Nested Radiative Seesaw Masses for Dark Matter and Neutrinos

Talal Ahmed Chowdhury
Department of Physics, University of Dhaka, P.O. Box 1000, Dhaka, Bangladesh

Shaaban Khalil
Center for Fundamental Physics, Zewail City of Science and Technology, 6 October City, Giza 12588, Egypt

Ernest Ma
Department of Physics and Astronomy, University of California, Riverside, California 92521, USA

Abstract

The scotogenic model of neutrino mass is modified so that the dark Majorana fermion singlet S which makes the neutrino massive is itself generated in one loop. This is accomplished by having Z_6 lepton symmetry softly broken to Z_2 in the scalar sector by a unique quadratic term. It is shown that S is a viable freeze-in dark-matter candidate through Higgs decay.
Introduction: The origin of neutrino mass [1] may be dark matter [2]. A one-loop radiative mechanism [3] is the possible connection, known now widely as the scotogenic model. They may also be indirectly related through lepton parity [4] or lepton number [5]. There are many variants of this basic idea. Here it is proposed that the dark-matter mass itself is also radiative [6]. This scenario is very suitable for freeze-in light dark matter [7] through Higgs decay [8]. It arises as the result of softly broken lepton symmetry and serves as a comprehensive framework for understanding neutrinos and dark matter as belonging in the same category of fundamental particles.

To implement this idea, a heavy right-handed neutrino N is assumed, but it is prevented from coupling directly to the left-handed neutrino ν by a symmetry. Nevertheless, both ν and N couple to the dark fermion S. The imposed symmetry is then softly broken so that S gets a radiative mass from N, and ν pairs up with N in one loop through S. This scenario is very suitable for the freeze-in mechanism where the dark matter interacts very weakly and slowly builds up its relic abundance, from the decay of a massive particle, in this case the Higgs boson of the Standard Model (SM), before the latter itself goes out of thermal equilibrium. The direct detection of dark matter in underground experiments then becomes very difficult, which is consistent with the mostly null results obtained so far.

It is well-known that baryon number B and lepton number L are automatically conserved in the standard model (SM) of particle interactions in the case of massless ν. The simplest way for it to become massive is to add a singlet right-handed fermion N_R, then they pair up through the term $\bar{N}_R(\nu_L\phi^0 - e_L\phi^+)$, where $\Phi = (\phi^+, \phi^0)$ is the SM Higgs scalar doublet. This renders the neutrino a Dirac mass from the vacuum expectation value $\langle \phi^0 \rangle = v$, and N_R is naturally assigned $L = 1$. On the other hand, gauge invariance also allows the N_RN_R Majorana mass term, hence L naturally breaks to $(-1)^L$ and a seesaw mass for ν_L is obtained. In this paper, we assume L to be an input symmetry of the Lagrangian, so that other choices
of \(L \) for \(N_R \) are also possible \[9\]. In particular, a \(Z_6 \) symmetry is softly broken to \(Z_2 \).

Model: Each family of the SM is extended to include a right-handed fermion singlet \(N_R \) and a left-handed fermion singlet \(S_L \). The scalar sector consists of the SM Higgs doublet \(\Phi \) and a second doublet \(\eta = (\eta^+, \eta^0) \) together with a neutral singlet \(\chi^0 \). The discrete symmetry \(Z_6 \) is imposed on these fields as shown in Table 1, and is respected by all dimension-four terms of the Lagrangian. It is softly broken by the quadratic scalar mass term \(\chi^0 \chi^0 \), resulting in a radiative mass for \(S_L \), which then induces a radiative Majorana mass for \(\nu \). A residual \(Z_2 \) discrete symmetry \(D = (-1)^{L+2j} \) remains \[4\], where \(j \) is the intrinsic spin of the particle in question.

![Table 1: Particle content of model with \(\omega^6 = 1 \).](image)

The resulting Higgs potential is given by

\[
V = m_1^2 \Phi^\dagger \Phi + m_2^2 \eta^+ \eta + m_3^2 \chi^0 \chi^0 + \frac{1}{2} m_4^2 \chi^0 \chi^0 + H.c.
\]

\[
+ \frac{1}{2} \lambda_1 (\Phi^\dagger \Phi)^2 + \frac{1}{2} \lambda_2 (\eta^+ \eta)^2 + \frac{1}{2} \lambda_3 (\chi^0 \chi^0)^2 + \lambda_{12} (\Phi^\dagger \Phi)(\eta^+ \eta)
\]

\[
+ \lambda_{13} (\Phi^\dagger \Phi)(\chi^0 \chi^0) + \lambda_{23} (\eta^+ \eta)(\chi^0 \chi^0) + \mu \eta^\dagger \Phi \chi^0 + H.c.
\]

Let \(\langle \phi^0 \rangle = v \), then the mass of the Higgs boson \(H \) is given by \(m_H^2 = 2 \lambda_1 v^2 \). Note that the \(Z_6 \) symmetry is respected by all dimension-four terms, but is softly broken to \(Z_2 \) by the \(m_4^2 \) term. Together with the following allowed Yukawa terms,

\[
\mathcal{L} \supset f_\chi \bar{S}_L N_R \chi^0 + f_\eta (\nu_L \eta^0 - e_L \eta^+) S_L + h.c,
\]
the lepton number L may be assigned as shown in Table 1. However, since the $N_R N_R$ Majorana mass term is allowed by Z_6, only lepton parity $(-1)^L$ is strictly conserved, as is dark parity $D = (-1)^{L+2j}$ [4].

Radiative Dark Matter Mass: The fermion singlet N_R has an allowed Majorana mass m_N under Z_6, but S_L is massless at tree level. However, the breaking of Z_6 through the soft quadratic scalar term $\chi^0 \chi^0$ allows S_L to acquire a radiative Majorana mass in one loop, as shown in Fig. 1. The residual symmetry of this model is then Z_2, which may be understood as dark parity derived from lepton parity [4], as shown in Table 1.

![Figure 1: One-loop radiative Majorana mass for the dark fermion S.](image)

Let $\chi^0 = (\chi_R + i\chi_I)/\sqrt{2}$ and $\eta^0 = (\eta_R + i\eta_I)/\sqrt{2}$, then the 2×2 mass-squared matrices spanning (χ_R, η_R) and (χ_I, η_I) are given by

$$
M^2_{R,I} = \begin{pmatrix} m_3^2 + \lambda_{13} v^2 \pm m_4^2 & \mu v \\ \mu v & m_2^2 + \lambda_{12} v^2 \end{pmatrix}.
$$

(3)

This means that the radiative m_S comes from the difference in the contributions of M^2_R and M^2_I. Let (ψ_{R1}, ψ_{R2}) be the mass eigenstates of M^2_R with eigenvalues (m_{R1}^2, m_{R2}^2):

$$
\psi_{R1} = c_R \chi_R + s_R \eta_R, \quad \psi_{R2} = -s_R \chi_R + c_R \eta_R,
$$

(4)

and similarly for M^2_I. Of the 6 parameters $m_{R1}^2, m_{R2}^2, m_{I1}^2, m_{I2}^2, s_R, s_I$, only 4 are independent.

In the limit that m_4^2 is very small, s_I differs from s_R by only a small amount, say

$$
s_I = s_R + \delta, \quad c_I = c_R - \delta(s_R/c_R),
$$

(5)
then
\[m^2_{11} = m^2_{R1} - (\delta/s)R(m^2_{R1} - m^2_{R2}), \quad m^2_{12} = m^2_{R2} - (\delta s/\epsilon_R)(m^2_{R1} - m^2_{R2}). \] (6)

Now the radiative \(m_S \) mass is given by
\[m_S = \frac{f_\chi m_N^2}{32\pi^2} \left[c_R^2 F(m^2_{R1}, m^2_N) - c_i^2 F(m^2_{11}, m^2_N) + s_R^2 F(m^2_{R2}, m^2_N) - s_i^2 F(m^2_{12}, m^2_N) \right] f_T \chi, \] (7)

where \(F(a, b) = a \ln(a/b)/(a - b) \) and \(f_\chi \) is the \(S_L N R \chi^0 \) coupling.

Radiative Neutrino Mass : Since \(S_L \) gets a radiative mass, \(\nu_L \) is now connected to \(N_R \) as shown in Fig. 2. Call this Dirac mass \(m_D \), then the neutrino gets the usual seesaw Majorana mass \(m^2_D/m_N \).

![Figure 2: One-loop radiative Dirac mass linking \(\nu_L \) to \(N_R \).](image)

Since \(m_S \) itself is suppressed by \(m_N^{-1} \) from Fig. 1, \(m_\nu \) gets suppressed by \(m_N^{-3} \) in this case. On the other hand, there is a diagram for Majorana \(m_\nu \) directly as shown in Fig. 3, which is suppressed by only \(m_N^{-1} \).

![Figure 3: Scotogenic Majorana mass for \(\nu \).](image)
The radiative neutrino mass m_{ν} is then generated from m_{S} in exact analogy to m_{S} from m_{N}, i.e.

$$m_{\nu} = \frac{f_{\eta} m_{S}}{32 \pi^{2}} [s_{R}^{2} F(m_{R1}^{2}, m_{S}^{2}) - s_{L}^{2} F(m_{L1}^{2}, m_{S}^{2}) + c_{R}^{2} F(m_{R2}^{2}, m_{S}^{2}) - c_{L}^{2} F(m_{L2}^{2}, m_{S}^{2})] f_{\eta}^{\dagger},$$

$$= f_{\eta} A f_{\eta}^{\dagger},$$

(8)

where f_{η} is the $\nu_{L}S_{L}\eta^{0}$ coupling and A is the diagonal matrix containing the loop functions. Just as m_{S} is a function of $f_{\chi}, s_{L}, \delta, m_{R1}, m_{R2}$, and m_{N}, m_{ν} is a function of $f_{\eta}, s_{L}, \delta, m_{R1}, m_{R2}$, and m_{S}. We explore below the possible parameter space for the dark matter mass m_{S} and the neutrino mass m_{ν}.

The Viable Parameter Space: For a general complex Yukawa f_{χ}, the mass eigenstates for the S fermions with corresponding mass eigenvalues can be determined from Eq. 7 by following the diagonalization procedure of a complex symmetric matrix. For simplicity, we consider the Yukawa matrix to be $f_{\chi} = \text{diag}(1, 1, 1)$, and the lightest fermion S_{1} is considered as the DM candidate. Besides, the masses of $S_{1,2,3}$ depend on the RH neutrino masses $m_{N_{1,2,3}}$ and the scalar masses $m_{R_{1}}, m_{I_{1}}, s_{R}$ and δ. As shown in Fig. 4, the mass of the DM candidate S_{1} increases if the mass splitting between ψ_{R} and ψ_{I} increases, which in turn depends on the larger value of the mass parameter m_{4}, associated with the quadratic scalar mass term that softly breaks Z_{6} to Z_{2}, resulting in the radiative masses for S_{i}.

Besides, the Yukawa matrix f_{η} can be written using the Casas-Ibarra parametrization [10] in the following way,

$$f_{\eta} = U_{\text{PMNS}} \sqrt{\hat{m}} R \sqrt{\Lambda^{-1}}$$

(9)

where U_{PMNS} is the PMNS matrix of neutrino mixing, $\hat{m} = \text{diag}(m_{1}, m_{2}, m_{3})$ shows the neutrino masses, and R is a complex orthogonal matrix whose angles are taken to be real in our case for simplicity. In addition, the Yukawa term involving f_{η} coupling leads to the charged lepton flavor violation (LFV) for our model. We consider the constraints on the
Following charged LFV processes: $\text{Br}(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ [11], $\text{Br}(\tau \rightarrow e\gamma) < 5.6 \times 10^{-8}$ and $\text{Br}(\tau \rightarrow \mu\gamma) < 4.2 \times 10^{-8}$ [12], $\text{Br}(\mu \rightarrow 3e) < 10^{-12}$ [13], $\text{Br}(\tau \rightarrow 3e) < 2.7 \times 10^{-8}$ and $\text{Br}(\tau \rightarrow 3\mu) < 2.1 \times 10^{-8}$ [14], $\mu - e$ conversion in Ti $< 1.7 \times 10^{-12}$ [15] and $\mu - e$ conversion in Au $< 7 \times 10^{-13}$ [16] to determine the viable region of the parameter space with our numerical analysis.

Production of the Dark Fermion S: The dark fermions S can have the effective interaction $f_h S S h$ with the Higgs boson generated at one loop shown in Fig. 5 where the relevant

![Diagram](image_url)
Yukawa coupling f_h is given by

$$f_h = \frac{\lambda_1 v}{32 \pi^2} f_X m_N \left[c_R^2 G(m_R^2, m_N^2) - c_I^2 G(m_I^2, m_N^2) + s_R^2 G(m_{R1}^2, m_N^2) - s_I^2 G(m_{R1}^2, m_N^2) \right] f_X^T, \quad (10)$$

with $G(a, b) = 1/(a - b) - b \ln(a/b)/(a - b)^2$.

Based on this effective interaction between the Higgs and the dark matter candidate S_1, one can consider the freeze-in mechanism [7, 17] to achieve the correct DM relic abundance with the following considerations.

- The reheating temperature has been set as $T_R \ll m_{N1,2,3}, m_{R1,R2}, m_{I1,I2}, m_{\eta^+}$ so that during the gradual increase of the abundance of FIMP, S_1 from an initially negligible value at the early universe (i.e. at T_R) through the decay and scattering from the thermal bath particles, the abundances of N_i, ψ_R and ψ_I are already Boltzmann suppressed as their presence in the thermal bath would lead to excessive relic abundance of S_1 via the processes, controlled by the Yukawa couplings, f_η and f_χ, noted below,

$$S_1 S_1 \leftrightarrow N_i N_j, \psi_R \psi_R, \psi_I \psi_I, \psi_R \psi_I, \eta^+ \eta^-, \nu \nu, l^+ l^- \quad (11)$$

Therefore, T_R is set at the $T_R \sim T_c = 159.5 \text{ GeV}$ [18], which is the Standard Model cross-over temperature.

- Now the relevant processes which contribute to the freeze-in of the DM are the decay of the Higgs into dark fermions, S_1, and the scattering of the SM fermions f and gauge bosons V via Higgs boson at s-channel as follows,

$$h \rightarrow S_1 S_1, \quad f f \rightarrow S_1 S_1, \quad V V \rightarrow S_1 S_1 \quad (12)$$

We calculate the relic abundance following the formalism presented in [19]. We find out that for the DM mass varying from 0.001 GeV to 1 GeV, the required value of the f_h coupling
Figure 6: (left) DM relic abundance with respect to the effective Higgs-DM coupling f_h for different DM masses via the freeze-in mechanism. The horizontal black line represent the observed DM relic abundance, $\Omega h^2 = 0.12 \pm 0.001$ (68% C.L) \cite{20}. (Right) Correlation between the couplings λ_{13} and f_h for fixed DM mass, m_{N_1}, $m_{R_1} - m_{I_1}$, s_R and δ.

is 2×10^{-10} to 8×10^{-12}, respectively, as seen from Fig. 6 (left). Besides, we can see from Fig. 6 (right) that for a fixed value of the DM mass or in other words for fixed values of m_{N_1}, $m_{R_1} - m_{I_1}$, s_R and δ, one can adjust the value of the scalar coupling λ_{13} to achieve the f_h value for the correct relic abundance.

Conclusion: In this work, we address a modification of the scotogenic model of neutrino mass where the mass of the fermionic dark matter itself is radiatively generated in one loop. We determine the viable parameter space which satisfies the current limits on the charged lepton flavor violating processes. Within that parameter space, we then calculate the DM relic abundance in the freeze-in mechanism through the decay of the Higgs boson and the $2 \rightarrow 2$ scatterings of SM fermions and gauge bosons into DM pairs. We find that for the light DM in our model with mass ranging from $m_{S_1} = 0.001$ GeV to $m_{S_1} = 1$ GeV, the required effective coupling f_h between the Higgs and the DM generated at one-loop has to be from $f_h = 2 \times 10^{-10}$ to $f_h = 8 \times 10^{-12}$ respectively, to obtain the correct relic abundance. Increasing the value of the DM mass thus requires smaller value of f_h. Furthermore, we
observe that such loop-suppressed small values of the effective coupling f_h can be achieved for the DM mass range, $m_{S_1} = 0.001 - 1$ GeV by adjusting the scalar quartic coupling λ_{13}, which turns out to be relatively larger than the f_h and within the range $O(10^{-8} - 10^{-6})$.

Acknowledgement: The work of E.M. was supported in part by the U. S. Department of Energy Grant No. DE-SC0008541. Also, S.K. acknowledges support from Science, Technology & Innovation Funding Authority (STDF) Egypt, under grant number 37272.

References

[1] See for example A. de Gouvea, Ann. Rev. Nucl. Part. Sci. 66, 197 (2016).

[2] See for example B.-L. Young, Front. Phys. 12, 121201, 121202 (2017).

[3] E. Ma, Phys. Rev. D73, 077301 (2006).

[4] E. Ma, Phys. Rev. Lett. 115, 011801 (2015).

[5] E. Ma, Phys. Lett. B809, 135736 (2020).

[6] E. Ma and V. De Romeri, Phys. Rev. D104, 055004 (2021).

[7] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, JHEP 1003, 080 (2010).

[8] E. Ma, LHEP 2 (1) 103 (2019) [arXiv:1810.06506 [hep-ph]].

[9] E. Ma, Mod. Phys. Lett. A32, 173007 (2017).

[10] J. A. Casas and A. Ibarra, Nucl. Phys. B 618 (2001), 171-204

[11] A. M. Baldini et al. [MEG], Eur. Phys. J. C 76 (2016) no.8, 434

[12] A. Abdesselam et al. [Belle], JHEP 10 (2021), 19
[13] U. Bellgardt et al. [SINDRUM], Nucl. Phys. B 299 (1988), 1-6

[14] K. Hayasaka, K. Inami, Y. Miyazaki, K. Arinstein, V. Aulchenko, T. Aushev, A. M. Bakich, A. Bay, K. Belous and V. Bhardwaj, et al. Phys. Lett. B 687 (2010), 139-143

[15] J. Kaulard et al. [SINDRUM II], Phys. Lett. B 422 (1998), 334-338

[16] W. H. Bertl et al. [SINDRUM II], Eur. Phys. J. C 47 (2006), 337-346

[17] J. McDonald, Phys. Rev. Lett. 88 (2002), 091304

[18] M. D’Onofrio and K. Rummukainen, Phys. Rev. D 93 (2016) no.2, 025003

[19] G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, Comput. Phys. Commun. 231 (2018), 173-186

[20] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 [erratum: Astron. Astrophys. 652 (2021), C4]