COMPLETE LIFTING OF DOUBLE-LINEAR SEMI-BASIC TANGENT VALUED FORMS TO WEIL LIKE FUNCTORS ON DOUBLE VECTOR BUNDLES

WLODZIMIERZ M. MIKULSKI

Abstract. Let F be a product preserving gauge bundle functor on double vector bundles. We introduce the complete lifting $\mathcal{F}\varphi : FK \to \wedge^p T^*FM \otimes TFK$ of a double-linear semi-basic tangent valued p-form $\varphi : K \to \wedge^p T^*M \otimes TK$ on a double vector bundle K with base M. We prove that this complete lifting preserves the Frolicher–Nijenhuis bracket. We apply the results obtained to double-linear connections.

1. Introduction

We assume that any manifold considered in the paper is Hausdorff, second countable, finite dimensional, without boundary and smooth (i.e. of class C^∞). All maps between manifolds are assumed to be smooth (of class C^∞).

Definition 1.1. An almost double vector bundle is a system $K = (K_r, K_l, E_r, E_l)$ of vector bundles $K_r = (K, \tau_r, E_r), K_l = (K, \tau_l, E_l), E_r = (E_r, \tau_l, M)$ and $E_l = (E_l, \tau_r, M)$ such that $\tau_l \circ \tau_r = \tau_r \circ \tau_l$ (this means that the respective diagram is commutative). We call M the basis of K.

If $K' = (K'_r, K'_l, E'_r, E'_l)$ is another almost double vector bundle, an almost double vector bundle map $K \to K'$ is a map $f : K \to K'$ such that there are maps $f_r : E_r \to E'_r, f_l : E_l \to E'_l$ and $f : M \to M'$ such that $(f, f_r) : K_r \to K'_r, (f, f_l) : K_l \to K'_l, (f_r, f) : E_r \to E'_r$ and $(f_l, f) : E_l \to E'_l$ are vector bundle maps. We call $f : M \to M'$ the base map of f.

For example, we have the trivial almost double vector bundle $K = (K_r, K_l, E_r, E_l)$, where $K_l = (R^{m_1} \times R^{m_2}, \tau_r, R^{m_1} \times R^{n_2}, \tau_l, R^{n_1} \times R^{m_1} \times R^{n_1}), K_r = (R^{m_1} \times R^{m_2} \times R^{n_1} \times R^{m_2}, \tau_r, R^{m_1} \times R^{m_2}), E_r = (R^{m_1} \times R^{m_2}, \tau_l, R^{m_1})$ and $E_l = (R^{m_1} \times R^{n_1}, \tau_r, R^{m_1})$, and where $\tau_r, \tau_l, \tau_l, \tau_r$ are the obvious projections. We will denote this trivial almost double vector bundle by R^{m_1,m_2,n_1,n_2}.

Definition 1.2. A double vector bundle is a locally trivial almost double vector bundle K. This means that there are nonnegative integers m_1, m_2, n_1, n_2 such

2020 Mathematics Subject Classification. 58A20, 53A55.

Key words and phrases. double vector bundle, double-linear semi-basic tangent valued p-form, complete lifting, product preserving gauge bundle functor.
that for any \(x \in M \) there is an open neighborhood \(\Omega \subset M \) of \(x \) such that \(K|_\Omega = R^{m_1,m_2,n_1,n_2} \) modulo an almost double vector bundle isomorphism.

The tangent bundle
\[
TE = ((TE, \pi^{TE}, E), (TE, T\pi, TM), (E, \pi, M), (TM, \pi^{TM}, M))
\]
of a vector bundle \(E = (E, \pi, M) \) is an example of a double vector bundle.

Any manifold \(M \) can be treated as the double vector bundle \(\mathbf{M} \) with basis \(\mathbf{M} \).

Definition 1.3. Let \(K \) be a double vector bundle as above. A **double-linear vector field** on \(K \) is a vector field \(Z \) on \(K \) such that the flow of \(Z \) is formed by (local) double vector bundle isomorphisms.

Any double linear vector field \(Z \) on \(K \) is projectable with respect to the (common) projection \(K \to M \). Thus we have the underlying vector field \(Z \) on \(M \).

Definition 1.4. Let \(K \) be a double vector bundle as above with basis \(\mathbf{M} \). A **double-linear semi-basic tangent valued \(p \)-form** on \(K \) is a section \(\varphi : K \to \pi^{TM} \otimes TK \) such that \(\varphi(X_1, \ldots, X_p) \) is a double linear vector field on \(K \) for any vector fields \(X_1, \ldots, X_p \) on the basis \(\mathbf{M} \) of \(K \).

Definition 1.5. Let \(K \) be as above. A **double-linear connection** in \(K \) is a double-linear semi-basic tangent valued 1-form \(\Gamma : K \to T^*M \otimes TK \) on \(K \) such that the underlying vector field of \(\Gamma(X) \) is equal to \(X \) for any vector field \(X \) on basis \(\mathbf{M} \).

Let \(\mathcal{DVB} \) denote the category of all double vector bundles and their almost double vector bundle maps, and let \(\mathcal{FM} \) denote the category of fibered manifolds and fibered maps. (In [14], the notation 2-VB instead of \(\mathcal{DVB} \) is used.)

The general concept of (gauge) bundle functors can be found in [7]. We need the following particular case of it.

Definition 1.6. A **gauge bundle functor** on \(\mathcal{DVB} \) is a covariant functor \(F : \mathcal{DVB} \to \mathcal{FM} \) sending any double vector bundle \(K \) with basis \(\mathbf{M} \) into a fibered manifold \(F(K) \to \mathbf{M} \) over \(\mathbf{M} \), and any double vector bundle map \(f : K \to K' \) with the base map \(f : \mathbf{M} \to \mathbf{M}' \) into a fibered map \(Ff : F(K) \to F(K') \) over \(f : \mathbf{M} \to \mathbf{M}' \), and satisfying the following conditions:

(i) **Localization condition:** For every double vector bundle \(K \) with basis \(\mathbf{M} \) and any open subset \(U \subset \mathbf{M} \) the inclusion map \(i_{K|U} : K|U \to K \) induces a diffeomorphism \(F(i_{K|U}) : F(K|U) \to F(K) \).

(ii) **Regularity condition:** \(F \) transforms smoothly parametrized families of \(\mathcal{DVB} \)-maps into smoothly parametrized families of \(\mathcal{FM} \)-maps.

A gauge bundle functor \(F \) on \(\mathcal{DVB} \) is product preserving (ppgb-functor) if \(F(K_1 \times K_2) = F(K_1) \times F(K_2) \) for any \(\mathcal{DVB} \)-objects \(K_1 \) and \(K_2 \). Product preserving gauge bundle functors can be also called Weil like functors, because the product preserving bundle functors on manifolds are the usual Weil functors.

A simple example of a ppgb-functor on \(\mathcal{DVB} \) is the tangent functor \(T \) sending any \(\mathcal{DVB} \)-object \(K \) into the tangent bundle \(TK \) (over \(\mathbf{M} \)) and any \(\mathcal{DVB} \)-map \(f : K \to K' \) into the tangent map \(Tf : TK \to TK' \).
By [14], the ppgb-functors \(F \) on \(\mathcal{DV}B \) are in bijection with the \(\mathcal{A}^F \)-bilinear maps \(\circ^F : U^F \times V^F \to W^F \), where \(\mathcal{A}^F \) are Weil algebras and \(U^F, V^F, W^F \) are finitely dimensional (over \(\mathbb{R} \)) \(\mathcal{A}^F \)-modules. Moreover, the ppgb-functors \(F \) on \(\mathcal{DV}B \) have values in \(\mathcal{DV}B \). For any such \(F \), if \(K \) is a \(\mathcal{DV}B \)-object with basis \(M \), then \(FK \) is a \(\mathcal{DV}B \)-object with basis \(FM = T^A M \); see [14].

Let \(F \) be a ppgb-functor on \(\mathcal{DV}B \) and let \(\circ^F : U^F \times V^F \to W^F \) be the corresponding \(\mathcal{A}^F \)-bilinear map. Let \(K \) be a \(\mathcal{DV}B \)-object. Then any double-linear vector field \(Z \) on \(K \) can be lifted to the double-linear vector field \(\mathcal{F}Z \) on \(FK \) via \(F \)-prolongation of flow. By [14], for any \(a \in \mathcal{A}^F \) we have the affinor \(\operatorname{aff}(a) : TFK \to TFK \) on \(FK \). We have \(\operatorname{aff}(a_1 a_2) = \operatorname{aff}(a_1) \circ \operatorname{aff}(a_2) \) and \(\operatorname{aff}(1) \) is the identity affinor. If \(f : K \to K_1 \) is a \(\mathcal{DV}B \)-map, then \(TFK \circ \operatorname{aff}(a) = \operatorname{aff}(a) \circ TFK \).

The main result of the paper is the following one (see Theorem 4.5):

Next we study the complete lifting \(\mathcal{F} \). We prove that \(\mathcal{F} \) commutes with the Frolicher–Nijenhuis bracket (see Theorem 5.1) and apply this fact to double-linear connections \(\Gamma : K \to T^* M \otimes TK \) in \(K \) (see Theorem 6.3).

By the local description of double vector bundles, presented in [8], the notion of double vector bundles in the sense of the present paper is equivalent to the one in the book [11]. Product preserving (gauge) bundle functors are studied in [1] [6] [7] [9] [10] [12] [13] [14] [16] [17] [18]. Liftings of vector fields to product preserving (gauge) bundle functors are studied in [5] [10] [14]. Complete lifting of general connections on fibered manifolds to Weil functors is studied in [7]. Complete lifting of semi-basic tangent valued \(p \)-forms on fibered manifolds to Weil functors is studied in [2] [3]. Complete lifting of linear semi-basic tangent valued forms to product preserving gauge bundle functors on vector bundles is studied in [15]. The Frolicher–Nijenhuis bracket on projectable tangent valued forms is studied in [4].

2. PRELIMINARIES

Let \(K \) be a double vector bundle. Let \(M \) be the basis of \(K \) and \(\pi : K \to M \) be the projection.

Lemma 2.1. Let \(Z, Z_1 \) be double-linear vector fields on \(K \), \(\alpha \) a real number and \(f : M \to \mathbb{R} \) a map. Then \(Z + Z_1, \alpha Z, f \circ \pi \cdot Z \) and \([Z, Z_1] \) are double linear vector fields on \(K \).

Proof. Using \(\mathcal{DV}B \)-charts, we may assume \(K = \mathbb{R}^{m_1, m_2, n_1, n_2} \). Let \(x^1, \ldots, x^{m_1}, u^1, \ldots, u^{m_2}, v^1, \ldots, v^{n_1}, w^1, \ldots, w^{n_2} \) be the usual coordinates. A map \(f : K \to K \)
is a \mathcal{VB}-map if and only if it is of the form

$$x^i \circ f = \alpha^i(x), \quad i = 1, \ldots, m_1,$$

$$w^j \circ f = \sum_{j_1 = 1}^{m_2} \beta_{j_1}^j(x) w^{j_1}, \quad j = 1, \ldots, m_2,$$

$$v^k \circ f = \sum_{k_1 = 1}^{n_1} \gamma_{k_1}^k(x) v^{k_1}, \quad k = 1, \ldots, n_1,$$

$$w^l \circ f = \sum_{l_1 = 1}^{n_2} \gamma_{l_1}^l(x) w^{l_1} + \sum_{j_1 = 1}^{m_2} \sum_{k_1 = 1}^{n_1} \sigma_{j_1k_1}^l(x) w^{j_1} v^{k_1}, \quad l = 1, \ldots, n_2,$$

where $x = (x_1, \ldots, x_{m_1})$. Consequently, a vector field Z on K is double linear if and only if it is of the form

$$Z = \sum_{i = 1}^{m_1} a^i(x) \frac{\partial}{\partial x^i} + \sum_{j,j_1 = 1}^{m_2} b_{j_1}^j(x) w^{j_1} \frac{\partial}{\partial w^j} + \sum_{k,k_1 = 1}^{n_1} c_k^k(x) v^k \frac{\partial}{\partial v^k} + \sum_{l,l_1 = 1}^{n_2} e_{l_1}^l(x) w^{l_1} \frac{\partial}{\partial w^l} + \sum_{j_2 = 1}^{m_2} \sum_{k_2 = 1}^{n_1} \sum_{l_2 = 1}^{n_2} f_{j_2k_2}^{l_2}(x) w^{j_2} v^{k_2} \frac{\partial}{\partial w^{l_2}}, \quad (2.1)$$

The lemma is now clear. \Box

Now, we treat K as a fibered manifold over M or (generally) let $\pi : K \to M$ be an arbitrary fibered manifold.

Definition 2.2. A projectable semi-basic tangent valued p-form on K is a section $\varphi : K \to \bigwedge^p T^* M \otimes TK$ such that $\varphi(X_1, \ldots, X_p)$ is a projectable vector field on K.

Given a projectable semi-basic tangent valued p-form $\varphi : K \to \bigwedge^p T^* M \otimes TK$ we have the underlying tangent valued p-form $\varphi : M \to \bigwedge^p T^* M \otimes TM$ on M such that $\varphi(X_1, \ldots, X_p)$ is the underlying vector field of the projectable vector field $\varphi(X_1, \ldots, X_p)$ for any vector fields X_1, \ldots, X_p on M.

The following fact is well known; see e.g. [3][4].

Lemma 2.3. Given a projectable semi-basic tangent-valued p-form $\varphi : K \to \bigwedge^p T^* M \otimes TK$ on K and a projectable semi-basic tangent valued q-form $\psi : K \to \bigwedge^q T^* M \otimes TK$ on K there exists a (unique) projectable semi-basic tangent valued
\((p + q)\)-form \([[\varphi, \psi]] : K \to \wedge^{p+q}T^*M \otimes TK\) on \(K\) such that
\([[\varphi, \psi]](X_1, \ldots, X_{p+q}) = \frac{1}{p!q!} \sum_{\sigma} \text{sgn} \cdot [\varphi(X_{\sigma_1}, \ldots, X_{\sigma_p}), \psi(X_{\sigma(p+1)}, \ldots, X_{\sigma(p+q)})]
+ \frac{-1}{p!(q-1)!} \sum_{\sigma} \text{sgn} \cdot \varphi([\varphi(X_{\sigma_1}, \ldots, X_{\sigma_p}), X_{\sigma(p+1)}], X_{\sigma(p+2)}, \ldots)
+ \frac{(-1)^{pq}}{(p-1)!q!} \sum_{\sigma} \text{sgn} \cdot \varphi([\varphi(X_{\sigma_1}, \ldots, X_{\sigma_q}), X_{\sigma(q+1)}], X_{\sigma(q+2)}, \ldots)
+ \frac{(-1)^{p-1}}{(p-1)!(q-1)!^2} \sum_{\sigma} \text{sgn} \cdot \varphi(\varphi([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3}, \ldots), X_{\sigma(p+2)}, \ldots)
+ \frac{(-1)^{p-1}q}{(p-1)!(q-1)!^2} \sum_{\sigma} \text{sgn} \cdot \varphi(\varphi([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3}, \ldots), X_{\sigma(q+2)}, \ldots)
\end{equation}
for any vector fields \(X_1, \ldots, X_{p+q}\) on \(M\), where sums are over all permutations \(\sigma : \{1, \ldots, p + q\} \to \{1, \ldots, p + q\}\) and \(\text{sgn} \sigma\) is the signum of \(\sigma\).

The underlying tangent valued \((p + q)\)-form of \([[\varphi, \psi]]\) is \([[\varphi, \psi]]\).

Definition 2.4. The bracket \([[–, –]]\) is called the Frolicher–Nijenhuis bracket.

Proposition 2.5. Let \(K\) be a double vector bundle with basis \(M\). Let \(\varphi : K \to \wedge^pT^*M \otimes TK\) be a double-linear (then projectable) semi-basic valued \(p\)-form on \(K\) and let \(\psi : K \to \wedge^qT^*M \otimes TK\) be a double-linear semi-basic tangent valued \(q\)-form on \(K\). Then the Frolicher–Nijenhuis bracket \([[\varphi, \psi]] : K \to \wedge^{p+q}T^*M \otimes TK\) is a double-linear semi-basic tangent valued \((p + q)\)-form on \(K\).

Proof. It follows from formula (2.2), Lemma 2.1 and Definition 1.4 \(\square\)

We end this section with the \(\text{DVB}\)-version of the well-known fact of the simplicity of vector fields.

Lemma 2.6. Let \(Z\) be a double linear vector field on a double vector bundle \(K\) such that the underlying vector field \(Z\) on basis \(M\) is nonzero at a point \(x_o \in M\). Then there exists a local \(\text{DVB}\)-coordinate system \((x^1, \ldots)\) on \(K\) with centrum \(x_o\) such that \(Z = \frac{\partial}{\partial x^1}\).

Proof. The proof is quite similar to that of the manifold case. We may assume that \(K = \mathbb{R}^{m_1, m_2, n_1, n_2}, x_0 = 0\) and \(Z|_0 = \frac{\partial}{\partial x^1}|_0\). Let \(\{\varphi_t\}\) be the flow of \(Z\). Then \(\Phi : K \to K\) given by \(\Phi(x^1, \ldots) = \varphi_{x_1}(0, x^2, \ldots)\) is a local \(\text{DVB}\)-isomorphism sending \(\frac{\partial}{\partial x^1}\) to \(Z\). \(\square\)

3. **On the Complete Lifting of Double-Linear Vector Fields to PPGB-Functors on Double Vector Bundles**

Let \(F : \text{DVB} \to \mathcal{M}\) be a ppgb-functor. We know that \(F : \text{DVB} \to \text{DVB}\). Let \(Z\) be a double-linear vector field on a double vector bundle \(K\).

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)
Definition 3.1. The complete lift of Z to F is the double-linear vector field FZ on FK corresponding to the flow $\{F\varphi_t\}$, where $\{\varphi_t\}$ is the flow of Z.

Lemma 3.2. If $\varphi : K \to K_1$ is a (locally defined) DVB-isomorphism, then $F(\varphi_*Z) = (F\varphi)_*FZ$.

Proof. The flow of φ_*Z is $\{\varphi \circ \varphi_t \circ \varphi^{-1}\}$. Then the flow of $F(\varphi_*Z)$ is $\{F\varphi \circ F\varphi_t \circ (F\varphi)^{-1}\}$. The last flow is the one of $(F\varphi)_*FZ$.

□

Lemma 3.3. If α is a real number, then $F(\alpha Z) = \alpha FZ$. Consequently, $F(\alpha Z + \alpha_1 Z_1) = \alpha FZ + \alpha_1 FZ_1$ for any real numbers α and α_1 and any double linear vector fields Z and Z_1 on K.

Proof. If $\{\varphi_t\}$ is the flow of Z, then $\{\varphi_{\alpha t}\}$ is the flow of αZ. So, $\{F\varphi_{\alpha t}\}$ is the flow of $F(\alpha Z)$ and of αFZ. Hence, F is R-linear because of the homogeneous function theorem and the nonlinear Peetre theorem [7]. □

Let $\diamond^F : U^F \times V^F \to W^F$ be the A^F-bilinear map corresponding to F.

Lemma 3.4. Let Z be a double linear vector field on a double vector bundle K with basis M and let $a \in A^F$. Then $af(a) \circ FZ$ is a double linear vector field on FK.

Proof. We may assume that the underlying vector field Z is nowhere vanishing. Then using DVB-charts and Lemma 2.6 we may assume that $Z = \frac{\partial}{\partial x^1}$ and $K = R^{m_1,n_2,n_1,n_2}$. Then $FK = (A^F)^{m_1} \times (U^F)^{m_2} \times (V^F)^{n_1} \times (W^F)^{n_2}$ and $af(a) \circ FZ$ can be treated as a vector field on $(A^F)^{m_1}$ (and consequently as a double linear vector field on FK).

By Lemma 2.1 if Z and Z_1 are double linear vector fields on K then so is $[Z,Z_1]$.

Proposition 3.5. For any double linear vector fields Z and Z_1 on K and any $a,a_1 \in A^F$ we have

$$[af(a) \circ FZ, af(a_1) \circ FZ_1] = af(aa_1) \circ F([Z,Z_1]).$$

(3.1)

Proof. We may assume that $K = R^{m_1,n_2,n_1,n_2}$, $Z = \frac{\partial}{\partial x^1}$ and $Z_1 = f(x^1,\ldots,x^{m_1})Z_2$, where $Z_2 \in \{\frac{\partial}{\partial x^1},u^j\frac{\partial}{\partial u^1},v^k\frac{\partial}{\partial v^1},w^l\frac{\partial}{\partial w^1},v^j\frac{\partial}{\partial v^1}\}$.

If $Z_2 = \frac{\partial}{\partial v^1}$, then the formula is the well-know one for usual Weil functors on manifolds. For other values of Z_2, using formula 3.2 (below) and the known formula $aFZ(a_1Ff) = aa_1F(Z(f))$ for usual Weil functors on manifolds, we get $[af(a) \circ FZ, af(a_1) \circ F(fZ_2)] = [a \cdot FZ,a_1Ff \cdot FZ_2] = aFZ(a_1Ff) \cdot FZ_2 = aa_1F(Z(f)) \cdot FZ_2 = aa_1 \cdot F(Z(f)Z_2) = af(aa_1) \circ F([Z,Z_1])$. □

Lemma 3.6. Let Z be a double linear vector field on K and let $f : M \to R$ be a map. Then

$$F(f \circ \pi \cdot Z) = Ff \circ F\pi \cdot FZ,$$

(3.2)

where $\pi : K \to M$ is the projection (we treat M as a DVB-object and π as a DVB-map in the obvious way) and $Ff : FM \to FR = A^F$. Here (in the right of the formula) $a \cdot y := af(a)(y)$ for $a \in A^F$ and $y \in TFK$.

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)
Proof. By Lemma 2.1, \(f \circ \pi \cdot Z \) is double linear. So, both sides of (3.2) make sense. By the linearity of \(\mathcal{F} \), we may assume that \(Z \) is not \(\pi \)-vertical. Then by Lemma 2.6, we may assume that \(K = \mathbb{R}^{m_1,m_2,n_1,n_2} \) and \(Z = \frac{\partial}{\partial z} \). Then we may additionally assume that \(K = M \) is a manifold, \(Z \) is a vector field on \(M \) and \(F \) is a Weil functor on manifolds. Then our lemma is the (well known for Weil functors on manifolds) formula \(\mathcal{F}(fZ) = Ff \cdot \mathcal{F}Z \). □

4. On the Complete Lifting of Double-linear Semi-Basic Tangent valued \(p \)-forms to ppgb-functors on Double Vector Bundles

For a moment, let \(F \) be a ppgb-functor (Weil functor) on manifolds. Let \(\omega \in \Omega_p(M) \) be a \(p \)-form on a manifold \(M \). Then \(\omega : TM \times_M \ldots \times_M TM \to \mathbb{R} \) is a fiber skew \(p \)-linear map. Applying \(F \), we get the fiber skew \(p \)-linear (over \(A^F \)) map \(F\omega : FTM \times_{FM} \ldots \times_{FM} FTM \to A^F \) (this is a well-known fact for Weil functors on manifolds). Then applying the exchange isomorphism \(\eta_M : TFM \to FTM \), which is a vector bundle isomorphism (this is also a well-known fact for Weil functors on manifolds), we obtain the \(A^F \)-valued \(p \)-form

\[
\mathcal{F} \omega := F\omega \circ (\eta_M \times \ldots \times \eta_M) : TFM \times_{FM} \ldots \times_{FM} TFM \to A^F
\]

over \(FM \).

Lemma 4.1. \(\mathcal{F} \omega \) is the unique \(A^F \)-valued \(p \)-form on \(FM \) such that

\[
\mathcal{F} \omega(af(a_1) \circ \mathcal{F} X_1, \ldots, af(a_p) \circ \mathcal{F} X_p) = a_1 \cdot \ldots \cdot a_p \cdot F(\omega(X_1, \ldots, X_p)) \tag{4.1}
\]

for any vector fields \(X_1, \ldots, X_p \) on \(M \) and any \(a_1, \ldots, a_p \in A^F \).

Proof. The uniqueness is a consequence of the well-known fact for Weil functors on manifolds that the vector fields \(af(a) \circ \mathcal{F} X \) generate over \(C^\infty(M) \) the vector space \(\mathcal{X}(FM) \). Formula (4.1) follows from the well-known (for Weil functors on manifolds) equalities \(\mathcal{F} X = \eta_M^{-1} \circ \mathcal{F} X \) and \(\eta_M \circ af(a) = a \cdot \eta_M \). □

Definition 4.2. The \(A^F \)-valued \(p \)-form on \(FM \) satisfying (4.1) is called the complete lift of \(\omega \) to \(F \).

For the rest of this section, let \(F : \mathcal{DVB} \to FM \) be a ppgb-functor.

Let \(x^1, \ldots, x^{m_1}, u^1, \ldots, u^{m_2}, v^1, \ldots, v^{n_1}, w^1, \ldots, w^{n_2} \) be the usual coordinates on \(\mathbb{R}^{m_1,m_2,n_1,n_2} \).

Because of the local expression (2.1) of double-linear vector fields and of the Definition 1.4 of double-linear semi-basic tangent valued \(p \)-forms, any double-linear semi-basic tangent valued \(p \)-form \(\varphi \) on \(\mathbb{R}^{m_1,m_2,n_1,n_2} \) is of the form

\[
\varphi = \sum_{i=1}^{m_1} \varphi^i \otimes_{\mathbb{R}} \frac{\partial}{\partial x^i} + \sum_{j,j_1=1}^{m_2} \psi^j_{j_1} \otimes_{\mathbb{R}} w^{j_1} \frac{\partial}{\partial w^j} + \sum_{k,k_1=1}^{n_1} \chi^k_{k_1} \otimes_{\mathbb{R}} u^{k_1} \frac{\partial}{\partial u^k} + \sum_{l,l_1=1}^{n_2} \xi^l_{l_1} \otimes_{\mathbb{R}} w^{l_1} \frac{\partial}{\partial w^l} + \sum_{j=1}^{m_2} \sum_{k=1}^{n_1} \sum_{l=1}^{n_2} \rho_{j,k}^l \otimes_{\mathbb{R}} u^j v^k w^l \frac{\partial}{\partial w^l}.
\]
for unique p-forms \(\varphi^i, \psi^j, \chi^k, \xi^l, \rho^m \) on \(\mathbb{R}^m \), where \((\omega \otimes_{\mathbb{R}} Z)(X_1, \ldots, X_p) := \omega(X_1, \ldots, X_p) \circ \pi \cdot Z \).

For any such \(\varphi \) we define its complete lift \(F\varphi \) by

\[
F\varphi := \sum_{i=1}^{m_1} F\varphi^i \otimes_{A^F} F \frac{\partial}{\partial x^i} + \sum_{j,j_1=1}^{m_2} F\psi^j_{j_1} \otimes_{A^F} F \left(w^{j_1} \frac{\partial}{\partial w^j} \right) \\
+ \sum_{k,k_1=1}^{n_1} F\chi^k_{k_1} \otimes_{A^F} F \left(\psi^{k_1} \frac{\partial}{\partial \psi^k} \right) + \sum_{l,l_1=1}^{n_2} F\xi^l_{l_1} \otimes_{A^F} F \left(\rho^{l_1} \frac{\partial}{\partial \rho^l} \right) \\
+ \sum_{j=1}^{m_2} \sum_{k=1}^{n_1} \sum_{l=1}^{n_2} F\rho^l_{jk} \otimes_{A^F} F \left(w^l v^k \frac{\partial}{\partial w^l} \right) \quad (4.2)
\]

where \((F\omega \otimes_{A^F} FZ)(Y_1, \ldots, Y_p) := F\omega(Y_1, \ldots, Y_p) \circ F\pi \cdot FZ \) for \(Y_1, \ldots, Y_p \in \mathcal{A}(FR_{m_1}) \).

Proposition 4.3. The complete lift \(F\varphi \) as in (4.2) is the unique double-linear semi-basic tangent valued p-form on \(FR_{m_1,m_2,n_1,n_2} \) such that

\[
F\varphi(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) = af(a_1 \cdot \ldots \cdot a_p) \circ F(\varphi(X_1, \ldots, X_p)) \quad (4.3)
\]

for any \(a_1, \ldots, a_p \in A^F \) and any \(X_1, \ldots, X_p \in \mathcal{A}(\mathbb{R}^{m_1}) \).

Proof. The uniqueness is clear because the vector fields \(af(a) \circ FX \) for \(a \in A^F \) and \(X \in \mathcal{A}(\mathbb{R}^{m_1}) \) generate (over \(C^\infty(\mathbb{R}^{m_1}) \)) the vector space \(\mathcal{A}(FR_{m_1}) \). This is a well-known fact for Weil functors on manifolds.

Now, we prove (4.3). Since both sides of (4.3) are linear in \(\varphi \), we may assume that \(\varphi = \omega \otimes_{\mathbb{R}} Z \), where \(\omega \in \Omega^p(\mathbb{R}^{m_1}) \) and \(Z \in \left\{ \frac{\partial}{\partial x^i}, w^1 \frac{\partial}{\partial w^1}, v^k \frac{\partial}{\partial v^k}, w^l \frac{\partial}{\partial w^l}, u^j v^k \frac{\partial}{\partial w^l} \right\} \).

Then by (4.2), (4.1) and (3.2), we have

\[
F\varphi(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) \\
= F(\omega \otimes_{\mathbb{R}} Z)(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) \\
= (F\omega \otimes_{A^F} FZ)(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) \\
= F\omega(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) \circ F\pi \cdot FZ \\
= a_1 \cdot \ldots \cdot a_p \cdot F(\omega(X_1, \ldots, X_p)) \circ F\pi \cdot FZ \\
= a_1 \cdot \ldots \cdot a_p \cdot F(\varphi(X_1, \ldots, X_p)) \\
= af(a_1 \cdot \ldots \cdot a_p) \circ F(\varphi(X_1, \ldots, X_p)). \quad \square
\]

Lemma 4.4. For any (local) double vector bundle isomorphism \(f : \mathbb{R}^{m_1,m_2,n_1,n_2} \rightarrow \mathbb{R}^{m_1,m_2,n_1,n_2} \) and any double-linear semi-basic tangent valued p-form \(\varphi \) on the double vector bundle \(\mathbb{R}^{m_1,m_2,n_1,n_2} \), we have \((Ff)_* F\varphi = F(f_* \varphi) \).

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)
Proof. We have
\[(Ff)\mathcal{F}\varphi(af(a_1) \circ FX_1, \ldots, af(a_p)FX_p)\]
\[= \mathcal{F}\varphi(Ff_s^{-1}(af(a_1) \circ FX_1), \ldots, Ff_s^{-1}(af(a_p) \circ FX_p))\]
\[= \mathcal{F}\varphi(af(a_1) \circ (f_s^{-1}X_1), \ldots, af(a_p) \circ (f_s^{-1}X_p))\]
\[= af(a_1 \cdots a_p) \circ \mathcal{F}(f_s^{-1}X_1, \ldots, f_s^{-1}X_p)\]
\[= af(a_1 \cdots a_p) \circ \mathcal{F}(\varphi(f_s^{-1}X_1, \ldots, f_s^{-1}X_p))\]
\[= af(a_1 \cdots a_p) \circ \mathcal{F}((f_s\varphi)(X_1, \ldots, X_p))\]
\[= \mathcal{F}(f_s\varphi)(af(a_1) \cdot FX_1, \ldots, af(a_p) \cdot FX_p).\]

Now, applying the uniqueness case of Proposition 4.3 (or, better, the sentence of the proof of the uniqueness case of Proposition 4.3) we end the proof. \(\Box\)

We are now in a position to prove the following result.

Theorem 4.5. Let \(F\) be a ppgb-functor on \(DVB\). Let \(\varphi : K \to \wedge^pT^*M \otimes TK\) be a double-linear semi-basic tangent valued \(p\)-form on a double vector bundle \(K\) with basis \(M\). Then there exists one and only one double-linear semi-basic tangent valued \(p\)-form \(\mathcal{F}\varphi : FK \to \wedge^pT^*FM \otimes TFK\) on \(FK\) such that
\[\mathcal{F}\varphi(af(a_1) \circ FX_1, \ldots, af(a_p) \circ FX_p) = af(a_1 \cdots a_p) \circ \mathcal{F}(\varphi(X_1, \ldots, X_p))\] (4.4)
for any vector fields \(X_1, \ldots, X_p\) on \(M\) and any \(a_1, \ldots, a_p \in AF\).

Proof. Using \(DVB\)-charts on \(K\), we spread the complete lifting of double-linear semi-basic tangent valued \(p\)-forms on \(\mathbb{R}^{m_1,m_2,m_1,m_2}\) to the one on \(K\). This is possible because of Lemma 4.4 \(\Box\)

5. THE COMPLETE LIFTING OF DOUBLE-LINEAR SEMI-BASIC TANGENT VALUED \(p\)-FORMS PRESERVES THE FROLICHER–NIJENHUIS BRACKET

Let \(F\) be a ppgb-functor on \(DVB\). Then \(F : DVB \to DVB\).

Let \(\varphi : K \to \wedge^pT^*M \otimes TK\) be a double-linear semi-basic tangent valued \(p\)-form on \(K\) and let \(\psi : K \to \wedge^qT^*M \otimes TK\) be a double-linear semi-basic tangent valued \(q\)-form on \(K\). We can lift \(\varphi\) and \(\psi\) to \(FK\) and obtain a double-linear semi-basic tangent valued \(p\)-form \(\mathcal{F}\varphi\) on \(FK\) and a double-linear semi-basic tangent valued \(q\)-form \(\mathcal{F}\psi\) on \(FK\). Then we can produce the Frolicher–Nijenhuis bracket \([\mathcal{F}\varphi, \mathcal{F}\psi]\). By Proposition 2.5 this bracket is a double-linear semi-basic tangent valued \((p + q)\)-form on \(FK\).

On the other hand, by Proposition 2.5 the Frolicher–Nijenhuis bracket \([\varphi, \psi]\) is a double-linear semi-basic tangent valued \((p + q)\)-form on \(K\). So, we can lift it and obtain a double-linear semi-basic tangent valued \((p + q)\)-form \(\mathcal{F}([[\varphi, \psi]])\) on \(FK\).

Theorem 5.1. We have
\[\mathcal{F}([[\varphi, \psi]]) = [[\mathcal{F}\varphi, \mathcal{F}\psi]].\] (5.1)
Proof. For any \(a_1, \ldots, a_{p+1} \in A^F\) and vector fields \(X_1, \ldots, X_{p+q}\) on \(M\) we have

\[
[\mathcal{F}\varphi(af(a_1) \circ \mathcal{F}X_1, \ldots, af(a_p) \circ \mathcal{F}X_p),
\mathcal{F}\psi(af(a_{p+1}) \circ \mathcal{F}X_{p+1}, \ldots, af(a_{p+q}) \circ \mathcal{F}X_{p+q})] = af(a_1 \cdot \ldots \cdot a_{p+q}) \circ \mathcal{F}([\varphi(X_1, \ldots, X_p), \psi(X_{p+1}, \ldots, X_{p+q})]).
\]

Indeed, applying formulas (4.4) and (3.1) we easily get

\[
[\mathcal{F}\varphi(af(a_1) \circ \mathcal{F}X_1, \ldots, af(a_p) \circ \mathcal{F}X_p),
\mathcal{F}\psi(af(a_{p+1}) \circ \mathcal{F}X_{p+1}, \ldots, af(a_{p+q}) \circ \mathcal{F}X_{p+q})] = [af(a_1 \cdot \ldots \cdot a_{p+q}) \circ \mathcal{F}(\varphi(X_1, \ldots, X_p), \psi(X_{p+1}, \ldots, X_{p+q}))].
\]

Similarly, we have

\[
\mathcal{F}\psi(af(a_1) \circ \mathcal{F}X_1, \ldots, af(a_p) \circ \mathcal{F}X_p),
af(a_{p+2}) \circ \mathcal{F}X_{p+2}, \ldots, af(a_{p+q}) \circ \mathcal{F}X_{p+q}) = af(a_1 \cdot \ldots \cdot a_{p+q}) \circ \mathcal{F}(\psi([\varphi(X_1, \ldots, X_p), X_{p+1}], X_{p+2}, \ldots, X_{p+q})).
\]

and

\[
\mathcal{F}\psi(\mathcal{F}\varphi([af(a_1) \circ \mathcal{F}X_1, af(a_2) \circ \mathcal{F}X_2], af(a_3) \circ \mathcal{F}X_3, \ldots, af(a_{p+1}) \circ \mathcal{F}X_{p+1}),
af(a_{p+2}) \circ \mathcal{F}X_{p+2}, \ldots, af(a_{p+q}) \circ \mathcal{F}X_{p+q}) = af(a_1 \cdot \ldots \cdot a_{p+q}) \circ \mathcal{F}(\psi([\varphi([X_1, X_2], X_3, \ldots, X_{p+1}], X_{p+2}, \ldots, X_{p+q}))).
\]

and the same formulas with \(\varphi\) replaced by \(\psi\) and vice versa, and the same formulas with indices \(1,\ldots,p+q\) replaced by \(\sigma(1),\ldots,\sigma(p+q)\). Now, using the above formulas and formula (4.4) for \([\varphi, \psi]\) instead of \(\varphi\) and formula (2.2) on the Frolicher–Nijenhuis bracket \([[\varphi, \psi]]\) and formula (2.2) with \(\varphi\) and \(\psi\) replaced by \(\mathcal{F}\varphi\) and \(\mathcal{F}\psi\), and the \(\mathbb{R}\)-linearity of the complete lifting of vector fields (Lemma 3.3),
we get
\[
\mathcal{F}([[\varphi, \psi]])(af(a_1) \circ FX_1, \ldots, af(a_{p+q}) \circ FX_{p+q})
= af(a) \circ \mathcal{F}([[\varphi, \psi]](X_1, \ldots, X_{p+q}))
= \frac{1}{p!q!} \sum_{\sigma} \sgn \sigma \cdot af(a) \circ \mathcal{F}([[\varphi(X_{\sigma_1}, \ldots, X_{\sigma_p}), \psi(X_{\sigma(p+1)}, \ldots, X_{\sigma(p+q)})]])
\]
\[
+ \frac{(-1)^{pq}}{(p-1)!q!} \sum_{\sigma} \sgn \sigma \cdot af(a) \circ \mathcal{F}([[\varphi(X_{\sigma_1}, \ldots, X_{\sigma_p}), X_{\sigma(p+1)}, X_{\sigma(p+2)}, \ldots]])
\]
\[
+ \frac{(-1)^{p-1}}{(p-1)!(q-1)!!} \sum_{\sigma} \sgn \sigma \cdot af(a) \circ \mathcal{F}([[\varphi([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3}, \ldots, X_{\sigma(p+2)}, \ldots]])
\]
\[
+ \frac{(-1)^{q-1}}{(p-1)!(q-1)!!} \sum_{\sigma} \sgn \sigma \cdot af(a) \circ \mathcal{F}([[\varphi([X_{\sigma_1}, X_{\sigma_2}], X_{\sigma_3}, \ldots, X_{\sigma(q+2)}, \ldots]])
\]
\[
= \frac{1}{p!q!} \sum_{\sigma} \sgn \sigma \cdot [\mathcal{F} \varphi(af(a_1) \circ FX_1, \ldots), \mathcal{F} \psi(af(a_{p+1}) \circ FX_{p+1}), \ldots]]
\]
\[
+ \frac{(-1)^{pq}}{(p-1)!q!} \sum_{\sigma} \sgn \sigma \cdot \mathcal{F} \psi([[\mathcal{F} \varphi(af(a_1) \circ FX_1, \ldots), af(a_{p+1}) \circ FX_{p+1}], \ldots]]
\]
\[
+ \frac{(-1)^{p-1}}{(p-1)!(q-1)!!} \sum_{\sigma} \sgn \sigma \cdot \mathcal{F} \varphi([[\mathcal{F} \psi(af(a_1) \circ FX_1, \ldots), af(a_{p+1}) \circ FX_{p+1}], \ldots]]
\]
\[
+ \frac{(-1)^{q-1}}{(p-1)!(q-1)!!} \sum_{\sigma} \sgn \sigma \cdot \mathcal{F} \varphi([[\mathcal{F} \psi(af(a_1) \circ FX_1, \ldots), af(a_{p+1}) \circ FX_{p+1}], \ldots]]
\]
\[
= [[\mathcal{F} \varphi, \mathcal{F} \psi]](af(a_1) \circ FX_1, \ldots, af(a_{p+q}) \circ FX_{p+q}),
\]
for any vector fields \(X_1, \ldots, X_{p+q}\) on \(M\) and any \(a_1, \ldots, a_{p+q} \in A^F\), where \(a := a_1 \cdot \ldots \cdot a_{p+q}\). Then, since the vector fields \(af(a) \circ FX\) generate (over \(C^\infty(FM)\)) the space \(\mathcal{X}(FM)\), formula (5.1) holds. \(\square\)

6. An Application to Double-linear General Connections

Let \(F\) be a ppgb-functor on \(DVB\).

In Definition 1.5, we introduced the concept of double-linear connections \(\Gamma\) in a double vector bundle \(K\).

Lemma 6.1. Given a double linear connection \(\Gamma\) in \(K\), its complete lift \(\mathcal{F} \Gamma\) is a double-linear connection in \(FK\).

Proof. Since \(\Gamma(X)\) is a double-linear vector field on \(K\) with the underlying vector field equal to \(X\), we have that \(\mathcal{F} \Gamma(af(a) \circ FX) = af(a) \cdot \mathcal{F}(\Gamma(X))\) is a double-linear vector field with the underlying vector field equal to \(af(a) \circ FX\). Consequently, for any vector field \(Y \in \mathcal{X}(FM)\), \(\mathcal{F} \Gamma(Y)\) is a double linear vector field with the underlying vector field equal to \(Y\). \(\square\)
Definition 6.2. A curvature of a double linear connection Γ in a double vector bundle K is $R_\Gamma := \frac{1}{2}[[\Gamma, \Gamma]] : K \to \wedge^2 T^*M \otimes VK$ (i.e., $R_\Gamma(X, Y) = [\Gamma(X), \Gamma(Y)] - \Gamma([X, Y])$).

Theorem 6.3. We have

$$R_{\mathcal{F}} = \mathcal{F}(R_\Gamma).$$

Proof. It is clear because of $\mathcal{F}([[\Gamma, \Gamma]]) = [[\mathcal{F}\Gamma, \mathcal{F}\Gamma]]$. □

Acknowledgement

I would like to thank the reviewer for his/her suggestion on notions.

References

[1] G. N. Bushueva, Weil functors and product-preserving functors on the category of parameter-dependent manifolds. Russian Math. (Iz. VUZ) 49 (2005), no. 5, 11–18. MR 2186866
[2] A. Cabras and I. Kolář, Prolongation of tangent valued forms to Weil bundles, Arch. Math. (Brno) 31 (1995), no. 2, 139–145. MR 1357981
[3] A. Cabras and I. Kolář, Flow prolongation of some tangent valued forms, Czechoslovak Math. J. 58(133) (2008), no. 2, 493–504. MR 2411105
[4] J. Janyška, Natural operations with projectable tangent valued forms on a fibred manifold, Ann. Mat. Pura Appl. (4) 159 (1991), 171–187. MR 1145096
[5] I. Kolář, On the natural operators on vector fields, Ann. Global Anal. Geom. 6 (1988), no. 2, 109–117. MR 0982760
[6] I. Kolář, Weil bundles as generalized jet spaces, in Handbook of Global Analysis, 625–664, Elsevier Sci. B. V., Amsterdam, 2008. MR 2389643
[7] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993. MR 1202131
[8] K. Konieczna and P. Urbański, Double vector bundles and duality, Arch. Math. (Brno) 35 (1999), no. 1, 59–95. MR 1684522
[9] M. Kureš, Weil modules and gauge bundles, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 1, 271–278. MR 2200783
[10] M. Kureš and W. M. Mikulski, Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles, Lobachevskii J. Math. 12 (2003), 51–61. MR 1974543
[11] K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. MR 2157566
[12] W. M. Mikulski, Product preserving bundle functors on fibered manifolds, Arch. Math. (Brno) 32 (1996), no. 4, 307–316. MR 1441401
[13] W. M. Mikulski, Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), no. 2, 277–285. MR 1876848
[14] W. M. Mikulski, Lifting double linear vector fields to Weil like functors on double vector bundles, Math. Nachr. 292 (2019), no. 9, 2692–2100. MR 4009348
[15] W. M. Mikulski, Prolongation of linear semibasic tangent valued forms to product preserving gauge bundles of vector bundles, Extracta Math. 21 (2006), no. 3, 273–286. MR 2332075
[16] W. M. Mikulski and J. M. Tomáš, Product preserving bundle functors on fibered fibered manifolds, Colloq. Math. 96 (2003), no. 1, 17–26. MR 2013706

Rev. Un. Mat. Argentina, Vol. 62, No. 2 (2021)
[17] V. V. Shurygin, jr., *Product preserving bundle functors on multifibered and multifoliate manifolds*, Lobachevskii J. Math. **26** (2007), 107–123. MR 2396705

[18] L. B. Smolyakova and V. V. Shurygin, *Lifts of geometric objects to the Weil bundle $T^\mu M$ of a foliated manifold defined by an epimorphism μ of Weil algebras*, Russian Math. (Iz. VUZ) **51** (2007), no. 10, 76–88. MR 2381929

Włodzimierz M. Mikulski
Faculty of Mathematics and Computer Science UJ, ul. Łojasiewicza 6, 30-348, Cracow, Poland
Wlodzimirz.Mikulski@im.uj.edu.pl

Received: May 8, 2019
Accepted: June 16, 2020