Strong Electroweak Symmetry Breaking and Spin 0 Resonances

Jared Evans and Markus A. Luty

Physics Department, University of California Davis
Davis, California 95616

We argue that theories of strong electroweak symmetry breaking sector necessarily contain new spin 0 states at the TeV scale in the $t\bar{t}$ and $b\bar{t}/bt$ channels, even if the third generation quarks are not composite at the TeV scale. These states couple sufficiently strongly to third generation quarks to have significant production at LHC via $gg \to \phi^0$ or $gb \to t\phi^-$. The existence of narrow resonances in QCD suggests that the strong electroweak breaking sector contains narrow resonances that decay to $t\bar{t}$ or $b\bar{t}/bt$, with significant branching fractions to 3 or more longitudinal W and Z bosons. These may give new “smoking gun” signals of strong electroweak symmetry breaking.

PACS numbers: 12.60.Nz

I. INTRODUCTION

One of the most important questions to be addressed at the LHC is whether the physics that breaks electroweak symmetry is strongly or weakly coupled. Precision electroweak data are in good agreement with the standard model with a light Higgs boson, but mild cancellations may allow a good fit to precision electroweak data in strongly-coupled models. Direct searches are essential to settle this question.

One direct test of the nature of electroweak symmetry breaking is of course the search for the Higgs boson. However, even if a light Higgs-like particle is discovered at the LHC, it is important to make sure that it is “the” Higgs, namely the state that unitarizes $V V$ scattering, where $V = W, Z$. There are other types of scalars that naturally have couplings to gauge bosons and fermions similar to Higgs bosons even though they are not responsible for electroweak symmetry breaking, for example radions [1] and dilatons [2]. In principle one can measure the couplings of the scalar to electroweak gauge bosons and compare with the values needed to unitarize $V V$ scattering, but this requires very high integrated luminosity at LHC [3]. Conversely, if the standard Higgs search does not lead to a discovery, it does not follow that electroweak symmetry breaking is strongly coupled. For example, there may be a light Higgs with new physics modifying its decays, making Higgs discovery difficult at LHC [4].

It is therefore important to carry out direct searches for a strongly-coupled electroweak symmetry breaking sector, independently of the status of the search for the Higgs boson. The classic signal is strong $V V$ scattering [5], which is directly related to the absence of a light Higgs boson by unitarity. However, this also requires very high integrated luminosity at LHC [6].

We argue that there is another generic signature in models with strong $V V$ scattering: new $J = 0$ states in the $t\bar{t}$, bt, and $\bar{t}b$ channels, with masses of order a TeV. These states must couple to the top quark sufficiently strongly to change the $t\bar{t}$, bt, and $\bar{t}b$ cross sections by order 100% at energies of order TeV.

The existence of such resonances is already expected in models where the top quark is composite (as in “top-color” models [7]) and extra dimensional models that are “dual” to strongly coupled theories with a composite top quark [8]. We argue that such states also exist in models where the top quark is an elementary particle perturbatively coupled to a strong electroweak symmetry breaking sector. These states give rise to new signatures that may provide a “smoking gun” for strong electroweak symmetry breaking.

II. STRONG ELECTROWEAK BREAKING AND THE TOP QUARK

We focus on models where the top quark mass arises from coupling to an operator Φ with the quantum numbers of a Higgs doublet:

$$\Delta \mathcal{L} = \frac{c}{\Lambda_t^{d-1}} \bar{Q}_L \Phi t_R + \text{h.c.}$$

(1)

Here d is the scaling dimension of the operator Φ above the TeV scale, and Λ_t is a mass scale that parameterizes the strength of the coupling. The dimensionless constant c is chosen so that Λ_t is the scale where this operator becomes strongly coupled (see below). Another possibility not discussed here is that the top quark couples to a fermionic operator with quantum numbers conjugate to the top itself [9]. In order for the top to be weakly coupled to the electroweak breaking sector at the TeV scale, we want d to be as small as possible, e.g. $d = 1 + \text{few}$. On the other hand, naturalness requires that the operator $\Phi \Phi$ be irrelevant, i.e., its dimension is larger than 4. The possibility of models satisfying these requirements was pointed out in Ref. [10]. Rigorous inequalities on dimensions in conformal field theories allow this scenario
Models based on QCD in the conformal window were described in Ref. [12].

The basic point is that the operator Φ creates states in the strong sector, so Eq. (1) couples the top quark to the strong sector. As we now show, this coupling is sufficiently strong to make an order 100% change in the scattering cross sections with initial states tt, tb, and bt for $E \gtrsim \text{TeV}$, where the electroweak symmetry breaking sector gets strong. For simplicity, we will discuss the electrically neutral tt channel below, but the same arguments apply to the tb and bt channels. For $m_t \ll E \ll \Lambda_{\text{EW}}$ the chirality-violating top quark scattering cross section does not fall off at large energy [13]:

$$\sigma(iLt_R \to VV) \sim \frac{1}{4\pi} \frac{m_t^2}{v^4}. \quad (2)$$

We now compare this to scattering amplitudes for $E \sim \Lambda_{\text{EW}}$. The leading contribution to the amplitude for chirality-violating top interactions involves an insertion of the interaction Eq. (1). The cross section for producing a state X with mass of order Λ_{EW} is then of order

$$\sigma(iLt_R \to X) \sim \frac{(4\pi)^3}{\Lambda_{\text{EW}}^2} \frac{\Lambda_{\text{EW}}}{\Lambda_t} 2^{(d-1)}. \quad (3)$$

The powers of 4π in this result can be understood from the fact that in the limit $\Lambda_t \to \Lambda_{\text{EW}}$ the cross-section must be strongly coupled in the sense of “naive dimensional analysis” (NDA) [14]. To compare this with Eq. (2) we note that NDA also gives

$$m_t \sim \Lambda_{\text{EW}} \left(\frac{\Lambda_{\text{EW}}}{\Lambda_t} \right)^{d-1} \quad (4)$$

and $\Lambda_{\text{EW}} \sim 4\pi v$, so the cross sections in Eqs. (2) and (3) are comparable.

We can also give an argument that does not rely on counting factors of 4π. For $E \gg \Lambda_{\text{EW}}$ the energy dependence of the total chirality-violating cross section to create hadrons in the strongly coupled theory is fixed by scale invariance:

$$\sigma(iLt_R \to \text{hadrons}) \sim \frac{E^{d-2}}{\Lambda_{\text{EW}}^{d-1}}. \quad (5)$$

For $d \neq 2$, this has a different energy dependence than at low energy (see Eq. (4)). This means that the strong sector gives a correction to the cross section that is order 100% at the matching scale $\Lambda_{\text{EW}} \sim \text{TeV}$. This argument does not imply a large change in the cross section for $d \approx 2$, but the most phenomenologically interesting case is $d < 2$, as discussed above.

The arguments above can be repeated for the chirality-violating channels t_Rb_L and b_Lt_R, which also get contributions from the operator Eq. (1).

III. RESONANCES AND PHENOMENOLOGY

We now discuss the nature of the new states in the tt, tb, and bt channels at the TeV scale. The most spectacular signals arise if these states include narrow resonances. NDA suggests that resonances in a strongly-coupled theory with a scale Λ_{EW} will have mass of order Λ_{EW} and width of order $\pi\Lambda_{\text{EW}}$, and will not be visible as individual resonances. However, our experience with QCD suggests resonances are present in strongly-coupled theories and are significantly narrower than the NDA estimate. Including the large-N_c suppression of multi-meson couplings [15], NDA gives

$$\frac{\Gamma(n\text{-body})}{m} \sim \frac{\pi}{N_c^{n-1}}. \quad (6)$$

This is for direct n-body decays, i.e. those without intermediate on-shell particles. In QCD we find much smaller widths [17]:

$$\frac{\Gamma(\rho \to \pi\pi)}{m_{\rho}} \sim 0.2, \quad (7)$$

$$\frac{\Gamma(\omega \to \pi\pi\pi)}{m_{\omega}} \sim 10^{-2}. \quad (8)$$

The existence of narrow resonances is therefore plausible even in a strongly coupled theory without large N_c.

Because Φ is a Lorentz scalar, the resonances created by the interaction Eq. (1) are spin 0. The resonances will fall into representations of custodial isospin symmetry, required to avoid large corrections to the T parameter. Assuming the standard custodial symmetry breaking pattern $SU(2)_L \times SU(2)_R \to SU(2)_C$, the operator Φ transforms as $(2, 2) \to 3 \oplus 1$. We therefore expect isospin triplet and singlet states.

The mass of these states will be of order TeV. The coupling to tt, tb, and bt for these resonances will be of order $y_t \sim 1$. This coupling allows production of these states at LHC. Electrically neutral states can be produced via $gg \to \varphi$ via a top loop, and electrically charged states can be produced via $gb \to t\varphi^-$. The production rate for these states at the LHC is shown in Fig. 1.

These resonances can decay to top quarks via $\varphi^0 \to tt$ or $\varphi^- \to tb$ via the coupling Eq. (1). For $m_\varphi \gg m_t$ we have

$$\frac{\Gamma(\varphi \to tt \text{ or } tb)}{m_\varphi} = \frac{3(g_{tt\varphi}g_{tb\varphi})^2}{16\pi} \sim 10^{-1}. \quad (9)$$

These resonances also have strong decays to longitudinal W’s and Z’s, which are equivalent to the Nambu-Goldstone bosons π of the strong sector. In the absence of additional symmetries, isospin singlets will decay strongly to $\pi\pi$ with a large width, similar to the TeV standard model Higgs. A spin-0 isospin triplet cannot decay to $\pi\pi$, so the leading strong decay is generally $\pi\pi\pi$. If the 3-body strong decay is direct, scaling from QCD gives $\Gamma/m_\varphi \sim 10^{-2}$, corresponding to a branching ratio of order 10%. Observation of a direct 3-body decay with such a large branching ratio is a “smoking gun” for strong dynamics, since a perturbative 3-body decay would have
\[\Gamma / m \sim 10^{-4} \] due to 3-body phase space suppression. Examination of the invariant mass distributions is required to exclude the possibility of a 2-body chain decay.

Other interesting possibilities can arise if the strong sector has additional discrete symmetries. As an example, we consider a strong $SU(N)$ gauge theory in which the operator Φ in Eq. (1) is a “techniquark” bilinear $\Phi = \psi_L \psi_R$. The strong sector then preserves C and P, in which the lowest-lying resonances are expected to have the quantum numbers of techniquark bilinears. We can therefore classify the states by isospin, parity, and G-parity ($G = C e^{i \pi I_2}$) as in QCD. The operator Φ has the decomposition

\[I^{PG} = 0^{++} \oplus 0^{-+} \oplus 1^{+-} \oplus 1^{--} \] (10)

so we may expect resonances in any of these channels. We emphasize that a theory of this type does not necessarily have QCD-like dynamics. For example the theory may have additional techniquarks that make the theory conformal above the TeV scale [12]. Scalar resonances in QCD-like technicolor theories have been previously discussed in Refs. [13], but not the crucial role of the top quark coupling in production.

The 0^{-+} resonance is the analog of the QCD σ. It has a 2-body strong decay to $\pi\pi$, and is therefore expected to be broad. Here π is the composite eaten Nambu-Goldstone boson that makes up the longitudinal polarization of the W or Z.

The 0^{++} is the analog of the QCD η', and we call it the η. Its most plausible strong decays are $\eta \rightarrow \rho\pi\pi$ (followed by $\rho \rightarrow \pi\pi$) or $\pi\pi\pi\pi$. Here ρ is the spin-1 $I^{PG} = 1^{++}$ particle that is the analog of the QCD ρ. The strong decay to $VVVV$ can plausibly compete with the perturbative $t\bar{t}$ decay, especially if the $\eta \rightarrow \rho\pi\pi$ decay is open, leading to interesting observable signals at the LHC. For example, assuming $\Gamma / m_\eta \sim 10^{-2}$ for the strong decay, we obtain a cross section for like-sign electrons or muons of order 1 fb for a TeV resonance. In QCD, $\eta \rightarrow \rho\pi\pi$ is kinematically forbidden, but if even if we scale up QCD the decay is allowed because

\[\frac{m_W}{m_\rho} \sim 10^{-1} \times \left| \frac{m_\pi}{m_\rho} \right|_{\text{QCD}}. \] (11)

This scaling also gives $m_\eta \approx 2.5$ TeV, $m_\rho \approx 2$ TeV, giving a very small production cross section. However, this may be very misleading because the dynamics is not expected to be QCD-like.

Another interesting case is the π' with $I^{PG} = 1^{--}$. Its plausible strong decays are $\pi' \rightarrow \pi\pi\pi$ or $\pi' \rightarrow \rho\pi$ (followed by $\rho \rightarrow \pi\pi\pi$). These possibilities correspond respectively to a narrow resonance with a possibly significant branching ratio to $\pi\pi\pi$, or a broad resonance decaying dominantly to $\pi\pi\pi$. Finally, the a_0 with quantum numbers $I^{PG} = 1^{--}$ has plausible strong decays $\eta\pi$ (followed by $\eta \rightarrow t\bar{t}$), $\rho\pi\pi$ (followed by $\rho \rightarrow \pi\pi\pi$), and $\pi\pi\pi\pi$. The last two cases potentially give an observable rate for a VVVV final state!

IV. CONCLUSIONS

We have shown that the top quark coupling to strong electroweak symmetry breaking provides a production mechanism for TeV-scale spin-0 resonances. We have argued that this is a generic signature for strong electroweak symmetry breaking. The processes $t\bar{t} \rightarrow \phi^0$ and $gb \rightarrow t\phi^-$ may give significant numbers of events at the LHC, and can result in the production of both narrow and broad resonances. (By comparison, WW scattering can only produce resonances with 2-body strong decays, which are therefore broad.) These resonances always have decays to third generation quarks via $\phi^0 \rightarrow t\bar{t}$, $\phi^- \rightarrow tb$, but may also have substantial branching fractions to multi-W/Z final states. Whether or not these modes are observable at the LHC depends sensitively on their mass: as can be seen from Fig. 1, the production cross section drops by 3 orders of magnitude as the resonance mass varies from 1 to 3 TeV. However, besides strong WW scattering this is the only generic signal for strong electroweak symmetry breaking observable at LHC, and should be pursued vigorously. We do not know the masses of the lightest resonances, so broad-based search strategies are required. We leave the detailed investigation of phenomenology for future work.

Acknowledgments

We thank S. Chang, Z. Han, and J. Terning for comments on the manuscript. M.A.L. thanks the Kavli Institute for Theoretical Physics and the Aspen Center for Physics, where part of this work was done.
[1] C. Csaki, M. Graesser, L. Randall and J. Terning, Phys. Rev. D 62, 045015 (2000) [arXiv:hep-ph/9911406]; G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 595, 250 (2001) [arXiv:hep-ph/0002178].

[2] W. D. Goldberger, B. Grinstein and W. Skiba, Phys. Rev. Lett. 100, 111802 (2008) [arXiv:0708.1463 [hep-ph]].

[3] D. Zeppenfeld, R. Kinnunen, A. Nikitenko and E. Richter-Was, Phys. Rev. D 62, 013009 (2000) [arXiv:hep-ph/0002036]; F. Maltoni, D. L. Rainwater and S. Willenbrock, Phys. Rev. D 66, 034022 (2002) [arXiv:hep-ph/0202205]; U. Baur, T. Plehn and D. L. Rainwater, Phys. Rev. Lett. 89, 151801 (2002) [arXiv:hep-ph/0206024].

[4] For a review, see S. Chang, R. Dermisek, J. F. Gunion and N. Weiner, Ann. Rev. Nucl. Part. Sci. 58, 75 (2008) [arXiv:0801.4554 [hep-ph]].

[5] B. W. Lee, C. Quigg and H. B. Thacker, Phys. Rev. D 16, 1519 (1977); M. S. Chanowitz and M. K. Gaillard, Nucl. Phys. B 261, 379 (1985).

[6] J. Bagger et al., Phys. Rev. D 52, 3878 (1995) [arXiv:hep-ph/9504426]; J. M. Butterworth, B. E. Cox and J. R. Forshaw, Phys. Rev. D 65, 096014 (2002) [arXiv:hep-ph/0201098].

[7] C. T. Hill, Phys. Lett. B 266, 419 (1991).

[8] K. Agashe, A. Delgado, M. J. May and R. Sundrum, JHEP 0308, 050 (2003) [arXiv:hep-ph/0308036]; K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, Phys. Rev. D 77, 015003 (2008) [arXiv:hep-ph/0612015].

[9] D. B. Kaplan, Nucl. Phys. B 365, 259 (1991).

[10] M. A. Luty and T. Okui, JHEP 0609, 070 (2006) [arXiv:hep-ph/0409274].

[11] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, JHEP 0812, 031 (2008) [arXiv:0807.0004 [hep-th]].

[12] M. A. Luty, arXiv:0806.1235 [hep-ph].

[13] T. Appelquist and M. S. Chanowitz, Phys. Rev. Lett. 59, 2405 (1987) [Erratum-ibid. 60, 1589 (1988)].

[14] A. Manohar and H. Georgi, Nucl. Phys. B 234, 189 (1984).

[15] G. ’t Hooft, Nucl. Phys. B 72, 461 (1974). E. Witten, Nucl. Phys. B 160 (1979) 57.

[16] For a review, see D. P. Roy, AIP Conf. Proc. 805, 110 (2006) [arXiv:hep-ph/0510070].

[17] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667, 1 (2008).

[18] P. di Vecchia and G. Veneziano, Phys. Lett. B 95, 247 (1980); J. Tandean, Phys. Rev. D 52, 1398 (1995) [arXiv:hep-ph/9505256].