Prophylaxis against hepatitis B virus recurrence after liver transplantation: A registry study

Shu Shen, Li Jiang, Guang-Qin Xiao, Lu-Nan Yan, Jia-Yin Yang, Tian-Fu Wen, Bo Li, Wen-Tao Wang, Ming-Qing Xu, Yong-Gang Wei

Shu Shen, Li Jiang, Guang-Qin Xiao, Lu-Nan Yan, Jia-Yin Yang, Tian-Fu Wen, Bo Li, Wen-Tao Wang, Ming-Qing Xu, Yong-Gang Wei, Liver Transplantation Center, Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China

Author contributions: Shen S and Jiang L contributed equally to this study; Jiang L, Wen TF, Yan LN and Li B introduced the idea and designed the work; Yang JY, Wang WT and Wei YG analyzed the data; Shen S drafted the article; Jiang L and Xiao GQ revised the article; and Yang JY approved the version to be published.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Li Jiang, MD, Liver Transplantation Center, Department of Liver Surgery, West China Hospital of Sichuan University, No. 37 Guoxuexiang Road, Chengdu 610041, Sichuan Province, China. jiangli029@163.com

Telephone: +86-28-85422871
Fax: +86-28-85422871
Received: May 19, 2014
Peer-review started: May 20, 2014
First decision: June 27, 2014
Revised: August 4, 2014
Accepted: November 11, 2014
Article in press: November 11, 2014
Published online: January 14, 2015

Abstract

AIM: To evaluate the prophylactic efficacy of hepatitis B immunoglobulin (HBIG) in combination with different nucleos(t)ide analogues.

METHODS: A total of 5333 hepatitis B surface antigen-positive patients from the China Liver Transplant Registry database were enrolled between January 2000 and December 2009. Low-dose intramuscular (im) HBIG combined with one nucleos(t)ide analogue has been shown to be very cost-effective in recent reports. Hepatitis B virus (HBV) prophylactic outcomes were compared based on their posttransplant prophylactic protocols [group A (n = 4684): im HBIG plus lamivudine; group B (n = 491): im HBIG plus entecavir; group C (n = 158): im HBIG plus adefovir dipivoxil]. We compared the related baseline characteristics among the three groups, including the age, male sex, Meld score at the time of transplantation, Child-Pugh score at the time of transplantation, HCC, pre-transplantation hepatitis B e antigen positivity, pre-transplantation HBV deoxyribonucleic acid (HBV DNA) positivity, HBV DNA at the time of transplantation, pre-transplantation antiviral therapy, and the duration of antiviral therapy before transplantation of the patients. We also calculated the 1-, 3- and 5-year survival rates and HBV recurrence rates according to the different groups. All potential risk factors were analyzed using univariate and multivariate analyses.

RESULTS: The mean follow-up duration was 42.1 ± 30.3 mo. The 1-, 3- and 5-year survival rates were lower in group A than in groups B (86.2% vs 94.4%, 76.9% vs 86.6%, 73.7% vs 82.4%, respectively, P < 0.001) and C (86.2% vs 92.5%, 76.9% vs 73.7%, 87.0% vs 81.6%, respectively, P < 0.001). The 1-, 3- and 5-year posttransplant HBV recurrence rates were significantly higher in group A than in group B (1.7% vs 0.5%, 3.5% vs 1.5%, 4.7% vs 1.5%, respectively, P = 0.023). No significant difference existed between groups A and C and between groups B and C with respect to the 1-, 3- and 5-year HBV recurrence rates. Pretransplant hepatocellular carcinoma, high viral load and posttransplant prophylactic protocol (lamivudine and HBIG vs entecavir and HBIG) were associated with HBV recurrence.

World Journal of Gastroenterology 2015 January 14; 21(2): 584-592
ISSN 1007-9327 (print) ISSN 2219-2840 (online)
© 2015 Baishideng Publishing Group Inc. All rights reserved.
CONCLUSION: Low-dose intramuscular HBIG in combination with a nucleos(t)ide analogue provides effective prophylaxis against posttransplant HBV recurrence, especially for HBIG plus entecavir.

Key words: Viral hepatitis; Recurrence; Hepatitis B immunoglobulin; Liver transplantation; Nucleos(t)ide analogue

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Little is known about which protocol has the optimal prophylactic effects against hepatitis B virus (HBV) recurrence. In this study, we used data from the China Liver Transplant Registry database to evaluate the long-term prophylactic efficacy of hepatitis B immunoglobulin (HBIG) in combination with different nucleos(t)ide analogues and determine the risk factors for HBV recurrence. This nationwide multicenter study demonstrated that low-dose intramuscular HBIG in combination with a nucleos(t)ide analogue provides effective prophylaxis against recurrent HBV infection posttransplantation at approximately 5% of the cost of conventional high-dose intravenous HBIG regimens. Among them, low-dose intramuscular HBIG combined with entecavir has better prophylactic efficacy than the combination of low-dose intramuscular HBIG and lamivudine.

Shen S, Jiang L, Xiao GQ, Yan LN, Yang JY, Wen TF, Li B, Wang WT, Xu MQ, Wei YG. Prophylaxis against hepatitis B virus recurrence after liver transplantation: A registry study. World J Gastroenterol 2015; 21(2): 584-592. Available from: URL: http://www.wjgnet.com/1007-9327/full/v21/i2/584.htm DOI: http://dx.doi.org/10.3748/wjg.v21.i2.584

INTRODUCTION

Globally, chronic hepatitis B remains the leading cause of liver-related mortality and accounts for more than one million deaths per annum. Hepatitis B virus (HBV)-related liver diseases account for approximately 78% of all adult liver transplant recipients[1]. In selected patients with end-stage HBV-related liver diseases, liver transplantation (LT) offers a life-saving treatment with a 5-year survival rate of approximately 70%-80%. However, the main problem in hepatitis B surface antigen (HBsAg)-positive recipients is the risk of HBV recurrence posttransplantation, which may lead to rapid disease progression or even death[2,3].

Before the availability of antiviral prophylaxis, HBV-related liver disease was considered a relative contraindication for LT because of a high HBV recurrence rate (80%)[4]. In 1987, hepatitis B immunoglobulin (HBIG) became available and its long-term use reduced the 3-year actuarial risk of HBV reinf ection from 74% to 36%[5]. However, HBIG monotherapy has several disadvantages, including high cost, inconvenient administration and adverse effects. Currently, HBIG monotherapy is seldom used for prophylaxis against HBV recurrence after LT. Lamivudine (LAM) was subsequently considered a potential prophylactic agent in LT because it is inexpensive and well tolerated. However, the initial enthusiasm was tempered by the realization that long-term LAM monotherapy is associated with drug resistance leading to increased HBV reinfection[6,7].

Compared with the monotherapy, combination therapy with LAM and high-dose intravenous (iv) HBIG has shown encouraging outcomes with an HBV recurrence rate of less than 10% in 1-2 years of follow-up[8]. However, the major limitation of this regimen is its high cost, and other factors, including inconvenient administration and unavailability of iv HBIG in some countries. In China, many centers accept the prophylactic protocol with LAM and low-dose intramuscular (im) HBIG due to the national conditions and unavailability of iv HBIG. With the introduction of new nucleos(t)ide analogues, such as adefovir dipivoxil (ADV), telbivudine and entecavir (ETV), some centers also chose the protocol with another nucleos(t)ide analogue and im HBIG to prevent HBV reinf ection after LT.

Using data from the China Liver Transplant Registry database, the aim of this study was to evaluate the long-term prophylactic efficacy of HBIG in conjunction with different nucleos(t)ide analogues in China and identify the risk factors for posttransplant HBV recurrence.

MATERIALS AND METHODS

Patient cohort

Figure 1 shows the inclusion and exclusion criteria for the cohort from the China Liver Transplant Registry database (https://www.clintr.org/). A total of 13273 adult HBsAg-positive patients were initially enrolled between January 2000 and December 2009; however, 168 patients with suspect data or with oral antiviral drug resistance before LT were excluded. After excluding 7727 patients who had incomplete data for analysis or did not use the prophylactic protocol with low-dose im HBIG and one nucleos(t)ide analogue, 5378 patients remained. We excluded an additional 45 patients with low-dose im HBIG and telbivudine because of the small size sample. Finally, 5333 patients were included. The patients were divided into the following three groups based on the nucleos(t)ide analogues used for the prophylaxis protocol: group A (n = 4684), which consisted of patients with HBIG and LAM; group B (n = 491), which consisted of those with HBIG and ETV; and group C (n = 158), which consisted of those with HBIG and ADV. The patients were monitored until September 2012 or until they were deceased, and their medical records were retrospectively reviewed. Living and deceased donations were voluntary and altruistic in all cases, approved by Ethics Committee of West China Hospital of Sichuan University, and in accordance with the ethical guidelines...
of the Declaration of Helsinki. Written informed consent was given by participants for their clinical records to be used in this study.

HBV prophylaxis protocol

Prior to LT, patients with detectable serum HBV DNA received one nucleos(t)ide analogue daily, such as LAM, ETV or ADV, and the same nucleos(t)ide analogue was administered posttransplantation. HBIG was administered intramuscularly using a fixed dosing schedule, which consisted of 2000 IU of HBIG in the anhepatic phase, followed by 800 IU daily for the next 6 d, followed by weekly for 3 wk, and monthly thereafter.

Immunosuppression

Maintenance immunosuppression consisted of a triple-drug regimen that included tacrolimus or cyclosporine, mycophenolate and prednisone. Prednisone was generally discontinued within 3 to 6 mo after LT.

HBV evaluation

Prior to LT, viral markers including HBsAg, hepatitis B surface antibody (HBsAb), hepatitis B e antigen (HBeAg), hepatitis B e antibody, hepatitis B core antibody (HBcAb) and antibody to hepatitis C virus were routinely measured using standard commercial assays (Abbott Laboratories, Chicago, IL) as part of the Pre-LT workup for recipients and donors. Serum HBV DNA was determined using quantitative polymerase chain reaction method, with a limit of detection of 1000 copies/mL. After LT, liver function profiles were checked daily for the first week and then weekly for the first month, and monthly thereafter. Serum HBV markers were monitored weekly for the first month and monthly thereafter, and HBV DNA levels were evaluated monthly. HBV recurrence was defined as the reappearance of either HBsAg or HBV DNA in the serum. Liver biopsies were performed when clinically indicated by an elevation in serum liver enzyme levels.

Statistical analysis

SAS 9.2 statistical software was used to analyze the relevant data. Categorical data were presented as a number (percent) and compared using a χ^2 test. Continuous variables were expressed as mean ± SD, and analyzed using the Wilcoxon test. Survival curves and HBV recurrence were estimated using the Kaplan-Meier method and differences among ordered categories were determined by log-rank test. The Cox proportional hazards model was used to test potential predictors of HBV recurrence after LT. Univariate results were reported as hazard ratios with 95%CI. The variables reaching statistical significance ($P < 0.10$) by univariate analysis were then included for multivariate analysis with proportional hazard regression. $P < 0.05$ was considered statistically significant.
Shen S et al. Prevention of HBV reinfection posttransplantation

Table 1 Baseline characteristics of the recipients and their donors a (%)

	Group A	Group B	Group C	P value
Number of patients	4684	491	178	
Age, mean ± SD (yr)	48.2 ± 9.3 (19-76)	48.3 ± 9.5 (19-73)	48.4 ± 8 (26-71)	0.892
Male sex	4136 (88.3)	436 (88.8)	142 (89.9)	0.744
MELD score at LT, mean ± SD (range)	18.0 ± 9.5 (6-84)	17.6 ± 10.1 (6-65)	16.8 ± 9.2 (6-50)	0.205
Child-Pugh score at LT, mean ± SD (range)	8.9 ± 2.5 (5-15)	8.7 ± 2.8 (5-15)	8.7 ± 2.7 (5-14)	0.391
With HCC	2146 (45.8)	251 (51.1)	76 (48.1)	0.025
Pre-LT HBsAg positivity	1169 (25.0)	171 (34.8)	58 (36.7)	< 0.001
Pre-LT HBV DNA positivity	2248 (48.0)	168 (32.4)	62 (39.2)	< 0.001
Pre-LT antiviral therapy	1024 (21.9)	40 (8.1)	17 (10.8)	< 0.001
Duration of antiviral therapy before LT, mean ± SD (range) (d)	233.4 ± 604.4 (1-7633)	92.8 ± 299.3 (1-3280)	347.1 ± 899.0 (2-7766)	0.804

MELD: Model for end-stage liver disease; LT: Liver transplantation; HCC: Hepatocellular carcinoma; HBsAg: Hepatitis B e antigen; HBV DNA: Hepatitis B virus deoxyribonucleic acid; BMI: Body mass index; HBsAb: Hepatitis B surface antibody; HBcAb: Hepatitis B core antibody.

Table 2 Posttransplant survival of the recipients

	Group A	Group B	Group C	P value
Recipients (n)	4684	491	178	
Death during the follow-up (n)	939	57	18	
Cumulative survival rate				
1-yr	86.2%	94.4%	92.5%	
5-yr	76.9%	86.6%	87.0%	< 0.001
Duration of follow-up, mean ± SD (range) (mo)	45.8 ± 33.7 (0-141.8)	30.2 ± 17.2 (0.1-77.1)	35.1 ± 20.5 (0.2-84.2)	

RESULTS

Baseline characteristics

Table 1 shows the baseline characteristics of the 5333 HBsAg-positive recipients using the prophylactic protocol with one nucleos(t)ide analogue and low-dose im HBIG. No differences existed among the recipients in groups A, B and C with respect to age, gender, pre-LT model for end-stage liver disease and pre-LT Child-Pugh score. However, group A had more recipients with positive HBV DNA and with high viral load (HBV DNA ≥ 10^5 copies/mL) before transplantation than groups B and C. Group C had more patients using antiviral therapy and longer duration of antiviral therapy before LT than groups A and B. Group B had more patients combined with hepatocellular carcinoma (HCC) than groups A and C. In addition, both groups B and C had more patients with positive HBsAg before LT than group A.

Table 1 also lists the baseline characteristics of the donors. The donors in the three groups had similar characteristics with respect to age, gender, body mass index, percentage of donors with serum positive HBsAb and HBcAb.

Patient survival

As shown in Table 2, 939 recipients died during the follow-up in group A, 57 in group B and 18 in group C. The survival curve for each group is shown in Figure 2A. The 1-, 3- and 5-year survival rates were significantly lower in group A than in groups B (86.2% vs 94.4%, 76.9% vs 86.6%, 73.7% vs 82.4%, respectively, P < 0.001) and C (86.2% vs 92.5%, 76.9% vs 87.0%, and 73.7% vs 81.6%, respectively, P < 0.001). In addition, the 1-, 3- and 5-year survival rates were 94.4%, 86.6% and 82.4%, respectively, in group B vs 92.5%, 87.0% and 81.6%, respectively, in group C (P = 0.137).

HBV recurrence

During the follow-up period, 179 patients experienced HBV recurrence in group A, 5 in group B and 3 in group
C (Table 3). As shown in Figure 2B, the 1-, 3- and 5-year HBV recurrence rates were significantly higher in group A than in group B (1.7% vs 0.5%, 3.5% vs 1.5%, 4.7% vs 1.5%, respectively, \(P = 0.023 \)). No significant difference existed between groups A and C with respect to the 1-, 3- and 5-year HBV recurrence rates (1.7% vs 0.7%, 3.5% vs 1.5%, 4.7% vs 4.4%, respectively, \(P = 0.060 \)) and between groups B and C with respect to the 1-, 3- and 5-year HBV recurrence rates (0.5% vs 0.7%, 1.5% vs 1.5%, 1.5% vs 4.4%, respectively, \(P = 0.234 \)).

Risk factors for posttransplant HBV recurrence

As shown in Table 4, pre-LT recipient with HCC, serum HBV DNA \(\geq 10^5 \) copies/mL, not using ETV before transplantation, post-LT HBV prophylactic protocol (LAM and HBIG vs ETV and HBIG), female donor and donor with negative serum HbsAb were significant risk factors for HBV recurrence by univariate analysis (\(P < 0.10 \)). In multivariate analysis, pre-LT HCC, serum HBV DNA \(\geq 10^5 \) copies/mL and posttransplant HBV prophylactic protocol (LAM and HBIG vs ETV and HBIG) were found to be independent predictive factors for posttransplant HBV recurrence (\(P < 0.05 \)) (Table 5).

Cost for the prophylaxis protocols

The cost for group A was approximately $4367 in the first year posttransplantation and $2741 yearly thereafter, and the corresponding figures were $5485 and $3860 for group B, and $4544 and $2918 for group C.

DISCUSSION

One goal of this study was to evaluate the prophylactic effects of low-dose HBIG and different nucleos(t)ide analogues on posttransplant HBV recurrence in China. Presently, several nucleos(t)ide analogues are available for the treatment of chronic hepatitis B. Of these, ETV, which is a very potent anti-HBV selective guanosine analogue, has higher efficacy than LAM or ADV in patients with chronic hepatitis B, therefore resulting in earlier and superior reduction in HBV DNA\(^9\)-\(^11\). In addition, ETV is associated with a high genetic barrier to resistance that requires multiple mutations for resistance to emerge. In nucleoside-naïve patients, the probability of developing resistance to ETV remained consistently low (< 1.2%) after 96 wk of therapy\(^12\). In view of the satisfactory outcomes of ETV in the non-transplant setting, ETV and HBIG may be a more effective prophylaxis protocol in transplant recipients than HBIG plus LAM or ADV. However, there are limited data on the use of ETV and HBIG in the transplant setting. To the best of our knowledge, there are three studies on patients receiving ETV and HBIG after LT\(^13\)-\(^15\). One representative research was from Ueda \textit{et al}\(^13\) in 2013, in which ETV and HBIG resulted in no HBV recurrence during the median follow-up period of 25.1 mo in 26 patients.
these studies were limited due to small size and short follow-up. It is difficult to draw a definite conclusion. Recently, Cholongitas et al. have published a systematic review about ETV and HBIG after LT. Their findings favor the use of HBIG and an hgbNA such as ETV against HBV recurrence after LT. In the nationwide multicenter study, combination prophylaxis with ETV and posttransplant HBV prophylactic protocol (LAM plus HBIG) were associated with posttransplant HBV recurrence in our study.

Currently, the role of HCC in posttransplant HBV recurrence remains unclear. Some studies have reported that pre-LT HCC is an important risk factor for HBV recurrence in patients undergoing transplantation, while others found no association between them. In 2008, Faria et al. found that pre-LT HCC was associated with an increased risk of HBV re-infection after transplantation. Eleven of the 31 patients with HCC at the time of transplantation presented with HBV posttransplant HBV recurrence.

Table 4 Univariate Cox proportional hazards analysis for posttransplant hepatitis B virus recurrence

Factor	Hazard ratio	95%CI	P value
Age (yr)			
≥18-29 vs ≥65	2.281	0.899-6.831	0.232
30-39 vs ≥65	1.441	0.438-4.736	0.547
40-49 vs ≥65	1.910	0.603-6.057	0.272
50-64 vs ≥65	1.657	0.522-5.262	0.392
Gender			
Male vs Female	1.092	0.687-1.737	0.710
Pre-LT MELD score			
6-9 vs 30-40	1.347	0.789-2.300	0.276
10-19 vs 30-40	1.226	0.767-1.958	0.395
20-29 vs 30-40	1.034	0.613-1.744	0.899
Pre-LT Child-Pugh score			
5-6 vs 10-15	0.921	0.584-1.452	0.723
7-9 vs 10-15	1.029	0.710-1.492	0.879
Pre-LT with HCC			
Yes vs No	1.438	1.078-1.919	0.014
Pre-LT HBsAg status			
Positive vs Negative	1.176	0.956-1.772	0.325
Pre-LT serum HBV DNA level			
HBV DNA Positive vs Negative	1.185	0.805-1.743	0.389
HBV DNA ≥10⁵ copies/mL	1.395	1.012-1.921	0.042
Pre-LT antiviral therapy			
Using LAM	0.930	0.697-1.421	0.622
Using ETV	0.133	0.019-0.494	0.044
Using ADV	0.328	0.046-2.333	0.265
Post-LT HBV prophylactic protocol			
HBIG + LAM vs HBIG + ETV	2.949	1.210-7.188	0.017
HBIG + ADV vs HBIG + ETV	1.714	0.410-7.171	0.461
Donor profiles			
Donor source	0.900	0.500-1.621	0.726
Donor gender	0.564	0.281-1.067	0.078
Donor HBsAb positivity	0.481	0.267-0.864	0.014
Donor HbcAb positivity	1.598	0.786-3.247	0.195

Table 5 Multivariate Cox proportional hazards analysis for posttransplant hepatitis B virus recurrence

Factor	Hazard ratio	95%CI	P value
Pre-LT with HCC			
Yes vs No	1.718	1.243-2.375	0.001
Pre-LT serum HBV DNA ≥10⁵ copies/mL			
Yes vs No	1.370	0.989-1.897	0.048
Pre-LT using ETV			
Yes vs No	0.166	0.019-1.484	0.108
Post-LT HBV prophylactic protocol			
HBIG + LAM vs HBIG + ETV	2.127	0.416-6.035	0.046
Donor profiles			
Donor gender	0.632	0.156-1.144	0.201
Donor HBsAb positivity	0.526	0.265-1.045	0.066

LT: Liver transplantation; MELD: Model for end-stage liver disease; HCC: Hepatocellular carcinoma; HBsAg: Hepatitis B e antigen; HBV DNA: Hepatitis B virus deoxyribonucleic acid; LAM: Lamivudine; ETV: Entecavir; ADV: Adefovir dipivoxil; HBIG: Hepatitis B immunoglobulin; HBsAb: Hepatitis B surface antibody; HbcAb: Hepatitis B core antibody.

Another goal of this study was to identify the risk factors for posttransplant HBV recurrence. Three factors [pre-LT HCC, serum HBV DNA ≥10⁵ copies/mL and posttransplant HBV prophylactic protocol (LAM plus HBIG vs ETV plus HBIG)] were associated with posttransplant HBV recurrence in our study.
Hepatitis B virus (HBV)-related liver diseases account for approximately 78% of all adult liver transplant recipients. However, the main issue in hepatitis B surface antigen (HBsAg)-positive recipients is the risk of HBV recurrence posttransplantation, which may lead to rapid disease progression or even death. With the introduction of new nucleos(t)ide analogues, such as adefovir dipivoxil, telbivudine and entecavir (ETV), some centers also chose the protocol with another nucleos(t)ide analogue and intramuscular (im) hepatitis B immunoglobulin (HBIG) to prevent HBV reinfection after liver transplantation (LT).

Research frontiers
Currently, little is known about which protocol has the optimal prophylactic effects against HBV recurrence. Authors use the data from China Liver Transplant Registry database to evaluate the long-term prophylactic efficacy of HBIG plus different nucleos(t)ide analogue and find the risk factors for HBV recurrence. Among them, low-dose intramuscular HBIG combined with ETV has better prophylactic effect than the combination therapy with low-dose intramuscular HBIG and lamivudine (LAM).

Innovations and breakthroughs
The results suggest that low-dose intramuscular HBIG combined with ETV has better prophylactic effect than the combination therapy with low-dose intramuscular HBIG and LAM.

Applications
Authors suggest that ETV plus low-dose HBIG should be considered an efficient therapy in their country instead of LAM and low-dose HBIG. In addition, three factors [pre-LT HCC, serum positive HBV DNA ≥ 10^5 copies/mL and posttransplant HBV prophylactic protocol (LAM and HBIG vs ETV and HBIG)] were associated with posttransplant HBV recurrence in our study.

ACKNOWLEDGMENTS
The authors thank China Liver Transplant Registry database (https://www.cltr.org/) for providing the relevant data.

COMMENTS

Background
Hepatitis B virus (HBV)-related liver diseases account for approximately 78% of all adult liver transplant recipients. However, the main issue in hepatitis B surface antigen (HBsAg)-positive recipients is the risk of HBV recurrence posttransplantation, which may lead to rapid disease progression or even death. With the introduction of new nucleos(t)ide analogues, such as adefovir dipivoxil, telbivudine and entecavir (ETV), some centers also chose the protocol with another nucleos(t)ide analogue and intramuscular (im) hepatitis B immunoglobulin (HBIG) to prevent HBV reinfection after liver transplantation (LT).

Research frontiers
Currently, little is known about which protocol has the optimal prophylactic effects against HBV recurrence. Authors use the data from China Liver Transplant Registry database to evaluate the long-term prophylactic efficacy of HBIG plus different nucleos(t)ide analogue and find the risk factors for HBV recurrence. Among them, low-dose intramuscular HBIG combined with ETV has better prophylactic effect than the combination therapy with low-dose intramuscular HBIG and lamivudine (LAM).

Innovations and breakthroughs
The results suggest that low-dose intramuscular HBIG combined with ETV has better prophylactic effect than the combination therapy with low-dose intramuscular HBIG and LAM.

Applications
Authors suggest that ETV plus low-dose HBIG should be considered an efficient therapy in their country instead of LAM and low-dose HBIG.

Terminology
LT is the replacement of a diseased liver with part or all of a healthy liver from another person. In patients with end-stage HBV-related liver diseases, LT offers a life-saving treatment. However, the main issue in HBsAg-positive recipients is the risk of HBV recurrence posttransplantation, which may lead to rapid disease progression or even death.

Peer review
The paper reports on the results of the China Liver Transplant Registry on HBV prophylaxis in patients receiving liver transplantation. They conclude that a
lower dose of HBIG plus adefovir or entecavir or lamivudine results in excellent treatment response, especially the combination HBIG/entecavir. The paper is well written and of highly clinical implications.

REFERENCES

1. Li X, Zheng Y, Liu A, Cai B, Ye D, Huang F, Sheng X, Ge F, Xuan L, Li S, Li J. Hepatitis B virus infections and risk factors among the general population in Anhui Province, China: an epidemiological study. BMC Public Health 2012; 12: 272 [PMID: 22475135 DOI: 10.1186/1471-2458-12-272]

2. Davies SE, Portmann BC, O’Grady JG, Aldis PM, Chagger K, Alexander GJ, Williams R. Hepatic histological findings after transplantation for chronic hepatitis B virus infection, including a unique pattern of fibrosing cholestatic hepatitis. Hepatology 1991; 13: 150-157 [PMID: 1988336]

3. Gane EJ, Patterson S, Strasser SI, McGaughan GW, Angus PW. Combination of lamivudine and adefovir without hepatitis B immune globulin is safe and effective prophylaxis against hepatitis B virus recurrence in hepatitis B surface antigen-positive liver transplant candidates. Liver Transpl 2013; 19: 268-274 [PMID: 23447405 DOI: 10.1002/lt.23600] [PMID: 2010156]

4. Solomon D, Muller R, Alexander G, Fassati L, Duchot B, Benhamou JP, Bismuth H. Liver transplantation in European patients with the hepatitis B surface antigen. N Engl J Med 1993; 329: 1842-1847 [PMID: 8247035]

5. Grellier L, Mutimer D, Ahmed M, Brown D, Burroughs AK, Rolles K, McMaster P, Beranek P, Kennedy F, Kibbler H, McPhillips P, Elias E, Dusheiko G. Lamivudine prophylaxis against reinfection in liver transplantation for hepatitis B cirrhosis. Lancet 1996; 348: 1212-1215 [PMID: 8980628]

6. Perrillo RP, Wright T, Rakela J, Levy G, Schiff E, Gish R, Martin P, Dienstag J, Adams P, Dickson R, Anschuetz G, Bell S, Condey L, Brown N. A multicenter United States National Institutes of Health trial to assess lamivudine monotherapy before and after liver transplantation for chronic hepatitis B. Hepatology 2001; 33: 424-432 [PMID: 11172345]

7. Markowitz JS, Martin P, Conrad AJ, Markmann JF, Seu P, Yerusa H, Goss JA, Schmidt P, Pakrasi A, Artinian L, Murray WG, Imagawa DK, Holt C, Goldstein LI, Stribling R, Busuttil RW, Wu J, Zheng S. A novel model for evaluating the risk of hepatitis B relapse after liver transplantation: a systematic review. Am J Transplant 2013; 13: 353-362 [PMID: 23173006 DOI: 10.1111/ajt.13076]

8. Xu X, Tu Z, Wang B, Ling Q, Zhang L, Zhou L, Jiang G, Wu J, Zheng S. A novel model for evaluating the risk of hepatitis B relapse after liver transplantation. Liver Int 2011; 31: 1477-1484 [PMID: 21745275 DOI: 10.1111/j.1478-3231.2011.02509.x]

9. Marzano A, Gaia S, Ghisetti V, Carenzi S, Premoli A, Debernardi-Veron W, Alessandria C, Franchello A, Salizzoni M, Rizzetto M. Viral load at the time of liver transplantation and risk of hepatitis B virus recurrence after liver transplantation. Gastroenterology 2008; 134: 1890-1899; quiz 2155 [PMID: 18424269]

10. Wu J, Zheng S. A novel model for evaluating the risk of hepatitis B relapse after liver transplantation: a systematic review. Am J Transplant 2005; 11: 402-409 [PMID: 15776431]

11. Wong SN, Reddy KR, Keefe EB, Han SH, Gabglo PJ, Perrillo RP, Tran TT, Pruett TL, Lok AS. Comparison of clinical outcomes in chronic hepatitis B liver transplant candidates with and without hepatocellular carcinoma. Liver Transplant 2007; 13: 334-342 [PMID: 17154401]

12. Wu TJ, Chen TC, Wang F, Chan KM, Soong RS, Chou HS, Lee WC, Yeh CT. Large fragment pre-S deletion and high viral load independently predict hepatitis B relapse after liver transplantation. PLoS One 2012; 7: e32189 [PMID: 22563813 DOI: 10.1371/journal.pone.0032189]

13. Burra P, Germani G, Adam R, Karam V, Marzano A, Lampertico P, Salizzoni M, Filipponi F, Klemmner J, Castaing D, Kilic M, Carls LD, Neuhaus P, Yilmaz S, Paul A, Pinna AD, Burroughs AK, Russo FP. Liver transplantation for HBV-related cirrhosis in Europe: an ELTR study on evaluation and outcomes. J Hepatol 2013; 58: 287-296 [PMID: 23099188 DOI: 10.1016/j.jhep.2012.01.016]

14. Gane EJ, Angus PW, Strasser S, Crawford DH, Ring J, Jeffrey GP, McGaughan GW. Lamivudine plus low-dose hepatitis B immunoglobulin to prevent recurrent hepatitis B following liver transplantation. Gastroenterology 2007; 132: 931-937 [PMID: 17383422]

15. Chun J, Kim W, Kim BG, Lee KL, Suh KS, Yi NJ, Park KU, Kim YJ, Yoon JH, Lee HS. High viremia, prolonged Lamivudine therapy and recurrent hepatocellular carcinoma predict posttransplant hepatitis B recurrence. Am J Transplant 2010; 10: 1649-1659 [PMID: 20642687 DOI: 10.1111/j.1600-6143.2012.04315.x]
Shen S et al. Prevention of HBV reinfection posttransplantation

10.1111/j.1600-6143.2010.03162.x

25 Steinmüller T, Seehofer D, Rayes N, Müller AR, Settmacher U, Jonas S, Neuhaus R, Berg T, Hopf U, Neuhaus P. Increasing applicability of liver transplantation for patients with hepatitis B-related liver disease. Hepatology 2002; 35: 1528-1535 [PMID: 12029640]

26 Saab S, Yeganeh M, Nguyen K, Durazo F, Han S, Yersiz H, Farmer DG, Goldstein LI, Tong MJ, Busuttil RW. Recurrence of hepatocellular carcinoma and hepatitis B reinfection in hepatitis B surface antigen-positive patients after liver transplantation. Liver Transpl 2009; 15: 1525-1534 [PMID: 19877207 DOI: 10.1002/lt.21882]

P- Reviewer: Herrero JI, Hilmi IA, Hori T, Schmidt HHJ, Sugawara Y
S- Editor: Gou SX L- Editor: Wang TQ E- Editor: Ma S
