External RNA Controls Consortium Beta Version Update

Hangnoh Lee1*, P. Scott Pine2*, Jennifer McDaniel2, Marc Salit2, and Brian Oliver1

1. Section of Developmental Genomics, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
2. Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

*These authors contributed equally to this work.

Corresponding author: Hangnoh Lee, Ph.D. Email: hangnoh.lee@nih.gov Phone: 301-594-1716/ Fax: 301-496-5239.

© Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions.

Published: 2016.07.26

Abstract

Spike-in RNAs are valuable controls for a variety of gene expression measurements. The External RNA Controls Consortium developed test sets that were used in a number of published reports. Here we provide an authoritative table that summarizes, updates, and corrects errors in the test version that ultimately resulted in the certified Standard Reference Material 2374. We have noted existence of anti-sense RNA controls in the material, corrected sub-pool memberships, and commented on control RNAs that displayed inconsistent behavior.

Key words: ERCC, spike-in controls, external RNA controls, NIST standard reference materials.

Advances in gene expression profiling technologies not only make it possible for individual groups to ask genome-wide questions, but properly controlled experiments with well-described metadata can be used over and over to make discoveries not envisaged by the data producers. Making these data robust and durable is greatly augmented by standard reference materials. The National Institute of Standards and Technology (NIST) as a part of the External RNA Controls Consortium (ERCC) developed 176 DNA plasmids that can be used as templates for RNA controls [1-3]. NIST Standard Reference Material (SRM) 2374 is a library composed of a subset of 96 plasmids. These same materials were used for commercially available ERCC RNA spike-in mixtures (Ambion/Thermo Fisher Scientific, Waltham, MA), which are formulations of 92 RNA molecules derived from the plasmids. The Commercial collection does not include ERCC-00007, -00018, -00023, and, -00128. One of the test versions that led to the SRM contained 96 RNA sequences transcribed from the plasmids, quantified, and mixed to form defined pools to be added to unknowns in transcription profiling experiments by array, sequencing, PCRs, or other assays. These test pools were widely distributed and were used by the human and model organisms Encyclopedia of DNA Elements projects [4, 5].

When “spiked” into an individual RNA sample, the readout from a single pool of ERCC controls can be used as a ruler. Each pool is designed to have dynamic range of 2^20. It is noteworthy that the actual linear range of their measurement depends on experimental platforms. Distribution of spike-in measurement fits to straight linear line in RNA-Seq and a monotonic sigmoidal pattern against actual abundance in microarrays or bead-arrays [6], consistent with data compression in hybridization-based techniques [7].

Addition of a single pool of ERCC controls
generates useful information, but their use can be enhanced when different pools of spike-in controls from different samples are directly compared. The “pools” of ERCC controls were mixed from multiple “subpools”, such that comparisons between “subpools” that belong to different “pools” generate abundance ratios that can be used as differential expression standards. There were two distinct sets of pools in the test version. Pools 12-15 follow a modified Latin-square design, using 5 different subpools (A-E). The numbers of RNA molecules in subpool A are equal in pools 12-15, and thus subpool A molecules generate a constant 1-to-1 proportion between the pools. Subpools B-E have differing molar concentrations that produce a trend in relative abundance across the pools of 1, 1.5, 2.5, 4-fold. For example, if pool 12 and pool 13 were used for two different samples, the log2-transformed ratios between different subpools will be 0, -0.585, -0.687, -0.737, and 2 [6]. The second set of pools, 78A and 78B, provide a pair of samples with reciprocal changes in relative abundance, i.e. 1.5-fold up and down, producing log2 transformed ratios of 0, 0.585, and -0.585.

While production of the spike-in control RNAs was tightly controlled, it was a test set, and there are multiple cases where measurements of spike-in molecules do not match the original description and/or expectations. In this short note, we summarize data outlining problematic ERCC spike-ins. This information should be used in re-evaluating datasets using the test version, as well as any future work that may use remaining aliquots in circulation (Table 1, and Supplementary Material for more details).

The plasmid DNAs were sequenced and deposited in GenBank, however, the in vitro transcribed RNAs were not sequenced except during testing in RNA-Seq experiments. These experiments made it clear that seven ERCC controls had the complementary sequence indicating that the transcripts were from the other strand (ERCC-00009, -00014, -00057, -00059, -00099, -00108, and -00116). As a result, these spike-in controls would not be measurable in hybridization-based assays [6]. Similarly, they would not be aligned in a strand-specific RNA-Seq analysis unless strand specificity was “turned off” in read quantification steps, or complementary sequences were provided for alignment. Additionally, plasmids are replicated in bacteria, where errors can be introduced. Differences in the sequences of the actual RNAs and the plasmids used for transcript templates are known [4], suggesting that such mutations occurred during plasmid propagation in the test set. The certified values of SRM 2374 are the sequences of the plasmids as distributed in the final set, and were determined by exhaustive sequencing [8].

There were instances of pooling errors in the test set. From multiple experiments that used 78A and 78B, we recognized that ERCC-00085 behaves like Subpool “C”, rather than the intended Subpool “B”. Therefore, when pools 78A and 78B were compared, ERCC-00085 displayed 33.3% increased fold changes than the original description. We have not detected ERCC-00084 in our experiments and it is possible that this RNA was prepared from ERCC-00085 plasmid DNA, effectively increasing the measurement of ERCC-00085. Similarly, we have corrected pool membership of ERCC-00113 from Subpool C to Subpool D from pools 12-15. ERCC-00073 and ERCC-00144 did not provide accurate measurements [4, 6]. One reason for poor measurement may be due to the molecular properties of individual spike-in RNA species (e.g. size and secondary structure). Additionally, a previous study pointed out discrepancy in ERCC-00116 measurements between poly-dT based mRNA enrichment and rRNA depletion protocols [3, 9]. The polyA tails on the ERCC spike-ins are not optimal for PolyA+ selection, and using them prior to library production is not recommended [4]. While there could well be additional instances of unexpected behavior of ERCC spike-in measurements, the information we provide here explains the unexpected ERCC behaviors that we have encountered to date.

Table 1. Summarized information on NIST distributed ERCC spike-in control test version.

ERCC Control	GenBank†	DNA†	Length (nt)	% GC†	MW	Subpool in pool 12 to 15	Subpool in pool 78
ERCC-00002a	DQ59430	Syn	1061	51	341,162 B	B	
ERCC-00003a	DQ516784	Mjan	1023	33	327,530 A	A	
ERCC-00004a	DQ516752	Mjan	523	34	167,216 C	C	
ERCC-00007a	EF011068	Bsub	1135	46	362,656 D	A	
ERCC-00009a	DQ680364	Bsub	984	47	336,394 E	C	
ERCC-00102c	DQ883670	Syn	994	51	320,263 A	A	
ERCC-00103a	EF011062	Bsub	808	43	261,415 B	B	
ERCC-00114a	DQ875385	Mjan	1957	44	631,409 C	B	
ERCC-00016	DQ883664	Syn	844	48	271,684 D	A	

http://www.jgenomics.com
Accession	Description	NCBIID	Length	E-value	C-score	A-score
ERCC-00017	DQ459420	Syn	1136	51	367,042	E
ERCC-00018	EF011065	Bsub	1026	43	330,493	C
ERCC-00019	DQ83651	Syn	644	49	207,543	B
ERCC-00020	DQ516433	Syn	712	47	241,178	C
ERCC-00023	DQ516744	Mjan	273	31	88,186	D
ERCC-00024	DQ516787	Mjan	536	13	173,128	E
ERCC-00025	DQ836589	Syn	1994	50	640,941	A
ERCC-00028	DQ516719	Syn	1330	51	364,285	B
ERCC-00031	DQ459431	Syn	1138	48	365,732	E
ERCC-00033	DQ516796	Mjan	2022	33	651,554	D
ERCC-00034	DQ516803	Syn	1019	49	328,139	E
ERCC-00035	DQ459413	Syn	1130	51	364,378	A
ERCC-00039	DQ836565	Syn	740	49	238,322	B
ERCC-00040	DQ836631	Syn	744	53	239,738	B
ERCC-00041	EF011069	Bsub	1123	45	363,007	D
ERCC-00043	DQ516783	Mjan	1023	39	325,750	E
ERCC-00046	DQ516748	Mjan	522	35	168,087	C
ERCC-00048	DQ836737	Syn	992	48	320,110	D
ERCC-00051	DQ516740	Mjan	274	34	88,356	A
ERCC-00053	DQ516785	Mjan	1023	31	327,971	C
ERCC-00054	DQ516731	Mjan	274	37	88,976	B
ERCC-00057	DQ516735	Mjan	1136	50	366,548	D
ERCC-00058	DQ516748	Mjan	522	35	168,195	C
ERCC-00061	DQ516747	Mjan	1023	36	325,442	B
ERCC-00062	DQ516733	Mjan	1023	31	328,505	C
ERCC-00067	DQ83653	Syn	644	47	207,451	D
ERCC-00069	DQ459419	Syn	1137	50	366,664	E
ERCC-00071	DQ83634	Syn	644	48	206,115	A
ERCC-00073	DQ459404	Syn	314	30	372,337	B
ERCC-00074	DQ656538	Bsub	603	47	193,958	B
ERCC-00075	DQ516778	Mjan	1023	36	325,680	E
ERCC-00076	DQ836532	Syn	644	49	206,436	E
ERCC-00077	DQ516742	Mjan	273	33	87,694	A
ERCC-00078	DQ587865	Syn	993	50	320,094	B
ERCC-00079	DQ836582	Syn	644	49	207,737	A
ERCC-00080	DQ516790	Mjan	1023	35	172,323	D
ERCC-00083	DQ516780	Mjan	1023	35	325,668	B
ERCC-00084	DQ83682	Syn	994	50	320,443	A
ERCC-00085	DQ836369	Syn	844	49	271,323	A
ERCC-00086	DQ516791	Mjan	1020	32	328,632	B
ERCC-00092	DQ516925	Syn	1124	50	361,716	D
ERCC-00093	DQ516799	Mjan	321	37	166,307	E
ERCC-00094	DQ516748	Syn	1130	51	356,569	A
ERCC-00097	DQ516758	Mjan	523	36	167,189	B
ERCC-00098	DQ516745	Syn	1143	51	368,970	C
ERCC-00099	DQ75387	Bsub	1350	41	434,408	D
ERCC-00104	DQ516815	Mjan	2022	33	647,370	E
ERCC-00108	DQ660365	Bsub	1022	49	328,424	A
ERCC-00109	DQ585498	Syn	536	46	172,925	B
ERCC-00111	DQ836465	Syn	994	47	319,339	C
ERCC-00112	DQ459422	Syn	1136	47	364,932	D
ERCC-00113	DQ516763	Syn	840	50	270,609	A
ERCC-00114	DQ660367	Bsub	1991	50	639,986	B
ERCC-00120	DQ516792	Syn	536	48	172,005	D
ERCC-00123	DQ516782	Mjan	1022	36	324,911	E
ERCC-00126	DQ516927	Syn	1119	54	359,790	A
ERCC-00128	DQ516928	Syn	1133	48	364,405	B
ERCC-00130	EF011072	Bsub	1059	46	342,268	C
ERCC-00143	DQ585903	Syn	771	47	248,276	D
ERCC-00146	DQ516799	Mjan	274	31	88,594	C
ERCC-00147	DQ516790	Mjan	1023	36	351,125	C

http://www.jgenomics.com
ERCC-00148 DQ883642 Syn 494 49 159,911 D B
ERCC-00150 DQ883659 Syn 743 47 239,128 E A
ERCC-00154* DQ854997 Syn 537 50 173,317 A C
ERCC-00156 DQ883643 Syn 494 49 159,199 B B
ERCC-00157* DQ899618 Syn 1019 50 328,635 C C
ERCC-00158* DQ516795 Mjan 1021 34 328,797 D A
ERCC-00160 DQ883658 Syn 743 46 239,437 E C
ERCC-00162* DQ516750 Mjan 523 36 166,409 A A
ERCC-00163* DQ668359 Bsub 543 47 174,949 B B
ERCC-00164* DQ516779 Mjan 1022 37 324,738 C A
ERCC-00165 DQ668363 Bsub 872 50 279,768 D C
ERCC-00169* DQ516776 Mjan 1024 34 326,399 E A
ERCC-00170* DQ516773 Mjan 1024 34 330,808 A B
ERCC-00171 DQ854994 Syn 505 48 163,022 B B

(a) Sequence mismatches between the GenBank entries and the resequenced RNAs (see [4]).
(b) Syn: De novo synthetic design, Mjan: Methanocaldococcus jannaschii, Bsub: Bacillus subtilis.
(c) Length and GC content include poly(A) sequence.
(d) Reversed (anti-sense) in Pools 12-15.
(e) ERCC-00084 is not detected. E.g. ERCC-00084 and ERCC-00085, may have both been prepared from ERCC-00085 plasmid. ERCC-00085 behaves as C in some batches of Pool 78A and 78B.
(f) Corrected Pool membership to D and corrected Pool concentrations accordingly.
(g) Poor performing.
(h) Consistently under-reports abundance.
(i) Consistently over-reports abundance in Pools 78A and 78B.
(j) Particularly unsuitable for polyA+ isolation.
(k) ERCC-00104 has a length of either 2202 nt or 2203 nt.
(l) Not present in current commercial collections.

Supplementary Material
Supplemental file 1.
http://www.jgenomics.com/v04p0019s1.csv

Acknowledgements
The authors would like to acknowledge the careful experimental work by Sarah Helber to prepare the RNA and complex mixtures required for the test pools. This work supported in part by the Intramural Research program of the National Institutes of Health, NIDDK.

Abbreviations
ERCC - External RNA Controls Consortium, NIST - National Institute of Standards and Technology, SRM - Standard Reference Material, ENCODE - Encyclopedia of DNA Elements.

Competing Interests
The authors declare no competing interests.

References
1. Baker SC, Bauer SR, Beyer RP, Brenton JD, Bromley B, Burrrill J, Causton H, Conley MP, Elsperku R, Fero M et al: The External RNA Controls Consortium: a progress report. Nature methods 2005, 2(10):731-734.
2. ERCC: Proposed methods for testing and selecting the ERCC external RNA controls. BMC genomics 2005, 6:150.
3. Munro SA, Lund SP, Pine PS, Binder H, Clevet DA, Conesa A, Dopazo J, Fasold M, Hochreiter S, Hong H et al: Assessing technical performance in differential gene expression experiments with external spike-in RNA control ratio mixtures. Nature communications 2014, 5:5125.
4. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B: Synthetic spike-in standards for RNA-seq experiments. Genome research 2011, 21(9):1543-1551.
5. Malone JH, Oliver B: Microarrays, deep sequencing and the true measure of the transcriptome. BMC biology 2011, 9:34.
6. Pine PS, Munro SA, Parsons JR, McDaniel J, Lucas AB, Lozach J, Myers TG, Su Q, Jacobs-Helber SM, Salit M: Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design. BMC Biotechnol 2016, 16(1):54.
7. Malone JH, Oliver B: Microarrays, deep sequencing and the true measure of the transcriptome. BMC biology 2011, 9:34.
8. Pine PS, Munro SA, Parsons JR, McDaniel J, Lucas AB, Lozach J, Myers TG, Su Q, Jacobs-Helber SM, Salit M: Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design. BMC Biotechnol 2016, 16(1):54.
9. Qin T, Yu Y, Du T, Shi L: mRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies. Science China Life sciences 2013, 56(2):134-142.