On Harary energy and Reciprocal distance Laplacian energies

Macarena Trigo
Departamento de Matemáticas, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile.
E-mail: macarena.trigo@uantof.cl

Abstract. Let G be a simple, undirected, connected and unweighted graphs. The Reciprocal distance energy of a graph G is equal to the sum of the absolute values of the reciprocal distance eigenvalues. In this work, we find a lower bound for the Harary energy, reciprocal distance Laplacian energy and reciprocal distance signless Laplacian energy of a graph. Moreover, we find relationship between the Harary energy and Reciprocal distance Laplacian energies.

1. Introduction and preliminaries

Let $G=(V,E)$ be a connected simple undirected graph with vertex set V and edge set E. The distance $d(v_i,v_j)$ between the vertices v_i and v_j of G is equal to the length of (number of edges in) the shortest path that connects v_i and v_j. The Harary matrix of graph G, which is also called as the Reciprocal Distance matrix, is an $n \times n$ matrix defined as

$$RD_{i,j} = \begin{cases} \frac{1}{d(v_i,v_j)} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

Henceforth, we consider $i \neq j$ for $d(v_i,v_j)$.

The transmission of a vertex v, denoted by $Tr_G(v)$ and defined by $Tr_G(v) = \sum_{u \in V(G)} d(u,v)$.

Definition 1 Let G be a simple connected graph with $V(G) = \{v_1,v_2,\ldots,v_n\}$. The reciprocal distance degree of a vertex v, denoted by $RTr_G(v)$, is given by

$$RTr_G(v) = \sum_{u \in V(G) \setminus \{v\}} \frac{1}{d(u,v)}.$$

Let RT_G be the $n \times n$ diagonal matrix defined by $RT_{i,i} = RTr_G(v_i)$.

Sometimes we use the notation RT_i instead of $RTr_G(v_i)$ for $i = 1,\ldots,n$.

Definition 2 A connected graph G is called a k-reciprocal distance degree regular graph if $RT_i = k$ for all $i \in \{1,2,\ldots,n\}$.

1 This work is partially supported by MINEDUC-UA project ANT20992
The Harary index of a graph \(G \), denoted by \(H(G) \), is defined in [18] as

\[
H(G) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} RD_{i,j} = \frac{1}{2} \sum_{u,v \in V(G)} \frac{1}{d(u,v)}.
\]

Clearly,

\[
H(G) = \frac{1}{2} \sum_{v \in V(G)} RT_{v_G}(v).
\]

We recall that the spectral radius of a matrix \(A \) is \(\rho(A) = \max_{1 \leq i \leq n} \{|\lambda_i(A)|\} \) where, for \(i = 1, \ldots, n \), \(\lambda_i(A) \) are the eigenvalues of the matrix \(A \).

In 2018, Bapat and Panda [3], defined the Reciprocal distance Laplacian matrix as \(RL(G) = RT(G) - RD(G) \) and in 2019, Alhevaz et al. [1], defined the Reciprocal distance signless Laplacian matrix as \(RQ(G) = RT(G) + RD(G) \).

We observe that \(RD(G), RL(G) \) and \(RQ(G) \) are real symmetric matrices, then we can write the eigenvalues in decreasing order, this is

\[
\lambda_1(RD(G)) \geq \lambda_2(RD(G)) \geq \cdots \geq \lambda_n(RD(G)),
\]

\[
\lambda_1(RL(G)) \geq \lambda_2(RL(G)) \geq \cdots \geq \lambda_n(RL(G))
\]

and

\[
\lambda_1(RQ(G)) \geq \lambda_2(RQ(G)) \geq \cdots \geq \lambda_n(RQ(G)).
\]

Moreover, \(RD(G) \) and \(RQ(G) \) are irreducible nonnegative matrices, \(\rho(RD(G)) \) and \(\rho(RQ(G)) \) are a simple eigenvalues of \(RD(G) \) and \(RQ(G) \), respectively. In [14] the authors obtained upper bounds and lower bounds for the spectral radius of Reciprocal distance, Reciprocal distance Laplacian and Reciprocal distance signless Laplacian matrices of a graph, and they characterized the graphs that attained some of the bounds mentioned.

The energy of a graph is a concept originating from theoretical chemistry and in 1978 Ivan Gutman defined the energy of a graph through the eigenvalues of the adjacency matrix of graph [8]. In particular: let \(A(G) \) be the adjacency matrix of a graph \(G \) of order \(n \), then the energy of the graph \(G \) is \(E(G) = \sum_{i=1}^{n} |\lambda_i(A(G))| \).

About the energy of graph, we highlight two classic bounds to a graph on \(n \) vertices and \(m \) edges:

\[
E(G) \leq \sqrt{2mn} \quad \text{and} \quad E(G) \leq \frac{2m}{n} + \sqrt{(n-1) + \left(2m - \left(\frac{2m}{n}\right)^2\right)},
\]

given by McClelland in [13] and given by Koolen and Moulton in [12], respectively.

The energy of a graph has been extensively studied over the years. Although, in some cases it has been possible to determine the energy for certain graphs, but in general it is not possible to determine it exactly. Examples of some works about energy on special graphs, such as bipartite graphs, cyclic and acyclic graphs, regular graph, line graphs, trees with a given diameter [2, 9, 10, 11, 19, 20, 21, 22, 23].

The concept energy of a graph has been extended to different matrices associated with a graph: let \(M \) be a matrix associated with a graph \(G \), then the energy of matrix \(M \) is defined in [4] by

\[
E_M(G) = \sum_{i=1}^{n} |\lambda_i(M(G)) - \bar{\lambda}(M(G))|,
\]

where \(\bar{\lambda}(M) \) is the average of the eigenvalues of matrix \(M \).
where $\bar{\lambda}(M(G))$ is the average of eigenvalues of M.

Several authors have defined the energy of different matrices coinciding or using the definition given above.

Definition 3 [7] The Harary energy of a graph G, denoted by $E_H(G)$, is defined as

$$E_H(G) = \sum_{i=1}^{n} |\lambda_i(RD(G))|.$$

The Harary energy is also called Reciprocal distance energy.

Definition 4 [1] Let G be a connected graph of order n. Then the Reciprocal distance signless Laplacian energy of G, denoted by $E_{RQ}(G)$ is defined as

$$E_{RQ}(G) = \sum_{i=1}^{n} \left| \lambda_i(RQ(G)) - \frac{1}{n} \sum_{j=1}^{n} R_{ij} \right|.$$

Definition 5 [15] Let G be a connected graph of order n. Then the Reciprocal distance Laplacian energy of G, denoted by $E_{RL}(G)$ is

$$E_{RL}(G) = \sum_{i=1}^{n} \left| \lambda_i(RL(G)) - \frac{2H(G)}{n} \right|.$$

In [15], we found bounds on the Reciprocal Distance Energy, Reciprocal Distance Laplacian Energy and Reciprocal Distance signless Laplacian Energy, and we characterized the graphs that attained some of those bounds. Now, in this work we find a new bounds for the Harary energy and reciprocal distance signless Laplacian energy of a graph, and we obtain relationship between the Harary energy and Reciprocal distance Laplacian energies.

On the other hand, in [16] Nikiforov defines the energy of a matrix M as the sum of the singular values of M. Let $g = \min\{m,n\}$. Let $s_1(M) \geq s_2(M) \geq \cdots \geq s_g(M)$ be the singular values of matrix M. It is well known that if $m > n$ then, for $i = 1, \ldots, n$, $s_i(M) = \sqrt{\lambda_i(M^*M)}$ and if $m \leq n$ then, for $i = 1, 2, \ldots, m$, $s_i(M) = \sqrt{\lambda_i(MM^*)}$. Using the fact that (1) the positive semidefinite matrices MM^* and M^*M have the same nonzero eigenvalues and (2) $RD(G), RL(G)$ and $RQ(G)$ are a symmetric matrix, then Definition 3, Definition 4 and Definition 5 become

$$E_{RD}(G) = \sum_{i=1}^{n} s_i(RD(G)),$$

$$E_{RQ}(G) = \sum_{i=1}^{n} s_i \left(RQ(G) - \frac{2H(G)}{n} I_n \right),$$

and

$$E_{RL}(G) = \sum_{i=1}^{n} s_i \left(RL(G) - \frac{2H(G)}{n} I_n \right),$$

where $\lambda_i(RD(G))$ is the ith eigenvalue of $RD(G)$. Several authors have defined the energy of different matrices coinciding or using the definition given above.
respectively, where I_n denote the identity matrix.

To finish this section, we recall that the Frobenius norm of an $n \times n$ matrix $M = (m_{i,j})$ is

$$||M|| = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} |m_{i,j}|^2}.$$

Moreover, if M is a normal matrix then $||M||^2 = \sum_{i=1}^{n} |\lambda_i(M)|^2$ where $\lambda_1(M), \ldots, \lambda_n(M)$ are the eigenvalues of M. In particular, this property is satisfied to $RD(G), RQ(G)$ and $RQ(G)$ matrices.

2. Lower bounds for the Harary energy and Reciprocal distance Laplacian energies

In this section we obtain lower bounds for Harary energy and Reciprocal distance Laplacian energies.

Lemma 1 [17] Let $n \geq 1$ be an integer and a_1, a_2, \ldots, a_n be some nonnegative real numbers such that $a_1 \geq a_2 \geq \ldots \geq a_n$. Then

$$(a_1 + \cdots + a_n)(a_1 + a_n) \geq a_1^2 + \cdots + a_n^2 + na_1a_n.$$

Moreover, the equality holds if and only if for some $r \in \{1, \ldots, n\}$, $a_1 = \ldots = a_r$ and $a_{r+1} = \ldots = a_n$.

Theorem 1 Let G be a graph with $n \geq 2$ vertices and $m \geq 1$ edges. Assume that $\lambda_1(RD(G)), \ldots, \lambda_n(RD(G))$ are all the RD-eigenvalues of G such that $|\lambda_1(RD(G))| \geq \cdots \geq |\lambda_n(RD(G))| \geq 0$. Then

$$E_{RD}(G) \geq \frac{||RD(G)||^2 + n|\lambda_1(RD(G))|\lambda_n(RD(G))}{|\lambda_1(RD(G))| + |\lambda_n(RD(G))|}.$$

Proof. For $i = 1, \ldots, n$ we denote $\lambda_i = \lambda_i(RD(G))$. Using Lemma 1 we obtain that

$$(|\lambda_1| + \cdots + |\lambda_n|)(|\lambda_1||\lambda_n|) \geq |\lambda_1|^2 + \cdots + |\lambda_n|^2 + n|\lambda_1||\lambda_n|.$$

Since $E_{RD}(G) = \sum |\lambda_i|$, then

$$E_{RD}(G) \geq \frac{|\lambda_1|^2 + \cdots + |\lambda_n|^2 + n|\lambda_1||\lambda_n|}{|\lambda_1| + |\lambda_n|}.$$

We recall that $RD(G)$ is a normal matrix. Therefore

$$E_{RD}(G) \geq \frac{||RD(G)||^2 + n|\lambda_1||\lambda_n|}{|\lambda_1| + |\lambda_n|}.$$

Theorem 2 Let G be a connected graph with $n \geq 2$ vertices. Let λ_p, λ_r be RQ-eigenvalues such that $|\lambda_p(RQ(G)) - \frac{2H(G)}{n}| = \max \left\{ |\lambda_1(RQ(G)) - \frac{2H(G)}{n}|, |\lambda_n(RQ(G)) - \frac{2H(G)}{n}| \right\}$ and $|\lambda_r(RQ(G)) - \frac{2H(G)}{n}| = \min \left\{ |\lambda_1(RQ(G)) - \frac{2H(G)}{n}|, |\lambda_n(RQ(G)) - \frac{2H(G)}{n}| \right\}$. Then

$$E_{RQ}(G) \geq \frac{||RQ(G)||^2 - \frac{(2H(G))^2}{n} + n|\lambda_p(RQ(G)) - \frac{2H(G)}{n}| |\lambda_r(RQ(G)) - \frac{2H(G)}{n}|}{|\lambda_p(RQ(G)) - \frac{2H(G)}{n}| + |\lambda_r(RQ(G)) - \frac{2H(G)}{n}|}.$$

Example 1 We consider the graphs

\[G_1, G_2, G_3 \text{ given by Figure 1, } G_4 \text{ is the star on } 7 \text{ vertices, } G_5 \text{ is the path on } 7 \text{ vertices and } G_6 \text{ is the cycle on } 7 \text{ vertices, denoted by } S_7, P_7 \text{ and } C_7 \text{ respectively.} \]

\[\text{Figure 1.} \]

The following tables show the bounds obtained for the above graphs.
Table 1. Lower bounds for the Harary energy.

	G_1	G_2	G_3	S_7	P_7	C_7
$E_{RD}(G)$	12.5568	5.5311	12	8	8.3051	9.0287
Theorem 1	8.718113	4.9091	7.5	7.4444	5.0396	7.3177

Table 2. Lower bounds for the Reciprocal distance signless Laplacian energy.

	G_1	G_2	G_3	S_7	P_7	C_7
$E_{RQ}(G)$	12.8889	5.6232	12	9.1845	8.5906	9.0287
Theorem 2	8.1862	5.3865	7.5	7.0861	5.2362	7.3177

Table 3. Lower bounds for the Reciprocal distance Laplacian energy.

	G_1	G_2	G_3	S_7	P_7	C_7
$E_{RL}(G)$	13.4953	5.5	12	7.7143	9.1142	9.0287
Theorem 3	9.8525	4.5	7.5	7.1788	6.4573	7.3177

3. Relationship between the Harary energy and Reciprocal distance Laplacian energies

In this section we find relationship between the Harary energy and Reciprocal distance Laplacian energies: first we study two particular cases, when G is a regular graph of diameter 2 and when the graph G is reciprocal distance regular; and finally we give general relations between the Harary energy and Reciprocal distance Laplacian energies.

Theorem 4 [5] Let G be an r-regular graph of diameter 2 on n vertices, its adjacency spectrum be $\text{spec}(A(G)) = \{r, \lambda_2, \ldots, \lambda_n\}$. Then the RD-spectrum of G is

$$\text{spec}(RD(G)) = \left\{ \frac{1}{2}(n+r-1), \frac{1}{2}(\lambda_2 - 1), \ldots, \frac{1}{2}(\lambda_n - 1) \right\}.$$

Theorem 5 Let G be an r-regular graph on n vertices such that $\text{diam}(G) = 2$. Let $r, \lambda_1, \ldots, \lambda_n$ be the adjacency eigenvalues of G. Then eigenvalues of the reciprocal distance signless Laplacian matrix of G are

$$n + r - 1 \quad \text{and} \quad \frac{1}{2}(\lambda_i + n + r) - 1, \quad i = 2, \ldots, n$$

Proof. Let G an r-regular graph on n vertices. We have $RQ(G) = RT(G) + RD(G)$. Since $\text{diam}(G) = 2$, then

$$RD(G) = \frac{1}{2}(J_n - I_n + A(G)),$$
where J_n denote the all-1 matrix of order n and I_n denote the identity matrix of order n.

We observe that, in this case, $RT(G) = \frac{1}{2} (n + r - 1) I_n$. Thus

$$RQ(G) = \frac{1}{2} (J_n + (n + r - 2) I_n + A(G))$$

Note that eigenvectors of $A(G)$ are also eigenvectors of matrix J_n and $\text{spec}(J_n) = \{n, 0, \ldots, 0\}$. Therefore,

$$\text{spec}(RQ(G)) = \left\{n + r - 1, \frac{1}{2}(\lambda_2 + n + r) - 1, \ldots, \frac{1}{2}(\lambda_n + n + r) - 1\right\}.$$

\[\square\]

Theorem 6 Let G be an r-regular graph on n vertices such that $\text{diam}(G) = 2$. Let $r, \lambda_1, \ldots, \lambda_n$ be the adjacency eigenvalues of G. Then eigenvalues of the reciprocal Laplacian matrix of G are 0 and $\frac{1}{2}(n + r - \lambda_i), i = 2, \ldots, n$

Proof. Analogously to Theorem 5, if G is an r-regular graph on n vertices such that $\text{diam}(G) = 2$, then

$$RL(G) = RT(G) - RD(G) = \frac{1}{2}(n + r - 1) I_n - RD(G).$$

Therefore, for $i = 1, 2, \ldots, n - 1$, $\lambda_i(RL(G)) = \frac{1}{2}(n + r - \lambda_i)$ and $\lambda_n(RL(G)) = 0$. \[\square\]

Theorem 7 Let G be a r-regular graph of diameter 2 on order n. Then

$$E_{RQ}(G) = E_{RD}(G) = E_{RL}(G).$$

Proof. Note that

$$E_{RD}(G) = \frac{1}{2}(n + r - 1) + \frac{1}{2} \sum_{i=2}^{n} |\lambda_i - 1|,$$

$$E_{RL}(G) = \left|0 - \frac{1}{2}(n + r - 1)\right| + \sum_{i=2}^{n} \left|\frac{1}{2}(n + r - \lambda_i) - \frac{1}{2}(n + r - 1)\right|$$

$$= \frac{1}{2}(n + r - 1) + \frac{1}{2} \sum_{i=2}^{n} |\lambda_i + 1|$$

$$= E_{RD}(G)$$

and

$$E_{RQ}(G) = \left|(n + r - 1) - \frac{1}{2}(n + r - 1)\right| + \sum_{i=2}^{n} \left|\frac{1}{2}(\lambda_i + n + r) - 1 - \frac{1}{2}(n + r - 1)\right|$$

$$= \frac{1}{2}(n + r - 1) + \frac{1}{2} \sum_{i=2}^{n} |\lambda_i - 1|$$

$$= E_{RD}(G).$$

Thus, the result is obtained. \[\square\]
Theorem 8 Let G be a k-reciprocal distance regular graph of order n. Then

$$E_{RQ}(G) = E_{RD}(G) = E_{RL}(G).$$

Proof. If G is a k-reciprocal distance regular graph then

$$RQ(G) = kI_n + RD(G)$$

and

$$RL(G) = kI_n - RD(G).$$

Thus

$$\lambda_i(RQ(G)) = k + \lambda_i(RD(G))$$

and

$$\lambda_i(RL(G)) = k - \lambda_i(RD(G)).$$

Then

$$E_{RQ}(G) = \sum_{i=1}^{n} |\lambda_i(RQ(G)) - k| = \sum_{i=1}^{n} |k + \lambda_i(RD(G)) - k| = E_{RD}(G),$$

and

$$E_{RL}(G) = \sum_{i=1}^{n} |\lambda_i(RL(G)) - k| = \sum_{i=1}^{n} |k - \lambda_i(RD(G)) - k| = E_{RD}(G).$$

Therefore, the result is obtained.

Lemma 2 [6] Let X, Y and Z be square matrices of order n, such that $Z = X + Y$. Then

$$\sum_{i=1}^{n} s_i(Z) \leq \sum_{i=1}^{n} s_i(X) + \sum_{i=1}^{n} s_i(Y).$$

Equality holds if and only if there exists an orthogonal matrix P, such that PX and PY are both positive semidefinite matrix.

Theorem 9 Let G be a graph of order n. Then

$$E_{RQ}(G) - E_{RL}(G) \leq 2E_{RD}(G) \leq E_{RQ}(G) + E_{RL}(G).$$

Proof. We observe that $RQ(G) - RL(G) = 2RD(G)$, then

$$\left(RQ(G) - \frac{2H(G)}{n}I \right) - \left(RL(G) - \frac{2H(G)}{n}I \right) = 2RD(G).$$

By the Lemma 2 we get the left inequality. Now, apply the same Lemma 2 on

$$\left(RQ(G) - \frac{2H(G)}{n}I \right) = \left(RL(G) - \frac{2H(G)}{n}I \right) + 2RD(G),$$

we get the right inequality.

Theorem 10 If G is a connected graph of order n. Then

$$E_{RQ}(G) \leq E_{RD}(G) + \sum_{i=1}^{n} \left| RT_i - \frac{2H(G)}{n} \right|. $$
Proof. Applying Lemma 2 to
\[RQ(G) - \frac{2H(G)}{n} I_n = RT(G) - \frac{2H(G)}{n} I_n + RD(G) \]
we obtain
\[\sum_{i=1}^{n} s_i \left(RQ(G) - \frac{2H(G)}{n} I_n \right) \leq \sum_{i=1}^{n} s_i \left(RT(G) - \frac{2H(G)}{n} I_n \right) + \sum_{i=1}^{n} s_i (RD(G)) \]
\[E_{RQ}(G) \leq \sum_{i=1}^{n} \left| RT_i(G) - \frac{2H(G)}{n} \right| + \sum_{i=1}^{n} |\lambda_i RD(G)| \]
\[E_{RQ}(G) \leq \sum_{i=1}^{n} \left| RT_i(G) - \frac{2H(G)}{n} \right| + E_{RD}(G). \]

Corollary 1 If \(G \) is a connected graph, then
\[E_{RQ}(G) \leq E_{RD}(G) + \sqrt{n \sum_{i=1}^{n} RT_i^2 - (2H(G))^2}. \]

Proof. By Cauchy-Schwarz inequality, we get
\[\sum_{i=1}^{n} \left| RT_i(G) - \frac{2H(G)}{n} \right| \leq \sqrt{n \sum_{i=1}^{n} \left(RT_i(G) - \frac{2H(G)}{n} \right)^2} = \sqrt{n \sum_{i=1}^{n} RT_i^2 - (2H(G))^2}. \]
Now, replacing in Theorem 10 the result is obtained.

Theorem 11 Let \(G \) be a graph of order \(n \). Then
\[E_{RL}(G) \leq E_{RD}(G) + \sum_{i=1}^{n} \left| RT_i - \frac{2H(G)}{n} \right|. \]

Proof. Applying Lemma 2 to
\[RL(G) - \frac{2H(G)}{n} I_n = \left(RT(G) - \frac{2H(G)}{n} I_n \right) + (-RD(G)) \]
we obtain
\[\sum_{i=1}^{n} s_i \left(RL(G) - \frac{2H(G)}{n} I_n \right) \leq \sum_{i=1}^{n} s_i \left(RT(G) - \frac{2H(G)}{n} I_n \right) + \sum_{i=1}^{n} s_i (-RD(G)) \]
\[E_{RL}(G) \leq \sum_{i=1}^{n} \left| RT_i(G) - \frac{2H(G)}{n} \right| + \sum_{i=1}^{n} |\lambda_i (-RD(G))| \]
\[E_{RL}(G) \leq \sum_{i=1}^{n} \left| RT_i(G) - \frac{2H(G)}{n} \right| + E_{RD}(G). \]
Corollary 2 If G is a connected graph, then

$$E_{RL}(G) \leq E_{RD}(G) + \sqrt{n \sum_{i=1}^{n} RT_i^2 - (2H(G))^2}.$$

Proof. The prove is similar to Corollary 1.

Acknowledgments: The author thanks the "Programa de Asistente de Investigación” supported by the "Vicerrectoría de Investigación, Innovación y Postgrado” of the Universidad de Antofagasta and the MINEDUC-UA project code ANT20992 of the Universidad de Antofagasta, Chile.

ORCID:
M. Trigo https://orcid.org/0000-0003-4979-4246

References
[1] A. Alhevaz, M. Baghipur, H.S. Ramane. Computing the reciprocal distance signless Laplacian eigenvalues and energy of graphs, Le Matematiche Vol. LXXIV (2019) – Issue I, pp. 49–73.
[2] A.T. Balaban, Y.P. Ortiz, D.J. Klein, D. Bhattacharya. Energies for Cyclic and Acyclic Aggregations of Adamantane Sharing Six-membered Rings. Croat. Chem. Acta (2016) 89, 463–470.
[3] R Bapat, S. K. Panda. The Spectral Radius of the Reciprocal Distance Laplacian Matrix of a Graph, Bulletin of the Iranian Mathematical Society (2018) 44 (5), 1211–1216.
[4] V.Consonni, R.Todeschini, New spectral index for molecule description. MATCH Commun. Math. Comput. Chem. 60, 3–14 (2008).
[5] Z. Cui, B. Liu, On Harary matrix, Harary index and Harary energy, MATCH Commun. Math. Comput. Chem. 68 (2012), 815–823.
[6] K. Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Natl. Acad. Sci. USA 37 (1951) 760–766.
[7] A. D. Güngör, A. S. Çevik, On the Harary energy and Harary Estrada index of a graph, MATCH Commun. Math. Comput. Chem., 64 (2010), 281–296.
[8] I. Gutman. The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103 (1978), 1–22.
[9] I. Gutman, S.Z. Firoozabadi, J. de la Peña, J. Rada. On the energy of regular graphs. MATCH Commun. Math. Comput. Chem. 57 (2007) 435–442.
[10] I. Gutman, M. Robbiano, E. Andrade, D. Cardoso, L. Medina, O. Rojo. Energy of line graphs, Linear Algebra and its Applications 433 (2010) 1312–1323.
[11] A. Jahanbani, J. Rodriguez. Koolen-Moulton-Type Upper Bounds on the Energy of a Graph. MATCH Commun. Math. Comput. Chem. 83 (2020) 497–518.
[12] J.H. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math., 26 (2001), 47–52.
[13] B.J. McClelland. Properties of the latent roots of a matrix: The estimation of π-electron energies, J. Chem. Phys., 54 (1971), 640–643.
[14] L. Medina and M. Trigo. Upper bounds and lower bounds for the spectral radius of Reciprocal Distance, Reciprocal Distance Laplacian and Reciprocal Distance signless Laplacian matrices, Linear Algebra and its Applications 609 (2021), 386–412.
[15] L. Medina and M. Trigo. Bounds on the Reciprocal Distance energy and Reciprocal Distance Laplacian energies of a graph, Linear and Multilinear Algebra, (in Press) DOI: 10.1080/03081087.2020.1825607
[16] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472–1475.
[17] M. R. Oboudi, A new lower bound for the energy of graphs, Linear Algebra Appl. 580 (2019) 384–395.
[18] D. Plavšić, S. Nikolić, N. Trinajstić, Z. Mihalić. On the Harary index for the characterization of chemical graphs, Journal of Mathematical Chemistry 12 (1993) 235–250.
[19] M. Robbiano, R. Jimenez, L. Medina. The Energy and an Approximation to Estrada Index of Some Trees, MATCH Communications in Mathematical and in Computer Chemistry 61 number 2 (2009) 369–382.
[20] O. Rojo, L. Medina. Constructing Graphs with Energy $\sqrt{E(G)}$ where G is a Bipartite Graph, MATCH Communications in Mathematical and in Computer Chemistry 62 number 3 (2009) 465–472.
[21] O. Rojo, L. Medina. Construction of bipartite graphs having the same Randić energy, MATCH Communications in Mathematical and in Computer Chemistry 68 number 3 (2012) 805–814.
[22] V. Trevisan, J.B. Carvalho, R.R.D Vecchio, C.T.M. Vinagre. Laplacians energy of diameter 3 trees, Appl.
Math. Lett., 24:918–923, (2011).

[23] W. Yana, L. Yec. On the minimal energy of trees with a given diameter, Applied Mathematics Letters 18
(2005) 1046–1052.