A refined Poisson summation formula for certain Braverman-Kazhdan spaces

Jayce Robert Getz\(^1\) & Baiying Liu\(^2,\)*

\(^1\)Department of Mathematics, Duke University, Durham, NC 27708, USA; \\
\(^2\)Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

Email: jgetz@math.duke.edu, liu2053@purdue.edu

Received February 7, 2018; accepted November 5, 2019; published online December 27, 2019

Abstract Braverman and Kazhdan (2000) introduced influential conjectures aimed at generalizing the Fourier transform and the Poisson summation formula. Their conjectures should imply that quite general Langlands L-functions have meromorphic continuations and functional equations as predicted by Langlands’ functoriality conjecture. As an evidence for their conjectures, Braverman and Kazhdan (2002) considered a setting related to the so-called doubling method in a later paper and proved the corresponding Poisson summation formula under restrictive assumptions on the functions involved. The connection between the two papers is made explicit in the work of Li (2018). In this paper, we consider a special case of the setting in Braverman and Kazhdan’s later paper and prove a refined Poisson summation formula that eliminates the restrictive assumptions of that paper. Along the way we provide analytic control on the Schwartz space we construct; this analytic control was conjectured to hold (in a slightly different setting) in the work of Braverman and Kazhdan (2002).

Keywords Braverman-Kazhdan program, generalized Fourier transforms, generalized Poisson summation, spherical varieties

MSC(2020) 11F70, 11F66

Citation: Getz J R, Liu B. A refined Poisson summation formula for certain Braverman-Kazhdan spaces. Sci China Math, 2021, 64: 1127–1156, https://doi.org/10.1007/s11425-018-1616-0

1 Introduction

Let F be a number field and \mathbb{A}_F be its ring of adeles. Let $f \in \mathcal{S}(\mathfrak{gl}_n(\mathbb{A}_F))$ be a Schwartz function. Then the Poisson summation formula on $\mathfrak{gl}_n(F)$ asserts that

$$\sum_{\gamma \in \mathfrak{gl}_n(F)} f(\gamma) = \sum_{\gamma \in \mathfrak{gl}_n(F)} \hat{f}(\gamma),$$

where \hat{f} is the Fourier transform of f. Following Tate [35], who considered the case $n = 1$ in his thesis, Godement and Jacquet [15] used this formula to prove that the standard L-function of a cuspidal automorphic representation of $\text{GL}_n(\mathbb{A}_F)$ has a holomorphic continuation to the plane and a functional equation.

*Corresponding author
Braverman and Kazhdan [4] have suggested that this is but the first case of a general phenomenon. They conjectured that for every split reductive group G and representation $\rho : L(G) \to \text{GL}(V)$ of the neutral component of its L-group there is a corresponding nonabelian Poisson summation formula. The summation formula should imply the functional equation and meromorphic continuation of the Langlands L-functions $L(s, \pi, \rho)$ for π a cuspidal automorphic representation of $G(\mathbb{k}_F)$. The replacement for $\mathfrak{gl}_n(F)$ is a certain reductive monoid attached to ρ by using results of Vinberg (see [27]) that can be viewed as a sort of compactification of G. These are referred to as “nonabelian” Poisson summation formulae because in general there is no additive structure on the reductive monoid, but only the multiplicative structure extending the group multiplication on G.

1.1 The Poisson summation formula for Braverman-Kazhdan spaces

Let G be a split reductive group with the simply connected derived group over a number field F and let $P \leqslant G$ be a proper parabolic subgroup. Let

$$X := [P, P] \backslash G,$$

where $[H, H]$ denotes the derived group of an algebraic group H. Braverman and Kazhdan [3] defined a space of Schwartz functions on $X(\mathbb{A}_F)$ and sketched a proof of a Poisson summation formula for this space of functions. At least in certain cases, the spaces X can be related to reductive monoids attached to the standard representations of (the L-groups of) classical groups, and the Poisson summation formula of Braverman and Kazhdan [3] provides a different perspective from which one can view the famous doubling method introduced by Rallis and Piatetski-Shapiro [11]. Thus Braverman and Kazhdan [3] were able to confirm their conjectures on nonabelian Poisson summation formulae in this case.

The argument ultimately boils down to an application of the theory of Eisenstein series, just as in the doubling method. Braverman and Kazhdan’s real achievement was finding a geometric way to interpret and normalize the intertwining operators that are used to study the meromorphic continuation of these Eisenstein series. In honor of their work we refer to X as a Braverman-Kazhdan space.

Unfortunately, the description of the Schwartz space given by Braverman and Kazhdan [3] makes the growth properties of functions in the space unclear. Moreover, they imposed conditions to eliminate boundary terms in the Poisson summation formula that are vital in applications. For example, if one were using their formula to reprove the analytic continuation and functional equation of triple product L-functions then one would not be able to say anything about the residues of these L-functions (see [16, 28]).

In this paper we explicate and refine Braverman and Kazhdan’s work in a special case. Let

$$J := \begin{pmatrix} I_n & \vspace{1.5ex} \\ -I_n & \end{pmatrix},$$

and for \mathbb{Z}-algebras R, let

$$\text{Sp}_{2n}(R) := \{ g \in \text{GL}_{2n}(R) : gJ^t J = I_{2n} \}.$$

We typically regard Sp_{2n} as a reductive group over F or one of its completions. For F-algebras R, let

$$P(R) := \left\{ \begin{pmatrix} A & Z \\ A^{-t} & I_n \end{pmatrix} : (A, Z) \in \text{GL}_n(R) \times \mathfrak{gl}_n(R) \text{ with } Z = Z^t \right\}. \quad (1.1)$$

We let $M \leqslant P$ be the Levi subgroup of block diagonal matrices and let $N \leqslant P$ be the unipotent radical.

Let $K \leqslant \text{Sp}_{2n}(\mathbb{A}_F)$ be a maximal compact subgroup such that K^∞ is $\text{Sp}_{2n}(\mathbb{A}_F^\infty)$-conjugate to $\text{Sp}_{2n}(\mathbb{O})$. Here, \mathbb{O} is the ring of integers of F. We define a Schwartz space $S(X(\mathbb{A}_F), K)$ and construct a Fourier transform

$$\mathcal{F} := \mathcal{F}_{\psi, K} : S(X(\mathbb{A}_F), K) \to S(X(\mathbb{A}_F), K)$$

...
depending on a (nontrivial) additive character \(\psi : F \backslash A_F \to \mathbb{C}^\times \) (see Theorem 4.4). Here the \(K \) indicates that the functions in the space are \(K \)-finite. We also develop the analytic properties of elements in the Schwartz space, including growth estimates (see Section 4).

We then obtain a Poisson summation formula.

Theorem 1.1. Let \(\Phi \in S(X(\mathbb{A}_F), K) \). One has that

\[
\sum_{\gamma \in X(F)} \Phi(\gamma) + \frac{1}{n_F} \sum_{0 \leq m < \frac{n+1}{2}, m \in \mathbb{Z}} \text{Res}_{s = \frac{n+1}{2} - m} E(F(\Phi)_{1_s}) + \frac{1}{K_F} \sum_{\chi \in [G_m]} \text{Res}_{s = \frac{n+1}{2} - m} E(F(\Phi)_{\chi_s}) = \sum_{\gamma \in X(F)} F(\Phi)(\gamma) + \frac{1}{K_F} \sum_{0 \leq m < \frac{n+1}{2}, m \in \mathbb{Z}} \text{Res}_{s = \frac{n+1}{2} - m} E(F(\Phi)_{1_s}) + \frac{1}{K_F} \sum_{\chi \in [G_m]} \text{Res}_{s = \frac{n+1}{2} - m} E(F(\Phi)_{\chi_s}).
\]

All of the sums here are absolutely convergent.

Here \(E(\Phi_{\chi_s}) := E(I_{2n}, \Phi_{\chi_s}) \) is a certain degenerate Siegel Eisenstein series (see (1.2)).

The results of this paper, especially the local control of the Schwartz space, are crucial in our follow-up paper [14]. Let \((V_i, Q_i), 1 \leq i \leq 3 \) be a triple of vector spaces of even dimension equipped with nondegenerate quadratic forms \(Q_i \). In [14] we proved a Poisson summation formula for the affine \(F \)-scheme that is the zero locus of \(Q_1 - Q_2 \) and \(Q_2 - Q_3 \) on \(V_1 \oplus V_2 \oplus V_3 \) (in other words, the triples in \(V_1 \oplus V_2 \oplus V_3 \) on which the \(Q_i \) have the same value). This is the first time that a Poisson summation formula of this type has been proven for a space that is not a Braverman-Kazhdan space.

1.2 Other motivations

We make explicit two other motivations for proving Theorem 1.1 and the refined definition of the Schwartz space that underlies it. The first motivation is that these sorts of Poisson summation formulae are interesting for their own sake. Given the utility of the usual Poisson summation formula on vector spaces, one expects that Poisson summation formulae on any more general schemes will be extremely useful. For example, one could use the formula to give sharp estimates for the number of points of \(X(F) \) in suitable sets (see [7,9] for counting results of a similar flavor).

The second motivation is in line with Braverman and Kazhdan’s original motivation. Nonabelian Poisson summation formulae are expected to imply the functional equations and meromorphic continuation of Langlands \(L \)-functions. Thus developing notions of Fourier transforms and Schwartz spaces that are analytically tractable in more general contexts is an extremely important problem. There has been other work on this important question, and we mention in particular the work in [2,6,13,20,21,23,24,29,30,33]. We hope that our work here will shed light on the (conjectural) general picture. In this regard, it would be desirable to rewrite the sums of residues appearing in Theorem 1.1 geometrically in terms of the complement of \(X \) in the affine closure of \(X \) under the Plücker embedding of (2.1). However, the local analytic control of the Schwartz space established in this paper is important independently of these global concerns (see Section 4).

1.3 Sketch of the proof

The idea of the proof of Theorem 1.1 is due to Braverman and Kazhdan [3] and the formal argument is straightforward. Let \(P = MN \) where \(N \) is the unipotent radical and \(M \) is the Levi subgroup of block-diagonal matrices. Moreover let \(M^{ab} := M/[M, M] \). For a reductive group \(G \), we let

\[
[G] := A_G G(F) \backslash G(\mathbb{A}_F),
\]

where \(A_G \) is the neutral component in the real topology of the \(\mathbb{R} \)-points of the maximal \(\mathbb{Q} \)-split torus in \(\text{Res}_{F/Q} \mathbb{Z} G \).

For Hecke characters \(\chi \in [G_m] \) and \(s \in \mathbb{C} \), let

\[
\chi_s := \chi | \cdot |^s,
\]
where $|\cdot|: [G_m] \to \mathbb{C}^\times$ is the typical idelic norm. For each $\Phi \in \mathcal{S}(X(F), K)$ and $s \in \mathbb{C}$ with a sufficiently large real part we define a Mellin transform

$$\Phi_{\chi_s}(g) = \int_{M^{ab}(F)} \delta_P(m)^{1/2} \chi_s(\omega(m)) \Phi(m^{-1}g) dm.$$

Then

$$E(g, \Phi_{\chi_s}) := \sum_{\gamma \in \pi_1\mathbb{F}} \Phi_{\chi_s}(\gamma g)$$

is a degenerate Siegel Eisenstein series, induced from the twist of the trivial representation on M by χ_s. In fact, by Mellin inversion, for $\sigma \in \mathbb{R}$ sufficiently large one has

$$\sum_{\gamma \in X(F)} \Phi(\gamma) = \sum_{\chi \in [G_m]} \frac{1}{2\pi i \kappa_F} \int_{\text{Re}(s)=\sigma} E(I_{2n}, \Phi_{\chi_s}),$$

where $\kappa_F := \text{Res}_{s=1} \zeta_F(s)$. We now apply Langlands’ functional equation for $E(I_{2n}, \Phi_{\chi_s})$ to replace this by

$$\sum_{\chi \in [G_m]} \frac{1}{2\pi i \kappa_F} \int_{\text{Re}(s)=\sigma} E(I_{2n}, M_{w_0}^*(\Phi_{\chi_s})), $$

where $M_{w_0}^*$ is Langlands’ intertwining operator attached to the long Weyl element w_0. The * in the superscript indicates that it is normalized as in [16]. Now this Eisenstein series converges absolutely for $\text{Re}(s)$ very negative. Thus we shift the contour to $-\sigma$, picking up the poles of the Eisenstein series along the way. Finally we apply Mellin inversion again. Our Fourier transform $\mathcal{F}(\Phi)$ is designed so that

$$\mathcal{F}(\Phi)_{\chi_s} = M_{w_0}^*(\Phi_{\chi_s})$$

(see (4.9) and the diagram directly following it). This allows us to deduce the main theorem. For the complete argument we refer the reader to Section 6.

This outline hides the substantial subtleties involved in making this argument rigorous and the related problem of establishing analytic control of the Schwartz space. The lion’s share of this is omitted or stated as conjectures in [3]. This is not meant as a criticism of Braverman and Kazhdan’s work. It is only meant to explain why the current paper is a necessary addition to the literature. We will mention some of the subtleties in the following section when we outline the contents of the paper.

1.4 Outline of the paper

In Section 2 we explain how the geometry of X can be understood using a lift of the Plücker embedding of $P^1 \setminus \text{Sp}_{2n}$ into an appropriate projective space. This Plücker embedding allows us to define a function $|x|$ on $x \in X(F)$ (F a local field) which measures its size. This plays a role in describing the asymptotic behavior of functions on X.

The analytic properties of Eisenstein series that we require are proven in [16]. We review Ikeda’s construction of “good sections” and refine it in Section 3. This is then used in Section 4 to define the local Schwartz space and the Fourier transform. In the non-Archimedean case we use the work of Ikeda to show that compactly supported smooth functions on $X(F)$ (F a local field) are in the Schwartz space. This is also true in the Archimedean case, but we defer the proof to Appendix A.

We then give analytic control on the Schwartz space in Section 5. In particular, we prove that functions in the Schwartz space have polynomial growth as $|g| \to 0$ and are rapidly decreasing as $|g| \to \infty$. Finally, in Section 6, we prove Theorem 1.1, which is restated in that section as Theorem 6.7.
1.5 Notation and measures

In this paper F refers to a number field or a completion of it. When F is a number field or non-Archimedean local field we denote by O its ring of integers. If F is a local non-Archimedean field we let ϖ be a uniformizer, set $q := |O/\varpi|$, and let $|\cdot|$ be the usual norm, so $|\varpi| = q^{-1}$. If F is an Archimedean local field, $|\cdot|$ is the standard norm if $F = \mathbb{R}$ and the square of the standard norm if $F = \mathbb{C}$. This may cause some confusion when we deal with \mathbb{C}-valued functions, so we set $|z|_{st} := (z \bar{z})^{1/2}$ (the positive square root) for $z \in \mathbb{C}$.

In our derivation of Theorem 1.1 we apply Mellin inversion. Our main reference for this is [1], so we use their measure conventions. In more detail we normalize the Haar measure on the local field F as follows:

F	dx		
\mathbb{R}	Lebesgue measure		
\mathbb{C}	Twice Lebesgue measure		
Non-Archimedean	$dx(O) =	O	^{1/2}$

Here in the non-Archimedean case \mathfrak{d} is a generator of the absolute different. To be more explicit, the Haar measure dz on \mathbb{C} is $d(x + iy) = 2dxdy$, where dx and dy are the usual Lebesgue measures on \mathbb{R}. We then let the Haar measure on F^\times be

$$dx^\times := \zeta(1) \frac{dx}{|x|},$$

where $\zeta(s)$ is the Tate local zeta function of F.

We use the standard analytic number theory symbol

$$A \ll_B C$$

to mean that there is a constant $\kappa \in \mathbb{R}_{>0}$, possibly depending on B, such that $A < \kappa C$. Moreover,

$$A \asymp_B C$$

means $A \ll_B C$ and $C \ll_B A$.

2 Preliminaries on the space X

Recall that $X := [P,P]\backslash \text{Sp}_{2n}$, where $P \leq \text{Sp}_{2n}$ is the Siegel parabolic of (1.1) and $M \leq P$ is the Levi subgroup consisting of block diagonal matrices. Let $M^{ab} := M/[M,M]$ be the abelianization of the Levi subgroup M.

Lemma 2.1. The natural maps

$$\text{Sp}_{2n}(F) \to X(F),$$
$$\text{Sp}_{2n}(F) \to P\backslash \text{Sp}_{2n}(F),$$
$$M(F) \to M^{ab}(F)$$

are all surjective.

Proof. To prove the first assertion it suffices to verify that $H^1(F,[P,P]) = 1$. One has an exact sequence

$$H^1(F,N) \to H^1(F,[P,P]) \to H^1(F,\text{SL}_n),$$

where the first map is induced by the inclusion of the unipotent radical N of P into $[P,P]$ and the second is induced by the quotient map to the maximal reductive quotient. The left group is trivial by [31, Subsection III.2.1, Proposition 6] and the right group is trivial by [31, Subsection III.3.2(a)].

The last two assertions follow from similar arguments.
2.1 A Plücker embedding of X

We can use the Plücker embedding to give a linear description of X. More geometric information about this embedding can be found in [24, Subsection 7.2]. We construct a commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{\text{Pl}} & \wedge^n \mathbb{G}_a^{2n} - \{0\} \\
\downarrow & & \downarrow \\
P\backslash \text{Sp}_{2n} & \longrightarrow & \mathbb{P}(\wedge^n \mathbb{G}_a^{2n})
\end{array}
$$

of morphisms of F-schemes as follows. The vertical arrows are the quotient maps. Let $e_i \in F^{2n}$ be the standard basis vector (with a 1 in the i-th place and zeros elsewhere). Then P is the stabilizer of the Lagrangian (also known as maximal isotropic) subspace $\langle e_{n+1}, \ldots, e_{2n} \rangle$.

The top arrow Pl sends g to $e_{n+1}g \wedge \cdots \wedge e_{2n}g$, and the bottom arrow sends g to the line spanned by this vector (this is just the usual Plücker embedding). In terms of matrices, for an F-algebra R and $g = (A B) \in \text{Sp}_{2n}(R)$ with $A, B \in M_{n \times 2n}(R)$ we have

$$
\text{Pl}(g) = b_1 \wedge \cdots \wedge b_n,
$$

where b_i is the i-th row of B.

If we let Sp_{2n} act on X and \mathbb{G}_a^{2n} on the right then the horizontal arrows in (2.1) are Sp_{2n}-equivariant.

Let R be an F-algebra. There is a left action

$$
M/M^{\text{det}}(R) \times X(R) \to X(R),
(m, x) \mapsto mx.
$$

Define a character

$$
\omega : M(R) \to R^\times,
\begin{pmatrix} m \\ m^{-t} \end{pmatrix} \mapsto \text{det } m.
$$

Thus ω induces a character of M^{ab}. By extending trivially on N it also induces a character of P; we will use the symbol ω to denote all of these characters. Then

$$
\text{Pl}(mx) = \omega^{-1}(m)\text{Pl}(x).
$$

Lemma 2.2. The map

$$
\text{Pl} : X(F) \to \wedge^n F^{2n} - \{0\}
$$

is injective.

Proof. In view of (2.4), a fiber of the map $X(F) \to P\backslash \text{Sp}_{2n}(F)$ is mapped bijectively onto a fiber of the map $\wedge^n F^{2n} - \{0\} \to \mathbb{P}(\wedge^n F^{2n})$. Since the Plücker embedding is injective we deduce the lemma.

For the remainder of this section let F be a local field of characteristic zero. Throughout this paper in the Archimedean case we let $K \leq \text{Sp}_{2n}(F)$ be a maximal compact subgroup and in the non-Archimedean case we let K be an $\text{Sp}_{2n}(F)$-conjugate of $K_0 := \text{Sp}_{2n}(O)$.

Thus in either case the Iwasawa decomposition $\text{Sp}_{2n}(F) = P(F)K$ holds. When considering the analytic properties of functions on $X(F)$ it is useful to have a way to measure the size of a point on $X(F)/K$. This is what the constructions below will afford us (see Proposition 2.3).
Let $\text{Sp}_{2n}(F)$ act on F^{2n} on the right. One obtains an induced action on $\wedge^n F^{2n}$. When F is Archimedean, choose a positive definite bilinear form (\cdot, \cdot) on $\wedge^n F^{2n}$ that is invariant under the action of K and set $|x| = (x,x)^{[F: \mathbb{R}]/2}$. In the non-Archimedean case, let e_1, \ldots, e_{2n} be the standard basis of F^{2n} and let
\[
\{e_{\alpha_1, \ldots, \alpha_n} := e_{\alpha_1} \wedge \cdots \wedge e_{\alpha_n} : 1 \leq \alpha_1 < \cdots < \alpha_n \leq 2n\}
\]
be the natural induced basis of $\wedge^n F^{2n}$. Then set
\[
\sum_{1 \leq \alpha_1 < \cdots < \alpha_n \leq 2n} x_{\alpha_1, \ldots, \alpha_n} e_{\alpha_1, \ldots, \alpha_n} = \max_{1 \leq \alpha_1 < \cdots < \alpha_n \leq 2n} |x_{\alpha_1, \ldots, \alpha_n}|.
\]
We claim that $|\cdot|$ is invariant under the natural action of $\text{GL}(\wedge^n O^{2n})$ on the right. To check this it suffices to treat the case where $x \in \wedge^n F^{2n} - \{0\}$. In this case $|x| = q^{-k}$ where k is the largest integer such that $\varpi^{-k} x \in \wedge^n O^{2n}$. It is clear from this latter characterization that $|x|$ is preserved under $\text{GL}(\wedge^n O^{2n})$. In particular, it is invariant under the action of $\text{Sp}_{2n}(O)$ induced from its natural right action on O^{2n}.

We then set
\[
|g| := |\text{Pl}(g)|.
\]

For any $c \in \mathbb{Z}$, let
\[
c(x) := \begin{pmatrix} x^{-c} \\
I_{n-1} \\
x^c \\
I_{n-1} \end{pmatrix}
\]
(2.6)

In this way we obtain an isomorphism $\mathbb{Z} \cong X_s(M/M^\text{der})$; we often use this isomorphism to identify integers with cocharacters of M/M^der. With respect to this basis, $|1(t)| \to 0$ as $|t| \to 0$. The Iwasawa decomposition implies that
\[
X(F) = \prod_{c \in \mathbb{Z}} [P,P](F)c(\varpi)K_0
\]
in the non-Archimedean case, and
\[
X(F) = \prod_{t \in \mathbb{R}_{>0}} [P,P](F)1(t)K
\]
in the Archimedean case.

In the non-Archimedean case for $c \in \mathbb{Z}$ set
\[
1_c := 1_{[P,P](F)c(\varpi)K_0}.
\]
(2.7)
Then the functions 1_c, $c \in \mathbb{Z}$ form a basis for $C^\infty(X(F)/K_0)$ by the Iwasawa decomposition.

Proposition 2.3. Suppose $K = K_0$ when F is non-Archimedean. There is a continuous injection
\[
X(F)/K \to \mathbb{R}_{>0},
\]
\[
[P,P](F)gK \mapsto |g|,
\]
Proof. It is easy to see that the map is well defined and continuous. We only need to check injectivity. In the Archimedean case one has
\[
|1(t)| = |t| e_{n+1} \wedge \cdots \wedge e_{2n}.
\]
Thus the map is injective. If F is non-Archimedean then $|c(\varpi)| = q^{-c}$, and thus we deduce injectivity in this case as well. □
3 Normalized intertwining operators and excellent sections

For characters $\chi : F^\times \to \mathbb{C}^\times$ and $s \in \mathbb{C}^\times$, let $\chi_s := \chi \cdot |s|$. Let

$$I(\chi_s) := \text{Ind}_{P}^{\text{Sp}_{2n}}(\chi_s)$$

(normalized induction) be the space of functions $f : \text{Sp}_{2n}(F) \to \mathbb{C}$ such that

$$f(pg) = \chi_s(\omega(p)) \delta_p(p)^{1/2} f(g),$$

where $\delta_p : P(F) \to \mathbb{C}^\times$ is the modular quasi-character and ω is as in (2.3).

We now recall some definitions from [16, Subsection 1.2]. Let $E := \mathbb{C}[q^{-s}, q^s]$ if F is non-Archimedean and let E be the ring of entire functions on \mathbb{C} if F is Archimedean. Assume χ is unitary. A function

$$f^{(r)} : \text{Sp}_{2n}(F) \times \mathbb{C} \to \mathbb{C},$$

$$(g, s) \mapsto f^{(s)}(g)$$

is a holomorphic section of $I(\chi_s)$ if

1. For each $s \in \mathbb{C}$, $f^{(s)} \in I(\chi_s)$ (as a function of g),
2. For each $g \in \text{Sp}_{2n}(F)$, $f^{(s)}(g) \in E$ as a function of s, and
3. The function $f^{(s)}$ is right K-finite.

A function $f^{(r)}$ on $\text{Sp}_{2n}(F) \times \mathbb{C}$ that is meromorphic in the second factor of the argument is a meromorphic section if there is an $\alpha \in E$ such that $\alpha f^{(r)}$ is a holomorphic section.

Let $T \leqslant \text{Sp}_{2n}$ be the maximal torus of diagonal matrices, let $W_{\text{Sp}_{2n}}$ be the Weyl group of T in Sp_{2n} and let W_M denote the Weyl group of T in M. Let $\Phi_{\text{Sp}_{2n}}$ be the set of roots of Sp_{2n} with respect to T. We let Ω_n be the complete set of representatives for $W_{\text{Sp}_{2n}}/W_M$ obtained by choosing the unique element of minimal length in each coset as follows. For each subset $I = \{i_1, i_2, \ldots, i_k\}$ of $\{1, 2, \ldots, n\}$, let

$$J := \{j_1, j_2, \ldots, j_{n-k}\} = \{1, 2, \ldots, n\} - I,$$

where $i_1 < \cdots < i_k$ and $j_1 < \cdots < j_{n-k}$. Define an element w_I of $W_{\text{Sp}_{2n}}$ by $t_1 \mapsto t_{j_1}, \ldots, t_{n-k} \mapsto t_{j_{n-k}},$ $t_{n-k+1} \mapsto t_{i_k}^{-1}, \ldots, t_n \mapsto t_{i_1}^{-1}$, where

$$
\begin{pmatrix}
t_1 \\
\vdots \\
t_n \\
t_1^{-1} \\
\vdots \\
t_n^{-1}
\end{pmatrix} \in T(F).
$$

In particular $w_0 := w_{\{1, \ldots, n\}}$ is the long Weyl element which is conjugation by

$$
\begin{pmatrix}
-1 & & & & \\
& \ddots & & & \\
& & -1 & & \\
& & & 1 & \\
& & & &
\end{pmatrix}
$$

For each $w \in \Omega_n$ and quasi-character $\chi : T(F) \to \mathbb{C}^\times$, let $(\chi_s)^w(t) := \chi_s(w^{-1}tw)$ and let

$$M_w : I(\chi_s) \to I((\chi_s)^w)$$
denote the usual intertwining operator. For F-algebras R, let

$$B_{2n}(R) := \left\{ \begin{pmatrix} A & * \\ 0 & A^{-t} \end{pmatrix} \in \text{Sp}_{2n}(R) : A \text{ is upper triangular} \right\}.$$

This is a Borel subgroup of Sp_{2n}. We let $N_{2n} \subseteq B_{2n}$ be the unipotent radical and let N_{2n}^{op} be the unipotent radical of the opposite Borel. We recall that

$$M_w : I(\chi_s) \to I((\chi_s)^w),$$

$$f(s) \mapsto \int_{N_{2n}(F) \cap wN_{2n}^{\text{op}}(F)w^{-1}} f(s)(w^{-1}ng)dn.$$

Here the integral is only well defined for $\text{Re}(s)$ sufficiently large; in general, one has to define it via analytic continuation ([32, Chapter 4] is a nice reference). To make the definition of M_w precise we must fix the measure dn. We proceed as follows: For each $\alpha \in \Phi_{\text{Sp}_{2n}}$, let $N_{\alpha} \subseteq N$ be the corresponding root subgroup; it comes equipped with an isomorphism of topological groups $F \to N_{\alpha}(F)$. We let dn_{α} be the Haar measure on $N_{\alpha}(F)$ given by transporting the Haar measure on F that is self-dual with respect to ψ to $N_{\alpha}(F)$ via this isomorphism. Then we let $dn = \prod dn_{\alpha}$ be the product measure, where the product is over the roots occurring in $N_{2n} \cap wN_{2n}^{\text{op}}w^{-1}$.

Ikeda [16, Subsection 1.2, p. 195], following Gelbart et al. [11] and Piatetski-Shapiro and Rallis [28], found a convenient normalization for these intertwining operators. We now recall it because it plays a role in what follows. For $w = w_I, I = \{i_1, i_2, \ldots, i_k\}$, let

$$\mu_w(r) = \begin{cases} \min\{m \mid n-k+1 \leq m \leq n, i_{n-m+1} < j_r\}, & \text{if } 1 \leq r \leq n-k, \\ r+1, & \text{if } n-k+1 \leq r \leq \left\lfloor \frac{n}{2} \right\rfloor. \end{cases}$$

Then set

$$a_w(s, \chi) := L(s + \frac{n+1}{2} - k, \chi) \prod_{r=1}^{\min(k, \lfloor n/2 \rfloor)} L(2s + i_r - 2r + 1, \chi^2) \times \prod_{r=1}^{\min(k, \lfloor n/2 \rfloor)} L(2s - n + r + \mu_w(r) - 1, \chi^2) \prod_{r=k+1}^{\lfloor n/2 \rfloor} L(2s + n + 1 - 2r, \chi^2),$$

$$d(s, \chi) := L\left(s + \frac{n+1}{2}, \chi\right) \prod_{r=1}^{\lfloor n/2 \rfloor} L(2s + n + 1 - 2r, \chi^2),$$

$$c_w(s, \chi) := \frac{a_w(s, \chi)}{d(s, \chi)}.$$

We note that there is a typo in [16]; the inequality $i_{n-m+1} < j_r$ in the definition of $\mu_w(r)$ in loc. cit. is reversed (see [11, p. 26], which unfortunately uses the different notation). One has

$$c_{I_{2n}}(s, \chi) = 1 \quad \text{and} \quad a_{I_{2n}}(s, \chi) = d(s, \chi),$$

$$a_{w_0}(s, \chi) = L\left(s + \frac{1-n}{2}, \chi\right) \prod_{r=1}^{\lfloor n/2 \rfloor} L(2s - n + 2r, \chi^2).$$

As explained below [16, (1.2.7)], these L-factors are defined so that for non-Archimedean F and unramified χ the operator M_w takes the spherical vector in $I(\chi_s)$ to $c_w(s, \chi)$ times the spherical vector in $I((\chi_s)^w)$. Moreover, in the non-Archimedean spherical case, $d(s, \chi)$ is the smallest common denominator of the $c_w(s, \chi)$ as w varies.
Motivated by the definition of $C(r)$ in [17], we make the following definition.

Definition 3.1. A meromorphic section $\gamma(s,\chi,\psi)$ of $\mathcal{K}(s)$ is an excellent section if $\gamma(s,\chi,\psi)$ is holomorphic.

Note that this may be infinite.

Note that $\gamma(s,\chi,\psi) = \epsilon(s,\chi,\psi)$ in the notation of [16]. This notation is also used in [15].

In the Arithmetical case we require a refinement of the notion of a good section. To state the refinement, let $\Gamma(s,\chi,\psi) = \gamma(s,\chi,\psi)$ in Arithmetical notation. Let $A < B$ and for $w \in \{\mathfrak{d}, \mu\}$, let $P_w = P_{\mathfrak{d}} \in \mathcal{A}(\chi)$ be the polynomial (of s) for any $w \in \{\mathfrak{d}, \mu\}$ such that $P_w(s,\chi) = 0$ for $s \in V_A$. For any $w \in \{\mathfrak{d}, \mu\}$, let $M_w = M_w^{s,\chi,\psi} = \left(\frac{s-n-2}{2}\right)^{-\frac{1}{2}} \Gamma(2s-n+2,\chi,\psi,\mu)$.

For an additive character ψ we also define normalized intertwining operators $J_{\psi} : C \rightarrow C$.
where \(t \in \mathbb{R}, \alpha \in \mathbb{Z} \) and we assume \(\alpha \in \{0,1\} \) if \(F \) is real. One has
\[
L(s, | \cdot |, \mu) = \Gamma_F \left(s + it + \frac{\alpha}{|F: \mathbb{R}|} \right)
\]
(3.11)
(see [17, Appendix]).

Proof of Lemma 3.3. It suffices to verify that for any \(A < B \) and any polynomials \(p_{\chi}^{-} \) and \(p_{\chi}^{+} \) such that \(p_{\chi}^{-}(s)L(1-s, \chi) \) and \(p_{\chi}^{+}(s)L(s, \chi) \) are holomorphic and nonvanishing in \(V_{A,B} \), the quotient
\[
\frac{p_{\chi}^{-}(s)L(1-s, \chi)}{p_{\chi}^{+}(s)L(s, \chi)}
\]
is bounded by a polynomial for \(s \in V_{A,B} \). Write \(\chi \) as in (3.10). Then we see it suffices to show that for \(s \in V_{A,B} \) with \(\text{Im}(s) \) large enough in a sense depending on \(\chi \) that
\[
\frac{\Gamma \left(\frac{1-s-it+\alpha}{2|F: \mathbb{R}|} \right)}{\Gamma \left(\frac{s+it+\alpha}{2|F: \mathbb{R}|} \right)}
\]
is bounded by a polynomial in \(s \). Recall that \(\Gamma(s+1) = s\Gamma(s) \). Thus if \(F \) is complex, replacing \(s \) by \(s+1 \) multiplies (3.12) by a rational function of \(s \). If \(F \) is real, replacing \(s \) by \(s+1 \) has the effect of multiplying by a rational function of \(s \) and replacing \(\chi \) by \(\chi\mu \). In either case we see it suffices to assume that \((A,B) = (-\frac{1}{2}, \frac{1}{2}) \). In this case we can apply [25, Subsection III.5, Lemmas 3 and 5] to deduce the desired bound. \(\square \)

Lemma 3.4. The section \(f(s) \) of \(I(\chi_s) \) is excellent if and only if \(M_{w_0}^{-}f(s) \) is an excellent section of \(I(\chi_{-s}) \).

Proof. In the non-Archimedean case, good sections are excellent by definition so we can apply [16, Lemma 1.2]. In the Archimedean case, by the same lemma we know that \(f(s) \) is good if and only if \(M_{w_0}^{-}f(s) \) is good. Let \(A \leq B \). To complete the proof in the Archimedean case it suffices to check that
\[
[f(s)]_{A,B,P_{A,B,P_{A,B}}} \quad \text{and} \quad [M_{w_0}^{-}f(s)]_{A,B,P_{A,B,P_{A,B}}} \quad \text{are finite for all} \quad P_{w,\chi} \quad \text{such that} \quad P_{w,\chi} a_{w}(s, \chi) \quad \text{is holomorphic in} \quad V_{A,B} \quad \text{if and only if}
\]
\[
[M_{w_0}^{-}f(s)]_{A,B,P_{A,B,P_{A,B}}} \quad \text{are finite for all} \quad P_{w,\chi} \quad \text{such that} \quad P_{w,\chi} a_{w}(-s, \chi) \quad \text{is holomorphic in} \quad V_{A,B} \quad \text{Here} \quad w \in \{\text{id}, w_0\}.
\]

We note that
\[
\gamma \left(s - \frac{n-1}{2}, \chi, \psi \right) \prod_{r=1}^{[n/2]} \gamma(2s - n + 2r, \chi^2, \psi) = a_{\text{id}}(s, \chi) e \left(-s - \frac{n-1}{2}, \chi, \psi \right) \prod_{r=1}^{[n/2]} e(2s - n + 2r, \chi^2, \psi),
\]
and the \(e \) function here is a constant times \(\chi_{s-\frac{n-1}{2}}(a) \prod_{i=1}^{[n/2]} (\chi^2)_{2s-n+2r-1/2}(a) \) for some \(a \in F^\times \) depending on \(\psi \) (see [17, Sections 2 and 16]). Thus for some nonvanishing holomorphic functions \(C_1 \) and \(C_2 \) such that \(C_1(s) \) and \(C_2(s) \) are bounded in \(V_{A,B} \) one has
\[
P_{\text{id},\chi}(s)M_{w_0}^{-}f(s) = P_{\text{id},\chi}(s) \gamma \left(s - \frac{n-1}{2}, \chi, \psi \right) \prod_{r=1}^{[n/2]} \gamma(2s - n + 2r, \chi^2, \psi) \cdot M_{w_0}^{-}f(s)
\]
\[
= C_1(s) \frac{P_{\text{id},\chi}(s) a_{\text{id}}(-s, \chi)}{P_{w_0,\chi}(s) a_{w_0}(s, \chi)} \cdot [M_{w_0,\chi}^{-}f(s)].
\]
and, using [16, Lemma 1.1],
\[
P_{w_0, X}(s)M_{w_0}M^*_{w_0}f(s) = \frac{\pm P_{w_0, X}(s)f(s)}{\gamma(-s - \frac{n-1}{2}, \chi, \psi) \prod_{r=1}^{[n/2]} \gamma(-2s - n + 2r, \chi^2, \psi)}
\]
\[
= C_2(s) s^{-\frac{n+1}{2}} \frac{P_{w_0, X}(s)a_{w_0}(-s, \chi)}{P_{\text{Id}, X}(s)a_{\text{Id}}(s, \chi)} P_{\text{Id}, X}(s)f(s).
\]
The lemma now follows from Lemma 3.3. □

4 The Schwartz space of \(X \)

Let \(K \leq \text{Sp}_{2n}(F) \) be a maximal compact subgroup that is conjugate to \(\text{Sp}_{2n}(O) \) in the non-Archimedean case. We now give a definition of a Schwartz space \(S(X(F), K) \subset C^\infty(X(F)) \). Our approach is a combination of Braverman and Kazhdan [3] with Lafforgue’s approach to defining Fourier transforms using the Plancherel formula [20]. The first author used a similar approach in [13] to construct Schwartz spaces for Archimedean spherical functions in a different context.

Our conventions are slightly different from those of Braverman and Kazhdan in that we work with representations induced from a single parabolic as opposed to those from two opposite parabolics. Our reason for this is that we need the refined information obtained by Ikeda [16]. Apart from this, our construction of the Fourier transform should agree with that of Braverman and Kazhdan [3] and Braverman and Kazhdan’s Schwartz space should be contained in ours, at least after normalizing by a power of \(|g|\), defined as in (2.5). We will not check this because it would make the current paper unnecessarily long. One ought to be able to obtain the precise relationship using the recent preprint of Shahidi [34] and its appendix by Li [22].

For a smooth function \(\Phi \in C^\infty(X(F)) \), set
\[
\Phi_{\chi_s}(g) = \int_{M_{ab}(F)} \delta_P(m)^{1/2} \chi_s(\omega(m)) \Phi(m^{-1}g) \, dm.
\] (4.1)

Here, we give \(M_{ab}(F) \) the measure induced by the isomorphism \(\omega : M_{ab}(F) \rightarrow F^\times \) and our standard choice of measure on \(F^\times \) (see Subsection 1.5). When this integral is well defined, either because it converges absolutely or by analytic continuation in \(s \) from a half plane of absolute convergence, it defines an element of the induced representation \(I(\chi_s) \) of (3.1).

Definition 4.1. Assume that \(F \) is non-Archimedean. The **Schwartz space** \(S(X(F), K) \) consists of right \(K \)-finite functions \(\Phi \in C^\infty(X(F)) \) such that for each character \(\chi \) and \(g \in \text{Sp}_{2n}(F) \) the integral (4.1) defining \(\Phi_{\chi_s}(g) \) is absolutely convergent for all \(s \) with \(\text{Re}(s) \) large enough and the map \((g, s) \mapsto \Phi_{\chi_s}(g)\) is an excellent section.

Assume for the moment that \(F \) is Archimedean. For \(\Phi \in C^\infty(X(F)) \), let
\[
Df(g) := \frac{\partial}{\partial z} \Phi(1(e^z)g) \big|_{z=0},
\] (4.2)
and when \(F \) is complex,
\[
Df(g) := \frac{\partial}{\partial z} \Phi(1(e^z)g) \big|_{z=0},
\] (4.3)
where in the complex case the partial derivatives are Wirtinger derivatives. Here, \(1(x) \) is defined as in (2.6).

Definition 4.2. Assume that \(F \) is Archimedean. The **Schwartz space** \(S(X(F), K) \) consists of right \(K \)-finite functions \(\Phi \in C^\infty(X(F)) \) such that for all \(B \geq 0, B' \geq 0 \) and for each unitary character \(\chi \) and \(g \in \text{Sp}_{2n}(F) \) the integral (4.1) defining \((D^B D^{B'} \Phi)_{\chi_s}(g)\) is absolutely convergent for all \(s \) with \(\text{Re}(s) \) large enough and the map
\[
(g, s) \mapsto (D^B D^{B'} \Phi)_{\chi_s}(g)
\]
is an excellent section. Here, by convention, $B' = 0$ if F is real.

In the non-Archimedean case the space $S(X(F), K)$ is independent of the $\text{Sp}_{2n}(F)$-conjugate K of K_0, so in this case we are free to take $K := K_0 = \text{Sp}_{2n}(O)$ in the proofs.

Our reason for adopting this definition of the Schwartz space is that Ikeda’s work essentially tells us how the transforms Φ_{χ_s} should behave for Φ in the Schwartz space, so we use this to reverse engineer the definition of the Schwartz space itself. To make this precise it is useful to recall some basic facts about Mellin inversion.

Let

$$I_F := \begin{cases} \left[-\frac{\pi}{\log q}, \frac{\pi}{\log q} \right], & \text{if } F \text{ is non-Archimedean,} \\ \mathbb{R}, & \text{if } F \text{ is Archimedean,} \end{cases}$$

$$c_F := \begin{cases} \log q, & \text{if } F \text{ is non-Archimedean,} \\ \frac{1}{2}, & \text{if } F = \mathbb{R}, \\ \frac{1}{2\pi}, & \text{if } F = \mathbb{C}. \end{cases}$$

Moreover, let $K_{\mathbb{G}_m} \leq F^\times$ be the maximal compact subgroup. We abuse notation and denote by $\hat{K}_{\mathbb{G}_m}$ a set of representatives for the characters of F^\times modulo equivalence, where two characters η and η' are said to be equivalent if $\eta = | \cdot |^s \eta'$ for some $s \in \mathbb{C}$. Since by our conventions characters are unitary, we can in fact take $s \in \mathbb{R}$. The set of equivalence classes is in bijection with the set of characters of $K_{\mathbb{G}_m}$ via restriction. This explains the notation.

Lemma 4.3. Suppose that for all $\eta \in \hat{K}_{\mathbb{G}_m}$ the integral defining Φ_{η_s} is absolutely convergent for $\text{Re}(s) = \sigma$. Suppose moreover that for $k \in K$ one has

$$\sum_{\eta \in \hat{K}_{\mathbb{G}_m}} \int_{\sigma + iI_F} |\Phi_{\eta_s}(k)|_{st} ds < \infty. \tag{4.4}$$

Then for $(m, k) \in M(F) \times K$ one has

$$\Phi(mk) = \delta_F(m)^{1/2} \sum_{\eta \in \hat{K}_{\mathbb{G}_m}} \int_{\sigma + iI_F} \Phi_{\eta_s}(k) \eta_s(\omega(m)) \frac{c_F ds}{2\pi i}.$$

Conversely, suppose that we are given continuous $f(\eta)^{(s)} \in I(\eta_s)$ for all s with $\text{Re}(s) = \sigma$ and all $\eta \in \hat{K}_{\mathbb{G}_m}$ and that

$$\sum_{\eta \in \hat{K}_{\mathbb{G}_m}} \int_{\sigma + iI_F} |f(\eta)^{(s)}(k)|_{st} ds < \infty. \tag{4.5}$$

Assume moreover that in the non-Archimedean case $f(\eta)^{(s+\frac{2\pi i}{\log q})} = f(\eta)^s$. Define

$$\Phi(mk) = \delta_F(m)^{1/2} \sum_{\eta \in \hat{K}_{\mathbb{G}_m}} \int_{\sigma + iI_F} f(\eta)^{(s)}(k) \eta_s(\omega(m)) \frac{c_F ds}{2\pi i}.$$

If the integral defining Φ_{η_s} is absolutely convergent for all $\eta \in \hat{K}_{\mathbb{G}_m}$ and s with $\text{Re}(s) = \sigma$ then we have

$$\Phi_{\eta_s} = f(\eta)^{(s)}.$$

Proof. Both statements are versions of Fourier inversion (see, for example, [8, Theorem 4.32]). To check that the measures on F^\times and its dual are normalized correctly we use [1, (2.2)].

Recall that $w_0 = w_{\{1, \ldots, n\}} \in \Omega_n$ is the long Weyl element.
Theorem 4.4. Suppose that $\Phi \in \mathcal{S}(X(F), K)$. Then there is a unique function $F(\Phi) \in \mathcal{S}(X(F), K)$ such that $F(\Phi)_{\chi_s} = M_{w_0}^* \Phi_{\chi_s}$ for all characters χ and all s with $\text{Re}(s) \geq 0$.

To understand the theorem it is useful to note that

$$I((\chi_s)^{\omega_0}) = I(\chi_s).$$

Proof of Theorem 4.4. Using the Iwasawa decomposition, we write

$$g = nmk,$$

where $(n, m, k) \in N(F) \times M(F) \times K$. We define

$$F(\Phi)(g) := \sum_{\eta \in K_{0m}} \int_{\sigma+iF} M_{w_0}^* \Phi_{\eta_s}(g) \frac{CP}{2\pi i} ds$$

$$= \sum_{\eta \in K_{0m}} \int_{\sigma+iF} M_{w_0}^* \Phi_{\eta_s}(k) \delta_P(m)^{1/2} \eta_s(\omega(m)) \frac{CP}{2\pi i} ds$$

(4.6)

for any $\sigma \geq 0$. Note that only finitely many η contribute a nonzero summand. Provided that the integrals here are all absolutely convergent it is also clear that $F(\Phi)$ is independent of the decomposition of g into nmk and it is right K-finite.

By assumption Φ_{χ_s} is an excellent section of $I(\chi_s)$ for all χ, which implies that Φ_{χ_s} is an excellent section of $I(\chi_s)$ for all χ and hence $M_{w_0}^* \Phi_{\chi_s}$ is an excellent section of $I(\chi_s)$ by Lemma 3.4.

In the non-Archimedean case by definition of an excellent section we have

$$\frac{M_{w_0}^* \Phi_{\chi_s}}{d(s, \chi)} \in \mathbb{C}[q^{-s}, q^s].$$

From the description (3.3) of $d(s, \chi)$ we see that $d(s, \chi)$ has no poles for $\text{Re}(s) \geq 0$. We deduce that each of the integrals in the definition (4.6) of $F(\Phi)(g)$ is absolutely convergent, so $F(\Phi)$ is well defined in this case. We also see that (4.5) holds for $f(\eta)^{(s)} = M_{w_0}^* \Phi_{\eta_s}$ for $\text{Re}(s) \geq 0$. By the displayed equation above we deduce a bound of the form

$$|F(\Phi)(mk)|_{st} \ll \delta_P(m)^{1/2}$$

and that we can write

$$M_{w_0}^* \Phi_{\chi_s} = \sum_{n = -N+1}^{\infty} \frac{\alpha(n)}{q^{\eta_s}}$$

for some $\alpha(n) \in \mathbb{C}$ and some $N \in \mathbb{Z}_{>0}$. It follows that $F(\Phi)$ is supported in $\bigcup_{c > -N} [P, P]X(\omega)K_0$.

Thus for any $\sigma > 0$ one has

$$\int_{M_{ab}(F)} \delta_P^{1/2}(m)|\omega(m)|^{s}|F(\Phi)(m^{-1}k)|dm \ll \sum_{c > -N} \delta_P(c(\omega))^{1/2} |c(\omega)|^{s} \delta_P(c(\omega)^{-1})^{1/2} < \infty.$$

This implies that for $\sigma > 0$ the integral defining $F(\Phi)^{\chi_s}$ is absolutely convergent for $\text{Re}(s) = \sigma$ and hence the inversion formula $F(\Phi)^{\chi_s} = M_{w_0}^* \Phi_{\chi_s}$ is valid. In view of the comments above we deduce that $F(\Phi) \in \mathcal{S}(X(F), K)$.

Now consider the Archimedean case. As noted above $M_{w_0}^* \Phi_{\eta_s}$ is an excellent section of $I(\chi_s)$ for all characters χ. Thus for all $A < B$ and $P_0d \in \mathbb{C}[x]$ such that $P_0d(s) \in M_{ab}(F)$ has holomorphic in $V_{A,B}$ one has

$$|M_{w_0}^* \Phi_{\eta_s}(g)|_{A,B,P_0d} < \infty.$$

(4.7)

As before, from the description (3.3) of $d(s, \chi)$ we see that $d(s, \chi)$ has no poles for $\text{Re}(s) \geq 0$. Thus we deduce that the integrals in the definition (4.6) of $F(\Phi)$ are absolutely convergent. We also see that (4.5) holds for $f(\eta)^{(s)} = M_{w_0}^* \Phi_{\eta_s}$ and $\text{Re}(s) \geq 0$.
We must check that \(\mathcal{F}(\Phi) \) is smooth. In fact, since intertwining operators preserve smoothness and the Mellin transform only involves an integration over \(\text{M}^{ab} \), to prove smoothness of \(\mathcal{F}(\Phi) \) it suffices to prove that for all \(B \geq 0, B' \geq 0 \) that the derivative \(D^{B \bar{B}'} \mathcal{F}(\Phi) \) exists. Differentiating under the integral sign we see that
\[
D^{B \bar{B}'} \mathcal{F}(\Phi)(g) = \sum_{\eta \in \hat{K}_{\text{cm}}} \int_{I_B} P_\eta(s) M_{w_0}^* \Phi_{\pi_{-s}}(k) \delta_P(m) \frac{c_F ds}{2\pi i} \tag{4.8}
\]
for some polynomials \(P_\eta(s) \). Since \(M_{w_0}^* \Phi_{\pi_{-s}} \) is an excellent section, this integral converges absolutely and we deduce that \(D^{B \bar{B}'} \mathcal{F}(\Phi) \) exists, hence \(\mathcal{F}(\Phi) \) is smooth.

The final thing that must be checked is that for all \(\chi \) the integral defining \((D^{B \bar{B}'} \mathcal{F}(\Phi))_{\chi,s}(g) \) is absolutely convergent for \(\text{Re}(s) \) large enough and is an excellent section. Indeed, this implies the inversion formula \(\mathcal{F}(\Phi)_{\chi,s} = M_{w_0}^* \Phi_{\pi_{-s}} \) is valid by Lemma 4.3.

For \(N \geq 0 \), we consider
\[
D^{B \bar{B}'} \mathcal{F}(\Phi)(mk) \omega^{-N}(m)
= \sum_{\eta \in \hat{K}_{\text{cm}}} \int_{I_B} P_\eta(s) M_{w_0}^* \Phi_{\pi_{-s}}(k) \delta_P(m) \frac{c_F ds}{2\pi i}
= \sum_{\eta \in \hat{K}_{\text{cm}}} \int_{I_B} P_\eta(s + 2N[F : \mathbb{R}]^{-1}) M_{w_0}^* \Phi_{\pi_{-s-2[N : \mathbb{R}]^{-1}}}(k) \delta_P(m) \frac{c_F ds}{2\pi i},
\]
where the bar denotes complex conjugation (which is trivial if \(F \) is real) and the polynomials \(P_\eta \) are defined as above. Now we shift the contour to \(iF \) to arrive at
\[
\sum_{\eta \in \hat{K}_{\text{cm}}} \int_{I_B} P_\eta(s + 2N[F : \mathbb{R}]^{-1}) M_{w_0}^* \Phi_{\pi_{-s-2[N : \mathbb{R}]^{-1}}}(k) \delta_P(m) \frac{c_F ds}{2\pi i},
\]
This shift is permissible by the definition of an excellent section, and since \(d(s, \chi) \) has no poles for \(\text{Re}(s) \geq 0 \) we pass no poles in this process. Now again by the definition of an excellent section we have that the above is bounded by \(\delta_P(m)^{1/2} \) times a constant depending on \(N, B, B' \) and \(\Phi \) but not \(m \) since \(s \in iF \). Thus
\[
D^{B \bar{B}'} \mathcal{F}(\Phi)(mk) \ll_{B, B', N, \Phi} (\omega^{-N}(m) \delta_P(m)^{1/2}).
\]
This implies
\[
\int_{M^{ab}(F)} \delta_P^{1/2}(m) |\omega(m)|^\sigma \left| D^{B \bar{B}'} \mathcal{F}(\Phi)(m^{-1}k) \right| dm
\ll_N \int_{M^{ab}(F) : |\omega(m)| \leq 1} \delta_P^{1/2}(m) |\omega(m)|^\sigma \delta_P^{-1/2}(m) dm
+ \int_{M^{ab}(F) : |\omega(m)| > 1} \delta_P^{1/2}(m) |\omega(m)|^\sigma (\omega^{-N}(m) \delta_P^{-1/2}(m) dm,
\]
which converges for \(N \) and \(\sigma \) large enough.

The previous theorem provides us with a Fourier transform
\[
\mathcal{F} := \mathcal{F}_{\psi, K} : \mathcal{S}(X(F), K) \to \mathcal{S}(X(F), K), \tag{4.9}
\]
The Fourier transform is defined so that for every character \(\chi : F^\times \to \mathbb{C}^\times \) the diagram
\[
\begin{array}{ccc}
\Phi \rightarrow \Phi_{\chi,s} & \xrightarrow{\mathcal{F}} & \mathcal{S}(X(F), K) \\
\downarrow & & \downarrow \\
I(\chi_{s}) & \xrightarrow{M_{w_0}^*} & I((\chi_{s})^{w_0})
\end{array}
\]
commutes.

For $\Phi \in S(X(F), K)$ and $g \in \text{Sp}_{2n}(F)$, let

$$R(g)\Phi(x) := \Phi(xg).$$

Lemma 4.5. For $\Phi \in S(X(F), K)$ and $g \in \text{Sp}_{2n}(F)$ the function satisfies

$$R(g)\Phi \in S(X(F), gKg^{-1})$$

and

$$\mathcal{F}(R(g)\Phi) = R(g)\mathcal{F}(\Phi),$$

or more precisely

$$\mathcal{F}_{gKg^{-1}}(R(g)\Phi) = R(g)\mathcal{F}_K(\Phi).$$

Proof. The map

$$\bigcup_{h \in \text{Sp}_{2n}(F)} S(X(F), hKh^{-1}) \to I(\chi_s), \quad \Phi \mapsto \Phi_{\chi_s}$$

is $G(F)$-equivariant for all χ and s, as is the intertwining map $M_{w_0}^*$. \square

Lemma 4.6. For $\Phi \in S(X(F), K)$ one has $\mathcal{F}_{\varphi} \circ \mathcal{F}_\psi (\Phi)(g) = \Phi(g)$.

Proof. This follows from the identity $M_{w_0, \varphi}^* \circ M_{w_0, \psi}^* = \text{Id}$ (see [16, Lemma 1.1]). \square

Let $C^\infty_c(X(F), K) \subseteq C^\infty_c(X(F))$ denote the subspace of right K-finite functions. Of course, in the non-Archimedean case, every element of $C^\infty_c(X(F))$ is right K-finite. To construct elements in the Schwartz space the following proposition is useful.

Proposition 4.7. One has $C^\infty_c(X(F), K) \subseteq S(X(F), K)$.

Proof. Assume first that F is non-Archimedean. Then for $\Phi \in C^\infty_c(X(F), K)$ and every $g \in \text{Sp}_{2n}(F)$ the function $s \mapsto \Phi_{\chi_s}(g)$ is in $\mathbb{C}[q^{-s}, q^s]$. Applying [16, Lemma 1.3] we deduce that Φ_{χ_s} is a good section. The proposition follows in this case.

We defer the Archimedean case to Appendix A. \square

There is no circularity in deferring the Archimedean case to Appendix A because this proposition is not used in the remainder of the paper. Though it is not used, it will be important in applications. Indeed, without it one does not know that the Archimedean Schwartz space is nonempty.

5 Analytic control of the Schwartz space

One has good analytic control of elements in the Schwartz space. We explain this in the non-Archimedean and Archimedean settings in this section. In applications (and even in the derivation of Theorem 1.1) this analytic control is vital. To understand what is going on, it is useful to keep in mind the following toy model of the question we are answering: How does one understand a function (and, in the Archimedean case, its derivatives) given knowledge of the Mellin transform of the function? It is well known how to do this for functions on \mathbb{R}, and we adapt these arguments to prove the results of this section.

In this section we make use of the function $| \cdot | : X(F) \to \mathbb{R}_{>0}$ defined in (2.5) using the Plücker embedding and the character $\omega : P \to G_m$ defined as in (2.3).

5.1 The non-Archimedean case

Assume for this subsection that F is non-Archimedean. The following lemma is the analogue of [3, Conjecture 5.6] in our setting.
Lemma 5.1. For $\Phi \in \mathcal{S}(X(F), K_0)$ one has

$$|\Phi(g)|_{st} \ll_{\Phi} |g|^{-(n+1)/2}. \quad (5.1)$$

The support of Φ is contained in

$$\bigcup_{c > -N} [P, P](F)c(\varpi)K_0$$

for sufficiently large N (depending on Φ).

Proof. Let $(m, k) \in M(F) \times K_0$. We first show that

$$|\Phi(mk)|_{st} \ll_{\Phi} \delta_P(m)^{1/2}.$$

This and the Iwasawa decomposition imply the bound in the lemma because $|mk|^{-(n+1)} = \delta_P(m)$.

Since Φ_{χ_s} is a good section for all characters χ and $g \in \text{Sp}_{2n}(F)$, one has that $\frac{\Phi_{\chi_s}(g)}{d(s, \chi)}$ is a polynomial in q^{-s} and q^s. Moreover, using (3.3) we see that $d(s, \chi)$ has no poles for $\text{Re}(s) > -\frac{1}{2}$. It follows that (4.4) is valid for $\sigma = 0$, and thus by Lemma 4.3 one has

$$\Phi(mk) = \sum_{\eta \in \mathfrak{O}^\times} \int_{1F} \Phi_\eta(k)\delta_P(m)^{1/2}\eta_s(\omega(m))\frac{c_F ds}{2\pi i}, \quad (5.2)$$

Since Φ is left K_0-finite the sum on η here has finite support. In addition the integral is over a compact set so we deduce that $|\Phi(mk)| \ll_{\Phi} \delta_P(m)^{1/2}$.

As mentioned above for fixed g the function satisfies

$$\frac{\Phi_{\chi_s}(g)}{d(s, \chi)} \in \mathbb{C}[q^s, q^{-s}].$$

Since $d(s, \chi)^{-1}$ is a polynomial in q^{-s} by (3.3) we deduce that if one expands $\Phi_{\chi_s}(g)$ as a Laurent series in q^{-s} there are only finitely many terms with negative exponent. The second claim of the lemma thus follows from the inversion formula (5.2).

Assume that F is non-Archimedean. The basic function on $X(F)$ is

$$b := \sum_{a=0}^{\infty} \sum_{b_1=0}^{\infty} \cdots \sum_{b_{[n/2]}=0}^{\infty} q^{2b_1+4b_2+\cdots+2\lfloor n/2 \rfloor b_{[n/2]}} 1_{a+2b_1+\cdots+2b_{[n/2]}}, \quad (5.3)$$

We note that b_{χ_s} vanishes unless χ is unramified.

Lemma 5.2. The function b is the unique right K_0-invariant function on $\text{Sp}_{2n}(F)$ such that

$$b_{\chi_s} = d(s, \chi)(1_0)_{\chi_s},$$

for unramified characters χ and all s sufficiently large. Here 1_c is defined as in (2.7).

Proof. One has

$$(1_c)_{\chi_s}(g) := \int_{M_{ab}(F)} \delta_P(m)^{1/2}\chi_s(\omega(m))1_c(m^{-1}g)dm = \int_{M_{ab}(F)} \delta_P(c(\varpi)^{-1}m)^{1/2}\chi_s(\omega(c(\varpi)^{-1}m))1_c(c(\varpi)m^{-1}g)dm = \delta_P(c(\varpi)^{-1})^{1/2}\chi_s(\omega(c(\varpi)))\int_{M_{ab}(F)} \delta_P(m)^{1/2}\chi_s(\omega(m))1_0(m^{-1}g)dm = \delta_P(c(\varpi)^{-1})^{1/2}\chi_s(\omega(c(\varpi)))\int_{M_{ab}(F)} \delta_P(m)^{1/2}\chi_s(\omega(m))1_0(m^{-1}g)dm = \delta_P(c(\varpi)^{-1})^{1/2}\chi_s(\omega(c(\varpi)))1_{c}(g).$$
Here we have used the fact that \(\omega(c(x)) = x^{-c}\). On the other hand \(\delta_P(c(\omega)^{-1}) = |\omega^{c(n+1)}| = q^{-c(n+1)}\), so the above is

\[
\chi_{s+(n+1)/2}(\omega) \chi_s(g).
\]

From this computation one deduces that \(b_{\chi_s} = d(s, \chi)(1_0)_{\chi_s}\), as claimed. The fact that \(b\) is the unique function with this property follows from Mellin inversion (see the proof of Lemma 5.1).

\[\textbf{Lemma 5.3.} \quad \text{The function } b \text{ is in } S(X(F), K_0). \text{ For } |\gamma| > 1 \text{ one has } b(\gamma) = 0. \text{ If } \varepsilon > 0 \text{ and } |\gamma| \leq 1 \text{ then for } q \text{ large enough in a sense depending on } \varepsilon \text{ one has } |b(\gamma)| \leq |\gamma|^{-(n+1)/2-\varepsilon}.\]

\[\text{Proof.} \quad \text{To prove that } b \in S(X(F), K) \text{ we must show that } b_{\chi_s} 	ext{ is a good section of } I(\chi_s) \text{ for all characters } \chi : F^\times \to \mathbb{C}^\times. \text{ This is stated right above [16, Lemma 1.2].}
\]

For the last assertion we note that by Mellin inversion

\[
b(mk) = \int_{i\ell_F+\varepsilon} s \, d(s, \chi)(1_0)_{1_s} \, (k) \frac{dFds}{2\pi i} \frac{\epsilon_s(\omega(m)) c_F ds}{2\pi i}.
\]

This in turn is bounded in absolute value by \(|d(\varepsilon, 1)|_{st} \delta_P(m)^{1/2} |\omega(m)|^\varepsilon \). The function \(d(s, 1)\) is a local factor of a product of global \(L\)-functions that converge absolutely at \(s = \varepsilon\), so for \(q \) sufficiently large \(|d(\varepsilon, 1)|_{st} \leq 1\).

\[\textbf{Lemma 5.4.} \quad \text{Assume that } \psi \text{ is unramified. Then one has } F(b) = b.\]

\[\text{Proof.} \quad \text{Essentially by definition (see below [16, (1.2.7)]) one has}
\]

\[
M_{w_0} b_{\chi_s} = c_{w_0}(s, \chi)(1_0)_{\chi_s}.
\]

Now

\[
\gamma \left(s - \frac{n-1}{2}, \chi, \psi \right) \prod_{r=1}^{[n/2]} \gamma(2s - n + 2r, \chi^2, \psi) = \frac{L(n+1-s, \chi)}{L(s, \chi)} \prod_{r=1}^{[n/2]} \frac{L(1+n-2r-2s, \chi^2)}{L(2s - n + 2r, \chi^2)}
\]

so

\[
M_{w_0} b_{\chi_s} = \frac{d(-s, \chi)}{a_{w_0}(s, \chi)}.
\]

The lemma follows.

\[\textbf{5.2 The Archimedean case}\]

In this subsection we assume \(F\) is Archimedean. The usual Schwartz space \(S(\mathbb{R})\) of \(\mathbb{R}\) enjoys the following properties:

(1) It is closed under multiplication by polynomials.

(2) Its elements are bounded.

One often says loosely that functions in \(S(\mathbb{R})\) are rapidly decreasing at infinity, which follows upon combining these two assertions. We prove the analogues of (1) and (2) for functions in \(S(X(F), K)\) in this section.

Using the Iwasawa decomposition \(G(F) = P(F)K\), we define

\[
\omega \overline{w} : G(F) \to \mathbb{R}_{>0}, \quad pk \mapsto \omega \overline{w}(p).
\]

Here the bar denotes complex conjugation, which we take to be trivial if \(F\) is real (so in this case \(\omega \overline{w} = \omega^2\)). It is easy to see that this is well defined, which is the reason we chose to work with \(\omega \overline{w}\) instead of \(\omega\).

The following lemma is a weak analogue of the property (1).
Lemma 5.5. For all \(\alpha \in \mathbb{Z}_{\geq 0} \) if \(f \in \mathcal{S}(X(F), K) \) then
\[
\omega^{-\alpha} \varphi^{-\alpha} f \in \mathcal{S}(X(F), K).
\]

Before proving this lemma it is useful to first prove a result on the Archimedean \(L \)-factors. Recall the character \(\mu \) from (3.9).

Lemma 5.6. Let \(\chi : F^\times \to \mathbb{C}^\times \) be a character. The quotients
\[
\frac{L(s + [F : \mathbb{R}]^{-1}, \chi \mu)}{L(s, \chi)} \quad \text{and} \quad \frac{L(s + [F : \mathbb{R}]^{-1}, \chi \overline{\mu})}{L(s, \chi)}
\]
are polynomials in \(s \) of degree less than or equal to 1 that are bounded by a polynomial of degree 1 in \(s \).

Here if \(F \) is real then \(\overline{\mu} \) is just \(\mu \), so in this case the second identity is redundant.

Proof of Lemma 5.6. Write \(\chi \) as in (3.10). Using (3.11) we see that if \(F \) is real
\[
\frac{L(s + 1, |\cdot|^{i\alpha} \mu)}{L(s, |\cdot|^{i\alpha})} = \begin{cases} \frac{s + \mu}{\alpha + \theta}, & \text{if } \alpha = 0, \\ 1, & \text{if } \alpha = 1. \end{cases}
\]
Similarly, if \(F \) is complex,
\[
\frac{L(s + \frac{1}{2}, |\cdot|^{i\alpha} \mu)}{L(s, |\cdot|^{i\alpha})} = \begin{cases} \frac{s + \mu + |\alpha|/2}{\alpha + \theta}, & \text{if } \alpha > 0, \\ 1, & \text{if } \alpha < 0, \end{cases}
\]
\[
\frac{L(s + \frac{1}{2}, |\cdot|^{i\alpha} \overline{\mu})}{L(s, |\cdot|^{i\alpha})} = \begin{cases} \frac{s + \mu + |\alpha|/2}{\alpha + \theta}, & \text{if } \alpha \leq 0, \\ 1, & \text{if } \alpha > 0. \end{cases}
\]
The lemma follows.

Proof of Lemma 5.5. By induction it suffices to treat the case where \(\alpha = 1 \). For \(m \in M(F), k \in K \) one has
\[
(\omega^{-1} \varphi^{-1} \Phi)_{\chi, s}(k) = \int_{M^{ab}(F)} \delta_{F}(m) m^{1/2} \chi_{s}(\omega(m)) \omega(m) \varphi(m) \Phi(m^{-1} k) \, dm
\]
\[
= \Phi_{\chi, s+2[F : \mathbb{R}]^{-1}}(k).
\]
By definition, excellent sections are good, so, for all \(w \in \Omega_n \) one has
\[
\frac{M_w \Phi_{\chi, s+2[F : \mathbb{R}]^{-1}}(k)}{a_w(s + 2[F : \mathbb{R}]^{-1}, \chi)} \in E.
\]
By Lemma 5.6 and the definition of \(a_w(s, \chi) \),
\[
\frac{a_w(s + 2[F : \mathbb{R}]^{-1}, \chi)}{a_w(s, \chi)}
\]
is a polynomial in \(s \). It follows that
\[
\frac{M_w (\omega^{-1} \varphi^{-1} \Phi)_{\chi, s}}{a_w(s, \chi)} \in E
\]
for all \(w \in \Omega_n \). Hence \((\omega^{-1} \varphi^{-1} \Phi)_{\chi, s} \) is a good section for all characters \(\chi : F^\times \to \mathbb{C}^\times \) and \(s \in \mathbb{C} \). One sees similarly that it is moreover an excellent section.

The following lemma is the analogue of the property (2):

Lemma 5.7. For any \(\Phi \in \mathcal{S}(X(F), K) \) and \(N \in \mathbb{Z}_{\geq 0} \),
\[
|\Phi(g)|_{st} \ll_{\Phi, N} |g|^{-(\alpha+1)/2 - N}.
\]
Proof. By the Iwasawa decomposition it suffices to verify that

\[|\Phi(mk)|_{st} \ll_{\Phi,N} |m|^{-(n+1)/2-N}. \tag{5.5} \]

By Mellin inversion (see Lemma 4.3) we have

\[\Phi(mk) = \delta_P(m)^{1/2} \sum_{\eta \in \mathcal{K}_{st}} \int_{\sigma+iP} \Phi_{\eta}(k)\eta_s(\omega(m)) \frac{e^s ds}{2\pi i} \]

for \(\sigma \) large enough. Now \(d(s, \chi) \) is holomorphic and bounded on the line \(\text{Re}(s) = 0 \). Therefore using the definition of excellent sections we see that we can take \(\sigma = 0 \), and moreover that for each \(\eta \) the integral over \(iF \) in this expression is absolutely convergent. Since the sum on \(\eta \) has finite support we deduce that

\[|\Phi(mk)|_{st} \ll_{\Phi} \delta_P(m)^{1/2} = |m|^{-(n+1)/2}. \]

On the other hand by Lemma 5.1 one has

\[|(\omega(m)\overline{\omega}(m))^{-N}\Phi(mk)|_{st} \ll_{\Phi,N} \delta_P(m)^{1/2} \]

for all integers \(N \), and \(|m| = |\omega(m)^{-1}| \).

We end this section by computing the effect of the differential operators (4.2) and (4.3) on the Mellin transforms of a function in \(\mathcal{S}(X(F), K) \). We start with the following version of integration by parts.

Lemma 5.8. Let \(f_1, f_2 : F^\times \to \mathbb{C} \) be smooth functions such that \(f_1(x)f_2(x) \to 0 \) as \(x \to \infty \).

When \(F \) is real, assume that \(f_1(x)f_2(x) \to 0 \) as \(x \to 0 \) and when \(F \) is complex, assume that \(f_1(x)f_2(x)^{-1} \) extends to a smooth function on \(F \). If

\[\frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x), \quad f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0} \in L^1(F^\times, dx^\times), \]

then

\[\int_{F^\times} \frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x) dx^\times = - \int_{F^\times} f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0} dx^\times. \]

Assume now that \(F \) is complex and \(f_1(x)f_2(x)^{-1} \) extends to a smooth function on \(F \). If

\[\frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x), \quad f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0} \in L^1(F^\times, dx^\times), \]

then

\[\int_{F^\times} \frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x) dx^\times = - \int_{F^\times} f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0} dx^\times. \]

For the reader’s convenience we include the (easy) proof.

Proof of Lemma 5.8. By the product rule and its analogue for Wirtinger derivatives in the complex case one has

\[x \frac{\partial}{\partial x} (f_1 f_2)(x) = \frac{\partial}{\partial z} (f_1 f_2)(e^z x) |_{z=0} = \frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x) + f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0}, \]

\[\overline{z} \frac{\partial}{\partial \overline{z}} (f_1 f_2)(x) = \frac{\partial}{\partial z} (f_1 f_2)(e^z x) |_{z=0} = \frac{\partial}{\partial z} f_1(e^z x) |_{z=0} f_2(x) + f_1(x) \frac{\partial}{\partial z} f_2(e^z x) |_{z=0}. \]

Since we have assumed that each summand on the right-hand side of these two equalities is in \(L^1(F^\times, dx^\times) \) the left-hand side is as well. It suffices to verify that

\[\int_{F^\times} z \frac{\partial}{\partial z} (f_1 f_2)(x) dx^\times \quad \text{and} \quad \int_{F^\times} \overline{z} \frac{\partial}{\partial \overline{z}} (f_1 f_2)(x) dx^\times \]
are zero. When \(F \) is real the integral on the left is \(\zeta(1) \) times
\[-(f_1(0)f_2(0) - f_1(-\infty)f_2(-\infty)) + (f_1(\infty)f_2(\infty) - f_1(0)f_2(0)),\]
and every term here is zero by assumption. This completes the proof in this case.

If \(F \) is complex then by Green’s theorem we have
\[
\int_{F_x} \frac{\partial}{\partial z} (f_1f_2)(z) \, dz = \zeta(1) i \lim_{r \to \infty} \int_{C_r} f_1(z)f_2(z) \frac{dz - idy}{z} = 0,
\]
\[
\int_{F_x} \frac{\partial}{\partial z} (f_1f_2)(z) \, dz = -\zeta(1) i \lim_{r \to \infty} \int_{C_r} f_1(z)f_2(z) \frac{dz + idy}{z} = 0,
\]
where \(C_r \) is the circle of radius \(r \) centered at 0 and the line integral is taken in a counterclockwise direction. Here we have used our conventions on Haar measures given in Subsection 1.5.

Lemma 5.9. Write \(\chi = | \cdot |^d \mu^\alpha \) as in (3.10). Then
\[
(D\Phi)_{\chi_s} = \begin{cases}
(\alpha + s + \frac{n+1}{2})\Phi_{\chi_s}, & \text{if } F \text{ is real,} \\
(\alpha + it + s + \frac{n+1}{2})\Phi_{\chi_s}, & \text{if } F \text{ is complex.}
\end{cases}
\]

If \(F \) is complex then
\[
(D\Phi)_{\chi_s} = \left(-\frac{\alpha}{2} + it + s + \frac{n+1}{2} \right)\Phi_{\chi_s}.
\]

Proof. One has
\[
(D\Phi)_{\chi_s}(g) = \int_{M^{ab}(F)} \delta_P(m)^{1/2}\chi_s(\omega(m)) \frac{\partial}{\partial z} \Phi(1(e^z)m^{-1}g) \big|_{z=0} \, dm
\]
for \(\text{Re}(s) \) sufficiently large. Applying Lemma 5.8 we see that this is equal to
\[
-\int_{M^{ab}(F)} \frac{\partial}{\partial z} (\delta_P(1(e^z))^{-1/2}(\chi_s(e^z))) \big|_{z=0} \delta_P(m)^{1/2}\chi_s(\omega(m))\Phi(m^{-1}g) \, dm
\]
for \(s \) in the same range. The lemma follows upon computing the derivative. The proof for \(D \) replaced by \(\overline{D} \) is similar.

We will not need it until the proof of Theorem 6.3 below, but for the reader’s convenience we recall the definition of the analytic conductor of \(\chi_s \) for the characters \(\chi : F^\times \to \mathbb{C} \). If \(\chi \) is as in (3.10) then
\[
C(\chi_s) := 1 + \left| s + it + \frac{\alpha}{|F : \mathbb{R}|} \right|_{\text{st}}
\]
(a convenient reference is [5, Section 1]).

6 The global summation formula

In this section \(F \) is a number field with ring of integers \(\mathcal{O} \). Let \(K \leq \text{Sp}_{2n}(\mathbb{A}_F) \) be a maximal compact subgroup such that \(K^\infty \) is \(\text{Sp}_{2n}(\mathbb{A}_F^\infty) \)-conjugate to \(\text{Sp}_{2n}(\mathcal{O}) \). We let
\[
S(X(\mathbb{A}_F), K) := \prod_{v} S(X(\mathbb{A}_v), K_v)
\]
be the restricted direct product with respect to the basic functions \(b_v \) of Subsection 5.1. We define an adelic Fourier transform
\[
\mathcal{F} := \mathcal{F}_{\psi, K} : S(X(\mathbb{A}_F), K) \to S(X(\mathbb{A}_F), K)
\]
(6.1)
by taking the tensor product of the local Fourier transforms. This is well defined because the Fourier transform takes the basic function to the basic function at almost every place by Lemma 5.4.

Let \(A_{\mathbb{G}_m} \leq F_F^\times \) be the diagonal copy of \(\mathbb{R}_{>0} \), let

\[
[G_m] := A_{\mathbb{G}_m} F_F^\times \backslash A_F^\times,
\]

and let \(\hat{G}_m \) be the group of characters of \([G_m] \). For \(\chi \in \hat{G}_m \) and \(\Phi \in \mathcal{S}(X(A_F), K) \), let

\[
\Phi_{\chi, s}(g) := \int_{M^{ab}(A_F)} \delta_P(m)^{1/2} \chi_s(\omega(m)) \Phi(m^{-1}g) dm
\]

(this is the adelic analogue of (4.1)).

One then obtains an Eisenstein series

\[
E(g, \Phi_{\chi, s}) := \sum_{\gamma \in \mathcal{P}(F) \backslash \mathcal{Sp}_2(F)} \Phi_{\chi, s}(\gamma g).
\]

(6.2)

Though the meromorphic continuation and functional equation of this Eisenstein series are due to Langlands, and perhaps even Siegel in the special case at hand, more precise information was obtained by Ikeda [16, Proposition 1.6].

Theorem 6.1 (See [16]). The Eisenstein series \(E(g, \Phi_{\chi, s}) \) is absolutely convergent for \(\Re(s) \) sufficiently large. It admits a meromorphic continuation to the plane, holomorphic except for simple poles. The poles can only occur if \(\chi^2 = 1 \). If \(\chi = 1 \), then the poles can only occur at

\[
s \in \left\{ \pm \left(\frac{n+1}{2} - m \right) : m \in \mathbb{Z}, 0 \leq m < \frac{n+1}{2} \right\},
\]

and if \(\chi^2 = 1 \) but \(\chi \neq 1 \) then the poles can only occur at

\[
s \in \left\{ \pm \left(\frac{n-1}{2} - m \right) : m \in \mathbb{Z}, 0 \leq m < \frac{n-1}{2} \right\}.
\]

The Eisenstein series satisfies the functional equation

\[
E(g, \Phi_{\chi, s}) = E(g, M_{w_0}^*(\Phi_{\chi, s})).
\]

For a different family of sections this result was also obtained by Kudla and Rallis [18, 19]. There is one point that must be explained in deducing Theorem 6.1 from [16, Proposition 1.6]. In loc. cit. \(E(g, M_{w_0}^*(\Phi_{\chi, s})) \) is replaced by \(E(g, M_{w_0}(\Phi_{\chi, s})) \). However, one has the following lemma.

Lemma 6.2. One has \(M_{w_0}(\Phi_{\chi, s}) = M_{w_0}^*(\Phi_{\chi, s}) \).

Proof. We follow the proof of [16, Lemma 1.4]. Let \(S \) be a set of places of \(F \) including the infinite places such that \(\Phi_v = b_v \) for \(v \not\in S \) and such that \(\psi \) (our fixed additive character) is unramified outside of \(S \) and \(F_v \) is absolutely unramified for \(v \not\in S \). One has

\[
M_{w_0}(\Phi_{\chi, s}) = \left(\prod_{v \not\in S} d(s, \chi_v) c_{w_0}(s, \chi_v) 1_{[P, P]K_0, \overline{\chi}, s} \right) \times \prod_{v \in S} M_{w_0}(\Phi_{v, \chi, s})
\]

(see below [16, (1.2.7)]). This in turn is equal to

\[
\left(\prod_{v \not\in S} a_{w_0}(s, \chi_v) 1_{[P, P]K_0, \overline{\chi}, s} \right) \times \prod_{v \in S} M_{w_0}(\Phi_{v, \chi, s}).
\]

(6.3)

By the functional equation of Hecke \(L \)-functions we have

\[
\prod_{v \not\in S} a_{w_0}(s, \chi_v) = \left(L^S \left(\frac{n+1}{2} - s, \overline{\chi} \right) \prod_{r=1}^{\lfloor n/2 \rfloor} L^S(1 + n - 2r - 2s, \overline{\chi}^2) \right)
\]
Theorem where \(\Phi \) is fixed on the right by a compact open subgroup of \(G \) if \(f \).

For below.

Proof.
Assume without loss of generality that \(\sum \) converges absolutely and uniformly on compact subsets of \(M \).

Using (6.5), Lemmas 5.1 and 5.3, and the Plücker embedding of Subsection 2.1 we deduce that (6.4) (see Lemma 5.4).

\[(\prod_{v \in S} d(-s, X_v) 1_{[P, P] K_0, X_{-s}}) \times \prod_{v \in S} M^*_{w_0}(\Phi_{v, X_v}) = \prod_{v} M^*_{w_0}(\Phi_{v, X_v}) \]

(see Lemma 5.4).

\[|E(g, \Phi_{\chi_s})|_{A, B, P} \ll_{A, B} C(\chi_s)^{-N}. \]

Here in the theorem \(C(\chi_s) \) is the analytic conductor of \(\chi_s \). It is

\[|\mathcal{O}/f_{\chi}| \prod_{v \to \infty} C(\chi_v), \]

where \(C((\chi_v)_s) \) is defined as in (5.7) for infinite places \(v \) and \(f_{\chi} \subset \mathcal{O} \) is the usual conductor of \(\chi \). In fact, since \(\Phi \) is fixed on the right by a compact open subgroup of \(G(F) \) the function \(\Phi_{\chi_s} \) vanishes identically if \(f_{\chi} \) is sufficiently small. Therefore the finite part \(|\mathcal{O}/f_{\chi}| \) of the conductor can be ignored in the proof below.

It is convenient to first prove the following three lemmas.

Lemma 6.4. For \(\Phi \in \mathcal{S}(X(\mathbb{A}_F), K) \) and \(m \in M(\mathbb{A}_F) \) the sum

\[\sum_{\gamma \in X(F)} \Phi(m \gamma) \] (6.4)

converges absolutely and uniformly on compact subsets of \(M(\mathbb{A}_F) \).

Proof. Assume without loss of generality that \(K^\infty = \text{Sp}_{2n}(\widehat{O}) \). Recall that we have defined \(|g|_v = |P_l(g)|_v \) for \(g \in \text{Sp}_{2n}(F_v) \), and this function is invariant under left multiplication by \(N(F_v) \) and right multiplication by \(K_v \) (see (2.5)). We set

\[|g| := \prod_v |g|_v. \]

Let \(\Omega \subset M(\mathbb{A}_F) \) be a compact set and let \(m \in \Omega \).

We have \(\Phi = \Phi_{s} b^S \) for some finite set \(S \) of places of \(F \) including the infinite places, where \(\Phi_{S} \in \mathcal{S}(X(F_S), K_{S}) \) and \(b^S := \prod_{v \in S} b_v \) is the product of the basic functions (5.3). By Lemmas 5.1, 5.3 and 5.7, for any \(A \in \mathbb{Z}_{\geq 0}, \varepsilon > 0 \) and \(\gamma \in X(F) \) we have

\[|\Phi(m \gamma)| \ll_{\Phi, \Omega, A, \varepsilon} \left(\prod_v \max(|\gamma|_v, 1)^{-A} |\gamma|_v^{-(n+1)/2} \right) \left(\prod_v |\gamma|_v^{-(n+1)/2} \right) \prod_v |\gamma|_v^{-(n+1)/2 - \varepsilon}. \] (6.5)

The bound involving the maximum at the Archimedean places is trivially implied by Lemma 5.7. Using (6.5), Lemmas 5.1 and 5.3, and the Plücker embedding of Subsection 2.1 we deduce that (6.4) is bounded by

\[\sum_{\xi \in \mathcal{H}_{-1}^{\Lambda^n(O_{2^n})}} \left(\prod_v \max(|\xi|_v, 1)^{-A} |\xi|_v^{-(n+1)/2} \right) \left(\prod_v |\xi|_v^{-(n+1)/2} \right) \prod_v |\xi|_v^{-(n+1)/2 - \varepsilon}. \]

Here \(\mathcal{H} \subset F^\times \) and \(| \cdot |_v \) is the norm on \(\Lambda^n F_v^{2^n} \) used to define \(| \cdot |_v \) on \(X(F_v) \). It is easy to see that this sum is bounded for \(A \) sufficiently large.

\[\square \]
Lemma 6.5. There is a constant $\beta_{F,n}$ depending only on F and n such that the sum defining $E(g, \Phi_{\chi})$ converges absolutely for all χ and s with $\Re(s) > \beta_{F,n}$. For $\Re(s) = A > \beta_{F,n}$ one has

$$|E(g, \Phi_{\chi})|_{st} \ll_{A} 1. \quad (6.6)$$

Proof. Replacing Φ by $R(g)\Phi$ and K by gKg^{-1} we see that it suffices to prove the lemma in the case $g = I_{2n}$. One has

$$|E(I_{2n}, \Phi_{\chi})|_{st} \leq \sum_{\gamma \in \Gamma(F) \setminus \Sp_{2n}(F)} |\Phi_{\chi}^*(\gamma)|_{st}$$

$$\leq \sum_{\gamma \in \Gamma(F) \setminus \Sp_{2n}(F)} \int_{M^{ab}(\mathbb{A}^\times)} \frac{d\lambda}{\lambda} |\omega(m)||A|\Phi(m^{-1}\gamma)|dm$$

$$= \int_{F^\times \setminus A^\times} \sum_{\gamma \in \Gamma(F)} |x|^A \Phi(1(x)^{-1}\gamma)|dx + \int_{F^\times \setminus \mathbb{Z}} \sum_{\gamma \in \Gamma(F)} |x|^A \Phi(1(x)^{-1}\gamma)|dx,$$

where $\int^±$ denotes the integral over x with $|x| > 1$ and $\int^−$ denotes the integral over x with $|x| \leq 1$. For $B_± \in \mathbb{Z}$ this is bounded by a constant depending on $\Phi, B_±$ times the sum of the two integrals

$$\int_{F^\times \setminus A^\times} \sum_{\gamma \in \Gamma(F)} 1_{\mathfrak{N} - 1 A^\times \setminus \mathfrak{O}^\times}(\Pi(1(x)^{-1}\gamma)) |x|^{-A} \prod_v \max(|1(x)^{-1}\gamma|_v, 1)^{-B_±} |x|^{-n(1+1/2-\varepsilon)} dx$$

for some $\mathfrak{N} \in \mathcal{O} \cap F^\times$ by Lemmas 5.1, 5.3 and 5.7.

One checks using the definition of Π that $|1(x)^{-1}\gamma|_v = |x|^{-1}\gamma|_v$. In particular each summand is invariant as a function of x under multiplication by \mathcal{O}^\times. Let $(\mathbb{A}^\times) := \ker|\cdot|$. Choosing a compact measurable fundamental domain for $F^\times \setminus (\mathbb{A}^\times)^1 / \mathcal{O}^\times$ and integrating over it we see that the above is

$$\int_{F^\times \setminus A^\times} \sum_{\gamma \in \Gamma(F)} 1_{\mathfrak{N} - 1 A^\times \setminus \mathfrak{O}^\times}(\Pi(1(x)^{-1}\gamma)) |x|^{-A} \prod_v \max(|1(x)^{-1}\gamma|_v, 1)^{-B_±} |x|^{-n(1+1/2-\varepsilon)} dx$$

$$\ll \int_{\mathcal{A}^n \setminus \Gamma(F)} 1_{\mathfrak{N} - 1 A^\times \setminus \mathfrak{O}^\times}(\Pi(\gamma)) |x|^{-A} \prod_v \max(|1(x)^{-1}\gamma|_v, 1)^{-B_±} |x|^{-n(1+1/2-\varepsilon)} dx.$$

Here we have used the fact that $\prod_v |x|_v \geq 1$ by the product rule. We now employ the Plücker embedding to see that after this is bounded by

$$\int_{\mathcal{A}^n \setminus \Gamma(F)} |x|^{-A} \prod_v \max(|x^{-1}\delta|_v, 1)^{-B_±} dx$$

for some $\mathfrak{N} \in \mathcal{O}^\times$. For $y \in \wedge^n F_{2n}^\times$, let

$$\|y\|_{\wedge} := \max_{|\cdot|_{\infty}} |y|_{\mathfrak{N}}.$$

Then if $\|y\|_{\wedge} \geq 1$ one has $\prod_v \max(|y|_v, 1) \geq \|y\|_{\wedge}^n$ whereas if $\|y\|_{\wedge} < 1$ one has $\prod_v \max(|y|_v, 1) = 1$. Motivated by this we divide (6.7) into two terms, namely the contribution of $\|x^{-1}\delta\|_{\wedge_{\infty}} \leq 1$ and the contribution of $\|x^{-1}\delta\|_{\wedge_{\infty}} > 1$. Thus the sum of the $±$ contributions of (6.7) is bounded by the sum of the following three terms:

$$\int_0^{\infty} \sum_{\delta \in \mathfrak{N} - 1 \wedge \mathcal{O}^{2n} \ominus \{0\}} x^{-A} dx, \quad (6.8)$$

$$\int_0^{1} \sum_{\delta \in \mathfrak{N} - 1 \wedge \mathcal{O}^{2n} \ominus \{0\}} x^{-A+B} dx, \quad (6.9)$$
\[
\int_1^\infty \sum_{\substack{\delta \in \mathcal{M}^{-1} \wedge n \mathcal{O}^{2n} - \{0\} \\ \|\delta\|_{\infty} > x^{[F:Q]^{-1}}}} x^{-A + \varepsilon + B \cdot [F:Q]^{-1}} \|\delta\|_{\infty}^{-B} \, dx. \tag{6.10}
\]

So it suffices to prove that for \(A\) sufficiently large we can choose \(B_\pm\) so that these three terms are finite.

Now there is a constant \(c > 0\) so that for \(\delta \in \mathcal{M}^{-1} \wedge n \mathcal{O}^{2n}\) one has \(\|\delta\|_{\infty} \leq c\) if and only if \(\delta = 0\). Thus the integral in (6.8) has support in the range \(x > c\) for this \(c\). Thus (6.8) is equal to

\[
\int_c^\infty \sum_{\substack{\delta \in \mathcal{M}^{-1} \wedge n \mathcal{O}^{2n} - \{0\} \\ \|\delta\|_{\infty} \leq x^{[F:Q]^{-1}}}} x^{-A + \varepsilon} \, dx
\]

for sufficiently small \(c > 0\). Moreover there is an \(A' > 0\) such that this is bounded by

\[
\int_c^\infty x^{-A + \varepsilon + A'} \, dx,
\]

which is convergent for \(A > \varepsilon + A'\). Thus if \(A\) is sufficiently large then (6.8) is finite.

As for the latter two terms, start by assuming \(B_\pm\) is large enough such that

\[
\sum_{\delta \in \mathcal{M}^{-1} \wedge n \mathcal{O}^{2n} - 0} \|\delta\|_{\infty}^{-B_\pm}
\]

converges. Under this assumption if \(A > \varepsilon + B_+ [F:Q]^{-1}\) then (6.10) converges. If necessary, we then increase the size of \(B_-\) so that \(A < \varepsilon + B_- [F:Q]^{-1}\); this will make (6.9) convergent. We deduce that we can take

\[
\beta_{n,F} := \max(\varepsilon + B_+ [F:Q]^{-1}, \varepsilon + A').
\]

This completes the proof. \(\square\)

Lemma 6.6. Let \(A > \beta_{F,n}\) where \(\beta_{F,n}\) is the constant of Lemma 6.5. Then for any \(N \in \mathbb{Z}_{\geq 0}\) one has

\[
\sup_{\operatorname{Re}(s) = A} |E(g, \Phi_{\chi_v})| \ll_{\Phi, A, N} C(\chi_v)^{-N}.
\]

Proof. We proceed as in the Riemann-Lebesgue lemma, leveraging the smoothness of \(\Phi_v\) for \(v \mid \infty\) in the form of Lemma 5.9 to obtain bounds on the Mellin transform \(\Phi_{\chi_v}\) and hence \(E(g, \Phi_{\chi_v})\).

For every \(v \mid \infty\), let \(D_v\) be defined as in (4.2) and if \(v\) is complex let \(\overline{D_v}\) be defined as in (4.3). If \(\chi_v = |\cdot|^d e^{\alpha}\) as in (3.10) then using the same computation as in the proof of Lemma 5.9 we have

\[
\left| \left((\frac{[F: \mathbb{R}] - 1}{2}) + it + s + \frac{n + 1}{2} \right) E(g, \Phi_{\chi_v}) \right|_{\text{sft}} = |E(g, (D_v \Phi_{\chi_v})_{\text{sft}}|_{\text{sft}} \ll_{D_v, \Phi, A} 1.
\]

If we replace \(\alpha\) by \(-\alpha\) and \(D_v\) by \(\overline{D_v}\) when \(v\) is complex the same inequality and bound are valid. In view of the definition (5.7) of the analytic conductor we deduce the lemma by induction. \(\square\)

Proof of Theorem 6.3. The main idea here is to use the Phragmen-Lindelöf principle. The Phragmen-Lindelöf principle applies to functions of finite order (a notion we will recall below) and it is only known that Eisenstein series are quotients of functions of finite order (see below). This difficulty was overcome in [12]. We adapt the simplification of their argument given in [10].

Let \(V \subset \mathbb{C}\) be a simply connected open subset. An entire function \(f : V \to \mathbb{C}\) is said to be of finite order \(A \geq 0\) if

\[
|f(z)| \ll c^{\epsilon |z|^A}
\]

for some \(c \in \mathbb{R}_{>0}\). By [26, Theorem 0.2] for each fixed \(g\) the function \(E(g, \Phi_{\chi_v})\) is the quotient of two functions of finite order.

By Theorem 6.1 there is a polynomial \(P_0 \in \mathbb{C}[x]\) satisfying \(P_0(-x) = P_0(x)\), independent of \(\chi, \Phi, \) and \(g\), such that

\[
P_0(s) E(g, \Phi_{\chi_v})
\]
is holomorphic as a function of s. It is therefore a function of finite order by [10, Subsection 2.3, Lemma 1]. For real numbers $A < B$, let
\[V_{A,B} := \{ s : A \leq \text{Re}(s) \leq B \}. \]

We take $A < -\beta_{F,n}$ and $B > \beta_{F,n}$. Then by Lemma 6.6,
\[|E(g, \Phi_{\chi_s})|_{st} \ll N C(\chi_s)^{-N} \tag{6.11} \]
for $\text{Re}(s) = B$. By the functional equation of Theorem 6.1 one has $E(g, \Phi_{\chi_s}) = E(g, M_{w_0}^*(\Phi_{\chi_s}))$. Moreover by Theorem 4.4 one has $E(g, M_{w_0}^*(\Phi_{\chi_s})) = E(g, F(\Phi_{\chi_s}))$ for $\text{Re}(s) = A$. Thus we can apply Lemma 6.6 to $E(g, F(\Phi_{\chi_s}))$ to deduce
\[|E(g, \Phi_{\chi_s})|_{st} = |E(g, M_{w_0}^*(\Phi_{\chi_s}))|_{st} = |E(g, F(\Phi_{\chi_s}))|_{st} \ll C(\chi_s)^{-N} \tag{6.12} \]
for $\text{Re}(s) = A$ (note that $A < -\beta_{F,n}$). Since Φ is K-finite for any χ with $\Phi_{\chi_s} \neq 0$ we have $C(\chi_s) \simeq C(\chi_s)$ on the line $\text{Re}(s) = A$.

Applying the Phragmen-Lindelöf principle (for example, in the form of [25, Subsection III.4, Theorem 11]) the bounds (6.11) and (6.12) on the edge of the vertical strip imply analogous bounds on its interior and we deduce the theorem.

Abbreviate $E(\Phi_{\chi_s}) = E(I_{2n}, \Phi_{\chi_s})$. Let $\kappa_F := \text{Res}_{s=1} \zeta_F(s)$. The main theorem of this paper is the following theorem.

Theorem 6.7. Let $\Phi \in S(X(\mathbb{A}_F), K)$. One has
\[
\sum_{\gamma \in X(F)} \Phi(\gamma) + \frac{1}{\kappa_F} \sum_{0 \leq m < \frac{n+1}{2}} \text{Res}_{s=\frac{n+1}{2}-m} \int E(\Phi_{\chi_s}) + \frac{1}{\kappa_F} \sum_{\chi \in [G_m]} \sum_{\chi \neq 1, \chi^2 = 1} \sum_{m \in \mathbb{Z}} \text{Res}_{s=\frac{n+1}{2}-m} E(F(\Phi_{\chi_s})) = \sum_{\gamma \in X(F)} \Phi(\gamma) + \frac{1}{\kappa_F} \sum_{0 \leq m < \frac{n+1}{2}} \text{Res}_{s=\frac{n+1}{2}-m} E(\Phi_{\chi_s}) + \frac{1}{\kappa_F} \sum_{\chi \in [G_m]} \sum_{\chi \neq 1, \chi^2 = 1} \sum_{m \in \mathbb{Z}} \text{Res}_{s=\frac{n+1}{2}-m} E(\Phi_{\chi_s}).
\]
All of the sums here are absolutely convergent.

Proof. For $m \in M(\mathbb{A}_F)$ the adelic Mellin transform of $\sum_{\gamma \in X(F)} \Phi(m^{-1}\gamma)$ evaluated at χ_s is $E(\Phi_{\chi_s})$:
\[
E(\Phi_{\chi_s}) = \int_{M^{ab}(F) \backslash M^{ab}(\mathbb{A}_F)} \chi_s(m)\delta_p(m)^{1/2} \Phi(m^{-1}\gamma) dm. \tag{6.13}
\]
By the argument proving Lemma 6.5, the integral and sum are absolutely convergent for $\text{Re}(s) > \beta_{F,n}$.

Applying Poisson summation in F^x we see that
\[
\sum_{\gamma \in X(F)} \Phi(\gamma) = \sum_{\chi} \frac{1}{2\pi i \kappa_F} \int_{\text{Re}(s) = \sigma} E(\Phi_{\chi_s}) ds
= \sum_{\chi} \frac{1}{2\pi i \kappa_F} \int_{\text{Re}(s) = \sigma} E(M_{w_0}^*(\Phi_{\chi_s})) ds,
\]
for $\sigma > \beta_{F,n}$. Here, the sum on χ is over $[G_m]$ and we have used the functional equation for the Eisenstein series contained in Theorem 6.1. A convenient reference for this application of Poisson summation is [1, Section 2]. In view of Lemma 6.4 to justify the application it suffices to check that
\[
\sum_{\chi} \int_{\text{Re}(s) = \sigma} |E(M_{w_0}^*(\Phi_{\chi_s}))| ds \tag{6.14}
\]
is finite. Let $K_{G_m} \subseteq K_F^x$ be the maximal compact subgroup. There is a finite set of K_{G_m}-types such that all characters contributing a nonzero summand to (6.14) have K_{G_m}-type in that set. On the other hand, one can readily check that for large enough $A > 0$,

$$\sum_{\chi} \int_{\Re(s) = \sigma} C(\chi^s)^{-A} < \infty,$$

where the sum is over all characters χ whose K_{G_m} type lies in a fixed finite set of K_{G_m}-types. With this in mind Theorem 6.3 implies that (6.14) is finite.

We now shift the s contour to $-\sigma$. We arrive at the sum of

$$\sum_{\chi} \frac{1}{2\pi i \kappa_F} \int_{\Re(s) = -\sigma} E(M_{w_0}^* (\Phi_{\chi^s})) ds$$

and the contribution of the residues (see Theorem 6.1):

$$\frac{1}{\kappa_F} \sum_{0 \leq m < \frac{n-1}{2}, m \in \mathbb{Z}} \text{Res}_{s = \frac{\pm (n-1)}{2} - m} E(M_{w_0}^* (\Phi_{1^s}))$$

$$+ \frac{1}{\kappa_F} \sum_{\chi \in \Gamma_{m, 1, \chi^2 = 1}} \sum_{0 \leq m < \frac{n-1}{2}, m \in \mathbb{Z}} \text{Res}_{s = \frac{\pm (n-1)}{2} - m} E(M_{w_0}^* (\Phi_{\chi^s})).$$

The characters contributing a nonzero summand are all quadratic or trivial and they all have conductor dividing an ideal depending only on Φ. Thus the sums in (6.16) are in fact finite.

In (6.15) we change variables $\chi \mapsto \overline{\chi}$ and $s \mapsto -s$ to arrive at

$$\sum_{\chi} \frac{1}{2\pi i \kappa_F} \int_{\Re(s) = \sigma} E(M_{w_0}^* (\Phi_{\overline{\chi}^s})) ds.$$ (6.17)

Reversing the application of Poisson summation we see that (6.17) is equal to

$$\sum_{\gamma \in \mathcal{X}(F)} \mathcal{F}(\Phi)(\gamma).$$ (6.18)

This is again absolutely convergent by Lemma 6.4.

To complete the proof we now write the contribution of the residues (6.16) in the more symmetric form stated in the theorem using the fact that $\mathcal{F}(\Phi)_{\chi^s} = M_{w_0}^* (\Phi_{\overline{\chi}^{-s}})$ and Theorem 6.1.

Acknowledgements This work was supported by the National Science Foundation of the USA (Grant Nos. DMS-1405708 and DMS-1901883). The second author was supported by the National Science Foundation of the USA (Grant Nos. DMS-1702218 and DMS-1848058), and by a start-up fund from the Department of Mathematics at Purdue University. The authors thank Herve Jacquet and Aaron Pollack for their interest in the results in this paper and for helpful comments and suggestions. The authors thank Wen-Wei Li, Yiannis Sakellaridis, and Freydoon Shahidi for useful conversations, and thank Freydoon Shahidi and Wen-Wei Li for sharing [22, 34] with them. The authors also thank Heekyoung Hahn for the help with editing and for her constant encouragement. Thanks are due to the anonymous referees for several useful comments. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

1. Blomer V, Brumley F. On the Ramanujan conjecture over number fields. Ann of Math (2), 2011, 174: 581-605
2. Bouthier A, Ngô B C, Sakellaridis Y. On the formal arc space of a reductive monoid. Amer J Math, 2016, 138: 81-108
3. Braverman A, Kazhdan D. Normalized intertwining operators and nilpotent elements in the Langlands dual group. Mosc Math J, 2002, 2: 533-553
Appendix A Proof of Proposition 4.7 in the Archimedean case

Assume that F is an Archimedean local field. Recall that $C^\infty_c(X(F), K) < C^\infty(X(F))$ is the subset of functions that are right K-finite. Our goal here is to prove Proposition 4.7 in the current Archimedean setting. We recall that Proposition 4.7 simply states that $C^\infty_c(X(F), K) \leq S(X(F), K)$.

References

1. Braverman A, Kazhdan D. γ-functions of representations and lifting. In: Visions in Mathematics. Modern Birkhäuser Classics. Basel: Birkhäuser, 2010, 237–278
2. Brumley F. Effective multiplicity one on GL_N and narrow zero-free regions for Rankin-Selberg L-functions. Amer J Math, 2006, 128: 1455–1474
3. Cheng S, Ngo B C. On a conjecture of Braverman and Kazhdan. Int Math Res Not IMRN, 2018, 20: 6177–6200
4. Duke W, Rudnick Z, Sarnak P. Density of integer points on affine homogeneous varieties. Duke Math J, 1993, 71: 143–179
5. Folland G B. A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. Boca Raton: CRC Press, 1995
6. Gelbart S, Lapid E M. Lower bounds for L-functions at the edge of the critical strip. Amer J Math, 2006, 128: 619–638
7. Godement R, Jacquet H. Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260. Berlin-New York: Springer-Verlag, 1972
8. Ikeda T. On the location of poles of the triple L-functions. Compos Math, 1992, 83: 187–237
9. Jacquet H. Archimedean Rankin-Selberg integrals. In: Automorphic Forms and L-Functions II. Local Aspects. Contemporary Mathematics, vol. 489. Providence: Amer Math Soc, 2009, 57–172
10. Kudla S S, Rallis S. A regularized Siegel-Weil formula: The first term identity. Ann of Math (2), 1994, 140: 1–80
11. Li W-W. Basic functions and unramified local L-factors for split groups. Sci China Math, 2017, 60: 777–812
12. Li W-W. Towards generalized prehomogeneous zeta integrals. arXiv:1610.05973, 2016
13. Sakellaridis Y. Inverse Satake transforms. In: Geometric Aspects of the Trace Formula. Cham: Springer, 2018, 351–404
14. Tate J T. Fourier analysis in number fields and Hecke’s zeta-functions. PhD Thesis. Princeton: Princeton University, 1950
It is convenient to begin with a few convergence lemmas.

Lemma A.1. Let $\Phi \in C_c^\infty(X(F), K)$. Then for $\text{Re}(s) \geq n^2/2$ one has

$$|M_{w_0}\Phi_{X_s}(I_{2n})| \ll \Phi 1.$$ \hspace{1cm} (A.1)

Proof. Consider the map

$$\text{Pl}: X(F) \to \wedge^n F^{2n}.$$ \hspace{1cm} (A.1)

Since X is a homogeneous space for Sp_{2n} it is smooth (as a scheme over F). The map (A.1) is an injective diffeomorphism onto its image, a closed submanifold of $\wedge^n F^{2n} - 0$. In particular, there is a function $\Psi \in C_c^\infty(\wedge^n F^{2n})$ such that $\Phi = \Psi \circ \text{Pl}$. For $\text{Re}(s)$ sufficiently large we have

$$M_{w_0}\Phi_{X_s}(I_{2n}) = \int_{N(F)} \Phi_{X_s}(w_0^{-1}n)dn$$

$$= \int_{N(F)} \left(\int_{M^{n^2}(F)} \delta_1^{1/2}(m)\chi_s(\omega(m))\Psi(\text{Pl}(m^{-1}w_0^{-1}n))dn^x \right)dn.$$

Temporarily denote

$$\text{Pl}_0: M_{n^2\times n}^\otimes(F) \to \wedge^n F^{2n},$$

$$(X, Y) \mapsto \text{Pl} \begin{pmatrix} \ast & \ast \end{pmatrix}. \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

This is just taking the wedge product of the n rows of the $n \times 2n$ matrix $(X Y)$, going from top to bottom. Then the integral above can be written as

$$\int_{\text{Sym}^n(F)} \left(\int_{F^x} \chi_s(a)|a|^{(n+1)/2}\Psi \left(\text{Pl}_0 \begin{pmatrix} \ast & \ast \end{pmatrix} \begin{pmatrix} a & 0 \\ I_{n-1} & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \right) dz \right) da^x.$$

where $\text{Sym}^n(F)$ is the F-vector space of symmetric $n \times n$ matrices and

$$J' = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}.$$

We note that Pl_0 is invariant under multiplication by SL_n on the left to see that the above is equal to

$$\int_{\text{Sym}^n(F)} \left(\int_{F^x} \chi_s(a)|a|^{(n+1)/2}\Psi \left(-\text{Pl}_0 \begin{pmatrix} \ast & \ast \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \right) dz \right) da^x.$$

Take a change of variables $z \mapsto a^{-1}z$ to arrive at

$$\int_{\text{Sym}^n(F)} \left(\int_{F^x} \chi_s(a)(1-a^2)^{n-2/2}(a)\Psi \left(-\text{Pl}_0 \begin{pmatrix} \ast & \ast \end{pmatrix} \begin{pmatrix} I_{n-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \begin{pmatrix} a^{-1} & 0 \\ I_{n-1} & 1 \end{pmatrix} \right) dz \right) da^x.$$

By inspection the integrand is rapidly decreasing as a function of $z \in \text{Sym}^n(F)$ and $a \in F$, so this integral converges absolutely and is bounded by a constant depending only on Ψ for $\text{Re}(s) \geq n^2/2$. \hspace{1cm} \Box

Lemma A.2. Let $\Phi \in C_c^\infty(X(F), K)$ and $A \in \mathbb{R}$. Then for $\text{Re}(s) \geq A$ one has

$$|M_{w_0}\Phi_{X_s}(I_{2n})| \ll \Phi, A 1.$$

Proof. Let $\alpha \in \mathbb{Z}_{\geq 0}$. Notice that

$$\bar{\Phi} := (\omega\bar{w})\alpha \Phi \in C_c^\infty(X(F), K),$$
where \(\omega \) is defined as in (5.4). As in the proof of Lemma 5.5 we have

\[
(\omega^{-\alpha} \tilde{\Phi})_{\chi_s} = \tilde{\Phi}_{\chi_s + 2\alpha F^{-1}}.
\]

By Lemma A.1 we therefore have

\[
|M_{w_0} \Phi_{\chi_s}(I_{2n})| = |M_{w_0} (\omega^{-\alpha} \tilde{\Phi})_{\chi_s}(I_{2n})| = |M_{w_0} \tilde{\Phi}_{\chi_s + 2\alpha F^{-1}}(I_{2n})| \ll \Phi, \alpha 1
\]

for \(\text{Re}(s) + 2\alpha[F : \mathbb{R}]^{-1} \geq n^2/2 \). Taking \(\alpha \) sufficiently large we deduce the lemma.

Proof of Proposition 4.7 in the Archimedean case. If \(\Phi \in C_c^\infty(X(F), K) \) then it is easy to see that \(\Phi_{\chi_s} \) is holomorphic for all \(\chi \). Hence by [16, Lemma 1.3] we deduce that \(\Phi_{\chi_s} \) is a good section. We thus have to verify that for all \(g \in \text{Sp}_{2n}(F) \), all characters \(\chi, A < B \), and all \(P_w \) as in the definition of an excellent section that

\[
|\Phi_{\chi_s}(g)|_{A,B,P} \quad (A.2)
\]

and

\[
|M_{w_0} \Phi_{\chi_s}(g)|_{A,B,P_{w_0}} \quad (A.3)
\]

are finite. In fact this is enough to complete the proof since the space \(C_c^\infty(X(F), K) \) is preserved under the differential operators \(D \) and \(\overline{D} \) of (4.2) and (4.3).

Write \(\chi \) as in (3.10). By Lemma 5.9 for any \(N, N' \in \mathbb{Z}_{\geq 0} \) with \(N' = 0 \) if \(F \) is real, one has

\[
|D^N \Phi_{\chi_s}|_{A,B,1} = \left| \left(it + s + \frac{n+1}{2} \right)^N \Phi_{\chi_s}(g) \right|_{A,B,1}
\]

if \(F \) is real, and

\[
|D^N \overline{D}^{N'} \Phi_{\chi_s}(g)|_{A,B,1} = \left| \left(\frac{\alpha}{2} + it + s + \frac{n+1}{2} \right)^N \left(- \frac{\alpha}{2} + it + s + \frac{n+1}{2} \right)^{N'} \Phi_{\chi_s}(g) \right|_{A,B,1}
\]

if \(F \) is complex. Since \(\Phi \in C_c^\infty(X(F), K) \) the left-hand sides here are bounded by a constant depending on \(A, B, \Phi, N \) and \(N' \). We deduce that (A.2) is finite for all \(P \in \mathbb{C}[x] \). An analogous argument, using Lemma A.2, allows us to deduce that (A.3) is finite for all \(P \in \mathbb{C}[x] \).