Coronavirus motif

Sir — I report the presence of a leucine zipper motif at the carboxyl end of the spike (S) glycoprotein, a transmembrane protein of coronaviruses. All the coronavirus S proteins whose sequences are known — transmissible gastroenteritis virus (TGEV) FS772/70 (residues 1,342–1,377), feline hepatitis virus (MHV) A59 (1217–1252), MHV JHM (1128–1163), human coronavirus (HCV) 229E (1,067–1,102), bovine coronavirus (BCV) Mebus (1,266–1,294) and infectious bronchitis virus (IBV) Beaudette (1,058–1,079) — contain a leucine-zipper motif terminating 10 amino-acid residues upstream of the conserved KWP motif preceding the transmembrane domain. The length of the leucine zippers range from three heptad repeats, as identified for the F glycoprotein of paramyxoviruses, to five heptad repeats. The observation that all coronavirus S proteins sequenced so far contain the leucine-zipper motif 10 amino-acid residues from the transmembrane domain may imply some function of the motif in the dimerization of the S polyproteins.

PAUL BRITTON

Institute for Animal Health, Compton Laboratory, Compton, Newbury RG16 0NN, UK

Biocontrol risks

Sir — Hochberg and Waage suggested in their News and Views article1 that some new genetically modified insect viruses will be acceptable as biological control agents because they have "highly restricted host ranges". There is widespread agreement that specific biological control agents are great, and much damage has resulted from their use environmentally, over chemical pesticides. But the dangers of non-specific biocontrols are great, and much damage has resulted from their use2. How specific are these genetically modified organisms? They are derived modified organisms? They are derived from the Autographa californica nuclear polyhedrosis virus (AcNPV), a baculovirus, which has a wide and sporadic host range in the lepidoptera. There are around 2,500 species of lepidoptera in Britain3, and of course many times more elsewhere. The records of host range of this virus4–6, based on a small fraction of the known species, show that, of twelve superfamilies tested, eight apparently contain 'permissive' species (species killed by fewer virus polyhedra than are produced by one dead caterpillar). With this and other baculoviruses' one species in a genus may be permissive, others resistant and the LD50s vary markedly between different permissive species, without apparent regard for taxonomy.

The superfamilies known to have permissive species are the Gelichiodea, Pyraloidea, Papilionoidea, Sphingidae and Noctuoidea: the Bombycoidea, Geometroidea and Yponometroidea may have them, but this needs confirmation by DNA analysis. It seems that 5–10 per cent of British lepidoptera are permissive for AcNPV, a non-native virus, putting 125–250 species at risk, including some of great conservation value.

The two new genetically modified organisms7–9, like others derived from the same virus10, may have host ranges slightly different from that of the wild type. But unless they can be further engineered to be absolutely specific for a related by a rotation of the SiO4 tetrahedra around their C2 axes. The corresponding internal coordinate, the tilt angle δ (ref. 3), is negative in the α1 phase, positive in α2 and zero in β.

The net charges calculated by this method should provide reliable trends of ionicity in connected structures when identical basis sets are used. We find that the net charge on silicon decreases bases of host specificity is likely to be a sine qua non for the successful, much-desired, replacement of chemical control agents for insects by viral ones.

MARK WILLIAMSON

Department of Biology, University of York, York Y01 5DD, UK

Ionicity in silica

Sir — Kramer et al.1 suggest that a change in ionicity is responsible for the transition from the α to the β phase in silica. Their ab initio force-field method indicates that an increase by about 0.1 atomic units of the net charge on silicon stabilizes the β structure of quartz and cristobalite with respect to the α structures, implying that the former correspond to global minima of the Born–Oppenheimer potential-energy surface. Our recent Hartree–Fock calculations2 on the quartz structures of SiO2 and GeO2 come to opposite conclusions with respect to both the magnitude and the direction of the ionicity effect.

Our calculations were performed at a level of accuracy similar to that of the cluster calculations used to derive the force field of ref. 1. We used the P3221 space group for both the α and the β structures. In α quartz there are two equivalent twinned configurations, α1 and α2, related by a rotation of the SiO4 tetrahedra around their C2 axes. The corresponding internal coordinate, the tilt angle δ (ref. 3), is negative in the α1 phase, positive in α2 and zero in β.

The net charges calculated by this method should provide reliable trends of ionicity in connected structures when identical basis sets are used. We find that the net charge on silicon decreases

1. Kramer, G. J., van Beest, B. W. H. & van Santen, R. A. Nature 353, 553–536 (1991).
2. Silvi, B., D’Arco, P. & Crespo, M. J. Phys. Chem. 93, 7225–7229 (1990).
3. Gremp, H. & Domer, B. J. Phys. Chem. Solids 36, 407–413 (1975).
4. Tsutsumi, A., Aoki, H., Tsukada, M. & Matsu, Y. Phys. Rev. Lett. 66, 2356–2359 (1991).

© 1991 Nature Publishing Group

NATURE · VOL 353 · 3 OCTOBER 1991