Supporting Information

Structure Evolution of Chromium-Doped Boron Clusters: Toward the Formation of Endohedral Boron Cages

Xuecheng Shao,¹# Xin Qu,¹,²,³,⁴# Siyu Liu,¹ Lihua Yang,³,⁴ Jinghai Yang³,⁴ Xiaohui Liu,⁵ Xin Zhong,³,⁴* Shuai Sun,⁶ G. Vaitheeswaran,⁷ and Jian Ly¹,²*

¹State Key Laboratory for Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
²College of Materials Science and Engineering, Jilin University, Changchun 130012, China
³Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
⁴National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
⁵Network Information Center, Supercomputing Center, University of Science and Technology of China, Hefei 230026, China
⁶Engineering Training Center, Institute of Mechanical Science and Engineering, Jilin University, Changchun, 130012, China
⁷Advanced Center of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad, 500046, India

#Equally share the first authorship
Fig. S1. Structures of low-lying isomers of CrB₈. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S2. Structures of low-lying isomers of CrB$_{10}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S3. Structures of low-lying isomers of CrB$_{12}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S4. Structures of low-lying isomers of CrB$_{14}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S5. Structures of low-lying isomers of CrB₁₆. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S6. Structures of low-lying isomers of CrB$_{18}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S7. Structures of low-lying isomers of CrB$_{20}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S8. Structures of low-lying isomers of CrB$_{22}$. Bottom labels are point-group symmetries, spin multiplicities and relative energies to the ground state at PBE0/Cr/Stuttgart/B/6-311G* level of theory. Zero-point energy corrections were included for all isomers at the same level of theory.
Fig. S9. Electron spin density of CrB$_{12}$, CrB$_{14}$ and CrB$_{16}$ shows that with the addition of boron atoms, the magnetism of Chromium is vanished. The mul represent the charge spin multiplicity.
Fig. S10. The chemical bonding picture of CrB$_{16}$ obtained from AdNDP analyses. ON stands for occupation number. Residual valence electrons of all atoms in the search list: 5.17.
Fig. S11. Total and projected density of states for the double-ring tubular CrB_{16} cluster. The dashed line highlights the position of HOMO.
Fig. S12. Total and projected density of states for the endohedral cage-like CrB$_{20}$ cluster. The dashed line highlights the position of HOMO.
Table S1. Cartesian coordinates of the lowest-energy structure of CrB$_8$

	Cr	B	B	B	B	B	B	B	B
	7.455200	7.685000	8.303500						
	6.400700	6.288800	6.501800						
	9.099400	8.465000	6.572800						
	9.107500	6.921800	6.573000						
	6.386100	9.069500	6.501500						
	7.512100	7.685000	6.136500						
	7.888300	9.420800	6.541000						
	7.906500	5.953300	6.541400						
	5.724000	7.675600	6.484000						
Table S2. Cartesian coordinates of the lowest-energy structure of CrB$_{10}$

Cr	8.645702	7.211105	9.087777
B	6.864284	5.502427	8.372888
B	9.020988	6.792001	6.580219
B	6.223682	8.009082	9.405405
B	7.034672	8.899758	8.364290
B	6.140807	6.438990	9.408009
B	8.380391	9.298630	7.612701
B	6.573325	7.140929	7.972259
B	9.297176	8.326311	6.784362
B	7.732423	7.833989	7.008769
B	7.780659	5.980770	7.161953
Table S3. Cartesian coordinates of the lowest-energy structure of CrB\textsubscript{12}

Cr	7.408980	12.00170	8.925550
B	9.988865	11.74960	8.455016
B	6.096917	13.38786	7.367074
B	6.357480	10.60534	6.954414
B	5.577452	11.92594	7.033333
B	8.845510	11.98716	7.179896
B	7.263334	12.05038	6.669873
B	9.479504	13.25263	8.456912
B	8.000589	13.41764	7.265269
B	7.903353	10.32969	7.184238
B	8.413115	14.41734	8.614398
B	6.952396	14.47569	8.143725
B	9.308192	10.48736	7.905393
Table S4. Cartesian coordinates of the lowest-energy structure of CrB$_{14}$

Cr	8.128003	9.281546	9.685618
B	7.890778	10.49034	7.634534
B	7.618474	11.34589	8.887793
B	9.237603	7.786292	8.152818
B	10.11191	9.055685	8.813913
B	9.305986	10.67073	8.418975
B	7.896232	10.49345	11.73542
B	7.620565	11.34703	10.48153
B	9.241713	7.788647	11.21756
B	10.11438	9.056974	10.55232
B	9.309338	10.67265	10.94699
B	8.751063	9.127525	7.529478
B	8.756863	9.130798	11.84024
B	9.560383	7.535482	9.684950
B	10.28896	10.43102	9.681860
Table S5. Cartesian coordinates of the lowest-energy structure of CrB$_{16}$

	X	Y	Z
Cr	9.624430	9.754655	9.617720
B	8.821323	8.619560	11.23690
B	10.45231	8.033580	10.94501
B	10.00375	9.545160	11.77099
B	8.919185	9.365770	7.598717
B	10.41296	11.815044	10.07717
B	7.805689	8.478948	9.995451
B	11.42911	9.306202	10.74312
B	9.307754	11.74265	8.908493
B	9.316485	7.518392	9.953526
B	10.80018	10.86572	11.30281
B	9.742898	10.75500	7.521438
B	7.520514	9.350567	8.686934
B	11.60741	10.54971	9.771393
B	8.164130	10.78749	8.342902
B	8.759641	8.108065	8.555354
B	10.934278	11.22797	8.467739
Table S6. Cartesian coordinates of the lowest-energy structure of CrB$_{18}$

Cr	9.484292	9.598221	9.596623
B	8.976945	10.45209	7.577232
B	8.521071	9.643048	11.75060
B	9.730086	11.54307	8.491449
B	7.573799	10.27316	8.942234
B	8.074629	9.163772	7.808622
B	8.921591	7.755554	8.350101
B	9.767626	8.876038	7.511701
B	10.74662	10.07216	7.990947
B	9.447378	8.251537	11.23415
B	10.24903	9.594576	11.67276
B	10.99756	10.76240	10.86963
B	9.232151	11.02627	11.29130
B	8.329586	11.36782	9.859221
B	7.770250	8.555643	10.83934
B	11.20853	10.96310	9.260464
B	9.916308	11.83123	10.04379
B	7.537472	8.571655	9.234528
B	8.814145	7.516334	9.931367
Table S7. Cartesian coordinates of the lowest-energy structure of CrB$_{20}$

Element	x	y	z
Cr	9.584947	9.635535	9.630617
B	9.753406	9.785738	11.81456
B	8.983707	9.789686	7.524600
B	7.520008	9.070878	10.15126
B	8.580328	7.691453	9.809075
B	9.959386	7.519548	8.889377
B	11.82478	9.913027	9.901116
B	11.02234	11.27526	9.374230
B	9.342607	11.82279	9.525436
B	10.36000	8.703804	7.790768
B	11.32468	9.941580	8.313984
B	10.03502	11.13862	8.094803
B	8.391316	11.10006	8.366722
B	7.637407	9.634861	8.600584
B	8.708270	8.306085	8.119140
B	10.89440	10.66063	11.06416
B	9.225208	11.25880	11.07611
B	8.164302	10.00949	11.36525
B	8.702090	8.436803	11.24436
B	10.15248	7.706890	10.53178
B	11.11716	8.944666	11.05500
Table S8. Cartesian coordinates of the lowest-energy structure of CrB$_{22}$

Cr	9.633957	9.811267	9.887219
B	11.00359	10.00034	7.899784
B	8.709324	10.84326	11.91010
B	8.834966	7.548270	9.876499
B	10.54646	7.571715	9.570152
B	9.913372	11.95653	9.268650
B	8.414387	11.40262	8.865994
B	11.54533	8.549652	10.60443
B	9.504776	9.446677	7.497333
B	7.961305	11.31284	10.53267
B	10.01762	7.896601	11.09237
B	11.75764	9.477294	9.263734
B	7.393579	10.16376	9.518860
B	10.60263	8.418262	8.196409
B	9.524230	11.89029	10.95246
B	10.79828	9.224353	11.84426
B	11.04902	11.51433	10.50062
B	8.360643	8.323800	11.18953
B	11.37080	11.16110	8.982868
B	8.073254	9.942856	8.097206
B	8.724533	8.356861	8.449228
B	10.36217	10.76718	11.93347
B	7.663247	9.770044	11.20857