Targeting the Extra-Cellular Matrix—Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors

Girieca Lorusso, Curzio Rüegg and François Kuonen

The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.

Keywords: extracellular matrix, tumor, progression, crosstalk, clinical perspectives

INTRODUCTION: TARGETING THE ECM-TUMOR CELL CROSSTALK

The extra-cellular matrix (ECM) is a dynamic niche continuously undergoing quantitative and qualitative remodeling by renewed synthesis and proteolytic modifications. During ECM remodeling, changes to its physical structure and organization occur, leading to a dysregulation in fiber composition, tissue architecture, and stiffness contributing to cancer progression and fibrosis (1). The cell can sense the surrounding ECM fibers by transmembrane surface molecules, such as integrins or other glycoproteins, acting as cellular mechano-chemical sensors. The relevance of the finely tuned integration and crosstalk between the ECM molecules, the cellular cytoskeleton, and the downstream signaling pathways, has been widely recognized and studied (2, 3). Their complex dynamic bi-directional interactions and mechano-transduction control have
been associated to fundamental physiological processes such as branching tissues morphogenesis and angiogenesis during development and homeostasis. These interactions are also relevant to pathological conditions including cancer, from initial malignant transformation to the disruption of tissue polarity and promotion of invasiveness toward dissemination and metastasis development (4, 5). Integrins represent the key cell surface receptors for the cell to sense the ECM, triggering signaling pathways that determine cell fate and evolution toward a malignant phenotype and resistance to therapy (6, 7). Numerous experimental and preclinical studies conducted over the past decades highlighted the central role of integrins in affecting different steps of tumorigenesis, by controlling tumor cell adhesion, proliferation, migration, invasion, and survival (6). This made integrins appealing therapeutic targets leading to the development of integrin inhibitors and their clinical testing in cancer trials. Unfortunately and unexpectedly, integrin inhibitors failed to deliver any tangible therapeutic benefits for cancer patients (8–10). This failure may be due to the intrinsic complexity of integrin signaling that we still do not fully understand. But they also question the pharmacokinetic/pharmacodynamics properties of the integrin inhibitors developed, the integrin subunit and the associated biological process targeted, the preclinical models used as well as the design of the clinical trials performed (7, 8). Addressing those yet unanswered questions is likely to pave the road toward successful introduction of a novel generation of integrin inhibitors in clinical practice. In the meantime, long-ago discovered non-integrin ECM receptors as well as intra-cellular downstream effectors of the ECM-tumor cell crosstalk (signaling molecules) taking part in several key aspects of tumor progression, were largely neglected. Considering the clinical failure of integrin inhibitors, these ECM-tumor crosstalk targets are potential candidates that may be therapeutically exploited in alternative to integrin inhibitors. Here we review those currently tested in anti-cancer clinical trials, and portray their biology and activity in promoting tumor evolution.

NON-INTEGRIN TUMOR CELL RECEPTORS TO THE ECM

CD44

CD44 is a non-kinase transmembrane glycoprotein expressed in various cancer types (11). CD44 extracellular domain contains binding sites for various ECM proteins such as collagen, laminin, and fibronectin (12, 13), while hyaluronic acid (HA) produced both by tumor cells and tumor stroma is the main and most specific CD44 ligand (14, 15) (Figure 1). CD44 functions are modulated by both glycosylation and alternative splicing (16–18). Unlike the standard CD44 (CD44s), variant CD44 isoforms (CD44v) contain exons with specific post-translational modifications allowing binding of tumor-promoting cytokines like osteopontin (OPN), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) (19–23). Upon HA binding, CD44 proteins change conformation, oligomerize, and redistribute in glycolipid-enriched domains (GEMs) at the cell membrane (24, 25). There, activated CD44 preferentially interacts with activated receptor tyrosine kinases (RTKs) (26), various adaptor proteins such as ankyrin or the ERM (ezrin, radixin, and moesin), ultimately leading to cytoskeletal changes (spectrin, F-actin) (27, 28), Src family kinases (SFK) members accumulation (29), and activation of downstream pathways, such as Rho-GTPases (30–33), PI3K/AKT, or Ras/Mapk (34, 35) (Figure 1). Since the seminal discovery of their role in metastasis (36), CD44s and CD44v have been implicated in various steps of tumor progression. In particular, HA-induced CD44 conformational changes and subsequent cytoskeletal modifications promote tumor cell migration, invasion, and epithelial-to-mesenchymal transition (EMT) (27, 28, 30, 37–45). In glioma cells, HA-CD44 interactions were shown to occur specifically at the leading edge of migrating cells upon regulation by activated protein kinase C (PKC) (46). Upon HA binding, various proteases cleave CD44 allowing dynamic cytoskeletal changes, filopodia formation and ultimately CD44-mediated migration (51). Since mesenchymal migration is based on integrin—ECM interactions, it is tempting to hypothesize that CD44 may support migration plasticity and escape to integrin inhibition (52–54). Further along tumor progression, circulating tumor cells (CTC) need to extravasate at distant organs. CD44 expressed on CTC was shown to interact with the HA coat produced by endothelial cells and initiate the process of tumor cell extravasation (55), particularly to the bone marrow, as shown in various tumor models through in vitro studies (56, 57). Importantly, both Cathepsin K, a potent collagenase typically expressed by osteoclasts during osteolysis, and MMP-9 were reported to be induced upon HA-mediated CD44 activation in prostate and breast cancer cells, suggesting their role in the colonization of metastatic osteolytic prostate and/or breast cancer cells (58–60). CD44 alternative splicing was reported to promote lung colonization by metastatic cancer cells (61). Recent studies implicated HA-CD44 interaction in tumor cell resistance to chemotherapy, by inducing multi-drug resistance 1 gene (MDR1) expression (62), ABC drug transporters (63), ankyrin-induced drug fluxes (62), and tumor cell survival pathways like ErbB2 signaling and PI3K/AKT pathway (64). Alternatively, HA-CD44 interactions may provide chemo-resistance through decreased apoptosis/cell death pathways by inducing anti-apoptotic proteins like inhibitors of the apoptosis family members (IAPs) (65–68), reducing pro-apoptotic proteins (69) or modulating autophagy (70).

Altogether, CD44 is involved at multiple steps of tumor progression and its inhibition appears as a promising alternative for tumor-ECM targeting therapies. Low molecular mass HA, soluble CD44, CD44 blocking antibodies, CD44 blocking peptides/aptamers, CD44-targeting shRNA or silibinin (a plant-derived inhibitor of CD44 expression) have all been used successfully to interfere with CD44 function in preclinical
FIGURE 1 | Extracellular matrix—tumor cell interactions. In addition to integrins, DDR, CD44, LAMRs, FAK, and SFK represent emerging therapeutic targets currently tested in clinical trials for solid tumors. Downstream effectors interactions were simplified for clarity reasons. DDR, discoidin domain receptor; LAMR, 36/67 kDa laminin receptors; FAK, focal adhesion kinase; PI3K, phosphoinositide-3-kinase; MAPK, mitogen-activated protein kinases; Casp3, caspase 3; NF-κB1, nuclear factor-kappa B1.

models of solid tumor progression (Table 1). The CD44-blocking antibody RO5429083 was tested in a phase I, dose-escalation clinical study in metastatic or locally advanced, CD44-positive malignant solid tumors (NCT01358903) as well as in a phase I clinical study, alone or in combination with cytarabine, for acute myelogenous leukemia (NCT01641250). Alternatively, CD44 targeting may serve to specifically deliver cytotoxic drugs or radioisotopes to tumor cells. Bivatuzumab-mertansine, a CD44v6-specific targeting antibody linked to the cytotoxic drug mertansine, was tested in phase I dose-escalation clinical studies for CD44v6-positive recurrent or metastatic breast cancers (NCT02254031, NCT02254005) and advanced squamous cell carcinoma of the head and neck (NCT02254044, NCT02254018). The \(^{186}\)Re-labeled bivatuzumab was tested in phase I biodistribution studies for non-small cell lung cancers (NCT02204059) and adenocarcinoma of the breast (NCT02204046). Although preliminary, these results encourage further clinical assessment of CD44-targeting therapies, either alone or in combination.

Discoidin Domain Receptors (DDR)

DDR1 and DDR2 belong to the family of the transmembrane receptor tyrosine kinase (RTK) with an extracellular discoidin domain binding to collagen in its native triple-helical conformation (227, 228) (Figure 1). DDR1 and DDR2 bind to various collagen isoforms with different affinities. DDR1 typically binds to collagens I-VI and VIII, while DDR2 preferentially binds to collagens I-III and X (228–231). Upon collagen binding, DDs cluster and get activated through auto-phosphorylation at multiple tyrosine residues within the cytosolic part of the protein (232, 233), leading to the recruitment of adaptor or signaling proteins like ShcA, SHP-2, SFKs, the proline-rich tyrosine kinase 2 (Pyk2), and the non-muscle myosin heavy chain (NMHC) IIA (234, 235). In cancer cells, DDR activation was reported to induce Ras/MAPK (236), PI3K/AKT (236), Notch (237), NF-κB (238), PKCa/JAK/Stat (239), and p130CS/INK pathways (234), thereby participating in various steps of tumor progression (Figure 1). Both DDR1 and DDR2 were shown to promote tumor cell proliferation, survival (236, 238, 240, 241), and migration.
Molecule	Combination	Tumor model	Biological process	References
Targeting CD44				
Low molecular mass HA	–	Ovary, peripheral nerve	Tumor growth/metastasis	(71–73)
soluble CD44	–	Melanoma, breast	Tumor growth	(74–76)
CD44 blocking antibody	–	Breast, colon, pancreas, liver	Tumor growth, metastasis	(77–81)
CD44v6 blocking antibody	–	Pancreas	Metastasis	(80, 82, 83)
CD44 peptide	–	Melanoma, gastric	Tumor growth/metastasis	(81, 83–85)
CD44v3 peptide	–	Glioblastoma	Tumor growth	(71–73, 84, 86)
CD44v6 si/shRNA	–	Colon, gastric	Tumor growth	(82)
CD44/Epcam aptamer	–	Ovary	Tumor growth	(82, 85)
Targeting DDR				
DDR1 blocking antibody	–	Breast	Tumor growth	(87)
7rh (DDR1 inhibitor)	–	Gastric, pancreas	Tumor growth	(88, 89)
WRG-28 (DDR2 inhibitor)	–	Breast	Metastasis	(90)
Dasatinib (multi-kinase inhibitor)	–	Lung	Tumor growth	(91)
Targeting LAMR37				
LAMR37 blocking antibody	–	Fibrosarcoma	Metastasis	(97)
Targeting LAMR				
OFA/ILRP-blocking antibody	–	Melanoma	Metastasis	(99–100)
OFA/ILRP-based immunotherapy	–	Fibrosarcoma, sarcoma	Tumor growth/metastasis	(99, 100)
Targeting FAK				
TAE-226	–	Breast	Metastasis	(98)
VS-6062 (FAK/Pyk2 inhibitor)	–	Prostate, pancreas, melanoma, basal cell carcinoma	Tumor growth/metastasis	(104–107)
VS-4718	–	Breast, ovary	Tumor growth/metastasis	(108, 109)
VS-6063	–	Ovary	Tumor growth	(110)
Compounds 14, Y15, Y11	–	Breast, pancreas, colon	Tumor growth	(111–114)
Compound C4, INT2-31, M13, R2 (FAK scaffold inhibitors)	–	Breast, pancreatic, neuroblastoma, melanoma, colon	Tumor growth	(115–121)
Bilb35520	–	Breast, mesotheloma	Tumor growth	(122, 123)
NVP-TAE-226	–	Ewing sarcoma	Tumor growth/metastasis	(124)
NVP-TAE-226	Docetaxel	Ovary	Tumor growth	(125)
VS-6062 (FAK/Pyk2 inhibitor)	Sunitinib	Liver	Tumor growth	(126)
VS-6062 (FAK/Pyk2 inhibitor)	Vemurafenib	Colon	Tumor growth	(127)
Compound Y15	5-FU	Colon	Tumor growth	(113)
Compound Y15	Gemcitabine	Pancreas	Tumor growth	(112, 128)
Compound C4 (FAK scaffold inhibitor)	Temozolomide	Glioblastoma	Tumor growth	(128)
Compound R2 (FAK scaffold inhibitor)	Doxorubicin	Breast	Tumor growth	(115)
Compound R2 (FAK scaffold inhibitor)	Doxorubicin, 5-FU	Colon	Tumor growth	(121)
PF5735523	WZ211 (CXCR4 inhibitor)	Lung	Tumor growth	(129)
VS-4718	HDAC inhibitors	Lung, Esophagus	Tumor growth	(130)
VS-4718	PD-1 antagonist, T cell immunotherapy	Pancreas	Tumor growth	(131)

(Continued)
Molecule	Combination	Tumor model	Biological process	References
VS-6063	Docetaxel	Prostate	Tumor growth	(132)
FAKsi nanoparticles	Paclitaxel nanoparticles	Ovary	Tumor growth	(133)
Bosutinib (multikinase inhibitor)	–	Neuroblastoma, thyroid, prostate, pancreas, colon	Tumor growth/metastasis	(134–139)
Dasatinib (multikinase inhibitor)	–	Prostate, pancreas, colon	Tumor growth/metastasis	(140–142)
Saracatinib (multikinase inhibitor)	–	Pancreas, prostate, head and neck, liver, gastric, biliary, sarcoma, colon, skin	Tumor growth/metastasis	(143–153)
Ponatinib (multikinase inhibitor)	–	Glioblastoma, neuroblastoma, endometrial, gastric, breast, lung, bladder, colon, rhabdomyosarcoma, GIST	Tumor growth	(154–159)
Vandetanib (multikinase inhibitor)	–	Breast, thyroid, glioblastoma, lung, liver, prostate, head and neck, vulva, ovary, gastric, pancreas, kidneys, colon	Tumor growth/metastasis	(160–185)
Dasatinib (multikinase inhibitor)	Cetuximab	Colon	Tumor growth	(186)
Dasatinib (multikinase inhibitor)	Erlotinib/gemcitabine	Pancreas	Tumor growth	(187)
Saracatinib (multikinase inhibitor)	Avetinib/erlotinib	Colon	Tumor growth	(188)
Saracatinib (multikinase inhibitor)	Trastuzumab	Breast	Tumor growth	(189)
Saracatinib (multikinase inhibitor)	Trametinib	NSCLC	Tumor growth	(190)
Saracatinib (multikinase inhibitor)	Bevacizumab	Glioma	Tumor growth	(191)
Saracatinib (multikinase inhibitor)	Rapamycin	Liver	Tumor growth	(192)
Saracatinib (multikinase inhibitor)	Paclitaxel	Breast, ovary	Tumor growth	(193, 194)
Saracatinib (multikinase inhibitor)	Cisplatin	Bladder	Tumor growth	(195)
Saracatinib (multikinase inhibitor)	Oxaliplatin	Colon	Tumor growth	(194, 196)
Saracatinib (multikinase inhibitor)	Gemcitabine	Urothelial	Tumor growth	(197)
Saracatinib (multikinase inhibitor)	Vincristine	Breast	Tumor growth	(198)
Saracatinib (multikinase inhibitor)	MCL-1 inhibitor	Breast	Tumor growth	(199)
Saracatinib (multikinase inhibitor)	Crizotinib	Prostate	Tumor growth/metastasis	(200)
Saracatinib (multikinase inhibitor)	Cabozantinib	Schwanoma	Tumor growth	(201)
Saracatinib (multikinase inhibitor)	Capivasertib	Head and neck	Tumor growth	(202)
Saracatinib (multikinase inhibitor)	Trastuzumab	Breast, gastric	Tumor growth	(203)
Saracatinib (multikinase inhibitor)	Anastrozole	Breast	Tumor growth	(204)
Saracatinib (multikinase inhibitor)	Fulvestrant	Ovary, breast	Tumor growth	(205)
Saracatinib (multikinase inhibitor)	5-FU	Gastric	Tumor growth	(206)
Saracatinib (multikinase inhibitor)	Celecoxib	Osteosarcoma	Tumor growth	(207)
Saracatinib (multikinase inhibitor)	Tamoxifen	Breast	Tumor growth	(208)
Saracatinib (multikinase inhibitor)	Paclitaxel	Ovary, colon	Tumor growth/metastasis	(209)
Saracatinib (multikinase inhibitor)	Cisplatin	Neuroblastoma	Tumor growth	(210)
Saracatinib (multikinase inhibitor)	Oxaliplatin	Colon	Tumor growth	(211)
Saracatinib (multikinase inhibitor)	Temozolomide	NSCLC, glioblastoma	Tumor growth	(212)
Saracatinib (multikinase inhibitor)	Radiotherapy	Head and neck, lung	Tumor growth	(213)
Saracatinib (multikinase inhibitor)	Radiotherapy/gemcitabine	Pancreas	Tumor growth	(214)
Saracatinib (multikinase inhibitor)	Radiotherapy/irinotecan	Colon	Tumor growth	(215)
Saracatinib (multikinase inhibitor)	Radiotherapy/cisplatin	Head and neck	Tumor growth	(216)
Saracatinib (multikinase inhibitor)	L19m-TNFalpha	Esophagus	Tumor growth	(217)
selective DDR2 inhibitor WRG-28 were shown the selective DDR1 inhibitors 7rh and DDR1-IN-1 and the multikinase inhibitors like ponatinib, imatinib, dasatinib, and nilotinib (246, 248). More recently, DDRs were implicated in the late stages of metastatic tumor progression (244, 248). Typically, DDR1 drives site-specific metastasis of lung cancer cells to bone (248). Additionally, the collagen-dependent interaction between Transmembrane 4 L6 Family Member 1 (TM4SF1) and DDR1 regulates dormancy vs. growth at the metastatic site (239). Finally, both DDR1 and DDR2 promote resistance to radio- and chemo-therapy in various preclinical models (94, 236–238, 249). However, despite these converging evidences implicating DDRs in tumor progression, one should consider that DDR-mediated effects are highly versatile and cell-dependent. For example, DDR1 was shown to either support or prevent integrin α2β1-mediated cell migration in different experimental models (234, 250, 251).

Moreover, the dynamic regulation of DDR expression during tumor progression will determine the consequences of DDR inhibition (231). Thus, the complex regulation of DDR activity in tumor cells may stand for the controversy concerning their contribution to cancer progression (243, 248, 252–254) and affect the potential efficacy of DDR targeting in cancer. Still, the recent identification of activating mutations in the cytoplasmic signaling portions of DDR affecting intracellular signaling (240, 255–257) opens new perspectives in the identification of patients who might benefit the most from DDR inhibition.

DDR1 and DDR2 kinases are efficiently inhibited by multitkinase inhibitors like ponatinib, imatinib, dasatinib, and nilotinib (258). Dasatinib, nilotinib, a DDR1 blocking antibody, the selective DDR1 inhibitors 7rh and DDR1-IN-1 and the selective allosteric DDR2 inhibitor WRG-28 were shown to efficiently prevent DDR-mediated tumor progression in preclinical models (Table 1). Driven by these encouraging results, dasatinib was tested in a phase II clinical trial for patients with advanced non-small cell lung cancers harboring a DDR2 mutation (NCT01514864). Unfortunately, it was abandoned because of lack of efficacy and slow enrollment. Currently, nilotinib is being assessed in a phase II clinical trial for malignant locally advanced or metastatic solid neoplasms presenting DDR1 or DDR2 mutations (NCT02029001). Importantly, non-canonical activation of DDR1 was shown to promote metastasis through tyrosine kinase-independent signaling in preclinical models (239), warranting cautious assessment of RTK inhibitors to target DDR. Further efforts should aim at the development of specific DDR1 and DDR2 inhibitors targeting canonical and non-canonical activation routes, the identification of the patients who may benefit the most from DDR inhibition and their use in combination therapies.

36/67 kDa Laminin Receptors (LAMR)

The 67 kDa (LAMRM) laminin receptor was first identified as a receptor for laminin 1 (259–261) (Figure 1). It is currently hypothesized that LAMRM arises from post-translational modifications of the precursor 37 kDa laminin receptor (LAMR), although the precise mechanisms (like sumoylation) are still to be resolved (262–264). LAMRs harbor multiple cellular localizations, as assessed by the wide range of cellular processes they are implicated in: ribosomal biogenesis (265), protein translation (266–268), pre-rRNA processing (269), cellular adhesion and migration (267, 270), invasion (271), cellular proliferation (272, 273), cytoskeletal modulation (267, 274), and chromatin and histone modifications (275). Both LAMRM and LAMRM were identified at the cell membrane where they potentially bind to laminins, associate with integrins (276, 277) and get phosphorylated (278, 279). Although the downstream signaling mechanisms are still unelucidated, various authors reported modifications of Ras/MAPK and JNK/p38 signaling upon laminin-binding to LAMRs (280), possibly through interactions with FAK and Paxillin (267, 281) (Figure 1).

Given their various implications in cellular regulation, it is not surprising to find elevated LAMR expression in various cancers (282–288) and their involvement in tumor cell growth, migration, invasion, and aggressiveness (266, 282, 289). Importantly, laminin 1—LAMR interaction was shown to be implicated in tumor cell adhesion (271, 290) and invasion (291, 292) and LAMR down-regulation was shown to promote tumor cell apoptosis (293–296). Whether this is mediated by laminin 1-dependent activation of LAMR remains unknown. Recent data suggest that LAMR interaction with FAK may depend on laminin 1—LAMR interaction and promote Ras/MAPK and/or PI3K/AKT-mediated survival (297, 298). However, LAMR was found to promote tumor progression through various laminin 1-independent manners, such as regulation of telomerases (299), reviewed in (300).

Despite various emerging strategies aimed to target LAMRM, in vivo preclinical studies assessing the feasibility and efficiency of targeting LAMR are still scant. Both a LAMRM blocking antibody and a small molecule inhibitor preventing laminin-LAMR interaction were shown to impede metastatic progression (Table 1). The green tea-derived epigallocatechin-3-gallate (EGCG) is a small molecule affecting a large number of cellular targets, including LAMRM (301) and LAMRM (302). EGCG is currently assessed in a phase I study for chemopreventive effect in patients with curative-intent resections of colorectal cancer (NCT02891538). Interestingly, the immunogenic LAMR tumor-associated antigen, referred as oncofetal antigen immature laminin receptor protein (OFA-ILRP), has been successfully used as a tumor antigen for vaccine-based therapies in preclinical studies (Table 1). Cellular immunotherapy using autologous dendritic cell loaded with OFA-ILRP was tested in a phase I-II clinical study for metastatic breast cancers (NCT00879489). Altogether, LAMR targeting appears promising for cancer therapy, although major efforts should aim at the development of specific inhibitors and acquisition of stronger preclinical data prior to further clinical trial.

Downstream Effectors of Integrin-Mediated Tumor Cell Adhesion to the ECM

Focal Adhesion Kinase (FAK)

Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase. It is an important cell signaling...
hub highly phosphorylated upon integrin activation, and has long been recognized as promoting cancer cell migration, proliferation, and survival/chemoresistance through downstream activation of Rho-GEF talin, cortactin, SFKs, PI3K/AKT, Ras/MAPK, or NF-kB pathways (303, 304) (Figure 1). More recent studies have described that besides its classical localization at the plasma membrane of tumor cells, FAK can also translocate to the nucleus and act as a transcription factor driving the expression of cytokines and chemokines favoring tumor immune evasion, independently of integrin signaling (305). In pancreatic cancer, FAK inhibition increases the immune infiltrate within the tumor environment, thereby sensitizing tumors to immune-checkpoint blockade (306). In addition, FAK inhibition also affects stromal cells. By targeting carcinoma-associated endothelial cells, FAK inhibition enhances vascular permeability, drug delivery, and overcomes chemo-resistance to DNA-damaging agents (307). Altogether, these data largely support the potential for therapeutic benefits of FAK inhibitors, used alone or in combination therapies, in the arsenal of anti-cancer strategies, illustrated by their success in various preclinical models (Table 1). FAK inhibition mostly relies on small molecule inhibitors working through various mechanisms: ATP competitive kinase inhibition (TAE-226, VS-4718, VS-6062, VS-6063, GSK-2256098, PF-573228), FAK scaffold inhibition (compounds Y11, Y15, C4, Int2-31, M13, R2), or more recently ATP competitive non-kinase inhibition (B1853520) (Table 1). In combination, FAK inhibition was reported to improve the efficacy of chemotherapeutic agents (docetaxel, paclitaxel, temozolomide, 5-FU, gemcitabine, doxorubicin), targeted therapies (EGFR inhibitor, Src inhibitor, sunitinib, BRAF inhibitor, CXCR4 inhibitor, HDAC inhibitor), or immunotherapy (PD1 antagonists, T cell immunotherapy) (Table 1). Acceptable safety profiles were obtained in phase I clinical trials for VS-6062 (104, 308), GSK-2256098 (309–311), VS-6063 (312, 313), VS-4718 and B1853520 (314–316), with VS-6062, GSK-2256098, and VS-6063 showing stabilization of disease in patients with various advanced solid tumors. Both GSK-2256098, in combination with trameciekinib, and VS-6063, however, failed to show efficacy in phase II clinical trials for pancreatic adenocarcinoma and malignant mesothelioma, respectively [NCT02428270, (317)]. This unexpected failure may have been prevented by the stratification of the patients based on FAK amplification/activity in order to select for the best responders. VS-6063 is currently tested in multiple clinical trials: (i) a phase II clinical trial in a pre-operative setting for malignant mesothelioma (NCT02004028); (ii) a phase II clinical trial in association with the PD-1 inhibitor pembrolizumab for advanced solid tumors (NCT02758587, NCT03727880); (iii) a phase I clinical trial in association with the RAF/MEK inhibitor RO5126766 for advanced solid tumors (NCT03875820); (iv) a phase I clinical trial in association with the anti-PD1 antibody avelumab for epithelial ovarian cancer (NCT02943317); (v) a phase I clinical trial in association with pembrolizumab and gemcitabine for advanced solid tumors (NCT02546531). The results of these ongoing clinical trials will be decisive to shape the future development of FAK inhibitors in clinical practice.

Src Family Kinases (SFK)
The SFK, composed of c-Src, Fyn, Yes, Lck, Lyn, Hck, Fgr, and Blk, are cytoplasmic non-receptor protein tyrosine kinases. Their prominent functions are mediated by their SH2 and SH3 domains interacting with various RTKs (such as EGF-R, HER2, IGF-R, HGF-R, and PDGF-R), thereby participating in integration and regulation of RTK signaling. But SFK also participate in ECM-mediated signaling. Through phosphorylation of FAK, SFK activation stabilizes focal adhesion complexes enhancing cell adhesion to the ECM (318) (Figure 1). Altogether, SFK are implicated in many steps of tumorigenesis, including proliferation, migration, invasion, survival in the circulation and at distant metastatic sites (319–324), achieved through modulation of various downstream effectors as PI3K/AKT, Ras/MAPK, or Stat3 (325, 326). Additionally, SFK activation confers therapeutic resistance to targeted RTK therapies (e.g., Trastuzumab/Herceptin for HER2), to hormone-receptor endocrine therapies (e.g., Tamoxifen for Estrogen Receptor), as well as to traditional chemo- and radiotherapies (327). Given their central role in tumor cell signaling and pleiotropic functions in cancer, SFK represent a promising target for anti-cancer therapies. SFK are currently most efficiently targeted using non-specific ATP-competitive multikinase inhibitors, such as dasatinib, bosutinib, saracatinib, ponatinib, and vandetanib, targeting many different tyrosine kinases (such as BCR-ABL, Kit, PDGFR, EGFR, RET, VEGFR) in addition to SFK members (328). With the exception of vandetanib, approved for the treatment of thyroid medullary carcinoma, dasatinib, ponatinib, and bosutinib have been approved by the FDA for hematological malignancies only, based on their BCR/Ab1 inhibitory capacity (328). In vivo preclinical data, however, suggest their potential efficacy in solid tumors as well, alone or in combination, although not necessarily through SFK inhibition (Table 1). Up to date, the results of phase II clinical trials with SKF inhibitors in monotherapy have been disappointing, as they showed only modest or no efficacy (326, 329). Such failure may be largely attributed to the current lack of biomarkers for the identification patients with aberrant SFK, the lack of specificity of SFK inhibitors, and the sometimes opposing effects of SFK members at various steps of tumor progression (330, 331). The interpretation of the numerous ongoing clinical trials (http://www.clinicaltrials.gov/) as well as the design of future successful clinical trials testing SKF inhibitors for solid tumors will largely depend on our capacity to overcome these important issues.

CONCLUSION

Despite huge expectations based on preclinical studies, integrin inhibitors failed to deliver anticipated results and have not entered the clinical practice yet. Understanding and surmounting the pitfalls of integrin inhibition will be crucial to further sustain the targeting of tumor cell–ECM interactions as an anticancer strategy. Yet, other long-time discovered molecules at the interface between tumor cell and ECM as CD44, DDR, LAMR, FAK, and SFK, are emerging as alternative
therapeutic targets in clinical trials. Alike integrin inhibitors, their therapeutic relevance will depend on the specificity and pharmacokinetic/dynamic properties of the inhibitors developed, on the adequacy of the preclinical models used for validation, on the biological process targeted, on the biomarkers used for the identification of best responders and on the combination strategies applied in clinical trials. Importantly, our growing knowledge of the biology of ECM—tumor cell interactions will be instrumental in overcoming these important pitfalls and extend the arsenal of clinically valuable inhibitors targeting the ECM—tumor cells crosstalk in the near future.

REFERENCES

1. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. (2012) 196:395–406. doi: 10.1083/jcb.201102147
2. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. (2009) 326:1216–9. doi: 10.1126/science.1176009
3. Hynes RO. Stretching the boundaries of extracellular matrix research. Nat Rev Mol Cell Biol. (2014) 15:761–3. doi: 10.1038/nrm3908
4. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. (2014) 15:786–801. doi: 10.1038/nrm3904
5. Ringer P, Colo G, Fassler R, Grashoff C. Sensing the mechanical properties of the extracellular matrix. Matrix Biol. (2017) 64:66–16. doi: 10.1016/j.matbio.2017.03.004
6. Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. (2019) 35:347–67. doi: 10.1016/j.ccell.2019.01.007
7. Hamidi H, Ivsaka J. Every step of the way: integrins in cancer progression and metastasis. Nat Rev Cancer. (2018) 18:533–48. doi: 10.1038/s41561-018-0047-2
8. Alday-Parejo B, Stupp R, Ruegg C. Are integrins still practicable targets for anti-cancer therapy? Cancers. (2019) 11:978. doi: 10.3390/cancers11070978
9. Kapp TG, Rechenmacher F, Sobahi TR, Kessler H. Integrin modulators: a patent review. Expert Opin Ther Pat. (2013) 23:1273–95. doi: 10.1517/13543776.2013.818133
10. Vicente-Manzanares M, Sanchez-Madrid F. Targeting the integrin interactome in human disease. Curr Opin Cell Biol. (2018) 55:17–23. doi: 10.1016/jceb.2018.05.010
11. Yin T, Wang G, He S, Liu Q, Sun J, Wang Y. Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cell Immunol. (2016) 300:41–5. doi: 10.1016/j.cellimm.2015.11.009
12. Ishii S, Ford R, Thomas P, Nachman A, Steele G Jr, Jessup JM. CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surg Oncol. (1993) 2:257–95. doi: 10.1016/0960-7404(93)90015-Q
13. Jalkanen S, Jalkanen M. Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol. (1992) 116:817–25. doi: 10.1083/jcb.116.3.817
14. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell. (1990) 61:1303–13. doi: 10.1016/0092-8674(90)90694-A
15. Banerji S, Wright AJ, Noble M, Mahoney DJ, Campbell ID, Day AJ, et al. Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate–protein interaction. Nat Struct Mol Biol. (2007) 14:234–9. doi: 10.1038/nsmb1201
16. Stamenkovic I, Amiot M, Pesando JM, Seed B. A lymphocyte molecule implicated in lymph node homing is a member of the cartilage link protein family. Cell. (1989) 56:1057–62. doi: 10.1016/0092-8674(89)90638-7
17. Goldstein LA, Zhou DF, Picker LJ, Minty CN, Bargatze RF, Ding JF, et al. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell. (1989) 56:1063–72. doi: 10.1016/0092-8674(89)90639-9
18. Elzirada RL, Carter WG, Nottenburg C, Wayner EA, Gallatin WM, St John T. Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proc Natl Acad Sci USA. (1989) 86:4659–63. doi: 10.1073/pnas.86.12.4659
19. Bennett KL, Jackson DG, Simon JC, Tanczos E, Peach R, Modrell B, et al. CD44 isoforms containing exon V3 are responsible for the presentation of heparin-binding growth factor. J Cell Biol. (1995) 128:687–98. doi: 10.1083/jcb.128.6.687
20. Tremmel M, Matsuoka A, Albrecth I, Laib AM, Olakau V, Ballmer-Hofer K, et al. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood. (2009) 114:5236–44. doi: 10.1182/blood-2009-04-219204
21. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. (2014) 13:342–56. doi: 10.1016/j.stem.2014.01.009
22. Megapptic AP, Erb U, Buchler MW, Zoller M. CD44v10, osteopontin and lymphoma growth retardation by a CD44v10-specific antibody. Immunol Cell Biol. (2014) 92:709–20. doi: 10.1038/icb.2014.47
23. Weber G, Asdxler S, Glimcher M, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. (1996) 271:509–12. doi: 10.1126/science.271.5248.509
24. Lesley J, Hyman R, Kincare PD. CD44 and its interaction with extracellular matrix. Adv Immunol. (1993) 54:271–335. doi: 10.1016/S0065-2776(08)60537-4
25. Liu D, SY MS. Phorbol myristate acetate stimuli the dimerization of CD44 involving a cytokine in the transmembrane domain. J Immunol. (1997) 159:2702–11.
26. Misra S, Toole BP, Ghatak S. Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. J Biol Chem. (2006) 281:34936–41. doi: 10.1074/jbc.C600138200
27. Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. (2010) 11:276–87. doi: 10.1038/nrm2866
28. Lokeshwar VB, Fregin N, Bourguignon L. Ankyrin-binding domain of CD44(GP85) is required for the expression of hyaluronic acid-mediated adhesion function. J Cell Biol. (1994) 126:1099–109. doi: 10.1083/jcb.126.4.1099
29. Foger N, Marhaba R, Zoller M. Involvement of CD44 in cytoskeleton rearrangement and raft reorganization in T cells. J Cell Sci. (2001) 114:1169–78.
30. Bourguignon LY, Zhu H, Zhou B, Dietrich F, Singleton PA, Hung MC. Hyaluronan promotes CD44v3-Vav2 interaction with Grb2-p185(HER2) and induces Rac1 and Ras signaling during ovarian tumor cell migration and growth. J Biol Chem. (2001) 276:48679–92. doi: 10.1074/jbc.M106759200

AUTHOR CONTRIBUTIONS

GL wrote the review and edited the manuscript. CR edited the manuscript. FK planned the outline, wrote the review, and edited the manuscript. All authors read and approved the submitted version of the manuscript.

FUNDING

Work in our laboratories was supported by the Swiss National Science Foundation grants PZ00P3_185926 (to FK) and 31003A_179248 (to CR).
31. Ponta H, Sherman L, Harrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol. (2003) 4:33–45. doi: 10.1038/nrm1004

32. Bourguignon LY. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol. (2008) 18:251–9. doi: 10.1016/j.semcancer.2008.03.007

33. Bourguignon LY, Singleton PA, Zhu H, Diedrich F. Hyaluronan-mediated CD44 interaction with RhoGEF and Rho kinase promotes Grb2-associated binder-1 phosphorylation and phosphatidylinositol 3-kinase signaling leading to cytokine (macrophage-colony stimulating factor) production and breast tumor progression. J Biol Chem. (2003) 278:29240–34. doi: 10.1074/jbc.M301885200

34. Orian-Rousseau V, Morrison H, Matzke A, Kasilian T, Pace G, Herrlich P, et al. Hepatocyte growth factor-induced Ras activation requires ERK proteins linked to both CD44v6 and F-actin. Mol Biol Cell. (2007) 18:76–83. doi: 10.1091/mbc.e06-08-0674

35. Weber GF. Molecular mechanisms of metastasis. Cancer Lett. (1992) 67:93–102. doi: 10.1016/0304-3828(92)85050-8

36. Gunthert U, Hoffmann M, Rudy W, Reber S, Zoller M, Haussmann I, et al. Chondroitin 6-sulfate E fragments alone or combined with CD44 promotes tumor cell invasion. Exp Cell Res. (2008) 200:52–60. doi: 10.1016/j.yexcr.2007.07.013

37. Nagano O, Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida Y, et al. Hyaluronan/CD44 linkage; local force measurements on glioma cells. J Cell Biol. (1992) 118:971–7. doi: 10.1083/jcb.118.4.971

38. Lamontagne CA, Grandbois M. PKC-induced stiffening of hyaluronan/CD44 linkage; local force measurements on glioma cells. Exp Cell Res. (2008) 314:227–36. doi: 10.1016/j.yexcr.2007.07.013

39. Nagano O, Saya H. Mechanism and biological significance of CD44 cleavage. Cancer Sci. (2004) 95:930–5. doi: 10.1111/j.1349-7006.2004.tb03179.x

40. Nagano O, Murakami D, Hartmann D, De Strooper B, Safigí P, Iwatsubo T, et al. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+)-influx and PKC activation. J Cell Biol. (2004) 165:893–902. doi: 10.1083/jcb.200310024

41. Bellerby R, Smith C, Kyme S, Gee J, Gunthert U, Green A, et al. The osteoclast-associated protease cathepsin K is expressed in human breast carcinoma. Cancer Res. (1997) 57:5386–90.

42. Yae T, Tsuchihashi K, Ishimoto T, Yoshikawa M, Yoshida G, et al. Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cells. Nat Commun. (2012) 3:883. doi: 10.1038/ncomms1892

43. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K, Spevak CC, et al. Hyaluronan-CD44 interaction promotes c-myc mRNA expression and chemoresistance in breast cancer cells. J Biol Chem. (2008) 283:17635–51. doi: 10.1074/jbc.M800109200

44. Riicciardielli C, Ween MP, Lokman NA, Tan IA,Pyragus CE, Oehler MK. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer. (2013) 13:476. doi: 10.1186/1471-2407-13-476

45. Misra S, Ghatak S, Zoltan-Jones A, Toole BP. Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem. (2003) 278:25285–8. doi: 10.1074/jbc.C301723200

46. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. (2012) 31:149–60. doi: 10.1038/onc.2011.222

47. Chen L, Bourguignon LY. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer. (2014) 13:52. doi: 10.1186/1476-4598-13-52

48. Bourguignon LY, Wong G, Earle C, Chen L. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem. (2012) 287:32800–24. doi: 10.1074/jbc.M111.308528
87. Zhong X, Zhang W, Sun T. DDR1 promotes breast tumor growth by suppressing antitumor immunity. Onco Rep. (2019) 42:2844–54. doi: 10.3892/or.2019.7313
88. Jin H, Ham IH, Oh HI, Rae CA, Lee D, Kim YB, et al. Inhibition of discoidin domain receptor 1 prevents stroma-induced peritoneal metastasis in gastric carcinoma. Mol Cancer Res. (2018) 16:1590–600. doi: 10.1158/1541-7766.MCR-17-0710
89. Aguilera KY, Huang H, Du W, Hagopian MM, Wang Z, Hinz S, et al. Inhibition of discoidin domain receptor 1 reduces collagen-mediated tumorigenicity in pancreatic ductal adenocarcinoma. Mol Cancer Ther. (2017) 16:2473–85. doi: 10.1158/1535-7163.MCT-16-0834
90. Grither WR, Longmore GD. Inhibition of tumor-microenvironment interaction and tumor invasion by small-molecule allosteric inhibitor of DDR2 extracellular domain. Proc Natl Acad Sci USA. (2018) 115:E7786–94. doi: 10.1073/pnas.180502115
91. Ambrogio C, Gomez-Lopez G, Falcone M, Vidal A, Nadal E, Crotesso N, et al. Combined inhibition of DDR1 and notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med. (2016) 22:270–7. doi: 10.1038/nm.4041
92. Jeinty M, Leroy C, Tosti P, Laffite M, Le Guet J, Simon V, et al. Inhibition of DDR1-BCR signalling by nilotinib as a new therapeutic strategy for metastatic colorectal cancer. EMBO Mol. Biol. (2018) 10:e7918. doi: 10.15252/emmm.201707918
93. Lu QP, Chen WD, Peng JR, Xu YD, Cai Q, Feng GK, et al. Antitumor activity of 7RH, a discoidin domain receptor 1 inhibitor, alone or in combination with dasatinib exhibits antitumor effects in nasopharyngeal carcinoma cells. Oncol Lett. (2016) 12:3598–608. doi: 10.3892/ol.2016.5088
94. Vehlov A, Klapproth E, Jin S, Hannen R, Hauswald M, Bartisch JW, et al. Interaction of discoidin domain receptor 1 with a 14-3-3-Beclin-1 akt1 complex modulates gliblastoma therapy sensitivity. Cell Rep. (2019) 26:3672–83.e7. doi: 10.1016/j.celrep.2019.02.096
95. Xu C, Buckowski KA, Zhang Y, Ashina H, Beauchamp EM, Terai H, et al. NSCLC driven by DDR2 mutation is sensitive to dasatinib and JQI1 combination therapy. Mol Cancer Ther. (2015) 14:2382–9. doi: 10.1158/1535-7163.MCT-15-0077
96. Kim DG, Lee JY, Kwon NH, Fang P, Zhang Q, Wang J, et al. Chemical inhibition of prometastatic lysyl-tRNA synthetase-lamin receptor interaction. Nat Chem Biol. (2014) 10:29–34. doi: 10.1038/nchembio.1381
97. Narumi K, Inoue A, Tanaka M, Isemura M, Shimo-Oka T, Abe T, et al. Inhibition of experimental metastasis of human fibrosarcoma cells by anti-recombinant 37kDa laminin binding protein antibody. Jpn J Cancer Res. (1997) 88:1211–7. doi: 10.1111/j.1349-7006.1997.tb00655.x
98. McClintock SD, Warner RL, Ali S, Chekuri A, Dame MK, Attioli D, et al. Monoclonal antibodies specific for oncofetal antigen–immature lamin receptor protein: effects on tumor growth and spread in two murine models. Cancer Biol Ther. (2015) 16:724–32. doi: 10.1089/cbto.2015.0102648
99. Barsoum AL, Liu B, Rohrer JW, Coggih JH Jr, Tucker JA, Pannell LK, et al. Production, safety and antitumor efficacy of recombinant oncofetal antigen/immature lamin receptor protein. Biomaterials. (2009) 30:3091–9. doi: 10.1016/j.biomaterials.2009.02.022
100. Rohrer JW, Barsoum AL, Coggih JH Jr. Identification of oncofetal antigen/immature lamin receptor protein epitopes that activate BALB/c mouse OVA/ILRP-specific effector and regulatory T cell clones. J Immunol. (2006) 177:2844–56. doi: 10.4049/jimmunol.176.5.2844
101. Hauck CR, Hsa DA, Puente XS, Chersh DA, Schlaepfer DD. FRNK blocks v-Src-stimulated invasion and experimental metastases without effects on cell motility or growth. EMBO J. (2002) 21:6289–302. doi: 10.1093/emboj/cdf317
102. Mitra SK, Molckon D, Molina JE, Hsa DA, Hanson DA, Chi A, et al. Intrins FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. (2006) 25:9569–84. doi: 10.1038/sj.onc.1209588
103. Liu TJ, LaFortune T, Honda T, Ohmori O, Hatakeyama S, Meyer T, et al. Inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor kinase suppresses glioma proliferation in vitro and in vivo. Mol Cancer Ther. (2007) 6:1357–67. doi: 10.1158/1535-7163.MCT-06-0476
104. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Auty C, et al. Antitumor activity and pharmacology of a selective folic acid kinase inhibitor, PF-562,271. *Cancer Res.* (2008) 68:1935–44. doi: 10.1158/0008-5472.CAN-07-5155

105. Stokes JR, Adair SJ, Slack-Davis JK, Walters DM, Tilghman RW, Hershey ED, et al. Inhibition of focal adhesion kinase by PF-562,271 inhibits the growth and metastasis of pancreatic cancer concomitant with altering the tumor microenvironment. *Mol Cancer Ther.* (2011) 10:2135–45. doi: 10.1158/1535-7163.MCT-11-0261

106. Jeong K, Murphy JM, Rodriguez YAR, Kim JS, Ahn EE, Lim SS. FAK inhibition reduces metastasis of alpha4 integrin-expressing melanoma to lymph nodes by targeting lymphatic VCAM-1 expression. *Biochem Biophys Res Commun.* (2019) 509:1034–40. doi: 10.1016/j.bbrc.2019.01.050

107. Kuonen F, Surbeck I, Sarin KY, Dontenwill M, Ruegg C, Gilliet M, et al. TGFbeta, fibronectin and integrin alpha5beta1 promote invasion in basal cell carcinoma. *J Invest Dermatol.* (2018) 138:2432–42. doi: 10.1016/j.jid.2018.04.029

108. Tanjoni I, Walsh C, Uryu S, Tomar A, Nam JO, Mielgo A, et al. PND-1186 FAK inhibitor selectively promotes tumor cell apoptosis in three-dimensional environments. *Cancer Biol Ther.* (2010) 9:764–77. doi: 10.4161/cbt.9.10.11434

109. Walsh C, Tanjoni I, Uryu S, Tomar A, Nam JO, Luo H, et al. Oral delivery of PND-1186 FAK inhibitor decreases tumor growth and spontaneous breast to lung metastasis in pre-clinical models. *Cancer Biol Ther.* (2010) 9:778–80. doi: 10.4161/cbt.9.10.11433

110. Kang Y, Hu W, Ivan C, Dalton HJ, Miyake T, Pecot CV, et al. Role of focal adhesion kinase in regulating YB-1-mediated paclitaxel resistance in ovarian cancer. *Nat Cell Biol.* (2013) 105:1485–95. doi: 10.1039/nci/dt1210

111. Golubovskaya VM, Nyberg C, Zheng M, Li G, Magis A, Ostrov D, et al. A small molecule inhibitor, 5’-O-tritylthymidine, targets FAK and Mdm-2 in vitro growth of pancreatic cancer cells and blocks breast and colon tumorigenesis in vivo. *Anticancer Agents Med Chem.* (2013) 13:532–45. doi: 10.1080/15357163.2013.8040002

112. Golubovskaya VM, Ho B, Zheng M, Magis A, Ostrov D, Morrison C, et al. Disruption of focal adhesion kinase and p53 interaction with small molecule compound R2 reactivated p53 and blocked tumor growth. *BMC Cancer.* (2013) 13:342. doi: 10.1186/1471-2407-13-342

113. Tiede S, Meyer-Schaller N, Kalathur RKR, Ivanek R, Fajani E, Schmassmann P, et al. The FAK inhibitor BI 853520 exerts anti-tumor effects in breast cancer. *Oncogenesis.* (2017) 7:73. doi: 10.1038/s41389-018-0083-1

114. Laszlo V, Valko Z, Oszvar J, Kovacs I, Garay T, Hoda MA, et al. The FAK inhibitor BI 853520 inhibits spheroid formation and orthotopic tumor growth in malignant pleural mesothelioma. *J Mol Med.* (2019) 97:231–42. doi: 10.1007/s00109-018-1725-7

115. Moritake H, Saito Y, Sawa D, Sameshima N, Yamada A, Kinoshita M, et al. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-1 receptor, is effective for Ewing sarcoma. *Cancer Med.* (2019) 8:7809–21. doi: 10.1002/cam4.2647

116. Halder J, Lin YG, Merritt WM, Spannuth WA, Nick AM, Honda T, et al. Therapeutic efficacy of a novel focal adhesion kinase inhibitor TAE226 in ovarian carcinoma. *Cancer Res.* (2007) 67:10976–83. doi: 10.1158/0008-5472.CAN-07-2667

117. Bagi CM, Christensen J, Cohen DP, Roberts WG, Wilk D, Swanson T, et al. Sunitinib and PF-562,271 (FAK/Pyk2 inhibitor) effectively block growth and recovery of human hepatocellular carcinoma in a rat xenograft model. *Cancer Biol Ther.* (2009) 8:856–65. doi: 10.4161/cbt.8.9.28246

118. Chen G, Gao C, Gao X, Zhang DH, Kuan SE, Burns TF, et al. Wnt/beta-Catenin pathway activation mediates adaptive resistance to BRAF inhibition in colorectal cancer. *Mol Cancer Ther.* (2018) 17:806–13. doi: 10.1158/1535-7163.MCT-17-0561

119. Golubovskaya VM, Huang G, Ho B, Yemma M, Morrison CD, Lee J, et al. Pharmacologic blockade of FAK autophosphorylation decreases human glioblastoma tumor growth and synergizes with temozolomide. *Mol Cancer Ther.* (2013) 12:162–72. doi: 10.1158/1535-7163.MCT-12-0701

120. Dragoi M, Bankovic J, Sereti E, Stojanov SJ, Dimas K, Pasic M, et al. Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors. *Invest New Drugs.* (2017) 35:718–32. doi: 10.1007/s10637-017-0494-4

121. Dawson JC, Serrels B, Byron A, Muir MT, Makda A, Garcia-Munoz A, et al. A synergistic anti-cancer FAK and HDAC inhibitor combination discovered by a novel chemical-genetic high-content phenotypic screen. *Mol Cancer Ther.* (2019) 19:637–49. doi: 10.1158/0160-8272.AIN-19-0684

122. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. *Nat Med.* (2016) 22:851–60. doi: 10.1038/nm.4279

123. Lin HM, Lee BY, Castillo L, Spielman C, Grogan J, Yeung NK, et al. Effect of FAK inhibitor VS-6606 (defactinib) on docetaxel efficacy in prostate cancer. *Prostate.* (2018) 78:308–17. doi: 10.1002/pros.23476

124. Byeon Y, Lee JW, Choi WS, Won JE, Kim GH, Kim MG, et al. CD44-Targeting PLAGA nanoparticles incorporating paclitaxel and FAK siRNA Overcome chemoresistance in epithelial ovarian cancer. *Cancer Res.* (2018) 78:6247–56. doi: 10.1158/0008-5472.CAN-17-3871

125. Bierkehrhazii S, Chen Z, Zhao Y, Yu Y, Zhang H, Vasudevan SA, et al. Novel Src/Abi tyrosine kinase inhibitor bosutinib suppresses neuroblastoma growth via inhibiting Src/Abi signaling. *Oncotarget.* (2017) 8:1649–60. doi: 10.18632/oncotarget.13643

126. Kim WG, Guigon CJ, Fozzatti L, Park JW, Lu C, Willingham MC, et al. SKI-606, an Src inhibitor, reduces tumor growth, invasion, and distant metastasis in a mouse model of thyroid cancer. *Clin Cancer Res.* (2012) 18:1281–90. doi: 10.1158/1078-0432.CCR-11-2892

127. Rabbani SA, Valentino ML, Arakelian A, Ali S, Boschelli F. SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. *Mol Cancer Ther.* (2010) 9:1147–57. doi: 10.1158/1535-7163.MCT-09-0462

128. Messersmith WA, Rajeshkumar NV, Tan AC, Wang XF, Diesl V, Choe SE, et al. Efficacy and pharmacodynamic effects of bosutinib (SKI-606), a
Combating head and neck cancer metastases by targeting Src using a src inhibitor, in pancreatic cancer.

110. Li J, Chao Y, Zhao X, Jiao S, Wang W, Zhang F, et al. Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses angiogenesis in an orthotopic nude mouse model. *Carcinogenesis.* (2007) 28:1531–35. doi: 10.1093/carcin/bgm038

111. Gobbel P, Maier K, Strobel A, Wolpers H, Schuler S, Allmendinger C, et al. Sorafenib impairs tumor development and improves prognosis of liver cancer in mice. *Cancer Res.* (2007) 67:1580–8. doi: 10.1158/0008-5472.CAN-06-2027

112. Matsuoka K, Akiyama H, Hasegawa M, Takeuchi Y, Ito S, Seki S, et al. Targeted inhibition of FGFR4 activity in multiple FGFR-amplified or mutated cancer models. *Clin Cancer Res.* (2016) 22:4554–65. doi: 10.1158/1078-0432.CCR-15-2042

113. Wang J, Zhao J, Huang Z, Zhang L, Li W, Cai Y, et al. Novel interventional drug for the treatment of gastric cancer. *Cancer Biol Ther.* (2017) 18:735–42. doi: 10.1089/cbt.2016.07066

114. Scimeca M, De Caprio V, Falsone F, Lettieri M, Cappiello V, Gentile MA, et al. Targeted therapy with sorafenib and combined photodynamic therapy for advanced hepatocellular carcinoma. *Int J Hematol.* (2016) 104:642–50. doi: 10.1111/joh.12857

115. De Andrade JP, Park JM, Gu VW, Woodfield SE, Du M, Smith V, et al. Preclinical models of biliary tract carcinomas. *Mol Cancer Ther.* (2006) 5:465–75. doi: 10.1158/1535-7163.MCT-05-0119

116. Whittle SB, Patel K, Zhang L, Woodfield SE, Du M, Smith V, et al. The novel kinase inhibitor pondinib is an effective anti-angiogenic agent against neuroblastoma. *Invest New Drugs.* (2016) 34:685–92. doi: 10.1007/s10637-016-0387-y

117. Gogzt J, Wong MJ, Moran L, Wardwell S, Mohemmad QK, Narasimhan NI, et al. Ponatinib (AP24534), a multitargeted pan-FGFR inhibitor with activity in multiple FGFR-amplified or mutated cancer models. *Mol Cancer Ther.* (2012) 11:690–9. doi: 10.1158/1535-7163.MCT-11-0450

118. Li SQ, Cheuk AT, Shenn JF, Song YK, Hur L, Liao H, et al. Targeting wild-type and mutationally activated FGFR4 in rhodobiomysosarcoma with the inhibitor ponatinib (AP24534). *PloS ONE.* (2013) 8:e76551. doi: 10.1371/journal.pone.0076551

119. Garner AP, Gogzt JM, Anjum R, Vodala S, Schrock A, Zhou T, et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. *Clin Cancer Res.* (2014) 20:5745–55. doi: 10.1158/1078-0432.CCR-14-1397

120. Li L, Yu J, Jiao S, Wang W, Zhang F, Sun S. Vandetanib (ZD6474) induces antiangiogenesis through miTOR-HIF-1 alpha-VEGF signaling axis in breast cancer cells. *Onco Targets Ther.* (2018) 11:8543–53. doi: 10.2147/OTT.S175788

121. Ferrari SM, Bocci G, Di Desiderio T, Ruffilli I, Elia G, Ragusa F, et al. Vandetanib has antineoplastic activity in anaplastic thyroid cancer, in vitro and in vivo. *Oncol Rep.* (2018) 39:2306–14. doi: 10.3892/or.2018.6305

122. Wang X, Qiu Y, Yu Q, Li H, Chen X, Li M, et al. Enhanced glioma therapy by synergistic inhibition of autophagy and tyrosine kinase activity. *Int J Pharm.* (2018) 536:1–10. doi: 10.1016/j.ijpharm.2017.09.007

123. Cascone T, Xu L, Lin HY, Liu W, Tran HT, Liu Y, et al. The HGF/c-MET pathway is a driver and biomarker of VEGF-inhibitor resistance and vascular remodeling in non-small cell lung cancer. *Cancer Res.* (2017) 77:5489–501. doi: 10.1158/0008-5472.CAN-16-3216

124. Starenki D, Hong SK, Wu PK, Park JI. Vandetanib and cabozantinib potentiate mitochondria-targeted agents to suppress medullary thyroid carcinoma cells. *Cancer Biol Ther.* (2017) 18:473–83. doi: 10.1089/cobi.2016.02876

125. De Andrade JP, Park JM, Gu VW, Woodfield GW, Kulak MV, Lorenzen AW, et al. EGFR is regulated by TFPAP2C in luminal breast cancer and is a target for vandetanib. *Mol Cancer Ther.* (2016) 15:503–11. doi: 10.1158/1535-7163.MCT-15-0548-T

126. Haterm R, Labiod D, Chateau-Joubert S, de Plater L, El Botty R, Vacher S, et al. Targeting the VEGF and PDGF pathways in diffuse and neck squamous cell carcinoma. *Formento P*, et al. Contrasted effects of the multitarget TKI vandetanib on papillary thyroid cancer cell lines. *Oncol Rep.* (2013) 29:249–57. doi: 10.3892/or.2013.2288

127. Takeda H, Takiyama N, Ohashi K, Minami D, Kataoka I, Ichihara E, et al. Vandetanib is effective in EGFR-mutant lung cancer cells with PTEN deficiency. *Exp Cell Res.* (2013) 319:417–23. doi: 10.1016/j.yexcr.2012.12.018

128. Inoue K, Torimura T, Nakamura T, Iwamoto H, Masuda H, Abe M, et al. Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses tumor development and improves prognosis of liver cancer in mice. *Clin Cancer Res.* (2012) 18:3924–33. doi: 10.1158/1078-0432.CCR-11-2041

129. Guerin O, Etienne-Grimaldi MC, Montevede M, Sudaka A, Brunstein MC, Formento P, et al. Contrasted effects of the multitarget TKi vandetanib on doxetaxel-sensitive and doxetaxel-resistant prostate cancer cell lines. *Urol Oncol.* (2013) 31:1567–75. doi: 10.1016/j.urolonc.2012.03.003

130. Klein JD, Christopoulos A, Ahn SM, Gooding WE, Grandis JR, Kim S. Activin receptor-like kinase 5 (ALK5) is a target for vandetanib in the treatment of pancreatic cancer. *Br J Cancer.* (2008) 98:1228–33. doi: 10.1038/sj.bjc.6604557

131.肉水雅則, 弁本未也, 岩本由香, 荒木洋輔, 吉村光, 他. ヴァンデタンビは、EGFR-マウスの肝細胞癌抑制作用を示す。*Int J Pharm.* (2013) 441:214–21. doi: 10.1016/j.ijpharm.2013.04.012

132. Ueda H, Takahashi T, Nakamura H, Hayashi K, Koike T, et al. Targeting the VEGF and PDGF pathways in diffuse and neck squamous cell carcinoma. *Head Neck.* (2012) 34:1269–76. doi: 10.1002/he.21917

133. Navis AC, Hamans BC, Claes A, Heerschap A, Jeuken JW, Wesseling P, et al. Effects of targeting the VEGF and PDGF pathways in diffuse
orthotopic glioma models. *J Pathol.* (2011) 223:626–34. doi: 10.1002/ pathology.1836

174. Gule MK, Chen Y, Sano D, Frederick MJ, Zhou G, Zhao M, et al. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. *Clin Cancer Res.* (2011) 17:2221–9. doi: 10.1158/1078-0432.CCR-10-2762

175. Wachsberger PR, Lawrence YR, Liu Y, Daroczi B, Xu X, Dicker AP. Epidermal growth factor receptor expression modulates antitumor efficacy of vandetanib or cediranib combined with radiotherapy in human glioblastoma xenografts. *Int J Radiat Oncol Biol Phys.* (2012) 82:483–91. doi: 10.1016/j.ijrobp.2010.09.019

176. Sano D, Fooshee DR, Zhao M, Andrews GA, Frederick MJ, Galer C, et al. Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model. *Head Neck.* (2011) 33:349–58. doi: 10.1002/hed.21455

177. Ichihara E, Okahsi K, Takigawa N, Osawa M, Ogino A, Tanimoto M, et al. Effects of vandetanib on lung adenocarcinoma cells harboring epidermal growth factor receptor T790M mutation in vivo. *Cancer Res.* (2009) 69:5091–8. doi: 10.1158/0001-8226.CAN-08-4204

178. Naumov GN, Nilsson MB, Casccone T, Briggs A, Straume O, Akslen LA, et al. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. *Clin Cancer Res.* (2009) 15:3548–94. doi: 10.1158/1078-0432.CCR-08-2904

179. Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chestnuck R, Jackson JA, et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. *Cancer Res.* (2002) 62:4645–55.

180. McCarty ME, Wey J, Stoeltzing O, Liu W, Fan F, Bucana C, et al. ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor with additional activity against epidermal growth factor receptor tyrosine kinase, inhibits orthotopic growth and angiogenesis of gastric cancer. *Mol Cancer Ther.* (2004) 3:1041–8.

181. Conrad C, Ischenko I, Kohl G, Wiegand U, Guba M, Yezhelyev M, et al. Antiangiogenic and antitumor activity of a novel vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor ZD6474 in a metastatic human pancreatic tumor model. *Anticancer Drugs.* (2007) 18:569–79. doi: 10.1097/CAD.0b013e3280147d13

182. Drevs J, Kondering MA, Wolloscheck T, Wedge SR, Ryan AJ, Ogilvie DJ, et al. The VEGF receptor tyrosine kinase inhibitor, ZD6474, inhibits angiogenesis and affects microvascular architecture within an orthotopically implanted renal cell carcinoma. *Angiogenesis.* (2004) 7:347–54. doi: 10.1023/b:angi.0000010456-005-1394-3

183. Wu W, Onn A, Isobe T, Itasaka S, Langley RR, Shitani T, et al. Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor-2 tyrosine kinase inhibition of pancreatic tumor growth. *J Natl Cancer Inst.* (2010) 102:1432–46. doi: 10.1093/jnci/djq315

184. Wang Y, Kim IK, Conforti F, Liu J, Zhang YW, Giaccone G, Dasatinib sensitises KRAS-mutant cancer cells to mitogen-activated protein kinase kinase inhibitor via inhibition of TAZ activity. *Eur J Cancer.* (2018) 99:37–48. doi: 10.1016/j.ejca.2018.05.013

185. Huveldt D, Lewis-Tuffin LJ, Carlson BL, Schroeder MA, Rodriguez F, Giannini C, et al. Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion. *PLoS ONE.* (2013) 8:e56505. doi: 10.1371/journal.pone.0056505

186. Walker S, Wankell M, Ho V, White R, Deo N, Devine C, et al. Targeting mTOR and Src restricts hepatocellular carcinoma growth in a novel murine liver cancer model. *PLoS ONE.* (2019) 14:e0212860. doi: 10.1371/journal.pone.0212860

187. Tian J, Raffa FA, Dai M, Moamer A, Khadang B, Bachim IY, et al. Dasatinib sensitises triple negative breast cancer cells to chemotherapy by targeting breast cancer stem cells. *Br J Cancer.* (2018) 119:1495–507. doi: 10.1038/s41416-018-0287-3

188. Xiao J, Xu M, Hou T, Huang Y, Yang C, Li J, Dasatinib enhances antitumor activity of paclitaxel in ovarian cancer through Src signaling. *Mol Med Rep.* (2017) 12:3249–36. doi: 10.3892/mmr.2015.3784

189. Leviit JM, Yamashita H, Jian W, Lerner SP, Sonpavde G. Dasatinib is preclinically active against Src-overexpressing human transitional cell carcinoma of the urethra with activated Src signaling. *Mol Cancer Ther.* (2010) 9:1128–35. doi: 10.1158/1535-7163.MCT-10-0096

190. Perez M, Lucena-Cacace A, Marin-Gomez LM, Padillo-Ruiz J, Robles-Frias MJ, Saeg C, et al. Dasatinib, a Src inhibitor, sensitizes liver metastatic colorectal carcinoma to oxaplatinum in tumors with high levels of phospho-Src. *Oncotarget.* (2016) 7:33111–24. doi: 10.18632/oncotarget.8880

191. Vallo S, Michaelis M, Gust KM, Black PC, Rothweiler F, Kvasnicka HM, et al. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. *BMC Res Notes.* (2016) 9:454. doi: 10.1186/s13104-016-2256-3

192. Zeng F, Fu RJ, Liu L, Xie HJ, Mu LM, Wu LW. Efficacy in treating lung metastasis of invasive breast cancer with functional vincristine plus dasatinib liposomes. *Pharmacology.* (2018) 101:43–53. doi: 10.1159/000480737

193. Young AI, Law AM, Castillo L, Chong S, Cullen HD, Koehler M, et al. MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. *Breast Cancer Res.* (2016) 18:125. doi: 10.1186/s13058-016-0781-6

194. Teng Y, Cai Y, Pi W, Gao L, Shay C. Augmentation of the anticancer activity of CYP9797 in human prostate cancer by inhibiting Src activity. *J Hematol Oncol.* (2017) 10:118. doi: 10.1186/s13045-017-0450-0

195. Balkhi HM, Haq E, Gul T, Sana S. Anti-glioma effects of caffeic acid phenethyl ester and dasatinib combination therapy in an in vivo rat glioma model. *Anticancer Agents Med Chem.* (2018) 18:1729–35. doi: 10.2174/1871520618666180515144835

196. Song N, Guo H, Ren J, Hao S, Wang X. Synergistic anti-tumor effects of dasatinib and dendritic cell vaccine on metastatic breast cancer in a mouse model. *Onco Lett.* (2018) 15:6831–8. doi: 10.3892/ol.2018.8188

197. Yu GT, Mao L, Wu L, Deng WW, Bu LL, Liu JF, et al. Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. *Cell Mol Life Sci.* (2018) 75:4223–34. doi: 10.1007/s00018-018-2863-6

198. Formisano L, D’Amato V, Servetto A, Brillante S, Raimondo L, Di Mauro C, et al. Dasatinib sensitises KRAS-mutant cancer cells to mitogen-activated protein kinase dependent apoptosis of merlin-deficient schwann cells and suppresses growth of schwannoma cells. *Mol Cancer Ther.* (2017) 16:2387–98. doi: 10.1158/1535-7163.MCT-17-0417

199. Lang L, Shay C, Zhao X, Xiong Y, Wang X, Teng Y. Simultaneously inactivating Src and AKT by saracatinib/capivasertib co-delivery nanoparticles to improve the efficacy of anti-Src therapy in head
and neck squamous cell carcinoma. J Hematol Oncol. (2019) 12:132. doi: 10.1186/s13045-019-0827-1

207. Wang L, Yu X, Dong J, Meng Y, Yang Y, Wang H, et al. Combined SRC inhibitor saracatinib and anti-ErbB2 antibody H2-18 produces a synergistic antitumor effect on trastuzumab-resistant breast cancer. Biochem Biophys Res Commun. (2016) 479:563–70. doi: 10.1016/j.bbrc.2016.09.111

208. Han S, Meng Y, Tong Q, Li G, Zhang X, Chen Y, et al. The ErbB2-targeting antibody trastuzumab and the small-molecule SRC inhibitor saracatinib synergistically inhibit ErbB2-overexpressing gastric cancer. Mabs. (2014) 6:403–8. doi: 10.4161/mabs.27443

209. Chen Y, Guggisberg N, Jorda M, Gonzalez-Angulo A, Hennessy B, Mills GB, et al. Combined Src and aromatase inhibition impairs human breast cancer growth in vivo and bypass pathways are activated in AZD0530-resistant tumors. Clin Cancer Res. (2009) 15:3396–405. doi: 10.1158/1078-0432.CCR-08-3127

210. Simpkins F, Hevia-Paez P, Sun J, Ullmer W, Gilbert CA, da Silva T, et al. Combined therapy against epidermal growth factor receptor tyrosine kinase. Clin Cancer Res. (2011) 17:1815–27. doi: 10.1158/1078-0432.CCR-10-2120

211. Chen Y, Alvarez EA, Azzam D, Wander SA, Guggisberg N, Jorda M, et al. Combined Src and ER blockade impairs human breast cancer proliferation in vitro and in vivo. Breast Cancer Res Treat. (2011) 128:69–78. doi: 10.1007/s10549-010-1024-7

212. Nam HJ, Im SA, Oh DY, Elvin P, Kim HP, Yoon YK, et al. Antitumor activity of saracatinib (AZD0530), a c-Src/Abl kinase inhibitor, alone or in combination with chemotherapeutic agents in gastric cancer. Mol Cancer Ther. (2013) 12:16–26. doi: 10.1158/1535-7163.MCT-12-0109

213. Liu J, Wu J, Zhou L, Pan C, Zhou Y, Du W, et al. ZD6474, a new treatment strategy for human osteosarcoma, and its potential synergistic effect with celecoxib. Oncotarget. (2015) 6:21341–52. doi: 10.18632/oncotarget.4179

214. Spanheimer PM, Park JM, Askeland RW, Kulak MV, Woodfield GW, De Andrade JP, et al. Inhibition of RET increases the efficacy of antiangiogenic and anti-proliferative mechanisms of temozolomide and ZD6474 (vandetanib) effectively reduces glioblastoma tumor volume through anti-angiogenic and anti-proliferative mechanisms. Mol Med Rep. (2012) 5:1883–94. doi: 10.3892/mmr.2013.2476

215. Li C, Yang C, Wei G. Vandetanib inhibits cisplatin-resistant neuroblastoma tumor growth and invasion. Oncol Rep. (2018) 39:1577–64. doi: 10.3822/or.2018.6255

216. Troiani T, Lockerbie O, Morrow M, Ciardiello F, Caputo R, Damiano V, Caputo R, Troiani T, Vitagliano D, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. J Thorac Oncol. (2012) 7:485–95. doi: 10.1097/JTO.0b013e31824177ea

217. Vo B, Chen Y, Alvarez EA, LaRusso et al. Targeting the Extra-Cellular Matrix—Tumor Cell Crosstalk. J Hematol Oncol. (2019) 12:132. doi: 10.1186/s13045-019-0827-1

218. Wachsberger P, Burk R, Ryan A, Daskalakis C, Dicker AP. Combination of vandetanib, radiotherapy, and irinotecan in the LoVo human colorectal xenograft model. Int J Radiat Oncol Biol Phys. (2009) 75:854–61. doi: 10.1016/j.ijrobp.2009.06.016

219. Saijo N, Kadota K, Ohsawa K, Mino Y, Nakagawa Y, et al. Combination of vandetanib and celecoxib enhances its antitumor effect in non-small cell lung cancer. J Clin Oncol. (2011) 29:1200–6. doi: 10.1200/JCO.2010.33.2493

220. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are inhibited by collagen. Mol Cell. (1997) 1:1–13. doi: 10.1158/1078-0432.CCR-97-0003-9

221. Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell. (2007) 25:355–64. doi: 10.1016/j.molbio.2006.05.006

222. Smith NP, Brabletz T, Bruckner T, Schaefer F, Griebel P, et al. Targeting the discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. (2012) 31:295–321. doi: 10.1007/s10555-012-9346-z

223. Dejneka J, Dib K, Jonsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer. (2003) 103:344–51. doi: 10.1002/jic.10752

224. Ongusaha PP, Kim HJ, Pang L, Wong TW, Yancopoulos GD, Aaronson SA, et al. p53 induction and activation of DDR1 kinase counteracts p53-mediated apoptosis and influences p53 regulation through a positive feedback loop. EMBO J. (2003) 22:1289–301. doi: 10.1093/emboj/cdg129

225. Kim HG, Hwang SY, Aaronson SA, Mandinova A, Lee SW. DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. J Biol Chem. (2011) 286:17672–81. doi: 10.1074/jbc.M111.236612

226. Dais S, Ongusaha PP, Yang YS, Park JM, Aaronson SA, Lee SW. Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-kappaB pathway activation. Cancer Res. (2006) 66:8123–30. doi: 10.1158/0008-5472.CAN-06-1215

227. Gao H, Chakraborty G, Zhang Z, Akaly I, Gadiya M, Gao Y, et al. Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell. (2016) 166:47–62. doi: 10.1016/j.cell.2016.06.009

228. Hammerton PS, Sos ML, Ramos AH, Xu C, Dutt A, Zhou W, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. (2011) 1:78–89. doi: 10.1158/2159-8274.CD-11-0005

229. Badadou M, Mima-Jaouene C, Saby C, Van Gulick L, Peretti M, Jeannesson P, et al. Collagen type 1 promotes survival of human breast cancer cells by overexpressing Kv1.0 potassium and Orai1 calcium channels through DDR1-dependent pathway. Oncotarget. (2018) 9:24653–71. doi: 10.18632/oncotarget.19065
242. Ram R, Lorente G, Nikolich K, Ufer R, Foehr E, Nagavarapu U. Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. J Neuro-Oncol. (2006) 76:239–48. doi: 10.1007/s11060-005-6874-1

243. Neuhaus B, Buhren S, Bock B, Alves F, Vogel WE, Kiefer F. Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cell Mol Life Sci. (2011) 68:3757–70. doi: 10.1007/s00018-011-0676-8

244. Badiola I, Villaca P, Basaldúa I, Olaso E. Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability. Oncol Rep. (2011) 26:971–8. doi: 10.3892/or.2011.1356

245. Dejmek L, Leanderson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, et al. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res. (2005) 11:520–8.

246. Maryama M, Koga H, Selvendran K, Yanagimoto C, Hanada S, Taniguchi E, et al. Switching in discoid domain receptor expressions in SLUG-induced epithelial-mesenchymal transition. Cancer. (2008) 113:2823–31. doi: 10.1002/cncr.23990

247. Walsh LA, Nawshad A, Medici D. Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition. Matrix Biol. (2011) 30:243–7. doi: 10.1016/j.matbio.2011.03.007

248. Valencia K, Ormazabal C, Zandueta C, Luis-Ravelo D, Anton I, Vehlow A, Cordes N. DDR1 (discoidin domain receptor tyrosine kinase 1) kinase as target for structure-based drug discovery. Discov Today. (2010) 15:3403–8. doi: 10.3892/ol.2018.7795

249. Ford CE, Lau SK, Zhu CQ, Andersson T, Tsao MS, Vogel WF. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 (DDR1) kinase as target for structure-based drug discovery. Oncol Lett. (2011) 24:311–9. doi: 10.3892/or_00000861

250. Wang CZ, Su HW, Hsu YC, Shen MR, Tang MJ. A discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Clin Cancer Res. (2012) 18:969–80. doi: 10.1158/1078-0432.CCR-11-1686

251. Vehlow A, Cordes N, DDR1 (discoidin domain receptor tyrosine kinase 1) drives glioblastoma therapy resistance by modulating autophagy. Autophagy. (2019) 15:1487–8. doi: 10.1080/15548627.2019.1618540

252. Yang SH, Baek HA, Lee HJ, Park HS, Jang KY, Kang MJ, et al. Discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability. J Cell Biol. (2008) 165:7591–5. doi: 10.1038/nature07423

253. Ford CL, Randal-Whitis L, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. (1999) 59:704–10.

254. Scheiman J, Tseng JC, Zheng Y, Meruelo D. Multiple functions of the 37/67-kD laminin receptor make it a suitable target for novel cancer gene therapy. Mol Ther. (2010) 18:63–74. doi: 10.1038/mct.2009.199

255. Venticinque L, Jamieson KV, Meruelo D. Interactions between laminin receptor and the cytoskeleton during translation and cell motility. PLoS ONE. (2011) 6:e15895. doi: 10.1371/journal.pone.0015895

256. O’Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J Cell BioL. (2010) 190:853–66. doi: 10.1083/jcb.201005517

257. Venticinque L, Meruelo D. Comprehensive proteomic analysis of nonintegrin laminin receptor interacting proteins. J Proteome Res. (2012) 11:4863–72. doi: 10.1021/pr300307b

258. Poon SL, Klausen C, Hammond GL, Leung PC. 37-kDa laminin receptor precursor mediates GNR-H-II induced MMP-2 expression and invasiveness in ovarian cancer cells. Mol Endocrinol. (2011) 25:327–38. doi: 10.1210/me.2010-0033

259. Omar A, Reusch U, Knackmuss S, Little M, Weiss SF. Anti-LRP/LR-specific antibody IgG1-s18 significantly reduces adhesion and invasion of metastatic lung, cervix, colon and prostate cancer cells. J Mol Biol. (2012) 419:102–9. doi: 10.1016/j.jmb.2012.02.035

260. Satoh K, Narumi K, Abe T, Sakai T, Kikuchi T, Tanaka M, et al. Diminution of 37-kDa laminin binding protein expression reduces tumour formation of murine lung cancer cells. Br J Cancer. (1999) 80:1115–22. doi: 10.1038/sj.bjc.6690474

261. Scheiman J, Jamieson KV, Zielio J, Tseng JC, Meruelo D. Extrabasal compartments associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability. Cell Death Dis. (2010) 1:e42. doi: 10.3109/15419069409004438

262. Rao CN, Castronovo V, Schmitt MC, Wexer UM, Claysmith AP, Liotta L. Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 (DDR1) reduces cell survival, homing, and colonization in lung cancer bone metastasis. Exp Cell Res. (2011) 263:3423–5. doi: 10.1016/j.yexcr.2011.06.014

263. Ardini E, Tagliabue E, Magnifico A, Buto S, Castronovo V, Colnaghi MI, et al. Identification and partial characterization of laminin binding nonintegrin 37/67-kDa laminin receptor/RPSA protein. J Cell Mol Life Sci. (2011) 68:3757–70. doi: 10.1007/s00018-011-0676-8

264. Malinoff HL, Wicha MS. Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J Cell Biol. (1983) 96:1475–9. doi: 10.1083/jcb.96.5.1475

265. Rao NC, Barsky SH, Terranova VP, Liotta LA. Isolation of a tumor cell laminin receptor. Biochem Biophys Res Commun. (1983) 111:804–7. doi: 10.1016/0006-291X(83)91370-0

266. Romanov V, Sober M, pinto da Silva P, Menard S, Castronovo V. Cell localization and redistribution of the 67 kDa laminin receptor and alpha beta 1 integrin subunits in response to laminin stimulation: an immunogold electron microscopy study. Cell Adhes Commun. (1994) 2:201–9. doi: 10.3109/15419069409004438

267. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EL, et al. Immunofluorescence of tyrosine phosphorylation in cancer cells. Nat Biotechnol. (2005) 23:94–101. doi: 10.1038/nbt9969

268. Davis CM, Papadopoulos V, Jia MC, Yamada Y, Kleinman HK, Dym M. Identification and partial characterization of laminin binding proteins in immature rat sertoli cells. Exp Cell Res. (1991) 199:262–73. doi: 10.1016/0014-4827(91)90099-C

269. Givant-Horwitz V, Davidson B, Reich R. Laminin-induced signaling in tumor cells: the role of the M(60) 67,000 laminin receptor. Cancer Res. (2004) 64:3572–9. doi: 10.1158/0008-5472.CAN-03-3424
259. Naidoo K, Malindisa ST, Otgaar TC, Bernert M, Da Costa Dias B, Ferreira E, et al. Knock-Down of the 37kDa/67kDa Laminin Receptor LRP/LR impedes telomerase activity. *PloS ONE.* (2015) 10:e0141618. doi: 10.1371/journal.pone.0141618

260. Vania L, Morris G, Otgaar TC, Biggins M, Bernert M, Burns J, et al. Patented therapeutic approaches targeting LRP/LR for cancer treatment. *Expert Opin Ther Pat.* (2019) 29:987–1009. doi: 10.1080/13543776.2019.1693543

261. Tachibana H, Koga K, Fujimura Y, Yamada K. A receptor for green tea polyphenol EGCG. *Nat Struct Mol Biol.* (2004) 11:380–1. doi: 10.1038/nsmb743

262. Zidane N, Ould-Abeih MB, Petit-Topin I, Bedouelle H. The folded and disordered domains of human ribosomal protein SA have both idiosyncratic and shared functions as membrane receptors. *Biosci Rep.* (2012) 33:113–24. doi: 10.1042/BSR20121003

263. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. *Nat Rev Cancer.* (2014) 14:586–610. doi: 10.1038/nrc3792

264. Alanko J, Mai A, Jacquesmet G, Schauer K, Kaukonen R, Saari M, et al. Integrin endothelial signalling suppresses anotik. *Nat Cell Biol.* (2015) 17:1412–21. doi: 10.1038/ncb3250

265. Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on cancer: a focused review. *J Exp Clin Cancer Res.* (2019) 38:2520. doi: 10.1186/s13046-019-1265-1

266. GolubovskayaVM. Targeting FAK in human cancer: from finding to first clinical trials. *Front Biosci.* (2014) 19:687–706. doi: 10.2741/a578

267. Roy-Lazurraga M, Hodivala-Dilkie K. Molecular pathways: endothelial cell FAK—a target for cancer treatment. *Clin Cancer Res.* (2016) 22:3718–24. doi: 10.1158/1078-0432.CCR-14-2021

268. Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, et al. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. *J Clin Oncol.* (2012) 30:1527–33. doi: 10.1200/JCO.2011.38.9346

269. Mak G, Soria JC, Blagden SP, Plummer R, Fleming RA, Nebot N, et al. A phase Ib dose-finding, pharmacokinetic study of the focal adhesion kinase inhibitor GSK2256098 and trametinib in patients with advanced solid tumours. *Br J Cancer.* (2019) 120:975–81. doi: 10.1038/s41416-019-0452-3

270. Soria JC, Gan HK, Blagden SP, Plummer R, Arkenau HT, Ranson M, et al. Phase I pharmacokinetic and pharmacodynamic study of GSK2256098, a focal adhesion kinase inhibitor, in patients with advanced solid tumors. *Ann Oncol.* (2016) 27:2268–74. doi: 10.1093/annonc/mdw427

271. Brown NF, Williams M, Arkenau HT, Fleming RA, Tolson J, Yan L, et al. A study of the focal adhesion kinase inhibitor GSK2256098 in patients with recurrent glioblastoma with evaluation of tumour penetration of [11C]GSK2256098. *Neuro Oncol.* (2018) 20:1634–42. doi: 10.1093/neuonc/noy078

272. Jones SE, Siu LL, Bendell JC, Cleary JM, Razak AR, Infante JR, et al. A phase I study of WS-6063, a second-generation focal adhesion kinase inhibitor, in patients with advanced solid tumors. *Invest New Drugs.* (2015) 33:1100–7. doi: 10.1007/s10637-015-0281-3

273. Shimizu TFukuoka K, Takeda M, Iwasa T, Yoshida T, Horobin J, et al. A first-in-Asian phase 1 study to evaluate safety, pharmacokinetics and clinical activity of WS-6063, a focal adhesion kinase (FAK) inhibitor in Japanese patients with advanced solid tumors. *Cancer Chemother Pharmacol.* (2016) 77:997–1003. doi: 10.1007/s00280-016-3010-1

274. Doi T, Yang JC, Shiitara K, Naito Y, Cheng AL, Sarashina A, et al. Phase I study of the focal adhesion kinase inhibitor BI 853520 in Japanese and Taiwanese patients with advanced or metastatic solid tumors. *Target Oncol.* (2019) 14:57–65. doi: 10.1007/s11523-019-00620-0

275. de Jonge MIA, Steeghs N, Lolkema MP, Hotte SJ, Hirte HW, van der Bissien DAJ, et al. Phase I study of BI 853520, an inhibitor of focal adhesion kinase, in patients with advanced or metastatic nonhematologic malignancies. *Target Oncol.* (2019) 14:43–55. doi: 10.1007/s11523-018-00617-1

276. Verheijen RB, van der Bissien DAJ, Hotte SJ, Sui LL, Speciafo A, de Jonge MIA, et al. Randomized, open-label, crossover studies evaluating the effect of food and liquid formulation on the pharmacokinetics of the novel focal adhesion kinase (FAK) inhibitor BI 853520. *Target Oncol.* (2019) 14:67–74. doi: 10.1007/s11523-018-00618-0

317. Fennell DA, Baas P, Taylor P, Nowak AK, Gilligan D, Nakano T, et al. Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-A double-blind, randomized, phase II study. *J Clin Oncol.* (2019) 37:790–8. doi: 10.1200/JCO.2018.79.0543

318. Brunton VG, Frame MC. Src and focal adhesion kinase as therapeutic targets in cancer. *Curr Opin Pharmacol.* (2008) 8:427–32. doi: 10.1016/j.coph.2008.06.012

319. Eckert MA, Lwin TM, Chang AT, Kim J, Danis E, Ohno-Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. *Cancer Cell.* (2011) 19:372–86. doi: 10.1016/j.ccr.2011.01.036

320. Pichot CS, Hartig SM, Xia L, Arvanitis C, Monisvais D, Lee FY, et al. Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells. *Br J Cancer.* (2009) 101:38–47. doi: 10.1038/sj.bjc.6605101

321. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. *Cancer Cell.* (2009) 16:67–78. doi: 10.1016/j.ccr.2009.05.017

322. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, et al. Metastatic growth from dormant cells induced by a collagen-enriched fibrotic environment. *Cancer Res.* (2010) 70:5706–16. doi: 10.1158/0008-5472.CAN-09-2356

323. Sakuma Y, Tsunezumi J, Nakamura Y, Yoshihara M, Matsukuma S, Koizume S, et al. ABT-263, a Bcl-2 inhibitor, enhances the susceptibility of lung adenocarcinoma cells treated with Src inhibitors to anoikis. *Oncol Rep.* (2011) 25:661–7. doi: 10.3822/or.2010.1123

324. Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, et al. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(·-)/H(2)O2 ratio and confers anoikis resistance to tumors. *Cancer Cell.* (2011) 19:401–15. doi: 10.1016/j.ccr.2011.01.018

325. Desrosseillier JS, Barnes LA, Shields DJ, Huang M, Lau SK, Prevost N, et al. An integrin alpha(v)beta3-c-Src oncogenic unit promotes anchorage-independence and tumor progression. *Nat Med.* (2009) 15:1163–9. doi: 10.1038/nm.2009

326. Zhang S, Yu D. Targeting Src family kinases in anti-cancer therapies: turning promise into triumph. *Trends Pharmacol Sci.* (2012) 33:122–8. doi: 10.1016/j.tips.2011.11.002

327. Kanda R, Kawahara A, Watari K, Murakami Y, Sonoda K, Maeda M, et al. Erlotinib resistance in lung cancer cells mediated by integrin beta1/Src/Akt-driven bypass signaling. *Cancer Res.* (2013) 73:6243–53. doi: 10.1158/0008-5472.CAN-12-4502

328. Roskoski R Jr. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. *Pharmacol Res.* (2015). 94:9–25. doi: 10.1016/j.phrs.2015.01.003

329. Mayer EL, Krop IE. Advances in targeting SRC in the treatment of breast cancer and other solid malignancies. *Clin Cancer Res.* (2010) 16:3526–32. doi: 10.1158/1078-0432.CCR-09-1834

330. Elias D, Vever H, Laenkelholm AV, Gjerstorff MF, Yde CW, Lykkesfeldt AE, et al. Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. *Oncogene.* (2015) 34:1919–27. doi: 10.1038/onc.2014.138

331. Tabaries S, Annis MG, Hsu BE, Tam CE, Savage P, Park M, et al. Lyn modulates Claudin-2 expression and is a therapeutic target for breast cancer liver metastasis. *Oncotarget.* (2015) 6:9476–87. doi: 10.18632/oncotarget.3269

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Lorusso, Rüegg and Kuonen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.