The second study involved chronic administration of aspartame for 6 days followed by induction of carrageenan-induced monoarthritis. Interestingly, although aspartame in a dose of 50 mg/kg reduced mechanical pain, it did not demonstrate any significant anti-inflammatory effect. These findings appear to contradict the anti-inflammatory effect of aspartame in doses of 4 and 8 mg/kg observed in our study. Although aspartame has demonstrated anti-inflammatory potential in two separate experimental models of inflammation in soft tissues, it has failed to display the same in experimental arthritis despite the increased dose and duration. One possible explanation of these findings could be the differences in the underlying pathophysiologic mechanisms of inflammation in the three different experimental models. It is suggested that anti-inflammatory effect of aspartame could be further evaluated in other animal experimental models.

In view of the above studies and its reported analgesic and antipyretic effects, aspartame holds promise as a potential therapeutic agent. Further pharmacological studies including clinical studies are required to explore the full therapeutic potential of aspartame.

Sapna Pradhan, U. H. Shah, A. G. Mathur, S. Sharma
Department of Pharmacology, Army College of Medical Sciences, Near Base Hospital Delhi, India

Address for correspondence: Sapna Pradhan, Department of Pharmacology, Army College of Medical Sciences, Near Base Hospital, Delhi Cantt-10, India. E-mail: drsapnapradhan@gmail.com

DOI: 10.4103/0976-500X.72357

REFERENCES

1. Butchko HH, Stargel WW, Comer CP, Mayhew DA, Benninger C, Blackburn GL, et al. Aspartame: review of safety. Regul Toxicol Pharmacol 2002;35:1-93.
2. European Commission Health and Consumer Protection Directorate-General Scientific Committee on Food. Opinion of the scientific committee on food: update on the safety of aspartame. SCF, 2002.
3. Magnuson BA, Burdock GA, Doull J, Kroes RM, Marsh GM, Pariza MW, et al. Aspartame: a safety evaluation based on current use levels, regulations and toxicological and epidemiological studies. Crit Rev Toxicol 2007;37:629-727.
4. Eyassu G. Abegaz. Aspartame not linked to cancer. Environ Health Perspect 2007;115:16-7.
5. Weihrauch MR, Diehl V. Artificial sweeteners—do they bear a carcinogenic risk? Ann Oncol 2004;15:1460-5.
6. Michael EJL. Aspartame and its effects on health. BMJ 2004;329:755-6.
7. Butchko HH, Stargel WW. Aspartame: scientific evaluation in the postmarketing period. Reg Toxic Pharma 2001;34:221-33.
8. Wolraich ML, Lindgren SD, Stumbo PJ, Stegink LD, Appelbaum MI, Kiritsy MC. Effects of diets high in sucrose or aspartame on the behavior and cognitive performance of children. N Engl J Med 1994;330:301-7.
9. Spiers PA, Sabounjian L, Reiner A, Myers DK, Wurtman J, Schomer DL. Aspartame: neuropsychologic and neurophysiologic evaluation of acute and chronic effects. Am J Clin Nutr 1998;68:531-7.
10. Edmundson AB, Manion CV. Treatment of osteoarthritis with aspartame. Clin Pharmacol Ther 1998;63:580-93.
11. Sharma S, Jain NK, Kulkarni SK. Possible analgesic and anti-inflammatory interactions of aspartame with opioids and NSAIDs. Ind J Exp Biology 2005;43:498-502.
12. LaBuda CJ, Fuchs PN. A comparison of chronic aspartame exposure to aspirin on inflammation, hyperalgesia and open field activity following carrageenan-induce monoarthritis. Life Sci 2001;69:443-54.
13. Nikfar S, Abdollahi M, Etemad F, Sharifzadeh M. Effects of sweetening agents on morphine-induced analgesia in mice by formalin test. Gen Pharmacol 1997;29:583-6.

Table 1: Effects of aspartame and diclofenac on formalin-induced ascites in rats

Group	Vol. of ascitic fluid (ml)	% Protection
Group I: 0.2 ml distilled water (control)	1.87 ± 0.15	--
Group II: aspartame 2 mg/kg	1.42 ± 0.11	24.06
Group III: aspartame 4 mg/kg	1.32 ± 0.12*	24.41
Group IV: aspartame 8 mg/kg	1.29 ± 0.10*	31.02
Group V: diclofenac 1 mg/kg	1.18 ± 0.10*	36.90

Values are mean ± SEM; n =10 in each group. *P <0.01 as compared to control

Intern doctors’ feedback on teaching methodologies in pharmacology

Sir,

Pharmacology, similar to other branches of medical science, is an everchanging medical subject. It is accepted that reviewing the teaching and evaluation methods by feedback from students and modification of methodologies accordingly is very important for the undergraduate medical teaching.[1,2]

Since quite some time, we have been following the modified teaching (teacher-assisted learning) program, which is also followed at other medical colleges with or without some modifications.[3,4] With a view to improve, we have decided to get feedback for our teaching methodologies and evaluation patterns from intern doctors who have completed their MBBS
course from Govt. Medical College, Surat, as they deal with patients, the concepts of pharmacology become more relevant during internship.

Fifty interns were selected randomly by computer-generated random numbers. Individual interns were approached by one of the investigators with a questionnaire that contained 29 questions, each question having 3–9 options. This questionnaire was based on a previous study[5] and validated by a pilot study done on 15 intern doctors.

We observed that most of the interns had some knowledge in the subject of pharmacology before entering the second year (55.2%, 95% CI 39.7%–69.8%); and 21% (95% CI 11%–36.3%) interns had no idea of the subject before entering the second year. When asked their opinion about pharmacology, 39.4% (95% CI 25.6%–55.2%) interns mentioned that it was “useful and interesting,” 31.5% (95% CI 19%–47.4%) believed that pharmacology is “very useful, practically important and interesting,” and 15.7% (95% CI 7%–30%) mentioned that it was “useful but boring.” Most of the interns found Cardiovascular system (CVS) (30.7%, 95% CI 16.5%–49.9%), Autonomic nervous system (ANS) (19.2% 95% CI 8.5%–37.8%), respiratory system (11.5%, 95% CI 4%–28.9%) and chemotherapy (15.3% 95% CI 6%–33%) interesting. 22.2% (95% CI 9 to 45.2%) interns mentioned chemotherapy, 22.2% (95% CI 9%–45.2%) mentioned (Central nervous system) CNS and 16.6% (95% CI 5.8%–39.2%) mentioned CVS pharmacology as the most useful subjects during their internship. Most of the interns (55.5%, 95% CI 37.3%–72.4%) found interactive classes based on strict bilateral communication most interesting. Not a single student found student seminars interesting. Only 11% (95% CI 3%–28%) found whole class lecture interesting. Majority of interns mentioned that case study and treatment discussion (35.7%, 95% CI 20.7%–54.1%) and group discussion (32.1%, 95% CI 17.9%–50.6%) should be added as a part of regular teaching to make it more interesting and useful. As much as 50% (95% CI 32.6%–67.3%) interns mentioned that they preferred studying pharmacology in the second year from text books and self-prepared notes; and 46.4% (95% CI 29.5%–64.1%) interns mentioned that they preferred studying from the text books only. Not a single student mentioned about the teachers’ notes (class notes). As much as 55.5% (95% CI 39.5%–70.4%) mentioned that they were studying pharmacology regularly because of the tests/viva and interactive classes. 16.6% (95% CI 7.8%–31.8%) mentioned that they were studying pharmacology regularly because of interest in the subject. 25.7% (95% CI 14.1%–42%) interns mentioned that they learn pharmacology by understanding the subject. 57.1% (95% CI 40.8%–72%) mentioned that their method of learning pharmacology was a combination of grasping, understanding and mugging the subject. 40% (95% CI 21.8%–61.3%) interns favored the discussion of topics, such as drugs used in special conditions, such as liver, kidney dysfunctions, sexual dysfunctions, emergency drugs and others, in lectures/practicals of pharmacology classes. 49.9% (95% CI 31%–61.6%) interns rated pharmacology teaching above all in the second year subjects. As much as 41.6% (95% CI 27.1%–57.8%) rated pharmacology as one of the few important subjects of MBBS course. Most of the interns mentioned that pharmacology should be taught also in or after III MBBS course; of these, 41.6% (95% CI 27.1%–57.8%) of them mentioned that there should be only few lectures related to newer drugs and recent advancements in therapy. As much as 38.2% (95% CI 23.9% to 54.9%) interns mentioned that as compared with other subjects, pharmacology teachers are “mostly good and few average” and 29.4% (95% CI 16.8%–46.1%) mentioned “all good and knowledgeable.”

The best sequence to study systems in pharmacology suggested by interns is general pharmacology, ANS, CVS, respiratory system, gastrointestinal system, central nervous system, endocrine system, chemotherapy, autocoids and others.

The usefulness of various evaluation methods in preparing the students for university examinations rated by interns in decreasing order were Tutorial, Problem-based learning, Multiple choice questions (MCQ), Terminal exam and Prelims exam. As much as 48.4% (95% CI 32.5%–64.7%) found MCQs related to emergency medicine as most interesting part of pharmacology practicals. 73.3% (95% CI 55.5%–85.2%) mentioned that practicals related to emergency medicine is most useful during internship. 89% (95% CI 75.2%–95.7%) interns mentioned that in-depth knowledge of pharmacology is essential to understand clinical therapeutics. 70.2% (95% CI 54.2%–82.5%) interns favored the incorporation of clinical pharmacology in internship training. Of these, 32% pointed that it should be bed side learning. 31.4% (95% CI 18.5%–47.9%) interns mentioned that they wanted to opt for a career in pharmacology. Most of the interns (60%, 95% CI 42.3%–75.4%) mentioned that there is a good scope for pharmacology in industry and research. Some of the qualities mentioned by interns regarding good pharmacology teachers are knowledge of the subject, good communication skills, ability to maintain rapport with the students and ability to make the subject interesting. Important suggestions regarding the modification in pharmacology teaching curricula are making the subject more clinically oriented, having more interactive classes, more problem-based learning and more MCQs.

In this study, many interns mentioned about not having any knowledge of pharmacology before entering the second year MBBS course. An overview of different subjects at the start of the first year of MBBS course may be helpful. Bilateral communication enhances the students’ involvement in lectures, which might improve their performance in the exams, hence it was the most preferred.[5] Similar to a previous study, student seminar was not popular.[6] Many interns favored the introduction of bedside training of clinical pharmacology during internship, which is also supported by other studies.[7]
About one third of interns wanted to opt for a career in pharmacology and this shows the growing popularity of pharmacology and the demand for pharmacologists in the industry and research institutes.

Jaykaran, Nilesh Chavda, Preeti Yadav,
N. D. Kantharia

Department of Pharmacology, Government Medical College,
Surat, Gujarat, India

Address for correspondence:
Jaykaran, Department of Pharmacology, Government Medical College, Surat, Gujarat, India. E-mail: drjaykaran@yahoo.co.in

DOI: 10.4103/0976-500X.72359

REFERENCES

1. Ruth N. Communicating student evaluation of teaching results: rating interpretation guides (RIGs). Assess Evaluation Higher Educ 2006;25:121-34.
2. Victoroff KZ, Hogun S. Students’ perceptions of effective learning experiences in dental school: a qualitative study using a critical incident technique. J Dental Educ 2006;70:124-132.
3. Bhavsar VH, Vajpeyee SK, Joshi NJ, Mistry SD, Kantharia ND, Sharma AK, et al. Training during practical pharmacology sessions for undergraduate medical students: An experience with a modified teaching programme. Indian J Pharmacol 1993;31:176-86.
4. Bhavsar VH. Experience regarding modification of teaching and the evaluation pattern in practical pharmacology. Indian J Pharmacol 2004;36:385-9.
5. Kaufman M, Mann V. Achievement of Students in a Conventional and Problem-Based Learning (PBL) Curriculum. Adv Health Sci Edu 1999;4:245-60.
6. Garg A, Rataboli PV, Muchandi K. Students’ opinion on the prevailing teaching methods in pharmacology and changes recommended. Indian J Pharmacol 2004;36:155-58.
7. Kela AK, Mehta VL. Impacts of inclusion of clinical projects in undergraduate teaching. Indian J Pharmacol 1993;25:249-30.
8. Han WH, Maxwell SRJ. Are medical students adequately trained to prescribe at the point of graduation? Views of first year foundation doctors. Scottish Med J 2006;51:27-32.