Searches for leptoquarks with the ATLAS detector

André Sopczak, on behalf of the ATLAS Collaboration

IEAP CTU in Prague

Pheno 2021, Pittsburgh

24-26 May 2021
Outline

• Introduction
• B-anomalies and dedicated search for bslb
• Third Generation Leptoquarks
• First and Second Generation Leptoquarks
• Relation of Searches for Supersymmetry and Leptoquarks
• Summary
 • Up-type Third-Generation Model (LQ$_3^u$)
 • Down-type Third-Generation Model (LQ$_3^d$)
 • Up-type Mixed-Generation Model (LQ$_{mix}^u$)
 • Down-type Mixed-Generation Model (LQ$_{mix}^d$)
• Conclusions
Introduction Leptoquarks (LQ)

• Colour triplet bosons with fractional charge
• LQ decay flavour-diagonal and possibly cross-generations
• Yukawa interaction with coupling λ

Pair-production

Large resonant cross-section

single-production

| Cross-section $\propto \lambda^2$ sensitive for large m_{LQ} |

off-shell production

| Cross-section $\propto \lambda^4$ sensitive for larger m_{LQ} |

LQ decay	$B=1$	$B=0$
LQ_{up}	$b\tau$	$t\nu$
LQ_{down}	$t\tau$	$b\nu$
B-anomalies and dedicated search for bmédia

- Leptoquarks gain enhanced interest as a possible explanation of the B-anomaly (violation of lepton universality) LHCb, arXiv:2103.11769

- In ATLAS, a dedicated search was performed for bmédia.

\[
R_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to J/\psi (\to \mu^+ \mu^-)K^+)} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to J/\psi (\to e^+ e^-)K^+)}
\]

- BaBar
 - $0.1 < q^2 < 8.12 \text{ GeV}^2/c^4$
- Belle
 - $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$
- LHCb 9 fb$^{-1}$
 - $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$

Pheno 2021, A.Sopczak
Search for new phenomena in final states with two leptons and one or no b-tagged jets, ATLAS-CONF-2021-012

- Benchmark signal model (inspired by the B-meson anomalies): four-fermion contact interaction between two quarks (b,s) and two leptons (ee or $\mu\mu$).

Model is characterized by the energy scale and coupling, Λ and g_*.
Summary of relative systematic uncertainties for signal regions with $m_{\ell\ell}^{\text{min}} = 2000$ (1500) GeV, \texttt{ATLAS-CONF-2021-012}

Source	$e^+e^- + 0b$ (1b) [\%]	$\mu^+\mu^- + 0b$ (1b) [\%]		
	Signal 0b (1b)	Background 0b (1b)	Signal 0b (1b)	Background 0b (1b)
Luminosity	1.7 (1.7)	1.6 (1.5)	1.7 (1.7)	1.7 (1.7)
Pile Up	<0.5 (<0.5)	<0.5 (0.7)	<0.5 (<0.5)	<0.5 (<0.5)
Leptons	8.7 (8.6)	8.6 (6.3)	8.5 (6.5)	9.1 (4.2)
Jets	<0.5 (1.8)	<0.5 (3.4)	<0.5 (1.6)	<0.5 (1.9)
b-tagging	<0.5 (1.4)	<0.5 (2.0)	<0.5 (1.4)	<0.5 (2.2)
Top Bkg. Extrapolation	-	3.5 (32.0)	-	<0.5 (36.0)
Multijet Extrapolation	-	7.5 (15.0)	-	-
Top Quark Theory	-	<0.5 (<0.5)	-	<0.5 (<0.5)
Z Theory	-	9.4 (4.3)	-	10.0 (5.5)
MC Statistics	0.6 (0.8)	1.9 (3.5)	0.7 (1.0)	1.7 (2.4)
Total	8.9 (9.1)	15.0 (37.0)	8.7 (7.1)	14.0 (37.0)

- Contact interactions with $\Lambda/g_* < 2.0$ (2.4) TeV excluded for e (μ) at 95% CL, still far from the value which is favored by the B-meson decay anomalies.
- Model-independent limits set as a function of di-lepton invariant mass, for the reinterpretation of the results in terms of other signal scenarios.
bb+MET, with taus search, pair production of third-generation leptoquarks, ATLAS-CONF-2021-008

- Search for Supersymmetry with scalar top (stop) has sensitivity for Leptoquark pair-production.
- Decay
 \[tv\bar{v}, \ b\tau b\tau, \ b\nu b\nu, \ t\tau t\tau \]
- Charge $2/3e$ (left) and $-1/3e$ (right).
Third Generation Leptoquarks,
ATLAS-CONF-2021-008

Di-tau preselection

E_T^{miss}-trigger fired and $E_T^{\text{miss}} > 250$ GeV
No light leptons (e/μ)
At least two jets
At least one b-tagged jet

Single-tau preselection

At least two hadronic tau candidates
Exactly one hadronic tau candidate
At least two b-tagged jets

Variable	CR $\ell\ell$ (2 real τ)	CR $\ell\ell$ (1 real τ)	VR $\ell\ell$ (2 real τ)	VR $\ell\ell$ (1 real τ)	SR
E_T^{miss}	$-$	$-$	$-$	$-$	$-$
$OS(\tau_1, \tau_2)$	1	1	1	$>$ 280 GeV	
$m_{T2}(\tau_1, \tau_2)$	< 35 GeV	< 35 GeV	[35, 70] GeV	[35, 70] GeV	$>$ 70 GeV
$m(\tau_1, \tau_2)$	$>$ 50 GeV	$>$ 50 GeV	$>$ 70 GeV	$>$ 70 GeV	$-$
$m_T(\tau_1)$	$>$ 50 GeV	$<$ 50 GeV	$>$ 70 GeV	$<$ 70 GeV	$-$

Variable	CR $\ell\ell$ (1 real τ)	CR single top	VR $\ell\ell$ (1 real τ)	VR single top	SR
E_T^{miss}	$>$ 280 GeV	$>$ 280 GeV	$>$ 280 GeV	$>$ 280 GeV	$>$ 280 GeV
s_T	[500, 600] GeV	$>$ 600 GeV	$>$ 800 GeV	$>$ 800 GeV	$>$ 800 GeV
$m_T(b_{1,2})$	[600, 700] GeV	[600, 700] GeV	[50, 150] GeV	[50, 150] GeV	$>$ 300 GeV
$m_T(\tau)$	$<$ 50 GeV	$<$ 50 GeV	$<$ 50 GeV	$<$ 50 GeV	$<$ 50 GeV
$p_T(\tau)$	$>$ 80 GeV	$>$ 80 GeV	$>$ 80 GeV	$>$ 80 GeV	$>$ 80 GeV

Pheno 2021, A.Sopczak
Expected and observed exclusion contours at 95% CL, as a function of $m(LQ)$ and the branching ratio $B(LQ_3^{u/d} \rightarrow q\ell)$ into charged leptons, ATLAS-CONF-2021-008

For $B(LQ^u \rightarrow b\tau)=0.5$ and $B(LQ^d \rightarrow t\tau)=0.5$, limits for LQs reach 1.25 TeV

Pheno 2021, A.Sopczak
bb+MET: pair production of third-generation down-type leptoquarks, arXiv:2101.12527

- Searches for bb+MET Supersymmetric prompt decays have sensitive to pair production of 3rd generation LQs
- Expected and observed mass limits, and cross-section upper limits at 95% CL.
tt+MET, all-hadronic search, pair production of third-generation down-type leptoquarks arXiv:2004.14060

• Searches for tt+MET all-hadronic
 Supersymmetric prompt decays have sensitive to pair production of 3rd generation LQs

• Z+jets (Z), t\bar{t}+Z (TTZ), ttbar (T), W+jets (W), and single-top (ST) backgrounds
tt+MET, all-hadronic search, arXiv:2004.14060

- Excluded LQ^u_3 (masses, branching ratios) and cross-section limits for LQ^u_3 pair-production
Summary: Up-type Third-Generation Model (LQ^u_3)

$b\tau b\nu$ ATLAS-CONF-2021-008, stop-0\ell\ EPJC 80 (2020) 737

Pheno 2021, A.Sopczak
Summary: Down-type Third-Generation Model (LQ^d_3) $b\tau bv$ ATLAS-CONF-2021-008, $\tau\tau\tau$ arXiv:2101.11582, sbottom-0ℓ arXiv:2101.12527
Summary: Up-type Mixed-Generation Model \((LQ_{\text{mix}}^u)\)

\(\text{bebe, } b\mu b\mu\) JHEP 10 (2020) 112, stop-0\(\ell\) be, \(b\mu\) EPJC 80 (2020) 737

stop-0\(\ell\) re-interpretation for mixed generation.
Published for \(B(LQ\rightarrow b\tau)\) limits.
Highest sensitivity for \(B(LQ\rightarrow t\nu) = 1\).
Summary: Down-type Mixed-Generation Model (LQ^d_{mix})

tete, $t\mu t\mu$ EPJC 81 (2021) 313, sbottom-0ℓ te, $t\mu$
arXiv:2101.12527

sbottom-0ℓ reinterpretation for mix-generation limits. Published for $B(LQ\rightarrow t\tau)$ limits.

Highest sensitivity for $B(LQ\rightarrow b\nu) = 1$
Summary

ATLAS LQ lower limit (TeV) at 95%CL

Category	Lower Limit
2nd-3rd cross.-gen. LQ→qμ	1.7
1st-3rd cross.-gen. LQ→qe	1.8
2nd-3rd cross.-gen. LQ→tμ	1.48
1st-3rd cross.-gen. LQ→te	1.48
3rd gen. LQ→t/bτB=0.5	1.22
3rd gen. LQ→ττ	1.43
3rd gen. LQ→bτ	1.03
2nd generation	1.56
1st generation	1.4

Reference

Reference	L (fb)
1902.00377	36
1902.08103	36
2101.11582	139
2010.02098	139
2006.05872	139

Pheno 2021, A.Sopczak
Same final states for Higgs boson production and Leptoquark production

• Example LQ pair-production and ttH \((H \rightarrow \tau \tau)\), 2lSS1tau(had).
• Potential for reinterpreting Higgs boson results for LQ searches.
Conclusions

• Growing interest in Leptoquarks as a possible explanation of the recently observed B-anomaly (hints for lepton flavour universality violation)

• Contact interaction limit $\Lambda/g^* > 2.0$ (2.4) TeV at 95% CL for ee ($\mu\mu$). Not sensitive yet to probe suggested range by B-anomaly (~30 TeV).

• Model-independent limits set as a function of di-lepton invariant mass.

• Current focus on 3rd generation, including cross-generational decays.

• Direct searches for Leptoquarks and re-interpretations of searches for Supersymmetry exclude phase-space of 1st, 2nd and 3rd generation Leptoquarks. Potential for reinterpretations of Higgs boson results.

• Search results statistically limited, expect more sensitivity with new data.

• Large potential in flavour physics for collaborations of phenomenologists and experimentalists.
References

• Motivated by B-anomalies
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-012/

• ATLAS Supersymmetry group
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2021-008/
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-34/
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-12/

• ATLAS Exotics group
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-19/
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-15/
 https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/EXOT-2019-13/