

REPRESENTATIONS OF TWO-PARAMETER QUANTUM GROUPS AND SCHUR-WEYL DUALITY

GEORGIA BENKART

SARAH WITHERSPOON

August 3, 2001

Abstract. We determine the finite-dimensional simple modules for two-parameter quantum groups corresponding to the general linear and special linear Lie algebras \(\mathfrak{gl}_n \) and \(\mathfrak{sl}_n \), and give a complete reducibility result. These quantum groups have a natural \(n \)-dimensional module \(V \). We prove an analogue of Schur-Weyl duality in this setting: the centralizer algebra of the quantum group action on the \(k \)-fold tensor power of \(V \) is a quotient of a Hecke algebra for all \(n \) and is isomorphic to the Hecke algebra in case \(n \geq k \).

Introduction

In this work we study the representations of two two-parameter quantum groups \(\tilde{U} = U_{r,s}(\mathfrak{gl}_n) \) and \(U = U_{r,s}(\mathfrak{sl}_n) \). Our Hopf algebra \(\tilde{U} \) is isomorphic as an algebra to Takeuchi’s \(U_{r,s}^{-1} \) (see [T]), but as a Hopf algebra, it has the opposite coproduct. As an algebra, \(\tilde{U} \) has generators \(e_j, f_j, (1 \leq j < n) \), and \(a_i^{\pm 1}, b_i^{\pm 1} \) \((1 \leq i \leq n)\), and defining relations given in (R1)-(R7) below. The elements \(a_i^{\pm 1}, b_i^{\pm 1} \) generate a commutative subalgebra \(\tilde{U}^0 \), and the elements \(e_j, f_j, \omega_j^{\pm 1}, (\omega_j')^{\pm 1} \) \((1 \leq j < n)\), where \(\omega_j = a_j b_{j+1} \) and \(\omega_j' = a_{j+1} b_j \), generate the subalgebra \(U = U_{r,s}(\mathfrak{sl}_n) \).

The structure of these quantum groups was investigated in [BW], where we realized both \(\tilde{U} \) and \(U \) as Drinfel’d doubles of certain Hopf subalgebras and constructed an R-matrix for \(\tilde{U} \) and \(U \). In particular, for any two \(\tilde{U} \)-modules in category \(\mathcal{O} \) (defined in Section 3), there is an isomorphism \(R_{M',M} : M' \otimes M \to M \otimes M' \). The construction of \(R_{M',M} \) is summarized in Section 4 of this note. In Sections 2 and 3, we classify the finite-dimensional simple \(\tilde{U} \)-modules when \(rs^{-1} \) is not a root of unity and prove that all finite-dimensional \(\tilde{U} \)-modules on which \(\tilde{U}^0 \) acts semisimply are completely reducible. These results hold equally well for \(U \). The hypothesis on \(\tilde{U}^0 \) is necessary: we provide examples of finite-dimensional modules that are not completely reducible. Our complete reducibility proof uses a quantum Casimir operator defined in [BW] and parallels the argument in [L].

2000 Mathematics Subject Classification. Primary 17B37, 16W30, 16W35, 81R50.

The authors gratefully acknowledge support from National Science Foundation Grant #DMS–9970119, National Security Agency Grant #MDA904-01-1-0067, and the hospitality of the Mathematical Sciences Research Institute, Berkeley.
These elements satisfy (R5)-(R7) along with the following relations:

\[(1.1) \quad \omega_j = a_j b_{j+1} \quad \text{and} \quad \omega_j' = a_{j+1} b_j.\]

These elements satisfy (R5)-(R7) along with the following relations:
(R1') The $\omega_i^{\pm 1}, \omega_j^{\pm 1}$ all commute with one another and $\omega_i \omega_i^{-1} = \omega_j^{\prime} (\omega_j^{\prime})^{-1} = 1$.

(R2') $\omega_i e_j = r^{(\epsilon_i, \alpha_j)} s^{(\epsilon_j, \alpha_i)} e_j \omega_i$ and $\omega_i f_j = r^{- (\epsilon_i, \alpha_j)} s^{- (\epsilon_j, \alpha_i)} f_j \omega_i$.

(R3') $\omega'_i e_j = r^{(\epsilon_i+1, \alpha_j)} s^{(\epsilon_j, \alpha_i)} e_j \omega'_i$ and $\omega'_i f_j = r^{- (\epsilon_i+1, \alpha_j)} s^{- (\epsilon_j, \alpha_i)} f_j \omega'_i$.

(R4') $[e_i, f_j] = \delta_{i,j} \frac{q - 1}{q} (\omega_i - \omega_i^{\prime})$.

When $r = q$ and $s = q^{-1}$, the algebra $U_{r,s}(\mathfrak{gl}_n)$ modulo the ideal generated by the elements $b_i - a_i^{-1}, 1 \leq i \leq n$, is just the quantum general linear group $U_q(\mathfrak{gl}_n)$, and $U_{r,s}(\mathfrak{sl}_n)$ modulo the ideal generated by the elements $\omega_j^{\prime} - \omega_j^{-1}, 1 \leq j < n$, is $U_q(\mathfrak{sl}_n)$.

The algebras \tilde{U} and U are Hopf algebras, where the $a_i^{\pm 1}, b_i^{\pm 1}$ are group-like elements, and the remaining Hopf structure is given by

$$
\Delta(e_i) = e_i \otimes 1 + \omega_i \otimes e_i, \quad \Delta(f_i) = 1 \otimes f_i + f_i \otimes \omega_i,
$$

$$
\epsilon(e_i) = \epsilon(f_i) = 0, \quad S(e_i) = -\omega_i^{-1} e_i, \quad S(f_i) = -f_i (\omega_i^{\prime})^{-1}.
$$

Let $\Lambda = \mathbb{Z} \epsilon_1 + \cdots + \mathbb{Z} \epsilon_n$, the weight lattice of \mathfrak{gl}_n, and $Q = \mathbb{Z} \Phi$ the root lattice. Corresponding to any $\lambda \in \Lambda$ is an algebra homomorphism $\hat{\lambda}$ from the subalgebra U^0 of U generated by the elements $a_i^{\pm 1}, b_i^{\pm 1}$ ($1 \leq i \leq n$) to \mathbb{K} given by

$$
\hat{\lambda}(a_i) = r^{(\epsilon_i, \lambda)} \quad \text{and} \quad \hat{\lambda}(b_i) = s^{(\epsilon_i, \lambda)}.
$$

The restriction $\hat{\lambda}: U^0 \to \mathbb{K}$ of $\hat{\lambda}$ to the subalgebra U_0 of U generated by $\omega_j^{\pm 1}, (\omega'_j)^{\pm 1}$ ($1 \leq j < n$) satisfies

$$
\hat{\lambda}(\omega_j) = r^{(\epsilon_j, \lambda)} s^{(\epsilon_{j+1}, \lambda)} \quad \text{and} \quad \hat{\lambda}(\omega'_j) = r^{(\epsilon_{j+1}, \lambda)} s^{(\epsilon_j, \lambda)}.
$$

Let M be a module for $\tilde{U} = U_{r,s}(\mathfrak{gl}_n)$ of dimension $d < \infty$. As \mathbb{K} is algebraically closed, we have

$$
M = \bigoplus_{\chi} M_{\chi},
$$

where each $\chi: \tilde{U}^0 \to \mathbb{K}$ is an algebra homomorphism, and M_{χ} is the generalized eigenspace given by

$$
M_{\chi} = \{ m \in M \mid (a_i - \chi(a_i) 1)^d m = 0 = (b_i - \chi(b_i) 1)^d m, \quad \text{for all } i \}.
$$

When $M_{\chi} \neq 0$ we say that χ is a weight and M_{χ} is the corresponding weight space. (If M decomposes into genuine eigenspaces relative to \tilde{U}^0 (resp. U^0), then we say that \tilde{U}^0 (resp. U^0) acts semisimply on M.)

From relations (R2) and (R3) we deduce that
where $\tilde{\alpha}_j$ is as in (1.3), and $\chi \cdot \psi$ is the homomorphism with values $(\chi \cdot \psi)(a_i) = \chi(a_i)\psi(a_i)$ and $(\chi \cdot \psi)(b_i) = \chi(b_i)\psi(b_i)$. In fact, if $(a_i - \chi(a_i))1^k m = 0$, then applying relation (R2) yields $(a_i - \chi(a_i))1^{(e_i, \tilde{\alpha}_j)}1^k e_j m = 0$, and similarly for f_j. Therefore, the sum of eigenspaces is a submodule of M, and if M is simple this sum must be M itself. Thus, in (1.5), we may replace the power d by 1 whenever M is simple, and \tilde{U}^0 must act semisimply in this case. We also can see from (1.6) that for each simple M there is a homomorphism χ so that all the weights of M are of the form $\chi \cdot \zeta$, where $\zeta \in Q$.

It is shown in [BW, Prop. 3.5] that if $\hat{\zeta} = \hat{\eta}$, then $\zeta = \eta$ ($\zeta, \eta \in Q$) provided rs^{-1} is not a root of unity. As a result, we have the following proposition.

Proposition 1.7. [BW, Cor. 3.14] Let M be a finite-dimensional module for $U_{r,s}(\mathfrak{gl}_n)$ or for $U_{r,s}(\mathfrak{sl}_n)$. If rs^{-1} is not a root of unity, then the elements e_i, f_i ($1 \leq i < n$) act nilpotently on M.

When rs^{-1} is not a root of unity, a finite-dimensional simple module M is a highest weight module by Proposition 1.7 and (1.6). Thus there is some weight ψ and a nonzero vector $v_0 \in M_\psi$ such that $e_j v_0 = 0$ for all $j = 1, \ldots, n - 1$, and $M = \tilde{U}. v_0$. It follows from the defining relations that \tilde{U} has a triangular decomposition: $\tilde{U} = U^- U^0 U^+$, where U^+ (resp., U^-) is the subalgebra generated by the elements e_i (resp., f_i). Applying this decomposition to v_0, we see that $M = \oplus_{\zeta \in Q^+} M_{\psi, (\zeta, \hat{\zeta})}$, where $Q^+ = \sum_{i=1}^{n-1} \mathbb{Z}_{\geq 0} \alpha_i$.

When all the weights of a module M are of the form λ, where $\lambda \in \Lambda$, then for brevity we say that M has weights in Λ. Rather than writing M_λ for the weight space, we simplify the notation by writing M_λ. Note then (1.6) can be rewritten as $e_j M_\lambda \subseteq M_{\lambda + \alpha_j}$ and $f_j M_\lambda \subseteq M_{\lambda - \alpha_j}$. Any simple \tilde{U}-module having one weight in Λ has all its weights in Λ.

Next we give an example of a simple \tilde{U}-module with weights in Λ, which is the analogue of the natural representation for \mathfrak{gl}_n.

The natural representation for $U_{r,s}(\mathfrak{gl}_n)$ and $U_{r,s}(\mathfrak{sl}_n)$.

Consider an n-dimensional vector space V over \mathbb{K} with basis $\{v_j \mid 1 \leq j \leq n\}$. We define an action of the generators of $\tilde{U} = U_{r,s}(\mathfrak{gl}_n)$ by specifying their matrices relative to this basis:

\begin{align*}
e_j &= E_{j, j+1} , & f_j &= E_{j+1, j} & (1 \leq j < n) \\
a_i &= r E_{i, i} + \sum_{k \neq i} E_{k, k} , & (1 \leq i \leq n) \\
b_i &= s E_{i, i} + \sum_{k \neq i} E_{k, k} & (1 \leq i \leq n).
\end{align*}
It follows that \(\omega_j = a_j b_{j+1} = r E_{j,j} + s E_{j+1,j+1} + \sum_{k \neq j,j+1} E_{k,k} \) and \(\omega'_j = a_{j+1} b_j = s E_{j,j} + r E_{j+1,j+1} + \sum_{k \neq j,j+1} E_{k,k} \). Now to verify that this extends to an action of \(\widetilde{U} \), (hence of \(U = U_{r,s}(\mathfrak{g}l_n) \)), we need to check that the relations hold. We present an illustrative example and leave the remainder to the reader:

\[
a_i e_j = (r E_{i,i} + \sum_{k \neq i} E_{k,k}) E_{j,j+1}
\]

\[
= \begin{cases}
 r E_{j,j+1} & \text{if } j = i \\
 E_{j,j+1} & \text{if } j \neq i.
\end{cases}
\]

This can be seen to equal \(r^{(\varepsilon_i, \alpha_j)} E_{j,j+1} (r E_{i,i} + \sum_{k \neq i} E_{k,k}) \), which confirms that \(a_i e_j = r^{(\varepsilon_i, \alpha_j)} e_j a_i \) holds.

It follows from the fact that \(a_i v_j = r^{(\varepsilon_i, \varepsilon_j)} v_j \) and \(b_i v_j = s^{(\varepsilon_i, \varepsilon_j)} v_j \) for all \(i, j \) that \(v_j \) corresponds to the weight \(\varepsilon_j = \varepsilon_1 - (\alpha_1 + \cdots + \alpha_{j-1}) \). Thus, \(V = \bigoplus_{j=1}^n V_{\varepsilon_j} \) is the natural analogue of the \(n \)-dimensional representation of \(\mathfrak{gl}_n \) and \(\mathfrak{sl}_n \), and it is a simple module for both \(\widetilde{U} \) and \(U \). When \(r = q \) and \(s = q^{-1} \), \(b_i \) acts as \(a_i^{-1} \) on \(V \), and so \(V \) is a module for the quotient \(U_q(\mathfrak{g}l_n) \) of \(U_{q,q^{-1}}(\mathfrak{g}l_n) \) by the ideal generated by \(b_i - a_i^{-1} \) (\(1 \leq i \leq n \)). This is the natural module for the one-parameter quantum group \(U_q(\mathfrak{g}l_n) \). A similar statement is true for \(U_q(\mathfrak{sl}_n) \).

\section{Classification of finite-dimensional simple modules}

Results will be stated for \(\widetilde{U} \)-modules, but everything holds as well for \(U \)-modules.

Let \(\widetilde{U}^0 \) denote the subalgebra of \(\widetilde{U} \) generated by \(a_i, b_i \) (\(1 \leq i \leq n \)) and \(\varepsilon_i \) (\(1 \leq i < n \)). Let \(\psi \) be any algebra homomorphism from \(\widetilde{U}^0 \) to \(\mathbb{K} \), and \(V^\psi \) be the one-dimensional \(\widetilde{U}^0 \)-module on which \(e_i \) acts as multiplication by 0 (\(1 \leq i < n \)), and \(\widetilde{U}^0 \) acts via \(\psi \). We define the Verma module \(M(\psi) \) with highest weight \(\psi \) to be the \(\widetilde{U} \)-module induced from \(V^\psi \), that is

\[
M(\psi) = \widetilde{U} \otimes_{\widetilde{U}^0} V^\psi.
\]

Let \(v_\psi = 1 \otimes v \in M(\psi) \), where \(v \) is any nonzero vector of \(V^\psi \). Then \(e_i v_\psi = 0 \) (\(1 \leq i < n \)) and \(a_i v_\psi = \chi(a) v_\psi \) for any \(a \in \widetilde{U}^0 \) by construction.

Notice that \(\widetilde{U}^0 \) acts semisimply on \(M(\psi) \) by relations (R2) and (R3). If \(N \) is a \(\widetilde{U} \)-submodule of \(M(\psi) \), then \(N \) is also a \(\widetilde{U}^0 \)-submodule of the \(\widetilde{U}^0 \)-module \(M(\psi) \), and so \(\widetilde{U}^0 \) acts semisimply on \(N \) as well. If \(N \) is a proper submodule, it must be that \(N \subseteq \sum_{\mu \in Q^+ \setminus \{0\}} M(\psi)_{\psi,-(\mu)} \) by (1.6), as \(M(\psi)_{\psi} = \mathbb{K} v_\psi \) generates \(M(\psi) \). Therefore \(M(\psi) \) has a unique maximal submodule, namely the sum of all proper submodules, and a unique simple quotient, \(L(\psi) \). In fact, all finite-dimensional simple \(\widetilde{U} \)-modules are of this form, as the following theorem demonstrates.
Theorem 2.1. Let \(\psi : \widetilde{U}^0 \rightarrow \mathbb{K} \) be an algebra homomorphism. Let \(M \) be a \(\widetilde{U} \)-module, on which \(\widetilde{U}^0 \) acts semisimply and which contains an element \(m \in M_\psi \) such that \(e_im = 0 \) for all \(i \) \((1 \leq i < n)\). Then there is a unique homomorphism of \(\widetilde{U} \)-modules \(F : M(\psi) \rightarrow M \) with \(F(v_\psi) = m \). In particular, if \(rs^{-1} \) is not a root of unity and \(M \) is a finite-dimensional simple \(\widetilde{U} \)-module, then \(M \cong L(\psi) \) for some weight \(\psi \).

Proof. By the hypothesis on \(m \), \(\mathbb{K}m \) is a one-dimensional \(\widetilde{U}^{-0} \)-submodule of \(M \), considered as a \(U^{-0} \)-module by restriction. In fact, mapping \(v_\psi \) to \(m \) yields a \(\widetilde{U}^{-0} \)-homomorphism from \(V_\psi \) to \(\mathbb{K}m \). By the definition of \(M(\psi) \), we have \(\text{Hom}_{\widetilde{U}}(M(\psi), M) \cong \text{Hom}_{\widetilde{U}^{-0}}(V_\psi, M) \), so there is a unique \(\widetilde{U} \)-module homomorphism \(F : M(\psi) \rightarrow M \) with \(F(v_\psi) = m \), namely \(F(u \otimes v) = u.m \) for all \(u \in \widetilde{U} \).

For the final assertion, note that \(\widetilde{U}^0 \) acts semisimply on any finite-dimensional simple module \(M \), and by (1.6) and Proposition 1.7, there is some nonzero vector \(m \in M_\psi \) such that \(e_im = 0 \) \((1 \leq i < n)\). By the first part, \(M \) is a quotient of \(M(\psi) \), and so \(M \cong L(\psi) \), as \(L(\psi) \) is the unique simple quotient of \(M(\psi) \). \(\square \)

As a special case, we will consider the modules \(L(\lambda) = L(\lambda) \) where \(\lambda \in \Lambda \). Let \(\Lambda^+ \subset \Lambda \) be the subset of dominant weights, that is

\[\Lambda^+ = \{ \lambda \in \Lambda \mid \langle \alpha_i, \lambda \rangle \geq 0 \text{ for } 1 \leq i < n \} \]

We will show that if \(L(\lambda) \) is finite-dimensional, then \(\lambda \in \Lambda^+ \). This requires an identity for commuting \(e_i \) past powers of \(f_i \). For \(k \geq 1 \), let

\[[k] = \frac{s^k - r^k}{r - s}. \]

Lemma 2.3. If \(k \geq 1 \), then

\[
e_i f_i^k = f_i^k e_i + [k] f_i^{k-1} \frac{r^{1-k} \omega_i - s^{1-k} \omega_i'}{r - s}
\]

\[
e_i^k f_i = f_i e_i^k + [k] e_i^{k-1} \frac{s^{1-k} \omega_i - r^{1-k} \omega_i'}{r - s}.
\]

Proof. For \(k = 1 \), the above equations are just one of the defining relations of \(U \). Assume that \(k > 1 \) and

\[
e_i f_i^{k-1} = f_i^{k-1} e_i + [k - 1] f_i^{k-2} \frac{r^{2-k} \omega_i - s^{2-k} \omega_i'}{r - s}.
\]

Then

\[
e_i f_i^k = \left(f_i^{k-1} e_i + [k - 1] f_i^{k-2} \frac{r^{2-k} \omega_i - s^{2-k} \omega_i'}{r - s} \right) f_i
\]

\[
= f_i^{k-1} \left(f_i e_i + \frac{\omega_i - \omega_i'}{r - s} \right) + [k - 1] f_i^{k-1} \left(\frac{r^{1-k} s \omega_i - r s^{1-k} \omega_i'}{r - s} \right)
\]

\[
= f_i^k e_i + \frac{f_i^{k-1}}{r - s} (1 + [k - 1] r^{1-k} s \omega_i - (1 + [k - 1] r s^{1-k}) \omega_i')
\]

\[
= f_i^k e_i + \frac{f_i^{k-1}}{r - s} ([k] r^{1-k} \omega_i - [k] s^{1-k} \omega_i').
\]
The argument for the second equation can be done similarly. □

Lemma 2.4. Assume rs^{-1} is not a root of unity. Let M be a nonzero finite-dimensional \tilde{U}-module on which \tilde{U}^0 acts semisimply, and $\lambda \in \Lambda$. Suppose there is some nonzero vector $v \in M$ with $e_i.v = 0$ for all i ($1 \leq i < n$). Then $\lambda \in \Lambda^+$.

Proof. Proposition 1.7 implies that for any given value of i there is some $k \geq 0$ such that $f_i^{k+1}.v = 0$ and $f_i^kv \neq 0$. Applying e_i to $f_i^{k+1}.v = 0$ and using Lemma 2.3 and the fact that $e_i.v = 0$, we have

$$0 = [k + 1]f_i^k r^{-k}\omega_i - s^{-k}\omega'_i \rightarrow 0,$$

Now $[k + 1]/(r - s) \neq 0$ as rs^{-1} is not a root of unity. Therefore, since $f^k.v \neq 0$,

$$r^{-k}\hat{\lambda}(\omega_i) = s^{-k}\hat{\lambda}(\omega'_i).$$

Equivalently,

$$r^{-k}\rho(\epsilon_i, \lambda)s(\epsilon_{i+1}, \lambda) = s^{-k}\rho(\epsilon_{i+1}, \lambda)s(\epsilon_i, \lambda),$$

or

$$r^{-k}(\alpha_i, \lambda) = s^{-k}(\alpha_i, \lambda).$$

Again, because rs^{-1} is not a root of unity, this forces $\langle \alpha_i, \lambda \rangle = k \geq 0$. Therefore $\lambda \in \Lambda^+$. □

Corollary 2.5. When rs^{-1} is not a root of unity, any finite-dimensional simple \tilde{U}-module with weights in Λ is isomorphic to $L(\lambda)$ for some $\lambda \in \Lambda^+$.

We will show next that all modules $L(\lambda)$ with $\lambda \in \Lambda^+$ are indeed finite-dimensional, and that all other finite-dimensional simple \tilde{U}-modules are shifts of these by one-dimensional modules. In doing this, it helps to consider first the special case of simple $U_{r,s}(\mathfrak{sl}_2)$-modules.

Highest weight modules for $U = U_{r,s}(\mathfrak{sl}_2)$. For simplicity we drop the subscripts and just write e, f, ω, ω' for the generators of $U = U_{r,s}(\mathfrak{sl}_2)$. Any homomorphism $\phi : \tilde{U}^0 \rightarrow \mathbb{K}$ is determined by its values on ω and ω'. By abuse of notation, we adopt the shorthand $\phi = \phi(\omega)$ and $\phi' = \phi(\omega')$.

Corresponding to each such ϕ, there is a Verma module $M(\phi) = U \otimes_{U^{\geq 0}} \mathbb{K}v$ with basis $v_j = f^j \otimes v$ ($0 \leq j < \infty$) such that the U-action is given by:

$$v_j = f^j \otimes v \quad (0 \leq j < \infty)$$

$$e.v_j = [j] \phi r^{-j+1} - \phi' s^{-j+1} \quad (v_{-1} := 0)$$

$$\omega.v_j = \phi r^{-j}(\epsilon_1, \alpha_1) s^{-j}(\epsilon_2, \alpha_1) v_j = \phi r^{-j} s^j v_j$$

$$\omega'.v_j = \phi' r^{-j}(\epsilon_2, \alpha_1) s^{-j}(\epsilon_1, \alpha_1) v_j = \phi' r^j s^{-j} v_j.$$
Note that \(M(\phi)\) is a simple \(U\)-module if and only if \([j]\frac{\phi r^{-j+1} - \phi' s^{-j+1}}{r - s} \neq 0\) for any \(j \geq 1\).

Suppose \([\ell + 1]\frac{\phi r^{-\ell} - \phi' s^{-\ell}}{r - s} = 0\) for some \(\ell \geq 0\). Then either \(r^{\ell+1} = s^{\ell+1}\), which implies \(rs^{-1}\) is a root of unity, or \(\phi' = \phi r^{-\ell} s^{\ell}\). Assuming that \(rs^{-1}\) is not a root of unity and \(\phi' = \phi r^{-\ell} s^{\ell}\), we see that the elements \(v_i, i \geq \ell + 1\), span a maximal submodule. The quotient is the \((\ell + 1)\)-dimensional simple module \(L(\phi)\), which we can suppose is spanned by \(v_0, v_1, \ldots, v_\ell\) and has \(U\)-action given by

\[
\begin{align*}
f.v_j &= v_{j+1}, & (v_{\ell+1} = 0) \\
e.v_j &= \phi r^{-\ell}[j][\ell + 1 - j]v_{j-1} & (v_{-1} = 0) \\
\omega.v_j &= \phi r^{-j} s^j v_j \\
\omega'.v_j &= \phi r^{-\ell+j} s^{\ell-j} v_j.
\end{align*}
\]

(2.7)

When \(M(\phi)\) is not simple and \(rs^{-1}\) is not a root of unity, \(j = \ell + 1\) is the unique value such that \([j]\frac{\phi r^{-j+1} - \phi' s^{-j+1}}{r - s} = 0\). In this case, \(M(\phi)\) has a unique proper submodule, namely the maximal submodule generated by \(v_{\ell+1}\) as above.

We now have the following classification of simple modules for \(U_{r,s}(\mathfrak{sl}_2)\).

Proposition 2.8.

(i) Assume \(U = U_{r,s}(\mathfrak{sl}_2)\), where \(rs^{-1}\) is not a root of unity. Let \(\phi : U^0 \to K\) be an algebra homomorphism such that \(\phi(\omega') = \phi(\omega)r^{-\ell} s^{\ell}\) for some \(\ell \geq 0\). Then there is an \((\ell + 1)\)-dimensional simple \(U\)-module \(L(\phi)\) spanned by vectors \(v_0, v_1, \ldots, v_\ell\) and having \(U\)-action given by (2.7). Any \((\ell + 1)\)-dimensional simple \(U\)-module is isomorphic to some such \(L(\phi)\).

(ii) If \(\nu = \nu_1 e_1 + \nu_2 e_2 \in \Lambda^+\), then \(\nu_1 - \nu_2 = \ell\) for some \(\ell \in \mathbb{Z}_{\geq 0}\), and \(\nu(\omega') = r^{\nu_2} s^{\nu_1} = r^{\nu_1 - \ell} s^{\nu_2 + \ell} = \nu(\omega)r^{-\ell} s^{\ell}\) in this case. Thus, the module \(L(\nu)\) is \((\ell + 1)\)-dimensional and has \(U\)-action given by (2.7) with \(\phi = r^{\nu_1} s^{\nu_2} = r^{\nu_1 - \ell} s^{\nu_2 + \ell}\).

Finite-dimensionality of \(L(\lambda)\) for \(\lambda \in \Lambda^+\).

We show below that the simple \(U\)-modules \(L(\lambda)\) with \(\lambda \in \Lambda^+\) are finite-dimensional. For this it suffices to prove that \(M(\lambda)\) has a \(U\)-submodule of finite codimension, as \(L(\lambda)\) is the quotient of \(M(\lambda)\) by its unique maximal submodule.

As \(\lambda\) is dominant, \(k_i = (\alpha_i, \lambda)\) for \(i = 1, \ldots, n - 1\), are nonnegative integers. Define a \(U\)-submodule \(M'(\lambda)\) of \(M(\lambda)\) by

\[
M'(\lambda) = \sum_{i=1}^{n-1} \tilde{U} f_i^{k_i+1} v_{\lambda}.
\]

(2.9)

Our goal is to prove that the module \(L'(\lambda) = M(\lambda)/M'(\lambda)\) is nonzero and finite-dimensional.
By Lemma 2.3 we have
\[
e_i f_i^{k+1} v_\lambda = [k_i + 1] f_i^k \frac{r^{-k_i} \omega_i - s^{-k_i} \omega'_i}{r - s} v_\lambda
\]
\[
= [k_i + 1] f_i^k \frac{r^{-(\alpha_i, \lambda)} p(\epsilon_{i+1}, \lambda) s(\epsilon_{i+1}, \lambda) - s^{-\alpha_i} p(\epsilon_{i+1}, \lambda) s(\epsilon_{i+1}, \lambda)}{r - s} v_\lambda
\]
\[
= [k_i + 1] f_i^k \frac{r^{(\epsilon_{i+1}, \lambda)} s(\epsilon_{i+1}, \lambda) - s^{-\epsilon_{i+1}} p(\epsilon_{i+1}, \lambda)}{r - s} v_\lambda = 0.
\]

If \(j \neq i \), \(e_j f_i^{k+1} v_\lambda = f_i^{k+1} e_j v_\lambda = 0 \) by the defining relations. Consequently, by Theorem 2.1, \(U f_i^{k+1} v_\lambda \) is a homomorphic image of \(M(\lambda - (k_i + 1)\alpha_i) \), and so all its weights are less than or equal to \(\lambda - (k_i + 1)\alpha_i \). This implies that \(v_\lambda \notin M'(\lambda) \), hence \(L'(\lambda) \neq 0 \).

Lemma 2.10. The elements \(e_j, f_j \) (1 \(\leq j < n \)) act locally nilpotently on \(L'(\lambda) \).

Proof. As the Verma module \(M(\lambda) \) is spanned over \(\mathbb{K} \) by all elements \(x_1 \cdots x_t v_\lambda \) where \(x_1, \ldots, x_t \in \{ f_1, \ldots, f_n \} \), \(t \in \mathbb{Z}_{\geq 0} \), it is enough to argue by induction on \(t \) that a sufficiently high power of \(e_j \) (resp., \(f_j \)) takes such an element to \(M'(\lambda) \).

If \(t = 0 \), then \(e_j v_\lambda = 0 \in M'(\lambda) \), and \(f_j^{k_j+1} v_\lambda \in M'(\lambda) \) by construction. Now assume that there are positive integers \(N_j \) such that
\[
e_j^{N_j} x_2 \cdots x_t v_\lambda \in M'(\lambda) \quad \text{and} \quad f_j^{N_j} x_2 \cdots x_t v_\lambda \in M'(\lambda).
\]

Suppose that \(x_1 = f_t \). If \(j \neq i \), then
\[
e_j^{N_j} x_1 \cdots x_t v_\lambda = e_i e_j^{N_j} x_2 \cdots x_t v_\lambda \in M'(\lambda).
\]

Otherwise by Lemma 2.3,
\[
e_i^{N_i+1} x_1 \cdots x_t v_\lambda = f_j e_i^{N_i+1} x_2 \cdots x_t v_\lambda + [N_i + 1] e_i^{N_i} s^{-N_i} \omega_i - r^{-N_i} \omega'_i x_2 \cdots x_t v_\lambda.
\]

Applying relation (R2') and the induction hypothesis, we see that these terms are both in \(M'(\lambda) \).

Now \(f_j^{N_j} x_1 \cdots x_t v_\lambda = f_i^{N_i} x_2 \cdots x_t v_\lambda \in M'(\lambda) \), and if \(|i - j| > 1 \), we also have \(f_j^{N_j} x_1 \cdots x_t v_\lambda = f_i f_j^{N_j} x_2 \cdots x_t v_\lambda \in M'(\lambda) \). Finally, we need to show that if \(|i - j| = 1 \), then \(f_j^{N_j+1} x_1 \cdots x_t v_\lambda \in M'(\lambda) \). This will follow from the induction hypothesis once we know that \(f_j^{N_j+1} f_i \in \mathbb{K} f_j f_i f_j^{N_j} + \mathbb{K} f_i f_j^{N_j+1} \).

We argue by induction on \(m \geq 1 \) that
\[
f_j^{m+1} f_i \in \mathbb{K} f_j f_i f_j^{m} + \mathbb{K} f_i f_j^{m+1}.
\]

Indeed if \(m = 1 \), this follows from relation (R7), but if \(m > 1 \), then by induction and (R7),
\[
f_j^{m+1} f_i \in f_j(\mathbb{K} f_j f_i f_j^{m-1} + \mathbb{K} f_i f_j^{m}) \subseteq \mathbb{K} f_j f_i f_j^{m} + \mathbb{K} f_i f_j^{m+1}. \quad \square
\]
Lemma 2.11. Assume rs^{-1} is not a root of unity, and let V be a module for
$U = U_{r,s}(sl_2)$ on which U^0 acts semisimply. Assume $V = \oplus_{j \in \mathbb{Z}_{\geq 0}} V_{\lambda - j\alpha}$ for some
weight $\lambda \in \Lambda$, each weight space of V is finite-dimensional, and e and f act locally
nilpotently on V. Then V is finite-dimensional, and the weights of V are preserved
under the simple reflection taking α to $-\alpha$.

Proof. Let $\mu = \mu_1 e_1 + \mu_2 e_2$ be a weight of V, and $v \in V_{\mu} \setminus \{0\}$. As e acts locally
nilpotently on V, there is a nonnegative integer k such that $e^{k+1}.v = 0$ and $e^k.v \neq 0$.
By Theorem 2.1, $Ue^k.v$ is a homomorphic image of $M(\mu + k\alpha)$. But since f acts
locally nilpotently on $Ue^k.v$, this image cannot be isomorphic to $M(\mu + k\alpha)$. Thus
because $M(\mu + k\alpha)$ has a unique proper submodule, $Ue^k.v \cong L(\mu + k\alpha)$, and so it is
finite-dimensional. Corollary 2.5 implies that $\mu + k\alpha$ is dominant. As there are only
finitely many dominant weights less than or equal to the given weight λ, and each
weight space is finite-dimensional, it must be that V itself is finite-dimensional.

In particular, V has a composition series with factors isomorphic to $L(\nu)$ for some
$\nu \in \Lambda^+$. Any weight μ of V is a weight of some such $L(\nu)$ with $\nu = \nu_1 e_1 + \nu_2 e_2 \in \Lambda^+$.
By (ii) of Proposition 2.8, $L(\nu)$ has weights $\nu, \nu - \alpha, \ldots, \nu - \ell \alpha$ where $\ell = \nu_1 - \nu_2$.
Thus, $\mu = \nu - j\alpha$ for some $j \in \{0, 1, \ldots, \ell\}$. But then $\mu - \langle \mu, \alpha \rangle \alpha = \nu - (\ell - j)\alpha$
is a weight of $L(\nu)$ since $\ell - j \in \{0, 1, \ldots, \ell\}$, hence it is a weight of V. Thus, the
weights of V are preserved under the simple reflection taking α to $-\alpha$. \square

Lemma 2.12. Assume that rs^{-1} is not a root of unity, and let $\lambda \in \Lambda^+$. Then
$L(\lambda)$ is finite-dimensional.

Proof. This follows once we show that $L'(\lambda) = M(\lambda)/M'(\lambda)$, where $M'(\lambda)$ is as
in (2.9), is finite-dimensional. We will prove that the set of weights of $L'(\lambda)$ is
preserved under the action of the symmetric group S_n (the Weyl group of gl_n) on Λ
which is generated by the simple reflections $s_i : \mu \rightarrow \mu - \langle \mu, \alpha_i \rangle \alpha_i$ ($1 \leq i < n$). Each
S_n-orbit contains a dominant weight, and there are only finitely many dominant
weights less than or equal to λ. As the weights in $M(\lambda)$ are all less than or equal to
λ, and the weight spaces are finite-dimensional, the same is true of $L'(\lambda)$. Therefore
$L'(\lambda)$ is finite-dimensional.

To see that s_i preserves the set of weights of $L'(\lambda)$, let $\mu = \mu_1 e_1 + \cdots + \mu_n e_n$ be a
weight of $L'(\lambda)$. Consider $L'(\lambda)$ as a module for the copy U_i of $U_{r,s}(sl_2)$ generated
by $e_i, f_i, \omega_i, \omega_i^+$, and let $L'_i(\mu)$ be the U_i-submodule of $L'(\lambda)$ generated by $L'(\lambda)_\mu$.
As all weights of $L'(\lambda)_{\mu}$ are less than or equal to λ, we have

$$L'_i(\mu) = \bigoplus_{j \in \mathbb{Z}_{\geq 0}} L'_i(\mu)_{\lambda' - j\alpha_i}$$

for some weight $\lambda' \leq \lambda$. By Lemmas 2.10 and 2.11, the simple reflection s_i preserves
the weights of $L'_i(\mu)$, so in particular, $s_i(\mu)$ is also a weight of $L'(\lambda)$. \square

Remark 2.13. It will follow from Lemma 3.7 in the next section that $L(\lambda) \cong L'(\lambda)$,
since $L(\lambda)$ is the unique simple quotient of $M(\lambda)$, $L'(\lambda)$ is a finite-dimensional
quotient of $M(\lambda)$, and by that lemma, every finite-dimensional quotient is simple.
Corollary 2.14. Assume that $rs^{-1} \neq 1$ is not a root of unity. The finite-dimensional simple \widetilde{U}-modules having weights in Λ are precisely the modules $L(\lambda)$ where $\lambda \in \Lambda^+$. Moreover, $L(\lambda) \cong L(\mu)$ if and only if $\lambda = \mu$.

Proof. The first statement is a consequence of Corollary 2.5 and Lemma 2.12. Assume there is an isomorphism of \widetilde{U}-modules from $L(\lambda)$ to $L(\mu)$. The highest weight vector of $L(\lambda)$ must be sent to a weight vector of $L(\mu)$, so $\lambda \leq \mu$. As a similar argument shows that $\mu \leq \lambda$, we have $\lambda = \mu$. □

Shifts by one-dimensional modules.

Suppose now that we have a one-dimensional module L for $\widetilde{U} = U_{r,s}(\mathfrak{gl}_n)$. Then by Theorem 2.1, $L = L(\chi)$ for some algebra homomorphism $\chi : \widetilde{U}^0 \to \mathbb{K}$, with the elements e_i, f_i ($1 \leq i < n$) acting as multiplication by 0. Relation (R4) yields

\begin{equation}
(2.15) \quad \chi(\omega_i) = \chi(a_i b_{i+1}) = \chi(a_{i+1} b_i) = \chi(\omega'_i) \quad (1 \leq i < n).
\end{equation}

Conversely, if an algebra homomorphism χ satisfies this equation, then $L(\chi)$ is one-dimensional by relation (R4). We will write $L_\chi = L(\chi)$ to emphasize that the module is one-dimensional.

Proposition 2.16. Assume rs^{-1} is not a root of unity and $L(\psi)$ is the finite-dimensional simple module for $\widetilde{U} = U_{r,s}(\mathfrak{gl}_n)$ with highest weight ψ. Then there exists a homomorphism $\chi : \widetilde{U}^0 \to \mathbb{K}$ such that (2.15) holds and an element $\lambda \in \Lambda^+$ so that $\lambda = \chi \cdot \hat{\lambda}$. Thus, the weights of $L(\psi)$ belong to $\chi \cdot \hat{\Lambda}$.

Proof. When $L(\psi)$ is viewed as a module for the copy U_i of $U_{r,s}(\mathfrak{sl}_2)$ generated by $e_i, f_i, \omega_i, \omega'_i$, it has a composition series whose factors are simple U_i-modules as described by Proposition 2.8. As the highest weight vector of $L(\psi)$ gives a highest weight vector of some composition factor, there is a weight ϕ_i of U_i and a nonnegative integer ℓ_i so that $\psi(\omega_i) = \phi_i(\omega_i)$ and $\psi(\omega'_i) = \phi_i(\omega'_i) = \phi_i(\omega_i)r^{-\ell_i} s^{\ell_i} = \tilde{\chi}(\omega_i)r^{-\ell_i} s^{\ell_i}$.

Set $\ell_n = 0$ and define $\lambda_i = \ell_i + \cdots + \ell_n$ for $i = 1, \ldots, n$. Let $\lambda = \sum_{i=1}^n \lambda_i e_i$, which belongs to Λ^+. Now we define $\chi : \widetilde{U}^0 \to \mathbb{K}$ by the formulas

\[
\chi(a_i) = \psi(a_i) r^{-(\epsilon_i, \lambda)} = \psi(a_i) r^{-(\ell_i, + \cdots + \ell_n)}, \quad \chi(b_i) = \psi(b_i) s^{-(\epsilon_i, \lambda)} = \psi(b_i) s^{-(\ell_i, + \cdots + \ell_n)}.
\]

Then it follows that

\[
\chi(\omega'_i) = \chi(a_{i+1} b_i) = \psi(\omega'_i) r^{-(\ell_{i+1}, + \cdots + \ell_n)} s^{-(\ell_i, + \cdots + \ell_n)} = \psi(\omega_i) r^{-\ell_i} s^\ell_s r^{-(\ell_{i+1}, + \cdots + \ell_n)} s^{-(\ell_i, + \cdots + \ell_n)} = \chi(a_i b_{i+1}) = \chi(\omega_i)
\]

for $i = 1, \ldots, n - 1$, and $\psi = \chi \cdot \hat{\lambda}$ as desired. □

Remark 2.17. If M is any finite-dimensional module, then $M = \bigoplus_{i=1}^m \bigoplus_{\lambda \in \hat{\Lambda}} M_{\psi_i, \hat{\lambda}}$ for some weights ψ_i such that $\psi_i : \hat{\Lambda}$ (1 \leq i \leq m) are distinct cosets in $\text{Hom}(\widetilde{U}^0, \mathbb{K})/\hat{\Lambda}$.
(viewed as a \mathbb{Z}-module under the action $k \cdot \psi = \psi^k$). Then $M_i := \bigoplus_{\lambda \in \Lambda} M_{\psi_i, \lambda}$ is a submodule, and $M = \bigoplus_{i=1}^m M_i$. Therefore, if M is an indecomposable \widetilde{U}-module, $M = \bigoplus_{\lambda \in \Lambda} M_{\psi, \lambda}$ for some $\psi \in \text{Hom}(\widetilde{U}_0, \mathbb{K})$. A simple submodule S of M has weights in $\psi \cdot \hat{\Lambda}$. By replacing ψ with the homomorphism χ for S given by Proposition 2.16, we may assume that for any indecomposable module M, there is a χ satisfying (2.15) so that $M = \bigoplus_{\lambda \in \Lambda} M_{\chi, \lambda}$.

Lemma 2.18. Let $\chi : \widetilde{U}_0 \to \mathbb{K}$ be an algebra homomorphism with $\chi(\omega_i) = \chi(\omega'_i)$ ($1 \leq i < n$). Let M be a finite-dimensional \widetilde{U}-module whose weights are all in $\chi \cdot \hat{\Lambda}$. If \widetilde{U}_0 acts semisimply on M, then

$$M \cong L_\chi \otimes N$$

for some \widetilde{U}-module N whose weights are all in Λ.

Proof. Let $\chi^{-1} : \widetilde{U}_0 \to \mathbb{K}$ be the algebra homomorphism defined by $\chi^{-1}(a_i) = \chi(a_i^{-1}) = (\chi(a_i))^{-1}$ and $\chi^{-1}(b_i) = \chi(b_i^{-1}) = (\chi(b_i))^{-1}$ for $1 \leq i \leq n$. Note that $L_\chi \otimes L_{\chi^{-1}}$ is isomorphic to the trivial module L_ε corresponding to the counit. Let

$$N = L_{\chi^{-1}} \otimes M.$$

Then $M \cong L_\chi \otimes N$ as L_ε is a multiplicative identity (up to isomorphism) for \widetilde{U}-modules. The weights of N are all in $\chi^{-1} \cdot \chi \cdot \hat{\Lambda} = \hat{\Lambda}$. □

We now have a classification of finite-dimensional simple \widetilde{U}-modules.

Theorem 2.19. Assume rs^{-1} is not a root of unity. The finite-dimensional simple \widetilde{U}-modules are precisely the modules

$$L_\chi \otimes L(\lambda),$$

where $\chi : \widetilde{U}_0 \to \mathbb{K}$ is an algebra homomorphism with $\chi(\omega_i) = \chi(\omega'_i)$ ($1 \leq i < n$), and $\lambda \in \Lambda^+.$

Proof. Let M be a finite-dimensional simple \widetilde{U}-module. By Theorem 2.1, Proposition 2.16, and Lemma 2.18, $M \cong L_\chi \otimes N$ for some χ satisfying (2.15) and some simple module N with weights in Λ. By Corollary 2.5, $N \cong L(\lambda)$ for some $\lambda \in \Lambda^+$. Conversely, any \widetilde{U}-module of this form is finite-dimensional by Lemma 2.12 and simple by its construction. □

Remark 2.20. If $r = q$ and $s = q^{-1}$ for some $q \in \mathbb{K}$, the classification of finite-dimensional simple $U_q(\mathfrak{sl}_n)$-modules is a consequence of Theorem 2.19 applied to $U_{q, q^{-1}}(\mathfrak{sl}_n)$: The simple $U_q(\mathfrak{sl}_n)$-modules are precisely those simple $U_{q, q^{-1}}(\mathfrak{sl}_n)$-modules on which ω'_i acts as ω^{-1}_i, so that

$$\chi(\omega_i) = \chi(\omega'_i) = \chi(\omega^{-1}_i).$$
This implies $\chi(\omega_i) = \pm 1$ ($1 \leq i < n$). Each choice of algebra homomorphism
$\chi : U^0 \to K$ with $\chi(\omega_i) = \chi(\omega'_i) = \pm 1$ yields a one-dimensional $U_{q,q^{-1}}(\mathfrak{sl}_n)$-module L_χ, and so the simple $U_q(\mathfrak{sl}_n)$-modules are the $L_\chi \otimes L(\lambda)$ with $\lambda \in \Lambda^+$ and χ as above. (Compare with [Ja, §5.2, Convention 5.4, and Thm. 5.10].)

Remark 2.21. We can interpret Proposition 2.8 in light of Theorem 2.19: Let $L(\phi)$ be the simple $U_{r,s}(\mathfrak{sl}_2)$-module described in the proposition. Let $\lambda = \ell \epsilon_1 \in \Lambda^+$ and define $\chi : U^0 \to K$ by $\chi(\omega) = \phi(\omega)r^{-\ell}$, $\chi(\omega') = \phi(\omega')s^{-\ell} = \phi(\omega)r^{-\ell}s^\ell s^{-\ell} = \chi(\omega)$.

Then $\phi = \chi \cdot \lambda$ and $L(\phi) \cong L_\chi \otimes L(\lambda)$.

§3. Complete reducibility

In this section we will establish complete reducibility of all finite-dimensional
\tilde{U}-modules on which \tilde{U}^0 acts semisimply. However, it is helpful to work in a more
general context.

Let O denote the category of modules M for $\tilde{U} = U_{r,s}(\mathfrak{gl}_n)$ which satisfy the
conditions:

1. \tilde{U}^0 acts semisimply on M, and the set $\text{wt}(M)$ of weights of M belongs to Λ:

 $M = \bigoplus_{\lambda \in \text{wt}(M)} M_\lambda$, where $M_\lambda = \{m \in M \mid a_i.m = r^{(\epsilon_i,\lambda)}, b_i.m = s^{(\epsilon_i,\lambda)} \}

 for all i;

2. $\dim_K M_\lambda < \infty$ for all $\lambda \in \text{wt}(M)$;

3. $\text{wt}(M) \subseteq \bigcup_{\mu \in F} (\mu - Q^+)$ for some finite set $F \subset \Lambda$.

The morphisms in O are \tilde{U}-module homomorphisms.

All finite-dimensional \tilde{U}-modules which satisfy (1) belong to category O, as do
all highest weight modules with weights in Λ such as the Verma modules $M(\lambda)$.

We recall the definition of the quantum Casimir operator [BW, Sec. 4]. It is a
consequence of (R2) and (R3) that the subalgebra U^+ of \tilde{U} (or of $U = U_{r,s}(\mathfrak{sl}_n)$)
generated by e_i ($1 \leq i < n$) has the decomposition $U^+ = \oplus_{\zeta \in Q} U^+_\zeta$ where

$$U^+_\zeta = \{z \in U^+ \mid a_{i}z = r^{(\epsilon_i,\zeta)}a_{i}, b_{i}z = s^{(\epsilon_i,\zeta)}b_{i} (1 \leq i < n)\}.$$

The weight space U^+_ζ is spanned by all the monomials $e_{i_1} \cdots e_{i_r}$ such that $\alpha_{i_1} + \cdots + \alpha_{i_r} = \zeta$. Similarly, the subalgebra U^- generated by 1 and the f_i has the
decomposition $U^- = \oplus_{\zeta \in Q} U^-_{-\zeta}$. The spaces U^+_ζ and $U^-_{-\zeta}$ are nondegenerately
paired by the Hopf pairing defined by

$$\langle f_i, e_j \rangle = \frac{\delta_{i,j}}{s-r}$$

$$\langle \omega'_i, \omega_j \rangle = r^{(\epsilon_i,\alpha_i)}s^{(\epsilon_j,\alpha_i)}$$

$\langle b_n, a_n \rangle = 1$, $\langle b_n, \omega_j \rangle = s^{-(\epsilon_n,\alpha_j)}$, $\langle \omega'_i, a_n \rangle = r^{(\epsilon_n,\alpha_i)}$.

(See [BW, Sec. 2].) The Hopf algebras \tilde{U} and U are Drinfel’d doubles of certain
Hopf subalgebras with respect to this pairing [BW, Thm. 2.7]. Let $d_\zeta = \dim_K U^+_\zeta$.
Assume \(\{ u_\zeta^d \}_{\zeta, k=1} \) is a basis for \(U_+^\zeta \), and \(\{ v_\zeta^d \}_{\zeta, k=1} \) is the dual basis for \(U_-\zeta \) with respect to the pairing.

Now let

\[
\Omega = \sum_{\zeta \in Q^+} \sum_{k=1}^{d_\zeta} S(v_\zeta^k) u_\zeta^k,
\]

where \(S \) denotes the antipode. All but finitely many terms in this sum will act as multiplication by 0 on any weight space \(M_\lambda \) of \(M \in \mathcal{O} \). Therefore \(\Omega \) is a well-defined operator on such \(M \).

The second part of the Casimir operator involves a function \(g : \Lambda \to \mathbb{K}^\# \) defined as follows. If \(\rho \) denotes the half sum of the positive roots, then \(2\rho = \sum_{j=1}^n (n+1-2j)\epsilon_j \in \Lambda \). For \(\lambda \in \Lambda \), set

\[
g(\lambda) = (rs^{-1})^{\frac{1}{2}(\lambda+2\rho, \lambda)}.
\]

When \(M \) is a \(\tilde{U} \)-module in \(\mathcal{O} \), we define the linear operator \(\Xi : M \to M \) by

\[
\Xi(m) = g(\lambda)m
\]

for all \(m \in M_\lambda, \lambda \in \Lambda \). Then we have the following result from [BW].

Proposition 3.4. [BW, Thm. 4.20] The operator \(\Omega \Xi : M \to M \) commutes with the action of \(\tilde{U} \) on any \(\tilde{U} \)-module \(M \in \mathcal{O} \).

We require the next lemma in order to prove complete reducibility.

Lemma 3.5. Assume \(rs^{-1} \) is not a root of unity, and let \(\lambda, \mu \in \Lambda^+ \). If \(\lambda \geq \mu \) and \(g(\lambda) = g(\mu) \), then \(\lambda = \mu \).

Proof. Because \(\lambda \geq \mu \), we may suppose \(\lambda = \mu + \beta \) where \(\beta = \sum_{i=1}^{n-1} k_i\alpha_i \) and \(k_i \in \mathbb{Z}_{\geq 0} \). By assumption we have

\[
(rs^{-1})^{\frac{1}{2}(\lambda+2\rho, \lambda)} = g(\lambda) = g(\mu) = (rs^{-1})^{\frac{1}{2}(\mu+2\rho, \mu)},
\]

and as \(rs^{-1} \) is not a root of unity, it must be that \(\langle \lambda + 2\rho, \lambda \rangle = \langle \mu + 2\rho, \mu \rangle \), or equivalently, \(2\langle \mu + \rho, \beta \rangle + \langle \beta, \beta \rangle = 0 \). Since \(\mu \in \Lambda^+ \), \(\mu = \mu_1\epsilon_1 + \mu_2\epsilon_2 + \cdots + \mu_n\epsilon_n \) where \(\mu_i \in \mathbb{Z} \) for all \(i \) and \(\mu_1 \geq \mu_2 \geq \cdots \geq \mu_n \). Then

\[
0 = 2\mu_2 + 2\rho, \beta \rangle + \langle \beta, \beta \rangle \]

\[
= \sum_{i=1}^{n-1} k_i \left(2\mu_i + (n+1-2i) - 2\mu_{i+1} - (n+1-2(i+1)) \right) + \sum_{i=1}^{n} (k_i - k_{i-1})^2 \quad (k_0 = 0 = k_n)
\]

\[
= \sum_{i=1}^{n-1} 2k_i (\mu_i - \mu_{i+1} + 1) + \sum_{i=1}^{n} (k_i - k_{i-1})^2.
\]

The only way this can happen is if \(k_i = 0 \) for all \(i \) and \(\lambda = \mu \). \(\square \)
Lemma 3.6. Assume that rs^{-1} is not a root of unity.

(i) $\Omega \Xi$ acts as multiplication by the scalar $g(\lambda) = (rs^{-1})^{\frac{1}{2}(\lambda + 2\rho, \lambda)}$ on the Verma module $M(\lambda)$ with $\lambda \in \Lambda$, hence on any submodule or quotient of $M(\lambda)$.

(ii) The eigenvalues of the operator $\Omega \Xi : M \to M$ are integral powers of $(rs^{-1})^{\frac{1}{2}}$ on any finite-dimensional $M \in \mathcal{O}$.

Proof. By its construction, $\Omega \Xi$ acts by multiplication by $g(\lambda) = (rs^{-1})^{\frac{1}{2}(\lambda + 2\rho, \lambda)}$ on the maximal vector v_λ of $M(\lambda)$. But since $M(\lambda) = \tilde{U}.v_\lambda$ and $\Omega \Xi$ commutes with \tilde{U} on modules in \mathcal{O}, $\Omega \Xi$ acts as multiplication by $(rs^{-1})^{\frac{1}{2}(\lambda + 2\rho, \lambda)}$ on all of $M(\lambda)$.

If $M \in \mathcal{O}$ is finite-dimensional, it has a composition series. Each factor is a finite-dimensional simple \tilde{U}-module with weights in Λ, and in particular, is a quotient of $M(\lambda)$ for some $\lambda \in \Lambda$. On such a factor, $\Omega \Xi$ acts as multiplication by $g(\lambda)$. Therefore the action of $\Omega \Xi$ on M may be expressed by an upper triangular matrix with each diagonal entry equal to $g(\lambda)$ for some $\lambda \in \Lambda$. \qed

Lemma 3.7. Assume rs^{-1} is not a root of unity. Let $\lambda \in \Lambda$ and M be a nonzero finite-dimensional quotient of the Verma module $M(\lambda)$. Then M is simple.

Proof. First observe that by Lemma 2.4, $\lambda \in \Lambda^+$. Assume M' is a proper submodule of M. As M is generated by its one-dimensional subspace M_λ, we must have $M'_\lambda = 0$. Let $\mu \in \Lambda$ be maximal such that $M'_\mu \neq 0$, and note that $\mu < \lambda$. Let m' be a nonzero vector of M'_μ. By maximality of μ, we have $e_i.m' = 0$ for all i ($1 \leq i < n$). Letting $M'' = \tilde{U}.m'$, a nonzero finite-dimensional quotient of $M(\mu)$, we see that $\mu \in \Lambda^+$ as well. By Lemma 3.6 (i), $\Omega \Xi$ acts as multiplication by $g(\lambda)$ on M, and by $g(\mu)$ on M''. This forces $g(\lambda) = g(\mu)$, which contradicts Lemma 3.5 as $\mu < \lambda$. \qed

Theorem 3.8. Assume rs^{-1} is not a root of unity. Let M be a nonzero finite-dimensional \tilde{U}-module on which \tilde{U}^0 acts semisimply. Then M is completely reducible.

Proof. We will establish the result first in the case M has weights in Λ. Write M as a direct sum of generalized eigenspaces for $\Omega \Xi$. Note that by Proposition 3.4, this is a direct sum decomposition of M as a \tilde{U}-module. Therefore we may assume M is itself a generalized eigenspace of $\Omega \Xi$, so that $(\Omega \Xi - (rs^{-1})^c)^d(M) = 0$ for some $c \in \frac{1}{2}\mathbb{Z}$, $d = \dim_{K^\mu} M$, by Lemma 3.6 (ii).

Let $P = \{m \in M \mid e_i.m = 0 \ (1 \leq i < n)\}$, and note that $P = \oplus_{\lambda \in \Lambda} P_\lambda$, $P_\lambda = P \cap M_\lambda$. If $m \in P_\lambda - \{0\}$, the \tilde{U}-submodule $\tilde{U}.m$ of M is a nonzero quotient of $M(\lambda)$ by Theorem 2.1. By Lemma 3.7, each such $\tilde{U}.m$ is a simple \tilde{U}-module, and so the \tilde{U}-submodule M' of M generated by P is a sum of simple \tilde{U}-modules. That is, M' is completely reducible. Let $M'' = M/M'$.

Assuming $M'' \neq 0$, there is a weight $\mu \in \Lambda$ maximal such that $M'_\mu \neq 0$. Let $m'' \in M'_\mu - \{0\}$. By maximality of μ, we have $e_i.m'' = 0$ for all i ($1 \leq i < n$). By Lemma 2.4, we have $\mu \in \Lambda^+$, and by Theorem 2.1 and Lemma 3.6, $\Omega \Xi$ acts
as multiplication by \(g(\mu) \) on the \(U \)-module \(U.m'' \) generated by \(m'' \). This implies \(g(\mu) = (rs^{-1})^c \).

Let \(m \in M_\mu \) be a representative for \(m'' \in (M/M')_\mu \), and \(M_1 = \tilde{U}.m \). Then the module \(M_1 \) is a direct sum of its intersections with the weight spaces of \(M \), so there is a weight \(\eta \in \Lambda \) maximal such that \(M_1 \cap M_\eta \neq 0 \). Let \(m_1 \in M_1 \cap M_\eta - \{0\} \), so that \(e_i.m_1 = 0 \) for all \(i \) \((1 \leq i < n) \). Again applying Theorem 2.1 and Lemmas 2.4 and 3.6, we have \(\eta \in \Lambda^+ \) and \(\Omega\Xi(m_1) = g(\eta)m_1 \). Therefore \(g(\eta) = (rs^{-1})^c \).

We now have \(g(\mu) = g(\eta) \), where \(\eta, \mu \in \Lambda^+ \), and \(\eta \geq \mu \) by construction. By Lemma 3.5, \(\eta = \mu \), so \(M_1 \) is the one-dimensional space spanned by \(m \), and \(e_i.m = 0 \) \((1 \leq i < n) \), that is \(m \in P \). This implies \(m'' = 0 \), a contradiction to the assumption that \(M'' \neq 0 \). Therefore \(M'' = 0 \), and \(M = M' \) is completely reducible.

Finally, we consider the case that \(M \) does not have weights in \(\Lambda \). We may assume that \(M \) is indecomposable. By Remark 2.17, \(M \) has all its weights in \(\chi \cdot \hat{\Lambda} \) for some \(\chi \) satisfying (2.15). By Lemma 2.18, \(M \cong L_\chi \otimes N \) for some \(\tilde{U} \)-module \(N \) whose weights are all in \(\Lambda \). Note that \(\tilde{U}^{0} \) acts semisimply on \(N \) as well \((N = L_{\chi^{-1}} \otimes M) \), and so \(N \) is completely reducible by the above argument. As the tensor product of modules distributes over direct sums, \(M \) is itself completely reducible. □

Remark 3.9. It is necessary to include the hypothesis that \(\tilde{U}^{0} \) acts semisimply in Theorem 3.8, as the next examples illustrate. (Recall that \(\tilde{U}^{0} \) does indeed act semisimply on any simple \(\tilde{U} \)-module, as remarked in the text following (1.6).) Let \(V = \mathbb{K}^m \) for \(m \geq 2 \) and \(\xi, \xi' \in \mathbb{K} \setminus \{0\} \). We define a \(\tilde{U} \)-module structure on \(V \) by requiring that \(e_i, f_i \) act as multiplication by \(0 \) and \(a_i, b_i \) act via the same matrix. The remaining relations hold as \(e_i, f_i \) act as multiplication by \(0 \). The scalars \(\xi, \xi' \) may be chosen so that \(V \) has weights in \(\Lambda \), for example choose an integer \(c \), let \(\lambda = c(\epsilon_1 + \cdots + \epsilon_n) \), and set \(\xi = r^c = \lambda(a_i) \), \(\xi' = s^c = \lambda(b_i) \). Clearly \(V \) is not completely reducible as the Jordan blocks are not diagonalizable. A related example for \(U_{r,s}(\mathfrak{sl}_n) \) is given by sending \(\omega_i, \omega'_i \) to the same Jordan block with diagonal entries \(\xi_i \in \mathbb{K} - \{0\} \) \((1 \leq i < n) \).

§4. The \(R \)-matrix

In this section we recall the definition of the \(R \)-matrix from [BW, Sec. 4] and use it to prove a more general result on commutativity of the tensor product of finite-dimensional modules than was given there (compare [BW, Thm. 4.11] with Theorem 4.2 below). Let \(M, M' \) be \(\tilde{U} \)-modules in category \(\mathcal{O} \). We define an isomorphism of \(\tilde{U} \)-modules \(R_{M', M} : M' \otimes M \to M \otimes M' \) as follows. If \(\lambda = \sum_{i=1}^{n} \lambda_i \alpha_i \in \Lambda \), where \(\alpha_n = \epsilon_n \), set

\[
\omega_\lambda = \omega_1^{\lambda_1} \cdots \omega_{n-1}^{\lambda_{n-1}} a_n^{\lambda_n}
\]

\[
\omega'_\lambda = (\omega'_1)^{\lambda_1} \cdots (\omega'_{n-1})^{\lambda_{n-1}} b_n^{\lambda_n}.
\]

Also let

\[
\Theta = \sum_{\zeta \in \mathcal{Q}^+} \sum_{k=1}^{d_\zeta} u_k^\zeta \otimes u_k^\zeta,
\]
where the notation is as in the paragraph following (3.1). Define
\[R_{M',M} = \Theta \circ \tilde{f} \circ P \]
where \(P(m' \otimes m) = m \otimes m' \), \(\tilde{f}(m \otimes m') = (\omega'_\mu, \omega_\lambda)^{-1}(m \otimes m') \) when \(m \in M_\lambda \) and \(m' \in M'_\mu \), and the Hopf pairing \((\ , \) \) is defined in (3.1). Then \(R_{M',M} \) is an isomorphism of \(\tilde{U} \)-modules that satisfies the quantum Yang-Baxter equation and the hexagon identities [BW, Thms. 4.11, 5.4, and 5.7].

We will show that the tensor product of any two finite-dimensional \(\tilde{U} \)-modules in \(\mathcal{O} \) is commutative (up to module isomorphism). We first prove this in the special case that one of the modules is a one-dimensional module \(L_\chi = L(\chi) \), as defined in Section 2.

Lemma 4.1. Let \(M \) be a \(\tilde{U} \)-module in category \(\mathcal{O} \), and let \(L_\chi \) be a one-dimensional \(\tilde{U} \)-module. Then
\[L_\chi \otimes M \cong M \otimes L_\chi. \]

Proof. Fix a basis element \(v \) of \(L_\chi \). Define a linear function \(F : L_\chi \otimes M \to M \otimes L_\chi \) as follows. If \(m \in M_\lambda \), where \(\lambda = -\sum_{i=1}^n c_i \alpha_i \), then
\[F(v \otimes m) = \chi_1^{c_1} \cdots \chi_n^{c_n} m \otimes v, \]
where \(\chi_i = \chi(\omega_i) = \chi(\omega'_i) \) (1 \(\leq i \leq n \)) and \(\chi_n = \chi(a_n) \). Clearly \(F \) is bijective, and we check that \(F \) is a \(\tilde{U} \)-homomorphism:
\[e_i F(v \otimes m) = \chi_1^{c_1} \cdots \chi_n^{c_n} (e_i \otimes 1 + \omega_i \otimes e_i)(m \otimes v) \]
\[= \chi_1^{c_1} \cdots \chi_n^{c_n} e_i m \otimes v. \]

On the other hand, as \(e_i m \in M_{\lambda + \alpha_i} \), we have
\[F(e_i.(v \otimes m)) = F((e_i \otimes 1 + \omega_i \otimes e_i)(v \otimes m)) \]
\[= \chi_i F(v \otimes e_i m) \]
\[= \chi_i (\chi_1^{c_1} \cdots \chi_i^{c_i-1} \cdots \chi_n^{c_n}) e_i m \otimes v \]
\[= e_i F(v \otimes m). \]
Similarly, \(F \) commutes with \(f_i \). As the action by \(a_i, b_i \) preserves the weight spaces, \(F \) commutes with \(a_i, b_i \) (1 \(\leq i \leq n \)) as well. Therefore \(F \) is an isomorphism of \(\tilde{U} \)-modules. \(\square \)

Theorem 4.2. Let \(M \) and \(M' \) be finite-dimensional \(\tilde{U} \)-modules with \(\tilde{U}^0 \) acting semisimply. Then
\[M \otimes M' \cong M' \otimes M. \]

Proof. As the tensor product distributes over direct sums, we may assume that \(M \) and \(M' \) are indecomposable. Therefore the weights of \(M \) are all in \(\chi \cdot \hat{\Lambda} \) for some algebra homomorphism \(\chi : \tilde{U}^0 \to \mathbb{K} \) with \(\chi(\omega_i) = \chi(\omega'_i) \). (See Remark 2.17.) By Lemma 2.18, \(M \cong L_\chi \otimes N \) for some module \(N \) with weights in \(\Lambda \). Similarly, \(M' \cong L'_{\chi'} \otimes N' \) for some \(\chi' \). By Lemma 4.1 and [BW, Thm. 4.11],
\[M \otimes M' \cong (L_\chi \otimes N) \otimes (L_{\chi'} \otimes N') \cong (L_\chi \otimes L_{\chi'}) \otimes (N \otimes N') \]
\[\cong (L_{\chi'} \otimes L_\chi) \otimes (N' \otimes N) \]
\[\cong (L_{\chi'} \otimes N') \otimes (L_\chi \otimes N) \cong M' \otimes M. \quad \square \]
§5. Tensor powers of the natural module

In this section we consider tensor powers $V^\otimes k = V \otimes V \otimes \cdots \otimes V$ (k factors) of the
natural module V for \bar{U} (defined in Section 1). Set $R = R_{V,V}$, and for $1 \leq i < k,$
let R_i be the \bar{U}-module isomorphism on $V^\otimes k$ defined by

$$R_i(z_1 \otimes z_2 \otimes \cdots \otimes z_k) = z_1 \otimes \cdots \otimes z_{i-1} \otimes R(z_i \otimes z_{i+1}) \otimes z_{i+2} \otimes \cdots \otimes z_k.$$

Then it is a consequence of the quantum Yang-Baxter equation that the braid relations

$$R_i \circ R_{i+1} \circ R_i = R_{i+1} \circ R_i \circ R_{i+1} \quad \text{for} \quad 1 \leq i < k$$

$$R_i \circ R_j = R_j \circ R_i \quad \text{for} \quad |i-j| \geq 2$$

hold.

We would like to argue that

$$R_i^2 = (1 - rs^{-1}) R_i + rs^{-1} \text{Id}$$

for all $i = 1, \ldots, k - 1$. For this it suffices to work with the 2-fold tensor product $V \otimes V$.

Proposition 5.3. Whenever $s \neq -r$, the module $V \otimes V$ decomposes into two
simple submodules, $S^2_{r,s}(V)$ (the (r,s)-symmetric tensors) and $\Lambda^2_{r,s}(V)$ (the (r,s)-
antisymmetric tensors). These modules are defined as follows:

(i) $S^2_{r,s}(V)$ is the span of $\{v_i \otimes v_j | 1 \leq i \leq n\} \cup \{v_i \otimes v_j + sv_j \otimes v_i | 1 \leq i < j \leq n\}$.

(ii) $\Lambda^2_{r,s}(V)$ is the span of $\{v_i \otimes v_j - rv_j \otimes v_i | 1 \leq i < j \leq n\}$.

Proof. The following computations can be used to see that $S^2_{r,s}(V)$ and $\Lambda^2_{r,s}(V)$ are
submodules:

$$e_k.(v_i \otimes v_i) = \delta_{i,k+1}(v_k \otimes v_{k+1} + sv_{k+1} \otimes v_k)$$

$$f_k.(v_i \otimes v_i) = \delta_{i,k}(v_k \otimes v_{k+1} + sv_{k+1} \otimes v_k)$$

$$e_k.(v_i \otimes v_j + sv_j \otimes v_i) = \begin{cases}
0 & \text{if } k+1 \neq i,j \\
(v_k \otimes v_j + sv_j \otimes v_k) & \text{if } k+1 = i \\
v_i \otimes v_k + sv_k \otimes v_i & \text{if } k+1 = j, k \neq i \\
(r+s)v_k \otimes v_k & \text{if } k+1 = j, k = i
\end{cases}$$

$$f_k.(v_i \otimes v_j + sv_j \otimes v_i) = \begin{cases}
0 & \text{if } k \neq i,j \\
v_i \otimes v_{k+1} + sv_{k+1} \otimes v_i & \text{if } k = j \\
v_{k+1} \otimes v_j + sv_j \otimes v_{k+1} & \text{if } k = i, k+1 \neq j \\
(r+s)v_{k+1} \otimes v_{k+1} & \text{if } k = i, k+1 = j
\end{cases}$$
Proposition 5.5. The minimum polynomial of v spans a one-dimensional module. Modulo the resulting two-dimensional module, V has one vector that is not complemented in V. Proof. v is a highest weight vector, and it is easy to see that given any other vector in (i), there is an element of U taking it to $v_1 \otimes v_1$. Therefore $S^2_{r,s}(V)$ is simple. A similar argument proves that $\Lambda^2_{r,s}(V)$ is simple, with highest weight vector $v_1 \otimes v_2 - rv_2 \otimes v_1$. □

Remark 5.4. The $s = -r$ case is “nongeneric,” and in this exceptional case, $V \otimes V$ need not be completely reducible. For example, when $n = 2$ what happens is that $v_1 \otimes v_2 - rv_2 \otimes v_1$ spans a one-dimensional module (as it does for $n = 2$ generic) that is not complemented in $V \otimes V$. Modulo that submodule, $v_1 \otimes v_1$ spans a one-dimensional module. Modulo the resulting two-dimensional module, $v_1 \otimes v_2 + rv_2 \otimes v_1$ and $v_2 \otimes v_2$ span a two-dimensional module.

Proposition 5.5. The minimum polynomial of $R = R_{V,V}$ on $V \otimes V$ is $(t - 1)(t + rs^{-1})$ if $s \neq -r$.

Proof. It follows from the definition of R that $R(v_1 \otimes v_1) = v_1 \otimes v_1$ and $R(v_1 \otimes v_2 - rv_2 \otimes v_1) = -rs^{-1}(v_1 \otimes v_2 - rv_2 \otimes v_1)$. By Proposition 5.3, $S^2_{r,s}(V)$ and $\Lambda^2_{r,s}(V)$ are simple, and in fact, $v_1 \otimes v_1$ and $v_1 \otimes v_2 - rv_2 \otimes v_1$ are the highest weight vectors. In particular, each is a cyclic module generated by its highest weight vector. As $Ra(v_1 \otimes v_1) = aR(v_1 \otimes v_1) = a(v_1 \otimes v_1)$ for all $a \in U$, this implies that $S^2_{r,s}(V)$ is in the eigenspace of R corresponding to eigenvalue 1. Analogously, $\Lambda^2_{r,s}(V)$ corresponds to the eigenvalue $-rs^{-1}$, and since $V \otimes V$ is the direct sum of those submodules, we have the desired result. □

From Proposition 5.5 it follows that R acts as

$$(5.6) \quad r \sum_{i<j} E_{j,i} \otimes E_{i,j} + s^{-1} \sum_{i<j} E_{i,j} \otimes E_{j,i} + (1 - rs^{-1}) \sum_{i<j} E_{j,i} \otimes E_{i,j} + \sum_i E_{i,i} \otimes E_{i,i}$$

on $V \otimes V$. Indeed, (5.6) is a linear operator that acts on $S^2_{r,s}(V)$ as multiplication by 1, and on $\Lambda^2_{r,s}(V)$ as multiplication by $-rs^{-1}$. By Proposition 5.5, R has the same properties, and so R is equal to this sum on $V \otimes V$.

§6. QUANTUM SCHUR-WEYL DUALITY

Assume \(r, s \in \mathbb{K}\). Let \(H_k(r, s)\) be the unital associative algebra over \(\mathbb{K}\) with generators \(T_i\), \(1 \leq i < k\), subject to the relations:

(H1) \(T_iT_{i+1}T_i = T_{i+1}T_iT_{i+1}\), \(1 \leq i < k\)
(H2) \(T_iT_j = T_jT_i\), \(\mid i - j \mid \geq 2\)
(H3) \(T_i^2 = (s-r)T_i + rs1\).

When \(r \neq 0\), the elements \(t_i = r^{-1}T_i\) satisfy the braid relations (H1), (H2), along with the relation

(H3') \(t_i^2 = (q-1)t_i + q1\),

where \(q = r^{-1}s\). The Hecke algebra \(H_k(q)\) (of type \(A_{k-1}\)) is generated by elements \(t_i\), \(1 \leq i < k\), which satisfy (H1), (H2), (H3'). It has dimension \(k\) and is semisimple whenever \(q\) is not a root of unity. At \(q = 1\), the Hecke algebra \(H_k(q)\) is isomorphic to \(\mathbb{K}S_k\), the group algebra of the symmetric group \(S_k\), where we may identify \(t_i\) with the transposition \((i \ i + 1)\).

The two-parameter Hecke algebra \(H_k(r, s)\) defined above is isomorphic to \(H_k(r^{-1}s)\) whenever \(r \neq 0\). Thus, it is semisimple whenever \(r^{-1}s\) is not a root of unity. For any \(\sigma \in S_k\), we may define \(T_\sigma = T_{i_1} \cdots T_{i_{\ell}}\) where \(\sigma = t_{i_1} \cdots t_{i_{\ell}}\) is a reduced expression for \(\sigma\) in terms of transpositions. It follows from (H1) and (H2) that \(T_\sigma\) is independent of the reduced expression and these elements give a basis.

The results of Section 5 show that the \(\tilde{U}\)-module \(V^{\otimes k}\) affords a representation of the Hecke algebra \(H_k(r, s)\):

\[
H_k(r, s) \to \text{End}_{\tilde{U}}(V^{\otimes k})
\]

\[
T_i \mapsto sR_i \quad (1 \leq i < k).
\]

When \(k = 2\) and \(s \neq -r\), \(V^{\otimes 2} = S^2_{r,s}(V) \oplus \wedge^2_{r,s}(V)\) is a decomposition of \(V^{\otimes 2}\) into simple \(\tilde{U}\)-modules by Proposition 5.3. The maps \(p_1 = (sR_1 + r)/(s + r)\) and \(p_2 = (s - sR_1)/(s + r)\), \((R_1 = R_{V\wedge V})\), are the corresponding projections onto the simple summands. Thus, the map in (6.1) is an isomorphism for \(k = 2\). More generally, we will show next that it is surjective whenever \(rs^{-1}\) is not a root of unity, and it is an isomorphism when \(n \geq k\). This is the two-parameter version of the well-known result of Jimbo [Ji] that \(H_k(q) \cong \text{End}_{U_{gl_n}}(V^{\otimes k})\) and is the analogue of classical Schur-Weyl duality, \(\mathbb{K}S_k \cong \text{End}_{gl_n}(V^{\otimes k})\) for \(n \geq k\). It requires the following lemma. The case \(n < k\) is dealt with separately, and uses the isomorphism \(H_k(r, s) \cong \text{End}_{\tilde{U}}(V^{\otimes k})\) of the case \(n = k\).

Lemma 6.2. If \(n \geq k\) and \(V\) is the natural representation of \(\tilde{U}\), then \(V^{\otimes k}\) is a cyclic \(\tilde{U}\)-module generated by \(v_1 \otimes \cdots \otimes v_k\).

Proof. Let \(\bar{v} = v_1 \otimes \cdots \otimes v_k\). We begin by showing that if \(\sigma \in S_k\), then \(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)} \in \tilde{U} \cdot \bar{v}\).
Suppose we have an arbitrary permutation $x_1 \otimes \cdots \otimes x_k$ ($x_i \in \{v_1, \ldots, v_k\}$ for all i) of the factors of ω_i. For some $\ell < m$, assume that $x_\ell = v_j$ and $x_m = v_{j+1}$. Then because of the formulas

$$
\Delta^{k-1}(e_j) = \sum_{i=1}^{k} \omega_j \otimes \cdots \otimes \omega_{j-1} e_j \otimes 1 \otimes \cdots \otimes 1
$$

(6.3)

$$
\Delta^{k-1}(f_j) = \sum_{i=1}^{k} 1 \otimes \cdots \otimes 1 \otimes f_j \otimes \omega_{j-1} \otimes \cdots \otimes \omega_i
$$

there are nonzero scalars c and c' such that

$$(ce_j f_j + c').(x_1 \otimes \cdots \otimes x_k) = x_1 \otimes \cdots \otimes x_m \otimes \cdots \otimes x_\ell \otimes \cdots \otimes x_k.
$$

Similarly, there are nonzero scalars d and d' such that

$$(de_j f_j + d').(x_1 \otimes \cdots \otimes x_m \otimes \cdots \otimes x_\ell \otimes \cdots \otimes x_k) = x_1 \otimes \cdots \otimes x_k.
$$

As the transpositions $(j, j+1)$ generate S_k, $v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)} \in \widetilde{U}_\omega$ for all $\sigma \in S_k$.

Next we will use induction on k to establish the following. For any k elements $i_1, \ldots, i_k \in \{1, \ldots, n\}$ satisfying $i_1 \leq i_2 \leq \cdots \leq i_k$, there is a $u \in \widetilde{U}$ such that $u_\omega = v_{i_1} \otimes \cdots \otimes v_{i_k}$ and u does not contain any terms with factors of $e_{m'}, e_{m'+1}, \ldots, e_{n-1}, f_{m'+1}, f_{m'+2}, \ldots, f_{n-1}$, or $f_{m'}$ where $m = \max\{i_k, k\}$. If $k = 1$, we may apply $f_{m-1} \cdots f_1 \otimes v = v_1$ to obtain v_m for any $m \in \{1, \ldots, n\}$. If $k > 1$, let ℓ be such that $i_\ell < i_k$, $i_{\ell+1} = i_{\ell+2} = \cdots = i_k$. (If no such ℓ exists, that is if $i_1 = \cdots = i_k$, then set $\ell = 0$ and apply u' from (6.5) below to $v_1 \otimes \cdots \otimes v_k$ to obtain a nonzero scalar multiple of $v_{i_1} \otimes \cdots \otimes v_{i_k}$.) By induction, there is an element $u \in \widetilde{U}$ such that

$$
u, (v_1 \otimes \cdots \otimes v_\ell) = v_{i_1} \otimes \cdots \otimes v_{i_\ell},
$$

where u has no terms with factors of $e_{m'}, e_{m'+1}, \ldots, e_{n-1}, f_{m'+1}, \ldots, f_{n-1}$ ($m' = \max\{i_\ell, \ell\}$).

Suppose initially that $i_\ell \leq \ell$. Then $m' = \ell$, and so $u, (v_1 \otimes \cdots \otimes v_k)$ is a nonzero scalar multiple of $(v_{i_1} \otimes \cdots \otimes v_\ell) \otimes (v_{\ell+1} \otimes \cdots \otimes v_k)$. Now apply

$$
u' = \begin{cases}
(f_{i_{\ell-1}} f_{i_{\ell-2}} \cdots f_1) \cdots (f_{i_{k-1}} f_{i_{k-2}}) (e_{i_k} e_{i_{k+1}} \cdots e_{k-1}) (e_{i_{k-1}} \cdots e_{i_{k+1}}) (e_{i_k}) & \text{if } i_k < k \\
(f_{i_{\ell-1}} f_{i_{\ell-2}} \cdots f_1) \cdots (f_{i_{k-1}} f_{i_{k-2}} f_{k-1}) (f_{i_k} f_{i_{k-2}} \cdots f_{k}) & \text{if } i_k \geq k
\end{cases}
$$

(6.5)

to obtain a nonzero scalar multiple of $v_{i_1} \otimes \cdots \otimes v_{i_k}$, as desired. (Note that we did not use any factors of $e_m, e_{m+1}, \ldots, e_{n-1}, f_{m+1}, \ldots, f_{n-1}$ for $m = \max\{i_k, k\}$.)

If on the other hand, $i_\ell > \ell$ (so that $m' = i_\ell$ and $i_k > i_{\ell+1}$), first apply u' from (6.5) to $v_1 \otimes \cdots \otimes v_k$ to obtain a nonzero scalar multiple of

$$(v_1 \otimes \cdots \otimes v_\ell) \otimes (v_{i_k} \otimes \cdots \otimes v_{i_k}),$$
and then apply u from (6.4) to obtain a nonzero scalar multiple of $v_{i_1} \otimes \cdots \otimes v_{i_k}$, as desired.

Finally, if $i_1, \ldots, i_k \in \{1, \ldots, n\}$ are any k elements (not necessarily in nondecreasing numerical order), let $\sigma \in S_k$ be a permutation such that

\[i_{\sigma(1)} \leq i_{\sigma(2)} \leq \cdots \leq i_{\sigma(k)}. \]

By the first paragraph of the proof, there is an element of \tilde{U} taking v to $v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}$. Now we may apply u' from (6.5) in the appropriate order (as above) to $v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}$ to obtain a nonzero scalar multiple of $v_{i_1} \otimes \cdots \otimes v_{i_k}$. □

This leads to the two-parameter analogue of Schur-Weyl duality.

Theorem 6.6. Assume rs^{-1} is not a root of unity. Then:

(i) $H_k(r, s)$ maps surjectively onto $\text{End}_{\tilde{U}}(V^\otimes k)$.

(ii) If $n \geq k$, then $H_k(r, s)$ is isomorphic to $\text{End}_{\tilde{U}}(V^\otimes k)$.

Proof. We establish part (ii) first. Assume $F \in \text{End}_{\tilde{U}}(V^\otimes k)$ and $v = v_1 \otimes \cdots \otimes v_k$. As F commutes with the action of \tilde{U}, $F(v)$ must have the same weight as v, that is, $\epsilon_1 + \cdots + \epsilon_k$. The only vectors of $V^\otimes k$ with this weight are the linear combinations of the permutations of $v_1 \otimes \cdots \otimes v_k$, so that

\[F(v) = \sum_{\sigma \in S_k} c_{\sigma} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}, \]

for some scalars $c_{\sigma} \in \mathbb{K}$. We will show that there is an element R^σ in the image of $H_k(r, s)$ in $\text{End}_{\tilde{U}}(V^\otimes k)$ such that $R^\sigma(v) = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$. (Previously we constructed an element $u \in \tilde{U}$ with this property.)

We begin with the transposition $\tau = t_j = (j, j + 1)$. For any tensor product $v_{i_1} \otimes \cdots \otimes v_{i_k}$ of distinct basis vectors, we have by (5.6) that

\[v_{i_{\tau(1)}} \otimes \cdots \otimes v_{i_{\tau(k)}} = \begin{cases} r^{-1} R_j (v_{i_1} \otimes \cdots \otimes v_{i_k}) & \text{if } i_j < i_{j+1} \\ (sR_j + (r-s)\text{Id})(v_{i_1} \otimes \cdots \otimes v_{i_k}) & \text{if } i_j > i_{j+1}. \end{cases} \]

Therefore, if $\sigma = t_{j_1} \cdots t_{j_m}$, a product of such transpositions, we can set $R^{j_1} \cdots R^{j_m} := r^{-m} R_{j_m} \cdots R_{j_1}$, depending on the numerical order of the appropriate indices i_{j_t} and $i_{j_{t+1}}$ in $r^{m-1} \cdots r^{j_1} \otimes v$. Then defining $R^\sigma = R^{j_1} \cdots R^{j_m} \in \text{End}_{\tilde{U}}(V^\otimes k)$, we have the desired map such that $R^\sigma(v) = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$.

Now let $F_0 = F - \sum_{\sigma \in S_k} c_{\sigma} R^\sigma \in \text{End}_{\tilde{U}}(V^\otimes k)$ (with the c_{σ} coming from (6.7)), and note that $F_0(\tilde{u}) = 0$. As F_0 commutes with the action of \tilde{U}, we have $F_0(\tilde{U} \tilde{v}) = \tilde{U} F_0(\tilde{v}) = 0$. By Lemma 6.2, $\tilde{U} \tilde{v} = V^\otimes k$. Therefore F_0 is the 0-map, which implies $F = \sum_{\sigma \in S_k} c_{\sigma} R^\sigma$ is in the image of $H_k(r, s)$. Consequently, the map $H_k(r, s) \to \text{End}_{\tilde{U}}(V^\otimes k)$ in (6.1) is a surjection, and $\text{End}_{\tilde{U}}(V^\otimes k)$ is the \mathbb{K}-linear
span of \(\{ R^\sigma \mid \sigma \in S_k \} \). Now suppose that \(\sum_{\sigma \in S_k} c_\sigma R^\sigma = 0 \) for some scalars \(c_\sigma \in \mathbb{K} \). Then in particular,
\[
0 = \sum_{\sigma \in S_k} c_\sigma R^\sigma = \sum_{\sigma \in S_k} c_\sigma v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}.
\]
The vectors \(\{ v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)} \mid \sigma \in S_k \} \) are linearly independent, so \(c_\sigma = 0 \) for all \(\sigma \in S_k \). This implies that \(\{ R^\sigma \mid \sigma \in S_k \} \) is a basis for the vector space \(\text{End}_{\mathbb{K}}(V^{\otimes k}) \) and \(\text{dim}_{\mathbb{K}} \text{End}_{\mathbb{K}}(V^{\otimes k}) = k! \). Because \(H_k(r,s) \) is isomorphic to \(H_k(r^{-1}s) \), it has dimension \(k! \) also. Therefore, \(H_k(r,s) \) is isomorphic to \(\text{End}_{\mathbb{K}}(V^{\otimes k}) \) for \(n \geq k \), as asserted.

Next we turn to the proof of (i) and assume here that \(n < k \). For \(i = n, k \), let \(\tilde{U}_i = U_{r,s}(gl_i) \), let \(\Lambda_i \) be the weight lattice of \(gl_i \), and let \(V_i \) be the natural \(\tilde{U}_i \)-module. By (ii), we may identify \(H_k(r,s) \) with \(\text{End}_{\tilde{U}_k}(V_k^{\otimes k}) \). We will show that \(H_k(r,s) \) maps surjectively onto \(\text{End}_{\tilde{U}_n}(V_n^{\otimes k}) \).

Consider \(V_n^{\otimes k} \) as a \(\tilde{U}_n \)-module via the inclusion of \(\tilde{U}_n \) into \(\tilde{U}_k \), and regard \(V_n^{\otimes k} \) as a \(\tilde{U}_n \)-submodule of \(V_k^{\otimes k} \) in the obvious way. Now \(V_n^{\otimes k} \) is a finite-dimensional \(\tilde{U}_n \)-module on which \(\tilde{U}_n^0 \) acts semisimply, so by Theorem 3.8, it is completely reducible. Therefore,
\[
(6.8) \quad V_n^{\otimes k} = L_1 \oplus \cdots \oplus L_t
\]
for simple \(\tilde{U}_n \)-modules \(L_i \). It suffices to show that the projections onto the simple summands \(L_i \) can be obtained from \(H_k(r,s) \).

Consider
\[
(6.9) \quad \tilde{U}_k.V_n^{\otimes k} = \tilde{U}_k.L_1 + \cdots + \tilde{U}_k.L_t,
\]
the \(\tilde{U}_k \)-submodule of \(V_n^{\otimes k} \) generated by \(V_n^{\otimes k} \). By Corollary 2.5, each \(L_i \) is isomorphic to some \(L(\lambda_j) \), \(\lambda_j \in \Lambda_n^+ \), and in particular is generated by a highest weight vector \(m_i \) with \(e_j.m_i = 0 \) for all \(j \), \(1 \leq j < n \). We claim that \(e_j.m_i = 0 \) as well when \(n \leq j < k \). This follows from the expression for \(\Delta^{k-1}(e_j) \) in (6.3) and the action of \(e_j \) on the natural module \(V_k \) for \(\tilde{U}_k \) given by \(e_j.v_i = \delta_{i,j+1} v_j \), because \(m_i \) must be some linear combination of vectors \(v_{i_1} \otimes \cdots \otimes v_{i_k} \) with \(i_1, \ldots, i_k \in \{1, \ldots, n\} \). Therefore \(m_i \) is also a highest weight vector for the finite-dimensional \(\tilde{U}_k \)-module \(\tilde{U}_k.L_i \). By Theorem 2.1 and Lemma 3.7, \(\tilde{U}_k.L_i = \tilde{U}_k.m_i \) is a simple \(\tilde{U}_k \)-module. Therefore (6.9) must be a direct sum:
\[
\tilde{U}_k.V_n^{\otimes k} = \tilde{U}_k.L_1 \oplus \cdots \oplus \tilde{U}_k.L_t.
\]

Because \(V_k^{\otimes k} \) is a completely reducible \(\tilde{U}_k \)-module, there is some complementary \(\tilde{U}_k \)-submodule \(W \) such that
\[
(6.10) \quad V_k^{\otimes k} = \tilde{U}_k.L_1 \oplus \cdots \oplus \tilde{U}_k.L_t \oplus W.
\]
Let \(\pi_i \in H_k(r,s) \) be the projection of \(V_k^{\otimes k} \) onto \(\tilde{U}_k.L_i \). Then, \(\pi_i \) commutes with the \(\tilde{U}_k \)-action, and acts as the identity map on \(\tilde{U}_k.L_i \) and as 0 on the other summands in (6.10). Since \(L_j \subseteq \tilde{U}_k.L_j \) for all \(j \), the map \(\pi_i \) restricted to \(V_n^{\otimes k} \) commutes with the \(\tilde{U}_n \)-action and is the projection onto \(L_i \). Thus, \(H_k(r,s) \to \text{End}_{\mathbb{K}}(V_n^{\otimes k}) \) is onto. \(\square \)
References

[BR] G. Benkart and T. Roby, *Down-up algebras*, J. Algebra 209 (1998), 305-344; Addendum 213 (1999), 378.

[BW] G. Benkart and S. Witherspoon, *Two-parameter quantum groups and Drinfel’d doubles*, preprint.

[H] T. Halverson, *Characters of the Centralizer Algebras for Mixed Tensor Representations of the General Linear Group and its q-Deformations*, Ph.D. Thesis, University of Wisconsin - Madison, 1993.

[Ja] J. C. Jantzen, *Lectures on Quantum Groups*, vol. 6, Graduate Studies in Math., Amer. Math. Soc., 1993.

[Ji] M. Jimbo, *A q-analogue of U(gl_{N+1}), Hecke algebra, and the Yang-Baxter equation*, Lett. Math. Phys. 11 (1986), 247-252.

[Jo] A. Joseph, *Quantum Groups and Their Primitive Ideals*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, 1995.

[L] G. Lusztig, *Introduction to Quantum Groups*, Birkhäuser, 1993.

[T] M. Takeuchi, *A two-parameter quantization of GL(n)*, Proc. Japan Acad. 66 Ser. A (1990), 112-114.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

benkart@math.wisc.edu

Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003

(2001-02) Department of Mathematics and Computer Science, Amherst College, Amherst, Massachusetts 01002

wither@math.umass.edu