Valence isomerization of cyclohepta-1,3,5-triene and its heteroelement analogues
Jansen, H.; Slootweg, J.C.; Lammertsma, K.

published in
Beilstein Journal of Organic Chemistry
2011

DOI (link to publisher)
10.3762/bjoc.7.201

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Jansen, H., Slootweg, J. C., & Lammertsma, K. (2011). Valence isomerization of cyclohepta-1,3,5-triene and its heteroelement analogues. Beilstein Journal of Organic Chemistry, 7, 1713-1721. https://doi.org/10.3762/bjoc.7.201

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 08. Oct. 2023
Valence isomerization of cyclohepta-1,3,5-triene and its heteroelement analogues

Helen Jansen, J. Chris Slootweg and Koop Lammertsma*

Abstract
The valence isomerization of the all-carbon and heteroelement analogues of cyclohepta-1,3,5-triene into the corresponding bicyclo[4.1.0]hepta-2,4-dienes is reviewed to show the impact of the heteroatom on the stability of both valence isomers. The focus is on the parent systems and their synthetic applications.

Introduction
The valence isomerization of cyclohepta-1,3,5-triene (1) into bicyclo[4.1.0]hepta-2,4-diene (2) has captured the attention of chemists for over five decades [1,2]. This interest extended to the heterocyclic analogues 3–8, bearing one oxygen, sulfur or nitrogen atom, after the discovery of their biological importance (Scheme 1) [3,4]. The phosphane analogues 9 and 10 received far less attention, with their applicability as a phosphanidene (R–P) precursor being the most notable use [5-9].

Reviewing the influence of the heteroatom on the cycloheptatriene–norcaradiene valence isomerization necessitates a brief overview of the parent all-carbon system. This section is followed by one in which experimental data on the oxepine, thiepine, 1H-azepine, and 1H-phosphepine valence isomerizations are compared with those obtained by theoretical calculations. Computational methods have the advantage that they enable reliable insight into the reaction energies and aromatic features of the parent isomers. In this brief review, only selected examples of substituted heteropines and their syntheses are given.
Review

Cycloheptatriene valence isomerization

Cycloheptatriene-1,3,5-triene (1), first isolated in 1883 [10], has a boat-shaped conformation as determined by electron diffraction [11] and microwave studies of the parent [12] and by an X-ray structure analysis of the derivative thujic acid [13,14]. These methods gave inconsistent \( \alpha \) and \( \beta \) tilt angles (see Scheme 2 for a description of the bow (\( \alpha \)) and stern (\( \beta \)) tilt angles) with those determined by electron diffraction standing out. Theoretical calculations at the B3LYP/6-311+G(d,p) level gave \( \alpha \) and \( \beta \) angles of 52.9° and 25.4°, respectively [15-17], which are in reasonable harmony with those of the microwave and X-ray studies. Low temperature \(^1\text{H}\) NMR measurements showed that the slightly homoaromatic boat conformation is prone to undergo a degenerate ring flip via an antiaromatic \( C_2 \)\text{v} transition with a free energy barrier of 5.7 kcal·mol\(^{-1}\) in CBrF\(_3\) [18] and 6.3 kcal·mol\(^{-1}\) in CF\(_2\)Cl\(_2\) [19-21].

Besides the 1–2 interconversion, the C\(_7\)H\(_8\) system is rich in rearrangements (Scheme 3). In 1957, Woods found that bicyclo[2.2.1]hepta-2,5-diene (12) converts to cycloheptatriene (1), which was postulated to proceed via diradical 11 and norcaradiene (2) [28]. Instead, pyrolysis of 1 yielded toluene, presumably through a [1,3]-H shift of the diradical [29]. Norcaradiene (2) can also undergo a [1,5]-carbon circumambulatory rearrangement (“walk”), as was discovered by Berson and Willcott in 1965 [30,31]. Although, this process should proceed with retention of the configuration according to the symmetry conservation rules, studies of chiral substituted cycloheptatrienes showed a preference for the “forbidden” path with inversion of configuration [32-35]. Finally, a suprafacial [1,5]-hydrogen shift with an activation energy of approximately 31 kcal·mol\(^{-1}\) was unveiled by a high-temperature NMR study (100–140 °C) of hydrogen isotopomers of cycloheptatriene (Scheme 3) [36-38].

Valence isomerization of heteropines

Determining the conformations of the heteropines has been more of a challenge. Only the parent oxepine (3) is isolable at room temperature. NMR spectroscopy indicated a boat-shape structure with alternating C=C bonds for 1, 3, and 5, Cremer et al. showed that this represents an incomplete picture [43,44]. In fact, they are “perturbed” boats with at least 22% chair character, leading to an almost similar boat

B3LYP/6-311+G(d,p) level the geometry of the parent was shown to have a straighter bow (\( \alpha = 65.8^\circ \)) and flatter stern (\( \beta = 18.9^\circ \)) as compared to cyclohepta-1,3,5-triene [14].
π-electron systems, with positive NICS(1) antiaromatic planar 8-ring inversion of thiepine and phosphepine are indeed highly (Figure 1) [50]. In contrast, the flattened transition structures for are obtained after complete fluorination of the heteropines tive substituents enhances the effect, and fully aromatic systems which has a NICS(1) value of 8.2 ppm. Adding electronega-

−π-electron Hückel-aromatic tropylium cation [46], known 6 [7] display aromatic character when compared to the well-

−2.3 ppm) [49] and phenyl phosphepine (−4.8 ppm) [7] display aromatic character when compared to the well-known 6π-electron Hückel-aromatic tropylium cation [46], which has a NICS(1) value of −8.2 ppm. Adding electronnegative substituents enhances the effect, and fully aromatic systems are obtained after complete fluorination of the heteropines (Figure 1) [50]. In contrast, the flattened transition structures for ring inversion of thiepine and phosphepine are indeed highly antiaromatic planar 8π-electron systems, with positive NICS(1) values of 19.3 [47] and 6.4 ppm [7], respectively. The inherent instability of thiepine (5) has been attributed to this effect [51,52].

Oxepine – benzene oxide

Oxepine (3) was isolated first by Vogel et al. using a double dehydrohalogenation of 1,2-dibromo-4,5-epoxycyclohexane [38,53], but is also accessible by epoxidation of Dewar benzene followed by photolytic or thermal ring expansion [54]. The molecular structure of the 2-tert-butoxycarbonyloxepine showed a boat configuration with bow (α) and stern (β) fold angles of 56.5° and 26.0°, respectively [44], which differs little from the MP2/6-31G(d) geometry of the parent 3 (Cs symmetry; α = 58.3°, β = 30.8°), illustrating that the substituent hardly influences the geometry [40]. Oxepine (3) is more curved than cyclohepta-1,3,5-triene (1; α = 52.9°; β = 25.4°; same level of theory) [14].

Using 1H NMR spectroscopy, Vogel and Günther determined that 7-oxa-bicyclo[4.1.0]hepta-2,4-diene (4, benzene oxide; Scheme 4) is 1.7 kcal-mol⁻¹ more stable than monocyclic 3 in apolar solvents [38,39], with an activation barrier for the conversion of 3 to 4 of 7.2 kcal-mol⁻¹ [40]. Calculations at the QCISD(T)/6-31G(d) level confirm the bicyclic form to be the most stable isomer, albeit with an energy difference of a mere 0.1 kcal-mol⁻¹ and a barrier to interconversion of 9.1 kcal-mol⁻¹ [40]. By changing to more polar solvents, the oxepine isomer-
ization equilibrium shifts further toward benzene oxide (more positive \(\Delta G\)), suggesting that benzene oxide has the larger dipole moment. Methyl substitution at the 2- and 7-positions reverses the stability order, rendering the oxepine as the energetically favoured isomer due to the destabilizing eclipsing of the two methyl groups in benzene oxide (4) [38,40,51]. Thus, in contrast to the cycloheptatriene–norcaradiene (1–2) pair, the equilibrium constant for oxepine (3) and bicyclic benzene oxide (4) varies widely with solvent polarity and to some extent with temperature and substituents, making it possible to work with solutions highly enriched with either one or the other isomer [38,55]. The facile \(3 \rightarrow 4\) valence isomerization [56-58], pioneered by the synthesis of 1,2-naphthalene oxide by Vogel and Klärner [1,59,60], is of considerable interest as arene oxides are intermediates in the oxidative metabolism of aromatic substrates [61-64]. In addition, also photo-oxidation of benzene creates this isomeric pair [65,66].

**Thiepine – benzene sulfide**

The parent thiepine (5) is 7.0 kcal·mol\(^{-1}\) less stable than benzene sulfide (6). This energy difference is much larger than for the oxygen homologues, because three-membered rings accommodate sulfur better than oxygen [40]. Nonetheless, bicyclic 6 has never been isolated, probably due to the low activation barrier for sulfur extrusion [40,48,70], which occurs through a sequence of low-energy processes involving several sulfur-containing intermediates [71,72].

Thiepine (5) can be stabilized by Fe(CO)\(_3\) complexation (15; Figure 2) [73] or by decorating the seven-membered ring with substituents. The first isolated metal-free thiepine (16; Figure 2) was reported in 1974 by Reinhoudt and Kouwenhoven, who used electron-withdrawing groups to delocalize the \(\pi\)-electrons of the thiepine ring, but this species still eliminates sulfur at room temperature [74]. With the synthesis of the sterically shielded 2,7-di-tert-butylthiepine (17) (Figure 2), a relatively simple and thermally stable thiepine was obtained, allowing experimental studies of its chemical and physical properties [75]. A single-crystal X-ray analysis showed 17 to be less curved (\(\alpha = 49.6^\circ\) and \(\beta = 28.0^\circ\)) [70] than the computed structure of cyclohepta-1,3,5-triene (1; \(\alpha = 52.9^\circ\), \(\beta = 25.4^\circ\)) [14]; The MP2/6-31G(d) optimized geometry of the parent thiepine (5) (\(\alpha = 50.3^\circ\) and \(\beta = 30.8^\circ\)) [40] is similar to that of the molecular structure of 17 [76]. Benzannulation of the thiepine ring on both sides results in the thermally robust dibenz[\(hj\)]thiepines, which are of interest for their potent biological activity, illustrated by the psychosedative and antipsychotic properties of zotepine (18; Figure 2) [76-80].

**1H-Azepine – benzene imine**

The parent 1H-azepine (7) [81] was first generated in 1963 by Hafner, by the hydrolysis of ethyl-1H-azepine-N-carboxylate
with potassium hydroxide and subsequent protonation [82]. Because 1H-azepine is highly unstable and rapidly undergoes a [1,3]-H shift to 3H-azepine, only an X-ray structure determination at −78 °C of an N-substituted derivative was reported by Vogel et al. 17 years later [83-85]. The molecular structure of N-(phenoxy carbonyl)azepine displays a rather shallow boat structure (α = 43.4° and β = 21.6°) [86], which is solely due to the N-substituent, as the CASSCF/3-21G optimized geometry showed a more curved β angle of 36.4° for the parent 7 [87].

Like the all-carbon analogues, the valence isomerization strongly favours the monocyclic form with an estimated preference of 7.9 kcal·mol⁻¹ at the B3LYP/6-31G(d) level for the parent system (7 → 8) [42]. Also low temperature ¹H and ¹³C NMR measurements on 19 display only small amounts of the bicyclic isomers 20 (Scheme 5) [79,88].

The reluctance to form the bicyclic isomer dictates the reactivity of azepines, as they exhibit the characteristics of cyclic polyene chemistry, which is illustrated by the ability of the monocyclic isomer to undergo cycloadditions as a 2π (→21) [89], 4π (→22) [84,90], or 6π (→23, 24) [91,92] component (Scheme 6). In addition, azepine (7) rearranges photochemically to bicyclic 25 [93], and in the presence of an acid yields aniline derivatives 26 [94] in analogy to the cycloheptatriene and oxepine [95].

Like the thiepines, the benzannulated azepines have also received considerable attention due to their biological importance and pharmaceutical relevance [96]. For instance, 3H-3-benzazepin-2-amines 27 possess antihypertensive activity [97], and all tricyclic dibenzo[b,f]azepines (e.g., 28; Figure 3) bearing a basic side chain affect the central nervous system [98].

1H-Phosphepine – benzene phosphane
Although the parent 1H-phosphepine (9) and its 2.5 kcal·mol⁻¹ more-stable valence isomer benzene phosphane (10) have never been isolated [45], there is evidence for the existence of the parent phosphatropylium ion (29; Figure 4), which was generated in the gas phase by collision activation between PI and benzene [99]. P-phenyl substitution stabilizes the phosphanor-caradiene (ΔE = 4.8 kcal·mol⁻¹), but this species has also never been observed experimentally [7]. The thermal instability of the phosphepines and their valence isomers is due to the facile decomposition of the bicyclic phosphanorcaradiene (10) into benzene and phosphinidene R–P [100]. However, the 7-membered ring can be stabilized by phosphorus oxidation (30; see Figure 4) [95], the introduction of bulky substituents at the 2 and 7 positions (31) [101], or benzannulation (e.g., 3H-benzophosphepine, 32) [7,102-107]. The single-crystal X-ray structure analysis of phenyl-substituted phosphepine 33.
(Scheme 7) also showed a flattened-boat conformation (α = 40.5°, β = 28.2°) [5] compared to the metal-free parent structure (α = 48.3°, β = 27.8°), computed at the B3PW91/6-311+G(d,p) level [7].

Also for the phosphine system [108], benzannulation leads to interesting targets. Namely, the thermal lability of the transition-metal-complexed 3H-benzophosphine 33 was explored by Lammertsma et al. for the synthesis of a variety of organophosphorus compounds by means of [1 + 2] cycloadditions of the in situ generated singlet phosphinidene 35 with olefins or acetylenes (Scheme 7) [5-9]. This approach has even lead to the detection of the transient phosphinidene species by employing electrospray ionization tandem mass spectrometry (ESIMS/MS); its gas-phase reactivity perfectly matches the well-established solution-phase chemistry [109]. Using these phosphinidenes [110,111] led to the synthesis of unique P-ligands for catalysis [112,113] as well as to attractive building blocks for the creation of P-functionalized polymers [114,115].

Conclusion
The valence isomerization of cyclohepta-1,3,5-triene into the parent norcaradiene, and of their corresponding heteroelement analogues, has been reviewed with a focus on the chemical and physical properties of these fascinating species. The presence of a heteroatom has an impact on the stability of the heteropines, of which to date only the parent oxepine has been isolated. The generation of these (transient) heterocycles allowed the development of a rich chemistry, which has been extensively explored using the full toolbox of physical organic chemistry.

Acknowledgements
This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).

References
1. Vogel, E. Angew. Chem., Int. Ed. 2011, 50, 4278–4287. doi:10.1002/anie.201101347
2. Maier, G. Angew. Chem., Int. Ed. Engl. 1967, 6, 402–413. doi:10.1002/anie.196704021
3. Rodríguez-Hahn, L.; Esquivel, B.; Sánchez, A. A.; Cárdenas, J.; Tovar, O. G.; Soriano-García, M.; Toscano, A. J. Org. Chem. 1988, 53, 3933–3936. doi:10.1021/jo00252a010
4. Güney, M.; Daştan, A.; Balci, M. Helv. Chim. Acta 2005, 88, 830–838. doi:10.1002/hc.205090061
5. Borst, M. L. G.; Bulo, R. E.; Winkel, C. W.; Gibney, D. J.; Ehlers, A. W.; Schakel, M.; Lutz, M.; Spek, A. L.; Lammertsma, K. J. Am. Chem. Soc. 2005, 127, 5800–5801. doi:10.1021/ja050811y
6. Borst, M. L. G.; Bulo, R. E.; Gibney, D. J.; Alem, Y.; de Kanter, F. J. J.; Ehlers, A. W.; Schakel, M.; Lutz, M.; Spek, A. L.; Lammertsma, K. J. Am. Chem. Soc. 2005, 127, 16985–16999. doi:10.1021/ja054885w
7. Jansen, H.; Slootweg, J. C.; Ehlers, A. W.; Lammertsma, K. Organometallics 2010, 29, 6653–6659. doi:10.1021/om1004379
8. Couzijn, E. P. A.; Ehlers, A. W.; Slootweg, J. C.; Schakel, M.; Krill, S.; Lutz, M.; Spek, A. L.; Lammertsma, K. Chem.–Eur. J. 2008, 14, 1499–1507. doi:10.1002/chem.200700958
9. Jansen, H.; Rosenthal, A. J.; Slootweg, J. C.; Ehlers, A. W.; Lutz, M.; Spek, A. L.; Lammertsma, K. Organometallics 2008, 27, 2868–2872. doi:10.1021/om800188h
10. Ladenburg, A. Liebig’s Ann. Chem. 1883, 217, 74–149. doi:10.1002/jlac.18832170107
11. Traetteberg, M. J. Am. Chem. Soc. 1964, 86, 4265–4270. doi:10.1021/ja01074a008
12. Butcher, S. J. J. Chem. Phys. 1965, 42, 1833–1836.
13. Reed, T. B.; Libscomb, W. N. Acta Crystallogr. 1953, 6, 108. doi:10.1107/S0001883453003399
14. Suitable crystals for an accurate X-ray determination could not be obtained for cyclohepta-1,3,5-triene.
15. Davis, R. E.; Tulinsky, A. Tetrahedron Lett. 1962, 2, 839–846. However the derivative 7,7-dimethylcycloheptatriene-3-carboxylic acid did result in suitable crystals.
16. Chén, Z.; Jiao, H.; Wu, J. I.; Herges, R.; Zhang, S. B.; von Rappe Schleyer, P. J. Phys. Chem. A 2008, 112, 10586–10594. doi:10.1021/jp800429m
17. Jarzecki, A. A.; Gajewski, J.; Davidson, E. R. J. Am. Chem. Soc. 1998, 121, 6928–6935. doi:10.1021/ja9804471
18. See for similar computational geometrical studies α = 52.1°, β= 25.2° determined at the CASSCF(6,6)/6-31G(d) level.
19. Chapman, M. J.; Aguiar, A.; Biedermann, P. U.; Riggs, N. V.; Radom, L. J. Org. Chem. 1997, 62, 2026–2038. doi:10.1021/jo962407i
20. Atef, F. A. L. J. Am. Chem. Soc. 1964, 86, 458–460. doi:10.1021/ja01057a034
Nishinaga, T.; Izuwaka, Y.; Komatsu, K. J. Phys. Org. Chem. 1998, 11, 475–477. doi:10.1002/(SICI)1099-1395(199807)11:7<475::AID-POCD911>3.0.CO;2-O

See for determination of "Nuclear Independent Chemical Shift" (NICS(0)), benzene-8.0 ppm gives -4.2 ppm for 1.

Jennings, W. B.; Rutherford, M.; Boyd, D. R.; Agarwal, S. K.; Sharma, N. Tetrahedron 1988, 44, 7551–7558. doi:10.1016/S0040-4020(01)88249-9

Jennings, W. B.; Rutherford, M.; Agarwal, S. K.; Boyd, D. R.; Malone, J. F.; Kennedy, D. A. J. Chem. Soc., Chem. Commun. 1986, 970–972. doi:10.1039/C89860000970

Kassaei, M. Z.; Cheshmehekan, A.; Musavi, S. M.; Majdi, M.; Motamed, E. J. Mol. Struct.: THEOCHEM 2008, 865, 73–78. doi:10.1016/j.theochem.2008.06.025

And references therein.

Woods, W. G. J. Org. Chem. 1958, 23, 110–112. doi:10.1021/jo01956a117

Klärner, F.-G.; Yaşlak, S.; Wette, M. Chem. Ber. 1977, 110, 107–123. doi:10.1021/cb77100112

Klärner, F.-G.; Yaşlak, S.; Wette, M. Chem. Ber. 1979, 112, 1168–1188. doi:10.1021/cb79110241

Klärner, F.-G.; Brassel, B. J. Am. Chem. Soc. 1980, 102, 2469–2470. doi:10.1021/ja00272a002

Ter Borg, A. P.; Koostierzel, H.; Van Meurs, N. Proc. Chem. Soc., London 1962, 359.

Berson, J.; Wilcott, M. R., Ill. J. Am. Chem. Soc. 1965, 87, 2751–2752. doi:10.1021/ja01090a037

Berson, J. A.; Willcott, M. R., Ill. J. Am. Chem. Soc. 1965, 87, 2752–2753. doi:10.1021/ja01090a038

Klärner, F.-G.; Yaşlak, S.; Wette, M. Angew. Chem., Int. Ed. Engl. 1974, 13, 268–270. doi:10.1021/ja00428a017

Klärner, K.-G.; Yaşlak, S.; Wette, M. Chem. Ber. 1977, 110, 107–123. doi:10.1021/cb77100112

Klärner, K.-G.; Yaşlak, S.; Wette, M. Chem. Ber. 1979, 112, 1168–1188. doi:10.1021/cb79110241

Klärner, K.-G.; Brassel, B. J. Am. Chem. Soc. 1980, 102, 2469–2470. doi:10.1021/ja00272a002

Ter Borg, A. P.; Koostierzel, H.; Van Meurs, N. Proc. Chem. Soc., London 1962, 359.

Berson, J.; Wilcott, M. R., Ill. J. Am. Chem. Soc. 1965, 88, 2494–2502. doi:10.1021/ja010963a025

See for the methyl-substituted analogues.

Vogel, E.; Böll, W. A.; Günther, H. Tetrahedron Lett. 1965, 6, 609–615. doi:10.1016/S0040-4020(00)90004-5

Günther, H. Tetrahedron Lett. 1965, 6, 4085–4090. doi:10.1016/S0040-4020(01)98570-X

Pye, C. C.; Xidos, J. D.; Poirier, R. A.; Burnell, D. J. Phys. Chem. A 1997, 101, 3371–3376. doi:10.1021/jp962348h

Kassaei, M. Z.; Arshadi, S.; Haerizade, B. N.; Vessally, E. J. Mol. Struct.: THEOCHEM 2005, 731, 29–37. doi:10.1016/j.theochem.2005.02.087

Comer, D.; Dick, B.; Christe, D. J. Mol. Struct.: THEOCHEM 1984, 110, 277–291. doi:10.1016/0166-1280(84)80077-9

Kao, J. J. Comput. Chem. 1988, 9, 905–923. doi:10.1002/jcc.5400908122
112. Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578–1604. doi:10.1002/anie.200200557
113. Le Floch, P. Coord. Chem. Rev. 2006, 250, 627–681. doi:10.1016/j.ccr.2005.04.032
114. Noonan, K. J. T.; Gates, D. P. Angew. Chem., Int. Ed. 2006, 45, 7271–7274. doi:10.1002/anie.200602955
115. Gates, D. P. Top. Curr. Chem. 2005, 250, 107–126. doi:10.1007/b10983

License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.7.201