Risk Factors Associated with Mild Cognitive Impairment among Apparently Healthy People and the Role of MicroRNAs

Iman I. Salama1, Somaia I. Salama1, Dalia M. Elmosalami1, Rehan M. Saleh1, Hanaa Rasmy2, Mona Hamed Ibrahim2, Solaf Ahmed Kamel2, Mona M. F. Ganem3, Hala M. Raslan3

1Community Medicine Research Department, National Research Centre, Cairo, Egypt; 2Clinical and Chemical Pathology Medical Division, Centre of Excellence, Department, National Research Centre, Cairo, Egypt; 3Internal Medicine Research Department, National Research Centre, Cairo, Egypt

Abstract

BACKGROUND: Mild cognitive impairment (MCI) is a stage between the expected cognitive decline of normal ageing and the serious decline of dementia.

AIM: To identify risk factors and role of miRNAs associated with mild cognitive impairment (MCI) among employees.

SUBJECTS AND METHOD: A cross-sectional study was carried out on 186 employees aged between 40 and 65 years. Cognitive function was evaluated using ACEIII, MoCA, and Quick cognitive tests. Medical history and lifestyle were assessed. Family 132 & 134 miRNA expressions were assessed by real-time PCR.

RESULTS: MCI was detected among 14 / 186 (7.5%), miRNA 132 expression was the only significant miRNAs to detect MCI with low sensitivity and specificity (70%). The logistic analysis revealed that higher miRNA132 expressions, low monthly intake of: vegetables, unroasted nuts, low education and higher ALT levels were predicting factors for MCI with AOR 1.1 (1.01-3.3), 1.2 (1.04-1.43), 0.8 (0.8-0.98), 2.7 (1.9-7.4) and 1.6 (1.1-2.3) respectively.

CONCLUSION: MiRNAs expression showed low sensitivity and specificity in detecting MCI; only miRNA 132 might be used. Several modifiable factors seem to reduce the risk of MCI.

Introduction

Mild cognitive impairment (MCI) is a stage between the cognitive decline of normal ageing and dementia. MCI involves the onset and evolution of problems related to memory, language, and thinking beyond those expected for age. People with MCI are at greater risk of later developing dementia. However, some of them never get worse, and a few get better [1].

Detecting interventional risk factors is a key component of preventive strategies for mild cognitive impairment [2]. Medical and lifestyle factors that have been related to an increased risk of cognitive impairment include hypertension, diabetes, elevated cholesterol, depression, infrequent participation in mentally or socially stimulating activities, and smoking [3, 4].

MicroRNA (miRNA), is a small non-coding RNA molecule that functions in the regulation of gene expression. It plays an important role in the pathogenesis of many diseases. It has been reported that miR-132 is linked with cognitive impairment [5]. MiRNAs are actively secreted and expressed in body fluids, such as plasma and cerebrospinal fluid (CSF) [6], [7], [8].

This study aimed to assess the potential risk factors of MCI among employees at the National Research Center (NRC) and the role of family 132 and 134 miRNAs expression.
Subjects and Methods

Study design
A cross-sectional study was carried out on 186 adults aged between 40 and 65 years recruited from NRC employees. Recruitment of participants and data collection was carried out along one year during the period between June 2016 and December 2017. Employees with diabetes, neurological and psychiatric illness, major organ failure and cancer were excluded from the study.

Ethical statement
This work has been carried out by The Code of Ethics of the World Medical Association (Declaration of Helsinki). Each study participant provided informed written consent after acknowledgement about the research and the study was approved by the Ethical Committee of the National Research Centre (registration number 15131).

Methods

Assessment of risk factors for MCI
A closed-ended questionnaire module was designed to cover data on demographic characteristics and full medical history. Data included age, gender and education. Data on tobacco smoking, physical activity, dietary habits were also collected to identify risk factors associated with MCI. The questionnaire was tested for the clarity & flow of the questions, and the time required to complete it. A consent form was also signed by all the participants before the interview.

Assessment of cognitive function with its domains
The case definition of MCI was derived from the National Institute on Aging–Alzheimer’s Association recommendations [9]. It includes the following clinical criteria for the diagnosis of MCI.

Subjective Concern as regards the change in cognition
We measured subjective cognitive concerns through two questions, according to Lara et al., [10].

“How would you most describe your memory at present?”, with answer options being very good, good, moderate, bad or very bad, and “Compared to 12 months ago, would you say your memory is now better, the same or worse than it was then?”.

Participants were evaluated to have memory weakness if they answered “bad” or “very bad” to the former question and / or “worse” to the latter.

Objective Impairment in one or more cognitive domains
Changes can occur in a diversity of cognitive domains, including memory, executive function, attention, language, and visuospatial skills. To assess global and specific cognitive domains, we choose the most reliable and validated Arabic forms scales or easily translated cognitive scales and freely available to be applied to the studied subjects. The following tests were used to assess MCI:

A) Montreal Cognitive Assessment test (MoCA)
It comprises five neurological domains: executive function, attention, short-term memory, language, and visuospatial [11]. It is available in Arabic version [12].

B) Addenbrooke’s Cognitive Examination III (ACE III)
It is available in Arabic [13]. It assesses MCI and early stages of dementia [13], [14].

C) The Quick Mild Cognitive Impairment (Quick MCI)
It assesses the five domains of cognitive function: registration, orientation, delayed recall, clock drawing and verbal fluency (VF) [15], [16]. It is easily translatable (linguistically and culturally) and has alternative forms, which allow follow up of cognitive function over time [17].

The recommended cut-off points for each studied cognitive scale were utilized to detect objective cognitive impairment
The cut-off point for ACE III score < 88 [18], for MoCA score < 26 [19] and for Quick MCI score < 67 [20].

Objective MCI was considered if two or all of the three studied cognitive tests were below the cut-off points.

Preservation of independence in daily functional abilities, such as paying bills, preparing a meal, or shopping.
Clinical Assessment

All studied participants were subjected to thorough clinical examination. The anthropometric assessment included weight, height, waist and hip circumference, and body mass index (BMI) was calculated. Blood pressure was measured.

Laboratory analysis: - Fasting peripheral blood samples (10 ml) were withdrawn from each participant under complete aseptic conditions and after 10 fasting hrs. Part of the blood sample was anticoagulated with EDTA for assessment of the glycated haemoglobin (HbA1c) using Labona check™ HbA1c analyser and measurement of selected MicroRNAs by real-time PCR. The other part of the blood sample was left to clot and sera were separated immediately for analysis of fasting blood sugar, lipid profile, liver and kidney functions by Erba lab -300 Mannheim GmbH Germany; and - MicroRNA isolation and real-time RT-PCR.

MicroRNA was isolated according to the manufacturer’s instructions using miRNeasy Mini Kit (Cat. No. 217004) and QIAzol Lysis Reagent supplied by QIAGEN, Germany. Concentration and purity of the yield were determined using Nanodrop 2000, USA. Synthesis of cDNA was performed via thermal cycler (Verity, Applied Biosystems, USA) using the TaqMan® Advanced miRNA-cDNA synthesis kit (cat. No A28007) supplied by Applied Biosystems, Life Technologies, USA.

The relative quantity of (miRNA-128, miRNA-132, miRNA-874) and (miRNA-134, miRNA-323, miRNA-382) in plasma were measured by qRT-PCR via TaqMan technology using QuantStudio™ 12K Flex real-time PCR system (Applied Biosystems, USA). MicroRNAs’ levels were determined by the comparative CT (ΔΔCT) method via the Expression Suite Software using miRNA-491 and miRNA-370 levels, respectively for normalisation.

Data analysis

Data entry was carried on excel sheet, and statistical analysis was done using Statistical program for social science (SPSS) version 18 for windows SPSS; Inc, Chicago IL. Continuous data were expressed as mean and standard deviation Number and percent were used to describe categorical data. Chi square test was used for comparing between two qualitative variables. T-test was used for comparing between two means. Non-parametric tests were used in cases of not normally distributed data. The Bivariate correlations procedure (Pearson correlation) was used to calculate the pairwise associations for a group of variables. Receiver-Operating Characteristic (ROC) curves were formed and the area under ROC curves (AUC) was determined to assess sensitivity and specificity of various miRNAs biomarkers. The cutoff points on the ROC curves, where the accuracy of MCI detection is greatest, were determined. P-value was considered statistically significant if p < 0.05 and considered statistically highly significant if p < 0.01.

Results

Regarding socio-demographic data, there were 73 (36.6%) males and 113 (63.4%) females, their ages ranged from 40 to 65 years with a mean of 51.3 ± 4.1 years. About 41% of the studied individuals had secondary education, 42% had a university education, and 17% had a post-graduate level of education. As regards the subjective complaint of memory impairment, about 60% of all participants complained of frequent forgetfulness. Comparing their current memory to that of the previous year, 31.9% of them reported impaired memory. MCI was detected among 14 / 186 (7.5%) of the studied individuals depending on both subjective complaint and objective detection with at least two positive cognitive tests. The mean score of ACE III (88.14 ± 2.5) and MOCA (25.29 ± 2.09) and Quick MCI (63.42 ± 9.78) tests was significantly lower among individuals with confirmed MCI compared to those with normal cognition (94.5 ± 4.5, (27.9 ± 2.2) and (77.6 ± 10.9) respectively, P < 0.01.

The percentage of subjects with MCI was significantly higher among current or ex-smokers compared to nonsmokers and among individuals with sedentary life compared to those with physical activities, P < 0.05. Mean BMI was significantly higher among individuals with MCI compared to those with normal cognition, P < 0.01 (Table 1).

Table 1: Socio-demographic, and physical and medical history of the studied participants about MCI

Variable	Total	Cognitive function	Odds Ratio (CI 95%)
	N (%): MCI:Normal	MCI:Normal:CI	
Age in years			
<50	65 (5.8)	60 (92.2)	
50 – 55	64 (9.4)	58 (90.6)	1.20 (3.4-3.3)
55 – 60	42 (7.1)	39 (92.9)	0.90 (2.4-1)
60-65	15 (0.0)	15 (100.0)	
Gender			
Males	73 (8.7)	105 (92.9)	1.1 (3.3-5)
Females	113 (6.8)	80 (90.7)	
Education			
Secondary	79 (9.1)	70 (88.7)	
University and Master / MD	107 (5.4)	102 (95.3)	
Smoking			
Current or ex-smokers	31 (5.6)	26 (83.9)	
Non-smokers	155 (9.5)	148 (94.2)	
Marital status			
Married	150 (9.3)	136 (90.7)	3.7 (5.29-1)
Single or widowed	36 (1.2)	36 (100.0)	
Family history of dementia			
Yes	45 (3.9)	42 (93.4)	0.80 (2.3-1)
No	141 (11.7)	130 (92.2)	0.80 (2.3-2)
History of head Trauma			
Yes	44 (3.8)	41 (92.3)	
No	142 (11.7)	131 (92.3)	
Physical activities			
No	40 (6.0)	34 (85.5)	4.21 (12.145)
Several times/month	123 (5.4)	118 (95.5)	P > 0.05
Systolic blood pressure (mean ± SD)	186 (120 ± 141)	118 ± 14.9	P > 0.05
Diastolic blood pressure (mean ± SD)	186 (78.3 ± 7.7)	77.5 ± 10.7	P > 0.05
BMI (mean ± SD)	186 (35.5 ± 7.2)	30 ± 5.6	P = 0.01
Waist/Hip ratio (mean ± SD)	186 (0.85 ± 0.08)	0.87 ± 0.07	P > 0.05

* Reference group: CI confidence interval. ** Significant P value < 0.05.

The mean monthly intake of important food for good memories like vegetables, dark green
vegetables and unroasted nuts were significantly higher among those with normal cognition compared to those with MCI, \(P < 0.01 \). The mean monthly hours spent on the internet, playing intellectual games and going to the museum / cinema was significantly lower among participants with MCI (\(P < 0.01 \)) (Table 2).

Table 2: Monthly frequency intake of some food items, social and mental activities of the studied participants about MCI

Variable	Cognitive function		
	MCI (Mean ± SD)	Normal (Mean ± SD)	
	\(N = 14 \)	\(N = 172 \)	
Main Meal contain (vegetables- carbohydrates- protein)	11.3 ± 9.4	21.1 ± 27.9	
Red meat	5.0 ± 3.0	5.4 ± 4.5	0.748
Eggs	8.5 ± 10.9	12.6 ± 10.0	0.201
Dairy products	23.6 ± 9.3	25.4 ± 12.3	0.603
Fish	5.7 ± 8.3	4.6 ± 7.5	0.623
Canned tuna	0.9 ± 0.8	1.3 ± 4.1	0.446
Bean	8.0 ± 11.3	15.4 ± 12.3	0.059
Whole brown Grain	1.3 ± 2.5	4.3 ± 10.2	0.336
Vegetable	4.2 ± 8.7	19.4 ± 16.1	0.000*
Dark green vegetables	1.0 ± 1.1	4.9 ± 7.7	0.000*
Fruits	12.7 ± 9.6	21.1 ± 14.1	0.055
Unroasted nuts	0.4 ± 0.5	3.6 ± 7.1	0.000*
Dark chocolate	0.4 ± 0.5	2.8 ± 6.5	0.219
Social activities	1.0 ± 1.6	2.4 ± 6.8	0.520
Going to Club	0.0 ± 0.0	0.2 ± 0.5	0.000*
Going to Museum/ Cinema/ parties	79.1 ± 70.1	51.3 ± 50.4	0.068
Mental activities (In hours)	21.8 ± 14.0	36.9 ± 33.3	0.007*
Playing intellectual games	0.7 ± 0.3	6.2 ± 14.9	0.000*

None of the studied laboratory tests was found to be significantly associated with MCI (\(P > 0.05 \)) (Table 3).

Table 3: Lipid profile and other laboratory analysis of the studied participants and MCI

Laboratory Test	Cognitive function		
	MCI (Mean ± SD)	Normal (Mean ± SD)	
	\(N = 14 \)	\(N = 172 \)	
Alanine	21.4 ± 14.1	19.2 ± 10.5	0.467
aspartate transaminase (ALT)	4.5 ± 0.2	4.6 ± 0.2	0.128
Albumin (ALB)	0.9 ± 0.1	0.9 ± 0.1	0.539
Creatinine	117.8 ± 31.2	96.5 ± 31.2	0.134
Fasting Blood Glucose (FBG)	6.2 ± 1.5	5.5 ± 1.2	0.620
Glycosylated	181.7 ± 16.8	185.9 ± 14.2	0.073
Hemoglobin (HbA1c)	101.7 ± 81.5	120.7 ± 49.0	0.401
Cholesterol	42.3 ± 14.5	46.3 ± 13.6	0.348
High Density lipoprotein (HDL)	122.7 ± 22.1	125.1 ± 20.3	0.092
Low Density lipoprotein (LDL)	P non-significant > 0.05		

ROC curve analysis was done for miRNA 128, miRNA-132, miRNA-874, miRNA-134, miRNA-323 and miRNA-382 pairs in plasma of the studied subjects. Upon analysis, only miRNA-132 can significantly differentiate between MCI and normal cognition with AUC = 0.69 with a 95% confidence interval 0.52 – 0.86 (\(P = 0.04 \)) (Figure 1).

These biomarker pairs for family miRNA 132 expressions differentiated individuals with MCI from those with normal cognition with 60%-60% sensitivity and 57.9%-68.6% specificity.

Family miRNA 134 expressions differentiated individuals with MCI from those with normal cognition with 40%-60% sensitivity and 65.2%-83.3% specificity (Table 4).

Table 4: Sensitivity, specificity and AUC of MiRNA biomarker pairs in detecting MCI

miRNA 132 / miRNA-491	miRNA 874 / miRNA 134	miRNA 134 / miRNA 370	miRNA 323 / miRNA 370	miRNA 382 / miRNA 370
0.56 (0.37-0.74)	0.49 (0.34-0.63)	0.50 (0.26-0.78)	0.57 (0.38-0.77)	0.64 (0.44-0.84)
95% CI				
80%	68.6%	70%	68.6%	60%
64.3%	93.9%	57.9%	63.2%	50%
0.5	0.4	0.9	0.4	0.4

Logistic regression analysis revealed higher miRNA132 expressions, little vegetables, little nuts, lower level of education and a higher level of ALT are predicting factors for MCI with AOR 1.1 (1.01-3.3), 1.2 (1.04-1.43), 0.8 (0.8-0.98), 2.7 (1.9-7.4) and 1.6 (1.1-2.3) respectively (Table 5).

Table 5: Logistic regression analysis for predicting the risk of MCI

Discussion

The risk of dementia is higher in individuals with MCI (10-15%) compared to others with normal cognition (1-2%) [21], [22], [23].

In the present study, the prevalence of MCI was 7.5%. In a study done among doctors and workers at Zagazig University Hospital, Egypt, with a
similar age group, MCI was found among 9% of them [24]. In China, in Tianjin city, MCI was detected among 9.7% of normal individuals according to the Petersen's criteria of MCI [25]. Ding and Zhao [26] documented MCI prevalence of 20.1% among normal Chinese individuals aged ≤ 60 years in an urban community of Shanghai using Mini-Mental status test. Moreover, Salama et al., [27] found that the prevalence of MCI was 11.6% among non-obese aged 40-60 years. The lack of homogeneity in the reported data about the prevalence of MCI may be due to the differences in the test used for the detection of MCI, the varieties in the application of MCI diagnostic criteria, the demographic characteristics of the shared populations, the education level and the age range of the participants.

The current study aimed to identify the demographic factors associated with cognitive function. The results showed that the prevalence of MCI was insignificantly higher at the age of 50-55 years (P > 0.05), which contradicts previous results that showed a trend that the prevalence of MCI increased with increasing age [28]. This could be attributed to the fact that all the participants at higher age group had post-graduate education. We found that all 32 participants with post-graduate education had normal cognition. A previous study found that education was an effective preventive factor against MCI [29]. People with a lower level of education were more likely to develop MCI. Possible reasons may be: high level of education can make changes to the brain metabolism and the degree of biological neural synaptic connections so that the brain can tolerate functional or structural defects in the brain cells to a certain extent. Instead, for people with lower levels of education, there is a lack of knowledge to stimulate the brain, causing massive loss of neurons [30]. Another possible reason is the health; poverty and socio-economic status which are associated with lower education level [31].

Our findings revealed no difference as regards the prevalence of MCI among males (8.2%) compared to females (7.1%), P > 0.05. Similarly, Ferreira et al., [32] reported that there were no sex differences as regards the rates of cognitive decline in the normal ageing process. On the contrary, Caraccio et al., and Roberts et al., [33], [34] found that the incidence of MCI was higher among men. The pathological mechanisms that could explain these patterns precisely are still concealed. However, the pathophysiological changes regulated by endocrinial transition states, such as the menopause may have a role [35].

Midlife obesity has consistently been considered as a risk factor for the decline of cognitive function [36]. Our findings revealed that the mean BMI was significantly higher among participants having MCI (35.5 ± 7.2) compared to those with normal cognition (30.8 ± 5.6), P < 0.01. Similarly, Salama et al., [27] found that the prevalence of objective MCI was 42.6% among obese compared to 11.6% among non-obese. In a population-based study, participants who were obese had twice the risk of developing dementia (OR = 2.10) [36].

In the current study, the prevalence of MCI was significantly higher among smokers (16.1%) compared to non-smokers (5.8%), with OR 3.1 (0.96-10.1). It was reported that cognitive dysfunction accounted for 75.6% among smokers, compared to only 52.5% among nonsmokers, suggesting that smoking is a risk factor for MCI. During smoking, carbon monoxide fumes, as well as tobacco nicotine, tar and other harmful substances are produced, which will cause vascular endothelial damage, myosin contraction, and increase vascular permeability to accelerate atherosclerosis. Smoking may impair cognitive function through its effect on the arterial wall, leading to thickening of arterial plaque, increasing plasma viscosity and fibrinogen levels, platelet aggregation, hypertension and increases the risk of stroke [30].

A history of traumatic brain injury may possess a higher risk of having neurodegenerative diseases such as MCI and dementia across the life span [37]. The relation between traumatic brain injury and the risk of dementia later in life has been repeatedly established [38], [39]. In the present study, the prevalence of MCI was not significantly different between subjects having previous head trauma and those without, P > 0.05. May be that the reported head trauma in the current study was mild and did not lead to brain injury.

The present study assessed the effects of lifestyle habits and leisure activities on cognition. Participants with normal cognition were found to be monthly consuming a significantly higher level of vegetables, fruits and unroasted nut compared to MCI subjects, P < 0.05. It was found that eating a healthy balanced diet that contains fruits, vegetables, unrefined cereal grains and nuts, and avoiding fatty and high-calorie foods was directly related to normal cognition [40]. The Mediterranean diet was reported as a preventive factor against MCI and AD diseases [41]. A study done by Pasinetti and Eberstein [42] found that polyunsaturated fatty acids, vegetables, and a high Mediterranean-diet score may improve cognitive activity. A balanced diet with fewer calories and low glucose may enhance carbohydrate metabolism and decrease obesity which will effectively reduce the risk of hyperglycemia and thus avoiding Alzheimer’s disease [43]. On the other hand, persons with Alzheimer’s disease reported high consumption of animal protein and sugar in comparison to healthy controls who consumed more vegetables, fruits and whole grains [44]. Prevention of the deterioration of cognitive functions and dementia is directly related to the intake of certain nutrients or dietary antioxidant supplements [45].

Increased level of engagement in physical
activities is an important factor that increases the cognitive reserves [29]. We found that the prevalence of MCI was significantly higher among inactive subjects (15%) compared to those who were practising physical exercise (4.1%), OR 4.2 (1.2-14.5). In a population-based study, and frequency of moderate-intensity exercise had a protective effect on MCI. Those findings were consonant in both sexes. Light and intense physical activities were not significantly associated with MCI [46].

There is growing evidence demonstrating that participation in different forms of leisure activities, either mental or social activities have a good effect on well-being, especially for conserving functional capacity during the ageing procedure and decreasing the risk of chronic diseases [47], [49]. In the present study, the mean time in hours/week spent in intellectual games, reading and social activities were significantly higher among participants with normal cognition compared to subjects with MCI, P < 0.01. Several studies agreed with the results of the current study and reported that computer activities, reading, dancing, playing games and musical instruments decrease the risk of MCI and dementia [50], [51], [52].

In the present study, there was no significant association between lipid profiles and FBS and the risk of MCI. Similarly, other studies reported that lower concentration of HDL was associated with lower cognitive function, suggesting a positive correlation between HDL and cognitive function [53], [54].

A study done by Mielke and his colleagues [55] concluded that high cholesterol level at old age was associated with reduced risk of dementia. However, Yaffe et al., [56] and He et al., [57] found that cholesterol and triglyceride levels were significantly higher among individuals with MCI subjects compared to those with normal cognition. Increase in serum cholesterol might cause damage to the brain capillary endothelial cells and accelerate atherosclerosis, then reduce cerebral blood flow, leading to the impaired cognitive function [30].

Evolution of reliable and non-invasive procedures for detecting subjects with MCI is important. It could help in increasing the efficiency of existing and new therapies and observing the advancement of disease [58] (Michael-Titus et al., 2010). Sheinerman et al., in 2012 [59] performed a pilot study for selecting promising miRNA biomarkers for detecting MCI. Two sets of biomarkers (the miR-132 and miR-134 families paired with miR-491-5p and miR-370) showed high specificity and sensitivity in recognising MCI subjects. Moreover, Sheinerman et al., [60] validated these two sets of 50 MCI patients and 50 controls. They reported that these two sets could distinguish MCI from normal controls with 84%-94% sensitivity and 96%-98% specificity for miRNA-132 family and 74%-88% sensitivity and 80%-92% specificity for miRNA-134 family.

In the present work, we aimed at validating these two miRNA-132 and miR-134 families (paired with miR-491-5p and miR-370 respectively), as biomarkers for the detection of MCI. Surprisingly, these two sets revealed much lower sensitivity and specificity in detecting MCI. Family miRNA 132 expressions differentiated individuals with MCI from those with normal cognition with 60%-70% sensitivity and 57.9%-68.6% specificity.

For family miRNA, 134 expressions differentiated individuals with MCI from those with normal cognition with 40%-60% sensitivity and 65.2%-83.3% specificity. However, only miRNA 132 expression was significantly upregulated among individuals with MCI compared to those with normal cognition, with a significant AUC 0.69 (0.52-0.86), 70% sensitivity, 68.6 specificities and accuracy 69.3%.

These results preliminarily indicated that miRNA-132 might be a potential biomarker for the diagnosis of MCI. A significantly upregulated expression of miRNA-132 was reported among patients with MCI (n = 66) in comparison to their age-matched controls (n = 76) [61]. Moreover, Weinberg et al., [62] assessed miRNA 132 in the frontal and inferior temporal cortex of postmortem brains of patients with MCI and normal individuals and found that miR 132 was significantly down-regulated in MCI. Many studies have reported the value of miRNA-132 in managing dendritic morphology. MiR-132 is important for the functional integrity of adult neurons reduces synaptic transmission between neurons in the hippocampus and has a key role in controlling cognitive functions [53], [64], [65]. While, Dhabhi et al., [66] reported that ageing is associated with an increase in the levels of miR-134 and miR-874 expression.

The accuracy of miRNAs as diagnostic and/or prognostic biomarker of MCI is inconsistent among several studies which could be attributed to different factors including different sample collection techniques regarding temperature, freezing and centrifugation of the drawn blood sample, different sample size, difference in selection of the participants as some studies matched cases and controls depending on gender and age while others relied on gender and ethnicity, different analytical methods and publication bias (where negative studies may be difficult to be found when searching on usual databases) which may overestimate the connection between miRNAs and MCI [67], [68].

In conclusion, the risk of MCI could be reduced by targeting modifiable risk factors. MiRNAs showed low sensitivity and specificity. However, miRNA 132 expression might be used as a minimally invasive test for detection of MCI.
Acknowledgement

This project is supported financially by the Science and Technology Development Fund (STDF), Egypt, Grant No: 15026. The authors also gratefully acknowledge the financial support of the Science and Technology Development Fund (STDF), Egypt, through Capacity Building program, under Grant No 4880. They are also grateful to the studied participants for their acceptance to share in the project.

References

1. Roberts RO, Knopman DS, Mielke MM, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014; 82:317-325. https://doi.org/10.1212/WNL.0000000000000055 PMid:24353333 PMCid:PMC3921918

2. Wallin K, Bosstrom G, Kivipelto M, Gustafson Y. Risk factors for incident dementia in the very old. International psychogeriatrics. 2013; 25:1135-1143. https://doi.org/10.1017/S1041610213000409 PMid:23574921

3. Sartori AC, Vance DE, Slater LZ, Crowe M. The Impact of Inflammation on Cognitive Function in Older Adults: Implications for Health Care Practice and Research. J NeurosciNurs. 2012; 44(4):206-217. https://doi.org/10.1097/JNN.0b013e3182527690 PMid:2273812 PMid:PMC3390758

4. Roberts RO, Cha RH, Mielke MM, et al. Risk and protective factors for cognitive impairment in persons aged 85 years and older. Neurology. 2015; 84:1854-1861. https://doi.org/10.1212/WNL.0000000000001537 PMid:25854867 PMCid:PMC4433468

5. Marson A, Levine SS, Cole MF, Frampton GM, Brambink T, Johnstone S, et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008; 134:521-533. https://doi.org/10.1016/j.cell.2008.07.020 PMid:18692474 PMCid:PMC2860701

6. Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol. Ther. 2012; 136:169-174. https://doi.org/10.1016/j.pharmthera.2012.08.003 PMid:22903157 PMCid:PMC3855335

7. Boksa P. A way forward for research on biomarkers for psychiatric disorders. J Psychiatry Neurosci. 2013; 38:55-75. https://doi.org/10.1503/jpn.130018 PMid:23422052 PMCid:PMC3851594

8. Dorval V, Nelson PT, Hebert SS. Circulating microRNAs in Alzheimer's disease: the search for novel biomarkers. Front. Mol. Neurosci. 2013; 6:24. https://doi.org/10.3389/fnmol.2013.00024 PMid:24009553

9. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phillips CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-アルツハイマー症候群協会連合推進会議 on diagnostic guidelines for Alzheimer’s disease. Dement. 2011; 3(7):270-9. https://doi.org/10.1016/j.alz.2011.03.008 PMid:21514249 PMCid:PMC3312027

10. Lara E, Koyanagi A, Olaya B, Lobo A, Miret M, Tyrovolas S, Ayuso-Mateos JL, Haro JM. Mild cognitive impairment in a Spanish representative sample: prevalence and associated factors Int J Geriatr Psychiatry. 2016; 31:858-867. https://doi.org/10.1002/gps.4398 PMid:26923809

11. Nasreddine ZS. The Montreal Cognitive Assessment (MoCA), 2016. Retrieved from http://www.mocatest.org/ on 12 Jan 2016.

12. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am GeriatrSoc. 2005; 53:695-9. https://doi.org/10.1111/j.1532-5415.2005.53221.x PMid:15870119

13. Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke’s Cognitive Examination-III in frontotemporal dementia and Alzheimer's disease. Dement GeriatrCognDisord. 2013; 36:242-250. https://doi.org/10.1159/000351671 PMid:23949210

14. Noone P. Addenbrooke’s Cognitive Examination-III. Occupational Medicine. 2015; 65(5):418-20. https://doi.org/10.1093/occmed/kqv041 PMid:26187808

15. Nitrini R. Immediate recall of short stories depends on educational level Dementia &Neuropsychology. 2008; 2(4):310-314. https://doi.org/10.1509/s1980-5764000014 PMid:29213591 PMCid:PMC5619086

16. O’Caoimh R, Timmons S, Molloy DW. Screening for mild cognitive impairment: comparison of "MCI specific" screening instruments. J Alzheimer’s Disease. 2016; 51(2):619-629. https://doi.org/10.3233/JAD-150081 PMid:26890758 PMCid:PMC4927818

17. O’Caoimh R, Gao Y, McGlade C, Healy L, Gallagher P, Timmons S, Molloy DW. Comparison of the quick mild cognitive impairment (Qmci) screen and the SMMMSE in screening for mild cognitive impairment. Age Ageing. 2012; 41(5):824-9. https://doi.org/10.1093/ageing/afs059 PMid:22610464 PMCid:PMC3424052

18. Hodges JR, Larner AJ. Cognitive screening instruments: A practical approach (pp.109-137). Addenbrooke’s cognitive examinations: ACE, ACE-R, ACE-III, ACEapp, and M-ACE, 2016. https://doi.org/10.1007/978-3-319-44775-9_6

19. Julayantont P, Tangwongchai S, Hemrungroj S, Tunvirachaisakul C, Phanthumchinda K, Hongswat J, Suwichanarakul P, Thanasirorat S, Nasreddine ZS. The Montreal Cognitive Assessment-Based: A Screening Tool for Mild Cognitive Impairment in Literate and Low-Educated Elderly Adults. J Am Geriatr Soc. 2015; 63(12):2550-2554. https://doi.org/10.1111/jgs.13820 PMid:26648041

20. O’Caoimh R, Gao Y, Svendovski A, Gallagher P, Eustace J, Molloy DW. Comparing Approaches to Optimize Cut-off Scores for Short Cognitive Screening Instruments in Mild Cognitive Impairment and Dementia. AJAlzheimersDis. 2017; 57(1):123-133. https://doi.org/10.3233/JAD-1611204 PMid:28222528 PMCid:PMC5345649

21. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Vernooij MW, Albert MS, et al. Mild cognitive impairment: clinical guidelines for diagnosis and treatment. Dementia &Neuropsychologia. 2008; 2(4):310-314. https://doi.org/10.3233/JND-2008-DN204001 PMid:18300306

22. Manly JJ, Tang MX, Schupf N, Stern Y, Vonsattel JP, Mayeux R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann Neurol. 2008; 63:494-506. https://doi.org/10.1002/ana.21326 PMid:18300306 PMCid:PMC2375143

23. Khedr E, Fawi G, Abbas MA, Mohammed TA, El-Fethoh NA, Al Attar G, Noaman M, Zaki AF. Prevalence of mild cognitive impairment and dementia among the elderly population of Qena Governorate, Upper Egypt: A Community-Based Study. Journal of Alzheimer’s Disease. 2015; 45:117-126. https://doi.org/10.3233/JAD-142655 PMid:25471192

24. El Chami N. Mild cognitive impairment among type 2 diabetics attending Zagazig University Hospitals. Master Thesis in Public health: Faculty of Medicine - Ain Shams University, 2019.

25. Yuxia G, Yanyu X, Ruitian M, Jiangzang Q, Mingfeng C, Guowei H, Ma F. The prevalence of mild cognitive impairment with type 2
Food for thought: how diabetes mellitus among elderly people in China: A cross-sectional study. Arch Gerontol Geriatr. 2015; 62:138-142.
https://doi.org/10.1016/j.jager.2015.09.003
PMid:26381432

26. Ding D, Zhao Q. Prevalence of mild cognitive impairment in an urban community in China: A cross-sectional analysis of the Shanghai Aging Study. Alzheimer's & dementia: the journal of the Alzheimer's Association. 2014; 11(3).
https://doi.org/10.1016/j.jalz.2013.11.002
PMid:24613707

27. Salama I, Abdelrahman A, Salama S, Abdellatif G, Rabah T, Saleh R, Elmosalami D, Rabah A, Fouad W. Obesity and predictors affecting the occurrence of mild cognitive impairment. RJPBCS. 2018; 9(1):748-756.

28. Ward A, Arrighi HM, Michels S, et al. Mild cognitive impairment: Disparity of incidence and prevalence estimates. Alzheimers Dement. 2012; 8:14-21.
https://doi.org/10.1016/j.jalz.2011.01.002
PMid:22365588

29. Satlter C, Toro P, Schonknecht P, et al. Cognitive activity, education and socioeconomic status as preventive factors for MCI and Alzheimer's disease. Psychiatry Res. 2012; 196:90-95.
https://doi.org/10.1016/j.psychres.2011.11.012
PMid:22390831

30. Keyimu K, Zhou X, Miao H, Zou T. Mild cognitive impairment risk factor survey of the Xinjiang Uyghur and Han elderly. Int J Clin Exp Med. 2015; 8(8):13891-13900.

31. Tervo S, Kivipelto M, Hanninen T, Vanhanen M, Hallikainen M, Mannnerma A, Soininen H. Incidence and risk factors for mild cognitive impairment: A population-based three-year follow-up study of cognitively healthy elderly subjects. Dement Geriatr CognDisord. 2004; 17:196-203.

32. https://doi.org/10.1159/000076356
PMid:14739544

33. Caracciolo B, Palmer K, Monastero R, Winblad B, Bäckman L, Fratiglioni L. Occurrence of cognitive impairment and dementia in the community: A 9-year-long prospective study. Neurology. 2008; 70:1778-1785.

34. https://doi.org/10.1212/WNL.0b013e3182452862
PMid:23682647

35. Brinton R, Yao J, Yin F, Mack W, Cadenas E. Perimenopause as a neurological transition state. Nature Reviews Endocrinology. 2015; 11:393-405.
https://doi.org/10.1038/nrendo.2015.82
PMid:26007613

36. Carroll S, Turkerime E. Midlife risk factors for late-life cognitive decline. Developmental Review. 2018; 48: 201-222.
https://doi.org/10.1016/j.dr.2018.01.001

37. Wang H, Lin S, Sung P, Wu M, Hung K, et al. Population based study on patients with traumatic brain injury suggests increased risk of dementia. J Neurosci Neurosurg Psychiatri. 2012; 83(1):1080-1085.
https://doi.org/10.1136/jnnp-2012-302633
PMid:22842203

38. Bazarian J, Cernak I, Noble-Haeusslein L, Polotichio S, Termink N. Long-term neurologic outcomes after traumatic brain injury. Journal of Head Trauma Rehabilitation. 2009; 24(6):439-451.
https://doi.org/10.1097/HTR.0b013e3181c15600
PMid:19940677

39. Lee y, Hou S, Lee C, Hsu C, Huang Y, Su Y. Increased risk of dementia in patients with mild traumatic brain injury: A nationwide cohort study. PLoS one; 2013.
https://doi.org/10.1371/journal.pone.0062422
PMid:23658727

40. Spencer S, Korosi A, Layé S, Shukitt-Hale B, Barrientos R. Food for thought: how nutrition impacts cognition and emotion (review article). npj Science of Food. 2017; 1:7.

41. Maehropsen H, Lee J, Villaron L, Pase M, Pipegas A, Scholey A. The influence of the Mediterranean diet on cognitive health. In: The Mediterranean diet: an evidence-based approach.Preed V and Watson R (eds.) Academic Press. 2015:81.
55. Mielke MM, Zandi PP, Sjogren G, Gustafson D, Ostling S, Steen B, et al. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology. 2005; 64:1689-1695. https://doi.org/10.1212/01.WNL.0000161870.78572.A5 PMid:15911792

56. Yaffe K, Barnes D, Lindquist K, Cauley J, Simonsick EM, Penninx B, Satterfield S, Harris T, Cummings SR. Endogenous sex hormone levels and risk of cognitive decline in a biracial older cohort: Findings from the Health Cognitive Vitality Study. Neurobiol Aging. 2007; 28:171-178. https://doi.org/10.1016/j.neurobiolaging.2006.10.004 PMid:17097195

57. He Q, Li Q, Zhao J, Wu T, Ji L, Huang G, Ma F. Relationship between plasma lipids and mild cognitive impairment in the elderly Chinese: A case-control study. Lipids Health Dis. 2016; 15(1):146. https://doi.org/10.1186/s12944-016-0320-6 PMid:27595570 PMCid:PMC5011904

58. Michael-Titus A, Revest P, Shortland P. The Nervous System. 2nd ed. Churchill Livingstone, Dementia, 2010:251-266. [Google Scholar] https://www.elsevier.com/books/the-nervous-system/9780702033735. https://doi.org/10.1016/B978-0-7020-3373-5.00014-9

59. Sheinerman KS, Tsivinsky VG, Crawford F, Mullan M, Abdullah L, Umansky SR. Plasma microRNA biomarkers for detection of mild cognitive impairment. Aging. 2012; 4(9):590-605. https://doi.org/10.18632/aging.100486 PMid:23001356 PMCid:PMC3492224

60. Sheinerman KS, Tsivinsky VG, Abdullah L, Crawford F, Umansky SR. Plasma microRNA biomarkers for detection of mild cognitive impairment: Biomarker validation study. Aging. 2013; 5(12):925-938. https://doi.org/10.18632/aging.100624 PMid:24368295 PMCid:PMC3883708

61. Xie B, Zhou H, Zhang R, Song M, Yu L, Wang L, Liu Z, Zhang Q, Cui D, Wang X, Xu S. Serum miR-206 and miR-132 as potential circulating biomarkers for mild cognitive impairment. J. Alzheimers. Dis. 2015; 45:721-731. https://doi.org/10.3233/JAD-142847 PMid:25589731

62. Weinberg R, Mufson E, Counts S. Evidence for a neuroprotective microRNA pathway in amnestic mild cognitive impairment. Front Neurosci. 2015; 9:430. https://doi.org/10.3389/fnins.2015.00430 PMid:26594146 PMCid:PMC4633499

63. Luikart BW, Benson AL, Washburn EK, Perederiy JV, Su KG, Li Y, Kernie SG, Parada LF, Westbrook GL. miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PloS one. 2011; 6(5):e19077. https://doi.org/10.1371/journal.pone.0019077 PMid:21611182 PMCid:PMC3096628

64. Magill S, Cambronne X, Luikart B, Lioy D, Leighton B, Westbrook G, Mandel G, Goodman R. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. PNAS. 2010; 107(47):20382-20387. https://doi.org/10.1073/pnas.1015691107 PMid:21059906 PMCid:PMC2996687

65. Remenyi J, van den Bosch MW, Palygin O, Mistry RB, McKenzie C, Macdonald A, Hutvagner G, Arthur JS, Frenguelli BG, Pankratov Y. miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity. PloS one. 2013; 8(4):e62509. https://doi.org/10.1371/journal.pone.0062509 PMid:23658634 PMCid:PMC3637221

66. Dhahbi JM, Spindler SR, Atamna H, Yamakawa A, Guerrero N, Boffelli D, Mote P, Martin DI. Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging. 2013; 5:130-141. https://doi.org/10.18632/aging.100540 PMid:23470454 PMCid:PMC3616200

67. Martinez B, Peplow P. MicroRNAs as diagnostic and therapeutic tools for Alzheimer's disease: advances and limitations. Neural Regen Res. 2019; 14(2):242-255. https://doi.org/10.4103/1673-5374.244784 PMid:30531004 PMCid:PMC6301178

68. Piscopo P, Lacorte E, Feligioni M, Mayer F, Crestini A, Piccolo L, Bacigalupo I, Filareti M, Ficulle E, Confolani A, Vanacore N, Corbo M. MicroRNAs and mild cognitive impairment: A systematic review. Ageing Research Reviews. 2019; 50:131-141. https://doi.org/10.1016/j.arr.2018.11.005 PMid:30472218