Analysis of Oversize of Engine Compressor Disk

Lili Zhang¹,², *, Yuan Zhao¹,², Lin Tao¹,², Yefeng Liu¹,², Yufang Yang¹,²
¹Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for CNC Machine, Fushun, China
²Shenyang Institute of Technology, Fushun China

*Corresponding author e-mail: 94213031@qq.com

Abstract. In order to solve the problem of the extreme axial position of the engine compressor during the process of machining, three kinds of calculation States were selected according to the extreme difference, and the influence of the excess on the stress and deformation of the compressor was determined.

1. Introduction
Modern aero engine compressor discs typically use a welded disc drum hybrid rotor. The drums of different grades are connected by drums, which reduces the number of parts of the joint structure, and improves the structural safety and reduces the weight. However, for the sake of weight reduction, the drum is usually designed to be thinner. Deformation is easy to occur during processing, welding, and post-weld heat treatment, causing the axial position of the disk core of the compressor to deviate from the design position.

For different oversize cases, the strength of the design state and different oversize states were calculated, and the influence of oversize on the strength of the compressor disk was analyzed.

2. Calculation method and software
This calculation uses the internationally accepted finite element analysis software ANSYS, and uses the two-dimensional axisymmetric algorithm to calculate according to the structural characteristics and calculation purposes of the compressor disk.

3. Raw data

3.1. Material data
The material data of the engine compressor disc is shown in Table 1.

Table 1. Material Data Sheet

Density (kg/m³)	Modulus of elasticity (Gpa)	Poisson's ratio	Yield strength (Mpa)	Tensile strength (Mpa)
8240	204	0.3	1030	1280
3.2. Load data
Speed \(n = 14675 \text{r/min} \). The centrifugal force of the blade is equivalent to the radial force \(F = 942679 \text{N} \) at the bottom of the wheel groove.

4. Calculation status
According to the condition of the parts and the document, the following three calculation states are selected for comparison calculation:
- State 1: Design Status;
- State 2: the axial position of the hub is 0.4 mm ahead, that is, the tolerance is 0.4 mm;
- State 3: The axial position of the hub is 0.8 mm ahead, that is, the deviation is 0.8 mm.

5. Calculation model and boundary conditions
The respective finite element models are established for different computing states. The two-dimensional axisymmetric unit (PLANE182) is used to mesh the compressor disk model. Apply axial restraint at the compressor plate attachment bolts, as shown in Figure 1.

![Figure 1. Finite element model of compressor disk](image)

6. Analysis of calculation results
See Table 2 and Figure 2 for comparison of static calculation results for each calculated state. It can be seen from the calculation results that the circumferential stress in the compressive stress of the compressor disk is the largest. And as the amount of oversize increases, the circumferential stress tends to increase. As the amount of oversize increases, the radial and axial stresses of the compressor disk increase. Among them, the radial stress increases linearly, and the axial stress decreases in deceleration, but the stress level is not high.

Calculation status	Design status	Oversize 0.4mm	Oversize 0.8mm		
		Stress	Increment	Stress	Increment
Circumferential stress	774	784	10	812	38
Radial stress	532	555	23	579	47
Axial stress	186	222	36	232	46
See Table 3 for a comparison of axial displacement values of the hub. The calculation results show that under the action of centrifugal force, the axial displacement of the disk core of the design state is 0.27 mm forward. As the amount of oversize increases, the axial displacement value of the hub gradually decreases. When the amount of oversize is 0.8 mm, the axial displacement of the hub has changed to the opposite direction (-0.186 mm).

Table 3. Table of axial displacement values of different calculation states (mm)

Calculation status	Design status	Oversize 0.4mm	Oversize 0.8mm
Axial displacement of the hub	0.27	-0.045	-0.186

The stress and displacement clouds for different calculation states are shown in Figure 3-6. It can be seen from the figure that the circumferential stress level of the compressor disk is greatly affected by the circumferential position error of the disk core. And the core is a large stress zone. The axial displacement distribution is greatly affected by the tolerance. When the deviation is large (>0.8mm), the axial displacement direction of the core of the engine is opposite to the direction of the overrun, and there is partial compensation.

![Figure 3. Cloud stress distribution of each calculated state](image)

![Figure 4. Radial stress distribution cloud map of each calculation state](image)
7. Conclusion
1. As the axial position of the disk core of the compressor is out of tolerance, the circumferential stress tends to increase.
2. The axial displacement distribution is greatly affected by the tolerance. When the deviation is large (>0.8mm), the axial displacement direction of the core of the engine is opposite to the direction of the overshoot, and there is partial compensation.

Acknowledgments
This work was financially supported by The national Natural Science Foundation Youth Fund (61603262) and The research Fund of i5 Institute of Shenyang Institute of Technology (i5201702) fund.

References
[1] Optimization design of integral leaf disc structure based on ANSYS[J]. Lu Shan, Lu Fengjie. Journal of Aerospace Power. 2012(06)
[2] Analysis and calculation of rotor mode and critical speed of gas turbine compressor using ANSYS and Campbell diagram[J]. Gong Jianzheng, Zhong Fangming, He Xing, Tang Huatao. Modern Manufacturing Engineering. 2012(04)
[3] Optimization design technology of multi-spoke fan disk structure based on ANSYS[J]. Li Lunwei, Lu Shan. Journal of Aerodynamics. 2011(10)
[4] ANSYS-based turntable static and modal analysis optimization design [J]. Chen Ming, Zhou Sizhu, Gao Yunquan, Yan Xuan, Zhang Junhua. Journal of Hubei University of Technology. 2009(02)
[5] Structural optimization design of turbine disk [J]. Zhong Jun, Hao Yanhua. Equipment Manufacturing Technology. 2008(11)
[6] Study on the influence law and mechanism of different loads on the combined compressor rotor strength [D]. Ding Wei. Tsinghua University 2016
[7] Development and Manufacturing Technology of Gas Turbine Engines [J]. Jiang Hejun. Aviation Manufacturing Technology. 2007(05)