Measurement of the branching fraction of $\Lambda_c^+ \rightarrow p\omega$ decay at Belle

S. X. Li,11 L. K. Li,7 C. P. Shen,11 I. Adachi,18,14 H. Aihara,87 S. Al Said,30,88 D. M. Asner,3 T. Aushev,20 P. Behera,26 K. Belous,30 J. Bennett,52 M. Besson,17 V. Bhardwaj,23 B. Bhuyan,24 T. Bilka,5 J. Biswal,35 A. Bobrov,4,65 D. Bodrov,4,65 J. Borah,24 A. Bozek,62 M. Bračko,49,35 P. Branchini,32 T. E. Browder,17 A. Budano,32 M. Campajola,31,57 D. Červenkov,5 M.-C. Chang,17 S. Chen,59 B. G. Cheon,16 K. Chilikin,44 H. E. Cho,16 K. Cho,40 S.-J. Cho,93 S.-K. Choi,15 Y. Choi,78 S. Choudhury,25 D. Cinabro,91 S. Cunliffe,8 S. Das,48 G. De Nardo,31,57 G. De Pietro,32 R. Dhamija,25 F. Di Capua,31,57 Z. Doležal,7 T. V. Dong,11 D. Epifanov,4,65 T. Ferber,8 B. G. Cheon,40 S. Choudhury,25 D. Cinabro,91 S. Cunliffe,8 S. Das,48 G. De Nardo,31,57 G. De Pietro,32 R. Dhamija,25 F. Di Capua,31,57 Z. Doležal,7 T. V. Dong,11 D. Epifanov,4,65 T. Ferber,8 B. G. Cheon,40 S. Choudhury,25 D. Cinabro,91 S. Cunliffe,8 S. Das,48 G. De Nardo,31,57 G. De Pietro,32 R. Dhamija,25
Institution / Organization
Indian Institute of Technology Madras, Chennai 600036
Indiana University, Bloomington, Indiana 47408
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Institute of High Energy Physics, Vienna 1050
Institute for High Energy Physics, Protvino 142281
INFN—Sezione di Napoli, I-80126 Napoli
INFN—Sezione di Roma Tre, I-00146 Roma
INFN—Sezione di Torino, I-10125 Torino
Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
Institut für Experimentelle Teilchenphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
Kovli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa 277-8583
Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589
Kitasato University, Sagamihara 252-0373
Korea Institute of Science and Technology Information, Daejeon 34141
Korea University, Seoul 02841
Kyoto Sangyo University, Kyoto 603-8555
Kyungpook National University, Daegu 41566
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
Ludwig Maximilians University, 80539 Munich
Luther College, Decorah, Iowa 52101
Malaviya National Institute of Technology Jaipur, Jaipur 302017
Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor
Max-Planck-Institut für Physik, 80805 München
School of Physics, University of Melbourne, Victoria 3010
University of Mississippi, University, Mississippi 38677
University of Miyazaki, Miyazaki 889-2192
Moscow Physical Engineering Institute, Moscow 115409
Graduate School of Science, Nagoya University, Nagoya 464-8602
Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602
Università di Napoli Federico II, I-80126 Napoli
Nara Women’s University, Nara 630-8506
National Central University, Chung-li 32054
National United University, Miao Li 36003
Department of Physics, National Taiwan University, Taipei 10617
H. Niewodniczanski Institute of Nuclear Physics, Krakow 31-342
Nippon Dental University, Niigata 951-8580
Niigata University, Niigata 950-2181
Novosibirsk State University, Novosibirsk 630090
Osaka City University, Osaka 558-8585
Pacific Northwest National Laboratory, Richland, Washington 99352
Panjab University, Chandigarh 160014
Peking University, Beijing 100871
University of Pittsburgh, Pittsburgh, Pennsylvania 15260
Punjab Agricultural University, Ludhiana 141004
Research Center for Nuclear Physics, Osaka University, Osaka 567-0047
Meson Science Laboratory, Cluster for Pioneering Research, RIKEN, Saitama 351-0198
Dipartimento di Matematica e Fisica, Università di Roma Tre, I-00146 Roma
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026
Showa Pharmaceutical University, Tokyo 194-8543
Soongsil University, Seoul 06978
Sungkyunkwan University, Suwon 16419
School of Physics, University of Sydney, New South Wales 2006
Department of Physics, Faculty of Science, University of Tabuk, Tabuk 71451
Tata Institute of Fundamental Research, Mumbai 400005
Department of Physics, Technische Universität München, 85748 Garching
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978
I. INTRODUCTION

Charmed mesons and baryons are copiously produced in the B-factory experiment, providing an excellent arena for understanding quantum chromodynamics (QCD) with transitions involving charm quark. SU(3)$_F$ flavor symmetry [1,2] and QCD dynamical models [3–5] provide theoretical estimates of charmed baryon decays. The former relies on experimental results as the input; the latter models point to nonfactorizable contributions, which makes it difficult to perform definitive tests between theoretical models.

Experimentally, the investigation of charmed baryon decays is more difficult than for charmed mesons due to their smaller production rate. Only the lowest-lying charmed decays is more difficult than for charmed mesons due to it difficult to perform definitive tests between theoretical predictions and nonfactorizable contributions, which makes theoretical estimates of charmed baryon decays. The former transitions involving charm quark. SU(3)$_F$ under quantum chromodynamics (QCD) with the B-factory experiment, providing an excellent arena for theoretical models point to nonfactorizable contributions, been observed [7]. In contrast, the knowledge of Cabibbo-suppressed decay rates as well as the total widths [8–11].

Using 980.6 fb$^{-1}$ of data collected with the Belle detector operating at the KEKB asymmetric-energy $e^+ e^-$ collider, we present a measurement of the branching fraction of the singly Cabibbo-suppressed decay $\Lambda^+_c \to p\omega$. A clear Λ^+_c signal is observed for $\Lambda^+_c \to p\omega$ with a statistical significance of 9.1 standard deviations, and we measure the ratio of branching fractions $B(\Lambda^+_c \to p\omega)/B(\Lambda^+_c \to pK^-\pi^+) = (1.32 \pm 0.12 \text{(stat)} \pm 0.10 \text{(syst)}) \times 10^{-2}$, from which we infer the branching fraction $B(\Lambda^+_c \to p\omega) = (8.27 \pm 0.75 \text{(stat)} \pm 0.62 \text{(syst)} \pm 0.42 \text{(ref)}) \times 10^{-4}$.

II. THE DATA SAMPLE AND THE BELLE DETECTOR

Measurement of the branching fraction of $\Lambda^+_c \to p\omega$ is based on a data sample taken at or near the $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$, $\Upsilon(4S)$, and $\Upsilon(5S)$ resonances collected with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider [16], corresponding to an integrated luminosity of 980.6 fb$^{-1}$. The Belle detector is a large-solid-angle magnetic spectrometer that consists of a silicon vertex detector (SVD), a 50-layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation...
counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K_L^0 mesons and to identify muons (K_L^0 and muon sub-detector). The detector is described in detail elsewhere [17].

A signal Monte Carlo (MC) sample of $e^+e^- \to c\bar{c}; c\bar{c} \to \Lambda^+_cX$ with X denoting anything; $\Lambda^+_c \to p\omega$ with $\omega \to \pi^+\pi^-\pi^0$, $\pi^0 \to \gamma\gamma$ is used to optimize the selection criteria and estimate the reconstruction and selection efficiency. Events are generated with PYTHIA [18] and EvtGen [19], and decay products are propagated by GEANT3 [20] to simulate the detector performance. Charge-conjugate modes are also implied unless otherwise stated throughout this paper.

Inclusive MC samples of $\Upsilon(4S) \to B^+B^-/B^0\bar{B}^0$, $\Upsilon(5S) \to B^{(*)}\bar{B}^{(*)}$, $e^+e^- \to q\bar{q}$ ($q = u, d, s, c$) at $\sqrt{s} = 10.52, 10.58,$ and 10.867 GeV, and $\Upsilon(1S, 2S, 3S)$ decays, corresponding to four times the integrated luminosity of each data set, are used to characterize the backgrounds [21].

III. EVENT SELECTION

The Λ^+_c candidates are reconstructed in two decay modes, $\Lambda^+_c \to pK^-\pi^+$ and $\Lambda^+_c \to p\omega$ with $\omega \to \pi^+\pi^-\pi^0$, $\pi^0 \to \gamma\gamma$, corresponding to the reference and signal modes, respectively. Final-state charged particles, p, K, and π, are selected using the likelihood information derived from the charged-hadron identification systems (ACC, TOF, and CDC) into a combined likelihood, $R(h|h') = L(h)/L(h')$ where h and h' are π, K, and p as appropriate [22]. The protons are required to have $R(p|\pi) > 0.9$ and $R(p|K) > 0.9$, charged kaons to have $R(K|p) > 0.4$ and $R(K|\pi) > 0.9$, and charged pions to have $R(\pi|p) > 0.4$ and $R(\pi|K) > 0.4$. A likelihood ratio for e and h identification, $R(e)$, is formed from ACC, CDC, and ECL information [23], and is required to be less than 0.9 for all charged tracks to suppress electrons. For the typical momentum range of our signal decay, the identification efficiencies of p, K, and π are 82%, 70%, and 97%, respectively. Probabilities of misidentifying h as h', $P(h \to h')$, are estimated to be 3% [$P(p \to \pi)$], 7% [$P(p \to K)$], 10% [$P(K \to \pi)$], 2% [$P(K \to p)$], 5% [$P(\pi \to K)$], and 1% [$P(\pi \to p)$]. Furthermore, for each charged-particle track, the distance of closest approach with respect to the interaction point along the direction opposite the e^+ beam (z axis) and in the transverse $r\phi$ plane is required to be less than 2.0 and 0.1 cm, respectively. In addition, at least one SVD hit for each track is required.

For $\Lambda^+_c \to pK^-\pi^+$, a common vertex fit is performed on Λ^+_c candidates and the corresponding χ^2_{vis} value is required to be less than 40 to reject the combinatorial background. We require a scaled momentum of $x_P > 0.53$ to suppress the background, especially from B-meson decays, where $x_P = p^*/\sqrt{E_{CM}^2 / 4 - M^2}$ [24], and E_{CM} is the center-of-mass (CM) energy, p^* and M are the momentum and invariant mass, respectively, of the Λ^+_c candidates in the CM frame. All of these optimized selection criteria are the same as those in our previous publication [25].

An ECL cluster not matching any track is identified as a photon candidate. To reject neutral hadrons, the sum of the invariant mass, respectively, of the K^0_S peaks in the $M(\pi^+\pi^-)$ and $M(p\pi^0)$ distributions,
respectively. In the $M(p\pi^-)$ spectrum, a signal is seen and an optimized requirement of $|M(p\pi^-)-m(\Lambda)| > 2.756$ MeV/c2 (≈3σ) is placed, where $m(\Lambda)$ is the nominal mass of Λ [7]. There is a small Δ^{++} signal observed in the $M(p\pi^+)$ distribution. Due to the broad width of the Δ^{++} (\sim118 MeV) [7], no requirement on $M(p\pi^+)$ is imposed. Since such a background can be described by the ω sidebands is used to handle the ω background in extracting the Λ^+_c signal region and the normalized ω sidebands is used to handle the Δ^{++} background in extracting the Λ^+_c signal events, as introduced in the following section.

IV. EFFICIENCY ESTIMATION AND FIT RESULTS

To measure the ratio of the branching fractions, $B(\Lambda^+_c \to p\omega)/B(\Lambda^+_c \to pK^-\pi^+)$, we first determine the yields of $\Lambda^+_c \to pK^-\pi^+$ and $\Lambda^+_c \to p\omega$ by fitting the corresponding invariant mass distributions. Figure 1 shows the $M(pK^-\pi^+)$ distribution overlaid with the fit result. A clear Λ^+_c signal is seen and we fit the $M(pK^-\pi^+)$ distribution using a binned maximum likelihood fit with a bin width of 3 MeV/c2. A sum of two Gaussian functions with a common mean value is used to model the signal events and a second-order polynomial is used to model the background events. The parameters of the signal and background shapes are free in the fit. The reduced χ^2 value of the fit is $\chi^2/ndf = 87/82 = 1.06$ and the fitted number of signal events is 1476200 ± 1560, where ndf is the number of degrees of freedom and the uncertainty is statistical only. The signal efficiency for this reference mode is estimated to be $(14.06 \pm 0.01)\%$ via a Dalitz-plot method [26]; the details can be found in Ref. [25].

Since the decay $\Lambda^+_c \to p\eta$ with $\eta \to \gamma\gamma$ has been well measured [25], the same transition $\Lambda^+_c \to p\eta$, followed by the decay $\eta \to \pi^+\pi^-\pi^0$, having the same final-state topology as our signal mode, is taken as a control channel to validate the event selection criteria. With the final selection criteria, a clear η signal is observed in the $M(\pi^+\pi^-\pi^0)$ distribution and the η signal region is defined as $0.535 < M(\pi^+\pi^-\pi^0) < 0.561$ GeV/c2. In the $M(p\eta)$ distribution, a significant Λ^+_c signal is observed and a one-dimensional fit is performed on the $M(p\eta)$ distribution using an unbinned maximum-likelihood method. A sum of two Gaussian functions with the same mean value is used to model the Λ^+_c signal and a second-order polynomial function is used to model the background, with all parameters floated in the fit. The determined number of Λ^+_c signal events is 819.9 ± 78.6 and the signal efficiency is $(1.48 \pm 0.01)\%$, as determined from a signal MC sample. Therefore, the branching ratio of $\Lambda^+_c \to p\eta$ with respect to the reference mode $\Lambda^+_c \to pK^-\pi^+$ is $B(\Lambda^+_c \to p\eta) / B(\Lambda^+_c \to pK^-\pi^+) = 0.0233 \pm 0.0022$, resulting in the branching fraction $B(\Lambda^+_c \to p\eta) = (1.46 \pm 0.14) \times 10^{-3}$, where the uncertainty is statistical only. Comparing with the result of a previous dedicated measurement, $B(\Lambda^+_c \to p\eta) = (1.42 \pm 0.05 (stat) \pm 0.11 (syst)) \times 10^{-3}$ [25], we find they are consistent with each other.

With the final selection criteria applied, the $\pi^+\pi^-\pi^0$ invariant mass distribution is displayed in Fig. 2. There is a clear ω signal and a fit to the sum of a polynomial and a signal function is performed using an unbinned maximum-likelihood method. The ω signal is described by a Breit-Wigner (BW) function convolved with a double Gaussian

![FIG. 1. Fit to the invariant mass distribution of $pK^-\pi^+$ from data. Black dots with error bars represent the data; the pink dashed line, the blue dash-dotted line, the green long-dashed line, and the red solid line represent the background contribution, the core Gaussian, tail Gaussian, and the total fit, respectively.](072008-5)

![FIG. 2. A fit to the $\pi^+\pi^-\pi^0$ invariant mass distribution is shown. The black dots with error bars represent the data; the red solid line represents the total fitted result; the blue dashed line represents the signal shape; and the magenta dashed-dotted line represents the fitted background. The region between the two violet vertical lines is regarded as the signal region and the two regions between the pairs of green vertical lines are regarded as the ω sideband regions.](072008-5)
function to represent the detector resolution. The mass and width of the BW function are set to the \(\omega \) world average value \([7]\), the means are constrained to be the same for the double Gaussian function, and the remaining parameters are free. A third-order polynomial function is used to model the combinatorial background. The fit result is shown in Fig. 2, along with the pulls \((N_{\text{data}} - N_{\text{fit}})/\sigma_{\text{data}}\), where \(\sigma_{\text{data}}\) is the error on \(N_{\text{data}}\). The \(\omega \) signal region is determined to be 0.75 to 0.81 GeV/c\(^2\) in the \(M(\pi^+\pi^-\pi^0) \) spectrum, corresponding to a 92% selection efficiency, and the sideband regions of \(\omega \) are set to be (0.64, 0.70) GeV/c\(^2\) and (0.86, 0.92) GeV/c\(^2\).

The \(M(\rho\omega) \) distribution for events in the \(\omega \) signal region and the normalized \(\omega \) sideband regions are shown in Fig. 3. There is a clear \(\Lambda_c^+ \) signal observed and we perform a simultaneous extended unbinned maximum-likelihood fit to extract the \(\Lambda_c^+ \) signal yield. The function for an event in the \(\omega \) signal region (SR) is described as

\[
F_{\text{sr}}(M_i) = n_s P_s(M_i) + n_b P_b(M_i) + f_{\text{norm}}[n_{sb}^s P_{sb}^s(M_i) + n_{sb}^b P_{sb}^b(M_i)]
\]

and that for an event in the \(\omega \) sidebands (SB) is

\[
F_{\text{sb}}(M_j) = n_{sb}^s P_{sb}^s(M_j) + n_{sb}^b P_{sb}^b(M_j),
\]

where \(P_s \) and \(P_b \) are probability density functions (PDFs) of the \(\Lambda_c^+ \) signal and background for the \(M(\rho\omega) \) distribution with the events in SR, respectively; \(P_{sb}^s \) and \(P_{sb}^b \) are the \(\Lambda_c^+ \) signal and background PDFs for the \(M(\rho\omega) \) distribution with the events in SB; \(n_s, n_b, n_{sb}^s, \) and \(n_{sb}^b \) are the corresponding numbers of the fitted events; \(f_{\text{norm}} = S_{sb}/S_{sr} = 0.428 \) is the normalization factor determined by fitting the \(M(\pi^+\pi^-\pi^0) \) distribution (\(S_{sb} \) and \(S_{sr} \) are the numbers of the fitted background events in defined \(\omega \) sidebands and signal region, respectively). The extended likelihood function is

\[
\mathcal{L} = \frac{e^{-n_{u}}}{N_{sr}!} \prod_{i} F_{sr}(M_i) \frac{e^{-n_{sb}}}{N_{sb}!} \prod_{j} F_{sb}(M_j),
\]

where \(n_{sr} = n_s + n_b + f_{\text{norm}}(n_{sb}^s + n_{sb}^b), \ n_{sb} = n_{sb}^s + n_{sb}^b, \) and \(N_{sr} \) and \(N_{sb} \) are the number of events in SR and SB. The \(P_s \) and \(P_{sb}^b \) are both a sum of two Gaussian functions with the same mean value. The parameters of \(P_s \) and \(P_{sb}^b \) are kept the same and floated. The \(P_b \) and \(P_{sb}^s \) are described by second-order and third-order polynomial functions, respectively. All parameters of the background functions are free. The fit result and pulls are shown in Fig. 3. After fitting, \(n_s = 1829 \pm 168 \) and \(n_{sb} = 39 \pm 14 \) are obtained. The \(\chi^2/\text{ndf} \) for the fit is 44/41 = 1.07 for the fit. The statistical significance is evaluated with \(\sqrt{-2 \ln (\mathcal{L}_0/\mathcal{L}_{\text{max}})} \), where \(\mathcal{L}_0 \) is the maximized-likelihood value with the number of signal events set to zero, and \(\mathcal{L}_{\text{max}} \) is the nominal maximized-likelihood value. We obtain 9.1\(\sigma \) as the statistical significance.

With all event selections, the \(M(\rho\omega) \) distribution from signal MC sample is obtained and signal events of \(\Lambda_c^+ \) are determined by fitting the \(M(\rho\omega) \) distribution. We use a sum of two Gaussian functions with the same mean value to model the signal and a second-order polynomial function to model the background. All parameters of the signal and background functions are free. The efficiency of our signal decay is obtained by the ratio of the number of fitted signal events in the \(M(\rho\omega) \) distribution to that of generated events from signal MC sample, which is (1.50 \(\pm \) 0.01)\%, where the uncertainty is statistical only. The branching ratio is thus \(B(\Lambda_c^+ \to \rho\omega)/B(\Lambda_c^+ \to \rho K^+\pi^-) \) = (1.32 \(\pm \) 0.12) \times 10\(^{-2}\), where the uncertainty is statistical.

\textbf{V. SYSTEMATIC UNCERTAINTIES}

Since the branching fraction is obtained from a ratio of quantities in Eq. (1), some systematic uncertainties cancel. The sources of systematic uncertainties include the fits of the reference and signal modes, particle identification (PID), photon efficiency, the uncertainties of branching fractions for the \(\omega \to \pi^+\pi^-\pi^0 \) and \(\pi^0 \to \gamma\gamma \) decays, and the statistics of the signal MC sample. The systematic uncertainty from the fit of the \(M(pK^-\pi^+) \) spectrum is estimated by modifying the signal and background functions, bin width, and the fit range. To evaluate the uncertainty from the signal function, the signal shape is fixed to that from the fit to the MC sample. The uncertainty from the background shape is assessed by using a first-order polynomial. Furthermore, the bin width is varied from 2 to 4 MeV/c\(^2\), and the fit range of the invariant mass spectrum adjusted to estimate the uncertainties from binning and
TABLE I. Tabulation of the sources of the relative systematic uncertainties (%) on the ratio of the branching fractions \(B(\Lambda_c^+ \to p\omega)/B(\Lambda_c^+ \to pK^-\pi^+) \).

Source	Uncertainty (%)
Fit of reference mode	2.1
Fit of signal mode	5.2
PID	2.9
Photon efficiency	4.0
\(B(\omega \to \pi^+\pi^-\pi^0) \) and \(B(\pi^0 \to \gamma\gamma) \)	0.7
Statistics of signal MC sample	0.8
Total	7.6

fit range. The fractional difference in measured branching ratios, 2.1%, is taken as the uncertainty. The systematic uncertainty from the fit of the \(M(p\omega) \) distribution is estimated by changing the signal and background line shapes, the fit range, and the fit method. The signal shape is changed from the double Gaussian function to a single Gaussian function, and the background line shape is changed from the second-order polynomial function to a third-order polynomial function, as well as enlarging the fit range. In addition, a two-dimensional unbinned maximum-likelihood fit of the \([M(p\omega), M(\pi^+\pi^-\pi^0)]\) distribution is performed, to evaluate the fit method uncertainty, and the fractional difference in the branching ratio, 5.2%, is taken as the systematic uncertainty.

Systematic uncertainties from PID efficiencies of the \(p \) and \(\pi^+ \) cancel approximately, resulting in negligible amount of systematic uncertainty in the ratio. Systematic uncertainties of 1.6% and 1.3% are assigned for the \(K^- \) and \(\pi^- \) identification efficiencies, respectively, calculated using a \(D^{*-}\to D^0\pi^+ \) with \(D^0 \to K^-\pi^+ \) sample. The total systematic uncertainty from PID is 2.9%. The systematic uncertainty due to tracking efficiency cancels in the ratio. Based on a study of radiative Bhabha events, a systematic uncertainty of 2.0% is assigned to the photon efficiency for each photon, and the total systematic uncertainty from photon reconstruction is thus 4.0%. Since the signal efficiency is independent of the decay angular distribution of proton in the \(\Lambda_c^+ \) rest frame, the model-dependent uncertainty has negligible effect on efficiency. The systematic uncertainty from \(B(\omega \to \pi^+\pi^-\pi^0) \times B(\pi^0 \to \gamma\gamma) \) is 0.7% [7], and that from the size of the signal MC sample is estimated to be 0.8% for \(\Lambda_c^+ \to p\omega \).

These systematic uncertainties are summarized in Table I, where a total systematic uncertainty of 7.6% is obtained by assuming all uncertainties are independent and adding them in quadrature.

VI. RESULT

We measure the ratio of branching fractions

\[
\frac{B(\Lambda_c^+ \to p\omega)}{B(\Lambda_c^+ \to pK^-\pi^+)} = \left(1.32 \pm 0.12 \pm 0.10 \right) \times 10^{-2}. \tag{5}
\]

Using \(B(\Lambda_c^+ \to pK^-\pi^+) = (6.28 \pm 0.32) \times 10^{-2} \) [7], we obtain the branching fraction:

\[
B(\Lambda_c^+ \to p\omega) = (8.27 \pm 0.75 \pm 0.62 \pm 0.42) \times 10^{-4}, \tag{6}
\]

where the first uncertainty is statistical, the second systematic, and the third from the reference mode \(\Lambda_c^+ \to pK^-\pi^+ \). This result is consistent with the LHCb result \((9.4 \pm 3.9) \times 10^{-4} \) [12], and agrees with the theoretical predictions of \((11.4 \pm 5.4) \times 10^{-4} \) [13] and \((6.3 \pm 3.4) \times 10^{-4} \) [14] within uncertainties based on the SU(3)\(_F\) flavor symmetry. However, our result contradicts the QCD dynamical model prediction of \((3.4 - 3.8) \times 10^{-4} \) [15].

VII. CONCLUSION

To conclude, we perform a measurement of the decay \(\Lambda_c^+ \to p\omega \) with the full Belle dataset for the first time at Belle. A \(\Lambda_c^+ \) signal is observed in the \(M(p\omega) \) distribution with a statistical significance of 9.1 standard deviations. The measured branching ratio is \(\frac{B(\Lambda_c^+ \to p\omega)}{B(\Lambda_c^+ \to pK^-\pi^+)} = (1.32 \pm 0.12(\text{stat}) \pm 0.10(\text{syst})) \times 10^{-2} \). With the independently measured value of \(B(\Lambda_c^+ \to pK^-\pi^+) \) [7], we extract a branching fraction of \(B(\Lambda_c^+ \to p\omega) = (8.27 \pm 0.75(\text{stat}) \pm 0.62(\text{syst}) \pm 0.42(\text{ref})) \times 10^{-4} \), where the uncertainties are statistical, systematic, and from \(B(\Lambda_c^+ \to pK^-\pi^+) \), respectively. The measured result is consistent with the LHCb result [12] but with a considerably improved precision.

ACKNOWLEDGMENTS

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, and the Pacific Northwest National Laboratory (PNNL) Environmental Molecular Sciences Laboratory (EMSL) computing group for strong computing support; and the National Institute of Informatics, and Science Information NETwork 5 (SINET5) for valuable network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council including Grants No. DP180102629, No. DP170102389, No. DP170102204, No. DP150103061, No. FT130100303; Austrian Science Fund (FWF); the National Natural Science Foundation of China under Contracts No. 11435013, No. 11475187, No. 11521505, No. 11575017, No. 11675166, No. 11705209; No. 11761141009; No. 11975076; No. 12042509; No. 12135005; Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS), Grant No. QYZDJ-SSW-SLH011; the CAS Center for Excellence in Particle Physics (CCEPP); the Shanghai Pujiang Program under Grant No. 18PJ1401000; the Ministry of Education, Youth and Sports of the Czech Republic under Contract No. LTT17020; the Carl Zeiss
Foundation, the Deutsche Forschungsgemeinschaft, the Excellence Cluster Universe, and the VolkswagenStiftung; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; National Research Foundation (NRF) of Korea Grants No. 2016R1D1A1B01010135, No. 2016R1D1A1B02012900, No. 2018R1A2B3003643, No. 2018R1A6A1A06024970, No. 2018R1D1A1B07047294, No. 2019K1A3A7A09033840, No. 2019R11A3A01058933; Radiation Science Research Institute, Foreign Large-size Research Facility Application Supporting project, the Global Science Experimental Data Hub Center of the Korea Institute of Science and Technology Information and KREONET/GLORIAD; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Science and Higher Education of the Russian Federation, Agreement 14.W03.31.0026; University of Tabuk research Grants No. S-1440-0321, No. S-0256-1438, and No. S-0280-1439 (Saudi Arabia); the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science, Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the United States Department of Energy and the National Science Foundation.

[1] M. J. Savage and R. P. Springer, Phys. Rev. D 42, 1527 (1990).
[2] M. J. Savage, Phys. Lett. B 257, 414 (1991).
[3] H. Y. Cheng, X. W. Kang, and F. R. Xu, Phys. Rev. D 97, 074028 (2018).
[4] J. Zou, F. Xu, G. Meng, and H. Y. Cheng, Phys. Rev. D 101, 014011 (2020).
[5] W. Wang, F. S. Yu, and Z. X. Zhao, Eur. Phys. J. C 77, 781 (2017).
[6] B. Knapp et al., Phys. Rev. Lett. 37, 882 (1976).
[7] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[8] P. Żenczykowski, Phys. Rev. D 50, 402 (1994).
[9] K. K. Sharma and R. C. Verma, Phys. Rev. D 55, 7067 (1997).
[10] M. A. Ivanov and J. G. Körner, V. E. Lyubovitskij, and A. G. Rusetsky, Phys. Rev. D 57, 5632 (1998).
[11] Y. Kohara, Nuovo Cimento A 111, 67 (1998).
[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 97, 091101(R) (2018).
[13] Y. K. Hsiao, Y. Yao, and H. J. Zhao, Phys. Lett. B 792, 35 (2019).
[14] C. Q. Geng, C.-W. Liu, and T.-H. Tsai, Phys. Rev. D 101, 053002 (2020).
[15] P. Singer and D.-X. Zhang, Phys. Rev. D 54, 1225 (1996).
[16] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers included in this volume; T. Abe et al., Prog. Theor. Exp. Phys. 2013, 03A001 (2013), and references therein.
[17] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also, see detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys. 2012, 04D001 (2012).
[18] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).
[19] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[20] R. Brun et al., CERN Report No. DD/EE/84-1, 1984.
[21] X. Y. Zhou, S. X. Du, G. Li, and C. P. Shen, Comput. Phys. Commun. 258, 107540 (2021).
[22] E. Nakano, Nucl. Instrum. Methods Phys. Res., Sect. A 494, 402 (2002).
[23] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima, and T. Tsukamoto, Nucl. Instrum. Methods Phys. Res., Sect. A 485, 490 (2002).
[24] We used units in which the speed of light is $c = 1$.
[25] S. X. Li et al. (Belle Collaboration), Phys. Rev. D 103, 072004 (2021).
[26] R. H. Dalitz, Philos. Mag. Ser. 5 44, 1068 (1953).