Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives

Whale sharks attract large numbers of tourists, divers and snorkelers each year to South Ari Atoll in the Republic of Maldives. Yet without information regarding the use and economic extent of the attraction, it is difficult to prioritize conservation or implement effective management plans. We used empirical recreational data and generalized mixed statistical models to conduct the first economic valuation (with direct spend as the primary proxy) of whale shark tourism in Maldives. We estimated that direct expenditures for whale shark focused tourism in the South Ari Marine Protected Area for 2012 and 2013 accounted for US$7.6 and $9.4 million respectively. These expenditures are based on an estimate of 72,000–78,000 tourists who are involved in whale shark excursions annually. That substantial amount of income to resort owners and operators, and tourism businesses in a relatively small area highlights the need to implement regulations and management that safeguard the sustainability of the industry through ensuring guest satisfaction and whale shark conservation.
Whale shark economics: a valuation of wildlife tourism in South Ari Atoll, Maldives

Fernando Cagua1,2, Neal Collins1,3, James Hancock1, and Richard Rees1

1Maldives Whale Shark Research Programme, South Ari Atoll, Maldives
2Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
3International Union for the Conservation of Nature, Gland, Switzerland

ABSTRACT

Whale sharks attract large numbers of tourists, divers and snorkelers each year to South Ari Atoll in the Republic of Maldives. Yet without information regarding the use and economic extent of the attraction, it is difficult to prioritize conservation or implement effective management plans. We used empirical recreational data and generalized mixed statistical models to conduct the first economic valuation (with direct spend as the primary proxy) of whale shark tourism in Maldives. We estimated that direct expenditures for whale shark focused tourism in the South Ari Marine Protected Area for 2012 and 2013 accounted for US$7.6 and $9.4 million respectively. These expenditures are based on an estimate of 72,000–78,000 tourists who are involved in whale shark excursions annually. That substantial amount of income to resort owners and operators, and tourism businesses in a relatively small area highlights the need to implement regulations and management that safeguard the sustainability of the industry through ensuring guest satisfaction and whale shark conservation.

Keywords: Economic valuation, wildlife tourism, whale shark, Maldives, regression model

INTRODUCTION

In tropical locations around the world a new wildlife tourism industry has emerged in the last two decades that brings tourists in close proximity with whale sharks (Rhincodon typus; Catlin et al., 2010b). Due to the sharks’ docile nature, patterns of seasonal aggregation (Sequeira et al., 2013), as well as accessibility, tourists are able to snorkel and scuba dive with unrestrained (or free-swimming) whale sharks. Whale sharks are listed as “Vulnerable” to extinction on the IUCN Red List of Threatened Species (IUCN, 2014); due to this, whale shark tourism has been hailed as an important income-generating alternative to consumptive or extractive uses of whale sharks such as shark finning or liver-oil processing (Norman and Catlin, 2007).

Tourism revenue can be considered a type of non-consumptive direct use value (Catlin et al., 2013; for a description of value types see Turner et al., 2003). The value of a natural location or a non-consumptive activity can be evaluated from a non-market perspective by using contingent (e.g. willingness to pay) and travel cost methods, or complimentary by using market-based valuations like those obtained by measuring expenditure. The direct spend method, which has been previously used to evaluate the impact of elasmobranch watching (Anderson et al., 2011; Clua et al., 2011), provides a “minimal very conservative estimate of the economic value of natural areas” (Wood and Glasson, 2005). When data are available researchers use multipliers to also estimate the indirect effects in the economy (Catlin et al., 2010b). Direct spend, however, might also overestimate the value if it includes expenditures not exclusive of that resource. Therefore, tourism expenditure cannot be attributed to the natural resource if it is not the reason of the trip nor it influences the length of the stay. By estimating only the direct expenditure in whale shark excursions our valuation is closer to the substitution value, i.e. “the amount of expenditure that would be lost if whale shark tourism did not exist” (Catlin et al., 2010b).

The whale shark tourism industry was first organized at Ningaloo Reef in Western Australia in the late 1980’s and early 1990’s when operators began taking tourists mainly on diving excursions to swim with whale sharks when they appeared nearshore each year from May through June (Colman,
Without informed and effective management, wildlife tourism can have negative effects on wildlife like disruption of activity, injuring, and habitat alteration, ultimately damaging the resource it is intended to protect (Green and Higginbottom, 2000); as stakeholders overuse the resource, the long-term benefit is jeopardized (Isaacs, 2000; Moore and Rodger, 2010). Site-specific information and statistics are not only important to prioritize conservation, but are also invaluable to develop appropriate management plans (Garrod, 2002). Davis et al. (1997) assert that effective management planning for whale shark tourism needs both biological and recreational data. When complementing the ecological concern, recreational data and economic valuations can also be crucial tools to transparently determine appropriate management strategies such as visitation fees, licensing systems or other restrictions, as well as gaining public support on the implementation of such measures (Ludwig, 2000; Catlin et al., 2012, 2013).

In this study, we improve current understanding of whale shark tourism by exploring the visitation patterns and economic effect of whale shark excursions in South Ari MPA in 2012 and 2013. To our knowledge this is the first study to model tourism metrics (expenditure, visitation and boat activity) in a MPA based on data collected with dedicated field surveys, rather than surveying a sample of the visitors which has been the traditional method of assessment. The results and recommendations we provide can be

Table 1. Previous economic valuation of whale shark tourism (in US million dollars). Valuations reported in other currencies were converted to US$ using the average official rate for the year.

Location	Year	Total expenditure	Expenditure on WS excursions	Method	Reference
Belize (6 wks)	2002	$3.7	-	Direct spend	Graham, 2003
Seychelles (14 wks)	2003	-	$1.2	Contingent	Cesar et al., 2004
	2007	$3.9 - 5.0	-	Direct spend	Newman et al¹
Ningaloo (9 wks)	1994	$4.7	$1.0	Direct spend	Davis et al., 1997
	2004	$13.3	-	Unknown	Norman, 2005
	2006	$4.5	$2.3	Direct spend	Catlin et al., 2010b
	2006	$1.8 - 3.5	-	Substitution value	Catlin et al., 2010b

¹ Unpublished, cited in Rowat and Engelhardt, 2007

1997; Davis et al., 1997; Catlin and Jones, 2010). Whale shark tourism industries can now be found at numerous places worldwide—including the eastern Gulf of Mexico, Honduras, Belize, the Philippines, Mozambique, Seychelles, and the Maldives (Quiros, 2005; Sequeira et al., 2013). The burgeoning industry has made a strong economic case for conservation in that the sharks are worth more alive for tourism purposes than dead (Cisneros-Montemayor et al., 2013). However, the economics of whale shark tourism remains unclear apart from economic evaluations from Belize, the Seychelles and Ningaloo Reef (Table 1). Without this information it is difficult for localities with limited institutional powers—particularly in regards to environmental protection—to prioritize conservation of natural areas and implement effective management plans.

One popular location for whale shark tourism is the Republic of Maldives. Known for its abundance of sharks, rays, turtles, and cetaceans, the country is an iconic location for marine wildlife tourism. While local populations historically used marine resources such as whale sharks for extractive purposes, the exact closure date of the Maldives whale shark fishery is unclear. Sinan et al. (2011) suggest that large shark fisheries for liver-oil extraction ceased in the 1960’s, while Anderson and Ahmed (1993) reports it still happened in small-scale in the early 1990’s. In 1993 the first valuation of the reef shark diving tourism industry was made public, and concerns about its vulnerability from pelagic fisheries precipitated a chain of legislation that ended with a national whale shark hunting ban in 1995 (Notice No: FA-A1/29/95/39) and the subsequent declaration of three Marine Protected Areas in 2009—Hanifaru Bay, Agafaru, and the South Ari Atoll Marine Protected Area (South Ari MPA).

The South Ari MPA is well-known regionally due to the occurrence of whale sharks throughout the year. Unlike the Hanifaru Bay MPA—one area in the Baa Atoll Biosphere Reserve with a management plan in place—the South Ari MPA’s protected status is preliminary in that there is neither a management plan nor regulation in place yet. Anecdotal data suggest that tens of thousands of tourists participate in whale shark excursions there each year, however, no statistics exist that detail the extent of the industry or its economic benefit.
used to enhance the management of whale shark tourism at this location and encourage similar valuation studies in other wildlife attractions around the world.

METHODS

Study Location

Officially designated a protected area in 2009, the South Ari MPA is the largest Marine Protected Area in the Maldives with a total area of 42 km2. The legislative purpose of the MPA, according to the Maldives Environmental Protection Agency (2010), is to “protect and preserve a Maldivian aggregation of whale sharks, promote long-term conservation of the marine environment, and foster educational and scientific initiatives in the area.”

The boundaries of the MPA extend along the seaward fringe of the South Ari Atoll from Rangali Island until Dhigurah Island, which encompasses 1 km of littoral zone measured from the reef crest (algal ridge) and includes the reef crest and 650 m to 900 m of open sea (Fig. 1). The MPA boundaries represent the geographical area most commonly visited by tour operators for whale shark encounters.

Whale shark tourism activity

Due to the geographical isolation of the Maldivian islands, tourists wishing to participate in a whale shark excursion in the South Ari MPA must go through a tour operator. Tour options are typically limited to dive centers, in-house operators at the resort the tourist is staying at, or with a liveaboard operator (locally called “diving safari”). Twenty-eight tourist resorts are located in the greater Ari Atoll, four of them on the MPA boundaries. Prices for whale shark excursions are varied and are exclusively determined by the individual operators. Guesthouses, situated in local islands as opposed to resort-exclusive islands, are a relatively new accommodation option. In this study we did not distinguish them from resorts or diving safaris due to their recent emersion and limited guest numbers.

Data collection

From November 11, 2011, to December 31, 2012, the Maldives Whale Shark Research Programme (MWSRP) made 224 surveys along a 38 km linear transect section that coincides with the outer reef margin of the MPA. Surveys lasted 4.9 ± 1.5 h (mean ± SD) and were mostly started in the morning.
Table 2. Number of survey days by year and weekday.

(a) During high season.

Year	Friday	Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday	(all)
2011	3	2	2	6	2	3	5	23
2012	4	14	5	11	13	11	14	72
2013	1	18	4	12	14	20	18	87
(all)	8	34	11	29	34	37	37	182

(b) During low season.

Year	Friday	Monday	Saturday	Sunday	Thursday	Tuesday	Wednesday	(all)
2011	0	0	0	0	0	0	0	0
2012	1	3	4	0	4	6	2	11
2013	1	8	3	4	2	6	7	31
(all)	2	11	7	4	3	6	9	42

Each vessel in the MPA within 500 m of MWSRP’s boat was documented by noting the vessel location, name, type and number of persons on-board. Surveys were part of MWSRP’s monitoring program, which reduced operation intensity during tourist low seasons (March-September; Table 2).

During the surveys we estimated the location of the vessels with a handheld GPS unit. To determine the number of people on-board, a minimum of two observers individually counted the total persons on-board with the aid of binoculars. One person was added to the count if the skipper was not visible. The counts were repeated until there was consensus between the observers. The type of boat was selected between the options presented in the Table 3. All vessels not engaged in whale shark tourism were removed from the scope of this study.

We were only able to record spatial effort between October 2013 and December 2013, therefore the obtained boat distribution might only be an approximation. Although we were unable to survey the full extent of the MPA each day due to extraneous circumstances such as time, weather, or logistical constraints, we consider our surveys to be a representative approximation of a daily use census of the South Ari MPA as the same circumstances apply to tourists boats. This assumption does, however, imply that our expenditure and visitation figures might be underestimates of the actual values.

Data analysis

We used an array of statistical models to estimate tourism metrics for the South Ari MPA for 2012 and 2013. We modeled six response variables: daily number of vessels associated to tour operators (resorts and liveaboards), daily number of visitors (from resorts, liveaboards and total number of guests), and

Table 3. Boat types used in the study.

Type	Description
Resort associated vessels	
Excursion boat	40 - 60 ft diesel engine traditional boats (dhoni) and 40 - 70 ft sailboats used for snorkeling excursions
Diving boat	40 - 60 ft diesel engine dhonis adapted for one-day diving excursions
Sport fishing boat	26 - 60 ft sport fishing boats and motor yachts whose primary purpose is recreational fishing by anglers
Liveaboard associated vessels	
Liveaboard	70 - 140 ft boats that offer 10 - 30 guests to stay one or more nights at sea
Liveaboard diving vessel	40 - 60 ft day boats for scuba diving and shore excursions from the main liveboard
Tender	Outboard motor dinghies that support liveaboard operations
Other	Local fishing vessels, ferries and supply boats, PWC, military boats, dinghy sailboats, etc
We calculated the daily number of visitors by adding together the total number of persons observed on-board for each boat type. In order to control for the crew on-board, we subtracted two from the total number on-board each boat. Although occasionally there were more than two crew members per boat (especially on liveaboards), this imprecision is counteracted by the fact that in some cases we were not able to see and count all people on-board. To calculate daily direct expenditure we first multiplied the number of guests in a boat by the respective prices of a daily trip for each specific boat operator to determine the direct expenditure per boat. Subsequently all the expenditures per boat were summed. Because we surveyed the MPA only over a limited period of the day and because of the complications of counting the number of people on-board we consider our results to be conservative estimates of the actual tourism metrics.

Although it could change in the future due to the emergence of local community guest houses and dive centers, for this analysis we included only resort and liveaboard associated vessels as currently they are the only ones considered to generate substantial whale shark tourism-based economic income. The prices per daily excursion were sourced through online queries based on boat name, type, and operator (if known). This search yielded the price of daily trips for 168 of the 568 vessels that frequented the MPA (Table 4). For the vessels that we were unable to obtain the 2013 trip price, a price average was allocated according to vessel type. Whale shark excursions are liable for a Goods & Service Tax under Maldivian law (Maldives Inland Revenue Authority, 2014); although the associated taxes were not used in this study to determine the overall expenditure.

In the case of liveaboards, we estimated the daily price based on the total price of a trip per person in standard shared accommodation divided by the number of nights, without including taxes and service charge. We directly associated this expenditure with whale shark tourism in the South Ari Atoll MPA because the opportunity to encounter whale sharks is a primary reason for diving safaris to visit this area. Unlike the resort boats, we combined the boat types in the liveaboard category (liveaboard, diving vessel, tender) and assigned them a common price. We did this because it was usually possible to associate diving vessels and tenders to their respective liveaboards. Moreover, guests were often counted while on the support boats, not on the liveaboards.

In all six models we used the variables Season, Year and Day of the Week, mean daily Wind Speed (in order control for weather conditions), and the interactions between Day of the Week and Season, and Day of the Week and Year as explanatory variables. Roughly following Shareef and McAleer (2007) we considered that high tourist season occurs between October 1 and February 28 and low tourist season accounts for the rest of the year. Because there is no wind speed data measured from the MPA, we obtained daily means from the Blended Sea Surface Wind product from the National Climatic Data Center at the United States National Oceanic and Atmospheric Administration (Zhang et al., 2006).

To model expenditure, we fitted a linear model with generalized least squares (GLS) to the log transformed daily expenditure maximizing the log-likelihood. The GLS approach allowed us to account for heteroscedasticity, which improves the reliability of the coefficients calculated for the fixed effects (Goldstein, 1986). To select the most parsimonious model we used the Akaike information criterion (AIC), first determining the best weight and covariance structure, and then selecting the most appropriate fixed-effects set (Zuur et al., 2009).

To model the number of guests and boats for resorts and liveaboards—count data—we compared a generalized linear model (GLM) with a poisson and one with a negative binomial error structure; the negative binomial distribution performed consistently better for all models (likelihood ratio test, $p < 0.001$). Although we detected a significant—albeit small—autocorrelation on the residuals of all

Boat type	Min.	Mean	SD	Max.
Liveaboard1	90	247	68	381
Resort diving boat	17	102	61	200
Resort excursion boat	17	97	60	250
Resort speed boat	50	162	153	667

1 Liveaboards and associated vessels
Table 5. Yearly total expenditure and guests in the MPA calculated by adding daily model predictions within a year. Confidence intervals (CI) and standard errors (SE) were calculated by jackknifing the expenditure model and by bootstrapping the guest models.

Year	Expenditure (US$ million)	Liveboard guests (thousands)	Resort guests (thousands)	Total guests (thousands)					
	Total	SE	Bias	Total [95% CI]	Bias	Total [95% CI]	Bias	Total [95% CI]	Bias
2012	7.62	2.69	-0.70	26.27 [20.23, 37.06]	-2.09	45.07 [33.94, 55.57]	5.76	72.37 [57.76, 85.43]	0.52
2013	9.36	1.99	0.60	23.89 [18.43, 29.61]	-0.26	56.03 [46.35, 64.72]	2.78	77.93 [65.55, 129.4]	-1.92

models, we did not account for it. Instead, because of our priority on prediction precision (as opposed to coefficient estimation), we employed a multi-model inference approach that accounts for model inference uncertainty by averaging a set of candidate models (Buckland et al., 1997). Predictions were done with the AIC weighted average models that accounted for at least 95% of the evidence.

We used the models to daily predict the six response variables from January 1, 2012, to December 31, 2013, including those days when surveys were not conducted (due to limited sampling we did not predict any value for 2011). We then computed the annual number of visitors and annual expenditure by adding the daily results within each year. Because of the importance of quantifying the accuracy of our yearly estimates, we computed means and confidence intervals of the annual number of visitors by bootstrapping the models with 1000 replications (Young et al., 2003). Due to the more complex parameterization of the expenditure model, we calculated the corresponding standard errors using the Jackknife method leaving one sample out at a time (Efron and Tibshirani, 1986).

All analyses were performed using R 3.0.2 with the packages nlme, glmulti, MASS, and bootstrap (Calcagno and de Mazancourt, 2010; Canty and Ripley, 2013; Pinheiro et al., 2013; R Core Team, 2013; Venables and Ripley, 2002).

RESULTS

We estimated that mean direct expenditure on whale shark excursions was US$7.6 and $9.4 million in 2012 and 2013, respectively, with a mean total of 72,000–78,000 visitors per year for the same period (Table 5).

Daily direct expenditure on whale shark excursions \(\langle E \rangle \) was calculated based on the most parsimonious model (Supplemental Information Table S-1):

\[
\log(E + 1) \sim 1 + w + s + y + u \\
\text{var}(\varepsilon_i) = \sigma_w^2 \times \sigma_s^2 \times \sigma_y^2 \\
\varepsilon_i = \phi_1 \varepsilon_{i-1} + \eta_i
\]

where Day of the Week \(w \), Season \(s \), Year \(y \) and Wind Speed \(u \) are the fixed effects, and the variance of the residuals \(\text{var}(\varepsilon_i) \) is allowed to be different for each category of \(w, s \) and \(y \) \((\sigma_w^2, \sigma_s^2, \sigma_y^2) \). The model also takes into account the temporal autocorrelation; the residuals at time \(t \) \((\varepsilon_t) \) are a function of the autoregressive parameter of first order \((\phi_1 = 0.123) \), the residuals of the previous observation \((\varepsilon_{t-1}) \) and noise. Detailed results of the model estimates can be found in Table S-2. The daily number of guests and boats (both for liveaboards and resorts) were calculated from a weighted average of models that accounted for 95% of the evidence weight (Table S-3). Predictions for the number of resort guests were based on all independent variables but not their interactions, whereas all other count models also included the interaction between Season and Day of the Week (detailed parameter estimates in Table S-4a).

The effect of season was the largest in all models. While both liveaboard boats and resort boats visit the South Ari MPA in a given day more during high than low season, the difference between high and low season is three times larger for liveaboards than for resort vessels (Fig. 2d). There was a 60% decrease on the total number of guests, which was reflected on a 35% decrease on resort boats numbers and an 88% decrease on liveaboard boat numbers, causing a 64% decrease in daily economic expenditure (estimates based on model coefficients; Table S-2 and S-4, Fig. 2b).

Boat activity varied throughout the week—Wednesday being busiest day and Friday the least (Fig. 2c). The vessel types encountered in the MPA also varied per weekday with liveaboard-associated boats being present much more from Monday to Tuesday than from Friday to Sunday. However, the presence of resort-associated boats was relatively constant during the week except on Wednesdays when there was...
a larger amount of boats conducting whale shark excursions. In general, weekly patterns of vessel activity are similarly associated with visitors per day and expenditure per day (Fig. 2a). The estimated number of people engaging in whale shark tourism from resorts is not significantly different across the week, however, there are three times more guests from liveaboards on a Wednesday compared to Friday.

As expected, wind had a negative effect on the expenditure, for example a wind speed of one standard deviation above the average can cause a 13% decrease on daily the revenue. This negative effect is consistent in all models of number of guests and boats (SM Table 2, SM Table 4).

Most of the boats visiting the MPA for whale shark tourism are encountered on a 5 km stretch between Nalaguraidhoo Island (Sun Island Resort & Spa) and Maamigili Island (Fig. 3).

DISCUSSION

We estimate direct expenditure on whale shark excursions at US$7.6 ± 2.7 million (mean ± SE) in 2012 and $9.4 ± 2.0 million in 2013 based on an estimate of 72000–78000 tourists who are involved in whale shark excursions annually.

Both estimates were generated from the development of linear regression models as opposed to previous elasmobranch valuations estimates where expenditure surveys are administered to stakeholders and mean expenditure figures are multiplied by previously known guest numbers (Catlin et al., 2010b; Anderson et al., 2011; Clua et al., 2011) . By taking into account temporal autocorrelation and using resampling techniques (bootstrapping and jackknifing) that allowed us to estimate uncertainty, we believe that our estimates can be statistically superior to valuations that select a sample of guests and average individual expenses, often without providing confidence intervals or any other measure of variability. Our method presents a novel, unified approach to calculate expenditure and visitation metrics in the absence of official tourist data, while at the same time it captures temporal variability that other methods are insensitive to.

For instance, despite the less frequent sampling during low season (which is reflected in a higher standard deviation for this stratum; Table S-2), we detected, as expected, a clear significant difference on
guest numbers and income generated by whale shark trips between seasons. This difference is stronger for liveaboards, which showed an 88% reduction in boat activity compared to a 35% reduction of resort boats. We also detected temporal variability on a weekly basis—Wednesdays bringing the most revenue and Fridays the least. Similarly, liveaboards visit the MPA significantly more from Monday to Thursday, probably due to weekly-based operations—Saturdays being the most common collection day of tourists in the capital city Malé (approx. 100 km away from South Ari MPA), while resorts show a nearly constant operation across the week.

Our estimate of $9.4 million for whale shark tourism in 2013 alone suggests that the value of shark tourism has experienced a marked increase over the last 20 years in Maldives, largely owing to a new focus on whale sharks. Anderson and Ahmed (1993) estimated that direct expenditure on shark diving tourism in Maldives was US$2.3 million per year ($3.7 million in 2013, using U.S. Consumer Price Index). Our findings reinforce the observation that shark—especially whale shark—tourism has continued to expand over the last few years.

Similarly, other chondrichthyan species, such as Manta rays (*Manta alfredi*), are a major natural attraction for visitors to the Maldives. Anderson et al. (2011) estimated direct expenditure on manta ray diving and snorkeling excursions in Maldives is around US$8.1 million ($8.7 million in 2013 dollars). Their estimates came from 91 dive sites throughout the archipelago with 157,000 visitors swimming each year, with a population of mantas in the order of thousands. Contrastingly, our $7.6 to $9.4 million estimates of income from whale sharks come from just one site with 72,000–78,000 visitors per year and a population of 60 to 100 juvenile whale sharks (Riley et al., 2010). This underscores the significance of the South Ari MPA and the relatively concentrated industry while also highlighting the importance to implement sound management to ensure the sustainability of industry.

In Maldives, with the emphasis on high-end resorts, the relative importance of diving has declined in recent years (Anderson et al., 2011). Although less developed, its whale shark tourism industry shows some similarities with the mature whale shark industry at Ningaloo Reef, Australia. Catlin and Jones (2010) explain that in Ningaloo the visitor profile has shifted from a specialist tourist interested in wildlife experiences to a generalist visitor with greater interest in the non-wildlife aspects. As whale shark tourism becomes more popular in South Ari, tour operators must put emphasis on a high-quality experience rather than in the encounter itself, especially in an industry where word of mouth is the key mechanism of promotion (Catlin et al., 2010a).

To increase the number of cases that meet and exceed guests’ enjoyment and safety expectations and to minimize potential impacts of the industry on the whale sharks, stakeholders should promptly attempt to adopt management strategies. In fact, education, outreach, and regulative efforts can contribute to improved guest experiences (Davis et al., 1997; den Haring, 2012; Techera and Klein, 2013). Licensing of operators, which has been implemented in Ningaloo, has ensured minimal operation standards without it being perceived as an obstacle to business development. If licensing is flexible enough it can encourage continuous improvement of the operators (Catlin et al., 2012). An example to reduce crowding could be

![Figure 3. Scaled density of survey effort in the South Ari MPA. We used a simple linear model to detrend the observed boat density and obtain a density corrected for effort (solid line).](image-url)
to focus resort operations on weekends since liveaboards visit the MPA more frequently from Monday
to Thursday. Another example that comes from fisheries management, Individual Transferable Quotas,
could limit the number of licensed boats in the MPA as a way to reduce crowding without dictating the
actual number of people in the water with a shark at any time.

Alternatively, spotter planes can facilitate whale shark encounters by making searching more efficient
and therefore dispersing operators among a greater number of sharks (Rowat and Engelhardt, 2007; Catlin
and Jones, 2010). When the number of sharks available for encounters is limited, a code of conduct that
encourages to “pass the shark” from one operator to another after a mutually agreed time might improve
guest experience and reduce potential impacts on whale sharks.

Because of the importance of up-to-date information in effective management we suggest the South
Ari MPA stakeholders to be directly involved in the collection of data on whale shark encounters and
interactions. By supporting data collection using paper or electronic GPS based logbooks, the industry
can obtain precise estimates, seasonal fluctuations as well as commercial feedback (Department of Parks
and Wildlife, 2013). Stakeholder participation of this sort could be valuable to legitimize heightened
management applications as well as assure timely stakeholder adoption of new regulations.

Bhat et al. (2014) found a large disparity between the economic value of atoll-based tourism in the
Maldives and the amount of money that goes into environmental conservation. Collecting guest fees is
now a well-established way to fund management strategies in protected areas (Dharmaratne et al., 2000;
Thur, 2010). It has been shown that as long as it is transparent, tourists are willing to contribute to the
sustainable management of the whale shark experience (Davis and Tisdell, 1998). Arthur (2011), in a
willingness to pay survey, showed that tourists visiting the Maldives would be willing to pay an US$106
± 15 per trip (mean ± SD) to see sharks in their natural environment on top of the dive price and would
donate US$56 ± 6 towards a shark conservation fund. Exploring the guest willingness to pay is clearly an
alternative that should be evaluated by stakeholders, managers and policymakers in the South Ari MPA if
they are interested in improving or maintaining the quality of the ecosystem and the tourist experience
(Davis and Tisdell, 1996; Rudd and Tupper, 2002).

Because of the scientific ambiguity and the many assumptions needed to value individual animals,
we have refrained from ascribing a tourist value to the whale sharks in Maldives (Catlin et al., 2013).
Our results, however, show that the Maldivian whale shark tourism industry is financially significant
as it approaches 3% of the global shark ecotourism expenditure (Cisneros-Montemayor et al., 2013).
Additionally, the results are indicative of the industry’s local importance as a tourism driver that can
generate revenue for local operators as well as the government. Based upon the expenditure rates for
2012 and 2013, the government would have collected approximately $457,200 and $748,800 (6% tax
rate in 2012, and 8% in 2013), respectively, as a direct result of the whale shark tourism industry. This
underscores the urgent need to manage this area to sustain the resident population of whale sharks by
regulating use, so as not to exceed carrying capacity and limits of acceptable change (Davis and Tisdell,
1995).

Ecotourism projects are more likely to be successful when the target is a charismatic species and
the management involves the local community (Krüger, 2005; Gallagher and Hammerschlag, 2011).
Operators are in the best position to lead multidisciplinary and participatory processes to maximize tourist
satisfaction while achieving protection goals and ensuring the long-term sustainability of whale shark
encounters in the South Ari MPA (Bentz et al., 2013). However, considerable discussion and deliberation
will need to happen to determine the best approach that all stakeholders—including local communities,
industry, and government—are willing to adopt to ensure a functioning management system. This pursuit
should be viewed as an iterative process with emphasis placed on evaluation and iteration based upon
empirical findings.

CONCLUSION

Based on empirical recreational data, we found that whale shark tourism in the South Ari MPA has been
increasing in popularity and represents a significant wildlife tourism industry for the country, which
follows the increasing popularity of the global shark tourism industry. Our findings are significant in that
they bolster previous studies on Maldivian wildlife tourism that highlight the importance of the industry
and urge for effective management. We think that this paper can contribute towards the establishment of
an effective management system in the South Ari MPA and serve as a guide for other wildlife species and
areas throughout the Maldives and elsewhere.
ACKNOWLEDGEMENTS

We firstly thank the large team of MWSRP volunteers for the long hours on the dhoni collecting data and making this research possible. We thank Rachel Bott, Ben Fothergill, Katie Hindle, Rifaee Rasheed, Alissa Nagel, Michell NG, and the crew of Vilares I and other MWSRP and Conrad Maldives Rangali Island team members for field support. We also would like to thank Dr. Ameer Abdullah, Dr. Shiham Adam, Dr. Alistair Dove, Dr. Agnese Mancini, Morgan Riley, Dr. Chris Rohner, Dr. Brent Stewart and one anonymus reviewer for their insightful comments and suggestions, which greatly improved the quality of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Competing interests
James Hancock and Richard Rees are employees of the Maldives Whale Shark Research Programme. Fernando Cagua is member of the MWSRP scientific advisory board.

Author contributions
Fernando Cagua and Neal Collins performed the experiments, analyzed the data, contributed materials/analysis tools, and wrote the paper, prepared figures and tables, reviewed drafts of the paper.
Jim Hancock and Richard Rees conceived and designed the experiments, performed the experiments, contributed materials/analysis tools, and reviewed drafts of the paper.

Funding
Funding for this research was made possible through the generous donations from MWSRP volunteers, sponsorship by Conrad Maldives Rangali Island, and programmatic and financial support from the IUCN Global Marine Program and Global Blue.

REFERENCES

Anderson, R. and Ahmed, H. (1993). The shark fisheries of the Maldives. Technical report, Ministry of Fisheries and Agriculture, Republic of Maldives, Male.
Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A.-M., and Stevens, G. (2011). Extent and Economic Value of Manta Ray Watching in Maldives. *Tourism in Marine Environments*, 7(1):15–27.
Arthur, L. (2011). A case study of divers’ willingness to pay tourist fees towards shark conservation in The Maldives. Masters, University of Newcastle, Newcastle.
Bentz, J., Dearden, P., and Calado, H. (2013). Strategies for marine wildlife tourism in small islands – the case of the Azores. *(65):874–879.*
Bhat, M. G., Bhatta, R., and Shumais, M. (2014). Sustainable funding policies for environmental protection: the case of Maldivian atolls. *Environmental Economics and Policy Studies*, 16(1):45–67.
Buckland, S., Burnham, K., and Augustin, N. (1997). Model selection: an integral part of inference. *Biometrics*, (June):603–618.
Calcagno, V. and de Mazancourt, C. (2010). glmulti: An r package for easy automated model selection with (generalized) linear models. *Journal of Statistical Software*, 34(12):1–29.
Canty, A. and Ripley, R. (2013). boot: Bootstrap R (S-Plus) Functions. R package version 1.3-9.
Catlin, J., Hughes, M., Jones, T., Jones, R., and Campbell, R. (2013). Valuing individual animals through tourism: Science or speculation? *Biological Conservation*, 157:93–98.
Catlin, J. and Jones, R. (2010). Whale shark tourism at Ningaloo Marine Park: A longitudinal study of wildlife tourism. *Tourism Management*, 31(3):386–394.
Catlin, J., Jones, R., Jones, T., Norman, B., and Wood, D. (2010a). Discovering wildlife tourism: a whale shark tourism case study. *Current Issues in Tourism*, 13(4):351–361.
Catlin, J., Jones, T., and Jones, R. (2012). Balancing commercial and environmental needs: licensing as a means of managing whale shark tourism on Ningaloo reef. *Journal of Sustainable Tourism*, 20(2):163–178.
Catlin, J., Jones, T., Norman, B. M., and Wood, D. (2010b). Consolidation in a wildlife tourism industry: the changing impact of whale shark tourist expenditure in the Ningaloo coast region. *Journal of Tourism, 12(2):134–148.*
Cesar, H., van Beukering, P., Payet, R., and Grandouret, E. (2004). Evaluation of the Socio-economic Impacts of Marine Ecosystem Degradation in the Seychelles. Technical Report March, Ministry of Environment, Victoria, Seychelles.

Cisneros-Montemayor, A. M., Barnes-Mauthe, M., Al-Abdulrazzak, D., Navarro-Holm, E., and Sumaila, U. R. (2013). Global economic value of shark ecotourism: implications for conservation. Oryx, 47(03):381–388.

Clua, E., Buray, N., and Legendre, P. (2011). Business partner or simple catch? The economic value of the sicklefin lemon shark in French Polynesia. Marine and Freshwater Research, 62(6):764–770.

Colman, J. (1997). Whale Shark Interaction Management, With Particular Reference to Ningaloo Marine Park, 1997-2007.

Davis, D., Banks, S., Birtles, A., Valentine, P., and Cuthill, M. (1997). Whale sharks in Ningaloo Marine Park: managing tourism in an Australian marine protected area. Tourism Management, 18(5):259–271.

Davis, D. and Tisdell, C. (1995). Recreational scuba-diving and carrying capacity in marine protected areas. Ocean & Coastal Management, 26(1):19–40.

Davis, D. and Tisdell, C. (1996). Economic Management of Recreational Scuba Diving and the Environment. Journal of Environmental Management, 48:229–248.

Davis, D. and Tisdell, C. (1998). Tourist levies and willingness to pay for a whale shark experience. Tourism Economics, 5(2):161–174.

den Haring, S. (2012). Interpretation to manage marine recreational resource use in Mombasa, Kenya. In Proceedings of the 12th International Coral Reef Symposium, number July, pages 9–13, Cairns.

Department of Parks and Wildlife (2013). Whale shark management: with particular reference to Ningaloo Marine Park.

Dharmaratne, G. S., Yee Sang, F., and Walling, L. J. (2000). Tourism potentials for financing protected areas. Annals of Tourism Research, 27(3):590–610.

Efron, B. and Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical science, 1(1):54–75.

Gallagher, A. J. and Hammerschlag, N. (2011). Global shark currency: the distribution, frequency, and economic value of shark ecotourism. Current Issues in Tourism, 14(8):797–812.

Garrod, B. (2002). Monetary valuation as a tool for planning and managing ecotourism. International Journal of Sustainable Development, 5(3):353–371.

Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73(1):43–56.

Graham, R. T. (2003). Behaviour and conservation of whale sharks on the Belize Barrier Reef. Phd thesis, University of York.

Green, R. J. and Higginbottom, K. (2000). The effects of non-consumptive wildlife tourism on free-ranging wildlife: a review. Pacific Conservation Biology, 6(3):183.

Isaacs, J. C. (2000). The limited potential of ecotourism to contribute to wildlife conservation. Wildlife Society Bulletin, 28(1):61–69.

IUCN (2014). The iucn red list of threatened species. version 2013.2. http://www.iucnredlist.org. [Online; accessed 9-February-2014].

Krüger, O. (2005). The role of ecotourism in conservation: panacea or Pandora’s box? Biodiversity and Conservation, 14(3):579–600.

Ludwig, D. (2000). Limitations of Economic Valuation of Ecosystems. Ecosystems, 3(1):31–35.

Moore, S. a. and Rodger, K. (2010). Wildlife tourism as a common pool resource issue: enabling conditions for sustainability governance. Journal of Sustainable Tourism, 18(7):831–844.

Norman, B. (2005). Whale Shark Ecotourism: The sustainable option. In International Workshop on Whale Shark Ecotourism, pages 51–55, Taipei, Taiwan.

Norman, B. and Catlin, J. (2007). Economic importance of conserving whale sharks. Technical Report November, International Fund for Animal Welfare (IFAW), Sidney.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-113.

Quiros, A. (2005). Whale shark “ecotourism” in the Philippines and Belize: evaluating conservation and community benefits. Tropical Resources: Bulletin of the Yale Tropical Institute, 24(December 2003).

R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Riley, M., Hale, M., Harman, A., and Rees, R. (2010). Analysis of whale shark Rhincondon typus aggregations near South Ari Atoll, Maldives Archipelago. *Aquatic Biology*, 8(2008):145–150.

Rowat, D. and Engelhardt, U. (2007). Seychelles: A case study of community involvement in the development of whale shark ecotourism and its socio-economic impact. *Fisheries Research*, 84(1):109–113.

Rudd, M. a. and Tupper, M. H. (2002). The Impact of Nassau Grouper Size and Abundance on Scuba Diver Site Selection and MPA Economics. *Coastal Management*, 30(2):133–151.

Sequeira, A. M. M., Mellin, C., Meekan, M. G., Sims, D. W., and Bradshaw, C. J. A. (2013). Inferred global connectivity of whale shark Rhincodon typus populations. *Journal of Fish Biology*, 82(2):367–89.

Shareef, R. and McAleer, M. (2007). Modelling the uncertainty in monthly international tourist arrivals to the Maldives. *Tourism Management*, 28(1):23–45.

Sinan, H., Adam, M. S., and Anderson, R. C. (2011). Status of Shark Fisheries in the Maldives.

Techo, E. J. and Klein, N. (2013). The role of law in shark-based eco-tourism: Lessons from Australia. *Marine Policy*, 39:21–28.

Thur, S. M. (2010). User fees as sustainable financing mechanisms for marine protected areas: An application to the Bonaire National Marine Park. *Marine Policy*, 34(1):63–69.

Turner, R., Paavola, J., Cooper, P., Farber, S., Jessamy, V., and Georgiou, S. (2003). Valuing nature: lessons learned and future research directions. *Ecological Economics*, 46(3):493–510.

Venables, W. N. and Ripley, B. D. (2002). *Modern Applied Statistics with S*. Springer, New York, fourth edition. ISBN 0-387-95457-0.

Wood, D. and Glasson, J. (2005). Giving the environment a voice: the transformational potential of valuing tourism in sensitive natural environments: The case of The Ningaloo Coastal Region, Western Australia. *Planning Practice and Research*, 20(4):391–407.

Young, G. a., Hinkley, D. V., and Davison, a. C. (2003). Recent Developments in Bootstrap Methodology. *Statistical Science*, 18(2):141–157.

Zhang, H.-M., Bates, J. J., and Reynolds, R. W. (2006). Assessment of composite global sampling: Sea surface wind speed. *Geophysical Research Letters*, 33(17):1–5.

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009). *Mixed effects models and extensions in ecology with R*. Springer.
Figure S-1. Observed and modelled daily (a) number of guests, (b) number of boats and (c) expenditure aggregated by month.
Table S-1. Model selection table for the evaluated expenditure models. We used the Akaike information criterion (AIC) to select the most parsimonious (bold). We considered models that included day of the week \((w)\), season \((s)\), year \((y)\), wind speed \((u = \log(speed + 1))\) and their interactions as fixed effects, variances of the residuals \((\varepsilon)\) in which each category is allowed to have a different variance \((\sigma_y^2, \sigma_s^2, \sigma_w^2)\), as well as a correlation structure in which the residuals at time \(t\) \((\varepsilon_t)\) depend on the residuals of previous observations \((\varepsilon_{t-1}, \varepsilon_{t-2})\) and the present and past noise \((\eta_t, \eta_{t-1}, \eta_{t-2})\) that compose the moving average component, \(\phi_1\) and \(\theta_\eta\) are constants estimated by the model.

Fixed effects	Variance, \(\text{var}(\varepsilon)\)	Correlation, \(\varepsilon_t\)	AIC																				
\(w + s + y + u + w: y + w:s\)	- \(\sigma_y^2\) \(\sigma_s^2\) \(\sigma_w^2\) \(\phi_1\varepsilon_{t-1} + \eta_t\) \(\phi_2\varepsilon_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \phi_2\varepsilon_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \phi_1\varepsilon_{t-1}\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \phi_2\varepsilon_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \phi_2\varepsilon_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\) \(\phi_1\varepsilon_{t-1} + \phi_2\varepsilon_{t-2} + \theta_\eta\eta_{t-1} + \theta_\eta\eta_{t-2} + \theta_\eta\eta_{t-2} + \eta_t\)	817.37	807.63	808.38	757.01	764.91	748.90	748.78	748.78	731.11	729.53	730.31	730.69	732.06	732.55	731.64	726.37	724.22	720.92	724.42	728.27	729.99	733.02

Table S-2. Parameter estimates from the most parsimonious model of daily expenditure. Coefficients and standard deviations (SD) per stratum

Effect	Cat.	SD per stratum	Coefficients	Est.	Error	\(p\)
Intercept	-	-	9.24	1.28	0.000	
Weekday	Mon	1.437	1.95	1.25	0.118	
	Tue	0.875	2.01	1.24	0.107	
	Wed	1.190	2.11	1.24	0.092	
	Thu	1.625	1.72	1.25	0.171	
	Fri	4.195	-	-	-	
	Sat	1.113	0.85	1.25	0.500	
	Sun	1.000	1.45	1.24	0.246	
Season	Low	2.267	-1.02	0.29	0.001	
	High	1.000	-	-	-	
Year	2011	1.000	-	-	-	
	2012	1.426	-0.06	0.26	0.811	
	2013	0.731	0.53	0.22	0.018	
Wind Speed	-	-	-0.43	0.18	0.018	
Table S-3. Akaike Information Criteria differences ($\Delta_i = AIC - AIC_{\text{min}}$) for the count models evaluated. Bold values indicate the models that accounted for 95% of the evidence weight and were used for predictions. Models were based on season (s), day of the week (w), year (y) and daily average wind speed ($u = \log(speed + 1)$) as explanatory variables.

Model Formula	Guest models	Boat models			
	Total	Liveaboard	Resort	Liveaboard	Resort
$s + w + u$	0.00	2.17	5.99	0.20	3.61
$s + w$	0.06	2.23	5.03	0.00	4.12
$s + y + w + u$	0.22	2.71	5.90	3.37	0.00
$s + y + w + s: w$	1.31	0.43	10.75	8.13	2.01
$s + y + w$	2.02	3.25	6.12	2.60	1.07
$s + w + u + s: w$	2.35	0.59	11.59	4.83	5.36
$s + w + s: w$	2.87	0.00	10.84	4.52	6.21
$s + y + w + s: w$	4.07	0.58	11.48	7.34	3.59
$s + y + u$	5.07	7.70	0.00	28.77	1.48
$s + y$	8.16	9.06	0.80	29.31	3.53
$s + u$	9.73	12.62	2.25	25.29	5.88
s	9.92	12.54	1.40	25.47	6.80
$w + u$	12.91	22.54	6.37	62.20	7.15
$s + y + w + u + s: w + y: w$	14.17	12.23	25.96	16.83	14.71
w	14.66	23.10	6.01	63.86	9.01
$y + w + u$	14.87	24.38	6.79	62.99	3.27
$s + y + w + u + y: w$	15.02	12.81	20.85	12.80	10.07
$s + y + w + y: w$	16.29	13.15	20.66	11.95	10.64
$s + y + w + s: w + y: w$	16.30	12.15	26.24	16.03	15.86
$y + w$	17.98	25.41	7.54	63.12	5.20
$y + u$	21.60	31.52	1.41	88.01	5.68
u	23.32	33.51	3.00	84.06	10.17
l	25.07	33.73	2.83	86.09	12.74
y	25.90	1.964	2.81	89.69	8.96
$y + w + u + y: w$	32.11	39.64	22.77	76.94	14.67
$y + w + y: w$	34.47	40.22	23.10	76.79	16.09
Table S-4. Parameter estimates for guest and boat number models that accounted for 95% of the evidence weight (Table S-3).

(a) Averaged coefficient estimates (Est.), unconditional variances (U.V) and relative importances (Imp.) of the independent variables.

Effect	Total Models	Liveboard Models	Resort Models	Guest Models	Liveboard Models	Resort Models									
	Est.	U.V	Imp.												
Intercept	5.41	0.13	1.00	3.91	0.33	1.00	5.37	0.10	1.00	1.44	0.12	1.00			
Season															
High															
Low	-0.91	0.33	1.00	-18.30	4.3e7	1.00	-0.19	0.03	0.69	-2.14	1.1e4	1.00	-0.43	0.15	0.91
Weekday															
Monday	0.49	0.07	1.00	1.14	0.23	1.00	0.01	0.00	0.05	0.78	0.09	1.00	0.08	0.04	0.80
Tuesday	0.57	0.08	1.00	1.12	0.24	1.00	0.01	0.00	0.05	0.88	0.09	1.00	0.14	0.05	0.80
Wednesday	0.67	0.07	1.00	1.12	0.24	1.00	0.02	0.00	0.05	0.89	0.09	1.00	0.33	0.06	0.80
Thursday	0.48	0.08	1.00	1.03	0.26	1.00	0.01	0.00	0.05	0.91	0.09	1.00	0.17	0.05	0.80
Friday															
Saturday	-0.04	0.11	1.00	-0.11	0.38	1.00	0.00	0.00	0.05	-0.12	0.12	1.00	-0.08	0.05	0.80
Sunday	0.15	0.08	1.00	0.32	0.24	1.00	0.01	0.00	0.05	0.20	0.09	1.00	0.03	0.04	0.80
Wind Speed *	-0.15	0.03	0.63	-0.15	0.05	0.51	-0.14	0.03	0.55	-0.08	0.01	0.44	-0.14	0.02	0.67
Year															
2011															
2012	0.05	0.01	0.41	0.26	0.12	0.43	-0.11	0.03	0.63	-0.02	0.00	0.19	-0.31	0.03	0.90
2013	0.12	0.03	0.41	0.26	0.12	0.43	0.07	0.03	0.63	-0.03	0.00	0.19	-0.15	0.02	0.90
Season:Weekday															
Low : Monday	0.27	0.21	0.25	16.59	4.3e7	0.78	0.72	1.1e4	0.04	0.17	0.11	0.17	
Low : Tuesday	0.43	0.47	0.25	17.08	4.3e7	0.78	0.73	1.1e4	0.04	0.28	0.24	0.17	
Low : Wednesday	0.32	0.28	0.25	17.11	4.3e7	0.78	0.73	1.1e4	0.04	0.15	0.09	0.17	
Low : Thursday	0.45	0.53	0.25	17.72	4.3e7	0.78	0.76	1.1e4	0.04	0.24	0.19	0.17	
Low : Friday															
Low : Saturday	0.45	0.51	0.25	17.68	4.3e7	0.78	0.75	1.1e4	0.04	0.21	0.14	0.17	
Low : Sunday	0.29	0.25	0.25	16.50	4.3e7	0.78	0.72	1.1e4	0.04	0.16	0.10	0.17	

(b) Negative-binomial dispersion parameters.

Model	Dispersion parameter (θ)		
	Min.	Mean	Max.
Total Guests	1.9070	1.9620	2.0440
Liveboard Guests	0.6438	0.6715	0.6962
Resort Guests	1.3570	1.4010	1.4580
Boats Liveaboards	2.7310	2.7620	2.8140
Boats Resorts	3.8920	4.3730	4.9420

* Log transformed
Figure 1

Models results

Values predicted by the expenditure (A and B) and the boat (C and D) models for different days of the week and seasons.
Figure 2

Map of South Ari Atoll showing the South Ari MPA and the survey transect.
Tourist boat distribution in South Ari MPA

Scaled density of survey effort in the South Ari MPA. We used a simple linear model to detrend the observed boat density and obtain a density corrected for effort (solid line).