Silicon Application Induced Alleviation of Aluminum Toxicity in Xaraés Palisadegrass

Guilherme Baggio 1, Elisângela Dupas 2, Fernando Shintate Galindo 3, Marcio Mahmoud Megda 4, Nathália Cristina Marchiori Pereira 1, Monique Oliveira Luchetta 1, Caio Augusto Tritapepe 1, Marcelo Rinaldi da Silva 1, Arshad Jalal 1* and Marcelo Carvalho Minhoto Teixeira Filho 1,*

Abstract: Aluminum (Al) toxicity is a major abiotic constraint for agricultural production in acidic soils that needs a sustainable solution to deal with plant tolerance. Silicon (Si) plays important roles in alleviating the harmful effects of Al in plants. The genus *Urochloa* includes most important grasses and hybrids, and it is currently used as pastures in the tropical regions. Xaraés palisadegrass (*Urochloa brizantha* cv. Xaraés) is a forage that is relatively tolerant to Al toxicity under field-grown conditions, which might be explained by the great uptake and accumulation of Si. However, studies are needed to access the benefits of Si application to alleviate Al toxicity on Xaraés palisadegrass nutritional status, production, and chemical-bromatological composition. The study was conducted under greenhouse conditions with the effect of five Si concentrations evaluated (0, 0.3, 0.6, 1.2, and 2.4 mM) as well as with nutrient solutions containing 1 mM Al in two sampling dates (two forage cuts). The following evaluations were performed: number of tillers and leaves, shoot biomass, N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Al, and Si concentration in leaf tissue, Al and Si concentration in root tissue, neutral detergent fiber (NDF), and acid detergent fiber (ADF) content in Xaraés palisadegrass shoot. Silicon supply affected the relation between Si and Al uptake by increasing root Al concentration in detriment to Al transport to the leaves, thereby alleviating Al toxicity in Xaraés palisadegrass. The concentrations between 1.4 and 1.6 mM Si in solution decreased roots to shoots Al translocation by 259% (from 3.26 to 1.26%), which contributed to a higher number of leaves per plot and led to a greater shoot dry mass without affecting tillering. Xaraés palisadegrass could be considered one of the greatest Si accumulator plants with Si content in leaves above 4.7% of dry mass. In addition, Si supply may benefit nutritive-use efficiency with enhanced plant growth and without compromising the chemical-bromatological content of Xaraés palisadegrass.

Keywords: Al+3 phytotoxicity; Si accumulator plants; silicon concentrations; tropical pasture; *Urochloa brizantha* cv. Xaraés

1. Introduction

Brazil has about 180 million hectares of pastures and is one of the largest commercial cattle producers of the world, which depend on pastures as a main feed source [1], since they are less costly than other forms of feed [2]. Pasture lands represent approximately 73% of Brazil’s total agricultural land; however, it is estimated that 80% of these pastures are established in degraded soils [3,4]. Generally, tropical fodder grows in low-fertility acidic soils [5].
Aluminum (Al) toxicity is represented as one of the main yield-limiting factors for crops and pastures in acidic soils [6]. This element is one of the most dominant minerals in the earth’s crust, representing about 8% of its mass [7]. Acidic soils constitute ≈30% of the world’s total land area and 50% of the potentially available arable land worldwide [8]. Under acidic soil conditions (pH < 5.5), Al is solubilized into aluminum ion (Al$^{3+}$) and became biologically available [9]. Thereby, Al availability affects a wide range of physical, cellular, and molecular processes with a consequent reduction in plant growth [9–11]. Alterations in the structure and/or functions of cell wall components [12], plasma membrane properties [13], nutrient homeostasis [11,14], and signal transduction pathways [6,15] can be induced as a consequence of Al binding to numerous cell sites.

Silicon (Si) has been well documented to alleviate Al toxicity in vascular plants [6,9,10,16]. Silicon is the second most abundant element after oxygen in the earth’s crust, comprising approximately 29% (28.8 wt %) of the earth’s crust [17–19]. Although Si is considered a quasi-essential element rather than a plant nutrient, it is being increasingly adopted in worldwide agricultural systems [18–21]. The silicon content in the soils ranges from 1 to 45%, depending on soil type [22]. The potential of Si in improving crop yield has been demonstrated in many studies, especially under abiotic and biotic stress conditions (e.g., heavy metals toxicity, salinity, drought, high temperature and pathogens attack) [23,24]. Monocotyledons in general and Poaceae species such as Xaraes palisadegrass (Urochloa brizantha cv. Xaraes) are clearly favored due to an enhanced supply of Si [19,22,25]. It has been reported that some Poaceae species could accumulate Si to levels above 1% of total shoot biomass [23].

Xaraes palisadegrass was released as an option for grazing systems in Brazil in 2002 due to its greater forage accumulation and rapid regrowth compared to the standard industrial cultivar Marandu palisadegrass (Urochloa brizantha cv. Marandu) [26]. These above-mentioned factors are combined with good tolerance to spittlebugs (Notozulia entertiana and Deois flavopicta), and poorly drained soils [26] increased its cultivation. However, the cultivation and harvest of Si-accumulating crops is responsible for a constant depletion of Si reservoir in soils [27,28] and therefore, it decreases Si bioavailability [29]. The enhanced Si removal by crops and pastures disrupt the recycling of Si by plants back into the soil [30]. Liang et al. [31] reported that Si content in Oxisols in tropical zone can be less than 1% due to the intense weathering process. Highly weathered tropical and subtropical soils under continuous cropping systems are generally low in available Si content due to the heavy desilication of primary silicate minerals as well as the release and leaching of basic cations with decreased base saturation [19,23,32,33]. Therefore, the decrease in Si availability in tropical soils might have significant impacts on cropping systems if not properly managed.

In general, Urochloa spp. show greater tolerance to Al$^{3+}$ toxicity than most other grass crops, including maize (Zea mays L.), rice (Oryza sativa L.), or wheat (Triticum aestivum L.) [8,34]. These plants species have a set of desirable genetic characteristics linked to drought and waterlogging tolerance, tolerance in weathered and acidic soils, and resistance to major diseases [35]. Overall, Al$^{3+}$ tolerance mechanisms are classified as external and internal tolerance mechanisms; the molecular genetic mechanisms underlying stress-induced exudation of organic acids are well known [8,34]. In Urochloa spp., Al$^{3+}$ tolerance mechanism responses have been mostly associated with exclusion of Al$^{3+}$ (external tolerance mechanisms) [8]. For example, studies comparing the responses of tolerant U. decumbens and sensitive U. ruziziensis under Al$^{3+}$ stress showed that U. decumbens exhibited a multi-seriate root exodermis and Al accumulation in root hairs [36], and they downgraded the importance of exudation of organic acids or changes in rhizosphere pH [37]. It might be possible that the relative tolerance to Al toxicity by Urochloa spp. could be associated with a great uptake and accumulation of Si.

As we mentioned above, Si is known for its role in alleviating stressful effects in many plant species, especially Al$^{3+}$ toxicity. However, the mechanisms underlying these responses in forage grasses remain poorly understood. We hypothesized that Si application might reduce Al toxicity in Xaraes palisadegrass plants by decreasing Al transport to plant
shoots without reducing Al uptake by roots. The increased Si instead of Al uptake may provide enhanced nutrient acquisition, which may lead to greater shoot development. In addition, the greater Si uptake may affect the chemical–bromatological composition, since Si could affect the structure of plant cell walls, mostly by altering linkages of non-cellulosic polymers and lignin [38,39]. This research could provide new clues on how Si application affects Xaraés palisadegrass tolerance to Al$^{3+}$ and may be included as a strategy for improving forage growth with a better plant nutrition. Therefore, we propose a novel approach to investigate the benefits of Si application to alleviate Al toxicity on Xaraés palisadegrass nutritional status, production, and chemical–bromatological composition. Here, we assessed the effect of five Si concentrations (0, 0.3, 0.6, 1.2, and 2.4 mM) on the modulation of Si/Al uptake, leaf nutrients concentration, shoot dry mass, neutral detergent fiber (NDF), and acid detergent fiber (ADF) content in Xaraés palisadegrass plants, which were cultivated in nutrient solutions containing 1 mM Al along two forage cuts.

2. Materials and Methods

2.1. Site Description

The study was carried out in a greenhouse (20°38′44″ south latitude and 51°06′35″ west longitude) with controlled conditions. The temperature in the greenhouse during plant growth ranged between 25 °C (minimum) and 35 °C (maximum), and averaged 30 °C; with average air relative humidity of 70%.

2.2. Experimental Design and Treatments

The experimental design was a randomized complete block design (RCBD) with four replicates and five treatments of Si concentrations: 0, 0.3, 0.6, 1.2 and 2.4 mM, applied as sodium silicate (Na$_2$O(SiO$_2$) xH$_2$O—SiO$_2$ ≈ 26.5% and Na$_2$O ≈ 10.6%) in nutrient solution. Silicon concentrations were established based on existing literature for Poaceae family [10,16,40]. Xaraés palisadegrass (Urochloa brizantha cv. Xaraés) plants were cultivated in plastic pots (3.6 L) containing ground quartz (size of 2 mm) as substrate and were exposed to 1 mM Al concentration (Figure 1). This Al concentration was previously reported to limit Urochloa sp. development [41].

Figure 1. Xaraés palisadegrass cultivated under Al toxicity (1 mM) in ground quartz substrate and nutrients solution containing Si concentrations (0, 0.3, 0.6, 1.2, and 2.4 mM).

The ground quartz was used as growth substrate for better and erect growth of Xaraés palisadegrass, where it can develop its shoot up to one meter with a strong root system. Ground quartz is composed by silica (SiO$_2$), which is an acidic oxide. It will react with strong bases to form silicate salts, mainly in alkaline solutions. Under acid solutions, acid
oxides do not react under normal conditions. Therefore, the solubility of SiO$_2$ in acid solutions remains very low. Since the nutrient solution pH level was kept around 4.2, there was no relevant release of Si from the substrate.

The composition of the nutrient solution used in the study is shown in Table 1 and was based on Hoagland and Arnon [42] solution. The pH was daily adjusted to 4.2 ± 0.1 with HCl solution (1 M) and nutrient solutions were changed weekly. The proportion of 70% N-NO$_3^-$ and 30% N-NH$_4^+$ was kept constant.

Table 1. Volumes of stock solutions used in preparation of nutrient solutions provided during the study.

Si (mM)	0	0.3	0.6	1.2	2.4
NaSiO$_3$ (0.5 M)	-	0.6	1.2	2.4	4.8
KH$_2$PO$_4$ (1 M)	1	1	1	1	1
KCl (1 M)	5	5	5	5	5
Ca(NO$_3)_2$ (1 M)	5	5	5	5	5
MgSO$_4$ (1 M)	2	2	2	2	2
NH$_4$Cl (1 M)	5	5	5	5	5
Micro—Fe *	1	1	1	1	1
Fe-EDTA **	1	1	1	1	1
AlCl$_3$.6H$_2$O (0.3 M)	3.3	3.3	3.3	3.3	3.3

* Composition of micronutrient solution, except for Fe in g L$^{-1}$: MnCl$_2$.4H$_2$O = 1.81; ZnCl$_2$ = 0.10; CuCl$_2$ = 0.04, H$_3$BO$_3$ = 1.49, and H$_2$MoO$_4$.H$_2$O = 0.02. ** 26.1 g of disodium EDTA were dissolved in 286 mL of 1 M NaOH, mixing 24.1 g of FeSO$_4$.7H$_2$O, airing overnight and completing the volume to 1 L with deionized water.

Based on Table 1, the following amounts of chemical elements were supplied for all treatments using the nutrient solutions, in mg L$^{-1}$: 210 of N, 31 of P, 234 of K, 200 of Ca, 48 of Mg, 66.8 of S, 4.85 of Fe, 0.5 of Mn, 0.05 of Zn, 0.02 of Cu, 0.011 of Mo, 390 of Cl, 0.26 of B and 27 of Al. For the five Si concentrations (0, 0.3, 0.6, 1.2, and 2.4 mM) were provided 0, 8.4, 16.8, 33.6, and 67.2 mg L$^{-1}$ of Si, respectively.

2.3. Xaraés Palisadegrass Growth and Harvest

The Xaraés palisadegrass seeds were obtained commercially and placed to germinate in a plastic tray containing sand as substrate. The plastic trays were periodically watered with deionized water until the seedlings reached around four centimeters; then, 12 seedlings were transplanted into each plastic pot.

Periodic thinning was carried out until five well-developed plants per pot remained. One day after transplanting the seedlings (DAT), 1 L of diluted solution at 20% of the corresponding initial solution was applied. Initially, the solutions remained in the pots during the day and night, being circulated by the substrate four times a day for a week to breathe the roots. They were subsequently drained at night and supplied in the morning. After 4 DAT, the solutions with definitive concentration were added to the pots and subsequently changed weekly. The water lost by evapotranspiration was replaced daily with deionized water, based on the volume of the glass where the solution was drained.

Two cuts were performed; each one was made at 5 cm from the plant’s neck in relation to the substrate, when most of the mature leaves were in senescence (40 and 70 DAT in the first and second cut, respectively). Xaraés palisadegrass shoot and root were collected separately, washed in deionized water, and dried for 72 h in a forced-air oven at 60 °C. The shoots were separated into newly expanded leaves (LR = the two newly expanded leaves with visible ligula) and from the rest of the plant that was collected (leaves from the apex of the plant, mature leaves, and stems plus sheaths).
2.4. Evaluations
2.4.1. Number of Leaves and Tillers, Shoot Dry Mass, and Fibers Content

The number of leaves and tillers of each pot were obtained by manual counting before each cut. As we mentioned above, 40 and 70 DAT, Xaraés palisadegrass shoot was collected, washed in deionized water, and dried; then, the shoot dry mass (g plot$^{-1}$) was weighed. Neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents were measured following the methodologies of Van Soest [43].

2.4.2. Silicon and Al Concentrations in Leaf and Root Tissue and Nutrient Concentration in Diagnostic Leaves (Nutritional Status)

Silicon and Al concentrations in leaf and root tissue followed Korndörfer [44] and Malavolta et al. [45] methodologies, respectively. N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn concentrations in leaf tissue were determined according to Malavolta et al. [46].

2.4.3. Silicon and Al Roots to Shoots Translocation Factor

The translocation factor of Si and Al were calculated after the second cut, following Abichequer and Bohnen [47], according to Equation (1):

\[
\text{Roots to shoots translocation (\%) } = \frac{\text{Shoot Si or Al concentration}}{\text{Root Si or Al concentration}} \times 100. \tag{1}
\]

Shoot and root Si concentrations are in g kg$^{-1}$ of dry mass and shoot and root Al concentrations are in mg kg$^{-1}$ of dry mass, respectively.

2.5. Statistical Analysis

All data were initially tested for normality using the Shapiro and Wilk test and Levene’s homoscedasticity test ($p \leq 0.05$), which showed the data to be normally distributed ($W \geq 0.90$). Data were submitted to analysis of variance (F test) and adjusted to polynomial regression for the Si concentrations using R software [48].

2.6. Principal Components Analysis

Principal component analysis (PCA) was used to evaluate Xaraés palisadegrass productive components, leaf nutrient, Si and Al concentrations, root Si and Al concentrations and chemical–bromatological composition. The PCA was performed using FactoMineR and factoextra packages in R software [48]. The number of PCs was selected depending on eigenvalue. The PCs that had eigenvalues ≥ 1 were kept, and the rest were removed. The total variability of 70% or greater was expressed by the selected PCs. Then, the correlations between selected PCs and observed variables explained with factor loading, which was estimated based on Equation (2):

\[
\text{Factor loading } = \text{ Eigenvectors } \times \sqrt{\text{Eigenvalue}}. \tag{2}
\]

A factor loading of >0.30 was considered significant according to Lawley and Maxwell [49]. The biplot graphic shows that PC1 (axis x) and PC2 (axis y) were plotted, separating the first and second cuts.

3. Results
3.1. Silicon and Aluminum Content in Leaves and Roots, Neutral, and Acid Detergent Fiber Content in Xaraés Palisadegrass

Silicon application influenced Si and Al concentration in leaves and roots and ADF content (Figure 2). Neutral detergent fiber (NDF) was not significantly affected by Si concentrations (Figure 2G).
In the first cut, leaf Si concentration responded linearly to the increasing Si concentrations (Figure 2A), while leaf Al concentration showed a non-linear response to Si concentrations (Pmin [lowest estimated value] = 1.6 mM Si) (Figure 2C). In the second cut, both leaf Si and Al concentration responded non-linearly to increasing Si concentrations (leaf Si: Pmax [highest estimated value] = 1.8 mM Si and leaf Al: Pmin = 1.5 mM Si) (Figure 2B,D). In the second cut, root Si and Al responded non-linearly to increasing Si concentrations (root Si: Pmin = 1.4 mM Si and root Al: Pmax = 1.7 mM Si) (Figure 2E,F). In contrast, ADF was found to respond linearly to Si concentrations (Figure 2H).

3.2. Number of Leaves and Tillers Per Plot and Shoot Dry Mass of Xaraés Palisadegrass

The number of leaves per plot and shoot dry mass were positively affected by increasing Si concentrations (Figure 3), whereas the number of tillers per plot was not influenced by Si concentrations (Figure 3C,D).
In the first cut, leaves per plot and shoot dry mass responded non-linearly to increasing Si concentrations (Figure 3A,E). The highest estimated values were verified with 1.4 mM Si (Figure 3A,E). In the second cut, leaves per plot responded linearly to increasing Si concentrations (Figure 3B), while shoot dry mass showed a non-linear response to Si concentrations ($P_{\text{max}} = 1.5$ mM Si) (Figure 3F).

3.3. Leaf Nutrient Concentrations in Xaraes Palisadegrass

Overall, Si application influenced all tested nutrient concentrations (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn) in leaf tissue (Figures 4–6). However, leaf B concentration in the first cut and leaf K and Zn concentrations in the second cut were not affected by increasing Si concentrations (Figures 4F, 5E and 6F).
Figure 4. Leaf N concentration in the first (A) and second cut (B), leaf P concentration in the first (C) and second cut (D), leaf K concentration in the first (E) and second cut (F), leaf Ca concentration in the first (G) and second cut (H) as a function of increasing Si concentrations in Xaraés palisadegrass. Error bars indicate the standard deviation of the mean (n = 4). * and ** = significant at 5 and 1% probability by F test respectively.
Figure 5. Leaf Mg concentration in the first (A) and second cut (B), leaf S concentration in the first (C) and second cut (D), leaf B concentration in the first (E) and second cut (F), leaf Cu concentration in the first (G) and second cut (H) as a function of increasing Si concentrations in Xaraés palisadegrass. Error bars indicate the standard deviation of the mean (n = 4). * and ** = significant at 5 and 1% probability by F test respectively.
In the first cut, leaf K, Ca, Mg, Mn, and Zn concentrations increased linearly with increasing Si concentrations (Figures 4E,G, 5A and 6C,E) while leaf N, P, S, Cu, and Fe were found to respond non-linearly to Si concentrations (Figures 4A,C, 5C,G and 6A). The lowest estimated values for leaf N, P, S, and Fe concentrations ranged from 1.1 to 1.5 mM Si (Figures 4A,C, 5C and 6A). In contrast, the highest estimated value for leaf Cu concentration was obtained with 1.7 mM Si (Figure 5G). In the second cut, leaf N and B concentrations decreased linearly with increasing Si concentrations, whereas leaf Fe concentration showed positive linear response to Si concentrations (Figures 4B, 5F and 6B). Leaf P, Ca, Mg, S, Cu, and Mn concentrations responded non-linearly to increasing Si concentrations (Figures 4D,H, 5B,D,H and 6D). The lowest estimated values for leaf P, S, and Cu concentration ranged from 0.7 to 1.6 mM Si (Figures 4D and 5D,H). Differently,
the highest estimated values for leaf Ca, Mg, and Mn concentrations ranged from 1.7 to 1.9 mM Si (Figures 4H, 5B, and 6D).

3.4. Roots to Shoots Al and Si Translocation

In the second cut, both roots to shoot Al and Si translocation responded non-linearly to the increasing Si concentrations (Figure 7A,B). The lowest estimated value for Al translocation was found with 1.5 mM Si (Figure 7A). In contrast, the highest estimated value for Si translocation was verified with 1.4 mM Si (Figure 7B).

Figure 7. Roots to shoots Al translocation (A) and roots to shoots Si translocation (B) in the second cut as a function of increasing Si concentrations in Xaraé’s palisadegrass. Error bars indicate the standard deviation of the mean (n = 4). * and ** = significant at 5 and 1% probability by F test respectively.

3.5. Principal Component Analysis

The eigenvalues of the four extracted principal components were greater than 1, and therefore, these components can be grouped into a four-component model which accounts for 77% and 70% of data variation in the first and second cuts, respectively (Table 2).

In the first cut, principal component 1 (PC1) represented 31% of the variance and showed that shoot dry mass, leaves per plot, and leaf Cu concentration were positively correlated (Table 2). Conversely, leaf Al, N, and P concentrations were negatively correlated with the above-mentioned PC1 components (Table 2). Principal component 2 showed positive correlation among leaf Si, K, Ca, Mg, S, Fe, Mn, and Zn concentrations (Table 2). Principal component 1 and PC2 represented 57% of the cumulative variance (Table 2). The other two extracted factors are negligible in terms of both explained variability and eigenvalues (Table 2). The groups formed by the concentrations of 1.2 and 2.4 mM Si better comprised important production components such as shoot dry mass, leaves per plot, tillers per plot, and some nutritional components such as leaf Si, K, Ca, Mg, B, Cu, Mn, and Zn concentrations (Figure 8A,B). In contrast, without and at low Si supply, the group formed by these treatments better comprised leaf Al, N, and P concentrations (Figure 8A,B).

In the second cut, PC1 represented 37% of the variance and showed positive correlation among shoot dry mass, leaf Ca and Mn concentrations, and root Al concentration (Table 2). However, leaf Al, N, and P concentrations were negatively correlated to the above-mentioned PC1 components (Table 2). Principal component 2 showed that leaf Si concentration and leaf K, Mg, B, and Zn concentrations were positively correlated (Table 2). Principal component 1 and PC2 represented 50% of the cumulative variance (Table 2). Similarly, as observed in the first cut, the other two extracted factors were negligible in terms of both explained variability and eigenvalues (Table 2). Although the group formed by the Si supply with 0.6 mM comprised mostly of the analyzed parameters, leaf Al concentration was also included in this group (Figure 8C,D). Thus, the groups formed by the supply of
1.2 and 2.4 mM Si better comprised the most important production components (e.g., shoot dry mass and leaves per plot) and some nutritional components (e.g., leaf Si, K, Ca, Mg, Cu, Fe and Mn concentrations) (Figure 8C,D). Similarly, as verified in the first cut, without and at low Si supply, the group formed by these treatments better comprised leaf Al, N, and P concentrations (Figure 8C,D).

Table 2. Factor loadings of a principal component analysis for Xaraés palisadegrass.

Parameters	PC1	PC2	PC3	PC4
Shoot dry mass	0.38	−0.07	−0.26	0.16
Leaves per plot	0.34	−0.01	0.27	0.13
Tillers per plot	0.12	−0.13	0.51	0.12
Leaf Al concentration	−0.31	0.05	−0.20	0.41
Leaf Si concentration	0.21	0.31	0.10	−0.26
Leaf N concentration	−0.39	0.12	0.20	−0.01
Leaf P concentration	−0.34	0.13	0.34	−0.15
Leaf K concentration	−0.03	0.32	0.44	0.06
Leaf Ca concentration	0.21	0.31	0.14	0.17
Leaf Mg concentration	0.21	0.40	0.06	0.06
Leaf S concentration	−0.28	0.32	−0.04	−0.05
Leaf B concentration	0.11	0.08	−0.16	−0.75
Leaf Cu concentration	0.35	0.08	−0.01	0.15
Leaf Fe concentration	−0.15	0.35	−0.28	0.08
Leaf Mn concentration	−0.02	0.37	−0.25	0.22
Leaf Zn concentration	0.14	0.34	−0.09	−0.11
Variance (%)	30.9	25.8	12.95	7.53
Cumulative variance (%)	30.9	56.8	69.7	77.2
Eigenvalues	4.95	4.14	2.07	1.20

Parameters	PC1	PC2	PC3	PC4
Shoot dry mass	0.32	−0.08	−0.11	−0.13
Leaves per plot	0.09	−0.17	0.43	−0.30
Tillers per plot	−0.10	−0.01	−0.01	−0.46
Leaf Al concentration	−0.30	−0.19	0.08	0.26
Leaf Si concentration	0.17	0.30	−0.10	−0.12
Leaf N concentration	−0.31	0.16	0.09	−0.29
Leaf P concentration	−0.33	0.08	0.12	−0.04
Leaf K concentration	0.01	0.30	0.41	−0.33
Leaf Ca concentration	0.30	0.08	0.07	0.12
Leaf Mg concentration	0.27	0.31	0.16	0.11
Leaf S concentration	−0.16	−0.09	0.45	0.08
Leaf B concentration	−0.14	0.47	−0.17	0.14
Leaf Cu concentration	0.12	−0.15	0.29	0.01
Leaf Fe concentration	0.26	−0.01	0.33	0.21
Leaf Mn concentration	0.31	0.07	0.23	0.09
Leaf Zn concentration	−0.04	0.45	0.11	0.35
Root Si concentration	−0.20	−0.26	0.19	0.40
Root Al concentration	0.31	0.03	−0.09	−0.02
Neutral detergent fiber	0.17	−0.19	−0.13	−0.04
Acid detergent fiber	0.21	−0.27	−0.13	0.02
Variance (%)	36.9	12.82	10.81	9.16
Cumulative variance (%)	36.9	49.7	60.5	69.6
Eigenvalues	7.37	2.56	2.16	1.83

Agronomy 2021, 11, 1938
Figure 8. Loadings and biplot graphics of principal component analysis among the relationship between Xaraës palisade-grass shoot dry mass (SHDM), leaves per plot (LPP), tillers per plot (TPP), neutral detergent fiber (NDF), acid detergent fiber (ADF), leaf Al, Si, N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, and Zn concentrations (LeAl, LeSi, LeN, LeP, LeK, LeCa, LeMg, LeS, LeB, LeCu, LeFe, LeMn, and LeZn), root Al and Si concentration (RoAl and RoSi) evaluated in the first (A,B) and second cuts (C,D).
4. Discussion

We verified that the increasing Si uptake in Xaraés palisadegrass leaves had directly affected the modulation of Si/Al uptake by decreasing leaf Al concentration as mediated with Si supply. The root to shoots translocation factor showed that concentrations between 1.4 and 1.5 mM Si provided greater Si translocation while reducing Al redistribution. However, the presence of Si in the nutritive solution did not reduce root Al concentration. Our results showed an opposite relation between leaf Si (Q1) and root Si (Q3) concentrations and leaf Al (Q3) and root Al (Q1) concentrations in PCA biplot graph. Moreover, the opposite direction of leaf Si and root Al concentration (Q1) loadings compared to leaf Al concentration (Q3) strengthen this hypothesis. Silicon was previously related to Al toxicity mitigation by reducing Al transport and shoot accumulation [10,50,51]. The increased concentration of Al in the roots was reported to be a strategy to inactivate or store non-toxic Al in roots and to translocate less Al to shoots, thereby alleviating Al toxicity in plants [52,53]. According to Freitas et al. [10], Si added to the solution may interact with Al, make it non-toxic to the plant by decreasing Al translocation to the shoot and hence, alleviate its toxicity in plant shoots, as verified in our study. Silicon can regulate plant resistance and/or tolerance to metal toxicity by either external (ex planta) or internal (in planta) mechanisms [6,54]. In this regard, it has been proposed that the alleviation of Al stress by Si in plants can mainly be explained by the following events: (i) Si-induced increase in solution pH [54], (ii) formation of Al-Si complexes in the growth media and/or within the plant, influencing Al speciation [55], (iii) exudation of organic acid anions and phenolic compounds [56], and (iv) increase in the contents of chlorophyll and carotenoids on leaves [50].

The increased Si uptake in Xaraés palisadegrass leaves also affected Xaraés palisadegrass content, with an increased ADF content. Silicon supply can affect the composition of plant cell walls, mostly by altering linkages of non-cellulosic polymers and lignin [38,39]. In addition, ADF contains cellulose, lignin, and insoluble minerals (mainly silica) [43]; therefore, we could expect an increase in ADF content within Si application. Acid detergent fiber content above 40% of fodder dry mass has been reported to impair animal consumption and digestibility [43]. However, the verified ADF of Xaraés palisadegrass (below 30%) indicates that Si supply would not be harmful to fodder quality, irrespective of the Si concentration in nutrient solution.

Our results showed that most of the absorbed Si was accumulated in the leaf tissue. In addition, leaf Si concentration was greater than leaf N concentration, which is the most demanded nutrient for grass production (leaf Si: 47.2 g kg\(^{-1}\) vs. leaf N: 17.7 g kg\(^{-1}\)—average of two cuts). Plant roots take up silicic acid from soil solution and translocate it to the shoots where it is deposited and precipitated in intercellular spaces as amorphous SiO\(_2\)-nH\(_2\)O in solid structures known as phytoliths [19,57]. Si contents vary considerably between plant species, with values ranging from about 0.1% to 10% Si per dry mass [28]. Based on Si content, plants have been divided into three groups: (i) non-accumulators or excluders (Si content per dry mass < 0.5%); (ii) intermediate accumulators (Si content per dry mass 0.5–1%); and (iii) accumulators (Si content per dry mass > 1%) [28]. Field crops, especially cereal grasses of the Poaceae family are known as Si accumulators [58]. Seven crops (sugarcane (Saccharum officinarum L.), rice, wheat, barley (Hordeum vulgare L.), sugar beet (Beta vulgaris L.), soybean (Glycine max (L.) Merrill), and maize) are classified as accumulators among the 10 most important crops (ranked by global production) [29]. However, many pasture forage grasses also accumulate Si in their leaves at concentrations of 10–50 g kg\(^{-1}\) [59,60]. Thus, Xaraés palisadegrass could be considered one of the greatest Si accumulator plants with a verified Si content of 4.7% in leaves dry mass.

The leaf concentrations of N, K, Mg, and Cu were observed in an adequate concentration range (13–20 (N); 12–30 (K), 1.5–4.0 (Mg), 0.8–2.5 (S) g kg\(^{-1}\) of dry mass (DM), respectively and 4–12 (Cu) mg kg\(^{-1}\) of DM) according to Werner et al. [61]. However, the leaf concentrations of Ca, B, Mn and Zn were below adequate concentration range (10–25 (B), 40–250 (Mn) and 20–50 (Zn) mg kg\(^{-1}\) DM) [61]. The leaf concentra-
tions of P and Fe were above the adequate concentration (0.8–3.0 (P) g kg\(^{-1}\) of DM and 50–250 (Fe) mg kg\(^{-1}\) DM) [61].

The presence of Si in the solution decreased Al translocation to the shoots, which contributed to increasing the number of leaves per plot and leading to a greater shoot dry mass without affect tillering. Interestingly, leaf nutrient concentrations did not present a clear trend. For example, increased Si supply provided greater leaf K, Cu, and Zn in the first cut, leaf Fe in the second cut, and Ca, Mg, and Mn in both cuts. The other leaf nutrient concentrations were negative influenced or fluctuated by Si concentrations. The PCA groups formed by the supply of 1.2 and 2.4 mM of Si better comprised the most important production and nutritional components. Nonetheless, the lowest estimated values for several nutrient concentrations in leaf tissue ranged from 1.1 to 1.6 mM Si in most of the cases. The fact that Si concentrations ranging from 1.4 to 1.6 mM Si provided the greatest number of leaves per plot, shoot dry mass, and roots to shoots Si translocation together with the lowest leaf Al concentration, roots to shoots Al translocation, and other nutrients indicated that a dilution effect may occurred. This hypothesis is strengthened by the decreased leaf N concentration due to Si supply, since N is the major nutrient required for forages for being the key nutrient to achieve high dry mass yields. In another words, Si supply may benefit nutrient-use efficiency with enhanced plant growth. The positive correlations between leaf Si concentration and leaf K, Ca, Mg, S, B, Fe, Mn, and Zn concentrations together with the negative correlations between shoot dry mass and leaf Al, N, and P concentrations support this hypothesis. The increased nutrient use and uptake provided by different sources of Si (e.g., slag materials, silica powder, and silicates) was reported elsewhere for different crops [33,62–64]. In recent years, the number of studies reported the substantial increase in the effects of Si application to crops. This increased interest in Si is likely due to the beneficial effects of Si application on plant resistance to abiotic and biotic stresses such as insects and pathogens [30], salinity, drought, high temperature, freezing [65], heavy metal toxicity [66,67], and heavy rain and winds [67]. Silicon has also been reported to improve crop yield [68], plant growth, plant architecture, erectness, and photosynthesis rate [69], to decrease transpiration rate [70,71], and to improve water-use efficiency [40]. In this regard, Si fertilization might improve nutrient fertilization management while reducing the need for chemical inputs in agricultural systems and deserves more investigation.

5. Conclusions

Our study demonstrates that Si supply affected the modulation of Si/Al uptake by increasing roots to shoots Si translocation while reducing Al redistribution. The presence of Si between 1.4 and 1.6 mM in nutrient solution decreased Al translocation to the shoots, which contributed to the increase in the number of leaves per plot, leading to a greater shoot dry mass, without affect tillering. Our results revealed that Xaraës palisadegrass could be considered one of the greatest Si accumulator crops, with Si content in leaves above 4.7% of dry mass. In addition, Si supply may benefit nutrient-use efficiency with enhanced plant growth and without compromising the chemical–bromatological content of Xaraës palisadegrass. In this regard, Si fertilization might improve nutrient fertilization management while reducing the need for chemical inputs in agricultural systems, and it deserves more investigation.

Author Contributions: G.B., E.D., F.S.G., M.M.M., M.C.M.T.F., conceptualized the project, investigated, collected, and analyzed the original draft of data; M.C.M.T.F., project administration and supervision; F.S.G., graph editing; F.S.G., A.J. and M.C.M.T.F., review and editing; G.B., E.D., M.M.M., N.C.M.P., M.O.L., C.A.T. and M.R.d.S. field and lab help. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), award number 2014/23397-6, and by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq, award number 312359/2017-9.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this published article.

Acknowledgments: The authors would like to thank CNPq and FAPESP for the funding and overall support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E. Rates and sources of nitrogen fertilizer application on yield and quality of *Panicum maximum* cv. Mombasa. *Idesia* 2019, 37, 67–73. [CrossRef]

2. Fernandez, J.C.; Buzetti, S.; Dupas, E.; Teixeira Filho, M.C.M.; Andreotti, M. Sources and rates of nitrogen fertilizer used in Mombasa guineagrass in the Brazilian Cerrado region. *Afr. J. Agric. Res.* 2015, 10, 2076–2082. [CrossRef]

3. Oliveira, P.P.A.; Corte, R.; Silva, S.; Rodriguez, P.; Sakamoto, L.; Pedroso, A.; Tullio, R.; Berndt, A. The effect of grazing system intensification on the growth and meat quality of beef cattle in the Brazilian Atlantic Forest biome. *Meat Sci.* 2018, 139, 157–161. [CrossRef]

3. Costa, C.M.; da Costa, A.B.G.; de Farias Theodoro, G.; dos Santos, G.; Difante, A.L.C.G.; Santana, J.C.S.; Camargo, F.C.; de Almeida, E.M. The 4R management for nitrogen fertilization in tropical forage: A review. *Aust. J. Crop Sci.* 2020, 14, 1834–1837. [CrossRef]

4. Galindo, F.S.; Beloni, T.; Buzetti, S.; Filho, M.C.M.T.; Dupas, E.; Ludkiewicz, M.G.Z. Technical and economic viability and nutritional quality of Mombasa guineagrass grass silage production. *Acta Sci. Agron.* 2018, 40, 36395. [CrossRef]

5. Pontigo, S.; Godoy, K.; Jimenez, H.; Gutierrez-Moraga, A.; Mora, M.L.; Cartes, P. Silicon-mediated alleviation of aluminum toxicity by modulation of Al/Si uptake and antioxidant performance in ryegrass plants. *Front. Plant Sci.* 2017, 8, 642. [CrossRef]

6. De Sousa, A.; Saleh, A.M.; Habeeb, T.H.; Hassan, Y.M.; Zrieq, R.; Wadaan, M.A.; Hozzein, W.N.; Selim, S.; Matos, M.; AbdElgawad, H. Silicon dioxide nanoparticles ameliorate the phytotoxicity of aluminum in maize grown on acidic soil. *Sci. Total Environ.* 2019, 693, 133636. [CrossRef] [PubMed]

7. Worthington, M.; Perez, J.G.; Mussurova, S.; Silva-Cordoba, A.; Castiblanco, V.; Arango, J.A.C.; Jones, C.; Fernandez-Fuentes, N.; Skot, L.; Dyer, S.; et al. A new genome allows the identification of genes associated with natural variation in aluminum tolerance in Bracharia grasses. *J. Exp. Bot.* 2021, 72, 302–319. [CrossRef] [PubMed]

8. De Jesus, L.R.; Batista, B.L.; da Silva Lobato, A.K. Silicon reduces aluminum accumulation and mitigates toxic effects in cowpea plants. *Acta Physiol. Plant.* 2017, 39, 138. [CrossRef]

9. De Freitas, L.B.; Fernandes, D.M.; Maia, S.C.M.; Fernandes, A.M. Effects of silicon on aluminum toxicity in upland rice plants. *Plant Soil* 2017, 420, 263–275. [CrossRef]

10. Singh, S.; Tripathi, D.K.; Singh, S.; Sharma, S.; Dubey, N.; Chauhan, D.; Vaculik, M. Toxicity of aluminum on various levels of plant cells and organism: A review. *Environ. Exp. Bot.* 2017, 137, 177–193. [CrossRef]

11. Horst, W.J.; Wang, Y.; Eticha, D. The role of the root apoplast in aluminum-induced inhibition of root elongation and in aluminum resistance of plants: A review. *Ann. Bot.* 2010, 106, 185–197. [CrossRef]

12. Yamamoto, Y.; Kobayashi, Y.; Matsumoto, H. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. *Plant Physiol.* 2001, 125, 199–208. [CrossRef] [PubMed]

13. Gupta, N.; Gaurav, S.S.; Kumar, A. Molecular basis of aluminum toxicity in plants: A review. *Am. J. Plant Sci.* 2013, 4, 21–37. [CrossRef]

14. Goodwin, S.B.; Sutter, T.R. Microarray analysis of *Arabidopsis* genome response to aluminum stress. *Biol. Plant.* 2009, 53, 85–99. [CrossRef]

15. Vega, I.; Nikolic, M.; Pontigo, S.; Godoy, K.; Mora, M.L.; Cartes, P. Silicon improves the production of high antioxidant or nutritional quality of Mombasa guineagrass silage production. *Sci. Total Environ.* 2020, 733, 133774. [CrossRef] [PubMed]

16. Luyckx, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Silicon and plants: Current knowledge and technological perspectives. *Front. Plant Sci.* 2017, 8, 411. [CrossRef]

17. Wang, M.; Gao, L.; Dong, S.; Sun, Y.; Shen, Q.; Guo, S. Role of silicon on plant–pathogen interactions. *Front. Plant Sci.* 2017, 8, 701. [CrossRef]

18. Haynes, R.J. What effect does liming have on silicon availability in agricultural soils? *Geoderma* 2019, 337, 375–383. [CrossRef]

19. Galindo, F.S.; Buzetti, S.; Rodrigues, W.L.; Boleta, E.; Silva, V.M.; Tavanti, R.F.R.; Fernandes, G.C.; Biagini, A.L.C.; Rosa, P.A.L.; Filho, M.C.M.T. Inoculation of *Azospirillum brasilense* associated with silicon as a liming source to improve nitrogen fertilization in wheat crops. *Sci. Rep.* 2020, 10, 1–18. [CrossRef]

20. Galindo, F.S.; Pagliari, P.H.; Buzetti, S.; Rodrigues, W.L.; Santini, J.M.K.; Boleta, E.; Rosa, P.A.L.; Nogueira, T.A.R.; Lazarini, E.; Filho, M.C.M.T. Can silicon applied to correct soil acidity in combination with *Azospirillum brasilense* inoculation improve nitrogen use efficiency in maize? *PloS ONE* 2020, 15, e0230954. [CrossRef]

21. Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. *Rice Sci.* 2017, 24, 283–290. [CrossRef]
23. Keeping, M.G.; Miles, N.; Rutherford, R.S. Liming an acid soil treated with diverse silicon sources: Effects on silicon uptake by sugarcane (Saccharum spp. hybrids). J. Plant Nutr. 2017, 40, 1417–1436. [CrossRef]
24. Schaller, J.; Turner, B.; Weissflog, A.; Pino, D.; Bielnicka, A.W.; Engelbrecht, B.M.J. Silicon in tropical forests: Large variation across soils and leaves suggests ecological significance. Biogeochimica 2018, 140, 161–174. [CrossRef]
25. Caubet, M.; Cornu, S.; Saby, N.F.A.; Meunier, J.-D. Agriculture increases the bioavailability of silicon, a beneficial element for crop, in temperate soils. Sci. Rep. 2020, 10, 1–11. [CrossRef] [PubMed]
26. Pedreira, C.; Silva, V.; Pedreira, B.; Sollenberger, L.E. Herbage accumulation and organic reserves of palisadegrass in response to grazing management based on canopy targets. Crop Sci. 2017, 57, 2283–2293. [CrossRef]
27. Vandevenne, F.; Struyf, E.; Clymans, W.; Meire, P. Agricultural silica harvest: Have humans created a new loop in the global silica cycle? Front. Ecol. Environ. 2012, 10, 243–248. [CrossRef]
28. Schaller, J.; Puppe, D.; Kaczorek, D.; Ellerbrock, R.; Sommer, M. Silicon cycling in soils revisited. Plants 2021, 10, 295. [CrossRef]
29. Guntzer, F.; Keller, C.; Meunier, J.-D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [CrossRef]
30. Bakhat, H.F.; Bibi, N.; Zia, Z.; Abbas, S.; Hammad, H.M.; Fahad, S.; Ashraf, M.R.; Shah, G.M.; Rabbani, F.; Saeed, S. Silicon mitigates biotic stresses in crop plants: A review. Crop Prot. 2018, 104, 21–34. [CrossRef]
31. Liang, Y.; Nikolic, M.; Belanger, R.R.; Gong, H.; Song, A. Silicon biogeochemistry and bioavailability in soil. In Silicon in Agriculture; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2015; pp. 45–68.
32. Linden, C.V.; Delvaux, B. The weathering stage of tropical soils affects the soil-plant cycle of silicon, but depending on land use. Geoderma 2019, 351, 209–220. [CrossRef]
33. Mohanty, S.; Nayak, A.K.; Swain, C.K.; Dhal, B.; Kumar, A.; Tripathi, R.; Shahid, M.; Lal, B.; Gautam, P.; Dash, G.K.; et al. Silicon enhances yield and nitrogen use efficiency of tropical low land rice. Agron. J. 2019, 112, 758–771. [CrossRef]
34. Kochian, L.V.; Piñeros, M.A.; Liu, J.; Magalhaes, J.V. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu. Rev. Plant Biol. 2015, 66, 571–598. [CrossRef] [PubMed]
35. Rao, I.M.; Miles, J.W.; Beebe, S.E.; Horst, W.J. Root adaptations to soils with low fertility and aluminium toxicity. Ann. Bot. 2016, 118, 593–605. [CrossRef] [PubMed]
36. Arroyave, C.; Barceló, J.; Poschenrieder, C.; Tolrà, R. Aluminium-induced changes in root epidermal cell patterning, a distinctive feature of hyperresistance to Al in Brachiaria decumbens. J. Inorg. Biochem. 2011, 105, 1477–1483. [CrossRef]
37. Wenzl, P.; Patiño, G.M.; Chaves, A.L.; Mayer, J.E.; Rao, I.M. The high level of aluminum resistance in signalgrass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiol. 2001, 125, 1473–1484. [CrossRef] [PubMed]
38. Glazowska, S.; Baldwin, L.; Mravec, J.; Bukh, C.; Hansen, T.; Jensen, M.M.; Fangel, J.U.; Willats, W.G.T.; Glasius, M.; Felby, C.; et al. The impact of silicon on cell wall composition and enzymatic saccharification of Brachypodium distachyon. Biotechnol. Biofuels 2018, 11, 171. [CrossRef]
39. Hussain, S.; Shuxian, L.; Mumtaz, M.; Shafig, I.; Iqbal, N.; Brestic, M.; Shoab, M.; Sisi, Q.; Li, W.; Mei, X.; et al. Foliar application of silicon improves stem strength under low light stress by regulating lignin biosynthesis genes in soybean (Glycine max (L.) Merr.). J. Hazard. Mater. 2021, 401, 123256. [CrossRef]
40. Teixeira, G.C.M.; Prado, R.D.M.; Rocha, A.M.S.; dos Santos, L.C.N.; Sarah, M.M.D.S.; Gratão, P.L.; Fernandes, C. Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. J. Soil Sci. Plant Nutr. 2020, 20, 849–859. [CrossRef] [PubMed]
41. Arroyave, C.; Tolrà, R.; Thuy, T.; Barceló, J.; Poschenrieder, C. Differential aluminum resistance in Brachiaria species. Environ. Exp. Bot. 2013, 89, 11–18. [CrossRef]
42. Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; College of Agriculture: Berkeley, CA, USA, 1950.
43. Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [CrossRef]
44. Korndörfer, G.H.; Pereira, H.S.; Nolla, A. Silicon Analysis: Soil, Plant and Fertilizer; Boletim Técnico: Uberlândia, Brazil, 2004. (In Portuguese)
45. Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The role of silicon in higher plants under salinity and drought stress. Front. Plant Sci. 2016, 7, 1072. [CrossRef]
46. Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Evaluation of the Nutritional Status of Plants: Principles and Applications, 2nd ed.; Potafo: Piracicaba, Brazil, 1997; p. 319. (In Portuguese)
47. Abichequer, A.D.; Bohnen, H. Eficiência de absorção, translocação e utilização de fósforo por variedades de trigo. Rev. Bras. Ciência Solo 1998, 22, 21–26. [CrossRef]
48. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 September 2020).
49. Lawley, D.N.; Maxwell, A.E. Factor analysis as a statistical method. J. R. Stat. Soc. Ser. D Stat. 1962, 12, 209. [CrossRef]
50. Singh, V.P.; Tripathi, D.K.; Kumar, D.; Chauhan, D.K.; Singh, D.P. Influence of exogenous silicon addition on aluminum tolerance in rice seedlings. Biol. Trace Elem. Res. 2011, 144, 1260–1274. [CrossRef]
51. Shen, X.; Xiao, X.; Dong, Z.; Chen, Y. Silicon effects on antioxidative enzymes and lipid peroxidation in leaves and roots of peanut under aluminum stress. Acta Physiol. Plant. 2014, 36, 3063–3069. [CrossRef]
52. Jaiswal, S.K.; Naamala, J.; Dakora, F.D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. *Biol. Fertil. Soils* 2018, 54, 309–318. [CrossRef] [PubMed]

53. Bhat, J.A.; Shivaraj, S.M.; Singh, P.; Navadagi, D.B.; Tripathi, D.K.; Dash, P.K.; Solan, A.U.; Sonah, H.; Deshmukh, R. Role of silicon in mitigation of heavy metal stresses in crop plants. *Plants* 2019, 8, 71. [CrossRef] [PubMed]

54. Hodson, M.J.; Evans, D.E. Aluminium–silicon interactions in higher plants: An update. *J. Exp. Bot.* 2020, 71, 6719–6729. [CrossRef] [PubMed]

55. Kopittke, P.M.; Gianoncelli, A.; Kourousias, G.; Green, K.; McKenna, B.A. Alleviation of Al toxicity by Si is associated with the formation of Al–Si complexes in root tissues of sorghum. *Front. Plant Sci.* 2017, 8, 2189. [CrossRef] [PubMed]

56. Cárcamo-Fincheira, P.; Reyes-Díaz, M.; Omena-García, R.P.; Vargas, J.R.; Alvear, M.; Florez-Sarasa, L.; Rengel, Z.; Fernie, A.R.; Nunes-Nesi, A.; et al. Metabolomic analyses of highbush blueberry (*Vaccinium corymbosum* L.) cultivars revealed mechanisms of resistance to aluminum toxicity. *Environ. Exp. Bot.* 2021, 183, 104338. [CrossRef]

57. Haynes, R.J. Significance and role of Si in crop production. In *Advances in Agronomy*; Elsevier BV: Amsterdam, The Netherlands, 2017; Volume 146, pp. 83–166.

58. Ma, J.F.; Tamai, K.; Ichii, M.; Wu, G.F. A rice mutant defective in Si uptake. *Plant Physiol.* 2002, 130, 2111–2117. [CrossRef]

59. Hodson, M.; White, P.; Mead, A.; Broadley, M.R. Phylogenetic variation in the silicon composition of plants. *Ann. Bot.* 2005, 96, 1027–1046. [CrossRef] [PubMed]

60. Reboredo, F.; Lidon, F.C.; Pessoa, F.; Duarte, M.P.; Silva, M.J. The uptake of macronutrients by an active silicon accumulator plant growing in two different substrata. *Emir. J. Food Agric.* 2013, 25, 986–993. [CrossRef]

61. Werner, J.C.; Paulino, V.T.; Cantarella, H. Forages. In *Liming and Fertilization Recommendations for the State of São Paulo*; van Raij, B., van Cantarella, H., Quaggio, J.A., Furlani, A.M.C., Eds.; Instituto Agronômico de Campinas: Campinas, Brazil, 1997; p. 285. (In Portuguese)

62. Neu, S.; Schaller, J.; Dudel, E.G. Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (*Triticum aestivum* L.). *Sci. Rep.* 2017, 7, 40829. [CrossRef]

63. Xu, D.; Gao, X.; Gao, T.; Mou, J.; Li, J.; Bu, H.; Zhang, R.; Li, Q. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. *Catena* 2018, 169, 80–89. [CrossRef]

64. Hurtado, A.C.; Chiconato, D.A.; Prado, R.D.M.; Junior, G.D.S.S.; Felisberto, G. Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. *Plant Physiol. Biochem.* 2019, 142, 224–233. [CrossRef]

65. Zhu, Y.; Gong, H. Beneficial effects of silicon on salt and drought tolerance in plants. *Agron. Sustain. Dev.* 2014, 34, 455–472. [CrossRef]

66. Adrees, M.; Ali, S.; Rizwan, M.; Rehman, M.Z.U.; Ibrahim, M.; Abbas, F.; Farid, M.; Qayyum, M.F.; Irshad, M.K. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. *Ecotoxicol. Environ. Saf.* 2015, 119, 186–197. [CrossRef]

67. Crusciol, C.A.; Artigiani, A.C.; Arf, O.; Filho, A.C.C.; Soratto, R.; Nascente, A.S.; Alvarez, R.C.F. Soil fertility, plant nutrition, and grain yield of upland rice affected by surface application of lime, silicate, and phosphogypsum in a tropical no-till system. *Catena* 2016, 137, 87–99. [CrossRef]

68. Crusciol, C.A.C.; de Arruda, D.P.; Fernandes, A.M.; Antonangelo, J.; Alleoni, L.R.F.; do Nascimento, C.A.C.; Rossato, O.B.; McCray, J.M. Methods and extractants to evaluate silicon availability for sugarcane. *Sci. Rep.* 2018, 8, 916. [CrossRef]

69. Xu, D.; Fang, X.; Zhang, R.; Gao, T.; Bu, H.; Du, G. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. *Aob Plants* 2015, 7, 125. [CrossRef] [PubMed]

70. De Camargo, M.S.; Korndörfer, G.H.; Wyler, P. Silicate fertilization of sugarcane cultivated in tropical soils. *Field Crops Res.* 2014, 167, 64–75. [CrossRef]

71. Camargo, M.S.; Korndörfer, G.H.; Foltzan, D.E. Silicon absorption and stalk borer incidence by sugarcane varieties in two ratoons. *Biosci. J.* 2014, 30, 1304–1313. (In Portuguese)