Draft genome sequence of *Cellulomonas carbonis* T26\(^T\) and comparative analysis of six *Cellulomonas* genomes

Weiping Zhuang, Shengzhe Zhang, Xian Xia and Gejiao Wang*

Abstract

Most *Cellulomonas* strains are cellulolytic and this feature may be applied in straw degradation and bioremediation. In this study, *Cellulomonas carbonis* T26\(^T\), *Cellulomonas bogoriensis* DSM 16987\(^T\) and *Cellulomonas cellasea* 20108\(^T\) were sequenced. Here we described the draft genomic information of *C. carbonis* T26\(^T\) and compared it to the related *Cellulomonas* genomes. Strain T26\(^T\) has a 3,990,666 bp genome size with a G + C content of 73.4 %, containing 3418 protein-coding genes and 59 RNA genes. The results showed good correlation between the genotypes and the physiological phenotypes. The information are useful for the better application of the *Cellulomonas* strains.

Keywords: *Cellulomonas*, *Cellulomonas carbonis*, Cellulolytic, Comparative genomics, Genome sequence

Introduction

Strain T26\(^T\) (= CGMCC 1.10786\(^T\) = KCTC 19824\(^T\) = CCTCC AB2010450\(^T\)) is the type strain of *Cellulomonas carbonis* which was isolated from coal mine soil [1]. The genus *Cellulomonas* was first proposed by Bergey et al. in 1923 [2]. To date, the genus *Cellulomonas* contains 27 species and mainly isolated from cellulose enriched environments such as soil, bark, wood and sugar field [1–4]. The common characteristics of the *Cellulomonas* strains are Gram-positive, rods, high G + C content (69–76 mol%) and cellulolytic, containing anteiso-C15:0 and C16:0 as the major fatty acids, and menaquinone-9(H4) as the predominant quinone. Most *Cellulomonas* strains can degrade cellulose and hemicellulose, making the strains applicable in paper, textile, and food industries, soil fertility and bioremediation [5–8]. The characterization of cellobiose phosphorylase, endo-1,4-xylanase, xylanases and endo-1,4-glucanase of *Cellulomonas* strains have been previously published [9–12].

So far, three genomes of *Cellulomonas* have been published including *Cellulomonas flavigena* DSM 20109\(^T\) [13], *Cellulomonas fimii* ATCC 484\(^T\) [14] and *Cellulomonas gilvus* ATCC 13127\(^T\) [14] and showed a wide variety of cellulases and hemicellulases in their genomes [13, 14]. In order to provide more genomic information about *Cellulomonas* strains for potential industrial application, we sequenced the genomes of *Cellulomonas carbonis* T26\(^T\) [1], *Cellulomonas cellasea* DSM 20118\(^T\) [2] and *Cellulomonas bogoriensis* DSM 16987\(^T\) [15]. Here we present a summary genomic features of *C. carbonis* T26\(^T\) together with the comparison results of the six available *Cellulomonas* genomes.

Organism information

Classification and features

The taxonomic classification and general features of *C. carbonis* T26\(^T\) are presented in Table 1. A total of 105 single-copy conserved proteins were obtained within the 13 genomes by OrthoMCL with a Match Cutoff 50 % and an E-value Exponent Cutoff 1-e\(^5\) [16, 17]. Figure 1 shows the phylogenetic tree of *C. carbonis* T26\(^T\) and 12 related strains based on conserved gene sequences. The tree was constructed by MEGA 5.05 with Maximum-Likelihood method to determine phylogenetic position [18]. The genome based phylogenetic tree (Fig. 1) is similar to the 16S rRNA gene based phylogenetic tree [1].

* Correspondence: gejiao@mail.hzau.edu.cn
State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China

© 2015 Zhuang et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Table 1 Classification and general features of *C. carbonis* T26^T

MIGS ID	Property	Term	Evidence code
	Classification	Domain: Bacteria	TAS [33]
		Phylum: Actinobacteria	TAS [34]
		Class: Actinobacteria	TAS [35]
		Order: Micrococcales	TAS [36]
		Family: Cellulomonadaceae	TAS [37]
		Genus: Cellulomonas	TAS [1, 38]
		Species: Cellulomonas carbonis	TAS [1]
		(Type) strain: T26^T = (CGMCC 1.10786^T = KCTC 19824^T = CCTCC AB2010450^T)	
	Gram stain	Positive	TAS [1]
	Cell shape	Rod-shaped	TAS [1]
	Motility	Motile	TAS [1]
	Sporulation	Non-sporulating	NAS
	Temperature range	4-45 °C	TAS [1]
	Optimum temperature	28 °C	TAS [1]
	pH range; Optimum	6-10;7	TAS [1]
	Carbon source	D-glucose, L-arabinose, mannose, N-acetyl glucosamine, maltose, gluconate, sucrose, glycogen, salicin, D-melibiose, D-sorbitol, xylose, D-lactose, D-galactose, D-fructose, and raffinose.	TAS [1]

MIGS-6	Habitat	Soil	TAS [1]
MIGS-6.3	Salinity	0.7 % NaCl (w/v)	TAS [1]
MIGS-22	Oxygen requirement	Aerobic	TAS [1]
MIGS-15	Biotic relationship	free-living	TAS [1]
MIGS-14	Pathogenicity	non-pathogen	NAS
MIGS-4	Geographic location	Tianjin city, China	TAS [1]
MIGS-5	Sample collection	2012	TAS [1]
MIGS-4.1	Latitude	39°01′49.77″ N	TAS [1]
MIGS-4.2	Longitude	117°11′20.20″ E	TAS [1]
MIGS-4.4	Altitude	Not reported	TAS [1]

Evidence codes - IDA: Inferred from Direct Assay, TAS: Traceable Author Statement (i.e., a direct report exists in the literature), NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [23].

Fig. 1 Phylogenetic tree showing the positioning of *C. carbonis* T26^T (shown in bold) based on aligned sequences of 105 single-copy conserved proteins shared among the 13 genomes. The conserved protein was acquired by OrthoMCL with a Match Cutoff 50% and an E-value Exponent Cutoff 1-e5 [15, 16]. Phylogenetic analysis was performed using MEGA version 5.05 and the tree was built using the Maximum-Likelihood method [17] with 1000 bootstrap repetitions were computed to estimate the reliability of the tree. The corresponding GenBank accession numbers are displayed in parentheses.
Strain *C. carbonis* T26T is Gram-positive, aerobic, motile and rod-shaped (0.5–0.8 × 2.0–2.4 μm) (Fig. 2). The colonies are yellow-white, convex, circular, smooth, non-transparent and about 1 mm in diameter after 3 days incubation on R2A agar at 28 °C [1]. The optimal growth occurs at 28 °C (Table 1). The strain was able to hydrolyse CM-cellulose, starch, gelatin, aesculin and positive in catalase and nitrate reduction [1]. *C. carbonis* T26T was capable of utilizing a wide range of sole carbon sources including D-glucose, L-arabinose, mannose, N-acetyl glucosamine, maltose, gluconate, sucrose, glycerin, salicin, D-melibiose, D-sorbitol, xylose, D-lactose, D-galactose, D-fructose and raffinose [1, Table 1].

Chemotaxonomy

C. carbonis T26T contains anteiso-C\textsubscript{15:0} (33.6 %), anteiso-C\textsubscript{15:1} A (22.1 %), C\textsubscript{16:0} (14.4 %) and C\textsubscript{14:0} (12.1 %) as the major fatty acids and menaquinone-9(H4) as the predominant respiratory quinone. The major polar lipids of this strain were diphosphatidylglycerol and phosphatidyglycerol [1].

Genome sequencing information

Genome project history

This organism was selected for sequencing particularly due to its cellulolytic activity and other applications. Genome sequencing was performed by Majorbio Bio-pharm Technology in April-June, 2013. The raw reads were assembled by SOAPdenovo v1.05. The genome annotation was performed at the RAST server version 2.0 [19] and the NCBI Prokaryotic Genome Annotation Pipeline and has been deposited at DDBJ/EMBL/GenBank under accession number AXCY00000000. The version described in this study is the first version.

Table 2 Project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Draft
MIGS-28	Libraries used	Illumina Paired-End library
		(300 bp insert size)
MIGS-29	Sequencing platforms	Illumina Miseq 2000
MIGS-31.2	Fold coverage	343.5x
MIGS-30	Assemblers	SOAPdenovo v1.05
MIGS-32	Gene calling method	GeneMarkS+
	Locus tag	N868
GenBank ID		AXCY00000000
GenBank Date of Release		October 17, 2014
GOLD ID		Gi0055591
	BIOPROJECT	PRJN215138
MIGS-13	Source material identifier	T26T
	Project relevance	Genome comparison

Table 3 Genome statistics

Attribute	Value	% of total*
Genome size (bp)	3,990,666	100.00
DNA coding (bp)	2,927,153	73.35
DNA G + C (bp)	3,368,220	84.40
DNA scaffolds	414	100.00
Total genes	3513	100.00
Protein-coding genes	3418	97.30
RNA genes	59	1.68
Pseudo genes	36	1.02
Genes in internal clusters	1435	40.85
Genes with function prediction	2481	71.00
Genes assigned to COGs	1450	41.28
Genes with Pfam domains	2231	63.51
Genes with signal peptides	253	7.20
Genes with transmembrane helices	764	21.75
CRISPR repeats	0	-

*The total is based on either the size of the genome in base pairs or the total number of protein coding genes in the annotated genome.
NanoDrop Spectrophotometer 2000 (Equi-Thermo SCIENTIFIC, USA). About 8.8 μg of genomic DNA was sent to Shanghai Majorbio Bio-pharm Technology Co., Ltd for library preparation and sequencing.

Genome sequencing and assembly

The genome of *C. carbonis* T26\(^T\) was sequenced by Illumina Hisep2000 pair-end technology at Shanghai Majorbio Bio-pharm Technology Co., Ltd. A 300 bp Illumina standard shotgun library was constructed and generated 7,703,453 × 2 reads totaling 1,556,097,506 bp Illumina data. Raw reads were filtered using the FastQC toolkit and optimizing through local gap filling and base correction with Gap Closer. All general aspects of library construction and sequencing can be found at the Illumina's official website [20]. Using SOAPdenovo v1.05 version [21], 7,324,578 × 2 paired reads and 349,082 single reads were assembled de novo. Due to very high GC content, the final draft assembly yield 547 contigs arranged in 414 scaffolds with 343.5 × coverage. The final assembly results showed that 97.6 % of the bases present in larger contigs (>1000 bp), and the contig N50 is 29,777 bp. The draft genome of *C. carbonis* T26\(^T\) is present as a set of contigs ordered against the complete genome of *C. flavigena* DSM 20109\(^T\) using Mauve software [22].

Genome annotation

The draft genome sequence of *C. carbonis* T26\(^T\) was annotation through the RAST server version 2.0 and

![Fig. 3](image-url) A graphical circular map of the *C. carbonis* T26\(^T\) genome performed with CGview comparison tool [39]. From outside to center, ring 1, 4 show protein-coding genes colored by COG categories on forward/reverse strand; ring 2, 3 denote genes on forward/reverse strand; ring 5 shows G + C% content plot, and the innermost ring shows GC skew.
the National Center for Biotechnology Information

Prokaryotic Genome Annotation Pipeline. Genes were

identified using the gene caller GeneMarkS+ with the

similarity-based gene detection approach [23]. The

predicted CDSs were translated and used to search

the NCBI Nonredundant Database, Pfam [24], KEGG

[25], and the NCBI Conserved Domain Database through

the Batch web CD-Search tool [26]. The miscellaneous

features were prediction by WebMGA [27], TMHMM

[28] and SignalP [29]. The putative cellulose-degrading

d enzymes were identified through Carbohydrate-Active

eNymes Database (CAZymes) Database [30].

Genome properties

The whole genome of *C. carbonis* T26T is 3,990,666 bp

in length, with an average GC content of 73.4 %, and

comprised of 547 contigs. The genome properties and

statistics are summarized in Table 3 and Fig. 3. From a

total of 3513 genes, 3418 protein-coding genes were

identified and 71 % of them were assigned putative func-
tions, while the remainder was annotated as hypothetical

proteins. In addition, 36 pseudogenes, 11 rRNA, 46
tRNAs and 1 ncRNA were identified. The distributions

of genes among the COGs functional categories are

shown in Table 4.

Insights from the genome sequence

In order to reveal more genomic information for better

application of the *Cellulomonas* strains, the genomic fea-
tures of *C. carbonis* T26T together with the comparison

results of the six *Cellulomonas* genomes were analyzed

(Table 5). OrthoMCL analysis with a Match cutoff of

50 % and an E-value Exponent cutoff of 1-e5 identified

1189 single-copy conserved proteins among the six

Cellulomonas genomes (Fig. 4). Several carbohydrate-

active enzymes have been identified and classified into
different families of glycoside hydrolases, carbohydrate

binding modules, carbohydrate esterases, auxiliary activ-

ities and polysaccharide lyases [31] (Fig. 5, Additional

dle 1: Table S1). Some putative glycoside hydrolases may

be responsible for the ability of *Cellulomonas* spp. to

utilize various sole carbon sources.

Some potential cellulose-degrading enzymes were

found and analyzed (Fig. 6, Additional file 1: Table S2).

Code	Value	%age	Description
J	152	4.45	Translation, ribosomal structure and biogenesis
A	4	0.12	RNA processing and modification
K	244	7.14	Transcription
L	136	3.98	Replication, recombination and repair
B	1	0.03	Chromatin structure and dynamics
D	29	0.85	Cell cycle control, Cell division, chromosome partitioning
V	58	1.70	Defense mechanisms
T	195	5.71	Signal transduction mechanisms
M	141	4.13	Cell wall/membrane biogenesis
N	54	1.58	Cell motility
U	61	1.78	Intracellular trafficking and secretion
O	106	3.10	Posttranslational modification, protein turnover, chaperones
C	181	5.30	Energy production and conversion
G	298	8.72	Carbohydrate transport and metabolism
E	198	5.79	Amino acid transport and metabolism
F	72	2.11	Nucleotide transport and metabolism
H	116	3.39	Coenzyme transport and metabolism
I	91	2.66	Lipid transport and metabolism
P	130	3.80	Inorganic ion transport and metabolism
Q	48	1.40	Secondary metabolites biosynthesis, transport and catabolism
R	340	9.95	General function prediction only
S	199	5.82	Function unknown
-	1968	57.58	Not in COGs

The percentage is based on the total number of protein-coding genes in the annotated genome.
C. fimi ATCC 484^T possesses the highest number of putative cellulases, including ten members of β-glucosidases (GH1 and GH3); six members of endoglucanases (GH6 and GH9); four endo-β-1,4-glucanases (GH48 and GH5) and one cellobiose phosphorylase (GH94). C. carbonis T26^T has the fewest putative cellulases, including one cellobiose phosphorylase (GH94); one endoglucanase (GH6) and five β-glucosidases (GH1 and GH3). Cellulose activity assays were performed on Congo-Red agar media [32] and all of the six Cellulomonas strains yielded a cellulose clearing zone on the media (data not shown). The Kyoto Encyclopedia of Genes and Genomes was used to construct metabolic pathways and all of the six Cellulomonas strains have the complete cellulose degradation pathways (data not shown).

In addition to the utilization of cellulose, the Cellulomonas strains are also known to degrade hemicellulloses. A large number of putative intracellular and extracellular xylan degrading enzymes have been identified in the Cellulomonas genomes, such as endo-1-4-β-xylanase, β-xylosidase, α-L-arabinofuranosidase, acetylxylan esterase and α-glucuronidase (Additional file 1: Table S3) which suggests the capacity to degrade hemicelluloses. We also found a large number of α-amylases which are responsible to the degradation of starch in the six Cellulomonas genomes (Additional file 1: Table S4) suggest the potential application in bioremediation of food industrial wastewater.

Conclusions

The genomic information of C. carbonis T26^T and the comparison results of the six Cellulomonas genomes revealed a high degree of putative cellulases, hemicellulases. In addition, we found that the genomes also contain members of α-amylases. These information provides a genomic basis for the better application of Cellulomonas spp. in industry and environmental bioremediation. In addition, the genomes possess many putative carbohydrate-active enzymes which is in agreement with their physiological ability to utilize various sole carbon sources.

Endnote

¹Editorial note – although designated as a type strain of Cellulomonas gilvus by Christopherson et al., this strain continues to be listed as a non-type strain of Cellvibrio gilvus in the ATCC catalogue. At present, neither name has standing in the taxonomic literature.

Strain	Isolation source	Genome size (Mb)	Coverage	CDSs	RNA	G + C content	GenBank No.
C. gilvus ATCC 13127^T	feces	3.53	-	3164	54	73.8 %	NC_015671
C. fimi ATCC 484^T	soil	4.27	-	3761	54	74.7 %	NC_015514
C. flavigena DSM 20109^T	soil	4.12	-	3678	54	74.3 %	NC_014151
C. bogoriensis DSM 16987^T	sediment and water	3.19	368.2 x	2898	51	72.2 %	AXCZ00000000
C. carbonis T26^T	coal mine soil	3.99	343.5 x	3418	59	73.3 %	AXCY00000000
C. cellasea DSM 20108^T	NR	4.66	724.0 x	3560	44	74.6 %	AXN00000000

Table 5 General features of the six Cellulomonas genomes

![Fig. 4 Ortholog analysis of the six Cellulomonas genomes conducted using OrthoMCL. The total numbers of shared proteins among the six genomes and unique proteins from each species were tabulated and presented as a Venn diagram.](image-url)
The distribution of cellulases in six Cellulomonas genomes. The cellulases are β-glucosidase, endoglucanase, endo-β-1,4-glucanase and cellobiose phosphorylase.

Comparative analysis of putative proteins of CAZy family of six Cellulomonas genomes. From outside to center, ring 1 is *C. flavigena* DSM 20109; ring 2 is *C. gilvus* ATCC 13127; ring 3 is *C. firmi* ATCC 484; ring 4 is *C. cellacea* DSM 20108; ring 5 is *C. bogoriensis* DSM 16987; ring 6 is *C. carbonis* T26. AA, auxiliary activities; CBM, carbohydrate binding module; CE, carbohydrate esterase; GH, glycoside hydrolases; GT, glycosyltransferase; PL, polysaccharide lyase.

The distribution of cellulases in six *Cellulomonas* genomes. The cellulases are β-glucosidase, endoglucanase, endo-β-1,4-glucanase and cellobiose phosphorylase.
Additional file

Additional file 1: Table S1. Putative CAZY family and locus_tag number in the six cellulomonas genomes. Table S2. Putative cellulases in the six cellulomonas genomes. Table S3. Putative hemicellulases in the six cellulomonas genomes. Table S4. Putative amylases in the six cellulomonas genomes. (XLSX 29 kb)

Abbreviations

RAST: Rapid Annotation using Subsystem Technology; PGAP: Prokaryotic Genome Annotation Pipeline.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

ZW performed the sequence annotation and genomic analysis and wrote the draft manuscript. ZS and XX helped performing the comparative genomic analysis. GW organized the study and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (31470227). This work was supported by the National Natural Science Foundation of China (31470227).

Received: 30 October 2014 Accepted: 9 November 2015

Published online: 18 November 2015

References

1. Shi Z, Luo G, Wang G. Cellulomonas carbonis sp. nov., isolated from coal mine soil [J]. Int J Syst Evol Microbiol. 2012;62(Pt 8):2004–10.
2. Imhoff JF. Genus I. Rhodobacter: In: Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, second edition. vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). New York: Springer; 2005. p. 161.
3. Funke G, Ramos CP, Collins MD. Identification of some clinical strains of CDC coagulase group A-3 and A-4 bacteria as Cellulomonas species and proposal of Cellulomonas hominis sp. nov. for some group A-3 strains. J Clin Microbiol. 1995;33(8):2091–7.
4. Elberson MA, Malekzadeh F, Yazdi MT, Kameranpour N, Noori-Daloii MR, Matte MH, et al. Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol. 2000;50 Pt 4:993–6.
5. Kuhad RC, Gupta R, Singh A. Microbial cellulases and their industrial applications. Enzyme Res. 2011;2011:280969.
6. Kaur A, Mahajan R, Singh A, Garg G, Sharma J. Application of cellulase-free xylanolytic enzymes from the same bacteria isolate in biobleaching of kraft pulp. Biosourc Resour Technol. 2010;101(23):9150–5.
7. Han W, He M. The application of exogenous cellulase to improve soil fertility and plant growth due to acceleration of straw decomposition. Biosourc Resour Technol. 2010;101(10):3214–21.
8. Saratale GD, Saratale RG, Lo VC, Chang JS. Multicomponent cellulase production by Cellulomonas bispora NCM-2550 and its applications for cellulolysis in biodegradation. Biotechnol Prog. 2010;26(2):406–16.
9. Wildberger P, Brecker L, Nidetzky B. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas udo cellulose phosphorylase using D-glucal as donor substrate. Carbohydr Res. 2012;356:223–4.
10. Mayorga-Reyes L, Singh A, Garg G, Sharma J. Characterization of an endo-1,4-xylanase tightly induced by sugarcane bagasse. FEMS Microbiol Lett. 2002;214(2):205–9.
11. Santiago-Hernández A, Vega-Estrada J, del Carmen M-HM, Hidalgo-Lara ME. Purification and characterization of two sugarcane bagasse-adsorbable thermophilic xylanases from the mesophilic Cellulomonas flavigena. J Ind Microbiol Biotechnol. 2007;34(4):331–4.
12. Gutiérrez-Nava A, Herrera-Herrera A, Mayorga-Reyes L, Salgado LM, Ponce-Noyola T. Expression and characterization of the celB gene from Cellulomonas flavigena encoding an Endo-1,4-Glucanase. Curr Microbiol. 2003;47(5):359–63.
13. Abt B, Foster B, Lapidus A. Complete genome sequence of Cellulomonas flavigena type strain (134 T). J Stand Genomic Sci. 2010;3(1):15.
14. Christopherson MR, Suen G, Brahamcharya S, Jewell KA, Aylward FO, Mead D, et al. The genome sequences of Cellulomonas fimii and “Cellvibrio gilvus” reveal the cellulytic strategies of two facultative anaerobes, transfer of “Cellvibrio gilvus” to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov. (J. Bacteriol. 2013;195(1):e03954–13).
15. Jones BE, Grant WD, Dukewich AW. Cellulomonas bagosiensis sp. nov., an alkaliphilic cellulomonadon [L]. Int J Syst Evol Microbiol. 2005;55(4):1711–4.
16. Li L, Stoeckert Jr CJ, Roos DS. OrthoMCL: identification of orthologous groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
17. Fischer S, Brunk BP, Chen F, Gao X, Harb CS, idolco JB, et al. Using OrthoMCL to assign proteins to OrthoMCL-CB groups or to cluster proteomes into new ortholog groups. Current Protocols in Bioinformatics. John Wiley & Sons, Inc; 2002.
18. Tanimura K, Peterson D, Peterson N. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
19. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Díez T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42(D1):D206–14.
20. Illumina [http://www.illumina.com/]
21. SOAPdenovo v1.05 [http://soap.genomics.org.cn/]
22. Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
24. Finn RD, Bateman A, Cerrai J, Coggill P, Eberhardt RY, Eddy SR, et al. The Pfam protein families database. Nucleic Acids Res. 2011;42(D1):222–30.
25. Monya Y, Ishi M, Okuda S, Yoshizawa A, Kaniehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:182–5.
26. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, et al. CDD: a Conserved Domain Database for the functional annotation of nucleic acids. Nucleic Acids Res. 2011;39(D1):225–9.
27. Wu S, Zhu ZW, Fu L, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.
28. Krogh A, Larsson BE, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.
29. Dytlov Bendtsen J, Nielsen H, von Heijne G. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95.
30. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The Carbohydrate-active enzymes database (CAZY) in 2013. Nucleic Acids Res. 2014;42:D490–5.
31. Sangrila S, Tushar KM. Cellulase production by bacteria: a review. British Microbiology Research Journal. 2013;3(3):235–58.
32. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol. 1982;42:777–80.
33. Woese CR, Kandler O, Woese CS. Towards a natural system of organisms. Proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA. 1990;87:4567–9.
34. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: Tracing the Evolutionary History of an 173 Ancient Phylum. Microbiol Mol Biol Rev. 2007;71(3):495–548.
35. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol. 1997;47:479–91.
36. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and amended descriptions of the existing higher taxa. Int J Syst Evol Microbiol. 2009;59:689–708.
37. Stackebrandt E, Schumann P, Prauser H. The family Cellulomonadaceae. The prokaryotes. New York: Springer; 2006. p. 983–1001.
38. Stackebrandt E, Seiller H, Schleifer KH. Union of the genera Cellulomonas Bergey et al. and Oerskovia Prauser et al. in a redefined genus Cellulomonas. Zentralbl Bakteriol Parasitenk Infektionskr Hyg Abt 1 Orig. 1982;3:401–9.
39. Grant JR, Arantes AS, Stothard P. Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics. 2012;13:202.