denovo-db: a compendium of human de novo variants

Tychele N. Turner1,*, Qian Yi1, Niklas Krumm1, John Huddleston1,2, Kendra Hoekzema1, Holly A. F. Steissman1, Anna-Lisa Doebley1,3, Raphael A. Bernier4, Deborah A. Nickerson1 and Evan E. Eichler1,2

1Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA, 2Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA, 3Medical Scientist Training Program, Department of Pathology, University of Washington, Seattle, WA 98105, USA and 4Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98105, USA

Received August 15, 2016; Revised September 19, 2016; Accepted October 03, 2016

ABSTRACT

Whole-exome and whole-genome sequencing have facilitated the large-scale discovery of de novo variants in human disease. To date, most de novo discovery through next-generation sequencing focused on congenital heart disease and neurodevelopmental disorders (NDDs). Currently, de novo variants are one of the most significant risk factors for NDDs with a substantial overlap of genes involved in more than one NDD. To facilitate better usage of published data, provide standardization of annotation, and improve accessibility, we created denovo-db (http://denovo-db.gs.washington.edu), a database for human de novo variants. As of July 2016, denovo-db contained 40 different studies and 32,991 de novo variants from 23,098 trios. Database features include basic variant information (chromosome location, change, type); detailed annotation at the transcript and protein levels; severity scores; frequency; validation status; and, most importantly, the phenotype of the individual with the variant. We included a feature on our browsable website to download any query result, including a downloadable file of the full database with additional variant details. denovo-db provides necessary information for researchers to compare their data to other individuals with the same phenotype and also to controls allowing for a better understanding of the biology of de novo variants and their contribution to disease.

INTRODUCTION

Each person contains novel variants not present in either of their parents and these variants are termed de novo. Most of the ~70 (1) de novo single-nucleotide variants and small insertions/deletions (indels) found in an individual genome have no obvious phenotypic impact, but there are cases where de novo variants have been found to contribute to disease. Well-described examples include achondroplasia where mutations occur in FGFR3 (2) and Rett syndrome where in most cases the variants arise de novo in MECP2 (3). With the advancement of next-generation sequencing into the study of the whole complement of human genes via whole-exome or whole-genome sequencing, researchers are getting a clearer picture as to the contribution of these variants to ‘complex’ diseases such as autism (4–15) and schizophrenia (16–18). For example, in autism, de novo single-nucleotide variants and indels contribute to ~7% of the attributable fraction (6) and as much as 21% of simplex cases of the disease (5). Considerable overlap has also been noted between genes with de novo variants contributing to several neurodevelopmental disorders (NDDs) (19).

While the primary focus in the literature for disease-causing de novo mutations has been on NDDs and congenital heart disease, other phenotypes have also been assessed with smaller sample sizes. With application to these and other disorders and diseases on a large-scale, even more findings are sure to arise. denovo-db was designed with the objective of consolidating all published de novo germline variants, regardless of phenotype, and systematically annotating with standardized analytical pipelines. This provides the research community with a one-stop location for assessing the significance of particular genes or mutations as they...
relate to their phenotype of interest. The researcher could then ask questions relevant to a disease, such as whether the number of de novo variants seen in a gene is statistically significant using tools such as denovolyzeR (20), or one could ask whether the variants seen in a gene, across many individuals, are more clustered in disease than would be expected based on control data using tools such as CLUMP (21). A researcher could also ask questions unrelated to disease with patterns of de novo variants gathered across many individuals potentially providing novel insight into the biology of new mutation in the human genome. denovo-db, thus, provides a resource for specific and general analyses regarding de novo mutations.

Data collection

We searched the literature for published studies where human de novo variants had been identified by next-generation sequencing technology (4–7,9,10,13–18,22–49). These studies were then carefully curated to gather essential information on each de novo variant, including sample identifier (if possible), chromosome, chromosome position, reference allele, alternate allele, and orthogonal validation status. A validation status of ‘yes’ indicates that the variant has been validated as de novo in the child and absent in the parents. The sample identifiers used in denovo-db originate directly from the published literature, and if there is not one available, a simple nomenclature is assigned: LastAuthorNameSampleX where X is a number. If source coordinates were not mapped to GRCh37, the coordinates were lifted over for consistent annotation among all studies. The data from each paper was then aggregated into a study table with a yaml (http://www.yaml.org/) configuration file corresponding to information in the file required for our pipeline. If any data was not available or was unclear, we queried the authors for additional information. Care was taken to avoid duplication of samples within the database. One example is individuals from the Simons Simplex Collection (SSC). To date, sequencing information has been published from ~2500 SSC families and the data aggregated into denovo-db from eight studies (5,6,8–12,14). For this collection alone, there have been thousands of duplicates. In cases where this duplication occurs, orthogonal validation status takes precedence.

Combination and annotation of data

Each study table was converted to a gcf file, a variant call format (VCF) file file with one sample per line, and then all gcf files were combined to make a master VCF file of all the studies. This data was then run through the SnpEff (50) program to add annotation information. Post-annotation, variants were removed that did not validate (based on the orthogonal validation) or were found to be inherited and therefore not de novo. All variants were subsequently re-annotated using SeattleSeq (51) so that we could get annotation for all available RefSeq transcripts. Whenever a variant did not have annotation by SeattleSeq, we converted the SnpEff annotation to another label as described in Supplementary Table S1. Finally, the annotated data was loaded into a PostgreSQL relational database via five tables.

Website
denovo-db is available at http://denovo-db.gs.washington.edu and requires no usernames or passwords. It is available to the public for querying and downloading data. We have tested it in Mozilla Firefox, Google Chrome and Apple Safari browsers. The download version of the full denovo-db dataset is available as a tab-delimited file on the ‘Download’ page of the website. It contains annotation to all transcripts, based on SeattleSeq, as well as additional columns related to scoring of variants. Each update of denovo-db is released with a version on it and old versions are maintained and archived by the Eichler laboratory using the git version control system. We will update the database and website four to six times per year depending on the number of new papers in the literature with de novo variant data. We have set up a mailing list at denovo-db@uw.edu for users with additional questions. Researchers can also use the mailing list to send us information on other published studies to include in the database. Upon receiving this information we will run the data through our pipeline and integrate into denovo-db.

RESULTS
denovo-db statistics

As of July 2016, denovo-db consisted of 32,991 variants (n = 8,541 orthogonally validated) collected from 40 studies and affecting 31,996 unique sites in the genome (Figure 1A). The majority of variants come from controls (n = 17,698), individuals with NDDs including autism (n = 12,358), schizophrenia (n = 810), epilepsy (n = 440), intellectual disability (n = 197) and congenital heart disease (n = 1,308). A number of other smaller studies have contributed variants found in people with amyotrophic lateral sclerosis (n = 42), congenital diaphragmatic hernia (n = 40), neural tube defects (n = 40), early onset Parkinson’s (n = 20), early onset Alzheimer’s (n = 14), Cantú syndrome (n = 11), sporadic infantile spasm syndrome (n = 5), anophthalmia microphthalmia (n = 4) and acromelic frontonasal dysostosis (n = 4).

From the 40 studies there are 16,605 individuals affected with a disorder or disease (n = 14 affected phenotypes represented) and 6,493 unaffected individuals. Thirty of the studies are from whole-exome sequencing, eight from whole-genome sequencing, and two from targeted resequencing. Annotation of variants corresponds to 10,170 genes and 20,108 transcripts. In total, there are 25 functional categories representing 1,161 likely gene-disrupting (LDG) events (412 stop-gained, 593 frame-shift, 58 splice-acceptor and 98 splice-donor) and 6,074 missense events (Figure 1B). A metric often used to assess variant severity is the Combined Annotation Dependent Depletion (CADD) (52) score. We have also included this in the database (Figure 1C) and there are notably 394 missense events with a CADD score > 30.

Finally, we have included information on orthogonal validation, which is very important since true de novo variants are sometime difficult to detect due to undercalling in parents. By searching the literature and/or contacting authors, we identified a total of 8,541 validated variants. Some studies, particularly those that are smaller, tend to validate all
variants (Figure 1D) while larger studies tend to validate only a subset and from these extrapolate a false positive rate of discovery.

Novelty of denovo-db

We know of two other databases that are similar to denovo-db. Both of these databases focus on NDDs, in contrast to our database that collects information on de novo variants regardless of phenotype. The first database is NPdenovo (53) that collects only de novo variants related to NDDs. The link listed in the paper does not seem to work anymore (http://122.228.158.106/NPdenovo/) but this appears to be the new link http://www.wzgenomics.cn/NPdenovo/. denovo-db does not limit collection of de novo data to neuropsychiatric disorders like NPdenovo. The second is the Developmental Brain Disorder (DBD) Gene Database (54) (http://geisingeradmi.org/care-innovation/studies/dbd-genes/), which collects information on variants in developmental brain disorders. In particular, it keeps only LGD events such as splice-donor, splice-acceptor, stop-gain, and frame-shift mutations. It is a very useful website in that it calculates the relevance of each gene for NDDs. Our database differs by collecting variation on de novo variants regardless of phenotype and functional class. denovo-db is meant to be a compendium of all de novo variants and does not make any assumptions on the researchers’ usage of the data.

denovo-db website

The denovo-db website consists of a number of options for querying the data. One way is to search by gene and this can be done by typing the gene name (e.g. *CHD8*) (Figure 2A), typing the beginning of the gene name and an asterisk (*) to identify all variants in genes beginning with that text (e.g. *CHD*), and via a comma-separated list that can be pasted into the search (e.g. *CHD8, MECP2, PAX4*). The next way to search is by chromosome position; for this we have built another option, including typing the base po-
Figure 2. Browser shots of denovo-db. (A) Result of a gene search for CHD8. (B) Result of a sample search for 11654.p1.

There are other features available for browsing queried results on denovo-db. First, you can filter variants. This can be done by typing any term in the ‘Filter’ field on the top left side above the table and the variant table will display entries matching your term. For example, enter missense and only missense variants within the current queried result will be displayed in the table. Second, you can sort columns in ascending or descending fashion by clicking the arrows in the column headers. Third, you can select columns using the ‘Show/hide columns’ button on the top right side above the table. Fourth, you can select the table size per page by using the ‘Show entries’ pull-down menu on the top right side above the table. Finally, you can export data. The full queried data set can be exported to a tab-separated-value (TSV) file through the ‘Export to TSV’ button on the top right side above the table. The output TSV file may contain more entries than what is displayed online without filter-
Figure 3. Likely gene-disrupting (LGD) events by cases (in red) and controls (in black). Shown are the counts of LGD events by cases (all phenotypes) and controls with the genes listed for each category. Note there are two bars for the genes with two counts in cases and zero in controls to allow for the full gene list to fit on the plot.

Figure 4. Missense CADD scores in denovo-db. Empirical cumulative distribution functions of missense CADD scores in the following phenotypes: controls, autism, congenital heart defect (CHD), intellectual disability (ID), and epilepsy individuals.
focusing on db.

sent of variants, but the majority of these events (88%) not type. Variants from controls represent the largest represent this information into our database. As seen in Figure 1D, the percent of events validated varies greatly by phenotype. Variants from controls represent the largest representation of variants, but the majority of these events (88%) have not been tested for their validation status. This is very important for researchers to consider when using denovo-db.

deno-db is the first public database, to our knowledge, focusing on de novo variants irrespective of phenotype. It includes many features of the variants, including their basic annotation, and more advanced information including severity scores and orthogonal validation status. One way to analyze data from our database is to look at the number of LGD events by case or control status. We assessed those genes with two or more LGD events in denovo-db (Figure 3) and identified genes with only LGD events in cases, only genes with two or more LGD events in denovo-db (Figure 5). Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., et al. (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature, 488, 471–475.

2. Bellus, G.A., Hefferon, T.W., Ortiz de Luna, R.I., Hecht, J.T., Horton, W.A., Machado, M., Kaithi, I., McIntosh, I. and Frangcomano, C.A. (1993) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet., 56, 368–373.

3. Amir, R.E., Van den Veyer, I.B., Wan, M., Tran, C.Q., Francke, U. and Zoghbi, H.Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet., 23, 185–188.

4. De Rubeis, S., He, X., Goldberg, A.P., Poulteny, C.S., Samocha, K., Cicic, A.E., Kou, Y., Liu, L., Fromer, M., Walker, S. et al. (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215.

5. Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., Stessman, H.A., Witherspoon, K.T., Vives, L., Patterson, K.E. et al. (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216–221.

6. Krumm, N., Turner, T.N., Baker, C., Vives, L., Molajeri, K., Witherspoon, K., Raja, A., Cox, B.P., Stessman, H.A., He, Z.X. et al. (2015) Excess of rare, inherited truncating mutations in autism. Nat. Genet., 47, 582–588.

7. Michaelson, J.J., Shi, Y., Gujral, M., Zheng, H., Mallotra, D., Jin, X., Jian, M., Liu, G., Greer, D., Bhandari, A. et al. (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell, 151, 1431–1442.

8. O’Roak, B.J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J.J., Girirajan, S., Karakoc, E., Mackenzie, A.P., Ng, S.B., Baker, C. et al. (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat. Genet., 43, 585–589.

9. O’Roak, B.J., Stessman, H.A., Boyle, E.A., Witherspoon, K.T., Martin, B., Lee, C., Vives, L., Baker, C., Hiatt, J.B., Nickerson, D.A. et al. (2014) Recurrent de novo mutations implicate novel genes underlying simplex autism risk. Nat. Commun., 5, 5595.
Interpreting de novo Variation in Human Disease Using Casadei, S., Rippey, C., Shahin, H., Nimgaonkar, V.L., Go, R.C. (2013) Spatial and temporal mapping of de novo mutations in quartet families with autism spectrum disorder. Nature, **485**, 237–241.

Tavassoli, T., Kolevzon, A., Wang, A.T., Curchack-Lichten, J., Halpern, D., Schwartzl., Sofles, S., Bushl., Grodberg, D., Cai, G. et al. (2014) De novo SCN2A splice site mutation in a boy with Autism spectrum disorder. BMC Med. Genet., **15**, 35.

Turner, T.N., Hormozdari, F., Duyzend, M.H., McClymont, S.A., Turner, T.N., Hormozdiari, F., Duyzend, M.H., McClymont, S.A., Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., O’Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., D810

22. Veeramah, K.R., O’Brien, J.E., Meisler, M.H., Cheng, X., Allen, A.S., Berkovic, S.F., Cotsette, P., Delany, N., Dlugos, D., Eichler, E.E., Epstein, M.P., Glauser, T., Goldenstein, D.B., Han, Y. et al. (2013) De novo mutations in epileptic encephalopathies. Nature, **501**, 217–221.

Barca, G., Fleming, M.R., Deligniere, A., Gazula, V.R., Brown, M.R., Langouet, M., Chen, H., Kronengold, J., Ahybaynakar, A., Cilio, R., Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., O’Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., D810

23. Lee, H., Lin, M.C., Kornblut, A.D., Levy, R., Meisler, M.H., Cheng, X., Allen, A.S., Berkovic, S.F., Cotsette, P., Delany, N., Dlugos, D., Eichler, E.E., Epstein, M.P., Glauser, T., Goldenstein, D.B., Han, Y. et al. (2013) De novo mutations in epileptic encephalopathies. Nature, **501**, 217–221.

Barca, G., Fleming, M.R., Deligniere, A., Gazula, V.R., Brown, M.R., Langouet, M., Chen, H., Kronengold, J., Ahybaynakar, A., Cilio, R., Fromer, M., Pocklington, A.J., Kavanagh, D.H., Williams, H.J., Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., O’Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., D810

24. Moreno-Ramos, O.A., Olivares, A.M., Haidar, N.B., de Autismo, L.C. and Lattig, M.C. (2015) Whole-exome sequencing in a South American cohort links ALDH1A3, FOXN1 and retinoic acid regulation pathways to autism spectrum disorders. PLoS One, **10**, e0135927.

Kranz, T.M., Harchow, S., Manor, O., Lichtenberg, P., Friedlander, Y., Seandel, M., Harkavy-Friedman, J., Walsh-Messinger, J., Dolgalev, I., Hegy, A. et al. (2015) De novo mutations from sporadic schizophrenia cases highlight important signaling genes in an independent sample. Schizophr. Res., **166**, 119–124.
Increased burden of de novo predicted deleterious variants in complex congenital diaphragmatic hernia. *Hum. Mol. Genet.*, 24, 4764–4773.

42. Slavotinek, A.M., Garcia, S.T., Chandratillake, G., Bardakjian, T., Ullah, E., Wu, D., Umeda, K., Lao, R., Tang, P.L., Wan, E. *et al.* (2015) Exome sequencing in 32 patients with anophthalmia/microphthalmia and developmental eye defects. *Clin. Genet.*, 88, 468–473.

43. Smith, J.D., Hing, A.V., Clarke, C.M., Johnson, N.M., Perez, F.A., Park, S.S., Horst, J.A., Mecham, B., Maves, L., Nickerson, D.A. *et al.* (2014) Exome sequencing identifies a recurrent de novo ZSWIM6 mutation associated with acromelic frontonasal dysostosis. *Am. J. Hum. Genet.*, 95, 235–240.

44. van Bon, B.W., Gilissen, C., Grange, D.K., Hennekam, R.C., Karsenti, H., Engels, H., Reutter, H., Ostergaard, J.R., Morava, E., Tsiakas, K. *et al.* (2012) Cantu syndrome is caused by mutations in ABCC9. *Am. J. Hum. Genet.*, 90, 1094–1101.

45. Jiang, Y.H., Yuen, R.K., Jin, X., Wang, M., Chen, N., Wu, X., Ju, J., Mei, J., Shi, Y., He, M. *et al.* (2013) Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. *Am. J. Hum. Genet.*, 93, 249–263.

46. Francioli, L.C., Menelaou, A., Pulit, S.L., van Dijk, F., Palamara, P.F., Elbers, C.C., Nerrinxc, P.B.T., Ye, K., Guryev, V., Klooosterman, W.P. *et al.* (2014) Whole-genome sequence variation, population structure and demographic history of the Dutch population. *Nat. Genet.*, 46, 818–825.

47. Besenbacher, S., Liu, S., Izarzugaza, J.M., Grove, J., Belling, K., Bork-Jensen, J., Huang, S., Als, T.D., Li, S., Yadav, R. *et al.* (2015) Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. *Nat. Commun.*, 6, 5969.

48. Conrad, D.F., Keebler, J.E., DePrisco, M.A., Lindsay, S.J., Zhang, Y., Casals, F., Idaghdour, Y., Hartl, C.L., Torroja, C., Garimella, K.V. *et al.* (2011) Variation in genome-wide mutation rates within and between human families. *Nat. Genet.*, 43, 712–714.

49. Ramu, A., Noordam, M.J., Schwartz, R.S., Wuster, A., Hurles, M.E., Cartwright, R.A. and Conrad, D.F. (2013) DeNovoGear: de novo indel and point mutation discovery and phasing. *Nat. Methods*, 10, 985–987.

50. Cingolani, P., Platts, A., Wang, L.C., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. and Ruden, D.M. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. *Fly*, 6, 80–92.

51. Ng, S.B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E.E. *et al.* (2009) Targeted capture and massively parallel sequencing of 12 human exomes. *Nature*, 461, 272–276.

52. Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M. and Shendure, J. (2014) A general framework for estimating the relative pathogenicity of human genetic variants. *Nat. Genet.*, 46, 310–315.

53. Li, J., Cai, T., Jiang, Y., Chen, H., He, X., Chen, C., Li, X., Shao, Q., Ran, X., Li, Z. *et al.* (2016) Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. *Mol Psychiatry*, 21, 290–297.

54. Gonzalez-Mantilla, A.J., Moreno-De-Luca, A., Ledbetter, D.H. and Martin, C.L. (2016) A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders. *JAMA Psychiatr.*, 73, 275–283.

55. Sherry, S.T., Ward, M. and Sirotkin, K. (1999) dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. *Genome Res.*, 9, 677–679.