IDENTIFICATION OF KEY RESIDUES DETERMINING SPECIES DIFFERENCES IN INHIBITOR BINDING OF MICROSOMAL PROSTAGLANDIN E SYNTHASE-1

Sven-Christian Pawelzik‡, Narasimha Rao Uda‡, Linda Spahiu§, Caroline Jegerschöld¶, Patric Stenberg§, Hans Hebert¶, Ralf Morgenstern†, Per-Johan Jakobsson‡

‡ Department of Medicine, Rheumatology Unit, Karolinska Institutet, S-171 77 Stockholm, Sweden.
§ Actar AB, Nobels väg 3, S-171 77 Solna, Sweden and NovaSAID AB, Fogdevreten 2a, S-171 77 Solna, Sweden.
¶ Department of Biosciences and Nutrition, Karolinska Institutet and School of Technology and Health, Royal Institute of Technology, Novum, S-141 57 Huddinge, Sweden.
† Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden.

1 To whom correspondence should be addressed: Ralf Morgenstern, Tel.: +46-8-52487574; Fax: +46-8-343849; e-mail: Ralf.Morgenstern@ki.se. Per-Johan Jakobsson, Tel.: +46-8-51776394; Fax: +46-8-51776099; e-mail: Per-Johan.Jakobsson@ki.se.

Author contributions.
S.-C.P., P.S., P.-J.J., and R.M. designed research, S.-C.P., N.R.U., and L.S. performed research, S.-C.P., P.-J.J., and R.M. analysed data, C.J. and H.H. created the homology model, S.-C.P. wrote the paper with contribution from all co-authors.

Key words.
Inflammation, Enzyme mechanisms, Enzyme mutation, Prostaglandins, Membrane proteins, Prostaglandin E2 (PGE2), Non-steroidal anti-inflammatory drugs (NSAIDs), MPGES1 inhibitor, Chimeric protein, Inhibitor binding site

Abstract.
Microsomal Prostaglandin E Synthase-1 (MPGES1) is induced during an inflammatory reaction from low basal levels by pro-inflammatory cytokines and subsequently involved in the production of the important mediator of inflammation, prostaglandin (PG) E2. Non-steroidal anti-inflammatory drugs (NSAIDs) prevent PGE2 production by inhibiting the upstream enzymes Cyclooxygenase (COX)-1 and COX-2. In contrast to these conventional drugs, a new generation of NSAIDs targets the terminal enzyme MPGES1. Some of these compounds potently inhibit human MPGES1 but do not have an effect on the rat orthologue. We investigated this interspecies difference in a rat/human chimeric form of the enzyme as well as in several mutants and identified key residues Thr-131, Leu-135, and Ala-138 in human MPGES1, which play a crucial role as gate keepers for the active site of MPGES1. These residues are situated in transmembrane helix (TM) 4, lining the entrance to the cleft between two subunits in the protein trimer, and regulate access of the inhibitor in the rat enzyme. Exchange towards the human residues in rat MPGES1 was accompanied with gain of inhibitor activity, while exchange in human MPGES1 towards the residues found in rat abrogated inhibitor activity.

Our data give evidence for the location of the active site at the interface between subunits in the homotrimeric enzyme and suggest a model of how the natural substrate PGH2, or competitive inhibitors of MPGES1, enter the active site via the phospholipid bilayer of the membrane.

Introduction.
Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used pharmaceuticals in the treatment of pain, inflammation and fever. They prevent the formation of important lipid mediators, the prostaglandins (PG), via inhibition of cyclooxygenase (COX) enzymes. COX catalyses the conversion of free arachidonic acid to the unstable endoperoxide intermediate PGH2, which in turn is a common substrate for a number of
different terminal enzymes downstream of COX, leading to the formation of PGE\textsubscript{2}, PGD\textsubscript{2}, PGF\textsubscript{2α}, prostacyclin (PGI\textsubscript{2}), and thromboxane (TX) A\textsubscript{2}. Traditional NSAIDs are unselective inhibitors of both COX isozymes and prevent the formation of all prostaglandins, which can lead to severe adverse drug effects, mainly in the gastrointestinal tract. On the other hand, a second generation of NSAIDs, the COXIBs, was developed to specifically inhibit COX-2, the isozyme that is connected with inflammatory diseases and co-regulated with Microsomal Prostaglandin E Synthase-1 (MPGES1), leading to the production of pro-inflammatory PGE\textsubscript{2}. This was believed to prevent inflammation and pain without impairing the physiological functions that COX-1 derived PGs have. Use of COXIBs, however, was accompanied with an increased incidence of severe cardiovascular side effects leading to myocardial infarction and stroke due to a change in the ratio between PGI\textsubscript{2} and TXA\textsubscript{2}. Nowadays, direct pharmacological inhibition of the downstream enzyme MPGES1 is therefore favoured as a promising strategy for the treatment of inflammatory diseases.

In contrast to other enzymes that have been associated with PGE\textsubscript{2} formation, namely MPGES2 (1) and cytosolic PGE\textsubscript{2} synthase (2), targeted knock-out of MPGES1 in mice shows that MPGES1 plays a pivotal role in the production of PGE\textsubscript{2} that mediates acute pain during an inflammatory response and in the pathogenesis of collagen induced arthritis, a disease model of human rheumatoid arthritis (3). Moreover, mice deficient in MPGES1 do not induce fever after injection of bacterial lipopolysaccharide (4). In addition, more PGI\textsubscript{2} than TXA\textsubscript{2} is produced in these mice and atherogenesis is retarded, suggesting a favourable cardiovascular side effect profile for the inhibition of MPGES1 compared to COX (5).

MPGES1 inhibitors are currently developed by several pharmaceutical companies. Some of these compounds potently inhibit the human MPGES1 enzyme but do not have any effect on rat or mouse MPGES1 (6), which complicates animal testing in pre-clinical studies. In order to get insights into the molecular basis for this species difference and to define the inhibitor binding site of MPGES1 we investigated the effect of MPGES1 inhibitors on a rat/human chimeric form of the enzyme and located crucial residues for inhibitor binding to transmembrane helix (TM) 4. Site-directed mutagenesis in combination with the recently solved protein structure (7) revealed that residues Thr-131, Leu-135, and Ala-138 in human MPGES1 are lining the entrance to the putative active site of MPGES1, a crevice between TM1 and TM4 of two adjacent subunits of the MPGES1 trimer, and that the respective residues Val-131, Phe-135, and Phe-138 prevent inhibitor binding in the rat enzyme.

**Experimental Procedures.**

**Materials.** Restriction endonuclease enzymes \textit{BglI} and \textit{NcoI}, T4 DNA ligase, GeneTailor\textsuperscript{TM} Site-Directed Mutagenesis kit, \textit{E. coli} strains DH5\textalpha-\textsuperscript{T}i\textsuperscript{B} and BL21Star\textsuperscript{TM} (DE) pLysS, Luria Broth (LB) and Terrific Broth (TB) media as well as NuPAGE polyacrylamide gels and buffers were purchased from Invitrogen Ltd, Paisley, UK. Recombinant \textit{Pfu} DNA polymerase, isopropyl \textbeta-D-thiogalactopyranoside (IPTG), and PageRuler Prestained Protein Ladder were purchased from Fermentas GmbH, St. Leon-Rot, Germany. Complete protease inhibitor was purchased from Roche Diagnostics GmbH, Mannheim, Germany. Polyvinylidene difluoride (PVDF) membrane was purchased from Pall life sciences, Pensacola, FL, USA. Rabbit polyclonal antiserum raised against purified human MPGES1 was described before (8). Horse radish peroxidase-linked anti-rabbit IgG from donkey and Amersham Hyperfilm ECL were purchased from GE Healthcare AB, Stockholm, Sweden. Super signal west pico ECL substrate was purchased from Thermo Fisher Scientific Inc., Göteborg, Sweden. All other chemicals were obtained from Sigma-Aldrich Sweden AB, Stockholm, Sweden or E. Merck AB, Solna, Sweden. PGH\textsubscript{2} was obtained from Lipidox, Lidingö, Sweden. MPGES1 inhibitors compound I (1-(1-(2-chlorobenzene)-3-N-(naphtalen-1-yl)benzene-1,3-dicarboxamide) and compound II ((4E)-4-[2-(3-bromophenyl)hydrazin-1-ylidene]-1-ethanethiol-1-3-methyl-4,5-dihydro-1H-pyrazol-5-one) were kindly provided by NovaSAID AB, Solna, Sweden.

**Construction of chimeric MPGES1 enzyme.** Chimeric protein was constructed from existing expression vectors pSP19T7LT harbouring the coding sequence for human (9) and rat MPGES1.
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

by endonuclease digestion using BtgI and Ncol. DNA fragments were isolated by agarose gel electrophoresis and ligated into the digested vector backbone containing the coding sequence of the respective other species. The correct sequence of the construct was verified by DNA sequencing (Seqlab Sequence Laboratories Göttingen GmbH, Göttingen, Germany).

Site-directed mutagenesis. Mutations in MPGES1 were created with the help of the GeneTailor™ Site-Directed Mutagenesis System (Invitrogen). The expression vectors pSP19T7LT harbouring the coding sequence for human (9), rat MPGES1 or respective chimeric protein were methylated, and the methylated plasmid DNA was amplified in the mutagenesis polymerase chain reaction using two overlapping primers, one of which contained the target mutation. The resulting unmethylated product DNA containing the mutation was transformed into E. coli DH5α-T1R competent cells. These cells circularise the DNA and digest residual methylated template DNA, leaving only unmethylated, mutated product, which can be isolated and used for further processing. All mutations were verified by DNA sequencing.

Protein expression and subcellular fractionation. The expression constructs containing the correct coding sequence were transformed into E. coli BL21Star™ (DE) pLysS expression hosts. 6 ml of LB medium containing ampicillin (100 µg/ml) and chloramphenicol (20 µg/ml) were inoculated with a single colony of freshly transformed bacteria and incubated overnight at 37°C, 300 rpm shaking. The cultures were diluted 1:50 into 200 ml TB medium containing ampicillin (100 µg/ml) and chloramphenicol (20 µg/ml) in a 500 ml culture flask. The cultures were grown at 37°C, 300 rpm shaking, until the OD₆₀₀ reached 0.45-0.6. At this point expression was induced by the addition of 1 mM IPTG and the temperature was lowered to 30°C. The cultures were allowed to grow for another 7 hours, after which cells were harvested at 4600 rpm for 15 min at 4°C.

The cell pellet from 200 ml culture was resuspended in 1 ml of TSEGP buffer (15 mM Tris/HCl, pH 8.0, 0.25 M sucrose, 1 mM EDTA, 1 mM GSH, 1 x complete protease inhibitor (Roche)). Lysozyme was added to a final concentration of 10 mg/ml, and the mixture was incubated on ice for 20 min. 7 ml TEGP buffer (TSEG buffer without sucrose) was added and cells were lysed by six 30 sec sonication pulses on ice (Bandelin Sonopuls HD2070) at 60% of the maximum power. Cell debris was removed by centrifugation at 10,000 x g for 15 min at 4°C. The supernatant was further centrifuged at 200,000 x g for 1 hour at 4°C. The membrane pellet was washed once and then resuspended in 1 ml resuspension buffer (0.1 M potassium phosphate buffer, pH 7.5, 10% glycerol, 2.5 mM GSH, 1 x complete protease inhibitor (Roche)). Total protein concentration was determined using Bradford protein assay according to the manufacturer’s instructions (Bio-Rad), and aliquots were stored at -20°C.

Immunoblot analysis. Samples were diluted to appropriate concentrations with 1 x NuPAGE SDS sample buffer and heated to 70°C for 10 min. Proteins were then separated on a 4-12% NuPAGE polyacrylamide gels and electroblotted onto a PVDF membrane. The transfer efficiency was visualised by staining the membrane with Ponceau red. Additional protein binding sites on the membrane were blocked overnight at 4°C or for one hour at room temperature, respectively, with 5% (w/v) non-fat dried milk protein in 0.1% TTBS. Membranes were washed 3 times for 10 minutes each with 0.1% TTBS and incubated for 1 hr at room temperature with rabbit polyclonal antiserum directed against purified human MPGES1 at 1:2,500 dilution in 0.05% TTBS. After additional washing the membranes were incubated for 1 hr at room temperature with horse radish peroxidase-linked anti-rabbit IgG at 1:100,000 dilution in 0.05% TTBS. The membranes were finally washed, and chemiluminescence detection was performed according to the manufacturer’s instructions.

MDA-TBA enzyme activity assay. PGH₂ converting activity of the heterologously expressed enzyme was assayed based on a previously described method (10). In short, appropriate dilutions of total protein were made in activity assay buffer (0.1 M potassium phosphate buffer, pH 7.4, 2.5 mM GSH) and incubated on ice with inhibitors as indicated. PGH₂ was added to a final concentration of 20 µM and subsequently incubated for 75 seconds at room temperature. The reaction was stopped by addition of stop solution (25 mM FeCl₂, 50 mM citric acid) to break down remaining PGH₂ to 12-(S)-hydroxy-8, 10-trans-5-cis-heptadecatrienoic acid (12-HHT) and
malondialdehyde (MDA) (11). Thiobarbituric acid (TBA) solution (128.4 mM TBA, 148.15 mM citric acid) was added and samples were incubated for 30 minutes at 80°C to convert MDA into a stable, pink coloured MDA-TBA complex. Fluorescence of the MDA-TBA complex was measured using Victor3V 1420 Multilabel counter (Perkin Elmer) with excitation wavelength 485 nm and emission wavelength 545 nm. Data was analysed using GraphPad Prism version 5.00.

Molecular modeling. The rat MPGES1 homology model is based on the structure of human MPGES1 (PDB ID code 3DWW) as the template and was built using Modeller 9v2 with default settings and scripts. All images of the MPGES1 protein structure were created with PyMol version 0.98.

Results.

Differences in inhibitor sensitivity between human and rat MPGES1. Compound I (Figure 1A) potently inhibits human MPGES1 with an IC$_{50}$ value of 58 nM. It has, however, no effect on the activity of rat MPGES1 (Figure 1B and Table 1). On the other hand, inhibitors like compound II (Figure 1C) inhibit both the human and the rat form of MPGES1, but display only moderate potency, with a factor 10 difference in IC$_{50}$ for compound II as compared to compound I (Figure 1D).

The two orthologue MPGES1 enzymes from rat and human share 77% identical amino acids in their sequence. Differences between the enzymes of these two species are mainly located at the N-terminus as well as in TM3 and TM4 (Figure 2). Almost all amino acids that differ between human and rat MPGES1 are located on the membrane face of the enzyme and point outwards, towards the phospholipid bilayer, as can be seen in the crystal structure of human MPGES1 (Supplemental Figure S1). There are no substitutions in TM2, which forms the core of the functionally active trimeric form of the enzyme and harbours many of the interactions with the cofactor glutathione (GSH). This is in agreement with phylogenetic conservation analyses of other membrane proteins that show residues with a low degree of sequence variation to be located at strategic positions and lipid-facing positions for variable residues (12).

Mapping of the inhibitor binding site to TM4. In order to investigate the species discrimination of compound I towards MPGES1, we first concentrated on the differences within TM4. Evidence from the crystal structure of MPGES1 show that these residues are in close proximity to GSH and the predicted active site (7). Because compound I is competitive towards PGH2 $\ast$, we expected it to bind in this area. We therefore created a chimeric enzyme by replacing residues 115 to 140 from human MPGES1 with the respective residues from rat (Figure 3A). Expression of this and all of the following chimeric and mutated proteins was verified by immunoblot analysis and their PGH2 converting activity. Furthermore, their general ability of being inhibited was confirmed with the species indiscriminative inhibitor compound II (data not shown). The chimeric enzyme hum115rat140hum completely lost its ability of being inhibited by compound I (Figure 3B). On the other hand, rat MPGES1 containing residues 115 to 140 from the human enzyme, chimera rat115hum140rat, gained inhibitory potential and was affected by compound I with an IC$_{50}$ value of 300 nM (Figure 3B and Table 1).

Identification of residues in TM4 involved in inhibitor binding. The part of MPGES1 between residues 115 and 140, which was exchanged between human and rat MPGES1 in the chimeric proteins, contains ten amino acids that differ between the two species; four residues are situated in the loop connecting TM3 and TM4, and six residues within TM4 (Figure 3A). Because exchange of this part confers inhibitor sensitivity to rat MPGES1, one of these ten residues, or a combination of several residues, must play a crucial role in inhibitor binding.

We went on to locate individual residues that are important for inhibitor binding by exchanging single amino acid residues in rat MPGES1 towards the corresponding residue in the human enzyme and tested their ability of being inhibited by compound I. At the highest inhibitor concentration tested (50 µM), all single amino acid mutants retained their full activity (Figure 4A). A combination of three amino acid substitutions in the triple mutant rat V131T, F135L, F138A, however, showed an effect on the inhibition profile. Like human wt MPGES1 or the chimeric protein rat115hum140rat
this mutant was inhibited by compound I, albeit with a higher IC$_{50}$ value of 590 nM (Figure 4B and Table 1). When human MPGES1 was mutated at these three positions towards the corresponding rat residues (triple mutant hum T131V, L135F, A138F), the enzyme became unresponsive to the inhibitor (Figure 4B). Rat enzyme substituted at only two of these positions in different combinations, giving rise to the respective double mutants rat V131T, F135L, rat V131T, F138A, or rat F135L, F138A, resulted also in unresponsive enzyme (Figure 4B).

The protein structure reveals that these three residues are located at the same side of TM4, all being one turn of the helix apart from each other and pointing towards TM1 of the adjacent subunit (Figure 5). They are thus lining the entrance of the crevice between TM4 and TM1 of the neighbouring subunit, which is believed to be the putative substrate binding site. While these residues are relatively small in human MPGES1, they are mostly substituted for bulky aromatic residues in the rat enzyme. Apparently, the inhibitor is sterically hindered to access the active site of rat MPGES1 and thus fails to inhibit the enzyme.

**Interspecies differences in TM1.** Both the chimeric enzyme hum115rat140hum and the rat-to-human triple mutant rat V131T, F135L, F138A were affected by compound I, however, with IC$_{50}$ values that were 5 and 10 times higher as compared to human wt MPGES1 (Table 1). We therefore investigated whether interspecies differences in TM1 have an additional effect on binding of compound I. Val-29 and Ile-32 are the only two residues in TM1 substituted between human and rat that are in the same region as the putative active site (corresponding residues in rat MPGES1 are Ala-29 and Val-32). In the protein structure of MPGES1 they are lining the crevice between subunits in a similar way as residues Thr-131, Leu-135, and Ala-138 in TM4, with an estimated distance of 6.5 Å between Val-32 and Leu-135, and 8.6 Å between Ile-32 and Ala-138 (Figure 6A).

Like the single amino acid residue mutations in TM4, mutation of rat wt MPGES1 at these positions towards the human residues did not convey inhibitor sensitivity to the enzyme (Figure 4A). We therefore mutated the chimeric protein rat115hum140rat at these two positions, one residue at a time and both in combination. However, the resulting mutants displayed similar IC$_{50}$ values as the non-mutated chimeric protein (Figure 6B and Table 1). Hence, the amino acid differences between rat and human in TM1 do not play a crucial role for inhibitor binding of MPGES1.

**Discussion.**

Although inhibition of COX-2 is an effective way to shut down the production of induced pro-inflammatory PGE$_2$ and thus prevent symptoms of inflammation like pain and fever, the use of COXIBs has been limited because of their adverse side effects on cardiovascular systems. By selectively targeting COX-2, which is expressed in vascular endothelial cells along with PGI$_2$ synthase, COXIBs suppress production of anti-thrombotic PGI$_2$ (as measured by its stable urinary metabolite 2, 3-dinor 6-keto PGF$_{1\alpha}$) to a similar degree as traditional non-selective NSAIDs. In contrast to these isoform unspecific NSAIDs, however, COXIBs do not affect levels of COX-1 derived TXA$_2$ and fail to inhibit platelet aggregation ex vivo. Thus, use of COXIBs removes a protective constraint on thrombogenesis, hypertension and atherogenesis in vivo (13), (14), (15).

MPGES1 on the other hand is a terminal prostaglandin synthase and not coupled to any downstream enzymes in the enzymatic cascade. Furthermore, constitutive levels of MPGES1 are normally low, and MPGES1 is highly up-regulated by pro-inflammatory stimuli. Therefore it is generally regarded as a target for pharmaceutical intervention of inflammatory conditions with less severe side effects (16).

In this study we used the MPGES1 inhibitor compound I to probe a rat/human chimeric enzyme as well as different mutants in order to gain insight in the active site of the enzyme. We particularly made use of two distinctive properties of the inhibitor that helped us to draw general conclusions. First, compound I discriminates between the human wt form of MPGES1 and orthologous rodent forms, like the rat wt enzyme. Changes in the amino acid sequence that occurred during evolution, as humans and rodents developed apart, must be regarded as the reason for this species discrimination of compound I. This
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

makes it possible to identify specific residues that differ between the species and are crucial for inhibitor binding. Second, compound I acts as a competitive inhibitor towards the natural substrate PGH₂ and thus binds to the corresponding location of the active site of MPGES1. Interspecies differences that account for inhibitor binding are therefore likely to be located within, or in close proximity to the actual active site.

We found that exchange of residues 115 to 140 in the inhibitor insensitive rat wt MPGES1 results in a chimeric enzyme that is inhibited by compound I with an IC₅₀ similar to the one of human wt MPGES1. Exchange of the same residues 115 to 140 in human wt MPGES1 abrogated inhibitor binding. Furthermore, we identified three specific residues in TM4 that have a particularly important role. Substitution of rat wt MPGES1 at these three positions for the respective human residues was sufficient to gain inhibitory activity, albeit at a higher IC₅₀ value, whereas mutation of these residues in human wt MPGES1 rendered the resulting triple mutant unresponsive towards the inhibitor.

Whereas the human enzyme contains small and aliphatic residues in all three positions, the corresponding residues in rat MPGES1 are aromatic and bulky in two out of three positions. By their strategic positioning at the edge of TM4, pointing towards TM1 of the adjacent subunit in the catalytically active trimer, these aromatic residues occlude the active site and thus function as gate keepers that regulate access for the inhibitor tested in this study.

The sensitive rat enzyme mutants were clearly and almost completely inhibited by compound I. However, the IC₅₀ values differed by a factor of 2 (chimeric enzyme rat|115hum|140rat), and 10 (triple mutant rat V131T, F135L, F138A), respectively, from the IC₅₀ value of human wt MPGES1. Other substitutions between rat and human MPGES1 remote from the active site thus also contribute to the differences in inhibitor potency, albeit less dramatically. It was suggested that MPGES1 alternates between an open and a closed conformation by dynamic flexibility of TM1, regulating access for PGH₂, or a competitive inhibitor, respectively, to the active site (7). Clearly such dynamic opening of the active site in the rodent enzyme does not allow inhibitor entrance as it is occluded by larger residues (131, 135, and 138). The smaller residues in the human enzyme could allow more rapid dynamics, perhaps accounting for the higher activity observed.

The substitutions at positions 131, 135, and 138 occur interestingly only in rat and mouse MPGES1, but not in other rodent orthologues of known sequence (Supplemental Figure S2A). As a consequence of this, rat and mouse are unsuitable rodent models of inflammation when it comes to testing effects of newly developed MPGES1 inhibitors. However, other rodents most likely represent alternatives because their MPGES1 protein is more closely related to the human enzyme (Supplemental Figure S2A), allowing MPGES1 inhibitors with species selectivity to bind. The phenanthrene imidazole MF63 possesses similar properties as our inhibitor compound I in that it inhibits human MPGES1 in the low nM range but not the mouse or rat enzyme, indicating that this species discrimination is a general problem for MPGES1 inhibitors with high potency for the human orthologue. MF63 was shown to inhibit guinea pig MPGES1 with a similar IC₅₀ value as the human enzyme and could be further used in guinea pig models of hyperalgesia, pyresis, and osteoarthritic pain (6). Structural analogues of MF63 showed an improved pharmacokinetic profile and superior in vitro and in vivo activities in a guinea pig hyperalgesia model when compared to MF63 (17). This demonstrates that guinea pigs might be a useful animal model in preclinical tests of MPGES1 inhibitors. In addition, guinea pigs have been used to study inflammatory diseases in several models of arthritis, including antigen induced arthritis (18), and adjuvant induced arthritis (19), (20). Although guinea pigs and humans share the same amino acid residues in positions 131, 135, and 138 of MPGES1, allowing for species discriminating MPGES1 inhibitors to bind, the overall identity of the two enzymes is only 79% and thus similar to that one of rat and mouse (77% and 78% identity, respectively). Because of the moderate overall identity between these species and man, other compounds might fail to inhibit the enzyme in a rodent model, depending of the class of molecule. Therefore, a knock-in mouse expressing human MPGES1 might be a preferable rodent animal model to test anti-inflammatory properties of newly developed MPGES1 inhibitors (6).
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

Four members of the protein superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG) have been structurally characterised and show the same overall fold and organisation as homotrimers. Besides the structures of MPGES1 (PDB ID code 3DWW) (7) and its closest homologue Microsomal Glutathione Transferase 1 (MGST1, PDB ID code 2H8A) (21), which were both solved by electron crystallography, the x-ray structures of Leukotriene C4 Synthase (LTC4S, PDB ID codes 2UUH, 2UUI, and 2PNO) (22), (23), and 5-Lipoxygenase Activating Protein (FLAP, PDB ID code 2Q7M) (24) are available.

The observation of a detergent molecule, bound between TM1 and TM4 of neighbouring subunits in LTC4S, led to the suggestion that it mimics LTA4, the substrate of this enzyme, and thus indicates the active site region of LTC4S (22). This location between subunits of the homotrimer is in agreement with the location of the residues in MPGES1, which we identified in this study as being important for inhibitor binding and for occluding the active site in the rat enzyme. In fact, residue Trp-116 in LTC4S, which is proposed to play a key role in positioning the aliphatic chain of the substrate LTA4 by forming a lid over the \( \omega \)-end (22), corresponds to residue Ala-138 in MPGES1. Furthermore, in a structure of LTC4S that was independently solved by a second group, residues Tyr-109 and Trp-116 (corresponding to Thr-131 and Ala-138, respectively, in MPGES1) but not Arg-113 (the corresponding residue to L135 in MPGES1) have been identified to compose part of the hydrophobic interior of the crevice to which the aliphatic chain of a detergent molecule was bound (23).

Additional supporting evidence in agreement with our findings can be obtained from the FLAP crystal structure. FLAP does not possess known catalytic activity and thus differs from all other MAPEG members in that it has no active site in an enzymological sense. However, it is essential for the enzyme 5-lipoxygenase, leading to generation of lipid mediators of the leukotriene family. It is suggested that FLAP provides arachidonic acid in a way that 5-lipoxygenase can use it as substrate. This activity can be blocked by FLAP inhibitors. In spite of this difference to other MAPEG members FLAP shares the structural characteristics of the MAPEG family. The structure of FLAP was solved in complex with the leukotriene biosynthesis inhibitors MK-591 and an iodinated analogue of MK-591, and is to date the only member of the protein family on which structural information of an inhibitor binding site is available. Among the residues that were found to make contact with MK-591 are Ile-113 in the second cytosolic loop and Leu-120 in TM4 (24), which correspond to residues Thr-131 and Ala-138, respectively, in TM4 of MPGES1 (Supplemental Fig. 3). Further residues in close proximity to the inhibitor include Lys-116, Ile-119, and Phe-123 of TM4 (corresponding to Glu-134, Cys-137, and Ala-141 in MPGES1) and Val-20, Val-21, Asp-23, Glu-24, Phe-25, Ala-27 of TM1 (corresponding to Val-24, Ile-25, Met-27, Tyr-28, Val-29, and Ala-31, respectively in MPGES1). The location of the active site and/or the inhibitor binding site therefore seems to be highly conserved throughout the MAPEG superfamily.

While evidence for the substrate and/or inhibitor binding site in the protein structures of other MAPEG members fit very well with the findings in this work, there is no direct structural data on inhibitor binding in MPGES1 to date. However, two homology models of MPGES1 (25), (26) tried to predict this interaction. Because both models are based on the structure of rat MGST1, they employ the elongated conformation of GSH that was found for this enzyme, instead of the U-shaped conformation as determined for human MPGES1. Xing et al. located the endoperoxide moiety of PGH2 close to the glycine carboxylate of GSH (26). Hamza et al., on the other hand, made the assumption that the highly conserved residue Arg-110 participates in the reaction and hence located the substrate/inhibitor binding site close to this residue (25). Thus, both homology models deviate to a certain degree from the experimentally determined structure of MPGES1, which has a direct impact on the prediction of the substrate/inhibitor binding site. Therefore, the residues we identified in this work to be important for inhibitor binding were not suggested in any of these two homology models.

In conclusion, we have identified crucial residues in TM4 of MPGES1 that function as gate keepers and regulate access to the active site of the enzyme for the inhibitor compound I coming from the lipid bilayer of the membrane. Differences in these
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

positions in rat and mouse MPGES1, but not in other rodent orthologues to the human enzyme explain the selective inhibition pattern of compound I. Furthermore, the corresponding residues in FLAP and LTC4S have been determined to bind to an inhibitor that was co-crystallised, or to a substrate surrogate, respectively, and hence support a high degree of conservation of the substrate/inhibitor binding site within the MAPEG superfamily.

References.

1. Jania, L. A., Chandrasekharan, S., Backlund, M. G., Foley, N. A., Snouwaert, J., Wang, I.-M., Clark, P., Audoly, L. P., and Koller, B. H. (2009) Prostaglandins Other Lipid Mediat. 88, 73-81
2. Lovgren, A. K., Kovarova, M., and Koller, B. H. (2007) Mol. Cell. Biol. 27, 4416-1130
3. Trebino, C. E., Stock, J. L., Gibbons, C. P., Naiman, B. M., Wachtmann, T. S., Umland, J. P., Pandher, K., Lapointe, J.-M., Saha, S., Roach, M. L., Carter, D., Thomas, N. A., Durtschi, B. A., McNeish, J. D., Hambor, J. E., Jakobsson, P.-J., Carty, T. J., Perez, J. R., and Audoly, L. P. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 9044-9049
4. Engblom, D., Saha, S., Engström, L., Westman, M., Audoly, L. P., Jakobsson, P.-J., and Blomqvist, A. (2003) Nat. Neurosci. 6, 1137-1138
5. Wang, M., Zukas, A. M., Hui, Y., Ricciotti, E., Puré, E., and FitzGerald, G. A. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 14507-14512
6. Xu, D., Rowland, S. E., Clark, P., Giroux, A., Côté, B., Guiral, S., Salem, M., Ducharme, Y., Friesen, R. W., Méthot, N., Mancini, J., Audoly, L., and Rienдеau, D. (2008) J. Pharmacol. Exp. Ther. 326, 754-763
7. Jegerschöld, C., Pawelzik, S.-C., Purhonen, P., Bhakat, P., Gheorghe, K. R., Gyobu, N., Mitsuoka, K., Morgenstern, R., Jakobsson, P.-J., and Hebert, H. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 11110-11115
8. Westman, M., Korotkova, M., af Klint, E., Stark, A., Audoly, L. P., Klæreskog, L., Ulfgren, A. K., and Jakobsson, P.-J. (2004) Arthritis Rheum. 50, 1774-1780
9. Jakobsson, P.-J., Thorén, S., Morgenstern, R., and Samuelsson, B. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 7220-7225
10. Basevich, V., Mevkh, A., Yarving, I., and Varfolomeev, S. (1983) Bioorg Khim. 5, 658-665
11. Hamberg, M., and Samuelsson, B. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 3400-3404
12. Fleishman, S. J., Unger, V. M., and Ben-Tal, N. (2006) Trends Biochem Sci. 31, 106-113
13. Grosser, T., Fries, S., and FitzGerald, G. A. (2006) J. Clin. Invest. 116, 4-15
14. McAdam, B. F., Catella-Lawson, F., Mardini, I. A., Kapoor, S., Lawson, J. A., and FitzGerald, G. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 272-277
15. Patrignani, P., Sciulli, M., Manarini, S., Santini, G., Cerletti, C., and Evangelista, V. (1999) J Physiol Pharmacol. 50, 661-667
16. Samuelsson, B., Morgenstern, R., and Jakobsson, P.-J. (2007) Pharmacol. Rev. 59, 207-224
17. Giroux, A., Boulet, L., Brideau, C., Chau, A., Claveau, D., Côté, B., Etheri, D., Frenette, R., Gagnon, M., Guay, J., Guiral, S., Mancini, J., Martins, E., Massé, F., Méthot, N., Rienдеau, D., Rubin, J., Xu, D., Yu, H., Ducharme, Y., and Friesen, R. W. (2009) Bioorg. Med. Chem. Lett. 19, 5837-5841
18. Kuwabara, K., Jyoyama, H., Fleisch, J., and Hori, Y. (2002) Inflammation Res. 51, 541-550
19. Clark, P., Rowland, S. E., Denis, D., Mathieu, M.-C., Stocco, R., Poirier, H., Burch, J., Han, Y., Audoly, L., Therien, A. G., and Xu, D. (2008) J. Pharmacol. Exp. Ther. 325, 425-434
20. Vermeirsch, H., Biermans, R., Salmon, P. L., and Meert, T. F. (2007) Pharmacol. Biochem. Behav. 87, 349-359
21. Holm, P. J., Bhakat, P., Jegerschöld, C., Gyobu, N., Mitsuoka, K., Fujiyoshi, Y., Morgenstern, R., and Hebert, H. (2006) J. Mol. Biol. 360, 934-945
22. Martinez Molina, D., Wetterholm, A., Kohl, A., McCarthy, A. A., Niegowski, D., Ohlson, E., Hammarberg, T., Eshaghi, S., Haeggström, J. Z., and Nordlund, P. (2007) Nature 448, 613-616
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

23. Ago, H., Kanaoka, Y., Irikura, D., Lam, B. K., Shimamura, T., Austen, K. F., and Miyano, M. (2007) Nature 448, 609-612
24. Ferguson, A. D., McKeever, B. M., Xu, S., Wisnewski, D., Miller, D. K., Yamin, T.-T., Spencer, R. H., Chu, L., Ujjainwalla, F., Cunningham, B. R., Evans, J. F., and Becker, J. W. (2007) Science 317, 510-512
25. Hamza, A., AbdulHameed, M. D. M., and Zhan, C.-G. (2008) J. Phys. Chem. B 112, 7320-7329
26. Xing, L., Kurumbail, R., Frazier, R., Davies, M., Fujiwara, H., Weinberg, R., Gierse, J., Caspers, N., Carter, J., McDonald, J., Moore, W., and Vazquez, M. (2009) J. Comput. Aided Mol. Des. 23, 13-24

Footnotes.

* unpublished results

The present work was supported by funds from the Swedish Research Council, Karolinska Institutet, The Swedish County Council, The Swedish Rheumatism Association, the King Gustaf V 80-year fund, Marianne and Marcus Wallenberg foundation, and Börje Dahlin Fund.

The abbreviations used are: MPGES1, Microsomal Prostaglandin E Synthase-1; NSAIDs, Non-steroidal anti-inflammatory drugs; PG, prostaglandin; COX, cyclooxygenase; TM, transmembrane helix; 12-HHT, 12-(S)-hydroxy-8,10-trans-5-cis-heptadecatrienoic acid; MDA, malondialdehyde; GSH, glutathione; MAPEG, membrane-associated proteins in eicosanoid and glutathione metabolism; MGST1, Microsomal Glutathione Transferase 1; LTC4S, Leukotriene C4 Synthase; FLAP, 5-Lipoxygenase Activating Protein

Figure Legends.

Figure 1. MPGES1 inhibitor compound I is selective for human MPGES1. (A) Structure of compound I. (B) Compound I fails to inhibit rat MPGES1, while it is fully active on the human enzyme. (C) Structure of compound II. (D) The enzymatic activity of both human and rat MPGES1 is inhibited by compound II.

Figure 2. The human and rat form of MPGES1 differ mainly in TM3 and TM4. Amino acid sequences of human and rat MPGES1 were aligned using ClustalW. Every 10th residue is indicated by underlined residues. Based on the known structure of MPGES1 the positions of the four transmembrane helices were assigned, indicated with strings of H and the respective numbers of the helices. The consensus sequence denotes identical residues (*), strong conservation (:), weak conservation (.), and unconserved replacements (blank). Species differences are also highlighted in yellow. Differences are located mainly within TM3 and TM4.

Figure 3. Residues 115 to 140 are important for binding of compound I to MPGES1. (A) Parts of TM3 and TM4 were exchanged to the respective sequence of the other species, as indicated in the topology map of human MPGES1. Black circles represent exchanged residues; red circles represent the respective residues in rat MPGES1. (B) The chimeric enzyme rat115hum140rat, containing the human residues 115 to 140, is inhibited by compound I in a similar way as the human wt MPGES1 (shown in grey). Exchange of the same residues in human MPGES1 towards the rat sequence, however, abolishes inhibitor action on chimeric enzyme hum115rat140hum.

Figure 4. Only the triple mutant rat V131T, F135L, F138A is sensitive to inhibition by compound I. (A) Mutation of single amino acid residues within TM1, TM4 or the second cytosolic loop of rat MPGES1 towards the respective human residues has no effect on the binding of compound I. (B) The
triple mutant rat V131T, F135L, F138A is, however, inhibited by compound I in a similar way as the human wt MPGES1 or the chimeric protein rat 115hum140rat (shown in grey). If these residues are mutated in human MPGES1 on the other hand (triple mutant hum T131V, L135F, A138F), the enzyme becomes unresponsive to the inhibitor. Rat MPGES1 substituted at only two of these positions for the respective human residues (double mutants rat V131T, F135L, rat V131T, F138A, or rat F135L, F138A) remains unresponsive to compound I.

**Figure 5. Residues 131, 135, and 138 occlude the entrance to the active site in rat MPGES1.** Residues 131, 135, and 138 (represented with carbon atoms coloured in magenta in stick model on the left side and in space-filling model on the right side) are located in TM4, each with one turn of the helix apart from each other, thus lining the crevice between TM4 and TM1 of an adjacent subunit, which is believed to be the putative substrate binding site. While these residues are relatively small in human MPGES1, they are substituted for bulky aromatic residues in the rat enzyme. (A) Human MPGES1, (B) rat MPGES1. Shown are two neighbouring subunits in blue and green, and one molecule of GSH as stick model with carbon atoms coloured in yellow. Top and bottom are the luminal side and the cytosolic side, respectively, of the ER membrane.

**Figure 6. Residues Val-29 and Ile-32 in TM1 do not contribute to inhibitor binding.** (A) In the protein structure model of human MPGES1 Val-29 and Ile-32 are lining TM1 at the entrance to the inhibitor binding cleft. Val-29 is directly opposing Leu-135, while Ile-32 is situated opposite to Ala-138. (B) When these two residues were mutated in the chimeric protein rat115hum140rat, this did, however, not change the inhibitor binding characteristic of the enzyme.
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

Tables.

Table 1.
Specific activity and IC$_{50}$ values for different forms of MPGES1.

| protein                        | specific activity (nmol min$^{-1}$ mg$^{-1}$) | IC$_{50}$ compound I (nM) | 95% confidence interval (nM) |
|--------------------------------|-----------------------------------------------|---------------------------|-------------------------------|
| human wt MPGES1               | 214                                           | 58                        | 45.0 to 74.7                  |
| rat wt MPGES1                 | 59                                            | n. i. $^b$                |                               |
| rat115hum140rat               | 64                                            | 300                       | 194.8 to 455.2                |
| hum115rat140hum               | 57                                            | n. i.                     |                               |
| rat V131T, F135L, F138A       | 86                                            | 590                       | 435.4 to 796.6                |
| hum T131V, L135F, A138F       | 54                                            | n. i.                     |                               |
| rat V131T, F135L              | 87                                            | n. i.                     |                               |
| rat V131T, F138A              | 50                                            | n. i.                     |                               |
| rat F135L, F138A              | 86                                            | n. i.                     |                               |
| rat115hum140rat-A29V          | 60                                            | 450                       | 268.1 to 738.9                |
| rat115hum140rat-V32I          | 63                                            | 310                       | 177.4 to 530.7                |
| rat115hum140rat-A29V, V32I    | 63                                            | 270                       | 131.9 to 551.3                |

$^a$ related to total protein in E. coli membrane preparations, n $\geq$ 8

$^b$ n. i. = no inhibition
Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1

Figure 1

A

B

C

D

-3 -2 -1 0 1 2
log [compound I] (µM)

0 50 100
activity (%)

-3 -2 -1 0 1 2
log [compound II] (µM)

0 50 100
activity (%)

- human wt
- rat wt

- human wt
- rat wt
Figure 3

A

B

activity (%) vs. log [compound I] (µM)

- human wt
- rat wt
- rat115hum140rat
- hum115rat140hum
Figure 4

A

B

- log [compound I] (µM)

activity (%)

-3 -2 -1 0 1 2

-3 -2 -1 0 1 2

activity (%)

-3 -2 -1 0 1 2

-3 -2 -1 0 1 2

A29V
V32I
M121L
N122R
P123A
R124P
G128V
A129T
V131T
F135L
A136P
F138A

human wt
rat115hum140rat
rat V131T, F135A, F138A
hum T131V, L135F, A138F
rat V131T, F135L
rat V131T, F138A
rat F135L, F138A
Figure 5
Figure 6

A

B

- Activity (%) vs. log [compound I] (µM)
- Rat115hum140rat
- Rat115hum140rat-A29V
- Rat115hum140rat-V32I
- Rat115hum140rat-A29V, V32I

Inhibitor Binding Site of Microsomal Prostaglandin E Synthase-1
Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin e synthase-1
Sven-Christian Pawelzik, Narasimha Rao Uda, Linda Spahiu, Caroline Jegerschold, Patric Stenberg, Hans Hebert, Ralf Morgenstern and Per-Johan Jakobsson

J. Biol. Chem. published online July 6, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M110.114454

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/07/06/M110.114454.DC1