Chromatin architecture reorganization in murine somatic cell nuclear transfer embryos

Mo Chen¹,²,³,⁴,⁵,⁶, Qianshu Zhu²,⁶, Chong Li¹,⁶, Xiaochen Kou¹, Yanhong Zhao¹, Yanhe Li¹, Ruimin Xu¹, Lei Yang¹, Lingyue Yang¹, Liang Gu⁲, Hong Wang¹, Xiaoyu Liu³, Cizhong Jiang², Shaorong Gao¹,³

The oocyte cytoplasm can reprogram the somatic cell nucleus into a totipotent state, but with low efficiency. The spatiotemporal chromatin organization of somatic cell nuclear transfer (SCNT) embryos remains elusive. Here, we examine higher order chromatin structures of mouse SCNT embryos using a low-input Hi-C method. We find that donor cell chromatin transforms to the metaphase state rapidly after SCNT along with the dissolution of typical 3D chromatin structure. Intriguingly, the genome undergoes a mitotic metaphase-like to meiosis metaphase II-like transition following activation. Subsequently, weak chromatin compartments and topologically associating domains (TADs) emerge following metaphase exit. TADs are further removed until the 2-cell stage before being progressively reestablished. Obvious defects including stronger TAD boundaries, aberrant super-enhancer and promoter interactions are found in SCNT embryos. These defects are partially caused by inherited H3K9me3, and can be rescued by Kdm4d overexpression. These observations provide insight into chromatin architecture reorganization during SCNT embryo development.
t is well recognized that somatic cell nuclear transfer (SCNT) provides the only way to reprogram somatic cells into totipotent embryos and generate viable animals1–3. Although various cloned animals, including amphibians4 and mammalians5,6, can be generated, the efficiency of SCNT-mediated cloning remains extremely low. Treatment with histone deacetylase inhibitors7–9, the overexpression of H3K9me3 demethylase Kdm4b/4d10,11, the correction of abnormal DNA re-methylation12 or the deletion of Xist on the active X chromosome13 can significantly improve the developmental potential of SCNT embryos, suggesting aberrant epigenetic modifications as major barriers that prevent successful reprogramming in SCNT.

Chromatin 3D structure is highly dynamic and is associated with many biological processes. Hierarchical principles of interphase chromatin 3D structure include chromosome territories, chromatin compartments (A/B), TADs and loops. A and B compartments are two kinds of multi-megabase domains characterized by the spatial segregation of active and inactive chromatin14. Extensive A/B compartments switching during stem cell differentiation indicates that they are cell type-specific15. TAD is identified as contiguous chromatin region that contains loci with high-frequency interactions inside it, and contacts between TADs are insulated16. Although most TADs are relatively conserved during cell differentiation, the interaction frequency within some domains is different between cell types15. Therefore, proper 3D chromatin structure establishment is an important step during cell fate transition.

With low-input in situ Hi-C techniques, the drastic dynamics of chromatin organization in early embryo development can be detected17–20. In Drosophila embryos, higher order chromatin structure emerges during zygotic genome activation (ZGA) and TAD boundary formation is transcription independent19. In zebrafish embryos, chromatin structure undergoes a process of loss and rebuilding20. In mouse embryos, higher order chromatin architecture gradually matures during development which is transcription independent17,18. However, little is known about the reprogramming of 3D chromatin structure during SCNT embryo development.

Here, we examine the 3D chromatin structure across consecutive stages of SCNT embryo development and find that higher order chromatin architectures, including compartments and TADs, are dissolved and reestablished in a stage-specific and coordinated manner during SCNT embryogenesis. H3K9me3 modification is likely an epigenetic barrier that impairs the reprogramming of chromatin architecture during SCNT embryo development. Therefore, our findings provide a high-resolution map of how the mature 3D chromatin structure of somatic cells is reprogrammed to a totipotent state after transplanting into enucleated oocytes.

Results

The 3D chromatin structure of SCNT embryos. Extensive chromatin architecture reorganization, which is critical for gene expression, occurs during preimplantation embryo development in mammals. To reveal the establishment of higher order chromatin structure during the early development of SCNT embryos, we optimized a small-scale in situ Hi-C (sisHi-C) method based on a recent study17. We generated high-quality Hi-C data using 100–500 mouse ES cells that were accurately consistent with previously reported chromatin interaction patterns and architecture (Supplementary Fig. 1a–d). We next collected mouse cumulus cells (CCs), which were used as donor cells for SCNT, and reconstructed embryos at different stages, including the 0.5 h post-injection (0.5-hpi), 1-hpi, 1 h postactivation (1-hpa), 6-hpa, 12-hpa, early-2-cell embryo, late-2-cell embryo, 4-cell embryo, 8-cell embryo, morula embryo, as well as inner cell mass (ICM) and trophectoderm (TE) from blastocyst stage embryos and performed Hi-C experiments at each stage (Fig. 1a, Supplementary Table 1). The Hi-C data of replicates were highly reproducible (Supplementary Fig. 1e). Consistent with the reported features associated with higher order chromatin architecture4,16,18, active histone modification H3 lysine 4 trimethylation (H3K4me3) was primarily enriched in compartment A, whereas repressive H3 lysine 27 trimethylation (H3K27me3) was primarily enriched in compartment B (Supplementary Fig. 1f–h). Similarly, H3K4me3 was enriched at the boundaries of TADs, whereas H3K27me3 was depleted (Supplementary Fig. 1i). Additionally, short interspersed element (SINE) retrotransposons, CpG islands and gene promoters were also enriched in TAD boundaries (Supplementary Fig. 1j).

Metaphase transition following SCNT embryo activation. The examination of chromatin organization at each stage showed that typical higher order chromatin architectures, for example, TADs and compartments in the terminally differentiated CCs, were rapidly dissolved after the injection of CC nuclei into enucleated oocytes and were partially recovered in 6-hpa embryos (Fig. 1b). Strikingly, 1-hpi and 1-hpa one-cell embryos had significantly fewer distal interactions and showed a uniform interaction pattern (Fig. 1b), which was highly similar to that observed in metaphase chromatin organization21–23.

We then analyzed chromatin conformation at the 1-hpi and 1-hpa stages. Consistently, the P(s) curves (chromatin contact probabilities relative to the genomic distance) for 1-hpi and 1-hpa embryos better matched the P(s) ~ s−0.5 curve, representing the predicted metaphase chromatin state; the P(s) curves for CCs, ICM and TE better matched the P(s) ~ s−1 curve, representing the predicted fractal globule state (interphase chromatin state)14 (Supplementary Fig. 2a). Immunofluorescence staining detected condensed chromosomes with a spindle apparatus in 1-hpi and 1-hpa embryos, which was distinguishable from interphase chromatin morphology with a nuclear envelope in other-stage embryos (Fig. 2a). This result was also consistent with a previous study showing that donor cells underwent nuclear envelope breakdown and premature chromosome condensation after fusion with oocytes24,25. Moreover, the metaphase-like chromatin state was characterized by a lack of interchromatin interactions21, which is consistent with the chromatin structure at 1-hpi and 1-hpa stage embryos (Supplementary Fig. 2b). This result indicated that the somatic cell genome was converted to a metaphase-like state shortly after injection into the oocyte cytoplasm (at the 1-hpi and 1-hpa one-cell stages).

Further analysis demonstrated that the P(s) curve for 1-hpi embryos resembled that of the mouse ESC metaphase with a rapid decline at 10 Mb. In contrast, the P(s) curve for 1-hpa embryos resembled that of mouse MII oocytes with an abrupt decrease until 4 Mb (Fig. 2b; Supplementary Fig. 2c). This result was consistent with previous findings that chromatin interactions were precipitously reduced beyond 4 Mb in MII oocytes17 and beyond 10 Mb in mitotic chromatin17,21,22, suggesting that the mitotic metaphase-like chromatin state in 1-hpi embryos transformed into the meiosis metaphase II-like chromatin state after activation.

Short-distance interaction dissolves first after SCNT. Accurate spatiotemporal chromatin packaging is critical to embryogenesis19,20. Thus, we compared the P(s) curves between consecutive stages. After injection of CC nuclei into enucleated oocytes, short-distance (<1 Mb) interactions decreased, and intermediate-distance (1–10 Mb) interactions increased within
the first 30 min. However, long-distance (>10 Mb) interactions required a longer time to change, and are significantly decreased at the 1-hpi stage (Fig. 2c, Supplementary Fig. 2d). This result indicated that reorganization from the interphase to metaphase-like chromatin structure started from short-distance interactions and progressed to long-distance interactions. These findings are consistent with a recent study, which showed that long-range compartmentalization occurs more slowly during mitotic exit and G1 re-entry26. Intriguingly, spatiotemporal chromatin packaging was reversed at the 6-hpa stage with increased short-distance interactions and decreased intermediate-distance interactions. The short-distance interactions changed very little after 6-hpa and decreased to the level of that in the ICM stage. In contrast, intermediate- and long-distance interactions increased at the early-2-cell stage, and extra long-distance (>20 Mb) interactions increased in both the morula and ICM stages (Supplementary Fig. 2e). Collectively, these results suggest that spatiotemporal chromatin packaging is a coordinated process involving higher order dynamics in early stages and ultimately chromatin compaction in the ICM stage.

Reprogramming of compartments during SCNT embryo development. Compartments are typical higher order chromatin structures that contribute to determining cell type-specific patterns of gene expression15,27. We observed clear plaid patterns of chromatin interactions in the correlation heatmap across all stages except for the 1-hpi and 1-hpa stages (Fig. 3a). These plaid patterns represent chromatin compartments A and B14. To understand the reprogramming of chromatin compartments during SCNT embryo development, we first identified compartments across all stages (see Methods). Consistent with the metaphase-like chromatin state, compartments were disassembled in 1-hpi and 1-hpa embryos and had no correlation.
with mature compartments in CCs or the SCNT ICM (Supplementary Fig. 3a, b). This result indicated that the mature compartments in CCs were substantially dissolved after injection into enucleated oocytes, leading to poor chromatin compartmentalization in 1-hpi and 1-hpa embryos. Nevertheless, the compartments were consistent for the other stages. We then analyzed compartmental switching during SCNT embryo development and collected two groups of compartments. One group consisted of 752 compartments A in CCs that gradually became compartments B in the ICM. In contrast, the other group of 1046 compartments B in CCs gradually became compartments A in the ICM (Supplementary Fig. 3c). The expression levels of genes

Fig. 2 Mitotic metaphase to meiosis metaphase II-like chromatin transition. a Immunofluorescence staining of 0.5-hpi, 1-hpi, 1-hpa and 6-hpa 1-cell embryos and 8-cell embryos. DNA: DAPI (blue) and microtubules: α-tubulin (green). Scale bar: 10 μm. Data are representative of three independent experiments. b Both the curves and heatmaps showing the intrachromosomal interaction probabilities \(P(s)\) relative to genomic distance that are normalized by the \(P(s) \sim s^{-1}\) values. The peaks represent the rapid fall-off at ~4 Mb and ~10 Mb in secondary meiotic and mitotic chromatin, respectively. Source data are provided as a Source Data file. c The chromatin contact probabilities \(P(s)\) relative to genomic distance for CC, 0.5-hpi, and 1-hpi embryos. The \(P(s) \sim s^{-1}\) curve representing the predicted fractal globule state is shown for reference. The \(P(s)\) ribbon is bounded by minimum and maximum \(P(s)\) calculated from all replicates of Hi-C data sets. Source data are provided as a Source Data file.
in the A to B group of compartments, which included the CC-specific gene Has2, significantly decreased along with the compartmental switch progressed. The expression levels of genes in the B to A group, which included the placenta-associated gene Pramel4, exhibited the opposite trend (Supplementary Fig. 3d–h).

Reprogramming of TADs during SCNT embryo development.

TADs are another typical higher order chromatin structure that have “self-association” and “insulation” properties. To investigate how the TADs in CCs were dissolved and reestablished during SCNT embryo development, we identified 2516 TAD boundaries in CCs and 1941 TAD boundaries in the ICM using the insulation score as previously described. Hi-C interaction heatmaps showed that both the distal (>2 Mb) chromatin interactions and TADs in CCs were rapidly dissolved after injection into the enucleated oocyte. Chromatin interactions were locus-independent and uniform at the 1-hpi and 1-hpa stages, and TADs were also completely dissolved (Supplementary Fig. 4a–b). These results depicted the characteristic pattern of metaphase chromatin interactions. Both TADs and sparse distal interactions emerged at the 6-hpa stage. The emergence of high-order structures was due to exiting the metaphase-like chromatin state because dissolved TADs could gradually regenerate after the metaphase stage was complete. The newly emerged TADs at the 6-hpa stage were weaker than those in CCs, and continue to weaken until the early-2-cell stage followed by reestablishment. Once TADs were established, they were consistent in later stages (Fig. 3b, Supplementary Fig. 4a–f). These data indicated the removal and reestablishment of TADs during SCNT embryo development.
Aberrant chromatin structure organization of SCNT embryos. It is intriguing to compare the different chromatin structure reprogramming patterns between SCNT and fertilization-derived embryos, which should contribute to their differential embryonic developmental potential. We first compared the interaction heatmaps between SCNT and fertilization in early 2-cell embryos. There is more distinct interdomain regional separation in SCNT embryos than in fertilization-derived embryos. In addition, distal (>2 Mb) interactions are also weaker in SCNT embryos (Supplementary Fig. 5a). Then we compared the P(s) curves for SCNT and fertilization-derived early-2-cell embryos from all independent replicates of Hi-C datasets. Consistently, the distal contact probabilities were higher in fertilization-derived embryos. Note that there was a turning point at ~10 Mb distance that maximized the difference in contact probability between fertilization-derived and SCNT embryos (Supplementary Fig. 5b). To preclude the distance effect, we further normalized the relative contact probability to the reference curve P(s) ~ s−1. We found that the frequencies of distal (>2 Mb) interactions in the early stages of SCNT embryo development (6-hpa and 12-hpa) were lower than those in fertilization-derived embryos (PN3 and PN5). This difference became obvious at the early-2-cell, late-2-cell and 8-cell stages. At the ICM stage, extra long-distance (>20 Mb) interactions were more abundant in the SCNT embryos than in the fertilization derived embryos, while proximal interactions exhibited the opposite trend (Fig. 4a). This differential spatiotemporal chromatin packaging was confirmed by the number of interaction read pairs as well (Supplementary Fig. 5c, d).

We next compared chromatin compartment interactions between SCNT and fertilization-derived embryos. Although compartments A & B became more segregated in both SCNT and fertilization-derived embryos during development, compartments A & B were more poorly segregated in fertilization-derived embryos until the early-2-cell stage than in SCNT embryos (Fig. 4b), which is likely attributed to the substantially fewer intercompartmental interactions occurring in CCs than in sperm and oocytes. We then clustered regions based on the first component (PC1) values across embryo developmental stages and identified a set of regions that were active in compartment A in early stages (PN5, 2-cell) of fertilization-derived embryo development but repressive in compartment B in early stages of SCNT embryo development (Supplementary Fig. 5e). A previous study found a group of genes that were not activated in SCNT 2-cell-arrest embryos, including Foxa210. We also found that the compartmental state of Foxa2 was not reprogrammed to compartment A at the 2-cell stage in SCNT embryos (Supplementary Fig. 5f). As a result, the ZGA process may be defective during SCNT embryo development.

Next, we examined differences in TADs between fertilization-derived and SCNT embryos. The general trend was that TADs
became mature in the ICM during both fertilization-derived and SCNT embryo development (Fig. 4c). However, the TAD structure was stronger in SCNT embryos than in fertilization-derived embryos until the 8-cell stage. The TAD intensity difference was gradually attenuated during embryo development. The difference in TADs was also likely attributed to the stronger TADs in CCs than in sperm and oocytes. Notably, there are still many distinct TADs between the SCNT and fertilization-derived ICMs (Supplementary Fig. 5g). Taken together, these results suggest that the high-order chromatin structures of SCNT and fertilization-derived embryos differ substantially in the early stages, such as the 2-cell stage, and become increasingly similar during embryo development.

Absence of SE–P interaction of ZGA genes in SCNT embryos. High-order chromatin structure has important roles in gene regulation33,34. Genes could be modulated by regulatory elements located in the same TAD, such as typical enhancers. In addition, super-enhancers (SEs), a large domain clustered by typical enhancers, bind with high-density of transcription factors and coactivators and regulate gene expression by forming long-distance interactions35. Therefore, we speculated that such differential chromatin packaging impacted interactions between super-enhancers and promoters. To validate this hypothesis, we first identified super-enhancers as described previously35 (see Methods for details). We next grouped chromatin interactions between super-enhancers and promoters as SE–P interactions and the remaining interactions as nonSE–P interactions using FitHiC tools36. More than 90% of SE–P interactions occurred in compartment A during both SCNT and fertilization-derived embryo development, whereas approximately 50% of the nonSE–P interactions occurred in compartment B (Supplementary Fig. 6a). In addition, target genes associated with SE–P interactions had significantly higher expression levels than genes associated with nonSE–P interactions, such as promoter–promoter (P–P) interactions (Supplementary Fig. 6b). These results suggested that the SEs identified in this study were reliable.

Further analysis demonstrated that the overlap of SE–P interactions between fertilization-derived and SCNT embryos increased during development. (Supplementary Fig. 6c). This suggested that the higher order chromatin structure of SCNT embryos becomes more similar to that of fertilization-derived embryos during development. We then identified all genes that were regulated by SE–P loops and activated in the fertilization-derived ICM but lacked SE–P loops and were repressed in the SCNT ICM. Gene Ontology analysis of these genes identified the enrichment of fundamental biological processes, such as protein transport, DNA-templated transcription, cellular response to DNA damage stimulus, and cell–cell adhesion (Supplementary Fig. 6d). This result implied that the aberrant SE–P interactions resulting from differential chromatin packaging during SCNT embryo development extensively impacted biological processes and likely contributed to the low SCNT embryo development rate.

ZGA is a critical event during early embryonic development. To investigate the relationship between chromatin organization and ZGA, we focused our analysis on differential SE–P interactions at the early-2-cell stage and found that SE–P interaction at the Zscan4d (~2 Mb) locus was obvious in fertilization-derived 2-cell embryos but absent in SCNT early-2-cell embryos (Fig. 5a, b; Supplementary Fig. 6e). We further used FIND tools37 to analyze the differential chromatin interactions around these loci and verified this difference (Supplementary Fig. 6f). The Zscan4d gene is specifically expressed at the 2-cell stage and is essential for preimplantation development38, but it is silenced in SCNT 2-cell embryos39. This result implied that the aberrant SE–P interactions during SCNT embryo development may be responsible for the abnormal gene activation and the low embryo developmental rate.

H3K9me3 is a barrier for chromatin structure reprogramming. Finally, we attempted to explore the possible mechanisms underlying the differential reprogramming of chromatin organization during SCNT embryo development. A previous study identified three types of regions in SCNT embryos: RRRs (reprogramming-resistant regions), PRRs (partially reprogrammed regions) and FRRs (fully reprogramming regions)11. Intriguingly, we found that RRRs were significantly enriched in compartment B in SCNT embryos (Supplementary Fig. 7a). In addition, the insulation score was significantly higher in RRRs than in FRRs and PRRs (Supplementary Fig. 7b). More RRRs are located far from the boundary position than PRRs or FRRs in SCNT and fertilization-derived embryos (Supplementary Fig. 7c). These results suggested that RRRs more likely resided within TADs than boundaries. As H3K9me3 enrichment in the donor cell genome contributes to the reprogramming defects of RRRs11, and TAD boundaries have the potential to restrict the spread of repressive chromatin into active domains39, we hypothesized that the TAD structure associated with H3K9me3 may exhibit high-order chromatin structure reprogramming defects during SCNT embryo development. To validate this hypothesis, we first identified H3K9me3-marked and H3K9me3-unmarked TADs in CCs (see Methods). RRRs were more enriched in H3K9me3-marked TADs than in FRRs and PRRs (Supplementary Fig. 7d). We also found that the H3K9me3-marked CC TADs failed to disassemble in SCNT embryos, though no TADs were observed in the corresponding regions of fertilization-derived embryos. In contrast, H3K9me3-unmarked CC TADs were rapidly dissolved in SCNT embryos (Fig. 6a). Although both types of TADs had similar relative TAD intensities (RTI) in CCs, the intensity remained significantly higher in H3K9me3-marked TADs than in H3K9me3-unmarked TADs after SCNT (Fig. 6b). We further compared the RTI values of TADs between SCNT 12-hpa embryos and in vitro fertilization (IVF) PN5 zygotes and defined two types of TADs: reprogrammed TADs and unreprogrammed TADs (see Methods). H3K9me3 signals in the CC genome were significantly higher in unreprogrammed TADs than in reprogrammed TADs (Supplementary Fig. 7e). Finally, we clustered TADs in the fertilization-derived ICM that were in a “mature” state based on RTI values across developmental stages of SCNT and fertilization-derived embryos. A cluster of TADs (C2) had strong RTI values in SCNT 2-cell embryos but low RTI values in IVF 2-cell embryos (Supplementary Fig. 7f). Therefore, these TADs remained largely unreprogrammed in SCNT 2-cell embryos. Coincidently, these TADs (C2) had significantly higher H3K9me3 signals in the CC genome than the other clusters of TADs (C3–C5) that were well reprogrammed in SCNT embryos (Supplementary Fig. 7g).

To verify the effect of H3K9me3 retention on TAD reprogramming, we injected Kdm4d mRNA, H3K9me3 demethylase, into the SCNT embryos and the histone deacetylase inhibitors, Trichostatin A (TSA), treatment was also performed as a control. Interaction heatmaps show weaker TAD signals in the SCNT-Kdm4d group than in the SCNT or SCNT-TSA group (Fig. 6c). Box plot shows significantly decreased RTI values in H3K9me3-marked TADs in the SCNT-Kdm4d group compared with those in the SCNT and SCNT-TSA groups, but these values were still higher than those in fertilization-derived embryos (Fig. 6d). On the other hand, we found that the SE–P interaction at the Zscan4d locus was lost in
SCNT 2-cell embryos and was recovered in SCNT-\textit{Kdm4d} embryos (Fig. 6c; Supplementary Fig. 7 h). This is probably due to the relatively unconsolidated chromatin boundary structure between them after \textit{Kdm4d} overexpression. This result implied that H3K9me3 enrichment in the CC genome was an epigenetic barrier and impeded the SCNT-mediated reprogramming of chromatin architecture, and the injection of \textit{Kdm4d} mRNA could partially rescue un-disassembled H3K9me3-marked TADs in SCNT early-2-cell embryos.

Discussion

Although the reprogramming of higher order chromatin architecture during the early development of mouse fertilization-derived embryos has been studied17,18, it remains largely unexplored during SCNT embryo development. Therefore, the difference in 3D chromatin reorganization between fertilization-derived and SCNT embryos is completely unknown. The molecular basis underlying differential chromatin reorganization also remains unclear. Here, we examined the 3D chromatin structures across consecutive stages of SCNT embryo development and found that the general profiles of chromatin architecture reprogramming were similar between fertilization-derived and SCNT embryos. The interphase chromatin state in CCs was reorganized into a metaphase-like state shortly after injection into the enucleated oocyte. Higher order chromatin architectures, including compartments and TADs, were dissolved. TADs with weak boundary insulation emerged as early as the 6-hpa stage through recovery from exiting the metaphase-like state. Taken together, these results suggest that higher order chromatin architecture is dissolved and reestablished in a stage-specific and coordinated manner during SCNT embryogenesis. Intriguingly, many SE–P interactions critical for embryo development are lost during SCNT embryo development. The enrichment of H3K9me3 modifications in the donor cell genome is likely an epigenetic barrier that impairs the reprogramming of chromatin architecture during SCNT embryo development (Fig. 7a).

SCNT efficiency is very low in terms of blastocyst development and the birth of full-term animals40,41. Our work suggests that higher order chromatin structure can be rapidly reorganized to an embryo like state during SCNT-mediated reprogramming. However, many abnormalities in cloned embryos have been observed, which may be responsible for the low developmental rate of SCNT embryos. Promoter-enhancer interactions are highly dynamic during SCNT reprogramming, as reported in lineage specification15. The failed reprogrammed SE–P interactions may result in abnormalities in gene expression during ZGA in SCNT embryos. Additionally, the TAD structure was stronger in SCNT embryos than in fertilization-derived embryos, which may be linked to the decreased long-range interaction in SCNT embryos. At the gene expression level, failure to silence donor cell-specific genes may lead to an aberrant embryonic phenotype in SCNT embryos10,42,43. The reprogramming-resistant TADs and boundaries inherited from the donor cell may be related to aberrant gene expression (Supplementary Fig. 6e). \textit{Kdm4d} overexpression can improve the SCNT efficiency partially by weakening the TAD intensity, suggesting that the TAD boundaries in donor cells are also a barrier for SCNT reprogramming. Therefore, manipulating the expression level of CTCF may be helpful for improving SCNT efficiency, as partial depletion of CTCF weakens TAD boundaries and improves interdomain interactions44. We find the 3D chromatin structure between SCNT and fertilization-derived embryos is getting similar. But there are still many defects, such as aberrant SE–P interactions and more long-range interactions in the ICM of SCNT embryos. This indicates that the reprogramming of genome structure is not completely accomplished, even at the blastocyst stage, which can partially explain the low rate of implantation and full-term development of SCNT embryos41.

Chromosomal condensation is required for establishing an embryonic pattern of DNA replication and allowing cell cycle progression in SCNT embryos45. In frog oocytes, chromosome condensation is associated with the transition between different DNA replication programs46. In this study, we observe that the interphase type chromatin structure changes rapidly to a mitotic metaphase state following nuclear transfer, and the 3D chromatin structure is removed and reestablished following the cell cycle transition. When we shaded the metaphase stage, we find that the
TADs are gradually removed from the somatic cell to the 2-cell stage embryo and then progressively reestablished until the blastocyst stage (Fig. 4c), which indicates that the removal of TADs does not merely depend on the cell cycle transition during SCNT reprogramming.

Maternal factors within the oocyte cytoplasm direct the rapid reprogramming of the chromatin structure after injection and activation. According to a previous work published by our laboratory47, we found that the critical reprogramming factors reside predominantly in the male pronucleus when we utilized zygotes as recipients during SCNT. Screening for factors which are particularly expressed in the male pronucleus by quantitative mass spectrometry analysis may be a valid approach to search for these key reprogramming factors. On the other hand, metaphase transition seems to be a critical step for the dissolution of 3D chromatin structure during SCNT, which indicates that cell cycle related factors might also play a role in the rapid change of chromatin structure.
SCNT is the only way for differentiated somatic cells to obtain totipotency. One of the most significant findings in our study is the metaphase-like transition from mitotic to meiosis II during SCNT embryo development, which may be a critical step to gain totipotency because there was no such transition during iPSC reprogramming. Our results also suggest that searching for oocyte cytoplasmic factors which are responsible for the transition may help us induce and maintain totipotency directly from somatic cells in vitro.

ZGA is a critical step for mammalian embryo development. Major ZGA occurs at the 2-cell stage in mice, and many ZGA genes are transiently expressed, with Zscan4d as a well-known example. Knocking down or sustained expression of Zscan4d impairs embryo development and implantation. However, the mechanism of transient expression of ZGA genes has not yet been elucidated. In this study, we provide a possible regulatory mechanism of Zscan4d by SE–P interaction. Moreover, we can rescue this interaction by reducing the TAD intensity by removing H3K9me3 modification in SCNT embryos (Fig. 6e).

Fig. 6 H3K9me3 is a potential barrier of TADs reprogramming. a Heatmaps of chromatin interaction frequencies showing a CC TAD unprogrammed example (magenta) and a CC TAD reprogrammed (cyan) example during SCNT embryo development. The bottom track shows the H3K9me3 signal in CCs. b RTIs of H3K9me3-maked and H3K9me3-unmarked TADs identified in CCs. RTIs values in CC, 6-hpa, 12-hpa and early-2-cell embryos are shown (n = 2184). Boxes show 25th, 50th and 75th percentiles and whiskers show 1.5× the inter-quartile range. The two-sided p values were calculated by the Kruskal–Wallis test with Dunn’s multiple comparison test and adjusted by default with the holm method. Source data and exact p-value are provided as a Source Data file. c Heatmaps showing normalized chromatin interaction frequencies (100-kb bin, chromosome 16) in SCNT, SCNT with Kdm4d mRNA injection, SCNT with TSA treatment and fertilization-derived early-2-cell embryos. Both ICE and Binless normalization approaches are used. d RTIs of H3K9me3-maked TAD in early-2-cell embryos. RTI values in CC, SCNT, SCNT with Kdm4d mRNA injection, SCNT with TSA treatment and fertilization-derived are shown (n = 2184). Boxes show 25th, 50th and 75th percentiles and whiskers show 1.5× the inter-quartile range. The two-sided p values were calculated by the Kruskal–Wallis test with Dunn’s multiple comparison test and adjusted by default with the holm method (N.S., not significant). Source data and exact p-value are provided as a Source Data file. e Virtual 4C test showing the interaction frequencies between Zscan4d promoter and its adjacent region in chromosome 7. Black dots represent observed values, red line represents fitted value by Binless.

Fig. 7 A schematic model showing the 3D chromatin structure dynamic during SCNT embryo development. a CCs exhibit interphase-state chromatin characterized by mature compartments and TADs, both of which are dissolved quickly after injection into enucleated oocytes. Consequently, 1-hpi and 1-hpa embryos exhibit a mitotic and secondary meiotic metaphase-like chromatin state lacking compartments and TADs, respectively. Compartments and TADs emerge in early-2-cell embryos, exist in later stages, and become mature in the ICM stage. TADs with enriched H3K9me3 signals are resistant to reprogramming. The differential reprogramming of chromatin architecture results in the loss of SE–P loops of regulating genes critical to development.

Methods

Animals and SCNT procedure. Specific pathogen-free grade mice were housed in the animal facility of Tongji University, Shanghai, China. All animal maintenance and experimental procedures were performed in accordance with the Tongji University Guide for the Use of Laboratory Animals. Eight- to ten-week-old B6D2F1 (C57BL/6×DBA/2) female mice were superovulated by injection with 5 IU of pregnant mare serum gonadotropin (PMSG), followed by injection of 7 IU of human chorionic gonadotropin (hCG, San-Sheng Pharmaceutical) 48 h later. Mouse MII oocytes were retrieved from the dissected oviducts at 13 h post-hCG injection and incubated in Chatot-Ziomek-Bavister medium (CZB) at 37 °C and 5% CO2 until use. CCs were removed by incubating the cumulus-oocyte complex in hyaluronidase from bovine testes (0.5 μg ml−1, Sigma) at 37 °C for 3–5 min. Fully dissociated cumulus cells were collected and washed in Hepes-CZB and then stored at 4 °C until use. The somatic cell was administered 1–2 piezo pulses (intensity 1 or 2) while at the tip of the transfer needle to break the plasma membrane.
membrane. Then, the cell was immediately injected into an enucleated oocyte in Hepes-CZB containing 5 μg ml⁻¹ cytochalasin B. The plasma membrane of the enucleated oocyte was broken with a single piezo pulse, the cumulus cell was injected, and the membrane was sealed by aspiration of a small amount of cytoplasm. Reconstructed embryos were cultured in CZB at 37 °C and 5% CO₂ for 1 h and activated for 5 h using strontium chloride in calcium-free CZB in the presence of 5 μg ml⁻¹ cytochalasin B to prevent the extrusion of a pseudopodary body. The reconstructed embryos were then transferred into G1 medium and cultured to the blastocyst stage.

For TSA-treated group, extra 50 nM Trichostatin A (Sigma, T8552) were added to the activation and culture mediums for 9 h after somatic cells injection.

Sample harvest for the Hi-C experiment

Embryos at each of the following stages were collected: 0.5 h and 1 h post-injection; 1 h, 6 h and 12 h postactivation; 2-cell, 4-cell, and 8-cell; morula; ICM and TE of day 3.5 blastocysts. An ES cell line (R1, male) and ES cell-derived ES cells were also harvested for the Hi-C experiment. For the one-cell and cleavage-stage embryos, the zona pellucidae of the embryos were removed with 0.5% pronase E (Sigma), and the embryos were then incubated in calcium-free CZB for 5 min. Polar bodies were removed by gently pipetting using a fire-polished glass needle with an inner diameter of 120 μm. For morula, ICM and TE isolation, the zona pellucidae of blastocysts were removed with 0.5% pronase E. The embryos were then incubated in calcium-free CZB for 20 min. The tight junctions of morula, TE and ICM cells were separated by gently pipetting using a pipette with an inner diameter of 40–60 μm.

Hi-C library generation and sequencing

The generation of Hi-C libraries with a low number of cells was optimized according to a previous protocol. For Hi-C library generation and sequencing, 100–500 cells were used for each reaction, and at least two replicates were analyzed for each stage. All isolated cells were washed three times with a 0.5% bovine serum albumin in phosphate-buffered saline (BSA-PBS, Sigma) solution to avoid potential contamination. Briefly, SCNT embryos or mouse ESCs were cross-linked with 1% formaldehyde at room temperature (RT) for 10 min with rotation, and 2.5 M glycine was added to a final concentration of 0.2 M to quench the reaction. The mixture was incubated at RT for 10 min with rotation. A mouth pipette was used to transfer embryos or cells from a 0.5% BSA-PBS droplet into lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl, 0.1 mM EDTA, 0.5% NP-40 and protease inhibitor cocktails (50× PIC)) under a stereoscope. Cells were lysed in 50 μl of lysis buffer on ice for at least 50 min and centrifuged at 1500 rpm for 5 min at 4 °C. The supernatant was discarded. The pelleted cells were resuspended in 10 μl of 0.5% sodium dodecyl sulfate (SDS) and incubated at 62 °C for 10 min. After heating, 5 μl of 10% Triton X-100 (Sigma, 93443) was added to quench the SDS. The sample was mixed well, and excessive foaming was avoided. The sample was incubated at 37 °C for 30 min, and 1 μl of 10× NEB Buffer 2 and 50 μl of the MboI restriction end enzyme (NEB, R0147) were added to digest the chromatin overnight or for at least 2 h at 37 °C with rotation. The sample was then incubated at 62 °C for 20 min to inactivate MboI and then cooled to RT. To fill the DNA with biotin, 3.75 μl of 0.3 M sodium cysteine (pH 8.3) and 1.5 μl of 1 mM dGTP, 1.5 μl of 1 mM dATP, and 10 U Klenow were added to the solution, and the reaction was carried out at 37 °C for 1.5 h with rotation. Next, 60 μl of ligation mix (38.8 μl of water, 12 μl of 10× NEB T4 DNA ligase buffer, 7 μl of 10× Triton X-100, 1.2 μl of 10 mg ml⁻¹ bovine serum albumin, 1 μl of 400 U μl⁻¹ T4 DNA ligase) was added. The mixture was inverted and incubated at RT with slow rotation. Then, 1 μl of proteinase K and 12 μl of 10% SDS and incubation at 55 °C for 30 min. Next, 13 μl of 5 M sodium chloride was added, and the sample was incubated at 68 °C overnight or for at least 1.5 h. DNA purification was performed by adding 1 μl of glycogen, 0.1× volume (15 μl) of 5 M sodium acetate (pH 5.2), and 50 μl of ethanol. The precipitated DNA was resuspended in 10 μl of 80% EtOH and centrifuged at 1500 rpm for 5 min at 4 °C. The supernatant was discarded, and the pellet was dried for 5 min at RT. DNA elution buffer was added to dissolve the pellet. The ULi-NCHiP libraries were generated using the KAPA Hyper Prep Kit according to the manufacturer’s instructions. Paired-end 150-bp sequencing was performed on the Illumina HiSeq X Ten platform.

Immunostaining

0.5 hpi, 1 hpi, 1 hpa, 6 hpa and 8-cell SCNT embryos were fixed for 1 h in 4% paraformaldehyde for 1 hour at RT, and then washed twice in 0.5 M BSA-PBS for 10 min. The samples were permeabilized in 0.2% Triton X-100 for 1 h at RT, washed as above. After that, samples were incubated in primary antibody at 4 °C overnight in 0.5% BSA-PBS solution, then washed twice for 10 min at RT in 0.5% BSA-PBS. The samples were incubated with secondary conjugated antibody in 0.5% BSA-PBS for 1 h at RT. DNA was then left for 5 min to wash the salt. The sample was centrifuged at 3000 rpm for 5 min at 4 °C, the supernatant was discarded, and the pellet was dried for 5 min at RT. DNA elution buffer was added to dissolve the pellet.

RNA-seq library construction and sequencing

ICM cells and TE cells were harvested as described above. For RNA-seq library construction and sequencing, 5–10 cells were used per reaction. All isolated cells were washed three times with 0.5% BSA-PBS solution to avoid potential contamination. A single-cell RNA-seq library was amplified and generated using the KAPA Hyper Prep Kit according to the manufacturer’s instructions. Single-end 50-bp sequencing was performed on the Illumina HiSeq 2500 platform.

Kdm4d mRNA in vitro transcription and injection

Kdm4d overexpression in SCNT embryos were performed as described in previous study. In brief, in vitro transcription of Kdm4d was performed with the mMESSAGE mMAXICHINE T7 Ultra Kit (Life Technologies, Grand Island, NY, USA) according to the manufacturer’s instructions. The storage concentration of mRNA was 1100 ng μl⁻¹. Enucleated MII oocytes were injected with approximately 10 pl of mRNA using a Piezo-driven micromanipulator.

RNA-seq data processing

RNA-seq reads were mapped to the mm10 reference genome after cutting adaptors using hisat2 with the parameters --data-cufflinks --no-discard --no-mixed --no-unal. The expression levels of genes were calculated using DESeq2.

Histone modification ChIP-seq data processing

Histone modification ChIP-seq reads were aligned to the mm10 reference genome after cutting adaptors using bowtie2 with default parameters. The alignment files were processed and merged using SAMtools. PCR duplicates were removed using Picard tools (http://broadinstitute.github.io/picard/).
Hi-C sequence data processing. Paired-end sequencing reads were trimmed for adaptor and low-quality reads. Then, the reads were processed using HiC-Pro (v2.0.9). The raw contact matrices were generated by converting the reads to bigwig files. A sliding window of 20 kb was applied to binning resolutions of 40 kb, 100 kb, and 1 Mb. The raw contact matrices were normalized using the iterative correction and eigenvector decomposition (ICE) method to correct bias and scaled to 100 million sequences to remove the effect of sequencing depth for each sample.

Validate reproducibility of Hi-C data. The HiCrep method was used to calculate the reproducibility score between the libraries of two replicates to validate the reproducibility of the Hi-C data. We processed the raw contact matrix at a resolution of 100-kb bin, and chose span size 5 which is a tuning parameter controlling the smoothing level.

Heatmap of interaction frequency and visualization. The triplet sparse matrix of the ICE-normalized interaction frequency was applied to plot the heatmap using HiCPlotter (v0.8.1) with a 40-kb resolution for local views, a 100-kb resolution for a whole-chromosome view and a 1-Mb resolution for a whole-genome view, and other parameters were set to default values.

Analysis of compartment interactions A & B. Valid contact read pairs of samples were applied to obtain the correlation coefficient matrices and PC1 values using Homer60 (analyzeHiC.pl and runHiCpca.pl, v4). We calculated the Pearson correlation coefficients (PCCs) between the PC1 values of sample replicates to validate the reproducibility of compartments using R.

To investigate dynamic chromatin compartmentalization, we first used Homer (getDiffExpression.pl -pca) to conduct pairwise comparisons of the normalized 40-kb-resolution interaction frequency matrices (adjusted p-value < 0.05 and absolute value of difference > 1, X chromosome excluded). We then applied K-means (K = 10) clustering to the PC1 values of these samples. The clustered PC1 values were plotted as heatmaps.

To examine the extent of compartmental segregation across the embryonic development stages, we calculated two classes of interactions: (1) interactions between two sites located in the same type of compartment (i.e., A-A or B-B interactions), and (2) the remaining interactions between two sites located in different types of compartments (i.e., A-B interactions). The ratios between A-A interactions and A-A or B-B interactions of each chromosome were calculated across all stages and displayed as box plots (Fig. 6b). A gene length in Mb in length occurs mainly within TADs and are not distal interactions.

Histone modifications in compartments A & B. The alignment results (BAM files) of ChIP-seq reads for histone modifications (H3K4me3 and H3K27me3) and reads for the input sample were used to calculate their signals as fragment per kilobase per million mapped reads (FPKM). The signal ratios of the histone modifications for each stage were calculated and shown in the track view with integrative genomics viewer (IGV)61 (Supplementary Fig. 1f), were used to calculate the histone modification signals in compartments A and B (Supplementary Fig. 1g, h).

TAD calling. TAD boundaries were identified by the insulation score52,54, which was calculated using the public script matrixInsulation.pl (https://github.com/dekkerslaboratory/TAD-Caller-TAD-Discoverer-TADs). The insulation scores were converted to bigwig files, shown in the track view with integrative genomics viewer (IGV)61 (Supplementary Fig. 1f), were used to calculate the histone modification signals in compartments A and B (Supplementary Fig. 1g, h).

Heatmap for interaction frequencies around and within TADs. TADs in the ICM stage were used for all stages because the ICM is considered to be in a mature chromatin state. All TADs were rescaled to the same length of 1.2 Mb (~average length of TADs). The average interaction frequencies in all TADs were calculated for each stage. We further normalized the matrix of average interaction frequencies by averaging the entire matrix to ensure that all stages had an equal matrix sum. We calculated the normalized interaction frequencies in 0.6-Mb regions (i.e., half of TAD size) for each TAD. The normalized interaction frequencies were plotted as heatmaps.

The differential average interaction matrix of TADs between two stages was calculated by subtracting the interaction matrix of the first stage from that of the second stage. The resulting matrix was plotted as a heatmap.

Di values around TAD boundaries. The bedGraph files of Di scores were converted to bigwig files using bedGraphToBigWig64. First, TAD boundaries in CCs were used for CCs, 6-hpa, 12-hpa, and early-2-cell embryos. The Di values in 1.5-Mb regions flanking TAD boundaries were calculated for each stage using computeMatrix and plotProfile, and the results were shown as line plots drawn using deepTools64. We also generated a random control dataset as described above. Di values were calculated for the random dataset. Profiles of Di values around TAD boundaries in CCs across early stages were used to investigate the dissolution of CC TADs. Second, TAD boundaries in the ICM were used for early-2-cell embryos, late-2-cell embryos, 4-cell embryos, 8-cell embryos and the ICM. The DI values were calculated similarly and used to show the reestablishment of TADs during the late stages.

Distribution of histone and genomic features around TAD boundaries. The alignment results of ChIP-seq reads for histone modifications (H3K4me3 and H3K27me3) and reads for the input sample were used to calculate histone modification signals in 500-kb regions flanking TAD boundaries using a 10-kb window. The results are shown as line plots (Supplementary Fig. 1i). Similarly, the density of repeat elements, transcription start sites (TSSs) and CpG islands were calculated with window sizes of 10 kb, 100 kb, and 1 Mb using bedtools65 and shown as line plots (Supplementary Fig. 1j).

Relative TAD intensity. RTI measures the states of TADs. We calculated RTI values as described in a previous study38. In brief, within the neighbor rectangle range that exactly embeds a TAD, each row of the interaction matrix represents the interactions with certain genetic distance that are further classified into two types of groups: interactions inside and outside of TADs, denoted as I and I′, respectively. The ratio of the median I value to the median I′ value was calculated for each row.

To calculate the RTI of each TAD, we converted the matrices to contact probability (CP) matrices by normalizing the CP matrices by dividing the number of interactions in each in the entire matrix of all interactions in bins. CP was normalized such that the sum over the range of distances was 1. To eliminate the strong effect of distance on the probability, we further divided the P(i)/P(i−1) values as previously described17.

Identification and analysis of reprogramming-resistant regions. The FRR, PRR, and RRR during the development of SCNT embryos were identified as previously described44. FRRs were enriched for H3K9me3 in the donor cell genome and resisted reprogramming during SCNT embryo development. FRRs, PRRs, and RRRs overlapping the target regions were assigned to the target regions. Overlap was determined using bedtools66 (intersectBed -r -e -f 0.5). Thus, we determined the numbers of FRRs, PRRs and RRRs in a given set of compartments A & B and TADs.

The identification of the RRs, PRRs, and RRRs and their flanking 2-Mb regions were calculated for a given stage using computeMatrix and plotProfile and shown as line plots using deepTools64 in a manner similar to that used for calculating the insulation scores in TADs as described above.

To calculate the relative distance to adjacent TAD boundary of each region of FRRs, PRRs, and RRRs, as described in the previous study35. We firstly computed the distance of the region to the nearest boundary as Dmin, and the distance of upstream boundary to downstream boundary as Drad, the relative distance of the region was then computed as Dmin/Drad. We then plotted the density distribution of three types of regions over all relative distance to TAD boundary using R.

Identification of super-enhancers. As described in a previous study35, the published ChIP-seq H3 lysine 27 acetylation (H3K27ac) data for 2- and 8-cell fertility-derivation-embryos (GSE72784)67 and mouse embryonic stem cells (ENCSR000CGQ) were used to predict enhancers using the tool Homer (findPeaks, v4.10)69 with the following parameter settings: -style superhelix -L 0 -superWindow 20. Promoter regions were excluded. These subsets of enhancers were defined as super-enhancers (560 for 2-cell embryos, 967 for 8-cell embryos, and 640 for ESCs).

Identification of super-enhancer-promoter contact pairs (SE-P). First, we used 100-kb-resolution interaction matrices to identify statistically significant interaction bins for each stage using Fit-Hi-C20 with the following parameter settings: pass q-value < 0.01. Second, we identified SE-P interactions from the above retained significant interaction bins using bedtools65. In brief, the promoters were defined as ±1-kb regions of the TSS. We located the recognition site of the restriction enzyme used in Hi-C library construction within each valid contact pair. The DNA fragments between each 5′ end of contact read pairs and CC TADs were treated as the interaction regions. If the region length was shorter than 500 bp, the 500-bp region extending from the restriction site was treated as the interaction region. If 50% of one region overlapped with a
super-enhancer and 50% of the other region overlapped with a promoter, the interaction pair was defined as an SE–P contact pair.

Binless normalization of Hi-C data. We used Binless⁶⁸ algorithm to verify our key finding. Binless normalization is a resolution-agnostic method that adapts to the quality and quantity of available data. All raw valid contact pairs were used for the analysis in Binless package with default parameters. And then, we plotted the interaction signal with Zscan4d as virtual 4C around 10–14 Mb in chromosome 7.

Analysis of differential super-enhancer–promoter interactions. To validate if the interaction between super-enhancer and Zscan4d is significantly different between fertilization-derived and SCNT 2-cell embryos, a differential chromatin interactions detection (FIND)³⁷ method was employed to find differential chromatin interactions. The ICE normalized interaction matrices of biological replicates were grouped by sample at resolution of 100 kb as input to FIND package. Then, we got q-values at each bin using FIND with default parameters.

Statistics and reproducibility. Error bars in the graphical data represent the standard error of mean (SEM). For all the box plots presented in the analysis, the hinges and horizontal lines within the boxes represent the 25th, 50th, and 75th percentiles and whiskers show 1.5x the inter-quartile range. All statistical significance tests have been indicated in the corresponding figure legend, and calculated using corresponding functions in R. All sequencing experiments presented in the study were independently performed at least twice and the mapping quality information is included in Supplementary Table 1.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The data that support this article are available from the corresponding authors upon reasonable request. The H3K4me3 and H3K27me3 ChIP-seq data for the 2-cell, 8-cell and ICM stages of fertilization-derived embryo development were obtained from a previous study⁵⁰ (GSE73952), the H3K27ac ChIP-seq data for mouse embryonic stem cells (ENC5R0000GQ), 2-cell and 8-cell fertilization-derived embryos (GSE2784) were obtained from the previous study⁶⁷. The H3K9me3 ChIP-seq data for CCs were generated in this study. The RNA-seq data for CC, SCNT 1-cell, SCNT 2-cell, IVF 1-cell and IVF 2-cell embryos were obtained from the previous study⁶⁸ (GSE9073). The RNA-seq data for the ICM and TE of SCNT embryos were generated in this study. The raw sequence data reported in this paper have been deposited in Gene Expression Omnibus with accession number GSE146001 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146001] and the Genome Sequence Archive⁶⁹ of the Beijing Institute of Genomics (BIG) Data Center⁷⁰ with accession number CRA001431 [https://bigd.big.ac.cn/rysterzhu/Chromatin-Structure-in-SCNT].

Code availability. Custom codes used for the analysis reported in this study are available at [https://github.com/rysterzhu/Chromatin-Structure-in-SCNT].

Received: 9 February 2020; Accepted: 14 March 2020; Published online: 14 April 2020

References

1. Wakahaya, T. et al. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 292, 740–743 (2001).
2. Brambrink, T., Hochedlinger, K., Bell, G. & Jaenisch, R. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl. Acad. Sci. USA 103, 933–938 (2006).
3. Egli, D., Rosains, J., Birkhoff, G. & Eggan, K. Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447, 679–685 (2007).
4. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).
5. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J. & Campbell, K. H. Viable full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374 (1998).
6. Kishigami, S. et al. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer. J. Reprod. Dev. 53, 165–170 (2007).
7. Van Thuan, N. et al. The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138, 309–317 (2009).
8. Kishigami, S. et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem. Biophys. Res. Commun. 340, 183–189 (2006).
9. Liu, W. et al. Identification of key factors conferring developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discov. 2, 16010 (2016).
10. Matoba, S. et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell 159, 884–895 (2014).
11. Gao, R. et al. Inhibition of Aberrant DNA Re-methylation Improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 23, 426–435 e425 (2018).
12. Inoue, K. et al. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330, 496–499 (2010).
13. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).
14. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).
15. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).
16. Du, Z. et al. Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547, 232–235 (2017).
17. Ke, Y. et al. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170, 367–381 e320 (2017).
18. Hug, C. B., Grimaldi, A. G., Kruse, K. & Vaquerrizas, J. M. Chromatin architecture emerges during zygotic genome activation independent of transcription. Cell 169, 216–228 e219 (2017).
19. Kaai, J. J. T., van der Weide, R. H., Ketting, R. F. & de Wit, E. Systemic loss and gain of chromatin architecture throughout Zebrashif development. Cell Rep. 24, 1–10 e14 (2018).
20. Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948–953 (2013).
21. Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).
22. Dekker, J. Two ways to fold the genome during the cell cycle: insights obtained with chromosome conformation capture. Epigenetics Chromatin 7, 25 (2014).
23. Campbell, K. H., Loi, P., Otaegui, P. J. & Wilmut, I. Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1, 40–46 (1996).
24. Matoba, S. & Zhang, Y. Somatic cell nuclear transfer reprogramming: mechanisms and applications. cell stem cell 23, 471–485 (2018).
25. Abramo, K. et al. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21, 1393–1402 (2019).
26. Szalaj, P. & Plewczynski, D. Three-dimensional organization and dynamics of the genome. Cell Biol. Toxicol. 34, 381–404 (2018).
27. Fan, H. Y. et al. MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. Science 324, 938–941 (2009).
28. Yue, F. et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 515, 355–364 (2014).
29. Nara, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).
30. Wang, K. Y. et al. 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
31. Crane, E. et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature 523, 240–244 (2015).
32. Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012–1025 (2015).
33. Krüger, P. H. & de Laat, W. Regulation of disease-associated gene expression in the 3D genome. Nat. Rev. Mol. Cell Biol. 17, 771–782 (2016).
34. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).
35. Ay, F., Bailey, T. L. & Noble, W. S. Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts. Genome Res. 24, 999–1011 (2014).
36. Djekidel, M.N., Chen, Y. & Zhang, M.Q. FIND: differential chromatin INteractions Detection using a spatial Poisson process. Genome Res. http://www.genome.org/cgi/doi/10.1101/gr.212244.116 (2018).
37. Falco, G. et al. Zscan4: a novel gene expressed exclusively in late 2-cell embryos and embryonic stem cells. Dev. Biol. 307, 539–550 (2007).
38. Dixon, J. R., Gorkin, D. U. & Ren, B. Chromatin domains: the unit of chromosome organization. Mol. Cell 62, 668–680 (2016).
40. Rodriguez-Osorio, N., Urrego, R., Cibelli, J. B., Eilertsen, K. & Memili, E. Reprogramming mammalian somatic cells. Theriogenology 78, 1869–1886 (2012).

41. Yang, X. et al. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 39, 295–302 (2007).

42. Gao, S. et al. Somatic cell-like features of cloned mouse embryos prepared with cultured myoblast nuclei. Biol. Reprod. 69, 48–56 (2003).

43. Hosa, T., Yamauchi, T. & Yamasaki, T. Made-to-order somatic cells: differential reprogramming of fibroblasts from human disease models. Cell Stem Cell 21, 135–143 e136 (2017).

44. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

45. Chia, G. et al. Genomic instability during reprogramming by nuclear transfer is DNA replication dependent. Nat. Cell Biol. 19, 282–291 (2017).

46. Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y. & Mechali, M. Mitotic remodeling of the replicon and chromosome structure. Cell 123, 787–801 (2005).

47. Liu, W. et al. Asymmetric reprogramming capacity of parental pronuclei in reprogramming mammalian somatic cells. Nucleic Acids Res. 46, D14–D20 (2018).

48. Ko, M. S. Zygotic genome activation revisited: looking through the expression identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143 e136 (2017).

49. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin and gene expression in human cells. Proc. Natl Acad. Sci. USA 111, 996–1001 (2014).

50. Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin and function of Zscan4. Cell Rep. 6, 1008–1016 (2014).

51. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

52. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

53. Lowes, A. L., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

54. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

55. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

56. Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).

57. Imakura, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

58. Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted correlation coefficient. Genome Res. 27, 1939–1949 (2017).

59. Akdemir, K. C. & Chin, L. HiCPlotter integrates genomic data with interaction matrices. Genome Biol. 16, 198 (2015).

60. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. cell 38, 576–589 (2010).

61. Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).

62. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse. Nature 535, 575–579 (2016).

63. Kent, W. J., Zweig, A. S., Barber, G., Hinrichs, A. S. & Karolchik, D. BigWig and BigBED: enabling browsing of large distributed datasets. Bioinformatics 26, 2204–2207 (2010).

64. Ramirez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).

65. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

66. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

67. Dahl, J. A. et al. Broad histone H3K4me3 domains in mouse oocytes mediate maternal-to-zygotic transition. Nature 537, 548–552 (2016).

68. Spill, Y. G., Castillo, D., Vidal, E. & Marti-Renom, M. A. Binless normalization of Hi-C data provides significant interaction and difference detection independent of resolution. Nat. Commun. 10, 1938 (2019).

69. Wang, Y. et al. GSA: Genome Sequence Archive^{sup}/s. Genomics, Proteom. Bioinform. 15, 14–18 (2017).

70. Members, B.I.G.D.C. Database resources of the BIG Data Center in 2018. Nucleic Acids Res. 46, D14–D20 (2018).

Acknowledgements

The authors would like to thank Dr. Jinsong Li from Shanghai Institute of Biochemistry and Cell Biology for sharing experimental materials. This work was supported by the National Key R&D Program of China (2016YFA0100400 and 2018YFC1004000 and 2019YFA0110000) and the National Natural Science Foundation of China (31721003, 31820103009, 31701149, 31701262, 81630035, 31972882).

Author contributions

C.J. and S.G. designed the experiments and analyzed the data; M.C. conducted the experiments with assistance from C.L., X.K., Y.Z., Y.L., R.X., L.Y., L.Y., H.W. and X.L.; Q.Z. and C.J. analyzed the data with assistance from L.G.; and M.C., Q.Z., X.L., C.J. and S.G. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15607-z.

Correspondence and requests for materials should be addressed to X.L., C.J. or S.G.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2020