Spot-beam effect in grazing atom-surface collisions: from quantum to classical

L Frisco¹, J E Miraglia¹,² and M S Gravielle²

¹ Departamento de Física, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
² Instituto de Astronomía y Física del Espacio (IAFE, UBA-CONICET), Casilla de Correo 67, Sucursal 28, C1428EGA Buenos Aires, Argentina

E-mail: m.silvia@iafe.uba.ar

Received 4 July 2018, revised 29 August 2018
Accepted for publication 3 September 2018
Published 14 September 2018

Abstract

Grazing incidence fast atom diffraction (GIFAD) is a sensitive tool for surface analysis, which strongly relies on the quantum coherence of the incident beam. In this article we study the spot-beam effect, due to contributions coming from different positions of the focus point of the incident particles, which affects the coherence of GIFAD spectra. We show that the influence of the spot-beam effect on GIFAD patterns depends on the width of the surface area that is coherently lighted by the atomic beam. While for extended illuminations the spot-beam contribution plays a minor role, when a narrow surface area is coherently lighted, the spot-beam effect allows projectiles to explore different zones of a single crystallographic channel, bringing to light intra-channel interference structures. In this last case the spot-beam effect gives also rise to a non-coherent background, which deteriorates the visibility of the interference structures. We found that by varying the impact energy, while keeping the same collimating setup, it is possible to switch gradually from quantum to classical projectile distributions. Present results are compared with available experimental data, making evident that the inclusion of focusing effects is necessary for the proper theoretical description of the experimental spectra.

Keywords: surface analysis, fast atom diffraction, coherence length, focusing effects, spot-beam effect

(Some figures may appear in colour only in the online journal)
coherently lighted by the incident beam, whose knowledge becomes crucial for an appropriate comparison between experiments and simulations.

Within the frame of the above mentioned focusing effects, in this article we investigate the influence of the spot-beam effect, which is produced by random-distributed focus points of the incident particles, on the visibility of the interference structures of GIFAD spectra. We demonstrate that when the transverse coherence length of the impinging atoms is smaller than the width of the channel, the spot-beam effect allows projectiles to probe different regions of the atom-surface potential, giving rise to intra-channel (supernumerary rainbow) maxima. In this case the spot-beam contribution introduces also a non-coherent background, which strongly modifies the visibility of the interference signatures, contributing to the transition from quantum to classical projectile distributions.

The study is confined to fast He and Ne atoms grazingly impinging on LiF(001) along the \(\langle 110 \rangle \) channel, for which rich diffraction patterns were observed [21, 24]. To describe the atom-surface scattering we make use of the surface-initial value representation (SIVR) approximation [25], which is a semi-quantum method that has proved to provide a successful description of experimental GIFAD patterns for different collision systems [21, 26, 27]. In this version of the SIVR approach we include the spot-beam effect, that is, the variation of the relative position of the focus point (wave-packet center) of the incident particle on the crystal surface, while the size of the coherent initial wave packet is determined from the extent of the surface region that is coherently illuminated by the atomic beam after collimation, as given in [21, 22].

The paper is organized as follows: the theoretical formalism, including the spot-beam contribution, is summarized in section 2. Results for Ne projectiles under different incidence conditions are presented and discussed in sections 3.1 and 3.2. In particular, in section 3.1 we study the dependence of the spot-beam effect on the number of coherently lighted channels, while in section 3.2 the gradual quantum-classical transition of the projectile distributions is analyzed. In section 3.3 helium distributions for different impact energies, with the same collimating scheme, are contrasted with available experimental data. Finally, in section 4 we outline our conclusions. Atomic units (a.u.) are used unless otherwise stated.

2. Theoretical model

In this work we extend the previous SIVR model [25] to deal with different focus points of the incident particles. The relative position of the focus point of the beam, with respect to the surface lattice sites, is expected to play a negligible role when the transverse coherence length of the impinging particles is longer than the width of the incidence channel. But it should gain importance as the transverse coherence length decreases. Since it is not experimentally possible to control the focus position of the incident projectiles at such an accuracy level, we consider that each atomic projectile impacts on the surface plane at a different position \(\mathbf{R}_s \), which coincides with the central position of the initial coherent wave packet.

For a given position \(\mathbf{R}_s \) of the focus point, the SIVR scattering amplitude for the elastic transition \(\mathbf{K}_i \to \mathbf{K}_f, \mathbf{R}_f (\mathbf{K}_f) \) being the initial (final) momentum of the atomic projectile, with \(|\mathbf{K}_f| = |\mathbf{K}_i| \) can be expressed as [25]

\[
A_{id}^{(SIVR)}(\mathbf{R}_s) = \int d\mathbf{r}_o f_i(\mathbf{r}_o - \mathbf{R}_s) \\
\times \int d\mathbf{k}_o g_i(\mathbf{k}_o) a_d^{(SIVR)}(\mathbf{r}_o, \mathbf{k}_o),
\]

where \(a_d^{(SIVR)}(\mathbf{r}_o, \mathbf{k}_o) \) is the partial transition amplitude, given by equation (9) of [25], which is associated with the classical projectile path \(\mathbf{r}_t \equiv \mathbf{r}_t(\mathbf{r}_o, \mathbf{k}_o) \), with \(\mathbf{r}_o \) and \(\mathbf{k}_o \) being the starting position and momentum, respectively, at the time \(t = 0 \). In equation (1) functions \(f_i(\mathbf{r}_o - \mathbf{R}_s) \) and \(g_i(\mathbf{k}_o) \) describe the spatial and momentum profiles, respectively, of the initial coherent wave packet at a fixed distance \(z_o \) from the surface where the atomic projectile is hardly affected by the surface interaction. Such a distance is here chosen as equal to the lattice constant.

To determine the function \(f_i \) we assume that the atomic beam is produced by an extended incoherent quasi-monochromatic source, placed at a long distance from a rectangular collimating aperture, with sides \(d_x \) and \(d_y \), which is oriented perpendicular to the momentum \(\mathbf{K}_i \) (see figure 1). Under the condition of extended source, given by equations (A.9) and (A.10) of [22], \(f_i(\mathbf{r}_o - \mathbf{R}_s) \) can be approximate by means of Gaussian functions, \(G[\omega, x] = \left[2/(\pi \omega^2) \right]^{1/4} \exp(-x^2/\omega^2) \), as
\[f_i(\mathbf{r}''_0 - \mathbf{R}_s) \simeq G[\sigma_x, x_0 - X_i] G[\sigma_y, y_0 - Y_s], \] (2)

where

\[\sigma_x = \frac{L_c \lambda}{\sqrt{2d'_x}}, \quad \sigma_y = \frac{L_c \lambda}{\sqrt{2d'_y}}, \] (3)

denote the transverse coherence lengths of the initial coherent wave packet along the \(\hat{x} \)- and \(\hat{y} \)-directions, respectively, \(\mathbf{r}''_0 = x_0 \hat{x} + y_0 \hat{y} \) is the component parallel to the surface plane of the starting position, and the two-dimensional (2D) vector \(\mathbf{R}_s = X_s \hat{x} + Y_s \hat{y} \) corresponds to the central position of the wave packet. In equation (3), \(L_c \) is the collimator-surface distance, \(\lambda = 2\pi/K_i \) is the de Broglie wavelength of the impinging atom, and \(\lambda_{\perp} = \lambda/\sin \theta_i \) is the perpendicular wavelength associated with the initial motion normal to the surface plane, \(\theta_i \) being the incidence angle. The momentum profile is derived from equation (2) by applying the Heisenberg uncertainty relation, as given by equation (14) of [21], leading to \(g_i(\mathbf{k}_e) \simeq g_i(\Omega_o), \) with \(|\mathbf{k}_e| = |\mathbf{K}_i| = \sqrt{2mpE} \) and \(\Omega_o \), the corresponding solid angle, \(m_p \) being the projectile mass and \(E \) the total energy.

Taking into account that GIFAD patterns are produced by the interference of a single projectile with itself, contributions to the scattering probability coming from different focus points of the impinging particles must be added incoherently. Hence, the differential scattering probability in the direction of the solid angle \(\Omega \) can be obtained from equation (1), except for a normalization factor, as

\[\frac{dP^{(\text{SIVR})}}{d\Omega_i} = \int d\mathbf{R}_s \left| A^{(\text{SIVR})}(\mathbf{R}_s) \right|^2, \] (4)

where \(\Omega_i \equiv (\theta_i, \varphi_i) \) is the solid angle corresponding to the \(\mathbf{K}_i \)-direction, with \(\theta_i \) the final polar angle, measured with respect to the surface, and \(\varphi_i \) the azimuthal angle, measured with respect to the \(\hat{x} \) axis. In equation (4), the \(\mathbf{R}_s \)-integral involves different relative positions within the crystal lattice, covering an area equal to a reduced unit cell of the surface.

3. Results

The goal of this work is to analyze the effect of the spot-beam contribution on the GIFAD patterns produced under different illumination conditions of the surface [23]. For this purpose we examine final angular distributions of \(^{4}\text{He}\) and \(^{20}\text{Ne}\) atoms elastically scattered from LiF(001) along the \(\{110\} \) channel, after passing through a rectangular collimating aperture situated at a distance \(L_2 = 25 \text{ cm} \) from the surface plane [20]. For both projectiles the surface-atom interaction was evaluated with an improved pairwise additive potential [28], which includes non-local terms of the electronic density in the kinetic, exchange and correlation energies. The potential model also takes into account projectile polarization and rumpling effects. In turn, for the numerical evaluation of the SIVR transition probability we employed the MonteCarlo technique to solve the 6D integral involved in equations (1) and (4), i.e. on \(\mathbf{r}''_0 \equiv (x_0, y_0), \Omega_o \equiv (\theta_o, \varphi_o), \) and \(\mathbf{R}_s \equiv (X_s, Y_s) \), using about \(10^7 \) points. Each of these points involves a further time integration along the classical path, included in \(A^{(\text{SIVR})}_d(\mathbf{r}_0, \mathbf{k}_s) \), which was evaluated with a step-adaptive integration method [25]. Notice that in our previous SIVR calculations [21, 23, 25] we did not consider the spot-beam effect, which is equivalent to remove the \(\mathbf{R}_s \)-integral from equation (4).

Concerning the interference structures of GIFAD spectra, it is now well-established that they come from the combination of inter- and intra-channel interferences [6], each of them being associated with a different factor of the SIVR transition amplitude [25]. The inter-channel factor, produced by interference among equivalent trajectories running along different parallel channels, gives rise to equally spaced and intense Bragg peaks, while the intra-channel factor, due to interference inside a single channel, originates supernumerary rainbow maxima [6, 29]. Accordingly, when the surface area coherently lighted by the atomic beam covers a region containing an array of parallel channels, the partial transition amplitude given by equation (1) displays Bragg peaks, whose intensities are modulated by the intra-channel factor. But when only one channel is coherently illuminated, \(\left| A^{(\text{SIVR})}_d(\mathbf{R}_s) \right| \) presents supernumerary rainbow peaks, without any trace of Bragg interference, leading to a pure intra-channel interference spectrum. Thence, the number of coherently lighted channels results a critical parameter that determines not only the general shape of GIFAD distributions, but also the relative importance of the spot-beam contribution, as it will be discussed below.

3.1. Dependence of the spot-beam effect on the number of coherently lighted channels

The number \(N \) of coherently illuminated channels can be roughly estimated from the transverse coherence length of the incident particles as

\[N \simeq \frac{2\sigma_y}{a_i} \left(\frac{L_2}{d_i} \right) \frac{2\pi}{a_iK_i}, \] (5)

where \(\sigma_y \) is given by equation (3) and \(a_i \) denotes the width of the axial channel, with \(a_i = 5.4 \text{ a.u. for \{110\}-incidence.} \) Since for a given collimating setup, the \(N \) value depends on \(K_i \) as given by equation (5), along this article we study the influence of the spot-beam effect on GIFAD spectra as a function of \(N \) by varying the total energy \(E = K_i^2/(2mp) \), while keeping the same collimating aperture. In sections 3.1 and 3.2 a square collimating slit with \(d_s = d_o = 0.2 \text{ mm} \) is considered. In addition, as GIFAD patterns from LiF(001) are essentially governed by the normal energy \(E_\perp = E \sin^2 \theta_i \) [6], we have kept \(E_\perp = 0.3 \text{ eV} \) as a constant for the different impact energies.

In figure 2 we plot the SIVR differential probabilities, as a function of the deflection angle \(\Theta = \arctan(\varphi_i/\theta_i) \), for Ne atoms impinging on LiF with three different energies: \(E = 0.3, 0.8, \text{ and } 1.6 \text{ keV} \). Under ideal scattering conditions, involving the incidence of transversely extended wave packets, these \(\Theta \)-distributions were expected to be independent of \(E \) at the
same E_{\perp} [30]. Nevertheless, the spectra are strongly affected by the total energy if the same collimating setup is used, as a consequence of the variation of the N value derived from equation (5) [23]. Therefore, in figure 2 the projectile distribution for $E = 0.3$ keV (i.e. $N = 2.3$) displays well defined Bragg peaks, but these Bragg structures fade out progressively as the energy increases, causing the spectrum for $E = 1.6$ keV (i.e. $N = 1.0$) to present supernumerary maxima associated with pure intra-channel interference. Furthermore, for the two lowest energies of figure 2—$E = 0.3$ and 0.8 keV—which correspond to coherently illuminated regions with a transverse length longer than a_y, the contribution of the spot-beam effect is barely appreciable in the angular distributions. But when the width of the coherently lighted area is comparable to the channel width, as it happens for $E = 1.6$ keV in figure 2, differences between the spectra derived with and without the inclusion of the spot-beam effect start to be visible.

The above mentioned behavior is due to the fact that under the constraint $N \gg 1$, the SIVR transition amplitudes corresponding to different focus points of the beam, given by equation (1), are alike, leading to

$$\frac{dp^{(SIVR)}}{d\Omega} \simeq \left| A_d^{(SIVR)}(\mathbf{R}_s = 0) \right|^2,$$

where $\mathbf{R}_s = 0$ indicates a focus point situated just in the middle of the incidence channel, here named central focus point. However, when the impact energy augments beyond the limit of pure intra-channel interference, and consequently, the coherently lighted area shrinks, covering a surface region narrower than a_y, the different Y coordinates of the focus points give rise to dissimilar partial projectile distributions $\left| A_d^{(SIVR)}(\mathbf{R}_s) \right|^2$. Each of these partial distributions probes a different zone of the atom-surface potential within the channel, causing the contribution of the spot-beam effect, associated with the \mathbf{R}_s-integral in equation (4), to become important.

In order to study thoroughly the N-dependence of the spot-beam effect for narrow illuminations, in figure 3 we show neon projectile distributions for higher impact energies—$E = 2$, 3, and 8 keV—which correspond to $N = 0.9$, 0.7, and 0.4, respectively. In all the panels, results derived from equation (4), including the spot-beam contribution, are contrasted with those obtained by considering only pure intra-channel interference, as given by equation (6) for $N = 1$. From figure 3 we found that the spot-beam contribution keeps the angular positions of supernumerary maxima, but introduces a non-coherent background in the central region of the spectrum, around the direction of specular reflection (i.e. $\Theta \simeq 0$), in relation to that for single-channel illumination. The angular extension of such a spot-beam background is sensitive to N, increasing as N diminishes, as observed by comparing figures 3(a) and (b).

The role played by the spot-beam effect is even more relevant when the transverse length of the surface area that is coherently illuminated by the beam is about or smaller than the half width of the incidence channel. In figure 3(c) the projectile distribution for 8 keV Ne atoms (i.e. $N = 0.4$) is severely affected by the spot-beam effect when it is contrasted with that due to pure intra-channel interference, corresponding to $N = 1$. Different \mathbf{R}_s positions allow projectiles to separately explore zones of the potential energy surface with positive or negative slope, producing interference structures placed at negative or positive deflection angles, respectively. Only when these partial contributions are added, as given by equation (4), the angular spectrum including the spot-beam contribution presents defined supernumerary peaks in the whole angular range. But in this case the spot-beam effect gives also rise to a wide non-coherent background, which reduces the visibility of the interference patterns, in comparison with that of the pure intra-channel spectrum, as it will be discussed in the next section.

3.2. Focusing effect in the transition from quantum to classical distributions

In this section we investigate how the decreasing of N below the unit reduces the visibility of the diffraction patterns, leading to the gradual switch from quantum projectile distributions, containing intra-channel interference structures, to classical spectra without signatures of interference. With this aim it is convenient to analyze the profile of the atom-surface potential near the reflection region of projectiles, which governs the intra-channel interference in a first approach. Beforehand, we stress that our SIVR calculations were obtained from a 3D atom-surface potential and no dimension reduction was made during the dynamics. However, since GIFAD patterns are essentially sensitive to the averaged potential energy surfaces along the incidence channel, such effective equipotential contours can provide us useful insights of the intra-channel interference mechanism.

For Ne atoms impinging on LiF(001) along the (110) direction, in figure 4(a) we plot the averaged equipotential curve—$z(y)$—corresponding to $E_b = 0.3$ eV, as a function of the coordinate y across the channel, normalized by the width a_y. Within this simplified picture, the intra-channel interference is produced by the coherent addition of transition amplitudes...
Figure 3. Angular spectra, as a function of the deflection angle Θ, for Ne atoms along the \langle110\rangle direction, with $E_\perp = 0.3$ eV. Results for (a) $E = 2$ keV [$N = 0.9$], (b) $E = 3$ keV [$N = 0.7$], and (c) $E = 8$ keV [$N = 0.4$] are displayed. Red solid line, angular distribution including the spot-beam effect, as given by equation (4); dark-green dashed line, pure intra-channel distribution corresponding to $N = 1$, given by equation (6).

Figure 4. Analysis of the equipotential contour, averaged along the \langle110\rangle channel, for the Ne–LiF(001) interaction. (a) Red solid line, equipotential curve $z(y)$ for $E_\perp = 0.3$ eV; (b) derivative dz/dy of the equipotential curve of (a). Gray circles, turning point positions corresponding to two different trajectories that interfere at a given deflection angle; vertical dashed lines indicate turning point positions corresponding to trajectories that contribute to the rainbow maxima.

Figure 5. Analogous to figure 3 for $E = 16$ keV [$N = 0.3$]. Blue dot-dashed line, classical projectile distribution for $N = 1$. The n values indicate different supernumerary rainbow peaks.

Figure 6. Visibility $\Psi(n)$ (normalized to that for $N = 1$), as a function of E, for Ne projectiles colliding along \langle110\rangle with $E_\perp = 0.3$ eV.
The quantum-classical transition of GIFAD distributions can be quantitatively studied by analyzing the visibility $\mathcal{V}(n)$ associated with the supernumerary rainbow maximum labelled with n in figure 5, where $n = 0, \pm 1, \pm 2, \ldots$ corresponding to the central peak. Like in optics [31], we define the visibility in GIFAD as

$$\mathcal{V}(n) = \frac{I^{(n)}_{\text{max}} - I^{(n)}_{\text{min}}}{I^{(n)}_{\text{max}} + I^{(n)}_{\text{min}}},$$

where $I^{(n)}_{\text{max}}$ is the differential probability $dP^{(\text{SIVR})}/d\Theta$, derived from equation (4), at the n-supernumerary rainbow maximum, and $I^{(n)}_{\text{min}}$ denotes the averaged value of the differential probability at the positions of the two adjacent minima. This visibility provides a measure of the degree of coherence of the atomic beam [31, 32]. In figure 6 we show $\mathcal{V}(n)$, normalized to that for $N = 1$, as a function of the impact energy, for Ne projectiles colliding along $\langle 110 \rangle$ with $E_\perp = 0.3$ eV.

As a consequence of the spot-beam effect, under the same collimating conditions the visibility tends to decrease when the energy increases beyond the energy limit of pure intra-channel interference. Such a decreasing is more steeply for the central peaks than for the outermost ones, in accord with

3 Notice that the parameter n used to label the different supernumerary maxima does not coincide with the supernumerary rainbow order as defined in [6].
the condition \(N \gtrsim l_1 \) for the observation of supernumerary maxima. For higher \(E \) (lower \(N \)) values, the interference structures gradually blur out and all \(\mathcal{V}(n) \) slowly decrease, making projectile distributions reach the classical limit, i.e. \(\mathcal{V}(n) \approx 0 \), where all the quantum signatures disappear.

3.3. Experimental comparison

To test the predicted influence of the incidence conditions, in figure 7 simulations derived from equation (4) are compared with available experimental distributions [33] for helium atoms impinging on LiF(001) along the \((\langle 1 \bar{1} 0 \rangle)\) channel. These 2D angular distributions were obtained by varying the impact energy but keeping a fixed incidence angle, i.e. \(\theta_i = 1.1^\circ \) [33]. In order to reproduce the experiments, in this section we have considered a rectangular slit with sides \(d_x = 1.5 \) mm and \(d_y = 0.3 \) mm, which produces an angular dispersion \(\omega_x = 0.05^\circ \), comparable to the experimental value [33]. In figure 7, for \(E = 1.25 \) keV (top panels) the theoretical distribution is in accord with the experimental one, showing not fully resolved Bragg peaks associated with \(N = 1.6 \). Instead, for \(E = 3.50 \) keV (middle panels) the Bragg peaks completely disappear and the simulated and experimental GIFAD patterns display only supernumerary maxima corresponding to a single-channel illumination. Lastly, for \(E = 9.00 \) keV \([N = 0.6]\) (lower panels) the interference maxima are barely visible as isolated peaks in the simulated angular spectrum due to the contribution of the spot-beam effect. In this case, both the theoretical and the experimental distributions tend to the classical one, showing a broad high intensity contribution at \(\varphi_r = 0 \) and two intense rainbow peaks at the outermost angles.

Therefore, the reasonable good agreement between theory and experiment observed in figure 7 strongly suggests that the energy dependence of the general features of experimental GIFAD distributions is mainly produced by the variation of the transverse coherence length, as it was proposed in [33]. However, at this point it is necessary to mention that there are other effects not included in our model, like inelastic processes [34–36], which can contribute to reduce the coherence, promoting to the transition from quantum to classical projectile distributions. Moreover, notice that our simulations do not include thermal vibrations of lattice atoms [28] and the results were not convoluted with the detector resolution, both effects which are expected to smooth the theoretical spectra. Regarding thermal effects, the experiments of [33] were carried out with the crystal surface at room temperature [14]. At such a surface temperature, the thermal fluctuations of the LiF crystal are expected to affect more the intensity of the external peaks than those corresponding to the internal maxima [28], indicating that the spot-beam effect dominates over temperature-induced decoherence of the internal supernumerary peaks.

4. Conclusions

We have investigated the influence of the spot-beam effect, originated by random positions of the focus point of the beam, on the general characteristics of GIFAD patterns produced from a LiF(001) surface. The relevance of the spot-beam contribution was analyzed in terms of the number \(N \) of equivalent parallel channels that are coherently illuminated by the atomic beam. We have shown that when several parallel channels are coherently lighted, the spot-beam effect does not significantly affect the GIFAD patterns. But it becomes important when only a portion of a single crystallographic channel is coherently lighted by the impinging particles. In particular, for \(N \) values in the range \(0.4 \lesssim N \lesssim 1 \) the spot-beam effect helps to recover supernumerary rainbow maxima that probe different regions of the atom-surface potential. In addition, we found that for \(N \lesssim 1 \) the spot-beam contribution gives rise to a non-coherent background, which modifies strongly the visibility of the interference structures. Consequently, the spot-beam effect contributes to the gradual quantum-classical transition of the projectile distributions when the impact energy augments under fixed collimating conditions.

Acknowledgments

This work was carried out with financial support from CONICET, UBA and ANPCyT of Argentina.

ORCID iDs

M S Gravielle https://orcid.org/0000-0002-5912-1275

References

[1] Heinz K, Starke U and Bernhardt J 2000 Surface holography with LEED electrons Prog. Surf. Sci. 64 163–78
[2] Nielhus H, Heiland W and Taglauer E 1993 Low-energy ion scattering at surfaces Surf. Sci. Rep. 17 213–303
[3] Farias D and Rieder K-H 1998 Atomic beam diffraction from solid surfaces Rep. Prog. Phys. 61 1575–664
[4] Schüller A, Wethemak S and Winter H 2007 Diffraction of fast atomic projectiles during grazing scattering from a LiF(001) surface Phys. Rev. Lett. 98 016103
[5] Rousseau P, Khemliche H, Borisov A G and Roncin P 2007 Quantum scattering of fast atoms and molecules on surfaces Phys. Rev. Lett. 98 016104
[6] Winter H and Schüller A 2011 Fast atom diffraction during grazing scattering from surfaces Prog. Surf. Sci. 86 169–221
[7] Debiossac M, Zugarraumudi A, Khemliche H, Roncin P, Borisov A G, Momeni A, Atkinson P, Eddrief M, Finochini F and Egtens V H 2014 Combined experimental and theoretical study of fast atom diffraction on the \(\beta_2(2 \times 4) \) reconstructed GaAs(001) surface Phys. Rev. B 90 155308
[8] Busch M, Schüller A, Wethemak S and Winter H 2009 Fast atom diffraction at metal surface Surf. Sci. 603 L23–6
[9] Winter H, Seifert J, Blauth D, Busch M, Schüller A and Wethemak S 2009 Structure of ultrathin oxide layers on metal surfaces from grazing scattering of fast atoms Appl. Surf. Sci. 256 365–70
[10] Schüller A, Busch M, Wethemak S and Winter H 2009 Fast atom diffraction from superstructures on a Fe(110) surface Phys. Rev. Lett. 102 017602
[11] Seifert J, Busch M, Meyer E and Winter H 2013 Surface structure of alanine on Cu(1 1 0) studied by fast atom diffraction Phys. Rev. Lett. 111 137601

[12] Zugarramurdi A, Debiossac M, Lunca-Popa P, Mayne A J, Momeni A, Borisov A G, Mu Z, Roncin P and Khemliche H 2015 Determination of the geometric corrugation of graphene on SiC(001) by grazing incidence fast atom diffraction Appl. Phys. Lett. 106 101902

[13] Momeni A, Casagrande E M S, Dechaux A and Khemliche H 2018 Ultrafast crystalization dynamics at an organic-inorganic interface revealed in real time by grazing incidence fast atom diffraction J. Phys. Chem. Lett. 9 908–13

[14] Schüller A, Wethekam S, Blauth D, Winter H, Aigner F, Simonović N, Solleder B, Burgdörfer J and Wirtz L 2010 Rumping of LiF(001) surface from fast atom diffraction Phys. Rev. A 82 062902

[15] Schüller A, Blauth D, Seifert J, Busch M, Winter H, Gärtner K, Włodarczyk R, Sauer J and Sierka M 2012 Fast atom diffraction during grazing scattering from a MgO(001) surface Surf. Sci. 606 161–73

[16] Lalimi B, Khemliche H, Momemi A, Soulisse P and Roncin P 2012 High resolution imaging of superficial mosaicity in single crystals using grazing incidence fast atom diffraction J. Phys.: Condens. Matter 24 442002

[17] Seifert J and Winter H 2016 Quantitative structure determination using grazing scattering of fast atoms: oxygen-induced missing-row reconstruction of Mo(1 1 2) Phys. Rev. B 93 205417

[18] del Cueto M, Muzas A S, Somers M F, Kroes G J, Díaz C and Martin F 2017 Exploring surface landscapes with molecules: rotationally induced diffraction of H₂ on LiF(001) under fast grazing incidence conditions Phys. Chem. Chem. Phys. 19 16317–22

[19] Debiossac M, Atkinson P, Zugarramurdi A, Eddrief M, Finocchi F, Eisens V H, Momemi A, Khemliche H, Borisov A G and Roncin P 2017 Fast atom diffraction inside a molecular beam epitaxy chamber, a rich combination Appl. Surf. Sci. 391 53–8

[20] Seifert J, Lienemann J, Schüller A and Winter H 2015 Studies on coherence and decoherence in fast atom diffraction Nucl. Instrum. Methods Phys. Res. B 350 99–105

[21] Gravielle M S and Miraglia J E 2015 Influence of beam collimation on fast-atom diffraction studied via a semiquantum approach Phys. Rev. A 92 062709

[22] Gravielle M S and Miraglia J E 2016 Single- and double-slit collimating effects on fast-atom diffraction spectra Nucl. Instrum. Methods Phys. Res. B 382 42–8

[23] Gravielle M S 2017 Fast interaction of atoms with crystal surfaces: coherent lighting J. Phys.: Conf. Ser. 875 012006

[24] Gravielle M S, Schüller A, Winter H and Miraglia J 2011 Fast atom diffraction for grazing scattering of Ne atoms from a LiF(001) surface Nucl. Instrum. Methods Phys. Res. B 269 1208–11

[25] Gravielle M S and Miraglia J E 2014 Semiquantum approach for fast atom diffraction: solving the rainbow divergence Phys. Rev. A 90 052718

[26] Bocan G A, Fuhr J D and Gravielle M S 2016 van der Waals effects on grazing-incidence fast-atom diffraction for H on LiF(001) Phys. Rev. A 94 022711

[27] Bocan G A and Gravielle M S 2018 GIFAD for He/KCl(001). Structure in the pattern for (1 1 0) incidence as a measure of the projectile-cation interaction Nucl. Instrum. Methods Phys. Res. B 421 1–6

[28] Miraglia J E and Gravielle M S 2017 Reexamination of the interaction of atoms with a LiF(001) surface Phys. Rev. A 95 022710

[29] Schüller A and Winter H 2008 Supernumerary rainbows in the angular distribution of scattered projectiles for grazing collisions of fast atoms with a LiF(001) surface Phys. Rev. Lett. 100 097602

[30] Schüller A, Winter H, Gravielle M S, Pruneda J M and Miraglia J E 2009 He–LiF surface interaction potential from fast atom diffraction Phys. Rev. A 80 062903

[31] Born M and Wolf E 1986 Principles of Optics (Oxford: Pergamon) ch 10

[32] Adams C S, Sigel M and Mlynek J 1994 Atom optics Phys. Rep. 240 143–210

[33] Schüller A and Winter H 2009 Diffraction of fast atoms under axial surface channeling conditions Nucl. Instrum. Methods Phys. Res. B 267 628–33

[34] Taleb A A, Anemone G, Hayes W W, Manson J R and Farias D 2017 Mutiphonon excitation and quantum decoherence in neon scattering from solid surfaces Phys. Rev. B 95 075414

[35] Anemone G, Taleb A A, Hayes W W, Manson J R and Farias D 2017 Quantum decoherence behavior in neon scattering from Ru(001) and Graphene/Ru(001) surfaces: experiment and comparison with calculations J. Phys. Chem. C 121 22815–25

[36] Roncin P and Debiossac M 2017 Elastic and inelastic diffraction of fast atoms, Debye–Waller factor, and Mössbauer–Lamb–Dicke regime Phys. Rev. B 96 035415