Monetarization of Ecosystem Services of Oasean Biome (Case Study: Provisioning Services of Middle Draa Valley Oases, Morocco)

Ahmed Karmaoui*, Issam Ifaadassan, Mohammed Messouli and Mohammed Yacoubi Khebiza

Department of Environmental Sciences (LHEA-URAC 33), Faculty of Sciences Semlalia, Cadi Ayyad University, Morocco.

Authors’ contributions

This work was carried out in collaboration between all authors. Author AK designed the study, wrote the protocol, and wrote the first draft of the manuscript. Authors II, MM and MYK managed the literature searches, reviewed the first draft and provided valuable assistance. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJAST/2015/19689

Editor(s):
(1) Jakub Kostecki, Department of Civil and Environmental Engineering, University of Zielona Góra, Poland.
(2) Xu Jianhua, Department of Geography, East China Normal University, China.
(3) Quan Long, Institute of Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, USA.

Reviewers:
(1) Tunira Bhadauria, Kanpur University, India.
(2) Anonymous, Federal University of São João del-Rei, Brazil.
(3) Anonymous, King Mongkut's University of Technology Thonburi, Thailand.
Complete Peer review History: http://sciencedomain.org/review-history/11393

Received 23rd June 2015
Accepted 28th August 2015
Published 15th September 2015

ABSTRACT

Numerous studies have evaluated the monetarization of the ecosystem services throughout the world, but few have showed the oasean ecosystem services (Desert oasis). The purpose of this research is to identify and quantify ecosystem services as a tool to provide useful information for the management of arid lands. This study can serve as a reference to measure future changes in the oasean ecosystem mainly under the impact of extreme events. In this paper, we examine the economic value of the ecosystem services provided by the oases of Middle Draa Valley (MDV), which is part of Biosphere Reserve of southern Moroccan Oasis (UNESCO). The economic values are standardized to US$ per hectare per year (2008-2010 period prices). The total value is found to be 117639, 75Dhs /ha/year (14116,7US$/ha/year) in the arable area (for 26 000ha) and

*Corresponding author: E-mail: karmaoui.ahmed@gmail.com;
2039Dh/ha/year (244,7US$/ha/year) for the total area (1500 000ha). The study can be applied to other oases of the pre-Saharan part of Morocco because of the similarity of lifestyle, climate, and water requirements etc.

Keywords: Economic value; provisioning services; oasean ecosystem; Morocco; Africa.

1. INTRODUCTION

Ecosystem services (E.g.: clean water supply, pollination, seed dispersal, soil fertility…) are the material and nonmaterial benefits that humans derive from nature [1]. Analysis of ecosystem services is an increasing feature of such undertakings and has prompted a rapidly expanding literature regarding the implementation of such analyses [2-10]. Recently, the analysis of ecosystem services is oriented from a qualitative analysis to quantitative analysis [11]. Climate change poses new and significant challenges, not only for the adaptation of economic systems, but also within the scientific community of «ecological economy» [12], because it changes the quantity and location of services provided by natural systems. Adaptation to climate change involves the management of natural resources, based on quantitative analysis of ecosystem services. From here comes the idea to quantifying oasean provisioning ecosystem services. The purpose of this study is to quantify the provisioning services provided by the oasean ecosystem in Middle Draa Valley (MDV) that have a positive impact on local human well-being and food security. MDV is one of 67 biosphere reserves located in Africa and specifically is located in the Biosphere Reserve of Southern Moroccan Oasis (UNESCO). Which is an indicator of major climatic trends in the Mediterranean region, is currently, experiencing climatic degradation and rapid desertification (due to climatic and anthropogenic impacts) [13]. This situation threatens the oasean ecosystems already fragile. The need for such study is both for the environmental vulnerability [14] and for the importance of this ecosystem. Indeed, we can list seven major sites of interest: two RAMSAR sites [15], one national parks [16], three Moroccan Observatories of Sahara and Sahel (Issougui, Oued Mird and Fezouata Observatories) [17] and the solar complex of Ouarzazate [18].

In fact, Middle Draa Valley is located between the Moroccan High Atlas Mountains (north) and the Saharan desert in the south. As a result of its location, the region is characterized by [19]:

- High temperatures, especially between June and September (43 to 50°C);
- Strong thermal amplitudes (20°C in Tagounite near to Zagora city about 60km)
- Long hours of sunshine (between 3055 and 3078 hours/year)
- High rates of evapo-transpiration particularly during summer.

The oases of Draa get the water from the peaks of High Atlas. Agriculture and pastoralism dominates more than 70% of the local economy, these activities are unprofitable and does not always allow people meet their needs [20]. As agricultural production strongly depends on irrigation, water scarcity is a principal problem [21]. The environmental vulnerability is accelerated by social vulnerability, as shown in the Table 1, that makes the oasean communities of Middle Draa Valley often at the periphery of society, geographically, politically and economically.

Table 1. Middle Draa Valley [22]

	Urban area	Rural area
Human Development Indicators (HDI)		
Illiteracy	34.75%	55%
Rate of access to drinking water	86%	63%
Poverty rate	12.75%	37.64%

The degradation of the ecosystem in general and the oasis in particular due to climate change, combined today’s with human activities constitute a major obstacle to development in this region. The major issue identified in the area is: reduced number of palm trees especially because of Bayoud [23]. The Bayoud disease (Fusarium oxysporum F. sp. Albedinis) is a soil fungus that affects the palms. The disease was first known in Morocco (Middle Draa Valley) since more than a century ago [24]. In fact, the region suffers from the extension of Bayoud disease. This fungus attacks the best varieties of palm trees. Over the past decades, Moroccan production of dates decreased by 34% [25], partly due to the spread
of this fungus. The rate of expansion of Bayoud in an experimental zone in Nebch (MDV) is 4-15% [26]. In addition to this problem, there are other problems like soil and water salinization, youth migration, degradation of acacia forests, overgrazing and lack of drinking water and so on and so forth. All these factors contribute to widespread poverty in rural areas and the dependence of the poor on a sensitive climate for their livelihood. The rural community is among the poorest areas of the country and its environment undergoes several processes of disintegration, which makes such study very essential.

2. MATERIALS AND METHODS

2.1 Study Area

Fig. 2 shows the extrapolation of the most productive part of the study area represented by six oases (Mezguita, Tinzouline, Ternata and Fezouata, Tagounite and M'Hamid) aligned as a necklace. These oases are located along the Draa Wadi (temporary river) fed by Mansour Eddahbi Reservoir.

The Middle Draa Valley is characterized by a 200 km belt of six aligned oases with a width that varies from 100 m to 10 km. The total surface of the six Draa oases are nearly forty thousand hectare of which 26,118 hectare are arable land and irrigated [27]. Here, we will be analyzing the six oases of the MDV which are displayed in Figs. 2 and 3 in the focus area. Oasis Structure is schematically based on the interdependence of man, water and palm trees. Agriculture, livestock and tourism are the main economic activities [28].

Within each oasis, we distinguish between three types of farms, as described in Table 2.

Fig. 1. Middle Draa Valley (MDV) area (MDV map processed and modified from the digital IMPETUS atlas 2.1)
Fig. 2. Six aligned oases along draa wadi (Temporary River) (processed and modified from the digital IMPETUS atlas 2.1)

Fig. 3. Satellite images of the six aligned oases: Mezguita (A1) and Tinzouline (A2) oases; Ternata (B1) and Fezouata (B2); Tagounite (C1) and M’Hamid (C2)

Source: Processed from the USGS (www.landsatlook.usgs.gov); Sensors: TM, ETM+ and OLI.

01 November 2011

2.2 Methodology

Services provided by ecosystems contribute much to the well-being of individuals, of communities and of the economy. The monetarization of non-market natural assets is growing in popularity. Unfortunately, the research on the issue of ecosystem services (monetary characterization), at the national level is nonexistent. Monetary unrepresentative cause’s malfunctions in incentives associated with their use and contributes to the degradation of the natural heritage. In recent scientific literature there are a variety of methods for estimating the value of ecosystem services [29]. The selection of appropriate valuation methods is in part determined by the type of ecosystem service being valued [30].
We collected the data from a variety of sources, including bibliographic data (scientific data), government ministries, and environmental organizations (gray literature). Information was also gathered and classified in ecosystem services categories. Fig. 4 gathers some methods and approaches to valuing ecosystem services.

The Total Value (V) of Ecosystem Services ES in $$/ha/year for ecosystem type k is $V (ES_k) [31]$:

$$V (SE_k) = \sum_{i=1}^{n} A(LUi) \times V(SE_{ki}) \quad EQ 1$$

Where:

- $A (LUi) = $ Area of i (Land Use in hectares)
- $V (ES_{ki}) = $ Annual value of k ES (Ecosystem Services) for each i LU (in $$/ha/yr)

Table 2. Types of oasis farmers of middle draa valley, Morocco

Farm type	Description
Farms of government in Bni zouli (Ternata oasis: Fig. 3)	
N30°26'42.72" W5°54'40.32
- 0.3% of the oasis area
- High quality palm varieties
- Surface water
- Submersion irrigation
- Large infestation of bayoud disease
- Low production |
| Modern farms private
Felja (Fezouata oasis : Fig. 3)
N30°17'38.4" W5°55'19.2"
- <1% of the oasis area
- High quality palm varieties
- Groundwater
- Economic irrigation
- No infestation of bayoud disease
- High production |
| Traditional farms
Bni zouli
N30°26'16.8" W5°54'40.32"
- 92% of the oasis area
- Mixed varieties
- Water surface and groundwater
- Submersion irrigation
- Low to moderate infestation of bayoud disease.
- High production |
3. RESULTS

In this paper, the monetarization of provisioning services is made using the method of the market price. The results of the monetarization are divided into three levels; vegetal, animal and a third category that we'll call 'other products' including services such as water, soil and wood.

3.1 Vegetal Products

In the six oases of Middle Draa Valley; the vegetal products are classified in the following Table 3. The main vegetable products at the Middle Draa Valley play an important socio-economic role, with the added value they generate in rural areas. The major products (Table 3) are Common wheat and alfalfa for horticulture, and palm and almond for fruit trees.

We calculated the average unit price of cultivated products in Dh/kg ($1 Dh = 1 MAD (Moroccan Dirham) = 0.12 US $; www.oanda.com; Sept. 28, 2013) based on data from the years 2004 to 2008 (Table 4).

Economic values of vegetal services are summarized in Table 5, which brings together, ecosystem services, the size and quantity of each product and the unit price and the total value of these services.

The whole plant services produced a total economic value of the order of 1090330750Dhs/year (130839690$/year)

3.2 Animal Products

Livestock has always been an important activity besides trade. Pastures have been largely altered during the drought years. Despite this constraint, livestock plays a vital role in the daily life of the farming community. This activity is a central element of the agricultural sector. In terms of the importance of animal production (Table 6) sheep is in the lead, followed by goats, then cattle and camels. However, for local consumption, the most important agricultural product is bovine milk, followed by beef, chicken, and eggs. For small farmers, livestock is a ready source of cash for the purchase of inputs (seeds, fertilizers and pesticides) for agricultural production. Table 6 shows the number of livestock in the study area in the following 3 years (2008, 2009 & 2010), while Table 7 illustrate the milk production and Honey in this area.

The industrialized milk cooperative varies between 800 000 and 1 000 000 liters. The total production of red meat, is about 785 tonnes1. Talking about jobs, this sector, offers about 3547 jobs (Table 8).

1 Monographie agricole de Zagora (2009).
Table 3. Average of last 5 years of areas and productions

Horticulture	Area in Ha.	Production in Qs	Fruit trees	Effective (trees)	Production in tonnes
Durum wheat	50	1300	Almond	32800	164
Common wheat	16850	589910	Olive	6850	158
Barley	1400	29300	Apple	31500	630
Maize	330	6675	Palm	1421870	34125
Alfalfa	3600	190000	Apricot	40400	760
Vegetable gardening	1445	260920			

Qs: quintals, Source of data: Monographie agricole de Zagora, 2009

Table 4. Average price of cultivated products (Dh/kg)

Ecosystem	2003/04	2004/05	2005/06	2006/07	2007/08	Average
Durum wheat	2.61	2.79	2.44	3.05	4.03	2.984
Common wheat	2.39	2.52	2.21	2.74	3.16	2.604
Barley	1.61	1.95	1.61	2.36	2.99	2.104
Maize	1.97	2.00	1.86	2.47	3.09	2.278
Broad beans	3.29	3.39	3.14	3.92	5.06	3.76
Lentils	4.31	6.32	4.27	5.89	8.83	5.924
Olives	3.22	4.26	4.95	4.72	5.06	4.442
Shelled almonds	46.17	53.5	57.77	52.3	48.02	51.552

Source of data: [22]

Table 5. Summary of the economic value of vegetal services

Ecosystem service	Area/Number	Quantity/Production	Unit price	Total in Dh	Total in $
Durum wheat	50 Ha	1300 Qs	4DHs/Kg	0.52 Mln	62400
Common wheat	16850 Ha	589910 Qs	4DHs/Kg	235 Mln	28 Mln
Barley	1400 Ha	29300 Qs	4DHs/Kg	11.7 Mln	1.4 Mln
Maize	330 Ha	6675 Qs	4DHs/Kg	2.6 Mln	0.32 Mln
Alfalfa	3600 Ha	190000 Qs	2DHs/Kg	38 Mln	4.5 Mln
Vegetable gardening	1445 Ha	260920 Qs	4DHs/Kg	104 Mln	12.5 Mln
Watermelon (2013)	1130 Ha	671287 Qs	2.5DHs/Kg	167 Mln	20 Mln
Almond tree	32800 Trees	164 Ton.	60DHs/Kg	9.8 Mln	1.1 Mln
Olive tree	6850 Trees	158 Ton.	4DHs/Kg	0.6 Mln	0.07 Mln
Apple tree	31500 Trees	630 Ton.	5DHs/Kg	3.1 Mln	0.37 Mln
Palm tree	1421870 trees	34125 Ton.	15DHs/Kg	511.8 Mln	61.4 Mln
Apricot tree	40400 Trees	760 Ton.	5DHs/Kg	3.8 Mln	0.45 Mln
Total				1090 Mln	130 Mln

Note: 1 US $ = 8.26 MAD; 1MAD = 0.12 US $; www.oanda.com; Sept. 28, 2013. Qs: quintals

Table 6. Change of the number of livestock in the oasis ecosystem and its surrounding areas

Livestock	2008	2009	2011	Average
Cattle	4770	5538	5540	5282.7
Sheep	70120	82994	83000	78704.7
Caprine	75130	59721	59720	64857
Camels	7950	9079	9080	8703
Equine	7620	7796	7795	7737
Beehives	886	1370	1370	1128

Source of data: Monographie agricole de Zagora, 2009
Table 7. Oasean animal products in the middle Draa Valley, Morocco. Monographie agricole de zagora, 2009

	2008	2009	Average
Milk (L)	1442700.43	1773220	1607960.2
Honey (Kg)	1580	1772	1676

Table 8. Agricultural cooperatives

Type of cooperatives	Effectiveness	Number of adherents	Jobs offered
Procurement	8	969	969
Henna	4	554	554
Dates	4	1740	1740
Dairy	2	112	112
Livestock	4	158	158
Use of agricultural equipment	1	12	12
Total	23	3547	3547

Source: Monographie agricole de zagora (2009)

To calculate the economic value offered by job creation, we multiply the minimum guaranteed wage or “SMIG=2300Dhs” with the number of jobs created: \((3547 \times 2300 \text{ Dhs} \text{ (2012)}\) =8158100\text{/month}) and 97897200\text{Dhs/year (11747664$/year).}

Industry is of secondary importance in economic activity in the Middle Draa Valley in the region. This is largely due to the remoteness and inaccessibility of the region. The only industrial unit is the Cooperative of milk processing (Table 9), which saves an added value of 524 000 Dh/year (62 880 $/year).

The economic value of the animals services are summarized in Table 10, which includes, ecosystem services derived from animal production, in terms of number of cattle, and the unit price and the total value of these services.

Ecosystem services of animal products therefore generate a value of 285411501Dhs/year (34249380, 12$/year).

3.3 Other Products

Such products, means products other than agricultural food products like firewood and construction wood...

3.3.1 Firewood

In 1993, the annual fuel consumption for one pottery in Tamgroute was 96.25 tonnes of which only 10% consisted of palms, and about 86 tonnes of bushes were used from the plains of Feija which corresponds to a destructive exploitation of 860 ha / year [32]. In rural areas, firewood represents about 90% of the energy consumed [33]. Indeed, it is intended to meet the needs of households and commercial purposes. Benchezkroune [34] reports that Igherem (Province of Ourarzazate in border with the study area) consumption of firewood in winter ranges from 65 to 120 kg per household per week. According to a study in Aït Zekri (Province of Ourarzazate) consumption of wood in the tribe is estimated at 1 kg/capita/day [35]. The study area houses 240 566 inhabitants (rural population), consuming 1kg/capita/day, which corresponds to a value of 384905,6/day and 138566016 Dh/year (16627921,92 $/year), see Table 11.

3.3.2 Construction wood

In the basin of the Draa, the habitat is usually "Moroccan house" or "rural category. The type of habitat is important because the resource requirements of the wood are very large. Indeed, the consumption of wood for a rural home is higher than the urban home. This type of accommodation occupies 66% of the type of habitat in the basin of Draa [36]. To build a house (rural construction 300 m\(^2\) average), we need 7 palms (trees) and 200 m\(^2\) reeds because part of the middle of the house about 100 m\(^2\) is not covered (Table 12).

The total households in Middle Draa Valley are 33000; 66% is rural type (22000 households). The construction of 22000 households required (22000×5000):110000000Dh (13200000$), provided by Oasis. To calculate the annual need of timber, we need to calculate the evolution of the number of houses/year in the study area, which is shown in Table 13.
Table 9. Existing industrial units

Company name	Production	Investment	Added value
Halib Draa Cooperative	3,538,000,00	483,000,00	524,000,00

Source: Annual survey of processing industries 2009 edition

Table 10. Summary of the economic value of animal products

Ecosystem service	Area /Number	Quantity/Production	Unit price	Total in Dh/year	Total in $/year
Cattle	5540	n.d	4000Dhs	21 Mln	2.5 Mln
Ovine	83000	n.d	800Dhs	62.9 Mln	7.5 Mln
Caprine	59720	n.d	6000Dhs	38.9 Mln	4.6 Mln
Camels	9080	n.d	6000Dhs	52 Mln	6.2 Mln
Equine	7795	n.d	500Dhs	3.8 Mln	0.46 Mln
Beehives	1370	n.d	1000Dhs	1.12 Mln	0.13 Mln
Milk	-	1773220 Lit.	4Dhs	6.4 Mln	0.77 Mln
Milk Transformation	-	Added Value	-	0.52 Mln	0.06 Mln
Honey	-	1772 Kg	200Dhs	0.33 Mln	0.04 Mln
Agrifood Jobs	3547 Pers.	SMIG	2300Dhs	97.8 Mln	11.7 Mln

Note: 1 US $ = 8.26 MAD; 1MAD = 0.12 US $; www.oanda.com; Sept. 28, Milion

Table 11. Economic value of the firewood in 1 year in middle draa valley

Unit quantity	Unit price	Total In Dh	One day	Dh/year	$/year	
Firewood	1 kg/Capita/Day	1.6 dh/1 kg	240 566	384905.6	140490544	16858865.28

Note: 1 US $ = 8.26 MAD; 1MAD = 0.12 US $; www.oanda.com; Sept. 28, 2013

Table 12. Economic value of the wood for 1 household

Price unit	Number/Quantity	Total In Dh	Total In $	
Palm Tree	500 DH	7	3500	420
Reeds	7.5DH	200m²	1500	180
Total	5000	600	5000	600

Note: 1 US $ = 8.26; 1MAD = 0.12 US $; www.oanda.com; Sept. 28, 2013

Table 13. Evolution of households in MDV [31]

	2004	2030
Population	278398	338239
Number of Households	33143	47977

From the table, changing household at the rate of 570, 5/year which corresponds to 2, 6% of 22000. Therefore 570, 5/year × 5000 (price in Dh of Construction wood for a household) = 2852500 Dhs (342300$/year) wood of construction/year. This value is added to the value of the wood used for the renewal of homes per year. In fact, renewal of 80% of houses is done in 50 years (survey 2012-2013), which allows us to calculate the value offered by Oasis for timber. 80% of 22000: 17600/$50= 352 households /year; therefore 352 × 5000 = 1760000Dhs (211200$ /year). Table 14 summarizes the economic value of construction wood/year.

3.3.3 Surface water and groundwater irrigation

In Middle Draa Valley, we have on one hand small water resources like the humidity present in the air and soil that some plants and animals benefit but on other hand we have large water resources such as:
Surface water (water from Draa River, Mansour Eddahbi and lakes reservoir) and
Groundwater (in the various aquifers throughout the valley)

It is important to note that we have based on an Average year of water resources (Table 15), knowing that the potential of water resources depends on the type of year (average year or a dry year) lower recess in a dry year.

3.3.4 Surface water

The Middle Draa Valley has about 200 km from Wadi (Draa River). Mansour Eddahbi Dam used to store water in Middle Draa Valley upstream. And other artificial lakes (Table 16) that allow groundwater recharge regulate the flow of Oued Draa and especially allow the irrigation of six palm groves in the Middle Draa Valley.

3.3.5 Groundwater resources

Each of these palm groves of the Draa Valley Middle has a shallow underlying aquifer [39]. Size of the aquifers and total groundwater reserves vary from one grove to another (Table 17).

The Joint Ministerial Decree of Agriculture, Finance and Equipment February 17, fixing the price of a cubic meter of water applied in irrigation were published in the Official Bulletin of March 16 (2000). It repeals and replaces the decree joint of 8 December 1998 on the same subject. So-called "balanced rate" prices are set to 0.18 DH/m³ for irrigation perimeters Draa (provinces of Ourarzazate and Zagora). The National average price of drinking water (production and distribution) is 1,26 dh/m³. The Table 18 shows of water resources in Middle Draa Valley.

People use water from traditional wells and water from the dam for domestic and agricultural uses. The wells are the main source of supply of most villages with drinking water. The total consumption of drinking water from the oasis and its surrounding area population is estimated at 1780731 M³ per year.

3.3.6 Water power

The Mansour Eddahbi Dam in upstream is 63 m high, 15 m wide at the base, and 285 m in length. The capacity of the reservoir is 536 million M³ and helps regulate some 250 million M³ per year. A hydro-electric plant with a production capacity of 10000 kW, installed at the foot of the dam [41]. Table 19 shows the economic value of this reservoir Mansour Eddahbi Dam produce 32385, 91 MW/year.

Table 14. Summary of economic value of construction wood/year
Use
Unit
Total Price

Table 15. Water resource of the Middle Draa Valley, Morocco [37]
Use
Potential resources
Surface water resources
Extracted groundwater resources
Total exploited resources

Table 16. Local dams diversions in the MDV [38]
Local dams
Agdez
Tansikht
Ifly
Azghar
Bounou
Table 17. Area of aquifers and their reserves in the palm groves of the Middle Draa Valley [40]

Palm groves	Total area of the aquifers Km²	Total natural reserves Mm³
Mezguita	45	22.5
Tinzouline	69	34.5
Ternata	178	71.3
Fezouata	196	127.1
Ktaoua	160	86.4
M’hamid	70	16.8

Table 18. Economic value of water resource in Middle Draa Valley, Morocco (M=Million)

Number/Quantity	Unit price (Dh/M³)	Total in Dh	Total in $
Water Surface Irrigation	0.18	40500000	4860000
Groundwater Irrigation	0.75	30000000	3600000
Drinking Water	1.26	2243721.06	269246.53

Source of data: ONEE (2011). Direction regionale / SUD (rennements des semestres de 2011)

Table 19. Economic value of water energy

Number/Quantity	Unit price (Dh/Kw)	Total in Dh/Year	Total in $
Water Energy	1.27	41130105.7	4935612.7

* Source: http://www.one.org.ma/

3.3.7 Use of soil for construction

On the soil level, soil texture of the valley is generally sandy clay. In depth, clay content increase and porosity decreases [41].

The physical characteristics, construction techniques and environmental benefits of land (soil) make it an ancient building material on all continents. The land is recyclable, non-polluting, cheap, controlling moisture, absorbing heat. This saves energy and gain comfort.

3.3.8 Saving energy

How many kilowatt hours in 1 Celsius heat unit? The answer is 0.000527527916667 (www.convertunits.com). Rural housing saves at least 5°C temperature (The value of 5°C was estimated in the Bni Zouli village) compared to Moroccan cement habitat. So one house saves 0.000527527916667 (5 times), which gives a saving 0.00263764583335 KWh (1hour). In one year we will have a saving of 50687.75 Dhs (Table 20).

3.3.9 Soil of construction

From the Table 13, Evolution of the household at the rate of 570.5 household/year. To build a home of rural category using soil material, we need 100 small loading. The economic value of each load is estimated at 75dh thus requires a total of 75×100×570.5 = 4278750 Dh/year (513450$/year). Therefore the soil offers an economical value for the construction of house which adjoin 4866000dh/year (583920$/year) (Table 21).

3.3.10 Soil transformation: mining

The achievements of mining companies for Bleida Mine (the unique mining company) in Middle Draa Valley are in the following Table (22). Due to lack of data, we have estimated the value of the gold produced. In 2011, the 'Bleida' mine achieved a market production (golden) of 124.485 kg (Table 22). Multiplying this value by the price of one Kg of gold (332110.18 Dhs / Kg in Morocco [http://vente-achat-or.org/] Accessed 01-11-2014). The economic value obtained is about 41342735.8 Dhs.

The Table 23 illustrates the number of jobs created by mining sector.

3.3.11 Fishing

In Mansour Eddahbi Dam the Total fish caught (ton/year) is 500 tonnes (Estimated value per kg 5Dhs) so the value is 2500000 Dhs/year (300000$/year). We calculated just the value of the market price of fish caught. The economic values of recreational and cultural activities are not covered in this work.
Summary of economic value of other products (Table 24).

The latter category of services (other products) generates economic value of around 1682891295 Dhs/year (201946955 $/year). From the data compiled in the calculations of the economic value of plant procurement, animals and other products supplied by the Draa Valley, the total value became 3058633546 Dhs / year (367036026 $ / year) (Table 25).

The economic value of ecosystem services in the Middle Draa Valley, Morocco (relative to the total area of 1 500 000ha) is 2039 Dhs/ha/year (244,7 $/ha/year) and 117639,75 Dhs/ha/year (14116,7 $/ha/year) for the cultivated and irrigated area (26 000 ha).

Table 20. Economic value of saving energy

Seasons (2 Months)	Quantity	1 hour	Season/Home	Economy in Dh	Economy in $
Winter 5°C	0.0005275	0.7596402	-		
Summer 5°C	0.0005275	2.6587407	-		
Total	3.4183809	50687,75	6082,53		

1MW=1000KW and 0.674Dh/kw

Table 21. Economic value of the soil construction

Number/Quantity	Unit Price	Total In Dh/year	Total In $
Soil for construction	7500	4278750	513450

Table 22. Production and sales [42]

Mined substance	PTV (T)	PM (KG)
Gold	57997	124,485

PTV: Production tout-venant and PM: Production marchande (production-run and market production)

Table 23. Staff and sub-companies mining [42]

Ingeners	Tamca	Ouvriers	Total
5	8	6	19
72			91

Table 24. Summary of the economic value of provisioning services (other products)

Ecosystem service	Area/Number	Quantity/Production	Unit price	Total in Dh/year	Total in $
Firewood	240 566	1 kg/Capita/Day	1.6Dh/Kg	140.5 Mln	16.8 Mln
Wood construction	22000	-	-	4.6 Mln	0.55 Mln
Water surface irrigation	-	225 Mln m³ (85%)	0.18 Dh/m³	40.5 Mln	4.8 Mln
Groundwater irrigation	-	40 Mln m³ (15%)	0.75Dh/m³	30 Mln	3.6 Mln
Drinking water	-	17807313 m³	1.26Dh/m³	2.24 Mln	0.27 Mln
Water energy	-	32385,91 mw	1.27 Dh/Kw	41 Mln	4.9 Mln
Soil of construction	648.8	-	7500	4.28 Mln	0.51 Mln
Soil energy	-	-	0.67Dh/Kw	50687,75	6082.53
Soil transformation (Gold production)	-	124.5 Kg	-	41.3 Mln	4.96 Mln
Mining sector jobs	-	-	2300	2.5 Mln	0.30 Mln
Fishing	500 Ton.	100 Fishermen	5Dh	2.5 Mln	0.30 Mln

Mln: Million
Table 25. Summary of the economic provisioning services

Ecosystem service	Area/Number	Quantity/Production	Unit price	Total in Dh	Total in $
Durum wheat	50 Ha	1300 Qs	4 dh/Kg	520000	62400
Common wheat	16850 Ha	589910 Qs	4 dh/Kg	235964000	28315680
Barley	1400 Ha	29300 Qs	4 dh/Kg	11720000	1406400
Maize	330 Ha	6675 Qs	4 dh/Kg	2670000	320400
Alfalfa	3600 Ha	190000 Qs	2 dh/Kg	38000000	4560000
Vegetable Gardening	1445 Ha	260920 Qs	4 dh/Kg	104368000	12524160
Watermelon (2013)	1130 Ha	671287 Qs	2.5 dh/Kg	167821750	20138610
Almond tree	32800 Trees	164 Tonnes	60 dh/Kg	98400000	1180800
Olive tree	6850 Trees	158 Tonnes	4 dh/Kg	6320000	75840
Apple tree	31500 Trees	630 Tonnes	5 dh/Kg	3150000	378000
Palm tree	1421870	34125 Ton.	15 dh/Kg	511845000	61421400
Apricot tree	40400 Trees	760 Ton.	5 dh/Kg	38000000	4560000
Total economic value of the vegetal services				1090330750	130839690

Ecosystem service	Area/Number	Quantity/Production	Unit price	Total in Dh	Total in $
Bovins	5540 (Nb)	-	4000 dh	211308000	2535696
Ovins	83000 (Nb)	-	800 dh	62963760	7555651,2
Caprins	59720 (Nb)	-	600 dh	38914200	4669704
Camelins	9080 (Nb)	-	6000 dh	52218000	6266160
Equins	7795 (Nb)	-	500 dh	3868500	464220
Ruches	1370	-	1000 dh	1128000	135360
Milk	-	1773220 Lit.	4 dh	6431840,87	771820,9
Milk Processing	-	Added value	524.000	524000	62880
Honey	-	1772 Kg	200 dh	335200	40224
Total economic value of animal services				285411501	34249380,1

Ecosystem service	Area/Number	Quantity/Production	Unit price	Total in Dh	Total in $
Firewood	240 566	-	1.6Dhs/Kg	14049054	16858865,28
Wood construction	22000	-	-	4612500	553500
Water surface	-	225 Mm³	0,18 Dh/M³	40500000	4860000
Irrigation (85%)	-	40 Mm³(15%)	0,75Dh/M3	30000000	3600000
Drinking water	-	9417363 m³	1,26Dh/M³	22437210,6	269246,53
Water energy	-	32385,91 mw	0,67Dh/Kw	4130105,7	4935612,7
Soil of construction	648.8	-	7500Dhs	4278750	513450
Soil energy	-	-	0,67Dh/Kw	50687,75	6082,53
Soil transformation	124,485 Kg	-	41342735,8	4961128,3	
Fishing	500 Tonnes	100	5dh	2500000	300000
Mining jobs	91 Pers. SMIG	2300	-	2511600	301392
Total economic value of other services				1682891295	201946955
Total general of all provisioning services				3058633546	367036026

Note: 1 US $ = 8.26; 1MAD = 0.12 US $; www.oanda.com; Sept. 28, 2013. Qs: quintals

4. DISCUSSION

The oasean ecosystem provides a set of varied benefit for local populations, which include: provisioning (water, wood and food), regulating (water purification and regulating the flow), cultural (Tourism, biodiversity...) and supporting services (Soil, nutrients...). Their status and trend vary depending on the type and intensity of the pressures to which they are exposed. These pressures especially poverty, destructive exploitation in Feija plain (860 ha/year of bush), fire wood in rural and palm wood used to make homes lead to loss of ecosystem services, and
cause negative impacts on livelihoods. This degradation is induced by climatic factors, exacerbated by the socio-economic context marked (especially extreme poverty). Successive droughts in recent years have also limited the primary production in Middle Draa Valley. The Mansour Eddahbi Dam and other dams may have leveraged this drought. In fact, all reservoirs are vulnerable to siltation problems [43], with estimates that the Mansour Eddahbi and Hassa Addakhil reservoirs will be inoperative by about 2030 [44,45]. Moreover, the intensification of agriculture illustrates the pressures facing the oasis system. The provisioning services of oasean ecosystem include a wide range of food products derived from plants (E.g.,: firewood and palm wood for building households) and animals (E.g.,: bee honey, fishing). Forests are exploited for many reasons: timber for local construction, for the manufacture of charcoal local collecting of wood for heating and cooking. The main tree species existing in their natural state are 90194 ha of Acacia radiana and 20985 ha of Tamarix aphyla [42]. The contribution of forests to the local economy of the area is very important. The products of these forests help meet the needs of the population in cattle feed, firewood, timber. Furthermore, the use of wood is as an energy source, it is used by the local people for manufacturing of various products from wood fibers or plants. The surface water of this ecosystem leads the irrigation of arable area, and feed the oasean aquifers. More water in upstream Draa is a source of energy through Mansour Eddahbi Dam.

Data was collected, compiled and analyzed to give the approximate monetary value of provisioning services. This quantitative assessment was conducted using information provided by the public services of the Draa Valley. Assessment of livestock production is possible thanks to the presence of data on milk production, and the number of livestock. Because of lack of data on the pharmacopoeia and wild foods, we did not assess monetarily these services. To estimate the consumption of wood, we relied on the results of the field survey. Based on household consumption, we estimated global consumption in which we applied current prices. It is essential to note the importance of the economic value of agricultural expenses in the oases of the Draa Valley as fertilizer, the cost of irrigation, tillage and seed. From the synthesis of the Table 25, agricultural production (vegetal and animal) generates 1375742251Dhs (165089070, 12$) reported to the productive area (26 000ha), giving 52913,2 Dhs/ha /year (6349,57962$/ha/year). Expenses spent annually by farmers are about 7123 Dhs/ha/year (854, 76$/ha/year), they are estimated in 2005 by a survey conducted as part of the IMPETUS project, conducted by Heidecke [37] (2009). So the net annual value of agricultural products in the area of six palm groves is estimated at 45790.7 Dhs/ha/year (5494,84$/ha/year). It should be recalled that, in the present study, we aim to provide an approximate value of provisioning services. The most part of the economic value comes from the six palm groves, knowing although the area of the palm represents only 0.017% of the total area of the Middle Draa valley. The final value obtained from MDV is 2039 Dhs/ha/year (244,7$/ha/year), which is very low, because we have not estimated the value of the immaterial wealth as the value of biodiversity, tourism, pollination, Folklore and “Moussems” (Moroccan festivals in honour of saints), etc.

The comparison of results in Table 26 with result of economic value of provisioning services at global scale (Inland wetlands, rivers/lakes, woodlands, Grass lands) developed by De Groot in 2012 [46] is shown in Table 26. The economic value of the most productive part of the Draa valley (six palm) is greater than the value of wetland ecosystems, rivers/lakes and grasslands; while the whole Draa Valley generates the lowest economic value compared to previous ecosystems.

The low economic value of the entire MDV is justified by the arid climate and the poor quality of the complex water-soil. While the economic value of six palm groves is very important, given the potential of the structure and function of these palm groves and consequently their ecosystem services. It is a knowledge accumulated over thousands of years which the oasis Man knew how to value the groundwater, which is an important aspect of the development of agricultural production, keeping the soil fertile enough, and also controlling surface water from of temporary streams.
Table 26. Summary of monetary values for each service per biome (values in Int. $/ha/year, 2007 price levels) [46]

Service	Inland wetland	Rivers/lakes	Woodlands	Grasslands	Oases*	MDV **
Provisioning services	1659	1914	253	1305	14116,7	244,7
1 Food	614	106	52	1192	5895,3	102,18
2 Water	408	1808		60	380,16	6,6
3 Raw materials	425		170	53	7841,24	135,92
4 Medicinal resources	99			1		
5 Ornamental resources	114					

Where *: Estimated values from the vegetal and animal production of the six palm groves of the middle Draa Valley, **: Estimated values of all components of the whole Draa Valley

5. CONCLUSION

Oases are agricultural landscapes of pre-Saharan Morocco and contribute to the well-being of the local population by provisioning ecosystem services (fibers, water ...), regulation services (air, climate, sewage ...), cultural services (biodiversity, tourism ...) and supporting services (soil, nutrients...). But the surface of the oases has been declining for more than fifty years. This may seem alarming in view of the contribution of these areas to human well-being. Economic evaluation helps preserve ecosystems, revealing the challenges (Challenges for better management of these oases) they are associated. A better scientific understanding of the economic value of these services reveals important. This article reports monetary values of some ecosystem services of the oases. The values are standardized to US$ per hectare per year in 2008-2010 period prices. The mean values are found to be 117639,75Dhs /ha/year (14116,7 $/ha/year) in arable area (for 26 000ha) and 2039Dhs/ha/year (244,7$/ha/year) for total area (1500 000ha). In order to complete this evaluation, we recommend expanding this study:

- For all other ecosystem services than provisioning services with better management of other ecosystems. E.g., Atlantic Forest in Brazil.
- At the level of national ecosystems for which data from similar ecosystems are available.

The study can be applied to other oases of the pre-Saharan part of Morocco and other oasis from other parts of the world as well as other semi-arid ecosystems (e.g., the Caatinga, an important semi-arid ecosystem located in in northeastern Brazil), because of the similarity of lifestyle, climate, and water requirements etc.

The estimated value of the annual production was made on the basis of bibliographic data, supplemented by field surveys. The degradation of oasean ecosystem of Middle Draa Valley leads to the loss of ecosystem services, and causes negative impacts on livelihoods. The losses amount to some 14116,7 $/ha/year.

The state should engage more in poverty reduction projects for sustainable development in these arid areas. This will substantially help the survival of the oasis of the region.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Melinium Ecosystem Assessment –MEA-Ecosystems and Human Well-being: Current State and Trends. Dryland Systems, David Niemeijer, et al; 2005.
2. De Groot RS, Wilson MA, Boumans RM. A typology for the classification, description and valuation of ecosystem functions, goods and services, special issue on the dynamics and value of ecosystem services: integrating economic and ecological perspectives. Ecol Econ. 2002;41:393–408.
3. Howarth Farber. Accounting for the value of ecosystem services. Ecol Econ. 2002; 41:421–429.
4. Heal, Barbier, Boyle, Covich, Gloss, Hershner, Hoehn, Pringle, Polasky, Segeron, Shrader-Frechette. Valuing ecosystem services: toward better environmental decision making. The National Academies Press, Washington; 2005.
5. Barbier EB. Valuing ecosystem services as productive inputs. Econ Policy. 2007;22: 177–229.
6. Boyd, Banzhaf. What are ecosystem services? The need for standardized environmental accounting units. Ecol Econ. 2007;63:616–626.
7. Wallace KJ. Classification of ecosystem services: Problems and solutions. Biol Cons. 2007;139:235–246.
8. Fisher, Turner, Zylstra, Brouwer, De Groot, Farber, Ferraro, Green, Hadley, Harlow, Jefferiss, Kirkby, Morling, Mowatt, Naidoo, Paavola, Strassburg, Yu D, Balmford. Ecosystem services and economic theory: integration for policy-relevant research. Ecol Appl. 2008;18(8):2050–2067.
9. Mäler KG, Aniyar S, Jansson A. Accounting for ecosystem services as a way to understand the requirements for sustainable development. PNAS. 2008; 105(28):9501–9506. Available:www.pnas.org/cgi/doi/10.1073/pnas.0708856105
10. Tschirhart. Integrated ecological-economic models. Ann Rev Resour Econ. 2009; 1:381–407. Version provisoire.
11. Karmaoui A, Messouli M, Ifaadassan I, Khebiza MY. Sustainability of the Moroccan oasis system (Case study: Middle Draa Valley). Global J Technol Optim. 2015;6:170. DOI: 10.4172/2229-8711.1000170.
12. Anderson B et M'Gonigle M. Does ecological economics have a future? Contradiction and reinvention in the age of climate change. Ecological Economics. 2012;84:37–48.
13. Réserve de Biosphère des Oasis du Sud Marocain -RBOSM- Plan cadre de gestion de la Réserve de Biosphère des Oasis du Sud Marocain; 2008.
14. Karmaoui, Messouli, Yacoubi, Ifaadassan. Environmental Vulnerability to Climate Change and Anthropogenic Impacts in Dryland, (Pilot Study: Middle Draa Valley, South Morocco). J Earth Sci Clim Change S11: 002; 2014. DOI: 10.4172/2157-7617.S11-002.
15. Aanjarne M, et al. Multiplication in vitro du palmier dattier: un outil de développement des palmeraies marocaines dévastées par la maladie du Bayoud. Rabat: Institut National de Recherche Agronomique. 2001;182.
24. Killian C, Maire R. Le bayoud maladie du dattier. Bulletin of African Natural History Society. 1930;21:89-101.

25. Projet d'adaptation au changement climatique –PACC-. Oasis et Zones Arides Résilientes Territoires Engagés; 2011. Available: www.oasisadaptation.com

26. Fernandez D, Lourd M, Ouinten M, Tantaoui A, et JP. Geiger. Le Bayoud du palmier dattier: Une menace pour la phoeniciculture? Phytoma. 1995;469:36-39.

27. Office régional de mise en Valeur Agricole de Ouarzazate –ORMVAO- Etude d'amélioration de l'exploitation des systèmes d'irrigation et de drainage de l'ORMVAO- Phase 1: Diagnostic de la situation actuelle. Rapport détaillé du diagnostic. Ouarzazate. Morocco. 1995;1.

28. Karmaoui A, Messouli M, Yacoubi Khebiza M, Ilaadassan I. Environmental Vulnerability to Climate Change and Anthropogenic Impacts in Dryland, (Pilot Study: Middle Draa Valley, South Morocco). J Earth Sci Clim Change S11: 002; 2014. DOI: 10.4172/2157-7617.S11-002.

29. Costanza R, Wilson MA, Troy A, Voinov A, Liu S, D'Agostino J. The value of New Jersey's ecosystem services and natural capital; 2006.

30. Brander L. Guidance manual on value transfer methods for ecosystem services. United Nations Environment Programme (UNEP), Nairobi; 2013.

31. Glaves P, Egan D. Some methods and approached to valuing ecosystem services; 2013.

32. Bennmohammadi A, Bennmohammadi L, Ballais JL, et Risér J. Analysis of anthropogenic and natural interrelations: their impact on sanding up and desertification in southeastern Morocco (Drâa and Ziz valleys); Science et changements planétaires / Sécheresse. 2000;11(4):297-308.

33. El Moudden S. Impact du prélèvement du bois de feu sur les parcours steppiques cas d'Ighil n'Mgoun, province de Ouarzazate. Institut agronomique et vétérinaire Hassan II, Rabat. 2004;1-138.

34. Benchekroune F. La forêt dans le développement économique et social du moyen Atlas Marocain. Thèse de doctorat d'Etat Es-Sciences Agronomiques. I.A.V.Hassan II, Rabat; 1988.

35. Cameleo. Annual progress report. Rapport de Projet. 1998;187.

36. Evaluation de la vulnérabilité et des impacts du changement climatique dans les oasis du Maroc –EVICCb- et structuration de stratégies territoriales d'adaptation. Mission 1.2: Evaluation prospective des vulnérabilités et risques climatiques aux horizons 2030 et 2050; 2011.

37. Heidecke C. Economic analysis of water use and management in the Middle Drâa valley in Morocco Vorgelegt Am 22. 2009; 16-25.

38. Office régional de mise en Valeur Agricole de Ouarzazate –ORMVAO- Etablissement d’un plan directeur de mise en valeur agricole de la vallée du Draa moyen. Ouarzazate; 1981.

39. Klose A. Salinité du sol – Etude de cas de Ouled Yaoub; Projet IMPETUS. 2008; 978-3-9810311-7-1.

40. Heidecke C, Roth A. Drought effects on livestock husbandry in IMPETUS Atlas Morocco. Research Results 2000–2007. 3rd Edition, edited by Schulz, Oliver and Judex, Michael, Department of Geography, University of Bonn, Germany; 2008.

41. Zainabi A, La Vallée du Draa. Developement Alternatif et Action Communautaire September, 2001. Background Paper WDR. 2003;9.

42. Monographie de la province de Zagora – MPZ- Royaume du Maroc Ministère de l'interieur Province De Zagora; 2011.

43. Lahlou A. Environmental and socio-economic impacts of erosion and sedimentation in North Africa. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences. 1996;236:491–500.

44. Messouli M, Ben Salem A, Ghallabi B, Yacoubi-Khebiza M, Ait Boughrous A, El Alami El Filali A, Rochdane S, Hammadi F Ezzahra. Ecohydrology and groundwater resources management under global change: a pilot study in the pre-Saharan basins of southern Morocco. Options Méditerranéennes 88. CIHEAM: Bari. 2008;255–266.

45. Busche H.GK. Modeling hydrological processes in a semi-arid mountainous...
catchment at the regional scale. PhD thesis. Bonn University, Germany; 2013.

46. De Groot R, Brander L, van der Ploeg S, Costanza R, Bernard F, Braat L, van Beukering P. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services. 2012; 1(1):50-61.