Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review

Gabriel Carrillo-Bilbao 1,2,3, Sarah Martin-Solano 3,4 and Claude Saegerman 1,*

Abstract: Background: Understanding which non-human primates (NHPs) act as a wild reservoir for blood-borne pathogens will allow us to better understand the ecology of diseases and the role of NHPs in the emergence of human diseases in Ecuador, a small country in South America that lacks information on most of these pathogens. Methods and principal findings: A systematic review was carried out using PRISMA guidelines from 1927 until 2019 about blood-borne pathogens present in NHPs of the Neotropical region (i.e., South America and Middle America). Results: A total of 127 publications were found in several databases. We found in 25 genera (132 species) of NHPs a total of 56 blood-borne pathogens in 197 records where Protozoa has the highest number of records in neotropical NHPs (n = 128) compared to bacteria (n = 12) and viruses (n = 57). *Plasmodium brasilianum* and *Trypanosoma cruzi* are the most recorded protozoa in NHP. The neotropical primate genus with the highest number of blood-borne pathogens recorded is *Alouatta* sp. (n = 32). The use of non-invasive samples for neotropical NHPs remains poor in a group where several species are endangered or threatened. A combination of serological and molecular techniques is common when detecting blood-borne pathogens. Socioecological and ecological risk factors facilitate the transmission of these parasites. Finally, a large number of countries remain unsurveyed, such as Ecuador, which can be of public health importance. Conclusions and significance: NHPs are potential reservoirs of a large number of blood-borne pathogens. In Ecuador, research activities should be focused on bacteria and viruses, where there is a gap of information for neotropical NHPs, in order to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs.

Keywords: Ecuador; non-human primates; *Alouatta*; blood-borne pathogen; protozoa; *Plasmodium*; *Trypanosoma*; yellow fever

1. Introduction

Wild animals are the cause of almost 70% of all emerging diseases [1], and more than 60% of these diseases are zoonotic [2]. This is a public health concern and a conservation problem [3,4]. Non-human primates (NHPs) are infected not only by gastrointestinal parasites [5], but also by ectoparasites, hemoparasites, bacteria, viruses and some arthropods that affect the lungs. Until recently [6,7], just a few studies identified blood pathogens from fecal samples due to the presence of DNA (deoxyribonucleic acid) in-
hibitors in fecal samples. Thereafter, just a few studies have identified hemoparasites such as *Plasmodium* sp. [8,9] and *Trypanosoma brucei* [10] and viruses such as adenovirus [11] and astrovirus [12] from NHPs’ fecal samples. Most NHP species are listed under a category of conservation [13,14]. Molecular identification in fecal samples of blood-borne pathogens will be of great advantage to monitor NHP populations that can be a potential zoonotic reservoir for humans.

Gastrointestinal parasites have been monitored in neotropical primates [5,15–21]; however, they are restricted to some countries such as Mexico [22–33] and Brazil [34–44]. Regarding the study of hemoparasites and arboviruses in neotropical primates, this one is restricted just to a few studies in Brazil [45–48], Venezuela [49,50] and French Guiana [49], and Ecuador has no data on them [51], even if most of those hemoparasites and arboviruses are present in Ecuador [52–56]. Finally, we wish to focus on hemoparasites and arboviruses because they are the cause of millions of infections and thousands of deaths per year in humans [56–59]. Understanding whether primates act as a wild reservoir for hemoparasites and viruses in the neotropical region will allow us to better understand the ecology of diseases [60] and the role of NHPs in the emergence of human diseases [61], as well as the way to implement control programs [62,63] for endemic [64] and incoming pathogens [65] and NHP conservation/management plans in Ecuador [66].

Some NHPs can become infected with hemoparasite species of protozoans. For example, wildlife harbors several species of *Plasmodium* [67–69], especially NHPs. However, in the neotropics, just recently, there is evidence of natural infection in humans with *Plasmodium brasiliensis* in Venezuela [70] and *Plasmodium simium* in Brazil [45]. Therefore, in order to identify potential zoonotic reservoirs in wildlife, it is essential to monitor *Plasmodium* sp. in the Amazon region of Ecuador. Another example, *Toxoplasma* sp., has a worldwide distribution and affects a wide range of hosts from humans [71] and domestic animals [72] to wildlife [3,73], including marine mammals [74], freshwater mammals [75] and NHPs, Old World (OW) and New World (NW) monkeys [48,76–79]. In Ecuador, however, screening to detect *Toxoplasma* was only carried out in the islands of Galapagos. Indeed, some studies found *Toxoplasma* in birds [80,81], domestic animals [82], as well as in environmental waters. *Leishmania* sp. occurs in a wide range of hosts [83–88], including human [89] and non-human primates [48]. In NHPs, experimental [90] and natural infections [91] have been registered. However, studies in the neotropics are restrained to Brazil, and countries such as Ecuador are under-surveyed even though the parasite is widely distributed [92]. In Ecuador, despite surveillance and control campaigns, trypanosomiasis is still present [93]. However, there are just a few studies of trypanosomiasis in wildlife: bats [94,95], marsupials and rodents [96], and frogs [97], and unfortunately there are none on primates. In addition, in NW monkeys, it is very common to find several species of trypanosomes such as *Trypanosoma (megatrypanum) minasense* [98], and also zoonotic trypanosomes: *Trypanosoma rangeli* and *T. cruzi* [99].

Viral infections also pose a threat to NHPs’ health. Four types of viruses may affect NHPs: enveloped DNA (deoxyribonucleic acid) viruses, non-envelope DNA viruses, enveloped RNA (ribonucleic acid) viruses and non-enveloped RNA viruses [100]. Among the latter, arboviruses (arthropod-borne viruses) are a diverse range of viruses from eight families: *Togaviridae* (genus *Alphavirus*), *Flaviviridae* (genus *Flavivirus*), *Peribunyaviridae* (example: genus *Orthobunyavirus*), *Nairoviridae* (example: genus *Orthonairovirus*), *Phenuiviridae* (example: genus *Phlebovirus*), *Reoviridae* (genus *Orbivirus*), *Rhabdoviridae* (genus *Vesiculovirus*) and *Orthomyxoviridae* (genus *Thogotovirus*).

Arboviruses are a public health concern due to the threat to both humans and animals [101,102]. Arbovirus hosts can vary from a specific taxonomic group to several hosts. The range of vectors can also vary in the same way. For some arboviruses, the zoonotic origin is linked to primates because of their close genetic distance, while others are linked to other vertebrates or the vector itself [103]. In the neotropics, NHPs have been identified as hosts for the following diseases: yellow fever [104–106], Mayaro virus.
[49], Zika virus, Chikungunya virus [107], hepatitis A [108], Cacipacoré virus [109], St. Louis encephalitis virus (SLEV) and Oropouche virus (OROV) [49,110].

2. Results

2.1. Current Situation of Non-Human Primates

Non-Human Primate Biodiversity

Primates from all over the world are divided into two groups: Old World Monkeys (Catarrhini) and New World Monkeys (Platyrrhini). Around the world, we reported 504 species, including 171 species in the Neotropical region (i.e., South America and Middle America). The Neotropical region is the zoogeographical region with the highest number of species, and Ecuador registers 21 species (Table 1). All groups are mainly arboreal and they play an important role in cultures [111], in religions [112], in human livelihoods [113], and in the threat of emerging diseases [105]. They are also a good indicator of the quality of the environment [114], and at this time the destruction of their habitats, hunting and the capture of live specimens for export and local use are the greatest threats to their conservation [115–119].

Table 1. Species of non-human primates from Ecuador.

Family	Primate Species	Size (cm)	Weight (g)	Group Size (# of Individuals)	Social System 1	Habitat 2
Aotidae	*Aotus lemurinus*	50	1300	Small (1 to 5)	M	TFF
	Aotus vociferans	50	698	Small (2-5)	M	TFF, FF, and crops
Atelidae	*Alouatta seniculus*	43–60	3600–9000	Small (3-7) or Large (15)	MM–MF or a group of bachelor males	FF
	Alouatta palliata	48–67	3100–9800	Small and Medium (2–12)	MM–MF	All types of forests
	Ateles belzebuth	40–60	6000–10,500	Large (>20)	MM–MF	TFF
	Ateles fusciceps	39–58	8800	Large (20–30)	MM–MF	TFF
	Lagothrix lagotricha	40–58	3600–10,000	Large (6–60)	PG/MM–MF/M	TFF
	Lagothrix lagotricha poepigii	40–58	3600–10,000	Large (2–25)	PG/MM–MF/M	TFF
Cebidae	*Cebus albifrons*	81–84	1900–3900	Medium (5–30)	PG/MM–MF	All types of forests
	Cebus aequatoriensis	35–46	1200–3600	Medium (5–20)	PG/MM–MF	All types of forests
	Sapajus macrocephalus	35–50	1700–4500	Medium (5–20)	PG/MM–MF	All types of forests
	Cebus capucinus	35–45	2900–3900	Medium (2–42)	PG/MM–MF	All types of forests
	Cebus yuracu	81–84	2900–3900	Medium and Large (10 and 35–54)	PG/MM–MF	All types of forests
	Saimiri cassiquiarensis	25–32	600–1400	Large >10 and up to 100	M/PA	TFF, FF
Callitrichidae	*Cebuella pygmaea*	12–15	100–140	Small and Medium	M/PA	TFF, FF
Pathogens 2021, 10, 1009

4 of 35

Leontocebus nigricollis graei 15–28 350–470 (2–9) Small and Medium (2–30) M/MM–MF TFF and FF
Leontocebus lagonotus 17–27 330–430 Medium (2–10) M/MM–MF All kinds of social structures All kind of forest
Leontocebus tripartitus 21–24 218–240 Medium-sized (4–10) PG TFF and FF

Plecturocebus discolor 28–36 900–1400 Small (2–5) FF- lianas forest–forest gaps
Cheracebus lucifer 30–38 800–1500 Small (2–5) TFF
Pithecia aequatorialis 39–44 2000–2500 Small (1–4) M TFF
Pithecia milleri 37–48 2100–2600 Small (2–6) TFF and FF
Pithecia napensis 37–48 2100–2600 Medium (4–8) TFF

1 Social system: M = Monogamous: A mating system in which only one male copulates with only one female; MM–MF = Multimale–Multifemale groups: A social group consisting of multiple adult males and multiple adult females; MM = Multi-males: Strong social relationships among males, often deriving from close kinship among those males as a result of male philopatry; PA = Polyandry: A mating system in which one female copulates with multiple males; PG = Polygyny: A mating system in which members of both sexes copulate with multiple members of the opposite sex [120]; 2 Habitat: TFF—Terra firme forest: forest with soils composed of clay or loam [121]; FF—Flooded forests: Forests characterized by trees waterlogged or submerged during a large part of the year [122]. Data on NHPs were obtained from the following references: [123,124].

2.2. Terminology

2.2.1. Key Concepts

Blood pathogens can infect NHPs. However, a lot of terms have been identified across studies. This is why we propose the following concepts based on international guidelines. A disease is considered to be an abnormal condition in one part of the body or in the entire animal with clinical signs [125]. An infectious disease is caused by an agent that infects a host and can be transmitted to other hosts [126]. Blood-borne pathogens are viruses, bacteria and parasites found in the blood that can cause a disease.

2.2.2. Non-Invasive Samples and Detection Methods

The source of DNA in NHPs can be hairs [127,128], feces [129,130], buccal cells from swabs [131–133] or food wadges [134], urine [135] and blood [98,136]. Non-invasive genetic sampling was defined by Taberlet et al. [137] as “the source of the DNA left behind by the animal and that can be collected without having to catch or disturb the animal”. Non-invasive samples have been used in several studies of a wide range of vertebrates, such as birds [138–140], marine mammals [141–143], wolves [144,145], amphibians [146,147], reptiles [148], fish [149,150] and non-human primates. Non-invasive samples are known to have low quality and low quantity of DNA [151–153]. Samples such as pure blood have better results, but their collection is considered to be invasive. There are even cases where wild animals have died when trapped or manipulated for sampling. Therefore, the use of non-invasive samples can minimize disturbance to animals when collected correctly. However, sometimes non-invasive samples can disturb the ecology of animals. For example, in animals where their feces is used to mark their territory [154], collecting the whole feces can disturb the territory of the animal. In conservation biology, the use of non-invasive samples is of the utmost importance when it comes to threatened or endangered species such as gorillas [155], and in some cases is legally mandated.
Bacteria (n = 3), protozoa (n = 29) and viruses (n = 24) have been reported to infect the blood of neotropical NHPs (Tables 2–4). Studies in NHPs use invasive samples to detect blood pathogens. Most detection methods on protozoa focus on a combination between microscopy, polymerase chain reaction (PCR) and serological methods such as enzyme-linked immunosorbent assay (ELISA) (Table 3). However, for viruses, they focus primarily on a hemagglutination test (Table 4), which is considered a test for the presence of a humoral immune response of NHPs to an infectious agent such as viruses.

Table 2. Bacteria found in neotropical non-human primates.

Bacteria	Host	Location	Sampling (Invasive Non-invasive)	Detection Methods ¹	References
Borrelia burgdorferi	Leontopithecus chrysomelas	Brazil	Invasive	Nested PCR	[156]
	Ateles fusciceps				
	Ateles geoffroyi vellerosus				
	Ateles geoffroyi yucatanensis				
	Ateles hybridus				
	Calithrix jacchus				
	Callithrix penicillata				
Leptospira spp.	Cebus sp.	Brazil	Invasive	PCR	[160]
	Cebus albifrons	Colombia	Non-invasive	MAT	[161]
	Cebus capucinus	French Guiana		Serology	[162]
	Leontopithecus sp.	Mexico			
	Leontopithecus chrysomelas				
	Saguinus leucopus				
	Saimiri sciureus				
	Sapajus apella				
	Alouatta sp.				
	Alouatta caraya				
	Saimiri sciureus				
	Sapajus apella				
	Sapajus flavus				
	Sapajus nigriceps				
	Saguinus midas niger				

¹TEM = Transmission electron microscopy; MAT = Modified agglutination test.

Table 3. Protozoa found in neotropical non-human primates.

Protozoa	Host	Location	Sampling (Invasive Non-Invasive)	Detection Methods	References
Babesia sp.	Alouatta senicus	French Guiana	Invasive	BS	[173]
	Ateles paniscus				[68]
	Calithrix sp.				
	Pithecia pithecia				
	Saimiri sciureus				
Leishmania sp.	Alouatta guariba	Argentina	Invasive	ELISA	[174]
Leishmania (Viannia)	Atelidae (unknown)	Brazil	Invasive	PCR	[175]
Pathogen	Species	Location	Stage	Detection Methods	References
------------------------------	------------------------------	----------------	---------	------------------------------------	------------
Leishmania amazonensis	Aotus azarai azarai	Brazil	Invasive	IIF, DAT, PCR-RFLP	[91], [176], [177]
Leishmania braziliensis	Aotus nigriceps	Brazil	Invasive	NA	[178]
Leishmania chagasi	Callicebus nigrifrons	Brazil	Invasive	DNA PCR and RFLP	[91], [180]
Leishmania infantum	Callithrix jacchus	Brazil	Invasive	ELISA, IIF, Western Blot	[181]
Leishmania (Viannia) shawi	Chiropotes satanus	Brazil	Invasive	Conventional microscopy (GIEMSA)	[85]
Plasmodium sp.	Alouatta seniculus	France	Invasive	Conventional microscopy (GIEMSA)	[182]
Plasmodium vivax	Alouatta caraya	Brazil	Invasive	Microscopy, IFA, ELISA, PCR, Real-time PCR	[183], [184], [185], [186], [187]
Plasmodium brasilianum	Alouatta sp.	French Guiana	Invasive	BS, Conventional microscopy (GIEMSA)	[188], [68], [189], [192]
Aotus nigriceps
Brachyteles arachnoides
Cacajao calvus
Cacajao rubicundus
Callicebus bruneus
Callicebus dubuis
Callicebus moloch
Callicebus personatus
Callicebus torquatus
Callithrix geoffroyi
Cebus sp.
Chiropotes albinasus
Chiropotes chiroptes
Chiropotus sp.
Chiropotes satanas
Lagothrix cana cana
Lagothrix lagotricha
Lagothrix lagotricha poepigii
Leontopithecus chrysomelas
Leontopithecus rosalia
Mico humeralifer
Pithecia monachus
Pithecia irrorata
Pithecia pithecia
Saguinus martinsi
Saguinus martinsi
Saguinus midas
Saguinus midas
Saguinus martinsi
Saguinus martinsi
Saguinus ochraceous
Saguinus midas niger
Saimiri sp.
Saimiri sciureus
Saimiri sciureus
Saimiri sciureus
Saimiri sciureus
boliviensis
Saimiri ustus
Sapajus apella apella
Sapajus apella
macrocephalus
Sapajus robustus
Sapajus xanthosternos

Plasmodium simium	Brazil	Invasive	Non-Invasive	BS	PCR	PCR from fecal samples	Nested PCR
Alouatta guariba clamitans	Brazil			BS	PCR	PCR from fecal samples	Nested PCR
Callicebus nigrifrons	Brazil			BS	PCR	PCR from fecal samples	Nested PCR
Cebus sp.	Brazil			BS	PCR	PCR from fecal samples	Nested PCR
Sapajus robustus	Brazil			BS	PCR	PCR from fecal samples	Nested PCR
Pathogens	Host	Invasive	Diagnostic Tests				
-----------	------	----------	------------------				
Sapajus xanthosternos	**Plasmodium falciparum**	Brazil	ELISA, IFA, PCR	[188] [185]			
Alouatta caraya		French Guiana					
Alouatta guariba							
Alouatta puruensis							
Alouatta seniculus macconnelli							
Ateles chamek							
Callicebus bruneus							
Lagothrix cana cana							
Sapajus apella							
Brazil							
French Guiana							
Toxoplasma sp.	Alouatta seniculus	Invasive	DAT	[9]			
Alouatta sp.							
Alouatta belzebul							
Alouatta caraya							
Alouatta seniculus							
Alouatta seniculus straminea							
Ateles sp.							
Ateles geoffroyi							
Ateles paniscus paniscus							
Aotus sp.							
Aotus nigriceps							
Brachyteles arachnoides							
Cebus spp.							
Cebus albifrons							
Cebus capucinus							
Callithrix sp.							
Callithrix penicillata							
Chiroptes satanas							
Erythrocebus sp.							
Leontopithecus sp.							
Leontopithecus chrysomelas							
Leontopithecus chrysopygus							
Leontopithecus rosalia							
Leontopithecus rosalia rosalia							
Lagotrichia lagotricha							
Saginus imperator							
Saginus labiatus							
Saginus oedipus							
Saimiri sp.							
Saimiri boliviensis							
Saimiri sciureus							
Saimiri sciureus sciureus							
Sapajus spp.							
Sapajus apella							
Sapajus libidinosus							
Sapajus flavius							
Argentina							
Brazil							
Colombia							
French Guiana							
Mexico							
Invasive Necropsy							
Latex agglutination kit			[205]				
Indirect hemagglutination kit			[207]				
ELISA			[209]				
IHC			[210]				
PCR-RFLP			[211]				
Histology			[212]				
			[213]				
			[214]				
			[215]				
			[76]				
			[216]				
			[217]				
			[218]				
Trypanosoma sp.	Colombia	Invasive	BS				
-------------------------	---------------------------	----------	-------------				
Pithecia pithecia							
Trypanosoma sp.							
Alouatta seniculus							
Ateles paniscus							
Pithecia pithecia							
Saimiri sciureus							
Saguinus leucopus							
Alouatta palliata							
Alouatta pigra							
Alouatta caraya							
Alouatta seniculus							
Ateles belzebeth							
Ateles geoffroyi							
Ateles fusciceps							
Aotus sp.							
Aotus azarai							
Aotus nigriceps							
Cacajao calvus							
Callicebus personatus							
Callicebus nigrifrons							
Callithrix geoffroyi							
Callithrix jacchus							
Callithrix penicillata							
Cebuella pygmaea							
Cebus albifrons							
Cebus capucinus							
Cheracebus torquatus							
Chiropotes satanas							
Leontopithecus chrysopygus							
Leontopithecus chrysomelas							
Leontopithecus rosalia							
Leontocebus fuscicollis							
Leontocebus fuscicollis							
weddelli							
Leontocebus nigrigollis							
Mico chrysobleucus							
Mico argentatus							
Mico entiliae							
Pithecia irrorata							
Plecturocebus brunneus							
Saguinus niger							
Saguinus geoffroyi							
Saguinus bicolor bicolor							
Saguinus imperator							
imperator							
Saguinus labiatus							
Saguinus leucopus							
Saguinus midas							
Saguinus mystax							
Saguinus ustus							

Argentina | Brazil | Mexico | French Guiana | Panama | Peru | ELISA | IIF | PCR | BS | IFA | HC | XD |

[181] [221] [203] [222] [179] [224] [225] [226] [227] [228] [229] [230] [231]
Trypanosoma devei	Saimiri boliviensis	Brazil	Invasive	HC	[231]
	Saimiri sciureus				[232]
	Saimiri ustus				[233]
	Sapajus libidinosus				
	Sapajus robustus				
	Sapajus xanthosternos				
	Cebuella pygmaea				
	Callimico goeldii				
	Leontocebus fuscicollis				
	Leontocebus tamarin				
	Saguinus imperator				
	Saguinus imperator				

Trypanosoma diasi	Sapajus apella apella	Brazil	Invasive	HC	[232]
	Alouatta guariba				
	Alouatta caraya				
	Cebus albifrons				
	Cercocebus torquatus				
	Chiropotes satanas				
	Pithecia pithecia				
	Sapajus apella				

| Trypanosoma hippocum | Alouatta guariba | NA | NA 1 | NA 1 | [219] |
|---------------------------|-----------------------|------------|----------|-------|
| | Alouatta seniculus | NA | NA 1 | |

| Trypanosoma lambrechti | Alouatta seniculus | Brazil | NA 1 | NA 1 | [219] |
|---------------------------|-----------------------|------------|----------|-------|
| | Cebus albifrons | | | |
| | Cercocebus torquatus | | | |
| | Chiropotes satanas | | | |
| | Pithecia pithecia | | | |
| | Sapajus apella | | | |

| Trypanosoma lesourdi | Ateles paniscus | French Guiana | NA 1 | NA 1 | [223] |
|---------------------------|-----------------------|---------------|----------|-------|
| | Alouatta belzebul | | | |
| | Alouatta belzebul | | | |
| | Alouatta caraya | | | |
| | Alouatta palatiata | | | |
| | Alouatta seniculus | | | |
| | Chiropotes satanas | | | |

Trypanosoma mycetace	Alouatta belzebul	Brazil	Invasive	XD	[229]
	Alouatta caraya	Guatemela			[233]
	Alouatta palatiata	Panama			[232]
	Alouatta seniculus	French Guiana			[223]
	Chiropotes satanas				[224]
					[219]

Trypanosoma minasense	Alouatta belzebul	Argentina	Invasive	PCR	[232]
	Alouatta caraya	Brazil			[179]
	Alouatta guariba	Colombia			[203]
	Alouatta seniculus	Peru			[229]
	Aotus trivirgatus				[234]
	Ateles fusciceps				[223]
	Ateles geoffroyi				[231]
	grisescens Callithrix				[230]
	jacchus				[235]
	Callithrix penicillata				[98]
	Cebus albifrons				[224]
	Cebus capucinus				[230]
	Leontocebus weddelli				[235]
	Leontocebus fuscicollis				
	Leontocebus weddelli				
	Plecturocebus ornatus				
	Saguinus geoffroyi				
	Saguinus imperator				
Pathogens	Year	Volume	Pages		
-----------	------	--------	-------		
2021	10	1009			

imperator
- *Saguinus midas*
- *Saimiri sciureus*
- *Saimiri sciureus macrodon*
- *Saimiri ustus*
- *Sapajus apella*

Trypanosoma rangeli (like)

Species	Location	Invasive	Method
Aloatta seniculus	Brazil		BS
Cebuella pygmaea			
Cebus albifrons unicolor			
Cebus capucinus			
Callimico goeldii			
Leontocebus fuscicollis weddelli			
Pithecus pithecus			
Saguinus bicolor			
Saimiri boliviensis			
Saimiri ustus			
Saimiri sciureus			
Saginus geoffroyi			
Saginus imperator			
Saginus midas			
Saimiri boliviensis			
Sagapkus apella			

Trypanosoma saimiri

Species	Location	Method
Saimiri sciureus sciureus	Brazil	HC

Trypanosoma venezuelensis

Species	Location	Method
Aloatta guariba	NA	NA
Aloatta seniculus		

1 BS = Blood smears; ELISA = Enzyme-Linked Immunosorbent Assay; IIF = Indirect Immunofluorescence Assay; DAT = Direct Agglutination Test; MAT = Modified Agglutination Test; IFAT = Indirect Fluorescent Antibody Technique; IFA = Immunofluorescence Assay; IHC = Immunohistochemistry; XD = Hemoculture Xenodiagnosis; HC = Hemoculture. 2 N.A.: Not available.
Table 4. Viruses found in neotropical non-human primates.

Virus	Host	Location	Sampling (Invasive Non-Invasive)	Detection Methods 1	References
Arbovirus (not specified)	*Alouatta caraya*	Brazil	Invasive	HA	[238]
	Sapajus sp.				[109]
	Sapajus apella				
Eastern equine encephalitis virus	*Ateles paniscus chamek*	Bolivia	Invasive	Antibody titers (IgG and IgM antibodies) HI	[239]
	Sapajus libidinosus	Brazil			[240]
Western equine encephalitis virus	*Cebus libidinosus*	Brazil	Invasive	HI	[240]
Alphavirus (not specified)	*Sapajus apella*	Brazil	Invasive	HA	[238]
Mayaro virus	*Alouatta villosa*	Brazil	Invasive	HA	[238]
	Alouatta seniculus	Panama	Invasive	Serologic (PRN antibodies) HI	[241]
	Callithrix argentata				[203]
	Pithecia pithecia	Panama	Invasive	HI	[240]
	Saguinus midas	French Guiana	Invasive		[242]
	Sapajus apella				
	Sapajus libidinosus				
Una virus	*Alouatta caraya*	Argentina Paraguay	Invasive	NTAb survey	[244]
Venezuelan equine encephalitis virus	*Sapajus apella*	Colombia	Invasive	NTAb survey	[245]
Mucambo virus	*Sapajus libidinosus*	Brazil	Invasive	HI	[240]
Flavivirus (not specified)	*Leontopithecus chrysomelas*	Brazil	Invasive	HA	[238]
	Sapajus apella				[246]
	Sapajus xanthosternos				
West Nile virus	*Alouatta caraya*	Argentina Paraguay	Invasive	RT-nested PCR	[247]
	Alouatta sp.				
	Alouatta caraya				
	Alouatta clamitans				
	Alouatta guariba clamitans				
	Alouatta fusca				
	Alouatta macconnelii				
	Alouatta seniculus				
	Ateles paniscus chamek				
Yellow fever virus	*Callicebus sp.*	Argentina	Invasive Necropsy		[248]
	Callithrix sp.	Bolivia			[249]
	Cebus sp.	Brazil			[250]
	Leontopithecus sp.	Colombia	Invasive	Serologic (PRN antibodies)	[239]
	Leontopithecus chrysomelis	Panama			[240]
	Pithecia pithecia	French Guiana			[241]
	Saguinus midas	Trinidad			[242]
	Sapajus sp.	Venezuela			[243]
	Sapajus libidinosus				
Pathogens	2021, 10, 1009	13 of 35			
-----------	-----------------	----------			

	Flavivirus, and	**genome sequencing**	**IFAT**	**IIF using monoclonal antibodies**													
Ilheus virus	**Alouatta caraya**	**Callithrix jaculus**	**Callithrix penicillata**	**Leontopithecus chrysomelas**	**Sapajus libidinosus**	**Argentina**	**Brazil**	**Invasive**	**HI**	**NT**	**RT-nested PCR**	**[261]**					
	Alouatta caraya	**Callithrix jaculus**	**Callithrix penicillata**	**Leontopithecus chrysomelas**	**Sapajus libidinosus**	**Brazil**	**Argentina**	**Invasive**	**HI**	**NT**	**MNT**	**RT-nested PCR**	**[262]**				
Saint Louis encephalitis virus	**Alouatta caraya**	**Ateles paniscus chamek**	**Leontopithecus chrysomelas**	**Pithecia pithecia**	**Saguinus midas**	**Sapajus nigritus**	**Sapajus cay**	**Sapajus libidinosus**	**Brazil**	**Argentina**	**French Guiana**	**Invasive**	**HI**	**NT**	**MNT**	**RT-nested PCR**	**[246]**
Rocio virus	**Leontopithecus chrysomelas**	**Sapajus libidinosus**	**Sapajus xanthosternos**	**Brazil**	**Invasive**	**HI**	**[240]**										
Zika virus	**Callithrix sp.**	**Leontopithecus chrysomelas**	**Sapajus sp.**	**Brazil**	**Invasive**	**HI**	**[249]**										
Dengue virus	**Alouatta caraya**	**Argentina**	**Invasive**	**RT-nested PCR**	**[247]**												
Bussuquara virus	**Alouatta caraya**	**Leontopithecus chrysomelas**	**Sapajus apella**	**Argentina**	**Brazil**	**Invasive**	**RT-nested PCR**	**NT**	**HI**	**[240]**							
Cacicapore virus	**Leontopithecus chrysomelas**	**Brazil**	**Invasive**	**HI**	**[246]**												
Orthobunyavirus	**Leontopithecus chrysomelas**	**Sapajus apella**	**Brazil**	**Invasive**	**HI**	**[246]**											
Oropouche orthobunyavirus	**Alouatta caraya**	**Callithrix sp.**	**Sapajus apella**	**Sapajus libidinosus**	**Brazil**	**Invasive**	**HA**	**HI**	**Neutralization assays**	**CF confirmed by RT-PCR**	**[247]**						
Apeu virus	**Alouatta caraya**	**Sapajus apella**	**Brazil**	**Invasive**	**PRN T70**	**[270]**											
Tacaiuma orthobunyavirus	**Leontopithecus chrysomelas**	**Brazil**	**Invasive**	**HI**	**Real time PCR**	**[246]**											
Phlebovirus	**Leontopithecus chrysomelas**	**Brazil**	**Invasive**	**HI**	**[246]**												
Icoaraci phlebovirus	**Leontopithecus chrysomelas**	**Brazil**	**Invasive**	**HI**	**NT**	**[246,262]**											

1 HA = Hemagglutination test; HI = Hemagglutination inhibition test; NA = Neutralizing antibody (NTAb) survey; BS = Blood smears; ELISA = Enzyme-Linked Immunosorbent Assay; IHC = Immunohistochemistry; PRN = Plaque-reduction neutralizing; DFA = Direct Immunofluorescence Assay; IFAT = Indirect Fluorescent Antibody Technique; IIF = Indirect Immunofluorescence Assay; NT = Neutralization test; MNT = Mouse neutralization test; CF = Complement fixation test.
2.3. Risk Factors Associated with the Transmission of Disease

There are several risk factors that favor the transmission of diseases such as socio-ecological and ecological factors (Table 5) [271,272].

Table 5. Risk factors associated with the transmission of diseases in neotropical non-human primates.

Risk Factors	Factors	Examples
Socioecological	Animal behavior and social organization	Group size
	Movement between groups	
	Sexual selection number of mating partners	
	Type of contact and contact rate	
Sleeping site ecology		Host age
Migration		Habitat
		Animal
		Humans
Ecological factors	Host density	High vs. low
	Climate change	Habitat shifts
		Host switching
	Human activities	Primate behavior
	Others	Agricultural practices
		Land-use changes
		Malnutrition
		Pollution

2.3.1. Socioecological Factors

- Animal behavior and social organization
 Non-human primates are social, and as social animals they are at risk of infectious or parasitic diseases [273]. Factors such as group size, movement between groups, and sexual selection (number of mating partners) are among the variables of host–parasite interactions in NHPs that are considered to be drivers of parasite transmission [274]. Regarding group size, this variable is a risk factor for some infectious and parasitic diseases. In Amazonian primates, a larger group size will attract more mosquitos, and a higher risk of malaria infection was observed [275,276]. However, this is not true for other vectors [277]. There are strategies such as fission where subgrouping can act as a dilution effect for vectors [278]. The type of contact such as grooming [279] and the contact rate might also influence parasite transmission [280]. For example, lice transferred to other lemurs across several seasons [281] may increase the risk of infection of parasitic diseases [282,283]. Host age may also have an influence on the prevalence of hemoparasites in non-human primates [284]. For *Plasmodium*, the innate immune system plays a role in protecting young non-human primates from it and the parasite can benefit from an immune system weakened by age [285]. In Springer et al. [286], *Plasmodium* sp. were more likely to infect older individuals of Verreaux’s sifakas (*Propithecus verreauxi*), whereas *Babesia* sp. infected the younger ones.

- Sleeping site ecology
 Sleeping behavior has been described as a risk factor for parasite transmission. It has been suggested that Amazonian NHPs sleeping in microhabitats are less likely to be infected with malaria [276]. In Milne-Edwards’ sportive lemur (*Lepilemur edwardsi*), they are at greater risk of infection of ectoparasites and thus hemoparasites as well because they sleep in tree holes [287]. On the contrary, chimpanzees (*Pan troglodytes schweinfurthii*) build their sleeping sites in *Cynometra alexandri* trees, which are known for having insect-repellent properties [288], decreasing the risk of infection.

- Migration
The OIE has not declared the presence of the West Nile virus in South America; however, three horses have died in Argentina and they were diagnosed with the WNV close to a North American cluster [289]. It has been suggested that wild bird migration could spread the virus to South America [290–292]. This scenario is not only valid for animals [293], but for humans as well [294]. The origins of *Plasmodium falciparum* and *Plasmodium vivax* in Central and South America are related to the migration of enslaved Africans and Australasian people, respectively [295].

2.3.2. Ecological Factors

- **Host density**
 Host density is another risk factor that can increase parasite transmission [296,297]. However, lower densities such as those from orangutans (*Pongo pygmaeus*) (around two individuals per km²) can harbor as many as two species of malaria [298].

- **Climate change**
 Climate change influences the emergence of infectious and parasitic diseases in several types of environments [299,300]. Several studies have described potential scenarios with models of climate change to describe distribution patterns of hosts and their pathogens and/or the vector [301,302]. As for the impact of climate change on NHPs, some studies have described habitat shifts at the altitudinal gradient [303] or at the latitudinal gradient [304]. Nunn, et al. [305] published a study on the latitudinal gradient of parasite species richness, which can give us an idea of how this distribution can impact NHPs if these ones change their distribution. In the neotropics, according to the modeling of the IPCC [306], some forests will shift to savannah woodlands, where this process could influence the host–parasite interaction [307,308]. The density and diversity of pathogens might be different in these savannas than in the forest [309,310]. Climate change could lead to host switching in NHPs [311] and an increase in the distribution of vectors [312–316]. For example, in avian malarias, host specificity was found in regions with pronounced rainfall seasonality [317]. However, pathogens can also adapt to new temperatures [318]. Finally, climate change can indirectly influence the behavior of primates, which can influence how pathogens can spread across populations. For example, climate change has a direct influence on the phenology of plants (e.g., fruiting, flowering) [319], and as a consequence, groups of NHPs forage differently for food [320–322], whether they fission into subgroups or whether they increase their home range for more food [323]. The implications of these changes are reflected on the host and might change the host–parasite relationship. According to Hoberg and Brooks [324], the primary sources of emerging infectious diseases will be those that are going to be able to survive climate change.

2.3.3. Human Activities

Human activities such as agricultural practices [325] and land-use changes (e.g., deforestation) [326,327] can increase the risk of parasite transmission [328]. For example, in Malaysian Borneo, macaque hosts and mosquito vectors are having more contact with humans due to these human activities [326]. In South America, there are also NHPs that survive in human-disturbed environments; thus, they can maintain the sylvatic cycle close to humans [69].

2.3.4. Others

Malnutrition [329,330] due to poor habitats (e.g., fragmentation) [308] and toxic chemicals and pollution are other factors that also increase parasite transmission [329].
2.4. Surveillance Networks

2.4.1. World Organization for Animal Health (OIE)

The animal health situation is monitored in each country and each country is responsible to declare to the OIE (World Organization for Animal Health). However, there are no notifications on NHPs for the Neotropical region or elsewhere. However, there are publications of some diseases such as yellow fever present in non-human primates [331]. For other diseases present in the OIE portal, the Ebola virus disease, for example, is not listed; however, they recommend it to be voluntarily reported [332,333]. In addition, the OIE have a guideline and a training manual on wildlife disease surveillance [334,335], which could be applied as guidelines in Ecuador and other neotropical countries.

2.4.2. International Organizations from the United Nations System and Wildlife Monitoring

The World Health Organization (WHO) work in collaboration with the FAO (Food and Agriculture Organization of the United Nations) and OIE to deal with zoonotic diseases. However, they also work with local governments, academia as well as non-governmental organizations (NGOs). The FAO has several programs such as Vmerge, PAATS and LinkTads that have as objectives to help and to develop technical capacities for local governments.

2.4.3. Local Networks

The Ministry of Environment in Ecuador does not have a program on wildlife disease monitoring but it has workshops on wildlife health [336]. The National Institute of Research on Public Health (INSPI) has a program on parasites and infectious diseases, and they make guidelines for zoonotic wildlife diseases and wildlife groups such as NHPs. As for NGOs and management plans, there are none working on specific wildlife disease surveillance in Ecuador. However, the IUCN (International Union for Conservation of Nature) have international guidelines for each taxonomic group and their diseases, which can be applied by specialists all over the world [337–339]. Brazil is the only neotropical country with a guideline and a manual on epizootics in NHPs [340,341]. It is no coincidence that it is the country with the highest number of studies on neotropical NHP diseases (Tables 2–4).

3. Discussion

Diseases in NHPs are of conservation and medical importance because they may threaten both NHP populations [105,253] and humans [342,343]. That is why monitoring and long-term surveillance in NHPs [344,345] can enhance the knowledge of diseases and the risks associated with them. However, we should pay attention to the choice of methods to detect NHP diseases. For example, for neotropical NHPs, just one study used a non-invasive method to monitor protozoa [9] (Tables 1–3). Invasive techniques such as serological tests, blood smears, and tissues are used to detect arthropod-borne diseases and blood pathogen diseases [346]. Instead, you can use fecal [8,347,348], urine [349] or saliva [350,351] samples to monitor viruses, bacteria and other blood pathogens and obtain as much information as the other techniques as long as you only need to have an idea of the prevalence and the presence of the disease. Once you have a general idea of the current situation, in order to characterize the disease, you can move forward to an invasive technique but with fewer samples.

It is important to use non-invasive samples in wildlife studies since there are studies that determined the diagnostic sensitivity of molecular tests for the study of blood-borne pathogens, and obtained data close to invasive samples [352]. For example, for Plasmodium falciparum, a study determined by PCR the limit of detection at 6.5 parasites/μL in fecal samples from NHPs from the Brazilian Amazon [9]. In human blood samples, the limit of detection of Plasmodium falciparum ranges from 0.03 parasites/μL to 9 parasites/ml.
using methods such as qPCR [353] and RT-PCR [354]. The sensitivity of parasite DNA extraction for both stool and blood samples will depend on sample storage [355], DNA extraction methods [356] and parasite densities in the population and in individuals [357,358]. Studies aim to improve molecular techniques to increase the sensitivity of these techniques in the diagnosis of pathogens [353,354,359,360].

Socioecological and ecological risk factors are associated with the transmission of blood-borne pathogens in NHPs. Factors such as human activities and climate change are identified as factors in the emergence of infectious diseases [361]. However, vectors must be considered to evaluate the transmission of these pathogens. For example, vector density and longevity would also increase the transmission rate of these pathogens [362]. Studies have even identified the feeding preferences of vectors and their connection to disease transmission [363,364]. Another study found an effect between habitat fragmentation and the infection rate of vectors with *Plasmodium* sp. [365].

Methods of surveillance should be adapted to wildlife populations. In captive settings, monitoring is easier than in wild populations. Additionally, the risk of infection can change whether they are captive or wild. Captive settings are an environment under control most of the time (depending on the captive conditions in neotropical countries), while monitoring free-ranging populations can be difficult for several reasons (poaching or legal hunting for meat, illegal pet trade, among others). However, long-term studies on NHP’s may help to mitigate the effect of hunting [366]. NHP’s from captive settings are most of the time from unknown origin [367], which makes it more difficult to know the biohazard threat involved. Sometimes the quarantine period is not respected, and diagnostic tests are not performed (either because they do not have the budget or because they are not aware of them), increasing the risk of infections. In addition to these conditions, the contact rate with humans such as care takers and tourists can introduce human pathogens to those populations (reverse zoonoses) [368], increasing the chances that an NHP can be infected. It is not unusual to see on social media, even during a pandemic, rescue center personnel or tourists taking pictures of themselves with primates without adequate biosecurity measures. In the other direction, pathogens can be transmitted to humans through primate biting (contact with body fluids) or scratches [369]. Cases of monkey bites in Ecuador are not unusual; however, local health services do not follow strict protocols such as taking samples from the patient and the monkey for further analysis or applying prophylaxis treatments against NHP bacteria or rabies.

In order to reduce the risks associated with the diseases, local governments should implement control measures adapted to NHPs. There are high risk activities such as NHP translocations [370] (from one geographical region to another or from one captive setting to another), reintroductions [371], among others, that can be a health risk for local populations of NHPs and humans. The success of these high-risk activities depends not only on NHP health but also on NHP socioecology, the support from local communities and the presence of environmental education programs [372]. NHP local populations and translocated groups should be monitored constantly. The costs of these activities are really high and losing individuals would be a step backwards. If the risk is too high, maybe the budget associated with this activity should be implemented in other types of conservation programs that could help primate populations more than the same translocation or reintroduction.

4. Materials and Methods

This systematic review was carried out using PRISMA guidelines for reporting systematic reviews and meta-analyses [373,374] and to identify bibliographic research from 1927 until 2019 about blood parasites, hemoparasites and arboviruses present in neotropical non-human primates. In several databases, we used the following search string (keywords and Boolean operators) “blood and parasites and primates”, “Hemoparasites and Primates”, “Haemoparasites and Primates”, “Arbovirus and Primates” or “Parasites and Primates”. The databases that we used were Scopus, Google Scholar and Pubmed.
We also included grey literature such as theses and abstract presentations (Figure 1). Once the results were obtained, we made a selection by eliminating studies according to the following criteria: (1) the parasite was not a hemoparasite, (2) the published studies were in a language that the authors do not understand, (3) the study was not from a neotropical non-human primate, and finally (4) duplicate studies. We included all articles that clearly indicated the name of the parasite and the species of the host. We also included studies in captive and wild habitats.

![Flowchart](modified from PRISMA 2009) describing the literature search and study selection.

Figure 1. Flowchart (modified from PRISMA 2009) describing the literature search and study selection.

5. Conclusions

In this study, we found that NHPs are reservoirs for a large number of blood-borne pathogens. In addition, socioecological and ecological risk factors facilitate the transmission of these blood-borne pathogens either between NHPs or between NHPs and humans. The genus *Alouatta* is the one that records the highest number of blood-borne pathogens. This genus has the widest range of distribution from Mexico to Argentina. However, bacterial and viral pathogen groups have not been studied in depth in South America and especially in Ecuador, so these data will allow decision makers to decide where to focus their research efforts.
The Ministries of Health and Environment should prioritize the implementation of infection prevention and control measures in countries with a high risk of disease transmission. The Ministry of Environment should have a protocol to protect workers who are exposed to zoonotic diseases, for example, park rangers and zoo care takers, but also ecotourism. Ecotourism is considered a vulnerable group but also a group that exposes NHPs to infections [375,376]. A guideline should establish measures to prevent the introduction and spread of infection among NHP and human populations [377]. Some measures include reducing the frequency and duration of field visits as well as the number of visitors. Another biosecurity measure is to increase the viewing distance to NHPs [125,378]. Additionally, we should consider surveillance in national programs [379] as a tool for public health [334] and NHP conservation [3,339,380,381]. Finally, there are a large number of diseases that are under-surveyed. A large number of studies support surveillance programs as they improve the early detection of diseases [382–385]. These surveillance programs must have regular and effective monitoring protocols adapted to non-human primates. In order to implement these control programs, Ministries of Environment, Universities, and Health and wildlife researchers must collaborate with each other to determine monitoring strategies and to identify priority diseases for the country.

Author Contributions: Conceptualization, G.C.-B. and C.S.; methodology, G.C.-B.; validation, C.S., S.M.-S., G.C.-B.; formal analysis, G.C.-B., S.M.-S.; investigation, G.C.-B., C.S.; resources, G.C.-B., S.M.-S.; data curation, G.C.-B., S.M.-S.; writing—original draft preparation, G.C.-B.; writing—review and editing, C.S., S.M.-S.; visualization, G.C.-B., S.M.-S.; supervision, C.S.; project administration, G.C.-B.; funding acquisition, UCE-ULiège. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded the Academy of Research and Higher Education (ARES) through an institutional support program entitled “Hemoparasites and arboviruses in non-human primates of the Ecuadorian Amazon using non-invasive techniques”, which involved the Universidad Central del Ecuador and the University of Liège in Belgium.

Institutional Review Board Statement: This study was approved by the Ministerio del Ambiente Ecuador under the permit number MAE-DNB-CM-2015-0028-M-002.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments: We would like to thank Ministerio del Ambiente for its support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Kuiken, T.; Leighton, F.A.; Fouchier, R.A.; LeDuc, J.W.; Peiris, J.S.; Schudel, A.; Stöhr, K.; Osterhaus, A.D.M.E. Public health: Pathogen surveillance in animals. *Science* 2005, 309, 1680–1681, doi:10.1126/science.1113310.
2. Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L. Global trends in emerging infectious diseases. *Nature* 2008, doi:10.1038/nature06536.
3. Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Emerging Infectious Diseases of Wildlife-Threats to Biodiversity and Human Health. *Science* 2000, 287, 443–449, doi:10.1126/science.287.5452.443.
4. Gillespie, T.R.; Nunn, C.L.; Leendertz, F.H. Integrative Approaches to the Study of Primate Infectious Disease: Implications for Biodiversity Conservation and Global Health. *Yrbk. Phys. Anth.* 2008, 51, 53–69, doi:10.1002/ajpa.20949.
5. Martín-Solano, S.; Carrillo-Bilbao, G.A.; Ramírez, W.; Celi-Erazo, M.; Huyngen, M.-C.; Levecke, B.; Benitez, W.; Losson, B. Gastrointestinal parasites in captive and free-ranging *Cebus albifrons* in the Western Amazon, Ecuador. *Int. J. Parasitol. Parasites Wildl.* 2017, 6, 209–218, doi:10.1016/j.ijppaw.2017.06.004.
6. Liu, W.; Li, Y.; Lear, G.H.; Rudicell, R.S.; Robertson, J.D.; Keele, B.F.; Ndjango, J.-B.N.; Sanz, C.M.; Morgan, D.B.; Locatelli, S.; et al. Origin of the human malaria parasite *Plasmodium falciparum* in gorillas. *Nature* 2010, 467, 420–425.
Pathogens 2021, 10, 1009

7. Victoria, J.G.; Kapoor, A.; Li, L.; Blinkova, O.; Slikas, B.; Wang, C.; Naeem, A.; Zaidi, S.; Delwart, E. Metagenomic Analyses of Viruses in Stool Samples from Children with Acute Flaccid Paralysis. *J. Virol.* 2009, 83, 4642–4651, doi:10.1128/JVI.02301-08.

8. Siregar, I.E.; Faust, C.L.; Murdiyanto, L.S.; Rosmanah, L.; Saepuloh, U.; Dobson, A.P.; Iskandriati, D. Non-invasive surveillance for *Plasmodium* in reservoir macaque species. *Malar. J.* 2015, 14, 404, doi:10.1186/s12936-015-0857-2.

9. de Assis, G.M.P.; de Alvarenga, D.A.M.; Costa, D.C.; de Souza, J.C.; Hirano, Z.M.B.; Kano, F.S.; de Sousa, T.N.; de Brito, C.F.A. Detection of *Plasmodium* in faeces of the New World primate Alouatta Climates. *Mem. Inst. Oswaldo Cruz* 2016, 111, 570–576, doi:10.1590/0074-02760160222.

10. Jirků, M.; Votýpka, J.; Petřželková, K.J.; Jirků-Pomajbíková, K.; Kriéggová, E.; Vodička, R.; Lankerester, F.; Leendertz, S.A.J.; Wittig, R.M.; Boesch, C.; et al. Wild chimpanzees are infected by Trypanosoma Brucii. *Int. J. Parasitol. Parasites Wildl.* 2015, 4, 277–282, doi:10.1016/j.ijppaw.2015.05.001.

11. Sukmak, M.; Wajiwalku, W.; Ostner, J.; Schülke, O. A first report of non-invasive adenovirus detection in wild Assamese macaques in Thailand. *Primates* 2017, 58, 307–313, doi:10.1007/s10329-016-0857-2.

12. Wang, X.; Wang, J.; Zhou, C.; Yang, S.; Shen, Q.; Zhang, W.; Qi, D. Viral metagenomics of fecal samples from non-human primates revealed human astrovirus in a chimpanzee. *Virology* 2016, 5, 58, doi:10.1016/j.ijppaw.2015.05.001.

13. Schwartz, C.; Mittermeier, R.A.; Rylands, A.B.; Chiozza, F.; Williamson, E.A.; Byler, D.; Wich, S.; Humle, T.; Johnson, C.; Mynott, H.; et al. (Eds.) *Primates in Peril: The World’s 25 Most Endangered Primates* 2018–2020; IUCN SSC Primate Specialist Group, International Primatological Society, Global Wildlife Conservation, and Bristol Zoological Society: Washington, DC, USA, 2019; p. 130.

14. IUCN. *The IUCN Red List of Threatened Species*; IUCN: Grand, Switzerland, 2020.

15. Helenbrook, W.D.; Wade, S.E.; Shields, W.M.; Stehman, S.V.; Whippis, C.M. Gastrointestinal Parasites of Ecuadorian Mantled Howler Monkeys (*Alouatta palliata aequatorialis*) Based on Fecal Analysis. *J. Parasitol.* 2015, 101, 341–350, doi:10.1645/13-356.1.

16. Kowalewski, M.M. Efectos de factores antropogénicos y demográficos sobre patrones de parasitismo gastrointestinal en monos aulladores negros y dorados. In Proceedings of the II Congreso Latinoamericano de Mastozoología, XXV Jornadas Argentinas de Mastozoologia, Buenos Aires, Argentina, 29 September 2012.

17. Montesinos-López, G.M.; Pernia, M.; Pérez, A.; Aguirre, A.; Ceballos-Mago, N.; Rodríguez-Clark, K. Parásitos Gastrointestinales en Monos de Margarita *Sapajus apella margaritae* (Primates: Cebidae) en Estado Silvestre (Nueva Esparta, Venezuela). Hallazgos preliminares -resumen- In Proceedings of the Memorias de la conferencia interna en Medicina y aprovechamiento de fauna silvestre, exótica y no convencional Asociación de Veterinarios de Vida Silvestre (VVS) Argentina. 2014.

18. Parr, N.; Fedigan, L.; Kutz, S. Predictors of Parasitism in Wild White-Faced Capuchins (*Cebus capucinus*). *Int. J. Primatol.* 2013, 34, 1137–1152, doi:10.1007/s10764-013-9728-2.

19. Perea-Rodriguez, J.P.; Milano, A.M.; Osherov, B.E.; Fernandez-Duque, E. Gastrointestinal parasites of Owl monkeys (*Aotus azarae azara*) in the Argentinean Chaco. *Neontrop. Primates* 2010, 17, 7–11.

20. Phillips, K.A.; Haas, M.E.; Grafon, B.W.; Yrivarren, M. Survey of the gastrointestinal parasites of the primate community at Tambopata National Reserve, Peru. *J. Zool.* 2004, 264, 149–151, doi:10.1017/s0952836904005680.

21. Valdes Sanchez, V.V.; Saldaña Patiño, A.; Pineda Segundo, V.J.; Camacho Sandoval, J.A.; Charpentier Esquivel, C.V. Prevalence of Gastrointestinal Parasites among Captive Primates in Panama. *J. Anim. Vet. Adv.* 2009, 8, 2644–2649.

22. Cristóbal-Azarate, J.; Hervier, B.; Vegas-Carrillo, S.; Osorio-Sarabia, D.; Rodriguez-Luna, E.; Veá, J.J. Parasitic infections of three Mexican howler monkey groups (*Alouatta palliata mexicana*) living in forest fragments in Mexico. *Primates* 2010, 51, 231–239, doi:10.1007/s10764-010-0193-7.

23. Valdespino, C.; Rico-Hernández, G.; Mandujano, S. Gastrointestinal parasites of Howler monkeys (*Alouatta palliata*) inhabiting the fragmented landscape of the Santa Marta mountain range, Veracruz, Mexico. *Am. J. Primatol.* 2010, 72, 539–548.

24. Aguilar Cucurachi, M.D.S.; Canales Espinosa, D.; Páez Rodriguez, M. Parásitos gastrointestinales en mono aullador (*Alouatta palliata*) en la región de Los Tuxtlas, Veracruz, México. *A Primatol. No Bras.* 2007, 10, 225–237.

25. Estrada, A. Parásitos Gastrointestinales en Poblaciones de Primates Silvestres en el Sureste de México. Available online: http://www.primatesmex.com/fecalparasps.htm (accessed on 7 February 2007).

26. González Hernández, M. Prevalencia de Helminthiasis Gastrointestinales en Monos Araña (*Ateles Geoffroyi*) del Parque Zoológico Botánico Miguel Ange de Quevedo en Veracruz, México; Universidad Veracruzana: Veracruz, México, 2004.

27. González-Hernández, M.; Rangel-Negrín, A.; Schoof, V.A.M.; Chapman, C.A.; Canales-Espinosa, D.; Dias, P.A.D. Transmission Patterns of Pinworms in Two Sympatric Congeneric Primate Species. *Int. J. Primatol.* 2014, 35, 445–462, doi:10.1007/s10764-014-9751-y.

28. Solórzano-García, B.; Pérez-Ponce de León, G. Helminth parasites of howler and spider monkeys in Mexico: Insights into molecular diagnostic methods and their importance for zoonotic diseases and host conservation. *Int. J. Parasitol. Parasites Wildl.* 2017, 6, 76–84, doi:10.1016/j.ijppaw.2017.04.001.

29. Stoner, K.E.; González-Dí Pierro, A.M. Intestinal Parasitic Infections in *Alouatta pigra* in Tropical Rainforest in Lacandona, Chiapas, Mexico: Implications for Behavioral Ecology and Conservation. In *New Perspectives in the Study of Mesoamerican Primates: Distribution, Ecology, Behavior, and Conservation*; Estrada, A., Garber, P.A., Pavelka, M.S.M., Luecke, L., Eds.; Springer: New York, NY, USA, 2005.

30. Trejo-Macias, G.; Mosqueda-Cabrera, M.A.; García-Prieto, L.; Estrada, A. *Trypanoxyuris* (*Trypanoxyurus*) minutus (Nematoda: Oxyuridae) en las dos especies de monos aulladores (Cebidae) de México. *Rev. Mex Biodivers.* 2011, 82, 293–299.
31. Venturini, L.; Santa Cruz, A.C.; González, J.A.; Comolli, J.A.; Toccalino, P.A.; Zunino, G.E. Presencia de Giardia duodenalis (Sarcocystis gondii, Hexamitidae) en mono aullador (Alouatta caraya) de vida silvestre. In Proceedings of the Comunicaciones Científicas y tecnológicas; Universidad Nacional del Nordeste: Corrientes, Argentina, 2003.

32. Villanueva-García, C.; Cordillo-Chávez, E.J.; Baños-Ojeda, C.; Rendón-Franco, E.; Muñoz-García, C.; Carrero, J.C.; Córdova-Aguilar, A.; Maravilla, P.; Galian, J.; Martínez-Hernández, F.; et al. New Entamoeba group in howler monkeys (Alouatta spp.) associated with parasites of reptiles. Parasitol. Res. 2017, doi:10.1007/s00436-017-5519-6.

33. Vitazkova, S.K.; Wade, S.E. Parasites of free-ranging black howler monkeys (Alouatta pigra) from Belize and Mexico. Am. J. Primatol. 2006, 68, 1089–1097.

34. da Silva Barbosa, A.; Pissinatti, A.; Dib, L.V.; de Siqueira, M.P.; Cardozo, M.L.; Fonseca, A.B.M.; de Barros Oliveira, A.; da Silva, F.A.; Uchôa, C.M.A.; Bastos, O.M.P.; et al. Balantidium coli and other gastrointestinal parasites in captive non-human primates of the Rio de Janeiro, Brazil. J. Med. Primatol. 2015, 44, 18–26, doi:10.1111/jmp.12140.

35. David, É.B.; Patti, M.; Coradi, S.T.; Oliveira-Sequeira, T.C.G.; Ríbolla, P.E.M.; Guimarães, S. Molecular typing of Giardia duodenalis isolates from nonhuman primates housed in a Brazilian zoo. Rev. Inst. Med. Trop. São Paulo 2014, 56, 49–54, doi:10.1590/S0036-46652014000100007.

36. dos Santos Sales, I.; Ruiz-Miranda, C.R.; de Paula Santos, C. Helminths found in marmosets (Callithrix penicillata and Callithrix jacchus) introduced to the region of occurrence of golden lion tamarins (Leontopithecus rosalia). Vet. Parasitol. 2010, 171, 123–129.

37. Fernandes, L.N.; Souza, P.A.; Araújo, R.S.; Razzolini, M.T.; Soares, R.M.; Sato, M.I. Detection of assemblages A and B of Giardia duodenalis in water and sewage from São Paulo state Brazil. J. Water Health 2011, doi:10.2166/jwh.2011.098.

38. Mati, V.L.T.; Junior, F.C.P.; Pinto, H.A.; de Melo, A.L. Strongyloides cebus (Nematoda: Strongyloidiidae) in Lagothrix cun (Primates: Atelidae) from the Brazilian Amazon: Aspects of Clinical Presentation, Anatopomathology, Treatment, and Parasitic Biology. J. Parasitol. 2013, 99, 1009–1018, doi:10.1645/13-288.1.

39. Monteiro, R.V.; Jansen, A.M.; Pinto, R.M. Coprophilic helminth screening in Brazilian free ranging golden lion tamarins, Leontopithecus rosalia (L., 1766) (Primates, Atelidae). Braz. J. Biol. 2003, 63, 727–729.

40. Pinto, H.A.; Ferreira, J.F.; Fau-Mati, V.L.T.; Mati VI Fau-Melo, A.L.d.; Melo, A.L. Trypanoxyuris (Paraoxyuronomina) lagothricis (Nematoda: Oxyuridae) in Lagothrix cana (Primates: Atelidae) from Brazil. Revista Brasileira de Parasitologia Veterinaria 2013, 22, 307–311.

41. Souza de, P.; Magalhaes Cm Fau-Vieira, F.M.; Vieira Fm Fau-Souzalima, S.d.; Souzalima, S. Occurrence of Trypanoxyuris (Trypanoxyuris) minutus (Scheuener, 1866) (Nematoda, Oxyuridae) in Alouatta guariba clamitans Cabrera, 1940 (Primates, Atelidae) in Minas Gerais, Brazil. Rev. Bras. Parasitol. Vet. 2010, 19, 124–126.

42. Tenorio Mati, V.L.; Raso, P.; de Melo, A.L. Strongyloides stercoralis infection in marmosets: Replication of complicated and uncomplicated human disease and parasite biology. Parasit. vectors 2014, 7, 579.

43. Vicente, J.J.; Pinto, R.M.; Faria, P. Spiruridae (Spiruridae) from Leontocebus mystax (Callithrichidae) and a check list of other Nematoda from Brazilian primates. Mem Inst. Oswaldo Cruz 1992, 87, 305–308, doi:10.1590/S0036-46652014000100007.

44. Volotão, A.C.C.; Junior, J.C.S.; Grassini, C.; Peralta, J.M.; Fernandes, O. Genotyping of Giardia duodenalis from Southern Brown Howler Monkeys (Alouatta clamitans) from Brazil. Parasitol. Res. 2008, 105, 133–137.

45. Brasil, P.; Zalis, M.G.; de Pina-Costa, A.; Siqueira, A.M.; Bianco Junior, C.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; de Alvarenga, D.A.M.; da Silva Santelli, A.C.F.; et al. Plasmodium simium causing human malaria: a zoonosis with outbreak potential in the Rio de Janeiro Brazilian Atlantic forest. bioRxiv 2017, 121227, doi:10.1101/121227.

46. Figuereido, M.A.P.; Di Santì, S.M.; Manrique, W.G.; André, M.R.; Machado, R.Z. Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil. PLoS ONE 2012, 12, e0182905, doi:10.1371/journal.pone.0182905.

47. Guimaraes, L.; Bajay, M.; Wunderlich, G.; Bueno, M.; Rohe, F.; Catao-Dias, J.; Neves, A.; Malafronte, R.; Curado, I.; Kirchgatter, K. The genetic diversity of Plasmodium malarialae and Plasmodium brasilianum from human, simian and mosquito hosts in Brazil. Acta Trop. 2012, doi:10.1016/j.actatropica.2012.05.016.

48. Leite, T.N.; Maja Tde, A.; Ovando, T.M.; Cantadori, D.T.; Schimidt, L.R.; Guercio, A.C.; Cavalcanti, A.; Lopes, F.M.; Da Cunha, I.A.; Navarro, I.T. Occurrence of infection Leishmania spp. and Toxoplasma gondii in monkeys (Cebus apella) from Campo Grande, MS. Rev. Bras. De Parasitol. Vete. 2008, 17, 307–310.

49. Muñoz, M.; Navarro, J.C. Virus Favorito. Un arbovirus reemergente en Venezuela y Latinoamérica. Biomédica 2012, 32, 286–302.

50. Navarro, J.C.; Giambalvo, D.; Hernandez, R.; Auguste, A.J.; Tesh, R.B.; Weaver, S.C.; Montanez, H.; Liria, J.; Lima, A.; Travassos da Rosa, J.F.; et al. Isolation of Madre de Dios Virus (Orthobunyavirus; Bunyaviridae), an Oropouche Virus Species Reassortant, from a Monkey in Venezuela. Am. J. Trop. Med. Hyg. 2016, 95, 328–338, doi:10.4269/ajtmh.15-0679.

51. Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394, doi:10.1016/j.ijpara.2009.04.003.

52. malaria, C.D.C. Information and prophylaxis, by country [E]. U.S. Department of Health & Human Services. 2018. Available online: https://www.cdc.gov/malaria/travelers/country_table/e.html; Atlanta (accessed on 17 January 2021).

53. Brown, A.J.; Guerra, C.A.; Alves, R.V.; da Costa, V.M.; Wilson, A.L.; Pigott, D.M.; Hay, S.I.; Lindsay, S.W.; Golding, N.; Moyes, C.L. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci. Data 2017, 4, 170050, doi:10.1038/sdata.2017.50.

54. WHO. Essential Leishmaniasis Maps Visceral and MucoCutaneous Leishmaniasis. 2018. Available online: http://www.who.int/leishmaniases/leishmaniases_maps/en/ (accessed on 17 January 2021).
80. Deem, S.L.; Merkel, J.; Ballweber, L.; Vargas, F.H.; Cruz, M.B.; Parker, P.G. Exposure to Toxoplasma gondii in Galapagos Penguins (Spheniscus mendiculus) and Flightless Cormorants (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J. Wildl. Dis. 2010, 46, 1005–1011, doi:10.7589/0090-3558-46.3.1005.

81. Deem, S.L.; Rivera-Parra, J.L.; Parker, P.G. Health evaluation of galapagos hawks (Buteo galapagoensis) on Santiago Island, Galapagos. J. Wildl. Dis. 2012, 48, 39–46, doi:10.7589/0090-3558-48.1.39.

82. Verant, M.L.; d’Ozouville, N.; Parker, P.G.; Shapiro, K.; VanWormer, E.; Deem, S.L. Attempted Detection of Toxoplasma gondii Oocysts in Environmental Waters Using a Simple Approach to Evaluate the Potential for Waterborne Transmission in the Galápagos Islands, Ecuador. EcoHealth 2014, 11, 207–214, doi:10.1007/s10393-013-0888-5.

83. Gómez-Hernández, C.; Bento, E.C.; Rezende-Oliveira, K.; Nascentes, G.A.N.; Barbosa, C.G.; Batista, L.R.; Tiburcio, M.G.S.; Pedroso, A.L.; Lages-Silva, E.; Ramírez, J.D.; et al. Leishmania infection in bats from a non-endemic region of Leishmaniasis in Brazil. Parasitology 2017, 144, 1980–1986, doi:10.1017/S0031182017001500.

84. Hashiguchi, Y.; Gonzalez, L., A.; Cáceres, A.G.; Velez, L.N.; Villegas, N.V.; Hashiguchi, K.; Mimori, T.; Uezato, H.; Kato, H. Andean cutaneous leishmaniasis (Andean–CL, uta) in Peru and Ecuador: The vector Lutzomyia sand flies and reservoir mammals. Acta Trop. 2018, 178, 264–275, doi:10.1016/j.actatropica.2017.12.008.

85. Lainson, R; Braga, R.R; De Souza, A.A.; Povoa, M.M.; Ishikawa, E.A.; Silveira, F.T. Leishmania (Vianna) shawi sp. n., a parasite of monkeys, sloths and procyonids in Amazonian Brazil. Am. Parasitol. Hum. Comp. 1989, 64, 200–207, doi:10.1015/parasite/1989643200.

86. Otranto, D; Testini, G; Buonavoglia, C.; Parisi, A.; Brandionisio, O.; Circella, E.; Dantas-Torres, F.; Camarda, A. Experimental and field investigations on the role of birds as hosts of Leishmania infantum, with emphasis on the domestic chickens. Acta Trop. 2010, 113, 80–83, doi:10.1016/j.actatropica.2009.09.014.

87. Quinell, R.J.; Courtney, O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology 2009, 136, 1915–1934, doi:10.1017/S0031182009991156.

88. Triebe, I.; Portela, R.D.; Franke, C.R.; Carneiro, I.O.; Ribeiro, G.J.; Soares, R.P.; Barrowin-Melo, S.M. Trypanosoma cruzi and Leishmania sp. Infection in Wildlife from Urban Rainforest Fragments in Northeast Brazil. J. Wildl. Dis. 2017, doi:10.7589/2017-01-017.

89. Calvopina, M.; Aguirre, C.; Cevallos, W.; Castillo, A.; Abbassi, I.; Warburg, A. Coinfection of unodeficiency Virus and Trypanosoma cruzi in Primates from Peru. J. Wildl. Dis. 2017, 53, 46.3.1005.

90. Malta, M.C.C.; Tinoco, H.P.; Xavier, M.N.; Vieira, A.L.S.; Costa, É.A.; Santos, R.L. Naturally acquired visceral leishmaniasis in non-human primates in Brazil. Vet. Parasitol. 2010, 169, 193–197, doi:10.1016/j.vetpar.2009.12.016.

91. Hashiguchi, Y; Velez, L.N.; Villegas, N.V.; Mimori, T.; Gonzalez, E.A.L.; Kato, H. Leishmaniases in Ecuador: Comprehensive review and current status. Acta Trop. 2017, 166, 299–315, doi:10.1016/j.actatropica.2016.11.039.

92. Dumonteil, E.; Herrera, C.; Martini, L.; Grijalva, M.J.; Guevara, A.G.; Costales, J.A.; Aguilar, H.M.; Brenière, S.F.; Waleckx, E. Chagas Disease Has Not Been Controlled in Ecuador. PLoS ONE 2016, 11, e0158145, doi:10.1371/journal.pone.0158145.

93. Cottontail, V.M.; Kalko, E.K.V.; Cottontail, I.; Wellinbhausen, N.; Tschapka, M.; Perkins, S.L.; Pinto, C.M. High Local Diversity of Trypanosoma in a Common Bat Species, and Implications for the Biogeography and Taxonomy of the T. cruzi Clade. PLoS ONE 2014, 9, e018603, doi:10.1371/journal.pone.018603.

94. Pinto, C.M.; Ocaña-Mayorga, S.; Tapia, E.E.; Lobos, S.E.; Zúñiga, A.P.; Aguirre-Villacís, F.; MacDonald, A.; Villacís, A.G.; Lima, L.; Teixeira, M.M.G.; et al. Bats, Trypanosomes, and Triatomines in Ecuador: New Insights into the Diversity, Transmission, and Origins of Trypanosomas cruzi and Chagas Disease. PLoS ONE 2015, 10, e0139999, doi:10.1371/journal.pone.0139999.

95. Ocaña-Mayorga, S.; Aguirre-Villacís, F.; Pinto, C.M.; Vallejo, G.A.; Grijalva, M.J. Prevalence, Genetic Characterization, and 18S Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador. Vector Borne Zoonotic Dis. 2015, 15, 732–742, doi:10.1089/vbz.2015.1794.

96. Bernal, X.E.; Pinto, C.M. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. Int. J. Parasitol. Parasit. Wildl. 2016, 5, 40–47, doi:10.1016/j.ijppaw.2016.01.005.

97. Sato, H.; Leo, N.; Katakai, Y.; Takano, J.-i.; Akari, H.; Nakamura, S.-i.; Une, Y. Prevalence and molecular phylogenetic characterization of Trypanosoma (megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. J. Parasitol. 2008, 94, 1128–1138, doi:10.1645/0022-3395(2008)94[1128:PMovem]2.0.CO;2.

98. Aysanoa, E.; Mayor, P.; Mendoza, A.P.; Zariquiey, C.M.; Morales, E.A.; Pérez, J.G.; Bowler, M.; Ventocilla, J.A.; González, C.; Baldeyano, G.C.; et al. Molecular Epidemiology of Trypanosomatids and Trypanosoma cruzi in Primates from Peru. EcoHealth 2017, 14, 732–742, doi:10.1007/s10393-017-1271-8.

99. Wachtman, L.; Mansfield, K. Chapter 1—Viral Diseases of Nonhuman Primates. In Nonhuman Primates in Biomedical Research, 2nd ed.; Academic Press: Boston, MA, USA, 2012; pp. 1–104.

100. Jordu, M.H.; Bande, G.; Horwood, P.F. Arboviruses of human health significance in Papua New Guinea. P N G Med. J. 2012, 55, 35–44.

101. Young, P.R.; Ng, L.F.P.; Hall, R.A.; Smith, D.W.; Johansen, C.A. 14—Arbovirus Infections. In Manson’s Tropical Infectious Diseases, 23rd ed.; W.B. Saunders: London, UK, 2014; pp. 129–161.e123.

102. Hanley, K.A.; Weaver, S.C. Chapter 16—Arbovirus Evolution. In Origin and Evolution of Viruses, 2nd ed.; Parrish, C.R., Holland, J.J., Eds.; Academic Press: London, UK, 2008; pp. 351-391.
104. Moreno, E.S.; Agostini, I.; Holzmann, I.; Di Bitetti, M.S.; Oklander, L.I.; Kowalewski, M.M.; Beldomenico, P.M.; Goenaga, S.; Martínez, M.; Lestani, E.; et al. Yellow fever impact on brown howler monkeys (Alouatta guariba clamitans) in Argentina: A metamodelling approach based on population viability analysis and epidemiological dynamics. *Men. Inst. Oswaldo Cruz* **2015**, *110*, 865–876. doi:10.1590/0074-02670150075.

105. Holzmann, I.; Agostini, I.; Areta, J.I.; Ferreyra, H.; Beldomenico, P.; Di Bitetti, M.S. Impact of yellow fever outbreaks on two howler monkey species (Alouatta guariba clamitans and A. caraya) in Misiones, Argentina. *Am. J. Primatol.* **2010**, *72*, 475–480. doi:10.1002/ajp.20796.

106. Fernandes, N.C.C.d.A.; Cunha, M.S.; Guerra, J.M.; Réssio, R.A.; Cirqueira, C.d.S.; Iglezias, S.D.A.; de Carvalho, J.; Araujo, E.L.L.; Catáio-Dias, J.L.; Díaz-Delgado, J. Outbreak of Yellow Fever among Nonhuman Primates, Espírito Santo, Brazil. 2017. *Emerg. Infect. Dis.* **2017**, *23*, 2038–2041. doi:10.3201/eid2312.170685.

107. Moreira-Soto, A.; Carneiro, I.d.O.; Fischer, C.; Feldmann, M.; Kümmerer, B.M.; Silva, N.S.; Santos, U.G.; Souza, B.F.d.C.D.; Liborio, F.d.A.; Valença-Montenegro, M.M.; et al. Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil. *mSphere* **2018**, *3*, e00523-17.

108. Svoboda, W.K.; Soares, M.d.C.P.; Alves, M.M.; Rocha, T.C.; Gomes, E.C.; Menoncin, F.; Batista, P.M.; da Silva, L.R.; Headley, S.A.; Hilst, C.L.S.; et al. Serological detection of hepatitis A virus in free-ranging neotropical primates (Sapajus spp., Alouatta caraya) from the Paraná River Basin, Brazil. *Rev. Inst. Med. Trop. S. Paulo* **2016**, *58*, 9. doi:10.1590/S1678-9946580009.

109. Batista, P.M.; Andreotti, R.; Almeida, P.S.; Marques, A.C.; Rodrigues, S.C.; Chiang, J.O.; Vasconcelos, P.F. Detection of arboviruses of public health interest in free-living New World primates (Sapajus spp.; Alouatta caraya) captured in Mato Grosso do Sul, Brazil. *Rev. Soc. Bras. Med. Trop.* **2013**, *46*, 684–690. doi:10.1590/0037-8682-0181-2013.

110. Barreto Almeida, M.A.; da C. Cardoso, J.; dos Santos, E.; Martins Romano, A.P.; Chiang, J.O.; Carício Martins, L.; da Costa Vasconcelos, P.F.; Bica-Marques, J.C. Immunity to Yellow Fever, Oropouche and Saint Louis viruses in a wild howler monkey. *Neotrop. Primates* **2016**, *23*, 19.

111. Rice, P.M.; South, K.E. Revisiting monkeys on pots: A contextual consideration of primate imagery on classic lowland maya pottery. *Anc. Mesoam.* **2015**, *26*, 275–294. doi:10.1017/S0956536115000206.

112. Alves, R.R.N.; Souto, W.M.S.; Barboza, R.R.D. The Role of Nonhuman Primates in Religious and Folk Medicine Beliefs. In *Ethnoprimatology: Primate Conservation in the 21st Century*, Waller, M.T., Ed. Springer International Publishing: Cham, Switzerland, 2016; pp. 117–135.

113. Hofner, A.N. Primate Conservation and Human Livelihoods. *Int. Encycl. Primatol.* **2017**, doi:10.1002/9781119179313.wbprim0386.

114. Onderdonk, D.A.; Chapman, C.A. Coping with Forest Fragmentation: The Primates of Kibale National Park, Uganda. *Int. J. Primatol.* **2000**, *21*, 587–611. doi:10.1023/A:1005509119693.

115. Emmons, L.H. (Ed.) *Neotropical Rainforest Mammals: A Field Guide*, 2nd ed.; The University of Chicago Press: Chicago, IL, USA, 1997, p. 396.

116. Estrada, A.; Garber, P.; Rylands, A.; Roos, C.; Fernandez-Duque, E.; Di Fiore, A.; Tekari, K.A.; Nijman, V.; Heymann, E.; Lambert, J.; et al. Impending extinction crisis of the world’s primates: Why primates matter. *Sci. Adv.* **2017**, *3*, e1600946. doi:10.1126/sciadv.1600946.

117. Chapman, C.A.; Onderdonk, D.A. Forests without primates: Primate/plant codependency. *Am. J. Primatol.* **1998**, *45*, 127–141.

118. Mittermeier, R.A.; Cheney, D.L. Chapter 39: Conservation of primates and their habitats. In *Primates Societies; Smuts, B.B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W., Struhsaker, T.T., Eds.; University of Chicago Press: Chicago, IL, USA, 1987*, pp. 477–490.

119. Chapman, C.A.; Peres, C.A. Primate Conservation in the New Millennium: The Role of Scientists. *Ecol. Anthropol.* **2001**, *10*, 16–33.

120. Swedell, L. Primate Sociality and Social Systems. *Nat. Educ. Knowl.* **2012**, *3*, 84.

121. Tuomisto, H.; Ruokolainen, K.; Yli-Halla, M. Dispersal, environment, and floristic variation of western Amazonian forests. *Science* **2003**, *299*, 241–244. doi:10.1126/science.1078037.

122. Parolin, P.; De Simone, O.; Haase, K.; Waldhoff, D.; Rottenberger, S.; Kuhn, U.; Kesselmeier, J.; Kleiss, B.; Schmidt, W.; Pedlede, M.T.F.; et al. Central Amazonian floodplain forests: Tree adaptations in a pulsing system. *Bot. Rev.* **2004**, *70*, 357–380.

123. Tirira, D.; de la Torre, S.; Zapata, G. *Estado de Conservación de los Primates del Ecuador*; Tirira, D., de la Torre, S., Zapata, G., Eds.; Editorial Murciélagos: Quito, Ecuador, 2018.

124. Smuts, B.B.; Cheney, D.L.; Seyfarth, R.M.; Wrangham, R.W. *Primate Societies*; Smuts, B.B., Cheney, D.L., Seyfarth, R.M., Wrangham, R.W., Eds.; University of Chicago Press: Chicago, IL, USA, 1987; p. 585.

125. Gilardi, K.; Gillespie, T.R.; Leendertz, F.H.; Macfie, E.J.; Travis, D.A.; Whittier, C.A.; Williamson, E.A. Best Practice Guidelines for Health Monitoring and Disease Control in Great Ape Populations. *Occas. Papers IUCN Species Surviv. Comm.Gland* **2015**, *56*, doi:10.2305/IUCN.CH.2015.SSC-OP.56.en.

126. NIH. Understanding Emerging and Re-emerging Infectious Diseases. Biological Sciences Curriculum Study. NIH Curriculum Supplement Series Bethesda (MD): National Institutes of Health (US). 2007. Available online: https://www.ncbi.nlm.nih.gov/books/NBK20370/ (accessed on 17 January 2021)

127. Tan, A.W.Y.; Dominy, N.J. Validation of a Noninvasive Hair Trapping Method for Extractive-Foraging Primates. *Folia Primatol.* **2018**, *89*, 415–422. doi:10.1159/000492328.

128. Constable, J.L.; Ashley, M.V.; Goodall, J.; Pusey, A.E. Noninvasive paternity assignment in Gombe chimpanzees. *Mol. Ecol.* **2001**, *10*, 1279–1300. doi:10.1046/j.1365-294x.2001.01262.x.
129. Chaves, P.B.; Paes, M.F.; Mendes, S.L.; Strier, K.B.; Louro, I.D.; Fagundes, V. Noninvasive genetic sampling of endangered muriqui (Primates, Atelidae): Efficiency of fecal DNA extraction. *Genet. Mol. Biol.* 2006, 29, 750–754.

130. Arandjelovic, M.; Head, J.; Rabanal, L.I.; Schubert, G.; Mettke, E.; Boesch, C.; Robbins, M.M.; Vigilant, L. Non-Invasive Genetic Monitoring of Wild Central Chimpanzees from Free-ranging Non-Human Primates. *PLoS ONE* 2011, 6, e14761, doi:10.1371/journal.pone.0014761.

131. Toyoda, A.; Matsudaia, K.; Maruhashi, T.; Malaiyivjitnond, S.; Kawamoto, Y. Highly Versatile, Non-Invasive Method for Collecting Buccal DNA from Free-Ranging Non-Human Primates. *bioRxiv* 2020, doi:10.1101/2020.03.29.015073.

132. Simons, N.D.; Lorenz, J.G.; Sheeran, L.K.; Li, J.H.; Xia, D.P.; Wagner, R.S. Noninvasive saliva collection for DNA analyses from free-ranging Tibetan Macaques (*Macaca thibetana*). *Am. J. Primatol.* 2012, doi:10.1002/ajp.22062.

133. Smiley Evans, T.; Barry, P.A.; Gilardi, K.V.; Goldstein, T.; Deere, J.D.; Fike, J.; Yee, J.; Seebide, B.J.; Karmachary, D.; Cranfield, M.R.; et al. Optimization of a Novel Non-invasive Oral Sampling Technique for Zoonotic Pathogen Surveillance in Nonhuman Primates. *PLoS Negl. Trop. Dis.* 2015, 9, e0003813, doi:10.1371/journal.pntd.0003813.

134. Inoue, E.; Inoue-Muraiyama, M.; Takenaka, O.; Nishiwa, T. Wild chimpanzee infant urine and saliva sampled noninvasively usable for DNA analyses. *Primates* 2007, 48, 156–159, doi:10.1007/s10329-006-0017-y.

135. Hayakawa, S.; Takenaka, O. Urine from another potential source for template DNA in polymerase chain reaction (PCR). *Am. J. Primatol.* 1999, 48, 299–304.

136. Figueiredo, M.A.P.; Di Santi, S.M.; Manrique, W.G.; André, M.R.; Machado, R.Z. Serological and molecular techniques applied for identification of *Plasmodium* spp. in blood samples from nonhuman primates. *Rev. Bras. Parasitol. Vet.* 2018, 27, 363–376, doi:10.1590/S1984-296120180043.

137. Taberlet, P.; Waits, L.P.; Luikart, G. Noninvasive genetic sampling: Look before you leap. *Trends. Ecol. Evol.* 1999, 14, 323–327, doi:10.1016/S0169-5347(99)01637-7.

138. Dai, Y.; Lin, Q.; Fang, W.; Zhou, X.; Chen, X. Noninvasive and nondestructive sampling for avian microsatellite genotyping: A case study on the vulnerable Chinese Egret (*Egretta eulophotes*). *Avian Res.* 2015, 6, 24, doi:10.1186/s40657-015-0034-x.

139. Segelbacher, G. Noninvasive genetic analysis in birds: Testing reliability of feather samples. *Mol. Ecol. Notes* 2002, 2, 367–369, doi:10.1046/j.1471-8286.2002.00180.x-12.

140. Knutie, S.A.; Gotanda, K.M. A Non-invasive Method to Collect Fecal Samples from Wild Birds for Microbiome Studies. *Microb. Ecol.* 2018, 76, 851–855, doi:10.1007/s00248-018-1182-4.

141. Acevedo-Whitehouse, K.; Rocha-Gosselin, A.; Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. *Anim. Conserv.* 2010, 13, 217–225, doi:10.1111/j.1469-1795.2009.00326.x.

142. Foote, A.D.; Thomsen, P.F.; Sveegaard, S.; Wahlberg, M.; Kielgast, J.; Kyhn, L.A.; Salling, A.B.; Galatius, A.; Orlando, L.; Gilbert, M.T. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. *PLoS ONE* 2012, 7, e41781, doi:10.1371/journal.pone.0041781.

143. Wu, Q.; Conway, J.; Phillips, K.M.; Stolen, M.; Durquier, D.; McFee, W.E.; Schwacke, L. Detection of Brucella spp. in bottlenose dolphins *Tursiops truncatus* by a real-time PCR using blowhole swabs. *Dis. Aquat. Organ.* 2016, 120, 241–244, doi:10.3354/dao02034.

144. Dufresnes, C.; Remollino, N.; Staffel, C.; Manz, R.; Weber, J.-M.; Fumagalli, L. Two decades of non-invasive genetic monitoring of the grey wolves recolonizing the Alps support very limited dog introgression. *Sci. Rep.* 2019, 9, 148, doi:10.1038/s41598-018-37313-x.

145. Granroth-Wilding, H.; Primmer, C.; Lindqvist, M.; Foutanen, J.; Thalmann, O.; Aspi, J.; Harmoinen, J.; Kojoila, I.; Laaskonen, T. Non-invasive genetic monitoring involving citizen science enables reconstruction of current pack dynamics in a re-establishing wolf population. *BMC Ecol.* 2017, 17, 44–44, doi:10.1186/s12898-017-0154-8.

146. Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C.; Déjean, T.; Griffiths, R.A.; Foster, J.; Wilkinson, J.W.; Arnell, A.; Brotherton, P.; et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (*Triturus cristatus*). *Biol. Conserv.* 2015, 183, 19–28, doi:10.1016/j.biocon.2014.11.029.

147. Santas, A.J.; Persaud, T.; Wolfe, B.A.; Franklin, J.M. Noninvasive Method for a Statewide Survey of Eastern Hellbenders *Cryptobranchus alleganiensis* Using Environmental DNA. *Int. J. Zool.* 2013, 2013, 174056, doi:10.1155/2013/174056.

148. Piaggio, A.J.; Engeman, R.M.; Hopken, M.W.; Humphrey, J.S.; Keach, K.L.; Bruce, W.E.; Avery, M.L. Detecting an elusive invasive species: A diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA. *Mol. Ecol. Resour.* 2014, 14, 374–380, doi:10.1111/1755-0998.12180.

149. Klymus, K.E.; Richter, C.A.; Chapman, D.C.; Paukert, C. Quantification of eDNA shedding rates from invasive bighead carp *Hypophthalmichthys nobilis* and smaller carp *Hypophthalmichthys Molit.* *Biol. Conserv.* 2015, 183, 77–84, doi:10.1016/j.biocon.2014.11.020.

150. Wilcox, T.M.; McKelvey, K.S.; Young, M.K.; Jane, S.F.; Lowe, W.H.; Whiteley, A.R.; Schwartz, M.K. Robust Detection of Rare Species Using Environmental DNA: The Importance of Primer Specificity. *PLoS ONE* 2013, 8, e59520, doi:10.1371/journal.pone.0059520.

151. Pigott, M.P.; Bellemain, E.; Taberlet, P.; Taylor, A.C. A Multiplex Pre-Amplification Method that Significantly Improves Microsatellite Amplification and Error Rates for Faecal DNA in Limiting Conditions. *Conserv. Genet.* 2004, 5, 417–420, doi:10.1023/B:COGE.0000031387.67958.44.

152. Taberlet, P.; Luikart, G. Non-invasive genetic sampling and individual identification. *Biol. J. Linn. Soc.* 1999, 68, 41–55, doi:10.1006/bijl.1999.0329.

153. Taberlet, P.; Griffin, S.; Goossens, B.; Questiau, S.; Manceau, V.; Escaravage, N.; Waits, L.P.; Bouvet, J. Reliable genotyping of species with very low DNA quantities using PCR. *Nucleic Acids Res.* 1996, 24, 318–3194, doi:10.1093/nar/24.16.3189.

154. Irwin, M.T.; Samonds, K.E.; Raharison, J.-L.; Wright, P.C. Lemur Latrines: Observations of Latrine Behavior in Wild Primates and Possible Ecological Significance. *J. Mammal.* 2004, 85, 420–427, doi:10.1644/1383937.
155. Smiley, T.; Spelman, L.; Lukasik-Braun, M.; Mukherjee, J.; Kaufman, G.; Akiyoshi, D.E.; Cranfield, M. Noninvasive saliva collection techniques for free-ranging mountain gorillas and captive eastern gorillas. *J. Zoo Wildl. Med.* 2010, 41, 201–209, doi:10.1638/2009-0015.1.

156. Santos, A.; Souza, A.M.; Bueno, M.G.; Catoa-Dias, J.L.; Toma, H.K.; Pissinatti, A.; Molina, C.V.; Kierulf, M.C.M.; Silva, D.G.F.; Almosny, N.R.P. Molecular detection of Borrelia burgdorferi in free-living golden headed lion tamarins (*Leontopithecus chrysomelas*) in Rio de Janeiro, Brazil. *Rev. Inst. Med. Trop. Sao Paulo* 2018, 60, e53, doi:10.1590/s1678-9946201860053.

157. Lilenbaum, W.; Vargas, R.; Moraes, I.A.; Ferreira, A.M.; Pissinatti, A. Leptospiral antibodies in captive lion tamarins (*Leontopithecus sp*) in Brazil. *Vet. J.* 2005, 169, 462–464, doi:10.1016/j.tvjl.2004.03.015.

158. Molina, C.V.; Heinemann, M.B.; Kierulf, C.; Pissinatti, A.; da Silva, T.F.; de Freitas, D.G.; de Souza, G.O.; Miotto, B.A.; Cortez, A.; Semensato, B.P.; et al. Leptospira spp., rotavirus, norovirus, and hepatitis E virus surveillance in a wild invasive golden-headed lion tamarin (*Leontopithecus chrysomelas*); Kuhl, 1820) population from an urban park in Niterói, Rio de Janeiro, Brazil. *Am. J. Primatol.* 2019, 81, e22961, doi:10.1002/ajp.22961.

159. Romero, M.H.; Astudillo, M.; Sánchez, J.A.; González, L.M.; Varela, N. Anticuerpos contra *Leptospira* sp en primates neotropicales y trabajadores de un zoológico colombiano / Leptospiral antibodies in a Colombian zoo’s Neotropical primates and workers. *Rev. Salud Pública* 2011, 13, 814–823.

160. Pérez-Brigidó, C.D.; Romero-Salas, D.; Sánchez-Montes, S.; Hermida-Lagunes, J.; Ochoa, J.L.; Canales-Espinosa, D.; Cruz-Romero, A. Serologic survey of *Leptospira* spp. in captive animals from vVeracruz, Mexico. *J. Zoo Wildl. Med.* 2020, 51, 222–227, doi:10.1638/2018-0120.

161. Perolat, P.; Pongt, J.P.; Vie, J.C.; Jouaneau, C.; Baranton, G.; Gysin, J. Occurrence of severe leptospirosis in a breeding colony of squirrel monkeys. *Am. J. Trop. Med. Hyg* 1992, 46, 538–545, doi:10.4269/ajtmh.1992.46.538.

162. Pinna, M.H.; Martins, G.; Pinheiro, A.C.; Almeida, D.S.; Oriá, A.P.; Lilenbaum, W. Detection of anti-Leptospira antibodies in captive nonhuman primates from Salvador, Brazil. *Am. J. Primatol.* 2012, 74, 8–11, doi:10.1002/ajp.21005.

163. Romero, M.H.; Astudillo, M.; Sánchez, J.A.; González, L.M.; Varela, N. Títulos de anticuerpos contra *Leptospira* sp., en primates del zoológico Matozinho, Pereira, Colombia. *Rev.MVZ Córdoba* 2012, 17, 3224–3230.

164. Scrofelli, E.; Piatti, R.M.; Fedullo, J.D.L.; Simon, F.; Cardoso, M.V.; Castro, V.; Miyashiro, S.; Genovze, M.É. Leptospira spp detection by Polymerase Chain Reaction (PCR) in clinical samples of captive black-capped Capuchin monkey (*Cebus apella*). *Braz. J. Microbiol.* 2003, 34, 143–146, doi:10.1590/S1517-83822003000100010.

165. Szonyi, B.; Agudelo-Florez, P.; Ramirez, M.; Moreno, N.; Ko, A.I. An outbreak of severe leptospirosis in capuchin (*Cebus*) monkeys. *Vet. J.* 2011, 188, 237–239, doi:10.1016/j.tvjl.2010.05.002.

166. Adams, M.R.; Lewis, J.C.; Bullock, B.C. Hemobartonellosis in squirrel monkeys (*Saimiri sciureus*) in a domestic breeding colony: Case report and preliminary study. *Lab. Anim. Sci.* 1984, 34, 82–85.

167. Bonato, L.; Figueiredo, M.A.P.; Gonçalves, L.R.; Machado, R.Z.; André, M.R. Occurrence and molecular characterization of *Bartonella* spp. and hemoplasmas in neotropical primates from Brazilian Amazon. *Comp. Immunol. Microbiol. Infect. Dis.* 2015, 42, 15–20, doi:10.1016/j.cimid.2015.09.001.

168. Cubilla, M.P.; Santos, L.C.; de Moraes, W.; Cubas, Z.S.; Leutenegger, C.M.; Estrada, M.; Vieira, R.F.C.; Soares, M.J.; Lindsay, L.L.; Sykes, J.E.; et al. Occurrence of hemoplastic mycoplasmas in non-human primates (*Alouatta caraya*, *Sapajus nigritus* and *Calithrix jaculus*) of southern Brazil. *Comp. Immunol. Microbiol. Infect. Dis.* 2017, 52, 6–13, doi:10.1016/j.cimid.2017.05.002.

169. de Melo, C.M.F.; Danezo, E.R.; Mendes, N.S.; de Souza Ramos, I.A.; Morales-Donoso, J.A.; Fernandes, S.J.; Machado, R.Z.; André, M.R.; da Rosa Sobreira, M.F.; Genovez, M.É. Genetic diversity and hematological and biochemical alterations in *Alouatta* primates naturally infected with hemoplasmas in Brazil. *Comp. Immunol. Microbiol. Infect. Dis.* 2019, 63, 104–111, doi:10.1016/j.cimid.2019.01.011.

170. Neimat, H.; Barnaud, A.; Gounon, P.; Michel, J.-C.; Contamin, H. The putative haemobartonella that influences *Plasmodium falciparum* parasitaemia in squirrel monkeys is a haemotrophic mycoplasma. *Microbes Infect.* 2002, 4, 693–698, doi:10.1016/S1286-4579(02)01588-5.

171. Ramalho, A.C.; Guerra, R.R.; Mongrue, A.C.B.; Vidotto, O.; Lucena, R.B.; Guerra, M.V.S.F.; Vieira, T.S.W.J.; Vieira, R.F.C. Mycoplasma spp. infection in captive Margaré’s capuchin monkeys (*Sapajus flavius*). *Comp. Immunol. Microbiol. Infect. Dis.* 2017, 51, 34–36, doi:10.1016/j.cimid.2017.03.003.

172. Santos, L.C.; Cubilla, M.P.; de Moraes, W.; Cubas, Z.S.; Oliveira, M.J.; Estrada, M.; Leutenegger, C.M.; Sykes, J.E.; Lindsay, L.L.; Marcondes, M.; et al. Hemotropic mycoplasma in a free-ranging black howler monkey (*Alouatta caraya*) in Brazil. *J. Wildl. Dis.* 2015, 49, 728–731, doi:10.7589/2012-06-159.

173. Hill, W.C.O. Report of the Society’s Prospector for the year 1952. *Proc.Zool. Soc. Lond.* 1953, 123, 227e251.

174. Bueno, M.G. Pesquisa de Leishmaniose spp. e *Plasmodium* spp em primatas neotropicales provenientes de regiões de Mata Atlântica e Amazônia impactadas por ações antropológicas: investigação in situ e ex situ; Universidade de Sao Paulo: Sao Paulo, Brazil, 2012.

175. Voltarelli, E.M.; Arraes, S.; Perles; Lonardini, M.V.C.; Teodoro, U.; Silveira, T.G.V. Serological survey for Leishmaniose sp. in wild animals from the municipality of Maringá, Paraná state, Brazil. *J. Venom. Anim. Toxins Incl. Trop. Dis.* 2009, 15, 732–744, doi:10.1590/S1678-91992009000400011.

176. Acardi, S.A.; Rago, M.V.; Liotta, D.J.; Fernandez-Duque, E.; Salomón, O.D. Leishmaniose (Viannia) DNA detection by PCR-RFLP and sequencing in free-ranging owl monkeys (*Aotus azarai azarai*) from Formosa, Argentina. *Vet. Parasitol.* 2013, 193, 256–259, doi:10.1016/j.vetpar.2012.12.012.

177. Cuba-Cuba, C.A.; Marsden, P.D. Marmosets in New World leishmaniasis research. *Medicina* 1993, 53, 419–423.
Pathogens 2021, 10, 1009

178. Lima, V.M.; Santiago, M.E.; Sanches Lda, C.; Lima, B.D. Molecular diagnosis of Leishmania amazonensis in a captive spider monkey in Bauru, São Paulo, Brazil. J. Zoo Wildl. Med. 2012, 43, 943–945, doi:10.1638/2012-0059r1.1.

179. Baker, J.R. Protozoa of Tissues and Blood (Other than the Haemoporphina). In Pathology of Simian Primates Part II: Infectious and Parasitic Diseases; Fiennes, R., Ed.; Karger: Basel, Switzerland, 1972; pp. 29–56.

180. Paiz, L.M.; Fornazari, F.; Menozzi, B.D.; Oliveira, G.C.; Coiro, C.J.; Teixeira, C.R.; da Silva, V.M.; Donaliso, M.R.; Langoni, H. Serological Evidence of Infection by Leishmania (Leishmania) infantum (Synonym: Leishmania (Leishmania) chagasi) in Free-Ranging Wild Mammals in a Nonendemic Region of the State of São Paulo, Brazil. Vector Borne Zoonotic Dis. 2015, 15, 667–673, doi:10.1089/vbz.2015.1806.

181. Roviroza-Hernández, M.; Cortés-Ortiz, L.; García-Orduña, F.; Guzmán-Gómez, D.; López-Monteon, A.; Caba, M.; Ramos-Ligüero, A. Seroprevalence of Trypanosoma cruzi and Leishmania mexicana in free-ranging howler monkeys in southeastern Mexico. Am. J. Primatol. 2013, 75, 161–169, doi:10.1002/ajp.22094.

182. Fandeur, T.; Volney, B.; Peneau, C.; de Thoisy, B. Monkeys of the rainforest in French Guiana are natural reservoirs for Plasmodium vivax infections. Rev. Inst. Med. Trop. Rio de Janeiro 2014, 56, 59–65.

183. Costa, D.C.; Cunha, V.P.d.; Assis, G.M.P.d.; Souza Junior, J.C.d.; Hirano, Z.M.B.; Arruda, M.E.d.; Kano, F.S.; Carvalho, L.H.; Silva, L.H.P.d.; Ozaki, L.S. Natural Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest. Mem. Inst. Oswaldo Cruz 2014, 109, 641–653.

184. de Castro Duarte, A.M.; Malafaia Rdos, S.; Cerutti, C., Jr.; Curado, I.; da Paiva, B.R.; Maeda, A.Y.; Yamasaki, T.; Summa, M.E.; Neves Ddo, V.; de Oliveira, S.G.; et al. Natural Plasmodium infections in Brazilian wild monkeys: Reservoirs for human infections? Acta Trop. 2010, 110, 179–185, doi:10.1016/j.actatropica.2008.05.020.

185. Duarte, A.M.; Porto, M.A.; Curado, I.; Malafaia, R.S.; Hoffmann, E.H.; de Oliveira, S.G.; da Silva, A.M.; Kloeletz, J.K.; Gomes Ade, C. Widespread occurrence of antibodies against circumsporozoite protein and against blood forms of Plasmodium vivax, P. falciparum and P. malariae in Brazilian wild monkeys. J. Med. Primatol. 2006, 35, 87–96, doi:10.1111/j.1600-0684.2006.00148.x.

186. Volney, B.; Pouliquen, J.F.; De Thoisy, B.; Fandeur, T. A sero-epidemiological study of malaria in human and monkey populations in French Guiana. Acta Trop. 2002, 82, 11–23, doi:10.1016/s0001-706x(02)00036-0.

187. Yamasaki, T.; Duarte, A.M.; Curado, I.; Summa, M.E.; Neves, D.V.; Wunderlich, G.; Malafaínte, R.S. Detection of etiological agents of malaria in howler monkeys from Atlantic Forests, rescued in regions of São Paulo city, Brazil. J. Med. Primatol. 2011, 40, 392–400, doi:10.1111/j.1600-0684.2011.00498.x.

188. Araújo, M.S.; Messias, M.R.; Figueiró, M.R.; Gil, L.H.S.; Probst, C.M.; Vidal, N.M.; Katsuragawa, T.H.; Krieger, M.A.; Silva, L.H.P.d.; Ozaki, L.S. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon). Malar. J. 2013, 12, 180–180, doi:10.1186/1475-2875-12-180.

189. Deane, L.M. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz 1992, 87, 1–20.

190. de Alvarenga, D.A.M.; de Pina-Costa, A.; de Sousa, T.N.; Pissinatti, A.; Zalis, M.G.; Suaréz, M.G.; Lourenço-de-Oliveira, R.; Brasil, P.; Daniel-Ribeiro, C.T.; de Brito, C.F.A. Cebinae subfamily by Plasmodium Simium. Malar. J. 2015, 14, 81, doi:10.1186/s12936-015-0060-6.

191. Alvarenga, D.A.M.; Pina-Costa, A.; Bianco, C.; Moreira, S.B.; Brasil, P.; Pissinatti, A.; Daniel-Ribeiro, C.T.; Brito, C.F.A. New potential Plasmodium simium host: Tamarins and marmoset monkeys (family Callitrichidae). Malar. J. 2017, 16, 71, doi:10.1186/s12936-017-1724-0.

192. de Arruda, M.; Nardin, E.H.; Nussenzveig, R.S.; Cochrane, A.H. Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon Basin of Brazil. Am. J. Trop. Med. Hyg. 1989, 41, 379–385, doi:10.4269/ajtmh.1989.41.379.

193. Abreu, F.V.S.d.; Santos, E.d.; Mello, A.R.L.; Gomes, L.R.; Alvarenga, D.A.M.d.; Gomes, M.Q.; Vargas, W.P.; Bianco-Júnior, C.; Pina-Costa, A.d.; Teixeira, D.S.; et al. Howler monkeys are the reservoir of malarial parasites causing zoonotic infections in the Atlantic forest of Rio de Janeiro. PLoS Negl. Trop. Dis. 2019, 13, e007906, doi:10.1371/journal.pntd.007906.

194. Alvarado-Esquível, C.; Gayoso-Dominguez, A.E.; Villena, I.; Dubey, J.P. Seroprevalence of Toxoplasma gondii infection in captive mammals in three zoos in Mexico City, Mexico. J. Zoo Wildl. Med. 2013, 44, 803–806, doi:10.1638/2013-0032.1.

195. Andrade, M.C.R.; Coelho, J.M.C.d.O.; Amendoeira, M.R.R.; Vicente, R.T.; Cardoso, C.V.P.; Ferreira, P.C.B.; Marchevsky, R.S. Toxoplasmosis in squirrel monkeys: Histological and immunohistochemical analysis. Ciênc. Rural 2007, 37, 1724–1727, doi:10.1590/S0103-48722007000600034.

196. Antoniassi, N.A.; Boabaid, F.M.; Souza, R.L.; Nakazato, M.; Pimentel, M.F.; Filho, J.O.; Pescador, C.A.; Driemeier, D.; Colodel, E.M. Granulomatous meningoencephalitis due to toxoplasma gondii in a blind captive howling monkey (Aotus nigriceps). J. Zoo Wildl. Med. 2011, 42, 118–120, doi:10.1638/2009-0104.1.

197. Bouer, A.; Werther, K.; Machado, R.Z.; Nakaghi, A.C.; Epiphanio, S.; Catão-Dias, J.L. Detection of anti-Toxoplasma gondii antibodies in experimentally and naturally infected non-human primates by Indirect Fluorescence Assay (IFA) and indirect ELISA. Rev. Bras. De Parasitol. Vet. 2010, 19, 26–31, doi:10.1590/S1984-29612010000100006.

198. Cadavid, A.P.; Cañas, L.; Estrada, J.J.; Ramirez, L.E. Prevalence of anti-Toxoplasma gondii antibodies in Cebus spp in the Santa Fe Zoological Park of Medellin, Colombia. J. Med. Primatol. 1991, 20, 259–261.

199. Carme, B.; Aznar, C.; Matot, A.; Demar, M.; de Thoisy, B. Serologic survey of Toxoplasma gondii in noncarnivorous free-ranging neotropical mammals in French Guiana. Vector Borne Zoonotic Dis. 2002, 2, 11–17, doi:10.1089/153036602760260733.

200. Carme, B.; Ajzenberg, D.; Demar, M.; Simon, S.; Darde, M.L.; Maubert, B.; de Thoisy, B. Outbreaks of toxoplasmosis in a captive breeding colony of squirrel monkeys. Vet. Parasitol. 2009, 163, 132–135, doi:10.1016/j.vetpar.2009.04.004.
201. Cedillo-Peláez, C.; Rico-Torres, C.P.; Salas-Garrido, C.G.; Correa, D. Acute toxoplasmosis in squirrel monkeys (Saimiri sciureus) in Mexico. Vet. Parasitol. 2011, 180, 368–371, doi:10.1016/j.vetpar.2011.03.012.

202. Dietz, H.H.; Henriksen, P.; Bille-Hansen, V.; Henriksen, S.A. Toxoplasmosis in a colony of New World monkeys. Vet. Parasitol. 1997, 68, 299–304, doi:10.1016/s0304-4017(96)01088-6.

203. de Thierry, B.; Vogel, I.; Reyne, J.-M.; Pouliquen, J.-F.; Carne, B.; Kazanji, M.; Vié, J.-C. Health evaluation of translocated free-ranging primates in French Guiana. Am. J. Primatol. 2001, 54, 1–16, doi:10.1002/ajp.1008.

204. Epiphaniou, S.; Guimarães, M.A.; Fedullo, D.L.; Correa, S.H.; Catão-Dias, J.L. Toxoplasmosis in golden-headed lion tamarins (Leontopithecus chrysomelas) and emperor marmosets (Saguinus imperator) in captivity. J. Zoo Wildl. Med. 2000, 31, 231–235.

205. Epiphaniou, S.; Sá, L.R.; Teixeira, R.H.; Catão-Dias, J.L. Toxoplasmosis in a wild-caught black lion tamarin (Leontopithecus chrysopygus). Rec. Vet. 2001, 194, 627–628, doi:10.1136/vr.149.20.627.

206. Geymesi, Z.S.; Lappin, M.R.; Dubey, J.P. Application of assays for the diagnosis of toxoplasmosis in a colony of woolly monkeys (Lagothrix lagotricha). J. Zoo Wildl. Med. 2006, 37, 276–280, doi:10.1638/05-018.1.

207. Inoue, M. Acute toxoplasmosis in squirrel monkeys. J. Vet. Med. Sci. 1997, 59, 593–595, doi:10.1292/jvsms.59.593.

208. Juan-Sallés, C.; Prats, N.; Marco, A.J.; Ramos-Vara, J.A.; Borrás, D.; Fernández, J. Fatal acute toxoplasmosis in three golden lion tamarins (Leontopithecus rosalia). J. Zoo Wildl. Med. 1998, 29, 55–60.

209. Garcia, J.L.; Svoboda, W.K.; Chrysafidis, A.L.; de Souza Malanski, L.; Shiawaza, M.M.; de Moraes Aguiar, L.; Teixeira, G.M.; Ludwig, G.; da Silva, L.R.; Hilst, C.; et al. Sero-epidemiological survey for toxoplasmosis in wild New World monkeys (Cebus spp.; Ateles geoffroyi) at the Panaré river, Paraná State, Brazil. Vet. Parasitol. 2005, 133, 307–311, doi:10.1016/j.vetpar.2005.06.004.

210. Molina, C.V.; Catão-Dias, J.L.; Ferreira Neto, J.S.; Vasconcellos, S.A.; Gennari, S.M.; do Valle Rdel, R.; Souza, G.O.; de Morais, Z.M.; Vitaliano, S.N.; Strefecki, R.F.; et al. Sero-epidemiological survey for brucellosis, leptospirosis, and toxoplasmosis in free-ranging Ateles geoffroyi and Callithrix penicillata from São Paulo State, Brazil. J. Med. Primatol. 2014, 43, 197–201, doi:10.1111/jmp.12112.

211. Ferreira, D.R.; Ribeiro, V.O.; Laroque, P.O.; Wagner, P.G.; Pinheiro Júnior, J.W.; Silva, J.C.; Dubey, J.P.; Rêgo, E.W.; Mota, R.A. Risk factors associated with Toxoplasma gondii infection in captive Sapajus spp. Am. J. Primatol. 2015, 77, 558–562, doi:10.1002/ajp.22377.

212. Fiorello, C.V.; Heard, D.J.; Heller, H.L.; Russell, K. Medical management of Toxoplasma meningitis in a white-throated capuchin (Cebus capucinus). J. Zoo Wildl. Med. 2006, 37, 409–412, doi:10.1638/05-058.1.

213. Lourenço-de-Oliveira, R.; Deane, L.M. Simian malaria at two sites in the Brazilian Amazon. I—The infection rates of Plasmodium brasilianum in non-human primates. Mem Inst. Oswaldo Cruz 1995, 90, 331–339, doi:10.1590/S0074-02761995000000004.

214. Pardini, L.; Dellarupe, A.; Bacigalupe, D.; Quiroga, M.A.; Moré, G.; Rambeaud, M.; Basso, W.; Unzaga, J.M.; Chares, G.; Venturini, M.C. Isolation and molecular characterization of Toxoplasma gondii in a colony of captive black-capped squirrel monkeys (Saimiri boliviensis). Parasitol. Int. 2015, 64, 587–590, doi:10.1016/j.parint.2015.08.009.

215. Paula, M.F.; Dutra, K.S.; Oliveira, A.R.; Santos, D.O.D.; Rocha, C.E.V.; Vitor, R.W.A.; Tinoco, H.P.; Costa, M.; Paião, T.A.D.; Santos, R.L. Host range and susceptibility to Toxoplasma gondii infection in captive neotropical and Old-world primates. J. Med. Primatol. 2020, 49, 202–210, doi:10.1111/jmp.12470.

216. Pertz, C.; Dubielzig, R.R.; Lindsay, D.S. Fatal Toxoplasma gondii infection in golden lion tamarins (Leontopithecus rosalia rosalia). J. Zoo Wildl. Med. 1997, 28, 491–493.

217. Santos, S.V.; Strefecki, R.F.; Pissinatti, A.; Kanamura, C.T.; Takakura, C.F.; Duarte, M.I.; Catão-Dias, J.L. Detection of Toxoplasma gondii in two southern Wooly spider monkeys (Brachyteles arachnoides-Geoffroy, 1806) from the Rio de Janeiro primate center, Brazil. J. Med. Primatol. 2014, 43, 125–129, doi:10.1111/jmp.12093.

218. Santos, S.V.; Pena, H.F.J.; Talebi, M.G.; Teixeira, R.H.F.; Kanamura, C.T.; Diaz-Delgado, J.; Gennari, S.M.; Catão-Dias, J.L. Fatal toxoplasmosis in a southern muriqui (Brachyteles arachnoides) from São Paulo state, Brazil: Pathological, immunohistochemical, and molecular characterization. J. Med. Primatol. 2018, 47, 124–127, doi:10.1111/jmp.12326.

219. Stuart, M.D.; Pendergast, V.; Rumfelt, S.; Pieberg, S.; Greenspan, L.L.; Glander, M.R.; Harris, A.T.; Dallas, S.; Ricketts, M.; Parasites of wild howlers (Alouatta spp.). Int. J. Primatol. 1998, 19, 493–512.

220. Soto-Calderón, I.D.; Acevedo-Garcés, Y.A.; Álvarez-Cardona, J.; Hernández-Castro, C.; García-Montoya, G.M. Physiological and parasitological implications of living in a city: The case of the white-footed tamarin (Saguinus leucopus). Am. J. Primatol. 2016, 78, 1272–1281, doi:10.1002/ajp.22581.

221. Martínez, M.F.; Kowalewski, M.M.; Salomón, O.D.; Schijman, A.G. Molecular characterization of trypanosomatid infections in wild howler monkeys (Alouatta caraya) in northeastern Argentina. Int. J. Parasitol. Parasites Wildl. 2016, 5, 198–206, doi:10.1016/j.ijppaw.2016.05.001.

222. Minuzzi-Souza, T.T.; Nitz, N.; Knox, M.B.; Reis, F.; Hagström, L.; Cuba, C.A.; Hecht, M.M.; Gurgel-Gonçalves, R. Vector-borne transmission of Trypsosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasit Vectors 2016, 9, 39, doi:10.1186/s13071-016-1334-7.

223. Hoare, C.A. The Trypanosomes of Mammals: A Zoological Monograph; Blackwell Scientific Publications: Hoboken, NJ, USA; The University of Michigan: Ann Arbor, MI, USA, 1972.

224. Sousa, O.E.; Rossan, R.N.; Baerg, D.C. The prevalence of trypanosomes and microfilariae in Panamanian monkeys. Am. J. Trop. Med. Hyg. 1974, 23, 862–868, doi:10.4269/ajtmh.1974.23.862.

225. Lisboa, C.V.; Mangia, R.H.; Rubião, E.; de Lima, N.R.; das Chagas Xavier, S.C.; Picinatti, A.; Ferreira, L.F.; Fernandes, O.; Jansen, A.M. Trypanosoma cruzi transmission in a captive primate unit, Rio de Janeiro, Brazil. Acta Trop. 2004, 90, 97–106, doi:10.1016/j.actatropica.2003.11.005.
Pathogens 2021, 10, 1009

226. Marcili, A.; Valente, V.C.; Valente, S.A.; Junqueira, A.C.V.; Silva, F.M.d.; Pinto, A.Y.d.N.; Naiff, R.D.; Campaner, M.; Coura, J.R.; Camargo, E.P.; et al. Trypanosoma cruzi in Brazilian Amazonia: Lineages TCI and TCII in wild primates, Rhodnius spp. and in humans with Chagas disease associated with oral transmission. *Int. J. Parasitol.* 2009, 39, 615–623, doi:10.1016/j.ijpara.2008.09.015.

227. Kerr, C.L.; Bhattacharyya, T.; Xavier, S.C.; Barros, J.H.; Lima, V.S.; Jansen, A.M.; Miles, M.A. Lineage-specific serology confirms Brazilian Atlantic forest lion tamarins, Leontopithecus chrysomelas and Leontopithecus rosalia, as reservoir hosts of *Trypanosoma cruzi* II (TeL). *Parasit Vectors* 2016, 9, 584, doi:10.1186/s13071-016-1873-y.

228. Monteiro, R.V.; Dietz, J.M.; Jansen, A.M. The impact of concomitant infections by *Trypanosoma cruzi* and intestinal helminths on the health of wild and golden-headed lion tamarins. *Res. Vet. Sci.* 2010, 89, 27–35, doi:10.1016/j.rvsc.2010.01.001.

229. Dunn, F.L.; Lambrecht, F.L.; Duplessis, R. Trypanosomiasis of south american monkeys and marmosets. *Am. J. Trop. Med. Hyg.* 1963, 12, 524–534, doi:10.4269/ajtmh.1963.12.524.

230. Ziccardi, M.; Lourenço-de-Oliveira, R. The infection rates of trypanosomes in squirrel monkeys at two sites in the Brazilian Amazon. *Mem. Inst. Oswaldo Cruz* 1997, 92, 465–470, doi:10.1590/0074-02761997004000003.

231. Ziccardi, M.; Lourenço-De-Oliveira, R.; Lainson, R.; Brigido, M.C.; Muniz, J.A. Trypanosomiasis of non-human primates from the National Centre of Primates, Ananindeua, State of Pará, Brazil. *Mem. Inst. Oswaldo Cruz* 2000, 95, 157–159, doi:10.1590/0074-0276200000200004.

232. Deane, L.M. Tripanosomidés de mamíferos da região amazônica. IV. Hemoscopia e xenodiagnóstico de animais silvestres da estrada Belem-Brasilia. *Rev. Inst. Med. Trop. S Paulo* 1967, 9, 143–148.

233. Leónidas de Mello, D. Tripanosomídeos de mamíferos da regiao amazonica. *Rev. Inst. Med. Trop. S Paulo* 1961, 3, 61–70.

234. Erkenswick, G.A.; Watsa, M.; Gozalo, A.S.; Dmytryk, N.; Parker, P.G. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates. *Int. J. Parasitol. Parasites Wildl.* 2017, 6, 59–68, doi:10.1016/j.ijppaw.2017.03.004.

235. Tenório, M.S.; Oliveira e Sousa, L.; Alves-Martin, M.F.; Paixão, M.S.; Rodrigues, M.V.; Starke-Buzetti, W.A.; Araújo Junior, J.P.; Luchesi, S.B. Molecular identification of trypanosomatids in wild animals. *Vet. Parasitol.* 2014, 203, 203–206, doi:10.1016/j.vetpar.2014.02.010.

236. Ayala, F. Presencia de un hemoflagelado semejante al *Trypanosoma rangeli* Tejera 1920, in the mono *Saimiri boliviensis*, in the Region Amazonica, Peru. *Rev. Inst. Med. Trop. S Paulo* 1964, 6, 47–50.

237. Maia da Silva, F.; Naiff, R.D.; Marcili, A.; Gordo, M.; D’Affonseca Neto, J.A.; Naiff, M.F.; Franco, A.M.; Campaner, M.; Valente, V.; Valente, S.A.; et al. Infection rates and genotypes of *Trypanosoma rangeli* and *T. cruzi* infecting free-ranging *Saguinus bicolor* (Callithricidae), a critically endangered primate of the Amazon Rainforest. *Acta Trop.* 2008, 107, 168–173, doi:10.1016/j.actatropica.2008.05.015.

238. Batista, P.M.; Andreotti, C.; Chiang, J.O.; Ferreira, M.S.; Vasconcelos, P.F. Seroepidemiological monitoring in sentinel animals and vectors as part of arbovirus surveillance in the state of Mato Grosso do Sul, Brazil. *Rev. Soc. Bras. Med. Trop.* 2012, 45, 168–173, doi:10.1590/S0037-8682201200200006.

239. Karesh, W.; Wallace, R.; Painter, L.; Rumiz, D.; Braselton, W.; Dierenfeld, E.; Puche, H. Immobilization and health assessment of free-ranging black spider monkeys (*Ateles paniscus chamek*). *Am. J. Primatol.* 1998, 44, 107–123, doi:10.1002/(SICI)1098-2345(1998)44:2<107::AID-APJ2-3.0.CO;2-#.n

240. Laroque, P.O.; Valença-Montenegro, M.M.; Ferreira, D.R.A.; Chiang, J.O.; Cordeiro, M.T.; Vasconcelos, P.F.C.; Silva, J.C.R. Levantamento soroepidemiológico para arbovírus em macaco-prego-galego (*Cebus flavus*) de vida livre no estado da Paraíba e em macaco-prego (*Cebus libidinosus*) de cativeiro do nordeste do Brasil. *Pesq. Vet. Bras.* 2014, 34, 462–468, doi:10.1590/S0103-736X2014000500013.

241. Hoch, A.L.; Peterson, N.E.; LeDuc, J.W.; Pinheiro, F.P. An Outbreak of Mayaro Virus Disease in Belterra, Brazil. *Am. J. Trop. Med. Hyg.* 1981, 30, 689, doi:10.4269/ajtmh.1981.30.689.

242. Seymour, C.; Peralta, P.H.; Montgomery, G.G. Serologic evidence of natural togavirus infections in Panamanian sloths and other vertebrates. *Am. J. Trop. Med. Hyg.* 1983, 32, 854–861, doi:10.4269/ajtmh.1983.32.854.

243. Talarmin, A.; Chandler, L.J.; Kazanji, M.; de Thoisy, B.; Debon, P.; Labeau, B.; Bourreau, E.; Vie, J.C.; Shope, R.E.; et al. Mayaro virus fever in French Guiana: Isolation, identification, and seroprevalence. *Acta Trop.* 1998, 59, 452–456, doi:10.4269/ajtmh.1998.59.452.

244. Diaz, L.A.; Diaz Mdel, P.; Almirón, W.R.; Contigiani, M.S. Infection by UNA virus (Alphavirus; Togaviridae) and risk factor analysis in black howler monkeys (*Alouatta caraya*) from Paraguay and Argentina. *Trans. R Soc. Trop. Med. Hyg.* 2007, 101, 1039–1041, doi:10.1016/j.trstmh.2007.04.009.

245. Wells, E.A.; D’Alessandro, A.; Morales, G.A.; Angel, D. Mammalian wildlife diseases as hazards to man and livestock in an area of the Llanos Orientales de Colombia. *J. Wildl. Dis.* 1981, 17, 153–162, doi:10.7589/0090-3558-17.1.153.

246. Catenacci, L.S.; Ferreira, M.; Martins, L.C.; De Vleeschouwer, K.M.; Cassano, C.R.; Oliveira, L.C.; Canale, G.; Deem, S.L.; Tello, J.S.; Parker, P.; et al. Surveillance of Arboviruses in Primates and Sloths in the Atlantic Forest, Bahia, Brazil. *EcoHealth* 2018, 15, 777–791, doi:10.1007/s10391-018-1361-2.

247. Morales, M.A.; Fabbri, C.M.; Zunino, G.E.; Kowalewski, M.M.; Luppo, V.C.; Enria, D.A.; Levis, S.C.; Calderon, G.E. Detection of the mosquito-borne flaviviruses, West Nile, Dengue, Saint Louis Encephalitis, Ilheus, Bussuquara, and Yellow Fever in free-ranging howlers (*Alouatta caraya*) of Northeastern Argentina. *PLoS Negl. Trop. Dis.* 2017, 11, e0005351, doi:10.1371/journal.pntd.0005351.
Pathogens 2021, 10, 1009

248. Abreu, F.V.S.; Delatorre, E.; Dos Santos, A.A.C.; Ferreira-de-Brito, A.; de Castro, M.G.; Ribeiro, I.P.; Furtado, N.D.; Vargas, W.P.; Ribeiro, M.S.; Menegue, P.; et al. Combination of surveillance tools reveals that Yellow Fever virus can remain in the same Atlantic Forest area at least for three transmission seasons. Mem. Inst. Oswaldo Cruz 2019, 114, e190076, doi:10.1590/0071-8667-2019.0076.

249. Almeida, M.A.B.; Cardoso, J.D.C.; Santos, E.D.; Romano, A.P.M.; Chiang, J.O.; Martins, L.C.; Vasconcelos, P.F.C.; Bacqa-Maque, J.C. Immunity to yellow fever, oropouche and saint louis viruses in a wild howler monkey Neotrop. Primates 2016, 23, 19–21.

250. Auguste, A.J.; Lemey, P.; Pybus, O.G.; Suchard, M.A.; Salas, R.A.; Adesiyun, A.A.; Barrett, A.D.; Tesh, R.B.; Weaver, S.C.; Carrington, C.V. Yellow fever virus maintenance in Trinidad and its dispersal throughout the Americas. J. Virol. 2010, 84, 9967–9977, doi:10.1128/jvi.00588-10.

251. Auguste, A.J.; Lemey, P.; Bergren, N.A.; Giambalvo, D.; Moncada, M.; Morón, D.; Hernandez, R.; Navarro, J.-C.; Weaver, S.C. Enzootic transmission of yellow fever virus, Venezuela. Emerg. Infect. Dis. 2015, 21, 99–102, doi:10.3201/eid2104.140814.

252. Bonaldo, M.C.; Gomez, M.M.; Dos Santos, A.A.; Abreu, F.Y.S.; Ferreira-de-Brito, A.; Miranda, R.M.; Castro, M.G.; Lourenço-de-Oliveira, R. Genome analysis of yellow fever virus of the ongoing outbreak in Brazil reveals polymorphisms. Mem. Inst. Oswaldo Cruz 2017, 112, 447–451, doi:10.1590/0074-0276201700134.

253. de Almeida, M.A.; Dos Santos, E.; da Cruz Cardoso, J.; da Fonseca, D.F.; Noll, C.A.; Silveira, V.R.; Maeda, A.Y.; de Souza, R.P.; Kanamura, C.; Brasil, R.A. Yellow Fever outbreak affecting Alouatta populations in southern Brazil (Rio Grande do Sul State), 2008–2009. Am. J. Primatol. 2012, 74, 68–76, doi:10.1002/ajp.21010.

254. Leal, S.G.; Romano, A.P.; Monteiro, R.V.; Melo, C.B.; Vasconcelos, P.F.; Castro, M.B. Frequency of histopathological changes in Howler monkeys (Alouatta sp.) naturally infected with yellow fever virus in Brazil. Rev. Soc. Bras. Med. Trop. 2016, 49, 29–33, doi:10.1590/0037-8682-0363-2015.

255. Mares-Guia, M.; Horta, M.A.; Romano, A.; Rodrigues, C.D.S.; Mendonca, M.C.L.; Dos Santos, C.C.; Torres, M.C.; Araujo, E.S.M.; Fabri, A.; de Souza, E.R.; et al. Yellow Fever epizootics in non-human primates in the Southeast and Northeast Brazil (2017 and 2018). Parasit Vectors 2020, 13, 90, doi:10.1186/s13071-020-3966-x.

256. Moreno, E.S.; Rocco, I.M.; Bergo, E.S.; Brasil, R.A.; Siciliano, M.M.; Suzuki, A.; Silveira, V.R.; Bisordi, I.; Souza, R.P. Reemergence of yellow fever: Detection of transmission in the State of Sao Paulo, Brazil, 2008. Rev. Soc. Bras. Med. Trop. 2011, 44, 290–296, doi:10.1590/0037-868220100500041.

257. Pinheiro, F.P.; Travassos da Rosa, A.P.; Moraes, M.A. An epidemic of yellow fever in Central Brazil, 1972-1973. II. Ecological studies. Am. J. Trop. Med. Hyg. 1981, 30, 204–211, doi:10.4269/ajtmh.1981.30.204.

258. Rawlins, S.C.; Hull, B.; Chadee, D.D.; Martinez, R.; LeMaitre, A.; James, F.; Webb, L. Sylvatic yellow fever activity in Trinidad, 1988-1989. Trans. R Soc. Trop. Med. Hyg. 1990, 84, 142–143, doi:10.1016/0035-9203(90)90411-7.

259. Sallis, E.S.; de Barbos, V.L.; Garmatz, S.L.; Fighera, R.A.; Graca, D.L. A case of yellow fever in a brown howler (Alouatta fusca) in Southern Brazil. J. Vet. Diagn. Invest. 2003, 15, 574–576, doi:10.1177/104063870301500611.

260. Tranquillini, M.V.; Lehmkhuhl, R.C.; Maron, A.; da Silva, L.R.; Zilio, M.; Suki, E.M.; Salomon, G.R.; de Oliveira Torres Carrasco, A. First report of yellow fever virus in non-human primates in the State of Paraná, Brazil. Rev. Soc. Bras. Med. Trop. 2013, 46, 522–524, doi:10.1590/0037-8682-0106-2013.

261. Velandia, M.P. La Re-emergencia de la fiebre amarilla en Colombia. Rev. MVZ Córdoba 2004, 9, 459–462, doi:10.21897/rmvz.490.

262. Almeida, M.A.B.; Santos, E.D.; Cardoso, J.D.C.; Noll, C.A.; Lima, M.M.; Silva, F.A.E.; Ferreira, M.S.; Martins, L.C.; Vasconcelos, P.; Bicca-Maque, J.C. Detection of antibodies against Icoaraici, Ilheus, and Saint Louis Encephalitis arboviruses during yellow fever monitoring surveillance in non-human primates (Alouatta caraya) in Southern Brazil. J. Med. Primatol. 2019, 48, 211–217, doi:10.1111/jmp.12417.

263. Pereira, L.E.; Suzuki, A.; Coimbra, T.L.M.; Souza, R.P.d.; Chamelet, E.L.B. Arbivorous Ilheus in aves silvestres (Sporophila caerulescens e Molothrus bonariensis). Rev. Saude Publica 2001, 35, 119–123.

264. Svoboda, W.K.; Martins, L.C.; Malanski Lde, S.; Shiozawa, M.M.; Spohr, K.A.; Hilst, C.L.; Aguier, L.M.; Ludwig, G.; Passos Fde, C.; Silva, L.R.; et al. Serological evidence for Saint Louis encephalitis virus in free-ranging New World monkeys and horses within the upper Parana River basin region, Southern Brazil. Rev. Soc. Bras. Med. Trop. 2014, 47, 280–286, doi:10.1590/0037-8682-0083-2014.

265. Terzian, A.C.B.; Zini, N.;Sacchetto, L.; Rocha, R.F.; Parra, M.C.P.; Del Sarto, J.L.; Dias, A.C.F.; Coutinho, F.; Rayra, J.; da Silva, R.A.; et al. Evidence of natural Zika virus infection in neotropical non-human primates in Brazil. Sci. Rep. 2018, 8, 16034, doi:10.1038/s41598-018-34423-6.

266. Moreira, G.V.; Peixoto, C.M.S.; Ziccardi, M.; Oliveira, R.L.; Castro, M.G.; Dionisio, D.F.; Pissinatti, A. Prevalence of Trypanosoma cruzi, Trypanosoma minasense and of ant corpores contra arboviruses in primatas no humanos (Callithrichidae) em cativeiro. Rev. Bras. Med. Vet. 2000, 22, 252–254.

267. Carvalho, V.L.; Nunes, M.R.T.; Medeiros, D.B.A.; da Silva, S.P.; Lima, C.P.S.; Inada, D.T.; Cardoso, J.F.; Viane, J.L.S.G.; Rodrigues, S.G.; Vasconcelos, P.F.C. New Virus Genome Sequences of the Guama Serogroup (Genus Orthobunyavirus, Family Bunyaviridae). Isolated in the Brazilian Amazon Region. Genome Announc. 2017, 5, e01750-01716, doi:10.1128/genomeA.01750-16.

268. Gibrail, M.M.; Fiaccadori, F.S.; Souza, M.; Almeida, T.N.V.; Chiang, J.O.; Martins, L.C.; Ferreira, M.S.; de Paula Cardoso, D.D.D. Detection of antibodies to Oropouche virus in non-human primates in Goiânia City, Goiás. Rev. Soc. Bras. Med. Trop. 2016, 49, 357–360, doi:10.1590/0037-8682-0425-2015.

269. Nunes, M.R.T.; Martins, L.C.; Rodrigues, S.G.; Chiang, J.O.; Azevedo, R.d.S.d.s.; da Rosa, A.P.A.T.; Vasconcelos, P.F.d.C. Oropouche virus isolation, southeast Brazil. Emerg. Infect. Dis. 2005, 11, 1610–1613, doi:10.3201/eid1105.050464.
270. Oliveira, D.B.; Luiz, A.P.; Fagundes, A.; Pinto, C.A.; Bonjardim, C.A.; Trindade, G.S.; Kroon, E.G.; Abrahao, J.S.; Ferreira, P.C. Evidence of Apeu Virus Infection in Wild Monkeys, Brazilian Amazon. Am. J. Trop. Med. Hyg. 2016, 94, 494–496, doi:10.4269/ajtmh.14-0688.

271. Pedersen, A.; Davies, T. Cross-Species Pathogen Transmission and Disease Emergence in Primates. EcoHealth 2009, 6, 496–508, doi:10.1007/s10343-010-0284-3.

272. Slingenbergh, J.J.; Gilbert, M.; de Balogh, K.I.; Wint, W. Ecological sources of zoonotic diseases Rev. Sci. Tech. 2004, 23, 467–484, doi:10.20506/rst.23.2.1492.

273. Rushmore, J.; Bisanzio, D.; Gillespie, T.R. Making New Connections: Insights from Primate-Parasite Networks. Trends. Parasitol. 2017, 33, 547–560, doi:10.1016/j.pt.2017.01.013.

274. Altizer, S.; Nunn, C.L.; Thrall, P.H.; Gittleman, J.L.; Antonovics, J.; Cunningham, A.A.; Dobson, A.P.; Ezenwa, V.; Jones, K.E.; Pedersen, A.B.; et al. Social organization and disease risk in mammals: Integrating theory and empirical studies. Annu. Rev. Ecol. Syst. 2003, 34, 517–547.

275. Davieves, C.R.; Ayres, J.M.; Dye, C.; Deane, L.M. Malaria Infection Rate of Amazonian Primates Increases with Body Weight and Group Size. Funct. Ecol. 1991, 5, 655–662, doi:10.2307/2389485.

276. Nunn, C.L.; Heymann, E.W. Malaria infection and host behavior: A comparative study of Neotropical primates. Behav. Ecol. Soc. 2005, 59, 30–37, doi:10.1016/s0026-5595(05)0005-z.

277. Côté, I.M.; Poulin, R. Parasitism and group size in social animals: A meta-analysis. Behav. Ecol. 1995, 6, 159–165.

278. Nunn, C.L.; Jordán, F.; McCabe, C.M.; Verdolin, J.L.; Fewell, J.H. Infectious disease and group size: More than just a numbers game. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140111, doi:10.1098/rstb.2014.0111.

279. Akinyi, M.Y.; Tung, J.; Jeney, B.; Patel, N.B.; Altmann, J.; Alberts, S.C. Role of Grooming in Reducing Tick Load in Wild Baboons (Papio cynocephalus). Anim. Behav. 2013, 85, 559–568, doi:10.1016/j.anbehav.2012.12.012.

280. Duboscq, J.; Romano, V.; Sueur, C.; MacIntosh, A.J.J. Network centrality and seasonality interact to predict lice load in a social primate. Sci. Rep. 2016, 6, 22095, doi:10.1038/srep22095.

281. Zohdy, S.; Kemp, A.D.; Durden, L.A.; Wright, P.C.; Jernvall, J. Mapping the social network: Tracking lice in a wild primate (Microcebus rufus) population to infer social contacts and vector potential. BMC ECOL. 2012, 3, 7.

282. Roux, V.; Raoult, D. Body lice as tools for diagnosis and surveillance of reemerging diseases. J. Clin. Microbiol. 1999, 37, 596–599.

283. Hornok, S.; Hofmann-Lehmann, R.; de Mera, I.G.; Meli, M.L.; Elek, V.; Hajtos, I.; Repasi, A.; Gonczi, E.; Tanczos, B.; Farkas, R.; et al. Survey on blood-sucking lice (Phthiraptera: Anoplura) of ruminants and pigs with molecular detection of Anaplasmata and Rickettsia spp. Vet. Parasitol. 2010, 174, 355–358, doi:10.1016/j.vetpar.2010.09.003.

284. De Nys, H.M.; Calviggnac-Spencer, S.; Thiesen, U.; Boesch, C.; Wittig, R.M.; Mundry, R.; Leendertz, F.H. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 2013, 9, 20121160, doi:10.1098/rsbl.2012.1160.

285. Frölich, S.; Entzeroth, R.; Wallach, M. Comparison of protective immune responses to apicomplexan parasites. J. Parasitol. Res. 2012, 2012, 852591, doi:10.1155/2012/852591.

286. Springer, A.; Fichert, C.; Calviggnac-Spencer, S.; Leendertz, F.H.; Kappeller, P.M. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species. Int. J. Parasitol. Parasites Wildl. 2015, 4, 385–395, doi:10.1016/j.ijppaw.2015.10.006.

287. Hakan, M.; Strube, C.; Radespiel, U.; Zimmermann, E. Sleeping site ecology, but not sex, affect ecto- and hemoparasite risk, in sympatric, arboreal primates (Avahi occidentalis and Lepilemur edwardsi). Front. Zool. 2017, 14, 44, doi:10.1186/s12983-017-0228-7.

288. Samson, D.R.; Muehlenbein, M.P.; Hunt, K.D. Do chimpanzees (Pan troglodytes schweinfurthii) exhibit sleep related behaviors that minimize exposure to parasitic arthropods? A preliminary report on the possible anti-vector function of chimpanzee sleeping platforms. Primates 2013, 54, 73–80, doi:10.1007/s10329-012-0329-z.

289. Morales, M.A.; Barrandeguy, M.; Fabbri, C.; Garcia, J.B.; Vissani, A.; Trono, K.; Gutierrez, G.; Pigretti, S.; Menchaca, H.; Garrido, N.; et al. West Nile virus isolation from equines in Argentina, 2006. Emerg. Infect. Dis. 2006, 12, 1559–1561, doi:10.3201/eid1210.060852.

290. Pinto, J.; Bonacic, C.; Hamilton-West, C.; Romero, J.; Lubroth, J. Climate change and animal diseases in South America Rev. Sci. Tech. 2008, 27, 599–613.

291. Reed, K.D.; Meece, J.K.; Henkel, J.S.; Shukla, S.K. Birds, migration and emerging zoonoses: West Nile virus, lyme disease, influenza A and enteropathogens. Clin. Med. Res. 2003, 1, 5–12, doi:10.1016/j.cmr.1.1.5.

292. Seidowski, D.; Ziegler, U.; von Ronn, J.A.; Muller, K.; Huppop, K.; Muller, T.; Freuling, C.; Muhle, R.U.; Nowotny, N.; Ulrich, R.G.; et al. West Nile virus monitoring of migratory and resident birds in Germany. Vector Borne Zoonotic Dis. 2010, 10, 639–647, doi:10.1089/vbz.2009.0236.

293. Altizer, S.; Bartel, R.; Han, B.A. Animal Migration and Infectious Disease Risk. Science 2011, 331, 296, doi:10.1126/science.1194694.

294. Wilson, M.E. Travel and the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 39–46.

295. Rodrigues, P.T.; Valdivia, H.O.; de Oliveira, T.C.; Alves, J.M.P.; Duarte, A.M.R.C.; Cerutti-Junior, C.; Buery, J.C.; Brito, C.F.A.; de Souza, J.C.; Hirano, Z.M.B.; et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018, 8, 1993, doi:10.1038/s41598-018-19554-0.

296. Gómez, J.M.; Nunn, C.L.; Verdú, M. Centrality in primate-parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. USA 2013, 110, 7738–7741.
327. Candeloro, L.; Savini, L.; Conte, A. A New Weighted Degree Centrality Measure: The Application in an Animal Disease Epidemic. *PloS ONE* **2016**, *11*, e0165781, doi:10.1371/journal.pone.0165781.

328. Peters, W.; Garnham, P.C.C.; Killick-Kendrick, R.; Rajapaksa, N.; Cheong, W.H.; Cadigan, F.C. Malaria of the orang-utan (*Pongo pygmaeus*) in Borneo. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **1976**, *275*, 439–482, doi:10.1098/rstb.1976.0089.

329. Harvell, C.D.; Kim, K.; BurkhOLDER, J.M.; Colwell, R.R.; Epstein, P.R.; Grimes, D.J.; Hofmann, E.E.; Lipp, E.K.; Osterhaus, A.D.M.E.; Overstreet, R.M.; et al. Emerging Marine Diseases—Climate Links and Anthropogenic Factors. *Science* **1999**, *285*, 1505, doi:10.1126/science.285.5433.1505.

330. Behie, A.M.; Kutz, S.; Pavelka, M.S. Cascading Effects of Climate Change: Do Hurricane-damaged Forests Increase Risk of Exposure to Parasites? *Biostatistics* **2014**, *46*, 25–31, doi:10.1111/btp.12072.

331. Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blautstein, A.R.; Bartlein, P.J. Projected climate-induced faunal change in the Western Hemisphere. *Ecology* **2009**, *90*, 588–597, doi:10.1890/08-0823.1.

332. Dunbar, R.I.M. Impact of global warming on the distribution of the gelada baboon: A modelling approach. *Glob. Chang. Biol.* **1998**, *4*, 293–304, doi:10.1046/j.1365-2486.1998.00156.x.

333. Colwell, R.K.; Brehm, G.; Cardelús, C.L.; Gilman, A.C.; Longino, J.T. Global Warming, Elevational Range Shifts, and Lowland Biotic Attraction in the Wet Tropics. *Science* **2008**, *322*, 258, doi:10.1126/science.1162547.

334. Luo, Z.; Zhou, S.; Yu, W.; Yu, H.; Yang, J.; Tian, Y.; Zhao, M.; Wu, H. Impacts of climate change on the distribution of Sichuan snub-nosed monkeys (*Rhinopithecus roxellana*) in Shennongjia area, China. *Am. J. Primatol.* **2015**, *77*, 135–151, doi:10.1002/ajp.22317.

335. Nunn, C.L.; Altizer, S.; Sechrest, W.; Cunningham, A.A. Latitudinal gradients of parasite richness in primates. *Divers. Distrib.* **2005**, *11*, 249–256.

336. IPCC. *Climate Change 2013: The Physical Science Basis*. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535.

337. Wright, P.C.; Arrigo-Nelson, S.J.; Hogg, K.L.; Morelli, T.L.; Wyatt, J.; Harivel, A.L.; Ratelolahy, F. Habitat disturbance and seasonal fluctuations of lemur parasites in the rain forest of Ranomafana National Park, Madagascar. In *Primate Parasite Relationships: The Dynamics and Study of Host-Parasite Interactions*; Chapman, C.A., Huffman, M.A., Eds.; Cambridge University Press: Cambridge, UK, 2009; pp. 311–330.

338. Bezjian, M.; Gillespie, T.R.; Chapman, C.A.; Greiner, E.C. Coprologic evidence of gastrointestinal helminths of Forest baboons, *Papio anubis*, in Kibale National Park, Uganda. *J. Wildl. Dis.* **2008**, *44*, 878–887.

339. Goldberg, T.L.; Gillespie, T.R.; Rwego, I.B.; Estoff, E.E.; Chapman, C. Forest fragmentation as cause of bacterial transmission among primates, humans, and livestock, Uganda. *Emerg. Infect. Dis.* **2008**, *14*, 1375–1382.

340. Gao, D.; van den Driessche, P.; Cosner, C. Habitat fragmentation promotes malaria persistence. *J. Math. Biol.* **2019**, *79*, 2285–2280, doi:10.1007/s00285-019-01428-2.

341. Garamszegi, L.Z. Patterns of co-speciation and host switching in primate malaria parasites. *Malar. J.* **2009**, *8*, 110, doi:10.1186/1475-2875-8-110.

342. Akpan, G.E.; Adepoju, K.A.; Oladosu, O.R. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. *PloS ONE* **2019**, *14*, e0218523, doi:10.1371/journal.pone.0218523.

343. Githeko, A.K.; Lindsay, S.W.; Confalonieri, U.E.; Patz, J.A. Climate change and vector-borne diseases: A regional analysis. *Bull. World Health Organ.* **2000**, *78*, 1136–1143.

344. Mills, J.N.; Gage, K.L.; Khan, A.S. Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan. *Environ. Health Perspect.* **2010**, *118*, 1507–1514.

345. Leal Filho, W.; Bionce, J.; Spielmann, H.; Azeteiro, U.M.; Alves, F.; Lopes de Carvalho, M.; Nagy, G.J. Climate change and health: An analysis of causal relations on the spread of vector-borne diseases in Brazil. *J. Clean. Prod.* **2018**, *177*, 589–596, doi:10.1016/j.jclepro.2017.12.144.

346. Rodriguez, I.A.; Rasozananabary, E.; Godfrey, L.R. Seasonal variation in the abundance and distribution of ticks that parasitize *Microcebus griseorufus* at the Bezâ Mahafaly Special Reserve, Madagascar. *Int. J. Parasitol. Parasites Wildl.* **2015**, *4*, 408–413, doi:10.1016/j.ijppaw.2015.10.007.

347. Vecchio, A.; Wells, K.; Bell, J.A.; Tkach, V.V.; Lutz, H.L.; Weckstein, J.D.; Clegg, S.M.; Clark, N.J. Climate variation influences host specificity in avian malaria parasites. *Ecol. Lett.* **2019**, *22*, 547–557, doi:10.1111/ele.13215.

348. Waithomb, P.; Jain, R.; Tegar, S. Pathogen adaptation to temperature with density dependent host mortality and climate change. *Model. Earth Syst. Environ.* **2015**, *5*, 709–724, doi:10.1007/s40808-018-0561-7.

349. Visser, M.E.; Both, C. Shifts in phenology due to global climate change: The need for a yardstick. *Proc. Biol. Sci.* **2005**, *272*, 2561–2569, doi:10.1098/rspb.2005.3536.

350. Fan, P.-F.; Jiang, X.-L. Effects of food and topography on ranging behavior of black crested gibbon (*Nomascus concolor jingdongensis*) in Wuliang Mountain, Yunnan, China. *Am. J. Primatol.* **2008**, *70*, 871–878.

351. Garber, P. Seasonal patterns of diet and ranging in two species of tamarin monkeys: Stability versus variability. *Int. J. Primatol.* **1993**, *14*, 145–166.

352. Hill, R.A.; Dunbar, R.I.M. Climatic determinants of diet and foraging behaviour in baboons *Evol. Ecol.* **2002**, *16*, 579–593.

353. Yamagwai, J. Socioecological factors influencing population structure of gorillas and chimpanzees. *Primates* **1999**, *40*, 87–104.

354. Hoberg, E.P.; Brooks, D.R. Evolution in action: Climate change, biodiversity dynamics and emerging infectious disease. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **2015**, *370*, 20130553, doi:10.1098/rstb.2013.0553.
325. Sibley, L.D.; Khan, A.; Ajikova, J.W.; Rosenthal, B.M. Genetic diversity of Toxoplasma gondii in animals and humans. Philos. Trans. R. Soc. B 2009, 364, 2749–2761, doi:10.1098/rstb.2009.0087.

326. Davidson, G.; Chua, T.F.; Cook, A.; Spedewinde, P.; Weinstein, P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. EcoHealth 2019, 10.1007/s10393-019-01395-6, doi:10.1007/s10393-019-01395-6.

327. Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X. Emerging arboviruses: Why today? One Health 2017, 4, 1–13, doi:10.1016/j.ohneth.2017.06.001.

328. Failloux, A.-B. Human activities and climate change in the emergence of vector-borne diseases. C. R. Biol. 2019, 342, 269–270, doi:10.1016/j.crvi.2019.09.023.

329. Lafferty, K.D.; Holt, R.D. How should environmental stress affect the population dynamics of disease? Ecol. Lett. 2003, doi:10.1046/j.1461-0248.2003.00480.x.

330. Coop, R.L.; Kyriazakis, I. Nutrition–parasite interaction. Vet. Parasitol. 1999, 84, 187–204, doi:10.1016/S0304-4017(99)00070-9.

331. OIE. Chapter 3.9.11. – Zoonoses Transmissible from Non-Human Primates; OIE: Paris, France, 2019.

332. OIE. OIE-Listed Diseases, Infections and Infestations in Force in 2020. Available online: https://www.oie.int/en/animal-health-in-the-world/oie-listed-diseases-2020/ (accessed on 25 February 2021)

333. OIE. Ebola Virus Disease. Available online: https://www.oie.int/en/animal-health-in-the-world/animal-diseases/Ebola-virus-disease/ (accessed on 25 February 2021)

334. OIE. Guidelines for Wildlife Disease Surveillance: An Overview; OIE: Paris, France, 2015; p. 8.

335. OIE. Training Manual on Wildlife Diseases Surveillance: Workshop for OIE National Focal Points for Wildlife; OIE: Paris, France, 2010.

336. IUCN. Workshop to Develop a Wildlife Health Plan for the Galápagos Islands; Wildlife Conservation Society: New York, NY, USA, 2015.

337. Jakob-Hoff, R.M.; MacDiarmid, S.C.; Lees, C.; Miller, P.S.; Travis, D.; Kock, R. Manual of Procedures for Wildlife Disease Risk Analysis; IUCN: Paris, France, 2014; p. 143.

338. Ahmed, S.; Sarowar Alam, A.B.M.; Azmiri, K.; ZenifarRahman, M.Z. A Field Manual for the Study of Wild Birds: Bird Census, Bird Ringing, Sample Collection and Analysis; IUCN: Dhaka, Bangladesh, 2015; p. 60.

339. IUCN. Guidelines for Wildlife Disease Risk Analysis; OIE: Paris, France, 2014; p. 24.

340. MinistériodaSaúde. Manual de vigilância de epizootias em primatas não-humanos; Ministério da Saúde: Brasília, Brazil, 2005; p. 58.

341. MinistériodaSaúde. Guia de vigilância de epizoitoses em primatas não humanos e entomologia aplicada à vigilância da febre amarela; Ministério da Saúde: Brasília, Brazil, 2014.

342. da Rocha, T.C.; Batista, P.M.; Andreotti, R.; Bona, A.C.D.; da Silva, M.A.N.; Lange, R.; Svoboda, W.K.; Gomes, E.C. Evaluation of arboviruses of public health interest in free-living non-human primates (Alouatta spp., Callithrix spp., Sapajus spp.) in Brazil. Rev. Soc. Bras. Med. Trop. 2015, 48, 143–148, doi:10.1590/0037-8682-0024-2015.

343. Brasil, P.; Zalis, M.G.; de Pina-Costa, A.; Siqueira, A.M.; Junior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; de Alveangra, D.A.M.; da Silva Santelli, A.C.F.; et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: A molecular epidemiological investigation. Lancet Glob. Health 2017, 5, e1038–e1046, doi:10.1016/s2214-109x(17)30333-9.

344. Almeida, M.A.B.; Cardoso, J.d.C.; dos Santos, E.; da Fonseca, D.F.; Cruz, L.L.; Faraco, F.J.C.; Bercini, M.A.; Vettorello, K.C.; Porto, M.A.; Mohrdeick, R.; et al. Surveillance for Yellow Fever Virus in Non-Human Primates in Southern Brazil, 2001–2011: A Tool for Prioritizing Human Populations for Vaccination. PLoS Negl. Trop. Dis. 2014, 8, e2741, doi:10.1371/journal.pntd.0002741.

345. Althouse, B.M.; Guerbois, M.; Cummings, D.A.T.; Diop, O.M.; Faye, O.; Faye, A.; Diallo, D.; Sadio, B.D.; Sow, A.; Faye, O.; et al. Role of monkeys in the sylvatic cycle of chikungunya virus in Senegal. Nat. Commun. 2019, 8, 1046, doi:10.1038/s41467-018-03332-7.

346. Liu, Q.; Wang, Z.-D.; Huang, S.-Y.; Zhu, X.-Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 2015, 8, 292, doi:10.1186/s13071-015-0902-6.

347. Liu, W.; Sherrill-Mix, S.; Learn, G.H.; Scully, E.J.; Li, Y.; Avitto, A.N.; Loy, D.E.; Lauder, A.P.; Sundararaman, S.A.; Plenderleith, L.J.; et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 2017, 8, 1635, doi:10.1038/s41467-017-01798-5.

348. Milich, K.M.; Koestler, B.J.; Simmons, J.H.; Nehete, P.N.; Di Fiore, A.; Williams, L.E.; Dudley, J.P.; Vanchierie, J.; Payne, S.M. Methods for detecting Zika virus in feces: A case study in captive squirrel monkeys (Saimiri boliviensis boliviensis). PLoS ONE 2018, 13, e0209391, doi:10.1371/journal.pone.0209391.

349. Abbkalo, H.M.; Liu, W.; Yokota, S.; Ferreira, P.E.; Nakazawa, S.; Maeno, Y.; Quang, N.T.; Kobayashi, N.; Kaneko, O.; Huffman, M.; et al. DNA from pre-erythrocytic stage malaria parasites is detectable by PCR in the feces and blood of hosts. Int. J. Parasitol. 2014, 44, 467–473, doi:10.1016/j.ijpara.2014.03.002.

350. Lloyd, Y.M.; Esemu, L.F.; Antallan, J.; Thomas, B.; Tassi Yunga, S.; Obase, B.; Christine, N.; Leke, R.G.F.; Cullerton, R.; Mfuh, K.O.; et al. PCR-based detection of Plasmodium falciparum in saliva using mitochondrial cox3 and varATS primers. Trop. Med. Health. 2018, 46, 22–22, doi:10.1186/s41182-018-0100-2.

351. Mfuh, K.O.; Tassi Yunga, S.; Esemu, L.F.; Bekindaka, O.N.; Yonga, J.; Djontu, J.C.; Mbakop, C.D.; Taylor, D.W.; Nerurkar, V.R.; Leke, R.G.F. Detection of Plasmodium falciparum DNA in saliva samples stored at room temperature: Potential for a non-invasive saliva-based diagnostic test for malaria. Malar. J. 2017, 16, 434, doi:10.1186/s12936-017-2084-5.

352. Wedrowicz, F.; Saxton, T.; Mosse, J.; Wright, W.; Hogan, F.E. A non-invasive tool for assessing pathogen prevalence in koala (Phascolarctos cinereus) populations: Detection of Chlamydia pecorum and koala retrovirus (KoRV) DNA in genetic material sourced from scats. Conserv. Genet. Resour. 2016, 8, 511–521, doi:10.1007/s12686-016-0574-3.
379. Pedersen, K.; Baroch, J.; Nolte, D.; Gidlewski, T.; Deliberto, T. The Role of the National Wildlife Disease Program. in Wildlife Disease Surveillance and Emergency Response; USDA National Wildlife Research Center—Staff Publications: Fort Collins, CO, USA, 2012.
380. Guberti, V.; Stancampiano, L.; Ferrari, N. Surveillance, monitoring and surveys of wildlife diseases: A public health and conservation approach. *Hystrix It. J. Mamm.* 2014, 25, 3–8, doi:10.4404/hystrix-25.1-10114.
381. Pedersen, A.B.; Jones, K.E.; Nunn, C.L.; Altizer, S. Infectious diseases and extinction risk in wild animals. *Conserv. Biol.* 2007, 21, 1269–1279.
382. Holmes, J.P.; Duff, J.P.; Barlow, A.; Everest, D.; Man, C.; Smith, F.; Twomey, F. 20 years of national wildlife disease surveillance. *Vet. Rec.* 2019, 184, 520, doi:10.1136/vr.l1903.
383. Woods, R.; Reiss, A.; Cox-Witton, K.; Grillo, T.; Peters, A. The Importance of Wildlife Disease Monitoring as Part of Global Surveillance for Zoonotic Diseases: The Role of Australia. *Trop. Med. Infect. Dis.* 2019, 4, 29, doi:10.3390/tropicalmed4010029.
384. Mörner, T.; Obendorf, D.; Artois, M.; Woodford, M. Surveillance and monitoring of wildlife diseases. *Rev. Sci Tech.* 2002, 21, 67–76.
385. Vrbova, L.; Stephen, C.; Kasman, N.; Boehnke, R.; Doyle-Waters, M.; Chablitt-Clark, A.; Gibson, B.; FitzGerald, M.; Patrick, D.M. Systematic review of surveillance systems for emerging zoonoses. *Trans. Emerg. Dis.* 2010, 57, 154–161, doi:10.1111/j.1865-1682.2010.01100.x.