944.

2 Supported by American Heart Association Grant 0325033Y.

3 To whom correspondence should be addressed: 1106 M. E. Jones Bldg., CB 7365, Chapel Hill, NC 27599. Tel.: 919-843-9363; Fax: 919-966-5640; E-mail: dsiderov@med.unc.edu.

4 The abbreviations used are: GPCR, G-protein coupled receptor; ACD, asymmetric cell division; GST, glutathione S-transferase; RU, resonance unit; GTPγS, guanosine 5′-3′-O-(thio)triphosphate; RNAi, RNA interference; PDEγ, γ subunit of phosphodiesterase; cGMP, cyclic guanosine monophosphate.

5 To whom correspondence should be addressed: 1106 M. E. Jones Bldg., CB 7365, Chapel Hill, NC 27599. Tel.: 919-843-9363; Fax: 919-966-5640; E-mail: dsiderov@med.unc.edu.

6 Supported by National Institutes of Health Fellowship GM076944.

7 Supported by American Heart Association Grant 0325033Y.

8 To whom correspondence should be addressed: 1106 M. E. Jones Bldg., CB 7365, Chapel Hill, NC 27599. Tel.: 919-843-9363; Fax: 919-966-5640; E-mail: dsiderov@med.unc.edu.

9 The abbreviations used are: GPCR, G-protein coupled receptor; ACD, asymmetric cell division; GST, glutathione S-transferase; RU, resonance unit; GTPγS, guanosine 5′-3′-O-(thio)triphosphate; RNAi, RNA interference; PDEγ, γ subunit of phosphodiesterase; cGMP, cyclic guanosine monophosphate.

The JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 283, NO. 31, pp. 21550 –21558, AUGUST 1, 2008 © 2008 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
lyzed solely using null alleles and RNAi-mediated inactivation, the role of GPA-16 in ACD was discovered using both RNAi and a unique temperature-sensitive allele gpa-16(it143). At 25 °C, 70% of gpa-16(it143) worms die during embryogenesis, with a significant proportion of adult escapers showing reversal of left-right body axis asymmetry (15). At 16 °C, only 2% of gpa-16(it143) worms die during embryogenesis (15), suggesting that GPA-16(it143) somehow supports function at the permissive temperature; however, an analysis of ACD in one-cell stage embryos at this particular temperature has not been conducted previously. The gpa-16(it143) allele encodes a point mutation causing a glycine 202 to aspartate (G202D) change in switch II of GPA-16 (15). We have used enzymology, crystallography, genetics, and cell biology to delineate the molecular mechanism underlying the critical contribution of this residue to GPA-16 function during ACD. Purifying GPA-16 from baculovirus-infected insect cells yields only micrograms of purified protein (9), preventing detailed biochemical and, especially, X-ray diffraction crystallographic structural studies. We have thus also examined the G202D mutation in the context of the most rigorously characterized and experimentally tractable Gα subunit that is most closely related to GPA-16, namely mammalian Gαi1 (9).

EXPERIMENTAL PROCEDURES

Materials—Unless otherwise specified, all reagents were of the highest purity obtainable from Sigma or Fisher (Pittsburgh, PA). Site-directed mutagenesis was conducted using the QuikChange mutagenesis kit (Stratagene, La Jolla, CA).

Protein Purification—Full-length His6-tagged human Gαi1 (wild type and G202D) was purified as described (16, 17). Full-length His6-tagged (wild type and G198D) chimeric Gαi/Gαi1 subunits (18) were purified using standard chromatography methods (16, 19). Care was taken to keep all Gα subunits GDP-bound and at 4 °C throughout their respective purification processes. A GST fusion of rat Ric-8A was purified as described (20). Recombinant Gβ, γ1 dimer incorporating the biotinylation sequence was produced and purified as described (21), with DNA coding for the biotin ligase substrate motif (GLN-DIFEAKQHWKE) inserted upstream of the γ1 coding sequence within the baculoviral shuttle vector pFASTBacHT (Invitrogen). Biotin protein ligase (BirA) was incubated with 50 μM Gβ, γ1 dimer for 24 h at 25 °C under the conditions described by the manufacturer (Avidity, Denver, CO). Resulting protein was buffer-exchanged into phosphate-buffered saline and stored at −80 °C. Full-length GST-tagged human PCP-2 was prepared as described (17). The RGS domain of rat RGS14 was prepared as a GST fusion protein as described (16). Wild type and scrambled RGS12 GoLoco motif synthetic peptides are described in Ref. 22. An N-terminal biotinylated peptide comprising amino acids 63–87 of bovine rod PDEγ is described in Ref. 23.

GTPγS Binding—[35S]GTPγS (PerkinElmer Life Sciences) binding was measured using a filter binding assay as described previously (10). Rate constants were obtained by subtracting nonspecific binding (counts/min obtained in the presence of 100 μM unlabeled GTPγS) and fitting binding curves to a single exponential function in GraphPad Prism version 4.0 (San Diego, CA).

Coimmunoprecipitation and Western Blot Analysis—Generation of worm embryonic extracts and communoprecipitation experiments were performed as described (10) with the following modifications. For each experiment, ~1.5 mg of protein extract and 3 μg of GPA-16 antibodies (9) were utilized. As specified, GDP or GTPγS were included at final concentrations of 100 μM. For testing the interactions at 16 °C, lysates were incubated with antibodies and nucleotides at 16 °C for 40 min; 15 μl of protein G-Sepharose were added, and the incubation was continued at 4 °C overnight. Following immunoprecipitation, SDS-PAGE and Western blot analysis were performed according to standard procedures. RIC-8, GPR-1/2, and GPA-16 primary antibodies (9, 10) were diluted 1:1000 and horseradish peroxidase-conjugated goat anti-rabbit secondary antibodies (GE Healthcare) 1:2000; the signals were revealed by standard chemiluminescence (GE Healthcare).

Circular Dichroism—All CD experiments were performed in Buffer C (10 mM phosphate buffer (KH$_2$PO$_4$/K$_2$HPO$_4$), pH 7.5, 50 mM NaCl, 5 mM MgCl$_2$). For CD experiments, Gα subunits were purified as described (16, 19), but the final purification step was by Sephacryl S200 gel filtration (GE Healthcare) using Buffer C. For CD measurements, 50 μM of Gα subunits were loaded with 100 μM GDP or GTPγS at 15 °C for the times determined to give ~100% binding, based on rate constants (see Fig. 1B). Proteins were then diluted to 4.4 μM in Buffer C and kept at 4 °C. CD was measured using a PiStar-180 spectrophotometer (Applied Photophysics, Surrey, UK). CD was measured at 208 nm (slits 4.0 nm) for 30 s at each temperature. The temperature ramp was conducted using 1 °C steps with a tolerance of ±0.2 °C. Apparent melting temperatures were calculated as the minima of first derivatives with respect to the reciprocal of temperature (25). First differential minima were calculated using Rt-Plot (version 2.7, Horst Reichert, Eppstein, Germany) using the Akima interpolation with a weighting of 1 (26).

Surface Plasmon Resonance—Surface plasmon resonance experiments with GST fusion proteins and biotinylated proteins were performed using a BIAcore 3000 (GE Healthcare) as described previously (19, 27). Sensor surfaces for all experiments were at 15 °C, and all proteins in the sample handler were kept at 4 °C. The eluent buffer was 10 mM HEPES, pH 7.4, 150 mM NaCl, 5 mM MgCl$_2$, and 0.005% (v/v) Nonidet P-40. Nucleotide-specific conformations of Gα were obtained by incubation with eluent buffer supplemented with 100 μM GDP (GDP) or 100 μM GTPγS (GTPγS) or 100 μM GDP, 20 mM NaF, and 30 μM AlF$_4^-$ (GDP-AlF$_4^-$). GTPγS loading was conducted for 3 h at either 15 °C for Gα$_{i1}$ (G202D) or 30 °C for Gα$_{i1}$ (wild type). Loading levels for K$_D$ determination experiments were as follows: biotin-Gβ, γ1 (1400 RU), GST-Ric-8A (300 RU), GST-PCP-2 (400 RU), GST-RGS14 (400 RU), and biotin-PDEγ (500 RU).
RU). Equilibrium binding K_D measurements were conducted at a flow rate of 20 $\mu\text{l/min}$ using protocols described previously (28). Kinetic binding analyses were conducted as described previously (29). Nonspecific binding was determined using a biotinylated mNOTCH control peptide (27) and GST alone (19), respectively. Nonspecific binding was subtracted from experimental data to give binding curves using BIAevaluation software (version 3.0; Biacore).

Crystallization, Structure Determination, and Refinement—To aid crystallization of the labile G202D mutant of Gα_i, we were careful to ensure strict temperature control throughout protein induction (14 °C), purification (4 °C), and crystallization (18 °C). Moreover, crystallization trials were conducted immediately following concentration of purified protein, as freeze-thawed protein was incapable of reproducing crystal growth. Crystals of Gα_i(G202D) were obtained by vapor diffusion from a 1:1 (v/v) ratio of protein solution (10–20 mg ml$^{-1}$ in 50 mM HEPES buffer, pH 8.0, 1 mM EDTA, 100 μM GDP, and 5 mM dithiothreitol) to well solution (1.9 M ammonium sulfite and 100 mM sodium acetate, pH 6.0). Crystals (~0.6 \times 0.3 \times 0.2 mm) were formed in 3–5 days in the

FIGURE 1. Temperature-dependent nucleotide binding, protein stability, and protein interactions of wild type and G202D Gα_i subunits. A and B, time course of GTP$^\gamma S$ binding by wild type and G202D Gα_i, measured at 30 °C (A) or 15 °C (B). 100 nm Gα_i was incubated with 1 μM [35S]GTP$^\gamma S$, and bound nucleotide was measured at indicated times. Data were fit to single exponential association curves (95% confidence intervals in brackets) as follows: 30 °C wild type, 0.017 (0.015–0.019) min$^{-1}$; 30 °C G202D, data could not be fit; 15 °C wild type, 0.0025 (0.0021–0.0028) min$^{-1}$; 15 °C G202D, 0.027 (0.021–0.032) min$^{-1}$.

C and D, CD in millidegrees (mdeg) of 4.4 μM wild type Gα_i (C) or G202D Gα_i (D) was measured at 208 nm in both GDP- and GTP$^\gamma S$-bound conformations. Thermal melting curves were generated by measuring CD values at 1 °C intervals. Data are graphed as mean \pm S.E. The mean melting temperatures (S.E. in parenthesis; n = 3) for wild type Gα_i were GDP 50.2 °C (0.4) and GTP$^\gamma S$ 77.2 °C (0.4) and for G202D Gα_i (D) were GDP 49.5 °C (0.8) and GTP$^\gamma S$ 50.1 °C (0.01). E, co-immunoprecipitation conducted at 16 °C using wild type or gpa-16 (it143) embryonic extracts and GPA-16 antibody, either without (w/o) exogenous nucleotides or in the presence of 100 μM GDP or GTP$^\gamma S$. Immunoprecipitated material was analyzed by Western blot using antibodies against RIC-8, GPR-1/-2, or GPA-16. Input corresponds to 1/70 of starting material.

FIGURE 2. Protein-protein interactions of wild type and Gly-to-Asp mutant Gα_i subunits. Interactions between wild type (WT) or indicated Gly-to-Asp mutated Gα_i subunits and Gα_i, PCP-2 (C and D), Ric-8A (E and F), the RGS domain of RGS14 (G and H), and PDE(63–87) (I and J) were measured using surface plasmon resonance. Proteins were immobilized using biotin-streptavidin coupling (A, B, I, and J) or anti-GST antibody capture (C–H). Indicated concentrations of Gα_i subunits in the GDP (blue), GTP$^\gamma S$ (red), or GDP-AlF$^4^-$ (green) loaded forms were injected over biosensor surfaces at a flow rate of 20 μl/min as denoted by arrows. Binding curves were generated after subtracting nonspecific binding to mNOTCH peptide (A, B, I, and J) or GST (C–H) control surfaces.
Structural features of GDP-bound Gαi1(G202D) compared with GDP-bound and GTPγS-bound wild type Gαi1. A, a superposition of GDP-bound Gαi1(G202D) (green) with wild type Gαi1(GDP/βγ1γ2) heterotrimer (Gαi1, yellow; Gβ1, gray; Gγ2, wheat; Protein Data Bank code 1GP2). Aside from the N-terminal helix, Gαi1(G202D) is largely unaltered compared with wild type. However, the β3/α2 loop containing the G202D mutation is displaced from the nucleotide-binding pocket relative to wild type, Gβγ-bound Gαi1. The partially ordered switch II region that proceeds from the β3/α2 loop does not assume the helical nature typical of Gβγ-bound and activated conformations of Gα. B, superposition of Gαi1(G202D)-GDP (green) and Gαi1-GTPγS (yellow; Protein Data Bank code 1AS3), excluding residues 177–184 and 195–220, GDP, waters, and other heterogeneous molecules, was used as a molecular replacement model for Gαi1(G202D) using Phaser in CCP4 (31). Model building was conducted using real space refinement protocols in Coot as well as a combination of rigid body, simulated annealing, energy minimization, and b-factor protocols in CNS (34). All structural images were made with PyMol (DeLano Scientific, San Carlos, CA).

Fluorescence Spectroscopy—Intrinsic tryptophan fluorescence was measured using an LS55 spectrometer (PerkinElmer Life Sciences). Excitation and emission wavelengths were 292 and 342 nm respectively, with slit widths of 2.5
GPA-16(it143) Is Also Altered at Permissive Temperature

nm. Fluorescence was measured in temperature-controlled cuvettes containing 1 ml of 10 mM Tris/HCl, pH 8.0, 1 mM EDTA, 5 mM MgCl2, 150 mM NaCl. Controls were performed to account for any nonspecific effects of GTPγS addition on fluorescence.

Microscopy and Spindle Severing—Preparation of embryos, time-lapse differential interference contrast microscopy, and spindle severing were performed as described (10, 35, 36). Experiments were conducted using a homemade device that consists of a thermostat and a cooling/heating element coupled to a fan blowing air at the appropriate temperature onto the objective and the microscope stage. The temperature of the embryo during the experiment was monitored using a thermometer inserted in the agarose pad. Measurements of peak velocities of spindle poles following spindle severing were performed essentially as described (36).

RESULTS AND DISCUSSION

G202D Mutation Gives Temperature-dependent Lability to the Activated Ga State—We purified wild type and G202D Ga11 to homogeneity as assessed by SDS-PAGE (data not shown). Ga11(G202D)-GDP migrated in size exclusion chromatography as a monomer and had a circular dichroism spectrum consistent with properly folded Ga (data not shown) (37). We first tested the ability of purified Ga11 to bind nucleotide at 30 °C to approximate conditions found in vivo at the restrictive temperature. Wild type Ga11 bound GTPγS in a saturable manner with an association rate comparable with published values (38) (Fig. 1A). By contrast, Ga11(G202D) rapidly bound GTPγS but in a biphasic manner, peaking at 30 min then rapidly decaying over time. We also examined GTPγS binding at the permissive temperature (Fig. 1B). GTPγS binding by Ga11(G202D) at 15 °C was rapid, monophasic, and stable for up to 15 h. These data suggest that Ga11(G202D) and, by extrapolation GPA-16(it143), undergoes nucleotide state-dependent inactivation at 30 °C but not 15 °C. The rate of GTPγS binding by Ga11(G202D) at 15 °C was over an order of magnitude faster than the wild type protein (Fig. 1B), suggesting that the G202D mutation also enhances spontaneous GDP release.

High spontaneous GDP release engendered by the G202D mutation may contribute to Ga inactivation at the restrictive temperature by promoting the GTP-bound form of the protein. Alternatively, it is well described that nucleotide-free Ga subunits are inherently unstable (20, 39, 40); thus, increased residence of Ga(G202D) in the nucleotide-free state could also contribute to inactivation. This is suggested to be the mechanism of temperature sensitivity of the human Ga(A366S) mutant, which bears an Ala-to-Ser point mutation in the GDP-binding pocket that increases spontaneous GDP release causing constitutive activity (40, 41). Uniquely, this mutation is permissive at the temperature of the human testis (32–33 °C) causing testotoxicosis because of the overproduction of testosterone. In other tissues, the protein is nonfunctional at 37 °C causing pseudohypoparathyroidism, typical of Ga reduction of function (42).

Thermal melting of the Ga family proteins under examination in this study gave a single cooperative transition from predominantly α-helical structure to random coil, as measured by circular dichroism. Normally, activated Ga is significantly more thermostable than inactive Ga; wild type Ga11-GDP had a melting temperature of 50 °C, whereas wild type Ga11-GTPγS had a melting temperature of 77 °C (Fig. 1C) consistent with structural data that the three switch regions of GDP-bound Ga are conformationally flexible, and GTPγS binding induces a distinct, stable switch region conformation (43). In contrast to wild type, GTPγS binding to Ga11(G202D) did not induce a thermostable protein-nucleotide complex; both GDP- and GTPγS-bound Ga11(G202D) had melting temperatures of 50 °C (Fig. 1D). These data suggest a mechanism for the temperature-sensitive loss-of-function in GPA-16(it143); at the permissive temperature, GPA-16(it143) is relatively stable in both the GDP- and GTPγS-bound forms, whereas at the restrictive temperature GPA-16(it143) is unstable in the GTP-bound state, becoming rapidly inactivated. Compatible with this view, the phenotype of gpa-16(it143) embryos at 25 °C is indistinguishable from that of embryos depleted of gpa-16 by RNAi (9, 10).

G202D Mutation Perturbs Nucleotide-dependent Interactions with Ga Regulators—Ga switch regions are involved in mediating interactions with various Ga regulators that are important in ACD (7, 11, 43–48). We examined the ability of Ga11(G202D) to interact with cognate regulatory proteins, performing these experiments at 15 °C to ensure that stable Ga11(G202D) was operative in all cases. As assessed by surface plasmon resonance (SPR), wild type GDP-bound Ga11 exhibited robust interaction with immobilized, biotinylated GBγ1 (Fig. 2A; Table 1), whereas GTPγS- and AlF4−-bound wild type Ga11 had negligible binding, consistent with the known nucleotide state-selective association of Ga with GBγ1 (49). In contrast, Ga11(G202D) exhibited strong interactions with GBγ1 irrespective of nucleotide state (Fig. 2B; Table 1). These results suggest that the G202D mutation impairs the Ga switch region(s) from adopting the activated conformation in response to the ligands GTPγS and GDP-AlF4−.
Wild type Go_{i1} also exhibited GDP-specific binding to the GoLoco motif protein PCP-2 and the guanine nucleotide exchange factor Ric-8A (Fig. 2, C and E; Table 1), consistent with previous studies (9, 17, 20). In contrast, Go_{i1}(G202D) interacted in a nucleotide-independent manner with PCP-2 and Ric-8A (Fig. 2, D and F), and with markedly reduced affinities versus wild type Go_{i1}-GDP (K_{D} for PCP-2 of 7–8 μM versus 800 nM, K_{D} for Ric-8A of 4–5 μM versus 400 nM; Table 1). We and others have previously shown RGS14 and Go_{i} subunits to be involved in mammalian spindle formation and orientation (reviewed in Refs. 1, 5). Whereas wild type Go_{i1} exhibited a high affinity, AlF_{4}-dependent interaction with the RGS14 RGS domain (Fig. 2G) as shown previously (22), no binding was observed between any form of Go_{i1}(G202D) and RGS14 (Fig. 2H). As RGS domains and Go effectors bind distinct (44), but at times overlapping (50), regions of switch II, we examined if the G202D mutation also altered effector binding in the context of a chimeric transducin/Go_{i1} protein (Go_{i1}t/i1) (18) known to exhibit activation-dependent binding to a fragment of the γ subunit of cGMP PDE-γ (23). Wild type Go_{i1}t/i1 bound, in an activation-dependent manner, to immobilized PDE-γ peptide as expected (Fig. 2I; Table 1); however, no binding was seen between ground state (nor activated) Go_{i1}(G198D) and PDE-γ (Fig. 2J; Table 1), suggesting that the Gly-to-Asp substitution abrogated the effector binding properties of Go_{i1}t/i1.

GPA-16(it143) Interacts with GPR-1/-2 and RIC-8 in a Nucleotide-independent Manner—The binding studies detailed above establish that the G202D mutation within switch II renders Go_{i1} unable to interact properly in vitro with many Go regulators, including those that bind activated states (i.e. RGS domains, effectors). We confirmed that GPA-16(it143) exhibits this lack of proper nucleotide state-selective interactions by co-immunoprecipitation using C. elegans embryo extracts. Using this approach, we previously showed that wild type GPA-16 interacts robustly with the GoLoco motif proteins GPR-1/-2 and RIC-8 in the presence of GDP but much less so in the presence of GTPγS, whereas wild type GPA-16 interacts with RIC-8 equally well in the presence of either nucleotide (9). Here we used embryonic extracts from worms grown at 16 °C and conducted co-immunoprecipitation at 16 °C to investigate the behavior of native complexes at the permissive temperature. The interaction between GPA-16(it143) and GPR-1/-2 was decreased compared with wild-type, 16 °C
gpa-16(RNAi), 16 °C
gpa-16(it143), 16 °C
gpa-16(it143)/goa-1(RNAi), 16 °C
gpa-16(it143)/goa-1(RNAi), 25 °C

FIGURE 5. Spindle oscillations occur normally in gpa-16(it143) but not gpa-16(it143)/goa-1(RNAi) embryos at 16 °C. Images from time-lapse differential interference contrast microscopy of wild type (16 °C) (A), gpa-16(RNAi) (16 °C) (B), gpa-16(it143) (25 °C) (C), gpa-16(it143) (16 °C) (D), gpa-16(it143)/goa-1(RNAi) (16 °C) (E), and gpa-16(it143)/goa-1(RNAi) (25 °C) (F) embryos during anaphase (see corresponding supplemental movies 1–6). Black lines depict the distance between the two centrosomes of the spindles, and the dashed circles indicate the position of the posterior spindle pole. Elapsed time is indicated in minutes and seconds; embryos are about 50 μm long, and anterior is to the left, posterior to the right. Note that spindle oscillations occur in both wild type and gpa-16(it143) embryos at 16 °C, but not in embryos of the other genotypes (B, C, E, and F).
GPA-16(it143) Is Also Altered at Permissive Temperature

type GPA-16, whereas that between GPA-16(it143) and RIC-8 was not diminished (Fig. 1E). The interaction between GPA-16(it143) and GPR-1/2 occurred equally well in the presence of GDP or GTP\(\gamma\)S, in contrast to wild type GPA-16 (Fig. 1E). This finding is compatible with the in vitro results of Table 1 and supports the view that GPA-16(it143)-GDP and GPA-16(it143)-GTP can both associate with GPR-1/2 at the permissive temperature in vitro. Overall, these findings suggest that the G202D substitution renders Ga proteins unable to interact properly in vivo with their regulatory proteins.

Structural Changes Caused by the G202D Mutation—We determined the crystal structure of Ga\(_{11}\)(G202D)-GDP to 2.2 Å (Fig. 3; supplemental Table 1). The overall structure of Ga\(_{11}\)(G202D) is largely unaltered from wild type Ga\(_{11}\) (51) with an overall root mean square deviation of 0.38 Å (Fig. 3A). Surprisingly, switch I and III of GDP-bound Ga\(_{11}\)(G202D) adopt conformations similar to those of activated conformations of Ga (Fig. 3B). Arg\(_{278}\) and Thr\(_{181}\), important residues to GTP hydrolysis found in switch I (51), do not undergo significant alterations in side-chain conformation compared with activated Ga structures, despite a slight alteration in the switch I backbone conformation (Fig. 3B and data not shown). The conformation of switch II is unique and likely a direct result of the G202D mutation. Although residues Lys\(_{208}\)–Trp\(_{211}\) of switch II are disordered, the loss of nucleotide selectivity for such interactions (Fig. 2). This weak fluorescence enhancement was reproducible and data not shown). The conformational change upon activation of the Asp\(_{202}\) side chain toward GDP (Fig. 3C) may introduce an electrostatic repulsion causing enhanced GDP release. Although the Asp\(_{202}\) side chain orients directly at the GDP β-phosphate, the distance separating its electronegative carboxylate from the β-phosphate (−5 Å) is great enough to prevent an overt electrostatic or steric clash. However, GTP binding would present significant electrostatic and steric clashes with the Asp\(_{202}\) side chain (Fig. 3B). Such a clash may lead to protein instability, an effect likely exacerbated at elevated temperatures.

We also measured Ga conformational change upon activation by GTP\(\gamma\)S. Ga subunits contain a tryptophan in switch II (Trp\(_{211}\) in Ga\(_{11}\) and GPA-16) that shifts from being solvent-exposed when GDP is bound to a hydrophobic pocket when GTP\(\gamma\)S is bound (reviewed in Ref. 52). Wild type Ga\(_{11}\) gave a substantial increase in Trp fluorescence upon exposure to GTP\(\gamma\)S (Fig. 4A); in contrast, Ga\(_{11}\)(G202D) gave a minimal increase in fluorescence upon incubation with GTP\(\gamma\)S (Fig. 4A). This weak fluorescence enhancement was reproducible and specific (Fig. 4B), albeit severely diminished in magnitude (4% increase over GDP-bound basal fluorescence versus 57% increase of wild type).

Taken together, these findings indicate that Ga\(_{11}\)(G202D) alters the conformation of switch II in response to GTP\(\gamma\)S binding, most likely by preventing complete rotation and translation toward the GTP-binding pocket (53, 54). Combined with the observation that switch I and III conformations in Ga\(_{11}\)(G202D)-GDP are similar to activated Ga\(_{11}\), the G202D-induced changes in switch II conformation help resolve not only the reduced affinity of Ga\(_{11}\)(G202D) seen for certain binding partners (e.g. PCP-2, Ric-8A, and RGS14; Table 1) but also the loss of nucleotide selectivity for such interactions (Fig. 2).

Normal Pulling Forces Seen at the Permissive Temperature in gpa-16(it143) Embryos Are GOA-1-dependent—We also evaluated the consequences of the G202D mutation on GPA-16 function in vivo by analyzing pulling forces on astral microtubules in gpa-16(it143) embryos at 16 °C. In wild type embryos, the posterior aster undergoes characteristic oscillations transverse to the longitudinal axis, reflecting the extent of pulling forces acting on the spindle poles (Fig. 5A and supplemental movie 1) (7). Although oscillations are largely abolished in gpa-16(it143) embryos at 25 °C (Fig. 5C and supplemental movie 3) (9), they are indistinguishable from wild type oscillations in gpa-16(it143) embryos at 16 °C (Fig. 5D and supplemental movie 4), suggesting that pulling forces are intact at the permissive temperature. We conducted in vivo laser microbeam-mediated spindle severing to reveal the extent of net pulling forces acting on each spindle pole (36). Pulling forces in wild type embryos were reduced at 16 °C compared with 25 °C (Fig. 6 and supplemental Table 2), presumably a reflection of a global slowing at the lower temperature of biochemical reactions, such as microtubule dynamics known to be important for pulling force generation (14). However, net pulling forces were not decreased in gpa-16(it143) embryos at 16 °C compared with 25 °C and, more surprisingly, were even slightly increased on the anterior spindle pole in comparison with wild type at 16 °C (Fig. 6). Intact pulling forces in gpa-16(it143) embryos at 16 °C cannot be ascribed to GPA-16 being dispensable for pulling forces at this temperature, because gpa-16(RNAi) embryos at 16 °C did not exhibit oscillations (supplemental Movie 2, Fig. 5B, and supplemental movie 2) and had decreased pulling forces (Fig. 6).

To test whether normal pulling forces at 16 °C in gpa-16(it143) embryos may be sustained by GOA-1 function, given that GPA-16 and GOA-1 are partially redundant for force generation (8), we inactivated goa-1 using RNAi in gpa-16(it143) embryos. Oscillations were absent and pulling forces substan-
GPA-16(it143) Is Also Altered at Permissive Temperature

A wild type

B gpa-16(it143) 25 °C

C gpa-16(it143) 16 °C

D gpa-16(it143); goa-1(RNAi) 16 °C

FIGURE 7. A model for heterotrimeric G-protein function during C. elegans asymmetric cell division and functions of the GPA-16(it143) temperature-sensitive mutant at both the restrictive and permissive temperatures. A, this model, based on published data (7, 9, 10), assumes that GxP bound to GPR-1/2 is crucial for pulling force generation. In the wild type embryo, GOA-1-GDP and GPA-16-GDP interact with the GoLoco motif ("GL") in GPR-1/2 at the cell cortex to mediate pulling forces. GDP/GPR-1/2 concentration is determined by an equilibrium between the levels of free GxP, the amount of free Gβγ, and the amount of GDP/GPR-1/2. For simplicity, we have omitted from this model other regulatory components that likely participate such as RIC-8 (10), RGS-7 (11), and LIN-5 (55). B, GPA-16(it143) is unstable at 25 °C and likely misfolds or has defects in tertiary structure. Loss of functional GPA-16(it143) prevents the formation of GDP/GPR-1/2, thereby decreasing pulling forces. Although not formally tested, it is possible that the loss of functional GPA-16(it143) protein may also lead to an increase in free Gβγ subunits, as illustrated here. This would increase the amount of GDP/GPR-1/2, thereby decreasing pulling forces. C, GPA-16(it143) is stable at 16 °C and has lost the normal nucleotide-state dependence in its Gβγ and GoLoco motif interactions (denoted "GxP"; see Figs. 1E and 2 and Table 1). This leads to an increased amount of GDP/Gβγ, thereby reducing the amount of GDP/GPR-1/2, thus decreasing pulling forces. D, GPA-16(it143) is stable at 16 °C and has lost the normal nucleotide-state dependence in its Gβγ and GoLoco motif interactions (denoted "GxP"; see Figs. 1E and 2 and Table 1). This leads to an increased amount of GDP/Gβγ, thereby reducing the amount of GDP/GPR-1/2, thus decreasing pulling forces.

Conclusions—Our structural, biochemical, and cell biological findings collectively suggest that, at the permissive temperature, GPA-16(it143) is stable but unable to interact properly with crucial regulators, leading to a dominant effect on the Gα-dependent force-generating pathway (Fig. 7). In contrast, at the restrictive temperature, our biochemical and functional analyses suggest that GTP binding destabilizes the protein, leading to a loss of activity. Moreover, enhanced spontaneous GDP release by the G202D mutation may contribute to inactivation at the restrictive temperature by promoting either the nucleotide-free form known to be highly unstable (39, 40) or the GTP-bound form, which we show here is also unstable.

AUGUST 1, 2008•VOLUME 283•NUMBER 31
JOURNAL OF BIOLOGICAL CHEMISTRY 21557

initially diminished in such embryos at 16 °C (Fig. 5, E and F, and Fig. 6; supplemental Table 2). Thus, the pulling forces observed in gpa-16(it143) embryos at the permissive temperature are entirely GOA-1-dependent. One likely possibility is that GPA-16(it143) at 16 °C has a dominant interfering function, trapping a negative regulator of force generation and thus allowing GOA-1 to generate more extensive pulling forces than normally found in the wild type embryo. As suggested by our biochemical and structural analyses, GPA-16(it143) may be permanently bound to Gβγ because of its inability to change switch II conformation upon GTP binding. Thus, at 16 °C, GPA-16(it143) could act to sequester Gβγ (Fig. 7). Compatible with this view, pulling forces on the anterior spindle pole in gpa-16(it143) embryos at 16 °C are even slightly higher than in wild type embryos, a phenotype reminiscent of depletion of the Gβ subunit GPB-1 (9, 10). The relationship between total levels of Gα and Gβγ is crucial for pulling forces, as depletion of GPB-1 alone or in combination with either GOA-1 or GPA-16 results in exaggerated pulling forces (9). Thus, at the permissive temperature, gpa-16(it143) may be thought of as a gain-of-function allele that increases the amount of GOA-1 freed from Gβγ, thus leading to higher pulling forces.
exhibit a clear reduction in pulling forces much like gpa-16(RNAi) embryos (9, 10). Future studies will help to further clarify the differential biochemistry and spatiotemporal dynamics of GPA-16 and GOA-1 in C. elegans embryos and thus better illuminate the conserved actions of Go subunits in governing ACD across metazoan evolution.

Acknowledgments—We thank Ashutosh Tripathy for assistance with CD, Alex Singer and John Sondek for helpful discussions, and Keith Jones for a reprint.

REFERENCES