Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy

Aurélie Durgeau1,2†, Yasemin Virk1†, Stéphanie Corgnac1 and Fathia Mami-Chouaib1*

1INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de Médecine – Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France, 2ElyssaMed, Paris Biotech Santé, Paris, France

Recent advances in cancer treatment have emerged from new immunotherapies targeting T-cell inhibitory receptors, including cytotoxic T-lymphocyte associated antigen (CTLA)-4 and programmed cell death (PD)-1. In this context, anti-CTLA-4 and anti-PD-1 monoclonal antibodies have demonstrated survival benefits in numerous cancers, including melanoma and non-small-cell lung carcinoma. PD-1-expressing CD8+ T lymphocytes appear to play a major role in the response to these immune checkpoint inhibitors (ICI). Cytotoxic T lymphocytes (CTL) eliminate malignant cells through recognition by the T-cell receptor (TCR) of specific antigenic peptides presented on the surface of cancer cells by major histocompatibility complex class I/beta-2-microglobulin complexes, and through killing of target cells, mainly by releasing the content of secretory lysosomes containing perforin and granzyme B. T-cell adhesion molecules and, in particular, lymphocyte-function-associated antigen-1 and CD103 integrins, and their cognate ligands, respectively, intercellular adhesion molecule 1 and E-cadherin, on target cells, are involved in strengthening the interaction between CTL and tumor cells. Tumor-specific CTL have been isolated from tumor-infiltrating lymphocytes and peripheral blood lymphocytes (PBL) of patients with varied cancers. TCRβ-chain gene usage indicated that CTL identified in vitro selectively expanded in vivo at the tumor site compared to autologous PBL. Moreover, functional studies indicated that these CTL mediate human leukocyte antigen class I-restricted cytotoxic activity toward autologous tumor cells. Several of them recognize truly tumor-specific antigens encoded by mutated genes, also known as neoantigens, which likely play a key role in antitumor CD8 T-cell immunity. Accordingly, it has been shown that the presence of T lymphocytes directed toward tumor neoantigens is associated with patient response to immunotherapies, including ICI, adoptive cell transfer, and dendritic cell-based vaccines. These tumor-specific mutation-derived antigens open up new perspectives for development of effective second-generation therapeutic cancer vaccines.

Keywords: immunotherapy of cancer, cytotoxic T lymphocytes, tumor antigens, neoantigens, T-cell receptor repertoire

Abbreviations: ACT, adoptive cell transfer; CDR, complementarity-determining region; CTL, cytotoxic T lymphocyte; CTLA, cytotoxic T-lymphocyte associated antigen; PD, programmed cell death; DC, dendritic cell; HLA, human leukocyte antigen; ICAM-1, intercellular adhesion molecule 1; ICI, immune checkpoint inhibitors; IFN, interferon; LFA-1, lymphocyte-function-associated antigen-1; mAb, monoclonal antibody; NSCLC, non-small-cell lung carcinoma; MHC-I/β2m, major histocompatibility complex class I/beta-2-microglobulin; TAA, tumor-associated antigen; TCR, T-cell receptor; TIL, tumor-infiltrating lymphocyte; TSA, tumor-specific antigen.
INTRODUCTION

CD8+ T lymphocytes play a central role in immunity to cancer through their capacity to kill malignant cells upon recognition by T-cell receptor (TCR) of specific antigenic peptides presented on the surface of target cells by human leukocyte antigen class I (HLA-I)/beta-2-microglobulin (β2m) complexes. TCR and associated signaling molecules thus become clustered at the center of the T cell/tumor cell contact area, resulting in formation of a so-called immune synapse (IS) (1) and initiation of a transduction cascade, leading to execution of cytotoxic T lymphocyte (CTL) effector functions. Major CTL activities are mediated either directly, through synaptic exocytosis of cytotoxic granules containing perforin and granzymes into the target, resulting in cancer cell destruction, or indirectly, through secretion of cytokines, including interferon (IFN)γ and tumor necrosis factor (TNF). Adhesion/costimulatory molecules, mainly lymphocyte-function-associated antigen-1 (LFA-1, CD11a/CD18 or α/β) and CD103 (α/β) integrins, on CTL play a critical role in TCR-mediated killing by interacting with their cognate ligands, intercellular adhesion molecule 1 (or CD54) and E-cadherin, respectively, and directing exocytosis of lytic granules to the cancer cell surface at the IS (2, 3). NKG2D, a c-type lectin molecule expressed on activated lymphocytes (4, 5), also plays an important role in the induction of T-cell-mediated cytotoxicity and in CTL-dependent rejection of cancer (6, 7). NKG2D ligands include major histocompatibility complex class I-related chain (MICA) and MICB (8), and UL16-binding proteins 1, 2, and 3 (9). These ligands are upregulated upon cell stress, such as tumor transformation, and are expressed by most of the cancer cells (10) in particular those of epithelial origin (11).

Activation of naive CD8+ T cells by antigen-presenting cells (APC) involves binding of TCR, that is associated with the CD3 complex, to specific peptide-major histocompatibility complex class I (pMHC-I) complexes and the interaction of the costimulatory molecules CD28 and CD80 with their respective ligands CD80/CD86 and LFA-3 (12). Costimulatory receptors such as TNF receptor family member 4 (TNFRSF4) best known as OX40 or CD134) and member 9 (TNFRSF9 best known as 4-1BB or CD137) also play an important role in T-cell priming and antitumor immune responses (13–17).

ANTITUMOR T-CELL RESPONSES

Evidence for antitumor CD8+ T-cell immunity was provided by isolation of tumor-specific CTL from peripheral blood or tumor tissue of patients with diverse cancers, such as melanoma and lung carcinoma (18–22). The existence of a tumor-specific CTL response was further strengthened by identification of tumor-associated antigens (TAA) and detection of TAA-specific CD8+ T cells in spontaneously regressing tumors (18). Moreover, a correlation between tumor progression control and the infiltration rate of CD8+ T lymphocytes in the tumor was established (23). Efficacy of the antitumor immune response is negatively influenced by a hostile tumor microenvironment. Establishment of an immunosuppressive state within the tumor is mediated by diverse immunosuppressive factors released by cancer cells themselves, such as vascular endothelial growth factor, transforming growth factor-β (TGF-β) and indoleamine 2,3-dioxygenase, and/or by recruiting regulatory immune cells with immunosuppressive functions, such as regulatory T (Treg) cells and myeloid-derived suppressor cells (MDSC) (24). Indeed, a role for Treg cells in modulating tumor-specific effector T lymphocytes by producing immunosuppressive cytokines, such as IL-10 and TGF-β, consuming IL-2 or expressing the inhibitory molecule cytotoxic T-lymphocyte associated antigen (CTLA)-4, has been reported (25, 26). MDSC are a heterogeneous group of myeloid progenitor cells and immature myeloid cells, including immature macrophages, granulocytes, and dendritic cells (DC), that impair T-lymphocyte functions by upregulating the expression of immune suppressive factors, such as arginase and inducible nitric oxide synthase, increasing the production of nitric oxide (NO) and reactive oxygen species, and inducing Treg cells (27). Moreover, it has been shown that prevalent secretion of TNF by CD4+ T cells in MHC class II-expressing melanoma promotes a local immunosuppressive environment, impairing effector CD8+ T-cell functions (28).

While it is generally admitted that CD8+ T cells are directly involved in antitumor cytotoxic responses, the role of CD4+ T cells is more controversial. Involvement of CD4+ T cells in regulating antitumor immunity was associated with their help in priming of CD8+ T cells, through activation of APC and an increase in antigen presentation by major histocompatibility complex class I (MHC-I) molecules via secretion of cytokines such as IFNγ (29, 30). More recently, it has been shown that CD4+ T-cell help optimized CTL in expression of cytotoxic effector molecules, downregulation of inhibitory receptors, and increased migration capacities (31). A role for the CD4+ T-cell subset in optimizing the antitumor immune response was supported by in vivo studies demonstrating that depletion of CD4+ T lymphocytes promotes tumor progression, whereas their adoptive transfer was correlated with improved tumor regression (32). Moreover, it has been reported that CD4+ T cells recognize most tumor-specific immunogenic mutations, and that vaccination with such CD4+ immunogenic mutations confers antitumor activity and broadens CTL responses in mice (33). Frequent recognition of neoantigens by CD4+ T cells was also observed in human melanoma (34). Notably, CD4+ CTL able to kill specific tumor cells have been described in several cancer types, including non-small-cell lung carcinoma (NSCLC), cutaneous T-cell lymphoma, and melanoma (35–39); for review, see Ref. (32). Elsewhere, TAA-specific CD4+ T-cell clones were shown to mediate HLA-Il-restricted cytotoxic activity, making them attractive effectors in cancer immunotherapy (39, 40). While CD4+ CTL are able to lyse target cells via the granule exocytosis pathway (35, 36, 41, 42), they mainly use FasL- and APO2L/TRAIL-mediated pathways to kill their target cells (35, 43).

TUMOR ANTIGENS RECOGNIZED BY T CELLS

Our fundamental knowledge of the tumor-specific T-cell response came with the discovery of tumor antigens that differentiated malignant cells from their non-transformed counterparts and
provided important input in the field of tumor immunology and cancer immunotherapy. The first human tumor antigen recognized by CTL was identified in melanoma and was designated melanoma-associated antigen (MAGE)-1 (44). Subsequently, several other antigens of the MAGE family were characterized, most of which were identified through generation of tumor cell lines and isolation of reactive autologous CTL clones. Based on their expression profile, tumor antigens were initially classified into two categories: TAA and tumor-specific antigens (TSA). TAA are relatively restricted to tumor cells, and, to a limited degree, to normal tissues, whereas TSA are expressed only in tumor cells, arising from mutations that result in novel abnormal protein production.

At present, numerous TAA have been identified in a large variety of human cancer types. They are heterogeneous in nature and were classified into at least four groups according to their expression repertoire and the source of the antigen: antigens encoded by cancer-germline genes, differentiation antigens, overexpressed antigens, and viral antigens (Table 1). Antigens encoded by cancer-germline genes are expressed in tumor cells and in cells from adult reproductive tissues, including placenta and testicular cells, and are thus designated cancer testis antigens. Differentiation antigens are expressed only in tumor cells and in the normal tissue of origin, while overexpressed antigens are derived from proteins that are overexpressed in tumors, but are expressed at much lower levels in normal tissues. Viral antigens derive from viral infection and are associated with several human cancers, including cervical carcinoma, hepatocarcinoma, nasopharyngeal carcinoma, and adult T-cell leukemia (45, 46).

The first mutant TSA, also termed neoantigens, were identified by the genetic method (46) via isolation of reactive CD8+ and CD4+ T-cell clones (Table 2). Recent accessibility to next-generation sequencing (NGS) technology and improvement in \textit{in silico} epitope prediction have contributed to identification of patient-specific tumor antigens generated by somatic mutations in individual tumors (Table 3). Notably, most mutations identified in tumor-expressed genes do not generate neoantigens recognized by cognate T lymphocytes. Moreover, a large fraction of these mutations are not shared between patients and may thus be considered patient specific (47). These neoantigens have opened up new perspectives in cancer immunotherapy. They were shown to be involved in the success of immune checkpoint inhibitor (ICI) (48–50), adoptive cell transfer (ACT) immunotherapy (51, 52), and even virally induced epithelial cancer (53) and DC-based immunotherapy (54, 55); thus, they might be of use as predictive biomarkers of the response to immunotherapy.

PROCESSING OF CD8 T-CELL EPITOPEs

Most antigenic peptides recognized by CD8+ T cells originate from degradation of intracellular proteins by proteasomes and translocation to the lumen of the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP)1/TAP2 heterodimeric complex. Once in the ER, peptides larger than 11 residues are further cleaved by ER amino-peptidase (ERAP)1 and ERAP2 before being loaded onto MHC-I molecules and presented on the surface of target cells for CD8+ T-cell recognition [for review, see Ref. (87, 88)].

Defects in the antigen-processing machinery and, in particular, in TAP subunits, have been described as a major mechanism used by several tumors to escape from CD8 T-cell immunity (89). In this context, alternative peptide degradation pathways permitting CD8 T cells to overcome this tumor evasion mechanism have been identified. Indeed, proteasome/TAP-independent CTL epitopes, generated either by the cytosolic metalloproteinase insulin-degrading enzyme or cytosolic endopeptidases nardilysin and thimet oligopeptidase, have been described (90, 91). Moreover, TAP-independent processing of antigenic peptides can be achieved by the so-called secretory pathway in which the proteolytic enzyme furine releases C-terminal peptides (92). Interestingly, peptide epitopes that emerge at the surface of cancer cells with impaired TAP function derived from self-antigens and act as immunogenic neoantigens, as they are not presented by normal cells (93). Our group identified a signal peptide-derived CD8 T-cell epitope processed independently of proteasomes/TAP, by a novel pathway involving signal peptidase and the signal peptide peptidase (94, 95). These signal sequence-derived peptides represent attractive T-cell targets that permit CTL to destroy TAP-impaired tumors and therefore correspond to promising candidates for cancer immunotherapy.

THE TCR REPERTOIRE AND ANTI-TUMOR T-CELL IMMUNITY

The TCR–CD3 complex, expressed on the T-cell surface, allows recognition of antigenic peptides bound to MHC molecules on target cells and APC, and transduction of the signal into the cytosol to initiate signaling events leading to T-cell activation (96). The TCRα- and β-chains are products of V(D)J recombination, a somatic rearrangement of the germline TCR loci occurring in T cells (97). This process leads to generation of a diverse TCR repertoire [>1015 distinct αβ-receptors or clonotypes (98)] that enables T-cell recognition of numerous foreign or mutant antigens. The TCRα- and β-chains possess three hypervariable regions, referred to as complementarity-determining regions (CDR) 1, 2, and 3. CDR3 is highly polymorphic and is directly responsible for recognition of antigenic peptides. Immunoscope/spectratype

TABLE 1 Classification of tumor-associated antigens.

Type of antigens	Antigen characteristics	Example of human tumor antigens			
Cancer-germline	Expressed only by tumor cells and adult reproductive tissues	MAGE, BAGE, GAGE, NY-ESO-1			
Differentiation	Expressed by tumors and a limited range of normal tissues	Tyrosinase, Melan-A, gp100, CEA, MART-1			
Overexpressed	Expressed by both normal and tumor cells, but much highly expressed in tumor cells	HER2, WT1, MUC1, ppCT			
Viral	Expressed only by tumor cells as a result of viral infection	HPV, HBV, EBV, HTLV			
Gene/protein	Tumor type	Human leukocyte antigen (HLA)	Peptide	Position	Reference
-----------------	------------------	-------------------------------	---------	----------	-----------
LPGAT1	Bladder tumor	B44	AEPINIQTW	262–270	(56)
CASP-8	Head and neck SCC	B35	FPSDSWCYF	476–484	(57)
Beta-catenin	Melanoma	A24	SYLDGSIHF	29–37	(58)
CDK4	Melanoma	A2	ACDPHSGHFV	23–32	(59)
CDK202A	Melanoma	A11	AVCPWTWLFG	125–133	(58)
HLA-A11d	Melanoma				
CLPP	Melanoma	A2	ILDKVLVHL	240–248	(61)
GPNMB	Melanoma	A3	TLDWLLQTPK	179–188	(62)
RBAF600	Melanoma	B7	RPHVFESA	329–337	
SJRT2	Melanoma	A3	KIFSVYTLK	192–200	
SNRPD1	Melanoma	B38	SHETVIIEL	11–19	
SNRP116	Melanoma	A3	KILDAVAQK	668–677	
MART2	Melanoma	A1	FLEGNEVGTKY	446–455	(63)
MUM-1f	Melanoma	B44	EELKIVLFL	30–38	(64)
MUM-2	Melanoma	B46	SELFSGLDSD	123–133	(65)
MUM-3	Melanoma	A68	EAFIOPTR	322–330	(66)
Myosin class I	Melanoma	A3	KINKNKPKYK	911–917	(67)
N-ras	Melanoma	A1	ILDTAGREEY	55–64	(68)
OS-9	Melanoma	B44	KELEGILL	438–446	(69)
Elongation factor 2	Lung SCC	A68	ETVSEGSNV	581–589	(70)
NFYC	Lung SCC	B52	QQITKTEV	275–282	(71)
Alpha-actinin-4	NSCLC	A2	RASNGKVLV	118–127	(72)
Malic enzyme	NSCLC	A2	FLDEFMEGV	224–232	(73)
HLA-A2	RCC	A2	SLFEGIDYT	286–295	(74)

COA-1	CRC	DR4	TLYQDDTLTLQAGE	447–46	(75)
AR1C1	Melanoma	DR1	YSVYFNLAPDIYTINH	760–771	(76)
CDC27	Melanoma	DR4	FSWAMDLPKGAE	2050–2063	(77)
FN1	Melanoma	DR2	MIFKHGRRTTTPP	315–323	(79)
LDLR-FUT fusion protein	Melanoma	DR1	WRRAPAPGA	312–320	(79)
neo-PAP	Melanoma	DR7	RVIKNSIRTLE	724–734	(80)
PTPRK	Melanoma	DR10	PYYFAELPRNLPEP	667–682	(81)
Triosephosphate isomerase	Melanoma	DR1	GELIGILNAAKVPAD	23–37	(82)

SCC, squamous cell carcinoma; RCC, renal cell carcinoma; CRC, colorectal carcinoma; NSCLC, non-small-cell lung carcinoma.

From: https://www.cancerresearch.org/scientists/events-and-resources/peptide-database (slightly modified).

technology was first used to probe the T-cell repertoire by analyzing the diversity of TCRβ (99, 100) and, more recently, TCRα (101, 102) chains without isolating peptide-reactive T cells and cloning TCR genes. It is based on the use of V and J gene-segment-specific primers for reverse transcription-polymerase chain reaction amplification of CDR3 of a bulk T-cell population from diverse biological materials such as blood and tumor tissues (103). Analyzing CDR3 polymorphisms and sequence length diversity served to follow up T-cell clonality in tumor-infiltrating lymphocytes (TIL) to investigate T-cell functions and the pattern of TCR utilization. It highlighted restriction of the CDR3 length of TCRβ- and TCRα-chains in T cells infiltrating solid tumors and hematological malignancies, including melanoma, renal cell carcinoma (RCC), neuroblastoma, NSCLC, and Sezary syndrome (19, 101, 104–109). TCRβ-chain gene usage also showed that antigen-specific T-cell clones with high functional avidity/tumor reactivity expanded only at the tumor site, but not in peripheral blood (108). Identification of TAA has led to improvement in procedures for detecting and monitoring specific antitumor T-cell responses. In this regard, combining a quantitative immuno-scope approach with MHC–peptide multimer-based T-cell sorting led to more sensitive ex vivo follow-up, by quantitation of human CD8+ T-cell responses and monitoring of T-cell subsets throughout immunotherapy clinical trials (110). Tremendous progress in characterizing the size and dynamics of the T-cell repertoire has emerged from recent advances in
Gene/protein	Tumor	Human leukocyte antigen	Peptide	Position	Reference
SETDB1	Cervical cancer	B40	VESEIAEL	17–25	(53)
METTL17	Cervical cancer	A32	RTKVQVLW	277–285	
ALDH1A1	Cervical cancer	B35	IPDGFIT	66–74	
CDKN2A	Melanoma	A2	KMIGNLWV	153–161	(55)
TKT	Melanoma	A2	AMFWSVPTV	435–443	
TMEM48	Melanoma	A2	CNEYHFL	161–169	
AKAP13	Melanoma	A2	KLNNQOQKL	278–286	
OR8B3	Melanoma	A2	QLSISTICV	186–194	
SEC24A	Melanoma	A2	FLYNLTRV	465–473	
EXOC8	Melanoma	A2	ILYAVPHV	649–658	
MRP5S	Melanoma	A2	HLYASLSRA	58–66	
PABPC1	Melanoma	B1	MLGEQFLFL	516–524	
KIF2C	Melanoma	A2	RLFQGTIKI	10–19	(52)
POLA2	Melanoma	Cw7	TRISSSSHVFV	413–422	
CCT6A	Melanoma	B27	LRITKYYAEL	156–164	(54)
TRRAP	Melanoma	A2	LLFGELLPL	774–782	
DNM1T1	Melanoma	A24	IYKAPCENW	835–843	
PABPC3	Melanoma	A24	YYPSQIOQL	416–425	
MAGE-A10	Melanoma	A24	LYNQMEHIL	259–263	
FMN2	Melanoma	A3	HSLSAPRKK	843–851	
WASL	Melanoma	B7	YPPPPRRALL	343–351	
MAGEA8	Melanoma	A1	KVDPMHYV	168–176	(83)
		B15	LMKVDPMHYV	166–176	
		Cw5	KVDPMHYVF	168–177	
PDSSA	Melanoma	Cw3	FVVPYMHLL	1000–1009	
MED13	Melanoma	A1	VSVQISSCOY	1685–1694	
		A30	VQISSCOY	1687–1694	
		B15			
FLNA	Melanoma	B7	CVRVSQGQL	2049–2057	
KIB1B	Melanoma	B7	APAVLHRRSA	1009–1018	
KFL1BP	Melanoma	A24	AYHSEEWAI	243–251	
		B38	YHSIEWAI	244–251	
		Cw12	NAYHSEEWAI	242–251	
NARFL	Melanoma	A3	KSQREVFRR	62–70	(84)
PPAR4	Melanoma	B39	RMINQGVCC	706–714	
CDC37L1	Melanoma	A2	FLSDHLYLV	181–189	
MLL3	Melanoma	B7	KPSDTTrPVM	1028–1035	
FLNA	Melanoma	B44	HAKSLFEV	364–372	
		B7	AGCMHAKSLF	361–370	
DOPEY2	Melanoma	B7	KPPFVCLSL	362–370	
TTAT2	Melanoma	B7	RPHHDORSL	1174–1182	
KIF26B	Melanoma	A11	SSSYTFANK	254–263	
SPOP	Melanoma	A2	FLLDEAIGL	141–149	
CDK4	Melanoma	A2	ALDPSGHFV	23–32	
RETSAT	Melanoma	A68	HSCVMASLR	545–553	
		B37	HDLGRLHSC	539–547	
CLINT1	Melanoma	B57	VSKILPSW	469–477	
COX7A2	Melanoma	A11	GWLHLYLR	50–88	
		B44	TEPFEGH	192–200	(48)
PPP1R3B	Melanoma	A1	YTFDHCOYY	172–180	(65)
CDK12	Melanoma	A11	CILGKLFTK	924–932	
C5NL1A1	Melanoma	A2	GLFGOYLA	26–34	
GAS7	Melanoma	A2	SLADEAVYVL	141–150	
MATN	Melanoma	A11	KTLTSVFOK	226–234	
HAUS3	Melanoma	A2	INLAMAKJ	154–162	
MIFR2	Non-small-cell lung carcinoma (NSCLC)				
CHTF18	NSCLC				
MYADM	NSCLC				
HERC1	NSCLC	A11	ASNAASSA	3274–3282	(49)
HSBDL1	Ovarian cancer	Cw14	CYMEAWA	20–27	(66)
DNA and RNA sequencing (RNAseq) technologies (111, 112). High-throughput TCR sequencing (TCR-seq) involves NGS for generating DNA sequences covering TCR CDR3 and permits quantification of T-cell diversity at very high resolution (113). Another method for profiling the TCR repertoire relies on a TCR-specific short read assembly strategy based on 5’ amplification of cDNA ends (RACE), so as to obtain TCRβ CDR3 transcript sequences and massively parallel Illumina sequencing of TCRβ CDR3 amplification products (114). This strategy avoids potential bias associated with the use of multiple primer sets required to amplify CDR3 regions from all TCRBV sequences and takes advantage of the conserved sequences of TCRBC1 and TCRBC2 genes (115, 116). High-throughput DNA-based strategy for identifying antigen-specific TCR sequences was also developed by the capture and sequencing of genomic DNA fragments encoding TCR genes (117). More recently, an optimized approach to characterizing tissue-resident T-cell (T RM) populations emerged from extraction of TCR CDR3 sequence information directly from RNAseq data sets of thousands of solid tumors and control tissues (118). This method circumvents the need for PCR amplification and provides TCR information in the context of global gene expression profiles.

Sequence-based immunoprofiling is a useful tool for monitoring the dynamics of the T-cell repertoire under physiological and pathological conditions, and in response to therapeutic interventions. In this respect, characterization of the TCR repertoire in TIL permits isolation of tumor-specific T-cell clones for use in cancer immunotherapy. TCR-seq can also be used to evaluate T-cell diversity and identify tumor-reactive T-cell clonotypes, along with potentially immunogenic neoantigen-reactive T cells (119). For instance, deep cDNA sequencing of TCR-α and β-chains enabled quantitative monitoring of the T-cell repertoire in lung cancer patients treated with cancer peptide vaccines (120). Another interesting parameter for follow-up by deep TCR-seq is the heterogeneity of T-cell density and clonality across tumor regions. Indeed, it has been shown that high intra-tumor heterogeneity of TCR is positively correlated with that of predicted neoantigens and has been associated with increased risk of disease progression (121). In contrast, maintenance of high-frequency TCR clonotypes alongside CTLA-4 blockade therapy was associated with improved overall survival in prostate cancer and melanoma (122). Moreover, high TCR clonality was associated with an increased response by melanoma patients to the programmed cell death (PD)-1 blockade, suggesting that TCR repertoire analysis could be used as a predictive marker in cancer immunotherapy (123). Indeed, elevated TCR clonality and significant T-cell clone expansion were observed in melanoma patients responding to anti-PD1 treatment (124). Overall, T-cell clonality and TCR repertoire diversity appear to be biomarkers of antitumor adaptive immunity and might also be predictive markers of responses to cancer immunotherapy.

T-CELL-BASED CANCER IMMUNOTHERAPIES

An understanding of regulation of the molecular interaction between T cells and tumor cells, together with refined T-cell engineering technologies and the discovery of TSA, gave rise to novel cancer immunotherapies with unprecedented clinical efficacy. These therapies are aimed at (re)activating and expanding tumor-specific CTL, with the goal of destroying primary cancer cells and metastases. The most effective current cancer immunotherapies include ICI, such as anti-PD-1 and anti-CTLA-4, ACT of ex vivo-expanded tumor-reactive T cells, either native (CTL clones or TIL) or engineered to express particular TCR or chimeric antigen receptors (CAR), and TSA-based cancer vaccines (peptide- or RNA-based) (84, 125–132). Moreover, increasing evidence of a link between CD8 and CD4 T-cell recognition of mutant neoepitopes and clinical responses to cancer immunotherapy strategies has been reported (34, 48–53, 55); for review, see Ref. (47).

ACT Immunotherapy

The possibility of expanding subsets of mature T cells in vitro led to development of ACT immunotherapy. The aim is to transfer a T-cell population enriched in potentially highly tumor-reactive effector cells (130, 131, 133, 134). In this context, re-infusion of ex vivo-expanded TIL displaying increased specificity toward cancer cells was developed as a means of strengthening patient spontaneous T-cell responses and overcoming tolerance to the tumor. Steven Rosenberg’s team has been one of the pioneers in the development of ACT, mainly using selected tumor-reactive T cells and TIL. Thus, clonal repopulation of T cells directed against overexpressed self-derived differentiation antigens, in combination with chemotherapy and high doses of IL-2, led to tumor regression in patients with metastatic melanoma (135, 136). Similarly, treatment of patients with uveal melanoma by adoptive transfer of autologous TIL, administered together with IL-2, resulted in objective tumor regression (137). Clinical responses were associated with the presence of tumor-resident CD8+ T lymphocytes that target tumor-specific mutant neoantigens and express the PD-1 checkpoint receptor (51, 52, 83, 138, 139). Moreover, neoantigen-reactive TCR have been identified from the most frequent clonotypes among TIL, opening up new avenues for developing a personalized TCR-gene therapy approach that targets individual sets of antigens presented by tumor cells without the need for determining their identity (140). Accordingly, neoantigen-reactive TCR have been identified, with the aim of treating patients with autologous T cells genetically modified to express such TCR (141). Nevertheless, analyses of neoantigen-specific T-cell responses in melanoma patients treated by ACT demonstrated that the T-cell-recognized neoantigens can be selectively lost over time emphasizing the importance of targeting broad TCR recognized neoantigens to avoid tumor resistance (142).

While ACT of tumor-specific T cells holds promise for melanoma treatment, significant challenges remain in clinical translation to other solid tumors. This can be explained by the observation that some tumors, referred to as “immune-desert tumors” or “cold tumors,” are rarely infiltrated by T cells, and TIL often display an exhausted state acquired in the tumor microenvironment. Indeed, TIL are characterized by high expression levels of one or several inhibitory receptors such as PD-1, CTLA-4, Tim-3, LAG-3, and TIGIT, and often display altered production
of cytokines leading to weak antitumor reactivity (143, 144); for review, see Ref. (145). Moreover, the limited life span of TIL and difficulties linked to their production, including isolation from fresh patient tumor specimens and selection based on tumor-specificity, constrain their clinical routine use.

To overcome limitations of TIL-based ACT, and due to the availability of TAA-specific TCR or antibodies, genetically engineered T cells have been developed with either tumor-specific TCR or CAR (146–149). Therefore, desired specificity was achieved by genetically modifying T cells to express a TAA-specific TCR (150–153). Candidates are selected either from the native TCR repertoire or after mutagenesis of their antigen recognition domain, the CDR3 domain, to increase the affinity of specific TCR (150–153). Moreover, the limited life span of TIL and thus their efficacy, is dependent, at least in part, on the size of the peptides. While short peptides (8–11 aa) bind directly to HLA-I molecules and mount MHC-I-restricted antigen-specific CD8+ T-cell immunity (183–185), long synthetic peptides (25–50 aa) must be taken up, processed, and presented by APC to elicit a T-cell response. Vaccination with long peptides usually results in broader immunity than with short peptides, along with induction of both CD8+ cytotoxic and CD4+ helper T cells when conjugated with efficient adjuvants (186, 187). Indeed, CD4+ T-cell help is required for generation of potent CTL and long-lived memory CD8+ T cells (186).

First-generation cancer vaccines based on non-mutant TAA, also termed shared antigens because they are expressed by many patients’ tumors, such as MART-1, gp100, tyrosinase, TRP-2, NY-ESO-1, MAGE-A3, and Her2/neu or telomerase proteins, were shown to be immunogenic and capable of inducing clinical responses in only a minority of patients with late-stage cancer (180, 188, 189). However, results showing that CD4+ T cells directed toward NY-ESO-1 cancer-germline TAA and lymphocytes genetically engineered with a NY-ESO-1-reactive TCR display antitumor activity (40, 190) support the notion that T-cell responses to a subset of non-mutant antigens contribute to the effects of current cancer immunotherapies. The limited success of these active immunotherapy approaches might be due to the inability of effector T cells to overcome tolerance to self-antigens, expression of T-cell inhibitory receptors such as CTLA-4 and PD-1, and suboptimal activation of tumor-specific T cells in an immunosuppressive tumor microenvironment (191).

The current challenge in developing more efficient second-generation cancer vaccines is based on mutant epitopes that derive from tumor neoantigens (192, 193). Non-mutant tumor neoepitopes that emerge on the target cell surface upon alteration of TAP expression, such as the self-epitope derived from the human ppCT preprohormone (94, 95), are interesting targets.
for peptide-based vaccination against immune-escaped tumors expressing low levels of pMHC-I complexes (194, 195). Recent technological advances in identifying mutation-derived tumor antigens have enabled development of patient-specific therapeutic vaccines, including peptides, proteins, DC, tumor cells, and viral vectors, that target individual cancer mutations (196). Over the past few years, examples of TSA-based personalized cancer immunotherapies have begun to emerge. For example, a durable clinical response to cancer vaccines with autologous melanoma-pulsed DC was obtained and correlated with the presence of effector memory T cells responding to mutant antigens (54). Moreover, DC-based vaccination directed at melanoma-neoepitope candidates resulted in an increase in clonal diversity of antitumor T-cell immunity and promoted a diverse neoantigen-specific TCR repertoire (55). Immunogenic personal neoantigen vaccines, based either on RNA or synthesized long peptides, have recently been developed for patients with melanoma. In this regard, personalized RNA-based mutanome vaccines, alone or in combination with anti-PD-1, induced effective T-cell responses against multiple vaccine neoepitopes and resulted in sustained progression-free survival (84). In another clinical trial, long peptide cancer vaccines that target predicted personal tumor neoantigens, administered alone or in combination with anti-PD-1, resulted in clinical benefits and induced polyfunctional CD4+ and CD8+ T cells, with expansion of the repertoire of neoantigen-specific T cells (132). Thus, a combination of neoepitope-based vaccines and ICI is promising for overcoming the anergic state of vaccine-induced T cells. These strategies open up new avenues for further development of personalized active immunotherapy, either alone or in combination with other therapies, for patients with different types of cancer (Figure 1). Personalized cancer immunotherapies offer promise of low toxicity and high specificity, and the opportunity to treat human malignancies resistant to current therapies.

CONCLUDING REMARKS

The success of cancer immunotherapy relies on the induction of immune effector mechanisms associated with generation of high-avidity tumor-specific CTL. To further improve their antitumor
effectiveness, and for more robust long-term disease control, a deeper understanding of host-tumor interactions and tumor immune escape strategies is required. Overcoming immune tolerance/suppression pathways within the tumor microenvironment, which may hinder the potency of immunotherapeutic approaches, is a major challenge in the field of tumor immunology and immunotherapy. In this context, optimizing the therapeutic potential of the immune system relies on a combination of different approaches, mainly cancer vaccines with ICI and/or ACT, which synergistically enhance antitumor T-cell responses. Selection of the right adjuvant or neoadjuvant, such as TLR agonists, is necessary to improve the immunogenicity of peptide-based vaccines, by targeting antigens to competent APC (and, in particular, DC, capable of cross-presentation and delivering of stimuli to activate both specific CD4+ and CD8+ T cells). Moreover, alternative routes of peptide administration for improved target delivery would help to induce strong long-lasting antitumor T-cell responses and thus improve clinical outcome. Therapeutic cancer vaccines combining both TAP-dependent and TAP-independent epitopes might also boost tumor-specific CD8 T-cell immunity, prevent immune escape mechanisms developed by malignant cells, and thereby potentiate current cancer immunotherapies. Remarkably, targeting of non-self tumor-specific neoantigens, generated by somatic mutations, has gained increasing interest over the past few years. Rising accessibility to NGS technologies, improved in silico prediction of truly immunogenic mutant peptides and easy peptide manufacturing are promising approaches to identifying patient-specific neoepitopes and evaluating their potential use in both diagnosis and treatment. The utility of highly immunogenic neoantigens for personalizing therapeutic cancer vaccines will open up new perspectives for the refinement of current cancer immunotherapies.

AUTHOR CONTRIBUTIONS

FMC, AD, and SC: design and writing. YV: writing.

ACKNOWLEDGMENTS

This work was supported by grants from Association pour la Recherche sur le Cancer (ARC) and the Institut National du Cancer (INCa). SC is a recipient of a fellowship from INCa.

REFERENCES

1. Bossi G, Trambas C, Booth S, Clark R, Stinchcombe J, Griffiths GM. The secretory synapse: the secrets of a serial killer. *Immunol Rev* (2002) 189:152–60. doi:10.1034/j.1600-065X.2002.18913.x
2. Anikeeva N, Somersalo K, Sims TN, Thomas VK, Dustin ML, Sykulev Y. Differentially induced expression of C-type lectins in activated lymphocytes. *J Cell Biochem Suppl* (2001) Suppl 36:201–8. doi:10.1002/jcb.1107
3. Eagle RA, Trowsdale J. Promiscuity and the single receptor: NKG2D. *Nat Rev Immunol* (2007) 7(9):737–44. doi:10.1038/nri2144
4. Maccalli C, Nonaka D, Piris A, Pende D, Rivoltini L, Castelli C, et al. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. *J Exp Med* (2007) 204(3):559–70. doi:10.1084/jem.20061524
5. Eichler W, Ruschpler P, Wobus M, Drossler K. Differentially induced expression of C-type lectin in activated lymphocytes. *J Cell Biochem Suppl* (2001) Suppl 36:201–8. doi:10.1002/jcb.1107
6. Eichler W, Ruschpler P, Wobus M, Drossler K. Differentially induced expression of C-type lectin in activated lymphocytes. *J Cell Biochem Suppl* (2001) Suppl 36:201–8. doi:10.1002/jcb.1107
7. Wang E, Sellari S, Marincola FM. The requirements for CTL-mediated rejection of cancer in humans: NKG2D and its role in the immune responsiveness of melanoma. *Clin Cancer Res* (2007) 13(24):7228–31. doi:10.1158/1078-0432.CCR-07-1166
8. Weynants P, Thonnard J, Marchand M, Delos M, Boon T, Coulie PG. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis. *J Exp Med* (2007) 204(3):559–70. doi:10.1084/jem.20061524
9. Cosman D, Mullberg J, Sutherland CL, Chin W, Armitage R, Fanselow W, et al. ULBP, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. *Immunol Today* (2001) 21(1):e22837. doi:10.4161/onci.22837
10. Ye Q, Song DG, Powell DJ. Finding a needle in a haystack: activation-induced CD137 expression accurately identifies naturally occurring tumor-reactive T cells in cancer patients. *Oncology Immunology* (2013) 21(2):e27184. doi:10.4161/onci.27184
11. Croft M. The role of TNF superfamily members in T-cell function and diseases. *Nat Rev Immunol* (2009) 9(4):271–85. doi:10.1038/nri2526
12. Davis SJ, Ikemizu S, Evans EJ, Fugger L, Bakker TR, van der Merwe PA. The nature of molecular recognition by T cells. *Nat Immunol* (2003) 4(3):217–24. doi:10.1038/nih303-217
13. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. *Nat Med* (1997) 3(6):682–5. doi:10.1038/nn0697-682
14. Sugarman K, Ishii N, Weinberg AD. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. *Nat Rev Immunol* (2004) 4(6):420–31. doi:10.1038/nri1371
15. Baurain JF, Chiari R, Thonnard J, Gutierrez-Roelens I, Karanikas V, Colau D, Chiari R, Thonnard J, Gutierrez-Roelens I, et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. *Immunol Today* (2001) 21(1):e22837. doi:10.4161/onci.22837
16. Echchakir H, Vergnon I, Dorothee G, Grunenwald D, Chouaib S, Chouaib F. Evidence for in situ expansion of diverse antitumor-specific cytotoxic T lymphocyte clones in a human large cell carcinoma of the lung. *Int Immunol* (2000) 12(4):357–46. doi:10.1093/intimm/12.4.357
17. Karanikas V, Colau D, Baurain JF, Chiari R, Thonnard J, Gutierrez-Roelens I, et al. High frequency of cytolytic T lymphocytes directed against a tumor-specific mutated antigen detectable with HLA tetramers in the blood of a lung carcinoma patient with long survival. *Cancer Res* (2001) 61(9):3718–24.
18. Slingluff CL Jr, Cox AL, Stover JM Jr, Moore MM, Hunt DF, Engelhard VH. Cytotoxic T-lymphocyte response to autologous human squamous cell cancer of the lung: epitope reconstitution with peptides extracted from HLA-Aw68. *Cancer Res* (1994) 54(10):2731–7.
19. Derivation of tumor-specific cytolytic T-cell clones from two lung cancer patients with long survival. *Am J Respir Crit Care Med* (1999) 159(1):55–62. doi:10.1164/ajrccm.159.1.9803073
20. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. *N Engl J Med* (2005) 353(25):2654–66. doi:10.1056/NEJMoa051424
63. Kawakami Y, Wang X, Sho福田 T, Sumimoto H, Tupesis J, Fitzgerald E, et al. Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor-infiltrating T lymphocytes. J Immunol (2001) 166(4):2871–7. doi:10.4049/jimmunol.166.4.2871

64. Couliou PG, Lehmann F, Lethe B, Herman J, Lurquin C, Andrawis M, et al. A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A (1995) 92(17):7976–80. doi:10.1073/pnas.92.17.7976

65. Chiari R, Foury F, De Plaen E, Baurain JF, Thonnard J, Coulie PG.

66. Baurain JF, Colau D, van Baren N, Landry C, Martelange V, Vikkula M, et al. High frequency of autologous anti-melanoma CTL, directed against an antigen generated by a point mutation in a new helicase gene. J Immunol (2000) 164(11):6057–66. doi:10.4049/jimmunol.164.11.6057

67. Zorn E, Hercend T. A natural cytotoxic T cell response in a spontaneously regressing human melanoma targets a neoantigen resulting from a somatic point mutation. Eur J Immunol (1999) 29(2):592–601. doi:10.1002/sici.1521-4141(199909)29:2<592::aid-immu359>3.0.co;2-2

68. Linard B, Bezieau S, Benalam H, Labarriere N, Guilloux Y, Diez E, et al. A ras-mutated peptide targeted by CTL infiltrating a human melanoma lesion. J Immunol (2000) 168(9):4802–8. doi:10.4049/jimmunol.168.9.4802

69. Wang HY, Peng G, Guo Z, Shevach EM, Wang RF. Recognition of a new melanoma antigen, MART-2, containing a mutated elongation factor 2 gene. Cancer Res (2000) 60(9):2653–9. doi:10.1128/cancerres.60.9.2653

70. Hogan KT, Eisinger DP, Cupp SB III, Lekstrom KJ, Deacon DD, Shanobowitz J, et al. The peptide recognized by HLA-A68.2-restricted, squamous cell carcinoma of the lung-specific cytotoxic T lymphocytes is derived from a mutated elongation factor 2 gene. Cancer Res (1998) 58(22):5144–50.

71. Takenoyma M, Baurain JF, Yasuda M, So T, Sugaya M, Hanagiri T, et al. A point mutation in the NF1C gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int J Cancer (2006) 118(8):1992–7. doi:10.1002/ijc.21594

72. Echchakir H, Mami-Chouaib F, Vergnon I, Baurain JF, Karanikas V, Chouaib S, et al. Identification of a new melanoma antigen, MART-2, containing a mutated fibronectin as a tumor antigen recognized by CD4+ T cells. J Immunol (2003) 170(12):6363–70. doi:10.4049/jimmunol.170.12.6363

73. Pieper R, Christian RE, Gonzales MI, Nishimura MI, Gupta G, Setitlage RE, et al. Biochemical identification of a mutated human melanoma antigen recognized by CD4+ T cells. J Exp Med (1999) 189(5):757–66. doi:10.1084/jem.189.5.757

74. Gros A, Parkhurst MR, Tran E, Passetto A, Robbins PF, Iljas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med (2016) 22(4):433–8. doi:10.1038/nm.4051

75. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature (2017) 547(7662):222–6. doi:10.1038/nature23003

76. Robbins PF, Lu YC, El-Gamil M, Li YE, Gross C, Gartner J, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med (2013) 19(6):747–52. doi:10.1038/nm.3161

77. Wick DA, Webb JR, Nielsen JS, Martin SD, Kroeger DR, Milke K, et al. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancer. Clin Cancer Res (2014) 20(5):1125–34. doi:10.1158/1078-0432.CCR-13-2147

78. Wang HY, Zhou J, Zhu K, Riker AI, Marincola FM, Wang RF. Identification of a mutated receptor-like protein tyrosine phosphatase kappa as a novel, class II HLA-restricted melanoma antigen. J Immunol (2003) 170(12):6363–70. doi:10.4049/jimmunol.170.12.6363

79. Novellino L, Renkvist N, Rini F, Mazzocchi A, Rivoltini L, Greco A, et al. Identification of a mutated receptor-like protein tyrosine phosphatase kappa
101. Xin-Sheng Y, Zheng-Jun X, Li M, Wan-Bang S, Wei-Yang Z, Qian W, et al. Analysis of the CD3R region of alpha/beta T-cell receptors (TCRs) and TCR βD gene double-stranded recombination signal sequence breaks end in peripheral blood mononuclear cells of T-lineage acute lymphoblastic leukemia. *Clin Lab Haematol* (2006) 28(6):405–15. doi:10.1111/j.1365-2257.2006.00827.x

102. Wang CY, Fang YX, Chen GH, Jia HJ, Zeng S, He XR, et al. Analysis of the CD3R length repertoire and the diversity of T cell receptor alpha and beta chains in swine CD4+ and CD8+ T lymphocytes. *Mol Med Rep* (2017) 16(1):73–86. doi:10.3892/mmr.2016.5981

103. Ria F, van den Elzen P, Madakamutil LT, Miller JE, Maverakis E, Sercarz EE. Molecular characterization of the T-cell repertoire using immunoscope analysis and its possible implementation in clinical practice. *Curr Mol Med* (2001) 1(3):297–304. doi:10.2174/1566524013363690

104. Even J, Lim A, Puissieux I, Ferradini P, Dietrich PY, Toubert A, et al. T-cell repertoire in healthy and diseased human tissues analysed by T-cell receptor beta-chain CD3R size determination: evidence for oligoclonal expansions in tumours and inflammatory diseases. *Res Immunol* (1995) 146(2):65–80. doi:10.1016/0923-2494(96)80240-9

105. Gaudin C, Dietrich PY, Robache S, Guillard M, Escudier B, Lacambre MJ, et al. In vivo local expansion of clonal T-cell subpopulations in renal cell carcinoma. *Cancer Res* (1995) 55(3):685–90.

106. Valteau D, Scott V, Carcelain G, Hartmann O, Escudier B, Hercend T, et al. T-cell receptor repertoire in neuroblastoma patients. *Cancer Res* (1996) 56(2):362–9.

107. Echchakir H, Asselin-Paturel C, Dorratho G, Vergnon I, Grunewald D, Chouaib S, et al. Analysis of T-cell receptor-beta-chain gene usage in peripheral-blood and tumor-infiltrating lymphocytes from human non-small-cell lung cancers. *Int J Cancer* (1999) 81(2):205–13. doi:10.1002/(SICI)1097-0215(19990401)81:2<205::AID-IJC7>3.0.CO;2-M

108. Echchakir H, Dorratho G, Vergnon I, Menez J, Chouaib S, Mami-Chouaib F. Cytoxic T-lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. *Proc Natl Acad Sci U S A* (2002) 99(14):9358–63. doi:10.1073/pnas.142308199

109. Ingen-Housz-Oro S, Busse A, Flageul B, Michel D, Dubertret L, Kourilsky P, et al. A prospective study on the evolution of the T-cell repertoire in patients with Sezary syndrome treated by extracorporeal photopheresis. *Blood* (2002) 100(6):2168–74.

110. Lim A, Baron V, Ferradini L, Bonneville M, Kourilsky P, Pannetier C. Combination of MHC-peptide multimer-based T-cell sorting with the immunoscope permits sensitive ex vivo quantitation and follow-up of T-cell immune responses. *Blood* (2002) 100(6):2168–74.

111. Holt RA, Jones SJ. The new paradigm of flow cell sequencing. *Genome Res* (2009) 19(10):1817–24. doi:10.1101/gr.092924.109

112. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EI, Robert L, et al. PD-1 blockade reveals markers of response and resistance. *Sci Transl Med* (2017) 9(379):eaah3560. doi:10.1126/scitranslmed.aah3560

113. Woodsworth DJ, Castellarin M, Holt RA. Sequence analysis of T-cell repertoire diversity and its correlation to clonal and TCR clonality. *Immunoscope* (2008) 9:50. doi:10.1186/1471-2172-9-50

114. Fang H, Yamaguchi R, Liu X, Daigo Y, Yew PY, Tanikawa C, et al. Quantitative T-cell repertoire analysis by deep cDNA sequencing of T-cell receptor alpha and beta chains using next-generation sequencing (NGS). *Oncoimmunology* (2014) 3(12):e3036161. doi:10.2147/oncotr.121132

115. Reuben A, Gittelman R, Gao J, Zhang J, Yusu EC, Wu CJ, et al. TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. *Cancer Discov* (2017) 7(10):1088–97. doi:10.1158/2155-2920.CD-17-0236

116. Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Fahm M, et al. Improved survival with T-cell clonotype stability after anti-CCTA-4 treatment in cancer patients. *Sci Transl Med* (2016) 8(338):338ra70. doi:10.1126/scitranslmed.3008211

117. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. *Sci Transl Med* (2017) 9(379):eaah3560. doi:10.1126/scitranslmed.aah3560

118. Durgeau et al. Optimizing Antitumor CD8 T-Cell Immunity

119. Naqvi S, Campbell M, Verma N, Atashkar S, Zhou Y, Atashkar HS, et al. Personalized neoantigen vaccine for patients with melanoma. *Science* (2016) 350(6257):207–11. doi:10.1126/science.aad0095

120. Fang H, Yamaguchi R, Liu X, Daigo Y, Yew PY, Tanikawa C, et al. Quantitative T-cell repertoire analysis by deep cDNA sequencing of T-cell receptor alpha and beta chains using next-generation sequencing (NGS). *Oncoimmunology* (2014) 3(12):e3036161. doi:10.2147/oncotr.121132
Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. *Cell* (2016) 167(2):397–404.e9. doi:10.1016/j.cell.2016.08.069

Pulack K, Banchereau J. Cancer immunotherapy via dendritic cells. *Nat Rev Cancer* (2012) 12(4):265–77. doi:10.1038/nrc3258

Finn OJ. Human tumor antigens yesterday, today, and tomorrow. *Cancer Immunol Res* (2017) 5(5):347–54. doi:10.1158/2326-6066.CIR-17-0112

Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM, et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? *J Natl Cancer Inst* (2002) 94(11):805–18. doi:10.1093/jnci/94.11.805

Miller MJ, Foy KC, Kaumaya PT. Cancer immunotherapy: present status, future perspective, and a new paradigm of peptide immunotherapeutics. *Discov Med* (2013) 15(82):166–76.

Boon T, Coulié PG, Van den Eynde B. Human T cell responses against melanoma. *Annu Rev Immunol* (2006) 24:175–208. doi:10.1146/annurev.immunol.24.021605.090733

Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. *Nat Med* (1998) 4(3):321–7. doi:10.1038/7332

Speiser DE, Baumgartner P, Voelter V, Devevre E, Barbey C, Rufer N, et al. Unmodified self antigen triggers human CD8 T cells with stronger tumor reactivity than altered antigen. *Proc Natl Acad Sci U S A* (2008) 105(10):3849–54. doi:10.1073/pnas.0800080105

Quakkelaar ED, Melief CJ. Experience with synthetic vaccines for cancer and persistent virus infections in nonhuman primates and patients. *Adv Immunol* (2012) 114:77–106. doi:10.1016/S0065-2776(12)39548-6.00004-4

Meliaf CJ, van Hall T, Arens R, Essendorp F, van der Burg SH. Therapeutic cancer vaccines. *J Clin Invest* (2015) 125(9):3401–12. doi:10.1172/JCI80009

Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. *Nat Med* (2004) 10(9):909–15. doi:10.1038/nm1100

Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? *Immunol Rev* (2011) 239(1):27–44. doi:10.1111/j.1600-065X.2010.00979.x

Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. *Clin Cancer Res* (2015) 21(5):1019–27. doi:10.1158/1078-0432.CCR-14-2708

van der Burg SH, Arens R, Essendorp F, van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. *Nat Rev Cancer* (2016) 16(4):219–33. doi:10.1038/nrc.2016.16

Heemsberk B, Kvistborg P, Schumacher TN. The cancer antigenome. *EMBO J* (2013) 32(2):194–203. doi:10.1038/emboj.2012.333

Tran E, Robbins PF, Rosenberg SA. ‘Final common pathway’ of human cancer immunotherapy: targeting random somatic mutations. *Nat Immunol* (2017) 18(3):255–62. doi:10.1038/nri.3682

Oliveira CG, Querido R, Sluijter M, de Groot AF, van der Zee R, Rabelink MJ, et al. New role of signal peptide peptidase to liberate C-terminal peptides for MHC class I presentation. *J Immunol* (2013) 191(8):4020–8. doi:10.4049/jimmunol.1301496

Doodruijn EM, Sluijter M, Querido BJ, Oliveira CC, Achour A, Essendorp F, et al. TAP-independent self-peptides enhance T cell recognition of immune-escaped tumors. *J Clin Invest* (2016) 126(2):784–94. doi:10.1172/JCI83671

Butterfield LH. Cancer vaccines. *BMJ* (2015) 350:h988. doi:10.1136/bmj.h988

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Durgeau, Virk, Corgnac and Mami-Chouaib. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.