Examples of non connective C^*-algebras

A. Gąsior, A. Szczepański

July 7, 2021

Abstract

We give an example of two infinite families of not connective groups. Both of them are generalization of the 3-dimensional Hantzsche-Wendt group.

Key words. connective C^*-algebras, crystallographic groups, combinatorial and generalized Hantzsche-Wendt groups,

Mathematics Subject Classification: 46L05, 20H15, 46L80

1 Introduction

For a Hilbert space \mathcal{H}, we denote by $L(\mathcal{H})$ the C^*-algebra of bounded and linear operators on \mathcal{H}. The ideal of compact operators is denoted by $\mathcal{K} \subset L(\mathcal{H})$. For the C^*-algebra A, the cone over A is defined as $CA = C_0[0,1) \otimes A$, the suspension of A as $SA = C_0(0,1) \otimes A$.

Definition 1. Let A be a C^*-algebra and $n \in \mathbb{N}, n \geq 1$. A is connective if there is a $*$-monomorphism

$$\Phi : A \rightarrow \prod_n CL(\mathcal{H}) / \bigoplus_n CL(\mathcal{H})$$

which is liftable to a completely positive and contractive map $\phi : A \rightarrow \prod_n CL(\mathcal{H})$.

*The first author is supported by the Polish National Science Center grant DEC2017/01/X/ST1/00062.
For a discrete group G, we define $I(G)$ to be the augmentation ideal, i.e. the kernel of the trivial representation $C^*(G) \to \mathbb{C}$. G is called connective if $I(G)$ is a connective C^*-algebra. From definition (see [5, p. 492]) connectivity of G may be viewed as a stringent topological property that accounts simultaneously for the quasidiagonality of $C^*(G)$ and the verification of the Kadison-Kaplansky conjecture for certain classes of groups. Here we can referring to conjecture from 2014 [2, p. 166]. If G is a discrete, countable, torsion-free, amenable group, then the natural map

$$[[I(G), \mathcal{K}] \to KK(I(G), \mathcal{K}) \cong K^0(I(G))$$

is an isomorphism of groups. Where $KK(I(G), \mathcal{K})$ is the Kasparov group and $[[I(G), \mathcal{K}]]$ is a group of the homotopy classes of asymptotic morphisms. In 2017 M. Dadarlat found an amenable and not connective group G_2 for which the above conjecture fails [4, Cor. 3.2].

Connective groups must be torsion-free, [3, Remark 2.8 and 4.4]. Here is a short list of such groups:

1. a countable torsion free nilpotent groups, [3, Th.4.3];
2. let $0 \to N \to G \to H \to 0$ be a central extension of discrete countable amenable groups where N is torsion-free. If H is connected then so does G; [3, Th. 4.1];
3. wreath product of connected groups is a connected group [7, Th.3.2];
4. a torsion-free crystallographic group is connective if and only if is locally indicable if and only if is diffuse (see below) and [4].

A discrete group G is called locally indicable if every finitely generated non-trivial subgroup L of G has an infinite abelianization. The group G is called diffuse if every non-empty finite subset A of G has an element $a \in A$ such that for any $g \in G$, either ga or $g^{-1}a$ is not in A. [4], [8].

More examples of nonabelian connective groups were exhibited in [4], [5], [7].

The above group G_2 is a 3-dimensional, torsion-free crystallographic group, where a crystallographic group Γ, of dimension n is a cocompact and discrete subgroup of the isometry group $E(n) = O(n) \ltimes \mathbb{R}^n$ of the Euclidean space \mathbb{R}^n. Γ is cocompact if and only if the orbit space $E(n)/\Gamma$ is compact. From
Bieberbach theorems (see [10, Chapter 1]) any crystallographic group Γ defines a short exact sequence

$$0 \to \mathbb{Z}^n \to \Gamma \to H \to 0,$$

where a free abelian group \mathbb{Z}^n is a maximal abelian subgroup and H is a finite group. H is sometimes called a holonomy group of Γ. The above group G_2 is isomorphic to the subgroup $E(3)$ and is generated by

$$G_2 \cong \text{gen}\{A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, (1/2, 1/2, 0)), B = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, (0, 1/2, 1/2)))\}.$$

A torsion-free crystallographic group is called a Bieberbach group. The orbit space \mathbb{R}^n/Γ of a Bieberbach group is a n-dimensional closed flat Riemannian manifold M with holonomy group isomorphic to H.

A general characterization of connective Bieberbach groups is given in [4]. The following two theorems give us a landscape of them.

Theorem 1. ([4, Theorem 1.2]) Let Γ be a Bieberbach group. The following assertions are equivalent.

1. Γ is connective
2. Every nontrivial subgroup of Γ has a nontrivial center.
3. Γ is a poly-\mathbb{Z} group
4. $\hat{G} \setminus \{\iota\}$ has no nonempty compact open subsets.

The unitary dual \hat{G} of G consists of equivalence classes of irreducible unitary representations of G. ι denotes the trivial representation.

Theorem 2. ([4, Theorem 1.1]) A Bieberbach group with a finite abelianization is not connective.

In our note we give an example of two infinite families of not connective groups. Both of them are generalization of the 3-dimensional Hantzsche-Wendt group G_2.

2 Examples

Example 1. ([10] Definition 9.1]) Let $n \geq 3$. By generalized Hantzsche-Wendt (GHW for short) group we shall understand any torsion-free crystallographic groups of rank n with a holonomy group $(\mathbb{Z}_2)^{n-1}$.

Example 2. ([1] Definition], [11] Definition 1]) Let $n \geq 0$. A group

$$G_n = \{x_1, x_2, \ldots, x_n \mid x_i^{-1}x_j^2x_i, \forall i \neq j \}$$

we shall call a combinatorial Hantzsche-Wendt group.

For the properties of GHW groups we refer to [10] Chapter 9]. We have $G_0 = 1$ and $G_1 \cong \mathbb{Z}$. Combinatorial Hantzsche-Wendt groups are torsion-free, see [1] Theorem 3.3] and for $n \geq 2$ are nonunique product groups. A group G is called a unique product group if given two nonempty finite subset X, Y of G, there exists at least one element $g \in G$ which has a unique representation $g = xy$ with $x \in X$ and $y \in Y$. We are ready to present our main result.

Proposition 1. Generalized Hantzsche-Wendt groups with trivial center and nonabelian, combinatorial Hantzsche-Wendt groups are not connective.

Proof: From [3] Remark 2.8 (i] the connectivity property is inherited by subgroups. Let G be any group from family of GHW groups or family of combinatorial Hantzsche-Wendt groups. In both cases a group G_2 is a subgroup of G. In the first case it follows from [10] Proposition 9.7]. In the second case it follows from definition, see [1] Prop. 3.4]. Note that in the case of GHW groups we can also use Theorem 2, since all these groups have a finite abelianizations.

Remark 1. From [11], for $n \geq 3$, G_n has a non-abelian free subgroup. Hence is not amenable.

Remark 2. The counterexample to the Kaplansky unit conjecture was given in 2021 by G. Gardam [9]. It was found in the group ring $\mathbb{F}_2[G_2]$. The Kaplansky unit conjecture states that every unit in $K[G]$ is of the form kg for $k \in K \setminus \{0\}$ and $g \in G$.

Acknowledgements We thank the referee for a number of suggestions that improved the exposition.
References

[1] W. Craig, P. Linnell, Unique product groups and congruence subgroups, to appear in J.Pure and Apply Algebra

[2] M. Dadarlat, Group quasi-representations and almost flat bundles, J. Noncommut. Geom. 8(1) (2014) 163 – 178.

[3] M. Dadarlat, Deformations of nilpotent groups and homotopy symmetric \mathbb{C}^*-algebras. Math. Ann., 367, (2017) 121-134

[4] M. Dadarlat and E. Weld, Connective Bieberbach groups, Internat J. Math., 31(2020), no.6 20050047, 13 pp.

[5] M. Dadarlat; U. Pennig, Connective C^*-algebras. J. Funct. Anal. 272 (2017), no. 12, 4919 – 4943.

[6] M. Dadarlat. On the asymptotic homotopy type of inductive limit \mathbb{C}^*-algebras. Math. Ann., 297(4):671 – 676, 1993.

[7] M. Dadarlat, U. Pennig, A. Schneider, Deformations of wreath products, Bull. Lond. Math. Soc. 49(1) (2017) (ISSN1469-2120) 23 – 32, http://dx.doi.org/10.1112/blms.12008

[8] A. Gąsior, R. Lutowski, A. Szczepański, A short note about diffuse Bieberbach groups, J. Algebra, 494, 2018, 237 - 245

[9] G. Gardam, A countexample to the unit conjecture for group rings, [arXiv:2102.11818v3](https://arxiv.org/abs/2102.11818)

[10] A. Szczepański, Geometry of crystallographic groups, World Scientific, 2012

[11] A. Szczepański, Properties of the combinatorial Hantzsche-Wendt groups, [arXiv:2103.12494](https://arxiv.org/abs/2103.12494)

Institute of Mathematics, Maria Curie-Skłodowska University
Pl. Marii Curie-Skłodowskiej 1
20-031 Lublin
Poland
E-mail: anna.gasior@poczta.umcs.lublin.pl
Institute of Mathematics, University of Gdańsk
ul. Wita Stwosza 57,
80-952 Gdańsk,
Poland
E-mail: matas@univ.gda.pl