A genome-wide analysis of the phospholipid: diacylglycerol acyltransferase gene family in *Gossypium*

Xinshan Zang¹, Xiaoli Geng¹, Lei Ma¹, Nuohan Wang¹, Wenfeng Pei¹, Man Wu¹, Jinfa Zhang² and Jiwen Yu¹*

Abstract

Background: Cotton (*Gossypium* spp.) is the most important natural fiber crop worldwide, and cottonseed oil is its most important byproduct. Phospholipid: diacylglycerol acyltransferase (PDAT) is important in TAG biosynthesis, as it catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3 position of sn-1, 2-diacylglycerol to form triacylglycerol (TAG) and a lysophospholipid. However, little is known about the genes encoding PDATs involved in cottonseed oil biosynthesis.

Results: A comprehensive genome-wide analysis of *G. hirsutum*, *G. barbadense*, *G. arboreum*, and *G. raimondii* herein identified 12, 11, 6 and 6 PDATs, respectively. These genes were divided into 3 subfamilies, and a PDAT-like subfamily was identified in comparison with dicotyledonous *Arabidopsis*. All GhPDATs contained one or two LCAT domains at the C-terminus, while most GhPDATs contained a preserved single transmembrane region at the N-terminus. A chromosomal distribution analysis showed that the 12 GhPDAT genes in *G. hirsutum* were distributed in 10 chromosomes. However, none of the GhPDATs was co-localized with quantitative trait loci (QTL) for cottonseed oil content, suggesting that their sequence variations are not genetically associated with the natural variation in cottonseed oil content. Most GhPDATs were expressed during the cottonseed oil accumulation stage. Ectopic expression of *GhPDAT1d* increased *Arabidopsis* seed oil content.

Conclusions: Our comprehensive genome-wide analysis of the cotton PDAT gene family provides a foundation for further studies into the use of PDAT genes to increase cottonseed oil content through biotechnology.

Keywords: Cotton, Phospholipid: diacylglycerol acyltransferase, Expression pattern, Cottonseed oil

Background

Cotton, especially upland cotton, is the world’s most important fiber crop, and oil is extracted from its oil-rich seeds. Indeed, cotton ranks sixth among the world’s oil crops. Cottonseed oil makes up approximately 16% of the seed weight [1], and is the most valuable product derived from cotton seed. Cottonseed oil is typically composed of approximately 26% saturated palmitic acid (C16:0), 15% monounsaturated oleic acid (C18:1), and 58% polyunsaturated linoleic acid (C18:2) [2]. From 1999 to 2009, the world-wide consumption of vegetable oils increased by > 50% [3]. Therefore, research into the molecular mechanisms of oil biosynthesis and the development of new high-seed oil content cotton varieties using classical breeding techniques and biotechnological approaches is becoming increasingly important.

Triacylglycerols (TAGs) are major components of vegetable oils. The 3 pathways of DAG /TAG production with different FA compositions have previously been reviewed [4]. These pathways are de novo DAG/TAG synthesis (Kennedy pathway), acyl editing to provide PC-modified FA for de novo DAG/TAG synthesis, and PC-derived DAG/TAG synthesis. Phospholipid: diacylglycerol acyltransferase (PDAT) in the second pathway catalyzes the transfer of a fatty acyl moiety from the sn-2 position of a phospholipid to the sn-3 position of sn-1, 2-diacylglycerol, thus forming TAG and a lysophospholipid. PDAT enzyme activity was first identified in the use

* Correspondence: yujw666@hotmail.com
¹State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, Henan, China
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
of phospholipids as acyl donors and DAG as an acceptor for TAG biosynthesis in yeast and plants [5].

Arabidopsis contains two PDAT genes, AtPDAT1 (At5g13640) and AtPDAT2 (At3g44830) [6]. No significant differences were found in total acyl composition or TAG content between 17-day-old AtPDAT-overexpressing and wild-type (WT) seedlings [6]. Additionally, the fatty acid content and composition of seeds also showed no significant difference in the pdat mutant versus WT [7]. However, in 5-week-old developing Arabidopsis leaves, the overexpression or knockout of AtPDAT1 in led to significant changes in fatty acid and TAG synthesis [8]. AtPDAT2 is highly expressed in seeds, but plays no role in TAG biosynthesis [6, 9]. In castor bean, 3 PDAT genes have been identified [10]. The endoplasmic reticulum-located PDAT1-2 enhances hydroxy fatty acid accumulation in transgenic castor bean plants [11]. In flax (Linum usitatissimum), 6 PDATs have been identified (LuPDAT1, LuPDAT2, LuPDAT3, LuPDAT4, LuPDAT5, and LuPDAT6) [12]. LuPDAT1/LuPDAT2 and LuPDAT2/LuPDAT4, but not LuPDAT3 or LuPDAT6, have the unique ability to preferentially channel a-linolenic acid into TAG. Recently, the PDAT gene Lor1 was shown to be responsible for hepatitis C virus core-induced lipid droplet formation in a yeast model system [13]. PDAT genes were also found in the unicellular green alga Chlamydomonas reinhardtii [14] and the bacterium Streptomyces coelicolor [15]. However, no mammalian counterpart has yet been found.

Previously, a genome-wide analysis of eudicots found 6 PDATs in Gossypium raimondii (two each in clades V, VI, and VII) [16]. To further understand the complexity of PDATs and TAG biosynthetic mechanisms in cotton, we performed a comprehensive genome-wide analysis of the PDAT gene family in cotton in the present study.

Results
Genome-wide identification and phylogenetic tree analysis of PDAT genes

Allotetraploid cotton G. hirsutum and G. barbadense contain two ancestral genomes: the At and Dt subgenomes. To identify all PDAT proteins in G. hirsutum (AD1), G. barbadense (AD2), and its two diploid ancestors G. arboreum (AA genome) and G. raimondii (DD genome), we used Arabidopsis PDAT protein sequences (AtPDAT1/At5g13640 and AtPDAT2/At3g44830) to query the four reference genomes to screen out candidate PDAT-like proteins in cotton. Combined with the previously identified PDATs from G. raimondii [16], 12 deduced PDATs were identified in G. hirsutum [17], 11 in G. barbadense [18], 6 in G. arboreum [19] and 6 in G. raimondii [20].

To interpret the relationship between AtPDAT1, AtPDAT2, and cotton PDAT proteins, we constructed a phylogenetic tree (Fig. 1). This classified PDAT genes into 3 subfamilies: PDAT1, PDAT1-like, and PDAT2, corresponding to clades VI, V, and VII, respectively [16]. The sequence similarity between GhPDAT1-like and GhPDAT1 was higher than that of GhPDAT2 (Fig. 1). Based on the phylogenetic tree and sequence similarity analysis, we also analyzed orthologous PDAT gene pairs in G. hirsutum, G. barbadense, and their corresponding diploid ancestors (Table 1). Only one gene, GhPDAT1b-like, was not found or lost in G. barbadense. The PDAT gene name, gene identifier, gene pairs, and predicted properties of PDAT proteins are listed in Table 1.

Gene structure analysis and chromosomal distribution of PDAT genes in cotton

Generic Feature Format files of the four Gossypium species were used to analyze the exon-intron structure of putative PDAT genes. Figure 1 shows the exon-intron structure of each gene. Although the locations of introns differed, most PDAT genes contained 5 introns and 6 exons. For example, in the PDAT1 subfamily, AtPDAT1, GhPDAT1a (Gbscaffold24182.20), and the counterparts from G. hirsutum, G. arboreum and G. raimondii included 5 introns and 6 exons. However, the other 3 PDAT1 genes GhPDAT1b (Gbscaffold14656.14.0), GhPDAT1c (Gbscaffold1227.2.0), and GhPDAT1d (Gbscaffold108249.0), contained 9 introns and 10 exons, 6 introns and 7 exons and 6 introns and 7 exons, respectively. Interestingly, only 3 of 11 PDAT genes in G. barbadense had the same gene structure.

Based on the sequenced genome sequence, cotton PDAT genes were physically mapped to chromosomes (Fig. 2; Table 1). In G. hirsutum and G. barbadense, PDAT genes were uniformly distributed on the At and Dt chromosome, excluding one lost in G. barbadense. In G. hirsutum, 12 PDAT genes were located on 5 Dt chromosomes (D6, D7, D8, D9 and D13) and 5 At chromosomes (A6, A7, A8, A9 and A13). Two PDAT genes were located on both chromosome A6 and D6. Chromosomal localization data are listed in Fig. 2 and Table 1.

Protein domain analysis of PDATs in Gossypium hirsutum

To improve the comparison of protein domains among GhPDATs, the putative protein domains of 12 GhPDATs were predicted using the SMART database (http://smart.embl-heidelberg.de/). As shown in Fig. 3, a single transmembrane region in the N-terminus has been preserved in most GhPDATs, while all GhPDATs contain one or two LCAT domains at their C-termini.

Adaptive evolution analysis of the PDAT gene family

To explore which type of Darwinian selection determined the process of PDAT gene divergence after duplication, the Ka/Ks substitution ratio was used to assess the coding sequences of 12 pairs of PDAT gene family
orthologs between G. hirsutum/G. barbadense and G. arboreum/G. raimondii (Table 1). A Ka/Ks ratio > 1 represents positive selection, a ratio of 1 represents neutral evolution and a ratio < 1 represents purifying selection [21]. The Ka/Ks ratios of PDAT genes ranged from 0.575 to ∞ (Table 2), indicating that the PDAT gene family had undergone purifying selection and positive selection in cotton. As shown in Table 2, the majority of PDAT genes had undergone positive selection, especially GhPDAT1b, GhPDAT1d, GbPDAT1d and GhPDAT2d. Only four PDAT genes GhPDAT1a, GhPDAT1a, GhPDAT1c and GbPDAT2b had undergone purifying selection.

Phylogenetic tree analysis showed that each AtPDAT gene corresponded to four PDAT genes in tetraploid cotton and two genes in diploid cotton. Therefore, the 12 GhPDATs were divided into 6 pair of duplicates, and the Ka/Ks ratio for each pair was calculated (Table 3). All Ka/Ks ratios were < 1, suggesting that the PDAT genes from G. hirsutum have mainly experienced purifying selection pressure.

Expression profiles of PDAT genes in Gossypium hirsutum

To reveal the gene expression pattern for the GhPDAT genes identified, we analyzed their transcript profiles of PDAT genes in 22 cotton tissues (Fig. 4) based on published TM-1 data [17]. GhPDAT1a and GhPDAT1b maintained a low expression level in 22 cotton tissues. GhPDAT1c and GhPDAT1d were highly expressed in the stem, leaf, and torus, and were also expressed in the ovule and fiber. GhPDAT1-like genes were expressed in 22 cotton tissues. AtPDAT2 was highly expressed in seeds, but plays no role in TAG biosynthesis [6, 9]. GhPDAT2 was also highly expressed in 20 days post anthesis (DPA)-35 DPA ovules and 25 DPA fibers, and only marginally in other organs. This suggested that GhPDAT2 plays no role in TAG biosynthesis. Cotton-seed oil mainly accumulates in the ovules after 15 DPA-20 DPA, at which stage, most of the GhPDATs were expressed. Therefore, GhPDATs may play a role in the biosynthesis of TAGs in developing cotton seeds.

To reveal the gene expression pattern for the GhPDAT genes identified, we analyzed their transcript profiles in our unpublished RNA-seq datasets. This was based on transcriptomic information for two upland BILs, i.e., 3012 vs. 3008 (with Gossypium barbadense germplasm introgression), with differing seed kernel oil contents of 25.88 and 33.52% (Additional file 1: Figure S1). There
was no significant difference in the expression levels of GhPDAT genes between the two BIL genotypes.

Table 1: Characteristics of PDAT genes and predicted properties of PDAT proteins

Gene name	Gene identifier (NAU)	Chromosomal localization	Size (AA)	MW (KD)	pI
GaPDAT1a	Cotton_A_05247	CA_chr12	673	75.5982	8.27
GbPDAT1a	Gh_A06G1697	A06	673	75.6993	8.27
GrPDAT1b	Cotton_D_gene_10023304	Chr1	659	73.5794	8.24
GbPDAT1b	Gh_D06G2068	D06	598	66.1138	8.45
GaPDAT1c	Cotton_A_28721	CA_chr11	608	66.9681	6.14
GbPDAT1c	Gh_A09G0767	A09	706	78.4205	6.55
GrPDAT1d	Cotton_D_gene_10010901	scaffold121	706	78.3974	6.27
GbPDAT1d	Gh_D09G0766	D09	706	78.5186	6.47
GaPDAT1a-like	Cotton_A_11856	CA_chr3	701	78.0008	7.84
GbPDAT1a-like	Gh_A08G2194	A08	690	76.9517	7.54
GrPDAT1b-like	Cotton_D_gene_10010224	Chr4	598	65.8700	6.90
GbPDAT1b-like	Gh_D08G2559	D08	690	76.8657	8.23
GaPDAT1c-like	Cotton_A_06686	CA_chr4	705	78.4788	7.09
GbPDAT1c-like	Gh_A06G0670	A06	672	74.6619	7.06
GrPDAT1d-like	Cotton_D_gene_10039077	Chr10	420	46.9796	8.89
GbPDAT1d-like	Gh_D06G0763	D06	672	74.6179	7.04
GaPDAT1a	Cotton_A_20000	CA_chr8	532	59.4257	9.00
GbPDAT1a	Gh_A13G1940	A13	677	75.6276	8.99
GrPDAT2b	Cotton_D_gene_10025228	Chr13	1106	123.1350	8.66
GbPDAT2b	Gh_D13G2335	D13	677	75.7095	8.89
GrPDAT2d	Cotton_D_gene_10012986	Chr1	691	77.3553	8.41
GbPDAT2d	Gh_D07G1046	D07	691	77.2912	8.10
GrPDAT2d	Cotton_D_gene_10012986	Chr1	691	77.3391	8.10

Co-localization of PDAT genes with quantitative trait loci (QTLs) for cottonseed oil

To determine if any GhPDATs were genetically associated with the cottonseed oil content, we performed co-localization analysis of GhPDATs with QTLs for seed oil content. QTLs were downloaded from the CottonQTL database [22]. However, no PDAT gene was localized in the cottonseed oil QTL interval (data not shown).

Ectopic expression of GhPDAT1d increased the oil content of Arabidopsis seeds

In PDAT1 clade, the expression level of GhPDAT1c and GhPDAT1d (gene pairs from the corresponding At and Dt subgenome) was higher in 15–20 DPA ovules than that of GhPDAT1a and GhPDAT1b (Figs. 4 and 5a). GhPDAT1d was thus selected for further functional
Fig. 2. Localization of PDAT genes in the four cotton species. Thirty-five PDAT genes were mapped on different chromosomes in *Gossypium raimondii* (a), *Gossypium arboreum* (b), *Gossypium hirsutum* (c), and *Gossypium barbadense* (d). Only the chromosomes where PDAT genes were mapped are shown. The scale represents the megabases (Mb).

Fig. 3. Protein domain prediction for the GhPDATs. The potential transmembrane regions and functional motifs of GhPDAT proteins were identified using SMART database (http://smart.embl-heidelberg.de/).
analysis. Transgenic Arabidopsis plants overexpressing GhPDAT1d were generated and used to characterize its biological functions in oil content. Relative expression levels of GhPDAT1d analyzed by qRT-PCR in transgenic Arabidopsis and WT plants showed that GhPDAT1d was highly expressed in the transgenic plants (Fig. 5b). No visible difference between transgenic Arabidopsis and WT plants was observed at different developmental stages (data not shown).

In order to determine whether GhPDAT1d could increase the oil content, the oil contents of transgenic and WT plants were compared using an NMI20-Analyst nuclear magnetic resonance spectrometer (Niumag, Shanghai, China). Significantly increased oil content, 6.55 to 17.61% higher, was observed in transgenic line L2-L4 (Fig. 5c). There is no significant change in fatty acid compositions of WT and GhPDAT1d transgenic Arabidopsis seeds (Table 4).

Discussion

Despite the fact that many previous studies have revealed a crucial role for PDAT encoded products in TAG biosynthesis, our knowledge of PDATs in cotton remains limited. Therefore, this study aimed to present an overall picture of Gossypium PDATs, including their sequence variation, adaptive evolutionary analysis, protein domains, expression profiles and co-localization with QTLs.

The PDAT gene family in Gossypium

PDAT genes exist in all plants, including algae, lowland plants (mosses and lycophytes) and highland plants (monocots and eudicots) [16]. This study revealed the details of 12 deduced PDATs from G. hirsutum, 11 deduced PDATs from G. barbadense, 6 deduced PDATs in G. arboretum and 6 deduced PDATs in G. raimondii. Evolutionary analysis previously showed that the PDAT gene family can be clearly divided into 7 major clades [16]. In the present study, Gossypium PDAT amino acid sequences were clustered into 3 clades (subfamilies), and the additional clade, PDAT1-like, was found in cotton. Clades I-IV were not found in cotton. This compares with Arabidopsis, in which only two PDAT genes (AtPDAT1 and AtPDAT2) have been identified [6].

We observed that each AtPDAT gene corresponded to four PDAT genes in tetraploid cotton and two genes in diploid cotton. This suggested that PDAT gene duplication events occurred in diploid cotton before the emergence of tetraploid cotton, which is consistent with a previously reported eudicot-wide PDAT gene expansion [16]. Additionally, a single transmembrane region in the N-terminus has been preserved in most GhPDATs, and one or two LCAT domains were located at the C-terminus of all GhPDATs.

PDATs in relation to seed oil content

Cottonseed oil accumulates in ovules after 15–20 DPA. At this stage, most of the GhPDATs were expressed (Fig. 3), indicating that they play a role in the biosynthesis of TAGs in developing cotton seeds. Additionally, we found GhPDATs were expressed in developing fibers (Fig. 3), suggesting they are also involved in this stage of development. However, no PDAT gene was localized in the cottonseed oil QTL interval (data not shown).

In 5-week-old developing Arabidopsis leaves, the overexpression or knockout of AtPDAT1 led to significant changes in fatty acid and TAG synthesis [8]. Cottonseed
oil was widely believed to accumulate in ovules after 15 DPA. At this stage, most GhPDATs were found to be expressed (Fig. 4). In this study, we proved that ectopic expression of GhPDAT1d could increase the oil content of Arabidopsis seeds. Any fatty acid in the seed oil was found to be significantly changed as previously reported Arabidopsis pdat-ko mutant [7]. Together, these results implied that PDATs are conserved in upland cotton cultivars.

Conclusion

In conclusion, we performed a comprehensive genome-wide analysis of the PDAT gene family in cotton. A total of 35 PDAT genes were identified in four sequenced Gossypium species and grouped into 3 distinct clades. Ectopic expression of GhPDAT1d increased Arabidopsis seed oil content. Our detailed analysis of sequence variation, adaptive evolutionary analysis, protein domains, expression profiles, and QTL co-localization provides an important lead for further studies of PDAT genes in cotton.

Methods

Sequence retrieval, multiple sequence alignment, and phylogenetic analysis

The cotton genome sequences of G. arboreum (A2, BGI_V1.0) [19], G. raimondii (D5, BGI_V1.0) [20], G. hirsutum (AD1, NBL_V1.1) [17] and G. barbadense (AD2, SGI_V1.0) [18] were downloaded from the CottonGen database (https://www.cottongen.org). AtPDAT1 (At5g13640) and AtPDAT2 (At3g44830) were acquired from TAIR 10 (http://www.arabidopsis.org). To identify PDAT genes, AthPDAT1 and AthPDAT2 protein sequences were used as queries against cotton genome sequences. Multiple sequence alignments of all identified PDATs in this study were performed using Clustal X2 (http://www.clustal.org/). A phylogenetic tree was constructed using the neighbor-joining algorithm with default parameters and 1000 bootstrap replicates in MEGA 6 (http://www.megasoftware.net/). The sequence length, molecular weight, and isoelectric point of PDAT proteins were calculated using ExPasy (http://web.expasy.org).

In-silico mapping and genetic structure analysis of PDAT genes

Mapping of PDAT genes was performed using MapChart (https://www.wur.nl/en/show/Mapchart.htm) [23]. QTLs in this paper were downloaded from CottonQTLdb (http://www.cottonqtldb.org) [22]. The structures of PDAT genes were generated using the GSDS (Gene Structure Display Server) algorithm (http://gsds.cbi.pku.edu.cn/).

Detection of protein domains

Potential transmembrane regions and functional motifs of GhPDAT proteins were identified using the SMART database (http://smart.embl-heidelberg.de/).

Ka and Ks calculations

PDAT gene pairs were used to calculate Ka and Ks using the DNA SP software of phylogenetic analysis by the maximum likelihood method.
Fig. 5 Improved oil content of GhPDAT1d transgenic plants. a Tissue-specific expression profile of GhPDAT1d in different tissues of G. hirsutum accession TM-1. The ΔCt value of GhPDAT1d in root was set as the control. The data presented are the means ± SD of three replicates. b Relative expression level of GhPDAT1d in four transgenic Arabidopsis lines (L1, L2, L3, and L4). The ΔCt value of GhPDAT1d in transgenic line L1 was set as the control. The data presented are the means ± SD of three replicates. c Seed oil content of GhPDAT1d transgenic lines (L1, L2, L3, and L4) and WT. The data presented are the means ± SD of three replicates; *, P < 0.05 (Student’s t-test)

Table 4 Fatty acid compositions of WT and GhPDAT1d transgenic Arabidopsis seeds. Data are averages of four replicates

Total lipids (mol %)	WT	L1	L2	L3	L4
16:0	8.58 ± 0.143	8.43 ± 0.122	8.36 ± 0.113	8.70 ± 0.145	8.35 ± 0.18
16:1	0.45 ± 0.035	0.42 ± 0.024	0.39 ± 0.025	0.45 ± 0.011	0.39 ± 0.034
18:0	2.72 ± 0.121	2.83 ± 0.127	2.89 ± 0.107	2.69 ± 0.023	2.85 ± 0.075
18:1	11.18 ± 0.261	11.24 ± 0.275	11.63 ± 0.237	11.14 ± 0.019	11.46 ± 0.361
18:2	30.37 ± 0.351	29.43 ± 0.168	29.71 ± 0.161	30.66 ± 0.247	29.49 ± 0.637
18:3	19.54 ± 0.586	19.98 ± 0.232	19.32 ± 0.324	18.44 ± 0.65	19.4 ± 0.241
20:0	2.50 ± 0.010	2.54 ± 0.120	2.48 ± 0.054	2.55 ± 0.027	2.48 ± 0.059
20:1	18.81 ± 0.174	19.22 ± 0.228	19.37 ± 0.113	19.11 ± 0.101	19.64 ± 0.366
20:2	2.37 ± 0.071	2.36 ± 0.027	2.36 ± 0.050	2.59 ± 0.071	2.39 ± 0.081
20:3	0.81 ± 0.012	0.85 ± 0.074	0.81 ± 0.063	0.8 ± 0.021	0.83 ± 0.049
22:0	0.38 ± 0.019	0.38 ± 0.007	0.38 ± 0.009	0.4 ± 0.024	0.36 ± 0.011
22:1	2.29 ± 0.066	2.31 ± 0.026	2.3 ± 0.090	2.46 ± 0.251	2.36 ± 0.106
Analysis of PDAT genes in RNA-seq data
RNA-seq data of 22 cotton tissues were previously published (accession codes, SRA: PRJNA248163) [17]. Unpublished RNA-seq datasets were generated in our own laboratory using transcriptomic information for two upland BILs, i.e., 3012 vs. 3008 (with Gossypium barbadense germplasm introgression), with differing seed kernel oil contents of 25.88 and 33.52%. The expression of PDAT genes was analyzed based on these data.

Transgenic plant generation and expression analysis
Transgenic plant generation and expression analysis were performed as previously reported [24]. Briefly, complete coding sequence of GhPDAT1d (Additional file 4) was amplified with gene specific primers from G. hirsutum acc. TM-1. The resulting PCR product was cloned into a digested pBI121 vector with BamH I and Sac I using ClonExpress II One Step Cloning Kit (Vazyme, Nanjing, China). Agrobacterium tumefaciens strain GV3101 containing the binary construct was used to transform Arabidopsis plants. We performed quantitative real-time PCR (qRT-PCR) to determine the expression pattern of GhPDAT1d, with \(\Delta\Delta Ct \) method used to quantify the expression level of GhPDAT1d relative to the 18S rRNA endogenous control. Primers are listed in Additional file 2: Table S1.

Oil content analysis
Total oil content was determined with about 0.3 g seeds per sample using an NMI20-Analyst nuclear magnetic resonance spectrometer (Niumag, Shanghai, China) as previously reported [24].

Fatty acid composition analysis
A gas chromatography/mass spectrometry GC/MS analysis was performed to determine the fatty acid compositions using a gas chromatograph (7890A, Agilent Technologies, USA) equipped with a flame ionization detector (FID) and an HP-FFAP capillary column (30 m × 250 μm × 0.25 μm). WT and GhPDAT1d transgenic Arabidopsis seeds (about 100 seeds) were performed to determine the fatty acid components.

Additional files

Additional file 1: Figure S1. Expression analysis of GhPDAT genes in our unpublished RNA-seq datasets: with transcriptomic information for two Upland BILs, i.e., 3012 vs. 3008 (with Gossypium barbadense germplasm introgression), with differing seed kernel oil content 25.88 and 33.52%. FPKM represents fragments per kilobase of exon model per million mapped reads. (JPG 286 kb)

Additional file 2: Table S1. Primers used in this paper. (DOCX 18 kb)

Additional file 3: Phylogenetic data of Fig. 1. (DOCX 21 kb)

Additional file 4: Coding sequence of GhPDAT1d. (DOCX 16 kb)
1. Lu C, Napier JA, Clemente TE, Cahoon EB. New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol. 2011;22(2):252–9.

2. Bates PD, Browse J. The significance of different diacylglycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci. 2012;3:97.

3. Dahlyqvist A, Stahl U, Lennman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S. Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci U S A. 2000;97(12):6847–92.

4. Stahl U, Carlson AS, Lennman M, Dahlyqvist A, Huang BQ, Banas W, Banas A, Stymne S. Cloning and functional characterization of a phospholipid: diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 2004;135(3):1324–35.

5. Mhaske V, Beldjilali K, Ohrlogge J, Pollard M. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid: diacylglycerol transacylase gene (At5g13640). Plant Physiol Biochem. 2005;43(4):413–7.

6. Fan J, Yan C, Zhang X, Xu C. Dual role for phospholipid:diacylglycerol acyltransferase enhancing fatty acid synthesis and diverting fatty acids from membrane lipids to triacylglycerol in Arabidopsis leaves. Plant Cell. 2013;25(9):3590–18.

7. Zhang M, Fan J, Taylor DC, Ohrlogge JB, DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell. 2009;21(12):3885–901.

8. van Erp H, Bates PD, Burgal J, Shockey J, Browse J. Castor phospholipid: diacylglycerol acyltransferase facilitates efficient metabolism of hydroxy fatty acids in transgenic Arabidopsis. Plant Physiol. 2011;155(2):683–93.

9. Kim HU, Lee KR, Go YS, Jung JH, Suh MC, Kim JB. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants. Plant Cell Physiol. 2011;52(6):983–93.

10. Pan X, Siloto RMP, Wickhariathna AD, Mietkiewska E, Weselake RJ. Identification of a pair of phospholipid: diacylglycerol acyltransferases from developing flax (Linum usitatissimum L) seed catalyzing the selective production of Trilinolenin. J Biol Chem. 2013;288(33):24173–88.

11. Iwasa S, Sato N, Wang CW, Cheng YH, Irokawa H, Hwang GW, Naganuma A, Kuge S. The phospholipid:diacylglycerol acyltransferase Lc1 is responsible for hepatitis C virus core-induced lipid droplet formation in a yeast model system. PloS One. 2016;11(7):e0159324.

12. Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. Phospholipid: diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell. 2012;24(9):3708–24.

13. Arabolaza A, Rodriguez E, Alatave S, Alvarez H, Gramajo H. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol. 2008;74(9):2573–82.

14. Pan X, Peng FY, Weselake RJ. Genome-wide analysis of PHOSPHOLIPID: DIACYLGlycerol ACYLTRANSFERASE (PDAT) genes in plants reveals the eudicot-wide PDAT gene expansion and altered selective pressures acting on the core eudicot PDAT paralogs. Plant Physiol. 2015;167(3):887–904.

15. Yuan D, Tang Z, Wang M, Gao W, Tu L, Jin X, Chen L, He Y, Zhang L, Zhu L, et al. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Sci Rep. 2015;5:17662.

16. Li FG, Fan GT, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, et al. Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet. 2014;46(6):567–72.

17. Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, et al. The draft genome of a diploid cotton Gossypium raimondii. Nat Genet. 2012;44(10):1098.

18. Akhunov ED, Sehgal S, Liang HQ, Wang SC, Akhunova AR, Kaur G, Li WL, Forrest KL, See D, Sirokova H, et al. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat. Plant Physiol. 2013;161(1):252–65.

19. Said JI, Knapka IA, Song MZ, Zhang JF. Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G-hirsutum x G-barbadense populations. Mol Gen Genomics. 2015;390(4):1615–25.