Topological analysis of carbon and boron nitride nanotubes

Awais Yousaf1*, Hanan Alolaiyan2, Muhammad Nadeem3 & Abdul Razaq3

Graph theoretical concepts are broadly used in several fields to examine and model various applications. In computational chemistry, the characteristics of a molecular compound can be assessed with the help of a numerical value, known as a topological index. Topological indices are extensively used to study the molecular mechanics in QSAR and QSPR modeling. In this study, we have developed the closed formulae to estimate AB_c, AB_{c4}, GA, and GA_5 topological indices for the graphical structures of boron nitride and carbon nanotube.

Graph theory has been used in almost every field of study. A branch of graph theory that deals with the study of molecular compounds in terms of a simple connected planar graph is known as chemical graph theory. The compound’s atoms are the vertices of graph, where the edges represent the bonds between the atoms. The number of edges associated with a vertex of the graph is called the degree of the vertex; on the other hand, in the chemical graph theory, the degree of a vertex is the valency of the atom. Therefore, the algebraist uses Graph Theory as a tool to understand the structure of a molecular compound. Graph theory is also very effective in studying the structural properties of chemical compounds in quantum chemistry. A numerical quantity called topological index can be used to study the properties of a chemical compound. Some of the graph-related topological indices are based on polynomial, distance, and degree. The Geometric-arithmetic (GA) and Atom-bond connectivity (ABC) are the most studied topological indices and play a dynamic role in characterization of a molecular compound.

Graph theory has been used in almost every field of study. A branch of graph theory that deals with the study of molecular compounds in terms of a simple connected planar graph is known as chemical graph theory. The compound’s atoms are the vertices of graph, where the edges represent the bonds between the atoms. The number of edges associated with a vertex of the graph is called the degree of the vertex; on the other hand, in the chemical graph theory, the degree of a vertex is the valency of the atom. Therefore, the algebraist uses Graph Theory as a tool to understand the structure of a molecular compound. Graph theory is also very effective in studying the structural properties of chemical compounds in quantum chemistry. A numerical quantity called topological index can be used to study the properties of a chemical compound. Some of the graph-related topological indices are based on polynomial, distance, and degree. The Geometric-arithmetic (GA) and Atom-bond connectivity (ABC) are the most studied topological indices and play a dynamic role in characterization of a molecular compound.

Several researchers have focused in this area of graph theory1-8, H. Wiener introduced the topological index and named it the path number and later the Wiener index. In S. Hayat and co-author studied several topological indices based on the degree of vertices for certain graph structures. Imran et al. studied the structural properties of graph and developed closed formulae of ABC_2, ABC_4, GA, GA_4 and GA_5 indices for sierpinski networks. M. Darafsheh in determined the Wiener, Padmakar-Ivan and Szeged indices through various technique. Further in A. Ayesha and A. Alameri examined numerous indices such as degree, degree, Hyper-Wiener index, Wiener polarity index, Schultz and modified Schultz indices for mk-graph. Wei Gao and co-authors discussed topological indices for the structures of the alkane family based on the graph’s eccentricity11. More information on topological indices and chemical structures of various graphs is available in the literature and suggested for readers12-19.

Let $G = (V(G), E(G))$ be a simply connected planner graph, where $V(G)$ is the vertex set and $E(G)$ is the set of edges of graph G. For any vertex, $x \in V(G)$ then, the set $NG(x) = \{y \in V(G) | xy \in E(G)\}$ is called open neighborhood of x.

$$Sx = \sum_{y \in NG(x)} dy,$$

where d_y denotes the degree of vertex y and S_x is the sum of the degrees of all open neighborhoods of x.

The history of some degree-based topological indices is discussed here; Estrada et al. described the degree-based topological index named the atom-bond connectivity index (ABC). That is,

$$ABC(G) = \sum_{xy \in E(G)} \sqrt{dx + dy - 2 \over dxdy}$$

In Ghorbani with co-authors gave the closed formulæ to compute the fourth version of atom-bond connectivity index (ABC_4). The relation to evaluate the ABC_4 index in terms of sum of degrees of neighboring vertices is:

1Department of Mathematics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan. 2Department of Mathematics, King Saud University, Riyadh, 11362, Kingdom of Saudi Arabia. 3Department of Mathematics, University of Education Lahore, Jauharabad, 41200, Pakistan. *email: awais.yousaf@iub.edu.pk
Damir Vukičević and Boris Furtula formulated degree based Geometric-arithmetic index (GA) in 2 and is defined as:

$$GA(G) = \sum_{xy \in E(G)} \sqrt{s_x + s_y - \frac{2}{s_x s_y}}$$

In 22, utilizing the concept of Geometric-arithmetic index (GA), A. Graovac and M. Ghorbani defined the fifth version of Geometric-arithmetic index (GA_5) based on the sum of degrees of neighboring vertices. The fifth version of Geometric-arithmetic index (GA_5) is given as:

$$GA_5(G) = \sum_{xy \in E(G)} \sqrt{s_x s_y}$$

For more information see 23–27.

Hexagonal boron nitride graph. The hexagonal boron nitride graph is a simple connected planner graph. The horizontal and vertical rings of the hexagonal boron nitride graph are shown in Fig. 1. If n denotes the number of horizontal rings, then the total number of rings will be $n \times n$. The order of the Graph $O[G]$, shown in Fig. 2, is $2n^2 + 4n$, and the size $E[G]$ of the graph is, $3n^2 + 4n - 1$. The name used to symbolize boron nitride is BN. The 2D covalent structure of the boron nitride graph has two types: cubic and hexagonal. In present study, we are
considering the graph of hexagonal boron nitride. The melting point of boron nitride is below the pressure at, $-3000 \degree C$, which shows great thermal stability of boron nitride. The atoms of boron and nitrogen are connected alternatively in the structure of boron nitride and form a hexagonal structure. In the hexagonal network, equal numbers of boron and nitrogen atoms are involved in the formation of hexagons. The bond length between the atoms is 0.145 nm. An N-B angle, or N-B-N is $120\degree$. The structure of the hexagonal BN is single layered and found in nanotubes.

Carbon nanotubes graph. The carbon nanotube graph (CNT) is a simple connected planner graph shown in Figs. 3 and 4. The carbon nanotube has two sets of rings, that is; vertical and horizontal. The one set contains n vertical rings and the other set contains, $n - 1$ horizontal rings. The carbon nanotube graph shown in Fig. 3, has $4n^2 + 4n - 1$ number of vertices, and $6n^3 + 3n^2 - 2$, number of edges. The term CNT is used to describe the structure of carbon nanotubes. Most of the carbon nanotubes have diameter close to 1 nm and length of the bond between carbons-carbon atoms and angle between the atoms depends upon the structure of the carbon nanotubes. In this paper, we consider the $n \times n$, $(n = n)$ rectangular section of the carbon nanotube graph for all $n \geq 2$.

Theorem 1.1. For, $n \geq 2$ the ABC and GA indices for the network of hexagonal boron nitride are:

i. $ABC(BN) = 3n^2 - 4\left(1 + \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{2}\right)n + \left(\frac{1}{\sqrt{3}} - 5\sqrt{2}\right)$

ii. $GA(BN) = 3n^2 - 4\left(1 - \frac{4}{\sqrt{3}}\right)n + 7$

Proof: The hexagonal boron nitride graph presented in Fig. 2 has three sorts of edges regarding the degrees of vertices. The edge segment of the boron nitride graph on the premise of degree of vertices are shown in Table 1 underneath:

(d_x, d_y)	Number of edges
(2, 2)	6
(2, 3)	$8(n - 2)$
(3, 3)	$(n-1)(3n-1)$

Table 1. Edge segment of BN graph on the premise of degree of vertices.
Hence, we obtained the following result using the values of Table 1 and simplifying it.

\[
ABC(BN) = \sqrt{3}n^2 - 4\left[\frac{1}{\sqrt{3}} + \sqrt{2}\right]n + \left[\frac{1}{\sqrt{3}} - 5\sqrt{2}\right]
\]

ii. The geometric-arithmetic index (GA) is defined as:

\[
GA(G) = \sum_{x \in E(G)} \frac{2\sqrt{d_x d_y}}{d_x + d_y}
\]

We obtained the following result using the values of Table 1 in the above equation.

\[
GA(BN) = 3n^2 - 4\left[1 - \sqrt{6}\right]n + 7
\]

Theorem 1.2. The \(ABC\) and \(GA\) indices of hexagonal boron nitride graph for \(n \geq 2\) are,

i. \(ABC(BN) = \frac{4}{3}n^2 + 4\left[1 + \frac{7}{63}\right]n + \left[2\sqrt{5} - 8\sqrt{21} + 8\sqrt{7} + \frac{20}{9}\right]\)

ii. \(GA(BN) = 3n^2 + \left[\frac{1}{\sqrt{13}} + \frac{3\sqrt{7}}{2} - 8\right]n - \frac{32\sqrt{42}}{13} - 4\sqrt{35} + \frac{4\sqrt{7}}{2} - \frac{16\sqrt{9}}{9} - 7\)

Proof: The hexagonal boron nitride graph has six types of edges based on the sum of the degrees of neighborhood. This form an edge partition shown in Table 2 below:

\((s_x, s_y)\)	Number of edges
(4, 5)	4
(5, 5)	2
(5, 7)	8
(6, 7)	8(n - 2)
(7, 9)	4(n - 1)
(9, 9)	(n - 1)(3n - 5)

Table 2. Edge partition of BN graph based on the sum of the degrees of neighborhood vertices.

Now, we calculate \(ABC\) index of hexagonal boron nitride graph, using the values of Table 2 in the above equation;

\[
ABC(BN) = \frac{4}{3}n^2 + 4\left[\frac{21\sqrt{2} + 10}{63}\right]n + \left[2\sqrt{5} - 8\sqrt{21} + 8\sqrt{7} + \frac{20}{9}\right]
\]

ii. The fifth version of geometry index is defined as;

\[
GA_5(G) = \sum_{x \in E(G)} \frac{2\sqrt{s_x s_y}}{s_x + s_y}
\]

Now, we calculate \(GA_5\) index of hexagonal boron nitride graph, by substituting the values of Table 2 in above expression \(GA_5(G)\). It becomes as follows through easy computations.

\[
GA_5(BN) = 3n^2 + \left[\frac{16\sqrt{12}}{13} + \frac{3\sqrt{7}}{2} - 8\right]n - \frac{32\sqrt{42}}{13} - 4\sqrt{35} + \frac{4\sqrt{7}}{2} - \frac{16\sqrt{9}}{9} - 7
\]

Theorem 1.3. For the carbon nanotube (CNT) graph for \(n \geq 2\), the \(ABC\) and \(GA\) indices are;

i. \(ABC(CNT) = 4n^2 + \left[5\sqrt{2} - \frac{14}{3}\right]n - \sqrt{2}\)
(d_i, d_j)	Number of edges
(2, 2)	$2n + 4$
(2, 3)	$8n - 6$
(3, 3)	$6n^2 - 7n$

Table 3. Edge partition of CNT graph based on degree of vertices.

\[
\text{GA}(\text{CNT}) = 6n^2 - \left(\frac{25 - 16\sqrt{6}}{5} \right)n + \left(4 - \frac{12\sqrt{6}}{5} \right)
\]

Proof: The carbon nanotube (CNT) graph is shown in Fig. 2. The CNT graph has three types of edges in terms of degree of vertices. This sort of edge partition presented below in Table 3.

i. The ABC index of a graph G is defined as:

\[
\text{ABC}(G) = \sum_{xy \in E(G)} \sqrt{dx + dy - \frac{2}{dx dy}}
\]

Hence, the index $\text{ABC}(\text{CNT})$, evolved through the values of Table 3 and the above relation $\text{ABC}(G)$, That is;

\[
\text{ABC}(\text{CNT}) = 4n^2 + \left(\frac{25 - 16\sqrt{6}}{5} \right)n - \sqrt{2}
\]

ii. The geometric-arithmetic index (GA) is defined as:

\[
\text{GA}(G) = \sum_{xy \in E(G)} \frac{2\sqrt{dx dy}}{dx + dy}
\]

Therefore, the required geometric-arithmetic index calculated through the values of Table 3 and simplifying the above expression. We get,

\[
\text{GA}(\text{CNT}) = 6n^2 - \left(\frac{25 - 16\sqrt{6}}{5} \right)n + \left(4 - \frac{12\sqrt{6}}{5} \right)
\]

Theorem 1.4. The ABC_4 and GA_5 indices of carbon nanotube graph for $n \geq 3$ are;

i. $\text{ABC}_4(\text{CNT}) = \frac{8}{3}n^2 + \frac{1}{2}\sqrt{2} + \frac{10}{3} + \frac{22\sqrt{7}}{15} + \frac{2\sqrt{21}}{21} - \frac{14}{3}n$

\[
- \left(\frac{1}{2}\sqrt{2} + \frac{10}{3} + \frac{7}{3} - 2\sqrt{5} + 5\sqrt{\frac{22}{21}} - 8\sqrt{\frac{2}{7}} + \frac{10}{9} \right)n
\]

ii. $\text{GA}_5(\text{CNT}) = 6n^2 + \left(\frac{8\sqrt{10}}{15} + \frac{16\sqrt{10}}{13} + \frac{3\sqrt{2}}{4} - \frac{48\sqrt{7}}{17} - 11 \right)n$

\[
- \left(\frac{20\sqrt{10}}{13} - \frac{4\sqrt{10}}{3} + \frac{16\sqrt{10}}{13} + \frac{3\sqrt{7}}{8} - \frac{16\sqrt{7}}{9} + \frac{48\sqrt{7}}{17} - 5 \right)
\]

Proof: For $n \geq 3$, carbon nanotube graph has nine types of edges based on the sum of the degrees of neighborhood. This sort of edge partition given below in Table 4.

i. The fourth version of ABC index is defined as

\[
\text{ABC}_4(G) = \sum_{xy \in E(G)} \sqrt{s_x + s_y - \frac{2}{s_x s_y}}
\]

We construct the relation for ABC_4 index of carbon nanotube graph using Table 4, that is;

\[
\text{ABC}_4(\text{CNT}) = \frac{8}{3}n^2 + \left(\frac{1}{2}\sqrt{2} + \frac{10}{3} + \frac{22\sqrt{7}}{15} + \frac{2\sqrt{21}}{21} - \frac{14}{3} \right)n
\]

\[
- \left(\frac{1}{2}\sqrt{2} + \frac{10}{3} + \frac{7}{3} - 2\sqrt{5} + 5\sqrt{\frac{22}{21}} - 8\sqrt{\frac{2}{7}} + \frac{10}{9} \right)n
\]

ii. The fifth version of geometry index is defined as
Similarly, the GA_5 index of CNT graph calculated through the values of Table 4, and after easy simplification, the required index is:

$$GA_5(CNT) = 6n^2 + \left(\frac{8\sqrt{42}}{13} + \frac{16\sqrt{10}}{13} + \frac{12\sqrt{2}}{4} - \frac{48\sqrt{2}}{17} - 11 \right)n - \left(\frac{20\sqrt{40}}{13} - \frac{4\sqrt{35}}{3} - \frac{16\sqrt{10}}{8} - \frac{3\sqrt{7}}{8} - \frac{16\sqrt{5}}{9} + \frac{48\sqrt{2}}{17} - 5 \right)$$

Preposition 1.1. The ABC_4 and GA_5 indices of carbon nanotube graph for $n = 2$ are;

i. $ABC_4(CNT) = \frac{2}{9} + 2\frac{7}{5} + 9\frac{\sqrt{2}}{5} + \frac{10}{3} + \frac{22}{5} + \frac{31}{2\sqrt{14}}$

ii. $GA_5(CNT) = 5 + \frac{48\sqrt{2}}{17} + \frac{16\sqrt{5}}{9} + \frac{9\sqrt{7}}{8} + \frac{16\sqrt{10}}{13} + \sqrt{35}$

Proof: The carbon nanotube graph has eight types of edges based on the sum of the degrees of neighborhood. The partition of the edges, based on the degrees of the neighborhood, is shown in the following table.

(s_x,s_y)	Number of edges
(4, 3)	4
(5, 5)	2n
(5, 7)	8
(5, 8)	4(n – 1)
(6, 7)	2(2n – 5)
(7, 9)	2n – 1
(8, 8)	4(n – 1)
(8, 9)	6n^2 – 15n + 7

Table 4. Edge partition of CNT graph based on the sum of the degrees of neighborhood vertices.

The GA_5 index of CNT graph evolved through Table 5 and above expression $GA_5(G)$. After few steps of straightforward computations, the required index is:

$$GA_5(CNT) = 5 + \frac{48\sqrt{2}}{17} + \frac{16\sqrt{5}}{9} + \frac{9\sqrt{7}}{8} + \frac{16\sqrt{10}}{13} + \sqrt{35}$$

Results and Discussions

In this study, we developed the formulae for calculating the ABC, GA, ABC_4 and, GA_5 topological indices for the 2D structures of hexagonal boron nitride and carbon nanotubes. These results make a significant contribution to the investigation of chemical graph theory, quantum chemistry, QSPR, and QSAR. The results of the study are as follows: *Hexagonal boron nitride graph (BN) ∀ n ≥ 2*
For $n = 2$ the fourth version of atom-bond connectivity index, and fifth version of geometric-arithmetic index of carbon nanotube graph are.

$$ABC_4(CNT) = 4 + 2\sqrt{\frac{7}{5}} + 9\sqrt{\frac{7}{5}} + \frac{10}{3} + 2\frac{22}{21} + \frac{31}{2\sqrt{14}}$$

$$GA_5(CNT) = 5 + 48\sqrt{\frac{2}{17}} + 16\sqrt{\frac{5}{9}} + 9\sqrt{\frac{7}{8}} + 16\sqrt{\frac{10}{13}} + \sqrt{35}$$

Table 5. Edge partition of CNT graph based on sum of the degrees of neighborhood vertices for $n \geq 2$.

(s_0, s_1)	Number of edges
(4, 5)	4
(5, 5)	2
(5, 7)	6
(5, 8)	4
(7, 9)	3
(8, 8)	2
(8, 9)	4
(9, 9)	1
References

1. Hayat, S. & Imran, M. Computation of topological indices of certain networks. *Appl. Math. Compute.* 240, 213–228 (2014).
2. Vukčević, D. & Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end–vertex degrees of edges. *J. Math. Chem.* 46, 1369–1376 (2009).
3. Điđa, M.V. Gutman, I. Jantschi, L. Molecular Topology; Nova Science Publishers: Huntington, NY, USA, Mathematics. 6, 33–45(2018).
4. Ghorbani, M. & Khaki, A. A note on the fourth version of geometric-arithmetic index. Optoelectron. *Adv. Mater.-Rapid Commun.* 4, 2212–2215 (2010).
5. Gao, Y., Liang, L. & Gao, W. Fourth ABC Index and Fifth GA Index of Certain Special Molecular Graphs. *Int. J. Eng. Appl. Sci.* 2, 6–12 (2015).
6. Farahani, M. R. Fourth Atom-Bond Connectivity (ABC4) Index of Nanostructures. *Sci-Afric J. Sci.* 2, 567–570 (2014).
7. Imran, M., Gao, W. & Farahani, M. R. On topological properties of sierpinski networks. *Chaos Solitons Fractals.* 98, 199–204 (2017).
8. Wiener, H. Structural determination of paraffin boiling points. *J. Am. Chem. Soc.* 69, 17–20 (1947).
9. Darafsheh, M. Computation of topological indices of some graphs. *Acta Appl. Math.* 110, 1225–1235 (2010).
10. Ayache, A. & Alameri, A. Topological indices of the mk-graph. *J. Assoc. Arab Univ. Basic Appl. Sci.* 24, 283–291 (2017).
11. Gao, W., Chen, Y. & Wang, W. The Topological Variable Computation for a Special Type of Cycloalkanes. *Journal of Chemistry,* 2017, Article ID 6534758, 8 (2017).
12. Liu, J. B., Ali, H., Shaqf, M. K. & Munir, U. On Degree-Based Topological Indices of Symmetric Chemical Structures: Symmetry. *10*(11), 619 (2018).
13. Husin., M. N. & Hasni., R. E. A Nabeel and Imran. M. On Topological Indices of Certain Families of Nanostar Dendrimers. *Molecules.* 21, 821 (2016).
14. Liu, J. R. et al. Topological Indices of mth Chain Silicate Graphs. *Mathematics.* 7, 42 (2019).
15. Liu, J. B., Siddiqui, M. K., Zahid, M. A., Naem, M. & Baig, A. Q. Topological Properties of Cryptographic Structure of Molecules. *Symmetry.* 10, 265 (2018).
16. Amić, D. & Bešlo, D. The vertex-connectivity index revisited. *J. Chem. Inf. Comput. Sci.* 38, 817–822 (1998).
17. Baća, M., Horváthová, J., Mokrišová, M. & Suhanyiová, A. On topological indices of fullerene. *Appl. Math. Comput.* 251, 154–161 (2015).
18. Nadeem, M., Yousaf., A., Alolaiyan., H. & Razzaq, A. Certain polynomials and related topological indices for the series of benzenoid graphs (2019). *Scientific Reports.* 9, 1–5 (2019).
19. Nadeem, M. Yousaf, A. & Razzaq, A. On sequences of molecular descriptors related to some counting polynomials of a Benzenoid graph. *Util. Math., preprint* (2019).
20. Estrada, E., Torres, L. & Rodríguez, L. An atom–bond connectivity index: Modelling the enthalpy of formation of alkanes. *Indian J. Chem.* 37A, 849–855 (1998).
21. Ghorbani, M. & Hosseinzadeh, M. A. Computing ABC 4 index of nanostar dendrimers. Optoelectron. *Adv. Mater.-Rapid Commun.* 4, 1419–1422 (2010).
22. Graovac, A., Ghorbani, M. & Hosseinzadeh, M. A. Computing 4th geometric-arithmetic index for nanostar dendrimers. *J. Math. Nanosci.* 1, 33–42 (2011).
23. Abdelgader, M. S. Wang, C & Mohammed, S. A. Computation of Topological Indices of Some Special Graphs Mathematics. 6, 33(2018).
24. Gutman, I. Topological Properties of Benzenoid Systems. *Z. Naturforsch.* 37a, 69–73 (1982).
25. Mohammed, M. A., Atan, K. A., Khalaf, A. M., Mushdan, M. & Hasni, R. The atom bond connectivity index of certain graphs. *International Journal of Pure and Applied Mathematics.* 106(20), 415–427a (2016).
26. Jamil, M. K., Farahani., M. R & Kanna., M. R Fourth Geometric Arithmetic Index of Polycyclic Aromatic Hydrocarbons. *The Pharmaceutical and Chemical Journal.* 10(11), 619 (2018).
27. Khasy, A. T., Naryawaknkar, P & Selvan, D. Atom bond connectivity temperature index. *Journal of Mathematical Nanoscience.* 8(2), 67–75 (2018).

Acknowledgements

This research project was supported by a grant from the Research Center of the Center for Female Scientific and Medical Colleges, Deanship of Scientific Research, King Saud University, Saudi Arabia.

Author contributions

Mr. Muhammad Nadeem and Dr. Awais Yousaf made substantial contributions to this paper. Mr. Muhammad Nadeem conceived the study and derived the results through the logic of inductive hypotheses. Dr. Awais Yousaf, Mr. Nadeem’s PhD adviser, suggested this problem, validated all the results and helped with manuscript preparation. Hanan Alolaiyan and Abdul Razzaq validated the results and prepared the final version of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to A.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
