CONTINUITY OF SPECTRAL RADIUS AND TYPE I C^*-ALGEBRAS

TATIANA SHULMAN

Abstract. It is shown that the spectral radius is continuous on a C^*-algebra if and only if the C^*-algebra is type I. This answers a question of V. Shulman and Yu. Turovskii [10]. It is shown also that the closure of nilpotents in a C^*-algebra contains an element with non-zero spectrum if and only if the C^*-algebra is not type I.

1. Introduction

Let H be a Hilbert space and $B(H)$ the C^*-algebra of all bounded operators on H. As is well-known, the spectral radius is not a continuous function on $B(H)$, it is only upper semi-continuous (see [6], Solutions 103 and 104). However it is not hard to prove that on the C^*-algebra $K(H)$ of all compact operators it is continuous. Thus there arises a question on which C^*-algebras the spectral radius function is continuous. In [10] V. Shulman and Yu. Turovskii proved that it is continuous on any type I C^*-algebra and asked if the converse is true ([10], Problem 9.20). In this short paper we answer this question in the affirmative.

Theorem A. Let A be a C^*-algebra. The spectral radius is a continuous function on A if and only if A is type I.

Theorem A adds one more (analytical) characterization to numerous characterizations of type I C^*-algebras.

One of famous questions of P. Halmos asks: ”What is the closure of the nilpotent operators on a complex, separable, infinite-dimensional Hilbert space?” It was completely answered in [1] (see also [12]). In particular the answer shows that in the closure of nilpotent operators there are many operators with non-zero spectrum. In the recent work [11] P. Skoufranis considered similar question for C^*-algebras with focus on normal limits of nilpotents. His results show in particular that in many C^*-algebras (for example in all UHF-algebras and all purely infinite C^*-algebras) the closure of nilpotents contains elements with non-zero spectrum. Here we give a characterization of such C^*-algebras.

Theorem B. The closure of nilpotents in a C^*-algebra A contains an element with non-zero spectrum if and only if A is not type I.

2. Preliminaries

2.1. AF-telescopes and projectivity. Let $A = \bigcup A_n$ be an inductive limit of a sequence of C^*-algebras $A_1 \subset A_2 \subset \ldots \subset A$
with injective connecting maps. In [8] the \textit{mapping telescope} of \((A_n)\) was defined as the \(C^*\)-algebra
\[T(A) = \{ f \in C_0((0, \infty), A) \mid t \leq n \Rightarrow f(t) \in A_n \}. \]
Clearly the mapping telescope depends on the sequence \((A_n)\), but nevertheless we will use the notation \(T(A)\). When each \(A_n\) is finite-dimensional, the \(C^*\)-algebra \(A\) is AF, and \(T(A)\) is called an \textit{AF-telescope}. In particular, we denote by \(T(M_{2\infty})\) the mapping telescope corresponding to the inductive sequence
\[M_2 \subset M_4 \subset \ldots \subset M_{2^n} \subset \ldots \subset M_{2\infty} \]
where \(M_{2^n}\) is identified with a subalgebra of \(M_{2^{n+1}}\) by the map \(a \mapsto a \oplus a\). Recall that \(M_{2\infty}\) is referred to as the CAR algebra ([4]).

Recall that a \(C^*\)-algebra \(A\) is \textit{projective} ([2], [7]) if for any \(C^*\)-algebras \(B\) and \(C\) with surjective \(*\)-homomorphism \(q : B \rightarrow C\), any \(*\)-homomorphism \(\phi : A \rightarrow C\) lifts to a \(*\)-homomorphism \(\psi : A \rightarrow B\) such that \(q \circ \psi = \phi\). In other words, we have the following commutative diagram.

\[
\begin{array}{c}
\psi \\
\downarrow \phi \\
A \quad \rightarrow \quad C
\end{array}
\]

In [8] Loring and Pedersen proved that AF-telescopes are projective. This fact will be crucial for the proof of Theorem B. Some other applications of projectivity of AF-telescopes can be found in the recent work of Kristin Courtney and the author [3].

2.2. Type I \(C^*\)-algebras. Let \(H\) be a Hilbert space. A \(C^*\)-algebra \(A\) is \textit{type I} (or, equivalently, GCR) if
\[K(H) \subseteq \pi(A) \]
for any irreducible representation \((\pi, H)\) of \(A\).

A \(C^*\)-algebra \(D\) is a \textit{subquotient} of a \(C^*\)-algebra \(A\) if there is a \(C^*\)-subalgebra \(B\) of \(A\) and a surjective \(*\)-homomorphism \(q : B \rightarrow D\).

We will need the following property (in fact a characterization) of non-type I \(C^*\)-algebras, which is due to Glimm for separable case [4] and Sakai for the general case [9].

\textbf{Theorem 1.} (Glimm, Sakai) If a \(C^*\)-algebra is non-type I, then it has a subquotient isomorphic to the CAR algebra.

3. Proof of Theorems A and B

We start by constructing a sequence of nilpotent elements in the CAR-algebra \(M_{2\infty}\) that converges to an element with positive spectral radius.

Let \(\epsilon_n = 1/2^n, n \geq 0\). Define matrices \(A_n \in M_{2^n}\) as follows:
\[A_1 = \begin{pmatrix} 0 & 0 \\ \epsilon_0 & 0 \end{pmatrix} \]
\[A_2 = \begin{pmatrix} 0 & \epsilon_0 & 0 \\ \epsilon_0 & 0 & \epsilon_1 \\ \epsilon_1 & 0 & 0 \end{pmatrix} \]
CONTINUITY OF SPECTRAL RADIUS AND TYPE I C^*-ALGEBRAS

$$A_3 = \begin{pmatrix}
0 & 0 & 0 \\
\epsilon_0 & 0 & 0 \\
\epsilon_1 & \epsilon_0 & 0 \\
\epsilon_2 & 0 & 0 \\
\epsilon_1 & 0 & 0 \\
\epsilon_0 & 0 & 0
\end{pmatrix}$$

and so on. In other words, to obtain A_{k+1} we take $A_k \oplus A_k$ and put ϵ_k in the middle of the first diagonal under the main diagonal.

Then in the first diagonal under the main one A_n has the first $2^n - 1$ elements of the so-called "the abacaba order" sequence

$$\epsilon_0, \epsilon_1, \epsilon_2, \epsilon_0, \epsilon_1, \epsilon_0, \epsilon_3, \ldots$$

(1)

(here each second term equals ϵ_0, each second of the remaining terms equals ϵ_1, and so on) and all the other entries are zeros.

Below we will identify matrices from M_{2n} with their images in M_{2n+1} and in $M_{2\infty}$.

The construction of the sequence of elements of $M(2^\infty)$ above was inspired by Kaku-tani’s construction of a sequence of nilpotent operators in his remarkable proof of discontinuity of spectral radius on $B(H)$ (see [6], Solution 104).

Lemma 2. The sequence $A_n \in M_{2\infty}$, $n \in \mathbb{N}$, converges to some $A \in M_{2\infty}$ such that $\rho(A) > 0$.

Proof. We have

$$\|A_1 - A_2\| = \| \begin{pmatrix} 0 & 0 \\ \epsilon_0 & 0 \\ 0 & \epsilon_0 \\ \epsilon_0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 \\ \epsilon_0 & 0 \\ 0 & \epsilon_0 \\ 0 & 0 \end{pmatrix} \| = \| \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & \epsilon_0 \\ 0 & 0 \end{pmatrix} \| = \epsilon_1;$$

$$\|A_2 - A_3\| = \| \begin{pmatrix} 0 & 0 & 0 \\ \epsilon_0 & 0 & 0 \\ \epsilon_1 & 0 & \epsilon_0 \\ 0 & \epsilon_0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 0 & 0 \\ \epsilon_0 & 0 & 0 \\ \epsilon_1 & 0 & \epsilon_0 \\ 0 & \epsilon_0 & 0 \end{pmatrix} \| = \| \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \epsilon_2 \\ \epsilon_0 & 0 & 0 \\ 0 & \epsilon_0 & 0 \end{pmatrix} \| = \epsilon_2;$$

and, similarly,

$$\|A_n - A_{n+1}\| = \epsilon_n.$$

Hence there is $A \in M(2^\infty)$ such that

$$A_n \to A.$$ \hspace{1cm} (2)

Let us denote by α_i the i-th element of the sequence (1). Then for each $n \in \mathbb{N}$

$$A_n = \begin{pmatrix}
0 & 0 & 0 \\
\alpha_0 & 0 & 0 \\
\alpha_1 & 0 & 0 \\
& \ddots & \ddots \\
& & \alpha_{2^n-2} & 0
\end{pmatrix}.$$
The corresponding basis vectors will be denoted by \(e_i \)'s.

Fix \(k \). Then for any \(n \) such that \(2^n > k \) we have

\[
A^k_n e_i = \alpha_{i+k-2} \alpha_{i+k-3} \ldots \alpha_{i-1} e_{i+k},
\]

when \(i \leq 2^n - k \) and \(A^k_n e_i = 0 \), when \(i > 2^n - k \). Hence

\[
\|A^k_n\| = \max_{1 \leq i \leq 2^n - k} |\alpha_{i+k-2} \alpha_{i+k-3} \ldots \alpha_{i-1}|.
\]

Then

\[
\|A^k_n\|^{1/k} = \max_{1 \leq i \leq 2^n - k} |\alpha_{i+k-2} \alpha_{i+k-3} \ldots \alpha_{i-1}|^{1/k} \geq |\alpha_{k-1} \alpha_{k-2} \ldots \alpha_0|^{1/k}
\]

for any \(n \in \mathbb{N} \). It was proved by Kakutani [see [6], Solution 104] that

\[
\lim \inf_k |\alpha_{k-1} \alpha_{k-2} \ldots \alpha_0|^{1/k} > 0.
\]

By (2), (3) and (4)

\[
\rho(A) = \lim_k \|A^n\|^{1/k} = \lim_k \lim_n \|A^n_n\|^{1/k} \geq \lim_k \lim_n |\alpha_{k-1} \alpha_{k-2} \ldots \alpha_0|^{1/k} > 0.
\]

\[\square\]

Remark 3. There exist other constructions than the one above, which demonstrate discontinuity of spectral radius in \(M(2^\infty) \) (see [11]). However the one above is useful for the proof of Theorem B.

Proof of Theorem B. The "only if" part follows from continuity of spectral radius on type I \(C^* \)-algebras [11, Cor. 9.18]. To prove the "if" part, assume \(A \) is not type I. It will be sufficient to construct a sequence of nilpotent elements in \(A \) converging to an element with a positive spectral radius. By Theorem 1 there is a \(C^* \)-subalgebra \(B \subseteq A \) and a surjective \(*\)-homomorphism \(q : B \to M(2^\infty) \). Let \(\text{ev}_\infty : T(M(2^\infty)) \to M(2^\infty) \) be the evaluation at infinity map.

\[
A \xrightarrow{q} B \xrightarrow{\phi} M(2^\infty) \xleftarrow{\text{ev}_\infty} T(M(2^\infty))
\]

Since AF-telescopes are projective ([8]), there is \(\phi : T(M(2^\infty)) \to B \subseteq A \) such that

\[
q \circ \phi = \text{ev}_\infty.
\]

(5)

Let \(A_n \)'s and \(A \) be as in Lemma 2. For each \(t \in [k, k+1], k \in \mathbb{N} \), let \(A_t \) be the linear path connecting \(A_k \) and \(A_{k+1} \), and for each \(t \in (0, 1] \) let \(A_t \) be the linear path connecting \(0 \) and \(A_1 \). Define \(f_n, n \in \mathbb{N} \), and \(f \) by

\[
f_n(t) = \begin{cases} A_t, & t \in [k, k+1], k \leq n \\ A_n, & t \geq n. \end{cases}
\]

and

\[
f(t) = \begin{cases} A_t, & t \in [k, k+1] \\ A, & t = \infty. \end{cases}
\]

The functions \(f_n, n \in \mathbb{N} \), are obviously continuous, and since \(A_n \to A \), \(f \) is also continuous. Thus \(f_n \) and \(f \) belong to \(T(M((2^\infty))) \). Since all \(A_n \)'s are lower-triangular, so are \(A_t \), for
each $t \in (0, \infty)$. Hence for each n and for each t, $f_n(t)$ is nilpotent of order 2^n. Hence for any $n \in \mathbb{N}$, f_n is nilpotent. Clearly $f_n \to f$ and by Lemma [2]
\[\rho(f) \geq \rho(f(\infty)) = \rho(A) > 0. \] (6)

Let
\[a_n = \phi(f_n), \quad a = \phi(f). \]
Then $a_n \to a$ and each a_n is nilpotent. By (5), $q(a) = f(\infty)$. From this and (6) we obtain
\[\rho(a) \geq \rho(q(a)) = \rho(f(\infty)) > 0. \]

Proof of Theorem A. The ”if” part was proved in [10], Cor.9.18. The ”only if” part follows from Theorem B.

Corollary 4. Let A be a C^*-algebra. The following are equivalent:
1) Each precompact set of A is a point of continuity of the joint spectral radius,
2) A is type I.

Proof. 2) \Rightarrow 1) is proved in [10], Cor. 10.31.
1) \Rightarrow 2) follows from Theorem A.

It would be interesting to characterize the class of C^*-algebras for which the closure of nilpotents contains a normal element. The following is an easy observation.

Proposition 5. If the closure of nilpotents in a C^*-algebra A contains a normal element, then A is not residually type I.

(By residually type I C^*-algebra we mean a C^*-algebra that has a separating family of $*$-homomorphisms into type I C^*-algebras).

Proof. Suppose $N \in A$ is normal, $a_n \in A$ are nilpotents and $a_n \to N$. Then, by Theorem A (in fact by its ”if” part which is proved in [10]), for any $*$-homomorphism ρ to a type I C^*-algebra, $\rho(N)$ is quasinilpotent. Since it is also normal, we conclude that $\rho(N) = 0$. □

References
[1] C. Apostol, C. Foias, D. Voiculescu, On the norm-closure of nilpotents. II, Rev. Roumîain Math. Pures Appl. 19(1974), 549 - 577.
[2] B. Blackadar, Shape theory for C*-algebras; Math. Scand. (1985) Vol. 56: 249-275.
[3] K. Courtney and T. Shulman, Elements of C*-algebras attaining their norm in a finite-dimensional representation, preprint.
[4] K. Davidson, C*-algebras by example, Fields Institute Monograph 6, AMS, 1996.
[5] J. Glimm, Type I C*-algebras, Ann. Math. 73(1961), 572 – 612.
[6] P. Halmos, Hilbert space in problems, 2nd edition, Published by Springer-Verlag, New York Heidelberg Berlin, 1982.
[7] T. Loring, Lifting solutions to perturbing problems in C*-algebras, volume 8 of Fields Institute Monographs, American Mathematical Society, Providence, RI, 1997.
[8] T. Loring and G. K. Pedersen, Projectivity, transitivity and AF-telescopes, Trans. Amer. Math. Soc., Volume 350, Number 11 (1998), p. 4313 - 4339.
[9] S. Sakai, A characterisation of type I C*-algebras, Bull. Amer. Math. Soc. 72(1966), 508 – 512.
[10] V. S. Shulman and Yu. V. Turovski, Topological radicals, V. From algebra to spectral theory. Algebraic methods in functional analysis, 171 - 280, Oper. Theory Adv. Appl., 233, Birkhäuser/Springer, Basel, 2014.
[11] P. Skoufranis, Normal limits of nilpotent operators in C*-algebras. J. Operator Theory 72 (2014), no. 1, 135 - 158.
[12] D.A. Herrero, Approximation of Hilbert Space Operators. Vol. 1, Res. Notes Math., vol. 72, Pitman (Adv. Publ. Program), Boston, MA 1982.

DEPARTMENT OF MATHEMATICAL PHYSICS AND DIFFERENTIAL GEOMETRY, INSTITUTE OF MATHEMATICS OF POLISH ACADEMY OF SCIENCES, WARSAW