Update on fertility preservation from the Barcelona International Society for Fertility Preservation–ESHRE–ASRM 2015 expert meeting: indications, results and future perspectives†‡

Francisca Martinez*, on behalf of the International Society for Fertility Preservation–ESHRE–ASRM Expert Working Group

Hospital Universitario Dexeus, Gran Via Carlos III, 71-75, 08208 Barcelona, Spain

*Correspondence address. Hospital Universitario Dexeus, Barcelona, Spain. E-mail: pacmar@dexeus.com

Submitted on March 27, 2017; accepted on May 19, 2017

STUDY QUESTION: What progress has been made in fertility preservation (FP) over the last decade?

SUMMARY ANSWER: FP techniques have been widely adopted over the last decade and therefore the establishment of international registries on their short- and long-term outcomes is strongly recommended.

WHAT IS KNOWN ALREADY: FP is a fundamental issue for both males and females whose future fertility may be compromised. Reproductive capacity may be seriously affected by age, different medical conditions and also by treatments, especially those with gonadal toxicity. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility.

STUDY DESIGN, SIZE, DURATION: An international meeting with representatives from expert scientific societies involved in FP was held in Barcelona, Spain, in June 2015.

PARTICIPANTS/MATERIALS, SETTING, METHODS: Twenty international FP experts belonging to the American Society of Reproductive Medicine, ESHRE and the International Society of Fertility Preservation reviewed the literature up to June 2015 to be discussed at the meeting, and approved the final manuscript. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and was consequently included.

MAIN RESULTS AND THE ROLE OF CHANCE: Several oncological and non-oncological diseases may affect current or future fertility, either caused by the disease itself or the gonadotoxic treatment, and need an adequate FP approach. Women wishing to postpone maternity and transgender individuals before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs should also be counselled accordingly. Embryo and oocyte cryopreservation are first-line FP methods in post-pubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option. Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application. Semen cryopreservation is the only established method for FP in men. Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans. The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended.

†ESHRE Pages are not externally peer reviewed. The manuscript has been approved by the Executive Committee of ESHRE.
‡This article is simultaneously published in Fertility and Sterility.
1Participants of the Expert Working Group are listed in the Appendix.
Introduction

Reproductive capacity may be seriously affected by age, different conditions, including genetic syndromes, and also by treatments, especially those with gonadal toxicity. Fertility preservation (FP) is a fundamental issue for individuals of reproductive age, both male and female, or prepubescent boys and girls whose future fertility may be compromised. There is general consensus on the need to provide counselling about currently available FP options to all individuals wishing to preserve their fertility. Timely referral to a fertility specialist for informed FP decisions becomes essential.

Several techniques for FP are nowadays well established while others are still considered experimental. These techniques have been the subject of continuous review by experts with the aim of providing physicians involved in FP with up-to-date knowledge and counselling. Given the particular nature of FP, recommendations are largely based on cohort studies, case series, small non-randomized clinical trials, or case reports, which further makes FP a challenging but rather controversial field.

Reviews have been mostly focused on cancer, which is probably the main indication for FP given its high incidence and impact on reproductive health (ISFP Practice Committee et al., 2012; Ethics Committee of ASRM, 2013; Loren et al., 2013; Oktay and Rodriguez-Wallberg, 2014; Mahajan, 2015; Lambertini et al., 2016). However, the need for FP in other pathologic situations, either due to the disease itself or to gonadotoxic treatment, and even in non-medical indications, is on the rise. Moreover, new perspectives to tackle FP are being developed, and evidence about the results of spontaneous pregnancy and ART after current FP procedures is growing, which may further help clinicians provide adequate counselling. With the aim of reviewing all these aspects and drawing recommendations, an international meeting with representatives from expert scientific societies involved in FP was held in Barcelona (Spain) in June 2015. This paper summarizes the topics debated, with a special focus on indications for FP, current outcomes and future perspectives. A condensed version of this summary has been included in the print issue of Human Reproduction.

Materials and Methods

Twenty international FP experts belonging to the American Society of Reproductive Medicine (ASRM), ESHRE and the International Society of Fertility Preservation (ISFP) attended the meeting. Experts conducted a review of the literature and evidence presented in scientific meetings up to June 2015 to be discussed at the meeting. At the time this manuscript was being written, new evidence considered relevant for the debated topics was published, and has consequently been included. Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was three or below.

Limitations, Reasons for Caution: Given the lack of studies in large cohorts or with a randomized design, the level of evidence for most of the evidence reviewed was three or below.

Wider Implications of the Findings: Further high quality studies are needed to study the long-term outcomes of FP techniques.

Study Funding/Competing Interest(s): None.

Trial Registration Number: N/A.

Key words: fertility preservation / semen cryopreservation / testicular tissue cryopreservation / embryo cryopreservation / oocyte cryopreservation / ovarian tissue cryopreservation / oncological fertility preservation / non-oncological fertility preservation / fertoprotection

Indications for FP

Cancer

Many forms of cancer are associated with impaired semen quality or ovarian function at the time of cancer diagnosis. However, the main effect on fertility arises from commonly used treatments such as chemotherapy with alkylating agents and pelvic radiation that present well-known gonadotoxic side effects. Gonadal failure resulting from these treatments may affect different aspects of reproductive health, including pubertal development, hormone production, and sexual function in adults (Oktay and Rodriguez-Wallberg, 2014; Picton et al., 2015). The fact that more than 80% of children and adolescents with cancer become long-term survivors (Phillips et al., 2015) has raised an increased interest in the long-term effects of cancer treatment on fertility.

Male

Spermatogonia are especially sensitive to chemotherapy and radiotherapy. The effect, which is dose-dependent, may not be permanent if the spermatogonial stem cell (SSC) population is not fully depleted (Oktay and Rodriguez-Wallberg, 2014). Data about the impact of recent biological or targeted cancer therapies on male fertility are limited (Loren et al., 2013). For most of these therapies, the effects seem to be mild, mostly involving reproductive endocrinology (Meistrich, 2013). Finally, surgical pelvic interventions for malignant or benign disease may affect the anatomy or normal functioning of reproductive organs (Levine, 2014).

Female

Chemotherapy and radiotherapy may induce premature ovarian insufficiency (POI) in women (Donnez and Dolmans, 2013). Ovarian damage is drug- and dose-dependent and increases as the patient ages (Ethics Committee of ASRM, 2013). Radiotherapy may also affect the uterus, leading to reduced vascularity, myometrium damage (fibrosis) and hormone-dependent insufficiency (Mahajan, 2015). Recent evidence in female survivors of childhood cancer shows that chemotherapy without radiotherapy to the brain or the pelvis has few effects on...
future pregnancy or live births (Chow et al., 2016). In any case, FP should be considered prior to chemotherapy to maximize future reproductive potential. Data about the impact of recent biological or targeted cancer female fertility therapies is also limited except for bevacizumab, with a 34% rate of POI reported (Loren et al., 2013). Fertility may also be impaired by surgical removal or damage to reproductive organs.

Non-oncological medical indications

FP options should also be discussed with adult and younger women and men affected by several non-oncological medical conditions. Non-oncological systemic diseases, such as haematological and autoimmune conditions, usually require chemotherapy or radiotherapy, especially for those in need of a bone marrow or haematopoietic stem cell transplantation (HSCT) (Donnez and Dolmans, 2013). In other conditions reproductive function may be compromised by genetic causes or by surgical interventions. Finally, FP may be offered to patients at high risk of fertility loss as a result of severe body trauma requiring surgical intervention. Table I summarizes the most common non-oncological conditions requiring FP.

Autoimmune diseases

Table I summarizes autoimmune diseases reported to benefit from immunosuppressive therapy with alkylating agents (cyclophosphamide) (Donnez and Dolmans, 2013; Bedaiwy and Botros, 2014). POI in these women is also affected by disease duration and presence of anti-Ro and anti-U1RNP (ribonucleoprotein) antibodies (Harward et al., 2013). Continuous POI in women with chronic autoimmune diseases also increases the risk of hypoestrogenism-related comorbidities (including cardiovascular disease and osteoporosis) (Marder et al., 2012). Males with systemic lupus erythematosus show a high frequency of testicular Sertoli cell dysfunction associated with semen abnormalities (Suehiro et al., 2008). New treatment approaches are changing the prognosis of patients with autoimmune diseases, although information about toxicity for reproduction is still limited.

Table I Non-oncological conditions requiring fertility preservation.

Indication	Disease
Autoimmune diseases (Donnez and Dolmans, 2013; Bedaiwy and Botros, 2014)	Systemic lupus erythematosus (SLE)
	Behcet’s disease
	Churg-Strauss syndrome (eosinophilic granulomatosis)
	Steroid resistant glomerulonephritis
	Granulomatosis with polyangitis (formerly Wegener’s granulomatosis)
	Inflammatory bowel diseases
	Rheumatoid arthritis
	Pemphigus vulgaris
Hematopoietic stem cell transplantation (Donnez and Dolmans, 2013; Joshi et al., 2014)	Autoimmune diseases unresponsive to immunosuppressive therapy
Medical conditions causing POI (ESHRE POI Guideline Development Group, 2015)	Haematological diseases (sickle cell anaemia, thalassaemia major, plastic anaemia)
	Altered hypothalamic–pituitary–gonadal axis (Donnez and Kim, 2011; Harward et al., 2013)
	Ovarian oophoritis
	Benign ovarian tumours
	Mosaic Turner’s syndrome
	Fragile X Mental Retardation I (Gleicher et al., 2015)
	Galactosemia (Fridovich-Keil et al., 2011)
	Beta-thalassaemia (Roussou et al., 2013)
	Endometriosis (Somigliana et al., 2015)
	Klinefelter’s syndrome (Bedaiwy and Botros, 2014)

POI, premature ovarian insufficiency.

Hematopoietic stem cell transplantation

HSCT (autologous or allogeneic) has been an important therapeutic tool for some oncological and non-oncological systemic diseases. Patients undergoing HSCT are at particularly high risk of developing ovarian (64–85%) or testicular (50–90%) failure since aggressive chemotherapy and radiotherapy is needed to destroy pre-existing bone marrow (Joshi et al., 2014). The most common non-oncological diseases benefiting from HSCT are autoimmune diseases that are unresponsive to immunosuppressive therapy or benign haematological diseases (Table I) (Donnez and Dolmans, 2013).

Medical conditions causing POI

POI may also result from several other causes, including an altered hypothalamic–pituitary–gonadal axis, ovarian oophoritis, benign ovarian tumours, either due to their extensive or progressive nature, or bilateral adnexectomy (Donnez and Kim, 2011; Harward et al., 2013). POI is also common in Turner’s syndrome. However, FP may not be feasible for most patients with this disease since by the time they reach puberty their primordial follicle reserve may already be depleted. FP may only be offered to young patients with mosaic Turner’s syndrome.
after careful consideration of increased pregnancy-associated risks (Lau et al., 2009; ESHRE POI Guideline Development Group, 2015).

Other conditions associated with POI include FMRI gene mutations (Fragile X Mental Retardation 1) as a result of premature ovarian aging (Gleicher et al., 2015), classic galactosemia (Fridovich-Keil et al., 2011) or beta-thalassaemia in female patients who suffer from hypogonadotropic hypogonadism associated with amenorrhoea, anovulation and infertility (Roussou et al., 2013).

It is well documented that women with endometriosis are at increased risk of POI and that about half of them will experience infertility (Somigliana et al., 2015). The causal relationship between endometriosis and infertility is unclear (Practice Committee of the ASRM, 2012). FP may be of interest for reproductive-age women at risk of impaired fertility due to progression or surgical treatment of this condition (Bedoschi et al., 2013). Nevertheless, some authors restrict FP to women with bilateral unoperated endometriomas and those with previous unilateral endometriomaremoval requiring surgery for a contra-
lateral recurrence (Somigliana et al., 2015).

Male genetic disorders and testicular tissue damage
Klinefelter’s syndrome is the most common sex chromosomal dis-
order in humans. This syndrome causes hypogonadism and azospermia in ≥90% cases (Stahl et al., 2010, Bedaiwy and Botros, 2014). Testicular injury may also result in irrepairable damage to the testicular tissue leading to infertility (Stahl et al., 2010). A recent study has highlighted the relevance of attempting salvage, even in cases of subjectively dead testicle, and to offer the patient FP options (Woodruff et al., 2010).

Gender reassignment procedures
Removal of testicles or ovaries destroys the ability to have genetically-
related children, while feminizing/masculinizing medications used in gender reassignment procedures may lead to diminished fertility (Darney, 2008). The World Professional Association for Transgender Health has emphasized the need to discuss and provide counselling about FP and fertility treatment ‘before starting hormone therapy or undergoing surgery to remove/alter their reproductive organs’ even at a younger age (Coleman et al., 2012). Further, the Endocrine Society recommends providing counsel about FP ‘prior to initiation of puberty suppression in adolescents and before treatment with sex hormones of the desired sex in both adolescents and adults’ (Hembree et al., 2009). Evidence regarding reproductive health issues in individuals receiving treatments for gender dysphoria is scarce. Currently, there are no established techniques for preserving gonadal function in pre-
pubertal or pubertal adolescents, who will never develop reproductive function in their natal sex owing to blockers or cross-gender hormones (Coleman et al., 2012). There is an ongoing ethical debate on whether FP should or should not be offered to transgender individuals (De Wert et al., 2014).

Delayed childbearing
Female fertility decreases gradually but significantly after age 32 years, and faster after 37 years, which compromises fertility when delaying childbearing (The ACOG Committee on Gynecologic Practice, 2014). This is important, since an increasing proportion of couples in developed countries choose to have children later in life (≥35 years). Given that delaying childbearing is considered a non-medical indication for FP, the term ‘AGE banking’ (oocyte banking for anticipated gamete exhaustion) has been proposed for oocyte cryopreservation in these cases (Stoop et al., 2014).

Available procedures for FP
The most recent practice guidelines issued for cancer patients by the ASRM (Ethics Committee of ASRM, 2013) and the American Society of Clinical Oncology (Loren et al., 2013) provide an exhaustive review of all evidence supporting currently available FP procedures, which may be adaptable to all scenarios where fertility may be compromised.

Women
Both, embryo and oocyte cryopreservation (slow freezing or vitrification) are first-line FP methods (Fig. 1). However, oocyte cryopreservation is increasingly preferred in adolescent girls or young women without a life partner given that it overcomes religious, ethical or practical issues related to embryo storage (Bedoschi and Oktay, 2013; Loren et al., 2013). Mature oocyte vitrification is preferred in post-pubertal women when gonadotoxic treatment can be delayed to allow time for controlled ovarian stimulation (COS) (Cobo et al., 2013). Harvesting of immature oocytes by aspiration would be an option for patients unable to undergo COS such as pre-pubertal girls, women with aggressive or hormone-sensitive cancers, or those with polycystic ovary syndrome (Kim et al., 2016). The benefits of adding tamoxifen or letrozole to COS regimes administered to women with breast cancer are still unclear (Dahhan et al., 2014). IVM has been shown to improve outcomes in breast cancer patients undergoing COS for FP (Oktay et al., 2010).

Ovarian tissue cryopreservation (OTC) is a COS-independent experimental technique which also allows immediate cancer treatment, and is currently the only FP option in paediatric patients (Donnez and Dolmans, 2013) and in hormone-dependent diseases (Kim et al., 2016). Reimplantation of this tissue either in the pelvic cavity (orthotopic) or elsewhere (heterotopic) has the potential of restoring fertility and ovarian hormone secretion. Reimplantation of frozen–thawed ovarian tissue in the pelvic cavity is usually carried out by laparoscopy, but the surgical technique is contingent on the presence (or not) of at least one ovary. If an ovary is present, the remaining atrophic cortex is removed using scissors, thereby creating a grafting bed onto which the thawed ovarian frag-
ments are placed. If no ovaries remain, the ovarian pieces are placed in a peritoneal window created in the peritoneum of the broad ligament, in an area where retroperitoneal capillaries are visible (Donnez et al., 2012).

Ovarian tissue could also be preserved as an entire ovary with its vas-
cular pedicle, preventing ischaemic damage occurring between transplantazione and revascularization (Donnez et al., 2005). Fertility restoration after whole ovary preservation requires retransplantation of the whole organ accompanied by vascular anastomoses of the blood vessels. However, although recent evidence from large animals, such as sheep, suggests that natural fertility can be fully restored following auto-
transplantation of whole ovaries and their supporting vascular pedicle after slow freezing and thawing (Onions et al., 2013, Campbell et al., 2014), cryopreservation of the whole ovary is likely to be more problem-
atic in adult women owing to the increased size of their ovaries, the difficulty of achieving adequate perfusion and penetration of the
cryoprotectants agents through the whole organ, and the inherently different freezing and thawing optima for the different cell types in both the ovary and blood vessels. Although several methods have been developed to help overcome these barriers (Bedaiwy et al., 2006; Onions et al., 2013; Campbell et al., 2014; Martínez et al., 2014), more research is needed before this technique can be translated into clinical practice.

Fertoprotective agents
GnRH analogues/agonists (GnRHa) may protect follicles from destruction during chemotherapy, probably by suppression of gonadotrophin levels and reduction of utero-ovarian perfusion (Meirow et al., 2007). These agents have long been used for the prevention of ovarian damage, despite their efficacy being a subject of debate owing to inconsistent results from randomized trials using GnRHa (Badawy et al., 2009; Sverrisdottir et al., 2009; Del Mastro et al., 2011; Gerber et al., 2011; Munster et al., 2012; Demeestere et al., 2013; Elgindy et al., 2013; Moore et al., 2015). Two meta-analyses of randomized trials have found an overall significant reduced risk of POI in young breast cancer patients (Del Mastro et al., 2014; Lambertini et al., 2015). GnRHa increased the pregnancy rate and had no negative impact on prognosis (Lambertini et al., 2015). This protective effect was not as clear in other cancer patients (ovarian and lymphoma) (Del Mastro et al., 2014). Recently, no protective effect at all was found in young patients with lymphoma (Demeestere et al., 2016). Still, the quality of evidence is relatively low given the number of women included, relatively short-term follow-up hitherto and significant heterogeneity. Further high quality studies are needed to study the (long-term) effects of GnRHa use on POI.

Men
Sperm cryopreservation is the only established FP method in adult and adolescent males. Alternatives to the procurement of semen samples by masturbation include assisted ejaculation methods such as penile vibratory stimulation or electroejaculation. A recent paper on the European

Figure 1 Algorithm for the cryopreservation of testicular tissue/sperm in pre-pubertal and adolescent patients at high risk of infertility. Clinical assessment for puberty should be carried out by a clinician with experience in pubertal assessment. It must be stressed that no clinical parameter can accurately predict the presence of sperm. The proven treatment option for pubertal and adolescent boys who are considered capable of producing a semen sample is semen collection and cryopreservation. If sufficient sperm are recovered the gametes can be banked using commercial glycerol-based sperm cryomedia. For those young patients who are clinically pre-pubertal and for whom semen cryopreservation is not possible the fertility preservation strategy should include collection of a testicular biopsy by an experienced surgeon. The tissue should be cryopreserved with a protocol optimized for preserving immature germ cells, (immature testis protocol). Patients who are pubertal but are unable to produce a suitable semen sample may proceed to testicular biopsy, with intra-operative analysis. Techniques for intra-operative analysis may vary between institutions but should be aimed at identifying tissue containing (or likely to contain) sperm. This should be carried out by an individual with experience in analysis of testicular tissue (e.g. surgeon, embryologist or andrologist). When sperm are not identified or deemed unlikely the tissue should be frozen with the immature testis protocol used for pre-pubertal patients. For patients in whom sperm are identified or considered likely to be present, tissue should be split into two portions for storage. One portion should be cryopreserved using the immature testis preservation protocol, whilst the second portion should be stored using a protocol aimed at preserving mature sperm cells with glycerol as the main cryoprotectant. As stated in the text at present there are several protocols for cryopreservation of immature testicular tissue and there is no clear evidence at the time of writing to demonstrate which is optimal. Reprinted with permission from Picton et al. (2015).
perspective on testicular tissue cryopreservation for FP in pre-pubertal and adolescent boys by the ESHRE Task Force on Fertility Preservation for severe diseases recommends an algorithm for sperm and testicular tissue cryopreservation in pre-pubertal boys and adolescent males at high risk of fertility loss (Picton et al., 2015). This algorithm includes alternative experimental techniques, such as testicular sperm extraction (TESE), for patients presenting oligo- or azoospermia at the time of cryopreservation or those with necrozoospermia or ejaculation disorders, or immature testicular tissue cryopreservation or SSC cryopreservation when no sperm can be collected (Fig. 1).

Results of ART after FP

Women

As a well-established technology, embryo cryopreservation has high pregnancy success rates (Bedoschi and Oktay, 2013). However, outcomes in cancer patients are scarce. Recently, Dolmans et al. (2015) reported a 44% live birth rate (LBR) per patient among 54 women with cancer undergoing IVF and embryo cryopreservation, with a cumulative live birth rate (CLBR) similar to that achieved with fresh embryos in non-cancer patients (Table II). Similarly, Oktay et al. reported 18 pregnancies and 25 live births among 33 women with breast cancer, with a LBR of 45% per embryo transfer (Oktay et al., 2015). Success rates associated with oocyte cryopreservation have significantly improved in recent years, with vitrification success rates being superior to slow freezing (Cil et al., 2013). A recent report of the outcomes achieved in oocyte donation showed a 6.5% oocyte-to-baby rate, with CLBR increasing with the number of oocytes used (Cobo et al., 2015).

A similar report among women undergoing oocyte vitrification because of age or because of non-oncological medical conditions revealed a LBR per patient of 50% among women aged ≤35 years, and of 22.9% among those aged >36 years after the transfer of embryos obtained from vitrified oocytes. The CLBR was higher and increased faster among younger women (Cobo et al., 2016) (Table II). It should be noted that these figures arise from patients with a good prognosis who are managed by a highly experienced team, and therefore may not be representative of other FP programmes (Stoop, 2016). These success rates are comparable to those achieved with fresh oocytes (Rienzi et al., 2010; Sölé et al., 2013). Outcomes after oocyte vitrification among female cancer patients are scarce. Martinez et al. (2014) reported fertilization rates up to 76.6% and a mean number of embryos transferred of 1.8 ± 0.7 SD among 11 women with cancer, four of whom gave birth at term without negative perinatal outcomes. Alvarez et al. (2014) first reported a successful birth in a woman with invasive ovarian cancer.

Despite being considered an experimental technique both restoration of ovarian function and spontaneous pregnancies after ART have been reported after orthotopic transplantation of cryopreserved ovarian tissue (Demeestere et al., 2015; Donnez and Dolmans, 2015; Jensen et al., 2015; Oktay et al., 2016). Only one case of a live birth after heterotopic transplantation has been reported up to 2013 (Stern et al., 2013). Recently, Demestree et al. have reported the first live birth following re-grafting of ovarian tissue that had been cryopreserved during childhood in a 13-year-old girl undergoing HSCT (Demeestere et al., 2015). To date, a large series of 60 live births after transplantation of cryopreserved ovarian tissue has been reported, also showing that by repeating the procedure ovarian activity can be restored for more than 11 years (Donnez and Dolmans, 2015). In a series of 111 cases, the conception rate was 29%. Two women delivered three babies each, proving the efficacy of the technique, as well as the possibility of conceiving naturally several times after only one transplantation procedure (Donnez et al., 2015; Jensen et al., 2015). Although it is impossible to provide a fixed success rate for transplantation of ovarian tissue as long as it remains active (Andersen, 2015), given these encouraging results, ovarian cortex transplantation is proposed as an open clinical application (Donnez et al., 2015).

Men

Success rates of semen cryopreservation have greatly increased with advances in ART, especially in ICSI, with pregnancy rates up to 57% (Picton et al., 2015). With this technique, Garcia et al. (2015) reported a LBR of 62.1% in a cohort of 272 men with cancer, which was significantly higher than that of the comparative normospermic non-cancer
population. To date, no clinical outcomes have been reported with other FP techniques.

Future perspectives

Fig. 2 summarizes all FP techniques that are currently under study.

Women

Activation of ovarian follicles

Cryopreserved ovarian tissue from prepuberal patients and patients with primary POI contains immature primordial follicles that must be activated in order to start developing. It has been recently described that activation of primordial follicles can be induced in vivo by mechanically interrupting the Hippo signalling pathway (by ovarian fragmentation, drilling, laser) (Hsueh et al., 2015). Follicle activation may also be achieved in vitro before autotransplantation by acting on the PI3K-PTEN-AKT-FOXO3 pathway [phosphatidylinositol 3-kinase (PI3K) activators and phosphatase and tensin homologue enzyme (PTEN) inhibitors, Protein Kinase B (AKT) stimulators, transcriptional factor forkhead box O3 (FOXO3)] which has been shown to regulate primordial follicle dormancy at oocyte level (Hsueh et al., 2015). This pathway has also a fundamental role in FSH stimulation of granulosa cell differentiation of antral follicles and in oocyte maturation of preovulatory follicles (Hsueh et al., 2015). Using this double approach in women with POI, Kawamura et al. (2013) found rapid follicle growth after grafting ovarian tissue back to patients, obtaining mature eggs. A live birth was achieved after IVF and embryo transfer.

In vitro follicle culture

Transplantation of cryopreserved tissue carries the risk of re-seeding original cancer cells into the patient, as recently highlighted in a series of recent reviews and reports (Ernst et al., 2013; Rosendahl et al., 2013; Stern et al., 2013; Dolmans et al., 2013a, 2013b; Sorensen et al., 2014; Yding Andersen et al., 2014). This risk can be minimized by using complete IVG and maturation of oocytes as the means of fertility restoration (Picton et al., 2008; Smits et al., 2010). The goal of complete IVG and maturation of oocytes is particularly challenging in human follicles because of the greatly extended developmental time-frame for follicles and oocytes, and increased size of ovulatory follicles and mature gametes (Telfer and Zeilinski, 2013). Furthermore, recent evidence
suggests that the dynamics of the in vivo and hence in vitro growth
environments may differ between the pre- and post-pubertal human
avary (Anderson et al., 2014).

To date, three-dimensional (3D) culture methods have proved
most successful in supporting the demands of human follicle activa-
tion and IVG, as these approaches are best able to maintain the
morphology of the follicles and preserve critical cell–cell interactions
both between the different cellular compartments in the follicle and
and between the follicle and its surrounding stromal tissue thus better
mimicking the in vivo ovarian growth environment. Multiple-step
culture systems have succeeded in culturing human follicles (Newton
et al., 1999; Picton et al., 2008; McLaughlin and Telfer, 2010; Barrett
et al., 2010; Skory et al., 2015). Critically, all IVG systems used for
fertility restoration for FP patients must start with the in situ culture of
primordial follicles from cryopreserved tissue. The recent production
of meiotically competent metaphase II non-human primate and
human oocytes following IVG of freshly isolated secondary follicles
(Xu et al., 2011; Xiao et al., 2015) is encouraging. However, whether
mature human oocytes can be obtained from primordial follicles
grown from cryopreserved ovarian tissue using these culture strategies
or whether the oocytes so derived are competent to complete cytoplas-
mic and nuclear maturation in a timely manner is yet to be confirmed.
It also remains to be confirmed whether their genomic imprint establish-
ment and maintenance is normal (Anckaert et al., 2013) and whether
metaphase II gametes so produced are healthy and able to undergo fertil-
ization and support normal early embryonic development until the
embryonic genome is activated. Considerable further research effort is
therefore needed to confirm the safety and efficacy of oocytes derived
following extended IVG and the maturation of human oocytes from cryo-
pressed tissue before this technology can be used to restore fertility in
FP patients.

Artificial ovaries

An alternative to the in vitro culture of primordial follicles is their develop-
ment into an engineered ‘artificial ovary’, consisting of isolated pre-
antral follicles along with other ovarian cells assembled in a structure-
3D matrix, or scaffold, which allow follicles to grow and develop in an
oviduct-like environment (Luyckx et al., 2014; Vanacker et al., 2014).
Ovarian cells from fresh medullary tissue have been suggested as the
best source of isolated stromal cells for the artificial ovary (Soares
et al., 2015). Once transplanted to the patient, this artificial ovary
would potentially restore fertility and endocrine function (Kim et al.,
2016). Following this procedure, Laronda et al. (2015) reported the
production of estradiol in vitro by primary ovarian cells of mice seeds
into a previously decellularized ovary. Moreover, when transplanted
into ovariectomized mice, grafts from these cells were able to initiate
puberty.

New fertoprotective agents

The most recent theory of chemotherapy-induced follicle loss sug-
ests that, simultaneously with large follicle apoptosis, chemotherapy
also triggers activation of dormant follicle growth. Current research
focuses thus on both agents with anti-apoptotic properties (imatinib,
sphingosine-1-phosphate, thyroid hormone T3, granulocyte colony-
stimulating factor and tamoxifen) that have been shown to reduce
dormant follicle loss in animal models (Kim et al., 2016), and on agents
that also prevent follicle activation such as AS101, an immune modulator
that acts on the PI3K/PTEN/AKT follicle activation pathway (Kalich-
Philosoph et al., 2013), and anti-Mullerian hormone (Roness et al.,
2016). Clinical applicability of these agents depends not only on their
fertoprotective capacity, but also on their potential interaction with
cancer treatments.

Men

In a similar way, the risk of reintroducing malignant cells via the graft
might be overcome by in vitro spermatogenesis. As per follicle culture,
SSCs (whole testicular biopsy or isolated SSCs) are cultured in 3D sys-
tems that resemble the in vivo situation (Picton et al., 2015). Recently,
Nickkholgh et al. have reported the genetic stability of a long-term cul-
ture of human SSCs from two prostate cancer patients and although
changes in the methylation status were observed, the consequences of
these epigenetic changes on the functionality of the sperm of the
health of the offspring are unknown (Nickkholgh et al., 2014). The fer-
tilizing ability of in vitro-cultured sperm is to be established before
assessing the clinical value of this technique. Moreover, fertility restor-
ation strategies by autotransplantation of cryopreserved testicular
tissue have not yet been tested for safe clinical use in humans (Picton
et al., 2015).

Both sexes

Artificial gametes

To date, infertile patients lacking functional oocytes or sperm cannot
benefit from currently available ART unless donor gametes are used.
The use of primordial germ cells (PGC) present in the gonads, such as
SSC, is a promising approach for treating infertility. However, the
population of these cells is scarce and decreases with age. Pluripotent
stem cells (PSC), such as embryonic stem cells or induced PSC, consti-
tute other potential sources of gametes (Vassena et al., 2015).

Hayashi and Saitou (2013) derived functional PGCs from PSC
potentially able to generate functional oocytes and sperm (Vassena
et al., 2015). Recently, Zhou et al. (2016) have reported the gener-
ation of haploid mouse spermatid-like cells able to produce viable and
fertile offspring. Notwithstanding these advances, a recent critical
review of available evidence in humans and animal models carried out
by the ESHRE Special Interest Group in Stem Cells concluded that ‘to
date there are no proven stem cell-based means to improve repro-
ductive function, either by producing functional gametes in vitro, or
stimulating the resident stem cell population in the ovary to elicit de
ovo oocyte production’ (Vassena et al., 2015).

Summary

The Expert Working Group made the following recommendations:

- Several oncological and non-oncological diseases may affect current
or future fertility, either due to the disease itself or to gonadotoxic
treatment, and need an adequate FP approach. These patients
should be counselled regarding potential fertility loss and should be
referred to fertility specialists to discuss options for FP and current
results.

- Women wishing to postpone maternity and transgender individuals
before starting hormone therapy or undergoing surgery to remove/
alter their reproductive organs, should also be counselled
accordingly.
• Embryo and oocyte cryopreservation are first-line FP methods in post-pubertal women. Metaphase II oocyte cryopreservation (vitrification) is the preferred option.
• Cumulative evidence of restoration of ovarian function and spontaneous pregnancies after ART following orthotopic transplantation of cryopreserved ovarian tissue supports its future consideration as an open clinical application.
• Semen cryopreservation is the only established FP technique in men.
• Testicular tissue cryopreservation should be recommended in pre-pubertal boys even though fertility restoration strategies by autotransplantation of cryopreserved testicular tissue have not yet been tested for safe clinical use in humans.
• The establishment of international registries on the short- and long-term outcomes of FP techniques is strongly recommended.

Acknowledgements
We would like to gratefully acknowledge all the participants in the meeting, and especially to the ASRM, ESHRE and ISFP for supporting the project. We also thank Beatriz Viejo Ph.D. for editorial assistance in the preparation of this report.

Authors’ roles
F.M. drafted the article. C.Y.A., C.G., M.M.D., F.M., D.M., P.P., H.P., M.R., P.deS., A.V., H.W. reviewed and revised the article; C.Y.A., P.N.B.; R.B., A.C., J.D., M.M.D., H.E., A.F., C.G., M.G., S.K., F.M., D.M., P.P., A.P., H.P., M.R., P.deS., A.V., H.W. reviewed and discussed the evidence. All authors approved the final version of the manuscript.

Funding
None.

Conflict of interest
None.

Appendix
ISFP–ESHRE–ASRM Expert working Group
List of participants
Claus Yding Andersen; Copenhagen University Hospital Rigshospitalet, Denmark. yding@rh.dk
PN Barri; Servicio de Medicina de la Reproducción, Hospital Universitario Dexeus, Barcelona, Spain. perbar@dexeus.com
Robert Brannigan; Feinberg School of Medicine, Northwestern University, Chicago, USA. rebrannigan@gmail.com
A Cobo; Instituto Valenciano de Infertilidad, Valencia, Spain. ana.cobo@ivi.es
Jacques Donnez; Society for Research into Infertility (SRI), Brussels, Belgium. jacques.donnez@gmail.com
Marie Madeleine Dolmans; Gynaecology Department, Cliniques Universitaires Saint-Luc; Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium. mmdolmans@gmail.com / Marie-madeleine.dolmans@uclouvain.be
J.L.H. (Hans) Evers; Human Reproduction Editor-in-Chief (ESHRE). Jh.evers@gmail.com
AnisFeki; Department of Obstetrics and Gynecology, Hôpital Cantonal, Fribourg, Switzerland. Anis.Feki@h-fr.ch
MarietteGoddijn; Center for Reproductive Medicine, Department of Obstetrics and Gynecology, University of Amsterdam, Amsterdam, Netherlands.m.goddijn@amc.uva.nl
Clarisa Gracia; School of Medicine, University of Pennsylvania, Pennsylvania, USA. Cgracia@uphs.upenn.edu
Sam Kim; Department of Obstetrics and Gynecology, University Kansas School of Medicine, Kansas, USA. skim2@kumc.edu
Francisca Martinez, Servicio de Medicina de la Reproducción, Hospital Universitario Dexeus, Barcelona, Spain. pacmar@dexeus.com
Dror Meirow; Sheba Medical Center, Tel-Hashomer, Israel. Meirrow@post.tau.ac.il
Pasquale Patrizio; Yale University Fertility Center, New Haven, CT 06511, USA. pasquale.patrizio@yale.edu
Antonio Pellicer; Fertility and Sterility Editor-In-Chief, American Society for Reproductive Medicine (ASRM). apellicer@ivi.es
Helen Picton; Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, UK LS2 9JT. H.M.Picton@leeds.ac.uk
Mitchel Rosen; University of California, San Francisco, USA. Mitchell.Rosen@ucsf.edu
Petra de Sutter; Department of Reproductive Medicine, University of Gent, Belgium Petra.DeSutter@uzgent.be
Anna Veiga; Servicio de Medicina de la Reproducción, Hospital Universitario Dexeus, Barcelona Spain. anavei@dexeus.com
HamishWallace; Royal Hospital for Sick Children, Edinburgh, Scotland. Hamish.wallace@nhs.net

References
Alvarez M, Solé M, Devesa M, Fábregas R, Boada M, Tur R, Coroleu B, Veiga A, Barri PN. Live birth using vitrified–warmed oocytes in invasive ovarian cancer: case report and literature review. Reprod Biomed Online 2014; 28:663–668.
Anckaert E, De Rycke M, Smits J. Culture of oocytes and risk of imprinting defects. Hum Reprod Update 2013; 19:52–66.
Andersen CY. Success and challenges in fertility preservation after ovarian tissue grafting. Lancet 2015; 385:1947–1948.
Anderson RA, McLaughlin M, Wallace WH, Albertini DF, Telfer EE. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Hum Reprod 2014; 29:97–106.
Badawy A, Elnashar A, El-Ashry M, Shahat M. Gonadotropin-releasing hormone agonists for prevention of chemotherapy-induced ovarian damage: prospective randomized study. Fertil Steril 2009; 91:694–697.
Barrett SL, Shea LD, Woodruff TK. Noninvasive index of cryorecovery and growth potential for human follicles in vitro. Biol Reprod 2010; 82:1180–1189.
Bedawi MA, Botros R. Fertility Preservation. Advances and Controversies. Daryaganj, New Delhi, India: Jaypee Brothers Medical Publishers (P) Ltd, 2014.
Bedawi MA, Hussein MR, Biscotti C, Falcone T. Cryopreservation of intact human ovaries with its vascular pedicle. Hum Reprod 2006; 21:3258–3269.
Bedoschi G, Oktay K. Current approach to fertility preservation by embryo cryopreservation. Fertil Steril 2013; 99:1496–1502.
Bedoschi G, Turan V, Oktay K. Fertility preservation options in women with endometriosis. Minerva Ginecol 2013;65:99–103.

Campbell BK, Hernandez-Medrano J, Onions V, Pincott-Allen C, Aljaser F, Fisher J, McNicholl AS, Webb R, Picton HM. Restoration of ovarian function and natural fertility following the cryopreservation and autotransplantation of whole adult sheep ovaries. Hum Reprod 2014;29:1749–1763.

Chow EJ, Stratton KL, Leisenring WM, Oefinger KC, Sklar CA, Donaldson SS, Ginsberg JP, Kenney LB, Levine JM, Robison LL et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: a report from the Childhood Cancer Survivor Study cohort. Lancet Oncol 2016;17:567–576.

Cil AP, Bang H, Oktay K. Age-specific probability of live birth with oocyte cryopreservation: an individual patient data meta-analysis. Fertil Steril 2013;100:492–499 e3.

Cobo A, García-Velasco JA, Coello A, Domingo J, Pellicer A, Remohi J. Oocytes vitrification as an efficient option for elective fertility preservation. Fertil Steril 2016;105:755–764.

Cobo A, García-Velasco JA, Domingo J, Remohi J, Pellicer A. Is vitrification of oocytes useful for fertility preservation for age-related fertility decline and in cancer patients? Fertil Steril 2013;99:1485–1495.

Cobo A, Garrido N, Pellicer A, Remohi J. Six years’ experience in ovum donation using vitrified oocytes: report of cumulative outcomes, impact of storage time, and development of a predictive model for oocyte survival rate. Fertil Steril 2015;104:1426–1434 e8.

Coleman B, Bockting W, Botzer M, Cohen-Kettenis P, DeCuyperere G, Feldman J, Fraser L, Green J, Knudson G, Meyer WJ. Standards of care for the health of transsexual, transgender, and gender-nonconforming people, version 7. Int J Transgenderism 2012;13:165–232.

Dahan T, Dancet Eaf, Mledema DV, Veen Fvd, Goddijn M. Reproductive choices and outcomes after freezing oocytes for medical reasons: a follow-up study. Hum Reprod 2014;29:1925–1930.

Danehy PD. Hormonal contraception. In: Kronenberg HM, Melmer S, Cobo A, Garcia-Velasco JA, Domingo J, Pellicer A, Remohi J, Donnez J, Van Langendonckt A. A review of 15 years of ovarian tissue cryopreservation and transplantation in humans. J Clin Oncol 2016. [Epub ahead of print].

Danehy I, Brice P, Peccatori FA, Kentsos A, Dupuis J, Zachee P, Casanovas O, Van Den Neste E, Dechene J, De Maeleraer V et al. No evidence for the benefit of gonadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy: final long-term report of a prospective randomized trial. J Clin Oncol 2013;31:903–909.

Danehy I, Brice P, Peccatori FA, Kentsos A, Gaillard I, Zachee P, Casanovas RO, Van Den Neste E, Dechene J, De Maeleraer V et al. Gonadotropin-releasing hormone agonist for the prevention of chemotherapy-induced ovarian failure in patients with lymphoma: 1-year follow-up of a prospective randomized trial. J Clin Oncol 2013;31:903–909.

Danehy I, Simon P, Dedeken L, Moffa F, Tsépélidis S, Brachet C, Delbaere A, Devreker F, Ferster A. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod 2015;30:2107–2109.

Dolmans MM, Hollander de Oudeaen S, Demyt D, Pirard C. Utilization rates and results of long-term embryo cryopreservation before gonadotoxic treatment. J Assist Reprod Genet 2015;32:1233–1237.

Dolmans MM, Jadoul P, Gilliaux S, Amorim CA, Luycx V, Squiflet J, Donnez J, Van Langendonckt A. A review of 15 years of ovarian tissue bank activities. J Assist Reprod Genet 2013;30:305–314.

Dolmans MM, Luycx V, Donnez J, Andersen CY, Greve T. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril 2013b;99:1514–1522.

Donnez J, Dolmans M-M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet 2015;32:167–170.

Donnez J, Dolmans M-M, Diz C, Pellicer A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril 2015;104:1097–1098.

Donnez J, Dolmans MM. Fertility preservation in women. Nat Rev Endocrinol 2013;9:735–749.

Donnez J, Dolmans MM, Martinez-Madrid B, Demyt D, Van Langendonckt A. The role of cryopreservation for women prior to treatment of malignancy. Curr Opin Obstet Gynecol 2005;17:333–338.

Donnez J, Jadoul P, Pirard C, Hutchings G, Demyt D, Squiflet J, Smijt M, Dolmans MM. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil Steri 2012;98:720–725.

Donnez J, Kim SS. Principles and Practice of Fertility Preservation. New York, US: Cambridge University Press, 2011.

Elgindy EA, El-Haieq DO, Khoshid OM, Ismail EI, Abdelgawad M, Sallam NH, Abou-Setta AM. Gonadotrophin suppression to prevent chemotherapy-induced ovarian damage: a randomized controlled trial. Obstet Gynecol 2013;121:78–86.

Ernst EH, Offersen BV, Andersen CY, Ernst E. Legal termination of a pregnancy resulting from transplanted cryopreserved ovarian tissue due to cancer recurrence. J Assist Reprod Genet 2013;30:975–978.

ESHRE POI Guideline Development Group. 2015. Guideline on the management of premature ovarian insufﬁciency. European Society of Human Reproduction and Embryology. Available at: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Management-of-premature-ovarian-insufﬁciency.aspx (2 July 2016, date last accessed).

Ethics Committee of ASRM. Fertility preservation and reproduction in patients facing gonadotoxic therapies: a committee opinion. Fertil Steril 2013;100:1224–1231.

Fridovich-Keil JL, Gubbel CS, Spencer JB, Sanders RD, Land JA, Rubio-Gozalbo E. Ovarian function in girls and women with GALT-deﬁciency galactosomia. J Inherit Metab Dis 2011;34:337–366.

Garcia A, Herrero MB, Holzer H, Tulandi T, Chan P. Assisted reproductive outcomes of male cancer survivors. J Cancer Surviv 2015;9:208–214.

Gerber B, Minckwitz GV, Stehle H, Reimer T, Felberbaum R, Maass N, Fischer D, Sommer HL, Conrad B, Ortmann O et al. Effect of luteinizing hormone-releasing hormone agonist on ovarian function after modern adjuvant breast cancer chemotherapy: the GBG 37 ZORO study. JCO 2011;29:2334–2341.

Gleicher N, Yu Y, Himaya E, Barad DH, Weghofer A, Wu Y-G, Albertini DF, Wang VQ, Kushin VA. Early decline in functional ovarian reserve in young women with low (CGC<26) FMRI gene alleles. Transl Res 2015;166:502–507.e1–2.

Harward LE, Mitchell K, Pieper C, Copland S, Criscione-Schreiber LG, Clawse MEB. The impact of cyclophosphamide on menstruation and pregnancy in women with rheumatologic disease. Lupus 2013;22:81–86.

Hayashi K, SaiTou M. Stepwise differentiation from naive state pluripotent stem cells to functional primordial germ cells through an epiblast-like state. Methods Mol Biol 2013;1074:175–183.
