Abstract

Pathogens have evolved smart strategies to invade hosts and hijack their immune responses. One such strategy is the targeting of the host RhoGTPases by toxins or virulence factors to hijack the cytoskeleton dynamic and immune processes. In response to this microbial attack, the host has evolved an elegant strategy to monitor the function of virulence factors and toxins by sensing the abnormal activity of RhoGTPases. This innate immune strategy of sensing bacterial effector targeting RhoGTPase appears to be a bona fide example of effector-triggered immunity (ETI). Here, we review recently discovered mechanisms by which the host can sense the activity of these toxins through NOD and NOD-like receptors (NLRs).

Introduction

The detection of microbes by the innate immune system is central to host immunity. Recent studies have highlighted the role of the innate immune monitoring of RhoGTPases activity to sense virulence factors targeting RhoGTPases. This is in contrast to the detection of microbial-associated molecular patterns (MAMPs) via pattern recognition receptors (PRRs) which monitors the structural motifs of microbes [1]. The sensing of virulence factors targeting RhoGTPases is based on the detection of the abnormal activity of the host RhoGTPases. This feature is related to effector-triggered immunity (ETI) that initially emerged from phytopathology studies [2,3]. Both systems play critical roles: While the sensing of microbial structural motifs expressed by most microbes would enable to sense all kinds of microbes, the detection of microbial virulence factors expressed by pathogens would enable an increased immune response specifically against pathogens.

ETI was proposed to monitor the function of microbial virulence factors (i.e., effectors and toxins) by sensing their activity [3–7]. Over the last 10 years, a major contribution to the identification of ETI in animals came from the study of virulence factors targeting RhoGTPases and their interplay with innate immune sensors such as NOD and NOD-like receptor (NLR) family members.

More than 30 virulence factors target RhoGTPases [8,9]. The mammalian RhoGTPase family consists of about 20 members, and the best characterized subfamilies are Rho, Rac, and Cdc42 [10]. Rho proteins are molecular switches that control a wide range of cellular processes including inflammation, cell death as well as tissue homeostasis [11]. Mutations of RhoGTPases or dysregulation of their activities have been linked to immune deficiencies, neurological...
disorders, or cancers [12–14]. The targeting of RhoGTPases by virulence factors was firstly shown to confer to pathogens a selective advantage by counteracting the innate immune responses. This encompasses the inhibition of phagocytosis and migration as well as modulation of innate immune pathways [15]. Pathogens have evolved multiple strategies to manipulate the RhoGTPase cycle. These can be divided in 2 groups: the RhoGTPase-activating toxins and the toxins inactivating RhoGTPases. Here, we review the molecular mechanism by which the host immune system senses the virulence factors that target RhoGTPases and discuss the implications of these sensing mechanisms.

RhoGTPase-targeting toxins and virulence factors: Hijacking cellular signaling

RhoGTPases are one of the preferential targets of virulence factors, probably because of their critical role in innate immune responses. RhoGTPases have been shown to be critical regulators of the innate immune response via their contribution to phagocytosis and migration as well as the production of reactive oxygen species via NADPH oxidase [16]. RhoGTPases cycle between an active GTP-bound and an inactive GDP-bound stage which is regulated by the GTPase-activating protein (GAP), guanine nucleotide exchange factor (GEF), and guanosine nucleotide dissociation inhibitor (GDI) [17].

Bacteria use 2 types of strategies to manipulate the host RhoGTPases: (1) they use virulence factors mimicking the RhoGTPases regulators (GAP, GEF, or GDI); and (2) they utilize virulence factors endowed with enzymatic activities modifying host RhoGTPases [18]. These modifications result in either activation or inhibition of RhoGTPases, both of which affect the actin cytoskeleton and the bacterial uptake by phagocytic or non-phagocytic cells. The advantages of manipulating RhoGTPases for pathogens have been extensively studied [19–21]. Here, going through the looking glass, we will describe how these manipulations of RhoGTPases are sensed by the innate immune system.

Sensing RhoGTPase activation to trigger a transcriptional antimicrobial response

Microbial activation of RhoGTPases induces the transcription of pro-inflammatory cytokine- and chemokine-coding genes. Interestingly, the Salmonella virulence factor SopE, a GEF for Rac and Cdc42, has been found to activate different signaling pathways converging on gene transcription. Firstly, Salmonella expressing SopE and SopE2 activates JNK, p38, and Erk MAPK, leading to NF-κB activation [22]. Interestingly, by activating Rac1 and Cdc42, SopE was shown to trigger the activation of NOD1 and Rip2 which drives cytokine production [23]. More recently, SopE has been found to activate a Cdc42-Pak1 axis leading to TAK1- and TRAF6-dependent NF-κB activation [24]. Further studies would be required to determine whether these 3 pathways are interlinked or occur separately during infection. An interesting example of an antimicrobial response triggered by RhoGTPases activation is the CNF1 toxin. The CNF1 toxin of uropathogenic Escherichia coli is a deamidase that was shown to trigger a protective antimicrobial response by activating the Rac2GTPase, which, in turn, activates the IMD-Relish and Rip1/2 kinases-NF-κB signaling pathways in Drosophila and mammalian cells, respectively [4,25].

Sensing the inactivation of RhoGTPases by the Pyrin inflammasome

The mefv gene (coding for the Pyrin protein) was discovered through its involvement in auto-inflammatory syndromes such as familial Mediterranean fever (FMF) [26,27]. Recent studies
have shown a host protective function for the Pyrin inflammasome by monitoring the activity of virulence factors that inactivate RhoGTPases. The immune detection of bacterial toxins that modify the host RhoGTPases is of major importance to restrain bacterial infection. This detection system was first suggested by studies showing that TcdA and TcdB toxins from *Clostridium difficile* were able to induce Caspase-1 activation and interleukin (IL)-1ß maturation [28]. The Pyrin inflammasome was later shown by Shao and colleagues to be the sensor for RhoGTPase-inhibiting toxins. They revealed that not only TcdA and TcdB toxins but also VopS (from *Vibrio parahaemolyticus*), IbpA (from *Histophilus somnii*), TecA (from *Burkholderia cenocepacia*) are detected by the Pyrin inflammasome. It is noteworthy that these toxins inactivate the RhoGTPases via 4 different mechanisms: glycosylation, ADP ribosylation, AMPylation, and deamidation [29–32]. Shao and colleagues reported that the catalytically inactive mutant of TcdB failed to activate the inflammasome, indicating the importance of sensing activity rather than conserved structural motifs. Interestingly, the toxin TcsL (from *Clostridium sordellii*) that inactivates Rac and Cdc42 but not RhoA failed to activate the Pyrin inflammasome, suggesting that Pyrin monitors the activation status of RhoA specifically [30]. It is now accepted that the Pyrin inflammasome senses the activity of RhoGTPase-inactivating virulence factors via a signaling cascade involving Ser/Thr kinases and modifications of microtubule stability. At steady state, Pyrin interacts with 14-3-3 proteins which maintain the receptor in an inactive form. RhoA inhibition by toxins results in 14-3-3 dissociation from Pyrin in a Pyrin phosphorylation status-dependent manner [31]. Park and colleagues revealed that the RhoA-interacting kinases, protein kinase N1 (PKN1) and N2 (PKN2), phosphorylate human Pyrin on Ser208 and Ser242 (Ser205 and Ser241 on murine Pyrin) and trigger 14-3-3-Pyrin interaction to maintain the inactive status of the Pyrin inflammasome [32]. Inactivation of RhoA by bacterial toxins abolishes the Pyrin phosphorylation on Ser205/Ser241 by PKN1/2 and the subsequent 14-3-3 interaction and, as a consequence, activates the Pyrin inflammasome and triggers IL-1ß secretion [31,32] (Fig 1). Interestingly, macrophage infection by *C. difficile*, expressing TcdA and TcdB, triggers pyroptotic cell death in a GSDMD-dependent manner [33]. Other virulence factors inactivating RhoGTPases have been shown to be sensed by the Pyrin inflammasome (Table 1). Murine macrophages infected with *Yersinia pseudotuberculosis* expressing YopE and YopT, 2 virulence factors inhibiting RhoA, trigger Ser205 dephosphorylation of Pyrin and IL-1ß secretion [34]. *Yersinia* provides a striking example of the virulence factor interplay that probably resulted from host–pathogen coevolution. Indeed, *Yersinia* injects the effector YopM that binds and activates PKN1/2 and RSK kinases to trigger Pyrin phosphorylation, thus preventing Pyrin inflammasome activation and thereby countering the Pyrin sensing of RhoGTPase-inactivating toxins [35–37]. Interestingly, the YopO virulence factor (YpkA in *Yersinia pestis*) has a RhoGDI domain that inhibits RhoA as well as Rac [38,39]. Further studies would determine whether it could participate to this interplay by triggering the activation of Pyrin. Another step in this host–pathogen coevolution process is the selection of human Pyrin mutations. These mutations render Pyrin insensitive to YopM and may have been evolutionarily selected to resist infection by *Y. pestis*, the causative agent of the plague [36]. In individuals carrying activating Pyrin mutations, the increased activity might have conferred a selective advantage against pathogens [40]. However, these mutations are also responsible for Pyrin-dependent autoinflammatory disorders [32]. The microtubule dynamics also play a role in the Pyrin inflammasome activation. Microtubules act downstream of Pyrin dephosphorylation and dissociation from 14-3-3 proteins [31,41]. Despite the clinical importance of drug targeting microtubules (such as colchicine) in Pyrin-dependent autoinflammatory disorders, the mechanisms involved in microtubule regulation of the Pyrin inflammasome are not fully understood.
Sensing of RhoGTPase activation through the NLRP3 inflammasome

In 2004, Tschopp and colleagues established that NLRP3 is able to assemble into an NLRP3-ASC-Caspase-1 inflammasome that is responsible for autoinflammatory disorders.

https://doi.org/10.1371/journal.ppat.1009504
Further studies reveal that NLRP3 inflammasome plays a role in metabolic diseases such as diabetes, atherosclerosis, and gouty arthritis [43–46]. It is thought that the main physiological function of NLRP3 inflammasome is to sense pathogen- and metabolic-triggered danger signals. The contribution of the NLRP3 inflammasome in protecting the host against infectious agents has recently emerged. The NLRP3 inflammasome is activated by several triggers such as pore-forming toxins, extracellular ATP, crystalline structures, and mitochondrial damage, but its role in ETI only recently emerged from study of RhoGTPase-activating toxins [45,47–50]. NLRP3 is regulated by phosphorylation and ubiquitination, which control its stability and subcellular localization, conformational changes, and its interaction with inflammasome-related proteins such as the adaptor protein ASC and the regulator protein Nek7 [51]. Nek7 interacts with the carboxyl terminus leucin-rich repeat (LRR) of NLRP3 and triggers a conformational change that is essential for NLRP3 oligomerization and inflammasome assembly [52–54].

The CNF1 toxin is a bona fide RhoGTPase-activating toxin encoded by uropathogenic E. coli. Interestingly, CNF1 has been shown to trigger an inflammatory immune response in vivo and in cellulo using multiple models including Drosophila, mouse, and human [4,25,55,56]. This CNF1-triggered protective immunity and induced bacterial clearance was observed during both Drosophila systemic infections and during mice bacteremia. While the CNF1-immune response in Drosophila was restricted to the transcriptional antimicrobial peptide expression, the CNF1-expressing E. coli triggered response in mice depended on Caspase-1 and IL-1β maturation and secretion, but the inflammasome involved was only recently identified. The NLRP3 inflammasome has been found to be the sensor of RhoGTPase activation induced by CNF1, SopE, and DNT toxins [47].

Table 1. Inflammasome sensing of RhoGTPase-targeting by bacterial toxins.

Toxin	Pathogen	Host target	Modification	Reference
Pyrin inflammasome	RhoGTPase-inactivating toxins			
CNF1	E. coli	Rho, Rac, Cdc42	Deamidation	Dufies et al. (2021) [47]
DNT	Bordetella pertussis Bordetella parapertussis Bordetella bronchiseptica	Rho, Rac, Cdc42	Transglutamination	Dufies et al. (2021) [47]
SopE	Salmonella spp.	Rac, Cdc42	GEF	Dufies et al. (2021) [47]
NLRP3 inflammasome	RhoGTPase-activating toxins			
C3	Clostridium botulinum Clostridium limosum Bacillus cereus Bacillus thuringiensis	Rho	ADP ribosylation	Xu et al. (2014) [30]
TcdA	C. difficile	Rho, Rac, Cdc42	Glucosylation	Gao et al. (2016) [31]
TcdB	C. difficile	Rho, Rac, Cdc42	Glucosylation	Xu et al. (2014) [30]
VopS	V. parahaemolyticus	Rho, Rac, Cdc42	AMPylation	Xu et al. (2014) [30]
IbpA	H. somni	Rho, Rac, Cdc42	AMPylation	Xu et al. 2014 [30]
TecA	B. cenocepacia	Rho, Rac, Cdc42	Deamidation	Aubert et al. (2016) [29]
YopT	Y. pestis Y. pseudotuberculosis Yersinia enterocolitica	Rho, Rac, Cdc42	CAAX cleavage	Medici et al. (2019) [34]
YopE	Y. pestis Y. pseudotuberculosis Y. enterocolitica	Rho, Rac, Cdc42	GAP	Medici et al. (2019) [34]

GAP, RhoGTPase-activating protein; GEF, guanine nucleotide exchange factor.

https://doi.org/10.1371/journal.ppat.1009504.t001
(Table 1). The NLRP3 inflammasome specifically senses the activation of Rac2. Downstream of Rac2 activation, the p21-activated kinase (Pak) 1, and Pak2 are necessary for NLRP3 inflammasome sensing of CNF1, SopE, and DNT activities. The kinases Pak1/2 regulation of NLRP3 inflammasome activation was dependent on K⁺ efflux and occurred through NLRP3 phosphorylation on Thr659 which enables the recruitment of Nek7 and inflammasome assembly and activation. During mice infections, both NLRP3 and Pak1 chemical inhibition or gene knock-out prevented CNF1-induced bacterial clearance during bacteremia. In contrast to other NLRP3 inflammasome activators, CNF1-triggered IL-1β secretion was GSDMD independent and did not induce pyroptotic cell death (Fig 1). Further studies will be necessary to determine the mechanisms involved in IL-1β secretion downstream of toxin-induced RhoGTPase activation. An exciting possibility would be the involvement of other GSDM in the CNF1-triggered IL-1β secretion coupled with a cell death inhibition mechanism to control the balance between cell death and inflammation as described for GSDMD and ESCRT machinery that controls membrane repair [57,58]. In human monocyte-derived macrophages, the sensing of the CNF1 toxin via the Pak/NLRP3 axis is conserved. However, further studies are needed to determine the role of Pak and NLRP3 during infection in humans and whether Pak/NLRP3 signaling axis deficiencies are associated with increased susceptibility to infection. The NLRP3 sensing of virulence factors activating RacGTPases could better explain the coexistence within the same bacteria of virulence factors with antagonistic activities toward RacGTPases such as in Salmonella with SopE and SptP, respectively, GEF and GAP for RacGTPases [59].

Concluding remarks

Pyrin and NLRP3 inflammasome guarding of RhoGTPases share striking molecular similarities such as the involvement of Ser/Thr kinases and precise phosphorylation sites to control inflammasome activation. Interestingly, PKN phosphorylation inhibits the inflammasome, while Pak phosphorylation activates the inflammasome. The fine-tuning of these Rho-regulated innate immune sensing mechanisms is probably essential for the host in order to cope with microbial infection and inflammation. The reason why the host innate immune system uses 2 different inflammasomes to monitor RhoGTPase activity remains an open question. The only easy answer is that the guarding of RhoGTPases is critical for host survival during infection.

Acknowledgments

We thank Patrick Munro for critical reading of the manuscript. We acknowledge Abby Cuttriss of the Office of International Scientific Visibility of Université Côte d’Azur for professional language editing.

References

1. Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989; 54(Pt 1):1–13. https://doi.org/10.1101/sqb.1989.054.01.003 PMID: 2700931

2. Jones JDG, Dangl JL. The plant immune system. Nature. 2006; 444:323–329. https://doi.org/10.1038/nature05286 PMID: 17108957

3. Stuart LM, Paquette N, Boyer L. Effector-triggered versus pattern-triggered immunity: how animals sense pathogens. Nat Rev Immunol. 2013; 13:199–206. https://doi.org/10.1038/nri3398 PMID: 23411798

4. Diabate M, Munro P, Garcia E, Jacquel A, Michel G, Obba S, et al. Escherichia coli α-hemolysin counteracts the anti-virulence innate immune response triggered by the Rho GTPase activating toxin CNF1 during bacteremia. PLoS Pathog. 2015; 11:e1004732. https://doi.org/10.1371/journal.ppat.1004732 PMID: 25781937
5. Fischer NL, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol. 2020; 5: 14–26. https://doi.org/10.1038/s41564-019-0623-2 PMID: 31857733

6. Stuart LM, Boyer L. RhGTPases—NODs for effector-triggered immunity in animals. Cell Res. 2013; 23:980–981. https://doi.org/10.1038/cr.2013.68 PMID: 23689278

7. Vance RE, Isberg RR, Portnoy DA. Patterns of pathogenesis: discrimination of pathogenic and non-pathogenic microbes by the innate immune system. Cell Host Microbe 2009; 6: 10–21. https://doi.org/10.1016/j.chom.2009.06.007 PMID: 19616762

8. Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011; 9: 487–498. https://doi.org/10.1038/nrmmicro2592 PMID: 21677684

9. Galán JE. Common Themes in the Design and Function of Bacterial Effectors. Cell Host Microbe. 2009; 5:571–579. https://doi.org/10.1016/j.chom.2009.04.008 PMID: 19527884

10. Burridge K, Wennerberg K. Rho Rac Take Center Stage. Cell. 2004; 116:167–179. https://doi.org/10.1016/s0092-8674(04)00003-0 PMID: 14744429

11. Jaffe AB, Hall A. RHO GTPASES: Biochemistry and Biology. Annu Rev Cell Dev Biol. 2005; 21:247–269. https://doi.org/10.1146/annurev.cellbio.21.020604.150721 PMID: 16212495

12. Lougaris V, Baronio M, Gazzurelli L, Plebani A, Rac2 and primary human immune deficiencies. J Leukoc Biol. 2020; 108:687–696. https://doi.org/10.1002/JLB.5MR0520-194RR PMID: 32542921

13. El Masri R, Delon J. RHO GTPases: from new partners to complex immune syndromes. Nat Rev Immunol. 2021. https://doi.org/10.1038/s41577-021-00500-7 PMID: 33547421

14. Clayton NS, Ridley AJ. Targeting Rho GTPase Signaling Networks in Cancer. Front Cell Dev Biol. 2020; 8:222. https://doi.org/10.3389/fcell.2020.00222 PMID: 32309283

15. Brodsky IE, Medzhitov R. Targeting of immune signalling networks by bacterial pathogens. Nat Cell Biol. 2009; 11:521–526. https://doi.org/10.1038/ncb0509-521 PMID: 19404331

16. Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 2005; 15:163–171. https://doi.org/10.1016/j.tcb.2005.01.002 PMID: 15752980

17. Bishop AL, Hall A. Rho GTPases and their effector proteins. Biochem J. 2000; 348:241–255. PMID: 10816416

18. Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases. 2014; 5. https://doi.org/10.4161/sgtp.28209 PMID: 25203748

19. Finlay BB. Bacterial virulence strategies that utilize Rho GTPases. Curr Top Microbiol Immunol. 2005; 291:1–10. https://doi.org/10.1007/3-540-27511-8_1 PMID: 15981458

20. Schlumberger MC, Hardt WD. Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr Top Microbiol Immunol. 2005; 291:29–42. https://doi.org/10.1007/3-540-27511-8_3 PMID: 15981458

21. Boquet P, Lemichez E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? Trends Cell Biol. 2003; 13:238–246. https://doi.org/10.1016/s0962-8924(03)00037-0 PMID: 12742167

22. Bruno VM, Hannemann S, Lara-Tejero M, Flavell RA, Kleinstein SH, Galán JE. Salmonella Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells. PLoS Pathog 2009; 5:e1000538. https://doi.org/10.1371/journal.ppat.1000538 PMID: 19662166

23. Keestra AM, Winter MG, Auburger JJ, Fräisle SP, Xavier MN, Winter SE, et al. Manipulation of small Rho GTPases is a pathogen-induced process detected by NOD1. Nature. 2013; 496:233–237. https://doi.org/10.1038/nature12025 PMID: 23542589

24. Sun H, Kamanova J, Lara-Tejero M, Galán JE. Salmonella stimulates pro-inflammatory signalling through p21-activated kinases bypassing innate immune receptors. Nat Microbiol. 2018; 3:1122–1130. https://doi.org/10.1038/s41564-018-0246-z PMID: 30224799

25. Boyer L, Magoc L, Dejardin S, Cappillino M, Paquette N, Hinault C. et al. Pathogen-derived effectors trigger protective immunity via activation of the Rac2 enzyme and the IMD or Rip kinase signaling pathway. Immunity. 2011; 35:536–549. https://doi.org/10.1016/j.immuni.2011.08.015 PMID: 22018470

26. Jamilloux Y, Magnotti F, Belot A, Henry T. The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathog Dis. 2018; 76. https://doi.org/10.1093/femsdp/fty020 PMID: 29718184

27. Centola M, Aksentijevich I, Kastner DL. The Hereditary Periodic Fever Syndromes: Molecular Analysis of a New Family of Inflammatory Diseases. Hum Mol Genet. 1998; 7:1581–1588. https://doi.org/10.1093/hmg/7.10.1581 PMID: 9735379
28. Ng J, Hirota SA, Gross O, Li Y, Uike-Lemee A, Potenti MS, et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology. 2010; 139:542–552, 552.e1–3. https://doi.org/10.1053/j.gastro.2010.04.005 PMID: 20398664

29. Aubert DF, Xu H, Yang J, Shi X, Gao W, Li L, et al. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe. 2016; 19:664–674. https://doi.org/10.1016/j.chom.2016.04.004 PMID: 27133449

30. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014; 513:237–241. https://doi.org/10.1038/nature13449 PMID: 24919149

31. Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016; 113:E4857–4866. https://doi.org/10.1073/pnas.1601700113 PMID: 27482109

32. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the auto-inflammatory diseases FMF and HIDS. Nat Immunol. 2016; 17:914–921. https://doi.org/10.1038/ni.3457 PMID: 27270401

33. Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD.

34. Medici NP, Rashid M, Bliska JB. Characterization of Pyrin Dephosphorylation and Inflammasome Activation in Macrophages as Triggered by the Yersinia Effectors YopE and YopT. Infect Immun. 2019; 87. https://doi.org/10.1128/IAI.00822-18 PMID: 30602502

35. Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, et al. The Yersinia Virulence Factor YopM Hijacks Host Kinases to Inhibit Type III Effector-Triggered Activation of the Pyrin Inflammasome. Cell Host Microbe. 2016; 20:296–306. https://doi.org/10.1016/j.chom.2016.07.018 PMID: 27569559

36. Park YH, Remmers EF, Lee W, Ombrello AK, Chung LK, Shilei Z, et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat Immunol. 2020; 21:857–867. https://doi.org/10.1038/s41373-020-0705-6 PMID: 32601469

37. Ratner D, Orning MPA, Proulx MK, Wang D, Gavrilin MA, Wewers MD, et al. The Yersinia pestis Effector YopM Inhibits Pyrin Inflammasome Activation. PLoS Pathog. 2016; 12:e1006035. https://doi.org/10.1371/journal.ppat.1006035 PMID: 27911947

38. Dukuzumuremyi JM, Rosqvist R, Hallberg B, Akerström B, Wolf-Watz H, Schesser K. The Yersinia protein kinase A is a host factor inducible RhoA/Rac-binding virulence factor. J Biol Chem. 2000; 275:35281–35290. https://doi.org/10.1074/jbc.M003009200 PMID: 10950948

39. Dominguez R. Subversive bacteria reveal new tricks in their cytoskeleton-hijacking arsenal. Nat Struct Mol Biol. 2015; 22:178–179. https://doi.org/10.1038/nsmb.2976 PMID: 25736086

40. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The Pyrin Inflammasome in Health and Disease. Front Immunol. 2019; 10:1745. https://doi.org/10.3389/fimmu.2019.01745 PMID: 31457695

41. Van Gorp H, Saavedra PHV, de Vasconcelos NM, Van Opdenbosch N, Vande Walle L, Matusiak M, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016; 113:14384–14389. https://doi.org/10.1073/pnas.1613156113 PMID: 27911804

42. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 Forms an IL-1β-Processing Inflammasome with Increased Activity in Muckle-Wells Autoinflammatory Disorder. Immunity. 2004; 20:319–325. https://doi.org/10.1016/s1074-7613(04)00046-9 PMID: 15030775

43. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med. 2017; 377:1119–1131. https://doi.org/10.1056/NEJMa1707914 PMID: 28845751

44. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 2010; 11:897–904. https://doi.org/10.1038/ni.1935 PMID: 20835230

45. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440:237–241. https://doi.org/10.1038/nature04516 PMID: 16407889

46. Aiena Grebe, Florian Hoss, Eicke Latz. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018; 122:1722–1740. https://doi.org/10.1161/CIRCRESAHA.118.313162 PMID: 29880500

47. Dufies O, Doye A, Courjon J, Torre C, Michel G, Loubatier C, et al. Escherichia coli Rho GTPase-activating toxin CNF1 mediates NLRP3 inflammasome activation via p21-activated kinases-1/2 during bacteremia in mice. Nat Microbiol. 2021; 1–12. https://doi.org/10.1038/s41564-020-00847-y PMID: 33349680
48. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts mediate NALP-3 inflammasome activation via phagosomal destabilization. Nat Immunol. 2008; 9:847–856. https://doi.org/10.1038/ni.1631 PMID: 18604214

49. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006; 440:222–232. https://doi.org/10.1038/nature04515 PMID: 16407890

50. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011; 469:221–225. https://doi.org/10.1038/nature09663 PMID: 21124315

51. Yang Y, Wang H, Koudiar M, Song H, Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019; 10:128. https://doi.org/10.1038/s41419-019-1413-8 PMID: 30755589

52. He Y, Zeng MY, Yang D, Motro B, Núñez G. Nek7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016; 530:354–357. https://doi.org/10.1038/nature16959 PMID: 26814970

53. Sharif H, Wang L, Wang WL, Magupal VG, Andreeva L, Qiao Q, et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature. 2019; 570:338–343. https://doi.org/10.1038/s41586-019-1295-z PMID: 31189953

54. Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016; 17:250. https://doi.org/10.1038/ni.3333 PMID: 26642356

55. Müller AJ, Hoffmann C, Galle M, Broeke AVD, Heikenwalder M, Falter L, et al. The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. Cell Host Microbe. 2009; 6:125–136. https://doi.org/10.1016/j.chom.2009.07.007 PMID: 19683679

56. Hoffmann C, Galle M, Dilling S, Kääppeli R, Müller AJ, Songhet P, et al. In Macrophages, Caspase-1 Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence of Flagellin. PLoS ONE. 2010; 5. https://doi.org/10.1371/journal.pone.0012477 PMID: 20814576

57. Rühl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science. 2018; 362:956–960. https://doi.org/10.1126/science.aar7607 PMID: 30467171

58. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity. 2018; 48:35–44.e6. https://doi.org/10.1016/j.immuni.2017.11.013 PMID: 29195811

59. Fu Y, Galán JE. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature. 1999; 401:293–297. https://doi.org/10.1038/45829 PMID: 10499590