Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP⁺) Is an Essential Regulator of T-lymphocyte Ca²⁺-signaling

Ingeborg Berg,* Barry V.L. Potter,† Georg W. Mayr,* and Andreas H. Guse*

*Institute of Medical Biochemistry and Molecular Biology, Division of Cellular Signal Transduction, University of Hamburg, D-20146 Hamburg, Germany; and †Wolfson Laboratory for Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA 2 7AY, United Kingdom

Abstract. Microinjection of human Jurkat T-lymphocytes with nicotinic acid adenine dinucleotide phosphate (NAADP⁺) dose-dependently stimulated intracellular Ca²⁺-signaling. At a concentration of 10 nM NAADP⁺ evoked repetitive and long-lasting Ca²⁺-oscillations of low amplitude, whereas at 50 and 100 nM, a rapid and high initial Ca²⁺-peak followed by trains of smaller Ca²⁺-oscillations was observed. Higher concentrations of NAADP⁺ (1 and 10 μM) gradually reduced the initial Ca²⁺-peak, and a complete self-inactivation of Ca²⁺-signals was seen at 100 μM. The effect of NAADP⁺ was specific as it was not observed with nicotinamide adenine dinucleotide phosphate. Both inositol 1,4,5-trisphosphate- and cyclic adenosine diphosphoribose-mediated Ca²⁺-signaling were efficiently inhibited by coinjection of a self-inactivating concentration of NAADP⁺. Most importantly, microinjection of a self-inactivating concentration of NAADP⁺ completely abolished subsequent stimulation of Ca²⁺-signaling via the T cell receptor/CD3 complex, indicating that a functional NAADP⁺ Ca²⁺-release system is essential for T-lymphocyte Ca²⁺-signaling.

Key words: cyclic A D P-ribose • inositol 1,4,5-trisphosphate • T cell activation • signal transduction • ryanodine receptor

Introduction

Activation of T-lymphocytes via the T cell receptor/CD3 (TCR/CD3)³ complex results in multiple intracellular signaling pathways (Kennedy et al., 1999). Among these pathways, an elevation of [Ca²⁺] (intracellular Ca²⁺-concentration) is essential for proliferation and clonal expansion (reviewed in Guse, 1998). The increase of [Ca²⁺] in T cells consists of calcium release from intracellular stores, and, as a major source for the long-lasting Ca²⁺-signal observed in T cells, subsequent entry of calcium through specific calcium channels in the plasma membrane (reviewed in Guse, 1998). Ca²⁺-release is activated by the calcium mobilizing second messengers α,-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃) and cyclic A D P-ribose (cADPR). Recent work indicates that Ins(1,4,5)P₃ primarily acts during the initial phase of Ca²⁺-signaling in T cells, whereas cADPR is essentially involved in the sustained phase of Ca²⁺-signaling (Guse et al., 1999).

Besides Ins(1,4,5)P₃ and cADPR, another Ca²⁺-mobilizing natural compound, nicotinic acid adenine dinucleotide phosphate (NAADP⁺) was introduced (Chini et al., 1995; Lee and Aarhus, 1995). NAADP⁺ was originally discovered as a contaminant of commercial nicotinamide adenine dinucleotide phosphate (NAADP⁺) preparations; such preparations could also be enriched in NAADP⁺ content by alkaline treatment (Clapper et al., 1987). Very low concentrations of NAADP⁺ in the range of 10–50 nM were shown to effectively release Ca²⁺ from intracellular stores of selected invertebrate and mammalian cell types, such as sea urchin eggs (Lee and Aarhus, 1995), ascidian oocytes (A lbrieux et al., 1998), and mouse pancreatic acinar cells (Cancela et al., 1999). NAADP⁺-mediated Ca²⁺-release was not sensitive to the cADPR antagonist, 8-NH₂-cADPR; the Ins(1,4,5)P₃ antagonist, hepavin (Lee and Aarhus, 1995); or to the antagonists of ryanodine receptors (RyR), procaine or ruthenium red (Chini et al., 1995). Together, with the lack of cross-desensitization observed between the NAADP⁺/Ca²⁺-release system on one hand, and the

*Address correspondence to Andreas H. Guse, University of Hamburg, Institute for Medical Biochemistry and Molecular Biology, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA 2 7AY, United Kingdom

© The Rockefeller University Press, 0021-9525/2000/08/581/8 $5.00
The Journal of Cell Biology, Volume 150, Number 3, August 7, 2000 581–588
http://www.jcb.org
Materials and Methods

from Sigma-Aldrich. The purity of NAADP complex.

The fact that recent reports indicated a role for NAADP in Ca²⁺-signaling of mammalian cells (Bak et al., 1999; Cancela et al., 1999) prompted us to study its effects in human Jurkat T cells. We report here that NAADP specifically and dose-dependently stimulated Ca²⁺-signaling when microinjected into intact Jurkat T cells. Furthermore, we show that self inactivation of the NAADP⁺/Ca²⁺-release system almost completely inhibited Ins(1,4,5)P³ (Guse et al., 1993). Fura2-loaded cells (10⁶ cells/5 ml) were kept at room temperature until use. Glass coverslips were coated first with BSA (5 mg/ml), and then with poly-L-lysine (0.1 mg/ml). Small chambers consisting of a rubber O-ring were sealed on the coverslips by silicon grease. Then, 90 μl of extracellular buffer (140 mM NaCl, 5 mM KCl, 1 mM CaCl₂, and 5.5 mM glucose, pH 7.4) was added, followed by addition of 10 μl cell suspension. The coverslip was mounted on the stage of an inverted microscope (Axiovert 100, Zeiss). Ratiometric Ca²⁺ imaging was performed using a Photomedia/Photon Technology (Wedel) digital imaging system built around the Axiovert 100 microscope. Illumination at 340 and 380 nm was carried out using a chopper/optical filter system. Images were captured by an intensified CCD camera (type C2400-77; spatial resolution: 525 × 487 pixel; Hamamatsu) and stored as individual 340 and 380 images on hard disk. Sampling rate was usually 5 s for a pair of images (340 and 380 nm) using 100-fold magnification. Data analysis was performed off-line using Photomedia/Photon Technology (Wedel) Image master analysis software. Ratio images (340/380) were constructed pixel by pixel, and changes in the ratio over time were measured by applying regions-of-interest on individual cells. Finally, ratio values were converted to Ca²⁺-concentrations by external calibration.

Microinjection Experiments

Parallel Ca²⁺ imaging and microinjection experiments require a firm attachment of the Jurkat T cells without preactivation of intracellular Ca²⁺ signaling. This was achieved by the above mentioned coating procedure of the glass coverslips, as detailed earlier (Guse et al., 1997). The cells were kept in a small chamber (100 μl vol) in extracellular buffer (140 mM NaCl, 5 mM KCl, 1 mM MgSO₄, 1 mM CaCl₂, 20 mM Hepes, 1 mM NaH₂PO₄, 5.5 mM glucose, pH 7.4). Compounds to be microinjected were cleared from particles by either filtration through 0.45-μm filters, by centrifugation in an Eppendorf centrifuge at maximal speed for 10 min, or by both. Femtotips II (Eppendorf) were filled with 5 μl of reagent solution and inserted into the semiautomatic microinjection system (Transjector 5246, Micromanipulator 5171, Eppendorf). Injection parameters were: injection pressure, 80 hPa; compensatory pressure, 40 hPa; duration of injection, 0.5 s; velocity of pipette, 700 μm/s; pipette angle, 45°. Injections were performed into the upper part of the cell.

Results

Microinjection of NAADP⁺ at a pipette concentration as low as 10 nM stimulated repetitive, long-lasting Ca²⁺-spiking of low amplitude in intact Jurkat T cells, whereas injection of intracellular buffer alone had no effect (Fig. 1, A, B, E, and F). Microinjection of 0.1 or 1 nM NAADP⁺ was without effect in most of the cells (Fig. 1, C and D, and data not shown). At a pipette concentration of 50 nM NAADP⁺, an initial, rapidly occurring Ca²⁺-peak with a high amplitude was observed which turned into gradually lowering oscillations during the first 350-400 s. After this time period, the calcium response changed into a low, but sustained, plateau phase with very small oscillations (Fig. 1, G and H). A pipette concentration of 100 nM and 1 μM, similar responses were observed (Fig. 1, I-L). However, the peak amplitude of the initial Ca²⁺-spike declined with increasing NAADP⁺ concentrations (Fig. 1, J and L), and the decay of the Ca²⁺-signal was accelerated (Fig. 1, H, J, and L). At 10 μM NAADP⁺, the Ca²⁺-response appeared similar to the one at 1 nM (Fig. 1, M and N), whereas at 100 μM NAADP⁺, no signal was detectable (Fig. 1, O and P). The dose response relationship shows a bell-shaped curve for the initial Ca²⁺-peak with an optimal NAADP⁺ concentration at 100 nM (Fig. 2 A). However, only minor changes of the long-lasting Ca²⁺-signal as measured at 400 s were observed in response to 100 nM NAADP⁺ (Fig. 2 B). These data indicate that, similar to the few other cellular systems investigated so far (Chini et al., 1995; Lee and Aarhus, 1995; Libriex et al., 1998; Cancela et al., 1999), NAADP⁺ at low nanomolar concentrations activates Ca²⁺-signaling in T cells, whereas micromolar concentrations of NAADP⁺ rapidly cause self inactivation of the Ca²⁺-release system.
The high initial Ca\(^{2+}\)-spike observed after microinjection of 50 nM NAADP\(^+\) was massively reduced when the extracellular Ca\(^{2+}\)-concentration was decreased to a nominal Ca\(^{2+}\)-free buffer, indicating that Ca\(^{2+}\)-entry is involved in the NAADP\(^+\)-mediated Ca\(^{2+}\)-response (data not shown).

To prove the specificity of the effect of NAADP\(^+\) on intracellular Ca\(^{2+}\)-signaling in T cells, NADP\(^+\) was used in parallel microinjection experiments. NADP\(^+\) is a structurally similar molecule, bearing a nicotinamide group instead of the nicotinic acid group. In contrast to NAADP\(^+\), microinjection of NADP\(^+\) (50 nM) was completely without effect on Ca\(^{2+}\)-signaling (Fig. 3, A and B). The Ca\(^{2+}\)-release system that is targeted by NAADP\(^+\) has not yet been identified, but work in other cell systems indicates that neither the Ins(1,4,5)P\(_3\) receptor (InsP\(_3\)-R) nor the RyR are involved (Chini et al., 1995; Lee and Aarhus, 1995). However, both of these classical intracellular Ca\(^{2+}\)-release systems have been demonstrated to be essential parts of the Ca\(^{2+}\)-signaling machinery of T cells (Ja-yaraman et al., 1995; Guse et al., 1999). Thus, the next series of experiments was designed to investigate potential interrelations between the NAADP\(^+\) system on one hand and both the Ins(1,4,5)P\(_3\) and cADPR systems on the other.

The specific cADPR antagonist 8-OCH\(_3\)-cADPR (Guse et al., 1999), when coinjected with an optimal NAADP\(^+\) concentration, did not significantly affect NAADP\(^+\)-mediated Ca\(^{2+}\)-signaling (Fig. 4, A and F vs. B and G). However, when a self-desensitizing concentration of NAADP\(^+\) (10 \(\mu\)M) was coinjected with a stimulating concentration of cADPR (10 \(\mu\)M), a massive decrease of the cADPR-mediated Ca\(^{2+}\)-signal was observed (Fig. 4, C and H vs. E and J). On the other hand, an optimal stimulating concentration of NAADP\(^+\) (50 nM) microinjected together with...
cADPR (10 μM) did not significantly change the Ca\(^{2+}\)-signals (Fig. 4, D and I vs. E and J). These data indicate that a functional, nondesensitized NAADP\(^+/Ca^{2+}\)-release system is necessary for cADPR-mediated Ca\(^{2+}\)-release.

The specific Ins\((1,4,5)P_3\) antagonist, Ins\((1,4,6)P_3\) (Guse et al., 1997; Murphy et al., 2000), was also coinjected with an optimal NAADP\(^+\) concentration. Surprisingly, there was a partial reduction of the initial Ca\(^{2+}\)-peak, but also a faster decay of this peak as compared with injection of NAADP\(^+\) alone (Fig. 5, A and F vs. B and G). Similar to the cADPR system, there was an almost complete inhibition of Ins\((1,4,5)P_3\)-mediated Ca\(^{2+}\)-release when a desensitizing concentration of NAADP\(^+\) was coinjected (Fig. 5, C and H). Coinjection of an optimal stimulating concentration of NAADP\(^+\), together with Ins\((1,4,5)P_3\), resulted in a high initial Ca\(^{2+}\)-peak (Fig. 5, D and I) that was comparable to the peak observed in response to injection of NAADP\(^+\) alone (Fig. 5, B and C), whereas much less oscillatory activity of the cells after the initial peak was observed (Fig. 5, D and I) as compared with Ins\((1,4,5)P_3\) alone (Fig. 5, E and J). These data also indicate that the Ins\((1,4,5)P_3/Ca^{2+}\)-release system requires a functional nondesensitized NAADP\(^+/Ca^{2+}\)-release system. Moreover, a part of the Ca\(^{2+}\)-signal observed in response to microinjection of NAADP\(^+\) alone appears to be mediated by Ins\((1,4,5)P_3\); this canonic effect of Ca\(^{2+}\) at the Ins\(P_3\)-R has been demonstrated previously (Bezprozvanny et al., 1991).

Both the Ins\((1,4,5)P_3/Ca^{2+}\)- and the cADPR/Ca\(^{2+}\)-
release systems have been published to be essential parts of the Ca\(^{2+}\)-signaling machinery of T cells upon stimulation of the TCR/CD3 complex (Jayaraman et al., 1995; Guse et al., 1999). Since the data described above indicate that a functional NAADP\(^{1}\)/Ca\(^{2+}\)-release system is essential for both Ins(1,4,5)P\(_3\)- and cADPR-mediated Ca\(^{2+}\)-release, we investigated the effect of NAADP\(^{1}\) on Ca\(^{2+}\)-signaling mediated by anti-CD3 mAb OKT3 (Fig. 6). Microinjection of 50 nM NAADP\(^{1}\) before stimulation of the cells by extracellular addition of OKT3 did not significantly change the OKT3-mediated Ca\(^{2+}\)-signal (Fig. 6, A and B). However, there was a dramatic inhibition of OKT3-mediated Ca\(^{2+}\)-signaling when a desensitizing concentration of NAADP\(^{1}\) was microinjected before stimulation by OKT3 (Fig. 6 C).

Discussion

The main findings of this report are: a dose-dependent and specific effect of NAADP\(^{1}\) in T cell Ca\(^{2+}\)-signaling; the strict dependence of both Ins(1,4,5)P\(_3\) - and cADPR-mediated Ca\(^{2+}\)-release upon a functional NAADP\(^{1}\)/Ca\(^{2+}\)-release system; and inhibition of Ca\(^{2+}\)-signaling mediated by ligation of the TCR/CD3 complex by prior self inactivation of the NAADP\(^{1}\)/Ca\(^{2+}\)-release system.

In sea urchin eggs, Ca\(^{2+}\)-release by NAADP\(^{1}\) was half-maximal between 16 and 30 nM, and showed saturation between ~100 and 400 nM (Chini et al., 1995; Lee and Aarhus, 1995). In ascidian oocytes and mouse pancreatic acinar cells, effective concentrations between 10 and 50 nM were observed (Aarhus et al., 1996; Genazzani et al., 1996), although in brain microsomes 1 \(\mu\)M NAADP\(^{1}\) was necessary (Bak et al., 1999). These data fit very well to our current data in Jurkat T cells, the first human cell system where an effect of NAADP\(^{1}\) is reported. Ca\(^{2+}\)-mobilizing concentrations were in the range between 10 and 100 nM (Figs. 1 and 2), whereas at concentrations \(\leq 1 \mu\)M, partial or complete self inactivation was observed (Figs. 1 and 2).

The self inactivation properties of the NAADP\(^{1}\)/Ca\(^{2+}\)-release system, at least in sea urchin eggs, appear to be unique as compared with the known Ca\(^{2+}\)-mobilizing second messengers, Ins(1,4,5)P\(_3\) and cADPR (Aarhus et al., 1996; Genazzani et al., 1996). Especially the fact that sub-threshold concentrations of NAADP\(^{1}\) (2 to 4 nM) almost completely inhibited subsequent Ca\(^{2+}\)-release by a high concentration of NAADP\(^{1}\) (Aarhus et al., 1996; Genazzani et al., 1996) indicates that activation of the NAADP\(^{1}\)/Ca\(^{2+}\)-release system followed by its rapid inactivation can supply the cell with a short pulse of elevated Ca\(^{2+}\) only, and that the basal endogenous concentration of NAADP\(^{1}\) must be below a concentration that would permanently inactivate the system, e.g., in sea urchin eggs below 0.1 nM.

Figure 5. Influence of Ins(1,4,5)P\(_3\) and its antagonist Ins(1,4,6)PS\(_3\) on NAADP\(^{1}\)-mediated Ca\(^{2+}\)-signaling. Jurkat T-lymphocytes were loaded with Fura2/AM, and ratiometric Ca\(^{2+}\) imaging and parallel microinjection in the presence of 1 mM extracellular Ca\(^{2+}\) was carried out as detailed under Materials and Methods. Left, overlays of single tracings of individual cells after injection (A–E); right, demonstrates the corresponding averages from these overlays (F–J). Shown are: A/F, coinjection of NAADP\(^{1}\) (50 nM) and Ins(1,4,6)PS\(_3\) (40 \(\mu\)M; \(n=7\)); B/G, injection of NAADP\(^{1}\) (50 nM; \(n=10\)); C/H, coinjection of NAADP\(^{1}\) (10 \(\mu\)M) and Ins(1,4,5)P\(_3\) (4 \(\mu\)M; \(n=9\)); D/I, coinjection of NAADP\(^{1}\) (50 nM) and Ins(1,4,5)P\(_3\) (4 \(\mu\)M; \(n=8\)).
experiments were carried out. For each condition at least three

Figure 6. Effect of NAADP$^+$ on OKT3-induced Ca$^{2+}$-signaling in single Jurkat T-lymphocytes. Jurkat T-lymphocytes were loaded with Fura2/A M, and ratiometric Ca$^{2+}$ imaging and parallel microinjection in the presence of 1 mM extracellular Ca$^{2+}$ was carried out as detailed under Materials and Methods. The cells were injected with different concentrations of NAADP$^+$ and then OKT3 (10 μg/ml) was added. Injection of intracellular buffer (A), NAADP$^+$ (50 nM [B] and 10 μM [C]), and addition of OKT3 is indicated by arrows. Data are presented as a typical tracing from one individual cell; for each condition at least three experiments were carried out.

(Aarhus et al., 1996) or even less (Genazzani et al., 1996). Data in mammalian cell types, pancreatic acinar cells (Cancela et al., 1999), and T cells, however, indicate that low concentrations of NAADP$^+$ do not substantially self-inactivate the system, e.g., microinjections of 10 nM NAADP$^+$ in the majority of cases stimulated long-lasting trains of low-amplitude Ca$^{2+}$-spikes in T cells (Fig. 1 E), and infusion of 50 nM NAADP$^+$ into acinar cells evoked sustained Ca$^{2+}$-spiking (Cancela et al., 1999).

To completely unravel the role of NAADP$^+$, mainly to verify (or to falsify) its status as a second messenger, measurement of the endogenous concentration of NAADP$^+$ would be helpful. However, regarding the theoretically expected concentrations of $\leq 0.1 \, \text{nM}$ in unstimulated cells and 50–100 nM NAADP$^+$ in stimulated cells, it might be very difficult to develop an analytical system to measure these low concentrations. Our recently developed HPLC systems for the mass determination of Ins(1,4,5)P$_3$ (Guse et al., 1995) and cADPR (da Silva et al., 1998) require 0.5–1 x 10^6 cells per sample to measure these compounds in the low micromolar range. To measure basal NAADP$^+$ concentrations a 1,000-fold more sensitive analytical method would be required. Potential methods to achieve this may include labeling of NAADP$^+$ by a fluorescent dye (pre-or postcolumn derivatization) combined with a very sensitive fluorescence detector, e.g., laser-induced fluorescence detection (Rahavendran and Karnes, 1993).

Alternatively, a competitive protein binding assay based on a high affinity binding protein for NAADP$^+$ may also be sufficient.

As discussed above, regarding the NAADP$^+$/Ca$^{2+}$-release system, there are similarities between mouse pancreatic acinar cells and human T cells, e.g., a very similar dose-response relationship for NAADP$^+$, and the fact that self-inactivation of the NAADP$^+$/Ca$^{2+}$-release renders both cell types insensitive to physiological stimulation. However, there are also at least three clear differences between the two cell systems: inhibition of either the cADPR/Ca$^{2+}$-release system or the Ins(1,4,5)P$_3$/Ca$^{2+}$-release system in pancreatic acinar cells completely blocked NAADP$^+$-mediated Ca$^{2+}$-signaling (Cancela et al., 1999), whereas similar inhibition protocols were without or almost without effect in T cells; self-inactivation of the NAADP$^+$/Ca$^{2+}$-release system did not influence Ca$^{2+}$-signaling mediated by infusion of cADPR or Ins(1,4,5)P$_3$ in acinar cells (Cancela et al., 1999), whereas in T cells such self-inactivation of the NAADP$^+$/Ca$^{2+}$-release system almost completely inhibited subsequent signaling by cADPR or Ins(1,4,5)P$_3$, and in acinar cells, the sustained phase of Ca$^{2+}$-spiking induced by infusion of cADPR could be blocked by the Ins(1,4,5)P$_3$ antagonist heparin (Thorn et al., 1994), whereas in T cells there was no effect of the Ins(1,4,5)P$_3$ antagonist, Ins(1,4,6)P$_3$, on cADPR-mediated Ca$^{2+}$-signaling (Guse et al., 1997).

Using the data obtained from pancreatic acinar cells, Petersen and Cancela (1999) developed a model with the following sequence of events: stimulation of acinar cells by the brain–gut peptide, cholecystokinin, in first instance elevates NAADP$^+$ to nanomolar concentrations. Ca$^{2+}$ released by NAADP$^+$ then serves as a trigger for the Ca$^{2+}$-induced Ca$^{2+}$-release mechanism at the RyR. This mechanism, in addition to the stimulatory effect of cADPR on RyR, then amplifies the Ca$^{2+}$-signal. The increased [Ca$^{2+}$], in concert with Ins(1,4,5)P$_3$ then releases more Ca$^{2+}$ via the InsP$_3$-R (Petersen and Cancela, 1999). Only this last element is measurable as a Ca$^{2+}$-spike, whereas the trigger and amplifier element, provided by NAADP$^+$ and the Ca$^{2+}$-induced Ca$^{2+}$-release mechanism modulated by cADPR, appear to be too small to be detected by patch clamp measurements of the Ca$^{2+}$-dependent currents (Petersen and Cancela, 1999).

In contrast to acinar cells, in Jurkat T cells NAADP$^+$ produced a substantial Ca$^{2+}$-spike, even if cADPR- and Ins(1,4,5)P$_3$-antagonists were present (Figs. 4, A and F, and 5, A and F). The second main difference to acinar cells was that in Jurkat T cells, Ca$^{2+}$-signaling by cADPR and Ins(1,4,5)P$_3$ depended on a functional NAADP$^+$/Ca$^{2+}$-release system (Figs. 4, C and H, and 5, C and H). Although two different methods were used to detect the Ca$^{2+}$-spikes: patch clamp measurements of the Ca$^{2+}$-dependent currents vs. single cell Ca$^{2+}$ imaging using Fura2-loaded cells, this is unlikely to be the reason for the differences observed. Thus, the model developed for the acinar cells (Petersen and Cancela, 1999) needs some modification to fit to the data obtained in Jurkat T cells. In accordance with the acinar cell model, NAADP$^+$ appears to act first in sequence providing trigger-calcium needed for the two other Ca$^{2+}$-release systems. Because of the experimental difficulties to measure nanomolar concentrations of NAADP$^+$ in cells as discussed above, it is unclear whether
NAADP+ concentrations in fact do increase upon stimulation, or whether NAADP+ stays unaltered in the low nanomolar range keeping the T cell in an excitable state. Experimental evidence for the latter may be obtained by high temporal and spatial resolution Ca2+ imaging experiments in Jurkat T cells; preliminary data indicate a basal Ca2+-signaling activity of very low amplitude in nonstimulated cells (Guse, A.H., and S. Heidbrink, unpublished results). However, trigger-calcium provided by NAADP+ further acts in concert with Ins(1,4,5)P3, which is rapidly, but transiently, formed in the first minutes of T cell activation (Brattsand et al., 1990; Ng et al., 1990), and then with cADPR, which is elevated during the sustained phase of T cell Ca2+-signaling (Guse et al., 1999).

However, despite these differences between acinar and T cells the dependence of cholecytokinin receptor-mediated Ca2+-signaling on a Ca2+-trigger supplied by an initial NAADP+-mediated Ca2+-release event to integrate the Ca2+-amplifier, cADPR, and the Ca2+-oscillator, Ins(1,4,5)P3 (Petersen and Cancela, 1999), exactly mirrors the situation observed in Jurkat T cells. As shown in Fig. 6, if the NAADP+/Ca2+-release system was inactivated by high NAADP+ concentrations subsequent quasiphysiological stimulation of the T cell by anti-CD3 mAb did not result in any Ca2+-signaling. This result is in complete accordance with the inhibition of cADPR or Ins(1,4,5)P3-mediated Ca2+-signaling by coinjection of NAADP+ (Figs. 4, C and H, and 5, C and H) since Ca2+-signaling in T cells critically depends on these two second messengers (Jayaraman et al., 1995; Guse et al., 1999).

More generalized, if the NAADP+/Ca2+-release system acts as the Ca2+-providing trigger, the complex behavior of activation and inactivation opens a multitude of regulatory possibilities: simply by changing their endogenous NAADP+ concentration cells might regulate the status of the NAADP+/Ca2+-release system; e.g., by increasing NAADP+ the NAADP+/Ca2+-release system will become inactivated, and Ca2+-signaling will in turn be completely unresponsive. For T-lymphocytes, such behavior of unresponsiveness to antigenic or mitogenic stimulation is well known as anergy (Jenkins et al., 1987); however, it is less clear which intracellular mechanism is responsible involved. Our data indicate that the NAADP+/Ca2+-release system with its complex inactivation/activation properties might be such a mechanism underlying anergy in T cells.

From an evolutionary point of view, it is of particular interest that both a very similar dose-response relationship and the self inactivation property of the NAADP+/Ca2+-release have been conserved between sea urchin eggs, acidian oocytes, and higher eukaryotic cells from pancreas and lymphocytes. This indicates that these two characteristic features are of outstanding importance for the regulation of intracellular Ca2+-signaling in general. One of the important future aspects will be the identification of the molecular target for NAADP+. In addition to the model for pancreatic acinar cells (Cancela et al., 1999; Petersen and Cancela, 1999) in which a separate NAADP+ receptor has been suggested, it might also be possible that NAADP+ acts as a comessenger at the known intracellular Ca2+-release channels, the Ins(1,4,5)P3 receptor and/or the RyR. A long these lines, the fluorescent 1,N6-etheno-NAADP+ has been shown to release Ca2+ in sea urchin eggs (Lee and A rhus, 1998), and thus, may serve as a tool to identify the receptor for NAADP+. This project was supported by grants from the Deutsche Forschungsgemeinschaft (grant nos. Gu 360/5-1, Gu 360/2-4, and Gu 360/2-5 to A.H. Guse and G.W. Mayr), a Wellcome Trust Research Collaboration grant (no. 051326 to A.H. Guse and B.V.L. Potter), and a Welcome Trust Programme Grant (045491 to B.V.L. Potter). Submitted: 19 April 2000

References

Aarhus, R., D.M. Dickey, R.M. Graeff, K.R. Gee, T.F. Walseth, and H.C. Lee. 1996. A citation and inactivation of Ca2+ release by NAADP+. J. Biol. Chem. 271:8513–8516.

Aiberieux, M., H.C. Lee, and M. Villar. 1998. Calcium signaling by cyclic ADP-ribose, NAADP, and inositol trisphosphate are involved in distinct functions in ascidian oocytes. J. Biol. Chem. 273:14566–14574.

A shum, G.A., A. Galione, and B.V.L. Potter. 1995. Chemo-enzymatic synthesis of analogues of the second messenger candidate cyclic adenosine 5’-diphosphate ribose. J. Chem. Soc. Chem. Commun. 1359–1360.

Bak, J., P. White, G. Timar, L. Missiaen, A.A., Genazzani, and A. Galione. 1999. Nicotinic acid adenine dinucleotide phosphate triggers Ca2+ release from sea urchin microsomes. J. Biol. Chem. 274:751–754.

Bezprozvanny, I., J. Watras, and B.E. Ehrlich. 1991. Bell-shaped calcium release by NAADP+ in ascidian oocytes. Nature. 351:751–754.

Brattsand, G., D.A. Cantrell, S. Ward, F. Ivars, and M. Gullberg. 1990. Signal transduction through the T cell receptor-C3D complex. Evidence for heterogeneity in receptor coupling. J. Immunol. 144:3651–3658.

Cancela, J.M., G.C. Churchill, and A. Galione. 1999. Coordination of agonist-induced Ca2+-signaling patterns by NAADP+ in pancreatic acinar cells. Nature. 398:74–76.

Chini, E., K.W. Beers, and T.D. Dous. 1995. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J. Biol. Chem. 270:3216–3223.

Clapper, D.L., T.F. Walseth, P.J. Dargie, and H.C. Lee. 1987. Pyridine nucleotide metabolite stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 262:9561–9568.

da Silva, C.P., B.V.L. Potter, G.W. Mayr, and A.H. Guse. 1998. Quantification of intracellular levels of cyclic ADP-ribose by high-performance liquid chromatography. J. Chromatogr. B. 707:43–50.

Genazzani, A.A., and A. Galione. 1996. Nicotinic acid-adenine dinucleotide phosphate mobilizes Ca2+ from a thapsigargin-insensitive pool. Biochem. J. 315:721–725.

Genazzani, A.A., R.M. Emson, and A. Galione. 1996. Unique inactivation properties of NAADP-sensitive Ca2+ release. J. Biol. Chem. 271:11599–11602.

Guse, A.H. 1998. Ca2+-signaling in T-lymphocytes. Crit. Rev. Immunol. 18:419–448.

Guse, A.H., E. Roth, and F. Emmrich. 1993. Intracellular Ca2+-pools in Jurkat T-Lymphocytes Biochem. 291:447–451.

Guse, A.H., A. Goldberg, K. Weber, and G.W. Mayr. 1995. Non-radioactive, isomer-specific inositol phosphate mass determinations: micro-metal-dye detection-HPLC strongly improves speed and sensitivity of analyses from cells and micro-enzyme assays. J. Chromatogr. B. 672:189–198.

Guse, A.H., I. Berg, C.P. da Silva, B.V.L. Potter, and G.W. Mayr. 1997. Ca2+-entry induced by cyclic ADP-ribose in intact T-lymphocytes. J. Biol. Chem. 272:8546–8550.

Guse, A.H., C.P. da Silva, I. Berg, A.L. Skapenko, K. Weber, P. Heyer, M. Hohenegger, G.A. A shum, H. Schulze-Koops, B.V.L. Potter, and G.W. Mayr. 1999. Regulation of Ca2+-signaling in T-lymphocytes by the second messenger cyclic ADP-ribose. Nature. 398:70–73.

Jayaraman, T., E. Ondriasova, K. Ondrias, D.J. Harnick, and A.R. Marks. 1995. The inositol 1,4,5-trisphosphate receptor is essential for T-cell receptor signaling. Proc. Natl. Acad. Sci. U.S.A. 92:6007–6011.

Jenkins, M., D.M. Pardoll, J. Mizzuchi, T.M. Chused, and R.H. Schwartz. 1987. Molecular effects in the induction of a nonresponsive state in interleukin-2-producing helper T-lymphocyte clones. Proc. Natl. Acad. Sci. U.S.A. 84:5409–5413.

Kennedy, J.S., M. Rab, and C.E. Rudd. 1999. Signaling scaffolds in immune cells. Cell. 26:227–235.

Lee, H.C., and A. Aarhus. 1995. A derivative of NAADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J. Biol. Chem. 270:2125–2127.

Lee, H.C., and R.A. Aarhus. 1998. Fluorescent analogs of NAADP+ with calcium mobilizing activity. Biochem. Biophys. Acta. 1425:263–271.
Murphy, C.T., A.M. Riley, S.J. Mills, C.J. Lindley, B.V.L. Potter, and J. Westwick. 2000. myo-inositol 1,4,6-trisphosphorothioate and myo-inositol 1,3,6-trisphosphorothioate: partial agonists with very low intrinsic activity at the platelet myo-inositol 1,4,5-trisphosphate receptor. Mol. Pharmacol. 57: 595–601.

Ng, J., J. Gustavsson, M. Jondal, and T. Andersson. 1990. Regulation of calcium influx across the plasma membrane of the human T-leukemic cell line, JUR-KAT: dependence on a rise in cytosolic free calcium can be dissociated from formation of inositol phosphates. Biochim. Biophys. Acta. 1053:97–105.

Petersen, O.H., and J.M. Cancela. 1999. New Ca²⁺-releasing messengers: are they important in the nervous system? TINS. 22:488–494.

Rahavendran, S.V., and H.T. K arnes. 1993. Solid-state diode laser-induced fluorescence detection in high-performance liquid chromatography. Pharm. Res. 10:328–334.

Thorn, P., O. Gerasimenko, and O.H. Petersen. 1994. Cyclic ADP-ribose regulation of ryanodine receptors involved in agonist evoked cytosolic Ca²⁺ oscillations in pancreatic acinar cells. EMBO (Eur. Mol. Biol. Organ.) J. 13: 2038–2043.