Two component Coulomb glass in disordered superconducting films

JOE MITCHELL, ANIRBAN GANGOPADHYAY, VICTOR GALITSKI,
University of Maryland, College Park, MARKUS MUELLER, The Abdus Salam
International Center for Theoretical Physics — We propose a new two component
Coulomb glass model which includes strong disorder, Coulomb interaction, and on-
site electron pairing to investigate the effects of localized pairing in disordered films
on the insulating side of a superconductor-insulator transition. In particular, we
show how the density of states (DOS) changes with increasing on-site coupling
between electrons, from an Efros-Shklovskii linear DOS for the electrons at weak
coupling, to a strongly modified, non-monotonic DOS with nonuniversal Coulomb
gap for electrons and on-site pairs at moderate coupling, and finally to an Efros-
Shklovskii linear DOS for pairs at strong coupling. We discuss the effects of a
spatially random coupling. We use a Miller Abrahams resistor network mapping
to numerically calculate resistance for samples of this model, given temperature
and localization length. With certain parameter choices, we can obtain a peak in
resistance with respect to magnetic field, reminiscent of magnetoresistance peaks
reported experimentally.