Numerical investigation on the thermal behavior of an innovative waffle slab

Xue Song¹*, Yu Zhoujian¹, Zhang Yue¹, Xie Qun¹

¹ School of Civil Engineering and Architecture, University of Jinan, Shandong, 250022, China
*Corresponding author’s e-mail: 1776380389@qq.com

Abstract. This paper proposed an innovative waffle slab, which had obvious distinction in configuration compared with traditional waffle slab and possessed the superiority on multi-storey residence building. In order to investigate the thermal behavior of this innovative waffle slab, the numerical simulation was carried out by ABAQUS software in this paper. The bottom of slab model was exposed to fire and the ISO-834 standard temperature curve was adopted. The temperature distribution was first analyzed and discussed, and the results showed the ribs behaved as the single side fire-exposed beam. The maximum temperature of slab top could reach up to 200°C after a fire-exposed of two hours. And a calculation formula was proposed by model data to predict the fire ablation depth.

1. Introduction
With the purpose of reducing the self-weight of floors, architects and structural designers often deploy waffle slabs to cover a large space, which provide enough flexural strength and rigidity for structure and are quite robust as a structural system to support greater loads over a large span[1]. The dimensions and spacing of ribs are determined in a manner so as to achieve better load distribution without requiring the shear reinforcement[2]. This paper proposed an innovative waffle slab, which adopts precast technology to speed up the construction and reduce the consumption of labor and material. All steel segments are precast and then assembled to form steel system in site. Compared with traditional waffle slab, there are several typical characteristics of this floor system, including welded steel wire mesh laid in top concrete wythe, orthogonal steel trusses used to reinforce concrete ribs and foamed concrete blocks filled among the ribs with the purpose of heat insulation and fire resistance. The configuration details are illustrated in Figure 1. A special template system is designed for the installation and concrete cast of the slab, which is showed in Figure 2.
Several theoretical analysis on waffle slab were successively developed, including the orthotropic plate theory[3], the equivalent thickness method[4-5], the moment distribution coefficients method[6-7], the grillage method[8] and the yield line theory[9]. In addition, large-scale experimental tests were also conducted. Abdul-Wahab HMS and Khalil MH[10] studied the behavior of reinforced concrete waffle slabs with a square layout of ribs. Tests to failure were carried out on eight large-scale models with varied rib spacing and rib depth. The strength and rigidity was evaluated based on an alternative simplified approximate method. Guo et al.[11] had investigated the rigidity and moment distribution of steel-concrete composite waffle floor systems considering the spatial effect. Al-Bayati et al.[12] analyzed the concentric punching shear of waffle slab. Although many researchers had conducted investigations on waffle slab, more attention was focused on the statistic and dynamic performance of waffle slab under ambient temperature, less investigations about waffle slab were found on the thermal behavior. However, fire disaster frequently happened in buildings, it is essential to obtain the the fire behavior of waffle slab and furthermore make a reasonable fire resistance design. This paper aimed to discussed the thermal behavior of the innovative waffle slab.

2. Model details
For the purpose of heat transfer analysis, the 3D model of the slab was established by ABAQUS which is showed in Figure 3. The dimension and rebar diameter are shown in Table 1. The specimen with aspect ratio of 1 is expected to behave as two-way slab. The ribs height is 170mm and the width is 90mm, the thickness of top concrete wythe is 50mm, thus, the dimension of foamed concrete blocks.
is 510mm×510mm×170mm. The end beams along four edges are designed as 150mm width and reinforced by four 14mm diameter rebar.

Length	Width	Depth	Aspect ratio	Diameter of rebar in truss	Steel wire diameter	Longitudinal rebar diameter
2010	2010	220	1	14	6	6

Table 1. The dimension and rebar diameter in the model [unit: mm].

The element DC1D2 is used for rebar in model while DC3D8 element for concrete. Binding constraint is considered to simulate the connection between rebar and concrete at temperature analysis phase. The Binding constraint is also used to achieve the connection between foamed concrete blocks and concrete component. The whole model is meshed with cubic cells in a side length of 0.04m. The slab model is expected to exposed to fire at the bottom, and the ISO-834 standard temperature curve is used in this research. In order to obtain accurate temperature field along the ribs cross-section, more refined mesh was conducted on the ribs. A room temperature 20°C is specified as an initial condition and it is assumed that the initial temperature is uniformly distributed throughout the whole model.

3. Analysis results

The temperature distribution of the slab at ISO-834 standard temperature curve was presented in Figure 4. The results showed the foamed concrete blocks exhibited an important effect on the temperature field along the ribs cross-section, where the temperature decreased from the bottom to the top. The ribs behaved as the single side fire-exposed beam. At same height level, the temperature of foamed concrete blocks were lowered compared with ribs. The parabolic temperature curves were distributed at the cross-section of foamed concrete blocks.
Figure 4. The temperature distribution, (a) Along the cross-section, (b) At the top surface.

Figure 5. The temperature development. Figure 6. The fire ablation depth calculation formula. Figure 5 exhibited the temperature development of the concrete and rebar, it was noticed that the temperature of the bottom concrete was the same as the ISO-834 standard temperature curve, sharp temperature rise was obtained at the begin for the bottom concrete and rebar. The maximum temperature of slab top concrete could reach up to 200°C after a fire-exposure of two hours. In fire resistance design, it is often ignored for T>500°C concrete, therefore, the average height of the 500°C isotherm located at the ribs was defined as the fire ablation depth of the slab. The fire ablation depth of the slab at different fire-expose time could be calculated according to the numerical simulation of the temperature field, the linear interpolation method was employed in the calculation and the results were listed in Table 2, where \(H_{t=500°C} \) means the fire ablation depth. Furthermore, a calculation formula was linearly fitted to predict the fire ablation depth of the slab as shown in Figure 6, where \(t \) is the fire exposure time.

Time (min)	\(t = 20 \) min	\(t = 40 \) min	\(t = 60 \) min	\(t = 80 \) min	\(t = 100 \) min	\(t = 120 \) min
\(H_{t=500°C} \)	49.5mm	66.2	76.7	95.3	105.9	122.5

4. Conclusions

An innovative waffle slab with unique configuration has been proposed in this paper, which adopts precast technology to speed up the construction and reduce the consumption of labor and material. To
investigate the thermal behavior, a numerical simulation was carried out by ABAQUS software. The results can be shown as following:

(1) The foamed concrete blocks exhibited an important effect on the temperature field along the ribs cross-section, where the temperature decreased from the bottom to the top. The ribs behaved as the single side fire-exposed beam.

(2) The height of the 500°C isotherm located at the ribs was considered as the fire ablation depth of the slab. The fire ablation depth of the slab at different fire-expose time had be calculated, and a calculation formula was linearly fitted to predict the fire ablation depth of the slab.

Acknowledgements
This work was financially supported by the Natural Science Foundation in Shandong Province of China (Grant no. ZR2014EL037) and the Education Foundation for Scientific and Technological Projects in Colleges and Universities in Shandong Province of China (Grant no. J13LG06).

References
[1] Chowdhury, I., Singh, J.P. (2012) Analysis and Design of Waffle Slab with different Boundary Conditions. Indian Concrete Journal, 85: 43-52.
[2] Prasad, J., Chander, S., Ahuja, A.K. (2005) Optimum dimensions of waffle slabs for medium size floors. Asian Journal of Civil Engineering (Building and Housing), 6: 183-97.
[3] Timoshenko, S.P., Woinowsky-Krieger, S. (1959) Theory of plates and shells. McGraw-Hill, New York.
[4] Bares, R., Massonnet, C. (1966) Analysis of beam grids and orthotropic plates. Lockwood, London.
[5] Cusens, A.R., Pama, R.P. (1975) Bridge deck analysis. Wiley, London.
[6] Reiss, M., Sokal, J. (1972) Design of ribbed flat slabs. Struct Eng, 50: 232-244.
[7] Ibrahim, A., Salim, H., El-Din, H.S. (2011) Moment coefficients for design of waffle slabs with and without openings. Eng Struct, 33: 2644-52.
[8] Regan, P.E. (1981) Behaviour of reinforced concrete flat slabs. In: Construction Industry Research and Information Association.
[9] Ji, X.R., Chen, S.J., Huang, T., Lu, L.W. (1986) Deflection of waffle slabs under gravity and in-plane loads. American Concrete Institute, 86: 283-294.
[10] Abdul-Wahab, H.M.S., Khalil, M.H. (2000) Rigidity and strength of orthotropic reinforced concrete waffle slabs. J Struct Eng, 126 : 219-227.
[11] Guo, Y.T., Tao, M.X., Nie, X., Fan, J.S. (2017) Rigidity and moment distribution of steel-concrete composite waffle floor systems considering the spatial effect. Engineering structures, 143: 498-510.
[12] Al-Bayati, A.F., Leong, L.T., Clark, L.A. (2015) Concentric Punching Shear of Waffle Slab. ACI Structural Journal, 112:43-57.