INTRODUCTION

Noonan syndrome is still a challenging diagnosis as well as the diagnosis of nonimmune hydrops fetalis mainly because of extensive differential diagnosis. The success of identifying a cause depends on the thoroughness of efforts to establish a diagnosis. Therefore, we developed the so-called *hydrops panel*, a virtual gene panel diagnostic tool for quick diagnosis of NIHF. The panel includes 119 genes which are associated with NIHF (Table 1). In a second step, a complete analysis can be performed by whole-exome sequencing (WES). This facilitates the diagnosis and thus the management of the underlying disease.

Noonan syndrome (NS) is an autosomal dominant disorder with a prevalence of 1:1,000–2,500 live births (Tartaglia, Gelb, & Zenker, 2011). It is characterized by various major and minor anomalies such as congenital heart defects, facial anomalies, and short stature.
PTPN11 (OMIM#176876; Protein–tyrosine phosphatase nonreceptor-type 11) mutations are found in up to 35% of all cases of sporadic juvenile myelomonocytic leukemia cases, 5%–10% of all cases of childhood myelodysplastic syndrome, 7% of all cases of B-cell precursor acute lymphoblastic leukemia (AML) and some solid tumors (Kratz, Niemeyer, & Castleberry, 2005). Germline mutations in the PTPN11 gene cause about half of all cases of NS (Araki et al., 2009). The mutation c.218C>T (p.Thr73Ile) revealed in this case is a germline mutation, but it can also be found as a somatic one in sporadic juvenile myelomonocytic leukemia (Kratz et al., 2005).

The PTPN11 gene encodes for the cytoplasmatic tyrosine phosphatase named Src homology region 2-domain-containing phosphatase-2 (SHP-2) which plays an important role in mesodermal patterning (Tang, Freeman, O’Reilly, Neel, & Sokol, 1995), for example, limb development (Saxton et al., 1997), hematopoietic cell differentiation (Qu et al., 1997), and semilunar valvulogenesis (Chen et al., 2000). SHP2 contains different domains named N-SH2, C-SH2, and PTP (Keilhack, David, McGregor, Cantley, & Neel, 2005). The mutation noted in this child was in the N-SH2 domain. The N-SH2 domain acts as a molecular switch, activating and deactivating SHP-2. By binding the PTP domain, a stable intermolecular interaction deactivates SHP2 (auto-inhibition; Martinelli, 2012). The c.218C>T (p.Thr73Ile) mutation causes a conformational change in the interaction region between the N-SH2 and the PTP domain, leading to a disruption of N-SH2 and PTP with a consecutive persistent activation of SHP2 which acts upstream of RAS (Rat sarcoma, proto-oncogene) as gain of function (Chan & Feng, 2007).

Until now a genotype–phenotype correlation in Noonan syndrome could not be established (Zenker et al., 2004). In Noonan syndrome patients all causative genes encode signaling molecules within the RAS signaling pathway, which is a major contributor to carcinogenesis (Kratz, Rapisuwon, Reed, Hasle, & Rosenberg, 2011).

Gen	Transcript	OMIM	DISEASE
ALG1	ENST00000262374.5	*605907	#608540 CONGENITAL DISORDER OF GLYCOSYLATION, TYPE Ik; CDG1K
AP3B1	ENST00000255194.6	*603401	#608233 HERMANSKY–PUDLAK SYNDROME 2; HPS2
ARSA	ENST00000216124.5	*607574	#250100. METACHROMATIC LEUKODYSTROPHY; MLD
ARSB	ENST00000264914.4	*611542	#253200 MUCOPOLYSACCHARIDOSIS TYPE VI; MPS6
ASAH1	ENST00000262097.6	*613468	#228000 FABER LIPOGRANULOMATOSIS; FRBL
BLOC1S3	ENST00000433642.2	*609762	#614077 HERMANSKY–PUDLAK SYNDROME 8; HPS8
BRAF	ENST00000288602.6	*164757	#613706 Noonan
CALCRL	ENST00000409998.1	*114190	New disease; Duncan et al. J.Exp.Med 2018 Vol.215 No.9
CBL	ENST00000264033.4	*165360	#613563 NOONAN SYNDROME-LIKE DISORDER WITH OR WITHOUT JUVENILE MYELOMONOCYTIC LEUKEMIA; NSLL
CCB1E	ENST00000439986.4	*612753	#235510 HENNEKAM LYMPHANGIETASIA-LYMPHEDEMA SYNDROME 1; HKLS1
CLN3	ENST00000568224.1	*607042	#204200 CERIOD LIPOFUSCINOSIS, NEURONAL, 3; CLN3
CLN5	ENST00000377453.3	*608102	#256731 CERIOD LIPOFUSCINOSIS, NEURONAL, 5; CLN5
CLN6	ENST00000249806.5	*606725	#601780 CERIOD LIPOFUSCINOSIS, NEURONAL, 6; CLN6
			#204300 CERIOD LIPOFUSCINOSIS, NEURONAL, 4A, AUTOSOMAL RECESSIVE; CLN4A
CLN8	ENST00000331222.4	*607837	#600143 CERIOD LIPOFUSCINOSIS, NEURONAL, 8; CLN8
			#610003 CERIOD LIPOFUSCINOSIS, NEURONAL, 8, NORTHERN EPILEPSY VARIANT
CTNS	ENST00000246640.3	*606272	#219800 CYSTINOSIS, NPHIOPATHIC; CTNS;
CTSA	ENST00000372484.3	*613111	#256540 GALACTOSIALIDOSIS; GSL
CTSD	ENST00000236671.2	*116840	#610127. CERIOD LIPOFUSCINOSIS, NEURONAL, 10; CLN10
CTSK	ENST00000271651.3	*601105	#265800 PYCNODYSOSTOSIS
DHCRI	ENST00000355527.3	*602858	#270400 SMITH–LEMLI–OPITZ SYNDROME; SLOS
DTNBPI	ENST00000338950.5	*607145	#614076 HERMANSKY–PUDLAK SYNDROME 7; HPS7
EBP	ENST00000495186.1	*300205	#300960 MEND SYNDROME; MEND
			#302960 CHONDRODYSPLASIA PUNCTATA 2, X-LINKED DOMINANT; CDPX2

(Continues)
Gen	Transcript	OMIM	DISEASE
EPHB4	ENST00000358173.3 *600011	#617300 LYMPHATIC MALFORMATION 7; LMPHM7	
FAT4	ENST00000394329.3 *612411	#615546 VAN MALDERGEM SYNDROME 2; VMLDS2; #616006 HENNEKAM LYMPHANGIETASIA–LYMPHEDEMA SYNDROME 2; HKLLS2	
FLT4	ENST00000261937.6 *136352	#602089 HEMANGIOMA, CAPILLARY INFANTILE; #153100 LYMPHEDEMA, HEREDITARY, IA; LMPH1A	
FOXC2	ENST00000320354.4 *602402	#612222 HENNEKAM LYMPANGIECTASIA–LYMPHEDEMA SYNDROME 2; HKLLS2	
FOXP3	ENST00000376207.4 *300292	#612411 VAN MALDERGEM SYNDROME 2; VMLDS2; #615546 HENNEKAM LYMPANGIECTASIA–LYMPHEDEMA SYNDROME 2; HKLLS2	
FUCA1	ENST00000374479.3 *606829	#230200 GAUCHER DISEASE, TYPE I; #230200 GAUCHER DISEASE, TYPE II; #608013 GAUCHER DISEASE, PERINATAL LETHAL	
GAA	ENST00000302262.3 *606829	#232300 GLYCOGEN STORAGE DISEASE II; GSD2	
GALC	ENST00000261304.2 *606890	#230000 FUCOSIDOSIS	
GALNS	ENST00000394329.3 *606890	#230000 FUCOSIDOSIS; #232300 GLYCOGEN STORAGE DISEASE II; GSD2	
GBA	ENST0000032037247.5 *606463	#230500 GM1-GANGLIOSIDOSIS, TYPE I; #230500 GM1-GANGLIOSIDOSIS, TYPE II; #230500 GM1-GANGLIOSIDOSIS, TYPE III; #253010 MUCOPOLYSACCHARIDOSIS, TYPE IVB; MPS4B	
GBE1	ENST00000429644.2 *607839	#232500 GLYCOGEN STORAGE DISEASE IV; GSD4;	
GLA	ENST00000218516.3 *300644	#301500 FABRY DISEASE	
GLB1	ENST00000307363.5 *61458	#230500 GM1-GANGLIOSIDOSIS, TYPE I; #230600 GM1-GANGLIOSIDOSIS, TYPE II; #230650 GM1-GANGLIOSIDOSIS, TYPE III; #253010 MUCOPOLYSACCHARIDOSIS, TYPE IVB; MPS4B	
GM2A	ENST000000357164.3 *613109	#272750 GM2-GANGLIOSIDOSIS, AB VARIANT	
GNPTAB	ENST00000299314.7 *607840	#252500 MUCOLIPIDOSIS II ALPHA/BETA; #252600 MUCOLIPIDOSIS III ALPHA/BETA	
GNPTG	ENST000002004659.4 *607388	#252500 MUCOLIPIDOSIS III GAMMA	
GNS	ENST000003025145.3 *607664	#252940 MUCOPOLYSACCHARIDOSIS, TYPE IIIID; MPS3D	
GUSB	ENST00000304895.4 *611499	#253220 MUCOPOLYSACCHARIDOSIS, TYPE VII; MPS7	
HADHA	ENST00000380649.3 *600890	#609015 LONG-CHAIN 3-HYDROXYACYL-CoA DEHYDROGENASE DEFICIENCY; MTPD	
HBA1	ENST000003028985.1 *614800	#301040 ALPHA-THALASSEMA/MENTAL RETARDATION SYNDROME, X-LINKED; ATRX	
HBA2	ENST00000125195.6 *141850	#236750 HYDROPS FETALIS, NONIMMUNE; NIHF	
HEC	ENST00000566304.5 *606890	#272800 TAY–SACHS DISEASE	
HEXP	ENST00000261416.11 *60873	#268800 SANDHOFF DISEASE	
HFE	ENST00000357618.9 *613609	#235200 HEMOCHROMATOSIS, TYPE I	
HGSNAT	ENST00000379644.8 *610453	#252930 MPS IIIC; SANFILIPPO SYNDROME C; ACETYLCOA:ALPHA-GLUCOSAMINE N-ACETYLTANSFERASE DEFICIENCY	
HPS1	ENST00000325103.6 *604982	#203300 HERMANSKY–PUDLAK SYNDROME 1; HPS1	
HPS3	ENST00000269051.2 *606118	#614072 HERMANSKY–PUDLAK SYNDROME 3; HPS3	
HPS4	ENST00000398214.5 *606682	#614073 HERMANSKY–PUDLAK SYNDROME 4; HPS4	
HPS5	ENST00000396253.3 *607524	#614074 HERMANSKY–PUDLAK SYNDROME 5; HPS5	
HPS6	ENST00000398214.5 *607522	#614075 HERMANSKY–PUDLAK SYNDROME 6; HPS6	
HRAS	ENST00000417302.1 *190020	#218040 COSTELLO SYNDROME; CSTLO	
HYAL1	ENST00000395144.6 *607071	#601492 MUCOPOLYSACCHARIDOSIS, TYPE IX; MPS9	
IDS	ENST00000340855.10 *300823	#309990 MPS II; HUNTER SYNDROME; IDURONATE 2-SULFATASE DEFICIENCY; IDS DEFICIENCY; SULFOIDURONATE SULFATASE DEFICIENCY; SIDS DEFICIENCY	

(Continues)
Gen	Transcript	OMIM	DISEASE
IDUA	ENST0000024793.8	*252800	#607014 MPS1-H; HURLER SYNDROME
ITGA9	ENST00000264741.5	*603963	Ma G.C. et al. Prenat Diagn. 2008 Nov;28(11):1057–63. https://doi.org/10.1002/pd.2130.
KIF11	ENST00000260731.3	*148760	#152950 MICROCEPHALY WITH OR WITHOUT CHORIORETINOPATHY, LYMPHEDEMA, OR MENTAL RETARDATION; MCLMR
KLF1	ENST00000264834.4	*600599	#613673 ANEMIA, CONGENITAL DYSERYTHROPOIETIC, TYPE IV; CDAN4
KIT	ENST0000031936.3	*190070	#609942 NOONAN SYNDROME 3; NS3
LIPA	ENST00000336233.9	*613497	#278000 LYSOSOMAL ACID LIPASE DEFICIENCY
LMOD3	ENST00000420581.2	*616112	#616165 NOONAN SYNDROME 10; NEM10
LZTR1	ENST00000371939.8	*600574	#616564 NOONAN SYNDROME 10; NS10
MAN1B1	ENST00000371589.8	*604346	#614202 MENTAL RETARDATION, AUTOSOMAL RECESSIVE 15
MAN2B1	ENST00000456935.6	*609458	#248500 MANNOSIDOSIS, ALPHA B, LYSOSOMAL
MANBA	ENST00000226578.8	*609489	#248510 MANNOSIDOSIS, BETA A, LYSOSOMAL
MAP2K2	ENST00000262948.5	*601263	#115150 CARDIOFACIOCUTANEOUS SYNDROME 1; CFC1
MAP2K1	ENST00000307102.5	*176872	#615279 CARDIOFACIOCUTANEOUS SYNDROME 3; CFC3
MCOLN1	ENST00000264079.10	*605248	#252650 MUCOLIPIDOSIS IV
MFS6	ENST00000296468.3	*611124	#169400 PELGER–HUET ANOMALY
NAGA	ENST00000396398.7	*104170	#609241 SCHINDLER DISEASE, TYPE I
NAGLU	ENST00000225927.6	*252920	#609701 MPS IIIB; SANFILIPPO SYNDROME B; N-ACETYL-ALPHA-D-GLUCOSAMINIDASE DEFICIENCY; NAGLU DEFICIENCY
NEU1	ENST00000375631.4	*608272	#256550 NEUROMUSCULAR DYSTROPHY
NF1	ENST00000358273.4	*613113	#162200 NEUROFIBROMATOSIS, TYPE I; NF1
NPC1	ENST00000269228.9	*607623	#257220 NIEMANN-PICK DISEASE, TYPE C
NPC2	ENST00000555619.5	*601015	#607625 NIEMANN-PICK DISEASE, TYPE C
NRAS	ENST00000365935.4	*164790	#613,224 NOONAN SYNDROME 6; NS6
PEX1	ENST00000248633.8	*602136	#214100 PEROXISOME BIOGENESIS DISORDER 1A (ZELLWEGER)
PEX10	ENST00000288774.7	*602859	#614870 PEROXISOME BIOGENESIS DISORDER 6A (ZELLWEGER)
PEX11B	ENST00000369306.7	*603867	#614871 PEROXISOME BIOGENESIS DISORDER 6B
PEX12	ENST00000225873	*601789	#614883 PEROXISOME BIOGENESIS DISORDER 11A (ZELLWEGER)
PEX13	ENST00000295030.5	*601791	#614885 PEROXISOME BIOGENESIS DISORDER 11B
PEX14	ENST00000356607.8	*601791	#614886 PEROXISOME BIOGENESIS DISORDER 12A (ZELLWEGER)
PEX16	ENST00000241041.7	*603360	#614887 PEROXISOME BIOGENESIS DISORDER 12B (ZELLWEGER)
PEX19	ENST00000368072.9	*602797	#614888 PEROXISOME BIOGENESIS DISORDER 13A (ZELLWEGER)
PEX2	ENST00000357039.9	*170993	#614889 PEROXISOME BIOGENESIS DISORDER 13B (ZELLWEGER)
PEX26	ENST00000329627.11	*608666	#614890 PEROXISOME BIOGENESIS DISORDER 14A (ZELLWEGER)
Gen	Transcript	OMIM	DISEASE
-----	------------	--------	---
PEX3	ENST00000367591.4	*603164	#614882 PEROXISOME BIOGENESIS DISORDER 10A (ZELLWEGGER) #617370 PEROXISOME BIOGENESIS DISORDER 10B
PEX5	ENST00000412720.6	*600414	#616716 RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 5 #202370 PEROXISOME BIOGENESIS DISORDER 2B #214110 PEROXISOME BIOGENESIS DISORDER 2A (ZELLWEGGER)
PEX6	ENST00000304611.12	*601498	#614863 PEROXISOME BIOGENESIS DISORDER 4B #614862 PEROXISOME BIOGENESIS DISORDER 4A (ZELLWEGGER)
PEX7	ENST00000318471.4	*601757	#215100 RHIZOMELIC CHONDRODYSPLASIA PUNCTATA, TYPE 1; #614879 PEROXISOME BIOGENESIS DISORDER 9B
PIEZO1	ENST00000301015.9	*611184	#194380 DEHYDRATED HEREDITARY STOMATOCYTOSIS 1 WITH OR WITHOUT PSEUDOHYPERKALEMIA AND/OR PERINATAL EDEMA; DHS1 #616843 LYMPHEDEMA, HEREDITARY, III; LMPH3
PIK3CA	ENST00000263967.3	*171834	#602501 MEGALENCEPHALY-CAPILLARY MALFORMATION-POLYMICROGYRIA SYNDROME; MCAP
PMM2	ENST00000268261.4	*601785	#212065 CONGENITAL DISORDER OF GLYCOSYLATION, TYPE Ia; CDG1A
PPT1	ENST00000433473.3	*600722	#256730 CEROID LIPOFUSCINOSIS, NEURONAL, 1
PSAP	ENST00000394936.7	*176801	#610539 GAUCHER DISEASE, ATYPICAL, DUE TO Saposin C DEFICIENCY #249900 METACHROMATIC LEUKODYSTROPHY DUE TO Saposin B DEFICIENCY #611721 COMBINED Saposin DEFICIENCY
PTPN11	ENST00000351677.2	*176876	#163950 NOONAN SYNDROME 1; NS1; # 151,100. LEOPARD SYNDROME 1; LPRD1
RAF1	ENST00000251849.4	*164760	#611553 NOONAN SYNDROME 5; NS5
RASA1	ENST00000456692.2	*139150	#608354. CAPILLARY MALFORMATION-ARTERIOVENOUS MALFORMATION; CMAVM # 608,355 PARKES WEBER SYNDROME; PKWS
RIT1	ENST00000368323.3	*609591	#615355 NOONAN SYNDROME 8; NS8
RPL15	ENST00000307839.5	*604174	#615550 DIAMOND-BLACKFAN ANEMIA 12; DBA12
RYR1	ENST00000359596.3	*180901	Lethal multiple pterygium syndrome; Kariminejad et al. BMC Musculoskeletal Disorders (2016) 17:109
SGSH	ENST00000326317.10	*605270	#252900 MPS IIIA; SANFILIPPO SYNDROME A; HEPARAN SULFATE SULFATASE DEFICIENCY; SULFAMIDASE DEFICIENCY
SHOC2	ENST00000369452.4	*602775	#607721 NOONAN SYNDROME-LIKE DISORDER WITH LOOSE ANAGEN HAIR 1; NSLH1
SLC17A5	ENST00000355773.5	*604322	#604369 SALLA DISEASE #269920 INFANTILE SIALIC ACID STORAGE DISEASE
SLC22A5	ENST00000435065.6	*603377	#212140 CARNITINE DEFICIENCY, SYSTEMIC PRIMARY
SMPD1	ENST00000342245.8	*607608	#257200 NIEMANN-PICK DISEASE, TYPE A #607616 NIEMANN-PICK DISEASE, TYPE B
SOS1	ENST00000426016.1	*182530	#610733 NOONAN SYNDROME 4; NS4
SOS2	ENST00000216373.5	*601247	#616559 NOONAN SYNDROME 9; NS9
SOX18	ENST00000340356.7	*601618	#607823 HYPOTRICHOSIS-LYMPHEDEMA-TELANGIECTASIA SYNDROME; HLTS #137940 HYPOTRICHOSIS-LYMPHEDEMA-TELANGIECTASIA-RENAL DEFECT SYNDROME; HLTRS
SPRED1	ENST00000299084.4	*609291	#611431 LEGIUS SYNDROME; LGSS
SUMF1	ENST00000272964.9	*607939	#272200 MULTIPLE SULFATASE DEFICIENCY
TALDO	ENST00000319006.3	*602063	#606003 TRANSALDOLASE DEFICIENCY
THSD1	ENST00000349258.4	*616821	#236750 HYDROPS FETALIS, NONIMMUNE; NIHF
TPP1	ENST00000299427.10	*607998	#204500 CEROID LIPOFUSCINOSIS, NEURONAL, 2
UROS	ENST00000368797.8	*606938	#263700 PORPHYRIA, CONGENITAL ERYTHROPOIETIC
VEGFC	ENST00000280193.2	*601528	#615907 LYMPHEDEMA, HEREDITARY, ID; LMPH1D
CASE REPORT

This female premature infant was delivered via emergency cesarean at 30 + 1 weeks GA (weight 1,400 g (P50), first measured on day 3 of life, length 40 cm (P50), head circumference 28.5 cm (P58), as the result of rapidly developing NIHF (first diagnosed at 30 + 0 weeks GA) to a healthy mother with no consanguinity in the family history. In former prenatal screenings, there had been the suspicion of a congenital cardiac defect but no signs of increased nuchal translucency, polyhydramnios or short femur, otherwise typical of Noonan syndrome.

The Apgar score was 1/3/4, umbilical artery pH was 7.33. The patient was born with NIHF, hypovolemic shock, severe anemia (hemoglobin 7.7 g/dl), severe thrombocytopenia (8/ nl), and disseminated intravascular coagulation. At immediate drainage of both pleural and the peritoneal cavities, bloody effusions were observed. After stabilization with fluid and catecholamine rescue, the patient was transferred to our NICU. Physical examination revealed muscular hypotonia and a distinct short and webbed neck. Unilateral infarction and bilateral intraventricular hemorrhage grade II was detected on ultrasound. Echocardiography confirmed a double–outlet right ventricle in combination with an atrial septum defect. During the first few weeks the infant was mechanically ventilated and had bilateral chest tube drainage for chylothoraces. We excluded bacterial or viral infection, coagulation disorders and alloimmune, and familial thrombocytopenia, respectively. Genetic testing by the hydrops panel especially developed for NIHF detected a de novo gain of function mutation in exon 3 of the PTPN11 gene (c.218C>T; p.Thr73Ile). A mutation was not detected in parental blood. Research of literature revealed only few cases of the same mutation – our case is the only one presenting as NIHF (Table 2).

CLINICAL COURSE

The infant was mechanically ventilated until the day of life 22. Because of a hypertrophic cardiomyopathy, propranolol therapy was started. A persistent ductus arteriosus was stented to keep it open.

Due to recurrent pleural effusions chest tubes were placed repeatedly until the age of 197 days. The infant developed a (sub-) ileus. A laparoscopy revealed a giant Meckel's diverticulum, but no stenosis.

Since birth, the infant showed persistent severe thrombocytopenia requiring weekly platelet transfusions up to the present (Figure 1). So far no blasts that suggest a transient myeloproliferation syndrome or juvenile myelomonocytic leukemia (JMML) have been detected in peripheral blood smear. Bone marrow aspiration was declined by the parents as well as further therapy for example 6-mercaptopurine mentioned by Strullu et al. (2014). The monocyte population is currently 18% in the blood count, slightly progressive over the course, but has notably declined compared to a maximum of 37% at birth.

The infant was discharged on day 264 after birth without additional oxygen supply.

CONCLUSION

Although a variety of prenatal presentations of Noonan syndrome and NIHF have been reported in literature, this is the first description of NIHF due to the mutation identified in our patient with the c.218C>T (p.Thr73Ile) variant. By mapping out the genetic lesion that occurs in this patient, a hematological risk stratification in NS can be performed. The c.218C>T (p.Thr73Ile) is already described in the literature with comparable hematological neonatal processes but so far without hydrops (Kratz et al., 2005). Strullu

Author	Gestational age	Heart defect	Thrombocytopenia	NIHF	Outcome	Myeloproliferative disorder	Year
Christensen, Yaish, Leon, Sola-Visner, and Agrawal (2013)	38	None	Yes	None	Alive	None	2013
Nunes et al. (2012)	39	Yes	Yes	None	Alive	None	2012
Bufalino, Carrera, Carlos, and Coletta (2010)	n.d.	Yes	n.d.	None	Alive	n.d.	2010
Kratz et al. (2005)	n.d.	n.d.	n.d.	n.d.	n.d.	MPD (2), JMML none	2005
Kosaki, Suzuki, and Muroya (2002)	39	None	n.d.	None	Alive	n.d.	2002
Musante et al. (2003)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2002
Tartaglia et al. (2002)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	2002
Our case	30 + 1	Yes	Yes	Alive	None	2018	

Abbreviations: JMML, Juvenile Myelomonocytic Leukemia; MPD, Myeloproliferative Disorder; n.d., not denoted.
et al. published four comparable patients, ranging in age from birth to the 90th day of life. The follow-up time is given as 3.4 years. The c.218C>T (p.Thr73Ile) is thereby associated with solid tumors (e.g., neuroblastoma) and amegakaryocytosis (Strullu et al., 2014).

In the literature, a case reported by Shenoy et al. with myelodysplastic syndrome and transformation into AML with consecutive stem cell transplantation can also be found (Shenoy et al., 2019).

Patients reporting with this germline mutation partly have a heart defect; all show persistent severe thrombocytopenia and a few juvenile myelomonocytic leukemia. Patients with a c.218C>T (p.Thr73Ile) mutation are at higher risk of developing myeloproliferative diseases/JMML during the first 5 years of life (Ganapathi, Schafernak, & Rao, 2015). The clinical course in this early state is milder and more often associated with spontaneous remission than in later years of age (Strullu et al., 2014).

The mechanism by which thrombocytopenia develops in patients with Noonan Syndrome is not entirely understood (Zenker et al., 2004).

In patients with severe congenital hemorrhagic disorder, persistent thrombocytopenia and congenital heart defect, the medical history and a careful clinical examination can lead to the diagnosis of NS. RASopathies are probably overlooked in cases of early lethality or in patients hospitalized in neonatal or pediatric intensive care units (Jhang, 2016).

The diagnosis of our patient was rapidly confirmed by the hydrops panel.

CONFLICT OF INTEREST
The authors have no conflict of interest to declare.

ORCID
Mascha Schönfeld https://orcid.org/0000-0003-1985-4818
Catharina Whybra https://orcid.org/0000-0003-1679-9112

REFERENCES
Araki, T., Chan, G., Newbigging, S., Morikawa, L., Bronson, R. T., & Neel, B. G. (2009). Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4736–4741. https://doi.org/10.1073/pnas.0810053106
Bufalino, A., Carrera, M., Carlos, R., & Coletta, R. D. (2010). Giant cell lesions in Noonan syndrome: Case report and review of the literature. Head and Neck Pathology, 4(2), 174–177. https://doi.org/10.1007/s12105-010-0178-2
Chan, R., & Feng, G.-S. (2007). PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 109(3), 862–867.
Chen, B., Bronson, R. T., Klaman, L. D., Hampton, T. G., Wang, J.-F., Green, P. J., … Neel, B. G. (2000). Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nature Genetics, 24(3), 296–299. https://doi.org/10.1038/73528
Christensen, R. D., Yaish, H. M., Leon, E. L., Sola-Visner, M. C., & Agrawal, P. B. (2013). A de novo T73I mutation in PTPN11 in a neonate with severe and prolonged congenital thrombocytopenia and Noonan syndrome. Neonatology, 104(1), 1–5. https://doi.org/10.1159/000346375
Ganapathi, K. A., Schafernak, K. T., Rao, V. K., & Calvo, K. R. (2015). Pediatric myelodysplastic/myeloproliferative neoplasms and related diseases. Journal of Hematopathology, 8, 159. https://doi.org/10.1007/s12308-015-0250-7
Jhang, W. K., Choi, J.-H., Lee, B.H., Kim, G.-H., & Yoo, H.-W. (2016). Cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies. Pediatric Cardiology, 37(8), 1539–1547. https://doi.org/10.1007/s00246-016-1468-6
Keilhack, H., David, F. S., McGregor, M., Cantley, L. C., & Neel, B. G. (2005). Diverse biochemical properties of Shp2 mutants. Implications for disease phenotypes. Journal of Biological Chemistry, 280(35), 30984–30993. https://doi.org/10.1074/jbc.M504699200
Kosaki, K., Suzuki, T., Muroya, K., Hasegawa, T., Sato, S., Matsuo, N., … Ogata, T. (2002). PTPN11 (protein-tyrosine phosphatase, non-receptor-type 11) mutations in seven Japanese patients with Noonan syndrome. Journal of Clinical Endocrinology and Metabolism, 87(8), 3529–3533. https://doi.org/10.1210/jcem.87.8.8694

FIGURE 1 Platelets/nl (y-axis) and day of life (x-axis); peaks after transfusion
Kratz, C. P., Niemeyer, C. M., Castleberry, R. P., Cetin, M., Bergsträsser, E., Emanuel, P. D., … Stary, J. (2005). The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. *Blood*, 106(6), 2183–2185. https://doi.org/10.1182/blood-2005-02-0531

Kratz, C. P., Rapisuwon, S., Reed, H., Hasle, H., & Rosenberg, P. S. (2011). Cancer in Noonan, Costello, Cardiofaciocutaneous and LEOPARD syndromes. *The American Journal of Medical Genetics, 157*(2), 83–89. https://doi.org/10.1002/ajmg.c.30300

Martinelli, S., Nardozza, A. P., Delle Vigne, S., Sabetta, G., Torreri, P., Bocchinfuso, G., … Tartaglia, M. (2012). Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome. *Journal of Biological Chemistry*, 287(32), 27066–27077. https://doi.org/10.1074/jbc.M112.350231

Musante, L., Kehl, H. G., Majewski, F., Meinecke, P., Schweiger, S., Gillessen-Kaesbach, G., … Kalscheuer, V. M. (2003). Spectrum of mutations in PTPN11 and genotype–phenotype correlation in 96 patients with Noonan syndrome and five patients with cardio-facio-cutaneous syndrome. *European Journal of Human Genetics*, 11(2), 201–206. https://doi.org/10.1038/sj.ejhg.5200935

Nunes, P., Aguilar, S., Prado, S. N., Palaré, M. J., Ferrão, A., & Morais, A. (2012). Severe congenital thrombocytopenia – First clinical manifestation of Noonan syndrome. *BMJ Case Reports*, https://doi.org/10.1136/bcr.10.2011.4940

Qu, C. K., Shi, Z. Q., Shen, R., Tsai, F. Y., Orkin, S. H., & Feng, G. S. (1997). A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development. *Molecular and Cellular Biology, 17*(9), 5499–5507. https://doi.org/10.1128/MCB.17.9.5499

Saxton, T. M., Henkemeyer, M., Gasca, S., Shen, R., Rossi, D. J., Shalaby, F., … Pawson, T. (1997). Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. *The EMBO Journal*, 16(9), 2352–2364. https://doi.org/10.1093/emboj/16.9.2352

Shenoy, R. D., Yeshvanth, S. K., Prasad, L. H., Shenoy, V., & Shetty, V. (2019). Myelodysplastic syndrome with multilineage dysplasia evolving to acute myeloid leukemia: Noonan syndrome with c.218C>T mutation in PTPN11 gene. *Pediatric Blood & Cancer*, 66(2), e27527. https://doi.org/10.1002/pbc.27527

Strullu, M., Caye, A., Lachenaud, J., Cassinat, B., Gazal, S., Fenneteau, O., … Cuvè, H. (2014). Juvenile myelomonocytic leukaemia and Noonan syndrome. *Journal of Medical Genetics, 51*(10), 689–697. https://doi.org/10.1136/jmedgenet-2014-102611

Tang, T. L., Freeman, R. M., O’Reilly, A. M., Neel, B. G., & Sokol, S. Y. (1995). The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development. *Cell*, 80(3), 473–483. https://doi.org/10.1016/0092-8674(95)90498-0

Tartaglia, M., Gelb, B. D., & Zenker, M. (2011). Noonan syndrome and clinically related disorders. *Best Practice & Research Clinical Endocrinology & Metabolism*, 25(1), 161–179. https://doi.org/10.1016/j.beem.2010.09.002

Tartaglia, M., Kalidas, K., Shaw, A., Song, X., Musat, D. L., van der Burgt, I., … Gelb, B. D. (2002). PTPN11 mutations in Noonan syndrome: Molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. *American Journal of Human Genetics*, 70(6), 1555–1563. https://doi.org/10.1086/340847

Zenker, M., Buheitel, G., Rauch, R., Koenig, R., Bosse, K., Kress, W., … Rauch, A. (2004). Genotype-phenotype correlations in Noonan syndrome. *Journal of Pediatrics*, 144(3), 368–374. https://doi.org/10.1016/j.jpeds.2003.11.032

How to cite this article: Schönfeld M, Selig M, Russo A, et al. Rapid detection by *hydrops panel* of Noonan syndrome with *PTPN11* mutation (p.Thr73Ile) and persistent thrombocytopenia. *Mol Genet Genomic Med*. 2020;8:e1174. https://doi.org/10.1002/mgg3.1174