SIMPLE ROOTS OF DEFORMED PREPROJECTIVE ALGEBRAS

LIEVEN LE BRUYN

For Idun Reiten on her 60th birthday.

Abstract. In [1] W. Crawley-Boevey gave a description of the set \(\Sigma_\lambda \) consisting of the dimension vectors of simple representations of the deformed preprojective algebra \(\Pi_\lambda \). In this note we present alternative descriptions of \(\Sigma_\lambda \).

1. Reduction to \(\Pi_0 \)

Recall that a quiver \(\vec{Q} \) is a finite directed graph on a set of vertices \(Q_v = \{v_1, \ldots, v_k\} \), having a finite set of arrows \(Q_a = \{a_1, \ldots, a_l\} \) where we allow both multiple arrows between vertices and loops in vertices. The Euler form of \(\vec{Q} \) is the bilinear form on \(\mathbb{Z}^k \) determined by the integral \(k \times k \) matrix having as its \((i, j)\)-entry \(\chi_{ij} = \delta_{ij} - \# \{\text{arrows from } v_i \text{ to } v_j\} \). The double quiver \(\bar{Q} \) of the quiver \(\vec{Q} \) is the quiver obtained by adjoining to every arrow \(a \in Q_a \) an arrow \(a^* \) in the opposite direction. The path algebra \(\mathbb{C}\bar{Q} \) has as \(\mathbb{C} \)-basis the set of all oriented paths \(p = a_{i_1} \cdots a_{i_u} \) of length \(u \geq 1 \) together with the vertex-idempotents \(e_i \) considered as paths of length zero. Multiplication in \(\mathbb{C}\bar{Q} \) is induced by concatenation (on the left) of paths. For rational numbers \(\lambda_i \), the deformed preprojective algebra is the quotient algebra

\[
\Pi_\lambda = \Pi_\lambda(\bar{Q}) = \frac{\mathbb{C}\bar{Q}}{(\sum_{a \in Q_a} [a, a^*] - \sum_{v_i \in Q_v} \lambda_i e_i)}
\]

The (difficult) problem of describing the set \(\Sigma_\lambda \) of all dimension vectors of simple representations of \(\Pi_\lambda \) was solved by W. Crawley-Boevey in [1]. He proved that for \(\alpha \) a positive root of \(\bar{Q} \), \(\alpha \in \Sigma_\lambda \) if and only if

\[
p(\alpha) > p(\beta_1) + \ldots + p(\beta_r)
\]

for every decomposition \(\alpha = \beta_1 + \ldots + \beta_r \) with \(r \geq 2 \) all \(\beta_i \) positive roots of \(\bar{Q} \) such that \(\lambda.\beta_i = 0 \) and where \(p(\beta) = 1 - \chi(\beta, \beta) \).

For a given dimension vector \(\alpha = (a_1, \ldots, a_k) \in \mathbb{N}^k \) one defines the affine scheme \(\text{rep}_\alpha \Pi_\lambda \) of \(\alpha \)-dimensional representations of \(\Pi_\lambda \). There is a natural action of the basechange group \(GL(\alpha) = \prod_{i=1}^k GL_{a_i} \) on this scheme and the corresponding quotient morphism

\[
\text{rep}_\alpha \Pi_\lambda \xrightarrow{\sim} \text{iss}_\alpha \Pi_\lambda
\]

sends a representation \(V \) to the isomorphism class of the direct sum of its Jordan-Hölder factors. Let \(\xi \) be a geometric point of \(\text{iss}_\alpha \Pi_\lambda \), then \(\xi \) determines the isomorphism class of a semisimple \(\alpha \)-dimensional representation say with decomposition

\[
M_\xi = S_{1 e_1}^{\xi e_1} \oplus \ldots \oplus S_{l e_l}^{\xi e_l}
\]
with the S_i distinct simple representations of Π_λ with dimension vector β_i, which occurs in M_ξ with multiplicity e_i. We say that ξ is of representation type $\tau = (\epsilon_1, \beta_1; \ldots; \epsilon_l, \beta_l)$. Construct a graph G_B depending on the set of simple dimension vectors $B = \{\beta_1, \ldots, \beta_l\}$ having l vertices $\{w_1, \ldots, x_l\}$ having $2\rho(\beta_i) = 2(1 - \chi(\beta_i, \beta))$ loops in vertex w_i and $-\chi(\beta_i, \beta_j) - \chi(\beta_j, \beta_i)$ edges between w_i and w_j.

Let Q_B be the (double) quiver obtained from G_B by replacing each solid edge by a pair of directed arrows with opposite ordering. In [3 §4] W. Crawley-Boevey proved that there is an étale isomorphism between a neighborhood of ξ in $\text{iss}_\alpha \Pi_\lambda$ and a neighborhood of the trivial representation $\overline{0}$ in iss_α, $\Pi_0(\overline{Q})$ where $\alpha_\tau = (\epsilon_1, \ldots, e_l)$ determined by the multiplicities of the simple factors of M_ξ.

The arguments in [3 §4] actually prove that there is a $GL(\alpha)$-equivariant étale isomorphism between a neighborhood of the orbit of ξ in $\text{rep}_\alpha \Pi_\lambda(\overline{Q})$ and a neighborhood of the orbit of $(1, 0)$ in the principal fiber bundle

$$GL(\alpha) \times^{GL(\alpha_\tau)} \text{rep}_\alpha \Pi_0(\overline{Q})$$

Using the description of Σ_λ it was proved in [1] that $\text{iss}_\alpha \Pi_\lambda$ is irreducible whenever $\alpha \in \Sigma$.

In this note we will give two alternative descriptions of the set Σ_λ stressing the fundamental role of the extended Dynkin quivers in the study of deformed preprojective algebras. Both descriptions rely on the above irreducibility result so they do not give a short proof of Crawley-Boevey’s result unless an independent proof of irreducibility of $\text{iss}_\alpha \Pi_\lambda$ for all $\alpha \in \Sigma_\lambda$ is found. In the statement of the results we have therefore separated the parts that depend on the irreducibility statement.

Proposition 1.1. Let ξ be a geometric point of $\text{iss}_\alpha \Pi_\lambda$ of representation type $\tau = (\epsilon_1, \beta_1; \ldots; \epsilon_l, \beta_l)$. The following are equivalent

1. Any neighborhood of ξ in $\text{iss}_\alpha \Pi_\lambda$ contains a point of representation type $(1, \alpha)$ (whence, in particular, $\alpha \in \Sigma_\lambda$).
2. $\alpha_\tau = (\epsilon_1, \ldots, e_l)$ is the dimension vector of a simple representation of $\Pi_0(\overline{Q})$.
3. Any neighborhood of $\overline{0}$ in iss_α, $\Pi_0(\overline{Q})$ contains a point of representation type $(1, \alpha_\tau)$ (whence, in particular, α_τ is the dimension vector of a simple representation of $\Pi_0(\overline{Q})$).

If moreover $\text{iss}_\alpha \Pi_\lambda$ is irreducible these statements are equivalent to

- $\bullet \ \alpha \in \Sigma_\lambda$.

Proof. By comparing the stabilizer subgroups of the closed orbits determined by corresponding points under the étale isomorphism it follows that (1) \Leftrightarrow (3) and clearly (3) \Rightarrow (2). Because the equations of $\Pi_0(\overline{Q})$ are homogeneous there is a \mathbb{C}^*-action on rep_α, $\Pi_0(\overline{Q})$ (multiplying all matrices by $t \in \mathbb{C}^*$). The limit point $t \to 0$ of any representation is the trivial representation. Starting from a simple representation V, any neighborhood of $\overline{0}$ contains a point determined by tV for suitable t proving (2) \Rightarrow (3). To prove that $\bullet \Rightarrow$ (1) observe that the set of all points of representation type $(1, \alpha)$ form an open subset of $\text{iss}_\alpha \Pi_\lambda$ (follows from the étale local description), whence if $\text{iss}_\alpha \Pi_\lambda$ is irreducible this set is dense. \square

This result allows us to describe Σ_λ inductively if we can determine the sets of simple dimension vectors for preprojective algebras. The induction starts off by
taking the positive roots α for \bar{Q} minimal w.r.t. $\lambda.\alpha = 0$. It follows from the easier part of Π that these $\alpha \in \Sigma_\lambda$.

2. Genetic description of Σ_0

In this section we start with the quiver \bar{Q} and will give an inductive procedure to determine Σ_0, the set of simple dimension vectors of $\Pi_0 = \Pi(\bar{Q})$.

Assume we have constructed a set $B = \{\beta_1, \ldots, \beta_l\}$ with $\beta_i \in \Sigma_0$ (we can take $\beta = \beta_i = \beta_j$ for $i \neq j$ provided $p(\beta) > 0$). We want to determine the minimal linear combinations

$$\alpha = e_1\beta_1 + \ldots + e_l\beta_l$$

such that $\alpha \in \Sigma_0$. We will do this in terms of the graph G_B constructed in the previous section and the dimension vector $\alpha_\tau = (e_1, \ldots, e_l)$.

The tame settings are the couples (D, δ) where D is an extended Dynkin diagram and δ the corresponding imaginary root. The list of tame settings is given in figure 1.

We say that a tame setting (D, δ) is contained in (\bar{Q}, α) if D is a subgraph of G_B and if $\delta \leq \alpha_\tau$.

Recall from $[4]$ that all polynomial invariants of quivers are generated by taking traces along oriented cycles in the quiver. As a consequence, the coordinate algebra $\mathbb{C}[\text{iss}_\alpha, \Pi_0] = \mathbb{C}[\text{rep}_\alpha, \Pi_0]^{GL(\alpha)}$ is generated by traces in the quiver \bar{Q}. Note that non-trivial invariants exist whenever $\alpha \in \Sigma_0$ and α is not a real root of \bar{Q}. The crucial ingredient in our descriptions is the following technical result.

Proposition 2.1. For $\alpha \in \Sigma_0$, if α is not a real root of \bar{Q} and \bar{Q} has only loops at vertices where α is one, then there is a non-loop tame setting (\tilde{D}, δ) contained in (\bar{Q}, α).

Proof. Assume \bar{Q} is a counterexample with a minimal number of vertices. There are at most two directed arrows between two vertices ($(\tilde{A}_1, (1, 1))$ is not contained)
so we can define the graph G replacing a pair of directed arrows by a solid edge. Then, G is a tree \((\bar{A}_m,(1,\ldots,1))\) is not contained).

We claim that the component of α for every internal (not a leaf) vertex is at least two. Assume v in internal and has dimension one, then any non-zero trace $tr(c)$ along a circuit in Γ passing through v (which must be the case by minimality of the counterexample) can be decomposed as

$$0 \neq tr(c) = tr(t_1)tr(t_2)\ldots tr(t_m)$$

where t_i is part of the circuit along a subtree rooted at v. But then $tr(t_i) \neq 0$ when evaluated at representations of the preprojective algebra of the corresponding subtree, contradicting minimality of the counterexample.

Hence, G is a binary tree \(((\bar{D}_4,(2,1,1,1))\) is not contained) and even a star with at most three arms \(((\bar{D}_m,(2,\ldots,2,1,1,1,1))\) is not contained). If G does not contain \bar{E}_i for $6 \leq i \leq 8$ as subgraph, then Q is a Dynkin quiver and one knows that in this case there are no nontrivial invariants, a contradiction.

If δ_i is the vertex-simple concentrated in vertex v, we claim that

$$\chi(\alpha,\delta_i) + \chi(\delta_i,\alpha) \leq 0$$

for every vertex v. Indeed, it follows from [2] that for any non-isomorphic simple Π_0-representations V and W of dimension vectors β and γ we have

$$dim \ Ext^1_{\Pi_0}(V,W) = -\chi(\beta,\gamma) - \chi(\gamma,\beta)$$

Therefore, twice the dimension of α at v is smaller or equal to the sum of the dimensions of α in the two (maximum three) neighboring vertices. Fill up the arm of G corresponding to the longest arm of \bar{E}_i with dimensions starting with 1 at the leaf and proceeding by the rule that twice the dimension is equal to the sum of the neighboring dimensions, then we obtain a dimension vector β such that

$$\delta_i \leq \beta \leq \alpha$$

where δ_i is the imaginary root of \bar{E}_i, a contradiction. \square

Theorem 2.2. With notations as above, we have

1. $\alpha = e_1\beta_1 + \ldots + e_l\beta_l \in \Sigma_0$ whenever $\delta = (e_1,\ldots,e_l)$ is the imaginary root of an extended Dynkin subgraph D of G_B.

2. If moreover $\text{iss}_\alpha \Pi_0$ is irreducible for all $\alpha \in \Sigma_0$, the set Σ_0 is obtained by iterating the procedure in (1) starting from the set of all real roots of \bar{Q}.

Proof. (1) : There is a point $\xi \in \text{iss}_\alpha \Pi_0$ determined by a semi-simple representation M_ξ of representation type $\tau = (e_1,\beta_1;\ldots;e_l,\beta_l)$. A neighborhood of ξ is étale isomorphic to a neighborhood of $\bar{0}$ in $\text{iss}_\delta \Pi_0(\bar{Q}_B)$. It is well known that $\text{iss}_\delta \Pi_0(D)$ contains points of representation type $(1,\delta)$ whence δ is a dimension vector of a simple representation of $\Pi_0(\bar{Q}_B)$ (take a simple of $\Pi_0(D)$ and add zero matrices for the remaining arrows). By proposition [1] it follows that $\alpha \in \Sigma_0$.

(2) : Let $\alpha \in \Sigma_0$ and take a decomposition (representation type)

$$\alpha = d_1\beta_1 + \ldots + d_l\beta_l$$

with all $\beta_i \in \Sigma_0$, $\beta_i < \alpha$ and $d = \sum d_i$ minimal. Note that we can take all $d_i = 1$ whenever $p(\beta_i) > 0$ (as then there are infinitely many non-isomorphic simples of dimension vector β_i). As a consequence G_B only has loops at vertices where α_τ is equal to one and α_τ is a simple root for $\Pi_0(G_B)$ (here we used irreducibility of
iss_α \Pi_0 \text{ in order to apply proposition 1.1. By proposition 2.1 there is a non-loop tame subsetting } (D, \delta) \text{ contained in } (G_B, \alpha_\tau) \text{ and if } \delta = (e_1, \ldots, e_l) \text{ then we have a decomposition }

\alpha = (d_1 - e_1)\beta_1 + \ldots + (d_l - e_l)\beta_l + 1. (\delta, \beta)

which has strictly smaller total number of multiplicities unless } \alpha = \delta, \beta. \text{ Induction on the total dimension finishes the proof.}

3. Another description of } \Sigma_\lambda

In this section we reformulate the previous arguments in a more manageable statement.

Take a non-trivial representation type } \tau = (d_1, \beta_1; \ldots; d_l, \beta_l) \text{ of } \alpha \text{ with all } \beta_i \in \Sigma_\lambda. \text{ Let } \tau' \text{ be the representation type obtained from } \tau \text{ by replacing each } (d_i, \beta_i) \text{ by } (1, \beta_i; \ldots; 1, \beta_i) \text{ whenever } p(\beta_i) > 1 \text{ (see the proof of theorem 2.2) and let } B' \text{ be the corresponding set of simple root (some occurring more than once).}

Theorem 3.1. The following are equivalent

1. } \alpha \in \Sigma_\lambda \text{ and } \text{iss}_\alpha \Pi_\lambda \text{ is irreducible.}

2. For all non-trivial representation types } \tau \text{ of } \alpha \text{ there is a non-loop tame setting contained in } (G_B', \alpha_{\tau'}).

Proof. (2) ⇒ (1) : We claim that } (1, \alpha) \text{ is the unique maximal representation type in the ordering of inclusion in Zariski-closures. Assume not and let } \tau \text{ be another maximal type, then } \tau = \tau' \text{ and by proposition 2.1 there is a tame setting contained in } (G_B, \alpha_{\tau'}) \text{ but then there are non-loop polynomial invariants, whence } \tau \text{ is not maximal.}

(1) ⇒ (2) : Follows from proposition 1.1 and proposition 2.1

Hence, the dimension vectors obtained from the genetic construction of theorem 2.2 are exactly those } \alpha \in \Sigma_0 \text{ such that } \text{iss}_\alpha \Pi_0 \text{ is irreducible.

Acknowledgement : I thank W. Crawley-Boevey for drawing my attention to the circular argument used in the first version.

References

[1] W. Crawley-Boevey, *Geometry of the moment map for representations of quivers* Compositio Math. 126 (2001) 257-293

[2] W. Crawley-Boevey, *On the exceptional fibers of Kleinian singularities* Amer. J. Math., 122 (2000), 1027-1037

[3] W. Crawley-Boevey, *Normality of Marsden-Weinstein reductions for representations of quivers* math.AG/0105247 (2001)

[4] L. Le Bruyn and C. Procesi, *Semisimple representations of quivers* Trans. AMS 317 (1990) 585-598

Universiteit Antwerpen (UIA), B-2610 Antwerp (Belgium)

E-mail address: lebruyn@uia.ua.ac.be

URL: http://win-www.uia.ac.be/u/lebruyn/