On the idempotents of Hecke algebras

A.P. Isaeva, A.I. Molevb and A.F. Os’kina

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow region 141980, Russia
E-mail: isaevap@theor.jinr.ru, oskinandrej@gmail.com

b School of Mathematics and Statistics
University of Sydney, NSW 2006, Australia
E-mail: alexm@maths.usyd.edu.au

Abstract

We give a new construction of primitive idempotents of the Hecke algebras associated with the symmetric groups. The idempotents are found as evaluated products of certain rational functions thus providing a new version of the fusion procedure for the Hecke algebras. We show that the normalization factors which occur in the procedure are related to the Ocneanu–Markov trace of the idempotents.

1 Introduction

It was observed by Jucys \cite{Jucys} that the primitive idempotents of the symmetric group S_n can be obtained by taking certain limit values of the rational function

$$\Phi(u_1, \ldots, u_n) = \prod_{1 \leq i < j \leq n} \left(1 - \frac{(i,j)}{u_i - u_j} \right),$$

where u_1, \ldots, u_n are complex variables and the product is calculated in the group algebra $\mathbb{C}[S_n]$ in the lexicographical order on the pairs (i,j). A similar construction, now commonly referred to as the fusion procedure, was developed by Cherednik \cite{Cherednik}, while complete proofs were given by Nazarov \cite{Nazarov}. A simple version of the fusion procedure establishing its equivalence with the Jucys–Murphy construction was recently found by one of us in \cite{IsaevMolev}; see also \cite{Cherednik} Ch. 6 for applications to the Yangian representation theory and more references. In more detail, let T be a standard tableau associated with a partition λ of n and let $c_k = j - i$, if the element k occupies the cell of the tableau in row i and column j. Then the consecutive evaluations

$$\Phi(u_1, \ldots, u_n)|_{u_1 = c_1, u_2 = c_2, \ldots, u_n = c_n}$$

are well-defined and this value yields the corresponding primitive idempotent E^λ_T multiplied by the product of the hooks of the diagram of λ. The left ideal $\mathbb{C}[S_n] E^\lambda_T$ is the
irreducible representation of \mathfrak{S}_n associated with λ, and the \mathfrak{S}_n-module $\mathbb{C}[\mathfrak{S}_n]$ is the direct sum of the left ideals over all partitions λ and all λ-tableaux T.

Our aim in this paper is to derive an analogous version of the fusion procedure for the Hecke algebra $\mathcal{H}_n = \mathcal{H}_n(q)$ associated with \mathfrak{S}_n. The procedure goes back to Cherednik [2], while detailed proofs relying on q-versions of the Young symmetrizers were given by Nazarov [14]; see also Grime [4] for its hook version. We use a different approach based on the formulas for the primitive idempotents of \mathcal{H}_n in terms of the Jucys–Murphy elements. These formulas derived by Dipper and James [3] generalize the results of Jucys [9] and Murphy [12] for \mathfrak{S}_n.

The main result of this paper is an explicit formula for the orthogonal primitive idempotents of \mathcal{H}_n. These formulas derived by Dipper and James [3] generalize the results of Jucys [9] and Murphy [12] for \mathfrak{S}_n. The normalization factors in the expressions for the Hecke algebra idempotents turn out to be related to the Oceana–Markov trace of the idempotents.

2 Idempotents of \mathcal{H}_n and Jucys–Murphy elements

Let q be a formal variable. The Hecke algebra \mathcal{H}_n over the field $\mathbb{C}(q)$ is generated by the elements T_1, \ldots, T_{n-1} subject to the defining relations

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1},$$

$$T_i T_j = T_j T_i \quad \text{for } |i - j| > 1,$$

$$T_i^2 = 1 + (q - q^{-1}) T_i.$$

Given a reduced decomposition $w = s_{i_1} \ldots s_{i_r}$ of an element $w \in \mathfrak{S}_n$ in terms of the generators $s_i = (i, i + 1)$, set $T_w = T_{i_1} \ldots T_{i_r}$. Then T_w does not depend on the reduced decomposition, and the set $\{T_w \mid w \in \mathfrak{S}_n\}$ is a basis of \mathcal{H}_n over $\mathbb{C}(q)$.

The Jucys-Murphy elements y_1, \ldots, y_n of \mathcal{H}_n are defined inductively by

$$y_1 = 1, \quad y_{k+1} = T_k y_k T_k \quad \text{for } k = 1, \ldots, n - 1. \quad (2)$$

These elements satisfy

$$y_k T_m = T_m y_k, \quad m \neq k, k - 1.$$

In particular, y_1, \ldots, y_n generate a commutative subalgebra of \mathcal{H}_n. The elements y_k can be written in terms of the elements $T_{(i,j)} \in \mathcal{H}_n$, associated with the transpositions $(i \ j) \in \mathfrak{S}_n$ as follows:

$$y_k = 1 + (q - q^{-1}) (T_{(1,k)} + T_{(2,k)} + \cdots + T_{(k-1,k)}).$$

Hence, the normalized elements $(y_k - 1)/(q - q^{-1})$ specialize to the Jucys–Murphy elements for \mathfrak{S}_n as $q \to 1$; see [9], [12], [3].

For any $k = 1, \ldots, n$ we let w_k denote the unique longest element of the symmetric group \mathfrak{S}_k which is regarded as the natural subgroup of \mathfrak{S}_n. The corresponding elements $T_{w_k} \in \mathcal{H}_n$ are then given by $T_{w_1} = 1$ and

$$T_{w_k} = T_1 (T_2 T_1) \cdots (T_{k-2} \ldots T_1)(T_{k-1} T_{k-2} \cdots T_1)$$

$$= (T_1 \ldots T_{k-2} T_{k-1})(T_1 \ldots T_{k-2}) \cdots (T_1 T_2) T_1, \quad k = 2, \ldots, n. \quad (3)$$
We point out the following properties of the elements T_{w_k} which are easily verified by induction with the use of (3) and (4):

$$T_{w_k} T_j = T_{k-j} T_{w_k}, \quad 1 \leq j < k \leq n,$$

$$T_{w_k}^2 = y_1 y_2 \cdots y_k, \quad k = 1, \ldots, n. \quad (5)$$

Following [14], for each $i = 1, \ldots, n - 1$ set

$$T_i(x, y) = \frac{T_i y - T_i^{-1} x}{y - x} = T_i + \frac{q - q^{-1}}{x - 1}, \quad (6)$$

where x and y are complex variables. We will regard the $T_i(x, y)$ as rational functions in x and y with values in H_n. It is well-known that they satisfy the relations

$$T_i(x, y) T_{i+1}(x, z) T_i(y, z) = T_{i+1}(y, z) T_i(x, z) T_{i+1}(x, y), \quad (7)$$

(the Yang–Baxter equation), and

$$T_i(x, y) T_i(y, x) = \frac{(x - q^2 y)(x - q^{-2} y)}{(x - y)^2}. \quad (8)$$

Lemma 2.1. We have the identities

$$T_{w_k} T_j(x, y) = T_{k-j}(x, y) T_{w_k}, \quad 1 \leq j < k \leq n, \quad (9)$$

and

$$T_{w_{k+1}} T_2(u, \sigma_{k-1}) \cdots T_k(u, \sigma_1) T_{w_k}^{-1} = T_{w_k} T_1(u, \sigma_{k-1}) \cdots T_{k-1}(u, \sigma_1) T_{w_{k-1}}^{-1} T_k, \quad (10)$$

where $1 \leq k < n$ and $u, \sigma_1, \ldots, \sigma_{k-1}$ are complex parameters.

Proof. Relation (9) is immediate from (5), while (10) is deduced from

$$(T_k \cdots T_2 T_1) T_j(x, y) = T_{j-1}(x, y) (T_k \cdots T_2 T_1), \quad 2 \leq j \leq k,$$

by taking into account the identity

$$T_{w_k}^{-1} T_{w_{k+1}}^{-1} T_k T_{w_k} = T_k \cdots T_2 T_1$$

implied by (3) and (4).

Now we recall the construction of the orthogonal primitive idempotents for the Hecke algebra from [3]. We will identify a partition $\lambda = (\lambda_1, \ldots, \lambda_l)$ of n with its diagram which is a left-justified array of rows of cells such that the top row contains λ_1 cells, the next row contains λ_2 cells, etc. A cell outside λ is called addable to λ if the union of λ and the cell is a diagram. A tableau T of shape λ (or a λ-tableau T) is obtained by filling in the cells of the diagram bijectively with the numbers $1, \ldots, n$. A tableau T is called standard if its entries increase along the rows and down the columns. If a cell occurs in row i and column j, its q-content will be defined as $q^{2(j-i)}$.

3
In accordance to [3], a set of orthogonal primitive idempotents \(\{ E^\lambda_T \} \) of \(\mathcal{H}_n \), parameterized by partitions \(\lambda \) of \(n \) and standard \(\lambda \)-tableaux \(T \) can be constructed inductively by the following rule. Set \(E^\lambda_T = 1 \) if \(n = 1 \), whereas for \(n \geq 2 \),

\[
E^\lambda_T = E^\mu_U (y_n - \rho_1) \cdots (y_n - \rho_k) \frac{(\sigma - \rho_1) \cdots (\sigma - \rho_k)}{\lambda_{\alpha}},
\]

where \(U \) is the tableau obtained from \(T \) by removing the cell \(\alpha \) occupied by \(n \), \(\mu \) is the shape of \(U \), and \(\rho_1, \ldots, \rho_k \) are the \(q \)-contents of all addable cells of \(\mu \) except for \(\alpha \), while \(\sigma \) is the \(q \)-content of the latter. In particular, if \(\lambda \) and \(\lambda' \) are partitions of \(n \), then

\[
E^\lambda_T E^{\lambda'}_{T'} = \delta_{\lambda\lambda'} \delta_{TT'}, E^\lambda_T
\]

for arbitrary standard tableaux \(T \) and \(T' \) of shapes \(\lambda \) and \(\lambda' \), respectively. Moreover,

\[
\sum_\lambda \sum_T E^\lambda_T = 1,
\]

summed over all partitions \(\lambda \) of \(n \) and all standard \(\lambda \)-tableaux \(T \).

In what follows we will omit the superscript \(\lambda \) and write simply \(E_T \) instead of \(E^\lambda_T \).

Given a standard \(\lambda \)-tableau \(T \) and \(k \in \{1, \ldots, n\} \), we set \(\sigma_k = q^{2(j-i)} \) if the element \(k \) of \(T \) occupies the cell in row \(i \) and column \(j \). Then

\[
y_k E_T = E_T y_k = \sigma_k E_T. \tag{12}
\]

Furthermore, given a standard tableau \(U \) with \(n - 1 \) cells, the corresponding idempotent \(E_U \) can be written as

\[
E_U = \sum_T E_T, \tag{13}
\]

summed over all standard tableaux \(T \) obtained from \(U \) by adding one cell with entry \(n \).

Exactly as in the case of the symmetric group \(\mathfrak{S}_n \) (see [10]), this relation can be used to derive the following alternative form of (11). Consider the rational function

\[
E_T(u) = E_U \frac{u - \sigma_n}{u - y_n}, \tag{14}
\]

in a complex variable \(u \) with values in \(\mathcal{H}_n \). Then this function is regular at \(u = \sigma_n \) and the corresponding value coincides with \(E_T \):

\[
E_T = E_U \frac{u - \sigma_n}{u - y_n} \bigg|_{u=\sigma_n}. \tag{15}
\]

3 Fusion formulas for primitive idempotents

For \(k = 1, \ldots, n - 1 \) introduce the elements of \(\mathcal{H}_n \) by

\[
Y_k(\sigma_1, \sigma_2, \ldots, \sigma_k; u) = T_{w_k} T_k(\sigma_1, u) T_{k-1}(\sigma_2, u) \cdots T_1(\sigma_k, u) T_{w_{k+1}}^{-1}, \tag{16}
\]

where \(\sigma_1, \sigma_2, \ldots, \sigma_k \) and \(u \) are complex parameters.
Lemma 3.1. Let \mathcal{U} be a standard tableau with k cells and the q-contents $\sigma_1, \sigma_2, \ldots, \sigma_k$. Then

$$E_{\mathcal{U}} Y_k(\sigma_1, \ldots, \sigma_k; u) = (u - \sigma_1) \left(\prod_{j=1}^{k} \frac{(u - q^2 \sigma_j) (u - q^{-2} \sigma_j)}{(u - \sigma_j)^2} \right) E_{\mathcal{U}} (u - y_{k+1})^{-1}. \quad (17)$$

Proof. We start with representing (17) in the form

$$(u - \sigma_1)^{-1} E_{\mathcal{U}} (u - y_{k+1}) = E_{\mathcal{U}} T_{w_{k+1}} T_1(u, \sigma_k) \ldots T_k(u, \sigma_1) T_{w_k}^{-1}, \quad (18)$$

where we have used [3] and taken into account the fact that $E_{\mathcal{U}}$ commutes with y_{k+1}. Now we prove (18) by induction. For $k = 1$ we have

$$(u - \sigma_1)^{-1}(u - T_1^2) = T_1 \cdot T_1(u, \sigma_1),$$

which is true, as $\sigma_1 = 1$. Due to (9) and (10), the right hand side of (18) can be written in the form

$$E_{\mathcal{U}} T_k(u, \sigma_k) T_{w_{k+1}} T_2(u, \sigma_{k-1}) \ldots T_k(u, \sigma_1) T_{w_k}^{-1} = E_{\mathcal{U}} T_k(u, \sigma_k) T_{w_{k-1}} T_1(u, \sigma_{k-1}) \ldots T_{k-1}(u, \sigma_1) T_{w_{k-1}}^{-1} T_k.$$

Using (13), we can write $E_{\mathcal{U}} = E_{\mathcal{U}} E_{\mathcal{V}}$, where \mathcal{V} is the tableau obtained from \mathcal{U} by removing the cell occupied by k. Hence, the right hand side of (18) becomes

$$E_{\mathcal{U}} E_{\mathcal{V}} T_k(u, \sigma_k) T_{w_k} T_1(u, \sigma_{k-1}) \ldots T_{k-1}(u, \sigma_1) T_{w_{k-1}}^{-1} T_k = E_{\mathcal{U}} T_k(u, \sigma_k) \left(E_{\mathcal{V}} T_{w_k} T_1(u, \sigma_{k-1}) \ldots T_{k-1}(u, \sigma_1) T_{w_{k-1}}^{-1} \right) T_k = (u - \sigma_1)^{-1} E_{\mathcal{U}} T_k(u, \sigma_k)(u - y_{k}) T_k.$$

The last equality holds by the induction hypothesis. Now we represent $T_k(u, \sigma_k)$ in the form

$$T_k(u, \sigma_k) = \frac{T_k \sigma_k - T_k^{-1} u}{\sigma_k - u} = T_k + \frac{(q - q^{-1}) u}{\sigma_k - u}.$$

This gives

$$E_{\mathcal{U}} T_k(u, \sigma_k)(u - y_k) T_k = E_{\mathcal{U}} \left(T_k + \frac{(q - q^{-1}) u}{\sigma_k - u} \right) (u - y_k) T_k = E_{\mathcal{U}} \left(-u (q - q^{-1}) T_k + u T_k^2 - y_{k+1} \right) = E_{\mathcal{U}} (u - y_{k+1}),$$

thus completing the proof. \[\blacksquare\]

Let $\lambda = (\lambda_1, \ldots, \lambda_l)$ be a partition of n. We will use the conjugate partition $\lambda' = (\lambda'_1, \ldots, \lambda'_m)$ so that λ'_j is the number of cells in the j-th column of λ. If $\alpha = (i, j)$ is a cell of λ, then the corresponding hook is defined as $h_\alpha = \lambda_i + \lambda'_j - i - j + 1$ and the content is $c_\alpha = j - i$. Set

$$f(\lambda) = \prod_{\alpha \in \lambda} \frac{q^{c_\alpha}}{[h_\alpha]_q}, \quad (19)$$
where we have used the notation

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}.$$

Suppose that \mathcal{T} is a standard λ-tableau. As before, for each $k \in \{1, \ldots, n\}$ we let σ_k denote the q-content $q^{2(j-i)}$ of the cell (i,j) occupied by k in \mathcal{T}. Consider the rational function

$$F_n(u) = \frac{u - \sigma_n}{u - \sigma_1} \prod_{k=1}^{n-1} \frac{(u - \sigma_k)^2}{(u - q^2\sigma_k)(u - q^{-2}\sigma_k)}.$$

Lemma 3.2. The rational function $F_n(u)$ is regular at $u = \sigma_n$ and

$$F_n(\sigma_n) = f(\mu)^{-1} f(\lambda),$$

where μ denotes the shape of the standard tableau obtained from \mathcal{T} by removing the cell occupied by n.

Proof. It is clear that $F_n(u)$ depends only on the shape μ and does not depend on the standard tableau \mathcal{U} obtained from \mathcal{T} by removing the cell occupied by n. Therefore, we may assume that \mathcal{U} is the row tableau obtained by writing the elements $1, \ldots, n-1$ into the cells of μ consecutively by rows starting with the top row. Suppose that the rows of μ are

$$\mu_1 = \cdots = \mu_{p_1} > \mu_{p_1+1} = \cdots = \mu_{p_2} > \cdots > \mu_{p_{s-1}+1} = \cdots = \mu_{p_s}$$

for some integers p_1, \ldots, p_s such that $1 \leq p_1 < p_2 < \cdots < p_s$ and some $s \geq 1$. With this notation, $F_n(u)$ can be written in the form

$$F_n(u) = (u - \sigma_n) \prod_{i=1}^{s} \frac{(u - q^{2\mu_{p_i}-2p_i})}{(u - q^{2\mu_{p_i+1}-2p_i})},$$

where we set $p_0 = 0$ and $\mu_{p_s+1} = 0$. Possible values of the q-content σ_n are $\sigma_n = q^{2\mu_{p_j}+1-2p_j}$ for $j = 0, 1, \ldots, s$. Hence, for a fixed value of j the factor $u - \sigma_n$ cancels, and so $F_n(\sigma_n)$ is well-defined and can be expressed in the form

$$F_n(\sigma_n) = (q^{2\mu_{p_j+1} - q^{2\mu_{p_j}+2}}) \prod_{\alpha \in \mu} (1 - q^{2h_\alpha}) \prod_{\alpha \in \lambda} (1 - 2^{-h_\alpha})^{-1}, \quad (20)$$

which is verified by a simple calculation. On the other hand, $f(\lambda)$ can be represented as

$$f(\lambda) = q^{b(\lambda)} (1 - q^2)^n \prod_{\alpha \in \lambda} (1 - q^{2h_\alpha})^{-1}, \quad b(\lambda) = \sum_{i \geq 1} \lambda_i(\lambda_i - 1).$$

Therefore, the expression in (20) equals $f(\mu)^{-1} f(\lambda)$, as required.

Introduce the rational function $\Psi(u_1, \ldots, u_n)$ in complex variables u_1, \ldots, u_n with values in \mathcal{H}_n by the formula

$$\Psi(u_1, \ldots, u_n) = \prod_{k=1, \ldots, n-1} (T_k(u_1, u_{k+1}) T_{k-1}(u_2, u_{k+1}) \cdots T_1(u_k, u_{k+1})) \cdot T_{w_n}^{-1}.$$

As before, we let λ be a partition of n and let \mathcal{T} be a standard λ-tableau.
Theorem 3.3. The idempotent E_T can be obtained by the consecutive evaluations

$$E_T = f(\lambda) \cdot \Psi(u_1, \ldots, u_n) \bigg|_{u_1=\sigma_1, u_2=\sigma_2, \ldots, u_n=\sigma_n},$$

where the rational functions are regular at the evaluation points at each step.

Proof. We argue by induction on n. For $n \geq 2$ we let \mathcal{U} denote the standard tableau obtained from T by removing the cell occupied by n and let μ be the shape of \mathcal{U}. Applying Lemma 3.2 and the induction hypothesis, we can write the right hand side of (21) in the form

$$F_n(\sigma_n) E_{\mathcal{U}} Y_{n-1}(\sigma_1, \ldots, \sigma_{n-1}; u_n) \bigg|_{u_n=\sigma_n},$$

where the elements $Y_{n-1}(\sigma_1, \ldots, \sigma_{n-1}; u_n)$ are defined in (16). The proof is completed by the application of Lemma 3.1 and relation (15).

Example 3.4. Using (21), for $n = 3$ and $\lambda = (2, 1)$ we get

$$E_T = \frac{1}{[3]_q} T_1(\sigma_1, \sigma_2) T_2(\sigma_1, \sigma_3) T_1(\sigma_2, \sigma_3) (T_1 T_2 T_1)^{-1}.$$ (22)

In particular,

$$\sigma_1 = 1, \quad \sigma_2 = q^2, \quad \sigma_3 = q^{-2} \quad \text{for} \quad T = \begin{array}{ccc} 1 & 2 \\ 3 & \end{array}$$

and

$$\sigma_1 = 1, \quad \sigma_2 = q^{-2}, \quad \sigma_3 = q^2 \quad \text{for} \quad T = \begin{array}{ccc} 1 & \frac{3}{2} \\ \end{array}.$$ (23)

Note that (22) can be reduced to the fusion formulas contained in [3, p. 106].

Example 3.5. For $n = 4$ and $\lambda = (2^2)$ the idempotent E_T is obtained by evaluating the rational function

$$\frac{1}{[3]_q[2]_q^2} T_1(u_1, u_2) T_2(u_1, u_3) T_1(u_2, u_3) T_3(u_1, u_4) T_2(u_2, u_4) T_1(u_3, u_4) T_{w_4}^{-1}$$

consecutively at $u_1 = \sigma_1$, $u_2 = \sigma_2$, $u_3 = \sigma_3$, and $u_4 = \sigma_4$. We have

$$\sigma_1 = 1, \quad \sigma_2 = q^2, \quad \sigma_3 = q^{-2}, \quad \sigma_4 = 1 \quad \text{for} \quad T = \begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array}$$

and

$$\sigma_1 = 1, \quad \sigma_2 = q^{-2}, \quad \sigma_3 = q^2, \quad \sigma_4 = 1 \quad \text{for} \quad T = \begin{array}{ccc} 1 & 3 \\ 2 & 4 \end{array}.$$ (23)
By [14, Lemma 2.1], the product $T_2(u_1, u_2)T_3(u_1, u_4)T_2(u_2, u_4)$ is equal to

\[
((T_2u_2 - T_2^{-1}u_1) T_3(T_2u_4 - T_2^{-1}u_2) + (q - q^{-1}) u_1((q - q^{-1}) u_2 T_2 + u_2 - u_1))
\]

\[
\frac{(u_2 - u_1)(u_4 - u_2)}{(u_2 - u_1)(u_4 - u_1)(u_4 - u_2)}
\]

and it is regular for $u_1 = q^{\pm 2}u_2$ at $u_1 = u_4$. It was shown in [14] that such considerations can be extended to the general expression (21) to prove that it is regular in the limits $u_i \to \sigma_i$.

We conclude this section by showing that taking an appropriate limit in Theorem 3.3 as $q \to 1$ we can recover the respective formulas of [10] for the primitive idempotents of the symmetric group S_n.

Take the parameters x and y in (6) in the form $x = q^2u$ and $y = q^2v$. Since $T_i \to s_i$, for the limit value of $T_i(x, y)$ we have

\[
T_i(x, y) = T_i + \frac{q^{u-v}}{v-u} \to s_i \varphi_{i,i+1}(u, v),
\]

where

\[
\varphi_{i,j}(u, v) = 1 - \frac{(i \, j)}{u-v}.
\]

Using (24) we can calculate the corresponding limit for the element (16) to get

\[
Y_k(\sigma_1, \sigma_2, \ldots, \sigma_k; u) \to \varphi_{1,k+1}(c_1, u)\varphi_{2,k+1}(c_2, u) \ldots \varphi_{k,k+1}(c_k, u),
\]

where $\sigma_m = q^{2c_m}$. Clearly, the normalization factor $f(\lambda)$ specializes to the inverse of the product of the hooks of λ, and so the substitution of (25) into (21) leads to the main result of [10].

4 The Ocneanu–Markov trace of the idempotents

The purpose of this section is to calculate the Ocneanu–Markov trace of the idempotents E_T which turns out to be related to the normalization factor $f(\lambda)$ defined in (19).

Definition 4.1. For any given standard tableau T with n cells, its quantum dimension is defined as

\[
\text{qdim } T = T_{r_n}(E_T),
\]

where $T_{r_n} : \mathcal{H}_n \to C$ is the Ocneanu–Markov trace; see e.g. [7].

The Ocneanu–Markov trace T_{r_n} can be defined as the composition of the maps

\[
T_{r_n} = T_1T_2 \ldots T_n.
\]
The linear maps $\text{Tr}_{m+1} : \mathcal{H}_{m+1} \to \mathcal{H}_m$ from the Hecke algebra \mathcal{H}_{m+1} to its natural subalgebra \mathcal{H}_m are determined by the following properties, where $Q \in \mathbb{C}$ is a fixed parameter, while $X, Y \in \mathcal{H}_m$ and $Z \in \mathcal{H}_{m+1}$:

\begin{align*}
\text{Tr}_{m+1}(XZY) &= X\text{Tr}_{m+1}(Z)Y, \quad \text{Tr}_{m+1}(X) = QX, \\
\text{Tr}_{m+1}(T^{\pm 1}_m XT^{\pm 1}_m) &= \text{Tr}_{m}(X), \quad \text{Tr}_{m+1}(T_m) = 1, \\
\text{Tr}_m \text{Tr}_{m+1}(T_m Z) &= \text{Tr}_m \text{Tr}_{m+1}(ZT_m). \\
\end{align*}

Our calculation of (26) is based on the approach of [6]. The following statement can be found in that paper.

Proposition 4.2. Consider the rational function in u with values in the Hecke algebra \mathcal{H}_m which is defined by

$$Z_{m+1}(u) = \text{Tr}_{m+1}(u - y_{m+1})^{-1}, \quad y_{m+1} \in \mathcal{H}_{m+1},$$

where \mathcal{H}_m is regarded as a subalgebra of \mathcal{H}_{m+1}. Then,

$$Z_{m+1}(u) = \frac{lQ + u - 1}{tu(u - 1)} \left(\prod_{k=1}^{m} \frac{(u - y_k)^2}{(u - q^2y_k)(u - q^{-2}y_k)} - \frac{(1 - lQ)(u - 1)}{lQ + u - 1} \right),$$

where $l = q - q^{-1}$.

Proof. From the definition of the Jucys-Murphy elements (2) we deduce the identity

$$\frac{1}{u - y_{m+1}} = T_m \frac{1}{u - y_m} T^{-1}_m + \frac{1}{u - y_m} \left(T^{-1}_m + \frac{lu}{u - y_{m+1}} \right) \frac{y_m}{(u - y_m)}.$$

Applying the map Tr_{m+1} to both sides of (29) and using (27) we get

$$\frac{(u - q^2y_m)(u - q^{-2}y_m)}{(u - y_m)^2} Z_{m+1}(u) = Z_m(u) + \frac{l(1 - Ql)y_m}{(u - y_m)^2}.$$

For all $k = 1, \ldots, m + 1$ introduce the function $\bar{Z}_k(u)$ by

$$Z_k(u) = \bar{Z}_k(u) + (Q - l^{-1})u^{-1}.$$

This gives the relation

$$\bar{Z}_{m+1}(u) = \frac{(u - y_m)^2}{(u - q^2y_m)(u - q^{-2}y_m)} \bar{Z}_m(u).$$

Solving this recurrence relation with the initial condition

$$\bar{Z}_1(u) = \text{Tr}_1(u - y_1)^{-1} - (Q - l^{-1})u^{-1} = \frac{tQ + u - 1}{tu(u - 1)},$$

we come to (28).

The normalization factor $f(\lambda)$ defined in (19) and the quantum dimension (26) turn out to be related as shown in the following proposition. As before, we let λ be a partition of n, and \mathcal{T} a standard λ-tableau.
Proposition 4.3. We have the relation

\[f(\lambda) = \text{qdim } T \prod_{k=1}^{n} \sigma_k \left(Q + \frac{\sigma_k - 1}{q - q^{-1}} \right)^{-1}. \]

Proof. Using (14) and (15) we get

\[\text{Tr}_n(E_T) = \text{Tr}_n E_T(u)|_{u=\sigma_n} = E_{U}(u-\sigma_n)\text{Tr}_n(u-y_n)^{-1}|_{u=\sigma_n}. \]

Using equations (28) and taking into account (12) we obtain

\[
\begin{align*}
\text{Tr}_n(E_T) &= \frac{1}{\sigma_n} \left(Q + \frac{\sigma_n - 1}{l} \right) E_{U} \\
& \times \frac{u-\sigma_n}{u-1} \left(\prod_{k=1}^{n-1} \frac{(u-\sigma_k)^2}{(u-q^2\sigma_k)(u-q^{-2}\sigma_k)} - (u-1) \frac{1-lQ}{lQ+u-1} \right)|_{u=\sigma_n} = \\
&= \frac{1}{\sigma_n} \left(Q + \frac{\sigma_n - 1}{l} \right) E_{U} F_n(\sigma_n).
\end{align*}
\]

Applying the maps \(\text{Tr}_k \) consequently, we finally obtain

\[\text{qdim } T = \text{Tr}^n(E_T) = \text{Tr}_1 \text{Tr}_2 \ldots \text{Tr}_n(E_T) = \prod_{m=1}^{n} \frac{1}{\sigma_m} \left(Q + \frac{\sigma_m - 1}{l} \right) F_m(\sigma_m). \]

The statement now follows from Lemma 3.2.

The following corollary is immediate from Proposition 4.3.

Corollary 4.4. The Ocneanu–Markov trace \(\text{Tr}^n(E_T) \) of the idempotent \(E_T \) depends only on the shape \(\lambda \) of \(T \) and does not depend on \(T \).

Acknowledgements

The work of the first author was partially supported by the RFBR grant No. 08-01-00392-a. The second author gratefully acknowledges the support of the Australian Research Council.

References

[1] I.V. Cherednik, \textit{On special bases of irreducible finite-dimensional representations of the degenerate affine Hecke algebra}, Funct. Analysis Appl. 20 (1986), 87–89.

[2] I.V. Cherednik, \textit{A new interpretation of Gelfand–Tzetlin bases}, Duke Math. J. 54 (1987), 563–577.

[3] R. Dipper and G. James, \textit{Blocks and idempotents of Hecke algebras of general linear groups}, Proc. London Math. Soc. 54 (1987), 57–82.

[4] J. Grime, \textit{The hook fusion procedure for Hecke algebras}, J. Alg. 309 (2007), 744–759.
[5] A.P. Isaev, *Quantum groups and Yang-Baxter equations*, preprint MPIM (Bonn), MPI 2004-132 (2004), http://www.mpim-bonn.mpg.de/html/preprints/preprints.html

[6] A.P. Isaev and O.V. Ogievetsky, *On representations of Hecke algebras*, Czechoslovak J. Phys. 55 (2005), 1433–1441.

[7] V.F.R. Jones, *Hecke algebra representations of braid groups and link polynomials*, Ann. of Math. 126 (1987), 335–388.

[8] A. Jucys, *On the Young operators of the symmetric group*, Lietuvos Fizikos Rinkinys 6 (1966), 163–180.

[9] A. Jucys, *Factorization of Young projection operators for the symmetric group*, Lietuvos Fizikos Rinkinys 11 (1971), 5–10.

[10] A.I. Molev, *On the fusion procedure for the symmetric group*, Reports on Math. Phys. 61 (2008), to appear; arXiv:math/0612207.

[11] A. Molev, *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, 143. American Mathematical Society, Providence, RI, 2007.

[12] G.E. Murphy, *The idempotents of the symmetric group and Nakayama’s conjecture*, J. Algebra 81 (1983), 258–265.

[13] M. Nazarov, *Yangians and Capelli identities*, in: “Kirillov’s Seminar on Representation Theory” (G. I. Olshanski, Ed.), Amer. Math. Soc. Transl. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 139–163.

[14] M. Nazarov, *A mixed hook-length formula for affine Hecke algebras*, European J. Combin. 25 (2004), 1345–1376.