Resting metabolism and critical thermal maxima of vespine wasps (Vespula sp.)

Helmut Käfer, Helmut Kovac*, Anton Stabentheiner

Institut für Zoologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria

A R T I C L E I N F O

Article history:
Received 28 November 2011
Received in revised form 25 January 2012
Accepted 30 January 2012
Available online 10 February 2012

Keywords:
Wasp
Respiration
Thermolimit respirometry
Resting metabolism
Temperature

A B S T R A C T

Vespine wasps are known for their high endothermic capacity. Endothermic activity is directly linked to respiration. However, knowledge on wasp respiration is sparse and almost nothing is known about their resting metabolism.

We investigated the yellowjackets’ CO₂ production in a flow-through respirometer chamber overnight. Endothermic and behavioral activity was observed by real-time infrared thermography. Most resting wasps were ectothermic or only slightly endothermic (thoracic temperature excess against abdomen < 0.6 °C). In the investigated temperature range (T = 2.9–42.4 °C) mean CO₂ production rate of resting wasps increased steeply according to an exponential function, from 5.658 μl g⁻¹ min⁻¹ at 8.3 °C to 8.504 μl g⁻¹ min⁻¹ at 20.2 °C. 58.686 μl g⁻¹ min⁻¹ at 35.3 °C and 102.84 μl g⁻¹ min⁻¹ at 40 °C. The wasps’ respiratory critical thermal maximum (CTmax), marking the upper edge of their viable temperature range, was 45.3 °C. The respiratory CTmax did not differ significantly from the activity CTmax of 44.9 °C. CTmax values were considerably below that of honeybees (48.9 and 49.0 °C for respiration and activity, respectively). This allows honeybees to kill wasps by heat-balling.

Comparison with other arthropods showed that vespine wasps are among the insects with the highest mass-specific resting metabolic rate and the steepest increase of metabolism with ambient temperature.

© 2012 Elsevier Ltd. Open access under CC BY-NC-ND license.

1. Introduction

Vespine wasps of the genus Vespula are capable of a very impressive thermoregulatory performance (Coelho and Ross, 1996; Heinrich, 1989; Kovac and Stabentheiner, 1999; Kovac et al., 2009). Endothermy improves muscular function (Coelho, 1991), which improves agility and enables them to carry heavy loads during foraging (Kovac and Stabentheiner, 1999; Kovac et al., 2009). Endothermy is also used to regulate the nest temperature (Himmer, 1927; Schmolz et al., 1993; Steiner, 1930). A high nest temperature in honeybees speeds up larval development (Petz et al., 2004). However, in the nest of honeybees, which have a comparable social thermoregulatory capacity, most bees are ectothermic (Stabentheiner et al., 2003, 2010). The same has to be assumed for the nest of vespine wasps. Basal metabolism of the ectothermic insects provides a considerable amount of heat for social thermoregulation (Kovac et al., 2007; Petz et al., 2004; Schmolz et al., 1993; Stabentheiner et al., 2010). As in the wasps’ nests temperature varies more than in honeybee nests (e.g. Büdel, 1955; Himmer, 1962; Klingner et al., 2005, 2006; Simpson, 1961; Steiner, 1930) the temperature dependence of their resting metabolism is of special interest. The resting metabolism as a measure of the basal metabolism, however, has not yet been well investigated in vespine wasps. Wasp nests may cool considerably during cold nights (Himmer, 1962; Klingner et al., 2005, 2006; Steiner, 1930), and the individuals’ resting metabolism is important also outside their thermal optimum. To gain a comprehensive overview of an insect’s physiological reaction to environmental changes, analysis over the animal’s entire viable temperature range is a necessity. Therefore we measured the CO₂ production of resting Vespula vulgaris and Vespula germanica foragers in the entire range of temperatures they are likely exposed to in a breeding season (2.9–42.4 °C) in Central Europe.

Vespula often builds its nests under the roofing tiles of old farm-houses. These nests are sometimes abandoned at an early stage. On the one hand this may be caused by an accident or illness of the nest-founding queen. On the other hand, however, this may be caused by the increasingly higher temperatures in the course of the early breeding season. Temperatures at these locations may become as high as 45.8 °C when the sun shines on the tiles on warm days (our own unpublished observations). This is in the range of the wasps’ suggested upper thermal limit (Käfer et al., 2011). Although wasps are known to cool their nests with water spread on the combs (Klingner et al., 2005; Kovac et al., 2009; Steiner, 1930), these nest temperatures may be higher than single insects or small colonies can survive. In this context the wasps’ critical thermal maximum (CTmax) is of special interest. Some vespine wasps are known to be more susceptible to high temperatures.
than honeybees (Ono et al., 1987, 1995). This allows honeybees to kill wasps by heat-balling (Ono et al., 1987; Papachristoforou et al., 2007; Stabentheiner, 1996; Tan et al., 2005). Stabentheiner (1996) and Stabentheiner et al. (2007) investigated this aggressive interaction between Apis mellifera carnica and Vespula sp. However, while the upper lethal temperature has been determined in Vespa mandarina japonica (44–46 °C, Ono et al., 1995), Vespa velutina (45.7 °C, Tan et al., 2005), and Vespa orientalis (50.6 °C, Papachristoforou et al., 2011) the upper thermal limit of Vespula has not yet been investigated. Because it is thought to be more relevant to natural conditions we choose the temperature ramping procedure (Terblanche et al., 2011). We applied behavioral observations (Klok et al., 2004) and thermolimit respirometry (Lighton and Turner, 2004) to determine the wasps’ upper critical thermal maximum (activity and respiratory CTmax).

2. Material and methods

2.1. Animals

Experiments took place in late summer and autumn 2008 (September, October, November) and 2009 (October), and in summer 2010 (August). Foraging yellowjackets (V. vulgaris (Linnaeus 1758) and V. germanica (Fabricius 1793) – subsequently referred to as Vespula sp.) were caught at an artificial feeding station provided with sucrose solution. Animals were collected for immediate analysis. In some cases (8 of 35 wasps) they were stored in cages overnight in a dark and cool area (12–15 °C, food provided) for use on the following day. Individuals were weighed before and after the experiments.

2.2. CO2 measurement

Individuals were put into a flow-through respirometer measurement chamber made of brass and immersed into an electronically controlled water bath (Julabo F33 HT) regulated within ±0.1 °C of the set temperature. The chamber volume was 18 ml (3 × 3 × 2 cm). This allowed unrestricted movement of the wasps at a high measurement sensitivity. Because of the wasps’ long stay in the chamber (typically overnight, >6 h) they were also provided with a food source (1.5 M sucrose solution ad libitum). Experimental ambient temperature (Ta) for the wasps was set via the water bath from 2.5 to 45 °C in steps of 5 °C. Most individuals (23 of 35) were tested at only one Ta. Six individuals were tested at two TaS, five individuals at three TaS, two individuals at four TaS, and one individual at five TaS. Experiments lasted at least 3.5 h at each set temperature.

Individuals were transferred into the respirometer chamber directly from the outside or from storage and had time to accustom to the adjusted Ta for at least 15 min. Because the chamber was not completely submerged and the chamber’s top lid window was covered with a thin plastic film, the inside temperature deviated somewhat from the temperature of the water bath. Therefore, actual ambient air temperature was measured with a thermocouple inside the chamber near the insect (~1 cm), sensing the actual experimental temperature.

The air for the flow-through respirometry was taken from an inlet outside the laboratory. Before entering the measurement system it had to pass a 10 l canister and a 5 l bottle to smooth any variations in outside CO2 concentration. Relative humidity was kept at 50% down to 15 °C, 60% at 12.5 °C, 70% at 10 °C, 80% at 7.5 °C, 90% at 5 °C and 100% at 2.5 °C. To control relative humidity, the measuring gas was passed through two humidifying bottles filled with distilled water prior to the measurement chamber, saturating the air with water vapor. The bottles were submerged in a second Julabo F33 HT water bath adjusted to the according dew point temperature required for the desired relative humidity in the measurement chamber (Stabentheiner et al., 2012).

CO2 production was measured with a differential infrared gas analyzer (DIRGA) sensitized to carbon dioxide in serial mode (Advance Optima URAS14, ABB; compare Kovac et al., 2007; Stabentheiner et al., 2012; Petz et al., 2004). Air flow was set to 150 ml min⁻¹ and regulated by a Brooks 5850S mass flow controller (0–1000 ml/min; Brooks Instrument, Hatfield, USA). As a result of the tube length between the measuring chamber and the URAS a delay of 35.0 s was measured. The wasps’ CO2 production was recorded at intervals of 1 s. The amount of CO2 production (µl g⁻¹ min⁻¹) reported in this paper refer to standard (STPS) conditions (0 °C, 101.32 kPa = 760 Torr). Considering the duration of each experiment, the URAS gas analyzers were set to automatic zero and end point calibration every 3 h using the internal calibration cuvettes. During evaluation, the data were corrected for any remaining offset and drift.

2.3. Activity and body temperature

The top lid of the measurement chamber was covered with a plastic film transparent to infrared (IR) radiation in the range of 3–13 µm. It enabled us to record both the wasps’ body surface temperature and activity with an infrared thermography camera (Thermacam SC2000 NTS; FLIR Systems Inc.). An IR emissivity of 0.97 of the wasp cuticle was used to calculate surface temperatures (for details see Kovac et al., 2007; Schmaranzer and Stabentheiner, 1988; Stabentheiner et al., 2012; Stabentheiner and Schmaranzer, 1987). The measurement accuracy of 0.7 °C was achieved by using a self-constructed Peltier driven reference source of known temperature and emissivity. Infrared data were recorded digitally on hard disk at 3.5 or 10 frames s⁻¹. Evaluation of the surface temperatures of head (Thead), thorax (Tth) and abdomen (Tab) was done with AGEMA Research software (FLIR Systems Inc.) controlled by a proprietary Excel (Microsoft Corporation) VBA macro. The thermographic video sequences also allowed judgment of active and resting periods without behavioral impairment. Endothermy was assessed by the difference between Tth and Tab. As these temperatures were both surface temperatures measured via IR, we minimized measurement errors which possibly might occur when calculating Tth from IR and Tth from thermocouple data. Our definition of rest (classification according to Crailsheim et al., 1999; Stabentheiner and Crailsheim, 1999; Stabentheiner et al., 2003) was: (1) the individual was ecotothermal (no visibly heated thorax) and (2) there were no or marginal signs of bodily activity (i.e. movements of antennae, single movement of legs allowed) for a duration of at least 10 min (reduced to 5 min at temperatures >27.6 °C if no 10 min intervals were available). However, we were forced to take into account that individuals, although being obviously at rest (sitting still for an hour or more), could be slightly endothermic. Therefore we had to define “rest” in terms of “scarce movement” and “only weak endothermy” with Tth – Tab < 2 °C during a few periods of the experiment.

2.4. CO2 production calculation

Before we determined the amount of carbon dioxide produced in a certain experimental trial, the IR video sequences were analyzed concerning the wasps’ activity. Sections assessed as “resting periods” (defined in Section 2.3) were divided up into 10 min intervals. At high Ta (27.6 °C and above) phases of inactivity in some individuals decreased in duration as well as in number to such an extent that we had to reduce the minimal interval for our definition of “rest” to 5 min. URAS 14 CO2 data from these time intervals were used for further calculations. Integrating the gas
2.5. Critical thermal maximum (CT\textsubscript{max})

As the combination of respirometry data and activity detection had shown the most accurate results in previous studies concerning the upper thermal maximum (Klok et al., 2004; Lighton and Turner, 2004; Stevens et al., 2010), respiration and activity as well as body surface temperatures were assessed simultaneously via flow-through respirometry and IR thermography as described in Section 2.3. The wasps’ critical thermal maximum (CT\textsubscript{max}) was defined via observation of activity (activity CT\textsubscript{max}, cease of controlled motoric activity, e.g. start of muscle spasms, for further information see Hazell et al., 2008; Klok and Chown, 1997; Lighton and Turner, 2004; Lutterschmidt and Hutchison, 1997), and via thermodilimint respirometry (respiratory CT\textsubscript{max}, cease of cyclic gas exchange, Lighton and Turner, 2004). The absolute difference sum of CO\textsubscript{2} production (\textit{rADS}) is a measure of cumulative dynamic variability (Lighton and Turner, 2004). To determine the respiratory CT\textsubscript{max} more accurately, the inflection point of the \textit{rADS} residual values from 10 min before to 10 min after the suggested activity CT\textsubscript{max} was determined. This inflection point helps to determine the minute point of the respiratory CT\textsubscript{max}. For detailed information on the procedure and detailed comparison among different methods see Stevens et al. (2010).

3. Results

As the yellowjackets were collected during foraging at a feeding station and were provided with food in the measurement chamber they had sufficient energy reserves to survive the experimental periods. Before starting the experiments their mean body weight was 0.1019 g. On average the individuals were slightly heavier after the experiments (−7.9 mg, see Table 1). Some wasps left the measurement chamber even heavier than they entered it.

3.1. Activity and body temperature

After being inserted into the measurement chamber the wasps were generally agitated and very active. At this point the CO\textsubscript{2} production was high (Fig. 1A) and the individuals were highly endothermic (Fig. 2A). After some time the wasps calmed down and were “at rest” with a strongly decreased metabolic rate. This is represented in the gas exchange pattern (Fig. 1B) as well as in body temperature (Fig. 2B). Individuals were not resting over the entire period of the experiment. Except for the lowest temperature

\[T_a = 2.9 \, ^\circ \text{C} \]

almost all wasps sometimes showed some kind of activity, be it self-grooming, feeding or just relocating inside the chamber. At high experimental temperatures (\(T_a > 27.6 \, ^\circ \text{C} \)) some individuals were not inactive for 10 min between active periods. In these cases we had to reduce the minimal interval for “rest” to 5 min.

Although being obviously resting, the wasps were not always ectothermic (Fig. 3). Between 15 °C and 30 °C some individuals showed a slightly elevated \(T_h \) over the \(T_d \) (thoracic temperature excess up to 0.6 °C), nevertheless sitting motionless over long periods and matching our definition of being “at rest” (Fig. 2C). Below 15 °C most individuals were ectothermic, again with some individuals deviating from the main fraction, especially at temperatures of 10 °C and below. Some maintained a mean thoracic temperature excess of up to 1.9 °C, with a high standard deviation. Even at the highest experimental temperature of 42.4 °C the wasps showed “rest” according to our definition at least for some moments (Fig. 2D, data point (D) in Fig. 3). Some wasps like the individual in Fig. 2E (\(T_a = 38.5 \, ^\circ \text{C} \)) showed an unusually cool spot at the head which was caused by wetting of the mouthparts with regurgitated liquid droplets. This behavior cools the head and to some extent also the thorax at high temperatures. However, those wasps were usually active, cooling individuals at rest were an exception. Negative values of the thoracic temperature excess (i.e. the thorax was cooler than the abdomen) may have been caused by the aforementioned evaporative cooling of head and thorax in some individuals, but may also have occurred due to slight vertical temperature gradients inside the measurement chamber and the orientation of the wasp body in this gradient (Fig. 3, e.g. individual at \(T_a = 12 \, ^\circ \text{C} \)).

3.2. CO\textsubscript{2} production

Respiration data from clearly identified \textit{V. vulgaris} and \textit{V. germanica} (Bellmann, 1995; Clapperton et al., 1989) did not differ significantly (ANOVA: \(P = 0.4857, F = 0.49 \)), so results of all individuals were pooled (\textit{V. vulgaris}: \(n = 26 \), \textit{V. germanica}: \(n = 12 \)). With increasing experimental ambient temperature \(T_a \), CO\textsubscript{2} production rate increased exponentially, from 5.658 \(\mu \text{g} \, \text{g}^{-1} \, \text{min}^{-1} \) at 8.3 °C to 18.504 \(\mu \text{g} \, \text{g}^{-1} \, \text{min}^{-1} \) at 20.2 °C, 58.686 \(\mu \text{g} \, \text{g}^{-1} \, \text{min}^{-1} \) at 35.3 °C, and approaching 102.84 \(\mu \text{g} \, \text{g}^{-1} \, \text{min}^{-1} \) at 40 °C (Fig. 4). The following exponential function fitted the data best:

\[V_{CO_2} = A_1 \cdot \exp^{l_1/\lambda_1} + A_2 \cdot \exp^{l_2/\lambda_2} + A_3 \cdot \exp^{l_3/\lambda_3} + y_0 \]
where V_{CO2} is carbon dioxide production rate [μl g$^{-1}$ min$^{-1}$] and T_0 is the ambient temperature [$^\circ C$] in the measurement chamber ($R^2 = 0.96275$, $n = 846$, 38 individuals; the range of validity is 7.7–42.4 [$^\circ C$]). Parameters: $A1 = 9.7023 \times 10^{-3}$, $t_1 = 3.11195$, $A2 = 4.63097$, $t_2 = 14.6382$, $A3 = 56769.01521$, $t_3 = 3.81259 \times 10^8$, $y_0 = -56770.80269$. The mean Q_{10} was 2.27 (SD = 0.30, $n = 23$). However, with this function the Q_{10} was not constant. It decreased from 2.98 at a mean T_a of 13 [$^\circ C$] (± 5 [$^\circ C$]) to 1.97 at a T_a of 23 [$^\circ C$] and increased to 2.84 at a T_a of 35 [$^\circ C$]. This function fitted the data better than a conventional exponential equation ($V_{CO2} = a \cdot T_a^b$; $R^2 = 0.9404$; $a = 1.37152$, $b = 1.11652$) particularly in the range of $T_a = 20$ to 35 [$^\circ C$]. At high T_a above 35 [$^\circ C$] (Fig. 4, dashed line) CO2 production increased steeply until the wasp’s upper respiratory critical thermal maximum (resp CTmax).

3.3. Survival rate

Individual wasps differed in their thermal tolerance. Our experiments were not conducted to determine the lethal temperature, nevertheless some wasps died due to continuous exposure to high experimental temperatures. Below 35 [$^\circ C$] all wasps survived at least for 6 h (which was the minimal duration of an experiment). At high temperatures some wasps died already at a T_a below the mean CTmax. At $T_a = 35.8$ [$^\circ C$] one individual of six (17%) did not survive past 9 h, at $T_a = 39.7$ [$^\circ C$] three of four wasps (75%) died within 9–12.5 h. At $T_a = 42.4$ [$^\circ C$] all four individuals (100%) died within 1.7
to 2.5 h. In Fig. 4 the percentage of mortality at the tested T_a is indicated. Fig. 5 displays the CO$_2$ production and the thoracic temperature excess ($T_{th} - T_{ab}$) of a wasp that did not survive the experiment. After cease of cyclic respiration the individual showed...
a characteristic pattern of CO₂ release. This was accompanied by a distinct endothermic phase. The thermograms show that it was induced by thoracic heating activity.

3.4. Critical thermal maxima (CTₘₐₓ)

In these experiments solely V. vulgaris foragers were investigated. Fig. 6 shows a representative thermolimit experiment. With increasing temperature the wasps were more agitated, they ran around looking for an exit from the measurement chamber, gnawed into the chamber’s fittings and showed self-grooming as well as cooling behavior. Coordinated bodily activity ceased with mortal fall (Fig. 6, stage 4). The averaged values of mortal fall provided the knockdown temperature (Klok et al., 2004; Stevens et al., 2010) or activity CTₘₐₓ of 44.9 °C (Table 1). However, spasms as well as occasional abdominal movements (which might evade automated activity detection because of diminutive appearance) could be observed in the IR recordings of some individuals until the postmortal peak.

CO₂ production followed the stages of response to rising ambient temperature first described by Lighton and Turner (2004) (Fig. 6). The respiratory CTₘₐₓ was determined via the inflection point of the rADS residual values 10 min before and after the mortal fall. Averaged values were considered as the respiratory CTₘₐₓ amounting to 45.3 °C. Activity CTₘₐₓ and respiratory CTₘₐₓ did not differ significantly (P = 0.357507, t-test, Table 1). For comparison, we determined both the activity and also the respiratory CTₘₐₓ in honeybee foragers (A. mellifera carnica). Their activity CTₘₐₓ of 49.0 °C was nearly identical with their respiratory CTₘₐₓ of 48.9 °C (P = 0.899966, t-test, Table 1). The honeybees’ activity CTₘₐₓ was 4.1 °C and their respiratory CTₘₐₓ was 3.6 °C higher than that of the wasps. Values differed significantly between both species (P < 0.001, t-test, see Table 1).

4. Discussion

4.1. Resting metabolism and body temperature

Right after insertion into the measurement chamber the yellowjackets were active and highly endothermic. After some time they calmed down. Discontinuous gas exchange with periods of zero gas exchange and a distinct spiracle flutter phase (Fig. 1, insert; Hertz and Bradley, 2005; Lighton and Lovegrove, 1990) as well as a strongly decreased metabolic rate was an unmistakable sign of rest. Furthermore, IR-thermography video sequences gave us confirmation that the individual showed scarce or no movement and no active thermoregulation. Active thermoregulation, manifested in the thoracic temperature excess over the abdomen, was always accompanied by increased metabolic activity. Resting wasps were ectothermic on average (Fig. 3, thoracic temperature excess <0.6 °C). However, great individual variations could be observed at comparable experimental temperatures (Fig. 3, see means and standard deviations). Deviating values could have been based on several factors: There was a slight vertical temperature gradient inside the measurement chamber from the bottom (immersed into the water bath) to the lid (plastic cover outside the water for IR recording) if the water bath temperature deviated from ambient room temperature. If the individual positioned itself in this gradient, the abdomen was cooler or warmer than the thorax, causing slightly positive or negative values of the thorax temperature excess (Fig. 3). At higher temperatures (Tₜ > 30 °C), cooling behavior resulted in a slightly decreased head and thorax temperature. Cooling by regurgitation of fluid droplets is a common behavior at high temperature observed during similar experiments with honeybees (Kovac et al., 2007), or during experiments on Vespula thermoregulation (Coelho and Ross, 1996).

At low temperatures some individuals showed signs of weak endothermy (Fig. 3C). Some individuals alternated between ectothermy and weak endothermy. As the wasps were provided with sufficient fuel, they obviously went against cooling with this heating behavior at low Tₜ (10 °C to 5 °C). At present the importance of this behavior is unclear. A slightly activated flight musculature might keep them in a more activated state for possible reaction to their environment (e.g. escape).

In honeybee nests, the resting metabolism plays a significant role in generating heat for social thermoregulation (Kovac et al., 2007; Petz et al., 2004; Schmolz et al., 1995; Stabentheiner et al., 2010). During cold nights in wasp nests the temperature may drop significantly (Himmer, 1962; Klinger et al., 2006; Steiner, 1930), probably due to a lack of fuel (carbohydrate reserves) for continuous social thermoregulation. As temperatures in wasp nests are somewhat lower than in honeybee nests and vary in a broader range, one should surmise that Vespula needs to economize its resources. Foraging yellowjackets usually regulate thoracic temperatures somewhat lower (~0.5 to 3 °C) than honeybees if...
measured at the same food source and under the same ambient conditions (Kovac and Stabentheiner, 1999, 2011; Kovac et al., 2009, 2010; Schmaranzer and Stabentheiner, 1988). According to the life-style hypothesis (Reinhold, 1999) we had expected that this would result also in a lower resting metabolism. However, it was a surprising result that *Vespula* stands out not only with a considerably higher resting metabolism compared to *A. mellifera* (Fig. 4, insert, wasp CO2 production at 15 °C), but also with a much steeper increase (higher mean Q10 value) with rising ambient temperature. The wasps’ CO2 production (Fig. 4) follows basically an exponential course. Slight deviations of single data points have been well documented in similar investigations on resting insects (Kovac et al., 2007; Lighton and Bartholomew, 1988; Lighton, 1989; Stabentheiner et al., 2003) and could be regarded as slight plateaus in an otherwise exponential increase. While the CO2 curve of honeybee resting metabolism follows a sigmoidal progression with the inflection point at around 37 °C (Kovac et al., 2007), the wasps’ curve is described best by an adapted exponential function of honeybee resting metabolism (Rothe and Nachtigall, 1989). As the wasps were caught on an artificial feeding station provided with sucrose solution and were also supplied with carbohydrates during the experiment (1.5 M sucrose solution ad libitum), also a Q10 = 1 could be assumed. So, as the wasp and bee RQ should show minimal – if any – differences under these experimental conditions, a direct comparison of their resting metabolism seems to be possible from the CO2 recordings. A comparison of the resting metabolism of *Vespula* with that of honeybees (Kovac et al., 2007) and *Polistes* (Weiner et al., 2009, 2010) shows that the metabolism of *Vespula* is not optimized to save energy in the resting state. Their unexpected high basal metabolic rate and the steep incline with ambient temperature surely have consequences for their social thermoregulation. Similar as was reported in honeybees (Stabentheiner et al., 2010), nest temperature regulation in Vespine wasps (Himmer, 1962; Klingner et al., 2005, 2006; Steiner, 1930) can be assumed to be the result of behavioral measures, active (endothermic) heat production “on demand” and “passive effects”. An important passive effect is the reinforcement of passive heat production (in the ectothermic state) of resting individuals due to social nest temperature homeostasis (Stabentheiner et al., 2010). Thermally inactive wasps are shifted to considerably higher (resting) energy turnover rates along their steep resting metabolic curve (Fig. 4). This passive effect in nest thermoregulation is considerably higher in wasps than in honeybees (see insert of Fig. 4: compare also Kovac et al., 2007). A wasp RQ below 1 would shift the curve of wasp metabolism in terms of O2 consumption to even higher values, and this way increase the difference in energy turnover between bees and wasps. In phases of regulated nest temperature, therefore, a certain number of ectothermic wasps produce a higher amount of heat than the same number of ectothermic individuals in honeybee colonies at a certain ambient temperature. This has also the consequence that fewer wasps are needed for active (endothermic) heat production. Relatively few thermally active wasps may take away much burden from other individuals which can stay passive.

4.1.1. Metabolism at high temperatures (*T*~a~ > 35 °C)

At the upper range of experimental temperatures (from ~35 °C upwards) the wasps showed rest only sparsely. Both, number and duration of resting periods decreased with rising *T*~a~ and agitated movement predominated. Furthermore, many individuals showed cooling behavior, an indication that the individuals were not comfortable under these circumstances, and mainly wanted to escape the hostile environment. From 39.7 °C onwards only 37.5% (3 of 8 individuals) of the wasps could be measured in a true resting state (Fig. 4, crossed boxes), all other individuals were measured during “rest” in their “deleterious range” (Klok et al., 2004) or heat stupor (Fleurant-Lessard and Dupuis, 2010), right after cyclic respiration had ceased (see Fig. 6, after stage 4). Other individuals tested did not show rest at all at these high temperatures and therefore were not included in this study. As a consequence, one could reason that *Vespula* generally does not show resting behavior at ambient temperatures above *T*~a~ = 40 °C (Fig. 4, dashed line). In any case occasional rest (observed only for one or two minutes) at these temperatures is at a very high energetic level. With rising ambient temperatures, an increasing number of individuals did not survive the experiments (see Fig. 4, mortality in %) in spite of *T*~a~ being way under their *CT*~max~ (see Table 1). The time of exposure obviously plays a considerable role in the wasps’ thermal tolerance when *T*~a~ reaches the upper edge of viability (compare e.g. Terblanche et al., 2011; Williner et al., 2004). Activity *CT*~max~ (“knockdown temperature” as defined by Klok et al., 2004) and respiratory *CT*~max~ (“mortal fall”, (Lighton and Turner, 2004)) of *V. vulgaris* were proved to be within narrow thermal margins (average 0.4 °C, Table 1). This has to be expected under normobaric conditions (Stevens et al., 2010). The use of the residual of the absolute difference sum of CO2 production (rADS residual, see Fig. 6) proved eligible in determining the end point of cyclic respiration and respiratory *CT*~max~. Visual determination of the activity *CT*~max~ via IR recordings revealed additional information in comparison to other investigations, where automated activity detection was used (Lighton et al., 2004). In our observations coordinated motor activity ceased with activity *CT*~max~, but spastic leg movements and slight bending and relaxing of the abdomen (which resembled slow motion respiration movements, but clearly were not) could be observed in almost all individuals until the post mortal valley and the post mortal peak, respectively (Fig. 6). These small-scale spasms might escape automated activity measurement, but were distinctly visible in our IR video sequences. We conclude from these observations that for determination of the *CT*~max~ video analyses are of great benefit if it is to judge activity in fine detail (Hazzel et al., 2008; Hazzel and Bale, 2011).

Our thermographic temperature measurements revealed that the final bouts of CO2 release after the loss of respiratory control are caused by heating bouts (Figs. 5 and 6). The respiratory peaks, therefore, are the result of activation of the flight muscles (Fig. 5, thermograms). They are not caused by a general derailment of cellular metabolism, nor are they exclusively the consequence of a final diffusive loss of CO2 due to spiracle opening. As heat produced by the thoracic muscles still reaches the head (Fig. 5, thermograms (b) and (c)), blood circulation (via heart and aorta) seems to be still active. Such final metabolic postmortal peaks (Lighton and Turner, 2004) were also observed in beetles (*Gonoccephalus simplex*, Klok et al., 2004; *Tenebrio molitor*, Stevens et al., 2010) and even in ants (*Pogonomyrmex rugosus*, Lighton and Turner, 2004). In *Polistes dominulus* we also observed such thoracic heating bouts (our own unpublished results) though this species is known to be only weakly endothermic (Kovac et al., 2009; Weiner et al., 2009). It would be interesting whether the postmortal metabolic peaks in other species are also caused by (flight) muscle activation. The increase in CO2 production as well as thoracic heating shortly after the wasps’ *CT*~max~ (see arrows in Figs. 6 A and B) might result from a loss of nervous control of the flight musculature. To answer this question, however, electrophysiological recordings of the motorneurons and neuronal centers controlling flight would be needed.

Heat-induced mortality in hornets and bees has been determined so far strictly in the context of defensive behavior (heat-balling of predating wasps by bees) in LD100 tests (Ono et al., 1995; Sugahara and Sakamoto, 2009; Tan et al., 2005). In Central
European wasps, which are also combated via heat by bees (Stabentheiner, 1996; Stabentheiner et al., 2007), such information was missing. The difference in wasp and honeybee respiratory and activity CT_{max} of 3.6°C and 4.2°C, respectively, might be large enough to enable honeybees to kill predating yellowjackets by heat-balling. Papachristoforou et al. (2007), however, reported that the increased CO_{2} concentration inside such clusters decreases the CT_{max} of V. orientalis considerably. Sugahara and Sakamoto (2009) reported a similar effect in V. mandarina attacked by Apis cerana japonica. Therefore we suggest that an increased CO_{2} concentration inside heat clusters probably also makes Vespula more susceptible for high temperatures. As the terminal wasp body temperature inside a honeybee heat cluster can be below the wasps’ CT_{max} (Stabentheiner et al., 2007) but nevertheless suffices to kill them, we suggest that the high CO_{2} level inside such clusters lowers the CT_{max} also in Vespula, this way reducing the necessary exposure time (Stevens et al., 2010; Sugahara and Sakamoto, 2009).

Our findings suggest that ambient temperatures above the wasps’ upper thermal limit may be critical for the survival and progress of foundress nests at an early time of colony development. Extended periods of high solar radiation may increase temperatures under roof tiles to 45.3°C (our own unpublished observations). This is above the CT_{max} of adult wasps (44.9°–45.3°C). The CT_{max} of the brood, however, remains to be investigated to further support this suggestion. The cooling capacity of the queen alone or of small colonies by fanning and spreading of water (Kovac et al., 2009) may be too low to provide viable temperatures for wasps and brood over longer time spans. So we suggest foundress nests sometimes may be abandoned because of increased heat stress.

4.1.2. Metabolism at low temperatures (Ta < 15°C)

At low temperatures (Ta < 15°C) the wasps’ CO_{2} production rate approximates that of honeybees (Fig. 4, insert; Kovac et al., 2007). Bees show occasional thoracic heating during rest at low ambient temperatures down to Ta = 13°C (Kovac et al., 2007). The same behavior could be observed in wasps. Some individuals showed a thorax temperature excess of up to 1.9°C. In contrast to honeybees this occurred in the wasps mainly at Ta < 10°C. The variation in these measurements leads to the conclusion that weak endothermy (as a measure to counteract cooling) alternates with ectothermy. However, while in honeybees controlled movement and regulated ventilation cease at body temperatures <10°C as a consequence of chill coma (Esch, 1960, 1964; Free and Spencer-Booth, 1960; Kovac et al., 2007; Lighton and Lovegrove, 1990), the wasps’ respiration functioned well down to 2.9°C over longer periods (in one case tested for 24 h). Therefore, the wasps’ respiratory critical thermal minimum (CT_{min}) can be assumed to be below Ta = 2.9°C. As all wasps regained full motility after these experiments their lower lethal temperature must be below this value. The wasps’ activity CT_{min} is not easily defined according to the assessment of Hazell and Bale (2011) or Stevens et al. (2010). As individuals sat motionless over long periods of time (several hours at 5.8°C) one could guess that activity CT_{min} was already reached. However, we found the animals capable of coordinated movement down to 5.8°C if the need arose; e.g. in case of loss of foothold at the measurement chamber’s wall or lid. During such events every single movement of legs was accompanied by exceptional spikes in the CO_{2} production curve at these low temperatures, which could be clearly distinguished from the common resting gas exchange pattern (our own unpublished results). Thus we assume the wasp forced activity CT_{min} to be below 5.8°C (our lowest experimental temperature with IR video observation). In any case our investigations demonstrate an increased cold hardiness of Vespula sp. foragers in comparison to A. mellifera. MacMillan and Sinclair (2011) proposed that in insects chill coma and CT_{min} are not caused by failure of cell respiration or the circulatory system but by disruption of signal transmission leading to failure in the neuromuscular system. Hazell et al. (2008) and Hazell and Bale (2011) opine that voluntary and forced activity show an insects’ CT_{min}. Respiration data seem not to be of so much significance for them regarding the lower thermal limit. Insect respiration, however, depends on active spiral control and abdominal respiratory movements to achieve sufficient exchange of respiration gases via the tracheae. So respiration and muscular and neural activity are closely related. Like in CT_{max} determination, the combination of respiratory and behavioral data seems to provide the most accurate results in defining CT_{min}.

4.2. Resting metabolism in arthropods – a comparison over taxa

Our investigation showed that even closely related groups like honeybees and wasps may show significant differences of resting metabolism (Fig. 7, compare No. 7 A. mellifera (Kovac et al., 2007), No. 8 Vespula sp. (this study) and No. 9 P. dominulus (Weiner et al., 2009)). In a comparison over several taxa Vespula sp. stands out with a high resting metabolic rate over the entire temperature range (Fig. 7). At Ta = 20°C the CO_{2} production of Vespula sp. is 60% higher than that of A. mellifera, an insect with similar body shape, weight and active thermoregulation: 18.054 μl mg^{-1} min^{-1} vs. 11.16 μl mg^{-1} min^{-1}. This might be based on differences in the thermal activity range as well as diverse overwintering strategies (single Polistes- and Vespula-queens vs. whole Apis colony). Nowickia sp. has a comparable body mass, but an even lower resting metabolism of only 2.304 μl mg^{-1} min^{-1} (Chappell and Morgan, 1987). This is only 13% of Vespula’s turnover. Measurements at only one temperature (Fig. 8) or in the species’ preferred temperature range do not always show differences between species clearly. Only respiratory data gathered over the animals’ entire active temperature range allows profound comparison.

The metabolic theory of ecology links the metabolic rate to mass and ambient temperature. It predicts a general decrease of mass-specific metabolism with body mass for all organisms (see e.g. Clarke, 2006). In a comparison of several cockroach species Coelho and Moore (1989) reported that an increase in body mass comes along with a decrease in mass-specific resting metabolism. Sharing the same basic body shape, their weight ranged from 0.055 to 5.2 g (Table 3). Basal energy turnover diminished with increasing body mass also in locusts (Harrison et al., 2010) and in

![Fig. 7. Resting metabolism (CO₂ production or O₂ consumption) of several arthropods in dependence on ambient temperature (T_a). Numbers at the curves correspond with species in Table 3.](image-url)
honeybee larvae (Petz et al., 2004). Niven and Scharlemann (2005) came to similar findings comparing resting metabolism of many flying insects. If also non-flying arthropod species are included, the decrease of mass specific resting metabolism with body mass is smaller (Fig. 8). Nonetheless there is an enormous variation in (resting) metabolism measurements of even closely related taxa of arthropods (compare Figs. 7 and 8). There are several hypotheses concerning this variation.

The evolutionary trade-off hypothesis tries to explain the relationship between resting metabolic rate and ambient temperature, and the cause of variation on all taxonomic levels (order, family, inter- as well as intra-species; e.g. Clarke, 2006; Riveros and Enquist, 2011).

Another explanation for differences in resting metabolism is provided by the life-style hypothesis (Reinhold, 1999; Riveros and Enquist, 2011). If one compares the tachinid fly Nowickia sp. (Chappell and Morgan, 1987) and the winter flying cucullinid moth Eupsilia sp. (Heinrich, 1987; Heinrich and Mommsen, 1985) which weigh 0.130 g and 0.155 g, respectively, they differ highly in resting metabolism – and also in way of life (Table 2; Figs. 7 and 8, No. 10 Nowickia sp. and No. 11 Eupsilia sp.). The fly with the higher metabolism lives “on the wing” whereas the moth is rather inactive and sits still most of the day. However, Terblanche and Anderson (2010) showed that the resting metabolic rate in the hawkmoth Macroglossum trochilus and the long-proboscid fly

Table 2
Mean critical thermal maximum (CTmax) of V. vulgaris and A. mellifera with SD and number of individuals (n). While there was no significant difference in respiratory CTmax vs. activity CTmax in both wasps and bees, CTmax between the species differed significantly.

Species	n	Respiratory CTmax (°C)	SD (°C)	t-test	Activity CTmax (°C)	SD (°C)
V. vulgaris	10	45.3	0.5	t = 0.944327 p = 0.357507	44.9	1.3
A. mellifera	11	48.9	2.8	t = 0.127311 p = 0.899966	49.0	2.6
t-test				t = 4.05661 p = 0.00067		

Table 3
Body weight (mass) and resting metabolic rate (metabolism) in various taxa of arthropod species from literature and this study. Experimental temperatures were normalized to 22 °C assuming Q10 = 2.

No.	Species	Mass (mg)	Metabolism	Method	References	
			(µmol mg⁻¹ h⁻¹)			
			(µmol mg⁻¹ h⁻¹)			
1	Solenopsis invicta	2.96	0.38	0.017	O₂	Vogt and Appel (1999)
1	S. invicta male alates	14.6	0.5	0.0223		
1	S. invicta female alates	7.3	0.6	0.0268		
2	Pogonomymyx californicus	5.92	0.2	0.0089	CO₂	Quinlan and Lighton (1999)
2	Pogonomymyx occidentalis	14.3	0.17	0.0089		
4	Camponotus fulvopilosus	11.9	0.18	0.0076		
5	Pogonomymyx rugosus	7.96	0.23	0.0103	CO₂	Quinlan and Lighton (1999)
7	Apis mellifera	80.0	0.75	0.0335	CO₂	Kovac et al. (2007)
8	Vespa sp.	89.7	1.24	0.0554	CO₂	This study
9	Polistes dominulus	106	0.39	0.0174	CO₂	Weiner et al. (2009)
10	Nowickia nitida/rostrata	130.4	1.42	0.0634	O₂	Niven and Scharlemann (2005)
11	Eupsilia sp.	155	0.58	0.0259	O₂	Heinrich (1987)
12	Centruroides sculpturatus	300	0.34	0.0152	O₂	Hadley and Hill (1969)
13	Blatta orientalis	331	0.27	0.0121	O₂	Niven and Scharlemann (2005)
15	Acheta domesticus	558	0.11	0.0049	CO₂	Lachenicht et al. (2010)
16	Periplaneta americana	990.5	0.36	0.0161	O₂	Niven and Scharlemann (2005)
23	Hadrurus arizonensis	3380.23	0.06	0.0027	O₂	Hadley (1970)

p = Animals decapitated.
Moegiostorychnus longirostrus differs despite a similar size and lifestyle (in this case foraging behavior).

As in fact rest metabolic rate within the arthropods seems to reflect the association between the variation of gas exchange physiology and anatomy (Riveros and Enquist, 2011), as well as the organisms’ lifestyle in terms of energetic performance (flying – nonflying, Riveros and Enquist, 2011; active – inactive; acoustically advertising – mute) or feeding ecology (chaser – lurker, Reinhold, 1999; foraging rate, Terblanche and Anderson, 2010), energetic costs of activity may explain part of inter-taxon variation in mass-specific resting metabolism.

In conclusion it can be said that each of the above hypotheses may explain part of the variation between species. However, a quantitative prediction for a species based on measurement of another one cannot be made due to the complexity of physiology and ecology. Only empirical data are appropriate to gain insight in the metabolism of a particular arthropod species.

Acknowledgements

The research was funded by the Austrian Science Fund (FWF): P20802-B16. We greatly appreciate the help with electronics by G. Stabentheiner and with data evaluation by M. Bodner, M. Bruhnhofer, M. Fink, P. Kirchberger, A. Lienhart, L. Mirwald and A. Settari. Many thanks also to two anonymous reviewers for very helpful comments.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jinsphys.2012.01.015.

References

Bellmann, H., 1995. Bienen, Wespen, Ameisen: Die Hautflügler Mitteleuropas. Franckh-Kosmos-Verlags-GmbH und Co, Stuttgart.

Büdel, A., 1955. Schwankungen der Lufttemperatur in der Wabengasse eines Brutvogel (Newicki sp.). Physiological Zoology 60, 550–559.

Chappell, M.A., Morgan, K.R., 1987. Temperature regulation, endothermy, resting metabolism, and flight energetics of Tachinid flies (Diptera: Tachinidae). Journal of Experimental Biology 148, 1–52.

Coelho, J.R., Ross, A.J., 1996. Body temperature and thermoregulation in two species of yellowjackets, Vespula simillima xanthoptera (Hymenoptera: Vespidae). Cellular and Molecular Life Sciences 52, 1383–1399.

Esch, H., 1980. Über die Körpertemperaturen und den Wärmehaushalt von Pinus silvestris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 144, 139–146.

Hadley, N.F., 1970. Water relations of the desert scorpion, Hadrurus arizonensis. The Journal of Experimental Biology 53, 547–558.

Hämmerli, M., Hilti, R.D., 1969. Oxygen consumption of the centipedes Schizobius sculpturatus, Comparative Biochemistry and Physiology 29, 217–226.

Harrison, J.F., Kaiser, A., Vandenvoort, J.M., 2010. Atmospheric oxygen level and the evolution of insect body size. Proceedings of the Royal Society B: Biological Sciences 277, 1937–1946.

Hayes, J.P., Garland Jr., T., 1995. The evolution of endothermy: testing the aerobic capacity model. Evolution 49, 836–847.

Hassell, S.P., Bale, J.S., 2011. Low temperature thresholds: are chill coma and CT_min synonymous? Journal of Insect Physiology 57, 1085–1089.

Käfer, H., Kovac, H., Stabentheiner, A., in press. Resting metabolism of vespine wasps (Vespula sp.) in comparison with other arthropods. Mitteilungen der Deutschen Gesellschaft für allgemeine Zoologie und vergleichende Physiologie.

Klingner, R., Richter, K., Schmolz, E., Keller, B., 2005. The role of moisture in the nest thermo-regulation of social wasps. Naturwissenschaften 92, 427–430.

Klingner, R., Richter, K., Schmolz, E., 2006. Strategies of social wasps for thermal homeostasis in light paper nests. Journal of Thermal Biology 31, 599–604.

Klok, C.J., Sinclair, B.J., Chown, S.L., 2004. Upper thermal tolerance and oxygen limitation in terrestrial arthropods. The Journal of Experimental Biology 207, 2361–2370.

Kovac, H., Stabentheiner, A., 1999. Effect of food quality on the body temperature of wasps (Paravespula vulgaris). Journal of Insect Physiology 45, 183–190.

Kovac, H., Stabentheiner, A., 2011. Thermoregulation of foraging honeybees on flowering plants: seasonal variability and influence of radiative heat gain. Ecological Entomology 36, 686–692.

Kovac, H., Stabentheiner, A., Hetz, S.K., Petz, M., Crailsheim, K., 2007. Respiration of resting honeybees. Journal of Insect Physiology 53, 1250–1261.

Kovac, H., Stabentheiner, A., Schmaranzer, S., 2009. Thermoregulation of water foraging wasps (Vespula vulgaris and Polistes dominulus). Journal of Insect Physiology 55, 959–966.

Kovac, H., Stabentheiner, A., Schmaranzer, S., 2010. Thermoregulation of water foraging honeybees—Balancing of endothermic activity with radiative heat gain. Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 154, 599–616.

Kloot, C.J., Chang, K., Sue, S.L., 1998. Critical thermal limits, temperature tolerance and water balance of a sub-Antarctic caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae). Journal of Insect Physiology 44, 683–694.

Kloot, C.J., Sinclair, B.J., Chown, S.L., 2004. Upper thermal tolerance and oxygen limitation in terrestrial arthropods. The Journal of Experimental Biology 207, 2361–2370.

Klok, C.J., Sinclair, B.J., Chown, S.L., 2004. Upper thermal tolerance and oxygen limitation in terrestrial arthropods. The Journal of Experimental Biology 207, 2361–2370.

Lighton, J.R.B., 1989. Individual and whole-colony respiration in an African formicine ant. Functional Ecology 3, 523–530.

Lighton, J.R.B., Bartholomew, G.A., 1988. Standard energy metabolism of a desert harvester ant, Pogonomyrmex rugosus: effects of temperature, body mass, group size, and humidity. Proceedings of the National Academy of Sciences of the United States of America 85, 4765–4769.

Lighton, J.R.B., Lovegrove, B.G., 1989. A temperature-induced switch from diffusive to convective ventilation in the honeybee. The Journal of Experimental Biology 154, 599–516.

Lighton, J.R.B., Turner, R.J., 2004. Thermolimit respirometry: an objective method for the rapid measurement of thermal tolerance traits in studies of small insects. Physiological Entomology 33, 389–394.

Lachenicht, M.W., Clusella-Trullas, S., Boardman, L., Le Roux, C., Terblanche, J.S., 2006. A temperature-induced switch from diffusive to convective ventilation in the honeybee, Apis mellifera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 43, 305–335.

MacMillan, H.A., Sinclair, B.J., 2011. Mechanisms underlying insect chill-coma. Journal of Insect Physiology 57, 12–20.

Manning, J., Sinclair, B.J., 2011. Mechanisms underlying insect chill-coma. Journal of Insect Physiology 57, 12–20.

Niven, J.E., Scharlemann, J.P.W., 2005. Do insect metabolic rates at rest and during flight scale with body mass? Biology Letters 1 [3], 346–349.

Oko, M., Okada, I., Sasaki, M., 1987. Heat production by balling in the Japanese honeybee, Apis cerana japonica. Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 48, 547–551.

Ono, M., Okada, I., Sasaki, M., 1987. Heat production by balling in the Japanese honeybee, Apis cerana japonica. Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 48, 547–551.
Papachristoforou, A., Rortais, A., Zafeiridou, G., Theophilidis, G., Garnery, L., Thrasyvoulou, A., Arnold, G., 2007. Smothered to death: hornets asphyxiated by honeybees. Current Biology 17, R795–R796.

Papachristoforou, A., Rortais, A., Sueur, J., Arnold, G., 2011. Attack or retreat: contrasted defensive tactics used by Cyprian honeybee colonies under attack from hornets. Behavioural Processes 86, 236–241.

Pez, M., Stabentheiner, A., Crailsheim, K., 2004. Respiration of individual honeybee larvae in relation to age and ambient temperature. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 511–518.

Quinlan, M.C., Lighton, J.R.B., 1999. Respiratory physiology and water relations of three species of Pogonomyrmex harvester ants (Hymenoptera:Formicidae). Physiological Entomology 24, 293–302.

Reinhold, K., 1999. Energetically costly behaviour and the evolution of resting metabolic rate in insects. Functional Ecology 13, 217–224.

Riveros, A.J., Enquist, B.J., 2011. Metabolic scaling in insects supports the predictions of the WBE model. Journal of Insect Physiology 57, 688–693.

Rothé, U., Nachtigall, W., 1989. Flight of the honey bee. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 158, 739–745.

Schmaranzer, S., Stabentheiner, A., 1987. Thermographic determination of body temperatures in honey bees and hornets: calibration and applications. Thermology 2, 563–572.

Schmaranzer, S., Vollmann, J., Kovac, H., Crailsheim, K., 2003. Oxygen consumption and body temperature of active and resting honeybees. Journal of Insect Physiology 49, 881–889.

Stabentheiner, A., Kovac, H., Schmaranzer, S., 2007. Thermal behaviour of honeybees during aggressive interactions. Ethology 113, 995–1006.

Stabentheiner, A., Kovac, H., Broschneider, R., 2010. Honeybee colony thermoregulation – regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. Public Library of Science ONE 5, e8967.

Stabentheiner, A., Kovac, H., Hetz, S.K., Käfer, H., Stabentheiner, G., in press. Assessing honeybee and wasp thermoregulation and energetics – new insights by combination of flow-through respirometry with infrared thermography. Thermochimica Acta. doi:10.1016/j.tca.2012.02.006.

Steiner, A., 1930. Die Temperaturregulierung im Nest der Feldwespe (Polistes gallica var biglumis L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 461–502.

Stevens, M.M., Jackson, S., Bester, S.A., Terblanche, J.S., Chown, S.L., 2010. Oxygen limitation and thermal tolerance in two terrestrial arthropod species. The Journal of Experimental Biology 213, 2209–2218.

Sugahara, M., Sakamoto, F., 2009. Heat and carbon dioxide generated by honeybees jointly act to kill hornets. Naturwissenschaften 96, 1133–1136.

Tan, K., Hepburn, H., Radloff, S., Yusheng, Y., Yiqiu, L., Danyin, Z., Neumann, P., 2005. Heat-hailing wasps by honeybees. Naturwissenschaften 92, 492–495.

Terblanche, J.S., Anderson, B., 2010. Variation of foraging rate and wing loading, but not resting metabolic rate scaling, of insect pollinators. Naturwissenschaften 97, 775–780.

Terblanche, J.S., Chown, S.L., 2010. Effects of flow rate and temperature on cyclic gas exchange in tsetse flies (Diptera, Glossinidae). Journal of Insect Physiology 56, 513–521.

Terblanche, J.S., Hoffmann, A.A., Mitchell, K.A., Rako, L., le Roux, P.C., Chown, S.L., 2011. Ecologically relevant measures of tolerance to potentially lethal temperatures. The Journal of Experimental Biology 214, 3713–3725.

Vogt, J.T., Appel, A.G., 1999. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. Journal of Insect Physiology 45, 655–666.

Weiner, S.A., Woods Jr, W.A., Starks, P.T., 2009. The energetic costs of stereotyped behavior in the paper wasp, Polistes dominulus. Naturwissenschaften 96, 297–302.

Weiner, S.A., Upton, C., Noble, K., Woods, W., Starks, P., 2010. Thermoregulation in the primitively eusocial paper wasp, Polistes dominulus. Insectes Sociaux 57, 157–162.

Willmer, P., Stone, G., Johnston, I., 2004. Environmental Physiology of Animals. Wiley-Blackwell, Oxford.