A System for General In-Hand Object Re-Orientation

CoRL 2021 best paper
Authors

- Tao Chen
 - Ph.D. student at MIT
 - intersection of robot learning, manipulation, and navigation.

- Jie Xu
 - Ph.D. student at MIT
 - intersection of Robotics, Simulation, and Machine Learning

- Pulkit Agrawal
 - Assistant Professor at MIT
 - build machines that can automatically and continuously learn about their environment
Overview

A model-free framework that learns to reorient objects of all kinds
Contributions

- Hand facing upward and downward
- Zero-shot transfer on new objects
- Try vision-based observation
Method

- Teacher-student Learning
- Gravity Curriculum
- Stable initialization
Teacher Policy

- Full Observation
- MLP or RNN
- Dynamic randomization
Teacher Policy

Reward Function

\[r(s_t, a_t) = c_{\theta_1} \frac{1}{|\Delta \theta_t| + \epsilon_\theta} + c_{\theta_2} 1(|\Delta \theta_t| < \bar{\theta}) + c_3 \|a_t\|_2^2 \]
Student Policy

- Reduced Observation
 Which can be obtained when in real world
- Vision or Non-vision

Figure 2: Visual policy architecture. MK stands for Minkowski Engine. q_t is the joint positions and a_t is the action at time step t.
Gravity Curriculum

- Hand facing downward and in air
- Gradually decrease g
Stable Initialization

- Reorient in air
- A separate RNN to lift objects
Experiments

Dataset

Facing upward and downward (with and without table)

Vision-based student policy

Figure B.2: First row: examples of EGAD objects. Second row: examples of YCB objects.
Experiments

Facing upward

Results

Exp. ID	Dataset	State	Policy	1	2	3
B	EGAD	Full state	RNN	95.95 ± 0.8	84.27 ± 1.0	88.04 ± 0.6
		Reduced state	RNN→RNN	91.96 ± 1.5	78.30 ± 1.2	80.29 ± 0.9
G	YCB	Full state	RNN	80.40 ± 1.6	65.16 ± 1.0	72.34 ± 0.9
J		Reduced state	RNN→RNN	81.04 ± 0.5	64.93 ± 0.2	65.86 ± 0.7

Throw and Catch

Failure
Facing downward with table

Results

MLP policy for EGAD and YCB is 95.31% ± 0.9% and 81.59% ± 0.7%

External Force
Facing downward without table

Results

Exp. ID	Dataset	State	Policy	1	2	3
			Train without DR	Finetune with DR		
			Test without DR	Test with DR		
K	EGAD	Full state	MLP	84.29 ± 0.9	38.42 ± 1.5	71.44 ± 1.3
			RNN	82.27 ± 3.3	36.55 ± 1.4	67.44 ± 2.1
M	EGAD	Reduced state	MLP→RNN	77.05 ± 1.6	29.22 ± 2.6	59.23 ± 2.3
N	EGAD	Reduced state	RNN→RNN	74.10 ± 2.3	37.01 ± 1.5	62.64 ± 2.9
O	YCB	Full state	MLP	58.95 ± 2.0	26.04 ± 1.9	44.84 ± 1.3
P	YCB		RNN	52.81 ± 1.7	26.22 ± 1.0	40.44 ± 1.5
Q	YCB		RNN + g-curr	74.74 ± 1.2	25.56 ± 2.9	54.24 ± 1.4
R	YCB	Reduced state	MLP→RNN	46.76 ± 2.5	25.49 ± 1.4	34.14 ± 1.3
S	YCB	Reduced state	RNN→RNN	45.22 ± 2.1	24.45 ± 1.2	31.63 ± 1.6
T	YCB		RNN + g-curr→RNN	67.33 ± 1.9	19.77 ± 2.8	48.58 ± 2.3

Also Throw and Catch
Zero-shot Transfer

Results

	EGAD \rightarrow YCB	YCB \rightarrow EGAD
U.FS	68.82 ± 1.7	96.41 ± 1.2
U.RS	59.64 ± 1.8	96.38 ± 1.3
D.FS	62.73 ± 2.2	85.45 ± 2.9
D.RS	55.30 ± 1.3	77.91 ± 2.1

Shape-agnostic
Vision-based

Constraints

Results

Object	Success rate (%)
025_mug	89.67 ± 1.2
065-d_cups	68.32 ± 1.9
072-b_toy_airplane	84.52 ± 1.4
073-a_lego_duplo	58.16 ± 3.1
073-c_lego_duplo	50.21 ± 3.7
073-e_lego_duplo	66.57 ± 3.1
Comment

- Highly Dynamic
- Reduced State can be obtained?
- Shape-agnostic?