Quantum strategies are better than classical in almost any XOR game
Andris Ambainis, Artūrs Bačkurs, Kaspars Balodis, Dmitry Kravchenko, Raitis Ozols, Juris Smotrovs and Madars Virza
Faculty of Computing, University of Latvia

Introduction
We consider a random instances of nonlocal games where two players plays against a referee. The rules of the game are specified by an \(n \times n \) matrix \(A \) whose entries are \(+1\) and \(-1\).

The game works as follows:
- The referee randomly chooses inputs \(i \in \{1, 2, \ldots, n\} \) and \(j \in \{1, 2, \ldots, n\} \) and sends them to the players;
- The players reply by sending bits \(x \) and \(y \);
- The players win if \(x = y \) and \(A_{ij} = +1 \) or \(x \neq y \) and \(A_{ij} = -1 \).

We consider the case when the matrix \(A \) that specifies the rules of the game is chosen randomly against all \(\pm 1 \)-valued \(n \times n \) matrices \(A \).

Results
- The maximum winning probability \(p_q \) that can be achieved by a quantum strategy is \(\frac{1}{2} + \frac{1}{\sqrt{n}} + o(1) \).
- The maximum winning probability \(p_{cl} \) that can be achieved by a classical strategy satisfies
 \[
 \frac{1}{2} - \frac{0.6394 \ldots - o(1)}{\sqrt{n}} \leq p_{cl} \leq \frac{1}{2} + \frac{0.8325 \ldots + o(1)}{\sqrt{n}},
 \]
where both winning probabilities can be achieved with probability \(1 - o(1) \).

Let \(\Delta \) be the maximum of the winning probability minus the losing probability. We obtain that
\[
\Delta_q = 2p_q - 1 \quad \text{and} \quad \Delta_{cl} = 2p_{cl} - 1.
\]
Thus, our results imply that the advantage of quantum strategies is
\[
1.2011 \ldots < \frac{\Delta_q}{\Delta_{cl}} < 1.5638 \ldots
\]
for almost all games.

Methods
- The classical value of the game is equal to
 \[
 \Delta_{cl} = \frac{1}{n^2} \max_{u_1, \ldots, u_n \in \{+1, -1\}} \max_{v_1, \ldots, v_n \in \{+1, -1\}} \sum_{i,j=1}^{n} A_{ij} u_i v_j;
 \]
- The upper bound follows straightforwardly from Chernoff bounds;
- To prove the lower bound we give an algorithm for choosing \(u_i \) and \(v_j \). In the proof that the algorithm achieves the lower bound we analyze certain random walk;
- In the quantum case, Tsirelson's theorem implies that
 \[
 \Delta_q = \frac{1}{n^2} \max_{u_1, \ldots, u_n} \max_{v_1, \ldots, v_n} \sum_{i,j=1}^{n} A_{ij} (u_i v_j);
 \]
- The upper bound follows from the fact that \(\|A\| = (2 + o(1)) \sqrt{n} \) with a high probability;
- The lower bound can be obtained from the modified version of Marčenko-Pastur law.

Supported by ESF project 2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044