High quality draft genome sequence of the heavy metal resistant bacterium *Halomonas zincidurans* type strain B6\(^T\)

Ying-Yi Huo\(^1\), Zheng-Yang Li\(^1\), Hong Cheng\(^2\), Chun-Sheng Wang\(^1\) and Xue-Wei Xu\(^1\)*

Abstract

Halomonas zincidurans strain B6\(^T\) was isolated from a deep-sea heavy metal rich sediment from the South Atlantic Mid-Ocean Ridge. The strain showed significant resistance to heavy metals, especially to zinc. Here we describe the genome sequence and annotation, as well as the features, of the organism. The genome contains 3,325 protein-coding genes (2,848 with predicted functions), 61 tRNA genes and 6 rRNA genes. *H. zincidurans* strain B6\(^T\) encodes 31 genes related to heavy metal resistance. And HGT may play an important role in its adaption to the heavy metal rich environment. *H. zincidurans* strain B6\(^T\) may have potential applications in the bioremediation of heavy metal-contaminated environments.

Keywords: *Halomonas*, Heavy metal resistant, The South Atlantic Ocean, Genome

Introduction

Heavy metals, either essential (e.g. Mn, Zn, Cu, Co, Ni and Mo) or toxic (e.g. Hg, Ag and Cd), are generally harmful to microbial cells even at low concentrations, as to other living organisms [1,2]. However, some microorganisms are able to resist to certain kinds and concentrations of heavy metals through several mechanisms, such as incorporating or precipitating heavy metals into complexes, oxidizing or reducing metals to less toxic valence states, and direct transporting metals out of the cell [3,4]. These heavy metal resistant microorganisms have been attracting great interests because of their potential biotechnological applications in bio-mining of expensive heavy metals and bioremediation of heavy metal-contaminated environment [2].

Halomonas, the largest genus of the family *Halomonadaceae*, can be found in most saline environments, including marine environments, salterns, saline lakes and soils, as well as salty foods, etc. [5,6]. *Halomonas zincidurans* strain B6\(^T\), a moderately halophilic bacterium, was isolated from a deep-sea sediment from the South Atlantic Mid-Ocean Ridge [5]. The strain was able to grow in medium containing high concentrations of heavy metals, especially Zn\(^{2+}\) ion, which is not detected in the reference strains and other moderately halophiles [5,7]. Therefore, the novel isolate was named as *H. zincidurans* due to its particular resistance to zinc ion [5]. Here, we present a summary classification and a set of features of *H. zincidurans* strain B6\(^T\), together with the description of the genomic sequencing and annotation.

Organism information

A deep-sea sediment sample, TVG10, was collected from the South Atlantic Mid-Ocean Ridge (Table 1). There were many small hard orange red-colored lumps mixed in the sediment sample, which might be the particles containing ferric oxide and diffusing with hydrothermal plumes [8]. Not surprisingly, the concentrations of heavy metals in sample TVG10 were much higher than those in the samples collected from deep-sea seamount sediment [9], offshore sediment [10] and continental crust [11] (Additional file 1: Table S1), including Fe (98.99 mg/g), Mn (42.48 mg/g), Cu (0.839 mg/g), Ni (0.338 mg/g), Zn (0.285 mg/g), Cr (0.195 mg/g) and Co (0.064 mg/g). With consideration of the heavy metal rich environment, marine broth
medium (MB, BD) containing 20 mM Mn$^{2+}$ was used to isolate heavy metal resistant strains. Subsequently, strain B6T was obtained [5].

H. zincidurans strain B6T is a Gram-stained negative, rod-shaped (Figure 1), moderately halophilic bacterium growing at 0.5-15% (w/v) NaCl (Table 1). Strain B6T exhibited the highest 16S rRNA gene sequence similarity with *H. xinjiangensis* (96.1%). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B6T and *H. xinjiangensis* clustered together in a distinct branch within the genus *Halomonas* with a high bootstrap value (Figure 2). Strain B6T was able to resist high concentrations of heavy metals in liquid HM medium, including Mn$^{2+}$ (200 mM), Co$^{2+}$ (1.0 mM), Cu$^{2+}$ (2.5 mM) and Zn$^{2+}$ (14 mM). Its resistance to Zn$^{2+}$ could be much higher (30 mM) when incubated on marine agar 2216 medium (MA, BD) [5], comparing to only 1 mM Zn$^{2+}$ resisted by *H. xinjiangensis* TRM0175T. And the maximum zinc resistance concentration for 250 moderately halophilic bacteria, reported by Nieto et al., was only 2.5 mM [7]. Therefore, *H. zincidurans* strain B6T is of significant interest due to its prominent resistance to zinc.

Genome sequencing information

Genome project history

The next-generation shotgun-sequencing and quality assurance was performed at the Beijing Genome Institute.

Table 1 Classification and general features of *H. zincidurans* B6T according to the MIGS recommendations [12]

MIGS ID	Property	Term	Evidence codea
MIGS-6	Habitat	Deep-sea sediment	TAS [5]
MIGS-6.3	Salinity	Moderately halophilic, 0.5-15% NaCl	TAS [5]
MIGS-22	Oxygen	Strictly aerobic	TAS [5]
MIGS-15	Biotic relationship	Free-living	NAS
MIGS-14	Pathogenicity	Not reported	
MIGS-4	Geographic location	South Atlantic Ocean	TAS [5]
MIGS-5	Sample collection time	Feb 20, 2012	NAS
MIGS-4.1	Latitude	13.60° S	TAS [5]
MIGS-4.2	Longitude	14.52° W	TAS [5]
MIGS-4.3	Depth	2950 m	TAS [5]
MIGS-4.4	Altitude	-2950 m	TAS [5]

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [25].
The gap closure and annotation processes were performed by the authors. The Whole Genome Shotgun project of *H. zincidurans* strain B6 has been deposited at DDBJ/EMBL/GenBank under the accession JNCK00000000. The version described in this paper is version JNCK01000000. Table 2 presents the project information and its association with MIGS version 2.0 compliance [12].

Growth conditions and DNA isolation

H. zincidurans strain B6 was aerobically cultivated in MB medium at 30°C. Total genomic DNA was extracted using the method described by Marmur [32]. The quality and quantity of the genomic DNA was determined by 0.6% agarose gel electrophoresis with λ-Hind III digest DNA marker (TaKaRa, Dalian, China) and by a Qubit® fluorometer (Invitrogen, CA, USA) with Qubit dsDNA BR Assay kit (Invitrogen, CA, USA). About 350 μg DNA with a concentration of 450 ng/μl was obtained.

Genome sequencing and assembly

Whole-genome shotgun DNA sequencing of *H. zincidurans* strain B6 was performed using Solexa paired-end sequencing technology (HiSeq2000 system, Illumina, USA) [33]. Two libraries with insert size 494 bp and 2,586 bp were constructed and a total of 519 Mb and 416 Mb raw data were produced before filtering. After removing the adapter, duplicated reads and short inserts from the data of large library, there remained 433 Mb (~120-folds genome coverage) and 328 Mb (~90-folds genome coverage) clean data from the small and large libraries for assembling, respectively. Then these sequences were assembled into 15 contigs using the SOAPdenovo v.1.05 [30], the contig N50 length of which was 1,864,365 bp. PCR primers for gap closure were designed with Primer Premier v.5. PCR reactions were performed with PrimeSTAR HS Polymerase (TaKaRa, Dalian, China) and the amplicons were sequenced using Sanger and primer walking technologies. The sequenced fragments were subsequently assembled with the contigs using SeqMan of the Lasergene package (DNASTar, Madison, WI) into 2 contigs.

Genome properties

The genome was assembled into 2 contigs, one with a size of 3,546,937 bp and the other with 7,823 bp (Table 3). The G+C content determined based on the total 3,554,760 bp sequences was 66.41%. A total of 3,392 genes were predicted, including 3,325 protein-coding genes, 61 tRNA genes and two copies of 16S-23S-5S rRNA gene operons (Table 4 and Figure 2). Among the protein coding genes, 2,848 were assigned to putative functions, and the remaining was annotated as hypothetical proteins. In total, 1,938 and 442 protein coding genes were assigned to KEGG and subsystems, respectively. The detailed properties and the statistics of the genome as well as the distribution of genes into COG functional categories are summarized in Tables 3, 4 and 5, Figure 3 and Additional file 2: Table S2.

Insights into the genome

The genome of *H. zincidurans* strain B6 contains 31 genes related to heavy metal resistance, especially to zinc resistance (Table 6). Zinc is an essential but also toxic metal for living being [2,43]. The concentration of zinc inside bacterial cells is maintained by importing limitation, efflux, accumulation and sequestration [44,45]. *H. zincidurans* strain B6 possesses four heavy metal translocating P-type ATPases (HALZIN_733, HALZIN_1240, HALZIN_2196 and HALZIN_2262), which may participate in the transport of Zn2+, Mn2+, Cu2+, Cd2+, Pb2+, Ag+ and Hg2+.
against the concentration gradient to the periplasm [2,44].

Especially the two ZntA P-type ATPases (HALZIN_733 and HALZIN_2196) may mediate resistance to Zn\(^{2+}\), Cd\(^{2+}\) and Pb\(^{2+}\) [46,47]. Zn\(^{2+}\), Co\(^{2+}\), Cu\(^{2+}\), Cd\(^{2+}\) and Ni\(^{2+}\) are able to be transported by RND family efflux transporter protein (HALZIN_54, HALZIN_1411, HALZIN_2047, HALZIN_2208 and HALZIN_2209) from both the cytoplasm and the periplasm to outside [2,44]. Usually the P-type ATPases are regulated by MerR family regulators responding to the intracellular heavy metal concentration [44,48,49]. Six analogues of MerR family regulators (HALZIN_399, HALZIN_922, HALZIN_2261, HALZIN_2264, HALZIN_2469 and HALZIN_2675) were found in the genome of H. zincidurans strain B6\(^{T}\). Additionally, a zinc uptake regulation protein ZUR (HALZIN_1413), which is a repressor regulator during zinc uptake, is also detected [44,50]. The presence of these genes is in accordance with zinc resistance phenotype of H. zincidurans strain B6T.

Among the 31 ORFs related to heavy metal resistance, it is noteworthy of two mer-operons. One mer-operon encodes a mercuric transport protein (MerE, HALZIN_916) for organic mercury uptake [51], a transcriptional regulator (MerD, HALZIN_917), three alkylmercury lyases (MerB, HALZIN_918-920) catalyzing organomercurials yielding Hg\(^{2+}\) [52] and a transcriptional regulator (MerR,
HALZIN_922). The other one encodes a transcriptional regulator (MerR, HALZIN_2469), two mercuric transport proteins (MerT and MerP, HALZIN_2470-2471) for inorganic mercury uptake [51] and a mercuric reductase (MerA, HALZIN_2472) catalyzing Hg²⁺ to Hg⁰ [53]. According to the genomic data, *H. zincidurans* strain B6T is able to survive in both inorganic and organic mercury environments. Interestingly, the four ORFs of the inorganic mer-operon showed the highest sequence identities to those of *Halomonas lutea*. Nevertheless, all the six ORFs of the organic mer-operon did not show the highest sequence identities to those of the genus *Halomonas*, but to the genera *Burkholderia*, *Pseudomonas*, *Gladiecola* and *Stenotrophomonas*, which indicates that the organic mer-operon might be acquired by HGT. Of special interest are the three alkylmercury lyases (MerB, HALZIN_918-920), which had obvious differences between the G+C content (56.6%; 57.1, 56.6 and 56.0% for these three gene sequences, respectively) as well as the G+C content at the third-codon positions (60.3%; 60.4, 61.0 and 59.4% for these three gene sequences, respectively) and those of the total protein-coding genes (65.4 and 82.8%, respectively). Besides, the RSCUs of nearly half of the 59 codons used by these three genes (23, 27 and 26 codons for HALZIN_918-920, respectively) change more than 2 folds, compared with those used by total protein-coding genes. 13 of the 31

Table 2 Project information
MIGS ID
MIGS-31
MIGS-28
MIGS-29
MIGS-31.2
MIGS-30
MIGS-32
Locus Tag
Genbank ID
Genbank Date of Release
GOLD ID
BIOPROJECT
Project relevance
MIGS-13

Table 4 Nucleotide content and gene count levels of the genome
Attribute
Value
Genome size (bp)
DNA coding (bp)
DNA G+C (bp)
DNA scaffolds
Total genes
Protein coding genes
RNA genes
Genes with function prediction
Genes assigned to COGs
1 or more conserved domains
2 or more conserved domains
3 or more conserved domains
4 or more conserved domains
Genes with Pfam domains
Genes with signal peptides
Genes with transmembrane helices
CRISPR repeats

Table 5 Number of genes associated with the 25 general COG functional categories
Code
J
A
K
L
B
D
Y
V
T
M
N
Z
W
U
O
C
G
E
F
H
I
P
Q
R
S
T
ORFs (41.9%) were not related to *Halomonadaceae* genes according to the gene sequence similarity analysis, 9 of the 13 ORFs had RSCU change larger than 2 folds in more than 25% codons. These results indicated the existence of HGT events among the heavy metal resistance-related genes. Thus, HGT events might be an important way for *H. zincidurans* strain B6T to acquire heavy metal resistant ability and to adapt to the heavy metal rich environment.

Conclusion

The draft genome sequence of the heavy metal resistant bacteria *H. zincidurans* strain B6T isolated from the South Atlantic Mid-Ocean Ridge provide an insight into the genomic basis of its heavy metal resistance ability. And HGT may play an important role in its adaptation to the heavy metal rich environment. On the basis of analysis and characterization of genome, *H. zincidurans* strain B6T might be resistant more kinds of heavy metal than we tested, such as Hg^{2+}, Cd^{2+}, Pb^{2+}, Ni^{2+} and Ag^+, etc. And it may have the potential for the bio-remediation of multi-metal-contaminated environments. In addition, further analysis will be performed to confirm its resistant ability to other heavy metals and determine the mechanism of heavy metal resistance that we don’t know yet.
Protein id	Position	Size/aa	Strand	Predicted function	Organism	Class	Identity	Accession no.
HALZIN_54	48442-49500	352	+	RND family efflux transporter, MFP subunit	Idiomarina sediminum	Gammaproteobacteria	44%	WP_025860724
HALZIN_399	433553-434005	150	+	MerR family Cd(II)/Pb(II)-responsive transcriptional regulator	Halomonas lutea	Gammaproteobacteria	75%	WP_019019418
HALZIN_733	77827-780812	846	+	Heavy metal translocating P-type ATPase ZntA	Gracilimonas tropica	Sphingobacteria	59%	WP_020403952
HALZIN_916	977118-976882	78	-	Mercutic transport protein MerE	Burkholderia cepacia	Betaproteobacteria	99%	WP_006965885
HALZIN_917	977480-977115	121	-	Transcriptional regulator MerD	Pseudomonas putida	Gammaproteobacteria	98%	WP_012806008
HALZIN_918	978239-977592	215	-	Alkylmercury lyase MerB	Paraglaciecola polaris	Gammaproteobacteria	94%	WP_007106069
HALZIN_919	979028-978390	212	-	Alkylmercury lyase MerB	Paraglaciecola polaris	Gammaproteobacteria	94%	WP_007106069
HALZIN_920	979808-979179	209	-	Alkylmercury lyase MerB	Paraglaciecola polaris	Gammaproteobacteria	90%	WP_007106069
HALZIN_922	980118-980540	140	+	Transcriptional regulator MerR	Stenotrophomonas maltophilia	Gammaproteobacteria	99%	WP_005413398
HALZIN_934	994405-993521	294	-	Magnesium and cobalt efflux protein CorC	Chromohalobacter saleigens	Gammaproteobacteria	81%	WP_011507633
HALZIN_1240	1334217-1331998	739	-	Heavy metal translocating P-type ATPase	Halomonas sp.	Gammaproteobacteria	97%	WP_023004666
HALZIN_1392	1499237-1498659	192	-	Superoxide dismutase	Halomonas smyrnensis	Gammaproteobacteria	85%	WP_016854001
HALZIN_1411	1521826-1522995	389	+	RND family efflux transporter, MFP subunit	Halomonas lutea	Gammaproteobacteria	76%	WP_019017686
HALZIN_1413	1526330-1526785	151	+	Zinc uptake regulation protein ZUR	Halomonas lutea	Gammaproteobacteria	82%	WP_019017691
HALZIN_2047	2179598-2182789	1063	+	RND family efflux transporter protein	Pseudoxanthomonas suwonensis	Gammaproteobacteria	85%	WP_013533339
HALZIN_2196	2338252-2335574	892	-	Heavy metal translocating P-type ATPase ZntA	Halomonas lutea	Gammaproteobacteria	65%	WP_019020337
HALZIN_2208	2355137-2351976	1053	-	RND family efflux transporter protein	Pseudomonas alcaligenes	Gammaproteobacteria	58%	WP_021217164
HALZIN_2209	2356423-2351976	428	-	RND family efflux transporter, MFP subunit	Halomonas lutea	Gammaproteobacteria	53%	WP_019020155
HALZIN_2226	2411989-2410787	400	-	Multicopper oxidase	Sphingopyxis boekryngensis	Alphaproteobacteria	55%	WP_022673021
HALZIN_2261	2412630-2413034	134	+	Transcriptional regulator MerR	Halomonas lutea	Gammaproteobacteria	90%	WP_019017365
HALZIN_2262	2413107-2415596	829	+	Heavy metal translocating P-type ATPase	Halomonas lutea	Gammaproteobacteria	92%	WP_019017357
HALZIN_2264	2416527-2416976	149	+	Transcriptional regulator MerR	Halomonas lutea	Gammaproteobacteria	89%	WP_026300314
HALZIN_2266	2423176-2423622	148	+	CopG family transcriptional regulator	Halomonas lutea	Gammaproteobacteria	80%	WP_019017364
HALZIN_2271	2424931-2425086	51	+	Copper resistance protein CopC	Hyphomonas neptunium	Alphaproteobacteria	51%	WP_011646711
HALZIN_2272	2425115-2425978	287	+	Copper resistance protein CopD	Thialkalivibrio sp.	Gammaproteobacteria	43%	WP_018881395
HALZIN_2469	2658088-2657690	132	-	Transcriptional regulator MerR	Halomonas lutea	Gammaproteobacteria	90%	WP_019020805
HALZIN_2470	2658244-2658588	114	+	Mercuric transport protein MerT	Halomonas lutea	Gammaproteobacteria	78%	WP_019020806
HALZIN_2471	2658620-2658925	101	+	Periplasmic mercury(+2) binding protein MerP	Halomonas lutea	Gammaproteobacteria	82%	WP_019020807
HALZIN_2472	2658988-2660622	544	+	Mercuric reductase, MerA family	Halomonas lutea	Gammaproteobacteria	93%	WP_019020808
HALZIN_2675	2872087-2872584	165	+	Transcriptional regulator MerR	Halomonas sp.	Gammaproteobacteria	66%	WP_023005510
HALZIN_3265	3489632-3489021	203	-	Superoxide dismutase	Halomonas lutea	Gammaproteobacteria	74%	WP_019019731
Additional files

Additional file 1: Table S1. Concentrations of heavy metals in deep-sea sediment collected from the South Atlantic Mid-Ocean Ridge (1) and the sediments from the Central Pacific seamount (2), offshore sediment (3) and continental crust (4).

Additional file 2: Table S2. Associated MIGS record.

Abbreviations
HGT: Horizontal gene transfer; RSUCl: Relative synonymous codon usage.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YH designed and performed experiments, analyzed data and wrote the paper; ZL performed experiments; HC analyzed genome data; CW analyzed data; XX designed the experiments and wrote the paper. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (No. DY125-15-R-03); the National Natural Science Foundation of China (No. 41276173); the Zhejiang Provincial Natural Science Foundation of China (No. LQ13D060002) and the Scientific Research Fund of the Second Institute of Oceanography, SOA (No. JT1305).

Author details
1Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, P. R. China. 2College of Life Sciences, Zhejiang University, Hangzhou, P. R. China.

Received: 9 July 2014 Accepted: 23 November 2014 Published: 29 December 2014

References
1. Valls M, de Lorenzo V. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev. 2002; 26:327–38.
2. Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999; 51(6):730–50.
3. Özdemir S, Kilinc E, Poli A, Nicolaus B, Güven K. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev. 2002; 26:327–38.
4. Teitel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol. 2003; 69(12):2313–20.
5. Xie L, Xu X-W, Meng F-X, Huo Y-Y, Oren A, Yang J-Y, Wang C-S. Halomonas zinckardiae sp. nov., a heavy-metal-tolerant bacterium isolated from the deep-sea environment. Int J Syst Evol Microbiol. 2013; 63(11):4230–36.
6. Arahal DR, Ventosa A. The family Halomonadaceae. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E, editors. The Prokaryotes: a Handbook on the Biology of Bacteria, Volume 6. 3rd ed. New York: Springer; 2006. p. 721–55.
7. Nieto JJ, Fernandez-Castillo R, Marquez MC, Ventosa A, Quesada E, Ruiz-Berr aquero F. Survey of metal tolerance in moderately halophilic eubacteria. Appl Environ Microbiol. 1989; 55(8):2385–90.
8. Freely RA, Geitler TL, Baker ET, Maso oth GI, Hammond SR. Distribution and composition of hydrothermal plume particles from the ASHES Vent Field at Axial Volcano, Juan de Fuca Ridge. J Geophys Res: Solid Earth. 1990; 95(B8):12855–73.
9. Huo Y, Cheng H, Anton FP, Wang C, Jiang X, Pan J, Wu M, Xu X. Ecological functions of uncultured microorganisms in the cobalt-rich feromanganese crust of a seamount in the central Pacific are elucidated by fosmid sequencing. Acta Oceanologica Sinica. 2014. in press.
10. Zhao Q. Ocean Geochemistry. Beijing: The Geological Publishing House; 1988.
11. Hans WK. The composition of the continental crust. Geochim Cosmochim Acta. 1995; 59(2):1217–22.
12. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MI, Angiuoli SV, Ashburner M, Axelrod N, Baldauf S, Ballard S, Boone J, Cochrane G, Cole J, Dawynter P, De Vos P, dePamphilis C, Edwards R, Faruque N, Feldman R, Gilbert J, Gilna P, Glöckner FO, Goldstein P, Guralnick R, Haft D, Hancock D, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008; 26(9):541–7.
13. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990; 87(12):4576–9.
14. Garrity GM, Bell JA, Lilburn T. Phylum XIV. Proteobacteria phyil. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, Volume 2, Part B. 2nd ed. New York: Springer; 2005: p. 1.
15. Validation of publication of new names and new combinations previously effectively published outside the JSEBM. Int J Syst Evol Microbiol. 2005; 55(6):2235–38.
16. Garrity GM, Bell JA, Lilburn T. Class III. Gammaproteobacteria class. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, Volume 2, Part B. 2nd ed. New York: Springer; 2005: p. 1.
17. Xu L, Xu X-W, Meng F-X, Huo Y-Y, Oren A, Yang J-Y, Wang C-S. Halomonas elongata gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996. Int J Syst Evol Microbiol. 2007; 57(9):1975–83.
18. Ben Ali Garn Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R, Labat M. Modicoccobacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol. 2007; 57(10):2307–13.
19. Validation of publication of new names and new combinations previously effectively published outside the IJSB. List No. 291. Int J Syst Bacteriol. 1989; 39(2):205–9.
20. Dobson SJ, Franzmann PD. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitriticans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the Family Halomonadaceae. Int J Syst Bacteriol. 1996; 46(2):550–58.
21. Vreeland RT, Litchfield CD, Martin EL, Elliot E. Halomonas elongata, a new genus and species of extremely salt-tolerant bacterium. Int J Syst Bacteriol. 1980; 30(2):485–95.
22. Mello da Moraes CR, Ventosa A. Phyllogenetic inferences and taxonomic consequences of 16S ribosomal DNA sequence comparison of Chromohalobacter marismortui, Volcanicella eurhinaulis, and Deleya salina and reclassification of V. eurhinaulis as Halomonas eurhinaulis comb. nov. Int J Syst Bacteriol. 1995; 45(4):712–16.
23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, RichardsonJE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25–9.
24. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673–80.
25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987; 4(4):406–25.
26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980; 16(2):111–20.
27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731–3.
30. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010; 20(2):265–72.
31. Delcher AL, Batke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiotic DNA with Glimmer. Bioinformatics. 2007; 23(6):73–79.
32. Marmur J. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol. 1951; 6(2):208–18.
33. Bentley DR, Balasubramanian S, Seward HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, James CL, Bignell HR, Boutilier TM, Bryant J, Carter RJ, Cheetham RK, Cox A, Ellis DJ, Flattbush MR, Gornley ML, Humphreys SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maesinger KS, Murray LI, Obadovic B, Ost T, Parkinson ML, Pratt MR, et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008; 456(7218):53–9.
34. Lawe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):955–64.
35. Lageen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007; 35(9):3100–08.
36. Bairoch A, Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Res. 1992; 20(Database issue):21–22.
37. Tatusov RL, Galperin MY, Natale DA, Koonin EV. COG: a database for comparing protein families. Nucleic Acids Res. 2000; 28(1):33–40.
38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes K, Glass EM, Gordon JB, Haldeman M, Kainer BA, Liu KK, Overbeek RA, Powell RJ, Rebeiro RS, Romalde JL, Rychlewski L, Shen DH, Textor J, Tatusov RL, Wagner L, Wang TT, Weidman JM, Weng Z, Zahniser SM, Zasloff M, Young JD. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008; 9:75.
39. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic acid res. 2007; 35 suppl 2:W182–5.
40. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004; 32(Database issue):D277–80.
41. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J Mol Biol. 2001; 305(5):567–80.
42. Dyrløv Bendtsen J, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004; 340(4):783–95.
43. McCall KA, C-C H, Fierke CA. Function and mechanism of zinc metalloenzymes. J Nutr. 2000; 130(5):1375–465.
44. Choudhury R, Srivastava S. Zinc resistance mechanisms in bacteria. Cur Sci. 2001; 81(7):668–75.
45. Blencowe DK, Morby AP. Zn(II) metabolism in prokaryotes. FEMS Microbiol Rev. 2003; 27(2-3):291–311.
46. Rensing C, Sun Y, Mitra B, Rosen BP. Pbt(II)-translocating P-type ATPases. J Biol Chem. 1998; 273(49):32614–17.
47. Rensing C, Mitra B, Rosen BP. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci U S A. 1997; 94(26):1426–31.
48. Brown NL, Stoyanov JV, Kidd SP, Hobman JL. The MerR family of transcriptional regulators. FEMS Microbiol Rev. 2003; 27(2–3):145–63.
49. Broekhuis K, Hobman JL, Lawley B, Blank L, Marshall SJ, Brown NL, Morby AP. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol Microbiol. 1999; 33(3):993–902.
50. Harms K. Bacterial zinc uptake and regulators. Cur Opin Microbiol. 2005; 8(2):196–202.
51. Sone Y, Pan-Hou H, Nakamura R, Sakake K, Kyono M. Roles played by MerE and MerT in the transport of inorganic and organic mercury compounds in Gram-negative bacteria. J Health Sci. 2010; 56(1):123–27.
52. Pitts KE, Summers AO. The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry. 2002; 41(32):10287–96.
53. Felske A, Fehr W, Pauling B, von Canstein H, Wagner-Dobler I. Functional profiling of mercuric reductase (merA) genes in biofilm communities of a technical scale biocatalyzer. BMC Microbiol. 2003; 3(1):22.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit