Potential role of permafrost thaw on increasing Siberian river discharge

Ping Wang1, Qiwei Huang2, Sergey P Pozdniakov1, Shiqi Liu1, Ning Ma3, Tianye Wang4, Yongqiang Zhang5, Jingjie Yu2, Jiaxin Xie1, Guobin Fu1, Natalia I Frolova6 and Changming Liu1

1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China
2 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
3 Department of hydrogeology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119899, Russia
4 School of Water Conservancy Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, People’s Republic of China
5 CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia
6 Department of Land Hydrology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia

E-mail: liusq@igsnrr.ac.cn, wangqianye@zzu.edu.cn and wangping@igsnrr.ac.cn

Keywords: streamflow change, climate elasticity, Budyko framework, climate warming, permafrost degradation, Siberian rivers

Supplementary material for this article is available online

Abstract
Despite the increasing Siberian river discharge, the sensitivity of streamflow to climate forcing/permafrost thawing is poorly quantified. Based on the Budyko framework and superposition principles, we detected and attributed the changes in streamflow regimes for the three great Siberian rivers (Ob, Yenisei, and Lena) during 1936–2019. Over the past 84 years, streamflow of Ob, Yenisei and Lena has increased by ~7.7%, 7.4% and 22.0%, respectively. Intensified precipitation induced by a warming climate is a major contributor to increased annual streamflow. However, winter streamflow appears to be particularly sensitive to temperature. Whilst rising temperature can reduce streamflow via evapotranspiration, it can enhance groundwater discharge to rivers due to permafrost thawing. Currently, every 1 °C rise in temperature likely leads to 6.1%–10.5% increase in groundwater discharge, depending on the permafrost condition. For permafrost-developed basins, the contribution to increased streamflow from thawing permafrost will continue to increase in the context of global warming.

1. Introduction
The Arctic freshwater cycle is changing rapidly in recent decades due to climate warming (Rawlins et al 2010, Morison et al 2012, Fichot et al 2013, Lique et al 2016). Arctic rivers, which contribute approximately 40% of total freshwater into the Arctic Ocean (Serreze et al 2006, Haine et al 2013), are highly integral to the freshwater circulation in the Arctic (Bring et al 2017). Historical observations and climate model simulations demonstrated that the annual discharge of freshwater from the Arctic rivers has increased significantly over the past several decades (Peterson et al 2002, McClelland et al 2006, Overeem and Syvitski 2016). Under climate change conditions, its magnitude was projected to magnify in the 21st century (Haine et al 2015, Brown et al 2019). The Siberia is recognized as a hot spot with substantial changes in the hydrological cycle across the Arctic (Bring et al 2017, Golubeva et al 2019). Annually, all three great Siberian rivers (i.e. Ob, Yenisei and Lena from west to east, see figure 1) carry roughly 1600 km³ of freshwater into the Arctic Ocean (Magritsky et al 2018). Typically, these rivers are characterized by a nival hydrological flow regime with peak discharge during spring as a result of high snow-melt runoff (Yang et al 2003, 2007). Over the past few decades, the hydrological regime of Siberian rivers has experienced significant changes (Magritsky et al 2018), and these changes are expected to amplify further in the future (Zhang et al 2018). In addition to increase in annual river discharge, global warming and related changes in permafrost are causing a notable shift toward an earlier peak discharge in spring...
(Yang et al. 2002, Shiklomanov et al. 2007, Tananaev et al. 2016, Song et al. 2019, Melnikov et al. 2019a).

Among the three great Siberian Rivers, the Yenisei has the largest average annual runoff (591 km3 yr$^{-1}$), followed by the Lena (543 km3 yr$^{-1}$) and the Ob (407 km3 yr$^{-1}$) rivers in the period 1936–2019. Evidence of increasing Siberian river discharge to the Arctic Ocean has been presented in previous publications (Peterson et al. 2002, Berezovskaya et al. 2005). Earlier works suggested that the increase in precipitation induced by climate warming was the primary driver for the increase in Siberian river discharge (Fukutomi et al. 2003, McClelland et al. 2004), while permafrost thawing played a minor role in the observed long-term river runoff increase. Conversely, recent studies proposed the importance of meltwater from permafrost degradation (due to climate warming) in increasing the groundwater storage and river discharge across the major Siberian river basins (Lamontagne-Halle et al. 2018, Mu et al. 2019, Melnikov et al. 2019b). Permafrost thaw can cause localized increase in groundwater storage by thickening the active layer (Walvoord and Kurylyk 2016, Lamontagne-Halle et al. 2018), and enhancement of regional surface–groundwater interactions as a result of extensive permafrost loss (Evans et al. 2020). This can lead to more groundwater being discharged into the rivers.

By analyzing hydrological and meteorological data for the period 1936–2019, this study aims to (a) examine streamflow changes of the three largest Siberian rivers using observed daily river discharge of 1936–2019; and (b) reveal different contrasting responses of streamflow from mid- to high-latitude of the Northern Hemisphere to climate warming.

2. Methods

2.1. Groundwater-fed baseflow separation

Streamflow commonly originates from surface water (e.g. precipitation, snow/glacial melting, and etc) and groundwater discharge (e.g. lateral flow, permafrost thawing, and etc.). Therefore, we divide the streamflow (Q) into two components, surface-water-fed flow (Q_s) and groundwater-fed flow (Q_g). Different from Q_s, Q_g as a portion of relatively stable streamflow changes slightly in-season throughout a year (Tan et al. 2020). However, Q_g may increase slowly over years throughout the northern Eurasia (Evans et al. 2020) due to enhanced groundwater discharge and (or) increased shallow groundwater diffusive recharge caused by permafrost thawing (Walvoord and Kurylyk 2016, Biskaborn et al. 2019). As shown in figure 2(a), when the permafrost warms up, the active layer and talik thicken (O’Donnell et al. 2017). As a result, the upper boundary of permafrost starts to decline from State 1 to State 2. With subsequent increase in groundwater storage and groundwater flow (Lamontagne-Halle et al. 2018), Q_g gradually increases from State 1 to State 2, correspondingly, as shown in figure 2(b).

In cold regions, surface runoff during winter is negligible due to freezing conditions. Thus, winter streamflow is presumably from groundwater (St. Jacques and Sauchyn 2009). Assuming that winter streamflow is the minimum continuous stable
flow throughout a year for cold regions (Paznekas and Hayashi 2016), the yearly Q_g described in figure 2(b) can be estimated by the observed winter streamflow. Whilst the influence of climate warming on streamflow varies (Tan et al 2020), long-term changes in Q_g can be perceived as an indicator of climate change. In this study, the winter period (ice-covered period) in Siberia is from November to April (Wild et al 2019).

2.2. Sensitivity of streamflow to climate change

Following the Budyko framework (Budyko 1948), the basin-scale evapotranspiration (E) and streamflow (Q) can be calculated as a function of precipitation (P), potential evapotranspiration (E_0) and a parameter that describes basin properties (n) (Roderick and Farquhar 2011). Budyko equation, derived rigorously from a single mathematical assumption concerning the Budyko hypothesis, is widely applied to estimate the climate elasticity of streamflow (Sposito 2017). The generalized form of Budyko equation can be expressed as (Choudhury 1999, Roderick and Farquhar 2011):

$$E = \frac{PE_0}{(P^n + E_0^n)^{1/n}}.$$ \hspace{1cm} (1)

Assuming a steady state water balance for basins larger than 10 000 km², an analytical expression using first order approximation can be derived from equation (1) to quantify the sensitivity coefficients of streamflow to climate (P, E_0) and basin properties (n) (Roderick and Farquhar 2011):

$$\frac{dQ}{Q} = \left[P \left(1 - \frac{\partial E}{\partial P} \right) \right] \frac{dP}{P} + \left[\frac{E_0 \partial E}{Q \partial E_0} \right] \frac{dE_0}{E_0} = \left[\frac{n \partial E}{Q \partial n} \right] \frac{dn}{n} = \varepsilon_P \left(1 - \frac{1}{P} \right) \frac{dP}{P} + \varepsilon_{E_0} \frac{dE_0}{E_0} - \varepsilon_n \frac{dn}{n}.$$ \hspace{1cm} (2)

where ε_P, ε_{E_0}, and ε_n are the sensitivity coefficients of P, E_0, and n to Q, respectively.

For cold regions, climate warming induced permafrost thawing can increase winter streamflow (St. Jacques and Sauchyn 2009), which eventually contribute to the streamflow. We assume that the winter streamflow is completely contributed by groundwater and it remains constant throughout a year. With this assumption, we calculate the annual groundwater-fed baseflow (Q_g) in figure 2 from the measured winter streamflow. As mentioned earlier, changes in Q_g is expected to be a result of variation in temperature, which is confirmed for the three great Siberian rivers (section 3.3). Therefore, the relationship between changes in Q_g and T can be described as:

$$dQ_g = \alpha_T \times \frac{dT}{T} \times Q_g,$$ \hspace{1cm} (3)

where $dQ_g = Q_g - \bar{Q}_g$ is the groundwater-fed baseflow departure, mm; $dT = T - \bar{T}$ is the temperature departure, °C; α_T is the change rate of dQ_g/Q_g as a function of dT, °C⁻¹; \bar{Q}_g and \bar{T} are long-term mean annual groundwater-fed baseflow and temperature, respectively. Next, the changes in streamflow induced by temperature can be written as:

$$\frac{dQ}{Q} = \alpha_T \times \frac{dT}{T} \times \frac{Q_g}{Q}.$$ \hspace{1cm} (4)

For a large basin, Q_g/Q in equation (4) represents the percentage of groundwater-fed streamflow of the total streamflow, and it is highly dependent on the surface-water-fed streamflow (Q_s) (see figure 2(b)). Q_s is a partial product of P and E_0. Assuming other hydrological and hydrogeological conditions remain constant, Q_s increases when P increases and E_0 decreases. Therefore, we propose an empirical dependence of Q_g/Q on the $(P - E_0)$ as follows (see example of figure S5 in supplementary files (available online at stacks.iop.org/ERL/16/034046/mmedia)):

$$\frac{Q_g}{Q} = \beta - \gamma (P - E_0),$$ \hspace{1cm} (5)

where β and γ are the empirical parameters.
3. Results

3.1. Climate and streamflow changes over three basins

The Ob, Yenisei and Lena river basins differ greatly in temperature with multiyear mean (1936–2019) basin-averaged values of −0.07 °C, −5.91 °C and −10.09 °C, respectively (figure 3(a), table S1). These values are consistent with their areal extent of the permafrost (figure 1). For the Ob river basin, continuous permafrost constitutes merely 1% of the total basin area. By contrast, for the Yenisei and Lena river basins, continuous permafrost accounts for 30% and 73% of the total basin area, respectively (Brown et al 2002). Nevertheless, the warming rates of these three basins in the past 84 years are relatively consistent with approximately 0.25 °C/decade (p < 0.001) (table S1). Meanwhile, the Ob, Yenisei and Lena river basins experienced notable warming during winter (November to April according to Wild et al (2019)) with 0.36 °C/decade, 0.35 °C/decade and 0.36 °C/decade (all p < 0.001), respectively, which are all greater than the trends in the annual mean temperature.

The multiyear mean (1936–2019) annual precipitation (P) of the Ob, Yenisei and Lena river basins were 423 mm, 418 mm, and 348 mm, respectively (figure 3(b), table S1). During the past 84 years, precipitation had positive trends in these three basins, i.e. 9.18 mm/decade, 5.30 mm/decade and 7.67 mm/decade (all p < 0.001), respectively. Increased precipitation in this region could be related to enhanced regional evapotranspiration (McClelland et al 2004) and atmospheric moisture transport (Bintanja 2018), and also the Arctic Oscillation (Frey and Smith 2003) under climate warming.

The mean annual potential evaporation (E_0) in the Ob River basin (620 mm) is much larger than that in the Yenisei (472 mm) and Lena (433 mm) river basins (figure 3(c)). The E_0 slightly
trended upward across the Ob, Yenisei and Lena river basins with 5.23 mm/decade, 3.38 mm/decade and 2.51 mm/decade (all \(p < 0.001 \)), respectively. In the period 1936–2019, the \(P–Q \) (i.e. difference between \(P \) and \(Q \)) of the Ob, Yenisei and Lena river basins were about 41%, 38% and 29% of \(E_0 \), respectively. Similar to the multi-year trend of \(E_0 \) from west to east, the \(P–Q \) in these three basins increased with 7.7 mm/decade, 3.2 mm/decade, 2.3 mm/decade, respectively.

Yenisei is the largest river in Siberia with the mean annual streamflow \((Q) \) of 242 mm yr\(^{-1} \), followed by the Lena \((Q = 223 \text{ mm yr}^{-1}) \) and Ob \((Q = 168 \text{ mm yr}^{-1}) \) rivers (figure 3(d)). In the period 1936–2019, streamflow of the Lena River increased significantly with a positive trend of 5.26 mm/decade \((p < 0.001) \). While no significant trends in annual streamflow were detected for the Ob and Yenisei rivers over the same period (table S2). Analysis of ‘naturalized’ daily discharge (Shiklomanov 2010) showed that winter streamflow of the Ob \((1950–2007, p < 0.001) \), Yenisei \((1960–2004, p < 0.001) \) and Lena \((1959–2007, p < 0.01) \) rivers significantly increased by 1.57 mm/decade, 4.17 mm/decade, and 0.90 mm/decade, respectively.

Overall, among these three basins, the Ob River Basin is relatively warm, has ample precipitation and the highest potential evaporation, while the Lena River Basin is characterized by the coldest climate, less precipitation and the lowest potential evaporation (figure 3(e)).

3.2. Impacts of climate changes on streamflow

Following the methods of Risbey and Entekhabi (1996) and Fu et al (2007), we calculate the annual percentage departures for streamflow \((\Delta Q = \frac{Q_s - Q}{Q_s} \times 100\%) \), surface-water-fed streamflow \((\Delta Q_s = \frac{Q_s - Q_s}{Q_s} \times 100\%) \), groundwater-fed baseflow \((\Delta Q_g = \frac{Q_g - Q_g}{Q_g} \times 100\%) \), precipitation \((\Delta P = \frac{P_b - P}{P} \times 100\%) \), and temperature \((dT = T - T) \) for a specific basin and plot the results on a precipitation-temperature plane (figure 4). To better compare streamflow–precipitation–temperature relationship among different basins, we divide the precipitation and temperature departures by their corresponding standard deviations.

As shown in figure 4, it is clear that changes in \(Q \) are highly sensitive to changes in \(P \) but they are less sensitive to changes in \(T \) for the Ob and Lena river basins, which is consistent with a previous study (Xu et al 2020). By contrast, changes in \(Q \) are sensitive to both changes in \(P \) and changes in \(T \) for the Yenisei river basin. As a major component of streamflow, \(Q_b \) is even more sensitive to \(P \) for all three river basins, which is likely due to direct influence of \(P \) on \(Q_b \) (Ficklin et al 2016). To differ from \(Q_s \) and \(Q_g \), changes in \(Q_b \) are positive response to changes in \(T \), probably due to the enhanced groundwater discharge induced by permafrost thawing under a warming climate (Liu et al 2003). Additionally, \(Q_g \) also appears sensitive to \(P \) for Ob and Lena river basins. This is because \(Q_g \) reacts slowly to other delayed sources (such as \(P \)), although \(Q_g \) usually comes from groundwater storage (Hall 1968, Eckhardt 2008). Specifically, the response of changes in \(Q \) and \(Q_g \) to changes in climate variables in the Yenisei river basin is quite different from that in the other two river basins. This is probably because of reservoir regulations (Yang et al 2004, Stufer et al 2011) and a lack of continuous discharge data for the Yenisei River during 1963–1979.

Similar to Roderick and Farquhar (2011), we assume that changes in river basin storage are less relative to the magnitude of fluxes \((P, E, Q)\) over the pre-breakpoint \((1936–1987)\) and post-breakpoint \((1988–2019)\) periods of temperature, i.e. \(dQ = dP - dE\). Typically, values of \(n \) in equation (1) range between 0.6 and 3.6, and lower values of \(n \) denote a lower estimate of \(E \) for a given \(P \) and \(E_0 \) (Roderick and Farquhar 2011). As shown in table S3, for the Ob basin, the parameter \(n \) changes slightly from 0.99 to 1.08 from one state (pre-breakpoint) to another state (post-breakpoint). For the other two basins, the parameter \(n \) does not change between two states \((n = 0.75\) for the Yenisei basin, and \(n = 0.61\) for the Lena basin\), indicating the basin properties generally remain unchanged over the past 84 years (figure S3). The decreasing values of \(n \) from the Ob, Yenisei to Lena river basins suggest that relative value of \(E \) for given \(P \) and \(E_0 \) is getting smaller from the west to east Siberian basins, which consistent with the air temperature gradient across the Siberian. Previous studies (Li et al 2013, Shi et al 2019) estimated the values of \(n \) as between 1.1 and 1.2 for all three basins, which are higher than our calculated values (especially for the Yenisei and Lena river basins). These differences could be due to the different reanalysis data of \(P \) and \(E_0 \) used in analysis.

On this basis, theoretical result of Budyko framework (table S3) quantitatively predicts a positive response of streamflow to precipitation, and a 10% increase in \(P \) would result in increases in \(Q \) by approximately 16.2%, 13.5% and 12.6% for the Ob, Yenisei and Lena rivers, respectively. However, a 10% increase in \(E_0 \) would reduce \(Q \) by approximately 6.2%, 3.5% and 2.6% for the Ob, Yenisei and Lena rivers, respectively. These results indicate that the relative impact of \(P \) on the \(Q \) is much larger than \(E_0 \) for all three basins. Besides, the response of \(Q \) to climatic factors \(P \) and \(E_0 \) decreases from West to East Siberian, indicating that streamflow in colder regions with developed permafrost is less sensitive to \(P \) and \(E_0 \).

As mentioned earlier, changes in \(Q_g \) reflects the influence of temperature changes on streamflow. Analysis of the ‘naturalized’ daily discharge data by removing the dam/reservoir impact shows that \(Q_g \) of the Ob \((1950–2007)\), Yenisei \((1960–2004)\) and Lena \((1959–2007)\) river basins changed notably with increasing trends of 1.57 mm, 4.17 mm and
Figure 4. Contour plot of annual changes in streamflow (Q), surface-water-fed streamflow (Q_s), and groundwater-fed baseflow (Q_g) as a function of annual changes in precipitation (P) and temperature (T). Q is the observed streamflow during the period 1936–2019, Q_s and Q_g are calculated from ‘naturalized’ daily discharge (Shiklomanov 2010) for the Ob (1950–2007), Yenisei (1960–2004) and Lena (1959–2007) rivers. dT and std(dT) are the temperature departure from the average annual temperature and its standard deviation; $△P$ and std$(△P)$ are the relative changes in annual precipitation to the mean annual precipitation and its standard deviation; $△Q$, $△Q_s$, and $△Q_g$ are the relative changes in annual Q, Q_s, and Q_g to their mean annual values, respectively.

3.3. Predicting streamflow for future climates

By neglecting the changes in basin properties (n), we apply equations (2), (4) and (5) and consider the effect of T, P and E_0 on streamflow to predict the streamflow of the three great Siberian Rivers (listed in table S4). Figure 5 shows the relationship between observed and simulated dQ/Q during the period 1936–2019. In general, the simulated dQ/Q is in good agreement with the observed, especially for the Lena River. The correlation between simulated and observed dQ/Q is quite low for the Yenisei River, probably related to the intense reservoir operations which altered natural changes and variations in river regime (Yang et al 2004, Stuefer et al 2011). Additionally, the lack of continuous daily streamflow data during the period 1963–1979 for the Yenisei River weakens the reliability and accuracy in streamflow simulation.

Relative to the period 1980–2000, the annual mean air temperature in Siberia is likely to increase by \sim3 °C–5 °C by the end of the 21st century (Groisman et al 2013). An increase in temperature would be accompanied by increasing precipitation, intense and frequent extreme precipitation events (Burt et al 2016). To understand the further changes in Q that corresponds to climate changes, we adopt the modeling results for the highest emission scenario RCP 8.5 by the Institute of Numerical Mathematics Climate Model Version 4 (INMCM4). Comparing 2081–2100 (RCP8.5) with 1981–2000, the annual

0.90 mm per decade ($p < 0.05$), respectively. Analysis of relationship between annual mean temperature departure ($T − T$) and changes in Q_g (dQ_g/Q_g) indicates that an increase of 1 °C annual mean temperature would increase Q_g of the Ob, Yenisei and Lena river basins by approximately 6.1%, 10.5% and 7.8% (all $p < 0.05$), respectively. Equivalently, 1 °C warming would increase the annual streamflow of the Ob, Yenisei and Lena river basins by approximately 2.2%, 2.7%, and 1.0%, respectively. This suggests that a warmer climate would cause the baseflow to rise, which could lead to an increase in total streamflow in cold regions. Nonetheless, the influence of rising temperature on the streamflow is rather complex (Tan et al 2020).
average temperatures of the Ob, Yenisei, and Lena river basins would increase by 4.54 °C, 4.64 °C, and 4.71 °C, respectively; and their annual precipitations would increase by 17%, 21%, and 24%, respectively (Martynova and Krupchatnikov 2018). We use the equations described in table S4 to estimate streamflow in 2081–2100. We correlate changes in E_0 with change T (by using the correlation between annual E_0 and annual average temperature during the period 1936–2019), assuming the changes in E_0 only depend on the T changes (figure S4).

As shown in table S5, by comparing 2000–2019 with 1981–2000, the mean annual temperatures of the Ob, Yenisei and Lena river basins have increased by 0.53 °C, 0.62 °C, and 0.71 °C, respectively. This confirms that climate warming rate increased from west to east Siberia. This is similar to the predicting scenario trend in 2081–2100 and also shows that warming effect in colder regions is much greater than the warmer regions. Observations demonstrate that over the past 20 years, streamflows of the Ob, Yenisei, and Lena rivers have increased by 5%, 2% and 9%, respectively. It is expected that the intensified climate warming to the end of 21st century would significantly increase the annual streamflow of the Lena (~28%) and Yenisei (~20%) rivers, and some increase in the streamflow of the Ob River (~9%) (table S5). Our predictions are in agreement with the previous estimates, which suggested that an increase of annual mean streamflow would be up to 15% for the Ob River, 20% for the Yenisei River, and 25% for the Lena River by 2081–2100 (Groisman et al 2013).

This suggests that in the colder region (such as Lena River), where most of the basin area is covered by continuous permafrost, streamflow is more sensitive and responsive to a warmer climate (Liu et al 2003, Zhao et al 2020).

Considering an empirical relationship between Q_g/Q and $P-E_0$ (figure S5), we further estimated the changes in Q_g under a warming climate for Lena River, a drainage basin with larger extent of continuous permafrost (table S1). From 1981–2000 to 2000–2019, a 0.71 °C warming resulted in an increase in Q_g of approximately 2 mm, accounting for 10% of the total increase in Q (~20 mm). When the temperature increases by 4.71 °C by the end of 21st century, a percentage of the increase in Q_g (~12 mm) to the total increase in Q (~62 mm) is expected to hit 19% (table S5). This suggests that the contribution of groundwater discharge to annual streamflow due to permafrost thawing in permafrost-dominated basins would continue to increase under global warming.

4. Discussion

Over the period of 1936–2019, Siberian river basins have experienced significant increase in streamflow, with increased precipitation being one of the major contributing factors. Moreover, permafrost thawing (Biskaborn et al 2019, Makarieva et al 2019, Song et al 2019) and glacier melting (Schaner et al 2012, Chesnokova et al 2020) in cold regions induced by climate warming also caused the streamflow to increase, which is evidenced by the increase in winter
streamflow (Streletskiy et al 2015, Evans et al 2020). Historical data analysis demonstrated that the rate of warming is faster and the increase in Q is greater in basins with large permafrost distribution (e.g. Lena River). Our projection also indicated that the contribution of groundwater discharge to the streamflow due to permafrost thawing would continue to increase in the context of global warming, especially for the permafrost-dominated river basins. This implies that river basins with significant permafrost coverage are more sensitive to a warming climate (Liu et al 2003). Although temperature plays an important role in interannual streamflow variability (Milly et al 2018), the influence of rising temperature on the streamflow in permafrost region is complicated (Woo et al 2008, Tan et al 2020). For a relatively warm river basin with low permafrost coverage (e.g. Ob), rising temperature can increase the basin evapotranspiration, which can in turn reduce the streamflow (Shi et al 2020).

It is worth noting that for ice-rich permafrost in the Siberian river basins, the excess ground ice provides plenty of water for subsurface flow. Meanwhile, ground ice may influence the rate and timing of permafrost thaw (Lee et al 2014). More importantly, ice-rich permafrost degradation drives widespread landscape collapse, forming numerous thermokarst (Farquharson et al 2019, Nitzbon et al 2020) with increasing surface water storage (Fedorov et al 2014). In a sense, the whole hydrological systems are dynamic and changeable (Liijedahl et al 2016). Additionally, the interaction between surface water and groundwater is largely restricted to taliks (Bense et al 2012), and open talik breakthrough most likely leads to enhanced exchange between surface water bodies and sub-permafrost aquifers (Walvoord and Kurylyk 2016).

From hydrographic perspective, this study presented the various responses of streamflow to warming climate under spatially heterogeneous climate, land-cover and hydrogeological conditions. Following a space-for-time substitution approach, streamflow in a colder basin (e.g. Lena) would evolve into that of a warmer basin (e.g. Ob). Permafrost thaw due to rising temperatures would increase streamflow (Zhao et al 2019). However, with further permafrost degradation, such positive effect on streamflow would probably be offset by the negative effect of increased basin evapotranspiration over time. This would result in a situation where runoff hit a threshold level and then decline. This situation clearly appeared in the Ob River basin, which is characterized by the highest precipitation but the lowest streamflow among the three river basins. Regarding the Yenisei and Lena rivers, the climatic conditions for the threshold of maximum streamflow to occur remain unclear, thus further research would be needed.

Our knowledge about the response of streamflow changes in large basins to climate warming is partly limited by the data shortage and data quality (Woo et al 2008), and partly constrained by the complex feedbacks that precede the permafrost-vegetation-hydrology-climate system. Given the complications to estimate global trends in evapotranspiration and uncertainties in precipitation projections, future changes of surface water budget over the Northern Eurasia remain uncertain (Ohmura and Wild 2002, Liu et al 2014). Therefore, uncertainties in streamflow predictions still exist in a warm climate over Siberia, which are limited by future climate projections and our understanding of feedback between land surface hydrology and climate systems.

5. Conclusions

In this study, we attempted to gain insight into the response of streamflow to climate changes in the cold regions from mid- to high-latitude of the Northern Hemisphere by analyzing the long-term meteorological and hydrological data (1936–2019) in the three largest Siberian river basins. To evaluate the impact of warming temperatures on streamflow, a groundwater-fed baseflow (Q_b) associated with the observed winter streamflow was proposed. We assumed the changes in Q_b to be the results of enhanced groundwater discharge to river due to permafrost thawing, although increases in precipitation (Bintanja 2018) could also lead to Q_b to increase.

This study made an attempt to explain how climate warming leads to permafrost thawing, which further affects streamflow, ignoring the changes in topography, vadose zone structure, vegetation patterns, and surface–groundwater interactions resulting from permafrost thawing. In our view, closely linked permafrost and climate change is the key driver that alters hydrological processes in cold regions. Hence, it is necessary to strengthen critical zone observations and mathematical modeling on nonlinear freeze-thaw processes (Woo et al 2008, Lamontagne-Hallé et al 2020) at sub-basin scales under different climate and permafrost conditions.

Data availability statement

The data that support the findings of this study are openly available at the following DOI: https://doi.org/10.5281/zenodo.4430254.

Acknowledgments

This research was funded by NSFC-RFS (42061134017 and 21-47-00008), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA2003020101), the Science and Technology Basic Resources Investigation Program of China (Nos. 2017FY101302, 2017FY101301), the Key Project of the Chinese Academy of Sciences (No. ZDRW-ZS-2017-4), and the 67th China Postdoctoral
Science Foundation (No. 2020M670434). The authors gratefully acknowledge the anonymous associate editor and reviewers for their valuable comments and suggestions, which have led to substantial improvements over an earlier version of the manuscript.

ORCID iDs

Ping Wang https://orcid.org/0000-0003-2481-9953
Qiwei Huang https://orcid.org/0000-0001-9021-6320
Shiqi Liu https://orcid.org/0000-0002-4706-1316
Ning Ma https://orcid.org/0000-0003-4580-0661
Tianye Wang https://orcid.org/0000-0001-7534-931X
Guobin Fu https://orcid.org/0000-0002-3968-4871

References

Bense V F, Kooi H, Ferguson G and Read T 2012 Permafrost degradation as a control on hydrogeological regime shifts in a warming climate J. Geophys. Res.: Earth Surf. 117 F03036

Bereozovskaya S, Yang D and Hinzman L 2005 Long-term annual water balance analysis of the Lena River Global Planet Change 48 84–95

Bintanja R 2018 The impact of Arctic warming on increased rainfall Sci. Rep. 8 16001

Biskaborn B K et al 2019 Permafrost is warming at a global scale Nat. Commun. 10 264

Bring A, Shiklomanov A and Lammers R B 2017 Pan-Arctic river discharge: prioritizing monitoring of future climate change hot spots Earths Future 5 72–92

Brown J et al 2002 Circum-arctic map of permafrost and ground-ice conditions, version 2 (Boulder, CO: NSIDC: National Snow and Ice Data Center)

Brown N J, Nilsson J and Pemberton P 2019 Arctic Ocean freshwater dynamics: transient response to increasing river runoff and precipitation J. Geophys. Res.: Oceans 124 5205–19

Budyko M I 1948 Evaporation under Natural Conditions (in Russian) (Leningrad: Gidrometeoizdat) pp 1–136

Burt T P, Howden N J K and Worrall F 2016 The changing water cycle: hydroclimatic extremes in the British Isles Wiley Interdiscip. Rev.: Water 3 854–70

Chesnokova A, Baraër M and Bouchard É 2020 Proglacial ice caps as records of winter hydrological processes Cryosphere 14 4145–64

Choudhury B J 1999 Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model J. Hydrol. 216 99–110

Eckhardt K 2008 A comparison of baseflow indices, which were calculated with seven different baseflow separation methods J. Hydrol. 352 168–73

Evans S G et al 2020 Potential mechanistic causes of increased baseflow across northern Eurasia catchments underlain by permafrost Hydrol. Process 34 2676–90

Farquharson L M, Romanovsky V E, Cable W L, Walker D A, Kokelj S V and Nizolksy D 2019 Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian High Arctic Geophys. Res. Lett. 46 6681–9

Fedorov A N, Gavriliev P P, Konstantinov P Y, Hiyama T, Iijima Y and Iwahama G 2014 Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia Ecolhydrology 7 188–96

Fichot C G, Kaiser K, Hooker S B, Amon R M W, Babin M, Belanger S, Walker S A and Benner R 2013 Pan-Arctic distributions of continental river runoff in the Arctic Ocean Sci. Rep. 3 1053

Ficklin D L, Robeson S M and Knouft J H 2016 Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds Geophys. Res. Lett. 43 5079–88

Frey K E and Smith L C 2003 Recent temperature and precipitation increases in West Siberia and their association with the Arctic Oscillation Polar Res. 22 287–300

Fu G B, Charles S P and Chiew F H S 2007 A two-parameter climate elasticity of streamflow index to assess climate change effects on annual streamflow Water Resour Res 43 W11419

Fukutomi Y, Igarashi H, Masuda K and Yasunari T 2003 Interannual variability of summer water balance components in three major river basins of Northern Eurasia J. Hydrometeorol. 4 283–96

Golubeva E, Platov G, Ishakinda D and Kraineva M 2019 A simulated distribution of Siberian river runoff in the Arctic Ocean IOP Conf. Ser.: Earth Environ. Sci. 386 012022

Groisman P Y et al 2013 Climate changes in Siberia Regional Environmental Changes in Siberia and Their Global Consequences ed P Y Groisman and G Gutman (Berlin: Springer) pp 57–109

Haine T W N et al 2015 Arctic freshwater export: status, mechanisms, and prospects Global Planet Change 125 13–35

Hall F R 1968 Base-flow regressions—a review Water Resour. Res. 4 973–83

Lamontagne-Halle P, McKenzie J M, Kurylyk B L and Zipper S C 2018 Changing groundwater discharge dynamics in permafrost regions Environ. Res. Lett. 13 084017

Lamontagne-Halle P, McKenzie J M, Kurylyk B L, Molson J and Lyon L 2020 Guidelines for cold-regions groundwater numerical modeling WIREs Water 7 e1467

Lee H, Svensson S C, Slater A G and Lawrence D M 2014 Effects of excess ground ice on projections of permafrost in a warming climate Environ. Res. Lett. 9 124006

Li D, Pan M, Cong Z, Zhang L and Wood E 2013 Vegetation control on water and energy balance within the Budyko framework Water Resour Res 49 969–76

Liljedahl A K et al 2016 Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology Nat. Geosci. 9 312–8

Lique C, Holland M M, Dibike Y B, Lawrence D M and Screen J A 2016 Modeling the Arctic freshwater system and its integration in the global system: lessons learned and future challenges J. Geophys. Res.: Biogeosci. 121 540–66

Liu J, Hayakawa N, Lu M, Dong S and Yuan J 2003 Hydrological and geocryological response of winter streamflow to climate warming in Northeast China Cold Reg. Sci. Technol. 37 15–24

Liu Y L et al 2014 Response of evapotranspiration and water availability to the changing climate in Northern Eurasia Clim. Change 126 413–27

Magritsky D V et al 2018 Long-term changes of river water inflow into the seas of the Russian Arctic sector Polarforschung 87 177–85

Makarieva O, Nesterova N, Post D A, Sherstyukov A and Lebedeva L 2019 Warming temperatures are impacting the hydrogeomorphological regime of Russian rivers in the zone of continuous permafrost Cryosphere 13 1635–59

Martynova Y V and Krupchatnikov V N 2018 Siberian vegetation cover response to projected future climate change IOP Conf. Ser.: Earth Environ. Sci. 211 012031

McClelland J W et al 2014 Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change J. Geophys. Res.: E 20 1053

McClelland J W, Déry S J, Peterson B J, Holmes R M and Wood E F 2006 A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century Geophys. Res. Lett. 33 L06715
Melnikov V P, Pikinorov P V, Gennadinik V B, Babushkin A G and Moskovchenko D V 2019a Change in the hydrological regime of Siberian rivers as an indicator of changes in cryological conditions Doklady Earth Sci. 487 990–9
Melnikov V P, Pikinorov P V, Gennadinik V B, Babushkin A G and Moskovchenko D V 2019b Runoff over Siberian river basins as an integrate proxy of permafrost state Doklady Earth Sci. 487 679–83
Milly P C D, Kao J and Dunne K A 2018 On the sensitivity of annual streamflow to air temperature Water Resour Res 54 2624–41
Morison J, Kwock R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R and Steele M 2012 Changing Arctic Ocean freshwater pathways Nature 481 66–70
Mu C, Zhang F, Chen X, Ge S, Mu M, Jia L, Wu Q and Zhang T 2019 Carbon and mercury export from the Arctic rivers and response to permafrost degradation Water Res. 161 54–60
Nitzbon J, Westermann S, Langer M, Martin L C P, Strauss J, Laboor S and Boike J 2020 Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate Nat. Commun. 11 2201
O’Donnell J A et al 2017 Potential effects of permafrost thaw on arctic river ecosystems Alaska Park Sci. 16 47–49
Ohmura A and Wild M 2002 Climate change is the hydrological cycle accelerating? Science 298 1345–6
Overeem I and Svititsky I P M 2016 Shifting discharge peaks in arctic rivers, 1977–2007 Geogr. Ann. Ser. A Phys. Geogr. 92 285–96
Paznekas A and Hayashi M 2016 Groundwater contribution to winter streamflow in the Canadian Rockies Can. Water Resour. J. 41 484–99
Peterson B J et al 2002 Increasing river discharge to the Arctic Ocean Science 298 2171–3
Rawlins M A et al 2010 Analysis of the Arctic system for freshwater cycle intensification: observations and expectations J. Clim. 23 5715–37
Risbey J S and Entekhabi D 1996 Observed Sacramento Basin streamflow response to precipitation and temperature changes and its relevance to climate impact studies J. Hydrol. 184 209–23
Roderick M L and Farquhar G D 2011 A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties Water Resour Res 47 W00G07
Schaner N, Voisin N, Nijssen B and Lettenmaier D P 2012 The contribution of glacier melt to streamflow Environ. Res. Lett. 7 034029
Sereze M C, Barrett A P, Slater A G, Woodgate R A, Aagaard K, Lamers R B, Steele M, Moritz R, Meredith M and Lee C M 2006 The large-scale freshwater cycle of the Arctic J. Geophys. Res.: Oceans 111 C11010
Shi R et al 2020 Spatiotemporal variations in frozen ground and their impacts on hydrological components in the source region of the Yangtze River J. Hydrol. 590 125237
Shi X et al 2019 Changes in major global river discharges directed into the ocean Int. J. Environ. Res. Public Health 16 1469
Shiklomanov A I 2010 Collaborative UAF/UNH research: study of dam/reservoir-induced hydrologic changes in Siberian regions: regional analysis to Pan-Arctic synthesis (available at: www.r-arcticnet.sr.unh.edu/ObervedAndNaturalizedDischarge-Website/)
Shiklomanov A I, Lammers R B, Rawlins M A, Smith L C and Pavelsky T M 2007 Temporal and spatial variations in maximum river discharge from a new Russian data set J. Geophys. Res.: Biogeosci. 112 G04S53
Song C, Wang G, Mao T, Dai J and Yang D 2019 Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau Sci. China Earth Sci. 63 292–302
Sponsio G 2017 Understanding the Budyko equation Water 9 236
St. Jacobs J-M and Sauchyn D J 2009 Increasing winter baseflow and mean annual streamflow from possible permafrost thawing in the Northwestern Territories, Canada Geophys. Res. Lett. 36 L01401
Streletskiy D A, Tananaev N I, Opel T, Shiklomanov N I, Nyland K E, Streletskaya I D, Tokarev I and Shiklomanov A I 2015 Permafrost hydrology in changing climatic conditions: seasonal variability of stable isotope composition in rivers in discontinuous permafrost Environ. Res. Lett. 10 095003
Stuefer L S et al 2011 Effect of streamflow regulation on mean annual discharge variability of the Yenisei River Cold Regions Hydrology in a Changing Climate ed D Yang, P Marsh and A Gelfan (Wallingford: IAHSS Press) pp 27–52
Tan X J, Liu B and Tan X 2020 Global changes in baseflow under the impacts of changing climate and vegetation Water Resour Res 56 e2020WR027349
Tananaev N I, Makarieva O M and Lebedeva I S 2016 Trends in annual and extreme flows in the Lena River basin, Northern Eurasia Geophys. Res. Lett. 43 764-10, 772
Walvoord M A and Kurylyk B L 2016 Hydrologic impacts of thawing permafrost—a review Vadose Zone J. 15 1–20
Wild B, Andersson A, Bröder L, Vonk J, Hugelius G, McClelland J W, Song W, Raymond P A and Gustafsson Ö 2019 Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost Proc. Natl Acad. Sci. USA 116 10280–5
Woo M K, Kane D L, Carey S K and Yang D 2008 Progress in permafrost hydrology in the new millennium Permafrost Periglacial Processes 19 237–54
Xu M, Kang S, Wang X, Wu H, Hu D and Yang D 2020 Climate and hydrological changes in the Ob River Basin during 1936–2017 Hydrolog. Process. 34 1823–36
Yang D et al 2003 Streamflow response to seasonal snow cover extent changes in large Siberian watersheds J. Geophys. Res. 108 4578
Yang D, Kane D L, Hinzman L D, Zhang X, Zhang T and Ye H 2002 Siberian Lena River hydrologic regime and recent change J. Geophys. Res.: Atmos. 107 4694
Yang D, Ye B and Kane D 2004 Streamflow changes over Siberian Yenisei River Basin J. Hydrol. 296 59–80
Yang D, Zhao Y, Armstrong R, Robinson D and Brodzik M J 2007 Streamflow response to seasonal snow cover mass changes over large Siberian watersheds J. Geophys. Res. 112 F02S22
Zhang X J et al 2018 Nonlinearity of runoff response to global mean temperature change over major global river basins Geophys. Res. Lett. 45 6109–16
Zhao L et al 2019 Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau Bull. Chin. Acad. Sci. 34 1233–46
Zhao L et al 2020 Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau Permafrost Periglacial Process. 31 396–405