Antigen processing for MHC presentation by autophagy

Münz, C

Abstract: Autophagy delivers cytoplasmic constituents for lysosomal degradation. This catabolic pathway can be used to deliver intracellular antigens for major histocompatibility complex (MHC) class II presentation. In addition, recent evidence suggests that it also facilitates the processing of extracellular antigens for both MHC class I and II presentation.

DOI: https://doi.org/10.3410/B2-61

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-44305
Journal Article

Originally published at:
Münz, C (2010). Antigen processing for MHC presentation by autophagy. F1000 Biology Reports, (2):61.
DOI: https://doi.org/10.3410/B2-61
Antigen processing for MHC presentation by autophagy

Christian Münz1*

1 Viral Immunobiology, Institute of Experimental Immunology, University Hospital Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Corresponding author: Christian Münz (christian.muenz@usz.ch)

Abstract

Autophagy delivers cytoplasmic constituents for lysosomal degradation. This catabolic pathway can be used to deliver intracellular antigens for MHC class II presentation. In addition, recent evidence suggests that it also facilitates the processing of extracellular antigen for both MHC class I and II presentation.

Introduction and context

Classically, MHC class I molecules present intracellular antigens to CD8+ T cells and MHC class II molecules extracellular antigens to CD4+ T cells during adaptive immune responses. However, professional antigen presenting cells, like DCs, can process extracellular antigen for MHC class I presentation by a pathway called cross-presentation [1]. Vice versa, fragments of nuclear and cytosolic antigens have been found among natural MHC class II ligands [2-3], and some antigens have been described to be presented on MHC class II after intracellular processing [4-5]. Some of these use autophagy to gain access to lysosomal degradation in MHC class II loading compartments [6-10].

Primarily one particular autophagic pathway, called macroautophagy, has been implicated in intracellular antigen processing for MHC class II presentation to CD4+ T cells.
During macroautophagy an isolation membrane, which can originate from rough endoplasmic reticulum, the outer nuclear envelope membrane or the outer mitochondrial membrane [11-15], engulfs cytoplasmic constituents like damaged organelles, protein aggregates and pathogens. Two ubiquitin-like systems with the Atg8 and Atg12 proteins at their heart are involved in extension of the autophagosomal membrane and substrate recruitment to its interior [16-18]. Upon completion of the resulting double membrane surrounded autophagosome, these proteins are removed from the outer autophagosomal membrane, which allows then the fusion with lysosomes and late endosomes, like multivesicular bodies (MVBs). The inner autophagosomal membrane and the autophagosome cargo are then broken down by lysosomal hydrolases. A subset of MVBs is used in MHC class II expressing cells for antigen loading of these molecules and called MHC class II loading compartments (MIICs). Autophagosomes fuse quite efficiently with these vesicles, resulting in MHC class II presentation of the autophagic cargo [19]. Thus, macroautophagy can deliver cytoplasmic antigens for MHC class II presentation to CD4+ T cells.

Major recent advances

However, in addition to the mechanistically fairly plausible intracellular antigen processing onto MHC class II molecules via macroautophagy, recent studies have also suggested that macroautophagy might assist extracellular antigen processing for MHC class I and class II presentation. With respect to cross-presentation, two studies have demonstrated that viral and tumor antigens are more efficiently presented in trans to CD8+ T cells when the antigen donor cell can perform macroautophagy [20-21]. In the first of these studies, apoptosis deficient mouse embryonic fibroblasts (Bax/Bak-/- MEFs) were more efficiently cross-presented after influenza A virus infection than wild-type MEFs, and this cross-presentation was inhibited by siRNA mediated silencing of the essential macroautophagy gene product Atg5 [20]. In a
second study, cross-presentation of the model antigen ovalbumin and the melanocyte differentiation antigen gp100 was diminished when macroautophagy was compromised in the antigen donating epithelial and melanoma cell lines via siRNA against Atg6 and Atg12 [21]. These studies suggest that macroautophagy assists in the packaging of antigens for efficient cross-presentation.

In addition, macroautophagy seems to also facilitate the transport of endocytosed antigen to lysosomal degradation and loading onto MHC class II molecules. Enhanced delivery of phagocytosed material to lysosomes with the assistance of the molecular macroautophagy machinery was first described after TLR2 stimulation of murine macrophages [22]. Furthermore, NOD2 stimulation enhanced macroautophagy, which enhanced lysosomal degradation of Salmonella [23]. This pathway also delivered Salmonella encoded antigens to MHC class II presentation, and was sensitive to siRNA mediated silencing of Atg5, Atg7 and Atg16L1. Interestingly, mutations in NOD2 and Atg16L1, which predispose for Crohn disease, also compromise both bacterial clearance and MHC class II presentation of bacterial antigens to CD4\(^+\) T cells. Along the same lines, Atg5 deficient DCs are compromised in priming CD4\(^+\) T cell responses after herpes simplex virus (HSV) infection and to efficiently process extracellular ovalbumin for MHC class II presentation [24]. At the same time, priming of CD8\(^+\) T cell responses and cross-presentation on MHC class I are not affected. Finally, human immunodeficiency virus (HIV) infection of DCs seems to inhibit macroautophagy, in order to increase virus production and to prevent viral antigen presentation to CD4\(^+\) T cells [25]. Macroautophagy stimulation enhances and siRNA mediated silencing of Atg5 and Atg8 decreases HIV antigen presentation on MHC class II, but not on MHC class I molecules. Altogether, these data suggest that macroautophagy facilitates endosome cargo delivery for lysosomal degradation and this results in increased extracellular antigen processing for MHC class II presentation to CD4\(^+\) T cells.
Future directions

In light of these recent advances it has become clear that macroautophagy regulates antigen presentation by MHC molecules beyond just intracellular antigen processing for CD4$^+$ T cell stimulation. However, the mechanisms of antigen packaging by macroautophagy for cross-presentation and macroautophagy-mediated acceleration of endosome degradation by lysosomes remain elusive. In antigen donor cells macroautophagy could provide the necessary energy to decorate dying cells with ligands for phagocytosis, like for example phosphatidylserine, which needs to be flipped from the inner to the outer cell membrane leaflet in order to become an eat-me signal [26-27]. Alternatively, autophagosome cargo could also be more efficiently released from MVBs via an alternative secretion pathway recently reported for the yeast *Pichia pastoris* and the slime mold *Dictyostelium discoideum* [28-29]. With respect to macroautophagic assistance for endosome fusion with lysosomes, it first needs to be clarified, if this represents a alternative use of Atgs, independent of macroautophagy, as was initially proposed [22], or if amphisomes, the fusion vesicles between autophagosomes and endosomes, get targeted more rapidly to lysosomes. In a second step, the molecular basis for this enhanced targeting then needs to be elucidated. Irrespective of the mechanism, macroautophagic support for endosome fusion with lysosomes could explain why TLR coating increases antigen processing for MHC class II presentation [30]. Although much more needs to be done to characterize the underlying mechanisms, the recent studies, discussed in this report, suggest novel and exciting pathways in immunology and cell biology in general, by which macroautophagy regulates endocytosis.
and exocytosis, in addition to its classical function in the degradation of cytoplasmic constituents by lysosomes.
Abbreviations
Atg, autophagy related gene; MHC, major histocompatibility complex; TLR, toll like receptor; NOD, nucleotide-binding oligomerization domain containing; DC, dendritic cell

Competing interests
The author declares that he has no competing interests.

Acknowledgements
Research in my laboratory is supported by the National Cancer Institute (R01CA108609 and R01CA101741), the Foundation for the National Institutes of Health (Grand Challenges in Global Health) and the Swiss National Science Foundation (310030_126995).

FIGURE LEGEND
Figure 1. Macroautophagy regulates cross-presentation and intracellular as well as extracellular antigen presentation on MHC class II molecules.
Autophagosomes, which form as isolation membranes around cytoplasmic constituents, fuse with MHC class II loading compartments (MIIC), which are a subset of multivesicular bodies (MVBs) They do so directly or after fusion with endosomes as so called amphisomes. From the MVBs autophagic cargo can also escape via exocytosis and is then efficiently cross-presented by dendritic cells (DCs).
References

1. Amigorena S, Savina A: Intracellular mechanisms of antigen cross presentation in dendritic cells. *Curr Opin Immunol* 2010, 22:109-117.

2. Marrack P, Ignatowicz L, Kappler JW, Boymel J, Freed JH: Comparison of peptides bound to spleen and thymus class II. *J Exp Med* 1993, 178:2173-2183.

3. Dengjel J, Schoor O, Fischer R, Reich M, Kraus M, Muller M, Kreymborg K, Altenberend F, Brandenburg J, Kalbacher H, et al: Autophagy promotes MHC class II presentation of peptides from intracellular source proteins. *Proc Natl Acad Sci USA* 2005, 102:7922-7927.

4. Jaraquemada D, Marti M, Long EO: An endogenous processing pathway in vaccinia virus-infected cells for presentation of cytoplasmic antigens to class II-restricted T cells. *J Exp Med* 1990, 172:947-954.

5. Münz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A, Kurilla MG, Zhang D, O'Donnell M, Steinman RM: Human CD4+ T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. *J Exp Med* 2000, 191:1649-1660.

6. Brazil MI, Weiss S, Stockinger B: Excessive degradation of intracellular protein in macrophages prevents presentation in the context of major histocompatibility complex class II molecules. *Eur J Immunol* 1997, 27:1506-1514.

7. Nimmerjahn F, Milosevic S, Behrends U, Jaffée EM, Pardoll DM, Bornkamm GW, Mautner J: Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. *Eur J Immunol* 2003, 33:1250-1259.

8. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C: Endogenous MHC class II processing of a viral nuclear antigen after autophagy. *Science* 2005, 307:593-596.
9. Dorfel D, Appel S, Grunebach F, Weck MM, Muller MR, Heine A, Brossart P: Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro transcribed MUC1 RNA. Blood 2005, 105:3199-3205.

10. Jagannath C, Lindsey DR, Dhandayuthapani S, Xu Y, Hunter RL, Jr., Eissa NT: Autophagy enhances the efficacy of BCG vaccine by increasing peptide presentation in mouse dendritic cells. Nat Med 2009, 15:267-276.

11. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009, 11:1433-1437.

12. Yla-Anttila P, Vihinen H, Jokitalo E, Eskelinen EL: 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 2009, 5:1180-1185.

13. English L, Chemali M, Duron J, Rondeau C, Laplante A, Gingras D, Alexander D, Leib D, Norbury C, Lippe R, Desjardins M: Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 2009, 10:480-487.

14. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J: Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010, 141:656-667.

15. He C, Song H, Yorimitsu T, Monastyrcka I, Yen WL, Legakis JE, Klionsky DJ: Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 2006, 175:925-935.

16. He C, Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009, 43:67-93.
17. Ohsumi Y: **Molecular dissection of autophagy: two ubiquitin-like systems.** Nat Rev Mol Cell Biol 2001, **2**:211-216.

18. Mizushima N, Levine B, Cuervo AM, Klionsky DJ: **Autophagy fights disease through cellular self-digestion.** Nature 2008, **451**:1069-1075.

19. Schmid D, Pypaert M, Münz C: **MHC class II antigen loading compartments continuously receive input from autophagosomes.** Immunity 2007, **26**:79-92.

20. Uhl M, Kepp O, Jusforges-Saklani H, Vicencio JM, Kroemer G, Albert ML: **Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells.** Cell Death Differ 2009, **16**:991-1005.

21. Li Y, Wang LX, Yang G, Hao F, Urba WJ, Hu HM: **Efficient cross-presentation depends on autophagy in tumor cells.** Cancer Res 2008, **68**:6889-6895.

22. Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, Komatsu M, Tanaka K, Cleveland JL, Withoff S, Green DR: **Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis.** Nature 2007, **450**:1253-1257.

23. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A: **NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation.** Nat Med 2010, **16**:90-97.

24. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH, Chervonsky A, Mizushima N, Grinstein S, Iwasaki A: **In vivo requirement for Atg5 in antigen presentation by dendritic cells.** Immunity 2010, **32**:227-239.

25. Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, Garcia E, Dinkins C, Leuba F, Wu L, et al: **Human Immunodeficiency Virus-1 Inhibition of Immunoamphisomes in Dendritic Cells Impairs Early Innate and Adaptive Immune Responses.** Immunity 2010, May 5 [epub ahead of print].
26. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan RN, Gilpin C, Levine B: Autophagy gene-dependent clearance of apoptotic cells during embryonic development. *Cell* 2007, **128:**931-946.

27. Mellen MA, de la Rosa EJ, Boya P: The autophagic machinery is necessary for removal of cell corpses from the developing retinal neuroepithelium. *Cell Death Differ* 2008, **15:**1279-90.

28. Manjithaya R, Anjard C, Loomis WF, Subramani S: Unconventional secretion of *Pichia pastoris* Acb1 is dependent on GRASP protein, peroxisomal functions, and autophagosome formation. *J Cell Biol* 2010, **188:**537-546.

29. Duran JM, Anjard C, Stefan C, Loomis WF, Malhotra V: Unconventional secretion of Acb1 is mediated by autophagosomes. *J Cell Biol* 2010, **188:**527-536.

30. Blander JM, Medzhitov R: Toll-dependent selection of microbial antigens for presentation by dendritic cells. *Nature* 2006, **440:**808-812.
Figure 1

Autophagosome → MIIC → HLA-DM → MHC class II → DC

Isolation membrane

Autophagosome → Endosome → Amphisome