Bound - states for spiked harmonic oscillators and truncated Coulomb potentials

Omar Mustafa and Maen Odeh
Department of Physics, Eastern Mediterranean University
G. Magusa, North Cyprus, Mersin 10 - Turkey
email: omustafa.as@mozart.emu.edu.tr

Abstract

We propose a new analytical method to solve for the nonexactly solvable Schrödinger equation. Successfully, it is applied to a class of spiked harmonic oscillators and truncated Coulomb potentials. The utility of this method could be extended to study other systems of atomic, molecular and nuclear physics interest.
In atomic, molecular and nuclear physics, spiked harmonic oscillators and truncated Coulomb potentials are of significant interest. Realistic interaction potentials often have a usually repulsive core [1-5]. The simplest model of such a core is provided by the spiked harmonic oscillators

\[V(q) = c_1 q^2 + c_2 q^{-b}, \quad c_1, c_2, b > 0. \] (1)

On the other hand, the truncated Coulomb potential has been found to be pertinent in the study of the energy levels of the hydrogen-like atoms exposed to intense laser radiation [6-11]. It has been shown [8,10] that under Kramers-Henneberger transformation [12] the laser-dressed binding potential for the hydrogenic system, often called laser-dressed Coulomb potential, may be well simulated by

\[V(q) = -\frac{e^2}{(q^2 + c^2)^{1/2}}; \quad c > 0. \] (2)

Where the truncation parameter \(c \) is related to the strength of the irradiating laser field.

Thus it is interesting to carry out systematic studies of the bound states of these potentials. Hall and Saad [4] have studied the spiked harmonic oscillator potentials via smooth transformations method (STM) of the exactly solvable potential \(V(q) = c_2 q^2 + c_2 q^{-2} \) to obtain lower and/or upper energy bounds. They have also calculated the energy eigenvalues using direct numerical integrations of Schrödinger equation [4]. Dutt et al [6] have used a shifted \(1/N \) expansion technique (SLNT) to carry out the energy levels of the laser-dressed Coulomb potential and compared their results also with those of direct numerical integrations [7]. Nevertheless, neither SLNT nor STM is utilitarian in terms of calculating the eigenvalues and eigenfunctions in one batch. Because of the complexity in handling large-order corrections of the standard Rayleigh-Schrödinger perturbation theory, only low-order calculations have been reported for SLNT [6,13] and large-order calculations have been neglected. Eventually, the results of SLNT are not as accurate as sought after.

In this paper we formulate a method for solving Schrödinger equation. In one batch, one should be able to study not only the eigenvalues but also the eigenfunctions. It simply consists of using \(1/\tilde{l} \) as a perturbation expansion parameter. Where, \(\tilde{l} = l - \beta \), \(l \) is a quantum number, and \(\beta \) is a suitable
shift introduced to avoid the trivial case \(l = 0 \). Hence, hereinafter, it should be called pseudoperturbative shifted - \(l \) expansion technique (PSLET).

The construction of our method starts with the time - independent one - dimensional form of Schrödinger equation, in \(\hbar = m = 1 \) units,

\[
-\frac{1}{2} \frac{d^2}{dq^2} + \frac{l(l + 1)}{2q^2} + V(q) \Psi_{n_r,l}(q) = E_{n_r,l} \Psi_{n_r,l}(q).
\]

(3)

Where the quantum number \(l \) may specify parity, \((-1)^{l+1}\), in one - dimension (\(l = -1 \) or \(l = 0 \), and \(q \in (-\infty, \infty) \)) or angular momentum in three - dimensions (\(l = 0, 1, \ldots \), and \(q \in (0, \infty) \)), and \(n_r = 0, 1, \ldots \) counts the nodal zeros [6,14-17].

To avoid the trivial case \(l = 0 \), the quantum number \(l \) is shifted through the relation \(\bar{l} = l - \beta \). Eq.(3) thus becomes

\[
\left\{ -\frac{1}{2} \frac{d^2}{dq^2} + \bar{V}(q) \right\} \Psi_{n_r,l}(q) = E_{n_r,l} \Psi_{n_r,l}(q),
\]

(4)

\[
\bar{V}(q) = \frac{\bar{l}^2 + (2\beta + 1)\bar{l} + \beta(\beta + 1)}{2q^2} + \frac{\bar{l}^2}{Q} V(q).
\]

(5)

Herein, it should be noted that \(Q \) is a constant that scales the potential \(V(q) \) at large - \(l \) limit and is set, for any specific choice of \(l \) and \(n_r \), equal to \(\bar{l}^2 \) at the end of the calculations [13,14]. And, \(\beta \) is to be determined in the sequel.

Our systematic procedure begins with shifting the origin of the coordinate through

\[
x = \bar{l}^{1/2}(q - q_o)/q_o,
\]

(6)

where \(q_o \) is currently an arbitrary point to perform Taylor expansions about, with its particular value to be determined. Expansions about this point, \(x = 0 \) (i.e. \(q = q_o \)), yield

\[
\frac{1}{q^2} = \sum_{n=0}^{\infty} (-1)^n \frac{(n + 1)}{q_o^2} x^n \bar{l}^{-n/2},
\]

(7)

\[
V(x(q)) = \sum_{n=0}^{\infty} \left(\frac{d^n V(q_o)}{dq_o^n} \right) \frac{(q_o x)^n}{n!} \bar{l}^{-n/2}.
\]

(8)

Obviously, the expansions in (7) and (8) center the problem at an arbitrary point \(q_o \) and the derivatives, in effect, contain information not only at \(q_o \) but
also at any point on the axis, in accordance with Taylor’s theorem. Also it should be mentioned here that the scaled coordinate, equation (6), has no effect on the energy eigenvalues, which are coordinate-independent. It just facilitates the calculations of both the energy eigenvalues and eigenfunctions. It is also convenient to expand E as

$$E_{n,r,l} = \sum_{n=-2}^{\infty} E_{n,r,l}^{(n)} \tilde{l}^{-n}. \quad (9)$$

Equation (4) thus becomes

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + \frac{q_o^2}{l} \tilde{V}(x(q)) \right] \Psi_{n,r,l}(x) = \frac{q_o^2}{l} E_{n,r,l} \Psi_{n,r,l}(x), \quad (10)$$

with

$$\frac{q_o^2}{l} \tilde{V}(x(q)) = \frac{q_o^2}{l} \left[q_o^2 \left(\frac{1}{2q_o^2} + \frac{V(q_o)}{Q} \right) + \tilde{l}^{1/2} \left[-x + \frac{V'(q_o)q_o^3 x}{Q} \right] \right] + \frac{3}{2} x^2 + \frac{V''(q_o)q_o^4 x^2}{2Q} + (2\beta + 1) \sum_{n=1}^{\infty} (-1)^n \frac{(n + 1)}{2} x^n \tilde{l}^{-(n+1)/2} + \frac{q_o^2}{2} \sum_{n=3}^{\infty} \left[(-1)^n \frac{(n + 1)}{2q_o^2} x^n + \left(\frac{d^n V(q_o)}{dq_o^n} \right) \frac{(q_o x)^n}{n!} \right] \tilde{l}^{-(n+1)/2} + \beta(\beta + 1) \sum_{n=0}^{\infty} \left[(-1)^n \frac{(n + 1)}{2} x^n \tilde{l}^{-(n+2)/2} \right] + \frac{(2\beta + 1)}{2}, \quad (11)$$

where the prime of $V(q_o)$ denotes derivative with respect to q_o. Equation (10) is exactly of the type of Schrödinger equation for one-dimensional anharmonic oscillator

$$\left[-\frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{2} w^2 x^2 + \varepsilon_o + P(x) \right] X_{n,r}(x) = \lambda_{n,r} X_{n,r}(x), \quad (12)$$

where $P(x)$ is a perturbation-like term and ε_o is a constant. A simple comparison between Eqs.(10), (11) and (12) implies

$$\varepsilon_o = \tilde{l} \left[\frac{1}{2} + rac{q_o^2 V(q_o)}{Q} \right] + \frac{2\beta + 1}{2} + \frac{\beta(\beta + 1)}{2\tilde{l}}, \quad (13)$$
\lambda_{n_r} = ℓ \left[\frac{1}{2} + \frac{q_o^2 V(q_o)}{Q} \right] + \left[\frac{2\beta + 1}{2} + \frac{1}{2} \right] + (n_r + \frac{1}{2})w
\hspace{1cm} + \frac{1}{l} \left[\beta(\beta + 1) \right] + \lambda_{n_r}^{(0)} + \sum_{n=2}^{\infty} \lambda_{n_r}^{(n-1)} l^{-n}, \hspace{1cm} (14)

and

\lambda_{n_r} = q_o^2 \sum_{n=-2}^{\infty} E_{n_r,l}^{(n)} l^{-(n+1)}, \hspace{1cm} (15)

Equations (14) and (15) yield

\begin{align*}
E_{n_r,l}^{(-2)} &= \frac{1}{2q_o^2} + \frac{V(q_o)}{Q} \hspace{1cm} (16) \\
E_{n_r,l}^{(-1)} &= \frac{1}{q_o^2} \left[\frac{2\beta + 1}{2} + \frac{1}{2} \right] + (n_r + \frac{1}{2})w \hspace{1cm} (17) \\
E_{n_r,l}^{(0)} &= \frac{1}{q_o^2} \left[\frac{\beta(\beta + 1)}{2} + \lambda_{n_r}^{(0)} \right] \hspace{1cm} (18) \\
E_{n_r,l}^{(n)} &= \lambda_{n_r}^{(n)} / q_o^2; \hspace{1cm} n \geq 1. \hspace{1cm} (19)
\end{align*}

Here \(q_o \) is chosen to minimize \(E_{n_r,l}^{(-2)} \), i. e.

\[\frac{dE_{n_r,l}^{(-2)}}{dq_o} = 0 \hspace{1cm} \text{and} \hspace{1cm} \frac{d^2E_{n_r,l}^{(-2)}}{dq_o^2} > 0. \hspace{1cm} (20) \]

Hereby, \(V(q) \) is assumed to be well behaved so that \(E^{(-2)} \) has a minimum \(q_o \) and there are well - defined bound - states. Equation (20) in turn gives, with \(\bar{l} = \sqrt{Q} \),

\[l - \beta = \sqrt{q_o^2 V'(q_o)}. \hspace{1cm} (21) \]

Consequently, the second term in Eq.(11) vanishes and the first term adds a constant to the energy eigenvalues. It should be noted that energy term \(\bar{l}^2 E_{n_r,l}^{(-2)} \) has its counterpart in classical mechanics. It corresponds roughly to the energy of a classical particle with angular momentum \(L_z = \bar{l} \) executing circular motion of radius \(q_o \) in the potential \(V(q_o) \). This term thus identifies
the leading-order approximation, to all eigenvalues, as a classical approximation and the higher-order corrections as quantum fluctuations around the minimum q_o, organized in inverse powers of \bar{l}.

The next leading correction to the energy series, $\bar{l}E_{n_r,l}^{(-1)}$, consists of a constant term and the exact eigenvalues of the unperturbed harmonic oscillator potential $w^2x^2/2$. The shifting parameter β is determined by choosing $\bar{l}E_{n_r,l}^{(-1)}=0$. This choice is physically motivated. It requires not only the agreements between PSLET eigenvalues and the exact known ones for the harmonic oscillator and Coulomb potentials but also between the eigenfunctions as well. Hence

$$\beta = -\left[\frac{1}{2} + \left(n_r + \frac{1}{2} \right) w \right],$$ \hspace{1cm} (22)

where

$$w = \sqrt{3 + \frac{q_oV''(q_o)}{V'(q_o)}}. \hspace{1cm} (23)$$

Then equation (11) reduces to

$$\frac{q^2}{\bar{l}}\bar{V}(x(q)) = q_o^2\bar{l}\left[\frac{1}{2q_o^2} + \frac{V(q_o)}{Q} \right] + \sum_{n=0}^{\infty} v^{(n)}(x)\bar{l}^{-n/2}, \hspace{1cm} (24)$$

where

$$v^{(0)}(x) = \frac{1}{2} w^2x^2 + \frac{2\beta + 1}{2}, \hspace{1cm} (25)$$

$$v^{(1)}(x) = -(2\beta + 1)x - 2x^3 + \frac{q_o^5V''''(q_o)}{6Q}x^3, \hspace{1cm} (26)$$

and for $n \geq 2$

$$v^{(n)}(x) = (-1)^n(2\beta + 1)\frac{(n + 1)}{2} x^n + (-1)^n \frac{\beta(\beta + 1)}{2} (n - 1) x^{(n-2)}$$

$$+ \left[(-1)^n \frac{(n + 3)}{2} + \frac{q_o^{(n+4)}}{Q(n + 2)!} \frac{d^{n+2}V(q_o)}{dq_o^{n+2}} \right] x^{n+2}. \hspace{1cm} (27)$$
Equation (10) thus becomes

\[
-\frac{1}{2} \frac{d^2}{dx^2} + \sum_{n=0}^{\infty} v^{(n)}(n) \tilde{l}^{-n/2} \bigg] \Psi_{n_r,l}(x) = \\
\left[\frac{1}{l} \left(\frac{\beta(\beta+1)}{2} + \lambda_n^{(0)} \right) + \sum_{n=2}^{\infty} \lambda_{n_r}^{(n-1)} \tilde{l}^{-n} \right] \Psi_{n_r,l}(x).
\]

(28)

When setting the nodeless, \(n_r = 0\), wave functions as

\[
\Psi_{0,l}(x(q)) = e^{x}(U_{0,l}(x)),
\]

equation (28) is readily transformed into the following Riccati equation:

\[
-\frac{1}{2} [U''(x) + U'(x)U'(x)] + \sum_{n=0}^{\infty} v^{(n)}(x) \tilde{l}^{-n/2} = \frac{1}{l} \left(\frac{\beta(\beta+1)}{2} + \lambda_{0}^{(0)} \right) \]

\[+ \sum_{n=2}^{\infty} \lambda_{0}^{(n-1)} \tilde{l}^{-n}. \]

(30)

Hereinafter, we shall use \(U(x)\) instead of \(U_{0,l}(x)\) for simplicity, and the prime of \(U(x)\) denotes derivative with respect to \(x\). It is evident that this equation admits solution of the form

\[
U'(x) = \sum_{n=0}^{\infty} U^{(n)}(x) \tilde{l}^{-n/2} + \sum_{n=0}^{\infty} G^{(n)}(x) \tilde{l}^{-(n+1)/2},
\]

(31)

where

\[
U^{(n)}(x) = \sum_{m=0}^{n+1} D_{m,n} x^{2m-1} \quad ; \quad D_{0,n} = 0,
\]

(32)

\[
G^{(n)}(x) = \sum_{m=0}^{n+1} C_{m,n} x^{2m}.
\]

(33)
Substituting equations (31) - (33) into equation (30) implies

$$- \frac{1}{2} \sum_{n=0}^{\infty} \left[U^{(n)} \bar{l}^{-n/2} + G^{(n)} \bar{l}^{-(n+1)/2} \right]$$

$$- \frac{1}{2} \sum_{n=0}^{\infty} \sum_{p=0}^{\infty} \left[U^{(n)} U^{(p)} \bar{l}^{-(n+p)/2} + G^{(n)} G^{(p)} \bar{l}^{-(n+p+2)/2} + 2U^{(n)} G^{(p)} \bar{l}^{-(n+p+1)/2} \right]$$

$$+ \sum_{n=0}^{\infty} v^{(n)} \bar{l}^{-n/2} = \frac{1}{l} \left(\beta(\beta + 1) \right) + \frac{\lambda(0)}{2} + \sum_{n=2}^{\infty} \frac{\lambda(n-1)}{n} \bar{l}^{-n}, \quad (34)$$

where primes of $U^{(n)}(x)$ and $G^{(n)}(x)$ denote derivatives with respect to x. Equating the coefficients of the same powers of \bar{l} and x, respectively, (of course the other way around would work equally well) one obtains

$$- \frac{1}{2} U^{(0)} - \frac{1}{2} U^{(0)} U^{(0)} + v^{(0)} = 0, \quad (35)$$

$$U^{(0)}(x) = D_{1,0}; \quad D_{1,0} = -w, \quad (36)$$

and integration over dx yields

$$U^{(0)}(x) = -w x. \quad (37)$$

Similarly,

$$- \frac{1}{2} [U^{(1)} + G^{(0)}] - U^{(0)} U^{(1)} - U^{(0)} G^{(0)} + v^{(1)} = 0, \quad (38)$$

$$U^{(1)}(x) = 0, \quad (39)$$

$$G^{(0)}(x) = C_{0,0} + C_{1,0} x^2, \quad (40)$$

$$C_{1,0} = -\frac{B_1}{w}, \quad (41)$$

$$C_{0,0} = \frac{1}{w} (C_{1,0} + 2\beta + 1), \quad (42)$$

$$B_1 = -2 + \frac{q_0^5}{6Q} \frac{d^3V(q_0)}{dq_0^3}, \quad (43)$$
\[-\frac{1}{2}[U^{(2)}' + G^{(1)}'] - \frac{1}{2} \sum_{n=0}^{2} U^{(n)} U^{(2-n)} - \frac{1}{2} G^{(0)} G^{(0)} \]

\[-\sum_{n=0}^{\infty} U^{(n)} G^{(1-n)} + v^{(2)} = \frac{\beta(\beta + 1)}{2} + \lambda^{(0)}_0, \quad (44)\]

\[U^{(2)}(x) = D_{1,2} x + D_{2,2} x^3, \quad (45)\]

\[G^{(1)}(x) = 0, \quad (46)\]

\[D_{2,2} = \frac{1}{w} \left(\frac{C_{1,0}^2}{2} - B_2 \right), \quad (47)\]

\[D_{1,2} = \frac{1}{w} \left(\frac{3}{2} D_{2,2} + C_{0,0} C_{1,0} - \frac{3}{2} (2\beta + 1) \right), \quad (48)\]

\[B_2 = \frac{5}{2} + \frac{q_0^6}{24Q} \frac{d^4V(q_0)}{dq_0^4}, \quad (49)\]

\[\lambda^{(0)}_0 = -\frac{1}{2} (D_{1,2} + C_{0,0}^2). \quad (50)\]

\[\cdots \text{and so on. Thus, one can calculate the energy eigenvalue and the eigenfunctions from the knowledge of } C_{m,n} \text{ and } D_{m,n} \text{ in a hierarchical manner. Nevertheless, the procedure just described is suitable for systematic calculations using software packages (such as MATHEMATICA, MAPLE, or REDUCE) to determine the energy eigenvalue and eigenfunction corrections up to any order of the pseudoperturbation series.}\]

Although the energy series, Eq.(9), could appear divergent, or, at best, asymptotic for small \bar{l}, one can still calculate the eigenenergies to a very good accuracy by forming the sophisticated Pade’ approximation to the energy series. The energy series, Eq.(9), is calculated up to $E_{0,1}^{(4)} / \bar{l}^4$ by

\[E_{0,l} = \bar{l}^2 E_{0,l}^{(-2)} + E_{0,l}^{(0)} + \cdots + E_{0,l}^{(4)} / \bar{l}^4 + O(1/\bar{l}^5), \quad (51)\]

and with the $P_3^3(1/\bar{l})$ and $P_3^4(1/\bar{l})$ Pade’ approximants it becomes

\[E_{0,l}[3,3] = \bar{l}^2 E_{0,l}^{(-2)} + P_3^3(1/\bar{l}). \quad (52)\]

and

\[E_{0,l}[3,4] = \bar{l}^2 E_{0,l}^{(-2)} + P_3^4(1/\bar{l}). \quad (53)\]
Hereby, an "if" statement is in point. If the energy series, eq.(9), is a Stieltjes series, though it is difficult to prove, then $E_{0,l}[3,3]$ and $E_{0,l}[3,4]$ provide upper and lower bounds to the energy [18,19]. Our strategy is therefore clear.

Let us begin with the spiked harmonic oscillators

$$V(q) = \frac{1}{2}(q^2 + aq^{-b})$$

(54)

for which Eq.(22), with $n_r = 0$, implies

$$\beta = -\frac{1}{2}(1 + w) ; \quad w = \sqrt{\frac{8q_o + ab(b - 2)q_o^{-(b+1)}}{2q_o - abq_o^{-(b+1)}}}.$$

(55)

In turn Eq.(21) reads

$$l + \frac{1}{2} \left(1 + \sqrt{\frac{8q_o + ab(b - 2)q_o^{-(b+1)}}{2q_o - abq_o^{-(b+1)}}}\right) = q_o^2 \sqrt{1 - \frac{ab}{2}q_o^{-(b+2)}}.$$

(56)

Equation (56) is explicit in q_o and evidently a closed form solution for q_o is hard to find, though almost impossible. However, numerical solutions are feasible. Once q_o is determined the coefficients $C_{m,n}$ and $D_{m,n}$ are obtained in a sequel manner. Consequently, the eigenvalues, Eq.(51), and eigenfunctions, Eqs.(31)-(33), are calculated in the same batch for each value of a, b, and l. In tables 1 and 2 we list PSLET results E_P, Eq.(51), along with [3,3] and [3,4] Padé approximants, Eqs.(52) and (53) respectively. The results of the smooth transformations method (STM) [4] and direct numerical integration (DNI) [4] are also displayed for comparison purposes.

Our calculated values of the bound - state energies, E_P, compare well with those from direct numerical integrations [4]. In table 1 the Padé approximants $E[3,3]$ and $E[3,4]$ are almost in total agreement with those of Hall and Saad [4] from DNI of the Schrödinger equation. Moreover, it is evident that $E[3,3]$ and $E[3,4]$ have provided upper and lower bounds, respectively, to the energy series. However, the same can not be concluded from table 2. Eventually, our computed values of the bound - state energies, E_P, do not contradict with the upper and/or lower bounds reported by Hall and Saad [4] from the smooth transformations method (STM).

Moreover, our result for $b = 2$ listed in table 1 is in excellent agreement with the exact one 65.2534584 obtained from Eq.(2) of ref.[4]. On the other
hand, one would rewrite the centrifugal term in (3) plus the potential (54) as $l'(l' + 1)/(2q^2) + q^2/2$, where $l' = -1/2 + \sqrt{(l + 1/2)^2 + a}$, and proceed by shifting the irrational quantum number l' through $l' = l' - \beta$. In this case, one obtains the known exact result $E_P = (l' + 3/2)$ for the harmonic oscillator $q^2/2$ from the leading term $\tilde{l}^2 E(-2)$ and the remainder energy corrections are identically zero.

Next, we consider the laser-dressed Coulomb potential

$$V(q) = -\frac{1}{\sqrt{q^2 + c^2}}, \quad c > 0.$$ \hfill (57)

In this case

$$w = \sqrt{\frac{q_o^2 + 4c^2}{q_o^2 + c^2}},$$ \hfill (58)

and

$$l + \frac{1}{2} \left(1 + \sqrt{\frac{q_o^2 + 4c^2}{q_o^2 + c^2}} \right) = q_o^2 \left[q_o^2 + c^2 \right]^{-3/4}.$$ \hfill (59)

Again, we numerically solve for q_o and proceed exactly as above to calculate the energy eigenvalues and eigenfunctions in the same batch. In tables 3 and 4 we collect the results for the truncation parameter $c = 1, 5, 10, 50, 100, 200$ based on our approach. The energies E_P, Eq.(51), compare well with those of Singh et al. [7] from numerical integrations. The Padé approximants $E[3, 3]$ and $E[3, 4]$ are in almost complete accord with those of Singh et al.[7]. However, they do not provide upper and lower bounds to the energy series, Eq.(51). Perhaps, it should be mentioned that the approximate binding potential Eq.(57) is valid for a hydrogen atom in a laser field which corresponds to a truncation parameter c in the range 20-60 [6]. Higher and lower values of c have been considered for academic interest only.

Before we conclude some remarks deserve to be mentioned.

For the two problems discussed in this paper, we have shown that it is an easy task to implement PSLET without having to worry about the ranges of couplings and forms of perturbations in the potential involved. In contrast to the textbook Rayleigh - Schrödinger perturbation theory, an easy feasibility of computation of the eigenvalues and eigenfunctions, in one batch, has been
demonstrated, and satisfactory accuracies have been obtained. Moreover, a nice numerical trend of convergence has been achieved. Nevertheless, another suitable criterion for choosing the value of the shift β, reported in Ref. [14], is also feasible. This reference should be consulted for more details.

It is not easy to prove that the energy series Eq.(51) is a Stieltjes series. But, if it is a Stieltjes series, the $[N, N]$ and $[N, N + 1]$ Padé approximants provide upper and lower bounds to the energy series. Table 1 bears this out. Moreover, in view of the results listed in tables 1-4 one can confidently conclude that the $[3,3]$ and $[3,4]$ Padé approximants to the energy series Eq.(51) can be used to determine the energy eigenvalues to a very satisfactory accuracy.

From the knowledge of $C_{m,n}$ and $D_{m,n}$ one can calculate, in the same batch, the wave functions to study electronic transitions and multiphoton emission occurring in atomic systems in the presence of intense laser fields, for example. Such studies already lie beyond the scope of our present methodical proposal.

Finally, the attendant technique PSLET could be applied to Schrödinger equation with rational potentials, such as the nonpolynomial oscillator $V(q) = q^2 + \lambda q^2/(1 + gq^2)$. This type of potential is an interesting model in laser and quantum field theories [20]. The feasibility of PSLET extends also to a class of screened Coulomb potentials, which have relevance in atomic and plasma physics, and to some other models of interest [21-26, and references therein].
References

[1] Znojil M 1992 Phys Lett A169 415
[2] Flynn M F, Guardiola R and Znojil M 1991 Czech J Phys B41 1019
[3] Aguilera V C, Estevez G A and Guardiola R 1990 J Math Phys 31 99
[4] Hall R L and Saad N 1998 J Phys A31 963
[5] Hall R L, Saad N and Kevicziky R B 1998 J Math Phys 39 6345
[6] Dutt R, Mukherji U and Varshni Y P 1985 J Phys B18 3311 (and references therein)
[7] Singh D and Varshni Y P 1985 Phys Rev A32 619
[8] Miranda L C 1981 Phys Lett A86 363
[9] Lima C A and Miranda L C 1981 Phys Lett A86 367
[10] Lima C A and Miranda L C 1981 Phys Rev A23 3335
[11] Landgraf T C et al. 1982 Phys Lett A92 131
[12] Henneberger W C 1968 Phys Rev Lett 21 838
[13] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys Rev D29 1669
[14] Maluendes S A, Fernandez F M and Castro E A 1987 Phys Lett A124 215
[15] Fernandez F M, Ma Q and Tipping R H 1989 Phys Rev A39 1605
[16] Znojil M 1997 J Math Phys 38 5087
[17] Znojil M 1996 Phys Lett A222 291
[18] Lai C S 1981 Phys Rev A23 455
[19] Bender C M and Orszag S A, "Advanced Mathematical Methods for Scientists and Engineers" (McGraw - Hill, New York, 1978).
[20] Handy C R et al. 1993 J Phys A26 2635
[21] Mustafa O and Barakat T 1997 Commun Theor Phys 28 257
[22] Mustafa O and Barakat T 1998 Commun Theor Phys 29 587
[23] Barakat T, Odeh M and Mustafa O 1998 J Phys A31 3469
[24] Mustafa O 1993 J Phys; Condens. Matter 5 1327
[25] Mustafa O 1996 J Phys; Condens. Matter 8 8073
[26] Mustafa O and Chhajlany S C 1994 Phys Rev A50 2926
Table 1: 1s - state energies, in $\hbar = m = 1$ units, of the potential $V(q) = (q^2 + 1000/q^b)/2$. Where E_P represents PSLET results, Eq.(51), $E_{S,U,L}^U$ with U and L denote upper and lower bounds from STM [4], and E_N from DNI [4]. $E[3, 4]$ is the [3,4] Padé approximant obtained by replacing the last j digits of $E[3, 3]$ with the j digits in parentheses.

b	E_P	$E[3, 3]$ & $(E[3, 4])$	E_S	E_N
0.5	415.88978	415.889786 (86)	416.30977U	415.88979
1.0	190.72330	190.723308 (07)	190.99213U	190.72331
1.5	104.41022	104.410224 (24)	104.53993U	104.41022
1.9	71.06157	71.0615789 (87)	71.08686U	71.06158
2.0	65.25345	65.2534589 (86)	65.25346	65.25346
2.1	60.15200	60.1520114 (11)	60.12704L	60.15201
2.5	44.95547	44.9554855 (50)	44.83349L	44.95549
3.0	33.31675	33.3167621 (18)	33.07940L	33.31676
3.5	26.10884	26.1088462 (48)	25.76204L	26.10885
4.0	21.36950	21.3694640 (14)	20.91865L	21.36964
4.5	18.10194	18.1018377 (10)	17.55218L	18.10183
5.0	15.76134	15.761144 (25)	15.11758L	15.76113
5.5	14.03138	14.03112 (07)	13.29842L	14.03107
6.0	12.71886	12.71879 (61)	11.90153L	12.71862
Table 2: 1s - state energies, in $\hbar = m = 1$ units, of the potential $V(q) = (q^2 + a/q^{5/2})/2$. Where E_P represents PSLET results, Eq.(51), E_S denotes the lower bounds from STM [4], and E_N from DNI [4]. $E[3,4]$ is the [3,4] Padé approximant obtained by replacing the last j digits of $E[3,3]$ with the j digits in parentheses.

a	E_P	$E[3,3]$ & $(E[3,4])$	E_S	E_N
1000	44.95547	44.9554855 (50)	44.83349	44.95549
100	17.54168	17.541911 (899)	17.41900	17.54189
10	7.73423	7.73606 (548)	7.61169	7.73511
5	6.29679	6.29988 (756)	6.17394	6.29647
1	4.32861	4.528 (290)	4.20453	4.31731
0.5	3.85740	3.8308 (289)	3.74611	3.84855
0.05	3.13431	3.1606 (893)	3.10954	3.15243
0.005	3.01445	3.0199 (201)	3.01178	3.01905

16
Table 3: Bound-state energies, in $\hbar = m = 1$ units, of the potential $V(q) = -(q^2 + c^2)^{-1/2}$ for the 1s, 2p, 3d, and 4f states. Where E_P represents PSLET results Eq.(51), E_{SLNT} from SLNT [6], and E_N from DNI [7]. $E_{[3, 4]}$ is the $[3, 4]$ Padé approximant obtained by replacing the last j digits of $E_{[3, 3]}$ with the j digits in parentheses.

c	State	$-E_P$	$-E_{[3, 3]}$ & ($-E_{[3, 4]}$)	$-E_{SLNT}$	$-E_N$
1	1s	0.27412	0.27478 (62)	0.27596	0.27439
	2p	0.113087	0.11296 (303)	0.112826	0.113024
	3d	0.0544357	0.0544371 (82)	0.054442	0.0544362
	4f	0.03106845	0.03106846 (47)	0.031069	0.03106846
5	1s	0.1070836	0.1070813 (10)	0.107396	0.1070814
	2p	0.06819140	0.06818667 (33)	0.068233	0.06818716
	3d	0.04325586	0.04325730 (20)	0.043247	0.04325755
	4f	0.02810534	0.02810520 (25)	0.028101	0.02810524
10	1s	0.06373831	0.06373817 (21)	0.063820	0.0637389
	2p	0.04620043	0.04619903 (00)	0.046228	0.04619904
	3d	0.03315868	0.03315855 (53)	0.033164	0.03315859
	4f	0.02380662	0.02380672 (71)	0.023806	0.02380674
Table 4: Bound - state energies, in $\hbar = m = 1$ units, of the potential $V(q) = -(q^2 + c^2)^{-1/2}$ for the 1s, 2p, 3d, and 4f states. Where E_P represents PSLET results Eq.(51), E_{SLNT} from SLNT [6], and E_N from DNI [7]. $E[3, 4]$ is the $[3,4]$ Padé approximant obtained by replacing the last j digits of $E[3,3]$ with the j digits in parentheses.

c	State	$-E_P$	$-E[3,3] \& (-E[3,4])$	$-E_{SLNT}$	$-E_N$
50	1s	0.01626071	0.01626072 (71)	0.016263	0.01626072
	2p	0.01408837	0.01408837 (37)	0.014090	0.01408838
	3d	0.01215871	0.01215871 (71)	0.012160	0.01215871
	4f	0.01045842	0.01045842 (42)	0.010459	0.01045842
100	1s	0.00862978	0.00862978 (78)	0.008630	0.00862978
	2p	0.00780013	0.00780013 (13)	0.007800	0.00780013
	3d	0.00703519	0.00703519 (19)	0.007035	0.00703519
	4f	0.00633273	0.00633273 (73)	0.006333	0.00633273
200	1s	0.00450285	0.00450285 (85)	0.004503	0.00450286
	2p	0.00419307	0.00419307 (07)	0.004193	0.00419307
	3d	0.00390020	0.00390020 (20)	0.003900	0.00390020
	4f	0.00362385	0.00362385 (85)	0.003624	0.00362385