Information and communication technology application challenges in the construction industry: A narrative review

T B Odubiyi1*, C O Aigbavboa1, and W D Thwala1.

1SARChl in Sustainable Construction Management and Leadership in the Built Environment; Faculty of Engineering and the Built Environment; University of Johannesburg, South Africa. *kalitutawa@gmail.com

Abstract. The measure of construction activity affects the general wellbeing of the construction industry. An improved method of construction delivery reduces the problems encountered in the construction process. Studies posit that the use of Information and communication technologies (ICT) tends to improve construction output. However, there are barriers to ICT applications in the construction industry. To date several, the literature on challenges to ICT has been limited to a specific study area. This study conducted a narrative literature review to identify the challenges to ICT application in the construction industry across Europe, Australia, North-America, Africa, and Asia. The review was conducted using selected relevant academic journals from SCOPUS database. The findings from the review identified that challenges to ICT application are classified into Technology, Process and People related factors. The attitude of staff and Management to ICT, technical barriers and cost related factors are identified as the common factors to the three classified categories of challenges to ICT used in the construction industry. The implication of the findings is to address a platform for better and innovative construction process. It is also important in addressing people, process and technology which are interwoven for construction work.

Keywords: ICT, application, construction industry, review, Challenges

1. Introduction
The construction industry is a germane sector of any economy. This is because describes that construction activities are measured based on its output [1]. As such, there is a relationship between the level of construction output and the means to executing construction works. Hence, output level is a subject of much discuss in the built environment. Evidence gathered from literature showed that the output of construction work is affected by the type of Information and communication technologies (ICT) used, the people applying the ICT tools, cost of ICT applications, the process of the application and other factors [2,3]. A reduced output level has an adverse effect on construction activities since the method of project delivery are hindered. Therefore, there is a need to identify challenges to the application of ICT in the construction industry.

A Literature review method of research is extensively used for empirical construction management studies. Reviews on critical success factors for public-private partnership project [4], critical analysis of partnering research trend in construction industry [5], and factors affecting green building cost premiums [6], among other studies been conducted using various literature reviews.
approaches. Reviews methods used in previous studies includes narrative review, systematic review, critical review and, comparative review. Narrative literature reviews current literature that leans towards qualitative knowledge evidence [7]. It has been established that there is extensive literature on critical issues in the construction sector. It is therefore, imperative to identify the challenges facing ICT applications in the construction industry. Thus this study seeks to address this problem using a narrative review. After this introduction, their research method used for thesis study is described. Thereafter, the methodology used, the result gathered, discussion of findings of the result and the conclusion to the study follows.

2. Research Methodology
This study used the narrative review approach to identify the challenges facing ICT application in construction industry. Database search was carried out to identify relevant studies for this narrative study. This review used “SCOPUS” database for the search. SCOPUS database was selected since it has a large array of the indexed journal in construction and other fields [8]. The search was conducted using their adequate keywords; (i) ICT challenges (ii) ICT barriers, and (iii) ICT applications. The search was restricted to articles published in the English language; articles published in journals; full-text availability; and focus (i.e. ICT in Construction industry).

The search for the study was carried out in three different phases, database search; filtering and qualitative analysis. After completing the initial search on the SCOPUS database, a total of 80 papers were found. The search results were filtered to eliminate studies that did not meet the inclusion criteria. Also, publication tagged as “Research note”, "book reviews", "book chapter", "book", and other papers not based on empirical work were excluded. Also, duplicate articles were removed. In the end, 18 relevant articles were used for the study. These studies used questionnaires, interview, study case, focus group and mixed method for the research methodologies. It was discovered that the questionnaire survey is the most used tool (50%) of the selected articles. Table 1 below provides a summary of the research methodologies used.

Research Methodology	Number	Percentage
Questionnaire Survey	9	50.00%
Interview	3	16.70%
Focus group	1	05.50%
Case study	2	11.10%
Mixed	3	16.70%

3. Results
A narrative review was conducted to identify empirical evidence as regards the challenges facing ICT applications in the construction industry. The findings of this study are based on a review of 18 construction industry literature from across the world. There are 5 works of literatures from Europe; 1 from North America; 1 from Australia, 9 from Africa and 2 from Asia. This distribution depicts the worldwide importance of the topic of discussion. An overview of these selected studies published from 2005 to 2018 is presented in table 2. Construction professionals were the key sample population used in the studies.

Country	Author(s)
United Kingdom	[3,9–11]
Nigeria	[12–15]
3.1. Challenges affecting the application of Information and Communication Technology (ICT)

The main objective of the study is to identify the factors hindering the use of ICT application in the construction industry. The numerous factors identified are summarized in table 3 below. A review of the challenges will help develop strategies to enhance ICT application in the construction industry. Eighteen factors challenging the use of ICT in the construction industry were identified across the studies. They are afterward grouped under three categories Technology, People, and Process (Table 4). These categories are inspired by similarities of factors and previous literature. For instance, the work of Greene and Stitt-Gohdes [25] grouped factors into personal and external factor classification.

Factors	References
Poor attitude towards use ICT on staff and firm level	[2,10,12,14,15,21,22]
Technical barriers	[3,11,21,26,27]
Cultural barriers	[2,11,13,16,26]
Cost issues	[2,11,15]
Standardization problem	[3,20,24,27]
Inadequate ICT construction education training	[12,15,28]
Low return on ICT investment	[12,15,22]
Accessibility to ICT infrastructures	[2,11,16]
Legal Issues	[2,3,16]
Security/privacy issues	[2,12,16]
Knowledge of level of users	[2,15,16]
Full potential of ICT tools not exploited	[14,18]
Reliability of ICT tools	[13,16]
Diverse nature of ICT systems	[2,16]
High cost of employing IT professionals	[2,12]
Short life span of hardware/software	[12]
Inadequate/erratic electricity supply	[12]
Fear of Job displacement	[12]

The tag “C1 to C18” represents the number listing of the challenges according to table 3. “Technology” classification is the first category of barrier identified in the study. The factors that are grouped under the technology classification are C1, C2, C4, C6, C10, C13, C14, and C16. They are Poor attitude towards use ICT on staff and firm level, respectively, Technical barriers, Cost Issues, Inadequate ICT construction education training, Security/privacy issues, Reliability of ICT tools, Diverse nature of ICT systems, and Short life span of hardware/software, respectively. This grouping refers to challenges...
posed to ICT applications as implied to Technology itself. For example, the study of Sardroud [29] classified technology related problem as one of the challenges to ICT application in the construction industry.

“People” classification is the next category of challenges to ICT application identified in the study. The classification “People” refers to the challenges posed to ICT application by the users. Factors such as Poor attitude towards use ICT on staff and firm-level respectively (C1), technical barriers (C2), Cultural barriers (C3), Legal Issues (C9), Cost Issue (C4), Knowledge of level of users (C11), full potential of ICT tools not exploited (C12), Reliability of ICT tools (C13), High cost of employing IT professionals (C15), and Fear of Job displacement (C18). People are the core driving process and technology. Studies showed that people factors are also challenging to the use of ICT in the construction industry [21,29,30]. People factor are the most germane factors affecting ICT use in the construction industry.

Table 4. Technology, People and Process classification of challenges to ICT application
Technology
Poor attitude towards use ICT on staff and firm level respectively,
Technical barriers
Cost Issues
Inadequate ICT construction education training
Security/privacy issues
Reliability of ICT tools
Diverse nature of ICT systems,
Short life span of hardware/software,
People
Poor attitude towards use ICT on staff and firm-level respectively
Cultural barriers
Technical barriers
Legal Issues
Cost Issue
Knowledge of level of users
Full potential of ICT tools not exploited
Reliability Of ICT tools
High cost of employing IT professionals
Fear of Job displacement
Process
Technical barriers
Diverse nature of ICT systems
Cost issues
Standardization problem,
Low return on ICT investment,
Accessibility to ICT infrastructures
Legal Issues
Full potential of ICT tools not exploited
Inadequate/erratic electricity supply

“Process” Classification is another category of classification used in the study. Factors such as Technical barriers, diverse nature of ICT systems, Cost issues, standardization problem, Low return on
ICT investment, Accessibility to ICT infrastructures, Legal Issues, full potential of ICT tools not exploited, and Inadequate/erratic electricity supply are classified as C2, C4, C5, C7, C8, C9, C12 and C17 respectively. Classifying some challenges of ICT application in the construction industry into Process is a meeting point of the challenges due to technology and users. For instance, studies of Sardroud [27] revealed that process inclined challenges are one of the classifications for ICT challenges in the construction industry.

4. Discussion of findings
This study conducted a narrative review of challenges affecting ICT application in the construction industry. The reduced output from construction activities has been linked to the problems facing construction ICT. This study showed that ICT application challenges can be grouped into people, technology and process related factors. In these groups, barriers linked to the attitude of staff and management, technical issues and cost-related issues are prevalent among these categories. There is a need to improve the output of construction activities by overcoming the challenges enlisted in table 3 above.

Findings from the review described that there is a need for integration of people and process. This will improve the use of ICT construction industry. This finding is consistent with evidence from developed countries. In the UK for example, the barriers to ICT applications are categorised into investment and people factors. Insufficient ICT tool research and development (R&D), confidence using new technologies, cultural influence, organizational culture, insufficient technical skills, socio-economic hindrances are addressed as “People” factors facing ICT tool application in UK construction industry [29,31,32]. The investment related factors are majorly reduced funds for ICT tools and cost investment of such tool [30]. Also, this is consistent with evidence from a developing country’s perspective. In Ghana for example, [33] described that ICT applications face problems like lack of right technical skills, initial cost, resistance by people and culture, and lack of interest by management, for e-business activities in construction. The interconnection of people, process and technology is, therefore, necessary to overcome the challenges posed to ICT applications in the construction industry.

5. Conclusion
The output of construction activity is a major discussion in the field of construction management. The ineffective use of Information and Communication Technologies can be linked to reduced construction output. The study seeks to identify the challenges facing ICT application in the construction industry using a narrative review. The study resolved that there are three broad categories for ICT challenges in the construction industry. They are challenges related to Technology, People and Process. In these categories challenges such as Poor attitude towards use ICT on staff and firm level, Technical barriers and, Cost issues cut across the three categories. The findings of this study provide information for the construction industry on the challenges affecting ICT use in the construction industry. The implication of the findings is to address a platform for better and innovative construction process. It is also important in addressing people, process and technology which are interwoven for construction work. However, this study is limited by the methodology applied and the sample population. Future work should address the solutions to ICT application problems in the construction industry.

References
[1] Chiang Y H, Tao L and Wong F K W 2015 Causal relationship between construction activities, employment and GDP: The case of Hong Kong Habitat Int. 46 1–12
[2] Aghimien D O, Oke A E and Koloko N 2018 Digitalisation in construction industry: Construction professionals perspective ASEA SEC 4 Streamlining Information Transfer between Construction and Structural Engineering ed I Press (Brisbane, Australia) pp 1–7
[3] Alreshidi E, Mourshed M and Rezgui Y 2017 Factors for effective BIM governance J. Build. Eng. 10 89–101
[4] Osei-Kyei R and Chan A P C 2015 Review of studies on the Critical Success Factors for Public–Private Partnership (PPP) projects from 1990 to 2013 Int. J. Proj. Manag. 33 1335–46
[5] Hong Y, Chan D W M, Chan A P C and Yeung J F Y 2012 Critical Analysis of Partnering Research Trend in Construction Journals J. Manag. Eng. 28 82–95

[6] Dwaikat L N and Ali K N 2016 Green buildings cost premium: A review of empirical evidence Energy Build. 110 396–403

[7] Paré G K S 2017 Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. ed K C Lau F (Victoria (BC): University of Victoria; 2017 Feb 27)

[8] Hong Y and Chan D W M 2014 Research trend of joint ventures in construction: a two-decade taxonomic review J. Facil. Manag. 12 118–41

[9] May A, Mitchell V, Bowden S and Thorpe T 2005 Opportunities and challenges for location aware computing in the construction industry Proceedings of the 7th international conference on Human computer interaction with mobile devices & services - MobileHCI ’05 (New York, New York, USA: ACM Press) pp 255–8

[10] Aziz Z, Anumba C and Peña-Mora F 2009 A road-map to personalized context-aware services delivery in construction Electron. J. Inf. Technol. Constr. 14 461–72

[11] Ahmed V, Aziz Z, Tezel A and Riaz Z 2018 Challenges and drivers for data mining in the AEC sector Eng. Constr. Archit. Manag. 25 1436–53

[12] Oladapo A A 2007 A quantitative assessment of the cost and time impact of variation orders on construction projects J. Eng. Des. Technol. 5 35–48

[13] Usman N and Said I 2012 Information and communication technology innovation for construction site management Am. J. Appl. Sci. 9 1259–67

[14] Ikediashi D I and Ogwueleka A C 2016 Assessing the use of ICT systems and their impact on construction project performance in the Nigerian construction industry J. Eng. Des. Technol. 14 252–76

[15] Amusan L, Oلونju L, Akomolafe M, Makinde A, Nkoli P, Hezekiah F and Osawaru F 2018 Adopting Information and Communication Technology in Construction Industry Int. J. Mech. Eng. Technol. 9 739–46

[16] Ibem E O and Laryea S 2015 E-Procurement use in the South African construction industry J. Inf. Technol. Constr. 20 364–84

[17] Moum A and Bock T 2017 A Framework for Exploring ICTM Impact on Building Design and Management Applied to a Hospital Development Project: Proposing ICTM to Building Design and Management for Information Consistent Control of Construction and Service Robots Proceedings of the 23rd International Symposium on Automation and Robotics in Construction ed Japan Society of Civil Engineers, Tokyo

[18] Molony T 2008 Running out of credit: The limitations of mobile telephony in a Tanzanian agricultural marketing system J. Mod. Afr. Stud. 46 637–58

[19] Musa A M, Abanda F H, Otai A H, Tah J H M and Boton C 2016 The Potential of 4D Modelling Software Systems for Risk Management in Construction Projects CIB World Build. Congr. V 988–99

[20] Redwood J, Thelning S, Elmuailim A and Pullen S 2017 The Proliferation of ICT and Digital Technology Systems and their Influence on the Dynamic Capabilities of Construction Firms Procedia Eng. 180 804–11

[21] Ma X, Xiong F, Olawumi T O, Dong N and Chan A P C 2018 Conceptual Framework and Roadmap Approach for Integrating BIM into Lifecycle Project Management J. Manag. Eng. 34 05018011

[22] Vasišta T G and Abone A 2018 Benefits, Barriers and Applications of Information Communication Technology in Construction Industry: a Contemporary Study Int. J. Eng. Technol. 7 492–9

[23] Gholizadeh P, Esmaeili B and Goodrum P 2018 Diffusion of Building Information Modeling Functions in the Construction Industry J. Manag. Eng. 34 04017060

[24] Simon S M 2018 Factors Influencing Adoption of Resource Planning by Contractors in the Construction industry of Kenya Int. J. Inorg. Mater. 7 106–10

[25] Greene C K and Stitt-Gohdes W L 1997 Factors That Influence Women’s Choices to Work in the Trades J. Career Dev. 23 265–78
[26] Musa S, Marshall-Ponting A, Akmar F, Nifa F A A and Shahron S A 2016 Building information modeling (BIM) in Malaysian construction industry: Benefits and future challenges AIP Conf. Proc. 2016 20148

[27] Majrouhi Sardroud J 2012 Influence of RFID technology on automated management of construction materials and components Sci. Iran. 19 381–92

[28] May A, Mitchell V, Bowden S and Thorpe T 2005 Opportunities and challenges for location aware computing in the construction industry Proceedings of the 7th international conference on Human computer interaction with mobile devices & services - MobileHCI ’05 (New York, New York, USA: ACM Press) pp 255–8

[29] Sardroud J M 2014 Perceptions of Automated Data Collection Technology Use in the Construction Industry J. Civ. Eng. Manag. 21 54–66

[30] Eadie A and Perera S 2016 The state of construction e-Business in the UK Title The state of construction e-Business in the UK (Salford: University of Salford)

[31] Love P E D, Irani Z and Edwards D J 2004 Industry-centric benchmarking of information technology benefits, costs and risks for small-to-medium sized enterprises in construction Autom. Constr. 13 507–24

[32] Barthorpe S, Chien H-J and Shih J K C 2003 The current state of ICT usage by UK construction companies Int. J. Electron. Bus. 1 358

[33] Idris F 2016 Innovation Capability: A Systematic Review and Research Agenda Interdiscip. J. information, knowledge, Manag. 11 235–60