Central exclusive production at LHCb

Ronan Wallace on behalf of the LHCb Collaboration

DIS 2015

ronan.wallace@cern.ch
Overview

– Motivations.
– Experimental signatures.
– Selecting exclusive events at LHCb.
– Results.
 – Exclusive J/ψ and $\psi(2s)$. *J. Phys. G: Nucl. Part. Phys.* 41 (2014) 055002
 – Exclusive charmonium pairs. *J. Phys. G: Nucl. Part. Phys.* 41 (2014) 115002
 – Exclusive Υ. LHCb-PAPER-2015-011
– Future work.
Motivations

- Test QCD at perturbative/non-perturbative frontier.
- Cross-section $\propto (\text{Gluon PDF})^2$
- Saturation effects.
- Search for odderon/tetraquarks/$X(3872)$.

At LHCb $x \sim 10^{-5}$

Large $xg(x, Q^2)$ uncertainty

Eur.Phys.J.C63:189-285,2009

Test QCD at perturbative/non-perturbative frontier.

Cross-section $\propto (\text{Gluon PDF})^2$
Elastic/diffractive physics

- Elastic scattering
- Single diffractive
- Double diffractive
- CEP (elastic)
- CEP (diffractive)

LHCb coverage

Ronan Wallace
University College Dublin
CEP

CEP signal: J/ψ, $\psi(2s)$, γ

CEP feed-down: $\chi_c \rightarrow J\psi\gamma$

CEP non-resonant: $\gamma\gamma \rightarrow \mu\mu$
LHCb detector

Int. J. Mod. Phys. A 30, 1530022 (2015)

1.5<\eta<5

\mu_{\text{vis}} \sim 1.4

10\text{m}

Velo & Tracking

SPD (<10 hits)

Magnet

Muon (p_{T}>400 \text{ MeV}/c)

Calorimeters

RICH

Mu \text{on}
Advantages for CEP

- Pseudorapidity coverage
 - Forward tracks $1.5 < \eta < 5$
 - Backward tracks $-1.5 < \eta < -3$

- Low p_T trigger for leptons, photons, hadrons
 - Muons $p_T > 400\text{MeV}/c$
 - Hadronic energy $E_T > 1\text{GeV}$
 - Particle ID with RICH: $\pi/K/p$

- Low pile-up conditions. $\sim 20\%$ of data between 2010-2012 has only single interaction.
Exclusive $J/\psi, \psi(2s)$ selection

- **Trigger:** One muon $p_T > 400\text{MeV}/c$, $SPD < 10$.

- **Selection:**
 - 2 reconstructed muons in forward region (y gap 3.5 units). No other tracks with Velo hits.
 - No photons (reduce χ_c decays).
 - No tracks in backward region (y gap 1.7 units).
 - Dimuon $p_T^2 < 0.8\text{GeV}^2/c^2$. $|M_{\mu\mu} - M_{J/\psi, \psi(2s)}| < 65\text{MeV}/c^2$.
 - 55,985 J/ψ and 1565 $\psi(2s)$.

No veto on backward tracks

Veto on backward tracks

CEP signal

Ronan Wallace

University College Dublin
Non-resonant background

- Fit invariant mass distribution with Crystal Ball for signal and exponential for non-resonant background.
- In signal window $(0.8 \pm 0.1)\%$ and $(17.0 \pm 0.3)\%$ for J/ψ and $\psi(2s)$.

Ronan Wallace
University College Dublin
Feed-down and inelastic background (Regge theory and HERA)

- **Feed-down:** $\chi_c \rightarrow J/\psi \gamma$ if photon outside acceptance or undetected.
- Scale exclusive χ_c data sample by fraction of exclusive χ_c identified as exclusive J/ψ in simulation.

- **Inelastic:** Largest background due to diffractive J/ψ and $\psi(2s)$ with gluon radiation or proton dissociation. Characteristic p_T of these processes is larger.
- Regge theory: Exclusive production $\frac{d\sigma_{\text{excl.}}}{dt} \propto e^{b_st}$ where $t \approx -p_T^2 c^2$ is 4-momentum transfer at proton pomeron vertex.
- For $|t| < 1.2$ GeV2 proton dissociative production $\frac{d\sigma_{\text{diss.}}}{dt} \propto e^{b_{pd}t}$.
- Extrapolate HERA values to LHC energies $b(W) = b_0 + 4\alpha' \log(W/W_0)$ and get $b_s \approx 6\text{GeV}^{-2}$ and $b_{pd} \approx 1\text{GeV}^{-2}$.

GeV^{-2}	b_s	b_{pd}
J/ψ (ZEUS)	$4.15 \pm 0.05^{+0.30}_{-0.18}$	$-$
J/ψ (H1)	4.88 ± 0.15	1.07 ± 0.11
$\psi(2s)$ (H1)	4.3 ± 0.6	0.59 ± 0.17

Eur.Phys.J.C24(2002)345; Eur.Phys.J.C73(2013)2466; Phys.Lett.B541(2002)251; Phys.Lett.B568(2003)205
Inelastic background: LHCb fit

\[\frac{F_s}{N_1} e^{-b_s p_T^2 c^2} + \frac{F_{pd}}{N_2} e^{-b_{pd} p_T^2 c^2} + \frac{F_{fd}}{N_3} F_{fd}(p_T^2) \]

GeV^{-2}	b_s \quad b_{pd}	
J/ψ	5.70 ± 0.11	0.97 ± 0.04
ψ(2s)	5.1 ± 0.7	0.8 ± 0.2

J/ψ, χ^2/ndf = 115/96

Purity 0.592 ± 0.012

ψ(2s), χ^2/ndf = 11/16

Purity 0.52 ± 0.07

Ronan Wallace
University College Dublin
Exclusive pairs of J/ψ, $\psi(2S)$, χ_{c0}, χ_{c1}, χ_{c2}

- Double pomeron exchange (DPE), two different production mechanisms.
- Double parton scattering (DPS) in inclusive measurement?
- Compare mass spectrum of exclusive production where DPS is low.
Exclusive pairs of $J/\psi, \psi(2S), \chi_{c0}, \chi_{c1}, \chi_{c2}$
Exclusive $\Upsilon(nS)$ production

LHCb-PAPER-2015-011

- Higher mass perturbative QCD?
- Similar to J/ψ. Mass window now 9-20 GeV/c^2. Feed-down from χ_b.
Cross-section measurement

- Standard cross-section formula.

- $\varepsilon_{sel} = 87\%$. No extra tracks, p_T^2, γ veto, mass window, SPD hits.

- Trigger and muon identification efficiencies using tag-and-probe methods on J/ψ resonance. Product $\varepsilon_{trg}\varepsilon_{id}$ about 80%.

- ε_{single} about 24%.

- Dominant uncertainties due to:
 - Shape of inelastic background for J/ψ
 - Purity determination for $\psi(2S)$
 - Feed-down background model for Υ
J/ψ and ψ(2S) cross-sections

J. Phys. G 41 (2014) 055002; JHEP 11 (2013) 085

- Error bars denote uncorrelated uncertainty. Bands denote total uncertainty.
- Data described by pQCD. NLO in better agreement.
- Data also described by saturation models.
Y cross-sections

- Error bars denote uncorrelated uncertainty. Boxes denote total uncertainty.
- Data cannot be described by LO.
Total cross-section comparison

\[J/\psi \]

\[\psi(2S) \]

Goncalves and Machado
Jones, Martin, Ryskin, Teubner
Motyka and Watt
Schaefer and Szczurek

STARLIGHT
(Schaefer, Szczurek, Stirling)
SUPERCHIC
(Harland-Lang, Ryskin, Stirling)

LHCb

1. Phys. Rev. C84 (2011) 011902; 2. JHEP 11 (2013) 085; 3. Phys. Rev. D78 (2008) 014023;
4. Phys. Rev. D76 (2007) 094014; 5. Phys. Rev. Lett. 92 (2004) 142003; 6. Eur. Phys. J C65 (2010) 433;
Comparing LHCb results with HERA

- HERA ep collider. Photon from electron.
 \(\sigma_{\gamma p \rightarrow \nu p} \) as function of \(\gamma p \) CM energy \(W \).
- \(W^2 = M \sqrt{s} e^{\pm|y|} \)
- At LHC photon radiates from proton.
- Model the exclusive \(pp \) cross-section using HERA.

\[
\frac{d\sigma}{dy}_{pp \rightarrow p J/\psi p} = r_+ k_+ \frac{dn}{dk_+} \sigma_{\gamma p \rightarrow J/\psi p}(W^+) + r_- k_- \frac{dn}{dk_-} \sigma_{\gamma p \rightarrow J/\psi p}(W^-)
\]

- Account for relative photon flux \(\frac{dn}{dk_{\pm}} \) with \(k_{\pm} \sim (m_V/2) \exp(\pm|y|) \).
- Gap survival factors \(r_{\pm} \) account for other hadron-hadron interactions that spoil exclusivity.
- Sum of two cross-sections corresponding to situations where photon is either target or emitter.
Comparing LHCb results with HERA: \(J/\psi \)

Assume power law \(\sigma_{\gamma p \rightarrow J/\psi p}(W) = 81(W/90\text{GeV})^{0.67} \text{nb} \) for \(\sigma_{\gamma p \rightarrow J/\psi p}(W^-) \).

\[\frac{d\sigma}{dy}_{pp \rightarrow pJ/\psi p} = r_+ k_+ \frac{dn}{dk_+} \sigma_{\gamma p \rightarrow J/\psi p}(W^+) + r_- k_- \frac{dn}{dk_-} \sigma_{\gamma p \rightarrow J/\psi p}(W^-) \]
Comparing LHCb results with HERA: Υ

- Cross-section vs. γp CM energy W again shows superiority of NLO over LO.
- Υ probing a new regime in W.

![Graph showing LHCb results](image)
Future prospects

- HERSCHEL: High Rapidity Shower Counter
- Increase size of rapidity gap (to ± 9). Reduce inelastic backgrounds.
- Trigger for hadrons, photons, electrons as well as muons.
- Exclusive Λ, D, low mass resonances in analysis of continuum, glueballs,
Take home

- LHCb well suited to study of exclusive vector meson production with decays to muon final-states.
- In particular this is due to low p_T trigger and low pileup running conditions.
- Theoretical predictions on the market describe the data well - NLO pQCD and saturation models.
- Run-2 to include wider range of final-states and improved selection with HERSCHEL.
These slides were produced as part of the output of the DGGP, funded under the Programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund. Additional support is provided by UCD School of Physics Postgrad Travel Bursary scheme.
Pileup \((\varepsilon_{single})\)

- *pp* interaction defined as interaction with 1 or more tracks having VELO information.
- The number of these, \(n\), follows poisson distribution.

\[
P(n) = \frac{\mu^n e^{-\mu}}{n!}
\]

- \(\mu \sim 1.4\) in 2011 data taking.
- Scale luminosity by \(\varepsilon_{single} = P(0) = 0.241 \pm 0.003\).
J/ψ and $\psi(2S)$ cross-sections

J. Phys. G 41 (2014) 055002; Phys. Rev. D78 (2008) 014023; Phys.Rev. D88 (2013) 017504

Data described by saturation models.
Total cross-section comparison

All predictions in agreement with data.

[pb]	J/ψ	$\psi(2S)$	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
Goncalves and Machado1	275	-	-	-	-
JMRT2	282	8.3	-	-	-
Motyka and Watt3	334	-	-	-	-
Shafer and Szczurek4	317	-	-	-	-
Starlight5	292	6.1	-	-	-
SuperChic6	317	7.0	-	-	-
LHCb	291 ± 20	6.5 ± 1.0	8.97 ± 2.43	1.27 ± 0.89	< 3.2 (95% C.L.)

1Phys. Rev. C84 (2011) 011902; 2JHEP 11 (2013) 085; 3Phys. Rev. D78 (2008) 014023;

4Phys. Rev. D76 (2007) 094014; 5Phys. Rev. Lett. 92 (2004) 142003; 6Eur. Phys. J C65 (2010) 433;