Retirada da ventilação mecânica como procedimento paliativo em uma unidade de terapia intensiva brasileira

Mechanical ventilation withdrawal as a palliative procedure in a Brazilian intensive care unit

INTRODUÇÃO

Durante a hospitalização, um paciente crítico pode não obter mais melhora clínica, e as medidas invasivas podem conflitar com os valores da família e do paciente. A retirada do suporte artificial à vida pode reduzir um prolongamento desnecessário do sofrimento e permitir uma morte digna.(1,2) O oposto pode ser visto como distanásia e potencial uso inadequado de recursos.(3,4)

A retirada da ventilação mecânica (RVM), também conhecida como extubação paliativa, é adequada quando a ventilação mecânica (VM) não mais se alinha com os valores do paciente segundo o prognóstico e os prováveis desfechos.(3,4) As taxas de mortalidade na unidade de terapia intensiva e no hospital foram, respectivamente, de 71% versus 57% e 93% versus 80%, entre os pacientes submetidos à retirada da ventilação mecânica e os que não o foram. O tempo mediano de permanência na unidade de terapia intensiva foi de 7 versus 8 dias (p = 0,6), e o tempo de permanência no hospital foi de 9 versus 15 dias (p = 0,015). A mortalidade hospitalar não foi significativamente diferente (25/31; 81% versus 29/31; 93%; p = 0,26) após o pareamento. O tempo mediano desde a retirada da ventilação mecânica até o óbito foi de 2 dias [0 - 5] e 10/31 (32%) dos pacientes morreram dentro de 24 horas após a retirada dessa ventilação.

Conclusão: Neste relato brasileiro, a retirada da ventilação mecânica representou 11% de todos os pacientes com limitação do tratamento e não se associou com aumento da mortalidade hospitalar após pareamento por escore de propensão das covariables relevantes.

Descritores: Cuidados paliativos; Cuidados críticos; Respiração artificial; Unidades de terapia intensiva

RESUMO

Objetivo: Descrever as características e os desfechos de pacientes submetidos à retirada da ventilação mecânica e comparar a pacientes com ventilação mecânica e limitações de terapias de suporte à vida (limitar ou retirar), porém sem remoção da ventilação mecânica.

Métodos: Este foi um estudo de coorte retrospectiva realizado entre janeiro de 2014 e dezembro de 2018 com pacientes em ventilação mecânica com alguma limitação de suporte artificial de vida admitidos a uma única unidade de terapia intensiva. Foram comparados os pacientes submetidos à retirada da ventilação mecânica e os que não passaram por esse procedimento com relação à mortalidade na unidade de terapia intensiva e ao tempo de permanência no hospital, em uma análise não ajustada e em uma amostra pareada por escore de propensão. Analisou-se também o tempo desde a retirada da ventilação mecânica até o óbito.

Resultados: Dentre 282 pacientes com limitações a terapias de suporte à vida, 31 (11%) foram submetidos à retirada da ventilação mecânica. Não houve diferenças iniciais entre os grupos. No entanto, os pacientes submetidos à retirada da ventilação mecânica tiveram uma tendência de redução na mortalidade na unidade de terapia intensiva e no hospital, respectivamente, de 71% versus 57% e 93% versus 80%, com um tempo mediano de permanência na unidade de 7 versus 8 dias (p = 0,6) e no hospital de 9 versus 15 dias (p = 0,015). A mortalidade hospitalar não foi significativamente diferente (25/31; 81% versus 29/31; 93%; p = 0,26) após o pareamento. O tempo mediano desde a retirada da ventilação mecânica até o óbito foi de 2 dias [0 - 5] e 10/31 (32%) dos pacientes morreram dentro de 24 horas após a retirada dessa ventilação.

Conflitos de interesse: Nenhum.

Submetido em 12 de fevereiro de 2020
Aceito em 19 de abril de 2020

Autor correspondente:
Fábio Holanda Lacerda
Instituto Central, Hospital das Clínicas
Faculdade de Medicina, Universidade de São Paulo
Rua Dr. Enéas de Carvalho Aguiar, 255, 6o andar,
sala 6.040
CEP: 05403-000 - São Paulo (SP), Brasil
E-mail: lacerdafh@gmail.com

Editor responsável: Antonio Paulo Nassar Jr.
DOI: 10.5935/0103-507X.20200090
Retirada da ventilação mecânica como procedimento paliativo em uma unidade de terapia intensiva

desfechos. Embora a extubação paliativa venha sendo discutida por muitos anos(5,6) e até mesmo associada com melhor satisfação dos parentes com o cuidado,(7) ainda há uma considerável variabilidade de decisões em todo o mundo quanto a limitar/retirar terapias de suporte à vida (TSV). (8) Mais ainda, essas decisões são menos frequentes em países de baixa ou média renda. (9)

Embora seja frequentemente preferido no Brasil limitar as TSV(10) a RVM tem sido cada vez mais estudada e, assim, reconhecida como um procedimento adequado em certas circunstâncias. (11) No Brasil, a decisão de retirar as TSV se associa com a educação do médico em relação aos cuidados de final da vida e a percepção a respeito de procedimentos fúteis. (10,12) Entretanto, as práticas de RVM necessitam de melhor caracterização. (4,13)

Nosso objetivo foi caracterizar pacientes com VM admitidos a uma única unidade de terapia intensiva (UTI) com uma decisão de limitar ou retirar TSV, comparando os pacientes que foram submetidos à RVM com os que não tiveram RVM. Nossa hipótese é a de que pacientes submetidos a RVM morreriam antes, porém teriam mortalidade hospitalar semelhante.

MÉTODOS

Este foi um estudo de coorte retrospectiva em um único centro, realizado entre janeiro de 2014 e dezembro de 2018. Incluímos todos os pacientes com VM com limitações de TSV (limitar ou retirar). Os tratamentos de suporte à vida para nossa finalidade foram uso de vasopressores, terapia de substituição renal, VM ou ressuscitação cardiopulmonar durante a permanência na UTI. Incluímos apenas a última admissão de cada paciente.

O Comitê de Ética em Pesquisa dispensou a necessidade de obter um Termo de Consentimento Livre e Esclarecido, levando em conta a natureza retrospectiva do estudo (aprovção número 1.700.252/CAAE: 58827116.0.0000.5533).

A UTI do Hospital da Luz é mista e tem 20 leitos. A equipe da unidade inclui um médico para cada cinco leitos durante a manhã e um médico para cada dez leitos durante a tarde, turno da noite e finais de semana; um enfermeiro para cada sete leitos durante a manhã e um médico para cada dez leitos durante o período do estudo foram colhidas a partir da base de dados de qualidade da UTI (Epimed Monitor). (15) As variáveis basais avaliadas foram idade, sexo, Simplified Acute Physiology Score (SAPS 3), Sequential Organ Failure Assessment (SOFA), condição funcional pré-morbidade, comorbidades, escore Charlson de comorbidades e tipo de admissão. Também foram obtidas informações sobre uso de vasopressores, traqueostomia, VM e terapia de substituição renal a qualquer momento durante a permanência na UTI. A condição funcional pré-morbidade foi classificada em três categorias ordinais: independente (Eastern Cooperative Oncology Group - ECOG(16) 0 or 1), parcialmente dependente (ECOG 2) e restrito ao leito (ECOG > 2).

O desfecho primário foi mortalidade hospitalar. Os desfechos secundários incluíram mortalidade na UTI, tempo de permanência na UTI e hospital e tempo entre a RVM até o óbito ou alta hospitalar.

O primeiro autor também revisou as fichas dos pacientes submetidos à RVM que foram discriminados na reunião com a família – e, quando possível, com o paciente – para discutir os OT e as limitações de TSV. Quando se decide que a RVM é a melhor alternativa, utiliza-se um protocolo institucional como orientação para toda extubação paliativa, embora seja fortemente recomendado evitar seguir uma “receita de bolo” - mas antes uma abordagem individualizada.

As variáveis obtidas de todos os pacientes durante o período do estudo foram colhidas a partir da base de dados de qualidade da UTI (Epimed Monitor). (15) As variáveis basais avaliadas foram idade, sexo, Simplified Acute Physiology Score (SAPS 3), Sequential Organ Failure Assessment (SOFA), condição funcional pré-morbidade, comorbidades, escore Charlson de comorbidades e tipo de admissão. Também foram obtidas informações sobre uso de vasopressores, traqueostomia, VM e terapia de substituição renal a qualquer momento durante a permanência na UTI. A condição funcional pré-morbidade foi classificada em três categorias ordinais: independente (Eastern Cooperative Oncology Group - ECOG(16) 0 or 1), parcialmente dependente (ECOG 2) e restrito ao leito (ECOG > 2).

O desfecho primário foi mortalidade hospitalar. Os desfechos secundários incluíram mortalidade na UTI, tempo de permanência na UTI e hospital e tempo entre a RVM até o óbito ou alta hospitalar.

O primeiro autor também revisou as fichas dos pacientes submetidos à RVM para discriminá-los na reunião com a família e verificar sobre a participação deles na discussão da RVM. Buscavam-se evidências de conflito – qualquer discordância entre os membros da família ou entre os membros da família e os profissionais de saúde – e qualquer descrição de desconforto do paciente após a extubação. Considerou-se como desconforto a percepção da presença de esforço respiratório e estridor, anotada por qualquer membro da equipe da UTI no prontuário do paciente.

Definiu-se extubação paliativa como RVM com discussão ad hoc com parentes e outros médicos participantes a respeito da extubação, a possibilidade de morte após o procedimento e a compreensão de que a RVM seria realizada para reduzir o sofrimento do paciente, respeitando a história natural da doença. Alguns pacientes foram submetidos à extubação e tiveram uma decisão post hoc de não intubar. Esses pacientes não foram
considerados como casos de extubação paliativa.

Análise estatística

As variáveis categóricas são expressas como proporções. As variáveis contínuas são expressas como médias e desvios-padrão ou medianas e percentis [P25-P75], conforme apropriado. Elas foram testadas quanto à distribuição normal com a utilização do teste de Shapiro-Wilk e histogramas. As variáveis categóricas foram comparadas com o teste exato de Fisher. Utilizou-se o teste t de Student ou o teste rank-sum de Wilcoxon para comparar as variáveis contínuas. Dentre os pacientes submetidos à RVM, foram montadas curvas de sobrevivência de Kaplan-Meier com RVM como ponto inicial.

Primeiramente, realizou-se uma comparação não ajustada entre os grupos. Então, em uma tentativa de tratar com os fatores de confusão, desenvolveu-se um conjunto de variáveis baseadas num escore de propensão a partir de um gráfico acíclico causal da propensão a ser submetido à RVM, ou seja, as características que poderiam influenciar na decisão de proceder à RVM. As variáveis foram idade, tempo de permanência no hospital antes da UTI, SAPS 3, défice neurológico focal, coma, sequela de acidente vascular cerebral, demência, condição funcional, doença pulmonar obstructiva crônica (DPOC), câncer locorregional, câncer metastático, câncer hematológico e uso de fármacos vasoativos. Aplicou-se um procedimento de pareamento 1:1 com amplitude de 0,1 e sem substituição. A pressuposição de positividade foi avaliada com um histograma de superposição. Após o pareamento, as variáveis utilizando teste t pareado, teste rank-sum de Wilcoxon e o teste exato de Fisher, conforme apropriado, foram comparadas.

Utilizaram-se o programa Stata SE 15.1, para realizar todas as análises, e o comando redigido pelo usuário PSmatch2, para realização da análise do escore de propensão. Valores de p < 0,05 foram considerados estatisticamente significantes, sem ajuste para comparações múltiplas.

RESULTADOS

No total, foram admitidos à UTI durante o período do estudo 8.508 pacientes. Destes, 714 (8,4%) tiveram alguma limitação do suporte artificial à vida. Dentre esses pacientes com limitação de TSV, identificaram-se 282 (39,5%) submetidos à VM e com alguma limitação da TSV. Um total de 31 (4,3%) pacientes foi submetido à RVM (Figura 1). As características da amostra estão resumidas na tabela 1. Os pacientes tinham idade mais avançada e, em geral, pacientes não cirúrgicos, com elevada carga de comorbidades e SOFA intermediário. Não houve diferenças estatisticamente significantes nas condições basais dos pacientes que foram ou deixaram de ser submetidos à RVM.

A maior parte dos pacientes submetidos à RVM morreu na UTI (22/31; 71%), e dois (6,5%) receberam alta do hospital vivos. Os pacientes com VM que não foram submetidos à RVM tiveram mortalidade na UTI de 57% (144/251), e a mortalidade hospitalar foi de 80% (203/251) (Tabela 1). O tempo mediano de permanência na UTI foi o mesmo (8 versus 7 dias; p = 0,6), porém o tempo mediano de permanência no hospital foi diferente na análise bruta (9 versus 15 dias; p = 0,015).

A tabela 2 apresenta os dados da análise pareada pelos escores de propensão (62 pacientes). Os grupos foram, em geral, comparáveis. Embora a mortalidade na UTI tenha sido diferente entre os grupos (13/31; 42% versus 22/31; 71%; p = 0,040), a mortalidade hospitalar não foi significamente diferente (25/31; 81% versus 29/31; 93%; p = 0,26). O tempo mediano de permanência na UTI foi de 5 versus 7 dias, com p = 0,126. O tempo mediano de permanência no hospital foi de 15 versus 9 dias, com p = 0,153.

Os familiares presentes nas reuniões com parentes em que se discutiram os alvos do tratamento foram, em geral, os descendentes (24/31; 77%). O tempo mediano entre a definição do OT até a extubação paliativa foi de 48 horas. Em sua maioria, os pacientes morreram após 24 horas da RVM (21/31 pacientes), e o tempo até o óbito variou de 1 a 19 dias (Figura 2). Os que morreram dentro de 24 horas tiveram tempo até o óbito que variou de 2 a 24 horas.

Não se registraram nas fichas clínicas conflitos entre
Retirada da ventilação mecânica como procedimento paliativo em uma unidade de terapia intensiva

Tabela 1 - Características básicas quando da admissão à unidade de terapia intensiva e desfechos dos pacientes com limitações de suporte à vida

	Sem RVM n = 251	Com RVM n = 31	Valor de p
Idade	75 [62 - 82]	74 [62 - 83]	0,91
Sexo masculino	114 (46)	16 (53)	0,27
SOFA	5 [3 - 7]	6 [2 - 9]	0,36
SAPS 3	68 [60 - 80]	71 [60 - 80]	0,70
Coma	57 (23)	9 (29)	0,50
Défice focal	11 (4)	1 (3)	> 0,99
Efeito de massa intracraniana	1 (0,4)	0	> 0,99
Nefropatia crônica			
Sem diálise	25 (10)	1 (3)	0,33
Diálise	15 (6)	2 (6)	> 0,99
Insuficiência cardíaca			
NYHA 2-3	34 (13)	3 (9)	0,77
NYHA 4	6 (2)	0	> 0,99
Demência	46 (19)	7 (23)	0,63
Sequela de AVC	24 (10)	3 (10)	> 0,99
DPOC grave	42 (17)	5 (16)	> 0,99
Cirrose Child A-B	3 (1)	0	> 0,99
Cirrose Child C	10 (4)	1 (3)	> 0,99
Readmissão à UTI	38 (15)	2 (6)	0,27
Câncer			
Tumor sólido locorregional	47 (19)	3 (9)	0,227
Tumor sólido metastático	36 (14)	5 (16)	0,79
Câncer hematológico	15 (6)	2 (6)	> 0,99
Condição de desempenho			0,36
Independente	143 (57)	19 (61)	0,70
Parcialmente dependente	41 (16)	2 (6)	0,190
Restrito ao leito	67 (27)	10 (32)	0,52
Índice de comorbidade de Charlson	3 [1 - 5]	2 [1 - 4]	0,209
Tipo de admissão			0,233
Clínica	223 (89)	31 (100)	0,054
Cirurgia de emergência	17 (7)	-	0,232
Cirurgia eletiva	11 (4)	-	0,61
Permanência no hospital antes da UTI	0 [0 - 5]	0 [0 - 1]	0,111
Tempo até discussão do OT	5 [1 - 10]	3 [1 - 5]	0,040
Vasopressores	170 (67)	20 (64)	0,69
Ventilação não invasiva	33 (13)	2 (6)	0,39
Dias sob VM	4 [1 - 8]	4 [2 - 8]	0,49
TSR	30 (12)	0	0,057
Traqueostomia	27 (10)	0	0,054
Permanência na UTI	8 [4 - 14]	7 [6 - 11]	0,64
Permanência no hospital	15 [8 - 25]	9 [7 - 17]	0,015
Mortalidade na UTI	144 (57)	22 (71)	0,177
Mortalidade no hospital	203 (80)	29 (93,5)	0,131

RVM - retirada da ventilação mecânica; SOFA - Sequential Organ Failure Assessment; SAPS - Simplified Acute Physiology Score; NYHA - New York Heart Association; AVC - acidente vascular cerebral; DPOC - doença pulmonar obstrutiva crônica; UTI - unidade de terapia intensiva; TSR - terapia de substituição renal; VM - ventilação mecânica; OT - objetivos do tratamento. * Para pacientes que morreram dentro de 24 horas após a retirada da ventilação mecânica. Resultados expressos por percentil [P25 - P75] ou n (%).

Figura 2 - Sobrevivência após retirada da ventilação mecânica. Curva de Kaplan-Meier mostrando o tempo de sobrevivência após retirada da ventilação mecânica. Vinte e um pacientes morreram após 24 horas, com mediana de tempo de 2 dias. Dentre os pacientes que morreram em 24 horas, o tempo mediano foi de 16,5 horas.
familiares e os profissionais de saúde com relação à RVM. Três pacientes (10%) puderam tomar parte da discussão sobre a extubação paliativa: dois enquanto estavam com VM e um com sintomas controlados, e um discutiu uma tentativa por tempo limitado antes da intubação, sendo subsequentemente submetido à RVM. Apenas três pacientes (10%) tiveram estridor após a extubação, porém o desconforto pôde ser rapidamente controlado.

DISCUSSÃO

Neste estudo de coorte retrospectiva, 8,4% (717/8.508) dos pacientes admitidos à UTI tiveram decisão de evitar ou retirar TSV. Dentre eles, 282 (39,5%) estavam sob VM, dos quais 31 (11%) foram submetidos à RVM. Apesar de não haver diferenças importantes em termos de características basais, os pacientes submetidos à RVM tiveram mortalidade na UTI mais elevada, porém a mesma mortalidade hospitalar, com semelhante tempo de permanência na UTI e menor tempo de permanência no hospital. Esses resultados foram similares na análise pareada por escore de propensão, embora o tempo de permanência no hospital tenha perdido a significância estatística – provavelmente em razão do baixo poder estatístico desta amostra. Mais ainda, não houve evidência de qualquer conflito durante o processo de RVM ou dificuldade de tratar o desconforto após a extubação. Esses resultados são encorajadores e, na verdade, mostram que a RVM é aceitável para algumas famílias brasileiras, apesar das preocupações legais entre os médicos.

A mortalidade hospitalar geral entre pacientes extubados não foi diferente do relatado pela literatura, e a mortalidade de pacientes não submetidos à extubação paliativa foi elevada (80%), embora muito similar à relatada em recente coorte multicêntrica multinacional (69%). É interessante observar que o tempo até o óbito após a RVM de neste estudo não foi o mesmo relatado em outros países. Apenas 32% morreram dentro de 24 horas, em contraste com 90% nos Estados Unidos (possivelmente devido à diferentes características dos pacientes), onde a retirada do suporte à vida em antecipação ao óbito dos pacientes com choque ou insuficiência respiratória refratários é mais comum.

Os cuidados paliativos na América Latina são bastante diferentes dos de outras regiões. No Brasil é bastante incomum que as famílias conversem sobre a morte. Esse aspecto cultural traz alguns desafios quando se discute a retirada da TSV com familiares. Às vezes, a reunião com os familiares pode ser até mesmo descrita como um momento doloroso. Leva mais tempo para que os parentes compreendam o prognóstico de seu ente querido e que o suporte artificial à vida pode levar a sofrimento. A melhor forma de conversar a este respeito é ser honesto, direto e realista e assegurar que a família compreenda que se continuará a cuidar de seu ente querido. Portanto, é preciso estar alertas quanto às necessidades do paciente e dos familiares e evitar um comprometimento do relacionamento que poderia prejudicar novas tentativas de RVM e discussões a respeito do final da vida.

Nesta UTI, se após a RVM for identificado que os pacientes ou seus familiares necessitam de um cuidado diferente – ou seja, opioides contínuos ou amenização de alguma insegurança em relação à alta – evita-se a alta da UTI até que a família esteja confiante de que os sintomas sejam facilmente controlados na enfermaria. Embora seja especulativo, acreditamos que uma explicação para a elevada mortalidade na UTI com um longo tempo para o óbito após a RVM. A explicação é a de que os intensivistas decidiram continuar o controle dos sintomas e o cuidado dos familiares, mantendo o paciente na UTI em razão da falta de uma equipe de cuidados paliativos nas enfermarias. Apenas quando obtido o controle ideal dos sintomas e não havendo sinais de morte iminente é que o paciente recebe alta para as enfermarias com ordens explícitas de não reintubar.

Este estudo tem limitações: não é possível assumir que esses resultados sejam generalizáveis a todas as UTIs do país; a natureza retrospectiva desses resultados impediu de se obterem informações detalhadas a respeito do processo decisório para retirar a VM; o pareamento por escore de propensão, embora útil para lidar com fatores de confusão, pode levar à perda de dados em razão de uma redução do tamanho da amostra (foi baixo o poder estatístico para detectar diferenças clinicamente importantes entre os grupos, especialmente para mortalidade hospitalar, o desfecho primário); e não houve um seguimento das famílias, de forma que não se sabe se o impacto da discussão dos alvos do tratamento e a decisão em favor da RVM podem ter causado em desfechos psicológicos em longo prazo.

Implicações para a prática

Este artigo ajuda na desestigmatização do procedimento de extubação paliativa no Brasil e reforça que a RVM não deve ser vista como um dogma, mas como alternativa viável em situações em que pode ser aplicada. Contudo, crê-se que alternativas diferentes, como desmame terminal ou retirada de vasopressores, podem ser consideradas, além da RVM, segundo o contexto e os riscos percebidos de desconforto dos familiares e sequelas psicológicas após a morte de seu ente querido.
CONCLUSÃO

Neste relato brasileiro, a retirada da ventilação mecânica não se associou com aumento da mortalidade hospitalar, em comparação com pacientes ventilados com limitações de terapias de suporte à vida que foram extubados, porém o tempo de permanência no hospital foi menor. Mais ainda, a retirada da ventilação mecânica foi aceitável para os familiares e pacientes e se associou com taxas de mortalidade hospitalar semelhantes às observadas em países desenvolvidos. São necessários mais estudos de caráter multicêntrico no Brasil para avaliar as características em nível de unidade de terapia intensiva que se associam com maior propensão a incluir esse procedimento nas rotinas diárias.

ABSTRACT

Objective: To describe the characteristics and outcomes of patients undergoing mechanical ventilation withdrawal and to compare them to mechanically ventilated patients with limitations (withhold or withdrawal) of life-sustaining therapies but who did not undergo mechanical ventilation withdrawal.

Methods: This was a retrospective cohort study from January 2014 to December 2018 of mechanically ventilated patients with any organ support limitation admitted to a single intensive care unit. We compared patients who underwent mechanical ventilation withdrawal and those who did not regarding intensive care unit and hospital mortality and length of stay in both an unadjusted analysis and a propensity score matched subsample. We also analyzed the time from mechanical ventilation withdrawal to death.

Results: Out of 282 patients with life-sustaining therapy limitations, 31 (11%) underwent mechanical ventilation withdrawal. There was no baseline difference between groups. Intensive care unit and hospital mortality rates were 71% 57% and 93% versus 80%, respectively, among patients who underwent mechanical ventilation withdrawal and those who did not. The median intensive care unit length of stay was 7 versus 8 days ($p = 0.6$), and the hospital length of stay was 9 versus 15 days ($p = 0.015$). Hospital mortality was not significantly different (25/31; 81% versus 29/31; 93%; $p = 0.26$) after matching. The median time from mechanical ventilation withdrawal until death was 2 days [0 - 5], and 10/31 (32%) patients died within 24 hours after mechanical ventilation withdrawal.

Conclusion: In this Brazilian report, mechanical ventilation withdrawal represented 11% of all patients with treatment limitations and was not associated with increased hospital mortality after propensity score matching on relevant covariates.

Keywords: Palliative care; Critical care; Respiration, artificial; Intensive care units

REFERÊNCIAS

1. Cook D, Rocker G. Dying with dignity in the intensive care unit. N Engl J Med. 2014;370(26):2506-14.
2. Robert R, Le Gouge A, Kentish-Barnes N, Cottereau A, Giraudeau B, Adda M, et al. Terminal weaning or immediate extubation for withdrawing mechanical ventilation in critically ill patients (the ARREVE observational study). Intensive Care Med. 2017;43(12):1793-807.
3. Coelho CB, Yankaskas JR. New concepts in palliative care in the intensive care unit. Rev Bras Ter Intensiva. 2017;29(2):222-30.
4. Bitencourt AG, Dantas MP, Neves FB, Almeida AM, Melo RM, Albuquerque LC, et al. Conduitas de limitação terapêutica em pacientes internados em unidade de terapia intensiva. Rev Bras Ter Intensiva. 2007;19(2):137-43.
5. Kompanje EJ, van der Hoven B, Bakker J. Anticipation of distress after discontinuation of mechanical ventilation in the ICU at the end of life. Intensive Care Med. 2008;34(9):1593-9.
6. Cook D, Rocker G, Marshall J, Spokvist P, Dodek P, Griffith L, Freitag A, Varon J, Bradley C, Levy M, Finser S, Hamielec C, McMullin J, Weaver B, Walter S, Guyatt G. Level of Care Study Investigators and the Canadian Critical Care Trials Group. Withdrawal of mechanical ventilation in anticipation of death in the intensive care unit. N Engl J Med. 2003;349(12):1123-32.
7. Hinkley LJ, Bosslet GT, Terke AM. Factors associated with family satisfaction with end-of-life care in the ICU: a systematic review. Chest. 2015;147(1):82-93.
8. Mark NM, Rayner SG, Lee NJ, Curtis JR. Global variability in withdrawing and withdrawal of life-sustaining treatment in the intensive care unit: a systematic review. Intensive Care Med. 2015;41(9):1572-85.
9. Lobo SM, de Simoni FH, Jakob SM, Estella A, Vadi S, Bluelthen A, Martin-Luebas I, Sakr Y, Vincent JL. ISON investigators. Decision-making on withdrawing or withdrawing life support in the ICU: a worldwide perspective. Chest. 2017;152(2):321-9.
10. Forte DN, Vincent JL, Velasco IT, Park M. Association between education in EOL care and variability in EOL practice: a survey of ICU physicians. Intensive Care Med. 2012;38(3):404-12.
11. Fumis RR, Deheinzelin D. Respiratory support withdrawal in intensive care units: Families, physicians and nurses views on two hypothetical clinical scenarios. Crit Care. 2010;14(6):R235.
12. Moritz RD, Pampolha F. Avaliação da recusa ou suspensão de tratamentos considerados futeios ou inúteis em UTI. Rev Bras Ter Intensiva. 2001;15(1):40-4.
13. Mauattt SR, Nascimento AF, Fumis RR. Limitation to advanced life support in patients admitted to intensive care unit with integrated palliative care. Rev Bras Ter Intensiva. 2016;28(3):294-300.
14. Bosslet GT, Pope TM, Rubenfeld GD, Lo B, Truog RD, Rushton CH, Curtis JR, Ford DW, Osborne M, Misak C, Au DH, Azoulay E, Brody B, Fahy BG, Hall JB, Kescioglu J, Koa AA, Lindell KO, White DB; American Thoracic Society ad hoc Committee on Futile and Potentially Inappropriate Treatment; American Thoracic Society; American Association for Critical Care Nurses; American College of Chest Physicians; European Society for Intensive Care Medicine; Society of Critical Care. An official ATS/AACN/ACCP/ESICM/SCCM policy statement: responding to requests for potentially inappropriate treatments in intensive care units. Am J Respir Crit Care Med. 2015;191(11):1318-30.
15. Zampieri FG, Soares M, Borges LP, Figueira Salluh JL, Ranzani OT. The Epimed Monitor ICU Database®: a cloud-based national registry for adult intensive care unit patients in Brazil. Rev Bras Ter Intensiva. 2017;29(4):418-26.
16. Oken MM, Creech RH, Torney DC, Horton J, Davis TE, McFadden ET, et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol. 1982;5(6):649-55.
17. Lederer DJ, Bell SC, Branson RD, Chalmers JD, Marshall R, Maslove DM, et al. Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals. Ann Am Thorac Soc. 2019;16(1):22-8.

18. Leuven E, Sianesi B. PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing 2003. Version 3.0.0. Statistical Software Components S432001, Boston College Department of Economics; revised 01 Feb 2018.

19. Ramos JG, Vieira RD, Tourinho FC, Ismael A, Ribeiro DC, de Medeiro HJ, et al. Withholding and withdrawal of treatments: differences in perceptions between intensivists, oncologists, and prosecutors in Brazil. J Palliat Med. 2019;22(9):1099-105.

20. Cook D, Rocker G, Marshall J, Sjokvist P, Dodek P, Griffith L, Freitag A, Varon J, Bradley C, Levy M, Finfer S, Hamielec C, McMullin J, Weaver B, Walter S, Guyatt G; Level of Care Study Investigators and the Canadian Critical Care Trials Group. Withdrawal of mechanical ventilation in anticipation of death in the intensive care unit. N Engl J Med. 2003;349(12):1123-32.

21. Huynh TN, Wolling AM, Le TX, Kleerup EC, Liu H, Wenger NS. Factors associated with palliative withdrawal of mechanical ventilation and time to death after withdrawal. J Palliat Med. 2013;16(11):1366-74.

22. Brieva J, Coleman N, Lacey J, Harrigan P, Lewin TJ, Carter GL. Prediction of death in less than 60 minutes following withdrawal of cardiorespiratory support in ICUs. Crit Care Med. 2013;41(12):2677-87.

23. Cooke CR, Hotchklin DL, Engelberg RA, Robinson L, Curtis JR. Predictors of time to death after terminal withdrawal of mechanical ventilation in the ICU. Chest. 2010;138(2):289-97.

24. Long AC, Muni S, Treece PD, Engelberg RA, Nielsen EL, Fitzpatrick AL, et al. Time to death after terminal withdrawal of mechanical ventilation: specific respiratory and physiologic parameters may inform physician predictions. J Palliat Med. 2015;18(12):1040-7.

25. Curtis JR. Interventions to improve care during withdrawal of life-sustaining treatments. J Palliat Med. 2005;8 Suppl 1:S116-31.

26. Rady MY, Verheijde JL. The Standardization approach in end-of-life withdrawal of life-sustaining treatment: sacrificing patient’s safety and the quality of care. J Intensive Care Med. 2016;31(4):290-2.