QUASIFINITE REPRESENTATIONS OF W_∞

VICTOR G. KAC AND JOSÉ I. LIBERATI

ABSTRACT. We classify the quasifinite highest weight modules over a family of subalgebras $W^{(n)}_\infty$ of the central extension $W_{1+\infty}$ of the Lie algebra of differential operators on the circle consisting of operators of order $\geq n$. We classify the unitary quasifinite highest weight modules over $W_\infty = W^{(1)}_\infty$ and realize them in terms of unitary highest weight representations of the Lie algebra of infinite matrices with finitely many non-zero diagonals.

1. INTRODUCTION

The W-infinity algebras naturally arise in various physical theories, such as conformal field theory, the theory of the quantum Hall effect, etc. The $W_{1+\infty}$ algebra, which is the central extension of the Lie algebra D of differential operators on the circle, is the most fundamental among these algebras.

When we study the representation theory of a Lie algebra of this kind, we encounter the difficulty that although it admits a \mathbb{Z}-gradation, each of the graded subspaces is still infinite dimensional, and therefore the study of highest weight modules which satisfy the quasi-finiteness condition that its graded subspaces have finite dimension, becomes a non-trivial problem.

The study of representations of the Lie algebra $W_{1+\infty}$ was initiated in [KR1], where a characterization of its irreducible quasifinite highest weight representations was given, these modules were constructed in terms of irreducible highest weight representations of the Lie algebra of infinite matrices, and the unitary ones were described. On the basis of this analysis, further studies were made in the framework of vertex algebra theory for the $W_{1+\infty}$ algebra [FKRW, KR2], and for its matrix version [BKLY]. The case of orthogonal subalgebras of $W_{1+\infty}$ was studied in [KWY]. The symplectic subalgebra of $W_{1+\infty}$ was considered in [B] in relation to number theory.

In this article, we develop the representation theory of the subalgebras $W^{(n)}_\infty$ of $W_{1+\infty}$, where $W^{(n)}_\infty$ ($n \in \mathbb{N}$) is the central extension of the Lie algebra $D\partial_t^n$
of differential operators on the circle that annihilate all polynomials of degree less than \(n \). The most important of these subalgebras is \(W_\infty = W_\infty^{(1)} \). We first give a description of parabolic subalgebras of \(W^{(n)}_\infty \) and we classify all its irreducible quasifinite highest weight modules. Second, we describe the relation of \(W_\infty \) to the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals and, using this relation, we classify and construct all the unitary irreducible quasifinite modules over \(W_\infty \). Surprisingly, the list of unitary modules over \(W_\infty \) is much richer than that over \(W_1+\infty \).

2. Quasifinite representations of \(\mathbb{Z} \)-graded Lie algebras

Let \(g \) be a \(\mathbb{Z} \)-graded Lie algebra over \(\mathbb{C} \):

\[
g = \bigoplus_{j \in \mathbb{Z}} g_j , \quad [g_i, g_j] \subset g_{i+j} ,
\]

where \(g_i \) is not necessarily of finite dimension. Let \(g_\pm = \oplus_{j>0} g_{\pm j} \). A subalgebra \(p \) of \(g \) is called parabolic if it contains \(g_0 \oplus g_+ \) as a proper subalgebra, that is

\[
p = \bigoplus_{j \in \mathbb{Z}} p_j , \quad \text{where } p_j = g_j \text{ for } j \geq 0 , \text{ and } p_j \neq 0 \text{ for some } j < 0 .
\]

We assume the following properties of \(g \):

- (P1) \(g_0 \) is commutative,
- (P2) if \(a \in g_{-k} \) \((k > 0)\) and \([a, g_1] = 0\), then \(a = 0 \).

Lemma 2.1. For any parabolic subalgebra \(p \) of \(g \), \(p_{-k} \neq 0 \), \(k > 0 \), implies \(p_{-k+1} \neq 0 \).

Proof. If \(p_{-k+1} = 0 \), then \([p_{-k}, g_1] = 0\), i.e. for all \(a \in p_{-k} \), \([a, g_1] = 0\), and using (P2), we get \(a = 0 \). \(\square \)

Given \(a \in g_{-1} \), \(a \neq 0 \), we define \(p^a = \oplus_{j \in \mathbb{Z}} p^a_j \), where \(p^a_j = g_j \) for all \(j \geq 0 \), and

\[
p^a_{-1} = \sum \ldots \left[\ldots [a, g_0], g_0 \right], \quad p^a_{-k-1} = [p^a_{-1}, p^a_{-k}] .
\]

Lemma 2.2.

a) \(p^a \) is the minimal parabolic subalgebra containing \(a \).

b) \(g_0^a := [p^a, p^a] \cap g_0 = [a, g_1] \).
Proof. a) We have to prove that \(p^a \) is a subalgebra. First, \([p^a_{-k}, p^a_{-l}] \subseteq p^a_{-l-k}\) \((k, l > 0)\) is proved by induction on \(k \):

\[
[p^a_{-k}, p^a_{-l}] = [[[p^a_1]^{k-1}, p^a_1], (p^a_1)^l] \\
= [[[p^a_1]^{k-1}, (p^a_1)^l], p^a_1] + [[[p^a_1]^{k-1}, (p^a_1)^l]] \\
\subseteq [(p^a_1)^{l+k-1}, p^a_1] + [(p^a_1)^{k-1}, (p^a_1)^{l+1}] \\
\subseteq (p^a_1)^{k+l}.
\]

And \([p^a_{-k}, g_m] \subseteq p^a_{m-k}\) \((m < k)\) also follows by induction on \(k \):

\[
[p^a_{-k}, g_m] = [[[p^a_1]^{k-1}, p^a_1], g_m] \\
= [[[p^a_1]^{k-1}, g_m], p^a_1] + [[[p^a_1]^{k-1}, g_m]] \\
\subseteq [p^a_{m-k+1}, p^a_1] + [(p^a_1)^{k-1}, g_{m-1}] \\
\subseteq p^a_{m-k}.
\]

Finally, it is obviously the minimal one, proving (a).

b) For any \(k > 1 \):

\[
[p^a_{-k}, g_k] = [[[p^a_1]^{k-1}, g_k], p^a_1] + [[[p^a_1]^{k-1}, g_k]] \\
\subseteq [g_1, p^a_{-k}] + [(p^a_1)^{k-1}, g_{k-1}]
\]

Therefore, by induction, \(g_0^a = [g_1, p^a_{-1}] \). But

\[
[g_1, p^a_{-1}] = \text{linear span} \{[...][[a, c_1], c_2], ..., x] : c_i \in g_0, x \in g_1\} \quad \text{(using (P1))}
\]

\[
= \text{linear span} \{a, [c_1, ...[c_{k-1}, [c_k, x]...]] : c_i \in g_0, x \in g_1\}
\]

\[
= [a, g_1].
\]

proving the lemma. \(\square\)

In the particular case of the central extension of the Lie algebra of matrix differential operators on the circle (see [BKLY], Remark 2.2), we observed the existence of some parabolic subalgebras \(p \) such that \(p_{-j} = 0 \) for \(j >> 0 \). Having in mind that example, we give the following

Definition 2.3. a) A parabolic subalgebra \(p \) is called *non-degenerate* if \(p_{-j} \) has finite codimension in \(g_{-j} \), for all \(j > 0 \).
b) An element \(a \in g_{-1} \) is called *non-degenerate* if \(p^a \) is non-degenerate.
Now, we begin our study of quasifinite representations over \mathfrak{g}. A \mathfrak{g}-module V is called \mathbb{Z}-graded if $V = \bigoplus_{j \in \mathbb{Z}} V_j$ and $\mathfrak{g} V_j \subset V_{i+j}$. A \mathbb{Z}-graded \mathfrak{g}-module V is called quasifinite if $\dim V_j < \infty$ for all j.

Given $\lambda \in \mathfrak{g}_0^*$, a highest weight module is a \mathbb{Z}-graded \mathfrak{g}-module $V(\mathfrak{g}, \lambda)$ generated by a highest weight vector $v_\lambda \in V(\mathfrak{g}, \lambda)_0$ which satisfies

$$hv_\lambda = \lambda(h)v_\lambda \quad (h \in \mathfrak{g}_0), \quad \mathfrak{g}^+_\lambda v_\lambda = 0.$$

A non-zero vector $v \in V(\mathfrak{g}, \lambda)$ is called singular if $\mathfrak{g}^+_\lambda v = 0$.

The Verma module over \mathfrak{g} is defined as usual:

$$M(\mathfrak{g}, \lambda) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{g}_0 \oplus \mathfrak{g}_+)} \mathbb{C}_\lambda$$

where \mathbb{C}_λ is the 1-dimensional $(\mathfrak{g}_0 \oplus \mathfrak{g}_+)$-module given by $h \mapsto \lambda(h)$ if $h \in \mathfrak{g}_0$, $\mathfrak{g}_+ \mapsto 0$, and the action of \mathfrak{g} is induced by the left multiplication in $\mathcal{U}(\mathfrak{g})$. Here and further $\mathcal{U}(\mathfrak{g})$ stands for the universal enveloping algebra of the Lie algebra \mathfrak{g}.

Any highest weight module $V(\mathfrak{g}, \lambda)$ is a quotient module of $M(\mathfrak{g}, \lambda)$. The irreducible module $L(\mathfrak{g}, \lambda)$ is the quotient of $M(\mathfrak{g}, \lambda)$ by the maximal proper graded submodule. We shall write $M(\lambda)$ and $L(\lambda)$ in place of $M(\mathfrak{g}, \lambda)$ and $L(\mathfrak{g}, \lambda)$ if no ambiguity may arise.

Consider a parabolic subalgebra $\mathfrak{p} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{p}_j$ of \mathfrak{g} and let $\lambda \in \mathfrak{g}_0^*$ be such that $\lambda|_{\mathfrak{g}_0 \cap [\mathfrak{p}, \mathfrak{p}]} = 0$. Then the $(\mathfrak{g}_0 \oplus \mathfrak{g}_+)$-module \mathbb{C}_λ extends to a \mathfrak{p}-module by letting \mathfrak{p}_j act as 0 for $j < 0$, and we may construct the highest weight module

$$M(\mathfrak{g}, \mathfrak{p}, \lambda) = \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{p})} \mathbb{C}_\lambda$$

called the generalized Verma module.

We will also require the following condition on \mathfrak{g}:

(P3) If \mathfrak{p} is a non-degenerate parabolic subalgebra of \mathfrak{g}, then there exists a non-degenerate element a such that $\mathfrak{p}^a \subseteq \mathfrak{p}$.

Remark 2.4. In all the examples considered in [KR1], [BKLY], [KWY] and Section 3 of this work, property (P3) is satisfied.

Theorem 2.5. The following conditions on $\lambda \in \mathfrak{g}_0^*$ are equivalent:

1. $M(\lambda)$ contains a singular vector $a.v_\lambda$ in $M(\lambda)_{-1}$, where a is non-degenerate;
2. There exist a non-degenerate element $a \in \mathfrak{g}_{-1}$, such that $\lambda([\mathfrak{g}_1, a]) = 0$.
3. $L(\lambda)$ is quasifinite;
4. There exist a non-degenerate element $a \in \mathfrak{g}_{-1}$, such that $L(\lambda)$ is the irreducible quotient of the generalized Verma module $M(\mathfrak{g}, \mathfrak{p}^a, \lambda)$.

Proof. (1) \(\Rightarrow\) (4) : Denote by \(a v_{\lambda}\) the singular vector, where \(a \in g_{-1}\), then (4) holds for this particular \(a\). (4) \(\Rightarrow\) (3) is immediate. Finally, \(L(\lambda)\) quasifinite implies \(\dim(g_{-1}.v_{\lambda}) < \infty\), then there exist an \(a \in g_{-1}\) such that \(av_{\lambda} = 0\) in \(L(\lambda)\), so \(0 = g_{1}(av_{\lambda}) = a(g_{1}.v_{\lambda}) + [g_{1}, a]v_{\lambda} = \lambda([g_{1}, a]) v_{\lambda}\), getting (3) \(\Rightarrow\) (2) \(\Rightarrow\) (1). \(\square\)

3. The Lie algebra \(W^{(n)}_\infty\) and its parabolic subalgebras

We turn now to a certain family of \(\mathbb{Z}\)-graded Lie algebras. Let \(\mathcal{D}\) be the Lie algebra of regular differential operators on the circle, i.e. the operators on \(\mathbb{C}[t, t^{-1}]\) of the form

\[
E = e_{k}(t)\partial_{t}^{k} + e_{k-1}(t)\partial_{t}^{k-1} + \cdots + e_{0}(t), \quad \text{where } e_{i}(t) \in \mathbb{C}[t, t^{-1}],
\]

The elements

\[
J_{k}^{l} = -t^{l+k} \partial_{t}^{l} \quad (l \in \mathbb{Z}_{+}, \ k \in \mathbb{Z})
\]

form its basis, where \(\partial_{t}\) denotes \(\frac{d}{dt}\). Another basis of \(\mathcal{D}\) is

\[
L_{k}^{l} = -t^{k}D^{l} \quad (l \in \mathbb{Z}_{+}, \ k \in \mathbb{Z})
\]

where \(D = t\partial_{t}\). It is easy to see that

\[
J_{k}^{l} = -t^{k}[D]_{l}. \quad (3.1)
\]

Here and further we use the notation

\[
[x]_{l} = x(x-1)\ldots(x-l+1).
\]

Fix a linear map \(T : \mathbb{C}[w] \to \mathbb{C}\). Then we have the following 2-cocycle on \(\mathcal{D}\), where \(f(w), g(w) \in \mathbb{C}[w]\) [KR1]:

\[
\Psi_{T}(z^{r}f(D), z^{s}g(D)) = \begin{cases}
T(\sum_{-r \leq m \leq -1} f(w+m)g(w+m+r)) & \text{if } r = -s \geq 0, \\
0 & \text{if } r + s \neq 0.
\end{cases} \quad (3.2)
\]

We let \(\Psi = \Psi_{T}\) if \(T : \mathbb{C}[w] \to \mathbb{C}\) is the evaluation map at \(w = 0\). The central extension of \(\mathcal{D}\) by a one-dimensional center \(\mathbb{C}C\), corresponding to the 2-cocycle \(\Psi\) is denoted by \(W_{1+\infty}\). The bracket in \(W_{1+\infty}\) is given by

\[
[t^{r}f(D), t^{s}g(D)] = t^{r+s}(f(D+s)g(D) - f(D)g(D+r)) + \Psi(t^{r}f(D), t^{s}g(D))C. \quad (3.3)
\]
Consider the following family of Lie subalgebras of \mathcal{D} ($n \in \mathbb{N}$):

$$\mathcal{D}^{(n)} := \mathcal{D}\partial_t^n.$$

Denote by $W^{(n)}_{\infty}$ the central extension of $\mathcal{D}^{(n)}$ by $\mathbb{C}C$ corresponding to the restriction of the 2-cocycle Ψ. Observe that $W^{(1)}_{\infty}$ is the well known W_{∞} subalgebra of $W_{1+\infty}$.

Letting $\text{wt} \ t^k f(D) = k$, $\text{wt} C = 0$ defines the principal gradation of $W_{1+\infty}$ and of $W^{(n)}_{\infty}$:

$$W^{(n)}_{\infty} = \bigoplus_{j \in \mathbb{Z}}(W^{(n)}_{\infty})_j,$$

where using (3.1), we have explicitly:

$$(W^{(n)}_{\infty})_j = \{ t^j f(D)[D]_n \mid f(w) \in \mathbb{C}[w] \} + \delta_{j0}\mathbb{C}.$$

It is easy to check that the \mathbb{Z}-graded Lie algebras $W^{(n)}_{\infty}$ satisfy the properties (P1-2).

Remark 3.4. The Lie algebra $W^{(n)}_{\infty}$ contains a \mathbb{Z}-graded subalgebra isomorphic to the Virasoro algebra if and only if $n = 0$ or $n = 1$. Indeed, from the commutator:

$$[t f(D)[D]_n, g(D)[D]_n] = t (g(D)(D - n + 1) - g(D + 1)(D + 1)) [D]_{n-1} f(D)[D]_n,$$

it is immediate that if the relation $[L_1, L_0] = L_1$ is satisfied (for some elements $L_i \in (W^{(n)}_{\infty})_i, i = 0, 1$), then $n \leq 1$. The existence of Virasoro subalgebras for $n \leq 1$ was observed in [KR1].

Let \mathfrak{p} be a parabolic subalgebra of $W^{(n)}_{\infty}$. Observe that for each $j \in \mathbb{N}$ we have:

$$\mathfrak{p}_{-j} = \{ t^{-j} f(D) \mid f(w) \in I_{-j} \}$$

where I_{-j} is a subspace of $[w]_n \mathbb{C}[w]$. Since

$$[f(D)[D]_n, t^{-k} p(D)] = t^{-k} (f(D - k)[D - k]_n - f(D)[D]_n)p(D)$$

we see that I_{-k} satisfies

$$A_{n,k} \cdot I_{-k} \subseteq I_{-k}$$

where $A_{n,k} = \{ f(w - k)[w - k]_n - f(w)[w]_n \mid f(w) \in \mathbb{C}[w] \}$.
Lemma 3.5. a) \(I_{-k} \) is an ideal for all \(k \in \mathbb{N} \) if \(n \leq 2 \) (there are examples of parabolic subalgebras where \(I_{-1} \) is not an ideal for any \(n > 2 \)).
b) If \(I_{-k} \neq 0 \), then it has finite codimension in \(\mathbb{C}[x] \).

Proof. Observe that \(A_{0,k} = A_{1,k} = \mathbb{C}[w] \) for all \(k \geq 1 \), and \(A_{2,k} \) is a subspace which contains a polynomial of degree \(l \) for all \(l \geq 1 \), proving the first part. Now, observe that \(A_{n,1} = \mathbb{C}[w][w-1]_{n-1} \), and take

\[
\begin{align*}
I_{-1} &= \mathbb{C} [w]_n \oplus \mathbb{C} w[w]_n \oplus A_{n,1}[w]_n \oplus A_{n,1}w[w]_n, \\
I_{-k} &= \mathbb{C}[w][w-k+1]_n \ldots [w-1]_n[w]_n, & k > 1.
\end{align*}
\]

Then, after some computation, it is possible to see that these subspaces define a parabolic subalgebra \(p = \bigoplus_{k \in \mathbb{Z}} p_k \), where \(p_{-k} = \{ t^{-j}f(D) \mid f(w) \in I_{-j} \} \) for \(k \geq 1 \). Observe that for \(n > 2 \), \(I_{-1} \) is no longer an ideal.

Finally, since \(A_{n,k} \) contains a polynomial of degree \(l \) for all \(l \geq m \), for some \(m \in \mathbb{N} \), part b) follows. \(\square \)

Remark 3.6. Due to Lemma 3.5, we no longer have the situation of parabolic subalgebras described in terms of ideals, as in the Lie algebras considered in [KR1], [BKLY] and [KWY]. But for the algebra \(W_\infty \) the parabolic subalgebras are as in these references.

We shall need the following proposition to study modules over \(W_\infty^{(n)} \) induced from its parabolic subalgebras.

Proposition 3.7. a) Any non-zero element \(d \in (W_\infty^{(n)})_{-1} \) is non-degenerate.
b) Any parabolic subalgebra of \(W_\infty^{(n)} \) is non-degenerate.
c) Let \(d = t^{-1}b(D) = t^{-1}a(D)[D]_n \in (W_\infty^{(n)})_{-1} \), then

\[
(W_\infty^{(n)})_0^d := [(W_\infty^{(n)})_1, d] = \operatorname{span}\{ [D-1]_n g(D)b(D) - [D]_n g(D+1)b(D+1) \mid g \in \mathbb{C}[w] \}.
\]

Proof. Let \(0 \neq d \in (W_\infty^{(n)})_{-1} \), then \(p_{-j}^d \neq 0 \) for all \(j \geq 1 \). So, by Lemma 3.5 b), part a) follows. Let \(p \) be any parabolic subalgebra of \(W_\infty^{(n)} \), using Lemma 2.1 we get \(p_{-1} \neq 0 \). Then, using a) and \(p^d \subseteq p \) (for any non-zero \(d \in p_{-1} \)), we obtain b). Finally, part c) follows by Lemma 2.2 b) and the commutator:

\[
[tg(D)[D]_n, t^{-1}b(D)] = [D-1]_n g(D-1)b(D) - [D]_n g(D)b(D+1). \quad \square
\]
4. Quasifinite Highest Weight Modules over $W^{(n)}_\infty$

By Proposition 3.7, $W^{(n)}_\infty$ also satisfies property (P3), hence we can apply Theorem 2.5.

Let $L(\lambda)$ be a quasifinite highest weight module over $W^{(n)}_\infty$. By Theorem 2.5, there exists some monic polynomial $b(w) = a(w)[w]_n$ such that

$$(t^{-1}b(D))v_\lambda = 0.$$

We shall call such monic polynomial of minimal degree, uniquely determined by the highest weight λ, the characteristic polynomial of $L(\lambda)$.

A functional $\lambda \in (W^{(n)}_\infty)_0^*$ is described by its labels $\Delta_l = -\lambda(D^l[D]_n)$, where $l \in \mathbb{Z}_+$, and the central charge $c = \lambda(C)$. We shall consider the generating series

$$\Delta_\lambda(x) = \sum_{l=0}^{\infty} \frac{x^l}{l!} \Delta_l. \quad (4.1)$$

Recall that a quasipolynomial is a linear combination of functions of the form $p(x)e^{\alpha x}$, where $p(x)$ is a polynomial and $\alpha \in \mathbb{C}$. Recall the well-known characterization: a formal power series is a quasipolynomial if and only if it satisfies a non-trivial linear differential equation with constant coefficients. We have the following characterization of quasifinite highest weight modules.

Theorem 4.2. A $W^{(n)}_\infty$-module $L(\lambda)$ is quasifinite if and only if

$$n\Delta_\lambda(x) + \frac{d}{dx}(e^x - 1)\Delta_\lambda(x)$$

is a quasipolynomial. This condition is equivalent to the existence of a quasipolynomial $\phi_\lambda(x)$ with $\phi_\lambda(0) = 0$, such that

$$\Delta_\lambda(x) = \left[\frac{d}{dx} \right]_n \left(\frac{\phi_\lambda(x)}{e^x - 1} \right). \quad (4.3)$$

Proof. From Proposition 3.7 a) and c), and Theorem 2.5(2), we have that $L(\lambda)$ is quasifinite if and only if there exist a polynomial $b(w) = [w]_n a(w)$ such that

$$\lambda([D - 1]_n g(D) b(D) - [D]_n g(D + 1) b(D + 1)) = 0 \quad \text{for any polynomial } g,$$
or equivalently
\[0 = \lambda \left(b(D)[D - 1]_n e^{xD} - b(D + 1)[D]_n e^{x(D + 1)} \right). \]
(4.4)

Now, using that \(\Delta_{\lambda}(x) = -\lambda \left(\left[\frac{d}{dx} \right]_n e^{xD} \right) \), and the identities
\[f(D)e^{xD} = f \left(\frac{d}{dx} \right) (e^{xD}), \quad [D]_n e^{x(D + 1)} = e^{x}[D]_n e^{xD} = e^{x} \left[\frac{d}{dx} \right]_n e^{xD}, \]
condition (4.4) can be rewritten as follows:

\[
0 = \lambda \left(b(D)[D - 1]_n e^{xD} - b(D + 1)[D]_n e^{x(D + 1)} \right)
= \lambda \left(b \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_n (e^{xD}) - b \left(\frac{d}{dx} \right) \left([D]_n e^{x(D + 1)} \right) \right)
= \lambda \left(a \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_n \left[\frac{d}{dx} \right]_n (e^{xD}) - b \left(\frac{d}{dx} \right) \left(e^{x} \left[\frac{d}{dx} \right]_n e^{xD} \right) \right)
= -a \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_n \Delta_{\lambda}(x) + b \left(\frac{d}{dx} \right) \left(e^{x} \Delta_{\lambda}(x) \right)
= -a \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_n \left(\left(\frac{d}{dx} - n \right) \Delta_{\lambda}(x) + \left(\frac{d}{dx} \right) \left(e^{x} \Delta_{\lambda}(x) \right) \right).
\]

Thus, \(L(\lambda) \) is quasifinite if and only if there exists a polynomial \(a(w) \) such that
\[
a \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_n \left(n \Delta_{\lambda}(x) + \frac{d}{dx} ((e^{x} - 1)\Delta_{\lambda}(x)) \right) = 0
\]
Therefore, \(L(\lambda) \) is quasifinite if and only if \(F_{\lambda}(x) := n \Delta_{\lambda}(x) + \frac{d}{dx} ((e^{x} - 1)\Delta_{\lambda}(x)) \) is a quasipolynomial, proving the first equivalence of the theorem.

Now, suppose that \(\Delta_{\lambda}(x) = \left[\frac{d}{dx} \right]_n \left(\frac{\phi_{\lambda}(x)}{e^{x} - 1} \right) \) with \(\phi_{\lambda}(0) = 0 \), then using that
\[
\left[\frac{d}{dx} - 1 \right]_n (e^{x} g(x)) = e^{x} \left[\frac{d}{dx} \right]_n (g(x))
\]
we have
\[
F_{\lambda}(x) = \left[\frac{d}{dx} \right]_{n+1} \phi_{\lambda}(x). \]
(4.5)

Thus, if \(\phi_{\lambda}(x) \) is a quasipolynomial, then \(F_{\lambda}(x) \) is a quasipolynomial.
Conversely, suppose that $F_\lambda(x)$ is a quasipolynomial. Let $\phi(x)$ be any solution of (4.5) satisfying the condition $\phi(0) = 0$. Observe that all solutions are of the form $\phi(x) + \sum_{i=1}^{n} c_i (e^x - 1)^i$. Then by (4.5), $\phi(x)$ is a quasipolynomial, and we have $\Delta_\lambda(x) = \left[\frac{d}{dx} \right]^n \left(\frac{\phi(x)}{e^x - 1} \right)$, where the expression of $\Delta_\lambda(x)$ is independent of the choice of $\phi(x)$, completing the proof. □

Remark 4.6. Given a quasipolynomial $F(x)$, it is easy to see that $\Delta_\lambda(x)$ is uniquely determined by the equation $F(x) = n\Delta_\lambda(x) + \frac{d}{dx}((e^x - 1)\Delta_\lambda(x))$.

Definition 4.7. The quasipolynomial $\phi_\lambda(x) + c$, where $\phi_\lambda(x)$ is from (4.3) and c is the central charge, can be (uniquely) written in the form

$$\phi_\lambda(x) + c = \sum_{r \in I} p_r(x)e^{rx}, \quad (4.8)$$

where all r are distinct numbers. The numbers r appearing in (4.8) are called exponents of the $W^{(n)}_\infty$-module $L(\lambda)$, and the polynomial $p_r(x)$ is called the multiplicity of r, denoted by $\text{mult}(r)$. Note that, by definition:

$$c = \sum_{r} p_r(0).$$

Corollary 4.9. Let $L(\Lambda)$ be a quasifinite irreducible highest weight module over $W^{(n)}_\infty$, let $b(w) = [w]_n a(w)$ be its characteristic polynomial, and let $F_\lambda(x) = n\Delta_\lambda(x) + \frac{d}{dx}((e^x - 1)\Delta_\lambda(x))$. Then $a \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_{n-1} F(x) = 0$ is the minimal order homogeneous linear differential equation with constant coefficients of the form $f \left(\frac{d}{dx} \right) \left[\frac{d}{dx} - 1 \right]_{n-1}$, satisfied by $F(x)$. Moreover, the exponents appearing in (4.8) are all roots of the polynomial $[w - 1]_{n-1} a(w)$.

Now, we will consider the restriction of quasifinite highest weight modules over $W^{(n)}_1$ to $W^{(n)}_\infty$. We will need some notation.

A functional $\lambda \in (W_1)_0^*$ is characterized by its labels $\Gamma_m = -\lambda(D^m)$, where $m \in \mathbb{Z}_+$, and the central charge $c = \lambda(C)$, cf. (4.1). Introduce the new generating series:

$$\Gamma_\lambda(x) = \sum_{m=0}^{\infty} \frac{a_m}{m!} \Gamma_m.$$

Observe that $\left[\frac{d}{dx} \right]^n \Gamma_\lambda(x) = \Delta_\lambda(x)$, where $\Delta_\lambda(x)$ is defined by (4.1). Recall that a $W^{(n)}_1$-module $L(W^{(n)}_1, \lambda)$ is quasifinite if and only if $\Gamma_\lambda(x) = \frac{\phi(x)}{e^x - 1}$, where $\phi(x)$ is a quasipolynomial such that $\phi(0) = 0$ [KR1]. We have the following partial restriction result:
Proposition 4.10. Any quasifinite $W_\infty^{(n)}$-module $L(\lambda)$ can be obtained as a quotient of the $W_\infty^{(n)}$-submodule generated by the highest weight vector of a quasifinite $W_{1+\infty}$-module $L(W_{1+\infty}, \tilde{\lambda})$, for some quasifinite $\tilde{\lambda} \in (W_{1+\infty})_0$ such that $\tilde{\lambda}|_{(W_\infty^{(n)})_0} = \lambda$.

Proof. Given $\Delta_\lambda(x) = \left[\frac{d}{dx} \right]_n \left(\frac{\phi(x)}{e^x - 1} \right)$, consider $\tilde{\lambda} \in (W_{1+\infty})_0$ determined by $\Gamma_{\tilde{\lambda}}(x) = \frac{\phi(x)}{e^x - 1}$, and the proposition follows. □

Let \mathcal{O} be the algebra of all holomorphic functions on \mathbb{C} with the topology of uniform convergence on compact sets. We consider the vector space $\mathcal{D}^\mathcal{O}$ spanned by the differential operators (of infinite order) of the form $t^k f(D)$, where $f \in \mathcal{O}$. The bracket in \mathcal{D} extends to $\mathcal{D}^\mathcal{O}$. Then the cocycle Ψ extends to a 2-cocycle on $\mathcal{D}^\mathcal{O}$ by formula (3.2). Let $W_{1+\infty}^\mathcal{O} = \mathcal{D}^\mathcal{O} + \mathbb{C}C$ be the corresponding central extension with the principal gradation as in $W_{1+\infty}$.

Consider the Lie subalgebras of $\mathcal{D}^\mathcal{O}$:

$$\mathcal{D}_n^\mathcal{O} := \mathcal{D}^\mathcal{O} \partial_t^n.$$ (4.11)

We shall denote by $W_\infty^{(n)\mathcal{O}}$ the central extension of $\mathcal{D}_n^\mathcal{O}$ by $\mathbb{C}C$ corresponding to the restriction of the cocycle Ψ. And we shall use de notation $W_\infty^\mathcal{O} = W^{(1)\mathcal{O}}$. Observe that $W_\infty^{(n)\mathcal{O}}$ inherit a \mathbb{Z}-gradation from $W_{1+\infty}^\mathcal{O}$.

In the following section, we shall need the following proposition.

Proposition 4.12. Let V be a quasifinite $W_\infty^{(n)}$-module. Then the action of $W_\infty^{(n)}$ on V naturally extends to the action of $(W_\infty^{(n)\mathcal{O}})_k$ on V for any $k \neq 0$.

Proof. The proof is analogous to that of Proposition 4.3 in [KR1]. □

5. Embedding of W_∞ into \hat{gl}_∞.

In the following, we will suppose that $n = 1$, i.e. we consider the algebra W_∞.

Let gl_∞ be the \mathbb{Z}-graded Lie algebra of all matrices $(a_{ij})_{i,j \in \mathbb{Z}}$ with finitely many nonzero diagonals ($\deg E_{ij} = j - i$). Consider the central extension $\hat{gl}_\infty = gl_\infty + \mathbb{C}C$ defined by the cocycle:

$$\Phi(A, B) = \text{tr} ([J, A]B), \quad J = \sum_{i \leq 0} E_{ii}.$$
Given \(s \in \mathbb{C} \), we will consider the natural action of the Lie algebra \(D^{(1)} \) (resp. \(D^{(1)}_O \)) on \(t^s \mathbb{C}[t, t^{-1}] \). Taking the basis \(v_j = t^{-j+s} \) (\(j \in \mathbb{Z} \)) of this space, we obtain a homomorphism of Lie algebras \(\varphi_s : D^{(1)} \to \mathfrak{gl}_\infty \) (resp. \(\varphi_s : D^{(1)}_O \to \mathfrak{gl}_\infty \)):

\[
\varphi_s(t^k f(D)D) = \sum_{j \in \mathbb{Z}} f(-j+s)(-j+s)E_{j-k,j}.
\]

This homomorphism preserves gradation and it lifts to a homomorphism \(\hat{\varphi}_s \) of the corresponding central extensions as follows [KR1]:

\[
\hat{\varphi}_s(De^{xD}) = \varphi_s(De^{xD}) - \left(\frac{e^{sx} - 1}{e^x - 1} \right)'C, \quad \hat{\varphi}_s(C) = C.
\]

Let \(s \in \mathbb{Z} \) and denote by \(\hat{\mathfrak{gl}}_\infty,s \) the Lie subalgebra of \(\hat{\mathfrak{gl}}_\infty \) generated by \(C \) and \(\{ E_{ij} | i \neq -s \text{ and } j \neq s \} \). Observe that \(\hat{\mathfrak{gl}}_\infty,s \) is naturally isomorphic to \(\hat{\mathfrak{gl}}_\infty \). Let \(p_s : \hat{\mathfrak{gl}}_\infty \to \hat{\mathfrak{gl}}_\infty,s \) be the projection map. If \(s \in \mathbb{Z} \), we redefine \(\hat{\varphi}_s \) by the homomorphism \(p \circ \hat{\varphi}_s : W_\infty \to \hat{\mathfrak{gl}}_\infty,s \).

Given \(\vec{s} = (s_1, \ldots, s_m) \in \mathbb{C}^m \), we have a homomorphism of Lie algebras over \(\mathbb{C} \):

\[
\hat{\varphi}_{\vec{s}} = \oplus_{i=1}^m \hat{\varphi}_{s_i} : W_\infty \to \mathfrak{g}_{\vec{s}} = \oplus_{i=1}^m \mathfrak{g}_{s_i}, \quad (5.1)
\]

where \(\mathfrak{g}_{s_i} = \hat{\mathfrak{gl}}_\infty \) if \(s_i \notin \mathbb{Z} \), and \(\mathfrak{g}_{s_i} = \hat{\mathfrak{gl}}_\infty,s_i \) if \(s_i \in \mathbb{Z} \). The proof of the following proposition is similar to that of Proposition 3.2 in [KR1].

Proposition 5.2. The homomorphism \(\hat{\varphi}_{\vec{s}} \) extends to a homomorphism of Lie algebras over \(\mathbb{C} \), which is also denoted by \(\hat{\varphi}_{\vec{s}} \):

\[
\hat{\varphi}_{\vec{s}} : W_\infty^O \to \mathfrak{g}_{\vec{s}}.
\]

The homomorphism \(\hat{\varphi}_{\vec{s}} \) is surjective provided that \(s_i - s_j \notin \mathbb{Z} \) for \(i \neq j \).

Remark 5.3. For \(s \in \mathbb{Z} \) the image of \(W_\infty^O \) under the homomorphism \(\hat{\varphi}_s \) is \(\nu^k(\hat{\mathfrak{gl}}_\infty,s-k) \) for any \(k \in \mathbb{Z} \), where \(\nu \) is the automorphism defined by

\[
\nu(E_{ii}) = E_{i+1,i+1}, \quad (5.4)
\]

Hence we may (and will) assume that \(0 \leq \text{Re } s < 1 \) throughout the paper.
6. Unitary Quasifinite Highest Weight Modules over W_∞

The algebra $D^{(1)}$ acts on the space $V = \mathbb{C}[t, t^{-1}]/\mathbb{C}$. One has a non-degenerate Hermitian form on V:

$$B(f, g) = \text{Res}_t \bar{f} dg,$$

where $(\sum a_i t^i) = \sum a_i t^{-i}$, $a_i \in \mathbb{C}$, (cf. [B]).

Consider the additive map $\omega : D^{(1)} \to D^{(1)}$, defined by:

$$\omega(t^k f(D)D) = t^{-k} \bar{f}(D - k)D$$

where for $f(D) = \sum_i f_i D^i$, we let $\bar{f}(D) = \sum_i \bar{f}_i D^i (f_i \in \mathbb{C})$.

Proposition 6.1. The map ω is an anti-involution of the Lie algebra $D^{(1)}$, i.e. ω is an additive map such that

$$\omega^2 = id, \quad \omega(\lambda a) = \bar{\lambda} \omega(a), \quad \text{and} \quad \omega([a, b]) = [\omega(b), \omega(a)], \quad \text{for} \ \lambda \in \mathbb{C}, a, b \in D^{(1)}.$$

Furthermore, the operators $\omega(a)$ and a are adjoint operators on V with respect to B, and $\omega((D^{(1)})_j) = (D^{(1)})_{-j}$.

Proof. The properties $\omega^2 = id$, $\omega(\lambda a) = \bar{\lambda} \omega(a)$ are obvious. Now,

$$\omega([t^k f(D)D, t^l g(D)D]) =$$

$$= \omega(t^{k+l} (f(D + l)(D + l)g(D) - g(D + k)(D + k)f(D))D)$$

$$= t^{-(k+l)} (\bar{f}(D - k)(D - k)\bar{g}(D - k - l) - \bar{g}(D - l)(D - l)\bar{f}(D - k - l))D.$$

On the other hand,

$$[\omega(t^l g(D)D), \omega(t^k f(D)D)] = [t^{-l} \bar{g}(D - l)D, t^{-k} \bar{f}(D - k)D]$$

$$= t^{-(k+l)} (\bar{g}(D - k - l)(D - k)\bar{f}(D - k) - \bar{f}(D - k - l)(D - l)\bar{g}(D - l))D.$$

Hence ω is an anti-involution. Now we compute

$$B(t^k f(D)D, t^l n) = B(l f(l) t^{k+l}, t^n) = n l \bar{f}(l) \delta_{k+l,n}$$

And we also have

$$B(t^l, \omega(t^k f(D)D) t^n) = B(t^l, t^{-k} \bar{f}(D - k)D t^n)$$

$$= B(t^l, n \bar{f}(n - k) t^{n-k}) = n l \bar{f}(n - k) \delta_{l,n-k},$$
proving the proposition. □

This anti-involution ω extends to the whole algebra $D^{(1)}_O$, defined in (4.11). Observe that

$$\Psi(\omega(A), \omega(B)) = \omega(\Psi(B, A)), \quad A, B \in D^{(1)}_O.$$

Therefore, the anti-involution ω of the Lie algebras $D^{(1)}$ and $D^{(1)}_O$ lifts to an anti-involution of their central extensions W_∞ and W^O_∞, such that $\omega(C) = C$, which we again denote by ω.

In this section we shall classify and construct all unitary (irreducible) quasifinite highest weight modules over W_∞ with respect to the anti-involution ω. In order to do it, we shall need the following lemma.

Lemma 6.2. Let V be a unitary quasifinite highest weight module over W_∞ and let $b(w) = wa(w)$ be its first characteristic polynomial. Then $a(w)$ has only simple real roots.

Proof. Let v_λ be a highest weight vector of V. Then the first graded subspace V_{-1} has a basis

$$\{(t^{-1}D^{j+1})v_\lambda \mid 0 \leq j < \deg a\}.$$

Consider the action of

$$S = -\frac{1}{2} \left(D^2 + \left(\frac{1 - \Delta_1}{1 + \Delta_0} \right) D \right)$$

on V_{-1}. It is straightforward to check that

$$S^j((t^{-1}D)v_\lambda) = (t^{-1}D^{j+1})v_\lambda \quad \text{for all} \quad j \geq 0.$$

It follows that $a(S)((t^{-1}D)v_\lambda) = 0$, and that $\{S^j((t^{-1}D)v_\lambda) \mid 0 \leq j < \deg a\}$ is a basis of V_{-1}. We conclude from the above that $a(w)$ is the characteristic polynomial of the operator S on V_{-1}. Since the operator S is self-adjoint, all the roots of $a(w)$ are real.

Now, suppose that $a(w) = (w - r)^mc(w)$ for some polynomial $c(w)$ and $r \in \mathbb{R}$. Then $v = (S - r)^{m-1}c(S)((t^{-1}D)v_\lambda)$ is a non-zero vector in V_{-1}, but

$$(v, v) = (c(S)((t^{-1}D)v_\lambda), (S - r)^{2m-2}c(S)((t^{-1}D)v_\lambda)) = 0 \quad \text{if} \quad m \geq 2.$$

Hence the unitarity condition forces $m = 1$. □

Take $0 < s < 1$. Then under the homomorphism $\hat{\varphi}_s : W^O_\infty \to \hat{gl}_\infty$, the anti-involution ω induces the following anti-involution on \hat{gl}_∞:
\[
\omega'(E_{ij}) = \left(\frac{s-i}{s-j}\right) E_{ji}, \quad \omega'(C) = C.
\]

Indeed:
\[
\varphi_s(\omega(t^k f(D)D)) = \varphi_s(t^{-k} \tilde{f}(D-k)D)
= \sum_{j \in \mathbb{Z}} \tilde{f}(s-j-k)(s-j)E_{j+k,j}
= \sum_{j \in \mathbb{Z}} \tilde{f}(s-j)(s-j+k)E_{j,j-k}
= \omega'\left(\sum_{j \in \mathbb{Z}} f(s-j)(s-j)E_{j-j,j}\right)
= \omega'(\varphi_s(t^k f(D)D)).
\]

Let \(e_i = E_{i,i+1} \) and \(f_i = E_{i+1,i} \), then \(\omega'(e_i) = \lambda_i f_i \) with \(\lambda_i = \frac{s-i}{s-i+1} \). Observe that
\[
\lambda_i < 0 \quad \text{if and only if} \quad i < s < i+1.
\] (6.3)

If we consider the linear automorphism \(T \) defined by \(T(e_i) = \mu_i e_i = e_i' \), \(T(f_i) = \mu_i^{-1} f_i = f_i' \) for some \(\mu_i \in \mathbb{C} \), then \(\omega'(e_i') = \omega(\mu_i e_i) = \tilde{\mu}_i \lambda_i f_i = |\mu_i|^2 \lambda_i f_i' \). Hence by (6.3), \(\omega' \) is equivalent to the anti-involution \(\tilde{\omega} \) defined by:
\[
\tilde{\omega}(e_i) = \begin{cases}
 f_i & \text{if } i \neq 0, \\
 -f_i & \text{if } i = 0.
\end{cases}
\]

After a shift by the automorphism \(\nu \) defined in (5.4), we may assume \(0 < s < 1 \), then under the homomorphism \(\hat{\varphi}_s : W_\infty^0 \to \hat{gl}_\infty \), the anti-involution \(\omega \) induces an anti-involution on \(\hat{gl}_\infty \) that is equivalent to the following:
\[
E_{ij}^\dagger = E_{ji} \quad \text{if } i,j > 0 \text{ or } i,j \leq 0, \quad E_{ij}^\dagger = -E_{ji} \text{ otherwise, and } C^\dagger = C.
\]

As usual, for any \(\lambda \in (\hat{gl}_\infty)_0^* \) we have the associated irreducible highest weight \(\hat{gl}_\infty \)-module \(L(\hat{gl}_\infty, \lambda) \). An element \(\lambda \in (\hat{gl}_\infty)_0^* \) is determined by its labels \(\lambda_i = \lambda(E_{ii}) \), \(i \in \mathbb{Z} \), and central charge \(c = \lambda(C) \). Let \(n_i = \lambda_i - \lambda_{i+1} + \delta_{i,0}c \) \((i \in \mathbb{Z}) \). The following classification is taken from [KR2] and [O]:

Proposition 6.4. A non-trivial highest weight \(\hat{gl}_\infty \)-module with highest weight \(\lambda \) and central charge \(c \) is unitary with respect to \(\dagger \) if and only if the following properties hold:
\[
n_i \in \mathbb{Z}_+ \text{ if } i \neq 0 \text{ and } c = \sum_i n_i < 0,
\] (6.5a)
if \(n_i \neq 0 \) and \(n_j \neq 0 \), then \(|i - j| \leq -c \). (6.5b)

In the case of \(s = 0 \), the homomorphism \(\hat{\varphi}_0 : W_{\infty}^O \to \hat{gl}_{\infty,0} \simeq \hat{gl}_{\infty} \) induces the standard anti-involution on \(\hat{gl}_{\infty} : (A)^* = {}^tA \). The following is a very well known result:

Proposition 6.6. A highest weight \(\hat{gl}_{\infty} \)-module with highest weight \(\lambda \) and central charge \(c \) is unitary with respect to \(^* \) if and only if \(n_i \in \mathbb{Z}_+ \) and \(c = \sum n_i \).

Let \(\lambda_i \in (\mathfrak{g}_{s_i})^* \) such that \(L(\mathfrak{g}_{s_i}, \lambda_i) \) is a quasifinite \(\mathfrak{g}_{s_i} \)-module. Then the tensor product

\[
L(\mathfrak{g}_{\vec{s}}, \vec{\lambda}) := \bigotimes_i L(\mathfrak{g}_{s_i}, \lambda_i)
\]

is an irreducible \(\mathfrak{g}_{\vec{s}} \)-module.

Theorem 6.7. Let \(V \) be a quasifinite \(\mathfrak{g}_{\vec{s}} \)-module, viewed as a \(W_{\infty} \)-module via the homomorphism \(\hat{\varphi}_{\vec{s}} \), where \(s_i - s_j \notin \mathbb{Z} \) if \(i \neq j \), and \(0 \leq \text{Re} s_i < 1 \). Then any \(W_{\infty} \)-submodule of \(V \) is also a \(\mathfrak{g}_{\vec{s}} \)-submodule. In particular, the \(W_{\infty} \)-modules \(L(\mathfrak{g}_{\vec{s}}, \vec{\lambda}) \) are irreducible, and in this way we obtain all quasifinite \(W_{\infty} \)-modules \(L(\lambda) \) with \(\phi_\lambda(x) = \sum_i n_i e^{r_i x}, n_i \in \mathbb{C}, r_i \in \mathbb{C} \).

Proof. Consider any \(W_{\infty} \)-submodule \(W \) of \(V \). By Proposition 4.12, the action of \(W_{\infty} \) can be extended to \((W_{\infty}^O)_k (k \neq 0) \). Using Proposition 5.2, we see that the subspace \(W \) is preserved by \(\mathfrak{g}_{\vec{s}} \). Therefore, the \(W_{\infty} \)-modules \(L(\mathfrak{g}_{s}, \lambda) \) are quasifinite and irreducible. Then it is easy to calculate the generating series of the highest weight (see Section 4.6 in [KR1]): in the case \(s \in \mathbb{R} \setminus \mathbb{Z} \), we have

\[
\Delta_{s,\lambda}(x) = -\lambda(\hat{\varphi}_s(De^{-xD})) = \frac{d}{dx} \left(\frac{\sum_{k \in \mathbb{Z}} e^{(s-k)x} n_k - c}{e^x - 1} \right),
\]

(6.8)

in the case of \(s = 0 \), we have

\[
\Delta_{0,\lambda}(x) = \frac{d}{dx} \left(\frac{\sum_{j>0} e^{-jx} n_j + \sum_{j<0} e^{(-j+1)x} n_j + e^{2x} \lambda_0 - e^{-x} \lambda_1}{e^x - 1} \right),
\]

(6.9)

and the last part of the theorem follows from equations (6.8-9). □

In fact, as in Theorem 4.6 in [KR1], it is possible to construct all irreducible quasifinite \(W_{\infty} \)-module in terms of representations of \(\hat{gl}(\infty, R_m) \) (or a subalgebra of it), where \(\hat{gl}(\infty, R_m) \) is the central extension of the Lie algebra of infinite matrices with finitely many non-zero diagonals and coefficients in the algebra of truncated
polynomials $R_m := \mathbb{C}[u]/(u^{m+1})$. More precisely, we consider the homomorphism $\varphi_s^{[m]} : D^{(1)} \rightarrow gl(\infty, R_m)$ given by

$$
\varphi_s^{[m]}(t^k f(D)D) = \sum_{i=0}^{m} \sum_{j \in \mathbb{Z}} \frac{(f(i)(s-j)(s-j) + if^{(i-1)}(s-j))}{i!} u^i E_{j-k,j}.
$$

In the case $s \in \mathbb{R}\setminus\mathbb{Z}$ we take $\mathfrak{g}_s^{[m]} = \hat{gl}(\infty, R_m)$, and for $s \in \mathbb{Z}$ we have to remove the generators E_r,s and $u^m E_{-s,r}$ for all $r \in \mathbb{Z}$. All quasifinite irreducible $L(\lambda)$ can be obtained using representations of the Lie algebra $\mathfrak{g}_s^{[m]} = \oplus_i \mathfrak{g}_s^{[m_i]}$ via the homomorphism $\varphi_s^{[m]} = \oplus_i \varphi_s^{[m_i]}$, and as in [KR1] the coefficients in \bar{m} are given by the degree of the (polynomial) multiplicities of $\phi_\lambda(x)$.

Lemma 6.10. Only those highest weight representations of $\hat{gl}(\infty, R_m)$ that factor through $\hat{gl}(\infty, \mathbb{C})$ are unitary.

Proof. Indeed, let v be a highest weight vector. Fix $i \in \mathbb{Z}$ and let $e = E_{i,i+1}, f = E_{i+1,i}, h = E_{ii}$. Now take the maximal j such that $(u^j f)v \neq 0$. We have to show that $j=0$. In the contrary case, $(u^j f)v$ is a vector of norm 0: $((u^j f)v, (u^j f)v) = \pm (v, (u^j f)v) = \pm (v, (u^{2j} h)v) = 0$, since otherwise $(u^{2j} h)v \neq 0$, hence $(u^j f)v \neq 0$ (by applying e to it). Hence we got a non-zero vector of zero norm, unless the module is actually a $\hat{gl}(\infty, \mathbb{C})$-module. □

Therefore, using Lemma 6.10, Lemma 6.2 and Corollary 4.9, we have:

Lemma 6.11. If $L(\lambda)$ is a unitary quasifinite W_∞-module, then $\phi_\lambda(x) = \sum_i t_i e^{r_ix}$, with $t_i \in \mathbb{C}, r_i \in \mathbb{R}$.

Now we can formulate the main result of this section, that follows (in the same way as Theorem 5.2 in [KR1]), from Theorem 6.7, Propositions 6.4 and 6.6, and Lemma 6.11:

Theorem 6.12. (a) Let $L(\lambda)$ be a non-trivial quasifinite W_∞-module. For each $0 \leq \alpha < 1$, let E_α denote the set of exponents of $L(\lambda)$ that are congruent to $\alpha \mod \mathbb{Z}$. Then $L(\lambda)$ is unitary if and only if the following three conditions are satisfied:

1. All exponents are real numbers.
2. The multiplicities of the exponents $r_i \in E_0$ are positive integers.
3. For exponents $r_i \in E_\alpha (0 < \alpha < 1)$, all multiplicities $\text{mult}(r_i)$ are integers and only one of them is negative, $m_\alpha := -\sum_{r_i \in E_\alpha} (\text{mult}(r_i))$ is a positive integer, and $r_i - r_j \leq m_\alpha$ for all $r_i, r_j \in E_\alpha$.

(b) Any unitary quasifinite W_∞-module $L(\lambda)$ is obtained by taking tensor product of unitary irreducible quasifinite highest weight modules over $\mathfrak{g}_{s_i}, i = 1, \ldots, m,$ and
restricting to W_∞ via the embedding $\hat{\varphi}_\vec{s}$, where $\vec{s} = (s_1, \ldots, s_m) \in \mathbb{R}^m$, $0 \leq s_i < 1$ and $s_i - s_j \notin \mathbb{Z}$ if $i \neq j$.

Acknowledgment. This research was supported in part by NSF grant DMS-9622870, Consejo Nacional de Investigaciones Científicas y Técnicas, and Secretaría de Ciencia y Técnica (Argentina). J. Liberati would like to thank C. Boyallian for constant help and encouragement throughout the development of this work, and MIT for its hospitality.

References

[B] S. Bloch, Zeta values and differential operators on the circle, J. Algebra 182 (1996), 476-500.

[BKLY] C. Boyallian, V. Kac, J. Liberati and C. Yan, Quasifinite highest weight modules over the Lie algebra of matrix differential operators on the circle, Journal of Math. Phys. 39 (1998), 2910-2928.

[FKRW] E. Frenkel, V. Kac, A. Radul and W. Wang, $W_{1+\infty}$ and $W(gl_N)$ with central charge N, Comm. Math. Phys. 170 (1995), 337-357.

[KR1] V. Kac and A. Radul, Quasifinite highest weight modules over the Lie algebra of differential operators on the circle, Comm. Math. Phys. 157 (1993), 429-457.

[KR2] V. Kac and A. Radul, Representation theory of the vertex algebra $W_{1+\infty}$, Transformation Groups 1 (1996), 41-70.

[KWY] V. Kac, W. Wang and C. Yan, Quasifinite representations of classical Lie subalgebras of $W_{1+\infty}$, Adv. Math. 139 (1998), 56-140.

[O] G. Olshanskii, Description of the representations of $U(p,q)$ with highest weight, Funct. Anal. Appl. 14 (1980), 32-44.

Department of Mathematics, MIT, Cambridge, MA 02139, USA
E-mail address: kac@math.mit.edu

FAMAF, Universidad Nacional de Córdoba - (5000) Córdoba, Argentina.
Current address: Department of Mathematics, MIT, Cambridge, MA 02139, USA
E-mail address: liberati@math.mit.edu - liberati@mate.uncor.edu