Tisagenlecleucel in relapsed/refractory diffuse large B-cell lymphoma patients without measurable disease at infusion

Michael R. Bishop, University of Chicago
Richard T. Maziarz, Oregon Health and Science University
Edmund Waller, Emory University
Ulrich Jäger, Medizinische Universität Wien
Jason R. Westin, University of Texas MD Anderson Cancer Center
Joseph P. McGuirk, University of Kansas Medical Center
Isabelle Fleury, Hopital Maisonneuve-Rosemont
Harald Holte, Oslo University Hospital
Peter Borghmans, Uniklinik Köln
Christopher Del Corral, Novartis Pharmaceuticals Corporation

Only first 10 authors above; see publication for full author list.

Journal Title: Blood Advances
Volume: Volume 3, Number 14
Publisher: American Society of Hematology: Blood Advances | 2019-07-23, Pages 2230-2236
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1182/bloodadvances.2019000151
Permanent URL: https://pid.emory.edu/ark:/25593/v0hw0

Final published version: http://dx.doi.org/10.1182/bloodadvances.2019000151

Copyright information:
© 2019 by The American Society of Hematology

Accessed November 16, 2022 10:41 AM EST
Tisagenlecleucel in relapsed/refractory diffuse large B-cell lymphoma patients without measurable disease at infusion

Michael R. Bishop,1 Richard T. Maziarz,2 Edmund K. Waller,3 Ulrich Jäger,4 Jason R. Westin,5 Joseph P. McGuirk,6 Isabelle Fleury,7,8 Harald Holte,9 Peter Borchmann,10 Christopher del Corral,11 Ranjan Tiwari,11 Özlem Anak,13 Rakesh Awasthi,14 Lida Pacaud,11 Vadim V. Romanov,11 and Stephen J. Schuster15

1Hematopoietic Cellular Therapy Program, The University of Chicago Medicine, Chicago, IL; 2Center for Hematologic Malignancies, Knight Cancer Institute, Oregon Health & Science University, Portland, OR; 3Bone Marrow and Stem Cell Transplant Center, Winship Cancer Institute of Emory University, Atlanta, GA; 4Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria; 5Division of Cancer Medicine, Department of Lymphoma and Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX; 6Department of Blood and Bone Marrow Transplant, The University of Kansas Medical Center, Kansas City, KS; 7Maisonneuve-Rosemont Hospital, Montreal, QC, Canada; 8Hematology and Oncology, Department of Medicine, University of Montreal, Montreal, QC, Canada; 9Department of Oncology, Oslo University Hospital, Oslo, Norway; 10Department of Haematology and Oncology, University Hospital of Cologne, Cologne, Germany; 11Novartis Pharmaceuticals Corporation, East Hanover, NJ; 12Novartis Healthcare Private Limited, Hyderabad, India; 13Novartis Pharma AG, Basel, Switzerland; 14Novartis Institutes for BioMedical Research, East Hanover, NJ; and 15Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA

Key Points
- Tisagenlecleucel expanded in vivo and provided clinical benefit in r/r DLBCL patients in CR after bridging therapy.
- Tisagenlecleucel produced durable responses in r/r DLBCL patients without detectable disease before infusion.

Tisagenlecleucel demonstrated high rates of durable responses in adult patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) in the JULIET trial. Most patients (92%) received bridging therapies to control disease after study entry and before tisagenlecleucel infusion. Here, we examine the efficacy and safety of tisagenlecleucel in the subset of 7 patients who achieved complete response (CR) after bridging therapy and before tisagenlecleucel infusion. Tisagenlecleucel rapidly expanded in all 7 patients, and the transgene levels were measurable for up to 2 years after infusion. After infusion, all 7 patients were still in CR at the month 3 evaluation, and 5 of 7 patients remained progression-free >12 months. Adverse events were similar to the overall JULIET population. Cytokine release syndrome (CRS) was reported in 4 of 7 patients (grade 2 and grade 3 using the Penn grading scale), and 1 patient experienced grade 1 neurotoxicity. No patient required tocilizumab or steroids for CRS management. These data provide preliminary evidence of tisagenlecleucel efficacy in patients with r/r DLBCL without detectable disease after bridging or salvage therapies and warrant further investigation of tisagenlecleucel as consolidative therapy in future trials. This trial was registered at www.clinicaltrials.gov as #NCT02445248.

Introduction

Relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) has a poor prognosis.1 Results from the SCHOLAR-1 and Collaborative Trial in Relapsed Aggressive Lymphoma (CORAL) studies suggest that response rates to available rituximab-based salvage regimens for r/r DLBCL remain dismal and are unlikely to be durable.1-3 In SCHOLAR-1, the objective response rate was 26% with a 7% complete response (CR) rate and a median overall survival (OS) of 6.3 months.2

Tisagenlecleucel, an autologous anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, results in high rates of durable responses in patients with r/r DLBCL.4,5 Results from JULIET (NCT02445248), a single-arm, open-label, multicenter, global phase 2 trial of tisagenlecleucel in adults with r/r DLBCL, demonstrated an objective response rate of 52%, with CR and partial response (PR) rates of 40% and...
12%, respectively. Long-term follow-up in JULIET demonstrated durable responses with a consistent safety profile and improved OS compared with historical treatment options.

Among the 111 patients who received tisagenlecleucel in JULIET, most patients (92%) received various bridging therapies, including conventional combination chemotherapy to control disease during the period between enrollment and start of lymphodepleting chemotherapy. However, a subset of 7 patients had no evidence of active disease after bridging therapy and received tisagenlecleucel infusion per protocol. Data from these patients were excluded from the efficacy table in the US package insert for the DLBCL indication with the US Food and Drug Administration.

Because tisagenlecleucel targets CD19+ B cells and the study required measurable disease at enrollment, it was unknown whether tisagenlecleucel would expand and provide clinical benefit in patients without measurable disease before infusion. This post hoc exploratory analysis reports on expansion, safety, and outcomes of tisagenlecleucel therapy in the subset of patients with r/r DLBCL who had no measurable disease after bridging therapy and before receiving tisagenlecleucel infusion.

Study design

Details of JULIET were described previously. Briefly, patients were ≥18 years of age at entry and had ≥2 prior lines of therapy including rituximab and an anthracycline. Key eligibility criteria included progressive disease (PD) after, or ineligibility for, autologous stem cell transplantation. Eligible patients underwent leukapheresis and cryopreserved material was shipped to a central manufacturing facility. Patients could receive bridging therapy if deemed necessary by their treating physician. An independent review committee assessed disease status and response using the positron emission tomography (PET) 5-point Deauville scale (Lugano classification). A restaging PET–computed tomography scan before lymphodepletion was added as a protocol amendment, but was not completed for all patients. Thus, it is possible that additional patients may have been treated without measurable disease, due to lack of imaging after bridging therapy. Most patients (n = 103) underwent lymphodepleting chemotherapy with fludarabine and cyclophosphamide or bendamustine before tisagenlecleucel infusion; patients with white blood cell counts <1 × 10^9/L within 1 week of infusion could omit lymphodepleting chemotherapy per protocol. Patients received a single infusion of tisagenlecleucel with a target dose of 5 × 10^8 viable CAR+ T cells.

Efficacy and safety end points

End points for this analysis included tisagenlecleucel cellular kinetics, response type and duration, survival status, and safety in this patient subset of JULIET. Adverse events were reported using the Medical Dictionary for Regulatory Activities, version 20.1, and Common Terminology Criteria for Adverse Events, version 4.03. Cytokine release syndrome (CRS) was graded using the University of Pennsylvania grading scale and was managed by a protocol-specific algorithm. A retrospective analysis of CRS severity using the Lee grading scale was also conducted.

Results and discussion

As of 8 December 2017, 111 patients had received tisagenlecleucel in the JULIET trial. Among these patients, 7 had no evidence of active disease after bridging therapies and before tisagenlecleucel infusion.

Demographics and baseline disease characteristics of the 7 patients are shown in Table 1 and were similar to the overall JULIET patient population. All 7 patients received both bridging therapy and lymphodepleting chemotherapy. The mean absolute lymphocyte counts before lymphodepleting chemotherapy were similar between the 7 patients and overall population, and the mean absolute lymphocyte counts after lymphodepleting chemotherapy were similar between the 7 patients and the overall JULIET population (data not shown).

Tisagenlecleucel rapidly expanded during the first 28 days after infusion in all 7 patients, and CAR transgene levels were measurable at a maximum of ~2 years (Figure 1A). Median time to last quantifiable transgene level was 351 days (range, 190-693 days) and is expected to increase with longer follow-up. Mean transgene levels at peak expansion (maximum concentration [Cmax]) in the 7-patient subset (geometric mean Cmax [percentage of coefficient variation]; 5760 copies per microgram [112%]) were comparable with those of the rest of the patients in the JULIET trial with reliable parameter estimates (n = 94; geometric mean Cmax [percentage of coefficient variation]; 5790 copies per microgram [291%]) (Figure 1B). In the JULIET trial population, the mean expansion was similar between responders and nonresponders. Additionally, median time to peak expansion of 9 days from the 7-patient subset was similar to that observed in the rest of the patients in the JULIET population.

With a median follow-up of 14.5 months, all 7 patients maintained CR at the initial assessment 28 days after infusion and at the month 3 assessment (Table 1); 5 patients (1, 2, 3, 4, and 7) remained progression-free for >12 months at the data cutoff of 8 December 2017. Patient 7 declined all scans beyond the month 3 visit but continues in follow-up with no sign of disease progression >2 years after tisagenlecleucel infusion. Patient 5 experienced PD on day 274, began new anticancer therapy, and died on day 544 of PD. Patient 6 experienced PD on day 196 and withdrew consent to further follow-up (Table 1). Median time from last bridging therapy to the start of lymphodepleting chemotherapy was 44 days in the 7 patients and 24 days for the overall infused population.

Adverse events of special interest in this subset (Table 1) were similar to those in the overall JULIET population. Four of 7 patients experienced CRS (grade 2 = 2 and grade 3 = 2, using the Penn scale) with a median duration of 5 days. None of these 4 patients required tocilizumab or steroids for CRS management. Only 1 patient experienced grade 1 neurologic events. No deaths were observed due to tisagenlecleucel, CRS, or cerebral edema/neurotoxicity. Retrospective analysis of CRS severity using the Lee grading scale found that all 4 patients had grade 2 CRS.
Table 1. Patient demographics, baseline disease characteristics, efficacy, and safety outcomes

Patient	Age, y	Sex	Prior lines of therapy for DLBCL	Stage at study entry	IPI at study entry	Disease status	Bridging therapy	Duration of bridging therapy, d*	BOR	Response at last follow-up	DOR, d†	DOR censoring event	Survival status	CRS	CRS duration, d	NT
1	54	F	1. R-CHOP with CR for ~8 mo	II	≥2	Relapsed to last line	1. Rituximab + cisplatin + gemcitabine	129	FluCy CR CR	384	Ongoing without event	Alive	No	—	No	
			2. R-ICE → R-GDP → BEAM → HSCT with relapse 3 mo after transplant				2. Rituximab + bendamustine									
2	62	F	1. R-EPOCH with CR for ~4 mo	IV	≥2	Relapsed to last line	1. Cyclophosphamide + rituximab	3	FluCy CR CR	351	Ongoing without event	Alive	Grade 2	4	No	
			2. R-DHAP → azacitidine + vorinostat + busulfan + gemcitabine + melphalan (conditioning) → HSCT with CR for ~2 y													
3	68	M	1. CHOP with CR for ~15 y	I	<2	Relapsed to last line	1. Rituximab + bendamustine	2	FluCy CR CR	340	Ongoing without event	Alive	Grade 3	7	No	
			2. R-CHOP with CR for ~3 y													
			3. R-ICE with PR for ~3 y													
4	58	F	1. R-CHOP with CR for ~4 y	I	<2	Relapsed to last line	1. Trofosfamide mide	60	FluCy CR CR	324	Ongoing without event	Alive	No	—	No	
			2. R-DHAP → ofatumumab + ICE → BEAM → HSCT with CR for ~2 y				2. Ofatumumab + gemcitabine + liposomal doxorubicin + vinorelbine									
			3. Rituximab + methotrexate + etoposide + ifosfamide with CR for ~11 mo													
5	68	F	1. R-CHOP with CR for ~1.5 y	I	<2	Relapsed to last line	1. Rituximab + bendamustine	2	FluCy CR PD at day 274	246	New anticancer therapy other than HSCT	Died day 544, DLBCL	Grade 3	5	Dysphagia grade 1	

All 7 patients had DLBCL, except 1 patient with transformed follicular lymphoma. In JULIET, 79% had DLBCL and 19% had transformed follicular lymphoma.

—, not applicable; BEAM, carmustine, etoposide, cytarabine, melphalan; BOR, best overall response; chemo, chemotherapy; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; DOR, duration of response; F, female; R-Cy, fludarabine plus cyclophosphamide; HSCT, hematopoietic stem-cell transplantation; ICE, ifosfamide, carboplatin, etoposide; IPI, International Prognostic Index; LD chemo, lymphodepleting chemotherapy; M, male; NT, neurotoxicity; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone; R-DHAP, rituximab plus dexamethasone, cyclophosphamide, cisplatin; R-EPOCH, rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; R-GDP, rituximab plus gemcitabine, dexamethasone, and cisplatin; SD, standard deviation; WBC, white blood cell.

*Duration of bridging therapies is calculated from the first dose of bridging therapy to the last dose of bridging therapy. Dexamethasone was not included in the calculation of duration of bridging therapy.

†DOR was measured from date of BOR until disease relapse or death.
Patient	Age, y	Sex	Prior lines of therapy for DLBCL	Stage at study entry	IPI at study entry	Disease status	Bridging therapy	Duration of bridging therapy, d*	LD chemo	BOR	Response at last follow-up DOR, d †	DOR censoring event	Survival status	CRS	CRS duration, d	NT	
6	64	F	1. R-CHOP + methotrexate with CR for −4 mo 2. R-ICE with SD for −1 mo 3. Rituximab + methotrexate + cytarabine + methylprednisolone → busulfan + etoposide + cyclophosphamide (conditioning) → HSCT with CR for 4 mo	IV	≥2	Relapsed to last line	1. Rituximab + methotrexate + cytarabine	71	FluCy	CR PD at day 196	165	Withdrew consent	Lost to follow-up	No	—	—	
7	71	F	1. R-EPOCH with CR for −7 mo 2. R-GDP with PR for −3 mo	III	≥2	Relapsed to last line	1. Ifosfamide + carboplatin + etoposide	24	FluCy	CR CR	65	Adequate assessment no longer available	Alive	Grade 2	12	No	
56	35.5%		I: 7% II: <2 risk factors: 27.9%	Relapsed: 92%	92%	93%	FluCy: 73%; bendamustine: 20%	40%	CR	12% PR	—	—	—	90% OS rate at 12 mo in patients with CR	22% grade 3/4	—	12% grade 3/4
64.5%	2: 44%		III: 12% III: 17%	Relapsed: 92%	92%	93%	FluCy: 73%; bendamustine: 20%	40%	CR	12% PR	—	—	—	90% OS rate at 12 mo in patients with CR	22% grade 3/4	—	12% grade 3/4
3: 31%			III: 20%	Relapsed: 92%	92%	93%	FluCy: 73%; bendamustine: 20%	40%	CR	12% PR	—	—	—	90% OS rate at 12 mo in patients with CR	22% grade 3/4	—	12% grade 3/4
4-6: 21%			IV: 56%	Relapsed: 92%	92%	93%	FluCy: 73%; bendamustine: 20%	40%	CR	12% PR	—	—	—	90% OS rate at 12 mo in patients with CR	22% grade 3/4	—	12% grade 3/4

All 7 patients had DLBCL except 1 patient with transformed follicular lymphoma. In JULIET, 79% had DLBCL and 19% had transformed follicular lymphoma.

—, not applicable; BEAM, carmustine, etoposide, cytarabine, melphalan; BOR, best overall response; chemo, chemotherapy; CHOP, cyclophosphamide, doxorubicin, vincristine, prednisone; DOR, duration of response; F, female; FluCy, fludarabine plus cyclophosphamide; HSCT, hematopoietic stem-cell transplantation; ICE, ifosfamide, carboplatin, etoposide; IPI, International Prognostic Index; LD chemo, lymphodepleting chemotherapy; M, male; NT, neurotoxicity; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, prednisone; R-DHAP, rituximab plus dexamethasone, cytarabine, cisplatin; R-EPOCH, rituximab plus etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin; R-GDP, rituximab plus gemcitabine, dexamethasone, and cisplatin; SD, standard deviation; WBC, white blood cell.

*Duration of bridging therapies is calculated from the first dose of bridging therapy to the last dose of bridging therapy. Dexamethasone was not included in the calculation of duration of bridging therapy.
†DOR was measured from date of BOR until disease relapse or death.
In summary, tisagenlecleucel expansion occurred in all 7 patients with no measurable disease after bridging therapy, and mean expansion was similar to the JULIET trial. More than one-half of the patients (5 of 7) remained progression free >12 months after infusion, which is longer than would be expected with bridging therapy alone. One hypothesis to explain these observations is that CAR T cells can expand in response to residual disease undetected by PET imaging. These findings are novel because data from these 7 patients were excluded from the DLBCL efficacy table in the Kymriah (tisagenlecleucel) US package insert, and, in the commercial setting for axicabtagene ciloleucel therapy, patients who attained CR after bridging therapy did not receive their CAR T-cell infusion.

In conclusion, these results provide preliminary evidence of tisagenlecleucel efficacy in patients with r/r DLBCL without detectable disease after bridging or salvage therapies. Additionally, these 7 patients experienced low rates of CRS and neurotoxicity. These data warrant further exploration in clinical trials of tisagenlecleucel as consolidative therapy for patients with relapsed and high-risk DLBCL in CR.

Figure 1. Tisagenlecleucel expansion kinetics. (A) Cellular kinetic plots demonstrating in vivo expansion and persistence of tisagenlecleucel in patients with CR at baseline. (B) Box plot of Cmax by response status at baseline (pharmacokinetic analysis set). Geometric mean Cmax (% coefficient variation) in patients with CR at baseline and in the rest of the patients was 5760 copies per microgram (112%) and 5790 copies per microgram (291%), respectively. Diamonds represent the mean and circles represent values outside of 1.5× interquartile range (IQR). Lower and upper whiskers extend to most extreme points within 1.5× IQR or quartile 1 and quartile 3, respectively. qPCR, quantitative polymerase chain reaction.

Acknowledgments

The authors thank the patients enrolled in this study and their families. Medical writing support was provided by Healthcare Consultancy Group.

This work, including medical writing support, was supported by Novartis Pharmaceuticals.

Authorship

Contribution: M.R.B., R.T.M., E.K.W., U.J., J.R.W., J.P.M., I.F., H.H., P.B., and S.J.S. enrolled patients, performed research, and contributed to data collection and interpretation; C.d.C., R.T., O.A., R.A., L.P., and V.V.R. performed cellular kinetic and/or statistical analyses and/or contributed to data interpretation; M.R.B. and S.J.S. wrote the first draft; and all authors were involved in revising the manuscript and approved the final version.

Conflict-of-interest disclosure: M.R.B. provided consultant services to, was a member of an entity’s board of directors or advisory committees for, and received research funding from Novartis, Kite Pharma, and Juno Therapeutics; provided
consultant services to, and received honoraria from Novartis, Kite Pharma, Juno Therapeutics, Agios Pharmaceuticals, and CRISPR Therapeutics; was on a speaker’s bureau for, and received travel and honoraria from, Celgene, Kite Pharma, and Agios Pharmaceuticals; and was employed by, provided consultant services to, and received honoraria from Optum. R.T.M. received honoraria from, was a member of an entity’s board of directors or advisory committees for (Scientific Steering Committee for JULIET), and received research funding from Novartis; provided consultant services to, and received honoraria from Incyte Inc, Celgene/Juno Therapeutics, and CRISPR Therapeutics; received honoraria from Kite Therapeutics; has patents for and received royalties from Athersys, Inc; was employed by Oregon Health & Science University (OHSU); and provided consultant services to, and received payment from, Novartis (this potential conflict of interest has been reviewed and managed by OHSU). E.K.W. provided consultant services to, was a member of an entity’s board of directors or advisory committees for, and received research funding from Novartis; received travel expenses from European Hematology Association; received research funding from Pharmacyclics and Celldex; provided consultant services to Kalytera; and provided consultant services to and had equity ownership in Cambium Medical Technologies and Cambium Oncology. U.J. provided consultant services to, received honoraria from, was a member of an entity’s board of directors or advisory committees for Janssen and Celgene; provided consultant services to and received honoraria from AbbVie; was a member of an entity’s board of directors or advisory committees for and received research funding from Roche and Gilead; provided consultant services to, received honoraria from, and was a member of an entity’s board of directors or advisory committees for Janssen and Celgene; provided consultant services to and received honoraria from AbbVie; was a member of an entity’s board of directors or advisory committees for and received research funding from Novartis; was a member of an entity’s board of directors or advisory committees for Cambium Oncology. R.A. was employed by Novartis, Takeda, and Celgene; received research funding from Genentech; was a member of an entity’s board of directors or advisory committees for Gilead and Pfizer; provided consultant services to, received honoraria from, and received research funding from Merck; received honoraria from, was a member of an entity’s board of directors or advisory committees for and received research funding from Novartis; provided consultant services to, received honoraria from, and was a member of an entity’s board of directors or advisory committees for Nordic Nanoveor; and received honoraria from OncLive and Physician’s Education Source.

ORCID profiles: E.K.W., 0000-0003-0816-6729; J.R.W., 0000-0002-1824-2337; J.P.M., 0000-0002-0539-4796; H.H., 0000-0001-9799-9428; L.P., 0000-0002-7803-2366; V.V.R., 0000-0003-2204-1957.

Correspondence: Michael R. Bishop, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637; e-mail: mbishop@medicine.bsd.uchicago.edu.

References

1. Van Den Neste E, Schmitz N, Mounier N, et al. Outcome of patients with relapsed diffuse large B-cell lymphoma who fail second-line salvage regimens in the International CORAL study. Bone Marrow Transplant. 2016;51(1):51-57.

2. Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma: results from the international SCHOLAR-1 study. Blood. 2017;130(16):1800-1808.

3. Gisselbrecht C, Schmitz N, Mounier N, et al. Rituximab maintenance therapy after autologous stem-cell transplantation in patients with relapsed CD20(+): diffuse large B-cell lymphoma: final analysis of the collaborative trial in relapsed aggressive lymphoma. J Clin Oncol. 2012;30(36):4462-4469.

4. Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377(26):2545-2554.

5. Schuster SJ, Bishop MR, Tam CS, et al; JULIET Investigators. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45-56.

6. Schuster SJ, Bishop MR, Tam CS, et al. Sustained disease control for adult patients with relapsed or refractory diffuse large B-cell lymphoma: an updated analysis of Juliet, a global pivotal phase 2 trial of tisagenlecleucel. In: Proceedings from the 60th American Society of Hematology annual meeting; 1-4 December 2018; San Diego, CA.

7. Novartis Pharmaceuticals Corporation. KYMRIAH (tisagenlecleucel) suspension for intravenous infusion [package insert]. East Hanover, NJ: Novartis; 2018.

8. Cheson BD, Fisher RI, Barrington SF, et al; United Kingdom National Cancer Research Institute. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059-3068.
9. Porter DL, Hwang WT, Frey NV, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. *Sci Transl Med.* 2015;7(303):303ra139.

10. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. *N Engl J Med.* 2018;378(5):439-448.

11. Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome [published correction appears in *Blood.*. 2015;126(8):1048]. *Blood.* 2014;124(2):188-195.

12. Mueller KT, Waldron E, Grupp SA, et al. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. *Clin Cancer Res.* 2018;24(24):6175-6184.

13. Maziarz RT, Schuster SJ, Romanov VV, et al. Grading of neurotoxicity in patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) receiving tisagenlecleucel treatment in the JULIET study. In: Proceedings from the 60th American Society of Hematology annual meeting; 1-4 December 2018; San Diego, CA.

14. Schuster SJ, Maziarz RT, Ericson SG, et al. Consensus grading of cytokine release syndrome (CRS) in adult patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) treated with tisagenlecleucel on the JULIET study. In: Proceedings from the 60th American Society of Hematology annual meeting; 1-4 December 2018; San Diego, CA.

15. Nastoupil LJ, Jain MD, Spiegel JY, et al. Axicabtagene ciloleucel (axi-cel) CD19 chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory large B-cell lymphoma: real world experience. In: Proceedings from the 60th American Society of Hematology annual meeting; 1-4 December 2018; San Diego, CA.