Publicación anticipada

Este artículo fue aprobado para publicación en el v71n1 de la Revista de la Facultad de Medicina teniendo en cuenta los conceptos de los pares evaluadores y los cambios realizados por los autores según estos conceptos. Por lo tanto, se publica la versión preliminar del artículo para su consulta y citación provisional, pero debe aclararse que esta puede diferir del documento final, ya que no ha completado las etapas finales del proceso editorial (corrección de estilo, traducción y diagramación) y solo los títulos, datos de autores, palabras clave y resúmenes corresponden a la versión final del artículo.

Esta versión puede consultarse, descargarse y citarse según se indique a continuación, pero debe recordarse que el documento final (PDF, HTML y XML) puede ser diferente.

Cómo citar:
Sir-Mendoza F, Madera M, González-Martínez F. Prevalencia de mutaciones en los genes KRAS, PIK3CA, BRAF y AXIN2 en cáncer colorectal y su relación con agenesia dental: revisión sistemática. Rev. Fac. Med. 2023;71(1):e95595 (In Press). English. doi: https://doi.org/10.15446/revfacmed.v71n1.95595.

Article in press

This article was accepted for publication in V71N1 of Revista de la Facultad de Medicina (Journal of the Faculty of Medicine), considering the concepts of the peer reviewers and the changes made by the authors based on said concepts. Therefore, the preliminary version of this article is published for consultation and provisional citation purposes. However, it should be noted that this version may differ from the final document since it has not completed the final stages of the editorial process (proof-editing, translation, and layout). Only the titles, authorship, keywords and abstracts will remain unchanged in the final version of the article.

This version can be consulted, downloaded, and cited as indicated below, but please bear in mind that the final document (PDF, HTML, and XML) may differ.

How to cite:
Sir-Mendoza F, Madera M, González-Martínez F. [Prevalencia de mutaciones en los genes KRAS, PIK3CA, BRAF y AXIN2 en cáncer colorectal y su relación con agenesia dental: revisión sistemática]. Rev. Fac. Med. 2023;71(1):e95595 (In Press). English. doi: https://doi.org/10.15446/revfacmed.v71n1.95595.
Type of article: Systematic review

Prevalence of KRAS, PIK3CA, BRAF and AXIN2 gene mutations in colorectal cancer and its relationship with dental agenesis: a systematic review

Prevalencia de mutaciones en los genes KRAS, PIK3CA, BRAF y AXIN2 en cáncer colorrectal y su relación con agenesia dental: revisión sistemática

Running title: Agenesis and genetic variants prevalence

Received: 07/05/2021 Accepted: 25/11/2021

Francisco Sir-Mendoza¹,², Meisser Madera¹, Farith González-Martínez¹

¹ Universidad de Cartagena - Faculty of Dentistry - Department of Research - Cartagena - Colombia.
² Universidad Nacional de Colombia - Faculty of Medicine - Institute of Genetics - Bogotá D.C. - Colombia.

Francisco Javier Sir Mendoza ORCID: https://orcid.org/0000-0001-7249-4079

CvLAC:https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001501816

Meisser Madera ORCID: https://orcid.org/0000-0002-2350-4194

CvLAC:https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001355859

Farith Damian González Martínez ORCID: https://orcid.org/0000-0002-7443-6937

CvLAC:https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000323160

Corresponding author: Francisco Javier Sir Mendoza. Faculty of
Medicine, Institute of Genetics, Universidad Nacional de Colombia. Bogotá, Colombia. E-mail address: fsir@unal.edu.co. Tel: (+57) 3215624482

Word count: 3862
Number of figures: 1
Number of tables: 2

Abstract
Introduction: The study of allelic and genotypic frequencies contributes to determining the distribution of genetic variants in different populations and their possible association with biomarkers. This knowledge could improve the decision-making process regarding the management of some diseases such as colorectal cancer (CRC), in which the detection of clinical biomarkers such as dental agenesis could be crucial in clinical practice.

Objective: To evaluate the available scientific evidence on the prevalence of \textit{KRAS}, \textit{PIK3CA}, \textit{BRAF} and \textit{AXIN2} mutations and their possible association with dental agenesis in people with CRC.

Materials and methods: A systematic search was conducted in PubMed, EMBASE and Cochrane Library databases using the following search strategy: type of studies: observational studies reporting the prevalence of \textit{KRAS}, \textit{PIK3CA}, \textit{BRAF} and \textit{AXIN2} mutations in people diagnosed with CRC and their possible association with dental agenesis; publication language: English and Spanish; publication period: 2010-2020; search terms: “Genes”, “RAS”, “Kras”, “PIK3CA”, “BRAF”, “AXIN2”, “Mutation”, “Polymorphism”, “Colorectal Neoplasms”, “Colorectal Cancer”, used in different combinations (“AND” and “OR”).

Results: The initial search yielded 403 records, but only 30 studies met the eligibility criteria. Of these, 11, 5, 5 and 1 only reported the prevalence of \textit{PIK3CA}, \textit{KRAS}, \textit{BRAF} and \textit{AXIN2} mutations, respectively;
while 8 reported the prevalence of more than one of these mutations in patients with CRC. The prevalence of KRAS (p.Gly12Asp), PIK3CA (p.Glu545Lys), and BRAF (p.Val600Glu) mutations ranged from 20.5% to 54%, 3.5% to 20.2%, and 2.5% to 12.1%, respectively. There were no findings regarding the association between the occurrence of these mutations and dental agenesis.

Conclusions: KRAS mutations were the most prevalent; however, there is no evidence on the association between dental agenesis and the occurrence of KRAS, PIK3CA and BRAF germline mutations in individuals with CRC.

Keywords: Anodontia; Mutation; Prevalence; Genes; Colorectal Cancer; Colorectal Neoplasms (MeSH).

Sir-Mendoza F, Madera M, González-Martínez F. Prevalence of KRAS, PIK3CA, BRAF and AXIN2 gene mutations in colorectal cancer and its relationship with dental agenesis: a systematic review. Rev. Fac. Med. 2023;71(1):e95595 (In Press). English. doi: https://doi.org/10.15446/revfacmed.v71n1.95595.

Resumen

Introducción. El estudio de frecuencias alélicas y genotípicas contribuye a determinar la distribución de variantes genéticas en diferentes poblaciones y su posible asociación con biomarcadores. Este conocimiento podría mejorar la toma de decisiones respecto al manejo de algunas enfermedades como el cáncer colorrectal (CCR), en el cual la detección de biomarcadores clínicos como la agenesia dental podría ser crucial en la práctica clínica.

Objetivo. Evaluar la evidencia científica sobre la prevalencia de mutaciones KRAS, PIK3CA, BRAF y AXIN2 y su posible asociación con la agenesia
dental en individuos con CCR.

Materiales y métodos. Se realizó una búsqueda sistemática en PubMed, Embase y Cochrane Library empleando la siguiente estrategia de búsqueda: tipos de estudio: estudios observacionales que reportaran la prevalencia de mutaciones en los genes *KRAS*, *PIK3CA*, *BRAF* y *AXIN2* en personas con CCR y su posible asociación con agenesia dental; idioma: inglés y español; periodo de publicación: 2010-2020; términos de búsqueda: “Genes”, “RAS”, “Kras”, “PIK3CA”, “BRAF”, “AXIN2”, “Mutation”, “Polymorphism”, “Colorectal Neoplasms”, “Colorectal Cancer” en diferentes combinaciones (“AND” y “OR”).

Resultados. Se identificaron 403 registros, pero solo 30 cumplieron con los criterios de elegibilidad. De estos, 11, 5, 5 y 1 solo reportaron la prevalencia de mutaciones en *PIK3CA*, *KRAS*, *BRAF* y *AXIN2*, respectivamente, mientras que 8 reportaron la prevalencia de más de una de estas mutaciones en pacientes con CCR. La prevalencia de mutaciones en los genes *KRAS* (p.Gly12Asp), *PIK3CA* (p.Glu545Lys), y *BRAF* (p.Val600Glu) varió entre 20.5% y 54%, 3.5% y 20.2%, y 2.5% y 12.1%, respectivamente. No hubo hallazgos respecto a la asociación entre la ocurrencia de estas mutaciones y la agenesia dental.

Conclusiones. Las mutaciones de KRAS fueron las más prevalentes; sin embargo, no hay evidencia de la asociación entre agenesia dental y la ocurrencia de mutaciones en los genes *KRAS*, *PIK3CA* y *BRAF* en individuos con CCR.

Palabras clave: Anodoncia; Mutación; Prevalencia; Genes; Cáncer colorrectal; Neoplasma colorrectal (DeCS).

Sir-Mendoza F, Madera M, González-Martínez F. [Prevalencia de mutaciones en los genes *KRAS*, *PIK3CA*, *BRAF* y *AXIN2* en cáncer colorrectal.
y su relación con agenesia dental: revisión sistemática]. Rev. Fac. Med. 2023;71(1):e95595 (In Press). English. doi: https://doi.org/10.15446/revfacmed.v71n1.95595.

Introduction

Colorectal cancer (CRC) is one of the leading causes of morbimortality worldwide (1). According to demographic projections and temporal profiles, its global incidence is expected to increase by 60%, leading to more than 2.2 million new cases and 1.1 million deaths by 2030 (2). The cancer pathogenesis is complex and has not been completely understood. However, genetic factors reportedly play a critical role in tumorigenesis (3). Kolligs et al. reported that up to one third of the risk of developing CRC can be attributed to hereditary factors. Likewise, people whose families have a history of this cancer, could have a higher risk than those without this antecedent (4). Overall, genetic mutations are critical in the development of CRC. Therefore, several genes and signaling pathways have been related to this disease, such as *KRAS*, *BRAF*, *PIK3CA*, *RAS-RAF-MAPK* and *PI3K-PTEN-AKT* (5-7).

The main treatment approach for CRC is surgery and chemotherapy, which has an effectiveness of approximately 75%. However, roughly 30% of treated patients could develop new neoplastic polyps (8), suggesting that this treatment is not totally effective for this disease (9). Thus, new therapies have been proposed, developing anti-EGFR monoclonal antibodies drugs, considering that the Epidermal Growth Factor Receptor (EGFR) is the major therapeutic target in colorectal cancer (10). However, therapeutic effectiveness is affected in the presence of *KRAS*, *BRAF* and *PIK3CA* mutations (11,12). Thus, these genes constitute important biomarkers for CRC. In addition, it has been reported that mutations in
AXIN2 could act as a diagnostic biomarker for CRC associated to dental agenesis, so this gene variant and the presence of this oral developmental anomaly have been proposed as a predictive factor for this malignant disease (13).

Non-syndromic dental agenesis, the most common human anomaly (14), is the congenital absence of one or more permanent teeth due to alterations during early stages of dental development (15). Genetically, it has been described as the association between AXIN2 gene and teeth development in mice, suggesting its possible participation in human dental development (16). Lammi et al. reported the association between dental agenesis and the predisposition to CRC by a nonsense mutation (p.Arg656Stop) in AXIN2 (16). Likewise, Rosales et al. reported a higher risk of malignant CRC development in the presence of Single Nucleotide Variant (SNV) rs2240308 in the AXIN2 gene (17).

According to the above statements, it is important for all the healthcare professionals to know about the prevalence of these genetic mutations and their possible association with clinical biomarkers such as dental agenesis to improve the diagnosis, prognostic and early treatment of cancer. Particularly for dentistry practitioners, who have an important role in detecting dental agenesis, this process could promote possible medical diagnoses of CRC. Therefore, the aim of this study was to evaluate the available scientific evidence on the prevalence of KRAS, PIK3CA, BRAF, AXIN2 mutations and their possible association with dental agenesis in people diagnosed with CRC.

Materials and Methods

We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA)(18).
Search strategy
A structured and systematic search using MeSH and DeCS terms was performed in Medline (Via PubMed), EMBASE (Via Ovid) and Cochrane Library databases based on the following search strategy: type of studies: observational studies reporting the prevalence of KRAS, PIK3CA, BRAF and AXIN2 mutations in people diagnosed with CRC and their possible association with dental agenesis publication period: from January 2010 until September 2020; publication languages: English and Spanish; search terms: “Genes”, “RAS”, “Kras”, “PIK3CA”, “BRAF”, “AXIN2”, Prevalence”, “Mutation”, “Polymorphism”, “Colorectal Neoplasms”, “Colorectal Cancer”, and “dental agenesis”, used in different combinations (“AND” and “OR”). The search equation used in each database is shown in Appendix 1.

Studies screening and selection process
The titles and abstracts of the records retrieved in the searches were managed using the reference manager software EndNote® (Version X8, Thomson Reuters). After removing duplicates, two reviewers (FS and FG) independently screened all titles/abstracts to exclude articles that were not relevant for the objective of this systematic review. Then, screened articles were read in full text by the two reviewers to confirm if they addressed the topics of interest for this review and decide on their final inclusion for full analysis based on the following inclusion criteria: being case-control, cohort or cross-sectional studies addressing the prevalence of KRAS, PIK3CA, BRAF and AXIN2 mutations/polymorphisms in people diagnosed with primary (adenocarcinoma) or metastatic CRC and their possible association with dental agenesis. Furthermore, studies conducted in animals, those published before 2010, and those addressing other types of genetic alterations and reporting other associations with CRC or
in concomitance with other cancers were excluded.
Disagreements were resolved by consensus, and when necessary, a third reviewer (MM) participated in the discussion until an agreement was reached.

Methodological quality assessment

The methodological quality of the selected studies was evaluated independently by two appraisers following the criteria previously reported (19). Briefly, the evaluated criteria were a) question/aim of research (1 item), b) participants (5 items), c) comparability between groups studied (4 items), d) definition and measurement of the main variables (4 items), e) statistical analysis and confusion (4 items), global assessment of internal validity, f) results (4 items), g) conclusions, external validity and applicability of results (4 items), h) conflict of interest (1 item). Each item was assessed as “very good”, “good”, “regular”, “bad”, “not reported”, “not apply”, and global assessment of study quality, being qualified “high”, “medium” and “low”.

Two authors (FS and FG) determined a grading system with the scores “very good”, “good”, “regular”, “bad”, “not reported”, “not apply”, or “5”, “4”, “3”, “2”, “1”, “0”, respectively, with the highest total score being 135 and minimum of 27. The score articles within the interval 81 – 107 and regular internal validity were categorized with a “median” methodological quality, while a score over 108 represented a “high” methodological quality. However, in the articles that did not apply for the evaluation of criterion “c) comparability between the groups studied”, the maximum accumulated score was 115 and the minimum was 23. The score articles within the interval 69-91 and regular internal validity were categorized with a “medium” methodological quality, while a score of over 92 represented
a “high” methodological quality.

Data extraction and analysis
The following information was extracted for each study: author, publication year, geographic region in which the study was conducted, sample size, general prevalence of the mutation, mutation prevalence by sex (male and female), mutation (changes in amino acids) and sequencing techniques. The information was gathered in tables by genes.

Results
Selection and characterization of studies
The selection process is presented in Figure 1. In total, 30 articles were included in this systematic review for full analysis.
Source: own elaboration

Regarding their geographical distribution, 10 studies were conducted in Asia, 8 in America, 5 in the Middle East, 3 in Europe, 2 in Oceania and 1 in Africa. Regarding sample size, studies addressing KRAS, PIK3CA and
BRAF mutations were conducted in samples ranging from 49 to 5732, 61 to 2299, and from 17 to 1110 participants, respectively. Besides, cross-sectional studies were the most frequent type of study (100%) (Table 1).

Table 1. General characteristics of included studies

Author (year)	Region	Study design	Studied sample	Genes assessed	MQA⁺
Gavin PG. (2012)(20)	United States	CSS a	2299	PIK3CA	High
Palomba G. (2012)(21)	Italy	CSS	384	PIK3CA	High
Mao C. (2012)(22)	China	CSS	61	PIK3CA	High
Liao X. (2012)(23)	United States	CSS	1170	PIK3CA	High
Watanabe T. (2013)(24)	Japon	CSS	5732	KRAS	High
Shen Y. (2013)(25)	China	CSS	674	KRAS, BRAF	High
Patil H. (2013)(26)	India	CSS	1323	KRAS	High
Chang YS. (2013)(27)	Taiwan	CSS	165	KRAS, BRAF	Median
Rosty C. (2013)(28)	Australia	CSS	757	PIK3CA	High
Kang M. (2013)(29)	United States	CSS	150	PIK3CA	Median
Marchoudi N. (2013)(30)	Morocco	CSS	92	BRAF	High
Samadder NJ. (2013)(31)	United States	CSS	563	BRAF	Median
Baskin Y. (2014)(32)	Turkey	CSS	49	KRAS	Median
Imamura Y. (2014)(33)	United States	CSS	1267	KRAS	High
Bader T. (2014) (34)	Saudi Arabia	CSS	83	KRAS	High
Chen J. (2014)(35)	China	CSS	214	PIK3CA, KRAS,	High
Bisht S. (2014)(36)	India	CSS	204	PIK3CA	High
Russo AL. (2014)(37)	United States	CSS	222	PIK3CA	High
Siraj AK (2014)(38)	Saudi Arabia	CSS	757	BRAF	High

aCross Sectional Studies, ⁺Methodological Quality Assessment

Source: Own elaboration
Ye JX. (2015) (39) China CSS 535 KRAS, BRAF Median
Zhang J. (2015)(7) China CSS 1110 KRAS, PIK3CA, BRAF High
Phipps AL. (2015)(40) United States, Canada, Australia CSS 377 PIK3CA High
Foltran L. (2015)(41) Italy CSS 194 PIK3CA High
Allard MA (2015)(42) France CSS 1428 BRAF High
Vatandoust S. (2016) (43) Australia CSS 3318 KRAS, BRAF Median
Watson R. (2016)(44) United States CSS 447 KRAS, BRAF High
Al- Shamsi HO.(2016) (45) Arab countries CSS 99 KRAS, PIK3CA, BRAF High
Molaei M (2016)(46) Iran CSS 85 BRAF Median
Jauhri M. (2017)(47) India CSS 112 PIK3CA High
Chang SC. (2020)(48) Taiwan CSS 161 AXIN2 High

Methodological quality assessment
Twenty-three studies scored “high” methodological quality, while 7 studies scored “medium” quality using the critical appraisal of epidemiological cross-sectional studies instrument (Table 1). The domains with the highest score were “participants” and “results”, whereas “statistical analysis and confusion” domain obtained the lowest score.

Mutation prevalence

KRAS
The higher overall prevalence was 54% in a sample of 447 individual and the lowest was 20.5% in a sample of 1323 individuals. The higher prevalence by sex was 66% and 50% for males and females, respectively. Moreover, 46% of the articles carried out direct sequencing and 23%, next generation sequencing (NGS) to identify mutations in **KRAS**. The most frequent mutation consisted of an amino acid change from glycine...
into aspartic acid in codon 12 (Table 2).

Table 2. Mutation of KRAS, PIK3CA, BRAF

Author (year)	Mutation (%)	Sex (Male)	Sex (Female)	Sequencing technique
KRAS				
Watanabe T. (2013)	37.6	35.5	40.9	NR
Shen Y. (2013)	35.9	32.3	41.3	G12D (13.6)
Patil H. (2013)	20.5	20.3	20.8	G12A (36.5)
Chang YS. (2013)	36.9	NR	NR	G12D (35.5)
Baskin Y. (2014)	30.6	25.8	38.9	G12D (12)
Imamura Y. (2014)	40	50	50	G12D (12)
Bader T. (2014)	42.2	66	34	G12D (45.7)
KRAS				
Chen J. (2014)	44.9	56.3	43.8	G12D (35.4)
Ye JX. (2015)	37.9	36.1	40.4	G12D (18.4)
Zhang J. (2015)	45.4	44.1	47.3	G12D (40.7)
Vatandoust S. (2016)	38.9	NR	NR	NR
Watson R. (2016)		NR	NR	PS, NGS,
Al-Shamsi HO. (2016)	44.4	41.7	48.7	NGS
PIK3CA				
Gavin PG. (2012)	20.2	10.4	9.7	NR
Palomba G. (2012)	17.4	16	19	E545A (14)
Mao C. (2012)	8.2	8.6	7.7	H1047L (7)
Liao X. (2012)	16	8.2	7.8	NR
Rosty C. (2013)	14	50	50	E542K (35)
Kang M. (2013)	12	NR	NR	NR
Chen J. (2014)	12.3	65.4	34.6	H1047R (31)
Bisht S. (2014)	5.9	5	7.1	E545K (3.4)
Russo AL. (2014)	13	NR	NR	NR
Zhang J. (2015)	3.5	3.4	3.7	H1047R (3.5)
Phipps AL. (2015)	11	NR	NR	E542K,E545K (3.5)
Foltran L. (2015)	16.5	NR	NR	E545K (56)
Al-Shamsi HO. (2016)	13.1	13.3	12.2	NR
Jauhari M. (2017)	16.1	22.1	6.8	E545A, E545K, H1047R (15.8)
Table 2 (cont.). Mutation of KRAS, PIK3CA, BRAF

Author (year)	Mutation (%)	General (%)	Sex (%)	Mutation (%)	Sequencing technique
		Male	Female		
BRAF					
Chang YS. (2013)(27)	4.2	NR	NR	V600E (100)	HRM^i
Shen Y. (2013)(25)	7.0	6.9	7.1	V600E (1.8)	DS
Marchoudi N.(2013)(30)	5.4	NR	NR	V600E (100)	DS
Samadder NJ. (2013)(31)	27	NR	NR	V600E (100)	DS
Chen J. (2014)(35)	4.2	55.6	44.4	V600E (89)	DS
Siraj AK. (2014)(38)	2.5	2.8	2.2	V600E (89.5)	DS
Allard MA. (2015)(42)	6.4	NR	NR	V600E (100)	HRM, DS
Zhang J. (2015)(7)	3.1	2.8	3.5	V600E (100)	DS, ARMS, NGS
Ye JX. (2015)(39)	4.4	2.8	6.6	V600E (80)	DS, ARMS
Vatandoust S. (2016)(43)	12.1	NR	NR	NR	NR
Al-Shamsi HO. (2016)(45)	4.0	3.3	5.1	NR	NGS
Molaei M. (2016)(46)	0	0	0	NR	DS
Watson R. (2016)(44)	0	0	0	NR	PS, NGS
AXIN2					
Chang SC. (2020)(48)	21.7	NR	NR	A603P (11.4)	NGS

- Direct Sequencing, ^Luminex Assay, ^c Primer Extension Assay,
- Array Analysis, ^d Amplification Refractory Mutations System-PCR, ^e Pyrosequencing, ^f Next Generation Sequencing, ^h Not reported, ^i Single-nucleotide primer extension, ^j High Resolution Melting

Source: Own elaboration

PIK3CA

The higher general prevalence was 20.2% in a studied sample of 2299
and the lowest was 3.5% in a sample of 1110 individuals. The higher prevalence according to sex was 65.4% for male and 50% for female. The 57% of selected articles carried out direct sequencing and 21.4% next generation sequencing (NGS). The most frequent mutation was the substitution of glutamic acid by lysine in codon 545 (p.Glu545Lys) (Table 2).

BRAF

The higher general prevalence was 12.1% in a studied sample of 173 and lowest was 2.5% in 757 individuals. Two studies did not obtain mutations in their samples. The higher prevalence according to sex was 55.6% and 44.4% for male and female, respectively. The 69% of selected articles carried out direct sequencing and 23% next generation sequencing (NGS). The most frequent variant was an aminoacid change of valine by glutamate in codon 600 (p.Val600EGLu) (Table 2).

AXIN2

Only one study (48) was selected with a general prevalence of 21.7% in a sample from Taiwan. The variant p.A603P was the most frequently detected through a next generation sequencing platform (Table 2).

Discussion

The fact that cancer cells contain multiple genetic mutations suggests that the development and progression of tumors could be in part caused by mutagenesis. Additionally, these events can contribute to develop resistance to conventional oncological therapies, such as chemotherapy (49). Currently, scientific evidence shows that therapy against cancer is limited, despite new drug developments, since only new ways of resistance have emerged, such as inactivation and drug output, alteration of therapy targets and inhibition of cell death (50). In relation to the foregoing
statements, it is undoubtedly essential to understand the distribution of mutations in oncogenes in cancer patients to contribute to the knowledge of the genomic profile of malignant diseases and personalized medicine. Consequently, these contributions have currently allowed the understanding of the cancer genome, which has become in an important aspect for clinical decisions to select the best treatment available for each oncological patient (51).

The existing literature reports mutations in multiple genes involved with development and progression of colorectal cancer, among them and with a higher prevalence, KRAS, PIK3CA and BRAF. In addition, a gene has been identified that is currently important for its possible usefulness in the early diagnosis of colorectal cancer through clinical markers such dental agenesis, and it is named AXIN2 (16).

KRAS mutations are the most prevalent events in the development of human tumors (52,53). KRAS encodes for a protein constituted by 188 residues of amino acids, implicated in molecular pathways activation, allowing transduction signals from the cell surface to the nucleus (54). KRAS is found in chromosome 12 and is a member of the RAS family; it comprises 86% of all family RAS mutations. The most frequent mutations observed are in codons 12 and 13 of exon 1 (55), and less frequently, in codons 61 (56) and 146 (57,58). The main variant consists in a G>A transition followed by a G>T transversion in exon 1 (59). KRAS has been studied as a predictive molecular marker against anti-EGFR in primary and metastatic colorectal cancer (11, 60, 61). In the presence of mutations in KRAS, GTPase activity decreases and the KRAS mutant protein remains bound to GTP in its active conformation, transmitting signals continuously.
As a result, signal transmission is not blocked by anti-EGFR and therapeutic effects are scarce or could not be observed (62-64).

In this study, a range of 20.5% to 54% was obtained for mutation prevalence for *KRAS* (7,24-27,32-35,39,43-45). Regarding the geographic distribution of these genetic variants, the highest prevalence reported in America was 54% in a sample of 447 individuals (44). In contrast, in the same region, the lowest prevalence was 40% in 1267 individuals (33). In relation to sex, a prevalence of 50% was reported for males and females (33). In Asian countries, the highest prevalence was 45.4% in 1110 Chinese individuals (7), while the lowest was 20.5% in India, in a sample of 1323 (26). By sex, 56.3% was the highest prevalence for males (35) and 47.3% for females (7). In the Middle East, the highest prevalence was 44.4% in a sample of 99 individuals from several countries (45) compared to 30.6%, the lowest prevalence having been found in a sample of 49 individuals from Turkey (32). Regarding sex, 66% was the highest prevalence for males (34) and 48.7% for females (45). In Oceania, only one article was selected in this study, reporting a prevalence of 38.9% in a study sample of 778 Australian subjects (43). By sex, no data were reported (43). The most frequent mutation in KRAS was the change of glycine by aspartate (p. Gly12Asp). However, one study reported a higher prevalence concerning the change of glycine by alanine (p. Gly12Ala) (26). These conformational biochemical changes have been associated with a poor survival prognostic and a rise in tumoral aggressiveness (32,65,66).

PIK3CA is found in chromosome 3 and encodes for PI3K protein. PI3K is part of the lipid kinases family, implicated in the proliferation, morphology, and cellular survival (67, 68). PI3K is involved in the PI3K/AKT pathway
which catalyzes AKT phosphorylation, activating the downstream signaling pathway (69). The mutated gene stimulates the pathway and promotes cell growth in various types of cancers (70). The prevalence of PIK3CA mutations have been reported for 15% to 20% of cases of colorectal cancer with the most frequent transition being G>A in exon 9 and 20. These hotspots regions comprise 80% of mutations of the whole gene (71, 28, 72), of which, those present in exon 20 are related to a low response to treatment with cetuximab and chemotherapy (73). On the other hand, analyses of mutations in this gene reportedly could not contribute to improving the prediction of the response to monoclonal therapy with cetuximab (74).

Regarding the prevalence of mutations in PIK3CA, an interval of 3.5% to 20.2% was obtained (7,20-23,28,29,35,36,37,40,41,45,47). Considering the geographic distribution of these prevalences, in America, 20.2% was the highest prevalence in a studied sample of 2299 individuals in the United States (20). Conversely, the lowest (11%) was reported in a sample of 377 in individuals from the United States and Canada (40). Regarding sex, 10.4% and 9.7% were the highest prevalences for males and females, respectively (20). In Asian countries, the highest prevalence was reported in India with 16% in a sample of 112 (47), and the lowest was 3.5% in Chinese subjects (7). Similarly, 65.4% and 34.6% were the highest prevalences for male and female, respectively (35). In the Middle East, only one article was selected, reporting a prevalence of 13% (45). Regarding sex, 13% for males and 12% for females, in a sample of 99 individuals from Middle Eastern countries (45). In western Europe, 17.4% was the highest prevalence (21), and regarding sex, the reported prevalences were 16% and 19% for males and females, respectively, in a
sample of 384 Italian individuals (21). In Oceania, one study was chosen, reporting a prevalence of 14% (28). Regarding sex, a prevalence of 50% was found for both sexes in a sample of 757 Australian individuals (28).

The most frequent variant in the PIK3CA leads the change of glutamic acid into lysine (p.Glu545Lys) due to alterations in exon 9. However, a high mutation index was also reported in exon 20, resulting in a change of histidine by leucine (p.His1047Leu) and histidine by arginine (p.His1047Arg).

BRAF intervenes in the proliferation, differentiation, and cell apoptosis pathways (75), indicating that significant alterations in this gene could lead to phenotypic alterations in colorectal tissue. In this study, the prevalence of mutations in BRAF has been reported as ranging from 2.5% to 27% (7,25,27, 30,31,35,38,39,42-46). Regarding the geographical distribution of these mutations, in America, the highest prevalence was 27% in a sample of 563 individuals (31). In contrast, Watson R et al. did not report the presence of mutations in BRAF in 17 individuals (44), both studies being conducted in the United States. Concerning sex, no data was reported (44). In Asia, the highest prevalence was 7% in a sample of 674 (25) and the lowest was 3.1% in 1110 individuals (7), both studies conducted in China. In relation to sex, 55.6% and 44.4% were the highest prevalences for males and females (35), respectively. In the Middle East, the highest prevalence reported was 4% in a sample of 99 individuals from several countries (45). In contrast, Molaei M et al. do not report the presence of mutations in BRAF in 85 Iranian individuals studied (46). According to sex, the highest prevalence for males was 3.3%, and 5.1% for females (45). In Western Europe, the highest prevalence reported
was 6.4% in 1428 individuals studied in France (42). In Africa, 5.4% was the highest prevalence in a sample of 92 Moroccan individuals (30). In Oceania, the highest prevalence was 12.1% in a sample of 173 individuals in Australia (43). In the last three regions, no prevalence was reported in relation to sex. The most frequent mutation was the change of valine by glutamate in codon 600 (p. Val600Glu). Samowitz et al. reported that individuals with mutations in \textit{BRAF} have more aggressive colorectal cancer phenotypes and no positive prognostic with cetuximab or panitumumab (76). Consequently, it is recommended to expand the study spectrum of other possible hotspot regions in \textit{BRAF} associated with this disease, because most of the selected studies only studied the genetic variant corresponding to p.Val600Glu.

In comparison with studies before 2012, regarding the \textit{KRAS} gene, Segura et al. reported a general prevalence of 32.4% in 37 colorectal tumors in Mexican individuals (77). Vaughn et al. obtained a general prevalence of 42.4% in 2121 colorectal adenocarcinomas in the United States (78). In relation to \textit{PIK3CA}, Herreros-Villanueva et al. (79) and Velho et al. (80) reported prevalences of 8.22% and 7.1%, in samples of 73 Spanish patients and 103 colorectal cancer specimens, respectively. Regarding \textit{BRAF}, Di Nicolantonio et al. reported a prevalence of 14% in 113 individuals with metastatic colorectal cancer in Italy and Switzerland (11). These comparisons could suggest that the frequencies of these genetic variants have remained within the ranges of general prevalence of mutations obtained in articles of later years reported in the present study. However, systematic reviews that include a greater range of years to evaluate increasing or decreasing trends of mutation prevalence in these genes over time are necessary.
The differences between general prevalences of mutations and prevalences according to sex in the same geographical area could be attributed to differences in the size of the samples studied and to the sensitivity of the molecular techniques used, which have been shown to influence the frequency mutation detection (81,82). Other factors that could have an influence are the quality and quantity of the DNA obtained, the heterogeneity in the tumor and possible environmental exposures not controlled or unknown by the authors (83,84).

Although the relationship between the prevalence of the studied genetic mutations and sex was not statistically significant in most of the articles reported in the present study, this relationship was evaluated because it has been reported that genetic associations with sex could provide information about the pathogenesis of diseases (85), and also because of the established differences in susceptibility and incidence of cancer among men and women around the world (86), attributable to environmental causes and genetic differences (87, 88). Therefore, it can be thought that differences in the prevalence of mutations between males and females could condition the development of colorectal cancer more frequently in individuals of a specific sex.

The incidence and mortality of colorectal cancer has increased over the past 10 years (89), therefore, the need to identify and implement early diagnostic strategies for this malignant pathology has increased, including the analysis of molecular and clinical biomarkers. Recently, a gene that could be considered a molecular biomarker, AXIN2, has been studied and a possible association of variants in this gene, as well as the phenotype of colorectal cancer and dental agenesis have been reported (16). The
present systematic review aims to report the prevalence of variants in \textit{AXIN2} in individuals with primary and/or metastatic colorectal cancer around the world. However, only one study was identified. In addition, due to the knowledge of the possible relations of the \textit{AXIN2} gene with both phenotypes, we attempted to identify if some of the higher prevalent genes in colorectal cancer such as \textit{KRAS}, \textit{PIK3CA} and \textit{BRAF} were also related to dental agenesis, however, no studies were identified that reported such an association.

\textit{AXIN2} is known for its tumor suppressing activity by negatively regulating the WNT pathway by the intracellular degradation of β-catenine (90,91). In mice, \textit{AXIN2} is expressed during odontogenesis in dental mesenchyme, enamel knot, dental papilla and mesenchymal odontoblast. It is reasonable to hypothesize that a loss in function of this gene could affect the development of molars and incisors, leading to dental agenesis (92). In addition, there is evidence that the expression of \textit{AXIN2} in colorectal tissue can lead to carcinomas (16). Wu Z \textit{et al.} reported that mutations in \textit{AXIN2} could influence the expression of its protein, which can play a critical role in carcinogenesis (93), being similar to reports by Rosales \textit{et al.}, who claims that these mutations act as a genetic risk factor for the development of colorectal cancer (17). Marvin L \textit{et al.} reported the nonsense mutation p.Tyr663X (c.1989G> A) in \textit{AXIN2}, which generates a truncated protein in individuals with oligodontia, gastrointestinal neoplasms and other clinical manifestations (94). Therefore, dental agenesis and variants in \textit{AXIN2} could possibly be used as clinical and molecular markers for susceptibility in colorectal cancer development.

The present study highlights the importance of investigating the distribution
of mutations in KRAS, PIK3CA, BRAF and AXIN2 in individuals with colorectal cancer in different populations around the world to determine the impact of these variants in the early diagnosis, prognosis, survival and therapeutic effectiveness in individuals with this malignant pathology. It is important to study the genetic mutations in heterogeneous populations, due to the higher probability of mortality and poor prognosis of colorectal cancer that could be related to ethnic and sexual differences regarding the presence of certain genetic variants. Ethnicity has been related to risk (93, 95-97) and a worse prognosis of cancer in the presence of KRAS (98), PIK3CA (99) and BRAF (100) mutations.

Additional studies of genetic associations, including KRAS, PIK3CA, BRAF and AXIN2 with colorectal cancer are suggested in diverse populations to contribute to the knowledge on the cancer genome. Likewise, studies focused on the relationship between variants in AXIN2 and dental agenesis are recommended as an early clinical marker of colorectal cancer.

Conclusions

Our findings suggest that there is a wide and diverse distribution of KRAS, PIK3CA and BRAF gene mutations in individuals with CRC worldwide; KRAS being the most prevalent. Moreover, this study highlights that there is no evidence on the association between dental agenesis and KRAS, PIK3CA and BRAF germline gene mutations in people with CRC. AXIN2 is the unique gene in which the association with both phenotypes has been well stated, but population studies focused on AXIN2 mutations prevalence are limited.

Conflict of interest: The authors declare no conflict of interest.

Funding: The current systematic review did not receive any funding from
any institution.

Acknowledgements: The authors would like to thank the Universidad de Cartagena for its support.

Author’s contribution: Francisco Sir planned the research following the PRISMA statement, performed the literature search and methodological quality evaluation, the selection of articles, the extraction of information, wrote the draft manuscript and revised the final manuscript. Meisser M. selected the articles, methodological assessment, revised the draft and the final manuscript. Farith G. planned the research following the PRISMA statement, selected the articles, carried out the methodological assessment, and revised the draft and the final manuscript.

References

1. Favoriti P, Carbone G, Greco M, Pirozzi F, Pirozzi RE, Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg. 2016;68(1):7-11.

2. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1. 0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon, France: International agency for research on cancer. 2013;2016.

3. Bartsch H, Dally H, Popanda O, Risch A, Schmezer P. Genetic risk profiles for cancer susceptibility and therapy response. Cancer Prevention: Springer; 2007. p. 19-36.

4. Kolligs FT. Diagnostics and Epidemiology of Colorectal Cancer. Visc Med. 2016;32(3):158-64.
5. Peyssonnaux C, Eychène A. The Raf/MEK/ERK pathway: new concepts of activation. Biology of the Cell. 2001;93(1-2):53-62.
6. Calistri D, Rengucci C, Seymour I, Lattuneddu A, Polifemo Am, Monti F, et al. Mutation analysis of p53, Kras, and BRAF genes in colorectal cancer progression. Journal of cellular physiology. 2005;204(2):484-8.
7. Zhang J, Zheng J, Yang Y, Lu J, Gao J, Lu T, et al. Molecular spectrum of KRAS, NRAS, BRAF and PIK3CA mutations in Chinese colorectal cancer patients: analysis of 1,110 cases. Sci Rep. 2015;5.
8. Roy S, Majumdar APN. Cancer Stem Cells in Colorectal Cancer: Genetic and Epigenetic Changes. J Stem Cell Res Ther.Suppl 7(6).
9. Rentsch M, Schiergens T, Khandoga A, Werner J. Surgery for Colorectal Cancer - Trends, Developments, and Future Perspectives. Visc Med. 2016;32(3):184-91.
10. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160-74.
11. Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008;26(35):5705-12.
12. Abdul-Jalil KI, Sheehan KM, Toomey S, Schmid J, Prehn J, O’Grady A, et al. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study. Ann Surg Oncol. 2014;21(8):2642-9.
13. Callahan N, Modesto A, Meira R, Seymen F, Patir A, Vieira A. Axis Inhibition Protein 2 (AXIN2) Polymorphisms and Tooth Agenesis. Arch Oral Biol. 2009;54(1):45-9.
14. Kantaputra PN, Kaewgahya M, Hatsadaloi A, Vogel P, Kawasaki K, Ohazama A, et al. GREMLIN 2 Mutations and Dental Anomalies. Journal of dental research. 2015;94(12):1646-52.

15. Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel). 2018;9(5).

16. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004;74(5):1043-50.

17. Rosales-Reynoso MA, Arredondo-Valdez AR, Wence-Chavez LI, Barros-Nunez P, Gallegos-Arreola MP, Flores-Martinez SE, et al. AXIN2 Polymorphisms and Their Association with Colorectal Cancer in Mexican Patients. Genet Test Mol Biomarkers. 2016;20(8):438-44.

18. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.

19. Berra S, Elorza-Ricart JM, Estrada M-D, Sánchez E. Instrumento para la lectura crítica y la evaluación de estudios epidemiológicos transversales. Gaceta Sanitaria. 2008;22(5):492-7.

20. Gavin PG, Colangelo LH, Fumagalli D, Tanaka N, Remillard MY, Yothers G, et al. Mutation profiling and microsatellite instability in stage II and III colon cancer: an assessment of their prognostic and oxaliplatin predictive value. Clin Cancer Res. 2012;18(23):6531-41.

21. Palomba G, Colombino M, Contu A, Massidda B, Baldino G, Pazzola A, et al. Prevalence of KRAS, BRAF, and PIK3CA somatic mutations in patients with colorectal carcinoma may vary in the same population: clues from Sardinia. J Transl Med. 2012;10:178

22. Mao C, Zhou J, Yang Z, Huang Y, Wu X, Shen H, et al. KRAS,
BRAF and PIK3CA mutations and the loss of PTEN expression in Chinese patients with colorectal cancer. PLoS One. 2012;7(5):e36653.

23. Liao X, Morikawa T, Lochhead P, Imamura Y, Kuchiba A, Yamauchi M, et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res. 2012;18(8):2257-68.

24. Watanabe T, Yoshino T, Uetake H, Yamazaki K, Ishiguro M, Kurokawa T, et al. KRAS mutational status in Japanese patients with colorectal cancer: results from a nationwide, multicenter, cross-sectional study. Jpn J Clin Oncol. 2013;43(7):706-12.

25. Shen Y. Effectors of Epidermal Growth Factor Receptor Pathway: The Genetic Profiling of KRAS, BRAF, PIK3CA, NRAS Mutations in Colorectal Cancer Characteristics and Personalized Medicine. 2013;8(12).

26. Patil H, Korde R, Kapat A. KRAS gene mutations in correlation with clinicopathological features of colorectal carcinomas in Indian patient cohort. Med Oncol. 2013;30(3):617.

27. Chang YS, Chang SJ, Yeh KT, Lin TH, Chang JG. RAS, BRAF, and TP53 gene mutations in Taiwanese colorectal cancer patients. Onkologie. 2013;36(12):719-24.

28. Rosty C, Young JP, Walsh MD, Clendenning M, Sanderson K, Walters RJ, et al. PIK3CA activating mutation in colorectal carcinoma: associations with molecular features and survival. PLoS One. 2013;8(6):e65479.

29. Kang M, Shen XJ, Kim S, Araujo-Perez F, Galanko JA, Martin CF, et al. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer. Cancer Biomark. 2013;13(5):359-66.

30. Marchoudi N, Amrani Hassani Joutei H, Jouali F, Fekkak J, Rhaissi
H. Distribution of KRAS and BRAF mutations in Moroccan patients with advanced colorectal cancer. Pathol Biol (Paris). 2013;61(6):273-6.

31. Samadder NJ, Vierkant RA, Tillmans LS, Wang AH, Weisenberger DJ, Laird PW, et al. Associations between colorectal cancer molecular markers and pathways with clinicopathologic features in older women. Gastroenterology. 2013;145(2):348-56.e1-2.

32. Baskin Y, Dagdeviren YK, Calibasi G, Canda AE, Sarioglu S, Ellidokuz H, et al. KRAS mutation profile differences between rectosigmoid localized adenocarcinomas and colon adenocarcinomas. J Gastrointest Oncol. 2014;5(4):265-9.

33. Imamura Y, Lochhead P, Yamauchi M, Kuchiba A, Qian ZR, Liao X, et al. Analyses of clinicopathological, molecular, and prognostic associations of KRAS codon 61 and codon 146 mutations in colorectal cancer: cohort study and literature review. Mol Cancer. 2014;13:135.

34. Bader T, Ismail A. Higher prevalence of KRAS mutations in colorectal cancer in Saudi Arabia: Propensity for lung metastasis. Alexandria Journal of Medicine. 2014;50(3):203-9.

35. Chen J, Guo F, Shi X, Zhang L, Zhang A, Jin H, et al. BRAF V600E mutation and KRAS codon 13 mutations predict poor survival in Chinese colorectal cancer patients. BMC Cancer. 2014;14:802.

36. Bisht S, Ahmad F, Sawaimoon S, Bhatia S, Das BR. Molecular spectrum of KRAS, BRAF, and PIK3CA gene mutation: determination of frequency, distribution pattern in Indian colorectal carcinoma. Med Oncol. 2014;31(9):124.

37. Russo AL, Borger DR, Szymonifka J, Ryan DP, Wo JY, Blaszkowsky LS, et al. Mutational analysis and clinical correlation of metastatic colorectal cancer. Cancer. 2014;120(10):1482-90.
38. Siraj AK, Bu R, Prabhakaran S, Bavi P, Beg S, Al Hazmi M, et al. A very low incidence of BRAF mutations in Middle Eastern colorectal carcinoma. Mol Cancer. 2014;13:168.

39. Ye JX, Liu Y, Qin Y, Zhong HH, Yi WN, Shi XY. KRAS and BRAF gene mutations and DNA mismatch repair status in Chinese colorectal carcinoma patients. World J Gastroenterol. 2015;21(5):1595-605.

40. Phipps AI, Ahnen DJ, Cheng I, Newcomb PA, Win AK, Burnett T. PIK3CA Somatic Mutation Status in Relation to Patient and Tumor Factors in Racial/Ethnic Minorities with Colorectal Cancer. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1046-51.

41. Foltran L, De Maglio G, Pella N, Ermacora P, Aprile G, Masiero E, et al. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol. 2015;11(4):629-40.

42. Allard MA, Saffroy R, de la Maisonneuve PB, Ricca L, Bosselut N, Hamelin J, et al. Colorectal liver metastases are more often super wild type. Toward treatment based on metastatic site genotyping? Target Oncol. 2015;10(3):415-21.

43. Vatandoust S, Price TJ, Ullah S, Roy AC, Beeke C, Young JP, et al. Metastatic Colorectal Cancer in Young Adults: A Study From the South Australian Population-Based Registry. Clinical Colorectal Cancer. 2016;15(1):32-6.

44. Watson R, Liu TC, Ruzinova MB. High frequency of KRAS mutation in early onset colorectal adenocarcinoma: implications for pathogenesis. Hum Pathol. 2016;56:163-70.

45. Al-Shamsi HO, Jones J, Fahmawi Y, Dahbour I, Tabash A, Abdel-Wahab R, et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal
cancer: determination of frequency and distribution pattern. J Gastrointest Oncol. 2016;7(6):882-902.

46. Molaei M, Kishani Farahani R, Maftouh M, Taleghani MY, Vahdatinia M, Khatami F, et al. Lack of BRAFV600E mutation in stage I and II of colorectal cancer. Gastroenterol Hepatol Bed Bench. 2016;9(2):94-9.

47. Jauhri M, Bhatnagar A, Gupta S, Bp M, Minhas S, Shokeen Y, et al. Prevalence and coexistence of KRAS, BRAF, PIK3CA, NRAS, TP53, and APC mutations in Indian colorectal cancer patients: Next-generation sequencing-based cohort study. Tumour Biol. 2017;39(2):1010428317692265.

48. Chang SC, Lan YT, Lin PC, Yang SH, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer medicine. 2020 Jan;9(2):476-86.

49. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis. 2000;21(3):379-85.

50. Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: an overview. Cancers (Basel). 2014;6(3):1769-92.

51. Adjiri A. DNA Mutations May Not Be the Cause of Cancer. Oncol Ther. 2017;5(1):85-101.

52. Ihle NT, Byers LA, Kim ES, Saintigny P, Lee JJ, Blumenschein GR, et al. Effect of KRAS oncogene substitutions on protein behavior: implications for signaling and clinical outcome. J Natl Cancer Inst. 2012;104(3):228-39.

53. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, et al. Prognostic and Predictive Roles of KRAS Mutation in Colorectal
Cancer. Int J Mol Sci. 2012;13(10):12153-68.

54. McGrath JP, Capon DJ, Smith DH, Chen EY, Seeburg PH, Goeddel DV, et al. Structure and organization of the human Ki-ras proto-oncogene and a related processed pseudogene. Nature. 1983;304(5926):501-6.

55. Rosty C, Young JP, Walsh MD, Clendenning M, Walters RJ, Pearson S, et al. Colorectal carcinomas with KRAS mutation are associated with distinctive morphological and molecular features. Mod Pathol. 2013;26(6):825-34.

56. Kimura K, Nagasaka T, Hoshizima N, Sasamoto H, Notohara K, Takeda M, et al. No duplicate KRAS mutation is identified on the same allele in gastric or colorectal cancer cells with multiple KRAS mutations. J Int Med Res. 2007;35(4):450-7.

57. Takahashi N, Yamada Y, Taniguchi H, Akiyoshi K, Honma Y, Iwasa S, et al. Mutations in NRAS codon 61, KRAS codon 146, and BRAF V600E as prognostic factors in patients who received anti-EGFR antibody for metastatic colorectal cancer. Journal of Clinical Oncology. 2012;30(15_suppl):e14126-e.

58. Edkins S, O’Meara S, Parker A, Stevens C, Reis M, Jones S, et al. Recurrent KRAS codon 146 mutations in human colorectal cancer. Cancer Biol Ther. 2006;5(8):928-32.

59. Poehlmann A, Kuester D, Meyer F, Lippert H, Roessner A, Schneider-Stock R. K-ras mutation detection in colorectal cancer using the Pyrosequencing technique. Pathol Res Pract. 2007;203(7):489-97.

60. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757-65.

61. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ,
et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626-34.
62. Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192-205.
63. Peeters M, Douillard JY, Van Cutsem E, Siena S, Zhang K, Williams R, et al. Mutant KRAS codon 12 and 13 alleles in patients with metastatic colorectal cancer: assessment as prognostic and predictive biomarkers of response to panitumumab. J Clin Oncol. 2013;31(6):759-65.
64. Peeters M, Oliner KS, Parker A, Siena S, Van Cutsem E, Huang J, et al. Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase III study of metastatic colorectal cancer. Clin Cancer Res. 2013;19(7):1902-12.
65. Neumann J, Zeindl-Eberhart E, Kirchner T, Jung A. Frequency and type of KRAS mutations in routine diagnostic analysis of metastatic colorectal cancer. Pathol Res Pract. 2009;205(12):858-62.
66. Abubaker J, Bavi P, Al-Haqawi W, Sultana M, Al-Harbi S, Al-Sanea N, et al. Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J Pathol. 2009;219(4):435-45.
67. Bader AG, Kang S, Vogt PK. Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A. 2006;103(5):1475-9.
68. Samuels Y, Ericson K. Oncogenic PI3K and its role in cancer. Curr Opin Oncol. 2006;18(1):77-82.
69. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261-74.
70. Samuels Y, Waldman T. Oncogenic mutations of PIK3CA in human cancers. Curr Top Microbiol Immunol. 2010;347:21-41.
71. Hsieh LL, Er TK, Chen CC, Hsieh JS, Chang JG, Liu TC. Characteristics and prevalence of KRAS, BRAF, and PIK3CA mutations in colorectal cancer by high-resolution melting analysis in Taiwanese population. Clin Chim Acta. 2012;413(19-20):1605-11.
72. Cathomas G. PIK3CA in Colorectal Cancer. Front Oncol. 2014;4.
73. De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753-62.
74. Soeda H, Shimodaira H, Gamoh M, Ando H, Isobe H, Suto T, et al. Phase II trial of cetuximab plus irinotecan for oxaliplatin- and irinotecan-based chemotherapy-refractory patients with advanced and/or metastatic colorectal cancer: evaluation of efficacy and safety based on KRAS mutation status (T-CORE0801). Oncology. 2014;87(1):7-20.
75. Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10(3):385-94.
76. Samowitz WS, Sweeney C, Herrick J, Albertsen H, Levin TR, Murtaugh MA, et al. Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res. 2005;65(14):6063-9.
77. Segura-Uribe J, Santiago-Payán H, Quintero A. Transitions and transversions in Ki-ras gene in colorectal cancers in Mexican patients. Tumori Journal. 2003;89(3):259-62.
78. Vaughn CP, ZoBell SD, Furtado LV, Baker CL, Samowitz WS. Frequency of KRAS, BRAF, and NRAS mutations in colorectal cancer.
Genes, Chromosomes and Cancer. 2011;50(5):307-12.
79. Herreros-Villanueva M, Gomez-Manero N, Muniz P, Garcia-Giron C, Coma del Corral MJ. PIK3CA mutations in KRAS and BRAF wild type colorectal cancer patients. A study of Spanish population. Mol Biol Rep. 2011;38(2):1347-51.
80. Velho S, Oliveira C, Ferreira A, Ferreira AC, Suriano G, Schwartz S, Jr., et al. The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer. 2005;41(11):1649-54.
81. Pinto P, Rocha P, Veiga I, Guedes J, Pinheiro M, Peixoto A, et al. Comparison of methodologies for KRAS mutation detection in metastatic colorectal cancer. Cancer Genetics. 2011;204(8):439-46.
82. Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn. 2005;7(3):413-21.
83. Gil Ferreira C, Aran V, Zalcberg-Renault I, Victorino AP, Salem JH, Bonamino MH, et al. KRAS mutations: variable incidences in a Brazilian cohort of 8,234 metastatic colorectal cancer patients. BMC Gastroenterol. 2014;14:73.
84. Frayling IM. Methods of molecular analysis: mutation detection in solid tumours. Mol Pathol. 2002;55(2):73-9.
85. Arnold K. Journal to encourage analysis by sex/ethnicity. J Natl Cancer Inst. 2000;92(19):1561.
86. Edgren G, Liang L, Adami HO, Chang ET. Enigmatic sex disparities in cancer incidence. Eur J Epidemiol. 2012;27(3):187-96.
87. Zahm SH, Fraumeni JF. Racial, ethnic, and gender variations in cancer risk: considerations for future epidemiologic research. Environ Health Perspect. 1995;103(Suppl 8):283-6.
88. Cook MB, Dawsey SM, Freedman ND, Inskip PD, Wichner SM, Quraishi SM, et al. Sex disparities in cancer incidence by period and age. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1174-82.

89. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66(4):683-91.

90. Gunes EG, Pinarbasi E, Pinarbasi H, Silig Y. Strong association between lung cancer and the AXIN2 polymorphism. Molecular medicine reports. 2009;2(6):1029-35.

91. Jho E, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. Wnt/β-Catenin/Tcf Signaling Induces the Transcription of Axin2, a Negative Regulator of the Signaling Pathway. Mol Cell Biol. 2002;22(4):1172-83.

92. Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N. WNT10A mutations account for (1/4) of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A. 2014;164a(2):353-9.

93. Wu Z, Sun Y, Tang S, Liu C, Zhu S, Wei L, et al. AXIN2 rs2240308 polymorphism contributes to increased cancer risk: evidence based on a meta-analysis. Cancer Cell Int. 2015;15.

94. Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet A. 2011;155a(4):898-902.

95. Zhong AY, Pan X, Shi MH, Xu HJ. −148 C/T polymorphism of Axin2 contributes to a decreased risk of cancer: evidence from a meta-analysis. Onco Targets Ther. 2015;8:1957-66.

96. Pinarbasi E, Gunes EG, Pinarbasi H, Donmez G, Silig Y. AXIN2 polymorphism and its association with prostate cancer in a Turkish population. Medical oncology. 2011;28(4):1373-8.
97. Gong J, Jiang Y, Hao N, Zhu B, Li Y. Quantitative assessment of the association between AXIN2 rs2240308 polymorphism and cancer risk. Scientific Reports. 2015;5:10111.

98. Staudacher JJ, Yazici C, Bul V, Zeidan J, Khalid A, Xia Y, et al. Increased Frequency of KRAS Mutations in African Americans Compared with Caucasians in Sporadic Colorectal Cancer. Clin Transl Gastroenterol. 2017;8(10):e124.

99. Kang M, Shen XJ, Kim S, Araujo-Perez F, Galanko JA, Martin CF, et al. Somatic gene mutations in African Americans may predict worse outcomes in colorectal cancer. Cancer Biomarkers. 2013;13(5):359-66.

100. Won DD, Lee JI, Lee IK, Oh ST, Jung ES, Lee SH. The prognostic significance of KRAS and BRAF mutation status in Korean colorectal cancer patients. BMC Cancer. 2017;17(1):403.

Appendix 1. Search equations:

MEDLINE (via PubMed)

(“Prevalence” AND (“Mutation” OR “Polymorphism”) AND (“Genes” OR “RAS” OR “Kras”) AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”)

(“Prevalence” AND (“Mutation” OR “Polymorphism”) AND (“Genes” OR “PIK3CA”) AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”)

(“Prevalence” AND (“Mutation” OR “Polymorphism”) AND (“Genes” OR “BRAF”) AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”)

(“Prevalence” AND (“Mutation” OR “Polymorphism”) AND (“Genes” OR “dental agenesis”))
“AXIN2”) AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”

Embase (via Ovid)

((“Mutation” OR Polymorphism*) AND “Prevalence” AND (“RAS” OR “Kras”) OR “PIK3CA” OR “BRAF” OR “AXIN2” AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”)

Cochrane Library

(“Prevalence” AND (“Mutation” OR “Polymorphism”) AND (“Genes”) AND (“Colorectal Neoplasms” OR “Colorectal Cancer”) AND “dental agenesis”)