Hepatitis B virus–host interactions and novel targets for viral cure
Gaëtan Ligat¹,², Eloi R Verrier¹,², Michael Nassal³,⁵ and Thomas F Baumert¹,²,⁴,⁵

Chronic infection with HBV is a major cause of advanced liver disease and hepatocellular carcinoma. Nucleos(t)ide analogues effectively control HBV replication but viral cure is rare. Hence treatment has often to be administered for an indefinite duration, increasing the risk for selection of drug resistant virus variants. PEG-interferon-α-based therapies can sometimes cure infection but suffer from a low response rate and severe side-effects. CHB is characterized by the persistence of a nuclear covalently closed circular DNA (cccDNA), which is not targeted by approved drugs. Targeting host factors which contribute to the viral life cycle provides new opportunities for the development of innovative therapeutic strategies aiming at HBV cure. An improved understanding of the host immune system has resulted in new potentially curative candidate approaches. Here, we review the recent advances in understanding HBV–host interactions and highlight how this knowledge contributes to exploiting host-targeting strategies for a viral cure.

Addresses
¹ Université de Strasbourg, F-67000 Strasbourg, France
² Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR5110, F-67000 Strasbourg, France
³ University Hospital Freiburg, Dept. of Internal Medicine 2/Molecular Biology, D79106 Freiburg, Germany
⁴ Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France
⁵ Corresponding authors: Ligat, Gaëtan (gligat@unistra.fr), Verrier, Eloi R (e.verrier@unistra.fr), Nassal, Michael (michael.nassal@uniklinik-freiburg.de), Baumert, Thomas F (thomas.baumert@unistra.fr)

These authors contributed equally.

Current Opinion in Virology 2021, 49:41–51
This review comes from a themed issue on Engineering for viral resistance
Edited by Richard Plempner
For complete overview about the section, refer Engineering for viral resistance
Available online 22nd May 2021
https://doi.org/10.1016/j.coviro.2021.04.009
1879-6257/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), is a major cause of advanced liver disease and hepatocellular carcinoma (HCC), the second leading cause of cancer death worldwide [1*,2**]. HBV remains a major public health concern with an estimated global prevalence of 250–300 million chronic virus carriers [3].

Although available drugs against CHB including PEG-interferon-α-based therapies and nucleos(t)ide analogues (NUCs) can effectively control HBV replication, viral cure is extremely rare, for NUCs even upon decade-long treatment [4]. NUCs including lamivudine, adefovir, tenofovir or entecavir directly inhibit the reverse transcriptase activity of the HBV polymerase. Hence resistance mutations occurring during long-term treatment usually map to the reverse transcriptase (RT) domain of the polymerase [5,6] and its individual subdomains. Resistance to lamivudine is conferred by mutations within the catalytic C domain (YMDD motif), resistance to entecavir by mutations in the B, C or D domains. Initial mutation-induced reductions in enzymatic efficiency may be compensated by additional mutations which enhance viral replication [6–8].

CHB is characterized by the persistence of the episomal covalently closed circular DNA (cccDNA) form of the HBV genome which persists as a stable minichromosome in the nuclei of infected hepatocytes [9]. After therapy withdrawal or loss of immune control, a few cccDNA copies per hepatocyte can reactivate full viral replication. Hence cccDNA would have to be eliminated from infected liver cells to achieve HBV cure. Such sterilizing cure, that is, complete viral eradication from the host, is the ultimate but at present hardly achievable goal. A more feasible objective is ‘functional cure’, with seroclearance of hepatitis B surface antigen (HBsAg) as a defining parameter [10**]. For either type of CHB cure the development of new therapeutic strategies remains a key unmet medical need [10**].

Targeting host factors involved in the viral life cycle is a promising and increasingly successful therapeutic approach to overcome resistance by new inhibitors that are characterized by a high genetic barrier. Several host targeting agents (HTA) have already been transferred into clinic. Notably, Maraviroc is a specific antagonist of the human immunodeficiency virus-1 (HIV-1) CCR5 chemokine receptor. It inhibits HIV-1 from entering host cells and is clinically approved for anti-HIV treatments [11]. Furthermore, Bulevirtide (formerly known as Myrcludex B), a peptide specifically targeting the HBV and hepatitis D virus (HDV) entry factorsodium
taurocholate cotransporting polypeptide (NTCP), has been approved in the European Union in 2020.

Developing new HTA to control and/or possibly cure viral infection requires a comprehensive characterization of virus-host molecular interactions, including targetable cell factors playing key roles in the viral life cycle. The recent development of high-throughput functional genomics applied to virus infection systems paved the way for the identification and characterization of many such factors. Numerous genome-scale loss-of-function screens via RNAi knockdown and CRISPR/Cas9 knock-out have been successfully applied to hepatitis viruses, HIV-1, influenza A and Zika virus [12,13,14,15–17]. For instance, EGFR was found necessary for hepatitis C virus (HCV) entry [18]; an siRNA screen identified CD97, NEIL3, BMP2K, and SERPINB6 as HIV-1 host factors and antiviral targets [15]; and a genome-wide CRISPR screen defined WDR7, CCDC115 and TMEM199 as crucial host dependency factors for influenza A virus infection [16]. Complementary to such loss-of-function studies, a genome-wide gain-of-function screen recently identified the cyclin-dependent kinase inhibitor CDKN2C as a key host factor for HBV [14*].

In this review, we present the cellular functions known to be involved in key steps of the HBV life cycle, discuss the therapeutic potential of individual HBV-related host factors, and highlight the molecules currently in development for novel therapeutic strategies that may lead to HBV cure.

Molecular virology of HBV infection

HBV is an enveloped hepatotropic DNA virus belonging to the *Hepadnaviridae* family, characterized by infectious virions carrying a 3.2 kb relaxed circular DNA (rcDNA) genome which is produced by reverse transcription. Viral entry initiates with the attachment to heparan sulfate proteoglycans including glypicans 5 (GPC5) [12*] and is followed by a specific binding to a high-affinity virus receptor, the bile acid transporter NTCP [19**,20]. Internalization of the NTCP-HBV complex via clathrin-dependent endocytosis [21] is mediated by the EGF receptor (EGFR) [22]. How the envelope is stripped off is poorly understood. However, once in the cytoplasm the viral capsid is transported, via interactions of nuclear localization signals in the capsid protein with importins, along microtubules [23] to the nuclear pore complex (NPC), where the viral rcDNA is released into the nucleus and converted into cccDNA. As a result of the unusual protein-primed reverse transcription mechanism [24,25], recently shown to be an ancient principle of circular genome replication [26], rcDNA carries several molecular peculiarities that must be repaired for cccDNA formation. The 5' end of the minus-strand in rcDNA is covalently linked to the viral polymerase [27] and carries a short terminal redundancy; the plus-strand starts with a capped RNA oligomer and has heterogeneous, incomplete 3' ends. While the details of rcDNA to cccDNA conversion are far from being understood it is highly plausible that HBV usurps host DNA repair factors to remove the non-DNA moieties and surplus sequences, and to fill-in and eventually ligate the gaps to generate cccDNA as a proper template for viral transcription. As each nt in the hepadnaviral genome has coding function in one or even two open reading frames all the repair reactions must proceed with single nt accuracy [28**].

Meanwhile various DNA repair associated factors have indeed been identified as hepadnaviral host dependency factors. Using duck HBV (DHBV) in human hepatoma cells as a high-copy cccDNA model for HBV, König and collaborators found Tyrosyl-DNA-phosphodiesterase 2 (TDP2) as capable of releasing the viral polymerase from rcDNA [29]. DNA polymerase K (POLK) provides an important DNA fill-in activity during cccDNA generation [30], and DNA ligases 1 and 3, but not DNA ligase 4, are the key host ligases in cccDNA strand closure [31]. The cellular ATR-CHK1 DNA damage repair pathway was shown to be involved in rcDNA processing and HBV cccDNA formation [32]. More detailed characterization of conversion intermediates is helping to further decipher the pathway, or possibly redundant pathways, from rcDNA to cccDNA [33]. Very recently, five core components of cellular lagging-strand DNA synthesis were identified as the minimal set of factors necessary for *in vitro* rcDNA to cccDNA conversion: proliferating cell nuclear antigen, the replication factor C complex, DNA polymerase δ, flap endonuclease 1 and DNA ligase 1 [34*], and their strand-specific contributions have been defined [35]. Likely these factors are also relevant for cccDNA formation in vivo yet the redundancy in host DNA repair factors and the need for intracellular genome transport imply that in cells many additional factors contribute to cccDNA biogenesis and regulation [28**]; these may be easier to target therapeutically than the basic cellular DNA replication machinery.

In vivo, cccDNA associates with cellular histones and nonhistone-proteins, and likely also viral proteins, into a minichromosome as the actual transcription template. Similar to host DNA its activity is regulated by epigenetic modifications [36]. From cccDNA RNAs of different lengths are produced which direct the synthesis of viral surface proteins, polymerase, core protein (HBcAg and HBeAg) and HBx. The assembly and transport processes are mediated by host trafficking proteins; host chaperones, such as heat shock protein 70 (Hsp70), Hsp40 and Hsp90 interact with the viral polymerase [37] to mediate capsid-internal reverse transcription of one of the transcripts, the pregenomic (pg) RNA into new rcDNA. Various host factors are reportedly incorporated into the capsid, including eukaryotic translation initiation factor 4E (eIF4E), APOBEC3G and the DEAD-box RNA helicase DDX3 [38–40]. The rcDNA-containing
Host-dependency factors of the HBV life cycle as antiviral targets (adapted from Ref. [4]). Following binding of the virus to glypican 5 and HSPG, NTCP as high affinity receptor mediated HBV entry into the hepatocytes. Following cell entry, the nucleocapsid transports the rcDNA to the nucleus. There rcDNA is converted into an episomal cccDNA minichromosome that serves as a template for all viral transcripts including pgRNA which is encapsidated and reverse transcribed into new rcDNA. The nucleocapsids can be enveloped and released as virions or be recycled to the nucleus to replenish the cccDNA pool. There remains an unmet need to develop new therapeutic strategies aiming to overcome resistance. Every step of the HBV life cycle is dependent on the host factors, which can be explored as antiviral targets for the development of new therapeutic approaches. Examples for host-targeting strategies: (1) Targeting host-dependency factor of the HBV entry and binding. (2) Silencing of cccDNA transcription by host epigenetic factors. (3) Targeting host factors required in the last steps of the HBV life cycle. (4) Immune modulation. Abbreviations: relaxed circular DNA (rcDNA), covalently closed circular DNA (cccDNA), pregenomic RNA (pgRNA), sodium taurocholate cotransporting polypeptide (NTCP), heparan sulfate proteoglycan (HSPG).
find even more widespread use when now marketed by US-based Gilead Sciences.

Targeting cccDNA biology

Elimination of HBV cccDNA, the persistence reservoir in infected hepatocytes, is the ultimate approach towards an HBV cure. As this review focuses on HTAs we will only briefly consider direct strategies such as sequence-specific CRISPR/Cas targeting of cccDNA. Though seemingly straightforward, there a various caveat beyond classical off-target effects. Particular attention will have to be paid to chromosomally integrated HBV DNA; recent data suggest that although integration is a nonproductive pathway for the virus it occurs already after infection [50]. Hence CRISPR/Cas induced double-stranded DNA breaks (DSBs) could jeopardize chromosome integrity; in addition, the intended DSBs in cccDNA would create linear DNAs which are preferred substrates for new integration events. Using small molecules targeting the cccDNA pool may be another therapeutic strategy (Figure 1 and Table 1) although it is difficult to envisage how specificity for viral as opposed to host DNA would be achieved. Nonetheless, screening a limited diversity small-molecule library two compounds, CCC-0975 and CCC-0346, showed an inhibitory activity on HBV infection by reducing the levels of deproteinized rcDNA and cccDNA, possibly by interfering with rcDNA to cccDNA conversion [51]. In the same vein, hydrolysable tannins (punicalagin, punicalin and geraniin) were reported to reduce cccDNA levels by impairing cccDNA formation and promoting its decay [52]. As cccDNA formation is highly dependent on cellular factors, especially from the DNA repair machinery, targeting these factors may represent another option for eventual cccDNA elimination. Various small molecules have been shown to target DNA repair host factors, including DNA ligases, PARP, ATR, ATM and CHK, suggesting them as anti-cancer strategies [53–55]. The PARP inhibitor olaparib, for instance, is in phase 2 clinical trials for the treatment of various cancers [54]. An experimental study has shown that lymphotixin-β-receptor and IFN-α activation upregulate expression of apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) proteins such as APOBEC 3A and 3B; these cytidine deaminases may cause cccDNA deamination, apurinic/apyrimidinic site formation and eventually reduced cccDNA levels [56**]. Notably in this and other studies about one third of the cccDNA seemed resilient against this reduction; deciphering whether this relates to distinct forms of cccDNA or perhaps distinct classes of cells harboring the cccDNA molecules remains an important issue for successful future therapies.

Silencing of viral transcription

A less demanding alternative to cccDNA eradication is silencing of its transcriptional activity. As for CRISPR/Cas we will here not discuss RNAi mediated silencing of HBV transcripts [57] although potentially beneficial indirect effects are beginning to be investigated [58].

As mentioned the transcriptionally active form of cccDNA is a minichromosome that is subject to epigenetic modifications [36] (Figure 1 and Table 1). cccDNA encodes four promoters and two enhancers which feature various transcription factor binding sites, including for HNF1, HNF3, HNF4, the retinoid X receptor (RXR) and the CCAAT-enhancer-binding protein (C/EBP) [59–61]. Hence cccDNA transcription and its regulation are broadly dependent on host factors, opening various options for therapeutic cccDNA transcriptional control [62] (Figure 1 and Table 1). For instance, IFN-α and interleukin-6 (IL-6) reportedly decrease cccDNA-bound histone acetylation and thereby transcriptional activity [63–66]. More directly, decreased acetylation levels of

Table 1

Examples for host-targeting approaches for HBV treatment in preclinical and clinical development and approved

Compound	Targets	Concept	Stage of development	References
Bulevirtide	Entry host factors NTCP	Prevention of binding and entry into the cells	Clinical studies	[46–48,49**]
Cyclosporin A	Decrease cccDNA-bound histone acetylation		Discovery/preclinical	[42–45]
Interleukin-6	Methyl group to CpG islands	Silencing of cccDNA transcription	Discovery/preclinical	[63–66]
Histone deacetylase	Inhibits HBV-DDB1 interaction			[57]
DNA methyltransferase	NEDD8-activating enzyme inhibitor	Inhibiting HBsAg assembly and release	Clinical studies	[68,69]
Nitazoxanide				[74]
Pevoniodstat	Hsp40 chaperone DNAJB12?			[75]
Nucleic acid polymers (REP-2139)	*TLR agonist*	Cytokine production	Clinical studies	[94,95*,96–98]
RO7020531				
JNJ-4964				
GS-9620				
GS-9688				
PEG-interferon α	Decrease cccDNA-bound histone acetylation (amongst others)	Silencing of cccDNA transcription	Approved	[4]

* TLR: toll-like receptor.
cccDNA-bound histone H3 can be achieved by histone deacetylase 11 (HDAC11) [67]. In addition, the HBV genome contains three CpG islands as potential substrates for host DNA methyltransferases, whereby methylation of the C residues results in general silencing of transcription [68]. In HBV this reduces pgRNA expression and thus HBV replication [69].

On the virus side, the multifunctional HBx protein has been ascribed to modulate recruitment to cccDNA of epigenetic host factor such as p300, HDAC and SIRT1 [70] and thus to control histone epigenetics [71]. A mechanistically better understood activity of HBx is ubiquitylation and eventually degradation of the structural maintenance of chromosomes 5 and 6 complex (Smc5/6) which, as a restriction factor against episomal DNAs, silences cccDNA transcription [72,73].

HBx counteracts this restriction by usurping, through interaction with DNA damage binding protein 1 (DDB1), a cellular E3 ubiquitin ligase which then ubiquitylates Smc5/6 and tags it for proteasomal degradation. Targeting these protein interactions also opens a wide range for drug design. Nitazoxanid reportedly inhibits the HBx-DDB1 interaction, resulting in inhibition of HBV transcription and viral protein production in human hepatocytes [74]. Pevonedistat is a NEDD8-activating enzyme inhibitor [75]; as NEDDylation is required for E3 ubiquitin ligase activity the inhibitor blocks HBx-mediated Smc5/6 degradation, retaining its restriction factor activity. Better understanding of the epigenetic cccDNA regulatory mechanisms will provide further opportunities for the development of novel therapies, and various additional drugs to inhibit transcription are already in development [76*,77,78].

Inhibiting the formation of functional HBV capsids
HBV features an icosahedral capsid formed mostly by 120 dimers of the about 180 amino acid long core protein (HBc). Its most obvious role is to provide a stable container for the viral genome yet HBc is dynamically involved in nearly all steps of the viral life cycle [79]. After infection the incoming capsid must disassemble for genome release; for progeny production, newly made HBc must assemble and specifically package pgRNA but no other RNAs or no RNA, probably controlled by HBc phosphorylation [80]. Proper pgRNA reverse transcription occurs only inside the capsid, implying an active role of HBc in the process, again accompanied by changes in phosphorylation status. The capsid is also responsible for proper intracellular trafficking of the viral genome and for providing specific surface interaction sites for envelopment, all at the right time and location, and most, if not all, involving specific host factors. In addition, HBc seems to facilitate viral RNA export from the nucleus and associated with nuclear cccDNA it may be involved in transcriptional regulation. Notably, though, such a function would not depend on de novo synthesized HBc [81].

Regarding interference with functional capsid formation, most advanced are small molecules which directly target the core protein and capsid assembly. The first such capsid assembly modulators (CAMs) were AT130, a phenylpropenamide [82], and BAY41-4109, the prototypic heteroaryldihydropyrimidine or HAP molecule [83]. All currently known CAMs bind to the inter-dimer interface of the HBc dimer, allosterically modifying the way how the dimers assemble into the supramolecular capsid structure. Two major modes of action are currently distinguished. HAP compounds generally ‘misdirect’ assembly into aberrant multimers that cannot form closed capsid shells; according to a yet-to-be-approved nomenclature they are classified as CAM-A compounds (A for aberrant). Phenylpropenamides (PPAs) and the more recently identified sulfamoylbenzamides (SBA) derivatives [84] promote formation of seemingly regular but pgRNA-less ‘empty’ capsids; they are hence termed CAM-E compounds (E for empty); however, the actual phenotype can be affected by the extent of binding site occupancy [85]. Hence although the CAMs target the viral core protein, they indirectly have a pronounced impact on HBc’s interaction with other viral factors, for example, polymerase and nucleic acids as well as the envelope proteins, but also with host factors, including kinases and phosphatases, transport proteins, chaperones and others, all of which have to be finely balanced for generation of replication-competent nucleocapsids. Numerous CAMs are currently explored in clinical trials, such as JNJ-56136379, [NJ-6379, ABI-H0731 and NVR 3–778. In a phase 1 study of patients with CHB infection most tested CAMs were well tolerated and demonstrated antiviral activity. Several individuals compounds such as JNJ-56136379 and ABI-H0731 are currently explored in phase II studies [86–89]. The data suggest that the greatest reductions in serum levels of HBV DNA and HBV RNA are achieved in combination with PEG-IFN-α but additional studies are required to better understand the mechanism of action of these molecules.

For instance, unresolved issues are the fate and effects of the misdirected or prematurely assembled HBc multimers which could cause hepatocyte damage and/or even be beneficial for therapy, perhaps by inducing specific immune responses against the cells which harbor them.

Inhibition of virion assembly and release
HBV produces several types of particles [90], including genome-less, non-infectious types such as the spherical and filamentous subviral particles (SVPs), empty envelopes which account for most of the hepatitis B surface antigen (HBsAg) in serum. However, enveloped rcDNA genome-containing virions are absolutely essential for virus propagation. Their morphogenesis depends on the regulated interaction of rcDNA containing nucleocapsids with the viral envelope proteins, in particular the
C terminal part of the preS1 domain and the N terminal part of the preS2 domain (the matrix domain; [91]). The resulting virions are secreted by way of the multivesicular body (MVB) compartment and thus via interaction with numerous cellular factors, many from the sorting complexes required for transport (ESCRT) machinery [92]. Targeting any of these factors should thus reduce formation of infectious virions although as yet no clinical data exist.

More advanced is the inhibition of HBsAg secretion. While not immediately crucial for progeny virus formation as long as enough envelope proteins remain for virion formation the enormous excess of SVPs over virions secreted from HBV infected cells certainly has a benefit for the virus, for example, via a long-assumed decoy activity against virus-neutralizing anti-envelope antibodies and/or by contributing to the inactivation of virus-specific T cell responses during CHB [93]. SVPs are apparently secreted through the classical secretory pathway, not the MVB. Their assembly and secretion can efficiently be inhibited by nucleic acid polymers (NAPs) such as REP-2139 (Figure 1 and Table 1). These modified RNA oligomers possess antiviral activity against several viruses, including HIV-1, HBV and DHBV, both in monotherapy and in combination with immune modulators, and have been shown to reduce or even clear HBsAg from the blood in clinical studies [94,95,96,97]. They act in a sequence-nonspecific way and the exact mechanism of action is unclear. Proposely REP 2139 exerts its activity by interaction with an as yet undiscovered host factor [98]; a recent suggestion is the host Hsp40 chaperone DNAJB12 which is involved in the assembly of SVP (Boulon et al., The Hsp40 chaperone DNAJB12 is involved in the morphogenesis of HBV spherical subviral particles and is selectively targeted by nucleic acid polymers. AASLD The Liver Meeting, LP42). Inhibition of HBsAg secretion by NAPs can be reproduced in a human hepatoma cell line which may help to clearly identify the host factor(s) in question [99]. A more detailed understanding of the mechanism-of-action of NAPs may ultimately inform about further optimization of this approach and help in better understanding potential off-target effects.

We here focus on only a few select aspects. Activation of TLR3, TLR7/8 and TLR9 can reduce HBV replication in vitro and in vivo through production of antiviral cytokines such as IFNs and activation of natural killer (NK) and T cells [106–108]. Several TLR agonists such as RO7020531, JNP-4964, GS-9620 and GS-9688 are being explored for the treatment of CHB in clinical trials [109]. Notably, an antiviral effect of TLR7 agonist GS-9620 (vesatolimod) was clearly demonstrated in chronically woodchuck hepatitis B virus (WHV) infected woodchucks and in HBV infected chimpanzees, with decreases in cccDNA and surface protein levels (WHAsg or HBsAg) [107,110]. However, in a clinical phase 2 study on safety and efficacy in viremic CHB patients vesatolimod had no significant anti-viral activity [111]. If this also holds for other TLR agonists their main potential may be to increase anti-HBV immune responses in combination therapies. A RIG-I agonist, inarigivir (or SB 9200) also decreased viral DNA and RNA in CHB patients [109]. Not the least, various strategies to improve HBV-specific T cell responses in CHB patients are being explored [101,102]. Several therapeutic vaccines are in clinical phase 1 [103], all aiming to overcome shortcomings of classical vaccines by advanced prime-boost immunization schemes, for example, by combining virally vectored plus adjuvanted proteins as immunogens, as in GSK3528869A (clinical trial identifier NCT03866187 at ClinicalTrials.gov). Another actively pursued principle is the use of immune checkpoint inhibitors, that is, anti-programmed cell death-1 (PD-1), anti-PD-Ligand1 (anti-PD-L1) and anti-CTLA-4 (clinical phase 1) [100]. These approaches show great promise in cancer therapy by blocking inhibitory signaling on CD8+ T cells by cancer cells [112], and HBV-infected hepatocytes may employ similar immune resistance mechanisms. Recent data indicate, however, that HBV-specific CD8+ T cells primed by hepatocytes cannot be activated by PD-L1 blockade. Yet, they do respond to interleukin 2 (IL-2) [113] which may hence be exploited as a basis for alternative immunotherapy strategies.

Conclusions

The finding that patients can spontaneously eliminate HBV infection suggests that the development of curative therapies is an achievable goal. Recent knowledge in virus–host interactions from studies in cell-based and animal model systems has uncovered novel options to exploit host-dependency factors and the innate immune system to target the numerous steps in the HBV life cycle. Many host dependency factors targeting approaches are still in the discovery or preclinical stage, but several immune targeting therapies have already reached clinical development.

The increased barrier to pathogen resistance development upon targeting host factors, and the proneness to side-effects of host factor inhibition are two sides of the same medal. It is therefore difficult to predict which host factor targets are the most promising and under which
circumstances. Clearly, limiting the duration and localization of host factor inhibition would help to minimize side effects but for most of the host factor targets outlined above much more data are required for strong judgements. Reassuringly, though, one of the host factors discussed above, NTCP, already provides clinical proof that the benefit of antiviral activity can outweigh minor side effects [19**,20]. Virtually all patients treated with Bulevirtide experienced moderate increases in serum bile acid levels, as expected from blocking a bile acid transporter. However, this increase was well tolerated by all study participants up to 48 weeks of treatment and so was no concern for the European authorities in the approval of the compound as first HDV treatment [49**]. Results of Bulevirtide monotherapy were less convincing regarding CHB but this may relate to the fact that HDV as an RNA virus lacks a stable persistence reservoir such as HBV cccDNA and therefore is more dependent on ongoing genome replication.

However, in combination regimens Bulevirtide also showed some promise regarding CHB treatment (see below). Of the other host factors outlined above as potential HBV targets those involved in cccDNA biogenesis might be closest to the sterilizing cure goal. This view is supported the positive impact of entry blockade on viral titers which implies that HBV persistence relies not only on cells stably harboring, or intracellularly recycling, cccDNA but on infection of naive hepatocytes. If cccDNA did not undergo turnover and cccDNA harboring hepatocytes lived forever, blocking rcDNA to cccDNA conversion would be fruitless. If, however, the pool of cccDNA is constantly replenished by infection, then inhibiting cccDNA neogenesis can be expected to have therapeutic benefit.

Most of the host factors identified as important for rcDNA to cccDNA conversion, especially the five factor core set [347], are essential for cellular DNA replication. Hence it could be hoped that certain cancer treatments that rely on targeting rapidly dividing cells might also be applicable to prevent/suppress cccDNA formation without too much impact on the usually slowly (once in a few months) dividing hepatocytes. However, here as with other DNA replication and DNA repair factors more data are needed to correlate how long an inhibition can be tolerated by the host but significantly impair HBV persistence.

Generally, however, while the efficacy of monotherapies may be high, as for NUCs, it is still insufficient to warrant complete viral suppression. Hence combination therapies appear to have great potential. One reason is that while it is biologically feasible to achieve 99% inhibition, reaching 100% is very difficult if not impossible. In combination therapy this is accounted for by ‘synergy’ of two or more components, that is, that the whole is greater than the sum of the individual parts [114]. An example is that combination, in particular when targeting host factors, allows to reduce the dose of an inhibitor to a subtoxic level while maintaining, by synergy with the combination partner, therapeutic efficacy.

Indeed, several clinical studies suggest such an added benefit. Earlier studies concluded that combining NUCs, including ETV [115], with type-I IFN had no extra benefit but a newer study [116] combining TDF plus PEG-IFN led to enhanced HBsAg seroclearance (though perhaps with some HBV genotype bias and still in less than 10% of patients); the seemingly discrepant data might also indicate that minor differences between two potent antivirals such as TDF and ETV can eventually tip the balance towards a more efficient immune response. Also combining bulevirtide with PEG-IFNα-2a substantially increased the fraction of patients experiencing HBsAg seroclearance after 48 weeks of treatment over either drug alone. Hence weakening the virus appears to strengthen the antiviral potency of the immune system. While these data are promising a severe limitation of IFN-involving combinations is the non-eligibility of many CHB patients for IFN therapies, owing to its severe adverse effects. Perhaps these can be alleviated by small molecule IFN inducers such as the TLR or RIG-I agonists. In general, however, exploiting components, including engineered ones, of the adaptive immune system as one arm of combination therapies may be a more versatile approach.

The overall goal will be to maximize interference with viral multiplication, prevent viral escape, and help the host immune system to regain control. As different modes of action may be most advantageous combining an effective direct antiviral agent [87] with a host-factor targeting agent plus an immune stimulus appears quite promising. Some clinical data are already available and they clearly show an added benefit of adding the host-factor targeting NAP to a combination of NUC plus PEG-IFN [117]. As we are approaching a post-IFN era two or more non-immune drugs may already achieve a sufficient antiviral efficacy to enable the endogenous immune system by itself to regain control. This is a rationale for cooperative phase 2 clinical trial by Assembly Bio and Arbutus of a triple combination therapy including a NUC, a CAM, and a HBsAg reducing siRNA (ClinicalTrials.gov Identifier: NCT04820686).

In the light of the increasing number of targets for each class of antiviral we are likely to see many more double and triple combination trials in the near future. While this increases the number of options to test it also boosts chances that one or more of these approaches will bring us closer to a cure of CHB, likely with a significant contribution from host factor targeting agents.
Given the complexity of the HBV life cycle, it is likely that only such combination therapies, for example, the integrated use of direct-acting antiviral(s) and immune-activating approaches, will be able to achieve the eventual goal of cccDNA elimination. Hence further studies are needed to understand and assess the efficacy and safety of the therapeutic strategies that are already in clinical trials and develop advanced treatment modalities [4,87,118]; a more detailed elucidation of virus–host interactions, in particular cccDNA biology and the mechanisms of cccDNA formation and elimination, will add clues to advance new, innovative concepts into the pre-clinical and clinical trial stage.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work was supported by Inserm, the University of Strasbourg, the European Union (ERC-2014-Adg-671231-HEPCIR) to T. F. B., the Agence Nationale de Recherches sur le Sida et les Hépatites Virales (ANRS to T.F. B. and E.V.), and the French Cancer Agency (ARC IHU 201301187 to T. F. B.). This work has been published under the framework of the LabEx ANR-10-LAB-28 and benefits from a funding from the state managed by the French National Research Agency as part of the Investments for the Future (Investissements d’Avenir) program. G.L. is the recipient of an ANRS fellowship (ECTZ60820 and ECTZ1538023).

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:
• of special interest
•• of outstanding interest

1. Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, Gores G: Hepatocellular carcinoma. Nat Rev Dis Primer 2016, 2:16018.

Important review on liver cancer and hepatocellular carcinoma.

2. Trépo C, Chan HLY, Lok A: Hepatitis B virus infection. Lancet •• Lond Engl 2014, 384:2053-2063.

Important review summarizing recent therapeutic strategies that are currently being evaluated at the preclinical and clinical stage.

3. Schnizl RF, Ehteshami M, Bassit L, Asselah T: Towards HBV curative therapies. Liver Int Off J Int Assoc Study Liver 2018, 38:102-114.

4. Ligat G, Goto K, Verrier E, Baumont TF: Targeting viral cccDNA for cure of chronic hepatitis B. Curr Hepatol Rep 2020, 19:235-244.

5. Habersetzer F, Moenne-Loccoz R, Meyer N, Schwoerer E, Simon-Noümbissé P, Dritsas S, Baumont TF, Döffoiè M: Loss of hepatitis B surface antigen in a real-life clinical cohort of patients with chronic hepatitis B virus infection. Liver Int 2015, 35:130-139.

6. Zoulim F: Hepatitis B virus resistance to antiviral drugs: where are we going? Hepatitis B virus resistance to antiviral drugs. Liver Int 2011, 31:111-116.

7. Bang KB, Kim HJ: Management of antiviral drug resistance in chronic hepatitis B. World J Gastroenterol 2014, 20:11641-11649.

8. Zoulim F, Locarnini S: Hepatitis B virus resistance to nucleos(t)ide analogues. Gastroenterology 2009, 137:1593-1608.e1-2.

9. Newbold JE, Xin H, Tencza M, Sherman G, Dean J, Bowden S, Locarnini S: The covalently closed duplex form of the hepatitis virus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol 1995, 69:3350-3357.

10. Zeisel MB, Lucifora J, Mason WS, Sureau C, Beck J, Levenero M, Kann M, Knolle PA, Benkirene M, Durante D et al.: Towards an HBV cure: state-of-the-art and unresolved questions—report of the ANRS workshop on HBV cure. Gut 2015, 64:1314-1326. Important review summarizing the virus host-interactions leading to CHB and challenge to get HBV cure.

11. Van Der Ryst E: Maraviroc—a CCR5 antagonist for the treatment of HIV-1 infection. Front Immunol 2015, 6:277.

12. Verrier ER, Colpitts CC, Bach C, Heydmann L, Weiss A, Renaud M, Durand SC, Habersetzer F, Durante D, Abou-Jaoude G et al.: A targeted functional RNA interference screen uncovers glypican 5 as an entry factor for hepatitis B and D viruses. Hepatol Baltim Md 2016, 63:35-48. This study identified GPC5 as an entry factor for HBV and HDV.

13. Verrier ER, Weiss A, Bach C, Heydmann L, Turon-Lagot V, Kopp A, El Sahgire H, Crouchet E, Pessaux P, Garcia T et al.: Combined small molecule and loss-of-function screen uncovers estrogen receptor alpha and CAD as host factors for HDV infection and antiviral targets. Gut 2019, 69:158-167.

14. Eller C, Heydmann L, Colpitts CC, El Sahgire H, Piccioni F, Jühling F, Majzoub K, Pons C, Bach C, Lucifora J et al.: A genome-wide gain-of-function screen identifies CDKN2C as a HBV host factor. Nat Commun 2020, 11:2307. This study identified CDKN2C as a HBV host factor.

15. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strolovici B, Hazudaj DJ et al.: Genome-scale RNAi screen for host factors required for HBV replication. Cell Host Microbe 2008, 4:495-504.

16. Li B, Clohisey SM, Chia BS, Wang B, Cui A, Eisenhaure T, Schweitzer LD, Hoover P, Parkinson NJ, Nachson A et al.: Genome-wide CRISPR screen identifies host dependency factors for influenza A virus infection. Nat Commun 2020, 11:164.

17. Xu H, Cheng M, Chi X, Liu X, Zhou J, Lin T, Yang W: High-throughput screening identifies mixed-lineage kinase 3 as a key regulatory factor in Zika virus infection. J Virol 2019, 93.

18. Luponberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, Davis C, Mee CJ, Turek M, Gorke S et al.: EGFR and Epha2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 2011, 17:589-595.

19. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H et al.: Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 2012, 1:e00049. This study identified NTCP as an entry factor for HBV and HDV.

20. Ni Y, Lempp FA, Mehrie S, Nkongolo S, Kaufman C, Fälth M, Stindt J, König C, Nassal M, Kubitz R et al.: Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology 2014, 146:1070-1083.

21. Herrscher C, Pastor F, B Burlaud-Gaillard J, Dumans A, Seigneuret F, Moreau A, Patient R, Eymieux S, Rocquigny H, Hourihou C et al.: Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cell Microbiol 2020, 22.

22. Ivamoto M, Saso W, Sugiyama R, Ishii K, Ohki M, Nagamori S, Suzuki R, Azaki H, Ryo A, Yun J-H et al.: Epidermal growth factor receptor is a host-entry cofactor triggering hepatitis B virus internalization. Proc Natl Acad Sci U S A 2019, 116:8487-8492.

23. Kann M, Schmitz A, Rabe B: Intracellular transport of hepatitis B virus. World J Gastroenterol 2007, 13:39.

24. Nassal M: Hepatitis B viruses: reverse transcription a different way. Virus Res 2008, 134:235-249.

25. Nassal M: HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 2015, 64:1972-1984.

26. Beck J, Seitz S, Lauber C, Nassal M: Conservation of the HBV RNA element epsilon in nakednaviruses reveals ancient
origin of protein-prime reverse transcription. Proc Natl Acad Sci U S A 2021, 118:e2022373118.

27. Seeger C, Mason WS: Hepatitis B virus biology. Microbiol Mol Biol Rev 2000, 64:51-68.

28. Schreiner S, Nassal M: A role for the host DNA damage response in hepatitis B viruscccDNA formation and beyond? Viruses 2017, 9.

A important review which discusses the role for the host DNA repair factors in cccDNA formation.

29. König R, Wingert I, Marsmann M, Röbler C, Beck J, Nassal M: Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc Natl Acad Sci U S A 2014, 111:E2444-E2453.

30. Qi Y, Gao Z, Xu G, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D et al.: DNA polymerase ι is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog 2016, 12:e1005893.

31. Long Q, Yan R, Hu J, Cai D, Mita B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y et al.: The role of host DNA ligases in hepatitis B virus covalently closed circular DNA formation. PLoS Pathog 2017, 13:e1006794.

32. Lu H, Luckenbaugh L, Hu H, Yan Z, Gao L, Hu J: Involvement of host ATF-C/CHIK pathway in hepatitis B virus covalently closed circular DNA formation. mBio 2020, 11.

33. Marchetti AL, Guo H: New insights on molecular mechanism of hepatitis B virus covalently closed circular DNA formation. Cells 2020, 9:2430.

34. Wei L, Ploss A: Core components of DNA ligating strand synthesis machinery are essential for hepatitis B viruscccDNA formation. Nat Microbiol 2020, 5:715-726.

An important study that identified the minimal set of factors for cccDNA formation.

35. Wei L, Ploss A: Hepatitis B viruscccDNA is formed through distinct repair processes of each strand. Nat Commun 2021, 12:1591.

36. Dandri L, Luo M, Ko¨ niger S, Schreiner I, Urban S, Taha M, Young B, Kraus D, Marchetti A et al.: First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrculide B. J Hepatol 2016, 65:483-489.

37. Wang S, Liu Y, Guo Z, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D et al.: DNA polymerase ι is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog 2016, 12:e1005893.

38. Long Q, Yan R, Hu J, Cai D, Mita B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y et al.: The role of host DNA ligases in hepatitis B virus covalently closed circular DNA formation. PLoS Pathog 2017, 13:e1006794.

39. Lu H, Luckenbaugh L, Hu H, Yan Z, Gao L, Hu J: Involvement of host ATF-C/CHIK pathway in hepatitis B virus covalently closed circular DNA formation. mBio 2020, 11.

30. Qi Y, Gao Z, Xu G, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D et al.: DNA polymerase ι is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog 2016, 12:e1005893.

31. Long Q, Yan R, Hu J, Cai D, Mita B, Kim ES, Marchetti A, Zhang H, Wang S, Liu Y et al.: The role of host DNA ligases in hepatitis B virus covalently closed circular DNA formation. PLoS Pathog 2017, 13:e1006794.

32. Lu H, Luckenbaugh L, Hu H, Yan Z, Gao L, Hu J: Involvement of host ATF-C/CHIK pathway in hepatitis B virus covalently closed circular DNA formation. mBio 2020, 11.

33. Marchetti AL, Guo H: New insights on molecular mechanism of hepatitis B virus covalently closed circular DNA formation. Cells 2020, 9:2430.

34. Wei L, Ploss A: Core components of DNA ligating strand synthesis machinery are essential for hepatitis B viruscccDNA formation. Nat Microbiol 2020, 5:715-726.

An important study that identified the minimal set of factors for cccDNA formation.

35. Wei L, Ploss A: Hepatitis B viruscccDNA is formed through distinct repair processes of each strand. Nat Commun 2021, 12:1591.

36. Dandri L, Luo M, Ko¨ niger S, Schreiner I, Urban S, Taha M, Young B, Kraus D, Marchetti A et al.: First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrculide B. J Hepatol 2016, 65:483-489.

37. Wang S, Liu Y, Guo Z, Peng B, Liu C, Yan H, Yao Q, Sun G, Liu Y, Tang D et al.: DNA polymerase ι is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog 2016, 12:e1005893.
recombination to introduce artificial primary miRNAs into DNA of hepatitis B virus. Biochim Biophys Res Commun 2016, 478:1563-1568.

69. Diab A, Foca A, Zoulif M, DuranTEL D, Andrisani O: The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBC-targeting antivirals. Antiviral Res 2018, 149:211-220.

70. Heger-Stevic J, Zimmermann P, Lecooq L, Böttcher B, Nossal M: Hepatitis B virus core protein phosphorylation: identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog 2018, 14: e1007488.

71. Tu T, Zehnder B, Qu B, Urban S: De novo synthesis of hepatitis B virus nucleocapsids is dispensable for the maintenance and transcriptional regulation of cccDNA. JHEP Rep InnoV Hepat 2021, 3:100195.

72. Delaney WE, Edwards R, Colledge D, Shaw T, Furman P, Painter G, Locarnini S: Phenylpropenamide derivatives AT-61 and AT-130 inhibit replication of wild-type and lamivudine-resistant strains of hepatitis B virus in vitro. Antimicrob Agents Chemother 2002, 46:3057-3060.

73. Deres K, Schröder CH, Paesens A, Goldmann S, Hacker HJ, Weber O, Krämer T, Niewöhner U, Pleiss U, Stoltefuss J et al.: Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids. Science 2003, 299:893-896.

74. Campagna MR, Liu F, Mao R, Mills C, Cali D, Guo F, Zhao X, Ye H, Cucconi A, Guo H et al.: Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids. J Virol 2013, 87:6931-6942.

75. Qazi S, Schlicksup C, Rittichier J, VanNieuwenhze MS, Zlotnick A: An assembly-activating site in the hepatitis B virus capsid protein can also trigger disassembly. ACS Chem Biol 2018, 13:2114-2120.

76. Zoulif M, Lenz O, Vandensossche JJ, Talloen W, Verbinnen T, MoscaL, Streinu-Cercal A, Bourgeois S, Butt M, Crespo J et al.: JNU-56136779, an HBV capsid assembly modulator, is well-tolerated and has antiviral activity in a phase 1 study of patients with chronic infection. Gastroenterology 2020, 159:521-533.e9.

77. Asselah T, Louire D, Boyer N, Mansouri A: Targets and future direct-acting antiviral approaches to achieve hepatitis B virus cure. Lancet Gastroenterol Hepatol 2019, 4:893-902.

78. Yuen M-F, Agarwal K, Gane EJ, Schwabe C, Ahn SH, Kim DJ, Lim Y-S, Cheng W, Siewert W, Watanakun K et al.: Safety, pharmacokinetics, and antiviral effects of ABI-H0731, a hepatitis B virus core inhibitor: a randomised, placebo-controlled phase 1 trial. Lancet Gastroenterol Hepatol 2020, 5:152-166.

79. Yuen MF, Gane EJ, Kim DJ, Weillert F, Yuen Chan HL, Lalezari J, Hwang SG, Nguyen T, Flores O, Hartman G et al.: Antiviral activity, safety, and pharmacokinetics of capsid assembly modulator NVR-3-778 in patients with chronic HBV infection. Gastroenterology 2019, 156:1392-1403.e7.

80. Hu J, Liu K: Complete and incomplete hepatitis B virus particles: formation, function, and application. Viruses 2017, 9:56.

81. Schitt B, Bruss V: Mutational profiling of the variability of individual amino acid positions in the hepatitis B virus matrix domain. Virology 2014, 458-459:183-189.

82. Zeyen L, Prange R: Host cell rab GTPases in hepatitis B virus infection. Front Cell Dev Biol 2018, 6:154.

83. Tout I, Louire D, Mansouri A, Soumelis V, Boyer N, Asselah T: Hepatitis B surface antigen seroclearance: immune mechanisms, clinical impact, importance for drug development. J Hepatol 2020, 72:409-422.

84. DuranTEL D, Asselah T: Nucleic acid polymers are effective in targeting hepatitis B surface antigen, but more trials are needed. Gastroenterology 2020, 158:2051-2054.

85. Vaillant A: Nucleic acid polymers: broad spectrum antiviral activity, antiviral mechanisms and optimization for the
treatment of hepatitis B and hepatitis D infection. *Antiviral Res* 2016, 133:32-40.

This review summarizing the development of nucleosid acid polymers as antiviral target for the treatment of HBV and HDV.

96. Smolders EJ, Burger DM, Feld JJ, Kiser JJ: Review article: clinical pharmacology of current and investigational hepatitis B virus therapies. *Aliment Pharmacol Ther* 2020, 51:231-243.

97. Bazinet M, Pantée V, Cebotarescu V, Cojoharu L, Jimbii P, Anderson M, Gersch J, Holzmaier V, Elsier C, Krawczyk A et al.: Persistent control of hepatitis B virus and hepatitis delta virus infection following REP 2139-Ca and pegylated interferon therapy in chronic hepatitis B virus/hepatitis delta virus coinfection. *Hepatol Commun* 2021, 5:169-202.

98. Boulon R, Blanchet M, Lemasson V, Vaillant A, Labonté P: Characterization of the antiviral effects of REP 2139 on the HBV lifecycle in vitro. *Antiviral Res* 2020, 183:104853.

99. Blanchet M, Sinnathamby V, Vaillant A, Labonté P: Inhibition of HBsAg secretion by nucleosid acid polymers in HepG2.2.15 cells. *Antiviral Res* 2019, 164:97-105.

100. Bertoletti A, Le Bert N: Immunotherapy for chronic hepatitis B virus infection. *Gut Liver* 2018, 12:497-507.

101. Rehermann B, Thimme R: Insights from antiviral therapy into immune responses to hepatitis B and C virus infection. *Gastroenterology* 2019, 156:369-383.

102. Lang J, Neumann-Haefelin C, Thimme R: Immunological cure of HBV infection. *Hepatol Int* 2019, 13:113-124.

103. Gehring AJ, Protzer U: Targeting innate and adaptive immune responses to cure chronic HBV infection. *Gastroenterology* 2019, 156:325-337.

104. Meng Z, Chen Y, Lu M: Advances in targeting the innate and adaptive immune systems to cure chronic hepatitis B virus infection. *Front Immunol* 2020, 10:3127.

105. Ezzikouri S, Hoque Kayesh ME, Benjelloun S, Kohara M, Tsukiyama-Kohara K: Targeting host innate and adaptive immunity to achieve the functional cure of chronic hepatitis B. *Vaccines* 2020, 8:216.

106. Boni C, Vecchi A, Rossi M, Laccabue D, Giuberti T, Alfieri A, Lampertico P, Grossi G, Facchetti F, Brunetto MR et al.: TLR7 agonist increases responses of hepatitis B virus-specific T cells and natural killer cells in patients with chronic hepatitis B treated with nucleos(t)ide analogues. *Gastroenterology* 2018, 154:1764-1777.e7.

107. Ma Z, Cao Q, Xiong Y, Zhang E, Lu M: Interaction between hepatitis B virus and toll-like receptors: current status and potential therapeutic use for chronic hepatitis B. *Vaccines* 2018, 6.

108. Alonso S, Guerra A-R, Carreira L, Ferrer J-Á, Gutiérrez M-L, Fernandez-Rodriguez CM: Upcoming pharmacological developments in chronic hepatitis B: can we glimpse a cure on the horizon? *BMC Gastroenterol* 2017, 17:168.

109. Lopatin U: Drugs in the pipeline for HBV. *Clin Liver Dis* 2019, 23:535-555.

110. Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G et al.: GS-9620, an oral agonist of toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. *Gastroenterology* 2013, 144:1508-1517.e1-10.

111. Agarwal K, Ahn SH, Elkanashub M, Lau AH, Gagger A, Bulusu A, Tian X, Cathcart AL, Woo J, Subramanian GM et al.: Safety and efficacy of vesatolimod (GS-9620) in patients with chronic hepatitis B who are not currently on antiviral treatment. *J Viral Hepat* 2018, 25:1351-1360.

112. Seidel JA, Otsuka A, Kabashima K: Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. *Front Oncol* 2018, 8:86.

113. Bénèchet AP, De Simone G, Di Lucia P, Climenti F, Barbiera G, Le Bert N, Fumagalli V, Lusito E, Moalli F, Biancheschi V et al.: Dynamics and genomic landscape of CD8 T cells undergoing hepatic priming. *Nature* 2019, 574:200-205.

114. Jia J, Zhu F, Ma X, Cao ZW, Li YX, Chen YZ: Mechanisms of drug combinations: interaction and network perspectives. *Nat Rev Drug Discov* 2009, 8:111-128.

115. Xie Q, Zhou H, Bai X, Wu S, Chen J-J, Sheng J, Xie Y, Chen C, Chan HL-Y, Zhao M: A randomized, open-label clinical study of combined pegylated interferon Alfa-2a (40KD) and entecavir treatment for hepatitis B e antigen-positive chronic hepatitis B. *Clin Infect Dis* 2014, 59:1714-1723.

116. Marcellin P, Ahn SH, Chuang W-L, Hui AJ, Tabak F, Mehta R, Petersen J, Lee C-M, Ma X, Caruntu FA et al.: Predictors of response to tenofovir disoproxil fumarate plus peginterferon alfa-2a combination therapy for chronic hepatitis B. *Aliment Pharmacol Ther* 2016, 44:957-966.

117. Bazinet M, Pantée V, Placinta G, Moscaiu I, Cebotarescu V, Cojoharu L, Jimbii P, Iarovaie L, Smesnovi O, Musteata T et al.: Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon alfa-2a in patients with chronic HBV infection naïve to nucleos(t)ide therapy. *Gastroenterology* 2020, 158:2180-2194.

118. Dong J, Ying J, Qiu X, Lu Y, Zhang M: Advanced strategies for eliminating the cccDNA of HBV. *Dig Dis Sci* 2018, 63:7-15.