Analysis of CMB foregrounds using a database for Planck

G. Giardino\(^1\), A. J. Banday\(^2\), K. Bennett\(^1\), P. Fosalba\(^1\), K. M. Górski\(^3\), W. O’Mullane\(^1\), J. Tauber\(^1\), and C. Vuerli\(^4\)

\(^1\) Astrophysics Division – Space Science Department of ESA, Noordwijk 2200 AG, The Netherlands
\(^2\) Max-Planck Institut für Astrophysik, Garching bei München, D-85741, Germany
\(^3\) ESO, Garching bei München, D-85748, Germany
\(^4\) Osservatorio Astronomico di Trieste, 34131 Trieste, Italy

Abstract.

Within the scope of the Planck IDIS (Integrated Data Information System) project we have started to develop the data model for time-ordered data and full-sky maps. The data model is part of the Data Management Component (DMC), a software system designed according to a three-tier architecture which allows complete separation between data storage and processing. The DMC is already being used for simulation activities and the modeling of some foreground components. We have ingested several Galactic surveys into the database and used the science data-access interface to process the data. The data structure for full-sky maps utilises the HEALPix tessellation of the sphere. We have been able to obtain consistent measures of the angular power spectrum of the Galactic radio continuum emission between 408 MHz and 2417 MHz.

1 Introduction

The ESA satellite Planck will survey the microwave sky with unprecedented sensitivity from 30 to 850 GHz. These observations will generate a large data set, with inhomogeneous data types, which will need to be accessible to users spread across many institutes in Europe and the US. How well it will be possible to mine this wealth of information depends critically on the proper design of the Data Management Component (DMC); that is on the efficiency and user-friendliness of the suite of tools that will be used to store, retrieve, process and query the data.

The IDIS project is a collaboration among the two Planck Data Processing Centres – in particular OAT of Trieste, the Max-Planck Institut für Astrophysik and the Astrophysics Division of ESTEC. Within IDIS, we have started to develop the Planck DMC according to a 3-tier architecture.
2 A 3-tier design for the Planck DMC

The two main logical partitions of data management are the data storage system and its tools and the processing system and its tools. The problem with this type of partitioning is that processing and storage are not shielded from one another: changing storage system implies making changes to some parts of the processing system (as illustrated in Fig. 1). Moreover anyone concerned with the development of the processing techniques has to be aware of storage details, such as whether data are stored in files or in a database system. For a large project, involving hundreds of people (scientists and software engineers) and lasting for over a decade, this kind of approach is inefficient and can lead to a waste of resources.

In a 3-tier design an additional layer is inserted between the data storage and the processing layer. This is the data layer and in our case this is an abstract layer. All the processing is done using abstract objects or interfaces. Manipulating abstract objects rather than real objects allows the user to develop programs which are more closely related to the way one thinks about a problem rather than the way a computer operates [2]. The extra tier keeps data and processing completely separate from each other: changing the data storage system does not have any implications for the processing (Fig. 2). This means, for instance, that if technology evolves and a more efficient storage system becomes available, the processing pipeline can be switched to access the data from the new storage system, without any disruption. In addition, thanks to this extra layer, scientists can develop the processing algorithms without having to worry about whether the data will be stored in files or in databases.

The concept is very simple, but implementing this design requires extra thought and some extra work in the initial phases of the project. However,
Fig. 2. In a 3-tier architecture Storage System and Processing System are decoupled from each other: changes to the storage do not affect the processing pipelines. One can also envisage different storage systems being used in parallel.

good design makes all the difference between allowing users (the scientists) to efficiently mine the data or having them spending hours debugging code.

We have started to develop the data access interfaces and the data structures for Planck time-ordered data and Planck full-sky maps. The latter uses the HEALPix tessellation of the sphere. Implementation of the system is done using an object oriented approach and the Java programming language, which offers a natural way of implementing abstract classes and interfaces. To implement the database we decided to use an object oriented database (Objectivity). The DMC is already being used for Planck simulation activities and the analysis of some CMB foregrounds.

3 The angular power spectrum of Galactic radio emission

We have used this data management component and the database to measure the angular power spectrum of Galactic radio emission using some of the existing radio surveys. Galactic radio emission is a foreground signal when observing the CMB. The knowledge of the power spectra of the foreground components is important in order to quantify the level of contamination of the CMB observations at the different angular scales. Improved modeling of the foregrounds also allows more realistic simulations of the mission to be performed.
The Haslam survey at 408 MHz, the Reich & Reich survey at 1420 MHz, and the Jonas survey at 2326 MHz were fed into the database. The maps were ingested raw, as they are publicly available. No de-striping process was applied to the maps. The point sources were removed by median filtering. After point source removal, we could swiftly obtain a measure of the angular power spectrum of the diffuse emission at the different frequencies of the three maps.

We model these spectra with a power law of the form $C_l \propto l^{-\alpha}$ (see Giardino et al., in preparation – for more details about the analysis performed). At high Galactic latitudes ($|b| > 20^\circ$) we derived a spectral index which is consistent for all the 3 surveys and has an average value of $\alpha = 3.0 \pm 0.2$. The angular power spectra derived at high galactic latitude are reported in Fig. 3 for the Haslam map, in Fig. 4 for the Reich & Reich map and in Fig. 5 for the Jonas map. The best-fit power law spectra for each case are also shown. The derived spectral indexes are summarized in Table 1.

| Survey          | $\nu$[MHz] | $\alpha$ | $\sigma_\alpha$ | $l$ range |
|-----------------|------------|----------|-----------------|-----------|
| Haslam          | 408        | 2.94     | 0.09            | 2–70      |
| Reich & Reich   | 1420       | 3.15     | 0.14            | 2–70      |
| Jonas           | 2326       | 2.92     | 0.07            | 2–100     |

The same analysis has also been applied to the Parkes polarimetric survey of the Galactic Plane at 2417 MHz in order to derive the angular power spectrum of the polarised emission. From the analysis of the raw data of the polarised component we have obtained a spectral index of $\alpha = 1.9 \pm 0.3$ in the multipole range $l \in [100, 500]$. After median filtering the spectral index does not change significantly in the $l$-range 100 – 300, while the spectral index of the spectrum of the total intensity does (see Fig. 6). This is expected since the contribution of point sources to the polarised emission appears to be smaller than the point source contribution to the total intensity. Therefore, at 2.4 GHz and for regions at low Galactic latitudes, the angular power spectrum of polarised diffuse emission is significantly flatter than the angular power spectrum of total diffuse emission.

\footnote{\[l \leq 300\] is the multipole range not affected by the median filter suppression of the high spatial-frequency signal}
Fig. 3. The angular power spectrum of the Haslam survey at 408 MHz, for regions of the sky with $|b| > 20^\circ$. Points sources were removed by median filtering. The aliasing noise introduced by the Galactic plane cutoff at $20^\circ$ dominates over the steeply falling signal at $l > 100$.

Fig. 4. The angular power spectrum of the Reich & Reich survey at 1420 MHz, for regions of the sky with $|b| > 20^\circ$ (as per Fig. 3)
Fig. 5. The angular power spectrum of the Jonas survey at 2326 MHz, for regions of the sky with $|b| > 20^\circ$ (as per Fig. 3).

Fig. 6. The angular power spectrum of the Parkes survey of the southern Galactic plane at 2417 MHz. The angular power spectrum of the total emission and the polarized fraction are shown, before and after median filtering (solid and dashed line respectively).
4 Conclusions

This initial version of the Planck DMC allows maps from large sky surveys to be handled efficiently and it can be used to perform scientific data analysis. From the point of view of the client (scientist) who is interested in data processing:

- the tool with its 3-tier design provides a convenient way to access the data. It allows the user to construct and handle “scientific objects” (such as maps or spectra) without having to understand the technicalities of data storage (formatting, optimization issues)
- switching from a storage implementation which uses a file system on disk (e.g. a set of FITS files) or an object oriented database on a server is effortless
- the use of a data structure such as HEALPix has proved to be a crucial factor for the speed of operations involving Spherical Harmonic decomposition

From the point of view of the software engineer who develops the data storage system:

- a database offers a way of handling and managing the data which is more powerful than a simple file system
- from benchmarking tests, the use of an object oriented database in our case proved to be preferable to a relational database: for speed of data access and the option of storing objects of any given complexity (that is objects which refer to other objects, which in turn refer to other objects and so forth)

Using this version of the Planck DMC we have derived the spectral indices of radio diffuse emission from the available large-sky surveys. At high Galactic latitudes these are consistent with the spectral indices derived previously from the Haslam map and the Reich & Reich map ([7]; [8]; [9]), but are more precise (Giardino et al., in preparation).

References

1. Bennett K., Pasian F., Sygnet F. et al., 2000, Advanced Global Communications Technologies for Astronomy, Proc. of SPIE Vol. 4011, 2
2. Gamma E., Helm R., Johnson R., Vlissides J., 1995, Design Patterns, Addison-Wesley
3. Haslam C. G. T., Salter C. J., Stoffel H. et al. 1982, AA Suppl.Ser. 47, 1
4. Reich P., Reich W. 1986, AA Suppl.Ser. 63, 205
5. Jonas J. L., Baart E. E., Nicolson G. D. 1998, MNRAS 297, 977
6. Duncan A. R., Haynes R. F., Jones K. L. et al. 1997, MNRAS 291, 279
7. Tegmark M., Efstathiou G. 1996, MNRAS 281, 1297
8. Bouchet F., Gispert R., Puget J. 1996, Unveiling the Cosmic Infrared Background, ed. E. Dwek (Baltimore:AIP)
9. Bouchet F. R., Gispert R. 1999, New Astronomy 4, 443