Nolasco, Margherita
A normalized solitary wave solution of the Maxwell-Dirac equations. (English) Zbl 1475.49060
Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 6, 1681-1702 (2021).

Summary: We prove the existence of a L^2-normalized solitary wave solution for the Maxwell-Dirac equations in $(3+1)$-Minkowski space. In addition, for the Coulomb-Dirac model, describing fermions with attractive Coulomb interactions in the mean-field limit, we prove the existence of the (positive) energy minimizer.

MSC:
49S05 Variational principles of physics
81V10 Electromagnetic interaction; quantum electrodynamics
35Q60 PDEs in connection with optics and electromagnetic theory
35Q51 Soliton equations
49J20 Existence theories for optimal control problems involving partial differential equations

Keywords:
Maxwell-Dirac equations; solitary waves; variational methods

Full Text: DOI arXiv

References:
[1] Abenda, Simonetta, Solitary waves for Maxwell-Dirac and Coulomb-Dirac models, Ann. Inst. Henri Poincaré A, Phys. Théor., 68, 2, 229-244 (1998) · Zbl 0907.35104
[2] Buffoni, Boris; Esteban, Maria J.; Séré, Eric, Normalized solutions to strongly indefinite semilinear equations, Adv. Nonlinear Stud., 6, 2, 323-347 (2006) · Zbl 1129.35069
[3] Comech, Andrew; Stuart, David, Small amplitude solitary waves in the Dirac-Maxwell system, Commun. Pure Appl. Anal., 17, 4, 1349-1370 (2018) · Zbl 1394.35109
[4] Comech, Andrew; Zubkov, Mikhail, Polarons as stable solitary wave solutions to the Dirac-Coulomb system, J. Phys. A, 46, 43, Article 435201 pp. (2013) · Zbl 1283.35121
[5] Coti Zelati, Vittorio; Nolasco, Margherita, Ground states for pseudo-relativistic Hartree equations of critical type, Rev. Mat. Iberoam., 29, 4, 1421-1436 (2013) · Zbl 1283.35121
[6] Coti Zelati, Vittorio; Nolasco, Margherita, Ground state for the relativistic one electron atom in a self-generated electromagnetic field, SIAM J. Math. Anal., 51, 3, 2206-2230 (2019) · Zbl 1428.35421
[7] Dolbeault, Jean; Esteban, Maria J.; Séré, Eric, Variational characterization for eigenvalues of Dirac operators, Calc. Var. Partial Differ. Equ., 10, 4, 321-347 (2000) · Zbl 0968.49025
[8] Esteban, Maria J.; Georgiev, Vladimir; Séré, Eric, Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations, Calc. Var. Partial Differ. Equ., 4, 3, 265-281 (1996) · Zbl 0869.35105
[9] Esteban, Maria J.; Séré, Eric, Solutions of the Dirac-Fock equations for atoms and molecules, Commun. Math. Phys., 203, 3, 499-530 (1999) · Zbl 0938.35149
[10] Fröhlich, Jürg; Lars, B.; Jonsson, G.; Lenzmann, Enno, Boson stars as solitary waves, Commun. Math. Phys., 274, 1, 1-30 (2007) · Zbl 1126.35064
[11] Lieb, Elliott H., Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation, Stud. Appl. Math., 57, 2, 95-105 (1977/78) · Zbl 0369.35022
[12] Lions, P.-L., The concentration-compactness principle in the calculus of variations. The locally compact case. I, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 1, 2, 109-145 (1984) · Zbl 0541.49009
[13] Lisi, A. Garrett, A solitary wave solution of the Maxwell-Dirac equations, J. Phys. A, 28, 18, 5385-5392 (1995) · Zbl 0869.35121
[14] Thaller, Bernd, The Dirac Equation, Texts and Monographs in Physics (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0765.47023

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.