JoTA: Aligning Multilingual Job Taxonomies through Word Embeddings (Student Abstract)

Anna Giabelli\(^1\)\(^2\)\(^3\), Lorenzo Malandri\(^1\)\(^3\), Fabio Mercorio\(^1\)\(^3\), Mario Mezzanzanica\(^1\)\(^3\)

\(^1\) Department of Statistics and Quantitative Methods, University of Milano-Bicocca, Milan, Italy
\(^2\) Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy
\(^3\) CRISP Research Centre, Univ. of Milano-Bicocca, Milan, Italy
{anna.giabelli, lorenzo.malandri, fabio.mercorio, mario.mezzanzanica}@unimib.it

Abstract

We propose JoTA (Job Taxonomy Alignment), a domain-independent, knowledge-poor method for automatic taxonomy alignment of lexical taxonomies via word embeddings. JoTA associates all the leaf terms of the origin taxonomy to one or many concepts in the destination one, employing a scoring function, which merges the score of a hierarchical method and the score of a classification task. JoTA is developed in the context of an EU Grant aiming at bridging the national taxonomies of EU countries towards the European Skills, Competences, Qualifications and Occupations taxonomy (ESCO) through AI. The method reaches a 0.8 accuracy on recommending top-5 occupations and a wMRR of 0.72.

Introduction

Lexical taxonomies are a natural way of expressing the semantic relationships between words and concepts through IS-A relations, and they are the mainstay of several downstream applications. Usually, within a single domain, there are multiple taxonomies, thus the problem of mapping them, when needed, is of primary importance.

To develop our automated taxonomy alignment method, we resort to distributed semantics, a branch of linguistics based on the hypothesis that words occurring in similar contexts tend to have a similar meaning. In distributed semantics, words are represented by semantic vectors that are derived from a text corpus, using neural network training. Semantic word vectors have empirically shown to capture linguistic regularities from texts (Mikolov et al. 2013), demonstrating their ability to enrich existing knowledge structures as well (Ristoski and Paulheim 2016). The contribution of this work is twofold:

- We propose a novel method for taxonomy alignment using word embeddings and domain knowledge;
- We apply JoTA in the context of a real-world project aimed at aligning the European national resources with the European labor market taxonomy ESCO (EURES 2019).

As far as we know, JoTA is the first approach that exploits distributional semantic and context information to perform taxonomy alignment. Moreover, we perform an intrinsic evaluation of the selected embedding model based on the structure of the taxonomy itself.

Formalization. A taxonomy \(\mathcal{T} \) is a 4-tuple \(\mathcal{T} = (\mathcal{C}, \mathcal{W}, \mathcal{H}, \mathcal{F}) \), where \(\mathcal{C} \) is a set of concepts \(c \in \mathcal{C} \) (aka, nodes); \(\mathcal{W} \) is a set of words belonging to the domain, and each word \(w \in \mathcal{W} \) can be assigned to none, one or multiple concepts \(c \in \mathcal{C} \); \(\mathcal{H} \) is a directed taxonomic binary relation between concepts; finally, \(\mathcal{F} \) is a directed binary relation mapping words into concepts. Given an origin taxonomy \(\mathcal{T}_o \) and a destination taxonomy \(\mathcal{T}_d \), the goal of JoTA is to suggest one or more concepts \(c \in \mathcal{T}_d \) for each word \(w \in \mathcal{T}_o \). More specifically, for each \(w \in \mathcal{T}_o \), \(n \) possible concepts \(c \in \mathcal{T}_d \) are suggested based on the scoring function \(S \).

How Does JoTA Work?

The approach used to align \(\mathcal{T}_o \) and \(\mathcal{T}_d \) is mainly composed by the steps shown in Fig.1. The first step allows us to train and select the best word embedding model, which is then used in the second step to suggest for each leaf concept \(w_o \in \mathcal{W}_o \) \(n \) possible alignments \(c_d \in \mathcal{C}_d \). The last step consists of validating the suggestions because the utility of JoTA is the help it provides to the domain experts, narrowing the choices for the alignment.

Step 1: Generate and Evaluate Embeddings. The main goal of the first step of JoTA is to induce a vector representation of taxonomic terms that represent as much as possible the similarity of words within the taxonomy.

To accomplish that, we resort to HSS, a measure of pairwise semantic similarity in taxonomies developed in (Giabelli et al. 2021), which measures semantic similarity in a taxonomy based on the structure of the hierarchy itself, preserving the semantic similarity intrinsic to the taxonomy.

In this first step, we (i) generate word embeddings through a state of the art method; we (ii) compute the HSS of terms...
in \(T_o \) and \(T_d \), and we (iii) select the embeddings for which
the correlation between the cosine similarity between taxon-
omic terms and their HSS is maximized for \(T_o \) and \(T_d \).

Step 2: Taxonomy Alignment Method. Our methodology
suggests, for each word, or leaf concept, \(w_o \in T_o \), a set of
\(n \) possible destination concept in \(T_d \). The destination con-
cepts are selected among most specialized concepts in \(T_d \),
i.e. those which are at the lowest level \(p \), \(c_d^o \). To do this, we
perform two different processes that lead to independent re-
results, and then we blend their suggestions to obtain a robust
mapping between taxonomies.

Hierarchical approach. For each \(w_o \in W^o \), the set of
words of the origin taxonomy, we create a list that contains
the cosine similarity between \(w_o \) and each element in \(w \in W^d \).
Then, we select the \(n \) words with the highest similarity
for each \(w_o \in W^o \), and lastly we exploit their hierarchical
concepts in \(C^d_p \), selecting the \(n \) concepts with the highest
similarity.

Classification approach. This approach relies on a multi-
class classification task: we have \(C^d_0 \) as the target variable,
which is more specific concept level, and the word em-
beddings associated to each \(w_o \in W^o \) as the independent
variable. For each word \(w_o \), at the end of the classification
process, we consider the prediction scores and select the \(n
\) top-scored level \(p \) concepts.

Blended approach. This part consists in blending the re-
results obtained respectively from the hierarchical method and
the classification one. First, for each \(w_o \in W^o \), we store
the shared matches of the two methods. Then we complete
the lists of \(n \) suggestions (with \(n = 5 \)) considering some
recommendations from the hierarchical approach and some
from the classification one, with a preference for the latter
since it obtains better results (see Tab.1).

Step 3: Evaluation of the Suggestions. The usefulness of
JoTA is that it provides a limited number of suggestions
to the domain experts to simplify their work of taxonomy
alignment that otherwise would be all manual. Thus, the last
step consists of the validation of the suggestions provided
to complete the alignment procedure.

Results and Concluding Remarks

We apply the taxonomy alignment process to bridge \(T_o \)
- the Italian taxonomy CP\(^1\) - to \(T_d \) - the European taxonomy
ESCO\(^2\). **JoTA** employs FastText for training for embed-
ddings\(^3\), while the classification task is performed employing
a 2-layer neural network\(^4\). For each \(c_o \in T_o \), we examine
their suggested matches with concepts in \(T_d \) to assess the
correctness of the method in comparison with the mapping
between \(T_o \) and \(T_d \) validated by a group of domain experts.

For the evaluation, we consider the top-5 Accuracy and
the MRR (Mean Reciprocal Rank) because the taxonomy

Method	top-5 Accuracy	MRR	wMRR
Hierarchical approach	0.76	0.63	0.69
Classification approach	0.77	0.64	0.71
Blended approach	0.8	0.66	0.72

Table 1: The results of top-5 Accuracy, MRR, wMRR.

The alignment solution is seen as a ranking problem:

\[
MRR = \frac{1}{|W^o|} \sum_{i=1}^{|W^o|} \left\{ \begin{array}{ll}
\frac{1}{\text{rank}_i} & \text{if } i \text{ has a correct suggestion} \\
0 & \text{otherwise}
\end{array} \right.
\]

We also use the \(wMRR \) (Bar-Yossif and Kraus 2011), a
weighted version of the \(MRR \) that considers also the hyper-
nyms of the suggestions:

\[
wMRR = \frac{1}{|S|} \sum_{i=1}^{|S|} \left\{ \begin{array}{ll}
\frac{1}{\text{rank}_i} & \text{if } i \text{ has a correct suggestion} \\
\frac{1}{3} \cdot \frac{1}{\text{rank}_i} & \text{if } i \text{ has a correct level 3 hypernym} \\
\frac{1}{2} \cdot \frac{1}{\text{rank}_i} & \text{if } i \text{ has a correct level 2 hypernym} \\
\frac{1}{4} \cdot \frac{1}{\text{rank}_i} & \text{if } i \text{ has a correct level 1 hypernym} \\
0 & \text{otherwise}
\end{array} \right.
\]

The results of the evaluation are shown in Tab. 1. The
blended method achieves the best performances.

Conclusion and Future Outlook. This research is framed
in the context of an EU grant that aims at aligning the ESCO
taxonomy with national labor market taxonomies through
AI (EURES 2019). We created **JoTA**, a methodology for au-
tomatic taxonomy alignment of lexical taxonomies through
word embeddings. **JoTA** associates all the leaf terms of
the origin taxonomy to one or many concepts in the destination
one, merging the results of a hierarchical method based on
cosine similarity and the results of a classification task. We
applied **JoTA** in the context of a real-world project, aligning
the Italian taxonomy CP to the European Taxonomy ESCO.

The proposed approach is implemented in the labor mar-
ket domain but is domain-independent. Our results show that
JoTA reached a 0.8 accuracy on recommending top-5 occu-
pations and a wMRR of 0.72.

References

Bar-Yossef, Z.; and Kraus, N. 2011. Context-sensitive query
auto-completion. In WWW, 107–116.

EURES. 2019. A Data Driven Bridge Towards ESCO using
AI Algorithms, granted by EURES (call Easi-EURES
VP/2019/010).

Giabelli, A.; Mandrali, L.; Mercorio, F.; Mezzanzanica, M.;
and Seveso, A. 2021. Skills2Job: A recommender system
that encodes job offer embeddings on graph databases. *Appli-
ded Soft Computing*, 101: 107049.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In *Advances in neural
information processing systems*, 3111–3119.

Ristosi, P.; and Paulheim, H. 2016. Rdf2vec: Rdf graph
embeddings for data mining. In *ISWC*, 498–514.