A Girsanov Result through Birkhoff Integral

Domenico Candeloro and Anna Rita Sambucini

Abstract. A vector-valued version of the Girsanov theorem is presented, for a scalar process with respect to a Banach-valued measure. Previously, a short discussion about the Birkhoff-type integration is outlined, as for example integration by substitution, in order to fix the measure-theoretic tools needed for the main result, Theorem 6, where a martingale equivalent to the underlying vector probability has been obtained in order to represent the modified process as a martingale with the same marginals as the original one.

Keywords: Girsanov Theorem, martingale, Birkhoff integral
2010 AMS Classification: 28B05, 60G44

1 Introduction

In probability theory, the so-called Girsanov Theorem is a well-known result, whose interest lies both in its theoretical features and in its technical consequences, see for example [19]. The original formulation of this theorem is related to the Wiener measure, i.e. the distribution of the standard Brownian Motion, $(B_t)_{t \in [0, +\infty]}$ as a stochastic process on a probability space (Ω, \mathcal{A}, P).

The Girsanov Theorem is a fundamental tool for Stochastic Calculus and Random Walks; this last mathematical model has many uses as a simulation tool: Brownian Motion of Molecules, stock prices and behavior of investors, modeling of cascades of neuron firings in brain and it has important practical uses in the internet: Twitter uses random walks to suggest who to follow, Google uses random walks to order pages which match a search phrase.

In many concrete situations, particularly in stochastic calculus, the resultant processes $(\tilde{B}_t)_{t}$ are usually obtained as suitable transformations of $(B_t)_{t}$, and so their distribution is different from the Wiener measure. A typical situation is the

** corresponding author

The authors have been supported by Fondo Ricerca di Base 2015 University of Perugia - titles: "L^{p} Spaces in Banach Lattices with applications", "The Choquet integral with respect to fuzzy measures and applications" and by Grant Prot. N. U UFMBAZ2017/0000326 of GNAMPA – INDAM (Italy).
following: assume that \(a(t, \omega) \) is a stochastic process adapted to the Brownian Motion \((B_t)_{t} \), and define:

\[
(\tilde{B}_t)_t := \int_0^t a(t, \omega)dt + B(t).
\]

Though the distribution of this process is different by the Wiener measure, the Girsanov theorem states that it is possible to endow the basic probability space, \(Q \) (which turns out to be absolutely continuous w.r.t. \(P \)), in such a way that the distribution of \((\tilde{B}_t)_{t} \) under the new probability \(Q \) is the Wiener measure, i.e. the same as \((B_t)_{t} \) under the original probability \(P \). This clearly simplifies all calculations involving just the distribution of \((\tilde{B}_t)_{t} \), since in the new probability space this process is the same as \((B_t)_{t} \).

In the example outlined above, the measure \(Q \) can be described by its derivative w.r.t. \(P \):

\[
\frac{dQ}{dP}(\omega) = \exp \left\{ -\int_0^T a(s, \omega)dB_s - \frac{1}{2} \int_0^T a^2(s, \omega)dt \right\}.
\]

We also point out that, in this example, the process

\[
\exp \left\{ -\int_0^t a(s, \omega)dB_s - \frac{1}{2} \int_0^t a^2(s, \omega)dt \right\}
\]

is a martingale (Novikov condition).

Our research in this paper is motivated by the fact that, when the distributions involved are conditioned by some initial information (that can be represented as a particular sub-\(\sigma\)-algebra \(\mathcal{F} \) of \(\mathcal{A} \), then they should be evaluated with respect to \((P|\mathcal{F}) \), which is a Banach space-valued measure.

So, in our setting here, continuing the study started in [8], changing a bit the notations, the basic space is \((T, \mathcal{A}, \mu) \) where \(\mu : \mathcal{A} \to \mathbb{R}^+ \) a non-negative countably additive measure. Let \((X, \| \cdot \|) \) be a Banach space with the origin \(0 \). We also will consider measures, taking values in \(X \); in this case measures will be usually denoted with letters like \(m \) or \(M \), while functions with capital letters, like \(F \) or \(W \).

2 Preliminaries

Let \(T \) be an abstract, non-empty set, \(\mathcal{A} \) a \(\sigma \)-algebra of subsets of \(T \), \(\mathcal{B} \) the Borel \(\sigma \)-algebra in the real line and \(\mu : \mathcal{A} \to \mathbb{R}^+_0 \) a non-negative countably additive measure. Let \((X, \| \cdot \|) \) be a Banach space with the origin \(0 \). We also will consider measures, taking values in \(X \); in this case measures will be usually denoted with letters like \(m \) or \(M \), while functions with capital letters, like \(F \) or \(W \).
Definition 1. A partition of T is a finite or countable family of nonempty sets $P := \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}$ such that $A_i \cap A_j = \emptyset$, $i \neq j$ and $\cup_{n \in \mathbb{N}} A_n = T$.

If P and P' are two partitions of T, then P' is said to be finer than P, denoted by $P' > P$, if every set of P' is included in some set of P. The common refinement of two partitions P and P' is the partition $P \vee P'$.

We shall make use of the Birkhoff integral, for two different cases. According with the results obtained in [4], and taking into account that we need measurable scalar functions f and strongly measurable vector functions F, we can adopt the following version:

Definition 2. Given two pairs (F, μ) and (f, m) with $F : T \to X$ and $f : T \to \mathbb{R}$, while μ and m denote two countably additive measures with values in \mathbb{R}_0^+ and X respectively, then

$\alpha)$ a strongly measurable vector function F is B_1-integrable on T w.r.t μ

$\beta)$ a measurable scalar function f is B_2-integrable on T w.r.t m

if $\exists I \in X$ with the following property: $\forall \varepsilon > 0$, $\exists P_{\varepsilon}$ partition of T so that $\forall P = \{A_n\}_{n \in \mathbb{N}}$ of T, with $P \geq P_{\varepsilon}$ and $\forall t_n \in A_n, n \in \mathbb{N}$, one has (respectively)

$$\lim_{n} \left\| \sum_{i=1}^{n} F(t_i)\mu(A_i) - I \right\| \leq \varepsilon; \quad (1)$$

$$\lim_{n} \left\| \sum_{i=1}^{n} f(t_i)m(A_i) - I \right\| \leq \varepsilon. \quad (2)$$

The set I is called the B_1 (B_2) integral of F (f) on T with respect to μ (m) and is denoted by $\int_T F d\mu$, $\int_T f dm$; the corresponding spaces of B_1-integrable functions are denoted with $L_{B_1}(\mu, X)$ and $L_{B_2}(m, \mathbb{R}_0^+)$.

As proved in [4, Theorem 3.18], even if μ is σ-finite then this notion of integrability is equivalent to the classic Birkhoff integrability for Banach-valued strongly measurable mappings. Moreover in [7] B_1-integrability is named strong Birkhoff integrability. One can easily deduce, by means of a Cauchy criterion, that the B_1- or B_2-integrability on T implies the same in every subset $A \in \mathcal{A}$.

For an extensive literature on the Birkhoff or non absolute integrals see for example [1][7][18][20][23].

3 Some Properties of the Birkhoff Integrals

We will deduce now some useful formulas for the notions of Birkhoff integral previously introduced. These formulas will also give a link between the B_1- and B_2-integral. First, let us mention a stronger result concerning the B_1-integrability.
Theorem 1. (Theorem 3.14) Let $F \in L_{B_1}(\mu, X)$, then $\forall \varepsilon > 0$ there exists a countable partition $P := \{A_n, n \in \mathbb{N}\} \subset \mathcal{A}$, such that

$$\sum_j \left\| F(t_j)\mu(E_j) - \int_{E_j} F \, d\mu \right\| \leq \varepsilon$$

holds true, for every partition $P' := \{E_j, j \in \mathbb{N}\} > P$ and $\forall t_j \in E_j$.

Remark 1. If f is measurable and F is B_1-integrable then the product $t \mapsto f(t)F(t)$ is strongly measurable. Moreover, thanks to the measurability of f, we can define a countable measurable partition of T, $(H_j)_j := (\{t \in T : j - 1 \leq |f(t)| < j\})_j$. Since F is B_1-integrable, according with Theorem 1 for every $\varepsilon > 0$ and for each integer j there exists a measurable countable partition $\{E^j_k, k \in \mathbb{N}\}$ of H_j such that

$$\sum_r \left\| F(t^*_r)\mu(E^*_r) - \int_{E^*_r} F \, d\mu \right\| \leq \frac{\varepsilon}{2^j}$$

holds true, for every finer partition $\{E^r_j, r \in \mathbb{N}\}$ and every choice of points $t^*_r \in E^*_r$. Then, we have also

$$\sum_j \sum_r \left\| F(t^*_r)f(t^*_r)\mu(E^*_r) - f(t^*_r)\mu(E^*_r) \right\| \leq 2\varepsilon. \quad (3)$$

Theorem 2. (integration by substitution) Given $f : T \to \mathbb{R}$ and $F \in L_{B_1}(\mu, X)$, the product $t \mapsto f(t)F(t) \in L_{B_1}(\mu, X)$ iff $f \in L_{B_2}(M, \mathbb{R})$, where $M(A) := \int_A F \, d\mu$ and

$$\int_T f(t)F(t) \, d\mu = \int_T f(t) \, dM. \quad (4)$$

Another useful formula comes from probability theory. We just state it in a particular situation. Given a measurable $f : T \to \mathbb{R}$ and a countably additive measure $m : \mathcal{A} \to X$, we can set $m_f(B) = m(f^{-1}(B))$ for every Borel set $B \in \mathcal{B}$. Of course, m_f is a countably additive measure, called the distribution of f (with respect to m). We have the following result.

Theorem 3. For any measurable function $g : \mathbb{R} \to \mathbb{R}$, one has

$$\int_T g(f) \, dm = \int_{\mathbb{R}} g(t) \, dm_f$$

provided that both B_2-integrals exist.

We shall denote by σ_f the sub-σ-algebra of \mathcal{A} induced by $f : T \to \mathbb{R}$, i.e. the family of all sets of the type $f^{-1}(B)$, $B \in \mathcal{B}$.

Definition 3. Let $F \in L_{B_1}(\mu, X)$. Given any sub-σ-algebra \mathcal{E} of \mathcal{A}, the conditional expectation $\mathbb{E}(F|\mathcal{E})$ (if it exists) is a strongly \mathcal{E}-measurable mapping Z, in $L_{B_1}(\mu, X)$, such that

$$\int_E F \, d\mu = \int_E Z \, d\mu$$
for every $E \in \mathcal{E}$.

In case $\mathcal{E} = \sigma_f$, then we write $Z = \mathbb{E}(F|\mathcal{E}) = \mathbb{E}(F|f)$, and in this case Z turns out to be a measurable function of f, say $Z = h(f)$: then

$$\int_{f^{-1}(B)} Fd\mu = \int_{f^{-1}(B)} h(f)d\mu$$

for every Borel set B.

The conditional expectation enjoys several properties, easy to deduce, among which linearity with respect to F, and the so-called tower property, i.e., whenever $\mathcal{E} \subset \mathcal{G} \subset \mathcal{A}$

$$\mathbb{E}(F|\mathcal{E}) = \mathbb{E}(\mathbb{E}(F|\mathcal{G})|\mathcal{E}),$$

provided that all the involved quantities exist.

The next theorem states another important property of the conditional expectation.

Theorem 4. Let us assume that $\mathbb{E}(F|\mathcal{E})$ exists. Then, for every \mathcal{E}-measurable mapping $g : T \to \mathbb{R}$ it holds: $\mathbb{E}(F(t)g(t)|\mathcal{E}) = g(t)\mathbb{E}(F|\mathcal{E})$ provided that $F(t)g(t) \in L_{B_1}(\mu, X)$.

4 Girsanov Theorem

We shall now state an analogous result as the well-known Girsanov Theorem. With this purpose, we shall assume that in the space (T, A) a σ-additive measure $M : A \to X$ is fixed.

Definition 4. A scalar process $(w_s)_s$ is said to be a **Martingale** in itself, if for every $s, v \in [0, S], s < v$, it holds $\mathbb{E}(w_v|\mathcal{E}_s) = w_s$, i.e.

$$\int_E w_v dM = \int_E w_s dM$$

holds true, $\forall v, s \in [0, S], s < v$, and $\forall E \in \mathcal{E}_s$, where \mathcal{E}_s is the least σ-algebra contained in \mathcal{A} such that all $w_r, r \leq s$, are measurable.

Assumption 1 Let us assume that a scalar-valued process $(w_s)_s \in [0, S]$ is defined, in the space (T, A, M), with the property that

- **(1a)** $w_s \in L_{B_2}(M, \mathbb{R})$ for each s, with null integral, and that its distribution $M_s := M(w_s^{-1}(B)), \forall B \in \mathcal{B}$ has a density $f_s \in L_{B_1}(\lambda, X)$

- **(1b)** let $\tilde{w}_s = w_s + sq$, with $q \in \mathbb{R}^+$; $\forall s$ there exists a measurable mapping $g_s : T \to \mathbb{R}$ such that $f_s(x) = g_s(x)f_s(x - qs)$, so that $\forall B \in \mathcal{B}$

$$M_s(B) = \int_B g_s(x) dM_{\tilde{w}_s};$$ \hspace{1cm} (5)

(We observe that, since $g_s(x)f_s(x - qs) = f_s(x)$ is in $L_{B_1}(\lambda, X)$, from Theorem 2 it follows that g_s is B_2-integrable w.r.t. $M_{\tilde{w}_s}$)
\(\{ g_s(\tilde{w}_s) \} \) is a Martingale.

As a consequence, we have

Theorem 5. Set for every \(A \in \mathcal{A} \), \(Q(A) := \int_A g_S(\tilde{w}_S) dM \). Under Assumptions 1 it turns out that \(Q(\tilde{w}_s) = M(\tilde{w}_s) \), for every \(s \in [0, S] \).

The previous theorem shows that, under the new measure \(Q \), every random variable \(\tilde{w}_s = w_s + sq \) has the same distribution as the corresponding \(w_s \) under \(M \).

Our next step is to prove that the process \(\{ \tilde{w}_s \} \) is a martingale, under \(Q \).

(This property is usually formulated by saying that \(Q \) is a Martingale equivalent measure). To this aim, we shall assume also the following:

Assumption 2 The scalar process \(\{ \tilde{w}_t g_t(\tilde{w}_t) \} \) is a martingale w.r.t. \(M \).

Concerning the last assumption, we remark that, in case \(\{ w_t \} \) is the classical (scalar) Brownian Motion, then the process \(\{ \tilde{w}_t g_t(\tilde{w}_t) \} \) reduces to \(\{ w_t e^{-qw_t - \frac{1}{2} q^2 t} + qte^{-qw_t - \frac{1}{2} q^2 t} \} \), which shows that the classical Brownian Motion satisfies the Assumption 2. So we have

Theorem 6. Under Assumptions 1, 2 the process \((\tilde{w}_s) \) is a martingale with respect to \(Q \).

Proof. Fix arbitrarily \(s \) and \(v \), with \(s < v \), and fix \(E \in \mathcal{E}_s \). We observe that

\[
\int_E \tilde{w}_v dQ = \int_E w_v g_v(\tilde{w}_v) dM + qvQ(E).
\]

Since \(E \in \mathcal{E}_s \), it is clear that \(Q(E) = \int_E g_s(\tilde{w}_s) dM \). Therefore,

\[
\int_E \tilde{w}_v dQ = \int_E (w_v g_v(\tilde{w}_v) + qv g_v(\tilde{w}_v)) dM = \int_E \tilde{w}_v g_v(\tilde{w}_v) dM.
\]

By the Assumption 2 it follows then

\[
\int_E \tilde{w}_v dQ = \int_E (w_s g_s(\tilde{w}_s) dM + qsQ(E).
\]

But

\[
\int_E w_s g_s(\tilde{w}_s) dM = \int_E w_s g_S(\tilde{w}_S) dM = \int_E w_s dQ
\]

and in conclusion

\[
\int_E \tilde{w}_v dQ = \int_E \tilde{w}_s dQ,
\]

which shows the martingale property.
Conclusion

We have studied some theoretical aspects of the Birkhoff integral, both for scalar valued functions with respect to Banach-valued measures and for the dual situation of vector-valued functions with respect to scalar measures. These previous results are then used in order to state an abstract version of the Girsanov Theorem, where the underlying probability measure M is Banach-valued. The main results state that, under suitable conditions, a Martingale Equivalent to M is found, under which the transformed process is a martingale with the same marginals as the original one.

References

1. A. Boccuto, D. Candeloro and A. R. Sambucini, Henstock multivalued integrability in Banach lattices with respect to pointwise non atomic measures, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26 (4) (2015), 363-383 Doi: 10.4171/RLM/710.
2. A. Boccuto, A. M. Minotti and A. R. Sambucini, Set-valued Kurzweil-Henstock integral in Riesz space setting, PanAm. Math. J., 23 (1), 57–74, (2013).
3. A. Boccuto, A. R. Sambucini, A note on comparison between Birkhoff and McShane integrals for multifunctions, Real Analysis Exchange, 37 (2), 3–15, (2012). Doi: 10.14321/realanalexch.37.2.0315.
4. D. Candeloro, A. Croitoru, A. Gavriluţ, A.R. Sambucini, An Extension of the Birkhoff Integrability for Multifunctions, Mediterr. J. Math., 13 (5), 2551–2575, (2016), Doi: 10.1007/s00009-015-0639-7.
5. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Gauge integrals and selections of weakly compact valued multifunctions, J. of Math. Anal. Appl., 441, (1), 293–308, (2016), Doi: 10.1016/j.jmaa.2016.04.009.
6. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Relations among gauge and Pettis integrals for multifunctions with weakly compact convex values, Annali di Matematica, 197 (1) 171-183, (2018) Doi: 10.1007/s10231-017-0674-z
7. D. Candeloro, L. Di Piazza, K. Musial, A.R. Sambucini, Some new results on integration for multifunction, in press in Ricerche di Matematica, Doi: 10.1007/s11587-018-0376-x.
8. D. Candeloro, C.C.A. Labuschagne, V. Marraffa, A.R. Sambucini, Set-valued Brownian motion, in press in Ricerche di Matematica Doi: 10.1007/s11587-018-0372-1.
9. D. Candeloro, A. R. Sambucini, Order-type Henstock and Mc Shane integrals in Banach lattice setting, Proceedings of the SISY 2014 - IEEE 12th International Symposium on Intelligent Systems and Informatics, pages 55–59; ISBN 978-1-4799-5995-2 (2014). Doi: 10.1109/SISY.2014.6923557
10. D. Candeloro, A. R. Sambucini, Comparison between some norm and order gauge integrals in Banach lattices, PanAm. Math. J. 25(3), 1-16, (2015).
11. B. Cascales, J. Rodriguez, Birkhoff integral for multi-valued functions, J. Math. Anal. Appl., 297 (2004), 540–560. Doi:10.1016/j.jmaa.2004.03.026.
12. B. Cascales, J. Rodriguez, The Birkhoff integral and the property of Bourgain, Math. Ann. 331 (2005), No. 2, 259–279. Doi: 10.1007/s00208-004-0581-7.
13. K. Cichoń, M. Cichoń, Some Applications of Nonabsolute Integrals in the Theory of Differential Inclusions in Banach Spaces, G.P. Curbera,G. Mockenhaupt, W.J.
14. A. Croitoru, A. Gavriluţ, *Comparison between Birkhoff integral and Gould integral*, Mediterr. J. Math. **12** (2015), 329–347, Doi: 10.1007/50009-014-0410-5.

15. A. Croitoru, A. Gavriluţ and A. E. Iosif, *Birkhoff weak integrability of multifunctions*, International Journal of Pure Mathematics **2**, 47–54, (2015).

16. A. Croitoru, A. Iosif, N. Mastorakis and A. Gavriluţ, *Fuzzy multimeasures in Birkhoff weak set-valued integrability*, 2016 Third International Conference on Mathematics and Computers in Sciences and in Industry (MCSI), Chania, (2016), 128-135. Doi: 10.1109/MCSI.2016.034

17. D.H. Fremlin, *The Mc Shane and Birkhoff integrals of vector-valued functions*, University of Essex Mathematics Department Research Report 92-10, (2004) available at URL http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

18. V. Marraffa, *A Birkhoff type integral and the Bourgain property in a locally convex space*, Real Analysis Exchange, 2006-2007, **32** (2), 409–428. Doi: 10.14321/re-alanalexch.32.2.0409.

19. T. Mikosch, *Elementary Stochastic Calculus (with Finance in view)*, World Scientific Publ. Co., Singapore (1998).

20. M.M. Potyraia, *The Birkhoff and variational Mc Shane integrals of vector valued functions*, Folia Mathematica, Acta Universitatis Lodziensis **13**, 31–40, (2006).

21. M.M. Potyraia, *Some remarks about Birkhoff and Riemann-Lebesgue integrability of vector valued functions*, Tatra Mt. Math. Publ. **35**, 97–106 (2007).

22. J. Rodríguez, *On the existence of Pettis integrable functions which are not Birkhoff integrable*, Proc. Amer. Math. Soc. **133** (4), 1157–1163, (2005). Doi: 10.1090/S0002-9939-04-07665-8.

23. J. Rodríguez, *Some examples in vector integration*, Bull. of the Australian Math. Soc. **80** (3), 384–392, (2009). Doi: 10.1017/S0004972709000367.