CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep underground production of cosmogenic 11C in organic liquid scintillator

H. Back, M. Balata, G. Bellini, J. Benziger, S. Bonetti, B. Caccianniga, F. Calaprice, D. D’Angelo, A. de Belfon, H. de Kerret, A. Derbin, A. Enenkov, R. Ford, D. Franco, C. Galbiati, S. Gazzana, G. Gatti, A. Goretti, C. Grieb, E. Harding, G. Heusser, A. Ianni, A. M. Ianni, V. V. Kobejev, G. Korga, Y. Kozlov, D. Kryn, M. Laubenstein, C. Lendvai, M. Leung, E. Litvinovich, P. Lombardi, I. Machulin, J. Maneire, D. Manuzio, F. Masetti, U. Mazzucato, K. McCarty, E. Meroni, L. Miramonti, M. E. Monzani, V. Muratova, L. Niedermeier, L. Oberauer, M. Obolensky, F. Ortica, M. Pallavicini, L. Papp, L. Perasso, A. Pocar, R. S. Ragghan, G. Ranucci, A. Razeto, A. Sabelnikov, C. Salvo, S. Schoenert, T. Shutt, H. Simgen, M. Skorokhvatov, O. Smirnov, A. Sotnikov, S. Sukhotin, Y. Suvorov, V. Tarasenkova, R. Tartaglia, D. Vignaud, R. B. Vogelaar, F. Von Feilitzsch, V. Vyrodov, M. Wójcik, O. Zaimidoroga, and G. Zuzel

1Physics Department, Virginia Polytechnic Institute and State University, Robeson Hall, Blacksburg, VA 24061-0435, USA
2INFN Laboratori Nazionali del Gran Sasso, SS 17 bis Km 18+910, I-67010 Assergi(AQ), Italy
3Dipartimento di Fisica Università di L’Aquila and I.N.F.N., L’Aquila, Italy
4Dipartimento di Fisica Università, Perugia, Via Elce di Sotto, 8 I-06123, Perugia, Italy
5Technical University Munich, James Franck Strasse, E15 D-85747, Garching, Germany
6Astroparticule et Cosmologie APC, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
7Joint Institute for Nuclear Research, 141980 Dubna, Russia
8RRC Kurchatov Institute, Kurchatov Sq. 1, 123182 Moscow, Russia
9Max-Planck-Institut fuer Kernphysik,Postfach 103 980 D-69029, Heidelberg, Germany
10Kiev Institute for Nuclear Research, 29 Prospekt Nauki 06380 Kiev, Ukraine
11Queen’s University, Physics Department, Kingston, Ontario, Canada K7L 3N6
12Dipartimento di Fisica Università and I.N.F.N., Genova, Via Dodecaneso, 33 I-16146 Genova, Italy
13Dipartimento di Chimica Università, Perugia, Via Elce di Sotto, 8 I-06123, Perugia, Italy
14Case Western Reserve University, Cleveland OH 44118, USA
15M.Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Krakow, Poland

(Dated: July 7, 2018)

Borexino is an experiment for low energy neutrino spectroscopy at the Gran Sasso underground laboratories. It is designed to measure the mono-energetic 7Be solar neutrino flux in real time, via neutrino-electron elastic scattering in ultra-pure organic liquid scintillator. Borexino has the potential to also detect neutrinos from the pep fusion process and the CNO cycle. For this measurement to be possible, radioactive contamination in the detector must be kept extremely low. Once sufficiently clean conditions are met, the main background source is 11C, produced in reactions induced by the residual cosmic muon flux on 12C. In the process, a free neutron is almost always produced. 11C can be tagged on an event by event basis by looking at the three-fold coincidence of parent muon track and the subsequent neutron capture on protons. This coincidence method has been implemented on the Borexino Counting Test Facility data. We report on the first event by event identification of in situ muon induced 11C in a large underground scintillator detector. We measure a 11C production rate of 0.130 ± 0.026 (stat) ± 0.014 (syst) day$^{-1}$ ton$^{-1}$, in agreement with predictions from both experimental studies performed with a muon beam on a scintillator target and ab initio estimations based on the 11C producing nuclear reactions.

PACS numbers: 25.20.-x; 25.30.Mr; 26.65.+t; 28.20.Gd; 96.50.S-; 96.60.-j

Keywords: Muon-induced nuclear reactions; Photonuclear reactions; Solar neutrinos; Low background experiments; Borexino

I. INTRODUCTION

Results from solar neutrino and reactor antineutrino experiments provide compelling evidence for neutrino oscillations as the explanation of the long-standing solar neutrino problem. The next goal in solar neutrino physics is probing in real time the low energy (< 2 MeV) component of the solar neutrino spectrum, which accounts for more than 99% of the total flux. This includes neutrinos produced in the 7Be, 8B, and 13N fusion reactions and the CNO-cycle. Particularly, pep and CNO neutrinos are an ideal source for probing the energy region between 1 and 3 MeV, at which the transition between matter and vacuum dominated oscillations is supposed to occur, according to the MSW-LMA oscillation solution. Furthermore, the pep and 13N solar neutrino rates are directly related, via the ratio of the cross section of the two reactions. Measuring the pep solar neutrino flux is hence a way to study the fundamental 14N fusion reaction by which the Sun

*Present address: North Carolina State University, 890 Oval Drive, Campus Box 8206, Raleigh, NC 27695-8206, USA
†Electronic address: Davide.Franco@mi.infn.it
‡Electronic address: Davide.Dangelo@lngs.infn.it
§Present address: Laboratório de Instrumentação e Física Experimental de Partículas (LIP), Av. Elias Garcia, 14, 1º, 1000-149 Lisboa, Portugal.
FIG. 1: Expected recoil electron energy for different solar neutrinos interacting in Borexino assuming 3 year live time exposure, 100 tons fiducial volume and a detector energy resolution of 5%/√E[MeV]. Neutrino fluxes are derived assuming the Standard Solar Model BP2004+LUNA \cite{18,19} and the LMA oscillation scenario \cite{20}. The shaded superimposed area is the expected 11C background \cite{10}.

burns, and improves our knowledge of the solar neutrino luminosity, thence yielding a crucial check of the Sun stability over a time scale of $10^5 - 10^9$ years by comparison with the photon luminosity. CNO neutrinos play a key role on the age estimation of the Globular Clusters \cite{5}, pivotal in setting a lower limit for the age of the universe.

Deep underground organic liquid scintillator detectors, like Borexino and KamLAND, are well positioned to measure pep and CNO solar neutrinos. The 1.4 MeV, mono-energetic pep neutrinos are particularly well identifiable by the characteristic Compton-like electron recoil spectrum they produce. The main challenge they face is the identification and suppression of the 11C background. 11C is produced deep underground by residual cosmic muons interacting with 12C atoms in the scintillator. The rate of the process is a function of the location and depth of the experiment. As can be seen in fig. 1 the 11C background at Gran Sasso falls in the energy region for the detection of pep and CNO neutrinos. In 1996, Deutsch \cite{6} suggested that 11C decays could be detected and subtracted exploiting the neutron emission in the reaction:

$$\mu(\text{+ secondaries}) + ^{12}\text{C} \rightarrow \mu(\text{+ secondaries}) + ^{11}\text{C} + n.$$ \hspace{1cm} (1)

He proposed using a three-fold coincidence which links the parent muon, the neutron capture on protons, and the 11C decay. The validity of such technique was studied in detail in \cite{8}. We apply the three-fold coincidence technique to data from the Borexino Counting Test Facility (CTF). This is, to the best of our knowledge, the first in situ event by event detection of 11C production deep underground. We then use our results to evaluate pep solar neutrino detection with Borexino.

II. 11C IN SITU PRODUCTION: THE THREE-FOLD COINCIDENCE TECHNIQUE

11C β^+-decays with a mean life of 29.4 min and an endpoint energy of 0.96 MeV:

$$^{11}\text{C} \rightarrow ^{11}\text{B} + e^+ + \nu_e.$$ \hspace{1cm} (2)

The total energy released in the detector by the decay and the following positron annihilation is between 1.02 and 1.98 MeV, partially covering the best window for the observation of the pep+CNO signal (0.8-1.3 MeV).

The probability to produce 11C nuclides in muon-induced cascades was experimentally determined with a target experiment (NA54) on a muon beam at CERN \cite{10}. The inferred 11C rate for Borexino and CTF is 0.146 \pm 0.015 day$^{-1}$ ton$^{-1}$ (0.074 \pm 0.008 day$^{-1}$ ton$^{-1}$ in the pep+CNO neutrino window).

The study reported in \cite{7} identified eight different processes for the 11C production in muon showers and provided a quantitative estimate for the rate in all the production channels. The result seems robust in view of the fact that the calculated production rate matches the rate measured at the NA54 CERN facility.

Two of the production channels identified, 12C(p,d)11C and 12C(π^+,π^0+p)11C, do not produce a free neutron in the final state, and therefore escape any possibility of detection by the three-fold coincidence technique. These two production channels are referred to as “invisible channels”, and they account for 5% of the 11C production rate \cite{7}.

Neutrons are captured on hydrogen with a capture mean time of $\sim 250 \mu s$ in pseudocumene emitting a characteristic γ of 2.2 MeV. Neutrons can also be captured on carbon isotopes emitting γ with larger energy, but the cross section is two orders of magnitude lower than on hydrogen.

In order to identify and suppress the 11C background, each 2.2 MeV γ produced in the scintillator from the muon-induced showers must be localized in space and time. After each muon-induced neutron detection, the three-fold coincidence technique defines a set of potential 11C candidates within a time delay t from the detected muon and inside a sphere of radius r from the neutron capture point. We assume that no convective currents move the 11C nuclide from the production point in the time scale of the 11C mean life.

In Borexino, the 11C candidates will be discarded in order to increase the pep+CNO signal to background ratio. The success of the pep and CNO neutrino measurement will depend on two main conditions: the minimization of the detector mass-time fraction lost to the cuts implementing the three-fold coincidence and the achievement of a high efficiency in the 11C suppression.

The limited size of CTF represents a challenging test for the three-fold coincidence technique. The goal in CTF is the measurement of the 11C production rate by looking at the time profile of the 11C candidates.
III. EXPERIMENTAL SETUP

CTF [8] is the Borexino prototype detector installed at the Gran Sasso underground laboratory. It was designed to test the required radiopurity of the Borexino liquid scintillator and its purification strategy. The CTF of Borexino was the first detector to prove the level of purities needed for solar neutrino physics on a multiton-scale, in its 1994-95 campaign [9]. The active detector consists of 3.73 tons (0.88 ton/m^3 density) of the Borexino-like scintillator, a mixture of pseudocumene (PC, 1,2,4-trimethylbenzene, C_15H_{11}NO), plus 1.5 g/l of PPO (2,5-diphenyloxazole, C_{15}H_{11}NO), housed in a 1 m radius transparent nylon vessel. A 7 m diameter stainless steel open structure supports 100 8” photomultiplier tubes (PMT) equipped with light concentrators which provide an optical coverage of 21%.

The detector is housed within a cylindrical tank (11 m diameter and 10 m height) containing 1000 tons of pure water, which provides 4.5 m shielding against neutrons from the rock and 10 m height) containing 1000 tons of pure water, which provides 4.5 m shielding against neutrons from the rock and external γ-rays from the rock and from the same PMTs. 16 upward-looking PMTs mounted on the bottom of the tank veto muons by detecting the Čerenkov light in water (muon veto system). The veto efficiency is larger than 99.7% for muon shower events with energy > 4 MeV.

A set of analog to digital (ADC) and time to digital (TDC) converters records the charge and time of the PMT pulses for each event. During the acquisition, a second identical electronic chain is sensitive to the next event occurring within the following 8.3 ms. The electronics can therefore detect pairs of fast time-correlated events. The coincidence time between the two chains is measured by means of a long range TDC. Further events are ignored until the first chain is “re-armed” (∼ 20 ms). For longer delays the computer clock is used providing an accuracy of ∼ 50 ms.

The trigger condition is set by requiring the signal of 6 PMTs over threshold within a time window of 30 ns. The corresponding energy threshold is ∼ 20 keV with 50% detection efficiency, while 99% efficiency is reached above 90 keV. The trigger for the second chain is set at a higher value, corresponding to 200 keV (99% efficiency).

The electronic can be also triggered by the so-called after-pulses which are spurious pulses following genuine PMT output pulse. To avoid such effect, the second chain is vetoed for 20 µs after an event tagged by the muon veto system. The energy response of the detector is calibrated run-by-run by using the energy spectrum of ^14C decays, naturally present in the scintillator. The measured light yield is ∼ 3.6 photo-electrons per PMT for 1 MeV electrons. The electronics saturate at about 6 MeV.

The position of the interaction vertex is reconstructed by means of a maximum likelihood method exploiting the hit time distribution. The reconstruction algorithm, calibrated by inserting a ^222Rn source in the active volume, provides a resolution of 10 cm at 1 MeV.

IV. DATA SELECTION

The residual cosmic muon flux at Gran Sasso depth (3800 m.w.e. maximum depth, 3,200 m.w.e. slant depth) has a rate of 1.2 m^{-2} h^{-1} and an average energy of ⟨E_µ⟩ = 320 ± 4_{stat} ± 11_{sys} GeV [12]. The requirements in the selection of cosmic muons are two-fold: they must be tagged by the muon veto and they must saturate the electronics. Cosmic muons, crossing the scintillator, produce enough light to blind the detector.

For each detected muon, we select the following event in the time window T_n = [20, 2000] µs as a candidate event for a neutron capture γ. The probability that a random event (R = 0.04 s^{-1} rate) is detected instead of the 2.2 MeV γ has an upper limit equal to T_n × R ∼ 8 × 10^{-5}. We measured the mean capture time of neutrons on protons equal to 257 ± 27 µs, taking into account also events with double neutron emission.

For each muon-gamma coincidence, ^11C candidates are selected in a subsequent time window T_w = 300 min, 10 times the ^11C mean life.

Random coincidences collected in this window are mainly ^210Bi (Q_β=1.16 MeV) and ^40K (Q_β=1.32 MeV BR=0.893 and Q_{EC}=1.51 MeV BR=0.107) contamination and external γ radiation, while ^214Bi (Q_β=3.27 MeV) events are discarded through the 214Bi-Po coincidence.

The time profile of the background is expected to be flat on the scale of 300 minute since the background rate is constant and random coincidences are not correlated with cosmic muons. The only bias is introduced by the end of the data run (typically lasting 2-3 days) which interrupts 8% of the selection windows. In such cases the window is completed to 300 min, 10 times the ^11C mean life.

The definition of the optimal energy range of observation, 1.15-2.25 MeV, to detect the ^11C decays, depends on two main requirements: the enhancement of the signal (^11C decays) to background (random events) ratio and the minimization of the systematic errors introduced by the energy scale uncertainty.

In case γ’s from the positron annihilation escape the vessel and deposit energy in the water buffer, the detected energy of the ^11C decay falls below the observation range. Defining a 0.8 m radius fiducial volume, we reduce non-contained events by a factor 20. Further, the radial cut avoids distorting optical

FIG. 2: Overview of the CTF detector and of the physical processes included in the simulation.
effects on the border like the total reflection due to the different refractive indexes of the scintillator and the buffer.

The last applied cut exploits the spatial correlation between the 11C and the neutron capture points. The events are in fact selected in a sphere of radius r centered on the reconstructed $2.2MeV\gamma$: for $r = 35$ cm the background is suppressed by a factor larger than 20 while the signal is reduced only by a factor ~ 2.

The efficiencies and optimal parameters of the cuts here discussed have been quoted via the Monte Carlo simulation described in the next section.

V. THE MONTE CARLO SIMULATION

An accurate quantification of the cut efficiencies requires a full simulation of the 11C production process from the muon-induced showers originated in the rock to the neutron capture and to the 11C decay.

The Monte Carlo has been developed in two main steps. First we generated and tracked muons and the subsequent cascades with a FLUKA-based code [13]. The code simulates a 320 GeV muon-beam, downward oriented and uniformly distributed over the entire CTF water tank. At this step, the geometry is simplified to only four volumes: 4 m of rocks (CaCO$_3$ and MgCO$_3$) [14], the air, the water of the CTF tank and finally the scintillator as shown in Figure 2. The purpose of the FLUKA-based simulation code is the generation of neutrons in scintillator and their propagation in the whole detector.

In the second step, an ad hoc code, named CTF code [13, 17], generates, tracks and reconstructs 11C decays and $2.2MeV\gamma$’s from the neutron capture. The coordinates of the neutron production (\vec{P}_n) and capture (\vec{P}_c) points from the FLUKA output are input parameters in the CTF code: \vec{P}_p corresponds to the origin of the 11C-decay while \vec{P}_c is assumed as the starting position of the $2.2MeV\gamma$ produced in the neutron capture on hydrogen.

The CTF code simulates in detail the detector geometry including the nylon vessel and the phototubes. Each energy deposit is converted into optical photons which are propagated inside the detector until they are absorbed in the detector material or detected on the PMT’s.

The tracking code provides a detailed simulation of the main optical processes like the scintillation light production, the absorption and reemission processes in the scintillator and diffusion on the nylon vessel.

After all, the same reconstruction code used in the real data introduces the energy and spatial resolution effects on the simulated ones. The final 11C radial and energy spectra are shown in Figure 3.

The simulated neutron capture mean time, 254 ± 1 μs, is in good agreement with the measured one, 257 ± 27 μs.

Secondary particles generating a 11C event without triggering the muon veto have been investigated. From the simulation, we expect mainly γ’s (91.8%) and e^+e^- pairs (8.1%). Their contribution to the invisible 11C production rate has been estimated in less than 5×10^{-4} day$^{-1}$ (99.99% C.L.) by convoluting their rates with the 11C production cross sections [7].

The main inefficiency in the measurement is due to neutrons escaping the vessel. If the neutron, indeed, is captured in water and the subsequent γ does not deposit energy in scintillator, the $\mu - \gamma_{2.2MeV}$ coincidence is not triggered and the signal is lost. Neutrons escaping the 1 m CTF vessel account for 26.8%. For $\sim 50\%$ of the fully contained neutrons, the associated 11C event falls in a 35 cm radius sphere centered on the reconstructed $2.2MeV\gamma$, as shown in Figure 4.

All the cut efficiencies are quoted in Table I.

VI. THE DATA ANALYSIS

The analyzed data set corresponds to an effective detector live time of 611 days (June 2002, February 2005).
The time profile of the data sample selected by the three-fold coincidence technique, shown in Figure 5, is fitted with:

\[P(t) = \frac{A}{\tau} e^{-\frac{t}{\tau}} + b, \tag{3} \]

where the free variables in the fit, \(A \) and \(\tau \), are the number of \(^{11}C \) nuclei and the \(^{11}C \) mean life, respectively. The fit finds \(\tau = 27 \pm 11 \text{ min} \) (\(A = 53 \pm 13 \), \(b \times T_w = 166 \pm 17 \) and \(\chi^2/\text{d.o.f.} = 9.7/12 \)) in agreement with the nominal value (29.4 min), proving the robustness of the three-fold coincidence technique. Moreover, if the 300 min window is started independently from the \(\mu^{-}\gamma_{2.2\text{MeV}} \) coincidence, the fit is unable to identify any feature compatible with a decay function.

Performing the fit with \(\tau \) fixed to the nominal value, the \(^{11}C \) production rate is computed from:

\[R(11C) = \frac{A}{3 \pi r^3 \rho T} \cdot \frac{1}{\varepsilon_{\text{vis}} \cdot \varepsilon_{\text{end}} \cdot \varepsilon_{\text{c}} \cdot \varepsilon_{\text{escape}}}, \tag{4} \]

where \(A \) is the selected volume radius (0.8 m), \(\rho \) the scintillator density (0.88 g/cm\(^3\)) and \(T \) the detector live time (611 days). All the efficiencies in Eq (4) are reported in Table II.

The systematic error has been derived by propagating the uncertainties of the reconstruction position (\(\sim 1.5\% \)) and of the light yield (\(\sim 8.5\% \)) in Eq (3). The systematics takes also into account the stability of the result when the cut parameters vary around the optimal values.

The analysis measured rate is in good agreement with the expected one from the CERN experiment: \(0.146 \pm 0.015 \text{ day}^{-1} \text{ ton}^{-1} \).

VII. DISCUSSION

The success of the three-fold coincidence technique in selecting \(^{11}C\) events and in evaluating correctly their production rate is promising in prospective of deep underground liquid scintillator detectors.

The expected rates for \(\text{pep} \) and \(\text{CNO} \) neutrinos in Borexino are 0.021 and 0.035 day\(^{-1} \text{ ton}^{-1} \) (BP2004+LMA+LUNA [18, 13, 20]), respectively. In the energy range of observation [0.8,1.3] MeV, beyond the \(^{7}\text{Be}-\nu \) electron recoil energy spectrum, the \(\text{pep}+\text{CNO} \) signal, \(S_{\nu} \), is reduced to 0.015 day\(^{-1} \text{ ton}^{-1} \). In the same window, the expected contamination from \(^{11}C \) is then about 5 times higher (\(S_{\nu} = 0.074 \pm 0.008 \text{ day}^{-1} \text{ ton}^{-1} \)).

A second background contribution arises from the trace contaminants in the scintillator mixture. Assuming for the \(^{238}\text{U}\) and \(^{232}\text{Th}\) a concentration level of \(10^{-7} \text{g/g} \) and \(10^{-15} \text{g/g} \) for the \(\text{nat} \) K, the non-cosmogenic contaminants, \(B_{\text{n.c.}} \), contribute to the \(\text{pep}+\text{CNO} \) window with 0.006 day\(^{-1} \text{ ton}^{-1} \).

In order to reach a signal-to-background ratio equal to 1, the detection efficiency of Borexino must be larger than \(1 - S_{\nu}/(B_{\text{11C}}+B_{\text{n.c.}}) = 0.81 \). The detection efficiency is limited by the physics \(^{11}C(X,Y)^{13}C \) invisible channels), by the detector itself (low energy threshold and dead time between sequential triggers) and by the software cuts in time and space around the neutron capture \(\gamma \)'s. Since, in fact, the three fold coincidence does not identify the single \(^{11}C\) decay but localizes it in a spherical volume \(V_{11C} \), the entire volume \(V_{11C} \) must be discarded for a time equivalent to few \(^{11}C\) lifetimes. Thus, the main challenge will be the minimization of the detector mass-time fraction loss.

Assuming a neutron rate of \(1.5 \times 10^{-2} \mu^{-1} \text{ m}^{-1} \) \([7, 21]\), we estimate that, even including the trace contamination, Borexino can reach a signal-to-background ratio equals to 1, loossing only 14% of the data \([7, 22]\). The optimal cuts and the relative efficiencies expected for Borexino are quoted in Table II.

Furthermore, the Borexino collaboration is investigating the possibility to improve the three-fold coincidence technique by exploiting the muon track: the reconstruction of the muon track leads, in fact, to the definition of a cylindrical volume around the track itself. Intersecting the cylindrical volume with the spherical one centered on the \(2.2\text{MeV} \gamma \), Borexino can efficiently remove \(^{11}C\) events while reducing significantly the fraction of data loss.

TABLE I: Efficiencies for the \(^{11}C\) production rate measurement in CTF.

Efficiency Reason	Value
\(\varepsilon_{\text{vis}} \)	\(0.955 \)
\(\varepsilon_{\text{end}} \)	\(0.990 \)
\(\varepsilon_{\text{d}} \)	\(0.925 \)
\(\varepsilon_{\text{escape}} \)	\(0.732 \)
\(\varepsilon_{c} \)	\(0.563 \)
\(\varepsilon_{c} \)	\(0.360 \)

production rate is computed from:

\[R(\text{11C}) = \frac{A}{3 \pi r^3 \rho T} \cdot \frac{1}{\varepsilon_{\text{vis}} \cdot \varepsilon_{\text{end}} \cdot \varepsilon_{\text{d}} \cdot \varepsilon_{\text{escape}} \cdot \varepsilon_{c}}, \tag{4} \]
VIII. CONCLUDING REMARKS

In this paper we presented the results of the cosmogenic 11C measurement based on the three-fold coincidence technique with the Borexino Counting Test Facility. For the first time, deep underground 11C production has been detected in situ event by event. The agreement between the measured 11C production rate observed in CTF and the value extrapolated from the measurement performed at the NA54 CERN facility in a muon on target experiment [10], demonstrated that the three-fold coincidence technique is a powerful tool for isolating and discriminating the 11C background.

The results also indicate an agreement with the theoretical calculation in [7]. When combined with the prediction that the overall rate of 11C produced without free neutrons in the final state is limited at 4.5%, this observation indicated that Borexino should be able to minimize the 11C background at a level compatible with the observation of pep neutrinos.

In prospective of Borexino, such result opens a new window in pep and CNO neutrino spectroscopy.

IX. ACKNOWLEDGEMENTS

We thank D. Motta and E. Resconi for the useful discussions and comments and I. Manno, L. Cadonati, M. Goeger-Neff, A. Sonnenschein, A. Di Credico and G. Testera for their past contributions.

This work has been supported in part by the Istituto Nazionale di Fisica Nucleare, the Deutsche Forschungsgemeinschaft (DFG, Sonderforschungsbereich 375), the German Bundesminister für Bildung und Forschung (BMBF), the Maier-Leibnitz-Laboratorium (Munich), the Virtual Institute for Dark Matter and Neutrino Physics (VIDMAN, HGF) and the U.S. National Science Foundation under grants PHY-0201141, PHY-9972127 and PHY-0501118.

[1] Homestake Collaboration, B. T. Cleveland et al., Astrophys. J. 496, 505 (1998); SAGE Collaboration, J. N. Abdurashitov et al., J. Exp. Theor. Phys. 95, 181 (2002); GNO Collaboration, M. Altmann et al., Phys. Lett. B 616, 174 (2005); T. Nakaya [Super-Kamiokande Collaboration], eConf C020620, SAA'T01 (2002); SNO Collaboration, Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002); SNO Collaboration, Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011302 (2002).
[2] KamLAND Collaboration, K. Eguchi et al., Phys. Rev. Lett. 90, 21802 (2003).
[3] J. N. Bahcall and M. H. Pinsonneault, Rev. Mod. Phys. 64, 885 (1992).
[4] J. N. Bahcall and C. Peña-Garay, New J. Phys., 6, 63 (2004).
[5] G. Intriligator et al., [astro-ph/0403071] (2005).
[6] M. Deutsch, Proposal for a Cosmic Ray Detection System for the Borexino Solar Neutrino Experiment, Massachusetts Institute of Technology, 1996.
[7] C. Galbiati et al., Phys. Rev. C 71, 055805 (2005).
[8] Borexino Collaboration, G. Alimonti et al., Nucl. Instr. Meth. A 406, 411 (1998).
[9] Borexino Collaboration, G. Alimonti et al., Astropart. Phys., 8, 141 (1998).
[10] T. Hagner et al., Astropart. Phys., 14, 33 (2000).
[11] Borexino Collaboration, G. Alimonti et al., Astropart. Phys. 16, 205 (2002).
[12] MACRO Collaboration, M. Ambrosio et al., Astropart. Phys. 10, 11 (1999); MACRO Collaboration, M. Ambrosio et al., Astropart. Phys. 19, 313 (2003);
[13] A. Fassò et al., Electron-photon transport in FLUKA: Status, Proceedings of the MonteCarlo 2000 Conference, Lisbon, October 23-26 2000; A. Kling, F. Barao, M. Nakagawa, L. Tavora and P. Vaz eds., Springer-Verlag Berlin, p. 159 (2001); A. Fassò et al., FLUKA: Status and Prospective for Hadronic Applications, Proceedings of the MonteCarlo 2000 Conference, Lisbon, October 23-26 2000; A. Kling, F. Barao, M. Nakagawa, L. Tavora and P. Vaz eds., Springer-Verlag Berlin, p. 955 (2001).
[14] P.G. Catalano et al., Mem. Soc. Geol. It., 35 647 (1986).
[15] D. Franco The Borexino Experiment: Test of the Purification Systems and Data Analysis in the Counting Test Facility, Ph.D. Thesis, Università degli Studi di Milano and University of Heidelberg, 2005, [http://www.ub.uni-heidelberg.de/archiv/5403].
[16] D. D’Angelo Toward the detection of low energy solar neutrinos in Borexino: data readout, data reconstruction and background identification, Ph.D. Thesis, Technische Universität München, 2005.
[17] Borexino Collaboration, G. Alimonti et al., Nucl. Instr. Meth. A, 440, 360 (2002).
[18] J. N. Bahcall and M. H. Pinsonneault, Phys. Rev. Lett. 92, 121301 (2004).
[19] A. Formicola et al., Phys. Lett. B 591, 61 (2004).
[20] J. N. Bahcall and C. Peña-Garay, JHEP 0311004, (2003).
[21] LVD Collaboration, M. Aglietta et al., Proc. 26th Inter. Cosmic Ray Conf., Vol. 2, 44 (1999), [hep-ex/9905047].
[22] D. Franco for the Borexino Collaboration, Nucl. Phys. Proc. Suppl. 145, 29 (2005).
[23] M. Chen, Muon Veto Supplement Proposal for the Borexino Experiment, editor. National Science Foundation Princeton University, Apr 1998.