V.V. Romanuke*
Polish Naval Academy, Gdynia, Poland
*corresponding author: romanukevadimv@gmail.com

AN INFINITELY SCALABLE DATASET OF SINGLE-POLYGON GRAYSCALE IMAGES AS A FAST TEST PLATFORM FOR SEMANTIC IMAGE SEGMENTATION

Background. Every new semantic image segmentation task requires fine-tuning the segmentation network architecture that is very hard to perform on images of high resolution, which may contain many categories and involve huge computational resources. So, the question is whether it is possible to test segmentation network architectures much faster in order to find optimal solutions that could be imparted to real-world semantic image segmentation tasks.

Objective. The goal of the article is to design an infinitely scalable dataset, which could serve as a test platform for semantic image segmentation. The dataset will contain any number of entries of any size required for testing.

Methods. A new artificial dataset is designed for semantic image segmentation. The dataset is of grayscale images with the white background. A polygonal object is randomly placed on the background. The polygon edges are black, whereas the polygon body is transparent. Thus, a dataset image is a set of edges of a convex polygon on the white background. The polygon edge is one pixel thick but the transition between the white background and the polygon black edges includes gray pixels in the vicinity of one-pixel edges. Such a noise is an aftermath of the image file format conversion process. The number of edges of the polygon is randomly generated for every next image. The polygon size and position of its center of mass with respect to image margins are randomized as well.

Results. A toy dataset of any volume and image size from scratch can be generated. Besides, the dataset generator automatically labels pixels to classes “background” and “polygon”. The dataset does not need augmentation. Eventually, the dataset is infinitely scalable, and it will serve as a fast test platform for segmentation network architectures.

Conclusions. The considered examples of using the polygonal dataset confirm its appropriateness and capability of networks trained on it to successfully segment stacks of objects. Additionally, a criterion of early stopping is revealed based on empty image segmentation.

Keywords: semantic image segmentation; dataset; polygonal object; transparent background; augmentation; segmentation network architecture; empty image segmentation.

Introduction

Nowadays, semantic image segmentation is the top problem in the field of computer vision. It is a high-level task that paves the way towards complete scene comprehension. Due to processing huge amounts of data, this is a challenge for machine learning also.

Image segmentation is a computer vision task trying to label specific regions of an image, and thus showing what the image contains and where it is located. More specifically, the goal of semantic image segmentation is to label each pixel of an image with a corresponding class or category of what is being imaged [1, 2]. Usually, the image spatial resolution is not allowed to be compressed. So, a semantic segmentation network should classify every pixel in an image, resulting in an image of the same resolution that is segmented by classes or categories.

A few effective approaches towards constructing a neural network architecture for semantic image segmentation exist. They are based on following an encoder/decoder structure [1, 3]. According to the encoder/decoder structure, the spatial resolution of the input is downsampled developing lower-resolution feature mappings, and then the feature representations are upsampled into a full-resolution segmentation map. A common semantic segmentation network consists of a downsampling subnetwork, upsampling subnetwork, and a pixel classification layer [1, 2, 4]. A downsampling subnetwork is stacked of convolutional layers, ReLUs, and max pooling layers [5, 6]. The upsampling is executed using the transposed convolutional layer (also commonly referred to as deconvolutional layer) performing the upsampling and filtering at the same time [7]. An upsampling subnetwork is stacked of deconvolutional layers and ReLUs. The final set of layers performs pixel classifications. These final layers process an input that has the same spatial dimensions (height and width) as the input image. The third dimension being equal to the number of filters in the last deconvolutional
layer is squeezed down to the number of classes that are tasked to be segmented. This is done using a 1-by-1 convolutional layer (in fact, it is a fully-connected layer) whose number of filters is equal to the number of classes. The softmax and pixel classification layers, following the 1-by-1 convolutional layer, categorically label each image pixel.

Surely, it is too early to speak about optimal semantic segmentation network architectures. They are hardly to be deduced purely based on mathematics. Developing optimal architectures takes its time while experience of researchers is accumulated and processed.

The experience has been intensively growing since the late 2000s. As of November 2018, a few tens of image segmentation datasets are available. The most remarkable are COCO, Cityscapes, BSDS500, CamVid, Mapillary Vistas, DUS, PASCAL VOC, MSRCv2, and some others containing labels to each pixel in every image instance \([1, 3, 7]\). These datasets fit excellently for the corresponding semantic image segmentation tasks but training on them is still expensive. Additionally, augmentation of training data for smaller datasets (like BSDS500 and DUS) is limited. Meanwhile, every new semantic image segmentation task requires fine-tuning the segmentation network architecture that is very hard to perform on images of high resolution, which may contain many categories and involve huge computational resources \([2, 7]\).

Problem statement

So, the question is whether it is possible to test segmentation network architectures much faster in order to find optimal solutions that could be imparted to real-world semantic image segmentation tasks. Such solutions are the number of convolutional layers and their parameters (the size and number of filters) \([5, 8]\), max pooling layers \([9]\), parameters of deconvolutional layers (the size and number of filters), and, probably, dropout layers \([10]\). For example, a plausible purpose is to research on training data of smaller and simpler images so that real-world tasks could inherit close-to-optimal network architectures from them. At this, whichever a simpler task is, its (simpler) dataset should not need an augmentation \([4, 11]\).

Obviously, such simple datasets can be only artificial. Then, however, the number of their entries is not limited. This is about infinite datasets like EEACL26 \([5, 9, 10]\) or a possible extended version of MNIST where digits would be drawn by a machine simulating inconstancy of human handwriting. In its turn, an infinite dataset for a toy semantic image segmentation must contain primitive objects whose shape and size will vary dramatically. Therefore, the present goal is to design an infinitely scalable dataset, which could serve as a test platform for semantic image segmentation. The dataset will contain any number of entries of any size required for testing. A pattern of how the dataset can be used is going to be eventually exemplified.

Polygonal objects with transparent bodies to be segmented

A simple image has an object to be segmented on the white background. The object whose color is black must have a geometrical form which could be easily drawn. Such flat objects are polygons. The most primitive form is a triangle. Although polygons having four vertices and more can be concave and self-intersecting, an appropriate choice here is convex polygons \([12, 13]\).

Clearly, the minimal number of polygon vertices is 3. Formally, the maximal number is not limited, so let a polygon be generated of \(n\) vertices, where \(n \in \{3, n_{\text{max}}\}\) by \(n_{\text{max}} \in \mathbb{N} \setminus \{2\}\). Number \(n\) will be randomly chosen for every new image \([14, 15]\). Number \(n_{\text{max}}\), i.e., a maximal number of edges in a polygon, is specifically selected for a given semantic image segmentation task. Greater number \(n_{\text{max}}\) makes this task more complex, and thus a more complex segmentation network architecture may be required (Fig. 1).

As it just has been declared above, the color of the polygon edges is black. What would be the most appropriate color of the polygon interior? It is not necessary to be the same color as edges. If to use discolored images, then it much simplifies the semantic image segmentation task. However, transparency of objects makes this task more complex again because a color interior (say, red or green) would help additionally to identify the color objects on the highly contrasted (white) background \([16, 17]\). Therefore, images are grayscale (there is no ideal transition between the white background and the polygon black edges). Every image will contain a single polygonal object with transparent body, which has to be segmented.

The minimal image size is 32x32. This is set so for compatibility with the input of convolutional neural networks for other fundamental datasets used in machine learning (like CIFAR-10, CIFAR-100, etc.).
CIFAR-100, EEACL26, MNIST, etc.). Generally, the image size is \(h \times w \), where \(h \) is a height, and \(w \) is a width (in pixels), which are only limited from below: \(h \geq 32 \), \(w \geq 32 \). Nonetheless, whichever image size would be, the thickness of the polygonal edges will be one pixel. This implies that the segmentation is harder for bigger images because always only a one-pixel border separates the polygon white interior off the white background.

The dataset generator

A procedure of generating a dataset starts with inputting numbers \(n_{\text{min}} \) and \(n_{\text{max}} \), where \(n_{\text{min}} \in \{3, n_{\text{max}}\} \). Then an initial number of the polygon vertices is

\[
n = \alpha((n_{\text{max}} - n_{\text{min}} + 1) \cdot \theta_1) + n_{\text{min}},
\]

where \(\theta_1 \) is a value of a random variable uniformly distributed on the open interval \((0 ; 1)\) by a function \(\alpha(\xi) \) returning the integer part of number \(\xi \). Initially, coordinates of the vertices are taken from a vector

\[
Y = (y_j)_{1 \times (2n)} = \alpha(\Theta(1, 2n) \cdot \min(\gamma h, \gamma w)) + 1,
\]

where function \(\Theta(1, 2n) \) returns a pseudorandom \(1 \times (2n) \) vector \([14]\) whose entries are drawn from the standard uniform distribution on the open interval \((0; 1)\), and \(\gamma \) is a coefficient to scale the polygon with respect to the image size. Theoretically, \(\gamma \in (0; 1) \) but \(\gamma \in [0.25; 1] \) for practice. The horizontal coordinates are

\[
z_i = y_i + \alpha((1 - \gamma) \cdot h \theta_2) \quad \text{for} \ i = 1, n
\]

and the vertical coordinates are

\[
z_{n+i} = y_{n+i} + \alpha((1 - \gamma) \cdot w \theta_3) \quad \text{for} \ i = 1, n,
\]

where values \(\theta_2 \) and \(\theta_3 \) are random generated analogously to \(\theta_1 \). So, the \(i \)-th vertex is a plane point \([z_i, z_{n+i}]\) for \(i = 1, n \). The stage with vector (2) and coordinates (3) and (4) is repeated until the resulting polygon becomes convex and the coordinates of the same axis are not too close. The latter is controlled by inequalities

\[
\overline{z}_i - \overline{z}_{i-1} \geq \lambda \quad \text{for} \ i = 2, n
\]

and

\[
\overline{z}_{n+k} - \overline{z}_{n+k-1} \geq \lambda \quad \text{for} \ k = 2, n
\]

for a given positive integer \(\lambda \), where \(\{z_i\}_{i=1}^n \) and \(\{\overline{z}_{n+i}\}_{i=1}^n \) are respective values \(\{z_i\}_{i=1}^n \) and \(\{\overline{z}_{n+i}\}_{i=1}^n \) sorted in ascending order. In practice, a case of \(\lambda \in \{5, 10\} \) is acceptable. The requirement of inequalities (5) and (6) can be relaxed so that one of them or both may be violated for a single \(i \in (2, n) \) and a single \(k \in (2, n) \). Additionally, one or a few vertices may be deleted in order to obtain the convexity faster \([12, 13]\).

Given a number of entries \(M \), the dataset generator returns \(M \) images with polygonal objects and \(M \) labeled images (like, e.g., in Fig. 2). Here only two classes are represented: “polygon” and “background”. Later on, the generated dataset is divided into a training set, a validation set, and a testing set (if needed).
Optionally, the colors of the background, polygon edges, and polygon interior can be changed. The colors of the background and polygon interior can be different. Note that the images are not ideally of two colors. Some noise is added upon saving an image due to its file format conversion process. A factual transition between the white background and the polygon black edges can be seen in Fig. 3. Besides, due to pixel-wise drawing, the convexity in some places is visibly rough.

Fig. 3. A grayscale fuzzy transition between the white background and the polygon black edges in an image of the dataset in Fig. 2

A specificity of the dataset generator is that it does not necessarily return a polygon having at least n_{min} vertices (or edges). While searching for the convex hull by the given coordinates, those vertices who violate the convexity are deleted. This decreases the factual number of polygon edges, especially for small-sized images. As the image size increases, the probability of generating polygons with a greater number of edges increases (for an increased n_{min}). Thus the objects to be segmented can be made a little bit “smoother”. However, these objects mainly are triangles, quadrilaterals, and pentagons. Hexagons, heptagons, octagons will be generated much rarer unless numbers n_{min} and n_{max} are set greater for 256×256 images or bigger. If to generate vertices by vector (2) until the number of the polygon edges becomes equal to n_{min}, this may significantly linger on it. This is why such an option is not recommended to turn on along with $n_{\text{min}} > 6$, although the possibility exists.

Exemplification

Before considering examples of using the polygonal dataset, a common semantic segmentation network architecture is stated as follows. Firstly, the images are all square. So let the input layer have the size $w \times w \times 1$. Then a convolutional layer goes executing 3×3 convolutions with unit strides and paddings. A 2×2 max pooling layer downsamples the input by a factor of 2 by setting the stride at 2. A ReLU is inserted in-between the first convolutional and max pooling layers [6].

Let the number of filters in the first convolutional layer be equal to $2w$. And let the second convolutional layer, following the max pooling layer, be of the same parameters. The second convolutional layer is followed by a ReLU also. Further,
a deconvolutional layer upsamples with 4×4 filters whose number is $2w$. The stride here is set at 2.

The deconvolutional layer is followed by 1×1 convolutions with the unit stride and without padding (a fully-connected layer). As we have only two classes, “polygon” and “background”, the number of filters here is set at 2. In the end, the softmax and pixel classification layers go (Fig. 4).

Now, four datasets are generated for 32×32, 64×64, 96×96, and 128×128 images. The training and testing sets have an equal number of entries, whereas no validation will be performed during training (eventually, testing is a final validation). Each dataset has three versions: for 400, 2000, and 10000 images.

The network is trained for 100 epochs, which are enough for achieving the top possible performance on a given dataset. The training is executed with using class weighting (Fig. 5). Semantic segmentation quality is evaluated by the common metrics:

1. **Image Input**: $32 \times 32 \times 1$ images with "zerocenter" normalization
2. **Convolution**: $64 \times 3 \times 3$ convolutions with stride $[1 \ 1]$ and padding $[1 \ 1 \ 1 \ 1]$
3. **ReLU**: ReLU (by default)
4. **Max Pooling**: 2×2 max pooling with stride $[2 \ 2]$ and padding $[0 \ 0 \ 0 \ 0]$
5. **Convolution**: $64 \times 3 \times 3$ convolutions with stride $[1 \ 1]$ and padding $[1 \ 1 \ 1 \ 1]$
6. **ReLU**: ReLU (by default)
7. **Transposed Convolution**: $64 \times 4 \times 4$ transposed convolutions with stride $[2 \ 2]$ and output cropping $[1 \ 1]$
8. **Convolution**: $2 \times 1 \times 1$ convolutions with stride $[1 \ 1]$ and padding $[0 \ 0 \ 0 \ 0]$
9. **Softmax**: softmax
10. **Pixel Classification Layer**: Cross-entropy loss

Fig. 4. The segmentation network architecture in MATLAB for segmenting 32×32 images

Fig. 5. Relative frequencies of class-labeled pixels and the corresponding class weights, which are multiplicative inverses for the frequencies (the number of class “background” pixels is 1.8206 to 2.6104 times greater than that of class “polygon” pixels)
1. Normalized confusion \(2 \times 2\) matrix \(U\). The non-diagonal element of this matrix is the count of pixels known to belong to class “polygon”/“background” but predicted to belong to class “background”/“polygon”, divided by the total number of pixels predicted in class “background”/“polygon”.

2. Global accuracy \(g_{acc}\), which is a ratio of correctly classified pixels to total pixels, regardless of class.

3. Mean accuracy \(m_{acc}\), which is a ratio of correctly classified pixels in each class to total pixels, averaged over all classes.

4. Mean intersection-over-union (IoU) \(m_{IoU}\), which is the average IoU of all classes.

5. Weighted IoU \(\mu_{IoU}\), which is the average IoU of all classes, weighted by the number of pixels in the class.

6. The class accuracy \(p_{acc}\) and \(b_{acc}\), respectively for “polygon” and “background”), which is a ratio of correctly classified pixels in each class to the total number of pixels belonging to that class according to the ground truth. Obviously, \[m_{acc} = \frac{p_{acc} + b_{acc}}{2}\]

7. The class IoU \(p_{IoU}\) and \(b_{IoU}\), respectively for “polygon” and “background”), which is a ratio of correctly classified pixels to the total number of ground truth and predicted pixels in that class. Obviously, \[m_{IoU} = \frac{p_{IoU} + b_{IoU}}{2}\]

Fig. 6 shows an evolution of matrix

\[
U = \begin{pmatrix}
 u_{pp} & u_{pb} \\
 u_{bp} & u_{bb}
\end{pmatrix}
\]

for the increasing image size and the increasing number \(M_{train}\) of entries in the training set. The classes are confused badly enough, so the global accuracy (Fig. 7) and mean accuracy (Fig. 8) are far from the acceptable ones. As the image size increases, these accuracies drop. The same happens to the mean IoU (Fig. 9) and weighted IoU (Fig. 10), although they increase as the volume of the training set increases. Tendencies of the class accuracies (Fig. 11) and class IoUs (Fig. 12) differ. However, accuracy and IoU for class “background” resemble each other.

It is no wonder that networks with a bigger input size perform poorer. Although numbers of filters are increased, bigger images may require inserting additional convolutions and deconvolutions along with max pooling layers. Indeed, after insert-
Fig. 7. The global accuracy
Fig. 8. The mean accuracy
Fig. 9. The mean IoU
Fig. 10. The weighted IoU
Fig. 11. The class accuracies
12. The class IoUs
ing another triple of a convolutional layer, ReLU and max pooling layer, followed by the second de-
convolutional layer, the segmentation quality be-
comes improved.

The semantic segmentation network can proc-
ess images that are larger than the specified input
size. The smallest image size the network can
process is $w \times w$. Besides, an input image may
contain not only a single object. So, testing the
trained network on a stack of polygons is possible.
Fig. 13 shows how well the trained network per-
forms on such a stack of 32×32 single-polygon
images. The factual segmentation quality is pretty
good but it may be a little worse than that dealing
with a single image.

Such stacks are a more real model of situa-
tions rather than just a single object to be segment-
ed. Here, the network full connectivity gives an
opportunity to work with a great deal of image siz-
es starting off the minimal size 32×32. The input
image thus is not necessary to be a square. The
input square images used for training and testing
the network are atomic instances to project it. If
an input image, whichever polygonal objects it has,
does not have size $(32q) \times (32t)$ by $q \in \mathbb{N}$, $t \in \mathbb{N}$,
then it is just scaled (resized or adjusted) to the
nearest size $(32q) \times (32t)$.

Discussion

Although any dataset generated by (1)–(6) is
far away from a real-world task, it is a fast test
platform that allows to adjust a segmentation net-
work to the image size and its complexity. The
simplest dataset is of triangles. When a polygon has
four edges or more, it is harder to segment. Mean-
while, the larger the polygon, the harder it is seg-
mented. The central part of the polygon is segmen-
ted poorer when the image size grows along with
enlarging the polygon. This happens due to the
polygon edges become relatively thinner, and thus
the network “sees” them less legibly. Fuzzy border
transitions additionally hamper the segmentation.

Larger images have polygons with the same
thinnest edges, so it is not a matter of just scaling
the smallest images. The larger the image size, the
clearer bottlenecks of a network architecture can
be seen. These bottlenecks are gradually eliminated

Fig. 13. The stack of 300 single-polygon images and the fused overlay image as a result of segmentation
by inserting more convolutional, deconvolutional, and max pooling layers. Numbers of filters are increased along with that. ReLUs and DropOut layers are inserted appropriately [6, 10].

Note that a segmentation network trained by a dataset generated by (1)–(6) must not “see” background itself. This is so because the dataset does not contain images with only class “background”. Therefore, if the network being currently trained starts segmenting empty images (images of appropriate sizes regarding the network input, which do not contain any objects), the training process should be stopped (Fig. 14). The saved last version of the network not segmenting empty images becomes the best one for the given architecture and dataset. Further improvement of accuracy (or, in general, semantic segmentation quality by the said metrics) requires either modifications of the network architecture or generation of a dataset wherein polygons would be relatively smaller than previously.

Conclusions

The represented method of generating an infinitely scalable dataset relies on pseudorandomization of the polygon vertices’ number by (1) and coordinates of the vertices by (2)–(4). Inequalities (5) and (6) help in making a polygon of an appropriate form and size, unless the polygon is a triangle. On rare occasions, the triangle can be generated very small or thin reminding an arrow (see Fig. 13).

The dataset generator is useful for rapidly obtaining a toy dataset of any volume and image size from scratch, careless of how to make photos, process them, sort and label them. The latter is the most important. Automatic labeling saves much time and resources. The dataset does not need augmentation. Despite primitivism of its objects, their transparency and thin border produce a “masking” effect, especially for larger-sized images. An impact of the segmentation task is strengthened by irregularity of the object’s form. Finally, scalability and randomized positioning of the object’s center of mass make the toy dataset an ideal means for testing segmentation network architectures much faster. Undesirable segmentation of empty images exemplified in Fig. 14 is an additional criterion of early stopping. Moreover, this may be an evidence of the poorly generated dataset (e.g., too large polygons like those in Fig. 2).

A further research based on such an infinite artificial dataset can be pursued with images containing two and more polygons. Sizes of the polygons and their ratios will vary randomly. An option of whether polygons can overlap or not will be included. If overlapping is admitted, polygonal edges of the overlap region disappear. In such a case, non-convex polygonal objects will be considered.

References

[1] H.-J. He et al., “Image segmentation techniques”, in Computer Vision Technology for Food Quality Evaluation, 2nd ed., D.-W. Sun, Ed. San Diego: Academic Press, 2016, pp. 45–63. doi: 10.1016/B978-0-12-802232-0.00002-5
[2] J. Rogowska, “Overview and fundamentals of medical image segmentation”, in Handbook of Medical Image Processing and Analysis, 2nd ed., I.N. Bankman, Ed. San Diego: Academic Press, 2009, pp. 73–90. doi: 10.1016/B978-012373904-9.50013-1
[3] J.-T. Chien, “Deep neural network”, in Source Separation and Machine Learning, J.-T. Chien, Ed. Academic Press, 2019, pp. 259–320. doi: 10.1016/B978-0-12-804566-4.00019-X
[4] V. Badrinarayanan et al., “SegNet: A deep convolutional encoder-decoder architecture for image segmentation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, iss. 12, pp. 2481–2495, 2017. doi: 10.1109/TPAMI.2016.2644615
В.В. Романюк

Ключові слова: семантична сегментація зображень; набір даних; багатокутний об'єкт; прозоре; кутник і положення його центра

**ГРАДАЦІЯХ СІРОГО з білим тлом. Багатокутний об‘єкт випадковим чином розміщується на тлі. Ребра багатокутника – чорні, а тіло багатокутника – прозоре. Таким чином, зображення набору даних являє собою набір ребер опуклого багатокутника на білому тлі. Край багатокутника має зовнішній і внутрішній шови різних кольорів. Такий шум є наслідком процесу перетворення формату файлу зображення. Кількість ребер багатокутника генерується випадковим чином для кожного наступного зображення. Розмір багатокутника на білому тлі. Край багатокутника має товщину в один піксель, але перехід між білим тлом та червоним краєм багатокутника включає пікселі в окремі окремі частини країв. Такий шум є наслідком процесу перетворення формату файлу зображення. Кількість ребер багатокутника генерується випадковим чином для кожного наступного зображення. Розмір багатокутника

Результа́ти дослі́дження. Модельний набір даних будь-якого обсягу і розміру зображення може бути згенерований "з нуля". Крім того, генератор наборів даних автоматично категоризує пікселі для класів "background" і "polygon". Такий набір даних не потребує збільшення. Зрештою, цей набір даних можна несінкінечно масштабувати, і він буде слугувати платформою швидкого тестування для архітектур мереж сегментації.

Висновки. Розглянуті приклади використання набору даних із багатокутників підтверджують його придатність і здатність наявних мереж успішно сегментувати комплекси об’єктів. Крім того, виявляється критерій ранньої зупинки на основі сегментації порожнього зображення.

Заключні слова: семантична сегментація зображень; набір даних; багатокутний об’єкт; прозоре тло; збільшення; архітектура мереж сегментації; сегментація порожнього зображення.
В.В. Романюк

БЕСКОНЕЧНО МАСШТАБИРУЕМЫЙ НАБОР ДАННЫХ ИЗ ИЗОБРАЖЕНИЙ В ГРАДАЦИЯХ СЕРОГО С ОДНИМ МНОГОУГОЛЬНИКОМ КАК БЫСТРАЯ ТЕСТОВАЯ ПЛАТФОРМА ДЛЯ СЕМАНТИЧЕСКОЙ СЕГМЕНТАЦИИ ИЗОБРАЖЕНИЙ

Проблематика. Каждая новая задача семантической сегментации изображений требует тонкой настройки архитектуры сети сегментации, которую очень трудно выполнить на изображениях высокого разрешения, которые могут содержать много категорий и вовлекать огромные вычислительные ресурсы. Таким образом, вопрос заключается в том, можно ли гораздо быстрее протестировать архитектуры сетей сегментации, чтобы найти оптимальные решения, которые могли бы быть применены к реальным задачам семантической сегментации изображений.

Цель исследования. Статья посвящена разработке бесконечно масштабируемого набора данных, который мог бы служить тестовой платформой для семантической сегментации изображений. Набор данных будет содержать любое количество записей любого размера, необходимого для тестирования.

Методика реализации. Новый искусственный набор данных проектируется для семантической сегментации изображений. Этот набор данных представляет собой изображения в градациях серого с белым фоном. Многоугольный объект случайным образом размещается на фоне. Ребра многоугольника — черные, а тело многоугольника — прозрачное. Таким образом, изображение набора данных представляет собой набор ребер выпуклого многоугольника на белом фоне. Край многоугольника имеет толщину в один пиксель, но переход между белым фоном и черными краями многоугольника включает серые пиксели в окрестности однородных краев. Такой шум является следствием процесса преобразования формата файла изображения. Количество ребер многоугольника генерируется случайным образом для каждого следующего изображения. Размер многоугольника и положение его центра масс относительно поля изображения также рандомизированы.

Результаты исследования. Модельный набор данных любого объема и размера изображения может быть сгенерирован “с нуля”. Кроме того, генератор наборов данных автоматически категоризует пиксели для классов “background” и “polygon”. Такой набор данных не нуждается в приращении. В конце концов, этот набор данных может бесконечно масштабироваться, и он будет служить платформой быстрого тестирования для архитектур сетей сегментации.

Выводы. Рассмотренные примеры использования набора данных из многоугольников подтверждают его пригодность и способность обученных сетей успешно сегментировать комплексы объектов. Кроме того, обнаруживается критерий ранней остановки на основе сегментации пустого изображения.

Ключевые слова: семантическая сегментация изображений; набор данных; многоугольный объект; прозрачный фон; приращение; архитектура сети сегментации; сегментация пустого изображения.

Рекомендована Радою факультету прикладной математики
КПП им. Игоря Сикорского

Надійшла до редакції 13 грудня 2018 року
Прийнята до публікації 28 лютого 2019 року