Improving the sensory and qualitative properties of barley bread using broken wheat wet gluten

F A Abadi¹ and J M Naser²

¹Graduate Student, Department of Food Science, College of Agriculture, Baghdad University, Baghdad, Iraq. Office. Agric. Res. Mini- Trade
²Assistant professor, Department of Food Science, College of Agricultural Engineering sciences, Baghdad University, Baghdad, Iraq

Email: xmas.firas@yahoo.com

Abstract. Vital wheat gluten was extracted from broken wheat flour (Triticum aestivum), which is an accidental product during the technical milling process and used to improve the sensory and qualitative properties of bread made using flour from two varieties of Iraqi barley (IPA 99, IPA265) which were obtained from the Ministry of Agriculture / Agricultural Research Center. The chemical composition analysis revealed that the percentage of β-glucan in barley flour (72% extraction) (BFE) of IPA 99 and IPA 265 were (3.9, 4.5%), respectively, while for whole barley flour (100% extraction) (WBF) those values were (3, 3.9%), respectively. The percentage of pentosanes in (WBF) of the experimental of varieties were (7.8, 12.6%). However, in the (BFE) these values drooped to (6.0 - 8.7%). This study, two experiments with seven treatments were carried out. The first experiment include using broken wheat wet gluten (BWWG) at different percentage in bread mix as follows, barley flour (type A) with 14% (BWWG) (T1), 16% (BWWG) (T2), 18% (BWWG) (T3), 20% (BWWG) (T4), and 22% (BWWG) (T5) of the experimental gluten, T6 was barley flour and 20% commercial gluten (CG) (for comprised) while T7 was barley flour with no added gluten. The second experiment was with barley flour from type (B) with a similar ratio of add gluten. The results have shown that the specific volume of the bread for IPA 99 & IPA 265 was significantly higher (P<0.05) than that of control. The highest value of specific volume were in the treatments AT5 &BT5 (3.3 & 3.34 cm3/gm) compared with the control where it was (1.43 & 1.5 cm3/gm). Sensory evaluation test showed an improvement in the sensory and qualitative characteristics of gluten contenting bread. Chemical analysis of the loaf prepared from superior treatments showed that percentage of protein increased from 10.7-113% to 25-26.6%, fiber to 1.3 - 1.8%, and carbohydrates to 57.5- 60.4% as compared with control treatment which was 74.5%.

1. Introduction

Bread is consumed as the important food all over in the world, which is accepted as a perishable commodity, due to its fast decline of freshness and fast staling [39]. Wheat is the most important cereal for making bread
because it has a high percentage of gluten compared to other cereals [40]. Increased consumer demand for healthy food has led to considerable efforts to develop bread that join a health benefits with good sensory properties. The use of whole grain wheat flour is the first strategy for the development of healthy bread as the consumption of the whole grain has been shown to lessen the risk of colorectal cancer, cardiovascular diseases, diabetes and obesity [48]. The high content of dietary fiber in whole grain plays a significant role in preventing many diseases and gives health benefits [45]. Increasing the content of cereal β-glucan in the bread is another strategy to raise their nutritional quality. Cereal β-glucans are known for their ability to decrease postprandial serum glucose levels and insulin response and to decrease serum cholesterol levels [13]. The high content of β-glucan in barley (3-11.3%) and oat (2.5-7.8%) compared with wheat (0.4-1.4%) which made these two kinds of cereal increasingly attractive for bread production [33].

Barley grains have a chemical composition are almost identical to those of wheat, while barley has a wide range of health benefits. Barley (Hordeum Vulgare L.) is cultivated as a commercial crop in about a hundred countries all over the world [36]. Barley is among the most ancient cereal crops grown around the world today. Archeological evidence mentioned the existence of barley in Egypt along the River Nile around 17,000 years ago [10]. It is one of the top most cultivated crops globally (12% of total cereal cultivated), which is the fourth cereal grains after wheat, maize, and rice [44]. Barley outperforms other cereals under various environmental stresses due to its winter-hardy, early maturing nature and drought-resistant, accordingly it is generally more economical to cultivate [16]. Approximately only 2% is used directly for human consumption, 33% for malting whereas 65% of cultivated barley is used for animal feed [46]. Moreover, it can be argued that barley is a great source of different carbohydrates, different minerals and vitamin group B and E. Vitamin E is natural antioxidants which can reduction heart diseases and the risk of cancer [11].

Many health professionals have given guidance to people to eat more barley products, which can confirm its health benefits by consuming the grain [5]. In 2014, more than 48 million hectares of barley were cultivated globally, lead to a harvest of 144 million metric tons [47]. Only a small sum of barley is used for human consumption. Appearance and taste factors along with its poor baking quality have restricted the use of barley in human foods [23]. According to [22] some studies have added the barley flour up to 15 % can improve the physicochemical properties of mixed bread by replacing wheat flour with barley flour. In some other reported, combine more than 25% barley flour leads to darkening, hardness, lack of uniformity and less overall acceptability.

However, the incorporation of oat and barley flour or the use of whole grain flour (commonly from wheat) or bran all minimize bread quality, specially loaf volume, of wheat composite bread [26]. [9] Reported that 5-10% addition of barley flour to bread products was accepted by the consumers. Moreover, parameters like texture and color were like to those of the bread made of only wheat flour. The aim of this study is to improve the sensory and qualitative characteristics of barley bread using broken wheat gluten.

2. Materials and Methods

2.1. Barley flour preparation

Two varieties of barley (IPA 99, IPA 265) were obtained from the Ministry of Agriculture/Agricultural Research Center. Both varieties were grown in north of Baghdad, Iraq in 2017. Barley samples were grinding with Brabender Laboratory mill after conditioning to 14 % moisture for 30 hours [29], and the flour was passing through (150 Micron). The extraction rate of barley flour was 72%.
2.2. Gluten preparation
The wet gluten was extracted from broken wheat (*Triticum aestivum*) with 14% moisture for 30 hours before milling. Flour was passing through (150 Micron), and the extraction rate of wheat flour was 60%. The extraction and estimation of the gluten were followed by the interesting mentioned in [1].

2.3. Chemical analysis
Proximate compositions of all flour and bread samples were studied using [6] methods.

2.4. Extraction and determination of β-glucan
β-glucan was extracted from barley flour and determinate, according to [25].

2.4.1. Determination of protein content in the β-glucan extract
Total nitrogen ratio was determinate using the Micro-Kaldal method using the American Association of Chemical Chemistry [2].

2.4.2. Determination of Moisture of β-glucan
Moisture was determinate using the standard method of [3].

2.4.3. Determination of Water holding capacity of β–glucan
The water holding capacity of β-glucan was determinate, according to [8]. According to the following equation:

\[
\text{Water holding capacity (WHC)} = \frac{\text{Weight of the binding water (g)}}{\text{Weight of the sample}} \times 100
\]

2.5. Determination of Pentosanes in barley flour
Pentosanes in barley flour were determinate according to the method followed by [21].

2.6. Bread (loaf) preparation
The breadmaking performances of the flour (control and blends) were determined using the straight dough [4] with a slight modification. Bread mix consists of barley flour (BFE), wet gluten (BWWG), yeast, salt, sugar, fat and an adequate amount of water to obtain dough of optimum consistency. The breadmaking procedure was included mixing the dry materials, at low speed for 2 min for dry materials followed by a 9 min rapid mixing with small piece of wet gluten using spiral arm mixer, and then hold for a proving time (50 min) at 36°C and 70-80% relative humidity (r.h.) and baking for 23 min at 180°C in a conventional oven.

Baking bread loaves were cooled down to room temperature for 60 min, wrapped in a plastic film and then stored at room temperature (20-22°C). Standard bread was weighed and its volume was measured by displacement of sage seeds. The specific volume was calculated.

Sensory characteristic of the bread was evaluated by 9 evaluators The ingredients of experiments as treatments were as listed in following Table 1. The sensory evaluation form used was followed by [51].

2.7. Statistical analysis
SAS program was used to analyze the effect of the different factors in the studied traits, mean differences between the averages were compared with the least significant difference at significance level of \(p<0.05 \) [14].
The sensory evaluation Table [51].

treatments	Bread volume	Color of crust	Symmetry of form	Evenness of bake	Grain of crumb	Color of crumb	Texture of crumb	Aroma and taste	Total score
Degree	30	10	5	5	10	10	10	20	100
T1									
T2									
T3									
T4									
T5									
LSD value									

T= mean of the treatments
Table 1. The Ingredients of experiment treatments (g).

Treatments	Barley flour (BFE) (g)	Wheat flour (g)	wet gluten Based on dry matter (g)	Yeast (g)	Salt (g)	Sugar (g)	Fat (g)
AT1	86 IPA 99	-	14 from broken wheat	2	1.5	4	3
AT2	84 IPA99	-	16 from broken wheat	2	1.5	4	3
AT3	82 IPA 99	-	18 from broken wheat	2	1.5	4	3
AT4	80 IPA99	-	20 from broken wheat	2	1.5	4	3
AT5	78 IPA 99	-	22 from broken wheat	2	1.5	4	3
AT6	80 IPA99	-	20 from Commercial	2	1.5	4	3
AT7	100 IPA99	-	-	2	1.5	4	3
BT1	86 IPA 265	-	14 from broken wheat	2	1.5	4	3
BT2	84 IPA265	-	16 from broken wheat	2	1.5	4	3
BT3	82 IPA 265	-	18 from broken wheat	2	1.5	4	3
BT4	80 IPA265	-	20 from broken wheat	2	1.5	4	3
BT5	78 IPA 265	-	22 from broken wheat	2	1.5	4	3
BT6	80 IPA265	-	20 from Commercial	2	1.5	4	3
BT7	100 IPA265	-	-	2	1.5	4	3

A= mean the first experiment B= mean second experiment T= mean the treatment
3. Result and discussions

3.1. Chemical composition of barley and broken wheat flour

Table 2 shows the chemical composition of (BFE), (WBF) of IPA 99 and IPA 265. The percentage of moisture, protein and fat in class IPA 265 (for both extraction rates) were (12.60, 13.0, 2.8%) and (13.1, 13.4, 1.0%), respectively, which were higher than that for class IPA 99 (12.05, 11.70, 1.50%) and (13, 12, 0.8%), respectively. The percentages of fiber, carbohydrate and ash were lower in the flour of class IPA 265 (for both extraction rates), being (5.9, 60.8, 4.9%) (2.0, 69.3, 1.2%), respectively, as compared to that of class IPA 99 flour, being (6.15, 63.45, 5.14%) (2.0, 70.9, 1.3%), respectively. The results obtained in this study are agreed with the findings of other authors [49] [46] [12]. Differences in the proportions of components between different varieties are due to genetic and environmental differences [12].

The same table shows the chemical composition of the broken wheat flour. The percentages of moisture, protein, fat, fiber, ash and carbohydrates for broken wheat flour were (8.4, 10.78, 1.2, 70.82, 4, and 4.8%), respectively. Results were different than that reported by [7] which were (11.3, 3.2, 11, 2.2, and 72 %) respectively, and these differences may be due to the variation in the experimental grain mix and the storage conditions. It has been noticed that the protein in broken wheat was high being (13.0%) and this will provide good gluten for the production of barley bread.

Table 2. Chemical composition of the experimental barley and broken wheat flour

Cereal varieties	Ash%	Carbohydrate%	Fiber%	Protein%	Fat%	Moisture%
(WBF)(IPA 99)	5.14	63.45	6.15	11.70	1.50	12.05
(BFE)(IPA99)	1.3	70.9	2.0	12.0	0.8	13.0
(WPF)(IPA 265)	4.9	60.8	5.9	13.0	2.8	12.6
(BEF)(IPA 265)	1.2	69.3	2.0	13.4	1.0	13.1
Broken wheat	4.0	70.82	4.8	10.78	1.2	8.4

3.2. Chemical composition of commercial gluten and broken wheat gluten

Table 3 shows the chemical composition of commercial gluten (CG) and broken wheat gluten. The percentage of moisture, protein, fat, fiber and carbohydrate for (CG) were (5, 65.4, 0.2, 27.6, 1.7%), respectively and for broken wheat gluten (4.4, 74.36, 0.1, 19.5, 1.5%), respectively. The results were consistent with [50] and [18]. The chemical composition of (CG) in their studies where (7.5, 71-80, -50, 0.5, 15-20%), respectively. The difference in the moisture content of gluten is due to the different methods of drying, while the difference in the ratio of lipid to gluten depends on the ratio of the presence of polar and non-polar fat, where most polar fats are removed during the washing of the gluten in sufficient amounts of water. While non-polar fat is associated with proteins and this is confirmed by [20].

The difference in the percentage of protein in gluten is due to the difference in the source of gluten and the different method of extraction [50]. The remaining percentage of carbohydrate in the extracted gluten is due to the overlap and encapsulation of the protein matrix of a part of the carbohydrate (starch and / or fibers) that are difficult to separate from the protein during the process of washing [41]. The difference in the percentage of ash may be due to the difference in the percentage of minerals and extraction methods.
Table 3. The chemical composition of commercial gluten (CG) and broken wheat gluten on the basis of dry matter

Chemical content%	Commercial gluten (CG)	Broken wheat gluten
Moisture	5	4.4
Protein	65.4	74.36
Fat	0.2	0.1
Carbohydrate	27.66	19.57
Ash	1.74	1.57

3.3. Determination of β-glucan extracted from barley varieties

The percentages of β-glucan in the barley varieties IPA 99 and IPA 265 with different extraction rates, moisture content and protein and its water holding capacity. The results indicate that the percentage of β-glucan in the WBF was (3.0, 3.3%), respectively, this is in line with [37] when the studied studying 27 barley varieties, where the presence of β-glucan by 2.4 - 7.4% in full barley, and the difference in the ratio of β-glucan is due to different genetic traits. The results also indicate a high percentage of β-glucan in flour with (BFE) to reach (3.9, 4.54%) in the two varieties respectively. This corresponds to the findings of [33] who indicated that β-glucan was higher in endosperm than other parts of the grain. The moisture content was 9% and 7.8% in the β-glucan extracted from WBF, and 8.7% and 7.8% for BFE. This is in line with the findings of [42], who indicated that the moisture content of the β-glucan extract was 3.6 to 10.8% when studying the β-glucan extract from different sources (Table 4). β-glucan has a high moisture content due to its high water-binding ability because it is a colloidal compound, which is important in food processing because it increases the product's improvement as it also increases the volume of bread [34]. The same table shows that the percentage of proteins in β-glucan extracted from WBF was (4.4, 5.6%) respectively, and extracted from BFE was (5.7, 5.3%), respectively. The proportion of proteins in BFE from WBF increased, this was confirmed by [43], when they studied the effect of milling operations on the chemical content of whole barley flour and extracted it by 65%. [42] Reported that β-glucan extracted from barley flour contains (5.3%) proteins.

The high-water holding capacity (WHC) of the β-glucan extracted from the WBF was 630% and 752% for the cultivars IPA 99 and 265 respectively, compared to β-glucan extracted from BFE, which was 527% and 604% for the two varieties mentioned above. This is in line with the findings of [42], where WHC was 500-600% for β-glucan derived from yeast. The difference in WHC between the two varieties may be due to the different effect of the extraction and drying methods on the rheological properties of β-glucan. [30] Reported that the polyglucan polysaccharides network can be formed when β-glucan units are associated with water, this association is affected by the extraction method of β-glucan and drying.
Table 4. Percentages of β-glucan in the barley varieties IPA.99 and IPA.265 with different extraction rates, moisture and protein content in β-glucan and its ability to water holding capacity

Cereals varieties	β-glucan %	Moisture %	Protein %	Water Holding Capacity(WHC)
WBF (IPA 99)	3	9	4.4	630
BFE (IPA 99)	3.9	8.7	5.7	527
WBF (IPA 265)	3.3	7.8	5.6	752
BFE (IPA 265)	4.54	7.86	7.3	604

3.4. Determination of pentosanes in barley varieties

The percentage of pentosanes in the barley flour of IPA 99 and IPA 265 prepared with different extraction ratios. The results indicated that the percentage of pentosanes in WBF was (12.6, 7.8) % for the class of IPA 99 and IPA 265 respectively, while the percentage pentosanes in flour with a (BFE) were (6.0 - 8.77%) in the two varieties under study. The increase in the ratio of pentosanes in class 265 was due to genetic and environmental differences. This is in line with the findings of [35] when they studied 50 varieties of six-row barley seedlings grown in three regions of Finland, the percentage of pentosanes in their results were (7.3 -11%).

The increase in the percentage of pentosanes in WBF compared to a flour with BFE is due to the increase of this component in the whole barley grain compared with endosperm barley grain. This was confirmed by [28] when comparing the presence of pentosanes and β-glucan between whole grains content and their content in endosperm for barley, oats, and wheat. This explains the importance of eating whole grains to get the highest proportion of dietary fiber. Pentosanes play an important role in increasing water uptake and increasing the volume of bread produced, as well as having a positive effect on the properties of Staling because they reduce the amount of starch available for crystallization [32] (Table 5).

Table 5. The percentage of pentosanes in the barley flour varieties IPA 99 and IPA 265 with on (WBF) and (BFE)

Barley varieties	(WBF) IPA 99	(BFE)IPA 99	(WBF) IPA 265	(BFE)IPA 265
Pentosanes %	7.8	6	12.6	8.77

3.5. Effect of added gluten on the weight, size and specific volume of the barley bread

3.5.1. The effect of added wet gluten (WG) on the weight, size and specific volume of the bread produced from the barley flour Class IPA 99

Table 6 shows the effect of the addition of protein wheat (gluten) (WG) to bread mix on the weight, size and specific volume of bread manufactured from (BFE) IPA99, (treatment A). The results indicate an increase in the weight of the prepared bread with an increase in the amount of added gluten. The statistical analysis reveals that the differences insignificant among the treatment except for AT7.
There was also an increase in volume and specific volume with each increase in the quantity of added (WG) and significantly (P <0.05) to reach the highest value in size and specific volume at the treatment AT5 where it was (635 cm³ and 3.3 g / cm³) respectively, compared with the control treatment of AT 7, which size and specific volume were 240 cm³ and 1.43 g / cm³ respectively. This is consistent with [17], which found a positive relationship between the amount of gluten added to the flour and the volume of the resulting bread and also that the (WG) gave better results than the dry gluten in the bake test when it was fortified with wheat flour. The results of the same table show that gluten of broken wheat has a higher effect on the specific volume of bread, the specific volume was 2.5, 2.6, 2.7, 2.8, and 3.3 for treatments (AT1, AT2, AT3, AT4, AT5) respectively, compared with AT6 and AT7. The specific volume of the AT5 was higher than that of [24] when they estimating the specific volume of the Yemeni wheat varieties Al-Boni and the Samarra and varieties of American and Australian wheat where the specific volume were 2.02, 2, 2.49, 2.91 g / cm³ respectively.

Table 6. Effect of added wet gluten extracted from broken wheat on the weight, size and specific volume of bread produced from (BFE) class IPA.99 (experiment A)

Treatments	Weight (g)	Size (cm³)	Specific volume (cm³/g)
AT1	175 bc	440 c	2.50 ab
AT 2	180 abc	480bc	2.60 ab
AT 3	184 ab	510 b	2.77 a
AT 4	182 ab	510 b	2.80 a
AT 5	190 a	635 a	3.30 a
AT 6	183 ab	310 d	1.70 bc
AT 7	167.3 c	240 f	1.43 c
LSD value	13.08 *	41.57 *	1.066 *

* (P<0.05).

3.5.2. Effect of added wet gluten (WG) on the weight, size and specific volume of the bread produced from the barley flour class IPA.265

The effect of the addition of (WG) extracted from broken wheat on the weight, size and specific volume of bread produced from barley flour class IPA265 (experiment B). The results indicate an increase in the weight of the prepared bread with an increase in the amount of added gluten. This increase was insignificant except for the treatments BT5 compared to control treatments BT7.

There was also an increase in volume and specific volume with each increase in the quantity of added (WG) and significantly (P <0.05) to reach the highest value in size and specific volume at the treatment BT 5 where it was (635 cm³ and 3.34 g / cm³) respectively, compared with the control treatment of BT7, which size and specific volume were 240 cm³ and 1.5 g / cm³ respectively. This corresponds to [17] that there is a direct correlation between the amounts of added gluten and the volume of bread produced (Table 7).
Table 7. Effect of added (WG) extracted from broken wheat on the weight, size and specific volume of bread produced from (BFE) class IPA.265 (experiment B)

Treatments	Weight(g)	Size(cm³)	Specific volume(cm³/g)
BT. 1	178.1 a	405 c	2.27 bc
BT. 2	180.0 a	500 b	2.70 ab
BT. 3	179.1 a	525 b	2.90 a
BT. 4	190.0 a	620 a	3.26 ab
BT. 5	190.1 a	635 a	3.34 ab
BT. 6	184.0 a	300 d	1.63 c
BT. 7	160.0 b	240 d	1.50 c
LSD value	12.94 *	73.04 *	0.825 *

* (P<0.05).

3.6. Sensory characteristics of Barley Bread

3.6.1. The sensory characteristics of the laboratory bread manufactured from the barley flour (BFE) class IPA.99

Results of the sensory evaluation of the laboratory bread manufactured from the (BFE) class IPA 99 and supported by (WG) extracted from broken wheat (Tables 8). Statistical analysis showed that there were significant differences (P <0.05) in the specific volume of the loaf bread for all treatments with gluten-supported and significantly higher (P <0.05) for the sensory characteristics of the treatments with higher (WG) ratios compared with control-treatment bread and bread barley subsidized by 20% (CG).

The results showed that the two treatments with support ratios of 20-22% of (WG) (AT4, AT5) obtained a higher specific volume for the bread compared with the control treatment (unrefined barley flour), as well as with barley flour supplemented with 20% (CG). Both treatments received the best sensory scores compared with all other treatments. The higher specific volume of the gluten-supported bread than the unsupported flour is due to the ability of the gluten to form a network that has the ability to capture the CO2 gas produced by the biological activity of the yeast.

The highest percentage of added gluten, the greatest the ability of the network to hold the gas and increased the specific volume of the bread [17] [27] , demonstrated that there is a positive relationship between the amount of added gluten and the resulting bread volume. The addition of (WG) gave better results than the addition of dry gluten. Sensory evaluation of the processed bread was consistent with that of [15] which confirmed the improvement of the flavor of the bread produced from the medium flour quality, symmetry of form and crust and texture of crumb after 2% support of vital gluten. This was in line with the results reported in Tables (8), which showed improved sensory scores with increased levels of added gluten. Table (8) showed significant differences (P <0.05) in the total sensory evaluation for AT4
and AT5, which achieved the highest degree of sensory evaluation (90.1, 95.8%) respectively, compared with AT1, AT2, AT3, AT6, was (78.4, 84.2, 84.8, 54.3 and 49.3%) respectively.
This is due to the effect of (WG) used (20-22% on a dry weight basis), which improved the sensory characteristics of the produced bread as well as increased nutritional value. This is confirmed by [15] and [19], which indicated that the addition of gluten positively affects the improvement of the rheological characteristics of the dough and production with good specifications.

![Figure 1. Superior treatment in the experiment A. AT5(22% gluten), (BFE)+ (WG)](image)

Table 8. The results of the sensory evaluation of the bread produced from the (BFE) class IPA.99 and supported by wet gluten extracted from the broken wheat

treatments	Bread volume	Color of crust	Symmetry of form	Evenness of bake	Grain of crumb	Color of crumb	Texture of crumb	Aroma and taste	Total score
Degree	30	10	5	5	10	10	20	100	
AT1	22.8 b	8.1 A	3.8 a	4.2 a	8.1 ab	8.6 ab	8.3 A	14.5 B	78.4b
AT2	26.1 ab	9.0 A	4.2 a	4.4 a	8.6 a	8.6 ab	8.8 a	14.5 b	84.2b
AT3	25.18ab	9.3 A	4.3 a	4.5 a	8.5 a	8.7 ab	8.7 a	16.4 b	84.8b
AT4	25.45a	9.4 A	4.7 a	4.7 a	9.3 a	9.4 a	9.2 a	18.0 A	90.1a
AT5	30.0 a	9.6 A	4.5 a	4.5 a	9.1 a	9.5 a	9.5 a	19.1 a	95.8a
AT6	15.3 c	4.6 B	2.3 B	2.5 b	5.5 bc	6.8 bc	5.3 b	12.0 c	54.3c
ACT 7	13.0 c	4.0 B	2.1 B	2.5 b	5.1 c	6.4 c	4.7 b	11.5 c	49.3c
LSD value	5.266 *	2.533 *	1.006 *	1.622 *	2.746 *	2.056 *	2.832 *	2.24 *	6.82 *

NS . * (P<0.05).
3.6.2. The sensory characteristics of the laboratory bread manufactured from the (BFE) class IPA265 Tables (9) show the results of the sensory evaluation of the laboratory bread manufactured from the (BFE), IPA265 and supported by (WG) extracted from broken wheat.

The results of the statistical analysis showed that there were significant differences ($P <0.05$) in the specific volume of the loaf bread for all treatments with gluten-supported and significantly higher ($P <0.05$) for the sensory characteristics of the treatments with higher (WG) ratios compared with control-treatment bread and bread barley subsidized by 20% commercial gluten.
Table 9. The results of the sensory evaluation of the bread produced from the (BFE) class IPA 265 and supported by (WG) extracted from the broken wheat treatments

treatments	Bread volume	Color of crust	Symmetry of form	Evenness of bake	Grain of crumb	Color of crumb	Texture of crumb	Aroma and taste	Total score
Degree	30	10	5	5	10	10	10	10	100
BT. 1	20.6b	7.1a	3.3 bc	3.5 ab	7.3 a	8.1 a	7.7 a	15.8 a	73.5b
BT. 2	27.69b	8.8a	4.1ab	4.2a	8.2a	8.7a	8.5a	17.6a	86.5a
BT. 3	27.7b	9.3a	4.8a	4.4a	8.6a	9.0a	9.0a	18.0a	89.7a
BT. 4	29.5a	9.4a	4.3ab	4.3a	8.6a	9.3a	8.5a	18.3a	92.3a
BT. 5	30.0a	9.2a	4.2ab	4.4a	8.4a	8.8a	8.8a	18.5a	92.3a
BT. 6	20.7d	3.6b	2.2c	2.4b	3.6b	4.0b	3.5b	8.4b	42.5c
BT. 7	20.5d	3.3b	2.3c	2.3c	3.6b	4.0b	3.3b	8.5b	40.9c
LSD value	3.266 *	3.094 *	1.255 *	1.075 *	2.662 *	2.317 *	2.657 *	4.39 *	7.13 *

* (P<0.05).

Table (9) showed significant differences (P<0.05) in the total sensory evaluation between (BT2, BT3, BT4, BT5) which achieved the highest degree of sensory evaluation (85.5, 89.7, 92.3, 92.3%) respectively, compared with (BT6, BT7) were (40.9, 42.5%) respectively. This is due to the effect of (WG) used (16, 18, 20, 22% on a dry weight basis), which improved the sensory characteristics of the produced bread.

Figure 4. Superior treatment in the experiment B. BT5 (22% gluten), (BFE) + (WG)
3.7. Chemical composition of laboratory bread product

Table (10) shows the chemical composition of the laboratory bread manufactured from (BFE) class IPA99 and class IPA265, supported by (WG) extracted from broken wheat, for superior treatments in the statistical analysis of sensory evaluation AT5, BT5 (figure 1 and figure 4). The results showed that the percentage of protein in the fourth and fifth treatments was 25.8 and 26.6% respectively, compared with the first, second and third treatments which were (14.1, 10.7 and 11.3% respectively), the high protein content was due to the addition of (WG) to (BFE).

This is in line with [15], who indicated that the addition of gluten to flour improves the quality of the bread and increases its nutritional value. The percentage of carbohydrates in the fourth, fifth treatments were 60.4 and 57.5%, respectively, compared with the first, second and third treatment which were 74.5, 74.1 and 74.6%. While it is noted that the proportion of fat in all treatments were close and did not differ significantly from some. The results showed that the percentage of fiber in the fourth and fifth treatments were (1.3 and 1.8%) respectively and less than the fiber ratio in the second and third treatments where it was 3.8 and 3.6% respectively, the first treatment was where (1%).

Ratio ash of the fourth and fifth treatments was 2 and 1.8, which is an approach to control treatment which was 1.8%. The ratio of protein, fiber, and ash in the treatments with the addition of gluten was higher than that in wheat bread for the study of [31], which were 10.24, 0.08, 0.9%, respectively.

It is noticed from Table (10) that the bread produced from (BFE) and supported by the (WG) extracted from the broken wheat, obtained in this study, are a rich source of protein (25-26.6%), double the proportion of protein in wheat bread. This product is also rich in fiber (1.3 - 1.8%), which is equivalent to one and a half times what is found in wheat bread, and the proportion of carbohydrates in this product decreased by more than 15% compared to normal wheat bread. This bread is more nutritious and healthier than bakery products produced from wheat.

Table 10. Chemical composition of the laboratory bread manufactured from (BFE) supported by (WG) extracted from broken wheat

Chemical content%	1st treatment	2nd treatment	3rd treatment	4th treatment	5th treatment
Moisture	6.0	6.0	6.0	7.8	9.4
Fat	2.6	2.7	2.7	2.7	2.8
Protein	14.1	11.3	10.7	25.8	26.6
Fiber	1.0	3.6	3.8	1.3	1.8
Ash	1.8	2.3	2.2	2.0	1.8
Carbohydrate	74.5	74.1	74.6	60.4	57.5

1st treatment mean bread prepared from Turkish wheat flour + the basic ingredients of the dough.
2nd treatment mean bread made from (BFE) IPA.99+ the basic ingredients of the dough.
3rd treatment mean bread made from (BFE) IPA265+ the basic ingredients of the dough.
4th treatment mean bread prepared from the (BFE) IPA.99 + (WG) of broken wheat + the basic ingredients of the dough.
5th treatment mean bread prepared from the (BFE) IPA.265 + (WG) of broken wheat + the basic ingredients of the dough.
4. Conclusions
Experience and sensory experience indicated that broken wheat gluten can be used in its wet state to improve the qualitative and sensory characteristics of barley bread and make it similar to wheat bread with an increase in protein and fiber content and reduced carbohydrate content in prepared bread.

5. Acknowledgements
Authors would like to express their high appreciation to the Ministry of Higher Education and Scientific Research / University of Baghdad / College of Agricultural Engineering Sciences for providing facilities used in the completion of this research project.

References
[1] AACC 1998 Approved Methods of the American Association of Cereal Chemists. St. Paul, Minnesota. U.S.A. 10-38-0.1.
[2] AACC 2010 Approved Methods of the American Association of Cereal Chemists. 11th ed.
[3] AACC 1998 Approved Methods of the American Association of Cereal Chemists. St. Paul, Minnesota. U.S.A. 19-44.
[4] AACC 2000 Approved Methods of the American Association of Cereal Chemists 10th ed. Paul, MN, USA.
[5] Abu Mweis S S et al 2010 β-glucan from barley and its lipid-lowering capacity: a meta-analysis of randomized, controlled trials. European journal of clinical nutrition, 64(12) 1472.
[6] A.O.A.C. 1998 Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Washington, DC. 143.
[7] Al-saaduin, A A 2012 Study the functional properties and nutritional value of some isolated proteins from some Iraqi wheat varieties. M. Sc. Thesis - Dept. of Food Sci., Coll. of Agric., Univ. of Tikrit. In Arabic pp:95.
[8] Al-Aithy and Musa 2012 Extraction of β-Glucan from barley bran and assessment of some functional properties and molecular weight. The Iraqi journal of Agricultural Sciences 43(2) 100-108, 2012.
[9] Alu'datt, et al 2014 Effects of barley flour and barley protein isolate addition on rheological and sensory properties of pita bread. Journal of food quality 37(5) 329-338.
[10] Badr A et al 2000 On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution 17(4) 499-510.
[11] Beizadea E 2009 Fortification of Wheat Flour. Romanian Society of Biological Sciences. 14(2) 4300-4306.
[12] Biel W and Jacyno E 2013 Chemical composition and nutritive value of spring hulled barley varieties. Bulg. J. Agri. Sci 19(4) 721-727.
[13] Brennan C S and Cleary L J 2005 The potential use of cereal (1→3, 1→4)-β-D-glucans as functional food ingredients. Journal of Cereal Science 42(1) 1-13.
[14] Cave D G et al 2012 Method and system for producing a statistical analysis of medical care information. U.S. Patent 8:301,464.
[15] Codina G G et al 2008 The effects of different doses of gluten on the rheological behavior of dough and bread quality. Romanian Biotechnological Letters 13(6) 37-42.
[16] Cook A H 2013 Barley and malt: biology, biochemistry, technology. Elsevier.
[17] Czuchajowska Z and Paszczynska B 1996 Is wet gluten good for baking?. Cereal Chemistry 73(4) 483-489.
[18] Day L et al 2006 Wheat-gluten uses and industry needs. Trends in Food Science & Technology
[19] Day L 2011 Wheat gluten: production, properties and application. In Handbook of food proteins 267-288.
[20] Debet M.R and Gidley M J 2006 Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers 64(3) 452-465.
[21] Douglas S G 1981 A rapid method for the determination of pentosans in wheat flour. Food Chemistry 7(2) 139-145.
[22] Ereifej K I et al 2006. Effect of barley flour on quality of balady bread. International Journal of Food Properties 9(1) 39-49.
[23] Erkan H et al 2006 A new approach for the utilization of barley in food products: Barley tarhana. Food Chemistry 97(1) 12-18.
[24] Fadal J A et al 2010 Comparison of physical, chemical, rheological and baking properties of some local and imported wheat varieties. Food sci., Coll of Agric., Univ. Sana'a-Yemen, 87-88.
[25] Ghotra B S et al 2006 Structural characterization of barley β-glucan extracted using a novel fractionation technique. Food Research International, 41(10) 957-963.
[26] Gill S et al 2002 Wheat bread quality as influenced by the substitution of waxy and regular barley flour in their native and extruded forms. Journal of Cereal Science 36, 219-237.
[27] Gujral H S et al 2003 Note effect of barley flour, wet gluten and ascorbic acid on bread crumb texture. Food science and technology international 9(1) 17-21.
[28] Henry R J 1987 Pentosan and (1→3),(1→4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats, and rye. Journal of Cereal Science 6(3) 253-258.
[29] Holopainen U R et al 2014 Milling, water uptake, and modification properties of different barley (Hordeum vulgare L.) lots in relation to grain composition and structure. Journal of agricultural and food chemistry 62(35) 8875-8882.
[30] Hromádková Z et al 2003 Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1→3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers 51(1) 9-15.
[31] Kasprzak M and Rzedzicki Z 2010 Effect of pea seed coat admixture on physical properties and chemical composition of bread. Int. Agrophysics, 24(2) 149-156.
[32] Kim S K 1977 Bread staling studies. III. Effect of pentosans on dough, bread, and bread staling rate. Cereal Chem. (54) 225-229.
[33] Lazaridou A et al 2007a Cereal β-glucans: structures, physical properties, and physiological functions. Functional food carbohydrates 1-72.
[34] Lazaridou A et al 2007b Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3) 1033-1047.
[35] Lehtonen M and Aikasalo R 1987 Pentosans in barley varieties. Cereal Chemistry (USA).
[36] Mahdi S G et al 2008 Barley is a healthful food: a review. Electron J Environ Agric Food Chem 7(13) 2686–2694.
[37] Martinez M et al 2018 Phytochemical composition and β-glucan content of barley genotypes from two different geographic origins for human health food production. Food Chemistry (245) 61-70.
[38] Meyer K A et al 2000 Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The American journal of clinical nutrition 71(4) 921-930.
[39] Minervini F et al 2014 Ecological parameters influencing microbial diversity and stability of traditional sourdough. International journal of food microbiology (171) 136-146.
[40] Newton A C et al 2011 Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security 3(2) 141.
[41] Ortolan F and Steel C J 2017 Protein Characteristics that Affect the Quality of Vital Wheat Gluten to be used in Baking: A Review. Comprehensive Reviews in Food Science and Food Safety, 16(3) 369-381.

[42] Petravić-Tominac V et al 2011 Rheological properties, water-holding, and oil-binding capacities of particulate β-glucans, isolated from the spent brewer’s yeast by three different procedures. Food Technology and Biotechnology 49(1) 56-64.

[43] Robin G S and Pomeranz Y 1971 Composition and utilization of milled barley flour. I. Gross composition of roller-milled and air classification fractions. Cereal Chem 48(1) 47–51.

[44] Schulte D et al 2009 The international barley sequencing consortium—at the threshold of efficient access to the barley genome. Plant Physiology 149(1) 142-147.

[45] Slavin J 2004 Whole grains and human health. Nutrition research reviews 17 (1) 99-110.

[46] Sullivan P et al 2013 The increasing use of barley and barley by-products in the production of healthier baked goods. Trends in Food Science & Technology, 29(2) 124-134.

[47] Shewry P R and Ullrich S E 2014 Barley: chemistry and technology. Elsevier.

[48] Topping D 2007 Cereal complex carbohydrates and their contribution to human health. Journal of Cereal Science 46, 220-229.

[49] Vasan A et al 2014 Barley foods and health: Opportunities ahead. In Proceedings of the 2014 International Conference on Intelligent Agriculture (IPCBEE). IACST Press Singapore.63, 88-93.

[50] Wadhawan C K and Bushuk W 1989 Studies on the vitality of commercial gluten. I. Physical, chemical and technological characteristics. Cereal Chem, 66(6) 456-461.

[51] Zubaidi and Abbas H H 2009 Practical book in grain processing. Ministry of Higher Education and Scientific Research - University of Baghdad - College of Agriculture - Aljamiea Daar for printing and publishing.