Differentiation of Follicular Dendritic Cells and Full Antibody Responses Require Tumor Necrosis Factor Receptor-1 Signaling

By Michel Le Hir,* Horst Bluethmann,† Marie H. Kosco-Vilbois,§ Matthias Müller,* Franco di Padova,‖ Mark Moore,§ Bernhard Ryffel,* and Hans-Pietro Eugster*

From the *Swiss Institute of Technology, Institute of Toxicology, CH-8603 Schwerzenbach, Switzerland; †Pharmaceutical Research Genetech, F Hoffmann-LaRoche Ltd., CH-4002 Basel, Switzerland; ‡Glaxo Institute for Molecular Biology, CH-1228 Planches-les-Ouates, Switzerland; §Preclinical Research, Sandoz Ltd., CH-4002 Basel, Switzerland; and ‖Genentech, Inc., San Francisco, California 94080

Summary

Using mice double deficient for tumor necrosis factor (TNF) and lymphotoxin alpha (LTα), we demonstrated that TNF and/or LTα are necessary for development of a normal splenic microarchitecture and for isotype switch after immunization with sheep red blood cells (SRBC). In the present study, we extended these observations by determining which TNF receptor (TNFR) is involved in morphological and functional differentiation of the spleen. Spleen morphology and antibody response were investigated in wild-type, TNFR1−/−, TNFR2−/−, and TNF/LTα−/− mice immunized with SRBC. TNF/LTα−/− mice, which have a complete disruption of the TNF/LTα signaling system including the LTβ receptor pathway, displayed an abnormal microarchitecture, and isotype switch did not take place. TNF1−/− and TNFR2−/− mice displayed a normal spleen microarchitecture and mounted an IgM and IgG antibody response to SRBC. However, the IgG production in TNFR1−/− mice was minimal, with titers leveling off 6 d after immunization. In this strain, immunofluorescence revealed a lack of follicular dendritic cells (FDC) network, detected with FDC-M1 as well as anti-Cr1, and a lack of germinal centers, detected with peanut agglutinin. In conclusion, whereas normal splenic microarchitecture and isotype switch might require the LTβ receptor, differentiation of FDC network, development of germinal centers, and full IgG response depend on signaling via TNFR1.

We demonstrated previously that inactivation of TNF-lymphotoxin alpha (LTα) genes resulted in multiple abnormalities of the immune system with absence of LNs, lymphocytosis, hypogammaglobulinemia, an undifferentiated spleen, and defective antibody response to sheep red blood cells (SRBC) (1). LTα−/− deficient mice also display an abnormal morphogenesis of lymphoid organs and a defective antiviral IgG response (2, 3). TNF and LTα are members of a family of homologous proteins, including CD40 ligand, which is involved in T cell–B cell interaction (4). TNF and LTα form homotrimers that bind to two different receptors, TNFR1 and TNFR2 (4). LTα additionally binds, as a membrane-bound heterotrimer 1LTα/2LTβ, to the LTβ receptor (5).

In the present study, we investigated the splenic morphology and the antibody response after SRBC immunization in wild-type mice and in mice deficient in either TNFR1, TNFR2, or both ligands TNF and LTα. The data suggest that signaling via TNFR1 is important for the differentiation of follicular dendritic cells (FDC) in the spleen, the development of germinal centers, and T-cell dependent antibody response, whereas signaling via the LT-specific receptor is necessary for a normal microarchitecture and isotype switch.

Materials and Methods

Mice. Wild-type, TNF/LTα−/− (1), TNFR1−/− (6), and TNFR2−/− mice (7) on a mixed 129SV × C57BL/6 background were bred under specified pathogen-free conditions.

Reagents. Primary antibodies for immunofluorescence were rat anti-mouse monoclonals: anti-B220 (clone RA3-6B2), anti-CD3 (clone OKT3), anti-FDC (clone FDC-M1), and anti-CR1 (clone 8C12). The second antibody was Cy3-labeled goat antirat (Jackson ImmunoResearch Laboratories, Inc., West Grove, Pennsylvania).

2367 J. Exp. Med. © The Rockefeller University Press • 0022-1007/96/05/2367/06 $2.00 Volume 183 May 1996 2367-2372
Biotinylated peanut agglutinin (PNA), used as a marker for germinal centers, was detected by Cy3-labeled streptavidin (Jackson ImmunoResearch Laboratories, Inc.).

Immunization. Four mice of each strain, eight to twelve wk old, were injected intraperitoneally at day 0 with 2×10^8 sterile sheep erythrocytes (SRBC). Blood samples were taken at days 0, 6, and 15 from the retroorbital plexus. At day 15, the mice were killed by heart bleeding under methoxyflurane anesthesia. The experiment was duplicated.

Histology. Spleen samples were fixed by immersion in 4% neutral buffered formalin. They were processed for paraffin sectioning according to routine techniques. Sections of 3-µm thickness were stained with hematoxilin-eosin.

Immunofluorescence. Halves of the spleens were snap-frozen in isopentane maintained at the temperature of liquid nitrogen. 6-µm-thick sections were cut in a cryostat, air-dried, and stored at -80°C. Immediately before use, the sections were fixed in acetone for 10 min at 4$^\circ$C. After a wash in phosphate-buffered saline (PBS), the sections were incubated for 16 h at 4$^\circ$C with the primary rat antibodies or with biotinylated PNA. After two washes in PBS, incubation with labeled goat anti-rat antibody (preadsorbed with mouse serum) or with labeled streptavidine took place at room temperature for 1 h. The sections were examined with a laser scanner microscope (Carl Zeiss, Zurich, Switzerland).

Assay of Immunoglobulins. Serum titers of anti-SRBC-specific IgM, IgG1, and IgG2b were determined by a sandwich ELISA. Maxisorp microtiter plates (Nunc, Roskilde, Denmark) were coated overnight with 50 µl of a solubilized extract (3 mg/ml) from SRBC prepared according to Kelly (8). Thereafter, plates were blocked with 2% BSA in PBS for 2 h at 37°C and incubated with serial dilutions of the immune sera overnight at room temperature. Bound antibodies were detected with biotinylated goat anti-mouse Ig isotype-specific antibodies for 4 h at room temperature. These plates were developed by the addition of streptavidin–alkaline phosphatase and then of substrate for 45 min each, and the reaction was stopped with 1.5 M NaOH. Absorbance was read at 405 nm.

Results and Discussion

Microarchitecture. In contrast to wild-type, TNFR1$^{-/-}$, and TNFR2$^{-/-}$ mice, the border of the white pulp was diffuse and the marginal zone was lacking in the spleens of TNF/LTα$^{-/-}$ mice (Fig. 1). The periarterial lymphatic sheaths and the follicular area, identified by the high densities of T cells (CD3 positive) and B cells (B220 positive), respectively, were well delimited in wild-type, in TNFR1$^{-/-}$, and in TNFR2$^{-/-}$ mice (Fig. 2, A and B), but they were hardly recognizable in TNF/LTα$^{-/-}$ mice (Fig. 2, C and D). The same alterations of spleen microarchitecture as found in TNF/LTα$^{-/-}$ mice have been reported by others in LTα$^{-/-}$ mice (2, 3). It is likely that normal spleen morphogenesis, since it is maintained in mice lacking either of the two TNF receptors, requires LTα acting via a specific LT receptor.

Figure 1. Histological preparations of spleens from wild-type (A), TNFR1$^{-/-}$ (B), TNFR2$^{-/-}$ (C), and TNF/LTα$^{-/-}$ (D) mice. Germinal centers (arrowheads) are present only in tissues from wild-type and TNF/LTα$^{-/-}$ mice. ×130.
Humoral Response. Isotype switch was normal in wild-type, TNFR1^{-/-} and TNFR2^{-/-}, but it did not take place in TNF/LTα^{-/-} mice (Fig. 3) as previously reported (1). Similarly, specific IgGs were not produced in LTα^{-/-} mice challenged with different antigens (3). Together these data suggest that isotype switch might require signaling via LTβ receptor. Deletion of TNFR1 did not affect the IgM response. However, a decrease of IgG level was observed between day 6 and day 15 in TNFR1^{-/-} mice instead of the further increase found in the wild type and in TNFR2^{-/-} mice (Fig. 3). The importance for long lasting IgG response of antigen persisting in the form of immune depots has been demonstrated (9). Thus, the absence of a sustained IgG antibody production suggested that the antigen source driving a prolonged humoral response might be defective in TNFR1^{-/-} mice. FDC fulfill this function by providing antigen to activated B cells in germinal centers (10–13).

FDC and Germinal Centers. We assessed the presence of FDC, using the anti-CR1 and FDC-M1 antibodies (Fig. 4), and of germinal center B cells, using PNA (Fig. 5). Both

Figure 2. Distribution of T cells (CD3 immunofluorescence; A and C) and of B cells (B220 immunofluorescence; B and D) in the spleen. Similar patterns as shown for TNFR1^{-/-} mice (A and B) were found in wild-type and TNFR2 mice. In those strains, the periarterial lymphatic sheaths display the highest incidence of T cells (A). B cells are located predominantly at the periphery of the white pulp (B). That organization is lost in TNF/LTα^{-/-} mice (C and D). X60.

Figure 3. Serum SRBC-specific immunoglobulin levels. Titers at day 0 (filled bar), 6 (empty bar) and 15 (striped bar) are expressed as the reciprocal value of the dilution showing an optical density of 0.1 over background. Mean values for four mice are given with the SD.
Figure 4. Detection of FDC in the spleen using the FDC-M1 (A and B) and anti-CR1 (C and D) antibodies. Similar patterns as in wild-type mice (A and C) were observed in TNFR2-/- mice. FDC were not detected in TNFR1-/- (B and D) nor in TNF/LTα-/- (not shown) mice. X120.

Figure 5. PNA binding in the spleen of wild-type (A), TNFR1-/- (B), TNFR2-/- (C), and TNF/LTα-/- (D) mice. PNA-positive germinal center B cells are visible only in A and C. The labeled structure surrounding the white pulp in A–C (arrowheads) might represent the marginal sinus. Arrows point to central arterioles. X120.
References

1. Eugster, H.P., M. Müller, U. Karrer, B. Car, B. Schnyder, V.M. Eng, G. Woerly, M. Le Hir, F. di Padova, M. Aguet et al. 1996. Multiple immune abnormalities in tumor necrosis factor and lymphotixin-α double-deficient mice. *Int. Immunol.* 8:23-36.

2. De Togui, P., J. Goellner, N.H. Ruddle, P.R. Streeter, A. Fick, S. Marathasan, S.C. Smith, R. Carlson, L.P. Shornick, J. Straus-Schoenberger et al. 1994. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotixin. *Science (Wash. DC).* 264:703-707.

3. Banks, T.A., B.T. Rouse, M.K. Kerley, P. Blair, V.L. Godfrey, N.A. Kuklin, D.M. Bouley, J. Thomas, S. Kanangat, and M.L. Mucenski. 1995. Lymphotixin-α-deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. *J. Immunol.* 155:1685-1693.

4. Beutler, B., and C. van Huffel. 1994. Unraveling function in the TNF ligand and receptor families. *Science (Wash. DC).* 264:667-668.

5. Crowe, P.D., T.L. VanArsdale, B.N. Walter, C.F. Ware, C. Hession, B. Ehrenfels, J.L. Browning, W.S. Din, R.G. Goodwin, and C.A. Smith. 1994. A lymphotixin-β-specific receptor. *Science (Wash. DC).* 264:707-710.

6. Rothke, J., W. Lesslauer, H. Lotscher, Y. Lang, P. Koebel, F. Kontgen, A. Althage, R. Zinkernagel, M. Steinmetz, and H. Bluethmann. 1993. Mice lacking the tumour necrosis factor receptor I are resistant to TNF-mediated toxicity but highly susceptible to infection by *Listeria monocytogenes*. *Nature (Lond.)* 364:798-802.

7. Erickson, S.L., F.J. de Sauvage, K. Kikly, K. Carver-Moore, S. Pits-Meek, N. Gillett, R.C. Sheehan, R.D. Schreiber, D.V. Goeddel, and M.W. Moore. 1994. Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice. *Nature (Lond.)* 372:560-563.

8. Kelly, B.S., J.G. Levy, and L. Sikora. 1979. The use of the enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of specific antibody from cell cultures. *Immunology*. 37:45-52.

9. Bachmann, M.F., T.M. Kundig, H. Hengartner, and R.M. Zinkernagel. 1994. Regulation of IgG antibody titers by the amount persisting of immune-complexed antigen. *Eur. J. Immunol.* 24:2567-2570.

10. Nossal, G.J., A. Abbot, J. Mitchell, and Z. Lummus. 1968. Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles. *J. Exp. Med.* 127:277-290.

11. Tew, J.G., M.H. Kosco, G.F. Burton, and A.K. Szakal. 1990. Follicular dendritic cells as accessory cells. *Immunol. Rev.* 117:185-211.

12. Gray, D., and H. Skarvall. 1988. B-cell memory is short-lived in the absence of antigen. *Nature (Lond.)* 336:70-73.

13. Klaus, G.G., J.H. Humphrey, A. Kunkl, and D.W. Dongworth. 1980. The follicular dendritic cell: its role in antigen

This study was supported by the Swiss National Science Foundation grant 32-33966.92.

Address correspondence to Michel Le Hir, Institute of Toxicology, Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland.

Received for publication 22 January 1996 and in revised form 14 February 1996.
presentation in the generation of immunological memory. *Immunol. Rev.* 53:3–28.

14. Kinoshita, T., J. Takeda, K. Hong, H. Kozono, H. Sakai, and K. Inoue. 1988. Monoclonal antibodies to mouse complement receptor type 1 (CR1). Their use in a distribution study showing that mouse erythrocytes and platelets are CR1-negative. *J. Immunol.* 140:3066–3072.

15. Heinen, E., A. Bosseloir, and F. Bouzahzah. 1995. Follicular dendritic cells: origin and function. In *An Antigen Depo- sitory of the Immune System: Follicular Dendritic Cells*. M.H. Kosco-Vilbois, editor. Springer-Verlag, Berlin. 15–47.

16. Heusermann, U., K.H. Zurborn, L. Schroeder, and H.J. Stutte. 1980. The origin of the dendritic reticulum cell. An experimental enzyme-histochemical and electron microscopic study on the rabbit spleen. *Cell Tissue Res.* 209:279–294.

17. Dijkstra, C.D., E.W. Kamperdijk, and E.A. Dopp. 1984. The ontogenetic development of the follicular dendritic cell. An ultrastructural study by means of intravenously injected horseradish peroxidase (HRP)-anti-HRP complexes as marker. *Cell Tissue Res.* 236:203–206.

18. Groscurth, P. 1980. Non-lymphatic cells in the lymph node cortex of the mouse. II. Postnatal development of the interdigitating cells and the dendritic reticular cells. (In German.) *Pathol. Res. Pract.* 169:235–254.

19. Yoshida, K., M. Kaji, T. Takahashi, T.K. van den Berg, and C.D. Dijkstra. 1995. Host origin of follicular dendritic cells induced in the spleen of SCID mice after transfer of allogeneic lymphocytes. *Immunology.* 84:117–126.

20. Szakal, A.K., Z.F. Kapasi, S.T. Haley, and J.G. Tew. 1995. A theory of follicular dendritic cell origin. In *An Antigen Depository of the Immune System: Follicular Dendritic Cells*. M.H. Kosco-Vilbois, editor. Springer-Verlag, Berlin. 1–13.

21. Pfeffer, K., T. Matsuyama, T.M. Kundig, A. Wakeham, K. Kishihara, A. Shahinian, K. Wiegmann, P.S. Ohashi, M. Kronke, and T.W. Mak. 1993. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxin shock, yet succumb to *L. monocytogenes* infection. *Cell.* 73:457–467.