Efficacy of Plant Extracts and *Trichoderma viride* against Leaf Spot of Maize caused by *Curvularia lunata*

Sandeep Dubey*, Sunil Zacharia, S. Simon and Nimesh Singh

Department of Plant Pathology, Sam Higginbottom University of Agriculture, Sciences and Technology, Prayagraj, U. P. India

*Corresponding author

A B S T R A C T

An experiment was conducted to evaluate the effect of five plant extracts, one bioagents and one fungicide in *in vitro* and *in vivo* against leaf spot of maize caused by *Curvularia lunata*. Mancozeb @ 0.25% was effective in the inhibition of mycelial growth (69.35%) of *C. lunata*. Among the bio-agents, *Trichoderma viride* was found effective in the inhibition of mycelial growth (50.77%). Among the plant extracts, neem leaf extract @ 10% was found effective in the inhibition of mycelial growth (42.84%) followed by eucalyptus leaf extract @ 10% (40.66%), bael leaf extract @ 10% (37.45%), tulsi leaf extract (34.82) and onion bulb extract (31.80). The plant extracts, potential bio agent and fungicide found effective in *in vitro* were tested against the curvularia leaf spot of maize under field conditions during kharif 2017-2018. Among all the treatments, mancozeb @ 0.25% was found effective in the disease reduction (35.85%), followed by *Trichoderma viride* @ 2% (49.12%). Among the plant extracts, neem @ 10% was found effective in disease reduction (45.70%) followed by eucalyptus @ 10% with (45.94%), bael leaf extract @ 10% (47.39%), tulsi leaf extract (48.64%), and onion bulb extract (49.55%).

Keywords

Bioagents, *Curvularia lunata*, fungicide, Maize, plant extracts

Article Info

Accepted: 05 April 2020
Available Online: 10 May 2020

Introduction

Maize (*Zea mays* L.), belonging to the family Gramineae is one of the important cereal crops of the world. The maize kernel, like that of other cereal grains, includes pericarp (6%), endosperm (82%) and germ (12%). The main structural component of the endosperm is starch, a complex carbohydrate that constitutes on an average 71 per cent of the grain and is a source of concentrated energy. Several million people, particularly in the developing countries, derive their protein and calorie requirements from maize. The maize grain accounts for about 15 to 56 per cent of the total daily calories in diets of people in about 25 developing countries, particularly in Africa and Latin America, where animal protein is scarce and expensive and consequently, unavailable to a vast sector of

495
the population (Prasanna et al., 2001). Maize is currently produced on nearly 100 million hectares in 125 developing countries and is among the three most widely in grown crops in 75 of those countries (Anonymous, 2012). These include seedling blights, stalk rots, foliar diseases, downy mildews and ear rots. Among the fungal diseases Curvularia lunata (Cochliobols lunatus) was recorded on maize by Curvularia leaf spot is potentially an important foliar disease in areas where the temperatures drop at night while the humidity is high. The disease is known to affect maize from seedling stage till harvest. Loss in grain yield will be more if it occurs at flowering, silking and grain filling stages. Curvularia is a hyphomycete (mold) fungus which is a facultative pathogen of many plant species and of the soil. Conidia develop at the tips and sides of the spores and have a smooth texture. C. lunata is differentiated from other Curvularia species by its 3 septa and 4 cells, with the first and last cell usually of a paler shade of brown than those in the middle. Conidia range from 9-15 μm in diameter and have a curved appearance (Macri and Dilenna, 1974). Importance of maize, it is being plagued by an array of diseases which include the leaf spot of maize, caused by Curvularia lunata. This disease is a very important seed and soil borne prevalent in the hot, humid maize areas. The disease produces or chlorotic spot with a light colored halo lesions are about 0.5 cm per spot when fully developed and this cause significant damage to maize up to 60 per cent due to great loss of photosynthetic region of the crop(Akinbode, 2010).

Materials and Methods

Isolation of the pathogen

The pathogen was isolated from the disease infected plants and it was identified as the Curvularia leaf spot of maize infected leaves were collected. The infected leaves were cut into small pieces (0.5 cm²) surface sterilized with mercuric chloride (0.1%) for 15-30 seconds, rinsed with three changes of sterile distilled water to remove the disinfectant and blotted dry. The sterilized pieces were plated (4 pieces/ dish) on potato dextrose agar (PDA) medium in petri dishes under aseptic conditions and incubated at 25⁰C for 2 weeks. For obtaining sufficient quantity of inoculums, pure cultures were obtained by subculturing. For this purpose, small bits of the fungus was taken at the tip of a sterilized needle and transferred aseptically to the centre of fresh PDA medium in petri dishes. The dishes will be incubated for 2 weeks at 25⁰C in the dark.

Preparation of bio-agents spray

Amount of bio-agents formulation calculated and weighed according to following formula for required concentration and then mixed in required amount of water. Freshly prepared suspension used for spray.

\[A = \frac{\text{required concentration (\%) \times required Active ingredient (\%)}}{\text{Active ingredient (\%)}} \]

Preparation of fungicidal spray solution

The fungicidal spray solution of desired concentration as per treatment freshly prepared every time at the site of experimentation just before the start of spraying operations. The quantity of spray materials required for average of crop gradually increased as the crop advanced in age.

The spray solution of desired concentration prepared by adoption of the following formula.

\[A = \frac{T \times P}{\text{a.i.}} \]
Where,

\(A = \) Quantity of a formulated pesticide required.
\(T = \) Total spray fluid required.
\(P = \) Percentage strength required.
\(a. i. = \) Given percentage strength of a formulated pesticide.

The spraying undertaken immediately after the appearance of the disease. Five plants in each plot used as representative plants to score for disease severity and data converted into per cent disease index (PDI). Disease severity will be estimated by using 1-5 disease rating scale of Payak and Sharma (1983) as detailed here:

Grade	Type
1.0	Very slight to slight infection.
2.0	Light infection,
3.0	Moderate infection,
4.0	Heavy infection,
5.0	Very heavy infection

Per cent Disease Index (PDI) calculated by using formula given by Wheeler (1969).

\[
\text{PDI} = \frac{\text{Sum of numerical disease ratings}}{\text{No. of plants observed} \times \text{Max. disease rating}} \times 100
\]

Poisoned food technique

Five millimetre diameter disc of \textit{Curvularia lunata} kept at the centre of each Petri plate containing the plant extracts of required concentration dissolved in PDA. Three replications maintained. The plates were incubated at 27±1°C 96 hours and colony diameter recorded. Per cent inhibition of mycelial growth calculated by using the formula given by Vincent (1947).

\[
\text{C-T} \quad \text{Per cent inhibition of colony} = \frac{\text{C-T}}{\text{C}} \times 100
\]

Where:

\(C = \) Colony diameter in control
\(T = \) Colony diameter in treatment,

Results and Discussion

Efficacy of plant extracts and \textit{Trichoderma viride} against \textit{Curvularia} leaf spot of maize \textit{in-vitro}

The data reported in table 4.2 and depicted in figure 4.1 showed the response of plant extracts and bio-agents on radial inhibition (%).

Leaf extract of Neem (10%), Tulsi (10%), Onion bulb (10%), Eucalyptus (10%) and Bael leaf extract (10%) were tested against \textit{Curvularia lunata}. All the botanicals tested were significantly effective in inhibition growth (%) of pathogen over control
Among different plant extracts tested Neem (57.15%) @ 10% showed maximum inhibition of *Curvularia lunata* followed by Eucalyptus (59.33), Bael (62.54%) and Tulsi (65.17%) least effectiveness was found in Onion bulb (68.19%). One fungal bio-agents, *T. viride* were evaluated against *Curvularia lunata* in dualculture technique by using potato dextrose agar (PDA) as basal medium.

The observations revealed that the maximum reduction in colony growth of *Curvularia lunata* was recorded in T. *viride* (49.22%). The results revealed that the *T. viride* exhibited fungi static activity and significantly inhibited redial growth of *Curvularia lunata* and *T. viride* were found less effective in inhibited redial growth of *Curvularia lunata*.

Table.1 Redial growth (mm) of *Curvularia lunata* as affected by different treatments

Treatment	Redial growth (mm) of *Curvularia lunata*			
	24 hrs	48 hrs	72 hrs	96 hrs
T₁ Neem leaf extract	10.58	13.78	17.81	
T₂ Eucalyptus leaf extract	6.38	11.35	14.31	18.49
T₃ Bael leaf extract	6.49	12.43	15.20	19.49
T₄ Tulsi leaf extract	6.74	13.18	16.42	20.31
T₅ Onion bulb extract	6.92	13.33	17.62	21.25
T₆ *Trichoderma viride*	6.28	9.42	11.24	15.34
T₇ Mancozeb (Treated control)	5.28	6.42	7.76	9.55
T₀ Control (Untreated)	7.17	13.70	22.21	31.16
Mean	6.45	11.36	14.82	19.18

F- test	S	S	S	S
S. Ed. (±)	0.078	0.105	0.159	0.173
C. D. (P = 0.05)	0.234	0.314	0.977	0.984
C.V.	2.094	1.589	1.859	0.554

Evaluation of plant extracts and bio-agents against *Curvularia lunata* in-vivo condition

The data presented in table 4.3 and depicted in figure 4.2 showed the response of plant extracts and bio-agents on PDI at 45, 60 and 75 DAS.

At 45 DAS, the minimum average plant disease intensity (%) of *Curvularia lunata* was observed in T₁-Neem (30.02%) followed by T₂-Eucalyptus (30.16%), T₃-Bael (30.36%), T₄-Tulsi (30.45%), T₆- *T. Viride* (31.13%), T₅-Onion bulb (31.45%) as compared to the treated control T₇-Mancozeb (26.47%) and untreated T₀-Control (32.55%). All the treatments were found statistically significant over T₀-Control (Untreated) and among the treatments (T₅, T₃, T₄, T₂ and T₁) and (T₂ and T₁) were found non- significant to each other.
Table 2: Per cent plant disease intensity is leaf spot at 45, 60 and 75 DAS as affected by treatments

Treatments	Concentration (%)	Disease intensity (%)			
		45 DAS	60 DAS	75 DAS	Mean
T1 Neem leaf extract	10	30.02	35.57	45.70	37.11
T2 Eucalyptus leaf extract	10	30.16	36.60	45.94	37.37
T3 Bael leaf extract	10	30.36	37.46	47.39	38.15
T4 Tulsi leaf extract	10	30.45	39.39	48.64	39.16
T5 Onion bulb extract	10	31.45	39.28	49.12	40.16
T6 Trichoderma viride	10 g/l	31.13	38.7	49.12	39.65
T7 Mancozeb (Treated control)	0.25	26.47	30.07	35.85	30.80
T0 Control (Untreated)	-	32.55	40.04	59.81	44.13
Overall Mean		30.32	37.13	47.76	
F-test	S	S	S		
S. Ed. (±)	0.42	0.36	0.69		
C. D. (P = 0.05)	1.27	1.10	2.10		

Values are average of three replicates

At 60 DAS, the minimum average plant disease intensity (%) of Curvularia lunata was observed in T1-Neem (35.57%) followed by T2-Eucalyptus (36.60%), Bael T3- (37.46%), T4-Tulsi leaf extract (38.49%), T5-Onion bulb (38.70%), T6-T. viride (39.28%) as compared to the treated control T7-Mancozeb (30.07%) and untreated T0-Control (40.04%). All the treatments were found statistically significant over T0-control (Untreated) and among the treatments (T6 and T4), (T4 and T3), (T3 and T4), (T4 and T2), (T4, T2 and T1) and (T1 and T0) were found non-significant to each other.

After 75 DAS, the minimum average plant disease intensity (%) of Curvularia lunata was observed in by T1-Neem (45.7%) followed by T2-Eucalyptus (45.94%), T3-Bael (47.39%), T4-Tulsi (48.64%), T5-Onion bulb(49.12%), T6-T. viride (49.55%) as compared to the treated control T7-Mancozeb (35.85%) and untreated T0-Control (59.81%). All the treatments were found statistically significant over T0-control (Untreated) and among the treatments (T5, T3 and T4), (T4, T2 and T2) and (T2 and T1) were found non-significant to each other.

In conclusion, neemleaf extract @ 10% recorded the minimum disease incidence (%), maximum yield (q/ha) and highest cost to benefit ratio, where as Trichoderma viride recorded the highest mycelial inhibition (%). The results of present experiment are limited to one crop season under Prayagraj agro climate conditions as such more trials should be carried out in future to validate the findings.

References

Akinbode, O. A. (2010). Evaluation of antifungal efficacy of some plant
extracts on *Curvularia lunata*, the casual organism of maize leaf spot. *African journal of Environmental science and Technology*. 4(11): 797-800.

Anonymous (2012). Faostat. Food and Agricultural Organization of the United Nations (FAO), FAO Statistical Database.

Macri, F. and P. Dilenna (1974). Com leaf blight incited by *Curvularia lunata* (Wall.) Baed. *Rivista di Patologia Vegetale*. 10: 27-35.

Payak, M.M. and Sharma, R.C. (1983). Disease rating scales in maize in India. *In Techniques of scoring for Resistance to important Diseases of Maize*. All India Coordinated Maize Improvement Project Indian Agricultural Research Institute, New Delhi, pp. 1-4.

Prasanna, B., Vasal, S., Kassahun, B. and Singh, N. (2001). Quality protein maize. *Current Science* 81(10): 1308-1319.

Vincent, J. M. (1947). Distortion of fungal hyphae in the presence of certain inhibitors. *Nature*. 159: 850-850.

Wheeler, B. E. J. (1969). An Introduction to Plant Diseases. John Wiley and Sons Ltd., London, p. 301.

How to cite this article:

Sandeep Dubey, Sunil Zacharia, S. Simon and Nimesh Singh. 2020. Efficacy of Plant Extracts and *Trichoderma viride* against Leaf Spot of Maize caused by *Curvularia lunata*. *Int.J.Curr.Microbiol.App.Sci.* 9(05): 495-500. doi: https://doi.org/10.20546/ijcmas.2020.905.055