Psoriasis and Cardiovascular Diseases: An Immune-Mediated Cross Talk?

Gloria Orlando1,2†, Barbara Molon2,3†, Antonella Viola2,3, Mauro Alaibac1, Roberta Angioni2,3*‡ and Stefano Piaserico1‡

1 Unit of Dermatology, Department of Medicine - DIMED, University of Padova, Padova, Italy, 2 Department of Biomedical Sciences – DSB, University of Padova, Padova, Italy, 3 Istituto di Ricerca Pediatrica, Città della Speranza – IRP, Padova, Italy

Psoriasis is a chronic immune-mediated inflammatory skin disease, characterized by well-demarcated scaly, erythematous, infiltrated plaques. The cutaneous-to-systemic expansion of the inflammation in psoriasis leads to the concept of “psoriatic march” or “inflammatory skin march”. Accordingly, psoriasis is thought to be a systemic inflammatory disease associated with numerous comorbidities. Indeed, it’s currently considered an independent risk factor for cardiovascular diseases. Here, we discuss the current knowledge on TNF-α and IL-23/IL-17 mediated pathways linking the psoriatic plaque to the cardiovascular compartment. We further argue the possible involvement of the endothelial compartment in the psoriatic plaque–cardiovascular system crosstalk.

Keywords: psoriasis, cytokines, endothelial dysfunction (ED), cardiovascular diseases, inflammation

THE PSORIATIC MARCH (FROM THE CUTANEOUS TO SYSTEMIC SPREADING OF THE INFLAMMATION)

Psoriasis is a chronic cutaneous disease resulting from a complex interplay between immunological, environmental and genetic factors, with a global prevalence ranging from 0.09 to 5.1% of adult population (1). It predominantly affects the skin with a broad spectrum of cutaneous manifestations that comprise either solitary lesions, varying from pinpoint to large plaques, or generalized erythroderma. 85-90% of all patients present a plaque-type psoriasis that appears with demarcated, scaly, erythematous and infiltrated lesions. These manifestations are usually located in specific body sites, as for instance the extensor surfaces of the limbs (knee and elbows) and other mechanically stressed sites (lumbar region) (2, 3). At the bottom of psoriasis clinical signs there is a complex multistep process involving a dysregulated activation of both the innate and adaptive immunity. Indeed, nowadays the prevailing model for psoriatic pathophysiology implies crucial abnormalities in the antigen presentation by dendritic cells (DCs), and the concomitant altered differentiation of T helper (T helper) cell populations. Here, the enhanced (IL)-17-producing T cell response promotes the recruitment of immune cells, thus driving the psoriatic plaque formation (4–6).

Beyond the skin, systemic inflammation has been reported in psoriatic patients leading to the concept of “psoriatic march”, or “inflammatory skin march” (7). In accordance with this hypothesis, the inflammatory cutaneous-to-systemic expansion in psoriatic patients might cause the insurgence of systemic immune-mediated alterations, subsequently leading to important comorbidities such as diabetes mellitus, metabolic disorders, including obesity, hypertension, dyslipidemia, and cardio-
vascular diseases (CVDs) (8, 9). Consistently, Sokolova et al. reported an increase of inflammatory serum markers lipocalin 2, beta-defensin 2, IL-22, IL-8 and calprotectin in psoriatic patients (9, 10). Moreover, several circulating biomarkers of inflammation, as C-reactive protein (CRP), erythrocyte sedimentation rate and the platelet activation marker P-selectin, positively correlate with the disease severity (11–13). In this line, elevated levels of pro-inflammatory S100A12, CCL22, IL1RN, CCL2, VEGF, ICAM1, IL-15, TNF, CCL5 have been identified both in the skin and in the blood of psoriatic patients, thus highlighting that psoriatic plaque pathological products might circulate toward the vascular network (14). Indeed, numerous foci of inflammation within the skin, liver, joints, tendons, and aorta have been observed in psoriasis patients by (18)F-fluorodeoxyglucose positron emission tomography computed tomography (FDG-PET/CT) (15). These results not only point out the systemic burden of psoriasis, but also suggest that psoriatic inflammation might act at distant sites.

In this review, we will overview current knowledge on the association between psoriasis and cardiovascular (CV) risk with a special focus on immune players contributing to the pathogenic link between psoriasis and CVDs.

PSORIASIS AS AN INDEPENDENT CARDIOVASCULAR RISK FACTOR

A high prevalence of underdiagnosed and undertreated CV risk factors, including hypertension, diabetes, hyperlipidemia, obesity, and metabolic syndrome, is commonly reported in psoriatic patients (Table 1) (16–31). However, the undoubted causality of this correlation is still questioned.

Obesity itself is an independent risk factor for the psoriatic development due to the massive induction of systemic inflammatory responses (17). Nevertheless, multiple studies have demonstrated an increased prevalence of obesity among patients with psoriasis. Although the molecular mechanisms have still to be elucidated, a severity-dependent relationship between the two diseases has been demonstrated (32, 33). Similar findings were found for hypertension, having psoriatic patients higher incidence of hypertension in comparison to the global population (34). To note, severe psoriasis patients showed a higher prevalence of hypertension compared with mild psoriasis patients (29). Several pathways have been proposed to unfold this association, as the higher serum levels of the renin and angiotensin-converting enzyme (ACE) in psoriatic patients (34). Furthermore, reduced blood levels of high-density lipoprotein (HDL) were described in psoriatic patients compared to age-matched controls (18, 35, 36). Intriguingly, moderate-to-severe psoriasis has been often associated to metabolic syndrome (MetS), which represents a well-known set of risk factors, including obesity and hypertension, but also dyslipidemia, insulin resistance related with an elevated risk of type 2 diabetes and CVD (19). Recent meta-analyses and epidemiological studies further highlighted the prevalence of MetS in 20-50% of psoriatic patients in comparison to healthy subjects (20, 24, 37, 38). In this line, Langan et al. demonstrated that psoriasis was independently associated with MetS even after adjustments for multiple parameters including age, sex, follow-up, smoking, and social class and that importantly, MetS prevalence directly correlates with the cutaneous disease extent (37). Together, these reports indicated that conventional CV risk factors are prevalent among psoriatic patients. Beside this notion, psoriasis per se is increasingly thought to be an independent risk factor for CVD and a “dose effect” of psoriasis’ activity on the patients’ cardiovascular risk has been demonstrated (39). Systemic reviews and meta-analysis evaluating the association between psoriasis and CVDs are summarized in Table 2 (22, 28, 40–49).

In 2006, Gelfand et al. conducted the seminal study identifying psoriasis as an independent risk factor for myocardial infarction (MI) taking advantage of prospective data from the United Kingdom General Practice Research Database (50). Here, the incidence of MI per 1000 person-years was 3.58 for control patients (95% CI 3.52-3.65), 4.04 for patients with mild psoriasis (95% CI 3.88-4.21) and 5.13 for patients with severe psoriasis (95% CI 4.22-6.17). Furthermore, after adjusting for hypertension, diabetes mellitus, and hyperlipidemia younger patients showed a greater relative risk (RR) for MI. In line with this, Samarasakera et al. and Armstrong et al. assessed the risk of CVDs considering the severity of psoriasis and noticed an increased risk of major cardiovascular events (MACE), namely myocardial infarction and stroke, and CV mortality in severe psoriasis patients (41, 46). Moreover, Egeberg et al. found that longer disease duration had a stronger association with the risk of MACE (51).

Accordingly, psoriasis affects the Framingham Risk Score for over 60% of patients being thus identified as an independent CV risk factor (52). Strengthened by this convincing evidence, psoriasis has been recently included in the European and American Guidelines on Cardiovascular disease prevention as a (1.5) risk factor multiplier for CV risk (53) and, in adults 40 to 75 years of age without diabetes mellitus and a CV intermediate risk, as a risk-enhancing factor favoring initiation of statin therapy (54). Moreover, the Joint American Academy of Dermatology- National Psoriasis Foundation Guidelines recommend that patients with psoriasis should be advised of their increased cardiovascular risk and referred to the primary care physician or cardiologist (Table 3) (55).

PSORIASIS AND MICROVASCULAR DYSFUNCTION

Beyond the well-documented association between psoriasis and CVD, current hypothesis placed the vascular network at the center of this circuit, describing a crucial role of the endothelium in the insurgence of psoriatic-dependent CVD. Indeed, it has been proposed that the cutaneous psoriatic lesion might induce a systemic inflammation through the immune-mediated activation of the endothelial compartment (56). In turn, this endothelial
TABLE 1 | Summary of systemic reviews and meta-analysis analyzing the association between psoriasis and traditional cardiovascular risk factors.

References	Study population	Traditional cardiovascular risk factors and relative risk of measures
Armstrong et al., (17)	Psoriasis: 20831; Control: 1898169	Obesity OR 1.66 (1.46-1.89); mild psoriasis OR 1.46 (1.17-1.82); severe psoriasis OR 2.23 (1.63-3.05)
Armstrong et al., (16)	Psoriasis: 309469; Controls: 2988197	Hypertension: all psoriasis, OR = 1.58 (1.42-1.76); mild psoriasis, OR = 1.30 (1.15-1.47); severe psoriasis, OR = 1.49 (1.20-1.96)
Ma et al., (18)	Psoriasis: 239385; Controls: 2102220	Dyslipidemia OR 1.04-5.05
Armstrong et al., (19)	Psoriasis: 314036; Control: 3717217	Diabetes OR 1.59 (1.38-1.83); mild psoriasis pooled OR 1.53 (1.16-2.04); severe psoriasis pooled OR 1.97 (1.48-2.62)
Armstrong et al., (20)	Psoriasis: 41853; Control: 135814	Metabolic syndrome OR 2.26 (1.70-3.01)
Coto-Segura et al., (21)	Psoriasis: 557697; Control: 5186485	Type 2 diabetes pooled OR 1.76 (1.59-1.96)
Miller et al., (22)	Psoriasis: 503986; Control: 2686694	Diabetes OR 1.9 (1.5-2.5); hypertension OR 1.8 (1.6-2.0), dyslipidemia OR 1.5 (1.4-1.7); obesity OR 1.8 (1.4-2.2); metabolic syndrome OR 1.8 (1.2-2.8)
Rodriguez-Zuniga et al., (23)	Psoriasis: 25042; Control: 131609	Metabolic syndrome pooled OR 1.42 (1.28-1.65)
Singh et al., (24)	Psoriasis: 46714; Control: 1403474	Metabolic syndrome pooled OR 2.14 (1.84-2.48)
Marnizadeh et al., (25)	Psoriasis: 922870; Control: 12828071	Diabetes OR 1.69 (1.51-1.89)
Choudhary et al., (26)	Psoriasis: 15939; Control: 109984	Metabolic syndrome OR 2.077 (1.84-2.34)
Choudhary et al., (27)	Psoriasis: 17672; Control: 66407	Increased systolic blood pressure OR 2.31 (1.12-4.74); diastolic blood pressure OR 2.31 (1.58-3.38); abdominal obesity OR 1.90 (1.45-2.50); Triglycerides OR 1.80 (1.29-2.51)
Phan et al., (28)	Psoriasis: 43808; Control: 5384057	Obesity OR 2.45 (1.73-3.48); diabetes OR 2.32 (1.34-4.03); hypertension OR 2.19 (1.62-2.95); hyperlipidemia OR 2.01 (1.66-2.42); metabolic syndrome OR 1.75 (1.75-7.14)
Duan et al., (29)	Psoriasis: 255132; Control: 814631	Hypertension OR 1.43 (1.25-1.64)
Cho et al., (30)	Psoriasis: 20676; Controls: 5239197	Obesity pooled OR 2.4 (1.6-3.59); diabetes OR 2.01 (1.09-3.73); hypertension OR 2.73 (1.79-4.17); dyslipidemia OR 1.67 (1.42-1.97); metabolic syndrome OR 7.49 (1.86-30.07)

OR, odds ratio. Values in brackets indicate 95% confidence intervals.

dysfunction, insouled at distant sites, could participate and concur to the development of cardiovascular pathological events (57).

Interestingly, psoriasis has been showed to impact early on the vascular compartment, even before the development of CV diseases, causing subclinical alterations typical of CVDs. Ludwig et al. used computed tomography to quantify the coronary artery calcification (CAC) as a biomarker of coronary atherosclerosis and a predictor of future cardiovascular events in patients with psoriasis and controls (58). An increased prevalence (59.4% vs 28.1%, p=0.015) and severity (3.7 vs 0.0, p=0.019) of CAC, assessed with Agatston score, has been demonstrated in psoriatic patients with a negative history of current or previous heart problems. In the same study, psoriasis has been pointed as an independent risk factor for CAC after multiple linear regression calculations. Multiple studies highlighted the presence of microvascular dysfunction, one of the earliest signs of CVDs, in psoriatic patients. Coronary microvascular dysfunction indeed indicates an abnormal regulation of the coronary microcirculation resulting in reduced myocardial blood flow in the absence of epicardial coronary arteries stenosis. The coronary flow reserve (CFR) analysis detects the damage to the microvascular heart circulation. CFR is the capacity of the coronary circulation to dilate and therefore to enhance its flow following an increased metabolic demand and it is related to the microvascular function as the 90% of the resistances of the coronary circulation are localized in the endocardial small vessels. The ratio between the maximal possible and the resting blood flow in normal subjects is >2.5. Intriguingly, we recently evaluated the CFR by transthoracic echocardiography inducing the hyperaemic stimulus with adenosine, showing a reduction of CFR in patients with
psoriasis compared with healthy controls (p=0.02) (59). The risk of an abnormal CFR was higher in patients with a greater degree of psoriasis severity and this association was independent of traditional cardiovascular risk factors (60). Arterial stiffness, a surrogate of endothelial dysfunction and predictor of CV risk, was measured by Gisondi et al. in patients with moderate-severe psoriasis, by determining carotid-femoral and carotid-radial pulse wave velocity (PWVcf, PWVcr) (61). These patients, as...
compared to controls, showed a significantly increased PWVcf, even after adjustment for age, gender, smoking, hypertension and body mass index (8.78 ± 1.98 vs 7.78 ± 2.0 m/s; p=0.03). Moreover, a direct correlation between PWVcf and psoriasis duration (years) was evidenced (r=0.58; p=0.0001).

Taken together, different methodological approaches suggest an association between psoriasis and the microvascular dysfunction. Intriguingly, the immune-mediated dysfunction of endothelial cells in the vasculature is profoundly associated to the pathogenesis of several cardiovascular disorders. Indeed, the affected coronary arteries’ ability to increase coronary blood flow (vasodilatory abnormality) and/or the impaired coronary blood flow (coronary microvascular spasm) could insurg in severe psoriatic patients (62). Thus, data provide proof that psoriasis could be considered as an independent CV risk factor.

PUTATIVE INFLAMMATORY CIRCULATING FACTORS INDUCING MICROVASCULAR DYSFUNCTION IN PSORIASIS

The immune-mediated endothelial activation is a process in which pro-inflammatory cytokines, integrins and multiple analytes contribute to trigger and propagate inflammation (63). A prolonged immune stimulation and an excessive or unbalanced production of inflammatory mediators might dysregulate this finely-tuned process.

Notably, the pathogenesis of psoriasis is considerably mediated by T helper (Th) type 1 activation and Th17 immune responses and the consequent overproduction of cytokines (e.g., Tumor necrosis factor-α TNF-α, IL-23, and IL-17) that ultimately generate a systemic proinflammatory environment. In this context, the chronic exposure of multiple circulating factors might play a key role in the endothelial priming and microvascular dysfunction at distant sites.

Endothelial dysfunction is referred to the imbalance between the release of vasoprotective/vasorelaxant mediators and pathological vasoconstricting substances. Despite the precise mechanisms mediating these vascular impairments are unclear, putative circulating analytes mediating the psoriatic immune-mediated endothelial dysfunction have been proposed. Among them, IL-17, TNF-α, reactive oxygen species (ROS), IFN-γ and Angiotensin-converting Enzyme, Renin and Endothelin-1(ET1) seem to play a crucial role (64–67) (Figure 1).

IL-17 is a pro-inflammatory cytokine formerly thought to be generated in the psoriatic plaque only by a subset of CD4+ T cells (Th17), concomitantly with IL-6, IL-21, IL-22 and TNF-α. Nowadays, also dendritic cells, natural killer cells, macrophages, and γδ-T cells have been recognized as important players in the IL-17 generation (68). A variety of mechanisms, including exogenous and inflammatory stimuli, might trigger the initial activation of Th17 cells, leading to the strong IL-17 release within the skin. Notably, the IL-17 receptor is ubiquitously expressed in endothelial cells of the vascular network. Here, once activated, IL-17 receptor drives the production of TNF-α, IL-1β, CCL2, and the expression of adhesion molecules as intercellular adhesion molecule 1 (ICAM-1). The upregulation of chemokines and adhesion molecules is associated to the endothelial activation, a process that has been recently linked to the endothelial dysfunction featuring the pathophysiology of multiple immune-mediated CVDs (67). To note, IL-17 might be responsible for an additional determinant of the endothelial dysfunction in the setting of vascular disease: the massive accumulation of reactive oxygen species, in particular of the vascular superoxide (O2–) within the endothelium. In pre-clinical
atherosclerosis model induced by a high-fat-diet-feeding, it has been reported that IL-17 caused the increased production of O_2^- superoxide in the aortic vessel (69). Nonetheless, precise mechanisms by which IL-17, induces vascular O_2^- production remain unclear. Mounting evidence reveals that IL-17 accumulation might underpin i) NADPH oxidase activation in vascular smooth muscle cells, and ii) superoxide production via recruiting inflammatory cells (70) (Figure 1). Overall, the oxidative stress has a key role in the development of CVD in patients with psoriasis. Indeed, CVDs are generally characterized by an imbalance between ROS generation and degradation made by antioxidants or ROS-catalysing enzymes, finally leading to a significant deviation from the homeostatic state (71).

Together with IL-17, TNF-α contributes to the pathogenesis of psoriasis. TNF-α is a multifunctional cytokine that play a fundamental role in mediating inflammation, immune responses, and apoptosis. Notably, higher levels of TNF-α were found in skin lesions of psoriatic patients (72, 73). More, locally produced TNF-α caused NF-κB activation in psoriatic lesions, subsequently leading to increased expression of multiple pro-inflammatory cytokines; possibly concurring to the endothelial activation, and eventually dysfunction, at distant sites (Figure 1). Moreover, TNF supports the proinflammatory effects of IL-17 (74). The two cytokines indeed synergistically promote the release of key molecules for psoriasis pathogenesis, such as β-defensin 4 and S100A7 (75).

Accordingly, these results support the assumption that a local induction of multiple inflammatory mediators in psoriasis plaques determines an effect in cells outside the skin, such as endothelial cells, altering the vascular function and eventually leading to CVDs. Unquestionably, a deep investigation of the cellular and molecular interplay involved in the skin/endothelium/cardiovascular system crosstalk will be crucial for further characterize the pathophysiological link between psoriasis and CVDs. For instance, extracellular vesicles-dependent mechanisms could be an interesting target that still remains to be addressed. Accordingly, future studies aimed at investigating this possibility might also pave the way for innovative therapeutic strategies.

Classical disease-modifying antirheumatic drugs (DMARDs) routinely used in psoriasis include methotrexate, cyclosporine and acitretin. Among them, methotrexate (MTX) has been shown to be superior not only to topical treatments and phototherapy, but also to cyclosporine and acitretin in reducing the risk of MACE in patients with psoriasis (77, 81). In 2005, Prodanovich et al. firstly demonstrated the protective role of MTX on vascular disease in patients with psoriasis (82). In line with this, MTX has been associated with 21% lower risk for CVD and a 18% lower risk for MI in a systematic review and meta-analysis of 10 observational studies in which MTX was administered in patients with psoriasis, rheumatoid arthritis or polyarthritis (83). On the other hand, the role of cyclosporin and acitretin is still considered controversial. Indeed, they are associated with side effects such as renal failure, hypertension and dyslipidemia that can negatively impact on CV risk (84).

In the recent years, the attention has been focused on biological drugs as they target key inflammatory molecules involved in the pathogenesis of the disease, allowing a complete clearance of the skin lesion in almost all patients and a long-term control of the condition (6).

TNFα inhibitors commonly used in psoriatic disease include infliximab, etanercept, adalimumab and certolizumab. Patients treated with anti TNF-α for over 24 weeks demonstrated a reduction in inflammation markers related with endothelial dysfunction, such as CRP e vascular endothelial growth factor (VEGF) (85). These data have been confirmed in a randomized controlled trial reporting a reduction in inflammatory CVD markers such as GlycA, IL6, CRP, and TNF-α (86). Consistently, it has been noted a reduction in vascular inflammation assessed by the decreased signal intensity on FDG PET/CT in 115 patients after one year of treatment. Interestingly, a reduction of 75% in skin diseases severity was associated with a greater improvement in aortic vascular inflammation (87). The relevant role of TNF-α inhibitors in modulating the CV risk in psoriasis was also demonstrated by their ability to reverse the microvascular dysfunction measured by CFR. Indeed, a prospective study evaluating CFR in 37 consecutive patients with moderate to severe psoriasis before and after 6 months of treatment with TNF-α inhibitors reported a CFR increase from 2.2 ± 0.7 to 3.02 ± 0.8 (p<0.0001) (59). Other studies evaluated the impact of TNF-α inhibitors on several different CV imaging biomarkers. In particular, TNF-α inhibitors demonstrated a favourable impact on the arterial stiffness, assessed by the gold standard aortic pulse wave velocity (aPWV) (88), and decreased burden of noncalcified coronary plaques (89). Moreover, subclinical left and right ventricular myocardial dysfunctions have demonstrated to be ameliorated following anti TNF-α therapy in patients with severe psoriasis (90, 91). Although, to date, randomized placebo-controlled trials (RCT) evaluating the impact of biologics on CV risk in psoriasis are lacking, a systemic meta-analysis revealed that TNF-α inhibitors were related with fewer cardiovascular events compared to topical treatment/phototherapy (RR 0.58) or methotrexate (RR 0.67) (92). A retrospective cohort study demonstrated the beneficial effect of TNF-α inhibitors on myocardial protection by reducing the risk of MI compared with...
topical agents (adjusted hazard ratio, 0.50; 95% CI, 0.32–0.79) (93). The same result was reached by a large-scale observational study that confirmed a reduction by 11.2% of CV event risk in psoriasis patients exposed to TNF-α inhibitors for 6 months compared to those who received phototherapy (94). Similarly, in another study, TNF-α inhibitors have proved to be superior to methotrexate in reducing the risk of MACE (95).

Recently developed IL-17 inhibitors include the anti-IL-17 antibodies secukinumab and ixekizumab and the anti-IL-17 receptor antibody brodalumab. Preclinical studies have shown that IL-17 inhibitors diminished peripheral oxidative stress levels, proinflammatory cytokines, and vascular inflammation in psoriasis (96). In a prospective, observational study including 215 patients treated with different biologic therapies and completing one year of follow up, patients undergoing IL-17 inhibitors, along with the reduction of CRP and HDL serum levels, showed the greatest reduction in coronary plaque indices assessed by coronary computed tomography angiography as compared to groups treated with other biologics (89). The CARIMA study found an improvement of the endothelial function assessed by a reversal of baseline flow-mediated dilation, in psoriasis patients treated with secukinumab, revealing its beneficial effect on CV risk (97). On the contrary, another paper showed no effects on aortic vascular inflammation and cardiometabolic biomarkers in moderate-severe psoriasis patients treated with secukinumab compared to placebo (98).

The anti-IL-12/IL-23 antibody ustekinumab and the anti-IL-23/IL-17 antibodies guselkumab, risankizumab and tildrakizumab are currently approved for the treatment of psoriasis. In several studies, ustekinumab has demonstrated to have a neutral impact on MACE (99, 100). A recent meta-analysis of RCT, attempting to explore the impact of biologics on serologic and imaging biomarkers of CV risk, pointed out that adalimumab and secukinumab did not cause a significant improvement in imaging markers. Conversely, ustekinumab treatment promoted the reduction of aortic vascular inflammation at week 12, albeit this was not confirmed at week 52. Among all biologics, adalimumab was the most efficient in inducing a reduction of the serum markers CRP, TNF-α, IL-6, and GlycA (101).

Overall, these data point toward the improvement of imaging and serum biomarkers for CV risk in patients with psoriasis treated with biologics targeting TNF-α, IL-23 and IL-17; moreover, therapies with biologics, by controlling remote skin inflammation, may have the potential to prevent the development of CVDs.

CONCLUSIONS

The association between psoriasis and CVD is promoted by the coexistence of traditional modifiable CV risk factors (hypertension, diabetes, hyperlipidemia, obesity, and metabolic syndrome) and chronic systemic inflammation. The latter might directly impinge on the vascular compartment leading to a panarterial inflammation and, in particular, to a microvascular dysfunction. In this context, biological drugs, targeting psoriasis key inflammatory molecules, demonstrated a positive outcome on both skin manifestations and cardiovascular involvement. However, further clinical studies are needed to investigate the potential beneficial effects of biologic agents in the reduction of CV risk in psoriatic patients.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

FUNDING

BM and RA received individual research grants from Istituto di Ricerca Pediatrica Fondazione Città della Speranza.

REFERENCES

1. Michalek IM, Loring B, John SM. A Systematic Review of Worldwide Epidemiology of Psoriasis. J Eur Acad Dermatol Venereol (2017) 31(2):205–12. doi: 10.1111/jdv.13854
2. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med (2009) 361(5):496–509. doi:10.1056/NEJMra0804595
3. di Meglio P, Villanova F, Nestle FO. Psoriasis. Cold Spring Harbor Perspect Med (2014) 4(8):a015354–a015354. doi:10.1101/cshperspect.a015354
4. Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of Psoriasis. Annu Rev Immunol (2014) 32(1):227–55. doi:10.1146/annurev-imunol-031413-120225
5. Mahil SK, Capon F, Barker JN. Update on Psoriasis Immunopathogenesis and Targeted Therapies. Semin Immunopathol (2016) 38(1):11–27. doi:10.1007/s00281-015-0539-8
6. Benezeder T, Wolf P. Resolution of Plaque-Type Psoriasis: What Is Left Behind (and Reinitiates the Disease). Semin Immunopathol (2019) 41(6):633–44. doi:10.1007/s00281-019-00766-x
7. Boehncke W-H, Boehncke S, Tobin A-M, Kirby B. The ‘Psoriatic March’: A Concept of How Severe Psoriasis May Drive Cardiovascular Comorbidity. Exp Dermatol (2011) 20(4):303–7. doi:10.1111/j.1600-0625.2011.01261.x
8. Gisondi P, Bellinato F, Girolomoni G, Albanesi C. Pathogenesis of Chronic Plaque Psoriasis and Its Intersection With Cardio-Metabolic Comorbidities. Front Pharmacol (2020) 11. doi:10.3389/fphar.2020.00117
9. Takeshita J, Grewal S, Lagan SM, Mehta NN, Ogdie A, van Voorhees AS, et al. Psoriasis and Comorbid Diseases. J Am Acad Dermatol (2017) 76(3):377–90. doi:10.1016/j.jaad.2016.07.064
10. Sokolova MV, Simon D, Nas K, Zais MM, Luo Y, Zhao Y, et al. A Set of Serum Markers Detecting Systemic Inflammation in Psoriatic Skin, Enthesal, and Joint Disease in the Absence of C-Reactive Protein and Its Link to Clinical Disease Manifestations. Arthritis Res Ther (2020) 22(1):26. doi:10.1186/s13075-020-2111-8
11. Montaudie H, Albert-Sabonnadière C, Acquacalda E, Fontas E, Danrè A, Roux C, et al. Impact of Systemic Treatment of Psoriasis on Inflammatory Parameters and Markers of Comorbidities and Cardiovascular Risk: Results of a Prospective Longitudinal Observational Study. J Eur Acad Dermatol Venereol (2014) 28(9):1186–91. doi:10.1111/jdv.12255
12. Beygi S, Lajevardi V, Abedini R. C-Reactive Protein in Psoriasis: A Review of the Literature. J Eur Acad Dermatol Venereol (2014) 28(6):700–11. doi:10.1111/jdv.12257
13. Garbaravicic J, Diehl S, Varwig D, Bylaite M, Ackermann H, Ludwig RJ, et al. Platelet P-Selectin Reflects a State of Cutaneous Inflammation: Possible...
Application to Monitor Treatment Efficacy in Psoriasis. Exp Dermatol (2009) 18(8):736–41. doi: 10.1111/j.1600-0625.2010.01095.x

Suárez-Fariñas M, Li K, Fuentes-Duculan J, Hayden K, Broderick C, Krueger JG. Expanding the Psoriasis Disease Profile: Interrogation of the Skin and Serum of Patients With Moderate-To-Severe Psoriasis. J Invest Dermatol (2012) 132(3):2552–64. doi: 10.1038/jid.2012.184

Mehta NN. Systemic and Vascular Inflammation in Patients With Moderate to Severe Psoriasis as Measured by [18F]-Fluorodeoxyglucose Positron Emission Tomography –Computed Tomography (FDg-Pet/Ct). Arch Dermatol (2011) 147(9):1031. doi: 10.1001/archdermatol.2011.119

Armstrong AW, Harkamp CT, Armstrong EJ. The Association Between Psoriasis and Hypertension. J Hypertens (2015) 31(3):433–45. doi: 10.1097/JHJ.0000000000001330

Armstrong AW, Harkamp CT, Armstrong EJ, Armstrong AW. An Update on Psoriasis and Metabolic Syndrome: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Diabetes (2012) 2(12):e4–4. doi: 10.1038/nutd.2012.26

Ma C, Harkamp CT, Armstrong EJ, Armstrong AW. The Association Between Psoriasis and Obesity: A Systematic Review and Meta-Analysis of Observational Studies. Nutr Diabetes (2013) 2(12):e54–4. doi: 10.1038/nutd.2012.26

Coto-Segura P, Eiris-Salvado N, González-Mejía J, García-Sánchez A, Vázquez-Fariñas M, Li K, Fuentes-Duculan J, Hayden K, Broderick C. Expanding the Psoriasis Disease Profile: Interrogation of the Skin and Serum of Patients With Moderate-To-Severe Psoriasis. J Invest Dermatol (2012) 132(3):2552–64. doi: 10.1038/jid.2012.184

DeShazo RA, Secrest AM, Armstrong AW, Duflin KC. Addressing Hypertension in Patients With Psoriasis: Review and Recommendations. J Psoriasis Psoriatic Arthritis (2020) 5(4):129–38. doi: 10.1177/247553020936373

Pietrzak A, Michalak-Stoma A, Chodorowska G, Szeptowski JC. Lipid Disturbances in Psoriasis: An Update. Mediat Inflamm (2010) 2010:1–13. doi: 10.1159/000353612

Wu S, Li W-Q, Han J, Sun Q, Qureshi AA. Hypercholesterolemia and Risk of Incident Psoriasis and Psoriatic Arthritis in US Women. Arthritis Rheumatol (2014) 66(2):304–10. doi: 10.1002/art.38227

Langan SM, Seminara NM, Shin DB, Troxel AB, Kimmel SE, Mehta NN, et al. Prevalence of Metabolic Syndrome in Patients With Psoriasis: A Population-Based Study in the United Kingdom. J Invest Dermatol (2012) 132(3):556–62. doi: 10.1038/jid.2011.365

Gisondi P, Fostini AC, Fossa L, Girolomoni G, Targher G. Psoriasis and the Metabolic Syndrome. Clinics Dermatol (2018) 36(1):21–8. doi: 10.1016/j.clindermatol.2017.09.005

Boehncke W-H. Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Front Immunol (2018) 9. doi: 10.3389/fimmu.2018.00579

Xu T, Zhang Y-H. Association of Psoriasis With Stroke and Myocardial Infarction: Meta-Analysis of Cohort Studies. Br J Dermatol (2012) 167:1345–50. doi: 10.1111/j.1116112002

Armstrong EJ, Harkamp CT, Armstrong AW. Psoriasis and Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis of Observational Studies. J Am Heart Assoc (2013) 2(2). doi: 10.1161/JAHA.113.000062

Gaeta M, Castelvecchio S, Ricci C, Pigatto P, Pellissier G, Cappato R. Role of Psoriasis as Independent Predictor of Cardiovascular Disease: A Meta-Regression Analysis. Int J Cardiol (2013) 168(3):2282–8. doi: 10.1016/j.ijcard.2013.01.197

Gu W-J, Weng C-L, Zhao Y-T, Liu Q-H, Yin R-X. Psoriasis and Risk of Cardiovascular Disease: A Meta-Analysis of Cohort Studies. Int J Cardiol (2013) 168(5):4992–6. doi: 10.1016/j.ijcard.2013.07.127

Horreau C, Pouplard C, Brenaut E, Barnetche T, Misery L, Cribier B, et al. Cardiovascular Morbidity and Mortality in Psoriasis and Psoriatic Arthritis: A Systematic Literature Review. J Eur Acad Dermatol Venereol (2013) 27:12–29. doi: 10.1111/jdv.12163

Pietrzak A, Bartosinska J, Chodorowska G, Szeptowski JC, Paluszewicz P, Schwartz RA. Cardiovascular Aspects of Psoriasis: An Updated Review. Int J Dermatol (2013) 52(2):153–62. doi: 10.1111/1365-4632.2012.05584.x

Samarasereka EJ, Neilson JM, Warren RB, Parham J, Smith CH. Incidence of Cardiovascular Disease in Individuals With Psoriasis: A Systematic Review and Meta-Analysis. J Invest Dermatol (2013) 133(10):2340–6. doi: 10.1038/jid.2013.149

Richard M-A, Barnetche T, Horreau C, Brenaut E, Pouplard C, Aractingi S, et al. Psoriasis, Cardiovascular Events, Cancer Risk and Alcohol Use: Evidence-Based Recommendations Based on Systematic Review and Expert Opinion. J Eur Acad Dermatol Venereol (2013) 27:12–11. doi: 10.1111/jdv.12162

Raab R, Ehleboff O, de Thurah A. Psoriasis and Cardiovascular Events: Updating the Evidence. Arch Dermatol Res (2017) 309(3):225–8. doi: 10.1007/s00403-016-1712-1

Dhana A, Yen H, Yen H, Cho E. All-Cause and Cause-Specific Mortality in Psoriasis: A Systematic Review and Meta-Analysis. J Am Acad Dermatol (2019) 80(5):1332–40. doi: 10.1016/j.jaad.2017.08.016

Gelfand JM, Neimann AL, Shin DB, Wang X, Margolis DJ, Troxel AB. Risk of Myocardial Infarction in Patients With Psoriasis. JAMA (2006) 296(14):1735. doi: 10.1001/jama.296.14.1735

Egeberg A, Skov L, Joshi AA, Mallbris L, Gislason GH, Wu J, et al. The Relationship Between Duration of Psoriasis, Vascular Inflammation, and Cardiovascular Events. J Am Acad Dermatol (2017) 77(4):650–656.e3. doi: 10.1016/j.jaad.2017.06.028

Mehta NN, Krishnamoorthy P, Yu Y, Khan O, Raper A, van Voorhees A, et al. The Impact of Psoriasis on 10-Year Framingham Risk. J Am Acad Dermatol (2012) 67(4):796–8. doi: 10.1016/j.jaad.2012.05.016
53. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, et al. 2016 ESC Guidelines on Chronic Heart Failure: The Task Force on Chronic Heart Failure of the European Society of Cardiology. Eur Heart J (2016) 37(39):2671–713. doi: 10.1093/eurheartj/ehw206

54. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPMP/ADA/AGS/APSNJ/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: Executive Summary. J Am Coll Cardiol (2018) 72(24):3168–209. doi: 10.1016/j.jacc.2018.11.002

55. Elmets CA, Leonardi CL, Davis DMR, Gelfand JM, Lichten J, Mehta NN, et al. Cardiovascular Disease in Psoriasis and Psoriatic Arthritis: New Mechanisms and Clinical Implications. J Am Acad Dermatol (2019) 80(4):1073–113. doi: 10.1016/j.jaad.2018.11.058

56. Woo YR, Park CJ, Kang H, Kim JE. The Risk of Systemic Diseases in Those With Psoriasis and Psoriatic Arthritis: From Mechanisms to Clinical. Int J Mol Sci (2020) 21(19):7941. doi: 10.3390/ijms21197941

57. Sajja AP, Joshi AA, Teague HL, Dey AK, Mehta NN. Potential Immunological Links Between Psoriasis and Cardiovascular Disease. Front Immunol (2018) 9. doi: 10.3389/fimmu.2018.01234

58. Ludwig RJ, Herzog C, Rostock A, Ochsendorf FR, Zollner TM, Thaci D, et al. Psoriasis: A Possible Risk Factor for Development of Coronary Artery Calcification. Br J Dermatol (2007) 156(2):271–6. doi: 10.1111/j.1365-2133.2006.07562.x

59. Piasero S, Ost E, Famoso G, Zanetti I, Gregori D, Poreto E, et al. Treatment With Tumor Necrosis Factor Inhibitors Restores Coronary Microvascular Function in Young Patients With Severe Psoriasis. Atherosclerosis (2016) 251:25–30. doi: 10.1016/j.atherosclerosis.2016.05.036

60. Ost E, Piasero S, Maddalazo A, Forchetti G, Montisci R, Famoso G, et al. Impaired Coronary Flow Reserve in Young Patients Affected by Severe Psoriasis. Atherosclerosis (2012) 221(1):113–7. doi: 10.1016/j.atherosclerosis.2011.12.015

61. Gisoni P, Fantin F, del Giglio M, Valbusa F, Marino F, Zamboni M, et al. Chronic Plaque Psoriasis Is Associated With Increased Arterial Stiffness. Dermatology (2009) 218(2):110–3. doi: 10.1159/000182256

62. Alba BK, Greaney JL, Ferguson SB, Alexander LM. Endothelial Function is Impaired in the Cutaneous Microcirculation of Adults With Psoriasis Through Reductions in Nitric Oxide-Dependent Vasodilation. Am J Physiology-Heart Circulatory Physiol (2018) 314(2):H343–9. doi: 10.1152/ajpheart.00446.2017

63. Mizuguchi S, Gotoh K, Nakashima Y, Setoyama D, Takata Y, Ohga S, et al. Mitochondrial Reactive Oxygen Species Are Essential for the Development of Psoriatic Inflammation. Front Immunol (2021) 12. doi: 10.3389/fimmu.2021.714897

64. Bohm F, Pernov J. The Importance of Endothelin-1 for Vascular Dysfunction in Cardiovascular Disease. Cardiovasc Res (2007) 76(1):18–9. doi: 10.1016/j.cardiores.2007.06.004

65. Mehta NN, Teague HL, Swindell WR, Baumer Y, Ward NL, Xing X, et al. Infl-γ and TNF-α Synergism May Provide a Link Between Psoriasis and Inflammatory Atherosclerosis. Sci Rep (2017) 7(1):13831. doi: 10.1038/s41598-017-14365-1

66. Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. A Tale of Two Plaques: Convergent Mechanisms of T-Cell-Mediated Inflammation in Psoriasis and Atherosclerosis. Exp Dermatol (2011) 20(7):344–9. doi: 10.1111/j.1600-0625.2011.01308.x

67. von Stebut E, Boehncke W-H, Goreschi K, Gori T, Kaya Z, Thaci D, et al. IL-17A in Psoriasis Recapitulates Some Features of Psoriasis. J Exp Med (2018) 20(7):544–57. doi: 10.1084/jem.20061308

68. Marri-Draht Z, Kirsner R, Pezon C, Fasihi T, Kirschner MA, et al. Methotrexate Improves Endothelial Function and Arterial Stiffness in Patients With Severe Psoriasis Treated With Systemic Anti-Inflammatory Drugs: A Danish Real-World Cohort Study. J Internal Med (2013) 273(2):197–204. doi: 10.1111/j.1365-2796.2012.02593.x

69. Prodanovich S, Ma F, Taylor J, Pezon C, Fasihi T, Kirsner R. Methotrexate Reduces Incidence of Vascular Diseases in Veterans With Psoriasis or Rheumatoid Arthritis. J Am Acad Dermatol (2005) 52(2):262–7. doi: 10.1016/j.jaad.2004.06.017

70. Micha R, Imamura F, Wyler von Ballmoos M, Solomon DH, Hernández-Aguilera ME, et al. Effect of 2 Psoriasis Treatments on Vascular Inflammatory Cardiovascular Biomarkers. J Vasc Med (2017) 80(Suppl 1):139–40. doi: 10.1136/amrheumdis-2017-eular.4091

71. Agca R, Heslinga SC, Rollefstad S, Heslinga M, McNunes JB, Peters MIJ, et al. EULAR Recommendations for Cardiovascular Disease Risk Management in Patients With Rheumatoid Arthritis and Other Forms of Inflammatory Joint Disorders: 2015/2016 Update. Ann Rheumatic Dis (2017) 76(1):17–28. doi: 10.1136/annrheumdis-2016-209775

72. Aulehloff O, Skov L, Glilason G, Lindhardsen J, Kristensen SL, Iversen L, et al. Cardiovascular Disease Event Rates in Patients With Severe Psoriasis Treated With Systemic Anti-Inflammatory Drugs: A Danish Real-World Cohort Study. J Internal Med (2013) 273(2):197–204. doi: 10.1111/j.1365-2796.2012.02593.x

73. Boehncke S, Salgo R, Garbaraviczenė J, Beschmann H, Hardt K, Diehl S, et al. Effective Continuous Systemic Therapy of Severe Plaque-Type Psoriasis Is Accompanied by Amelioration of Biomarkers of Cardiovascular Risk: Results of a Prospective Longitudinal Observational Study. J Eur Acad Dermatol Venereol (2011) 25(10):1187–93. doi: 11.111/j.1468-3083.2010.03947.x

74. Mehta NN, Shin DB, Joshi AA, Dey AK, Armstrong AW, Duffin KC, et al. Effect of 2 Psoriasis Treatments on Vascular Inflammation and Novel Inflammatory Cardiovascular Biomarkers. Circulation: Cardiovasc Imaging (2021) 18(11). doi: 10.1161/CIRCIMAGING.117.007394

75. Dey AK, Joshi AA, Chaturvedi A, Lerman JB, Aberra TM, Rodante JA, et al. Association Between Skin and Aortic Vascular Inflammation in Patients With Psoriasis. JAMA Cardiol (2017) 2:209–103. doi: 10.1001/jamacardio.2017.1213

76. Fina T, Corrales A, Lopez-Mejias R, Armento S, Gonzalez-Lopez MA, Gomez-Acebo I, et al. Anti-Tumor Necrosis Factor-Alpha Therapy Improves Endothelial Function and Arterial Stiffness in Patients With Moderate to Severe Psoriasis: A 6-Month Prospective Study. J Dermatol (2016) 43(11):1267–72. doi: 10.1111/1346-8138.13398
98. Gelfand JM, Shin DB, Duffin KC, Armstrong AW, Blauvelt A, Tyring SK, et al. A Randomized Placebo-Controlled Trial of Secukinumab on Aortic Vascular Inflammation in Moderate-To-Severe Plaque Psoriasis (Vip-S). J Invest Dermatol (2020) 140(9):1784–93.e2. doi: 10.1016/j.jid.2020.01.025

99. Reich K, Langley RG, Lebwohl M, Szapary P, Guzzo C, Yelding N, et al. Cardiovascular Safety of Ustekinumab in Patients With Moderate to Severe Psoriasis: Results of Integrated Analyses of Data From Phase II and III Clinical Studies. Br J Dermatol (2011) 164(4):862–72. doi: 10.1111/j.1365-2133.2011.10257.x

100. Ryan C, Leonardi CL, Krueger JG, Kimball AB, Strober BE, Gordon KB, et al. Association Between Biologic Therapies for Chronic Plaque Psoriasis and Cardiovascular Events. JAMA (2011) 306(8). doi: 10.1001/jama.2011.1211

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Orlando, Molon, Viola, Alaibac, Angioni and Piaserico. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.