Supporting information for:

The role of orbital symmetries in enforcing ferromagnetic ground state in mixed radical dimers

Akseli Mansikkamäki and Heikki M. Tuononen*

University of Jyväskylä, Department of Chemistry, Nanoscience Centre, P. O. Box 35, FI-40014, University of Jyväskylä, Finland.

E-mail: heikki.m.tuononen@jyu.fi
Phone: +358 40 805 3713

Computational details

Technical details

All DFT calculations were carried out using GAUSSIAN 09 quantum chemistry software revision D.01. A validation study of different exchange-correlation (XC) functionals was carried out (wide infra). The tested functionals included the global hybrids B3LYP, PBE0, M06, M06-2X, and the range-separated hybrids LC-ωPBE, CAM-B3LYP, and ωB97XD. Each functional was utilized both with and without the DFT-D3 dispersion correction, except for ωB97XD, which includes dispersion correction in the functional definition. Both the older zero damping function and the newer Becke–Johnson (BJ) damping function were considered, except for M06 and M06-2X functionals,
which have only been parametrized for the zero damping function. Based on the validation study, the range-separated LC-ωPBE functional with empirical dispersion correction using BJ damping (denoted as LC-ωPBE-D3BJ) was chosen for the final calculations. The “UltraFine” grid in GAUSSIAN (99 radial shells and 590 angular points per shell) was used in integration of exchange-correlation potential. In geometry optimizations, no constraints were placed on spatial or spin symmetries, and frequency calculations were carried out to ensure that all stationary points lie at true minima on the potential energy surfaces. A threshold of 10^{-7} was used for the convergence of the coupled-perturbed Hartree–Fock equations in the frequency calculations. The “Tight” convergence criteria in GAUSSIAN ($1.5 \cdot 10^{-5}$, $1.0 \cdot 10^{-5}$, $6.0 \cdot 10^{-5}$, and $4.0 \cdot 10^{-5}$ for maximum force, RMS force, maximum displacement, and RMS displacement, respectively) was used in geometry optimizations, which ensures convergence very close to numerical accuracy. Stability analysesS20,S21 were carried out both before and after geometry optimizations to ensure that all converged states represent a minimum in the variational space. Enthalpy corrections (including zero point energy corrections) were calculated from the partition functions constructed from electronic energies and the calculated harmonic vibrational frequencies using standard expressions. All DFT calculations, including functional validation studies, utilized the def2-TZVP basis sets.S22

DLPNO-CCSD(T)S23–S26 calculations were carried out using ORCA software version 4.0.1S27 with the default parameters. Dunning’s correlation consistent basis setsS28 were used along with corresponding auxiliary correlation fitting basis sets.S29 Valence triple-ζ quality cc-pVTZ basis sets were used for atoms in the phenalenyl or oxophenalenoxy core moieties, whereas smaller valence double-ζ quality cc-pVDZ basis sets were used for atoms in the peripheral tert-butyl groups to reduce the overall computational costs.

Exchange coupling constants

Exchange coupling constants were calculated using the broken symmetry (BS) formalism.S30–S32 A high-spin (HS) state with spin projection $M_S = 1$ and a low-spin (LS) state with spin
projection \(M_S = 0 \) were optimized. The corresponding exchange coupling constant was then evaluated using the Yamaguchi projection\(^{33-36}\)

\[
J = E_S - E_T \approx \frac{2(E_{LS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}},
\]

where \(E_S \) and \(E_T \) are the energies of the singlet and triplet state, respectively, \(E_{LS} \) and \(E_{HS} \) are the energies of the LS and HS states, respectively, and \(\langle S^2 \rangle_{LS} \) and \(\langle S^2 \rangle_{HS} \) are the expectation values of the \(\hat{S}^2 \) operator evaluated on the Kohn–Sham determinant. \(E_{LS} \) and \(E_{HS} \) in equation (1) are evaluated at a fixed geometry, but the equation can also be generalized into an adiabatic situation where the geometries are allowed to relax\(^{37}\) assuming that i) the energy and geometry evaluated for the HS state are reasonable approximations of the triplet energy and geometry, and ii) the geometry optimized for the LS state is a reasonable approximation of the singlet geometry. The first assumption certainly seems valid as the HS state is single-determinant and therefore should pose no problem to DFT; the latter assumption inevitably introduces some approximation. As \(J \) is equal to the single–triplet splitting, the energy of the singlet state is given as

\[
E_S = E_T + J = E_T + \frac{2(E_{LS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}} \approx E_{LS} + \frac{2(E_{LS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}},
\]

where the subscripts indicate the state and the superscripts indicate the geometry the energy or \(\langle S^2 \rangle \) value is evaluated in. Using this result, the exchange coupling constants were evaluated in the LS geometry \((J_{LS}) \), in the HS geometry \((J_{HS}) \), and using the adiabatic singlet–triplet splitting \((J_{adiabatic}) \) as

\[
J_{LS} = \frac{2(E_{LS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}},
\]

\[
J_{HS} = \frac{2(E_{HS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}},
\]

\[
J_{adiabatic} = E_{HS} + \frac{2(E_{LS} - E_{HS})}{\langle S^2 \rangle_{HS} - \langle S^2 \rangle_{LS}} - E_{HS}.
\]

S3
Dimerization enthalpies

The dimerization energies (ΔE) and enthalpies (ΔH) were evaluated using two different approaches; in validation studies (vide infra) all terms in the expressions were evaluated at DFT level, and in the final calculations energy terms of the HS states were evaluated at DLPNO-CCSD(T) level using the DFT optimized geometries, and the exchange coupling constants and enthalpy corrections to the energies were evaluated at the DFT level. In both cases the basis set superposition error (E_{BSSE}) was estimated using the counterpoise method38 either at the DFT or DLPNO-CCSD(T) level depending on which energies were used in the expressions. Using only DFT energies, the dimerization energies and enthalpies in the LS and HS states are given as

\begin{align}
\Delta E_{LS} &= [E_{HS}^{LS}(DFT) + J_{LS}^{LS}] - E_{\text{monomer1}}^{DFT} - E_{\text{monomer2}}^{DFT} + E_{BSSE}^{LS}(DFT) \quad (6) \\
\Delta E_{HS} &= E_{HS}^{HS}(DFT) - E_{\text{monomer1}}^{DFT} - E_{\text{monomer2}}^{DFT} + E_{BSSE}^{HS}(DFT) \quad (7) \\
\Delta H_{LS} &= [E_{HS}^{LS}(DFT) + H_{LS}^{LS} + J_{LS}] - [E_{\text{monomer1}}^{DFT} + H_{\text{monomer1}}]
- [E_{\text{monomer2}}^{DFT} + H_{\text{monomer2}}] + E_{BSSE}^{LS}(DFT) \quad (8) \\
\Delta H_{HS} &= [E_{HS}^{HS}(DFT) + H_{HS}^{HS}] - [E_{\text{monomer1}}^{DFT} + H_{\text{monomer1}}]
- [E_{\text{monomer2}}^{DFT} + H_{\text{monomer2}}] + E_{BSSE}^{HS}(DFT), \quad (9)
\end{align}

where (2) has been used to estimate the energy of the singlet state, E_{monomer1} and E_{monomer2} are the energies of the monomers in their optimized doublet geometries, and H_{LS}^{LS}, H_{HS}^{HS}, H_{monomer1}, and H_{monomer2} are the enthalpy corrections to the LS, HS, and monomer energies evaluated at DFT level using geometries optimized for the respective states. The enthalpy correction H_{LS}^{LS} is taken as a reasonable approximation to the enthalpy correction of the singlet state. Using the DLPNO-CCSD(T) energies for the HS states, the analogous expressions
are given as

\[\Delta E_{LS} = \left[E_{HS}^{LS} \text{(DLPNO-CCSD(T))} + J_{LS} \right] \]

\[- E_{\text{monomer1}}(\text{DLPNO-CCSD(T)}) - E_{\text{monomer2}}(\text{DLPNO-CCSD(T)}) \]

\[+ E_{\text{BSSE}}^{LS}(\text{DLPNO-CCSD(T)}) \]

\[\Delta E_{HS} = E_{HS}^{HS}(\text{DLPNO-CCSD(T)}) \]

\[- E_{\text{monomer1}}(\text{DLPNO-CCSD(T)}) - E_{\text{monomer2}}(\text{DLPNO-CCSD(T)}) \]

\[+ E_{\text{BSSE}}^{HS}(\text{DLPNO-CCSD(T)}) \]

\[\Delta H_{LS} = \left[E_{HS}^{LS}(\text{DLPNO-CCSD(T)}) + H_{LS}^{LS} + J_{LS} \right] \]

\[- \left[E_{\text{monomer1}}(\text{DLPNO-CCSD(T)}) + H_{\text{monomer1}} \right] \]

\[- \left[E_{\text{monomer2}}(\text{DLPNO-CCSD(T)}) + H_{\text{monomer2}} \right] + E_{\text{BSSE}}^{LS}(\text{DLPNO-CCSD(T)}) \]

\[\Delta H_{HS} = \left[E_{HS}^{HS}(\text{DLPNO-CCSD(T)}) + H_{HS}^{HS} \right] \]

\[- \left[E_{\text{monomer1}}(\text{DLPNO-CCSD(T)}) + H_{\text{monomer1}} \right] \]

\[- \left[E_{\text{monomer2}}(\text{DLPNO-CCSD(T)}) + H_{\text{monomer2}} \right] + E_{\text{BSSE}}^{HS}(\text{DLPNO-CCSD(T)}), \]

It should be noted that \(\Delta E_{HS} \) is calculated purely from DLPNO-CCSD(T) energies (although using DFT optimized geometries), whereas \(\Delta E_{LS} \) is evaluated using the exchange coupling constants calculated at the BS DFT level.
Validation studies

In order to produce reliable results in calculations on the hypothetical 2–3 dimer, several functionals were first validated against experimental data. Based on the results presented below, the range-separated LC-ωPBE hybrid functional with the DFT-D3 dispersion correction and BJ damping function was chosen for the final calculations.

Exchange coupling constants

The exchange coupling constants calculated using various functionals were compared to the experimentally measured values. The calculated values of the exchange coupling constants depend both on the geometry used for the calculations and the ability of the chosen XC functional to correctly estimate the energy differences between different spin states within the context of BS formalism. It is well known that values of exchange coupling constants have strong dependence on the XC functional,37,39–48 whereas the geometry optimizations tend to compensate for the functional error.49 In order to eliminate the degrees of freedom related to geometry optimizations, the calculations were carried out as single point energy evaluations on geometries extracted from experimental crystal structures. Based on SQUID measurements,50–52 the exchange coupling constant in 2–2 has been determined as roughly -1390 cm^{-1}. The measurement has, however, been carried out in the presence of paramagnetic impurities and the experimental reference should therefore be considered only as a rough estimate. The exchange coupling constant in 2–2 has also been determined from peak intensities of the EPR spectrum, giving a value of -2910 cm^{-1}, which is more than twice the magnitude of the SQUID value.53 Due to the uncertainties related to the experimental value of the exchange coupling constant in 2–2, in addition to the 2–2 dimer, validation calculations were also carried out on the dimer of 3,5-di-\textit{tert}-butyl-8-\textit{para}-bromophenyl-6-oxophenalenoxyl (4), which is structurally similar to 3–3 and for which an exchange coupling constant of -267 cm^{-1} has been reliably determined from SQUID data.54
The calculated exchange coupling constants are listed in Table S1. It is immediately clear that all values calculated for 2–2 are considerably larger in magnitude than the value estimated from SQUID measurements. The value calculated with the range-separated LC-\(\omega\)PBE functional is closest to the SQUID value but its magnitude is still more than twice that of the experimental value. The LC-\(\omega\)PBE value is, however, relatively close to the value extracted from EPR measurements. All functionals do correctly produce the qualitative aspects of the interaction: the strong AFM exchange. In the case of the 4–4 dimer, all calculated values are much closer to experiment. The best match is again obtained with LC-\(\omega\)PBE, and the value calculated with the global hybrid PBE0 is also extremely close to experiment. However, all tested functionals provide a reasonable estimate of the exchange coupling constant in this case.

Table S1: Exchange coupling constants (\(J_{LS}\), in cm\(^{-1}\)) calculated for 2–2 and 4–4 using various XC functionals

	2–2	4–4
B3LYP	3669	286
PBE0	3531	266
M06	3787	251
M06-2X	4239	309
LC-\(\omega\)PBE	2754	267
CAM-B3LYP	3323	253
\(\omega\)B97XD	3431	247
Experimental	1390\(^{s90}\)	267\(^{s54}\)
		2910\(^{s53}\)
Geometries and dimerization enthalpies

The structures of the monomer 2 and the 2–2 dimer in its LS state were optimized using different XC functionals. The C–C distance between the central carbons of the two monomers in the dimer geometry were compared with the value in the experimental crystal structure (3.201 Å). This was chosen as the most important structural parameter as the radical–radical exchange interaction is usually extremely sensitive to the distance between the radicals. The calculated dimerization enthalpies were also compared to those measured experimentally in solution. The enthalpy has been determined both from UV-Vis measurements (−31.4 kJ mol⁻¹, −36.8 kJ mol⁻¹) and from the EPR spectrum (−39.9 kJ mol⁻¹). The calculated values are listed in Table S2. Only the M06 and M06-2X functionals are able to produce reasonable estimates of the central C–C distance without the inclusion of some dispersion correction. In the case of all other functionals, the dimer dissociates if dispersion is not corrected for. The best estimate of the C–C distance is provided with the B3LYP-D3 functional, and the functionals LC-ωPBE-D3, LC-ωPBE-D3BJ, M06-2X, M06-2X-D3, PBE0-D3, and PBE0-D3BJ all give an error of less than 0.01 Å.

The calculated dimerization enthalpies are either overbinding, or repulsive in the case of dimers which dissociate. The closest estimate to the experimental values is obtained with CAM-B3LYP-D3 (with an overestimated C–C distance) and the M06-2X functional. In both cases, the magnitude of the dimerization enthalpy is still nearly double the experimental values. The large deviations could results from solvent interactions not accounted for in the calculations. Preliminary calculations were carried out using a polarizable continuum model to account for electrostatic solvent interactions, but no significant differences in the results was observed. This does not, however, rule out the possibility of stabilizing non-electrostatic solvent interactions. Based on these observations, the ability of the chosen XC functional to correctly predict the geometry was made the main criteria, and in the final calculations the dimerization enthalpy was calculated using DLPNO-CCSD(T) energies evaluated on the DFT optimized geometries. This approach should considerably reduce the dependence of
Table S2: Dimerization energies (ΔE_{LS}), enthalpies (ΔH_{LS}), and central C–C distances calculated for 2–2 using various XC functionals

XC	ΔE_{LS} / kJ mol$^{-1}$	ΔH_{LS} / kJ mol$^{-1}$	d(C–C) / Å
B3LYP	12.9	14.2	6.897
B3LYP-D3	−90.8	−77.6	3.151
B3LYP-D3BJ	−101.2	−87.6	3.082
PBE0	−0.5	3.8	4.945
PBE0-D3	−88.9	−81.3	3.270
PBE0-D3BJ	−89.7	−80.2	3.137
M06	−95.0	−88.7	3.313
M06-D3	−149.7	−142.5	3.310
M06-2X	−83.0	−74.0	3.127
M06-2X-D3	−107.6	−98.4	3.127
LC-ωPBE	−2.8	2.2	8.223
LC-ωPBE-D3	−90.1	−82.7	3.299
LC-ωPBE-D3BJ	−99.0	−91.7	3.276
CAM-B3LYP	0.3	−4.7	9.997
CAM-B3LYP-D3	−81.5	−73.3	3.446
CAM-B3LYP-D3BJ	−89.0	−81.0	3.450
ωB97XD	−115.1	−105.5	3.310
Experimental	-31.4$^{\text{S55}}$	3.201$^{\text{S52}}$	
	-36.8$^{\text{S56}}$		
	-39.9$^{\text{S56}}$		

the calculated dimerization enthalpies on the choice of the XC functional. See the main text for results.

It is worth noting here that Kertesz and co-workers have optimized the geometry of 2–2 using the M05-2X functional without any dispersion correction and obtained a dimerization energy (including zero point and counterpoise corrections) of $−32.9$ kJ mol$^{-1}$ and a central C–C distance of 3.209 Å, both in very good agreement with experiments.557 In the present work, the dimerization energy calculated using the M06-2X functional (which is an improved version of M05-2X) without any dispersion correction is $−83.0$ kJ mol$^{-1}$ (the respective enthalpy is $−74.0$ kJ mol$^{-1}$). Thus, the value presented here is considerably larger than that calculated by Kertesz and co-workers. We own these differences to the use of spin-projection in our calculations and the larger basis sets. In the present work, initial calculations were carried out using the smaller def2-SVP558 and TZVP559 basis sets but after observing con-
siderable deviations between the results, all DFT data were re-calculated using the larger
def2-TZVP basis.
Additional computational data

Table S3: Energies and enthalpy corrections (E and H, in Hartree atomic units), and $\langle S^2 \rangle$ values calculated for 2–2, 3–3, and 2–3

	2–2	3–3	2–3
LS geometry			
E_{LS}(DFT)a	-1944.650240	-2243.058829	-2093.858540
E_{LS}(DFT)a	-1944.644802	-2243.058659	-2093.859392
E_{LS}(DLPNO-CCSD(T))	-1940.526288	-2238.617297	-2089.579782
H_{LS}(DFT)a	1.093329	1.070045	1.081731
E_{BSSE}(DLPNO-CCSD(T))	0.010379	0.009709	0.010079
$\langle S^2 \rangle$$_{\text{LS}}$	1.3553	1.3435	1.3937
$\langle S^2 \rangle$$_{\text{LS}}$	2.4701	2.3405	2.4039
HS geometry			
E_{HS}(DFT)a	-1944.648543	-2243.058788	-2093.858461
E_{HS}(DFT)a	-1944.647337	-2243.058714	-2093.859463
E_{HS}(DLPNO-CCSD(T))	-1940.528111	-2238.617177	-2089.580230
H_{HS}(DFT)a	1.092880	1.070043	1.081750
E_{BSSE}(DLPNO-CCSD(T))	0.008257	0.009716	0.010172
$\langle S^2 \rangle$$_{\text{LS}}$	1.4404	1.3442	1.3933
$\langle S^2 \rangle$$_{\text{LS}}$	2.4673	2.3414	2.4052

a) Calculated using the LC-ωPBE-D3BJ XC functional

Table S4: Energies (in Hartree atomic units) calculated for 2 and 3

	2	3
E(DFT)a	-972.307698	-1121.511776
E(DLPNO-CCSD(T))	-970.248315	-1119.291422
H(DFT)a	0.545275	0.533765

a) Calculated using the LC-ωPBE-D3BJ XC functional
Table S5: Energies and enthalpy corrections (E and H, in Hartree atomic units), and \(\langle S^2 \rangle\) values calculated for 2–2 and 4–4 in their crystal structure geometries using various XC functionals

XC	\(E_{\text{LS}}^{\text{crystal}}\) (DFT)	\(E_{\text{HS}}^{\text{crystal}}\) (DFT)	\(E_{\text{HS}}^{\text{LS}}\) (DFT)	\(\langle S^2 \rangle_{\text{LS}}\)	\(\langle S^2 \rangle_{\text{HS}}\)
B3LYP	−1945.754315	−1945.740176	0.4020	2.0935	
PBE0	−1943.381490	−1943.369383	0.6382	2.1435	
M06	−1944.252509	−1944.239857	0.6788	2.1451	
M06-2X	−1944.905419	−1944.891334	0.6339	2.0924	
LC-\(\infty\)PBE	−1944.403151	−1944.395932	1.3349	2.4853	
CAM-B3LYP	−1944.590798	−1944.581052	0.9348	2.2221	
\(\omega\)B97XD	−1945.192345	−1945.182322	0.9094	2.1919	

Table S6: Energies and enthalpy corrections (E and H, in Hartree atomic units), and \(\langle S^2 \rangle\) values calculated for 2–2 using various XC functionals

XC	\(E_{\text{LS}}^{\text{crystal}}\) (DFT)	\(E_{\text{HS}}^{\text{crystal}}\) (DFT)	\(E_{\text{HS}}^{\text{LS}}\) (DFT)	\(E_{\text{BSSE}}^{\text{LS}}\)	\(\langle S^2 \rangle_{\text{LS}}\)	\(\langle S^2 \rangle_{\text{HS}}\)
B3LYP	−1945.830818	−1945.830818	1.0747	0.00147	1.0933	2.0933
B3LYP-D3	−1945.999746	−1945.978884	1.0819	0.001670	0.6696	2.0962
B3LYP-D3BJ	−1946.033303	−1946.107783	1.0811	0.001730	0.00000	2.0958
PBE0	−1943.446094	−1943.446045	1.0798	0.000456	1.1383	2.1401
PBE0-D3	−1943.556615	−1943.545929	1.0825	0.001286	0.6984	2.1433
PBE0-D3BJ	−1943.615271	−1943.598315	1.0826	0.001496	0.4314	2.1437
M06	−1944.306631	−1944.296185	1.0761	0.004247	0.7677	2.1461
M06-D3	−1944.350051	−1944.339110	1.0765	0.004250	0.7477	2.1464
M06-2X	−1944.962426	−1944.943044	1.0866	0.001891	0.4253	2.0925
M06-2X-D3	−1944.979803	−1944.960358	1.0866	0.001891	0.4253	2.0925
LC-\(\infty\)PBE	−1944.467966	−1944.467966	1.0916	0.000000	1.4679	2.4679
LC-\(\infty\)PBE-D3	−1944.593443	−1944.588356	1.0945	0.001429	1.3644	2.4718
LC-\(\infty\)PBE-D3BJ	−1944.650240	−1944.644806	1.0933	0.001443	1.3554	2.4701
CAM-B3LYP	−1944.656812	−1944.656812	1.0823	0.000008	1.2144	2.2144
CAM-B3LYP-D3	−1944.775175	−1944.770334	1.0893	0.001342	1.0774	2.2173
CAM-B3LYP-D3BJ	−1944.814095	−1944.809359	1.0879	0.001326	1.0799	2.2166
\(\omega\)B97XD	−1945.251336	−1945.243474	1.0869	0.001429	0.9698	2.1901
Table S7: Energies and enthalpy corrections (E and H, in Hartree atomic units), calculated for 2 using various XC functionals

XC	E(DFT)	H
B3LYP	-972.917786	0.537138
B3LYP-D3	-972.981600	0.538476
B3LYP-D3BJ	-973.045923	0.537974
PBE0	-971.722741	0.539091
PBE0-D3	-971.762791	0.539812
PBE0-D3BJ	-971.791225	0.539493
M06	-972.135464	0.536891
M06-D3	-972.146743	0.536898
M06-2X	-972.466415	0.541605
M06-2X-D3	-972.470413	0.541603
LC-ωPBE	-972.233455	0.544864
LC-ωPBE-D3	-972.280897	0.545867
LC-ωPBE-D3BJ	-972.307698	0.545273
CAM-B3LYP	-972.328468	0.542126
CAM-B3LYP-D3	-972.373221	0.543099
CAM-B3LYP-D3BJ	-972.391226	0.542465
ωB97XD	-972.605544	0.541658
Optimized Cartesian coordinates

Final calculations

Monomer 2

Atom	X	Y	Z
C	0.01726700	-0.01770300	0.00000000
C	1.01935500	0.97305800	0.00000000
C	0.63583900	2.33207600	0.00000000
C	-0.69242700	2.71545800	0.00000000
C	-1.66859800	1.72362400	0.00000000
C	-1.34413300	0.35634000	0.00000000
C	-2.32034600	-0.65239300	0.00000000
C	-1.98722900	-2.00293000	0.00000000
C	-0.64841400	-2.35032000	0.00000000
C	0.37264400	-1.37830100	0.00000000
C	1.73730500	-1.72609400	0.00000000
C	2.73425300	-0.76783500	0.00000000
C	2.36238100	0.57301900	0.00000000
C	-1.12085800	4.17761500	0.00000000
C	-3.10134000	-3.04223000	0.00000000
C	0.06867800	5.12775300	0.00000000
C	3.96354700	-2.85643700	1.24763200
C	-3.96354700	-2.85643700	-1.24763200
C	-2.56260000	-4.46611500	0.00000000
C	4.87510100	-0.54297000	1.24761800
C	4.87510100	-0.54297000	-1.24761800
C	4.44297600	-2.63278900	0.00000000
H	1.98694000	-2.77911100	0.00000000
H	3.12201200	1.34654200	0.00000000
H	1.42283800	3.07475400	0.00000000
H	-2.71812500	1.99502000	0.00000000
H	-3.36144400	-0.35010900	0.00000000
H	-0.35045200	-3.39064200	0.00000000
H	4.01486600	-3.10527300	0.88558500
H	4.01486600	-3.10527400	-0.88558500
H	5.51470100	-2.83761700	0.00000000
H	4.41422000	-0.94291200	2.15224400
H	4.41422000	-0.94291200	-2.15224400
H	5.93783900	-0.79346900	1.26450800
H	5.93783900	-0.79346900	-1.26450800
H	4.78644600	0.54309700	-1.27863200
----	--------	--------	--------
H	4.78644600	0.54309800	1.27863100
H	0.69186900	4.99326400	0.88562300
H	-0.28975600	6.15831800	0.00000000
H	0.69186900	4.99326400	-0.88562300
H	-1.38054000	4.25779200	2.15225900
H	-2.27102000	5.50320300	1.26469400
H	-2.85382600	3.83816400	1.27859800
H	-2.85382600	3.83816400	-1.27859800
H	-2.27102100	5.50320300	-1.26469400
H	-1.38054100	4.25779200	-2.15225900
H	-4.41897200	-1.86648300	-1.27858700
H	-3.36572900	-2.97882100	-2.15225800
H	-4.76683600	-3.59595400	-1.26466500
H	-4.41897200	-1.86648300	1.27858700
H	-4.76683600	-3.59595400	1.26466500
H	-3.36572900	-2.97882100	2.15225800
H	-3.39643900	-5.16985800	0.00000000
H	-1.95789700	-4.66819000	0.88559200
H	-1.95789700	-4.66819000	-0.88559200

Monomer 3

C	0.01235200	0.01504900	-0.00000200
C	1.16472200	0.79199000	0.00000000
C	1.06353500	2.17372800	0.00000100
C	-0.16814800	2.80850200	0.00000000
C	-1.31094400	2.01284500	-0.00000100
C	-1.23567700	0.63639500	-0.00000100
C	-2.47601300	-0.17282800	0.00000000
C	-2.33543900	-1.64635100	-0.00000200
C	-1.08184700	-2.17534300	-0.00000400
C	0.10390300	-1.40448800	-0.00000300
C	1.37804400	-2.01641200	-0.00000300
C	2.55195700	-1.32804200	-0.00000100
C	2.49867500	0.15093300	0.00000200
C	-0.31304600	4.32254100	-0.00000100
C	-3.58281200	-2.50951100	0.00000000
C	3.90126100	-2.02105700	0.00000000
C	-1.08468400	4.75001300	-1.24782100
C	-1.08465200	4.75001500	1.24781500
C	1.03633200	5.02653200	0.00000000
C	-4.41168500	-2.21926800	1.25356100
C	-4.41170700	-2.21924400	-1.25354000
C	-3.23916000	-3.99397800	-0.00001700
C	4.68527200	-1.62518400	1.25351700
Dimer 2–2 in LS state

C	4.68527600	-1.62517800	-1.25351300
C	3.75416500	-3.53769500	-0.00000500
H	1.39322700	-3.09902200	-0.00000500
H	1.98810300	2.73457000	0.00000200
H	-2.29977300	2.45478700	-0.88731300
H	-0.95656200	-3.25082000	-0.88731300
H	3.22952600	-3.89718900	0.88730200
H	3.22952700	-3.89718400	-0.88731300
H	4.74683800	-3.98904100	-0.00000600
H	4.13679800	-1.90359300	2.15565900
H	4.13680600	-1.90358200	-2.15565800
H	5.64117000	-2.15241800	1.26492700
H	5.64112200	-2.15241000	-1.26492100
H	4.88010300	-0.55621800	-1.27837900
H	4.88009900	-0.55622500	1.27838900
H	1.62330200	4.77519300	0.88485400
H	1.62330500	4.77519100	-0.88485100
H	-0.55422900	4.45101000	2.15336100
H	-1.20096200	5.83531900	1.26258200
H	-2.08018000	4.30655300	1.27826200
H	-2.08017600	4.30655100	-1.27827100
H	-1.20095700	5.83531700	-1.26259000
H	-0.55422100	4.45100700	-2.15336400
H	-4.74431800	-1.18483300	-1.27863200
H	-3.83162000	-2.42387200	-2.15563000
H	-5.29068100	-2.86655800	-1.26492100
H	-4.74429300	-1.18485600	1.27868000
H	-5.29066000	-2.86658000	1.26494300
H	-3.83158200	-2.42391700	2.15565800
H	-4.16448400	-4.57092200	-0.00001500
H	-2.67211200	-4.28197100	0.88728900
H	-2.67212800	-4.28195300	-0.88734000
O	-3.56281100	0.37901200	0.00000800
O	3.50519800	0.83942700	0.00000800

S16
H -3.2369800 -0.70526300 -1.73110900
H -3.14314800 -1.34880800 1.63484200
H -1.35445300 -2.97408100 1.77654900
H -0.05952200 -3.56706300 -1.60241700
H 2.23244300 -2.82690200 -1.61247600
H 2.71822300 -1.67335000 1.84380800
H 3.23670000 0.70526400 1.73112600
H 3.14315400 1.34880800 -1.63485500
H 1.35445000 2.97408700 -1.77654000
H 0.05952900 3.56706500 1.60240200
H -1.24967300 3.68227400 -4.22149600
H -2.27232100 4.99973600 -3.62636000
H -2.79422700 3.32159700 -3.45136400
H -1.71473300 4.35265800 -0.00140400
H -3.04615800 3.63524600 -0.90936300
H -2.60911100 5.32424600 -1.17617800
H -0.48587300 5.93606400 -2.21686400
H 0.46152500 4.92182900 -1.12870500
H 0.62156900 4.73711000 -2.88161500
H -4.20309500 2.95066100 2.77915000
H -4.28778700 3.15207200 1.02414800
H -5.73237700 2.71767100 1.93134500
H -4.51445400 0.63096000 3.80420700
H -4.61102700 1.13948100 -0.46574300
H -6.05417000 0.55984300 2.93459600
H -6.10224800 0.80132900 0.42360300
H -4.87752600 -0.45657800 0.23837000
H -4.88389300 -0.74682400 2.76708000
H -4.23750800 -2.38125700 -0.47817900
H -3.17150100 -3.51052100 0.36071800
H -4.49976800 -4.11889000 -0.63498100
H -4.37794200 -3.98509900 -3.14121000
H -4.17521100 -2.23662900 -3.02677800
H -3.00039800 -3.19681000 -3.92519900
H -1.59797200 -4.99092600 -0.94075500
H -1.52257000 -4.87131300 -2.70487300
H -2.95999800 -5.52555000 -1.92032400
H -0.62156800 -4.73710200 2.88164800
H 0.48586800 -5.93606200 2.21690100
H -0.46154300 -4.92184200 1.12874000
H 1.24967800 -3.68227200 4.22151000
H 2.27232700 -4.99973200 3.62637100
H 2.79422700 -3.32159100 3.45137000
H 3.04616100 -3.63526600 0.90939100
H 2.60908400 -5.32426200 1.17618300
Dimer 2–2 in HS state

C -0.56460900 0.32508300 1.65531700
C -0.81012100 -1.06039200 1.71455100
C 0.27181800 -1.93499600 1.94359900
C 1.56207200 -1.47240400 2.11631900
C 1.79605300 -0.10656600 1.99455100
C 0.75562700 0.81075700 1.76905000
C 0.97063400 2.19596400 1.70199900
C -0.07784900 3.10018400 1.57090100
C -1.36756000 2.60696200 1.48761200
C -1.63769200 1.22385900 1.52089500
C -2.94710700 0.71160500 1.45086500
C -3.20230700 -0.64705700 1.46631700
C -2.12748100 -1.51986800 1.59074400
C 2.70583400 -2.39901000 2.51128600
C 0.22968600 4.59284400 1.55170100
C -4.61183300 -1.21493000 1.35674700
C 3.87524900 -2.25383500 1.54438200
C 3.16526900 -2.01873400 3.91863400
C 2.28251400 -3.86105400 2.51910900
C 0.96297400 4.97174000 2.83779100
C 1.11762300 4.91371200 0.35156600
C -1.02978000 5.44261700 1.45741100
C -4.90083600 -2.10597400 2.56357800
C	-4.71357000	-2.04490600	0.07843300
C	-5.67288100	-0.12430800	1.30772600
C	0.56461100	-0.32508100	-1.65532100
C	0.81012000	1.06039400	-2.11633300
C	-1.56207300	1.47240000	-2.11633300
C	-1.79605000	0.10656100	-1.99456500
C	-0.75562300	-0.81075900	-1.76905900
C	-0.97062700	-2.19596700	-1.70201000
C	0.07785600	-3.10018500	-1.57090300
C	1.36756500	-2.60695900	-1.48760300
C	1.63769500	-1.22385600	-1.52088900
C	2.94710800	-0.71159900	-1.45085200
C	3.20230500	0.64706400	-1.45085200
C	2.12748000	1.51987300	-1.59074900
C	2.70584100	2.39900100	-1.55170400
C	-0.22967700	-4.59284500	-1.55170400
C	4.61183000	1.21493900	-1.35673500
C	-3.87523600	2.53829000	-1.54436500
C	-3.16530100	2.01871600	-3.91863000
C	-2.82523000	3.86104500	-2.51913400
C	-0.96297000	-4.97174300	-2.83779100
C	-1.11761200	-4.91371400	-0.35156700
C	1.02979100	-5.44261600	-1.45742200
C	4.90084400	2.10597200	-2.56357100
C	4.71355100	2.04492700	-0.07842700
C	5.67287800	0.12431900	-1.30769400
H	-3.76216900	1.41869100	1.38327000
H	-2.79910900	-0.28592000	-2.11129700
H	-1.99177400	-2.55258500	-1.77304900
H	-2.29396800	-2.59063500	1.61323400
H	0.05277500	-2.99102200	2.01439800
H	2.20877500	-3.28244900	-1.40085700
H	3.76217100	-1.41868100	-1.38324500
H	2.79911300	0.28591200	2.11128100
H	1.99178100	2.55258400	1.77303300
H	2.29396500	2.59063900	-1.61324200
H	-0.05277500	2.99102200	-2.01441100
H	-2.20876900	3.28245500	1.40087500
H	-2.34063500	2.09822400	-4.62869900
H	-3.96892400	2.68128600	-4.24751600
H	-3.53675100	0.99388800	-3.95084000
H	-3.58934400	2.58909300	-0.54862000
H	-4.21145000	1.22039900	-1.46626000
H	-4.71913700	2.85879400	-1.88240100
Atoms	x	y	z
-------	----------	----------	----------
H	-3.139817	4.488588	-2.768038
H	-1.912783	4.169920	-1.540064
H	-1.504384	4.054420	-3.258923
H	-5.656028	0.491303	2.208565
H	-5.544464	0.528004	0.443035
H	-6.661228	-0.581001	1.234747
H	-4.814381	-1.538303	3.491364
H	-4.525942	-1.424775	-0.799540
H	-5.914001	-2.508555	2.500754
H	-5.711226	-2.478571	-0.016549
H	-3.989362	-2.859958	0.075505
H	-4.210350	-2.947364	2.620000
H	-2.044264	-4.340157	-0.377132
H	-0.603276	-4.682431	0.581923
H	-1.376947	-5.974391	-0.344124
H	-1.766030	-6.042649	-2.848814
H	-1.909928	-4.440484	-2.933179
H	-0.355567	-4.733677	-3.712402
H	1.589162	-5.239025	-0.543390
H	1.690753	-5.276397	-2.309518
H	0.756418	-6.498950	-1.449080
H	1.504375	-6.054437	3.258896
H	3.139807	-4.488600	2.768007
H	1.912773	-4.169920	1.540036
H	2.340587	-2.098241	4.628685
H	3.968881	-2.681311	4.247533
H	3.536722	-0.993908	3.950818
H	4.211462	-1.220403	1.466282
H	4.719145	-2.858794	1.882442
H	3.589387	-2.589106	0.548632
H	5.544462	-0.527976	-0.442990
H	5.656026	-0.491309	-2.208521
H	6.661225	0.581015	-1.234732
H	5.914004	2.508565	-2.500735
H	5.711213	2.478574	0.016576
H	3.989359	2.859993	-0.075525
H	4.210349	2.947354	-2.620016
H	4.525888	1.424808	0.799547
H	4.814410	1.538290	-3.491352
H	2.044279	4.340162	0.377134
H	0.603290	4.682423	-0.581924
H	1.376952	5.974391	0.344119
H	1.909930	4.440477	2.933182
H	1.176609	6.042646	2.848817
H	0.355567	4.733764	3.712399
H -0.75640400 6.49895100 1.44906800
H -1.69074600 5.27640400 2.30950600
H -1.58914800 5.23902300 0.54332700

Dimer 3–3 in LS state

C -0.88209700 -0.25767300 1.54484900
C -2.11882900 -0.86470400 1.36395300
C -2.20283600 -2.24682900 1.31277600
C -1.07489000 -3.04545600 1.41821300
C 0.15144000 -2.41746300 1.61661900
C 0.25708400 -1.04545600 1.69757300
C 1.56247400 -0.42034900 2.00996900
C 1.59327400 1.04393300 2.20352300
C 0.45836600 1.74834500 1.94211500
C -0.78215100 1.15938000 1.61368100
C -1.93968200 1.94505400 1.41625600
C -3.18759000 1.43004800 1.25001200
C -3.34790700 -0.03960900 1.30010400
C -1.13579000 -4.56532100 1.37714400
C 2.84545000 1.70106700 2.75476400
C -4.14131010 2.31083200 1.09667400
C -0.23666300 -5.08254100 0.25575400
C -0.63966000 -5.11504400 2.71419300
C 0.54973220 -5.07540000 1.13851000
C 3.12744800 1.10914800 4.13872900
C 4.05154300 1.47343100 1.84694400
C 2.66133300 3.20479400 2.91250600
C -5.28387400 2.17454200 2.34821100
C -5.21850400 1.91045700 0.14061000
C -4.02580400 3.77628200 0.93967800
C 0.88209600 0.25767400 -1.54485000
C 2.11882600 0.86470700 -1.36394900
C 2.20283000 2.24683100 -1.31276900
C 1.07488300 3.04545700 -1.41821000
C -0.15144400 2.41746200 -1.61662300
C -0.25708600 1.04545500 -1.69757900
C -1.56247300 0.42034600 -2.00998500
C -1.59327100 -1.04393800 -2.20352600
C -0.45836300 -1.74834700 -1.94211400
C 0.78215300 -1.15937900 -1.61368200
C 1.93968600 -1.94505100 -1.41625800
C 3.18759300 -1.43004300 -1.25001300
C 3.34790600 0.03961500 -1.30010400
C 1.13578000 4.56532200 -1.37713500
H -3.58020800 -3.63441100 -3.31255500
H -3.22575300 -4.78104200 1.94253500
H -2.54085000 -6.16535900 1.09532800
H -2.95995100 -4.70868200 0.19618100
H -1.25771700 -4.74979700 3.53575500
H -0.68341400 -6.20583000 2.71149600
H 0.39142900 -4.82091700 2.91214700
H 0.79477800 -4.75158800 0.38000800
H -0.23800300 -6.17390400 0.24690200
H -0.59082200 -4.73887000 -0.71701900
H 3.38359100 -3.92743500 -0.06962900
H 3.52078500 -4.16878500 -1.82422800
H 4.92994300 -4.36750900 -0.79156100
H 6.15357000 -2.82846600 -2.25880300
H 6.06837100 -2.58749500 0.24680900
H 5.59825500 -0.89592700 0.05471300
H 5.63252700 -1.15199500 -2.47379500
H 4.60646300 -1.98269900 1.03964600
H 4.72914100 -2.46918700 -3.24141400
H 4.25483800 0.41649700 1.70828100
H 3.89962600 1.92626500 0.86869100
H 4.93159200 1.93745700 2.29649400
H 3.38989900 0.04403300 4.07549800
H 3.99501700 1.60642200 4.57635600
H 2.27763400 1.25991500 4.80762200
H 3.58026000 3.63439100 3.31259400
H 1.85221500 3.45147700 3.60253900
H 2.46341000 3.68695600 1.95347400
O 2.55597300 -1.11869400 2.12680400
O 4.44113400 0.57837600 -1.31670200
O -2.55596900 -1.11869100 -2.12684100
O -4.44113600 -0.57836600 1.31672000

Dimer 3–3 in HS state

C -0.83449300 -0.23661900 1.56928900
C -2.05733300 -0.87673400 1.39885000
C -2.10478500 -2.26110500 1.36058200
C -0.95676300 -3.02957100 1.46846200
C 0.25450800 -2.36826100 1.65314600
C 0.32539500 -0.99372500 1.72311200
C 1.61557500 -0.33325900 2.02507900
C 1.61180200 1.13406200 2.19608700
C 0.45634000 1.80645700 1.93913500
C -0.77109100 1.18309900 1.62713900

S24
	x	y	z
C	-1.95032500	1.93682800	1.43089200
C	-3.18493700	1.38829000	1.27472600
C	-3.30623000	-0.08473600	1.33404300
C	-0.98006300	-4.55093100	1.44785200
C	2.85512900	1.83058400	2.71783500
C	-4.43447500	2.23498600	1.12288000
C	-0.08021000	-5.06132100	0.32415100
C	0.45643300	-5.06983100	2.78681600
C	-2.38331100	-5.09922400	1.23207000
C	3.17281700	1.27210500	4.10789500
C	4.05131100	1.61378400	1.79407400
C	2.63749400	3.33226400	2.85094000
C	-5.29505600	2.08247500	2.37957900
C	-5.23476700	1.80581600	-0.10808000
C	-4.08781100	3.70949500	0.95629400
C	0.83449200	0.23662100	-1.56929100
C	2.05573200	0.87673400	-1.39884900
C	2.10478700	2.26110500	-1.36057600
C	0.95676600	3.02957200	-1.46845700
C	-0.25450500	2.36826500	-1.65315100
C	-0.32539400	0.99372900	-1.72312000
C	-1.61557200	0.33326600	-2.02510400
C	-1.61180500	-1.13405800	-2.19608500
C	-0.45634400	-1.80645400	-1.93912800
C	0.77108900	-1.18309700	-1.62713900
C	1.95032200	-1.93682700	-1.43089000
C	3.18493500	-1.38829100	-1.27472600
C	3.30623000	0.08473400	-1.33405200
C	0.98006800	4.55093200	-1.44785200
C	-2.85513700	-1.83058600	-2.71783500
C	4.43447500	-2.23498800	-1.12290500
C	0.08020100	5.06131900	-0.32414700
C	0.45645800	5.06983900	-2.78680700
C	2.38331500	5.09922100	-1.23203400
C	-3.17283700	-1.27214300	-4.10788400
C	-4.08781100	-3.70949500	-1.93912800
C	-2.63750900	-3.33227000	-2.85084300
C	5.29502700	-2.08248800	-2.37961700
C	5.23480000	-1.80581200	0.10803800
C	4.08781100	-3.70949500	-0.95624600
H	-1.83788200	3.01332000	1.43075600
H	-1.18033000	2.91757800	-1.77404600
H	-3.07972100	-2.71779700	1.26007100
H	-0.43786600	-2.88453400	-2.02197900
H	1.83787700	-3.01331900	-1.43075000
---	---	---	---
H	5.61486900	-1.05159200	-2.51309800
H	4.62869900	-1.88466200	1.01056200
H	4.74428500	-2.39779800	-3.26821800
H	4.28000500	0.55945800	1.67573500
H	3.87044700	2.03907200	0.80826200
H	4.92638300	2.11096000	2.21704600
H	3.40851100	0.21128400	4.06144000
H	4.03496800	2.11099600	2.21704600
O	2.62509100	-1.00616100	2.15429000
O	4.38476000	0.65198000	-1.35824400
O	-2.62507900	1.00617500	-2.15435400
O	-4.38476000	-0.65198000	1.35822400

Dimer 2–3 in LS state

C	0.00394700	0.00838000	1.75733200
C	-0.06994400	-1.40070000	1.77853900
C	1.12505400	-2.13686000	1.80531300
C	2.37249200	-1.52398500	1.81377700
C	2.42453700	-0.14171500	1.78264000
C	1.25739900	0.64619500	1.76722400
C	1.30449200	2.05353800	1.80482200
C	0.15597100	2.82216400	1.82583900
C	-1.07444900	2.17374100	1.78402600
C	-1.17881000	0.77515500	1.76014600
C	-2.42243400	0.10947800	1.78707800
C	-2.51284500	-1.27055900	1.83916200
C	-1.33609400	-2.01027400	1.82027000
C	3.62645300	-2.38353600	1.91701000
C	0.19533900	4.34186200	1.93268100
C	-3.84664600	-1.99359500	1.98548800
C	4.90049400	-1.55630600	1.82404200
C	3.60902700	-3.10598800	3.26350800
C	3.65236800	-3.41002900	0.78829000
C	-0.52559300	4.76856200	3.21078400
C	1.61798200	4.87996900	1.98630800
C	-0.50687400	4.96227900	0.72852800
C	-3.88531300	-2.65326900	3.36362600
C	-3.99189500	-3.06343700	0.90689100
C	-5.03183800	-1.04691900	1.86636500
C	0.01526400	-0.00096600	-1.59519600

S27
C 0.03690400 1.41165200 -1.61052000
C -1.18310900 2.12171600 -1.68408200
C -2.40651200 1.53155100 -1.71200400
C -2.47747800 0.05756600 -1.59830300
C -1.20063000 -0.69148700 -1.60245600
C -1.20567700 -2.06916800 -1.66312300
C -0.02480000 -2.80198000 -1.74501700
C 1.17232100 -2.10720200 -1.70202800
C 1.20590200 -0.72581100 -1.61898700
C 2.50510900 -0.01988300 -1.60286200
C 2.48374400 1.45788400 -1.66330600
C 1.27799300 2.08533000 -1.64862100
C -3.68587300 2.33132400 -1.87630600
C -0.08452700 -4.31512100 -1.89518700
C 3.79221300 2.21908000 -1.76840900
C -4.56073500 2.18496000 -0.63205900
C -4.44747200 1.83996600 -3.10738000
C -3.40020700 3.81437900 -2.07756600
C -0.96963600 -4.67029400 -3.08921900
C -0.68102800 -4.91914300 -0.62716900
C 1.29208100 -4.92206700 -2.12622900
C 3.56028400 3.72034300 -1.88401600
C 4.64989200 1.97072100 -0.52754700
C 4.54824100 1.76568000 -3.01974200
H -3.31776600 0.71608600 1.78993700
H -2.16904600 -2.56259600 -1.67419400
H -1.37551300 -3.09225100 1.86245800
H 1.05314900 -3.21745000 1.84454500
H 2.12077700 -2.62117200 -1.75462200
H 3.37746400 0.36968100 1.78649700
H 2.27898300 2.52163300 1.83705100
H 1.23748200 3.16610600 -1.68573200
H -1.10931700 3.19937000 -1.74281400
H -1.99264300 2.75000300 1.79723600
H -3.83201600 1.92677800 -4.00447100
H -5.34334000 2.44135600 -3.24993700
H -4.74801000 0.79553100 -2.99610300
H -4.03732400 2.55340400 0.25196400
H -4.83725700 1.14740300 -0.46994300
H -5.47257100 2.77281800 -0.75367600
H -4.34535200 4.34159100 -2.21201600
H -2.89782900 4.25640700 -1.21613600
H -2.79113100 3.99414900 -2.96540800
H -5.02411300 -0.28253000 2.64491100
H -5.04558400 -0.55919500 0.89187600
H	-5.95881000	-1.61293300	1.97042300
H	-3.78680600	-1.90664700	4.15349100
H	-3.94702200	-2.61292900	-0.08492000
H	-4.83188500	-3.17958200	3.50405700
H	-4.95395400	-3.56885400	1.01262900
H	-3.21397600	-3.82198700	0.98665900
H	-3.07608200	-3.37494200	3.48176400
H	-1.68083500	-4.52925400	-0.43949400
H	-0.05858600	-4.68998300	0.23883100
H	-0.75161000	-6.00451300	-0.72110700
H	-1.00591600	-5.75380900	-3.21699500
H	-1.99231000	-4.31722900	-2.95738300
H	-0.57636300	-4.23107400	-4.00742600
H	1.96095500	-4.74717300	-1.28351400
H	1.76197000	-4.52003600	3.57241300
H	1.19533100	-6.00122900	-2.25707070
H	2.76789200	-4.04718900	0.80358900
H	4.52768400	-4.05486400	0.89672000
H	3.70649300	-2.90759100	-0.17760500
H	2.73064400	-3.75578900	3.35682300
H	4.50372000	-3.72255800	3.37268200
H	3.58267600	-2.38999300	4.08666500
H	4.97714900	-0.83393200	2.63829900
H	5.76657900	-2.21704500	1.88687900
H	4.95390400	-1.02480100	0.87339800
H	4.80970100	0.71213300	-2.96461200
H	3.94569700	1.93118000	-3.91510500
H	5.46697200	2.34684900	-3.11996900
H	4.52462800	4.22367200	-1.96109900
H	5.58809300	2.52180400	-0.61618200
H	4.13810400	2.32106600	0.37001400
H	3.04877100	4.12298300	-1.00358000
H	4.87853100	0.91490300	-0.41318700
H	2.98130600	3.97571200	-2.77343500
H	2.15715600	4.50585200	2.85778600
H	2.18387700	4.61326500	1.09263300
H	1.59426700	5.96883400	2.05166600
H	-0.05251300	4.32258600	4.08690400
H	-0.49375400	5.85482100	3.31832700
H	-1.57174500	4.46221600	3.20322300
H	-0.52396700	6.05029500	0.81702100
H	-1.53675400	4.61564200	0.64581900
H	0.01311900	4.70641800	-0.19606600
O	3.54682100	-0.65489100	-1.55727900
O	-3.53923600	-0.53916700	-1.52742500
Dimer 2–3 in HS state

C	-0.56460900	0.32508300	1.65531700
C	-0.81012100	-1.06039200	1.71455100
C	0.27181800	-1.93499600	1.94359900
C	1.56207200	-1.47240400	2.11631900
C	1.79605300	-0.10656600	1.99455100
C	0.75562700	0.81075700	1.76905000
C	0.97063400	2.19596400	1.70199900
C	-0.07784900	3.10018400	1.57090100
C	-1.36756000	2.60696200	1.48761200
C	-1.63769200	1.22385900	1.52089500
C	-2.94710700	0.71160500	1.45086500
C	-3.20230700	-0.64705700	1.46631700
C	-2.12748100	-1.51986800	1.59074400
C	2.70583400	-2.39901000	2.51128600
C	0.22968600	4.59284400	1.55170100
C	-4.61183300	-1.21493000	1.35674700
C	3.87524900	-2.25383500	1.54438200
C	3.16526900	-2.01873400	3.91863400
C	2.28251400	-3.86105400	2.51910900
C	0.96297400	4.97174000	2.83779100
C	1.11762300	4.91371200	0.35156600
C	-1.02978000	5.44261700	1.45741100
C	-4.90083600	-2.10597400	2.56357800
C	-4.71357000	-2.04490600	0.07843300
C	-5.67288100	-0.12430800	1.30772600
C	0.56461100	-0.32508300	-1.65531700
C	0.81012000	1.06039400	-1.71455100
C	-0.27182000	1.93499500	-1.94361000
C	-1.56207300	1.47240000	-2.11633300
C	-1.79605000	0.10656100	-1.99456500
C	-0.75562300	-0.81075700	-1.76905000
C	-0.97063400	-2.19596400	-1.70199900
C	0.07785600	-3.10018400	-1.57090100
C	1.36756500	-2.60696200	-1.48761200
C	1.63769500	-1.22385900	-1.52089500
C	2.94710800	-0.71160500	-1.45086500
C	3.20230500	0.64706400	-1.46631200
C	2.12748100	1.51987300	-1.59074900
C	-2.70583400	2.39901000	-2.51128600
C	-0.22968600	-4.59284400	-1.55170100
C	4.61183300	1.21493900	-1.35673500
C	-3.87523600	2.25382900	-1.54436500
C	-3.16530100	2.01871600	-3.91863000
C	-2.28252300	3.86104500	-2.51913400
----------	-------------	------------	-------------
C	-0.96297000	-4.97174300	-2.83779100
C	-1.11761200	-4.91371400	-0.35156700
C	1.02979100	-5.44261600	-1.45742200
C	4.90084400	2.10597200	-2.56357100
C	4.71355100	2.04492700	-0.07842700
C	5.67287800	0.12431900	-1.30769400
H	-3.76216900	1.41869100	1.38327000
H	-2.79910900	-0.28592000	-2.11129700
H	-1.99177400	-2.55258500	-1.77304900
H	-2.29396800	-2.59063500	1.61323400
H	0.05277500	-2.99102200	2.01439800
H	2.20877500	-3.28244900	-1.40085700
H	3.76217100	-1.41868100	-1.38324500
H	2.79911300	0.28591200	2.11128100
H	1.99178100	2.55258400	1.77303300
H	2.29396500	2.59063900	-1.61324200
H	-0.05278000	2.99102200	-2.01441100
H	-2.20876900	3.28245500	1.40087500
H	-2.34063500	2.09822400	-4.62869900
H	-3.96892400	2.68128600	-4.24751600
H	-3.53675100	0.99388800	-3.95080400
H	-3.58934400	2.58909300	-0.54862000
H	-4.21145000	1.22039900	-1.46626000
H	-4.71913700	2.85879400	-1.88240100
H	-3.13981700	4.48858800	-2.76803800
H	-1.91278300	4.16992000	-1.54006400
H	-1.50438400	4.05442000	-3.25892300
H	-5.65602800	0.49130300	2.20856500
H	-5.54446400	0.52800400	0.44303500
H	-6.66122800	-0.58100100	1.23474700
H	-4.81438100	-1.53830300	3.49136400
H	-4.52594200	-1.42477500	-0.79954000
H	-5.91400100	-2.50855500	2.50075400
H	-5.71122600	-2.47857100	-0.01654900
H	-3.98936200	-2.85995800	0.07550500
H	-4.21035000	-2.94736400	2.62000000
H	-2.04426400	-4.34015700	-0.37713200
H	-0.60327600	-4.68243100	0.58192300
H	-1.37694700	-5.97439100	-0.34412400
H	-1.17660300	-6.04264900	-2.84881400
H	-1.90992800	-4.44048400	-2.93317900
H	-0.35556700	-4.73376700	-3.71240200
H	1.58916200	-5.23902500	-0.54333900
H	1.69075300	-5.27639700	-2.30951800
Column 1	Column 2	Column 3	Column 4
---------	------------	------------	------------
H	0.75641800	-6.49895000	-1.44908000
H	1.50437500	-4.05443700	3.25889600
H	3.13980700	-4.48600000	2.76800700
H	1.91277300	-4.16992000	1.54003600
H	2.34058700	-2.09824100	4.62868500
H	3.96888100	-2.68131100	4.24753300
H	3.53672200	-0.99390800	3.95081800
H	4.21146200	-1.22040300	1.46628200
H	4.71914500	-2.85894000	1.88244200
H	3.58938700	-2.58910600	0.54863200
H	5.5446200	-0.52797600	-0.44299000
H	5.65602600	-0.49130900	-2.20852100
H	6.66122500	0.58101500	-1.23472300
H	5.91400400	2.50856500	-2.50073500
H	5.71123000	2.47857400	0.01657600
H	3.98935900	2.85999300	-0.07552500
H	4.21034900	2.94735400	-2.62001600
H	4.52588800	1.42480800	0.79954700
H	4.81441000	1.53829000	-3.49135200
H	2.04427900	4.34016200	0.37713400
H	0.60329000	4.68242300	-0.58192400
H	1.37695200	5.97439100	0.34411900
H	1.90993000	4.44047700	2.93318200
H	1.17660900	6.04264600	2.84881700
H	0.35556700	4.73376400	3.71239900
H	-0.75640400	6.49895100	1.44906800
H	-1.69074600	5.27640400	2.30950600
H	-1.58914800	5.23902300	0.54332700

Validation studies

Monomer 2 optimized with B3LYP

C	0.01567600	-0.01605500	-0.00000500
C	1.02890800	0.98665000	-0.00003800
C	0.63974100	2.35640500	-0.00005800
C	-0.70438800	2.74847600	-0.00002600
C	-1.68744200	1.74267100	-0.00000200
C	-1.36087000	0.36134600	0.00000500
C	-2.34542300	-0.65998400	0.00002000
C	-2.01223400	-2.02587500	0.00002500
C	-0.65516700	-2.37280300	0.00003400
---	---	---	---
H	-3.414196	-3.028025	2.178348
H	-3.425903	-5.237645	0.000051
H	-1.977595	-4.727727	0.891819
H	-1.977375	-4.727825	-0.891372

Monomer 2 optimized with B3LYP-D3

C	0.016713	-0.017071	-0.000005
C	1.029049	0.986263	0.000040
C	0.639755	2.355621	0.000065
C	-0.704408	2.745614	0.000031
C	-1.687171	1.739875	0.000051
C	-1.359893	0.359475	0.000028
C	-2.343376	-0.661821	0.000041
C	-2.008700	-2.027053	-0.000017
C	-0.652216	-2.374127	-0.000068
C	0.377958	0.581015	0.000054
C	2.004058	-2.802921	-0.000115

S34
	x	y	z
H	4.84622300	0.54998300	-1.29910100
H	4.84588200	0.54955600	1.29979600
H	0.69345200	5.05372900	0.89274100
H	-0.29520600	6.22909900	0.00030200
H	0.69399600	5.05383600	-0.89160700
H	-1.40250600	4.31024400	2.17611300
H	-2.30298800	5.56491400	1.28134000
H	-2.89004800	3.88650400	1.29843400
H	-2.88896100	3.88614000	-1.29982200
H	-2.30273900	5.56485600	-1.28166700
H	-1.40102400	4.31096100	-2.17629400
H	-4.47024700	-1.89897100	-1.29918400
H	-3.40473500	-3.02061100	-2.17621700
H	-4.81823200	-3.64272000	-1.28146900
H	-4.47051800	-1.89908400	1.29902200
H	-4.81797600	-3.64295500	1.28166700
H	-3.40459300	-3.02024200	2.17620400
H	-3.42633700	-5.23517200	-0.00010000
H	-1.97747400	-4.72530500	0.89224900
H	-1.97722800	-4.72529300	-0.89203000

Monomer 2 optimized with B3LYP-D3BJ

	x	y	z
C	0.01634600	-0.01669200	-0.00001500
C	1.02835000	0.98617200	0.00004200
C	0.63926100	2.35443100	0.00007100
C	-0.70412200	2.74242300	0.00002800
C	-1.68723600	1.73901900	0.00003200
C	-1.35976000	0.35963300	0.00001200
C	-2.34279100	-0.66082300	-0.00000300
C	-2.00652900	-2.02421900	-0.00005100
C	-0.65170400	-2.37250300	-0.00009700
C	0.37751000	-1.39281900	-0.00007200
C	1.75456800	-1.74022100	-0.00001000
C	2.76291700	-0.77113300	-0.00006000
C	2.38463600	0.58171400	0.00003500
C	-1.13610300	4.21876100	-0.00001200
C	-3.12866500	-3.07629100	-0.00001300
C	4.25741000	-1.13486200	-0.00001100
C	-1.97962600	4.50198300	-1.26072500
C	-1.98022000	4.50195100	1.26031300
C	0.06486500	5.17692700	0.00028300
C	-3.99946800	-2.89131500	1.26044100
C	-3.99931600	-2.89171700	-1.26057400
C	-2.58093500	-4.51168300	0.00027300
---	---	---	---
C	4.92434300	-0.54577400	1.26069600
C	4.92464700	-0.54528100	-1.2603000
C	4.48683500	-2.65395700	-0.00028600
H	2.00530600	-2.80661100	-0.00015200
H	3.14830700	1.36242900	0.00012000
H	1.43210000	3.10175200	0.00016400
H	-2.74506800	2.01017300	0.00005500
H	-3.39158000	-0.35648100	0.00004300
H	-0.34886300	-3.41916700	-0.00016300
H	4.05370700	-3.13265300	0.89129600
H	4.05358200	-3.13233500	-0.89197600
H	5.56705600	-2.86669200	-0.00039500
H	4.46096500	-0.95101400	2.17377700
H	4.46133600	-0.94996700	-2.17366000
H	5.99782000	-0.79491900	1.28024100
H	5.99807400	-0.79463900	-1.27980000
H	4.83336000	0.54997000	-1.29682500
H	0.69560700	5.04114900	0.89214100
H	-0.29106000	6.21877600	0.00013500
H	0.69611100	5.04109900	-0.89120100
H	-1.39814000	4.30196200	2.17364400
H	-2.29988200	5.55656400	1.28031100
H	-2.88466400	3.87677800	1.29539900
H	-2.88365700	3.87623800	-1.29661400
H	-2.29993100	5.55641100	-1.28045800
H	-1.39715800	4.30273900	-2.17378500
H	-4.46042300	-1.89357100	-1.29629000
H	-3.39651800	-3.01566700	-2.17376700
H	-4.81072700	-3.63740400	-1.28044000
H	-4.46092200	-1.89330800	1.29551900
H	-4.81058900	-3.63730200	1.28068300
H	-3.39633500	-3.01450300	2.17371200
H	-3.41670400	-5.22833800	0.00034100
H	-1.96842000	-4.71500600	0.89186000
H	-1.96827800	-4.71529200	-0.89127600

Monomer 2 optimized with PBE0

C	0.01578200	-0.01621300	-0.00002800
C	1.02653400	0.98270200	-0.00005100
C	0.64004100	2.34900200	-0.00005400
C	-0.70002600	2.74002000	-0.00002700
C	-1.68166500	1.73821900	-0.00001600
C	-1.35631000	0.36088200	-0.00001300
Element	X	Y	Z
---------	------------	------------	------------
C	-2.339023	-0.656291	0.000010
C	-2.006773	-2.018444	-0.000020
C	-0.654190	-2.365913	-0.000027
C	0.374288	-1.389259	-0.000002
C	1.748237	-1.737893	-0.000005
C	2.379860	0.577512	-0.000066
C	-1.127977	4.213384	0.000007
C	-3.126960	-3.067064	-0.000050
C	4.247503	-1.138260	0.000080
C	-1.967558	4.498110	-1.255283
C	-1.967468	4.498035	1.255385
C	0.071180	5.164265	-0.000090
C	-3.994329	-2.883224	1.255084
C	-3.993777	-2.883676	-1.255525
C	-2.580686	-4.496723	0.000400
C	4.913610	-0.553810	1.255319
C	4.913749	-0.553920	-1.255260
C	4.471742	-2.652680	0.000780
H	1.998756	-2.799674	0.000200
H	3.144724	1.358674	-0.000079
H	1.434162	3.096866	-0.000860
H	-2.740445	2.010324	0.000020
H	-3.383321	-0.349520	0.000029
H	-0.353125	-3.414450	0.000640
H	4.039237	-3.131508	0.891989
H	4.039144	-3.131597	-0.891742
H	5.551337	-2.868168	0.000350
H	4.453517	-0.958378	2.170097
H	4.453708	-0.958534	-2.170076
H	5.986779	-0.803674	1.272884
H	5.986899	-0.803871	-1.272780
H	4.826139	0.542086	-1.293906
H	4.825909	0.542206	1.293846
H	0.702152	5.029117	0.891820
H	0.281888	6.207020	-0.000010
H	0.702123	5.029117	-0.891921
H	-1.387350	4.300870	2.170117
H	-2.286485	5.552711	1.273370
H	-2.873437	3.875066	1.293540
H	-2.873380	3.874940	-1.293565
H	-2.868130	5.552717	-1.272994
H	-1.387369	4.301283	-2.170072
H	-4.454714	-1.885461	-1.294136
H	-3.394204	-3.010654	-2.170179
Monomer 2 optimized with PBE0-D3

S38
H	4.44715100	-0.95474100	-2.16900200
H	5.98317700	-0.79940300	1.27532900
H	5.98327700	-0.79947800	-1.27519300
H	4.82111000	0.54556300	-1.29266200
H	4.82087000	0.54553000	1.29279600
H	0.69919900	5.02665100	0.89245200
H	-0.28496000	6.20485600	0.00029300
H	0.69943000	5.02683100	-0.89182700
H	-1.38732400	4.29231000	2.16899200
H	-2.28464400	5.54623500	1.27549700
H	-2.87379500	3.86779600	1.29208400
H	-2.87324000	3.86758200	-1.29279600
H	-2.28431000	5.54619900	-1.27566200
H	-1.38651300	4.29268600	-2.16905600
H	-4.45064800	-1.88105300	-1.29299600
H	-3.38885000	-3.00519700	-2.16909800
H	-4.80398000	-3.62316700	-1.27571800
H	-4.45149900	-1.88075900	1.29186900
H	-4.80420200	-3.62300000	1.27545400
H	-3.38959100	-3.00403400	2.16898500
H	-3.41666400	-5.21157600	0.00030900
H	-1.96929400	-4.70003400	0.89266000
H	-1.96890000	-4.70036700	-0.89154800

Monomer 2 optimized with PBE0-D3BJ

C	0.01611400	-0.01652400	-0.00001800
C	1.02635900	0.98242100	-0.00002900
C	0.64010400	2.34794700	-0.00002600
C	-0.69960000	2.73687000	0.00000000
C	-1.68150300	1.73645700	0.00000500
C	-1.35575600	0.36016700	-0.00000300
C	-2.33780200	-0.65635200	0.00000500
C	-2.00396600	-2.01727800	-0.00000700
C	-0.65257800	-2.36571500	0.00001500
C	0.37483900	-1.38913200	0.00000100
C	1.74798200	-1.73758600	0.00000600
C	2.75530700	-0.77214300	-0.00002100
C	2.37896400	0.57809900	-0.00003700
C	-1.12804300	4.20742100	0.00000400
C	-3.12237300	-3.06377400	0.00000000
C	4.24306700	-1.13598900	0.00000400
C	-1.96695900	4.48850000	-1.25492700
C	-1.96698000	4.48850200	1.25492900
C	0.06995000	5.15762300	0.00002200

S39
C -3.98775000 -2.87746800 1.25463800
C -3.98714700 -2.87808300 -1.25514800
C -2.57635900 -4.49201100 0.00049600
C 4.90576900 -0.54987800 1.25499000
C 4.90591200 -0.54964800 -1.25480000
C 4.46725000 -2.64849700 -0.00013200
H 1.99927900 -2.79884800 0.00001900
H 3.14399100 1.35868500 -0.00005200
H 1.43340000 3.09621000 -0.00004500
H -2.73986600 2.00896600 0.00001900
H -3.38709400 -0.35067700 0.00003900
H -0.35194800 -3.41403100 0.00005200
H 4.03371900 -3.12611200 0.89168900
H 4.03367500 -3.12595400 -0.89201800
H 5.54662200 -2.86387000 -0.00017900
H 4.44255900 -0.95442900 2.16796000
H 4.44275000 -0.95396900 -2.16796000
H 5.97890700 -0.79870500 1.27493600
H 5.97903200 -0.79854800 -1.27470500
H 0.70025000 5.02092700 0.89190500
H 0.70023900 5.02097600 -0.89187600
H -1.38543300 4.28861300 2.16793500
H -2.28696500 5.54260100 1.27524700
H -2.87139500 3.86352700 1.29085100
H -2.87119900 3.86328300 -1.29102200
H -2.28721100 5.54252100 -1.27508700
H -1.38529500 4.28891600 -2.16792500
H -4.44616200 -1.87914100 -1.29162500
H -3.38487800 -3.00322000 -2.16802900
H -4.80163000 -3.62142300 -1.27538200
H -4.44705900 -1.87862800 1.29022300
H -4.80056900 -3.62101400 1.27496900
H -3.38587500 -3.00184100 2.16786800
H -3.41164100 -5.20874800 0.00044700
H -1.96462500 -4.69552700 0.89255600
H -1.96417500 -4.69597500 -0.89115200

Monomer 2 optimized with M06

C 0.01576000 -0.01666400 0.00000500
C 1.02969200 0.97742200 -0.00001500
C 0.64963900 2.34451000 -0.00003100
C -0.68821700 2.74012400 0.00001400
C -1.67361800 1.74285200 0.00003200
C -1.35387800 0.36562400 0.00001700
C -2.33990000 -0.64661400 -0.00000400
C -2.01270500 -2.00928800 -0.00003900
C -0.66237100 -2.36212100 0.00001400
C 0.36851700 -1.38968800 0.00001700
C 1.73975100 -1.74440900 0.00001900
C 2.75211900 -0.78406100 0.00000200
C 2.38010100 0.56750000 -0.00002200
C -1.11175200 4.20954700 -0.00000500
C -3.13399200 -3.04901600 -0.00001200
C 4.23668000 -4.47724500 0.00031800
H 1.98118200 -2.81114300 0.00001200
H 3.14843200 1.34948100 -0.00005400
H 1.45219200 3.08749400 -0.00007900
H -2.73494400 2.01743300 0.00002300
H -3.90292200 -0.33278000 0.00001600
H -0.36014000 -3.41326300 0.00006800
H 4.02664400 -3.14107700 0.89287000
H 4.02665900 -3.14052900 -0.89411300
H 5.54014400 -2.87755000 -0.00052500
H 4.43634400 -0.97368600 2.16719600
H 4.43666900 -0.97229900 -2.16705600
H 5.97518000 -0.83234300 1.27268300
H 5.97538300 -0.83161000 -1.27222000
H 4.82738200 0.52739900 -1.29173600
H 4.82705700 0.52656600 1.29294700
H 0.71774600 5.02036000 0.89301200
H 0.26579300 6.20081200 -0.00027100
H 0.71736600 5.02026800 -0.89384800
H -1.36520500 4.29314700 2.16714300
H -2.25441900 5.55730300 1.27310500
H -2.86055900 3.88478900 1.29245500
H -2.86082800 3.88436000 -1.29200900
H -2.25526400 5.55707400 -1.27253600
Monomer 2 optimized with M06-D3

H -1.36587600 4.29338300 -2.16705300
H -4.46259600 -1.86714000 -1.29312100
H -3.39448400 -2.99100700 -2.16712200
H -4.80940400 -3.61215200 -1.27259400
H -4.46325800 -1.86680400 1.29207600
H -4.80948400 -3.61194300 1.27251700
H -3.39496100 -2.98980400 2.16700400
H -3.43797800 -5.19105500 0.00017100
H -1.98650500 -4.68808800 0.89391900
H -1.98604600 -4.68834400 -0.89290800
H 4.02474000 -3.13949700 -0.89363300
H 5.53872700 -2.87762500 -0.00024300
H 4.43444500 -0.97207100 2.16707300
H 4.82335400 0.52834100 -1.29289000
H 0.71760800 5.01818600 0.89293200
H -0.26515400 6.19961000 -0.00021700
H 0.71725100 5.01814500 -0.89368900
H -1.36457300 4.29094100 2.16712700
H -2.25634400 5.55434700 1.27436700
H -2.85957100 3.88064300 1.29354300
H -2.85974600 3.88015500 -1.29300100
H -2.25716500 5.55409000 -1.27386300
H -1.36512100 4.29117900 -2.16704900
H -4.46007700 -1.86478900 1.29256900
H -4.80877900 -3.61011500 -1.27403000
H -3.39276900 -2.98869300 2.16695500
H -3.43536000 -5.19127800 0.00046400
H -1.98365100 -4.68642900 0.89415600
H -1.98365100 -4.68695400 -0.89240500

Monomer 2 optimized with M06-2X

C 0.01681400 -0.01743700 -0.00002800
C 1.02952900 0.98025300 -0.00004500
C 0.64560600 2.34898500 -0.00003800
C -0.69355000 2.73817200 -0.00003600
C -1.67887300 1.74036000 -0.00003400
C -1.35566100 0.36220400 -0.00002100
C -2.34001600 -0.65320300 0.00000400
C -2.00701300 -2.01486600 0.00002000
C -0.65708100 -2.36765200 0.00003400
C 0.37305300 -1.39106000 0.00001000
C 1.74689400 -1.74326100 -0.00003000
C 2.38171400 -0.77843100 -0.00003700
C 2.85439600 -0.57345600 -0.00005600
C -1.12184200 4.21096100 0.00001000
C -3.13059400 -3.05885400 0.00000400
C 4.24403900 -1.14325000 0.00000400

S43
C	-1.96221800	4.49459900	-1.25559900
C	-1.96190600	4.49460200	1.25583200
C	0.08022300	5.15944000	-0.00013300
C	-3.99762600	-2.87057200	1.25546700
C	-3.99728000	-2.87080100	-1.25573000
C	-2.58605400	-4.48989500	0.00023100
C	4.90945700	-0.55695500	1.25569500
C	4.90959700	-0.55691500	-1.25559200
C	4.46494400	-2.65837500	-0.00002100
H	1.99472700	-2.80471500	0.00001600
H	3.14884100	1.35139200	-0.00006500
H	1.44085600	3.09420600	-0.00004000
H	-2.73594600	2.01596300	-0.00004000
H	-3.38689000	-0.34703600	0.00001800
H	-0.35707100	-3.41548000	0.00008800
H	4.02796900	-3.13049300	0.89214000
H	4.02785900	-3.13047400	-0.89213900
H	5.54352800	-2.87315600	-0.00008500
H	4.44309400	-0.96022600	2.16664900
H	4.44326700	-0.96006900	-2.16661500
H	5.98042000	-0.81138500	1.27221300
H	5.98053400	-0.81144800	-1.27204500
H	4.82219900	0.53840700	-1.28676300
H	4.82192900	0.53835500	1.28693500
H	0.70757100	5.01715400	0.89203300
H	0.70743600	5.01705900	-0.89237900
H	-1.37997700	4.29043000	2.16667300
H	-2.27494100	5.54989900	1.27317700
H	-2.86795900	3.87297600	1.28640700
H	-2.86814000	3.87277900	-1.28607600
H	-2.27548800	5.54983000	-1.27274900
H	-1.38043600	4.29067000	-2.16658900
H	-4.45526500	-1.87195200	-1.28623600
H	-3.39340900	-2.99454700	-2.16676000
H	-4.80809200	-3.61529700	-1.27295000
H	-4.45598200	-1.87187700	1.28546500
H	-4.80817700	-3.61534500	1.27276300
H	-3.39392400	-2.99376200	2.16668200
H	-3.42384500	-5.20232600	0.00020200
H	-1.97471000	-4.68962800	0.89249000
H	-1.97449800	-4.68985300	-0.89183100

Monomer 2 optimized with M06-2X-D3

| C | 0.01686100 | -0.01746200 | -0.00008400 |
C			
1.02992200	0.97978400	-0.00008000	
0.64665700	2.34863200	-0.00007400	
-0.69235900	2.73829300	-0.00010500	
-1.67810700	1.74090200	-0.00011500	
-1.35539000	0.36272100	-0.00008100	
-2.34017400	-0.65215800	-0.00002200	
-0.65791800	-2.36734000	0.00001300	
0.37250800	-1.39116000	-0.00003500	
1.74611600	-1.74398200	-0.00001900	
-3.38189000	0.57254300	-0.00007300	
-1.12012400	4.21154000	0.00002600	
-3.13044100	-3.05741600	0.00000700	
4.24339600	-1.14484200	0.00001000	
-1.96065300	4.49474800	-1.25553000	
-1.95985900	4.49474300	1.25615900	
0.08250200	5.15897900	-0.00035100	
-3.99866300	-2.86824700	1.25545800	
-3.99795700	-2.86828000	-1.25601300	
-2.58760800	-4.48669000	0.00061500	
4.90857700	-0.55914400	1.25617700	
4.90904000	-0.55806000	-1.25540500	
4.46344100	-2.66012300	-0.00060700	
1.99329800	-2.80558600	-0.00006000	
3.14915500	1.35033800	-0.00008300	
1.44237100	3.09336200	-0.00006100	
-2.73512800	2.01666600	-0.00010300	
-3.38863200	-0.34528300	0.00001000	
-0.35809300	-3.41521500	0.00009600	
4.02599600	-3.13230500	0.89131400	
4.02597400	-3.13157800	-0.89290300	
5.54187300	-2.87570100	-0.00070700	
4.44172300	-0.96260400	2.16682900	
4.44241700	-0.96062600	-2.16658100	
5.97950600	-0.81372100	1.27313700	
5.97993500	-0.81282100	-1.27226300	
4.82178800	0.53728200	-1.28608600	
4.82109700	0.53617900	1.28782700	
0.70993600	5.01623500	0.89170700	
-0.26992200	6.20074300	-0.00040800	
0.70955600	5.01599400	-0.89263400	
-1.37775700	4.29002200	2.16680000	
-2.27267000	5.55010500	1.27406800	
-2.86600700	3.87322000	1.28681000	
Monomer 2 optimized with LC-ωPBE			
	X	Y	Z
---	------------	------------	------------
H	-0.34718800	-3.40985800	-0.00027300
H	4.03732300	-3.12090600	0.89056700
H	4.03725500	-3.12030800	-0.89186100
H	5.54717600	-2.85557600	-0.00061000
H	4.44110400	-0.94853400	2.16623700
H	4.44147800	-0.94673100	-2.16604100
H	5.97569300	-0.79696000	1.27490900
H	5.97597200	-0.79813300	-1.27434900
H	4.82044800	0.54909300	-1.28807400
H	4.81971300	0.54815800	1.28960900
H	0.69326400	5.02175200	0.89163900
H	-0.29090900	6.19672600	0.00001000
H	0.69373200	5.02159300	-0.89085700
H	-1.39080100	4.28460400	2.16608600
H	-2.28633600	5.53974300	1.27475000
H	-2.87609100	3.86570600	1.28840800
H	-2.87531900	3.86527500	-1.28935200
H	-2.28648700	5.53964600	-1.27472500
H	-1.38986800	4.28536300	-2.16618200
H	-4.44847700	-1.88618400	-1.28850900
H	-3.38277900	-3.00242200	-2.16610000
H	-4.79203800	-3.62748800	-1.27442500
H	-4.44874200	-1.88649000	1.28849600
H	-4.79091900	-3.62810400	1.27570600
H	-3.38164300	-3.00132300	2.16620000
H	-3.40742500	-5.20770000	-0.00010000
H	-1.96229800	-4.69634100	0.89113200
H	-1.96228800	-4.69623900	-0.89131100

Monomer 2 optimized with LC-ωPBE-D3

	X	Y	Z
C	0.01720000	-0.01758700	-0.00001400
C	1.02387400	0.97908200	-0.00002200
C	0.63798400	2.34445300	-0.00001600
C	-0.69850500	2.73244500	-0.00001700
C	-1.67785000	1.73207900	-0.00000800
C	-1.35123600	0.35749800	-0.00000700
C	-2.33198200	-0.65764600	0.00000800
C	-1.99887400	-2.01682200	0.00001200
C	-0.65039000	-2.36292500	0.00002500
C	0.37538100	-1.38553600	0.00000500
C	1.74732400	-1.73419900	0.00000500
C	2.75222700	-0.77114600	-0.00002600
C	2.37467600	0.57672000	-0.00002900
C	-1.13113700	4.20131700	0.00000500
C -3.11890300 -3.06096000 0.00000300
C 4.24061400 -1.13066800 0.00000300
C -1.96862200 4.48036300 -1.25359000
C -1.96874900 4.48032200 1.25352900
C 0.06342300 5.15428800 0.00009000
C -3.98215000 -2.87460500 1.25335200
C -3.98172700 -2.87496100 -1.25369100
C -2.57584800 -4.48931200 0.00003110
C 4.90091700 -0.54460200 1.25352700
C 4.90099600 -0.54465900 -1.25350900
C 4.46890700 -2.64160500 0.00003000
H 1.99564600 -2.79593000 0.00001800
H 3.13891000 1.35768800 -0.00003200
H 1.43329400 3.09025900 -0.00000900
H -2.73618100 2.00356700 0.00000200
H -3.38103200 -0.35214000 0.00002500
H 5.54769600 -2.85378600 0.00000100
H 4.33696900 -0.94517600 2.16476000
H 4.43374400 -0.94517600 -2.16475000
H 5.97171400 -0.79708300 1.27697000
H 5.97176400 -0.79726300 -1.27693200
H 4.81618100 0.55025200 1.28683200
H 4.81596100 0.55030000 1.28683200
H 0.69220700 5.01898200 0.89173900
H 0.69229000 5.01904000 -0.89150900
H -1.38844100 4.27534700 2.16475000
H -2.28471600 5.53412000 1.27719300
H -2.87495100 3.85998500 1.28662600
H -2.87466200 3.85980400 -1.28694500
H -2.28484200 5.53409000 -1.27711100
H -1.38812900 4.27569600 -2.16476200
H -4.44567200 -1.87958200 -1.28716000
H -3.37782600 -2.99434500 -2.16481800
H -4.79033800 -3.62094800 -1.27726900
H -4.44653700 -1.87940900 1.28611300
H -4.79045300 -3.62091600 1.27709200
H -3.37845900 -2.99323200 2.16471400
H -3.41148700 -5.20380500 0.00018400
H -1.96591300 -4.69285800 0.89208200
H -1.96549700 -4.69309200 -0.89112400
Monomer 2 optimized with LC-ωPBE-D3BJ

Atom	X	Y	Z
C	0.01679300	-0.01717300	-0.00003100
C	1.02350700	0.97924300	-0.00003400
C	0.63768800	2.34400000	-0.00003200
C	-0.69841700	2.73101100	-0.00003100
C	-1.67816600	1.73201200	-0.00001600
C	-1.35150100	0.35792800	-0.00001600
C	-2.33211700	-0.65671300	-0.00000200
C	-1.99812400	-2.01496900	-0.00001000
C	-0.65050200	-2.36186300	0.00001900
C	0.37488000	-1.38497400	-0.00000500
C	1.74624000	-1.73348400	0.00000400
C	2.75012300	-0.77027900	-0.00003200
C	2.37393500	0.57726300	-0.00003800
C	-1.12937400	4.19892300	0.00000500
C	-3.11634300	-3.05900500	0.00000200
C	4.23683200	-1.13078100	0.00000400
C	-1.96622300	4.47721300	-1.25307100
C	-1.96600500	4.47722500	1.25323600
C	0.06626300	5.14896600	-0.00009500
C	-3.97859200	-2.87219700	1.25285800
C	-3.97798000	-2.87282100	-1.25337500
C	-2.57102100	-4.48544000	0.00051500
C	4.89605200	-0.54517000	1.25320400
C	4.89621700	-0.54498300	-1.25302400
C	4.46199800	-2.64119100	-0.00011000
H	1.99657600	-2.79454400	0.00002200
H	3.13817900	1.35793200	-0.00004100
H	1.43130400	3.09133000	-0.00003000
H	-2.73620500	2.00381800	-0.00011100
H	-3.38105200	-0.35153100	0.00028000
H	-0.34812200	-3.40923700	0.00067000
H	4.02940300	-3.11756900	0.89106900
H	4.02932600	-3.11743900	-0.89132300
H	5.54026500	-2.85486800	-0.00017300
H	4.42858000	-0.94599100	2.16397400
H	4.42876300	-0.94555200	-2.16391400
H	5.96678200	-0.79693900	1.27738600
H	5.96691400	-0.79689000	-1.27717200
H	4.80977500	0.54964100	-1.28594400
H	4.80944800	0.54943600	1.28634300
H	0.69510700	5.01247400	0.89108100
H	-0.28775200	6.18963000	-0.00007900
H	0.69496700	5.01246000	-0.89136500
Monomer 2 optimized with CAM-B3LYP

Atom	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25	C26	C27	C28	C29	C30
C	0.01605900	-0.01641200	-0.00003500																											
C	1.02475200	0.98258300	-0.00003600																											
C	0.63674900	2.34846100	-0.00002400																											
C	-0.70201900	2.73725000	-0.00001500																											
C	-1.68177000	1.73543000	-0.00002400																											
C	-1.35528700	0.35901300	-0.00002900																											
C	-2.33629800	-0.65859400	-0.00002400																											
C	-2.00283400	-2.01912200	-0.00003200																											
C	-0.65178100	-2.36499000	-0.00006000																											
C	0.37550300	-1.38741100	-0.00002000																											
C	1.74926900	-1.73462600	-0.00001800																											
C	2.75607000	-0.76996300	-0.00004300																											
C	2.37742700	0.57908800	-0.00004300																											
C	-1.13270500	4.21224300	0.00000700																											
C	-3.12373600	-3.07011000	0.00000300																											
C	4.24876000	-1.13419900	0.00000600																											
C	-1.97386500	4.49868600	-1.25571900																											
C	-1.97340800	4.49877900	1.25602600																											
C	0.06610500	5.16665100	-0.00024000																											
C	-3.99377100	-2.88888000	1.25567500																											
C	-3.99335000	-2.88940800	-1.25602600																											
C	-2.57684400	-4.50151400	0.00041100																											
C	4.91718000	-0.54907600	1.25593100																											
C	4.91736100	-0.54894000	-1.25575900																											
C	4.47604900	-2.64954700	-0.00007500																											
H	1.99888500	-2.79524200	-0.00001000																											
H	3.14054300	1.36026800	-0.00003900																											
Atom	X	Y	Z																											
------	---------	---------	---------																											
H	1.4304600	3.0949400	-0.00002400																											
H	-2.73970700	2.00594400	-0.00003200																											
H	-3.38470600	-0.35311800	0.00000000																											
H	-0.34831700	-3.41143300	0.00002800																											
H	4.04423200	-3.12879800	0.89082300																											
H	4.04414000	-3.12871100	-0.89097700																											
H	5.55542000	-2.86241900	-0.00013700																											
H	4.45816400	-0.95360900	2.17055100																											
H	4.45838800	-0.95326900	-2.17049100																											
H	5.98944100	-0.79970800	1.27231500																											
H	5.98959200	-0.79969900	-1.27207500																											
H	4.83050600	0.54626400	-1.29401000																											
H	4.83017200	0.54611100	1.29435000																											
H	0.69714800	5.03235500	0.89060200																											
H	-0.28923400	6.20784500	-0.00025200																											
H	0.69687400	5.03224300	0.89125600																											
H	-1.39375600	4.30268200	2.17058400																											
H	-2.29150000	5.55298700	1.27275100																											
H	-2.87894000	3.87668300	1.29417700																											
H	-2.87920500	3.87630200	-1.29368900																											
H	-2.29229100	5.55279700	-1.27221300																											
H	-1.39442200	4.30289000	-2.17047500																											
H	-4.45641000	-1.89311800	-1.29439000																											
H	-3.39605000	-3.01570500	-2.17059000																											
H	-4.80357600	-3.63512800	-1.27261400																											
H	-4.45719700	-1.89272800	1.29328500																											
H	-4.80373600	-3.63487300	1.27249200																											
H	-3.39524200	-3.01437400	2.17048600																											
H	-3.41224700	-5.21736300	0.00037800																											
H	-1.96540800	-4.70641300	0.89148000																											
H	-1.96504200	-4.70679000	-0.89032000																											

Monomer 2 optimized with CAM-B3LYP-D3

Atom	X	Y	Z
C	0.01680800	-0.01713100	-0.00001200
C	1.02461300	0.98252300	0.00001800
C	0.63629500	2.34806500	0.00003800
C	-0.70264600	2.73514000	0.00008000
C	-1.68197400	1.73307200	0.00003400
C	-1.35461800	0.35737800	0.00001500
C	-2.33471100	-0.66038900	0.00002600
C	-1.99992500	-2.02044400	-0.00002000
C	-0.64912500	-2.36610300	-0.00005600
C	0.37707800	-1.38775600	-0.00004400
C	1.75071200	-1.73441500	-0.00005800
	C	H	
---	------------	------------	
	2.75610500	-0.76873400	-0.00002000
	2.37705700	0.58007300	0.00003300
	-1.13603500	4.20800500	-0.00001400
	-3.12066900	-3.06971600	-0.00001600
	4.24828300	-1.12964200	0.00000200
	-1.97699600	4.49113200	-1.25608800
	-3.98916900	-2.88692000	-1.25594900
	-2.57538800	-4.50132200	0.00012700
	4.91396400	-0.54276500	1.25601800
	4.91410600	-0.54241000	-1.25577300
	4.47899000	-2.64408400	-0.00020100
	1.99954500	-2.79508000	-0.00008800
	3.14001000	1.36126700	0.00010100
	1.43043500	3.09376100	0.00011200
	-2.73987900	2.00327600	0.00007700
	-3.38332500	-0.35601200	0.00008300
	-0.34360600	-3.41181100	-0.00007700
	4.04726800	-3.12280800	0.89102600
	4.04720000	-3.12258600	-0.89151300
	5.55870700	-2.85511300	-0.00027200
	4.45209500	-0.94725500	2.16918700
	4.45218200	-0.94645400	-2.16911200
	5.98638200	-0.79252900	1.27428700
	5.98647700	-0.79237100	-1.27411700
	4.82587600	0.55270400	-1.29184700
	4.82550600	0.55231700	1.29251100
	0.69037500	5.03044900	0.89166300
	-0.29695900	6.20555500	0.00017500
	0.69073400	5.03050900	-0.89093900
	-1.39680100	4.29231600	2.16910600
	-2.29641500	5.54495400	1.27444900
	-2.88215100	3.86771800	1.29150700
	-2.88142000	3.86741400	-1.29243100
	-2.29639000	5.54490400	-1.27455200
	-1.39585800	4.29292900	-2.16917000
	-4.45210400	1.89054600	-1.29215300
	-3.38795300	-3.01084200	-2.16918200
	-4.79907700	-3.63292100	-1.27447600
	-4.45267100	1.89059100	1.29162900
	-4.79881800	-3.63314200	1.27468900
	-3.38797300	-3.01001900	2.16913800
	-3.41108600	-5.21680100	-0.00002400

S52
Monomer 2 optimized with CAM-B3LYP-D3BJ

\[
\begin{align*}
\text{H} & \quad -1.96407900 \quad -4.70512600 \quad 0.89153900 \\
\text{H} & \quad -1.96371100 \quad -4.70520300 \quad -0.89100700
\end{align*}
\]
H 0.69618400 5.02487300 0.89060600
H -0.28933500 6.20169300 -0.00019400
H 0.69594200 5.02480000 -0.89115800
H -2.29156000 5.54386100 1.27510100
H -2.87690000 3.86630000 1.29229400
H -2.87687600 3.86592600 -1.29190500
H -2.29228900 5.54368400 -1.27460800
H -1.39212100 4.29175900 -2.16879200
H -4.44869400 -1.88691800 -1.29271000
H -3.38619300 -3.00855800 -2.16891500
H -4.79802300 -3.62893000 -1.27505100
H -4.44960900 -1.88643200 1.29134200
H -4.79832900 -3.62857100 1.27477300
H -3.38706600 -3.00709200 2.16877800
H -3.40789800 -5.21324900 0.00048100
H -1.96128100 -4.70029800 0.89154200
H -1.96087700 -4.70077000 -0.89016200

Monomer 2 optimized with ωB97XD

C 0.01642800 -0.01698400 0.00002800
C 1.02305000 0.98525200 0.00002900
C 0.63189200 2.35115300 0.00003100
C -0.70894300 2.73629000 0.00001800
C -1.68713300 1.73137000 0.00004300
C -1.35669000 0.35521900 0.00004600
C -2.33578500 -0.66507500 0.00004900
C -1.99798700 -2.02565700 0.00001100
C -0.64531000 -2.36892100 0.00001100
C 0.37978300 -1.38787500 0.00001600
C 1.75514100 -1.73221300 -0.00000900
C 2.75977300 -0.76381900 -0.00001100
C 2.37744600 0.58538500 0.00002100
C -1.14568300 4.20992500 -0.00001800
C -3.11719600 -3.07890600 -0.00002200
C 4.25439400 -1.12204100 -0.00000900
C -1.98755000 4.48934500 -1.25854300
C -1.98742800 4.48947900 1.25856900
C 0.05081700 5.16979100 -0.00012600
C -3.98551900 -2.89670700 1.25834900
C -3.98496100 -2.89722400 -1.25882200
C -2.56581700 -4.51030500 0.00040800
C 4.91723100 -0.53305400 1.25876100
C 4.91744000 -0.53240400 -1.25836400
Dimer 2–2 optimized with B3LYP

C 4.48779900 -2.63811300 -0.00039700
H 2.00651100 -2.79333800 -0.00003500
H 3.13880400 1.36959600 -0.00004000
H 1.42497500 3.09950500 -0.00004000
H -2.74677300 1.99903400 -0.00004500
H -3.38583600 -0.36182600 -0.00000400
H 4.05792400 -3.11850500 0.89172000
H 4.05781800 -3.11806000 -0.89270200
H 5.56838100 -2.84716300 -0.00051200
H 4.45105700 -0.93534600 2.17120600
H 4.45132200 -0.93410900 -2.17109700
H 5.98962200 -0.78434500 1.28156000
H 5.98980000 -0.78382100 -1.28118200
H 4.83136500 0.56363900 -1.29231100
H 4.83099000 -0.56295700 -1.29332600
H 0.68157100 5.03754700 -0.89213100
H -0.30819000 6.21021600 0.00027600
H 0.68160300 -5.03730100 -0.89232200
H -1.40639700 4.28618700 2.17113700
H -2.30546200 5.54398800 1.28162600
H -2.89373900 3.86712600 1.29243900
H -2.89362300 3.86665400 -1.29248800
H -2.30596900 5.54374200 -1.28144100
H -1.40646000 4.28639400 -2.17115100
H -4.45500900 -1.90335400 -1.29321200
H -3.80335000 -3.01424200 -2.17122400
H -4.79050100 -3.64840000 -1.28195100
H -4.45587700 -1.90295700 1.29191700
H -4.79083400 -3.64811400 1.28159400
H -3.38121900 -3.01298300 2.17104700
H -3.39936300 -5.22902600 0.00033700
H -1.95419500 -4.71285700 0.89279900
H -1.95374700 -4.71324000 -0.89158900

C 3.03394000 0.05690300 1.19476300
C 2.49989700 -0.87291100 2.13385200
C 2.83836500 -2.25003400 2.00585400
C 3.67746400 -2.71879100 0.98807400
C 4.19317700 -1.78440700 0.07201400
C 3.89174300 -0.39943600 0.14913800
C 4.40806300 0.55036000 -0.76929900
C 4.10249800 1.92020300 -0.68556200
C 3.25736900 2.34503500 0.34756900

S55
	2.71179300	1.43961400	1.29932200
C	1.85635400	1.86712500	2.35123300
C	1.32053800	0.97094900	3.28493100
C	1.65157700	-0.38988900	3.16028600
C	4.04816900	-4.21000300	0.84122500
C	4.70313200	2.89711100	-1.71902400
C	0.38874100	1.42217800	4.42891000
C	3.56832200	-4.72451200	-0.53587300
C	5.58214100	-4.37230300	0.94459200
C	3.40056500	-5.08366100	1.93085600
C	6.24625100	2.85201700	-1.63057000
C	4.25739400	2.48256100	-3.14041100
C	4.25224300	4.34969400	-1.48181500
C	1.01760300	1.04089800	5.78928200
C	-0.98033200	0.71933900	4.27959200
C	0.15334600	2.94238900	4.42456400
C	-3.04144000	-0.05703100	-1.19919900
C	-2.24846600	0.81262100	-2.00330900
C	-2.28029700	2.21128900	-1.73992500
C	-3.06231700	2.75765400	-0.71570900
C	-3.83714000	1.88189300	0.06567200
C	-3.84935000	0.47931800	-0.15158500
C	-4.62985800	-0.41166500	0.62867000
C	-4.63435600	-1.79972000	0.40604300
C	-3.83121800	-2.30425800	-0.62482900
C	-3.02681400	-1.45994800	-1.43956100
C	-2.20746600	-1.96787900	-2.48449400
C	-1.41927600	-1.13225400	-3.28572800
C	-1.45508800	0.25043400	-3.03341800
C	-3.09380000	4.27087400	-0.41550000
C	-5.51127100	-2.70829800	1.29425200
C	-0.53030200	-1.67253700	-4.42565100
C	-2.58000500	4.51610900	1.02179500
C	-4.54250600	4.79434200	-0.54250300
C	-2.20758200	5.07794900	-1.38214900
C	-6.99218700	-2.28526400	1.16076000
C	-5.06737000	-2.56756300	2.76898000
C	-5.40072900	-4.19245300	0.90134600
C	-1.02769700	-1.09988900	-5.77343800
C	0.93507500	-1.23756400	-4.19272900
C	-0.56422900	-3.20906300	-4.51409200
H	1.62510800	2.93182300	2.40756800
H	-4.45984900	2.27486000	0.87294700
H	-5.24337800	0.01644800	1.42513500
H	1.24853800	-1.11670100	3.86959200

S56
Dimer 2–2 optimized with B3LYP-D3

H	-1.57675100	-3.58809300	-4.72321600
H	0.08962100	-3.54942900	-5.33257400
H	-0.40121000	-1.46614700	-6.60381100
H	1.58359400	-1.63440800	-4.99141200
H	1.04596000	-0.14265300	-4.19105200
H	-0.99301800	0.00018200	-5.78847900
H	1.31427500	-1.61023900	-3.22801100
H	-2.06784600	-1.40416900	-5.97145100
H	4.58887000	1.46486300	-3.39600600
H	3.15982500	2.50962900	-3.2348300
H	6.59542000	3.16952200	-3.89236000
H	4.67987100	3.16952200	-3.89236000
H	6.64052200	1.84481800	-1.83382200
H	6.69542500	3.54095800	-2.36512000
H	6.59254000	3.15012900	-0.62810200
H	4.70069000	5.00782400	-2.24276800
H	4.56879900	4.72373000	-2.49552700
H	6.64052200	1.84481800	-1.83382200

C	-0.03649400	0.04094000	1.55175300
C	-1.06369200	-0.94577300	1.54462600
C	-0.69271600	2.31670800	1.56542100
C	0.64437100	-2.72393000	1.63674300
C	1.64131700	-1.73623200	1.58853700
C	1.33525600	-0.35097500	1.56544200
C	2.32910300	0.66327600	1.57409100
C	2.00748600	2.02973000	1.61713000
C	0.65631400	2.38835600	1.55165000
C	-0.38147900	1.42038600	1.54248900
C	-1.75297200	-1.78474100	1.55215600
C	-2.77792600	-0.83384600	1.59884000
C	-2.41690600	-0.52118700	1.53852900
C	1.04085500	1.20440600	1.81530300
C	3.12662200	3.08294800	1.76550700
C	-4.26270800	1.23494300	1.73161500
C	2.00872300	-4.65203500	0.70057700
C	1.73976000	-4.36074600	3.18519000
C	-0.17765100	-5.14393800	1.78805400
C	3.94971000	2.76563100	3.03503900
C	4.60886500	3.05900700	0.53786300
C	2.56811800	4.51023300	1.90759900
C	-4.89956900	0.46361500	2.90989700
C	-5.02483500	0.89376600	0.43396700
C	-4.43448800	2.73981300	2.00739100
C	0.03649400	-0.04095400	-1.55175500
C	1.06369400	0.94576200	-1.54474600
C	0.69271300	2.31669200	-1.56524000
C	-0.64437500	2.72392600	-1.63665000
C	-1.64132000	1.73622400	-1.58831000
C	-1.33524300	0.35096700	-1.56529800
C	-2.32910800	-0.66328300	-1.57379100
C	-2.00750900	-2.02973200	-1.61692000
C	-0.65632100	-2.38835700	-1.55149400
C	0.38148300	-1.42040200	-1.54242000
C	1.75298300	-0.83384900	-1.59072000
C	2.41689600	0.52119100	-1.53855000
C	-1.04079800	4.20441600	-1.81523300
C	-3.12645000	-3.08296500	-1.76525000
C	4.26267000	-1.23492100	-1.73197900
C	-2.00894800	4.65204000	-0.70076900
C	-1.73931800	4.36079600	-3.18595100
C	0.17771400	5.14394000	-1.78762900
C	-3.94961600	-2.76568400	-3.03771000
C	-4.06100900	-3.0897900	-0.53770600
C	-2.56819300	-4.51030000	-1.90716700
C	4.89552500	-0.46345200	-2.91017800
C	5.02478500	-0.89388900	-0.43429500
C	4.34459000	-2.73975700	-2.00813000
H	-1.98535100	2.84651000	1.58042300
H	-2.69353400	2.02230000	-1.63175100
H	-3.37196000	-0.34822000	-1.61029200
H	-3.18795300	-1.29079000	1.55325800
H	-1.49675000	-3.05004100	1.58377500
H	0.35861800	-3.43568900	-1.56374600
H	1.98535600	-2.84651900	-1.58004400
H	2.69352300	-2.02231900	1.63212200
H	3.37196800	0.34828800	1.61094400
H	3.18796400	1.29076100	-1.55374200
H	1.49675600	3.05000800	-1.58399200
H	0.35853900	3.43567200	1.56401600
H	-1.07257800	4.04182000	-4.00252600
H	-2.01956200	5.41305300	-3.36064700
H	-2.65526500	3.75342400	-3.24551800
H	-1.52332100	4.60311100	0.28544700
H	-2.91184000	4.02612000	-0.66441300
H	-2.33069700	5.69292300	-0.86778200
H	-0.15215100	6.18833800	-1.90267800
H	0.72541500	5.07037400	-0.83565900

S59
H	0.88211400	4.92760000	-2.60532200
H	-3.91098000	3.04638300	2.92633000
H	-4.05805300	3.35639300	1.17815500
H	-5.50264300	2.97650200	2.13387700
H	-4.36291700	0.67003800	3.84932400
H	-4.61220000	1.44808900	-0.42256300
H	-5.95182100	0.76515500	3.04134100
H	-6.09068800	1.15850900	0.52950100
H	-4.96472700	-0.17867300	0.20247100
H	-4.88606200	-0.62432200	2.74728000
H	-4.51143800	-2.06807100	-0.38878600
H	-3.51329300	-3.32318900	0.37950500
H	-4.88111800	-3.78465800	-0.66351200
H	-4.73928300	-3.52124800	-3.18092600
H	-4.43779600	-1.78165900	-2.97171900
H	-3.30548700	-2.76409300	-3.92828700
H	-1.99714000	-4.81640200	-1.01751800
H	-1.91208400	-4.60716600	-2.78590600
H	-3.97063000	-5.22527800	-2.02795800
H	-0.88206000	-4.92729600	2.60565600
H	0.15222000	-6.18829300	1.90348600
H	-0.72529400	-5.07073400	0.83602200
H	1.07321200	-4.04187500	4.00259500
H	2.02016500	-5.41297900	3.36040100
H	2.65566900	-3.75329900	3.24519000
H	2.91155600	-4.02604400	0.66396500
H	2.33056500	-5.69289800	0.86754300
H	1.52286900	-4.60318700	-0.28554000
H	4.05887700	-3.35651700	-1.17854800
H	3.91031000	-3.04633500	-2.92658000
H	5.50256300	-2.97623100	-2.13536000
H	5.95184400	-0.76480800	-3.04150200
H	6.09042500	-1.15964000	-0.52941100
H	4.96558500	0.17872100	-0.20326800
H	4.88582600	0.62447900	-2.74755500
H	4.61136000	-1.44741300	0.42234300
H	4.36302200	-0.66995400	-3.84967300
H	4.51102800	2.06800600	0.38876700
H	3.51302600	3.32345400	-0.37920800
H	4.88112700	3.78450600	0.66366200
H	4.43833800	1.78184400	2.97163200
H	4.73905700	3.52148400	3.18131600
H	3.30558100	2.76351800	3.92846300
H	3.39695500	5.22521000	2.02838300
H	1.91206600	4.60695000	2.78639900

S60
H 1.99696700 4.81641000 1.01803600

Dimer 2–2 optimized with B3LYP-D3BJ

C -0.03315700 0.03603100 1.51696000
C -1.05453900 -0.95596000 1.51000700
C -0.67625000 -2.32326900 1.52750800
C 0.66220600 -2.72131100 1.60111800
C 1.65387100 -1.73057400 1.55100400
C 1.34004200 -0.34793000 1.53068200
C 2.32752800 0.67101700 1.54060900
C 1.99693500 2.03367900 1.58807700
C 0.64551400 2.38581100 1.52052700
C -0.38576200 1.41280200 1.51087400
C -1.75795000 1.76923400 1.52197300
C -2.77586400 0.81269400 1.57151700
C -2.40924000 -0.53916900 1.50628200
C 1.06349900 -4.19619200 1.78634900
C 3.10609600 3.09177100 1.74265500
C 2.05278900 -4.63992200 0.69241700
C 3.92444800 2.77477400 3.01242300
C 4.04477800 3.07926900 0.52095100
C 2.53555500 4.51144100 1.88707200
C -4.88778900 0.42096000 2.88133800
C -5.02474000 0.88096500 0.41544400
C -4.42994000 2.70633700 2.00572500
C 0.03321900 -0.03604500 -1.51710900
C 1.05459800 0.95558700 -1.51029100
C 0.67633000 2.32326900 -1.52778900
C -0.66212300 2.72132300 -1.60128300
C -1.65379200 1.73057700 -1.55107000
C -1.33997100 0.34800600 -1.53071100
C -2.32748800 -0.67099100 -1.54038000
C -1.99694800 -2.03365500 -1.58792900
C -0.64553100 -2.38582600 -1.52055100
C 0.38578600 -1.41283500 -1.51067200
C 1.75795500 -1.76928700 -1.52202300
C 2.77586900 -0.81273200 -1.57178500
C 2.40928600 0.53913400 -1.50675400
C -1.06345100 4.19619000 -1.78662400
C -3.10619100 -3.09172300 -1.74208400
C 4.25848600 -1.20715400 -1.71229700
C -2.05334400 4.63978000 -0.69318400
C -1.73763400 4.34380100 -3.16804100
C 0.14850200 5.13950500 -1.73942800
C -3.92490800 -2.77492700 -3.01163800
C -4.04451400 -3.07894800 -0.52007000
C -2.53575000 -4.51143300 -1.88642000
C 4.88783400 -0.42128000 -2.88168800
C 5.02456100 -0.88058200 -0.41563100
C 4.43001800 -2.70643000 -2.00553500
H -1.99758600 2.82875300 1.55596500
H -2.70689500 2.01131100 -1.59660400
H -3.37157800 -0.36274300 -1.58170700
H -3.17524200 -1.31277400 1.52651000
H -1.47405100 -3.06272300 -1.54809300
H 0.34443900 -3.43158200 -1.53954900
H 1.99763300 -2.82880400 -1.55572700
H 2.70697200 -2.01130000 1.59663900
H 3.37163900 0.36286200 1.58234500
H 3.17536000 1.31266300 -1.52731900
H 1.47415300 3.06270200 -1.54840600
H 0.34436800 3.43155200 1.53928200
H -1.05436900 4.02600900 -3.97072600
H -2.02147000 5.39330400 -3.35096100
H -2.64721600 3.72887500 -3.24010700
H -1.58654100 4.59854600 0.30204000
H -2.95190700 4.00741600 -0.67191100
H -2.37859900 5.67731900 -0.87100800
H -0.18517500 6.18203700 -1.85651600
H 0.68338200 5.06516700 -0.78078400
H 0.86482800 4.92780400 -2.54728600
H -3.89886100 3.00306600 2.92302900
H -4.06125000 3.33200800 1.18039700
H -5.49729700 2.93829000 2.14379400
H -4.34899000 0.61861300 3.82097700
H -4.61528800 1.44380100 -0.43653800
H -5.94034700 0.71715600 3.01883600
H -6.08918400 1.14674700 0.51894200
H -4.96771200 0.18889300 0.17264900
H -4.86889800 -0.66433800 2.70495500
H -4.50495800 -2.09281200 -0.37174600
H -3.49881000 -3.33999000 0.39884300
H -4.85631600 -3.81223500 -0.65191700
H -4.71027400 -3.53344900 -3.16245100
H -4.41578100 -1.79283000 -2.94582700
H -3.27732200 -2.76749500 -3.90204100

S62
Dimer 2–2 optimized with PBE0

C 1.09645400 -0.23400900 2.10700400
C 1.34914200 1.16407000 2.12282600
C 0.31403000 2.04290000 2.53730300
C -0.94304200 1.57643200 2.92498900
C -1.17247900 0.19330500 2.89899400
C -0.17895100 -0.73016300 2.49601000
C -0.40335900 -2.12597400 2.45999700
C 0.58711100 -3.03082000 2.05852400
C 1.83429300 -2.52516700 1.68879100
C 2.11426400 -1.13479000 1.69939000
C 3.37431700 -0.61406900 1.31253700
C 3.64132700 0.75625300 1.31261200
C			
2.62158400	1.62779600	1.72116400	
-2.06906900	2.51827600	3.37062500	
0.26777700	-4.53337800	2.03030600	
4.99496500	1.33151600	0.87642800	
-3.27890000	2.33739000	2.44038700	
-2.47354500	2.17970000	4.81397100	
-1.64653000	3.98845400	3.32356000	
-0.14090300	-4.99608800	3.43744800	
-0.88942800	-4.78331900	1.04998700	
1.46584800	-5.37236100	1.57984500	
5.60440800	2.13968700	2.03257200	
4.78434800	2.25022400	-0.33774300	
5.98904000	0.23686600	0.48158100	
-1.09651300	0.23400100	-2.10719400	
-1.34942900	-1.16404500	-2.12230200	
-0.31467700	-0.43200000	-2.53698500	
0.94229400	-1.57709000	-2.92544100	
1.17201300	-0.19400200	-2.89996800	
0.17816600	0.72978800	-2.49690000	
0.40348000	2.12557400	-2.46148900	
-0.58668600	3.03301800	-2.06002900	
-1.83383100	2.52546300	-1.68967700	
-2.11401800	1.13512600	-1.70012700	
-3.37983300	0.61477300	-1.31196200	
-3.64114900	-0.75551500	-1.31114100	
-2.62172600	-1.62740400	-1.71975200	
2.06798800	-2.51930400	-3.37114700	
-0.26704600	4.53325800	-2.03236400	
-4.99456100	-1.33036100	-0.87372100	
3.27756900	-2.33929600	-2.44039900	
2.47310300	-2.18046500	-4.81424200	
1.64474700	-3.98930200	-3.32472900	
0.14207200	4.99535700	-3.43958000	
0.88996900	4.78331700	-1.05184600	
-1.46504000	5.37266900	-1.58253600	
-5.60445800	-2.14005500	-2.0285100	
-4.78327300	-2.24748400	0.34153400	
-5.98855900	-0.23529800	-0.47981300	
4.14086200	-1.32623200	1.00391900	
2.14638000	0.20411700	-3.19511800	
1.39129900	2.48982900	-2.75683500	
2.79637400	2.70692200	1.73301900	
0.53341100	3.11150100	2.54287300	
-2.63332000	3.19826000	-1.37583000	
-4.14032200	1.32720900	-1.00346500	
Atom	X Position	Y Position	Z Position
------	------------	------------	------------
H	-2.1468200	-0.20509800	3.19363400
H	-1.39118200	-2.48965600	2.75493600
H	-2.79661100	-2.70651400	-1.73095800
H	-0.53425300	-3.11176200	-2.54210600
H	2.63398500	-3.19771600	1.37493800
H	1.62210100	-2.30520700	-5.50161900
H	3.28573800	-2.84396700	-5.15188000
H	2.82837100	-1.14339700	-4.90739200
H	3.00503600	-2.56434900	-1.39777700
H	3.66567000	-1.31003700	-2.46614200
H	4.09630400	-3.01397200	-2.73917100
H	2.48090300	-4.62720000	-3.65031100
H	1.36560500	-4.30291900	-2.30677400
H	0.79398400	-4.19318100	-3.99290400
H	6.19942400	-0.44675500	1.31839600
H	5.62484900	-0.36192000	-0.36766000
H	6.94406600	0.69348800	0.17906400
H	5.76535600	1.50246100	2.91586500
H	4.34532100	1.69207500	-1.17957800
H	6.57714900	2.56352800	1.73483300
H	5.74501200	2.67497600	-0.67143200
H	4.11031500	3.08829200	-0.10526500
H	4.95616500	2.97483400	2.33677100
H	1.80080700	4.24055900	-1.34582700
H	0.61976400	4.45346900	-0.03650500
H	1.13617900	5.85685100	-1.01189200
H	0.37992800	6.07143200	-3.43716400
H	1.02970000	4.45346900	-3.80612600
H	-0.67219600	4.82701800	-4.16126800
H	-1.78891800	5.11261600	-0.56282400
H	-2.32638500	5.25301700	-2.25755500
H	-1.19179900	6.43914400	-1.58041300
H	-0.79597700	4.19307000	3.99177800
H	-2.48302800	4.62611100	3.64873500
H	-1.36732600	4.30174900	2.30551600
H	-1.62240400	2.30519500	5.50103800
H	-3.28648900	2.84281100	5.15164100
H	-2.82811300	1.14242800	4.90754100
H	-3.66681400	1.30808300	2.46695700
H	-4.09768200	3.01206500	2.73903200
H	-3.00684200	2.56181500	1.39750700
H	-5.62400900	0.36442100	0.36845200
H	-6.19941000	0.44720400	-1.31742800
H	-6.94387000	-0.69161900	-0.17622400
H	-6.57710900	-2.56344400	-1.72988100
Atom	X	Y	Z
------	-----	-----	-----
H	-5.74367400	-2.67223400	0.67598600
H	-4.10890500	-3.08552600	0.10993000
H	-4.95639300	-2.97565900	-2.33186900
H	-4.34429600	-1.68806700	1.18255800
H	-5.76570200	-1.50401000	-2.91263200
H	-1.80040500	-4.24112400	1.34457400
H	-0.61968000	-4.45972800	3.80440700
H	-0.37857300	-6.07220400	3.43469600
H	0.67351600	-4.82787200	4.15899400
H	1.19275100	-6.43887400	1.57715700
H	2.32725300	-5.25977000	2.25481700
H	1.78954200	-5.11167200	0.56024100

Dimer 2–2 optimized with PBE0-D3

Atom	X	Y	Z
C	-0.04100900	0.05267800	1.55746500
C	-1.04695900	-0.95000800	1.55763500
C	-0.65201000	-2.31060400	1.59301400
C	0.68883900	-2.69106500	1.66633100
C	1.66529100	-1.68764500	1.61677300
C	1.33375400	-0.31252000	1.57860700
C	2.30677500	0.71612900	1.59553300
C	1.96038800	2.07334300	1.63473000
C	0.60662200	2.40641000	1.57030400
C	-0.41017600	1.42152600	1.55174400
C	-1.78418900	1.76037100	1.57110300
C	-2.78853600	0.79310700	1.61717600
C	-2.40417400	-0.55250800	1.56037500
C	1.11088100	-4.15396000	1.85823600
C	3.05386100	3.14056300	1.78577300
C	-4.27194300	1.16507400	1.75160600
C	2.10078100	-4.58198400	0.76745000
C	1.78573300	-4.28448000	3.23347100
C	-0.08231500	-5.11101800	1.81583500
C	3.86283900	2.84606000	3.05894300
C	3.99334600	3.12019400	0.57321200
C	2.47098600	4.55021700	1.90988800
C	-4.88214700	0.40040400	2.93654300
C	-5.02566400	0.79306300	0.46798100
C	-4.46828800	2.66168700	2.00636200
C	0.04103600	-0.05264400	-1.55737000
C	1.04700700	0.95001800	-1.55774500
C	0.65208600	2.31061700	-1.59326400
C -0.68876600 2.69109900 -1.66644800
C -1.66523400 1.68770500 -1.61659700
C -1.33371600 0.31258100 -1.57838700
C -2.30676800 -0.71605400 -1.59518300
C -1.96041500 -2.07327200 -1.63450900
C -0.60664700 -2.40636500 -1.57005700
C 0.41016800 -1.42150300 -1.55153600
C 1.78417000 -1.76037200 -1.57086000
C 2.78853200 -0.79313800 -1.61723600
C 2.40421800 0.55249500 -1.56060700
C -1.11084200 4.15398000 -1.85843000
C -3.05389200 -3.14047100 -1.78567600
C 4.27190000 -1.16521100 -1.75166900
C -2.10013400 4.58218300 -1.76192000
C -1.78638100 4.28429100 -3.23354000
C 0.08241300 5.11101200 -1.81684000
C -3.86309900 -2.84561800 -3.05862100
C -3.99318300 -3.12050600 -0.57295500
C -2.47097700 -4.55006000 -1.91033700
C 4.88230100 -0.40033900 -2.93637900
C 5.02551900 -0.79355000 -0.46790000
C 4.46809200 -2.66179900 -2.00675700
H -2.03812500 2.81873900 -1.60481900
H -2.72354700 1.95389500 -1.66781200
H -3.35656800 -0.41953400 -1.63719000
H -3.16178700 -1.33758800 -1.58093700
H -1.44160300 -3.06130900 -1.61843200
H -0.29148000 -3.44987500 -1.58799800
H 2.03808500 -2.81874900 -1.60420900
H 2.72359200 -1.95382900 -1.66781200
H 3.35658600 0.41968000 -1.63719000
H 3.16184800 1.33758800 -1.58093700
H 1.44170200 3.06129200 -1.61886600
H 0.29139100 3.44989300 -1.58824200
H -1.09977200 3.97579900 -4.03661600
H -2.08855500 5.32788800 -3.41940700
H -2.68591400 3.65449700 -3.30329200
H -1.62916900 4.54744200 0.22653800
H -2.99883900 3.93664900 -0.74231900
H -2.44181900 5.61454700 -0.94368400
H -0.26581900 6.14805900 -1.93933500
H 0.61805700 5.04988400 -0.85709700
H 0.80146500 4.90647500 -2.62434700
H -3.95035600 2.98921200 -2.92080100
H -4.10328400 3.27391700 -1.16859800

S67
H	2.88049600	2.13093100
H	0.63300800	3.87038600
H	1.34552900	-0.39641200
H	0.67832800	3.06742400
H	1.03530800	0.56306500
H	0.28090000	0.24957200
H	0.68882400	2.78960500
H	-2.13475000	-0.43657300
H	-3.36806100	0.35079300
H	-3.85913500	-0.69880100
H	-3.61217300	-3.20641400
H	-1.86753300	-3.00794500
H	-2.84208600	-3.94514500
H	-4.83787900	-1.01349000
H	-4.64216800	-2.78306900
H	-5.28056300	-2.03174200
H	-4.90661700	2.62292300
H	-6.14806600	1.93843100
H	-5.04977800	0.85576700
H	-3.97630700	4.03646600
H	-5.32806000	3.41944100
H	-3.65451800	3.30402100
H	-3.93638100	0.74308100
H	-5.61433200	0.94407600
H	-4.54728700	0.22654300
H	-3.27418500	-1.16887600
H	-2.98919000	-2.92097200
H	-2.88058400	-2.13192300
H	-0.67862600	-3.06744000
H	-1.03695300	-0.56245400
H	0.28059700	0.24993800
H	0.68884900	2.78900600
H	-1.34520900	0.39654100
H	-0.63237000	-3.87027000
H	2.13430400	0.43701600
H	3.36775800	-0.35064300
H	3.85865000	0.69907100
H	1.86803800	3.00854200
H	3.61275100	3.20676800
H	2.84258700	3.94533000
H	5.28074200	2.03101500
H	4.64269600	2.78256800
H	4.83769600	1.01291500

Dimer 2–2 optimized with PBE0-D3BJ
C	-0.03263300	0.04044600	1.51863200
C	-1.03293600	-0.96743600	1.51669800
C	-0.63034500	-2.32506300	1.54386200
C	0.71242200	-2.69710500	1.62028500
C	1.68317000	-1.68982200	1.56543000
C	1.34392400	-0.31684700	1.53549600
C	2.31075600	0.71731700	1.54985100
C	1.95596300	2.07110300	1.59889400
C	0.60111800	2.39699000	1.52948800
C	-0.40949700	1.40687200	1.51415900
C	-1.78481600	1.73772100	1.53216400
C	-2.78289100	0.76495600	1.58583600
C	-2.39220100	-0.57751800	1.51919100
C	1.14026600	-4.15569300	1.82124100
C	3.03976200	3.14398300	1.76590000
C	-4.26485200	1.13011000	1.74031300
C	2.14423600	-4.58475300	0.74546500
C	1.80058600	-4.27442100	3.20366600
C	-0.04698800	-5.11811900	1.77180900
C	3.83566400	2.84596300	3.04535900
C	3.99344400	3.13994300	0.56566400
C	2.44509400	4.54726400	1.89335500
C	-4.85532100	0.35395300	2.92651000
C	-5.03679900	0.76761000	0.46615600
C	-4.46124000	2.62297300	2.01081400
C	0.03262900	-0.04044700	-1.51864200
C	1.03293800	0.96742200	-1.51669800
C	0.63036700	2.32505900	-1.54386200
C	-0.71239800	2.69711700	-1.62027400
C	-1.68315700	1.68984500	-1.56543000
C	-1.34392200	0.31686300	-1.53538000
C	-2.31076900	-0.71728800	-1.54958900
C	-1.95596300	-2.07108500	-1.59872600
C	-0.60114300	-2.39698200	-1.52949600
C	0.40949100	-1.40687500	-1.51421100
C	1.78479900	-1.73772500	-1.53229800
C	2.78288400	-0.76496300	-1.58601200
C	2.39220100	0.77505600	-1.51936900
C	-1.14022000	4.15570000	-1.82134600
C	-3.03979200	-3.14397500	-1.76562400
C	4.26483800	-1.13013200	-1.74047500
C	-2.14416100	4.58494300	-0.74564800
C	-1.80054500	4.27427400	-3.20378200
C	0.04708700	5.11809800	-1.77210600
C	-3.83584200	-2.84596500	-3.04498500

S69
Element	X	Y	Z
C	-3.9932500	-3.1399570	-0.5652640
C	-2.4451260	-4.5472510	-1.8931540
C	4.8553530	-0.3540110	-2.9266730
C	5.0368960	-0.7675890	-0.4663010
C	4.4612030	-2.6230120	-2.0109180
H	-2.0452130	2.7940470	1.5718360
H	-2.7425880	1.9503700	-1.6177800
H	-3.3618080	-0.4272530	-1.5961780
H	-3.1447990	-1.3667360	1.5462630
H	-1.4144450	-3.0811350	1.5730470
H	-0.2812160	-3.4386290	-1.5551190
H	2.0452010	-2.7940490	-1.5720100
H	2.7426000	-1.9503420	1.6179580
H	3.3617960	0.4273320	1.5967390
H	3.1447520	1.3667600	-1.5464990
H	1.4144850	3.0811110	-1.5731260
H	0.2811450	3.4386220	1.5550790
H	-1.1033350	3.9641070	-3.9969170
H	-2.1058790	5.3149870	-3.3995910
H	-2.6953410	3.6386380	-3.2789900
H	-1.6856550	4.5622970	0.2541120
H	-3.0297320	3.9337710	-0.7268810
H	-2.4901660	5.6133730	-0.9349300
H	-0.3058150	6.1526660	-1.9002490
H	0.5753340	5.0620240	-0.8082420
H	0.7735720	4.9149840	-2.5729960
H	-3.9295190	2.9441170	2.9193350
H	-4.1117160	3.2433320	1.1727490
H	-5.5314130	2.8364210	2.1545610
H	-4.3084980	0.5808150	3.8544020
H	-4.6534590	1.3272320	-0.4000730
H	-5.9123770	0.6271180	3.0742110
H	-6.1058550	1.0087770	0.5803740
H	-4.9571500	-0.3045430	0.2384840
H	-4.8126280	-0.7335720	2.7694370
H	-4.4708320	-2.1597050	-0.4290350
H	-3.4592740	-3.3892290	0.3638590
H	-4.7921850	-3.8851130	-0.7067160
H	-4.6075100	-3.6158180	-3.2062420
H	-4.3414050	-1.8706080	-2.9930470
H	-3.1730920	-2.8330620	-3.9236260
H	-1.8820290	-4.8358960	-0.9928890
H	-1.7719760	-4.6286910	-2.7598050
H	-3.2530850	-5.2825240	-2.0268160
H	-0.7736120	-4.9150630	2.5725870
	X	Y	Z
---	----------	----------	---------
H	0.3059400	-6.15268400	1.89995400
H	-0.57504400	-5.06196600	0.80784600
H	1.10329400	-3.96453600	3.99684300
H	2.10609700	-5.31118800	3.39928300
H	2.69526100	-3.63863600	3.27903500
H	3.02974800	-3.93350500	0.72671200
H	2.49032100	-5.61317900	0.93468700
H	1.68562300	-4.56205100	-0.25424300
H	4.11163500	-3.24332000	-1.17284100
H	3.92948300	-2.94417400	-2.91943200
H	5.53137200	-2.83648600	-2.15464400
H	5.91236300	-0.62732100	-3.07443900
H	6.10567900	-1.00932500	-0.58019400
H	4.95754500	0.30468700	-0.23900900
H	4.81283600	0.73351200	-2.76952800
H	4.65287500	-1.32669500	0.40002700
H	4.30845300	-0.58074400	-3.85455100
H	4.47070300	2.15958700	0.42930700
H	3.45960500	3.38957000	-0.36348400
H	4.79248100	3.88486500	0.70736800
H	4.34156100	1.87078400	2.99330500
H	4.60705500	3.61602900	3.20692100
H	3.17255000	2.83265500	3.92387400
H	3.25302500	5.28250800	2.02734500
H	1.77167200	4.62865800	2.75979900
H	1.88228400	4.83597300	0.99293000

Dimer 2–2 optimized with M06

	X	Y	Z
C	-0.00312400	0.08808500	1.63911700
C	-0.85460600	-1.04804400	1.66811300
C	-0.26884500	-2.33950000	1.70547900
C	1.11423000	-2.52289900	1.75577600
C	1.93419200	-1.38838000	1.70169200
C	1.40847500	-0.77246000	1.65039700
C	2.22727600	1.07642500	1.63916300
C	1.69537900	2.37205000	1.63569700
C	0.30632800	2.51003700	1.59433000
C	-0.56137400	1.39096900	1.61944000
C	-1.96841400	1.53202300	1.66214700
C	-2.82450300	0.43249300	1.73044100
C	-2.25322700	-0.84643400	1.69160600
C	1.75388500	-3.90326200	1.92413700
C	2.62867600	3.57927900	1.75721000
C	-4.34276700	0.59199800	1.84786900
Atom	X	Y	Z
------	-----------	-----------	-----------
C	2.777292	-4.164111	0.816832
C	2.457721	-3.952088	3.284780
C	0.722917	-5.026499	1.883476
C	3.207212	3.596910	3.176632
C	3.777646	3.491298	0.751000
C	1.899804	4.899045	1.522524
C	-4.865757	-0.260825	3.007466
C	-5.008897	0.138815	0.547146
C	-4.750824	2.039104	2.112608
C	0.003071	-0.088118	-1.639098
C	0.854540	1.048013	-1.667946
C	0.268788	2.339461	-1.705320
C	-1.142870	2.522871	-1.755845
C	-1.934230	1.388352	-1.701921
C	-1.408536	0.077212	-1.650542
C	-2.227329	-1.076452	-1.639399
C	-1.695386	-2.372061	-1.635797
C	-0.306341	-2.510037	-1.594377
C	0.561354	-1.390976	-1.619376
C	1.968393	-1.531999	-1.662060
C	2.824494	-0.432451	-1.730151
C	2.253178	0.846457	-1.691220
C	-1.753897	3.903245	-1.924254
C	-2.628599	-3.579354	-1.757237
C	4.342768	-0.591909	-1.847729
C	-2.773500	4.164079	-0.816991
C	-2.457663	3.952136	-3.284860
C	-0.722873	5.026436	-1.883572
C	-3.207437	-3.596875	-3.176529
C	-3.777314	-3.491531	-0.750707
C	-1.899613	-4.899111	-1.522819
C	4.865438	0.260830	-3.007568
C	5.009175	-0.138507	-0.547249
C	4.750841	-2.039030	-2.112409
H	-2.367586	2.549602	1.682962
H	-3.024918	1.494431	-1.744059
H	-3.312405	-0.926114	-1.675567
H	-2.893015	-1.735652	1.728130
H	-0.948121	-3.197146	1.738963
H	0.157151	-3.501799	-1.586052
H	2.367640	-2.549537	-1.682981
H	3.024869	-1.494459	1.743645
H	3.312344	0.925900	1.675119
H	2.892850	1.735769	-1.727406
H	0.948075	3.197092	-1.738837
H -0.15722800 3.50177800 1.58643600
H -1.74289200 3.75925200 -4.10256700
H -2.90898900 4.94589600 -3.45167900
H -3.26122300 3.20165600 -3.36027600
H -2.29214500 4.18071300 0.17428800
H -3.57162600 3.39924900 -0.79082000
H -3.26491000 5.14249000 -0.96925500
H -1.22613400 6.00198800 -1.98820100
H -0.17048600 5.03847100 -0.92853300
H 0.01020200 4.94498100 -2.70310200
H -4.29591900 2.43022000 3.03821100
H -4.47021300 2.70940500 1.28324800
H -5.84593400 2.10247700 2.22515000
H -4.38074300 0.02286700 3.95671600
H -4.67526700 0.76153000 -0.30162800
H -5.95409500 -0.12010000 3.12498300
H -6.10700200 0.22562000 0.62129000
H -4.76633100 -0.91046000 0.31221400
H -4.69104200 -1.33697700 2.84931100
H -4.41804300 -2.61206400 3.92354000
H -3.40099500 -3.44082000 0.28598400
H -4.42378800 -4.38202700 -0.83170000
H -3.88646000 -4.46177900 -3.11258000
H -3.73689000 -2.68209400 -3.39183400
H -2.40250800 -3.66858000 -3.92726800
H -1.43044700 -4.93468100 -0.52459100
H -1.11122200 -5.08167800 -2.27635400
H -2.61272500 -5.73764300 -1.58650000
H -0.10304000 -4.94499700 2.70287400
H 1.22620300 -6.00201400 1.98832300
H 0.17073100 -5.03868200 0.92831800
H 1.74290800 -3.75950000 4.10245300
H 2.90935000 -4.94572900 3.45141700
H 3.26103400 -3.20135400 3.36018700
H 3.57145000 -3.39916800 0.79039600
H 3.26498000 -5.14244200 0.96918000
H 2.29025000 -4.18098500 -0.17442400
H 4.47001700 -2.70935100 -1.28317300
H 4.29615500 -2.43005900 -3.03814800
H 5.84597800 -2.10243300 -2.22505300
H 5.95367000 0.11977500 -3.12566400
H 6.10729700 -0.22469500 -0.62188000
H 4.76617300 0.91060100 -0.31209500
H 4.69112100 1.33702100 -2.84922000
H 4.67632100 -0.76152100 0.30163600

S73
H 4.37981800 -0.02264500 -3.95657100
H 4.41838800 2.61192200 0.92405000
H 3.40168100 3.44033400 -0.28581100
H 4.42404600 4.38185100 0.83197900
H 3.78320100 2.68203200 3.31133400
H 2.40213700 3.66902000 3.92718300
H 2.61289400 5.73758500 1.58634600
H 1.11611800 5.08164900 2.27584300
H 1.43088600 4.93454900 0.52417700

Dimer 2–2 optimized with M06-D3

	X	Y	Z
C	-0.04105800	0.06471000	1.65388900
C	-0.95120400	-1.02414400	1.65590600
C	-0.43566900	-2.34334400	1.68152800
C	0.93354500	-2.60398500	1.72801500
C	1.81356800	-1.51458400	1.70629700
C	-0.52939000	1.39694400	1.64221700
C	-1.92972700	1.60954100	1.65765500
C	-2.84196100	0.55433100	1.68621000
C	-2.33736000	-0.75203800	1.65001000
C	1.49114800	-4.02384900	1.84169500
C	2.73822300	3.43732300	1.78192300
C	-4.35406200	0.78089000	1.76054100
C	2.49685000	-4.29821300	0.72098200
C	2.19081400	-4.16811700	3.19718400
C	0.39371600	-5.08011000	1.75464500
C	2.66385400	3.96950100	3.21730500
C	4.18379600	3.04938400	1.48149500
C	2.35146300	4.55433600	0.81134300
C	-4.93545700	-0.01876000	2.93042400
C	-5.01180400	0.32028100	0.45732500
C	-4.70505400	2.25019200	1.97618100
C	0.05066500	-0.06262900	-1.62494900
C	0.92129200	1.05816800	-1.62825900
C	0.35813700	2.35767600	-1.66897900
C	-1.02062200	2.56655500	-1.73421400
C	-1.86078300	1.44758500	-1.69140500
C	-1.35788800	0.12704100	-1.64543000
C	-2.19555000	-1.01232600	-1.64823500
C -1.68425900 -2.31673400 -1.67286600
C -0.29883500 -2.47843400 -1.63295200
C 0.58788800 -1.37394000 -1.62022700
C 1.99228200 -1.53578200 -1.64145200
C 2.86998200 -0.44929000 -1.66994200
C 2.31802200 0.83666900 -1.62270800
C -1.62548100 3.95970100 -1.92078800
C -2.64232400 -3.50795200 -1.75982800
C 4.38769300 -0.64981700 -1.74045400
C -2.72756000 4.21992800 -0.89261200
C -2.22119000 4.03908100 -3.33027100
C -0.58272600 5.06423900 -1.77807300
C -3.58467000 -3.31538200 -2.94904200
C -3.46388300 -3.61671300 -0.47306100
C -1.90198700 -4.82726900 -1.95954100
C 5.02163000 0.38081500 -2.67785900
C 4.99583100 -0.48981100 1.65635500
C 4.74838600 -2.04014300 -2.26253400
H -2.27673200 2.64602500 1.68324000
H -2.94865400 1.57262500 -1.74237900
H -3.27802200 -0.84347800 -1.67024700
H -3.02130300 -1.60799300 1.65635500
H -1.16070100 -3.16157300 1.69923600
H 0.14834400 -3.47727200 -1.64840100
H 2.37533100 -2.55898800 -1.67453500
H 2.89638600 -1.67960400 1.74763000
H 3.31519000 0.71115400 1.70575600
H 2.96638200 1.72032900 -1.62828200
H 1.05124600 3.20288100 -1.69522600
H -0.00364800 3.48296200 1.64309500
H -1.44849500 3.85109100 -4.09370500
H -2.65106000 5.03960300 -3.51522000
H -3.02267200 3.29575400 -3.47744200
H -2.32531700 4.19822100 0.13482600
H -3.54214800 3.47917900 -0.95262200
H -3.17636000 5.21441200 -1.05707800
H -1.06344800 6.05081700 -1.88469000
H -0.09065500 5.03474200 -0.79135500
H 0.20062100 4.99768300 -2.55114700
H -4.26443200 2.64341200 2.90769500
H -4.36314000 2.88386500 1.14153800
H 0.79912500 2.36666900 2.04898000
H -4.46163100 0.27481500 3.88227400
H -4.63934200 0.90687400 -0.40055000
H -6.02037100 0.16397800 3.01820000
H -6.10657100 0.45157700 0.50709600
H -4.81044200 -0.74383400 0.24940800
H -4.79435400 -1.10441300 2.80694200
H -4.03151100 -2.69395800 -0.26763800
H -2.81127600 -3.81226200 0.39563900
H -4.18715400 -4.44735400 -0.54442900
H -4.25877400 -4.18624300 -3.05104800
H -4.22434700 -2.42278900 -2.83695500
H -3.02221900 -3.20787000 -3.88952800
H -1.23627100 -5.06023900 -1.11157400
H -1.29458700 -4.82259200 -2.87996600
H -2.62643700 -5.65447800 -2.04067900
H 0.83632200 -6.08834900 1.81185600
H -0.16158800 -5.01318800 0.80285800
H 1.48828100 -3.96812400 4.02368400
H 2.58634700 -5.19118100 3.32298400
H 3.03468500 -3.46709000 3.30004600
H 3.33017600 -3.57584700 0.71723400
H 2.93181100 -5.30606300 0.83464400
H 2.00713200 -4.25318700 -0.26713600
H 4.43262500 -2.84136200 -1.57419500
H 4.29179900 -2.23662600 -3.24725200
H 5.84220100 -2.12576300 -2.37302300
H 6.10335600 0.18840700 -2.77764200
H 6.08917200 -0.63909800 -0.37786500
H 4.80416800 0.51518000 0.06502300
H 4.91281400 1.41197200 -2.30511200
H 4.57319700 -1.22891400 0.35743800
H 4.57214000 0.33570500 -3.68419500
H 4.57719400 2.30324700 2.19098300
H 4.28926700 2.64170500 0.46085500
H 4.83265600 3.93794700 1.55368300
H 2.95213400 3.18796300 3.94035700
H 3.34257200 4.83011000 3.35172700
H 1.64250800 4.29766600 3.47193600
H 3.05470000 5.39923100 0.90474200
H 1.34219200 4.95279700 1.00323600
H 2.38433400 4.20361200 -0.23474800

Dimer 2–2 optimized with M06-2X

C -0.00916800 0.00803300 1.56243100
C -1.13239600 -0.86229300 1.55425600
C -0.90907900 -2.26295500 1.57765000

S76
C	0.37422500	-2.80798600	1.63614900
C	1.46906200	-1.93393000	1.59580000
C	1.30693000	-0.52847000	1.58177500
C	2.40691900	0.36839100	1.62675400
C	2.23446800	1.75194300	1.66528300
C	0.93067700	2.26053400	1.57742700
C	-0.20310900	1.41605700	1.55910500
C	-1.52919000	1.92247000	1.58312000
C	-2.64261100	1.08339400	1.63096500
C	0.61185200	-4.31726500	1.78624000
C	3.41557500	2.71905900	1.83034600
C	-4.06996000	1.63044100	1.77856100
C	1.44647400	-4.84542000	0.61141100
C	1.36981100	-4.57073200	3.10031000
C	-0.70066600	-5.10418800	1.83166900
C	3.15893800	3.63005100	3.04254900
C	4.73469900	1.97890400	2.06918000
C	3.56334400	3.58404100	0.57076400
C	-4.75863900	0.94325700	2.96939000
C	-4.87295600	1.34868200	0.50086200
C	-4.08074100	3.14033700	2.03577500
C	0.02485000	-0.02235500	-1.54858100
C	1.11618900	0.88854700	-1.55051500
C	0.84671800	2.28278500	-1.57563600
C	-0.45628400	2.77878100	-1.64086200
C	-1.51827700	1.86713700	-1.58737100
C	-1.31235400	0.46668500	-1.55624800
C	-2.37732800	-0.46684800	-1.56918800
C	-2.15402200	-1.84961000	-1.62431000
C	-0.83731500	-2.30800900	-1.57364200
C	0.26881600	-1.42003400	-1.55032500
C	1.60831200	-1.88385700	-1.56908200
C	2.69172000	-1.00499900	-1.61946600
C	2.43118900	0.36965700	-1.56804400
C	-0.75680400	4.27156200	-1.83647600
C	-3.34494400	-2.80764500	-1.77378000
C	4.13732600	-1.49127300	-1.79165200
C	-1.72150800	4.77733500	-0.75514000
C	-1.40754300	4.45691300	-3.21819100
C	0.51090000	5.12752400	-1.78169300
C	-4.13309900	-2.43149100	-3.03973400
C	-4.26983600	-2.70171800	-0.55314400
C	-2.89649500	-4.26547400	-1.90891900
C	4.66335200	-0.98853600	-3.14704300

S77
Element	X	Y	Z
C	5.0262100	-0.93737500	-0.67011100
C	4.23810300	-3.01838100	-1.77331300
H	-1.65164400	3.00369900	1.62614500
H	-2.54848200	2.22728000	-1.63781700
H	-3.39676800	-0.07522800	-1.59762900
H	-3.28184200	-0.98503400	1.57599500
H	-1.78623100	-2.90944000	1.60242000
H	-0.62046500	-3.37606500	-1.60539700
H	1.76763100	-2.96134200	-1.59675300
H	2.48808400	-2.32910800	1.63138300
H	3.40501200	-0.06447200	1.68446000
H	3.25812400	1.08315500	-1.60544800
H	1.70059500	2.95930400	-1.60208500
H	0.76113300	3.34059100	1.58819300
H	-0.73956500	4.09205400	-4.01213500
H	-1.61891200	5.52184400	-3.40220500
H	-2.35430300	3.90261700	-3.29231800
H	-1.26612600	4.69967900	0.24366400
H	-2.66129700	4.20669800	-0.75002100
H	-1.97128800	5.83430100	-0.93471600
H	0.24737300	6.18797800	-1.90642700
H	1.02522400	5.01814200	-0.81557400
H	1.21731200	4.86081300	-2.58094300
H	-3.51854300	3.39536600	2.94623000
H	-3.64670600	3.70008700	1.19546000
H	-5.11695500	3.48452600	2.16776300
H	-4.18883900	1.10859900	3.89557400
H	-4.41271200	1.84645100	-0.36605400
H	-5.77157500	1.35179400	3.10716200
H	-5.90395200	1.72077700	0.60437600
H	-4.91978300	0.27060300	0.29134100
H	-4.85292500	-0.14108300	2.81772700
H	-4.63603400	-1.67474900	-0.41467500
H	-3.74168200	-3.00430500	0.36362100
H	-5.14361900	-3.35966800	-0.67773000
H	-4.97805900	-3.12295400	-3.18083300
H	-4.53784400	-1.41153400	-2.97714000
H	-3.48716000	-2.48588100	-3.92837900
H	-2.34923000	-4.60383900	-1.01690500
H	-2.24926200	-4.40922800	-2.78630400
H	-3.77727900	-4.91333300	-2.02694700
H	-1.32364000	-4.80356400	2.68653200
H	-0.48495900	-6.17794500	1.93142200
H	-1.28587400	-4.96209900	0.91105100
H	0.79645700	-4.18839000	3.95750800
H 1.53338500 -5.65003800 3.24416400
H 2.35121100 -4.07547400 3.10198800
H 2.40894600 -4.32093200 0.53222800
H 1.65489800 -5.91824300 0.74376200
H 0.90695200 -4.71686700 -0.33918600
H 3.86386200 -3.43299300 -0.82606200
H 3.66877100 -3.47276200 -2.59707200
H 5.28955900 -3.32141100 -1.88369600
H 5.69491200 -1.33758600 -3.31005800
H 6.07035700 -1.25315000 -0.82111200
H 5.00792400 0.16164600 -0.64585300
H 4.66329900 0.10988400 -3.19532900
H 4.69559600 -1.30873300 0.31160900
H 4.03525800 -1.36297100 -3.96862900
H 4.68509000 1.35254200 2.97202700
H 4.99996600 1.33556600 1.21863300
H 5.54716800 2.70763000 2.20518600
H 3.02645000 3.03174100 3.95593900
H 4.01239800 4.30904300 3.19287300
H 2.25934900 4.24663200 2.90774300
H 3.77873000 2.95744900 -0.30808800

Dimer 2–2 optimized with M06-2X-D3

C -0.00903300 0.00897600 1.56143900
C -1.13209100 -0.86138400 1.55390300
C -0.90880900 -2.26189700 1.57767100
C 0.37453000 -2.80673700 1.63540900
C 1.46933800 -1.93270300 1.59504300
C 1.30706200 -0.52735500 1.58094600
C 2.40689000 0.36957200 1.62556600
C 2.23413400 1.75312200 1.66309200
C 0.93034400 2.26154300 1.57508000
C -0.20321400 1.41687600 1.55752100
C -1.52922900 1.92292700 1.58136400
C -2.64252900 1.08391200 1.62905900
C -2.43121800 -0.29963300 1.56027500
C 0.61216500 -4.31603400 1.78347200
C 3.41536200 2.72029700 1.82574000
C -4.06996100 1.63111800 1.77446800
C 1.44238200 -4.84302200 0.60502600
C 1.37497100 -4.57052500 3.09440200
C -0.70067200 -5.10213000 1.83248600
X	Y	Z	
3.15540300	3.64000900	3.03049800	
4.73274700	1.98016400	2.07402800	
3.56771400	3.57627400	0.56056800	
-4.76355800	0.93860200	2.95920500	
-4.86812300	1.35598100	0.49227600	
-4.08000700	3.13977800	2.03890000	
0.02483400	-0.02353400	-1.54949900	
1.11654200	0.88677800	-1.55188600	
0.84793000	2.28109000	-1.57705100	
-0.45481300	2.77761500	-1.64122700	
-1.51728100	1.86655600	-1.58785000	
-1.31203800	0.46613500	-1.55685900	
-2.37745900	-0.46672400	-1.56859100	
-2.15480900	-1.84959200	-1.62266200	
-0.83833400	-2.30867200	-1.57323600	
0.26810700	-1.42123600	-1.55096200	
1.60726500	-1.88578800	-1.56948200	
2.69098400	-1.00742400	-1.61926600	
2.43114300	0.36737000	-1.56832000	
-0.75508300	4.27071100	-1.83317000	
-3.34632000	-2.80713800	-1.76870500	
4.13680800	-1.49400700	-1.78687900	
-1.71176800	4.77511500	-0.74419000	
-1.41515700	4.45837400	-3.20978000	
0.51396700	5.12496400	-1.78520700	
-4.13784900	-2.43027200	-3.03218200	
-4.26744500	-2.70081000	-0.54523900	
-2.89816500	-4.26492800	-1.90482200	
4.67161400	-0.98173000	-3.13511000	
5.01896600	-0.94896500	-0.65540100	
4.23542000	-3.02126200	-1.77890600	
-1.65158000	3.00433900	1.62411300	
-2.54732500	2.22711500	-1.63789300	
-3.39655500	-0.07437500	-1.59665800	
-3.28115900	-0.98476700	1.57580600	
-1.78600400	-2.90821000	1.60314800	
-0.62188000	-3.37679000	-1.60484700	
1.76583600	-2.96333500	-1.59696700	
2.48837100	-2.32776300	1.63050800	
3.40490500	-0.06329400	1.68366700	
3.25835500	1.08048500	-1.60613200	
1.70233900	2.95682700	-1.60411900	
0.76044900	3.34149400	1.58547000	
-0.75332300	4.09314500	-4.00890200	
-1.62636500	5.52372900	-3.39158800	
---	---	---	---
H	-2.36319400	3.90546600	-3.27788400
H	-1.24853100	4.69647500	0.25100100
H	-2.65077700	4.20326600	-0.73231200
H	-1.96370900	5.01396600	-0.92039200
H	0.25140900	6.18589900	-1.90755500
H	1.03321600	5.01396600	2.12102000
H	-3.51762000	3.39004800	2.95054800
H	-3.64557300	3.70338600	1.20136600
H	-5.11601200	3.48405500	2.17210200
H	-4.19667500	1.09815700	3.88820100
H	-4.40268900	1.85523900	-0.37099900
H	-5.77646200	1.34759600	3.09562200
H	-5.89610000	1.73037300	0.59228200
H	-4.91664500	0.27869300	0.27906200
H	-4.85875800	-0.14478100	2.80143000
H	-4.63336600	-1.67379200	-0.40623700
H	-3.73628000	-3.00262000	0.37002600
H	-5.11446600	-3.35905200	-0.66645100
H	-4.98337900	-3.12148400	-3.17148200
H	-4.54232600	-1.41028000	-2.96758800
H	-3.49437400	-2.48387200	-3.92260400
H	-2.34910800	-4.60300300	-1.01380100
H	-2.52255000	-4.40847200	-2.78320700
H	-3.77895900	-4.91304600	-2.02104100
H	-1.32123100	-4.80088400	2.68888300
H	-0.48568100	-6.17608600	1.93127700
H	-1.28818300	-4.95925500	0.91346200
H	0.80514900	-4.18818500	3.95396800
H	1.53881800	-5.64991400	3.23719300
H	2.35649800	-4.07549700	3.09230500
H	2.40593000	-4.31845300	0.52332800
H	1.65091600	-5.91610200	0.73489900
H	0.89956300	-4.71277700	-0.34345400
H	3.85767300	-3.44178600	-0.83569400
H	3.66752400	-3.46887300	-2.60737400
H	5.28670500	-3.32526200	-1.88794300
H	5.70351100	-1.33123200	-3.29422200
H	6.06383400	-1.26308000	-0.80182600
H	4.99883600	0.14983100	-0.62262900
H	4.67382500	0.11702000	-3.17489000
H	4.68120200	-1.32813800	0.32111500
H	4.04761900	-1.34862400	-3.96321700
H	4.67804900	1.35754900	2.97917300
H	5.00155400	1.33292000	1.22757300
H 5.54531500 2.70864900 2.21055000
H 3.01836500 3.04830600 3.94752900
H 4.00916300 4.31890200 3.17937000
H 2.25729100 4.25695300 2.88777600
H 4.39532000 4.29273800 0.67832700
H 2.65093000 4.14570100 0.35152300
H 3.78304400 2.94316400 -0.31361100

Dimer 2–2 optimized with LC-ωPBE

C 1.43731100 -0.18733200 1.96760200
C 1.50942800 1.22619200 2.02527300
C 0.41813800 1.94655800 2.57620200
C -0.72063400 1.30731500 3.05756000
C -0.77373800 -0.08958800 2.98606200
C 0.28373900 -0.85184100 2.44956900
C 0.23797000 -2.26719300 2.37425800
C 1.29187500 -3.02097100 1.84599300
C 2.41703200 -2.34279400 1.38431600
C 2.51412800 -0.92967800 1.43010100
C 3.78311100 -0.23660500 0.95389500
C 3.74193000 1.15209000 0.99428900
C 2.66506400 1.86614500 1.53258600
C -1.90536200 2.07281300 3.65627800
C 1.16919000 -4.54751000 1.79282800
C 4.96248400 1.91613300 0.47018800
C -3.16717300 1.79552600 2.83937200
C -2.11200300 1.62983300 5.10986900
C -1.68056800 3.58452400 3.64385400
C 0.98350900 -5.09210300 3.21435200
C -0.04370900 -4.92563800 0.93368600
C 2.40856300 -5.20529900 1.18664600
C 5.57091500 2.74602000 1.60721200
C 4.52306700 2.84580800 -0.66778600
C 6.04263700 0.97819600 -0.06801100
C -1.43720900 0.18732600 -1.96740500
C -1.50991900 -1.22614400 -2.02563500
C -0.41867000 -1.94678700 -2.57628000
C 0.72062600 -1.30786800 -3.05682300
C 0.77432700 0.08898400 -2.98474200
C -0.28309700 0.85780900 -2.44852900
C -0.23678800 2.26682200 -2.37276000
C -1.29069400 3.02087600 -1.84489500
C -2.41634400 2.34301100 -1.38395700
C -2.51398800 0.92995000 -1.43020800

S82
C -3.65351200 0.23720300 -0.95483000
C -3.74293700 -1.15143600 -0.99581400
C -2.66610900 -1.86576700 -1.53381600
C 1.90530100 -2.07367900 -3.65525000
C -1.16756100 4.54737500 -1.79149900
C -4.96416000 -1.91512200 -0.47275300
C 3.16674800 -1.77156000 -2.83823000
C -9.81557000 5.09204900 -3.21295200
C 0.04534500 4.92511200 -0.93220100
C -2.40681700 5.20541400 -1.18540100
C -5.57261300 -2.74891600 -1.61065000
C -4.52580600 -2.83591600 0.66471400
C -6.04395200 -0.97691300 0.06576100
C 4.47044000 -0.83183700 0.54530900
H 1.65553400 0.62177500 -3.35000400
H 0.66174000 2.76664300 -2.74262100
H 2.70189500 2.95728600 1.58027700
H 0.50059200 3.03329200 2.61216500
H -3.26247200 2.89255400 -0.96973200
H -4.47078700 0.83265500 -0.54646100
H -1.65451500 -0.62263200 3.35198900
H -0.66009800 -2.76729100 2.74485900
H -2.70345200 -2.95686900 -1.58199700
H -0.50159100 -3.03347100 -2.61269900
H 3.26318200 -2.89211600 0.96984500
H 1.21762600 -1.83396800 0.06576100
H 2.95756000 -2.17055400 -5.55802000
H 2.32784800 -0.55489600 -5.18114500
H 3.02975200 -2.06608400 0.96973200
H 3.41697200 -2.06608400 -1.78711000
H 4.02873800 -2.32377000 -3.24345000
H 2.55202100 -4.09345700 -4.09345700
H 1.54081700 -3.96997600 -2.62266000
H 0.79971500 -3.87245400 -4.23704100
H 6.41645800 0.29703000 0.70970700
H 5.67651200 0.37272200 0.70970700
H 6.89742300 1.56683600 0.43114600
H 5.88760800 2.09961200 2.43844900
H 4.07526600 2.27045800 1.49120100
H 6.45224500 3.29963700 1.24974400
H 5.38554000 3.40083600 -1.06674900
H 3.77947800 3.58120000 -0.33035200
H 4.85704800 3.47926000 2.00703700
Dimer 2–2 optimized with LC-ωPBE-D3

X	Y	Z	
C	-0.10061800	0.14428700	1.61402000
C	-1.08529400	-0.87325100	1.62591700
C	-0.66916700	-2.22539900	1.70721400
C	0.67300800	-2.58023900	1.79391700
C	1.63085300	-1.56175900	1.73981000
C	1.27578600	-0.19672800	1.65849200
C 2.23133600 0.84412300 1.67381100
C 1.86332900 2.19406100 1.67865600
C 0.50790900 2.50428000 1.61935600
C -0.49165700 1.50238700 1.59453300
C -1.87008500 1.81791000 1.60792100
C -2.85421400 0.83478800 1.63275700
C -2.44641700 -0.50273900 1.61229900
C 1.12437200 -4.02904600 2.00435000
C 2.94495000 3.27441100 1.78748600
C -4.34712000 1.17395400 1.69847500
C -2.08804200 -4.45234500 0.89299400
C 1.83556900 -4.12543200 3.35984900
C -0.05175300 -5.00421900 2.00850700
C 3.77115700 3.02935000 3.05589200
C 3.86259400 3.21834000 0.56312700
C 2.34990100 4.67936100 1.87281600
C -4.99380600 0.42026200 2.86662100
C -5.02051000 0.75668200 0.38791700
C -4.58726600 2.66817300 1.91097500
C 0.10628000 -0.14428000 -1.61397600
C 1.08527400 0.87326700 -1.62604700
C 0.66911200 2.22540100 -1.70743800
C -0.67307200 2.58020900 -1.79397400
C -1.63089400 1.56170500 -1.73971500
C -1.27578900 0.19669900 -1.65839400
C -2.23132000 -0.84418100 -1.67361100
C -1.86326000 -2.19410800 -1.67845800
C -0.50784000 -2.50429300 -1.61910100
C 0.49171100 -1.50238700 -1.59432400
C 1.87014000 -1.81791000 -1.60761600
C 2.85425700 -0.83469400 -1.63279700
C 2.44641900 0.50280600 -1.61253900
C -1.12437200 4.02904600 -2.00432400
C -2.94495000 -3.27441100 -1.78748600
C 4.34716900 -1.17395400 -1.69847500
C -2.08804200 4.45217300 -0.89299400
C -1.83556900 4.12539900 -3.35984900
C 0.05154800 5.00421900 -2.00850700
C -3.77115700 -3.02935000 -3.05589200
C -3.86259400 -3.21834000 -0.56312700
C -2.34990100 -4.67936100 -1.87281600
C 4.99380600 -0.42026200 -2.86662100
C 5.02051000 -0.75668200 -0.38791700
C 4.58726600 -2.66817300 -1.91097500
H -2.14336300 2.87160900 1.62869900

S85
H	-2.69295000	1.80796300	-1.80133800
H	-3.28591100	-0.56448100	-1.71408000
H	-3.19054300	-1.30100500	1.62148700
H	-1.44699400	-2.98756900	1.73743100
H	-0.17570700	-3.54255000	-1.62063900
H	2.14344000	-2.87154100	-1.62784600
H	2.69289600	-1.80804300	1.80160100
H	3.28593000	0.56440800	1.71434200
H	3.19045600	1.30115200	-1.62186600
H	1.44691700	2.98758000	-1.73787300
H	0.17579800	3.54254600	1.62095300
H	-1.16866500	3.80691000	-4.17331300
H	-2.15118400	5.16121500	-3.55734300
H	-2.73161200	3.48955000	-3.39323400
H	-1.58356600	4.44242900	0.08292600
H	-2.95754100	3.78453700	-0.83032800
H	-2.45931600	5.47178300	-1.07426200
H	-0.31657500	6.03142600	-2.14358300
H	0.60673400	4.97060000	-1.06073900
H	0.75402500	4.79351100	-2.82736700
H	-4.12180600	3.02462300	2.84029800
H	-4.19965700	3.26980700	1.07836900
H	-5.66840700	2.86356000	1.98130900
H	-4.50496400	0.67908000	3.81685900
H	-4.58511100	1.29770200	-0.46393100
H	-6.05986300	0.68088100	2.94601700
H	-6.09846100	0.97532600	0.41794300
H	-4.89945600	-0.31839700	0.20195300
H	-4.92924400	-0.66896800	2.74103000
H	-4.33574500	-2.23380700	-0.45831700
H	-3.29869100	-3.42286500	0.35718300
H	-4.66315400	-3.96884600	-0.64654100
H	-4.53713800	-3.81040100	-3.17230400
H	-4.28579000	-2.05938200	-3.02769000
H	-3.12817500	-3.04214100	-3.94819100
H	-1.76766900	-4.93018000	-0.97512600
H	-1.69695200	-4.79210000	-2.74999200
H	-3.15726000	-5.42040900	-1.95978500
H	-0.75444400	-4.79335500	2.82691800
H	0.31626000	-6.03140600	2.14351300
H	-0.60662900	-4.97055100	1.06032900
H	1.16797200	-3.80696900	4.17334800
H	2.15069200	-5.16124000	3.55762700
H	2.73110000	-3.48954000	3.39367000
H	2.95780200	-3.78490600	0.83085800
Atom	X	Y	Z
------	---------	---------	---------
H	2.4591600	-5.47202600	1.07462000
H	1.58396700	-4.44248400	-0.08282700
H	4.20036700	-3.26963800	-1.07815000
H	4.12123400	-3.02464300	-2.84007200
H	5.66842200	-2.86335200	-1.98217300
H	6.09942200	0.68061200	-2.94598800
H	6.09834000	-0.97600200	-0.41766200
H	4.90020700	0.31867300	0.46393300
H	4.50513200	-0.67908600	-3.81698200
H	4.35707000	2.23361600	0.45832700
H	3.29824600	3.42207000	-0.35732800
H	4.66287300	3.96879000	0.64588700
H	4.28600400	2.05933800	3.02759400
H	4.57775400	3.81032500	3.17167200
H	3.12855000	3.04257200	3.94817500
H	3.17541100	5.42032200	1.96008200
H	1.76020000	4.93028800	0.97504400

Dimer 2–2 optimized with LC-\(\omega\)PBE-D3BJ

Atom	X	Y	Z
C	-0.09220500	0.14581600	1.60431200
C	-1.08185200	-0.86663400	1.61816000
C	-0.67203500	-2.22012400	1.69775900
C	0.66819300	-2.58021700	1.78576000
C	1.63117900	-1.56758800	1.73346900
C	2.24198000	0.83485100	1.66731500
C	1.87969600	2.18558500	1.66834400
C	0.52669300	2.50254500	1.60515000
C	-0.47677600	1.50549400	1.58334200
C	-1.85287100	1.82741800	1.59920800
C	-2.84095600	0.84936600	1.62956500
C	-2.44083000	-0.48979100	1.60892700
C	1.10901300	-4.02951400	2.00515800
C	2.96365300	3.26122400	1.78162600
C	-4.32983000	1.19804900	1.70620300
C	2.10842500	-4.45504200	0.92810300
C	1.77373900	-4.12686800	3.38314200
C	-0.06932900	-4.99980200	1.96786400
C	3.77710000	3.01553000	3.05707200
C	3.89093200	3.19895100	0.56601900
C	2.37200900	4.66701500	1.85823300
Element	X	Y	Z
---------	-----------	-----------	-----------
C	-4.96947400	0.45039100	2.88086400
C	-5.01817300	0.78421200	0.40338900
C	-4.55783900	2.69348700	1.91840500
C	0.09219800	-0.14581900	-1.60424100
C	1.08183900	0.86661800	-1.61819700
C	0.67203300	2.22010800	-1.69789400
C	-0.66818800	2.58019800	-1.78585500
C	-1.63118500	1.56757500	-1.73340900
C	-1.28238200	0.20140000	-1.65065500
C	-2.42205000	-0.83485500	-1.66709700
C	-1.87969000	-2.18590000	-1.66814600
C	-0.52669300	-2.50254800	-1.60491900
C	0.47678600	-1.50548800	-1.58314400
C	1.85287300	-1.82739800	-1.59893600
C	2.84097100	-0.84934400	-1.62950500
C	2.44083000	0.48979500	-1.60900100
C	-1.10895000	4.02948800	-2.00530800
C	-2.96365400	-3.26121600	-1.78156400
C	4.32837700	-1.19802800	-1.70624700
C	-2.10820000	4.45510900	-0.92810700
C	-1.77397100	4.12678800	-3.38317900
C	0.06940300	4.99971900	-1.96834400
C	-3.77694700	-3.01542000	-3.05708100
C	-3.89104100	-3.19905200	-0.56604000
C	-2.37205900	-4.66702700	-1.85820200
C	4.96992200	-0.45066500	-2.88119100
C	5.01832600	-0.78381400	-0.40363900
C	4.55781400	-2.69353500	-1.91804700
H	-2.12213600	2.88195500	1.62066500
H	-2.69173800	1.81858000	-1.79843100
H	-3.29515900	-0.55114200	-1.71461800
H	-3.18855300	-1.28423000	1.62547700
H	-1.45189500	-2.98007300	1.72715200
H	-0.20092500	-3.54265100	-1.60404400
H	2.12213100	-2.88194400	-1.62001100
H	2.69173100	-1.81858900	1.79859300
H	3.29515000	0.55114800	1.71495500
H	3.18845600	1.28432400	-1.62555900
H	1.45190000	2.98004600	-1.72741400
H	0.20091500	3.54264500	1.60436100
H	-1.07957600	3.80849900	-4.17370800
H	-2.08295900	5.16221000	-3.59142100
H	-2.66647800	3.48900200	-3.44591800
H	-1.63831000	4.44776200	0.06443000
H	-2.98108200	3.78993800	-0.89425300
	X	Y	Z
----	----------	----------	----------
H	-2.471070	5.474714	-1.124652
H	-0.291588	6.029209	-2.102978
H	0.598690	4.953690	-1.006423
H	0.793231	4.795099	-2.769369
H	-4.079885	3.048177	2.842538
H	-4.171790	3.290623	1.081438
H	-5.635249	2.896306	1.998520
H	-4.470980	0.708397	3.826101
H	-4.588552	1.322440	-0.452991
H	-6.032210	0.716568	2.969359
H	-6.094147	1.009792	0.444125
H	-4.906005	-0.291613	0.216886
H	-4.910337	-0.639103	2.756422
H	-4.360569	-2.212104	-0.466955
H	-3.336199	-3.404710	0.359623
H	-4.693704	-3.945942	-0.654955
H	-4.546741	-3.792229	-3.177570
H	-4.285368	-2.042042	-3.035438
H	-3.170380	-3.034560	-3.943500
H	-1.797325	-4.916414	-0.955719
H	-1.712850	-4.784392	-2.729695
H	-3.181146	-5.405497	-1.949054
H	-0.793374	-4.795272	2.768715
H	0.291681	-6.029280	2.102519
H	-0.598328	-4.953700	1.005794
H	1.079117	-3.808819	4.173569
H	2.082895	-5.162253	3.591319
H	2.666090	-3.488889	3.446132
H	2.981335	-3.789894	0.894458
H	2.471265	-5.474663	1.124646
H	1.638727	-4.447624	-0.064532
H	4.172447	-3.290316	-1.080510
H	4.079186	-3.048630	-2.841670
H	5.635177	-2.896298	-1.998891
H	6.033026	-0.716864	-2.969796
H	6.094132	-1.010263	-0.444041
H	4.906980	0.292239	-0.217931
H	4.910182	0.638858	-2.756976
H	4.588138	-1.320867	0.453060
H	4.470652	-0.708810	-3.826293
H	4.360626	2.212057	0.467186
H	3.335980	3.404260	-0.359659
H	4.693465	3.946014	0.654667
H	4.285542	2.042187	3.035457
H	4.546896	3.792385	3.177387
H 3.12730600 3.03476300 3.94357500
H 3.18104900 5.40549200 1.94944200
H 1.71252700 4.78425200 2.72953700
H 1.79753700 4.91648900 0.95560000

Dimer 2–2 optimized with CAM-B3LYP

C -0.77374500 0.19688300 2.10993000
C -1.39150000 -1.07940800 2.04437900
C -0.60453500 -2.23492600 2.29190700
C 0.75416800 -2.15419200 2.59288900
C 1.34536700 -0.88521100 2.64720700
C 0.61141100 0.30092800 2.41235300
C 1.19814400 1.58558400 2.46905800
C 0.46091700 2.75476400 2.24314400
C -0.89706500 2.62995700 1.95157400
C -1.53770500 1.36722700 1.87575600
C -2.91600900 1.23602100 1.57517200
C -3.54141900 -0.00776500 1.50012900
C -2.76750900 -1.15120300 1.73765100
C 1.61343000 -3.39839400 2.86610300
C 1.16534700 4.11797700 2.32164700
C -5.03329400 -0.16183000 1.16693000
C 2.76299000 -3.45965900 1.84589900
C 2.19352400 -3.31619600 4.28844400
C 0.80727700 -4.69667300 2.75327200
C 1.76369700 4.30571800 3.72625600
C 2.29050400 4.17030700 1.27403000
C 0.20748500 5.28317200 2.05145000
C -5.74755100 -0.87486300 2.32756300
C -5.18442200 -0.99650300 -0.11673000
C -5.72011400 1.18925000 0.94096700
C 0.77374300 -0.19689300 -2.10983400
C 1.39038800 1.07996000 -2.04480400
C 0.60219400 2.23476600 -2.29173600
C -0.75663400 2.15278900 -2.59183200
C -1.34671100 0.88327000 -2.64572600
C -0.61153300 -0.30219500 -2.41126500
C -1.19715300 -1.58737600 -2.46742900
C -0.45869600 -2.75588200 -2.24205300
C 0.89939900 -2.62985200 -1.95153200
C 1.53893800 -1.36653400 -1.87613900
C 2.91732100 -1.23405500 -1.57645000
C 3.54167200 0.01030500 -1.50205800
C 2.76657300 1.15301200 -1.73916700
H -2.27428100 -5.28047400 -3.79510900
H -2.49933600 -3.52611800 -3.96121100
H -0.97953000 -4.27530200 -4.49427000
H 0.24181900 -5.22686400 -1.04764200
H 0.61525300 -5.31857300 -2.78709500
H -0.74820600 -6.23718200 -2.1190900
H -0.01823100 -4.73145900 3.47925700
H 1.46139200 -5.55814700 2.95429800
H 0.61525300 -5.31857300 -2.78709500
H 1.38992500 -3.27517500 5.03905800
H 2.81545500 -4.19977800 4.50170000
H 2.82502000 -2.42470100 4.42306900
H 3.41412200 -2.57609500 1.90874300
H 3.38706900 -4.34966700 2.03284400
H 2.37118800 -3.51103100 0.81934400
H 5.27499600 -1.73567400 0.37166500
H 5.67253500 -1.82444300 0.95924700
H 6.78433500 -1.02464000 -2.10952900
H 6.81815000 0.99943200 0.37166500
H 4.75615800 2.00803000 -0.00235500
H 5.32868200 1.87706900 -2.51900400
H 4.67800200 0.51627700 0.95924700
H 5.65542000 0.29764600 -3.26318500
H 3.04219900 3.85942200 1.44146900
H 1.88616300 4.03266800 0.25990800
H 2.80561600 5.14309400 1.31087400
H 2.49774200 3.52361900 3.96681800
H 2.75431000 5.27821700 3.79917100
H 0.97763700 4.27351320 4.49500760
H 0.71390700 6.23570100 2.11868400
H -0.61184400 5.31890100 2.78439100
H -0.28745100 5.22548700 1.04581200

Dimer 2–2 optimized with CAM-B3LYP-D3

C -0.10466000 0.12411300 1.66403400
C -1.06576500 -0.91959800 1.66929500
C -0.61471000 -2.26223800 1.73574100
C 0.73842800 -2.58472100 1.81215000
C 1.67140800 -1.54132700 1.76906800
C 1.28258100 -0.18318100 1.70291100
C 2.21217000 0.88294700 1.71304100
C 1.81016300 2.22438800 1.71706100
C 0.44527000 2.50121700 1.66635300

S92
H	-1.37263300	-3.04315700	1.75675900
H	-0.08720400	-3.52967700	-1.66451600
H	2.21557900	-2.80135900	-1.65930600
H	2.73883500	-1.76183200	1.82118300
H	3.27278900	0.63018300	1.74445300
H	3.16040900	1.39704900	-1.65010400
H	-1.28567100	3.87233100	-4.16729700
H	-2.30266600	5.17788200	-3.50210900
H	-2.83186500	3.48402700	-3.38348000
H	-1.68645500	4.37789700	0.11746700
H	-3.05188800	3.72601400	-0.80894900
H	-2.58054400	5.28674000	-1.00803600
H	-0.46750900	6.05827900	-2.09250900
H	0.48905700	5.00160100	-1.03341000
H	0.63265700	4.86069400	-2.80314000
H	-4.22262400	2.91704300	2.84270100
H	-4.27575400	3.15392300	1.07894400
H	-5.75093700	2.71448600	1.95787200
H	-4.58077000	0.56247500	3.82441400
H	-4.59049800	1.16574800	-0.46871100
H	-6.11374900	0.51580000	2.91514200
H	-6.11689000	0.81567600	0.39111500
H	-4.88391400	-0.45529300	0.19446600
H	-4.93947800	-0.80336800	2.74571100
H	-4.27820900	-2.32583200	-0.46398800
H	-3.19528300	-3.47353300	0.35089100
H	-4.55294600	-4.07290900	-0.63367000
H	-4.47054400	-3.92761000	-3.15928600
H	-4.25777700	-2.16830100	-3.04580100
H	-3.08934300	-3.14279900	-3.96961200
H	-1.63653300	-4.95850500	-0.98739500
H	-1.58677900	-4.83695900	-2.76388800
H	-3.02444500	-5.49354000	-1.95304800
H	-0.63298600	-4.86080100	2.80238000
H	0.46723400	-6.05835500	2.09179300
H	-0.48921800	-5.00163000	1.03260100
H	1.28503900	-3.87259300	4.16690100
H	2.30229500	-5.17815500	3.50182300
H	2.83141300	-3.48431600	3.38342200
H	3.05526200	-3.72815000	0.80897100
H	2.58044300	-5.42877700	1.00779700
H	1.68670100	-4.37782100	-0.11782400
H	4.27635500	-3.15342200	-1.07760400
Dimer 2–2 optimized with CAM-B3LYP-D3BJ			
--			

C	-0.10124600	0.13544500	1.67064500	
C	-1.05916200	-0.91098200	1.67901400	
C	-0.60384100	-2.25152000	1.74725100	
C	0.75006900	-2.56875800	1.82603300	
C	1.68003700	-1.52346700	1.78406900	
C	1.28671000	-0.16718000	1.71316700	
C	2.21247300	0.90166400	1.72231300	
C	1.80569300	2.24109800	1.71801100	
C	0.44063200	2.51387000	1.66402200	
C	-0.53092800	1.48455300	1.64819200	
C	-1.91802200	1.76086300	1.65109400	
C	-2.87528600	0.74945900	1.67088700	
C	-2.43092700	-0.57728200	1.66017300	
C	1.23926200	-4.01204700	2.01253900	
C	2.85641600	3.35782100	1.80337400	
C	-4.37995100	1.05252900	1.71426100	
C	2.25213500	-4.38324500	0.92043400	
C	1.91483300	-4.12479200	3.38958800	
C	0.09110400	-5.02365700	1.95475900	
C	3.69859500	3.16137300	3.0744900	
C	3.77472900	3.31107900	0.57358700	
C	2.21782700	4.74847800	1.86532900	
C	-5.02583900	0.29235500	2.88360300	
C	-5.03246700	0.60737100	0.39692900	
C	-4.66177100	2.54573800	1.90795200	
H	0.64047600	4.86060200	-2.75880100	
-------	------------	------------	-------------	
H	-4.21631000	2.92566100	2.83895700	
H	-4.27607400	3.14861300	1.07413100	
H	-5.74743400	2.71409200	1.96218700	
H	-4.56478000	0.57971900	3.84026200	
H	-4.60190500	1.51032000	-0.45649600	
H	-6.10169700	0.51948400	2.93946200	
H	-6.11572600	0.80334300	0.41565600	
H	-4.88729600	-0.46643800	0.21876300	
H	-4.92218600	-0.79609600	2.77476100	
H	-4.28315400	-2.34161900	-0.48319100	
H	-3.20293700	-3.47904800	0.34965600	
H	-4.59222500	-4.09085900	-0.64174300	
H	-4.44820700	-3.96225900	-3.16634900	
H	-4.23269700	-2.20158000	-3.06619100	
H	-3.06167600	-3.18294100	-3.97188900	
H	-1.62428800	-4.96521800	-0.96464900	
H	-1.56361100	-4.85984200	-2.74104000	
H	-3.00369100	-5.51497500	-1.93409000	
H	-0.64082000	-4.86048500	2.75863400	
H	0.48737000	-6.04326300	2.06967500	
H	-0.44090400	-4.97805700	0.99348300	
H	1.21158900	-3.85864500	4.19257700	
H	2.26491300	-5.15405500	3.56564100	
H	2.78252500	-3.45448100	3.46971300	
H	3.11154400	-3.69921100	0.90659900	
H	2.63711600	-5.40100200	1.08701100	
H	1.78407000	-4.35572800	-0.07344400	
H	4.27758400	-3.14703400	-1.07001600	
H	4.21532400	-2.92795200	-2.83529500	
H	5.74757300	-2.71410400	-1.96111200	
H	6.10096700	-0.52080900	-2.94173600	
H	6.11628700	-0.80192800	-0.41700700	
H	4.88942500	0.46981600	-0.22325900	
H	4.92053400	0.79429100	-2.77942900	
H	4.60208900	-1.14548300	0.45622300	
H	4.56375600	-0.58408000	-3.84182000	
H	4.28302800	2.34215900	0.48300700	
H	3.20160200	3.47864800	-0.34953400	
H	4.54814400	4.09161300	0.64088300	
H	4.23353300	2.20139800	3.06552400	
H	4.44893800	3.96206300	3.16595300	
H	3.06291600	3.18245200	3.97208500	
H	3.00362000	5.51497500	1.93527000	
H	1.56369100	4.85936500	2.74215000	
Dimer 2–2 optimized with ωB97XD

	X	Y	Z
H	1.62410400	4.96544700	0.96578200
C	-0.07556600	0.10544100	1.61405100
C	-1.06158500	-0.91553200	1.61654200
C	-0.64170900	-2.26918600	1.66853000
C	0.70458000	-2.62414400	1.74286900
C	1.66203600	-1.60207900	1.70484500
C	1.30476600	-0.23412700	1.64766600
C	2.25922400	0.81120000	1.65780200
C	1.88843600	2.16251900	1.66494200
C	0.52924700	2.47054800	1.61072300
C	-0.46972900	1.46621100	1.59790000
C	-1.85006900	1.77931200	1.60965700
C	-2.83578000	0.79356400	1.63410000
C	-2.42546300	-0.54506100	1.60431600
C	1.15715300	-4.08328600	1.91583400
C	2.96955700	3.25247000	1.76134200
C	-4.33316000	1.13770800	1.69875400
C	2.14058000	-4.47810500	0.80231800
C	1.85385400	-4.21981800	3.28279100
C	-0.02156300	-5.06367700	1.87460600
C	3.82035000	3.00825400	3.02135000
C	3.87438100	3.20929600	0.51914400
C	2.36588900	4.65925900	1.86030700
C	-4.99541300	0.35485800	2.84713200
C	-5.00564800	0.75738600	0.36914600
C	-4.57110600	2.63298400	1.94842000
C	0.07557500	-0.10543200	-1.61404100
C	1.06155500	0.91555500	-1.61682400
C	0.64164900	2.26919300	-1.66903600
C	-0.70464800	2.62411000	-1.74318100
C	-1.66207900	1.60201900	-1.70489800
C	-1.30477200	0.23410100	-1.64763700
C	-2.25919300	-0.81126300	-1.65766700
C	-1.88835600	-2.16257400	-1.66474000
C	-0.52917700	-2.47056600	-1.61034300
C	0.46978600	-1.46618700	-1.59757800
C	1.85011600	-1.77923600	-1.60907400
C	2.83581800	-0.79344500	-1.63394700
C	2.42547000	0.54514700	-1.60467600
C	-1.15729600	4.08328200	-1.91606800
C	-2.96945800	-3.25251900	-1.76143400
C	4.33334900	-1.13761100	-1.69845800
C	-2.14011100	4.47813200	-0.80205300
C	-1.85468700	4.21970800	-3.28267700
C	0.02148400	5.06358100	-1.87547700
C	-3.81977100	-3.00827700	-3.02178700
C	-3.87478300	-3.20939600	-0.51961300
C	-2.36576400	-4.65930100	-1.86018500
C	4.99543000	-0.35521900	-2.84715900
C	5.00563800	-0.75673500	-0.36900500
C	4.57115000	-2.63299100	-1.94750000
H	-2.12432500	2.83278100	1.63061500
H	-2.27537700	1.84703400	-1.75762100
H	-3.31457700	-0.53346200	-1.69262700
H	-3.16786600	-1.34486000	1.60803300
H	-1.41773500	-3.03407500	1.68488500
H	-0.19459800	-3.50824700	-1.60847900
H	2.12432200	-2.83271200	-1.62924100
H	2.72531800	-1.84713100	1.75775900
H	3.31460000	0.53334400	1.69271600
H	3.16780100	1.34504600	-1.60889700
H	1.41767500	3.03407700	-1.68569300
H	0.19471100	3.50824900	1.60894700
H	-1.17586500	3.92656600	-4.09795400
H	-2.16984100	5.26158800	-3.45396800
H	-2.74929300	3.58254700	-3.34644700
H	-1.64886400	4.44705600	0.18173800
H	-3.01169400	3.80853600	-0.76572900
H	-2.51121900	5.50255100	-0.96345300
H	-0.34771300	6.09547100	-1.97664200
H	0.56999600	4.99748600	-0.92348700
H	0.73319300	4.88527700	-2.69542600
H	-4.10171500	2.96757300	2.88606100
H	-4.18197300	3.25513500	1.12921800
H	-5.65131500	2.82979100	2.02480800
H	-4.51281500	0.58690100	3.80878200
H	-4.55950600	1.31476700	-0.46837200
H	-6.06184000	0.61958100	2.92497700
H	-6.08270800	0.98684300	0.39790100
H	-4.89511100	-0.31552900	0.15710400
H	-4.93638100	-0.73254800	2.69465800
H	-4.35580700	-2.22820800	-0.40233500
H	-3.29660900	-3.41432200	0.39397600
H	-4.67084000	-3.96690700	-0.59542300
H	-4.58385400	-3.79477200	-3.12834000
H	-4.34138100	-2.04078700	-2.98348800
H	-3.19070400	-3.01526900	-3.92493700
H	-1.77281200	-4.91318000	-0.96864000
-----	-------------	-------------	-------------
H	-1.72017000	-4.76629100	-2.74490400
H	-3.17120600	-5.40480600	-1.94223500
H	-0.73364200	-4.88546100	2.69425400
H	0.34761500	-6.09556400	1.97585100
H	0.56965300	-4.99753400	0.92238000
H	1.17458700	-3.92679000	4.09773800
H	2.16900700	-5.26168400	3.45416800
H	2.74836400	-3.58257000	3.34705900
H	3.01225600	-3.80859200	0.76668100
H	2.51150700	-5.50258000	0.96375800
H	1.64995300	-4.44674200	-0.18177600
H	4.18286700	-3.25471700	-1.12757200
H	4.10109000	-2.96818900	-2.88458100
H	5.65133400	-2.82965500	-2.02462100
H	6.06186500	-0.61994300	-2.92488500
H	6.08263600	-0.98651900	-0.39746400
H	4.89538200	0.31633500	-0.15759400
H	4.93637700	0.73224700	-2.69512500
H	4.55919000	-1.31344000	0.46879800
H	4.51285100	-0.58766900	-3.80871900
H	4.35562700	2.22821100	0.40199000
H	3.29566100	3.41367700	-0.39421000
H	4.67023700	3.96707300	0.59435600
H	4.34192600	2.04075000	2.98289100
H	4.58451100	3.79472100	3.12754600
H	3.19165900	3.01531700	3.92476200
H	3.17135800	5.40473600	1.94236400
H	1.72037300	4.76614400	2.74509400
H	1.77287100	4.91326900	0.96883800

References

(S1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, À.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09 Revision D.01. 2009; Gaussian Inc., Wallingford, CT, USA.

(S2) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(S3) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627.

(S4) Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.

(S5) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

(S6) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.

(S7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396–1396.

(S8) Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029–5036.

(S9) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158–6170.

(S10) Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125.

(S11) Zhao, Y.; Truhlar, D. Theor. Chem. Acc. 2008, 120, 215–241.

(S12) Vydrov, O. A.; Scuseria, G. E. J. Chem. Phys. 2006, 125.

(S13) Vydrov, O. A.; Heyd, J.; Krukau, A. V.; Scuseria, G. E. J. Chem. Phys. 2006, 125.
(S14) Vydrov, O. A.; Scuseria, G. E.; Perdew, J. P. J. Chem. Phys. 2007, 126.

(S15) Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57.

(S16) Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128.

(S17) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.

(S18) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132.

(S19) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comp. Chem. 2011, 32, 1456–1465.

(S20) Seeger, R.; Pople, J. A. J. Chem. Phys. 1977, 66, 3045–3050.

(S21) Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047–9052.

(S22) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. Chem. Phys. Lett. 1998, 294, 143–152.

(S23) Riplinger, C.; Neese, F. J. Chem. Phys. 2013, 138, 034106.

(S24) Riplinger, C.; Sandhoefer, B.; Hansen, A.; Neese, F. J. Chem. Phys. 2013, 139, 134101.

(S25) Riplinger, C.; Pinski, P.; Becker, U.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2016, 144, 024109.

(S26) Saitow, M.; Becker, U.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2017, 146, 164105.

(S27) Neese, F. WIREs Comput. Mol. Sci. 2017, 8, e1327.

(S28) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007–1023.

(S29) Weigend, F.; Köhn, A.; Hättig, C. J. Chem. Phys. 2002, 116, 3175–3183.

(S30) Noodleman, L. J. Chem. Phys. 1981, 74, 5737–5743.
(S31) Noodleman, L.; Norman, Jr., J. G.; Osborne, J. H.; Aizman, A.; Case, D. A. *J. Am. Chem. Soc.* **1985**, *107*, 3418–3426.

(S32) Noodleman, L.; Davidson, E. R. *Chem. Phys.* **1986**, *109*, 131–143.

(S33) Kizashi, Y.; Hiroaki, F.; Takayuki, F. *Chem. Lett.* **1986**, *15*, 625–628.

(S34) Yamaguchi, K.; Tsunekawa, T.; Toyoda, Y.; Fueno, T. *Chem. Phys. Lett.* **1988**, *143*, 371–376.

(S35) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. *Chem. Phys. Lett.* **1988**, *149*, 537–542.

(S36) Soda, T.; Kitagawa, Y.; Onishi, T.; Takano, Y.; Shigeta, Y.; Nagao, H.; Yoshioka, Y.; Yamaguchi, K. *Chem. Phys. Lett.* **2000**, *319*, 223–230.

(S37) Mañeru, D. R.; Pal, A. K.; de P. R. Moreira, I.; Datta, S. N.; Illas, F. *J. Chem. Theory Comput.* **2014**, *10*, 335–345.

(S38) Boys, S. F.; Bernardi, F. *Mol. Phys.* **1970**, *19*, 553–566.

(S39) de P. R. Moreira, I.; Costa, R.; Filatov, M.; Illas, F. *J. Chem. Theory Comput.* **2007**, *3*, 764–774.

(S40) Rivero, P.; de P. R. Moreira, I.; Illas, F.; Scuseria, G. E. *J. Chem. Phys.* **2008**, *129*.

(S41) Valero, R.; Costa, R.; de P. R. Moreira, I.; Truhlar, D. G.; Illas, F. *J. Chem. Phys.* **2008**, *128*.

(S42) Wannarit, N.; Pakawatchai, C.; Mutikainen, I.; Costa, R.; de P. R. Moreira, I.; Youngme, S.; Illas, F. *Phys. Chem. Chem. Phys.* **2013**, *15*, 1966–1975.

(S43) Costa, R.; Valero, R.; Mañeru, D. R.; de P. R. Moreira, I.; Illas, F. *J. Chem. Theory Comput.* **2015**, *11*, 1006–1019.
(S44) Peralta, J. E.; Melo, J. I. *J. Chem. Theory Comput.* **2010**, *6*, 1894–1899.

(S45) Phillips, J. J.; Peralta, J. E. *J. Chem. Phys.* **2011**, *134*.

(S46) Ruiz, E.; Alvarez, S.; Cano, J.; Polo, V. *J. Chem. Phys.* **2005**, *123*.

(S47) Ruiz, E. *Chem. Phys. Lett.* **2008**, *460*, 336–338.

(S48) Ruiz, E. *J. Comp. Chem.* **2011**, *32*, 1998–2004.

(S49) Melo, J. I.; Phillips, J. J.; Peralta, J. E. *Chem. Phys. Lett.* **2013**, *557*, 110–113.

(S50) Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Itoh, K.; Gotoh, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Naito, A. *Synth. Met.* **1999**, *103*, 2257–2258.

(S51) Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Itoh, K.; Kubo, T.; Gotoh, K.; Yamamoto, K.; Nakasuji, K.; Naito, A. *Mol. Cryst. Liq. Cryst.* **1999**, *334*, 49–58.

(S52) Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; Ouyang, J. *J. Am. Chem. Soc.* **1999**, *121*, 1619–1620.

(S53) Morita, Y.; Aoki, T.; Fukui, K.; Nakazawa, S.; Tamaki, K.; Suzuki, S.; Fuyuhiro, A.; Yamamoto, K.; Sato, K.; Shiomi, D.; Naito, A.; Takui, T.; Nakasuji, K. *Angew. Chem. Int. Ed.* **2002**, *41*, 1793–1796.

(S54) Nishida, S.; Kawai, J.; Moriguchi, M.; Ohba, T.; Haneda, N.; Fukui, K.; Fuyuhiro, A.; Shiomi, D.; Sato, K.; Takui, T.; Nakasuji, K.; Morita, Y. *Chem. Eur. J.* **2013**, *19*, 11904–11915.

(S55) Suzuki, S.; Morita, Y.; Fukui, K.; Sato, K.; Shiomi, D.; Takui, T.; Nakasuji, K. *J. Am. Chem. Soc.* **2006**, *128*, 2530–2531.

(S56) Small, D.; Zaitsev, V.; Jung, Y.; Rosokha, S. V.; Head-Gordon, M.; Kochi, J. K. *J. Am. Chem. Soc.* **2004**, *126*, 13850–13858.
(S57) Tian, Y.-H.; Huang, J.; Kertesz, M. *Phys. Chem. Chem. Phys.* **2010**, *12*, 5084–5093.

(S58) Schäfer, A.; Horn, H.; Ahlrichs, R. *J. Chem. Phys.* **1992**, *97*, 2571–2577.

(S59) Schäfer, A.; Huber, C.; Ahlrichs, R. *J. Chem. Phys.* **1994**, *100*, 5829–5835.