Incremental Dynamic Analysis of Guangyue Tower Timber Structure

Liyue Sun¹, Qingshuang Zhao¹*, He Wang¹, Jie Jin¹ and Chuankun Li²

¹ School of Civil Engineering, Liaocheng University, Shandong Province, China
² Shandong Sanjian Construction Engineering Management Co., Ltd, Shandong Province, China
Email: zhaoqingshuang@lcu.edu.cn

Abstract. This paper takes the wooden structure of Guangyue Tower as an example, selects ANSYS finite element software, establishes the upper wooden structure and the finite element model considering the whole structure of the high platform respectively, uses the incremental dynamic analysis method, and uses different ground motion intensity parameters to carry on the dynamic time history analysis to it. The results show that the existence of the high platform magnifies the displacement response of the wooden structure, which is not conducive to the seismic resistance of the wooden structure; IDA curve expressed by ground motion intensity parameter PGA can better reflect the overall change of the structure, which is helpful to improve the effectiveness of seismic performance evaluation of Guangyue Tower.

Keywords. Timber structure, numerical simulation, incremental dynamic analysis.

1. Introduction
In order to protect the timber structure of ancient buildings, experts and scholars launched a series of studies. Qian Zhou [1] conducted a shaking table test study on an ancient building model of the Palace Museum, and pointed out that the roof has a certain amplification effect on the seismic force, and the collapse of the wall does not affect the overall stability of the structure. Dafeng Gao [2] made the timber structure model of the Arrow building in Yongning Gate, Xi'an, and carried out the shaking table test and research, and summarized a set of earthquake damage assessment system. Qifang Xie [3] studied the scale model of Xi'an Zhonglou 1:6 through the shaking table test, and concluded that the model structure had good deformation capacity. Jianyang Xue [4] obtained the change rule of dynamic characteristics of the structure under the action of earthquake through the shaking table test. At present, the seismic performance of ancient timber structures is mostly studied quantitatively by means of experiments, but there are few analyses on the damage probability and the post-earthquake loss of historic buildings, and the earthquake risk assessment system of ancient timber structures is not perfect.

This paper takes Guangyue Tower as the research object, establishes the timber structure of Guangyue Tower and the finite element model considering the whole structure of high platform, and conducts incremental dynamic analysis on them, discusses the effectiveness of seismic assessment with different ground vibration intensity parameters, in order to lay a foundation for the establishment of the earthquake risk assessment system of Guangyue Tower.

2. Establishment of the Finite Element Model of Guangyue Tower
In this paper, BEAM188 unit is used to simulate columns, beams and other components. The timber
material parameters are shown in table 1. SHELL181 unit is used to simulate the floor slab. MASS21 unit is used to apply the roof load equivalent to the concentrated mass to the top of each gold column [5].

Material	The density of (kg/ m3)	Modulus of elasticity (Pa)	Poisson’s ratio
Wood	410	6.23×109	0.25

COMBIN14 simulation was used for the connection between the mortise and tenon joints and the foot of the column, in which the connection stiffness value of mortise and tenon joints was selected from the inversion result of the mortise and tenon joint stiffness of Guangyue Tower [5]. At the same time, considering that the axial and tangential directions of the two principal axes in the horizontal plane (x-z plane) were opposite, the connection stiffness values of the two groups were set as shown in table 2.

Name	K_x (N/m)	K_y (N/m)	K_z (N/m)	K_{dx} (N/m)	K_{dy} (N/m)	K_{dz} (N/m)
X-direction stiffness (N/m)	2.0×108	2.5×109	9×107	7×1010	7×1010	7×1010
Z-direction stiffness(N/m)	9×107	2.5×109	2.0×108	7×1010	7×1010	7×1010

SOLID45 unit was used to simulate the high platform, and the interior of it was mainly artificially layered and uniformly tamped plain fill [7]. The physical and mechanical performance parameters are shown in table 3. The finite element model is shown in figures 1 and 2.

Table 3. Parameters of rammed earth materials for high base.

Material	Density (kg/ m3)	Modulus of elasticity (Pa)	Thickness (m)	Poisson’s ratio
Rammed earth	1870	2.09×107	9.38	0.347
3. Modal Analysis
The Block Lanczos method was used to conduct modal analysis on the finite element model of Guangyue Tower, and the natural frequency of the model structure was calculated. The first 6 natural frequencies and periods of vibration were shown in the table 4 below:

Vibration mode	1	2	3	4	5	6	
Timber structure	Natural frequency of vibration /Hz	1.6106	1.6364	2.3451	5.7310	6.1314	7.0953
	Natural vibration period T/s	0.6209	0.6111	0.4264	0.1745	0.1631	0.1409
Overall structure	Natural frequency of vibration /Hz	1.6053	1.6309	2.3410	3.5412	3.5416	4.0342
	Natural vibration period T/s	0.6230	0.6132	0.4272	0.2824	0.2824	0.2479

Referring to the results of modal analysis after field measurement in Guangyue Tower [6], the measured measurement of the timber structure of Guangyue Tower is very close to the fundamental frequency of the calculation model, indicating that the dynamic characteristics of the established finite element model are close to the dynamic characteristics of the original structure. Therefore, the finite element model of Guangyue Tower can be used to analyze the dynamic response of the structure under the action of earthquake.

4. Incremental Dynamic Analysis
Guangyue Tower where seismic fortification intensity of 7 degrees (0.15 g), earthquakes are grouped into the second group, site category for III class. In this paper, 9 seismic waves and 1 artificial wave were selected from PEER seismic wave database for incremental dynamic analysis and calculation considering the calculation accuracy and cost. As shown in figure 3, the average seismic influence coefficient curve of the selected seismic wave satisfying multiple time-history curves should be no more than 20% different from that of the seismic influence coefficient curve adopted by mode decomposition response spectrum method at the period of the main mode.

![Figure 3. Comparison of seismic wave response spectrum curves.](image)
4.1. Incremental Dynamic Analysis under Different Intensity Indicators

In this paper, the maximum inter-storey displacement Angle Max is selected as the earthquake response parameter of Guangyue Tower, and the value of each limit state is shown in table 5 [8]. The ground motion intensity parameters of S_a, PGA and PGV are analyzed respectively, so as to obtain the intensity parameters suitable for evaluating the seismic performance of Guangyue Tower.

Table 5. The maximum interlayer displacement Angle Max corresponding to each stage.

The performance level	Basic intact OP	Slightly damaged IO	Life safety LS	To prevent the collapse CP
Extreme value point	$1/442$	$1/148$	$1/48$	$1/16$

Based on Hunt&Fill method [9], S_a was used as the ground motion intensity parameter for amplitude modulation calculation, and IDA curve clusters on S_a-θ_{max} were drawn, as shown in figures 4 and 5:

Figure 4. Timber structure IDA curve cluster.
Figure 5. Overall structure of IDA curve cluster.

S_a is converted into the corresponding ground motion intensity parameters PGA and PGV, so as to obtain the IDA curve of the Guangyue Tower timber structure and the overall structure with high platform consideration about PGA-θ_{max} and PGV-θ_{max}, as shown in figures 6 and 7:

Figure 6. IDA curve of timber structure.
It can be seen from figures 4 and 5 that in the initial stage of the IDA curve cluster, the curves are relatively concentrated and the inter-layer displacement Angle of the structure is small. As the inter-layer displacement Angle of the structure increases, the IDA curve cluster gradually becomes discrete and the degree of dispersion becomes more and more obvious.

It can be seen from figures 4-7 that the dispersion degree of IDA curve of Guangyue Tower timber structure and the overall structure considering the high platform foundation is not significantly different. The response value of the overall structure is larger than that of the timber structure, indicating that the presence of high platform will amplify the displacement response of the wooden structure, which proves that the presence of high platform is not conducive to the seismic resistance of the wooden structure.

By comprehensively comparing IDA curve clusters with different ground motion intensity indicators (S_a, PGA, PGV), it can be found that under the action of different ground motion intensity parameters, the shape of IDA curve clusters of the same structure is different, and the curve discreteness is also different. By comparing and observing IDA curve clusters with different ground motion intensity parameters, it can be intuitively found that the shape of IDA curve clusters represented by PGA as the intensity parameter is more concentrated, and its discreteness is less than that of IDA curve clusters represented by S_a and PGV as the intensity parameters.

4.2. Analysis of Ground Motion Intensity Parameters

The above IDA analysis results were calculated by using the quantile statistical method, and three quantile curves of IDA curve cluster of 16%, 50% and 84% under different strength parameters were obtained, as shown in figures 8 and 9, so as to quantify the dispersion degree of IDA curve cluster, and the performance evaluation of Guangyue Tower based on statistical probability was carried out by using the quantile curve.

Figure 8. Sectional curves of timber structure under different strength parameters.
Compared to the same structure under the effect of different intensity of ground motion parameters of quantile curve, can be found in the initial stages of curve, three kinds of strength parameters under IDA curve discrete are small, anywhere the vibration structure of IDA curve discrete began to increase, with PGA as the strength parameters of IDA curve relative to the rest of the two kinds of strength parameters is concentrated. Therefore, IDA curve expressed by ground motion intensity parameter PGA can better reflect the overall change of the structure during the whole reaction process of Guanyue Tower, which is helpful to improve the effectiveness of seismic performance evaluation of Guanyue Tower.

According to the definition of failure state and performance level division of Guanyue Tower timber structure, combined with the quantile curve in figure 8 and 9, the corresponding ground motion intensity of the structure under each limit state is determined. The statistical results are shown in table 6.

Percentile curve	Timber structure	The overall structure					
	16%	50%	84%	16%	50%	84%	
Basic intact ($\theta_{max}=1/442$)	S_a(g)	0.149	0.227	0.649	0.015	0.019	0.028
	PGA(g)	0.044	0.081	0.153	0.010	0.015	0.037
	PGV(cm/s)	0.031	0.044	0.079	0.003	0.006	0.009
Slightly damaged ($\theta_{max}=1/148$)	S_a(g)	0.350	0.525	1.040	0.284	0.403	0.863
	PGA(g)	0.170	0.280	0.466	0.139	0.245	0.413
	PGV(cm/s)	0.083	0.130	0.233	0.071	0.112	0.205
Life safety ($\theta_{max}=1/48$)	S_a(g)	0.776	1.218	1.677	0.722	1.163	1.623
	PGA(g)	0.453	0.595	0.784	0.432	0.630	0.780
	PGV(cm/s)	0.226	0.309	0.417	0.210	0.297	0.415
To prevent the collapse ($\theta_{max}=1/16$)	S_a(g)	1.423	1.864	2.248	1.407	1.839	2.235
	PGA(g)	0.855	0.934	1.032	0.840	0.927	1.023
	PGV(cm/s)	0.460	0.567	0.637	0.446	0.549	0.624

According to the relationship between quantile and exceedance probability, when $S_a=0.776g$ ($PGA=0.453g$, $PGV=0.226m/s$) without considering the high base, 16% of the ground motion records made the timber structure exceed the life safety limit. In the case that the ground motion records corresponding to the same limit state exceed probability, the ground motion intensity value of the whole structure considering the high platform is $S_a=0.722g$ ($PGA=0.432g$, $PGV=0.210m/s$), that is, the existence of the high platform will make the corresponding ground motion intensity decrease when the structure reaches the life limit safety state. By comparing the corresponding result values under different limit states in the two tables, it is further proved that the existence of high base is unfavorable
to the seismic resistance of the timber structure.

5. Conclusion
Based on ANSYS finite element analysis software, this paper carries out incremental dynamic analysis of Guangyue Tower, and the main conclusions are as follows:

(1) The dispersion of different ground motion intensity parameters was compared and analyzed, and the results showed that the whole reaction process in Guangyue Tower IDA curve expressed by ground motion intensity parameter PGA can better reflect the overall change of the structure, which is helpful to improve the effectiveness of seismic performance evaluation of Guangyue Tower.

(2) According to the relationship between quantile and exceedance probability, the existence of high platform will reduce the ground vibration intensity when the structure reaches the life limit safety state, which indicates that the existence of high platform is unfavorable to the seismic resistance of timber structure.

Acknowledgments
The writers appreciate the financial support provided by National Natural Science Foundation of China (No.51378245), Graduate Education Quality Improvement Plan Project of Shandong Province (SDYJG19062, SDYY16102) and Scientific Research Fund Project Liaocheng University (318011901).

References
[1] Zhou Q, Yan W M and Li Z B 2011 Experimental study on strengthening method of ancient building mortise and tenon joints on shaking table Journal of Sichuan University (Engineering Science Edition) 43(06) 70-78.
[2] Gao D F, Yang Y and Deng H X 2016 Earthquake damage assessment of multi-storey timber structure ancient buildings based on energy dissipation Earthquake Research 39(02) 340-350+176.
[3] Xie Q F, Wang L and Zhang L P 2012 Experimental study on vibration table of the timber structure model of Xi'an Bell Tower Journal of Architectural Structure 39(12) 128-138.
[4] Xue J Y, Xu D and Ren N F 2019 Experimental Study on simulated Seismic Shaking table of Wooden Dwellings with Perforated Structure Journal of Architectural Structure 40(04) 123-132.
[5] Cao Y 2015 Research on Dynamic Analysis Model of Ancient Wooden Structure under traffic Incentive Liaocheng University.
[6] Yu M H, Zhang X B and Fang D P 1993 Research on the Ancient City Wall of Xi 'an:Architectural Structure and Earthquake Resistance Xi'an: Xi'an Jiaotong University Press pp 43-65.
[7] Hu B S 2017 Research on Ground Traffic Excitation Simulation and Vibration Isolation measures of Guangyue Tower Ring Road Xi'an University of Architecture and Technology.
[8] Li T Y, Wei J W and Zhang S Y 2004 Two-parameter seismic damage criteria for wooden structures and earthquake response evaluation of wooden towers in yinxian county Journal of Building Structures 25(2) 91-98.
[9] Vamvatsikos D and Cornell C A 2002 Incremental dynamic analysis Earthquake Engineering and Structural Dynamics 31(3) 491-514.