High-quality carnivore genomes from roadkill samples enable species delimitation in aardwolf and bat-eared fox

Rémi Allio¹*, Marie-Ka Tilak¹, Céline Scornavacca¹, Nico L. Avenant², Erwan Corre³, Benoit Nabholz¹, and Frédéric Delsuc¹*

¹Institut des Sciences de l’Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, France remi.allio@umontpellier.fr marie-ka.tilak@umontpellier.fr celine.scornavacca@umontpellier.fr benoit.nabholz@umontpellier.fr frederic.delsuc@umontpellier.fr
²National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa navenant@nasmus.co.za
³CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France corre@sb-roscoff.fr

*Correspondence: remi.allio@umontpellier.fr, frederic.delsuc@umontpellier.fr
Abstract
In a context of ongoing biodiversity erosion, obtaining genomic resources from wildlife is becoming essential for conservation. The thousands of yearly mammalian roadkill could potentially provide a useful source material for genomic surveys. To illustrate the potential of this underexploited resource, we used roadkill samples to sequence reference genomes and study the genomic diversity of the bat-eared fox (Otocyon megalotis) and the aardwolf (Proteles cristata) for which subspecies have been defined based on similar disjunct distributions in Eastern and Southern Africa. By developing an optimized DNA extraction protocol, we successfully obtained long reads using the Oxford Nanopore Technologies (ONT) MinION device. For the first time in mammals, we obtained two reference genomes with high contiguity and gene completeness by combining ONT long reads with Illumina short reads using hybrid assembly. Based on re-sequencing data from few other roadkill samples, the comparison of the genetic differentiation between our two pairs of subspecies to that of pairs of well-defined species across Carnivora showed that the two subspecies of aardwolf might warrant species status (P. cristata and P. septentrionalis), whereas the two subspecies of bat-eared fox might not. Moreover, using these data, we conducted demographic analyses that revealed similar trajectories between Eastern and Southern populations of both species, suggesting that their population sizes have been shaped by similar environmental fluctuations. Finally, we obtained a well resolved genome-scale phylogeny for Carnivora with evidence for incomplete lineage sorting among the three main arctoid lineages. Overall, our cost-effective strategy opens the way for large-scale population genomic studies and phylogenomics of mammalian wildlife using roadkill.

Keywords
Roadkill, Genomics, Population genomics, Phylogenomics, Species delimitation, Carnivora, Systematics, Genetic differentiation, Mitogenomes, Africa.
Introduction

In the context of worldwide biodiversity erosion, obtaining large-scale genomic resources from wildlife is essential for biodiversity assessment and species conservation. An underexploited but potentially useful source of material for genomics is the thousands of annual wildlife fatalities due to collisions with cars. Mammalian roadkill in particular are unfortunately so frequent that several citizen science surveys have been implemented on this subject in recent decades (Périquet et al., 2018; Shilling et al., 2015). For example, in South Africa alone, over 12,000 wildlife road mortality incidents were recorded by The Endangered Wildlife Trust’s Wildlife and Roads Project from 1949 to 2017 (Endangered Wildlife Trust 2017). Initially developed to measure the impact of roads on wildlife, these web-based systems highlight the amount of car-wildlife collision. The possibility of retrieving DNA from roadkill tissue samples (Etherington et al., 2020; Maigret, 2019) could provide new opportunities in genomics by giving access not only to a large number of specimens of commonly encountered species but also to more elusive species that might be difficult to sample otherwise.

Recent advances in the development of high-throughput sequencing technologies have made the sequencing of hundreds or thousands of genetic loci cost efficient and have offered the possibility of using ethanol-preserved tissues, old DNA extracts, and museum specimens (Blaimer et al., 2016; Guschanski et al., 2013). This method combined with third generation long read sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) sequencing have increased the sizes of the sequenced molecules from several kilobases to several megabases. The relatively high level of sequencing errors (10-15%) associated with these technologies can be compensated by sequencing at a high depth of coverage to avoid sequencing errors in de novo genome assembly and thus obtain reference genomes with high base accuracy, contiguity, and
completeness (Koren et al., 2017; Shafin et al., 2020; Vaser et al., 2017). Originally designed to provide a portable sequencing method in the field, ONT instruments such as the MinION (Jain et al., 2016) allow direct sequencing of DNA molecules with simplified library preparation procedures even in tropical environments with elevated temperature and humidity conditions (Blanco et al., 2019; Parker et al., 2017; Pomerantz et al., 2018; Srivathsan et al., 2018). This approach is particularly suitable for sequencing roadkill specimens for which it is notoriously difficult to obtain a large amount of high-quality DNA because of post-mortem DNA degradation processes. Furthermore, it is possible to correct errors in ONT long reads by combining them with Illumina short reads, either to polish de novo long read-based genome assemblies (Batra et al., 2019a; Jain et al., 2018; Nicholls et al., 2019; Walker et al., 2014) or to construct hybrid assemblies (Di Genova et al., 2018; Gan et al., 2019; Tan et al., 2018; Zimin et al., 2013). In hybrid assembly approaches, the accuracy of short reads with high depth of coverage (50-100x) allows the use of long reads at lower depth of coverage (10-30x) essentially for scaffolding (Armstrong et al., 2020; Kwan et al., 2019). A promising hybrid assembly approach combining short and long read sequencing data has been implemented in MaSuRCA software (Zimin et al., 2017, 2013). This approach consists of transforming large numbers of short reads into a much smaller number of longer highly accurate “super reads” allowing the use of a mixture of read lengths. Furthermore, this method is designed to tolerate a significant level of sequencing error. Initially developed to address short reads from Sanger sequencing and longer reads from 454 Life Sciences instruments, this method has already shown promising results for combining Illumina and ONT/PacBio sequencing data in several taxonomic groups, such as plants (Scott et al., 2020; Wang et al., 2020; Zimin et al., 2017), birds (Gan et al., 2019), and fishes (Jiang et al., 2019; Kadobianskyi et al., 2019; Tan et al., 2018) but not yet in mammals.
To illustrate the potential of roadkill as a useful resource for whole genome sequencing and assembly, we studied two of the most frequently encountered mammalian roadkill species in South Africa (Périquet et al., 2018): the bat-eared fox (*Otocyon megalotis*, Canidae) and the aardwolf (*Proteles cristata*, Hyaenidae). These two species are among several African vertebrate taxa presenting disjunct distributions between Southern and Eastern African populations that are separated by more than a thousand kilometres (e.g. Ostrich (Miller et al., 2011), Ungulates Lorenzen et al. 2012). Diverse biogeographical scenarios involving the survival and divergence of populations in isolated savannah refugia during the climatic oscillations of the Pleistocene have been proposed to explain these disjunct distributions in ungulates (Lorenzen et al., 2012). Among Carnivora, subspecies have been defined based on this peculiar allopatric distribution not only for the black-backed jackal (*Canis mesomelas*; Walton and Joly 2003) but also for both the bat-eared fox (Clark, 2005) and the aardwolf (Koehler and Richardson, 1990) (**Fig. 1**). The bat-eared fox is divided into the Southern bat-eared fox (*O. megalotis megalotis*) and the Eastern bat-eared fox (*O. megalotis virgatus*) (Clark, 2005), and the aardwolf is divided into the Southern aardwolf (*P. cristata cristata*) and the Eastern aardwolf (*P. cristata septentrionalis*) (Koehler and Richardson, 1990). However, despite known differences in behaviour between subspecies within both species (Wilson et al., 2009), no genetic or genomic assessment of population differentiation has been conducted to date. In other taxa, similar allopatric distributions have led to genetic differences between populations and several studies reported substantial intraspecific genetic structuration between Eastern and Southern populations (Atickem et al., 2018; Barnett et al., 2006; Dehghani et al., 2008; Lorenzen et al., 2012; Miller et al., 2011; Rohland et al., 2005). Here we investigate whether similar genetic structuration and population differentiation have occurred between subspecies of bat-eared fox and aardwolf using whole genome data.
Figure 1. Disjunct distributions of the aardwolf (*Proteles cristata*) and the bat-eared fox (*Otocyon megalotis*) in Eastern and Southern Africa. Within each species, two subspecies have been recognized based on their distributions and morphological differences (Clark, 2005; Koehler and Richardson, 1990).

To evaluate the taxonomic status of the proposed subspecies within both *O. megalotis* and *P. cristata*, we first sequenced and assembled two reference genomes from roadkill samples by combining ONT long reads and Illumina short reads using the MaSuRCA hybrid assembler. The quality of our genome assemblies was assessed by comparison to available mammalian genome assemblies. Then, to estimate the genetic diversity of these species and to perform genome-scale species delimitation analyses, two additional individuals from the disjunct South African and Tanzanian populations of both species were resequenced at high depth of coverage using Illumina short reads. Using this additional population genomic data, we estimated the genetic diversity and differentiation of each subspecies pair via an FST-like measure, which we called the genetic differentiation index, and the result compared with the genetic differentiation among pairs of well-established carnivoran species. Our results indicate that the two subspecies of *P. cristata* might warrant species status whereas the two subspecies of *O. megalotis* may not. Our results showing that high-quality reference mammalian genomes could be obtained through combination of short- and long-read
sequencing methods provide opportunities for large-scale population genomic studies of mammalian wildlife using (re)sequencing of samples collected from roadkill.

Results

Mitochondrial diversity within Carnivora

The first dataset, composed of complete carnivoran mitogenomes available in GenBank combined with the newly generated sequences of the two subspecies of *P. cristata*, the two subspecies of *O. megalotis*, *Parahyaena brunnea*, *Speothos venaticus* and *Vulpes vulpes*, plus the sequences extracted from UCE libraries for *Bdeogale nigripes*, *Fossa fossana*, and *Viverra tangalunga*, consists of 142 species or subspecies representing all families of Carnivora. Maximum likelihood (ML) analyses reconstructed a robust mitogenomic phylogeny, with 91.4% of the nodes (128 out of 140) recovered with bootstrap support higher than 95% (Fig. 2a). The patristic distances based on complete mitogenomes between the allopatric subspecies of aardwolf and bat-eared fox were 0.045 and 0.020 substitutions per site, respectively (Table S1). These genetic distances are comparable to those observed between different well-defined species of Carnivora such as the red fox (*Vulpes vulpes*) and the fennec (*Vulpes zerda*) (0.029) or the Steppe polecat (*Mustela eversmannii*) and the Siberian weasel (*Mustela sibirica*) (0.034) (see Table S1).

To further assess the genetic distances between the two pairs of subspecies and compare them to both polymorphism and divergence values observed across Carnivora, two supplemental datasets including at least two individuals per species were assembled by retrieving all COX1 and CYTB sequences, which are the two widely sequenced mitochondrial markers for carnivores, available on GenBank. These datasets include 3,657 COX1 sequences for 150 species and 6,159 CYTB sequences for 203 species of Carnivora. After adding the corresponding sequences from the newly assembled mitogenomes, ML
phylogenetic inference was conducted on each dataset (Supplementary materials). The
patristic distances between all tips of the resulting phylogenetic trees were measured and
classified into two categories: (i) intraspecific variation (polymorphism) for distances inferred
among individuals of the same species and (ii) interspecific divergence for distances inferred
among individuals of different species. Despite an overlap between polymorphism and
divergence in both mitochondrial genes, this analysis revealed a threshold between
polymorphism and divergence of approximately 0.02 substitutions per site for Carnivora
(Fig. 2b). With a nucleotide distance of 0.054 for both COX1 and CYTB, the genetic
distance observed between the two subspecies of aardwolf (Proteles ssp.) was higher than the
majority of the intraspecific distances observed across Carnivora. However, with a nucleotide
distances of 0.020 for COX1 and 0.032 for CYTB, the genetic distance observed between the
two subspecies of bat-eared fox (Otocyon ssp.) was clearly in the ambiguous zone and did not
provide a clear indication of the specific taxonomic status of these populations.

Finally, to test whether the two pairs of allopatric subspecies diverged synchronously
or in two different time periods, Bayesian molecular dating inferences were performed on the
142-taxon ML mitogenomic tree. The resulting divergence times were slightly different
depending on the clock model used (strict clock [CL], autocorrelated [LN or TK02] and
uncorrelated [UGAM or UCLM]) (Supplementary materials). Cross-validation analyses
resulted in the selection of the LN and UGAM models as the models with the best fit based
on a higher cross-likelihood score than that of CL (LN and UGAM versus CL mean scores =
35 ± 8). Unfortunately, these two statistically indistinguishable models provided different
divergence times for the two pairs of subspecies, with LN favouring a synchronous
divergence (approximately 1 Mya [95% credibility interval (CI) : 6.72 - 0.43]; Table S2),
while UGAM favoured an asynchronous divergence (~0.6 [CI: 0.83 - 0.39] Mya for O.
megalotis ssp. and ~1.3 [CI: 1.88 - 0.93] Mya for P. cristata ssp.; Table S2). However, the
three chains performed with the UGAM model recovered highly similar ages for the two
nodes of interest with low CI 95% values whereas the three chains performed with the LN
model recovered less similar ages between chains and high CI 95% values (Table 1). Visual
inspection of the likelihood trajectories for the LN chains seems to indicate general lack of
convergence caused by several local optima.
Figure 2. Representation of the mitochondrial genetic diversity within Carnivora with a) the mitogenomic phylogeny inferred from 142 complete Carnivora mitogenomes including those of the two populations of aardwolf (Proteles cristata) and bat-eared fox (Otocyon megalotis) and b) intraspecific (orange) and the interspecific (red) genetic diversities observed for the two mitochondrial markers COX1 and CYTB.
Assembling reference genomes from roadkill

Considering the DNA quality and purity required to perform single-molecule sequencing with ONT, a specific protocol to extract DNA from roadkill was developed (Tilak et al., 2020). This protocol was designed to specifically select the longest DNA fragments present in the extract also containing short degraded fragments. This protocol increased the median size of the sequenced raw DNA fragments three-fold in the case of aardwolf (Tilak et al., 2020). In total, after high-accuracy basecalling, adapter trimming, and quality filtering, 27.3 Gb of raw Nanopore long reads were sequenced using 16 MinION flow cells for the Southern aardwolf (*P. c. cristata*) and 33.0 Gb using 13 flow cells for the Southern bat-eared fox (*O. m. megalotis*) (Table 1). Due to quality differences among the extracted tissues for both species, the N50 of the DNA fragment size for *P. cristata* (9,175 bp) was about twice higher than the N50 of the DNA fragment size obtained for *O. megalotis* (4,393 bp). The quality of the reads basecalled with the high accuracy option of Guppy was significantly higher than the quality of those translated with the fast option, which led to better assemblies (see Fig. S1).

Complementary Illumina sequencing returned 522.8 and 584.4 million quality-filtered reads per species corresponding to 129.5 Gb (expected coverage = 51.8x) and 154.8 Gb (expected coverage = 61.6x) for *P. c. cristata* and *O. m. megalotis*, respectively. Regarding the resequenced individuals of each species, on average 153.5 Gb were obtained with Illumina resequencing (Table 1).

Table 1. Summary of sequencing and assembly statistics of the genomes generated in this study.

Species	Subspecies	Voucher	Raw reads (M)	Cleaned reads	Nbr of scaffs	Estimated coverage	Nbr of bases (Gb)	N50 (bp)	Average size (Mb)	Nbr of scaffs	Assembly score	OMMI genes	Missing bases (%)		
Pseudois cristata	cristata	TSS07	71.6	522.8	129.50	51.8	16	27.5	9,175	10.0	2.30	5,660	1,300	92.8	22.43
Pseudois cristata	agrupantalae	TSS491	66.8	526.1	140.73	56.3	NA	NA	NA	NA	NA	NA	NA	22.86	
Pseudois cristata	agrupantalae	SMMZ2018584	75.9	516.2	132.44	53.0	NA	NA	NA	NA	NA	NA	NA	22.36	
Otocyon megalotis	megalotis	TSS059	71.0	584.4	134.81	61.6	13	33	4,393	12.0	2.75	11,081	728	92.9	22.02
Otocyon megalotis	megalotis	TSS306	86.1	820.7	240.71	96.3	NA	NA	NA	NA	NA	NA	NA	22.02	
Otocyon megalotis	megalotis	TSSN1515028	66.7	584.1	100.30	60.1	NA	NA	NA	NA	NA	NA	NA	22.36	

The two reference genomes were assembled using MinION long reads and Illumina short reads in combination with MaSuRCA v3.2.9 (Zimin et al., 2013). Hybrid assemblies for both species were obtained with a high degree of contiguity with only 5,669 scaffolds and an N50 of 1.3 Mb for the aardwolf (P. cristata) and 11,081 scaffolds and an N50 of 728 kb for the bat-eared fox (O. megalotis) (Table 1). Exhaustive comparisons with 503 available mammalian assemblies revealed a large heterogeneity among taxonomic groups and a wide variance within groups in terms of both number of scaffolds and N50 values (Fig. 3, Table S3). Xenarthra was the group with the lowest quality genome assemblies, with a median number of scaffolds of more than one million and a median N50 of only 15 kb. Conversely, Carnivora contained genome assemblies of much better quality, with a median number of scaffolds of 15,872 and a median N50 of 4.6 Mb, although a large variance was observed among assemblies for both metrics (Fig. 3, Table S3). Our two new genomes compared favourably with the available carnivoran genome assemblies in terms of contiguity showing slightly less than the median N50 and a lower number of scaffolds than the majority of the other assemblies (Fig. 3, Table S3). Comparison of two hybrid assemblies with Illumina-only assemblies obtained with SOAPdenovo illustrated the positive effect of introducing Nanopore long reads even at moderate coverage by reducing the number of scaffolds from 409,724 to 5,669 (aardwolf) and from 433,209 to 11,081 (bat-eared fox) while increasing the N50 from 17.3 kb to 1.3 Mb (aardwolf) and from 22.3 kb to 728 kb (bat-eared fox). With regard to completeness based on 4,104 single-copy mammalian BUSCO orthologues, our two hybrid assemblies are among the best assemblies with more than 90% complete BUSCO genes and less than 4% missing genes (Fig. 4, Table S4). As expected, the two corresponding Illumina-only assemblies were much more fragmented and had globally much lower BUSCO scores (Fig. 4, Table S4).
Figure 3. Comparison of 503 mammalian genome assemblies from 12 taxonomic groups using bean plots of the a) number of scaffolds, and b) scaffold N50 values ranked by median values. Thick black lines show the medians, dashed black lines represent individual data points, and polygons represent the estimated density of the data. Note the log scale of the Y axes. The bat-eared fox (*Otocyon megalotis*) and aardwolf (*Proteles cristata*) assemblies produced in this study using SOAPdenovo and MaSuRCA are indicated by asterisks. Bean plots were computed using BoxPlotR (Spitzer et al., 2014).
Figure 4. BUSCO completeness assessment of 67 Carnivora genome assemblies visualized as bar charts representing percentages of complete single-copy (light blue), complete duplicated (dark blue), fragmented (yellow), and missing (red) genes ordered by increasing percentage of total complete genes. The bat-eared fox (Otocyon megalotis) and aardwolf (Proteles cristata) assemblies produced in this study using MaSuRCA and SOAPdenovo are indicated by asterisks.
Genome-wide analyses of population structure

To evaluate the population structure between the subspecies of *P. cristata* and *O. megalotis*, the number of shared heterozygous sites, unique heterozygous sites, and homozygous sites between individuals was computed to estimate an FST-like statistic (hereafter called the **genetic differentiation index** or GDI). Since we were in possession of two individuals for the Southern subspecies and only one for the Eastern subspecies of both species, the genetic differentiation between the two individuals within the Southern subspecies and between the Southern and Eastern subspecies was computed. To account for the variation across the genome, 10 replicates of 100 regions with a length of 100 kb were randomly chosen to estimate genetic differentiation. Interestingly, in both species, the mean heterozygosity was higher in the Southern subspecies than in the Eastern subspecies. For aardwolf, the mean heterozygosity was 0.189 per kb (sd = 0.010) in the Southern population and 0.121 per kb (sd = 0.008) in the Eastern population. For the bat-eared fox, the mean heterozygosity was 0.209 per kb (sd = 0.013) in the Southern population and 0.127 per kb (sd = 0.003) in the Eastern population. This heterozygosity level is low compared to those of other large mammals (Diez-del-Molino et al. 2018) and is comparable to that of the Iberian lynx, the cheetah or the brown hyena, which have notoriously low genetic diversity (Abascal et al., 2016; Casas-Marce et al., 2013; Westbury et al., 2018).

Since we had very limited power to fit the evolution of the genetic differentiation statistics with a hypothetical demographic scenario because of our limited sample size, we chose a comparative approach and applied the same analyses to four well-defined species pairs of carnivorans for which similar individual sampling was available. The genetic differentiation estimates between the two individuals belonging to the same subspecies (Southern populations in both cases) were on average equal to 0.005 and 0.014 for *P. c. cristata* and *O. m. megalotis*, respectively. This indicated that the polymorphism observed in
the two individuals within the Southern subspecies of each species was comparable (genetic
differentiation index close to 0) and thus that these two subpopulations are likely panmictic
(Fig. 5). In contrast, the genetic differentiation estimates for the two pairs of individuals
belonging to the different subspecies were respectively equal to 0.533 and 0.294 on average
for *P. cristata* ssp. and *O. megalotis* ssp., indicating that the two disjunct populations are
genetically structured. To contextualize these results, the same genetic differentiation
measures were estimated for four other well-defined species pairs (Fig. 5). First, the
comparison of the polymorphism of two individuals of the same species led to intraspecific
GDIs ranging from 0.029 on average for polar bear (*Ursus maritimus*) to 0.137 for lion
(*Panthera leo*). As expected, comparing the polymorphisms of two individuals between
closely related species led to a higher interspecific GDI ranging from 0.437 on average for
the wolf/golden jackal (*Canis lupus/Canis aureus*) pair to 0.760 for the lion/leopard (*P.
leo/Panthera pardus*) pair (Fig. 5). The genetic differentiation indices between the grey wolf
(*C. lupus*) and the golden jackal (*C. aureus*) averaged 0.44, indicating that the two subspecies
of aardwolf (GDI = 0.533) are genetically more differentiated than these two well-defined
species, and only slightly less differentiated than the brown bear (*Ursus arctos*) and the polar
bear (*U. maritimus*). Conversely, the genetic differentiation obtained between the bat-eared
fox subspecies (GDI = 0.294) were lower than the genetic differentiation estimates obtained
for any of the four reference species pairs evaluated here (Fig. 5).
Figure 5: Genetic differentiation indices obtained from the comparison of intraspecific (orange) and interspecific (red) polymorphisms in four pairs of well-defined Carnivora species and for the subspecies of aardwolf (Proteles cristata) and bat-eared fox (Otocyon megalotis) (grey).

Effective population size reconstructions

We used the pairwise sequential Markovian coalescent (PSMC) model to estimate the ancestral effective population size (N_e) trajectory over time for each sequenced individual. For both the aardwolf and the bat-eared fox, the individual from Eastern African populations showed a continuous decrease in N_e over time, leading to the recent N_e being lower than that in Southern African populations (Fig. 6). This is in agreement with the lower heterozygosity observed in the Eastern individuals of both species. For the bat-eared fox, the trajectories of the three sampled individuals were synchronised approximately 200 kya ago (Fig. 6a), which could correspond to the time of divergence between the Southern and Eastern populations. In contrast, the N_e trajectories for the aardwolf populations did not synchronise over the whole
period (~2 Myrs). Interestingly, the Southern populations of both species showed a marked increase in population size between ~10-30 kya before sharply decreasing in more recent times (Fig. 6).

Figure 6: PSMC estimates of the change in effective population size over time for the Eastern (orange) and Southern (blue and purple) populations of a) bat-eared fox and b) aardwolf. $\mu = \text{mutation rate of } 10^{-8}$ mutations per site per generation and $g = \text{generation time of 2 years}$. Vertical red lines indicate 20kyrs and 40kyrs.

Phylogenomics of Carnivora

Phylogenetic relationships within Carnivora were inferred from a phylogenomic dataset comprising 52 carnivorous species (including the likely new *Proteles septentrionalis* species) representing all but two families of Carnivora (Nandiniidae and Prionodontidae). The non-annotated genome assemblies of these different species were annotated with a median of 18,131 functional protein-coding genes recovered for each species. Then, single-copy orthologous gene identification resulted in a median of 12,062 out of the 14,509 single-copy orthologues extracted from the OrthoMaM database for each species, ranging from a minimum of 6,305 genes for the California sea lion (*Zalophus californianus*) and a maximum of 13,808 for the dog (*Canis lupus familiaris*) (Table S5). Our new hybrid assemblies allowed the recovery of 12,062 genes for the Southern aardwolf (*P. c. cristata*), 12,050 for the Eastern aardwolf (*P. c. septentrionalis*), and 11,981 for the Southern bat-eared fox (*O. m.*
megalotis) (Table 1). These gene sets were used to create a supermatrix consisting of 14,307 genes representing a total of 24,041,987 nucleotide sites with 6,495,611 distinct patterns (27.0%) and 22.8% gaps or undetermined nucleotides.

Phylogenomic inference was first performed on the whole supermatrix using ML. The resulting phylogenetic tree was highly supported, with all but one node being supported by maximum bootstrap (UFBS) values (Fig. 7). To further dissect the phylogenetic signal underlying this ML concatenated topology, we measured gene concordance (gCF) and site concordance (sCF) factors to complement traditional bootstrap node-support values. For each node, the proportion of genes (gCF) or sites (sCF) that supported the node inferred with the whole supermatrix was compared to the proportion of the genes (gDF) or sites (sDF) that supported an alternative resolution of the node (Fig. 7, Supplementary materials). Finally, a coalescent-based approximate species tree inference was performed using ASTRAL-III based on individual gene trees (Supplementary materials). Overall, the three different analyses provided well-supported and almost identical results (Fig. 7). The order Carnivora was divided into two distinct suborders: a cat-related clade (Feliformia) and a dog-related clade (Caniformia). Within Feliformia, the first split separated Felidae (felids) from Viverriforma, a clade composed of the four families Viverridae (civets and genets), Eupleridae (fossa), Herpestidae (mongooses), and Hyaenidae (hyaenas). In hyaenids, the two species of termite-eating aardwolves (P. cristata and P. septentrionalis) were the sister-group of a clade composed of the carnivorous spotted (Crocuta crocuta) and striped (Hyaena hyaena) hyenas. Congruent phylogenetic relationships among Feliformia families and within hyaenids were also retrieved with the mitogenomic data set (Fig. 2a). The short internal nodes of Felidae were the principal source of incongruence among the three different analyses with concordance factor analyses pointing to three nodes for which many sites and genes support alternative topologies (Fig. 7) including one node for which the coalescent-based
approximate species tree inference supported an alternative topology (Supplementary materials) to the one obtained with ML on the concatenated supermatrix. In Viverroidea, Viverridae split early from Herpestoidea regrouping Hyaenidae, Herpestidae, and Eupleridae, within which Herpestidae and Eupleridae formed a sister clade to Hyaenidae. Within Caniformia, Canidae (canids) was recovered as a sister group to Arctoidea. Within Canidae, in accordance with the mitogenomic phylogeny, the Vulpini tribe, represented by *O. megalotis* and *V. vulpes*, was recovered as the sister clade of the Canini tribe, represented here by *Lycaon pictus* and *C. l. familiaris*. The Arctoidea were recovered as a major clade composed of eight families grouped into three subclades: Ursoidea (Ursidae), Pinnipedia (Otariidae, Odobedinae, and Phocidae), and Musteloidea, composed of Ailuridae (red pandas), Mephitidae (skunks), Procyonidae (raccoons), and Mustelidae (badgers, martens, weasels, and otters). Within Arctoidea, the ML phylogenetic inference on the concatenation provided support for grouping Pinnipedia and Musteloidea to the exclusion of Ursidae (bears) with maximum bootstrap support (Fig. 7), as in the mitogenomic tree (Fig. 2a). However, the concordance factor analyses revealed that many sites and many genes actually supported alternative topological conformations for this node characterized by a very short branch length (sCF=34.1, SDF1=29.2, sDF2=36.7, gCF=46.9, gDF1=18.6, gDF2=18.2, gDFP=16.3) (Fig. 7). In Pinnipedia, the clade Odobenidae (walruses) plus Otariidae (eared seals) was recovered to the exclusion of Phocidae (true seals), which was also in agreement with the mitogenomic scenario (Fig. 2a). Finally, within Musteloidea, Mephitidae represented the first offshoot, followed by Ailuridae, and a clade grouping Procyonidae and Mustelidae. Phylogenetic relationships within Musteloidea were incongruent with the mitogenomic tree, which alternatively supported the grouping of Ailuridae and Mephitidae (Fig. 2a).
Figure 7. Phylogenomic tree reconstructed from the nucleotide supermatrix composed of 14,307 single-copy orthologous genes for 52 species of Carnivora plus one outgroup (Manis javanica). The family names in the legend are ordered as in the phylogeny.

Discussion

High-quality mammalian genomes from roadkill using MaSuRCA hybrid assembly

Long-read sequencing technologies and associated bioinformatic tools hold promise for making chromosome-length genome assemblies the gold standard (Dudchenko et al., 2017; Koepfli et al., 2015; Rice and Green, 2019). However, obtaining relatively large mammalian genomes of high quality remains a challenging and costly task for researchers working
outside of large genome sequencing consortia (Li et al., 2010; Lindblad-Toh et al., 2011). Despite the accuracy of short-read sequencing technologies, the use of PCR amplification is needed to increase the depth of coverage, creating uneven genomic representation and leading to sequencing biases such as GC-rich regions being less well sequenced than AT-rich ones in classical Illumina libraries (Aird et al., 2011; Tilak et al., 2018). Moreover, the use of short reads involves difficulties in the assembly of repeated regions or transposable elements longer than the sequencing read length. The use of less GC-biased long reads of single DNA molecules and ultra-long reads spanning repeated genomic regions provides a powerful solution for obtaining assemblies with high contiguity and completeness, although long-read sequencing has limited accuracy (10-20% errors). Long reads can indeed be used alone at a high depth of coverage permitting autocorrection (Koren et al., 2017; Shafin et al., 2020) or in combination with short reads for (1) scaffolding short-read contigs (Armstrong et al., 2020; Kwan et al., 2019), (2) using short reads to polish long-read contigs (Batra et al., 2019b; Datema et al., 2016; Jansen et al., 2017; Michael et al., 2018), or (3) optimizing the assembly process by using information from both long and short reads (Diaz-Viraqué et al., 2019; Gan et al., 2019; Jiang et al., 2019; Kadobianskyi et al., 2019; Tan et al., 2018; Wang et al., 2020; Zimin et al., 2017). Given the previously demonstrated efficiency of the MaSuRCA tool for the assembly of large genomes (Scott et al., 2020; Wang et al., 2020; Zimin et al., 2017), we decided to rely on hybrid sequencing data combining the advantages of Illumina short-read and Nanopore long-read sequencing technologies.

With an increasing number of species being threatened worldwide, obtaining genomic resources from mammalian wildlife can be difficult. We decided to test the potential of using roadkill samples, a currently underexploited source material for genomics (Etherington et al., 2020; Maigret, 2019). Despite limited knowledge and difficulties associated with de novo assembly of non-model species (Etherington et al., 2020), we designed a protocol to produce...
DNA extracts of suitable quality for Nanopore long-read sequencing from roadkill (Tilak et al., 2020). Additionally, we tested the impact of the accuracy of the MinION base calling step on the quality of the resulting MaSuRCA hybrid assemblies. In line with previous studies (Wenger et al., 2019; Wick et al., 2019), we found that using the high accuracy option rather than the fast option of Guppy 3.1.5 leads to more contiguous assemblies by increasing the N50 value. By relying on this protocol, we were able to generate two hybrid assemblies by combining Illumina reads at relatively high coverage (80x) and MinION long reads at relatively moderate coverage (12x) which provides genomes with high contiguity and completeness. These represent the first two mammalian genomes obtained with such a hybrid Illumina/Nanopore approach using the MaSuRCA assembler for non-model carnivoran species: the aardwolf (*P. cristata*) and the bat-eared fox (*O. megalotis*). Despite the use of roadkill samples, our assemblies compare favourably, in terms of both contiguity and completeness, with the best carnivoran genomes obtained so far from classical genome sequencing approaches that do not rely on complementary optical mapping or chromatin conformation approaches. Overall, our carnivoran hybrid assemblies are fairly comparable to those obtained using the classic Illumina-based genome sequencing protocol involving the sequencing of both paired-end and mate-paired libraries (Li et al., 2010). The benefit of adding Nanopore long reads is demonstrated by the fact that our hybrid assemblies are of better quality than all the draft genome assemblies generated using the DISCOVAR de novo protocol based on a PCR-free single Illumina 250 bp paired-end library (Weisenfeld et al. 2014; DISCOVAR) used in the 200 Mammals Project of the Broad Genome Institute (The 200 mammals project). These results confirm the capacity of the MaSuRCA hybrid assembler to produce quality assemblies for large and complex genomes by leveraging the power of long Nanopore reads (Wang et al., 2020). Moreover, these two hybrid assemblies could form the basis for future chromosome-length assemblies by adding complementary HiC data (van
Berkum et al., 2010) as proposed in initiatives such as the Vertebrate Genome Project (Koepfli et al., 2015) and DNAZoo (Dudchenko et al., 2017). Our results demonstrate the feasibility of producing high-quality mammalian genome assemblies at moderate cost using roadkill and should encourage genome sequencing of non-model mammalian species in ecology and evolution laboratories.

Genomic evidence for two distinct species of aardwolves

The mitogenomic distances inferred between the subspecies of *O. megalotis* and *P. cristata* were comparable to those observed for other well-defined species within Carnivora. Furthermore, by comparing the genetic diversity between several well-defined species (divergence) and several individuals of the same species (polymorphism) based on the COX1 and CYTB genes across Carnivora, we were able to pinpoint a threshold of approximately 0.02 substitutions per base separating divergence from polymorphism, which is in accordance with a recent study of naturally occurring hybrids in Carnivora (Allen et al., 2020). This method, also known as the barcoding gap method (Meyer and Paulay, 2005), allowed us to show that the two subspecies of *P. cristata* present a genetic divergence greater than the threshold, whereas the divergence is slightly lower for the two subspecies of *O. megalotis*. These results seem to indicate that the subspecies *P. c. septentrionalis* might have to be elevated to the species level (*P. septentrionalis*). Conversely, for *O. megalotis*, this first genetic indicator seems to confirm the distinction at the subspecies level. However, mitochondrial markers have some well-identified limitations (Galtier et al., 2009), and it is difficult to properly determine a threshold between polymorphism and divergence across Carnivora. The measure of mtDNA sequence distances can thus be seen only as a first useful indicator for species delineation. The examination of variation at multiple genomic loci in a
phylogenetic context, combined with morphological, behavioural and ecological data, is required to establish accurate species boundaries.

The newly generated reference genomes allowed us to perform genome-wide evaluation of the genetic differentiation between subspecies using short-read resequencing data of a few additional individuals of both species. Traditionally, the reduction in polymorphism in two subdivided populations \((p \text{ within})\) compared to the population at large \((p \text{ between})\) is measured with several individuals per population (FST; Hudson et al. 1992). However, given that the two alleles of one individual are the results of the combination of two a priori non-related individuals of the population \((i.e., \text{ the parents})\), with a large number of SNPs, the measurement of heterozygosity can be extended to estimation of the (sub)population polymorphism. Furthermore, in a panmictic population with recombination along the genome, different chromosomal regions can be considered to be independent and can be used as replicates for heterozygosity estimation. In this way, genome-wide analyses of heterozygosity provide a way to assess the level of polymorphism in a population and a way to compare genetic differentiation between two populations. If we hypothesize that the two compared populations are panmictic, picking one individual or another of the population has no effect \((i.e., \text{ there is no individual with excess homozygous alleles due to mating preference across the population})\), and the population structure can be assessed by comparing the heterozygosity of the individuals of each population compared to the heterozygosity observed for two individuals of the same population \((\text{see Methods})\). Such an index of genetic differentiation, by measuring the level of population structure, could provide support to establish accurate species boundaries. In fact, delineating species has been and still is a complex task in evolutionary biology (Galtier, 2019; Ravinet et al., 2016; Roux et al., 2016). Given that accurately defining the species taxonomic level is essential for a number of research fields, such as macroevolution (Faurby et al., 2016) or conservation (Frankham et
al., 2012), defining thresholds to discriminate between populations or subspecies in different
species is an important challenge in biology. However, due to the disagreement on the
definition of species, the different routes of speciation observed in natura and the different
amount of data available among taxa, adapting a standardized procedure for species
delineation seems complicated (Galtier, 2019).

As proposed by Galtier (Galtier, 2019), we decided to test the taxonomic level of the
P. cristata and O. megalotis subspecies by comparing the genetic differentiation observed
between Eastern and Southern populations within these species to the genetic differentiation
measured for well-defined Carnivora species. Indeed, estimation of the genetic differentiation
either within well-defined species (polymorphism) or between two closely related species
(divergence) allowed us to define a threshold between genetic polymorphism and genetic
divergence across Carnivora (Fig. 5). Given these estimates, and in accordance with
mitochondrial data, the two subspecies of P. cristata (1) present more genetic differentiation
between each other than the two well-defined species of golden jackal (Canis aureus) and
wolf (Canis lupus), and (2) present more genetic differentiation than the more polymorphic
species of the dataset, the lion (P. leo). Despite known cases of natural hybridization reported
between C. aureus and C. lupus (Galov et al., 2015; Gopalakrishnan et al., 2018), the
taxonomic rank of these two species is well accepted. In that sense, given the species used as
a reference, the two subspecies of P. cristata seem to deserve to be elevated to the species
level. The situation is less clear regarding the subspecies of O. megalotis. Indeed, while the
genetic differentiation observed between the two subspecies is significantly higher than the
polymorphic distances observed for all the well-defined species of the dataset, there is no
species in our dataset that exhibits equivalent or lower genetic divergence than a closely
related species. This illustrates the limits of delineating closely related species due to the
continuous nature of the divergence process (De Queiroz, 2007). The subspecies of O.
megalotis fall into the “grey zone” of the speciation continuum (De Queiroz, 2007; Roux et al., 2016) and are likely undergoing speciation due to their vicariant distributions. To be congruent with the genetic divergence observed across closely related species of Carnivora (according to our dataset), we thus propose that (1) the taxonomic level of the P. cristata subspecies be reconsidered by elevating the two subspecies P. c. cristata and P. c. septentrionalis to the species level, and (2) the taxonomic level for the two subspecies of O. megalotis be maintained. These new taxonomic results should prompt a deeper investigation of morphological and behavioural differences that have been reported between the two proposed subspecies of aardwolf to formally validate our newly proposed taxonomic arrangement. They also have conservation implications, as the status of the two distinct aardwolf species will have to be re-evaluated separately in the International Union for Conservation of Nature (IUCN) Red List of Threatened Species (IUCN 2020, 2020).

Population size variation and environmental change

The Pairwise Sequentially Markovian Coalescent (PSMC) analyses revealed that the Southern and Eastern African populations have different effective population size estimates over time, confirming that they have been genetically isolated for several thousand years, which is more so for the aardwolf than for the bat-eared fox. This supports the hypothesis of two separate events leading to the same disjunct repartitions for the two taxa, in accordance with mitochondrial dating. Nevertheless, the population trends are rather similar and are characterized by continuous declines between 1 Mya and 100-200 kya that are followed by an increase that is much more pronounced in the Southern populations of both species between 30-10 kya. The similar trajectories exhibited by both species suggest that they were under the influence of similar environmental factors, such as climate and vegetation variations.
Aardwolves and bat-eared foxes live in open environments including short-grass plains, shrubland, and open and tree savannahs, and both are highly dependent on herbivorous termites for their diet. Therefore, the fluctuation of their populations could reflect the evolution of these semi-arid ecosystems determining prey abundance during the last million years. However, the global long-term Plio-Pleistocene African climate is still debated. For Eastern Africa, some studies have suggested an evolution towards increased aridity (deMenocal, 2004, 1995) whereas others have proposed the opposite (Grant et al., 2017; Maslin et al., 2014; Trauth et al., 2009). Our data therefore support the latter hypothesis, as a global long-term tendency towards a wetter climate in East Africa could have been less favourable for species living in open environments.

Southern populations exhibit a similar decreasing trend between 1 Mya and 100 kya. Once again, the relevant records appear contradictory. This could be the result of regional variation across South Africa, with aridification in the Southwestern part and wetter conditions in the Southeast (Caley et al., 2018; Johnson et al., 2016). Finally, the 30-10 kya period appears to have been more humid (Chase et al., 2019; Chevalier and Chase, 2015; Lim et al., 2016). This seems inconsistent with the large population increase detected in Southern populations of both species; however, the large regions of the Namib Desert that are currently unsuitable could have been more favorable in wetter conditions.

The global decrease in population size detected in the Southern and Eastern populations could also reflect the fragmentation of a continuous ancestral range. The global trend towards a wetter climate may have favoured the development of the tropical rainforest in central Africa creating a belt of unsuitable habitat. This is in line with previous studies describing diverse biogeographical scenarios involving the survival and divergence of ungulate populations in isolated savannah refuges during Pleistocene climate oscillations (Lorenzen et al., 2012). In this respect, it could be interesting to study population trends in
other species living in semi-arid environments and having a similar range as disconnected populations. Interestingly, several bird species also have similar distributions including the Orange River francolin (*Scleroptila gutturalis*), the greater kestrel (*Falco rupicoloides*), the double-banded courser (*Smutsornis africanus*), the red-fronted tinkerbird (*Pogoniulus pusillus*), the cape crow (*Corvus capensis*) and the black-faced waxbill (*Estrilda erythronotos*), supporting the role of the environment in the appearance of these disjunct repartitions. Finally, these new demographic results showing recent population size declines in both regions in both species might be taken into account when assessing the conservation status of the two distinct aardwolf species and bat-eared fox subspecies.

Genome-scale phylogeny of Carnivora

In this study, we provide a new phylogeny of Carnivora including the newly recognized species of aardwolf (*P. septentrionalis*). The resulting phylogeny is fully resolved with all nodes supported with UFBS values greater than 95% and is congruent with previous studies (Doronina et al., 2015; Eizirik et al., 2010) (**Fig. 5**). Across Carnivora, the monophyly of all superfamilies described are strongly supported (Flynn et al., 2010) and are divided into two distinct suborders: a cat-related clade (Feliformia) and a dog-related clade (Caniformia). On the one hand, within Feliformia, the different families and their relative relationships are well supported and are in accordance with previous studies (Eizirik et al., 2010). There is one interesting point regarding the Felidae family. While almost all the nodes of the phylogeny were recovered as strongly supported from the three phylogenetic inference analyses (ML inferences, concordance factor analyses and coalescent-based inferences), one third of the nodes (3 out of 9) within Felidae show controversial node supports. This result is not surprising and is consistent with previous studies arguing for ancient hybridization among Felidae (Li et al., 2016). Another interesting point regarding Feliformia and particularly
Hyaenidae is the relationship of the two aardwolves. The two species, *P. cristasta* and *P. septentrionalis* form a sister clade to the clade composed of the striped hyena (*H. hyaena*) and the spotted hyena (*C. crocuta*), in accordance with previous studies (Koepfli et al., 2006; Westbury et al., 2018) and the two subfamilies Protelinae and Hyaeninae that have been proposed for these two clades, respectively. However, although the phylogenetic inferences based on the supermatrix of 14,307 single-copy orthologues led to a robust resolution of this node according to the bootstrap supports, both concordance factors and coalescent-based analyses revealed conflicting signals with support for alternative topologies. In this sense, the description and acceptance of the Hyaninae and Protelinae families still require further analyses, and including genomic data for the brown hyena (*Parahyena brunnea*) seems essential (Westbury et al., 2018).

On the other hand, within Caniformia, the first split separates Canidae from the Arctoidea. Within Canidae, the bat-eared fox (*O. megalotis*) is grouped with the red fox (*V. vulpes*), the other representative of the tribe Vulpini, but with a very short branch and concordance analyses indicating conflicting signals on this node. Regarding Arctoidea, historically, the relationships between the three superfamilies of arctoids have been contradictory and debated. The least supported scenario from the litterature is that in which the clade Ursoidea/Musteloidea is a sister group of Pinnipedia (Flynn and Nedbal, 1998). Based on different types of phylogenetic characters, previous studies found support for both the clade Ursoidea/Pinnipedia (Agnarsson et al., 2010; Meredith et al., 2011; Rybczynski et al., 2009) and the clade Pinnipedia/Musteloidea (Arnason et al., 2007; Eizirik et al., 2010; Flynn et al., 2005; Sato et al., 2009, 2006; Schröder et al., 2009). However, investigations of the insertion patterns of retroposed elements revealed the occurrence of incomplete lineage sorting (ILS) at this node (Doronina et al., 2015). With a phylogeny inferred from 14,307 single-copy orthologous genes, our study, based on both gene trees and supermatrix
approaches, gives support to the variant Pinnipedia/Musteloidea excluding Ursoidea as the best supported conformation for the Arctoidea tree (Doronina et al., 2015; Eizirik et al., 2010; Sato et al., 2006). Interestingly, in agreement with Doronina et al. (Doronina et al., 2015), our concordance factor analysis supports the idea that the different conformations of the Arctoidea tree are probably due to incomplete sorting of the lineage by finding almost the same number of sites supporting each of the three conformations (34.11%, 29.61% and 36.73%). However, although trifurcation of this node is supported by these proportions of sites, a majority of genes taken independently (gene concordance factors: 6,624 out of 14,307 genes) and the coalescent-based species tree approach (quartet posterior probabilities q1 = 0.53, q2 = 0.24, q3 = 0.24) support the clade Pinnipedia/Musteloidea excluding Ursoidea. Considering these results, the difficulty of resolving this trifurcation among Carnivora (Delisle and Strobeck, 2005) has likely been contradictory due to the ILS observed among these three subfamilies (Doronina et al., 2015), which led to different phylogenetic scenarios depending on the methods (Peng et al., 2007) or markers (L and YP, 2006) used. Another controversial point, likely due to incomplete lineage sorting (Doronina et al., 2015) within the Carnivora phylogeny, is the question regarding which of Ailuridae and Mephitidae is the most basal family of the Musteloidea (Doronina et al., 2015; Eizirik et al., 2010; Flynn et al., 2005; Sato et al., 2009). Interestingly, our phylogenetic reconstruction based on mitogenomic data recovered the clade Ailuridae/Mephitidae as a sister clade of all other Musteloidea families. The phylogenomic inferences based on the genome-scale supermatrix recovered the Mephitidae family as the most basal family of Musteloidea. This result is supported by both coalescent-based inferences and concordance factors. In that sense, despite incomplete lineage sorting (Doronina et al., 2015), at the genomic level, it seems that the Mephitidae family would be the most basal family of Musteloidea.
Overall, the phylogenomic inference based on 14,307 single-copy orthologous genes provides a new vision of the evolution of Carnivora. The addition of information from both concordance factor analyses (Minh et al., 2020) and coalescent-based inference (Zhang et al., 2018) supports previous analyses showing controversial nodes in the Carnivora phylogeny. Indeed, this additional information seems essential in phylogenomic analyses based on thousands of markers, which can lead to highly resolved and well-supported phylogenies despite support for alternative topological conformations for controversial nodes (Allio et al., 2020b; Jeffroy et al., 2006; Kumar et al., 2012).

Conclusions

The protocol developed here to extract the best part of the DNA from roadkill samples provides a good way to obtain genomic data from wildlife. Combining Illumina sequencing data and Oxford Nanopore long-read sequencing data using the MaSuRCA hybrid assembler allowed us to generate high-quality reference genomes for the Southern aardwolf (*P. cristata*) and the Southern bat-eared fox (*O. megalotis megalotis*). This cost-effective strategy provides opportunities for large-scale population genomic studies of mammalian wildlife using resequencing of samples collected from roadkill. Indeed, by defining a genetic differentiation index based on only three individuals, we illustrate the potential of the approach for genome-scale species delineation in both species for which subspecies have been defined based on disjunct distributions and morphological differences. Our results, based on both mitochondrial and nuclear genome analyses, indicate that the two subspecies of *P. cristata* warrant elevation to the species taxonomic level; the *O. megalotis* subspecies do not warrant this status, but are likely ongoing species. Hence, by generating reference genomes with high contiguity and completeness, this study shows a concrete application for genomics of roadkill samples.
Methods

Biological samples

We conducted fieldwork in the Free State province of South Africa in October 2016 and October 2018. While driving along the roads, we opportunistically collected tissue samples from four roadkill specimens from which we sampled ear necropsies preserved in 95% Ethanol: two bat-eared foxes (O. megalotis NMB TS305, GPS: 29°1'52"S, 25°9'38"E and NMB TS306, GPS: 29°2'33"S, 25°10'26"E), and two aardwolves (P. cristata NMB TS307, GPS: 29°48'45"S, 26°15'0"E and NMB TS491, GPS: 29°8'42"S, 25°39'4"E). As aardwolf specimen NMB TS307 was still very fresh, we also sampled muscle and salivary gland necropsies preserved in RNAlater™ stabilization solution (Thermo Fisher Scientific). These roadkill specimens have been sampled under standing collecting permit number S03016 issued by the Department of National Affairs in Pretoria (South Africa) granted to the National Museum, Bloemfontein. These samples have been sent to France under export permits (JM 3007/2017 and JM 5043/2018) issued by the Free State Department of Economic, Small Business Development, Tourism and Environmental Affairs (DESTEA) in Bloemfontein (Free State, South Africa) and import permits issued by the Direction régionale de l'environnement, de l'aménagement et du logement (DREAL) Occitanie in Toulouse (France). All tissue samples collected in this study have been deposited in the mammalian tissue collection of the National Museum, Bloemfontein (Free State, South Africa).

Mitochondrial barcoding and phylogenetics

Mitogenomic dataset construction

In order to assemble a mitogenomic data set for assessing mitochondrial diversity among P. cristata and O. megalotis subspecies, we generated seven new Carnivora mitogenomes using
Illumina shotgun sequencing (Table S6). Briefly, we extracted total genomic DNA total using the DNeasy Blood and Tissue Kit (Qiagen) for *P. c. cristata* (NMB TS307), *P. c. septentrionalis* (NMS Z.2018.54), *O. m. megalotis* (NMB TS305), *O. m. virgatus* (FMNH 158128), *Speothos venaticus* (ISEM T1624), *Vulpes vulpes* (ISEM T3611), and *Parahyaena brunnea* (ISEM FD126), prepared Illumina libraries following the protocol of Tilak et al. (Tilak et al., 2015), and sent libraries to the Montpellier GenomiX platform for single-end 100 bp sequencing on a Illumina HiSeq 2500 instrument to obtain about 5 to 10 million reads per sample. We then assembled and annotated mitogenomes from these single-read shotgun sequencing data with MitoFinder v1.0.2 (Allio et al., 2020a) using default parameters. We also used MitoFinder to extract three additional mitogenomes from paired-end Illumina capture libraries of ultra-conserved elements (UCEs) and available from the Short Read Archive (SRA) of NCBI for *Viverra tangalunga*, *Bdeogale nigripes*, and *Fossa fossana*. Additional read mappings were done with Geneious (Kearse et al., 2012) to close gaps when the mitochondrial genome was fragmented. Finally, we downloaded all RefSeq carnivoran mitogenomes available in Genbank (135 species as of July 1st, 2019) and the mitogenome of the Malayan pangolin (*Manis javanica*) to use as outgroup.

Mitogenomic phylogenetics and dating

Mitochondrial protein coding genes were individually aligned using MACSE v2 (Ranwez et al., 2018) with default parameters, and ribosomal RNA genes using MAFFT (Katoh and Standley, 2013) algorithm FFT-NS-2 with option --adjustdirection. A nucleotide supermatrix was created by concatenating protein-coding and ribosomal RNA genes for the 142 taxa (140 species and 2 subspecies). Phylogenetic inferences were performed with Maximum likelihood (ML) as implemented in IQ-TREE 1.6.8 (Nguyen et al., 2014) with the GTR+G4+F model. Using the resulting topology, divergence time estimation was performed using Phylobayes v4.1c (Lartillot et al., 2013) with strict clock (CL), autocorrelated (LN or
TK02), and uncorrelated (UGAM or UCLM) models combined with 18 fossil calibrations (Table S7). Three independent Markov chains Monte Carlo (MCMC) analyses starting from a random tree were run until 10,000 generated cycles with trees and associated model parameters sampled every cycle. A burn-in of 25% was applied before constructing the majority-rule Bayesian consensus tree with the readdiv subprogram. Finally, to determine the best-fitting clock model, cross-validation analyses were performed with Phylobayes by splitting the dataset randomly into two parts. Then, parameters of one model were estimated on the first part of the dataset (here representing 90%) and the parameter values were used to compute the likelihood of the second part of the dataset (10%). This procedure was repeated ten times for each model. Finally, the likelihood of each repeated test was computed and summed for each model with the readcv and sumcv subprograms, respectively. The molecular clock model with the highest cross-likelihood scores was considered as the best fitting.

Mitochondrial diversity and barcoding gap analyses

To check if a threshold between intraspecific variation and interspecific divergence could be determined across Carnivora (Meyer and Paulay, 2005), two mitochondrial barcoding datasets were assembled from all COX1 and CYTB sequences available for Carnivora plus the corresponding sequences for the two subspecies of O. megalotis and P. cristata, respectively. After aligning each barcoding dataset with MACSE v2, ML phylogenetic inferences were performed with IQ-TREE 1.6.6 using the optimal substitution model as determined by ModelFinder (Kalyaanamoorthy et al., 2017). Then, pairwise patristic distances between all individuals were calculated from the resulting ML phylogram. Finally, based on the actual taxonomic assignment, patristic distances were considered as intraspecific variation between two individuals belonging to the same species and as interspecific divergence between individuals of different species.
Short reads and long reads hybrid assembly of reference genomes

Sampling

To construct reference assemblies with high contiguity for the two focal species we selected the best-preserved roadkill samples: NMB TS305 for *O. megalotis* and NMB TS307 for *P. cristata* (Table 1). Total genomic DNA extractions were performed separately for Illumina short-read sequencing and MinION long-read sequencing.

Illumina short-read sequencing

Total genomic DNA extractions were performed from ear necropsies for the two sampled individuals using the DNeasy Blood and Tissue Kit (Qiagen) following manufacturer’s instructions. A total amount of 1.0µg DNA per sample was sent as input material for Illumina library preparation and sequencing to Novogene Europe (Cambridge, UK). Sequencing libraries were generated using NEBNext® DNA Library Prep Kit following manufacturer’s recommendations and indices were added to each sample. Genomic DNA was randomly fragmented to a size of 350bp by shearing, then DNA fragments were end-polished, A-tailed, and ligated with the NEBNext adapter for Illumina sequencing, and further PCR enriched by P5 and indexed P7 oligos. The PCR products were purified (AMPure XP system) and the resulting libraries were analysed for size distribution by Agilent 2100 Bioanalyzer and quantified using real-time PCR. Since the genome sizes for these two species was estimated to be about 2.5 Gb, Illumina paired-end 250 bp sequencing was run on HiSeqX10 and NovaSeq instruments to obtain about 200 Gb per sample corresponding to a genome depth of coverage of about 80x.

MinION long-read sequencing

Considering the DNA quality required to perform sequencing with Oxford Nanopore Technologies (ONT), a specific protocol to extract DNA from roadkill was designed (Tilak et
First, genomic DNA was extracted by using the classical Phenol-chloroform method. Then, we evaluated the cleanliness of the extractions by using (1) a binocular magnifying glass to check the absence of suspended particles (e.g. hairpieces), and (2) both Nanodrop and Qubit/Nanodrop ratio. To select the longest DNA fragments, we applied a specific ratio of 0.4x of AMPure beads applied (Tilak et al., 2020). Extracted-DNA size was then homogenized using covaris G-tubes. Finally, long-read ONT sequencing was performed through MinION flowcells (FLO-MIN-106) using libraries prepared with the ONT Ligation Sequencing kit SQK-LSK109. For both species, we run MinION sequencing until about 30 Gb per sample were obtained to reach a genome depth of coverage of about 12x.

Hybrid assembly of short and long reads

Short reads were cleaned using Trimmomatic 0.33 (Bolger et al., 2014) by removing low quality bases from their beginning (LEADING:3) and end (TRAILING:3), by removing reads shorter than 50 bp (MINLEN:50). Quality was measured for sliding windows of four base pairs and had to be greater than 15 on average (SLIDINGWINDOW:4:15). For MinION sequencing, base calling of fast5 files were performed using Guppy v3.1.5 (developed by ONT) with the *high accuracy* option, which is longer but more accurate than the standard *fast* model (*Fig. S1*). Long read adapters were removed using Porechop v0.2.3 (https://github.com/rrwick/Porechop). To take advantage of both the high accuracy of Illumina short reads sequencing and the size of MinION long reads, assemblies were performed using the MaSuRCA hybrid genome assembler (Zimin et al., 2013). This method transforms large numbers of paired-end reads into a much smaller number of longer ‘super-reads’ and permits assembling Illumina reads of differing lengths together with longer ONT reads. To illustrate the advantage of using short reads and long reads conjointly, assemblies were also performed with short reads only using SOAP-denovo (Luo et al., 2012) (kmer size=31, default parameters) and gaps between contigs were closed using the abundant paired
relationships of short reads with GapCloser 1.12 (Luo et al., 2012). To evaluate genome quality, traditional measures like the number of contigs, the N50, the mean and maximum length were evaluated for 503 mammalian genome assemblies retrieved from NCBI (https://www.ncbi.nlm.nih.gov/assembly) on August 13th, 2019 with filters: “Exclude derived from surveillance project”, “Exclude anomalous”, “Exclude partial”, and using only the RefSeq assembly for Homo sapiens. Finally, we assessed the gene completeness of our assemblies by comparison with the 63 carnivoran assemblies available at NCBI on August 13th, 2019 using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3 (Waterhouse et al., 2018) with the Mammalia OrthoDB 9 BUSCO gene set (Zdobnov et al., 2017) through the gVolante web server (Nishimura et al., 2017).

Species delimitation based on genomic data

Sampling and resequencing

To assess the genetic diversity in P. cristata, we sampled an additional roadkill individual of the South African subspecies P. c. cristata (NMB TS491) and an individual of the East African subspecies P. c. septentrionalis (NMS Z.2018.54) from Tanzania (Table 1; Table S6). A similar sampling was done for O. megalotis, with an additional roadkill individual of the South African subspecies O. m. megalotis (NMB TS306) and an individual of the East African subspecies O. m. virgatus (FMNH 158128) from Tanzania (Table 1; Table S6). DNA extractions were performed with the DNeasy Blood and Tissue Kit (Qiagen), following manufacturer’s instructions and a total amount of 1.0µg DNA per sample was outsourced to Novogene Europe (Cambridge, UK) for Illumina library preparation and Illumina paired-end 250 bp sequencing on HiSeqX10 and NovaSeq instruments to obtain about 200 Gb per sample (genome depth of coverage of about 80x). The resulting reads were cleaned using Trimmomatic 0.33 with the same parameters as described above.
In a panmictic population, alleles observed in one individual are shared randomly with other individuals of the same population and the frequencies of homozygous and heterozygous alleles should follow Hardy-Weinberg expectations. However, a structuration in subpopulations leads to a deficiency of heterozygotes (relative to Hardy-Weinberg expectations) in these subpopulations due to inbreeding (Holsinger and Weir, 2009; Walhund, 2010) and thus decreases the polymorphism within the inbred subpopulations with respect to the polymorphism of the global population. Given that, Hudson et al. (Hudson et al., 1992) defined the FST as a measure of polymorphism reduction in two subdivided populations (p_{within}) compared to the population at large (p_{between}).

To assess the p_{within} and p_{between} of the two subspecies of each species ($P. crustata$ and $O. megalotis$), we compared the heterozygous alleles (SNPs) of two individuals of the same subspecies and the SNPs of two individuals of different subspecies by computing a FST-like statistic (hereafter called Genetic Differentiation Index: GDI) (Fig. S2). In fact, polymorphic sites can be discriminated in four categories: (1) fixed in one individual (e.g. AA/TT); (2) shared with both individuals (e.g. AT/AT); (3) specific to individual 1 (e.g. AT/AA); and (4) specific to individual 2 (e.g. AA/AT). Using these four categories, it is possible to estimate the polymorphism of each individual 1 and 2 and thus estimate a GDI between two individuals of the same population A and the GDI between two individuals of different populations A and B as follows:

$$GDI_{\text{intra } A} = 1 - \frac{(\pi A_1 + \pi A_2)}{\pi \text{ tot } A}$$ and $$GDI_{\text{intra } B} = 1 - \frac{(\pi B_1 + \pi B_2)}{\pi \text{ tot } B}$$

For each species, cleaned short reads of all individuals (the one used to construct the reference genome and the two resequenced from each population) were aligned with their
reference genome using BWA-MEM (Li, 2013). BAM files were created and merged using SAMtools (Li et al., 2009). Likely contaminant contigs identified using BlobTools (Laetsch and Blaxter, 2017) (Fig. S3, Tables S8-S9) and contigs belonging to the X chromosome following BLASTN annotation (-perc_identity 80%, -evalue 10e-20) were removed. Then, 100 regions of 100,000 bp were randomly sampled among contigs longer than 100,000 bp and 10 replicates of this sampling were performed (i.e. 10 x 100 x 100,000 bp = 100 Mb) to assess statistical variance in the estimates. Genotyping of these regions was performed with freebayes v1.3.1-16 (git commit id: g85d7bfc) (Garrison and Marth, 2012) using the parallel mode (Tange, 2011). Only SNPs with freebayes-estimated quality higher than 10 were considered for further analyses. A first GDI estimation comparing the average of the private polymorphisms of the two southern individuals (p within A) and the total polymorphism of the two individuals (p between A) was estimated to control that no genetic structure was observed in the Southern subspecies. Then a global GDI comparing the private polymorphisms of individuals from the two populations (p within AB) and the total polymorphism of the species (the two populations, p between AB) was estimated with one individual from each population (Fig. S2). Finally, the two GDI were compared to check if the Southern populations were more structured than the entire populations.

To contextualize these results, the same GDI measures were estimated for well-defined species of Carnivora. The species pairs used to make the comparison and thus help gauging the taxonomic status of the bat-eared fox and aardwolf subspecies were selected according to the following criteria: (1) the two species had to be as close as possible, (2) they had both reference genomes and short reads available, (3) their estimated coverage for the two species had to be greater than 20x, and (4) short read sequencing data had to be available for two individuals for one species of the pair. Given that, four species pairs were selected: (1) *Canis lupus* / *Canis aureus* (SRR8926747, SRR8926748, SRR7976426; vonHoldt et al.
2016); (2) *Ursus maritimus* / *Ursus arctos* (PB43: SRR942203, SRR942290, SRR942298; PB28: SRR942211, SRR942287, SRR942295; Brown Bear: SRR935591, SRR935625, SRR935627; Liu et al. 2014); (3) *Lynx pardinus* / *Lynx lynx* (Lynx pardinus LYNX11 : ERR1255591-ERR1255594; Lynx lynx LYNX8: ERR1255579-ERR1255582; Lynx lynx LYNX23: ERR1255540-ERR1255549; Abascal et al. 2016); and (4) *Panthera leo* / *Panthera pardus* (SRR10009886, SRR836361, SRR3041424; Kim et al. 2016). The exact same GDI estimation protocol was applied to each species pair.

Demographic analyses

Historical demographic variations in effective population size were estimated using the Pairwise Sequentially Markovian Coalescent (PSMC) model implemented in the software PSMC (https://github.com/lh3/psmc) (Li and Durbin, 2011). As described above, cleaned short reads were mapped against the corresponding reference genome using BWA-MEM (Li, 2013) and genotyping was performed using Freebayes v1.3.1-16 (git commit id: g85d7bfc) (Garrison and Marth, 2012) for the three individuals of each species. VCF files were converted to fasta format using a custom python script, excluding positions with quality below 20 and a depth of coverage below 10x or higher than 200x. Diploid sequences in fasta format were converted into PSMC fasta format using a C++ program written using the BIO++ library (Guéguen et al., 2013) with a block length of 100bp and excluding blocks containing more than 20% missing data as implemented in “fq2psmcfa” (https://github.com/lh3/psmc).

PSMC analyses were run for all other populations testing several -t and -p parameters including -p "4+30*2+4+6+10" (Nadachowska-Brzyska et al., 2013) and -p "4+25*2+4+6" (Kim et al., 2016) but also -p "4+10*3+4", -p "4+20*2+4" and -p "4+20*3+4". Overall, the tendencies were similar but some parameters led to unrealistic differences between the two
individuals from the South African population of *Otocyon megalotis*. We chose to present the results obtained using the parameters -t15 -r4 -p "4+10*3+4". For this parameter setting, the variance in ancestral effective population size was estimated by bootstrapping the scaffolds 100 times. To scale PSMC results, based on several previous studies on large mammals, a mutation rate of 10^{-8} mutation/site/generation (Ekblom et al., 2018; Gopalakrishnan et al., 2017) and a generation time of two years (Clark, 2005; Koehler and Richardson, 1990; van Jaarsveld, 1993) were selected. Results were plotted in R v3.63 (Team, 2020) using the function “psmc.results” (https://doi.org/10.5061/dryad.0618v/4) (Liu and Hansen, 2017) modified using ggplot2 (Wickham, 2016) and cowplot (Wilke, 2016).

Phylogenomic inferences

To infer the Carnivora phylogenetic relationships, all carnivoran genomes available on Genbank, the DNAZoo website (https://www.dnazoo.org), and the OrthoMaM database (Scornavacca et al., 2019) as of February 11th, 2020 were downloaded (Table S10). In cases where more than one genome was available per species, the assembly with the best BUSCO scores was selected. Then, we annotated our two reference genome assemblies and the other unannotated assemblies using MAKER2 (Holt and Yandell, 2011) following the recommendations of the DNAZoo (https://www.dnazoo.org/post/the-first-million-genes-are-the-hardest-to-make-r). In the absence of available transcriptomic data, this method allowed to leverage the power of homology combined with the thorough knowledge accumulated on the gene content of mammalian genomes. As advised, a mammal-specific subset of UniProtKB/Swiss-Prot, a manually annotated, non-redundant protein sequence database, was used as a reference for this annotation step (Boutet et al., 2016). Finally, the annotated coding sequences (CDSs) recovered for the Southern aardwolf (*P. c. cristata*) were used to
assembled those of the Eastern aardwolf (*P. c. septentrionalis*) by mapping the resequenced Illumina reads using BWA-MEM (Li, 2013).

Orthologous genes were extracted following the orthology delineation process of the OrthoMaM database (OMM) (Scornavacca et al., 2019). First, for each orthologous gene alignment of OMM, a HMM profile was created via hmmbuild using default parameters of the HMMER toolkit (Eddy, 2011) and all HMM profiles were concatenated and summarized using hmmpress to construct a HMM database. Then, for each CDS newly annotated by MAKER, hmmscan was used on the HMM database to retrieve the best hits among the orthologous gene alignments. For each orthologous gene alignment, the most similar sequences for each species were detected via hmmsearch. Outputs from hmmsearch and hmmscan were discarded if the first hit score was not substantially better than the second (hit$_2$ < 0.9 hit$_1$). This ensures our orthology predictions for the newly annotated CDSs to be robust.

Then, the cleaning procedure of the OrthoMaM database was applied to the set of orthologous genes obtained. This process, implemented in a singularity image (Kurtzer et al., 2017) named *OMM_MACSE.sif* (Ranwez et al., 2020) is composed of several steps including nucleotide sequence alignment at the amino acid level with MAFFT (Katoh and Standley, 2013), refining alignments to handle frameshifts with MACSE v2 (Ranwez et al., 2018), cleaning of non homologous sequences, and masking of erroneous/dubious part of gene sequences with HMMcleaner (Di Franco et al., 2019). Finally, the last step of the cleaning process was to remove sequences that generated abnormally long branches during gene tree inferences. This was done by reconstructing gene trees using IQ-TREE v1.6.8 (Nguyen et al., 2014) with the MFP option to select the best fitting model for each gene. Then, the sequences generating abnormally long branches were identified and removed by *PhylteR* (https://github.com/damiendevienne/phylter). This software allows detecting and removing
outliers in phylogenomic datasets by iteratively removing taxa in genes and optimizing a concordance score between individual distance matrices.

Phylogenomic analyses were performed using maximum likelihood (ML) using IQ-TREE 1.6.8 (Nguyen et al., 2014) on the supermatrix resulting from the concatenation of all orthologous genes previously recovered with the TESTNEW option to select the best fitting model for each partition. Two partitions per gene were defined to separate the first two codon positions from the third codon positions. Node supports were estimated with 100 non-parametric bootstrap replicates. Furthermore, gene concordant (gCF) and site concordant (sCF) factors were measured to complement traditional bootstrap node-support measures as recommended in Minh et al. (Minh et al., 2020). For each orthologous gene alignment a gene tree was inferred using IQ-TREE with a model selection and gCF and sCF were calculated using the specific option -scf and -gcf in IQ-TREE (Minh et al., 2020). The gene trees obtained with this analysis were also used to perform a coalescent-based species tree inference using ASTRAL-III (Zhang et al., 2018).

Data access

Genome assemblies, associated SRA data and mitogenomes have been submitted to genbank and will be available after publication (XXXXXX-XXXXXX). The full analytical pipeline, phylogenetic datasets (mitogenomic and genomic), corresponding trees and other supplementary materials will be available from zenodo.org (DOI:XX.XXXX/zenodo.XXXXXXX).

Disclosure declaration

The authors declare that they have no competing interests.
Funding

This work was supported by grants from the European Research Council (ERC-2015-CoG-683257 ConvergeAnt project), Investissements d'Avenir of the Agence Nationale de la Recherche (CEMEB: ANR-10-LABX-0004; ReNaBi-IFB: ANR-11-INBS-0013; MGX: ANR-10-INBS-09).

Acknowledgements

We would like to thank Rachid Koual and Amandine Magdeleine for technical help with DNA extractions and library preparations, Aude Caizergues and Nathalie Delsuc for fieldwork assistance, Christian Fontaine, Jean-Christophe Vié (Faune Sauvage, French Guiana), Corine Esser (Fauverie du Mont Faron, Toulon, France), François Catzeflis (ISEM Mammalian Tissue Collection), Adam Ferguson and Bruce Patterson (Field Museum of Natural History, Chicago, USA), Lily Crowley (Hamerton Zoo Park, UK), and Andrew Kitchener (National Museum of Scotland, Edinburgh, UK) for access to tissue samples. We also acknowledge Pierre-Alexandre Gagnaire for helpful discussion on genetic differentiation index and Brian Chase for providing references on African paleoclimate. We thank the Montpellier GenomiX Plateform (MGX) part of the France Génomique National Infrastructure for sequencing data generation. Computational analyses benefited from the Montpellier Bioinformatics Biodiversity platform. We are also grateful to the Institut Français de Bioinformatique and the Roscoff Bioinformatics platform ABiMS (http://abims.sb-roscoff.fr) for providing help for computing and storage resources. This is contribution ISEM 2020-XXX-SUD of the Institut des Sciences de l’Évolution de Montpellier.

Authors' contributions
RA, BN and FD conceived the ideas and designed methodology, analysed the data, and led the writing of the manuscript; FD, NLA and RA performed fieldwork sampling; MK, RA and FD developed the protocol and performed DNA long-read sequencing; MK performed molecular biology experiments; RA, CS, EC and BN performed the bioinformatic analyses; FD and EC provided access to computational resources. All authors contributed critically to the drafts and gave final approval for publication.

References

200 mammals project. n.d. Comparative Genomics – 200 Mammals.

Abascal F, Corvelo A, Cruz F, Villanueva-Cañas JL, Vlasova A, Marcet-Houben M, Martinez-Cruz B, Cheng JY, Prieto P, Quesada V, Quilez J, Li G, García F, Rubio-Camarillo M, Frias L, Ribeira P, Capella-Gutiérrez S, Rodríguez JM, Câmara F, Lowy E, Cozzuto L, Erb I, Tress ML, Rodríguez-Ales JL, Ruiz-Orera J, Reverter F, Casas-Marce M, Soriani L, Arango JR, Derdak S, Galán B, Blanc J, Gut M, Lorente-Galdos B, Andrés-Nieto M, López-Otín C, Valencia A, Gut I, García JL, Guigó R, Murphy WJ, Ruiz-Herrera A, Marques-Bonet T, Roma G, Notredame C, Mailund T, Albà MM, Gabaldón T, Alioto T, Godoy JA. 2016. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol 17:251. doi:10.1186/s13059-016-1090-1

Agnarsson I, Kuntner M, May-Collado LJ. 2010. Dogs, cats, and kin: A molecular species-level phylogeny of Carnivora. Mol Phylogenet Evol 54:726–745. doi:10.1016/J.YMPEV.2009.10.033

Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, GniJrke A. 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12:R18. doi:10.1186/gb-2011-12-2-r18

Allen R, Ryan H, Davis BW, King C, Frantz L, Irving-Pease E, Barnett R, Linderholm A, Loog L, Haile J, Lebrasseur O, White M, Kitchener AC, Murphy WJ, Larson G. 2020. A mitochondrial genetic divergence proxy predicts the reproductive compatibility of mammalian hybrids. Proc R Soc B Biol Sci 287:20200690. doi:10.1098/rspb.2020.0690

Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. 2020a. MitoFinder: Efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol Ecol Resour 1755–0998.13160. doi:10.1111/1755-0998.13160

Allio R, Scornavacca C, Nabholz B, Clamens A-L, Sperling FA, Condamine FL. 2020b. Whole genome shotgun phylogenomics resolves the pattern and timing of swallowtail butterfly evolution. Syst Biol 69:38–60. doi:10.1093/sysbio/syz030

Armstrong EE, Taylor RW, Miller DE, Kaelin CB, Barsh GS, Hadly EA, Petrov D. 2020.
Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data. *BMC Biol* **18**:3. doi:10.1186/s12915-019-0734-5

Arnason U, Gullberg A, Janke A, Kullberg M. 2007. Mitogenomic analyses of caniform relationships. *Mol Phylogenet Evol* **45**:863–874. doi:10.1016/J.YMPEV.2007.06.019

Atickem A, Stenseth NC, Drouilly M, Bock S, Roos C, Zinner D. 2018. Deep divergence among mitochondrial lineages in African jackals. *Zool Sci* **47**:1–8.

doii:10.1111/zsc.12257

Barnett R, Yamaguchi N, Barnes I, Cooper A. 2006. The origin, current diversity and future conservation of the modern lion (*Panthera leo*). *Proc R Soc B Biol Sci* **273**:2119–2125.

doii:10.1098/rspb.2006.3555

Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Kwok P-Y, Cox LA, Seshagiri S, Song YS, Wall JD. 2019a. Accurate assembly of the olive baboon (*Papio anubis*) genome using long--read and Hi-C data. *bioRxiv* 678771. doi:10.1101/678771

Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Kwok P-Y, Cox LA, Seshagiri S, Song YS, Wall JD. 2019b. Accurate assembly of the olive baboon (*Papio anubis*) genome using long--read and Hi-C data. *bioRxiv* 678771. doi:10.1101/678771

Blaimer BB, LaPolla JS, Branstetter MG, Lloyd MW, Brady SG. 2016. Phylogenomics, biogeography and diversification of obligate mealybug-tending ants in the genus *Acropyga*. *Mol Phylogenet Evol* **102**:20–29. doi:10.1016/J.YMPEV.2016.05.030

Blanco MB, Greene LK, Williams RC, Andrianandrasana L, Yoder AD, Larsen PA. 2019. Next-generation in situ conservation and educational outreach in Madagascar using a mobile genetics lab. *bioRxiv* 650614. doi:10.1101/650614

Bolger AM, Lohse M, Usadel B. 2014. *Trimmomatic*: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**:2114–2120. doi:10.1093/bioinformatics/btu170

Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, Poux S, Bougueleret L, Xenarios I. 2016. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Humana Press, New York, NY. pp. 23–54. doi:10.1007/978-1-4939-3167-5_2

Caley T, Extier T, Collins JA, Schefuß E, Dupont L, Malaizé B, Rossignol L, Souron A, McClymont EL, Jimenez-Espejo FJ, Garcia-Comas C, Eynaud F, Martinez P, Roche DM, Jorry SJ, Charlier K, Wary M, Gourves PY, Billy I, Giraudou J. 2018. A two-million-year-long hydroclimatic context for hominin evolution in southeastern Africa. *Nature* **560**:76–79. doi:10.1038/s41586-018-0309-6

Casas-Marce M, Soriano L, López-Bao J V., Godoy JA. 2013. Genetics at the verge of extinction: insights from the Iberian lynx. *Mol Ecol* **22**:5503–5515.

doii:10.1111/mec.12498

Chevalier M, Chase BM. 2015. Southeast African records reveal a coherent shift from high- to low-latitude forcing mechanisms along the east African margin across last glacial-interglacial transition. *Quat Sci Rev* **125**:117–130. doi:10.1016/j.quascirev.2015.07.009
Clark HO. 2005. Otocyon megalotis. Mamm Species 1–5. doi:10.1644/1545-1410(2005)766[0001:OM]2.0.CO;2

Datema E, Hulzink RJM, Blommers L, Valle-Inclan JE, Orsouw N van, Wittenberg AHJ, Vos M de. 2016. The megabase-sized fungal genome of Rhizoctonia solani assembled from nanopore reads only. bioRxiv 084772. doi:10.1101/084772

De Queiroz K. 2007. Species concepts and species delimitation. Syst Biol 56:879–886. doi:10.1080/10635150701701083

Dehghani R, Wanntorp L, Pagani P, Källersjö M, Werdelin L, Veron G. 2008. Phylogeography of the white-tailed mongoose (Herpestidae, Carnivora, Mammalia) based on partial sequences of the mtDNA control region. J Zool 276:385–393. doi:10.1111/j.1469-7998.2008.00502.x

Delisle I, Strobeck C. 2005. A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes. Mol Phylogenet Evol 37:192–201. doi:10.1016/J.YMPEV.2005.04.025

deMenocal PB. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet Sci Lett 220:3–24. doi:10.1016/S0012-821X(04)00003-2

deMenocal PB. 1995. Plio-Pleistocene African climate. Science (80-) 269:53–57. doi:10.1126/science.270.5233.53

Di Genova A, Ruz GA, Sagot MF, Maass A. 2018. Fast-SG: an alignment-free algorithm for hybrid assembly. Gigascience 7. doi:10.1093/gigascience/giy048

Di Franco A, Poujol R, Baurain D, Philippe H. 2019. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol Biol 19:21. doi:10.1186/s12862-019-1350-2

Díaz-Viraqué F, Pita S, Greif G, de Souza R de CM, Iraola G, Robello C. 2019. Nanopore sequencing significantly improves genome assembly of the protozoan parasite Trypanosoma cruzi. Genome Biol Evol 11:1952–1957. doi:10.1093/gbe/evz129

DISCOVAR | Assemble genomes, find variants. n.d. https://software.broadinstitute.org/software/discovar/blog/

Doronina L, Churakov G, Shi J, Brosius J, Baertsch R, Clawson H, Schmitz J. 2015. Exploring massive incomplete lineage sorting in Arctoids (Laurasiatheria, Carnivora). Mol Biol Evol 32:msv188. doi:10.1093/molbev/msv188

Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I, Lander ES, Aiden AP, Aiden EL. 2017. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science (80-) 356:92–95. doi:10.1126/science.aal3327

Eddy SR. 2011. Accelerated profile HMM searches. PLoS Comput Biol 7. doi:10.1371/journal.pcbi.1002195

Eizirik E, Murphy WJ, Koepfli K-P, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ. 2010. Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63. doi:10.1016/J.YMPEV.2010.01.033
Ekblom R, Brechlin B, Persson J, Smeds L, Johansson M, Magnusson J, Flagstad Ø, Ellegren H. 2018. Genome sequencing and conservation genomics in the Scandinavian wolverine population. *Conserv Biol* **32**:1301–1312. doi:10.1111/cobi.13157

Etherington GJ, Heavens D, Baker D, Lister A, McNelly R, Garcia G, Clavijo B, Macaulay I, Haerty W, Di Palma F. 2020. Sequencing smart: *De novo* sequencing and assembly approaches for a non-model mammal. *Gigascience* **9**. doi:10.1093/GIGASCIENCE/GIAA045

Faurby S, Eiserhardt WL, Svenning J. 2016. Strong effects of variation in taxonomic opinion on diversification analyses. *Methods Ecol Evol* **7**:4–13. doi:10.1111/2041-210X.12449

Flynn JJ, Finarelli JA, Spaulding M. 2010. Phylogeny of the Carnivora and Carnivoramorpha, and the use of the fossil record to enhance understanding of evolutionary transformations In: Goswami A, Friscia A, editors. Carnivoran Evolution. Cambridge: Cambridge University Press. pp. 25–63. doi:10.1017/CBO9781139193436.003

Flynn JJ, Finarelli JA, Zeh S, Hsu J, Nedbal MA. 2005. Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. *Syst Biol* **54**:317–337. doi:10.1080/10635150590923326

Flynn JJ, Nedbal MA. 1998. Phylogeny of the Carnivora (Mammalia): congruence vs incompatibility among multiple data sets. *Mol Phylogenet Evol* **9**:414–426. doi:10.1006/MPEV.1998.0504

Frankham R, Ballou JD, Dudash MR, Eldridge MDB, Fenster CB, Lacy RC, Mendelson JR, Porton IJ, Rails K, Ryder OA. 2012. Implications of different species concepts for conserving biodiversity. *Biol Conserv* **153**:25–31. doi:10.1016/J.BIOCON.2012.04.034

Galaverni M, Randi E. 2015. First evidence of hybridization between golden jackal (*Canis aureus*) and domestic dog (*Canis familiaris*) as revealed by genetic markers. *R Soc Open Sci* **2**:150450. doi:10.1098/rsos.150450

Galtier N. 2019. Delineating species in the speciation continuum: A proposal. *Evol Appl* **12**:657–663. doi:10.1111/eva.12748

Galtier N, Nabholz B, Glémin S, Hurst GDD. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. *Mol Ecol* **18**:4541–4550. doi:10.1111/j.1365-294X.2009.04380.x

Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A. 2019. Genomic evidence of neo-sex chromosomes in the eastern yellow robin. *Gigascience* **8**. doi:10.1093/gigascience/giz111

Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. *Gopalakrishnan S, Samaniego Castruita JA, Sinding M-HS, Kuderna LFK, Rääkkönen J, Petersen B, Sicheritz-Ponten T, Larson G, Orlando L, Marques-Bonet T, Hansen AJ, Dalén L, Gilbert MTP. 2017. The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics. *BMC Genomics* **18**:495. doi:10.1186/s12864-017-3883-3

Gopalakrishnan S, Sinding M-HS, Ramos-Madrigal J, Niemann J, Samaniego Castruita JA,
Vieira FG, Carøe C, Montero M de M, Kuderna L, Serres A, González-Basallote VM, Liu Y-H, Wang G-D, Marques-Bonet T, Mirarab S, Fernandes C, Gaubert P, Koepfli K-P, Budd J, Ruenness EK, Sillero C, Heide-Jørgensen MP, Petersen B, Sicheritz-Ponten T, Bachmann L, Wiig Ø, Hansen AJ, Gilbert MTP. 2018. Interspecific gene flow shaped the evolution of the genus Canis. Curr Biol 28:3441–3449.e5. doi:10.1016/J.CUB.2018.08.041

Grant KM, Rohling EJ, Westerhold T, Zabel M, Heslop D, Konijnendijk T, Lourens L. 2017. A 3 million year index for North African humidity/aridity and the implication of potential pan-African Humid periods. Quat Sci Rev 171:100–118. doi:10.1016/j.quascirev.2017.07.005

Guéguen L, Gaillard S, Boussau B, Gouy M, Grousset M, Rochette NC, Bigot T, Fournier D, Pouyet F, Cahais V, Bernard A, Scornavacca C, Nabholz B, Haudry A, Dachary L, Galtier N, Belkhir K, Dutheil JY. 2013. Bio++: Efficient extensible libraries and tools for computational molecular evolution. Mol Biol Evol 30:1745–1750. doi:10.1093/molbev/mst097

Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V. 2013. Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 62:539–554. doi:10.1093/sysbio/syt018

Holsinger KE, Weir BS. 2009. Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10:639–650. doi:10.1038/nrg2611

Jain M, Olsen HE, Paten B, Akeson M. 2016. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17:239. doi:10.1186/s13059-016-1103-0

Jensen HJ, Liem M, Jong-Raadsen SA, Dufour S, Weltzien F-A, Swinkels W, Koelewijn A, Palstra AP, Pelster B, Spank HP, Thillart GE van den, Dirks RP, Henkel C V. 2017. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep 7:7213. doi:10.1038/s41598-017-07650-6

Jeffroy O, Brinkmann H, Delsuc F, Philippe H. 2006. Phylogenomics: the beginning of incongruence? Trends Genet 22:225–231. doi:10.1016/J.TIG.2006.02.003
Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS. 2019. A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome. *Gigascience* 8. doi:10.1093/gigascience/giz026

Johnson TC, Werne JP, Brown ET, Abbott A, Berke M, Steinman BA, Halbur J, Contreras S, Grosshuesch S, Deino A, Scholz CA, Lyons RP, Schouten S, Damsté JSS. 2016. A progressively wetter climate in southern East Africa over the past 1.3 million years. *Nature* 537:220–224. doi:10.1038/nature19065

Kadobianskyi M, Schulze L, Schuelke M, Judkewitz B. 2019. Hybrid genome assembly and annotation of Danionella translucida, a transparent fish with the smallest known vertebrate brain. *bioRxiv* 539692. doi:10.1101/539692

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat Methods* 14:587–589. doi:10.1038/nmeth.4285

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol Biol Evol* 30:772–780. doi:10.1093/molbev/mst010

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thorpe T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647–1649. doi:10.1093/bioinformatics/bts199

Kim S, Cho YS, Kim H-M, Chung O, Kim H, Jho S, Seomun H, Kim J, Bang WY, Kim C, An J, Bae CH, Bhak Y, Jeon S, Yoon H, Kim Y, Jun J, Lee H, Cho S, Uphyrkin O, Kostyria A, Goodrich J, Miquelle D, Lewis J, Yurchenko A, Bankevich A, Cho J, Lee S, Edwards JS, Weber JA, Cook J, Kim S, Lee H, Manica A, Lee I, O’Brien SJ, Bhak J, Yeo J-H. 2016. Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly. *Genome Biol* 17:211. doi:10.1186/s13059-016-1071-4

Koehler CE, Richardson PRK. 1990. Proteles cristatus. *Mamm Species* 1–6. doi:10.2307/3504197

Koepfli K-P, Jenks SM, Eizirik E, Zahirpour T, Valkenburgh B Van, Wayne RK. 2006. Molecular systematics of the Hyaenidae: Relationships of a relictual lineage resolved by a molecular supermatrix. *Mol Phylogenet Evol* 38:603–620. doi:10.1016/J.YMPEV.2005.10.017

Koepfli K-P, Paten B, O’Brien SJ. 2015. The Genome 10K Project: A Way Forward. *Annu Rev Anim Biosci* 3:57–111. doi:10.1146/annurev-animal-090414-014900

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Res* 27:722–736. doi:10.1101/GR.215087.116

Kumar S, Filipski AJ, Battistuzzi FU, Kosakovski Pond SL, Tamura K. 2012. Statistics and truth in phylogenomics. *Mol Biol Evol* 29:457–472. doi:10.1093/molbev/msr202

Kurtzer GM, Sochat V, Bauer MW. 2017. Singularity: Scientific containers for mobility of
compute. *PLoS One* **12**:e0177459. doi:10.1371/journal.pone.0177459

Kwan HH, Culibrk L, Taylor GA, Leelakumari S, Tan R, Jackman SD, Tse K, MacLeod T, Cheng D, Chuah E, Kirk H, Pandoh P, Carlsen R, Zhao Y, Mungall AJ, Moore R, Birol I, Marra MA, Rosen DAS, Haulena M, Jones SJM, Kwan HH, Culibrk L, Taylor GA, Leelakumari S, Tan R, Jackman SD, Tse K, MacLeod T, Cheng D, Chuah E, Kirk H, Pandoh P, Carlsen R, Zhao Y, Mungall AJ, Moore R, Birol I, Marra MA, Rosen DAS, Haulena M, Jones SJM. 2019. The Genome of the Steller Sea Lion (*Eumetopias jubatus*). *Genes (Basel)* **10**:486. doi:10.3390/genes10070486

L Y, YP Z. 2006. Phylogeny of the caniform Carnivora: evidence from multiple genes. *Genetica* **127**. doi:10.1007/S10709-005-2482-4

Laetsch DR, Blaxter ML. 2017. BlobTools: Interrogation of genome assemblies. *F1000Research* **6**:1287. doi:10.12688/f1000research.12232.1

Lartillot N, Rodrigue N, Stubbs D, Richer J. 2013. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. *Syst Biol* **62**:611–615. doi:10.1093/sysbio/syt022

Li G, Davis BW, Eizirik E, Murphy WJ. 2016. Phylogenomic evidence for ancient hybridization in the genomes of living cats (*Felidae*). *Genome Res* **26**:1–11. doi:10.1101/GR.186668.114

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.

Li H, Durbin R. 2011. Inference of human population history from individual whole-genome sequences. *Nature* **475**:493–496. doi:10.1038/nature10231

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics* **25**:2078–2079. doi:10.1093/bioinformatics/btp352

Li R, Fan W, Tian G, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z, Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D, Gu W, Yang Z, Xuan Z, Ryder OA, Leung FCC, Zhou Y, Cao J, Sun X, Fu Y, Fang X, Guo X, Wang B, Hou R, Shen F, Mu B, Ni P, Lin R, Qian W, Wang G, Yu C, Nie W, Wang J, Wu Z, Liang H, Min J, Wu Q, Cheng S, Ruan J, Wang M, Shi Z, Wen M, Liu B, Ren X, Zheng H, Dong D, Cook K, Shan G, Zhang H, Kosiol C, Xie X, Lu Z, Zheng H, Li Y, Steiner CC, Lam TTY, Lin S, Zhang Q, Li G, Tian J, Gong T, Liu H, Zhang D, Fang L, Ye C, Zhang J, Hu W, Xu A, Ren Y, Zhang G, Bruford MW, Li Q, Ma L, Guo Y, An N, Hu Y, Zheng Y, Shi Y, Li Z, Liu Q, Chen Y, Zhao J, Qu N, Zhao S, Tian F, Wang X, Wang H, Xu L, Liu X, Vinar T, Wang Y, Lam TW, Yiu SM, Liu S, Zhang H, Li D, Huang Y, Wang X, Yang G, Jiang Z, Wang J, Qin N, Li L, Li J, Bolund L, Kristiansen K, Wong GKS, Olson M, Zhang X, Li S, Yang H, Wang J, Wang J. 2010. The sequence and de novo assembly of the giant panda genome. *Nature* **463**:311–317. doi:10.1038/nature08696

Lim S, Chase BM, Chevalier M, Reimer PJ. 2016. 50,000 years of vegetation and climate change in the southern Namib Desert, Pella, South Africa. *Palaeogeogr Palaeoclimatol Palaeoecol* **451**:197–209. doi:10.1016/j.palaeo.2016.03.001

Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J,
Jordan G, Mauceli E, Ward LD, Holloway AK, Clamp M, Gnerre S, Alfoldi J, Beal K, Chang J, Clawson H, Cuff J, Di Palma F, Fitzgerald S, Flicek P, Guttmann M, Hubisz MJ, Jaffe DB, Jungeris I, Kent WJ, Kostka D, Lara M, Martins AL, Massingham T, Moltke I, Raney BJ, Rasmussen MD, Robinson J, Stark A, Vilella AJ, Wen J, Xie X, Zody MC, Worley KC, Kvar CL, Muzny DM, Gibbs RA, Warren WC, Mardis ER, Weinert GM, Wilson RK, Birney E, Margulies EH, Herrero J, Green ED, Haussler D, Siepel A, Goldman N, Pedersen JS, Lander ES, Kellis M, Baldwin J, Bloom T, Chin CW, Heiman D, Nicol R, Nusbaum C, Young S, Wilkinson J, Cree A, Dihn HH, Fowler G, Jhangiani S, Lee S, Lewis LR, Nazareth L, Okwuonu G, Santibanez J, Delehaunty K, Dooling D, Fronik C, Fulton L, Fulton B, Graves T, Minx P, Sodergren E. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. *Nature* **478**:476–482. doi:10.1038/nature10530

Liu S, Hansen MM. 2017. PSMC (pairwise sequentially Markovian coalescent) analysis of RAD (restriction site associated DNA) sequencing data. *Mol Ecol Resour* **17**:631–641. doi:10.1111/1755-0998.12606

Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan CC, Doherty A, O’Connell MJ, Mclnerney JO, Born EW, Dalen L, Dietz R, Orlando L, Sonne C, Zhang G, Nielsen R, Willerslev E, Wang J. 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. *Cell* **157**:785–794. doi:10.1016/J.CELL.2014.03.054

Lorenzen ED, Heller R, Siegismund HR. 2012. Comparative phylogeography of African savannah ungulates 1. *Mol Ecol* **21**:3656–3670. doi:10.1111/j.1365-294X.2012.05650.x

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. *Gigascience* **1**:18. doi:10.1186/2047-217X-1-18

Maigret TA. 2019. Snake scale clips as a source of high quality DNA suitable for RAD sequencing. *Conserv Genet Resour* **11**:373–375. doi:10.1007/s12686-018-1019-y

Maslin MA, Brierley CM, Milner AM, Shultz S, Trauth MH, Wilson KE. 2014. East african climate pulses and early human evolution. *Quat Sci Rev*. doi:10.1016/j.quascirev.2014.06.012

Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ. 2011. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. *Science (80-)* **334**:521–524. doi:10.1126/SCIENCE.1211028

Meyer CP, Pualay G. 2005. DNA barcoding: error rates based on comprehensive sampling. *PLoS Biol* **3**:e422. doi:10.1371/journal.pbio.0030422

Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR. 2018. High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. *Nat Commun* **9**:541. doi:10.1038/s41467-018-03016-2
Miller JM, Hallager S, Monfort SL, Newby J, Bishop K, Tidmus SA, Black P, Houston B, Matthee CA, Fleischer RC, Hallager S, Monfort SL, Newby J, Bishop ÁK, Tidmus SA, Black P, Houston ÁB, Matthee CA. 2011. Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). Conserv Genet 12:423–431. doi:10.1007/s10592-010-0149-x

Minh BQ, Hahn MW, Lanfear R. 2020. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. doi:10.1093/molbev/msaa106

Nadachowska-Brzyska K, Burri R, Olason PI, Kawakami T, Smeds L, Ellegren H. 2013. Demographic divergence history of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing data. PLoS Genet 9:e1003942. doi:10.1371/journal.pgen.1003942

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2014. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300

Nicholls SM, Quick JC, Tang S, Loman NJ. 2019. Ultra-deep, long-read nanopore sequencing of mock microbial community standards. Gigascience 8. doi:10.1093/gigascience/giz043

Nishimura O, Hara Y, Kuraku S. 2017. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33:3635–3637. doi:10.1093/bioinformatics/btx445

Parker J, Helmstetter AJ, Devey D, Wilkinson T, Papadopoulos AST. 2017. Field-based species identification of closely-related plants using real-time nanopore sequencing. Sci Rep 7:8345. doi:10.1038/s41598-017-08461-5

Peng R, Zeng B, Meng X, Yue B, Zhang Z, Zou F. 2007. The complete mitochondrial genome and phylogenetic analysis of the giant panda (Ailuropoda melanoleuca). Gene 397:76–83. doi:10.1016/J.GENE.2007.04.009

Périquet S, Roxburgh L, le Roux A, Collinson WJ. 2018. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front Ecol Evol 6:15. doi:10.3389/fevo.2018.00015

Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, Barrio-Amorós CL, Salazar-Valenzuela D, Prost S. 2018. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience 7. doi:10.1093/gigascience/giy033

Ranwez V, Chantret N, Delsuc F. 2020. Aligning protein-coding nucleotide sequences with MACSE. Methods Mol Biol In press.

Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. 2018. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol Biol Evol 35:2582–2584. doi:10.1093/molbev/msy159

Ravinet M, Westram A, Johannesson K, Butlin R, André C, Panova M. 2016. Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Mol Ecol 25:287–305. doi:10.1111/mec.13332

Rice ES, Green RE. 2019. New Approaches for Genome Assembly and Scaffolding. Annu
Rohland N, Pollack JL, Nagel D, Beauval C, Airvaux J, Pääbo S, Hofreiter M. 2005. The population history of extant and extinct hyenas. *Mol Biol Evol* **22**:2435–2443. doi:10.1093/molbev/msi244

Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. *PLOS Biol* **14**:e2000234. doi:10.1371/journal.pbio.2000234

Rybczynski N, Dawson MR, Tedford RH. 2009. A semi-aquatic Arctic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. *Nature* **458**:1021–1024. doi:10.1038/nature07985

Sato JJ, Wolsan M, Minami S, Hosoda T, Sinaga MH, Hiyama K, Yamaguchi Y, Suzuki H. 2009. Deciphering and dating the red panda’s ancestry and early adaptive radiation of Musteloidea. *Mol Phylogenet Evol* **53**:907–922. doi:10.1016/J.YMPEV.2009.08.019

Sato JJ, Wolsan M, Suzuki H, Hosoda T, Yamaguchi Y, Hiyama K, Kobayashi M, Minami S. 2006. Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. *Zoolog Sci* **23**:125–146. doi:10.2108/zsj.23.125

Schröder C, Bleidorn C, Hartmann S, Tiedemann R. 2009. Occurrence of Can-SINEs and intron sequence evolution supports robust phylogeny of pinniped carnivores and their terrestrial relatives. *Gene* **448**:221–226. doi:10.1016/J.GENE.2009.06.012

Scornavacca C, Belkhir K, Lopez J, Dernat R, Delsuc F, Douzery EJP, Ranwez V. 2019. OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes. *Mol Biol Evol* **36**:861–862. doi:10.1093/molbev/msz015

Scott AD, Zimin A V., Puiu D, Workman R, Britton M, Zaman S, Caballero M, Read AC, Bogdanove AJ, Burns E, Wegrzyn J, Timp W, Salzberg SL, Neale DB. 2020. The giant sequoia genome and proliferation of disease resistance genes. *bioRxiv* 2020.03.17.995944. doi:10.1101/2020.03.17.995944

Shafin K, Pesout T, Lorig-Roach R, Hawkness M, Olsen HE, Bosworth C, Armstrong J, Tigyi K, Maurer N, Koren S, Sedlazeck FJ, Marschall T, Mayes S, Costa V, Zook JM, Liu KJ, Kilburn D, Sorensen M, Munson KM, Vollger MR, Monlong J, Garrison E, Eichler EE, Salama S, Haussler D, Green RE, Akeson M, Phillippy A, Miga KH, Carnevali P, Jain M, Paten B. 2020. Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes. *Nat Biotechnol* 1–10. doi:10.1038/s41587-020-0503-6

Shilling F, Perkins SE, Collinson W. 2015. Wildlife/Roadkill Observation and Reporting SystemsHandbook of Road Ecology. Chichester, UK: John Wiley & Sons, Ltd. pp. 492–501. doi:10.1002/9781118568170.ch62

Spitzer M, Wildenhain J, Rapp siljer J, Tyers M. 2014. BoxPlotR: a web tool for generation of box plots. *Nat Methods* **11**:121–122. doi:10.1038/nmeth.2811

Srivathsan A, Baloglu B, Wang W, Tan WX, Bertrand D, Ng AHQ, Boey EJH, Koh JJY, Nagarajan N, Meier R. 2018. A MinION™-based pipeline for fast and cost-effective
DNA barcoding. *Mol Ecol Resour* **18**:1035–1049. doi:10.1111/1755-0998.12890

Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM. 2018. Finding Nemo: hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (*Amphiprion ocellaris*) genome assembly. *Gigascience* **7**. doi:10.1093/gigascience/gix137

Tange O. 2011. Gnu parallel-the command-line power tool. *USENIX Mag* **36**:42–47.

Team R core. 2020. R: A language and environment for statistical computing.

Tilak M-K, Alilo R, Delsuc F. 2020. An optimized protocol for sequencing mammalian roadkill tissues with Oxford Nanopore Technology (ONT). doi:10.17504/PROTOCOLS.IO.BEIXJCFN

Tilak M-K, Botero-Castro F, Galtier N, Nabholz B. 2018. Illumina library preparation for sequencing the GC-rich fraction of heterogeneous genomic DNA. *Genome Biol Evol* **10**:616–622. doi:10.1093/gbe/evy022

Tilak M-K, Justy F, Debiais-Thibaud M, Botero-Castro F, Delsuc F, Douzery EJP. 2015. A cost-effective straightforward protocol for shotgun Illumina libraries designed to assemble complete mitogenomes from non-model species. *Conser Genet Resour* **7**:37–40. doi:10.1007/s12686-014-0338-x

Trauth MH, Larrasoña JC, Mudelsee M. 2009. Trends, rhythms and events in Plio-Pleistocene African climate. *Quat Sci Rev* **28**:399–411.

doi:10.1016/j.quascirev.2008.11.003

van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, Dekker J, Lander ES. 2010. Hi-C: A method to study the three-dimensional architecture of genomes. *J Vis Exp* e1869. doi:10.3791/1869

van Jaarsveld AS. 1993. A comparative investigation of hyaena and aardwolf life-histories, with notes on spotted hyaena mortality patterns. *Trans R Soc South Africa* **48**:219–232.

doi:10.1080/00359199309520272

Vaser R, Sović I, Nagarajan N, Šikić M. 2017. Fast and accurate de novo genome assembly from long uncorrected reads. *Genome Res* **27**:737–746. doi:10.1101/GR.214270.116

vonHoldt BM, Kays R, Pollinger JP, Wayne RK. 2016. Admixture mapping identifies introgressed genomic regions in North American canids. *Mol Ecol* **25**:2443–2453.

doi:10.1111/mec.13667

Walhund S. 2010. Zusammensetzung von populationen und korrelationsscheinungen vom standpunkt der vererbungslehre aus betrachtet. *Hereditas* **11**:65–106.

doi:10.1111/j.1601-5223.1928.tb02483.x

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakhikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an Integrated tool for comprehensive microbial variant detection and genome assembly improvement. *PLoS One* **9**:e112963.

doi:10.1371/journal.pone.0112963

Walton LR, Joly DO. 2003. Canis mesomelas. *Mamm Species* **715**:1–9. doi:10.1644/715

Wang W, Das A, Kainer D, Schalamun M, Morales-Suarez A, Schwessinger B, Lanfear R.
2020. The draft nuclear genome assembly of Eucalyptus pauciflora: a pipeline for comparing de novo assemblies. Gigascience 9. doi:10.1093/gigascience/giz160

Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva E V, Zdobnov EM. 2018. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548. doi:10.1093/molbev/msx319

Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B, Tabbaa D, Williams L, Russ C, Nusbaum C, Lander ES, MacCallum I, Jaffe DB. 2014. Comprehensive variation discovery in single human genomes. Nat Genet 46:1350–1355. doi:10.1038/ng.3121

Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, Töpfer A, Alonge M, Mahmoud M, Qian Y, Chin C-S, Phillippy AM, Schatz MC, Myers G, DePristo MA, Ruan J, Marschall T, Sedlazeck FJ, Zook JM, Li H, Koren S, Carroll A, Rank DR, Hunkapiller MW. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37:1155–1162. doi:10.1038/s41587-019-0217-9

Westbury M V, Hartmann S, Barlow A, Wiesel I, Leo V, Welch R, Parker DM, Sicks F, Ludwig A, Dalén L, Hofreiter M. 2018. Extended and continuous decline in effective population size results in low genomic diversity in the world’s rarest hyena species, the brown hyena. Mol Biol Evol 35:1225–1237. doi:10.1093/molbev/msy037

Wick RR, Judd LM, Holt KE. 2019. Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biol 20:129. doi:10.1186/s13059-019-1727-y

Wickham H. 2016. Ggplot2: elegant graphics for data analysis. Springer.

Wilke CO. 2016. cowplot: Streamlined plot theme and plot annotations for “ggplot2.” CRAN Repos.

Wilson DE, Mittermeier RA, Cavallini P. 2009. Handbook of the mammals of the world, Vol. 1. ed. Barcelona: Lynx Edicions.

Zdobnov EM, Tegenfeldt F, Kuznetsov D, Waterhouse RM, Simão FA, Ioannidis P, Seppey M, Loetscher A, Kriventseva E V. 2017. OrthoDB v9.1: cataloging evolutionary and functional annotations for animal, fungal, plant, archaeal, bacterial and viral orthologs. Nucleic Acids Res 45:D744–D749. doi:10.1093/nar/gkw1119

Zhang C, Rabiee M, Sayyari E, Mirarab S. 2018. ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 2018 196 19:15–30. doi:10.1186/s12859-018-2129-y

Zimin A V., Marçais G, Puuiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The MaSuRCA genome assembler. Bioinformatics 29:2669–2677. doi:10.1093/bioinformatics/btt476

Zimin A V., Puuiu D, Luo M-C, Zhu T, Koren S, Marçais G, Yorke JA, Dvořák J, Salzberg SL. 2017. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res 27:787–792. doi:10.1101/GR.213405.116
Additional files

Figure S1: Plot of the quality of Nanopore long reads base-called with either the fast or the high accuracy option of Guppy v3.1.5. The quality of the base-calling step has a large impact on the final quality of the assemblies by reducing the number of contigs and increasing the N50 value.

Figure S2: Definition of the genetic differentiation index (GDI) based on the F-statistic (FST). The main difference between these two indexes is the use of heterozygous allele states for GDI rather than real polymorphism for the FST. Green = \(\pi_{\text{within}} \), Orange = \(\pi_{\text{between}} \), Blue = Population A, Red = Population A+B.

Figure S3: Graphical representation of the results of contamination analyses performed with BlobTools for a) the aardwolf (*Proteles cristata*) and b) the bat-eared fox (*Otocyon megalotis*).

Table S1: Pairwise patristic distances estimated for the 142 species based on the phylogenetic tree inferred with the 15 mitochondrial loci (2 rRNAs and 13 protein-coding genes).

Table S2: Results of Bayesian dating for the two nodes leading to the *Proteles cristata* spp. and the *Otocyon megalotis* spp.. Divergence time estimates based on UGAM and LN models are reported with associated 95% credibility intervals for each MCMC chain.

Table S3: Sample details and assembly statistics (Number of contigs/scaffolds and associated N50 values) for the 503 mammalian assemblies retrieved from NCBI (https://www.ncbi.nlm.nih.gov/assembly) on August 13th, 2019 with filters: “Exclude derived from surveillance project”, “Exclude anomalous”, “Exclude partial”, and using only the RefSeq assembly for *Homo sapiens*.

Table S4: Genome completeness assessment of MaSuRCA and SOAPdenovo assemblies obtained for *Proteles cristata* and *Otocyon megalotis* together with the 63 carnivore assemblies available at NCBI and DNAZoo (https://www.dnazoo.org/assemblies) on August 13th, 2019 using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3 with the Mammalia OrthoDB 9 BUSCO gene set.

Table S5: Annotation summary and supermatrix composition statistics of the 53 species used to infer the genome-scale Carnivora phylogeny.

Table S6: Sample details, Illumina sequencing, and assembly statistics of the 10 newly assembled carnivoran mitochondrial genomes.

Table S7: Node calibrations used for the Bayesian dating inferences based on mitogenomic data.

Table S8: Results of contamination analyses performed with BlobTools for the aardwolf (*Proteles cristata*).

Table S9: Results of contamination analyses performed with BlobTools for the bat-eared fox (*Otocyon megalotis*).
Table S10: Summary information for the Carnivora genomes available either on Genbank, DNAZoo (https://www.dnazoo.org) and the OrthoMaM database as of February 11th, 2020. The “OMM” column indicates if the genome was available on OMM (yes) or not (no). The “Annotation” column indicates whether the genome was already annotated (yes) or not (no).
Supplementary Figures and Tables
for
High-quality carnivore genomes from roadkill samples enable species delimitation in aardwolf and bat-eared fox

Rémi Allio1*, Marie-Ka Tilak1, Céline Scornavacca1, Nico L. Avenant2, Erwan Corre3, Benoit Nabholz1, and Frédéric Delsuc1*

1Institut des Sciences de l’Évolution de Montpellier (ISEM), CNRS, IRD, EPHE, Université de Montpellier, France remi.allio@umontpellier.fr marie-ka.tilak@umontpellier.fr celine.scornavacca@umontpellier.fr benoit.nabholz@umontpellier.fr frederic.delsuc@umontpellier.fr
2National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa navenant@nasmus.co.za
3CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France corre@sb-roscoff.fr

*Correspondence: remi.allio@umontpellier.fr, frederic.delsuc@umontpellier.fr
Figure S1: Plot of the quality of Nanopore long reads base-called with either the fast or the high accuracy option of Guppy v3.1.5. The quality of the base-calling step has a large impact on the final quality of the assemblies by reducing the number of contigs and increasing the N50 value.
Aardwolf

Fast default basecalling
Contigs: 8,874 → 5,669
N50: 699 Kb → 1.31 Mb

High accuracy basecalling

Bat-eared fox

Fast default basecalling
Contigs: 12,735 → 11,081
N50: 676 Kb → 728 Kb

Higher accuracy basecalling

Mean read quality (q)
Figure S2: Definition of the genetic differentiation index (GDI) based on the F-statistic (FST). The main difference between these two indexes is the use of heterozygous allele states for GDI rather than real polymorphism for the FST. Green = π_{within}, Orange = π_{between}, Blue = Population A, Red = Population A+B.
F-Statistic:

\[
FST = 1 - \frac{\pi_{\text{within}}}{\pi_{\text{between}}}
\]

Hudson et al 1992

FST = 1 = Highly structured
FST = 0 = No structuration

Genetic differentiation index (GDI, based on heterozygosity):

Fixed	Private A	Private B	Shared
AA/TT	AT/AA	AA/AT	AT/AT

\[
\pi_{AB} = \text{fixed} + \text{private}_A + \text{private}_B + \text{shared}_{AB}
\]

\[
\pi_A = \text{private}_A + \text{shared}_{AB}
\]

\[
\pi_B = \text{private}_B + \text{shared}_{AB}
\]

\[
1 - \frac{(\pi_A + \pi_B) / 2}{\pi_{\text{tot AB}}}
\]

For different population level:

\[
1 - \frac{(\pi_{A1} + \pi_{A2}) / 2}{\pi_{\text{tot A}}}
\]

GDI within pop A (control)

\[
1 - \frac{(\pi_{A1} + \pi_{B1}) / 2}{\pi_{\text{tot A+B1}}}
\]

global GDI

Initial population

\[
\pi_{\text{private A}} = \pi_{\text{private B}} = \pi_{\text{tot}}
\]

Fst = 0

\[
\pi_{\text{fixed}} \rightarrow \pi_{\text{fixed}}
\]

Population A

Population B

Fst >> 0

\[
\pi_{A} \text{ Private A + Shared}
\]

\[
\pi_{A1} \text{ Private A}
\]

\[
\pi_{A2} \text{ Shared}
\]

\[
\pi_{B} \text{ Private B + Shared}
\]

\[
\pi_{b1}
\]

\[
\pi_{\text{fixed}}
\]
Figure S3: Graphical representation of the results of contamination analyses performed with BlobTools for a) the aardwolf (*Proteles cristata*) and b) the bat-eared fox (*Otocyon megalotis*).
a) BlobTools results for *Proteles cristatus*

b) BlobTools results for *Otocyon megalotis*
Table S1: Pairwise patristic distances estimated for the 142 species based on the phylogenetic tree inferred with the 15 mitochondrial loci (2 rRNAs and 13 protein-coding genes).

SEE XLS FILES
Table S2: Results of Bayesian dating for the two nodes leading to the *Proteles cristata* spp. and the *Otocyon megalotis* spp.. Divergence time estimates based on UGAM and LN models are reported with associated 95% credibility intervals for each MCMC chain.
Species pair	LN	UGAM
Proteles cristata/ Proteles septentrionalis		
	1.228 [IC 95%: 5.34 – 0.58]	
	1.014 [IC 95%: 3.01 – 0.56]	
	0.841 [IC 95%: 1.26 – 0.55]	
	1.327 [IC 95%: 1.86 – 0.93]	
	1.335 [IC 95%: 1.86 – 0.94]	
	1.34 [IC 95%: 1.88 – 0.94]	
Otocyon megalotis megalotis/ Otocyon megalotis virgatus		
	1.295 [IC 95%: 6.72 – 0.43]	
	1.007 [IC 95%: 2.61 – 0.52]	
	0.865 [IC 95%: 1.45– 0.48]	
	0.569 [IC 95%: 0.81 – 0.39]	
	0.573 [IC 95%: 0.83 – 0.39]	
	0.57 [IC 95%: 0.82 – 0.40]	
Table S3: Sample details and assembly statistics (Number of contigs/scaffolds and associated N50 values) for the 503 mammalian assemblies retrieved from NCBI (https://www.ncbi.nlm.nih.gov/assembly) on August 13th, 2019 with filters: “Exclude derived from surveillance project”, “Exclude anomalous”, “Exclude partial”, and using only the RefSeq assembly for *Homo sapiens*.

SEE XLS FILES
Table S4: Genome completeness assessment of MaSuRCA and SOAPdenovo assemblies obtained for *Proteles cristata* and *Otocyon megalotis* together with the 63 carnivore assemblies available at NCBI and DNAZoo (https://www.dnazoo.org/assemblies) on August 13th, 2019 using Benchmarking Universal Single-Copy Orthologs (BUSCO) v3 with the Mammalia OrthoDB 9 BUSCO gene set.

SEE XLS FILES
Table S5: Annotation summary and supermatrix composition statistics of the 53 species used to infer the genome-scale Carnivora phylogeny.
Species	Maker annotated genes	Number of orthologous genes after cleaning	Missing data
Acinonyx jubatus	NA	12751	16.54
Ailuropoda melanoleuca	NA	13411	9.57
Ailurus fulgens	17619	11675	26.14
Arctocephalus gazella	13714	8390	60.29
Bassariscus sumichiristi	17573	11713	26.97
Callorhinus ursinus	46164	7938	53.35
Canis lupus familiaris	NA	13808	6.04
Crocuta Crocuta	16828	11525	29.17
Cryptoprocta ferox	18199	12244	20.82
Enhydra lutris	NA	13746	4.67
Eumetopias jubatus	39926	8515	46.70
Felis catus	NA	13047	11.98
Gulo gulo	19696	8939	48.42
Helogale parvula	18484	12005	23.92
Hyaena hyaena	17663	12169	22.27
Leptonychotes weddellii	NA	12439	22.57
Lutra lutra	32278	12304	19.89
Lycaon pictus	18068	11405	27.75
Lynx canadensis	44864	7203	56.76
Lynx pardinus	31025	9961	39.55
Manis javanica	NA	12441	18.81
Mellivora capensis	18194	12146	22.63
Mirononga angustirostris	32777	12305	19.37
Mungos mungo	18832	12241	21.30
Mustela putorius	NA	13172	8.70
Nasua narica	16858	11442	29.08
Neofelis nebulosa	29785	12614	18.28
Neomonachus schauinslandi	NA	13690	5.80
Neovison vison	17294	11848	26.03
Odobenus rosmarus	NA	13705	5.14
Otocyon megalotis	18996	11981	22.02
Panthera leo	17539	12162	22.91
Panthera onca	16942	11758	27.22
Panthera pardus	NA	13731	5.49
Panthera tigris	NA	12841	15.37
Paradoxurus hermaphroditus	17278	11387	30.18
Phoca vitulina	18387	12057	22.73
Potos flavus	27890	12234	22.80
Prionailurus bengalensis	18057	12172	22.88
Procyon lotor	16572	11165	32.46
Proteles septentrionalis	NA	12050	22.43
Proteles cristatus	17570	12062	22.96
Pteronura brasiliensis	18445	12332	20.62
Puma concolor	23358	10853	28.62
Spilogale gracilis	17606	11744	26.61
Suricata suricatta	17398	11707	26.32
Taxidea taxus	15586	10141	42.19
Ursus americanus	17694	11670	27.53
Ursus arctos	18003	12145	22.21
Ursus maritimus	NA	13111	13.56
Ursus thibetanus	18365	12092	22.87
Vulpes vulpes	18511	11688	26.02
Zalophus californianus	NA	6305	64.65
Table S6. Sample details, Illumina sequencing, and assembly statistics of the 10 newly assembled carnivoran mitochondrial genomes.			
Species	Common name	Collection number	Origin
-------------------------	-------------------------	-------------------	------------
Proteles cristata	*cristata*	NMB (TS307)	South Africa
Proteles cristata	*septentrionalis*	NMS Z.2018.54	Tanzania
Otocyon megalotis	*megalotis*	NMB (TS305)	South Africa
Otocyon megalotis	*virgatus*	FMNH 158128	Tanzania
Speothos venaticus	Bush dog	ISEM T1624	French Guiana
Vulpes vulpes	Red fox	ISEM T3611	France
Parahyaena brunnea	Brown hyaena	ISEM FD126	Toulon Zoo
Bdeogale nigripes	Black-footed mongoose	FMNH 167685	Gabon
Fossa fossana	Malagasy civet	FMNH 156648	Madagascar
Viverra tangalunga	Malayan civet	FMNH 146957	Philippines

*: UCE capture reads from Esselstyn et al. (2017); NMB: National Museum, Bloemfontein, South Africa; ISEM: Institut des Sciences de l'Evolution, Montpellier, France; FMNH: Field Museum of Natural History, Chicago, IL, USA.
Table S7: Node calibrations used for the Bayesian dating inferences based on mitogenomic data.
Node	upper limit (My)	lower limit (My)
Felis_catus,Lynx_lynx	NA	5.3
Felis_catus,Panthera_onca	16.4	NA
Felis_catus,Prionodon_pardicolor	NA	28.5
Proteles_cristatus_cristatus_TS307,Hyaena_hyaena	16.4	NA
Urva_javanica,Fossa_fossana_FMNH156648_SRR6053060	NA	16.4
Proteles_cristatus_cristatus_TS307,Urva_javanica	NA	16.4
Civettictis_civetta,Genetta_servalina	NA	11.2
Canis_lupus,Urocyon_cinereoargenteus	NA	5.3
Mephitis_mephitis,Spilogale_putorius	NA	1.8
Procyon_lotor,Nasua_nasua	NA	11.2
Nasua_nasua,Ailurus_fulgens	NA	16.4
Arctocephalus_pusillus,Zalophus_californianus	NA	1.8
Mirounga_leonina,Phoca_fasciata	NA	11.2
Arctocephalus_pusillus,Phoca_fasciata	NA	16.4
Arctocephalus_pusillus,Nasua_nasua	NA	28.5
Ursus_arctos,Ailuropoda_melanoleuca	NA	3.5
Canis_lupus,Ursus_arctos	NA	37
Felis_catus,Canis_lupus	65.8	50
Table S8: Results of contamination analyses performed with BlobTools for the aardwolf (*Proteles cristata*).

Table S9: Results of contamination analyses performed with BlobTools for the bat-eared fox (*Otocyon megalotis*).

SEE XLS FILES
Table S10: Summary information for the Carnivora genomes available either on Genbank, DNAZoo (https://www.dnazoo.org) and the OrthoMaM database as of February 11th, 2020. The “OMM” column indicates if the genome was available on OMM (yes) or not (no). The “Annotation” column indicates whether the genome was already annotated (yes) or not (no).
Species	Order	Family	Assembly	GenomeSource	BUSCO-Score	
Zalophus californianus	Carnivora	Otariidae	*Zalophus_cal2.2*	DNAZoo_HiC	95.2	
Vulpes vulpes	Carnivora	Canidae	*VulVul2.2*	DNAZoo_HiC	57.5	
Spilogale gracilis	Carnivora	Mustelidae	*SpiGra_v1_BIUU*	DNAZoo_HiC	93.7	
Pteronura brasiliensis	Carnivora	Mustelidae	*PumCon1.0*	DNAZoo_HiC	94.7	
Proteles cristatus	Carnivora	Herpestidae	*pl-1k_DNAZoo_HiC*	DNAZoo_HiC	78.2	
Phoca vitulina	Carnivora	Carnivora	*GSC_HSeal_1.0_DNAZoo_HiC*	DNAZoo_HiC	94.4	
Panthera tigris	Carnivora	Carnivora	*PanPar1.0*	DNAZoo_HiC	92.8	
Neomonachus schauinslandi	Carnivora	Carnivora	*sis2-181106_DNAZoo_HiC*	DNAZoo_HiC	93.0	
Mustela putorius	Carnivora	Carnivora	*ASM402803v1*	NCBI	92.6	
Mungos mungo	Carnivora	Carnivora	*ASM326570v1*	NCBI	94.7	
Mirounga angustirostris	Carnivora	Carnivora	*BGI_CrCroc_1.0*	NCBI	95.5	
Helogale parvula	Carnivora	Carnivora	*Oros_1.0*	NCBI	93.0	
Cryptoprocta ferox	Carnivora	Carnivora	*ASM356570v1*	NCBI	92.6	
Callorhinus ursinus	Carnivora	Carnivora	*ASM334442v1_DNAZoo_HiC*	DNAZoo_HiC	92.6	
Acinonyx jubatus	Carnivora	Carnivora	*ASM369799v1*	DNAZoo_HiC	94.7	
			UrsMar_1.0	NCBI		94.7
			ASM334442v1_DNAZoo_HiC	DNAZoo_HiC		94.7
			ASM369799v1	DNAZoo_HiC		94.7
			ASM356570v1	NCBI		94.7

BUSCO-Score (90% completeness and 80% single-copy completeness)

Species	Order	Family	Assembly	GenomeSource	BUSCO-Score	
Zalophus californianus	Carnivora	Otariidae	*Zalophus_cal2.2*	DNAZoo_HiC	95.2	
Vulpes vulpes	Carnivora	Canidae	*VulVul2.2*	DNAZoo_HiC	57.5	
Spilogale gracilis	Carnivora	Mustelidae	*SpiGra_v1_BIUU*	DNAZoo_HiC	93.7	
Pteronura brasiliensis	Carnivora	Mustelidae	*PumCon1.0*	DNAZoo_HiC	94.7	
Proteles cristatus	Carnivora	Herpestidae	*pl-1k_DNAZoo_HiC*	DNAZoo_HiC	78.2	
Phoca vitulina	Carnivora	Carnivora	*GSC_HSeal_1.0_DNAZoo_HiC*	DNAZoo_HiC	94.4	
Panthera tigris	Carnivora	Carnivora	*PanPar1.0*	DNAZoo_HiC	92.8	
Neomonachus schauinslandi	Carnivora	Carnivora	*sis2-181106_DNAZoo_HiC*	DNAZoo_HiC	93.0	
Mustela putorius	Carnivora	Carnivora	*ASM402803v1*	NCBI	92.6	
Mungos mungo	Carnivora	Carnivora	*ASM326570v1*	NCBI	94.7	
Mirounga angustirostris	Carnivora	Carnivora	*BGI_CrCroc_1.0*	NCBI	95.5	
Helogale parvula	Carnivora	Carnivora	*Oros_1.0*	NCBI	93.0	
Cryptoprocta ferox	Carnivora	Carnivora	*ASM356570v1*	NCBI	94.7	
Callorhinus ursinus	Carnivora	Carnivora	*ASM334442v1_DNAZoo_HiC*	DNAZoo_HiC	92.6	
Acinonyx jubatus	Carnivora	Carnivora	*ASM369799v1*	DNAZoo_HiC	94.7	
			UrsMar_1.0	NCBI		94.7
			ASM334442v1_DNAZoo_HiC	DNAZoo_HiC		94.7
			ASM369799v1	DNAZoo_HiC		94.7
			ASM356570v1	NCBI		94.7

BUSCO-Score (90% completeness and 80% single-copy completeness)

Species	Order	Family	Assembly	GenomeSource	BUSCO-Score	
Zalophus californianus	Carnivora	Otariidae	*Zalophus_cal2.2*	DNAZoo_HiC	95.2	
Vulpes vulpes	Carnivora	Canidae	*VulVul2.2*	DNAZoo_HiC	57.5	
Spilogale gracilis	Carnivora	Mustelidae	*SpiGra_v1_BIUU*	DNAZoo_HiC	93.7	
Pteronura brasiliensis	Carnivora	Mustelidae	*PumCon1.0*	DNAZoo_HiC	94.7	
Proteles cristatus	Carnivora	Herpestidae	*pl-1k_DNAZoo_HiC*	DNAZoo_HiC	78.2	
Phoca vitulina	Carnivora	Carnivora	*GSC_HSeal_1.0_DNAZoo_HiC*	DNAZoo_HiC	94.4	
Panthera tigris	Carnivora	Carnivora	*PanPar1.0*	DNAZoo_HiC	92.8	
Neomonachus schauinslandi	Carnivora	Carnivora	*sis2-181106_DNAZoo_HiC*	DNAZoo_HiC	93.0	
Mustela putorius	Carnivora	Carnivora	*ASM402803v1*	NCBI	92.6	
Mungos mungo	Carnivora	Carnivora	*ASM326570v1*	NCBI	94.7	
Mirounga angustirostris	Carnivora	Carnivora	*BGI_CrCroc_1.0*	NCBI	95.5	
Helogale parvula	Carnivora	Carnivora	*Oros_1.0*	NCBI	93.0	
Cryptoprocta ferox	Carnivora	Carnivora	*ASM356570v1*	NCBI	94.7	
Callorhinus ursinus	Carnivora	Carnivora	*ASM334442v1_DNAZoo_HiC*	DNAZoo_HiC	92.6	
Acinonyx jubatus	Carnivora	Carnivora	*ASM369799v1*	DNAZoo_HiC	94.7	
			UrsMar_1.0	NCBI		94.7
			ASM334442v1_DNAZoo_HiC	DNAZoo_HiC		94.7
			ASM369799v1	DNAZoo_HiC		94.7
			ASM356570v1	NCBI		94.7