Basal late sodium current is a significant contributor to the duration of action potential of guinea pig ventricular myocytes

Yejia Song1 & Luiz Belardinelli2

1 University of Florida, Gainesville, Florida
2 Former employee of Gilead Sciences, Inc., Foster City, California

Keywords
Action potential duration, Ca2+/calmodulin-dependent protein kinase II, late sodium current, NaV1.5 channel, ventricular myocytes.

Abstract
In cardiac myocytes, an enhancement of late sodium current (\(I_{NaL}\)) under pathological conditions is known to cause prolongation of action potential duration (APD). This study investigated the contribution of \(I_{NaL}\) under basal, physiological conditions to the APD. Whole-cell \(I_{NaL}\) and the APD of ventricular myocytes isolated from healthy adult guinea pigs were measured at 36°C. The \(I_{NaL}\) inhibitor GS967 or TTX was applied to block \(I_{NaL}\). The amplitude of basal \(I_{NaL}\) and the APD at 50% repolarization in myocytes stimulated at a frequency of 0.17 Hz were -0.24 ± 0.02 pA/pF and 229 ± 6 msec, respectively. GS967 (0.01–1 l mol/L) concentration dependently reduced the basal \(I_{NaL}\) by 18 ± 3–82 ± 4%. At the same concentrations, GS967 shortened the APD by 9 ± 2 to 25 ± 1%. Similarly, TTX at 0.1–10 l mol/L decreased the basal \(I_{NaL}\) by 13 ± 1–94 ± 1% and APD by 8 ± 1–31 ± 2%. There was a close correlation \((R^2 = 0.958)\) between the percentage inhibition of \(I_{NaL}\) and the percentage shortening of APD caused by either GS967 or TTX. MTSEA (methanethiosulfonate ethylammonium, 2 mmol/L), a NaV1.5 channel blocker, reduced the \(I_{NaL}\) by 90 ± 5%, suggesting that the NaV1.5 channel isoform is the major contributor to the basal \(I_{NaL}\). KN-93 (10 l mol/L) and AIP (2 µmol/L), blockers of CaMKII, moderately reduced the basal \(I_{NaL}\). Thus, this study provides strong evidence that basal endogenous \(I_{NaL}\) is a significant contributor to the APD of cardiac myocytes. In addition, the basal \(I_{NaL}\) of guinea pig ventricular myocytes is mainly generated from NaV1.5 channel isoform and is regulated by CaMKII.

Introduction
The late Na+ current (\(I_{NaL}\)) is a component of the fast inward \(I_{Na}\), which remains activated during the plateau and the repolarization of a cardiac action potential (Noble and Noble 2006; Antzelevitch et al. 2014). \(I_{NaL}\) is increased in congenital and acquired pathological conditions, such as long QT syndrome type 3, cardiac hypertrophy, heart failure, and myocardial ischemia (Belardinelli et al. 2015; Makielski 2016). An enhancement of \(I_{NaL}\) under these pathological conditions may cause a prolongation of the action potential duration (APD) and is considered potentially arrhythmogenic (Belardinelli et al. 2015; Makielski 2016). Inhibition of \(I_{NaL}\) by \(I_{NaL}\) blockers, such as ranolazine, has shown promising antiarrhythmic value (Belardinelli et al. 2015; Makielski 2016). However, because the amplitude of \(I_{NaL}\) under physiological conditions is relatively small, its role (i.e., the \(I_{NaL}\) in the absence of drug or pathological modification) in cardiac repolarization has not been fully recognized.

Several lines of evidence suggest that the inward \(I_{NaL}\) may play a significant role in maintaining cardiac depolarization under physiological conditions. (1) \(I_{NaL}\) can...
remained throughout the action potential plateau, and the membrane resistance is high (Weidmann 1951). Therefore, a small net inward current may cause a significant lengthening of the plateau and thus the APD. (2) The APD is shortened in the presence of TTX, an inhibitor of I_{NaL} (Coraboeuf et al. 1979; Kiyosue and Arita 1989). (3) In canine ventricular myocytes, the density of I_{NaL} is greater in the mid-myocardium, compared with that in the epi- and endomyocardium (Zygumn et al. 2001). In keeping with that, TTX-induced APD shortening is greater in the mid-myocardium than in the epi- and endomyocardium (Zygumn et al. 2001). (4) In failing hearts of both human and canine models, inactivation of I_{NaL} is further slowed, compared with that in myocytes of normal hearts (Maltsev et al. 2007). The enhanced I_{NaL} contributes to the prolongation of APD (Maltsev et al. 2007), and conversely, inhibition of I_{NaL} by ranolazine shortens the APD of ventricular myocytes isolated from a canine heart failure model (Undrovinas et al. 2006).

The goal of this study was to determine the contribution of basal I_{NaL} to the APD of ventricular myocytes of healthy guinea pigs. In the past, a precise evaluation of the contribution of I_{NaL} to the APD has been hindered by the small amplitude of the current and the lack of a selective inhibitor. Most studies of I_{NaL} have been conducted in the presence of I_{NaL} enhancers, such as anemone toxin II (ATX-II) (Iseenberg and Ravens 1984; Song et al. 2004). In this study, the selective I_{NaL} inhibitor GS967 (Belardinelli et al. 2013) and low concentrations of TTX were applied to selectively block I_{NaL}. The amplitude of I_{NaL} in this study was not preenhanced by drugs or special experimental conditions, except for one series of experiments in which the I_{NaL} enhancer ATX-II was applied to verify the specificity of the action of GS967. Thus, the subject of this study was cardiac I_{NaL} under basal conditions. The role of basal I_{NaL} in maintaining the depolarization of the ventricular action potential was assessed by comparing the percentage inhibition of I_{NaL} with the percentage shortening of APD. In addition, we examined whether the basal I_{NaL} is generated from NaV1.5 channels, and whether the basal I_{NaL} is regulated by CaMKII-dependent protein kinase II (CaMKII), respectively, by applying the selective NaV1.5 channel blocker MTSEA (methanethiosulfonate ethylammonium) (Haufe et al. 2005; O’Reilly and Shockett 2012) and the CaMKII inhibitors KN-93 and AIP (autocamtide-2-related inhibitory peptide).

Materials and Methods

Animal use was approved by the Institutional Animal Care and Use Committee, and conformed to the *Guide for the Care and Use of Laboratory Animals* (National Research Council, 2011). Hearts of guinea pigs of either sex were isolated and perfused via the aorta with warm (35°C) and oxygenated solutions in the following order: (1) Tyrode solution containing (in mmol/L) 135 NaCl, 4.6 KCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 glucose, and 10 HEPES, pH 7.4, for 5 min; (2) Ca$^{2+}$-free solution containing (in mmol/L) 100 NaCl, 30 KCl, 2 MgCl$_2$, 10 glucose, 10 HEPES, 15 taurine, and 5 pyruvate, pH 7.4, for 5 min; and (3) Ca$^{2+}$-free solution containing collagenase (120 units/mL) and albumin (2 mg/mL), for 20 min. At the end of the perfusion, the ventricles were minced and gently shaken for 10 min in the collagenase solution to release single cells. Only the quiescent myocytes with clear striations were used for this study.

Transmembrane voltages and currents were recorded using the whole-cell patch-clamp technique. Data were acquired and analyzed with an Axopatch-200 amplifier, a Digidata-1440A digitizer, and pCLAMP-10 software. All experiments were performed at 36°C.

For measurements of action potentials, cells were incubated in the Tyrode solution (bath solution). The recording pipettes were filled with a solution containing (in mmol/L) 120 K-aspartate, 20 KCl, 1 MgSO$_4$, 4 Na$_2$ATP, 0.1 Na$_2$GTP, and 10 HEPES, pH 7.3. A depolarizing pulse was applied every 6 sec to elicit action potentials. The APD was determined from the beginning of depolarization to the time when 30% (APD$_{30}$), 50% (APD$_{50}$), and 90% (APD$_{90}$) of repolarization were completed.

For measurements of I_{NaL}, myocytes were superfused with a bath solution containing (in mmol/L) 135 NaCl, 1.8 CaCl$_2$, 1 MgCl$_2$, 10 glucose, 10 HEPES, 4.6 CsCl, 0.05 NiCl$_2$, and 0.01 nitrendipine, pH 7.4. The recording pipettes were filled with a solution containing (in mmol/L) 120 Cs-aspartate, 20 CsCl, 1 MgSO$_4$, 4 Na$_2$ATP, 0.1 Na$_3$GTP, and 10 HEPES, pH 7.2. Sodium current was activated by 200–250 msec long voltage-clamp pulses applied every 10 sec, from a holding potential of −90 mV to a test potential of −30 or −50 mV. The amplitude of I_{NaL} was calculated as the average amplitude of current during the last 100 msec of a depolarizing pulse.

GS967 was synthesized by Gilead Sciences. MTSEA was purchased from Toronto Research Chemicals, KN-93 and KN-92 from Calbiochem, AIP from Tocris, and ATX-II from Sigma. KN-93, KN-92, and AIP were applied through the recording pipette solution; other drugs were added to the bath solutions. The duration of each drug treatment was 3 min before recording.

Data are expressed as mean ± SEM. Sample size (n) is shown as number of cells/from number of hearts. Statistical analyses were conducted using SigmaPlot software. Concentration–response relationship and EC$_{50}$ for GS967 inhibition of I_{NaL} were calculated from a standard four-parameter logistic curve fitted with the following equation:
Concentration dependently reduced the amplitude of basal I_{NaL} by 18 ± 3, 28 ± 3, 38 ± 2, 46 ± 2, 82 ± 4, 91 ± 4, and 100% ($P < 0.05$, $n = 10/3–5$ for each concentration; Each myocyte was treated with 2–3 concentrations of GS967), with an IC$_{50}$ of 0.46 μmol/L. (Fig. 2, A and B). TTX at concentrations of 0.1, 1, and 10 μmol/L, respectively, significantly ($P < 0.001$) decreased the amplitude of I_{NaL} by $16 \pm 2\%$ ($n = 13/4$), $52 \pm 4\%$ ($n = 13/4$), and $94 \pm 1\%$ ($n = 18/6$; Fig. 2C and D), further confirming that the I_{NaL} was indeed an inward sodium current.

The baseline APD$_{30}$, APD$_{50}$, and APD$_{90}$ measured from the myocytes were 198 ± 5 msec, 229 ± 6 msec, and 248 ± 6 msec, respectively ($n = 43/14$). GS967 at concentrations of 0.01 ($n = 10/4$), 0.1 ($n = 25/10$), and 1 ($n = 19/7$) μmol/L, respectively, significantly ($P < 0.003$) shortened the APD$_{30}$ by 11 ± 2, 17 ± 1, and $27 \pm 2\%$, APD$_{50}$ by 9 ± 2, 16 ± 1, and $25 \pm 1\%$, and APD$_{90}$ by 8 ± 2, 14 ± 1, and $22 \pm 1\%$ (Fig. 3, A and B). TTX at concentrations of $0.1(n = 9/2)$, $1 (n = 15/4)$, and $10 (n = 15/3)$ μmol/L significantly ($P < 0.05$) decreased the APD$_{30}$ by 8 ± 1, 24 ± 2, and $33 \pm 2\%$, APD$_{50}$ by 8 ± 1, 23 ± 2, and $31 \pm 2\%$, and APD$_{90}$ by 7 ± 1, 21 ± 2, and $29 \pm 2\%$, respectively (Fig. 3, C and D).

There was a close correlation ($R^2 = 0.958$) between the percentage inhibition of basal I_{NaL} and the percentage shortening of APD caused by either GS967 or TTX (Fig. 4), indicating that basal I_{NaL} significantly contributes to the APD.

Inhibition of basal I_{NaL} by NaV1.5 channel blocker

MTSEA is a selective blocker of NaV1.5 channels (Haufe et al. 2005; O’Reilly and Shockett 2012). In this study, MTSEA (2 mmol/L) was added to the bath solution to

Figure 1. Concentration-dependent inhibition by GS967 of ATX-II (5 nmol/L)-induced I_{NaL}. Inward currents were activated by depolarizing pulses from –90 to –50 mV. Panel A, superimposed currents recorded in the order of a–e from a single myocyte before (control) and after drug treatments. Panel B, summary of the average amplitude of I_{NaL} recorded before (A) and after (B–E) drug treatments, as shown in panel A ($n = 12/5$). *$P < 0.001$ versus control; †$P < 0.001$ versus ATX-II alone.
Figure 2. Concentration-dependent inhibition by GS967 or TTX of basal I_{NaL}. I_{NaL} was elicited by voltage-clamp pulses from -90 to -30 mV. Panel A, example of current traces recorded from a single myocyte in the absence of drugs (control) and in the presence of 0.3 and 1 μmol/L GS967 (GS). Panel B, concentration–response relationship of the inhibitory effect of GS967 on I_{NaL}. Each data point represents an average inhibition observed from 10 myocytes isolated from 3 to 5 hearts. Data points are fitted with a four-parameter logistic curve. Panel C, current traces recorded before (A) and after (B) application of TTX, and after washing out TTX (C). Panel D, bars show an average inhibition of I_{NaL} by 0.1 ($n = 13/4$), 1 ($n = 13/4$), and 10 ($n = 18/6$) μmol/L TTX, respectively.

Figure 3. Concentration-dependent shortening by GS967 or TTX of the action potential duration (APD). Panel A, example of action potential traces recorded from a single myocyte before (control) and after applications of 0.01, 0.1, and 1 μmol/L GS967 (GS). Panel B, summary of APD shortening caused by GS967 at concentrations of 0.01 ($n = 10/4$), 0.1 ($n = 25/10$), and 1 ($n = 19/7$) μmol/L, respectively. Panel C, action potentials recorded from a myocyte in the absence of drug (control) and in the presence of 0.1, 1, and 10 μmol/L TTX. Panel D, average shortening of APD caused by TTX at concentrations of 0.1 ($n = 9/2$), 1 ($n = 15/4$), and 10 ($n = 15/3$) μmol/L.
determine whether the basal I_{NaL} of myocytes was generated from the Na V1.5 channels. I_{NaL} was activated by depolarizing pulses from -90 to -30 mV. In this series of experiments, MTSEA decreased the amplitude of I_{NaL} by $90 \pm 5\%$, from -0.20 ± 0.03 to 0.03 ± 0.01 pA/pF ($n=12/6$, $P<0.001$; Fig. 5). The result suggests that under the experimental conditions, the NaV1.5 channel is the major contributor to the I_{NaL} of guinea pig ventricular myocytes.

Decrease in basal I_{NaL} by CaMKII inhibitors

Activation of CaMKII was reported to slow sodium channel inactivation. We used the CaMKII inhibitors KN-93 and AIP, and an inactive analog of KN-93 and KN-92, as a negative control, to determine whether CaMKII plays a significant role in maintaining basal I_{NaL}. The three drugs were applied through the recording pipette solution to three separate groups of myocytes, respectively.

I_{NaL} was activated by voltage-clamp pulses from -90 to -30 mV. The amplitude of I_{NaL} measured in the absence of drugs was -0.24 ± 0.02 pA/pF. KN-93 (10 μmol/L) and AIP (2 μmol/L) reduced the I_{NaL} to -0.17 ± 0.02 pA/pF ($n=11/5$, $P<0.05$) and -0.17 ± 0.02 pA/pF ($n=11/5$, $P<0.05$), respectively (Fig. 6), whereas KN-92 (10 μmol/L) had no effect on I_{NaL} (-0.24 ± 0.02 pA/pF, $n=12/4$; Fig. 6).

Discussion

This study revealed that the basal I_{NaL} is of sufficient magnitude to affect the duration of the action potential of ventricular myocytes isolated from healthy guinea pigs. In the presence of the I_{NaL} blocker GS967 or low concentrations of TTX, the reduction in I_{NaL} was closely correlated with the shortening of APD (Figs. 2–4). Furthermore, the study showed that the basal I_{NaL} of guinea pig ventricular myocytes was mainly generated from the NaV1.5 channels (Fig. 5) and was regulated by CaMKII (Fig. 6). Thus, the results of the present study suggest that the basal, CaMKII-mediated NaV1.5 I_{NaL} is a significant and physiological contributor to the action potential duration of guinea pig ventricular myocytes.

The action potentials of cardiac ventricular myocytes are characterized by a prominent plateau phase (phase 2) (Draper and Weidmann 1951). Repolarization is delayed during the plateau phase, and thus the duration of a myocardial action potential is largely determined by the length of the plateau phase. The action potential plateau is caused by a
balance between depolarizing currents, including the inward L-type (I_{CaL}) and T-type (I_{CaT}) Ca$$^2+$$ current, Na$$^+$$-Ca$$^2+$$ exchange current (I_{NCX}) and I_{NaL}, and repolarizing currents, such as the outward delayed rectifier K$$^+$$ current (I_K) (Ten Eick et al. 1992). The amplitude of I_{NaL} under physiological conditions is relatively small. In this study, the average amplitude of I_{NaL} was -0.24 ± 0.02 pA/pF. However, because I_{NaL} remains activated throughout the plateau phase and the membrane resistance is known to be high at the plateau (Weidmann 1951), even a small inward current such as I_{NaL} could play a significant role in maintaining cardiac depolarization, and thereby the duration of action potential. Myocytes used in this study were isolated from the whole ventricles; therefore, the present results represented the average effect of basal I_{NaL} on the duration of ventricular action potentials. As it has been reported that the density of I_{NaL} is greater in the mid-myocardium than that in the epi- and endomyocardium (Zygmont et al. 2001), it will be interesting to know if there is a regional difference in the contribution of I_{NaL} to the APD among different parts of ventricular myocardium.

Assessment of the contribution of basal I_{NaL} to APD requires the use of an inhibitor that, at least at certain concentrations, selectively and concentration dependently reduces I_{NaL}, and has no effect on other ion currents that can modulate the APD. We used the I_{NaL} inhibitor GS967 at concentrations and conditions in which its inhibition was selective for the I_{NaL} (Belardinelli et al. 2013). For comparison, the Na$$^+$$ channel blocker TTX applied at low concentrations was used to confirm that the inward current recorded was a Na$$^+$$-channel current. The selectivity of GS967 to inhibit I_{NaL} has been studied using rabbit ventricular myocytes (Belardinelli et al. 2013). The results of that study showed that, at a holding potential of -120 mV and a stimulation frequency of $0.1–3$ Hz, GS967 (0.1–5 μmol/L) concentration dependently blocked ATX-II-stimulated I_{NaL} without reducing the peak I_{Na}. In addition, GS967 (1–3 μmol/L) had no significant effect on I_{CaL}, I_{CaT}, and ATP-sensitive K$$^+$$ current, although GS967 at a high concentration of 10 μmol/L caused a small (17%) inhibition of the rapid component of I_K. In this study of guinea pig ventricular myocytes, GS967 concentration dependently inhibited ATX-II-induced I_{NaL} (Fig. 1), further confirming that this compound is a suitable pharmacological tool to investigate the role of I_{NaL} in cardiac repolarization. GS967 at 1 μmol/L blocked the ATX-II stimulated and the basal I_{NaL} by 100% and 82 \pm 4%, respectively. Thus, it appears that the potency of GS967 to inhibit I_{NaL} is greater in the presence, than in the absence, of ATX-II. This could be due to a sensitization by ATX-II of sodium channels to the inhibitory action of GS967, as it has been found that sodium channel site-3 toxins (such as ATX-II) can enhance the binding and action of site-1 toxin (such as TTX) and local anesthetics on this channel (Nishio et al. 1991).

A contribution of basal I_{NaL} to the APD was suggested by a previous study (Kiyosue and Arita 1989). In that study, TTX at a concentration of 60 μmol/L caused a decrease in APD of ventricular myocytes isolated from healthy guinea pigs. However, TTX at such a high concentration could block not only the peak I_{Na}, but also the L- and T-type Ca$$^2+$$ channels (Sun et al. 2008; Hegyi et al. 2012), which would also lead to a shortening of the APD. To verify the role of I_{NaL} in modulation of APD, we used the selective I_{NaL} blocker GS967 and low concentrations of TTX to determine the effect of an inhibition of basal I_{NaL} on the APD. Our results showed that GS967 and TTX at a concentration as low as 0.01 μmol/L and 0.1 μmol/L, respectively, could cause a significant shortening of the APD (Fig. 3). Furthermore, a quantitative
analysis indicated that the inhibition of basal \(I_{\text{Na}} \), and the shortening of APD caused by GS967 and TTX were closely correlated (Fig. 4).

\(Na^{+}/1.5 \) channel has been recognized as the dominant sodium channel of ventricular myocytes (Gellens et al. 1992; Maltsev et al. 2008; Veerman et al. 2015). In addition to the \(Na^{+}/1.5 \) channel, other sodium channel isoforms may also contribute to the cardiac sodium current. One study reported that A-803467, a \(Na^{+}/1.8 \) channel blocker, blocked \(I_{\text{Na}} \), of mouse and rabbit ventricular myocytes, suggesting that \(Na^{+}/1.8 \) channel contributes to cardiac \(I_{\text{Na}} \) (Yang et al. 2012). In contrast, another study found that A-803467 had no effect on sodium current of mouse ventricular myocytes (Verkerk et al. 2012). In this study, the selective \(Na^{+}/1.5 \) channel blocker MTSEA (Haufe et al. 2005; O’Reilly and Shockett 2012) decreased the amplitude of basal \(I_{\text{Na}} \) by 90 \(\pm \) 5\%, indicating that under the conditions of our experiments, the \(Na^{+}/1.5 \) channel isoform is a major contributor to basal \(I_{\text{Na}} \) of guinea pig ventricular myocytes.

Cardiac myocytes overexpressing CaMKII showed an enhanced \(I_{\text{Na}} \) (Wagner et al. 2006). In this study, we investigated the role of CaMKII in regulating basal \(I_{\text{Na}} \) by comparing the amplitude of \(I_{\text{Na}} \) in the absence and presence of the CaMKII inhibitor KN-93 or AIP. Because KN-93 and its inactive analog KN-92 may have CaMKII-independent effects on ion channels if applied extracellularly (Rezazadeh et al. 2006), these drugs and AIP were applied intracellularly through the pipette solution. Our results showed that the amplitude of basal \(I_{\text{Na}} \) was decreased by either KN-93 or AIP, but not by KN-92, suggesting a significant role of CaMKII in regulating cardiac \(I_{\text{Na}} \) under basal conditions (Fig. 6). However, CaMKII phosphorylation may not be the only mechanism to maintain basal \(I_{\text{Na}} \). Other mechanisms, such as protein kinase C (Ma et al. 2012), may also be involved in the regulation of basal \(I_{\text{Na}} \).

In summary, in this study we investigated the role of basal \(I_{\text{Na}} \) in modulating the cardiac APD, quantitatively determining the relationship between the amplitude of \(I_{\text{Na}} \) and the duration of action potential. The results showed a close correlation between a decrease in \(I_{\text{Na}} \) and a shortening of the APD, and thus provide strong evidence that basal endogenous \(I_{\text{Na}} \) is a significant contributor to the APD of cardiac myocytes. The present results also demonstrated that the basal \(I_{\text{Na}} \) of guinea pig ventricular myocytes is mainly generated from \(Na^{+}/1.5 \) channel isoform and is regulated by CaMKII.

Conflict of Interest

Y. Song received a research grant from Gilead Sciences; L. Belardinelli was an employee of Gilead Sciences at the time of this study.

References

Antzelevitch, C., V. Nesterenko, J. C. Shryock, S. Rajamani, Y. Song, and L. Belardinelli. 2014. The role of late \(I_{\text{Na}} \) in development of cardiac arrhythmias. Handb. Exp. Pharmacol. 221:137–68.

Belardinelli, L., G. Liu, C. Smith-Maxwell, W.-Q. Wang, N. El-Bizri, R. Hirakawa, et al. 2013. A novel, potent, and selective inhibitor of cardiac late sodium current suppresses experimental arrhythmias. J. Pharmacol. Exp. Ther. 344:23–32.

Belardinelli, L., W. R. Giles, S. Rajamani, H. S. Karagueuzian, and J. C. Shryock. 2015. Cardiac late \(Na^{+} \) current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress. Heart Rhythm 12:440–448.

Coraboeuf, E., E. Deroubaix, and A. Coulombe. 1979. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am. J. Physiol. 236:H561–H567.

Draper, M. H., and S. Weidmann. 1951. Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. 115:74–94.

Gellens, M. E., A. L. Jr George, L. Chen, M. Chahine, R. Horn, R. L. Barchi, et al. 1992. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. P. Natl. Acad. Sci. USA 89:554–558.

Haufe, V., J. M. Cordeiro, T. Zimmer, Y. S. Wu, S. Schiccatano, K. Benndorf, et al. 2005. Contribution of neuronal sodium channels to the cardiac fast sodium current \(I_{\text{Na}} \) is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc. Res. 65:117–127.

Hegyi, B., L. Bárándi, I. Komáromi, F. Rapp, B. Horváth, J. Magyar, et al. 2012. Tetrodotoxin blocks L-type Ca\(^{2+}\) channels in canine ventricular cardiomyocytes. Pfügers Arch 464: 167–174.

Isenberg, G., and U. Ravens. 1984. The effects of the anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. J. Physiol. 357:127–149.

Kiyosue, T., and M. Arita. 1989. Late sodium current and its contribution to action potential configuration in guinea pig ventricular myocytes. Circ. Res. 64:389–397.

Ma, J., A. Luo, L. Wu, W. Wan, P. Zhang, Z. Ren, et al. 2012. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am. J. Physiol. 302:C1141–C1151.

Makielski, J. C. 2016. Late sodium current: a mechanism for angina, heart failure, and arrhythmia. Trends Cardiovasc. Med. 26:115–122.

Maltsev, V. A., N. Silverman, H. N. Sabbah, and A. I. Undrovinas. 2007. Chronic heart failure slows late sodium current in human and canine ventricular myocytes.
implications for repolarization variability. Eur. J. Heart Fail. 9:219–227.
Maltsev, V. A., J. W. Kyle, S. Mishra, and A. Undrovinas. 2008. Molecular identity of the late sodium current in adult dog cardiomyocytes identified by Na\textsubscript{v}1.5 antisense inhibition. Am. J. Physiol. 295: H667–H676.
Nishio, M., T. Ohmura, S. Kigoshi, and I. Muramatsu. 1991. Supersensitivity to tetrodotoxin and lignocaine of sea anemone toxin II-treated sodium channel in guinea-pig ventricular muscle. Br. J. Pharmacol. 104:504–508.
Noble, D., and P. J. Noble. 2006. Late sodium current in the pathophysiology of cardiovascular diseases: consequences of sodium-calcium overload. Heart 92(Suppl IV): iv1–iv5.
O’Reilly, J. P., and P. E. Shockett. 2012. Time- and state-dependent effects of methanethiosulfonate ethylammonium (MTSEA) exposure differ between heart and skeletal muscle voltage-gated Na+ channels. Biochim. Biophys. Acta 1818:443–447.
Rezazadeh, S., T. W. Claydon, and D. Fedida. 2006. KN-93 (2-[N-(2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)] amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), a calcium/calmodulin-dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage-gated potassium channels. J. Pharmacol. Exp. Ther. 317:292–299.
Song, Y., J. C. Shryock, L. Wu, and L. Belardinelli. 2004. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late I\textsubscript{Na} in guinea pig ventricular myocytes. J. Cardiovasc. Pharmacol. 44:192–199.
Sun, H., D. Varela, D. Chartier, P. C. Ruben, S. Nattel, G. W. Zamponi, et al. 2008. Differential interactions of Na+ channel toxins with T-type Ca2+ channels. J. Gen. Physiol. 132:101–113.
Ten Eick, R. E., D. W. Whalley, and H. H. Rasmussen. 1992. Connections: heart disease, cellular electrophysiology, and ion channels. FASEB J. 6:2568–2580.
Undrovinas, A., L. Belardinelli, N. A. Undrovinas, and H. N. Sabbah. 2006. Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J. Cardiovasc. Electrophysiol. 17(Suppl 1):S169–S177.
Veerman, C. G., A. A. M. Wilde, and E. M. Lodder. 2015. The cardiac sodium channel gene SCN5A and its gene product Na\textsubscript{v}1.5: role in physiology and pathophysiology. Gene 573: 177–187.
Verkerk, A. O., C. A. Remme, C. A. Schumacher, B. P. Scicluna, R. Wolswinkel, B. de Jonge, et al. 2012. Functional Na\textsubscript{v} 1.8 channels in intracardiac neurons. The link between SCN10A and cardiac electrophysiology. Circ. Res. 111:333–343.
Wagner, S., N. Dybkova, E. C. L. Rasenack, C. Jacobshagen, L. Fabritz, P. Kirchhof, et al. 2006. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J. Clin. Invest. 116:3127–3138.
Weidmann, S. 1951. Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. 115:227–236.
Yang, T., T. C. Atack, D. M. Stroud, W. Zhang, L. Hall, and D. M. Roden. 2012. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ. Res. 111:322–332.
Zygmont, A. C., G. T. Eddlestone, G. P. Thomas, V. V. Nesterenko, and C. Antzelevitch. 2001. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am. J. Physiol. 281:H689–H697.