Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations

P. T. Nam1 M. Napiórkowski1 J. P. Solovej2

1Institute of Science and Technology Austria

2Department of Mathematics, University of Copenhagen

GDR Dynqua meeting, Grenoble

1J. Funct. Anal. (in press)
Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

\[\mathcal{H} = d\Gamma(h) + \frac{1}{2} \sum_{m,n \geq 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \langle J^* k f_m, f_n \rangle a^*(f_m) a^*(f_n) \right) \]

Here:

- \(a^*/a \) - bosonic creation/annihilation operators (CCR);
- \(h > 0 \) and \(d\Gamma(h) = \sum_{m,n \geq 1} \langle f_m, hf_n \rangle a^*(f_m) a(f_n) \);
- \(k : \mathfrak{h} \to \mathfrak{h}^* \) is an (unbounded) linear operator with \(D(h) \subset D(k) \) (called pairing operator), \(k^* = J^* k J^* \);
- \(J : \mathfrak{h} \to \mathfrak{h}^* \) is the anti-unitary operator defined by
 \[J(f)(g) = \langle f, g \rangle, \quad \forall f, g \in \mathfrak{h}. \]
Bosonic quadratic Hamiltonians on Fock space

General form of quadratic Hamiltonian:

\[\mathcal{H} = d\Gamma(h) + \frac{1}{2} \sum_{m,n \geq 1} \left(\langle J^* k, f_m, f_n \rangle a(f_m) a(f_n) + \langle J^* k, f_m, f_n \rangle a^*(f_m) a^*(f_n) \right) \]

Here:

▶ \(a^*/a\) - **bosonic** creation/annihilation operators (CCR);
▶ \(h > 0\) and \(d\Gamma(h) = \sum_{m,n \geq 1} \langle f_m, hf_n \rangle a^*(f_m) a(f_n)\);
▶ \(k : \mathfrak{h} \to \mathfrak{h}^*\) is an (unbounded) linear operator with \(D(h) \subset D(k)\) (called **pairing operator**), \(k^* = J^* k J^*\);
▶ \(J : \mathfrak{h} \to \mathfrak{h}^*\) is the anti-unitary operator defined by

\[J(f)(g) = \langle f, g \rangle, \quad \forall f, g \in \mathfrak{h}. \]

Operators of that type are important in physics!

▶ QFT (eg. scalar field with position dependent mass);
▶ many-body QM (**effective theories** like Bogoliubov or BCS).
Our goal: find (prove existence) a unitary transformation U on the Fock space, such that

$$UHU^* = E + d\Gamma(\xi).$$
The problem

Our goal:
find (prove existence) a unitary transformation \mathcal{U} on the Fock space, such that

$$\mathcal{U}HU^* = E + d\Gamma(\xi).$$

Why?

- interpretation in terms of a non-interacting theory;
- access to spectral properties of \mathcal{H};
- ...
\[\mathcal{H} = d\Gamma(h) + \frac{1}{2} \sum_{m,n \geq 1} \left(\langle J^* k f_m, f_n \rangle a(f_m) a(f_n) + \langle J^* k f_m, f_n \rangle a^*(f_m) a^*(f_n) \right) \]

Remark:

The above definition is **formal**! If \(k \) is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.
\[\mathcal{H} = d\Gamma(h) + \frac{1}{2} \sum_{m,n \geq 1} \left(\langle J^* k f_m, f_n \rangle a(f_m)a(f_n) + \langle J^* k f_m, f_n \rangle a^*(f_m)a^*(f_n) \right) \]

Remark:
The above definition is formal! If \(k \) is not Hilbert-Schmidt, then it is difficult to show that the domain is dense.

More general approach: definition through quadratic forms!

One-particle density matrices: \(\gamma_\Psi : \mathfrak{h} \rightarrow \mathfrak{h} \) and \(\alpha_\Psi : \mathfrak{h} \rightarrow \mathfrak{h}^* \)

\[\langle f, \gamma_\Psi g \rangle = \langle \Psi, a^*(g)a(f)\Psi \rangle, \quad \langle Jf, \alpha_\Psi g \rangle = \langle \Psi, a^*(g)a^*(f)\Psi \rangle, \quad \forall f, g \in \mathfrak{h} \]

A formal calculation leads to the expression

\[\langle \Psi, \mathcal{H}\Psi \rangle = \text{Tr}(h^{1/2}\gamma_\Psi h^{1/2}) + \Re \text{Tr}(k^* \alpha_\Psi). \]
Unitary implementability

- Generalized creation and annihilation operators

\[A(f \oplus Jg) = a(f) + a^*(g), \quad A^*(f \oplus Jg) = a^*(f) + a(g), \quad \forall f, g \in \mathfrak{h}; \]

- Let \(\mathcal{V} : \mathfrak{h} \oplus \mathfrak{h}^* \rightarrow \mathfrak{h} \oplus \mathfrak{h}^* \), bounded;

Definition

A bounded operator \(\mathcal{V} \) on \(\mathfrak{h} \oplus \mathfrak{h}^* \) is *unitarily implemented* by a unitary operator \(U_{\mathcal{V}} \) on Fock space if

\[U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(\mathcal{V} F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^*. \]
Generalized creation and annihilation operators

\[A(f \oplus Jg) = a(f) + a^*(g), \quad A^*(f \oplus Jg) = a^*(f) + a(g), \quad \forall f, g \in \mathfrak{h}; \]

Let \(\mathcal{V} : \mathfrak{h} \oplus \mathfrak{h}^* \to \mathfrak{h} \oplus \mathfrak{h}^* \), bounded;

Definition

A bounded operator \(\mathcal{V} \) on \(\mathfrak{h} \oplus \mathfrak{h}^* \) is *unitarily implemented* by a unitary operator \(U_{\mathcal{V}} \) on Fock space if

\[U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(\mathcal{V}F), \quad \forall F \in \mathfrak{h} \oplus \mathfrak{h}^*. \]

Our goal: Find \(U_{\mathcal{V}} \) such that \(U_{\mathcal{V}} H U_{\mathcal{V}}^* = E + d\Gamma(\xi) \).
Let

\[A := \begin{pmatrix} h & k^* \\ k & JhJ^* \end{pmatrix} \]
Let

\[A := \begin{pmatrix} h & k^* \\ k & JhJ^* \end{pmatrix} \]

and

\[\mathcal{H}_A := \frac{1}{2} \sum_{m,n \geq 1} \langle F_m, AF_n \rangle A^*(F_m)A(F_n). \]
Let

\[A := \begin{pmatrix} h & k^* \\ k & JhJ^* \end{pmatrix} \]

and

\[\mathbb{H}_A := \frac{1}{2} \sum_{m,n \geq 1} \langle F_m, AF_n \rangle A^*(F_m)A(F_n). \]

Then a formal calculation gives

\[\mathbb{H} = \mathbb{H}_A - \frac{1}{2} \text{Tr}(h). \]

Thus, formally, \(\mathbb{H} \) can be seen as "quantization" of \(A \).
If $U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(\mathcal{V} F)$, then

$$U_{\mathcal{V}} H A U_{\mathcal{V}}^* = H_{\mathcal{V}} A_{\mathcal{V}}^*.$$
Diagonalization

If \(U \mathcal{V} A(F) U^* = A(\mathcal{V} F) \), then

\[
U \mathcal{V} \mathcal{H} \mathcal{A} U^* = \mathcal{H} \mathcal{V} A \mathcal{V}^*.
\]

Thus, if \(\mathcal{V} \) diagonalizes \(\mathcal{A} \):

\[
\mathcal{V} A \mathcal{V}^* = \begin{pmatrix}
\xi & 0 \\
0 & J \xi J^*
\end{pmatrix}
\]

for some operator \(\xi : \mathfrak{h} \rightarrow \mathfrak{h} \), then

\[
U \mathcal{V} \mathcal{H} U^* = U \mathcal{V} \left(\mathcal{H} \mathcal{A} - \frac{1}{2} \text{Tr}(h) \right) U^* = d \Gamma(\xi) + \frac{1}{2} \text{Tr}(\xi - h).
\]
If $U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(V F)$, then

$$U_{\mathcal{V}} H_{\mathcal{A}} U_{\mathcal{V}}^* = H_{\mathcal{V}} A_{\mathcal{V}}^*.$$

Thus, if \mathcal{V} diagonalizes \mathcal{A}:

$$\mathcal{V} A_{\mathcal{V}}^* = \left(\begin{array}{cc} \xi & 0 \\ 0 & J \xi J^* \end{array} \right)$$

for some operator $\xi : \mathfrak{h} \to \mathfrak{h}$, then

$$U_{\mathcal{V}} H U_{\mathcal{V}}^* = U_{\mathcal{V}} \left(H_{\mathcal{A}} - \frac{1}{2} \text{Tr}(h) \right) U_{\mathcal{V}}^* = d\Gamma(\xi) + \frac{1}{2} \text{Tr}(\xi - h).$$

These formal arguments suggest it is enough to consider the diagonalization of block operators.
Question 1:

what are the conditions on V so that $U V A(F) U^{*} V = A(V F)$?

Question 2:

what are the conditions on A so that there exists a V that diagonalizes A?
Question 1:

What are the conditions on \mathcal{V} so that $U_\mathcal{V} A(F) U_{\mathcal{V}}^* = A(\mathcal{V}F)$?
Question 1:

what are the conditions on V so that $U_V A(F) U_V^* = A(V F)$?

Question 2:
Question 1:

what are the conditions on \mathcal{V} so that $\mathcal{U}_\mathcal{V}A(F)\mathcal{U}_\mathcal{V}^* = A(\mathcal{V}F)$?

Question 2:

what are the conditions on A so that there exists a \mathcal{V} that diagonalizes A?
Recall \(A(f \oplus Jg) = a(f) + a^*(g) \) and \(U_V A(F) U^*_V = A(VF) \).

- Conjugate and canonical commutation relations:

\[
A^*(F_1) = A(JF_1), \quad \left[A(F_1), A^*(F_2) \right] = (F_1, SF_2), \quad \forall F_1, F_2 \in \mathfrak{h} \oplus \mathfrak{h}^*
\]

where

\[
S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix}.
\]
Recall $A(f \oplus Jg) = a(f) + a^*(g)$ and $\mathbb{U}_\mathcal{V} A(F) \mathbb{U}_\mathcal{V}^* = A(\mathcal{V}F)$.

- Conjugate and canonical commutation relations:

$$A^*(F_1) = A(JF_1), \quad [A(F_1), A^*(F_2)] = (F_1, SF_2), \quad \forall F_1, F_2 \in \mathfrak{h} \oplus \mathfrak{h}^*$$

where

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad J = \begin{pmatrix} 0 & J^* \\ J & 0 \end{pmatrix}.$$

- $S = S^{-1} = S^*$ is unitary, $J = J^{-1} = J^*$ is anti-unitary.

- Compatibility (wrt implementability) conditions

$$J\mathcal{V}J = \mathcal{V}, \quad \mathcal{V}^*SV = S = \mathcal{V}SV^*. \quad \text{(1)}$$

- Any bounded operator \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^*$ satisfying (1) is called a symplectic transformation.
Symplecticity of \mathcal{V} implies

$$\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V} \quad \Rightarrow \quad \mathcal{V} = \begin{pmatrix} U & J^* V J^* \\ V & J U J^* \end{pmatrix}$$
Question 1 - implementability

- Symplecticity of \mathcal{V} implies

 \[\mathcal{J}\mathcal{V}\mathcal{J} = \mathcal{V} \implies \mathcal{V} = \begin{pmatrix} U & J^*VJ^* \\ V & JUJ^* \end{pmatrix} \]

Fundamental result:

Shale’s theorem (’62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(\mathcal{V}F)$), if and only if

\[\|V\|_{\text{HS}}^2 = \text{Tr}(V^*V) < \infty. \]
Symplecticity of \mathcal{V} implies
\[
\mathcal{J} \mathcal{V} \mathcal{J} = \mathcal{V} \quad \Rightarrow \quad \mathcal{V} = \begin{pmatrix} U & J^* V J^* \\ V & J U J^* \end{pmatrix}
\]

Fundamental result:

Shale's theorem ('62)

A symplectic transformation \mathcal{V} is unitarily implementable (i.e. $U_{\mathcal{V}} A(F) U_{\mathcal{V}}^* = A(\mathcal{V} F)$), if and only if
\[
\|V\|_{\text{HS}}^2 = \text{Tr}(V^* V) < \infty.
\]

$U_{\mathcal{V}}$, a unitary implementer on the Fock space of a symplectic transformation \mathcal{V}, is called a **Bogoliubov transformation**.
Question 2 - example: commuting operators in ∞ dim

$\mathbf{h} > 0$ and $k = k^*$ be commuting operators on $\mathfrak{h} = L^2(\Omega, \mathbb{C})$

$A := \begin{pmatrix} h & k \\ k & h \end{pmatrix} > 0$ on $\mathfrak{h} \oplus \mathfrak{h}^*$.

if and only if $G < 1$ with $G := |k| h^{-1}$.

A is diagonalized by the linear operator

$V := \sqrt{\frac{1}{2} + \frac{1}{2\sqrt{1-G^2}}} \begin{pmatrix} 1 & -G \\ -G & \sqrt{1-G^2} \end{pmatrix}$

in the sense that

$VAV^* = \begin{pmatrix} \xi & 0 \\ 0 & \xi \end{pmatrix}$ with $\xi := h \sqrt{1-G^2} = \sqrt{h^2 - k^2} > 0$.

V satisfies the compatibility conditions and is bounded (and hence a symplectic transformation) iff $\|G\| = \|kh^{-1}\| < 1$.

V is unitarily implementable iff kh^{-1} is Hilbert-Schmidt.
Historical remarks

- For dim $\mathfrak{h} < \infty$ this follows from Williamson’s Theorem ('36);
- Friedrichs ('50s) and Berezin ('60s): $h \geq \mu > 0$ bounded with gap and k Hilbert-Schmidt;
- Grech-Seiringer ('13): $h > 0$ with compact resolvent, k Hilbert-Schmidt;
- Lewin-Nam-Serfaty-Solovej-Solovej ('15): $h \geq \mu > 0$ unbounded, k Hilbert-Schmidt;
- Bach-Bru ('16): $h > 0$, $\|kh^{-1}\| < 1$ and kh^{-s} is Hilbert-Schmidt for all $s \in [0, 1 + \epsilon]$ for some $\epsilon > 0$.

Our result: essentially optimal conditions
(i) (Existence). Let $h : \mathfrak{h} \to \mathfrak{h}$ and $k : \mathfrak{h} \to \mathfrak{h}^*$ be (unbounded) linear operators satisfying $h = h^* > 0$, $k^* = J^* k J^*$ and $D(h) \subset D(k)$. Assume that the operator $G := h^{-1/2} J^* k h^{-1/2}$ is densely defined and extends to a bounded operator satisfying $\|G\| < 1$. Then we can define the self-adjoint operator

$$\mathcal{A} := \begin{pmatrix} h & k^* \\ k & JhJ^* \end{pmatrix} > 0 \quad \text{on } \mathfrak{h} \oplus \mathfrak{h}^*$$

by Friedrichs’ extension. This operator can be diagonalized by a symplectic transformation \mathcal{V} on $\mathfrak{h} \oplus \mathfrak{h}^*$ in the sense that

$$\mathcal{V} \mathcal{A} \mathcal{V}^* = \begin{pmatrix} \xi & 0 \\ 0 & J\xi J^* \end{pmatrix}$$

for a self-adjoint operator $\xi > 0$ on \mathfrak{h}. Moreover, we have

$$\|\mathcal{V}\| \leq \left(\frac{1 + \|G\|}{1 - \|G\|} \right)^{1/4}.$$
(ii) (Implementability). Assume further that G is Hilbert-Schmidt. Then \mathcal{V} is unitarily implementable and

$$\|V\|_{\text{HS}} \leq \frac{2}{1 - \|G\|_{\text{HS}}} \|G\|_{\text{HS}}.$$
Theorem [Diagonalization of quadratic Hamiltonians]

Recall $G := h^{-1/2}J^*kh^{-1/2}$. Assume, as before, that $\|G\| < 1$ and G is Hilbert-Schmidt. Assume further that $kh^{-1/2}$ is Hilbert-Schmidt. Then the quadratic Hamiltonian \mathbb{H}, defined before as a quadratic form, is bounded from below and closable, and hence its closure defines a self-adjoint operator which we still denote by \mathbb{H}. Moreover, if $U_\mathcal{V}$ is the unitary operator on Fock space implementing the symplectic transformation \mathcal{V}, then

$$U_\mathcal{V}H U_\mathcal{V}^* = d\Gamma(\xi) + \inf \sigma(\mathbb{H})$$

and

$$\inf \sigma(\mathbb{H}) \geq -\frac{1}{2}\|kh^{-1/2}\|_{\text{HS}}^2.$$
Step 1. - fermionic case. If B is a self-adjoint and such that $JBJ = -B$, then there exists a unitary operator U on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $JUJ = U$ and

$$UBU^* = \begin{pmatrix} \xi & 0 \\ 0 & -J\xi J^* \end{pmatrix}.$$
Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J}B\mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J}\mathcal{U}\mathcal{J} = \mathcal{U}$ and

$$\mathcal{U}B\mathcal{U}^* = \begin{pmatrix} \xi & 0 \\ 0 & -J\xi J^* \end{pmatrix}.$$

Step 2. Apply Step 1 to $B = A^{1/2} S A^{1/2}$.

Marcin Napiórkowski
Quadratic Hamiltonians and Bogoliubov transformations
Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $\mathcal{J} B \mathcal{J} = -B$, then there exists a unitary operator \mathcal{U} on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $\mathcal{J} \mathcal{U} \mathcal{J} = \mathcal{U}$ and

$$\mathcal{U} B \mathcal{U}^* = \begin{pmatrix} \xi & 0 \\ 0 & -J\xi J^* \end{pmatrix}.$$

Step 2. Apply Step 1 to $B = A^{1/2} S A^{1/2}$.

Step 3. Explicit construction of the symplectic transformation \mathcal{V}:

$$\mathcal{V} := \mathcal{U} |B|^{1/2} A^{-1/2}.$$
Sketch of proof

Step 1. - fermionic case. If B is a self-adjoint and such that $JBJ = -B$, then there exists a unitary operator U on $\mathfrak{h} \oplus \mathfrak{h}^*$ such that $JUJ = U$ and

$$UBU^* = \begin{pmatrix} \xi & 0 \\ 0 & -J\xi J^* \end{pmatrix}.$$

Step 2. Apply Step 1 to $B = A^{1/2}SA^{1/2}$.

Step 3. Explicit construction of the symplectic transformation V:

$$V := U|B|^{1/2}A^{-1/2}.$$

Step 4. A detailed study of $V^*V = A^{-1/2}|B|A^{-1/2}$.

Marcin Napiórkowski

Quadratic Hamiltonians and Bogoliubov transformations
Thank you for your attention!