Comment on “Physics without determinism: Alternative interpretations of classical physics”

This is the author's submitted version of the contribution published as:

Original
Comment on “Physics without determinism: Alternative interpretations of classical physics” / Callegaro, Luca; Pennecchi, Francesca; Bich, Walter. - In: PHYSICAL REVIEW A. - ISSN 2469-9926. - 102:3(2020), p. 036201. [10.1103/PhysRevA.102.036201]

Availability:
This version is available at: 11696/65130 since: 2021-01-16T17:38:13Z

Publisher:
APS

Published
DOI:10.1103/PhysRevA.102.036201

Terms of use:
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
American Physical Society (APS)
Copyright © American Physical Society (APS)
Comment on “Physics without determinism: Alternative interpretations of classical physics”,
Phys. Rev. A, 100:062107, Dec 2019

Luca Callegaro, Francesca Pennecchi and Walter Bich

INRIM - Istituto Nazionale di Ricerca Metrologica
Strada delle Cacce, 91 – 10135 Torino, Italy
Abstract

The paper “Physics without determinism: Alternative interpretations of classical physics” [Phys. Rev. A, 100:062107, Dec 2019] defines finite information quantities (FIQ). A FIQ expresses the available information about the value of a physical quantity. We show that a change in the measurement unit does not preserve the information carried by a FIQ, and therefore that the definition provided in the paper is not complete.

The expression of the state of knowledge about a measurand as a probability distribution (or some summary of it, such as its mean and standard deviation) is the conventional approach for expressing a measurement result [1–4]. However, it does not intuitively parallel the much more immediate concepts of “certain” and “uncertain digits” that every experimentalist feels when taking note of a measurement outcome in the lab notebook.

In [5], Del Santo and Gisin introduce the concept of finite information quantities (FIQ). A FIQ ranging in the interval [0, 1] is expressed by the binary number \(Q = 0.Q_1Q_2Q_3 \ldots \), where the individual bits \(Q_k \) are Bernoulli random variables having propensities \(q_k \) for the realisation of the case \(Q_k = 1 \). A specific FIQ \(Q \) is thus defined by the vector of propensities \(q = [q_1, q_2, \ldots, q_k, \ldots, q_M, \frac{1}{2}, \frac{1}{2}, \ldots] \) of its bits \(Q_k \); it is assumed that \(q_k = \frac{1}{2} \) for \(k > M \), i.e., all bits beyond position \(M \) have a 50% propensity of being either 0 or 1 and therefore carry no information. Only a finite number \(M \) of propensities are needed to specify \(Q \).

The FIQ concept is very appealing and it is tempting to adopt it to express the value and uncertainty of a quantity as an alternative to probability distributions. However, for the concept of FIQ to become a practical alternative to the current way of representing the state of knowledge about a quantity, it is mandatory that calculations with them be possible and, hopefully, simple.

Consider for example the expression of the value of a quantity, traditionally written as \(Q = \{Q\} [U] \), where \(\{Q\} \) is the numerical value and [U] is the unit. Changing the unit to \(U' = U/L \), \(L \) being a constant, implies \(Q = \{Q'\} [U'] \), with \(\{Q'\} = L\{Q\} \). So, even such an elementary transformation as the change of measurement unit implies the multiplication of a FIQ by a constant.

Indeed, the FIQ definition suggests that it is possible to identify simple, practical calculation rules operating on the finite (and, intuitively, small) number of indeterminate bits and their propensities; rules suitable to be converted in efficient computation algorithms.
The arithmetic relevant to a unit change (Appendix A) shows that the transformation $Q' = LQ$ generates bits Q'_k of Q' which are not mutually independent even if the original Q_k bits are independent. Therefore, expressing Q' by providing only the propensities q'_k of its individual bits deletes some of the original information.

Random variables Q with independent binary digits Q_k have been considered in mathematical literature [6–8]. In general, Q has a ‘reasonable’ probability density function (pdf) only if the q_k satisfy strict conditions, and in that case the pdf is necessarily an exponential [6]; otherwise, it becomes a fractal [7], hence difficult to associate with a physical quantity.

In conclusion, it appears that a specification of the state of knowledge about a quantity Q by means of a FIQ should also include information on the dependencies among the Q_k, and therefore that, although the FIQ concept might be physically sound and useful, its definition as given in [5] is not complete, and deserves further development.

Appendix A: Minimal FIQ maths

A FIQ arithmetics can be established by generalizing operations on binary numbers. The sum $S = Q + R = 0.S_1S_2S_3 \ldots$ of two FIQs, $Q = 0.Q_1Q_2Q_3 \ldots$ and $R = 0.R_1R_2R_3 \ldots$, is given by the full adder rule, Tab. I.

Q_k	R_k	C_{k+1}	S_k	C_k
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

TABLE I. Binary full adder truth table. C_k is the carry bit.

If q is the vector of propensities associated with Q, and r with R, then under the as-
sumption of independence of q_k and r_k, the propensity s_k of each sum bit S_k can be written as the sum of the four propensities of the $S_k = 1$ cases in Tab. I:

$$s_k = (1 - q_k)(1 - r_k)c_{k+1} + (1 - q_k)r_k(1 - c_{k+1})$$
$$+ q_k(1 - r_k)(1 - c_{k+1}) + q_k r_k c_{k+1}$$
$$= q_k + r_k + c_{k+1}$$
$$- 2(q_k r_k + q_k c_{k+1} + r_k c_{k+1}) + 4q_k r_k c_{k+1}$$

(A1)

and similarly the propensity c_k of the carry bit C_k is

$$c_k = q_k r_k + q_k c_{k+1} + r_k c_{k+1} - 2q_k r_k c_{k+1}$$

(A2)

For example for the case $c_{k+1} = \frac{1}{2}$, we have $s_k = \frac{1}{2}$ and $c_k = \frac{1}{2}(q_k + r_k)$: the information provided by q_k and r_k is transferred, through the carry bit C_k, to bit S_{k-1}.

Multiplication by a deterministic constant L can be performed by repeated shifting and addition. Table II gives a simple example. If $P = LQ$, where $Q = [0, 0, q_3, \frac{1}{2}, \ldots]$ and $L = (11)_2 = (3)_{10}$, then

0.	0	0	$Q_3 \ldots$
\times	1	1	
0.	0	0	$Q_3 \ldots$
+ 0.	0	Q_3	$Q_4 \ldots$
= 0.	P_1	P_2	$P_3 \ldots$

TABLE II. Multiplication table, $P = LQ$ where $Q = 0.0Q_2Q_3\ldots$ and $L = (11)_2 = (3)_{10}$.

$L = (11)_2 = (3)_{10}$, then

$$p_1 = \frac{1}{2}q_3^2 + \frac{1}{4}q_3,$$

$$p_2 = q_3 - q_3^2 + \frac{1}{4},$$

$$p_3 = \frac{1}{2}, \ldots$$

(A3)

The propensity of occurrence of specific digit couples can also be computed. For example, denoting as p_{12} the propensity of the event \{ $P_1 = 1, P_2 = 1$ \} we have $p_{12} = 0$ (to have $P_1 = 1$, it should occur that $Q_3 = 1$ and $C_3 = 1$ at the same time, hence $C_2 = 1$. However,
the case \(\{Q_3 = 1, C_3 = 1\} \) always generates \(P_2 = 0 \), so \(\{P_1 = 1, P_2 = 1\} \) is never possible. Since \(p_{12} \neq p_1 p_2 \), bits \(P_1 \) and \(P_2 \) are not independent.

[1] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. *International Vocabulary of Metrology, JCGM 200:2012*. BIPM, 2012.

[2] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. *Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008, GUM 1995 with minor corrections*. BIPM, 2008.

[3] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. *Supplement 1 to the ‘Guide to the Expression of Uncertainty in Measurement’ – Propagation of distributions using a Monte Carlo method, JCGM 101:2008*. BIPM, 2008.

[4] BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. *Supplement 2 to the ‘Guide to the Expression of Uncertainty in Measurement’ – Extension to any number of output quantities, JCGM 102:2011*. BIPM, 2011.

[5] Flavio Del Santo and Nicolas Gisin. Physics without determinism: Alternative interpretations of classical physics. *Phys. Rev. A*, 100:062107, Dec 2019.

[6] G. Marsaglia. Random variables with independent binary digits. *Ann. Math. Stats.*, 42(6):1922–1929, 1971.

[7] N. V. Pratsevityi and G. M. Torbin. Superfractality of the set of numbers having no frequency of \(n \)-adic digits, and fractal probability distributions. *J. Ukr. Math.*, 47:1113–1118, 1995.

[8] S. Albeverio, Ya. Goncharenko, M. Pratsiovytyi, and G. Torbin. Convolutions of distributions of random variables with independent binary digits. *Random Oper. Stochastic Eq.*, 15(1):89–104, 2007.