SYSTÈMES D’ÉLEVAGE ET FILIÈRES
LIVESTOCK FARMING SYSTEMS AND VALUE CHAINS

95-103 Adaptabilité et pertinence des races bovines locales en Égypte : perceptions et pratiques des producteurs et des acteurs de la filière bovine. Adaptability and suitability of local cattle breeds in Egypt: Farmers and actors’ perceptions and practices of the cattle value chain. Osman M.A., Alary V., Khalil M., Elbeltagy A., Tourrand J.-F., Moulin C.-H. (in English)

105-109 Variations de l’état corporel et systèmes d’élevage ovin dans la région de Chlef, Algérie. Body condition variations and sheep breeding systems in the region of Chief, Algeria. Taherti M., Kaidi R. (en français)

PRODUCTIONS ANIMALES ET PRODUITS ANIMAUX
ANIMAL PRODUCTION AND ANIMAL PRODUCTS

111-116 Variations mensuelles sur trois années du spermiogramme de béliers de race Djallonké en région forestière de la Côte d’Ivoire. Three-year monthly variations in the spermiogram of Djallonke-breed rams in the Cote d’Ivoire forest region. Lavry G.N., Coulibaly M’B., Offoumou A.M., Datté J.Y. (en français)

RESSOURCES ALIMENTAIRES ET ALIMENTATION
FEED RESOURCES AND FEEDING

117-123 Influence de la substitution des grains de soja (Glycine max) par celles de niébé (Vigna unguiculata) et du taux de protéines du régime sur les performances des pintadeaux de race locale au Burkina Faso. Influence of substituting roasted soybean (Glycine max) seeds by those of cowpea (Vigna unguiculata) and of the protein level in the diet on the performance of the local-breed guinea fowl in Burkina Faso. Ouattara S., Bougouma-Yaméogo V.M.C., Nianogo A.J., Savadogo B. (en français)

SANTÉ ANIMALE ET ÉPIDÉMIOLOGIE
ANIMAL HEALTH AND EPIDEMIOLOGY

125-127 Prévalence saisonnière des larves de la mouche des naseaux (Cephalopina titillator) chez le chameau en Jordanie. Seasonal prevalence of the larvae of the nasal fly (Cephalopina titillator) in camels in Jordan. Al-Ani F., Amr Z. (in English)
Adaptability and suitability of local cattle breeds in Egypt: Farmers and actors’ perceptions and practices of the cattle value chain

Mona A. Osman1 Véronique Alary2,3,* Mustafa Khalil1 Ahmed Elbeltagy1 Jean-François Tourrand4 Charles-Henri Moulin5

Keywords
Baladi cattle, land race, farming system, adaptation, climate change, Egypt

Submitted: 22 June 2016
Accepted: 5 January 2017
Published: 30 January 2017

INTRODUCTION

The Intergovernmental Panel on Climate Change (IPCC) report confirmed the level of warming, especially in South Mediterranean countries (van Oldenborgh et al., 2013). To face the major expected effects of climate change, and particularly the temperature increase in South Mediterranean countries, a renewed interest for the question of preservation of local breeds has emerged. These local breeds have the reputation of being more resistant to extreme conditions and might play an important role in the adaptation response to climate change (FAO, 2011). In this line, in different Mediterranean environments, farmers have developed for a long time production systems adapted to the variability of the resource availability along the seasons and to their own objectives (milk, meat, manure), taking advantage of the adaptive traits of local breeds (Flori et al., 2015). However, this has mainly concerned rain-fed environment. In irrigated systems, management practices developed during the last decades and oriented toward animal performances through exotic breeds have to be modified in order to include other parameters associated with environmental changes, especially temperature increase (Mirkena et al., 2010). The use of animal genetic resources in relation to system management diversity in contrasted environmental situations should allow the identification of the most adapted genotypes and management practices capable of coping with environmental challenges linked to climate change (Anya and Ayuk, 2011).

Adaptability and suitability of local cattle breeds in Egypt: Farmers and actors’ perceptions and practices of the cattle value chain

Egypt, where the mean temperature is expected to increase by 1–1.5°C over the next two decades, is particularly concerned with climate change in the Mediterranean. Most of the research works on adaptive animal traits have focused on sheep and goats in non-irrigated areas, with little interest in livestock systems in irrigated areas. However, meat and dairy products in Egypt are mainly supplied by large ruminants—cattle and buffaloes. In addition, research on genetic improvement to increase production has neglected local cattle breeds such as the Baladi, which appears to be endangered. Based on individual and collective interviews conducted in two governorates of Egypt, this study aimed to describe the situation of this local breed based on the perceptions and practices of the actors in the sector (including farmers, traders and service suppliers), and to draw perspectives for its future. From the interviews, the Baladi appeared adapted and more resistant to harsh conditions, especially to extreme warm temperatures, feed shortage periods, and some diseases, in particular foot-and-mouth disease. However, there is no organization or collective action to preserve or promote this breed because of its low level of dairy production, although its meat is highly valued in rural areas and could be the source of a potential niche market.

How to quote this article: Osman M.A., Alary V., Khalil M., Elbeltagy A., Tourrand J.-F., Moulin C.-H., 2016. Adaptability and suitability of local cattle breeds in Egypt: Farmers and actors’ perceptions and practices of the cattle value chain. Rev. Elev. Med. Vet. Pays Trop., 69 (3): 95-103

1. Animal Production Research Institute / Agricultural Research Centre, Dokki, Cairo, Egypt.
2. CIRAD, UMR Selmet, 34398 Montpellier, France.
3. ICARDA, Rabat, Morocco.
4. CIRAD, UPR Green, 34398 Montpellier, France.
5. Institut national d’études supérieures agronomiques, Montpellier, France.
* Corresponding author
Tel.: +212 6 54 07 22 48; email: veronique.alary@cirad.fr
https://creativecommons.org/licenses/by/4.0/
Adaptability and suitability of local bovine breeds in Egypt

In Egypt, the earliest evidence of cattle that can be considered as a local breed dates back to 8000 BC in the Fayum and pertains to the species Bos aegyptiacus. It is now recognized as a subspecies of Bos taurus in the scientific taxon of domestic cattle. If different local strains are observed according to the locality (Joshi et al., 1957), the conformation of the indigenous cows appears to be very similar. The main traits are: i) a medium size and long body, ii) a lean musculature and light bones; iii) short horns perpendicular to the line of profile; iv) ears of medium size carried horizontally; and v) a coat color which varies from yellowish-brown to red. The generic term of all local strains is Baladi (Figure 1). The word Baladi refers to all native cattle populations making no distinction among them (different strains). There has been no serious effort to characterize the Baladi into different breeds (Galal, 2007).

Egypt has known a rapid growth in the number of lactating buffaloes and cows over the last 60 years, reaching around 1,893,500 buffaloes and 1,735,600 cows in 2010 (Ministry of Agriculture and Land Reclamation). However, if the lactating females (> 2 years of age) of exotic or crossed breeds have registered a spectacular growth with a positive rate of variation of 40% and 210%, respectively, between 1961 and 2010, the Baladi cows registered a decrease of around 6% over that period. Moreover, their average contribution to milk supply did not exceed 17% over the period 2000−2006 (Galal, 2012). This decrease in the number of Baladi females and their proportional contribution to the national herd could be alarming from the point of view of maintaining biodiversity and sustaining a valuable genetic resource, but also in terms of adaptation to future climate conditions.

Adaptive capacity is generally defined as the ability to survive, grow and reproduce despite variations that occur in a defined environment (Mirkena et al., 2010; Barker, 2009). Adaptation abilities include adaptation to heat stress (thermotolerance), nutritional stresses (less feeding than required, ability to reduce metabolism or to mobilize fat reserves) and resistance to parasites and diseases (Mirkena et al., 2010). These abilities are referred as adaptability. They mainly rely on functional traits such as reproductive, metabolic, neurological, immunological traits and hair coat characteristics (Berman, 2011). In this study, we determined the adaptive traits perceived by local stakeholders which can be equally relevant to give perspectives on the use of these local breeds in the future.

However, these criteria of adaptability are mainly oriented toward facing global changes with little consideration for the suitability of the local breed to current farming systems and farmers’ strategies. Suitability refers to the ability of the local breed to fit farm constraints and farmers’ strategies. We propose to analyze the two sets of criteria related to adaptability and suitability, and examine how the local breed can become a relevant resource for future farming systems.

Materials and Methods

Study sites

Considering that neither a breed association nor a herd book for local-cow breeds exist, the sampling procedure was based on the geographic distribution criterion and on expert knowledge of extension services (agricultural technicians, veterinarians) or traders. Two research sites in the western delta were selected. The first site was located in the governorate of Beheira, on the border of the New Reclaimed Lands in the west delta and the second site in the governorate of Menoufeya, in the old cultivated lands, where the rates of urban pressure and land fragmentation are among the highest in Egypt (Figure 2).

These two locations enabled us to address the different roles of the Baladi in the farming systems as draft animals in potato cultivation (Beheira) or meat production (Menoufeya). In order to have diversified information on Baladi cattle, we collected data at two levels: i) farm level with a questionnaire focusing on the farming system and the suitability of the local strain; and ii) local level, using an expert questionnaire focusing on collective perceptions regarding the adaptive traits of this local strain.

Figure 1: The Baladi local breed in Beheira governorate, Egypt. (© V. Alary, 2013)
Method and sample for the expert questionnaire

We organized two stakeholder meetings: the first one in Itay, in Al Barud district in Beheira governorate in the local office of the development agency, and the second one in Ashmun district in Menoufeya governorate in the meeting room of the livestock association (Figure 2). Twenty-three local stakeholders participated: 14 in Beheira and 9 in Menoufeya. The majority of participants were breeders involved in local agricultural associations (Table I). The sample also included representatives of local agricultural associations, feed traders, one milk trader in Beheira and one veterinarian in Menoufeya.

We used a semi-structured questionnaire that aimed to understand the place of the Baladi strain in the local supply chains in terms of economic contribution, social perception and preferences. It comprised two parts: i) the general description of the breeds and the farming systems in which the local breed is used at local level, the diversity of the rearing systems and their dynamics, and the identification of the criteria of adaptability; and ii) the description of the collective actions, services and institutions involved in breed management.

The meeting was organized in three steps. Firstly, the research team presented the project. It was followed by an open discussion on the roles of Baladi cows in the farming systems, the market chain, and some of the advantages and disadvantages of this local strain were pointed out. One expert questionnaire was filled based on this collective discussion. Secondly, the participants were divided into subgroups to discuss one by one each part of the questionnaire. After the
group discussion, each stakeholder filled in one questionnaire according to his own point of view. At the end, the coordinator of each group summarized the discussion of his group and a general discussion generated more details on the different points raised. Shifting back and forth between collective and individual interviews allowed taking into consideration all points of view, especially that of the small breeders who were less comfortable in the collective discussion.

Method and sample for the farm questionnaire
The farm questionnaire was aimed at understanding the advantages and disadvantages of Baladi cows in comparison to other genetic resources (crossbreds and breeds like Holstein Friesian cows) in the whole farming system, as well as the long-term perspective of the breed at farm level. The questionnaire was structured in four parts (Lauvie et al., 2013): i) trace the history of the local breed in the farm; ii) understand the local breeding system by describing the land and crop system, and the livestock and feed systems in relation with the objectives of the farmer and his family (mainly marketing orientations); iii) explore the viewpoint of farmers regarding the suitability of the local breed in comparison with other breeds; and iv) discuss the collective actions (already existing or which could be designed) around the preservation of the local breed.

The management practices of the Baladi and their performances were approached through a set of qualitative questions about feeding systems, housing, veterinarian care, animal performances and marketing connections of animal products, compared to crossbreds (mainly Baladi crossed with Holstein or Friesian) or buffaloes. The objective was to characterize and understand the livestock system using the local breed. The approach of the suitability of the Baladi strain was based on open-ended questions where farmers expressed their own criteria of suitability and their perception on the advantages/disadvantages of the Baladi regarding these criteria.

The sample comprised ten farmers in the village of Nikla Al-Inab in Beheira governorate, and seven farmers in the villages of Kafr Mamshi and Zeewir in Menoufeya. It was based on a snowball sampling method (Goodman, 1960) from the contacts provided by the experts involved in the expert questionnaire.

Table I
Number of stakeholders in the meetings in the two studied areas in the western delta of Egypt

Stakeholders	Beheira	Menoufeya	Total
Association manager	1	1	2
Breeder	12	6	18
Concentrate trader	1	1	2
Milk trader	1	1	2
Veterinary	1	1	2
Total	14	9	23

Table II
Estimation by the experts of the number of local-breed cattle in the two villages of the collective meetings in the western delta of Egypt

	Kafr Mosaic (Beheira governorate)	Shanshor (Menoufeya governorate)
Total num. Baladi animals	575 [500–650]	2000 [1500–2500]
Total num. female Baladi cattle	275 [250–500]	1000 [500–1700]
Num. of farms with Baladi cattle	[25–100]	[650–1600]
Total num. of cattle stock	3000	7000

RESULTS
Dynamics of the Baladi breed at local level
In the earlier stage of the study, the regional data given by experts revealed a contrasted situation between the two governorates (Table II). In Menoufeya, the majority of the farmers who reared the local breed had only one Baladi, utilizing it for draft work, mainly tillage for potato cultivation; and the rest of the herd was composed of crossbreds (mainly Baladi x Friesian). In Beheira, a few farmers had the local breed. The farmers who reared it had on average 6–7 head per herd. The second difference was the geographical distribution of Baladi cattle: a small number of villages had Baladi cattle in Beheira, whereas Baladi cattle were common and covered all the areas of potato cultivation in Menoufeya.

In Menoufeya, the majority of stakeholders observed a decrease in Baladi cattle over the last 10 years, mainly for economic reasons (i.e. low milk performance with around 5 kg/day vs 5–10 kg for crossbreds, and low growth rate at 500–600 g/day vs 1000 g/day for crossbreds). In addition, two of them mentioned some problems related to diseases and mortality. In Beheira, almost half of the stakeholders observed a decrease because of low economic performances for milk and meat, but also because of a feed cost increase that affected all dairy cattle. However, four of them observed an increasing dynamic of the local breed. The main reasons were due to farm preferences: ‘they want this breed’, ‘they prefer this breed’ as tradition and with no economic or agronomic reasons. Nevertheless, this trend does not seem to be supported at local or public level. With the exception of some farmers who had mentioned the existence of a data collection system for milk, there was no local association or research development on this local breed. Only two mentioned the general association of Animal Wealth Development that had allegedly undertaken some actions on the local breed but without being able to mention any details.

Farming systems with Baladi cattle
Based on expert interviews, the herd mixed with the local breed, crossbreds and/or buffaloes were the more frequent livestock systems in both areas. If the majority of crossbreds in Beheira were crossed with Friesian, two third mentioned some crossbreds with Holstein and Brown Swiss in Menoufeya. Only three stakeholders mentioned separate livestock systems for the local breed based on producing young unfattened calves. However, according to them, Baladi cattle were reared because of the tradition inherited from their ancestors. Baladi cattle were mainly used as draft animals or for calf sale, whereas crossbreds chiefly produced milk and meat, and buffaloes served to cover the family consumption of typical dairy products. Based on the farm survey (17 farmers), the herd was made up of 3–4 Baladi cattle with crossbreds and buffaloes in Beheira, whereas in the studied villages of Menoufeya it comprised 1–2 Baladi animals and buffaloes. Only one farmer relied exclusively on Baladi cattle.
Les zones cultivées étaient plus grandes dans les villages de Beheira gouvernorat (en moyenne 4.8 feddan1 en Beheira vs 1.4 en Menoufeya). Dans les deux zones, le système de culture suivait un rotation de deux céréales par an. Le système de culture traditionnel était basé sur le blé et le cotonnier égyptien (Trifolium alexandrinum) et quelques légumes tels que la pomme de terre dans les hivers et l’orge ou le maïs pour la saison de croissance, ainsi que divers autres légumes (par exemple, haricots, tomate) dans les saisons chaudes. En Beheira, la moitié des terres cultivées étaient affectées aux cultures de blé (berseem et maïs), tandis que dans Menoufeya, cette participation était plus haute en été (jusqu'à 69%) en raison de la principale production de maïs et de maïs silé. À l'échelle des exploitations, tous les agriculteurs de Beheira et de Menoufeya n'avaient pas accès aux travailleurs saisonniers, tandis que dans Menoufeya, les agriculteurs ne dépendaient pas de travailleurs payés. Dans Beheira, les agriculteurs avaient créé leur propre système d'agriculture consistant essentiellement de pratiques manuelles telles que les engrais et les produits de la culture des champs de maïs aux champs de maïs et vice versa. Au niveau de la famille, seul un agriculteur de Beheira avait une activité agricole en plus de son travail agricole, tandis que dans Menoufeya, tous les agriculteurs de la commune étaient impliqués dans l'activité agricole. Les animaux étaient plus souvent stockés dans le local d'habitation. En Beheira, les agriculteurs essayaient de gérer différents endroits pour le fattening, la vache, et les produits laitiers, sans toutefois être confrontés à des barrières visibles. Les animaux étaient gardés pendant la journée dans une maison d'habitation.

À l'échelle individuelle, la production de lait de laitier de Baladi était de l'ordre de 1100 litres par an, avec une moyenne de 3−4% de matière grasse (par rapport à 3−4% de matière grasse dans les croisés). La production laitière de Baladi était utilisée pour le marché local, même s'il y a une légère différence entre les prix du laitier de Baladi et les croisés. Les prix du laitier de Baladi étaient en moyenne de 2,83 €/L, tandis que ceux des croisés étaient plus élevés, de 2,66−2,83 €/L. Toutefois, il y avait une différence de 5−6% entre les prix du laitier de Baladi et les croisés, bien que la majorité des producteurs de laitier de Baladi soient satisfaits de la vente de leurs produits.

La production laitière de Baladi était de l'ordre de 1100 litres par an, avec une moyenne de 3−4% de matière grasse (par rapport à 3−4% de matière grasse dans les croisés). La production laitière de Baladi était utilisée pour le marché local, même s'il y a une légère différence entre les prix du laitier de Baladi et les croisés. Les prix du laitier de Baladi étaient en moyenne de 2,83 €/L, tandis que ceux des croisés étaient plus élevés, de 2,66−2,83 €/L. Toutefois, il y avait une différence de 5−6% entre les prix du laitier de Baladi et les croisés, bien que la majorité des producteurs de laitier de Baladi soient satisfaits de la vente de leurs produits.

La production laitière de Baladi était de l'ordre de 1100 litres par an, avec une moyenne de 3−4% de matière grasse (par rapport à 3−4% de matière grasse dans les croisés). La production laitière de Baladi était utilisée pour le marché local, même s'il y a une légère différence entre les prix du laitier de Baladi et les croisés. Les prix du laitier de Baladi étaient en moyenne de 2,83 €/L, tandis que ceux des croisés étaient plus élevés, de 2,66−2,83 €/L. Toutefois, il y avait une différence de 5−6% entre les prix du laitier de Baladi et les croisés, bien que la majorité des producteurs de laitier de Baladi soient satisfaits de la vente de leurs produits.
and Beni Suef in the Nile Valley, respectively). In fact, lower inputs required for the Baladi than for crossbreds offset the Baladi low performance. In the New Reclaimed Lands, sales of calves at 120 days resulted in a lower profitability of crossbreds than of the Baladi.

This first approach to livestock systems and livestock management practices showed that there was no specific practices related to the local breed. The main difference was the expected animal products: mainly regular yearly calving and draft for the Baladi, and milk and meat for other breeds and species.

Suitability and adaptive traits of local breeds

Suitability of the local breed

Figure 3 shows the main indicators of suitability of the Baladi breed in the two governorates according to the farmers’ interviews. Three main criteria were common to both areas: ‘behavior’, ‘heat resistant’ and ‘crop cultivation’. The common criterion was the behavior of the local breed that was qualified as quiet and more manageable than crossbreds. However, we observed major differences for the criteria heat resistant in Menoufeya with regular calving, and crop cultivation in Beheira where potato is an important cash crop. In Beheira, farmers mentioned their preference for Baladi cattle meat and milk products: milk for its high fat percentage compared to crossbreds’ milk (keeping in mind that buffalo is less adapted to this harsh environment close to the desert) and meat for its low fat content. We noted that the low feed requirement criterion was more prevalent in Menoufeya than in Beheira, where the land segmentation has drastically limited feed production. These differences underlined the specificities and constraints of both socio-agrosystems.

Adaptive traits

Figure 4 shows the main adaptive traits of the Baladi breed to its environment according to expert stakeholders. The three main criteria previously mentioned to characterize suitability were again the
most cited: disease resistance, heat resistance and preference of meat and milk products. The farmers were more interested in the behavior of the animals with regard to breeding and draft labor in the cultivation system, whereas experts pointed out the factors of disease and heat resistance in relation to environmental contexts.

We can also notice that the animal performances of the local breed, mainly regular calving and draft use, represented 25% of the adaptive traits, whereas the stakeholders underlined the meat quality as being highly appreciated locally.

In summary, in Beheira the main reasons for preserving local strains were their heat and disease resistance to their environment, whereas in Menoufeya experts mentioned the market preference was due to the proximity of the demand (rural density and the large city of Menoufeya). The criteria of the breeding system came later on. However, we also observed a high similarity between the criteria of suitability and adaptability in relation with the agro-ecological contexts in both areas.

Advantages and disadvantages of the local breed

As main advantages, almost half of the farmers, chiefly in Beheira, mentioned the high draft capacity of the Baladi and 24% of the farmers mentioned its adaptation to a harsh environment. Also in relation with climate change and heat stress, 65% mentioned regular calving. Based on the general opinions of the farmers and in comparison with crossbreds, all the farmers in Beheira considered the local breed as an advantage in term of breeding. On the other hand, in Menoufeya half of farmers mentioned some disadvantages that were mainly related to animal performance (growth rate or milk yield). The results were opposite for the advantages of the Baladi with regard to marketing: all farmers in Menoufeya recognized their net advantage, whereas only half in Beheira were satisfied and more than three quarters underlined the bad conformation of calves.

As suggested in the experts’ interviews, the main disadvantage was the low milk performance even if the taste of Baladi milk was appreciated because of its higher fat content. One of the common uses of Baladi animal products was meat for family consumption, mainly for family or religious sacrifices such as Aïd Al-Adha. The meat marketing system was mainly based on direct sale in Beheira or through traders in Menoufeya to supply a specific market. There was no specific local breeding stock in Menoufeya even if one third of the experts knew breeders who were good suppliers of the local breed.

Future: preservation of the local breed

None of the interviews mentioned a Baladi cattle association or a recording system to monitor animal performances in Egypt. The only ruminant association was the buffalo breeders’ association despite the existence of animal wealth associations or cooperatives with multi-purpose activities in agriculture.

In Menoufeya, the main supports from both public and private institutes were equally distributed between the veterinary units, and animal wealth associations for large ruminants, whose main activity is the supply of feed concentrates, the banks for loans and investments, and the market support. However, three farmers only mentioned physical markets for breeding cattle transactions. There were neither specific facilities for Baladi cattle such as bulls, nor AI centers. Some stakeholders reported some logistic and financial support for AI, milk collection or veterinary care. In Beheira, contrary to Menoufeya, six out of the 11 stakeholders knew about the main market, where around 25% of breeding cattle were sold. In terms of institutional support, two stakeholders

4. One of the most important celebrations for Muslims during which each family sacrifices one male ruminant animal. In Egypt, the sacrifice often consists in a bovine (calf or bull, sometimes a heifer).

Regarding breed preservation, collectively four strategies were pointed out: i) market-oriented policy; ii) geographical label (for Menoufeya only); iii) promotion of consumers’ awareness; and iv) implementation of subsidies. However only two to three stakeholders (and only breeders) supported these ideas in the experts’ interviews. During the farmers’ interviews, no one reported collective actions and they did not believe in these collective actions. For the interviewed farmers, the priorities mentioned were the availability of improved sire (three farmers) and improved veterinary care (four farmers). However, the requested improvements concerned all breeds and not only the local breed. For them, the main way to increase the expected benefits of the Baladi would be via feeding improvement (mainly feed values) at low cost, and genetic improvement.

DISCUSSION

In terms of adaptive traits, according to the majority of experts’ interviews, the Baladi breed was perceived as more resistant to harsh conditions, especially to extreme high temperature, but also more robust with regard to low feed intake (mainly in terms of quality variations), and resistant to diseases, in particularly to FMD. However, we observed variations of priority between experts and farmers. In both areas, all experts highlighted the trait of disease resistance, mainly in relation with the outbreak of FMD in 2013, whereas only farmers from Menoufeya mentioned this trait. This can be explained by the higher rate of the FMD impact in the delta area. Heat resistance ranked as first factor according to experts in Beheira, equally with the behavior criterion according to farmers in Menoufeya. This revealed the different levels of the expected factor impacts. For experts, heat stress stood out in Beheira, which is located at the border of the desert zone, whereas in Menoufeya heat stress is a common factor for the entire delta area. Conversely, farmers in Menoufeya observed different levels of resistance of animal species (mainly the Baladi vs crossbreds) to heat, notably in term of calving. Though these results related to a harsh environment, we also noted that farmers described the adaptive traits mainly according to farm constraints, whereas experts addressed the problem at local or even regional level. Therefore, we can observe different perceptions according to the scale.

The Baladi fills many functions such as supplying farmers and their family members with high quality and typical products (cheese, meat but also leather), draft labor for crop cultivation, contributing to soil fertility management, but also in terms of savings, enhancing crop by-products, and eventually local transportation. This statement confirms previous studies about the suitability of local strains to the agrarian systems (Vissac, 2002) in southern countries (Bourbouze, 1984, in Morocco; Lericolais and Faye, 1994, in Senegal). The common traits of suitability of the local breeds in both areas were the animal behavior with regard breeding and the low feed requirements compared to crossbreds (in term of quantity). In relation to behavior, farmers included the animal character (quiet and manageable, especially for draft labor). They also had a clear preference for the conformation of this local strain. Beyond these advantages, farmers were economically constrained to adopt crossbreds (with Holstein or Friesian) for milk production for either family consumption or market sale, even if Baladi products were highly appreciated (especially, the higher fat content of milk and the low fat content of meat). Profitability was the first constraint in the maintenance of this strain at farm level taking into account the costs of feed production. Moreover, Baladi dairy products are as economically valued as crossbreds’ dairy products, without consideration for content.
Adaptability and suitability of local bovine breeds in Egypt

SYSTÈMES D’ÉLEVAGE ET FILIÈRES
Adaptability and suitability of local bovine breeds in Egypt
Revue d’élevage et de médecine vétérinaire des pays tropicaux, 2016, 69 (3) : 95-103

The adaptive traits appeared to be insufficient to ensure preservation of Baladi cattle in Egypt. If the study highlighted the main drivers of these dynamics in relation with short-term economic objectives – mainly profitability at farm level –, all the stakeholders acknowledged the advantages of local breeds allowing for a better transformation of scarce feed resources produced on small farm areas and their higher resistance to environmental stresses such as heat or disease shocks. However, the promotion of typical animal products could be one potential lever. At national level, these findings raise many questions for policy makers and the society regarding the demographic situation of Baladi cattle, threatened by crossbreeding programs and national projects based on massive imports of exotic cattle breeds. The material presented here was collected within the framework of studies highlighting the adaptive traits of the local strains. The national authorities and the society need to maintain local breeds that constitute a security in terms of reproductive performance at farm level.

As in many developing countries, there are no collective organizations or actions to preserve or promote this breed even if research studies highlight the adaptive traits of the local strains. The national programs in Egypt but also in North African countries (Sraïri, 2004) have widely given attention to the dairy sector development by designing programs or national projects based on massive imports of exotic cattle breeds. The statement is similar in all countries: shortened careers due to early culling because of diseases, feed insufficiencies, longer calving period due to environmental stress mainly heat stress, etc. Nowadays, with the intensification of climate constraints such as high temperature events and the frequency of drought periods that reduce feed production, these programs based on genetic improvements reveal their limits to develop the sector on the medium and long run. Moreover, they have largely underestimated the consumers’ preferences, especially that of rural populations for local and typical products. With the growing importance of added-value markets for local and typical products in urban areas, local strains of cattle constitute a potential for labelling, or niche markets.

CONCLUSION

The adaptive traits appeared to be insufficient to ensure preservation of Baladi cattle in Egypt. If the study highlighted the main drivers of these dynamics in relation with short-term economic objectives – mainly profitability at farm level –, all the stakeholders acknowledged the advantages of local breeds allowing for a better transformation of scarce feed resources produced on small farm areas and their higher resistance to environmental stresses such as heat or disease shocks. However, the promotion of typical animal products could be one potential lever. At national level, these findings raise many questions for policy makers and the society regarding the demographic situation of Baladi cattle, threatened by crossbreeding programs and national projects based on massive imports of exotic cattle breeds. The material presented here was collected within the framework of the research project ‘Genetic Adaptation of Bovine Livestock and Production Systems in the Mediterranean Region’ (GALIMED) within AAFC metaprogam, the French Institute for Agricultural Research (INRA) in association with the International Agricultural Research Center for Development (CIRAD), the International Centre for Agricultural Research in the Dry Areas (ICARDA), and the Egyptian Animal Production Research Institute (APRI). We especially thank all the researchers and technicians from APRI for their participation and support to identify the areas of investigation, and all the breeders and stakeholders interviewed for the time spent with us.

REFERENCES

Alary V., Aboul-Naga A., El Shafie M., Abdelkrim N., Hamdon H., Metawi H., 2013. Roles of small ruminants in rural livelihood improvement – Comparative analysis in Egypt. Rev. Elev. Med. Vet. Pays Trop., 68 (2-3): 79-85

Any A.M., Ayuk A.A., 2011. Genetic diversity and climate change: Implications for animal production systems in Africa. Asian J. Agric. Res., 5: 217-222

Barker J.S.F, 2009. Defining fitness in natural and domesticated populations. In: Adaptation and fitness in animal populations: Evolutionary and breeding perspectives on genetic resource management (Eds Van der Werf J., Graher H.-U., Frankham R.). Springer, 3-14

Berman A., 2011. Invited review: Are adaptations needed to support dairy cattle productivity in warm climates? J. Dairy Sci., 94 (5): 217-218

Bourbouze A., 1984. Etude intégrée d’un système agro-pastoral dans le Haut Atlas. Cah. Rech. Dev. (3-4): 19-29

Eding H., 2008. A breed is a breed if enough people say it is. Editorial. GlobalVids NewsL. (4): 1-4

Flori L., Moazami Goudarzi K., Lecomte P., Moulin C.H., Casabianca F., et al., 2015. Adaptation of Mediterranean bovine livestock to climate constraints. Genetic diversity and breeding systems. In: Climate-Smart Agriculture, Global Science Conference, Corum, Montpellier, France, 16-18 March 2015. http://csa2015.cirad.fr/var/csa2015/storage/ickeditors/files/2%20Climate-smart%20Strategies1.pdf

Galal S., 2007. Farm animal genetic resources in Egypt: Factsheet. Egypt. J. Anim. Prod., 44: 1-23

Galal S., 2012. Dairy sector in Egypt: past and present development. In: Proc. Training Workshop Interdisciplinary Approach of Urban and Periurban Traditional Dairy Chain (Eds Alary V., Galal S., Tourrand J.-F.), Cairo, Egypt, 10-14 June 2012. www.google.fr/url?q=&sa=t&source=web&cd=1&ved=0ahUKEWi5w4w2t458AhVi2XTHDf4VAywQFggMAA#url=http%3A%2F%2Fmuri-selmet.cirad.fr%2FFichiersComplementaires%2Fproceeding_DAIRY_final2.pdf&esrc=AFQCNGoxy26yMLvnkMx-8RFV7De3J3A

Goodman L.A., 1960. Snowball sampling. Ann Math. Stat., 32 (1): 148-170. http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aoms/1177705148

Hammoud M.H., El-Zarkouny S.Z., Oudah E.Z.M., 2010. Effect of sire, age at first calving, season and year of calving and parity on reproductive performance of Friesian cows under semiarid conditions in Egypt. Arch. Zootech., 13 (1): 60-82

Joshi N.R., McLaughlin E.A., Phillips R.W., 1957. Types and breeds of African cattle. FAO, Rome, Italy, 397 p. (Agricultural Studies, 37)

Laloe D., 2014. GALIMED Project - Genetic adaptation of bovine livestock and production systems in the Mediterranean region. AAFCC, INRA. www.accaf.inra.fr/en/Actions-and-projects/adaptation_livestock/GALIMED/%28key%290

Lauvie A., Rolland C., Moulin C.H., Casabianca F., 2013. How Corsican cattle breeders consider the adaptation of their breed, an exploratory approach. In: Book of abstracts 63rd EAAP Annual Meeting, Wageningen Agricultural Publishers, Netherlands, p. 216

Lericollais A., Faye A., 1994. Des troupeaux sans pâturages en pays sereur au Sénégal. In: Dynamique des systèmes agraires - à la croisée des parcours : pasteurs, éleveurs, cultivateurs (Éds Blanc-Pamard C., Boutrais J.). Orstom, Paris, France, 165-196

Ministry of Agriculture and Land Reclamation, 2010. Consolidated results of Agriculture census 1990 and 2010. MALR, Cairo, Egypt
Adaptabilité et pertinence des races bovines locales en Egypte

Mirkena T., Duguma G., Haile A., Tilbro M., Okeyo A.M., Wurzinger M., Sölkner J., 2010. Genetics of adaptation in domestic farm animals: A review. *Livest. Sci.*, **132**: 1-12

Pilling D., Hoffmann I., 2011. Climate change and animal genetic resources for food and agriculture: state of knowledge, risks and opportunities. Rome, Italy, FAO. (Background Study Paper; 53) http://tinyurl.com/khdcguy

Sraïri M.T., 2004. Typologie des systèmes d’élevage bovin laitier au Maroc en vue d’une analyse de leurs performances. Thèse Doct., Faculté universitaire des Sciences agronomiques, Gembloux, Belgique. https://tel.archives-ouvertes.fr/tel-00423512

Résumé

Osman M.A., Alary V., Khalil M., Elbeltagy A., Tourrand J.-F., Moulin C.-H. Adaptabilité et pertinence des races bovines locales en Egypte : perceptions et pratiques des producteurs et des acteurs de la filière bovine

L’Égypte, où la température moyenne augmenterait de 1 à 1,5 °C au cours des deux prochaines décennies, serait particulièrement exposée au changement climatique dans la zone méditerranéenne. La majorité des travaux de recherche sur les caractères adaptatifs des animaux se sont concentrés sur les ovins et les caprins dans les zones non-irriguées, avec un faible intérêt pour les systèmes d’élevage dans les zones irriguées, alors que les gros ruminants – bovins et buffles – assurent l’essentiel de l’apport en lait et viande de l’Égypte. De plus, la recherche sur l’amélioration génétique pour augmenter la production a ignoré les races bovines locales, telle que la Baladi qui semble être en voie de disparition. A partir d’entretiens individuels et collectifs menés dans deux gouvernorats de l’Égypte, la présente étude visait à décrire la situation de la race locale Baladi, à partir des perceptions et pratiques des acteurs de la filière (dont les éleveurs, commerçants et fournisseurs de service), et d’en tirer des perspectives pour son devenir. D’après les entretiens, la Baladi serait adaptée et plus résistante à des conditions difficiles, en particulier aux températures chaudes extrêmes, à des périodes de carence alimentaire, et à certaines maladies, en particulier la fièvre aphteuse. Cependant, il n’y a pas d’organisation ou d’action collective pour préserver ou promouvoir cette race en raison de son faible niveau de production laitière, bien que la viande soit très appréciée dans les zones rurales et pourrait être à l’origine d’un potentiel marché de niche.

Mots-clés : bovin Baladi, race indigène, système d’exploitation agricole, adaptation aux changements climatiques, Égypte

Resumen

Osman M.A., Alary V., Khalil M., Elbeltagy A., Tourrand J.-F., Moulin C.-H. Adaptabilidad y habilidad de las razas de ganado local en Egipto: percepciones de los finqueros y actores y prácticas de la cadena de valor del ganado

Egipto, donde se espera un aumento de la temperatura media de 1–1,5°C durante las próximas dos décadas, se encuentra particularmente concernido con el cambio climático en el Mediterráneo. La mayoría de los trabajos de investigación en los caracteres de adaptabilidad animal se han enfocado en ovejas y cabras en áreas no irrigadas, con poco interés en los sistemas de ganadería en las zonas irrigadas. Sin embargo, los productos de carne y leche en Egipto son principalmente suministrados por grandes rumiantes – ganado y búfalos. Además, la investigación en el mejoramiento genético para aumentar la producción ha obviado razas de ganado local como la Baladi, que parece en peligro de extinción. Basados en entrevistas individuales y colectivas conducidas en dos gobernaciones de Egipto, este estudio pretende describir la situación de esta raza local, basada en las percepciones y prácticas de los actores en el sector (incluyendo finqueros, intermediarios y proveedores de servicios), así como diseñar perspectivas para el futuro. De las entrevistas, la Baladi sería adaptable y más resistente a las condiciones rudas, especialmente a temperaturas extremas, periodos de escasez de alimento y algunas enfermedades, en particular la fiebre aftosa. Sin embargo, no existe una organización y acción colectiva para preservar o promover esta raza, debido a su baja producción láctea, a pesar de que su carne es altamente valorada en zonas rurales y podría ser la fuente de un mercado específico potencial.

Palabras clave: ganado bovino Baladi, raza indígena, sistema de explotación, adaptación al cambio climático, Egipto

Adaptabilite et pertinence des races bovines locales en Egypte
Mots-clés
Ovin, brebis Ouled-Djellal, aliment pour animaux, état corporel, fertilité, prolifcité, Algérie

Résumé
L’état corporel de lots de brebis mises à la reproduction a été noté dans des exploitations de la région de Chlef en Algérie de février 2012 à avril 2013. L’état corporel et les réserves des brebis ont varié selon, d’une part, la catégorie des femelles concernées (agnelages en septembre-octobre ou en mars-avril) et, d’autre part, l’exploitation. La prise en compte des quantités de fourrage distribuées en complément du pâturage et des réserves corporelles a permis d’établir un diagnostic sur l’alimentation dans chaque situation. L’interaction entre l’état corporel des brebis mises à la lutte et les performances de reproduction a été mise en évidence. En effet, à mesure que la note d’état corporel (NEC) à la mise à la lutte augmentait, la fertilité et la prolifcité s’amélioraient. Les brebis dont la NEC à la mise à la lutte a été supérieure ou égale à 3 ont obtenu des taux de fertilité de 100 % et de prolifcité de 130 %, contre respectivement 76 % et 100 % pour celles dont la NEC a été inférieure à 3.

Pour citer cet article : Taherti M., Kaidi R., 2016. Body condition variations and sheep breeding systems in the region of Chlef, Algeria. *Rev. Elev. Med. Vet. Pays Trop.*, 69 (3): 105-109

INTRODUCTION

Dans un système agropastoral, il est impossible avec les moyens dont on dispose de quantifier les apports dans leur totalité et de tenter une confrontation stricte de l’équilibre apports / besoins alimentaires. Cependant pour apprécier l’estimation de cet équilibre à travers l’état corporel et les performances des animaux, nous avons consulté les travaux de Gibon (1981), Frutos (1997), et Calavas et al. (1998) qui montrent l’intérêt de se servir des variations de l’état corporel de la femelle adulte comme repère pour porter un diagnostic sur le système de conduite alimentaire.

La présente étude a eu pour objectif de déterminer les variations de l’état corporel des brebis dans les élevages en fonction des périodes les plus importantes du cycle productif et de connaître les caractéristiques des systèmes d’élevage ovin de la région de Chlef. Les données ainsi obtenues serviront dans le cadre du conseil technique et des actions d’amélioration et de développement de l’élevage ovin.

1. Faculté des sciences de la nature et de la vie, Université Hassiba Benbouali, BP 15, Chlef 02000, Algérie.
2. Institut des sciences vétérinaires, Université Saad Dehlab, Blida, Algérie.
* Auteur pour la correspondance
Tél. : 06 65 18 92 37 ; email : taherti61mourad@yahoo.fr

L’élevage ovin dans la région de Chlef

La région de Chlef est située dans la partie nord de l’Algérie, marquée par l’aridité de son climat et la précarité de ses ressources naturelles. Pour vivre dans ces milieux agropastoraux, les populations locales se basent sur la complémentarité entre l’élevage et les terrains à usage agricole (terrains de cultures et terrains de parcours). L’élevage ovin dans la région n’est qu’une activité parmi d’autres, quelle que soit la taille du troupeau (30 à 350 brebis). Le maraîchage, l’arboriculture, l’élevage de bovins ou de caprins et parfois le salariat extérieur contribuent au revenu des agriculteurs.

Principales caractéristiques de l’élevage ovin

Dans la région de Chlef, les trois espèces animales, ovines, bovines et caprines coexistent. L’effectif ovin (750 000) contre 45 000 caprins et 35 000 bovins (DSA, 2011), indique la spécialisation ovine des exploitations de la région. Le cheptel ovin est essentiellement constitué d’animaux croisés au génotype indéfinissable. La région est connue pour sa population locale très hétérogène appelée communément la Arbia, résultat de croisement entre la Ouled-Djellal et les ovins locaux (Taherti, 1996). Les agnelages se concentrent principalement en automne (de septembre à novembre), avec des périodes de rattrapage en hiver (décembre-janvier) et au printemps (de mars à juin). Les éleveurs pratiquent l’autorenouvellement des agnelles. L’alimentation des troupeaux est basée sur le pâturage de prés et parcours toute l’année. En bergerie, l’alimentation des troupeaux est basée sur les
récoltes de fourrages secs (paille et vesce-avoine), qui sont souvent insuffisantes et complétées par des achats.

Types d’élevage

Cette présentation générale masque une grande diversité de situations, repérable notamment par la structure de l’élevage (par exemple taille du cheptel, main d’œuvre, bâtiment d’élevage), les quantités d’aliments distribuées par jour, la localisation géographique, et les performances de reproduction. Ainsi, dans la région de Chlef on distingue deux groupes d’exploitations :

- le groupe 1 qui dispose d’espaces pastoraux très limités, valorisables sur pied. Les quantités de fourrage récoltées sont insuffisantes, et les ressources en herbe pâturables au printemps très réduites. Dans ce contexte de pénurie, les éleveurs recherchent un agnelage unique à l’automne ;
- le groupe 2 dont la caractéristique majeure est de disposer de ressources alimentaires abondantes (fourrages récoltés et pâturables) assurant l’autosuffisance. Les éleveurs recherchent un agnelage principal à l’automne mais, ayant suffisamment de fourrages, ils s’accommodent d’une période de mise bas de rattrapage au printemps (mars-avril).

MATERIEL ET MÉTHODES

Choix et suivi des exploitations

Deux exploitations ont été choisies pour cette expérimentation, représentant les deux groupes d’élevage précédemment identifiés (tableau I). L’exploitation notée E1 a des caractéristiques correspondant au groupe 1 : recherche d’économie de fourrage acheté et une saison d’agnelage unique d’automne (septembre-octobre). L’exploitation notée E2 a des caractéristiques correspondant au groupe 2 : autosuffisance en fourrage et deux sessions d’agnelage en automne (septembre-octobre) et au printemps (mars-avril). Le suivi a comporté huit passages au cours de la période de février 2012 à janvier 2013.

Animaux et mesures

L’étude a porté sur deux sous-troupeaux appartenant chacun à l’une des deux exploitations représentant les deux systèmes d’élevage dominants dans la région de Chlef. Chaque sous-troupeau était constitué de 60 brebis de race Ouled-Djellal. Les brebis représentatives des différentes classes d’âge du cheptel ont été marquées par des boucles d’oreille. Des notations d’état corporel ont été réalisées chaque mois, à raison de deux notes par mois. Les résultats ont été rassemblés tous les mois et une moyenne de chaque cycle de production a été calculée. Les visites d’élevage hebdomadaires et mensuelles pour collecter les données ont permis aussi d’estimer les performances de reproduction : taux de fertilité (nombre de brebis ayant mis bas / nombre de brebis mises à la lutte x 100), taux de proliféricité (nombre d’agneaux nés / nombre de brebis ayant mis bas x 100).

RESULTATS

Les variations de l’état corporel sont présentées selon les saisons d’agnelage. Le tableau III montre les variations des notes moyennes de l’état corporel des brebis des exploitations E1 et E2.

Agnelage unique d’automne (E1)

L’étude des variations des notes moyennes de l’état corporel des brebis de E1 selon le stade physiologique a permis de distinguer deux

Tableau I

Présentation des deux exploitations suivies dans la région de Chlef, Algérie

Localisation	Exploitation 1	Exploitation 2
Age de l’exploitant (ans)	55	40
Surface agricole (ha)	10	120
Surface fourragera (ha)	3	20
Effectif brebis	100	250
Main d’œuvre (UTH)	1	3
Bâtiment d’élevage	Précaire	Moderne en dur

Tableau II

Notes d’état corporel recommandées pour les ovin

Stade physiologique	Note moyenne	Observation
Lutte	3 à 3,5	Suralimentation efficace si la note est comprise entre 2,5 et 3
Gravidité	3 à 3,5	Eventuellement 2,5 pour les troupeaux à très faible proliféricité
Agnelage	3,5	Note à atteindre pour les brebis prolifiques
Lactation	2,5 à 3,5	Ne pas descendre en dessous de 2,5
Sevrage	2 à 2,5	Ne jamais poursuivre la sous-alimentation énergétique au-delà de 8 semaines de lactation

Sources : Bocquier et al. (1988), et Calavas et al. (1998)

Tableau III

Calendrier de notation et stade physiologique des brebis des deux exploitations avec la saison d’agnelage en automne dans la région de Chlef, Algérie

Exploitation	Mois de notation	Stade physiologique	NEC * moyenne	NEC * moyenne
E1	Février	Avant la lutte	2,2	3,2
	Mars, avril	Lutte	2,5	3,75
	Mai, juin, juillet	Gravidité	3,2	3,8
	Août, septembre			
	Octobre, novembre	Agnelage	2,5	3,7
	Décembre, janvier	Lactation	2,0	3,5

* Note d’état corporel
phases : une première phase croissante qui a débuté en fin d’hiver (février) et s’est poursuivie durant le printemps/été, et les périodes de lutte (NEC = 2,5) et de gravidité (NEC = 3,2). Une deuxième phase de régression très longue qui a démarré en automne (période d’agnelage) et a continué en hiver (période de lactation). Elle était caractérisée par une chute très prononcée des réserves corporelles à l’agnelage (NEC = 2,5) et durant la lactation (NEC = 2 ; tableau III).

Agnelage d’automne (E2)

Les variations de l’état corporel des brebis de l’exploitation 2 ont été faibles durant les différents cycles de production (tableau III). La NEC au moment de la mise bas en automne a été élevée (3,8) ; elle l’a également été pendant la lactation (3,5) et lors de la mise à la lutte (3,75). L’exploitant a pratiqué la distribution du concentré : environ 1,5 kilogramme d’orge par brebis par jour pour couvrir leurs besoins de production, car les disponibilités pastorales durant cette année étaient faibles et limitées aux lignes (pluviosité faible). Cela explique le bon état corporel des brebis de cette exploitation à tous les stades physiologiques.

Agnelage de printemps (E2)

Les résultats des variations de l’état corporel de la deuxième session d’agnelage (printemps) des brebis de l’exploitation E2 sont présentés dans le tableau IV. Dans cette exploitation qui pratique deux sessions d’agnelage par an, la lutte d’automne (première session) et les mises bas de printemps (deuxième session) se situent dans des périodes favorables sur le plan fourrager. Les valeurs enregistrées durant les différents cycles de reproduction ont été au-dessus des valeurs recommandées (entre 3 et 3,5). En plus du pâturage, l’éleveur a apporté un soutien alimentaire à l’ensemble du troupeau, visant à maintenir l’état des brebis mettant bas deux fois par an et celles en lactation à cette période (automne/hiver), et garantir la lutte de deuxième session. L’association pâturage et complémentation (distribution de 1 à 1,5 kilogramme d’orge par brebis par jour) a permis une meilleure couverture des besoins avant le printemps. Durant l’été, le troupeau de cet élevage a été maintenu sur des prés, des parcelles fauchées et des chaumes. Cette conduite était caractérisée par des ajustements visant à maintenir l’état des animaux et assurer la première session de lutte ainsi que la lactation des agnelages de la deuxième session (agnelages de printemps). Les brebis de cette exploitation ont présenté au cours de l’année un niveau d’état corporel satisfaisant, passant de 3,2 en septembre/octobre (période de lutte) à 3,5 en juin-juillet (période de lactation). Le taux de brebis concerné par la deuxième lutte (septembre/octobre) a été de 95 % et celui des brebis ayant mis bas au printemps de 90 %.

Tableau IV

Calendrier de notation et stade physiologique des brebis de l’exploitation E2 avec la saison d’agnelage au printemps dans la région de Chefch, Algérie

Mois de notation	Stade physiologique	NEC * moyenne
Avril, mai	Agnelage	3,0
Juin, juillet	Lactation	3,5
Août	Avant la lutte	3,0
Septembre, octobre	Lutte	3,2
Novembre, décembre,	Gravité	3,0
janvier, février, mars		

* Note d’état corporel

Tableau V

Performances de reproduction et notes d’état corporel des brebis lors de la mise à la lutte (mars-avril) dans la région de Chefch, Algérie

Exploitation 1	Exploitation 2
Groupe d’élevage	1
Période de lutte	Mars-avril
Note moyenne	2,5
Nombre de brebis	60
Fertilité de la mise bas d’automne (%)	76
Prolificité de la mise bas d’automne (%)	100

Etat corporel au moment de la lutte de mars-avril et performances de reproduction

Les notations réalisées au cours de l’année d’étude montrent que l’état corporel moyen des brebis mises à la reproduction en mars-avril a été très différent selon les élevages : les notes ont varié de 2,5 à 3,75 (tableau V).

Au vu de ces résultats une note moyenne en mars-avril supérieure ou égale à 3 doit être visée pour obtenir une fertilité supérieure ou égale à 80 % et une meilleure prolificité. Ces données sont cohérentes avec celles de l’exploitation E2, correspondant à l’objectif de l’éleveur avec une note à la mise à la lutte de 3,75.

L’analyse de la fertilité et de la prolificité des brebis en fonction des NEC à la lutte montre qu’à mesure que l’on passe d’un état à un autre (de 2,5 à 3,75) ces deux paramètres s’améliorent. Les brebis ayant un bon état corporel, donc correctement alimentées, ont été plus fertiles et plus prolifiques que celles qui étaient plus maigres. En effet, dans cette étude les taux de fertilité et de prolificité sont passés de 76 % et 100 % pour les brebis E1 à 100 % et 130 % pour les brebis E2, pour un état corporel à la lutte respectivement de 2,5 et 3,75. La situation de l’exploitation, en particulier sur le plan alimentaire, semble jouer un rôle prépondérant : dans E2, le pâturage de printemps sur des ressources pastorales à strates herbacées, en plus d’un soutien alimentaire en bergerie, a permis d’élever le niveau alimentaire des troupeaux et d’obtenir de meilleures performances. On peut alors penser que cette conduite alimentaire a entraîné une suralimentation. En revanche, la contrainte alimentaire, pâturage sur des espaces ligneux et absence de complémentation, apparaît ici comme une cause essentielle des mauvais résultats de reproduction enregistrés chez les brebis E1.

DISCUSSION

Au cours de cette période expérimentale, la note moyenne de l’état corporel des brebis a évolué d’une manière différente dans les deux élevages. Ces différences de profils d’évolution découlaient du fait que ces deux élevages adoptaient des modes de conduite alimentaire différents avec des caractéristiques écologiques et botaniques inégales (diversité d’espèces et d’altitude) et des apports en concentré différents. En effet, le système alimentaire des ovis E1, situé en zone de piémont, s’est caractérisé par une prédominance des unités fourragères pâturées par rapport aux unités fourragères distribuées. Les espèces arbusives et arboreuses (maquis de bruyère et de ciste, cactus, cèdre) ont constitué la majeure partie des lieux de pâturage des troupeaux de cette zone. Au contraire, dans E2, situé en plaine, les zones de pâturage étaient constituées essentiellement par les jachères, les prairies et les chaumes.
de céréales (espèces herbacées) en raison de l’importance des surfaces cultivables et du stock de nourriture. De même, le niveau de complémentation observé dans E2 a été de 1,5 kilogramme d’orge par brebis et par jour quel qu’ait été le type de ressource pâturée. En revanche dans E1 qui visait l’économie d’achat d’orge les brebis ont reçu environ 0,2 kilogramme d’orge par brebis par jour durant l’automne et l’hiver uniquement. Cette évolution a mis également en évidence les effets respectifs du stade physiologique des animaux et l’évolution saisonnière de la disponibilité en herbe, comme l’ont déjà observé Dedieu et al. (1989), et Thomson et Bahhady (1988), respectivement dans les élevages de Cévennes en France et les régions semi-arides du nord-ouest syrien.

Dans la région de Chlef à la fin de l’été (septembre), les brebis ont été régulièrement en bon état corporel, quels qu’aient été l’élevage et les catégories de femelles concernées. L’hétérogénéité de l’état des brebis observée en mars-avril est liée aux différences des conduites alimentaires automnales et hivernales et des ressources disponibles. L’étude des variations moyennes de l’état corporel des brebis notées a permis de distinguer les deux situations ci-après.

Lorsque les réserves corporelles ne sont pas sollicitées, les brebis restent constamment en bon état. Cela correspond au cas de E2, où la note moyenne des brebis agnelant en septembre-octobre ainsi que celle des brebis agnelant en mars-avril sont restées supérieures à 3 quelle qu’ait été la durée de lactation. L’absence de mobilisation des réserves implique une bonne adéquation entre les besoins et l’offre alimentaire : ressources pastorales et complémentation importante. Celle-ci maintient en permanence le bon état des brebis et permet d’assurer un rythme de reproduction accéléré. En effet, nous avons relevé que cette exploitation, grâce à sa structure d’élevage et ses moyens financiers, visait une deuxième session d’agnelage (au printemps). La complémentation a permis aux brebis d’avoir un état corporel satisfaisant toute l’année. La prise en compte a) des quantités de complément distribuées aux brebis et leur origine (stocks réalisées sur l’exploitation et/ou achetés), et b) du rôle des réserves corporelles permettent de porter un premier diagnostic sur l’alimentation de cette exploitation. On peut ainsi mettre en évidence, d’une part, l’excès de complémentation alors que les réserves ont été peu sollicitées et, d’autre part, l’insuffisance de la contribution des ressources pastorales à l’alimentation du troupeau. La complémentation a eu un impact déterminant sur l’état corporel des brebis de cette exploitation en vue d’obtenir une note moyenne de 3,5 à la mise à la reproduction ou une suralimentation plus coûteuse. Le niveau de complémentation adopté par l’éleveur 2 ne peut servir de référence pour l’éleveur 1.

Dans E1 les réserves corporelles ont été fortement sollicitées de manière non maîtrisée, puisque la note à la mise à la lutte a été inférieure à 3 et les NEC du troupeau sont restées en dessous des valeurs recommandées par Bocquier et al. (1988), et Calavas et al. (1998). Les brebis mettant bas en septembre-octobre ont mobilisé trop intensément leurs réserves corporelles pendant toute la durée de la lactation mais ne les ont pas reconstituées suffisamment avant la période de lutte (mars-avril). Dans cette exploitation, la sous-alimentation a commencé dès la fin de l’été. La mobilisation des réserves constituées en été a été débutée dès la fin de la gravité. Après l’agnelage, la faible complémentation n’a pas compensé la baisse des réserves corporelles des brebis. En plus de l’herbe des parcours, des prairies et des jachères, les animaux ont pâturez les lignées des collines. L’état des animaux non allaitants a été maintenu (NEC entre 2,5 et 3). En revanche, chez les allaitants, la mobilisation des réserves s’est poursuivie. Les brebis ont cependant repris du poids au printemps avec l’ensemble du troupeau. Cette conduite amène l’éleveur à se contenter d’une seule session de reproduction.

Ces résultats sont la conséquence du comportement et de la réaction physiologique développés par la brebis Ouled-Djellal sous l’influence de la saison de lutte et de l’effet de l’alimentation. Parmi l’ensemble des facteurs intervenant sur la fertilité et la prolifivité, outre l’aptitude au désaisonnlement et le nombre de béliers présents à la lutte (Signoret, 1980 ; Thimonier et al., 2000), l’état corporel en mars-avril est apparu déterminant dans notre échantillon. Thieriez (1984), Atti et Abdennabi (1995), et Arbouche et al. (2013) montrent également que la fertilité et la prolifivité dépendent fortement de l’état corporel de l’animal à la lutte. Avec des NEC différentes, les brebis Ouled-Djellal ont présenté des résultats différents, comme cela a été observé chez la race Aragonesa en Espagne (Abecia et al., 1992). Lorsque le niveau nutritionnel est respecté la brebis Ouled-Djellal devient plus productive grâce à un nombre élevé de cycles sexuels. En revanche, lorsque la brebis est maintenue dans un régime alimentaire restrictif (E1), le nombre de cycles sexuels est réduit ainsi que sa production (Bodin et al., 1999). Aussi, Gun et al. (1991) ont signalé l’existence d’un seuil de la NEC à la lutte en dessous duquel (NEC < 3) se produirait un effet dépressif sur la fertilité et la prolifivité. Ceci est en adéquation avec les résultats de Benyounes, (2007), et de Benyounes et Lamarani, (2013) pour la race Ouled-Djellal élevée dans l’Est algérien.

Le potentiel génétique que pourra exprimer la brebis est l’interaction entre son génotype et les facteurs d’élevage où l’alimentation joue un rôle prépondérant (Landau et al., 1997). Donc, les différences de résultats observées entre les deux troupeaux constituent les premiers éléments explicatifs de l’expression de la brebis Ouled-Djellal à la diversité des conduites alimentaires. En conséquence, il semble clair que l’état corporel lors de la mise à la lutte soit le déterminant principal du potentiel productif des brebis. Toutefois, la sous-nutrition ou le stress nutritionnel permanent sont susceptibles de limiter les aptitudes de reproduction des brebis.

L’effet de la condition corporelle chez les brebis à haut niveau de réserves corporelles est un stimulant suffisamment efficace sur la cyclique des brebis et par voie de conséquence sur son potentiel productif (Benyounes et Lamarani, 2013). Leur anestrus, largement tributaire de leur niveau nutritionnel, peut être réduit selon les systèmes d’élevage par simple amélioration des conditions d’alimentation.

Au cours de cette étude, nous n’avons pas pu estimer l’impact des phénomènes de mobilisation des réserves en début de lactation sur la croissance des agneaux, en l’absence de contrôle des performances ovin-viande et devant la réticence des éleveurs à participer à ces contrôles. Talbi (2009) montre que, dans la région de Chlef, l’état à la mise bas d’automne est suffisamment élevé pour que des variations de poids vifs allant jusqu’à moins six kilogrammes pendant les 6–8 premières semaines de lactation n’aient pas de conséquences nettes sur le niveau de production laitière des brebis, et par conséquent sur la croissance entre 10 et 30 jours des agneaux simples. Zidane et al. (2015) ont rapporté des résultats identiques dans la même région. Nous en avons induit que, pour les mises bas de septembre-octobre, l’état corporel correct à la descente d’estive et le pâturage des repousses des prés de fauche permettraient un bon niveau de production laitière des brebis allaitantes, même en cas de mobilisation importante des réserves (cas des brebis E1), puisque nous n’avons pas observé dans cette exploitation de brebis ayant une note inférieure à 2 durant les deux premières semaines de lactation, note minimum retenue par la Meat and Livestock Commission (1983).

CONCLUSION

D’importantes variations des notes d’état corporel ont été observées au cours de l’année d’étude. Ces variations traduisent l’interaction entre les disponibilités alimentaires de l’exploitation et la mobilisation des réserves corporelles selon le stade physiologique. La condition corporelle estimée par la NEC est bien corrélée aux paramètres de reproduction des brebis. Il serait donc possible d’améliorer les performances des brebis Ouled-Djellal à condition de les maintenir en bon état corporel, en particulier durant la lutte.
La démarche abordée dans cette étude apporte des éléments pour gérer l’alimentation des troupeaux ovins dans la région de Chlef. En effet, le suivi de la condition corporelle permet à l’éleveur de raisonner le choix des ressources, le niveau de complémentation, le niveau de stocks et d’achat d’aliments, et d’ajuster en permanence les pratiques avec ses objectifs de production.

REFERENCES

Abecia J.A., Forcada F., Sierra I., 1992. Influence de l’état corporel sur la cyclicité et le taux d’ovulation chez des brebis Rasa Aragonesa. CIHEAM Opt. Méditér., Sér. A, Sémin. Méditér. (13), doi: 92605105

Arbouche R., Arbouche H.S., Arbouche F., Arbouche Y., 2013. Factors influencing reproduction parameters of ewes Ouled Djellal. Arch. Zoot., 62 (238): 311-314, doi: 10.4321/S0004-05922013002000020

Atti N., Abdennebi L., 1995. Etat corporel et performances de la race ovine Barbarine. CIHEAM Opt. Méditér., Sér. A, Sémin. Méditér. (6), http://om.ciheam.org/pdf/c06/95605387.pdf

Benyounes A., Lamrani F., 2013. Seasonal anestrous and sexual activity in sheep Ouled Djellal. Livest. Res. Rev., 25 (8)

Bletchley M.K., 1983. Feeding the ewe, 2nd Edn. Meat and Livestock Commission, London UK, 78 p.

Bocquier F., Thieriez Z.M., Prache S., Brellout A., 1988. Alimentation des ovins. In : Alimentation des bovins, ovins et caprins. INRA, Versailles, France, 249-281

Bodin L., Elsen J.M., Hanoqc E., François D., Ofagou D., Manfredi E., Malon M.M., et al. 1999. Génétique de la reproduction chez les ruminants. Prod. Anim., 12 (2): 87-100

Calavas D., Sulipce P., Lepetitcolin E., Bugnadr F., 1998. Fidelity appreciation of the practice method of notation the body condition of the ewes in a professional setting. Vet. Res., 29 (2): 129-138, doi: hal-00902518

Dedieu B., Cornet E., Gibon A., 1989. Notations de body condition and sheep breeding system. Diagnosis and advice for feeding herds in the Cévennes. Prod. Anim., 2 (2): 79-88, doi: hal-00895856

DSA, 2011. Situation du secteur agricole dans la wilaya de Chlef. Rapport annuel. Ministère de l’Agriculture et du Développement rural, Alger, Agérie, 40 p.

Summary

Taherti M., Kaidi R. Body condition variations and sheep breeding systems in the region of Chlef, Algeria

The body condition scores (BCS) of groups of ewes bred for reproduction were recorded in farms in Chlef region in Algeria from February 2012 to April 2013. The body condition and body reserves of the ewes varied according to i) the category of females concerned (lambing in September-October or in March-April) and ii) the farm. Taking into account the quantities of fodder distributed in supplement of pasture and body reserves enabled us to make a diagnosis on the feed in each situation. The interaction between the body condition of the ewes at mating and their reproduction performance was evidenced. Indeed, as BCS at mating increased, fertility and prolificacy improved. The ewes with BCS at mating higher than or equal to 3 obtained 100% fertility and 130% prolificacy rates, against 76% and 100%, respectively, for those with a BCS lower than 3.

Keywords: sheep, Ouled Djellal ewe, feeds, body condition, fertility, conception rate, Algeria

Frutos P., Mantecon A.R., Ciradez F.J., 1997. Relationship of body condition score and live weight with body composition in mature Churra ewes. Anim. Sci., 64, 447-452, doi: https://doi.org/10.1017/S1357790800016052

Gibon A., 1981. Pratiques d’éleveurs et résultats d’élevages dans les Pyrénées centrales. Logique de la conduite des troupeaux et possibilités d’amélioration. Thése Doct., Institut national agronomique, Paris Grignon, France, 106 p.

Gunn R.G., Smith W.F., Senior A.J., Barthreme E., Sim D.A., Hunter E.A., 1991. Pre-mating herbage intake and the reproductive performance of North Country Cheviot ewes in different levels of body condition. Anim. Prod., 52 (1): 149-156, doi: 10.1071/SP000335610000578X

Landau S., Molle G., 1997. Nutrition effects on fertility in small ruminants with an emphasis on Mediterranean sheep breeding systems. CIHEAM Opt. Méditér., Sér. A, Sémin. Méditér. (34): 203-216, http://om.ciheam.org/article.php?IDPDF=97606138

Russel A.E., Gunn R.G., Doney J.M., 1969. Subjective assessment of body fat in live sheep. J. Agric. Sci. Camb., 72 (3): 451-454, doi: 10.1017/S0021859600024874

Signoret J.P., 1984. Influence de l'alimentation sur les performances de reproduction des ovins. In : 9èmes journées nationales de productions animales, Université de Chlef, Algérie, 13-14 avril 2009, 35-42

Thieriez M., 1984. Influence de l’alimentation sur les performances de reproduction des ovins. In : 9èmes journées de recherches ovin et caprin. INRA-Itivoc, Paris, France, 294-326

Thimonier J., Cognie Y., Lassoued N., Khalidi G., 2000. The ram effect: an up-to-date method for the control of oestrus and ovulation in sheep. Prod. Anim., 13 (4): 223-231

Thomson E.F., Bahhady F.A., 1988. A note of the effect of live weight at mating on fertility of Awassi in semi-arid north-west Syria. Anim. Sci., 47 (3): 505-508, doi: 10.1017/S0003356100003688

Zidane A., Niar A., Ababou A., 2015. Effect of some factors on lambs growth performances of the Algerian Ouled Djellal breed. Livest. Res. Dev., 27 (7)

Resumen

Taherti M., Kaidi R. Variaciones en la condición corporal y sistemas de cría en ovinos en la región de Chlef, Argelia

Los puntos de condición corporal (PCC) de grupos de ovejas criadas para reproducción fueron registrados en fincas en la región de Chlef, en Argelia, entre febrero 2012 y abril 2013. La condición corporal y las reservas corporales de las ovejas variaron según a) la categoría de las hembras involucradas (parto en setiembre-octubre o marzo-abril) y b) la finca. Tomar en consideración las cantidades de forraje distribuido en suplemento al pasto y las reservas corporales nos permitió hacer un diagnóstico del alimento en cada situación. La interacción entre la condición corporal de las ovejas a la monta y los rendimientos reproductivos fue demostrada. En efecto, conforme PCC a la monta aumentó, mejoraron la fertilidad y la prolificidad. Las ovejas con una PCC a la monta mayor o igual a 3 obtuvieron tasas de 100% de fertilidad y 130% de prolificidad, contra 76% y 100%, respectivamente, para aquellas con PCC menor a 3.

Palabras clave: ovino, oveja Ouled-Djellal, pienso, condición corporal, fertilidad, prolificidad, Argelia
INTRODUCTION

La production ovine en Côte d’Ivoire représentait 4,5 % de la couverture en viande et abats en général en 2001 et 60 % de la consommation nationale de viande de mouton (Leroy et al., 2002). Deux races ovines principales sont représentées dans le pays : la Sahélienne (Anonyme, 1995) et la Djallonké (Charray, 1986 ; Doutressoul, 1947 ; Vallerand et Branckaert, 1975). La Sahélienne est principalement constituée de moutons peuls originaires de la zone sahélienne du Niger et du Burkina Faso. Ce sont des moutons efflanqués et hauts sur pattes (taille de 65 à 75 cm) pour un poids corporel à l’âge adulte de 30–50 kg. Le mouton Djallonké ou mouton Nain d’Afrique est de format plus petit : taille moyenne de 50 cm, poids corporel de 20–30 kg pour la brebis et de 25–35 kg pour le bélier. Il représente la population de moutons la plus importante en Côte d’Ivoire (Anonyme, 1995). Par ailleurs, le Djallonké est rustique et tripanotolérant.

VARIATIONS MENSUELLES SUR TROIS ANNEES DU SPERMOMASQUE DE BÉLIERS DE RACE Djalonké EN RÉGION FORESTIÈRE DE LA CÔTE D’IVOIRE

Grah Nazaire Lavry 1 * M’Bétiégué Coulibaly 2
Atté Michel Offounou 3 Jacques Yao Datté 3

Mots-clés
Ovin, bélier, Djallonké, récolte de sperme, fécondation, Côte d’Ivoire

Résumé
Les variations mensuelles du volume, de la motilité massale et de la concentration de la semence ont été étudiées pendant trois années chez quarante béliers Djallonké de la zone forestière de Côte d’Ivoire. Deux ejaculats ont été récoltés par semaine à l’aide d’un vagin artificiel. Pour chaque année, le volume a été plus faible avant mai (de 0,55 ± 0,03 à 0,75 ± 0,04 ml) qu’après (de 0,61 ± 0,8 à 0,9 ± 0,61 ml) où les variations ont été significatives, sauf en 1993. La motilité massale n’a enregistré que des baisses significatives dans l’année (de 4,42 ± 0,06 à 3,5 ± 0,2), mais avec un accroissement des valeurs entre avril et juillet (entre 3,85 ± 0,01 et 4,45 ± 0,03). La concentration a augmenté d’avril à août et significativement en juin et juillet (de 3,36 ± 0,12 × 109 à 3,8 ± 0,12 × 109 spermatozoïdes (spz/ml)). Les moyennes globales des trois années ont montré a) une augmentation du volume à partir de juin (de 0,71 ± 0,02 à 0,77 ± 0,02 ml), et b) une baisse de la motilité massale significative de février à avril (de 4,28 ± 0,06 à 4,01 ± 0,1), en juillet (3,9 ± 0,1), en septembre (4,1 ± 0,07) et en décembre (3,92 ± 0,1). La concentration a augmenté en juin (de 2,95 ± 0,05 × 109 à 3,52 ± 0,07 × 109 spz/ml) puis juillet (3,18 ± 0,06 × 109 spz/ml). La variation de ces paramètres chez le Djallonké a donc été annuellement différente, non caractéristique et non-circannuelle. Toutefois, la période entre avril et août a été plus favorable à l’augmentation des paramètres. Malgré les baisses significatives de la motilité massale, les paramètres ont été de bonne qualité pour l’insémination artificielle toute l’année.

Pour citer cet article : Lavry G.N., Coulibaly M.B., Offounou A.M., Datte J.Y., 2016. Three-year monthly variations in the spermogram of Djallonke-breed rams in the Cote d’Ivoire forest region. Rev. Elev. Med. Vét. Pays Trop., 69 (3): 111-116

INTRODUCTION

La production ovine en Côte d’Ivoire représentait 4,5 % de la couverture en viande et abats en général en 2001 et 60 % de la consommation nationale de viande de mouton (Leroy et al., 2002). Deux races ovines principales sont représentées dans le pays : la Sahélienne (Anonyme, 1995) et la Djallonké (Charray, 1986 ; Doutressoul, 1947 ; Vallerand et Branckaert, 1975). La Sahélienne est principalement constituée de moutons peuls originaires de la zone sahélienne du Niger et du Burkina Faso. Ce sont des moutons efflanqués et hauts sur pattes (taille de 65 à 75 cm), pour un poids corporel à l’âge adulte de 30–50 kg. Le mouton Djallonké ou mouton Nain d’Afrique est de format plus petit : taille moyenne de 50 cm, poids corporel de 20–30 kg pour la brebis et de 25–35 kg pour le bélier. Il représente la population de moutons la plus importante en Côte d’Ivoire (Anonyme, 1995). Par ailleurs, le Djallonké est rustique et tripanotolérant.
Peu de travaux ont porté sur la reproduction des béliers de cette race, contrairement aux brebis (Asante et al., 1999 ; Awotwi et al., 2001 ; Berger, 1979). Certains travaux ont signalé la précocité de cette race (Adu et Olaloukou, 1979 ; Touré et Meyer, 1999) car elle produit ses premiers éjaculats à l'âge de 173,2 jours, pour un poids vif de 15,6 kg (Touré et Meyer, 1999). Les travaux de Chiboka (1980) sur la semence de Djallonké au Nigeria ont indiqué une amélioration significative de la motilité progressive en grande saison des pluies (d'avril à juin) par rapport à la grande saison sèche (de décembre à février), de 38,6 % à 58,96 % ; ceci n'est pas le cas pour le volume et la concentration. Plus récemment Haye (2006), et Haye et al. (2004), en zones de savane arborée et forestière de la Côte d'Ivoire, ont trouvé chez des béliers Djallonké, respectivement âgés de 3 et de 2,67 à 2,8 et de 4 à 3,52, et une concentration de 0,96 × 10^9 à 1,1 × 10^9 spz/ml et 2,51 × 10^9 à 2,94 × 10^9 spz/ml. Selon ces résultats, le volume est meilleur chez les adultes dans les deux zones, au contraire de la concentration. Ces auteurs ont aussi rapporté que seule la motilité masse du sperme de béliers Djallonké âgés en zone forestière variait significativement dans l'année.

La présente étude, menée en zone forestière du sud de la Côte d'Ivoire chez le bélier Djallonké, visait une meilleure connaissance de l'évolution mensuelle du volume, de la motilité masse et de la concentration du sperme. Ces paramètres sont analysés en routine au laboratoire pour l'insémination artificielle. Une fonction a été recherchée à partir de valeurs standard pour déterminer la concentration quel que soit le taux de transmission. Ce travail a été intégré par la suite à des recherches sur l'effet de substances naturelles issues de la pharmacopée sur les paramètres de qualité du sperme de bélier (Djallonké et Ile-de-France), qui n'ont pu être finalisées qu'en 2014 (Lavry, 2014). L'objectif était d'améliorer la génétique et la productivité de la race Djallonké, après l'identification de géniteurs de référence et la constitution d'une banque de semences de qualité pour l'insémination artificielle. Par ailleurs, une répartition annuelle et des périodes favorables ou défavorables au spermogramme de béliers Djallonké ont été recherchées.

MATERIEL ET METIHODES

L'expérience a été réalisée pendant trois années (1992, 1993, 1994) au Centre national d'insémination artificielle (CNIa) de Bingerville, à 15 kilomètres d'Abidjan, avec quarante béliers adultes de race Djallonké (Rombaut et Van Vlaanderen, 1976 ; Vallerand et Brankaert, 1975), indéfinitivement âgés de 1 à 5 ans et avec un poids vif de 35 à 49 kg. Au cours de l'expérimentation, les animaux ont été vaccinés contre l'épidémie contagieuse ovine et la pasturellose. Leur alimentation était à base de pâturage de Panicum maximum (poacée) avec une complémentation de son de riz, de tiges de mil et de sorgho, de fèves de niébé, et d'oligo-éléments sous forme de pierre à lécher. L'expérimentation a été faite à partir de valeurs standard pour déterminer la concentration en sperme dilué à 4 % dans une solution physiologique (NaCl, 1 g/1000 ml) et à une longueur d'onde de 530 nm. Le taux de transmission de lumière a été mesuré à travers une cuve contenant du sperme dilué à 4 % dans une solution physiologique (NaCl, 1 g/1000 ml) formolée. Cette transmission correspondait à une concentration standard préalablement déterminée par numération directe à l'hémocytomètre (cellule de Malassez), puis simultanément par le spectrophotomètre qui a donné la transmission correspondante. La concentration a été ensuite calculée avec une fonction standard, tracée avec le logiciel Criket Graph de Macintosh (Lavry, 2014).

Les résultats ont été exprimés sous forme de moyenne mensuelle et d'écart-type. Les moyennes des mois ont été comparées avec le logiciel StatXact version 9. Le degré de significativité de différence (p) a été déterminé pour chaque paramètre, au seuil de 5 %. Les courbes de variation des paramètres ont été tracées avec le logiciel Excel avec des barres d'erreur à 5 %.

RESUOTATS

Volume

Par année, la variation du volume, bien que mensuellement différente, a été dans l'ensemble plus faible avant mai qu'après (tableau I). La moyenne globale des trois mois a baissé jusqu'en avril (de 0,71 ± 0,02 à 0,67 ± 0,03 ml), puis a augmenté de juin à décembre (de 0,73 ± 0,02 à 0,81 ± 0,02 ml). Cette variation globale a été significative (p < 0,05) à la hausse, de juin à août, puis d'octobre à décembre. Les valeurs extrêmes ont été observées en octobre (0,81 ± 0,02 ml) et février (0,65 ± 0,02 ml). Les variations mensuelles ont montré dans l'ensemble, par année, une légère baisse entre février et mai, et une augmentation entre août et novembre, alors que les valeurs globales ont augmenté après le mois d'avril.

Motilité masse

Des fluctuations de la motilité masse ont été observées chaque année mais les variations n'ont pas été homogènes (tableau I). Ces variations étaient statistiquement significatives, notamment de 4,2 ± 0,12 % à 3,7 ± 0,2 en septembre 1994. Les valeurs extrêmes ont été obtenues pendant des mois différents selon l'année. La motilité masse mensuelle moyenne de 4,28 ± 0,06 % en janvier a diminué, sauf en octobre (4,3 ± 0,04). Les moyennes des autres mois étaient statistiquement différentes (p < 0,05) de février (4,0 ± 0,08) à avril (4,01 ± 0,1), puis en juillet (3,9 ± 0,1), septembre (4,1 ± 0,07) et décembre (3,92 ± 0,1). Les valeurs mensuelles extrêmes ont été observées en octobre (4,3 ± 0,04) et juillet (3,9 ± 0,1). Les variations de la motilité masse ont toutes montré une baisse en juillet et un accroissement général en octobre. L'accroissement maximal des moyennes en mai, juin et octobre s’est limité au niveau de la valeur initiale.

Concentration

Données standard de détermination de la concentration

Les valeurs standard de concentration déterminées simultanément à l'hémocytomètre et par néphélométrie ont été présentées dans le tableau II. Elles constituent, pour des raisons pratiques, la moyenne sur 32 échantillons. La courbe de la figure 1 a permis d’obtenir la fonction standard pour le calcul de la concentration : Y = 1,2035 × 10^3 X^2 – 0,23 X + 12,41. Cette fonction a donné par bélier les valeurs extrêmes de 1,7 × 10^9 spz/ml en mars 1994 et 7,9 × 10^9 spz/ml en mai 1992, de même que plusieurs autres valeurs ne figurant pas dans le tableau II.

Variations mensuelles de la concentration

Par année, la concentration a varié différemment au cours de la période d’étude (tableau I). Toutefois, elle a augmenté dans l’ensemble...
Tableau 1
Moyennes mensuelles au cours de trois années du volume, de la motilité massale et de la concentration en spermatozoïdes chez quarante béliers Djallonké au CNIA de Bingerville en Côte d’Ivoire

Année	Mois	Volume (ml)	Motilité massale	Concentration (x 10^6 spz/ml)
1992	Janvier	0.65 ± 0.04 a	4.32 ± 0.06 a	3.5 ± 0.08 a
	Février	0.63 ± 0.03 a	3.9 ± 0.15 b	3.7 ± 0.14 b
	Mars	0.62 ± 0.04 a	3.4 ± 0.2 b a	3.46 ± 0.16 a
	Avril	0.55 ± 0.03 b b	3.85 ± 0.1 b	3.62 ± 0.09 a
	Mai	0.84 ± 0.06 b	4.35 ± 0.05 a	3.68 ± 0.24 a
	Juin	0.75 ± 0.03 a	4.45 ± 0.03 a	3.64 ± 0.12 a
	Juillet	0.88 ± 0.09 b b	4.05 ± 0.2 a	3.36 ± 0.12 a
	Août	0.87 ± 0.03 b	4.15 ± 0.1 a	3.37 ± 0.15 a
	Septembre	0.73 ± 0.03 a	4.07 ± 0.1 b b	2.7 ± 0.1 b
	Octobre	0.84 ± 0.03 b	4.4 ± 0.1 a	2.74 ± 0.14 b
	Novembre	0.8 ± 0.05 b	4.35 ± 0.07 a	3.8 ± 0.22 a
	Décembre	0.8 ± 0.02 b	4 ± 0.2 a	3.3 ± 0.15 a
1993	Janvier	0.79 ± 0.03 a	4.17 ± 0.2 a	2.89 ± 0.06 b
	Février	0.65 ± 0.03 b b	3.9 ± 0.2 a	2.87 ± 0.07 a
	Mars	0.7 ± 0.02 b	4.21 ± 0.07 a	2.96 ± 0.09 a
	Avril	0.75 ± 0.04 a	3.9 ± 0.15 a	2.69 ± 0.06 b
	Mai	0.66 ± 0.03 b b	4.33 ± 0.06 a	2.61 ± 0.08 b b
	Juin	0.77 ± 0.04 a	4.3 ± 0.06 a	3.8 ± 0.12 b
	Juillet	0.83 ± 0.04 a*	3.76 ± 0.14 a b	3.32 ± 0.1 b
	Août	0.75 ± 0.03 a	4.05 ± 0.14 a b	3.03 ± 0.12 a
	Septembre	0.73 ± 0.25 a	4.4 ± 0.05 a	3.66 ± 0.13 b
	Octobre	0.75 ± 0.02 a	4.42 ± 0.03 a*	3.01 ± 0.07 a
	Novembre	0.77 ± 0.03 a	4.3 ± 0.07 a	3.11 ± 0.1 a
	Décembre	0.76 ± 0.02 a	3.95 ± 0.12 a	2.8 ± 0.1 a
1994	Janvier	0.64 ± 0.03 a	4.42 ± 0.06 a*	2.51 ± 0.05 a
	Février	0.69 ± 0.05 a	4.27 ± 0.1 a	2.98 ± 0.12 a
	Mars	0.64 ± 0.05 a	4.35 ± 0.07 a	2.66 ± 0.2 a
	Avril	0.65 ± 0.05 a	4.37 ± 0.07 a a	2.74 ± 0.13 a
	Mai	0.75 ± 0.05 b	4 ± 0.14 b a	3.64 ± 0.12 b b
	Juin	0.79 ± 0.05 b	4.05 ± 1.1 b a	2.88 ± 0.1 b
	Juillet	0.66 ± 0.05 a	3.85 ± 0.1 b a	2.74 ± 0.05 b
	Août	0.61 ± 0.8 a*	4.22 ± 0.1 a	2.55 ± 0.04 a
	Septembre	0.79 ± 0.07 b	3.5 ± 0.2 b a	2.21 ± 0.05 b
	Octobre	0.9 ± 0.61 b	4.1 ± 0.14 b a	2.46 ± 0.07 a
	Novembre	0.85 ± 0.06 b b	3.77 ± 0.12 b a	2.53 ± 0.06 a
	Décembre	0.79 ± 0.06 b	3.77 ± 0.14 b a	3.1 ± 0.14 a
Moyennes globales (1992, 1993 et 1994)	Janvier	0.71 ± 0.02 a	4.28 ± 0.06 a a	2.95 ± 0.05 a
	Février	0.65 ± 0.2 a*	4.01 ± 0.08 b b	3.11 ± 0.07 a
	Mars	0.66 ± 0.02 a	4.03 ± 0.07 b a	3.01 ± 0.08 a
	Avril	0.67 ± 0.03 a	4.01 ± 0.1 b a	2.95 ± 0.07 a
	Mai	0.73 ± 0.02 a	4.25 ± 0.06 a a	3.16 ± 0.1 a
	Juin	0.77 ± 0.02 b	4.27 ± 0.04 a b	3.52 ± 0.07 b a
	Juillet	0.8 ± 0.03 b a	3.9 ± 0.1 b a	3.18 ± 0.06 b
	Août	0.77 ± 0.02 b	4.12 ± 0.1 a a	2.99 ± 0.07 a
	Septembre	0.75 ± 0.03 a	4.1 ± 0.07 b a	3.03 ± 0.1 a
	Octobre	0.81 ± 0.02 b b	4.3 ± 0.04 a*	2.8 ± 0.05 a*
	Novembre	0.8 ± 0.02 b	4.16 ± 0.06 a a	3.13 ± 0.1 a
	Décembre	0.77 ± 0.02 b	3.92 ± 0.1 b a	3.02 ± 0.1 a
Les variations mensuelles du volume, de la motilité massale et de la concentration du sperme bœuf Djalonnèè ont varié pendant les trois années aussi bien au cours de chacune d’elles que pour les valeurs globales. Pour ces dernières, le volume et la concentration ont principalement augmenté dans l’année, alors que la motilité massale et de la concentration ont donné deux fois chaque année (à la hausse ou à la baisse), probablement en raison des différentes variations de facteurs environnementaux (par exemple climat, température, photopériode, végétation) au cours de chaque année. Cependant, malgré ces différences annuelles, une croissance générale des paramètres a été observée entre avril et juillet, puis en octobre et novembre. Ceci pourrait suggérer une certaine variation périodique de ces paramètres si des moyennes par groupe de mois étaient réalisées, notamment par saison (Baril et al., 1993; Dadoune et Demoulin, 2001).

L’analyse de la variation des moyennes globales des trois années a montré que la motilité massale a baissé, dénotant une évolution défavorable après le mois de janvier. Le volume et la concentration ont varié significativement à la hausse et à la baisse de mai à juillet a été la plus favorable. Ces variations sont différentes des résultats de Haye (2006) qui, chez cette race et dans la même localité, a indiqué des variations significatives à la hausse et à la baisse de tous ces paramètres. Il a aussi, à la différence du présent travail, rapporté des valeurs extrêmes de 0,77 ml en janvier et 0,60 ml en juillet pour le volume, 3,96 en août et 3,50 en septembre pour la motilité massale, et 3,26 × 10^9 spz/ml en mai et 3,46 × 10^9 spz/ml en septembre pour la concentration. Ces moyennes globales des paramètres ont varié différemment dans l’année, mais un accroissement des valeurs a été observé de mai à juillet et secondairement entre octobre et novembre. Au regard de ces variations mensuelles globales et par année, ces périodes de mai à juillet, puis d’octobre et de novembre sont apparues comme favorables au sperrogramme du bœuf Djalonnèè. La hausse des paramètres en juillet est conforme aux résultats de Haye chez le Djalonnèè (Haye, 2006), et de Issa et al. (2001) chez des béliers Peuls bicolores au Niger. Ces variations mensuelles ont traduit une influence différente des facteurs environnementaux sur la qualité du sperme du Djalonnèè, comme l’ont signalé Baril et al. (1993), Lodge et Salibury (1970), et Pelllicer-Rubio et Combarnous (1998). Mais, une augmentation caractéristique s’est produite en juillet.

La bonne qualité des paramètres du sperme étudiés est déterminée par un volume moyen de 0,8 ml (extrêmes de 0,5 à 2 ml), une motilité massale égale ou supérieure à 3,5, une concentration comprise entre 2 × 10^9 et 6 × 10^9 spz/ml (Colas, 1980; Evans et Maxwell, 1987; Pedigo et al., 1989). Les présents résultats ont montré que, malgré les modifications à la baisse de la motilité massale, les paramètres étudiés n’avaient pas dans l’année la bonne qualité du sperme pour l’insémination artificielle. Cette bonne qualité a déjà été signalée chez le Djalonnèè (Haye et al., 2004; Haye, 2006) et chez le Peul bicolore (Issa et al., 2001). En conséquence, dans la zone forestière de la Côte d’Ivoire la qualité du sperme de bœuf Djalonnèè pour l’insémination artificielle n’a pas été dégradée au cours de l’année. En effet, le volume, la motilité massale et la concentration ont donné des valeurs bonnes, toute l’année, pour l’insémination artificielle.
Au regard des résultats obtenus, les variations des moyennes mensuelles constatées des trois années seraient donc dues soit à l’État de santé ou de nutrition des béliers (Craplet et Thibier, 1980 ; Derivaux et Ectors, 1986), soit à des phénomènes environnementaux (Baril et al., 1993 ; Chemineau et al., 2001 ; Lodge et Salibury, 1970). Dans la mesure où la photopériode ne varie pratiquement pas toute l’année en zone tropicale guinéenne, la variation des facteurs saisonniers et climatiques, avec probablement leurs conséquences sanitaires et nutritionnelles (Craplet et Thibier, 1980), seraient à la base des modifications mensuelles enregistrées au cours de l’année au niveau des paramètres étudiés chez le bélier Djallonké. En effet, il est admis que les facteurs climatiques influencent directement la végétation et la disponibilité de la nourriture, de même que l’abri pour les animaux. Cela influence indirectement la reproduction (Lodge et Salibury, 1970). Dans la présente étude, l’influence de l’alimentation a dû provenir de la disponibilité de Panicum maximum qui constituait le pâturage.

CONCLUSION

Après trois années d’étude des paramètres du sperme (volume, motilité massale, concentration) de béliers Djallonké récoltés par vagin artificiel, une variation mensuelle différente de tous ces paramètres a été observée d’une année à l’autre. L’évolution de ces paramètres a montré qu’ils ne sont pas soumis à une variation mensuelle caractéristique dans l’année chez cette race. Les moyennes globales des trois années ont montré que la motilité massale a baissé après janvier, alors que le volume et la concentration ont augmenté de juin à juillet. Toutefois, que ce soit par année ou avec les valeurs globales, la qualité du volume, de la motilité massale et de la concentration est restée bonne toute l’année pour l’insémination artificielle chez le bélier Djallonké. Cependant, la comparaison des courbes de variations mensuelles des valeurs globales des trois paramètres a permis d’identifier une période favorable au spermogramme située d’avril à juin.

REFERENCES

Adou I.F., Olaoloucou A., 1979. A note on nutrition during late pregnancy in West African Dwarf Sheep. *Res. Vet. Sci.*, 4 (1): 104-106

Angey Y., 1983. Study on the prolificacy of Djallonke sheep in a village environment in Togo. *Rev. Elev. Med. Vet. Pays Trop.*, 36 (1): 85-90

Anonyme, 1995. Rapport annuel. Ministère de la Production animale, Abidjan, Côte d’Ivoire, 36 p.

Asante Y.A., Oppong-Anane K., Awotwi E.K., 1999. Djallonke and Sahelian ewes and their lamb during the first 24 hours post-partum. *Appl. Anim. Behav. Sci.*, 65: 53-61

Awotwi E.K., Canaco E.A., Adogla-Bassa T., Oppong-Anane K., Oddyoe E.O.K., 2001. The effect of age at mating on the behavioural interaction between primiparous Djallonke ewes and their lambs at 36 hours post-partum. *Anim. Behav. Sci.*, 75: 47-54

Baril G., Chemineau P., Cognie Y., Guerin Y., Leboeuf B., Orgueur P., Colas G., 1980. Variation saisonnière de la qualité du sperme chez le bélier Ile-de-France. I. Etude de la morphologie cellulaire et de la motilité massale. *Reprod. Nutr. Develop.*, 20 (3-4): 1789-1799

Chemineau P., Cognie Y., Thimonier J., 2001. La maîtrise de la reproduction des mammifères domestiques. In : Reproduction chez les mammifères et l’homme. INRA, Versailles, France, p. 792-815 (Ellipses)

Chiboka O., 1980. Semen characteristics of West African Dwarf ram. *Anim. Reprod. Sci.*, 3: 247-252

Colas G., 1980. Variation saisonnière de la qualité du sperme chez le bélier Ile-de-France. I. Etude de la morphologie cellulaire et de la motilité massale. *Reprod. Nutr. Develop.*, 20 (3-4): 1789-1799

Crapiel C., Thibier M., 1980. Le mouton. Traité d’élevage moderne, tome IV, 4e édn. Vigot Frères, Paris, France, 568 p.

Dadoune P., Demoulin A., 2001. Structure et fonction du testicule. In : La reproduction chez les Mammifères et l’Homme. INRA, Versailles, France, p. 256-315

Derivaux J., Ectors F., 1986. Reproduction chez les animaux domestiques, 3e édn. Cabay, Louvain-La-Neuve, Belgique, 1096 p.

Doutressou E., 1947. Élevage en Afrique occidentale française. Larose, Paris, France, 228 p.

Evans G., Maxwell W.M.C., 1987. Salamon’s artificial insemination of sheep and goats. Butterworths, London, UK, 194 p.

Haye A., 2006. Les paramètres quantitatifs et qualitatifs du sperme du bélier de race Djallonké en fonction des saisons. Thèse Doct., Université de Cocoody, Abidjan, Côte d’Ivoire, 140 p.

Haye A., M’Bétiégué C., Nazaire L.N., Tanon B., 2004. Evaluation de la qualité du sperme du bélier de race Djallonké en région de savane humide de Côte d’Ivoire. *Agro. Afr.*, 16: 37-47

Issa M., Yenikoye A., Marichatou H., Bano M., 2001. Spermogram of bicolor Peul and Touareg rams: genetic type and seasonal influence. *Reprod. Nutr. Dev.*, 41 (3-4): 269-276

Lavry G.N., 2014. Étude des paramètres de qualité du sperme de béliers Djallonké en zone forestière et de béliers Ile-de-France : étude intégrée de l’effet de Costus afer (Zingiberaceae). Thèse Doct. Sciences naturelles, Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire, 164 p.

Leroy P., Koné K., Leroy E., 2002. Étude des systèmes d’amélioration génétique des bovins et ovins en Côte d’Ivoire. Rapport provisoire du projet Appui à l’amélioration génétique du cheptel. Ministère de la Production animale et des Ressources halieutiques, Abidjan, Côte d’Ivoire, 75 p.

Lodge J.R., Salibury G.W., 1970. Seasonal variation and male reproduction efficiency. In: The Testis, Vol. III (Eds. Johnson A.D., Gomez W.R., Vandermark N.L.). London, UK, Academic Press, p. 137-167

Mawuena K., 1987. High level of tolerance to trypanosomiasis of West African Dwarf sheep and goats from South Guinaean countries of Togo. Comparaison avec trypanotolerant cattle. *Rev. Elev. Med. Vet. Pays Trop.*, 40 (1): 55-58

Pedigo G.N., Vernon W.M., Curry E.T., 1989. Characterization of a computerized semen analysis system. *Fertil. Steril.*, 52 (4): 659-666

Pellicer-Rubio M.T., Combarnous Y., 1998. Deterioration of goat spermatozoa in skimmed milk-based extenders as a result of oleic acid released by the bulbourethral lipase BUSgp60. *J. Reprod. Fert.*, 112: 95-105

Rombaud D., Van Vlaenderen G., 1976. Djallonké sheep of Ivory Coast in village environment. Behaviour and feeding. *Rev. Elev. Med. Vet. Pays Trop.*, 29 (2): 157-172

Touré E., 1977. Trypanotolerance. Review on actual knowledge. *Rev. Elev. Med. Vet. Pays Trop.*, 30 (2): 157-174

Touré S.M., Meyer C., 1999. Evolution corporelle, testiculaire et comportementale chez l’agneau Djallonké. *Agro. Afr.*, 2: 45-51

Vallerand E., Branchkaert R., 1975. Djallonké sheep breed in Cameroon, zootechnical possibilities, breeding conditions, future. *Rev. Elev. Med. Vet. Pays Trop.*, 28 (4): 523-545

Spermogramme du bélier Djallonké en Côte d’Ivoire
Summary

Lavry G.N., Coulibaly M’B., Offoumou A.M., Datté J.Y. Three-year monthly variations in the spermiogram of Djallonke-breed rams in the Cote d’Ivoire forest region

Monthly variations in the volume, mass motility and semen concentration were studied over three years in forty Djallonke rams in the forest area of Cote d’Ivoire. Two ejaculates were harvested weekly using an artificial vagina. For each year, the volume was lower before May (from 0.55 ± 0.03 to 0.75 ± 0.04 ml) than after (from 0.61 ± 0.8 to 0.9 ± 0.61 ml), when changes were significant except in 1993. The mass motility showed only significant decreases in the year (from 4.42 ± 0.06 to 3.5 ± 0.2), but with an increase between April and July (between 3.85 ± 0.01 and 4.45 ± 0.03). The concentration increased from April to August and significantly in June and July (from 3.36 ± 0.12 x 10^9 to 3.8 ± 0.12 x 10^9 spermatozoa (spz)/ml). Overall averages for the three years showed i) an increase in volume from June (from 0.71 ± 0.02 to 0.77 ± 0.02 ml), and ii) a significant decrease in mass motility from February to April (from 4.28 ± 0.06 to 4.01 ± 0.1), in July (3.9 ± 0.1), in September (4.1 ± 0.07) and in December (3.92 ± 0.1). The concentration increased in June (from 2.95 ± 0.05 x 10^9 to 3.52 ± 0.07 x 10^9 spz/ml) and in July (3.18 ± 0.06 x 10^9 spz/ml). The variation of these parameters in Djallonke was thus annually different, non-characteristic and with no annual cycle. However, the period between April and August was more favorable to the increase of the parameters. Despite significant decreases in mass motility, the parameters were of good quality for artificial insemination throughout the year.

Keywords: sheep, ram, Djallonke, semen collection, fertilization, Cote d’Ivoire

Resumen

Lavry G.N., Coulibaly M’B., Offoumou A.M., Datté J.Y. Variacciones mensuales de tres años en parámetros del esperograma de semen de caneros de raza Djallonke en la región boscosa de Cote d’Ivoire

Se estudiaron variaciones mensuales en el volumen, la motilidad de masa y la concentración de semen, durante tres años, en cuarenta caneros Djallonke en la zona boscosa de Cote d’Ivoire. Se colectaron dos eyaculados semanalmente, usando una vagina artificial. Cada año, el volumen fue menor antes de mayo (de 0,55 ± 0,03 a 0,75 ± 0,04 ml) que después (de 0,61 ± 0,8 a 0,9 ± 0,61 ml), cuando los cambios fueron significativos, excepto en 1993. La motilidad de masa mostró únicamente disminuciones significativas en el año (de 4,42 ± 0,06 a 3,5 ± 0,2), pero con un aumento entre abril y julio (de 3,85 ± 0,01 a 4,45 ± 0,03). La concentración aumentó de abril a agosto, y significativamente en junio y julio (de 3,36 ± 0,12 x 10^9 a 3,8 ± 0,12 x 10^9 espermatozoides (spz)/ml). Los promedios generales para los tres años son: a) un aumento en volumen a partir de junio (de 0,71 ± 0,02 a 0,77 ± 0,02 ml), y b) un aumento significativo en motilidad de masa de febrero a abril (de 4,28 ± 0,06 a 4,01 ± 0,1), en julio (3,9 ± 0,1), en setiembre (4,1 ± 0,07) y diciembre (3,92 ± 0,1). La concentración aumentó en junio (de 2,95 ± 0,05 x 10^9 a 3,52 ± 0,07 x 10^9 spz/ml) y en julio (3,18 ± 0,06 x 10^9 spz/ml). La variación anual de estos parámetros en Djallonke fue por lo tanto diferente, no característica y sin un ciclo anual. Sin embargo, el periodo entre abril y agosto fue más favorable al aumento de los parámetros. A pesar de disminuciones significativas de la motilidad de masa, los parámetros fueron de buena calidad para la inseminación artificial a lo largo del año.

Palabras clave: ovino, morueco, Djallonke, recolección de semen, fecundación, Cote d’Ivoire
Influence de la substitution des graines de soja (*Glycine max*) par celles de niébé (*Vigna unguiculata*) et du taux de protéines du régime sur les performances des pintadeaux de race locale au Burkina Faso

Seydou Ouattara 1 * Valérie Marie Christiane Bougouma-Yaméogo 2
Aimé Joseph Nianogo 3 Boukari Savadogo 1

Mots-clés
Numida meleagris, pintade, niébé, soja, protéine, alimentation des animaux, Burkina Faso

Résumé
Cette étude a eu pour but d’évaluer les effets de l’utilisation des graines torréfiées de niébé dans l’alimentation des pintadeaux de race locale, en substitution à celles de soja, sur leurs performances zootechniques et leur rentabilité économique. Trois cent pintadeaux de 12 jours d’âge ont été répartis en 12 lots. Quatre régimes alimentaires iso-énergétiques, incorporant 5,0 % et 10,0 % de graines torréfiées de niébé ou de soja respectivement au démarrage et à la croissance-finition ont été préparés. Ces régimes avaient des niveaux protéiques de 17,5 % ou 20,0 % au démarrage, puis de 15,0 % ou 17,5 %, pendant la croissance-finition. Les régimes démarrage ont été servis du 13e au 68e jour et ceux de croissance-finition du 69e au 222e jour. Les paramètres zootechniques (poids vif, gain de poids et ingérés alimentaires) ont été suivis toutes les deux semaines. A la fin de l’essai, quatre sujets par lot ont été abattus pour évaluer les rendements carcasses et de certains organes. La rentabilité économique des différents régimes a été évaluée. L’incorporation des graines torréfiées de niébé n’a induit des différences significatives pour aucun des paramètres étudiés, à l’exception de quelques paramètres des rendements carcasses. En revanche, la différence de niveaux de protéines a engendré des différences significatives en faveur des régimes les plus riches en protéines pour la plupart des paramètres mesurés ; la durée d’élevage des pintadeaux des régimes plus riches a été réduite de deux semaines. Les graines torréfiées de niébé peuvent donc être utilisées dans l’alimentation des pintadeaux de race locale, en substitution à celles de soja.

INTRODUCTION

L’aviculture traditionnelle, utilisant des races locales de volailles, occupe une place prépondérante dans le secteur de l’élevage au Burkina Faso. Pratiquée par près de 86 % des ménages ruraux, elle représente plus de 98 % des effectifs de volailles du pays estimés à 39,7 millions (MRAH, 2013). Environ 20 % des effectifs avicoles sont des pintades. Malgré cette importance l’aviculture traditionnelle souffre de nombreuses difficultés techniques et d’une productivité limitée notamment par la mauvaise conduite alimentaire. En effet, la volaille n’est souvent alimentée que de déchets ménagers (Pousga et al., 2005) car abandonnée à elle-même après ses deux premières semaines de vie. Cela s’explique en partie par l’inaccessibilité des aliments complets et des intrants – notamment les sources de protéines – dans...
Substituting soybeans by cowpeas in guinea fowls

La présente étude a eu pour objectif de contribuer à la résolution du problème d’accès aux sources de protéines pour volaille par l’utilisation de matières premières disponibles en zone rurale, notamment les graines de niébé (*Vigna unguiculata*) torréfiées, dans les régimes de pinteaux, en substitution aux graines de soja (*Glycine max*).

Malheureusement, de fortes mortalités ayant été constatées avec des films blancs. Le chauffage avait été d’abord interrompu le 30e jour. Chaque régime a été préparé avec deux sources différentes de protéines végétales (graines de soja ou de niébé) et deux niveaux de protéines pour chaque phase.

Régimes expérimentaux

Trois cents pintadeaux de race locale, de 12 jours d’âge, non sexés, ont été vaccinés contre la maladie de Newcastle et la bronchite infectieuse, (Cpavi), à partir d’œufs acquis auprès des éleveurs de la région Est du Burkina Faso. Les pintadeaux ont été éclos au Centre de promotion de l’aviculture villageoise de Gampéla à 15 kilomètres de Ouagadougou (Burkina Faso). La température ambiante moyenne était de 33 °C pendant l’essai qui a eu lieu du 5 septembre 2012 au 2 mai 2013.

L’intérieur du poulailler était équipé d’une mangeoire et d’un abreuvoir adaptés aux différents âges. Le poulailler a été chauffé jusqu’au 43e jour d’âge et les ouvertures étaient fermées avec des films blancs. Le chauffage avait été d’abord interrompu le 30e jour. Malheureusement, de fortes mortalités ayant été constatées le 31e jour, il a été remis en marche jusqu’au 43e jour. Chaque box a été équipé d’une mangeoire et d’un abreuvoir adaptés aux différents âges.

Tableau 1

Ingrédients (%)	N-B	N-E	S-B	S-E
Maïs jaune	59,00	55,00	59,55	55,00
Son de blé	13,85	10,85	15,35	12,80
Farine de poisson	12,00	15,50	10,70	13,55
Graine de soja torréfiée	0,00	0,00	5,00	5,00
Graine de niébé torréfiée	5,00	5,00	0,00	0,00
Tourteau de coton	5,00	8,50	4,30	8,50
Coquille d’huître	2,00	2,00	2,00	2,00
Chlorure de sodium	0,30	0,30	0,30	0,30
Composé vitaminique	0,25	0,25	0,25	0,25
DL-méthionine	0,20	0,20	0,18	0,20
Lysine	0,30	0,30	0,27	0,30
Phosphate bicalcique	2,00	2,00	2,00	2,00
Sulfate de fer	0,10	0,10	0,10	0,10
Total	100	100	100	100

Energie métabolisable (kcal/kg)

- N-B : 2 738 kcal/kg
- N-E : 2 743 kcal/kg
- S-B : 2 751 kcal/kg
- S-E : 2 740 kcal/kg

Protéines brutes (%)

- N-B : 17,50
- N-E : 20,00
- S-B : 17,50
- S-E : 20,00

Lysine

- N-B : 1,24
- N-E : 1,45
- S-B : 1,19
- S-E : 1,40

Méthionine (%)

- N-B : 0,61
- N-E : 0,67
- S-B : 0,57
- S-E : 0,66

Méthionine + cystéine (%)

- N-B : 0,89
- N-E : 0,98
- S-B : 0,87
- S-E : 0,98

Calcium (%)

- N-B : 2,06
- N-E : 2,29
- S-B : 1,98
- S-E : 2,16

Phosphate disponible (%)

- N-B : 0,80
- N-E : 0,90
- S-B : 0,76
- S-E : 0,84

Composition chimique mesurée (% poids brut)

- Humidité
- Protéines brutes
- Cellulose brute
- Cendres totales
- Matières grasses
- Calcium
- Phosphate total

N-B : graines de niébé avec taux bas de protéines ; N-E : graines de niébé avec taux élevé de protéines ; S-B : graines de soja avec taux bas de protéines ; S-E : graines de soja avec taux élevé de protéines

Service de l’aliment et de l’eau

Les pintadeaux ont été alimentés avec de l’aliment « poussins locaux » du Cpavi jusqu’au 12e jour avec une composition théorique de 18,6 % de protéines brutes et de 2925 kcal/kg d’énergie métabolisable. Les régimes de démarrage ont été servis du 13e au 68e jour et ceux de croissance-finition du 69e au 222e jour. Chaque régime a été distribué à trois lots. Les aliments ont été servis en un seul repas le matin et le soir.

Tableau 1

Composition centésimale et valeur nutritionnelle des régimes expérimentaux donnés aux pintadeaux en phase de démarrage (Burkina Faso)
matin. L’eau a été distribuée deux fois par jour, le matin et le soir. Les refus d’aliment ont été cumulés et pesés en fin de semaine.

Abattage

À la fin de l’essai à 222 jours d’âge, correspondant à l’entrée en ponte, 48 sujets dont 24 mâles et 24 femelles ont été prélevés par tirage aléatoire à raison de quatre par lot, puis sacrifiés par saignée de la veine jugulaire. Cette opération a permis de mesurer les caractéristiques des carcasses et de certains organes.

Mesure des paramètres et évaluation économique

Les paramètres zootechniques et économiques ont été évalués durant les phases de démarrage (13–68 jours), de croissance (69–152 jours), de croissance et finition (153–222 jours) et la durée totale de l’essai (13–222 jours). L’évolution pondérale des sujets a été suivie par une pesée de l’ensemble des animaux toutes les deux semaines. Les paramètres mesurés ont été : le taux de mortalités, la proportion de mortalités attribuées aux éventuels effets de ce problème ont été équivalents entre les lots expérimentaux, 48 sujets dont 24 mâles et 24 femelles ont été prélevés par tirage aléatoire à raison de quatre par lot, puis sacrifiés par saignée de la veine jugulaire. Cette opération a permis de mesurer les caractéristiques des carcasses et de certains organes.

Les paramètres zootechniques et économiques ont été évalués durant les phases de démarrage (13–68 jours), de croissance (69–152 jours), de croissance et finition (153–222 jours) et la durée totale de l’essai (13–222 jours). L’évolution pondérale des sujets a été suivie par une pesée de l’ensemble des animaux toutes les deux semaines. Les paramètres mesurés ont été : le taux de mortalités, la proportion de mortalités attribuées aux éventuels effets de ce problème ont été équivalents entre les lots expérimentaux, 48 sujets dont 24 mâles et 24 femelles ont été prélevés par tirage aléatoire à raison de quatre par lot, puis sacrifiés par saignée de la veine jugulaire. Cette opération a permis de mesurer les caractéristiques des carcasses et de certains organes.

Tableau II

Composition centésimale et valeur nutritionnelle des régimes expérimentaux donnés aux pintadeaux en phase de croissance et finition (Burkina Faso)

Régime	N-B	N-E	S-B	S-E
Ingrédients (%)				
Maïs jaune	69,90	66,50	69,80	65,56
Son de blé	6,15	1,52	10,55	7,80
Farine de poisson	8,25	10,00	5,00	8,42
Graine de soja torréfiée	0,00	0,00	10,00	10,00
Graine de niébé torréfiée	10,00	10,00	0,00	0,00
Tourteau de coton	1,40	7,68	0,35	3,92
Coquille d’huître	2,00	2,00	2,00	2,00
Chlorure de sodium	0,30	0,30	0,30	0,30
Composé vitaminique	0,25	0,25	0,25	0,25
DL-méthionine	0,25	0,25	0,25	0,25
Lysine	0,40	0,40	0,40	0,40
Phosphate bicalcique	1,00	1,00	1,00	1,00
Sulfate de fer	0,10	0,10	0,10	0,10
Total	100	100	100	100
Valeur nutritionnelle calculée (% poids brut)				
Energie métabolisable (kcal/kg)	2951	2951	2950	2950
Protéines brutes (%)	15,00	17,50	15,00	17,50
Lysine	1,13	1,28	1,05	1,26
Méthionine (%)	0,59	0,64	0,55	0,61
Méthionine + cystéine (%)	0,84	0,91	0,82	0,92
Calcium (%)	1,59	1,70	1,37	1,60
Phosphate disponible (%)	0,52	0,55	0,41	0,50
Composition chimique mesurée (% poids brut)				
Humidité	7,3	7,5	8,1	7,6
Protéines brutes	14,8	17,4	15,1	17,8
Cellulose brute	2,3	2,8	2,8	3,0
Cendres totales	8,5	10,5	7,1	8,3
Matières grasses	4,0	4,2	6,1	6,9
Calcium	1,9	2,1	1,7	1,9
Phosphate total	0,6	0,6	0,5	0,6

N-B : graines de niébé avec taux bas de protéines ; N-E : graines de niébé avec taux élevé de protéines ; S-B : graines de soja avec taux bas de protéines ; S-E : graines de soja avec taux élevé de protéines.

Analyse statistique

Les données collectées ont été soumises à une analyse de variance à deux facteurs (source de protéines et taux de protéines) et leur interaction, suivant le modèle linéaire général (GLM) du logiciel SPSS version 20.1 (SPSS, Chicago, USA). Les comparaisons de moyennes ont été faites à l’aide du test de Tukey (p < 0,05). Le lot a été retenu comme unité expérimentale, quoique les animaux aient été pesés individuellement tout au long de l’essai.

RESULTATS ET DISCUSSION

Mortalités

Toutes les mortalités observées ont été survenues pendant la période de démarrage (tableau III), comme observé par d’autres auteurs (Boko, 2004). Le taux des mortalités ayant lieu la nuit a été de 68 %. Une forte mortalité (37 % en deux jours) a eu lieu après le 30e jour en raison de l’arrêt du chauffage : cela témoigne de l’importance du froid parmi les causes de mortalité des pintadeaux, comme signalé par Lombo et al. (2011). Les pathologies et les accidents ont été responsables des autres cas de mortalités. Aucun effet significatif de la source protéique ou de la teneur protéique n’a été observé sur les mortalités des pintadeaux. Cela suggère que les mortalités ne sont pas dues à des substances antinutritionnelles ou toxiques dans les matières premières utilisées et témoigne ainsi probablement du traitement technologique adéquat de ces dernières. La répartition des mortalités entre les lots n’ayant pas été significativement différente, le dispositif expérimental n’a pas été déséquilibré par cet épisode, et nous pouvons émettre l’hypothèse que les éventuels effets de ce problème ont été équivalents entre les différentes sources de protéines végétales.

Croissances pondérales

Les poids vifs des pintadeaux n’ont pas présenté de différences liées à deux facteurs (source de protéines et taux de protéines) et leur interaction, suivant le modèle linéaire général (GLM) du logiciel SPSS version 20.1 (SPSS, Chicago, USA). Les comparaisons de moyennes ont été faites à l’aide du test de Tukey (p < 0,05). Le lot a été retenu comme unité expérimentale, quoique les animaux aient été pesés individuellement tout au long de l’essai.

N-B : graines de niébé avec taux bas de protéines ; **N-E** : graines de niébé avec taux élevé de protéines ; **S-B** : graines de soja avec taux bas de protéines ; **S-E** : graines de soja avec taux élevé de protéines.
Substituting soybeans by cowpeas in guinea fowls

Revue d'élevage et de médecine vétérinaire des pays tropicaux, 2016, 69 (3) : 117-123

Tableau III

Poids vif, gains de poids moyens quotidiens et taux de mortalités des pintadeaux selon la source et le taux de protéines (g) (Burkina Faso)

Age (jours)	Régime	Probabilité					
	Source	Taux	Source x taux				
Poids des pintadeaux (g)							
12	42 ± 1,6	43 ± 1,0	42 ± 1,4	42 ± 1,2	0,27	0,46	0,27
26	62 ± 4,5	67 ± 1,6	61 ± 1,3	63 ± 0,8	0,12	0,05	0,23
40	127 ± 9,7	141 ± 2,1	126 ± 8,3	136 ± 13,0	0,58	0,06	0,71
54	211a ± 14,3	246b ± 5,2	221a ± 14,7	250b ± 15,9	0,40	0,00	0,65
68	331a ± 8,9	381b ± 8,0	339a ± 9,5	384b ± 12,8	0,32	0,00	0,75
82	448a ± 5,3	514b ± 12,1	458a ± 3,2	529b ± 14,2	0,06	0,00	0,67
96	571a ± 9,9	655b ± 14,4	575a ± 4,6	677b ± 11,1	0,07	0,00	0,17
110	720a ± 6,8	816b ± 14,9	713a ± 4,5	835b ± 12,1	0,31	0,00	0,06
124	846a ± 8,1	949b ± 15,8	836a ± 7,8	961b ± 17,4	0,90	0,00	0,14
138	931a ± 13,4	1046b ± 16,3	926a ± 12,0	1050b ± 15,1	0,94	0,00	0,61
152	1017a ± 15,7	1102b ± 20,8	1008a ± 11,9	1110b ± 21,9	0,97	0,00	0,45
166	1081a ± 13,2	1152b ± 20,7	1065a ± 10,8	1154b ± 25,9	0,53	0,00	0,42
180	1116a ± 15,2	1179b ± 22,1	1098a ± 12,0	1185b ± 25,4	0,38	0,00	0,32
194	1148a ± 15,4	1204b ± 25,6	1132a ± 11,0	1204b ± 25,6	0,64	0,00	0,39
208	1174a ± 10,7	1223b ± 27,3	1161a ± 8,6	1227b ± 23,8	0,71	0,00	0,46
222	1194a ± 3,1	1240b ± 28,1	1181a ± 8,5	1243b ± 28,7	0,67	0,00	0,54

Gains moyens quotidiens (g/jour)

Régime	Démarrage	Croissance	Finition	Durée totale
N-B	5,2a ± 0,13	6,0b ± 0,15	5,3b ± 0,15	5,3b ± 0,02
N-E	6,0b ± 0,15	8,6b ± 0,15	8,0a ± 0,17	5,7b ± 0,14
S-B	2,5b ± 0,20	2,0a ± 0,11	2,5b ± 0,13	2,0b ± 0,02
S-E	5,2b ± 0,02	5,7b ± 0,14	5,2a ± 0,02	5,7b ± 0,14

Taux de mortalités (%)

Régime	Démarrage	Croissance	Finition
N-B	18,7 ± 2,31	14,7 ± 8,33	12,0 ± 4,00
N-E	14,7 ± 8,33	12,0 ± 4,00	9,3 ± 6,11
S-B	12,0 ± 4,00	9,3 ± 6,11	0,00
S-E	9,3 ± 6,11	0,00	0,00

Consommations alimentaires

Les consommations alimentaires des pintadeaux n’ont pas présenté de différences significatives entre les régimes moins riches en protéines que selon le taux de protéines, au cours de la période de démarrage (tableau IV). En revanche, pendant la période de croissance,
Substitution du soja par le niébé chez le pintadeau

Consommation journalière d’aliments et indice de consommation des pintadeaux selon la source et le taux de protéines dans l’aliment (Burkina Faso)

Période	Régime	Probabilité		
	N-B	N-E	S-B	S-E
	Source	Taux	Source x taux	
Consommation d’aliments (g/jour)				
Démarrage	30,7 ± 0,59	29,8 ± 0,92	31,5 ± 1,43	30,3 ± 0,66
Croissance	52,5 ± 1,56	52,3 ± 1,10	49,5 ± 0,50	52,2 ± 0,30
Finition	59,1 ± 0,26	54,2 ± 1,00	56,7 ± 2,00	56,0 ± 1,53
Durée totale	48,9 ± 0,47	46,9 ± 0,95	47,1 ± 0,49	47,6 ± 0,54
Indice de consommation				
Démarrage	6,03 ± 0,15	5,03 ± 0,26	5,93 ± 0,36	5,03 ± 0,25
Croissance	6,43 ± 0,11	6,13 ± 0,23	6,23 ± 0,14	6,03 ± 0,12
Finition	19,4 ± 1,66	27,5 ± 1,95	19,1 ± 1,22	29,6 ± 2,33
Durée totale	8,9 ± 0,09	8,23 ± 0,35	8,73 ± 0,11	8,3 ± 0,30

N-B : graines de niébé avec taux bas de protéines ; N-E : graines de niébé avec taux élevé de protéines ; S-B : graines de soja avec taux bas de protéines ; S-E : graines de soja avec taux élevé de protéines

Des exposants différents sur une même ligne indiquent des différences significatives (p < 0,05).

une différence significative (p < 0,05) a été observée en faveur des régimes à base de niébé (N-B et N-E), tandis que pendant la période de finition, c’est en faveur des régimes ayant les faibles taux de protéines (N-B et S-B) qu’une différence significative (p < 0,05) a été observée (tableau IV). Pour ce qui concerne la période totale, aucune différence significative n’a été observée avec la source et avec le taux de protéines. Ces résultats pourraient s’expliquer par la similitude des niveaux énergétiques des différents régimes. En effet, l’oiseau mange prioritairement pour satisfaire ses besoins énergétiques (Larbier et Leclerq, 1992). L’absence de sous-consommation des régimes comportant les graines de niébé suggère que, torréfiées, ces graines ne présentent pas de problème d’appétence dans les régimes de pintadeaux. Des observations similaires ont été faites par Ouattara et al. (2014) sur des poulets de race locale alimentés avec des régimes comportant des graines de niébé torréfiées.

Indices de consommation

La source de protéines n’a pas eu d’effet significatif sur les indices de consommation des pintadeaux tout au long de l’expérimentation. En revanche, durant la période de croissance-finition et durant tout l’élevage, des différences significatives (p < 0,05) ont été observées dans la concentration protétique des régimes ; les indices de consommation des régimes à faible teneur protétique (N-B et S-B) ont été plus élevés pendant les périodes de démarrage et totale, tandis que pendant la période de finition, ce sont ceux des régimes plus riches (N-E et S-E) qui ont été plus élevés (tableau IV). Dans cette étude il est apparu une forte dégradation des index de consommation pendant la période de finition (19,1 pour S-B à 25,7 pour N-E). Ce constat est similaire aux résultats de Dahouda et al. (2008) chez lesquels l’indice de consommation est passé de 8,1 au 5e mois, à 23,9 au 6e mois.

Age d’entrée en ponde

Les pintadeaux sont entrés en ponde à la 32e semaine d’âge. La source et le taux de protéines n’ont pas significativement impacté sur l’âge d’entrée en ponde. Le premier œuf a été observé chez les pintadeaux du régime N-E à 219 jours d’âge, puis chez des régimes N-B et S-E au 221e jour.

L’âge de ponte rapporté dans cet essai est en accord avec celui observé au Burkina Faso (Sanfo et al., 2007) qui est de 7,6 ± 1,7 mois. Cependant, cet âge est nettement supérieur à celui observé au Nigeria (Adeyemo et Oyejola, 2004), qui est de 164 à 171 jours pour des pintadeaux alimentées avec des régimes comportant 18,1 % à 16,8 % de protéines.

Caractéristiques des carcasses et des organes

Les rendements carcasses des pintadeaux de 64,7 % à 67,3 % (tableau V) n’ont présenté aucune différence significative avec la source ni avec le taux de protéines. Cependant, ils ont été inférieurs à ceux obtenus au Burkina Faso et au Nigeria (Adeyemo et Oyejola, 2004 ; Sanfo et al., 2008) qui sont de l’ordre de 84,3 % à 87,6 %. Cette différence de rendements pourrait s’expliquer par les différences d’appréciation de la notion de carcasse. En effet, certains auteurs ont pris en compte les périphériques (tête, cou et pattes) dans la carcasse ; ceux-ci ont été séparés dans le présent essai. Ce qui concerne les organes prélevés, le développement du foie, exprimé en rendement par rapport au poids vif, a été significativement supérieur pour les régimes comportant les graines torréfiées de niébé (tableau V). Cette situation pourrait s’expliquer par une éventuelle présence de facteurs anti-nutritionnels résiduels dans ces graines, ayant entrainé des efforts de détoxification de la part de cet organe qui est au centre du métabolisme.

Evaluation économique

Les coûts de production des pintadeaux n’ont pas présenté de différences par rapport à la source de protéines végétales (niébé ou soja). Cela montre que les graines de niébé peuvent être utilisées comme source de protéines dans l’alimentation des pintadeaux de race locale, en substitution aux graines de soja. Ce résultat est similaire à ceux obtenus chez le poulet (Trompiz et al., 2002 ; Ouattara et al., 2014). Pour ce qui est des taux de protéines, les régimes à teneur protétique plus élevée ont eu des coûts unitaires plus élevés que ceux à teneur basse. Les différences ont été de 4,5 % pour les aliments de démarrage et de 5,0 % pour les aliments de croissance-finition.

L’enquête menée au marché de volaille de Ouagadougou a révélé que les pintadeaux étaient vendus à un poids vif variant entre 900 et 1100 g, au prix unitaire de 3000 FCFA. Les pintadeaux des régimes N-E...
Substituting soybeans by cowpeas in guinea fowls

Tableau V
Caractéristiques des carcasses et des organes internes des pintadeaux selon la source et le taux de protéines alimentaires (Burkina Faso)

Période	Régime	Problabilité					
	N-B	N-E	S-B	S-E	Source	Taux	Source x taux
Poids vi (g)	1169 ± 94,0	1218 ± 64,2	1222 ± 9,0	1227 ± 18,7	0,38	0,44	0,52
Carcasse (%)	67,2 ± 1,25	67,2 ± 1,50	64,7 ± 1,20	66,7 ± 1,27	0,08	0,22	0,22
Gésier (%)	1,9 ± 0,25	1,8 ± 0,09	1,7 ± 0,10	1,5 ± 0,17	0,06	0,21	0,07
Foie (%)	2,1b ± 0,26	2,0b ± 0,42	1,7a ± 0,10	1,6a ± 0,22	0,02	0,45	0,91

N-B : graines de niébé avec taux bas de protéines ; N-E : graines de niébé avec taux élevé de protéines ; S-B : graines de soja avec taux bas de protéines ; S-E : graines de soja avec taux élevé de protéines

Des exposants différents sur une même ligne indiquent des différences significatives (p > 0,05).

Tableau VI
Evaluation économique des pintadeaux vendus au poids vif de 900 g (Burkina Faso)

Paramètre	N-B	N-E	S-B	S-E
Prix de l’aliment (FCFA/kg)	233	242	230	242
Croissance –démarrage	234	249	232	242
Aliments consommés (kg)	1,72	1,67	1,76	1,70
Croissance –démarrage	3,68	2,93	3,46	2,92
Age de vente (jours)	138	124	138	124
Coût d’alimentation (FCFA)	1262	1134	1208	1117
Prix de vente (FCFA)	3000	3000	3000	3000
Marge sur coût alimentaire (FCFA)	1738	1866	1792	1831

N-B : graines de niébé avec taux bas de protéines ; N-E : graines de niébé avec taux élevé de protéines ; S-B : graines de soja avec taux bas de protéines ; S-E : graines de soja avec taux élevé de protéines

et S-E ont atteint cet intervalle de poids à 124 jours d’âge et celles des régimes N-B et S-B à 138 jours.

Les coûts d’alimentation des pintadeaux dont les régimes comportaient des teneurs élevées de protéines ont été d’environ 9 % plus faibles que ceux des pintadeaux soumis aux régimes moins riches. Les marges sur coût alimentaire obtenues avec les régimes plus riches en protéines ont également été plus élevées que celles obtenues avec les régimes à faibles teneurs protéiques (tableau VI).

CONCLUSION
Aux taux de 5 % au démarrage et de 10 % à la croissance-finition, les graines torréfiées de niébé n’ont induit aucun effet dépressif sur les performances zootechniques du pintadeau de race locale, par rapport aux graines torréfiées de soja. Leur utilisation a été économiquement rentable dans le contexte de la présente étude. Ces graines peuvent donc être utilisées comme source de protéines dans l’alimentation des pintadeaux de race locale, en substitution aux graines de soja.

Il n’est pas judicieux d’élever les pintadeaux de race locale au-delà de cinq mois quand ceux-ci sont destinés à la production de chair car les efficacités alimentaires sont fortement dégradées après cette date. Pour des pintades destinées à la production d’œufs, il est souhaitable qu’après la phase de démarrage les taux de protéines des régimes soient diminués et que les animaux soient élevés en semi-liberté, afin qu’une partie de leur alimentation provienne du parcours.

Remerciements
Nous remercions le ministère des Ressources animales du Burkina Faso qui a financé la réalisation de ce travail à travers le « Projet Azawak ressources pastorales ».

REFERENCES
Adeyemo A.I., Oyejola O., 2004. Performance of Guinea fowl (Numida meleagris) fed varying levels of poultry droppings. Int. J. Poult. Sci., 3 (5): 357-360, doi: 10.3923/ijps.2004.357.360
Akanji A.M., Adelibiyi A.O., Adelowale O.S., Fasina O., Ogungbesan A.M., 2012. Performance characteristics and haematological studies of broiler chickens fed cowpea based diets. J. Environ. Issues Agric. Dev. Ctries, 4 (1): 79-85
Asare A.T., Aghemaffle R., Aduloko G.E., Diabor E., Adamtey K.A., 2013. Assessment of functional properties and nutritional composition of some cowpea (Vigna unguiculata L.) genotypes in Ghana. J. Agric. Biol. Sci., 8: 465-469
Ayanwale B.A., Kudu Y.S., 1998. Différents niveaux de protéines alimentaires sur les performances des pintadeaux. International Network of Family Poultry Development, Newsletter, 8 (2): 10-11
Boko C.K., 2004. Contribution à l’amélioration de l’élevage villageois de la pintade locale dans le département de Borgou (nord-est du Bénin). Mémoire. Études spécialisées en gestion des ressources animales en milieux tropicaux, Faculté des sciences agronomiques, Université de Liège, Belgique, 45 p. www.doc-developpement-durable.org/file/Elevages/Pintades/cyrille-elevage-pintades.pdf (consulté le 9/01/2016)

Revue d’élevage et de médecine vétérinaire des pays tropicaux, 2016, 69 (3) : 117-123
Substitution du soja par le niébé chez le pintadeau

Cissé N., Hall A.E., 2003. Traditional cowpea in Senegal, a case study. FAO, Rome, Italy, 27 p. www.fao.org/ag/apg/agpc/doc/publicat/ cowpea_cisse/cowpea_cisse_e.htm

Creswell D.C., 1981. Nutritional evaluation of mung beans (Phaseolus aureus) for young broiler chickens. Poult. Sci., 60: 1905-1909, doi: 10.3382/ps.0601905

Dahouda M., Senou M., Toleba S.S., Boko C.K., Adandejjan J.C., Hornick J.L., 2008. Comparaison des caractéristiques de production de la pintade locale (Numida meleagris) en station et dans le milieu villageois en zone soudano-guinéenne du Bénin. Livest. Res. Rural Dev., 20 (12)

Feedipedia, 2016. Animal Feed Resources Information System. INRA, Cirad, AFZ, FAO. www.feedipedia.org (accessed 20 Nov. 2016)

Heuzé V., Tran G., 2015. Cowpea (Vigna unguiculata) seeds. Feedipedia, a programme by INRA, Cirad, AFZ, FAO. www.feedipedia.org/node/232 (accessed 20 Nov. 2016)

Kana J.R., Teguia A., Fomokong A., 2012. Effect of substituting soybean meal with cowpea (Vigna unguiculata Walp) supplemented with natural plant charcoals in broiler diet on growth performances and carcass characteristics. Iran. J. Appl. Anim. Sci., 2: 377-381.

Larbière M., Leclercq B., 1992. Nutrition et alimentation des volailles. INRA, Versailles, France, 355 p

Lombo Y., Dao B.B., Ekoue K.S., 2011. Elaboration d’un itinéraire technique de pintadeaux adapté en élevage familial au Togo. Neuvièmes journées de la recherche avicole, Tours France, 29-30 mars 2011

MRAH, 2013. Référentiel technico économique pour la mise en place d’une exploitation de poulets de race locale, vers. II. Ministère des Ressources animales et halieutiques, Ouagadougou, Burkina Faso, 50 p.

Ouattara S., Bougouma-Yaméogo V.M.C., Nianogo A.J., Savadogo B., 2014. Effects of substitution roasted soybean (Glycine max) seeds by those of cowpea (Vigna unguiculata), and of the protein level in the diet on growth performance and profitability of local-breed chickens (Gallus gallus) in Burkina Faso. Rev. Elev. Med. Vet. Pays Trop., 67 (1): 23-33.

Pousga S., Boly H., Lindenberg J.E., Ogle B., 2005. Scavenging pullets in Burkina Faso: Effects of season, location and breed on feed and nutrient intake. Trop. Anim. Health Prod., 37: 623-634, doi: 10.1007/s1250-005-4304-1

Rivas-Vega M.E., Gaytörtu-Bores E., Ezquerra-Brauer J.M., Salazar-Garcia M.G., Cruz-Suarez L.E., Nolasco H., Civera-Cerecedo R., 2006. Nutritional value of cowpea (Vigna unguiculata L. Walp) meals as ingredients in diets for Pacific white shrimp (Litopenaeus vannamei Boone). Food Chem., 97: 41-49, doi: 10.1016/j.foodchem.2005.03.021

Santo R., Boly H., Savadogo L., Ogle B., 2007. Caractéristiques de l’élevage villageois de la pintade locale (Numida meleagris) au centre du Burkina Faso. Tropicultura, 25: 31-36

Santo R., Boly H., Savadogo L., Brian O., 2008. Local guinea fowl (Numida meleagris) weight performance under improved feeding system in the central region of Burkina Faso. Rev. Elev. Med. Vet. Pays Trop., 61 (2): 135-140.

Trompiz J., Ventura M., Esparza D., Alvarado E., Betancourt E., Padron-Morales S., 2002. Evaluation of partial substitution of feed concentrate for bean grain meal (Vigna unguiculata) in broiler feeding. Rev. Cient. Fac. Cienc. Vet. Zulía, 12 (Suppl. 2): 478-480

Wiryawan K.G., Dingle J.G., 1999. Recent research on improving the quality of grain legumes for chicken. Anim. Feed Sci. Technol., 76: 185-193, doi: 10.1016/S0377-8401(98)00218-1

Summary

Ouattara S., Bougouma-Yaméogo V.M.C., Nianogo A.J., Savadogo B. Influence of substituting roasted soybean (Glycine max) seeds by those of cowpea (Vigna unguiculata) and of the protein level in the diet on the performance of the local-breed guinea fowl in Burkina Faso

This study aimed to evaluate the effects of a diet based on roasted seeds of cowpea in substitution of soybeans on the growth performance and profitability of the local-breed guine fowl. Three hundred 12-day-old fowls were divided into 12 batches. Four iso-energetic diets, incorporating 5% and 10% of roasted cowpea or soybean seeds, respectively, during starting and growing-finishing, were prepared. The protein levels of the diets were 17.5% or 20% for the starter feed, and 15% or 17.5% during growing-finishing. Starter-feed diets were served on days 13–68, and growing-finishing diets on days 69–222. Zootechnical parameters (live weight, weight gain and feed ingested) were monitored every other week. At the end of the trial, four fowls per batch were slaughtered to evaluate carcass yield and some organs. The economic viability of the different diets was assessed. Incorporation of cowpea roasted seeds did not induce significant differences in any of the parameters studied except for a few parameters of carcasses yields. However, the difference in protein levels produced significant differences in favor of the most protein-rich diets for most of the parameters measured. The breeding period of the guinea fowl given the richer diets was reduced by two weeks. roasted seeds of cowpea can therefore be used in the diet of the local guinea fowl in substitution of soybeans.

Keywords: Numida meleagris, Guinea fowl, cowpea, soybean, protein, animal feeding, Burkina Faso

Resumen

Ouattara S., Bougouma-Yaméogo V.M.C., Nianogo A.J., Savadogo B. Influencia de la substitución de semillas tostadas de frijol de soya (Glycine max) por las de caupí (Vigna unguiculata) y del nivel de proteína en la dieta sobre el rendimiento de la raza local de gallina de Guinea en Burkina Faso

Este estudio pretendió evaluar los efectos de una dieta a base de semillas tostadas de caupí como substitución de frijol de soya sobre el rendimiento de crecimiento y la rentabilidad de la raza local de gallina de Guinea. Trescientas gallinas de 12 días de edad se dividieron en 12 lotes. Se prepararon cuatro dietas iso-energéticas, incorporando 5% y 10% de semillas tostadas de caupí o de frijol de soya, respectivamente, durante inicio y crecimiento-acabado. Los niveles de proteína de las dietas fueron 17,5% y 20% para los alimentos de inicio, y 15% o 17,5% durante el crecimiento-acabado. Las dietas de alimento de inicio se sirvieron los días 13–68 y las dietas de crecimiento acabado los días 69–222. Se monitorizaron parámetros zootécnicos (peso vivo, ganancia de peso y ingesta de alimento) cada dos semanas. Al final del estudio, cuatro gallinas por lote fueron sacrificadas para evaluar el rendimiento de carcasa y algunos órganos. Se asesoró la viabilidad económica de las diferentes dietas. La incorporación de semillas tostadas de caupí no indujo diferencias significativas en ninguno de los parámetros estudiados excepto algunos parámetros de rendimientos de carcasa. Sin embargo, la diferencia en los niveles de proteína produjo diferencias significativas a favor de las dietas más ricas en proteína en la mayoría de los parámetros medidos; el periodo reproductivo de la gallina de Guinea a la que se le suministraron las dietas más ricas se redujo de dos semanas. Las semillas tostadas de caupí pueden por lo tanto ser utilizadas en la dieta de la gallina de Guinea local como substituto del frijol de soya.

Palabras clave: Numida meleagris, gallina de Guinea, caupí, soja, proteína, alimentación de los animales, Burkina Faso
Introduction

Infestation of camels (*Camelus dromedarius*) by the tropical botfly (*Cephalopina titillator*) as a causative agent of nasal myiasis has been reported from several countries including Iraq (Al-Ani et al., 1991), Libya (Abd El-Rahman, 2010), Saudi Arabia (Banaja and Ghandour, 1994), Sudan (Musa et al., 1989) and Iran (Oryan et al., 2008). Parasitic infections in camels in Jordan have been studied on several occasions and include reports on the presence of *C. titillator* (Sharrif, et al. 1998; Al-Ani et al. 1998; Al-Rawashdeh et al., 2000).

C. titillator is an obligate parasite infecting all breeds and both sexes of camels (Higgins, 1985). One- to three-year-old animals are most severely affected (Abu-Hab and Al-Affass, 1977; Hussein et al., 1982). The infestation seasonality of the larval stages of this fly in camels has been studied in Egypt (Ashmawy et al., 1985), Iraq (Abu-Hab and Al-Affass, 1977), North Sinai (Morsy et al., 1998), Saudi Arabia (Fatani and Hilali, 1994; Alamah, 2002) and countries of Asia and Africa.

The adult fly lives freely and collects around the head of the camels. It lays its larvae around the nostrils. The larvae then migrate via nasal airways to the nasopharyngeal area where they stay several months and develop from larvae-1, to larvae-2, to larvae-3, increasing in size to 25–35 mm in length. At this stage the larvae make their way back up the nasal airways causing considerable irritation in the camel. During this process the larvae are sometimes expelled after a great deal of snorting, which results in their inevitable expulsion out onto the ground. In the present paper we studied the prevalence of *C. titillator* infestation in camels in Jordan. Clinical and pathological changes were also reported.

Materials and Methods

Over a one-year period, 97 camels slaughtered at Al-Ramtha slaughterhouse were examined for nasal myiasis. Samples were collected once a week during which three to eight camels were slaughtered. Shortly before slaughtering, a general physical examination was conducted. After slaughtering, the head was dissected and gross examination was performed on the nasal cavity, frontal sinuses, turbinate bones and nasopharyngeal area. The presence or absence of the different stages of larvae was checked and counted.

Larvae of *C. titillator* were identified according to Zumpt (1965). The gross damage to the local tissue was described and photographed. Selective tissue samples were collected, preserved in buffered 10% formalin solution and processed by standard histopathological techniques and stained with hematoxylin and eosin.

Monthly annual rainfall in Ramtha was obtained from the Department of Metrology for the past 10 years.
Larvae of the nasal fly in camels in Jordan

RESULTS

Prevalence

Out of the 97 camels examined, 45 were infested with larval stages of *C. titillator* with an overall prevalence of 46.39%. Table 1 shows the monthly infestation of camels according to the larval stages of *C. titillator*. The number of recovered larvae ranged from 12 to 113 per month, with an average of 43.25 (standard deviation ± 23.59).

Seasonality of *Cephalopina titillator* infestation

Table 1 shows the seasonality of infestation of camels with larval stages of *C. titillator*. The larvae infested the camels every month of the year. However, their prevalence was highest in January, and lowest in June and July (Figure 1). The number of infested camels was high during the cold months of the year (November to February), declined in June and July (Figure 1), then increased again in late summer (August). Adult flies, as L1, are active during October and November. After this period, no adult is active and only few L1 were seen in the infected camels.

Table 1

Month	Num. of camels examined	Num. of camels infested (%)	Num. of larvae
Oct. 1999	11	4 (36.36)	8 L1 7 L2 7 L3
Nov. 1999	12	4 (33.3)	3 L1 8 L2 6 L3
Dec. 1999	10	6 (60)	0 L1 5 L2 19 L3
Jan. 2000	8	7 (87.5)	0 L1 4 L2 26 L3
Feb. 2000	8	6 (75)	0 L1 8 L2 44 L3
Mar. 2000	4	3 (75)	0 L1 0 L2 95 L3
Apr. 2000	8	4 (50)	0 L1 0 L2 86 L3
May 2000	17	3 (17.64)	0 L1 2 L2 111 L3
June 2000	5	1 (20)	0 L1 3 L2 30 L3
July 2000	4	1 (25)	0 L1 0 L2 12 L3
Aug. 2000	7	4 (57.14)	0 L1 0 L2 19 L3
Sept. 2000	3	2 (66.67)	0 L1 0 L2 14 L3
Total	97	45 (46.39)	11 L1 37 L2 469 L3

Later on, there is a hypobiotic period extending from February to September. There is a hypobiotic phase of larvae when an evolutive stage is predominant. This is the case for L3 of *C. titillator*.

Clinical and pathological changes

Most larvae were found attached to the mucosa of the nasopharynx, whereas a few were found in the nasal cavity. Degenerated larvae were also observed in the frontal and nasal sinuses. Most of first instar larvae were found in the labyrinth of the ethmoid bone, whereas second and third instars larvae were mostly observed in the nasopharyngeal area (Figures 2 and 3). The nasal cavities and sinuses were congested and, where some of the larvae were present, red nodules in nasopharyngeal mucosa indicated the sites of larval attachment. Histological changes included desquamation of the epithelial cells with infiltration of different types of leukocytes such as neutrophils, eosinophils and lymphocytes in the inflamed areas.

DISCUSSION

Parasitic infestations are of concern to camels in different parts of the world (El-Bihari, 1980; Al-Ani et al., 1998). The larvae bury themselves in the ground to pupate and develop into adult flies in about 25 days (Barker, 1964). In Iran, Orayan et al. (2008) found that infestation by the nasal fly was significantly more severe in the colder months (69.8%) than in the warmer ones (36.2%), and in males (65.0%) than in females (45.60%). Also they found that the prevalence rate was lower in camels under two years of age (39.8%) than in camels aged 2 to 6 years (61.5%) and over 6 years (62.8%). Morsy et al. (1998) reported monthly and seasonal prevalence of *C. titillator* larvae in slaughtered camels in Egypt, an infestation rate of 25%, and they observed that the highest prevalence periods were in October and in autumn. All three larval instars were found in the infested...
camels. However, third instars were the predominant stage (60.59%), followed by second instars (30.58%), then by first instars (8.83%).

Hussein et al. (1983) reported camel nasal flies in 1672 (67.6%) of 2473 indigenous Saudi camels examined at Riyadh abattoir between April 1981 and March 1982. The average monthly prevalence of the infestation ranged from 29% to 89%, and the highest rate was from August to March. In Iraq Al-Ani et al. (1991) found that 73.8% of the camels slaughtered in September, October November and December were infested. Also Abul-Hab and Al-Affass (1977) found that camels aged 1–3 years were the most severely affected.

Severe larva infestation causes nasal myiasis in the camel and may restrict airflow resulting in difficulty in breathing (Hussein et al., 1982). Some authors even suggest it may cause camel mortality. Al-Ani et al. (1991) reported that a few camels develop nervous signs as a secondary complication of nasal myiasis. Only a few camels develop the neurological disorders characterized by depression, listlessness, walking in circles and stiffness. The camels may finally die from meningitis caused by *Diplococcus pneumoniae* that has been isolated in pure culture from cerebrospinal fluid (Al-Ani et al., 1991).

Acknowledgments

The authors thank staff members at Jordan Badia Research and Development Center for their cooperation, their help to access to the camel herders to visit different locations, and collect samples from camels in Jordan Badia.

REFERENCES

Abd El-Rahman S., 2010. Prevalence and pathology of nasal myiasis in camels slaughtered in the Zaizwa Province, Western Libya: with a reference to thyroid alteration and renal lipidosis. *Global Vet.*, 4 (2): 130-197

Abul-Hab J., Al-Affass N.N., 1977. Seasonal occurrence of the domestic camel botfly (*Cephalopina titillator*). *J. Anim. Sci.*, 45: 1029-1034

Al-Ani F.K., Sharrif L.A., Al-Qudah K.M., Al-Hammi Y., Frank N., 2000. A survey of camel (*Camelus dromedarius*) diseases in Jordan. *J. Zoo Wildl. Med.*, 31 (3): 335-338, doi: 10.1638/1042-7260(2000)031[0335:ASOGCCD:2.0.CO;2]

Ashmawy K.I., Fahmy M.M., Hilali M., 1985. Incidence and seasonal variations of the larvae of *Cephalopina titillator* infesting camels (*Camelus dromedarius*) in Egypt. In: Proc. 12th Symp. Scandinavian Society of Parasitology, Tromsey, Norway, 17–19, June 1985. Abo Academi, Finland, p. 43-44

Banaja A.A., Chandour A.M., 1994. A review of parasites of camels (*Camelus dromedarius*) in Saudi Arabia. *J. King Abdulaziz Univ. Sci. Ser.*, 6: 75-86

Barker H.M., 1964. Camels and the outback. *Isaac Pitman & Sons, Melbourne, Australia.* p. 139

El-Bihani S., 1980. Helminths of the camel: a review. *Br. Vet. J.*, 141: 315-326, doi: 10.1638/0007-1935(1985)00700-3

Faten A., Hilali M., 1994. Prevalence and monthly variations of the second and third instars of *Cephalopina titillator* (*Diptera: Oestridae*) infesting camels (*Camelus dromedarius*) in the Eastern Province of Saudi Arabia. *Vet. Parasit.*, 53 (1/2): 145-151, doi: 10.1016/0304-4079(94)00064-6

Higgins AJ., 1985. The camel in health and disease. 4. Common ectoparasites of the camel and their control. *Br. Vet. J.*, 141: 197-216, doi: 10.1638/0007-1935(1985)00700-3

Hussein M.F., El-Amin F.M., El-Taib N.T., Basmaeil S.M., 1982. The pathology of nasal myiasis in Saudi Arabian camels (*Camelus dromedarius*). *Vet. Parasit.*, 2: 253-260, doi:10.1016/0304-4017(90)90060-7

Hussein M.F., Hassan H.A.R., Bilal H.K., RasmusI M.S., Younis T.M., Al-Motlaq A.A.R., Al-Shelkh M.A., 1983. *Cephalopina titillator* (Clark 1797) infection in Saudi Arabian camels. *Zoonoses Public Health*, 30: 533-558, doi: 10.1111/j.1439-0450.1983.tb0182x

Morsy T.A., Aziz A.S., Mazyad S.A., Al Sharif K.O., 1998. Myiasis caused by *Cephalopina titillator* (Clark) in slaughtered camels in Al Arish abattoir, North Sinai governorate, Egypt. *J. Egypt. Soc. Parasitol.*, 28 (1): 67-73

Musa M.T., Harrison M., Ibrahim A.M., Taha T.O., 1989. Observations on Sudanese camel nasal myiasis caused by the larvae of *Cephalopina titillator*. *Rev. Elev. Med. Vet Pays Trop.*, 42 (1): 27-31

Orany A., Valinezhad A., Moraveji M., 2008. Prevalence and pathology of camel nasal myiasis in eastern areas of Iran. *Trop. Biomed.*, 25 (1): 30-36

Sharrif L., Al-Rawashdeh O.M., Al-Qudah K.M., Al-Ani F.K., 1998. Prevalence of gastrointestinal helminthes, hydatid cysts and nasal myiasis in camels in Jordan. In: Proc. Third Annual Meeting for Animal Production Under Arid Conditions. United Arab Emirates University, Abu Dhabi, p. 77-92

Résumé

Al-Ani F., Amr Z. Prévénance saisonnière des larves de *Cephalopina titillator* chez le chameau en Jordanie

La prévalence saisonnière des larves de *Cephalopina titillator* infestant les chameaux a été étudiée à l’abattoir de Ramtha en Jordanie. Parmi les 97 chameaux examinés, 45 étaient infestés (46%). Des larves ont été retrouvées tous les mois de l’année avec les taux d’infestation les plus élevés en janvier et les plus bas entre mai et juillet. Le nombre de larves observées a varié de 12 à 113 avec une moyenne de 43. La plupart des larves étaient fixées à la muqueuse du nasopharynx et quelques-unes étaient dans la cavité nasale. La plupart des larves de premier stade étaient dans le labyrinthhe de l’os ethmoïde, tandis que les larves de deuxième et de troisième stades se trouvaient dans la cavité pharyngienne. Des larves dégénérées étaient aussi présentes dans les sinus nasaux et frontaux.

Mots-clés: *Camelus dromedarius*, *Cephalopina titillator*, myiasis, saisonnalité, morbidité, Jordanie

Resumen

Al-Ani F., Amr Z. Prevalencia estacional de la larva de la mosca nasa (*Cephalopina titillator*) en camellos en Jordania

Se estudió la prevalencia estacional de la infestación de larva de *Cephalopina titillator* en camellos en el madadero de Ramtha en Jordania. De los 97 camellos examinados, 45 estaban infestados (46%). Se encontraron larvas cada mes del año, con la mayor tasa de infestación en enero y la más baja de mayo a julio. El número de larvas recuperadas varió de 12 a 113, con un promedio de 43. La mayoría de las larvas estaban pegasdas a la mucosa de la nasofaringe, mientras que algunas se encontraron en la cavidad nasal. La mayoría de las larvas de primer estadio se encontraron en el laberinto del hueso etmoides, mientras que las larvas de segundo y tercer estadio fueron principalmente observadas en la cavidad faríngea. Larvas degeneradas fueron también observadas en los senos frontales y nasal.

Palabras clave: *Camelus dromedarius*, *Cephalopina titillator*, miasis, estacionalidad, morbosidad, Jordan
