Development of the sequence-characterized amplified region (SCAR) marker for distinction of intergeneric hybrids between *Argyranthemum frutescens* (L.) Sch. Bip. and *Rhodanthemum gayanum* (Cross. & Durieu) B.H. Wilcox, K. Bremer & Humphries

Takahiro Muto¹², Takanori Kuronuma³, Masaya Ando³, Hiroyuki Katsuoka⁴, Zentaro Inaba⁴,*

¹Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan; ²Seibu Agriculture and Forestry Office, Shizuoka, 1-12-1 Naka-ward, Hamamatsu, Shizuoka 430-0929, Japan; ³Center for Environment, Health and Field Sciences, Chiba University, 6-2-1 Kashiwa-no-ha, Kashiwa, Chiba 277-0882, Japan; ⁴Shizuoka Research Institute of Agriculture and Forestry/Izu Agricultural Research Center, Shizuoka, 3012 Inatori, Kamo, Shizuoka 413-0411, Japan

*E-mail: hwatanabe@faculty.chiba-u.jp Tel & Fax: +81-47-137-8106

Received September 24, 2019; accepted November 4, 2019 (Edited by Y. Hoshino)

Abstract Distinction of intergeneric hybrids between *Argyranthemum frutescens* (L.) Sch. Bip. and *Rhodanthemum gayanum* (Cross. & Durieu) B.H. Wilcox, K. Bremer & Humphries is important for the development of new intergeneric hybrids. The aim of this study was to develop a simple and cost-effective DNA marker to distinguish between a large number of putative hybrids of *A. frutescens × R. gayanum* during primary selection. We designed sequence-characterized amplified region (SCAR) markers based on the genetic sequences of the internal transcribed spacer (ITS) region for *A. frutescens* and *R. gayanum*. Specific SCAR markers for *A. frutescens* amplified bands in *A. frutescens* and hybrids but not in *R. gayanum*. In contrast, specific SCAR markers for *R. gayanum* amplified bands in *R. gayanum* and hybrids but not in *A. frutescens*. Additionally, we confirmed the reproducibility of the SCAR marker using 31 cultivars. The findings demonstrated that these SCAR markers could be used to distinguish putative hybrids between *A. frutescens* and *R. gayanum*. This is the first report of the development of a SCAR marker to facilitate distinction of these hybrids.

Key words: confirmation of reproducibility, gene marker, hybrid distinction, intergeneric hybrid.

Argyranthemum frutescens (L.) Sch. Bip. is a perennial plant of the family Asteraceae, originating in the Canary (Spain) and Madeira Islands (Portugal) (Bramwell and Bramwell 2001; Francisco-Ortega et al. 1997). The genus *Argyranthemum* comprises plants belonging to 24 wild species (Bremer 1994). *A. frutescens* is cultivated either as cut flowers or pot plants. To acquire new flower color traits in *A. frutescens*, embryo culture techniques have been used to produce intergeneric hybrids between *Glebionis carinata* and *A. frutescens* (Inaba et al. 2008; Iwazaki and Inaba 2008; Ohtsuka and Inaba 2008). Furthermore, to obtain new intergeneric hybrids with better cultivation characteristics than the current hybrids, we created a hybrid of *A. frutescens × Rhodanthemum gayanum* using an embryo culture technique, and the cleaved amplified polymorphic sequences (CAPS) marker was able to distinguish between hybrids of *A. frutescens × R. gayanum* (Muto et al. 2020). To increase the efficiency of breeding, it is necessary to consider improving the embryo culture conditions and simplifying distinction method of hybrids. In embryo culture conditions, germination rates are influenced by the timing of embryo excision after crossing, phytohormone concentration/combinations and sucrose concentration (Chen and Mii 2012; Motohashi et al. 2008; Tar et al. 2018), so we will improve of the phytohormone concentrations/combinations, and the timing of embryo removal in the crossing *A. frutescens* with *R. gayanum* in the future.

DNA markers have been used for the distinction of taxonomic sections and cultivars of various horticultural plants. There are also reports of various methods for distinction using DNA markers, such as simple sequence repeat (SSR) markers (Sato-Ushiku et al. 2008).
Development of the SCAR marker for distinction

random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) (Morikawa et al. 2014), sequence-characterized amplified region (SCAR) markers (Scheef et al. 2003), and CAPS markers (Kunihisa et al. 2003). Distinction of hybrids using CAPS markers may not suitable to distinguish between a large number of samples at primary selection because the restriction enzyme reagent is expensive and the technical requirements are higher than SCAR marker. Therefore, we attempted to develop the SCAR marker to efficiently and inexpensively distinguish between hybrids at primary selection to improve the efficiency of breeding. We also confirmed reproducibility of the developed marker. ITS regions, which are part of ribosomal DNA (rDNA), are moderately variable and frequently used for phylogenetic studies across plant species (Álvarez and Wendel 2003; Baldwin 1992; Cheng et al. 2016; Eriksson et al. 2003). In this study, we attempted to design primers based on the sequence in ITS region of rDNA to distinguish the intergeneric hybrids of A. frutescens × R. gayanum.

To design the SCAR markers, which appeared to express bands specifically present in one parent and hybrid but were absent from the other parent, the genetic sequences of the ITS region for A. frutescens (EF577287) and R. gayanum (AF155312, AF155275, AB359793, AB359707, and L77777) obtained from GenBank. In addition to these markers, we used three universal primers [ITS(C.) (5′-AGA AAT CGT AAC AAG GTT TCC GTA GG-3′) (Zhao et al. 2010), ITS1 (5′-TCC GTA GTT GAA CCT GCG G-3′) and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) (White et al. 1990)] because of the necessity to select markers to distinguish between each species by confirming the presence or absence of band expression of PCR amplification products by PCR electrophoresis.

Two A. frutescens cultivars (‘Brilliant rouge’ and ‘Sunday ripple’), two R. gayanum cultivars (‘African eyes’ and ‘Elf pink’), and two hybrids between A. frutescens and R. gayanum were used in this study. Additionally, 22 A. frutescens cultivars and 7 R. gayanum cultivars were used to confirm the reproducibility of the SCAR markers (Table 1). We used a NucleoSpin Plant II DNA extraction kit (Takara Bio Inc, Japan) to extract total genomic DNA from 0.2 g of young leaves collected from the hybrids and their parents. The PCR reaction mixture (20 µl) comprised 1 µl of template genomic DNA (100 ng µl⁻¹), 1 µl of each primer (10 µM), 4 µl of 5× KapaTaq Extra buffer, 1.4 µl of MgCl₂ (25 mM), 0.6 µl of dNTP Mixture (10 mM), 0.1 µl of KapaTaq Extra DNA Polymerase (5 U µl⁻¹), and 10.9 µl of sterile water. PCR amplifications were performed using a Veriti™ Thermal Cycler (Thermo Fisher Scientific K.K., Japan) with the following program: initial denaturation at 95°C for 2 min, followed by 35 cycles at 95°C for 20 s, 50°C for 15 s, and 68°C for 2 min, with a final extension at 68°C for 2 min using the A. frutescens-specific SCAR primer pair. Similarly, the following program: initial denaturation at 95°C for 2 min, followed by 35 cycles at 95°C for 20 s, 60°C for 15 s, and 68°C for 2 min, with a final extension at 68°C for 2 min was used for the R. gayanum-specific SCAR primer pair. Mixtures containing 3 µl of PCR reaction products and 2 µl of bromophenol blue underwent electrophoresis (100 V for 40 min) on 1.5% (w v⁻¹) agarose gels in 1× TAE buffer and were stained using ethidium bromide.

We assessed whether the SCAR markers were applicable for distinction of A. frutescens × R. gayanum. In development of SCAR markers specific to A. frutescens for distinction of A. frutescens × R. gayanum, 11 primers (ITS 1, ITS 4, ITS (C.), SCAR(A.f) 1f, SCAR(A.f) 2f, SCAR(A.f) 3f, SCAR(A.f) 4f, SCAR(A.f) 5f, SCAR(A.f) 1r, SCAR(A.f) 2r, and SCAR(A.f) 3r) were combined to distinguish between hybrids of A. frutescens × R. gayanum hybrid (Table 2). There was a combination of SCAR markers for the A. frutescens [ITS(C.) – SCAR(A.f) 3r]-amplified specific A. frutescens band (approximately
700 bp) in *A. frutescens* and the hybrids but not in *R. gayanum* (Figure 1). A distinct and easily distinguishable band was observed for *A. frutescens* and *A. frutescens × R. gayanum* (Table 3). There was a combination of SCAR markers for the *R. gayanum* [SCAR(R,g) 1f-SCAR(R,g) 2r]-amplified specific *R. gayanum* band (approximately 500 bp) in *R. gayanum* and the hybrids but not in *A. frutescens* (Figure 2). A distinct and easily distinguishable band was observed for *R. gayanum* and *A. frutescens × R. gayanum*. In addition, we confirmed the reproducibility of the designed SCAR marker using 22 *A. frutescens* cultivars and 7 *R. gayanum* cultivars, for the SCAR markers specific to *A. frutescens*. A specific *A. frutescens* band (approximately 700 bp) was confirmed to be present in *A. frutescens* and the hybrids but not in *R. gayanum* (Figure 3A, 4A). Conversely, for the SCAR markers specific to *R. gayanum*, a *R. gayanum*-specific band (approximately 500 bp) was confirmed to be present in *R. gayanum* and the hybrids but not in *A. frutescens* (Figure 3B, 4B). These findings indicate that reproducible bands were observed for each of the designed specific primers.

In SCAR, pairs of 20–25 bp oligonucleotide primers specific to the sequence of polymorphic bands can be used to amplify the characterized markers. Therefore, these markers are more specific and reliable compared with RAPD markers (Paran and Michelmore 1993). Additionally, SCAR markers are known to be as reproducible as CAPS markers (Agarwal et al. 2008).

Table 2. A. frutescens-specific sequence-characterized amplified region primer sequences.

SCAR primer	5’ to 3’ sequence	Number of bases	Annealing temperature (°C)
SCAR(A.f) 1f	AAGGAAACACTCTCAAATACCC	23	51.6
SCAR(A.f) 2f	GTGCTTGTGATGATTCATT	20	49.6
SCAR(A.f) 3f	ATGCGTGCAAAGAAAACCTA	20	49.6
SCAR(A.f) 4f	TGCTTGTGATGATTCATT	20	47.6
SCAR(A.f) 5f	AAACCTAAGAGGCTGGGTTC	20	41.8
SCAR(A.f) 1r	GGTGCGAGCAGCTGCTTAAG	20	53.7
SCAR(A.f) 2r	ATCTAAAGAAAGGCTGGGTTC	20	41.8
SCAR(A.f) 3r	TTTATAGAGGCTGGGTTCATT	20	41.8

Table 3. R. gayanum-specific sequence-characterized amplified region primer sequences.

SCAR primer	5’ to 3’ sequence	Number of bases	Annealing temperature (°C)
SCAR(R,g) 1f	TAATACAACCAAAAGGTCGAG	20	45.9
SCAR(R,g) 2f	GATGCGCATTAAACGAGGCTCT	22	49.2
SCAR(R,g) 1r	TCGTCTTGTGTTGTGCTGA	21	44.7
SCAR(R,g) 2r	TATTTCAAGAGTGTTTTCTTGCG	22	47.9
SCAR(R,g) 3r	AATATCCGCCCCCTACAATAT	22	47.3
In general, SCAR markers are a cost-effective hybrid distinction method owing to fewer procedures and lower costs compared with CAPS markers. Distinction methods using SCAR markers are used for marker selection in many plants (Bautista et al. 2003; Liu et al. 1999; Mariniello et al. 2002; Melotto et al. 1996; Xu et al. 2004).

In this study, we successfully developed each SCAR marker, which expresses bands specifically present in one parent and hybrid but is absent from the other parent. Thus, using each SCAR marker, it was believed that distinction between the intergeneric hybrid A. frutescens × R. gayanum was possible. Furthermore, we confirmed reproducibility of the developed SCAR marker from the perspective of the expression of the presence or absence of the band using 22 A. frutescens cultivars and 7 R. gayanum cultivars. Based on the above results, it was revealed that the developed SCAR marker has high reproducibility, which enables hybrid distinction between A. frutescens × R. gayanum.

Use of the SCAR marker will facilitate marker selection and improve the efficiency of breeding because its lower cost and lower technical requirements compared with that of CAPS markers.

References
Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27: 617–631
Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29: 417–434
Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. Mol Phylogenet Evol 1: 3–16
Bautista R, Crespillo R, Canovas FM, Gonzalez Claros M (2003) Identification of olive-tree cultivars with SCAR markers. Euphytica 129: 33–41
Bramwell D, Bramwell Z (2001) Wild Flowers of the Canary Islands. Editorial Rueda, Madrid
Bremer K (1994) Asteraceae. Cladistics & Classification. Timber Press, Oregon
Chen YM, Mii M (2012) Interspecific hybridization of Begonia semperflorens (section Begonia) with B. pearcei (section Eupetalum) for introducing yellow flower color. Plant Biotechnol 29: 77–85
Cheng T, Xu C, Lei L, Li C, Zhang Y, Zhou S (2016) Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Mol Ecol Resour 16: 138–149
Eriksson T, Hibbs MS, Yoder AD, Delwiche CF, Donoghue MJ (2003) The phylogeny of Rosoideae (Rosaceae) based on sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the trnL/F region of chloroplast DNA. Int. J. Plant Sci 164: 197–211
Francisco-Ortega J, Santos-Guerra A, Hines A, Jansen RK (1997) Molecular evidence for a Mediterranean origin of the Macaronesian endemic genus Argyranthemum (Asteraceae). Am J Bot 84: 1595–1613
Inaba Z, Iwazaki Y, Baba F, Ishii C, Ishii K, Oyama-Okubo N, Nakayama M (2008) Floral scent compounds of Argyranthemum and Argyranthemum × Glebionis cultivars. Hortic Res 7(Suppl2): 289 (In Japanese)
Iwazaki Y, Inaba Z (2008) Production of floral scent cultivars by intergeneric hybridization of Argyranthemum and Glebionis using ovule culture. Hortic Res 7(Suppl2): 290 (In Japanese)
Kunihisa M, Fukino N, Matsumoto S (2003) Development of cleavage amplified polymorphic sequence (CAPS) markers for identification of strawberry cultivars. Euphytica 134: 209–215
Liu Z, Sun Q, Ni Z, Yang T, McIntosh RA (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. *Plant Breeding* 118: 215–219

Mariniello L, Sommella MG, Sorrentino A, Forlani M, Porta R (2002) Identification of *Prunus armeniaca* cultivars by RAPD and SCAR markers. *Biotechnol Lett* 24: 749–755

Melotto M, Afanador L, Kelly JD (1996) Development of a SCAR marker linked to the I gene in common bean. *Genome* 39: 1216–1219

Morikawa M, Muto T, Santos-Guerrra A, Kondo K (2014) Identifying, discriminating and isolating cultivars of ‘Marguerites’ originated from *Argyranthemum frutescens* parentages and their intergeneric and interspecific hybridities by DNA markers amplified by RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter-Simple Sequence Repeat). *Chromosome Botany* 9: 97–112

Motohashi T, Toda MI, Kondo K (2008) Adventitious embryo formation derived from zygotic embryos in *Cycas revoluta*. *Plant Biotechnol* 25: 589–591

Muto T, Kuronuma T, Ando M, Katsuoka H, Inaba Z, Watanabe H (2020) Production of intergeneric hybrids between *Argyranthemum frutescens* (L.) Sch. Bip. and *Rhodanthemum gayanum* (Cross. & Durieu) B.H. Wilcox, K. Bremer & Humphries using embryo culture and gene markers for discrimination. *Hortic J* 89: 45–53

Ohtsuka H, Inaba Z (2008) Intergeneric hybridization of marguerite (*Argyranthemum frutescens*) with annual chrysanthemum (*Glebionis carinatum*) and crown daisy (*G. coronaria*) using ovule culture. *Plant Biotechnology* 25: 535–539

Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. *Theor Appl Genet* 85: 985–993

Sato-Ushiku Y, Shimada N, Saito M, Yamada E, Hikage T, Nakatsuka T, Nishihara M (2011) Development of simple sequence repeat markers for identification of Japanese gentian cultivars. *J Japan Soc Hort Sci* 80: 475–485

Scheef EA, Casler MD, Jung G (2003) Development of species-specific SCAR markers in bentgrass. *Crop Sci.* 43: 345–349

Tar KYK, Naing AH, Ai TN, Chung MY, Kim CK (2018) Optimization of factors influencing in vitro immature seed germination in *Chionanthus retusus*. *J Plant Biotechnol* 45: 347–356

White TJ, Bruns T, Lee SJWT, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) *PCR Protocols: A Guide to Methods and Applications*. Academic Press, pp 315–322

Xu WJ, Wang BW, Cui KM (2004) RAPD and SCAR markers linked to sex determination in *Eucommia ulmoides* Oliv. *Euphytica* 136: 233–238

Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of *Chrysanthemum, Ajania* and its allies (Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. *Plant Syst Evol* 284: 153–169