SYNTHESIS AND EVALUATION OF SOME MANNICH BASES OF QUINAZOLINONE NUCLEUS

PRIYA D*, SRIMATHI R, ANJANA GV
Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM University, Chennai, India. *Email: priyarularasan@gmail.com

Received: 07 November 2017, Revised and Accepted: 15 December 2017

INTRODUCTION
Quinazolinone [1,2] is the versatile nitrogen-containing heterocyclic compounds possessing a broad spectrum of biological and pharmacological activities such as analgesic, anti-inflammatory [3], antibacterial [4], diuretic, antihypertensive, antimalarial [5,6], sedative, hypoglycemic, antibiotic, and antitumor. As our interest in the search for biological heterocycles, we sought an unexplored, synthetically accessible heterocyclic template (quinazolinone) [7,8] capable of bearing some potential pharmacophore to elicit and enhance inherent biological activity. Earlier reports [3] have shown that the presence of alkyl, aryl, and heteroaryl group at second and third positions of quinazolines is beneficial to antibacterial activity [9]. Furthermore, quinazoline-4(3H)-ones substituted at 3rd position with heterocyclic moieties are beneficial to bacterial activities.

Mannich bases [10] have explored in the area of antibacterial and antifungal drugs. Various Mannich bases have shown antimicrobial activity. Given antimicrobial property of quinazoline moiety and Mannich bases, it envisaged that the combined effect of all entities would result in increased antimicrobial activity [1,12]. It has studied that attempts to alkylate simple aldehydes, ketones, and esters may be rendered ineffective by the occurrence of competing for reaction, notably Aldol and Claisen condensation as well as SN2 and E2 reactions. Deutronation of aldehydes, ketones, and esters allows for direct alkylation of these compounds, while deprotonation of dithione derivatives of aldehydes offers an indirect method for replacing the aldehydic proton with alkyl groups.

METHODS

The melting points of the synthesized compounds were determined in open capillary tubes and were uncorrected. IR spectra were recorded using Perkin-Elmer instrument using KBr pellets techniques. Thin-layer chromatography (TLC) was performed using precoated alumina-silica gel GF254 benzene, chloroform, and methanol in the ratio 5:3:2 as the solvent system and UV chamber as the visualizing agent.
Priya et al.

Table 1: Various aromatic amines used

Compound	Name of the aromatic amine	Ar-NH₂
I	p-aminobenzoic acid	
II	4-aminophenol	
III	p-nitroaniline	
IV	o-nitroaniline	
V	1-naphthylamine	

Table 2: Results of antimicrobial activity

Concentration in µg/ml	Zone of inhibition in mm M₁	M₂	M₃	M₄	M₅	Ciprofloxacin
200	10	11	10	10	10	11
400	11	12	11	11	12	12
600	13	14	14	14	14	14

Table 3: Results of antioxidant activity

Compound	Concentration/% inhibition			
	10 µg/ml	20 µg/ml	30 µg/ml	40 µg/ml
I	12.9	42	56	74
II	53	67.2	75.2	83
III	36	51.2	65	85.7
IV	34.5	24	63.5	88
V	33	35	44	87
Ascorbic acid	24	48	63	88

Compound III 3-((4-nitrophenylamino)methyl) quinazolin-4(3H)-one

Yield 62%, melting point 122-124°C, IR (KBr, cm⁻¹) 3364.54 (quinazolinone ring, quinoline ring Ar-NH), 1186.37 (aliphatic C-N stretching), 1599.74 (Ar C=C stretching), 1263.79 (Ar C–N stretching), 1530.49 (Ar NO₂ stretching).

Antimicrobial activity

In vitro antibacterial activity of the synthesized compounds, I to V, were evaluated by cup-plate method against the bacterial strain *E. coli* using agar media at the concentration range of 200–600 µg/ml. A control experiment was carried out under similar condition using ciprofloxacin as standard. The turbidimetric method was used to check the antibacterial activity of the synthesized compounds at different concentration using ciprofloxacin as the positive control and dimethylformamide as the negative control. The zone of inhibition was measured which showed all the synthesized compounds showed better inhibition as compared to the standard. The values are tabulated in Table 2.

Compound IV 3-((2-nitrophenylamino)methyl) quinazolin-4(3H)-one

Yield 65%, melting point 112-114°C, IR (KBr, cm⁻¹) 3373.33 (quinazolinone ring, quinoline ring Ar-NH), 1155.32 (aliphatic C-N stretching), 1618.86 (Ar C=C stretching), 1340.01 (Ar C–N stretching), 1503.81 (Ar NO₂ stretching).

Compound V 3-((naphthalen-1-ylamino)methyl) quinazolin-4(3H)-one

Yield 65%, melting point 153-155°C, IR (KBr, cm⁻¹) 3206.06 (quinazolinone ring, quinoline ring Ar-NH), 1226.72 (aliphatic C-N stretching), 1659.99 (Ar C=C stretching), 1571.66 (Ar C–N stretching).
Anti oxidant activity

Determination of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity

The DPPH assay method is based on the reduction of DPPH, a stable free radical. The free radical DPPH with an odd electron gives a maximum absorption at 517 nm (purple color).

When antioxidants react with DPPH, which is a stable free radical, it becomes paired off in the presence of a hydrogen donor, and as a consequence, the absorbance decreased from the DPPH radical to the DPPH-H form, resulting in decolorization (yellow color) with respect to the number of electrons captured. The lower absorbance of the reaction mixture indicates higher free radical scavenging activity.

Preparation of DPPH

0.1 g of DPPH dissolved in 50 ml of methanol. Pipette out 1 ml of the solution and dilute to 10 ml with methanol. Pipette out 10 ml and dilute to 50 ml with methanol (20 µg/ml).

Preparation of stock solution

Take of 0.1 g of the sample and dissolve in 100 ml of the methanol (1000 µg/ml).

Procedure

Take 1, 2, 3, 4, and 5 ml of the stock solution and dilute with methanol to get concentrations of 50, 40, 20, and 10 µg/ml respectively. Add 6 ml of the prepared DPPH to the resulting solution. Incubate the reaction mixture at room temperature for 30 min. The absorbance of the reaction mixture read at 517 nm. Ascorbic acid used as the standard. The percentage of free radical scavenging calculated and the results are tabulated in Table 3.

RESULTS AND DISCUSSION

A novel series of I to V derivatives have been synthesized and screened for their in vitro antibacterial and antioxidant activities. The results of the physical data of the final synthesized compounds are presented in Table 4.

The antibacterial activity results revealed that all compounds showed a significant activity against bacterial strain E. coli. Compounds II and IV showed excellent activity against Gram-negative organism E. coli. In the antioxidant activity, compounds II and III showed a highly significant activity which was comparable with the standard drug ascorbic acid. The results are presented in Tables 2 and 3.

The structures of the newly synthesized compounds were established on the basis of spectral data and elemental analysis. The compounds were purified by recrystallization from appropriate solvents. The completions of the reactions were monitored by TLC. The antibacterial activity of the compounds showed excellent activity against E. coli. The compounds also displayed significant antioxidant activity.

CONCLUSION

Further studies can be done to get biologically more useful compounds in this series. The antioxidant activity of all the synthesized compounds showed moderate activity.

Table 4: Physicochemical parameters of the synthesized compounds

Compound code	% yield	Melting point °C	Molecular formula	Molecular weight	RF value
M1	57	133-135	C_9H_8NO_2	137.14	0.72
M2	69	84-86	C_9H_8NO	109.13	0.69
M3	62	122-124	C_9H_8N_2O	138.13	0.83
M4	65	112-114	C_9H_8N_2O	130.13	0.83
M5	64	153-155	C_9H_8N_3H	143.19	0.74

ACKNOWLEDGEMENTS

We sincerely thank SRM University for their continuous support and cooperation to carry out this work.

AUTHORS CONTRIBUTIONS

All authors contributed equally to this work.

CONFLICT OF INTERESTS

Declared none.

REFERENCES

1. HaseenaBanu B, Prasad KV, Bharathi K. Biological importance of quinazolin-4-one scaffold and its derivatives—a brief update. Int J Pharm Pharm Sci 2015;7:1-7.
2. Singh VK, Singh SK, Gangwar L. Synthesis and antimicrobial activity of novel fused 4-(H) quinazolinonederivatives. Int J Sci Res 2013;2:425-8.
3. Zayed MF, Hassan MH. Synthesis and biological evaluation studies of novel quinazoline derivatives as anti-bacterial and anti-inflammatory agents. Saudi Pharm J 2014;22:157-62.
4. Al-Amiery AA, Kadhim AA, Shamel M, Satar M, Khalid Y, Mohamad AB. Antioxidant and antimicrobial activities of novel quinolinones. Med Chem Res 2014;23:236-42.
5. Patel Rohit D, Patel Manish P, Patel Ranjan G. Synthesis, evaluation, characterization and anti-bacterial activity of some new 2,3,6-trisubstituted quinazolin-4(3H)-ones. Indian J Chem 2005;44B:1944-6.
6. Jatav V, Mishra P, Kashaw S, Stables JP. CNS depressant and anticonvulsant activities of some novel 3-[5-substituted,1,3,4-thiadiazole-2-yl]2-staryl quinazoline-4 (3H)-ones. Eur J Med Chem 2008;43:1945-54.
7. Reddy PS, Pratap RP, Mannohon RL. Synthesis of 2,2’-bisquinazolinones. Indian J Heterocycl Chem 2002;41:1950-2.
8. Ashok K, Miruda T, Srivastava VK. Synthesis and evaluation of hypotensive activity of some newer potential quinazoline. Indian J Chem 2003;42B:2142-5.
9. Preeti R, Archana, Srivastava VK, Ashok K. Synthesis and evaluated anti-inflammatory activity of some new 2,3-disubstituted-6-monosubstituted-quinazolin-4(3H)-ones. Indian J Heterocycl Chem 2002;41B:2642-6.
10. Balaji K, Bhatt P, Mallika D, Jha A. Design, synthesis and antimicrobial evaluation of some mannich base derivative of 2-(substituted)-5-amino-thiadiazoles. Int J Pharm Pharm Sci 2015;7:145-9.
11. Pushpa, Naraboli SB, Biradar M. Synthesis, characterization, and biological activity of novel n-phenylpropyl-3-substituted indoline-2-one derivatives. Int J Pharm Pharm Sci 2017;9:165-70.
12. Kumar A, Fernandez J, Kumar P. Synthesis and biological evaluation of some novel Schiff bases of 2-quinolones. Int J Pharm Pharm Sci 2014;6:518-21.
13. Khodarahmi G, Jafari E, Hakimelahi G, Abedi D, Rahmani Khajouei M, Hassanzadeh F, et al. Synthesis of some new quinazolinone derivatives and evaluation of their antimicrobial activities. Iran J Pharm Res 2012;11:769-97.
14. Sivakumar KK, Rajasekharan A, Rao R, Narasimhan B. Synthesis, SAR study and evaluation of mannich and schiff bases of pyrazol-5(4H)-one moiety containing 3-(Hydrazinyl)-2-phenylquinazolin-4(3H)-one. Indian J Pharm Sci 2013;75:463-75.