Distribution and habitat-use of Dhole *Cuon alpinus* (Mammalia: Carnivora: Canidae) in Parsa National Park, Nepal

Santa Bahadur Thing¹, Jhamak Bahadur Karki², Babu Ram Lamichhane³, Shashi Shrestha⁴, & Rishi Ranabhat⁵

¹Ministry of Forests, Environment and Soil Conservation, Lumbini Province, Nepal.
²Kathmandu Forestry College (KAFCOL), Amarawati Marga, Kotesworo, Kathmandu, P.O. Box 1276, Nepal.
³National Trust for Nature Conservation, Lalitpur, POB 3712, Kathmandu, Nepal.
⁴Former Joint Secretary at Department of National Parks and Wildlife Conservation, Babarmahal, P.O. Box 860, Kathmandu, Nepal.
⁵Department of National Parks and Wildlife Conservation, P.O. Box 860, Kathmandu, Nepal.

Abstract: Dhole *Cuon alpinus* is one of the top predators in Asian forests but is one of the least studied species of carnivores. We surveyed an area of 499 km² of Parsa National Park (PNP) during the winter (November–January) of 2016–17 using camera-traps to determine the spatial distribution and habitat-use patterns of Dhole. We overlaid 2 x 2 km² grid cells (n=126) across the study area and set up a pair of motion sensor cameras in each grid cells for 21 days. We modeled the habitat-use by Dholes as a function of sampling covariates and fine-scale habitat covariates using single species single season occupancy models. We estimated the parameters in two steps. First, we defined a global model for probability of habitat-use and modeled detection probability (p) either as an intercept-only model or as a function of covariates. Second, we modeled the habitat-use probability (Ψ) incorporating the top-ranked model for probability of detection (p) in the first step. A total effort of 2,520 camera-trap-nights resulted in 63 independent detections of dholes at 27 locations in PNP. The naive occupancy estimate of Dholes in PNP was 0.21. The estimated probability of habitat-use (Ψ) and detection (p) were 0.47±0.27 and 0.24±0.05, respectively. Grassland availability (βGL = 0.00±0.09), terrain ruggedness index (βTRI = 0.73±0.34), and Sambar (prey) presence (βSAM = 1.06±0.51) strong positive association, whereas, stream/exposed surfaces (βSES=-0.45±0.43) had negative association with the habitat use by Dholes. Similarly, detection probability was positively associated with presence of Sambar (βSAM = 2.44±1.02) but negatively associated with streams/exposed surfaces (βSES=-0.99±0.32) and terrain ruggedness (βTRI=-0.09±0.23). Our study provides quantitative information on the ecology of Dholes with potential applications for improving their conservation efforts in Nepal.

Keywords: Asiatic Wild Dogs, camera-traps, conservation, ecology, occupancy, social carnivores, spatial scale.
INTRODUCTION

Patterns of spatial distribution and fine-scale habitat-use by species are important aspects to understand their ecology and to initiate conservation measures to ensure population stability (Law & Dickman 1998; Phillips et al. 2004; Abrahms et al. 2016; Massara et al. 2018). Habitat components such as topography, canopy cover, water sources, prey species availability, proximity of habitat edges, and anthropogenic activities have significant roles in shaping the occurrence of a species (Durbin et al. 2004; Grassman et al. 2005; Jenks et al. 2012; Srivathsa et al. 2014; Aryal et al. 2015; Ferreguetti et al. 2016; Ferreguetti et al. 2017; Punjabi et al. 2017). Some species are habitat specialists with narrow niche requirements in specific habitats while others are habitat generalists occurring in a variety of habitats (Thorpe & Thorpe 2019). Within this behavioural diversity, it is hard to manage any species without information on its distribution and ecology (Aryal et al. 2015). Such information is a prerequisite for planning and developing species conservation strategies (Guisan & Zimmermann 2000; Halstead et al. 2010; Aryal et al. 2014, 2012; Lee et al. 2012).

The Dhole *Cuon alpinus* is a habitat generalist and a social carnivore that lives in packs of 3–20 adults (Valkenburgh 1991; Iyengar et al. 2005; Reddy et al. 2019). Dholes occur in a variety of habitats, occupying a wide distribution range across central Asia, southern Asia, and southeastern Asia (Lekagul & Mc Neely 1977; Johnsingh 1985; Srivathsa et al. 2014; Kamler et al. 2015). They are also found on the islands of Sumatra and Java (IUCN 2015). In Nepal, they are distributed from southern lowland protected areas of Bardia, Chitwan, and Parsa national parks (Thapa et al. 2013; Yadav et al. 2019) to the northern high mountain protected areas of Kanchanjunga Conservation Area, Makalu Barun National Park, and Dhorpatan Hunting Reserve (Jha 2003; Khatiwada 2011; Aryal et al. 2015). Despite their wide geographical distribution, they are endangered because of low population density and continued population decline caused by prey depletion, disease, habitat loss, and persecution (Kamler et al. 2015; Reddy et al. 2019). The Dhole is categorized as ‘Endangered’ in the IUCN Red List and placed in Appendix II of CITES (Kamler et al. 2015; CITES 2017). In spite of its endangered status, there have been relatively few quantitative studies throughout its range (Khatiwada 2011; Aryal et al. 2015) and very little is known about its distribution and ecology in Nepal (Thapa et al. 2013). Our study documents the influence of various ecological factors on the habitat-use patterns of dholes at a fine spatial scale in Parsa National Park Nepal. This study generates baseline information about dholes in Parsa with potential applications for improving dhole conservation efforts in Nepal.

MATERIALS AND METHODS

Study Area

The study was conducted between 2016 and 2017 in Parsa National Park (PNP) in south-central Nepal (27.25–27.55 N, 84.68–84.96 E) covering an area of 499 km² (area of PNP before extension). PNP was established in 1984 as a wildlife reserve, which was extended eastward to 627.37 km² in 2015 (Figure 1), and was upgraded to a national park in 2017. Parsa is the easternmost protected area of the trans-boundary Terai Arc Landscape (Lamichhane et al. 2018). The park was established primarily to preserve the unique sub-tropical dry ecosystem and to protect habitats of resident Asian Elephant *Elephas maximus* populations. However, it also provides good habitat for Dholes as they have been frequently recorded in camera-traps (PNP 2020) and directly sighted (Thapa et al. 2013). The reduced anthropogenic pressure, improved security and good prey base (Thapa et al. 2013; Thapa & Kelly2016; Lamichhane et al. 2018) have made the landscape suitable for Dholes.

PNP has many carnivore species including the Tiger *Panthera tigris*, Leopard *Panthera pardus*, Striped Hyaena *Hyaena hyaena*, Clouded Leopard *Neofelis nebulosa*, and Golden Jackal *Canis aureus*. The park also supports populations of a wide range of herbivore species including the Asian Elephant *Elephas maximus* and the Asian Water buffalo *Bubalus bubalis*.
species such as Greater One-horned Rhinoceros *Rhinoceros unicornis*, Gaur *Bos gaurus*, Sambar *Rusa unicolor*, Nilgai *Boselaphus tragocamelus*, Spotted Deer *Axis axis*, Barking Deer *Muntiacus vaginalis*, and Wild Pig *Sus scrofa* (Thapa et al. 2013). Parsa has a fragile geology and highly porous alluvial substrate. The streams running off the Churia Hills permeate the porous sediment and flow underground, reappearing...
south of the park and restricting water availability in >70% of PNP throughout the dry months (Lamichhane et al. 2018). Besides its biodiversity conservation value, PNP also serves the vital needs of the large human population living south of the park by conserving water sources and reducing the soil erosion in the Siwalik Hills (Bhattarai et al. 2018). PNP includes mainly sub-tropical forests of the Siwalik and Bhabar physiographic regions of Parsa, Makwanpur, and Bara districts. The vegetation is mainly dominated by Sal Shorea robust forest (90%). However, the forests are dominated by Khote salla Pinus roxburghii on the southern slope of the Siwalik Hills (60%). The riverbeds and flood plains are covered by riverine species including Khair Acacia catechu, Simal Bombax ceiba, Kans Saccharum spontaneum, and Cogon Grass Imperata cylindrica (Chhetri 2003; PNP 2020).

Field Survey

We overlaid 2 x 2 km² grid cells on 499 km² area of PNP and set up a pair of automatic motion sensor digital cameras (Panthera V4 and V5) in each grid cell selecting the best possible locations. The paired cameras were positioned 45 cm above ground, perpendicular to, and 5–7 m apart, on either side of game trails, grassland, forest roads and riverbeds with higher probability of detecting carnivores (Figure 1). The camera-traps were kept for 21 days within each grid cell. Camera-traps were installed in the field during the winter season (November–January) of 2016–17. Due to limited camera-traps availability, the entire area was divided into two blocks and surveyed sequentially. The camera-traps pictures were sorted species-wise, and all the Dhole photographs were obtained in a separate folder. Dhole photographs obtained from a location at 30 minutes apart were considered as independent detections (Silver et al. 2004; Di Bitetti et al. 2006; Thapa et al. 2013).

Data Analysis

The estimated home-range of dhole is ~85 km² (Srivathsra et al. 2017) which exceeded our sampling unit 4 km², so we described occupancy as a measure of ‘habitat-use’ instead of ‘true occupancy’ (Sunarto et al. 2012; Srivathsra et al. 2014; Thapa & Kelly 2016). We constructed the detection history of dholes in each grid. We considered 24 hours as a sampling occasion, so that each grid had 21 sampling occasions. We then grouped five consecutive sampling occasions to obtain four temporal replicates in each location (discarding first camera-trap day) to avoid redundancy in data transformations that might arise from zero counts (Kafley et al. 2016; Wolff et al. 2019). The final detection history of Dholes in each grid therefore included four independent sampling occasions (replicates). We coded detection of Dholes in each replicate as ‘1’ and non-detection as ‘0’. We estimated the detection probability and habitat-use following MacKenzie et al. (2002). We estimated the probability of detection, p based on the two possible outcomes for each survey occasion, namely, (1) the animal was detected, p, and (2) the animal was not detected, 1−p. Consequently, the probability of habitat-use based on the detectability was translated as follows: (1) the site was occupied and the species was detected, Ψxp; (2) the species was present but not detected, Ψ(1−p); or (3) the species was not present and, hence, not detected, (1−Ψ). We used single season single species occupancy models (MacKenzie et al. 2006) to estimate the relative effect of land cover (forest cover, grassland and streams/exposed surfaces), terrain ruggedness index, distance to the nearest settlement, and prey species covariates at a fine-scale on the probability of Dholes habitat-use and distribution. We used the prey species (Sambar) captured on the same camera-traps as sample covariate and others as site covariates (Karanth & Sunquist 1995; Andheria et al. 2007; Punjabi et al. 2017). Areas of different habitat types, i.e., forest cover, grassland, and stream/exposed surfaces were obtained from supervised classification of Landsat satellite images and were used as site covariates (Lillesand et al. 2004). Similarly, we calculated average terrain ruggedness index (TRI) values for each grid cell from the digital elevation model (DEM) of ASTER Global DEM at 30 m resolution by using a “DOCELL” command in ArcGIS 10.3. We calculated the distance of each grid from its center to the nearest settlements using ArcGIS 10.3 and used this as a surrogate of disturbance index. We assumed farther the distance from settlements, lower is the disturbance and higher is the occupancy and vice-versa. All predictor variables were standardized (z-transformations) so that the model coefficients could be directly interpreted as effect sizes. We tested auto-correlation between the predictor variables using Pearson’s coefficients. We constructed covariate combinations such that highly correlated predictors (Pearson’s |r| >0.70) did not appear in the same model. For example, grassland and streams/exposed surfaces were not used together within the same model due to high correlation between the variables (Pearson’s |r| = 0.74). We performed all analyses on program PRESENCE Version v2.12.32 and selected the best model based on minimum Akaike Information Criteria (Burnham & Anderson 2002). We estimated parameters in two steps. First, a general structure for habitat-use was
defined as a function of forest cover F_c, grassland G, streams/exposed surfaces SES, terrain ruggedness index TRI, distance to the nearest settlements D and prey species S i.e. $\Psi (F_c+G+SES+TRI+D+S)$ as global model Ψ (Global) and modeled detection probability (p) either as an intercept-only model or as a function of individual covariates and their combinations (Table 1). Second, the habitat-use probability (Ψ) was modeled incorporating the top ranked model for probability of detection in the first step (Table 2). Influence of different covariates on habitat-use was again modeled either individually or additively combining covariates in different biologically plausible combinations. Models with ΔAIC of <2 were considered to be strongly supported by the data. We used estimated β-coefficients to assess the strength of association of each covariate with habitat-use probability. Model fit was assessed for over-dispersion in the global model by running 1,000 bootstrap iterations (Burnham & Anderson 2002). The global models with c-hat>4 were considered structurally inadequate (Burnham & Anderson 2002) and excluded from further analyses. A total of seven candidate models (Table 2) were run for determining factors influencing habitat-use by Dholes.

RESULTS

Distribution of Dholes

With a total survey effort of 2,520 trap-nights at 126 camera-traps locations, we obtained 63 independent pictures of Dholes in PNP. Dholes were photographed at least once in 27 different locations (21.43% of the surveyed grids) with the naïve occupancy estimate of 0.21. Dholes were recorded primarily in the Churia hill forest (59.26%) followed by the forest in plains (29.63%), grassland (7.41%), and stream/exposed area (3.70%). Most photo-captures were in the western and northwestern part of the park bordering Chitwan National Park with a few records on the southern border (Figure 2).

Detection probability of Dhole

Streams/exposed surfaces (SES), terrain ruggedness index (TRI), and Sambar (S) affected the detection probability (p) in the top ranked model (Table 1, Figure 3). The estimated detection probability (p) was found to be 0.24 ± 0.05. The top model indicated that dhole detection probability was positive for prey species Sambar ($\beta_S = 2.44\pm1.02$) but was negative for streams/exposed surfaces ($\beta_{SES} = -0.99\pm0.32$) and terrain ruggedness index ($\beta_{TRI} = -0.09\pm0.23$) as shown in the Table 1.
Figure 3. Detection probability of Dholes in Parsa National Park at grid level.

Table 1. Summary of β-coefficient parameter estimates and associated standard errors (SE) of covariates from top models used to explain Dhole detection (p) in PNP. Given are intercept (Int.), stream/exposed surfaces (SES), terrain ruggedness index (TRI), Sambar presence (S), grassland availability (G), distance to the nearest settlements (D), Akaike Information Criteria (AIC), relative difference in AIC(∆AIC), and AIC model weight (W).

Model (M)	β₀±SE	β₁±SE	β₂±SE	β₃±SE	β₄±SE	AIC	∆AIC	W	
Ψ (Global),p(SES+TRI+S)	-2.29±0.15	-0.99±0.32	-0.09±0.23	2.44±1.02	-	-	256.03	0	0.46
Ψ (Global),p(TRI+S)	-1.29±0.11	-	-0.25±0.16	0.47±0.21	-	-	257.42	1.39	0.23
Ψ (Global),p(S)	0.31±0.14	-	-	0.50±0.25	-	-	257.64	1.61	0.21
Ψ (Global),p(SES)	0.51±0.78	-0.30±0.13	-	-	-	-	260.53	4.50	0.05
Ψ (Global),p(G+S+TRI+D)	1.13±0.71	-	-0.22±0.17	0.41±0.11	-0.48±0.16	-0.19±0.13	261.23	5.20	0.03
Ψ (Global),p(.)	2.13±1.45	-	-	-	-	-	262.20	6.17	0.02

Table 2. Summary of β-coefficient parameter estimates and associated standard errors (SE) of covariates from top models used to explain dhole habitat use (Ψ) in PNP. Given are intercept (Int.), grassland availability (G), terrain ruggedness index (TRI), Sambar presence (S), stream/exposed surfaces (SES), Akaike Information Criteria (AIC), relative difference in AIC(∆AIC), and AIC model weight (W).

Model (M)	β₀±SE	β₁±SE	β₂±SE	β₃±SE	β₄±SE	AIC	∆AIC	W	
Ψ (G+TRI),p(SES+TRI+S)	0.91±0.37	8.00±1.09	0.73±0.34	-	-	251.54	0.00	0.49	
Ψ (G+S),p(SES+TRI+S)	-1.19±0.23	0.21±0.09	-	1.06±0.51	-	-	252.56	1.02	0.29
Ψ (G),p(SES+TRI+S)	0.63±0.09	0.29±0.16	-	-	-	-	254.86	3.32	0.09
Ψ (Global),p(SES+TRI+S)	-0.61±0.47	8.78±2.81	-3.70±1.15	2.31±1.20	-3.70±1.15	-	254.97	3.43	0.09
Ψ (SES+S),p(SES+TRI+S)	-1.26±0.24	-	-	0.39±0.51	-0.45±0.43	-	258.09	6.55	0.02
Ψ (S),p(SES+TRI+S)	-1.19±0.22	-	-	0.38±0.51	-	-	260.70	9.16	0.01
Ψ (.),p(.)	0.29±0.16	-	-	-	-	-	262.20	10.66	0.00
Distribution and habitat-use of Dhole in Parsa NP

Probability of habitat-use

We used top ranked model for detectability, Ψ (Global) p (SES+TRI+S) to model fine-scale habitat-use (Ψ). Among a set of seven candidate occupancy models, the model with Ψ as a function of grassland and terrain ruggedness index, Ψ (G+TRI) and p as a function of stream/exposed surfaces, terrain ruggedness index and Sambar, p (SES+TRI+S) best fit the data. Our model estimate of the probability of habitat-use (Ψ) was 0.47 ± 0.27, more than double the naïve occupancy estimate. The model indicated that the habitat-use was strongly associated with grassland availability ($\beta_G = 8.00\pm3.09$), terrain ruggedness index ($\beta_{TRI} = 0.73\pm0.34$) and prey species (Sambar) presence ($\beta_S = 1.06\pm0.51$) but had strong negative association with streams/exposed surfaces ($\beta_{SES} = -0.45\pm0.43$) as shown in Table 2. We model averaged across a set of models for estimating probability of habitat-use (Figure 4).

DISCUSSION

Our study provides insights into the factors affecting spatial distribution and habitat-use by Dholes at a fine spatial scale in PNP, Nepal using camera-trap data. The survey was conducted primarily to monitor Tigers. Hence, probable bias in camera-traps placement towards Tigers cannot be denied. However, the camera-traps also produced a good number of Dhole detections (n= 63), which were used in this study. It provides an opportunity to obtain information on Dhole but our results may have underestimated the probability of habitat-use and detection of Dholes in PNP due to the bias in the placement of camera traps. Positive association of Dholes with grassland can be explained by the availability of prey species in higher density and ease of predation in grasslands. Prey populations of large carnivores occur in a wide range of habitats including grasslands (Karanth et al. 2009; Wegge et al. 2000; Dinerstein 1980, 1979; Schaller 1967). Our findings are similar to those reported by Jenks et al. (2012) and Grassman et al. (2005) in Thailand. The inter-specific competition like tigers and leopards, both of which typically prefer lowland areas, may have pushed the dholes in rugged areas in Siwalik hills (Reddy et al. 2019; Dhakal et al. 2014; Venkataraman 1995; Johnsingh 1983; Wood 1929). Another reason may be due to year-round availability of their preferred prey species (Sambar) in these hills (Thapa & Kelly 2016; Shrestha 2004; McKay & Eisenberg 1974). Moreover, the rugged areas (Churia hills) of Parsa are generally distant from settlements and hence there is comparatively less disturbance. We also found strong positive association between Dhole habitat-use and Sambar presence similar to the findings of Jenks et al. (2012). This is probably because Sambar is one of the most preferred prey species of Dholes (Hayward et
al. 2014; Acharya et al. 2007). In Parsa, there are many streams flowing from the Siwalik hills towards south with large amount of sediments deposited in the streambeds. The streambeds are wide and remain dry most of the time (except flash floods during rainy season). Avoiding these streambeds and exposed surfaces by dholes can be linked to the low density of prey species and difficulty in predation as prey species can easily spot Dholes from a distance. Previous studies documented the Dhole habitat use increasing with an increasing distance from forest edge but we did not find the effect of distance to forest edge (Durbin et al. 2004; Punjabi et al. 2017; Aryal et al. 2015; Srivaths et al. 2014; Khatiwada 2011). In a nutshell, our results show that dholes prefer rugged areas with grasslands and prey (Sambar). In addition to these findings, obtaining information on their population size and viabilities in the Terai Arc Landscape (that PNP these findings, obtaining information on their population size and viabilities in the Terai Arc Landscape (that PNP are a part of) would be important from a conservation standpoint.

REFERENCES

Abrahms B., S.C. Sawyer, N.R. Jordan, J.W. Mcnutt, A.M. Wilson & J.S. Brashares (2016). Does wildlife resource selection accurately inform corridor conservation? Journal of Applied Ecology 54(2): 412–422. https://doi.org/10.1111/1365-2664.12714

Acharya, B. (2007). The Ecology of the Dhole or Asiatic Wild Dog (Cuon alpinus) in Pencil Tiger Reserve, Madhya Pradesh. PhD Thesis. Saurashtra University, Rajkot, Gujarat.

Andheria, A.P., K.U. Karanth & N.S. Kumar (2007). Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. Journal of Zoology 273(2): 169–175. https://doi.org/10.1111/j.1469-7998.2007.01030.x

Aryal, A., W. Ji, Raubenheimer & D. Brunton (2012). Blue sheep in the Annapurna Conservation Area, Nepal: habitat-use, population biomass and their contribution to the carrying capacity of Snow Leopards. Integrative Zoology 7(1): 34–45. https://doi.org/10.1111/1749-4877.12004

Aryal, A., D. Brunton, W. Ji, D. Karmacharya, T. McCarthy, R. Bencini & D. Raubenheimer (2014). Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. Journal of Mammalogy 95(5): 871–881. https://doi.org/10.1644/13-MAMM-A-243

Aryal, A., S. Panthi, R.K. Barraclough, R. Benchi, K. Adhikari, W. Ji & D. Raubenheimer (2015). Habitat selection and feeding ecology of dhole (Cuon alpinus) in the Himalayas. Journal of Mammalogy 96(1): 47–53. https://doi.org/10.1093/jmammal/gyu001

Barber-Meyer, S.M., S.R. Jnawali, J.B. Karki, P. Khanal, S. Lohan, B. Long, D.I. MacKenzie, B. Pandav, N.M.B. Pradhan, R. Shrestha, N. Subedi, G. Thapa, K. Thapa & E. Wilcrement (2013). Influence of prey depletion and human disturbance on tiger occupancy in Nepal. Journal of Zoology 289(1): 10–18. https://doi.org/10.1111/j.1469-7998.2012.00956.x

Bhattachar, S., C.P. Pokharel, B.R. Lamichhane, U.R. Regmi, A.K. Ram & N. Subedi (2018). Amphibians and Reptiles of Parsa National Park, Nepal. Amphibians & Reptile Conservation 12(1): 35–48 (e155).

Burnham, K.P. & D.R. Anderson (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA.

Chetri, M. (2003). Food habits of gaur Bos gaurus gaurus Smith, 1827 and livestock (cows and buffaloes) in Parsa Wildlife Reserve, Central Nepal. Himalayan Journal of Sciences 1(1): 31–36. https://doi.org/10.3126/hjs. v1i1.183

Convention on International Trade in Endangered species of wild Fauna and Flora (2017). www.cites.org

Dhakal, M., M. Thapa, S.R. Inwali, N. Subedi, N.M.B. Pradhan, S. Malla, B.R. Lamichhane, C.P. Pokharel, G.J. Thapa, J. Ogletorpe, S.A. Subba, P.R. Bajracharya & H. Yadav (2014). Status of tigers and prey in Nepal Department of National Park and Wildlife Conservation. Kathmandu, Nepal.

Di Bitetti, M.S., A. Pavlovi & C. De Angelo (2006). Density, habitat-use and activity patterns of ocelots Leopardus pardalis in Asian Forest of Misiones, Argentina. Journal of Zoology 270(1): 153–163. https://doi.org/10.1111/j.1469-7998.2006.00102.x

Dinerstein, E. (1979). An ecological survey of the royal Karnali-Bardia Wildlife Reserve, Nepal. Part I: vegetation, modifying factors, and successional relationships. Biological Conservation 15(2): 127–150. https://doi.org/10.1016/0006-3207(79)90030-2

Dinerstein, E. (1980). An ecological survey of the Royal Bardia Wildlife Reserve, Nepal. Part III: Ungulate Populations. Biological Conservation 18(1): 5–37. https://doi.org/10.1016/0006-3207(80)90063-4

Durbin, L.S., A. Venkataraman, S. Hedges & W. Duckworth (2004). Dhole (Cuon alpinus), pp. 210–219. In: Sillero-Zubiri, C., M. Hoffmann & D.W. Macdonald (eds.). Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. IUCN/ SSC Canid Specialist Group, Gland, Switzerland.

Ferregueuri, C.A., M.W. Tomas & G.H. Bergallo (2015). Density and niche segregation of two armadillo species (Xenarthra: Dasyopodidae) in the Vale National Reserve, Brazil. Mammalian Biology 81(2): 138–145. https://doi.org/10.1016/j.mambio.2015.10.007

Fox, M.W. (1984). The Whistling Hunters. Field Studies of the Asiatic Wild Dog (Cuon alpinus). State University of New York, New York.

Grassman, J.R. (2005). Spatial ecology and diet of the dhole Cuon alpinus (Canidae,carnivore) in north central Thailand. Mammalia 69(1): 11–20. https://doi.org/10.1515/mamm.2005.002

Guisan, A. & N.E. Zimmerman (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

Halstead, B.J., G.D. Wylie & M.L. Casazza (2010). Habitat suitability and conservation of the giant gartersnake (Thamnophis gigas) in the Sacramento Valley of California. Copeia 2010(4): 591–599. https://doi.org/10.2307/40962955

Hayward, W.M., S. Lyonsd & B. Habib (2014). Diet and prey preferences of the dhole Cuon alpinus: dietary competition within Asia’s apex predator guild. Journal of Zoology 294(4): 255–266. https://doi.org/10.1111/jzo.12171

Hines, J.E. (2006). PRESENCE-software to estimate patch occupancy and related parameters. www.mbr.pwrc.usgs.gov/software/presence.shtml.

Hines, J.E., J.D. Nichols & J.A. Collazo (2014). Multi season occupancy models for correlated replicate surveys. Methods in Ecology and Evolution 5(6): 583–591. https://doi.org/10.1111/2041-210X.12186

IUCN (2010). IUCN Red List of Threatened Species. Version 2010.4. Downloaded on 26 December 2010.

Iyengar, A., V.N. Babu, S. Hedges, N. Venkataraman & P.A. Morin (2005). Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Molecular Ecology 14(8): 2281–2297. https://doi.org/10.1111/j.1365-294X.2005.02582.x

Jackson, R.M., J.D. Roe, R. Wangchuk & D.O. Hunter (2006). Estimating snow leopard population abundance using photography and capture-recapture techniques. Wildlife Society Bulletin 34(3): 772–781. https://doi.org/10.2301/009176482034[772:ESPAU]2.0.CO;2

Jenkins, K.E., S. Kitamura, A.J. Lynam, D. Ngoprasert, W. Chutipong, R. Steinmetz, R. Sukmasuang, L. Grassman Jr., P. Cutter,
N. Tantipisanun, N. Bhumpakhan, G.A. Gale, D.H. Reed, P. Leimgruber & N. Songsasen (2012). Mapping the distribution of dholes, *Cuon alpinus* (Canidae, Carnivora), in Thailand. *Mammalian 76(2):* 2011–2063. https://doi.org/10.1515/mammalia-2011-0063

Jha, S.G. (2003). Linkages between Biological and Cultural Diversity for Participatory Management: Nepal’s experiences with Makalu-Barun National Park and Buffer Zone. *Journal of National Science Foundation Sri Lanka* 31(1–2): 41–56.

Johnsingh, A.J.T. (1985). Distribution and status of dhole *Cuon alpinus* Pallas, 1811 in South Asia. *Mammalia* 49(2): 203–208. https://doi.org/10.1515/mamm.1985.49.2.203

Kafley, H., E.M. Gongryer, M. Sharma, B.R. Lamichhane & R. Maharjan (2016). Tigers (*Panthera tigris*) respond to fine-spatial-scale habitat factors: occupancy-based habitat association of tigers in Chitwan National Park, Nepal. *Journal of Wildlife Research* 43(5): 398–410. https://doi.org/10.1071/JR16012

Kamler, J.F., N. Songsasen, K. Jenks, A. Srivastha, L. Sheng & K. Kunkel (2015). *Cuon alpinus*. The IUCN Red List of Threatened Species 2015. Accessed on June 15, 2020. https://doi.org/10.2305/IUCN.UK.2015-4.RTS.T59353A7477893.en

Kanth, K.U. & M.E. Sunquist (1995). Prey selection by tiger, leopard and dhole in tropical forests. *Journal of Animal Ecology* 64(4): 439–450. https://doi.org/10.2307/5647

Kanth, K.U. & J.D. Nichols (1998). Estimation of tiger densities in India using geographic captures and recaptures. *Ecology* 79(8): 2852–2862. https://doi.org/10.1890/0012-9658(1998)079[2852:ETIDNI]2.0.CO;2

Kanth, K.K., J.D. Nichols, J.E. Hines, K.U. Kanth & N.L. Christensen (2009). Patterns and determinants of mammal species occurrence in India. *Journal of Applied Ecology* 46(6): 1189–1200. https://doi.org/10.1111/j.1365-2664.2009.01710.x

Khattwada, A.P. (2011). Status and Habitat Preference of Dhole *Cuon alpinus* in Kangchenjunga Conservation Area. M.Sc. Thesis, Tribhuvan University, Institute of Forestry, Pokhara, Nepal.

Lamichhane, B.R., C.P. Pokhrel, S. Giri, S. Ghimire, O. Quataert, K. Khatiwada, A.P. (2011). *Large-scale habitat association and dhole in tropical forests.* *Evolutionary Ecology* 450. https://doi.org/10.1007/s10682-014-9759-8

Law, B.S. & C.R. Dickman (1998). Movement patterns and habitat use of sympatric predators. *Oryx* 32(2): 191–205. https://doi.org/10.1017/S0030605398020576

Lee, J.H., D. Park & H.C. Sung (2012). Large-scale habitat association modeling of the endangered Korean ratsnake (*Elaphes schrencki*) (*2012*). *Canid Biology & Conservation* 20(3): 3–13. https://www.canids.org/CBC/20/dhole_in_western_ghats.pdf.

Reddy, C.S., R. Yosef, G. Calvi & L. Fornasari (2019). Inter-specific competition influences apex predator-prey populations. *Wildlife Research* 46(7): 628–638. https://doi.org/10.1071/WR19011

Schaller, G.B. (1967). *The Deer and the Tiger – A Study of Wildlife in India.* The University of Chicago Press, Chicago.

Shrestha, M. (2004). Relative ungulate abundance in fragmented landscape: implication for tiger conservation. PhD Dissertation, University of Minnesota, St Paul..

Silver, S.C., L.E.T. Ostro, L.K. Marsh, L. Maffei, A.J. Loss, M.J. Kelly, R.B. Wallace, H. Gomez & G. Ayala (2004). The use of camera-traps for estimating jaguar abundance and density using capture-recapture analysis. *Oryx* 38(2): 148–154. https://doi.org/10.1017/S003060530400286

Smithers, R.H.N. (1983). The mammals of the southern African subregion. University of Pretoria, Pretoria, South Africa.

Srivastha, A., K.K. Kanth, D. Jathanna, N.S. Kumar & K.U. Kanth (2014). On a Dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the western ghat forests of India. *Plos ONE* 9(6): e98903. https://doi.org/10.1371/journal.pone.0098903

Srivastha, A., S.N. Kumar & K.U. Kanth (2017). Home range size of the dhole from camera-trap surveys. *Canid Biology & Conservation* 21(1): 1–4. https://www.canids.org/CBC/20/dhole_home_range.pdf

Sunarto, S., M.J. Kelly, P. Parakasi, S. Klenzendorf, E. Septayuda, H. Kurniawan (2012). Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. *PlosONE* 7(1): e30859. https://doi.org/10.1371/journal.pone.0030859

Tappa, K. & M.J. Kelly (2016). Prey and tigers on the forgotten grill: high prey occupancy and tiger habitat-use reveal the importance of the understudied Churia habitat of Nepal. *Biodiversity Conservation* 25(3): 593–616. https://doi.org/10.1007/s10531-016-1260-1

Thapa, K.M. & J.K. Bird (2013). First camera-traps record of pack hunting dholes in Chitwan National Park, Nepal. *Canid Biology & Conservation* 16(2): 4–7.

The Upset United States Geological Survey (2016). Science for a changing world. Retrieved from the United States Geological Survey website: https://pubs.usgs.gov/of/2016/1032/

Thorpe, E. & B. Thorpe (2019). Geography and Environmental Ecology. Pearson India Education Services Pvt. Ltd., Uttar Pradesh, India.

Valkenburg, V.B. (1991). Iterative evolution of hypercarnivory in canids (Mammalia: Carnivora): evolutionary interactions among sympatric predators. *Paleobiology* 17(4): 340–362.

Venkataraman, A.B., R. Arumugam & R. Sukumar (1995). The foraging ecology of Dholes (*Cuon alpinus*) in Mudumalai Sanctuary, southern India. *Journal of Zoology* 237(4): 543–561. https://doi.org/10.1111/j.1469-7998.1995.tb05014.x

Wang, S.W. & D.W. Macdonald (2009). Feeding habits and niche
partitioning in a predator guild composed of tigers, leopards and dholes in a temperate ecosystem in central Bhutan. *Journal of Zoology* 277(4): 275–283. https://doi.org/10.1111/j.1469-7998.2008.00537.x

Wegge, P., T. Storaas, M. Odden & S.R. Jnawali (2000). Ungulates in heterogenous landscapes: how spatial gradients affect tigers and their prey in lowland Nepal. In: Ecology and management of ungulates: integrating across spatial scales international conference, British Columbia, Canada, August 1999.

Wood, H.S. (1929). Observations on the wild dog. *Journal of Bengal Natural History Society* 4: 7–15.

Yadav, S.K., B.R. Lamichhane, N. Subedi, R.K. Thapa, L.P. Poudyal & B.R. Dahal (2019). Dhole *Cuon alpinus* (Mammalia: Carnivora: Canidae) rediscovered in Bardia National Park, Nepal. *Journal of Threatened Taxa* 11(12): 14582-14586. https://doi.org/10.11609/jott.4714.11.12.14582-14586

Author details: SANTA BAHADUR THING—recently involving in the Provincial level Forest and Wildlife conservation related policy formulation activities. He is interested in Wildlife Management outside the Protected areas and its bottlenecks, Sustainable Tropical Forest management. Habitat suitability modeling of threatened group of flora and fauna. **JHAMAK BAHADUR KARKI, PhD**—interested in Habitat (Grassland wetland) management of tiger and prey base, Ramsar convention implementation in Nepal focusing Himalayan wetland. Involved in Policy formulation process for conservation. **BABU RAM LAMICHHANE, PhD**—interested in Habitat (Grassland wetland) management of tiger and prey base, Ramsar convention implementation in Nepal focusing Himalayan wetland. Involved in Policy formulation process for conservation. **Jhamak Bahadur Karki, PhD**—interested in Habitat (Grassland wetland) management of tiger and prey base, Ramsar convention implementation in Nepal focusing Himalayan wetland. Involved in Policy formulation process for conservation. **BABU RAM LAMICHHANE, PhD**—interested in Habitat (Grassland wetland) management of tiger and prey base, Ramsar convention implementation in Nepal focusing Himalayan wetland. Involved in Policy formulation process for conservation. **Babu Ram Lamichhane, PhD**—interested in Habitat (Grassland wetland) management of tiger and prey base, Ramsar convention implementation in Nepal focusing Himalayan wetland. Involved in Policy formulation process for conservation. **Mrs. SHASHI SHRESTHA**—completed her B.Sc. Forestry degree in 2016 from Institute of Forestry, Hetauda under Tribhuvan University, Nepal. Currently, involving in the Provincial level Forest and Wildlife conservation policy formulation activities. She is interested in Community Based Sustainable Forest Management, Gender equality and social inclusion (GESI) in forestry sector. **Mr. UBA RAJ REGMI**—the former Joint secretary under the Ministry of Forests and environment. He is recently involving in community based conservation practices. He is interested in studying Wildlife ecology and Protected area management. **RISHI RANABHAT**—Member of Asian rhino specialist group, Species survival commission of IUCN. He is interested in Rhino conservation and habitat management, also involving in Wildlife conservation policy formulation.
Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSQo, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karien Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Sillivel, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. M. P. Suresh, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Vartharajan, Manjula Research, Trophal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists’ Society, Hong Kong
Dr. K. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjab University, Punjab, India
Dr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITU TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Linh, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nittin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Nian, National Parks Board, Singapore
Dr. Lonal Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Ashesh Shivam, Nehru Gram Bhatti Utsav, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brazil
Dr. Kurth R. Arnold, North Dakota State University, Sauony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. Michael D. Clabon, Missouri State University, Springfield, USA
Dr. Kareen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Junior, Universidade Federal de Mato Grosso, Cuiaba, Brazil
Mr. Monsoon Jyoth Gogo, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. K.J. Shiel, University of Adelaide, SA 5005, Australia.
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadasanan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Aldred, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosentstein, Germany.
Dr. Yu-Feng Hu, National Taiwan Normal University, Taipei City, Taiwan
Dr. M. V. Wolfe,Industry, Singapore
Dr. Siddharth Kulkarni, The Horigma Lab, The George Washington University, Washington, D.C., USA.
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. T. John D. Calic, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadasanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fish

Dr. Neelesh Daharakan, IJUIE, Pune, Maharashtra, India
Dr. Topiltzin Contreras Maclach, Universitat Autonoma del esta de Morelos, Mexico
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert’s College, Kochi, Kerala, India
Dr. Robert D. Slika, Chiltern Waypoint Project, A Rocha UK, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Ashleigh K.V., ICAR Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annamaria Ohmer, Museum National d’Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Rajiv Vyas, Vadodara, Gujarat, India
Dr. Pratap S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandralekha U. Shivaraste, Goa University, Taleigao Plateau, Goa, India
Dr. S. R. Ganesh, Chittagong University Park, Chittagong, Bangladesh
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Byju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidson, Pondicherry University, Kalapat, Puducherry, India
Dr. J.W. Dudworth, IUCN SSC, British, UK
Dr. Rajajayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kal, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balabanian, Bombay Natural History Society, Mumbai, India
Mr. J. Praween, Bengaluru, India
Dr. Srinivasulu, Osmania University, Hyderbad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gomboobaantset, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosel, International Birding & Research Centre, Eilat, Israel
Dr. Taij Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Aralady Lelei, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mario Gabriel Santiago dos Santos, Universidade de Três-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Systematic Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, IA, Bangladesh
Dr. David Mallon, Zoological Society of London, London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Apol, Wildlife Trust of India, India
Dr. P.O. Nameer, Kerala Agricultural University, Thrisur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddel’s Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Kirin Schwartz, George Mason University, Fairfax, Virginia,
Dr. Lala A.K. Singh, Bhujbanswar, Orissa, India
Dr. Mewa Singh, Mysores University, Mysores, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumar, SACON, Anakatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Daharajan, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Societa Italiana per la Storia della Fauna “Giuseppe Altobello”, Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challenger, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmade, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilakanha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Anirudha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. Rayanna, University of Exeter, Devon, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. H. Byju, Coimbatore, Tamil Nadu, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. Priya Davidar, Pondicherry University, Kalapat, Puducherry, India
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Anwaruddin Chowdhury, IA, Bangladesh
Dr. O.N. Tiwari, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. Robert D. Slika, Chiltern Waypoint Project, A Rocha UK, Middlesex, UK
Dr. Ashleye K.V., ICAR Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, iot@threatenedtaxa.org

c/o Wildlife Information Liaison Development Society,
No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,
Saravanampatti, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

For more information, visit www.threatenedtaxa.org
Article

Distribution and habitat-use of Dhole *Cuon alpinus* (Mammalia: Carnivora: Canidae) in Parsa National Park, Nepal
– Santa Bahadur Thing, Jhamak Bahadur Karki, Babu Ram Lamichhane, Shashi Shrestha, Uba Raj Regmi & Rishi Ranabhat, Pp. 20703–20712

Communications

Habitat preference and population density of threatened Visayan hornbills *Penelopides panini* and *Rhabdotorrhinus waldeni* in the Philippines
– Andrew Ross T. Reintar, Lisa J. Paguntalan, Philip Godfrey C. Jakosalem, Al Christian D. Quidet, Dennis A. Warguez & Emelyn Peñaranda, Pp. 20713–20720

Nest colonies of Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) on overhead power transmission cables in the agricultural landscape of Cuddalore and Villupuram districts (Tamil Nadu) and Puducherry, India
– M. Pandian, Pp. 20721–20732

Status and distribution of Mugger Crocodile *Crocodylus palustris* in the southern stretch of river Cauvery in Melagiris, India
– Rahul Gour, Nikhil Whitaker & Ajay Kartik, Pp. 20733–20739

Short Communications

Breeding biology of Sri Lanka White-eye *Zosterops ceylonensis* (Aves: Passeriformes: Zosteropidae) in tropical montane cloud forests, Sri Lanka
– W.D.S.C. Dharmarathne, P.H.S.P. Chandrasiri & W.A.D. Mahaulpatha, Pp. 20773–20779

A new distribution record of *Memecylon clarkeanum* Cogn. (Melastomataceae) to Karnataka from Sharavathi river basin, central Western Ghats, India
– Malve Sathisha Savinaya, Jogattappa Narayana, Venkatarangaiah Krishna & Kalamanji Govindaiah Girish, Pp. 20792–20797

Notes

First record of Doherty's Dull Oakblue *Arhopala khamti* Doherty, 1891 from upper Assam, India
– Arun Pratap Singh, Pp. 20798–20800

A new species of *Pancratium* Dill. ex L. (Amaryllidaceae) from Eastern Ghats of India
– R. Prameela, J. Prakasa Rao, S.B. Padal & M. Sankara Rao, Pp. 20801–20804

Tribulus ochroleucus (Maire) Ozenda & Quezel (Zygophyllaceae) - a new addition to the flora of India
– K. Ravikumar, Umeshkumar Tiwari, Balachandran Natesan & N. Arun Kumar, Pp. 20805–20807

Abnormalities in the female spikelets of *Coix lacryma-jobi* L. (Poaceae) India
– Nilesh Appaso Madhav & Kumar Vinod Chhotupuri Gosavi, Pp. 20808–20810