Improved approximation algorithms for k-connected m-dominating set problems

Zeev Nutov

The Open University of Israel. nutov@openu.ac.il.

Abstract. A graph is k-connected if it has k internally-disjoint paths between every pair of nodes. A subset S of nodes in a graph G is a k-connected set if the subgraph $G[S]$ induced by S is k-connected; S is an m-dominating set if every $v \in V \setminus S$ has at least m neighbors in S. If S is both k-connected and m-dominating then S is a k-connected m-dominating set, or (k,m)-cds for short. In the k-Connected m-Dominating Set ((k,m)-CDS) problem the goal is to find a minimum weight (k,m)-cds in a node-weighted graph. We consider the case $m \geq k$ and obtain the following approximation ratios. For unit disc-graphs we obtain ratio $O(k \ln k)$, improving the ratio $O(k^2 \ln k)$ of [5,15]. For general graphs we obtain the first non-trivial approximation ratio $O(k^2 \ln n)$.

1 Introduction

A graph is k-connected if it has k internally disjoint paths between every pair of its nodes. A subset S of nodes in a graph G is a k-connected set if the subgraph $G[S]$ induced by S is k-connected; S is an m-dominating set if every $v \in V \setminus S$ has at least m neighbors in S. If S is both k-connected and m-dominating set then S is a k-connected m-dominating set, or (k,m)-cds for short. A graph is a unit-disk graph if its nodes can be located in in the Euclidean plane such that there is an edge between nodes u and v iff the Euclidean distance between u and v is at most 1. We consider the following problem for $m \geq k$ both in general graphs and in unit-disk graphs.

k-Connected m-Dominating Set ((k,m)-CDS)

Input: A graph $G = (V,E)$ with node weights $\{w_v : v \in V\}$ and integers k,m.

Output: A minimum weight (k,m)-cds $S \subseteq V$.

The case $k = 0$ is the m-DOMINATING SET problem. Let α_m denote the best known ratio for m-DOMINATING SET; currently $\alpha_m = O(1)$ in unit-disk graphs [5] and $\alpha_m = \ln(\Delta + m) + 1 < \ln \Delta + 1.7$ in general graphs [4], where Δ is the maximum degree of the input graph. The (k,m)-CDS problem with $m \geq k$ was studied extensively. In recent papers Zhang, Zhou, Mo, and Du [15] and Fukumaga [5] obtained ratio $O(k^2 \ln k)$ for the problem in unit-disc graphs. For unit-disc graphs and $k = 2$ Zhang et al. [15] also obtained an improved ratio $\alpha_m + 5$. In a related paper Zhang et al. [16] obtained ratio $O(k \ln \Delta)$ in
general graphs with unit weights, mentioning that no non-trivial approximation algorithm for arbitrary weights is known.

Let us say that a graph with a designated set T of terminals and a root node r is k-(T, r)-connected if it contains k internally-disjoint rt-paths for every $t \in T$. Our ratios for (k, m)-CDS are expressed in terms of α_m and the best ratio for the following known problem:

Rooted Subset k-Connectivity

Input: A graph $G = (V, E)$ with edge-costs/node-weights, a set $T \subseteq V$ of terminals, a root node $r \in V \setminus T$, and an integer k.

Output: A minimum cost/weight k-(T, r)-connected subgraph of G.

Let β_k and β'_k denote the best known ratios for the Rooted Subset k-Connectivity problem with edge-costs and node-weights, respectively. Currently, $\beta_m = O(1)$ in unit-disc graphs [5], while in general graphs $\beta_2 = 2$ [3], $\beta_3 = 6 \frac{2}{3}$ [13], and $\beta_k = O(k \ln k)$ for $k \geq 4$ [11]. We also have $\beta'_k = O(k^2 \ln n)$ by [11] and the correction of Vakilian [14] to the algorithm and the analysis of [11]; see also [6].

Our main results are summarized in the following theorem.

Theorem 1. Suppose that the m-Dominating Set problem admits ratio α_m and that the Rooted Subset k-Connectivity problem admits ratios β_k for edge-costs and β'_k for node-weights. Then (k, m)-CDS with $m \geq k$ admits ratios $\alpha_m + \beta'_k + 2(k - 1) = O(k^2 \ln n)$ for general graphs and $\alpha_m + 5\beta_k + 2(k - 1) = O(k \ln k)$ for unit-disc graphs. Furthermore, $(3, m)$-CDS on unit-disc graphs admits ratio $\alpha_m + 5\beta_3 = \alpha_m + 33\frac{1}{3}$.

Our algorithm uses the main ideas as well as partial results from the papers of Zhang et al. [15] and Fukunaga [5]. Let us say that a graph G is k-T-connected if G contains k internally-disjoint paths between every pair of nodes in T. Both papers [15,5] consider unit-disc graphs and reduce the (k, m)-CDS problem with $m \geq k$ to the Subset k-Connectivity problem: given a graph with edge costs and a subset T of terminals, find a minimum cost k-T-connected subgraph. The problem admits a trivial ratio $|T|^2$ for both edge-costs and node-weights, while for $|T| > k$ the best known ratios are $\frac{|T|}{|T|-k} O(k \ln k) = O(k^2 \ln k)$ for edge-costs and $\frac{|T|}{|T|-k} O(k^2 \ln n) = O(k^3 \ln n)$ for node-weights [12]; see also [8]. In fact, these ratios are derived by applying $O(k)$ times the algorithm for the Rooted Subset k-Connectivity problem. The main reason for our improvement over the ratios of [15,5] is a reduction to the easier Rooted Subset k-Connectivity problem. For small values of k we present a refined reduction, but for unit disc graphs and $k = 2$ the performance of our algorithm and that of [15] coincide, since for $k = 2$ and edge-costs both Subset k-Connectivity and Rooted Subset k-Connectivity admit ratio 2 [3].
2 Proof of Theorem 1

For an arbitrary graph $H = (U, F)$ and $u, v \in U$ let $\kappa_H(u, v)$ denote the maximum number of internally disjoint uv-paths in H. We say that H is k-in-connected to r if H is k-$(U \setminus \{r\}, r)$-connected, namely, if $\kappa_H(v, r) \geq k$ every $v \in U \setminus \{r\}$. For $A \subseteq U$ let $\Gamma_H(A)$ denote the set of neighbors of A in H. The proof of the following known statement can be found in [7], see also [12]; part (i) of the lemma relies on the Mader’s Undirected Critical Cycle Theorem [9].

Lemma 1. Let H_r be k-in-connected to r and let $R = \Gamma_H(r)$.

(i) The graph $H = H_r \setminus \{r\}$ can be made k-connected by adding a set J of new edges on R; furthermore, if J is inclusionwise-minimal then J is a forest.

(ii) Suppose that $|R| = k$. If $k = 2, 3$ then H_r is k-connected.

Note that an inclusionwise-minimal edge set J as in Lemma 1(i) can be computed in polynomial time, by starting with J being a clique on R and repeatedly removing from J an edge e if $H \cup (J \setminus e)$ remains k-connected.

A reason why the case $m \geq k$ is easier is given in the following lemma.

Lemma 2. If a graph $H = (V, E)$ has a k-dominating set T such that H is k-T-connected then H is k-connected.

Proof. By a known characterization of k-connected graphs, it is sufficient to show that $|V \setminus (A \cup B)| \geq k$ holds for any subpartition A, B of V such that E has no edge between A and B. If both $A \cap T, B \cap T$ are non-empty, this is so since H is k-T-connected. Otherwise, if say $A \cap T = \emptyset$, then since T is a k-dominating set we have $|\Gamma_H(A)| \geq k$, and the result follows. \square

Finally, we will need the following known fact, c.f. [11].

Lemma 3. Given a pair s, t of nodes in a node-weighted graph G, the problem of finding a minimum weight node set P_{st} such that $G[P_{st}]$ has k internally-disjoint st-paths admits a 2-approximation algorithm.

For arbitrary k, we will show that the following algorithm achieves the desired approximation ratio.

Algorithm 1: $(G = (V, E), w, m \geq k)$

1. compute an α_m-approximate m-dominating set T
2. construct a graph G_r by adding to G a new node r connected to a set $R \subseteq T$ of k nodes by a set $F_r = \{rv : v \in R\}$ of new edges
3. compute a β_k^G-approximate node set $S \subseteq V \setminus T$ such that the subgraph H_r of G_r induced by $T \cup S \cup \{r\}$ is k-(T, r)-connected
4. let $H = H \setminus \{r\} = G[T \cup S]$ and let J be a forest of new edges on R as in Lemma 1(i) such that the graph $H \cup J$ is k-connected
5. for every $uv \in J$ find a 2-approximate node set P_{uv} such that $G[T \cup S \cup P_{uv}]$ has k internally-disjoint uv-paths; let $P = \bigcup_{uv \in J} P_{uv}$
6. return $T \cup S \cup P$
We now prove that the solution computed is feasible.

Lemma 4. The computed solution is feasible, namely, at the end of the algorithm $T \cup S \cup P$ is a (k, m)-cds.

Proof. Since T is an m-dominating set, so is any superset of T. Thus the node set $T \cup S \cup P$ returned by the algorithm is an m-dominating set.

It remains to prove that $T \cup S \cup P$ is a k-connected set. We first prove that the graph H_r computed at step 3 is k-in-connected to r. By Menger’s Theorem, $\kappa_{H_r}(v, r) \geq k$ if for all $A \subseteq T \cup S$ with $v \in A$

$$|\Gamma_{H_r \setminus R}(A)| + |A \cap R| \geq k. \tag{1}$$

Let $\emptyset \neq A \subseteq T \cup S$. If $A \cap T \neq \emptyset$ then (1) holds since H_r is k-(T, r)-connected. If $A \cap S \neq \emptyset$ then $|\Gamma_{H_r \setminus R}(A)| \geq m \geq k$, since T is an m-dominating set and thus every node in $A \cap S$ has at least m neighbors in T. In both cases, (1) holds, hence H_r is k-in-connected to r.

The graph $H \cup J$ is k-connected, which implies that the graph $G(T \cup S \cup P)$ is $(T \cup S)$-k-connected and thus T-k-connected. Furthermore, T is a k-dominating set, since $m \geq k$. Applying Lemma 2 on the graph $G[T \cup S \cup P]$ we get that this graphs is k-connected, as required. \hfill \Box

Lemma 5. Algorithm T has ratio $\alpha_m + \beta'_k + 2(k - 1)$.

Proof. Let S^* be an optimal solution to (k, m)-CDS. Clearly, $w(T) \leq \alpha_m w(S^*) \leq \beta'_k w(S^*)$. We claim that $w(S) \leq \beta'_k w(S^* \setminus T)$. For this note that $S^* \setminus T$ is a feasible solution to the problem considered at step 3 of the algorithm, while S is a β'_k-approximate solution. For the same reason, for each $w \in J$ the set $S^* \setminus (T \cup S)$ is a feasible solution to the problem considered at step 5, while the set P_w computed is a 2-approximate solution; thus $w(P_w) \leq 2w(S^* \setminus (T \cup S))$. Finally, note that $|J| \leq k - 1$, and thus $w(P) \geq 2(k - 1)w(S^*)$. The lemma follows. \hfill \Box

This concludes the proof of the case of general k and general graphs. Let us now consider unit disc graphs. Then we use the following result of [15].

Theorem 2 (Zhang, Zhou, Mo, and Du [15]). Any k-connected unit-disc graph has a k-connected spanning subgraph of maximum degree at most 5 if $k = 2$, and at most $5k$ if $k \geq 3$.

Note that any k-connected graph has minimum degree k. Thus Theorem 2 implies that when searching for a k-connected subgraph in a unit disc graph, one can convert node-weights to edge-costs while invoking in the ratio only a factor of 5/2 in the case $k = 2$ and 5 in the case $k \geq 3$. Specifically, given node weights $\{w_v : v \in V\}$ define edge-costs $c_{uv} = w_u + w_v$. Then for any subgraph (S, F) of G with maximum degree Δ and minimum degree δ we have:

$$\delta w(S) \leq c(F) \leq \Delta w(S)$$
since \(w_v \geq 0 \) for all \(v \in V \) and since
\[
c(F) = \sum_{uv \in E} (w_u + w_v) = \sum_{v \in V} d_F(v)w_v.
\]

We may use this conversion in some steps of our algorithm, and specifically in step 3, which concludes the proof of the case of general \(k \) and unit-disc graphs.

In the case \(k = 3 \) we use a result of Mader \cite{10} that any edge-minimal \(k \)-connected graph has at least \(\frac{(k-1)n+2}{2k-1} \) nodes of degree \(k \). At step 3 of the algorithm we “guess” such a node \(r \) and the 3 edges incident to \(r \) in some edge-minimal optimal solution, remove from \(G \) all other edges incident to \(r \), and run step 3 while omitting steps 4 and 5. By Lemma 1(ii) the graph \(G[S \cup T] \) will be already 3-connected.

References

1. V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an optimum 3-vertex-connected spanning subgraph. *J. of Algorithms*, 32(1):21–30, 1999.
2. Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding optimum 4, 5-vertex-connected spanning subgraphs. *J. of Algorithms*, 32(1):31–40, 1999.
3. L. Fleischer, K. Jain, and D. Williamson. Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. *J. Computer and System Sciences*, 72(5):838–867, 2006.
4. K.-T. Förster. Approximating fault-tolerant domination in general graphs. In *ANALCO*, pages 25–32, 2013.
5. T. Fukunaga. Constant-approximation algorithms for highly connected multi-dominating sets in unit disk graphs. [arXiv:1511.09156 [cs.DS]].
6. T. Fukunaga. Spider covers for prize-collecting network activation problem. In *SODA*, pages 9–24, 2015.
7. G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. *Algorithmica*, 37:75–92, 2003.
8. B. Laekhanukit. An improved approximation algorithm for minimum-cost subset \(k \)-connectivity. In *ICALP*, pages 13–24, 2011.
9. W. Mader. Ecken vom grad \(n \) in minimalen \(n \)-fach zusammenhängenden graphen. *Archive der Mathematik*, 23:219224, 1972.
10. W. Mader. On vertices of degree \(n \) in minimally \(n \)-connected graphs and digraphs. *Combinatorics, Paul Erdős is eighty*, 2:423449, 1993.
11. Z. Nutov. Approximating minimum cost connectivity problems via uncrossable bifamilies. *ACM Transactions on Algorithms*, 9(1):1, 2012.
12. Z. Nutov. Approximating subset \(k \)-connectivity problems. *J. Discrete Algorithms*, 17:5159, 2012.
13. Z. Nutov. Improved approximation algorithms for min-cost connectivity augmentation problems. In *CSR*, pages 324–339, 2016.
14. A. Vakilian. Node-weighted prize-collecting survivable network design problems. Master’s thesis, University of Illinois at Urbana-Champaign, 2013.
15. Z. Zhang, J. Zhou, Y. Mo, and D.-Z. Du. Approximation algorithm for minimum weight fault-tolerant virtual backbone in unit disk graphs. *IEEE/ACM Transactions on networking*, 2016. To appear.
16. Z. Zhang, J. Zhou, Y. Mo, and D.-Z. Du. Performance-guaranteed approximation algorithm for fault-tolerant connected dominating set in wireless networks. In *INFOCOM*, pages 1–8, 2016.