In vivo markers of inflammatory response in recent-onset schizophrenia: a combined study using $^{[11]}$C/DPA-713 PET and analysis of CSF and plasma

JM Coughlin1,2, Y Wang2, EB Ambinder2, RE Ward1, I Minn2, M Vranesic2, PK Kim1, CN Ford1, C Higgs1, LN Hayes1, DJ Schretlen1, RF Dannals2, M Kassiou3, A Sawa3 and MG Pomper1,2

Several lines of evidence suggest aberrant immune response in schizophrenia, including elevated levels of cytokines. These cytokines are thought to be produced by activated microglia, the innate immune cells of the central nervous system. However, levels of cytokines in patients with chronic schizophrenia using second-generation radiotracers and positron emission tomography (PET)-based neuroimaging. In this study, we focused on patients with recent onset of schizophrenia (within 5 years of diagnosis). Quantified levels of TSPO in the cortical and subcortical brain regions using the PET-based radiotracer $^{[1]}$C/DPA-713 were compared between the patients and healthy controls. Markers of inflammation, including interleukin 6 (IL-6), were assessed in the plasma and cerebrospinal fluid (CSF) in these participants. We observed no significant change in the binding of $^{[1]}$C/DPA-713 to TSPO in 12 patients with recent onset of schizophrenia compared with 14 controls. Nevertheless, the patients with recent onset of schizophrenia showed a significant increase in IL-6 in both plasma ($P < 0.001$) and CSF ($P = 0.02$). The CSF levels of IL-6 were significantly correlated with the levels of IL-6 in plasma within the total study population ($P < 0.001$) and in patients with recent onset of schizophrenia alone ($P = 0.03$). Our results suggest that increased levels of IL-6 may occur in the absence of changed TSPO PET signal in the brains of medicated patients with recent onset of schizophrenia. Future development of PET-based radiotracers targeting alternative markers of glial activation and immune response may be needed to capture the inflammatory signature present in the brains of patients with early-stage disease.

INTRODUCTION

Epidemiologic, genetic and preclinical studies support a role of early-life infection and/or altered immune response in the etiology of schizophrenia.1,2 Perhaps related to initial insult and immune response, elevated levels of circulating cytokines, many with pro-inflammatory roles, have been repeatedly found in patients with schizophrenia, even in the early stages of disease.3–5 From these findings, a model in which interleukin 6 (IL-6) and other cytokines have detrimental effects on brain maturation and neurotransmission has been proposed.6–8 Furthermore, biological immunotherapies targeting specific cytokines such as IL-6 have been suggested as future treatment strategies.9 Nevertheless, it is unclear whether levels of peripheral cytokines reflect levels within the central nervous system (CNS), and the temporal relationship between microglial activation and exaggerated cytokine signaling in schizophrenia has not yet been studied in vivo.

Activated microglia and astrocytes in the CNS are the primary sources of cytokines during reactive, inflammatory response, although neurons and endothelial cells may serve as other sources in select conditions within certain signaling cascades.10–12 Quantitative measures of glial cell activation in the different stages of schizophrenia can be probed in vivo using radiotracers targeting the translocator protein 18 kDa (TSPO) and positron emission tomography (PET).13–18 Importantly, TSPO expression is greatly increased in activated glial cells in states of brain injury and repair.14 Building on the improved pharmacokinetic characteristics of second-generation radiotracers over the index compound $^{[1]}$C/PK11195,18 two recent in vivo PET studies used second-generation radiotracers ($^{[1]}$C/DAA1106, $^{[18]}$F/FEPPA), and reported no change in binding to TSPO in the brains of patients with chronic schizophrenia.19,20 However, within both study populations, observed variability in regional binding to TSPO suggested that increased expression of TSPO may vary within patients. Binding of $^{[1]}$C/DAA1106 in the brains of patients with schizophrenia correlated significantly with positive symptoms as well as duration of illness.18 However, the much larger study of patients using $^{[18]}$F/FEPPA PET had several methodological advantages and found no difference in regional brain binding of $^{[18]}$F/FEPPA in patients with active psychotic symptoms compared with matched, healthy controls.20 Finally, a third study by Bloomfield et al.21 used the second-generation radiotracer $^{[1]}$C/PBR28 and PET in patients with chronic schizophrenia as well as those at ultra-high risk for psychosis. There was no difference in binding of $^{[1]}$C/PBR28 between groups using standard kinetic analysis based on the two-tissue compartmental model. However, after applying a new kinetic model that accounts for putative binding to vasculature,22 and then normalizing regional binding to...
that of whole brain, a significant increase in [11C]PBR28 signal in schizophrenia and in the at-risk state was found in some gray matter regions.21 Each of these three studies included at most one or two patients in their first years of schizophrenia and therefore these studies were unable to evaluate whether TSPO in the brain was increased with hypothesized inflammatory processes in the early stages of disease.

Although results from recent PET-based imaging yield conflicting evidence of TSPO PET signal in the brains of patients, robust cytokine release early in the course of schizophrenia was recently supported by meta-analysis of peripheral cytokine abnormalities in patients, including those with first episode of psychosis (FEP).1–3 The meta-analysis by Miller et al. revealed significantly (P < 0.001) higher levels of several peripheral cytokines and cytokine-response modifiers in patients with FEP over controls, including plasma levels of IL-6 (effect size (ES) = 1.4), soluble interleukin 2 receptor (ES = 1.03), interferon γ (IFNγ, ES = 0.57), transforming growth factor β (ES = 0.48), IL-1β (ES = 0.6), tumor necrosis factor α (TNFα, ES = 0.81) and IL-12 (ES = 0.98). Meta-analysis of cytokine function in medication-naïve FEP also demonstrated significant elevations in peripheral IL-1β, sIL-2r, IL-6 and TNFα. Some of these same cytokines were also included in two studies of cerebrospinal fluid (CSF) in FEP, although CSF levels of IL-1β were decreased (ES = −0.99, P < 0.001) and CSF levels of both IL-6 and IL-12 were unchanged in these samples from unmedicated patients with FEP.4 In our own published studies of CSF from medicated patients with recent onset of schizophrenia (defined as within the first 5 years of disease) and unmedicated FEP, we showed a consistent trend of increased CSF levels of IL-6 in both patient groups compared with levels in controls.22,23 Still, lack of larger studies of inflammatory markers in CSF of patients with FEP and recent onset of schizophrenia limit the ability to generalize findings of peripheral cytokine abnormalities to the most relevant tissues, namely those within CNS.

We recently demonstrated that PET-based neuroimaging using the second-generation radiotracer [11C]DPA-713 provided improved delivery of radiotracer to the brain and properties consistent with improved specific binding to TSPO compared with the first-generation radiotracer, [11C]PK11195.24,25 Importantly, we also showed that [11C]DPA-713 PET was sufficiently sensitive to detect increases in TSPO in the brains of patients with human immunodeficiency virus-associated dementia26 and those with a history of sports-related, repetitive mild traumatic brain injury.27 Here we aimed to use [11C]DPA-713 and high-resolution PET to compare binding of the radiotracer in the brains of patients with recent onset of schizophrenia to that of healthy controls who were matched in age, gender, highest educational level and body mass index. In parallel, we tested these same individuals for changes in IL-6 levels in CSF and peripheral tissue, along with other markers of peripheral immune response. Through the use of these complementary methods in vivo, we sought to characterize better the neuropathological signature of inflammation in patients with recent onset of schizophrenia.

MATERIALS AND METHODS

Human subjects

This study was approved by the Johns Hopkins Institutional Review Board. All the participants provided informed consent. Patients with recent onset of schizophrenia (defined as within 5 years of diagnosis) were recruited from the Johns Hopkins Medical Institutions and from hospitals in the surrounding greater Baltimore–Washington, DC area. Inclusion criteria included diagnosis of schizophrenia according to the Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition after completion of diagnostic and clinical assessment administered by a board-certified psychiatrist (JMC). This assessment included the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition Axis I Disorders-Clinician Version.28 Scales for the Assessment of Positive and Negative Symptoms (SAPS and SANS)29 and the Calgary Depression Scale.10 Patients were excluded if they had (1) history of neurological disorder, structural brain abnormality or history of traumatic brain injury with loss of consciousness; (2) history of special education or known learning disability; (3) history of an inflammatory medical condition including but not limited to diabetes, human immunodeficiency virus and/or hepatitis; (4) benzodiazepine use in the past 6 months; (5) substance abuse (for example, cannabis, alcohol) in the previous 6 months or any history of substance dependence except for nicotine; (6) contraindication to participation in magnetic resonance imaging (MRI); or (7) contraindication to participation in PET including pregnancy. Summary severity scores for three dimensions of symptoms (positive, negative and disorganized) were calculated using the sums of global scores collected from the SAPS and SANS. Chlorpromazine equivalents were calculated based on the report by Andreasen et al.31 Healthy adults were recruited from flyers posted in the greater Baltimore–Washington, DC area and by word of mouth. All the healthy controls underwent a careful clinical interview and were without history of medical disease or surgery during the previous year. Healthy controls were excluded if they had any of the above-mentioned exclusion criteria or a Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition Axis I disorder. All subjects in both the patient and control groups were also assessed for TSPO (rs6971) genotype as previously described.26

Neuropsychological assessment

All the participants completed a 2-h battery of neuropsychological tests to assess the cognitive function in five domains, namely processing speed, verbal memory, visual memory, ideational fluency and executive function.33 Neuropsychological tests (Supplementary Table S1) were administered and scored according to standard instructions by the same study team neuropsychologist who was blind to the clinical and imaging data of all the participants. The factor scores were calculated for each domain after controlling for age, sex, race and premorbid intelligence based on a normative sample.34,35 Premorbid intelligence was estimated using the Hopkins Adult Reading Test.36

Radiotracer synthesis

[11C]DPA-713 was synthesized by O-alkylation of its corresponding desmethyl phenolic precursor with [11C]methyl triflate in acetone.27 [11C]Methyl triflate was obtained from dry phase, high specific activity [11C]methyl iodide prepared in a General Electric Mel MicoLab (Milwaukee, WI, USA) from [11C]carbon dioxide produced in a General Electric PET/CT cyclotron by proton irradiation of a target consisting of oxygen 5% in nitrogen ultra high purity. The radiotracer was purified by reverse-phase high-performance liquid chromatography and formulated by solid phase extraction as a sterile, apyrogenic solution of 1:41:0.9% saline-ethanol. Radiotracer purity at the end of synthesis was >99% with an average specific activity of 303 ± 118 GBq per micromol (8176 ± 3179 mCi per micromole). The radiotracer product met all USP Chapter <823> acceptance criteria.

Brain imaging acquisition

Each participant was fitted with a thermoplastic facemask to minimize the head motion and underwent radial artery catheter insertion for repeated blood sampling. [11C]DPA-713 was delivered via an intravenous bolus injection at the onset of a 90-min dynamic list mode PET acquisition. The average injected dose was 682.3 (±24.1) MBq. Measurement of the arterial plasma input function was conducted as previously described25 through the collection of 25–35 blood samples (1 ml) over the course of each 90-min PET scan. An additional eight serial 4 ml samples were collected for radiolabeled metabolite measurements.38 The PET scans were acquired using a second-generation High Resolution Research Tomograph scanner (Siemens Healthcare, Knoxville, TN, USA), an LS-O-ring, dedicated brain PET system with 2.5 mm resolution. The 90 min list mode data were binned into 30 frames (four 15-s, four 30-s, three 1-min, two 2-min, five 4-min and twelve 5-min frames). The data were then reconstructed using the iterative three-dimensional ordered subset expectation maximization algorithm (with six iterations and 16 subsets), with correction for radioactive decay, dead time, attenuation, scatter and randoms.39 The attenuation maps were generated from a 6-min transmission scan performed with a 137Cs point source before the emission scan. The reconstructed image space consisted of cubic voxels, each 1.22 mm3 in size, and spanning dimensions of 31 cm x 31 cm (transaxially) and 25 cm (axially).
The plasma and CSF samples were tested for concentrations of IL-1β, IFNγ, IL-10 and IL-6 using a V-Plex Custom Human Biomarkers kit (Human Proinflammatory Panel 1), and for TNFα using a Human TNFα kit (MDS (Meso Scale Discovery), Rockville, MD, USA). Each kit provided a 96-well plate pre-coated with anti-cytokine antibodies (four-spot or monospot) at the base of each well. All the reagents were provided in each kit. The control samples were reconstituted in diluent according to the manufacturer’s instructions. The human plasma samples were diluted twofold and CSF samples were run undiluted. Sixty microliters of each MSD SULFO-TAG anti-human antibody (anti-IL-1β, anti-IFNγ, anti-IL-6 and anti-IL-10) were combined with the diluent. Sixty microliters of Sulfo-Tag Anti-human TNFα antibody was added to the diluent. Fifty microliters of each prepared control or sample preparation was added to each well and incubated on an orbital shaker for 2 h at room temperature. Each plate was washed three times and 25 μl of detection antibody solution was added to each well. The plates were then incubated on an orbital shaker for 2 h at room temperature, then washed three times and detection buffer was added to each well. Electrochemiluminescence of each MSD SULFO-TAG was captured and quantified using a Meso QuickPlex SQ 120 instrument. The raw data were then analyzed using the Discovery Workbench 4.0 software (MSD) by fitting signal from the control calibration curves to a four-parameter logistic model and then back-fitting the electrochemiluminescence signal from each sample to calculate the unknown concentration. The samples were run in duplicate. Calculated mean concentrations with a percentage coefficient of variance > 25% were excluded from the analysis.

The plasma levels of IL-1β were below the levels of detection of this assay for almost all the samples and are not presented. In CSF, the levels of IL-1β, IFNγ, IL-10 and TNFα were often below the levels of detection of this assay. Thus, CSF levels of IL-6 are presented here.

Statistical analysis

The statistical analyses of the primary PET outcome measure, regional \(V_T \), were performed with multivariate general linear modeling using SPSS Statistics (Version 22.0, IBM, Armonk, NY, USA) so that the effects of several factors could be examined. Specifically, we modeled the \(V_T \) values obtained from the eight selected ROIs based on their relationship to between-subject factors, including cohort (patient or control) and TSPO genotype (C/C: high affinity binder, C/T: mixed affinity binder) as independent fixed factors. Patients with genotype T/T were excluded from this analysis of PET data due to the low affinity of \([^{11}C] \)DPA-713 for TSPO in individuals with the T/T genotype. Similar analyses were repeated for regional values \(V_{f_p} \).

All other statistical analyses were performed using R.44 Demographic and clinical characteristics of patients vs controls were compared using two sample \(t \)-tests for continuous variables and Fisher’s exact test for categorical variables, with the threshold for significance set to \(P < 0.05 \). Group differences in CSF and plasma inflammatory markers, and in GMV, were compared using the nonparametric Mann-Whitney \(U \)-test due to the small sample size. Correlation between CSF and plasma levels of IL-6 was evaluated using Pearson’s \(r \) test. Secondary multivariate analysis using linear regression was used to (1) evaluate effects of clinical characteristics on \(V_T \) in GM and (2) assess the effect of ROI volume normalized to total ICV on \(V_T \) in each ROI, while controlling for genotype in these analyses. Patients with genotype T/T were excluded from the multivariate analysis of PET data. The data were expressed as mean ± s.d., unless otherwise noted.

The threshold for significance in all the statistical tests involving regional \(V_T \) was set as \(P < 0.006 \), taking into account multiple comparisons for the eight ROIs using the Bonferroni correction (0.05/8=0.006). The threshold for significance in all the statistical tests involving the four peripheral markers tested was set as \(P < 0.013 \) (=0.05/4). Statistical significance was otherwise defined as \(P < 0.05 \), except when otherwise noted.

RESULTS

Study population

Demographic characteristics of the study population and clinical characteristics of the patients are presented in Table 1. A total of 14 patients with recent onset of schizophrenia (ages 19–30 years) and 16 healthy control subjects (ages 18–36 years) participated in this study. None of the healthy subjects were using prescribed or over-the-counter medications, with the exception of inclusion of...
two female participants taking an oral contraceptive. Two of the healthy controls and three of the patients were cigarette smokers. The patients and controls were well matched in age, gender and highest level of education. Two patients were non-adherent with prescribed medications and therefore were not taking antipsychotic medication in the month before the PET scan. One patient was on two second-generation antipsychotic medications and all the other patients were taking antipsychotic monotherapy. The range of chlorpromazine equivalents within the study population was 0–1119.

Two patients and three healthy controls did not participate in the neuropsychological testing. Testing for in the domain of attention was added after the initiation of this study and therefore five additional patients and two additional controls lack neuropsychological performance scores in the domain of attention. The patients showed significant deficits in performance in tests of processing speed, verbal learning and memory, and visuospatial memory compared with healthy controls \((P < 0.05/6 = 0.008)\).

ROI volumes

The quantitative analysis of the MR-based segmentation results for the eight ROIs showed no significant evidence of regional brain atrophy in the patients with recent onset of schizophrenia compared with controls after Bonferroni correction for multiple comparisons \((P > 0.05/8 = 0.006; \text{Table 2})\). There were also no significant differences between patients and controls in the volume of the total gray matter and ICV.

\[^{11}\text{C}]\text{DPA-713 PET imaging}\n
Among the 16 control subjects and 14 patients with recent onset schizophrenia, two healthy controls and two patients were found to have the T/T genotype and were excluded from the PET image analysis. Eight patients had C/C genotype and four patients had C/T genotype. Nine controls had the C/C genotype and five had the C/T genotype.

Table 1. Clinical and demographic characteristics

	HC (n = 16)	**SZ (n = 14)**	**p**
Age (years)	24.9 (4.7)	24.1 (3.1)	0.58
Gender (male)	9 (56%)	11 (79%)	0.26
Years of education	13.0 (2.0)	11.5 (2.3)	0.08
Body mass index	24.9 (4.0)	27.6 (4.0)	0.08
Years of disease	2.2 (1.4)	2.7 (1.4)	
CPZ equivalents	474.5 (355.2)	394.5 (315.2)	
Atypical antipsychotic (%) using	85.7	14.3	
Typical antipsychotic (%) using	85.7	14.3	

SAPS/SANS

Negative symptom dimension	8.9 (4.1)	
Positive symptom dimension	3.8 (2.5)	
Disorganized symptom dimension	2.9 (2.0)	

Calgary Depression Scale

| | 0.13 (0.34) | 3.36 (5.08) | 0.03 |

Neurocognitive domains

Processing speed (HC/SZ: 13/12)	95.5 (12.1)	79.4 (13.6)	0.005
Attention (HC/SZ: 9/7)	104.3 (13.9)	92.1 (15.6)	0.12
Verbal learning and memory (HC/SZ: 13/12)	108.3 (14.7)	81.5 (19.1)	< 0.001
Visuospatial memory (HC/SZ: 13/12)	99.6 (12.3)	81.3 (16.8)	0.006
Ideational fluency (HC/SZ: 13/12)	105.3 (11.7)	89.5 (15.7)	0.01
Executive function (HC/SZ: 13/12)	102.4 (10.9)	92.7 (17.8)	0.12

**Table 2. Comparison of measured volumes of each ROI between patients with recent onset schizophrenia and healthy controls who underwent \[^{11}\text{C}]\text{DPA-713 PET}\n
ROI	**HC (n = 14)**	**SZ (n = 12)**	**p**
Hippocampus	8.87 (0.90)	8.41 (0.64)	0.143
Amygdala	3.84 (0.51)	3.36 (0.43)	0.015
Frontal cortex	170.70 (16.43)	157.55 (24.83)	0.134
Temporal cortex	101.61 (11.14)	93.36 (16.46)	0.158
Parietal cortex	111.96 (13.67)	103.90 (19.30)	0.241
Occipital cortex	45.36 (5.22)	44.08 (7.38)	0.620
Cingulate cortex	20.86 (2.58)	18.25 (2.09)	0.009
Insular cortex	29.31 (3.92)	28.89 (4.23)	0.794
Total gray matter	633.20 (63.45)	602.17 (86.13)	0.315
Intracranial volume	1454.10 (157.73)	1434.68 (139.87)	0.742

Abbreviations: HC, healthy controls; PET, positron emission tomography; ROI, region of interest; SZ, patients with recent onset of schizophrenia. *Regional volumes reported in mm\(^3\) for the patients and control subjects who underwent PET imaging. **P-values for t-tests across the eight selected ROIs, as well as the total gray matter and the total intracranial volume. Accounting for the eight selected ROIs, the threshold for significance was \(P < 0.05/8 = 0.006\).**

Using two-way analysis of variance with genetic group (C/C vs C/T) and cohort (patients with schizophrenia vs controls) as independent, fixed factors, \(F\) values between patients with schizophrenia and controls were not significantly different in all ROIs tested (Figure 1, Supplementary Table S2). Use of both \(V_{\text{T}}\) (Supplementary Table S3) and \(V_{\text{T}}\) corrected for plasma free fraction \((V_{\text{T}}/f_{\text{P}})\) did not change these results. Multivariate regression analysis using data from patients and controlling for genotype showed no significant effect of ROI volume normalized to total ICV on \(V_{\text{T}}\) in each of the eight ROIs \((P > 0.05/8 = 0.006)\).

CSF IL-6 levels

Three patients and four controls declined the lumbar puncture for provision of CSF. The concentration of IL-6 in CSF from 11 patients...
DISCUSSION

Converging evidence from the epidemiologic, genetic, preclinical and clinical studies of schizophrenia suggest a key role of inflammation and/or altered immune response in schizophrenia, particularly in the early stages of disease. Activation of microglia, the resident immune cells of the CNS, may not be necessarily deleterious and could be a normal response to independent pathologic processes. Accordingly, the characterization of glial cell activation at the onset and over the early course of disease may inform the temporal relationship to other early pathologic markers and symptomatology. PET-based imaging of TSPO offers a unique opportunity to probe for this marker of activated glial cells (microglia, astrocytes) in vivo, based on the increased expression of TSPO by activated glia in states of brain injury or repair. We recently showed [11C]DPA-713 PET allows us to measure increases in TSPO in other neurologic diseases associated with inflammation.

Interestingly, the results from this study are inconsistent with the hypothesized increase of TSPO by activated glia in early disease. The secondary multivariate analysis using linear regression revealed no significant effect of both CSF IL-6 and plasma IL-6 on [11C]DPA-713 V_T in GM in the total population after controlling for TSPO genotype ($P = 0.83$ and $P = 0.21$, respectively). Exploratory analyses of the effects of clinical characteristics, neurocognitive performance and levels of other plasma immune markers on [11C]DPA-713 V_T in GM are presented in Supplementary Table S4. Among these results, there was only one nonsignificant and small, negative effect of chlorpromazine equivalents on V_T in GM ($P = 0.05$).

Effect of IL-6 on V_T

The secondary multivariate analysis using linear regression revealed no significant effect of both CSF IL-6 and plasma IL-6 on [11C]DPA-713 V_T in GM in the total population after controlling for TSPO genotype ($P = 0.83$ and $P = 0.21$, respectively). Exploratory analyses of the effects of clinical characteristics, neurocognitive performance and levels of other plasma immune markers on [11C]DPA-713 V_T in GM are presented in Supplementary Table S4. Among these results, there was only one nonsignificant and small, negative effect of chlorpromazine equivalents on V_T in GM ($P = 0.05$).
schizophrenia. Because of the variability of the regional VT values within these patients, we also examined the results using gMVT. Briefly, the use of gMVT has been shown to be an effective empirical approach for eliminating genotypic differences while improving the consistency of the data (including intrasubject reproducibility and intersubject agreement among healthy controls). Still, regional gMVT values did not differ in patients relative to controls. There was also no significant difference in fP and VT between patients and controls, which is important as [11C]DPA-713 free plasma fractions (~10%) are higher than those reported for other second-generation radiotracers and therefore are more accurately estimated. Finally, as atrophy of the brain has been shown even in patients with FEP,40–42,50 we also examined the effect of ROI volume normalized to ICV on the VT in each respective ROI, but found no effect.

Our results are similar to those from PET-based neuroimaging of patients with chronic schizophrenia, in which use of [18F]FEPPA, [11C]DAA1106 and [11C]PBR28 revealed no change in regional binding (VT or BPND) of patients compared with controls.19–21 Bloomfield et al21 found higher regional [11C]PBR28 PET signal normalized to that of whole brain in patients at ultra-high risk for schizophrenia and in chronic patients using compartmental modeling that also accounted for putative irreversible binding in vasculature (2TCM-1K).22 Investigation of this irreversible binding component in [11C]DPA-713 PET imaging is ongoing. However, as kinetic modeling of [11C]DPA-713 PET data from several healthy controls poorly fits the kinetic model proposed by Rizzo et al.22 (our unpublished data), and biological evidence for this trapping to vasculature is still lacking, we present outcome variables generated using Logan analysis consistent with previously published literature.26,27 The consistency of our results using VT and gMVT supports the absence of higher [11C]DPA-713 PET signal in patients with early-stage disease.

It is important to note that [11C]DPA-713 PET signal is only an indirect measure of microglial activation in the living brain. Future translational directions should focus on improved methods for in vitro experiments looking for markers of activated microglia directly, in carefully selected postmortem tissue41,52 from early-stage disease. As our patient population showed an increase in CSF and plasma concentrations of IL-6, a cytokine released by microglia during in vitro activation,23 we examined the effects of ROI volume normalized to ICV on the VT in each respective ROI, but found no effect.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This work was supported by NARSAD (JMC, AS), the Alexander Wilson Schweizer Fellowship (JMC), Mitsubishi Tanabe Parma Corporation, and Silvio O. Conte Center grant MH094268. We thank the Johns Hopkins PET Center for expert provision of [11C]DPA-713.

REFERENCES

1 Brown AS. Further evidence of infectious insults in the pathogenesis and pathophysiology of schizophrenia. Am J Psychiatry 2011; 168: 764–766.
2 Horvath S, Mirnics K. Immune system disturbances in schizophrenia. Biol Psychiatry 2014; 75: 316–323.
3 Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 2008; 63: 801–808.

Translational Psychiatry (2016), 1 – 8
23 Coughlin JM, Ishizuka K, Kano SI, Edwards JA, Seifuddin FT, Shimano MA et al.
22 Rizzo G, Veronese M, Tonietto M, Zanotti-Fregonara P, Turkheimer FE, Bertoldo A et al.
20 Kenk M, Selvanathan T, Rao N, Suridjan I, Rusjan P, Remington G et al.
15 Ching AS, Kuhnast B, Damont A, Roeda D, Tavitian B, Dolle F. Current paradigm of
19 Takano A, Arakawa R, Ito H, Tateno A, Takahashi H, Matsumoto R et al.
18 Chauveau F, Boutin H, Van Camp N, Dolle F, Tavitian B. Nuclear imaging of
17 Owen DR, Matthews PM. Imaging brain microglial activation using positron
14 Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of
11 Curfs JH, Meis JF, Hoogkamp-Korstanje JA. A primer on cytokines: sources,
7 Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia:
5 Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-
4 Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine
31 Miller DJ, Andrt S, Andreasen NC. Alogia, attentional impairment, and inap-
29 Andreasen NC, Pessler M, Nopoulos P, Miller D, Ho BC. Antipsychotic dose
28 Ojeda N, Pena J, Schretlen DJ, Sanchez P, Areoto E, Eliazarate E et al. Hier-
27 Parmenter BA, Testa SM, Schretlen DJ, Weinstock-Guttman B, Benedict RH. The
26 Ojeda N, Pena J, Schretlen DJ, Sanchez P, Areoto E, Eliazarate E et al. Hier-
25 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
24 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
22 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
21 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
20 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
19 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
18 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
17 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
16 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
15 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
14 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
13 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
12 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
11 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
10 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
9 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
8 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
7 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
6 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
5 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
4 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
3 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
2 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in
1 Ogura A, Doi H, Miller DD, Andreasen NC. Cortical gray volume reduction in

Translational Psychiatry (2016), 1 – 8
56 Danovich L, Veenman L, Leschiner S, Lahav M, Shuster V, Weizman A et al. The influence of clozapine treatment and other antipsychotics on the 18 kDa translocator protein, formerly named the peripheral-type benzodiazepine receptor, and steroid production. Eur Neuropsychopharmacol 2008; 18: 24–33.

57 Watkins LR, Maier SF, Goehler LE. Cytokine-to-brain communication: a review & analysis of alternative mechanisms. Life Sci 1995; 57: 1011–1026.

58 Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol 1993; 54: 1–78.

59 Behrens MM, Ali SS, Dugan LL. Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 2008; 28: 13957–13966.

60 Tezuka T, Tamura M, Kondo MA, Sakaue M, Okada K, Takemoto K et al. Cuprizone short-term exposure: astrocytic IL-6 activation and behavioral changes relevant to psychosis. Neurobiol Dis 2013; 59: 63–68.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)