B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: a randomised, double-blind, parallel, placebo-controlled trial

The VITATOPS Trial Study Group

Summary

Background Epidemiological studies suggest that raised plasma concentrations of total homocysteine might be a risk factor for major vascular events. Whether lowering total homocysteine with B vitamins prevents major vascular events in patients with previous stroke or transient ischaemic attack is unknown. We aimed to assess whether the addition of once-daily supplements of B vitamins to usual medical care would lower total homocysteine and reduce the combined incidence of non-fatal stroke, non-fatal myocardial infarction, and death attributable to vascular causes in patients with recent stroke or transient ischaemic attack of the brain or eye.

Methods In this randomised, double-blind, parallel, placebo-controlled trial, we assigned patients with recent stroke or transient ischaemic attack (within the past 7 months) from 123 medical centres in 20 countries to receive one tablet daily of placebo or B vitamins (2 mg folic acid, 25 mg vitamin B6, and 0.5 mg vitamin B12). Patients were randomly allocated by means of a central 24-h telephone service or an interactive website, and allocation was by use of random permuted blocks stratified by hospital. Participants, clinicians, carers, and investigators who assessed outcomes were masked to the assigned intervention. The primary endpoint was the composite of stroke, myocardial infarction, or vascular death. All patients randomly allocated to a group were included in the analysis of the primary endpoint. This trial is registered with ClinicalTrials.gov, NCT00097669, and Current Controlled Trials, ISRCTN74743444.

Findings Between Nov 19, 1998, and Dec 31, 2008, 8164 patients were randomly assigned to receive B vitamins (n=4089) or placebo (n=4075). Patients were followed up for a median duration of 3.4 years (IQR 2.0–5.5). 616 (15%) patients assigned to B vitamins and 678 (17%) assigned to placebo reached the primary endpoint (risk ratio [RR] 0.91, 95% CI 0.82 to 1.00, p=0.05; absolute risk reduction 1.56%, –0.01 to 3.16). There were no unexpected serious adverse reactions and no significant differences in common adverse effects between the treatment groups.

Interpretation Daily administration of folic acid, vitamin B6, and vitamin B12 to patients with recent stroke or transient ischaemic attack was safe but did not seem to be more effective than placebo in reducing the incidence of major vascular events. These results do not support the use of B vitamins to prevent recurrent stroke. The results of ongoing trials and an individual patient data meta-analysis will add statistical power and precision to present estimates of the effect of B vitamins.

Funding Australia National Health and Medical Research Council, UK Medical Research Council, Singapore Biomedical Research Council, Singapore National Medical Research Council, Australia National Heart Foundation, Royal Perth Hospital Medical Research Foundation, and Health Department of Western Australia.

Introduction

After an ischaemic stroke or transient ischaemic attack of the brain or eye, patients remain at increased risk of future stroke, myocardial infarction, or vascular death (major vascular events) despite use of medical and surgical therapies.1 Cross-sectional and observational epidemiological studies suggest that raised plasma concentrations of total homocysteine are a common causal risk factor for major vascular events.2–4 Furthermore, randomised trials show that total homocysteine can be lowered by supplementary treatment with B vitamins: 0.5–5.0 mg folic acid daily lowers total homocysteine by 25% (95% CI 23–28%) and 0.02–1.00 mg vitamin B12 (mean 0.50 mg) daily lowers total homocysteine by 7% (3–10%).5 However, whether lowering total homocysteine prevents major vascular events in patients with stroke and transient ischaemic attack is unknown. There have been no placebo-controlled trials of B vitamins in patients with stroke or transient ischaemic attack. The only previous randomised trial of treatment with B vitamins in patients with a history of stroke—the Vitamins Intervention for Stroke Prevention (VISP) trial—compared high-dose B vitamins (25 mg pyridoxine, 0.4 mg cobalamin, and 2.5 mg folic acid) with low-dose B vitamins (200 μg pyridoxine, 6 μg cobalamin, and 20 μg folic acid) and was stopped because of futility after 3680 patients had been followed up for a mean of 20 months. There was no difference in the primary outcome of cerebral infarction between the groups (risk ratio [RR] 1.0, 95% CI 0.8–1.3), despite a mean reduction of total homocysteine of 2 μmol/L among patients assigned to high-dose B vitamins compared with
those assigned to low-dose B vitamins. However, in an efficacy analysis of 2155 patients who were deemed most likely to benefit from treatment with B vitamins (ie, excluding patients with low vitamin B12 concentrations who were unable to absorb oral vitamin B12 and patients with high vitamin B12 concentrations who were already taking a vitamin B12 supplement), there was a 21% (95% CI 0–37%) reduction in the combined outcome of ischaemic stroke, coronary disease, or death in patients assigned to high-dose B vitamins compared with those assigned to low-dose B vitamins.

Trials in other populations of patients have not shown a significant benefit of B vitamins compared with placebo in reducing major vascular events. This absence of detectable benefit has several possible explanations: there might have been too few outcome events to provide sufficient statistical power for a modest but clinically important effect to be reliably identified or excluded; the doses of B vitamins might have been too low; the duration of treatment with B vitamins might have been too short; results might have been affected by food concurrently being fortified with folic acid; and, if total homocysteine is a marker and not a cause of vascular risk, lowering total homocysteine might have no effect on vascular risk.

The VITamins TO Prevent Stroke (VITATOPS) trial aimed to test the hypothesis that the addition of once-daily supplements of B vitamins to usual medical care would reduce the combined incidence of non-fatal stroke, non-fatal myocardial infarction, and death attributable to vascular causes among patients with recent stroke or transient ischaemic attack of the brain or eye.

Methods

Patients

The rationale and design of the VITATOPS trial have been published previously. Briefly, VITATOPS was a prospective, randomised, double-blind, placebo-controlled clinical trial involving 123 medical centres in 20 countries from four continents. VITATOPS was undertaken in accordance with the Declaration of Helsinki and the CONSORT guidelines. Patients were eligible for inclusion if they had had a stroke (ischaemic or haemorrhagic) or transient ischaemic attack (eye or brain), as defined by standard criteria, within the past 7 months. Patients with haemorrhagic stroke were included because the underlying cause is frequently intracranial small vessel disease and the prognosis can include ischaemic strokes and coronary events that might respond to B-vitamin therapy. We chose the cutoff of 7 months to allow for the inclusion of patients who had already been enrolled in an acute stroke treatment trial and who needed to complete the final 6-month follow-up for that trial before they could be eligible to enrol in other trials, such as VITATOPS. Patients were excluded if they were taking folic acid, vitamin B6, vitamin B12, or a folate antagonist (eg, methotrexate); if they were pregnant or were women of childbearing potential; or if they had a limited life expectancy (eg, because of ill health).

The trial received ethics approval from national (India, New Zealand, and the UK) and local research ethics committees and all patients provided written informed consent before enrolment.

Randomisation and masking

Patients were randomly assigned to receive either B vitamins (2 mg folic acid, 25 mg vitamin B6, and 0.5 mg vitamin B12) or matching placebo that had the same colour and coating. Random allocation was done by use of a central 24 h telephone service or an interactive website by use of random permuted blocks stratified by hospital. Patients, clinicians, trial coordinators, and outcome investigators were masked to treatment allocation. The data monitoring and safety committee, who were unmasked to treatment allocation, reviewed the safety data every 6 months and reported to the steering committee.

Procedures

Demographic and clinical characteristics of the participants were recorded at baseline. Investigators were encouraged, but not obligated, to take a fasting blood sample from

Figure 1: Trial profile
TIA=transient ischaemic attack.
consenting patients to measure blood concentrations of total homocysteine (fasting), red cell folate, vitamin B12, and creatinine. Patients were followed up every 6 months after random allocation until completion of the trial.

The primary outcome was the composite of non-fatal stroke, non-fatal myocardial infarction, or death from any vascular causes, whichever occurred first. Secondary outcomes were stroke (non-fatal or fatal); myocardial infarction (non-fatal or fatal); death from any vascular cause; death from any cause; revascularisation procedures; the composite of non-fatal stroke, non-fatal myocardial infarction, and death from any vascular cause; and revascularisation procedures of the coronary, cerebral, or peripheral circulation. All investigator-reported outcomes and adverse events were audited by a masked adjudication committee.

Statistical analysis

Our sample size calculations were based on equally sized intervention and placebo groups, a minimum follow-up of 6 months for the last patient to be randomly allocated, an annual primary outcome event rate of 8% in the placebo group, and a 15% decrease in the relative risk of the primary outcome among patients assigned to B vitamins (ie, 6·8% per year) compared with placebo. For a type 1 error of 5% and type 2 error of 20%, and when the initial patients had completed 5 years of follow-up until at least 26 000 patient-years of follow-up, the steering committee decided to increase the sample size and extend the duration of follow-up until at least 26 000 patient-years of follow-up had been achieved in the whole trial population. Patients were therefore asked to consent to ongoing follow-up beyond 5 years until the trial ended.

All data analyses were done according to a pre-established analysis plan. Baseline characteristics and laboratory data were tabulated according to the assigned treatment groups, and were expressed as proportions for categorical variables and as means (SD) for continuous variables with a normal distribution.

All patients randomly allocated to a group were included in the primary analysis. We used Kaplan-Meier methods to construct cumulative time-to-event curves for the two groups, with a comparison by use of the log-rank test. We used a Cox proportional hazard model analysis to control for any potential imbalance in baseline characteristics and follow-up between the two groups. We also used a random effects model (frailty model) to investigate the possible influence of any variation in treatment effect among the various centres.

Table: B vitamins (n=4089) vs Placebo (n=4075) vs Total (n=8164) - Baseline Characteristics

Characteristic	Total Value	B vitamins (n=4089)	Placebo (n=4075)
Age	4089	62.5 (12.6)	4075
Men	4089	2614 (64.4)	2646 (64.4)
Ethnic group			
White	3916	16.8 (42.6)	3908
East and southeast Asian	3916	9.6 (24.4)	9.5 (25)
South Asian	3916	10.3 (26)	10.1 (26)
Other	3916	285 (7)	287 (7)
Oxfordshire classification of stroke subtype			
Total anterior circulation syndrome	4011	90 (2)	103 (3)
Partial anterior circulation syndrome	4011	2153 (54)	2153 (54)
Lacunar syndrome	4011	1522 (38)	1513 (38)
Posterior circulation syndrome	4011	246 (6)	231 (6)
Pathological subtype of stroke			
Ischaemic stroke			
Transient ischaemic attack of brain or eye	4049	687 (17)	715 (18)
Ischaemic stroke	4049	2860 (71)	2843 (70)
Retinal infarction	4049	7 (0)	11 (0)
Haemorrhagic stroke	4049	384 (9)	358 (9)
Primary intracerebral haemorrhage	4049	32 (1)	34 (1)
Subarachnoid haemorrhage	4049	79 (2)	76 (2)
Uncertain or unknown pathological type	4049	1402 (17)	1525 (42)
Cause of ischaemic stroke	3982	3024 (76)	3024 (76)
Large artery disease	3590	1499 (42)	1488 (42)
Small artery disease	3590	1374 (38)	1374 (38)
Embolism from the heart	3590	216 (6)	216 (6)
Uncertain or unknown	3590	501 (14)	501 (14)
Severity of qualifying stroke	3986	1008 (24)	1008 (24)
Independent (Oxford handicap score ≤-3)	3986	951 (24)	943 (24)
Dependent (Oxford handicap score ≥-3)	3986	1008 (24)	1008 (24)
Past history			
Stroke	4011	2863 (71)	2874 (71)
Myocardial infarction	4011	2843 (70)	2843 (70)
Peripheral artery disease	4011	2883 (71)	2883 (71)
Revascularisation procedure of brain, heart, or limbs	4011	246 (6)	231 (6)
History of hypertension	3986	2053 (54)	2053 (54)
Ever smoked	3986	1894 (24)	1894 (24)
Hyperscholeolaemia	3986	1894 (24)	1894 (24)
Diabetes	3986	1894 (24)	1894 (24)
Alcohol intake (standard drinks [10 g alcohol] per day)	3986	246 (6)	231 (6)
Risk ratio 0·91 (95% CI 0·82–1·00).

Kaplan-Meier estimates of the composite primary outcome

Number at risk

	B vitamins (n=4089)	Placebo (n=4075)	Total (n=8164)
Total	2180	2180	4360
Value	91·4 (34·6)	91·4 (34·6)	91·4 (34·6)
Risk ratio	0·91 (0·82–1·00)	0·91 (0·82–1·00)	0·91 (0·82–1·00)
p value	0·05	0·05	0·05

B vitamins group according to age, sex, ethnic group, and baseline characteristics were similar between groups (table 1). 42% of patients were white, 24% east or southeast Asian, and 26% south Asian. The qualifying diagnosis was ischaemic stroke in 71% of patients, transient ischaemic attack in 17%, and intracerebral haemorrhage in 9%. 76% of patients were functionally independent (Oxford handicap score ≤2) at the time of random allocation.

Between Nov 19, 1998, and Dec 31, 2008, 8164 patients were randomly assigned to receive B vitamins (n=4089) or placebo (n=4075; figure 1). Demographics and baseline characteristics were similar between groups (table 1). 42% of patients were white, 24% east or southeast Asian, and 26% south Asian. The qualifying diagnosis was ischaemic stroke in 71% of patients, transient ischaemic attack in 17%, and intracerebral haemorrhage in 9%. 76% of patients were functionally independent (Oxford handicap score ≤2) at the time of random allocation.

Patients were followed up until June 30, 2009, with 14 182 person-years of follow-up in the B vitamins group and 13 997 person-years of follow-up in the placebo group. The median duration of follow-up was 3·4 years (IQR 2·0–5·5). 7462 (91%) of 8164 patients were followed up until the trial ended; 702 patients (9%) were lost to follow-up, primarily at three sites (n=392; 56%). The rate of loss to final follow-up was 8·7% in the placebo group and 8·5% in the B vitamins group (webappendix p 1). 1543 (38%) of 4079 patients who were randomly assigned before June 30, 2004, who had consented to 5 years of follow-up, and who were invited to continue follow-up beyond 5 years chose to stop the study drug and withdrew consent for further follow-up.

The rate of discontinuation of trial drugs increased with time, and at the same rate in each treatment group (p=0·51). In the first year, 414 (10%) of 4075 patients assigned placebo and 436 (11%) of 4089 assigned B vitamins had discontinued, and at the end of the trial 1115 (27%) of 4075 patients in the placebo group and 1148 (28%) of 4089 in the B vitamins group had discontinued (webappendix p 1).

The composite primary endpoint of non-fatal stroke, non-fatal myocardial infarction, or vascular death occurred in 616 (15%) of 4089 patients in the B vitamins group (4·3% per year) and in 678 (17%) of 4075 patients...
in the placebo group (4·8% per year; RR 0·91, 95% CI 0·82 to 1·00; p=0·05; absolute risk reduction 1·56%, 95% CI –0·01 to 3·16; table 2; figure 2). A Cox proportional hazard model analysis revealed similar hazard ratios to the RR, both before (0·90, 95% CI 0·81 to 1·00) and after (0·91, 95% CI 0·81 to 1·03) adjusting for any potential imbalance in the baseline characteristics and follow-up duration between the two groups. In a random effects (frailty) model that was fit to take into account any variation in treatment effect between centres, the fixed treatment effect (hazard ratio 0·90, 95% CI 0·81 to 1·00) was consistent with that derived from the Cox model.

Compared with placebo, treatment with B vitamins was not associated with a significant reduction in the RR for non-fatal or fatal stroke (p=0·25), non-fatal or fatal myocardial infarction (p=0·86), or death from any cause (p=0·49) but was associated with a significant reduction in death from vascular causes (p=0·04; table 2). For the prespecified subgroups, there was no inconsistency or significant interaction with the overall treatment effect of B vitamins (figure 3).

Among 1164 patients who had a fasting blood test at the end of follow-up, the mean total homocysteine concentration was 10·5 μmol/L (SD 4·9) in the...
B vitamins group and 14·3 μmol/L (6·1) in the placebo group (difference 3·8 μmol/L, 95% CI 3·1–4·4; p<0·0001). The blood samples were taken mainly in Australia (438 patients; 38%), Singapore (344; 30%), and Austria (157; 13%). The effect of B vitamins on total homocysteine was similar in patients from these countries and those from other countries (data not shown).

925 patients had a fasting blood test for total homocysteine at both baseline and follow-up. Total homocysteine decreased by a mean of 1·09 (SD 5·5) μmol/L between baseline and follow-up, and 198 patients reached the primary endpoint. Cox regression analysis revealed that for every 1·0 μmol/L decrease in total homocysteine, the risk of the primary outcome decreased by 2·0% (95% CI –0·5 to 4·3; hazard ratio 0·98, 95% CI 0·96 to 1·01; p=0·11).

In a post-hoc secondary exploratory analysis that excluded the three sites from which 56% of the patients were lost to follow-up, the unadjusted relative risk of the primary outcome for the remaining 6789 patients was 0·91 (95% CI 0·81–1·01; p=0·073) and the adjusted RR was 0·91 (95% CI 0·80–1·03; p=0·14), which was consistent with that for the whole trial population. The results of the on-treatment analysis—which excluded 351 patients because of a protocol violation or because the patient did not take any of the trial drugs—were also consistent with the results from the whole trial population (webappendix p 2).

Vitamin B12 deficiency was diagnosed during follow-up in none of the 4089 patients in the B vitamins group compared with six (0·1%) of 4075 patients in the placebo group (p=0·02). Peripheral neuropathy suspected to be caused by vitamin B6 toxicity was diagnosed in five patients assigned to B vitamins (0·1%) compared with nine patients assigned to placebo (0·2%; p=0·30). There were no unexpected serious and non-serious adverse events and there were no significant differences in common adverse effects between the treatment groups (data not shown).

Discussion

In the VITATOPS trial, daily treatment with the combination of folic acid, vitamin B6, and vitamin B12 after a recent stroke or transient ischaemic attack was safe but was not significantly more effective than placebo in reducing the incidence of major vascular events. Our results are generalisable because we included a large number of patients from various ethnic groups from around the world who were not exposed to mandatory background fortification of food with folic acid.

On the basis of an interpretation of the epidemiological evidence available when we designed the study,2,5,23,24 we hypothesised that daily supplementation with B vitamins would reduce total homocysteine by a quarter to a third (eg, by 3–4 μmol/L, from about 12 μmol/L to 8–9 μmol/L) and reduce the relative risk of the composite endpoint of stroke, myocardial infarction, or vascular death by 15%.

Figure 4: Effects of treatment with B vitamins on the composite of non-fatal stroke, non-fatal myocardial infarction, or death due to vascular causes

All trials were looking at first stroke, with the exception of the VISP trial and the VITATOPS trial, which included patients with a previous stroke. M–H=Mantel-Haenszel.

*Data are for major vascular events as defined by the composite of stroke, coronary events, vascular death, and revascularisation procedures.
Estimates from meta-analyses—which were published after the design of this trial—of prospective observational studies and genotype-disease association studies suggested that lowering total homocysteine by 3 μmol/L would reduce the relative risk of stroke by about 24% (15–33%) and myocardial infarction by 16% (11–20%).

Of the 1164 patients who volunteered to have their total homocysteine measured at final follow-up, patients in the B vitamins group had a similar reduction in total homocysteine compared with placebo (3.8 μmol/L, 95% CI 3.1–4.4 μmol/L) to that suggested in our hypothesis. The homocysteine-lowering effect of the B vitamins was consistent among different ethnic groups.

The annual rate of primary outcomes among patients assigned to placebo was lower (4.8% per year) than expected (8.0% per year), but after prolonged recruitment and follow-up (28 179 patient-years) the number of primary outcome events (n=1294) was sufficient for the trial to be adequately powered to identify or exclude (with 95% confidence) a 15% reduction in relative risk of the primary outcome with B vitamins compared with placebo. However, we reported only a 9% reduction in the RR of the primary outcome with B vitamins compared with placebo. The 95% CIs suggest that B vitamins might reduce the risk of the primary outcome by as much as 18% or as little as 0% compared with placebo. Therefore, our findings do not definitively confirm that supplementation with B vitamins has a clinically significant beneficial effect on major vascular events.

Results from our subgroup analysis suggest that supplementation with B vitamins might reduce the risk of stroke, myocardial infarction, or vascular death in patients with symptomatic small vessel disease of the brain causing lacunar infarction or intracerebral haemorrhage. This reduction has also been suggested by other investigators who reported that homocysteine is a risk factor for cerebral small vessel disease. If validated, this finding could explain any apparent differential effect

Table 1: Effects of treatment with B vitamins on stroke

B vitamins versus placebo	Control				
n	**Event rate (%)**	**n**	**Event rate (%)**	**Risk ratio M–H, fixed (95% CI)**	
MARK, 1996	1657	22 (1%)	1661	35 (2%)	0.63 (0.37-1.07)
Liem, 2003	300	8 (3%)	293	12 (4%)	0.65 (0.27-1.57)
Righetti, 2006	37	1 (3%)	51	2 (4%)	0.69 (0.06-7.32)
ASFAST, 2006	156	8 (5%)	159	18 (11%)	0.45 (0.20-1.01)
HOPE-2, 2006	2758	111 (4%)	2764	147 (5%)	0.76 (0.59-0.96)
NORVIT, 2006	2806	71 (3%)	2764	174 (5%)	0.88 (0.57-1.37)
HOST, 2007	1032	37 (4%)	1024	41 (4%)	0.90 (0.58-1.38)
WAFACS, 2008	2721	79 (3%)	2721	69 (3%)	1.34 (0.83-2.17)
WENBIT, 2008	2311	48 (2%)	779	9 (2%)	0.85 (0.50-1.44)
SEARCH, 2010	6033	269 (4%)	6031	265 (4%)	1.01 (0.86-1.20)
House, 2010	119	6 (5%)	119	1 (1%)	6.00 (0.73-49.08)
VITATOPS, 2010	4089	360 (9%)	4075	174 (5%)	0.88 (0.57-1.37)
Subtotal	24019	1020 (4%)	20620	1024 (5%)	0.92 (0.84-1.00)

Heterogeneity: \(\chi^2 = 14.48, df = 11 (p = 0.21); I^2 = 24\%

Test for overall effect: Z = 2.00 (p = 0.05)

B vitamins versus standard care

| FOLARDA, 2004 | 140 | 1 (1%) | 143 | 0 (0%) | 3.06 (0.13-74.58) |
| Subtotal | 140 | 1 (1%) | 143 | 0 (0%) | 3.06 (0.13-74.58) |

Heterogeneity: not applicable

Test for overall effect: Z = 0.69 (p = 0.49)

High-dose B vitamins versus low-dose B vitamins

VISP, 2004	1827	152 (8%)	1853	148 (8%)	1.04 (0.84-1.29)
Wrone, 2004	342	19 (6%)	168	8 (5%)	1.17 (0.52-2.61)
Subtotal	2169	171 (8%)	2021	156 (8%)	1.05 (0.85-1.29)

Heterogeneity: \(\chi^2 = 0.07, df = 1 (p = 0.81); I^2 = 0\%

Test for overall effect: Z = 0.46 (p = 0.65)

Total (95% CI)

| 26328 | 1192 (5%) | 22784 | 118 (5%) |

Heterogeneity: \(\chi^2 = 16.46, df = 14 (p = 0.029); I^2 = 15\%

Test for overall effect: Z = 1.66 (p = 0.10)

Test for subgroup differences: not applicable

Figure 5: Effects of treatment with B vitamins on stroke

All trials were looking at first stroke, with the exception of the VISP trial and the VITATOPS trial, which included patients with a previous stroke. M–H=Mantel-Haenszel.
of homocysteine lowering on small vessel ischaemic stroke compared with large artery ischaemic stroke and myocardial infarction.

The main limitations of our trial, which could introduce bias, were incomplete adherence to trial drugs and incomplete follow-up. The high, yet similar, rates of non-adherence in each treatment group mean that any true treatment differences between the two groups would have been minimised, thus biasing the results to the null. Because of the high, yet similar, rates of loss to follow-up in each treatment group, small differences in event rates among patients lost to follow-up could have markedly affected the results of the trial. If we assume an absence of treatment effect of B vitamins among patients who were lost to follow-up and impute identical primary outcome event rates in each treatment group for those who were lost to follow-up, the relative risk for the primary outcome event would have been 0·90 (95% CI 0·8–0·99; p=0·04). We found no evidence of a variation in treatment effect among centres in the random effects (frailty) model. If we exclude the three centres that accounted for 56% of the loss to follow-up, the results are similar to those of the whole trial population. The results of our on-treatment analysis were also consistent with our primary analysis, but they had less statistical power.

Another potential limitation of our trial is that the median duration of adherence to treatment was 2·8 years and the median duration of follow-up was 3·4 years, which might not have been long enough to adequately identify or exclude any long-term effects of B vitamins. To minimise random error, we added our data to other randomised controlled trials of homocysteine-lowering therapy in patients with or without pre-existing cardiovascular disease (figures 4–6).6,8–22 The updated meta-analysis suggests that B vitamins are not significantly more effective than control treatments in reducing the

Table 6: Effects of treatment with B vitamins on myocardial infarction

B vitamins versus placebo	n	Event rate (%)	Control	n	Event rate (%)	Risk ratio M–H, fixed (95% CI)
CHAOS, 2002⁶	942	23 (2%)	940	12 (1%)	1·91 (0·96–3·82)	
HOPE-2, 2006⁶	2758	341 (12%)	2764	349 (12%)	0·98 (0·85–1·13)	
NORVIT, 2008⁵	2806	490 (17%)	943	153 (16%)	1·08 (0·93–1·27)	
HOST, 2007⁷	1032	129 (13%)	1024	150 (15%)	0·85 (0·69–1·06)	
WAFACS, 2008⁴	2721	65 (2%)	2721	74 (3%)	0·88 (0·63–1·22)	
WENBIT, 2008⁹	2311	190 (8%)	779	58 (7%)	1·10 (0·83–1·46)	
SEARCH, 2010¹⁰	6033	431 (7%)	6031	429 (7%)	1·00 (0·88–1·14)	
House, 2010¹¹	119	8 (7%)	119	4 (4%)	2·00 (0·62–6·46)	
VITATOPS, 2010	4089	118 (3%)	4075	114 (3%)	1·01 (0·94–1·08)	
Subtotal	22 811	1795 (8%)	19 396	1343 (7%)	1·01 (0·94–1·08)	

Heterogeneity: χ²=8·69, df=8 (p=0·37), I²=8%
Test for overall effect: Z=0·17 (p=0·87)

B vitamins versus standard care	n	Event rate (%)	Control	n	Event rate (%)	Risk ratio M–H, fixed (95% CI)
FOLARDA, 2004¹³	140	8 (6%)	143	10 (7%)	0·82 (0·33–2·01)	
Liem, 2003¹⁰	300	3 (1%)	293	4 (1%)	0·73 (0·17–3·24)	
Subtotal	440	11 (3%)	436	14 (3%)	0·79 (0·37–1·71)	

Heterogeneity: χ²=0·02, df=1 (p=0·90), I²=0%
Test for overall effect: Z=0·59 (p=0·55)

High-dose B vitamins versus low-dose B vitamins	n	Event rate (%)	Control	n	Event rate (%)	Risk ratio M–H, fixed (95% CI)
VISP, 2004⁶	1814	72 (4%)	1835	81 (4%)	0·90 (0·33–2·01)	
Wrone, 2004¹²	342	9 (3%)	168	4 (2%)	1·11 (0·35–3·54)	
Subtotal	2156	81 (4%)	2003	85 (4%)	0·91 (0·68–1·23)	

Heterogeneity: χ²=0·11, df=1 (p=0·74), I²=0%
Test for overall effect: Z=0·60 (p=0·55)

| Total (95% CI) | 25 407 | 1887 (7%) | 21 835 | 1442 (7%) | 1·00 (0·93–1·07) |

Heterogeneity: χ²=9·54, df=12 (p=0·66), I²=0%
Test for overall effect: Z=0·03 (p=0·97)
Test for subgroup differences: not applicable

Figure 6: Effects of treatment with B vitamins on myocardial infarction

M–H=Mantel-Haenszel.
Systematic review

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) on the Cochrane Library (issue 1, 2010), Medline (1950–2010), Embase (1988–2010), ISI Web of Science (1993–2010), and the Cochrane Stroke Group Specialised Register (2010). We also hand-searched relevant journals and the reference lists of included papers. We included randomised clinical trials assessing the effects of B vitamins (folic acid, vitamin B12, and vitamin B6) in lowering blood concentrations of homocysteine and preventing stroke and other major cardiovascular events. We assessed papers with stroke, myocardial infarction, and death attributable to vascular causes as the primary outcomes.

Interpretation

The VITATOPS trial shows, for the first time, that B vitamins are safe but not significantly more effective than placebo in reducing the risk of major vascular events among patients with a history of recent stroke or transient ischaemic attack. These results are consistent with trials of B vitamins in other patient populations.

risk of the composite of stroke, myocardial infarction, or vascular death (0·99, CI 0·94–1·03, p=0·49; figure 4); stroke (RR 0·94, 95% CI 0·86–1·01; p=0·10; figure 5); or myocardial infarction (1·00, 0·93–1·07; p=0·97; figure 6).

A planned meta-analysis of individual data from all previous, and three ongoing, randomised controlled trials of B vitamins will provide more reliable estimates of the long-term effects of B vitamins in the prevention of stroke and other major vascular events among patients with stroke or transient ischaemic attack, particularly when caused by symptomatic cerebral small vessel disease (deep intracerebral haemorrhage and lacunar infarction). 37,40

Contributors

GJH and JWE designed the study and directed the trial. GJH obtained funding in Australia, recruited and followed up patients, and was the first and final drafts of the manuscript. CC obtained funding in Singapore, recruited and followed up patients, and was the national coordinator of the trial in Singapore. JWE obtained funding in Australia. KRL obtained funding in Australia, recruited and followed up patients, and was the national coordinator of the trial in the UK. CC, JWE, and KRL contributed to each draft of the manuscript. QY did the statistical analyses.

VITATOPS trial investigators

Australia G J Hankey‡, K Loh (Royal Perth Hospital, Perth, WA, number of patients 48); D Crimmins‡ (Central Coast Neuroscience Research, Gosford, NSW, 102); T Davies*, M England, V Rakic (Fremantle Hospital, Perth, WA, 63); D W Schulte† (Flinners Medical Centre and Griffith Rehabilitation Hospital, Adelaide, SA, 53); J Frayne† (Alfred Hospital, Melbourne, VIC, 43); C Bladin* (Box Hill Hospital, Melbourne, VIC, 43); J Kokkines* (Bankstown Hospital, Sydney, NSW, 30); D Dunbar† (Royal Hobart Hospital, Hobart, TAS, 16); J Harper†, P Rees, D Warden (Joondalup Health Campus, Perth, WA, 29); C Levi*, M Parsons, M Russell, N Spratt (John Hunter Hospital, Newcastle, NSW, 26); P Clayton, P Nayagam‡, J Sharp (Beleura Private and Frankston Hospitals, Mornington, VIC, 25); K Granger‡ (Sir Charles Gardiner Hospital, Perth, WA, 16); C de Wyt† (Greenslopes Private Hospital, Brisbane, QLD, 12); A McDougall† (Liverpool Hospital, Sydney, NSW, 4); G A Donnan‡ (National Stroke Research Institute–Aust Health, Melbourne, VIC, 4); R Grimley*, E Neymens* (deceased) (Nambour General Hospital, Nambour, QLD, 2); A Reinhart†, S Ropele, R Schmidt*, E Sugiuger (Medical University of Graz, Graz, 78); Belgium P Dedeken, C Scheltsaete, G Vanhooren*, A Veyt (AZ Sint-Jan AV, Bruges, 67); Brazil C Andre, G R de Freitas‡, S Gomes (Universidade Federal do Rio de Janeiro/Universidade Federal Fluminense/Instituto D’Or de Pesquisa e Ensino, Rio de Janeiro, 71); Chine V C T Mok, A Wong, L K S Wong‡ (Prince of Wales Hospital, Hong Kong Special Administrative Region, 122); R T F Cheung†, L S W Li (Queen Mary Hospital, Hong Kong Special Administrative Region, 22); India I P Pai‡, D Xavier† (St John’s Medical College and Research Institute, Bangalore, coordinated 23 centres); S Joshi*, S Fathasahasrdi (Malavir Hospital and Research Centre, Hyderabad, Andhra Pradesh, 204); A K Roy*, R V Varghese (St John’s Medical College Hospital, Bangalore, Karnataka, 123); K Koch‡, R B Parwar (Sardar Patel Medical College and Associated Group of Hospitals, Bikaner, Rajasthan, 117); N Chidambaram*, U Rajasekharan; (Rajah Muthiah Medical College and Hospital, Annamalai Nagar, Tamilnadu, 109); S Bala, J D Pandian, Y Singh* (Christian Medical College and Hospital, Tamil Nadu, 99); U Karadan, A Salam* (Baby Medical Hospital, Kerala, 92); S Shivkumar, A Sundaranaraj* (Neuro Centre, Trichy, Tiruchirapalli, Tamil Nadu, 82); R Joshi, S P Kalarnti (Baby Medical Institute, Maharashtra, 78); H Singh* (Sadbhavna Medical and Heart Institute, Patna, 70); J M K Murthy*, A Rath (Care Hospital, Hyderabad, Andhra Pradesh, 65); N T R Balasubramanian, A Kalanidhi* (Railway Hospital Perambur, Chennai, Tamil Nadu, 52); K Babu* (Care Hospital, Visakhapatnam, Andhra Pradesh, 46); A Bharani*, P Choudhury, M Jain (Mahatma Gandhi Memorial Medical College and MaharaajaYashwantrao Hospital, Indore, Madhya Pradesh, 39); A Agarwal, M Singh* (Chhatrapati Shahuji Medical University, Lucknow, Uttar Pradesh, 38); R R Agarwal, R Gupta* (Monilek Hospital and Research Centre, Jaipur, Rajasthan, 30); S Kothari*, S Mijar (Poona Hospital, Pune, Maharashtra, 30); S Bandishil, R S Wadia* (Ruby Hall Clinic, Pune, Maharashtra, 27); S K Paul, S Sekhar Nand* (Centre of Sight, Guntur, Andhra Pradesh, 26); M M Mehdintra† (GB Pant Hospital, Indraprastha HO, Delhi, 25); U Tukaram* (Mediclinic Hospital, Hyderabad, Andhra Pradesh, 24); K Mittal, A Rohatgi† (Sir Ganga Ram Hospital, New Delhi, Delhi, 21); S Kumari*, R P Vinayak (Armita Institute of Medical Sciences, Cochin, Kerala, 19); R S Maximilaran‡ (KS Hospital, Bangalore, Karnataka, 2); Italy M G Celani, L Favorito, T Mazzoli, S Ricci*, E Righetti (Perugia Stroke Service, Perugia, 73); M Blundo, A Carmellotta, G D’Astu, A Giordano, F Iemoli* (Ospedali Rennuzzi, Vittoria, 12); M G Celani, L Favorito, T Mazzoli, S Ricci*, E Righetti (Città della Pieve Stroke Service, Città della Pieve, 23); P Gresele*, F Guercini (University of Perugia, Perugia, 20); R Caporalini, I De Dominiscis*, M Gioggetti, G Giulian*, S Paolletti, E Pucci (Ospedali di Macerata, Macerata, 18); A Cavallini*, W K Ho, K Jamrozik, CJM Klijn, E Koedam, P Langton, E Nijboer, P Tisch. Trial management committee J Pizzig (1999–present), M Tang (1999–present), R Alaparthi (2000–present), M Antenucci (2001–03), B Chow (2006–08), D Chinnery (2001–03), C Cockayne (2004–09), R Holt (August–October, 2009), K Loh (1999–2009), L McMullin (2003–04), G Mulholland (July, 2009–January, 2010), B Nahoo (July–October, 2009), E Read (August, 2009–November, 2009), F Smith (2002–09), C Y Yip (2008–present).
Articles

A Persico (IRCRC C Mondino, Pavia, 16); F Casoni, A Costa*, M Magoni*, R Spezi, R Tortorella, E Venturi, V Gervani (Spedali Civili di Brescia, Brescia, 9); S Caprilli, P Provenzioni, D Zanotta* (Ospedale di Circolo, Busto Arsizio, 5); Malayappa J M Abdulla*, T Damtew, B Idris*, S Sayuthi (University Hospital Sains of Malaysia, Kuala Klang, 68); J J H Hong, C T Tan, K S Tan† (University of Malaya Medical Centre, Kuala Lumpur, Selangor, 13); Molóvá G Dutca, V Grigor, S Groppa†; D Manea (City Emergency Hospital, Chisinau, 114); Netherland S, Ahlberg, A Algra*, P H A Håkans, L J Kappelle* (University Medical Center Utrecht, Utrecht, 63); A M Boon, J C Doelman, R Sips*, F Vischer (Oosterscheidenziekenhuis, Goes, 37); V I H Kwa*, O A Temende, J van der Sande (Slotervaartziekenhuis, Amsterdam, 14); New Zealand T Freund, J Gomma (Hawke’s Bay Hospital, Napier, 101); N E Anderson*, P Bennett, A Chazleton, D Spriggs (Auckland City Hospital, Auckland, 62); J Singh* (North Shore Hospital, North Shore, 12); J Bourke*, R Bucknell (Palmerston North Hospital, Palmerston North, 6); H Naughton† (Wellington Hospital, Wellington, 3); Pakistan A Arwar, H Murtaza, W Udilir† (Pakistan Ordinance Factories Hospital, Wah Cantt, Wah, 140); J J Ismail† (Dow University of Health Sciences Civil Hospital, Karachi, 89); N U Khan† (KRL University, Islamabad, 2); Philippines J C Navarro† (Jose Reyes Memorial Medical Center, Manila, 41); V G Amor, M T Canete*, C Lim, E B Ravelo, M Siguenza, M O Villahermosa (Chong Hua Hospital, Cebu City, 137); M T Canete*, M J T Cardino, R Curahire, M Gara, Z Salas (Cebu Veles General Hospital, Visayas Community Medical Center, Cebu City, 126); A Batac, M T Canete*, I. Conde, P Dumdam, F S Garcia, S Libarnes, N Matiga*, N Olanda (Cebu Doctor’s Hospital, Cebu City, 113); R Arcenas, M T Canete*, A Loraza (Vicente Sotto Memorial Medical Center, Cebu City, 104); A Siradilla* (Chiangrai Provincial Hospital, Chiang Rai, 12); M L Azarullo, J Lokin* (University of Santo Tomas Hospital, Manila, 13); G Maylen* (Cagayan Valley Medical Center, Tuguegarao, 11); Portugal E Marques, M Veloso* (Hospital Districtal Oliveira de Azeitão, Oliveira de Azeitão, 63); M Correia*, G Lopes (Hospital Geral de Santo António, Porto, 33); P Canhão, H J Ferro, P T Melo (Hospital de Santa Maria, Porto, 27); A Dias, A P Sousa* (Hospital Visconde de Salgueiro, Estarreja, 13); Georgia A Tiskaridze*, T Vashadze (Sarajishvili Institute of Neurology, Tbilisi, 118); Serbija I Divjak† (University of Novi Sad [Neurology], Novi Sad, 67); I Divjak†, V Papić (University of Novi Sad [Neurosurgery], Novi Sad, 49); Singapore H M Chang, C P L H Chen†, D A De Silva, E K Tan*, M C Wong (Singapore General Hospital, Singapore, 175); Sri Lanka U K Ranawaka†, J C Wijesekara (University National Hospital of Sri Lanka, Colombo, 274); H A de Silva, U K Ranawaka†, C N Wijekoon (University of Kelaniya, Colombo, 87); UK J Dawson, P Higgins, K R Lee*, J L MacDonald, M A Scott (North Tyneside District Hospital, North Shields, Tyne And Wear, 195); S Cameron, K Darnley, M Dennis*, D Lyle (Western General Hospital, Edinburgh, 161); A Hunter, M Watt*, I Wijesekera (University Hospital of South Manchester, Manchester, 99); M Aikin, R Godsland, E McIlvenna, T Quinn, M Walters (Western Infirmary, University of Glasgow, Glasgow, 432); R Curless†, J Dickson, J Mury, JWE* (University of South Carolina, Columbia, SC, 7); K Booth*, D Murphy (Arthington Memorial Hospital, Arthington, PA, 4). *Principal investigator. †National coordinator.

Conflicts of interest

GJH has received payments for serving as a member of the executive committees of the ROCKET-AF (Johnson and Johnson), MAADEUS (Sanoft-Aventis), and BOREALIS (Sanoft-Aventis) trials; the steering committee of the TRA-2P TIMI 50 trial (Scherering Plough); the Australian Praxada (dabigatran) advisory board (Boehringer Ingelheim); a working group on stroke and lipid management in Asia (Pfizer); has received honoraria for speaking at scientific symposia sponsored by Sanoft-Aventis and Pfizer Australia; and has received travel and accommodation expenses from Sanoft-Aventis. JWE has received honoraria for speaking at sponsored scientific symposia from Bristol-Myers Squibb, Sanoft-Aventis, Eli Lilly, Astra, and Novartis, and has received payment for lectures from Bristol-Myers Squibb, Sanoft-Aventis, Eli Lilly, and Astra. JWE’s institute has received grants from Bristol-Myers Squibb. CC has received payments for serving as national coordinator of the PERFORM (Servier) trial, on the data monitoring committee of the DU166B-C-126 (Daiichi) trial, as advisor to the IMPACT-2 (Braingains) trial, and for being part of a working group on stroke and lipid management in Asia (Pfizer), and has received travel and accommodation expenses from Molec to attend the European Stroke Congress. KRL has received consultation fees for serving on decision making committees for Lundbeck (DIA-3.4), Boehringer Ingelheim (ECASS-3), and BOREALIS (Sanofi-Aventis) trials; the steering committee for GlaxoSmithKline (RECORD), and the trial steering committees for D-Pharm (MACIS) and Servier (PERFORM) and has received honoraria for lectures at scientific symposia sponsored by Pfizer, Boehringer Ingelheim, and Sanoft-Aventis. QY has no conflicts of interest.

Acknowledgments

The VITATOPS trial was funded by grants from the Australia National Health and Medical Research Council (project grants 101067, 043913, and 572632; program grants 251525 and 454417), the UK Medical Research Council, the Singapore Biomedical Research Council, the Singapore National Medical Research Council, the Australia National Heart Foundation, (grants G 999 0405, G 02P 0735, G 04P 1611), the Royal Perth Hospital Medical Research Foundation, and the Health Department of Western Australia. The UK Stroke Research Network provided support for patient identification and enrolment in the UK. Infrastructure support was provided by Royal Perth Hospital, where the trial coordinating office was located and the Pharmacy Department stored and dispensed the tablets. Vitamin tablets and matching placebo tablets were supplied by Blackmores, Australia. Thanks to our trial coordinators Julia Pizzi and Michelle Tang, and to the 8164 patients in 20 countries who participated in the trial.

References

1. Alberts MJ, Bhakti DL, Mas J-L, et al. for the REDuction of Atherothrombosis for Continued Health (REACH) Registry Investigators. Three-year follow-up and event rates in the international REDuction of Atherothrombosis for Continued Health Registry. Eur Heart J 2009; 30: 2318–26.
2. Eikelboom JW, Hankey GJ, Anand SS, Lofthouse E, Staples N, Baker RI. Association between high homocysteine and ischemic stroke due to large- and small-artery disease but not other etiological subtypes of ischemic stroke. Stroke 2000; 31: 1069–75.
The Lancet Neurology. Vol 9 September 2010

3 Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from Mendelian randomisation. Lancet 2005; 365: 224–32.

4 Wald DS, Wald NJ, Morris JK, Law M. Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ 2006; 333: 114–17.

5 Homocysteine Lowering Trialists’ Collaboration. Lowering blood homocysteine with folic acid: meta-analysis of randomised trials. BMJ 1998; 316: 948–94.

6 Toole JF, Malinow R, Chambless L, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISIP) randomised controlled trial. JAMA 2004; 291: 565–75.

7 Spence DL, Bang H, Chambless LE, Stumpfer MJ. Vitamin intervention for stroke prevention trial: an efficacy analysis. Stroke 2005; 36: 2404–09.

8 Mark SD, Wang W, Fraumeni JF Jr, et al. Lowered risks of cardiovascular disease and all-cause mortality in patients with hypercholesterolemia following acute myocardial infarction: a randomized pilot trial. J Int Cardiol 2004; 93: 175–79.

9 Baker F, Picton D, Blackwood S, et al. Blinded comparison of folic acid and placebo in patients with ischaemic heart disease: an outcome trial. Circulation 2002; 106 (suppl 2): 741.

10 Liem AH, van Boven AJ, Veeger GM, et al, for the FOLic Acid on Outcome trial. Effect of homocysteine lowering on mortality and major morbidity in the atherosclerosis and folic acid supplementation trial (ASFAST) in chronic renal failure: a randomized controlled trial. J Am Coll Cardiol 2004; 420–26.

11 Hankey GJ, Eikelboom JW, Loh K, et al. Is there a power shortage in clinical trials testing the “homocysteine hypothesis”? Preliminary trial evidence. BMJ 2006; 333: b1344.

12 Anonymous. Nuremberg Doctors Trial. Declaration of Helsinki (1964). BMJ 1996; 313: 1448–49.

13 Schulz KF, Altman DG, Moher D, Fergusson D. CONSORT 2010 extensions and changes. Lancet 2010; 375: 1163–70.

14 Warlow CP, Dennis MS, van Gijn J, et al. Stroke. A practical guide to management. 2nd edn. Oxford, UK: Blackwell Science, 2000.

15 Toole JF, Malinow R, Chambless L, et al. Lowering homocysteine in patients at high risk for cardiovascular disease: a randomized controlled trial. JAMA 2007; 354: 1578–88.

16 Jamison RL, Hartigan P, Kaufman JS, et al. Veterans Affairs Site Investigators. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomised controlled trial. JAMA 2007; 298: 1161–70.

17 Albert CM, Cook NR, Gaziano JM, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008; 299: 2027–36.

18 Ebbing M, Bleie Ø, Ueland PM, et al. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA 2008; 300: 755–64.

19 Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH) Collaborative Group. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors. JAMA 2010; 303: 2406–04.

20 Katan MB, boltsrood D, Moons KG, et al. Effect of B-vitamin therapy on progression of diabetic nephropathy. JAMA 2010; 303: 1603–09.

21 Marti-Carvajal AJ, Solà I, Llabreis D, Salazet G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 2009; 4: CD006612.

22 The VITALOPs Trial Study Group. The VITALOPs (VITAmins To Prevent Stroke) trial: rationale and design of an international, large, simple, randomised trial of homocysteine-lowering multivitamin therapy in patients with recent transient ischemic attack or stroke. Cerebrovasc Dis 2002; 13: 120–26.

23 The VITALOPs Trial Study Group. The VITALOPs To Prevent Stroke (VITALOPs) trial: rationale and design of a randomised trial of B-vitamin therapy in patients with recent transient ischemic attack or stroke (NCT00975669) (ISRCTN74743444). Int J Stroke 2007; 2: 144–50.

24 Anonymous. Nuremberg Doctors Trial. Declaration of Helsinki (1964). BMJ 1996; 313: 1448–49.

25 Schulz KF, Altman DG, Moher D, Fergusson D. CONSORT 2010 extensions and changes. Lancet 2010; 375: 1163–70.

26 Warlow CP, Dennis MS, van Gijn J, et al. Stroke. A practical guide to management. 2nd edn. Oxford, UK: Blackwell Science, 2000.

27 Hanseen A, Hunt BJ, O’Sullivan M, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain 2006; 127: 212–19.

28 Spence J. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 2007; 6: 830–38.

29 Anonymous. Nuremberg Doctors Trial. Declaration of Helsinki (1964). BMJ 1996; 313: 1448–49.

30 CAPRIE Steering Committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischemic events (CAPRIE). Lancet 1996; 348: 1329–39.

31 Nuesch E, Treile S, Reichenback S, et al. The effects of excluding patients from the analysis in randomised controlled trials: meta-epidemiological study. BMJ 2009; 339: b3244.

32 Pocock SJ, Clayton TC, Altman DG. Survival plots of time-to-event outcomes in clinical trials: good practice and pitfalls. Lancet 2002; 359: 1686–89.

33 Therneau TM, Grambsch PM. Modeling survival data: extending the Cox model (Statistics for Biology and Health). New York, USA: Springer, 2001.

34 Bammford JM, Sandrock PA, Warlow CP, Slattery J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1989; 20: 828.

35 Hankey GJ, Eikelboom JW, Loh K, et al. Is there a power shortage in clinical trials testing the “homocysteine hypothesis”? Preliminary results from the VITamins TO Prevent Stroke (VITALOPs) trial. Arterioscler Thromb Vasc Biol 2004; 24: e147.

36 Kasiman K, Eikelboom JW, Hankey GJ, et al. Ethnicity does not affect the homocysteine-lowering effect of B-vitamin therapy in Singaporean stroke patients. Stroke 2009; 40: 2209–11.

37 B-Vitamin Treatment Trialists’ Collaboration. Homocysteine-lowering trials for prevention of cardiovascular disease: protocol for collaborative meta-analysis. Clin Chem Lab Med 2007; 45: 1571–76.

38 Bostom AG, Carpenter MA, Hunsicker L, et al. Baseline characteristics of participants in the folic acid for vascular outcome (FA VORIT) trial. Stroke 2009; 40: 2212–17.

39 Katan MB, boltsrood D, Moons KG, et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008; 299: 2027–36.

40 Chinomranon D, Slattery J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1989; 20: 828.

41 Warlow CP, Dennis MS, van Gijn J, et al. Stroke. A practical guide to management. 2nd edn. Oxford, UK: Blackwell Science, 2000.

42 B-Vitamin Treatment Trialists’ Collaboration. Homocysteine-lowering trials for prevention of cardiovascular disease: protocol for collaborative meta-analysis. Clin Chem Lab Med 2007; 45: 1571–76.