Multipartite rational functions

Jurij Volčič,
with Igor Klep and Victor Vinnikov

University of Auckland

Multivariable Operator Theory

Technion 2017
Plan

1. Introduction: noncommutative rational functions

2. Multipartite rational functions: construction and universality

3. Amitsur’s theorem on multipartite identities

4. Noncommutative function theory perspective
Nc rational expressions

\(\mathbb{k}\) a field of characteristic 0, \(x = \{x_1, \ldots, x_g\}\) freely noncommuting letters, \(\mathbb{k}<x>\) the free algebra of nc polynomials.

\(\mathcal{R}_{\mathbb{k}}(x)\) nc rational expressions built from \(\mathbb{k}<x>\) using
+ , \cdot, −¹, (,).
e.g. \(x_2(1 + x_1x_2^{-1}(x_1 − 3))^{-1}\), \((x_1x_2)^{-1} − x_2^{-1}x_1^{-1}\), \((1 − x_1^{-1}x_1)^{-1}\).
Nc rational expressions

\(\mathbb{k} \) a field of characteristic 0, \(x = \{x_1, \ldots, x_g\} \) freely noncommuting letters, \(\mathbb{k}<x> \) the free algebra of nc polynomials.

\(\mathcal{R}_{\mathbb{k}}(x) \) nc rational expressions built from \(\mathbb{k}<x> \) using +, \(\cdot \), \(^{-1} \), (,), e.g. \(x_2(1 + x_1x_2^{-1}(x_1 - 3))^{-1} \), \((x_1x_2)^{-1} - x_2^{-1}x_1^{-1} \), \((1 - x_1^{-1}x_1)^{-1} \).

Evaluations of \(r \in \mathcal{R}_{\mathbb{k}}(x) \) on tuples of matrices:

- \(M_n(\mathbb{k})^g \rightarrow M_n(\mathbb{k}) \) for all \(n \in \mathbb{N} \);
- \(\text{dom } r \subseteq \bigcup_n M_n(\mathbb{k})^g \) the domain of \(r \);
- \(r \) is degenerate if \(\text{dom } r = \emptyset \) and nondegenerate otherwise.
Nc rational expressions

\(k \) a field of characteristic 0, \(x = \{x_1, \ldots, x_g\} \) freely noncommuting letters, \(k<x> \) the free algebra of nc polynomials.

\(R_k(x) \) nc rational expressions built from \(k<x> \) using
\(+, \cdot, -1, (,)\),
e.g. \(x_2(1 + x_1x_2^{-1}(x_1 - 3))^{-1}, (x_1x_2)^{-1} - x_2^{-1}x_1^{-1}, (1 - x_1^{-1}x_1)^{-1} \).

Evaluations of \(r \in R_k(x) \) on tuples of matrices:

- \(M_n(k)^g \rightarrow M_n(k) \) for all \(n \in \mathbb{N} \);
- \(\text{dom } r \subseteq \bigcup_n M_n(k)^g \) the domain of \(r \);
- \(r \) is degenerate if \(\text{dom } r = \emptyset \) and nondegenerate otherwise.

Define equivalence relation for nondegenerate expressions: \(r_1 \sim r_2 \) iff \(r_1(X) = r_2(X) \) for all \(X \in \text{dom } r_1 \cap \text{dom } r_2 \).
Classes of nondegenerate expressions are called **nc rational functions** and form a skew field $\mathbb{k}\langle x \rangle$, the **free skew field**.
Nc rational functions

Classes of nondegenerate expressions are called **nc rational functions** and form a skew field $\mathbb{k}\langle x \rangle$, the **free skew field**.

This construction is due to Helton, McCullough, Vinnikov. Others:

- evaluations on ∞-dim skew fields (Amitsur)
- full matrices over $\mathbb{k}\langle x \rangle$ (Cohn)
- Malcev-Neumann series of a free group (Lewin)
- grading on a free Lie algebra (Lichtman)
- unbounded operators associated to a von Neumann algebra (Linnell)
Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).
Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here $f = (f_n)_n$, $f_n : \Omega_n \subseteq M_n(\mathbb{k}) \rightarrow M_n(\mathbb{k})$, is a nc function if $f_{m+n}(X \oplus Y) = f_m(X) \oplus f_n(Y)$ and $f_n(PXP^{-1}) = Pf_n(X)P^{-1}$.
Nc function context

Evaluations of nc rational functions respect direct sums and similarities, so they are nc functions equipped with nc difference-differential calculus (Kaliuzhnyi-Verbovetskyi, Vinnikov).

Here \(f = (f_n)_n, f_n : \Omega_n \subseteq M_n(\mathbb{k}) \to M_n(\mathbb{k}) \), is a nc function if \(f_{m+n}(X \oplus Y) = f_m(X) \oplus f_n(Y) \) and \(f_n(PXP^{-1}) = Pf_n(X)P^{-1} \).

If \(f \) is a nc function, then

\[
\begin{pmatrix} X & H \\ 0 & Y \end{pmatrix} = \begin{pmatrix} f(X) & \sum_j \Delta_j(f)(X, Y)H_j \\ 0 & f(Y) \end{pmatrix},
\]

where \(\Delta_j \) are (left) directional nc difference-differential operators

\[
\Delta_j(f)_{m,n} : \Omega_m \times \Omega_n \to \text{Hom}_\mathbb{k}(\mathbb{k}^{m\times n}, \mathbb{k}^{m\times n}).
\]

(higher order nc functions)
Polynomial example

For example, if $f = x_1^2 x_2 x_1$, then the directional nc difference-differential operators of f at $(X_1, X_2; Y_1, Y_2)$ are given by

$$\Delta_1(f)(X_1, X_2; Y_1, Y_2)H = HY_1 Y_2 Y_1 + X_1 HY_2 Y_1 + X_1^2 X_2 H$$

$$\Delta_2(f)(X_1, X_2; Y_1, Y_2)H = X_1^2 HY_1$$
Polynomial example

For example, if $f = x_1^2 x_2 x_1$, then the directional nc difference-differential operators of f at $(X_1, X_2; Y_1, Y_2)$ are given by

$$\Delta_1(f)(X_1, X_2; Y_1, Y_2)H = H Y_1 Y_2 Y_1 + X_1 H Y_2 Y_1 + X_1^2 X_2 H$$
$$= 1 \otimes Y_1 Y_2 Y_1 + X_1 \otimes Y_2 Y_1 + X_1^2 X_2 \otimes 1$$

$$\Delta_2(f)(X_1, X_2; Y_1, Y_2)H = X_1^2 H Y_1$$
$$= X_1^2 \otimes Y_1$$

Hence $\Delta_1, \Delta_2 : \mathbb{k}\langle \mathbf{x} \rangle \to \mathbb{k}\langle \mathbf{x} \rangle \otimes \mathbb{k}\langle \mathbf{y} \rangle$.
Polynomial example

For example, if $f = x_1^2 x_2 x_1$, then the directional nc difference-differential operators of f at $(X_1, X_2; Y_1, Y_2)$ are given by

$$
\Delta_1(f)(X_1, X_2; Y_1, Y_2)H = HY_1 Y_2 Y_1 + X_1 HY_2 Y_1 + X_1^2 X_2 H
$$

$$
= 1 \otimes Y_1 Y_2 Y_1 + X_1 \otimes Y_2 Y_1 + X_1^2 X_2 \otimes 1
$$

$$
\Delta_2(f)(X_1, X_2; Y_1, Y_2)H = X_1^2 H Y_1
$$

$$
= X_1^2 \otimes Y_1
$$

Hence $\Delta_1, \Delta_2 : \mathbb{k}<\mathbf{x}> \to \mathbb{k}<\mathbf{x}> \otimes \mathbb{k}<\mathbf{y}>$.

Applying Δ_j further: $\mathbb{k}<\mathbf{x}^{(1)}> \otimes \cdots \otimes \mathbb{k}<\mathbf{x}^{(G)}>$. What are higher order nc rational functions?
Universal skew field of fractions

$k\langle x \rangle$ is the universal skew field of fractions of $k\langle x \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).
Universal skew field of fractions

$k\langle x \rangle$ is the **universal skew field of fractions** of $k\langle x \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a **SFF** of R if $R \subset U$ and R generates U as a skew field.
Universal skew field of fractions

\(\mathbb{k}\langle x \rangle \) is the **universal skew field of fractions** of \(\mathbb{k}\langle x \rangle \) (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring \(R \). A skew field \(U \) is a **SFF** of \(R \) if \(R \subset U \) and \(R \) generates \(U \) as a skew field.

Furthermore, \(U \) is a **USFF** of \(R \) if for every matrix \(A \) over \(R \) and a homomorphism \(\phi : R \rightarrow D \) into a skew field \(D \),

\[
\phi(A) \text{ invertible over } D \quad \Rightarrow \quad A \text{ invertible over } U.
\]
Universal skew field of fractions

$k\langle x \rangle$ is the **universal skew field of fractions** of $k\langle x \rangle$ (Cohn; Amitsur; Kaliuzhnyi-Verbovetskyi, Vinnikov).

Fix a ring R. A skew field U is a **SFF** of R if $R \subset U$ and R generates U as a skew field.

Furthermore, U is a **USFF** of R if for every matrix A over R and a homomorphism $\phi : R \to D$ into a skew field D,

$$\phi(A) \text{ invertible over } D \implies A \text{ invertible over } U.$$

This notion is due to Cohn (70s). It is a universal property in the category of skew fields with epimorphisms from R; morphisms are specializations (local homomorphisms) between skew fields.
Rings with USFF

Known rings admitting USFF:

- commutative domains
Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}\langle x \rangle$; semifirs, e.g. $\mathbb{k}[[x]]$, or nc functions analytic at the origin

(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

Tensor product of free algebras is not a pseudo-Sylvester domain (apart from trivial cases). Cohn ('97) proved that $\mathbb{k}\langle x \rangle \otimes \mathbb{k}\langle y \rangle$ has the USFF, but was unable to show this for more factors.

Today: $\mathbb{k}\langle x(1) \ldots x(G) \rangle := \mathbb{k}\langle x(1) \rangle \otimes \ldots \otimes \mathbb{k}\langle x(G) \rangle$ admits the USFF $\mathbb{k}(\mathbb{k}\langle x(1) \ldots x(G) \rangle)$ for every $G \in \mathbb{N}$.
Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. \(\mathbb{k}<x> \); semifirs, e.g. \(\mathbb{k}<\ll x\gg \), or nc functions analytic at the origin

(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. \(\mathbb{k}[t_1, t_2, t_3] \) is not a Sylvester domain)
Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. $\mathbb{k}<x>$; semifirs, e.g. $\mathbb{k}<<x>>$, or nc functions analytic at the origin

(semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. $\mathbb{k}[t_1, t_2, t_3]$ is not a Sylvester domain)

Tensor product of free algebras is not a pseudo-Sylvester domain (apart from trivial cases). Cohn (’97) proved that $\mathbb{k}<x> \otimes \mathbb{k}<y>$ has the USFF, but was unable to show this for more factors.
Rings with USFF

Known rings admitting USFF:

- commutative domains
- firs, e.g. \(\mathbb{k}<x> \); semifirs, e.g. \(\mathbb{k}<\langle x \rangle> \), or nc functions analytic at the origin

 (semi) free ideal ring: every (finitely generated) left ideal is a free left module of unique rank

- (pseudo-)Sylvester domains (a bit bigger class; still small, e.g. \(\mathbb{k}[t_1, t_2, t_3] \) is not a Sylvester domain)

Tensor product of free algebras is not a pseudo-Sylvester domain (apart from trivial cases). Cohn (’97) proved that \(\mathbb{k}<x> \otimes \mathbb{k}<y> \) has the USFF, but was unable to show this for more factors.

Today: \(\mathbb{k}<x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)}> := \mathbb{k}<x^{(1)}> \otimes \cdots \otimes \mathbb{k}<x^{(G)}> \) admits the USFF \(\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)}\rangle \) for every \(G \in \mathbb{N} \).
For $i = 1, \ldots, G$ let $\mathbf{x}^{(i)} = \{x^{(i)}_1, \ldots, x^{(i)}_{g_i}\}$ be sets of freely noncommuting variables and $\mathbf{x} = \mathbf{x}^{(1)} \cup \cdots \cup \mathbf{x}^{(G)}$.
For $i = 1, \ldots, G$ let $x^{(i)} = \{x_{1}^{(i)}, \ldots, x_{g_{i}}^{(i)}\}$ be sets of freely noncommuting variables and $x = x^{(1)} \cup \cdots \cup x^{(G)}$.

Given $r \in \mathcal{R}_{k}(x)$ and $X^{(i)} \in M_{n_{i}}(\mathbb{K})^{g_{i}}$ we define **mp-evaluation** of r at $X = (X^{(1)}, \ldots, X^{(G)})$ as

$$r^{\text{mp}}(X) := r \left(X^{(1)} \otimes I \otimes \cdots \otimes I, I \otimes X^{(2)} \otimes \cdots \otimes I, \ldots, I \otimes I \otimes \cdots \otimes X^{(G)} \right)$$

in $M_{n_{1} \cdots n_{G}}(\mathbb{K})$, if all nested inverses exist.

Here \otimes denotes Kronecker’s product; note that $(A \otimes I)(I \otimes B) = (I \otimes B)(A \otimes I)$.
Example

For example, let $x = \{x_1, x_2\}$, $y = \{y_1, y_2\}$ and
\[
r = (x_1 + y_2x_2x_1y_1)^{-1} - y_2^{-1}.
\]
Example

For example, let $x = \{x_1, x_2\}$, $y = \{y_1, y_2\}$ and

$$r = (x_1 + y_2 x_2 x_1 y_1)^{-1} - y_2^{-1}.$$

Then

$$r(X; Y) = (X_1 \otimes I + (I \otimes Y_2)(X_2 \otimes I)(X_1 \otimes I)(I \otimes Y_1))^{-1}$$

$$- (I \otimes Y_2)^{-1}$$
Example

For example, let \(x = \{x_1, x_2\} \), \(y = \{y_1, y_2\} \) and
\[
r = (x_1 + y_2 x_2 x_1 y_1)^{-1} - y_2^{-1}.
\]

Then
\[
r(X; Y) = (X_1 \otimes I + (I \otimes Y_2)(X_2 \otimes I)(X_1 \otimes I)(I \otimes Y_1))^{-1} - (I \otimes Y_2)^{-1} = (X_1 \otimes I + X_2 X_1 \otimes Y_2 Y_1)^{-1} - I \otimes Y_2^{-1}.
\]
Multipartite rational functions

Given \(r \in \mathcal{R}_k(x) \) let

\[
\text{dom}^{\text{mp}} r \subseteq \bigcup_{n_1, \ldots, n_G} M_{n_1}(\mathbb{K})^{g_1} \times \cdots \times M_{n_G}(\mathbb{K})^{g_G}
\]

be its \textbf{mp-domain}.
Multipartite rational functions

Given $r \in \mathbb{R}_k(x)$ let

$$\text{dom}^{mp} r \subseteq \bigcup_{n_1,\ldots,n_G} M_{n_1}(\mathbb{k})^{g_1} \times \cdots \times M_{n_G}(\mathbb{k})^{g_G}$$

be its $\textbf{mp-domain}$.

On the set of rational expressions with non-empty mp-domains we define equivalence relation $r_1 \sim r_2$ if and only if $r_1^{mp}(X) = r_2^{mp}(X)$ for all $X \in \text{dom}^{mp} r_1 \cap \text{dom}^{mp} r_2$. The equivalence class of r is denoted $[r]$ and called a $\textbf{multipartite rational function}$.

The set of multipartite rational functions is denoted $\mathbb{R}_k(x^{(1)} \cdots x^{(G)})$ and endowed with the natural ring structure.

Theorem $\mathbb{R}_k(x^{(1)} \cdots x^{(G)})$ is a SFF of $\mathbb{R}_k(x^{(1)} \cdots x^{(G)})$.

Multipartite rational functions

Given \(r \in \mathcal{R}_k(x) \) let

\[
\text{dom}^{\text{mp}} r \subseteq \bigcup_{n_1, \ldots, n_G} \mathbb{M}_{n_1}(\mathbb{k})^{g_1} \times \cdots \times \mathbb{M}_{n_G}(\mathbb{k})^{g_G}
\]

be its \textbf{mp-domain}.

On the set of rational expressions with non-empty mp-domains we define equivalence relation \(r_1 \sim r_2 \) if and only if \(r_1^{\text{mp}}(X) = r_2^{\text{mp}}(X) \) for all \(X \in \text{dom}^{\text{mp}} r_1 \cap \text{dom}^{\text{mp}} r_2 \). The equivalence class of \(r \) is denoted \(\bar{r} \) and called a multipartite rational function.

The set of multipartite rational functions is denoted \(\mathbb{k} \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \) and endowed with the natural ring structure.

Theorem

\(\mathbb{k} \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \) is a SFF of \(\mathbb{k} \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \).
Basic properties

(1) Let $\mathbf{M} \in M_d(\mathbb{K}[x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)}])$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{K}) for some $X \in \text{dom } \mathbf{M}$.
Basic properties

(1) Let $\mathbf{M} \in M_d(\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$. Then \mathbf{M} is invertible if and only if $\mathbf{M}(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \text{dom} \, \mathbf{M}$.

(2) Let $r \in \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ and $Y \in \text{dom} \, r$ with $Y^{(1)} \in M_d(\mathbb{k}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$. Then there exists $S \in M_d(\mathbb{k}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$ such that

$$r(Y^{(1)}, X) = S(X)$$

for all $X \in \text{dom} \, S$ such that $(Y^{(1)}, X) \in \text{dom} \, r$.
Basic properties

(1) Let $M \in M_d(\mathbb{K}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$. Then M is invertible if and only if $M(X)$ is invertible (as a matrix over \mathbb{K}) for some $X \in \text{dom } M$.

(2) Let $r \in \mathbb{K}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ and $Y \in \text{dom } r$ with $Y^{(1)} \in M_d(\mathbb{K})^{G_1}$. Then there exists $S \in M_d(\mathbb{K}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$ such that

$$r(Y^{(1)}, X) = S(X)$$

for all $X \in \text{dom } S$ such that $(Y^{(1)}, X) \in \text{dom } r$.

(3)

$$\mathbb{K}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G_1)} \rangle \cap \mathbb{K}\langle x^{(G_0)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle = \mathbb{K}\langle x^{(G_0)} \leftrightarrow \cdots \leftrightarrow x^{(G_1)} \rangle$$

holds in $\mathbb{K}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ for $G_0 \leq G_1$.

Basic properties

(1) Let $M \in M_d(\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$. Then M is invertible if and only if $M(X)$ is invertible (as a matrix over \mathbb{k}) for some $X \in \text{dom } M$.

(2) Let $r \in \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ and $Y \in \text{dom } r$ with $Y^{(1)} \in M_d(\mathbb{k})_{G_1}$. Then there exists $S \in M_d(\mathbb{k}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle)$ such that $r(Y^{(1)}, X) = S(X)$ for all $X \in \text{dom } S$ such that $(Y^{(1)}, X) \in \text{dom } r$.

(3) $\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G_1)} \rangle \cap \mathbb{k}\langle x^{(G_0)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle = \mathbb{k}\langle x^{(G_0)} \leftrightarrow \cdots \leftrightarrow x^{(G_1)} \rangle$ holds in $\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ for $G_0 \leq G_1$.

(4) The centralizer of $\mathbb{k}\langle x^{(1)} \rangle$ in $\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ equals $\mathbb{k}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ if $|x_1| > 1$.

Auxiliary result

Let D be an arbitrary skew field containing k. Then $D \otimes k\langle x \rangle$ is a fir (Cohn); in particular, it has the USFF.
Auxiliary result

Let D be an arbitrary skew field containing k. Then $D \otimes k[x]$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes k[x]$. Then M is invertible over the USFF of $D \otimes k[x]$ if and only if $M(X) \in M_d(D \otimes M_n(k)) \cong M_{dn}(D)$ is invertible for some $X \in M_n(k)$.
Auxiliary result

Let D be an arbitrary skew field containing \mathbb{k}. Then $D \otimes \mathbb{k}<x>$ is a fir (Cohn); in particular, it has the USFF.

Proposition

Let M be a $d \times d$ matrix over $D \otimes \mathbb{k}<x>$. Then M is invertible over the USFF of $D \otimes \mathbb{k}<x>$ if and only if $M(X) \in M_d(D \otimes M_n(\mathbb{k})) \cong M_{dn}(D)$ is invertible for some $X \in M_n(\mathbb{k})^g$.

Ingredients: Cohn’s theory of USFFs, PI theory, skew field constructions and power series expansions.
Universality

Theorem
\[\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \text{ is the USFF of } \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle. \]
Universality

Theorem
\[k \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \] is the USFF of \(k \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \).

Corollary

Let \(r \in \mathcal{R}_k(x) \). TFAE:

(i) \(r^{mp}(X) = 0 \) for all \(X \in \text{dom}^{mp} r \);

(ii) \(r(X) = 0 \) for all \(X \in \text{dom} r \) such that \([X^{(i_1)}_{j_1}, X^{(i_2)}_{j_2}] = 0 \) for \(i_1 \neq i_2 \);

(iii) for every skew field \(D \), \(r(a) \in \{0, \text{undef}\} \) for every tuple \(a \in D^{g_1 + \cdots + g_G} \) such that \([a^{(i_1)}_{j_1}, a^{(i_2)}_{j_2}] = 0 \).
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<x^{(1)}\leftrightarrow \cdots \leftrightarrow x^{(G)}>$ and let
$\phi : \mathbb{k}<x^{(1)}\leftrightarrow \cdots \leftrightarrow x^{(G)}> \rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ and let $\phi : \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \to D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<x^{(1)}\leftrightarrow\cdots\leftrightarrow x^{(G)}>$ and let $\phi : \mathbb{k}<x^{(1)}\leftrightarrow\cdots\leftrightarrow x^{(G)}> \to D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D

2. $D \otimes \mathbb{k}<x^{(1)}>$ fir: $M(x^{(1)}, a^{(2)}, \ldots)$ invertible over the USFF of $D \otimes \mathbb{k}<x^{(1)}>$
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{K}<\mathbf{x}^{(1)}\leftrightarrow\cdots\leftrightarrow\mathbf{x}^{(G)}>$ and let
\[\phi : \mathbb{K}<\mathbf{x}^{(1)}\leftrightarrow\cdots\leftrightarrow\mathbf{x}^{(G)}> \rightarrow D \]
be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_{j}^{(i)} = \phi(x_{j}^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D

2. $D \otimes \mathbb{K}<\mathbf{x}^{(1)}> \text{ fir: } M(x^{(1)}, a^{(2)}, \ldots)$ invertible over the USFF of $D \otimes \mathbb{K}<\mathbf{x}^{(1)}>$

3. proposition: $M(X^{(1)}, a^{(2)}, \ldots) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{K})^{n_1}$
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}<x^{(1)}\leftrightarrow \cdots \leftrightarrow x^{(G)}>$ and let

$\phi: \mathbb{k}<x^{(1)}\leftrightarrow \cdots \leftrightarrow x^{(G)}> \rightarrow D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D

2. $D \otimes \mathbb{k}<x^{(1)}> \text{ fir: } M(x^{(1)}, a^{(2)}, \ldots)$ invertible over the USFF of $D \otimes \mathbb{k}<x^{(1)}>$

3. proposition: $M(X^{(1)}, a^{(2)}, \ldots) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k}^{g_1})$

4. induction: $N = M(X^{(1)}, x^{(2)}, \ldots)$ invertible over $\mathbb{k}<x^{(2)}\leftrightarrow \cdots \leftrightarrow x^{(G)}>$
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$ and let
$\phi : \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \to D$ be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D

2. $D \otimes \mathbb{k}\langle x^{(1)} \rangle$ fir: $M(x^{(1)}, a^{(2)}, \ldots)$ invertible over the USFF of $D \otimes \mathbb{k}\langle x^{(1)} \rangle$

3. proposition: $M(X^{(1)}, a^{(2)}, \ldots) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{k})^{g_1}$

4. induction: $N = M(X^{(1)}, x^{(2)}, \ldots)$ invertible over $\mathbb{k}\langle x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle$

5. basic property: $N(X^{(2)}, \ldots)$ invertible for some $X^{(i)} \in M_{n_i}(\mathbb{k})^{g_i}$
Sketch of the proof

Let M be a $d \times d$ matrix over $\mathbb{L}_k<x^{(1)}\leftrightarrow\cdots\leftrightarrow x^{(G)}>$ and let
\(\phi: \mathbb{L}_k<x^{(1)}\leftrightarrow\cdots\leftrightarrow x^{(G)}> \to D \) be a homomorphism into a skew field D such that $\phi(M)$ is invertible over M.

1. Write $a_j^{(i)} = \phi(x_j^{(i)})$; $M(a^{(1)}, a^{(2)}, \ldots)$ invertible over D

2. $D \otimes \mathbb{L}_k<x^{(1)}>$ fir: $M(x^{(1)}, a^{(2)}, \ldots)$ invertible over the USFF of $D \otimes \mathbb{L}_k<x^{(1)}>$

3. proposition: $M(X^{(1)}, a^{(2)}, \ldots) \in M_{dn_1}(D)$ invertible for some $X \in M_{n_1}(\mathbb{L})^{g_1}$

4. induction: $N = M(X^{(1)}, x^{(2)}, \ldots)$ invertible over $\mathbb{L}_k\langle x^{(2)}\leftrightarrow\cdots\leftrightarrow x^{(G)}\rangle$.

5. basic property: $N(X^{(2)}, \ldots)$ invertible for some $X^{(i)} \in M_{n_i}(\mathbb{L})^{g_i}$

6. $M(X^{(1)}, X^{(2)}, \ldots)$ invertible, so M invertible over $\mathbb{L}_k\langle x^{(1)}\leftrightarrow\cdots\leftrightarrow x^{(G)}\rangle$.
Higher order nc rational functions

Let \(r \in \mathbb{K}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \). Then

1. \(r \) respects direct sums in the first factor and up to canonical shuffle in other factors; \((A \otimes B \sim B \otimes A)\)

2. \(r \) respects similarities in every factor.

Hence \(r \) is a nc function of order \(G - 1 \).
Higher order nc rational functions

Let \(r \in \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \). Then

1. \(r \) respects direct sums in the first factor and up to canonical shuffle in other factors; \((A \otimes B \sim B \otimes A)\)

2. \(r \) respects similarities in every factor.

Hence \(r \) is a nc function of order \(G - 1 \).

Directional nc difference-differential operators

\[
\Delta^{(i)}_j : \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \rightarrow \mathbb{k}\langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x'\overset{(i)}{\leftrightarrow} x^{(i)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle
\]

satisfy the usual properties.
Higher order nc rational functions cont’d

Furthermore, diagrams like

$\llbracket \langle x^{(1)} \cup x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \rrbracket \rightarrow \llbracket \langle x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \rrbracket$

$\downarrow \Delta_j^{(1)}$

$\llbracket \langle x'^{(1)} \cup x'^{(2)} \leftrightarrow x^{(1)} \cup x^{(2)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \rrbracket \rightarrow \llbracket \langle x'^{(1)} \leftrightarrow x^{(1)} \leftrightarrow \cdots \leftrightarrow x^{(G)} \rangle \rrbracket$

commute, where \rightarrow are specializations (local homomorphisms) between skew fields.
Thank you,
and happy birthday!