A conserved PUF–Ago–eEF1A complex attenuates translation elongation

Kyle Friend¹, Zachary T Campbell¹, Amy Cooke¹,², Peggy Kroll-Conner³, Marvin P Wickens¹,² & Judith Kimble¹–³

PUF (Pumilio/FBF) RNA-binding proteins and Argonaute (Ago) miRNA-binding proteins regulate mRNAs post-transcriptionally, each acting through similar, yet distinct, mechanisms. Here, we report that PUF and Ago proteins can also function together in a complex with a core translation elongation factor, eEF1A, to repress translation elongation. Both nematode (Caenorhabditis elegans) and mammalian PUF–Ago–eEF1A complexes were identified, using coimmunoprecipitation and recombinant protein assays. Nematode CSR-1 (Ago) promoted repression of FBF (PUF) target mRNAs in vivo assays, and the FBF-1–CSR-1 heterodimer inhibited EFT-3 (eEF1A) GTPase activity in vitro. Mammalian PUM2–Ago–eEF1A inhibited translation of nonadenylated and polyadenylated reporter mRNAs in vitro. This repression occurred after translation initiation and led to ribosome accumulation within the open reading frame, roughly at the site where the nascent polypeptide emerged from the ribosomal exit tunnel. Together, these data suggest that a conserved PUF–Ago–eEF1A complex attenuates translation elongation.

Translational regulation affects metazoan development, learning and human disease¹–³. Of the many RNA-binding proteins regulating mRNA stability, localization and translation, the two classes relevant to this work are the PUF and Ago families. PUF proteins regulate a broad spectrum of mRNAs to maintain stem cells, among other functions¹–². Ago proteins bind small RNAs, most notably miRNAs, and act in many biological contexts, including in stem cells (reviewed in ref. 3).

PUF proteins regulate mRNA expression in virtually all eukaryotes⁴. One conserved mechanism, which has been established for Saccharomyces cerevisiae, Caenorhabditis elegans and human PUF proteins, relies on the direct recruitment of the Ccr4–Not deadenylase complex to target mRNAs, resulting in a shorter poly(A) tail length and either mRNA instability or translational repression⁵–⁶. PUF proteins in yeast and flies also use deadenylation-independent mechanisms, although the specifics of these mechanisms remain mostly unknown⁷–⁸.

Ago proteins function within the miRISC complex to control target mRNA stability and translation. This complex controls deadenylation and stability of its target mRNAs⁹–¹¹, but its mechanism to control translation has garnered controversy. Best documented is its regulation of translation initiation⁹–¹³. However, a mechanism affecting translation elongation also appears to exist, as target mRNAs can be bound to polyribosomes¹⁴. One model is that miRISC promotes ribosomal drop-off during translation elongation¹⁵. Yet the specific mechanism by which miRISC, and hence Ago family members, inhibits translation elongation is not understood.

Here, we report that PUF and Ago proteins form an inhibitory complex with eEF1A, a GTPase required for translation elongation. FBF-1 (a C. elegans PUF protein) binds CSR-1 (a C. elegans Ago family member) in vitro and in vivo, and csr-1 depletion leads to increased expression of FBF target mRNAs. The FBF-1–CSR-1 heterodimer forms a complex with EFT-3 (C. elegans eEF1A), and this FBF-1–CSR-1–EFT-3 ternary complex has inhibited GTPase activity. Notably, the PUF–Ago–eEF1A complex is conserved: human PUM2 (a PUF protein) associates with human AGO proteins in vivo and with eEF1A. Wild-type human PUM2 inhibits translation of both nonadenylated and polyadenylated mRNAs in rabbit reticulocyte lysate; however, PUM2 mutants that cannot form the PUM2–Ago–eEF1A complex or that cannot bind RNA are severely compromised for translation repression. Mechanistically, PUM2–Ago–eEF1A represses translation during elongation, with ribosomes accumulating ~100–140 nucleotides (nt) after the AUG within the open reading frame (ORF). We propose a model in which PUF and Ago proteins form a complex with eEF1A to inhibit its GTPase activity and attenuate translation elongation.

RESULTS

Association of C. elegans FBF-1 and CSR-1

To explore the molecular mechanisms of PUF protein function, we sought proteins that interact with two nearly identical C. elegans PUF proteins, FBF-1 and FBF-2, known collectively as FBF¹⁶. Previous yeast two-hybrid screens identified several FBF partners but no components of the translation machinery¹⁷,¹⁸. Here, we used recombinant, full-length GST–FBF-1 and GST–FBF-2 to select proteins from lysates and to identify interacting proteins by mass spectrometry (Supplementary Fig. 1 and Supplementary Table 1). Known FBF-interacting proteins, CPB-1 and NOS-3 (refs. 17,18), were detected in

¹Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA. ²Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA. ³Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA. Correspondence should be addressed to J.K. (jekimble@wisc.edu).

Received 18 July 2011; accepted 24 November 2011; published online 8 January 2012; doi:10.1038/nsmb.2214
addition to previously unknown putative partners CSR-1, one of 27 C. elegans Ago family members19,20, and EFT-3, the C. elegans homolog of translation elongation factor 1A, eEF1A21.

To directly test whether FBF-1 interacts with CSR-1 and EFT-3 in vivo, we immunoprecipitated tagged FBF-1 (ref. 22) from C. elegans lysate and probed for associated proteins. CSR-1 was specifically enriched, and this interaction was RNA-independent (Fig. 1a), indicating that FBF-1 and CSR-1 form a protein complex. By contrast, Dicer-related helicase (DRH-3), which is required to produce the 22-nt RNAs bound by CSR-1 (refs. 23,24), did not coimmunoprecipitate with FBF-1 (Fig. 1a), demonstrating that FBF-1 specifically binds CSR-1. EFT-3 was present in both FBF-1 and control coimmunoprecipitations (Fig. 1a), so we carried out further assays to confirm specificity of binding (see below). Our coimmunoprecipitation experiments suggested that CSR-1 should be expressed in the same germline region as FBF. FBF is enriched in the germ-cell cytoplasm at the distal end of the gonad25, and we found CSR-1 in the same location (Fig. 1b), in addition to its known location in the proximal germ line20. Because FBF-1 and CSR-1 coimmunoprecipitate and are expressed in the same region, FBF-1 and CSR-1 probably interact in vivo.

CB1-1 promotes repression of FBF target mRNAs

PUF and Ago family members both repress translation4,10, and models have suggested that miRNA binding sites proximal to PUF mRNA target sites may indicate an interaction16. To ask if FBF and CSR-1 might function together, we examined expression of an FBF reporter mRNA after CSR-1 depletion. In the reporter mRNA, the 3′ UTR of gld-1, an FBF target mRNA23, was linked to an ORF encoding a GFP histone H2B fusion protein (GFP::H2B), which labels nuclei. We used RNAi to deplete csr-1 from animals transgenic for reporters with either the wild-type gld-1 3′ UTR (WT gld-1 3′ UTR) or a mutant gld-1 3′ UTR (ΔFBE gld-1 3′ UTR) without FBF binding elements (FBEs)27. Briefly, fourth-stage larvae were treated by feeding RNAi, and the GFP::H2B reporter was scored one generation later in adult progeny. In control animals not depleted for CSR-1, GFP::H2B was absent from the distal-most germ cells with the WT gld-1 3′ UTR reporter (Fig. 1c, top panels), but GFP::H2B extended to the distal end in animals with the ΔFBE gld-1 3′ UTR reporter (Fig. 1c, bottom panels), as seen previously27. After CSR-1 depletion in animals carrying the WT gld-1 3′ UTR reporter, bright GFP::H2B expression was always shifted distally compared to controls (n = 31/31) (Fig. 1d, top panels) and was often in distal-most germ cells (n = 12/31). By contrast, csr-1 RNAi had little effect on expression of the ΔFBE gld-1 3′ UTR reporter (Fig. 1d, bottom panels). As a control, the same reporter assay was used after proteins thought to form a complex with CSR-1 (ref. 24) were depleted, but these depletions did not affect the WT gld-1 3′ UTR reporter (Fig. 1e,f). Because total loss of FBE-mediated repression always leads to bright GFP::H2B in the distal-most germ cells28, csr-1 depletion does not completely eliminate FBE-mediated repression but instead severely compromises that repression. We conclude that CSR-1 reduces expression of FBF reporter mRNA and that this effect requires FBEs.

To validate our findings with the gld-1 reporter mRNAs, we assayed two FBF target mRNAs, gld-1 (ref. 25) and cye-1 (ref. 29) mRNAs, in a csr-1 mutant. GLD-1 protein is normally expressed at a low but graded level in the mitotic zone (Supplementary Fig. 2a, top panel), whereas CYE-1 is more uniform in the mitotic zone (Supplementary Fig. 2a, middle panel). In a csr-1 deletion mutant, GLD-1 and CSR-1 both increased markedly in the mitotic zone, though GLD-1 was still graded (Supplementary Fig. 2b, top and middle panels). For controls, we also analyzed GLD-1 and CYE-1 levels in mutants of dhr-3, ego-1 and ekl-1, which are thought to function jointly with csr-1 (refs. 20,24,30). In these mutants, we observed more GLD-1 and CYE-1 than wild-type, but not to the high level typical of csr-1 mutants (Supplementary Fig. 2c–e). Therefore, wild-type CSR-1 lowers expression of at least two FBF target mRNAs.

These experiments suggest that FBF functions with CSR-1 to repress target mRNAs. Yet, the documented germline defects in ifj and csr-1 mutants differ in many respects. The ifj-1 ifj-2 double mutant germ lines are defective for germline self-renewal and hence have no mitotic zone25 whereas csr-1 is defective for chromosome segregation and embryonic viability19. We examined csr-1 deletion mutants for mitotic zone defects and found the csr-1 mitotic zone to be present but smaller than normal (Supplementary Fig. 2b). The reduced csr-1 mitotic
zone is consistent with a functional overlap with FBF, but its presence demonstrates that CSR-1 is not required for all FBF functions. We suggest that CSR-1 and FBF can work together to repress mRNA expression through FBEs, but that they can also work independently. The independent functions probably involve interactions with other paralogs (for example, FBF with other Agos and CSR-1 with other PUFs) as well as interactions with other complexes (for example, FBF with Ccr4–Not deadenylase and CSR-1 with RISC).

FBF-1 interacts with the CSR-1 MID-PIWI domains

To directly assay FBF-1 interactions with CSR-1, we conducted biochemical analyses with purified recombinant proteins. Initially, we explored the interaction, focusing on conserved domains—the PUF repeats of FBF-1 (hereafter called FBF-1) and the MID-PIWI or PAZ domains of CSR-1. GST–FBF-1 (residues 121–612) was coexpressed with either His6-MID-PIWI (residues 557–993) or His6-PAZ (residues 378–505) in the pETDuet system, which allows simultaneous expression of multiple proteins. Affinity selection for GST–FBF-1 enriched His6-MID-PIWI (Fig. 2a, lane 1) but not His6-PAZ (Fig. 2b, lane 1); the reciprocal selection for His6-MID-PIWI enriched GST–FBF-1 (Fig. 2a, lane 2), but selection for His6-PAZ did not enrich GST–FBF-1 (Fig. 2b, lane 2). Therefore, purified FBF-1 interacts specifically with the CSR-1 MID-PIWI domains but not with its PAZ domain. Our next experiments used the CSR-1 MID-PIWI region, referred to as CSR-1 for brevity.

FBF-1 and CSR-1 form a complex with EFT-3 (eEF1A)

This work identifies EFT-3 as a potential FBF-1 interactor (Supplementary Table 1), and work by others identified human eEF1A as a potential AGO1 and AGO2 interactor31, although the interaction was not confirmed for neither nematode or human components. We hypothesized that the FBF-1–CSR-1 heterodimer might form a ternary complex with the translation elongation factor EFT-3. To explore that idea, we purified FBF-1 alone, the FBF-1–CSR-1 heterodimer and EFT-3 alone (Fig. 2c, lanes 1–4); attempts to purify CSR-1 by itself were unsuccessful. FBF-1 alone did not bind EFT-3 (Fig. 2c, lane 5), but the FBF-1–CSR-1 heterodimer did bind EFT-3 (Fig. 2c, lane 7), suggesting the existence of a ternary complex. This ternary complex was observed in the absence of GTP (Fig. 2c, lane 7), but FBF-1–CSR-1 also bound EFT-3 when GTP was included (Supplementary Fig. 3a). We confirmed the identity of CSR-1 and EFT-3 proteins in these pull-down assays by western blotting (Supplementary Fig. 3b). We examined FBF-1 for conserved residues that are not involved in RNA-binding and found a broadly conserved phenylalanine residue (Phe344) (Supplementary Fig. 3c). We hypothesized that mutant FBF-1(F344R) might be defective for ternary complex formation. Although FBF-1(F344R) was able to bind CSR-1 (Supplementary Fig. 3d), the FBF-1(F344R)–CSR-1 heterodimer failed to bind EFT-3 (Fig. 2c, lane 8). We propose that FBF-1–CSR-1–EFT-3 exists as a complex.

The FBF-1–CSR-1 heterodimer inhibits EFT-3 GTPase activity

How might the complex affect translation? eEF1A family members possess GTPase activity, which is required during translation elongation in order to release aminoacyl-tRNAs upon delivery to the ribosome. Purified eEF1A has intrinsic GTPase activity, which is stimulated by ribosomes32. We hypothesized that the PUF–AGO complex might inhibit eEF1A activity because PUF and Ago proteins can inhibit translation33,34. To test this idea, we first confirmed that wild-type EFT-3 possesses GTPase activity compared to a catalytically dead mutant EFT-3(H95L) (Fig. 2d). We then assayed FBF-1 alone and the FBF-1–CSR-1 heterodimer for an effect on the EFT-3 GTPase activity. FBF-1 alone did not reduce GTPase activity, but the FBF-1–CSR-1 heterodimer reduced GTPase activity to a level similar to that of catalytically dead mutant EFT-3(H95L) (Fig. 2d). Notably, the mutant FBF-1(F344R)–CSR-1 heterodimer, which did not form a complex with EFT-3, also did not inhibit EFT-3 GTPase activity (Fig. 2d). Inhibition of EFT-3 GTPase activity in the FBF-1–CSR-1–EFT-3 complex suggests that the complex may repress translational elongation.

A human PUM2–AGO–eEF1A complex

We predicted that a PUM2–AGO–eEF1A complex might also form in humans. Initially, we tested whether PUM2 binds AGO family members in vivo. HEK293T cells were transiently transfected with constructs encoding the Flag-tagged PUF repeats of human PUM2 (PUM2-3xFlag) and Flag-hemagglutinin (HA)-tagged, full-length human AGOs1–3 (ref. 31). Using anti-HA antibodies, AGOs1–3 were immunoprecipitated from cells cross-linked with formaldehyde under denaturing conditions with RNase to isolate endogenous complexes34. Anti-Flag western blots revealed that PUM2 and AGOs1–3 coimmunoprecipitate (Supplementary Fig. 4a). We confirmed that PUM2 coimmunoprecipitates with AGOs1–3 without cross-linking (Supplementary Fig. 4b). To test whether PUM2 is critical for the
Figure 3 PUM2–AGO–eEF1A complex inhibits protein production. (a) Human PUM2 promotes eEF1A association with Ago. Western blots using Flag antibody to detect 3xFlag-PUM2 and Flag-HA-AGO1–3 (top) or eEF1A antibody (bottom). PUM2 coexpression markedly enhanced eEF1A coimmunoprecipitation. (b) RNA binding by PUM2 variants. Recombinant PUM2, PUM2(F868R), PUM2(T752E) and PUM2(H852A) at increasing concentrations (triangle) were assayed for binding the hunchback PBE sequence. (c) Complex formation with PUM2 variants.AGO coprecipitates with all PUM2 mutants except PUM2(T752E). eEF1A coprecipitates with wild-type and PUM2(H852A) but not with PUM2(F868R) or PUM2(T752E). Equivalent amounts of recombinant PUM2 proteins were added to reticulocyte lysate (input) in the presence of RNase. (d) PUM2 variant summary. (e) PBE-dependent translation repression of nonadenylated reporter mRNA. Recombinant GST or GST-tagged PUM2 variants, nonadenylated firefly luciferase mRNA with 3x PBEs in its 3’ UTR and control nonadenylated Renilla luciferase reporter were added to reticulocyte lysate. To monitor PBE-dependent translation, firefly luciferase production was normalized to Renilla luciferase production. Only wild-type PUM2 inhibited translation of nonadenylated firefly luciferase mRNA. Note that protein output was not corrected for mRNA level, because all reaction mixtures contained the same initial quantity of reporter mRNAs, and wild-type PUM2 reaction mixtures had more final mRNA than others. Error bars represent s.d. (n = 3). (f) As in panel e, but with polyadenylated mRNAs.

Table: Association of PUM2 with Ago and eEF1A

PUM2 Variant	Ago Binding	eEF1A Binding	Summary
PUM2	+	+	Wild-type
PUM2(T752E)	+	-	Ago-binding defective (ABD)
PUM2(F868R)	+	-	eEF1A-binding defective (EBD)
PUM2(H852A)	+	+	RNA-binding defective (RBD)

PUM2 mutants abolish complex formation

We turned to rabbit reticulocyte lysate to characterize PUM2–AGO–eEF1A effects on translation. For these experiments, we first identified PUM2 mutants that abolish complex formation or RNA binding. Each PUM2 variant tested was composed of the PUF repeats of human PUM2 (residues 706–1062) and was generated as a GST–PUM2 fusion protein. PUM2 refers to the wild-type version; PUM2(F868R) alters the conserved phenyalanine corresponding to FBE-1 (F344); PUM2(T752E) changes a conserved threonine residue (Supplementary Fig. 5a–c); and PUM2(H852A) was predicted to abrogate RNA binding35. Of these four proteins (Supplementary Fig. 5d), only PUM2(H852A) failed to bind an RNA carrying PUF-binding elements (PBEs) (Fig. 3b). When assayed for complex formation, wild-type and PUM2(H852A) co precipitated Ago and eEF1A from rabbit reticulocyte lysate (Fig. 3c, lanes 3 and 6). PUM2(F868R) bound Ago, but not eEF1A (Fig. 3c, lane 4), and PUM2(T752E) failed to bind either Ago or eEF1A (Fig. 3c, lane 5). In summary, PUM2(T752E) is Ago-binding defective (ABD); PUM2(F868R) is eEF1A-binding defective (EBD); and PUM2(H852A) is RNA-binding defective (RBD) but binds both Ago and eEF1A (Fig. 3d). The PUM2–Ago heterodimer recruits eEF1A, and PUM2 RNA-binding activity is not required for complex formation.

PUM2–Ago–eEF1A represses mRNA translation

To assay effects of the PUM2–Ago–eEF1A complex on translation, we used reporter mRNAs in reticulocyte lysate. We first quantitated Ago levels in the lysate (Supplementary Fig. 6a) and added an equivalent amount of PUM2. To ensure that reticulocyte lysate was not limiting for translation, we titrated mRNA encoding firefly luciferase with 3x PBEs in its 3’ UTR (PBEs bind human PUM1 and PUM2 (refs. 36,37)) against constant control Renilla luciferase reporter lacking PBEs (Supplementary Fig. 6b). PUM2 did not destabilize reporter mRNAs; in fact, PUM2 stabilized them (Supplementary Fig. 6c). Therefore, the ratio of firefly to Renilla luciferase enzyme activities allows us to monitor PBE-dependent translation. We first assayed nonadenylated mRNA (Fig. 3e) to exclude from our analysis PUF-mediated deadenylation effects5. Wild-type PUM2 inhibited mRNA translation, but the three mutant PUM2 proteins failed to repress reporter expression (Fig. 3e). Most notably, the ABD and EBD mutants, which disrupt PUF–AGO–eEF1A complex formation (Fig. 3b), did not repress the reporter.

Most natural mRNAs are polyadenylated, so we also assayed polyadenylated reporter mRNAs (Fig. 3f). Similar to the effects observed on the nonadenylated reporter mRNA, wild-type PUM2 repressed translation of polyadenylated mRNA whereas PUM2(RBD) did not. Notably, the PUM2 ABD and EBD mutants remained capable of limited repression. One possibility might have been that the ABD and EBD mutants had this minor effect by promoting mRNA deadenylation. However, mRNA adenylation was unaffected in our assays (Supplementary Fig. 6d). An open question is how PUM2(ABD and EBD) mutants repress the polyadenylated reporter in the absence of both deadenylation and PUM2–Ago–eEF1A complex formation. Indeed, these mutants suggest the existence of yet another mechanism of PUF repression. Because PUF proteins associate with the protein nanos38, we considered the possibility that the region of PUM2 important for its nanos association might be important for PUM2 repression. However, PUM2(G987D) repressed both nonadenylated and polyadenylated reporter mRNAs as well as wild-type PUM2 (Supplementary Fig. 7). Together, results from experiments using nonadenylated and polyadenylated mRNA reporters suggest that the PUF–Ago–eEF1A complex represses translation and that it does so independent of mRNA deadenylation.
Figure 4 Kinetics of PUM2 translational repression. (a, b) PUM2 proteins were incubated with reporter mRNAs in reticulocyte lysate for 5 min to ensure ribosome loading; at time $t = 0$, excess mRNA cap analog was added to inhibit de novo 40S ribosomal subunit loading. Luciferase production was monitored every 30 seconds. Error bars represent s.d. ($n = 3$). (a) Renilla luciferase production. Left, kinetics of Renilla luciferase production were equivalent for PUM2 and PUM2(RBD); right, enlargement of early time points. (b) Firefly luciferase production. Left, firefly luciferase production was delayed with PUM2 compared to PUM2(RBD) and markedly inhibited midway through the reaction. The PUM2 curve was similar to that of PUM2(RBD) from the ~5- to 8-min time points (albeit with a 30-s delay), suggesting that a fully functional repressive complex forms slowly. Right, enlargement of early time points. (c) Firefly luciferase production. To estimate translational elongation rate, we compared the time required to first produce either firefly or Renilla luciferase (firefly luciferase is 319 residues longer than Renilla luciferase). In reaction mixtures with PUM2(RBD), the first firefly luciferase protein was detected 2.5 min after the first Renilla luciferase (4.5 min for firefly versus 2 min for Renilla). From this difference, we infer an estimated translational elongation rate (eTER) of 2.12 residues per second (319/150 residues s$^{-1}$). In reaction mixtures with wild-type PUM2, the same calculation yields an eTER of 1.77 residues per second. This modest decrease was seen at a time well before PUM2 became fully repressive (8 min after cap analog addition). Therefore, PUM2 may affect translation elongation by using multiple mechanisms.

PUM2–Ago–eEF1A represses translation after initiation

We next investigated the mechanism of PUM2 translation inhibition, again in rabbit reticulocyte lysates. Initially, we carried out a standard assay for inhibition of translation initiation: we fractionated polyribosomes to ask if PUM2 inhibits the association of its target mRNA with ribosomes. In vitro translation reaction experiments were conducted as above with firefly mRNA (3× PBEs) and Renilla mRNA (control) in the presence of PUM2 or PUM2(RBD). Reaction mixtures were quenched with cycloheximide (maintains ribosomes on mRNA) or puromycin (removes ribosomes from mRNA) and separated over a sucrose gradient. After centrifugation, polyribosome profiles were indistinguishable when PUM2 or PUM2(RBD) was added, although puromycin did disrupt polyribosomes (Supplementary Fig. 8a,b). Moreover, by northern blots, the 3×PBE-containing mRNA associated with polyribosomes to the same level as the control mRNA, if either PUM2 or PUM2(RBD) was added (Supplementary Fig. 8c). As the 3×PBE-containing mRNA migrated in lighter fractions after puromycin addition, it is bound to ribosomes (Supplementary Fig. 8d).

Although these data contrast observations that miRNA-mediated translation repression occurs at initiation in rabbit reticulocyte lysate39, we note that we investigated PUF–Ago–eEF1A, not miRNAs. Therefore, ribosomal association with PUM2-bound mRNA appears unaffected by this assay, leading us to ask further questions about how translation is inhibited.

We next varied the translation assays to ask if PUM2-mediated repression occurs after translation initiation. Reporter RNAs plus purified recombinant PUM2 protein were incubated in lysate for 5 min to begin translation; then excess mRNA cap analog was added to quench additional ribosomal loading and thus to block translation initiation. Production of firefly (which is subject to PUM2 regulation) and Renilla luciferase was monitored in the presence of either PUM2 or PUM2(RBD) over time. In the absence of the cap analog, reporters produced luciferase linearly for about 45 min; however, in the presence of the cap analog, luciferase production stopped much earlier. The control Renilla luciferase plateaued after only ~13 min in the presence of either PUM2 or PUM2(RBD) (Fig. 4a). This early plateau indicated that the excess cap analog had abolished de novo 40S ribosomal subunit loading. With the RNA-binding defective PUM2 variant, expression from the firefly luciferase mRNA plateaued after ~15 min, a bit after the Renilla control, presumably because the firefly luciferase protein product is larger. However, wild-type PUM2 had a marked effect on firefly luciferase expression, decreasing sharply after only 8 min (Fig. 4b, left panel), an effect that can account for the difference in synthesized protein shown in Figure 4c. Wild-type PUM2 also modestly, but reproducibly, delayed the initial production of firefly luciferase relative to PUM2(RBD), an effect that probably reflects slower translation elongation (Fig. 4b, right panel; summarized in Fig. 4c). The slowed translation elongation is consistent with inhibited eEF1A GTPase activity in the PUM2–Ago–eEF1A complex, but the effect was not large enough to account for the 75% reduction in the quantity of synthesized protein (Fig. 3e,f). We conclude that PUM2 slows translation elongation and blocks protein production from its target mRNA.

PUM2–Ago–eEF1A attenuates translation elongation

We considered possible mechanisms by which PUM2 might inhibit protein production: it might attenuate translation elongation, consistent with the ribosome drop-off model proposed for miRNA-mediated translation repression35; it might inhibit translation termination; or it might promote destruction of nascent polypeptides during translation, as observed for miRNA-mediated repression40. The first two mechanisms make predictions about effects on ribosome position. If ribosomes drop off the mRNA during elongation, ribosomal density should be higher at the 5′ end of the ORF and taper off toward the 3′ end. If translation termination is inhibited, ribosomes should
Translation reaction experiments were carried out with in vitro ribosomal exit tunnel (~30–40 residues). Importantly, the ribosomal position at which nascent polypeptide should emerge from the ribosome was reduced across the remainder of the ORF. The peak coincides with ~100–140 nt into the ORF, and then ribosomal footprints are sharply reduced. We find it striking that in the presence of PUM2, a large peak occurs at this site, which is not present in the absence of PUM2. Therefore, translation is attenuated during elongation. Note that samples with wild-type PUM2 had more input RNA signal, owing to stabilized mRNA (Supplementary Fig. 6b), which dampens the signal observed for ribosomal footprints, once normalized. Error bars represent s.d. (n = 3). (c) As in panel b, but footprinting was carried out with a mutant firefly luciferase mRNA with ~500 nucleotides removed after the start codon (grey). As above, wild-type PUM2 caused ribosomes to accumulate over the first ~40–140 nt. Ribosomal density again dropped after this site of accumulation to a level lower than that seen with the PUM2 mutants, which all had equivalent ribosomal density across the ORF. (d) Model for how the PUF–Ago–eEF1A complex attenuates translation elongation. See text for explanation.

DISCUSSION

Our data support three main conclusions that advance our understanding of how PUF and Ago proteins regulate translation. First, PUF and Ago proteins can form a conserved complex containing the core translation elongation factor, eEF1A. Second, the nematode complex inhibits eEF1A GTPase activity, and the human complex represses translation elongation. Third, the complex blocks elongation at a site ~100–140 nucleotides into the open reading frame, where the nascent peptide is expected to emerge from the ribosomal exit tunnel. Below, we discuss the implications of these findings and propose a model to describe our observations: that PUF–Ago inhibits eEF1A GTPase activity and blocks translation elongation.

A conserved PUF–Ago–eEF1A complex

Studies done prior to this work focused on either PUF or Ago proteins. One hint that the two might work together was a bioinformatics analysis of human 3′ UTRs, revealing a nonrandom proximity of PUF protein binding elements and miRNA binding sites. Here, we demonstrate not only that PUF and Ago proteins interact but also that the PUF–Ago heterodimer associates with eEF1A and inhibits its GTPase activity. Our focus in nematodes was the FBF-1 PUF protein.
and the CSR-1 Ago protein, but we suspect that other PUF–Ago combinations may occur, as the nematode genome encodes 11 PUFs and 27 Agos. FBF-1 and CSR-1 are divergent members of their respective families, yet both proteins possess signature domains. Moreover, CSR-1 has slicing activity23 despite its noncanonical function in chromosome segregation24. One possibility might have been that the FBF-1–CSR-1 association was atypical. However, in mammals, human PUM2 can associate with three AGOs (AGO1, AGO2 and AGO3), suggesting conservation. We suggest that multiple PUF–Ago combinations exist both in nematodes and mammals. A question for the future is whether individual PUFs and Agos behave differently with respect to their participation in the PUF–Ago–eEF1A complex.

Small RNAs cannot be essential for formation of the PUF–Ago–eEF1A complex. The MID-PIWI domain of Ago is sufficient to form the complex, and together with its PUF partner, the MID-PIWI domain inhibits eEF1A GTPase activity. Yet the MID-PIWI domain cannot bind small RNAs on its own. By contrast, the PAZ domain of Ago is not required to assemble the complex (Fig. 2c), but this PAZ domain drives small RNA loading43. Nonetheless, PUF–Ago–eEF1A complexes formed in vivo contain full-length Argos and probably associate with small RNAs. An attractive idea is that the PUF–Ago–eEF1A complex coordinates PUF and miRNA regulation.

The interaction between the PUF–Ago heterodimer and eEF1A is reminiscent of the original identification of Ago in a complex with eEF2 (ref. 44), which is structurally similar to eEF1A and also possesses GTPase activity. Yet the MID-PIWI domain cannot form small RNAs on its own. By contrast, the PAZ domain of Ago is not required to assemble the complex (Fig. 2c), but this PAZ domain drives small RNA loading43. Nonetheless, PUF–Ago–eEF1A complexes formed in vivo contain full-length Argos and probably associate with small RNAs. An attractive idea is that the PUF–Ago–eEF1A complex coordinates PUF and miRNA regulation.

PUF–Ago–eEF1A regulates translation elongation

Figure 5d presents a model for how the PUF–Ago–eEF1A complex may control translation elongation. Central to this model is its anchor through the PUF–Ago heterodimer to regulatory elements in the 3′ UTR and its association with an inhibited core translation elongation factor, eEF1A. Also central to this model is a block within the ORF at a position corresponding roughly to where the nascent polypeptide emerges from the ribosomal exit tunnel. Our kinetic analysis of protein production from a PUM2-repressed reporter mRNA (Supplementary Fig. 8). Second, the same initial slope was observed in our kinetic analysis of protein production by PUM2-repressed and control mRNAs (Fig. 4). In addition, PUM2 repression occurred in the presence of excess mRNA cap analog, suggesting that its repression is exerted after loading 40S ribosomal subunits. Although we cannot exclude the possibility of a minor effect on translation initiation, our results strongly point to translational repression as the major level at which the PUF–Ago–eEF1A complex exerts its repressive effects.

How does the proposed PUF–Ago–eEF1A mechanism compare to established mechanisms of regulation at the level of translation elongation? Perhaps the best-known mechanism is that adopted by the signal recognition particle (SRP) during synthesis of membrane proteins46, where translation elongation is inhibited until SRP docks with the endoplasmic reticulum46. The PUF–Ago–eEF1A mechanism resembles this case in that ribosomes accumulate at a similar position within the ORF. However, no role for 3′ UTR binding proteins is known for the SRP block. Recently discovered is the hnRNP E1 association with eEF1A to inhibit translation elongation; however, hnRNP E1 does not inhibit eEF1A GTPase activity but instead inhibits eEF1A dissociation from the ribosome48. Another case is miRISC, which is thought to promote ribosomal drop-off from a targeted mRNA but not at a given position within the ORF15. Therefore no established mechanism fits the PUF–Ago–eEF1A model completely.

Why multiple PUF and Ago mechanisms?

The PUF–Ago–eEF1A mechanism controlling translation elongation (Fig. 5d) is not the only mechanism used by PUF and Ago proteins, and it is perhaps not even the primary mechanism. Its relative importance to other well-established mechanisms (for example, deadenylation and instability, see above) remains unknown. Why use multiple mechanisms? We do not know, but we have three suggestions. One is security: if the PUF protein or Ago protein fails to silence a target mRNA with one mechanism, the regulator may invoke a different mechanism to repress the escaped mRNA. A second idea is reversibility: destruction is a dead end for an mRNA, but blocked elongation might ensure robust activation at a later step. A third idea is subcellular compartmentalization: as an mRNA emerges from the nucleus, it meets one subcellular environment, but upon localization, for example to stress granules, the mRNA enters a different environment. Translational repression in (or localization to) distinct subcellular locales may differentially use one mechanism over another. Critical issues for the future include unraveling the biological functions, relationships and regulation of the various PUF and Ago mechanisms.

METHODS

Methods and any associated references are available in the online version of the paper at http://www.nature.com/nsmb/.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

ACKNOWLEDGMENTS

We thank H. Tabara (Kyoto University) for providing CSR-1 and DHR-3 antibodies and E. Kirezos (University of Georgia) for the CYE-1 antibody. We thank K. Kimble and V. Wicks for helpful discussion; we also thank E. Land and S. Kennedy for critical reading of the manuscript and A. Helsley for help with the manuscript and figure preparation. Mass spectrometry was carried out with support from the Human Proteomics Program at the University of Wisconsin-Madison.
AUTHOR CONTRIBUTIONS
K.F. conducted the experiments with the exception of phylogenetic analysis (Z.T.C.), luciferase reporter mRNA production (A.C.) and co-1 mutant generation (P.K.-C.). K.F., M.P.W. and J.K. prepared the manuscript. K.F. is supported by PF-10-127-01-DDC from the American Cancer Society. Z.T.C. by US National Institutes of Health (NIH) postdoctoral fellowship F32 GM095169. A.C. by NIH training grant T32 GM07215 and an Advanced Opportunity Fellowship from the University of Wisconsin-Madison, M.P.W. by NIH grants GM031892 and GM050942 and J.K. by NIH grant GM099454. J.K. is an investigator of the Howard Hughes Medical Institute.

COMPELLING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Published online at http://www.nature.com/nsmb/.
Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Thompson, B., Wickens, K. & Mobbs, K. Translational control in development. in Translational Control in Biology and Medicine (eds. Mathews, M.B., Sohn, N. & Hershey, J.W.B.) 507–544 (Cold Spring Harbor Laboratory Press, Woodbury, New York, 2007).
2. Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).
3. Alvarez-Garcia, I. & Miska, E.A. MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005).
4. Wickens, M., Bernstein, D.S., Kimele, J. & Parker, R.A. PUF family portrait: SUTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).
5. Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind P20 to regulate messenger miRNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).
6. Suh, N. et al. FBF and its dual control of gl-2 expression in the C. elegans elegans gemline. Genetics 181, 1249–1260 (2009).
7. Chagraoui, D. & Lehmann, R. Poly(A)-dependent regulation of maternal hunchback translation in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98, 11359–11364 (2001).
8. Hook, B.A., Goldstrohm, A.C., Seay, D.J. & Wickens, M. Two yeast PUF proteins negatively regulate a single mRNA. J. Biol. Chem. 282, 15430–15437 (2007).
9. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).
10. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).
11. huntzinger, E. & izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Development 137, 1787–1798 (2010).
12. Kershner, A.M. & kimble, J. Genome-wide analysis of mRNA targets for the let-7 microRNA in C. elegans. Proc. Natl. Acad. Sci. USA 107, 3937–3941 (2010).
13. fabian, M.R. & ambros, V. The hunchback/antennapedia homeotic pathway is involved in the regulation of Drosophila homeotic gene expression. Dev. Biol. 278, 2123–2223 (2006).
14. thompson, B., wickens, K. & mobbs, K. Translational control in development. in Translational Control in Biology and Medicine (eds. Mathews, M.B., sohn, N. & hershey, J.W.B.) 507–544 (Cold Spring Harbor Laboratory Press, Woodbury, New York, 2007).
15. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).
16. huntzinger, E. & izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Development 137, 1787–1798 (2010).
17. Kershner, A.M. & kimble, J. Genome-wide analysis of mRNA targets for the let-7 microRNA in C. elegans. Proc. Natl. Acad. Sci. USA 107, 3937–3941 (2010).
18. fabian, M.R. & ambros, V. The hunchback/antennapedia homeotic pathway is involved in the regulation of Drosophila homeotic gene expression. Dev. Biol. 278, 2123–2223 (2006).
19. thompson, B., wickens, K. & mobbs, K. Translational control in development. in Translational Control in Biology and Medicine (eds. Mathews, M.B., sohn, N. & hershey, J.W.B.) 507–544 (Cold Spring Harbor Laboratory Press, Woodbury, New York, 2007).
20. Dubnau, J. et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 13, 286–296 (2003).
21. Alvarez-Garcia, I. & Miska, E.A. MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005).
22. Goldstrohm, A.C., Hook, B.A., Seay, D.J. & Wickens, M. PUF proteins bind P20 to regulate messenger miRNAs. Nat. Struct. Mol. Biol. 13, 533–539 (2006).
23. Suh, N. et al. FBF and its dual control of gl-2 expression in the C. elegans elegans gemline. Genetics 181, 1249–1260 (2009).
24. Chagraoui, D. & Lehmann, R. Poly(A)-dependent regulation of maternal hunchback translation in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 98, 11359–11364 (2001).
25. Hook, B.A., Goldstrohm, A.C., Seay, D.J. & Wickens, M. Two yeast PUF proteins negatively regulate a single mRNA. J. Biol. Chem. 282, 15430–15437 (2007).
26. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).
27. Fabian, M.R., Sonenberg, N. & Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 79, 351–379 (2010).
28. huntzinger, E. & izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011).
29. Pili, R.S. et al. Inhibition of translational initiation by let-7 MicroRNA in human cells. Science 320, 1573–1576 (2008).
30. Humphreys, D.T., Westman, B.J., Martin, D.I. & Preiss, T. MicroRNA control of translation initiation by blocking eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl. Acad. Sci. USA 102, 16961–16966 (2005).
31. Olsen, P.H. & Ambros, V. The let-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-4 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).
32. Petersen, C.P., Bordeleau, M.E., Pelletier, J. & Sharp, P.A. Short RNAs repress translation after insertion into mammalian cells. Cell 121, 533–542 (2005).
33. Zhang, B. et al. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390, 477–484 (1997).
34. Lutjens, C., Gallegos, M., Kraemer, B. & Kimmle, J. & Wickens, M. CPEB proteins control two key steps in spermatogenesis in C. elegans. Dev. Genes Evol. 14, 2096–2080 (2000).
35. Kraemer, B. et al. NANO3 and FB2 proteins physically interact to control the sperm-ocyte switch in Caenorhabditis elegans. Curr. Biol. 9, 1099–1108 (1999).
36. Yigit, E., et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).
37. Claycomb, J.M. et al. The Argonaute CSR-1 and its 22G-RNA cofactors are required for holocentric chromosome segregation. Cell 139, 123–134 (2009).
38. Rhoada, R.E., Dinkova, T.D. & Korneeva, N.L. Mechanism and regulation of translation in C. elegans. in WormBook (ed. The C. elegans Research Community) doi/10.1895 wormbook.1.63.1 (WormBook, 2006).
39. Lee, M.H., et al. Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet. 3, e233 (2007).
ONLINE METHODS

Additional methods. Strains, plasmids and antibodies are detailed in Supplementary Methods. Also contained in Supplementary Methods are protocols for northern blotting, electrophoretic mobility shift assays and mass spectrometry.

Protein purification. All GST protein purifications were carried out in cold lysis buffer A (50mM Tris-HCl, pH 7.5, 250mM NaH₂SO₄, 250mM NaCl, 1mMEDTA, 5mM DTT and 1mM PMSE, supplemented with Roche Complete Protease Inhibitor Cocktail). Cells were lysed, and cleared lysate was incubated with glutathione-Sepharose (GE Healthcare). Protein was eluted in lysis buffer A with 10mM reduced glutathione. When necessary, GST tags were removed with 1U PreScission Protease (GE Healthcare).

His₆–CSR-1 was purified as above with minor modifications. Rather than lysis buffer A, lysis buffer B (50mM NaH₂PO₄, pH 7.4, 1% (v/v) glycerol, 250mM NaH₂SO₄, 250mM NaCl, 1mMEDTA and 1mM PMSE, supplemented with Roche Complete Protease Inhibitor Cocktail) was used. Samples were selected with Ni²⁺–NTA Agarose (Qiagen) and eluted in lysis buffer B with 250mM imidazole.

Immunoprecipitation and transient transfection. Lysates from transgenic lines expressing GFP were used. Lysates from transgenic lines expressing GFP were used. Lysates from transgenic lines expressing GFP were used. Lysates from transgenic lines expressing GFP were used.

HEK293T cells were transfected using Lipofectamine 2000 (Invitrogen), according to the manufacturer’s instructions. Cells were then treated with 0.3% (v/v) formaldehyde and quenched with 0.125M glycine. RIPA buffer was added (50mM Tris-HCl, pH 8.0, 150mM NaCl, 1% (v/v) NP-40, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 2mMEDTA, 0.5μg RNase A). Samples were immunoprecipitated with anti-HA antibody, washed in lysis buffer and analyzed by western blotting.

Immunofluorescence and fluorescence microscopy. Adult hermaphrodite gonads were extruded in M9 buffer (with 0.1% (v/v) Tween-20 and 0.25mM levamisole). Gonads were washed in PBSTw (PBS with 0.1% (v/v) Tween-20) and fixed in 3% (v/v) paraformaldehyde, dissolved in 100mM K₂HPO₄ (pH 7.2). Samples were washed in PBSTw, and ice-cold methanol was added. Samples were then blocked for 30min at 22°C in PBSTw plus 0.5% (w/v) BSA. Primary antibodies (anti–CSR-1 at 1:100, anti–GPD-1 at 1:100 or anti–CYE-1 at 1:300) were added. Samples were washed in PBSTw plus 0.5% (w/v) BSA and incubated with the appropriate secondary antibodies (1:500 dilution), with DAPI. Samples were washed in PBSTw plus 0.5% (w/v) BSA and mounted with Vectashield (Vector Laboratories). Visualization was on a Zeiss LSM 510 Meta confocal microscope. GFP::H₂B was visualized as above, but without antibody treatments. DAPI staining was carried out. Samples were analyzed on an Axio Imager D1.

RNAi. To conduct RNA interference, L4 hermaphrodite feeding was done. Briefly, the unc-119(ed3); axIs1723[pie-1 prom:GFP::H₂B::gld-1 3′UTR] and unc-119(ed3); axIs1775[pie-1 prom:GFP::H₂B::gld-1 mutant 3′UTR] strains were picked to RNAi plates. Control plates contained the Escherichia coli strain HT115. Only sterile animals (because csr-1, dh-3, ego-1 and ekl-1 all result in sterility) were stained with DAPI and scored.

Evolutionary trace and sequence alignment. Conserved sites were identified using evolutionary trace analysis⁴⁹. Protein sequences were aligned to human Pum1 with ClustalW (http://mammoth.bcm.tmc.edu/ET/server.html). Heatmaps depicting normalized conservation Z-scores were generated using Matlab (Mathworks). Conserved residues were visualized on the basis of the structure of human Pum1 (ref 50).

Protein binding assays. Either 500ng each of GST–FBF-1, GST–FBF-1(F344R), pETDuet-expressed GST–FBF-1–CSR-1 complex or GST–FBF-1(F344R)–CSR-1 complex were added to 500ng purified EFT-3 in 20μL of PBSTw supplemented with 1mMDTT. Reaction mixtures were incubated with or without 0.5mM GTP. Reaction mixtures were then added to glutathione–Sepharose, incubated and washed. Equivalent amounts of input proteins and pellets were analyzed. GST–PUM2 binding assays were carried out by adding 50ng of purified, recombinant protein to 20μL of reticulocyte lysate. Reaction mixtures were incubated with RNase A (10μg ml⁻¹), diluted with PBSTw and added to glutathione–Sepharose. Samples were washed with PBSTw, and bound proteins were western blotted as indicated.

GTPase assay. 50ng each of EFT-3, EFT-3(H95L), GST–FBF-1–EFT-3, GST–FBF-1–CSR–EFT-3, or GST–FBF-1(F344R)–CSR-1 with EFT-3 were incubated with 5μCi [γ-³²P]GTP per 50 fmol GTP. Reaction experiments were carried out in GTPase buffer (50mM MES/KOH, pH 7.5, 150mM NH₄Cl, 50mM KC1 and 20mM MgCl₂). Three 5μL aliquots were quantitated. To these aliquots were added 40μL of 1M perchloric acid, 20μL of 0.25M imidazole (pH 5 with HCl) and 100μL of 1.5% (w/v) NaMoO₄. Phosphomolybdic acid was extracted in butyl acetate and scintillation-counted.

In vitro translation. In vitro translation reaction mixtures were treated with T7 RNA polymerase with the mRNA cap analog m⁷G5ppp5G (New England Biolabs). For ribosomal footprinting analysis, in vitro transcriptions were carried out with (α-³²P)UTP.

250ng GST, GST–PUM2, GST–PUM2(ABD), GST–PUM2(ABD) and GST–PUM2(ABD) were added to 20μL nuclease-treated, rabbit reticulocyte lysate (Promega). 1μg nonadenylated or 1μg polyadenylated firefly luciferase 3′ PBEs mRNA was added, as was an amino acid mixture (Promega) and 100ng control Renilla luciferase mRNA. After the reaction, three 5μL aliquots were quantitated using the Dual Luciferase assay system (Promega). Samples were averaged, and s.d. are from three biological replicates.

Polysome analysis. In vitro translation reaction mixtures were treated as above, and reactions were quenched with either cycloheximide or puromycin. Reaction mixtures were then separated over a 10–50% linear sucrose gradient. Fractions were collected in 500μL aliquots and used for northern blotting.

Pulse-chase analysis. In vitro translation reaction mixtures were treated as above with modification. Reaction mixtures were pre-incubated, and then m⁷G5ppp5G (New England Biolabs) was added to a concentration of 2mM. Immediately, aliquots were removed over the time course.

Ribosome footprinting. In vitro translation reaction mixtures were prepared as above; however, only radiolabeled firefly luciferase mRNA was included. Reaction mixtures were quenched with cycloheximide. Samples were then treated with RNase One (Ambion). 2.5μL were removed (Input RNA) before the remaining samples were separated over a sucrose gradient. RNA was extracted from monoribosome fractions and hybridized to a DNA oligonucleotide array. Samples were compared to input RNA. Hybridization was for 16h at 45°C with a wash in 2× and 0.5× SSC for 15min at 22°C. Error bars indicate s.d. between three biological replicates.

49. Rajagopalan, L., Pereira, F.A., Lichtege, O. & Brownell, W.E. Identification of functionally important residues/domains in membrane proteins using an evolutionary approach coupled with systematic mutational analysis. Methods Mol. Biol. 493, 287–297 (2009).
50. Gupta, Y.K., Nair, D.T., Wharton, R.P. & Aggarwal, A.K. Structures of human Pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity. Structure 16, 549–557 (2008).