Molecular evidence of potential novel spotted fever group rickettsiae, *Anaplasma* and *Ehrlichia* species in *Amblyomma* ticks parasitizing wild snakes

Kai Ling Kho, Fui Xian Koh and Sun Tee Tay*

Abstract

Background: *Amblyomma* ticks parasitize a wide range of animals in tropical regions. This study describes the identification of *Amblyomma* ticks from wild snakes in Malaysia and the detection of potential human pathogens such as *Rickettsia*, *Anaplasma*, *Ehrlichia* and bartonellae in the ticks.

Findings: Twenty one adult ticks (twelve *A. varanense* and nine *Amblyomma helvolum* ticks) identified from seven *Python molurus* snakes in Sepang and a pool of six *A. helvolum* ticks from a *Naja sumatrana* snake in Johore, Malaysia were investigated in this study. Amplification of the citrate synthase (*gltA*), 190-kDa surface antigen gene (*ompA*), 135-kDa surface antigen (*ompB*) and surface cell antigen (*sca4*) genes followed by sequence analysis confirmed the presence of two potential novel spotted fever group rickettsiae in the ticks. *Candidatus Rickettsia sepangensis* from an engorged *A. varanense* tick demonstrated high sequence similarity to *Rickettsia tamurae*; while *Candidatus Rickettsia johorensis* from two samples (individual and pooled) of *A. helvolum* and two *A. varanense* ticks were closely related to *Rickettsia raoultii*. *Anaplasma* and *Ehrlichia* DNA were detected from seven and two ticks, respectively. No bartonellae was detected from any of the ticks.

Conclusion: The finding in this study suggests that *Amblyomma* ticks parasitizing wild snakes may serve as reservoir hosts and carriers for rickettsioses, anaplasmosis and ehrlichiosis in this region.

Keywords: *Amblyomma* ticks, *Rickettsia raoultii*, *Rickettsia tamurae*, Malaysia

Background

Ticks are the vector for numerous emerging zoonotic diseases which can be severe and life-threatening to humans. In nature, ticks and a wide range of animals may act as reservoirs or amplifiers for human pathogens such as spotted fever group rickettsiae, anaplasma, ehrlichiae and bartonellae. Humans can be accidentally infected with these organisms through tick bites. The ticks belonging to the genus *Amblyomma* have been implicated as a carrier for several pathogenic rickettsiae including *Rickettsia rickettsii*, *R. aeschlimannii*, *R. raoultii*, and *R. tamurae* [1], *Anaplasma phagocytophilum*, *Ehrlichia chaffeensis* and *E. ewingii* [2,3]. Additionally, *Bartonella* DNA has also been detected in *A. americanum* ticks [4].

Amblyomma ticks parasitize a wide range of animals and are often seen on mammalian hosts, reptiles and amphibians [5,6]. However, information is lacking on tick carriage of emerging human pathogens in the tropical region. In this study, we assessed the occurrence of these microorganisms in *Amblyomma* ticks parasitizing wild snakes in Malaysia by using molecular approach.

Methods

Twenty-one adult ticks (12 *A. varanense* and nine *A. helvolum*) from seven *Python molurus* snakes from Sepang (2°49’10.862”N, 101°44’1.262”E) and a pool of six *A. helvolum* ticks from a Spitting cobra (*Naja sumatrana*) in Johore, Malaysia (1°43’58.321”N, 103°54’
5.082°E) collected from August-October 2012 were investigated in this study. The ticks were identified based on the taxonomic keys of Burridge [5] and Kohls [7].

Tick DNA was extracted using QIAamp DNA mini kit (Qiagen, Hilden, Germany) in accordance to the manufacturer’s instruction. Four rickettsial-specific genes were targeted for amplification from the tick samples, i.e., citrate synthase gene (gltA), 190-kDa outer membrane protein gene (ompA), 135-kDa outer membrane protein gene (ompB) and surface cell antigen (sca4) [8-11]. Identification of Anaplasma and Ehrlichia DNA in the samples was performed using a PCR assay targeting 16S rRNA gene of the organisms [12] followed by sequence analysis. For further differentiation of Anaplasma spp., amplification of the full length sequences of 16S rDNA and msp4 genes were performed [13]. A PCR assay targeting citrate synthase (gltA) gene was performed for detection of bartonellae DNA [14]. Cloned PCR2.1-TOPO T/A plasmids (Invitrogen, USA) with amplified gltA fragment from R. honei) (strain TT118), ompA and ompB fragments from rickettsial endosymbionts (98% similarity to R. helvolum, jiangensis and R. raoultii, respectively) of tick samples were used as positive controls. BLAST analysis was performed to search for homologous sequences in the GenBank database. To determine the phylogenetic position of the rickettsiae identified in this study, dendrogram was constructed based on concatenated sequences of gltA (1040–1046 nucleotides) and ompA (407–431 nucleotides) genes using neighbour-joining method of MEGA software [15].

Findings
Table 1 shows the amplification of rickettsial gltA gene from three A. varanense (S5, S4-2 and S7-2) and two A. helvolum tick samples (S6-1, P1). The gltA and ompA sequences from the S5 tick was almost similar (99.0% and 97.7%, respectively) with R. tamurae strain AT-1 from A. testudinarium tick in Japan [16]. However, the ompB gene of the rickettsia was unable to be amplified and no significant similarity was obtained for the amplified sca4 fragment.

BLAST analysis of the rickettsial gltA sequence from two samples (individual and pooled) of A. helvolum (S6-1, P1) and two A. varanense (S4-2 and S7-2) ticks demonstrated the closest match (99.7%) to R. raoultii strain Khabarovsk (Table 1), which was cultivated from Dermacentor ticks in Russia and France [17]. The sequence similarity of the ompA, ompB and sca4 sequences of these ticks with those of R. raoultii strain Khabarovsk was 97.4%, 98.3% and 97.4%, respectively.

According to the current criteria for speciation of rickettsial species, uncultured rickettsia exhibiting sequence similarity of ≤99.9% for gltA, ≤98.8% for ompA, ≤99.2% ompB and ≤99.3% for sca4 genes with a validated

Table 1 Molecular detection of rickettsiae, anaplasma and ehrlichia and blast analysis of the sequences derived from tick samples in this study

Tick sample (Species, location)	Rickettsia gltA	Anaplasma 16S rDNA	
Candidatus Rickettsia seangensis			
S5 (A. varanense, Sepang)	R. tamurae strain AT-1 (AF394896) (1033/1043, 99.0%)		A. phagocytophilum (AY511442, 99%, 253/256), A. platys (JX261979, 99% 253/256)
Candidatus Rickettsia johorensis			
P1 (pooled A. helvolum, Johore), S4-2 (A. varanense, Sepang), S6-1 (A. helvolum, Sepang)	R. raoultii strain Khabarovsk (DQ365804) (1057/1060, 99.7%), R. raoultii strain Khabarovsk (DQ365801) (418/429, 97.4%), R. raoultii strain Khabarovsk (DQ365798) (762/775, 98.3%), R. raoultii strain Khabarovsk (DQ365808) (795/816, 97.4%), A. bovis (AB983438, 99%, 253/256)		
S7-2 (A. varanense, Sepang)	R. raoultii strain Khabarovsk (DQ365804) (1057/1060, 99.7%), R. raoultii strain Khabarovsk (DQ365801) (418/429, 97.4%), R. raoultii strain Khabarovsk (DQ365798) (762/775, 98.3%), R. raoultii strain Khabarovsk (DQ365808) (795/816, 97.4%)	A. phagocytophilum (AY511442, 99%, 253/256), A. platys (JX261979, 99% 253/256)	
S2, S4 (A. helvolum, Sepang), S6, S7 (A. varanense, Sepang)	Not amplified		
S6-2 (A. varanense, Sepang)	Not amplified	A. bovis (AB983438, 99%, 253/256)	
S3, S7-3 (A. varanense, Sepang)	Not amplified	Ehrlichia spp. (J410257, 99%, 249/256)	

The sequences obtained for rickettsiae from S5 and P1 ticks have been deposited in the GenBank database under the accession numbers: gltA (GenBank: KJ769648, KJ769650), ompA (GenBank: KJ769649, KJ769651), ompB (GenBank: KJ769652), sca4 (GenBank: KM977711)).
Table 2 GenBank accession numbers of the rickettsial gene sequences used for the construction of a concatenated NJ tree

Rickettsia sp.	GenBank accession no. for targeted genes
Rickettsia raoultii strain Elanda-23/95	EU036985 EU036986
Rickettsia raoultii strain Khabarovsk	DQ365804 DQ365801
Rickettsia raoultii strain Manre	DQ365803 DQ365799
Rickettsia aeschlimannii	KY259084 KY259083
Rickettsia massiliae Mtu 1	US9719 U43799
Rickettsia rhipechphi strain HJS	DQ865206 DQ865208
Rickettsia parkeri	KF782319 KF782320
Rickettsia sibirica 246	US9734 U43807
Rickettsia conorii Seven	US9730 U43806
Rickettsia honei	AF018074 AF018075
Rickettsia rickettsii R (Bitterroot)	US9729 U43804
Rickettsia montana	U74756 U43801
Rickettsia tamuriae strain AT-1	AF394896 DQ103259
Rickettsia japonica YM	US9724 U43795
Rickettsia heliogiangensis strain CHB-1	AB473812 AB473813
Rickettsia felis strain URRWXCa2	AF210692 AF210694
Rickettsia slavaca N.A. 13-B	US9725 U43808
Rickettsia monacensis strain IrR/Munich	DQ100163 DQ100169
Candidatus Rickettsia sepangensis (SS)	KJ796948 KJ796949
Candidatus Rickettsia johorensis (F1)	KJ796950 KJ796951

Rickettsia species may be given *Candidatus* status [18]. Hence, the rickettsiae are thus named as *Candidatus* Rickettsia sepangensis and *Candidatus* Rickettsia johorensis, respectively, in accordance to the location of their first sample collection. The dendrogram constructed using concatenated sequence of *gltA* and *ompA* gene fragments (Table 2 and Figure 1) confirmed the clustering of *Candidatus* Rickettsia sepangensis with the type strain of *R. tamuriae*, and *Candidatus* Rickettsia johorensis with *R. raoultii* type strains.

Several spotted fever group rickettsiae with unknown or potentially pathogenicity for humans have been reported in the Southeast Asia region, mainly in Thailand. *R. honei* (strain TT-118) and *R. thailandii* sp. nov. have been identified from *Ixodes* and *Rhipicephalus* ticks [19,20]. Closely related species of *R. raoultii* have also been detected from *A. helvolum* from a lizard (*Varanus salvator*) in Thailand [21]. Exposure to infected snake ticks may pose risks to human health as *R. tamuriae* and *R. raoultii* have been implicated in human infections [22,23]. High antibody prevalence to *R. honei* (TT118 strain) has been reported in febrile patients in rural areas in Malaysia [24]. However, information on the type of spotted fever group rickettsiae is still lacking.

Anaplasma DNA was amplified from seven ticks (Table 1). Based on the 256 nucleotides of the amplified 16S rDNA partial gene fragments, sequences from three *A. varanense* and two *A. helvolum* ticks showed the closest similarity to those of *A. phagocytophilum* [Genbank accession no.: AJ551442, 99%, 253/256] or *A. platys* [Genbank accession no.: X261979, 99%, 253/256]. *A. bovis* DNA [Genbank accession no.: AB983438, 99%, 253/256] was amplified from two *A. varanense* ticks, whereas DNA of *Ehrlichia* spp. [Genbank accession no.: KJ410257, 99%, 249/256] was amplified from two *A. varanense* ticks. Attempts to determine the full length sequence of 16S rDNA and *msp4* genes were not successful as the sequences obtained were not satisfactory for analysis. No bartonellae was detected from any of the ticks understudied.

There is no report on the human infections caused by tickborne pathogens with reptile as a host in Southeast Asia. The presence of SFG rickettsiae (*Rickettsia* species closely related to *R. raoultii, R. tamuriae* and *R. bellii*) has been recently shown in *A. varanense* and *A. helvolum* in Thailand [25]. Detection of *R. honei* in a reptilian tick, *Bothriocroton hydrosauri* (formerly *Aponomma hydrosauri*) has been reported in Australia [26]. *Rickettsia* spp. closely related to *R. tamuriae* has also been detected in *A. fimbriatum* ticks collected from reptiles (yellow-spotted monitor, water python and green-tree snake) in the Northern Territory of Australia [27], and *A. exornatum* tick from a lizard (*Varanus olivaceus*) in United States of America [28]. In the South America, *Rickettsia* sp. strain Colobmaniensis has been identified from *A. dissimile* ticks parasitizing iguanas in Colombia [29]. All these findings suggest the existing of a natural cycle of spotted fever group rickettsial infection in ticks and snakes in different geographical regions. *A. phagocytophilum* has been detected in *A. flavomaculatum* tick collected from a *Varanus exanthematicus* lizard imported into Poland [30]. Meanwhile, the detection of *Ehrlichia* spp. from ticks collected from snakes has not been reported previously and thus, merits further investigation.

A. helvolum ticks have been identified from different snakes including *Python* sp., *Ptyas (Zamenis) korros* and *Naja naja* (Kohls) [7] in Malaysia. *A. varanense* is also one of the most widespread *Amblyomma* ticks in large snakes in Southeast Asia [5]. As *P. molurus* and *N. sumatrana* snakes are native to Southeast Asia [31,32], ticks parasitizing the snakes could be endemic where the animal hosts are available. Although there is no data about the affinity of the ticks to bite humans yet, the detection of rickettsial agents in the snake ticks poses a risk to both wildlife and human. Further work is required to assess the prevalence of these potential tick-borne pathogens on a larger scale.
Conclusions
This study presented the molecular evidence of the presence of potential novel spotted fever group rickettsiae closely related to *R. tamurae* and *R. raoultii*, *Anaplasma* and *Ehrlichia* spp. in two species of *Amblyomma* ticks parasitizing *P. molurus* and *N. sumatrana* snakes. The finding in this study suggests the potential role of *Amblyomma* ticks as a reservoir host and carrier for rickettioses, anaplasmosis and ehrlichiosis in this region.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KKL carried out the identification of ticks, PCR for detection of rickettsiae and bartonellae, data analysis and wrote the manuscript. KFX performed PCR for detection of *ehrlichiae* and anaplasma and data analysis. TST initiated and designed the study, supervised the laboratory work, data analysis and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments
The authors would like to thank Mr. Chai Koh Shin, Mr. Saidon, Mdm Asha Devi Amarajothi and the research group from TIDREC, UM who provided assistance in this project. This project was funded by High Impact Research-MOHE Grant [E000013-2000 (subprogramme-4)], University Malaya Research Grant (RP013-2012A) and Postgraduate Research Fund (PG006-2013B) from University of Malaya, Kuala Lumpur, Malaysia.

Received: 21 May 2014 Accepted: 5 February 2015
Published online: 19 February 2015

References
1. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediangkiv O, Kernf T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:657–702.
2. Bekker CP, De Vos S, Taoufik SA, Sparagano OA, Jorgejan F. Simultaneous detection of *Anaplasma* and *Ehrlichia* species in ruminants and detection of...
Ehrlichia ruminantium in Amblyomma variegatum ticks by reverse line blot hybridization. Vet Microbiol. 2002;89:223–38.

3. Cohen SB, Yabsley MJ, Freye JD, Dunlap BG, Rowland ME, Huang J, et al. Prevalence of Ehrlichia chaffeensis and Ehrlichia ewingii in ticks from Tennessee. Vector Borne Zoonotic Dis. 2010;10:435–40.

4. Billette SA, Miller MK, Breitschwerd EB, Levy MG. Detection of two Bartonella taiame-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers. J Med Entomol. 2008;45:176–9.

5. Burridge MJ. Ticks (Acari: Ixodidae) spread by the international trade in reptiles and their potential roles in dissemination of diseases. Bull Entomol Res. 2001;91:3–13.

6. Pandit P, Bandivdekar R, Geeverghese G, Pande S, Mandke O. Tick infestation on wild snakes in northern part of Western Ghats of India. J Med Entomol. 2011;48:504–7.

7. Kohls GM. Malaysian parasites XVII ticks (Ixodoidea) of Borneo and Malaya. Stud Inst Med Res Malaya. 1957;28:65–9.

8. Labruna MB, Whitworth T, Horta MC, Bouyer DH, McBride JW, Pinter A, et al. Rickettsia species infecting Amblyomma cooperi ticks from an area in the state of Sao Paulo, Brazil, where Brazilian spotted fever is endemic. J Clin Microbiol. 2004;42:90–8.

9. Regnery RL, Spruill CL, Pikayis BD. Genotypic identification of rickettsiae and estimation of intraspecies sequence divergence for portions of two rickettsial genes. J Bacteriol. 1991;173:1576–89.

10. Roux V, Raoult D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein Omp (ompB). Int J Syst Evol Microbiol. 2000;50:1449–55.

11. Sekyova Z, Roux V, Raoult D. Phylogeny of Rickettsia spp. inferred by comparing sequences of ‘gene D’, which encodes an intracytoplasmic protein. Int J Syst Evol Microbiol. 2001;51:1353–60.

12. Parola P, Roux V, Camisas JL, Baradji J, Brouqui P, Raoult D. Detection of ehrlichiae in African ticks by polymerase chain reaction. Trans R Soc Trop Med Hyg. 2000;94:707–8.

13. Bown KJ, Lambin X, Ogden NH, Petrovcek M, Shaw SE, Woldehawer Z, et al. High-resolution genetic fingerprinting of European strains of Anaplasma phagocytophilum by use of multilocus variable-number tandem-repeat analysis. J Clin Microbiol. 2007;45:1771–6.

14. Norman AF, Regnery R, Jameson P, Greene C, Krause DC. Differentiation of Bartonella-like sequences in the tick Amblyomma variegatum (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. J Med Entomol. 2012;49:960–5.

15. Nowak M, Cieciuch S, Stanczak J, Siuda K. Detection of Anaplasma phagocytophilum in Amblyomma flavomaculatum ticks (Acari: Ixodidae) collected from lizards Varanus exanthematicus imported to Poland. Exp Appl Acarol. 2010;51:1363–71.

16. Graves S, Stenos J. Rickettsia honei: a spotted fever group Rickettsia on three continents. Ann N Y Acad Sci. 2005;1063:1–12.

17. Kolars TM, Tippayachai B, Bodhidatta CL. Short report: Thai tick typhus, Rickettsia honei, and a unique Rickettsia detected in hordes granulatus (Ixodidae: Acari) from Thailand. Am J Trop Med Hyg. 2001;65:535–7.

18. Doornbos K, Sumrandee C, Hiunakonkup S, Doornbos K, Kitchawee S, Baimai V, Grubhofer L, et al. Molecular detection of Rickettsia species in Amblyomma ticks collected from snakes in Thailand. Ticks Tick Borne Dis. 2014;5:632–40.

19. Stenos J, Graves S, Visevolod LP, Walker D. Anaplasma hydrosauri, the reptile-associated tick reservoir of Rickettsia honei on Flinders Island, Australia. Ann J Trop Med Hyg. 2003;69:314–7.

20. Vilcins IME, Fournier PE, Old JM, Deane E. Evidence for the presence of Francisella and Spotted Fever Group Rickettsia DNA in the tick Amblyomma fasciata (Acari: Ixodidae), Northern Territory, Australia. J Med Entomol. 2009;46:926–33.

21. Reyes WK, Durden LA, Darch GA. A spotted fever group Rickettsia from an exotic tick species, Amblyomma exornatum (Acari: Ixodidae), in a reptile breeding facility in the United States. J Med Entomol. 2006;43:1099–101.

22. Miranda J, Portillo A, Otoo JA, Mattar S. Rickettsia sp. Strain colombians: Rickettsiae: Rickettsiaceae: a new proposed Rickettsia detected in Amblyomma dissimile (Acari: Ixodidae) from iguanas and free-living larvae ticks from vegetation. J Med Entomol. 2012;49:960–5.

23. Wuster W. Taxonomic changes and taxonomy: systematic revisions of the Asian cobras (Naja naja species complex). Toxicon. 1996;34:399–406.

24. Barker DG, Barker TM. The distribution of the Burmese Python, Python bivittatus, in China. Bull Chicago Herp Soc. 2010;45:86–8.