Effect of ischemic preconditioning on P-selectin expression in hepatocytes of rats with cirrhotic ischemia-reperfusion injury

Xiang-Dong Cheng, Xian-Chuan Jiang, Yin-Bing Liu, Cheng-Hong Peng, Bin Xu, Shu-You Peng

INTRODUCTION

Ischemic preconditioning (IPC) refers to a phenomenon in which a tissue is rendered resistant to the deleterious effects of prolonged ischemia and reperfusion (I/R) by prior exposure to a short period of vascular occlusion. This phenomenon was first demonstrated in the heart a decade ago[1] and has been the subject of intensive investigation ever since. Although it is clear that activation of adenosine receptors and protein kinase C (PKC) is critical to the development of the beneficial action of IPC, the downstream effectors in the signaling cascade initiated by IPC are uncertain. Akimisi et al[2] and Kubes et al[3] have demonstrated that IPC prevents intestinal and skeletal muscle I/R injury by inhibiting posts ischemic leukocyte-endothelial cell interaction. However, identification of the end effectors of the ant adhesive effects of IPC remains unclear. A likely candidate effector molecule that may be targeted by signaling cascade initiated by IPC is P-selectin, because post-ischemic leukocyte rolling (and thus subsequent stationary adhesion and emigration) is critically dependent on the expression of P-selectin on venular endothelium[4]. IPC has been commonly studied in the heart, but few studies have been performed on cirrhotic liver IPC. This study was aimed to determine the effects and mechanisms of IPC on the I/R injury rats with liver cirrhosis and the effect of IPC on the expression of P-selectin.

MATERIALS AND METHODS

Reproduction of rat cirrhotic liver model

Sprague-Dawley (SD) Male rats initially weighing 200±20 g were used.

Subcutaneous injection of 60 % Ccl_{4}(0.3 mg/kg) was made once every 4 days for 8 weeks and 5% ethanol was allowed for 60 days[5].

Operative procedure

At first, ligamentous attachments around the liver were dissected. The common bile duct was then cannulated and bile output was measured. Ischemia was induced in the median and left lateral hepatic lobes by clamping the corresponding hepatic arterial and portal vein, while the blood flowing to the other lobe was left intact. When the assigned period of warm ischemia was completed, the clamp was removed and the pedicles to the non-ischemic lobe were ligated[6].

Grouping of animals

Forty male SD rats with liver cirrhosis were divided into 5...
groups randomly, eight rats in each group. Animals in sham Operation group (SO group) were subjected to anesthesia and laparotomy. Animals in ischemia/reperfusion group (I/R group) were subjected to 30 min of left and middle lobe hepatic ischemia, followed by 120 min of reperfusion. Animals in ischemic preconditioning group (IPC group) were same as I/R group, but subjected to 10 min of ischemia and 5 min of reperfusion prior to I/R. Animals in L-arginine preconditioning group (APC group) were same as IPC group, but treated with a continuous intravenous infusion of L-Arginine (10 mg/kg, portal vein) for 5 min before preconditioning. Animals in L-NAME preconditioning group (NPC group) were same as IPC group, but treated with a continuous intravenous infusion of L-NAME (10 mg/kg, portal vein) for 5 min before preconditioning.

The animals were killed after blood samples were collected from the inferior vena cava after 120 min of reperfusion. Liver samples were excised from the anterior edge of the median lobe before ischemia, after the induction of ischemia and 120 min after reperfusion respectively. The specimens were immersed in liquid nitrogen immediately after sampling to prevent metabolism. The liver samples were homogenized by a high-speed homogenizer using 4% perchloric acid at 4°C. After centrifugation, the supernatant was stored at 4°C for analysis.

Energy metabolism

ATP and its metabolites, ADP and AMP in the liver tissue were measured by high-performance liquid chromatography (HPLC). Energy charge (EC) was equal to (ATP+1/2ADP)/(ATP+ADP+AMP) [7].

Measurement of serum cytosolic enzymes

Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured at 4°C using commercially available kits (Horizon, American) by an auto-biochemistry analyzer.

Measurement of bile output

Bile output from the ischemic liver was measured through a choleodochotomy tube placed in the common bile duct.

P-selectin expression in liver tissues

Immunohistochemical staining for P-selectin protein was performed using SP technique [8]. The immunostaining of P-selectin was visually classified into four groups: no staining present in any tumor cells (+), slight staining in most of the hepatocytes (++), most of the hepatocytes with moderate staining (+++), and strong staining in most of the hepatocytes (+++). Two senior pathologists who did not know the clinicopathological data did the classification.

Histological examination

Liver samples were excised from the anterior edge of the median lobe 120 min after reperfusion. Small portions (0.5 cm×0.5 cm) were fixed immediately in 4% buffered para formaldehyde (pH 7.2) and embedded in paraffin. These portions were cut into 4 μm thick sections and stained with hematoxylin and eosin (H & E). Leukocyte count in ischemic hepatic lobe could be calculated randomly under microscopy (×400).

Statistical analysis

The results were expressed as ±s. The one-way NOVA and H test were used for statistical significance of differences between groups. Correlation analysis between two factors was made by Spearman method. P<0.05 was considered significant.

RESULTS

Change of ATP, ADP, AMP and EC levels in liver after ischemia and reperfusion

At 30 min of hepatic inflow occlusion, the ATP and EC levels in liver tissues were significantly decreased in I/R, IPC, APC and NPC groups (P<0.05). At 120 min after reperfusion, the ATP and EC levels in IPC and APC groups were significantly higher than those in I/R group (P=0.000, P=0.001). There was no significant difference between NPC and I/R groups (P>0.05) (Table 1).

Change of ALT, AST and LDH in serum

Significant increases of ALT, AST and LDH levels in serum were observed in the group subjected to ischemia and reperfusion (I/R group) in comparison with the control group (SO group). When ischemia was preceded by 10 min of ischemia and 5 min of reperfusion (IPC), the increases of AST, ALT and LDH in serum were prevented (P=0.000). Administration of L-Arginine (APC group) resulted in the same effects on ALT, AST and LDH as above (P=0.001). However, infusion of L-NAME (NPC group) inhibited the beneficial effects of preconditioning (Table 2).

Results of bile output and leukocyte count in ischemic hepatic lobe

The livers produced more bile in IPC group than in I/R group during 120 min after reperfusion (0.101±0.027 versus 0.066±0.027 ml/g liver, P=0.002). There was a significant difference between APC and I/R, NPC and SO groups (P=0.001, P=0.000) respectively. However, there was no significant

Table 1 ATP, ADP, AMP and EC levels in liver after ischemia and reperfusion (U/L)

Groups	n	After Ischemia	After Reperfusion						
		ATP	ADP	AMP	EC	ATP	ADP	AMP	EC
SO	8	5.4±1.3	3.1±0.8	1.0±0.2	0.7±0.0	5.5±0.8	3.2±1.0	1.0±0.1	0.7±0.0
I/R	8	0.5±0.2	2.3±0.6	3.5±1.0	0.3±0.0	1.5±0.6	2.3±1.2	2.6±1.3	0.4±0.1
IPC	8	0.5±0.1	2.1±0.5	3.6±1.5	0.3±0.1	4.1±1.6	2.3±0.8	1.9±0.9	0.6±0.1
APC	8	0.5±0.1	2.2±0.5	3.4±0.7	0.3±0.0	4.0±1.6	2.5±1.1	2.2±1.2	0.6±0.1
NPC	8	0.5±0.2	2.0±0.7	3.3±0.6	0.3±0.0	2.3±1.6	2.2±0.9	3.2±1.1	0.4±0.1

P <0.05, *P* <0.01, vs SO group; *P* <0.01, vs I/R group.
The degree of P-selectin expression was positively correlated with the counts of leukocytes in liver tissues. The degree of P-selectin expression positively correlated with the counts of leukocyte infiltration in liver. This is accomplished through a brief preceding episode of vascular occlusion which renders these tissues resistant to the deleterious effects of prolonged ischemia and reperfusion. The protective effects of IPC have been well documented in the previous studies involving different tissues and organs. These included cardiac muscle[1,9], skeletal muscle[10], small intestines[10] and more recently the liver[11]. Although the mechanism of IPC is still unclear up to now, several potential mediators (nitrogen monoxide, adenosine, oxide radical, bradykinin and so on) have been found to play different roles in different organs[11-14]. Adenosine and protein kinase C (PKC) were critical to the beneficial actions of IPC in the heart[13]. IPC-induced adenosine A1-receptor stimulation during the period of preconditioning ischemia increased phospholipase C (PLC) activity, an event that is coupled by pertussis toxin-sensitive G proteins[12,13]. Activation of PLC induced the formation of diacylglycerol, which in turn promotes the translocation and activation of PKC. Activation of PKC stimulated the activation of ATP-sensitive potassium (KATp) channels, and the beneficial actions of IPC in the heart were induced[13], while adenosine stimulated NO production in IPC to protect against the injury associated with I/R in liver[16]. In the case of the cirrhotic liver, our work revealed that the ATP and EC levels in IPC group were higher than those in I/R group. There was significantly more bile produced by the livers in IPC group too. However, the increase of AST, ALT and LDH release was attenuated, when IPC was performed before ischemia. This fact shows the protective effect of IPC on preventing ischemia-reperfusion damage of cirrhotic liver. In addition, we found that L-arginine administration in hepatic ischemia reperfusion attenuated the injury in a manner similar to that of IPC. Accordingly, inhibition of NO synthesis abolished the beneficial effects of IPC. Thus, our data suggest that NO is one of the potential mediators of the protective effects of IPC.

Results of bile output and leukocyte count in ischemic hepatic lobe

Groups	Cases	Bile output (ml/g liver)	Leukocyte count (piece/HP)
SO	8	0.15±0.02	181.38±69.23
I/R	8	0.07±0.03	442.3±64.10
IPC	8	0.10±0.03	353.0±64.11
APC	8	0.10±0.02	347.7±61.53
NPC	8	0.07±0.04	407.8±60.40

ab <0.01, vs SO group; **a** <0.05, vs I/R group.

Correlation between leukocytes infiltration and P-selectin expression in liver tissues

Leukocytes infiltration was significantly correlated with P-selectin expression in liver tissues. The degree of P-selectin expression was positively correlated with the counts of leukocyte infiltration in liver (r=0.602, P=0.000).

DISCUSSION

IPC is a unique phenomenon which attenuates organ injury caused by I/R. This is accomplished through a brief preceding
REFERENCES

1 Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74:1124-1136

2 Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates postischemic leukocyte adhesion and emigration. Am J Physiol 1996; 271(3Pt 2): H2052-2059

3 Kubes P, Payne D, Ostrovsky L. Preconditioning and adenosine in I/R-induced leukocyte-endothelial cell interactions. Am J Physiol 1998; 274(2Pt): H1239-H1238

4 Kurose I, Anderson DC, Miyasaka M, Tamatani T, Paulson JC, Todd RF, Rusche JR, Granger DN. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res 1994; 74:336-343

5 Wu MC, Yang GS. Reproduction of cirrhotic liver of rat. Zhonghua Shiyan Waike Zhai 1984; 1:145-147

6 Canada AT, Stein K, Martel D, Watkins WD. Biochemical appraisal of models for hepatic ischemic/reperfusion injury. Circ Shock 1992; 36:163-168

7 Shimabukuro T, Ymanato Y, Kume M, Kimoto S, Okamoto R, Morimoto T, Yamaoka Y. Induction of heat shock response: effect on the rat liver with carbon tetrachloride-induced fibrosis from ischemia-reperfusion injury. World J Surg 1996; 22:464-469

8 Wang D, Shi JQ, Liu FX. Immunohistochemical detection of proliferating cell nuclear antigen carcinoma. China Natl J New Gastroenterol 1997; 3:101-103

9 Yellow DM, Alkhuialfi AM, Pugsley WB. Preconditioning the human myocardium. Lancet 1993; 342:276-277

10 Jerome SN, Akimitsu T, Gute DC, Korthuis RJ. Ischemic preconditioning attenuates capillary non-reflow induced by prolonged ischemia and reperfusion. Am J Physiol 1995; 269(5Pt 2): H2063-2067

11 Ferencz A, Szanto Z, Borsiczky B, Kiss K, Kalmar-Nagy K, Szebenyj I, Horvath PO, Roth E. The effects of preconditioning on the oxidative stress in small-bowel autotransplantation. Surgery 2002; 132:877-884

12 Downey JM, Cohen MV, Ythrus K, Liu Y. Cellular mechanisms in ischemic preconditioning: the role of adenosine and protein kinase C. Ann N Y Acad Sci 1994; 723:82-98

13 Ishida T, Yarimizu K, Gute DC, Korthuis RJ. Mechanisms of ischemic preconditioning. Shock 1997; 8:86-94

14 Laude K, Beauchamp P, Thuillez C, Richard V. Endothelial protective effects of preconditioning. Cardiovasc Res 2002; 55:466-473

15 Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 1999; 84:973-979

16 Peralta C, Hotter G, Closa D, Gelpi E, Bulbena O, Rosello-Catafau J. Protective effect of preconditioning on the injury associated to hepatic ischemia-reperfusion in the rat: role of nitric oxide and adenosine. Hepatology 1997; 25:934-937

17 Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57:311-332

18 Gute DC, Ishida T, Yarimizu K, Korthuis RJ. Inflammatory responses to ischemia and reperfusion in skeletal muscle. Mol Cell Biochem 1998; 179:169-187

19 Sanz MJ, Johnston B, Issekutz A, Kubes P. Endothelin-1 causes P-selectin-dependent leukocyte rolling and adhesion within rat mesenteric microvessels. Am J Physiol 1999; 277(5Pt 2): H1823-H1830

20 Cotran RS, Pober JS. Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J Am Soc Nephrol 1990; 1:225-235

21 Bienveniu K, Granger DN. Molecular determinants of shear rate-dependent leukocyte adhesion in postcapillary venules. Am J Physiol 1993; 264(5Pt 2): H1504-H1508

22 Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76:301-314

23 Jaeschke H, Smith CW. Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 1997; 61:647-653

24 Lefer AM, Tsao PS, Lefer DJ, Ma XL. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J 1991; 5:2029-2034

25 Lefer DJ, Flynn DM, Anderson DC, Buda AJ. Combined inhibition of P-selectin and ICAM-1 reduces myocardial injury following ischemia and reperfusion. Am J Physiol 1996; 271(6Pt 2): H2421-H2429

Edited by MajY