Polishing effect on the physicochemical properties of porang flour using centrifugal grinder

J E Witoyo¹, E Ni'maturohmah¹, B D Argo², S S Yuwono¹ and S B Widjanarko¹,3

¹Food Science and Technology, Department of Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
²Bioprocess Engineering, Department of Agricultural Engineering, Faculty of Agricultural Technology, Universitas Brawijaya, Malang, Indonesia
³Porang Research Center, Universitas Brawijaya, Malang, Indonesia

E-mail: jatmiko.witoyo@gmail.com

Abstract. Porang tubers are an agricultural product from one of the endemic plants in Southeast and East Asia, which found in the Indonesian forest and is a vital source of glucomannan. The simple processing of porang tubers is made into chips, ground using mechanical milling followed by air fractionation. However, porang flour from mechanical milling still has high impurities, such as calcium oxalate more than 2% and not safe for human consumption. The polishing process using a centrifugal grinder is needed to remove impurities that still attached to the glucomannan cells by the friction principle. The purpose of this study was to investigate the effect of the polishing cycle on physicochemical properties of porang flour. The experimental design used polishing historical data and process was conducted in two replication. The results showed the polishing cycle had a significant effect (p < 0.05) on the glucomannan content, viscosity, degree of whiteness, calcium oxalate content, starch content, protein content, and fat content. The best of polished porang flour was obtained on the 5 times of polishing cycle based on multiple attributes calculations.

1. Introduction
Porang plants are a type of *Amorphophallus* genus, which grows in Indonesian forests, and belongs to non-cultivated or wild plants [1,2]. The most important of the chemical content of the corms of this plant is glucomannan. Glucomannan is a neutral polysaccharide composed of mannose and glucose with a ratio of 1.6:1 [3–6], which is applied to food and non-food products [7,8]. Moreover, porang tubers also contain high calcium oxalate, a compound that can cause health problems in humans [1, 9–15], making it very rare to be used for direct consumption and converted into dried porang chips [16]. Generally, the initial stage of the process of separating glucomannan and impurities, including calcium oxalate from porang chips was carried out by milling using mechanical machine followed by air clarification [9,10,17,18]. But this method considered to be less effective to separation components. Faridah et al. [10] reported the calcium oxalate content of porang flour milled using the stamp mill followed by air classification of 0.3-5.17%. Witoyo et al. [19] informed that the calcium oxalate content of porang flour produced using micro mill assisted cyclone separator by continuous process ranged from 3.92 – 5.71%. This calcium oxalate content is not suitable for human consumption, therefore it requires a further separation process. Furthermore, the other impurities, like protein, fat, starch, and ash content are also higher in the mechanical milled porang flour.
The polishing process is one of the efforts to reduce the impurity component that still passes through the mechanical milling process. The polishing process for porang flour using an abrasive type polishing machine has been done by Wachyuningsih [20] and Sary [21]. Wachyuningsih [20] claimed that 3 times of polishing cycle and 6 minutes of polishing time were able to produce porang flour with the best characteristics. Sary [21] informed the best time for polishing using an abrasive type of polishing machine is 15 minutes. Abrasive type polishing machine was effective in removing impurities, but was able to decrease the glucomannan content in porang flour [20, 21].

Centrifugal grinder is a modification of friction type of polishing machine that equipped with a water cooling system, to prevent overheating in the milling room during the process. The principle of polishing using centrifugal grinder based on the friction the porang flour with the polishing rotors, or between the porang flour, thus the impurities that surrounding the glucomannan cells will be eroded and easily separated by a cyclone separator in the device circuit. But, none information or publication about polishing porang flour using a centrifugal grinder and it’s only limited to the process of the production wheat flour or durum flour from wheat grains [22–25] or non-food materials [26]. This research was aimed to investigate the effect of the polishing cycle on the physicochemical properties of porang flour using a centrifugal grinder.

2. Material and methods

2.1. Materials

The raw material used in this study is porang flour (PF) which is produced by milling of the porang chips using micro mill assisted cyclone separator under optimum milling condition. The porang chips were collected from farmers in Nglyuy Village, Nglyuy District, Nganjuk Regency, East Java, Indonesia. All pro analysis chemical reagents were purchased from Merck Co. Ltd. The equipment for the polishing process used the centrifugal grinder, with process condition as follows: 20 Hz of feed rate speed, 30 Hz of rotor speed, and 10 Hz for fan mixing speed (According condition process was applied in the Pilot Plant Lab., Faculty of Agricultural Technology (FAT), Universitas Brawijaya (UB)).

2.2. Polishing process

Briefly, the polishing procedure of porang flour as follows: the dry chips were milling using disk mill with 20 mesh sieve and followed by the micro mill with 40 mesh sieve and fractionated by cyclone separator and obtained from the heavy fraction of porang flour (known as PF) [19]. 12.5 kg of PF was weighted using CMOS digital Scales (SD-30K Type) and entered in the input hopper. Turn on the panels of feed rate and fan mixing speed that have been set previously for 30 seconds to fill the polishing room, followed by setting the rotor speed to 30 Hz for the polishing process. Each of the polishing cycles obtained 2 fractions, namely the heavy (known as polished flour porang (PPF)) and light fractions. Each completed cycle (30 seconds after the hopper input was run out), the machine was turned off. The PPF was collected and sampled (100g) for further analysed. For the 2 - 5 polishing cycle, the PPF from the previous cycle inserted into the same input hopper, and followed the same procedure as previously described (modified from Wachyuningsih [20] and Sary [21]).

2.3. Experimental design and statistical analysis

In this study, the experimental design used the polishing of historical data from 0 to 5 times of polishing and process repeated for two replication. The mean of experimental data was analysed by one –way ANOVA using Minitab 17 trial version (Stat View, USA) at 95% of confidence level and followed by Tukey-test (95% of confidence level). The determination of best treatment for all parameters using multiple attributes calculations [27].

2.4. Methods of analysis

Calcium oxalate was determined as described by Ukpabi and Enjidoh in Iwouha and Kalu [28]. The degree of whiteness (DoW) was determined using the color reader (Minolta CR-100) as described by Impaprasert et al. [29]. Porang glucomannan content and its dry basis was determined by Chua et al.
methods [30] with minor modification. The porang flour viscosity was measured by Yanuriati et al method [31] with minor modification. Briefly, the measurement of 1% sol of porang flour was performed at room temperature using NDJ-1 rotational viscometer (12 rpm of agitated speed and 4 of the spindle). The protein, fat, and starch contents were determined by the standard AOAC method [32]. The protein was determined by the Kjeldahl method, fat content was evaluated by the Soxhlet extraction method, and starch was evaluated by acidic hydrolysis method.

3. Results and Discussion
3.1. Physicochemical properties of Porang flour (PF)

The physicochemical properties of PF were presented in Table 1. The calcium oxalate content on the PF was in the range of 1.24 – 2.64%. The polishing cycle had a significant effect (p < 0.05) on calcium oxalate content of PF. The trend showed the calcium oxalate had a negative correlation with the polishing cycle. The decreasing of calcium oxalate was caused impurities that covering the surface of the glucomannan granules eroded by friction between the polishing rotors and porang flour, or friction between the porang flour, and also the presence of a continuous fractionation process using a cyclone separator based on the principle of density. This result consistent with the previous study by Wachyuningsih [20].

The degree of whiteness of porang flour shown in Table 1. The DoW of PF was in the range of 57.89 – 59.92. The results of variance using one-way ANOVA showed the polishing cycle had a significant effect (p < 0.05) on the degree of whiteness of PF. The degree of whiteness in polished porang flour slightly increase until 2 times of the polishing cycle and little increase when the polishing cycle more than 2 times. The increasing degree of whiteness might be due to a reduction of the impurities (tobico), which envelop glucomannan cells, such as calcium oxalate, starch, protein, fat, and ash. Mawarni and Widjanarko [27] reported that the degree of whiteness related to impurity components. The fewer impurities that surround the glucomannan granule, so the porang flour will be brighter. This result was agreeable with the previous study by Sary [21], Paiva et al.[33] and Monks et al.[34].

Glucomannan content is the important parameter on porang flour quality. Glucomannan content on PF was in the range of 47.45 – 60.67 % d.b. The polishing cycle had a significant effect (p < 0.05) on glucomannan content of PF based on one-way ANOVA analysis. Glucomannan content increase with increasing polishing cycle. The increasing of glucomannan content negatively correlated with the impurity component surrounding the glucomannan cell. The more non-glucomannan components eroded during the polishing process due to the mechanical force of the machine or between porang flour, thus increasing the glucomannan content in PF. In addition, the mechanical force was considered capable of breaking and separating compact structures from non-glucomannan components that envelop glucomannan granules [20]. The impurity component which has been split and separated from the glucomannan granule will produce small particles that have a lower density than glucomannan so that it will follow the air velocity in the fractionation process using a cyclone separator.

The viscosity of PF was in the range 3625 – 10844 cPs. The analysis of variance using one-way ANOVA indicated that the polishing cycle had a significant effect (p < 0.05) on the viscosity of PF. The trend showed that the viscosity of porang flour increased with the increasing of the polishing cycle. Viscosity data presented in Table 1. In this present study, the viscosity correlated with glucomannan content. The higher the glucomannan affected on the higher viscosity in polished porang flour [35]. In addition, the increasing viscosity of porang flour is also influenced by the water absorbability and the hygroscopicity of the material [20]. Glucomannan was able to absorb water and float up to 138 - 200 times compared to starch which only expanded to 25 times [36].

The starch content of PF ranged from 3.37 – 36.53%. The analysis of variance by one-way ANOVA showed the polishing cycle had a significant effect (p < 0.05) on the starch content of PF. In general, the starch content decreased as a function of the polishing cycle increased. This trend is in line with the research of Brou et al. [37] about red sorghum polishing process through collision using a hammer mill. In another response, the protein content of PF ranged from 0.71 - 6.01%. In this study, polishing led to the linear decline of the protein content in the PF. Based on the one-way ANOVA, the
polishing cycle also had a significant effect (p < 0.05) on the protein content of PF. The data of the starch and protein content of PF are presented in Table 1.

The fat content of PF ranged from 0.06 - 0.47% (Table 1). Based on one-way ANOVA, the polishing cycle had a significant effect (p < 0.05) on the fat content of PF. Moreover, in general, the trend showed an increase in the polishing cycle, reducing the fat content on PF. This phenomenon might be due to the starch, protein and fat content (the impurities) that encapsulated glucomannan cell peeled off during the polishing process and separate by cyclone separator simultaneously. Similar results of protein and fat content affected by polishing reported by [33,34,38–40] with rice or pigmented rice as material research.

Table 1. Physicochemical properties of porang flour

Parameter (%)	Polishing Cycle (Times)	p-value					
	0	1	2	3	4	5	
Calcium Oxalate	2.64b	2.17c	1.91bc	1.76cd	1.45bc	1.24c	0.000
Glucomannan(*)	47.45c	55.69b	55.79b	58.49ab	60.04a	60.67a	0.000
Degree of Whiteness(*)	57.89b	58.18b	59.40a	59.50a	59.84a	59.92a	0.000
Viscosity(**)	3625b	6375d	9000c	9625b	10625b	10844a	0.000
Starch Content	36.53b	51.1bc	8.00b	5.61bc	4.82bc	3.37bc	0.000
Protein Content	6.01a	1.36b	1.06c	0.86cd	0.76d	0.71e	0.000
Fat Content	0.47a	0.07c	0.18b	0.09c	0.10e	0.06e	0.000

Note: Different letters in the same row showed the significantly different (p < 0.05) based on the tukey test. *in dry basis, *no unit (100 values assumed as pure white), **in cPs

3.2. Determination of best treatment

The best treatment was obtained on the 5 times of polishing cycle, with 1.24% of calcium oxalate, 60.67 % d.b. of glucomannan, 59.92 of the degree of whiteness, 10844 cPs of viscosity, 3.37% of starch content, 0.71% of protein content, and 0.06% of fat content. Extraction and purification of PPF with chemicals solvents, such as ethanol are needed to obtain porang flour with high purify before application in food product. The viscosity, degree of whiteness and calcium oxalate of porang flour in this study were higher compared with the Wachyuningsih [20] data, but the glucomannan content was lower than her data. The characteristics of best porang flour reported by Wachyuningsih’s are as follows: the viscosity of 5250 cPs, degree of whiteness of 50.75, glucomannan of 72.66%, and calcium oxalate 0.61%. Moreover, the best results of this study had an advantage in the viscosity of porang flour compared with data reported by Sary [21]. The best results from Sari’s are as follows: 0.46% of calcium oxalate, 65.87% of glucomannan content, 60.59 of degree of whiteness, and 5222 cPs of viscosity. The different results might be caused by several factors, such as origin of raw materials, initial chemical composition of chips/tubers, pretreatment process, age of the tuber used, and the different analysis methods.

4. Conclusions

Polishing effect on the physicochemical characteristics of porang flour using centrifugal grinder was successfully investigated. The results showed that the polishing affected on the physicochemical properties of porang flour. The polishing cycle using centrifugal grinder was enhanced the glucomannan content, viscosity, and degree of whiteness, as well as decreased the non glucomannan component (calcium oxalate content, fat content, protein content and starch content) in the polished porang flour. The best of polished porang flour based multiple attributes calculations for all responses was obtained on the 5 times of polishing cycle, with 1.24% of calcium oxalate, 60.67 % d.b. of glucomannan, 59.92 of the degree of whiteness, 10844 cPs of viscosity, 3.37% of starch content, 0.71% of protein content, and 0.06% of fat content.
Acknowledgment

The project was funded by RISTEKDIKTI, the Republic of Indonesia by 2019 PMDSU Grant, and also thanks for Pilot Plant Laboratory, Faculty of Agricultural Technology (FAT), Universitas Brawijaya (UB) for equipment facility to conduct this project.

References

[1] Widjanarko S B, Faridah A, Sutrisno A 2014 Optimization of ultrasound-assisted extraction of konjac flour from *Amorphophallus muelleri* Blume Proceedings of 17th Gum and Stabilisers for the Food Industry pp. 109–121.

[2] Sumarwoto 2005 Iles-iles (*Amorphophallus muelleri* Blume); description and other characteristics *Biodiversitas J. Biol. Diver.* 6 3 185–189.

[3] Chao W, Xu M, Wen-ping L, Qiu P, Yuan-yuan G, Dong-sheng L 2012 Study on rheological behavior of konjac glucomannan *Physics Procedia* 33 25–30.

[4] Takigami S 2009 Konjac Mannan In Phillips G O, P A Williams (Eds.) *Handbook of Hydrocolloids* 2nd Edition Woodhead Publishing Limited pp. 889-901.

[5] Kato K, Matsuda K 1969 Studies on the chemical structure of konjac mannan *Agric. Biol. Chem.* 33 10 1446–1453.

[6] Kato K, Watanabe T, Matsuda K 1970 Studies on the chemical structure of konjac mannan: Part II. Isolation and characterization of oligosaccharides from the enzymatic hydrolyzed of the mannan *Agric. Biol. Chem.* 34 4 532–539.

[7] Zhang C, Da Chen J, Yang F Q 2014 Konjac glucomannan, a promising polysaccharide for OCDDS *Carbohydr. Polym.* 104 1 175–181.

[8] Zhang, Y Q, Xie B J, Gan X 2005 Advance in the applications of konjac glucomannan and its derivatives *Carbohydr. Polym.* 60 1 27–31.

[9] Faridah A, Widjanarko S B, Sutrisno A 2010 Optimasi untuk peningkatan kandungan glukomanan pada keripik porang dengan proses penggiliran mekanik (Optimization of increasing glucomannan content in porang (*Amorphophallus onchophyllus*) chip by mechanical grinding process) *Agrotek* 4 2 135–145. [In Indonesian]

[10] Faridah A, Widjanarko S B, Sutrisno A, Susilo B 2010 Optimasi produksi tepung porang secara mekanis menggunakan response surface methodology (Optimization of mechanical porang flour production using response surface methodology) *JT1* 158–166. [In Indonesian]

[11] Faridah A, Widjanarko S B 2013 Optimization of multilevel ethanol leaching process of porang flour (*Amorphophallus muelleri*) using response surface methodology *IJASEIT* 3 2 74–80.

[12] Faridah A 2016 Comperation of porang flour (*Amorphophallus muelleri*) purification method: conventional maceration (gradient ethanol leaching) and ultrasonic maceration method using response surface methodology *IJASEIT* 6 2 265-272.

[13] Sutrisno A 2011 Penurunan kalsium oksalat menggunakan penggiling stamp untuk pembangunan industry kecil berbasis tepung iles-iles *Amorphophallus muelleri Blume* (The reduction of calcium oxalate using stamp mill for the development of small industry of iles-iles flour (*Amorphophallus muelleri* Blume)) *Jurnal Pangan* 20 4 331–340. [In Indonesian]

[14] Chairiyah N, Harijati N, Mastuti R 2013 Variation of calcium oxalate (CaOx) crystals in porang (*Amorphophallus muelleri* Blume) *AJPS* 4 1765–1773.

[15] Chairiyah N, Harijati N, Mastuti R 2016 Variation of calcium oxalate (CaOx) crystals in porang combs (*Amorphophallus muelleri* Blume) at different harvest time *AJPS* 7 306–315.

[16] Ni’maturrohmah E 2019 Optimasi dan aplikasi tray oven rotary pada pengeringan keripik porang (*Amorphophallus muelleri Blume*) pada skala pilot berdasarkan response of surface method (Optimization and application of tray oven rotary in drying porang chips (*Amorphophallus muelleri Blume*) pilot plant scale based on response of surface method) Master Thesis Universitas Brawijaya Malang. [In Indonesia]

[17] Nandiwilastio N, Widjanarko S B 2014 Pengaruh rasio chips dengan bola penumbuk *ball mill*
terhadap rendemen dan kemampuan hidrasi tepung porang (The effect of ratio between chips and grinder ball on ball mill method against the yield and hydration capability of porang flour) JPA 2 1 106-112. [In Indonesian]

[18] Widjanarko S B, Widyastuti E, Rozaq F I 2015 Pengaruh lama penggilingan tepung porang (Amorphophallus muelleri blume) dengan metode ball mill (cyclone separator) terhadap sifat fisik dan kimia tepung porang (The effect of porang (Amorphophallus muelleri Blume) milling time using ball mill (cyclone separator method) toward physical and chemical properties of porang flour) JPA 3 3 867-877. [In Indonesian]

[19] Witojo J E, Widjanarko S B, Argo B D 2019 The effect of feed rate and inlet air velocity to reduce calcium oxalate on porang chips using micro-mill assisted cyclone separator AIP Conf. Proceed. 2021 050013 1-8.

[20] Wachyuningsih N S 2011 Pengaruh polishing pada properti fisik dan kimia tepung porang (The effect of polishing on the physicochemical properties of porang flour) Undergraduate Thesis Universitas Brawijaya Malang. [In Indonesian]

[21] Sary I A 2018 Pengaruh waktu polishing terhadap properti fisika dan kimia tepung porang (Effect of polishing time on the physico-chemical properties of porang flour) Undergraduate Thesis Universitas Brawijaya Malang. [In Indonesian]

[22] Khalid K H, Manthey F, Simsek S 2018 Centrifugal milling of wheat bran Cereal Chem. 95 2 330–341.

[23] Khalid K H, Manthey F, Simsek S 2017 Whole grain wheat flour production using an ultracentrifugal mill Cereal Chem. 94 6 1001–1007.

[24] Deng L, Manthey F A 2017 Laboratory-scale milling of whole-durum flour quality : effect of mill configuration and seed conditioning J. Sci. Food Agric. 97 10 3141–3150.

[25] Deng L 2017 Whole-Wheat Flour Milling and The Effect of Durum Genotypes and Traits on Whole-Wheat Pasta Quality Doctoral Thesis North Dakota State University USA.

[26] Sevostyanov V S, Uralskij V I, Uralskij A V, Sinitsa E V 2018 Multifunctional centrifugal grinding unit IOP Conf. Ser. Mater. Sci. . Eng. 327 042112 1-6

[27] Mawarni R T, Widjanarko S B 2015 Penggilingan metode ball mill dengan pemurnian kimia terhadap penurunan oksalat tepung porang (Grinding by ball mill with chemical purification on reducing oxalate in porang flour) JPA 3 2 571-581. [In Indonesian]

[28] Iwuoha C I, Kalu F A 1995 Calcium oxalate and physico-chemical properties of cocoyam (Colocasia esculenta and Xanthosoma sagittifolium) tuber flours as affected by processing Food Chem. 54 61–86.

[29] Impaprasert R, Borompichaichartkul C, Szrednicki G 2014 A New drying approach to enhance quality of konjac glucomannan extracted from Amorphophallus muelleri Dry. Technol. 32 851–860.

[30] Chua M, Chan K, Hocking T J, Williams P A, Perry C J, Baldwin T C 2012 Methodologies for the extraction and analysis of konjac glucomannan from corns of Amorphophallus konjac K. Koch Carbohydr. Polym. 87 3 2202–2210.

[31] Yanuriati A, Marseno D W, Rochmadi, Harmayani, E 2017 Characteristics of glucomannan isolated from fresh tuber of Porang (Amorphophallus muelleri Blume) Carbohydr. Polym. 156 56–63.

[32] AOAC 2005 Official Method of Analysis 18th Edition Association of Official Analytical Washington DC.

[33] Paiva F F, Vanier N L, Berrios J D J, Pan J, Villanova F de A, Takeoka G, Elias M C 2014 Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling J. Food Compos. Anal 35 10-17.

[34] Monks J L F, Vanier N L, Casaril J, Berto R M, de Oliveira M, Gomes C B, de Carvalho M P, Dias A R G, Elias M C 2013 Effects of milling on proximate composition, folic acid, fatty acids and technological properties of rice J. Food Compos. Anal. 30 73-79.

[35] Parry J 2010 Konjac glucomannan In Imeson A. Food Stabilizers, Thickeners, and Gelling
[36] Sumarwoto 2007 Review: kandungan mannan pada tanaman iles-iles (*Amorphophallus muelleri* Blume.) (Review: vonstituen of mannan of iles-iles (*Amorphophallus muelleri* Blume.)) *Bioteknologi* 4 1 28-32. [In Indonesian]

[37] Brou K, Guehi T, Konan A G, Gbakayoro J B, Gnarki D 2013 Degree of milling effects on the sorghum (*Sorghum bicolor*) flours, physicochemical properties and kinetics of starch digestion *IJCME* 7 2 125-131.

[38] Reddy C K, Kimi L, Haripriya S, Kang N 2017 Effects of polishing on proximate composition, physico-chemical characteristics, mineral composition and antioxidant properties of pigmented rice *Rice Sci.* 24 5 241–252.

[39] Paiva F F, Vanier N L, Berrios J D, Pinto V Z, Wood D, Williams T, Pan J, Elias M C 2016 Polishing and parboiling effect on the nutritional and technological properties of pigmented rice *Food Chem.* 191 105–112.

[40] Somaratne G M, Frasantha B D R, Dunuwila G R, Chandrasekara A, Wijesinghe D G N G, Gunasekara D C S 2017 Effect of polishing on glycemic index and antioxidant properties of red and white basmati rice *Food Chem.* 237 716–723.