Amyloid-β Immunotherapy Reduces Amyloid Plaques and Astroglial Reaction in Aged Domestic Dogs

Maria Neus Bosch Marco Pugliese Carmen Andrade Javier Gimeno-Bayón Nicole Mahy Manuel J. Rodriguez

Unitat de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain

Key Words
Amyloid β · Alzheimer’s disease · Immunotherapy · Cognitive dysfunction syndrome · Astroglia · Microglia

Abstract

Background: Alzheimer’s disease (AD) is characterized by the dynamic accumulation of extracellular amyloid deposits from the interplay between amyloid-β (Aβ) plaques, reactive astrocytes and activated microglia. Several immunotherapies against Aβ have been shown to reduce amyloid neuropathology. However, the role of the associated glia in the recovery process requires clarification. Previously, we described the safety and effectiveness in aged domestic canine with cognitive dysfunction syndrome of a new active vaccine candidate for the treatment of AD in humans.

Objective: The aim of this article is to gain a better understanding of how immunotherapy modifies the amyloid burden and its effects on astroglial and microglial reactivity in immunized dogs.

Methods: In order to achieve this, we compared and quantified amyloid plaques and astroglial and microglial reactions in the frontal cortex of unimmunized and immunized aged domestic dogs.

Results: We found amyloid plaques from immunized dogs to be smaller and more compact than those from unimmunized dogs. In these new plaques, the associated astrocytes were closer and less immunoreactive to the β subunit of S100 protein (S100B). We also found no modification in the microglial reaction associated with immunization.

Conclusion: The anti-Aβ immunotherapy developed in our laboratory modifies the equilibrium between soluble and insoluble Aβ in aged dogs in close correlation with S100B-negative astrocytosis and microglial reaction.

© 2014 S. Karger AG, Basel

Introduction

Alzheimer’s disease (AD) is characterized by the accumulation of intracellular neurofibrillary tangles and different forms of extracellular amyloid-β (Aβ; monomers, oligomers, fibrils and plaques) resulting from amyloid precursor protein processing [1, 2]. These soluble oligomers, fibrils and amyloid plaques are usually in equilibrium between brain tissue, cerebrospinal fluid and blood compartments. However, the imbalance between Aβ production and clearance in AD leads to the accumulation of these amyloid components [3]. Also, changes in the biochemical composition of Aβ aggregates (oligomers, protofibrils, and fibrils) are specifically associated with the occurrence of symptomatic AD [4]. Thus, the
imbalance between soluble Aβ production and clearance modifies the amyloid plaque features [5] and the glial response [6]. The resulting abundance of amyloid deposits is an interplay between plaques of different biochemical composition, reactive astrocytes and activated microglia [6–8].

One of the animals considered to be a good model for research into mild cognitive impairment and AD is the aged domestic dog (over 8 years old) with cognitive dysfunction syndrome (CDS) [9–12]. Since this animal spontaneously develops geriatric behavioral changes related to several markers of sporadic AD (soluble Aβ, Aβ diffuse plaques and brain atrophy), early AD physiopathology mechanisms and new therapeutic targets for innovative therapies can be researched through studies performed using CDS dogs [12–14]. Beginning around age 8, the formation and maturation of diffuse Aβ deposits are observed by immunostaining in all layers of canine cortical gray matter in a characteristic four-stage distribution that correlates with CDS severity and astroglial reaction [15–19]. Despite the human studies that suggest an association between amyloid plaque stages and the degree of microglial activation [20, 21], there is still controversy surrounding the activation of microglia by diffuse plaques. The contradictory results are probably due to differences in the antibodies and lectins used for detection [6, 22].

Astrocyte overexpression of the β subunit of S100 protein (S100B) plays a role in the pathogenesis and progression of AD and other neurodegenerative diseases through autocrine and paracrine effects on astrocytes, neurons and microglia [23]. In AD, most of these S100B-positive astrocytes are closely associated with both diffuse and neuritic plaques [24], and their distribution throughout the brain regions mirrors the known distribution patterns for Aβ deposits [25]. In CDS dogs, the astrocyte proliferation around diffuse plaques was found to be S100B-negative, which together with the absence of neuritic plaques in the dog brain would suggest an important pathogenic role for S100B in the genesis and evolution of AD plaques [20, 24].

Many anti-Aβ immunotherapies targeting soluble and/or insoluble Aβ [26, 27] have been tested as ways of preventing or treating AD in animals and humans [28–32]. Due to the initially severe adverse effects observed in humans [33, 34], further studies focused on the design of effective and safe immunotherapy [35, 36]. One of these immunotherapies, based on a mixture of fibrillar Aβ components, has been developed in our laboratory with great effectiveness and complete safety in domestic dogs with CDS [37]. In that study, the vaccine led to a very rapid cognitive improvement in all treated animals, with no side effects.

To gain a better understanding of how immunotherapy modifies the amyloid burden and its effects on astroglial and microglial reactivity, we quantified amyloid plaques and astroglial and microglial reactions in brain samples from unimmunized and immunized male and female domestic dogs of different ages and breeds and with different cognitive deficits. To avoid the controversy surrounding canine microglia quantification with antibodies and lectins, we estimated the microglial reaction by in vitro autoradiography of [3H]-PK11195 binding to the peripheral benzodiazepine receptor (PBR) [38–41].

Materials and Methods

Vaccine

The fibrillar Aβ vaccine was initially prepared with 100 μg of Aβ40 combined with the Aβ40 peptide KLH conjugated. Aβ40 and Aβ40 peptide were initially dissolved with dimethyl sulfoxide (1 mg/ml), aliquoted and stored at –20 °C. Once thawed, each Aβ peptide was mixed with 1 mg of alum hydroxide suspension (Sigma-Aldrich, Mo., USA). After overnight incubation at 4 °C, a saline solution was added up to a volume of 1.5 ml prior to the subcutaneous (s.c.) immunization of the dogs.

Materials and Methods

Animals

Twenty-three male and female domestic dogs of different ages and breeds and with different cognitive deficits were included in the study (table 1). All dogs were previously classified as non-demented (n = 12) or CDS dogs (n = 11), depending on the score obtained using a validated cognitive test of nine items adapted from the Mini-Mental State Examination (MMSE) and the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) for AD [10, 12]. Five of these 23 dogs had been included in a previous immunization study performed by our group [37] in which they received six s.c. injections of the fibrillar Aβ vaccine over a period of 51 days and were sacrificed at the end of the immunization study after blood extraction (fig. 1; table 1). One of the immunized dogs presented CDS symptoms at the beginning of the immunization period.

All animals were treated according to European legislation on animal handling and experimentation (86/609/EU). Procedures were approved by the University of Barcelona Ethics Committee, Barcelona, Spain. All efforts were made to minimize animal suffering and to use no more than the number of animals required to obtain reliable scientific data.

Brain Tissue Preparation

Animals were euthanatized with an i.v. overdose of sodium thiopental (75 mg/kg, Thiobarbital, Braun Medical S.A., Spain) and tissue preparation was adapted from human brain bank methods [42]. In all cases, donation was formally approved by the owner and euthanasia justified for medical reasons, none of which were related to immunotherapy. The dog brains were removed immediately following death. Both hemispheres were separated and cut.
into 1-cm-thick coronal sections. One hemisphere was frozen in powdered dry ice and stored at –80°C. The other hemisphere was fixed by immersion in cold 4% formaldehyde diluted in 10 mM phosphate buffer (pH 7.4) for 4 days. After 3 days of cryoprotection, they were frozen on powdered dry ice and kept at –40°C until use. Some liver and spleen samples were also collected as tissue control for histological procedures.

Anti-Aβ40 IgG Purification

pH gradient elution by immunoaffinity column was used for anti-Aβ40 purification. For this, Sepharose powder (Pharmacia, Barcelona, Spain) activated with cyanogen bromide and coupled to the Aβ40 peptide (40 amino acid length) was placed into a chromatography column (Bio-Rad, Calif., USA). After being washed with 10 ml of 100 mM cold phosphate-buffered saline (PBS, pH 7.4), 1 ml dog serum was loaded into the column 3 times. After being washed with 10 ml cold PBS, anti-Aβ40 Igs were eluted by pH gradient using firstly 100 mM glycine, pH 2.5 and secondly 100 mM glycine +4 mM urea, pH 2.5; 200 μl of antibody fractions was collected in Eppendorf tubes containing 1 M Tris, pH 8. Anti-Aβ40 Igs were detected in each Eppendorf tube using a dot blot method. Briefly, antibody samples were loaded on a PVDF membrane (Bio-Rad, Madrid, Spain) and incubated for 1 h with biotinylated anti-dog IgG (LifeSpan Biosciences, Derio, Spain). Detection was carried out by incubation in 20 mM Tris-HCl and 137 mM NaCl (TBS, pH 7.4) containing 0.03% 3,3’-diaminobenzidine (DAB) and 0.006% H2O2. Finally, purified antibodies were dialyzed, concentrated to half of the volume in 50 mM Tris-HCl, pH 7.4 and stored at –20°C until use.

Immunohistochemistry

To detect amyloid plaques and immunoreactive (IR) astrocytes on dog sections, immunohistochemistry with specific antibodies against Aβ peptide (Dako, Glostrup, Denmark), S100B (Dako) and glial fibrillary acidic protein (GFAP) (Dako) was carried out on 12-μm-thick serial sections obtained from the formaldehyde-fixed

Table 1. Dogs included in the study

ID	Breed	Age, years	Cognitive group	Immunization group	LTI, weeks	Plaque stage Aβ/glia	IHQ
1	Beagle	3	nondemented	unimmunized	0		
2	Cocker	1	nondemented	unimmunized	0		
3	Poodle	6	nondemented	unimmunized	0		
4	Mixed	1	nondemented	unimmunized	0		
5	Mixed	7	nondemented	unimmunized	0		
6	Yorkshire	8	nondemented	unimmunized	0		
7	Schnauzer	8	nondemented	unimmunized	1-Ⅱ+		
8	Poodle	15	nondemented	unimmunized	1-Ⅱ+		
9	German shepherd	10	CDS	unimmunized	1-Ⅱ+		
10	Poodle	11	CDS	unimmunized	1-Ⅱ+		
11	Mixed	13	CDS	unimmunized	Ⅲ-Ⅳ+		
12	Boxer	15	CDS	unimmunized	Ⅰ-Ⅱ+		
13	Mixed	14	CDS	unimmunized	0		
14	Poodle	14	CDS	unimmunized	Ⅰ-Ⅱ+		
15	Pekingese	15	CDS	unimmunized	Ⅲ-Ⅳ+		
16	Mixed	16	CDS	unimmunized	Ⅲ-Ⅳ+		
17	Fox terrier	16	CDS	unimmunized	Ⅲ-Ⅳ+		
18	Mixed	20	CDS	unimmunized	Ⅲ-Ⅳ+		
19	Beagle	6	nondemented	immunized	41	0	
20	Beagle	8	nondemented	immunized	31	0	
21	Mixed	12	nondemented	immunized	40	immunized	+
22	Mixed	13	nondemented	immunized	32	immunized	+
23	Mixed	15	CDS	immunized	38	immunized	+

LTI = Live time after immunization; IHQ = immunohistochemistry.

Fig. 1. Immunization procedure. Five dogs received six injections of a fibrillar Aβ vaccine over a period of 51 days. Serum from all immunized dogs was collected on day 51 of the follow-up. Each animal was sacrificed after a different period of time (table 1).
frontal cortex. To detect amyloid plaques on human sections, purified dog anti-\(\beta\)-amyloid antibodies from immunized CDS dogs or commercial mouse anti-\(\beta\)-amyloid antibodies (Dako) were used for the immunohistochemistry. For comparisons, immunohistochemistry was carried out in 5-\(\mu\)m-thick sections from frontal cortex samples of AD human brain. Paraaffin-fixed brain tissues from AD patients at stages II and VI according to the Braak and Braak scale [43] were obtained from the Neurological Tissue Bank of the Universitat de Barcelona (Barcelona, Spain).

Some sections were stained with Perls’s Prussian blue counterstained with neutral red to identify hemosiderin deposits resulting from putative microhemorrhages [44]. For immunohistochemistry, slices were deparaffinized or defrosted and pretreated in formic acid for 2 min. After endogenous peroxidase inhibition for 30 min, the slices were incubated with PBS 100 mM, pH 7.4, containing 0.5% Triton X-100, 5% normal goat serum and 5% bovine serum albumin as a blocking agent for 2 h at room temperature. Purified primary antibodies or commercial mouse anti-\(\beta\)-amyloid antibodies were diluted (1/100) with immunobuffer (PBS, 5% Triton X-100, 1% normal goat serum, 1% bovine serum albumin) and incubated overnight at 4°C. After being washed with PBS, the samples were incubated with 1/4,000 diluted biotinylated anti-dog IgG or 1/100 diluted biotinylated anti-mouse IgG for 2 h. After washing, the slices were incubated for 1 h with ExtrAvidin (1/250) and developed with 0.03% DAB-0.006% H\(_2\)O\(_2\) in PBS. Some sections were also incubated with anti-CD3 (1:300; AbD Serotec, Oxford, UK) followed by biotinylated anti-mouse IgG, for immunodetection of infiltrated lymphocytes.

Double detection of amyloid plaques/astrocytes was performed by sequential immunohistochemistry. Amyloid plaques were first stained in black with anti-\(\beta\)-amyloid antibody (diluted 1/100) as described above; and developed by adding NiCl\(_2\) to the developing solution to stain astrocytes brown on the same slices. Sections were incubated with 1/250 diluted rabbit anti-GFAP antibody or with diluted 1/500 rabbit anti-S100B antibody detected with biotinylated anti-rabbit IgG (1/500) and developed with 0.03% DAB-0.006% H\(_2\)O\(_2\) in PBS. To reduce the variability due to immunolabeling procedures, for each specific antibody all slices were processed at the same time, using the same antibody solutions, and incubation/reaction and developing times.

Plaques and astrocytes were visualized by optical microscopy (Olympus America Inc., N.Y., USA) and micrographs were taken at 5\(\times\) and 40\(\times\) following the same image thresholding and acquisi-

Statistical Analysis

Kurtosis and skewness were calculated to verify the normal distribution of data. One-way ANOVA was performed to compare the plaque, astroglia and microglia parameters between the treatment and plaque stage, followed by Fisher’s LSD and Bonferroni post hoc tests. To quantify the association between two variables, a Pearson correlation was performed. When normality was not achieved, the values of all groups were compared using nonparametric analysis. In these cases, the Kruskal-Wallis test followed by the Mann-Whitney test were used to compare dependent variable groups, and the Spearman correlation was used to quantify the association between two variables. In all cases, \(p < 0.05\) was considered as significant. Results are expressed as a mean \(\pm\) SEM. All analyses were performed with the programs SPSS 17 (IBM Spain, Madrid, Spain) and Statgraphics (STSC Inc., Rockville, Md., USA).

Results

Increased Cortical Microglial Reaction in CDS Dogs

Initially, astroglial and microglial reactivity was compared between unimmunized control (\(n = 8\)) and CDS...
(n = 10) dogs. To this end, four parameters (number of S100B; number of GFAP-IR astrocytes; gray color intensity of S100B-positive astrocyte cytoplasm, and binding of [3H]-PK11195) were measured in the cortex of both groups. In CDS dogs, the number of S100B-IR and GFAP-IR both showed a nonsignificant tendency to increase (fig. 2 A, C), but we found no differences in the intensity of S100B labeling (fig. 2 B).

To study the microglial reaction, [3H]-PK11195 autoradiography was performed. [3H]-PK11195-specific binding showed low levels (between 551 and 1,068 fmol/mg protein) in the cortex of control dogs, with the lowest values in the internal layers of this area (fig. 4H). Non-specific binding was homogeneous and very low, representing less than 10% of the total binding. In the cortex of CDS dogs, [3H]-PK11195-specific binding was 29.40% higher when compared with controls (p = 0.034). This increase in specific labeling was homogeneously distributed in the tissue, and no cluster-associated labeling was observed in any layer of the prefrontal cortex (fig. 5H).

When data from immunized dogs were included in the study, the intensity of S100B-IR showed a nonsignificant tendency to decrease in all animals. However, no differences were found in the number of S100B-IR or GFAP-IR cells or in the [3H]-PK11195-specific binding (fig. 2A–D).

Fig. 2. Comparison of glial reactivity between nondemented and CDS dogs. The number of immunoreactive S100B and GFAP astrocytes (A, C), intensity of S100B-IR in the cytoplasm (B) and concentration of specific [3H]-PK11195 binding to the PBR (D) were measured and compared between nondemented (control) and CDS dogs. We observed higher levels of specific [3H]-PK11195 binding to the PBR in CDS than in control dogs, indicating more activated microglia in these dogs (* p = 0.034). When immunized dogs were included in the comparison, only a nonsignificant tendency for the intensity of cytoplasmic S100B-IR to decrease was observed.
Anti-Aβ\textsubscript{40} IgGs from Immunized Dogs Recognize Diffuse Plaques

Previously, we showed that this vaccine in dogs generates anti-Aβ\textsubscript{40} IgGs that cross the blood-brain barrier and bind to human diffuse plaques [37]. To determine whether or not they bind similarly to human neuritic, diffuse and fibrillar amyloid plaques in AD stages II and VI, serum from dogs was taken on day 51 of the immunization period. Purified anti-Aβ\textsubscript{40} IgGs presented stronger immunoreactivity to diffuse plaques than neuritic ones. These antibodies were not IR to ThT+ plaques or blood vessels (fig. 3). A similar study performed with commercial anti-Aβ\textsubscript{40} IgGs showed an increased immunoreactivity to neuritic plaques (fig. 3).

Immunization Reduces the Size of Amyloid Plaques and Increases Their Compaction

Prussian blue histochemistry revealed no hemosiderin deposits (fig. 4A–C) in the prefrontal cortex of any of the
5 immunized dogs, including the one presenting CDS. Also, we found no specific CD3-positive staining by immunohistochemistry in any of the samples (fig. 4D–F).

To determine whether or not the immunization process modifies them, we characterized amyloid plaques by immunohistochemistry in 3 immunized dogs and 9 control aged animals (older than 8, since young animals’ brains do not form any plaques). We identified two groups of non-immunized dogs, according to the size, density and cortical-layer distribution of amyloid plaques, as previously described [12]: 5 dogs presented diffuse amyloid plaques (stage I–II) that had a ‘cloud-like’ aspect, covered a large area, were poorly compacted, and were located in layers V–VI of the prefrontal cortex (fig. 5A–C). Four dogs presented more compact amyloid plaques (stage III–IV) that were smaller in size, more aggregated and located in layers II–III or throughout all layers of the prefrontal cortex (fig. 5A–C). The 3 immunized dogs presented different specific plaques, which were the smallest in size and had a more dense aspect than the stage I–II and stage III–IV plaques (p = 0.036 and p = 0.033, respectively; fig. 5A–C). The plaque distribution in these animals was similar to that of the stage III–IV plaques, since they were located in layers II–III or throughout all layers of the frontal cortex.

Immunization Decreases Immunoreactivity to S100B

A comparison of the astroglial reaction of dogs classified by amyloid plaque morphology showed no difference in the number of S100B-IR and GFAP-IR astrocytes (fig. 5D, F). However, immunized dogs presented a lower intensity of S100B-positive astrocyte cytoplasm than the other groups (p = 0.016; fig. 5E). Moreover, both GFAP-IR and S100B-IR astrocytes in the prefrontal cortex of immunized dogs presented a lower number of cell processes than astrocytes in the prefrontal cortex of nonimmunized animals’ amyloid plaques (fig. 6A, B).

We also quantified microglial activation by [3H]-PK11195 autoradiography. In all animals presenting amyloid plaques, the levels of [3H]-PK11195-specific binding sites in the cortex showed a marked increase when compared to young controls (mean 28.95% increase; p = 0.016; fig. 5G, H). We found no immunization effects in that [3H]-PK11195-specific binding increase.

We then considered amyloid plaques as a unique entity, divided them into three groups (stage I–II, stage III–IV and immunized dogs) and analyzed the astrocytes included within 200 μm of the plaque perimeter. In the stage III–IV plaque group, the number of S100B-IR (p = 0.012) and GFAP-IR cells (p = 0.031) and the intensity of S100B-IR (p < 0.001) were lower than those of the stage I–II plaques (fig. 6C–E). The plaques from immunized dogs presented a similar number of GFAP-IR cells to stage III–IV plaques (fig. 6C). However, they presented a lower number of associated S100B-positive astrocytes (p = 0.050), and the S100B-IR intensity in these cells was the lowest found (p = 0.001; fig. 6A, B).

To gain a better understanding of the relationship between astrocytes and plaques, we subdivided the 200-μm distance into four 50-μm segments, and calculated the percentage of either S100B-IR or GFAP-IR present in each
Aβ Immunotherapy in Aged Domestic Dogs

Aβ plaque area

	Stage I–II	Stage III–IV	Immunized
Plaque area (mm²)	16,000	6,000	*

Aβ labeling

	Stage I–II	Stage III–IV	Immunized
OD (arbitrary units)	0.4	0.3	*

S100B-IR cells

	No plaques	Stage I–II	Stage III–IV	Immunized
Cell counts (cells/mm²)	5	15	15	15

S100B labeling

	No plaques	Stage I–II	Stage III–IV	Immunized
OD (arbitrary units)	0.14	0.24	0.22	0.26

GFAP-IR cells

	No plaques	Stage I–II	Stage III–IV	Immunized
Cell counts (cells/mm²)	5	15	15	15

[3H]-PK11195 binding

	No plaques	Stage I–II	Stage III–IV	Immunized
Protein (fmol/mg)	1,600	1,400	1,200	1,000

(For figure 5h and legend see next page.)
In the stage I–II plaque group, the percentage of S100B-IR cells was similar in all four analyzed segments (fig. 6F), while the furthest-away segment (150–200 μm) presented the highest percentage of GFAP-IR cells (pχ2 = 0.019). In the stage III–IV plaque group, the percentage of S100B-IR cells presented a nonsignificant tendency to increase in the 25- to 50-μm and 50- to 100-μm segments when compared to the stage I–II plaques, and the same was true of the percentage of GFAP-IR cells (fig. 6G). In the plaques of immunized dogs this tendency to increase reached statistical significance in the percentage of GFAP-IR cells included in the 25- to 50-μm and 50- to 100-μm segments (pχ2 = 0.002; fig. 6H).

Discussion

This article presents evidence that the anti-Aβ immunotherapy developed in our laboratory [37] modifies the shape and density of Aβ plaques in aged dogs, in close correlation with S100B-negative astrocytosis and microglial reaction. We also provide data that reinforce the idea that glial cell reactivity is associated with amyloid pathology and cognitive dysfunction [17, 19, 20]. In a previous article, we showed that this vaccine led to a very rapid cognitive improvement in all treated CDS dogs, with no evident side effects [37]. We also found that plasma Aβ40 was increased but remained constant.
S100B-IR cells

Plaque stage I–II

Plaque stage III–IV

Plaque from immunized dogs

Distance (μm)

150–200 100–150 50–100 0–50

150–200 100–150 50–100 0–50

Aβ Immunotherapy in Aged Domestic Dogs

Neurodegener Dis 2015;15:24–37
DOI: 10.1159/000368672
in the cerebrospinal fluid of immunized dogs. These modifications were accompanied by a 10-fold increased serum anti-Aβ40 IgG [37]. These results established a relationship between the grade of CDS and the levels of Aβ peptide in cerebrospinal fluid and plasma. We now show that immunization modifies the shape and density of Aβ plaques, which argues for a modification of the equilibrium between soluble and insoluble Aβ in aged dogs.

Due to the lack of reliable antibodies available to detect activated microglia in the dog brain by immunohistochemistry [46] (and pers. observations), the first prominent result of this study was the description of an effective method for measuring activated microglia in the dog brain. Quantification of PBR concentration by [3H]-PK11195-specific binding to brain slices has been used extensively to estimate microglial reactivity in human and rodent brains [38, 47–49]. Similarly, quantification of in vivo radiolabeled PK11195 binding to the cerebral PBR is currently used to measure microglial reactivity in patients with various pathologies involving neuroinflammation, including AD patients, through modern imaging techniques [50–52]. When compared with controls, we herein found an increase in [3H]-PK11195 binding in the cerebral cortex of CDS dogs, which indicates a relationship between microglial activation and canine cognitive deterioration. This relationship, also found in human AD [53], is another of the several AD hallmarks present in the CDS dog that highlight dogs as a good model for studying the cascade of events that take place with brain amyloid deposition, aging and dementia [12].

We previously established that S100B plays a role in the link between diffuse Aβ plaque maturation and astrogial reactivity in the aging dog brain [20]. This time, we found no clear association between cognitive decline and an increase in the total number of S100B- and GFAP-positive astrocytes. This aspect may represent acute events of the animal life that bear no relationship to the aging and cognitive process [18]. By including dogs with a diverse range of characteristics in the study we avoided estimating the possible influence of specific aspects like breed or sex on this result. However, our data confirm a relationship between Aβ deposition and canine cognitive deficit [15, 18], which may be related to alterations in brain function through common processes at the early stages of amyloid deposition, as has been suggested for AD [54, 55].

We have previously designed and validated in aged dogs the efficacy and safety of a new vaccine considered a good candidate for human AD prevention and treatment [37]. When we assessed the brains of some of those immunized animals, we were able to analyze the effects of the immunization in both the inflammation and the Aβ plaque shape and distribution in the brains. Our results argue for a lack of microhemorrhages or inflammation associated with this immunotherapy. We describe the absence of hemosiderin-positive deposits and of CD3-immunopositive cells in the perivascular parenchyma. We also found a lack of anti-Aβ antibody binding to blood vessels and a homogeneous widespread binding of [3H]-PK11195 to the prefrontal cortex. These results are in line with the lack of side effects found in the clinical follow-up of these same immunized animals, and the normality of the plasma and cerebrospinal fluid analyses previously published [37].

Aged dogs spontaneously develop diffuse plaques that do not fulfill the β-pleated sheet (equivalent to AD maturation stages I–IV) and are thioflavin-negative, with no apparent neuritic component [12]. In all of the immunized dogs, we identified a new group of smaller and more compact amyloid plaques that probably resulted from immunization. Aβ immunization induces plaque clearance in both 3xTg-AD mice and humans (see [54] for a review). In dogs, the lack of booster doses in the immunization procedure may induce a slow course of Aβ clearance that enables the plaques to be completely removed in a few months but prevents side effects. These Aβ aggregates may also present differences in the biochemical composition with respect to those of nonimmunized animals. In human AD, the grade of Aβ phosphorylation is specifically associated with the occurrence of symptomatic AD [4]. These Aβ phosphorylation variations, also found in dispersible Aβ oligomers, protofibrils, and fibrils, may be modified by immunization and account, at least in part, for the cognitive improvement of immunized dogs.

In our previous study, we detected anti-Aβ40 IgGs in the cerebrospinal fluid of immunized dogs [37], which demonstrates that these antibodies cross the blood-brain barrier. We herein found that these anti-Aβ40 IgGs recognize diffuse nonfibrillar plaques much more easily than neuritic ones or blood vessels. Thus, antibodies may recognize diffuse plaques and activate a neuroinflammatory response that would lead to smaller and more compact amyloid plaques with consequences for the soluble-insoluble Aβ equilibrium between the brain and blood [37]. If this is true, immunized dogs should present changes in neuroinflammatory activity when compared with control animals.

In the aged dogs, we found hypertrophic astrocytes overexpressing GFAP and S100B generally located just
outside the plaque boundary. This distribution is associated with plaque stage and proximity and is related to cognitive status [20], as has also been described for AD [7, 56, 57]. In the brains of immunized aged dogs, we found a lower number of reactive astrocytes related to Aβ plaques. These astrocytes were less immunoreactive to S100B and GFAP and were grouped more closely to the plaques. Activated S100B-IR astrocytes are related to the induction and maintenance of dystrophic neurites in amyloid plaques [24, 58], due to amyloid toxicity. For that reason, S100B has been considered an important pathogenic factor in the genesis and evolution of plaques in AD. The reduced S100B-IR of astrocytes may therefore lead to the recovery of dystrophic neurites and the subsequent reduction in amyloid plaque processes. Thus, a decrease in S100B overexpression appears in the plaques of immunized dogs; these plaques correspond to the more compact stage of plaque maturation and present a shorter astrocyte-plaque distance. We previously described a correlation between canine graded cognitive deficit, diffuse plaque maturation, and S100B astrocytosis [20]. Thus, astroglial reactivity around the plaque varies according to plaque maturation, and S100B-positive astrocytes are involved in the more advanced stages of maturation and cognitive deficit. Based on that, the reduced intensity of S100B-IR, but not GFAP-IR, in astrocytes close to plaques of immunized dogs that we found in the present study may be related to the improved cognitive deficit of these immunized CDS animals [37]. Also, the correlation between S100B overexpression and the more significant impairments argues for astrocyte participation in autocrine and paracrine effects associated with the neurodegenerative process [20, 23]. To approach this putative relationship, further experiments are needed with a higher number of immunized CDS dogs.

At physiological levels, S100B exerts a protective effect, but when it increases, its interactions with other cytokines and microglial cells potentiate the activation of microglial, neurodegenerative or apoptosis-inducing effects. Therefore, the absence of a microglial reaction specifically associated with diffuse plaques in our study may be related to lower plaque-astrocyte interactions and reactivity. Together with the absence of microglial cells in diffuse AD plaques [58, 59], our data suggest that the involvement of S100B and microglia in the progression of AD does not begin in the very early stages of plaque formation. However, we found an increase in the widespread homogeneous binding of [3H]-PK11195 in the cerebral cortex of CDS dogs, which would suggest that microglia are involved in the initiation and maintenance of amyloid pathology [50]. Microglial activity in AD is a controversial subject. While numerous studies in animal models of AD have demonstrated that modulating microglial activation can be a powerful strategy for clearing Aβ plaques, it is also thought that Aβ might not adequately activate microglia effector functions to clear the accumulating amyloid burden from the brain [53]. Our results showed that Aβ immunization does not modify the distribution and increase of [3H]-PK11195 in CDS dogs. However, other changes in microglial activity may occur. As explained for AD [60], Aβ immunization specifically increases the phagocytic activity of microglia, which would contribute to fibrillar soluble Aβ clearance and lead to plaque compaction and decreased amyloid toxicity. Taken together, all these neuroinflammatory changes may contribute, at least in part, to the cognitive improvement of immunized CDS dogs observed after several weeks of treatment.

In conclusion, in this study we demonstrated that the anti-Aβ immunotherapy developed in our laboratory modifies the shape and density of plaques in aged dogs in close correlation with S100B-negative astrocytosis and microglial reaction. Together with our previous study in which we described a cognitive improvement and a shift in equilibrium between soluble and insoluble Aβ in immunized dogs, our overall results indicate that immunotherapy decreases Aβ toxicity and they reaffirm the interest in anti-Aβ immunotherapy as a possible treatment for canine CDS and human AD. Future studies would be necessary for a better characterization of the immunization effects on Aβ biochemical composition and the interplay between the S100B-positive astrocytes, microglia and Aβ burden.

Acknowledgments

This work was supported by grant IPT-2012-0614-01000 from the Ministerio de Economía y Competitividad and grant 2009SGR1380 from the Generalitat de Catalunya, Spain. We thank Medivet Pharma SL (Masies de Roda, Barcelona, Spain) and the Ars Veterinaria Hospital (Barcelona, Spain) for their help in brain sample collection and the dog clinical assessment, respectively.

Disclosure Statement

M.P., N.M. and M.J.R. hold an EU patent (No. WO2010/012749) exploited by Medivet Pharma SL and hold shares of the company. The other authors report no disclosures.
References

1. Crews L, Masliah E: Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 2010;19:R12–R20.
2. Ballard C, Gauthier S, Corbett A, et al: Alzheimer’s disease. Lancet 2011;377:1019–3101.
3. Hardy J, Selkoe DJ: The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002;297:353–356.
4. Rijal Upadhaya A, Kosterin I, Kumar S, et al: Biochemical stages of amyloid-β peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically preclinical Alzheimer’s disease. Brain 2014;137:887–903.
5. Karran E, Mercken M, De Strooper B: The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011;10:698–712.
6. D’Andrea MR, Cole GM, Ard MD: The micropagial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol Aging 2004;25:675–683.
7. De Witt DA, Perry G, Cohen M, et al: Astrocytes regulate micropagial phagocytosis of senile plaques in Alzheimer’s disease. Exp Neurol 1998;149:329–340.
8. Morgan D, Gordon MN, Tan J, et al: Dynamic complexity of the micropagial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 2005;64:743–753.
9. Ruehl WW, Bruyette DS, DePaoli A, et al: Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer’s disease: clinical presentation, cognitive testing, pathology and response to 1-deprenyl therapy. Prog Brain Res 1995;106:217–225.
10. Pugliese M, Carrasco JL, Andrade C, et al: Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:603–610.
11. Rofina JE, van Enderen AM, Toussaint MJM, et al: Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease. Brain Res 2006;1069:216–226.
12. Bosch MN, Pugliese M, Gimeno-Bayón J, et al: Dogs with cognitive dysfunction syndrome: a natural model of Alzheimer’s disease. Curr Alzheimer Res 2012;9:298–314.
13. Cotman CW, Head E: The canine (dog) model of human aging and disease: dietary, environmental and immunotherpay approaches. J Alzheimers Dis 2008;15:685–707.
14. Vasilevko V, Head E: Immunotherapy in a natural model of Abeta pathogenesis: the aging beagle. CNS Neurodisord Drug Targets 2009;8:98–113.
15. Cummings BJ, Head E, Afagh AJ, et al: Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine. Neurobiol Learn Mem 1996;66:11–23.
16. Hou Y, White RG, Bobik M, et al: Distribution of beta-amyloid in the canine brain. Neuroreport 1997;8:1009–1012.
17. Papaioannou N, Tooten PC, van Enderen AM, et al: Immunohistochemical investigation of the brain of aged dogs. I. Detection of neurofibrillary tangles and of 4-hydroxynonenal protein, an oxidative damage product, in senile plaques. Amyloid 2001;8:11–21.
18. Pugliese M, Mascort J, Mahy N, et al: Diffuse beta-amyloid plaques and hyperphosphorylated tau are unrelated processes in aged dogs with behavioral deficits. Acta Neuropathol (Berl) 2006;112:175–185.
19. Shimada A, Kuwamura M, Awakura T, et al: An immunohistochemical and ultrastructural study on age-related astrophatic gliosis in the central nervous system of dogs. J Vet Med Sci 1992;54:29–36.
20. Pugliese M, Geloso MC, Carrasco JL, et al: Canine cognitive deficit correlates with diffuse plaque maturation and S100β (−) astrocytosis but not with insulin cerebrospinal fluid level. Acta Neuropathol (Berl) 2006;111:519–528.
21. Sheng JG, Mrak RE, Griffen WS: Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms. Acta Neuropathol (Berl) 1997;94:1–5.
22. Mackenzie IR, Hao C, Munoz DG: Role of microglia in senile plaque formation. Neurobiol Aging 1995;16:797–804.
23. Adami C, Sorić G, Blasi E, et al: S100β expression in and effects on microglia. Glia 2001;33:131–142.
24. Mrak RE, Griffenbc WS: The role of activated astrocytes and of the neurotrophic cytokine S100B in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 2001;22:915–922.
25. Kilby PM, Van Eldik LJ, Roberts GC: Identification of the binding site on S100B protein for the actin capping protein CapZ. Protein Science 1997;6:2494–2503.
26. Demattos RB, Lu J, Tang Y, et al: A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer’s disease mice. Neuron 2012;76:908–920.
27. Zhang Y, He J-S, Wang X, et al: Administration of amyloid-β42 oligomer-specific monoclonal antibody improved memory performance in SAMP8 mice. J Alzheimers Dis 2011;23:551–561.
28. Bohrmann B, Baumann K, Benz J, et al: Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 2012;28:49–69.
29. Kingwell K: Alzheimer disease: amyloid-β immunotherapy CAD106 passes first safety test in patients with Alzheimer disease. Nat Rev Neuro 2012;8:8414.
30. Lemere CA, Masliah E: Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neuro 2010;6:108–119.
31. Panza F, Frisardi V, Imbimbo BP, et al: Bapineuzumab: anti-β-amyloid monoclonal anti-bodies for the treatment of Alzheimer’s disease. Immunotherapy 2010;2:767–782.
32. Wiescor C, Wiederhold K-H, Tissot AC, et al: The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 2011;31:9323–9331.
33. Gilman S, Koller M, Black RS, et al: Clinical effects of Abeta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2004;65:1503–1509.
34. Orgogozo J-M, Gilman S, Dartigues J-F, et al: Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003;61:46–54.
35. Liu Y-H, Giunta B, Zhou H-D, et al: Immunotherapy for Alzheimer disease: the challenge of adverse effects. Nat Rev Neuro 2012;8:465–469.
36. Menéndez-González M, Pérez-Piñera P, Martínez-Rivera M, et al: Immunotherapy for Alzheimer’s disease: rational basis in ongoing clinical trials. Curr Pharm Des 2011;17:508–520.
37. Bosch MN, Gimeno-Bayón J, Rodríguez MJ, et al: Rapid improvement of canine cognitive dysfunction with immunotherapy designed for Alzheimer’s disease.Curr Alzheimer Res 2013;10:482–493.
38. Bernal F, Petegnief V, Rodríguez MJ, et al: Ni-modipine inhibits TMB-8 potentiation of AMPA-induced hippocampal neurodegeneration. J Neurosci Res 2009;87:1240–1249.
39. Rodríguez MJ, Martínez-Sánchez M, Bernal F, et al: Heterogeneity between hippocampal and septal astroglia as a contributing factor to differential in vivo AMPA excitotoxicity. J Neurosci Res 2004;77:344–353.
40. Saura J, Nadal E, van den Berg B, et al: Localization of monoamine oxidases in human peripheral tissues. Life Sci 1996;59:1341–1349.
41. De Yebra L, Malpesa Y, Ursu G, et al: Dissociation between hippocampal neuronal loss, astrogliosis and microglial reactivity after pharmacologically induced reverse glutamate transport. Neurochem Int 2006;49:691–697.
42. Mahy N: Brain banks and research in neurochemistry. J Neural Transm Suppl 1993;39:119–126.
43. Braak H, Braak E: Demonstration of amyloid deposits and neurofibrillar changes in whole brain sections. Brain Pathol 1991;1:213–216.
44. Luo F, Rustay NR, Seifert T, et al: Magnetic resonance imaging detection and time course of cerebral microemrophaguries during passive immunotherapy in living amyloid precursor protein transgenic mice. J Pharmacol Exp Ther 2010;335:580–588.
Braak H, Braak E: Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239–259.

Stein VM, Baumgärtner W, Kreienbrock L, et al: Canine microglial cells: stereotypy in immunophenotype and specificity in function? Vet Immunol Immunopathol 2006;113:277–287.

Miller TR, Wetter JB, Jarvis MF, et al: Spinal microglial activation in rat models of neuropathic and osteoarthritic pain: an autoradiographic study using [3H]PK11195. Eur J Pain 2013;17:692–703.

Stephenson DT, Schober DA, Smalstig EB, et al: Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat. J Neurosci 1995;15:5263–5274.

Edison P, Archer HA, Gerhard A, et al: Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 2008;32:412–419.

Kumar A, Muzik O, Shandal V, et al: Evaluation of age-related changes in translocator protein (TSPO) in human brain using (11)C-[R]-PK11195 PET. J Neuroinflammation 2012;9:232.

Venneti S, Lopresti BJ, Wang G, et al: PK11195 labels activated microglia in Alzheimer’s disease and in vivo in a mouse model using PET. Neurobiol Aging 2009;30:1217–1226.

Prokop S, Miller KR, Heppner FL: Microglia actions in Alzheimer’s disease. Acta Neuropathol (Berl) 2013;126:461–477.

McGeer PL, McGeer EG: The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol (Berl) 2013;126:479–497.

Morris JC, Storandt M, McKeel DW Jr, et al: Cerebral amyloid deposition and diffuse plaques in ’normal’ aging: evidence for presymptomatic and very mild Alzheimer’s disease. Neurology 1996;46:707–719.

Medeiros R, Laferla FM: Astrocytes: conductors of the Alzheimer disease neuroinflammatory symphony. Exp Neurol 2013;239:133–138.

Nagele RG, Wegel J, Venkataraman V, et al: Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 2004;25:663–674.

Mrak RE, Sheng JG, Griffin WS: Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J Neuropathol Exp Neurol 1996;55:273–279.

Ohgami T, Kitamoto T, Shin RW, et al: Increased senile plaques without microglia in Alzheimer’s disease. Acta Neuropathol (Berl) 1991;81:242–247.

Zotova E, Holmes C, Johnston D, et al: Microglial alterations in human Alzheimer’s disease following Aβ42 immunization. Neurobiol Aging 2011;37:513–524.