Influence of Slenderness on the Evaluation of Epistemic Uncertainty Related to Non-Linear Numerical Analysis of RC Columns

Diego Gino¹, Costanza Anerdi¹, Gabriele Bertagnoli¹, Luca Giordano¹, Giuseppe Marano¹
¹ Politecnico di Torino, Corso Duca degli Abruzzi, 10129, Turin, Italy
gabriele.bertagnoli@polito.it

Abstract. This investigation is devoted to quantify the epistemic uncertainty related to the non-linear analysis of reinforced concrete columns characterized by high slenderness using numerical codes. The adoption of refined numerical tools, which are able to consider both mechanical and geometric non linearities, implies to perform assumptions and approximations with respect to reality. With reference to reliability analysis, these simplifications lead, inevitably, to additional uncertainties which are of epistemic nature. In fact, these uncertainties may be reduced by the engineers/analysts by increasing the level of refinement of the numerical model and/or increasing knowledge about parameters associated to material models. However, also numerical model established by expert engineers/analysts are affected by this kind of epistemic uncertainty. Accepting that the level of uncertainty associated to the experimental tests set are minimized, the epistemic uncertainty associated to non-linear numerical simulations can be quantified characterizing the model uncertainty random variable comparing the outcomes of numerical results to the associated experimental ones. The present investigation proposes the quantification of the model uncertainty related to non-linear numerical simulations of slender RC columns. A total number of 40 experimental results known from literature are herein selected in coherence with current Eurocodes specifications. The experiments are reproduced adopting non-linear numerical analysis differentiating between several modelling hypotheses (i.e., numerical code; materials models). The comparison between experimental and numerical results is adopted to characterize the most suitable probabilistic model for the model uncertainty random variable associated to non-linear numerical simulations of RC columns subjected to significant slenderness. The outcomes of the research are useful to provide background to the characterization of partial safety factor for model uncertainty in non-linear numerical analysis using the approach of the global resistance format for safety verifications.

1. Introduction
The adoption of non-linear analysis (NLA) in the civil engineering field it is becoming common practice for designers, analysts and researchers [1]-[3]. The effect of non-linearities related to both material and geometric characteristics can be easily accounted for within the assessment or design of reinforced concrete (RC) members and structures, also with reference to seismic safety issues [4]-[8]. Moreover, the contribution of materials of different nature can be included within the analysis with the aim to estimate the overall structural resistance [9]-[10]. For instance, the quantification of the uncertainties associated to NLAs of RC structures and components is a relevant topic. In this framework, the characterization of the uncertainties of both epistemic and aleatory nature related to NLAs of RC
structures have been widely investigated in the last years [11]-[16]. With reference to reliability analysis [17], the simplifications adopted within the definition of numerical models lead, inevitably, to additional uncertainties which are of epistemic nature. In particular, these uncertainties may be reduced by the engineers/analysts by increasing the level of refinement of the numerical model and/or increasing knowledge about parameters associated to material models. However, also numerical models established by expert engineers/analysts are affected by this kind of epistemic uncertainty. With reference to the mentioned above issues, the characterization and quantification of the model uncertainties (which can be classified as epistemic ones) associated to NLAs of RC members subjected to significant slenderness have not yet been not carried out.

For instance, the present investigation proposes the quantification of the model uncertainty related to non-linear analysis of slender RC columns. A total number of 40 experimental results known from literature are herein selected in coherence with current Eurocodes specifications. The experiments are reproduced adopting non-linear numerical analysis differentiating between several modelling assumptions [13]-[14] (i.e., numerical code; materials models). Then, the comparison between experimental and numerical outcomes is adopted to characterize the probabilistic model for the model uncertainty random variable ϑ associated to non-linear numerical simulations of RC columns subjected to significant slenderness ratio. The outcomes of the research are useful to provide background to the characterization of partial safety factor for model uncertainty in non-linear numerical analysis using the approach of the global resistance format for safety verifications [18].

2. Test cases and numerical modelling
In order to perform the quantification of modelling uncertainty for NLAs of reinforced concrete columns, the results of 40 laboratory tests realized according to different experimental campaigns [19]-[27] has been considered for comparison with the outcomes of appropriate numerical simulations. The set of experimental results has been selected in line to the provision and limitation of [28] with reference to geometry, detailing (i.e., shear reinforcements, reinforcement ratio ρ_l) and material strengths (i.e., concrete cylinder compressive strength f_{c} and reinforcement yielding strength f_y). The specifications of the tests set of slender RC columns selected for the investigation can be acknowledged in Table 1. The configuration of the laboratory tests [19]-[27] with reference to restraints and loading configuration is reported in Figure 1 differentiating between different types (i.e., A, B, C and D) of test set arrangement.

![Figure 1](image_url)
Figure 1. Test configuration for the different experimental investigations.
Table 1. Test cases considered for probabilistic calibration of model uncertainty with materials and geometrical properties, eccentricity of axial load e and experimental resistance R_{Test}.

Ref. [*]	Exp. test	Test set	L_{tot} [mm]	L [mm]	b [mm]	h [mm]	λ [-]	f_c [MPa]	f_p [MPa]	$\bar{\lambda}_{\text{A,c}}$ [%]	ϵ/h [mm]	R_{tot} [kN]
[21]	2L20-30											
	2L20-60											
	2L8-120R	B	1450	650	150	150	15	56.0	480.0	0.133	-	750.0
	4L8-30											
	4L20-120											
	4L8-120R											
[24]	C000	A	680	600	120	120	17	27.0	347.2	1181.4	3.3	559.6
	C020	B	1880	1800	200	200	48	38.2	493.0	1181.4	3.3	559.6
	B020		3000	2920	120	180	56	31.0	360.9	1.257	-	474.3
	RL300											
[25]	A-17-0.25	B	3400	2800	300	200	48	38.2	493.0	1181.4	3.3	559.6
	C-31.7-0.25	B	3800	3260	200	120	94	44.4	520.0	0.250	3.4	333.4
[19]	3.3	B	3400	2700	254	159	59	35.3	509.9	0.200	3.1	782.6
	5.1											
	4.1		4500	3800	253	150	88	40.5	509.9	1.2	0.163	367.7
[26]	N30-10.5- C0-3-30	C	3300	2940	140	150	68	29.5	538.0	17.2	-	16.6
	H60-10.5- C0-3-30											
										(280)*1	-	17.2

(-)*1 Compressive axial load constantly applied to the RC column for the entire duration of the test.

As shown by Table 1, a significant range of slenderness values λ have been accounted for in order to perform comprehensive quantification of the model uncertainty and understand their influence in reliability analysis of slender RC structural components.

The 40 laboratory tests of [19]-[27] have been reproduced by means appropriate NLAs adopting nine different modelling assumptions according to the approach of [13]-[14]. In particular, the assumptions and decisions performed by the analysis during the definition of a specific numerical model (i.e., related to constitutive models, solution methods for non-linear system of equations, kinematic compatibility of displacements, type of finite elements with related formulation, convergence criteria) are able to affect the global level of uncertainty.
For instance, in this paper, the software ADINA [29], TNO DIANA [30] and OpenSees [31] have been adopted to perform NLAs of the 40 RC columns (denoted generally as program I, II, III). Moreover, 3 assumptions related to concrete tensile behavior have been adopted in line to [13]. Totally, 9 numerical models have been defined for each RC member selected from [19]-[27]. The models 1-3, 4-6 and 7-9 refers to the programs I, II and II, respectively, while, for each program, the first and the last models are related to elastic-brittle and plastic tensile behavior of concrete.

Table 2. Assumptions for numerical modelling of the tested RC slender components.

Program	I	II	III
Solution methods	- Method for solution of non-linear equations: full Newton-Raphson;	- Equilibrium of forces evaluated in each numerical iteration with reference to the deformed configuration (2nd order effects); maximum number of iterations: 100;	- Loading steps evaluated in line to laboratory loading sequence;
Finite elements, Mesh	- 2 nodes 1D elements line to [29],[30] (force-based approach for fiber beams elements [31]);	- Mesh dimension determined in order to achieve stability of numerical solution;	
Constitutive relationships for materials	- Model for plane and confined concrete in compression defined with reference [32];	- Tensile behavior of concrete simulated with 3 hypotheses: 1) Elastic – Brittle; 2) Elastic - linear tension softening (i.e., LTS); 3) Elastic – plastic;	
	- Elastic – plastic with strength hardening;		

In each numerical program (I, II, III), both geometrical and material non linearities has been defined including also the influence of confinement provided by stirrups [32]. The numerical simulations have been performed according to the tests loading sequence specified by the original references [19]-[27]. The details of the numerical models with the related assumptions (i.e., modelling assumptions) are summarized in Table 2.
3. Outcomes from NLAs and quantification of model uncertainty

This section reports the outcomes from the 360 NLAs performed on the 40 columns introduced above. The Table 3 summarize the results in terms of failure axial load with reference to experiments and the 9 numerical modelling assumptions.

Table 3. Ultimate resistance for RC columns with reference to modelling hypotheses 1-9.
Ref. [°]

2L20-30
2L20-60
2L8-120R
4L8-30
4L20-120
4L8-120R
C0000
C020
B020
RL3000
A-17-0.25
C-31.7- 0.25
3.3
5.1
4.1
N30-10.5- C0-3-30
H60-10.5- C0-1-30
III
Va
2
1
VI
15
3
8
9
12
6
24D-2
15E-2
S28
S30
S25
5
6
17A
20
8

(-)° Compressive axial load constantly applied to the RC column for the entire duration of the test.
The outcomes from NLAs are useful to quantify the model uncertainty related to the simulation of response of slender reinforced concrete columns by means of comparison with experimental results. In line to [11],[13]-[14], the model uncertainty can be characterized addressing the following ratio:

\[
\vartheta = \frac{R_{Test}}{R_{NLA}}
\]

where \(R_{Test} \) is the result from laboratory test and \(R_{NLA} \) is the related observed result from NLA performed with specific modelling assumption. The model uncertainty \(\vartheta \) is able to quantify the level of epistemic uncertainty associated to the definition of the NL numerical model and is useful to include such kind of uncertainty within reliability analysis of RC structures.

4. Statistical assessment
The observed outcomes of model uncertainty \(\vartheta \) presented in previous section should be appropriately evaluated from statistical point of view. In particular, the results associated to each modelling assumption has been evaluated by means Chi-Square goodness of fit test verifying that the lognormal probabilistic model is the most likely in order to reproduce the statistical variability of the random variable \(\vartheta \), also in line to [33]. For instance, see the lognormal fit and related frequency histogram reported in Figure 3 for the modelling assumption number 3.

Figure 2. Summary of the ratios \(\vartheta = R_{Test}/R_{NLA} \).

Figure 3. Relative frequency histogram and lognormal distribution PDF relate to the numerical model n°3.
The statistical parameters of lognormal probabilistic distribution for each modelling assumption has been evaluated using the maximum likelihood criteria [34] in order to minimize the statistical uncertainty in the estimates. The results in terms of mean value μ_θ and coefficient of variation V_θ are reported in Table 4 with reference to the nine modelling assumptions.

Table 4. Results in terms of mean value and coefficient of variation of model uncertainty for the different modelling assumptions.

Structural Model	μ_θ	V_θ
1	1.05	0.21
2	1.02	0.19
3	1.01	0.20
4	1.17	0.20
5	1.10	0.17
6	1.10	0.20
7	1.01	0.12
8	0.99	0.09
9	0.96	0.14

The results show that, in general, a slightly safe bias (i.e., mean value higher than 1.00) is present between the different assumptions while significant difference is present with respect to coefficient of variation that ranges between 0.09 and 0.21. In average, a value of 1.05 and 17% are recognised for the mean value μ_θ and the coefficient of variation V_θ, respectively.

5. Conclusions
The present study proposes the characterization of the model uncertainty related to non-linear numerical simulation of reinforced concrete columns that are realized with high slenderness ratio. 40 RC columns experimentally tested has been selected from literature and reproduced by means 9 modelling assumptions performing mechanical and geometrical non-linear analysis. The comparison between the experimental and numerical results allows to determine mean value and coefficient of variation of the model uncertainty random variable that, in general, can be represented by a lognormal probabilistic model. In particular, the mean value equal to 1.05 and coefficient of variation equal to 0.15 has been determined averaging the outcomes from the different modelling assumptions. The results are useful to allow to take into account the model uncertainty variable within the reliability analysis of slender reinforced concrete columns and also to determine appropriate partial safety factors for safety formats based on semi-probabilistic methods.

Acknowledgment(s)
This work relates to the activity developed by the authors within the Commission 3 – Task Group 3.1: “Reliability and safety evaluation: full-probabilistic and semi-probabilistic methods for existing structures” of the International Federation for Structural Concrete (fib).
References

[1] *fib* Bulletin N°45: Practitioner’s guide to finite element modelling of reinforced concrete structures – State of the art report, Lausanne, 2008.

[2] P. Castaldo, G. Alfano, “Seismic reliability-based design of hardening and softening structures isolated by double concave sliding devices”, *Soil Dynamics and Earthquake Engineering*, vol. 129, 105930, 2020.

[3] P. Castaldo, B. Palazzo, T. Ferrentino, “Seismic reliability-based ductility demand evaluation for inelastic base-isolated structures with friction pendulum devices”, *Earthquake Engineering and Structural Dynamics*, vol. 46(8), pp. 1245–1266, 2017.

[4] P. Castaldo, E. Tubaldi, F. Selvi, L. Gioiella, “Seismic performance of an existing RC structure retrofitted with buckling restrained braces”, *Journal of Building Engineering*, vol. 33, 101688, 2021.

[5] P. Castaldo, M. De Iuliis, “Optimal integrated seismic design of structural and viscoelastic bracing-damper systems”, *Earthquake Engineering and Structural Dynamics*, vol. 43(12), pp. 1809–1827, 2014.

[6] P. Castaldo, B. Palazzo, T. Ferrentino, G. Petrone, “Influence of the strength reduction factor on the seismic reliability of structures with FPS considering intermediate PGA/PGV ratios”, *Composites Part B: Engineering*, vol. 115, pp. 308–315, 2017.

[7] P. Castaldo, M. Ripani, R. L. Priore, “Influence of soil conditions on the optimal sliding friction coefficient for isolated bridges”, *Soil Dynamics and Earthquake Engineering*, vol. 111, pp. 131–148, 2018.

[8] P. Castaldo, B. Palazzo, F. Perri, “Fem simulations of a new hysteretic damper: The dissipative column”, *Ingegneria Sismica*, vol. 33(1), pp. 34–45, 2016.

[9] P. Castaldo, E. Nastri, V. Piluso, “Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending: Parametric analysis”, *Thin-Walled Structures*, vol.115, pp. 129–141, 2017.

[10] P. Castaldo, E. Nastri, V. Piluso, “FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams”, *Composites Part B: Engineering*, vol. 115, pp. 124–137, 2017.

[11] M. Engen, M. A. N. Hendrik, J. Köhler, J. A. Øverli, E. Åldtstedt, “A quantification of modelling uncertainty for non-linear finite element analysis of large concrete structures”, *Structural Safety*, vol. 64, pp.1-8, 2017.

[12] D. Gino, G. Bertagnoli, D. La Mazza, G. Mancini, “A quantification of model uncertainties in NLFEA of R.C. shear walls subjected to repeated loading”, *Ingegneria Sismica*, Anno XXXIV Special Issue, pp. 79-91, 2017.

[13] P. Castaldo, D. Gino, G. Bertagnoli, G. Mancini, “Partial safety factor for resistance model uncertainties in 2D non-linear analysis of reinforced concrete structures”, *Engineering Structures*, vol. 176, pp. 746-762, 2017, https://doi.org/10.1016/j.engstruct.2018.09.041.

[14] P. Castaldo, D. Gino, G. Bertagnoli, G. Mancini, “Resistance model uncertainty in non-linear finite element analyses of cyclically loaded reinforced concrete systems”, *Engineering Structures*, vol. 211, 2020, 110496, https://doi.org/10.1016/j.engstruct.2020.110496.

[15] M. Sykora, M. Holicky, “Safety Format for Non-linear Analysis in the Model Code –Verification of Reliability Level” Proceeding of *fib* Symposium on Concrete Engineering for excellence and efficiency, Prague, Czech Concrete Society, pp. 943-946, 2011.

[16] V. Cervenka, “Global safety formats in *fib* Model Code 2010 for design of concrete structures”, *Proceedings of the 11th Probabilistic Workshop*, Brno, 2013.

[17] G. Mancini, V. I. Carbone, G. Bertagnoli, D. Gino, “Reliability-based evaluation of bond strength for tensed lapped joints and anchorages in new and existing reinforced concrete structures”,
Structural Concrete, vol. 19(3), pp. 904-917, 2018, [https://doi.org/10.1002/suco.201700082].

[18] fib Model Code for Concrete Structures 2010, fib, Lausanne, 2013.

[19] A. Mehmel, H. Schwarz, K. H. Karperek, J. Makovi, “Tragverhalten ausmittig beanspruchter stahlbetondruckglieder”, institut für baustatik, eht, deutscherausschuss für stahlbeton, heft 204, 1969.

[20] P. Luis, P Saenz, I. Martin, “Test of reinforced concrete columns with high slenderness ratios”, In Journal Proceedings, vol. 60, pp. 589–616, 1963.

[21] S. J. Foster M. Attard, “Experimental tests on eccentrically loaded high strength concrete columns”, Structural Journal, vol. 94(3), pp. 295–303, 1997.

[22] V. R. Pancholi, “The Instability of Slender Reinforced Concrete Columns”, PhD thesis, University of Bradford, 1977.

[23] A. Dracos, “Long slender reinforced concrete columns”, PhD thesis, University of Bradford, 1982.

[24] S. IwaiI, K. Minami, M. Wakabayashi, “Stability of slender reinforced concrete columns subjected to biaxially eccentric loads”, 1986.

[25] P. H. Chuang, F. K. Kong, “Large-scale tests on slender, reinforced concrete columns”, Structural Engineer, vol. 75(23), pp. 410–16, 1997.

[26] A. C. Barrera, J. L. Bonet, M. L. Romero, P. F. Miguel, “Experimental tests of slender reinforced concrete columns under combined axial load and lateral force”, Engineering Structures, vol. 33(12), pp. 3676–3689, 2011.

[27] O. Baumann, “Die Knickung der Eisenbeton-Säulen”, PhD thesis, ETH Zurich, 1935.

[28] CEN. EN 1992-1-1: Eurocode 2 – Design of concrete structures. Part 1-1: general rules and rules for buildings, CEN 2014, Brussels, 2014.

[29] ADINA R & D. Inc., 71 Elton Avenue Watertown, MA 02472, USA, 2014.

[30] DIANA FEA BV. Delftechpark 19a 2628 XJ Delft, The Netherlands, 2017.

[31] F. McKenna, G. L. Fenves, M. H. Scott, “Open system for earthquake engineering simulation”, University of California, Berkeley, CA, 2000.

[32] M. Saatchioglu, S. R. Razvi, “Strength and ductility of confined concrete”, Journal of Structural engineering, vol. 118(6), pp. 1590–1607, 1992.

[33] JCSS, JCSS Probabilistic Model Code, 2001.

[34] M. H. Faber, Statistics and Probability Theory, Springer, 2012.