RESEARCH ANNOUNCEMENT

APPEARED IN BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 26, Number 1, Jan 1992, Pages 113-118

LIFTING OF COHOMOLOGY AND UNOBSERVEDNESS
OF CERTAIN HOLOMORPHIC MAPS

Ziv Ran

Abstract. Let f be a holomorphic mapping between compact complex manifolds. We give a criterion for f to have unobstructed deformations, i.e. for the local moduli space of f to be smooth: this says, roughly speaking, that the group of infinitesimal deformations of f, when viewed as a functor, itself satisfies a natural lifting property with respect to infinitesimal deformations. This lifting property is satisfied e.g. whenever the group in question admits a ‘topological’ or Hodge-theoretic interpretation, and we give a number of examples, mainly involving Calabi-Yau manifolds, where that is the case.

One of the most important objects associated to a compact complex manifold X is its versal deformation or Kuranishi family

$$\pi: \mathcal{X} \to \text{Def}(X);$$

this is a holomorphic mapping onto a germ of an analytic space \(\text{Def}(X), 0\) (the Kuranishi space) with the universal property that $\pi^{-1}(0) = X$ and that any sufficiently small deformation of X is induced by pullback from π by a map unique to 1st order. In general, $\text{Def}(X)$ is singular and even nonreduced; in case $\text{Def}(X)$ is smooth, i.e. a germ of the origin in \mathbb{C}^N, we say that X is unobstructed. In an analogous fashion, a holomorphic mapping

$$f: X \to Y$$

also possesses a versal deformation, which in this case is a diagram

$$\tilde{f}: \mathcal{X} \to \mathcal{Y} \xrightarrow{\text{Def}(f)}$$
with a similar universal property. Again we say that f is unobstructed if $\text{Def}(f)$ is smooth.

Now in [R3], we gave a criterion which deduces the unobstructedness of a compact complex manifold X from a lifting property (in particular, deformation invariance) of certain cohomology groups associated to X; this implies in particular the unobstructedness of Calabi-Yau manifolds, i.e. Kahler manifolds with trivial canonical bundle K_X (theorem of Bogomolov-Tian-Todorov [B, Ti, To]), as well as that of certain manifolds with “big” anticanonical bundle $-K_X$. In this note we announce an extension of our criterion to the case of holomorphic maps of manifolds and discuss some applications, mainly to maps whose source is a Calabi-Yau manifold.

1. Generalities

Given a holomorphic map

$$f: X \to Y$$

of complex manifolds, we defined in [R1] certain groups T^i_j, $i \geq 0$, which are related to deformations of f; in particular, T^1_j is the group of 1st-order deformations of f. For our present purposes, it will be necessary to consider the corresponding relative groups $T^i_{f/S}$, which are associated to a diagram

$$\tilde{f}: \mathcal{X} \to \mathcal{Y}$$

with \mathcal{X}/S, \mathcal{Y}/S smooth (we call such a map \tilde{f} an S-map, or a deformation of f).

In the notation of [R1, R2], we have

$$T^i_{f/S} = \text{Ext}^i(\delta_1, \delta_0)$$

where $\delta_0: f^*\mathcal{O}_Y \to \mathcal{O}_X$, $\delta_1: f^*\Omega_{Y/S} \to \Omega_{X/S}$ are the natural maps. As in [R1], we have an exact sequence

$$0 \to T^0_{f/S} \to T^0_{X/S} \oplus T^0_{Y/S} \to \text{Hom}_f(\Omega_{Y/S}, \mathcal{O}_X)$$

$$\to T^1_{f/S} \to T^1_{X/S} \oplus T^1_{Y/S} \to \text{Ext}^1(\Omega_{Y/S}, \mathcal{O}_X) \to \cdots$$

(1.1)

where $T^i_{X/S} = H^i(T_{X/S})$, $T^i_{Y/S}$ being the relative tangent bundle and similarly for $T^i_{Y/S}$, $\text{Hom}_f(\cdot, \cdot)$ and $\text{Ext}^i(\cdot, \cdot)$ are its derived functors.

Now put $S_j = \text{Spec} \mathbb{C}[\varepsilon]/(\varepsilon^j)$. Our main general result, which is an analogue for maps of a result given in [R3] for manifolds, is the following

Theorem-Construction 1.1. Suppose given X_j/S_j, Y_j/S_j smooth and $f_j: X_j \to Y_j$ an S_j-map, for some $j \geq 2$, and let X_{j-1}/S_{j-1}, Y_{j-1}/S_{j-1}, $f_{j-1}: X_{j-1} \to Y_{j-1}$ be their respective restrictions via the natural inclusion $S_{j-1} \hookrightarrow S_j$. Then

(i) associated to f_j is a canonical element $\alpha_{j-1} \in T^1_{f_{j-1}/S_{j-1}}$;

(ii) given any element $\alpha_j \in T^1_{f_j/S_j}$ which maps to α_{j-1} under the natural restriction map $T^1_{f_j/S_j} \to T^1_{f_{j-1}/S_{j-1}}$, there are canonically associated to α_j deformations X_{j+1}/S_{j+1}, Y_{j+1}/S_{j+1} and an S_{j+1}-map $f_{j+1}: X_{j+1} \to Y_{j+1}$, extending X_j/S_j, Y_j/S_j and $f_j: X_j \to Y_j$ respectively.

The proof is analogous to that of Theorem 1 in [R3] and will be presented elsewhere. In view of this theorem it makes sense to give the following
Definition 1.2. A map $f: X \to Y$ is said to satisfy the T^1-lifting property if for any deformation $f_j: X_j/S_j \to Y_j/S_j$ of f and its restriction $f_{j-1}: X_{j-1}/S_{j-1} \to Y_{j-1}/S_{j-1}$, the natural map

$$T^1_{f_j/S_j} \to T^1_{f_{j-1}/S_{j-1}}$$

is surjective.

Abusing terminology somewhat, we will say that T^1_f is deformation-invariant if the groups $T^1_{f_j/S_j}$ are always free S_j-modules and their formation commutes with base-change. Note, trivially, that whenever T^1_f is deformation-invariant, f satisfies the T^1-lifting property. As an easy consequence of Theorem 1.1, we have the following

Criterion 1.3. Suppose $f: X \to Y$ is a map of compact complex manifolds satisfying the T^1-lifting property (e.g. T^1_f is deformation-invariant); then f is unobstructed.

Remark 1.4. Various variants of this criterion are possible, e.g. for deformations of maps $f: X \to Y$ with fixed target Y. In the special case that f is an embedding, with normal bundle N, we obtain that the Hilbert scheme of submanifolds of Y is smooth at the point corresponding to $f(X)$ provided $H^0(N)$ satisfies the lifting property (e.g. is deformation-invariant). Also, the converse to Criterion 1.3 is trivially true, though we shall not need this.

2. Applications

Unless otherwise specified, all spaces X, Y considered here are assumed smooth.

Theorem 2.1. Let X be a Calabi-Yau manifold and $f: Y \hookrightarrow X$ the inclusion of a smooth divisor. Then f is unobstructed and moreover the image and fibre of the natural map $\text{Def}(f) \to \text{Def}(X)$ are smooth.

Proof. In this case we may identify T^1_f with $H^1(T')$ where T' is defined by the exact sequence

$$(2.1) \quad 0 \to T' \to T_X \to N_{Y/X} \to 0,$$

and it will suffice to prove deformation invariance of $H^1(T')$. Now identifying $T_X \cong \Omega^{n-1}_X$, $N_{Y/X} \cong \Omega^{n-1}_Y$, $n = \dim X$, we may write the cohomology sequence of (2.1) as

$$0 \to H^{n-1,0}(Y) \to H^1(T') \to H^{n-1,1}(X) \xrightarrow{f^*} H^{n-1,1}(Y) \cdots.$$

As $H^{n-1,0}(Y)$ and $\ker(f^*)$ are both deformation-invariant, so is $H^1(T')$, hence f is unobstructed, and since moreover the former groups are the respective tangent spaces to the fibre and image of $\text{Def}(f) \to \text{Def}(X)$, the latter are smooth. Q.E.D.

A similar argument can be used to reprove a recent theorem of C. Voisin [V] (see op. cit. for examples and further results):
Theorem 2.2 (Voisin). Let X be a Kähler symplectic manifold, with (everywhere nondegenerate) symplectic form $\omega \in H^0(\Omega^2_X)$, and $f: Y \to X$ a Lagrangian embedding, i.e. $f^* \omega = 0$ and $\dim Y = \frac{1}{2} \dim X$. Then f is unobstructed and the image and fibre of the natural map $\text{Def}(f) \to \text{Def}(X)$ are smooth.

Proof. In this case we may identify $T_X \cong \Omega_X$, $N_{Y/X} \cong \Omega_Y$, and we may argue as in the proof of Theorem 2.1 (note that this property of being Lagrangian is open).

Next we consider deformations of fibre spaces $f: X^n \to Y^m$ with X Calabi-Yau (i.e. f is a flat map whose fibres are reduced and connected). Note that for a fibre space f, its general fibre is clearly a Calabi-Yau manifold. Also, it follows easily from the sequence (1.1) that $\text{Def}(f) \to \text{Def}(X)$ is an isomorphism by a theorem of Horikawa [H], hence in that case unobstructedness of f follows from that of X. We will consider here two extreme cases: namely $m = n - 1$ and $m = 1$.

Theorem 2.3. Let $f: X \to Y$ be an elliptic fibre space (i.e. general fibre elliptic curve) with X Calabi-Yau. Then f is unobstructed.

Proof. Using the usual exact sequence (1.1) and Criterion 1.3, it suffices to prove the deformation invariance of

$$\ker(H^1(T_X) \to H^0(Y, R^1 f_* \mathcal{O}_X \otimes T_Y)).$$

Now by relative duality we have

$$R^1 f_* \mathcal{O}_X \cong \omega_{X/Y}^{-1} \cong \omega_Y,$$

hence we may identify α with the push-forward map (or “integration over the fibre”)

$$H^{n-1,1}(X) \to H^{n-2,0}(Y),$$

and in particular $\ker \alpha$ is deformation-invariant. (Note that we have $\text{Def}(f) \cong \text{Def}(X)$ whenever $\alpha = 0$, e.g. $H^{n-2,0}(Y) = 0$, which holds whenever $H^{n-2,0}(X) = 0$.)

Theorem 2.4. Let $f: X \to C$ be a fibre space from a Calabi-Yau manifold to a smooth curve. Then f is unobstructed.

Proof. Note that for any fibre Y of f we have

$$h^0(\mathcal{O}_Y(Y)) = h^0(\mathcal{O}_Y) = 1,$$

and it follows that the scheme $\text{Div}^0(X)$ parametrizing reduced connected effective divisors of X is smooth and 1-dimensional locally at the point corresponding to Y. Consequently if we denote by

$$p: Z \to \text{Div}^0(X)$$

the universal family and $q: Z \to X$ the natural map, then we have in fact a 1-1 correspondence between morphisms $f: X \to C$ as above and smooth compact connected 1-dimensional components $C \subset \text{Div}^0(X)$ such that $q|_{p^{-1}(C)}$ is an isomorphism. Now it follows from Theorem 2.1 and its proof that for any smooth fibre Y of f, the locus $D' \subset \text{Def}(X)$ of deformations over which Y extends is smooth and independent of Y. It follows that almost all, hence all, of C as component of $\text{Div}^0(X)$ in fact extends over D', hence so does f, so that $D' = \text{Def}(f)$, proving the theorem.

In the intermediate cases, we have only much weaker results:
Theorem 2.5. Let \(f : X \to Y \) be a smooth morphism and assume either

(i) \(K_X \) is trivial; or

(ii) \(K_{X/Y} \) is trivial.

Then \(\text{Def}(f) \to \text{Def}(Y) \) has smooth fibres.

Proof. We will prove (ii), as (i) is similar. It suffices to prove the deformation invariance of \(H^1(T_{X/Y}) \), where \(T_{X/Y} \) is the relative (vertical) tangent bundle. Now we have

\[
T_{X/Y} \cong \Omega^{n-1}_{X/Y} \otimes K_{X/Y}^{-1} \cong \Omega^{n-1}_{X/Y}, \quad n = \dim(X/Y).
\]

By relative Hodge theory, \(H^1(\Omega^{n-1}_{X/Y}) \) is a direct summand of \(H^n(f^{-1}\mathcal{O}_Y) \), and it will suffice to prove the deformation invariance of the latter. We have a Leray spectral sequence

\[
H^p(Y, R^qf_*f^{-1}\mathcal{O}_Y) \Rightarrow H^n(f^{-1}\mathcal{O}_Y).
\]

However \(H^p(Y, R^qf_*f^{-1}\mathcal{O}_Y) = H^{p,0}(Y, R^qf_*\mathbb{C}_X) \) is a direct summand of \(H^p(Y, R^qf_*\mathbb{C}_X) \), hence the degeneration of the Leray spectral sequence of \(\mathbb{C}_X \) implies that of (2.2), hence the deformation invariance of \(H^n(f^{-1}\mathcal{O}_Y) \).

Acknowledgment

I am grateful to P. Deligne for some helpful comments concerning [R3], and to the IHES and Tel-Aviv University, in particular Professor M. Smorodinski, for their hospitality.

Added in proof

The above ideas are pursued further in the author’s preprints, Hodge theory and the Hilbert scheme (September 1990) and Hodge theory and deformations of maps (January 1991).

References

[B] F. A. Bogomolov, Hamiltonian Kähler manifolds, Dokl. Akad. Nauk SSSR 243 (1978), 1101–1104.

[H] E. Horikawa, Deformations of holomorphic maps. III, Math. Ann. 222 (1976), 275–282.

[R1] Z. Ran, Deformations of maps, Algebraic Curves and Projective Geometry (E. Ballico and C. Ciliberto, eds.), Lecture Notes in Math., vol. 1389, Springer-Verlag, Berlin, 1989.

[R2] Ran, Stability of certain holomorphic maps, J. Differential Geom. 34 (1991), 37–47.

[R3] Ran, Deformations of manifolds with torsion or negative canonical bundle, J. Algebraic Geom. (to appear).

[Ti] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Math. Aspects of String Theory (S. T. Yau, ed.), pp. 629–646, World Scientific, Singapore, 1987.

[To] A. N. Todorov, The Weil-Petersson geometry of the moduli space of \(SU(n \geq 3) \), (Calabi-Yau) manifolds, preprint IHES, November, 1988.

[V] C. Voisin, Sur la stabilité des sous-variétés Lagrangiennes des variétés symplectiques holomorphes, Orsay, preprint, April, 1990.

Institut des Hautes Études Scientifiques, Paris, France

Current address: Department of Mathematics, University of California, Riverside, California 92521