Retrospective Study

Surgical treatment of gallbladder cancer: An eight-year experience in a single center

Yasuyuki Kamada, Tomohide Hori, Hidekazu Yamamoto, Hideki Harada, Michihiro Yamamoto, Masahiro Yamada, Takefumi Yazawa, Masaki Tani, Asahi Sato, Ryotaro Tani, Ryuhei Aoyama, Yudai Sasaki, Masazumi Zaima

ORCID number: Yasuyuki Kamada 0000-0002-1035-5636; Tomohide Hori 0000-0002-8282-4403; Hidekazu Yamamoto 0000-0003-0831-9174; Hideki Harada 0000-0001-6317-265X; Michihiro Yamamoto 0000-0002-2165-0825; Masahiro Yamada 0000-0002-0987-4738; Takefumi Yazawa 0000-0002-7283-5336; Masaki Tani 0000-0003-2570-7806; Asahi Sato 0000-0002-0985-9394; Ryotaro Tani 0000-0002-1117-6031; Ryuhei Aoyama 0000-0002-0402-4232; Yudai Sasaki 0000-0002-0602-6135; Masazumi Zaima 0000-0001-6063-4935.

Author contributions: Kamada Y collected the data; Kamada Y and Hori T analyzed the data, reviewed the published literature and wrote the manuscript; Kamada Y and Hori T contributed equally to this work; all authors discussed therapeutic options, reviewed previous papers, and provided important opinions; Zaima M and Hori T supervised this report.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Shiga General Hospital.

Informed consent statement: The patients involved in this study

Abstract

BACKGROUND
Gallbladder cancer (GBC) is the most common biliary malignancy and has the worst prognosis, but aggressive surgeries [e.g., resection of the extrahepatic bile duct (EHBD), major hepatectomy and lymph node (LN) dissection] may improve long-term survival. GBC may be suspected preoperatively, identified intraoperatively, or discovered incidentally on histopathology.

AIM
To present our data together with a discussion of the therapeutic strategies for GBC.

METHODS
We retrospectively investigated nineteen GBC patients who underwent surgical treatment.

RESULTS
Nearly all symptomatic patients had poor outcomes, while suspicious or incidental GBCs at early stages showed excellent outcomes without the need for two-stage surgery. Lymph nodes around the cystic duct were reliable sentinel nodes in suspicious/incidental GBCs. Intentional LN dissection and EHBD resection prevented metastases or recurrence in early-stage GBCs but not in advanced GBCs with metastatic LNs or invasion of the nerve plexus. All patients with positive surgical margins (e.g., the biliary cut surface) showed poor outcomes. Hepatectomies were performed in sixteen patients, nearly all of which were minor hepatectomies. Metastases were observed in the left-sided liver but...
INTRODUCTION

Gallbladder cancer (GBC) remains a relatively rare malignancy with a variable presentation[1-4], but it is the most common biliary malignancy and has the worst prognosis[5-7]. Although GBC generally carries a poor prognosis[8,9,10-14], complete surgical resection is associated with improved outcomes in GBC patients[15-23]. Some surgeons have suggested that aggressive surgeries [e.g., resection of the extrahepatic bile duct (EHBD), extended hepatectomy and intentional lymph node dissection (lymphadenectomy) of the para-aortic lymph nodes (LNs)] may improve long-term survival in patients with advanced GBC[24-31]. Metastatic LNs, invasion into the peribiliary nerve plexuses and positive surgical margins of the biliary tract are important prognostic factors[32-34].

Although radical resection is considered by many to be the ideal management strategy for GBC[17,18,20-24], selecting the appropriate surgical procedure based on the depth of the primary tumor and the clinical stage of GBC is still controversial[35-38]. Optimal treatment for advanced GBC is unclear[39-41], especially in patients with T2 disease according to the tumor-node-metastasis (TNM) classification[42]. The use of radical cholecystectomy and extended procedures with EHBD resection are a matter of debate[43-46]. Radical cholecystectomy involves an extended cholecystectomy with a full-thickness resection and a wedge resection with partial hepatectomy of the gallbladder bed[47-49]. The impact of routine resection of the EHBD, extended LN dissection, and major hepatectomy on outcomes still lacks consensus[50-52].

We retrospectively investigated our patients who underwent surgical treatment for incidentally or non-incidentally diagnosed GBC; their data are presented together with a discussion of the therapeutic strategies for GBC and a literature review.

not in the caudate lobe. We may need to reconsider the indications for major hepatectomy, minimizing its use except when it is required to accomplish negative bile duct margins. Only a few patients received neoadjuvant or adjuvant chemoradiation. There were significant differences in overall and disease-free survival between patients with stages ≤IIB and ≥IIIA disease. The median overall survival and disease-free survival were 1.66 and 0.79 years, respectively.

CONCLUSION

Outcomes for GBC patients remain unacceptable, and improved therapeutic strategies, including neoadjuvant chemotherapy, optimal surgery and adjuvant chemotherapy, should be considered for patients with advanced GBCs.

Key Words: Gallbladder cancer; Surgery; Prognosis; Outcome; Metastasis; Lymph node; Extrahepatic bile duct

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Citation: Kamada Y, Hori T, Yamamoto H, Harada H, Yamamoto M, Yamada M, Yazawa T, Tani M, Sato A, Tani R, Aoyama R, Sasaki Y, Zaima M. Surgical treatment of gallbladder cancer: An eight-year experience in a single center. World J Hepatol 2020; 12(9): 641-660
URL: https://www.wjgnet.com/1948-5182/full/v12/i9/641.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i9.641
MATERIALS AND METHODS

Patients
A total of nineteen GBC patients who underwent surgical treatment at our institution from January 2011 to March 2019 were enrolled in this study. The patients comprised five men and fourteen women, with a mean age of 72.5 ± 11.5 years. Two patients had a past history of other cancers, and one patient had cholelithiasis as a comorbidity. None had viral hepatitis, alcoholic hepatitis or non-alcoholic steatohepatitis. The GBCs were staged according to the TNM classification[27].

This retrospective study was approved by the ethics review committee for clinical studies of our institution. This study was performed in accordance with the ethical guidelines of the Declaration of Helsinki. Informed consent was obtained from all patients before enrollment.

Statistical analysis
All results are shown as mean ± SD or median (range). Survival rates were calculated using the Kaplan–Meier method, and the log-rank test was used for between-group comparisons. All calculations were performed using SPSS Software (SPSS Inc., Chicago, IL, United States). Values of $P < 0.05$ were considered statistically significant.

RESULTS

Preoperative management
Preoperative profiles are summarized in Table 1. Six patients presented with fever and abdominal pain, and two patients had obstructive jaundice; the remaining eleven patients (57.9%) were asymptomatic (Table 1). The eight symptomatic patients were categorized as stage ≥ IIB (Table 1). Biliary drainage was required in two symptomatic patients with stage IVB disease (Cases 14 and 17) due to obstructive jaundice and acute cholangitis (Table 1).

Preoperative evaluation
Pancreaticobiliary maljunction was observed in two patients (Cases 2 and 16; Table 1). No patients had occupational risk factors for GBC. Six patients were initially diagnosed with benign diseases (two stage IIB patients and one each with stage IA, IB, IIA and IIIA disease) (Table 1), and these patients were classified as having suspicious or incidental GBCs. The preoperative stages of patients who received radical surgery were stage IVB (five patients); stage IIA (three patients); and stages IIB, IIIA, IIIB and IVA (two of each stage; Table 1).

Preoperative chemotherapy and radiation
None of the patients received neoadjuvant chemotherapy or radiation. One patient received chemotherapy [four courses with gemcitabine (GEM) + cisplatin (CDDP)] and radiation (60 Gy) for unresectable GBC; this patient underwent conversion surgery (Case 10).

Surgical treatment
Operative factors are summarized in Table 2. Eleven patients underwent primary extended cholecystectomy with full-thickness resection and partial hepatectomy of the gallbladder bed, and three patients underwent wedge resection of the gallbladder bed as a two-stage surgery (Table 2). Although partial hepatectomy and/or wedge resection of the gallbladder bed were performed in fourteen patients, only one patient received a systemic hepatectomy (right-lobe hepatectomy accompanied by partial caudate lobectomy; Case 17).

A total of eight patients (three with stage IIB disease and one each with stage IIA, IIB, IIIA, IVA and IVB disease) underwent intentional resections of the EHBD, including five who underwent pancreaticoduodenectomy (Table 2). Lymphadenectomy of the para-biliary, para-arterial and peri-portal venous LNs was performed in eleven patients (57.9%; three with stage IIB disease; two each with stage IIB, IIIA, IIIB and IVB disease; and one each with stage IIA and IVA disease). The para-aortic LNs were dissected in one stage IVB patient (Case 19).

Laparoscopic cholecystectomy was initially performed in seven patients with a preoperative diagnosis of benign disease, and three of these patients (two with stage IIB disease and one with stage IIIA disease) received two-stage surgery based on
Table 1 Preoperative evaluation, chemotherapy and/or radiation, and the final stage

Case	Symptomatic (Yes or No)	Preoperative biliary drainage (Yes or No)	Preoperative diagnosis (GBC or benign)	Preoperative stage	Neoadjuvant chemotherapy (Yes or No)	Preoperative radiation (Yes or No)	Conversion to surgery (Yes or No)	The final stage	Adjuvant chemotherapy (Yes or No)	Chemotherapy for metastases/recurrences (Yes or No)
1	No	No	Benign	-	No	No	No	IA	No	No
2	No	No	Benign	-	No	No	No	IB	No	No
3	No	No	GBC	IIIB	No	No	No	IIA	No	No
4	No	No	Benign	-	No	No	No	IIA	No	No
5	No	No	GBC	IIA	No	No	No	IIA	No	No
6	Yes	No	Benign	IIB	No	No	No	IIB	No	No
7	Yes	No	Benign	IIIA	No	No	No	IIA	Yes	No
8	No	No	Benign	IIIA	No	No	No	IIA	No	No
9	Yes	No	GBC	IVA	No	No	Yes	IIA	No	Yes
10	Yes	No	GBC	IVA	No	No	No	IIA	Yes	No
11	No	No	GBC	IIIA	No	No	No	IIA	Yes	No
12	Yes	No	GBC	IIIA	No	No	No	IIA	No	No
13	No	No	GBC	IVA	No	No	No	IIIB	No	No
14	Yes	No	GBC	IVA	No	No	No	IIIB	No	No
15	No	No	GBC	IIA	No	No	No	IIIB	No	No
16	No	Yes	GBC	IVB	No	No	No	IIIB	No	No
17	Yes	No	GBC	IVB	No	No	No	IVB	No	No
18	Yes	No	GBC	IIIB	No	No	No	IVB	No	No
19	No	No	GBC	IVB	No	No	No	IVB	No	Yes

1Staging according to the tumor-node-metastasis classification. GBC: Gallbladder cancer; PBM: Pancreaticobiliary maljunction.

Pathological findings. All three underwent wedge resection, and one patient received resection of the EHBD (Cases 6, 7 and 8, Table 2). Three patients (stages IA, IB and IIA) did not receive two-stage surgery (Cases 1, 2 and 4).

Curative resections, evaluated as graphic and surgical R0 according to the Japanese guidelines (General rules for clinical and pathological studies on cancer of the biliary...
Case	Surgical approach (Primary or two-stage)	Surgical procedures	Resected area	Intentional LN dissection	EHBDD resection (Yes or No)	Caudate Lobectomy	Graphic/Surgical R0	Postoperative complications	
1	Primary	LC	No	No	No	Yes		-	
2	Primary	LC	No	No	No	Yes		-	
3	Primary	Extended cholecystectomy	Yes	Yes	No	Yes		Intraperitoneal abscess (8)	3a
4	Primary	LC	No	No	No	Yes		-	
5	Primary	Extended cholecystectomy	No	No	No	Yes		-	
6	Two-stage	Wedge resection	Yes	No	No	Yes		-	
7	Two-stage	Wedge resection	Yes	Yes	No	Yes		-	
8	Two-stage	Wedge resection	Yes	No	No	Yes		Intraperitoneal abscess (8)	2
9	Primary	Extended cholecystectomy	No	No	No	No		Intrapertitoneal abscess (20)	3a
10	Primary	Extended cholecystectomy	No	No	No	No		-	
11	Primary	Extended cholecystectomy	Yes	Yes	No	No		-	
12	Primary	Extended cholecystectomy	No	No	No	Yes		-	
13	Primary	Extended cholecystectomy + SSpPD	Yes	Yes	No	Yes		Intraperitoneal abscess (14)	2
14	Primary	Extended cholecystectomy + SSpPD + partial resection of the portal vein	Yes	Yes	No	Yes	-	-	
15	Primary	LC	No	No	No	Yes		-	
16	Primary	Extended cholecystectomy + SSpPD	Yes	Yes	No	Yes	Pancreatitis (21)	2	
17	Primary	Right hepatectomy + SSpPD	Yes	Yes	Yes	No	Pancreatic fistula (14)	3b	
18	Primary	Extended cholecystectomy + partial hepatectomy	Yes	No	No	Yes	-	-	
19	Primary	Extended cholecystectomy + SSpPD	Yes	Yes	No	Yes	-	-	
Extended cholecystectomy was the primary whole-layer resection with partial hepatectomy, and the wedge resection was partial hepatectomy of the gallbladder bed at two-stage surgery. Intentional dissection of parabiliary, paraarterial and periportal venous lymph nodes. R0 means no remnant of gallbladder cancer by curative resection, according to the Japanese guideline (General rules for clinical and pathological studies on cancer of the biliary tract). Grading according to the Clavien-Dindo classification. EHBD: Extrahepatic bile duct; LC: Laparoscopic cholecystectomy; LN: Lymph node; POD: Postoperative day; SSppPD: Subtotal stomach-preserving pancreaticoduodenectomy.

Intraoperative factors
The median operative time was 269 min (range, 32-775 min). Median blood loss was 430 mL (range, 0-3700 mL), and blood transfusions were needed in four patients. Intraoperative histopathological examination was performed in eight patients to assess the primary tumors, cut surface of the biliary tract, nerve plexus and LNs. Although carcinomas were correctly identified in all cases, the extension (i.e., oncological depth) of the primary tumor was misdiagnosed by intra-operative examination in one patient (Case 6).

Postoperative course during the early postoperative period
Postoperative complications were observed in six patients (four cases of intraperitoneal abscess and one each of pancreatitis and pancreatic fistula), and these complications were categorized as grade 2 \((n = 3)\), grade 3a \((n = 2)\) and grade 3b \((n = 1)\) according to the Clavien–Dindo classification\(^{33}\) (Table 2).

Pathological assessment
The pathological findings are summarized in Table 3. Diagnoses of tubular, papillary, and poorly-differentiated adenocarcinomas were made in 12, 3 and 2 cases, respectively. Additionally, one adenosquamous cell carcinoma and one neuroendocrine carcinoma were diagnosed. No satellite lesions of dysplasia and/or neoplasia were observed. Only one patient (Case 1) was diagnosed with mucosal cancer (a so-called “m cancer”), and neither a second-stage surgery after laparoscopic cholecystectomy nor an extended cholecystectomy was chosen for this patient (Table 2). The primary tumor was located in the liver in 10 patients and the ventral side in nine (Table 3). Invasions into the lymphoid duct, vessels and peribiliary nerve plexus were pathologically assessed, respectively. These invasions occurred in six, ten and five cases, respectively (Table 3). Notably, nine GBCs invaded into the GB neck or cystic duct (Table 3). Positive margins at the biliary cut surface were observed in two patients (Cases 11 and 17), and positive margins at the ventral, dorsal and/or hepatic surfaces were
identified in two patients (Cases 10 and 12; Table 3).
The final TNM stage based on pathology\(^2\) was stage IA, IB or IVA in one patient each; stage IIB or IVB in two patients each; stage IIA in three patients; stage IIIB in four patients and stage IIIA in five patients (Table 1).

Lymphoid metastasis

The median number of harvested LNs was 13 (range, 1–35). Actual LN metastases were observed on pathology in five patients, with a median of two metastatic LNs per patient (range, 1–18) (Table 3). In one patient, six of the seven para-aortic LNs were metastatic (Case 19).

Histopathological assessment of the LNs around the cystic duct (i.e., the 12c LNs according to the Japanese guideline\(^2\)) was performed in four patients with suspicious or incidental GBC, and metastasis was detected in two patients. These two cases had other LN metastases (Cases 15 and 16; Table 3).

Nerve plexus metastasis

Invasion of the nerve plexus was pathologically observed in five patients, and three of these cases (60.0%) were GBCs with invasion into the GB neck and/or cystic duct (Table 3). Although these five patients also underwent resection of the EHBD (Tables 2 and 3), all five patients died from metastases and/or recurrences (Table 4). In two patients with advanced GBC, positive margins were observed at the cut surface of the biliary tract in spite of EHBD resection (Cases 11 and 17; Table 3). Only one of eight patients who received EHBD resection (12.5%) survived without any metastases and/or recurrences (Case 3; Tables 2 and 4), and this patient was categorized as stage IIA (Table 1).

Liver metastasis

A total of fifteen patients received hepatectomies (Table 2). Pathological examination of the resected liver specimens revealed direct invasion into the liver in seven patients (Table 3). Liver metastases occurred postoperatively in six patients (three in segment 4, one each in segments 5 and 7, and one in the majority of the liver); four of the targeted segments were located in the left side of the liver (66.7%) (Table 4). Four of these six patients’ primary tumors showed vessel invasion (Table 3). Four metastatic tumors occurred in the left lobe (Table 4), and no metastases were observed in the caudate lobe.

Adjuvant and postoperative chemotherapy

Only one patient (stage IIIA) received adjuvant chemotherapy: Six courses of S-1 (Case 11). Three patients received chemotherapy after detection of metastases and/or recurrences. The regimens employed were GEM + CDDP, GEM + CDDP followed by GEM + S1, and CDDP + vinblastine, respectively (Cases 7, 10 and 19).

Outcomes

The clinical courses of all patients were followed for a median of 2.03 years (0.15–5.05 years). Metastasis and/or recurrence was observed in fourteen patients (74.7%); the five patients without metastasis/recurrence had stage IIA disease (two patients) and stage IA, IB or IIB disease (one of each) (Tables 1 and 4). Metastasis occurred in the liver (six patients), para-aortic LNs (four patients) intraperitoneal dissemination (four patients), and local recurrence (four patients) (Table 4).

The overall survival curves by stage are shown in Figure 1A; there was a significant difference in overall survival between patients with stage ≤ IIB and stage ≥ IIIA disease (\(P = 0.0080\); Figure 1B). The overall median survival in the eleven patients with oncological death was 1.66 years (range, 0.16-3.36 years; Figure 2A).

The disease-free survival curves by stage are shown in Figure 1C; there was a significant difference in disease-free survival between patients with stage ≤ IIB and ≥ IIIA disease (\(P = 0.0054\); Figure 1D). The disease-free interval of the fourteen patients with recurrences was 0.79 years (0.12–4.01 years; Figure 2B).

Comprehensive flowchart for important points in our patients

The specific characteristics of each patient may be difficult to understand. Characteristic findings and important points (e.g., preoperative diagnosis, surgical treatment, histopathological assessments, stage according to the TNM classification and prognosis) are summarized in Figure 3.
Table 4 Metastases, recurrences and outcome

Case	Metastasis and/or recurrence (Yes or No)	The target sites of metastases/recurrences¹	Postoperative liver metastases (Right and/or left side)	Disease-free survival (yr)	Overall survival (yr)	Follow-up term (yr)	Prognosis (Dead or alive)
1	No	-	-	2.4	2.4	2.4	Alive
2	No	-	-	2.3	5.0	5.0	Alive
3	No	-	-	3.6	3.6	3.6	Alive
4	No	-	-	3.6	3.6	3.6	Alive
5	Yes	Liver	Right side	0.4	0.8	0.8	Alive
6	No	-	-	8.0	8.0	8.0	Alive
7	Yes	Peritoneal cavity	-	2.0	2.8	2.8	Dead
8	Yes	Liver	Right side	1.4	2.0	2.0	Dead
9	Yes	Peritoneal cavity	-	0.1	0.2	0.2	Dead
10	Yes	Local site, hepatic hilum	-	1.2	2.6	2.6	Dead
11	Yes	Perineal cavity	-	0.8	1.0	1.0	Dead
12	Yes	Local site, liver	Left side	0.1	0.2	0.2	Dead
13	Yes	Peritoneal cavity, paraaortic LN	-	0.4	1.7	1.7	Dead
14	Yes	Local site	-	0.9	3.4	3.4	Dead
15	Yes	Paraaortic LN	-	4.0	5.4	5.4	Alive
16	Yes	Bone, paraaortic LN	-	2.0	7.5	7.5	Alive
17	Yes	Liver remnant	Left side	0.6	0.7	0.7	Dead
18	Yes	Liver	Right and left sides	0.2	0.3	0.3	Dead
19	Yes	Liver, local site, paraaortic LN	Left side	0.6	1.0	1.0	Dead

¹Perineal cavity involved dissemination and carcinomatosis. LN: Lymph node.

DISCUSSION

In GBC patients, the presence of associated symptoms is considered a relative contraindication to radical resection as these patients have a poor prognosis and high postoperative morbidity[1-3]. Of our eight symptomatic patients (Table 1), all were categorized as stage ≥ IIB, and seven (87.5%) showed poor outcomes (Table 4). Although jaundiced patients with advanced GBC should be considered as candidates for surgical resection, careful evaluation is important before undertaking aggressive surgery in this population[2].

Certain factors (e.g., liver injury and occupational history) are associated with an increased risk of developing GBC[12]. In particular, data support a relationship between pancreaticobiliary maljunction and GBC[34]. Among our patient population, only two cases (10.5%) had pancreaticobiliary maljunction.

Gallbladder cancer can be suspected preoperatively, identified intraoperatively, or discovered incidentally on final pathology[2-4,26,35]. In cases with suspicious or incidental GBCs, lesions tend to be stage T2 or T3 by the TNM classification[26,27]. Once GBC is diagnosed, a two-stage surgery should be considered[26], although simple or extended cholecystectomy produces comparable survival outcomes in GBC patients with T1 lesions[27]. Among our patients, the three with suspicious/incidental GBC of lower stages showed excellent outcomes without two-stage surgery (Cases 1, 2 and 4). Perforation during the initial surgery carries a higher risk of dissemination[28], although extended resection of adjacent organs may not be necessary in order to achieve radicality even in this instance[28]. Therefore, radical cholecystectomy (e.g., full-thickness resection and extended cholecystectomy) should be considered in the absence of unexpected rupture among patients with suspicious and incidental GBCs. In this study, we assessed the importance of metastasis to the 12c LNs[33] in suspicious and incidental GBCs. Of the four patients with suspicious/incidental GBCs in which the 12c LNs were histologically assessed, the two patients with 12c LN metastasis...
Figure 1 Overall and disease-free survival. A: The overall survival curves for each stage are shown; B: The overall survival significantly differed between patients with stage ≤ IIB (blue line) and those with stage ≥ IIIA (red line) disease ($P = 0.0080$); C: Disease-free survival curves for each stage are shown; D: There was a significant difference in the disease-free survival of patients with stage ≤ IIB (blue line) and patients with stage ≥ IIIA (red line) disease ($P = 0.0054$).

(Cases 15 and 16) had other metastatic LNs, while the two patients without 12c LN metastasis did not have other LN metastases (Cases 2 and 7). Even though the number of sampled LNs was small (1 or 2), the 12c LNs seem to be useful sentinel nodes in patients with suspicious and incidental GBCs. For patients with suspicious/incidental GBCs, full-thickness cholecystectomy and sampling of the 12c LNs may be suitable for the initial surgery, although two-stage surgery may be required based on histological findings.

GBCs tend to invade adjacent structures, including the liver parenchyma, bile duct, major vessels, nerve plexuses and regional LNs[1,11,14,20]. Metastatic LNs and bile duct margins are important prognostic factors[1,7,11,15,18-21], and invasion into the nerve plexuses is also a significant independent prognostic factor[11]. Intentional dissection of the LNs and nerve plexuses is still controversial[11,15,18-21]. Extended dissection of
LNs and/or nerve plexuses should involve **en bloc** resection of the EHBD. From the viewpoint of achieving curative resection, EHBD resection may have some advantages. However, although routine EHBD resection in GBCs without bile duct invasion is associated with improvements in harvested LNs and local recurrence rate, this procedure does not improve the survival rate and is associated with a higher morbidity rate. Among our patients, four of the five patients with metastatic LNs received intentional extended LN dissection, but all these patients developed metastases and/or recurrences (Cases 13, 14, 16 and 19). Extended LN dissection worked well in only one patient with early stage disease (Case 3). Moreover, nerve plexus invasion was observed in five patients, and all five of these patients succumbed to oncological death despite EHBD resection (Cases 11, 13, 14, 17 and 19). Of patients undergoing EHBD resection, only one patient with early stage disease survived without any metastases and/or recurrences (Case 3). Unfortunately, extended dissection of the nerve plexuses was not beneficial for advanced GBC patients with invasion into the GB neck and/or cystic duct in our study. Similar to previous reports, our advanced GBC patients with metastatic LNs and invasion into the nerve plexus experienced poor outcomes even after aggressive surgery including removal of the EHBD.

Figure 2 The median overall and disease-free survival. A: The median overall survival of the 11 deceased patients was 1.66 years (0.16–3.36 years); B: The median disease-free interval of the 15 recurrent patients was 0.79 years (0.12–4.01 years).
Figure 3 Comprehensive flowchart of important points in our patients. Important points (e.g., preoperative diagnosis, surgical treatment, histopathological assessments, stage according to the tumor-node-metastasis classification and prognosis) are summarized. The final stages in each case are shown in parentheses. The outcomes in each case are also shown in parentheses (dead or alive). *Cases with invasive findings of the lymphoid duct and/or nerve plexuses on the histopathological assessment. †Cases with a positive margin at the surgical cut end of the biliary tract. CRT: Chemoradiotherapy; ENBD: Extrahepatic bile duct resection; LC: Laparoscopic cholecystectomy; LN: Lymph node.
Major hepatectomy for biliary hilar malignancy may involve intraoperative risks and/or postoperative mortality\[1,25,77\]. Extended resection with partial hepatectomy and dissection of the regional LNs may be an option for GBC patients with T2 lesions\[1,25,77\], but major hepatectomy should only be performed in select cases\[25,76\]. Minimal hepatectomy should be performed to achieve curative resection whenever possible\[1\]. Drainage from the gallbladder is an important metastatic pathway\[26,79\], especially for liver metastases\[26,79\]. Previous publications have suggested that biliary drainage into the left-sided liver, including the caudate lobe, has an impact on metastasis\[20,22,23,78\]. Some physicians have documented that the caudate lobe is an important target site for metastases\[21,20,22,23,78\] and recommend complete resection of the caudate lobe, including Spiegel’s lobe\[21,20,22,23,78\]. Among our patient population, liver resections were performed in fifteen patients, but a systematic hepatectomy was only performed in one patient (Case 17). Despite hepatic resection, the liver was preserved as a target site of metastases in our patients. We observed metastases in the left-sided liver (Cases 12, 17, 18 and 19) but did not detect metastases in the caudate lobe in any of the eighteen patients with caudate lobe remnants. Accordingly, we suggest that complete resection of the caudate lobe may not be necessary in all cases. Positive surgical bile duct margins should be considered a strong negative prognostic factor\[7,78,79\], and our two patients with positive biliary tract margins showed very poor outcomes (Cases 11 and 17). Therefore, although minimal hepatectomy should be considered for some GBC patients if complete resection can be accomplished by this method\[23,82\], aggressive hepatectomy is mandatory if needed to accomplish negative biliary margins\[25,76\].

Overall survival and disease-free survival are shown in Figure 1, both of which clearly differ for patients with stage ≤ IIB vs stage ≥ IIIA disease. The median overall and disease-free survival times for patients were 1.66 and 0.79 years, respectively. Aggressive treatment, including extended surgeries, may be beneficial for early-stage GBC\[20\], especially in populations with disease stages ≤ IIB. However, the poor prognosis of advanced GBC has been documented even after extended and/or aggressive procedures\[9,10,13,23,29\]. Despite this poor prognosis, the role of chemotherapy and radiotherapy for GBCs remains controversial\[9\]. Among our patients, only one patient (who became resectable) received chemotherapy and radiation before conversion surgery (Case 10), and adjuvant chemoradiotherapy was only performed in one patient with a non-curative resection (Case 11). Some chemotherapy regimens have been developed for GBC\[29,83\], and certain regimens (e.g., S-1 + cisplatin + GM, S-1 + GM, GM + cisplatin, nanoparticle albumin-bound-paclitaxel + cisplatin + GM and capectabine) are considered to be useful\[9,10,42\]. Considering the frequency of early recurrence and/or metastases, the timing of surgery and use of neoadjuvant chemotherapy may need to be re-evaluated. Aggressive adjuvant chemotherapy should be considered\[9\], and surgical resection of metastases and/or recurrences may offer a better chance of long-term survival in select patients\[9\]. As other physicians have previously documented\[1,2,4,7,9,12,21\], standard therapeutic strategies need to be established for advanced GBC.

Here, we reviewed the main literature in this field\[20,25,77\], and crucial remarks in each are summarized in Table 5. The highest volume center in Japan is Nagoya University (Nagoya, Japan), and they continuously documented their decennial results\[13,14,19,22,23,78\]. Also, we analyzed the existing guidelines in Europe (in 2017)\[5,7,79\], United States (in 2019)\[80\] and Japan (in 2019)\[81\] in detail. Especially for a comparison purpose, important comments on therapeutic strategies for GBCs in each guideline are summarized in Table 5. Central inferior bisegmentectomy (i.e., hepatectomy of segments 4b and 5) is suitable for GBC\[9,82,83\], although we employed radical or extended cholecystectomy. Skillful surgeons conversed on the topic of minimally invasive approaches to GBC\[9,84\], and we all may have to focus on these advanced manipulations in the near future.

This study was as a comparative, observational and retrospective study performed at a single institution, and our sample size was small. Also, this study was not a randomized controlled trial. Accordingly, we cannot rule out bias and other potential limitations. Of course, we understood that our study’s conclusions must be interpreted with extreme caution. However, we hope this report will inform the management of GBCs in future patients.

In conclusion, even in the current era, the survival of GBC patients remains unacceptable. Improved therapeutic strategies, including neoadjuvant chemotherapy, optimal surgery, and adjuvant chemotherapy, should be developed to better treat patients with advanced GBC.
Surgery might not be indicated for patients with advanced invasion.

Prognosis of incidental GBC was not influenced by the primary access technique.

Preoperative information indicated strategies for surgical treatment of GBCs.

Outcome of radical surgery for GBCs was evaluated according to the TNM classification.

Strong consideration should be given to intentional LN dissection and EHBD resection.

GBC was commonly diagnosed incidentally, and two-stage surgery revealed a high incidence of residual disease.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection may have stage-specific effects on survival.

Partial hepatectomy without EHBD resection indicates incidental GBC.

Simple cholecystectomy is adequate therapy for patients with T1a.

Advantages of radical resection including extended hepatectomy for incidental GBC and patients with T1b are controversial.

Advantages of radical resection including extended hepatectomy for incidental GBC and patients with T3b are controversial.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are considered for potential pathological invasions.

Extended cholecystectomy was adequate for patients with T2, and more aggressive surgeries were indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Independent prognostic factors associated with survival are T factor, N factor, pathological poor differentiation and EHBD involvement.

During two-stage surgery, EHBD resection is indicated for negative cystic duct margins.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Independent prognostic factors associated with survival are T factor, N factor, pathological poor differentiation and EHBD involvement.

During two-stage surgery, EHBD resection is indicated for negative cystic duct margins.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Extended surgery including intentional LN dissection improved survival for incidental GBCs.

Radical resection had survival advantage for patients with T1b and T2.

Radical resection had survival advantage for patients with T1b and T2.

Radical resection had survival advantage for patients with T1b and T2.

Radical resection had survival advantage for patients with T1b and T2.

Radical resection had survival advantage for patients with T1b and T2.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.

Independent prognostic factors associated with survival are T factor, N factor, pathological poor differentiation and EHBD involvement.

During two-stage surgery, EHBD resection is indicated for negative cystic duct margins.

Aggressive surgeries including hepatectomy, LN dissection and EHBD resection are indicated for patients with T3, localized hepatic invasion and regional LN metastases.
States tumors with extensive liver invasion.

[66] United States 2007 Incidental GBCs during laparoscopic cholecystectomy did not indicate immediate conversion to open surgery, and these patients should be referred to a tertiary care center for further surgery.

[67] France 2011 Jaundice was a poor prognostic factor, but radical resection had survival benefit especially in highly selected patients with N0.

[68] Japan 2011 Patients with advanced GBCs were candidates for EHBD resection, if radical resection (R0) was achievable.

[69] India 2016 Chemoradiotherapy in unresectable GBCs resulted in the resectability, and subsequent radical surgery (R0) had survival benefit. LN regression could serve as a predictor of response to radiochemotherapy.

[70] United States 2017 Radical surgeries after favorable responses to neoadjuvant chemotherapies were associated with long-term survival in selected patients.

[71] United States 2011 Pathological assessment of at least 6 LNs was important.

[72] Canada 2012 Adjuvant radiochemotherapy had the greatest benefit in patients with positive LNs and R1 disease.

EHBD: Extrahepatic bile duct; GBC: Gallbladder cancer; LN: Lymph node.

ARTICLE HIGHLIGHTS

Research background

Gallbladder cancer (GBC) is the most common biliary malignancy with the worst prognosis, but aggressive surgeries may improve long-term survival.

Research motivation

We evaluated our own data along with a discussion of therapeutic strategies for GBC.

Research objectives

Nineteen GBC patients who underwent surgical treatment were enrolled in this study.

Research methods

We retrospectively investigated our patients with incidentally or non-incidentally diagnosed GBC.

Research results

Suspicious or incidental GBCs at earlier stages showed excellent outcomes without the need for two-stage surgery. Lymph nodes (LNs) around the cystic duct were reliable sentinel nodes in suspicious/incidental GBCs. Extended lymphadenectomy and resection of the extrahepatic bile duct (EHBD) prevented metastases or recurrence in early-stage GBCs but not in advanced GBCs with metastatic LNs or invasion of the nerve plexus. All patients with positive surgical margins showed poor outcomes, and we may need to reconsider the indications for major hepatectomy, minimizing its use except when it is required to accomplish negative bile duct margins. There were significant differences in overall and disease-free survival between patients with stages ≤ IIB and ≥ IIIA disease. The median overall survival and disease-free survival were 1.66 and 0.79 years, respectively.

Research conclusions

Outcomes for GBC patients remain unacceptable.

Research perspectives

Improved therapeutic strategies should be considered for patients with advanced GBCs.
Resectable gallbladder cancer

Kamada Y et al. Resectable gallbladder cancer

28 Kasumova GG, Tabatabaie O, Najarim RM, Callery MP, Ng SC, Bullock AJ, Fisher RA, Tseng JF. Surgical Management of Gallbladder Cancer: Simple Versus Extended Cholecystectomy and the Role of Adjutant Therapy. Ann Surg 2017; 266: 625-631 [PMID: 28692469 DOI: 10.1097/SLA.0000000000002385]

29 Tewari M, Kumar S, Shukla S, Shukla HS. Analysis of wedge resection of gallbladder bed and lymphadenectomy on adequate oncologic clearance for gallbladder cancer. Indian J Cancer 2016; 53: 552-557 [PMID: 28485349 DOI: 10.4103/ijc.IJC_88_17]

30 Goetz TO. Gallbladder carcinoma: Prognostic factors and therapeutic options. World J Gastroenterol 2015; 21: 12211-12217 [PMID: 26604631 DOI: 10.3748/wjg.v21.i43.12211]

31 Goetz TO, Paolucci V. [Immediate radical re-resection of incidental T1b gallbladder cancer and the problem of an adequate extent of resection (results of the German Registry "In incidental Gallbladder Cancer")]. Zentralbl Chir 2014; 139 Suppl 2: e43-e48 [PMID: 21365537 DOI: 10.1055/s-0030-1262698]

32 Japanese Society of Hepato-Biliary-Pancreatic Surgery. General rules for clinical and pathological studies on cancer of the biliary tract. 6th edition. Tokyo: Kanehara, 2013

33 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 230: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54934.ac]

34 Hori T, Asiu Y, Yamamoto M, Yasukawa D, Iida T, Yagi S, Taniguchi K, Uemoto S. Laparoscopic approach for choledochojejunoscopy. Hepatobiliary Pancreat Dis Int 2019; 18: 285-288 [PMID: 31023579 DOI: 10.1016/j.hpd.2019.04.005]

35 Soreide K, Guest RV, Harrison EM, Kendall TJ, Garden OJ, Wigmor SJ. Systematic review of management of incidental gallbladder cancer after cholecystectomy. Br J Surg 2019; 106: 32-45 [PMID: 30582640 DOI: 10.1002/bjs.11035]

36 Uesaka K, Yasui K, Morimoto T, Torri A, Yamamura Y, Kodera Y, Hirai T, Kato T, Kito T. Visualization of routes of lymphatic drainage of the gallbladder with a carbon particle suspension. J Am Coll Surg 1996; 183: 345-350 [PMID: 8843263]

37 Nagino M, Kamiya J, Arai T, Nishio H, Ebata T, Nimura Y. One hundred consecutive hepatobiliary resections for biliary hilar malignancy: preoperative blood donation, blood loss, transfusion, and outcome. Surgery 2005; 137: 148-155 [PMID: 15674194 DOI: 10.1016/j.surg.2004.06.009]

38 Nimura Y, Hayakawa N, Kamiya J, Kondo S, Shionoya S. Hepatic segmentectomy with caudate lobe resection for bile duct carcinoma of the hepatic hilus. World J Surg 1990; 14: 535-43; discussion 544 [PMID: 2166381 DOI: 10.1007/bf01658686]

39 Kosuge T, Yamamoto J, Shimada K, Yasunaga M, Takada T. Gallbladder bed resection or hepatectomy of segments 4a and 5 for surgery for carcinoma of the gallbladder according to the TNM stage. Arch Surg 2003; 138: 741-750; discussion 750 [PMID: 12860755 DOI: 10.1001/archsurg.138.7.741]

40 Abdel-Rahman O, Elsayed Z, Elhalawani H. Gemcitabine-based chemotherapy for advanced biliary tract carcinomas. Cochrane Database Syst Rev 2018; 4: CD011746 [PMID: 29624208 DOI: 10.1002/14651858.CD011746.pub2]

41 Goetz TO, Paolucci V. Prognosis of incidental gallbladder carcinoma is not influenced by the primary access technique: analysis of 837 incidental gallbladder carcinomas in the German Registry. Surg Endosc 2013; 27: 2821-2828 [PMID: 23404149 DOI: 10.1007/s00464-013-2819-5]

42 Kokudo N, Makuchii M, Natori T, Sakomoto Y, Yamamoto J, Seki M, Noie T, Sugawara Y, Imamura H, Asahara S, Ikari T. Strategies for surgical treatment of gallbladder carcinoma based on information available before resection. Arch Surg 2003; 138: 741-50; discussion 750 [PMID: 12860755 DOI: 10.1001/archsurg.138.7.741]

43 Tsukada K, Hatakeyama K, Kurosaki I, Uchida K, Shirai Y, Muto T, Yoshida K. Outcome of radical surgery for carcinoma of the gallbladder according to the TNM stage. Surgery 1996; 120: 816-821 [PMID: 8909516 DOI: 10.1016/s0039-6060(96)00889-4]

44 Shimizu Y, Ohtsuka M, Ito H, Kinumori F, Shimizu H, Togawa A, Yoshidome H, Kato A, Miyazaki M. Should the extrahepatic bile duct be resected for locally advanced gallbladder cancer? Surgery 2004; 136: 1012-7; discussion 1018 [PMID: 15123394 DOI: 10.1016/s0039-6060(04)00321-3]

45 Hiragauchi A, Miyakawa S, Ishihara M, Miyazaki O, Shionoya M, Shimizu H, Sano K, Miura F, Ohba T, Kayahara M, Nagino M, Igarashi T, Hirano S, Yamaue H, Tani M, Yamamoto M, Ota T, Shimada M, Morine Y, Kinoshita H, Yasunaga M, Takada T. Gallbladder bed resection or hepatectomy of segments 4a and 5 for pT2 gallbladder carcinoma: analysis of Japanese registration cases by the study group for biliary surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci 2013; 20: 518-524 [PMID: 23430053 DOI: 10.1007/s00534-012-0384-9]

46 Choi SB, Han HJ, Kim WB, Song TJ, Sub SO, Choi SY. Surgical strategy for T2 and T3 gallbladder cancer: is extrahepatic bile duct resection always necessary? Langenbecks Arch Surg 2013; 398: 1137-1144 [PMID: 24057276 DOI: 10.1007/s00423-013-1120-3]

47 Higuchi F, Ota T, Araida T, Kajiyama H, Yasuzawa T, Furukawa T, Yoshikawa T, Takasaki K, Yamamoto M. Surgical approaches to advanced gallbladder cancer: a 40-year single-institution study of prognostic factors and resectability. Ann Surg Oncol 2014; 21: 4308-4316 [PMID: 25023547 DOI: 10.1245/s10434-014-3885-1]

48 Ha TY, Yoon YI, Hwang S, Park YJ, Kang SH, Jung BH, Kim WJ, Sin MH, Ahn CS, Moon DB, Song GW, Jung DH, Lee YJ, Park KM, Kim KH, Lee SG. Effect of reoperation on long-term outcome of pT1b2 T2 gallbladder carcinoma after initial laparoscopic cholecystectomy. J Gastrointest Surg 2015; 19: 298-305
resection.

74

and serum total bilirubin for postoperative mortality after major hepatectomy with extrahepatic bile duct resection. J Hepatobiliary Pancreat Sci 2018; 25: 529-536 [PMID: 29990693 DOI: 10.1007/s00534-017-1485-9]

73

and mortality in patients with gallbladder cancer. Ann Surg Oncol 2006; 13: 847-852 [PMID: 16871646 DOI: 10.1245/s10434-005-8466-0]

72

1979; 142: 158-169 [PMID: 3770206 DOI: 10.1097/00000658-199607000-00004]

71

and mortality in patients with gallbladder cancer. World J Surg 2011; 35: 1397-1405 [PMID: 21929973 DOI: 10.1007/s00268-011-0642-x]

70

resection with those presenting after prior noncurative intervention.

69

Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Center. Cancer 2003; 97: 1229-1236 [PMID: 12616180 DOI: 10.1002/cncr.11368]

68

Combined extrahepatic bile duct resection for locally advanced gallbladder carcinoma: does it work? World J Surg 2018; 42: 1810-1817 [PMID: 29662016 DOI: 10.1007/s00268-015-3101-y]

67

Hepatogastroenterology 2012; 59: 2083-2088 [PMID: 22456433 DOI: 10.5754/hge12097]

66

influence of extended surgical resection.

65

Horgan AM, Lemaire R, Roche B, Arnaud P, Abrass A, Touvier E, Regimbeau JM, Le Treut YP, Bachellier P, Raventos A, Provot FR, Chiche L, Farges O. Incidental gallbladder cancer by the AFC-GBC-2009 Study Group. World J Surg 2011; 35: 1887-1897 [PMID: 21547420 DOI: 10.1007/s00268-011-1134-3]

64

Lee SE, Jang JY, Lim CS, Kang MJ, Kim SW. Systematic review on the surgical treatment for T1 gallbladder cancer. World J Gastroenterol 2011; 17: 174-180 [PMID: 21245989 DOI: 10.3748/wjg.v17.i2.174]

63

Foster JM, Hoshi H, Gibbs JF, Iyer R, Javle M, Chu Q, Kavoshi N, B. Gallbladder cancer: defining the indications for radical and definitive resection. J Surg Oncol 2007; 94: 83-87 [PMID: 17103074 DOI: 10.1002/su.20133]

62

and surgical therapy and pathological assessment. Ann Surg 2005; 241: 224-230 [PMID: 15748561 DOI: 10.1097/01.org.0000160379.69259.e2]

61

Intrahepatic bile duct resection for gallbladder cancer: long-term outcomes, indications and limitations. J Gastrointest Surg 2012; 16: 1752-1762 [PMID: 22451090]

60

You DD, Coates RL, Bhattacharya K, Hayman LJ, O'Reilly EM. Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Center. Cancer 2008; 112: 1499-1509 [PMID: 18038613 DOI: 10.1002/cncr.23561]

59

Coburn NG, Greaves P, Hsieh C, Chou J, Tian Z, Forner A, Hofmann J, Clark LR. Prognostic impact of prothrombin time for incidental gallbladder cancer. J Gastrointest Surg 2013; 17: 913-921 [PMID: 23590737 DOI: 10.1007/s11605-013-2178-y]

58

Foster JM, Greig J, Steinberg GR, Ali M, Iyer R, Javle M, Chu Q, Kavoshi N, B. Gallbladder cancer: defining the indications for radical and definitive resection. J Surg Oncol 2007; 94: 83-87 [PMID: 17103074 DOI: 10.1002/su.20133]

57

and surgical therapy and pathological assessment. Ann Surg 2005; 241: 224-230 [PMID: 15748561 DOI: 10.1097/01.org.0000160379.69259.e2]

56

Intrahepatic bile duct resection for gallbladder cancer: long-term outcomes, indications and limitations. J Gastrointest Surg 2012; 16: 1752-1762 [PMID: 22451090]

55

Coburn NG, Greaves P, Hsieh C, Chou J, Tian Z, Forner A, Hofmann J, Clark LR. Prognostic impact of prothrombin time for incidental gallbladder cancer. J Gastrointest Surg 2013; 17: 913-921 [PMID: 23590737 DOI: 10.1007/s11605-013-2178-y]

54

Foster JM, Greig J, Steinberg GR, Ali M, Iyer R, Javle M, Chu Q, Kavoshi N, B. Gallbladder cancer: defining the indications for radical and definitive resection. J Surg Oncol 2007; 94: 83-87 [PMID: 17103074 DOI: 10.1002/su.20133]

53

and surgical therapy and pathological assessment. Ann Surg 2005; 241: 224-230 [PMID: 15748561 DOI: 10.1097/01.org.0000160379.69259.e2]

52

Intrahepatic bile duct resection for gallbladder cancer: long-term outcomes, indications and limitations. J Gastrointest Surg 2012; 16: 1752-1762 [PMID: 22451090]

51

Igami T, Ebata T, Yokoyama Y, Sugawara G, Mizuno T, Yamaguchi J, Shimoyama Y, Nagino M. Combined extrahepatic bile duct resection for locally advanced gallbladder carcinoma: does it work? World J Surg 2018; 42: 1810-1817 [PMID: 29662016 DOI: 10.1007/s00268-015-3101-y]
Kamada Y et al. Resectable gallbladder cancer

23 years to attain acceptability. *J Hepatobiliary Pancreat Surg* 2007; 14: 131-135 [PMID: 17384902 DOI: 10.1007/s00534-006-1106-4]

76 European Society for Medical Oncology. Biliary cancer: ESMO Clinical practice guidelines. Lugano: European Society for Medical Oncology, 2017

77 Valle JW, Borbath I, Khan SA, Huguet F, Gruenberger T, Arnold D; ESMO Guidelines Committee. Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Ann Oncol* 2016; 27: v28-v37 [PMID: 27664259 DOI: 10.1093/anonc/mdw324]

78 The National Comprehensive Cancer Network. Clinical practice guidelines in oncology. Plymouth Meeting: NCCN Health Information Technology, 2019

79 Japanese Society of Hepato-Biliary-Pancreatic Surgery. Clinical practice guidelines for management of biliary tract cancers. Tokyo: Igakutosho Shuppan, 2019

80 Machado MA, Makdissi FF, Surjan RC. Totally Laparoscopic Hepatic Bisegmentectomy (s4b+s5) and Hilar Lymphadenectomy for Incidental Gallbladder Cancer. *Ann Surg Oncol* 2015; 22 Suppl 3: S336-S339 [PMID: 26059653 DOI: 10.1245/s10434-015-4650-9]

81 Nag IH, Raj P, Sisodia K. The technique of laparoscopic hepatic bisegmentectomy with regional lymphadenectomy for gallbladder cancer. *J Minim Access Surg* 2018; 14: 124-129 [PMID: 28928327 DOI: 10.4103/jmas.JMAS_181_16]

82 Costa SR, Horta SH, Miotto MJ, Costas MC, Godinho CA, Henriques AC. [Central inferior bisegmentectomy (S4b+S5) for gallbladder carcinoma treatment: a series of seven resectable cases]. *Arq Gastroenterol* 2008; 45: 73-81 [PMID: 18425233 DOI: 10.1590/S0004-28032008000100014]

83 Han HS, Yoon YS, Agarwal AK, Belli G, Itano O, Gumbs AA, Yoon DS, Kang CM, Lee SE, Wakai T, Troisi RI. Laparoscopic Surgery for Gallbladder Cancer: An Expert Consensus Statement. *Dig Surg* 2019; 36: 1-6 [PMID: 29339660 DOI: 10.1159/000486207]

84 Yoon YS, Han HS, Agarwal A, Belli G, Itano O, Gumbs AA, Yoon DS, Kang CM, Lee SE, Wakai T, Troisi RI. Survey Results of the Expert Meeting on Laparoscopic Surgery for Gallbladder Cancer and a Review of Relevant Literature. *Dig Surg* 2019; 36: 7-12 [PMID: 29339658 DOI: 10.1159/000486208]

85 Gumbs AA, Jarufe N, Gayet B. Minimally invasive approaches to extrapancreatic cholangiocarcinoma. *Surg Endosc* 2013; 27: 406-414 [PMID: 22926892 DOI: 10.1007/s00464-012-2489-8]

86 de Aretxabala X, Oppliger F, Solano N, Rencoret G, Carvajal D, Hepp J, Roa I. Laparoscopic management of incidental gallbladder cancer. *Surg Endosc* 2018; 32: 4251-4255 [PMID: 29926166 DOI: 10.1007/s00464-018-6173-5]

87 Piccolo G, Ratti F, Cipriani F, Catena M, Aldrighetti L. Totally Laparoscopic Radical Cholecystectomy for Gallbladder Cancer: A Single Center Experience. *J Laparoendosc Adv Surg Tech A* 2019; 29: 741-746 [PMID: 31074684 DOI: 10.1089/lap.2019.0227]
