Recoloring bounded treewidth graphs

Marthe Bonamy, Nicolas Bousquet

LIRMM, Montpellier, France
Recoloring graphs
Recoloring graphs
Recoloring graphs
Recoloring graphs
Recoloring graphs

Marthe Bonamy, Nicolas Bousquet Recoloring bounded treewidth graphs
Recoloring graphs
Recoloring graphs
Recoloring graphs \implies \textbf{Reconfiguration graphs}

Solutions \parallel Vertices. Adjacent solutions \parallel Neighbors.
Reconfiguration graph

More formally

\textbf{k-Reconfiguration graph of G}

- Vertices: Proper k-colorings of G
- Edges between any two k-colorings which differ on exactly one vertex.
Reconfiguration graph

More formally

\textit{k-Reconfiguration graph of } G

- Vertices: Proper \(k \)-colorings of \(G \)
- Edges between any two \(k \)-colorings which differ on exactly one vertex.

Remark

Two colorings equivalent up to color permutation are distinct.
Interesting questions

- Two solutions:
 - Are in the same connected component?
 - What distance between them?
Interesting questions

- **Two solutions:**
 - Are in the same connected component?
 - What distance between them?

- **Reconfiguration graphs:**
 - Connex?
 - What diameter?
k-mixing graphs

k-mixing

A graph is k-mixing if its k-reconfiguration graph is connected.
k-mixing graphs

k-mixing

A graph is k-mixing if its k-reconfiguration graph is connected.

Gap

No function f on the chromatic number ensures that G is k-mixing if $k \geq f(\chi)$.
State of the art

Theorem (Cereceda, van den Heuvel, Johnson ’07)
Determining if a bipartite graph is 3-mixing is co-NP hard.
State of the art

Theorem (Cereceda, van den Heuvel, Johnson ’07)
Determining if a bipartite graph is 3-mixing is co-NP hard.

Recoloring diameter
Given a k-mixing graph, the recoloring diameter is in $\mathcal{O}(A(n))$ if the diameter of the k-reconfiguration graph is bounded by $C \times A(n)$. (n is the number of vertices)
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)
Trees are 3-mixing in $O(n^2)$.

Marthe Bonamy, Nicolas Bousquet
Recoloring bounded treewidth graphs
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in $O(n^2)$.

\begin{center}
\begin{tikzpicture}
 \node[draw,circle,fill=red] (A) at (0,0) {};
 \node[draw,circle,fill=blue] (B) at (-1,-1) {};
 \node[draw,circle,fill=green] (C) at (1,-1) {};

 \node[draw,circle,fill=red] (D) at (2,-2) {};
 \node[draw,circle,fill=blue] (E) at (1,-3) {};
 \node[draw,circle,fill=green] (F) at (-1,-3) {};

 \draw (A) -- (B);
 \draw (A) -- (C);
 \draw (D) -- (E);
 \draw (D) -- (F);
\end{tikzpicture}
\end{center}
Upper bounds on recoloring

Theorem (Cereceda)

As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)

Trees are 3-mixing in $O(n^2)$.

![Diagram of trees](image-url)
Upper bounds on recoloring

Theorem (Cereceda)
As long as \(k \geq n + 1 \), the clique \(K_n \) is \(k \)-mixing in \(O(n) \).

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in \(O(n^2) \).
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are 3-mixing in $O(n^2)$.
Upper bounds on recoloring

Theorem (Cereceda)
As long as \(k \geq n + 1 \), the clique \(K_n \) is \(k \)-mixing in \(\mathcal{O}(n) \).

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
Trees are \(3 \)-mixing in \(\mathcal{O}(n^2) \).
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)
Trees are 3-mixing in $O(n^2)$.

\begin{center}
\begin{tikzpicture}
\node (A) at (0,0) [circle,fill,blue] {};
\node (B) at (2,0) [circle,fill,red] {};
\node (C) at (4,0) [circle,fill,green] {};
\draw (A) -- (B);
\draw (C) -- (B);
\end{tikzpicture}
\end{center}
Upper bounds on recoloring

Theorem (Cereceda)
As long as $k \geq n + 1$, the clique K_n is k-mixing in $O(n)$.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)
Trees are 3-mixing in $O(n^2)$.
Chordal graphs

- No induced cycle of length at least 4.
- The graph admits a clique tree.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel '12)

The chordal graphs are \((k+1)\)-mixing in \(O(n^2)\) for every \(k \geq \chi + 1\).

Questions

- Does the same hold for bounded treewidth graphs?
- And for perfect graphs?
Chordal graphs

Chordal graphs

- No induced cycle of length at least 4.
- The graph admits a clique tree.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel’12)
The chordal graphs are \((k + 1)\)-mixing in \(O(n^2)\) for every \(k \geq \chi + 1\).
Chordal graphs

- No induced cycle of length at least 4.
- The graph admits a clique tree.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
The chordal graphs are \((k + 1)\)-mixing in \(O(n^2)\) for every \(k \geq \chi + 1\).

- Compute a clique-tree. Find a vertex which only appears in the bag of a leaf.
- Identify it with a vertex of the bag of its parent.

Questions
- Does the same hold for bounded treewidth graphs?
- And for perfect graphs?
Chordal graphs

- No induced cycle of length at least 4.
- The graph admits a clique tree.

Theorem (Bonamy, Johnson, Lignos, Paulusma, Patel ’12)
The chordal graphs are \((k + 1)\)-mixing in \(O(n^2)\) for every \(k \geq \chi + 1\).

- Compute a clique-tree. Find a vertex which only appears in the bag of a leaf.
- Identify it with a vertex of the bag of its parent.

Questions

- Does the same hold for bounded treewidth graphs?
- And for perfect graphs?
Perfect graphs: a counter-example
Bounded Treewidth graphs

Definition

\[tw(G) = \min_H \{ \chi(H) - 1 \mid G \subseteq H, H \text{ chordal} \}. \]
Bounded Treewidth graphs

Definition

- \(tw(G) = \min_H \{ \chi(H) - 1 | G \subseteq H, H \text{ chordal} \} \).
- \(G \) admits a tree decomposition where each bag has size at most \(tw(G) + 1 \) and each edge appears in at least one bag.

\[
\begin{array}{c}
\text{1} & \text{2} & \text{3} & \text{4} & \text{5} & \text{6} & \text{7} & \text{8} & \text{9} \\
\text{1} & \text{2} & \text{3} & \text{4} & \text{5} & \text{6} & \text{7} & \text{8} & \text{9}
\end{array}
\]

Theorem (Cereceda et al.)

Every \(k \)-degenerate graph is \((k + 2)\)-mixing in \(2^n \).
Bounded Treewidth graphs

Definition

- $tw(G) = \min_H \{ \chi(H) - 1 | G \subseteq H, H \text{ chordal} \}$.
- G admits a tree decomposition where each bag has size at most $tw(G) + 1$ and each edge appears in at least one bag.

Theorem (Cereceda et al.)
Every k-degenerate graph is $(k + 2)$-mixing in 2^n.
Our main result

Theorem (Bonamy, B.)
Every graph G is $(tw(G) + 2)$-mixing in $O(n^2)$.
Our main result

Theorem (Bonamy, B.)
Every graph G is $(\text{tw}(G) + 2)$-mixing in $O(n^2)$.

Optimal

- $\text{tw}(K_n) = n - 1$, so $\text{tw}(G) + 2$ colors are necessary.
- Since 3-colorings of paths have a quadratic recoloring diameter, the quadratic bound is necessary.
Sketch of the proof

There exists a tree decomposition such that every bag has size $tw(G) + 2$.

Objective: identify vertices with their parents.

Waiting for the identification with a not too costful operation.
Sketch of the proof

There exists a tree decomposition such that every bag has size $tw(G) + 2$.
Sketch of the proof

There exists a tree decomposition such that every bag has size $tw(G) + 2$.

Objective: identify vertices with their parents.
There exists a tree decomposition such that every bag has size $\text{tw}(G) + 2$.

Objective: identify vertices with their parents.

Waiting for the identification with a not too costful operation.
Conclusion

Question

- Are k-degenerate graphs $(k + 2)$-mixing in $O(n^2)$?

- And planar graphs?

- Other classes of graphs? (cographs and distance hereditary graphs are $\chi + 1$-mixing (Bonamy, B. '13+))

Thanks for your attention!
Conclusion

Question

- Are k-degenerate graphs $(k + 2)$-mixing in $O(n^2)$?
- And planar graphs?

Thanks for your attention!
Conclusion

Question

- Are k-degenerate graphs $(k + 2)$-mixing in $O(n^2)$?
- And planar graphs?

- Other classes of graphs? (cographs and distance hereditary graphs are $(\chi + 1)$-mixing (Bonamy, B. '13+))
Question

- Are k-degenerate graphs $(k+2)$-mixing in $O(n^2)$?
- And planar graphs?

- Other classes of graphs? (cographs and distance hereditary graphs are $(\chi + 1)$-mixing (Bonamy, B. ’13+))
- How does the diameter decrease when there are more colors?
Conclusion

Question

- Are k-degenerate graphs $(k + 2)$-mixing in $O(n^2)$?
- And planar graphs?

- Other classes of graphs? (cographs and distance hereditary graphs are $(\chi + 1)$-mixing (Bonamy, B. ’13+))
- How does the diameter decrease when there are more colors?

Thanks for your attention!