Precision Jet Substructure from Boosted Event Shapes

Citation
Feige, Ilya, Matthew D. Schwartz, Iain W. Stewart, and Jesse Thaler. 2012. “Precision Jet Substructure from Boosted Event Shapes.” Physical Review Letters 109 (9) (August). doi:10.1103/physrevlett.109.092001.

Published Version
doi:10.1103/PhysRevLett.109.092001

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:28657434

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Precision Jet Substructure from Boosted Event Shapes

Ilya Feige, Matthew D. Schwartz, Iain W. Stewart, and Jesse Thaler

1Center for the Fundamental Laws of Nature, Harvard University, Cambridge, Massachusetts 02138, USA
2Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Jet substructure has emerged as a critical tool for LHC searches, but studies so far have relied heavily on shower Monte Carlo simulations, which formally approximate QCD at leading-log level. We demonstrate that systematic higher-order QCD computations of jet substructure can be carried out by boosting global event shapes by a large momentum Q, and accounting for effects due to finite jet size, initial-state radiation (ISR), and the underlying event (UE) as $1/Q$ corrections. In particular, we compute the 2-subjettiness substructure distribution for boosted $Z \to q\bar{q}$ events at the LHC at next-to-next-to-next-to-leading-log order. The calculation is greatly simplified by recycling the known results for the thrust distribution in e^+e^- collisions. The 2-subjettiness distribution quickly saturates, becoming Q independent for $Q > 400$ GeV. Crucially, the effects of jet contamination from ISR/UE can be subtracted out analytically at large Q, without knowing their detailed form. Amusingly, the $Q = \infty$ and $Q = 0$ distributions are related by a scaling by e, up to next-to-leading-log order.

The Large Hadron Collider (LHC) is exploring a new regime where the collision energy far exceeds the masses of known standard model particles. At such energies, heavy particles such as W/Z bosons and top quarks are often produced with large Lorentz boost factors, which leaves their hadronic decay products collimated into a single energetic “fat jet”. Jet substructure techniques extract information from these fat jets to distinguish boosted heavy objects from the QCD background of jets initiated by light quarks and gluons. Examples of variables defined for this purpose include planar flow [1, 2], jet angularities [2], pull [3], N-subjettiness [4, 5], dipolarity [6], and angular correlations [7], with applications to boosted Higgs bosons [8], tops [1, 9], W/Z [10], jet angularities [2], pull [3], N-subjettiness [4, 5], dipolarity [6], and angular correlations [7], with applications to boosted Higgs bosons [8], tops [1, 9], W/Z [10], and jet substructure variables in the large N limit, treating finite jet size, initial state radiation (ISR), and underlying event (UE) as $1/Q$ corrections. Concretely, we consider the jet substructure observable N-subjettiness T_N [4], which is the subjet version of the global event shape N-jettiness [10]. The ratio T_N/T_{N-1} is a robust probe for N-prong decays [11], and compares favorably to other methods for boosted object identification.

Here, we focus on 1- and 2-subjettiness (T_1 and T_2), which are relevant for LHC searches involving W/Z and Higgs bosons. We compute the distribution for the ratio T_2/T_1 from $Z \to q\bar{q}$ decays to next-to-next-to-next-to-leading-log (N3LL) order, using ingredients from higher-order QCD computations of the classic e^+e^- thrust event shape [18–24]. From a calculational point of view, the use of this ratio is crucial, since it has a finite limit when $Q \to \infty$. We will show that our full subjet distribution is equal to the global distribution generated by the Z decay products, up to $1/Q$ power-suppressed corrections. The dominant hadronization corrections cause a shift which is encoded in a single Q-independent parameter. We compare our substructure calculation to PYTHIA 8.150 tune 4C and also use PYTHIA to demonstrate that the effects from the jet boundary and from external radiation (i.e. ISR and UE) are suppressed by $1/Q$, only entering at the 5% level for $Q \gtrsim 400$ GeV.

We begin by considering a fat jet of size R (clustered with anti-k_T [20]) in a pp collision event. This jet should contain most of the Z decay products as well as some ISR/UE contamination. The jet momentum is $P_J^\mu = \sum_{j \in J} P_j^\mu$, where j runs over the four-vectors P_j^μ within the jet J. The jet boost Q is defined as $Q \equiv |\vec{P}_J|$. To calculate N-subjettiness, we must specify a distance measure δ_j, and use the geometric measure

$$T_N \equiv \min_{n_1, n_2, \ldots, n_N} \sum_{j \in J} \min\{n_1 \cdot p_j, n_2 \cdot p_j, \ldots, n_N \cdot p_j\}. \quad (1)$$

Here, $n_i^\mu = (1, n_i)$ are lightlike axes defined by the overall minimization. The minimum inside the sum partitions the jet’s constituents into subjet regions J_1, \ldots, J_N, defined by the axes n_i^μ. For the N-subjettiness event shape, J is replaced by the entire event.

For 1-subjettiness, $T_1 = \min_n \sum_{j \in J} n \cdot p_j$, which can also be written as the small component of the fat-jet momentum, $T_1 = P^+ \equiv n \cdot P_J$. If the jet contained all the Z...
decay products and nothing else, \mathcal{T}_1 would depend only on the Z boson momentum P^a_Z as:

$$\tilde{\mathcal{T}}_1 = P^+_Z = \sqrt{Q^2 + m^2_Z - Q}.$$ \hspace{1cm} (2)

Thus, the difference

$$\Delta \tau = \mathcal{T}_1 - \tilde{\mathcal{T}}_1$$ \hspace{1cm} (3)

measures how much the Z is incorrectly reconstructed. We will use $\Delta \tau$ to correct for ISR/UE contamination.

Turning to 2-subjettiness, we first calculate the ratio $\mathcal{T}_2/\tilde{\mathcal{T}}_1$ including only the Z decay products, and then discuss how other effects can be systematically included.

The distribution for the Z decay products is easily determined by boosting the Z rest frame distribution. At leading order, Z decays to a $q\bar{q}$ pair which go off back-to-back in the rest frame, at an angle θ (the helicity angle) with respect to the boost axis as in Fig. 1. For simplicity, we treat the Z as unpolarized with a flat θ distribution, but one could easily integrate over a different θ distribution, for example for Ws coming from top decays [5].

In the boosted frame, the Z momentum P^a_Z and the two daughter-quark momenta q^a_1 and q^a_2 are

$$P^a_Z = \{E_Q, 0, 0, Q\};$$ \hspace{1cm} (4)

$$q^a_1 = \frac{1}{2} \left\{E_Q - Q \cos \theta, -m_Z \sin \theta, 0, Q - \cos \theta E_Q \right\},$$

$$q^a_2 = \frac{1}{2} \left\{E_Q + Q \cos \theta, m_Z \sin \theta, 0, Q + \cos \theta E_Q \right\},$$

with $E_Q = \sqrt{m_Z^2 + Q^2}$. The quark energies are $E_1 = \frac{1}{2}(E_Q - Q \cos \theta)$ and $E_2 = \frac{1}{2}(E_Q + Q \cos \theta)$.

For the relevant small \mathcal{T}_2 region, the subjet directions from the minimization in [1] can be aligned with the leading-order quark directions [16]. Thus, we can take

$$n^a = (1, 0, 0, 1), \quad n^a_1 = \frac{1}{E_1} q^a_1, \quad n^a_2 = \frac{1}{E_2} q^a_2,$$ \hspace{1cm} (5)

where n^a is the \mathcal{T}_1 axis and n^a_1 and n^a_2 are the \mathcal{T}_2 axes. In terms of the subjet masses m_i and energies E_i,

$$\mathcal{T}_2 = P^+_1 + P^+_2 \simeq \frac{m_1^2}{2E_1} + \frac{m_2^2}{2E_2},$$ \hspace{1cm} (6)

In the large Q limit, $E_1 \sim Q \sin^2(\theta/2)$, $E_2 \sim Q \cos^2(\theta/2)$, and $\mathcal{T}_1 \sim m^2_Z/(2Q)$, while m_i are Q independent. Thus the distribution of the ratio $\mathcal{T}_2/\mathcal{T}_1$ asymptotes to a fixed Q-independent result.

Now let us consider how the scaling with Q is affected when $\mathcal{T}_2/\mathcal{T}_1$ is considered in a realistic environment, such as at the LHC. A measurement of $\mathcal{T}_2/\mathcal{T}_1$ includes effects from having a finite jet boundary and from including radiation from elsewhere in the event. The jet boundary R identifies a Q-independent phase space region about the jet axis. As $Q \to \infty$, the phase space for the Z decay products to land outside of the cone falls as $1/Q$.

Hence, the jet boundary is at most a $1/Q$ correction to $\mathcal{T}_2/\mathcal{T}_1$. The same conclusion holds if R is defined with a jet algorithm other than anti-k_T.

Next consider radiation not coming from the Z decay (i.e. ISR/UE). Since \mathcal{T}_N depends linearly on p^a_i in [16], both \mathcal{T}_1 and \mathcal{T}_2 will be distorted by (different) shifts due to this contaminating radiation. If we require the fat-jet mass to be close to m_Z, then the shifts will scale as \mathcal{T}_N, giving at most an $O(Q^0)$ distortion of $\mathcal{T}_2/\mathcal{T}_1$. To turn this into a $1/Q$ distortion, note that the distribution of contaminating radiation is smooth over the fat jet, and at large Q,

$$n^a_{1,2} = n^a + m_Z \left\{ -\cot\frac{\theta}{2}, \tan\frac{\theta}{2} \right\} \hat{e}^a + O\left(\frac{1}{Q} \right),$$ \hspace{1cm} (7)

where $\hat{e}^a = (0, 1, 0, 0)$. Comparing $n \cdot p_j$ and $\min\{n_1 \cdot p_j, n_2 \cdot p_j\}$, both \mathcal{T}_1 and \mathcal{T}_2 will be shifted in the same way up to $1/Q$ corrections. Hence we can remove the leading effect of contamination with $\Delta \tau$ from [16], by defining

$$\tau_{21} = \frac{T_{2} - \Delta \tau}{T_{1} - \Delta \tau}.$$ \hspace{1cm} (8)

τ_{21} has two important properties: first, it is close to $\mathcal{T}_2/\mathcal{T}_1$ since $\tau_{21} = \mathcal{T}_2/\mathcal{T}_1$ if only the exact Z decay products are included; second, it is insensitive to jet contamination up to $1/Q$ corrections. It is crucial that the $\Delta \tau$ correction be made experimentally on an event-by-event basis; if only the $\mathcal{T}_2/\mathcal{T}_1$ distribution is measured, then the contamination will not be a $1/Q$ correction. The subtraction can be improved further by replacing $\Delta \tau$ with $\Delta \tau' \equiv \Delta \tau(1 - \frac{1}{2}m_Z/Q)$ in the numerator of [16]; the additional factor accounts for the average fractional difference between \mathcal{T}_2 and \mathcal{T}_1 for uncorrelated soft radiation. The above logic is also appropriate for event pileup.

To compute the τ_{21} spectrum at leading order in $1/Q$, we calculate $\mathcal{T}_2/\mathcal{T}_1$ assuming only the Z decay products are included in the fat jet. We then average over the angle θ. Using the correspondence with 2-jettiness, the factorization formula for $\mathcal{T}_2/\mathcal{T}_1$ is [16]

$$\frac{1}{\sigma_0 d^2 \tau_{21}} = \frac{1}{\sigma_0} \int \frac{d \cos \theta}{2} \int d\zeta ds_1 ds_2 dk_1 dk_2 S(k_1, k_2, \{n_i\}, \mu) \times J(s_1, \mu) J(s_2, \mu) \delta \left(\tau_{21} - \frac{k_1 + k_2}{\mathcal{T}_1} - \frac{s_1 E_2 + s_2 E_1}{2E_1 E_2 \mathcal{T}_1} \right).$$ \hspace{1cm} (9)
where \(\sigma_0 \) is the tree-level cross-section given by the \(Z \) decay rate. Here \(H = H(m_Z, \mu) \), \(J(s_i, \mu) \), and \(S(k_1, k_2, \{ n_i \}, \mu) \) are respectively the \(Z \to q\bar{q} \) hard function, inclusive jet function, and 2-jettiness soft function. \(H \) and \(J \) are known at \(\mathcal{O}(\alpha_s^2) \) \[23, 24\]. For simplicity, we consider the narrow width limit, neglecting \(\mathcal{O}(1/Z/m_Z) \) corrections. We also neglect non-singular corrections at \(\mathcal{O}(\alpha_s) \). These contribute less than 5\% in the peak of the \(\tau_{21} \) distribution and can be included following \[23, 24\].

We now show that the 2-jettiness soft function \(S \) can be related to the hemisphere soft function \(S_{\text{semi}} \)—relevant for thrust and heavy jet mass—which is known perturbatively to \(\mathcal{O}(\alpha_s^2) \) \[31, 31\]. The soft function is

\[
S(k_1, k_2, n_1 \cdot n_2, \mu, \Lambda) = \frac{1}{N_c} \sum X_{\{n\}} \delta(k_1 - n_1 \cdot P_s^1) \times \delta(k_2 - n_2 \cdot P_s^2) \langle 0 | \sum_n Y_{n_1} Y_{n_2} | X_{\{n\}} \rangle \langle X_{\{n\}} | \sum_n Y_{n_1} Y_{n_2} | 0 \rangle, \tag{10}
\]

where the \(Y \)'s are light-like Wilson lines and \(P_s^{1,2} \) are the momenta of the subjets \(J_{1,2} \) in the state \(| X_{\{n\}} \rangle \). Rotational invariance implies that the subjet directions only appear in the combination \(n_1 \cdot n_2 \), and the argument \(\Lambda \equiv \Lambda_{\text{QCD}} \) is a reminder of nonperturbative corrections contained in \(S \). The hemisphere case corresponds to \(n_1 \cdot n_2 = 2 \), so that \(S_{\text{semi}}(k_L, k_R, \mu, \Lambda) = S(k_L, k_R, 2, \mu, \Lambda) \). From \[11\], the partitioning into regions of 2-subjettiness is invariant under a common rescaling of the subjet direction, \(n_1 \to \beta n_1 \) and \(n_2 \to \beta n_2 \). So \(\text{(10)} \) satisfies

\[
S(k_1, k_2, n_1 \cdot n_2, \mu, \Lambda) = \beta^2 S(\beta k_1, \beta k_2, \beta^2 n_1 \cdot n_2, \mu, \Lambda). \tag{12}
\]

Choosing

\[
\beta = \beta_0 = \sqrt{\frac{2}{n_1 \cdot n_2}} = \frac{\sqrt{m_Z^2 + Q^2 \sin^2 \theta}}{m_Z}, \tag{11}
\]

we find

\[
S(k_1, k_2, n_1 \cdot n_2, \mu, \Lambda) = \beta_0^2 S(\beta_0 k_1, \beta_0 k_2, 2, \mu, \Lambda) = S_{\text{semi}}(k_1, k_2, \mu/\beta_0, \Lambda/\beta_0), \tag{12}
\]

where we have rescaled all dimensionless arguments by \(\beta_0^{-1} \) and used the fact that \(S \) has mass dimension \(-2 \).

When \(k_i \gg \Lambda/\beta_0 \), the leading nonperturbative correction to \(S_{\text{semi}} \) is equivalent to a shift \[32, 33\] \(k_i \to k_i - \Phi/\beta_0 \), where \(\Phi \sim \Lambda \) is \(Q \)-independent. Since \(T_2 \) in \[11\] is not identical to thrust for massive hadrons, we cannot use the value found in \[24\]. All the objects in \[9\] have known renormalization group equations, so we can sum large logarithms of \(\tau_{21} \) up to \(\mathcal{O}(\Lambda_{\text{QCD}}) \) (with a Padé approximation for the small contribution of the four-loop cusp anomalous dimension). Thus for \(\tau_{21} \gg 2\Lambda/(\hat{T}_1 \beta_0) \) we have

\[
\frac{1}{\sigma_0} \frac{d\sigma}{d\tau_{21}} = \hat{T}_1^2 \int \frac{d\cos \theta}{2} H(m_Z, \mu_H) U_H(m_Z, \mu_H, \mu_J) \times \int dz_1 dz_2 ds_1 ds_2 J(s_1, \mu_J) J(s_2, \mu_J) S_T(\hat{T}_1 z_1, \frac{\mu_S}{\beta_0}, \alpha_s(\mu_S)) \tag{13}
\]

Here \(\mu_H = m_Z \), \(\mu_J = \mu_Q \sqrt{\tau_{21}} \), \(\mu_S = \mu_Q \tau_{21} \). \(\mu_Q = \hat{T}_1 \sqrt{1 + Q^2/(2m_Z^2)} \) is an average over \(\theta \) of \(\hat{T}_1 \beta_0 \) which appears in the large logarithms. For \(Q = 0 \) one has \(\mu_Q = m_Z \), while for \(Q \to \infty \) one has \(\mu_Q = m_Z/(2\sqrt{2}) \). We perform the \(s_{1,2} \) and \(z_1 \) integrations in \[13\] analytically and the \(\theta \) integral numerically.

Results for the \(\tau_{21} \) distribution for various \(Q \) are shown in Fig. 2. As anticipated, the curves rapidly approach a fixed distribution at large \(Q \).

In Fig. 3 we show a comparison to a “baseline” PYTHIA distribution, where the effects of hadronization are included but the \(Z \) width, finite cone size, and ISR/UE contamination have been turned off. For this comparison we fix \(\Phi = 700 \) MeV to match the peak of the \(Q = 0 \)
The PYTHIA distribution, which allows us to compute the distribution for all \(Q \neq 0\). In the tail of the distribution, there is excellent quantitative agreement. The accuracy of PYTHIA’s tail is somewhat artificial since it was tuned to closely related \(e^+e^-\) thrust data at \(Q = 0\). Predictions in the peak region require additional nonperturbative corrections, which could be included following [24].

In Fig. 4(a) we show the effect of a finite \(R = 1.0\) cone and jet contamination in PYTHIA, restricting our attention to jets whose mass is within a 10 GeV window of \(m_Z\). At large \(Q\), the effect of an \(R = 1.0\) cone is quite mild. While ISR/UE give a large distortion to \(\tau_2/\tau_1\), this is successfully corrected in \(\tau_{21}\) by the \(\Delta \tau\) in [8]. With the \(\Delta \tau \to \Delta \tau'\) replacement we do even better. Using \(\Delta \tau'\) for \(Q = 1000\) GeV, the PYTHIA \(\tau_{21}\) distribution with \(R = 1.0/\text{ISR/UE}\) is indistinguishable at the 2\% level from the baseline distribution shown in Fig. 3. Thus our analytic result agrees very well with the full PYTHIA distribution.

We use PYTHIA to verify that the effects we have neglected in our calculation are indeed 1/Q suppressed. In Fig. 4(b) we plot the Kolmogorov-Smirnov \(D\)-statistic between the baseline PYTHIA distribution and PYTHIA as finite cone and ISR/UE effects are reinstated, as a function of \(Q\). The \(D\)-statistic measures the maximum fractional difference between the cumulant \(\tau_{21}\) distributions. Both finite cone and ISR/UE effects fall off as 1/Q, and the corrections are \(< 5\%\) for \(Q > 400\) GeV.

In the above calculation, we neglected the finite width of the \(Z\) boson, which leads to \(O(\Gamma_Z/m_Z)\) corrections that are independent of \(Q\). As shown in Fig. 4(c), finite width has only a small effect on the baseline distribution. Including \(\Delta \tau'\) yields a larger effect, since [8] assumed that all deviations from the \(Z\) pole were due to jet contamination and not \(\Gamma_Z\). Nevertheless, we see in Fig. 4(c) that \(\Delta \tau'\) still mitigates the effect of ISR/UE. Though beyond the scope of this letter, one can directly calculate \(\tau_{21}\) with finite width effects.

It is interesting to explore analytically the \(Q\) dependence of our \(d\sigma/d\tau_{21}\) (dropping cone and ISR/UE effects and taking \(\Phi = 0\)) by considering two extreme cases. In the \(Z\) rest frame \(Q = 0\), \(d\sigma/d\tau_{21}\) is equal to thrust \(d\sigma/d\tau\). In the \(Q \to \infty\) limit, \(d\sigma/d\tau_{21}\) depends logarithmically on \(\tau_{21}\) multiplied by various functions of the helicity angle \(\theta\). Isotropically averaging over \(\theta\), these logarithms behave as

\[
\int \frac{d \cos \theta}{2} \log^n \left(\tau \sin^2 \frac{\theta}{2} \right) = \log^n \tau + O(\log^{n-2} \tau). \quad (15)
\]

Thus, up to NLL order, the \(Q \to \infty\) distribution is related to thrust by scaling by a factor of \(e = 2.718\ldots\).

\[
\left. \frac{d\sigma}{d\tau_{21}} \right|_{Q \to \infty} = \frac{1}{e} \frac{d\sigma}{d\tau} (\tau = \tau_{21}/e). \quad (16)
\]

This is demonstrated in Fig. 4(d).

Our technique of treating the jet boundary and external radiation as 1/Q corrections can be readily generalized to color neutral objects with \(N\)-prong decays, and
the known NNLL ingredients for the N-jettiness event shape [27] are a starting point for the calculation of N-subjettiness. It can also be used to compute the distribution of individual subjet masses m_i, which are directly accessible with the N-jettiness factorization theorem. Another straightforward generalization would be to incorporate massive final state quarks as in $H \rightarrow b\bar{b}$. To treat colored objects like boosted top quarks (or to calculate the QCD background from light quark and gluon jets) requires understanding the effect of final-state radiation on substructure observables, and we anticipate that expanding about the $Q \rightarrow \infty$ limit will be fruitful in that context as well.

We thank M. Baumgart and F. Tackmann for collaboration at an early stage of this work. This work was supported by the U.S. Department of Energy (DOE) under the contracts DE-FG02-94ER40818, DE-FG02-05ER-41360, DE-FG02-11ER-41741, and DE-SC003916. I.F. is supported by NSERC of Canada.

[1] J. Thaler and L.-T. Wang, JHEP 0807, 092 (2008), 0806.0023.
[2] L. G. Almeida, S. J. Lee, G. Perez, G. F. Sterman, I. Sung, and J. Virzi, Phys.Rev. D79, 074017 (2009), 0807.0234.
[3] J. Gallicchio and M. D. Schwartz, Phys.Rev.Lett. 105, 022001 (2010), 1001.5027.
[4] J. Thaler and K. Van Tilburg, JHEP 1103, 015 (2011), 1101.2268.
[5] J.-H. Kim, Phys.Rev. D83, 011502 (2011), 1011.1493.
[6] A. Hook, M. Jankowiak, and J. G. Wacker, JHEP 1204, 007 (2011), 1102.1012.
[7] M. Jankowiak and A. J. Larkoski, JHEP 1106, 057 (2011), 1104.1646.
[8] J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, Phys.Rev.Lett. 100, 242001 (2008), 0802.2470.
[9] D. E. Kaplan, K. Rehermann, M. D. Schwartz, and B. Tweedie, Phys.Rev.Lett. 101, 142001 (2008), 0806.0848.
[10] Y. Cui, Z. Han, and M. D. Schwartz, Phys.Rev. D83, 074023 (2011), 1012.2077.
[11] J. Gallicchio and M. D. Schwartz, Phys.Rev.Lett. 107, 172001 (2011), 1106.3076.
[12] A. Abdesselam et al., Eur.Phys.J. C71, 1661 (2011), 1012.5412.
[13] A. Altheimer et al., J.Phys. G39, 063001 (2012), 1201.0008.
[14] S. Chatrchyan et al. (CMS Collaboration) (2012), 1204.2488.
[15] G. Aad et al. (ATLAS Collaboration), JHEP 2012, 1 (2012), 1203.4606.
[16] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, Phys.Rev.Lett. 105, 092002 (2010), 1004.2489.
[17] J. Thaler and K. Van Tilburg, JHEP 1202, 093 (2012), 1108.2701.
[18] E. Farhi, Phys.Rev.Lett. 39, 1587 (1977).
[19] S. Catani, G. Turnock, B. Webber, and L. Trentadue, Phys.Lett. B263, 491 (1991).
[20] G. P. Korchemsky and G. Sterman, Nucl. Phys. B555, 335 (1999), hep-ph/9902341.
[21] S. Fleming, A. H. Hoang, S. Mantry, and I. W. Stewart, Phys.Rev. D77, 074010 (2008), hep-ph/0703207.
[22] M. D. Schwartz, Phys.Rev. D77, 014026 (2008), 0709.2709.
[23] T. Becher and M. D. Schwartz, JHEP 07, 034 (2008), 0803.0342.
[24] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu, and I. W. Stewart, Phys.Rev. D83, 074021 (2011), 1006.3080.
[25] T. Sjostrand, S. Mrenna, and P. Z. Skands, Comput.Phys.Commun. 178, 852 (2008), 0710.3820.
[26] M. Cacciari, G. P. Salam, and G. Soyez, JHEP 0804, 063 (2008), 0802.1189.
[27] T. T. Jouttenus, I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, Phys.Rev. D83, 114030 (2011), 1102.4344.
[28] T. Matsuiura, S. van der Marck, and W. van Neerven, Nucl.Phys. B319, 570 (1989).
[29] T. Becher and M. Neubert, Phys.Lett. B637, 251 (2006), hep-ph/0603140.
[30] R. Kelley, M. D. Schwartz, R. M. Schabinger, and H. X. Zhu, Phys.Rev. D84, 045022 (2011), 1105.3676.
[31] A. Hornig, C. Lee, I. W. Stewart, J. R. Walsh, and S. Zuheri, JHEP 1108, 054 (2011), 1105.4628.
[32] Y. L. Dokshitzer and B. Webber, Phys.Lett. B404, 321 (1997), hep-ph/9704298.
[33] C. Lee and G. F. Sterman, Phys.Rev. D75, 014022 (2007), hep-ph/0611061.
[34] A. H. Hoang and I. W. Stewart, Phys.Lett. B660, 483 (2008), 0709.3519.