Electronic Supplementary Information

Supported cobalt catalysts for selective hydrogenation of ethyl levulinate to various chemicals

Youliang Cena,b, Shanhui Zhua,*, Jing Guoa,b, Jiachun Chaia,b, Weiyong Jiaoa, Jianguo Wanga, Weibin Fana,*

aState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China

bUniversity of Chinese Academy of Sciences, Beijing 100049, PR China

*Corresponding authors.

E-mail addresses: zhushanhui@sxicc.ac.cn (S. Zhu); fanwb@sxicc.ac.cn (W. Fan).
Fig. S1 XRD patterns of the as-prepared Co-based catalysts.
Fig. S2 1H NMR spectrum of highly pure EHP obtained over Ru/TiO$_2$ at room temperature without using solvent.

1H NMR (400.13 MHz, D$_2$O) δ = 4.08-4.02 (m, 2H), δ = 3.74-3.69 (m, 1H), δ = 2.36-2.32 (m, 2H), δ=1.66 (m, 2H), δ=1.17-1.13 (t, 3H), δ = 1.08-1.07 (d, 3H).
Fig. S3 13C NMR spectrum of highly pure EHP obtained over Ru/TiO$_2$ at room temperature without using solvent.

13C NMR (100.6 MHz, D$_2$O) $\delta = 176.45, 66.81, 61.56, 33.05, 30.47, 21.81, 13.35$.
Fig. S4 Positive-ion ESI mass spectrum of product obtained over Co/SBA-15 in the hydrogenation of EL.

EHP : ESI-MS m/z: 147.1004 [(M+H)$^+$, C$_7$H$_{15}$O$_3$], m/z: 169.0857 [(M+Na)$^+$, C$_7$H$_{14}$O$_3$Na], Anal. Calcd for C$_7$H$_{14}$O$_3$: 146.1684. The Na$^+$ came from the standard calibration sodium formate of mass spectrometer.
Fig. S5 Magnetic separation of Co/ZrO$_2$ from reaction liquid by an external magnet.
Fig. S6 TEM images and Co particle size distributions of (A) Co/ZrO$_2$ after 1 recycle, (B) Co/ZrO$_2$ after 2 recycles, and (C) Co/ZrO$_2$ after 3 recycles.
Fig. S7 (a) Co 2p, (b) Zr 3d and (c) O 1s XPS spectra of fresh and used Co/ZrO$_2$ catalysts.
Fig. S8 Catalytic results obtained over Co/ZrO$_2$ within first four repeated runs without regeneration

(reaction conditions: 17.4 mmol EL, 15 mL 1,4-dioxane, 140 °C; 4 MPa H$_2$, 1.5 h and 0.1 g Co/ZrO$_2$).
Fig. S9 Negative-ion ESI mass spectrum of the MIBK-extracted organic species occluded in used catalyst.

EHP : ESI-MS m/z: 195.0393 [(M-H)-, C_{10}H_{11}O_{4}], Anal. Calcd for C_{10}H_{12}O_{4}: 196.074. m/z: 293.1839 [(M-H)-, C_{15}H_{17}O_{6}], Anal. Calcd for C_{15}H_{18}O_{6}: 294.111.
Table S1 Catalytic results of Co/ZrO$_2$ and reported heterogeneous catalysts for the hydrogenation of LA and its ester to GVL.

Catalyst	Substrate	Reaction conditions	T[°C]	Conv. [%]	Yield [%]	Productivity a [mol$_{GVL}$ g$_{metal}$⁻¹ h⁻¹]	Ref
5% Ru/C	LA	1,4-dioxane, H$_2$ (12 bar)	130	99	96	1.20	1
5% Ru/TiO$_2$	LA	ethanol/water, H$_2$ (12 bar)	130	81	71	0.92	1
5% Ru/C	LA	solvent-free, H$_2$ (12 bar)	190	100	100	5.20	1
3Pd-10Nb-AC	EL	water, H$_2$ (5 bar)	100	87	81	0.54	2
Raney Ni	EL	2-PrOH, Ar	r.t.	-	87	4.4x10⁻³	3
Cu-Fe	LA	water, H$_2$ (70 bar)	200	99	90	0.038	4
Cu-WO$_3$/ZrO$_2$	LA	ethanol, H$_2$ (50 bar)	200	100	87	0.021	5
Cu-ZrO$_2$	ML b	methanol, H$_2$ (34 bar)	200	95	87	0.035	6
Co	EL	solvent free, H$_2$ (33 bar)	130	99	94	0.022	7
4Co/Al$_2$O$_3$	LA	1,4-dioxane, H$_2$ (50 bar)	180	100	>99	0.37	8
Co/ZrO$_2$	EL	1,4-dioxane, H$_2$ (40 bar)	190	100	82.5c	1.5	this work
Co/ZrO$_2$	EL	1,4-dioxane, H$_2$ (40 bar)	190	100	94.3d	0.87	this work

a Calculated from literature data by using the active metal mass in a given catalyst. b ML is methyl levulinate. c The reaction time is 1 h. d The 12th recycle with regeneration of the catalyst by calcining at 550 °C for 2 h in air and reducing 500 °C for 2 h after four recycles (No. 12 in Fig. 4).
References

1. M. G. Al-Shaal, W. R. H. Wright and R. Palkovits, *Green Chem.*, 2012, 14, 1260-1263.
2. F. Ye, D. Zhang, T. Xue, Y. Wang and Y. Guan, *Green Chem.*, 2014, 16, 3951-3957.
3. Z. Yang, Y. B. Huang, Q. X. Guo and Y. Fu, *Chem. Comm.*, 2013, 49, 5328-5330.
4. K. Yan and A. C. Chen, *Fuel*, 2014, 115, 101-108.
5. Q. Xu, X. L. Li, T. Pan, C. G. Yu, J. Deng, Q. X. Guo and Y. Fu, *Green Chem.*, 2016, 18, 1287-1294.
6. A. M. Hengne and C. V. Rode, *Green Chem.*, 2012, 14, 1064-1072.
7. H. C. Zhou, J. L. Song, H. L. Fan, B. B. Zhang, Y. Y. Yang, J. Y. Hu, Q. G. Zhu and B. X. Han, *Green Chem.*, 2014, 16, 3870-3875.
8. X. D. Long, P. Sun, Z. L. Li, R. Lang, C. G. Xia and F. W. Li, *Chinese J. Catal.*, 2015, 36, 1512-1518.