ON THE DOMAIN OF FOUR-DIMENSIONAL FORWARD DIFFERENCE MATRIX IN SOME DOUBLE SEQUENCE SPACES

ORHAN TUÇ, EBERHARD MALKOWSKY, VLADIMIR RAKOČEVIĆ, AND BIPAN HAZARAKA

ABSTRACT. In this paper, we introduce some new double sequence spaces $\mathcal{M}_u(\Delta)$ and $\mathcal{C}_\vartheta(\Delta)$, where $\vartheta \in \{b, bp, r, r0\}$ as the domains of the four-dimensional forward difference matrix in the double sequence spaces \mathcal{M}_u and \mathcal{C}_ϑ, respectively. Then we investigate some topological and algebraic properties. Moreover, we determine the α, $\beta(\vartheta)$, and γ-duals of the new spaces $\mathcal{M}_u(\Delta)$ and $\mathcal{C}_\vartheta(\Delta)$. Finally, we characterize four-dimensional matrix classes $(\lambda(\Delta), \mu)$ and $(\mu, \lambda(\Delta))$, where $\lambda = \{\mathcal{M}_u, \mathcal{C}_\vartheta\}$ and $\mu = \{\mathcal{M}_u, \mathcal{C}_\vartheta\}$.

1. INTRODUCTION

By $\Omega := \{x = (x_{mn}) : x_{mn} \in \mathbb{C}, \forall m, n \in \mathbb{N}\}$, we denote the set of all complex valued double sequences; Ω is a vector space with coordinatewise addition and scalar multiplication and any vector subspace of Ω is called a double sequence space. A double sequence $x = (x_{mn})$ is called convergent in Pringsheim's sense to a limit point L, if for every $\epsilon > 0$ there exists a natural number $n_0 = n_0(\epsilon)$ and $L \in \mathbb{C}$ such that $|x_{mn} - L| < \epsilon$ for all $m, n > n_0$, where \mathbb{C} denotes the complex field; this is denoted by $L = \lim_{m,n \to \infty} x_{mn}$. The space of all double sequences that are convergent in the Pringsheim sense is denoted by \mathcal{C}_p, which is a linear space with coordinatewise addition and scalar multiplication. Mōricz [1] proved that the double sequence space \mathcal{C}_p is a complete seminormed space with the seminorm

$$
\|x\|_\infty = \lim_{N \to \infty} \sup_{m,n \geq N} |x_{mn}|.
$$

The space of all null double sequences in Pringsheim’s sense is denoted by \mathcal{C}_{p0}.

A double sequence $x = (x_{mn})$ of complex numbers is called bounded if $\|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty$, where $\mathbb{N} = \{0, 1, 2, \cdots\}$, and the space of all bounded double sequences is denoted by \mathcal{M}_u, that is,

$$
\mathcal{M}_u := \{x = (x_{mn}) \in \Omega : \|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty\};
$$

it is a Banach space with the norm $\| \cdot \|_\infty$.

Unlike as in the case of single sequences there are double sequences which are convergent in Pringsheim’s sense but unbounded. That is, the set $\mathcal{C}_p \setminus \mathcal{M}_u$ is not empty. Boos [2] defined the sequence $x = (x_{mn})$ by

$$
x_{mn} = \begin{cases} n & , m = 0, n \in \mathbb{N} \\
0 & , m \geq 1, n \in \mathbb{N},
\end{cases}
$$

which is obviously in \mathcal{C}_p, i.e., $p - \lim_{m,n \to \infty} x_{mn} = 0$, but not in the set \mathcal{M}_u, i.e., $\|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| = \infty$. Thus, $x \in \mathcal{C}_p \setminus \mathcal{M}_u$.

We also consider the set \mathcal{C}_{bp} of double sequences which are both convergent in Pringsheim’s sense and bounded, that is,

$$
\mathcal{C}_{bp} := \mathcal{C}_p \cap \mathcal{M}_u = \left\{x = (x_{mn}) \in \mathcal{C}_p : \|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty \right\}.
$$

The set \mathcal{C}_{bp} is a Banach space with the norm

$$
\|x\|_\infty = \sup_{m,n \in \mathbb{N}} |x_{mn}| < \infty.
$$

2010 Mathematics Subject Classification. 46A45, 40C05.

Key words and phrases. Four-dimensional forward difference matrix; matrix domain; double sequence spaces; alpha-dual; beta-dual; gamma-dual; matrix transformations.
Hardy [8] called a sequence in the space C_p regularly convergent if it is a convergent single sequence with respect to each index. We denote the set of such double sequences by C_r, that is,

$$C_r := \{ x = (x_{mn}) \in C_p : \forall m \in \mathbb{N} (x_{mn})_m \in c, \quad \text{and} \quad \forall n \in \mathbb{N} (x_{mn})_n \in c \},$$

where c denotes the set of all convergent single sequences of complex numbers. Regular convergence requires the boundedness of double sequences; this is the main difference between regular convergence and the convergence in Pringsheim’s sense. We also use the notations $C_{bp0} = M_u \cap C_{p0}$ and $C_{r0} = C_r \cap C_{p0}$.

Throughout the text, unless otherwise stated we mean by the summation $\sum_{k,l} x_{kl}$ without limits run from 0 to ∞ is $\sum_{k,l=0}^{\infty} x_{kl}$.

The space L_q of all absolutely q–summable double sequences was introduced by Başar and Sever [2] as follows

$$L_q := \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} |x_{kl}|^q < \infty \right\}, \quad (1 \leq q < \infty)$$

which is a Banach space with the norm $\| \cdot \|_q$ defined by

$$\|x\|_q = \left(\sum_{k,l} |x_{kl}|^q \right)^{1/q}.$$

Moreover, Zeltser [3] introduced the space L_u which is the special case of the space L_q for $q = 1$.

The double sequence spaces BS, CS_ϑ, where $\vartheta \in \{ p, bp, r \}$, and BV were introduced by Altay and Başar [6]. The set BS of all double series whose sequences of partial sums are bounded is defined by

$$BS = \left\{ x = (x_{kl}) \in \Omega : \sup_{m,n \in \mathbb{N}} |s_{mn}| < \infty \right\}$$

where the sequence $s_{mn} = \sum_{k,l=0}^{m,n} x_{kl}$ is the $(m,n)–th$ partial sum of the series. The series space BS is a Banach space with norm defined as

$$(1.1) \quad \|x\|_{BS} = \sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=0}^{m,n} x_{kl} \right|,$$

which is linearly isomorphic to the sequence space M_u. The set CS_ϑ of all series whose sequences of partial sums are ϑ–convergent in Pringsheim’s sense is defined by

$$CS_\vartheta = \{ x = (x_{kl}) \in \Omega : (s_{mn}) \in C_\vartheta \}$$

where $\vartheta \in \{ p, bp, r \}$. The space CS_p is a complete seminormed space with the seminorm defined by

$$\|x\|_\infty = \lim_{n \to \infty} \left(\sup_{k,l \geq n} \left| \sum_{i,j=0}^{k,l} x_{ij} \right| \right),$$

which is isomorphic to the sequence space C_p. Moreover, the sets CS_{bp} and CS_r are also Banach spaces with the norm (1.1) and the inclusion $CS_r \subset CS_{bp}$ holds. The set BV of all double sequences of bounded variation is defined by Altay and Başar [8] as follows

$$BV = \left\{ x = (x_{kl}) \in \Omega : \sum_{k,l} |x_{kl} - x_{k-1,l} - x_{k,l-1} + x_{k-1,l-1}| < \infty \right\}.$$

The space BV is Banach space with the norm defined by

$$\|x\|_{BV} = \sum_{k,l} |x_{kl} - x_{k-1,l} - x_{k,l-1} + x_{k-1,l-1}|,$$

which is linearly isomorphic to the space L_u of absolutely convergent double series. Moreover, the inclusions $BV \subset C_\vartheta$ and $BV \subset M_u$ strictly hold.
Let E be any double sequence space. Then,

$$dE := \left\{ x = (x_{kl}) \in \Omega : \left\{ \frac{1}{kl}x_{kl} \right\}_{k,l \in \mathbb{N}} \in E \right\},$$

$$E := \left\{ x = (x_{kl}) \in \Omega : \{klix_{kl}\}_{k,l \in \mathbb{N}} \in E \right\},$$

$$E^{\beta(\vartheta)} := \left\{ a = (a_{kl}) \in \Omega : \{a_{kl}x_{kl}\} \in \mathcal{CS}_\vartheta, \text{ for every } x = (x_{kl}) \in E \right\},$$

$$E^\alpha := \left\{ a = (a_{kl}) \in \Omega : \{a_{kl}x_{kl}\} \in \mathcal{L}u, \text{ for every } x = (x_{kl}) \in E \right\},$$

$$E^\gamma := \left\{ a = (a_{kl}) \in \Omega : \{a_{kl}x_{kl}\} \in \mathcal{BS}, \text{ for every } x = (x_{kl}) \in E \right\}.$$

Therefore, let E_1 and E_2 are arbitrary double sequences with $E_2 \subset E_1$ then the inclusions $E_1^\alpha \subset E_2^\alpha$, $E_1^\gamma \subset E_2^\gamma$ and $E_1^{\beta(\vartheta)} \subset E_2^{\beta(\vartheta)}$ hold. But the inclusion $E_1^\gamma \subset E_1^{\beta(\vartheta)}$ does not hold, since $\mathcal{C}_p \setminus \mathcal{M}_u$ is not empty.

Let $A = (a_{mnkl})_{m,n,k,l \in \mathbb{N}}$ be an infinite four-dimensional matrix and $E_1, E_2 \in \Omega$. We write

$$y_{mn} = A_{mn}(x) = \vartheta - \sum_{k,l} a_{mnk}x_{kl} \text{ for each } m, n \in \mathbb{N}.$$ (1.2)

We say that A defines a matrix transformation from E_1 to E_2 if

$$A(x) = (A_{mn}(x))_{m,n \in E_2} \text{ for all } x \in E_1.$$ (1.3)

The ϑ-summability domain $E_A^{(\vartheta)}$ of a four-dimensional infinite matrix A in a double sequence space E is defined by

$$E_A^{(\vartheta)} := \left\{ x = (x_{kl}) \in \Omega : Ax = \left(\vartheta - \sum_{k,l} a_{mnk}x_{kl} \right)_{m,n \in \mathbb{N}} \text{ exists and is in } E \right\},$$

which is a sequence space. The above notation (1.3) says that $A = (a_{mnkl})_{m,n,k,l \in \mathbb{N}}$ maps the space E_1 into the space E_2 if $E_1 \subset (E_2)_A^{(\vartheta)}$ and we denote the set of all four-dimensional matrices that map the space E_1 into the space E_2 by $(E_1 : E_2)$. Thus, $A \in (E_1 : E_2)$ if and only if the double series on the right side of (1.3) ϑ–converges for each $m, n \in \mathbb{N}$, i.e, $A_{mn} \in (E_1)^{\beta(\vartheta)}$ for all $m, n \in \mathbb{N}$ and we have $Ax \in E_2$ for all $x \in E_1$.

Adams [7] defined that the four-dimensional infinite matrix $A = (a_{mnkl})$ is a triangular matrix if $a_{mnkl} = 0$ for $k > m$ or $l > n$ or both. We also say by Wilansky [8, Theorem 4.4.2, p. 66] that a triangular matrix $A = (a_{mnkl})$ is called a triangle if $a_{mnmn} \neq 0$ for all $m, n \in \mathbb{N}$. One can be observed easily that if A is triangle, then $E_A^{(\vartheta)}$ and E are linearly isomorphic.

Wilansky [8] Theorem 4.4.2, p. 66] defined that if E is a sequence space, then the continuous dual E_A^* of the space E_A is given by

$$E_A^* = \{ f : f = g \circ A, g \in E^* \}.$$

Zeltser [9] stated the notations of the double sequences $e^{kl} = (e_{mn}^{kl})$, e^1, e_k and e by

$$e_{mn}^{kl} = \begin{cases} 1 & , \quad (k,l) = (m,n); \\ 0 & , \quad \text{otherwise}. \end{cases}$$
\[e^1 = \sum_k e^{kl}; \text{ the double sequence that all terms of } l\text{-th column are one and other terms are zero,} \]
\[e_k = \sum_l e^{kl}; \text{ the double sequence that all terms of } k\text{-th row are one and other terms are zero,} \]
\[e = \sum_{kl} e^{kl}; \text{ the double sequence that all terms are one} \]

for all \(k, l, m, n \in \mathbb{N} \).

The four-dimensional forward difference matrix \(\Delta = (\delta_{mnkl}) \) is defined by
\[\delta_{mnkl} := \begin{cases} (-1)^{m+n-k-l}, & m \leq k \leq m + 1, \ n \leq l \leq n + 1, \\ 0, & \text{otherwise} \end{cases} \]
for all \(m, n, k, l \in \mathbb{N} \). The \(\Delta \)-transform of a double sequence \(x = (x_{mn}) \) is given by
\[y_{mn} := \{\Delta x\}_{mn} = x_{mn} - x_{m+1,n} - x_{m,n+1} + x_{m+1,n+1} \]
for all \(m, n \in \mathbb{N} \). We shall briefly discuss \(\Delta^{-1} \) which is the inverse of four-dimensional forward difference matrix \(\Delta \), where \((\Delta^{-1}\Delta)(x_{kl}) = x_{kl} \). Let \(\Delta^{-1}y_{kl} = x_{kl} \). Then we can show that \(x_{kl} \) is a finite summation of the original double sequence \(y_{kl} \).

\[(1.4) \quad \Delta(\Delta^{-1}y_{kl}) = \Delta x_{kl} = x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}. \]

If we write the equation (1.4) for \(y_{00}, y_{01}, y_{10}, \ldots, y_{kl} \)

\[
\begin{align*}
\Delta(\Delta^{-1}y_{00}) &= \Delta x_{00} = x_{00} - x_{10} - x_{01} + x_{11} \\
\Delta(\Delta^{-1}y_{01}) &= \Delta x_{01} = x_{01} - x_{11} - x_{02} + x_{12} \\
\Delta(\Delta^{-1}y_{10}) &= \Delta x_{10} = x_{10} - x_{20} - x_{11} + x_{21} \\
\Delta(\Delta^{-1}y_{11}) &= \Delta x_{11} = x_{11} - x_{21} - x_{12} + x_{22} \\
&\vdots \\
\Delta(\Delta^{-1}y_{kl}) &= \Delta x_{kl} = x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}.
\end{align*}
\]

Then we add the left hand sides up to \(y_{00} + y_{01} + y_{10} + \ldots + y_{kl} \)

\[
\sum_{i,j=0}^{k,l} y_{i,j} = x_{k+1,l+1} + x_{00} - x_{k+1,0} - x_{0,l+1}
\]

for all \(k, l \in \mathbb{N} \). To be able to have \(x_{kl} \) instead of having \(x_{k+1,l+1} \) we must write it as

\[(1.5) \quad x_{kl} = \sum_{i,j=0}^{k-1,l-1} y_{i,j} - x_{00} + x_{k,0} + x_{0,l} \]

for all \(k, l \in \mathbb{N} \). With this result we can introduce the role of inverse four-dimensional forward difference operator \(\Delta^{-1} \) on the double sequence \(y_{kl} \), where \(x_{kl} = \Delta^{-1}y_{kl} \), as the \((k - 1, l - 1)^{th}\)–partial sum of the double sequence \(y_{kl} \) plus arbitrary constants on the first row and the first column of the double sequence \(x = (x_{kl}) \).
2. New double sequence spaces

In this section, we introduce new double sequence spaces \(\mathcal{M}_u(\Delta) \), \(\mathcal{C}_\vartheta(\Delta) \), where \(\vartheta \in \{bp, rp, r0\} \), as the matrix domains of the four-dimensional matrix of the forward differences in the sequence spaces \(\mathcal{M}_u \) and \(\mathcal{C}_\vartheta \) as follow:

\[
\mathcal{M}_u(\Delta) := \left\{ x = (x_{kl}) \in \Omega : \sup_{k,l \in \mathbb{N}} |y_{kl}| < \infty \right\},
\]

\[
\mathcal{C}_\vartheta(\Delta) := \left\{ x = (x_{kl}) \in \Omega : \exists L \in \mathbb{C} \ni \vartheta - \lim_{k,l \to \infty} |y_{kl} - L| = 0 \right\},
\]

\[
\mathcal{C}_{\vartheta0}(\Delta) := \left\{ x = (x_{kl}) \in \Omega : \vartheta - \lim_{k,l \to \infty} |y_{kl}| = 0 \right\},
\]

where \(y_{kl} = \Delta x_{kl} = (x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}) \) for all \(k, l \in \mathbb{N} \).

Theorem 2.1. The spaces \(\mathcal{M}_u(\Delta) \) and \(\mathcal{C}_\vartheta(\Delta) \), where \(\vartheta \in \{bp, bp0, r, r0\} \) are Banach spaces with the norm

\[
\|x\|_{\mathcal{M}_u(\Delta)} := |x_{k,0} + x_{0,l} - x_{00}| + \|\Delta x\|_{\mathcal{M}_u} := |x_{k,0} + x_{0,l} - x_{00}| + \sup_{k,l \in \mathbb{N}} |x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}|.
\]

Proof. The linearity of those spaces is clear. Suppose that \(x^i = (x^i_{kl}) \) is a Cauchy sequence in the space \(\mathcal{M}_u(\Delta) \) for all \(k, l \in \mathbb{N} \). Then

\[
\|x^i - x^j\|_{\mathcal{M}_u(\Delta)} = |(x^i_{k,0} - x^j_{k,0}) + (x^i_{0,l} - x^j_{0,l}) - (x^i_{00} - x^j_{00})|
\]

\[+ \sup_{k,l \in \mathbb{N}} |\Delta(x^i_{kl} - x^j_{kl})| \to 0 \]

as \(i, j \to \infty \). Thus, we obtain \(|x^i_{kl} - x^j_{kl}| \to 0 \) for \(i, j \to \infty \) and for every \(k, l \in \mathbb{N} \). Hence \(x^i = (x^i_{kl}) \) is a Cauchy sequence in \(\mathbb{C} \) for each \(k, l \in \mathbb{N} \). Since \(\mathbb{C} \) is complete, then it converges to a sequence \(x = (x_{kl}) \), i.e., we have

\[
\lim_{i \to \infty} x^i_{kl} = x_{kl}
\]

for each \(k, l \in \mathbb{N} \). Therefore, for every \(\epsilon > 0 \), there exits a natural number \(N(\epsilon) \), such that for all \(i, j \geq N(\epsilon) \), and for all \(k, l \in \mathbb{N} \) we have

\[
|x^i_{k,0} - x^j_{k,0}| < \frac{\epsilon}{4}, |x^i_{0,l} - x^j_{0,l}| < \frac{\epsilon}{4}, |x^i_{0,0} - x^j_{0,0}| < \frac{\epsilon}{4}, |\Delta(x^i_{kl} - x^j_{kl})| < \frac{\epsilon}{4}.
\]

Moreover,

\[
\lim_{j \to \infty} |x^i_{k,0} - x^j_{k,0}| = |x^i_{k,0} - x_{k,0}| < \frac{\epsilon}{4},
\]

\[
\lim_{j \to \infty} |x^i_{0,l} - x^j_{0,l}| = |x^i_{0,l} - x_{0,l}| < \frac{\epsilon}{4},
\]

\[
\lim_{j \to \infty} |x^i_{0,0} - x^j_{0,0}| = |x^i_{0,0} - x_{0,0}| < \frac{\epsilon}{4},
\]

\[
\lim_{j \to \infty} |\Delta(x^i_{kl} - x^j_{kl})| = |\Delta(x^i_{kl} - x_{kl})| < \frac{\epsilon}{4}
\]

for all \(i \geq N(\epsilon) \). Hence, we obtain that

\[
\|x^i - x\|_{\mathcal{M}_u(\Delta)} = |(x^i_{k,0} - x_{k,0}) + (x^i_{0,l} - x_{0,l}) - (x^i_{00} - x_{00})|
\]

\[+ \sup_{k,l \in \mathbb{N}} |\Delta(x^i_{kl} - x_{kl})| \leq |x^i_{k,0} - x_{k,0}| + |x^i_{0,l} - x_{0,l}| + |x^i_{0,0} - x_{0,0}|
\]

\[+ \sup_{k,l \in \mathbb{N}} |\Delta(x^i_{kl} - x_{kl})| < \epsilon.
\]
Now we must show that \(x \in \mathcal{M}_u(\Delta) \).

\[
\sup_{k,l \in \mathbb{N}} |\Delta x_{kl}| = \sup_{k,l \in \mathbb{N}} |x_{kl} - x_{k,l+1} + x_{k+1,l+1} - x_{k+1,l}| = \sup_{k,l \in \mathbb{N}} |x_{kl} - x_{k,l+1} + x_{k+1,l} + x_{k+1,l+1} - x_{k+1,l+1} - x_{k,l+1}| + |x_{k+1,l+1} - x_{k+1,l+1} + x_{k+1,l+1}| \leq \sup_{k,l \in \mathbb{N}} \left| \Delta x_{kl} \right| + \sup_{k,l \in \mathbb{N}} \left| \Delta x_{kl} - \Delta x_{kl} \right| < \infty
\]

Hence \(x = (x_{kl}) \in \mathcal{M}_u(\Delta) \). This completes the proof. \(\square \)

Let \(\vartheta = \{bp, bp0, r, r0\} \). We define the operator \(P \) form \(\lambda(\Delta) \) into itself, where \(\lambda \in \{\mathcal{M}_u, \mathcal{C}_0\} \) as

\[
P : \lambda(\Delta) \rightarrow \lambda(\Delta)
\]

\[
x \rightarrow P_x = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & x_{11} & x_{12} & x_{13} \\
0 & x_{21} & x_{22} & x_{23} \\
0 & x_{31} & x_{32} & x_{33} \\
\vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\]

for all \(x = (x_{kl}) \in \lambda(\Delta) \). Clearly \(P \) is a linear and bounded operator on \(\lambda(\Delta) \).

Now we show that the four-dimensional forward difference operator \(\Delta \) is a linear homeomorphism.

(2.2) \[
\Delta : P(\lambda(\Delta)) \rightarrow \lambda
\]

\[
x \rightarrow \Delta x = y = (x_{kl} - x_{k,l+1} - x_{k,l+1} - x_{k+1,l+1})
\]

where the set \(P(\lambda(\Delta)) \) is defined by

\[
P(\lambda(\Delta)) := \{ x = (x_{kl}) \in \mathbb{C} : x \in \lambda(\Delta) \text{ and } x_{00} = x_{0,0} = x_{0,l} = 0, \forall k, l \in \mathbb{N} \} \subset \lambda(\Delta)
\]

and

\[
\| x \|_{P(\lambda(\Delta))} = \| \Delta x \|_{\lambda}.
\]

Therefore, the spaces \(P(\lambda(\Delta)) \) and \(\lambda \) are equivalent as topological spaces, and the \(\Delta \) and \(\Delta^{-1} \) are norm preserving and \(\| \Delta \| = \| \Delta^{-1} \| = 1 \). We prove the following Lemma \ref{lem2.2} for the case \(\lambda = \mathcal{C}_{r0} \) by using the results in \cite{1} Theorem 5., Remark 3., P.132]. Since the proofs of the other cases are similar to that of following Lemma \ref{lem2.2} we left them as an exercise to the reader.

Lemma 2.2. A linear functional \(f_\Delta \) on \(P(\mathcal{C}_{r0}(\Delta)) \) is continuous if and only if there exists a double sequence \(a_{kl} \), \(k, l \geq 1 \in \mathcal{L}_u \) such that

(2.3) \[
f_\Delta(x) = \sum_{k,l=1}^{\infty} a_{kl}(\Delta x)_{kl}
\]

for all \(x \in P(\mathcal{C}_{r0}(\Delta)) \).

Proof. First we show that \(\Delta : P(\mathcal{C}_{r0}(\Delta)) \rightarrow \mathcal{C}_{r0}, \Delta x_{kl} = x_{kl} - x_{k,l+1} + x_{k,l+1} + x_{k+1,l+1} \) with \(x_{00} = x_{k,0} = x_{0,l} = 0 \) for each \(k, l \in \mathbb{N} \) is an isometric linear isomorphism, that is, we prove that \(\Delta \) is a bijection between \(P(\mathcal{C}_{r0}(\Delta)) \) and \(\mathcal{C}_{r0} \) by \(\Delta x_{kl} = x_{kl} - x_{k,l+1} + x_{k,l+1} + x_{k+1,l+1} \) with \(x_{00} = x_{k,0} = x_{0,l} = 0 \) for each \(k, l \in \mathbb{N} \). Linearity is clear. Moreover, \(x = 0 \) whenever \(\Delta x = 0 \), and hence \(\Delta \) is injective. Now suppose that \(y = (y_{kl}) \in \mathcal{C}_{r0} \), we define the sequence \(x = (x_{kl}) \) by \(x_{kl} = \sum_{i,j=0}^{k-1,l-1} y_{ij} \) with \(x_{00} = x_{k,0} = x_{0,l} = 0 \).
for each \(k, l \in \mathbb{N} \). Then we have,

\[
\| x \|_{P(\mathcal{C}_{r_0}(\Delta))} = \sup_{k,l \in \mathbb{N}} |\Delta x_{kl}| \\
= \sup_{k,l \in \mathbb{N}} \left| \Delta \left(\sum_{i,j=0}^{k-1,l-1} y_{ij} \right) \right| \\
= \sup_{k,l \in \mathbb{N}} \left| \sum_{i,j=0}^{k-1,l-1} y_{ij} - \sum_{i,j=0}^{k-1} y_{ij} - \sum_{i,j=0}^{l-1} y_{ij} + \sum_{i,j=0}^{k,l} y_{ij} \right| \\
= \sup_{k,l \in \mathbb{N}} \left| \sum_{i,j=0}^{k-1,l-1} y_{ij} - \sum_{j=0}^{l-1} y_{kj} + \sum_{i,j=0}^{k,l} y_{ij} \right| \\
\leq \sup_{k,l \in \mathbb{N}} |y_{kl}| = \| y \|_\infty < \infty.
\]

It shows that \(x \in P(\mathcal{C}_{r_0}(\Delta)) \) and consequently \(\Delta \) is surjective and norm preserving. It completes the first part of the proof.

Now suppose that \(f_\Delta \) is a linear functional on \(P(\mathcal{C}_{r_0}(\Delta)) \). If \(f_\Delta \) is continuous, then \(f_\Delta \circ \Delta^{-1} \) is a continuous linear functional on \(\mathcal{C}_{r_0} \). Then by \([1]\) Remark 3, there exists a double sequence \(a = (a_{kl})_{k,l \geq 1} \in \mathcal{L}_u \) such that

\[
f_\Delta \circ \Delta^{-1}(y) = \sum_{k,l=0}^\infty a_{kl}y_{kl}
\]

for all \(y \in \mathcal{C}_{r_0} \). It gives

\[
f_\Delta(x) = (f_\Delta \circ \Delta^{-1})(\Delta x) = \sum_{k,l=0}^\infty a_{kl}(\Delta x)_{kl}
\]

for all \(x \in P(\mathcal{C}_{r_0}(\Delta)) \). Conversely, if \(f_\Delta(x) = \sum_{k,l=1}^\infty a_{kl}(\Delta x)_{kl} \) for all \(x \in P(\mathcal{C}_{r_0}(\Delta)) \) and for some \(a = (a_{kl}) \in \mathcal{L}_u \), then

\[
|f_\Delta(x)| = \left| \sum_{k,l=0}^\infty a_{kl}(\Delta x)_{kl} \right| \leq \sum_{k,l=1}^\infty |a_{kl}| |(\Delta x)_{kl}| \\
\leq \| x \|_{P(\mathcal{C}_{r_0}(\Delta))} \sum_{k,l=0}^\infty |a_{kl}| \\
= \| x \|_{P(\mathcal{C}_{r_0}(\Delta))} \| a \|_{\mathcal{L}_u}.
\]

Therefore, \(\| f_\Delta \| \leq \| a \|_{\mathcal{L}_u} \) and then we see that \(f_\Delta \) is a bounded(continuous) linear functional on \(P(\mathcal{C}_{r_0}(\Delta)) \). This completes the proof.

\[\square\]

Definition 2.3. Let \(X \) and \(Y \) be Banach spaces, and \(B(X,Y) \) be the space of bounded linear operators from \(X \) into \(Y \). An operator \(T \in B(X,Y) \) is called an isometry if \(\|Tx\| = \|x\| \) for all \(x \in X \).

Now we denote the continuous duals of \(P(\lambda(\Delta)) \) and \(\lambda \) by \([P(\lambda(\Delta))]^* \) and \(\lambda^* \), respectively. We may now show that the operator

\[
T : [P(\lambda(\Delta))]^* \to \lambda^* \\
f_\Delta \to f = f_\Delta \circ (\Delta^{-1})
\]
is a linear isometry. Hence, \([P(\mathcal{M}_u(\Delta))]^* \cong \mathcal{M}^*_u \), by [1] Remark 3., we have \([P(\lambda(\Delta))]^* \cong \lambda^* \cong \mathcal{L}_u \), where \(\lambda \in \{C_r, C_{r0}\} \), by [1] Theorem 8., we have \([P(\mu(\Delta))]^* \cong \mu^* \cong \ell_1(e^*_\infty) \), where \(\mu \in \{C_{bp}, C_{bp0}\} \), and the sets \(\ell_1 \) and \(\ell_\infty \) represent absolutely summable and bounded single sequence spaces, respectively.

Now we prove the following Theorem only for the case \(\lambda = C_{r0} \).

Theorem 2.4. The continuous dual \([P(C_{r0}(\Delta))]^* \) is isometrically isomorphic to \(C_{r0}^* \cong \mathcal{L}_u \).

Proof. Let us define an operator

\[
T : [P(C_{r0}(\Delta))]^* \to C_{r0}^* \cong \mathcal{L}_u
\]

with \(T(f_\Delta) = (f_\Delta(e^{kl}))_{k,l \geq 1} \),

\[
T(f_\Delta(x)) = T((f_\Delta \circ \Delta^{-1})(\Delta x)) = \sum_{k,l=1}^\infty a_{kl}T((\Delta x)_{kl})
\]

where \(a = (a_{kl}) \in \mathcal{L}_u \). Therefore, \(T \) is a surjective linear map by Lemma 2.2. Moreover, since \(T(f_\Delta(e^{kl})) = 0 = (0,0,0,...) \) implies \(f_\Delta = 0 \), where \((x_{kl}) = e^{kl}\) is Schauder basis for \(C_{r0} \) by the definition of double Schauder basis [10], Definition 4.2., p. 14, \(T \) is injective. Let \(f_\Delta \in [P(C_{r0}(\Delta))]^* \) and \(x \in P(C_{r0}(\Delta)) \). Then we have

\[
|f_\Delta(x)| = \left| f_\Delta \left(\sum_{k,l=1}^\infty (\Delta x)_{kl}e^{kl} \right) \right| = \left| \sum_{k,l=1}^\infty (\Delta x)_{kl}f_\Delta(e^{kl}) \right| \leq \sum_{k,l=1}^\infty \left| f_\Delta(e^{kl}) \right| |(\Delta x)_{kl}|
\]

\[
\leq \sup_{k,l \in \mathbb{N}} \left| |(\Delta x)_{kl}| \sum_{k,l=1}^\infty \left| f_\Delta(e^{kl}) \right| \right|
\]

\[
\leq \| x \|_{P(C_{r0}(\Delta))} \| T(f_\Delta) \|_{\mathcal{L}_u}.
\]

Then we obtain

\[
(2.4) \quad \| f_\Delta \|_\infty \leq \| T(f_\Delta) \|_{\mathcal{L}_u}.
\]

Furthermore, since \(|f_\Delta(e^{kl})| \leq \| f_\Delta \|_\infty |e^{kl}|_{P(C_{r0}(\Delta))} = \| f_\Delta \|_\infty \), then we have

\[
(2.5) \quad \| T(f_\Delta) \|_{\mathcal{L}_u} = \sup_{k,l \in \mathbb{N}} |f_\Delta(e^{kl})| \leq \| f_\Delta \|_\infty.
\]

We obtain by (2.4) and (2.5) that \(\| T(f_\Delta) \|_{\mathcal{L}_u} = \| f_\Delta \|_\infty \). This completes the proof. \(\square \)

3. Dual Spaces of the New Double Sequence Spaces

In this section, we determine the \(\alpha-\), \(\beta(\vartheta)-\) and \(\gamma-\) duals of our new double sequence spaces. First, we begin with some lemmas to determine the \(\alpha-\), \(\beta(\vartheta)-\) and \(\gamma-\) duals of the spaces \(\mathcal{M}_u(\Delta) \), \(\mathcal{C}_0(\Delta) \), where \(\vartheta \in \{bp, r\} \).

Lemma 3.1. We have \(\sup_{k,l \in \mathbb{N}} |\Delta x_{kl}| < \infty \) if and only if

(i) \(\sup_{k,l \in \mathbb{N}} k|x_{kl}| < \infty \),

(ii) \(\sup_{k,l \in \mathbb{N}} k|\Delta (\frac{1}{k}x_{kl})| < \infty \).

Proof. Suppose that there exists a positive real number \(M \) such that

\[
\sup_{k,l \in \mathbb{N}} |x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}| \leq M.
\]

Then

\[
|x_{kl}| = |x_{k,0} + x_{0,l} - x_{00} + x_{kl}| = \left| \sum_{i,j=0}^{k-1,l-1} \Delta x_{ij} \right| \leq \sum_{i,j=0}^{k-1,l-1} |\Delta x_{ij}| \leq M(kl).
\]
It is clearly seen that (i) is necessary. Moreover, by considering the condition (i) there exists positive real numbers \(N_1, N_2, N_3\) such that

\[
\begin{align*}
(3.1) \quad & \sup_{k,l \in \mathbb{N}} \frac{1}{(k+1)l} |x_{k+1,l}| \leq N_1, \\
(3.2) \quad & \sup_{k,l \in \mathbb{N}} \frac{1}{k(l+1)} |x_{k,l+1}| \leq N_2, \\
(3.3) \quad & \sup_{k,l \in \mathbb{N}} \frac{1}{(k+1)(l+1)} |x_{k+1,l+1}| \leq N_3.
\end{align*}
\]

Then we have

\[
kl \left| \Delta \left(\frac{1}{kl} x_{kl} \right) \right| = kl \left| \frac{1}{kl} x_{kl} - \frac{1}{(k+1)l} x_{k+1,l} - \frac{1}{k(l+1)} x_{k,l+1} \right|
\]

\[
\leq kl \left(\left| \frac{1}{kl} \Delta x_{kl} \right| + \left| \frac{1}{kl} (k+1) x_{k+1,l} \right| + \left| \frac{1}{k(l+1)} x_{k,l+1} \right| \right)
\]

\[
\leq kl \left(\left| \frac{1}{kl} \Delta x_{kl} \right| + \left| \frac{1}{kl} (k+1) x_{k+1,l} \right| + \left| \frac{1}{k(l+1)} x_{k,l+1} \right| \right)
\]

\[
\leq \frac{kl}{k+1} x_{k+1,l+1}
\]

where \(M' = M + N_1 + N_2 + N_3\). So it gives the necessity of (ii).

Now let us suppose that the conditions (i) and (ii) hold. By only considering the following inequality

\[
kl \left| \Delta \left(\frac{1}{kl} x_{kl} \right) \right| = kl \left| \frac{1}{kl} x_{kl} - \frac{1}{(k+1)l} x_{k+1,l} - \frac{1}{k(l+1)} x_{k,l+1} \right|
\]

\[
\leq kl \left(\left| \frac{1}{kl} \Delta x_{kl} \right| + \left| \frac{1}{kl} (k+1) x_{k+1,l} \right| + \left| \frac{1}{k(l+1)} x_{k,l+1} \right| \right)
\]

\[
\leq kl \left(\left| \frac{1}{kl} \Delta x_{kl} \right| + \left| \frac{1}{kl} (k+1) x_{k+1,l} \right| + \left| \frac{1}{k(l+1)} x_{k,l+1} \right| \right)
\]

we can see the necessity of \(\sup_{k,l \in \mathbb{N}} \left| \Delta x_{kl} \right| < \infty\).

\[\square\]

Lemma 3.2. Let \(\Delta x_{kl} = y_{kl}\). If

\[
\sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=1}^{m,n} y_{kl} \right| < \infty
\]

then

\[
\sup_{m,n \in \mathbb{N}} \left((m+1)(n+1) \left| \sum_{k,l=1}^{\infty} \frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)} \right| \right) < \infty
\]
Proof. Let us consider Abel’s double partial summation on the \((s, t) \)-th - partial sum of the series \(\sum_{k, l=1}^{\infty} \frac{y_{m+k+1, n+l-1}}{(m+k)(n+l)} \) as in the following equation.

\[
(3.4) \quad \sum_{k, l=1}^{s, t} \frac{y_{m+k-1, n+l-1}}{(m+k)(n+l)} = \sum_{k, l=1}^{s-1, t-1} \left(\sum_{i, j=1}^{k, t} y_{m+i-1, n+j-1} \right) \Delta_{11}^{k, t} \left(\frac{1}{(m+k)(n+l)} \right) \\
+ \sum_{k=1}^{s-1} \left(\sum_{i, j=1}^{k, t} y_{m+i-1, n+j-1} \right) \Delta_{10}^{k, t} \left(\frac{1}{(m+k)(n+l)} \right) \\
+ \sum_{l=1}^{t-1} \left(\sum_{i, j=1}^{s, l} y_{m+i-1, n+j-1} \right) \Delta_{01}^{l, t} \left(\frac{1}{(m+s)(n+l)} \right) \\
+ \sum_{i, j=1}^{s, t} y_{m+i-1, n+j-1} \left(\frac{1}{(m+s)(n+t)} \right)
\]

where for the double sequence \(a_{k, l} = \frac{1}{(m+k)(n+l)} \)

\[
\Delta_{10}^{k, t} a_{k, l} = a_{k, l} - a_{k+1, l} \\
\Delta_{10}^{k, l} a_{k, l} = a_{k, l} - a_{k, l+1} \\
\Delta_{11}^{k, l} a_{k, l} = \Delta_{10}^{k, l} (\Delta_{10}^{k, l} a_{k, l}) = \Delta_{10}^{k, l} (\Delta_{10}^{k, l} a_{k, l}) = a_{k, l} - a_{k+1, l} - a_{k, l+1} + a_{k+1, l+1}.
\]

Since there exists a positive real number \(M \) such that

\[
(3.5) \quad \sup_{m, n \in \mathbb{N}} \sum_{k, l=1}^{m, n} y_{k, l} \leq M,
\]

the equation (3.4) is written as

\[
\sum_{k, l=1}^{s, t} \frac{y_{m+k-1, n+l-1}}{(m+k)(n+l)} \leq M \left[\sum_{k, l=1}^{s-1, t-1} \left(\frac{1}{(m+k)(n+l)} - \frac{1}{(m+k+1)(n+l+1)} \right) \\
+ \sum_{k=1}^{s-1} \left(\frac{1}{(m+k)(n+l+1)} + \frac{1}{(m+k+1)(n+l+1)} \right) \\
+ \sum_{l=1}^{t-1} \left(\frac{1}{(m+l+1)} - \frac{1}{(m+s)(n+l+1)} \right) \\
+ \frac{1}{(m+s)(n+l)} \right] \\
= \frac{M}{(m+1)(n+1)}.
\]

Therefore by passing to \(\vartheta \)-limit as \(s, t \to \infty \), where \(\vartheta = \{bp, r\} \), and taking supremum over \(m, n \in \mathbb{N} \), then the condition

\[
\sup_{m, n \in \mathbb{N}} \left(\frac{m+1}{(m+1)(n+1)} \sum_{k, l=1}^{\infty} \frac{y_{m+k-1, n+l-1}}{(m+k)(n+l)} \right) < \infty
\]

is immediate. \(\square \)
Lemma 3.3. Let $\vartheta \in \{bp, r\}$. If the series $\sum_{k,l=1}^{\infty} \Delta x_{kl}$ is $\vartheta-$convergent, then

$$\vartheta - \lim_{m,n \to \infty} \left((m+1)(n+1) \left| \sum_{k,l=1}^{\infty} \frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)} \right| \right) = 0$$

Proof. Since the partial sum of the series $\sum_{k,l=1}^{\infty} \Delta x_{kl}$ is $\vartheta-$convergent, where $\vartheta \in \{bp, r\}$, we have

$$\sum_{i,j=1}^{k,l} y_{m+i-1,n+j-1} = \sum_{i,j=m,n}^{m+k-1,n+l-1} y_{ij} = O(1).$$

Then by using the equality (3.4) we write

$$(m+1)(n+1) \sum_{k,l=1}^{\infty} \frac{y_{m+k-1,n+l-1}}{(m+k)(n+l)} = O(1).$$

If we let $\vartheta-$limit as $m, n \to \infty$, we reach the proof. \hfill \square

Corollary 3.4. Let $\vartheta \in \{bp, r\}$ and $a = (a_{kl})$ be any double sequence. Then

(i) If $\sup_{m,n \in \mathbb{N}} \left| \sum_{k,l=1}^{m,n} kla_{kl} \right| < \infty$, then

$$\sup_{m,n \in \mathbb{N}} \left| mn \sum_{k,l=m+1,n+1}^{\infty} a_{kl} \right| < \infty$$

(ii) If $\sum_{k,l=1}^{\infty} kla_{kl}$ is $\vartheta-$convergent, then

$$\vartheta - \lim_{m,n \to \infty} \left(mn \sum_{k,l=m+1,n+1}^{\infty} a_{kl} \right) = 0$$

(iii) $\sum_{k,l=1}^{\infty} kla_{kl}$ is $\vartheta-$convergent if and only if

$$\sum_{k,l=1}^{\infty} R_{kl}$$

is $\vartheta-$convergent with $mnR_{mn} = O(1),$

where $R_{mn} = \sum_{k,l=m+1,n+1}^{\infty} a_{kl}$

Proof. The proof of (i) and (ii) can be easily seen by writing kla_{kl} instead of y_{kl} in Lemma 3.2, and writing $(k+1)(l+1)a_{k+1,l+1}$ instead of y_{kl} in Lemma 3.3 respectively.

To prove the corollary (iii), the following $(s, t)^{th}$ partial sum can be written by using Abel’s double summation formula that

$$\sum_{k,l=1}^{s,t} kla_{kl} = \sum_{k,l=1}^{s-1,t-1} \left(\sum_{i,j=0}^{k,l} a_{ij} \right) \Delta_{11}^{kl} + \sum_{k=1}^{s-1} \left(\sum_{i,j=0}^{k} a_{ij} \right) \Delta_{10}^{kl} + \sum_{i,j=0}^{s,t} a_{ij}(st)$$

$$= \sum_{k,l=1}^{s,t} \left(\sum_{i,j=k,l}^{s,t} a_{ij} \right) + st \sum_{k,l=s+1,t+1}^{\infty} a_{kl}.$$
\[D_1 := \int \mathcal{L}_u := \left\{ a = (a_{kl}) \in \Omega : \sum_{k,l=1}^{\infty} kl |a_{kl}| < \infty \right\} \]

\[D_2 := \int \mathcal{C}S_{\varnothing} := \left\{ a = (a_{kl}) \in \Omega : \sum_{k,l=1}^{\infty} kla_{kl} \text{ is } \varnothing - \text{convergent} \right\} \]

\[D_3 := \int \mathcal{B}S := \left\{ a = (a_{kl}) \in \Omega : \sum_{m,n,k,l=1}^{\infty} kl |a_{kl}| < \infty \right\} \]

\[D_4 := \left\{ a = (a_{kl}) \in \Omega : \sum_{k,l=1}^{\infty} \left| \sum_{i,j=k,l}^{\infty} a_{ij} \right| < \infty \right\} \]

Theorem 3.5. Let \(\lambda \in \{ \mathcal{M}_u, \mathcal{C}_b, \mathcal{C}_r \} \). Then \([P(\lambda(\Delta))]^\alpha \subset D_1\)

Proof. We need to prove the existence of the inclusion relations \(D_1 \subset [P(\lambda(\Delta))]^\alpha \) and \([P(\lambda(\Delta))]^\alpha \subset D_1\).

Suppose that \(a = (a_{kl}) \in D_1 \), i.e., \(\sum_{k,l=1}^{\infty} kl |a_{kl}| < \infty \). Then by using Lemma 3.1 we have

\[\sum_{k,l=1}^{\infty} |a_{kl} x_{kl}| = \sum_{k,l=1}^{\infty} kl |a_{kl}| \left(\frac{|x_{kl}|}{kl} \right) < \infty \]

for all \(x = (x_{kl}) \in P(\lambda(\Delta)) \). This shows that \(a = (a_{kl}) \in [P(\lambda(\Delta))]^\alpha \). Hence, the inclusion \(D_1 \subset [P(\lambda(\Delta))]^\alpha \) holds.

Now suppose that \(a = (a_{kl}) \in [P(\lambda(\Delta))]^\alpha \), i.e., \(\sum_{k,l=1}^{\infty} a_{kl} x_{kl} < \infty \) for all \(x = (x_{kl}) \in P(\lambda(\Delta)) \). If we consider the double sequence \(x = (x_{kl}) \) as

\[
(3.6) \quad x_{kl} := \begin{cases} 0, & k = 0, l \geq 0 \\ 0, & l = 0, k \geq 0 \\ kl, & k \geq 1, l \geq 1 \end{cases}
\]

Then we have

\[\sum_{k,l=1}^{\infty} |a_{kl} x_{kl}| = \sum_{k,l=1}^{\infty} kl |a_{kl}| < \infty \]

which says \(a = (a_{kl}) \in D_1 \). Hence, the inclusion \([P(\lambda(\Delta))]^\alpha \subset D_1\) holds. This concludes the proof. \(\square \)

Theorem 3.6. Let \(\lambda \in \{ \mathcal{M}_u, \mathcal{C}_b, \mathcal{C}_r \} \). Then \([P(\lambda(\Delta))]^{\beta(\varnothing)} \subset D_2 \cap D_4\).

Proof. We should show the validity of the inclusions \(D_2 \cap D_4 \subset [P(\lambda(\Delta))]^{\beta(\varnothing)} \) and \([P(\lambda(\Delta))]^{\beta(\varnothing)} \subset D_2 \cap D_4\).

Suppose that the double sequence \(a = (a_{kl}) \in D_2 \cap D_4 \) and the sequence \(x = (x_{kl}) \in P(\lambda(\Delta)) \) are defined with the relation (2.2) between the terms of the sequence \(x = (x_{kl}) \) and \(y = (y_{kl}) \) as

\[
(3.7) \quad x_{kl} = \sum_{i,j=1}^{k,l} y_{i-1,j-1},
\]

where \(y = (y_{kl}) \in \lambda \) which is defined as

\[
(3.8) \quad y_{kl} := \begin{cases} x_{11}, & k = 0, l = 0 \\ -x_{11} + x_{12}, & k = 0, l = 1 \\ -x_{11} + x_{21}, & k = 1, l = 0 \\ x_{kl} - x_{k+1,l} - x_{k,l+1} + x_{k+1,l+1}, & k \geq 1, l \geq 1 \end{cases}
\]
Then, we have the following \((s, t)\)th–partial sum of the series \(\sum_{k,l} a_{kl} x_{kl}\) that

\[
\sum_{k,l=1}^{s,t} a_{kl} x_{kl} = \sum_{k,l=1}^{s,t} a_{kl} \left(\sum_{i,j=1}^{k,l} y_{i,j-1,j-1} \right) \\
= \sum_{k,l=1}^{s-t-1} \left(\sum_{i,j=k,l}^{s-t-1} a_{ij} \right) y_{kl} \\
= \sum_{k,l=1}^{s-t-1} \left(\sum_{i,j=k,l}^{\infty} a_{ij} \right) y_{kl} - \sum_{k,l=1}^{s-t-1} \left(\sum_{i,j=s,t}^{\infty} a_{ij} \right) y_{kl} \\
= \sum_{k,l=1}^{s-t-1} R_{kl} y_{kl} - R_{st} \sum_{k,l=1}^{s-t-1} y_{kl}.
\]

Now, by the Corollary 3.4(iii), we can say that the sequence \(\sum_{k,l=1}^{s,t} a_{kl} x_{kl}\) is \(\varphi\)–convergent for every \(x = (x_{kl}) \in P(\lambda(\Delta))\), since \(\sum_{k,l=1}^{s-t-1} R_{kl} y_{kl}\) is \(\varphi\)–convergent with \(x_{st} R_{st} \to 0\) as \(s, t \to \infty\). This yields that \(a = (a_{kl}) \in [P(\lambda(\Delta))]^{\beta(\varphi)}\) and the inclusion \(D_2 \cap D_4 \subset [P(\lambda(\Delta))]^{\beta(\varphi)}\) holds.

Now, suppose that \(a = (a_{kl}) \in [P(\lambda(\Delta))]^{\beta(\varphi)}\). Then the series \(\sum_{k,l=1}^{\infty} a_{kl} x_{kl}\) is \(\varphi\)–convergent for every \(x = (x_{kl}) \in P(\lambda(\Delta))\). If we consider the sequence \(x = (x_{kl})\) defined in (3.4). Then, we can observe that

\[
\sum_{k,l=1}^{\infty} a_{kl} x_{kl} = \sum_{k,l=1}^{\infty} kla_{kl}
\]

and by the equality \(y = \Delta x\) we have the following series

\[
\sum_{k,l=1}^{s,t} kla_{kl} = \sum_{k,l=1}^{s-t-1} \left(\sum_{i,j=k,l}^{\infty} a_{ij} \right) - \sum_{k,l=1}^{s-t-1} \left(\sum_{i,j=s,t}^{\infty} a_{ij} \right) \\
= \sum_{k,l=1}^{s-t-1} R_{kl} - st R_{st}
\]

which is \(\varphi\)–convergent as \(s, t \to \infty\). Thus, \(a = (a_{kl}) \in D_2\). Moreover, by Corollary 3.4(ii) we can write that \(st R_{st} \to 0\) as \(s, t \to \infty\) for every \(y = (y_{kl}) \in \lambda\), and \(\sum_{k,l=1}^{\infty} R_{kl} < \infty\). Therefore, \(a = (a_{kl}) \in D_4\).

Hence the inclusion \([P(\lambda(\Delta))]^{\beta(\varphi)} \subset D_2 \cap D_4\) holds. This completes the proof. \(\square\)

Theorem 3.7. Let \(\lambda \in \{M_1, C_\vartheta\}\). Then \([P(\lambda(\Delta))]^{\gamma} = D_3 \cap D_4\), where \(\vartheta \in \{bp, r\}\).

Proof. The proof can be done with the similar path as above by considering Corollary 3.4(i). So, we omit the repetition. \(\square\)

4. **Matrix Transformations**

In this section we characterize the four-dimensional matrix mapping from the sequence space \(\lambda(\Delta)\) to \(\mu\) and vice-versa. Then we conclude the section with some significant results.

Theorem 4.1. The four-dimensional matrix \(A = (a_{mnkl}) \in (\lambda(\Delta) : \mu)\) if and only if

\[
A_{mn} = (a_{mnkl})_{k,l \in \mathbb{N}} \in (\lambda(\Delta))^{\beta(\varphi)} \text{ for all } m, n \in \mathbb{N},
\]

\[
A_{mn}(kl) = \sum_{k,l=1}^{\infty} kla_{mnkl} \in \mu,
\]

\[
B = (b_{mnkl}) \in (\lambda : \mu),
\]

for all \(m, n, k, l \in \mathbb{N}\).
where the four-dimensional matrix

\[(4.4)\]

\[B = (b_{mnkl}) = \sum_{i,j=kl}^{\infty} a_{mnij} \text{ for all } m,n,k,l \in \mathbb{N}.\]

Proof. Suppose that \(A = (a_{mnkl}) \in (\lambda(\Delta) : \mu)\). Then, \(A_{mn}(x)\) exists for every \(x = (x_{kl}) \in \lambda(\Delta)\) and is in \(\mu\) for all \(m,n \in \mathbb{N}\). If we define the sequence \(x = (x_{kl})\) by

\[(4.5)\]

\[x_{kl} := \begin{cases} 1 & , \text{ } k = l \\ 0 & \text{, otherwise} \end{cases}\]

for all \(k,l \in \mathbb{N}\), then the necessity of \((4.1)\) is clear. If we define the sequence \(x = (x_{kl})\) as \(x_{kl} = kl\) for all \(k,l \in \mathbb{N}\), then the necessity of \((4.2)\) is also clear by Theorem 3.6. Moreover, by Theorem 3.6 we have \(\sum_{k,l=1}^{\infty} |a_{mnkl}| < \infty\) for each \(m,n \in \mathbb{N}\).

Now suppose that \(x = (x_{kl}) \in P(\lambda(\Delta)) \subset \lambda(\Delta)\) let us consider the \((s,t)^{th}\) partial sum of the series \(\sum_{k,l=1}^{\infty} a_{mnkl}x_{kl}\) by considering the relation \(x_{kl} = \sum_{i,j=0}^{k-1,l-1} y_{ij}\) between terms of the sequences \(x = (x_{kl})\) and \(y = (y_{kl})\) as in the following

\[A_{mn}^{st}(x) = \sum_{k,l=1}^{s,t} a_{mnkl}x_{kl}\]

\[= \sum_{k,l=1}^{s,t} a_{mnkl} \left(\sum_{i,j=0}^{k-1,l-1} y_{ij} \right)\]

\[= \sum_{k,l=1}^{s,t} a_{mnkl} \left(\sum_{i,j=k,l}^{s-1,t-1} a_{mnij} \right) y_{kl}\]

\[= \sum_{k,l=1}^{s,t} b_{mnkl} y_{kl} - b_{mnts} \sum_{k,l=1}^{s-1,t-1} y_{kl}\]

where \(y \in \lambda\). We obtain by letting \(\vartheta\)-limit as \(s,t \to \infty\) and by considering the Corollary 3.3(iii) that \(A_{mn}(x) = \sum_{k,l=1}^{\infty} b_{mnkl} y_{kl}\), that is \(Ax = By\) for each \(m,n \in \mathbb{N}\). Therefore, \(A = (a_{mnkl}) \in (\lambda(\Delta) : \mu)\) implies that \(B = (b_{mnkl}) \in (\lambda : \mu)\).

Now suppose that the conditions \((4.1)-(4.3)\) hold. Let us take a sequence \(x = (x_{kl}) \in \lambda(\Delta)\) defined by

\[x_{kl} := \begin{cases} x_{k,1} & , \text{ } k \geq 1, l = 1 \\ x_{1,l} & , \text{ } k = l, l \geq 1 \\ \tilde{x}_{kl} & , \text{ } k > l, l > 1 \end{cases}\]

where \(\tilde{x} = (\tilde{x}_{kl}) \in P(\lambda(\Delta))\). Then, if we write again the above \((s,t)^{th}\) partial sum of the series \(\sum_{k,l=1}^{\infty} a_{mnkl}x_{kl}\), we have

\[A_{mn}^{st}(x) = \sum_{k,l=1}^{s,t} a_{mnkl}x_{kl}\]

\[= a_{mn11}x_{11} + \sum_{l=2}^{t} a_{mn1,l}x_{1,l} + \sum_{k=2}^{s} a_{mn,k,1}x_{k,1} + \sum_{k,l=2}^{s,t} a_{mnkl}\tilde{x}_{kl}\]

\[= a_{mn11}x_{11} + \sum_{k=2}^{s-1} b_{mnk1} y_{k,1} + \sum_{l=2}^{t} b_{mn1,l} y_{1,l} + \sum_{k,l=1}^{s-1,t-1} b_{mnkl} y_{kl} - b_{mnts} \sum_{k,l=1}^{s-1,t-1} y_{kl}\]
Therefore, we obtain by letting limit as \(s, t \to \infty \) that
\[
A_{mn}(x) = a_{mn1}x_{11} + \sum_{k=2}^{\infty} b_{mnk,1}y_{k,1} + \sum_{l=2}^{\infty} b_{mn,1,l}y_{1,l} + \sum_{k,l=1}^{\infty} b_{mnkl}y_{kl}.
\]
Thus, \(A_{mn}(x) \) exists for each \(x = (x_{kl}) \in \lambda(\Delta) \) and is in \(\mu \) since \(B \in (\lambda : \mu) \). This completes the proof. \(\square \)

We list some four-dimensional matrix classes from and into the sequence spaces \(\lambda, \mu = \{M_u, C_{bp}, C_r\} \) as in the following table, which have been characterized in some distinguished papers (see [14, Theorem 3.5], [15, Lemma 3.2], [16, Theorem 2.2], [17, Theorem 3.2]).

Table 1. The characterizations of the matrix classes \((\lambda; \mu)\), where \(\lambda, \mu \in \{M_u, C_{bp}, C_r\} \).

From \(\lambda \) \(\downarrow \) \(\to \mu \)	\(M_u \)	\(C_{bp} \)	\(C_r \)
\(M_u \)	1	2	*
\(C_{bp} \)	3	4	4
\(C_r \)	*	5	5

We list the necessary and sufficient conditions for each class in the following table. Note that * shows the unknown characterization of respective four-dimensional matrix class.
Corollary 4.2. Let the four-dimensional matrix $B = (b_{mnkl})$ is defined as in (4.4). Then the followings hold for four-dimensional infinite matrix $A = (a_{mnkl})$.

(i) $A \in (M_u(\Delta), M_u)$ if and only if the conditions in (4.1) and (4.2) hold, and 1 holds in Table 2 with b_{mnkl} instead of a_{mnkl}.

(ii) $A \in (M_u(\Delta), C_{bp})$ if and only if the conditions in (4.1) and (4.2) hold, and 2 holds in Table 2 with b_{mnkl} instead of a_{mnkl}.

(iii) $A \in (C_{bp}(\Delta), M_u)$ if and only if the conditions in (4.1) and (4.2) hold, and 3 holds in Table 2 with b_{mnkl} instead of a_{mnkl}.

(iv) Let $\vartheta = \{bp, r\}$. $A \in (C_{bp}(\Delta), C_{\vartheta})$ if and only if the conditions in (4.1) and (4.2) hold, and 4 holds in Table 2 with b_{mnkl} instead of a_{mnkl}.

(v) Let $\vartheta = \{bp, r\}$. $A \in (C_{\vartheta}(\Delta), C_{\vartheta})$ if and only if the conditions in (4.1) and (4.2) hold, and 5 holds in Table 2 with b_{mnkl} instead of a_{mnkl}.

Theorem 4.3. The four-dimensional matrix $A = (a_{mnkl}) \in (\mu : \lambda(\Delta))$ if and only if

\begin{equation}
A_{mn} \in \mu^{\lambda(\vartheta)},
\end{equation}

\begin{equation}
F = (f_{mnkl}) \in (\mu : \lambda),
\end{equation}

where the four-dimensional matrix

\begin{equation}
F = (f_{mnkl}) = \Delta_{mn}a_{mnij} = a_{mnij} - a_{m+n+1,i} + a_{m+1,n+1,i}.
\end{equation}

Proof. Suppose that $A = (a_{mnkl}) \in (\mu : \lambda(\Delta))$. Then, $A_{mn}(x)$ exists for every $x = (x_{kl}) \in \mu$ and is in $\lambda(\Delta)$ for all $m, n \in \mathbb{N}$. Thus, the necessity of (4.17) is immediate. Since $A_{mn}(x) \in \lambda(\Delta)$, then $\Delta A \in \lambda$ for every $x = (x_{kl}) \in \mu$. Clearly ΔA is the matrix F. Hence, the necessity of the condition $F = (f_{mnkl}) \in (\lambda : \mu)$ can be clearly seen. The rest of the theorem can be followed by the similar path as in Theorem 4.1. We omit the details.

Corollary 4.4. Let the four-dimensional matrix $F = (f_{mnkl})$ is defined as in (4.19). Then the followings hold for four-dimensional infinite matrix $A = (a_{mnkl})$.

(i) $A \in (M_u, M_u(\Delta))$ if and only if the condition in (4.17) holds, and 1 holds in Table 2 with f_{mnkl} instead of a_{mnkl}.

(ii) $A \in (M_u, C_{bp}(\Delta))$ if and only if the condition in (4.17) holds, and 2 holds in Table 2 with f_{mnkl} instead of a_{mnkl}.

(iii) $A \in (C_{bp}, M_u(\Delta))$ if and only if the condition in (4.17) holds, and 3 holds in Table 2 with f_{mnkl} instead of a_{mnkl}.

(iv) Let $\vartheta = \{bp, r\}$. $A \in (C_{bp}, C_{\vartheta}(\Delta))$ if and only if the condition in (4.17) holds, and 4 holds in Table 2 with f_{mnkl} instead of a_{mnkl}.

(v) Let $\vartheta = \{bp, r\}$. $A \in (C_{\vartheta}, C_{\vartheta}(\Delta))$ if and only if the condition in (4.17) holds, and 5 holds in Table 2 with f_{mnkl} instead of a_{mnkl}.

Table 2. The necessary and sufficient conditions for $A \in (\lambda; \mu)$, where $\lambda, \mu \in \{M_u, C_{bp}, C_{\vartheta}\}$.

1 iff	2 iff	3 iff	4 iff	5 iff
(4.6)	(4.6)	(4.6)	(4.6)	(4.6)
(4.7)	(4.7)	(4.7)	(4.7)	(4.7)
(4.18)	(4.18)	(4.18)	(4.18)	(4.18)
(4.19)	(4.19)	(4.19)	(4.19)	(4.19)
(4.10)	(4.10)	(4.10)	(4.10)	(4.10)
(4.10)	(4.10)	(4.10)	(4.10)	(4.10)

5. CONCLUSION

The four-dimensional backward difference matrix domain on some double sequence spaces has been studied by Demiriz and Duyar [12]. Then Başar and Tuğ [13], and Tuğ [14, 15, 16, 17, 18, 19, 20, 21, 22, 23] studied the four-dimensional generalized backward difference matrix and its domain in some double sequence spaces. Moreover, Tuğ at al. [21, 25] studied the sequentially defined four-dimensional
backward difference matrix domain on some double sequence spaces, and the space $\mathcal{BV}_{\vartheta_0}$ of double sequences of bounded variations, respectively.

In this work we defined the new double sequence spaces $\mathcal{M}_\vartheta(\Delta), \mathcal{C}_\vartheta(\Delta)$, where $\vartheta \in \{bp, r\}$ derived by the domain of four-dimensional forward difference matrix Δ. Then we investigated some topological properties, determined $\alpha-$, $\beta(\vartheta)-$ and $\gamma-$duals and characterized some four-dimensional matrix classes related with these new double sequence spaces.

The paper contribute nonstandard results and new contributions to the theory of double sequences. As a natural continuation of this work, the four-dimensional forward difference matrix domain in the double sequence spaces \mathcal{C}_p and \mathcal{L}_q, where $0 < q < \infty$ are still open problem. Moreover, the four-dimensional forward difference matrix domain in the spaces \mathcal{C}_f, \mathcal{BS}, \mathcal{CS} and \mathcal{BV} can be calculated. Furthermore, Hahn double sequence space can be defined and studied by using some significant results stated in this work.

Funding

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not available.

Code availability

Not available.

References

[1] F. Móricz, Extensions of the spaces c and c_0 from single to double sequence, Acta Math. Hungar. 57 (1991), 129–136.

[2] J. Boos, Classical and Modern Methods in Summability, Oxford university Press, New York, 2000.

[3] G.H. Hardy, On the convergence of certain multiple series, Math. Proc. Cambridge Philos. Soc. 19 (1916-1919), 86-95.

[4] F. Başar, Y. Sever, The space \mathcal{L}_Q of double sequences, Math. J. Okayama Univ. 51 (2009), 149–157.

[5] M. Zeltser, On conservative matrix methods for double sequence spaces, Acta Math. Hungar. 95 (3) (2002), 225–242.

[6] B. Altay, and F. Başar, Some new spaces of double sequences, Journal of Mathematical Analysis and Applications 309, no. 1 (2005): 70-90.

[7] C. R. Adams, On non-factorable transformations of double sequences. Proceedings of the National Academy of Sciences of the United States of America, 19(5), 564(1933).

[8] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies 85, Amsterdam-New York-Oxford, 1984.

[9] M. Zeltser, Investigation of double sequence spaces by soft and hard analytical methods. Tartu: Tartu Univ. Press, (2001).

[10] S. Loganathan and C. Ganesa Moorthy, A net convergence for Schauder double bases, Asian-European Journal of Mathematics 9 (01) (2016), 1650010.

[11] R. G. Cooke, Infinite matrices and sequence spaces. Courier Corporation (2014).

[12] S. Demiriz and O. Duyar, Domain of difference matrix of order one in some spaces of double sequences. arXiv preprint arXiv:1501.01113 (2015).

[13] O. Tuğ and F. Başar, Four-dimensional generalized difference matrix and some double sequence spaces. AIP Conference Proceedings. Vol. 1759. No. 1. AIP Publishing, 2016.

[14] O. Tuğ, Four-dimensional generalized difference matrix and some double sequence spaces. J. Inequal. Appl. 2017.1, 149(2017). https://doi.org/10.1186/s13660-017-1423-y.

[15] C. Çağan, B. Altay, M. Mursaleen, The σ-convergence and σ-core of double sequences. Appl. Math. Lett. 2006, 19, 387–399, doi:10.1016/j.aml.2005.12.003.

[16] M. Zeltser, M. Mursaleen and S. A. Mohiuddine, On almost conservative matrix methods for double sequence spaces, Publ. Math. Debrecen 75 (2009), 387-399.

[17] M. Yeşilkayağil, F. Başar, Mercerian theorm for four-dimensional matrices. Commun. Fac. Sci. Univ. Ank. Ser. A1 2016, 65, 147-155, doi:10.1501/Commua1_0000000750.

[18] O. Tuğ, On almost B-summable double sequence spaces, J. Inequal. Appl. vol. 2018, 1, 9(2018). https://doi.org/10.1186/s13660-017-1606-6
[19] O. Tuğ, On the characterization of some classes of four-dimensional matrices and almost $B-$summable double sequences, J. Math., vol. 2018, Article ID 1826485, 7 pages, 2018. https://doi.org/10.1155/2018/1826485.

[20] O. Tuğ, Four-Dimensional Generalized Difference Matrix and Almost Convergent Double Sequence Spaces. In: Kalmenov T., Nursultanov E., Ruzhansky M., Sadybekov M. (eds) Functional Analysis in Interdisciplinary Applications. FAIA 2017. Springer Proceedings in Mathematics & Statistics, vol 216. Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-67053-9_7.

[21] O. Tuğ, On the Matrix Domain in the Sequence L_u, Eurasian Journal of Science and Engineering 3, no. 1: 204-211(2017). https://doi.org/10.23918/eajse.v3i1sip204

[22] O. Tuğ, $B(r, s, t, u)$-summable Double Sequence Spaces and Matrix Transformations. Ph.D. Dissertation; University of Niš; Niš, Serbia, 2019. http://nardus.mpn.gov.rs/handle/123456789/12150

[23] O. Tuğ, The spaces of $B(r, s, t, u)$ strongly almost convergent double sequences and matrix transformations, Bull. Sci. Math, 169(2021) https://doi.org/10.1016/j.bulsci.2021.102989.

[24] O. Tuğ, V. Rakočević and E. Malkowsky, On the Domain of the Four-Dimensional Sequential Band Matrix in Some Double Sequence Spaces. Mathematics, 8, 789(2020). https://doi.org/10.3390/math8050789.

[25] O. Tuğ, V. Rakočević and E. Malkowsky, On the Spaces BV_{00} of Double Sequences of Bounded Variation, Under review.

(Orhan Tuğ) **DEPARTMENT OF MATHEMATICS EDUCATION, TISHK INTERNATIONAL UNIVERSITY, Erbil, Iraq**

Email address: orhan.tug@tiu.edu.iq

(Eberhard Malkowsky) **FACULTY OF MANAGEMENT, UNIVERSITY UNION NIKOLA TESLA, 11000 BELGRADE, SERBIA**

Email address: ema@pmf.ni.ac.rs; Eberhard.Malkowsky@math.uni-giessen.de

(Viladimir Rakočević) **DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCES AND MATHEMATICS UNIVERSITY OF NIŠ, VIŠEGRADSKA 33, 18000, NIŠ-SERBIA**

Email address: vrakoc@bankerinter.net

(Bipan Hazarika) **DEPARTMENT OF MATHEMATICS, GAUHATI UNIVERSITY, GAUHATI, INDIA.**

Email address: bh_gu@gauhati.ac.in