Isogenies of certain K3 surfaces of rank 18

Noah Braeger¹, Adrian Clingher², Andreas Malmendier³* and Shantel Spatig¹

Abstract

We construct geometric isogenies between three types of two-parameter families of K3 surfaces of Picard rank 18. One is the family of Kummer surfaces associated with Jacobians of genus-two curves admitting an elliptic involution, another is the family of Kummer surfaces associated with the product of two non-isogenous elliptic curves, and the third is the twisted Legendre pencil. The isogenies imply the existence of algebraic correspondences between these K3 surfaces and prove that the associated four-dimensional Galois representations are isomorphic. We also apply our result to several subfamilies of Picard rank 19. The result generalizes work of van Geemen and Top (Bull Lond Math Soc 38(2):209–223, 2006).

Keywords: Isogenies, Kummer surfaces, Elliptic K3 surfaces

Mathematics Subject Classification: 14J27, 14J28, 14G25

In [1], Ahlgren, Ono, and Penniston computed the L-series and zeta function, over the finite field F_p, for certain families of K3 surfaces of Picard rank 19. The K3 families in question are associated with a specific one-parameter elliptic-curve family E_t and include the twisted Legendre pencil X_t, as well as the Kummer surfaces $\text{Kum}(E_t \times E_t)$. The Ahlgren–Ono–Penniston results imply that two three-dimensional ℓ-adic Galois representations, associated with X_t and $\text{Kum}(E_t \times E_t)$, respectively, are isomorphic, where ℓ is any prime number different from p. In turn, the above isomorphism determines a Galois invariant class in a certain étale cohomology group of $X_t \times \text{Kum}(E_t \times E_t)$. The Tate conjecture predicts then the existence of an algebraic cycle on $X_t \times \text{Kum}(E_t \times E_t)$, with coefficients in \mathbb{Q}_ℓ, that realizes this Galois invariant class. The explicit algebraic correspondence determining the predicted cycle was subsequently constructed by van Geemen and Top [60]. This correspondence is obtained as the graph of a dominant rational map from X_t to $\text{Kum}(E_t \times E_t)$, defined over a finite extension of $\mathbb{Q}(t)$.

The present article indicates a generalization of the above work. We extend the above results to certain two-parameter families of K3 surfaces of generic Picard rank 18. The K3 families in question include: Kummer surfaces associated with Jacobians of genus-two curves admitting an elliptic involution, Kummer surfaces associated with the product of two elliptic curves, and the two-parameter twisted Legendre pencil.

To begin with, let us briefly introduce some notation. Let V be a smooth projective variety over \mathbb{Q}, with separable closure $\overline{\mathbb{Q}}$ and let $G_\mathbb{Q} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ be the absolute Galois group. Fix a prime number ℓ and consider the ℓ-adic cohomology groups, i.e., the cohomology groups of the base extension $V_{\overline{\mathbb{Q}}}$ of V to $\overline{\mathbb{Q}}$ with coefficients in the ℓ-adic integers.
\mathbb{Z}_ℓ, and corresponding scalars then extended to the ℓ-adic numbers \mathbb{Q}_ℓ. The étale cohomology theory determines then ℓ-adic cohomology groups for the algebraic variety V, which carry many of the same properties that the usual singular cohomology groups have. In addition, however, the étale cohomology groups are representations of $G_{\mathbb{Q}}$. They also satisfy a form of Poincaré duality on non-singular projective varieties, and a Künneth formula holds. In particular, when V is a non-singular algebraic curve of genus g, $H^1_{\text{ét}}$ is a free \mathbb{Z}_ℓ-module of rank $2g$, dual to the Tate module of the Jacobian variety of V. In turn, $H^1_{\text{ét}}$ is isomorphic to the singular cohomology (of the complex algebraic curve V) with \mathbb{Z}_ℓ-coefficients. Getting back to the general V case, for $r > 0$, a codimension-r subvariety of V, defined over \mathbb{Q}, determines an element of the cohomology group $H^{2r}_{\text{ét}}(V_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell(r))$ fixed by $G_{\mathbb{Q}}$. Here, $\mathbb{Q}_\ell(r)$ denotes the rth Tate twist. In this context, the Tate conjecture states that the subspace of Galois invariant classes is in fact the \mathbb{Q}_ℓ-vector space of algebraic cycles on V of codimension r. For more details on this aspect, we refer the reader to the excellent survey in [58].

In this article, we consider several special families of K3 surfaces. First, the two-parameter twisted Legendre pencil \mathcal{X} is, by definition, given by the family of K3 surfaces that are minimal resolutions of double covers of $\mathbb{P}^2 = \mathbb{P}(z_1, z_2, z_3)$ branched over a special union of six lines (and hence over a sextic curve). Specifically, consider the family of double sextics, given by

$$\mathcal{X} : \quad y^2 = z_1 z_2 (z_1 - z_2) (z_1 - z_3) (z_2 - z_3 - A z_2) (z_3 - B z_2),$$

where the parameters A, B satisfy $A \neq B$. The branch locus of a general member is the configuration of six lines $\{\ell_1, \ldots, \ell_6\}$ in \mathbb{P}^2 such that, up to permutation, the triple intersections $\{p_{123}\} = \ell_1 \cap \ell_2 \cap \ell_3$ and $\{p_{145}\} = \ell_1 \cap \ell_4 \cap \ell_5$ consist of two distinct points $p_{123} \neq p_{145}$, and the configuration is generic otherwise. Notice that the configuration $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ is not a Kummer plane, i.e., the general member of \mathcal{X} is not a Kummer surface. We assume then:

$$A = \left(\frac{1 + \lambda_2}{1 - \lambda_2} \right)^2, \quad B = \left(\frac{1 + \lambda_3}{1 - \lambda_3} \right)^2,$$

with $\lambda_2, \lambda_3 \in \mathbb{Q}$ with $\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and $\lambda_2 \neq \lambda_3 \pm 1$. In the generic case, the Picard rank of \mathcal{X} is 18. We also remind the reader that the Picard group is generated by (curve) classes defined over \mathbb{Q}. Hence, one has an isomorphism of $G_{\mathbb{Q}}$-representations:

$$H^2_{\text{ét}}(\mathcal{X}_{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \cong T^{(1)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18},$$

where $T^{(1)}_\ell$ is a certain four-dimensional ℓ-adic representation.

We also consider Kummer surfaces $\text{Kum}(A)$, of generic Picard rank 18, associated with certain principally polarized abelian surfaces A. If we denote the minus identity involution denoted by $-\iota$, then $\text{Kum}(A)$ is, by definition, the minimal resolution of the quotients $A/\langle -\iota \rangle$. We shall realize the quotients $A/\langle -\iota \rangle$ as double quadric or double sextic surfaces, as well as Jacobian elliptic surfaces. We shall refer to the minimal resolutions of the corresponding quadratic-twist surfaces as twisted Kummer surfaces $\text{Kum}(A)^{(\varepsilon)}$ with twist factor ε.

One choice of abelian surface we shall consider is the product $A = \mathcal{E}_1 \times \mathcal{E}_2$, where the elliptic curves \mathcal{E}_l, for $l = 1, 2$, are not mutually isogenous. Specifically, we consider the (families of) elliptic curves given by the equation

$$\mathcal{E}_l : \quad y_l^2 z_l = x_l (x_l - z_l) (x_l - \Lambda_l z_l),$$

with $\Lambda_l \in \mathbb{Q}$.
such that
\[
\Lambda_1 \Lambda_2 = \frac{(\lambda_2 + \lambda_3)^2 - 4\lambda_2\lambda_3}{(1 - \lambda_2)^2(1 - \lambda_3)^2}, \quad \Lambda_1 + \Lambda_2 = -\frac{2(\lambda_2 + \lambda_3)}{(1 - \lambda_2)(1 - \lambda_3)},
\] (0.5)
The Picard rank of Kum(\(E_1 \times E_2\)) is generically 18. Hence, one has an isomorphism of \(G_{\mathbb{Q}}\)-representations, namely
\[
H^2_{\text{et}}(\text{Kum}(E_1 \times E_2)_{\mathbb{Q}}, \mathbb{Q}_\ell) \cong T^{(2)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18},
\] (0.6)
where \(T^{(2)}_\ell\) is a four-dimensional \(\ell\)-adic representation. Then, at the level of \(G_{\mathbb{Q}}\)-representations, one has the isomorphism:
\[
T^{(2)}_\ell \cong H^1_{\text{et}}(E_1, \mathbb{Q}_\ell) \otimes H^1_{\text{et}}(E_2, \mathbb{Q}_\ell).
\] (0.7)
Finally, we consider Kummer surfaces Kum(\(C\)) with abelian surface \(A\) realized as the Jacobian Jac(\(C_0\)) of a smooth genus-two curve \(C_0\) admitting an elliptic involution. The curves \(C_0\) are given explicitly by
\[
C_0 : \quad Y^2 = XZ(X - Z) (X - \lambda_2\lambda_3 Z) (X - \lambda_2 Z) (X - \lambda_3 Z).
\] (0.8)
Due to the elliptic involution existing on the genus-two curve \(C_0\), the transcendental lattice of \(A = \text{Jac}(C_0)\) generically has rank four. As \(G_{\mathbb{Q}}\)-representations, one has an isomorphism:
\[
H^2_{\text{et}}(\text{Kum}((\text{Jac} C_0)^{(\varepsilon)}), \mathbb{Q}_\ell) \cong T^{(3)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18},
\] (0.9)
where \(T^{(3)}_\ell\) is a second four-dimensional \(\ell\)-adic representation and \(\varepsilon\) is a certain quadratic-twist factor.

The main result of this article can be stated as follows:

Theorem 0.1 Assume that \(\lambda_2, \lambda_3 \in \mathbb{Q}\) satisfy \(\lambda_2, \lambda_3 \neq \{0, 1\}\), and \(\lambda_2 \neq \lambda_3\), and are generic otherwise. Further, assume that \(\Lambda_1, \Lambda_2\) satisfy
\[
\Lambda_1 \Lambda_2 = \frac{(\lambda_2 + \lambda_3)^2 - 4\lambda_2\lambda_3}{(1 - \lambda_2)^2(1 - \lambda_3)^2}, \quad \Lambda_1 + \Lambda_2 = -\frac{2(\lambda_2 + \lambda_3)}{(1 - \lambda_2)(1 - \lambda_3)},
\] (0.10)
and \(\varepsilon = \lambda_2\lambda_3\). Then, there are explicit algebraic correspondences
\[
\Gamma^{(1,2)} \subset \text{Kum}(E_1 \times E_2) \times X',
\]
\[
\Gamma^{(2,3)} \subset X' \times \text{Kum}(\text{Jac} C_0)^{(\varepsilon)},
\]
\[
\Gamma^{(3,1)} \subset \text{Kum}(\text{Jac} C_0)^{(\varepsilon)} \times \text{Kum}(E_1 \times E_2),
\] (0.11)
defined over \(\mathbb{Q}\), which induce \(\ell\)-adic \(G_{\mathbb{Q}}\)-representation isomorphisms:
\[
\left[\Gamma^{(i,j)}\right] : \quad T^{(i)}_\ell \xrightarrow{\cong} T^{(j)}_\ell,
\] (0.12)
for \(i, j \in \{1, 2, 3\}\) and \(i \neq j\).

We note that the result above contains three special subfamilies, associated with the non-generic situation when the elliptic curves \(E_1\) and \(E_2\) are isomorphic, up to a quadratic twist. The \(G_{\mathbb{Q}}\)-representations involved are then three dimensional. The details on this case are included in Theorem 3.31. One of these specializations is exactly the case considered in [60]. To our knowledge, the other two cases have not appeared in the literature. In addition, in Theorem 3.33 we prove analogous results for two other subfamilies of Picard ranks 19 and 18—one where the elliptic curves are two-isogenous to each other and one
where one of the elliptic curves is constant with complex multiplication and j-invariant 123.

The article structure is as follows. In Sect. 1, we derive normal forms for Jacobians of genus-two curves admitting an elliptic involution, their elliptic-curve quotient and certain $(2, 2)$-isogenous abelian surfaces. In Sect. 2, we construct the Kummer surfaces associated with the Jacobian varieties of genus-two curves admitting an elliptic involution and the product abelian surfaces of two non-isogenous elliptic curves. These Kummer surfaces are explicitly described as quartic hypersurfaces, double quadric surfaces, double sextic surfaces, and Jacobian elliptic surfaces. As a side observation, we show that Legendre’s gluing construction, i.e., the construction of a genus-two curve with involution from its elliptic-curve quotients over a small field of definition, has an exact analogue for quartic Kummer surfaces. This is discussed in Theorem 2.33. Using the results from Sect. 1, we are then able to construct explicit isogenies between the various Kummer surfaces involved; see Theorem 2.40. In Sect. 3, we prove that the two-parameter twisted Legendre pencil fits into a Kummer sandwich of dominant rational maps, directly relating it to the Kummer surfaces from Sect. 2. This geometrical aspect is presented in Theorem 3.19. The rational maps involved are defined only over a finite field extension of the field of definition for the given varieties. The varieties involved have (projective) models defined over the rationals, but one has to choose the right quadratic-twists in order to obtain non-trivial rational correspondences between them. We achieve this goal by arranging for the pullbacks between natural generators of the corresponding $H^{2,0}$-parts in cohomology to be rational. Theorem 3.30 is the main result of this article and proves that the aforementioned four-dimensional ℓ-adic representations—as obtained from the corresponding transcendental lattices of families of K3 surfaces of Picard rank 18—are isomorphic. Finally, Theorems 3.31 and 3.33 discuss subfamilies of generic Picard rank 19, one of which recovers the main result from [60].

1 Abelian surfaces admitting an elliptic involution

Let C be an irreducible, smooth, projective curve of genus two, defined over the complex numbers \mathbb{C}. Let \mathcal{M} be the coarse moduli space of smooth curves of genus two. We denote by $[C]$ the isomorphism class of C, i.e., the corresponding point in \mathcal{M}. For a smooth genus-two curve C given as a sextic $Y^2 = f_6(X, Z)$ in the weighted complex projective space $\mathbb{WP}_{(1,3,1)} = \mathbb{P}(X, Y, Z)$, we send three roots $(\lambda_4, \lambda_5, \lambda_6)$ to $(0, 1, \infty)$ to obtain an isomorphic curve in Rosenhain normal form, given by

$$C : \quad Y^2 = XZ(X - Z)(X - \lambda_1Z)(X - \lambda_2Z)(X - \lambda_3Z).$$

(1.1)

We denote the hyperelliptic involution on C by ι_C. The Weierstrass points of C are the fixed points of ι_C, and they are $P_i : [X : Y : Z] = [\lambda_i : 0 : 1]$ for $i = 1, \ldots, 5,$ and $P_6 : [X : Y : Z] = [1 : 0 : 0]$. The tuple $(\lambda_1, \lambda_2, \lambda_3)$ where the roots λ_i are all distinct and different from $\{0, 1, \infty\}$ determines a point in the moduli space of genus-two curves with six marked Weierstrass points, denoted by $\mathcal{M}(2)$. The Jacobian variety $\text{Jac}(C)$ is the moduli space of degree-zero line bundles on C. It is the connected component of the identity in the Picard group of C, hence an abelian surface. We refer to a genus-two curve as generic if it is smooth and its Jacobian $\text{Jac}(C)$ has no extra automorphisms.
The Siegel threefold is the quasi-projective variety of dimension three, obtained from the Siegel upper half-plane \(\mathbb{H}_2 \) of degree two\(^1\) divided by the action of the modular transformations \(\Gamma_2 := \text{Sp}_4(\mathbb{Z}) \), i.e.,

\[
A_2 = \mathbb{H}_2/\Gamma_2.
\]

Each \(\tau = (\tau_{11}, \tau_{21}, \tau_{12}, \tau_{22}) \in \mathbb{H}_2 \) determines a complex abelian surface \(A = \mathbb{C}^2/\Lambda \) obtained from the lattice \(\Lambda = \mathbb{Z}^2 \oplus \tau \mathbb{Z}^2 \) with the period matrix \((\mathbb{I}_2, \tau) \in \text{Mat}(2, 4; \mathbb{C})\). We consider two abelian surfaces \(A \) and \(\tilde{A} \) isomorphic if and only if there is an element \(M \in \Gamma_2 \) such that \(\overline{\tau} = M(\tau) \). The canonical principal polarization of \(A \) is given by the positive definite hermitian form \(h \) on \(\mathbb{C}^2 \) such that \(\alpha = \text{Im}(h(\Lambda, \Lambda)) \subset \mathbb{Z} \) where \(\alpha \) is the Riemann form \(\alpha(x_1 + x_2 \tau, y_1 + y_2 \tau) = x_1^\top y_2 - y_1^\top x_2 \) on \(\mathbb{Z}^2 \oplus \tau \mathbb{Z}^2 \). Such a hermitian form determines the class of a line bundle \(L \rightarrow A \) in the Néron–Severi lattice \(\text{NS}(A) \). Alternatively, \(\tau \) determines a line bundle \(L \) with first Chern class \(\text{Im}(h) \in \text{NS}(A) \subset \wedge^2 H^1(A, \mathbb{Z}) \). A general fact from algebra asserts that one can always choose a basis of \(\Lambda \) such that \(\alpha \) is given by the matrix \(\begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \) with \(D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} \) where \(d_1, d_2 \in \mathbb{N}, d_1, d_2 \geq 0 \), and \(d_1 \) divides \(d_2 \). For a principal polarization, one has \((d_1, d_2) = (1, 1) \). Since transformations in \(\Gamma_2 \) preserve the Riemann form \(\alpha \), it follows that the Siegel threefold \(A_2 \) is also the set of isomorphism classes of principally polarized abelian surfaces, i.e., abelian surfaces with a polarization of type \((1, 1)\). We also define the subgroup \(\Gamma_2(2) = \{ M \in \Gamma_2 | M \equiv I \mod 2 \} \) such that \(\Gamma_2(2) \cong S_6 \) where \(S_6 \) is the permutation group of six elements representing the permutations of the Rosenhain roots \((\lambda_1, \lambda_2, \lambda_3, 0, 1, \infty)\). Then, \(A_2(2) \) is the three-dimensional moduli space of principally polarized abelian surfaces with marked level-two structure.

For a principally polarized abelian variety \(A \), the line bundle \(L \) defining its principal polarization is ample and satisfies \(h^0(L) = 1 \). There exists an effective divisor \(\Theta \) such that \(L = \mathcal{O}_A(\Theta) \), uniquely defined only up to translations. The divisor \(\Theta \in \text{NS}(A) \) is called a theta divisor associated with the polarization. It is known that the abelian surface \(A \) is not the product of two elliptic curves if and only if \(\Theta \) is an irreducible divisor. Torelli’s theorem implies that the map sending a curve \(C \) to its Jacobian \(\text{Jac}(C) \) is injective and defines a morphism \(M \hookrightarrow A_2 \). The complement of its image in \(A_2 \) corresponds to abelian surfaces obtained as product of two complex elliptic curves. Moreover, \(M \hookrightarrow A_2 \) lifts to an injective morphism \(M(2) \hookrightarrow A_2(2) \) between the coarse moduli spaces of smooth curves of genus two with marked Weierstrass points and principally polarized abelian surfaces with marked level-two structures, respectively.

1.1 Isogenies of Jacobian surfaces

Translations of the Jacobian \(A = \text{Jac}(C) \) by order-two points in \(A[2] \) are isomorphisms of the Jacobian and map the set of two-torsion points to itself. Moreover, a Göpel group is a two-dimensional subspace \(G \cong (\mathbb{Z}/2\mathbb{Z})^2 \) of \(A[2] \) such that \(A' = A/G \) is again a principally polarized abelian surface [49, Sec. 23]. The corresponding isogeny \(\Psi : A \rightarrow A' \) between principally polarized abelian surfaces has as its kernel \(G \leq A[2] \) and is called a \((2, 2)\)-isogeny.

Remark 1.1 In general, one defines an isogeny of type \((n_1, \ldots, n_k)\) with \(k \leq 4 \) between abelian surfaces to be an isogeny with kernel isomorphic to \(\oplus_{i=1}^k \mathbb{Z}/n_i \mathbb{Z} \). We will also

\(^1\)By definition, \(\mathbb{H}_2 \) is the set of two-by-two symmetric matrices over \(\mathbb{C} \) whose imaginary part is positive definite.
consider compositions of two \((2,2)\)-isogenies, leading to isogenies of type \((2, 2, 2, 2)\) (which is multiplication by two up to automorphisms), \((4, 2, 2)\), and \((4, 4)\). This ‘calculus’ for compositions of isogenies also leads to Hecke operators related to algebraic subvarieties on \(A \times A\) parametrizing pairs \((A, A/G)\) for suitable finite subgroups \(G\) such that \(A/G\) is still a principally polarized abelian surface; see work by Andrianov for example \([2]\). This generalizes the construction of modular curves \(T_N = X_0(N) \subset \mathcal{A}_1 \times \mathcal{A}_1\); see also Remark 3.6.

For the Jacobian of a genus-two curve, every non-trivial two-torsion point is a difference of Weierstrass points \(P_i \in C\) for \(1 \leq i \leq 6\). In fact, the 16 order-two points of \(A = \text{Jac}(C)\) are obtained using the embedding of the curve into the connected component of the identity in the Picard group, i.e., \(C \hookrightarrow \text{Jac}(C) \cong \text{Pic}^0(C)\). We obtain the 15 elements \(P_{ij} = [P_i + P_j - 2P_0] \in A[2]\) with \(1 \leq i < j \leq 6\) and set \(P_0 = P_{66} = 0\). For \(\{i, j, k, l, m, n\} = \{1, \ldots, 6\}\), the group law on \(A[2]\) is given by the relations

\[
P_0 + P_{ij} = P_{ij}, \quad P_{ij} + P_{ij} = P_0, \quad P_{ij} + P_{kl} = P_{mn}, \quad P_{ij} + P_{jk} = P_{ik}.
\]

The space \(A[2]\) of two-torsion points admits a symplectic bilinear form, called the Weil pairing such that the two-dimensional, maximal isotropic subspace of \(A[2]\) with respect to the Weil pairing are the Gõpel groups. The Weil pairing is induced by the pairing

\[
\langle [P_i - P_j], [P_k - P_l] \rangle = \# \{P_i, P_j\} \cap \{P_k, P_l\} \mod 2.
\]

It is easy to check that there are exactly 15 inequivalent Gõpel groups, and they are of the form

\[
\{P_0, P_{ij}, P_{kl}, P_{mn}\}
\]

such that \(\{i, j, k, l, m, n\} = \{1, \ldots, 6\}\).

For a general genus-two curve \(C\), one may ask whether the \((2,2)\)-isogenous abelian surface \(A' = A/G\) satisfies \(A' = \text{Jac}(C')\) for some smooth curve \(C'\) of genus two. The geometric moduli relationship between the two curves of genus two was found by Richelot [53]; see also [9]. If we choose for \(C\) a sextic equation \(Y^2 = f_6(X, Z)\), then from any factorization \(f_6 = A \cdot B \cdot C\) into three degree-two polynomials \(A, B, C\) one obtains a new genus-two curve \(C'\), given by

\[
C' : \quad \Delta_{ABC} \cdot Y^2 = [A, B] [A, C] [B, C],
\]

where we have set \([A, B] \cdot Z = B \partial_X A - A \partial_X B\) with \(\partial_X\) denoting the derivative with respect to \(X\) and \(\Delta_{ABC}\) is the determinant of \((A, B, C)\) with respect to the basis \(X^2, XZ, Z^2\). Notice that the Richelot construction is guaranteed to work only for a general curve of genus two. Later, we will also consider isogenies from \(\text{Jac}(C_0)\) for genus-two curves \(C_0\) with extra involution to the decomposable principally polarized abelian varieties that are products of two elliptic curves \(\mathcal{E}_1 \times \mathcal{E}_2\).

1.2 Humbert surfaces

Sets of abelian surfaces with the same endomorphism ring form subvarieties within \(\mathcal{A}_2\). The endomorphism ring of principally polarized abelian surface tensored with \(\mathbb{Q}\) is either a quartic CM field, an indefinite quaternion algebra, a real quadratic field or in the generic case \(\mathbb{Q}\). Irreducible components of the corresponding subsets in \(\mathcal{A}_2\) have dimensions 0, 1, 2 and are known as CM points, Shimura curves, and Humbert surfaces, respectively. (Here,
we are excluding the endomorphism algebras of abelian surfaces which are isogenous to \(E_1 \times E_2\).) The Humbert surface \(\mathcal{H}_\Delta\), with invariant \(\Delta\), is the space of principally polarized abelian surfaces admitting a symmetric endomorphism with discriminant \(\Delta\). It turns out that \(\Delta\) always is a positive integer satisfying \(\Delta \equiv 0, 1 \mod 4\) and uniquely determined \(\mathcal{H}_\Delta\). In fact, \(\mathcal{H}_\Delta\) is the image inside \(\mathcal{A}_2\) under the projection of the rational divisor associated with the equation

\[
a \tau_{11} + b \tau_{12} + c \tau_{22} + d (\tau_{12}^2 - \tau_{11} \tau_{22}) + e = 0,
\]

with integers \(a, b, c, d, e\) satisfying \(\Delta = b^2 - 4ac - 4de\) and \(\tau = \left(\frac{\tau_{11}}{\tau_{12}}, \frac{\tau_{12}}{\tau_{22}} \right) \in \mathbb{H}_2\). The following was proven by Birkenhake and Wilhelm [7]:

Theorem 1.2 For \(\delta \in \mathbb{N}\), the Humbert surface \(\mathcal{H}_{\mathcal{S}_2}\) is the locus of principally polarized abelian surfaces \((\mathcal{A}, \mathcal{L}) \in \mathcal{A}_2\) admitting an isogeny of degree \(\delta^2\), given by

\[
\Phi : \left(\mathcal{E}_1 \times \mathcal{E}_2, \mathcal{O}_{\mathcal{E}_1}(\delta) \otimes \mathcal{O}_{\mathcal{E}_2}(\delta) \right) \rightarrow (\mathcal{A}, \mathcal{L}),
\]

where \(\mathcal{O}_{\mathcal{E}_i}(\delta)\) is a line bundle of degree \(\delta\) on an elliptic curve \(\mathcal{E}_i\) for \(l = 1, 2\).

The Humbert surface \(\mathcal{H}_1\) is irreducible. In order to underscore this point, we shall refer to it as \(\mathcal{H}_1\). It is the image, under the period projection, of the rational divisor associated to \(\tau_{12} = 0\). The Humbert surface \(\mathcal{H}_4\) has two irreducible components, one of which is \(\mathcal{H}_1\). We shall denote the second component by \(\mathcal{H}_4\). This is the image of the divisor corresponding to \(\tau_{11} - \tau_{22} = 0\). Moreover, the singular locus of \(\mathcal{A}_2\) is given by \(\mathcal{H}_4 = \mathcal{H}_1 \cup \mathcal{H}_4\). As analytic spaces, \(\mathcal{H}_1\) and \(\mathcal{H}_4\) are each isomorphic to the Hilbert modular surface

\[
\left((\text{SL}_2(\mathbb{Z}) \times \text{SL}_2(\mathbb{Z})) / \mathbb{Z}_2 \right) \setminus (\mathbb{H} \times \mathbb{H}).
\]

For a detailed introduction to Siegel modular forms relative to \(\Gamma_2\), Humbert surfaces, and the Satake compactification of the Siegel modular threefold, we refer the reader to Freitag’s book [20]. Igusa proved [33,34] that the ring of modular forms is generated by the Siegel modular forms \(\psi_4, \psi_6, \chi_{10}, \chi_{12}\) and by one more cusp form \(\chi_{35}\) of odd weight 35 whose square is the following polynomial [33, p.849] in the even generators

\[
\chi_{35}^2 = \frac{1}{121339} \chi_{10} \left(2^{24} 3^{15} \chi_{12} - 213^3 9^4 \psi_4^2 \chi_{12} - 213^3 9^4 \psi_6^2 \chi_{12} + 3^3 \psi_4^5 \chi_{12}
- 2 \cdot 3^2 \psi_4^4 \psi_6^2 \chi_{12} - 21^4 3^8 \psi_4 \psi_6 \chi_{12} - 23^3 12^5 \psi_4 \chi_{10} \chi_{12}^3 + 3^3 \psi_4 \chi_{12}
+ 21^{11} 3^6 37 \psi_4^4 \chi_{10} \chi_{12} + 21^{11} 3^6 5 \cdot 7 \psi_4 \psi_6 \chi_{10} \chi_{12} - 23^3 9^5 3^3 \psi_6 \chi_{10} \chi_{12}
- 3^2 \psi_4^2 \chi_{10} \chi_{12} + 2 \cdot 3^2 \psi_4^2 \psi_6^2 \chi_{10} \chi_{12} + 21^{11} 3^5 5 \cdot 19 \psi_4^3 \psi_6 \chi_{10} \chi_{12}
+ 2^{20} 3^8 5^3 11 \psi_4^2 \chi_{10} \chi_{12} - 3^2 \psi_4 \psi_6 \chi_{10} \chi_{12} + 21^{11} 3^5 5^2 \psi_6 \chi_{10} \chi_{12}
- 2 \psi_6^2 \psi_6 \chi_{10} + 21^{11} 3^4 \psi_4 \psi_6 \chi_{10} \chi_{12} + 2^2 \psi_4^2 \psi_6^2 \chi_{10} \chi_{12} + 21^{11} 3^4 5^2 \psi_4 \psi_6 \chi_{10} \chi_{12}
+ 2^{21} 3^7 5^4 \psi_6 \chi_{10} \chi_{12} - 2 \psi_6^5 \chi_{10} + 2^2 3^9 5^5 \chi_{10} \chi_{12} \right).
\]

Hence, the expression \(Q := 21^2 3^9 \chi_{35}^2 / \chi_{10}\) is a polynomial of degree 60 in the even generators. Igusa also proved that each Siegel modular form (with trivial character) of odd weight is divisible by the form \(\chi_{35}\). The following fact is well known [23]:

Proposition 1.3 The vanishing divisor of the cusp form \(\chi_{10}\) is the Humbert surface \(\mathcal{H}_1\), i.e., a period point \(\tau\) is equivalent to a point with \(\tau_{12} = 0\) relative to \(\Gamma_2\) if and only if \(\chi_{10}(\tau) = 0\). The vanishing divisor of \(Q\) is the Humbert surface \(\mathcal{H}_4\), i.e., a period point \(\tau\) is equivalent to a point with \(\tau_{11} = \tau_{22}\) relative to \(\Gamma_2\) if and only if \(Q = 0\).
It is known that one has $\chi_{10}(\tau) = 0$ if and only if the principally polarized abelian surface A is a product of two elliptic curves $A = E_{11} \times E_{22}$ with the transcendental lattice $T_A = H \oplus H$; see [39]. Here, H denotes the lattice \mathbb{Z}^2 with quadratic form $q(v) = 2v_1v_2$. Moreover, for $Q(\tau) = 0$ the transcendental lattice of the corresponding abelian surface A is given by $T_A = H \oplus (2) \oplus (-2)$. Here, (m) denotes the rank-one lattice $\mathbb{Z}v$ with $q(v) = m$. Similarly, the locus of A_2 corresponding to abelian surfaces A with transcendental lattice $T_A = H \oplus (4) \oplus (-4)$ is a surface $\mathcal{H}_{16} \subset A_2$, which is a special irreducible component of \mathcal{H}_{16}.

1.3 Components of the Humbert surface $\mathcal{H}_4(2)$

The ring of invariants of binary sextics is generated by the so-called Igusa–Clebsch invariants (I_2, I_4, I_6, I_{10}) which were studied in [47, p.319] and also in [32, p.17]. Igusa [33, p.848] proved that the relations between the Igusa invariants of a binary sextic $Y^2 = f_6(X, Z)$ defining a smooth genus-two curve C and the even Siegel modular forms for the associated principally polarized abelian surface $A = \text{Jac}(C)$ with period matrix τ are as follows:

\[
\begin{align*}
I_2(f_6) &= -2^3 \cdot 3 \frac{X_{12}(\tau)}{\chi_{10}(\tau)} , \\
I_4(f_6) &= 2^2 \psi_4(\tau) , \\
I_6(f_6) &= \frac{-2^3}{3} \psi_6(\tau) - 2^5 \frac{\psi_4(\tau) \chi_{12}(\tau)}{\chi_{10}(\tau)} , \\
I_{10}(f_6) &= -2^{14} \chi_{10}(\tau) \neq 0 .
\end{align*}
\]

(1.11)

Here, the Igusa invariant I_{10} is the discriminant of the sextic $f_6(X, Z)$ and we are using the same normalization as in [39,43].

1.3.1 Sextics with extra involution

Bolza [8] described the possible automorphism groups of genus-two curves defined by sextics. In particular, he proved that a sextic curve $Y^2 = f_6(X, Z)$ defining a genus-two curve C_0 admits an elliptic involution if and only if $Q(\tau) = 0$. Moreover, he proved that one can always represent this extra involution as $[X : Y : Z] \mapsto [-X : Y : Z]$. It follows that the smooth sextic curve C_0 with extra involution can be brought into the normal form given by

\[
C_0 : \quad Y^2 = X^6 + s_1 X^4 Z^2 + s_2 X^2 Z^4 + Z^6 .
\]

(1.12)

One uses Eqs. (1.11) and (1.10) to check that $Q = 2^{12} 3^9 X_{30}^2 / \chi_{10}$ always vanishes for the genus-two curve C_0.

Given the elliptic involution $[X : Y : Z] \mapsto [-X : Y : Z]$ on C_0, its composition with the hyperelliptic involution defines a second elliptic involution. Thus, the elliptic involutions on C_0 come naturally in pairs. The two involutions define two elliptic subfields of degree two for the function field of C_0. We introduce the elliptic curves E_l in $\mathbb{P}^2 = \mathbb{P}(x_l, y_l, z_l)$ for $l = 1, 2$, given by

\[
E_1 : \quad y_1^2 z_1 = x_1^3 + s_2 x_1^2 z_1 + s_1 x_1 z_1^2 + z_1^3 , \quad E_2 : \quad y_2^2 z_2 = x_2^3 + s_1 x_2^2 z_2 + s_2 x_2 z_2^2 + z_2^3 ,
\]

(1.13)

where E_1 and E_2 have the j-invariants $j_1 = j(E_1)$ and $j_2 = j(E_2)$ with

\[
\begin{align*}
 j_1 &= \frac{2^8 (3s_1 - s_2)^3}{4 (s_1^3 + s_2^3) - (s_1 s_2)^2 - 18s_1 s_2 + 27} , \\
 j_2 &= \frac{2^8 (3s_2 - s_1)^3}{4 (s_1^3 + s_2^3) - (s_1 s_2)^2 - 18s_1 s_2 + 27} .
\end{align*}
\]

(1.14)
respectively. Here, we use the standard normalization of the j-invariant where the square torus with the complex structure i satisfies $j = 1728 = 12^3$. The degree-two quotient maps $\pi_{E_i} : C_0 \to E_i$ associated with the involutions are given by

$$
\pi_{E_1} : C_0 \to E_1, \quad [X : Y : Z] \mapsto [x_1 : y_1 : z_1] = \left[XZ^2 : Y : X^3 \right], \quad (1.15)
$$

and

$$
\pi_{E_2} : C_0 \to E_2, \quad [X : Y : Z] \mapsto [x_2 : y_2 : z_2] = \left[X^2Z : Y : Z^3 \right], \quad (1.16)
$$

respectively, for $XZ \neq 0$.

At this point, a diagram of the $(\mathbb{Z}/2\mathbb{Z})^2$-covering might be helpful. Assume that the genus-two curve C_0 is given by $Y^2 = (X^2 - aZ^2)(X^2 - bZ^2)(X^2 - cZ^2)$ so that the Weierstrass points are again paired by a change of sign. On C_0 we have the involutions $j_1(X, Y, Z) = (X, Y, -Z)$ and $j_2(X, Y, Z) = (X, -Y, -Z)$, and the corresponding quotients are $E_1 : y_1^2z_1 = (a^2x_1 - z_1)(b^2x_1 - z_1)(c^2x_1 - z_1)$ and $E_2 : y_2^2z_2 = (x_2 - a^2z_2)(x_2 - b^2z_2)(x_2 - c^2z_2)$, respectively. We then obtain the diagram in Fig. 1. The five points on $\mathbb{P}(x_1, z_1)$ that determine the cover maps are $[[0 : 1], [a^2 : 1], [b^2 : 1], [c^2 : 1], [1 : 0]]$ (and similar on $\mathbb{P}(x_2, z_2)$).

Let us state a closing proposition summarizing the main facts in this section:

Proposition 1.4 A point $\mathcal{M}_2 \subset \mathcal{A}_2$ lies in \mathcal{H}_4 if and only if the associated genus-two curve can be described as in Eq. (1.12). In this case, Fig. 1 gives the corresponding isogeny.

1.3.2 Pringsheim decomposition

Next, we look at the irreducible components of the inverse image of \mathcal{H}_4 in $\mathcal{A}_2(2)$ which we denote by $\mathcal{H}_4(2)$. We start with a smooth genus-two curve C in Rosenhain form given by Eq. (1.1). We use the aforementioned relations between the Igusa invariants and the Siegel modular forms to expand the generators of the ring of modular forms in terms of the Rosenhain roots. We obtain

$$
\frac{-22\lambda_{35}(\tau)}{\lambda_{10}(\tau)} = \frac{1}{\lambda_1 - \lambda_2 \lambda_3} \left(\frac{\lambda_1 - \lambda_3}{\lambda_1 - \lambda_2} \right)^2 \left(\frac{\lambda_2 - \lambda_3}{\lambda_2 - \lambda_1} \right)^2 \left(\frac{\lambda_3 - \lambda_1 \lambda_2}{\lambda_3 - \lambda_1 \lambda_3} \right)^2 \left(\frac{\lambda_1 \lambda_2 - \lambda_1 \lambda_3}{\lambda_1 \lambda_2 - \lambda_1 \lambda_2} \right)^2
$$

$$
\times \left(\frac{\lambda_1 - \lambda_2 - \lambda_3 + \lambda_2 \lambda_3}{\lambda_1 - \lambda_2 - \lambda_3 + \lambda_2 \lambda_3} \right)^2 \left(\frac{\lambda_1 + \lambda_2 - \lambda_3 + \lambda_1 \lambda_3}{\lambda_1 + \lambda_2 - \lambda_3 + \lambda_1 \lambda_3} \right)^2 \left(\frac{\lambda_2 + \lambda_3 - \lambda_1 - \lambda_1 \lambda_3}{\lambda_2 + \lambda_3 - \lambda_1 - \lambda_1 \lambda_3} \right)^2
$$

$$
\times \left(\frac{\lambda_1 \lambda_2 + \lambda_1 \lambda_3 - \lambda_2 \lambda_3 - \lambda_1 \lambda_2}{\lambda_1 \lambda_2 + \lambda_1 \lambda_3 - \lambda_2 \lambda_3 - \lambda_1 \lambda_2} \right)^2 \left(\frac{\lambda_1 \lambda_2 + \lambda_2 \lambda_3 - \lambda_1 \lambda_3 - \lambda_1 \lambda_2}{\lambda_1 \lambda_2 + \lambda_2 \lambda_3 - \lambda_1 \lambda_3 - \lambda_1 \lambda_2} \right)^2
$$

$$
\times \left(\frac{\lambda_1 \lambda_2 - \lambda_1 - \lambda_3 + \lambda_1 \lambda_2}{\lambda_1 \lambda_2 - \lambda_1 - \lambda_3 + \lambda_1 \lambda_2} \right)^2 \left(\frac{\lambda_1 \lambda_2 - \lambda_1 - \lambda_3 + \lambda_1 \lambda_2}{\lambda_1 \lambda_2 - \lambda_1 - \lambda_3 + \lambda_1 \lambda_2} \right)^2
$$

$$
\times \left(\frac{\lambda_1 \lambda_2 - \lambda_1 \lambda_3 + \lambda_1 \lambda_2}{\lambda_1 \lambda_2 - \lambda_1 \lambda_3 + \lambda_1 \lambda_2} \right)^2 \left(\frac{\lambda_1 \lambda_2 - \lambda_1 \lambda_3 + \lambda_1 \lambda_2}{\lambda_1 \lambda_2 - \lambda_1 \lambda_3 + \lambda_1 \lambda_2} \right)^2.
$$
Proposition 1.5

There are exactly 15 components of $H_4(2)$ in $A_2(2)$, given in Table 1. Each of the components is equivalent to $\tau_{11} = \tau_{22}$ relative to the modular group Γ_2. Moreover, there is a transposition of the six roots $(\lambda_1, \lambda_2, \lambda_3, 0, 1, \infty)$ in $\Gamma_2/\Gamma_2(2) \cong S_6$ that permutes each pair of components.

Remark 1.6

In Table 1, for each entry the equation of a rational divisor in \mathbb{H}_2 is given whose projection to $\mathbb{H}_2/\Gamma_2(2)$ realizes a component in Proposition 1.5. The corresponding vanishing divisor in terms of the Rosenhain roots is given as well. The group names (I, II, III, IV) were introduced by Pringsheim, and they are colored to match the corresponding terms in Eq. (1.17).

1.3.3 Normal forms with level-two structure

We will use component (I) in Proposition 1.5 to construct a smooth genus-two curve in Rosenhain normal form admitting an elliptic involution. We consider the smooth genus-two curve C_0, given by

$$C_0 : \quad Y^2 = X^3 + (X - \lambda_2 \lambda_3 Z)(X - \lambda_2 Z)(X - \lambda_3 Z),$$

with a discriminant given by

$$\lambda_2^5 \lambda_3^6 (\lambda_2 - 1)^4 (\lambda_3 - 1)^4 (\lambda_2 \lambda_3 - 1)^4 (\lambda_2 - \lambda_3)^2.$$

Equation (1.18) makes all Weierstrass points rational and moves them into ‘standard’ position, which is equivalent to choosing one of the 15 components in Proposition 1.5. In

We corrected two minor typos in the statement of the main theorem.
Sect. 1.3.4, we will also consider another normal form for \(C_0 \) that is based on the sextic with elliptic involution in Eq. (1.12).

Let us denote by \(\Lambda_l \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) the modular parameter for the elliptic curves \(E_l \) in \(\mathbb{P}^2 = \mathbb{P}(x_l, y_l, z_l) \) for \(l = 1, 2 \) defined by the Legendre normal form

\[
E_l : \ y_l^2 z_l = x_l \left(x_l - z_l \right) \left(x_l - \Lambda_l z_l \right),
\]

with the hyperelliptic involution given by \(\iota_{E_l} : [x_l : y_l : z_l] \mapsto [x_l : -y_l : z_l] \). We have the following:

Lemma 1.7 The function field of the smooth genus-two curve \(C_0 \) contains the subfields given by the function fields of the elliptic curves \(E_l \) for \(l = 1, 2 \) if

\[
\Lambda_1 \Lambda_2 = \frac{(\lambda_2 + \lambda_3)^2 - 4\lambda_2 \lambda_3}{(1 - \lambda_2)^2(1 - \lambda_3)^2}, \quad \Lambda_1 + \Lambda_2 = -\frac{2(\lambda_2 + \lambda_3)}{(1 - \lambda_2)(1 - \lambda_3)}. \tag{1.21}
\]

Proof The genus-two curve in Bolza normal form in Eq. (1.12) is isomorphic to Rosenhain curve in Eq. (1.18) if we set

\[
\lambda_2 = \frac{(\mu^2 v + 1)(\mu - v)}{(\mu^2 v - 1)(\mu + v)}, \quad \lambda_3 = \frac{(\mu^2 v - 1)(\mu - v)}{(\mu^2 v + 1)(\mu + v)}, \tag{1.22}
\]

and

\[
s_1 = \mu^2 + v^2 + \frac{1}{\mu^2 v^2}, \quad s_2 = \frac{1}{\mu^2} + \frac{1}{v^2} + \mu^2 v^2, \tag{1.23}
\]

for \(\mu, v \in \mathbb{C}^* \) such that \((\mu^2 - v^2)(\mu^4 v^2 - 1) \neq 0 \). This statement is proved by computing the Igusa–Clebsch invariants, using the normalization in [39,43]. Denoting the Igusa–Clebsch invariants of the genus-two curve in Eqs. (1.18) and (1.12) by \([I_2 : I_4 : I_6 : I_{10}] \in \mathbb{WP}_{(2,4,6,10)} \) and \([I'_2 : I'_4 : I'_6 : I'_{10}] \), respectively, one checks that

\[
[I_2 : I_4 : I_6 : I_{10}] = [s^2 I'_2 : s^4 I'_4 : s^6 I'_6 : s^{10} I'_{10}] = [I'_2 : I'_4 : I'_6 : I'_{10}], \quad \tag{1.24}
\]

with \(s \in \mathbb{C}^* \). The remainder of the proof follows from computing the \(j \)-invariants for the curves in Eq. (1.20) and comparing them with Eq. (1.14). The solution of Eq. (1.21), up to interchanging \(\Lambda_1 \leftrightarrow \Lambda_2 \), is then given by

\[
\Lambda_1 = -\frac{-\mu^2 + v^2}{\mu^4 v^4 - \mu^2}, \quad \Lambda_2 = -\frac{-\mu^4 v^4 + \mu^2 v^4}{\mu^4 v^4 - 1}, \tag{1.25}
\]

and \(j(E_1) = j_1 \) and \(j(E_2) = j_2 \) in Eq. (1.14). \(\square \)

We have the following:

Proposition 1.8 Assume that \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) satisfy \(\lambda_2 \neq \lambda_3 \neq \lambda_3^{-1} \), and the moduli of the curves \(C_0 \) and \(E_l \) in Eqs. (1.18) and (1.20) satisfy Eq. (1.21). Quotient maps \(\pi_{E_l} : C_0 \to E_l \) for \(l = 1, 2 \) are given by

\[
\pi_{E_l} : \quad C_0 \to E_l, \quad \left[X : Y : Z \right] \mapsto \left[x_l : y_l : z_l \right] \text{ for } l = 1, 2, \tag{1.26}
\]

with

\[
\left[x_l : y_l : z_l \right] = \left[r(X - \lambda_2 Z)(X - \lambda_3 Z) \right] XZ : \left[X - (-1)^l qZ \right] Y : r^2 X^2 Z^2, \tag{1.27}
\]

for \(XZ \neq 0 \), and \(\left[x_l : y_l : z_l \right] = [1 : 0 : 0] \) otherwise. Here, \(q, r \) are square roots of \(q^2 = \lambda_2 \lambda_3 \) and \(r^2 = (1 - \lambda_2)(1 - \lambda_3) \), respectively. The elliptic involutions \(\iota_l \) on \(C_0 \), given by

\[
\iota_l : \quad \left[X : Y : Z \right] \mapsto \left[\lambda_2 \lambda_3 Z : (-1)^l \lambda_2 \lambda_3 qY : X \right], \tag{1.28}
\]
The genus-two curve \(C_0 \) in Eq. (1.18) is assumed to be smooth. Thus, one must have \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) and \(\lambda_2 \neq \lambda_3^{\pm 1} \). The remainder of the proof follows by explicit computation. We note that a choice of square root for \(r \) is changed by composing \(\pi_{E_l} \) with the elliptic involution on \(E_1 \). The choice of square root for \(q \) is changed by interchanging \(\pi_{E_1} \leftrightarrow \pi_{E_2} \).

In the context of hyperelliptic period integrals, the construction of the rational double covers is known as the (classical) *Jacobi reduction* of a genus-two curve with elliptic involution [45]. We note that we are using component (I) in Proposition 1.5 to construct smooth normal forms for the genus-two curve in Rosenhain normal form and its elliptic subfields representing a specific divisor of \(\mathcal{H}_4(2) \subset \mathcal{A}_2(2) \):

Remark 1.9 Using a covering space of component (I) in Proposition 1.5, given by the set of tuples \((k_1, k_2) \) with \(\lambda_l = k_l^2 \) for \(l = 2, 3 \) and \(\lambda_1 = (k_2 k_3)^2 \), we obtain for the modular parameters of the elliptic-curve quotients \(E_l \) in Lemma 1.7 the following algebraic solutions of Eq. (1.21):

\[
\Lambda_1 = -\frac{(k_2 - k_3)^2}{(1 - k_2^2)(1 - k_3^2)}, \quad \Lambda_2 = -\frac{(k_2 + k_3)^2}{(1 - k_2^2)(1 - k_3^2)}. \tag{1.29}
\]

A change of square roots \((k_2, k_3) \mapsto (\pm k_2, \pm k_3) \) leaves Eq. (1.29) invariant, whereas the change \((k_2, k_3) \mapsto (\pm k_2, \mp k_3) \) interchanges \(\Lambda_1 \) and \(\Lambda_2 \). This means that the elliptic curves \(E_l \) with level-two structure can be constructed over \(\mathbb{Q}(k_2, k_3) \) as a finite field extension of \(\mathbb{Q}(\Lambda_1, \Lambda_2) \).

1.3.4 Legendre’s gluing construction

In this section, we construct an explicit model for \(C_0 \) over \(\mathbb{Q}(\Lambda_1, \Lambda_2) \) for elliptic curves in Legendre normal form (1.20) with modular parameters \(\Lambda_1, \Lambda_2 \). This is often referred to as Legendre’s gluing method.

The Weierstrass points \(P_l \) of the curve \(C_0 \) in Eq. (1.18), given by

\[
P_1 = [2\lambda_2 \lambda_3 : 0 : 1], \quad P_2 = [\lambda_2 : 0 : 1], \quad P_3 = [\lambda_3 : 0 : 1],
\]

\[
P_4 = [0 : 0 : 1], \quad P_5 = [1 : 0 : 1], \quad P_6 = [1 : 0 : 0],
\]

are the fixed points of the hyperelliptic involution \(\iota_{C_0} \). The two elliptic involutions \(j_l \) in Eq. (1.28) for \(l = 1, 2 \) (each) pairwise interchange the Weierstrass points, i.e.,

\[
j_1: \quad P_2 \leftrightarrow P_3, \quad P_1 \leftrightarrow P_5, \quad P_4 \leftrightarrow P_6. \tag{1.31}
\]

The points \(Q_{t, \pm} \), given by

\[
Q_{1, \pm} = [-q : \pm iq^{\frac{3}{2}}(k_2 k_3 + 1)(k_2 + k_3) : 1],
\]

\[
Q_{2, \pm} = [q : \pm q^{\frac{3}{2}}(k_2 k_3 - 1)(k_2 - k_3) : 1], \tag{1.32}
\]

are the ramification points of \(\pi_{E_l} \) in Eq. (1.26) for \(l = 1 \) and \(l = 2 \), respectively. The involution \(j_1 \) fixes the points \(Q_{1, +} \) and \(Q_{1, -} \), and interchanges the points \(Q_{2, +} \leftrightarrow Q_{2, -} \).

An analogous statement holds for the involution \(j_2 \). The hyperelliptic involution of the curve \(C_0 \) interchanges the elements of the two pairs simultaneously, i.e., \(\iota_{C_0} : Q_{l, +} \leftrightarrow Q_{l, -} \) for \(l = 1, 2 \).

The pairs \(\{P_2, P_3\}, \{P_1, P_5\}, \{Q_{2, +}, Q_{2, -}\}, \) and \(\{P_4, P_6\} \) are mapped by \(\pi_{E_l} \) to the two-torsion points \(p_0 : [x_1 : y_1 : z_1] = [0 : 0 : 1], \quad p_1 : [1 : 0 : 1], \quad p_{\Lambda_1} : [\Lambda_1 : 0 : 1], \) and
the identity $p_\infty : [1 : 0 : 0]$ in $\mathcal{E}_t[2]$. Similarly, the pairs $\{P_2, P_3\}$, $\{P_1, P_5\}$, $\{Q_{1, +}, Q_{1, -}\}$, and $\{P_3, P_6\}$ are mapped by π_{E_t} to the two-torsion points $p_0 : [x_2 : y_2 : z_2] = [0 : 0 : 1]$, $p_1 : [1 : 0 : 1]$, $p_{\Lambda_2} : [\Lambda_2 : 0 : 1]$, and the identity $p_\infty : [1 : 0 : 0]$ in $\mathcal{E}_t[2]$.

We associate with the branch locus of π_{E_t} and π_{E_2} the effective divisor of degree two

$$B_1 = [\pi_{E_1}(Q_{1, +}) + \pi_{E_1}(Q_{1, -})]$$

on E_t and $B_2 = [\pi_{E_2}(Q_{2, +}) + \pi_{E_2}(Q_{2, -})]$ on E_2, respectively.

One checks that for $\pi_{E_1}(Q_{1, +})$ one has $[x_1 : z_1] = [\Lambda_2 : 1]$, and for $\pi_{E_2}(Q_{2, +})$ one has $[x_2 : z_2] = [\Lambda_1 : 1]$. Because of Pic$^0(E_t) \cong E_t$, the line bundle $\mathcal{O}_{E_t}(B_t)$ associated with the branch locus B_t is equivalent to the line bundle $\mathcal{O}_{E_t}(2p_\alpha)$ if and only if

$$\pi_{E_t}(Q_{1, +}) \oplus \pi_{E_t}(Q_{1, -}) = 2p_\alpha = p_\alpha \oplus p_\alpha,$$

(1.33)

where \oplus refers to the addition with respect to the elliptic-curve group law on E_t. Using the properties π_{E_t} in Eq. (1.26), one finds that

$$\pi_{E_t}(Q_{1, +}) \oplus \pi_{E_t}(Q_{1, -}) = 0,$$

(1.34)

and $p_\alpha \in E_t[2]$ is a two-torsion point. Thus, there are four line bundles $\mathcal{L}_l \to \mathcal{E}_t$ such that $\mathcal{L}_l^{\oplus 2} \cong \mathcal{O}_{E_t}(B_t)$, namely $\mathcal{L}_1 \cong \mathcal{O}_{E_t}(p_\alpha)$. It follows $h^0(E_t, \mathcal{L}_l) = 1$ by the Riemann–Roch theorem. Thus, the preimage of the vanishing locus of a section of \mathcal{L}_l on E_t determines a unique double cover $p_l : \mathcal{C}_0 \to \mathcal{E}_t$. The composition on \mathcal{C}_0 of the elliptic involution with the hyperelliptic involution defines a second elliptic involution, and a second elliptic-curve quotient is obtained. Thus, the data $(E_t, \mathcal{L}_l, B_t)$ for either $l = 1$ or $l = 2$ determine the curve \mathcal{C}_0 uniquely. As we have seen, these data are equivalent to an (unordered) pair $\{\Lambda_1, \Lambda_2\}$ of modular parameters $\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ with $\Lambda_1 \neq \Lambda_2$. Following Serre’s explanation [54, Sec. 27] of Legendre’s gluing method we obtain:

Proposition 1.10 Assume that $\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\Lambda_1 \neq \Lambda_2$, and the moduli of \mathcal{C}_0 and E_t in Eqs. (1.18) and (1.20) satisfy Eq. (1.21). The smooth genus-two curve, given by

$$\tilde{\mathcal{C}}_0 : \quad Y^2 = \left(X^2 - Z^2\right) \left(X^2 - \frac{\Lambda_1}{\Lambda_2} Z^2\right) \left(X^2 - \frac{1 - \Lambda_1}{1 - \Lambda_2} Z^2\right),$$

(1.35)

is isomorphic to \mathcal{C}_0 over a finite field extension of $\mathbb{Q}(\lambda_2, \lambda_3)$. The curve is also isomorphic to each of the curves obtained by replacing $\{\Lambda_1, \Lambda_2\}$ in Eq. (1.35) by one of the following pairs:

$$\left\{\begin{array}{c} \frac{1}{1 - \Lambda_1}, \frac{1}{1 - \Lambda_2} \\
\frac{\Lambda_1 - 1}{\Lambda_1}, \frac{\Lambda_2 - 1}{\Lambda_2}
\end{array}\right\},
\left\{\begin{array}{c} \frac{1}{\Lambda_1}, \frac{1}{\Lambda_2} \\
\frac{\Lambda_1}{1 - \Lambda_1}, \frac{\Lambda_2}{1 - \Lambda_2}
\end{array}\right\},
\left\{1 - \Lambda_1, 1 - \Lambda_2\right\}.$$

(1.36)

Proof Using Remark 1.9 and denoting the Igusa–Clebsch invariants of any two pairs genus-two curves in the statement of Proposition 1.10 by $[I_2 : I_4 : I_6 : I_{10}] \in \mathbb{W}P(2,4,6,10)$ and $[I_2' : I_4' : I_6' : I_{10}']$, respectively, one checks that

$$[I_2 : I_4 : I_6 : I_{10}] = [s^6I_2 : s^4I_4 : s^6I_6 : s^{10}I_{10}] = [I_2' : I_4' : I_6' : I_{10}']$$

(1.37)

with $s \in \mathbb{Q}(\lambda_2, \lambda_3, \sqrt{\lambda_2\lambda_3})$. □

The anharmonic group is the group acting on the Λ-line of an elliptic curve in Legendre form (which is $A_1(2)$) that is generated by the transformations $\Lambda \mapsto 1 - \Lambda$, $\Lambda/(\Lambda - 1)$. The six pairs, given by $\{\Lambda_1, \Lambda_2\}$ and Eq. (1.36), form an orbit under the diagonal action of the anharmonic group. We have the following:
Corollary 1.11 Assume that $\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy
\[
\Lambda_1 \not\in \left\{ \frac{1}{\Lambda_2}, \frac{1}{1-\Lambda_2}, \frac{\Lambda_2 - 1}{\Lambda_2}, \frac{\Lambda_2}{\Lambda_2 - 1}, \frac{1}{\Lambda_2}, \frac{\Lambda_2}{1-\Lambda_2}, \frac{2}{\Lambda_2 - 1}, \frac{1}{\Lambda_2}, \frac{\Lambda_2}{1-\Lambda_2} \right\}. \tag{1.38}
\]
Using $\{\Lambda_1, \Lambda_2\}$ and the pairs
\[
\left\{ \frac{1}{\Lambda_1 - 1}, \frac{1}{\Lambda_2} \right\}, \left\{ \frac{1}{\Lambda_1 - 1}, \frac{\Lambda_1 - 2}{\Lambda_2} \right\}, \left\{ \frac{1}{\Lambda_1 - 1}, \frac{\Lambda_1}{\Lambda_2} \right\}, \left\{ \frac{1}{\Lambda_1 - 1}, \frac{\Lambda_1}{\Lambda_2 - 1} \right\}, \left\{ \Lambda_1, 1 - \Lambda_2 \right\}, \left\{ \Lambda_1, 1 - \Lambda_2 \right\}, \tag{1.39}
\]
one obtains six smooth genus-two curves \tilde{C}_0 admitting an elliptic involution whose quotients $(\mathcal{E}_1, \mathcal{E}_2)$ are pairwise isomorphic and are given by Eq. (1.20). Generically, the six curves are non-isomorphic and satisfy $\text{Jac}(\tilde{C}_0) \in \mathcal{H}_4$.

Proof The proof follows from an explicit computation similar to the one in the proof of the previous proposition.

1.3.5 Relation to G"opel groups

Since the Picard group $\text{Pic}^0(C_0) \cong \text{Jac}(C_0)$ consists of elements of the form $[P + Q - 2P_0]$ for $P, Q \in C_0$, an isogeny Ψ of abelian surfaces is defined by setting
\[
\Psi : \text{Jac}(C_0) \to \mathcal{E}_1 \times \mathcal{E}_2, \quad [P + Q - 2P_0] \mapsto \left(\pi_{\mathcal{E}_1}(P) \oplus \pi_{\mathcal{E}_2}(Q), \pi_{\mathcal{E}_2}(P) \oplus \pi_{\mathcal{E}_1}(Q) \right). \tag{1.40}
\]
It follows from the construction of the line bundles $\mathcal{L}_i \to \mathcal{E}_i$ in Sect. 1.3.4 that the line bundle $\mathcal{L} \to A = \text{Jac}(C_0)$ associated with the principal polarization of A satisfies $\mathcal{L} \cong \Psi^*(\mathcal{L}_1 \boxtimes \mathcal{L}_2)$. The elliptic involutions j_l on C_0 extend to involutions on the Jacobian $A = \text{Jac}(C_0)$ that coincide on $A[2]$. We denote this induced involution on $A[2]$ by $j : A[2] \to A[2]$.

Given the marking $(P_1, \ldots, P_6) = (\lambda_1 = 1, \lambda_2, \lambda_3, 0, 1, \infty)$ of the Weierstrass points for the curve C_0, we have the following:

Proposition 1.12 In the situation above, the kernel of $\Psi : A = \text{Jac}(C_0) \to \mathcal{E}_1 \times \mathcal{E}_2$ is given by the G"opel group
\[
\ker \Psi = \left\{ P_0, P_{15}, P_{23}, P_{46} \right\} \cong (\mathbb{Z}/2\mathbb{Z})^2 \subset A[2]. \tag{1.41}
\]
In particular, Ψ is a $(2, 2)$-isogeny and $A' = A/\ker \Psi \cong \mathcal{E}_1 \times \mathcal{E}_2$ with $T_{A'} = H \oplus H$.

Proof The induced actions of the two elliptic involutions j_l on $\text{Jac}(C_0)$ fix the divisors P_{15}, P_{23}, P_{46}, and $[Q_{l_1} + Q_{l_2} - 2P_0]$. It follows from the explicit formulas for $\pi_{\mathcal{E}_l}$ in Proposition 1.8 that $[P + Q - 2P_0] \in \ker \Psi$ if and only if $P, Q \in A[2]$ and $j_l(P) = Q$ for $l = 1, 2$. For A', we have $\chi_{10} = 0$ whence A' is a product of two elliptic curves with the transcendental lattice $T_{A'} = H \oplus H$; see [39].

The remaining G"opel groups fall within two cases: The first case consists of six G"opel groups such that the involution j fixes one non-trivial element and interchanges the other two. These groups are given by
\[
\left\{ P_0, P_{12}, P_{15}, P_{23}, P_{46} \right\}, \left\{ P_0, P_{13}, P_{25}, P_{46} \right\}, \left\{ P_0, P_{14}, P_{23}, P_{56} \right\}, \tag{1.42}
\]
By construction, each of them contains one non-trivial element from the special G"opel group $\{P_0, P_{15}, P_{23}, P_{46}\}$ that yields the quotient $\mathcal{E}_1 \times \mathcal{E}_2$. We have the following:
Proposition 1.13 For each Göpel group G in Eq. (1.42), the abelian surface $A' = A/G$ satisfies $A' = \text{Jac}(C'_0)$ for some smooth genus-two curve C'_0 admitting an elliptic involution. In particular, we have $\text{Jac}(C'_0) \cong H_4$ and $T_{A'} = H \oplus (2) \oplus (-2)$. The six genus-two curves correspond to the curves in Corollary 1.11 under $(2,2)$-isogeny.

Proof The proof follows by constructing the Richelot curve in Eq. (1.6) and checking that $Q = 0$ in Proposition 1.3 for each Göpel subgroup G_n with $n = 1, \ldots, 6$, in Eq. (1.42). For A', we have $Q = 0$ whence the transcendental lattice of A' is $T_{A'} = H \oplus (2) \oplus (-2)$. □

For the elliptic curve E_i in Eq. (1.20), there are three order-two points that can be used to construct a two-isogenous elliptic curve. Using the order-two point $[x_1 : y_1 : z_1] = [0 : \Lambda_1 : 1]$, one easily obtains an elliptic curves $E_i' \in \mathbb{P}^2$ for $i = 1, 2$, given by

$$E_i' : \quad Y^2 Z_i = X_i \left(X_i^2 + 2(1 - 2\Lambda_1)X_iZ_i + Z_i^2 \right),$$

(1.43)

together with an isogenies $\chi_{E_i} : E_i \rightarrow E_i'$, and its dual two-isogenies χ_{E_i}'. Assuming Eq. (1.21), the two-isogenous elliptic curves can be brought into Legendre normal form, but only over the finite field extension $\mathbb{Q}(k_1, k_2)$. In fact, the elliptic curve E_i' is isomorphic over $\mathbb{Q}(k_1, k_2)$ to the quadratic-twist curve

$$E_i' : \quad Y^2 Z_i = \delta' X_i (X_i - Z_i) (X_i - \Lambda_1' Z_i),$$

(1.44)

where we have set

$$\Lambda_1' = \frac{(k_2 - 1)^2(k_3 + 1)^2}{(k_2 + 1)^2(k_3 - 1)^2}, \quad \Lambda_2' = \frac{(k_2 + 1)^2(k_3 + 1)^2}{(k_2 - 1)^2(k_3 + 1)^2}, \quad \delta' = -(1 - k_2^2)(1 - k_3^2).$$

(1.45)

A change of square roots $(k_2, k_3) \mapsto (\pm k_2, \pm k_3)$ leaves Eq. (1.45) invariant or acts as the modular transformation $\Lambda_1' \mapsto 1/\Lambda_1'$, whereas the change $(k_2, k_3) \mapsto (\mp k_2, \pm k_3)$ in Eq. (1.45) interchanges Λ_1' and Λ_2' (up to a modular transformation). Applying Proposition 1.10, one obtains the common double cover

$$\tilde{C}_0 : \quad Y^2 = \left(X^2 - Z^2 \right) \left(X^2 - \Lambda_1' Z^2 \right) \left(X^2 - 1 - \Lambda_1' Z^2 \right).$$

(1.46)

We have the following:

Proposition 1.14 Assume that $\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\lambda_2 \neq \pm \frac{1}{2}$ and $\lambda_2 \neq -1$, and C_0 is given by Eq. (1.18) with $A = \text{Jac}(C_0)$. The genus-two curve

$$C'_0 : \quad Y^2 = XYZ(X - Z)(X - \mu_2 \mu_3 Z)(X^2 - (\mu_2 + \mu_3)XZ + \mu_2 \mu_3 Z^2),$$

(1.47)

is smooth, admits an elliptic involution, and satisfies $A' \cong A/G$ for $A' = \text{Jac}(C'_0)$ and $G = \{P_0, P_{12}, P_{23}, P_{46}\}$. Here, μ_2, μ_3 are given by

$$\mu_2 = \frac{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 + 2\lambda_2}{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 - 2\lambda_2},$$

$$\mu_3 = \left(\frac{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 + 2\lambda_2}{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 - 2\lambda_2} \right)^2 \left(\frac{(1 + \lambda_2)^2 k_3 + (1 - \lambda_2)(1 - \lambda_3)(\lambda_2 - 1)}{(1 + \lambda_2)^2 k_3 + (1 - \lambda_2)(1 - \lambda_3)(\lambda_2 - 1)} \right).$$

(1.48)

with $k_3^2 = \lambda_3$ and $d^2 = (\lambda_2 - \lambda_3)(\lambda_2 \lambda_3 - 1)$. In particular, the curve C'_0 is isomorphic to \tilde{C}_0 in Eq. (1.46) over a finite field extension of $\mathbb{Q}(\lambda_2, \lambda_3)$.

Remark 1.15 In Eq. (1.48), the sign of k_3 and d can be chosen independently. A change $(k_3, d) \mapsto (\mp k_3, \mp d)$ acts on the Rosenhain roots as $(\mu_2, \mu_3) \mapsto (1/\mu_2, 1/\mu_3)$. The sign
change \((k_3, d) \mapsto (\pm k_3, \mp d)\) acts on the Rosenhain roots as \((\mu_2, \mu_3) \mapsto (\mu_2, \mu_2^2/\mu_3)\) or \((\mu_2, \mu_3) \mapsto (1/\mu_2, \mu_3/\mu_2^2)\). Isomorphic curves are also obtained by interchanging \(\lambda_2 \leftrightarrow \lambda_3, k_2 \leftrightarrow k_3\), and changing \(d \mapsto id\) in Eq. (1.48) (while assuming \(\lambda_3 \neq -1\) instead of \(\lambda_2 \neq -1\)).

Proof The result is obtained by applying the results of [16,17] in the case \(\lambda_1 = \lambda_2 \lambda_3\). In fact, \([16, \text{Prop. 2.1}]\) yields the curve

\[
Y^2 = \left(X - 2(1 + \lambda_2^2)\lambda_3 Z \right) \left(c_2 X^2 + c_1 X Z + c_0 Z^2 \right)
\]

with

\[
c_2 = 1 + \lambda_3 - 2k_3,
\]

\[
c_1 = 2k_3(\lambda_2^2 - 6\lambda_2 + 1)(\lambda_3 + 1) + 8(1 + \lambda_2^2)\lambda_3 k_3,
\]

\[
c_0 = -2^3(\lambda_2^2 + 24\lambda_2^2 - 34\lambda_2 + 24\lambda_2 + 1)(\lambda_3 + 1) + 2\lambda_2^2 + 24\lambda_2 - 5)(5\lambda_2 - 1)k_3.
\]

If in Eq. (1.49) one substitutes

\[
X = 3(1 + \lambda_2^2)\lambda_3 X' - (1 + 6\lambda_2 + \lambda_2^2)\lambda_3 Z', \quad Y = 3\lambda^2(1 + \lambda_2)^2(1 - k_3)Y', \quad Z = Z',
\]

one obtains the curve

\[
(Y')^2 = (X' - Z') \left(X' - \lambda_2^3 \lambda_3 Z' \right) \left((X')^2 - (\lambda_2^3 + \lambda_3^3)X'Z' + \lambda_2^3 \lambda_3^3(Z')^2 \right),
\]

where \(\lambda_2^3, \lambda_3^3\) satisfy

\[
\lambda_2^3 \lambda_3^3 = \frac{4\lambda_2}{(1 + \lambda_2^2)^2}, \quad \lambda_2^3 + \lambda_3^3 = 2 \left(1 - \frac{(1 - \lambda_2)^2(1 + \lambda_3)}{(1 + \lambda_2)^2(1 + \lambda_3 - 2k_3)} \right),
\]

with \(\lambda_3 = k_3^3\). Introducing new moduli \(\mu_2, \mu_3\), given by

\[
(\lambda_2^3, \lambda_3^3) = \left(1 - \mu_2, \frac{1 - \mu_2}{1 - \mu_3} \right) \mapsto (\mu_2, \mu_3) = \left(1 - \lambda_2^3, \frac{1 - \lambda_2^3}{1 - \lambda_3^3} \right),
\]

one obtains an isomorphic curve over \(\mathbb{Q}(\mu_2, \mu_3)\) given by Eq. (1.47). Because of \(\lambda_2 \neq \lambda_3^3\), we have \(d \neq 0\). Since we also assumed \(\lambda_2 \neq -1\), we have \(\mu_2, \mu_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}\) and \(\mu_2 \neq \mu_3^3\) and the curve is smooth.

Denoting the Igusa–Clebsch invariants of the genus-two curves in Eqs. (1.46) and (1.50) by \([I_2 : I_4 : I_6 : I_{10}] \in \mathbb{W}[2,4,6,10] \) and \([I_2' : I_4' : I_6' : I_{10}'] \in \mathbb{W}[2,4,6,10] \), respectively, one checks that

\[
[I_2 : I_4 : I_6 : I_{10}] = \left[s^2 I_2' : s^4 I_4' : s^6 I_6' : s^{10} I_{10}' \right] = \left[I_2' : I_4' : I_6' : I_{10}' \right],
\]

with \(s \in \mathbb{Q}(k_2, k_3)\). □

The last case of Göpel groups to consider consists of four pairs that are pairwise interchanged by the action of the involution \(j\). These groups are given by

\[
\begin{align*}
\left\{ P_0, P_{12}, P_{34}, P_{56} \right\}, & \quad \left\{ P_0, P_{12}, P_{36}, P_{45} \right\}, & \quad \left\{ P_0, P_{13}, P_{24}, P_{56} \right\}, & \quad \left\{ P_0, P_{13}, P_{26}, P_{45} \right\}, \\
\downarrow & \quad \downarrow & \quad \downarrow & \quad \downarrow \\
\left\{ P_0, P_{14}, P_{26}, P_{35} \right\}, & \quad \left\{ P_0, P_{16}, P_{24}, P_{35} \right\}, & \quad \left\{ P_0, P_{14}, P_{25}, P_{36} \right\}, & \quad \left\{ P_0, P_{16}, P_{25}, P_{34} \right\}.
\end{align*}
\]

We have the following:
Proposition 1.16 For each pair of Göpel subgroups G_{\pm} in Eq. (1.54) which are pairwise interchanged by the action of the involution j, the abelian surfaces $A'_{\pm} = A/G_{\pm}$ satisfy $A'_{\pm} \cong \text{Jac}(C'_{0,\pm})$ for some smooth genus-two curves $C'_{0,\pm}$ with $C'_{0,+} \cong C'_{0,-}$ and $\text{Jac}(C'_{0,\pm}) \in \mathcal{H}_{16}$. In particular, we have $T_{A'_{\pm}} = H \oplus (4) \oplus (-4)$.

Proof The proof follows by constructing the Richelot curves $C'_{0,\pm}$ in Eq. (1.54) for each pair of Göpel groups in Eq. (1.54). Denoting the Igusa–Clebsch invariants of the genus-two curves $C_{0,\pm}$ by $[I^+_4 : I^+_6 : I^+_{10}] \in \mathbb{WP}(2,4,6,10)$, one checks that

$$[I^+_2 : I^+_4 : I^+_6 : I^+_{10}] = [I^-_2 : I^-_4 : I^-_6 : I^-_{10}]. \tag{1.55}$$

One then checks by a direct computation that $Q \neq 0$ for each $C'_{0,\pm}$ whence it follows $\text{Jac}(C'_{0,\pm}) \notin \mathcal{H}_4$. Using the $(2,2)$-isogeny Φ from Theorem 1.2, we obtain the following compositions of isogenies

$$E_1 \times E_2 \xrightarrow{\Phi} A = \text{Jac}(C_0) \xrightarrow{\Psi} A'_{n,\pm} = \text{Jac}(C'_{0,\pm}) = A/G_{\pm}. \tag{1.56}$$

Since Ψ is obtained from the projection onto the quotient by a Göpel group, it is a $(2,2)$-isogeny as well. Thus, $\Psi \circ \Phi$ is a $(4,4)$-isogeny. Using Theorem 1.2 once more, it follows that $\text{Jac}(C'_{0,\pm}) \in \mathcal{H}_{16}$. \hfill \square

We have the following:

Corollary 1.17 For a genus-two curve C_0 admitting an elliptic involution, there is exactly one Göpel group $G \leq A[2]$ of $A = \text{Jac}(C_0)$ such that $A/G \cong E_1 \times E_2$ for two elliptic curves E_1, E_2. In particular, G is the unique Göpel group of $A = \text{Jac}(C_0)$ which is fixed under the action of the involution j on $A[2]$.

Remark 1.18 The special Göpel group from Corollary 1.17 has one non-trivial element in common with each Göpel group in Proposition 1.13 whose associated $(2,2)$-isogenous Richelot curve has a Jacobian in \mathcal{H}_4. In contrast, the intersection with each Göpel group in Proposition 1.16 is trivial.

Remark 1.19 The results above determine the $(2,2)$-isogenies for a point $\text{Jac}(C_0)$ in \mathcal{H}_4. There is a similar result for a general point $E_1 \times E_2$ in \mathcal{H}_1. Obviously, $3 \cdot 3 = 9$ such isogenies have images that are products of elliptic curves, so again in \mathcal{H}_1. The remaining six are the ones in Corollary 1.11 and give points in \mathcal{H}_4.

2 Kummer surfaces and isogenies

On a principally polarized abelian surface (A, \mathcal{L}) with the minus identity involution denoted by $-\mathcal{L}$, one can always choose a theta divisor $\mathcal{L} = \mathcal{O}_A(\Theta)$ to satisfy $(-\mathcal{L})^{*} \Theta = \Theta$, that is, to be a symmetric theta divisor. For an irreducible principal polarization, the abelian surface A then maps to the complete linear system $|2\Theta|$, and the rational map $\varphi_{\mathcal{L}^2} : A \to \mathbb{P}^3$ associated with the line bundle \mathcal{L}^2 factors via an embedding through the projection $A \to A/(-\mathcal{L})$; see [6]. In this way, one identifies $A/(-\mathcal{L})$ with its image $\varphi_{\mathcal{L}^2}(A)$ in \mathbb{P}^3, which is a singular quartic projective surface \mathcal{K}_A with 16 ordinary double points, called a nodal surface. The map from A onto its image $K_A \subset \mathbb{P}^3$ is two-to-one, except on 16 points of order two where it is injective. Its minimum resolution is the Kummer surface $\text{Kum}(A)$ associated with the principally polarized abelian surface (A, \mathcal{L}). Due to the 16_8 configuration on K_A, there are six hyperplanes containing the double point $\varphi_{\mathcal{L}^2}(0)$ and...
touching K_A along a double conic. The linear projection with center $\varphi_L(0)$ maps these six hyperplanes onto the six lines ℓ_1, \ldots, ℓ_6 in a projective plane \mathbb{P}^2. The configuration $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ is called the *Kummer plane* associated with (A, L). The rich geometry of six-line configurations in the Kummer plane, as well as their strong connection with theta functions, has been the subject of multiple studies \cite{12,18,22,30,39,41,55} over the last century and a half.

In this section, we will construct the Kummer surfaces associated with the product of two elliptic curves and the Jacobian of a genus-two curve as a double quadric, a double sextic, and a quartic projective surface. We will also construct several Jacobian elliptic fibrations on these surfaces. As a reminder, an elliptic surface is a (relatively) minimal complex surface X, together with a *Jacobian elliptic fibration*, that is, a holomorphic map $\pi_X : X \to \mathbb{P}^1$ such that the general fiber is a smooth curve of genus one together with a distinguished section $\Sigma_1 : \mathbb{P}^1 \to X$ that marks a smooth point in each fiber. To each Jacobian elliptic fibration $\pi_X : X \to \mathbb{P}^1$, there is an associated Weierstrass model obtained by contracting all components of reducible fibers not meeting Σ. By a slight abuse of notation, we will denote the elliptic surface and its associated Weierstrass model by the same symbol. The complete list of possible singular fibers has been given by Kodaira \cite{36}. It encompasses two infinite families (I_n, I_n^*, $n \geq 0$) and six exceptional cases ($II, III, IV, II^*, III^*, IV^*$). The Weierstrass model of a smooth K3 surface can always be written in the form

$$y^2z = 4x^3 - g_2(v)xz^2 - g_3(v)z^3,$$ \hspace{1cm} (2.1)

where v is a suitable coordinate on the base curve \mathbb{P}_v^1 and g_2 and g_3 are polynomials of degree 8 and 12 in homogeneous coordinates on \mathbb{P}_v^1, respectively. The section is given by the point at infinity in each smooth fiber. We denote the Mordell–Weil group of sections on the Jacobian elliptic surface $\pi_X : X \to \mathbb{P}^1$ by $\text{MW}(X, \pi_X)$. If a Jacobian elliptic fibration admits in addition a two-torsion section $T \in \text{MW}(X, \pi_X)$, we use a change of coordinates to write Eq. (2.1) in the form

$$y^2z = x^3 + p_1(v)x^2z + p_2(v)xz^2,$$ \hspace{1cm} (2.2)

where p_1 and p_2 are polynomials of degree 4 and 8 in homogeneous coordinates on the base curve \mathbb{P}_v^1, respectively. A natural holomorphic two-form on the K3 surface, obtained as the minimal resolution of the Weierstrass model, is the pullback of the holomorphic two-form $dv \wedge dx/y$ in the (affine coordinate) chart $z = 1$ in Eq. (2.2). We make the following:

Remark 2.1 Oguiso classified the Jacobian elliptic fibrations on the Kummer surfaces associated with $E_1 \times E_2$ where the elliptic curves E_i for $i = 1, 2$ are not mutually isogenous in \cite{51}. Kuwata and Shioda furthered Oguiso’s work in \cite{38} where they computed elliptic parameters and Weierstrass equations for all fibrations, and analyzed the reducible fibers and Mordell–Weil lattices. Similarly, all inequivalent Jacobian elliptic fibrations on the Kummer surface associated with $\text{Jac}(C)$ for a general genus-two curve C were determined explicitly by Kumar in \cite{37}. In particular, Kumar computed elliptic parameters and Weierstrass equations for all 25 different fibrations that appear and analyzed the reducible fibers and Mordell–Weil lattices.
2.1 Kummer surfaces associated with two elliptic curves

In this section, we will concern with the Kummer surface $\text{Kum}(E_1 \times E_2)$, i.e., the minimal resolution of quotient surface of the product abelian surface $E_1 \times E_2$ by the inversion automorphism. Unless stated otherwise, we will assume that the two elliptic curves are not mutually isogenous.

Let us define a double quadric surface closely related to $E_1 \times E_2$ for the elliptic curves given by Eq. (1.20). In general, a double quadric surface is obtained as the double cover branched along a locus of bi-degree $(4,4)$ in $\mathbb{P}^1 \times \mathbb{P}^1$; see [5]. It is well known that the minimal resolution of any double quadric is a K3 surface. In our situation, we identify $\mathbb{P}^1 = \mathbb{P}(x_l, z_l)$ for $l = 1, 2$ and define the special double quadric surface Z using the equation

$$Z : \quad y_{1,2}^2 = x_1z_1(x_1 - z_1)(x_1 - \Lambda_1z_1)x_2z_2(x_2 - z_2)(x_2 - \Lambda_2z_2). \quad (2.3)$$

There is a natural projection map $\pi : E_1 \times E_2 \to Z$ given by $y_{1,2} = z_1z_2y_1y_2$, invariant under the action of $iE_1 \times iE_2$. It follows that the minimal resolution of Z is the Kummer surface $\text{Kum}(E_1 \times E_2)$.

A holomorphic two-form on Z is given by $\omega_Z = dx_1 \wedge dx_2/y_{1,2}$ in the coordinate chart $z_1 = z_2 = 1$ in Eq. (2.3). The regular two-from on $E_1 \times E_2$, given by the outer tensor product of the elliptic-curve holomorphic one-forms, i.e.,

$$\frac{dx_1}{y_1} \wedge \frac{dx_2}{y_2} := \frac{dx_1}{y_1} \otimes \frac{dx_2}{y_2}, \quad (2.4)$$

descends to the quotient $(E_1 \times E_2)/(-I)$ and coincides with ω_Z. Here, we use the notation $\eta_1 \otimes \eta_2 = (\pi_{1*}\eta_1) \otimes (\pi_{2*}\eta_2)$, where π_l is the canonical projection onto E_l for $l = 1, 2$. Let $\epsilon : \hat{Z} \to Z$ be the minimal resolution. We obtain a holomorphic two-form $\omega_{\text{Kum}(E_1 \times E_2)}$ on $\text{Kum}(E_1 \times E_2)$ by pullback, i.e.,

$$\omega_{\text{Kum}(E_1 \times E_2)} = \epsilon^*\omega_Z, \quad \text{with } \epsilon : \text{Kum}(E_1 \times E_2) = \hat{Z} \to Z. \quad (2.5)$$

We also introduce the quadratic twist of Z, given by

$$Z^{(\epsilon)} : \quad y_{1,2}^{\epsilon} = \epsilon x_1z_1(x_1 - z_1)(x_1 - \Lambda_1z_1)x_2z_2(x_2 - z_2)(x_2 - \Lambda_2z_2), \quad (2.6)$$

such that for general $\epsilon \in \mathbb{Q}$ the surfaces Z and $Z^{(\epsilon)}$ are isomorphic only over $\mathbb{Q}(\sqrt{\epsilon})$. We refer to the minimal resolution of $Z^{(\epsilon)}$ as twisted Kummer surface and denote it by $\text{Kum}(E_1 \times E_2)^{(\epsilon)}$. Holomorphic two-forms on the twisted double quadric surface and the minimal resolution are then obtained analogously to Eq. (2.5). We make the following:

Remark 2.2 Projecting to either \mathbb{P}^1 in Eq. (2.3) defines a Jacobian elliptic fibration on the Kummer surface $\text{Kum}(E_1 \times E_2)$ denoted J_4 in [38], i.e., a fibration with the singular fibers $4I_\epsilon^+$ and a Mordell–Weil group of sections $(\mathbb{Z}/2\mathbb{Z})^2$.

Remark 2.3 If the elliptic curves E_l for $l = 1, 2$ are not mutually isogenous, then the Kummer surface $\text{Kum}(E_1 \times E_2)$ has Picard rank 18. It follows from [48] that the transcendental lattice is given by

$$T_{\text{Kum}(E_1 \times E_2)} \cong T_{E_1 \times E_2}(2) = H(2) \oplus H(2). \quad (2.7)$$

Moreover, we will consider $\text{Kum}(E'_1 \times E'_2)$, i.e., the minimal resolution of the quotient surface of the product abelian surface $E'_1 \times E'_2$ by the inversion automorphism—associated
with the two-isogenous elliptic curves E_i' in Eq. (1.43). The associated double quadric surface is given by

$$Z' : Y_{1,2}' = X_1Z_1 \left(X_1^2 + 2(1 - 2\Lambda_1)X_1Z_1 + Z_1^2 \right)$$

$$\times X_2Z_2 \left(X_2^2 + 2(1 - 2\Lambda_2)X_2Z_2 + Z_2^2 \right),$$

(2.8)

On Kum($E_1' \times E_2'$), a holomorphic two-form $\omega_{\text{Kum}(E_1' \times E_2')}$ is obtained as the pullback of the two-form $\omega_{Z'} = dx_1 \wedge dx_2/Y_{1,2}$ in the chart $Z_1 = Z_2 = 1$ on Z' in Eq. (2.8). The Cartesian product of the dual two-isogenies $\chi_{E_1}' \times \chi_{E_2}'$ of elliptic curves induces a rational cover $Z' \rightarrow Z$. We have the following:

Lemma 2.4 The map $\chi : Z' \rightarrow Z^{(2)}$, given by

$$\chi : \left(X_1, Z_1, X_2, Z_2, Y_{1,2} \right) \mapsto \left(x_1, z_1, x_2, z_2, \hat{y}_{1,2} \right)$$

(2.9)

with

$$x_1 = 4\Lambda_1X_1Z_1, \quad z_1 = (X_1 + Z_1)^2,$$

$$x_2 = 4\Lambda_2X_2Z_2, \quad z_2 = (X_2 + Z_2)^2,$$

$$\hat{y}_{1,2} = 16\Lambda_1\Lambda_2(X_1^2 - Z_1^2)(X_2^2 - Z_2^2)Y_{1,2},$$

(2.10)

is a rational covering map defined over $\mathbb{Q}(\Lambda_1, \Lambda_2)$. For the holomorphic two-forms $\omega_{Z^{(2)}} = dx_1 \wedge dx_2/\hat{y}_{1,2}$ in the chart $z_1 = z_2 = 1$ on $Z^{(2)}$ and $\omega_{Z'} = dx_1 \wedge dx_2/Y_{1,2}$ in the chart $Z_1 = Z_2 = 1$ on Z', it follows $\omega_{Z'} = \chi^*\omega_{Z^{(2)}}$.

Proof The proof follows by an explicit computation using Eq. (2.10). \qed

2.1.1 Certain elliptic fibrations

On the double quadric surface Z, a non-isotrivial elliptic fibration, with fibers over $\mathbb{P}^1 = \mathbb{P}(u_1, u_2)$ embedded into $\mathbb{P}^2 = \mathbb{P}(X, Y, Z)$, is given by the Weierstrass model

$$Y^2Z = X \left(X + \frac{1}{2}u_1u_2(u_1 - u_2)((\rho_1 - \rho_2)u_1 - (\rho_1 + \rho_2)u_2)Z \right)$$

$$\times \left(X + \frac{1}{2}u_1u_2((\rho_1 - \rho_2)u_1^2 - 2(\rho_1 + 1)u_1u_2 + (\rho_1 + \rho_2)u_2^2)Z \right),$$

(2.11)

The discriminant function of the elliptic fibration is

$$2^{-4}u_1^8u_2^8(u_1 - u_2)^2\left((\rho_1 - \rho)u_1 - (\rho_1 + \rho)u_2 \right)^2$$

$$\left((\rho_1 - \rho)u_1^2 - 2(\rho_1 + 1)u_1u_2 + (\rho_1 + \rho)u_2^2 \right)^2.$$

We have the immediate:

Lemma 2.5 Equation (2.11) defines a Jacobian elliptic fibration with the singular fibers $2\Gamma^2 + 4\Gamma_2$ and the Mordell–Weil group of sections $(\mathbb{Z}/2\mathbb{Z})^2$.

In fact, Eq. (2.11) defines the Jacobian elliptic fibration on Kum($E_1 \times E_2$) denoted \mathcal{J}_6 in [38]. We have the following:

Proposition 2.6 For $\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ and parameters ρ_1, ρ_2 given by

$$\rho_1 = \Lambda_1 + \Lambda_2 - 2\Lambda_1\Lambda_2 - 1, \quad \rho_2 = 1 - \Lambda_1 - \Lambda_2,$$

the double quadric surface Z (2.3) and the Jacobian elliptic surface (2.11) are birational equivalent over $\mathbb{Q}(\Lambda_1, \Lambda_2)$.
Proof In the chart \(Z = u_2 = 1 \) in Eq. (2.11) and \(z_1 = z_2 = 1 \) in Eq. (2.3), a birational map is given by

\[
\begin{align*}
 u_1 &= \frac{x_1x_2}{(x_1 - 1)x_2 - I}, \\
 y &= \frac{x_1^2(x_1 + x_2 - 1)x_2 - \Delta_x(x_1 + x_2) + \Delta_2 y_2}{(x_1 - 1)^2(x_2 - I)^2}, \\
 x &= \frac{x_1x_2(x_1 + x_2 - 1)(x_1 - \Lambda_1)(x_2 - \Delta_2(x_1 + x_2) + \Lambda_3)}{(x_1 - 1)^2(x_2 - I)^2}.
\end{align*}
\]

(2.12)

The holomorphic two-forms are related as follows:

Corollary 2.7 The birational equivalence of Proposition 2.6 identifies the holomorphic two-form \(du_1 \wedge dX/Y \) in the chart \(Z = u_2 = 1 \) in Eq. (2.11) with \(\omega_Z = dx_1 \wedge dx_2/y_{1,2} \) in the chart \(z_1 = z_2 = 1 \) in Eq. (2.3).

Proof The proof follows by an explicit computation using the transformation provided in the proof of Proposition 2.6.

On the double quadric surface \(Z' \), another elliptic fibration, with fibers over \(\mathbb{P}^1 = \mathbb{P}(v_1, v_2) \) embedded into \(\mathbb{P}^2 = \mathbb{P}(X, Y, Z) \), is given by the Weierstrass model

\[
Y^2Z = X^3 - 3v_2(2v_1 - v_2)(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)XZ^2.
\]

(2.13)

The discriminant function of the fibration is \(16v_1^3v_2(1 - v_2)(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)^5 \). We have the immediate:

Lemma 2.8 Equation (2.13) defines a Jacobian elliptic fibration with the singular fibers \(I'_4 + 2I_2 + 2I_0^* \) and the Mordell–Weil group of sections \(\mathbb{Z}/2\mathbb{Z} \).

Equation (2.13) defines the Jacobian elliptic fibration on \(\text{Kum}(E'_1 \times E'_2) \) denoted \(J_7 \) in [38]. However, to construct a birational equivalence between the Jacobian elliptic fibration and \(Z' \), one has to use a finite field extension \(\mathbb{Q}(\kappa_1, \kappa_2) \) with \(\Lambda_1 = 1/(1 - \kappa_1^2) \) and \(\Lambda_2 = 1/(1 - \kappa_2^2) \). We have the following:

Proposition 2.9 For \(\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \), let parameters \(\rho_1, \rho_2 \) be given by

\[
\rho_1 = \Lambda_1 + \Lambda_2 - 2\Lambda_1 \Lambda_2 - 1, \quad \rho_2 = 1 - \Lambda_1 - \Lambda_2.
\]

The double quadric surface \(Z' \) (2.8) and the Jacobian elliptic surface (2.13) are birational equivalent over \(\mathbb{Q}(\kappa_1, \kappa_2) \) with \(\Lambda_1 = 1/(1 - \kappa_1^2) \) for \(l = 1, 2 \).

Proof In the charts \(v_2 = 1, Z = 1 \) in Eq. (3.35) and \(Z_1 = Z_2 = 1 \) in Eq. (2.8), a birational equivalence is given by

\[
\begin{align*}
 v_1 &= \frac{(x_1^2 - 1)(x_1 + x_2 - 1)(x_1 + x_2 - 1)(x_1 + x_2 - 1)(x_1 - 1)x_2 - (x_1 - 1)^2 x_2^2}{(x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)} \\
 x &= \frac{(x_1 - 1)(x_2 + 1)}{(x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2} \\
 y &= \frac{(x_1 + 1)(x_2 + 1)}{(x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2 (x_1 + x_2 - 1)^2} \\
 &\quad \times \frac{y_2}{(x_1 + x_2 - 1)(x_1 + x_2 - 1)(x_1 - 1)(x_1 + x_2 - 1)}.
\end{align*}
\]

(2.14)

\[\square\]
The holomorphic two-forms are related as follows:

Corollary 2.10 The birational equivalence of Proposition 2.9 identifies the holomorphic two-form $d\omega_1 \wedge dX / Y$ in the chart $Z = v_2 = 1$ in Eq. (2.13) with $\omega' = dX_1 \wedge dX_2 / Y_{1,2}$ in the chart $Z_1 = Z_2 = 1$ in Eq. (2.8).

Proof The proof follows by an explicit computation using the transformation provided in the proof of Proposition 2.9. □

2.2 Jacobian Kummer surfaces

The Kummer surface $\text{Kum}(\text{Jac}(C))$ is the minimal resolution of the quotient surface of the Jacobian $\text{Jac}(C)$ by the inversion automorphism where C is a generic, smooth genus-two curve.

Since the Jacobian $\text{Jac}(C)$ is birational to the symmetric product $\text{Sym}^2(C)$, let us consider the function field of $\text{Sym}^2(C) = (C \times C) / \langle \sigma \rangle$ where σ interchanges two copies of a generic genus-two curve C. In particular, for a smooth genus-two curve C in Rosenhain form (1.1), the function field of the variety $\text{Sym}^2(C) / (\iota_C \times \iota_C)$—where $\iota_C \times \iota_C$ is the involution on $\text{Sym}^2(C)$ induced by the hyperelliptic involution ι_C on C—is generated by $z_1 = Z^{(1)}Z^{(2)}$, $z_2 = X^{(1)}Z^{(2)} + X^{(2)}Z^{(1)}$, $z_3 = X^{(1)}X^{(2)}$, and $\tilde{z}_4 = Y^{(1)}Y^{(2)}$, subject to the relation

$$W : \tilde{z}_4^2 = z_1z_3(z_1 - z_2 + z_3) \prod_{i=1}^{3}(\lambda_i^2 z_1 - \lambda_i z_2 + z_3).$$

Equation (2.15) is a special case of a double sextic surface, i.e., the double cover of $\mathbb{P}^2 = \mathbb{P}(z_1, z_2, z_3)$ branched on the union of six lines (and hence over a sextic curve). For a configuration of six lines in general position, the minimal resolution of a double sextic surface is always a K3 surface; see [5]. Equation (2.15) is known as Shioda sextic associated with $\text{Jac}(C)$; see [57]. It follows that the minimal resolution of W is the Kummer surface $\text{Kum}(\text{Jac}(C))$.

In Eq. (2.15), the double cover is branched along the six lines ℓ_i with $1 \leq i \leq 6$, given by

$$\lambda_i^2 z_1 - \lambda_i z_2 + z_3 = 0 \quad \text{with} \quad 1 \leq i \leq 3, \quad z_1 = 0, \quad z_1 - z_2 + z_3 = 0, \quad z_3 = 0. \quad (2.16)$$

The six lines are tangent to the common conic $K_2 = z_2^2 - 4z_1z_3 = 0$. Conversely, it is easy to see that any six lines tangent to a common conic can always be brought into the form of Eq. (2.16) using a projective transformation. Humbert proved that the Kummer plane $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ inherits essential information of the principally polarized abelian surface $A = \text{Jac}(C)$ itself; see [31]. A picture is provided in Fig. 2.

Remark 2.11 In [7], the geometry of the Kummer plane was determined over several Humbert surfaces \mathcal{H}_Δ. In particular, the following statement were proven [7, Cor. 7.2] and [7, Cor. 7.3):

- $\Delta = 4$: if $(A, L) \in \mathcal{H}_4$ if and only if (numbering the six lines on its Kummer plane $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ suitably) the three points $\ell_1 \cap \ell_2, \ell_3 \cap \ell_4, \ell_5 \cap \ell_6$ are collinear.

- $\Delta = 16$: if $(A, L) \in \mathcal{H}_{16}$, then its Kummer plane $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ admits a cubic passing smoothly through three of the 15 points $\ell_m \cap \ell_n$ and touching the singular lines ℓ_u in the remaining intersection points with even multiplicity. Conversely, if $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ admits such a curve, then $(A, L) \in \mathcal{H}_\Delta$ with $\Delta \in \{4, 8, 12, 16, 20\}$.
Klein Eq. (2.15). Using parameters Cassels–Flynn quartic and the Shioda sextic is closely related to two quartic equations, known as the Baker quartic is obtained directly from the Shioda sextic:

$$ U = K_2 z_1, \quad X = K_2 z_2, \quad Y = K_2 z_3, $$

$$ Z = 2z_4 - \left(L_1 z_1^2 + 2L_2 z_1^2 + 2L_3 z_1 z_2 + 2L_4 z_3^2 + 2z_4^2 \right) $$

Generally, for $A \in \mathcal{H}_6$ it follows from [48] that $Kum(A)$ has Picard rank 18, and the transcendental lattice is given by

$$ T_{Kum(A)} \cong T_A(2) = H(2) \oplus (2\delta) \oplus (-2\delta). $$

2.2.1 Closely related normal forms

The Shioda sextic is closely related to two quartic equations, known as the Baker quartic and Cassels–Flynn quartic. The Baker quartic is obtained directly from the Shioda sextic \mathcal{W} in Eq. (2.15). Using parameters

$$ L_4 = 1 + \lambda_1 + \lambda_2 + \lambda_3, \quad L_3 = \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3, $$

$$ L_1 = \lambda_1 \lambda_2 \lambda_3, \quad L_2 = \lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_1 \lambda_3 + \lambda_1 \lambda_2 \lambda_3,$$

and a variable transformation given by

$$ W = K_2 z_1, \quad X = K_2 z_2, \quad Y = K_2 z_3, $$

$$ Z = 2z_4 - \left(L_1 z_1^2 + 2L_2 z_1^2 + 2L_3 z_1 z_2 + 2L_4 z_3^2 + 2z_4^2 \right). $$

The Baker determinant was first derived in [4].

In addition to K_2 introduced above, we define homogeneous polynomials $K_l = K_l(z_1, z_2, z_3)$ of degree $4 - l$ for $l = 0, 1$ with

$$ K_2 = z_2^2 - 4z_1 z_3, \quad K_1 = -2z_2 z_3^2 - 2L_1 z_1^2 - 2L_2 z_1^2 z_2 + 4L_2 z_1^2 z_3 - 2L_3 z_1 z_2 z_3 + 4L_4 z_3^2, $$

$$ K_0 = L_1 z_1^4 - 2L_1 L_3 z_1^3 z_3 + (2L_1 - 4L_2 L_4 + L_3^2) z_1^2 z_3^2 + 4L_1 L_4 z_1^2 z_2 z_3 $$

$$ + 3(-2L_1 z_1 z_2 + 2L_2 z_2 z_3) z_1 + z_3^4. $$

A variable transformation in Eq. (2.15), given by

$$ \tilde{z}_4 = \frac{1}{4} (K_2 z_4 + 2K_1), $$
or, equivalently, the variable transformation in Eq. (2.21), given by
\[W = K_2 z_1, \quad X = K_2 z_2, \quad Y = K_2 z_3, \quad Z = K_2 z_4 + K_1, \]
(2.24)
yields the quartic projective surface \(K_A \) in \(\mathbb{P}^3 = \mathbb{P}(z_1, z_2, z_3, z_4) \) given by
\[K_A : K_2 (z_1, z_2, z_3) z_4^2 + K_1 (z_1, z_2, z_3) z_4 + K_0 (z_1, z_2, z_3) = 0. \]
(2.25)
The quartic appeared in Cassels and Flynn [11, Sec. 3] and is called the Cassels–Flynn quartic. We have the following:

Proposition 2.12 Assume that \(\lambda_1, \lambda_2, \lambda_3 \) are the Rosenhain roots of a smooth genus-two curve \(C \). The surfaces in Eqs. (2.15), (2.21), and (2.25) are birational equivalent over \(\mathbb{Q}(\lambda_1, \lambda_2, \lambda_3) \). The minimal resolution is isomorphic to the Kummer surface \(\text{Kum}(A) \) associated with the Jacobian \(A = \text{Jac}(C) \).

Proof It is known that under birational equivalence the involution minus \(-I\) on \(\text{Jac}(C) \) restricts to the product involution \(\iota_C \times \iota_C \) on \(\text{Sym}^2(C) \); see [15]. Hence, the Shioda sextic in Eq. (2.15) is birational to \(\text{Jac}(C)/(-I) \) associated with the Jacobian \(A = \text{Jac}(C) \) of a genus-two curve \(C \) in Rosenhain normal form (1.1). One substitutes Eq. (2.20) into Eq. (2.21) and checks that the strict transform is given by Eq. (2.3). Moreover, the variable transformation in Eq. (2.21) can be inverted to obtain a rational inverse map.

Remark 2.13 The 16 nodes \(p_{ij} \) of the Kummer surface \(K_A \) in Eq. (2.25) are given in Table 2. They are the images of the order-two points \(P_{ij} \in A[2] \).

node	\([z_1 : z_2 : z_3 : z_4] \)
\(p_0 \)	\([0 : 0 : 0 : 1] \)
\(p_{16} \)	\([0 : 1 : 1 : 1] \)
\(p_{26} \)	\([0 : 1 : 1 : 0] \)
\(p_{16} \)	\([0 : 1 : 0 : 1] \)
\(p_{15} \)	\([0 : 1 : 0 : 0] \)
\(p_{14} \)	\([1 : 1 : 0 : 0] \)
\(p_{13} \)	\([1 : 1 : 0 : 0] \)
\(p_{12} \)	\([1 : 1 : 0 : 0] \)

A holomorphic two-form on \(W \) is given by the two-form \(\omega_W = dz_2 \wedge dz_3/z_4 \) in the coordinate chart \(z_1 = 1 \) in Eq. (2.15). A regular two-form on \(C \times C \) is given as the antisymmetric linear combination of the outer tensor products of the two holomorphic one-forms on each copy of \(C \), i.e.,
\[\frac{dX(1)}{Y(1)} \otimes \frac{X(2)dX(2)}{Y(2)} - \frac{X(1)dX(1)}{Y(1)} \otimes \frac{dX(2)}{Y(2)}, \]
(2.26)
Further, we introduce another genus-two curve, namely the elliptic fibration is given by
\[\omega_{\text{Kum}(\text{Jac}C)} = e^* \omega_{\mathcal{W}}, \quad \text{with } e : \text{Kum}(\text{Jac}C) \to \mathcal{W}. \] (2.27)

We also introduce the twisted Shioda sextic \(\mathcal{W}^{(e)} \), given by
\[\mathcal{W}^{(e)} : \quad \delta_4^2 = \varepsilon z_1 z_3 (z_1 - z_2 + z_3) \prod_{i=1}^{3} (\lambda_i^2 z_1 - \lambda_i z_2 + z_3), \] (2.28)
such that for general \(\varepsilon \in \mathbb{Q} \) the surfaces \(\mathcal{W}^{(e)} \) and \(\mathcal{W} \) are isomorphic only over \(\mathbb{Q}(\sqrt{\varepsilon}) \).

Further, we introduce another genus-two curve, namely
\[\tilde{C} : \quad Y^2 = XZ (X - \lambda_0 Z) (X - \lambda_0 \lambda_1 Z) (X - \lambda_0 \lambda_2 Z) (X - \lambda_0 \lambda_3 Z), \] (2.29)
and its associated (twisted) Shioda sextic given by
\[\tilde{\mathcal{W}}^{(e)} : \quad \delta_4^2 = \varepsilon y_1 y_3 (\lambda_0^2 y_1 - \lambda_0 y_2 + y_3) \prod_{i=1}^{3} (\lambda_i y_1 - \lambda_i y_2 + y_3). \] (2.30)

We refer to the minimal resolutions of \(\mathcal{W}^{(e)} \) and \(\tilde{\mathcal{W}}^{(e)} \) as twisted Kummer surfaces and denote them as \(\text{Kum}(\text{Jac}C)^{(e)} \) and \(\text{Kum}(\text{Jac} \tilde{C})^{(e)} \), respectively. Holomorphic two-forms on the various twisted Shioda sextic surfaces and their minimal resolutions are then obtained analogously to Eq. (2.27). We have the following:

Proposition 2.14 Assume \(\lambda_1, \lambda_2, \lambda_3 \) are the Rosenhain roots of a smooth genus-two curve \(C \) and \(\lambda_0 \neq 0 \). The surfaces \(\mathcal{W}^{(e)} \) and \(\tilde{\mathcal{W}}^{(e)} \) are birational equivalent over \(\mathbb{Q}(\lambda_0) \) such that the holomorphic two-form \(dy_2 \wedge dy_3/y_4 \) in the chart \(y_1 = 1 \) in Eq. (2.30) equals \(dz_2 \wedge dz_3/z_4 \) in the chart \(z_1 = 1 \) in Eq. (2.27). In particular, there is an isomorphism
\[\iota : \quad \text{Kum}(\text{Jac}C)^{(e)} \xrightarrow{\cong} \text{Kum}(\text{Jac} \tilde{C})^{(e)/\lambda_0^3}, \] (2.31)
such that \(\omega_{\text{Kum}(\text{Jac}C)^{(e)}} = \iota^* \omega_{\text{Kum}(\text{Jac} \tilde{C})^{(e)/\lambda_0^3}}. \)

Proof For the isomorphism \(\iota : (z_1, z_2, z_3, z_4) \mapsto (y_1, y_2, y_3, y_4) = (z_1, \lambda_0 z_2, \lambda_0^2 z_3, \lambda_0^3 z_4) \) the pullback \(\iota^*(dy_2 \wedge dy_3/y_4) \) equals \(dz_2 \wedge dz_3/z_4 \). \(\square \)

2.2.2 Certain elliptic fibrations

The pencil of lines, given by \(tz_1 - z_3 = 0 \) in \(\mathbb{P}^2 = \mathbb{P}(z_1, z_2, z_3) \), induces an elliptic fibration on the Shioda sextic \(\mathcal{W} \). The elliptic fibration, with fibers over \(\mathbb{P}^1 = \mathbb{P}(u_1, u_2) \) embedded into \(\mathbb{P}^2 = \mathbb{P}(X, Y, Z) \), is given by the Weierstrass model
\[Y^2 Z = X \left((X + (\lambda_1 - \lambda_3)(\lambda_2 - 1)u_1u_2(u_1 - \lambda_2u_2)(u_1 - \lambda_1\lambda_3u_2)Z) \right) \]
\[\times \left(X + (\lambda_1 - \lambda_3)(\lambda_3 - 1)u_1u_2(u_1 - \lambda_3u_2)(u_1 - \lambda_1\lambda_2u_2)Z \right). \] (2.32)

The discriminant function of the elliptic fibration is given by
\[(\lambda_1 - 1)^2(\lambda_2 - 1)^2(\lambda_3 - 1)^2(\lambda_1 - \lambda_2)^2(\lambda_1 - \lambda_3)^2(\lambda_2 - \lambda_3)^2u_1^6u_2^6(u_1 - \lambda_1u_2)^2 \]
\[\times (u_1 - \lambda_2u_2)^2(u_1 - \lambda_3u_2)^2(u_1 - \lambda_1\lambda_2u_2)^2(u_1 - \lambda_1\lambda_3u_2)^2(u_1 - \lambda_2\lambda_3u_2)^2. \]

The fibration in Eq. (2.32) was denoted fibration (1) in [37]. In [37], the following lemma was proven:

Lemma 2.15 Equation (2.32) defines a Jacobian elliptic fibration with the singular fibers \(6I_2 + 2I_6^* \) and a Mordell–Weil group of sections \(\mathbb{Z}/2\mathbb{Z} \oplus \{1\} \).
In the statement above, the symbol \((m) \) stands for a rank 1 lattice \(\mathbb{Z} x \) satisfying \(\langle x, x \rangle = m \) with respect to the height pairing. We also have the following:

Proposition 2.16 Assume that \(\lambda_1, \lambda_2, \lambda_3 \) are the Rosenhain roots of a smooth genus-two curve. The surfaces in Eq. (2.15) and (2.32) are birational equivalent over \(\mathbb{Q}(\lambda_1, \lambda_2, \lambda_3) \).

Proof In the charts \(u_2 = 1, Z = 1 \) in Eq. (2.32) and \(z_1 = 1 \) in Eq. (2.15), a birational equivalence is given

\[
\begin{align*}
z_2 &= \frac{(\lambda_1 - 1)(\lambda_2 - 1)(\lambda_3 - 1)u_1(u_1 - \lambda_1)(u_1 - \lambda_2)(u_1 - \lambda_3)}{X - \lambda_1(\lambda_3 - 1)(\lambda_3 - 1)u_1(u_1 - \lambda_2)(u_1 - \lambda_3)} + u_1 + 1, \\
\hat{z}_4 &= \frac{(\lambda_1 - 1)(\lambda_2 - 1)(\lambda_3 - 1)u_1(u_1 - \lambda_1)(u_1 - \lambda_2)(u_1 - \lambda_3)Y}{(X - \lambda_1(\lambda_3 - 1)(\lambda_3 - 1)u_1(u_1 - \lambda_2)(u_1 - \lambda_3))^2}, \quad z_3 = u_1.
\end{align*}
\]

The holomorphic two-forms are related as follows:

Corollary 2.17 The birational equivalence of Proposition 2.16 identifies the holomorphic two-form \(dz_2 \wedge dz_3/z_4 \) in the chart \(z_1 = 1 \) in Eq. (2.15) with \(du_1 \wedge dX/Y \) in the chart \(Z = u_2 = 1 \) in Eq. (2.32).

Proof The proof follows by an explicit computation using the transformation provided in the proof of Proposition 2.16.

On the Shioda sextic \(W \), another elliptic fibration, with fibers over \(\mathbb{P}^1 = \mathbb{P}(w_1, w_2) \) embedded into \(\mathbb{P}^2 = \mathbb{P}(x, y, z) \), is given by the Weierstrass model

\[
y^2z = x^3 + w_1\left(w_1 + (\lambda_1 + \lambda_2\lambda_3)w_2 \right)\left(w_1 + (\lambda_2 + \lambda_1\lambda_3)w_2 \right)
\times \left(w_1 + (\lambda_3 + \lambda_1\lambda_2)w_2 \right)^2z^2 + \lambda_1\lambda_2\lambda_3w_2^2\left(w_1 + (\lambda_1 + \lambda_2\lambda_3)w_2 \right)^2\left(w_1 + (\lambda_2 + \lambda_1\lambda_3)w_2 \right)^2
\times \left(w_1 + (\lambda_3 + \lambda_1\lambda_2)w_2 \right)^2xz^2.
\]

The discriminant function of the elliptic fibration is given by

\[
\lambda_1^2\lambda_2^2\lambda_3^2w_2^4\left(w_1^2 - 4\lambda_1\lambda_2\lambda_3w_2^2 \right)\left(w_1 + (\lambda_1 + \lambda_2\lambda_3)w_2 \right)^6
\times \left(w_1 + (\lambda_2 + \lambda_1\lambda_3)w_2 \right)^6\left(w_1 + (\lambda_3 + \lambda_1\lambda_2)w_2 \right)^6.
\]

We have the immediate:

Lemma 2.18 Equation (2.34) defines a Jacobian elliptic fibration with the singular fibers \(I_4 + 2I_1 + 3I_0^* \) and a Mordell–Weil group of sections \(\mathbb{Z}/2\mathbb{Z} \).

The fibration in Eq. (2.34) was denoted fibration (4) in [37]. We have the following:

Proposition 2.19 Assume that \(\lambda_1, \lambda_2, \lambda_3 \) are the Rosenhain roots of a smooth genus-two curve. The surfaces in Eqs. (2.15) and (2.34) are birational equivalent over \(\mathbb{Q}(\lambda_1, \lambda_2, \lambda_3) \).
Proof In the charts \(w_2 = 1, z = 1 \) in Eq. (2.34) and \(z_1 = 1 \) in Eq. (2.15), a birational equivalence is given by
\[
w_1 = \frac{(λ_1(2 - λ_3) - λ_2λ_3λ_1)(λ_1 + 1)}{λ_2z_2^3 - λ_1λ_2z_2 - z_2^3 + (λ_2 - λ_3)(λ_1 + 1) + λ_1 - λ_2λ_3} z_3.
\]

Corollary 2.20 The birational equivalence of Proposition 2.19 identifies the holomorphic two-form \(dw_1 \wedge dx/y \) in the chart \(z = w_2 = 1 \) in Eq. (2.34) with \(dz_2 \wedge dz_3/z_4 \) in the chart \(z_1 = 1 \) in Eq. (2.15).

Proof The proof follows by an explicit computation using the transformation provided in the proof of Proposition 2.19.

2.2.3 Specialization to Picard rank 18

We consider the special case of the Kummer surface associated with the Jacobian of the genus-two curve \(C_0 \) in Eq. (1.18), i.e., a smooth genus-two curve admitting an elliptic involution. We will denote the Shioda sextic in Eq. (2.15) for \(λ_1 = λ_2λ_3 \) by \(W_0 \), and the corresponding vanishing locus for the Baker determinant by \(U_0 \). Similarly, we use the symbols \(\tilde{C}_0, W_0^{(e)}, \tilde{W}_0^{(e)} \) to refer to the corresponding specialization for \(λ_1 = λ_2λ_3 \).

Remark 2.21 The induced involution \(j \) on the Shioda sextic \(W_0 \) in Eq. (2.15) for \(λ_1 = λ_2λ_3 \) is given by
\[
j : (z_1, z_2, z_3, z_4) \mapsto (z_3, λ_2λ_3z_2, (λ_2λ_3)^2z_3, (λ_2λ_3)^3z_4). \tag{2.36}
\]

In terms of the elliptic fibration already discussed above, the restriction to the curve \(C_0 \) in Eq. (1.18) is characterized as follows:

Lemma 2.22 Assume that \(λ_1, λ_2, λ_3 \) are the Rosenhain roots of a smooth genus-two curve \(C \). We have the following:

(1) the singular fibers in the fibration of Lemma 2.15 are \(\text{I}_4 + 4\text{I}_2 + 2\text{I}_0^* \) if and only if \(λ_1 = λ_2λ_3, λ_2 = λ_1λ_3, \) or \(λ_3 = λ_1λ_2 \),

(2) the singular fibers in the fibration of Lemma 2.18 are \(\text{I}_4 + \text{I}_1 + \text{I}_1^* + 2\text{I}_0^* \) if and only if \(λ_1 = λ_2λ_3, λ_2 = λ_1λ_3, \) or \(λ_3 = λ_1λ_2 \).

Proof We prove the second statement, the first one is analogous. We apply the resultant to pairs of factors in the discriminant function (2.35) to obtain criteria for coalescing fibers. The resultant (with respect to \([w_1 : w_2] \)) of the factors in the reduced discriminant corresponding to fibers of Kodaira-type \(\text{I}_0^* \), i.e.,
\[
\left(w_1 + (λ_1 + λ_2λ_3)w_2\right)\left(w_1 + (λ_2 + λ_1λ_3)w_2\right)\left(w_1 + (λ_3 + λ_1λ_2)w_2\right), \tag{2.37}
\]
and the factors in the discriminant corresponding to the fibers of Kodaira-type I_1, i.e.,
\[w_1^2 - 4 \lambda_1 \lambda_2 \lambda_3 w_2^2, \]
yields
\[\left(\lambda_1 - \lambda_2 \lambda_3 \right)^2 \left(\lambda_2 - \lambda_1 \lambda_3 \right)^2 \left(\lambda_3 - \lambda_1 \lambda_2 \right)^2. \]
\[(2.38) \]

The elliptic fibrations in Lemma 2.22 and the quadratic twist are related as follows:

Corollary 2.23 Assume that $\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\lambda_2 \neq \lambda_3 \pm 1$. The Weierstrass model, given by
\[Y^2 Z = \varepsilon X \left(X + \lambda_2 (\lambda_3 - 1)^2 u_1 u_2 (u_1 - \lambda_3 u_2) (u_1 - \lambda_2 \lambda_3 u_2) Z \right) \]
\[\times \left(X + \lambda_3 (\lambda_2 - 1)^2 u_1 u_2 (u_1 - \lambda_2 u_2) (u_1 - \lambda_2 \lambda_3 u_2) Z \right), \]
\[(2.39) \]
defines a Jacobian elliptic fibration with the singular fibers $I_4 + 4 I_2 + 2I_4^*$ and a Mordell–Weil group of sections $\mathbb{Z}/2\mathbb{Z} + \{1\}$. The elliptic surface is birational equivalent to $\mathcal{W}_0^{(e)}$ over $\mathbb{Q}(\lambda_2 \lambda_3, \lambda_2 + \lambda_3)$ and Corollary 2.17 holds.

Corollary 2.24 Assume that $\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\lambda_2 \neq \lambda_3 \pm 1$. The Weierstrass model, given by
\[y^2 z = x^3 + \varepsilon w_1 \left(w_1 + 2 \lambda_2 \lambda_3 w_2 \right) \left(w_1 + \lambda_2 (1 + \lambda_3^2) w_2 \right) \left(w_1 + \lambda_3 (1 + \lambda_2^2) w_2 \right) x^2 z \]
\[+ \varepsilon^2 (\lambda_2 \lambda_3)^2 w_2^2 \left(w_1 + 2 \lambda_2 \lambda_3 w_2 \right)^2 \left(w_1 + \lambda_2 (1 + \lambda_3^2) w_2 \right)^2 \left(w_1 + \lambda_3 (1 + \lambda_2^2) w_2 \right)^2 x z^2, \]
\[(2.40) \]
defines a Jacobian elliptic fibration with the singular fibers $I_4 + I_1 + I_1^* + 2I_4^*$ and a Mordell–Weil group of sections $\mathbb{Z}/2\mathbb{Z}$. The elliptic surface is birational equivalent to $\mathcal{W}_0^{(e)}$ over $\mathbb{Q}(\lambda_2, \lambda_3)$ and Corollary 2.20 holds.

2.3 Quartic surfaces

Let us briefly recall the construction of the Göpel–Hudson quartic for a Kummer surface associated with a principally polarized abelian surface (A, \mathcal{L}) based on results in [6]. Considering the rational map $\varphi_{\mathcal{L}^2} : A \to \mathbb{P}^3$, its image $\varphi_{\mathcal{L}^2}(A)$ is a quartic surface in \mathbb{P}^3 which, using the projective coordinates $[w : x : y : z]$, can be written as
\[0 = \xi_0 (w^4 + x^4 + y^4 + z^4) + \xi_4 w x y z \]
\[+ \xi_1 (w^2 z^2 + x^2 y^2) + \xi_2 (w^2 x^2 + y^2 z^2) + \xi_3 (w^2 y^2 + x^2 z^2), \]
\[(2.41) \]
for some parameter set $[\xi_0 : \xi_1 : \xi_2 : \xi_3 : \xi_4] \in \mathbb{P}^4$. A general member of the family (2.41) is smooth. As soon as the surface is singular at a general point, it must have 16 singular nodal points because of its symmetry. The discriminant turns out to be a homogeneous polynomial of degree 18 in the parameters $[\xi_0 : \xi_1 : \xi_2 : \xi_3 : \xi_4] \in \mathbb{P}^4$ and was determined in [6, Sec. 7.7 (3)]. Thus, the Kummer surfaces form an open set among these surfaces with parameters $[\xi_0 : \xi_1 : \xi_2 : \xi_3 : \xi_4] \in \mathbb{P}^4$, namely the ones that make the irreducible factor of degree three in the discriminant vanish, i.e.,
\[\xi_0 (16 \xi_0^2 - 4 \xi_1^2 - 4 \xi_2^2 - 4 \xi_3^2 + \xi_4^2) + 4 \xi_1 \xi_2 \xi_3 = 0. \]
\[(2.42) \]
Setting $\xi_0 = 1$ and using the affine moduli $\xi_1 = -A$, $\xi_2 = -B$, $\xi_3 = -C$, $\xi_4 = 2D$, we obtain a normal form for a nodal quartic surface, known as Göpel–Hudson quartic
(GH-quartic). The Göpel–Hudson quartic is the projective surface in $\mathbb{P}^3 = \mathbb{P}(w, x, y, z)$ given by
\begin{equation}
0 = w^4 + x^4 + y^4 + z^4 + 2Dwxyz - A(w^2z^2 + x^2y^2) - B(w^2x^2 + y^2z^2) - C(w^2y^2 + x^2z^2),
\end{equation}
(2.43)
where $A, B, C, D \in \mathbb{C}$ satisfy
\begin{equation}
D^2 = A^2 + B^2 + C^2 + ABC - 4.
\end{equation}
(2.44)

By construction, we have the following:

Lemma 2.25 The minimal resolution of the quartic surface in Eq. (2.43), for generic parameters (A, B, C, D) satisfying (2.44), is isomorphic to the Kummer surface $\text{Kum}(A)$ associated with a principally polarized abelian surface A.

The abelian surface in Lemma 2.25 for generic parameters (A, B, C, D) does not admit any additional automorphism and is in fact isomorphic to $\text{Jac}(C)$ for a general genus-two curve C. In [15, Thm. 4.46], two of the authors determined explicitly the connection between the parameters (A, B, C, D) and the moduli of the abelian surface $A = \text{Jac}(C)$ for a smooth genus-two curve C. It was also proved in [15] that (A, B, C, D) are modular functions relative to $/\Gamma_1(2)$. We have the following:

Proposition 2.26 If the minimal resolution of the Hudson quartic (2.43), for parameters (A, B, C, D) satisfying Eq. (2.44), is isomorphic to the Kummer surface $\text{Kum}(A)$ associated with a principally polarized abelian surface $A = \text{Jac}(C_0)$ for a smooth genus-two curve C_0 admitting an elliptic involution, then one of the following additional relations holds:

- **case I**: $D = 0$,
- **case II**: $B = \pm C$,
- **case III**: $A = \pm B$, or $A = \pm C$,
- **case IV**: $A + B + C + D + 6 = 0$, or $-A - B - C + D + 6 = 0$, or $A - B - C + D + 6 = 0$.

(2.45)

Remark 2.27 Table 3 shows the one-to-one correspondence between the 15 components in Eq. (2.45) and the components in $\mathbb{H}_2/\Gamma_2(2)$ covering \mathcal{H}_4 in the Pringsheim decomposition in Proposition 1.5, using the same marking as before.

Remark 2.28 Equation (2.42) defines the Segre cubic threefold, i.e., the projective dual of the Igusa quartic in \mathbb{P}^4 that is the Satake compactification of $A_2(2)$. Under this projective duality the decomposable abelian surfaces in $A_2(2)$, that is $\mathcal{H}_1(2)$, are contracted to ten nodes of the Segre cubic. The Segre cubic has the simpler equation $\sum x_i = \sum x_i^3 = 0$ in \mathbb{P}^5 such that the permutation of the coordinates corresponds to the action of S_6 on $A_2(2)$ and induces an action on the parameters A, B, C, D [19, p. 182-183 and p. 156-159] and [59, p. 317–350 and p. 348 for $\mathcal{H}_6(2)$ for $\delta = 1, 4$]. One has to omit the 15 hyperplanes in the Segre cubic whose divisors correspond to the boundary components of the Satake compactification $\overline{A_2(2)}$ [19, Prop. 6]. The ten nodes of the Segre cubic correspond to the double quadrics given by $(w^2 \pm x^2 \pm y^2 \pm z^2)^2$ with an even number of minus signs, and $(ab \pm cd)^2$ with $\{a, b, c, d\} = \{w, x, y, z\}$. They are attained in Eq. (2.43) for images of $E_1 \times E_2$. Once all these boundary components are excluded, the statement in Proposition 2.26 becomes ‘if and only if.’
Table 3 Components of $\mathcal{H}_4(2)$ with matching constraints for the GH-quartic

Component	Constraint	Parameters	Solution
Component I	$2\tau_{12} + \tau_{1} \tau_{22} - \tau_{12}^2 = 0$	$\lambda_1 = \lambda_2 \lambda_3$, $D = 0$	$\{p_{15}, p_{23}, p_{46}\}$
Component II	$\tau_{1} + 2\tau_{2} = 0$	$\lambda_1 - \lambda_2 = \lambda_3(1 - \lambda_2)$, $B + C = 0$	$\{p_{16}, p_{35}, p_{46}\}$
Component III	$\tau_{1} + 2\tau_{2} - (\tau_{1} \tau_{22} - \tau_{12}^2) = 0$	$\lambda_1(1 - \lambda_3) = \lambda_2(\lambda_1 - \lambda_3)$, $B - C = 0$	$\{p_{16}, p_{33}, p_{43}\}$
Component IV	$2\tau_{12} - \tau_{22} = 0$	$\lambda_3 = \lambda_1 \lambda_2$, $A - C = 0$	$\{p_{16}, p_{35}, p_{46}\}$
Component V	$2\tau_{12} - \tau_{22} + (\tau_{1} \tau_{22} - \tau_{12}^2) = 0$	$\lambda_2 = \lambda_1 \lambda_3$, $A + C = 0$	$\{p_{16}, p_{33}, p_{43}\}$
Component VI	$\tau_{1} - \tau_{22} = 0$	$\lambda_1 - \lambda_2 = \lambda_3(\lambda_1 - \lambda_3)$, $A + B = 0$	$\{p_{15}, p_{26}, p_{34}\}$
Component VII	$\tau_{1} - \tau_{22} + (\tau_{1} \tau_{22} - \tau_{12}^2) = 0$	$\lambda_1 - \lambda_3 = \lambda_3(\lambda_1 - \lambda_2)$, $A - B = 0$	$\{p_{15}, p_{24}, p_{36}\}$

Proof A linear transformation of variables in Eq. (2.21) over a suitable finite extension field yields a Göpel quartic in Eq. (2.43). In [15, Thm. 4.46] a corresponding solution for the parameters (A, B, C, D) in terms of the Rosenhain roots of a genus-two curve C_0 in Eq. (1.1) was determined explicitly. It is given by

\[
A = 2 \frac{\lambda_1 + 1}{\lambda_1 - 1}, \quad B = 2 \frac{\lambda_1 \lambda_2 + \lambda_1 \lambda_3 - 2 \lambda_2 \lambda_3 - 2 \lambda_1 + \lambda_2 + \lambda_3}{(\lambda_2 - \lambda_3)(\lambda_1 - 1)}, \quad C = 2 \frac{\lambda_3 + \lambda_2}{\lambda_3 - \lambda_2},
\]

such that Eq. (2.44) is satisfied. All other possible solutions are obtained from this one by the 15 transpositions acting on the roots $(\lambda_1, \lambda_2, \lambda_3, 0, 1, \infty)$. This is precisely the relation between the Pringsheim components for \mathcal{H}_4 given in Proposition 1.5. We can then rewrite any relation between $\lambda_1, \lambda_2, \lambda_3$ as an additional relation for A, B, C, D. In this way, we obtain a one-to-one correspondence between the 15 Pringsheim components in Proposition 1.5 and the 15 additional relations for the Göpel–Hudson quartic in Eq. (2.45).

Proposition 2.26 provides a characterization of the 15 components in $\mathbb{H}_2/\Gamma_2(2)$ covering \mathcal{H}_4. Because of Remark 2.11, each of the components also corresponds to a configuration in the Kummer plane where three nodes on \mathcal{K}_A in Table 2 are collinear. On the other hand, for each genus-two curve C_0 with an elliptic involution there is precisely one Göpel group $G \leq A[2]$ with $A = \text{Jac}(C_0)$ such that $A/G \cong \mathcal{E}_1 \times \mathcal{E}_2$; see Corollary 1.17. We then have the following:

Corollary 2.29 For a smooth genus-two curve C_0 admitting an elliptic involution and $A = \text{Jac}(C_0)$, the group $G = \{p_{i0}, p_{ij}, p_{ik}, p_{mn}\} \leq A[2]$ is the unique Göpel group such that $A/G \cong \mathcal{E}_1 \times \mathcal{E}_2$ if and only if for the corresponding Kummer configuration $(\mathbb{P}^2; \ell_1, \ldots, \ell_6)$ on \mathcal{K}_A the three nodes $\{p_{ij}, p_{mn}, p_{kl}\}$ are collinear.
\[P \text{ represented as a complete quadric intersection in } H \]

\[\text{Table 3 shows the 15 components in } \mathbb{H}_2/\Gamma_2(2) \text{ covering } \mathcal{H}_4 \text{ and the corresponding collinear points in the Kummer plane, using the marking of Weierstrass points } (P_1, \ldots, P_6) = (\lambda_1, \lambda_2, \lambda_3, 0, 1, \infty) \text{ for the curve } C_0. \]

Proof The one-to-one correspondence between the possible configurations of collinear points in the Kummer plane and the 15 components in \(\mathbb{H}_2/\Gamma_2(2) \) covering \(\mathcal{H}_4 \) is computed explicitly using their respective characterizations in terms of Rosenhain roots in Table 2 and Table 1, respectively.

Remark 2.30 For \(A^2 = B^2 = C^2 = 1 \) and \(D = 0 \) in Eq. (2.43), one finds the special solutions in Table 4. The minimal resolution of Eq. (2.43) is then isomorphic to the Kummer surface \(\text{Kum}(\text{Jac } C_0) \) of Picard rank \(\rho = 20 \) where \(C_0 \) is given by Eq. (1.18) with \(\lambda_2, \lambda_3 \) as specified in the table. In this case, the two elliptic-curve quotients are isomorphic to the elliptic curve \(\mathcal{E} \), given by

\[\mathcal{E} : \quad y^2z = x^3 + z^3, \]

admitting a \(\mathbb{Z}_3 \)-symmetry \(x \mapsto \omega_3x \) for \(\omega_3^3 = 1 \).

2.3.1 Related normal form

The Shioda sextic \(\mathcal{W}_0 \) in Eq. (2.28) has a presentation as a simple quartic hypersurface, isomorphic to \(\mathcal{W}_0 \) over \(\mathbb{Q}(\lambda_2 + \lambda_3, \lambda_2 \lambda_3) \). Notice that this is not the case for the Göpel–Hudson quartic in Eq. (2.43)—there, a finite field extension is needed to construct such an isomorphism.

Each elliptic curve \(\mathcal{E}_l \) for \(l = 1, 2 \), as given in Legendre form in Eq. (1.20), can also be represented as a complete quadric intersection in \(\mathbb{P}^3 \). Let \(\mathcal{I}_1 \) be the complete intersection of the two quadric surfaces in \(\mathbb{P}^3 = \mathbb{P}(X_{00}, X_{01}, X_{10}, X_{11}) \), given by

\[\mathcal{I}_1 : \quad \begin{cases} X_{01}^2 = X_{10}^2 + X_{11}^2, \\ X_{00} = X_{10}^2 + (1 - \Lambda_1)X_{11}^2, \end{cases} \quad (2.47) \]

and \(\mathcal{I}_2 \) be the complete intersection in \(\mathbb{P}^3 = \mathbb{P}(Y_{00}, Y_{01}, Y_{10}, Y_{11}) \), given by

\[\mathcal{I}_2 : \quad \begin{cases} Y_{01}^2 = Y_{10}^2 + Y_{11}^2, \\ Y_{00} = Y_{10}^2 + (1 - \Lambda_2)Y_{11}^2. \end{cases} \quad (2.48) \]

We have the following:

Lemma 2.32 \(\mathcal{E}_l \) is birational equivalent to \(\mathcal{I}_l \) for \(l = 1, 2 \) over \(\mathbb{Q}(\Lambda_l) \).

Proof A rational map \(\mathcal{E}_1 \hookrightarrow \mathbb{P}^3, [X_1 : Y_1 : z_1] \mapsto [X_{00}, X_{01}, X_{10}, X_{11}] \) is given by

\[\begin{bmatrix} X_{00} : X_{01} : X_{10} : X_{11} \end{bmatrix} = \begin{bmatrix} x_1^2 - 2\Lambda_1xz_1 + \Lambda_1z_1^2 : x_1^2 - \Lambda_1z_1^2 : x_1^2 - 2x_1z_1 + \Lambda_1z_1^2 : \pm2yz_1 \end{bmatrix}. \quad (2.49) \]
It has a rational inverse $\mathcal{I}_1 \dashrightarrow \mathcal{E}_1\times \mathcal{E}_2$, $[X_{00}, X_{01}, X_{10}, X_{11}] \mapsto [x_1 : y_1 : z_1]$, given by
\[
[x_1 : y_1 : z_1] = \left[\Lambda_1 (X_{1,0} - X_{0,0}) : \pm \Lambda_1 (\Lambda_1 - 1) X_{1,1} : (1 - \Lambda_1) X_{0,1} + \Lambda_1 X_{1,0} - X_{0,0} \right]. \tag{2.50}
\]
Thus, we obtain a birational equivalence between \mathcal{E}_1 and \mathcal{I}_1. An analogous argument holds for \mathcal{E}_2 and \mathcal{I}_2. \hfill \Box

There is a well-defined map $\tilde{\pi} : \mathcal{I}_1 \times \mathcal{I}_2 \dashrightarrow \mathbb{P}^3$ with $\mathbb{P}^3 = \mathbb{P}(Z_{00}, Z_{01}, Z_{10}, Z_{11})$ where one sets
\[
[Z_{00} : Z_{01} : Z_{10} : Z_{11}] = [X_{00} Y_{00} : X_{01} Y_{01} : X_{10} Y_{10} : X_{11} Y_{11}], \tag{2.51}
\]
for
\[
[X_{00} : X_{01} : X_{10} : X_{11}] \in \mathcal{I}_1, \quad [Y_{00} : Y_{01} : Y_{10} : Y_{11}] \in \mathcal{I}_1. \tag{2.52}
\]
We have the following:

Theorem 2.23 Assume that $\Lambda_1, \Lambda_2 \in \mathbb{P}^1\setminus\{0, 1, \infty\}$ and $\Lambda_1 \neq \Lambda_2$. The image $\tilde{\pi} (\mathcal{I}_1 \times \mathcal{I}_2)$ in $\mathbb{P}^3 = \mathbb{P}(Z_{00}, Z_{01}, Z_{10}, Z_{11})$ is the quartic projective surface \mathcal{V}_0, given by
\[
\mathcal{V}_0 : \begin{cases}
Z_{00}^4 + (1 - \Lambda_1)(1 - \Lambda_2)Z_{11}^4 + \Lambda_1 \Lambda_2 Z_{01}^4 + \Lambda_1 \Lambda_2 (1 - \Lambda_1)(1 - \Lambda_2)Z_{11}^4 \\
- (2 - \Lambda_1 - \Lambda_2)(Z_{00}^2 Z_{01}^2 + \Lambda_1 \Lambda_2 Z_{10}^2 Z_{11}^2) \\
- (2\Lambda_1 \Lambda_2 - \Lambda_1 - \Lambda_2)(Z_{00}^2 Z_{11}^2 + Z_{01}^2 Z_{10}^2) \\
- (\Lambda_1 + \Lambda_2)(Z_{00}^2 Z_{11}^2 + (1 - \Lambda_1)(1 - \Lambda_2)Z_{01}^2 Z_{10}^2) = 0.
\end{cases} \tag{2.53}
\]

The minimal resolution is isomorphic to a Kummer surface of Picard rank 18. In particular, the surfaces \mathcal{V}_0 and \mathcal{V}_0 in Eq. (2.28) for parameters satisfying (1.21) are birational equivalent over $\mathbb{Q}(\lambda_2 \lambda_3, \lambda_2 + \lambda_3)$.

Proof We multiply (pairwise) Eqs. (2.47) and (2.47) and then use the variables in Eq. (2.51). Upon eliminating the remaining variables, we obtain Eq. (2.53). For elliptic moduli K_i and complementary elliptic moduli K'_i with $\Lambda_i = K_i^2 = 1 - (K'_i)^2 \in \mathbb{P}^1\setminus\{0, 1, \infty\}$ for $i = 1, 2$, the surface \mathcal{V}_0 is isomorphic over $\mathbb{Q}(\sqrt{K_1 K_2}, \sqrt{K'_1 K'_2})$ to the equation in $\mathbb{P}^3 = \mathbb{P}(w, x, y, z)$ given by
\[
0 = w^4 + x^4 + y^4 + z^4 - \frac{(K'_1)^2 + (K'_2)^2}{K_1 K_2} \left(w^2 z^2 + x^2 y^2 \right) \tag{2.54}
- \frac{K_1^2 + K_2^2}{K_1 K_2} \left(w^2 y^2 + x^2 z^2 \right) + \frac{(K_1 K'_2)^2 + (K'_1 K_2)^2}{K_1 K_2 K'_1 K'_2} \left(w^2 x^2 + y^2 z^2 \right).
\]
In fact, in Eq. (2.53) we can rescale
\[
Z_{00} = x, \quad Z_{01} = \frac{y}{\sqrt{K'_1 K'_2}}, \quad Z_{10} = \frac{z}{\sqrt{K_1 K_2}}, \quad Z_{11} = \frac{w}{\sqrt{K_1 K_2 K'_1 K'_2}}, \tag{2.55}
\]
and obtain Eq. (2.54). We check that the latter is a Göpel–Hudson quartic in Eq. (2.43) with $D = 0$. According to Proposition 2.26, its minimal resolution is a Jacobian Kummer surface of Picard rank 18.

For parameters satisfying Eq. (1.21), a map $\mathcal{V}_0 \rightarrow \mathcal{U}_0$, given by
\[
[Z_{00} : Z_{01} : Z_{10} : Z_{11}] \mapsto [W : X : Y : Z],
\]
with
\[
\begin{align*}
W &= Z_{01} - Z_{10} - Z_{11}, \\
X &= (1 - \Lambda_2)(1 - \Lambda_3)Z_{0,0} + (1 + \Lambda_2 \lambda_3)Z_{0,1} - (\lambda_2 + \lambda_3)Z_{1,0}, \\
Y &= \lambda_2 \lambda_3 (Z_{0,1} - Z_{1,0} + Z_{1,1}), \\
Z &= -\lambda_2 \lambda_3 ((1 - \Lambda_2)(1 - \Lambda_3)Z_{0,0} + (1 + \Lambda_2 \lambda_3)Z_{0,1} - (\lambda_2 + \lambda_3)Z_{1,0}).
\end{align*}
\]
is an isomorphism, defined over $\mathbb{Q}(\lambda_2\lambda_3, \lambda_2 + \lambda_3)$, between the quartic surface \mathcal{V}_0 in Eq. (2.53) and \mathcal{U}_0 in Eq. (2.21) with $\lambda_1 = \lambda_2\lambda_3$. Substituting Eq. (2.56) into Eq. (2.21), we obtain Eq. (2.53) up to a non-vanishing scale factor. Inverting Eq. (2.56) yields

\begin{align}
Z_{0,0} &= \lambda_2\lambda_3 X + Z, \\
Z_{0,1} &= \lambda_2\lambda_3(\lambda_2 + \lambda_3) W - \lambda_2\lambda_3 X + (\lambda_2 + \lambda_3) Y + Z, \\
Z_{4,0} &= \lambda_2\lambda_3(\lambda_2\lambda_3 + 1) W - \lambda_2\lambda_3 X + (\lambda_2\lambda_3 + 1) Y + Z, \\
Z_{4,1} &= -\lambda_2\lambda_3(1 - \lambda_2)(1 - \lambda_3) W + (1 - \lambda_2)(1 - \lambda_3) Y.
\end{align}

Moreover, Eqs. (2.23) and (2.24) provide a birational equivalence between \mathcal{U}_0 and \mathcal{W}_0. It is easy to see that for $\lambda_1 = \lambda_2\lambda_3$ in Eq. (2.19) this equivalence is well defined over $\mathbb{Q}(\lambda_2\lambda_3, \lambda_2 + \lambda_3)$.

Remark 2.34 The surface \mathcal{V}_0 in Eq. (2.53) is the Kummer-surface analogue of the genus-two curve in Eq. (1.35) obtained by Legendre’s gluing method.

2.4 Geometric isogeny

We proved in Proposition 1.8 that the smooth curve C_0 in Eq. (1.18) admits an elliptic involution with the elliptic-curve quotients \mathcal{E}_l for $l = 1, 2$ and rational quotient maps $\pi_{\mathcal{E}_l} : C_0 \rightarrow \mathcal{E}_l$. In this situation, we consider the rational map, given by

$$
\psi_0 : C_0 \times C_0 \rightarrow \mathcal{E}_1 \times \mathcal{E}_2, \quad (P, Q) \mapsto \left(\pi_{\mathcal{E}_1}(P) \oplus \pi_{\mathcal{E}_1}(Q), \pi_{\mathcal{E}_2}(P) \oplus \pi_{\mathcal{E}_2}(Q)\right),
$$

where the symbol \oplus refers to the addition of two points on the elliptic curve \mathcal{E}_1 and \mathcal{E}_2, respectively. One can easily show that the argument from [60, Sec. 4.6] extends, and the map ψ_0 induces a geometric isogeny ψ between the Shioda sextic \mathcal{W}_0 in Eq. (2.15) with $\lambda_1 = \lambda_2\lambda_3$ and the double quadric surface Z in Eq. (2.3). If we additionally use the fact that the Jacobian $\text{Jac}(C_0)$ is birational to the symmetric product $\text{Sym}^2(C_0)$, it follows that the map ψ is related to the $(2, 2)$-isogeny Ψ in Eq. (1.40) by the following commutative diagram:

$$
\begin{array}{ccc}
C_0 \times C_0 & \rightarrow & \mathcal{W}_0 \leftarrow \text{Kum}(\text{Jac} C_0) \leftarrow \text{Jac}(C_0) \\
\downarrow \psi_0 & \quad & \downarrow \psi \\
\mathcal{E}_1 \times \mathcal{E}_2 & \rightarrow & Z \leftarrow \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2) \leftarrow \mathcal{E}_1 \times \mathcal{E}_2.
\end{array}
$$

Here, the middle horizontal arrows represent minimal resolutions of singularities. We will now show that, relative to the quartic surface \mathcal{V}_0 in Eq. (2.53), the geometric isogeny ψ_0 will take a simple form and can be constructed explicitly.

By construction of the map ψ_0 and Proposition 1.8, the isogeny ψ is defined over the field $\mathbb{Q}(q, r^2) \cong \mathbb{Q}(\sqrt{\lambda_2\lambda_3}, \lambda_1 + \lambda_2)$ for $q^2 = \lambda_2\lambda_3$ and $r^2 = (1 - \lambda_2)(1 - \lambda_3)$. We then have the following:

Lemma 2.35 For the holomorphic two-forms $\omega_{\mathcal{V}_0} = dz_2 \wedge dz_3/z_4$ in the chart $z_1 = 1$ in Eq. (2.15) and $\omega_Z = dx_1 \wedge dx_2/y_{12}$ in the chart $z_1 = z_2 = 1$ in Eq. (2.3), it follows

$$
\psi^* \left(\frac{dx_1 \wedge dx_2}{y_{12}} \right) = \delta \cdot \frac{dz_2 \wedge dz_3}{z_4},
$$

with $\delta = 2\sqrt{\lambda_2\lambda_3}(1 - \lambda_2)(1 - \lambda_3)$.
The regular two-from $dx_1 \wedge dx_2/(y_1y_2)$ in Eq. (2.4) on $E_1 \times E_2$ is the pullback (along the horizontal arrow in Eq. (2.59)) of the holomorphic two-form $\omega_\mathcal{Z}$. It was shown in [60, Sec. 4.6] that one has

$$\psi^*_0 \left(dx_1 \wedge dx_2 \right) = \delta \left(X^{(2)} - X^{(1)} \right) dX^{(1)} \wedge dX^{(2)} = \frac{d(X^{(1)} + X^{(2)}) \wedge d(X^{(1)} X^{(2)})}{Y^{(1)} Y^{(2)}}$$

where $\left[X^{(l)} : Y^{(l)} : Z^{(l)} \right]$ for $l = 1, 2$ are the coordinates of the two copies of \mathcal{C}_0. \hfill \square

One avoids the pre-factor δ in Eq. (2.60) by using quadratic twists:

Corollary 2.36 The map ψ extends to a rational map between the surfaces $\mathcal{W}_{0}^{(e)}$ in Eq. (2.28) and $\mathcal{Z}^{(2)}$ in Eq. (2.6), i.e.,

$$\psi : \mathcal{W}_{0}^{(e)} \dashrightarrow \mathcal{Z}^{(2)}$$

such that the holomorphic two-forms $\omega_{\mathcal{W}_{0}^{(e)}} = dz_2 \wedge dz_3/\hat{z}_4$ in the chart $z_1 = 1$ and $\omega_{\mathcal{Z}^{(2)}} = dx_1 \wedge dx_2/y_1$, in the chart $z_1 = z_2 = 1$ satisfy $\omega_{\mathcal{W}_{0}^{(e)}} = \psi^* \omega_{\mathcal{Z}^{(2)}}$.

Proof An isomorphism between \mathcal{W}_0 in Eq. (2.15) and $\mathcal{W}_{0}^{(e)}$ in Eq. (2.28) is given by $\hat{z}_4 = \sqrt{\epsilon}$. Similarly, an isomorphism between \mathcal{Z} in Eq. (2.15) and $\mathcal{Z}^{(2)}$ in Eq. (2.28) is given by $y_1 = y_1/4$. Equation (2.60) then becomes $\omega_{\mathcal{W}_{0}^{(e)}} = \psi^* \omega_{\mathcal{Z}^{(2)}}$. \hfill \square

On the other hand, the double quadric \mathcal{Z} in Eq. (2.3) is related to the surface \mathcal{W}_0 in Eq. (2.53) as follows:

Lemma 2.37 In the commutative diagram

$$\begin{array}{ccc}
\mathcal{E}_1 \times \mathcal{E}_2 & \xrightarrow{\pi} & \mathcal{I}_1 \times \mathcal{I}_2 \\
\phi_{\pm} & \rightarrow & \phi_{\pm} \\
\pi & \downarrow & \hat{\pi} \\
\mathcal{Z} & \xrightarrow{\phi_{\pm}} & \mathcal{W}_0
\end{array}$$

the maps $\phi_{\pm} : \mathcal{Z} \rightarrow \mathcal{W}_0$ are rational maps of degree two given by

$$\phi_{\pm} : (x_1, z_1, x_2, z_2, y_1) \mapsto [Z_{00} : Z_{01} : Z_{10} : Z_{11}],$$

with

$$Z_{00} = \left(x_1^2 - 2\Lambda_1 x_1 z_1 + \Lambda_1 z_1^2 \right) \left(x_2^2 - 2\Lambda_2 x_2 z_2 + \Lambda_2 z_2^2 \right),$$

$$Z_{01} = \left(x_1^2 - \Lambda_1 z_1^2 \right) \left(x_2^2 - \Lambda_2 z_2^2 \right),$$

$$Z_{10} = \left(x_1^2 - 2x_1 z_1 + \Lambda_1 z_1^2 \right) \left(x_2^2 - 2x_2 z_2 + \Lambda_2 z_2^2 \right),$$

$$Z_{11} = \pm y_1.$$ (2.65)

such that $\phi_{\pm} \circ \pi \circ \iota_{\mathcal{E}_l} = \phi_{\mp} \circ \pi$ for $l = 1, 2$, where $\iota_{\mathcal{E}_l}$ is the hyperelliptic involution on \mathcal{E}_l. \hfill \square
Proposition 2.38 The family of rational maps $\psi_\pm : \mathcal{V}_0 \rightarrow \mathcal{Z}$ of degree two given by

$$\psi_\pm : [Z_{00} : Z_{01} : Z_{10} : Z_{11}] \mapsto (x_1, z_1, x_2, z_2, y_{1,2})$$

with $x_1 = Q$, $z_1 = (\Lambda_1 - \Lambda_2)Z_{1,1}^2$, $x_2 = (\Lambda_1 - \Lambda_2)Z_{0,1}^2$, $z_2 = Q$, $y_{1,2} = \pm(\Lambda_1 - \Lambda_2)QZ_{0,0}Z_{1,0}Z_{1,1}$,

satisfies that the composition $\psi_\pm \circ \phi_\pm : \mathcal{Z} \rightarrow \mathcal{Z}$ is the diagonal action of multiplication by two on $E_1 \times E_2$ in Eq. (2.66).

Proof The composition of elliptic-curve isogenies in Eq. (2.68) is given by

$$\left([X_{00} : X_{01} : X_{10} : X_{11}] \right) \mapsto \left([x_1 : z_1 : y_1] = [X_{01}^2 X_{1,1}^3 : X_{0,0} X_{01} X_{1,0}] \right)$$

The relation, given by

$$[Z_{00} : Z_{01} : Z_{10} : Z_{11}] = [X_{00} Y_{00} : X_{01} Y_{01} : X_{10} Y_{10} : X_{11} Y_{11}]$$

induces a correspondence between \mathcal{Z} and \mathcal{V}_0, given by

$$x_1 x_2 = Z_{0,1}^2, \quad z_1 z_2 = Z_{1,1}^2, \quad y_{1,2} = Z_{0,0} Z_{1,0} Z_{1,1}$$

with $Q = (\Lambda_1 - \Lambda_2)X_{0,1}^2 Y_{1,1}^2$ and $R = (\Lambda_2 - \Lambda_1)X_{1,1}^2 Y_{0,1}^2$. One then obtains

$$Q = Z_{0,0}^2 - (1 - \Lambda_1)Z_{0,1}^2 - \Lambda_1 Z_{1,0}^2 + \Lambda_1 (1 - \Lambda_2)Z_{1,1}^2,$$

$$R = Z_{0,0}^2 - (1 - \Lambda_2)Z_{0,1}^2 - \Lambda_2 Z_{1,0}^2 + \Lambda_2 (1 - \Lambda_1)Z_{1,1}^2.$$
When solving for an equivalence class, given by
\[(x_1, z_1, x_2, z_2, y_{1,2}) \sim (\mu x_1, \mu z_1, v x_2, v z_2, \mu^2 v^2 y_{1,2}) \] with \(\mu, v \in \mathbb{C}^\times\),
we obtain Eq. (2.69). Using the relation \(QR = -(\Lambda_1 - \Lambda_2)^2 Z_{0,1}^2 Z_{1,1}^2\), the solution can also be written as
\[x_1 = (\Lambda_2 - \Lambda_1) Z_{0,1}^2, \quad z_1 = R, \quad x_2 = R, \quad z_2 = (\Lambda_2 - \Lambda_1) Z_{1,1}^2,
\]
\[y_{1,2} = (\Lambda_1 - \Lambda_2)^2 R^2 Z_{0,0} Z_{1,0} Z_{1,1}.
\]
Equation (2.66) provides an explicit formula for the (diagonal) action of multiplication by two on \(E_1 \times E_2\). We apply the natural projection map \(\pi : E_1 \times E_2 \to Z\) given by \(y_{1,2} = z_1 z_2 y_1 y_2\) to obtain the induced action on the double quadric \(Z\) in Eq. (2.3). We check that this agrees with the composition of maps \(\psi_\pm \circ \phi_\pm : Z \dashrightarrow Z\), i.e., we have
\[\psi_\pm \circ \phi_\pm = \pi (\chi_{E_1}' \times \chi_{E_2}') \circ (\chi_{E_1} \times \chi_{E_2}).\]

The map \(\psi_\pm\) in Eq. (2.69) can be related to the geometric isogeny \(\psi\) in Eq. (2.59). We have the following:

Proposition 2.39 The map \(\psi\) in Eq. (2.59) with the normalization determined by Eq. (2.60) coincides with \(\psi_\pm\) in Proposition 2.38.

Proof Considering the finite field extension \(\mathbb{Q}(k_1, k_2)\) with
\[\Lambda_1 = -\frac{(k_2 - k_3)^2}{(1 - k_1^2)(1 - k_3^2)}, \quad \Lambda_2 = -\frac{(k_2 + k_3)^2}{(1 - k_1^2)(1 - k_3^2)},\]
the maps \(\psi_\pm : \mathcal{V}_0 \dashrightarrow \mathcal{Z}\) in Proposition 2.38 are equivalently given by
\[\psi_\pm : \quad [Z_{00}: Z_{01}: Z_{10}: Z_{11}] \mapsto (x_1, z_1, x_2, z_2, y_{1,2}),\]
with
\[x_1 = S_+, \quad z_1 = 4k_2 k_3 (1 - k_2^2)(1 - k_3^2) Z_{1,1}^2,
\]
\[x_2 = S_-, \quad z_2 = 4k_2 k_3 (1 - k_2^2)(1 - k_3^2) Z_{1,1}^2,
\]
\[y_{1,2} = \pm 256 k_2^4 k_3^4 (1 - k_2^2)^2 (1 - k_3^2)^2 Z_{0,0} Z_{1,0} Z_{1,1}^2\]
where \(S_\pm\) are the quadrics given by
\[S_\pm = \pm (1 - k_2^2)^2 (1 - k_3^2) Z_{0,0}^2 \mp (1 \mp k_2 k_3)^2 (1 - k_2^2)(1 - k_3^2) Z_{0,1}^2
\]
\[\pm (k_2 \mp k_3)^2 (1 - k_2^2)(1 - k_3^2) Z_{1,0}^2 \mp (k_2 \mp k_3)^2 (1 \pm k_2 k_3)^2 Z_{1,1}^2,\]
such that \(S_+ S_- = 16 k_2^2 k_3^2 (1 - k_2^2)^2 (1 - k_3^2)^2 Z_{0,0}^2 Z_{1,1}^2\). The proof follows from a tedious computation using Maple: one first constructs the rational map \(\psi\) in Eq. (2.59) as a map from \(\mathcal{W}_0\) in the chart \(z_1 = 1\) in Eq. (2.28) to \(\mathcal{Z}\) in the chart \(z_1 = z_2 = 1\) in Eq. (2.3) over \(\mathbb{Q}(k_2, k_3)\). One then uses the identification \(\mathcal{W}_0 \cong \mathcal{V}_0\) from the proof of Proposition 2.33. The map \(\psi\) then simplifies considerably and coincides with \(\psi_\pm\) in Eq. (2.80).

Legendre’s gluing method in Sect. 1.3.4 determines the smooth genus-two curve in Eq. (1.35), admitting an elliptic involution with elliptic-curve quotients \(E_1\) and \(E_2\). The quotient maps determine the (2, 1)-isogeny \(\Psi : \text{Jac} (C_0) \to E_1 \times E_2\) in Eq. (1.40) and its dual isogeny \(\Phi\). The construction descends and yields the following Kummer sandwich theorem:
Theorem 2.40 The surface V_0 in Eq. (2.53) and rational maps ϕ_{\pm}, ψ_{\pm} in Eqs. (2.65) and (2.69) fit into the following Kummer sandwich:

$$\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2) \xrightarrow{\phi_{\pm}} V_0 \xrightarrow{\psi_{\pm}} \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2).$$

The maps ϕ_{\pm}, ψ_{\pm} are defined on families over $\mathbb{Q}(\Lambda_1, \Lambda_2)$ and induced (up to the action of the minus identity involution) by the $(2, 2)$-isogeny in Eq. (1.8) and its dual $(2, 2)$-isogeny in Eq. (1.40) of principally polarized abelian surfaces, respectively, i.e., the isogenies in the following diagram:

$$\mathcal{E}_1 \times \mathcal{E}_2 \xrightarrow{\Phi} \text{Jac}(C_0) \xrightarrow{\Psi} \mathcal{E}_1 \times \mathcal{E}_2.$$ (2.82)

C_0 is the smooth genus-two curve admitting an elliptic involution, and \mathcal{E}_1 are the elliptic-curve quotients determined in Proposition 1.8.

Proof General results in [6, Sec. 1] and Theorem 1.2 show that there is a $(2, 2)$-isogeny Φ in Eq. (1.8), given by

$$\Phi : \mathcal{E}_1 \times \mathcal{E}_2 \longrightarrow \text{Jac}(C_0).$$ (2.83)

The dual isogeny $\Psi : \text{Jac}(C_0) \rightarrow \mathcal{E}_1 \times \mathcal{E}_2$ was constructed in Eq. (1.40). Up to isomorphisms, the composition is given by multiplication by two on each factor of $\mathcal{E}_1 \times \mathcal{E}_2$. Proposition 2.39 shows that Ψ induces the map ψ_{\pm}. The minimal resolution of the double quadric surface Z is isomorphic to the Kummer surface $\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)$. Moreover, the induced action of $\Psi \circ \Phi$ on the associated Kummer surfaces coincides with the one of $\psi_{\pm} \circ \phi_{\pm}$ due to Proposition 2.38. On the other hand, the map $\psi_{\pm} \circ \phi_{\pm}$ factors though V_0 by construction. Proposition 2.33 proves that V_0 is isomorphic to W_0 whose minimal resolution is $\text{Kum}(C_0)$ due to Proposition 2.12.

\square

3 K3 surfaces related to the Legendre pencil

The family of projective surfaces, given by the equation

$$y^2 = z_1z_2z_3(z_1 + z_2)(z_2 + z_3)(z_1 + tz_3)$$ (3.1)

with $t \in \mathbb{Q}$ is a family of double sextic surfaces considered by vanGeemen and Top in [60]. The minimal resolutions yield K3 surfaces of Picard rank 19. A natural generalization, referred to as the two-parameter twisted Legendre pencil in [25–29], is the family \mathcal{X}, given by

$$\mathcal{X} : y^2 = z_1z_2(z_1 - z_2)(z_1 - z_3)(z_2^2 + 2\rho_1z_2z_3 + \rho_2^2z_3^2),$$ (3.2)

with $\rho_1, \rho_2 \in \mathbb{Q}$ and $\rho_1 \neq \pm \rho_2$. If fact, changing variables according to $z_1 \mapsto -z_1$, $z_3 \mapsto 2\rho_1z_3$, and $y \mapsto 2i\rho_1y$, the family \mathcal{X} is isomorphic to the family in Eq. (3.1) for $(\rho_1, \rho_2) = (t/2, 0)$ over $\mathbb{Q}(i)$. A natural holomorphic two-form $\omega_{\mathcal{X}}$ on \mathcal{X} is given by $dz_1 \wedge dz_3/y$ in the chart $z_2 = 1$ in Eq. (3.2). Notice that a general member of \mathcal{X} is not the Kummer associated with an abelian surface.

3.1 Configurations of six lines

The general member of the family in Eq. (3.2) yields a K3 surface of Picard rank 18, and thus, its transcendental lattice $T_{\mathcal{X}}$ has rank 4. Hoyt showed in [26, 29] that

$$T_{\mathcal{X}} = \langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle -2 \rangle \oplus \langle -2 \rangle.$$ (3.3)
There is also a further generalization, known as three-parameter twisted Legendre pencil, given by

\[y^2 = z_1(z_1 - z_2)(z_1 - z_3)(Az_2 - z_3)(Bz_2 - z_3)(Cz_2 - z_3). \] \hspace{1cm} (3.4)

The branch locus consists of six lines, three of which are coincident in a point; see [13, 26, 40]. The minimal resolutions are K3 surfaces of Picard rank greater than or equal to 17. In [29], it was shown that the transcendental lattice of the K3 surface associated with a general member in Eq. (3.4) is \(2 \oplus (-2) \oplus (-2) \oplus 3 \). In particular, a general member of \(X \) is not the Kummer surface.

The case \(C = \infty \) in Eq. (3.4), after rescaling, is given by

\[X: \quad y^2 = z_1 z_2(z_1 - z_2)(z_1 - z_3)(Az_2 - z_3)(Bz_2 - z_3). \] \hspace{1cm} (3.5)

This pencil is isomorphic to Eq. (3.2) over \(\mathbb{Q}(\rho_1, \rho_2, \sqrt{\rho_1^2 - \rho_2^2}) \) with \(AB = \rho_2^2 \) and \(A + B = -2\rho_1 \). We have the following:

Proposition 3.1 For \(A \neq B \), the general member in Eq. (3.5) is branched on the union of six lines, one of which is coincident with two pairs of lines in two distinct points and generic otherwise. The configuration is shown in Fig. 3. The minimal resolution has Picard rank 18. For the following specializations, the minimal resolution has Picard rank 19:

1. \(AB = 0 \)
2. \((A + B - 4)^2 - 4AB = 0 \)
3. \((A - B + 1)(A - B - 1) = 0 \)

Remark 3.2 In terms of Eq. (3.2), the subsets of the parameter space in Proposition 3.1 are given by

1. \(\rho_2 = 0 \)
2. \((\rho_1 - \rho_2 + 2)(\rho_1 + \rho_2 + 2) = 0 \)
3. \(4\rho_1^2 - 4\rho_2^2 - 1 = 0 \)

Remark 3.3 In case (1) of Proposition 3.1, the branch locus is the configuration of six lines \(\{ \ell_1, \ldots, \ell_6 \} \) in \(\mathbb{P}^2 \) such that, up to permutation, the triple intersections \(p_{123} = \ell_1 \cap \ell_2 \cap \ell_3 \), \(p_{145} = \ell_1 \cap \ell_4 \cap \ell_5 \), and \(p_{246} = \ell_2 \cap \ell_4 \cap \ell_6 \) consist of three pairwise distinct points \(p_{123}, p_{145}, p_{246} \), and the configuration is generic otherwise.

Proof The branch locus of Eq. (3.5) is given by the six lines

\[\ell_1 : z_2, \quad \ell_2 : z_1, \quad \ell_3 : z_1 - z_2, \quad \ell_4 : Az_2 - z_3, \quad \ell_5 : Bz_2 - z_3, \quad \ell_6 : z_1 - z_3. \] \hspace{1cm} (3.6)
whose intersection pattern looks as follows:

	ℓ_1	ℓ_2	ℓ_3	ℓ_4	ℓ_5	ℓ_6
ℓ_1	-	[0 : 0 : 1]	[0 : 0 : 1]	[1 : 0 : 0]	[1 : 0 : 0]	[1 : 0 : 1]
ℓ_2	[0 : 0 : 1]	-	[0 : 0 : 1]	[0 : 1 : A]	[0 : 1 : B]	[0 : 1 : 0]
ℓ_3	[0 : 0 : 1]	[0 : 0 : 1]	-	[1 : 1 : A]	[1 : 1 : B]	[1 : 1 : 1]
ℓ_4	[1 : 0 : 0]	[0 : 1 : A]	[1 : 1 : A]	-	[1 : 0 : 0]	[A : 1 : A]
ℓ_5	[1 : 0 : 0]	[0 : 1 : B]	[1 : 1 : B]	[1 : 0 : 0]	-	[B : 1 : B]
ℓ_6	[1 : 0 : 1]	[0 : 1 : 0]	[1 : 1 : 1]	[A : 1 : A]	[B : 1 : B]	-

Statement (1) is immediate. For (2), one can check that the double sextic in Eq. (3.5) admits a Jacobian elliptic fibration with a non-torsion section: The elliptic fibration is obtained by setting $z_1 = x, z_2 = t, z_3 = 1$. Then, for $x = -\frac{4(At - 1)(Bt - 1)}{(A - B)^2 t}$ we have

$$y^2 = -\frac{4(At - 1)^2(Bt - 1)^2((A + B)t - 2)^2(4ABt^2 + (A^2 + B^2 - 2AB - 4A - 4B)t + 4)}{(A - B)^6 t^2}.$$

The discriminant for the quadratic term in the numerator of y^2 factors into the product of $(A - B)^2$ times $A^2 + B^2 - 2AB - 8A - 8B - 16$. Since we assumed $A \neq B$, we obtain a non-torsion section if $A^2 + B^2 - 2AB - 8A - 8B - 16 = 0$. Thus, we set $A = \alpha^2$ and $B = (2 \pm \alpha)^2$ and obtain

$$y = \pm \frac{i(\alpha^2 - 1)((\alpha - 2)^2 t - 1)((\alpha^2 - 2\alpha + 2)t - 1)(\alpha(\alpha - 2)t + 1)}{8(\alpha - 1)^3 t}.$$

For (3), one checks that $x = \frac{4t - 1}{A - 2}$ and $y^2 = \frac{4(4t - 1)^2((4 - 2) t - 1)^2}{(A - 2)^3}$ is a section if and only if $A - B + 1 = 0$. Switching the roles of A and B the statement follows.

In Eq. (3.5), the pencil of lines through the point $[1 : 0 : 0]$ (or, equivalently, the point $[0 : 0 : 1]$) induces an elliptic fibration on \mathcal{X}. A simple coordinate transformation, defined over $\mathbb{Q}(\rho_1, \rho_2^2)$, yields a Weierstrass model with fibers over $\mathbb{P}^1 = \mathbb{P}(v_1, v_2)$ embedded into $\mathbb{P}^2 = \mathbb{P}(x, y, z)$, given by

$$\mathcal{X} : y^2 z = x(x - v_1 v_2(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)z)(x - v_2^2(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)z).$$

This change of coordinates also maps via pullback the holomorphic two-form $\omega_X = dv_1 \wedge dx/y$ in the chart $v_2 = z = 1$ in Eq. (3.8) to the holomorphic two-form $dz_1 \wedge dz_3/y$ in the chart $z_2 = 1$ in Eq. (3.2). The discriminant function of the fibration is given by $v_2^6 v_1^6(v_1 - v_2)^2(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)^6$. We have the immediate:

Lemma 3.4 Equation (3.8) defines a Jacobian elliptic fibration with the singular fibers $l_2^2 + 2l_3^2 + 2l_0^6$ and a Mordell–Weil group of sections $\mathbb{Z}/2\mathbb{Z}^2$.

Remark 3.5 The pencil of lines through the point \([z_1 : z_2 : z_3] = [1 : 0 : 1]\) induces a second Jacobian elliptic fibration on \(\mathcal{X}\) with the singular fibers \(I^*_4 + 4I_2 + I^*_0\) and a Mordell–Weil group of sections \((\mathbb{Z}/2\mathbb{Z})^2\).

Remark 3.6 Hoyt proved in [28] that there are countably many algebraic curves \(W_N \subset \mathbb{C}^2\) in the parameter space \(\{(A, B) \mid A \neq B \text{ and } A, B \neq 0, 1\}\) for Eq. (3.5) such that each \(W_N\) corresponds to a modular correspondence between two elliptic curves. Moreover, it was shown that the rank of the Mordell–Weil group in Lemma 3.4 is greater than zero if and only if \((A, B) \in \bigcup_N W_N\). We will provide the modular correspondences for the subsets of the parameter space in Proposition 3.1 in Sect. 3.5.

Remark 3.7 The transcendental lattice in case (1) of Proposition 3.1 is isomorphic to \(\langle 2 \rangle \oplus \langle 2 \rangle \oplus \langle -2 \rangle\). For the remaining subfamilies in Proposition 3.1, the transcendental lattices can be determined using the results of [29, Sec. 3].

3.2 Double coverings by Kummer surfaces

We recall that an even eight on a K3 surface \(X\) is a set of eight disjoint \((-2)\)-rational smooth curves \(E_1, \ldots, E_8\) such that there is a divisor \(D \in \text{NS}(\mathcal{X})\) with
\[
E_1 + \cdots + E_8 \sim 2D, \tag{3.9}
\]
where the symbol \(\sim\) denotes linear equivalence. Choosing an even eight as the branch locus on a K3 surface \(X\) for a twofold ramified covering, Nikulin’s construction yields a new K3 surface \(Y\) together with a double covering \(f: Y \rightarrow X\); see [50]. Equivalently, there is a Nikulin involution on \(Y\) such that the minimal resolution of the quotient surface of \(Y\) by the involution yields \(X\). A Nikulin involution is an analytic involution of \(Y\) which acts trivially on \(H^{2,0}(Y)\). It is well known that such an involution always has eight fixed points and that by blowing them up and taking the quotient we recover the K3 surface \(X\) [48].

In our situation, reducible fibers of type \(D_6\) or \(D_4\) arise in Lemma 3.4 as minimal resolutions of the fibers located over \(v_2 = 0\) and \(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 = 0\), respectively. Recall that a \(D_4\) fiber has one (central) component of multiplicity two and four reduced components, taking the sum of two such fibers one finds that the eight reduced components are twice the class of a fiber minus the two double components and this gives the divisibility by two. Thus, configurations of eight non-central components of these fibers then form even eights on the minimal resolution of \(X\). Since the Mordell–Weil group of sections in Lemma 3.4 is \((\mathbb{Z}/2\mathbb{Z})^2\), we can always choose the four marked components in the reducible fibers in such a way that each of them is met by the zero section or a two-torsion section. In our situation, there are then the following even eights to consider:

1. non-central components of \(D_6\) and \(D_4\) over \(v_2 = 0\) and \(v_1 = (-\sqrt{\rho_1^2 - \rho_2^2} + \rho_1)v_2\) meeting sections,
2. non-central components of \(D_6\) and \(D_4\) over \(v_2 = 0\) and \(v_1 = (+\sqrt{\rho_1^2 - \rho_2^2} + \rho_1)v_2\) meeting sections,
3. non-central components of \(D_4\)’s over \(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 = 0\).

Choosing any of these even eights as the branch locus of a double cover, Nikulin’s construction yields a new K3 surface obtained as the minimal resolution of a Jacobian elliptic surface \(\mathcal{Y}_n\), together with a rational double cover \(f_n: \mathcal{Y}_n \rightarrow \mathcal{X}\) for \(n = 1, \ldots, 3\). In the case of two \(D_4\) fibers, the double cover is induced by the double cover of the base
curve \mathbb{P}^1 branched over the two corresponding base points. The pullback of the elliptic fibration, after a normalization, gives the elliptic K3 surface \mathcal{Y}_n with smooth fibers over the ramification points. Moreover, the corresponding Nikulin involution on \mathcal{Y}_n is the lift of the covering involution on the base composed with fiberwise multiplication by -1. This involution has eight fixed points, four in each fiber over the fixed points on the base, and with a quotient that is the K3 surface X one started with. Similar results hold in the other cases. Garbagnati considered Jacobian elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms, which includes an isogeny $f_n : \mathcal{Y}_n \dashrightarrow X$, where X contains two reducible D_4 fibers as a special case [21, Sec. 5-6]. Closely related is also work by Mehran [46] who classified all the K3 surfaces that admit a rational map of degree two into a given Kummer surface.

3.2.1 Double coverings by Kummer surfaces associated with two elliptic curves

Let us first construct the Jacobian elliptic surface \mathcal{Y}_3 and the double cover $f_3 : \mathcal{Y}_3 \rightarrow X$. A double cover between two rational curves, defined over $\mathbb{Q}(\rho_1, \rho_2)$, is given by

$$\mathbb{P}^1 \dashrightarrow \mathbb{P}^1, \quad [u_1 : u_2] \mapsto [v_1 : v_2] = [(\rho_1 - \rho_2)u_1^2 - 2\rho_1 u_1 u_2 + (\rho_1 + \rho_2)u_2^2 : 2u_1 u_2]. \quad (3.10)$$

The pullback of Eq. (3.8) along the double cover in Eq. (3.10) yields an elliptic fibration, with fibers over $\mathbb{P}^1 = \mathbb{P}(u_1, u_2)$ embedded into $\mathbb{P}^2 = \mathbb{P}(X, Y, Z)$, given by the Weierstrass model

$$\mathcal{Y}_3 : \quad Y^2 Z = X \left(X + \frac{1}{2} u_1 u_2 (u_1 - u_2)((\rho_1 - \rho_2)u_1 - (\rho_1 + \rho_2)u_2)Z \right) \times \left(X + \frac{1}{2} u_1 u_2 ((\rho_1 - \rho_2)u_1^2 - 2(\rho_1 + 1)u_1 u_2 + (\rho_1 + \rho_2)u_2^2)Z \right). \quad (3.11)$$

In fact, Eq. (3.11) is obtained by setting

$$x = ((\rho_1 - \rho_2)u_1^2 - (\rho_1 + \rho_2)u_2^2)^2 \times \left(4X + 2u_1 u_2 (u_1 - u_2)((\rho_1 - \rho_2)u_1 - (\rho_1 + \rho_2)u_2)Z \right), \quad (3.12)$$

$$y = 8((\rho_1 - \rho_2)u_1^2 - (\rho_1 + \rho_2)u_2^2)^3 Y, \quad z = Z,$$

in Eq. (3.8). Together, Eqs. (3.12) and (3.10) determine the double cover

$$f_3 : \quad \mathcal{Y}_3 \dashrightarrow X, \quad \left([u_1 : u_2], [X : Y : Z] \right) \mapsto \left([v_1 : v_2], [x : y : z] \right), \quad (3.13)$$

which is branched along the even eight on X that consists of the non-central components of the two reducible fibers of type D_4 obtained as the minimal resolution of the fibers of Kodaira-type I_1^k located over $v_1^2 + 2\rho_1 v_1 v_2 + \rho_2 v_2^2 = 0$. Conversely, on \mathcal{Y}_3 in the chart $Z = 1$ and $u_2 = 1$ a compatible Nikulin involution is given by

$$\left(u_1, X, Y \right) \mapsto \left(u_1 = \frac{\rho_1 + \rho_2}{(\rho_1 - \rho_2)u_1}, X' = \frac{(\rho_1 + \rho_2)^2 X}{(\rho_1 - \rho_2)^2 u_1^2}, Y' = -\frac{(\rho_1 + \rho_2)^3 Y}{(\rho_1 - \rho_2)^3 u_1^3} \right), \quad (3.14)$$

and it leaves the holomorphic two-forms $\omega_{\mathcal{Y}_3} = du_1 \wedge dX/Y$ invariant. We have the following:

Lemma 3.8 For the holomorphic two-form $\omega_X = dw_1 \wedge dx/y$ in the chart $z = w_2 = 1$ on X in Eq. (3.8) and the holomorphic two-form $\omega_{\mathcal{Y}_3} = du_1 \wedge dX/Y$ in the chart $Z = u_2 = 1$ on \mathcal{Y}_3 in Eq. (3.11), we have $\omega_{\mathcal{Y}_3} = f_3^* \omega_X$.

Proof The proof follows by an explicit computation using the transformation in Eqs. (3.12) and (3.10).
It turns out that the minimal resolution of \mathcal{Y}_3 is isomorphic to the Kummer surface $\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)$ associated with the product surface of two non-isogenous elliptic curves. We have the following:

Proposition 3.9 For $\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ let parameters ρ_1, ρ_2 be given by

$$\rho_1 = \Lambda_1 + \Lambda_2 - 2\Lambda_1\Lambda_2 - 1, \quad \rho_2 = 1 - \Lambda_1 - \Lambda_2. \quad (3.15)$$

The surfaces \mathcal{Y}_3 in Eq. (3.11) and Z in Eq. (2.3) are birational equivalent over $\mathbb{Q}(\Lambda_1, \Lambda_2)$. The birational equivalence identifies the holomorphic two-form $\omega_{\mathcal{Y}_3} = du_1 \wedge dX/Y$ in the chart $Z = u_2 = 1$ with $\omega_Z = dx_1 \wedge dx_2/y_{1,2}$ in the chart $z_1 = z_2 = 1$.

Proof Equation (3.11) is then precisely Eq. (2.11), describing a Jacobian elliptic fibration on the double quadric surface Z whose minimal resolution is $\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)$. The proof then follows from Proposition 2.6 and Corollary 2.10.

It turns out that the identification of the elliptic fibration in Eq. (3.8) and the isogeny $f_3 : \mathcal{Y}_3 \to \mathcal{X}$ are key in generalizing the results of [60]; see Sect. 3.5.

3.2.2 Double coverings by Jacobian Kummer surfaces

Next we construct the K3 surface \mathcal{Y}_1 and the double cover $f_1 : \mathcal{Y}_1 \to \mathcal{X}$. We introduce new parameters μ_2, μ_3 such that in Eq. (3.8) we have

$$\rho_1 = (\mu_3 - 1)^2(\mu_2 + \mu_3)^2, \quad \rho_2 = (\mu_3 - 1)^2(\mu_2 - \mu_3)^2. \quad (3.16)$$

Equation (3.16) are sufficient to obtain a family of Weierstrass models from Eq. (3.8) over $\mathbb{Q}(\mu_2, \mu_3)$ since the latter family only depends on ρ_2^2.

A double cover $\mathbb{P}^1 \to \mathbb{P}^1$ between two rational curves, defined over $\mathbb{Q}(\mu_2, \mu_3)$, is given by $[u_1 : u_2] \mapsto [v_1 : v_2]$ with

$$[v_1 : v_2] = [\mu_2(\mu_2 - 1)^2(u_1 - \mu_3u_2)(u_1 - \mu_3u_3u_2) : (\mu_2 - \mu_3)(1 - \mu_2\mu_3)(u_1 - \mu_2\mu_3u_2)^2]. \quad (3.17)$$

The pullback of Eq. (3.8) along the double cover in Eq. (3.17) then yields an elliptic fibration, with fibers over $\mathbb{P}^1 = \mathbb{P}(u_1, u_2)$ embedded into $\mathbb{P}^2 = \mathbb{P}(X, Y, Z)$, given by the Weierstrass model

$$\mathcal{Y}_1 : \quad Y^2Z = \epsilon X \left(X + \mu_2(\mu_2 - 1)^2u_1u_2(u_1 - \mu_3u_2)(u_1 - \mu_3u_3u_2) \right)$$

$$\times \left(X + \mu_3(\mu_2 - 1)^2u_1u_2(u_1 - \mu_3u_2)(u_1 - \mu_3^2u_3u_2) \right), \quad (3.18)$$

with $1/\epsilon = 4\mu_2\mu_3(1 - \mu_2\mu_3)(\mu_2 - \mu_3)$. In fact, Eq. (3.18) is obtained by setting

$$x = \frac{1}{4} \mu_2\mu_3(1 - \mu_2\mu_3)(\mu_2 - \mu_3)(\mu_2 - 1)^4(\mu_3 - 1)^4(u_1 - \mu_2\mu_3u_2)^2(u_2 + \mu_2\mu_3u_2)^2$$

$$\times \left(X + \mu_2(\mu_2 - 1)^2u_1u_2(u_1 - \mu_3u_2)(u_1 - \mu_3^2u_3u_2) \right), \quad (3.19)$$

$$y = \frac{1}{4} \mu_2^2\mu_3^2(\mu_2 - \mu_3)^2(1 - \mu_2\mu_3)^2(\mu_2 - 1)^6(\mu_3 - 1)^6$$

$$\times (u_1 + \mu_2\mu_3u_2)^3Y, \quad (3.19)$$

and $Z = Z$ in Eq. (3.8). Together, Eqs. (3.19) and (3.17) then determine a double cover

$$f_1 : \quad \mathcal{Y}_1 \to \mathcal{X}, \quad \left([u_1 : u_2], [X : Y : Z] \right) \mapsto \left([v_1 : v_2], [x : y : z] \right), \quad (3.20)$$

which is branched along the even eight on \mathcal{X} that consists of non-central components of the reducible fibers of type D_6 and D_4 meeting the sections. In terms of the parameters
For the holomorphic two-form \(\omega_f = dw_1 \wedge dx/y \) in the chart \(z = w_2 = 1 \) on \(X \) in Eq. (3.8) and the holomorphic two-form \(\omega_{\mathcal{Y}_1} = du_1 \wedge dX/Y \) in the chart \(Z = u_2 = 1 \) on \(\mathcal{Y}_1 \) in Eq. (3.18), we have \(\omega_{\mathcal{Y}_1} = f_1^* \omega_X \).

Proof The proof follows by an explicit computation using the transformation in Eqs. (3.19) and (3.17).

Remark 3.11 For the construction of the double cover \(f_2 : \mathcal{Y}_2 \rightarrow \mathcal{X} \), the induced map on the base curves is branched over \(v_2 = 0 \) and \(v_1 = (\sqrt{\rho_1^2 - \rho_2^2 + \rho_1})v_2 \). We introduce new Rosenhain roots \(\tilde{\mu}_2 = \tilde{k}_2^2 \) and \(\tilde{\mu}_3 = \tilde{k}_3^2 \) such that

\[
\frac{(\mu_2 + 1)(1 - \mu_3)^2}{4(1 - \mu_2\mu_3)(\mu_2 - \mu_3)} = \frac{(\tilde{\mu}_2 + 1)(1 - \tilde{\mu}_3)^2}{(1 - \tilde{\mu}_2\tilde{\mu}_3)(\tilde{\mu}_2 - \tilde{\mu}_3)},
\]

\[
\frac{\mu_2(1 - \mu_3)^2}{(1 - \mu_2\mu_3)(\mu_2 - \mu_3)} = \frac{(\tilde{\mu}_2 + 1)(1 - \tilde{\mu}_3)^2}{4(1 - \tilde{\mu}_2\tilde{\mu}_3)(\tilde{\mu}_2 - \tilde{\mu}_3)}.
\]

With respect to the new Rosenhain roots, the positions of the two fibers of Kodaira-type \(I_0^* \) in Eqs. (3.21) and (3.22) are interchanged, whereas the equations for the parameters \(\rho_1, \rho_2^2 \) remain unchanged, i.e.,

\[
\rho_1 = \frac{(\tilde{\mu}_3 - 1)^2(\tilde{\mu}_2^2 + 6\tilde{\mu}_2 + 1)}{8(\tilde{\mu}_2\tilde{\mu}_3 - 1)(\tilde{\mu}_2 - \tilde{\mu}_3)}, \quad \rho_2^2 = \frac{(\tilde{\mu}_3 - 1)^4(\tilde{\mu}_2^2 + 1)^2\tilde{\mu}_2}{4(\tilde{\mu}_2\tilde{\mu}_3 - 1)^2(\tilde{\mu}_2 - \tilde{\mu}_3)^2}.
\]

The solutions of Eq. (3.23) are given by

\[
\mu_2 = \frac{(i \pm \tilde{k}_2)^2}{(i \mp k_2)^2}, \quad \mu_3 = \frac{(i \pm \tilde{k}_3)^2}{(i \mp k_3)^2},
\]

where the sign choices in the formulas for \(\mu_2 \) and \(\mu_3 \) are independent. Thus, all results related to \(f_2 : \mathcal{Y}_2 \rightarrow \mathcal{X} \) can be derived from those for \(f_1 \) by replacing the moduli according to Eq. (3.25).

Let us also consider the double sextic surface given by

\[
W_0^{(\mathcal{C})} : \quad z_4^2 = e'z_1z_3(z_1 - z_2 + z_3)((\mu_2\mu_3)^2z_1 - \mu_2\mu_3 z_2 + z_3)
\times \prod_{i=2}^{3} (\mu_i^2 z_i - \mu_i z_i + z_i).
\]

It follows from Proposition 2.12 that \(W_0^{(\mathcal{C})} \) is birational equivalent to the twisted Kummer surface \(\text{Kum}(\text{Jac} C_0^{(\mathcal{V})}) \) associated with the Jacobian of the smooth genus-two curve given by

\[
C_0' : \quad Y^2 = XZ(X - Z)(X - \mu_2\mu_3Z)(X^2 - (\mu_2 + \mu_3)XZ + \mu_2\mu_3Z^2).
\]
It turns out that the minimal resolution of \mathcal{Y}_1 is isomorphic to the Kummer surface $\text{Kum} (\text{Jac} C_0')$. We have the following:

Proposition 3.12 Assume that $\mu_2, \mu_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\mu_2 \neq \mu_3^{\pm 1}$, and a quadric-twist factor is given by

$$\epsilon' = \frac{1}{4 \mu_2 \mu_3 (1 - \mu_2 \mu_3) (\mu_2 - \mu_3)}. \tag{3.28}$$

The surfaces \mathcal{Y}_1 in Eq. (3.18) and $\mathcal{W}_0^{(\epsilon')}$ in Eq. (3.26) are birational equivalent over $\mathbb{Q}(\mu_2, \mu_3, \mu_2 + \mu_3)$. The birational equivalence identifies the holomorphic two-form $\omega_{\mathcal{Y}_1} = du_1 \wedge dX/Y$ in the chart $Z = u_2 = 1$ with $\omega_{\mathcal{W}_0^{(\epsilon')}} = dz_2 \wedge dz_3/\hat{z}_4$ in the chart $z_1 = 1$.

Proof Equation (3.18) is precisely Eq. (2.39), with λ_l's replaced by μ_l's for $l = 2, 3$. The proof then follows from Corollary 2.23. The constraint that the birational equivalence identifies $\omega_{\mathcal{Y}_1}$ and $\omega_{\mathcal{W}_0^{(\epsilon')}}$ determines ϵ'.

3.3 Kummer surfaces as quotients

For the affine Weierstrass equation for X of the form

$$y^2 = x^3 + p_1 x^2 + p_2 x,$$

the translation by the two-torsion section $T: (x, y) \mapsto (0, 0)$ in each fiber constitutes a Nikulin involution i, which is given by addition \oplus of T with respect to the group law in each smooth elliptic fiber, i.e.,

$$i: (x, y) \mapsto (x, y) \oplus \frac{p_2 y}{x^2}. \tag{3.29}$$

By resolving the eight nodes of $X/\langle i \rangle$, we obtain a new K3 surface as a Jacobian elliptic surface X^\vee, given by the affine Weierstrass model

$$Y^2 = X^3 - 2 p_1 X^2 + (p_1^2 - 4 p_2) X^2. \tag{3.30}$$

One constructs a dual van Geemen–Sarti involution i^\vee analogously. The explicit formulas for the isogeny and the dual isogeny are well known3 and given by

$$\phi: X \to X^\vee, \quad (x, y) \mapsto \left(\frac{y^2}{x^2}, \frac{y (x^2 - p_2)}{x^2} \right), \tag{3.31}$$

and

$$\phi^\vee: X^\vee \to X, \quad (X, Y) \mapsto \left(\frac{Y^2}{4 X^2}, \frac{Y (X^2 - p_1^2 + 4 p_2)}{8 X^2} \right). \tag{3.32}$$

We have the following:

Proposition 3.13 The K3 surfaces X and X^\vee admit dual van Geemen-Sarti involutions i and i^\vee associated with fiberwise translations by the two-torsion section $T: (x, y) = (0, 0)$ and $T^\vee: (X, Y) = (0, 0)$, respectively, and the following pair of dual geometric two-isogenies:

$$\xymatrix{ X^\vee \ar[r]_{\phi} & X \ar[l]^{\phi^\vee} } \tag{3.33}$$

Moreover, it follows $\omega_X = \phi^* \omega_{X^\vee}$ and $2 \omega_{X^\vee} = (\phi^\vee)^* \omega_X$ for the holomorphic two-forms $\omega_X = dv \wedge dx/y$ and $\omega_{X^\vee} = dv \wedge dX/Y$ on X and X^\vee, respectively.

3They were given explicitly in [14]
Applying Proposition 3.13 to Eq. (3.8) using the Nikulin involution \(t_3 \) associated with translations by the two-torsion section

\[
T_3 : \quad [X : Y : Z] = [v_1 v_2 (v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2) : 0 : -1],
\]

we obtain a new K3 surface \(X'_3 \) as the minimal resolution of \(X/\langle t_3 \rangle \) together with a quotient map \(\varphi_3 : X \rightarrow X'_3 \) defined over \(\mathbb{Q}(\rho_1, \rho_2) \). Here, a Weierstrass model for \(X'_3 \) is given by

\[
X'_3 : \quad Y^2 Z = X^3 - 2v_1 v_2 (v_1 - v_2) \left(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 \right) X^2 Z
\]

\[
+ v_2^4 \left(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 \right)^2 XZ^2.
\]

(3.35)

It turns out that the minimal resolution of \(X'_3 \) is isomorphic to the Kummer surface \(\text{Kum}(E'_1 \times E'_2) \) associated with the product surface of the two-isogenous elliptic curves in Eq. (1.43). We have the following:

Proposition 3.14 For \(\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) let parameters \(\rho_1, \rho_2 \) satisfy

\[
\rho_1 = \Lambda_1 + \Lambda_2 - 2\Lambda_1 \Lambda_2 - 1, \quad \rho_2^2 = (1 - \Lambda_1 - \Lambda_2)^2.
\]

(3.36)

The surfaces \(X'_3 \) in Eq. (3.35) and \(Z' \) in Eq. (2.8) are birationally equivalent over \(\mathbb{Q}(\kappa_1, \kappa_2) \) with \(\Lambda_l = 1/(1 - \kappa_l^2) \) for \(l = 1, 2 \). The birational equivalence identifies the holomorphic two-form \(\omega_{X'_3} = d\varphi_1 \wedge d\varphi_2 / Y \) in the chart \(Z = v_2 = 1 \) with \(\omega_{Z'} = dX_1 / dX_2 / Y_{1,2} \) in the chart \(Z_1 = Z_2 = 1 \).

Proof Equation (3.35) is precisely Eq. (2.13), describing a Jacobian elliptic fibration on the Kummer surface \(Z' \) whose minimal resolution is \(\text{Kum}(E'_1 \times E'_2) \). The proof then follows from Proposition 2.6 and Corollary 2.10.

Applying Proposition 3.13 to Eq. (3.8) using the Nikulin involution \(t_1 \) associated with translations by the two-torsion section \(T_1 : [X : Y : Z] = [0 : 0 : 1] \), we obtain a new K3 surface \(X'_1 \) as the minimal resolution of \(X/\langle t_1 \rangle \) together with a rational quotient map \(\varphi_1 : X \rightarrow X'_1 \) defined over \(\mathbb{Q}(\rho_1, \rho_2^2) \). Here, a Weierstrass model for \(X'_1 \), with fibers over \(\mathbb{P}^1 = \mathbb{P}(v_1, v_2) \) embedded into \(\mathbb{P}^2 = \mathbb{P}(X, Y, Z) \), is

\[
X'_1 : \quad Y^2 Z = X^3 + 2v_1 v_2 (v_1 + v_2) \left(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 \right) X^2 Z
\]

\[
+ v_2^4 \left(v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2 \right)^2 XZ^2.
\]

(3.37)

The discriminant function of the fibration is \(16v_1 v_2 (v_1 - v_2)^4 (v_1^4 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2)^6 \).

Remark 3.15 Applying Proposition 3.13 using the (different) two-torsion section of the elliptic fibration (3.8) of \(X \), namely

\[
T_2 : \quad [X : Y : Z] = [v_2^2 (v_1^2 + 2\rho_1 v_1 v_2 + \rho_2^2 v_2^2) : 0 : -1],
\]

(3.38)

yields a K3 surface with the same singular fibers as \(X'_3 \), but for different moduli. In fact, the Weierstrass equation coincides with Eq. (3.37) if we replace

\[
(\rho_1, \rho_2^2) \mapsto \left(-\rho_1 - 1, \rho_2^2 + 2\rho_1 + 1 \right).
\]

(3.39)

In terms of Lemma 3.4, the change of parameters is equivalent to the interchange of the two fibers of Kodaira-type \(I_2 \) while keeping the fiber of Kodaira-type \(I_2^* \) fixed.
It turns out that the minimal resolution of \(X_1^\vee\) in Eq. (3.37) is isomorphic to the Kummer surface \(\text{Kum} (\text{Jac} C_0)\) associated with the Jacobian of a smooth genus-two curve admitting an elliptic involution. We have the following:

Proposition 3.16 Assume that \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}\) satisfy \(\lambda_2 \neq \lambda_{\pm 1}\). Further assume that parameters \(\rho_1, \rho_2\) satisfy

\[
\rho_1 = -\frac{\lambda_2^2 \lambda_3^2 + \lambda_2^2 + \lambda_3^2 - 4 \lambda_2 \lambda_3 + 1}{(\lambda_2 - 1)^2 (\lambda_3 - 2)^2}, \quad \rho_2 = \frac{(\lambda_2 + 1)^2 (\lambda_3 + 1)^2}{(\lambda_2 - 1)^2 (\lambda_3 - 1)^2},
\]

and a quadric-twist factor is given by

\[
\varepsilon = \frac{4}{\lambda_2 \lambda_3 (1 - \lambda_2)^2 (1 - \lambda_3)^2}.
\]

The surfaces \(X_1^\vee\) in Eq. (3.37) and \(W_0^{(\varepsilon)}\) in Eq. (2.28) are birational equivalent over \(\mathbb{Q}(\lambda_2 + \lambda_3, \lambda_2 \lambda_3)\). The rational equivalence identifies the two-forms \(\omega_{X_1^\vee} = dv_1 \wedge dX / Y\) in the chart \(Z = v_2 = 1\) and \(\omega_{W_0^{(\varepsilon)}} = dz_2 \wedge dz_3 / \hat{z}_4\) in the chart \(z_1 = 1\).

Proof Since the genus-two curve \(C_0\) is smooth, we have \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}\) and \(\lambda_2 \neq \lambda_{\pm 1}\). A birational equivalence relating Eqs. (2.40) and (3.37) is given by

\[
w_1 = -\lambda_2 \lambda_3 (v_1 + v_2), \quad w_2 = \frac{1}{2} (v_1 - v_2),
\]

\[
x = \frac{\varepsilon}{4} (\lambda_2 \lambda_3)^3 (\lambda_2 \lambda_3 - \lambda_2 - \lambda_3 + 1)^2 X, \quad y = \frac{\varepsilon^3}{8} (\lambda_2 \lambda_3)^2 (\lambda_2 \lambda_3 - \lambda_2 - \lambda_3 + 1)^3 Y, \quad z = Z.
\]

We observe that for \(\varepsilon = \varepsilon_1^2 / (\lambda_2 \lambda_3)\) the above transformation is well defined over \(\mathbb{Q}(\lambda_2 + \lambda_3, \lambda_2 \lambda_3)\). The remainder of the proof follows from Corollary 2.24 and by an explicit computation using the transformations provided above. The constraint that the birational equivalence identifies \(\omega_{X_1^\vee}\) and \(\omega_{W_0^{(\varepsilon)}}\) determines \(\varepsilon\).

3.4 Kummer sandwich theorems

In this section, we combine the results of the previous sections to obtain several Kummer sandwich theorems, a term introduced by Shioda [56], that relate the Legendre pencil to various Kummer surfaces. In [10, 44], it was demonstrated that the number of points rational over a finite field on the K3 surfaces in a sandwich is the same.

The first Kummer sandwich relates the twisted Legendre pencil \(\mathcal{X}\) to two Kummer surfaces associated with the product of two elliptic curves. The first one is the Kummer surface \(\text{Kum} (\mathcal{E}_1 \times \mathcal{E}_2)\) associated with the product abelian surface \(\mathcal{E}_1 \times \mathcal{E}_2\), where the elliptic curves \(\mathcal{E}_l\) with modular parameter \(\Lambda_l\) is given by Eq. (1.20). The second is the Kummer surface \(\text{Kum} (\mathcal{E}_1' \times \mathcal{E}_2')\), where \(\mathcal{E}_l'\) for \(l = 1, 2\) are the two-isogenous elliptic curves in Eq. (1.43). Models for the Kummer surfaces are the double quadric surfaces in Eqs. (2.3) and (2.8), respectively. We have the following:

Proposition 3.17 For \(\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}\) let parameters \(\rho_1, \rho_2\) satisfy

\[
\rho_1 = \Lambda_1 + \Lambda_2 - 2 \Lambda_1 \Lambda_2 - 1, \quad \rho_2^2 = (1 - \Lambda_1 - \Lambda_2)^2.
\]

The twisted Legendre pencil \(\mathcal{X}\) in Eq. (3.2) fits into the following Kummer sandwich of rational maps:

\[
\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2) \rightarrow \mathcal{X} \rightarrow \text{Kum}(\mathcal{E}_1' \times \mathcal{E}_2') \rightarrow \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)^{(2^2)}. \quad (3.43)
\]
The maps are defined on families over \(\mathbb{Q}(\kappa_1, \kappa_2)\) with \(\Lambda_l = 1/(1 - \kappa_l^2)\) for \(l = 1, 2\). The holomorphic two-form \(\omega_X\) equals the pullback of \(\omega_{\text{Kum}(\varepsilon_1' \times \varepsilon_2')}\), resp. its pullback equals \(\omega_{\text{Kum}(\varepsilon_1 \times \varepsilon_2')}/\Lambda_1\) and the pullback of \(\omega_{\text{Kum}(\varepsilon_1' \times \varepsilon_2')}\) equals \(\omega_{\text{Kum}(\varepsilon_1 \times \varepsilon_2')}/\Lambda_2\).

Proof We relate the twisted Legendre pencil \(X\) to the double quadric surfaces \(Z\) and \(Z'\) in Eq. (2.3) and (2.8), respectively, by relating it to the Jacobian elliptic K3 surfaces \(\mathcal{Y}_3\) and \(X'_3\) in Eqs. (3.11) and (3.35) first. As a reminder, the minimal resolution of \(Z\) is the Kummer surface \(\text{Kum}(\varepsilon_1 \times \varepsilon_2)\). Similarly, the minimal resolution of \(Z'\) is the Kummer surface \(\text{Kum}(\varepsilon'_1 \times \varepsilon'_2)\).

First we assume \(\rho_2 = 1 - \Lambda_1 - \Lambda_2\). We combine Lemma 3.8, Proposition 3.9, Proposition 3.13, and Lemma 2.4 to obtain the following diagram of rational maps:

\[
\begin{array}{cccc}
Z & \cong & \mathcal{Y}_3 & \xrightarrow{f_3} X & \mathcal{X}' & \cong & Z' & \xrightarrow{\chi} Z^{(24)} \\
\text{Kum}(\varepsilon_1 \times \varepsilon_2) & \longrightarrow & X & \longrightarrow & \text{Kum}(\varepsilon'_1 \times \varepsilon'_2) & \longrightarrow & \text{Kum}(\varepsilon_1 \times \varepsilon_2)^{(24)}.
\end{array}
\]

By construction, all maps and equivalences are defined over \(\mathbb{Q}(\Lambda_1, \Lambda_2)\), except the equivalence \(\mathcal{X}' \cong Z'\) which is defined only over the field extension \(\mathbb{Q}(\kappa_1, \kappa_2)\). The holomorphic two-forms are related by pullback as follows:

\[
\omega_Z = \omega_{\mathcal{Y}_3}, \quad \omega_{\mathcal{X}'_3} = f_3^* \omega_X, \quad \omega_X = \varphi_3^* \omega_{\mathcal{X}'_3}, \quad \omega_{\mathcal{X}'_3} = \omega_{Z'}, \quad \omega_{Z'} = \chi^* \omega_{Z^{(24)}}.
\]

Using Eq. (2.5), the statement regarding the two-forms follows.

Finally, the modular transformation \((\Lambda_1, \Lambda_2) \mapsto (1 - \Lambda_1, 1 - \Lambda_2)\) leaves the \(j\)-functions of \(\varepsilon_1\) and \(\varepsilon_2\) invariant and induces a sign change \((\rho_1, \rho_2) \mapsto (\rho_1, -\rho_2)\). Thus, the same statements hold for \((\rho_1, -\rho_2)\).

The second Kummer sandwich relates the twisted Legendre pencil \(X\) to certain Jacobian Kummer surfaces. The first is the Kummer surface \(\text{Kum}(\text{Jac} C_0)\) associated with the Jacobian of the smooth genus-two curve \(C_0\) admitting an elliptic involution in Eq. (1.18) (with Rosenhain roots \(\lambda_2, \lambda_3\)). The second is the Kummer surface \(\text{Kum}(\text{Jac} C_0')\) where \(C_0'\) is the (2, 2)-isogenous Richelot curve in Eq. (1.47) (with Rosenhain roots \(\mu_2, \mu_3\)). That is, we have \(\text{Jac}(C_0) \cong \text{Jac}(C_0')/G\) for a certain G"{o}pel group determined in Proposition 1.14. Models for the Kummer surfaces are the double sextic surfaces in Eqs. (2.28) and (3.26), respectively. We have the following:

Proposition 3.18 The twisted Legendre pencil \(X\) in Eq. (3.2) fits into the following Kummer sandwich of rational maps:

\[
\text{Kum}(\text{Jac} C_0'^{(e)}) \longrightarrow X \longrightarrow \text{Kum}(\text{Jac} C_0)^{(e)} \longrightarrow \text{Kum}(\varepsilon_1 \times \varepsilon_2)^{(24)}. \tag{3.46}
\]

The maps are defined on families over a finite field extension of \(\mathbb{Q}(\lambda_2, \lambda_3)\). The holomorphic two-form \(\omega_X\) equals the pullback of \(\omega_{\text{Kum}(\text{Jac} C_0)^{(e)}}\), resp. its pullback equals \(\omega_{\text{Kum}(\text{Jac} C_0')^{(e)}}\), and the pullback of \(\omega_{\text{Kum}(\varepsilon_1 \times \varepsilon_2)^{(24)}}\) equals \(\omega_{\text{Kum}(\text{Jac} C_0)^{(e)}}\).

Here, \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}\) satisfy \(\lambda_2 \neq \lambda_3^{-1}\) and \(\lambda_2 \neq -1\). The parameters \(\mu_2, \mu_3\) are given by

\[
\mu_2 = \frac{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 + 2d}{\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 - 2d}, \quad \mu_3 = \frac{(\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 + 2d)(1 + \lambda_2)^2 k_3 + (1 - \lambda_2) d - 2(1 + \lambda_3) \lambda_2}{(\lambda_2 \lambda_3 + \lambda_2 - \lambda_3 - 1 - 2d)(1 + \lambda_2)^2 k_3 - (1 - \lambda_2) d - 2(1 + \lambda_3) \lambda_2}. \tag{3.47}
\]
Theorem 3.19 of this article: \(\lambda \) only assumed \(W_2 \) with \(k \). Comparing Eqs. (3.16) and (3.40), one obtains a relation between the Rosenhain roots. The holomorphic two-forms are related by pullback as follows:

\[C \quad \text{and quadratic-twist factors are given by} \]

\[\varepsilon = \frac{4}{\lambda_2 \lambda_3 (1 - \lambda_2)^2 (1 - \lambda_3)^2}, \quad \varepsilon' = \frac{1}{4 \mu_2 \mu_3 (1 - \mu_2 \mu_3)(\mu_2 - \mu_3)}. \]

Proof We relate the twisted Legendre pencil \(\lambda' \) to the (twisted) double sextic surfaces \(W_0^{(e)} \) and \(W_0^{(e')} \) in Eqs. (2.28) and (3.26), respectively, by relating it to the Jacobian elliptic K3 surface \(\mathcal{Y}_1 \) and \(\mathcal{X}_1^{\vee} \) in Eqs. (3.18) and (3.37) first. As a reminder, the minimal resolution of \(W_0^{(e)} \) is isomorphic to the Kummer surface \(\text{Kum}(\text{Jac} C_0)^{(e)} \). Similarly, the minimal resolution of \(W_0^{(e')} \) is isomorphic to the Kummer surface \(\text{Kum}(\text{Jac} C_0)^{(e')} \).

We combine Lemma 3.10, Propositions 3.12, 3.13, 3.16, and Corollary 2.36 to obtain the following diagram of rational maps:

\[\text{Kum}(\text{Jac} C_0)^{(e)} \longrightarrow \lambda' \longrightarrow \text{Kum}(\text{Jac} C_0)^{(e)} \longrightarrow \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)^{(2^4)}. \]

Comparing Eqs. (3.16) and (3.40), one obtains a relation between the Rosenhain roots \((\lambda_2, \lambda_3) \) and \((\mu_2, \mu_3) \). There are eight solutions for \((\mu_2, \mu_3) \); see Remark 1.15. Since we only assumed \(\lambda_2 \neq -1 \), the four solutions in Proposition 1.14—with the sign for \(k \) and \(d \) chosen independently—determine a smooth genus-two curve \(C_0' \).

By construction, the maps and equivalences in Eq. (3.50) to the left of \(\lambda' \) are defined over \(\mathbb{Q}(\mu_2, \mu_3) \). The map \(\psi \) is defined over the field extension \(\mathbb{Q}(\lambda_2 + \lambda_3, q) \) with \(q^2 = \lambda_2 \lambda_3 \). The remaining maps and equivalences in Eq. (3.50) are families defined over \(\mathbb{Q}(\lambda_2, \lambda_3) \). The holomorphic two-forms are related by pullback as follows:

\[\omega_{\lambda_0' \lambda_1'} = \omega_{\lambda_0} \omega_{\lambda_1'} \quad \omega_{\lambda_0} = f_{\lambda_0}^* \omega_{\lambda_0'} \quad \omega_{\lambda_1'} = \omega_{\lambda_1'} \psi_{\lambda_0}' \quad \omega_{\lambda_0'} = \omega_{\lambda_0'} \psi_{\lambda_1} \]

Using Eq. (2.27), the statement regarding the two-forms follows. \(\square \)

We combine the results of Propositions 3.17 and 3.18 to obtain one of the main results of this article:

Theorem 3.19 Assume that \(\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) satisfy \(\lambda_2 \neq \lambda_3 \). Further assume that \(\Lambda_1, \Lambda_2 \)

\[\Lambda_1 \Lambda_2 = \frac{(\lambda_2 + \lambda_3)^2 - 4\lambda_2 \lambda_3}{(1 - \lambda_2)^2 (1 - \lambda_3)^2}, \quad \Lambda_1 + \Lambda_2 = -\frac{2(\lambda_2 + \lambda_3)}{(1 - \lambda_2)(1 - \lambda_3)}, \]

and the quadratic-twist factor \(\varepsilon \) is given by

\[\varepsilon = \frac{4}{\lambda_2 \lambda_3 (1 - \lambda_2)^2 (1 - \lambda_3)^2}. \]

The twisted Legendre pencil, given by

\[\lambda' : \ y^2 = z_1 z_2 (z_1 - z_2) (z_1 - z_3) \left(z_3 - \left(\frac{1 + \lambda_2}{1 - \lambda_2} \right)^2 z_2 \right) \left(z_3 - \left(\frac{1 + \lambda_3}{1 - \lambda_3} \right)^2 z_2 \right) \]

fits into the following Kummer sandwich of rational maps:

\[\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2) \longrightarrow \lambda' \longrightarrow \text{Kum}(\text{Jac} C_0)^{(e)} \longrightarrow \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)^{(2^4)}. \]
The maps are defined on families over \(\mathbb{Q}(k_2, k_3) \) with \(k_l^2 = \lambda_l \) for \(l = 2, 3 \). The holomorphic two-form \(\omega_X \) equals the pullback of \(\omega_{\text{Kum}(\text{Jac} \, C_0)(\epsilon)} \), resp. its pullback equals \(\omega_{\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)} \), and the pullback of \(\omega_{\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)(\epsilon)} \) equals \(\omega_{\text{Kum}(\text{Jac} \, C_0)(\epsilon)} \).

Proof For the given relations in Eq. (3.48) the quantity \(\rho_1^2 - \rho_2^2 \) is a perfect square of a rational function in \(\mathbb{Q}(\lambda_2, \lambda_3) \). The twisted Legendre pencil \(\mathcal{X} \) in Eq. (3.2) then is equivalent to Eq. (3.54).

First, assume that \(\rho_2 = 1 - \Lambda_1 - \Lambda_2 \). Comparing Eqs. (3.15) and (3.40), one obtains a relation between the Rosenhain roots \((\lambda_2, \lambda_3) \) and the modular parameters \((\Lambda_1, \Lambda_2) \). This relation is precisely Eq. (1.21), relating a genus-two curve \(C_0 \) with an elliptic involution and its elliptic-curve quotients \(\mathcal{E}_l \) for \(l = 1, 2 \) in Proposition 1.8. The second solution, obtained by changing \(\rho_2 \mapsto -\rho_2 \), is related to the first one by a modular transformation, e.g., by applying \((\Lambda_1, \Lambda_2) \mapsto (1 - \Lambda_1, 1 - \Lambda_2) \). Following Remark 1.9 we set \(\lambda_l = k_l^2 \) for \(l = 2, 3 \) and obtain the modular parameters of the elliptic-curve quotients \(\mathcal{E}_l \) in Lemma 1.7 as the algebraic solutions in Eq. (3.52). This also implies that \(\Lambda_1, \Lambda_2 \in \mathbb{P}^1 \setminus \{0, 1, \infty\} \) so that the elliptic curves \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) are smooth.

Combining Propositions 3.17 and 3.18, we obtain the following diagram of rational maps:

\[
\begin{array}{ccc}
\mathcal{Z} \cong \mathcal{Y}_3 & \xrightarrow{f_1} & \mathcal{X}' \xrightarrow{\phi_1} \mathcal{X}'_1 \cong \mathcal{W}_0(\epsilon) \xrightarrow{\psi} \mathcal{Z}^{(2^4)} \\
\mid & & \mid \\
\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2) \longrightarrow \mathcal{X}' \longrightarrow \text{Kum}(\text{Jac} \, C_0)(\epsilon) \longrightarrow \text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)(\epsilon^{(2^4)})
\end{array}
\]

By construction, the maps and equivalences in Eq. (3.56) to the left of \(\mathcal{X}' \) are defined over \(\mathbb{Q}(\Lambda_1, \Lambda_2) \). The map \(\psi \) is defined over \(\mathbb{Q}(\lambda_2 + \lambda_3, q) \) with \(q^2 = \lambda_2 \lambda_3 \). The map \(\phi_1 \) is defined over \(\mathbb{Q}(\rho_1, \rho_2) \), and the equivalence \(\mathcal{X}'_1 \cong \mathcal{W}_0(\epsilon) \) over \(\mathbb{Q}(\lambda_2 + \lambda_3, \lambda_2 \lambda_3) \). Thus, the smallest common finite extension field is \(\mathbb{Q}(k_1, k_2) \). Thus, all maps and equivalences are families defined over \(\mathbb{Q}(k_2, k_3) \), and the holomorphic two-forms are related by pullback as follows:

\[
\omega_{\mathcal{Z}} = \omega_{\mathcal{Y}_3}, \quad \omega_{\mathcal{X}'} = f_1^* \omega_{\mathcal{X}'_1}, \quad \omega_{\mathcal{X}} = \phi_1^* \omega_{\mathcal{X}'_1}, \quad \omega_{\mathcal{X}'_1} = \omega_{\mathcal{W}_0(\epsilon)}, \quad \omega_{\mathcal{X}_1(\epsilon)} = \psi^* \omega_{\mathcal{Z}^{(2^4)}}.
\]

The remainder of the statement follows easily.

We make the following:

Remark 3.20 For generic parameters \(\lambda_2, \lambda_3 \) in Theorem 3.19, the transcendental lattices of the corresponding K3 surfaces are given by

\[
T_{\text{Kum}(\mathcal{E}_1 \times \mathcal{E}_2)} = H(2) \oplus H(2), \quad T_{\mathcal{X}} = (2)^{\oplus 2} \oplus (-2)^{\oplus 2}, \quad T_{\text{Kum}(\text{Jac} \, C_0)} = H(2) \oplus \langle 4 \rangle \oplus \langle -4 \rangle.
\]

This follows from Remarks 2.3, 2.11, and Eq. (3.3).

3.5 One-parameter subfamilies

In this section, we will construct five subfamilies associated with certain modular correspondences for the two elliptic curves in Theorem 3.19. The first four families are associated with the specializations of the six-line configurations of Picard rank 19 found in Proposition 3.1. Since two algebraic K3 surfaces \(S_1 \) and \(S_2 \) with a rational map of finite degree \(f : S_1 \dashrightarrow S_2 \) have the same Picard number [35, Cor. 1.2], all K3 surfaces occurring in the corresponding Kummer sandwiches have Picard rank 19. The last family is obtained by making one elliptic-curve factor constant with complex multiplication and \(j \)-invariant 123.
3.5.1 Family with isomorphic elliptic curves

We will consider the three specializations of the families of K3 and abelian surfaces in Theorem 3.19 obtained by requiring the two elliptic curves to be isomorphic. The two elliptic curves E_1 and E_2 are isomorphic if and only if their j-invariants coincide. One easily checks that this is the case if and only if the following expression vanishes:

$$\left(\Lambda_1 - \Lambda_2\right)\left(1 - \Lambda_1 - \Lambda_2\right)\left(\Lambda_1\Lambda_2 - \Lambda_1 - \Lambda_2\right)\times\left(1 - \Lambda_1\Lambda_2\right)\left(\Lambda_1\Lambda_2 - \Lambda_1 + 1\right)\left(\Lambda_1\Lambda_2 - \Lambda_2 + 1\right).$$

(3.58)

However, it follows from Eq. (3.52) that

$$(\Lambda_1 - \Lambda_2)^2 = \frac{16\lambda_2\lambda_3}{(1 - \lambda_2)^2(1 - \lambda_3)^2} \neq 0,$$

whence we must have $\Lambda_1 \neq \Lambda_2$ if C_0 is a smooth genus-two curve. However, the two elliptic curves in Theorem 3.19 can still be isomorphic. We have the following:

Lemma 3.21 The elliptic curves E_1 and E_2 in Theorem 3.19 are isomorphic if the following polynomial vanishes:

$$0 = \left(\lambda_2 + 1\right)\left(\lambda_3 + 1\right)\left(2 - \lambda_2 - \lambda_3\right)\left(\lambda_2\lambda_3 - 2\lambda_2 + 1\right)\left(2\lambda_2\lambda_3 - \lambda_2 - \lambda_3\right)$$

$$\times\left(\lambda_2\lambda_3 - 2\lambda_3 + 1\right)$$

$$\times\left(\lambda_2 + \lambda_3\right)^4 - 2(\lambda_2\lambda_3)(\lambda_2 + \lambda_3)^3 + 3(\lambda_2\lambda_3)^2(\lambda_2 + \lambda_3)^2 - 2(\lambda_2\lambda_3)^3(\lambda_2 + \lambda_3)$$

$$+ (\lambda_2\lambda_3)^4 - 2(\lambda_2 + \lambda_3)^3 - 6(\lambda_2\lambda_3)(\lambda_2 + \lambda_3)^2 + 10(\lambda_2\lambda_3)^2(\lambda_2 + \lambda_3) - 8(\lambda_2\lambda_3)^3$$

$$+ 3(\lambda_2\lambda_3)^2 + 10(\lambda_2\lambda_3)(\lambda_2 + \lambda_3) - 2(\lambda_2\lambda_3)^2 - 2(\lambda_2 + \lambda_3) - 8(\lambda_2\lambda_3 + 1).$$

(3.59)

Proof Equation (3.59) is obtained by setting $j_1 - j_2 = 0$. That is, we start with

$$j_1 - j_2 = j(E_1) - j(E_2) = \frac{256(\Lambda_1^2 - \Lambda_1 + 1)^3}{\Lambda_1^2(\Lambda_1 - 1)^2} - \frac{256(\Lambda_2^2 - \Lambda_2 + 1)^3}{\Lambda_2^2(\Lambda_2 - 1)^2}.$$

(3.60)

use Eq. (3.52) to express the right-hand side as a rational function in λ_2, λ_3, and then select the numerator.

Thus, we consider the one-parameter subfamilies in Theorem 3.19 with a linear (more precisely, linear or fractional linear) relation between the Rosenhain roots:

1. $\lambda_3 = -1$ (or $\lambda_2 = -1$) such that $1 - \Lambda_1 - \Lambda_2 = 0$,
2. $\lambda_3 = 2 - \lambda_2$ such that $\Lambda_1\Lambda_2 - \Lambda_1 - \Lambda_2 = 0$, or,
 $\lambda_3^{-1} = 2 - \lambda_2^{-1}$ such that $1 - \Lambda_1\Lambda_2 = 0$,
3. $\lambda_3^{-1} = 2 - \lambda_2^{-1}$ such that $\Lambda_1\Lambda_2 - \Lambda_1 - \Lambda_2 = 0$, or,
 $\lambda_3 = 2 - \lambda_2^{-1}$ such that $1 - \Lambda_1\Lambda_2 = 0$.

The case $(\Lambda_1\Lambda_2 - \Lambda_1 + 1)(\Lambda_1\Lambda_2 - \Lambda_2 + 1) = 0$ occurs exactly if the irreducible polynomial of degree (4, 4) in Eq. (3.59) vanishes. We will not consider this case further.

For each remaining case, we introduce the following one-parameter families of elliptic curves, genus-two curves, double sextic, and double quadric surfaces:
(1) for $\lambda_3 = -1$ or $\lambda_3 = 2 - \lambda_2$, we set
\[
\tilde{C}_1 : y^2z = (x-z) \left(x^2 - \frac{(t-1)^2}{(t+1)(t-3)} z^2 \right),
\]
\[
\tilde{C}_2 : y^2 = XZ(X+2(t^2+1)Z)(X+2(t^2+1)Z) \times (X + (t+1)(t-3)Z)(X + (t-1)(t-3)Z),
\]
\[
\tilde{X}_2 : y^2 = z_1 z_2 (z_1 - z_2) (z_1 - z_3) (t^2 z_2 - z_3) ((t-2)^2 z_2 - z_3),
\]
\[
\tilde{Z}_2^{(1)} : \tilde{y}_{12}^2 = \varepsilon_1 \prod_{k=1,2} (x_k - z_k) \left(x_k^2 - \frac{(t-1)^2}{(t+1)(t-3)} z_k^2 \right),
\]
\[
\tilde{Z}_2^{(2)} : \tilde{y}_{12}^2 = \varepsilon_2 \prod_{k=1,2} (x_k - z_k) \left(x_k^2 - \frac{(t-1)^2}{(t+1)(t-3)} z_k^2 \right),
\]
\[
\tilde{Z}_2^{(3)} : \tilde{y}_{12}^2 = \varepsilon_3 \prod_{k=1,2} x_k z_k (x_k - z_k) \left(x_k^2 - \frac{(t-1)^2}{(t+1)(t-3)} z_k^2 \right).
\]

By construction, the minimal resolution of \tilde{Z}_n is $\text{Kum}(\tilde{C}_n \times \tilde{E}_n)$ for $n = 1, 2, 3$. We have the following:

Corollary 3.22 For $t \in \mathbb{P}^1 \backslash S_n$ with
\[
S_1 = \{0, -1, \infty\}, \quad \varepsilon_1 = \frac{1}{t+1}, \quad \delta_{1,1} = \frac{t+1}{2}, \quad \delta_{2,1} = \frac{1}{8},
\]
\[
S_2 = \{0, 1, \infty\}, \quad \varepsilon_2 = \frac{1}{t+1}, \quad \delta_{1,2} = \frac{(t+1)(t-3)}{2}, \quad \delta_{2,2} = \frac{1}{2(t-1)},
\]
\[
S_3 = \{\pm 1, \infty\}, \quad \varepsilon_3 = 1, \quad \delta_{1,3} = \frac{t+1}{2}, \quad \delta_{2,3} = \frac{1}{2(t+1)(t-1)},
\]
and $\delta_{3,n} = 4 \delta_{1,n}$, the twisted Legendre pencil \tilde{X}_n for $n = 1, 2, 3$ fits into the following smooth Kummer sandwich of rational maps:
\[
\text{Kum}(\tilde{C}_n \times \tilde{E}_n)^{(\varepsilon_1 e_{2,1}^{\delta_{1,1}})} \longrightarrow \tilde{X}_n \longrightarrow \text{Kum}(\text{Jac} \tilde{C}_n)^{(\varepsilon_2 e_{2,2}^{\delta_{2,2}})} \longrightarrow \text{Kum}(\tilde{C}_n \times \tilde{E}_n)^{(\varepsilon_3 e_{2,3}^{\delta_{2,3}})}.
\]

The maps are defined on families over a finite field extension of $\mathbb{Q}(t)$, and the holomorphic two-form $\omega_{\tilde{X}_n}$ equals the pullback of $\omega_{\text{Kum}(\text{Jac} \tilde{C}_n)^{(\varepsilon_2 e_{2,2}^{\delta_{2,2}})}}$, resp. its pullback equals $\omega_{\text{Kum}(\tilde{C}_n \times \tilde{E}_n)^{(\varepsilon_3 e_{2,3}^{\delta_{2,3}})}}$, and the pullback of $\omega_{\text{Kum}(\tilde{C}_n \times \tilde{E}_n)^{(\varepsilon_1 e_{2,1}^{\delta_{1,1}})}}$ equals $\omega_{\text{Kum}(\text{Jac} \tilde{C}_n)^{(\varepsilon_2 e_{2,2}^{\delta_{2,2}})}}$.

Proof In the three cases, we introduce a parameter t in the following way:

(1) for $\lambda_3 = -1$ set $t = -\frac{(1+z_2)^2}{(1-x_2)^2} = 4 \Lambda_1 (\Lambda_1 - 1)$,

(2) for $\lambda_3 = 2 - \lambda_2$ set $\lambda_2 = \frac{t+1}{t-1}$ and $\frac{\Lambda_2^2}{(\Lambda_2 - 2)^2} = \frac{(t-1)^2}{(t+1)(t+3)}$, or, for $\lambda_3^{-1} = 2 - \lambda_2$ set $\lambda_2 = \frac{t+1}{t-1}$ and $\frac{(\Lambda_1 - 1)^2}{(\Lambda_1 + 1)^2} = \frac{(t-1)^2}{(t+1)(t+3)}$.

The field of definition $\mathbb{Q}(\lambda_2, \lambda_3)$ is related to $\mathbb{Q}(t)$ at worst by a quadratic field extension. In fact, in the three cases above, we have $\mathbb{Q}(t) \subseteq \mathbb{Q}(\lambda_2, \lambda_3)$, $\mathbb{Q}(\lambda_2, \lambda_3) \cong \mathbb{Q}(t)$, and $\mathbb{Q}(\lambda_2, \lambda_3) \subseteq \mathbb{Q}(t)$, respectively.

One checks by an explicit computation that the double quadric surface $\tilde{Z}_{(n)}^{(-\epsilon_n^2 \lambda_1^2, n)}$ for $n = 1, 2, 3$ is isomorphic to $Z_{(2.3)}$ over $\mathbb{Q}(\lambda_1, \lambda_2)$ which is (at worst) a finite field extension of $\mathbb{Q}(t)$. Moreover, the pullback by this isomorphism leaves the holomorphic two-form invariant. Taking the minimal resolution, we obtain the desired isomorphism between $Kum(\tilde{E}_n \times \tilde{E}_n)^{*}(-\epsilon_n^2 \lambda_1^2)$ and $Kum(E_1 \times E_2)$. One also checks that the curve \tilde{C}_n for $n = 1, 2, 3$ is isomorphic to C_0 for the given (fractional) linear relation between the Rosenhain roots. We use Eq. (2.29) and Proposition 2.14 with a suitable parameter λ_0, namely

\begin{equation}
\begin{align*}
n = 1 : & \quad \lambda_0 = \frac{4}{\lambda_2 - 1}, \\
n = 2 : & \quad \lambda_0 = -\frac{4}{(\lambda_2 - 1)^2}, \\
n = 3 : & \quad \lambda_0 = -4(2\lambda_2 - 1). \\
\end{align*}
\end{equation}

It then follows that the (twisted) double sextic surfaces $W_{0}^{(\epsilon)}$ in Eq. (2.28) are isomorphic to the quadratic twist of the double sextic defined by \tilde{C}_n with twist factor $\epsilon_n^2 \lambda_1^2$. By construction, the isomorphism is defined over a finite field extension of $\mathbb{Q}(t)$. Proposition 2.14 guarantees that the pullback by the isomorphism leaves the holomorphic two-form invariant. The proof then follows from applying the constructed isomorphisms to the situation in Theorem 3.19. The set S_n is obtained from the vanishing locus of the discriminant for \tilde{C}_n.

We make the following two remarks:

Remark 3.23 For the surfaces in Corollary 3.22, the transcendental lattices in Remark 3.20 specialize to

\[T_{Kum(\tilde{E}_n \times \tilde{E}_n)} = H(2) \oplus \langle 4 \rangle, \quad T_{\tilde{X}_n} = (2)^{\oplus 2} \oplus \langle -2 \rangle, \quad T_{Kum(jac \tilde{C}_n)} = \langle 4 \rangle^{\oplus 2} \oplus \langle -4 \rangle. \]

This follows from Corollary 3.22 and results in [27,60].

Remark 3.24 In the two-dimensional parameter space $\{(A, B) \mid A \neq B\}$ of Eq. (3.5), we considered the conic $(A + B - 4)^2 - 4AB = 0$ in Proposition 3.1. One checks that for

\[A = \left(\frac{1 + \lambda_2}{1 - \lambda_2} \right)^2, \quad B = \left(\frac{1 + \lambda_3}{1 - \lambda_3} \right)^2, \]

the vanishing locus of the conic becomes

\[\prod_{\sigma_2, \sigma_3 \in \{\pm 1\}} \left(2 - \lambda_2^{\sigma_2} - \lambda_3^{\sigma_3} \right) = 0. \]

Thus, the double sextic surfaces associated with these four components realize Eqs. (3.62) and (3.63).
3.5.2 Family with isogenous elliptic curves

As another example, we consider the classical modular curve $X_0(2)$, i.e., the irreducible plane algebraic curve of genus zero, given by

$$0 = -j_1^2 + j_1^3 + j_2^3 + 1488j_1j_2(j_1 + j_2) - 2^43^45^3(j_1^2 + j_2^2) + 3^45^34027j_1j_2 + 2^73^25^5(j_1 + j_2) - 2^{12}3^95^9. \quad (3.68)$$

This is the relation between the j-invariants $j_1 = j(t_1) = j(E_1)$ and $j_2 = j(t_2) = j(E_2)$ of two elliptic curves E_1 and E_2, respectively, such that $t_2 = 2 \cdot t_1$; see [24]. We have the following:

Lemma 3.25 Assume $t \in \mathbb{P}^1 \setminus \{0, \pm 1, \infty\}$. For the two smooth elliptic curves

$$E_1 : y_1^2z_1 = x_1(x_1 - z_1)(x_1 - t^2z_1). \quad E_2 : y_2^2z_2 = (x_2 - (t^2 + 1)z_2)(x_2 - 4t^2z_2). \quad (3.69)$$

with j-invariants $j_1 = j(t_1) = j(E_1)$ and $j_2 = j(t_2) = j(E_2)$, respectively, one has $t_2 = 2 \cdot t_1$. Moreover, for the two-isogenous elliptic curves—as defined in Eq. (1.43)—one has $E'_1 \cong E_2$ and $E'_2 \cong E_1$.

Proof For two elliptic curves in Legendre normal form as in Eq. (1.20), one irreducible component of Eq. (3.68) is given by

$$0 = 16\Lambda_1^2\Lambda_2^2 - 16\Lambda_1\Lambda_2(\Lambda_1 + \Lambda_2) + 16\Lambda_1\Lambda_2 - 1. \quad (3.70)$$

$X_0(2)$ has a rational parametrization given by $j_1 = (h + 256)^3/h^2$ and $j_2 = (h + 16)^3/h$ for $h \in \mathbb{C}^\times$; see [24]. We may take a suitable covering by setting $h = 16(t^2 - 1)/t^2$ to obtain rational modular parameters for elliptic curves in Legendre form; see [42]. Then, the elliptic curves in Legendre form with $\Lambda_1 = -1/(t^2 - 1)$ and $\Lambda_2 = (t + 1)^2/(4t)$, i.e., the curves

$$E_1 : y^2z = x^1(x - z)(x - \frac{1}{t^2 - 1}z), \quad E_2 : y^2z = x^1(x - z)(x - \frac{(t + 1)^2}{4t}z), \quad (3.71)$$

satisfy $j_1 = j(E_1)$ and $j_2 = j(E_2)$. In particular, the given parameters Λ_1, Λ_2 satisfy Eq. (3.70). The two-isogenous elliptic curves in Eq. (1.43) are then given by

$$E'_1 : Y^2Z_1 = X_1\left(X_1^2 + \frac{2(t^2 + 1)}{(t^2 - 1)}X_1Z_1 + Z_1^2\right),$$

$$E'_2 : Y^2Z_2 = X_2\left(X_2^2 - \frac{t^2 + 1}{t}X_2Z_2 + Z_2^2\right).$$

The remainder of the statement is checked by an explicit computation. \qed

We make the following:

Remark 3.26 The proof of Lemma 3.25 shows that the double sextic surfaces for case (4) in Proposition 3.1 are covered by Kummer surfaces associated with two elliptic curves E_1 and E_2 such that $t_2 = 2 \cdot t_1$. In particular, the conic $(A - B + 1)(A - B - 1) = 0$ is equivalent to the relation

$$0 = 16\Lambda_1^2\Lambda_2^2 - 16\Lambda_1\Lambda_2(\Lambda_1 + \Lambda_2) + 16\Lambda_1\Lambda_2 - 1 \quad (3.72)$$

between the elliptic modular parameters of the elliptic curves. For the two-isogenous elliptic curves—as defined by Eq. (1.43)—we then have $j(E_1) = j(E'_2)$ and $j(E_2) = j(E'_1)$.

Using Eq. (3.52), this is also equivalent to the relation
\[
0 = \left(\lambda_2^2 \lambda_3^2 - 6\lambda_2^2 \lambda_3 + 2\lambda_2 \lambda_3^2 + \lambda_2^2 + \lambda_3^2 + 4\lambda_2 \lambda_3 + 2\lambda_2 - 6\lambda_3 + 1\right) \\
\times \left(\lambda_2^2 \lambda_3^2 + 2\lambda_2 \lambda_3^2 - 6\lambda_2 \lambda_3^2 + \lambda_2^2 + \lambda_3^2 + 4\lambda_2 \lambda_3 - 6\lambda_2 + 2\lambda_3 + 1\right),
\]
(3.73)
between the Rosenhain roots of a genus-two curve \(C_0\) with an elliptic involution.

We define the following one-parameter families of elliptic curves, genus-two curves, double sextic, and double quadric surfaces:
\[
\begin{align*}
\tilde{E}_4 &: y^2z = x(x-z)(x-t^2z), \\
\tilde{E}'_4 &: Y^2Z = (X - (t^2 + 1)Z)(X^2 - 4t^2Z^2), \\
\tilde{C}_4 &: Y^2 = XZ(4X^3Z^2 + \frac{2(3t^2+8t^3+6t^2-8t^3+3)}{(t^2+1)^2}X^2Z^2) \\
&\quad \quad \quad \quad \quad - \frac{4(t^2+2t-1)^2XZ^3 + (t^2-2t-1)Z^4}{(t^2-2t-1)^2}Z^4), \\
\tilde{X}_4 &: y^2 = z_1z_2(z_1 - z_2)(z_1 - z_3), \\
\tilde{C}'_{12} &: y^2 = e_4x_1z_1(x_1 - z_1)(x_1 - t^2z_1)(x_2 - (t^2 + 1)z_2)(x_2 - 4t^2z_2),
\end{align*}
\]
(3.74)
By construction, the minimal resolution of \(\tilde{C}'_{12}\) is \(\text{Kum}^{\bot}\tilde{E}_4 \times \tilde{E}'_4\). Moreover, the j-invariants of \(\tilde{C}_4\) and \(\tilde{C}'_{12}\) satisfy Eq. (3.68). We have the following:

Corollary 3.27 For \(t \in \mathbb{P}^1 \setminus S_4\) with \(S_4 = \{0, \pm(\sqrt{2} \pm 1), \pm t, \pm i, \infty\}\) and
\[
\epsilon_4 = \frac{1}{t(t^2 - 1)}, \quad \delta_{14} = \frac{1}{2}, \quad \delta_{24} = \frac{(t^2 - 2t - 1)^2(t^2 + 1)}{8t(t^2 - 1)(t^2 + 2t - 1)}, \quad \delta_{34} = 2,
\]
(3.75)
the twisted Legendre pencil \(\tilde{X}_4\) fits into the following smooth Kummer sandwich of rational maps:
\[
\text{Kum}(\tilde{E}_4 \times \tilde{E}'_4)_{(\epsilon_4 \delta_{14})} \longrightarrow \tilde{X}_4 \longrightarrow \text{Kum}(\text{Jac} \tilde{C}_4)_{(\delta_{24})} \longrightarrow \text{Kum}(\tilde{E}_4 \times \tilde{E}'_4)_{(\epsilon_4 \delta_{34})}.
\]
(3.76)
The maps are defined on families over a finite field extension of \(\mathbb{Q}(t)\), and the holomorphic two-form \(\omega_{\tilde{X}_4}\) equals the pullback of \(\omega_{\text{Kum}(\text{Jac} \tilde{C}_4)}\), resp. its pullback equals \(\omega_{\text{Kum}(\tilde{E}_4 \times \tilde{E}'_4)_{(\epsilon_4 \delta_{14})}}\) and the pullback of \(\omega_{\text{Kum}(\tilde{E}_4 \times \tilde{E}'_4)_{(\epsilon_4 \delta_{34})}}\) equals \(\omega_{\text{Kum}(\tilde{E}_4 \times \tilde{E}'_4)_{(\epsilon_4 \delta_{34})}}\).

Proof We assume that two elliptic curves \(E_1\) and \(E_2\) in Theorem 3.19 are given by \(A_1 = -1/(t^2 - 1)\) and \(A_2 = (t^2 + 1)/(4t^2)\). It follows from Lemma 3.25 that \(t_1 = t_2 = 2\), and for the two-isogenous elliptic curves in Eq. (1.43) we have \(j(E_1) = j(E_2) = j(\tilde{C}_4)\) and \(j(E_1) = j(\tilde{E}_4)\) equals \(j(E_2)\). By an explicit computation, one checks that the isomorphisms
\[
E_1 \cong (\tilde{E}_4)^{(1/t - 1)}, \quad E_2 \cong (\tilde{E}_4)^{(1/2)}, \quad E'_1 \cong (\tilde{E}_4)^{(1/2)}, \quad E'_2 \cong (\tilde{E}_4)^{(1/t - 1)},
\]
(3.77)
are defined over \(\mathbb{Q}(t)\) and identify the corresponding holomorphic one-forms via pullback. Furthermore, we use Eq. (2.29) and Proposition 2.14 with the parameter
\[
\lambda_0 = \frac{(T^4 + 1)(T^4 + 2T^2 - 1)^2}{(T^4 - 2T^2 - 1)(T^8 + 4DT^5 - 6T^6 - 4DT^3 + 2T^2 - 1)},
\]
(3.78)
where \(t = T^2\) and \(D^2 = 1 - T^4\). The remainder of the proof is analogous to the proof of Corollary 3.22.

3.5.3 Family with trivial factor

The last family is not obtained by a fixed modular correspondence between two elliptic curves. Instead, we make one elliptic-curve factor constant with complex multiplication.
and j-invariant 12^3. We introduce the following one-parameter families of elliptic curves, genus-two curves, double sextic, and double quadric surfaces:

$$\tilde{E}_5 : y^2 z = (x - (t^2 + 1)z) (x^2 - 4t^2 z^2),$$
$$\tilde{F}_5 : Y^2 Z = X(X^2 - Z^2),$$
$$\tilde{C}_5 : Y^2 = XZ(X^2 - 2(t^2 - 4t + 1)XZ + (t^2 + 1)^2 Z^2)$$
$$\times (X^2 - 2(t^2 + 4t + 1)XZ + (t^2 + 1)^2 Z^2),$$
$$\tilde{X}_5 : y^2 = z_1 z_2 (z_1 - z_2)(z_1 - z_3)(z_3^2 - z_2 z_3 + \frac{(t^2 + 1)^2 z_2^2}{16 z_2}),$$
$$\tilde{Z}_5^{(e)} : \tilde{Y}_5^{(e)} = e_5 (x_1 - (t^2 + 1)z_1) (x_1^2 - 4t^2 x_1^2) z_1 x_2 z_2 (x_2^2 - z_2^2).$$

By construction, the minimal resolution of $\tilde{Z}_5^{(e)}$ is $\text{Kum}(\tilde{E}_5 \times \tilde{F}_5)^{(e_5)}$. Moreover, one checks that \tilde{F}_5 is constant with complex multiplication and $j(\tilde{F}_5) = 12^3$. We have the following:

Corollary 3.28 For $t \in \mathbb{P}^1 \setminus S_5$ with $S_5 = \{0, \pm 1, \pm i, \infty\}$ and

$$e_5 = \frac{1}{4t}, \quad \delta_{1,5} = \frac{1}{2}, \quad \delta_{2,5} = \frac{1}{8(t^2 + 1)}, \quad \delta_{3,5} = 2,$$

the twisted Legendre pencil \tilde{X}_5 fits into the following smooth Kummer sandwich of rational maps:

$$\text{Kum}(\tilde{E}_5 \times \tilde{F}_5)^{(e_5 e_5^{2,5})} \longrightarrow \tilde{X}_5 \longrightarrow \text{Kum}(\text{Jac} \tilde{C}_5)^{(e_5^{2,5})} \longrightarrow \text{Kum}(\tilde{E}_5 \times \tilde{F}_5)^{(e_5^{2,5})}. \quad (3.81)$$

The maps are defined on families over a finite field extension of $\mathbb{Q}(t)$, and the holomorphic two-form $\omega_{\tilde{X}_5}$ equals the pullback of $\omega_{\text{Kum}(\text{Jac} \tilde{C}_5)^{(e_5^{2,5})}}$, resp. its pullback equals $\omega_{\text{Kum}(\tilde{E}_5 \times \tilde{F}_5)^{(e_5^{2,5})}}$ and the pullback of $\omega_{\text{Kum}(\tilde{E}_5 \times \tilde{F}_5)^{(e_5^{2,5})}}$ equals $\omega_{\text{Kum}(\text{Jac} \tilde{C}_5)^{(e_5^{2,5})}}$.

Proof We assume that the two elliptic curves \tilde{E}_1 and \tilde{E}_2 in Theorem 3.19 are given by $\Lambda_1 = (t + 1)^2/(4t)$ and $\Lambda_2 = 1/2$. Furthermore, we use Eq. (2.29) and Proposition 2.14 with the parameter

$$\lambda_0 = (u + i \omega)^2 (u - \omega)^2,$$

where $t = u^2$ and $\omega = \exp(-\pi i/4)$. The remainder of the proof is analogous to the proof of Corollary 3.22. \hfill \square

3.6 Construction of correspondences

In Theorem 3.19, we constructed a Kummer sandwich for the Legendre pencil in Equation 3.54. The surfaces involved are defined over $\mathbb{Q}(\lambda_2, \lambda_3)$; the maps are defined on families over the finite field extension $\mathbb{Q}(k_l, k_3)$ with $k_l^2 = \lambda_l$ for $l = 2, 3$.

More generally, let us consider two families of Jacobian elliptic K3 surfaces V_λ and W_λ defined over $\mathbb{Q}(\lambda_2, \lambda_3)$ whose generic members have Picard rank 18. Here, we denote the tuple (λ_2, λ_3) by λ. Since we assume that the K3 surfaces are Jacobian elliptic K3 surfaces, they have Weierstrass models over $\mathbb{Q}(\lambda_2, \lambda_3)$. For example, for V_λ we assume this Weierstrass model to be of the form

$$V_\lambda : y^2 z = 4x^3 - g_2(v) xz^2 - g_3(v) z^3,$$

where v is a suitable coordinate on the base curve \mathbb{P}^1, and g_2 and g_3 are polynomials of degree 8 and 12, respectively, with coefficients in $\mathbb{Q}(\lambda_2, \lambda_3)$. There is a natural notion of twisted K3 surfaces $V_\lambda^{(e)}$ for $e \in \mathbb{Q}(\lambda_2, \lambda_3)$ by taking the minimal resolution of the twisted Weierstrass model

$$V_\lambda^{(e)} : y^2 z = \epsilon \left(4x^3 - g_2(v) xz^2 - g_3(v) z^3\right).$$

(3.84)
Let $F : V_\lambda \to W_\lambda$ be a rational map of finite degree. An algebraic correspondence from V_λ to W_λ is a subset $\Gamma \subset V_\lambda \times W_\lambda$ such that Γ is finite and surjective over each component of V_λ. Then, the graph of $F : V_\lambda \to W_\lambda$ is clearly such a correspondence $\Gamma = \Gamma_F$. We have the following:

Lemma 3.29 Assume $\varepsilon = \delta^2 \neq 0$ with $\delta \in \mathbb{Q}(\lambda_2, \lambda_3)$. Then, there is an algebraic correspondence from V_λ to $V_\lambda^{(\varepsilon)}$ over $\mathbb{Q}(\lambda_2, \lambda_3)$ that induces a nonzero map $H^{2,0}(V_\lambda^{(\varepsilon)}) \to H^{2,0}(V_\lambda)$.

Proof Since $\varepsilon = \delta^2$ the map from Eqs. (3.83) to (3.84) is given by $F : y \mapsto y = \delta y$. Generators of $H^{2,0}(V_\lambda)$ and $H^{2,0}(V_\lambda^{(\varepsilon)})$ are given in the charts $\tau = 1$ by the regular two-forms $\omega = dv \wedge dx/y$ and $\omega' = dv \wedge dx/\hat{y}$, respectively. We have $F^*\omega' = \omega/\delta \neq 0$. □

For a map $F : V_\lambda \to W_\lambda$ which is defined over $\mathbb{Q}(k_2, k_3)$, the graph Γ_F determines a correspondence, but only over $\mathbb{Q}(k_2, k_3)$. However, in our situation F has an additional property: for generators of $H^{2,0}(V_\lambda)$ and $H^{2,0}(W_\lambda)$ given in local coordinates by the regular two-forms ω_{V_λ} and ω_{W_λ}, respectively, we have $F^*\omega_{W_\lambda} = \omega_{V_\lambda}$. We consider the Gal $\mathbb{Q}(k_2, k_3)$-addresses $\Gamma(\lambda_2, \lambda_3)$-conjugate maps $F_{(+,+)} : V_\lambda \to W_\lambda$ obtained by replacing $(k_1, k_2) \mapsto (\pm k_1, \pm k_2)$ such that $F_{(+,+)} = F$. Since the surfaces and the two-forms are defined over $\mathbb{Q}(\lambda_2, \lambda_3)$, we obtain

$$\sum_{\sigma_2, \sigma_3 \in \{\pm\}} F^*_{(\sigma_2, \sigma_3)} \omega_{W_\lambda} = 4 \omega_{V_\lambda} \neq 0. \quad (3.85)$$

The sum of the graphs

$$\Gamma = \Gamma_{F_{(+,+)}} + \Gamma_{F_{(+,+)} + \Gamma_{F_{(-,-)}} + \Gamma_{F_{(-,-)}}} \quad (3.86)$$

then defines a correspondence on $V_\lambda \times W_\lambda$ over $\mathbb{Q}(\lambda_2, \lambda_3)$ that induces a nonzero map $H^{2,0}(W_\lambda) \to H^{2,0}(V_\lambda)$. Thus, it must induce an isomorphism on the transcendental lattices of W_λ and V_λ when tensored with \mathbb{Q}. The Artin comparison theorem for complex and ℓ-adic cohomology implies that the same is true for the corresponding Galois representations [3]. Therefore, the correspondence Γ induces an isomorphism of $G_{\mathbb{Q}(\lambda_2, \lambda_3)}$-representations, denoted by $[\Gamma]$, between the part of $H^2_{\text{et}}(V_\lambda, \mathbb{Q})$ that is orthogonal to the eighteen algebraically independent étale cycle classes and the corresponding part of $H^2_{\text{et}}(W_\lambda, \mathbb{Q})$. This isomorphism produces, via the Künneth formula and Poincaré duality, a Galois invariant class in $H^2_{\text{et}}(V_{\lambda, \mathbb{Q}} \times W_{\lambda, \mathbb{Q}}, \mathbb{Q}_\ell)$. Of course, the existence of such a class is already expected due to the Tate conjecture.

In the generic situation of Theorem 3.19, the K3 surfaces have Picard rank 18. For the continuous Galois representations of $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the transcendental lattices, there are isomorphisms of $G_{\mathbb{Q}}$-representations, namely

$$H^2_{\text{et}}(\Lambda_{\overline{\mathbb{Q}}}^{1}, \mathbb{Q}_\ell) \cong T^{(1)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18},$$

$$H^2_{\text{et}}(\text{Kum}(\mathcal{C}_1 \times \mathcal{E}_2)^{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \cong T^{(2)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18},$$

$$H^2_{\text{et}}(\text{Kum}(\text{Jac} C_0(e))^{\overline{\mathbb{Q}}}, \mathbb{Q}_\ell) \cong T^{(3)}_\ell \oplus \mathbb{Q}_\ell(-1)^{\oplus 18}, \quad (3.87)$$

where $T^{(m)}_\ell$ are the four-dimensional ℓ-adic representations obtained from the corresponding transcendental lattices using the comparison theorem for $m = 1, 2, 3$. Here, we used the fact that $\text{NS}_{\mathbb{Q}}$ is generated by curves defined over \mathbb{Q}. This explains the summand $\mathbb{Q}_\ell(-1)^{\oplus 18}$ in Eq. (3.87). We have the following:
Theorem 3.30 Assume that $\lambda_2, \lambda_3 \in \mathbb{P}^1 \setminus \{0, 1, \infty\}$ satisfy $\lambda_2 \neq \lambda_3^{\pm 1}$ and are generic otherwise. Further, assume that Λ_1, Λ_2 satisfy

$$
\Lambda_1 \Lambda_2 = \frac{(\lambda_2 + \lambda_3)^2 - 4\lambda_2 \lambda_3}{(1 - \lambda_2)^2 (1 - \lambda_3)^2}, \quad \Lambda_1 + \Lambda_2 = \frac{2(\lambda_2 + \lambda_3)}{(1 - \lambda_2)(1 - \lambda_3)},
$$

and $\varepsilon = \lambda_2 \lambda_3$. Then, there are explicit algebraic correspondences

$$
\Gamma^{(1,2)} \subset \text{Kum}(\tilde{E}_n \times \tilde{E}_n) \times \mathcal{X},
$$

$$
\Gamma^{(2,3)} \subset \mathcal{X} \times \text{Kum}(\text{Jac} C_0)^{(\varepsilon)},
$$

$$
\Gamma^{(3,1)} \subset \text{Kum}(\text{Jac} C_0)^{(\varepsilon)} \times \text{Kum}(\tilde{E}_n \times \tilde{E}_n),
$$

defined over $\mathbb{Q}(\lambda_2, \lambda_3)$, which induce isomorphisms of the ℓ-adic representations

$$
\left[\Gamma^{(ij)} \right]: \tilde{T}^{(i)}_{\ell} \cong \tilde{T}^{(j)}_{\ell},
$$

for $i, j \in \{1, 2, 3\}$ with $i \neq j$.

Proof It follows from Remark 3.23 that for generic parameters $\lambda_2, \lambda_3 \in \mathbb{Q}$, the K3 surfaces in Theorem 3.19 have Picard rank 18. Using the families of maps in Eq. (3.55) defined over $\mathbb{Q}(\lambda_2, \lambda_3)$, we construct correspondences between the different Kummer surfaces as explained above. Lemma 3.29 allows us to replace the twist factor $\varepsilon = 2^{\frac{1}{2}(\lambda_2 \lambda_3(1 - \lambda_2)(1 - \lambda_3))}$ by $\varepsilon' = \lambda_2 \lambda_3$ as $\varepsilon'/\varepsilon' = (\lambda_2 \lambda_3(1 - \lambda_2)(1 - \lambda_3))/2$. Similarly, for $\Gamma^{(3,1)}$ we eliminate the twist factor 2^4.

In the situation of Corollary 3.22, the K3 surfaces have Picard rank 19. Then, there are isomorphisms of $G_{\mathbb{Q}}$-representations, namely

$$
\tilde{H}^2_{et}(\tilde{X}_{n, \ell}, \mathbb{Q}_\ell) \cong \tilde{T}^{(1)}_{n, \ell} \oplus \mathbb{Q}_\ell(-1)^{\oplus 19},
$$

$$
\tilde{H}^2_{et}(\text{Kum}(\tilde{E}_n \times \tilde{E}_n)^{(\varepsilon_n)}, \mathbb{Q}_\ell) \cong \tilde{T}^{(2)}_{n, \ell} \oplus \mathbb{Q}_\ell(-1)^{\oplus 19},
$$

$$
\tilde{H}^2_{et}(\text{Kum}(\text{Jac} C_n)^{(\varepsilon_n)}, \mathbb{Q}_\ell) \cong \tilde{T}^{(3)}_{n, \ell} \oplus \mathbb{Q}_\ell(-1)^{\oplus 19},
$$

where $\tilde{T}^{(m)}_{n, \ell}$ are the three-dimensional ℓ-adic representations obtained from the corresponding transcendental lattices using the comparison theorem for $m, n = 1, 2, 3$. In the cases above, the representation $\tilde{T}^{(2)}_{n, \ell}$ is naturally isomorphic to a symmetric square, namely $\text{Sym}^{2}(\tilde{H}^1_{et}(\tilde{E}_n, \mathbb{Q}_\ell)(\chi))$, where χ is the Dirichlet character of the quadratic twist given by ε_n; see [60]. We have the following:

Theorem 3.31 In Eqs. (3.61), (3.62), (3.63), let $t \in \mathbb{P}^1 \setminus S_n$ with

$$
S_1 = [0, -1, \infty], \quad S_2 = \{\pm 1, 3, \infty\}, \quad S_3 = [0, \pm 1, \pm i, \infty],
$$

and $\varepsilon_1 = 1/t_{\infty}, \varepsilon_2 = \frac{1}{(t_{\infty} + 1)(t_{\infty} - 3)}, \varepsilon_3 = 1$. Then, there are explicit algebraic correspondences

$$
\tilde{T}^{(1,2)}_{n, \ell} \subset \text{Kum}(\tilde{E}_n \times \tilde{E}_n)^{(-\varepsilon_n)} \times \tilde{X}_n,
$$

$$
\tilde{T}^{(2,3)}_{n, \ell} \subset \tilde{X}_n \times \text{Kum}(\text{Jac} C_n)^{(\varepsilon_n)},
$$

$$
\tilde{T}^{(3,1)}_{n, \ell} \subset \text{Kum}(\text{Jac} C_n)^{(\varepsilon_n)} \times \text{Kum}(\tilde{E}_n \times \tilde{E}_n)^{(-\varepsilon_n)},
$$

defined over $\mathbb{Q}(t)$, which induce isomorphisms of the ℓ-adic representations

$$
\left[\tilde{T}^{(ij)}_{n, \ell} \right]: \tilde{T}^{(i)}_{n, \ell} \cong \tilde{T}^{(j)}_{n, \ell},
$$

for $i, j, n \in \{1, 2, 3\}$ with $i \neq j$.
Theorem 3.33 In Eqs. (3.74), (3.79), let \(t \in \mathbb{P}^1 \setminus S_n \) with
\[
S_4 = \{0, \pm(\sqrt{2} \pm 1), \pm1, \pm i, \infty\}, \quad S_5 = \{0, \pm1, \pm i, \infty\},
\]
and \(e_4 = \frac{1}{\ell(\ell - 1)}, \quad e_5 = \frac{1}{4\ell}. \) Then, there are explicit algebraic correspondences
\[
\begin{align*}
\tilde{\Gamma}_n^{(1,2)} & \subset \text{Kum}(\tilde{E}_n \times \tilde{E}_n)^{(e_n)} \times \tilde{X}_n, \\
\tilde{\Gamma}_n^{(2,3)} & \subset \tilde{X}_n \times \text{Kum}(\tilde{C}_n), \\
\tilde{\Gamma}_n^{(3,1)} & \subset \text{Kum}(\text{Jac}\, \tilde{C}_n) \times \text{Kum}(\tilde{E}_n \times \tilde{E}_n)^{(e_n)},
\end{align*}
\]
defined over \(\mathbb{Q}(t) \), which induce isomorphisms of the \(\ell \)-adic representations
\[
\tilde{\Gamma}_n^{(i,j)} \colon \tilde{\Gamma}_n^{(i)} \rightarrow \tilde{\Gamma}_n^{(j)},
\]
for \(i, j \in \{1, 2, 3\} \) with \(i \neq j \) and \(n = 4, 5 \).

Proof The proof is analogous to the proof of Theorem 3.31. \(\Box \)

Acknowledgements

The authors would like to thank the referees for their thoughtful comments and effort toward improving the manuscript. The authors also thank Dr. Muhammad Arjumand Masood for some helpful discussions about Jacobian elliptic functions during an early stage of this project. N.B. and S.S. would like to acknowledge the support from the Office of Research and Graduate Studies at Utah State University. A.C. acknowledges support from a UMSL Mid-Career Research Grant. A.M. acknowledges support from the Simons Foundation through Grant No. 202367.

Author details

1Department of Mathematics and Statistics, Utah State University, Logan, UT 84322, USA, 2Department of Mathematics and Statistics, University of Missouri, St. Louis, MO 63121, USA, 3Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA.

Received: 15 February 2021 Accepted: 7 September 2021 Published online: 5 October 2021

\(^{\text{5}}\)All surfaces in Theorem 3.31 have been twisted by \((-1)^{\pm 1}\) compared to [60] This is due to a different sign choice in the definition of the twisted Legendre pencil in Eq. (3.2).
References

1. Ahlgren, S., Ono, K., Penniston, D.: Zeta functions of an infinite family of K3 surfaces. Am. J. Math. 124(2), 353–368 (2002)

2. Andrianov, A.N.: Quadratic Forms and Hecke Operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 286. Springer, Berlin (1987)

3. Artin, M.: The etale topology of schemes. In: Proceedings of the International Congress of Mathematicians (Moscow, 1966), Izdat. “Nauka”, Moscow (1968)

4. Baker, H.F.: On a system of differential equations leading to periodic functions. Acta Math. 27(1), 135–156 (1903)

5. Barth, W.: Even Sets of Eight Rational Curves on a K3 surface. Complex Geometry (Göttingen, 2000), pp. 1–25. Springer, Berlin (2002)

6. Birkenhake, C., Lange, H.: Complex abelian varieties, Second, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302. Springer, Berlin (2004)

7. Birkenhake, C., Wilhelm, H.: Humbert surfaces and the Kummer plane. Trans. Am. Math. Soc. 355(5), 1819–1841 (2003)

8. Bolza, O.: Über binare sextics with linear transformations into themselves. Am. J. Math. 10(1), 47–70 (1887)

9. Bost, J.-B., Mestre, J.-F.: Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. 28(1), 36–64 (1988)

10. Braeger, N., Malmendier, A., Sung, Y.: Kummer sandwiches and Greene-Plesser construction. J. Geom. Phys. 2(1), 107–123 (2012)

11. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a middlebrow arithmetic of curves of genus 2. In: London Mathematical Society Lecture Note Series, vol. 230. Cambridge University Press, Cambridge (1996)

12. Clingher, A., Doran, C.F.: Modular invariants for lattice polarized K3 surfaces. Michigan Math. J. 55(2), 355–393 (2007)

13. Clingher, Adrian, Malmendier, Andreas: On the geometry of (1,2)-polarized Kummer surfaces, 201704.

14. Clingher, A., Malmendier, A., Nikulin involutions and the CHL string. Commun. Math. Phys. 370(3), 959–994 (2019)

15. Clingher, A., Malmendier, A., Shaska, T.: On isogenies among certain abelian surfaces. Michigan Math. J. 55(2), 355–393 (2007)

16. Clingher, A., Malmendier, A., Shaska, T.: Geometry of Prym varieties for special bielliptic curves of genus three and five. arXiv:1901.09846 (2019)

17. Clingher, A., Malmendier, A., Shaska, T.: On isogenies among certain abelian surfaces. Michigan Math. J. 55(2), 355–393 (2007)

18. Deligne, P.: La conjecture de Weil pour les surfaces K3. Invent. Math. 15, 206–226 (1972)

19. Dolgachev, I., Ortland, D.: Points sets in projective spaces and theta functions, 1988, Astérisque, 165, 210 pp. (1989)

20. Freitag, E.: Siegelsche Modulfunktionen, Grundlehrender Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302. Springer, Berlin (2004)

21. Garbagnati, A.: Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms. Commun. Algebra 41(2), 583–616 (2013)

22. Gonzalez-Dorrego, M.R.: (16, 6) configurations and geometry of Kummer surfaces in P^3. Mem. Am. Math. Soc. 107, 512, vi+101 (1994)

23. Gritsenko, V.A., Nikulin, V.V.: Igusa modular forms and “the simplest” Lorentzian Kac-Moody algebras. Mat. Sb. 187(1), 27–66 (1996)

24. Hecke, E.: Die eindeutige Bestimmung der Modulfunktionen q-ter Stufe durch algebraische Eigenschaften. Math. Ann. 111(1), 293–301 (1935)

25. Hoyt, W.L.: On surfaces associated with an indefinite ternary lattice, Number theory (New York, 1984–1985), Lecture Notes in Math., 1240, pp. 197–210. Springer, Berlin (1987)

26. Hoyt, W.L.: On twisted Legendre equations and Kummer surfaces, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, pp. 197–210. Amer. Math. Soc., Providence, RI (1989)

27. Hoyt, W.L.: On twisted Legendre equations and Kummer surfaces, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, pp. 197–210. Amer. Math. Soc., Providence, RI (1989)

28. Hoyt, W.L.: On twisted Legendre equations and Kummer surfaces, Theta functions—Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., 49, pp. 197–210. Amer. Math. Soc., Providence, RI (2001)

29. Hudson, R.W.H.T.: Kummer’s quartic surface, Cambridge Mathematical Library, Cambridge University Press, Cambridge, With a foreword by W. Barth, Revised reprint of the 1905 original (1990)

30. Humbert, G.: Sur les fonctions abéliennes singulières. I, II, III. J. Math. Pures Appl. série 5, V, 233–350 (1899); VI, 279–386 (1900); VII, 97–123 (1901)

31. Igusa, J.: On Siegel modular forms of genus two. Am. J. Math. 84, 175–200 (1962)

32. Igusa, J.: Modular forms and projective invariants. Am. J. Math. 89, 817–855 (1967)

33. Igusa, J.: Modular forms of complex dimension 2. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23(3), 545–560 (1976)

34. Kodaira, K.: On the structure of complex analytic surfaces. I, II. Proc. Nat. Acad. Sci. U.S.A. 50, 218–221 (1963); ibid. 51 (1963), 1000–1104

35. Kumar, A.: Elliptic fibrations on a generic Jacobian Kummer surface. J. Algebraic Geom. 23(4), 599–667 (2014)

36. Kuwata, M., Shioda, T.: Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface, Algebraic geometry in East Asia—Hanoi 2005, Adv. Stud. Pure Math., 50, Math. Soc. Japan, Tokyo, pp. 177–215 (2008)

37. Malmendier, A., Shaska, T.: The Satake sextic in F-theory. J. Geom. Phys. 120, 290–305 (2017)

38. Malmendier, A.: Kummer surfaces associated with Selberg-Witten curves. J. Geom. Phys. 62(1), 107–123 (2012)

39. Malmendier, A., Morrison, D.R.: K3 surfaces, modular forms, and non-geometric heterotic compactifications. Lett. Math. Phys. 105(8), 1085–1118 (2015)
42. Malmendier, A., Ono, K.: Moonshine for M_{24} and Donaldson invariants of CP^2. Commun. Number Theory Phys. 6(4), 759–770 (2012)
43. Malmendier, A., Shaska, T.: A universal genus-two curve from Siegel modular forms. SIGMA Symmetry Integrability Geom. Methods Appl., 13, Paper No. 089, 17 (2017)
44. Malmendier, A., Sung, Y.: Counting rational points on Kummer surfaces. Res. Number Theory, 5, 3, Paper No. 27, 23 (2019)
45. McDonald, J.H.: A problem in the reduction of hyperelliptic integrals. Trans. Am. Math. Soc. 7(4), 578–587 (1906)
46. Mehran, A.: Double covers of Kummer surfaces. Manuscr. Math. 123(2), 205–235 (2007)
47. Mestre, J.-F.: Construction de courbes de genre 2 à partir de leurs modules, Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math., 94, pp. 313–334. Birkhäuser Boston, Boston, MA (1991)
48. Morrison, D.R.: On K_3 surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)
49. Mumford, D.: Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Published for the Tata Institute of Fundamental Research, Bombay, by Hindustan Book Agency, New Delhi, 5, With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition (2008)
50. Nikulin, V.V.: Kummer surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 39(2), 278–293, 471 (1975)
51. Oguiso, K.: On Jacobian fibrations on the Kummer surfaces of the product of nonisogenous elliptic curves. J. Math. Soc. Japan 41(4), 651–680 (1989)
52. Pringsheim, A.: Zur Transformation zweiten Grades der hyperelliptischen Functionen erster Ordnung. Math. Ann. 9(4), 445–475 (1876)
53. Richelot, F. J.: De transformatione integralium Abelianorum primi ordinis commentatio. Caput secundum. De computatione integralium Abelianorum primi ordinis. J. Reine Angew. Math. 16, 285–341 (1837)
54. Serre, J.-P.: Rational points on curves over finite fields, notes by F. Gouvea of lectures at Harvard University (1985)
55. Shafarevitch, E.R.: Le théorème de Torelli pour les surfaces algébriques de type K_3, book Actes du Congrès International des Mathématiciens (Nice, 1970). Tome 1, 413–417 (1971)
56. Shioda, T.: Kummer sandwich theorem of certain elliptic K_3 surfaces. Proc. Jpn. Acad. Ser. A Math. Sci. 82(8), 137–140 (2006)
57. Shioda, T.: Classical Kummer surfaces and Mordell-Weil lattices, Algebraic geometry, Contemp. Math., 422, pp. 213–221. Amer. Math. Soc., Providence, RI (2007)
58. Totaro, B.: Recent progress on the Tate conjecture. Bull. Am. Math. Soc. (N.S.) 54(4), 575–590 (2017)
59. van der Geer, G.: On the geometry of a Siegel modular threefold. Math. Ann. 260(3), 317–350 (1982)
60. van Geemen, B., Top, J.: An isogeny of K_3 surfaces. Bull. Lond. Math. Soc. 38(2), 209–223 (2006)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.