INVARIANTS OF UNIPOTENT TRANSFORMATIONS
ACTING ON NOETHERIAN RELATIVELY FREE ALGEBRAS

VESSELIN DRENSKY

Abstract. The classical theorem of Weitzenböck states that the algebra of invariants $K[X]^g$ of a single unipotent transformation $g \in GL_m(K)$ acting on the polynomial algebra $K[X] = K[x_1, \ldots, x_m]$ over a field K of characteristic 0 is finitely generated. This algebra coincides with the algebra of constants $K[X]^{\delta}$ of a linear locally nilpotent derivation δ of $K[X]$. Recently the author and C. K. Gupta have started the study of the algebra of invariants $F_m(V)^g$ where $F_m(V)$ is the relatively free algebra of rank m in a variety V of associative algebras. They have shown that $F_m(V)^g$ is not finitely generated if V contains the algebra $UT_2(K)$ of 2×2 upper triangular matrices. The main result of the present paper is that the algebra $F_m(V)^g$ is finitely generated if and only if the variety V does not contain the algebra $UT_2(K)$. As a by-product of the proof we have established also the finite generation of the algebra of invariants T_{nm}^g where T_{nm} is the mixed trace algebra generated by m generic $n \times n$ matrices and the traces of their products.

Introduction

Let K be any field of characteristic 0 and let $X = \{x_1, \ldots, x_m\}$, where $m > 1$. Let $g \in GL_m = GL_m(K)$ be a unipotent linear operator acting on the vector space $KX = Kx_1 \oplus \cdots \oplus Kx_m$. By the classical theorem of Weitzenböck, the algebra of invariants $K[X]^g = \{f \in K[X] \mid f(g(x_1), \ldots, g(x_m)) = f(x_1, \ldots, x_m)\}$ is finitely generated. A proof in modern language was given by Seshadri. An elementary proof based on the ideas of was presented by Tyc. Since $g - 1$ is a nilpotent linear operator of KX, we may consider the linear locally nilpotent derivation

$$
\delta = \log g = \sum_{i \geq 1} (-1)^{i-1} \frac{(g - 1)^i}{i}
$$

called a Weitzenböck derivation. (The K-linear operator δ acting on an algebra A is called a derivation if $\delta(\mu v) = \delta(\mu) v + \mu \delta(v)$ for all $\mu, v \in A$.) The algebra of invariants $\mathbb{C}[X]^\delta$ coincides with the algebra of constants $\mathbb{C}[X]^{\delta} (= \ker(\delta))$. See the book by Nowicki for a background on the properties of the algebras of constants of Weitzenböck derivations.

Looking for noncommutative generalizations of invariant theory, see e.g. the survey by Formanek for $K(X) = K\langle x_1, \ldots, x_m \rangle$ be the free unitary associative

1991 Mathematics Subject Classification. 16R10; 16R30.
Key words and phrases. noncommutative invariant theory; unipotent transformations; relatively free algebras.

Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.
algebra freely generated by X. The action of GL_m is extended diagonally on $K\langle X \rangle$ by the rule

$$h(x_{j_1} \cdots x_{j_n}) = h(x_{j_1}) \cdots h(x_{j_n}), \ h \in GL_m, \ x_{j_1}, \ldots, x_{j_n} \in X.$$

For any PI-algebra R, let $T(R) \subset K\langle X \rangle$ be the T-ideal of all polynomial identities in m variables satisfied by R. The class $\mathfrak{U} = \var(R)$ of all algebras satisfying the identities of R is called the variety of algebras generated by R (or determined by the polynomial identities of R). The factor algebra $F_m(\mathfrak{U}) = K\langle X \rangle/T(R)$ is called the relatively free algebra of rank m in \mathfrak{U}. We shall use the same symbols x_j and X for the generators of $F_m(\mathfrak{U})$. Since $T(R)$ is GL_m-invariant, the action of GL_m on $K\langle X \rangle$ is inherited by $F_m(\mathfrak{U})$ and one can consider the algebra of invariants $F_m(\mathfrak{U})^G$ for any linear group G. As in the commutative case, if $g \in GL_m$ is unipotent, then $F_m(\mathfrak{U})^g$ coincides with the algebra $F_m(\mathfrak{U})^{\mathfrak{g}}$ of the constants of the derivation $\delta = \log g$.

Till the end of the paper we fix the integer $m > 1$, the variety \mathfrak{U}, the unipotent linear operator $g \in GL_m$ and the derivation $\delta = \log g$.

The author and C. K. Gupta have started the study of the algebra of invariants $F_m(\mathfrak{U})^g$. They have shown that if \mathfrak{U} contains the algebra $UT_2(K)$ of 2×2 upper triangular matrices and g is different from the identity of GL_m, then $F_m(\mathfrak{U})^g$ is not finitely generated for any $m > 1$. They have also established that, if $UT_2(K)$ does not belong to \mathfrak{U}, then, for $m = 2$, the algebra $F_2(\mathfrak{U})^g$ is finitely generated.

In the present paper we close the problem for which varieties \mathfrak{U} and which m the algebra $F_m(\mathfrak{U})^g$ is finitely generated. Our main result is that this holds, and for all $m > 1$, if and only if the variety \mathfrak{U} does not contain the algebra $UT_2(K)$.

It is natural to expect such a result by two reasons. First, it follows from the proof of Tyc, see also the earlier paper by Onoda, that the algebra $K[X]^g$ is isomorphic to the algebra of invariants of certain SL_2-action on the polynomial algebra in $m + 2$ variables. One can prove a similar fact for $F_m(\mathfrak{U})^g$ and $(K[y_1, y_2] \otimes_K F_m(\mathfrak{U}))^{SL_2}$. Second, the results of Vonessen, Domokos and the author give that $F_m(\mathfrak{U})^G$ is finitely generated for all reductive G if and only if the finitely generated algebras in \mathfrak{U} are one-side noetherian. For unitary algebras this means that \mathfrak{U} does not contain $UT_2(K)$ or, equivalently, \mathfrak{U} satisfies the Engel identity $[x_2, x_1, \ldots, x_1] = 0$. In our proof we use the so called proper polynomial identities introduced by Specht, the fact that the Engel identity implies that the vector space of proper polynomials in $F_m(\mathfrak{U})$ is finite dimensional and hence $F_m(\mathfrak{U})$ has a series of ideals such that the factors are finitely generated $K[X]$-modules. As a by-product of the proof we have established also the finite generation of the algebra of invariants T_{nm}^g, where T_{nm} is the mixed trace algebra generated by m generic $n \times n$ matrices x_1, \ldots, x_m and and the traces of their products $\text{tr}(x_{i_1} \cdots x_{i_k})$, $k \geq 1$.

1. Preliminaries

We fix two finite dimensional vector spaces U and V, $\dim U = p$, $\dim V = q$, and representations of the infinite cyclic group $G = \langle g \rangle$:

$$\rho_U : G \to GL(U) = GL_p, \ \rho_V : G \to GL(V) = GL_q,$$

where $\rho_U(g)$ and $\rho_V(g)$ are unipotent linear operators. Fixing bases $Y = \{y_1, \ldots, y_p\}$ and $Z = \{z_1, \ldots, z_q\}$ of U and V, respectively, we consider the free left $K[Y]$-module
$M(Y, Z)$ with basis Z. Then g acts diagonally on $M(Y, Z)$ by the rule

$$g : \sum_{j=1}^{q} f_j(y_1, \ldots, y_p)z_j \rightarrow \sum_{j=1}^{q} f_j(g(y_1), \ldots, g(y_p))g(z_j), \quad f_j \in K[Y],$$

where, by definition, $g(y_i) = \rho(g)(y_i)$ and $g(z_j) = \rho(g)(z_j)$. Let $M(Y, Z)^\delta$ be the set of fixed points in $M(Y, Z)$ under the action of g. Since $\rho(g)$ and $\rho(g)$ are unipotent operators, the operators $\delta_U = \log \rho(g)$ and $\delta_V = \log \rho(g)$ are well defined. Denote by δ the induced derivation of $K[Y]$. We extend δ to a derivation of $M(Y, Z)$, denoted also by δ, i.e. δ is the linear operator of $M(Y, Z)$ defined by

$$\delta : \sum_{j=1}^{q} f_j(Y)z_j \rightarrow \sum_{j=1}^{q} \delta(f_j(Y))z_j + \sum_{j=1}^{q} f_j(Y)\delta(z_j).$$

It is easy to see that $\delta = \log g$ on $M(Y, Z)$ and $M(Y, Z)^\delta$ coincides with the kernel of δ, i.e. the set of constants $M(Y, Z)^\delta$. Changing the bases of U and V, we may assume that δ_U and δ_V have the form

$$\delta_U = \begin{pmatrix} J_{p_1} & 0 & \cdots & 0 & 0 \\ \vdots & J_{p_2} & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & J_{p_{r-1}} & 0 \\ 0 & 0 & \cdots & 0 & J_{p_r} \end{pmatrix}, \quad \delta_V = \begin{pmatrix} J_{q_1} & 0 & \cdots & 0 & 0 \\ \vdots & J_{q_2} & \cdots & \vdots & \vdots \\ 0 & 0 & \cdots & J_{q_{i-1}} & 0 \\ 0 & 0 & \cdots & 0 & J_{q_i} \end{pmatrix},$$

where J_r is the $(r+1) \times (r+1)$ Jordan cell

$$J_r = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

with zero diagonal.

We denote by W_r the irreducible $(r+1)$-dimensional SL_2-module. It is isomorphic to the SL_2-module of the forms of degree r in two variables x, y. This is the unique structure of an SL_2-module on the $(r+1)$-dimensional vector space which agrees with the action of δ (and hence of g) as the Jordan cell (1). We can think of δ as the derivation of $K[x, y]$ defined by $\delta(x) = 0$, $\delta(y) = x$. We fix the “canonical” basis of W_r

$$u^{(0)} = x^r, u^{(1)} = \frac{x^{r-1}y}{1!}, u^{(2)} = \frac{x^{r-2}y^2}{2!}, \ldots, u^{(r-1)} = \frac{xy^{r-1}}{(r-1)!}, u^{(r)} = \frac{y^r}{r!}.$$

We give U and V the structure of SL_2-modules

$$U = W_{p_1} \oplus \cdots \oplus W_{p_k}, \quad V = W_{q_1} \oplus \cdots \oplus W_{q_i},$$

and extend it on $K[Y]$ and $M(Y, Z)$ via the diagonal action of SL_2. Again, this agrees with the action of g and δ. Then $K[U]$ and $M(Y, Z)$ are direct sums of irreducible SL_2-modules $U_{r_i} \subset K[Y]$ and $W_{r_j} \subset M(Y, Z)$ isomorphic to W_r, $i, j = 1, 2, \ldots, r = 0, 1, 2, \ldots,$ with canonical bases $\{u_{r_i}^{(0)}, u_{r_i}^{(1)}, \ldots, u_{r_i}^{(r)}\}$ and $\{w_{r_j}^{(0)}, w_{r_j}^{(1)}, \ldots, w_{r_j}^{(r)}\},$ respectively.
Lemma 1. The elements \(u \in K[Y] \) and \(w \in M(Y, Z) \) belong to \(K[Y]^\delta \) and \(M(Y, Z)^\delta \), respectively, if and only if they have the form

\[
(4) \quad u = \sum_{r,i} \alpha_{ri} u_r^{(0)}, \quad w = \sum_{r,j} \beta_{rj} u_r^{(0)}, \quad \alpha_{ri}, \beta_{rj} \in K.
\]

Proof. Almkvist, Dicks and Formanek [11] translated in the language of \(g \)-invariants results of De Concini, Eisenbud and Procesi [2] and proved that, in our notation, \(g(u) = u \) and \(g(w) = w \) if and only if \(u \) and \(w \) have the form \(Y, Z \). Since \(g(u) = u \) if and only if \(\delta(u) = 0 \), and similarly for \(w \), we obtain that \(\delta \) holds if and only if \(u \) and \(w \) are \(\delta \)-constants. (The same fact is contained in the paper by Tyc [14] but in the language of representations of the Lie algebra \(sl_2(K) \).

In each component \(W_r \) of \(U \) in [2], using the basis [2], we define a linear operator \(d \) by

\[
d(u^{(k)}) = (k + 1)(r - k)u^{(k+1)}, \quad k = 0, 1, 2, \ldots, r,
\]

i.e., up to multiplicative constants, \(d \) acts by \(u^{(0)} \to u^{(1)} \to u^{(2)} \to \cdots \to u^{(r)} \to 0 \). We extend \(d \) to a derivation of \(K[Y] \). As in the case of \(\delta \), again we can think of \(d \) as the derivation of \(K[x, y] \) defined by \(d(x) = y, d(y) = 0 \).

Lemma 2. (i) The derivation \(d \) acts on each irreducible component \(U_{ri} \) of \(K[Y] \) by

\[
d(u_{ri}^{(k)}) = (k + 1)(r - k)u_{ri}^{(k+1)}, \quad k = 0, 1, \ldots, r.
\]

(ii) If \(f = f(Y) \in K[Y] \), then \(\delta^{s+1}(f) = 0 \) if and only if \(f \) belongs to the vector space

\[
(5) \quad K[Y]_s = \sum_{t=0}^s d^t(K[Y]^\delta).
\]

Proof. Part (i) follows from the fact that the \(SL_2 \)-action on \(U \) is the only action which agrees with the action of \(\delta \) as well as with the action of \(d \) (as the derivations of \(K[x, y] \) defined by \(\delta(x) = 0, \delta(y) = x \) and \(d(x) = y, d(y) = 0 \), respectively), and the extension of this \(SL_2 \)-action to \(K[U] \) also agrees with the action of \(\delta \) and \(d \) on \(K[U] \).

(ii) Since the irreducible \(SL_2 \)-submodules of \(K[Y] \) are \(\delta \)- and \(d \)-invariant, it is sufficient to prove the statement only for \(f \in W_r \subset K[Y] \). Considering the basis [2] of \(W_r \), we have that \(\delta^{s+1}(f) = 0 \) if and only if

\[
f = \alpha_0 u^{(0)} + \alpha_1 u^{(1)} + \cdots + \alpha_s u^{(s)}, \quad \alpha_k \in K.
\]

Since \(W_r^\delta = Ku^{(0)} \) and \(d^s(u^{(0)}) \in Ku^{(0)} \), we obtain that \(W_r \cap K[Y]_s \) is spanned by \(u^{(0)}, u^{(1)}, \ldots, u^{(s)} \) and coincides with the kernel of \(\delta^{s+1} \) in \(W_r \).

In principle, the proof of the following proposition can be obtained following the main steps of the proof of Tyc [14] of the Weitzenböck theorem. The proof of the three main lemmas in [14] uses only the fact that the ideals of the algebra \(K[Y] \) are finitely generated \(K[Y]^\delta \)-modules. Instead, we shall give a direct proof, using the idea of the proof of Lemma 3 in [14].

Proposition 3. The set of constants \(M(Y, Z) \) is a finitely generated \(K[Y]^\delta \)-module.
Proof. Let N_i be the $K[Y]$-submodule of $M(Y,Z)$ generated by the basis elements z_j of $V = K z_1 \oplus \cdots \oplus K z_q$ corresponding to the i-th Jordan cell J_i. Since $M(Y,Z) = N_1 \oplus \cdots \oplus N_q$ and $M(Y,Z) = K[Y] \oplus \cdots \oplus K[Y]$, it is sufficient to show that each N_i is a finitely generated $K[Y]$-module. Hence, without loss of generality we may assume that $q = r + 1$ and $\delta(z_0) = 0, \delta(z_j) = z_{j-1}, j = 1, 2, \ldots, r$. Let

$$f = f_0(Y) z_0 + f_1(Y) z_1 + \cdots + f_r(Y) z_r \in M(Y,Z), \quad f_j(Y) \in K[Y].$$

Then

$$\delta(f) = (\delta(f_0) + f_1) z_0 + (\delta(f_1) + f_2) z_1 + \cdots + (\delta(f_{r-1}) + f_r) z_{r-1} + \delta(f_r) z_r$$

and this implies that

$$\delta(f_j) = -f_{j+1}, \quad j = 0, 1, \ldots, r - 1,$$

$$\delta(f_r) = \delta^2(f_{r-1}) = \cdots = \delta^r(f_1) = \delta^{r+1}(f_0) = 0.$$

Hence, fixing any element $f_0(Y)$ from $K[Y]^r$, we determine all the coefficients f_1, \ldots, f_r from (6). By Lemma 2 it is sufficient to show that the $K[Y]$-module generated by $d^r(K[Y]^r)$ is finitely generated. By the theorem of Weitzenböck, $K[Y]^r$ is a finitely generated algebra. Let $\{h_1, \ldots, h_n\}$ be a generating set of $K[Y]^r$. Then $d^r(K[Y]^r)$ is spanned by the elements $d^r(h_1^{t_1} \cdots h_n^{t_n})$. Since d is a derivation, $d^r(K[Y]^r)$ is spanned by elements of the form

$$h_1^{t_1} \cdots h_n^{t_n} \left(\prod d^{t_1}(h_1) \right) \cdots \left(\prod d^{t_n}(h_n) \right), \quad \sum t_1 + \cdots + \sum t_n = t.$$

There is only a finite number of possibilities for t_1, \ldots, t_n, and we obtain that $d^r(K[Y]^r)$ generates a finitely generated $K[Y]^r$-module. \qed

Corollary 4. Let, in the notation of this section, U and V be polynomial GL_m-modules, let $g \in GL_m$ be a unipotent matrix and let $M(Y,Z)$ be equipped with the diagonal action of GL_m. Then, for every GL_m-submodule M_0 of $M(Y,Z)$, the natural homomorphism $M(Y,Z) \to M(Y,Z)/M_0$ induces an epimorphism $M(Y,Z)^g \to (M(Y,Z)/M_0)^g$, i.e. we can lift the g-invariants of $M(Y,Z)/M_0$ to g-invariants of $M(Y,Z)$.

Proof. The lifting of the constants was established in [3] in the case of relatively free algebras and the same proof works in our situation. Since U and V are polynomial GL_m-modules, the module $M(Y,Z)$ is completely reducible. Hence $M(Y,Z) = M_0 \oplus M'$ for some GL_m-submodule M' of $M(Y,Z)$ and $M(Y,Z)/M_0 \cong M'$. If $w + M_0 = \bar{w} \in (M(Y,Z)/M_0)^g$, then $w = w_0 + w'$, $w_0 \in M_0$, $w' \in M'$, and $g(w) = g(w_0) + g(w')$. Since $g(\bar{w}) = \bar{w}$, we obtain that $g(w') = w'$ and the g-invariant \bar{w} is lifted to the g-invariant w'. \qed

Remark 5. The proof of Proposition 4 gives also an algorithm to find the generators of $M(Y,Z)^g$ in terms of the generators of $K[Y]^g$. The latter problem is solved by van den Essen [7] and his algorithm uses Gröbner bases techniques.

2. The Main Results

The following theorem is the main result of our paper. For $m = 2$ it was established in [3] using the description of the g-invariants of $K(x,y)$.

Theorem 6. For any variety \mathcal{V} of associative algebras which does not contain the algebra $UT_2(K)$ of 2×2 upper triangular matrices, the algebra of invariants $F_m(\mathcal{V})^g$ of any unipotent $g \in GL_m$ is finitely generated.
Proof. We shall work with the linear locally nilpotent derivation \(\delta = \log g \) instead with \(g \).

It is well known that any variety \(\mathfrak{V} \) which does not contain \(UT_2(K) \) satisfies some Engel identity \([x_2, x_1, \ldots, x_1] = 0\). By the theorem of Zelmanov \(\mathbb{L} \) any Lie algebra over a field of characteristic zero satisfying the Engel identity is nilpotent. Hence we may assume that \(\mathfrak{V} \) satisfies the polynomial identity of Lie nilpotency \([x_1, \ldots, x_{c+1}] = 0\). (Actually, this follows from much easier and much earlier results on PI-algebras.)

Let us consider the vector space \(B_m(\mathfrak{V}) \) of so called proper polynomials in \(F_m(\mathfrak{V}) \). It is spanned by all products \([x_{i_1}, \ldots, x_{i_k}] \cdots [x_{j_1}, \ldots, x_{j_l}]\) of commutators of length \(\geq 2 \). One of the main results of the paper by the author \(\mathbb{1} \) states that if \(\{f_1, f_2, \ldots\} \) is a basis of \(B_m(\mathfrak{V}) \), then \(F_m(\mathfrak{V}) \) has a basis
\[
\{x_{i_1}^{p_1} \cdots x_{i_k}^{p_k} f_i \mid p_j \geq 0, i = 1, 2, \ldots\}.
\]

Let \(B_m^{(k)}(\mathfrak{V}) \) be the homogeneous component of degree \(k \) of \(B_m(\mathfrak{V}) \). It follows from the proof of Theorem 5.5 in \(\mathbb{1} \), that for any Lie nilpotent variety \(\mathfrak{V} \) and for a fixed positive integer \(m \), the vector space \(B_m(\mathfrak{V}) \) is finite dimensional. Hence \(B_m^{(n)}(\mathfrak{V}) = 0 \) for \(n \) sufficiently large, e. g. for \(n > n_0 \). Let \(I_k \) be the ideal of \(F_m(\mathfrak{V}) \) generated by \(B_m^{(k+1)}(\mathfrak{V}) + B_m^{(k+2)}(\mathfrak{V}) + \cdots + B_m^{(m)}(\mathfrak{V}) \). Since \(w x_i = x_i w + [w, x_i], w \in F_m(\mathfrak{V}) \), applying Lemma 2.4 \(\mathbb{1} \), we obtain that \(I_k/I_k+1 \) is a free left \(K[X] \)-module with any basis of the vector space \(B_m^{(k)}(\mathfrak{V}) \) as a set of free generators. Since \(\delta \) is a nilpotent linear operator of \(U = K X = K x_1 \oplus \cdots \oplus K x_m \), it acts also as a nilpotent linear operator of \(V_k = B_m^{(k)}(\mathfrak{V}) \). Proposition \(\mathbb{8} \) gives that \((I_k/I_k+1)\delta \) is a finitely generated \(K[X]^\delta \)-module. Clearly, \(B_m^{(0)}(\mathfrak{V}) = K, B_m^{(1)}(\mathfrak{V}) = 0, B_m^{(2)}(\mathfrak{V}) \) is spanned by the commutators \([x_{i_1}, x_{i_2}]\), etc. Hence \(I_0/I_1 \cong K[X] \) and by the theorem of Weitzenböck \((I_0/I_1)^\delta \) is a finitely generated algebra. We fix a system of generators \(f_1, \ldots, f_n \) of the algebra \((I_0/I_1)^\delta \) and finite sets of generators \(\{f_{k_1}, \ldots, f_{k_{nk}}\} \) of the \(K[X]^\delta \)-modules \((I_k/I_k+1)^\delta \), \(k = 2, 3, \ldots, n_0 \). The vector space \(U \) is a \(GL_m \)-module and its \(GL_m \)-action makes \(V_k \) a polynomial \(GL_m \)-module. We apply Corollary \(\mathbb{4} \) and lift all \(\tilde{f}_i \) and \(\tilde{f}_{kj} \) to some \(\delta \)-constants \(f_i, f_{kj} \in F_m(\mathfrak{V})^\delta \). The algebra \(S \) generated by \(f_1, \ldots, f_n \) maps onto \((I_0/I_1)^\delta \) and hence \((I_k/I_k+1)^\delta \) is a left \(S \)-module generated by \(f_{k_1}, \ldots, f_{k_{nk}} \). The condition \(I_{n_0+1} = 0 \) together with Corollary \(\mathbb{4} \) gives that the \(f_i \) and \(f_{kj} \) generate \(F_m(\mathfrak{V})^\delta \).

Together with the results of \(\mathbb{9} \) Theorem \(\mathbb{6} \) gives immediately:

Corollary 7. For \(m \geq 2 \) and for any fixed unipotent operator \(g \in GL_m \), \(g \neq 1 \), the algebra of \(g \)-invariants \(F_m(\mathfrak{V})^g \) is finitely generated if and only if \(\mathfrak{V} \) does not contain the algebra \(UT_2(K) \).

We refer to the books \(\mathbb{1} \) and \(\mathbb{2} \) for a background on the theory of matrix invariants. We fix an integer \(n > 1 \) and consider the generic \(n \times n \) matrices \(x_1, \ldots, x_m \). Let \(C_{nm} \) be the pure trace algebra, i. e. the algebra generated by the traces of products \(\text{tr}(x_{i_1} \cdots x_{i_k}), k = 1, 2, \ldots \), and let \(T_{nm} \) be the mixed trace algebra generated by \(x_1, \ldots, x_m \) and \(C_{nm} \). It is well known that \(C_{nm} \) is finitely generated. (The Nagata-Higman theorem states that the nil polynomial identity \(x^n = 0 \) implies the identity of nilpotency \(x_1 \cdots x_d = 0 \). If \(d(n) \) is the minimal \(d \) with this property, one may take as generators \(\text{tr}(x_{i_1} \cdots x_{i_k}) \) with \(k \leq d(n) \).) Also, \(T_{nm} \) is a finitely generated \(C_{nm} \)-module.
Theorem 8. For any unipotent operator $g \in GL_m$, the algebra T^g_{nm} is finitely generated.

Proof. Consider the vector space U of all formal traces $y_i = \text{tr}(x_{i1} \cdots x_{ik})$, $i_j = 1, \ldots, m$, $1 \leq k \leq d(n)$. Let Y be the set of all y_i. It has a natural structure of a GL_m-module and hence $\delta = \log g$ acts as a nilpotent linear operator on U. Also, consider a finite system of generators f_1, \ldots, f_a of the C_{nm}-module T_{nm}. We may assume that the f_j do not depend on the traces and fix some elements $h_j \in K\langle X \rangle$ such that $h_j \mapsto f_j$ under the natural homomorphism $K\langle X \rangle \to T_{nm}$ extending the mapping $x_i \mapsto x_i$, $i = 1, \ldots, m$. Let V be the GL_m-submodule of $K\langle X \rangle$ generated by the h_j. Again, δ acts as a nilpotent linear operator on V. We fix a basis $Z = \{z_1, \ldots, z_q\}$ of V. Consider the free $K[Y]$-module $M(Y, Z)$ with basis Z. Proposition 3 gives that $M(Y, Z)^\delta$ is a finitely generated $K[Y]^\delta$-module and the theorem of Weitzenböck implies that $K[Y]^\delta$ is a finitely generated algebra. Since the algebra C_{nm} and the C_{nm}-module T_{nm} are homomorphic images of the algebra $K[Y]$ and the $K[Y]$-module $M(Y, Z)$, Corollary 4 gives that $K[Y]^\delta$ and $M(Y, Z)^\delta$ map on C_{nm}^δ and T_{nm}^δ, respectively. Hence T_{nm} is a finitely generated module of the finitely generated algebra C_{nm}^δ and, therefore, the algebra T_{nm}^δ is finitely generated. \hfill \Box

References

[1] G. Almkvist, W. Dicks, E. Formanek, Hilbert series of fixed free algebras and noncommutative classical invariant theory, J. Algebra 93 (1985), 189-214.
[2] C. De Concini, D. Eisenbud, C. Procesi, Young diagrams and determinantal varieties, Invent. Math. 56 (1980), 129-165.
[3] M. Domokos, V. Drensky, A Hilbert-Nagata theorem in noncommutative invariant theory, Trans. Amer. Math. Soc. 350 (1998), 2797-2811.
[4] V. Drensky, Codimensions of T-ideals and Hilbert series of relatively free algebras, J. Algebra 91 (1984), 1-17.
[5] V. Drensky, E. Formanek, Polynomial Identity Rings, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser, Basel-Boston, 2004 (to appear).
[6] V. Drensky, C. K. Gupta, Constants of Weitzenböck derivations and invariants of unipotent transformations acting on relatively free algebras, preprint.
[7] A. van den Essen, An algorithm to compute the invariant ring of a G_a-action on an affine variety, J. Symbolic Computation 16 (1993), 551-555.
[8] E. Formanek, Noncommutative invariant theory, Contemp. Math. 43 (1985), 87-119.
[9] E. Formanek, The Polynomial Identities and Invariants of $n \times n$ Matrices, CBMS Regional Conf. Series in Math. 78, Published for the Confer. Board of the Math. Sci. Washington DC, AMS, Providence RI, 1991.
[10] A. Nowicki, Polynomial Derivations and Their Rings of Constants, Universytet Mikolaja Kopernika, Torun, 1994.
[11] N. Onoda, Linear actions of G_a on polynomial rings, Proceedings of the 25th Symposium on Ring Theory (Matsumoto, 1992), 11-16, Okayama Univ., Okayama, 1992.
[12] C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1962), 403-409.
[13] W. Specht, Gesetze in Ringen. 1, Math. Z. 52 (1950), 557-589.
[14] A. Tyc, An elementary proof of the Weitzenböck theorem, Colloq. Math. 78 (1998), 123-132.
[15] N. Vonessen, Actions of Linearly Reductive Groups on Affine PI-Algebras, Mem. Amer. Math. Soc. 414, 1989.
[16] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231-293.
[17] E.I. Zelmanov, On Engel Lie algebras (Russian), Sibirsk. Mat. Zh. 29 (1988), No. 5, 112-117. Translation: Sib. Math. J. 29 (1988), 777-781.
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

E-mail address: drensky@math.bas.bg