Biological Activities of Snowdrop (Galanthus spp., Family Amaryllidaceae)

Chee Kei Kong1,2, Liang Ee Low3,4, Wei Sheng Siew5, Wei-Hsum Yap5, Kooi-Yeong Khaw1, Long Chiau Ming6, Andrei Mocan7,8, Bey-Hing Goh1,9,10 and Poh Hui Goh6*

1Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia, 2Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 3Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 4Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China, 5School of Biosciences, Taylor’s University, Subang Jaya, Malaysia, 6PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei, 7Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania, 8Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Science and Veterinary Medicine, Cluj-Napoca, Romania, 9College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 10Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya, Malaysia

Snowdrop is an iconic early spring flowering plant of the genus Galanthus (Amaryllidaceae). Galanthus species (Galanthus spp.) are economically important plants as ornaments. Galanthus spp has gained significant scientific and commercial interest due to the discovery of Galanthamine as symptomatic treatment drug for Alzheimer disease. This review aims to discuss the bioactivities of Galanthus spp including anticholinesterase, antimicrobial, antioxidant and anticancer potential of the extracts and chemical constituents of Galanthus spp. This review highlights that Galanthus spp. as the exciting sources for drug discovery and nutraceutical development.

Keywords: snowdrop, galanthus, bioactivities, galanthamine, lycorine

INTRODUCTION

Amaryllidaceae family comprises about 85 genera and classified into 1,100 perennial bulb species (Bulduk and Karafakoğlu, 2019). The genus Galanthus, commonly known as “snowdrop” belongs to the family of Amaryllidaceae. It is a small genus comprises about 20 species of bulbous perennial herbaceous plants, and a small number of subspecies, varieties and natural hybrids (Rønsted et al., 2013; World Checklist of Selected Plant Families, 2020). Galanthus in Greek means “gala” for milk and “anthos” for flower, literally milk-white flowers (Lee, 1999). Native to Europe, their distribution also spread to Asia Minor (southwest Asia) and the Near East, including the eastern parts of Turkey, the Caucasus Mountain and Iran (Figure 1) (Semerdjieva et al., 2019).

Snowdrop are economically important thanks to their ornamental potential and their use as landscape plants (Semerdjieva et al., 2019). Despite their ornamental properties, snowdrops have been used in folk medicine to treat pain, migraine and headache. It contains a variety of secondary metabolites such as flavonoids, phenolics, terpenoids and some important alkaloids that have shown to possess a broad spectrum of biological activities (Semerdjieva et al., 2019). Over the past three decades, many alkaloids isolated from the Galanthus spp. including isoquinoline-like compounds such as caranine, narciclasine, tazettine, narwedine and montanine were reported to exhibit acetylcholinesterase inhibitory potential, antibacterial, antifungal, antiparasitic (malaria), antiviral, antioxidant, anticancer, anti-inflammatory...
activities. (Elgorashi et al., 2003; Orhan and Şener, 2003; Ločárek et al., 2015; Resetár et al., 2017). The main constituents with pharmacological action present in the snowdrop, especially in the bulbs are galanthamine and lycorine (Ayaz et al., 2019).

Galanthamine, an alkaloid of Galanthus woronowii Losinsk was reported by Proskurnina and Areshkina in 1947, (Proskurnina and Areshkina, 1953). Also, from the same family, galanthamine was purified and characterized from the bulbs of the G. nivalis L. by

![FIGURE 1](image1.jpg) Worldwide’s distribution of the Galanthus spp. throughout the United Kingdom and Spain (non-native), Europe (Romania, Bulgaria, etc..) and Southwest Asia (Turkey, Ukraine, Iran).

![FIGURE 2](image2.jpg) Examples of some commonly found Galanthus spp. (A) Galanthus nivalis (B) Galanthus elwesi (Giant or great snowdrops) (B) Galanthus gracilis (C) Galanthus ikariae (D) Galanthus trojanus. Adapted from Davis (2011).
TABLE 1 | Galanthus spp.’s common names and scientific names.

Common snowdrop	Plant full scientific name	Voucher specimen deposition
Giant or great snowdrop	Galanthus elwesii Hook.f.	Royal Botanic Gardens, Kew
Graceful or slender snowdrop	Galanthus gracilis Celak.	Royal Botanic Gardens, Kew
Ikaria snowdrop	Galanthus ikariae Baker.	Royal Botanic Gardens, Kew
Trojanus snowdrop	Galanthus trojanus A.P.Davis & Özhatay	Royal Botanic Gardens, Kew
Queen Olga’s snowdrop	Galanthus reginae-olgae Orph.	Royal Botanic Gardens, Kew
Subspecies of Queen Olga’s snowdrop	Galanthus reginae-olgae Orph. subsp. vernalis Kamari	—
Hybrids of G. nivalis and G. plicatus subsp. byzantinus	Galanthus xvalentinei nothosubsp. subplicatus*	—
Short snowdrop	Galanthus rizehensis Stern	Royal Botanic Gardens, Kew
Snowdrop Cilician	Galanthus ciliacus Baker.	Royal Botanic Gardens, Kew
Gol-e-Barfi	Galanthus transcaucasicus Formin	Royal Botanic Gardens, Kew
Pleated snowdrop	Galanthus plicatus M.Bieb.	Royal Botanic Gardens, Kew
Subspecies of Pleated snowdrop	Galanthus plicatus subsp. byzantinus (Baker) D.A.Webb	Royal Botanic Gardens, Kew
Lagodekhsy snowdrop	Galanthus lagodechianus Kern-Nath.	Royal Botanic Gardens, Kew
Green snowdrop or Woronow’s snowdrop	Galanthus woronowii Losinsk.	Royal Botanic Gardens, Kew
Krasnov snowdrop	Galanthus krasnovi Khokhr.	Royal Botanic Gardens, Kew
→	Galanthus alpinus Sosin.	—
Broad-leaved snowdrop	Galanthus platyphyllus Traub & Moldenke (previously known as G. lastifolius)	—
Caucasian snowdrop	Galanthus caucasicus (Baker) Grosh. (now accepted as Galanthus alpinus var. alpinus)	Royal Botanic Gardens, Kew
Kemaria	Galanthus kemariae Kuth. (now accepted as Galanthus lagodechianus Kern-Nath.)	—
Rare snowdrop	Galanthus shaoricus Kern-Nath*	—
→	Galanthus peshmenii A.P.Davis & C.D.Brickell	—

*Not found in http://powo.science.kew.org.

Dimatar Paskov

Galanthamine has been used as the promising drug (known as Nivalin) for the symptomatic treatment Alzheimer’s disease (AD) (Paskov, 1959; Ayaz et al., 2019). In addition, lectins agglutinin (GNA) were discovered from Galanthus nivalis.

In this review, we discuss the traditional uses and report all published data in relation to their secondary metabolites and biological activities of snowdrops.

THE SNOWDROP PLANTS (GALANTHUS SPP.)

Snowdrops are tiny plants (3 to 6 inches tall) with (1 inch or less) white flowers. Each snowdrop bulb produces two linear narrow grassy leaves and a single flower with a delicate small white drooping bell shaped flower. The snowdrop has no petal, but tepal. The outer three are longer pure white, while the smaller inner three are shorter and blushed with green markings (Aschan and Pfanz, 2006). There are many different varieties and species of snowdrop flowers that differs in terms of the size of the tepals and the green markings. As the name suggests, snowdrops are winter-to-spring flowering plants, of which Galanthus nivalis is the first and most common species of the genus (Figure 2; Table 1) to bloom during the end of the winter taking advantage of the lack of tree canopy to capture sunlight for photosynthesis and growth (Orhan and Şener, 2003). Wild snowdrops grow in damp soil in the temperate deciduous woodlands, for example oak (Quercus spp.), maple (Acer spp.), pines (Pinus spp.), cedar of Lebanon (Cedrus libani), particularly nearby shady areas, near river or streams (Elgorashi et al., 2003). Galanthus spp. are difficult to distinguish and classify due to high variability of morphological characteristics which is not clearly definable, which led to multiple taxonomic revisions Galanthus over the years (Ronsted et al., 2013). Currently, all species of Galanthus are classified as Critically Endangered (CR) under International Union for Conservation of Nature (IUCN) Red List Categories and Appendix II of the Convention on International Trade (CITES) in the list of Wild Fauna and Flora. The endangered status of Galanthus is due to its susceptibility to climate change, plucking and forestry and unregulated Galanthus bulb trade (International Union for Conservation of Nature, 2018). It is noteworthy that under CITES regulations, only rural communities in many countries are allowed in limited wild harvest and trade of just three species (G. nivalis, G. elwesii, and G. woronowii) (Bishop et al., 2001).

SNOWDROP IN FOLKLORE

For centuries, the snowdrops have been used as a remedial herb to ease migraines and headaches. Plaitakis and Duvoisin believed the oldest record on snowdrop (Galanthus nivalis L.) was found in ancient Homer’s epic poem, where snowdrop is described as ‘moly’ and used by Odysseus as an antidote against Circe’s poisonous drugs (Plaitakis and Duvoisin, 1983). According to an unconfirmed report in the early 1950s, a Bulgarian pharmacologist noticed people of the remote areas rubbing their foreheads with the plant leaves and bulbs as a folk remedy to relieve nerve pain (Mashkovsky and Kruglikova-Lvova, 1951). Besides, some of the earlier publications had left traces that of evidences on the extensive use of snowdrop in Eastern Europe, such as Romania, Ukraine, the Balkan Peninsula, as well as in some Eastern
TABLE 2 | Pharmacological activities of Snowdrop.

Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dose^a	Positive control	Possible mechanism of action	Compounds	Isolation/Detection methods	References
Cholinesterase	Galanthus nivalis L.	Bulb	Ethanol extract	AChE	96%	—	—	—	—	Rhee et al. (2003)
Galanthus elwesii Hook. f.	Bulb	Chloroform:methanol (1:1)	AChE	73.18%	Galanthamine	—	—	—	—	Orhan and Søner (2005)
Galanthus ikariae Baker	Bulb	Chloroform:methanol (1:1)	AChE	77.23%	Lycorine	Column chromatography and preparative TLC	—	—	—	—
Galanthus reginae-olgae Orph. subsp. vernalis Kamari	Bulb	Methanol extract	AChE	Lycorine	75.56%	Lycorine	—	—	—	—
Galanthus reginae-olgae Orph. subsp. vernalis Kamari	Aerial	Alkaloid extract	AChE	76.96%	Physostigmine	—	—	—	—	Confidt et al. (2010)
Galanthus gracilis Celak.	Bulb	Methanol extract	AChE	18.2 ± 0.81%	Physostigmine	—	—	—	—	GCMS
Galanthus gracilis Celak.	Aerial	Alkaloid fraction	AChE	10.2 ± 0.04%	Physostigmine	—	—	—	—	GCMS
Galanthus gracilis Celak.	Aerial	Alkaloid fraction	AChE	1.2 ± 0.04%	Physostigmine	—	—	—	—	GCMS
Galanthus gracilis Celak.	Aerial	Alkaloid fraction	AChE	1.2 ± 0.06%	Physostigmine	—	—	—	—	GCMS
Galanthus gracilis Celak.	Aerial	Alkaloid fraction	AChE	11.8 ± 0.72%	Physostigmine	—	—	—	—	GCMS
Galanthus xvalentinei	Bulb	Alkaloid fraction	AChE	IC₅₀ 11.82 μg/ml	Galanthamine	—	—	—	—	Bozkurt-Sarikaya et al. (2014)
Galanthus xvalentinei	Aerial	Alkaloid fraction	AChE	IC₅₀ 20.5 μg/ml	Galanthamine	—	—	—	—	Bozkurt-Sarikaya et al. (2014)
Galanthus xvalentinei	Aerial	Alkaloid fraction	AChE	IC₅₀ 21.31 μg/ml	Galanthamine	—	—	—	—	Bozkurt-Sarikaya et al. (2014)
Galanthus xvalentinei	Aerial	Alkaloid fraction	AChE	Lycorine	1.48 μg/ml	Lycorine	—	—	—	—

^a Effective dose: The concentration of the extract that inhibits 50% of the enzyme activity (IC₅₀).
Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dose^a	Positive control	Possible mechanism of action	Compounds	Isolation/ Detection methods	References	
Galanthus elwesii Hook.f.	Aerial (Location: Karaburun, Izmir)	Aerial	Alkaloid fraction	AChE	IC₅₀: 0.72 μg/ml	Galanthamine (IC₅₀: 0.04) μg/ml	BuChE	IC₅₀: 0.711 μg/ml	Galanthamine, O-methylleucotamine, Sanguinine, Incarnine, Osiconarine	GOMS	Bozkurt et al. (2017)
Galanthus elwesii Hook.f.	Bulb (Location: Karaburun, Izmir)	Aerial	Alkaloid fraction	AChE	IC₅₀: 2.30 μg/ml	Galanthamine (IC₅₀: 0.06) μg/ml	BuChE	IC₅₀: 0.711 μg/ml	Galanthamine, O-methylleucotamine, Sanguinine, Incarnine, Osiconarine	GOMS	Bozkurt et al. (2017)
Galanthus elwesii Hook.f.	Aerial (Location: Demirci, Manisa)	Aerial	Alkaloid fraction	AChE	IC₅₀: 6.25 μg/ml	Galanthamine (IC₅₀: 0.06) μg/ml	BuChE	IC₅₀: 0.711 μg/ml	Galanthamine, Sanguinine, Demethylhomolycorine, O-methylleucotamine, Lycorine, Anhydrolycorine, Hippeastrine	GOMS	Bozkurt et al. (2017)

Table 2: (Continued) Pharmacological activities of Snowdrop.
TABLE 2 | (Continued) Pharmacological activities of Snowdrop.

Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dose	Positive control	Possible mechanism of action	Compounds	Isolation/ Detection methods	References
Bulb (Location: Darıncı, Manisa)	Alkaloid fraction	Alkaloid fraction	BuCHE	Galanthamine (IC₅₀: 0.711 μg/ml)	IC₅₀: 15.85 μg/ml	Galanthamine, Incatine, Lycore, Antholycorena And Hordenine, Isatina, Dimethylmatdine, 2,11-Didehydro-2-Didehydroxyenic, Assanine, 11,12-Didehydroxyenic, Hippastrine	Homodycine, Isatine, Galadin, Galanthindole, Tapetina, Dimethylhomodycine, Galvane	GCMS	Bozkurt et al. (2020)	
Galanthus peshmenii A.P.Davis and C.D.Brickell	Whole plant	-	AChE	IC₅₀: 49.04 μg/ml	Galanthamine (AChE IC₅₀: 0.043 μg/ml) BuCHE (IC₅₀: 0.711 μg/ml)	Homodycine, Isatine, Galadin, Galanthindole, Tapetina, Dimethylhomodycine, Galvane	Graciline, 5,6-dihydrobicyclocone, galanthindole, 6-O methylpretazettine, tapetine, homodycine, demethylhomodycine, 3-O-demethylmacronine, hippastrine	GCMS		
Galanthus Gracilis Celak.	Bulb	Alkaloid fraction	Alkaloid fraction	BuCHE	IC₅₀: 42.05 μg/ml	O-methylbelleradine, lycine, graciline, 5,6-dihydrobicyclocone, vitatine, galanthindole, 11,12-dihydroxyenic, tapetine, 11-OH vitatine, lycine, homodycine, pinoareol	Homodycine, Isatine, Galadin, Galanthindole, Tapetina, Dimethylhomodycine, Galvane	GCMS		
Galanthus kremai Krokhr.	Bulb	Alkaloid fraction	Alkaloid fraction	BuCHE	IC₅₀: 69.83 μg/ml	Hordenine, O-methylbelleradine, 1-acetyl B-Carboline, Sphreeridine, 5.6-dihydrobicyclocone, Vitatine, 11,12-dihydroxyenic, Dimethylhomodycine, Antholycorena, 11-OH vitatine, 11,12-didehydroxyenic, Pseudolycoline	Homodycine, Isatine, Galadin, Galanthindole, Tapetina, Dimethylhomodycine, Galvane	GCMS		
Galanthus transcaucasicus Fomin	Bulb	Ethanol extract	Ethanol extract	BuCHE	IC₅₀:14.91 μg/ml	Disruption of membrane structure by inhibiting enzymes in cell wall biosynthesis, protein synthesis and nucleic acid synthesis.	Hordenine, O-methylbelleradine, 1-acetyl B-Carboline, 11,12-dihydroxyenic, Antholycorena, 11-OH vitatine, 11,12-didehydroxyenic, Pseudolycoline	HPLC, GCMS	Kitamli et al. (2018)	
Galanthus pilatus subsp. galanthus (Balzar) D.A. Webb	Aerial	Ethanol extract	Ethanol extract	BuCHE	IC₅₀: 2.23 μg/ml					
Galanthus transcaucasicus Fomin	Bulb	Methanol extract	Methanol extract	BuCHE	IC₅₀: 2.23 μg/ml					
Galanthus transcaucasicus Fomin	Rower	Methanol extract	Methanol extract	BuCHE	IC₅₀: 2.23 μg/ml					

(Continued on following page)
TABLE 2 (Continued) Pharmacological activities of Snowdrop.

Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dosea	Possible control	Possible mechanism of action	Compounds	Isolation/ Detection methods	References	
Antibacterial											
Galanthus nivalis L.	Aerial	Bland extract	Methanol extract	P. aeruginosa, B. subtilis, B. cereus, S. aureus, E. coli, P. aeruginosa	0.98 cm, 1.12 cm, 1.18 cm, 0.98 cm, 1.29 cm	Gentamicin	Chlorogenic acid, p-coumaric acid, Ferulic acid, Isoquercitrin, Quercitrin	HPLC	Benedec et al. (2018)		
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Shaftizadeh et al. (2010)		
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Galanthamine, Tazettine	GCMS Ločnik et al. (2015)	
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Column chromatography, preparative TLC Kaya et al. (2011)		
Antifungal											
Galanthus nivalis L.	Aerial	Bland extract	Methanol extract	P. aeruginosa, B. subtilis, B. cereus, S. aureus, E. coli, P. aeruginosa	0.98 cm, 1.12 cm, 1.18 cm, 0.98 cm, 1.29 cm	Gentamicin	Chlorogenic acid, p-coumaric acid, Ferulic acid, Isoquercitrin, Quercitrin	HPLC	Benedec et al. (2018)		
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Shaftizadeh et al. (2010)		
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Galanthamine, Tazettine	GCMS Ločnik et al. (2015)	
				S. enteritidis, E. coli, L. monocytogenes, S. aureus, C. albicans, A. brasiliensis	1.12 cm, 1.17 cm, 1.20 cm, 1.25 cm	—	—	—	Column chromatography, preparative TLC Kaya et al. (2011)		
Antiprotozoal											
Galanthus trojanus P. Davis and Ochatay	Whole plant	Arolycoricidine	T. b. rhodesiense	P. falciparum, T. b. rhodesiense, P. falciparum	IC_{50} 0.004 μg/ml, IC_{50} 0.0065 μg/ml	Melarosporin (T. b. rhodesiense)	Direct inhibition of the enzyme involved in the fatty acid biosynthesis (FAS) pathway.	Chlorogenic acid, p-coumaric acid, Ferulic acid, Isoquercitrin, Quercitrin, Tyramine	Column chromatography, preparative TLC Kaya et al. (2011)		
Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dose^a	Positive control	Possible mechanism of action	Compounds	Isolation/ Detection methods	References	
-----------------------	---------	-------------	-----------------	---------------------	--------------------------	-----------------	-------------------------------	-----------	-----------------------------	------------	
Antiviral	Galanthus elwesi	Bulb	Ethanol extract	Herpes simplex virus	Antiviral conc 8 μg/ml	—	Inhibition of the viral replication and host cell lysis.	Galanthus nivalis agglutinin (GNA)	—	Hudson et al. (2000)	
	Galanthus nivalis	Bulb	Ethanol extract	Sindbis virus	Antiviral conc 16 μg/ml	—	Direct inactivation of the viral particles.	—	—	Conforti et al. (2010)	
	Galanthus reginae-olgae	Aerial	Methanol extract	DPPH	IC₅₀: 3 9 ± 0.067 μg/ml	DPPH: Ascorbic acid (2 ± 0.011 μg/ml)	Direct inhibition of ROS	Neophytadiene, Exadecanoic acid, methyl ester, 9,12-octadecadienoic acid, methyl ester, [E], 9,12,15-octadecatrienoic acid, methyl ester, [Z,Z,Z], 2-exadecan-1-diol, 11, 15-tetratrienyl (R,R,R,E,E), 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid [Z]Z 2-droso-1-[droso-methyl] ethylester, 2-monoindien, 1-octadecene, 9-α-fluro-5-α-cholesta-8(14)-ene-3,15-dione, Vitamin E, Ergocal-6-en-3-diol, [Z], 24-E, Stigmast-5-en-3-diol, [Z][E],[E], Stigmast 6,24(28)-dien-3-diol, (3β,24 E)	—	—	
	Galanthus reginae-olgae	Subsp. vernalis	Aerial	Methanol extract	DPPH	IC₅₀: 2.9 ± 0.051 μg/ml	—	Inhibition of formation of free malonaldehyde (MDA) as the result of oxidation in lipid	Neophytadiene, Exadecanoic acid, methyl ester, 9,12-octadecadienoic acid, methyl ester, [E], 9,12,15-octadecatrienoic acid, methyl ester, [Z], 2-exadecan-1-diol, 11, 15-tetratrienyl (R,R,R,E,E), 9,12,15-octadecatrienoic acid, 9,12-octadecadienoic acid [Z]Z 2-droso-1-[droso-methyl] ethylester, 2-monoindien, 1-octadecene, 9-α-fluro-5-α-cholesta-8(14)-ene-3,15-dione, Vitamin E, Ergocal-6-en-3-diol, [Z], 24-E, Stigmast-5-en-3-diol, [Z][E],[E], Stigmast 6,24(28)-dien-3-diol, (3β,24 E)	—	—

^a IC₅₀ > 50 μg/ml

Continued on following page
Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dose*	Positive control	Possible mechanism of action	Compounds	Isolation/ Detection methods	References
Lipid Peroxidation	Galanthus nivalis L.	Leaf	Methanol extract	DPPH	IC₅₀: 100 ± 1.36 µg/ml	8 µg/ml	Direct inhibition of ROS.	Vitamin E	–	–
								2.3-butene-1,4-diol	HPLC, GCMS	Karimi et al. (2018)
							2,3-butenediol, Acetic acid	–	–	–
							Acetic acid, n-hexadecenoic acid, 4H-pyran-4-one	–	–	–
							Gallic acid, Syringic acid, Caffeic acid, Naringin, Rutin	–	–	–
							Gallic acid, Syringic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Apigetin, Genistein	–	–	–
							Gallic acid, Syringic acid, catechol, Ferulic acid, Naringin, Quercetin, Kaempferol, Genistein	–	–	–

(Continued on following page)
Biological activities	Species	Plant parts	Type of extract	Phenotypic activity	Effective dosea	Positive control	Possible mechanism of action	Compounds	Isolation/Detection methods	References
	Galanthus nivalis (Baker) Grossh. (accepted name: Galanthus alpinus var. alpinus) Bulb Methanol extract	HCT-116	CC$_{50}$ 32.1 ± 3.7 μg/ml	Galanthamine ($>$28.7 μg/ml), Tazettine ($>$33.1 μg/ml), Lycorine (0.88 μg/ml)	—					
Galanthus nivalis (Baker) Grossh. (accepted name: Galanthus alpinus var. alpinus) Bulb Methanol extract	HCT-116	CC$_{50}$ 31.9 ± 1.5 μg/ml	Galanthamine ($>$28.7 μg/ml), Tazettine ($>$33.1 μg/ml), Lycorine (0.88 μg/ml)	—						

aEffective dose: Dose that gives significant results with $p < 0.05$, $p < 0.01$, $p < 0.001$.

1H-NMR, hydrogen-1 nuclear magnetic resonance; ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); ACh, acetylcholine; AChE, acetylcholinesterase; BHA, butylated hydroxyanisole; BHT, butylated hydroxytoluene; CC$_{50}$, half maximal cytotoxic and inhibitory concentration; DPPH, 2,2-diphenyl-1-picrylhydrazyl; EC$_{50}$, half maximal effective concentration; EIMS, electron ionization mass spectrometry; GC-MS, gas chromatography-mass spectrometry; HPLC, high performance liquid chromatography; IC$_{50}$, half maximal inhibitory concentration; MRC, minimal inhibitory concentration; MFC, minimal fungicidal concentration; NA, no activity; NMR, nuclear magnetic resonance; ROS, reactive oxygen species; SE, standard error; TLC, thin layer chromatography.
Mediterranean countries (Heinrich, 2010). However, there were no relevant ethnobotanical literatures for confirmation to be located. Russian pharmacologists reported that local villagers at the foot of the Caucasian mountains in Georgia used the decoction of the bulbs of wild snowdrop (G. woronowii Los.) for the treatment of poliomyelitis in children (Sidjimova et al., 2003). Besides, an old glossary also classified snowdrop as cardiotonic, stomachic and emmenagogue (Baytop, 1999). The use of *Galanthus* herb has shown to increase the flow of menstrual blood to cure dysmenorrhea or oligomenorrhea, and was once used to induce an abortion if in the early stages of pregnancy (Baytop, 1999). Although snowdrops have a long traditional use in folk medicines, the chemical constituent recently become a commercial proposition (Ay et al., 2018). Snowdrops have attracted attention due to its pharmacological potential (wild snowdrops trade) and the chemical diversity (Sidjimova et al., 2003). It is interesting to note that, the bulb of the plant contains a chemical called phenanthridine alkaloid, which is toxic to animals including dogs and cats and may lead to gastrointestinal disorders in humans. Lycorine, the phenanthridine alkaloid is used in herbal medicines and pharmaceutical drugs over the years (Lamoral-Theys et al., 2009).

BIOLOGICAL SUBSTANCES OF SNOWDROP AND THEIR ETHNOPHARMACOLOGY

Having evolved over millions of years and wide application in traditional medicine. The discovery of new drug from snowdrops begin in the new decade. The discovery of galanthamine has attracted the interest from scientific community to further explore the relationships between the underexplored pharmacological properties of snowdrops and its chemical space. This including the antimicrobial, antioxidant and anticancer activities (Figure 3). The active compounds which are responsible for the biological activities are listed in Table 2.

Anticholinesterase Activity

Acetylcholinesterase (AChE), an enzyme remain a highly viable target to alleviate the symptoms of Alzheimer’s disease (AD) (Kostelnik and Pohanka, 2018). AChE (specific cholinesterase) is present in nervous system and terminates neurotransmission, while the activity of BChE is increase during the late stage of AD (Mesulam and Geula, 1994; Khaw et al., 2014; Kostelnik and Pohanka, 2018). Galanthamine is known to enhance the activity of acetylcholine (ACh) by inhibiting the enzyme AChE and functions as a nicotinic activator by interacting with nicotinic ACh receptors (nAChRs) in the brain (Maelicke et al., 1997). The interaction between the Ach inhibitor and nAChR induces conformational change of the receptor molecule, and subsequent activation of nAChRs is believed to have protective effects against β-amyloid cytotoxicity of neuron cells (Coyle and Kershaw, 2001). Snowdrops are important source of anti-neurodegeneration compound “galanthamine” thanks to the traditional knowledge in which the extract has been used in folk medicine for neurological conditions (Ago et al., 2011). Due to limited number of drugs available for the management of Alzheimer disease, significant efforts have been made to explore anticholinesterase inhibitor from medicinal plants (Khaw et al., 2014; Tan et al., 2014; Jamila et al., 2015; Liew et al., 2015; Khaw et al., 2020).
The anti-cholinesterase activities of the *Galanthus* spp including *Galanthus Nivalis, Galanthus elwesii, Galanthus ikariae, Galanthus gracilis, Galanthus xvalentinii*, *Galanthus rizehensis, Galanthus ciliacus*, were assessed in *in vitro* by determining their inhibitory activities via Ellman method (Table 2). Rhee et al. (2003) showed that the methanol extract of *G. nivalis* had 96% inhibition against AChE (Rhee et al., 2003). Chloroform:methanol (1:1) extracts of the bulbs of *G. elwesii* and *G. ikariae* inhibited AChE at 73.18 and 75.56% (10 µg/ml), comparable to the alkaloid extracts at 77.23 and 76.96% (10 µg/ml) (Orhan and Şener, 2005). Phytochemical study of alkaloid extract of *G. ikariae* yielded amaryllidaceae-type alkaloids, including lycorine (IC$_{50}$ = 3.16 µM), tazettine, crinine, galanthamine (IC$_{50}$ = 3.2 µM), 3-epi-hydroxybulbispermine and 2-demethoxytazettine. A study of Kaya and colleagues demonstrated that bulb and aerial parts of *G. ciliacus* selective towards AChE than BuChE, suggesting the present of selective AChE compounds within the extract.

Similarly, methanol extracts of the bulb and aerial part of *G. elwesii* were selectively inhibited AChE (Bozkurt et al., 2013a; Kaya et al., 2017). Subsequent GCMS analysis revealed the present of alkaloids in the *G. elwesii* extract including Galanthamine, O-methylleucotamine, hordenine and sanguinine (Bozkurt et al., 2017). The alkaloid extracts of the *G. gracilis* bulb and *G. xvalentinii* nothosubsp. Subplicatus were moderately inhibiting AChE with the IC$_{50}$ of 11.82 ± 25.5 µg/ml (Sarikaya et al., 2013; Bozkurt-Sarikaya et al., 2014). The bulb of *G. krasnovii* alkaloid was dual cholinesterase inhibitor with the IC$_{50}$ of 8.26 µg/ml (AChE) and IC$_{50}$ of 6.23 µg/ml (BuChE) (Bozkurt et al., 2020). GCMS analysis revealed that anhydrolycorine and 11,12-didehydroanhydrolycorine were the dominant compounds in the extract contribute to the inhibitory activities.

The findings showed that alkaloids from *Galanthus* spp played an important role in cholinesterase inhibitory activities. Among the alkaloids, lycorine-type alkaloids dominated in the studied extracts. Galanthamine and tazettine-type alkaloids were present in very low amounts. The alkaloid content in the bulb was more prominent than the aerial parts. The findings showed that inhibitory activity might be due to the synergistic interactions between the alkaloids within the extract. Taking into account that existing drugs are effective mild to moderate progression of AD and presenting considerable side effects, the search for effective and selective cholinesterase inhibitors with minimum side effects is imperative. It can be conclude that, the bulb of *Galanthus* spp. can be served as a source of anticholinesterase alkaloids in addition to their ornamental properties.

Antimicrobial Activity

The emergence of new infectious diseases and drug resistance to antibiotic is one of the biggest threats to global health (Ventola, 2015). Antimicrobial, including antibacterial, antifungal, antiviral and antiprotozoal agents are becoming ineffective, attributed to the overuse and misuse of current existing drugs which leads to resistance (Interagency Coordination Group, 2019). On top of that, diminishing antibiotic pipeline resulted in lesser treatment options against multiple drug resistance pathogens and responsible for at least 700,000 casualties each year (Interagency Coordination Group, 2019). Natural products are promising new drug candidates in treating antibiotic-resistant infections. Natural products have evolved in natural selection process adapting to various abiotic and biotic stresses where abundant of undiscovered biologically active metabolites for drug discovery. Natural products have always been an important part of drug discovery and intense research has been conducted in this area since the discovery of penicillin in the forties.

Antibacterial

Turker and Koyluoglu (2012) reported antibacterial activity of ethanol extract of *G. Plicatus* against Gram-positive *Staphylococcus epidermidis* and *Staphylococcus pyrogenes* and Gram-negative *Proteus vulgaris* and *Klebsiella pneumoniae* obtained from disc-diffusion method (Turker and Koyluoglu, 2012). Growth inhibitions (7.25 ± 0.25 to 12.50 ± 0.50 mm) were compared with positive controls such as chloramphenicol, tetracycline, ampicillin, carbenicillin and erythromycin. In another study, the ethanol and chloroform extracts of *G. transcaucasicus* showed antibacterial activity against *Bacillus subtilis* and *Staphylococcus aureus* at MIC values of 9.275 mg/ml and 1.17 mg/ml, respectively (Sharifzadeh et al., 2010). The methanol extracts of the bulb and shoot of *G. transcaucasicus* were evaluated for their antibacterial activity against *Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli* and *Pseudomonas aeruginosa* (Karimi et al., 2018). Overall, the antibacterial activity of shoot extract appeared to be most potent followed by flower and bulb extracts. The main and predominant volatile compounds such as acetic acid (13.6%), 2,3-Butanediol (43.13%) and 2-Furancarboxaldehyde (68.77%) were major in shoot, flower and bulb extracts of *G. transcaucasicus*, respectively. *G. nivalis* extract has demonstrated moderate anti-staphylococcal activity, with the minimal inhibitory concentration (MIC) value of 19.53 µg/ml (Benedec et al., 2018). Interestingly, *G. nivalis* extract exhibited comparable antibacterial activity with standard drug, gentamicin. Phytochemical analysis of *G. nivalis* extract revealed that chlorogenic acid (2976.19 ± 12.80 µg/g) was the main constituent, followed by *p*-coumaric acid (73.02 ± 0.07 µg/g), ferulic acid (26.80 ± 0.19 µg/g), isouercitrin (25.08 ± 0.31 µg/g) and quercitrin (11.13 ± 0.06 µg/g).

Antifungal

The antifungal activity of ethanol extract of the bulb of *G. transcaucasicus* against yeast *Candida albicans* stood at MIC values of 19.53 µg/ml to 2,500 µg/ml (Sharifzadeh et al., 2010). A study by Ločárek and colleagues showed that alkaloid extract of the bulb of *G. elwesii* inhibited the growth of *Candida* spp. and *Lodderomyces elongisporus* (Ločárek et al., 2015). Galanthamine was the major compound in the alkaloid extract, followed by tazettine and minute amount of haemanthamine as analyzed by GCMS. Benedec et al. (2018) reported antifungal activity of *G. nivalis* against *C. albicans* and filamentous fungi, *Aspergillus brasiliensis* (Benedec et al., 2018). Phytochemical analysis showed that chlorogenic acid was the dominant phenolic acid within *G. nivalis* extract.

Antiprotozoal

Amaryllidaceae alkaloids have previously been tested to possess antiparasitic activities (Campbell et al., 2006; Torizuka et al., 2008)
Antiprotozoal activity of the compounds isolated from alkaloid extract was tested against a panel of parasitic protozoa consisting of Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum, which are responsible for human African trypanosomiasis (sleeping sickness), American trypanosomiasis, Kalaazar (visceral leishmaniasis) and malaria were evaluated in vitro by Plasmodial FAS-II enzyme inhibition assay (Kaya et al., 2011). Arolycoricidine (+)-haemanthamine, dihydrolycorine, and protopine were active against T. b. rhodesiense, while (+)-haemanthamine was active against T. cruzi with the IC_{50} less than 10 μg/ml. Arolycoricidine (+)-haemanthamine, stylopine and protopine were reported potentially against P. falciparum, where stylopine and protopine exhibited sub-microgram inhibition with the IC_{50} values of 0.23 and 0.50 μg/ml. In addition, stylopine and protopine demonstrated good cytotoxicity (L6 and KB cells) selectivity index grant these compounds as promising lead for further development. The study showed that most of the active compounds are of lycorine type-alkaloids, in which O-methylnorbelladine (−)-dihydrolycorine and (+)-8-O-demethylmaritidine are being reported here for the first time from the genus Galanthus. Amaryllidaceae-derived haemanthamine displayed remarkable cytotoxicity against primary mammalian cell line (L6) and the human carcinoma cell line (KB) (Kaya et al., 2011).

Lycorine, an Amaryllidaceae alkaloid from snowdrop possesses strong antimalarial activity (Khalifa et al., 2018). It was potently inhibited the growth of P. falciparum, where stylopine and protopine induced oxidative stress which involves in various chronic diseases, such as atherosclerosis, myocardial infections, cancer and neurodegenerative diseases (Bulduk and Karafak, 2019). Antioxidant activity

Antiviral

Among the microbes, virus infection has emerged as a leading cause of morbidity and mortality worldwide (Luo and Gao, 2020). Recent outbreak has underscored their prevention as a critical issue in safeguarding public health with very limited number of antivirals drugs, vaccines and antiviral therapies available (Babar et al., 2013).

Lectin from snowdrops is being investigated for its anti-viral potential. The Galanthus nivalis agglutinin (GNA) was identified and purified from the bulb of snowdrop (Van Damme et al., 1987). GNA is known to possess virucidal properties against human immunodeficiency virus (HIV) at the EC_{50} of 0.12 ± 0.07 μg/ml to 4.7 ± 3 μg/ml (Balzarini et al., 2004). The molecular mechanisms of GNA exerting antiviral activities via carbohydrate-binding activities, thereby blocking the entry of the virus into its target cells and transmission of the virus by deleting the glycan shield in its envelope protein, thus neutralizing antibody.

G. elwesi’s ethanol extract was tested for its anti-herpes simplex virus (HSV) and anti-sindbis virus (SINV) activity. G. elwesi has higher activity in the virucidal (8 μg/ml) assay than the plaque-forming assay (24 μg/ml) (Hudson et al., 2000). G. elwesi extract was potent against SINV, it showed anti-SINV activity at the dose of 16 μg/ml.

Most of the mannose-binding lectins exert anti-coronavirus potential except the lectins from garlic (Keyaerts et al., 2007). They interfered with viral attachment in early stage of replication cycle and suppressed the growth by interacting at the end of the infectious virus cycle. The virucidal effect of GNA against SARS-CoV was recorded at EC_{50} of 6.2 ± 0.6 μg/ml (Keyaerts et al., 2007). Other GNA-related lectins may exert anti-influenza activities by competitively blocking the combination of influenza A virus envelope glycoprotein haemagglutinin (HA) with its corresponding sialic acid-linked receptor in the host cell, such as H1N1 (Yang et al., 2013). A study evaluated the antiviral potential of plant lectins from a collection of medicinal plants on feline infectious peritonitis virus (FIPV) infected cells. The results indicated that plants derived mannose-binding lections had strongest anti-coronavirus activity and Galanthus nivalis was one of the coronavirus-inhibiting plants (Adams, 2020).

To sum up, lectin GNA might be a potential target for further development for its anti-CoV potential. Although no CoV treatments have been approved, pharmacotherapies for MERS-CoV and SARS-CoV may lay the foundation for treatment of the novel human Coronavirus Disease 2019 (COVID-19).

Antioxidant Activity

Natural antioxidants play a role in preventing cellular free radicals or reactive oxygen species (ROS) formation as well as facilitating repair process from the damage caused by ROS induced oxidative stress which involves in various chronic diseases, such as atherosclerosis, myocardial infections, cancer and neurodegenerative diseases (Bulduk and Karafak, 2019). Antioxidants can act as chain breakers, radical scavengers, singlet oxygen quenchers, hydroperoxides decomposers, and pro-oxidative metal ions chelators (Pisochi et al., 2016).

The antioxidant potential of the aerial and bulb of G. reginae-olgae was determined by free radical scavenging DPPH, lipid peroxidation and β-carotene bleaching tests (Conforti et al., 2010). The result showed that methanol extracts of aerial and bulb of G. reginae-olgae had moderate DPPH scavenging potential. Further fractionation of the extracts indicate that the strongest DPPH scavenging of aerial part was ethyl acetate fraction, while alkaid fraction of bulb showed highest scavenging potential. The results showed that the DPPH scavenging activity of ethyl acetate and alkaid fractions of aerial and bulb attributed to their distinct chemical diversity. The shoot of G. transcaucasicus exhibited higher antioxidant activities compare to bulb and flower that concurred with the high phenolic and flavonoid compounds in shoot. In a comparative study, the ethanol extract of G. woronowii exhibited highest DPPH and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) scavenging
activity (IC50 = 28.14 µg/ml and 13.09 µg/ml, respectively) (Genç et al., 2019). While dichloromethane extract displayed greater reducing potential in cupric ion reducing power assay that ethanol extract. Antioxidant activity of hexane, dichloromethane and ethyl acetate extracts of G. krasnovii were investigated via DPPH and ABTS radical scavenging and cupric ion reducing power assay (Erenler et al., 2019). Dicholoromethane extract demonstrated the highest ABTS activity (IC50 = 14.33 µg/ml) and reducing power (1.15 µmol TE/mg). DPPH and ABTS method were also been used to investigate the methanol extracts of the leaf and bulb of three Galanthus spp. (Buldük and Karakaşaki, 2019). The G. woronowii leaf extract recorded the highest DPPH scavenging activity (77%), whereas all extracts from G. nivalis, G. elwesii and G. woronowii showed comparable ABTS scavenging activity (17 ± 0.78 – 23 ± 0.64 µmol TE/100 g). HPLC analysis showed that content of galantamine was higher in the aerial parts (leaves) when compared to the underground parts (bulbs) which may contributed to the higher scavenging activity of the leaf extract.

Apparently, Galanthus spp. appears to be potent source of antioxidants which are enriched with various phytochemicals phenolic acids, flavonoids, and alkaloids (Karimi et al., 2018). It is envisaged that secondary metabolites from Galanthus spp. may reduce the risk and slow down the progression of chronic diseases including cancers, cardiovascular diseases and neurodegenerative diseases.

Anticancer Activity
Cancer is a chronic disease, which is account for millions of deaths each year (Tan et al., 2016; Tay et al., 2019). Chemotherapy, radiotherapy and recently, immunotherapy are essential means for the treatment of cancers. Severe toxicity and cell resistance to drugs are the major drawback in conventional cancer therapies. In order to circumvent these issues, new cellular targets and anticancer agents are needed, especially those of natural origin. From 1981 to 2002, natural products were the basis of 74% of all new chemical entities for cancer (Demain and Vaishnav, 2011).

Eight different Galanthus species were tested for their anticancer activity on Human colorectal carcinoma cells (HCT-116), Human promyelocytic leukemia cells (Hela) and Human cervical cancer cells (HL-60) (Iokhadze et al., 2007). All methanol extracts from the galanthus species showed cytotoxic activities, in which the bulbs had higher activity than the aerial parts. Majority of the species were more active against HCT-116 cells, except G. platyphyllus bulbs were more active against HeLa cells than other cell lines, indicating an interesting specificity that should be investigated in future studies. The bulbs of G. woronowii, G. krasnovii, G. shaoricus and G. alpinus were the most cytotoxic (IC50 < 10 µg/ml) on HCT-116 cells. Lycorine had cytotoxicity against HCT-116, HL-60 and Hela cells with IC50 of 3.1, 8.2, and 9.3 µM. Meanwhile, galanthamine and tazettine were weakly cytotoxic against HCT-116, HL-60 and Hela cells, with IC50 > 100 µM. It is suggesting that the present of lycorine in the Galanthus spp contributed to the cytotoxic effects on the tested cancer cells. The search for novel anticancer agents from natural sources has been successful worldwide. For over 50 years, natural products have served us well in combating cancer and is still a priority goal for cancer therapy, due to the chemotherapeutic drugs resistance.

CONCLUSION AND FUTURE PERSPECTIVES
Natural products remain to be a wealthy source for the identification of novel therapeutic agents for the treatment of human diseases. Plants contain a significant numbers of phytochemical components, most of which are known to be biologically active and responsible for various pharmacological activities. It was demonstrated that plant secondary metabolites are preferred natural antioxidants than synthetic ones due to safety concerns. Given the natural abundance of bioactive compounds in this plant, Galanthus spp. can be recognized as an interesting source of natural products with a wide range of biological activities. This review highlights the importance of bioactive substances of various extracts of Galanthus spp. on anti-cholinesterase inhibitory activity and other diseases, supporting the therapeutic possibilities for the use of snowdrops. The most promising compound is galanthamine which exhibited greater activity than tazettine, crinine and lycorine. However, current research on the underlying mechanism of actions and the exact chemical constituent involved are scarce. Apart from the above mentioned activities, other ethnopharmacological uses of snowdrops need to be substantiated with strong scientific studies for its extensive usage in various therapies. Thus, this review may serve as a guide for future researchers in pharmacology to conduct further studies on these plants by providing different perspective. The discussion is expected to inspire further isolation, identification, mechanism of actions and synthetic studies of the existing and novel active compounds from the Galanthus spp. to gain a better understanding of the basis of the activity at the cellular and molecular level in future.

AUTHOR CONTRIBUTIONS
The writing was performed by CK, LL, KK, and BG. While WS, WY, PG, LM, AM, KK, and BG provided vital guidance, editing and insight to the work. The project was conceptualized by BG and PG.

FUNDING
This work was financially supported by Monash Global Asia in the 21st Century (GA21) research grants (GA-HW-19-L01 and GA-HW-19-S02), Fundamental Research Grant Scheme (FRGS/1/2019/WAB09/MUSM/02/1 and FRGS/1/2019/SKK08/TAYLOR/02/02), Taylor’s University Emerging Grant (TRGS/ERFS/2/2018/SBS/016) and External Industry Grant from Biotek Abadi Sdn Bhd (vote no. GBA-8188A).

ACKNOWLEDGMENTS
We acknowledge Aaron P. Davis, Senior Research Leader of Plant Resources at Royal Botanic Kew Gardens for his excellent photographs in Figures 2A–D.
Kaw, K. Y., Chong, C. W., and Murugaiyah, V. (2020). LC-QTOF-MS analysis of xanthone content in different parts of *Garcinia mangostana* and its influence on cholinesterase inhibition. *J. Enzym. Inhib. Med. Chem.* 35, 1433–1441. doi:10.1080/14756366.2020.1766819

Kostelnik, A., and Pohanka, M. (2018). Inhibition of acetylcholinesterase and butyrylcholinesterase by a plant secondary metabolite boldine. *BioMed. Res. Int.* 2018, 9634349. doi:10.1155/2018/9634349

Lomaral-Theys, D., Andolfi, A., Van Goetsenov, G., Cimmino, A., Le Calvé, B., Wauthoz, N., et al. (2009). Lycorine, the main phanethridine Amylialidaceae alkaloid, exhibits significant antitumor activity in cancer cells that display resistance to proapoptotic stimuli: an investigation of structure-activity relationship and mechanistic insight. *J. Med. Chem.* 52, 6244–6256. doi:10.1021/jm901031h

Lee, M. R. (1999). The snowdrop (Galanthus nivalis): from Odysseus to Alzheimer. *Proc. R. Coll. Physicians Edinb.* 29 (4), 349–352.

Liew, S. Y., Khaw, K. Y., Murugaiyah, V., Looi, C. Y., Wong, Y. L., Mustafa, M. R., et al. (2015). Natural indole butyrylcholinesterase inhibitors from Naucela officinalis. *Phytomedicine* 22, 45–48. doi:10.1016/j.phymed.2014.11.003

Lrócere, M., Novákova, J., Klouček, P., Hoštálková, A., Kokoška, L., Gábrlová, L., et al. (2015). Antifungal and antibacterial activity of extracts and alkaloids of selected Amylialidaceae species. *Nat. Prod. Commun.* 10, 1934578X1501000912. doi:10.1177/1934578X1501000912

Luo, G., and Gao, S. J. (2020). Global health concerns stirred by emerging viral infections. *J. Med. Virol.* 92, 399–400. doi:10.1002/jmv.25683

Madelicke, A., Coban, T., Storch, A., Schrattenhöfer, A., Pereira, E. F., and Alberquerque, E. X. (1997). Allosteric modulation of Torpedo nicotinic acetylcholine receptor ion channel activity by noncompetitive agonists. *J. Recept. Signal Transduct. Res.* 17, 11–28. doi:10.3109/10799899709036592

Maschovský, M. D., and Kruglikova–Lovo, R. P. (1951). On the pharmacology of the new alkaloid galantamine. *Farmakol. Toxicol.* 14, 27–30.

Mesulam, M. M., and Geula, C. (1994). Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. *Ann. Neurol.* 36, 722–727. doi:10.1002/ana.410360506

Nair, J. J., and Staden, J. V. (2019). Antiplasmodial lycorane alkaloid principles of selected Amaryllidaceae species. *J. Med. Chem.* 62, 5416–5424. doi:10.1021/acs.jmedchem.9b00883

Orhan, I., and Şener, B. (2003). Bioactivity-directed fractionation of alkaloids from some Amaryllidaceae plants and their anticholinesterase activity. *Chem. Nat. Compound* 39, 383–386. doi:10.1023/B:CNOC.0000002312.65467.9c

Orhan, I., and Şener, B. (2005). Sustainable use of various Amaryllidaceae plants against Alzheimer’s disease. 678, 59–64. doi:10.17660/ActaHortic.2005.678.7

Paskov, D. (1959). *Nivalin: pharmacology and clinical application*. Pharmac, 1.

Proskurnina, N. F., and Areshknina, L. Y. (1953). Alkaloids of Galanthus woronowi. II. Isolation of a new alkaloid. (In English). *Chem. Abstr.* 47, 6959c.

Rhee, I. K., Appels, N., Luijendijk, T., Irth, H., and Verpoorte, R. (2003). Determining acetylcholinesterase inhibitory activity in plant extracts using a fluorimetric flow assay. *Phytochem. Anal.* 14, 145–149. doi:10.1002/pea.695

Romsted, N., Zubov, D., Bruun-Lund, S., and Davis, A. (2013). Snowdrops falling slowly into place: an improved phylogeny for Galanthus (Amaryllidaceae). *Mol. Phylogenet. Evol.* 69, 205–217. doi:10.1016/j.ympev.2013.05.019

Sarkiaya, B. B., Berkov, S., Bastida, J., Kaya, G. I., Onur, M. A., and Somer, N. U. (2013). GC-MS investigation of Amaryllidaceae alkaloids in galanthus xvalentinii nothosubsp. subplicatus. *Nat. Prod. Commun.* 8, 327–328. doi:10.1177/1934578X130800312

Sarifzadeh, M., Yousefzeyy, F., Amin, G., Sormaghi, M., Azadi, B., Samadi, N., et al. (2010). Investigation on pharmacological and antimicrobial activities of Galanthus transcaucasicus Fomin growing in Iran. *Planta Med.* 76, P474. doi:10.1055/s-0030-1264772

Siđimova, B., Berkov, S., Popov, S., and Evtastieva, L. (2003). Galanthamine distribution in Bulgarian Galanthus spp. *Pharmacize* 58, 935–936.

Tan, H. L., Chan, K. G., Puspaprajah, P., Saokaew, S., Duangjai, A., Lee, L. H., et al. (2016). Anti-cancer properties of the naturally occurring aphrodisiacs: icarin and its derivatives. *Front. Pharmacol.* 7, 191. doi:10.3389/fphar.2016.00191

Tan, W. N., Khairuddin, M., Wong, K. C., Khaw, K. Y., and Vikneswaran, M. (2014). New cholinesterase inhibitors from Garica atroviridis. *Fitoterapia* 97, 261–267. doi:10.1016/j.fitote.2014.06.003

Tay, K. K., Tan, L. T., Chan, C. K., Hong, S. L., Chan, K. G., Yap, W. H., et al. (2019). Formononetin: a review of its anticancer potentials and mechanisms. *Front. Pharmacol.* 10, 820. doi:10.3389/fphar.2019.00820

Toriizuka, Y., Kinoshita, E., Kogure, N., Kitajima, M., Ishiyama, A., Otaguro, K., et al. (2008). New lycorine-type alkaloid from Lycoris trubii and evaluation of antitrypanosomal and antimarial activities of lycorine derivatives. *Bioorg. Med. Chem.* 16, 10182–10189. doi:10.1016/j.bmc.2008.10.061

Turker, A., and Koyluoglu, H. (2012). Biological activities of some endemic plants in Turkey. *Rom. Biotechnol. Lett.* 17 (1), 6949–6961.

Van Damme, E. J. M., Allen, A. K., and Peumans, W. J. (1987). Isolation and characterization of a lectin with exclusive specificity towards mannose from snowdrop (*Galanthus nivalis*) bulbs. *Fed. Eur. Biochem. Soc. Lett.* 215, 140–144. doi:10.1016/0014-5793(87)80129-1

Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. *P. T.* 40, 277–283.

World Checklist of Selected Plant Families (2020). *World checklist of galanthus*.

Yang, J., Li, M., Shen, X., and Liu, S. (2013). Influenza Virus entry inhibitors targeting the hemagglutinin. *Viruses* 5, 352–373. doi:10.3390/v5010352

Copyright © 2021 Kong, Low, Siew, Yap, Khaw, Ming, Mocan, Goh and Goh. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.