MILNOR NUMBERS AND EULER OBSTRUCTION

JOSÉ SEADE, MIHAI TIBĂR, AND ALBERTO VERJOVSKY

ABSTRACT. Using a geometric approach, we determine the relations between the local Euler obstruction \(Eu_f \) of a holomorphic function \(f \) and several generalizations of the Milnor number for functions on singular spaces.

1. Introduction

In the case of a nonsingular germ \((X, x_0)\) and a function \(f \) with an isolated critical point at \(x_0 \), the following three invariants coincide (for (c), up to sign):

(a) the Milnor number of \(f \) at \(x_0 \), denoted \(\mu(f) \);
(b) the number of Morse points in a Morsification of \(f \);
(c) the Poincaré-Hopf index of \(\text{grad} f \) at \(x_0 \);

This fact is essentially due to Milnor’s work in the late sixties [Mi]. There exist extensions of all these invariants to the case when \((X, x_0)\) is a singular germ, but they do not coincide in general. One of the extensions of (c) is the Euler obstruction of \(f \) at \(x_0 \), denoted \(Eu_f(X, x_0) \). This was introduced in [BMPS]; roughly, it is the obstruction to extending the conjugate of the gradient of the function \(f \) as a section of the Nash bundle of \((X, x_0)\). It measures how far the local Euler obstruction is from satisfying the local Euler condition with respect to \(f \) in bivariant theory. It is then natural to compare \(Eu_f(X, x_0) \) to the Milnor number of \(f \) in the case of a singular germ \((X, x_0)\). This has been also a question raised in [BMPS].

The main idea of this paper is that, for singular \(X \), the Euler obstruction \(Eu_f(X, x_0) \) is most closely related to (b). We use the homological version of the bouquet theorem for the Milnor fiber given in [Ti], which relates the contributions in the bouquet to the number of Morse points. Through this relation, one may compare \(Eu_f(X, x_0) \) to the highest Betti number of the Milnor fiber of \(f \). In case \(X \) has Milnor’s property, the comparison is optimal and yields a general inequality, see §3.1. We further compare \(Eu_f(X, x_0) \) with two different generalizations of the Milnor number for functions with isolated singularity on singular spaces, one due to [Le3], the other to [Go, MS] for curve singularities and to [IS] for functions on isolated complete intersection germs in general. In case when the
germ \((X, x_0)\) is an isolated complete intersection singularity, we use in addition the GSV-index of vector fields \[\text{GSV}\] to completely determine the relations between \(\text{Eu}_f(X, x_0)\), the Milnor number of \(f\) and the GSV-index attached to \(f\).

2. Euler obstruction and Morsification of functions

Let \((X, x_0)\) denote the germ at some point \(x_0\) of a reduced pure dimensional complex analytic space embedded in \(\mathbb{C}^N\), for some \(N\). Consider a Whitney stratification \(W\) of some representative of \(X\). Let \(W_0\) be the stratum containing \(x_0\) and let \(W_i\ldots W_q\) be the finitely many strata of \(X\) having \(x_0\) in their closure, other than \(W_0\). Let also \(F : (\mathbb{C}^N, x_0) \to (\mathbb{C}, 0)\) denote some extension of \(f\).

Definition 2.1. (Lazzeri '73, Benedetti '77, Pignoni '79, Goresky-MacPherson '83 \[GM, p.52\].) One says that \(f : (X, x_0) \to \mathbb{C}\) is a general function germ if \(dF_{x_0}\) does not vanish on any limit of tangent spaces to \(W_i\), \(\forall i \neq 0\), and to \(W_0 \setminus \{x_0\}\). One says that \(f : (X, x_0) \to \mathbb{C}\) is a stratified Morse function germ if: \(\dim W_0 \geq 1\), \(f\) is general with respect to the strata \(W_i\), \(i \neq 0\) and the restriction \(f_{|W_0} : W_0 \to \mathbb{C}\) has a Morse point at \(x_0\).

Let us recall some definitions and notations from \[BMPS\]. The complex conjugate of \(X\), \(\bar{X}\) is the usual tangent bundle of \(X\), and \(X\) is a holomorphic function with isolated singularity at \(x_0\). If \(\nu : \bar{X} \to X\) is the Nash blow-up of \(X\) and \(\bar{T}\) is the Nash bundle over \(\bar{X}\), then \(\nu^{-1}(x) \cap S_{\epsilon}\) is a small enough sphere around \(x_0\), given by Milnor’s result \[Mi, \text{Cor. 2.8}\]. Following \[BMPS\], the obstruction to extend \(\nu^{-1}(X \cap S_{\epsilon})\) is denoted by \(\text{Eu}_f(X, x_0)\) and is called the local Euler obstruction of \(f\).

Example 2.2. If the germ \((X, x_0)\) is nonsingular, then its Nash blow-up can be identified to \(X\) itself, the Nash bundle is the usual tangent bundle of \(X\) and \(\text{Eu}_f(X, x_0)\) is, by definition, the Poincaré-Hopf index of \(\text{grad}_X f\) at \(x_0\). From \[Mi, \text{Th.7.2}\] one deduces: \(\text{Eu}_f(X, x_0) = (-1)^{\dim X} \mu\), where \(\mu\) is the Milnor number of \(f\). It is also easy to prove (see \[BLS \text{ and BMPS}\]) that if \((X, x_0)\) is any singular space but \(f\) is a general function germ at \(x_0\), then the obstruction \(\text{Eu}_f(X, x_0)\) is zero.

We claim that a natural way to study \(\text{Eu}_f\) is to split it according to a Morsification of \(f\). We prove the following general formula for holomorphic germs with isolated singularity:

Proposition 2.3. Let \(f : (X, x_0) \to (\mathbb{C}, 0)\) be a holomorphic function with isolated singularity at \(x_0\). Then

\[\text{Eu}_f(X, x_0) = (-1)^{\dim C} \alpha_q,\]

where \(\alpha_q\) is the number of Morse points on \(W_q = X_{\text{reg}}\) in a generic deformation of \(f\).
Proof. We Morsify the function \(f \), i.e. we consider a small analytic deformation \(f_\lambda \) of \(f \) such that \(f_\lambda \) only has stratified Morse points within the ball \(B \) and it is general in a small neighborhood of \(x_0 \). (See, for instance, the Morsification Theorem 2.2 in \[Lé2\].)

Since \(f_\lambda \) is a deformation of \(f \), it follows that \(\text{grad}_X f \) is homotopic to \(\text{grad}_X f_\lambda \) over the sphere \(X \cap \partial B \), so the obstructions to extend their lifts to \(\nu^{-1}(X \cap B) \) without zeros are equal.

On the other hand, the obstruction corresponding to \(\text{grad}_X f_\lambda \) is also equal to the sum of local obstructions due to the Morse points of \(f_\lambda \). Lemma 4.1 of \[STV\] shows that the local obstruction at a stratified Morse point is zero if the point lies in a lower dimensional stratum. So the points that only count are the Morse points on the stratum \(X_{\text{reg}} \) and, at such a point, the obstruction is \((-1)^{\dim C_X} \), as explain above in Example 2.2. □

Remark 2.4. The Euler obstruction is defined via the Nash blow-up and the latter only takes into account the closure of the tangent bundle over the regular part \(X_{\text{reg}} \). Since the other strata are not counting in the Nash blow-up, it is natural that they do not count for \(\text{Eu}_f(X,x_0) \) neither. The number \(\alpha_q \) does not depend on the chosen Morsification, by a trivial connectedness argument. We refer to \[STV\] for more about \(\alpha_q \) and other invariants of this type, which enter in a formula for the global Euler obstruction of an affine variety \(Y \subset \mathbb{C}^N \).

Remark 2.5. The number \(\alpha_q \) may be interpreted as the intersection number within \(T^*\mathbb{C}^N \) between \(dF \) and the conormal \(T^{*X}_{X_{\text{reg}}} \). Therefore our Proposition 2.3 may be compared to \[BMPS, Corollary 5.4\], which is proved by using different methods. J. Schürmann informed us that such a result can also be obtained using the techniques of \[Sch\].

3. Milnor numbers

3.1. Lé’s Milnor number. Lé D.T. \[Lé3\] proved that for a function \(f \) with an isolated singularity at \(x_0 \in X \) (in the stratified sense) one has a Milnor fibration. He pointed out that, under certain conditions, the space \(X \) has “Milnor’s property” in homology (which means that the reduced homology of the Milnor fiber of \(f \) is concentrated in dimension \(\dim X - 1 \)). Then the Milnor number \(\mu(f) \) is well defined as the rank of this homology group. By Lé’s results \[Lé3\], Milnor’s property is satisfied for instance if \((X,x_0) \) is a complete intersection (not necessarily isolated!) or, more generally, if \(\text{rHd} (X,x_0) \geq \dim (X,x_0) \), where \(\text{rHd} (X,x_0) \) denotes the rectified homology depth of \((X,x_0) \), see \[Lé3\] for its definition originating in Grothendieck’s work.

To compare \(\mu(f) \) with \(\text{Eu}_f(X,x_0) \) we use the general bouquet theorem for the Milnor fiber in its homological version. Let \(M_f \) and \(M_l \) denote the Milnor fiber of \(f \) and of a general function \(l \). Let \(f : (X,x_0) \to (\mathbb{C},0) \) be a function with stratified isolated singularity and let \(\Lambda \) be the set of stratified Morse points in some chosen Morsification of \(f \) (by convention \(x_0 \notin \Lambda \)). Then by \[11\], pp.228-229 and Bouquet Theorem] we have:

\[
\tilde{H}_*(M_f) \cong \tilde{H}_*(M_l) \oplus \oplus_{i \in \Lambda} H_{*+k_i+1}(C(F_i), F_i)
\]

where, for \(a_i \in \Lambda \), \(F_i \) denotes the complex link of the stratum to which \(a_i \) belongs, \(k_i \) is the dimension of this stratum and \(C(F_i) \) denotes the cone over \(F_i \).
In particular, if the germ \((X, x_0)\) is a complete intersection (more generally, if \(r\text{Hd} (X, x_0) \geq \dim(X, x_0)\)), then:
\[
\mu(f) = \mu(l) + \sum_{i \in \Lambda} \mu_i,
\]
where \(\mu_i := \text{rank } H_{\dim X - k_i}(C(F_i), F_i)\). This result shows that the Milnor number \(\mu(f)\) gathers information from all stratified Morse points, whereas \(\text{Eu}_f(X, x_0)\) is, up to sign, the number \(\alpha_0 = \# \Lambda_0\), where \(\Lambda_0\) denotes the set of Morse points occurring on \(X_{\text{reg}}\) (see Proposition \(\text{[28]}\) above). Notice that we have \(\Lambda_0 \subset \Lambda\), \(\mu(l) \geq 0\), \(\mu_i = 1\) if \(i \in \Lambda_0\) and \(\mu_i \geq 0\) if \(i \in \Lambda \setminus \Lambda_0\). We therefore get the general inequality, whenever the space \(X\) has Milnor’s property (e.g. when \((X, x_0)\) is a complete intersection, not necessarily with isolated singularities), and therefore the Milnor-Lê number is well defined:
\[
\mu(f) \geq (-1)^{\dim X} \text{Eu}_f(X, x_0).
\]

In case \((X, x_0)\) is an isolated complete intersection singularity (ICIS for short), from the above discussion on \([\text{1}]\) we get the equality:
\[
\text{Eu}_f(X, x_0) = (-1)^{\dim X} [\mu(f) - \mu(l)].
\]

In the ICIS case, \([\text{3}]\) also shows that the inequality \([\text{2}]\) is strict whenever \(X\) is actually singular. This is so since \(\mu(l) > 0\), which can be proved inductively using Looijenga’s results \([\text{10}]\).

3.2. Another Milnor number. A different generalization of the Milnor number is due to V. Goryunov \([\text{Go}]\), D. Mond and D. van Straten \([\text{MS}]\). This is originally defined for functions on curve singularities \(X \subset \mathbb{C}^N\), and we refer to \([\text{MS}, \text{p.178}]\) for the precise definition. This number is preserved under simultaneous deformations of both the space \(X\) and the function \(f\). Thus, if the curve singularity \((X, x_0)\) is an ICIS, defined by some application \(g: (\mathbb{C}^N, x_0) \to (\mathbb{C}^p, 0)\) on an open set in \(\mathbb{C}^N\), and \(F\) is an extension of \(f\) to the ambient space, then \(\mu_G(f)\) counts the number of critical points (with their multiplicities) of the restriction of \(F\) to a Milnor fiber of \(g\), say \(X_t = g^{-1}(t)\) for some regular value \(t\) of \(g\). This is equivalent to saying that \(\mu_G(f)\) is the Poincaré-Hopf index of the gradient of the restriction \(F|_{X_t}\). In other words, this is saying that \(\mu_G(f)\) is the \(GSV\)-index of the gradient vector field of \(f\) on \(X\). We recall that the \(GSV\)-index of a vector field \(v\) on \((X, x_0)\), defined in \([\text{GSV, SS}]\), equals the Poincaré-Hopf index of an extension of \(v\) to the Milnor fiber \(X_t\).

As noted in the introduction to \([\text{BMPS}]\), this definition of \(\mu_G(f)\) makes sense in all dimensions and one may generalize \(\mu_G\) as follows. Given an ICIS \((X, x_0)\) and a function \(f\) on it with an isolated singularity at \(x_0\), we denote by \(\nabla_X f\) the gradient vector field of \(f\) (not the conjugate of the gradient as we did for defining \(\text{Eu}_f(X, x_0)\)). Thus we may define \(\mu_G(f)\) as the \(GSV\)-index of \(\nabla_X f\) at \(x_0\). We notice that this invariant is precisely the \emph{virtual multiplicity} at \(x_0\) of the function \(f\) on \(X\) introduced by Izawa and Suwa in \([\text{IS}]\) and denoted \(\overline{m}(f; x_0)\). This multiplicity is by definition the localization at \(x_0\) of the top Chern class of the virtual cotangent bundle \(T^*(X)\) of \(X\) defined by the differential of \(f\), which is non-zero on \(X \setminus \{x_0\}\) by hypothesis. This invariant has the advantage of being defined even if the singular set of \(X\) is non-isolated and it is related to global properties of the variety (we refer to \([\text{IS}]\) for details). This coincides with the index of the 1-form
\(dq \) defined in [EG], and it is similar to the interpretation of the GSV index of vector fields given in [LSS] as a localization of the top Chern class of the virtual tangent bundle.

One can easily find the relation between \(\mu_G(f) \) and \(\mu(f) \) in case \(X \) is an ICIS. The proof can be found for instance in [Ld]. Let \(\mu(X, x_0) \) be the Milnor number of the ICIS \((X, x_0) \) and let \(f \) be some function with isolated singularity on \((X, x_0) \). Then:

\[
\mu_G(f) = \mu(f) + \mu(X, x_0).
\]

Using [3], we get:

\[
(4) \quad \text{Eu}_f(X, x_0) = (-1)^{\text{dim}X} [\mu_G(f) - \mu_G(l)].
\]

These equalities completely determine the relation between \(\text{Eu}_f(X, x_0) \), the GSV-index and the Milnor number of \(f \), in terms of the Milnor number of the ICIS \((X, x_0) \).

4. Further remarks

It is proved in [BMPS], using [BLS], that one has:

\[
(5) \quad \text{Eu}_f(X, x_0) = \sum_{i=0}^{q} [\chi(M(l, x_0) \cap W_i) - \chi(M(f, x_0) \cap W_i)] \cdot \text{Eu}_X(W_i),
\]

where \(M(f, x_0) \) and \(M(l, x_0) \) denote representatives of the Milnor fibers of \(f \) and of the generic linear function \(l \), respectively. Combining this relation with Proposition 2.3 one gets:

\[
\sum_{i=0}^{q} [\chi(M(l, x_0) \cap W_i) - \chi(M(f, x_0) \cap W_i)] \cdot \text{Eu}_X(W_i) = (-1)^{\text{dim}X} \alpha_q.
\]

Example 4.1. Let \(X = \{x^2 - y^2 = 0\} \times \mathbb{C} \subset \mathbb{C}^3 \) and \(f \) be the restriction to \(X \) of the function \((x, y, z) \mapsto x + 2y + z^2 \). Take \(x_0 := (0, 0, 0) \) and take as general linear function \(l \) the restriction to \(X \) of the projection \((x, y, z) \mapsto z \). Then \(X \) has two strata: \(W_0 = \text{the z-axis, } W_1 = X \setminus \{x = y = 0\} \). We compute \(\text{Eu}_f(X, x_0) \) from the relation [5].

First, \(M(l, x_0) \cap W_0 \) is one point and \(M(f, x_0) \cap W_0 \) is two points. Next, \(M(l, x_0) \cap W_1 \) is the disjoint union of two copies of \(\mathbb{C}^* \) and \(M(f, x_0) \cap W_1 \) is the disjoint union of two copies of \(\mathbb{C}^{**} \), where \(\mathbb{C}^* \) is \(\mathbb{C} \) minus a point and \(\mathbb{C}^{**} \) is \(\mathbb{C} \) minus two points. Then formula [5] gives:

\[
\text{Eu}_f(X, x_0) = (1 - 2) \cdot \text{Eu}(X, x_0) + (0 - (-2)) \cdot 1.
\]

We have \(\text{Eu}(X, x_0) = \text{Eu}(X \cap \{l = 0\}, x_0) \). Next \(\text{Eu}(X \cap \{l = 0\}, x_0) \) is just the Euler characteristic of the complex link of the slice \(X \cap \{l = 0\} = \{x^2 - y^2 = 0\} \). This complex link is two points, so \(\text{Eu}(X \cap \{l = 0\}, x_0) = 2 \). We therefore get \(\text{Eu}_f(X, x_0) = 0 \).

References

[BLS] J.-P. Brasselet, Lê D.T., J. Seade, *Euler obstruction and indices of vector fields*, Topology 39, no. 6 (2000), 1193–1208.

[BMPS] J.-P. Brasselet, D.B. Massey, A.J. Parameswaran, J. Seade, *Euler obstruction and defects of functions on singular varieties*, [math.AG/0902238](http://arxiv.org/abs/math.AG/0902238) to appear in J. London Math. Soc.

[EG] W. Ebeling and S. Gusein-Zade, *Indices of 1-forms on an isolated complete intersection singularity*, Moscow. Math. J. 3, no. 2 (2003), 439–455.
[GM] M. Goresky, R. MacPherson, *Stratified Morse theory*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Bd. 14. Berlin Springer-Verlag 1988.

[Go] V. Goryunov, *Functions on space curves*, J. London Math. Soc. 61 (2000), 807-822.

[GSV] X. Gómez-Mont, J. Seade and A. Verjovsky, *The index of a holomorphic flow with an isolated singularity*, Math. Ann. 291 (1991), 737-751.

[IS] T. Izawa, T. Suwa, *Multiplicity of functions on singular varieties*, Internat. J. Math. 14, 5 (2003), 541-558.

[Lé1] Lê D.T., *Some remarks on the relative monodromy*, Real and Complex Singularities Oslo 1976, Sijhoff en Nordhoff, Alphen a.d. Rijn 1977, pp. 397-403.

[Lé2] Lê D. T., *Le concept de singularité isolée de fonction analytique*, Adv. Stud. Pure Math. 8 (1986), 215-227, North Holland.

[Lé3] Lê D.T., *Complex analytic functions with isolated singularities*, J. Algebraic Geom. 1 (1992), 83–100.

[LSS] D. Lehmann, M. Soares and T. Suwa, *On the index of a holomorphic vector field tangent to a singular variety*, Bol.Soc.Bras.Mat. 26 (1995), 183–199.

[Lo] E.J.N. Looijenga, *Isolated Singular Points on Complete Intersections*, LMS Lecture Notes 77, Cambridge Univ. Press 1984.

[Mi] J. Milnor, *Singular points of complex hypersurfaces*, Ann. of Math. Studies 61, Princeton 1968.

[MS] D. Mond and D. Van Straten, *Milnor number equals Tjurina number for functions on space curves*, J. London Math. Soc. 63 (2001), 177–187.

[Sch] J. Schürmann, *Topology of singular spaces and constructible sheaves*, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series), 63. Birkhäuser Verlag, Basel, 2003.

[SS] J. Seade, T. Suwa, *A residue formula for the index of a holomorphic flow*, Math. Annalen 304 (1996), 621–634.

[St] N. Steenrod, *The Topology of Fiber Bundles*, Princeton Univ. Press, 1951.

[STV] J. Seade, M. Tibăr, A. Verjovsky, *Global Euler obstruction and polar invariants*, math.AG/0310431

[Ti] M. Tibăr, *Bouquet decomposition of the Milnor fiber*, Topology 35 (1996), no. 1, 227-241.

J.S. and A.V.: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Apartado postal 273-3, C.P. 62210, Cuernavaca, Morelos, México.

E-mail address: jseade@matem.unam.mx
E-mail address: alberto@matcuer.unam.mx

M.T.: Mathématiques, UMR 8524 CNRS, Université de Lille 1, 59655 Villeneuve d'Ascq, France.

E-mail address: tibar@math.univ-lille1.fr