Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
A Novel Riccati Equation Grey Model And Its Application In Forecasting Clean Energy

Xilin Luo, Huiming Duan*, Leiyuhang He

School of Science, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China

Abstract

Objective: An accurate prediction of clean energy can supply an important reference for governments to formulate social and economic development policies. This paper begins with the logistic equation which is the whitening equation of the Verhulst model, introduces the Riccati equation with constant coefficients to optimize the whitening equation, and establishes a grey prediction model (CCRGM(1,1)) based on the Riccati equation. This model organically combines the characteristics of the grey model, and flexibly improves the modelling precision. Furthermore, the nonlinear term is optimized by the simulated annealing algorithm. To illustrate the validation of the new model, two kinds of clean energy consumption in the actual area are selected as the research objects. Compared with six other grey prediction models, CCRGM(1,1) model has the highest accuracy in simulation and prediction. Finally, this model is used to predict the nuclear and hydroelectricity energy consumption in North America from 2019 to 2028. The results predict that nuclear energy consumption will keep rising in the next decade, while hydroelectricity energy consumption will rise to a peak and subsequently fall back, which offers important information for the governments of North America to formulate energy measures.

1. Introduction

British Petroleum (BP) noted that in 2018, coal consumption increased by 1.4%, oil consumption increased by 1.5%, and natural gas consumption increased by 5.3%. Thus, the energy consumption structure dominated by fossil energy increased carbon emissions by 2.0%, the fastest growth rate in nearly seven years, which also complicates the global environment and climate governance situation. However, the good news is that the consumption of clean energy represented by nuclear energy (up 2.4%) and hydroelectricity (up 3.1%) continues to increase. Clean energy has played a huge role in global environmental governance by virtue of its health, safety and pollution-free characteristics [1], thus reducing the proportion of fossil energy in total energy consumption. Therefore, in recent years, with the global promotion of energy conservation and emission reduction, countries have increased their research into clean energy [2]. Clean energy has become an important reference factor for governments to formulate policies.

The International Energy Agency (IEA) states that with vigorous promotion of clean energy, the global energy structure is undergoing significant changes, and this topic has spurred researchers to focus on building accurate energy prediction models to supply effective information for global energy policy-making. The most common models include commonly used mathematical statistical models (such as the autoregressive distributed lag model, ARIMA, Markov model [3–5]) and intelligent computer technology model [6,7]. These models predict the energy data accurately. However, the main disadvantage of statistical models is that sufficient input data are generally needed for parameter estimation to achieve accurate prediction [8]. The main disadvantage of intelligent computer models is that they usually require a large amount of data for training, and too little data might lead to an inaccurate model. However, significant changes have taken place in the global energy structure, and historical data are no longer reliable for future energy prediction, which has led to a significant reduction in the amount of useful energy data. In addition, no matter how much data are used to build the model, the computational results are not the real data. If the model can be built with less data to obtain relatively effective results, then the model is considered attractive [9]. In fact, grey models can meet these requirements. Therefore, in recent years, researchers have turned to the grey prediction models with small samples (at least four independent data points are...
required [10]).

To address “small-sample and poor information” systems, Professor Deng proposed the grey system [11], which is based on information coverage, via sequence generation and the grey model to explore the real law of movement of things, with the feature of “less data modelling”. Now, the grey model is widely used in predictions related to energy, finance, transportation, environment, manufacturing and other industries [12–16]. In this process, the grey model has also been extended from the original GM(1, 1) to Verhulst model, DGM(1, 1), NGM(1, k, c), FDGM (1, n), NIPGM (1, t, s) [17–22], and combined models, such as GM-ARIMA, GM-MARKOV [23,24] and the combined models of grey model and intelligent computer method [25–27]. To improve the performance of the grey model, researchers have conducted much in-depth and systematic research on the grey prediction model from the perspective of the data accumulation mode, optimization of the background value, model property, modelling mechanism, etc. [28–32], which has advanced the development and refinement of the grey prediction models.

Many grey energy prediction models consider only a single variable and can be divided into three main types: the first is the grey basic model. Zeng et al. [33] proposed the UGM(1,1) model based on the unbiased grey model and a weakening buffer operator to predict the shale gas constant in China. Wang et al. [34] proposed the DGGM(1,1) model to predict China’s hydroelectricity based on a small sample and data grouping. Ding [35] proposed a new grey model to predict China’s total and industrial electricity consumption from 2015 to 2020. The second type is the grey combination model. Wang [36] proposed MNGM-ARIMA model by combining linear and nonlinear models to predict shale gas production in the United States every month. Li [37] proposed a grey model with the regression method, and proposed the GM-ARIMA model to predict annual new installed capacity of China’s coal-fired growth in 2017–2026, which will reach 740 GW. Wang et al. [38] used the MVO-MNGBM model to predict that natural gas consumption will reach 354.1 billion cubic meters by 2020 in different regions of China. The third type is the grey model optimized by an optimization algorithm. Ding et al. [39] proposed the adaptive grey system SIGM(1,1) to predict natural gas demand in China via the ant colony optimization algorithm. Wu et al. [10] proposed the FANGBM(1,1) model to predict the renewable energy in a short period by PSO algorithm. Ma et al. [40] proposed a fractional time-delay grey model to predict coal and natural gas consumption in Chongqing with the latest grey wolf optimizer.

The above models have achieved good results, but they ignore the characteristics of energy data. The trend of consumption for fossil energy such as coal and oil presents a disordered and unsaturated S-shaped, and clean energy is no exception. In grey theory, the grey Verhulst model is better for ordered S-shaped data or single-peak data, and the classical GM(1,1) or DGM (1,1) model is better for exponential growth data. For the disordered S-shaped trend of energy data, the performance of the Verhulst model is affected. Therefore, based on the data characteristics and the above literature analysis, the grey Verhulst model is optimized and extended by the Riccati equation, and the mathematical properties of the new model are analysed. The nonlinear term of the new model is optimized by the simulated annealing algorithm, and modelling is performed. The good performance of the new model is verified by the validation cases. Therefore, this model is applied to predict clean energy consumption in North America. The results of the validation and application cases show that the new model is superior to the GM(1,1), DGM(1,1), NGM(1,1), ENGM(1,1) [41], ARGM(1,1) [42] and Verhulst models. Finally, the clean energy consumption over the next 10 years is predicted, providing important information to the government for policy-making.

In the full text, the different abbreviations are for different grey prediction models. Abbreviations and their meanings are listed in Table 1.

The remainder of this paper is arranged as follows. The CCRGM(1,1) model is discussed in detail in Section 2. Section 3 studies the accuracy of the CCRGM(1,1) model in three cases. Application is presented in Section 4. Conclusions and future work are summarized in Section 5.

2. CCRGM(1,1) model

2.1. The basis of the verhulst model

Definition 2.1 Assume that \(X^{(0)}\) is a real data sequence, \(X^{(1)}\) is a 1-accumulating generation operator (AGO) sequence of \(X^{(0)}\), where \(X^{(1)}(k) = \sum_{j=0}^{k} X^{(0)}(j)\), and \(Z^{(1)}\) is the mean sequence generated by consecutive neighbors of \(X^{(1)}\), where

\[
Z^{(1)}(k) = \frac{1}{2} \left(X^{(1)}(k) + X^{(1)}(k-1) \right)
\]

The Verhulst model is

\[
x^{(0)}(k) + ax^{(1)}(k) = bx^{(2)}(k) \tag{1}
\]

Definition 2.2 The whitening equation of grey Verhulst model is

\[
dx^{(1)}(t) + ax^{(1)}(t) = b \left(x^{(1)}(t) \right)^2 \tag{2}
\]

Definition 2.3 (1) The solution of whitening equation is

\[
x^{(1)}(t) = \frac{1}{e^{at} \left[ax^{(1)}(0) \right] - \frac{b}{a} \left(1 - e^{-at} \right)} \left[ax^{(1)}(0) \right]
\]

\[
= \frac{ax^{(1)}(0)}{bx^{(1)}(0) + (a - bx^{(1)}(0))e^{at}} \tag{3}
\]
The time response equation is

$$\dot{x}^{(1)}(k+1) = \frac{ax^{(1)}(0)}{bx^{(1)}(0)} + (a - bx^{(1)}(0))e^{\frac{a}{b}k}$$ \hspace{1cm} (4)$$

In definitions 2.1–2.3, the least square estimate of the series parameter $\tilde{P} = |a, b|$ is $\tilde{P} = (B^TB)^{-1}B^TY$, where

$$B = [-z^{(1)}(2)(z^{(1)}(2))^2 - z^{(1)}(3)(z^{(1)}(3))^2; \cdots; -z^{(1)}(n)(z^{(1)}(n))^2]. Y = \begin{pmatrix} x^{(0)}(2) \\ x^{(0)}(3) \\ \vdots \\ x^{(0)}(n) \end{pmatrix}$$

2.2. The basis of riccati equation

The general Riccati equation is

$$\frac{dy}{dx} = p(x)y^2 + q(x)y + r(x)$$ \hspace{1cm} (5)$$

where $p(x), q(x)$ and $r(x)$ are continuous on the interval I, and $p(x)$ is not always 0. Eq. [5] generally has no elementary product decomposition. When $p(x) = -b, q(x) = a$ and $r(x) = 0$, Eq. [5] is the classical logistic model, and it is expressed as follows:

$$\frac{dy}{dx} = (a - by)y$$ \hspace{1cm} (6)$$

Eq. (6) is the whitening equation of the Verhulst model.

The Verhulst model has certain limitations in dealing with unordered S-shaped or single-peak data. To make the model more applicable, optimization is necessary. Because the logistic model is a special case of the Riccati equation, $p(x) = b, q(x) = -a$ and $r(x) = c(k - 1)^r + d$ can be considered from Riccati equation, and the following equation can be achieved:

$$\frac{dy}{dx} + ay = by^2 + c(k - 1)^r + d$$ \hspace{1cm} (7)$$

2.3. Grey prediction model based on riccati equation

In this section, according to the whitening equation of the

Verhulst model and the relationship between the logistic equation and the Riccati equation, a new grey prediction model is established. The properties of this model are studied, and the time response function of this model is obtained.

Definition 2.4 Set $X^{(0)}, X^{(1)}$ and $Z^{(1)}$ as in definition 2.1. Thus,

$$x^{(0)}(k) + az^{(1)}(k) = bz^{(1)}(k)^2 + c(k - 1)^r + d$$ \hspace{1cm} (8)$$

is CCRGM(1,1). The following whitening equation can be obtained from Eq. (7):

$$\frac{dx^{(1)}}{dx} + ax^{(1)} = b(x^{(1)})^2 + c(k - 1)^r + d$$ \hspace{1cm} (9)$$

CCRGM(1,1) is the grey Verhulst model and its extended model, $c(k - 1)^r$ and a are nonlinear correction and constant correction terms respectively. In Eq. (9), when $c = 0$ and $d = 0$, CCRGM(1,1) is the grey Verhulst model.

Definition 2.5 Set parameter list is $P = (a, b, c, d)^T$, and

$$B = \begin{pmatrix} -z^{(1)}(2)(z^{(1)}(2))^2 11 - z^{(1)}(3)(z^{(1)}(3))^2 41; \cdots; -z^{(1)}(n)(z^{(1)}(n))^2(n - 1)^r 1 \end{pmatrix}. Y = \begin{pmatrix} x^{(0)}(2) \\ x^{(0)}(3) \\ \vdots \\ x^{(0)}(n) \end{pmatrix}, P = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$

Then parameters a, b, c and d satisfy

$$\tilde{P} = (a, b, c, d)^T = (B^TB)^{-1}B^TY$$ \hspace{1cm} (10)$$

Proof. Substituting non-negative raw data $X^{(0)} = (x^{(0)}(1), x^{(0)}(2), x^{(0)}(3), \ldots, x^{(0)}(n))$ into Eq. (8), so

$$\begin{cases}
 x^{(0)}(2) + az^{(1)}(2) = b(z^{(1)}(2))^2 + c + d \\
 x^{(0)}(3) + az^{(1)}(3) = b(z^{(1)}(3))^2 + c + 2^r + d \\
 \vdots \\
 x^{(0)}(n) + az^{(1)}(n) = bz^{(1)}(n)^2 + c(n - 1)^r + d
\end{cases}$$ \hspace{1cm} (11)$$

that is, $Y = BP$.

Then, replacing $x^{(0)}(k), k = 2, 3, \ldots, n$ with $-az^{(1)}(k) + bz^{(1)}(k)^2 + c(k - 1)^r + d, e = Y - BP$ is obtained.

Sets $\epsilon^{(e)} = (Y - BP)I(Y - BP) = \sum_{k=2}^{n} x^{(0)}(k) + az^{(1)}(k) - bk)(k - 1)(k - 1)^2 - d)^2$, and the a, b, c, d that minimize s should satisfy

$$\begin{cases}
 \frac{\partial s}{\partial a} = 2 \sum_{k=2}^{n} x^{(0)}(k) + az^{(1)}(k) - bz^{(1)}(k)^2 - c(k - 1)^r - d) \cdot z^{(1)}(k) = 0 \\
 \frac{\partial s}{\partial b} = 2 \sum_{k=2}^{n} x^{(0)}(k) + az^{(1)}(k) - bz^{(1)}(k)^2 - c(k - 1)^r - d \cdot (k - 1)^2 = 0 \\
 \frac{\partial s}{\partial c} = 2 \sum_{k=2}^{n} x^{(0)}(k) + az^{(1)}(k) - bz^{(1)}(k)^2 - c(k - 1)^r - d \cdot (k - 1)^2 = 0 \\
 \frac{\partial s}{\partial d} = 2 \sum_{k=2}^{n} x^{(0)}(k) + az^{(1)}(k) - bz^{(1)}(k)^2 - c(k - 1)^r - d = 0
\end{cases}$$ \hspace{1cm} (12)$$
According to the above equations, the following equation can be obtained:

\[B^T \varepsilon = 0 \Rightarrow B^T (Y - B \bar{P}) = 0 \Rightarrow B^T Y - B^T B \bar{P} = 0 \Rightarrow \bar{P} = (B^T B)^{-1} B^T Y \]

Therefore, definition 2.5 is proven.

Definition 2.6 Set \(B, Y \) and \(P \) as in definition 2.5, the time response sequence of CCRGM(1,1) is

\[
\bar{x}^{(1)}(k) = \begin{cases}
\frac{e^{2\sqrt{w}(bk+C_1)} (-m + \sqrt{w}) + m + \sqrt{w}}{1 + 2e^{2\sqrt{w}(bk+C_1)} + m} & w > 0 \\
\frac{1}{bk+C_2} + m & w = 0 \\
\sqrt{-w} \tan(\sqrt{-w}(bk+C_3)) + m & w < 0
\end{cases}
\]

where

\[u = c(k - 1)^r + d, m = \frac{b}{2a} w = \frac{a^2}{4b^2} - \frac{u}{b} \]

\[C_1 = \frac{1}{2\sqrt{w}} \ln \frac{\bar{x}^{(1)}(1) - m - \sqrt{w}}{\bar{x}^{(1)}(1) - m + \sqrt{w}} - b \]

\[C_2 = -\frac{1}{\bar{x}^{(0)}(1) + p} - b \]

\[C_3 = \frac{1}{\sqrt{-w}} \arctan \frac{\bar{x}^{(0)}(1) - m}{\sqrt{-w}} - b \]

\[A = \frac{\bar{x}^{(1)}(1) - m - \sqrt{w}}{\bar{x}^{(1)}(1) - m + \sqrt{w}} \]

When \(A > 0 \), the first equation takes on a minus sign; otherwise, it takes on a positive sign.

Proof. Set \(c(k - 1)^2 + d = u \), Eq. (9) is changed as

\[
\frac{dx^{(1)}}{dt} = b \left(x^{(1)} \right)^2 - ax^{(1)} + u
\]

Then, integrating the two sides of Eq. (14):

\[
\int b dt = \int \frac{1}{\left(x^{(1)} - b \right)^2} - \left(\frac{a^2}{4b^2} - \frac{u}{b} \right) dx^{(1)}
\]

Set \(m = \frac{b}{2a} \) and \(w = \frac{a^2}{4b^2} - \frac{u}{b} \) so that

\[
\int b dt = \int \frac{1}{\left(x^{(1)} - m \right)^2 - w} dx^{(1)}
\]

Then, integrating the two sides of Eq. (16) to get

\[
bt + C_1 = \int \frac{1}{\left(x^{(1)} - m \right)^2 - w} dx^{(1)}
\]

The right end of Eq. (17) can be discussed in three cases:

(1) When \(w > 0 \):

\[
\int \frac{1}{\left(x^{(1)} - m \right)^2 - w} dx^{(1)} = \frac{1}{2\sqrt{w}} \ln \left[\frac{x^{(1)}(1) - m - \sqrt{w}}{x^{(1)}(1) - m + \sqrt{w}} \right] = bt + C_1
\]

Set the initial value condition as \(x^{(1)}(1) = x^{(0)}(1) \), and substitute these into Eq. (18). The constant can be calculated as follows:

\[
C_1 = \frac{1}{2\sqrt{w}} \ln \left[\frac{x^{(1)}(1) - m - \sqrt{w}}{x^{(1)}(1) - m + \sqrt{w}} \right] - b
\]

Move the left and right sides of Eq. (18) and solve to yield

\[
\frac{x^{(1)} - m - \sqrt{w}}{x^{(1)} - m + \sqrt{w}} = e^{2\sqrt{w}(bt+C_1)}
\]

(2) When \(w = 0 \):

\[
\frac{1}{\left(x^{(1)} - m \right)^2 - w} dx^{(1)} = -\frac{1}{x^{(1)}(t) - m} = bt + C_2
\]

Set the initial value condition as \(t = 1, x^{(1)}(1) = x^{(0)}(1) \), and substitute these into Eq. (22). Then,

\[
C_2 = -\frac{1}{x^{(0)}(1) - m} - b
\]

The time response equation can be obtained from Eq. (23):

\[
x^{(1)}(t) = -\frac{1}{bt + C_2} + m
\]

(3) When \(w < 0 \):
When using the SA algorithm, first, set the convergence conditions according to the actual needs, such as the size of the error, number of iterations or termination temperature. The cooling law is as follows: $V \in (0, 1)$ is the annealing coefficient, and V is the iteration. Because T has to decrease slowly, V should be close to 1. The SA algorithm is given, as shown in Table 2.

2.5. Modelling steps

Based on the definition of CCRGM(1,1) and SA algorithm, this paper proposes a prediction process using CCRGM(1,1):

- **Step 1**: Input the original series $X^{(0)}$.
- **Step 2**: Compute the 1-AGO series $X^{(1)}$ and the mean sequence $Z^{(1)}$ of the 1-AGO series $X^{(1)}$.
- **Step 3**: Substitute the data of step 1 into Eq. (10) and initial nonlinear order to obtain parameters a, b, c and d.
- **Step 4**: According to the relationship between w and 0, choose the appropriate time response equation. When $w > 0$, choose Eq. (21); When $w = 0$, choose Eq. (24); When $w < 0$, choose Eq. (27).

Then, compute the restored value $\tilde{X}^{(0)}_t$ by Eq. (28).

- **Step 5**: Substitute the data of above three steps into Eq. (8) to construct the CCRGM(1,1) and compute the MAPE.

- **Step 6**: Use the SA algorithm to optimize nonlinear term and compute the lowest MAPE value.

- **Step 7**: Substitute the optimal parameters to reconstruct CCRGM(1,1) model and compute the simulated data $\hat{X}^{(0)}_t$ and MAPE.

Combined with the above modelling steps of the model, the modelling flow chart is obtained, as shown in Fig. 1.

3. Validation of CCRGM(1,1) model

To illustrate the validity of the CCRGM(1,1) model, three numerical cases are selected. The first is the share of renewable energy consumption, and the last two cases are nuclear energy and hydropower. In three numerical experiments, the results of CCRGM(1,1) are compared with those of GM(1,1) [20], DGM(1,1) [22], NGM(1,1, K, c) (referred to as NMG(1,1)) [23], ARGM(1,1) [46], ENGM(1,1) [45], and Verhulst models [21]. To comprehensively evaluate the prediction performance of the selected models, this paper evaluates the models from two different aspects: the first is to measure the performance of the evaluation metrics generated by these competition models. In addition to the APE and MAPE commonly used in grey model, RMSPE, MAE, MSE, IA, U1, U2, and R are also introduced. The definitions of these metrics are listed in Table 3. MAPE value is calculated in two stages: MAPEFIT in model building and MAPEPRE in prediction stage. Other metrics are calculated by the value of the entire process. Second, the APE comparison chart and curve trend chart are used to show the model performance. The curve trend chart is used to evaluate the fitting and approximation degree of the model simulation trend line and the actual data trend line. The higher the degree of fitting and approximation, the better the data fitting ability of the model is. This standard is reflected mainly by the data trend chart. In the data trend chart of three cases, because the error of the NMG(1,1) is very large, it is omitted.

In the following experiments, the CCRGM(1,1) model is calculated according to the steps in Fig. 1, for which the steps of the SA algorithm are calculated using MATLAB according to the steps in Table 2.

\[
\int \frac{1}{(x^{(1)} - m)^2} \, dx^{(1)} = \frac{1}{\sqrt{-w}} \arctan \frac{x^{(1)} - m}{\sqrt{-w}} = bt + C_3
\]

(25)

Take the initial value condition into Eq. (25), the constant is

\[
C_3 = \frac{1}{\sqrt{-w}} \arctan \frac{x^{(0)}(1) - m}{\sqrt{-w}} - b
\]

(26)

and the time response equation is

\[
x^{(1)}(t) = \sqrt{-w} \tan(\sqrt{-w}(bt + C_3)) + m
\]

(27)

Definition 2.6 is thus proven, and the reduced value can be obtained:

\[
x^{(0)}(k) = x^{(1)}(k) - x^{(1)}(k - 1), \quad k = 2, 3, \ldots, n
\]

(28)

2.4. Optimization of nonlinear correction term

This section derives the optimal order of nonlinear terms. First, to evaluate the accuracy of the model and the effect of order selection, the absolute percentage error (APE) and the mean absolute percentage error (MAPE) are introduced as evaluation metrics. The APE and MAPE are defined as follows:

\[
APE = \left(\frac{x^{(0)}(i) - \hat{x}^{(0)}(i)}{x^{(0)}(i)} \times 100\% \right), i = 1, 2, 3 \ldots n
\]

(29)

\[
MAPE = \frac{1}{n} \left(\sum_{i=1}^{n} \left(\frac{x^{(0)}(i) - \hat{x}^{(0)}(i)}{x^{(0)}(i)} \right) \right) \times 100\%, i = 1, 2, 3 \ldots n
\]

(30)

The nonlinear term optimization is primarily aimed at the orders in Eq. (8). CCRGM(1,1) uses the simulated annealing (SA) algorithm proposed by Kirkpatrick [43] to search for the optimal order of the 1-AGO series $X^{(1)}$ and the mean sequence $Z^{(1)}$ of the 1-AGO series $X^{(1)}$.

Step 1: Set the objective function and the maximum iteration number $T = V \cdot T(t)$

Step 2: Compute the 1-AGO series $X^{(1)}$ and the mean sequence $Z^{(1)}$ of the 1-AGO series $X^{(1)}$.

Step 3: Substitute the data of step 1 into Eq. (10) and initial nonlinear order to obtain parameters a, b, c and d.

Step 4: According to the relationship between w and 0, choose the appropriate time response equation. When $w > 0$, choose Eq. (21); When $w = 0$, choose Eq. (24); When $w < 0$, choose Eq. (27).

Step 5: Compute the restored value $\tilde{X}^{(0)}_t$ by Eq. (28).

Step 6: Use the SA algorithm to optimize nonlinear term and compute the lowest MAPE value.

Step 7: Substitute the optimal parameters to reconstruct CCRGM(1,1) model and compute the simulated data $\hat{X}^{(0)}_t$ and MAPE.

Combined with the above modelling steps of the model, the modelling flow chart is obtained, as shown in Fig. 1.

Table 2
The steps of the SA algorithm.

Algorithm: The SA algorithm to find the optimal
Set the objective function and the maximum iteration number $T = V \cdot T(t)$
Input: The original series and the number of modelling data
Output: The best order
for $t \in [0, 1, n]$ do
Substitute into $P = (B^T B)^{-1} B^T Y$ and obtain parameters $P = (a, b, c, d)^T$
Substitute parameters to discrete equation Eq. (13) and compute the simulation value to obtain $\tilde{X}^{(1)}(k)$
Compute $\tilde{X}^{(0)}(k)$ in Eq. (28)
Compute MAPE in Eq. (29)-(30)
End
Update the minimum MAPE value
Return the best by the SA algorithm.

Table 3
The definitions of the evaluation metrics.

Metric	Formula	Definition
APE	$\left(\frac{x^{(0)}(i) - \hat{x}^{(0)}(i)}{x^{(0)}(i)} \times 100\% \right)$	Absolute percentage error
MAPE	$\frac{1}{n} \left(\sum_{i=1}^{n} \left(\frac{x^{(0)}(i) - \hat{x}^{(0)}(i)}{x^{(0)}(i)} \right) \right) \times 100\%$	Mean absolute percentage error

In the following experiments, the CCRGM(1,1) model is calculated according to the steps in Fig. 1, for which the steps of the SA algorithm are calculated using MATLAB according to the steps in Table 2.
3.1. Numerical simulation experiments

Validation case 1 Simulation experiment on the percentage of renewable energy consumption:
In the first case, data of the S-shaped renewable energy consumption proportion are taken from CHINA ENERGY STATISTICAL YEARBOOK 2018. The data from 1999 to 2013 are used to establish seven models in Table 1, and the other data are used to test the models. This numerical experiment primarily shows the advantages of the models under disordered S-shaped data. Table 4 shows
Table 3
Metrics for evaluating the effectiveness of the models [40].

Name	Abbreviation	Formulation		
Mean absolute percentage error	MAPE	$\frac{1}{n} \sum_{i=1}^{n} \left	\frac{X^{(0)}(k) - \hat{X}^{(0)}(k)}{X^{(0)}(k)} \right	\times 100\%$
Root mean squares percentage error	RMSPE	$\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(\frac{X^{(0)}(k) - \hat{X}^{(0)}(k)}{X^{(0)}(k)} \right)^2} \times 100\%$		
Mean absolute percentage error	MAE	$\frac{1}{n} \sum_{i=1}^{n} \left	X^{(0)}(k) - \hat{X}^{(0)}(k) \right	\times 100\%$
Mean squares error	MSE	$\frac{1}{n} \sum_{i=1}^{n} \left(X^{(0)}(k) - \hat{X}^{(0)}(k) \right)^2$		
Index of agreement	IA	$1 - \frac{\sum_{i=1}^{n} (X^{(0)}(k) - \hat{X}^{(0)}(k))^2}{\sum_{i=1}^{n} (X^{(0)}(k) - \bar{X}^{(0)})^2}$		
Theil U statistic 1	U1	$\frac{\sqrt{\sum_{i=1}^{n} (X^{(0)}(k) - \hat{X}^{(0)}(k))^2}}{\sqrt{\sum_{i=1}^{n} (X^{(0)}(k) - \bar{X}^{(0)})^2}}$		
Theil U statistic 2	U2	$\frac{\sum_{i=1}^{n} (X^{(0)}(k) - \hat{X}^{(0)}(k))^2}{\sum_{i=1}^{n} (X^{(0)}(k) - \bar{X}^{(0)})^2}$		
Correlation coefficient	R	$\frac{\text{Cov}(X^{(0)}, \hat{X}^{(0)})}{\sqrt{\text{Var}(X^{(0)}) \text{Var}(\hat{X}^{(0)})}}$		

Table 4
Forecasting results of grey models in Validation Case 1.

Year	Raw data	GM (1,1) (%)	APE	DGM (1,1) (%)	APE	NGM (1,1) (%)	APE	ARGGM (1,1) (%)	APE
1999	5.9	5.9	0	5.9	0	5.9	0	5.9	0
2000	7.3	7.1894	−1.5152	7.1983	−1.3933	8.8069	20.6429	6.8761	5.8063
2001	8.4	7.3417	−12.5992	7.3495	−12.5055	9.2502	10.1216	7.5359	12.865
2002	8.2	7.4972	−8.5711	7.504	−8.4881	9.8463	20.0763	7.9819	2.6598
2003	7.4	7.656	3.459	7.6617	3.5358	10.6477	43.8878	8.2833	11.936
2004	7.6	7.8181	2.8701	7.8226	2.9295	11.7253	54.2804	8.4871	11.672
2005	7.4	7.9837	7.8881	7.987	7.9327	13.1743	78.0308	8.6248	16.531
2006	7.4	8.1528	10.1732	8.1548	10.2006	15.1226	104.3588	8.7179	17.092
2007	7.5	8.3255	11.0067	8.3262	11.016	17.7422	136.5628	8.7908	17.077
2008	8.4	8.5018	1.2124	8.5012	1.2042	21.2646	153.15	8.8233	5.0396
2009	8.5	8.6819	2.1402	8.6798	2.1151	26.0008	205.8919	8.8521	4.142
2010	9.4	8.8658	−5.6829	8.8622	−5.7216	32.3691	244.3524	8.8715	−5.6224
2011	8.4	9.0536	7.7809	9.0484	7.7189	40.932	387.2854	8.8846	5.7964
2012	9.7	9.2454	−4.6871	9.2185	−4.7576	52.4456	440.6761	8.8935	−8.3144
2013	10.2	9.4412	−7.4394	9.4126	−7.5231	67.9268	565.9489	8.8995	−12.7499
MAPE		6.2161		6.2161		41.5694	176.0945	6.9674	
2014	11.3	9.6412	−14.6801	9.6308	−14.7713	88.7428	685.3349	8.9036	−21.2074
2015	12.1	9.8454	−18.6334	9.8332	−18.7338	116.7321	864.7283	8.9063	−26.3942
2016	13.3	10.0539	−24.4098	10.0398	−24.5125	154.3665	1060.6507	8.9082	−33.0214
2017	13.8	10.2668	−25.6026	10.2508	−25.7189	204.9698	1385.2886	8.9094	−35.4391
MAPE		20.8307		20.9341		999.0006	29.0155		

Table continued...
the original data and calculation results of seven models. Table 5 lists the evaluation metrics of the seven models. The optimal of the CCRGM(1,1) is $r = 0.953875$.

In comparison with other grey models, Table 4 shows that the MAPEFIT values of CCRGM(1,1), GM(1,1), DGM(1,1), and ARG(1,1) are all lower than 10%, indicating that the fitting effect of these models is good, but the lowest is that of CCRGM(1,1), which is 5.1623%. The fitting effect of NGM(1,1) is the worst, and the MAPEFIT is as high as 176.0954%. In the prediction stage, the MAPEPRE of CCRGM(1,1) is the lowest, only 1.5014%, and that of other models exceeds 20%. Table 5 shows that all evaluation metrics of the CCRGM(1,1) are better than other models. For RMSPE, MSE, IA, U1, and U2 evaluation indexes, CCRGM(1,1) values are far better than those of the other models. To intuitively show the fitting error of all models, Table 4 is transformed into APE comparison chart and curve trend chart, as shown in Figs. 2 and 3 respectively. Because the error of NGM(1,1) model is too large to affect Figs. 2 and 3, it is omitted in the charts.
rapidly. Thus, the data in recent years are not S-shaped data, and energy later than other countries, but its development proceeded the largest countries in the world, China began to develop clean research object, with data taken from the literature [46]. One of consumption

Fig. 3 shows that the actual trend line exhibits a disordered S-shaped data. The data from 2006 to 2012 are used to establish CCRGM(1,1), whose MAPEFIT value is only 2.2628%, which is far better than those of the other models. However, NGM(1,1), which ranks second of the seven models, and other metrics are slightly better than those of the other models. However, NGM(1,1), ENGM(1,1) and Verhulst models, but approximate only a percentage point lower than that of GM(1,1), DGM(1,1) and ARGM(1,1). However, the MAPEPRE of CCRGM(1,1) model is much lower than that of other models, only 4.7724%, and that of other models exceeds 16%. In the comparison of other model is much lower than that of other models, only 4.7724%, and that of other models exceeds 16%. In the comparison of other

Validation case 2

This case selects China’s nuclear energy consumption as the research object, with data taken from the literature [46]. One of the largest countries in the world, China began to develop clean energy later than other countries, but its development proceeded rapidly. Thus, the data in recent years are not S-shaped data, and are used to illustrate the ability of CCRGM(1,1) model for non-S-shaped data. The data from 2006 to 2012 are used to establish the seven models, while the data from 2013 to 2017 are used to test the models. The original data and calculation results are shown in Tables 6 and 7. The optimal of CCRGM(1,1) is 2.599135.

Table 6

Year	Raw data	GM (1,1) APE (%)	DGM (1,1) APE (%)	NGM (1,1) APE (%)	ARG (1,1) APE (%)	VERHULST APE (%)	CCRGM (1,1) APE (%)
2006	12.4	12.4	0	12.4	0	12.4	0
2007	14.1	13.6523	3.1752	13.6726	3.0313	17.5093	24.1795
2008	15.5	14.9241	3.7156	14.9433	3.5914	19.5799	26.3217
2009	15.9	16.3143	2.6059	16.3322	2.7181	22.6345	42.3556
2010	16.7	17.8341	6.7911	17.8501	6.8868	27.1411	62.5216
2011	19.5	19.4955	0.2323	19.5091	0.4666	33.7896	73.2802
2012	22	21.3116	3.1293	21.3223	3.0806	43.5982	98.1736
2013	25.3	23.2969	7.9176	23.304	7.8894	58.0688	129.5208
2014	30	25.4671	15.1097	25.4969	15.1004	79.4171	164.7238
2015	38.6	27.8395	27.8777	27.8371	27.8833	110.9124	187.3377
2016	48.2	30.4129	36.8613	30.4242	36.8792	157.3772	226.5087
2017	56.2	33.2679	40.8045	33.2519	40.8329	225.9267	302.0048
2018	6.7911	17.8501	6.8868	27.1411	62.5216	17.8281	44.7281

Table 7

Metrics	GM (1,1)	DGM (1,1)	NGM (1,1)	ARG (1,1)	VERHULST	CCRGM (1,1)	CCRGM rank
RMSPE	18.6602	18.6671	142.4507	13.0347	55.6844	21.4582	5.6917
MAE	5.1051	5.1055	41.1629	3.5150	15.2066	3.8693	21.8177
MSE	82.0302	82.1168	4193.7546	40.1883	786.4197	22.0579	9.1250
IA	0.7970	0.7966	0.2960	0.9193	0.6897	0.9769	0.9809
U1	0.1745	0.1746	0.5300	0.1717	0.3299	0.0768	0.0498
U2	0.3062	0.3063	2.1892	0.2143	0.9480	0.1588	0.1021
R	0.9641	0.9640	0.9903	0.9833	0.9784	0.9807	0.9889
MAPEFIT	3.2401	3.2258	54.472	3.2505	9.6959	18.8782	2.2628
MAPEPRE	25.714	25.717	16.8311	6.9928	66.505	16.1082	4.7724

Fig. 4 shows that the APE values of CCRGM(1,1) are not the lowest in 7 years, but the those of other 12 years are much lower than other models, and those of six years are close to the zero line. Fig. 3 shows that the actual trend line exhibits a disordered S-shaped, the fitting lines of GM(1,1), DGM(1,1) ARGM(1,1), ENGM(1,1) are increasing, and far from the actual data trend line, while Verhulst model presents a complete S-shaped, and underestimates the actual value. Only the fitting line of CCRGM(1,1) is closest to the actual data line. In conclusion, two aspects show that CCRGM(1,1) has the best effect in dealing with disordered S-shaped data and alleviates the dependence of Verhulst model on saturated S-shaped data.
8 out of 12 years, most of which are close to the zero line, while the APE values of other four years are also not the largest. In Fig. 5, the actual data show an upward trend, not an S-shaped trend. GM(1,1), DGM(1,1) and ARGM(1,1) underestimate the actual value; ENGM(1,1) overestimates the actual value. The fitting line of Verhulst model shows an S-shaped trend, only that of CCRGM(1,1) is the closest to the actual data line. In conclusion, CCRGM(1,1) can not only effectively predict nuclear energy consumption, but also eliminate the dependence of Verhulst model on the saturated S-shaped.

Validation case 3 Predicting the hydroelectricity clean energy consumption:

These data are collected from *BP Statistical Review of World Energy 2019*. Countries in Commonwealth of Independent States (CIS) region, which is influenced by European and North American

Year	Raw data	GM(1,1) APE (%)	DGM(1,1) APE (%)	ENGM(1,1) APE (%)	Verhulst APE (%)	CCRGM(1,1) APE (%)	MAPE (%)
2008	47.0	47.0000	0.0000	47.0000	0.0000	47.0000	0.0000
2009	49.4	47.9984	2.8372	48.0122	2.8093	64.6302	30.8304
2010	49.1	48.5632	1.0932	49.574	1.0713	74.9167	52.5798
2011	48.1	49.1347	2.1512	49.1423	2.167	91.8805	50.0197
2012	48.2	49.7129	3.1389	49.7174	3.148	119.8561	50.8851
2013	51.9	50.298	3.0686	50.2991	3.0846	165.9918	51.0238
2014	50	50.8899	1.7797	50.8876	1.7753	242.0759	51.0946
2015	48.8	51.4887	5.5097	51.4831	5.4981	367.5492	51.1308
2016	53.1	52.0946	1.8933	52.0855	1.9106	574.4719	51.1492
2017	54.3	52.7077	2.9324	52.6949	2.9559	915.7161	51.1587
2018	55.4	53.3279	3.7402	53.3115	3.7699	1478.4751	51.1635
MAPE	2.7136	2.7134	2.7134	246.9467	3.5152	653.1745	4.7762

Year	Raw data	ENGM(1,1) APE (%)	Verhulst APE (%)	CCRGM(1,1) APE (%)	MAPE (%)
2008	47.0	47.0000	0.0000	47.0000	0.0000
2009	49.4	47.2021	4.4492	48.6457	4.1296
2010	49.1	47.9227	2.3979	25.6467	2.0167
2011	48.1	48.645	1.1331	33.1389	1.0357
2012	48.2	49.3692	2.4258	41.7728	2.8317
2013	51.9	50.0952	3.4774	49.7343	3.1729
2014	50	50.8231	1.6462	55.8355	1.1671
2015	48.8	51.5528	5.641	58.6988	5.2895
2016	53.1	52.2843	1.5361	57.5967	1.2684
2017	54.3	53.0177	2.3616	52.8153	2.2734
2018	55.4	53.7529	2.9731	45.5075	1.8476
countries, have vigorously developed clean energy. Therefore, the data in recent years show a disordered S-shaped. The data of the first ten years are used to build the models, and the data of the last years are used to test the model. The optimal rank of CCRGM(1,1) model is \(r = 0.835622 \). The original data and fitting results are shown in Table 8, and the results of evaluation metrics are shown in Table 9.

As seen in Table 8, the difference between the MAPEFIT of GM(1,1), DGM(1,1), NGM(1,1), ARGGM(1,1), ENGM(1,1) and CCRGM(1,1) models is not large. The MAPEFIT of CCRGM(1,1) is approximately 1% lower than the other values, only 1.8476%, while NGM(1,1) has the worst fitting effect, with MAPEFIT reaching 460.9467%. The MAPEFIT of Verhulst model is slightly better than that of NGM(1,1), at 22.2604%. The MAPEPRE of CCRGM(1,1) model is close to zero, only 0.0018%, far lower than that of the other models. Table 9 clearly shows that the results of evaluation metrics of CCRGM(1,1) are better than those of other models. In the same way as the first two cases, Table 8 is transformed into APE comparison chart and curve trend chart, as shown in Figs. 6 and 7 respectively.

In Fig. 6, except for 2016, the APE of CCRGM(1,1) is the lowest every year, and all of the values are close to zero. In Fig. 7, the original data show a continuous multiple S-shaped trend, Verhulst model shows single saturated S-shaped; and the fitting curves of GM(1,1), DGM(1,1), ARGGM(1,1) and ENGM(1,1) show a straight upward trend. Only the fitting trend of CCRGM(1,1) is close to the actual data trend. The above analysis shows that CCRGM(1,1) is effective and accurate for the prediction of hydroelectricity energy.

3.2. Analysis of results

In this section, the results of three cases are analysed in combination with figures, and the following conclusions can be obtained:

(1) The Riccati equation is introduced into the classical Verhulst model to achieve a new grey model, and the accuracy of Verhulst model is substantially improved after the expansion. In the validation cases, the regularity of clean energy data is not obvious, but the effect of CCRGM(1,1) model is far better than that of the Verhulst model, which shows that the CCRGM(1,1) model has no obvious data requirements and alleviates the dependence of Verhulst model on S-shaped data, which makes CCRGM(1,1) model more suitable for clean energy prediction.

(2) In the comparison of CCRGM(1,1) with the GM(1,1), DGM(1,1), NGM(1,1), ARGGM(1,1) and ENGM(1,1) models, the evaluation metrics of CCRGM(1,1) model are the best, and the fitting and approximation degree between the trend lines of CCRGM(1,1) model and original data is the highest, far superior to those of the other grey models. This result shows that the CCRGM(1,1) model is effective and accurate in short-term and metaphase prediction of clean energy consumption.

4. Applications

North America usually refers to the United States, Canada and other regions. It is the most developed continent in the world and the first region to vigorously develop clean energy. According to BP Statistical Review of World Energy 2018, the annual growth rate of new energy consumption in North America from 2007 to 2017 was 13.9%, which effectively reduced the consumption of coal, oil and other resources. In 2016, North America reached a consensus that clean energy should account for 50% of energy consumption, thus, its predicted clean energy consumption trend plays a crucial role in formulating energy consumption policies.

Due to the good performance of the CCRGM(1,1) model, this model is applied to predict nuclear and hydroelectricity energy consumption in North America. The data are taken from BP Statistical Review of World Energy 2019, and divided into two parts: one
part is used to build the model, and the other part is used to test and compare the prediction results of the models.

4.1. Case 1: prediction of nuclear clean energy consumption

The actual data are shown in Table 10, in which the data from 2002 to 2007 are used to build the model, and the other data are used to test the models. The results of the seven models are shown in Table 10. The optimal ultimately identified is $r = 1.0291686$.

In Table 10, the errors of CCRGM(1,1) are the smallest, the MAPEFIT is only 0.6092%, and the MAPEPRE is only 1.0808%. The model with the largest MAPE value is Verhulst model. To visually compare the differences among the models, Table 10 is transformed into charts of the MAPE comparison and curve trend, as shown in Fig. 8.

Table 10

Forecasting results of grey models in Case 1.

Year	Raw data	GM (1,1) APE (%)	DGM (1,1) APE (%)	NGM (1,1) APE (%)	ARGM (1,1) APE (%)
2002	205	205.0000	0.0000	205.0000	0.0000
2003	201.1	203.6943	1.453	203.6174	1.2518
2004	210.2	206.5670	–1.728	206.5757	–1.724
2005	209.4	209.5728	0.0825	209.5769	0.0845
2006	212	212.6224	0.2696	212.6217	0.2653
2007	215.4	215.7164	0.4649	215.7108	0.4433
		MAPE (%)	0.6993	0.6996	13.522
2008	215.8	218.8553	1.4158	218.8448	1.4109
2009	212.9	222.0400	4.2931	222.0243	4.2857
2010	213.9	225.7171	5.3602	225.4909	5.3048
2011	211.5	228.5490	8.0610	228.5225	8.0485
2012	206.5	231.8747	12.8880	231.8426	12.2724
2013	213.8	235.2488	10.0322	235.2109	10.0145
2014	216.2	238.6720	10.3941	238.6282	10.3738
2015	215.4	242.1459	12.4164	242.0951	12.3933
2016	217	245.6686	13.2113	245.6123	13.1854
2017	216.9	249.2434	14.9117	249.1807	14.8828
2018	217.9	252.8702	16.0488	252.8010	16.0170

Year	Raw data	ENGM (1,1) APE (%)	Verhulst APE (%)	CCRGM (1,1) APE (%)
2002	205	9.8355	0.6122	
2003	201.1	9.8355	0.6092	
2004	210.2	9.8355	0.6122	
2005	209.4	9.8355	0.6122	
2006	212	9.8355	0.6122	
2007	215.4	9.8355	0.6122	
2008	215.8	9.8355	0.6122	
2009	212.9	9.8355	0.6122	
2010	213.9	9.8355	0.6122	
2011	211.5	9.8355	0.6122	
2012	206.5	9.8355	0.6122	
2013	213.8	9.8355	0.6122	
2014	216.2	9.8355	0.6122	
2015	215.4	9.8355	0.6122	
2016	217	9.8355	0.6122	
2017	216.9	9.8355	0.6122	
2018	217.9	9.8355	0.6122	

MAPE (%)	Year	Raw data	ENGM (1,1) APE (%)	Verhulst APE (%)	CCRGM (1,1) APE (%)
2002	205	0.0000	0.0000	0.0000	
2003	201.1	0.0000	0.0000	0.0000	
2004	210.2	0.0000	0.0000	0.0000	
2005	209.4	0.0000	0.0000	0.0000	
2006	212	0.0000	0.0000	0.0000	
2007	215.4	0.0000	0.0000	0.0000	
2008	215.8	0.0000	0.0000	0.0000	
2009	212.9	0.0000	0.0000	0.0000	
2010	213.9	0.0000	0.0000	0.0000	
2011	211.5	0.0000	0.0000	0.0000	
2012	206.5	0.0000	0.0000	0.0000	
2013	213.8	0.0000	0.0000	0.0000	
2014	216.2	0.0000	0.0000	0.0000	
2015	215.4	0.0000	0.0000	0.0000	
2016	217	0.0000	0.0000	0.0000	
2017	216.9	0.0000	0.0000	0.0000	
2018	217.9	0.0000	0.0000	0.0000	

Fig. 8. The MAPE of the models in Case 1.
The Verhulst model is very large, so it is omitted in Figs. 8 and 9 respectively. Table 10 shows that the MAPEPRE of the Verhulst model is very large, so it is omitted in Figs. 8 and 9.

In Fig. 8, the MAPEFIT values of GM(1,1) and DGM(1,1) are slightly 0.1% higher than that of CCRGM(1,1), but the MAPEPRE values are far higher than that of CCRGM(1,1), as shown in Table 11.

Table 11
Forecasting results of grey models in Case 2.

Year	Raw data	GM (1,1)	APE (%)	DGM (1,1)	APE (%)	NGM (1,1)	APE (%)	ARGM (1,1)	APE (%)	ENGM (1,1)	APE (%)	CCRGM (1,1)	APE (%)
2000	149.9	149.9000	0.000	149.9000	0.000	149.9000	0.000	149.9000	0.000	149.9000	0.000		
2001	129	136.4277	5.7579	136.4262	5.7846	103.7961	–19.5379	144.7347	12.1975	144.6337	1.0743		
2002	143.1	138.4104	3.2771	138.4177	3.2581	120.8235	–15.5671	144.6337	1.0743				
2003	141.6	140.422	0.8319	140.4418	0.8179	131.6093	–7.0584	144.6355	2.1437				
2004	141.7	142.4628	0.5383	142.475	0.5469	138.4322	–2.3061	144.6355	2.0716				
2005	148.5	144.5333	2.6712	144.5375	2.6683	142.7551	–3.8686	144.6355	2.6024				
2006	151.4	146.6338	3.1481	146.63	3.1506	145.4923	–3.902	144.6355	4.4686				
2007	144.4	148.7649	3.0228	148.7527	3.0143	147.2255	1.9567	144.6355	0.1631				
2008	151.1	150.927	0.1145	150.9062	0.1283	148.323	–1.8379	144.6355	–4.2783				
2009	150.9	153.1205	1.4715	153.0908	1.4518	149.0179	–1.2473	144.6355	–4.1514				
2010	146.1	155.3458	6.3284	155.3071	6.3019	149.4579	2.2983	144.6355	3.6834				
2011	164.7	157.6035	4.3078	157.5554	4.3379	149.7365	–9.0833	144.6355	–12.1825				
2012	155.3	159.894	2.9582	159.8363	2.921	149.9129	–3.4688	144.6355	–6.8671				
2013	155.3	162.2178	4.4545	162.1502	4.4109	150.0246	–3.3969	144.6355	–5.5904				
2014	153.2	164.5754	7.4252	164.4976	7.3744	150.0954	–2.0625	144.6355	–5.9044				
2015	149.2	166.9673	11.9083	166.879	11.8492	150.1401	0.6301	144.6355	3.0593				
2016	154.2	169.3939	9.8533	169.2949	9.7892	150.1685	–2.6145	144.6355	–6.2027				
2017	164.1	171.8557	4.7262	171.7457	4.6592	150.1865	–8.4787	144.6355	–11.8614				
2018	160.3	174.3354	8.7669	174.232	8.6912	150.1978	–6.302	144.6355	–9.772				

MAPEFIT values of GM(1,1) and DGM(1,1) are slightly 0.1% higher than that of CCRGM(1,1), but the MAPEPRE values are far higher than that of CCRGM(1,1).
higher than that of CCRGM(1,1). The MAPE\textsubscript{PRE} values of ARGM(1,1) and NGM(1,1) are similar to that of CCRGM(1,1), but the MAPE\textsubscript{FIT} values are higher. In Fig. 9, except for 2012, the CCRGM(1,1) predictions generally coincide with the original data, ARGM(1,1) and NGM(1,1) underestimate the nuclear energy consumption, and the fitting lines of GM(1,1) and DGM(1,1) essentially coincide, but similar to ENGM(1,1), they overestimate the nuclear energy consumption. In addition, Verhulst model presents a saturated S-shaped, which is contrary to the actual situation. Therefore, the CCRGM(1,1) model is the best for prediction of nuclear energy.

4.2. Case 2: prediction of hydroelectricity clean energy consumption

In this case, the CCRGM(1,1) model is established based on the hydroelectricity energy consumption in 2000–2009, and the consumption in subsequent nine years is used for prediction. The optimal\(r = 1.032092 \). The actual data and the results of seven grey models are shown in Table 11.

According to Table 11, the errors of CCRGM(1,1) are the smallest: the MAPE\textsubscript{FIT} is only 2.0603%, and the MAPE\textsubscript{PRE} is only 3.2004%. Similar to the previous case, the model with the largest error is the Verhulst model, whose MAPE\textsubscript{FIT} is 19.1260% and MAPE\textsubscript{PRE} is 130.6168%. This result also shows that in the prediction of clean energy, CCRGM(1,1) improves the prediction accuracy of Verhulst model. To directly compare the differences between models, the MAPE comparison chart and curve trend chart are constructed according to Table 11, as detailed in Figs. 10 and 11, respectively. Because the error of Verhulst model is too large to affect these Figs. 10 and 11, it is omitted.

In Fig. 10, the MAPE\textsubscript{FIT} of six models does not exceed 6.5%. In the prediction stage, only the MAPE\textsubscript{PRE} of ENGM(1,1) model is more than 10%, and that of the other models is less than 7.1%. These models can be used to predict hydroelectricity energy consumption, but the CCRGM(1,1) model has the best fitting effect. In Fig. 11, the trend of original data shows a disordered S-shaped, whereas GM(1,1), DGM(1,1) and ENGM(1,1) overestimate the hydroelectricity consumption, and ARGM(1,1) and NGM(1,1) slightly underestimate it. The Verhulst model shows a saturated S-shaped. Each point of CCRGM(1,1) predictions generally coincides with the original data. The above results show that CCRGM(1,1) is the most accurate model for prediction of hydroelectricity energy consumption in North America.

4.3. Future discussions

According to the results of the five cases, regardless of the shape of the data presented, the CCRGM(1,1) model is the most effective and accurate in predicting the clean energy consumption represented by nuclear energy and hydroelectricity energy. Therefore, this section uses this new model to predict the future energy consumption and supply information for the region to formulate energy consumption strategies.

4.3.1. Prediction of nuclear consumption in North America in the next 10 years

According to the prediction method of nuclear energy consumption in the previous section, CCRGM(1,1) model is established by data from 2013 to 2018. At this time \(r = 1.007939 \), and the MAPE\textsubscript{FIT} is only 0.3900%. Therefore, this model is used to predict nuclear consumption in the next 10 years, as shown in Table 12.

To more intuitively show the future consumption trend of nuclear energy, the data in Table 12 are converted into Fig. 12, showing clearly that the consumption of nuclear energy in North America is predicted to continue to increase, reaching 219.5282 million tons of oil equivalent in 2028, 0.9222% higher than that in 2018, but it does not reach a peak, indicating that the consumption of nuclear energy in North America will maintain an increasing trend. Therefore, North America is expected to increase the use of nuclear power and reduce the use of fossil fuels.

4.3.2. Prediction of hydroelectricity consumption in North America in the next 10 years

According to the hydroelectricity energy consumption
prediction method in Section 4.2, CCRGM(1,1) is established by data from 2009 to 2018. In this case, \(r = 2.035590 \), and the MAPEFIT is only 3.0028%. Then, the hydroelectricity consumption in the next 10 years is predicted, as shown in Table 13.

By presenting the data in Table 13 as Fig. 13, it can be clearly observed that the hydroelectricity consumption in North America shows a trend of continuous rise and fall and is predicted to reach a peak in 2022, reaching 161.9502 million tons of oil equivalent, followed by a fall to 152.7455 million tons of oil equivalent in 2029, down 4.71232% compared with 2018.

4.3.3. Uncertainty analysis

Two application cases show that CCRGM(1,1) model can effectively predict the consumption trend of nuclear energy and hydroelectricity in North America, but the energy situation is complex and changeable, especially with respect to the occurrence of unforeseen events, which leads to the results of prediction model might seem counterintuitive. According to literature [47], many large dams were built in North America before 1975. In recent years, environmental problems involving geological disasters and river ecology have become increasingly severe, and social problems have arisen. These problems were not foreseen, resulting in more dams being demolished by the government than are being built.
The United States Energy Information Administration noted that due to the development of wind power technology, wind power in the United States is expected to surpass hydropower for the first time in 2019, accounting for a large proportion of domestic power structure. Therefore, hydropower might show a downward trend after 2022 and the prediction results in Section 4.3.2 conform to the above analysis. To avoid the impact of such unforeseen events, CCRGM(1,1) model can be used for short-term prediction to avoid uncertainty due to medium and long-term prediction.

5. Conclusion

In this paper, based on the properties of Riccati equation with constant coefficients, the whitening equation of Verhulst model is proposed, and CCRGM(1,1) model is established. In practical cases, the eight evolution metrics of CCRGM(1,1) model are much better than those of GM(1,1), DGM(1,1), NGM(1,1), ARGM(1,1), ENGM(1,1), and Verhulst models, that is, the accuracy of CCRGM(1,1) model is the highest. In short, this paper makes two major contributions:

1. CCRGM(1,1) model optimizes the whitening equation of Verhulst grey model by mathematical equation, and optimizes the nonlinear term by SA algorithm, which reduces or even eliminates the dependence of the traditional Verhulst model on saturated S-shaped data, thus improving the accuracy and applicability of the traditional grey model. This is a generalization of traditional grey Verhulst model.

2. CCRGM(1,1) model can effectively predict the consumption of nuclear and hydroelectricity energy consumption in North America in the next decade, which will help local governments make policy decisions.

The CCRGM(1,1) model uses the classical Riccati equation to increase the nonlinearity of the Verhulst model, while the Verhulst model has a better effect on saturated S-shaped data or single-peak data, which has its own limitations [48]. The CCRGM(1,1), as an extension model, cannot completely eliminate these limitations. For clean energy data, the CCRGM(1,1) model alleviates the dependence of the Verhulst model on saturated S-shaped data to a certain extent, but this dependence has not been completely eliminated. Therefore, for countries that develop clean energy later, such as China, India and other countries, the various clean energy data of these countries may show insignificant data characteristics, and the prediction results may show large deviations. In addition, in the process of energy prediction, unforeseen events may occur, such as the global COVID-19 pandemic, which may lead to significant changes in energy consumption in the short term, resulting in a large deviation between the prediction results and the actual situation.

As a single variable grey model, CCRGM(1,1) model can effectively predict energy consumption. However, with the vigorous development of clean energy in China, the United States and other major countries, the world energy system is expected to become increasingly complex, and the factors affecting clean energy consumption are predicted to gradually increase, such as economic, population, and environmental factors. Furthermore, the influencing factors of different energy sources are different, which results in uncertainty in the prediction process. Therefore, fully elucidating the characteristics of these factors affecting different energy consumption and introducing them into CCRGM(1,1) model is a topic of interest. Via subsequent expansion of the CCRGM(1,1) to a multivariate model, the prediction effect might be further improved. How to further weaken the dependence of the Verhulst model on the trend of data change and how to build a multivariable CCRGM model for a variety of clean energy sources is our anticipated next main research direction.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Xilin Luo: Software, Visualization, Writing - original draft, Writing - review & editing, Validation, Data curation. Huiming Duan: Conceptualization, Methodology, Funding acquisition, Project administration, Supervision. Leiyuhang He: Investigation, Formal analysis, Validation, Data curation.

Acknowledgments

The authors are grateful to the editor for their valuable comments. This work is supported by the Project of Humanities and Social Sciences Planning Fund of Ministry of Education of China(18YJA630022); National Natural Science Foundation of China (71871174).

References

[1] Nowotny J, Dodson J, Fletcher S, et al. Towards global sustainability: Education on environment–entally clean energy technologies. Renew Sustain Energy Rev 2018;81(2):2541–51. https://doi.org/10.1016/j.rser.2017.06.060.

[2] Mudilli A, Dincer I, Ay M. Green energy strategies for sustainable development. Energy Pol 2006;34(18):3623–33. https://doi.org/10.1016/j.enpol.2005.08.003.

[3] Muhammad I, Najd A, Khuda B. Nuclear energy, renewable energy and economic growth in Pakistan: evidence from non-linear autoregressive distributed lag model. Renew Energy 2019;139:1299–309. https://doi.org/10.1016/j.renene.2019.03.008.

[4] Erick M, Fernando L, Cyniro O. Forecasting mid-long-term electric energy consumption thro-ugh bagging ARIMA and exponential smoothing methods. Energy 2018;44:776–88. https://doi.org/10.1016/j.energy.2017.12.049.

[5] Xie N, Yuan C, Yang Y. Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model. Int J Electr Power Energy Syst 2015;66:1–8. https://doi.org/10.1016/j.jepes.2014.10.028.

[6] Meenal R, Selvakumaran AT. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew Energy 2018;121(8):324–43. https://doi.org/10.1016/j.renene.2017.12.005.

[7] Xie NT, Alvaro A, Jose R, et al. Regression tree ensembles for wind energy and solar radiation prediction. Neurocomputing 2019;326:327–151–60. https://doi.org/10.1016/j.neucom.2017.05.10.

[8] Chen PY, Yu HM. Foundation settlement prediction based on a novel NGM model. Math Probl Eng 2014:1. https://doi.org/10.1155/2014/242809.

[9] Wu WQ, Ma X, Zhang YY, et al. A novel conformable fractional non-homogeneous grey model for forecasting carbon dioxide emissions of BRICS countries. Sci Total Environ 2020;707:1–24. https://doi.org/10.1016/j.scitotenv.2019.135447.

[10] Wu WQ, Ma X, Zeng B, et al. Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model. Renew Energy 2019;140:70–87. https://doi.org/10.1016/j.renene.2019.03.006.

[11] Deng JL. Estimate and decision of grey system. Wuhan: Huazhong University of Science and Technology Press; 2002.

[12] Duan HM, Lei GY. Forecasting crude oil consumption in China using a grey prediction model with an optimal fractional-order accumulating operator. Complexity 2018:1–12. https://doi.org/10.1155/2018/3869619.

[13] Duan HM, Xiao XP. A multimode dynamic short-term traffic flow grey prediction model of high dimension tensors. Complexity 2019. https://doi.org/10.1155/2019/9121613.

[14] Duan HM, Xiao XP. Xiao QZ. An inertia grey discrete model and its application in short-term traffic flow prediction and state determination. Neural Comput Appl 2019:1–17. https://doi.org/10.1007/s00521-019-04364-w.

[15] Wu LF, Li N, Yang YJ. Prediction of air quality indicators for the Beijing-Tianjin-Hebei region. J Clean Prod 2018;196:682–7. https://doi.org/10.1016/j.jclepro.2018.06.008.

[16] Xie NM, Chen NL. The novel fractional discrete multivariate grey system problem with interval grey processing time. Appl Soft Comput 2018;70:513–24. https://doi.org/10.1016/j.asoc.2018.06.004.

[17] Liu S, Lin Y, Forrest JYL. Grey systems: theory and applications. Springer; 2010.

[18] Erdal K, Baris U, Ohyak K. Grey system theory-based models in time series
prediction. Expert Syst Appl 2010;37(2):1784–9. https://doi.org/10.1016/j.eswa.2009.07.064.

[19] Xie NM, Liu SF. Discrete GM(1,1) and mechanism of grey forecasting model. Systems Engineering-Theory & Practice 2005:93–9. 01.

[20] Chen PY, Yu HM. Foundation settlement prediction based on a novel NGM model. Math Probl Eng 2014:1–8. https://doi.org/10.1155/2014/242809.

[21] Ma X, Xie M, Wu WQ, et al. The novel fractional discrete multivariate grey system model and its applications. Appl Math Model 2019;70:402–24. https://doi.org/10.1016/j.apm.2019.01.039.

[22] Xia J, Ma X, Wu WQ, et al. Application of a new information priority accumulated grey model with time power to predict short-term wind turbine capacity. J Clean Prod 2020;24:4:1–38. https://doi.org/10.1016/j.jclepro.2019.118573.

[23] Xu WJ, Gu R, Liu YZ, et al. Meteorological sequence prediction based on a new information priority accumulation. Appl Math Model 2018;62:595–604. https://doi.org/10.1016/j.apm.2018.06.025.

[24] Wang L, Xie YX, Wang XY, et al. Improved multi-variable grey forecasting model with a dynamic background-value coefficient. J Econ Modell 2018;31(1):1–11. https://doi.org/10.1016/j.econmod.2014.11.011.

[25] Ma X. A brief introduction to the grey machine learning. J Grey Syst 2013;31(1):1–12.

[26] Liu XY, Fu H. Volatility forecasting for interbank offered rate using grey extreme learning machine: the case of China. Chaos. Solitons & Fractals 2016;89:249–54. https://doi.org/10.1016/j.chaos.2015.11.033.

[27] Wang J, Xie YX, Wang XY, et al. Forecasting energy consumption using a new GM–ARIMA model based on HP filter: the case of Guangdong Province of China. Econ Modell 2015;45:127–35. https://doi.org/10.1016/j.econmod.2014.11.011.

[28] Zhang B, Ma JH. Prediction of coal output in wuhai using grey-markov model improved by nonlinear regression. Procedia Engineering 2011;15:5020–4. https://doi.org/10.1016/j.proeng.2011.08.933.

[29] Ma X. A brief introduction to the grey machine learning. J Grey Syst 2019;31(1):1–12.

[30] Wang Q, Xie M, Wu WQ, et al. The novel fractional discrete multivariate grey system model and its application. Appl Math Model 2016;40:5063–76. https://doi.org/10.1016/j.apm.2015.12.014.

[31] Zeng B, Li C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application. Comput Ind Eng 2018;118:278–90. https://doi.org/10.1016/j.cie.2018.02.042.

[32] Wu LF, Zhang ZY. Grey multivariable convolution model with new information priority accumulation. Appl Math Model 2018;62:595–604. https://doi.org/10.1016/j.apm.2018.06.025.

[33] Pei LL, Chen WM, Bai JH. The improved GM (1, N) models with optimal background values: a case study of Chinese High-tech Industry. J Grey Syst 2015;27(3):223–33.

[34] Wu LF, Liu SF, Yao LG, et al. Using fractional order accumulation to reduce errors from inverse accumulated generating operator of grey model. Soft Computing 2015;19(2):483–8. https://doi.org/10.1007/s00500-014-1268-y.

[35] Zeng B, Duan HM, Bai Y, et al. Forecasting the output of shale gas in China using an unbias- -ed grey model and weakening buffer operator. Energy 2018;151:238–49. https://doi.org/10.1016/j.energy.2018.03.045.

[36] Wang ZX, Li Q, Pei LL. Grey forecasting method of quarterly hydroelectricity production in China based on a data grouping approach. Appl Math Model 2017;52:302–16. https://doi.org/10.1016/j.apm.2017.07.003.

[37] Ding S, Hipel KW, Dang YG, et al. Forecasting China’s electricity consumption using a new grey prediction model. Energy 2018;149:314–28. https://doi.org/10.1016/j.energy.2018.01.169.

[38] Wang Q, Li SY, Li RR, et al. Forecasting U.S. Shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model. Energy 2018;160:378–87. https://doi.org/10.1016/j.energy.2018.07.047.

[39] Li SY, Yang X, Li RR. Forecasting China’s coal power installed capacity: a comparison of mgm, ARIMA, GM-ARIMA, and nmgm models. Sustainability 2018;10:506. https://doi.org/10.3390/su10020506.

[40] Wang XY, Luo DK, Liu JY, et al. Prediction of natural gas consumption in different regions of China using a hybrid MVO-NNGBM model. Math Probl Eng 2017;1-10. https://doi.org/10.1155/2017/6045708.

[41] Ding S. A novel self-adapting intelligent grey model for forecasting China’s natural-gas demand. Energy 2018;162:393–407. https://doi.org/10.1016/j.energy.2018.08.040.

[42] Ma X, Mei X, Wu WQ, et al. A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China. Energy 2019;178:487–507. https://doi.org/10.1016/j.energy.2019.04.096.

[43] Xie NM, Liu SF. Discrete GM(1,1) and mechanism of grey forecasting model. J Comput Theor Nanosci 2013;10:1889–95. https://doi.org/10.1166/jctn.2013.4773.

[44] Shen CL, Chen HL, Chen SP. Forecasting of foreign exchange rates of Taiwan’s major trading partners by novel nonlinear Grey Bernoulli model NGBM (1,1). Commun Nonlinear Sci Numer Simulat 2008;13:1194–204. https://doi.org/10.1016/j.cnsns.2006.08.008.

[45] Kirkpatrick S, Gelatt C, Vecchi M. Optimization by simulated annealing. Science 1983;220:671–80. https://doi.org/10.1126/science.220.4598.671.

[46] Samora I, Franca MJ, Schless AJ, et al. Simulated annealing in optimization of energy produc tion in a water supply network. Water Resour Manag 2016;30:1533–47. https://doi.org/10.1007/s11269-016-1238-5.

[47] Yang RL, Gu JF. An efficient simulated annealing global optimization algorithm. System engineering theory and practice 1997;30–6. 05.

[48] Wu WQ, Ma X, Zeng B, et al. Application of the novel fractional grey model FAGMO (1, N,) k. To predict China’s nuclear energy consumption. Energy 2018;165:223–34. https://doi.org/10.1016/j.energy.2018.09.155.

[49] Moran M, Lopez M, Moore N, et al. Sustainable hydropower in the 21st century. Proc Natl Acad Sci Unit States Am 2018;115(47):11891–9. https://doi.org/10.1073/pnas.1809426115.

[50] Wang ZX, Dang YG, Liu SF. Unbiased grey Verhulst model and its application. Systems Engineering-Theory & Practice 2009;29(10):118–44.