Lawrence Berkeley National Laboratory
Recent Work

Title
Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling.

Permalink
https://escholarship.org/uc/item/7rd1b75s

Journal
Nature communications, 11(1)

ISSN
2041-1723

Authors
Remesh, Soumya G
Verma, Subhash C
Chen, Jian-Hua
et al.

Publication Date
2020-06-09

DOI
10.1038/s41467-020-16724-5

Peer reviewed
ARTICLE

Nucleoid remodeling during environmental adaptation is regulated by HU-dependent DNA bundling

Soumya G. Remesh1,2,4, Subhash C. Verma1,4, Jian-Hua Chen2,3, Axel A. Ekman2,3, Carolyn A. Larabell2,3, Sankar Adhya1 & Michal Hammel2

Bacterial nucleoid remodeling dependent on conserved histone-like protein, HU is one of the determining factors in global gene regulation. By imaging of near-native, unlabeled E. coli cells by soft X-ray tomography, we show that HU remolds nucleoids by promoting the formation of a dense condensed core surrounded by less condensed isolated domains. Nucleoid remodeling during cell growth and environmental adaptation correlate with pH and ionic strength controlled molecular switch that regulated HUαα-dependent intermolecular DNA bundling. Through crystallographic and solution-based studies we show that these effects mechanistically rely on HUαα promiscuity in forming multiple electrostatically driven multimerization interfaces. Changes in DNA bundling consequently affect gene expression globally, likely by constrained DNA supercoiling. Taken together our findings unveil a critical function of HU–DNA interaction in nucleoid remodeling that may serve as a general microbial mechanism for transcriptional regulation to synchronize genetic responses during the cell cycle and adapt to changing environments.
Nucleoid remodeling facilitated by DNA organization activities of nucleoid-associated proteins (NAPs) is one of the determining factors of global gene regulation1−4. HU is among the most conserved and abundant NAPs in eubacteria and has major role in the nucleoid structure5 (Supplementary Figure 1a). Mutations or the deletion of HU transform the *Escherichia coli* nucleoid to different forms and alter transcription program6−8. HU causes gene expression changes by modulating the 3D arrangement of DNA at different length scales within the nucleoid; by facilitating DNA looping in a promoter region, trapping free supercoils, indirectly altering supercoiling through DNA topoisomerases, or perhaps by promoting long-range DNA–DNA contacts9−11,12,13. As opposed to other NAPs (H-NS, Fis, and IHF) that are specifically localized within the nucleoid due to DNA sequence-specific binding, HU is largely scattered throughout the whole nucleoid owing to its non-sequence-specific DNA binding11,12. Although HU binds DNA regardless of the sequence through its long β-ribbon arms13,14, high-affinity sites are presumably much fewer in the *E. coli* chromosome and HU mostly interacts with chromosomal DNA through low-affinity binding. In *E. coli*, HU exists as homo- or heterodimers of HUα and HUβ subunits. Owing to differential expression and stability of the two subunits during *E. coli* growth cycle, HUα predominates in the growth phase, whereas HUαβ in the stationary phase15, pointing to distinct roles of HUα and HUαβ in nucleoid architecture and gene expression during growth and stasis, respectively. We have previously shown that the non-sequence-specific DNA-binding mode of HU causes bundling of independent DNA strands through HUα–HUα multimerization that is maintained by a zipper-like network of hydrogen bonds of highly ionized amino acids16. However, whether HU-mediated DNA bundling depends on environmental changes and growth conditions remained unclear.

In this study, we provide a holistic view of the molecular connections between HU–DNA interactions and the nucleoid architecture as it correlates to global regulation of bacterial gene expression during growth, stasis and under stress. Using an X-ray based imaging technique called soft X-ray tomography (SXT)16, we characterized the higher-order *E. coli* nucleoid organization in near-native state and revealed an effect of HU surface charges in its overall remodeling during cell growth and environmental adaptation. To define the mechanistic basis of these cellular consequences, we determined the overall organization of HUα nucleoprotein complexes in solution by small-angle X-ray scattering (SAXS). We find that HUα organizes DNA differently at different ionic strengths and pHs. By means of macromolecular crystallography (MX), we additionally elucidate HUα-dependent molecular switches that modulate the DNA organization. Finally, by means of next-generation RNA sequencing (RNA-Seq), we find a link between the nucleoid remodeling and changes in global transcription. This integrative structural study explains how HU can regulate dynamic transformations during nucleoid remodeling as it correlates to global gene regulation.

Results

Nucleoid remodeling during *E. coli* growth, stasis, and under stress. To determine how HU regulates *E. coli* nucleoid architecture during bacterial growth phases and under stress conditions, we imaged wild-type cells (WT) under normal (pH ~7) and acidic (pH ~5) growth conditions as well HU mutant (HUα3S4K) using SXT. Glu34 was previously identified to be critical to hydrogen bond formation for HUα–HUα multimerization that maintains HUα–DNA nucleoprotein complexes in vitro7. SXT is a high-resolution (60 nm or higher) imaging method that can be applied to fully hydrated, cryo-fixed, and unstained cells in their most native state6,16. X-ray absorption is measured within the “water window” (284–543 eV) where biological materials with differential carbon and nitrogen based composition absorb X-rays an order of magnitude more than the surrounding water. This absorption follows the Beer-Lambert law wherein the photon absorption is linear and a function of the biochemical composition at each spatial position in the cell, generating a unique Linear Absorption coefficient (LAC) measurement for each voxel (3D pixel)10,16. Sub-cellular structures are observed non-invasively and segmented based on their LAC differences allowing 3D visualization of their spatial organization (Supplementary Figure 1b). The reproducible and quantitative capabilities of SXT LAC measurements have been previously shown and were successfully utilized in segmenting eukaryotic cells2,17.

In contrast to the segmentation of sub-structures in eukaryotic cells, lack of membrane-bound organelles makes it challenging to resolve distinct regions in bacterial cells. Nevertheless, our computer-generated SXT orhtosicles (virtual sections) through the WT *E. coli* cells at 60 nm resolution revealed a region of low-LAC with less-bioorganic material (yellow, less condensed) surrounded by a region of high-LAC with more bioorganic material (blue, more condensed) (Fig. 1a). In agreement with conventional fluorescence imaging results, the less-condensed material correlates with the distribution of HU and thus corresponds to the nucleoid12,18. The cell periphery enriched in ribosomes12,19 corresponds to the condensed biomaterial in our SXT imaging and results in LAC values < 0.4 μm−1.

The SXT orhtosicles of the cells in the lag phase (Fig. 1a) showed a diffused nucleoid region. A histogram of LAC values of the WT cells harvested in the lag phase (OD600 0.2) showed a broad distribution with the maxima at ~0.39 μm−1 (Fig. 1a). On the other hand, significant separation of the nucleoid region from cell periphery in the exponential growth phase (OD600 ~0.5) indicated distinct segmentation of the nucleoid from the cytosol (Fig. 1a). This phase separation was reflected by two maxima in LAC histogram (Fig. 1a, lower panel). WT cells in stationary phase showed more-condensed nucleoid region with a significant shift in the LAC histogram towards higher values with maxima at ~0.41 μm−1 (Fig. 1a, lower panel) and showed phase separation of nucleoid region. The physical basis of the phase separation emerges by visualization of the 3D reconstruction of the nucleoid region segmented and color-coded based on SXT LAC values. Spatially, the higher-order organization of the nucleoid into distinct domains is akin to the nucleoid macrodomains organization (Fig. 2b, and Supplementary Movie 1)10,20 where domains appear physically insulated from each other (Fig. 2b and Supplementary Figure 1b). Although, localization of the macro-domains, namely ori, left, right, and ter cannot be readily achieved with SXT alone, this first high-resolution near-native visualization of the bacterial nucleoid is consistent with the established global organization of the bacterial chromatin (reviewed in ref. 21). The 3D reconstructions of the WT cells showed a region with high-bioorganic content located at the center of the cell called here as “nucleoid core” (Fig. 2a, b). The macrodomain architecture of individual chromatin arms varied within a dividing cell and between different cells in similar growth phase (Fig. 2b and Supplementary Figure 1b) indicating dynamic rearrangements of the nucleoid during the cell cycle as suggested previously12,18,22. Despite the dissimilarity in the macrodomain arrangement, the nucleoid material in the lag and exponential phases adopt well-segmented interconnected regions separated from the cytosolic material (Fig. 2b). Interconnected regions are easily seen after volume skeletonization (see Methods), whereas distinct domains
are absent in the stationary phase (Fig. 2b and Supplementary Movie 1).

Under acidic stress (buffered at ~pH 5) WT E. coli cells had significantly longer generation times and reached a final OD$_{600}$ of only ~0.2 similar to lag phase of WT E. coli cells grown in normal pH (pH ~7) after 4 hours of growth (Supplementary Figure 1c). Interestingly, the nucleoid region under acidic stress, appeared less-condensed compared with WT E. coli cells grown in normal pH as shown by SXT orthoslices and a shift to lower LAC values in the LAC histogram (Fig. 1b). Although the overall morphology of the segmented macrodomains that surrounded the condensed core remained similar to the lag phase WT E. coli cells grown in normal pH, the 3D reconstructions showed bulkier cells with diffused borders between the nucleoid region and the cytosolic material (Fig. 3a).

The pH-dependent nucleoid remodeling prompted us to evaluate the E. coli mutant strain—HUαE34K with mutation of an ionized HUα surface residue critical to HUα–HUα multimerization in vitro7 for effects on the nucleoid architecture. The mutant HUαE34K strain had similar growth rate as WT E. coli cell at normal pH (Supplementary Figure 1c) while the cell morphology of HUαE34K cells appeared different from WT E. coli cells in exponential and stationary phase (Fig. 1a, c). Orthoslices of HUαE34K mutant cells in the lag phase showed less-condensed nucleoid region than WT E. coli cells grown at normal pH with some recovery of condensation in exponential and stationary phase (Fig. 2b and Supplementary Movie 1).

Fig. 1 Bacterial nucleoid phase transitions under acidic stress and upon HUα mutation. **a–c** Representative orthoslices of E. coli wild-type (WT) cells are shown for lag, exponential, stationary growth phases in normal growth media (**a** upper left), under acidic stress (**b** lower left) and upon HUαE34K mutation (**c** upper right) within the LAC range 0.27–0.54 μm$^{-1}$ (red to blue, shown bottom right inset). Associated LAC histograms present a quantitative measure of nucleoid rearrangement during transition from lag to stationary phase for WT cells in normal growth media (**a** lower panel) and under acidic stress (**b** right panel) and for HUαE34K mutant cells (**c** lower panel). LAC histograms data are presented as mean values ± SD determined from $n=10$ independent bacterial cells for each condition.
stationary phase (Fig. 1c). Although, lag phase LAC histogram of HUαE34K cells showed a striking shift to lower LAC values with maxima ~0.32 \(\mu m^{-1} \) similar to WT E. coli cells under acidic stress (Fig. 1c, lower panel), 3D reconstructions showed that the nucleoid organization in HUαE34K cells is distinct from WT E. coli under acidic stress (Fig. 3b). The distinct phase separation evident as two maxima in the exponential phase LAC histogram of WT E. coli cells in normal pH was not seen in HUαE34K cells, whereas there was shift to lower LAC values in the stationary phase LAC histogram (Fig. 1c, lower panel). The remodeling of the nucleoid core in the HUαE34K cells regardless of the growth phase suggested that HUα is possibly also relevant in maintaining the nucleoid core in addition to the overall nucleoid organization (Fig. 3b). This nucleoid remodeling in HUαE34K cells suggest that the HUα long-range DNA–DNA contacts identified previously were disrupted, presumably as a consequence of direct effect on HUα multimerization.
HUαα surface charge regulates DNA bundling. To understand the mechanism of the HU-dependent cellular outcome of nucleoid remodeling, we characterized the HUαα nucleoprotein complexes in solution by SAXS (Fig. 4). We measured SAXS of HUαα in complex with 80 base pair (bp) DNA of random sequence to understand its overall organization under varied pH and salt concentrations. We deduced that at pH 4.5 and 5.5, HUαα-80bp DNA readily self-assembled into ordered lamellar structures leading to DNA bundling evident by an initial slope of q−2,23 and distinct diffraction peaks in the 1D-SAXS profile (Fig. 4a, b and Supplementary Figure 2a, b). We fit the scattering patterns as a random lamellar phase (sheet) with Caille structure factor (see Methods). The presence of the diffraction peak indicated that the physiological salt concentration of 150 mM NaCl supported lamellar assembly at pH 4.5 (Fig. 4a). This assembly with DNA spacing of 42 Å transformed into a filament-like nucleoprotein assembly at 300 mM NaCl concentration (Fig. 4a and Supplementary 2a). We further observed that at pH 5.5, the spacing between the parallel DNAs shifted from 42 Å to 70 Å or 60 Å (Fig. 4b) with a decrease in ionic strength. Further increase in the pH to 6.5 abolished the formation of lamellar structures with the exception at a sub-physiological salt concentration of 50 mM NaCl (Fig. 4c, d and Supplementary Figure 2c, d). Atomistic models of HUαα-80bp DNA filaments matched the length of ~270 Å defined by the pair distribution function (P(r)) (Supplementary Figure 2e, f) and agreed well with the experimental SAXS data (Fig. 3a and Supplementary Table 2). Our previous mutational analysis7 together with pH-dependent altering of HUαα-DNA interactions reported here, suggested that HUαα surface electrostatic dictates the hydrogen bond network critical to HUαα-DNA multimerization that controls DNA bundling (Fig. 4e).

To test this hypothesis, we measured SAXS of HUαα surface residue mutant, HUααE34K in complex with 80 base pair (bp) DNA at different pH. We found that the positively charged HUααE34K mutation disrupted DNA bundling in a protein concentration-independent manner and led to the formation of filament-like nucleoprotein structures at pH 6.5, 7.5, and aggregations at pH 5.5, 4.5 with no diffraction peaks (Fig. 4f). The uniform separation of HUααE34K/E34K dimers on DNA at low protein

Fig. 4 HUαα surface charge impact HU-DNA assembly in solution. a–d Experimental SAXS curves for HUαα–80 bp DNA complex measured at different pH and increasing salt concentration are shown. a At pH 4.5, the SAXS match the lamellar structures with DNA spacing 42 Å at 50 mM and 100 mM NaCl that changes to filament-like structures at 300 mM NaCl (see also Supplementary Figure 2a). b At pH 5.5, the SAXS curves match the lamellar structures with DNA spacing ~60 Å at 50 mM NaCl, ~70 Å at 100 mM NaCl and ~42 Å at 150 mM NaCl that changes to filament-like structures at 300 mM NaCl (see also Supplementary Figure 2b). c At pH 6.5, the experimental SAXS match the lamellar structures with DNA spacing ~60 Å at 50 mM NaCl that changes to filament-like structures at higher salt concentrations (see also Supplementary Figure 2c, e). d At pH 7.5, the SAXS match the lamellar structures with DNA spacing ~60 Å at 50 mM NaCl that changes to filament-like structures at higher salt concentrations (see also Supplementary Figure 2d, f). e Electrostatic surface potential for HUαα calculated at the pH = 4.0, 5.0, 6.0, and 7.0. f SAXS for HUααE34K/E34K–80 bp DNA show aggregation at pH 4.5 and 5.5, and filament-like structures at pH 6.5 and 7.5 (see also Supplementary Figure 3).
Molecular switch in HUaa coupling alters DNA bundling. In order to elucidate the molecular-level mechanism that alters the DNA bundling, we determined crystal structures of HUaa in complex with 19 bp DNA of random sequence at pH ~4.5 and ~5.5 and low ionic strength (~100–150 mM NaCl) (Fig. 5a, b; Supplementary Figures 4a, b and Supplementary Table 1). Structures at both pH showed linear DNA conformation across the HU α-helical “body” (Fig. 5a, b and Supplementary 4a,b) rather than the bent DNA conformation between extended αα-arms based multimerization of HUaa seen with structurally specific DNA interactions14 (Fig. 5a-inset). Moreover, the non-sequence-specific DNA-binding mode of HUaa in the structures at pH ~4.5 and ~5.5 resulted in virtual sliding of the DNA relative to HUaa with out-of-register duplex positions forming distinct HUaa–DNA interfaces. Superimposition of these interfaces revealed the ballsocket joint around the DNA minor groove that permits tilt and twist of HUaa on DNA (Fig. 5c).

We had shown in a previous study that HUaa has two identical faces, either of which interact with DNA through a phosphate lock between the G46–K83 peptide7. Combining several asymmetric units (ASU) for either structure at pH ~4.5 and ~5.5, we observed that two parallel DNA strands 42 Å apart are engaged by the phosphate locks around the two faces of an HUaa dimer. The DNA spacing of 42 Å is also observed in solution at low pH and certain ionic strength and is repeated as represented in our DNA bundle model (Fig. 4a). In addition to the interaction of positively charged HUaa body, HUaa arms support intermolecular bridging of DNA. We found that at pH 4.5 the parallel DNA strands were bridged through an additional αα-zipper interaction involving the arms of oppositely facing DNA strand bound HUaa dimers (Fig. 5a). These HUaa dimers held arms through the intermolecular backbone hydrogen bonds between the highly conserved residues R61 and N62 (Supplementary Figs. 1a and 5a, c). The flexible elbow joint (residues A57, A73) positioned the arms to form the αα-zipper reinforcing the DNA bundle (Supplementary Figure 5c). In contrast, HUaa arms did not supplement the DNA bundling at pH 5.5 (Fig. 5b). Interestingly, another major difference between the structures at different pH was in the coupling of two HUaa dimers connecting additional parallel DNA strands. In the structure at pH ~4.5, two HUaa dimers couple around the minor groove of a DNA strand through intermolecular hydrogen bonds between residues E34K and K37 (Fig. 5a and Supplementary Figure 5a). In contrast, the intermolecular hydrogen bonds were disrupted in the structure at pH ~5.5 uncoupling the HUaa dimers by shifting one dimer ~3 Å away (Fig. 5d, left panel and Supplementary Movie 2).

Instead, we observed alternative coupling of HUaa dimers through intermolecular hydrogen bonds between residues D8 and Q5 (Fig. 5b and Supplementary Figure 5b). The alternative coupling and lack of arm bridging transitioned the DNA–DNA spacing in the crystal to 70 Å (Fig. 5b) that corroborated our observations in solution at similar pH and higher ionic strength (Fig. 4b). We concluded that the altered surface charge owing to change in protonation state of residue E34 (Fig. 4e) altered intramolecular hydrogen bond that leads to the formation of alternative HUaa–HUaa coupling through residues D8 and Q5 at pH 5.5 and explained the shift in nucleoprotein organization in solution. The crystal structure of surface residue mutant HUaa-E34K–HUaa-E34K with the 19 bp DNA further validated the importance of HUaa–HUaa coupling in DNA bundling. The lack of hydrogen bond network caused a separation between the HUaa-E34K–HUaa-E34K dimers to even larger distances of ~5 Å. (Fig. 5d, right panel and Supplementary Movie 2). No alternative HUaa-E34K–HUaa-E34K coupling similar to that for HUaa/19 bp DNA at pH ~5.5 was observed either which correlated with the observation of filament structures of HUaa-E34K–HUaa-E34K ~80 bp DNA in solution (Fig. 4f and Supplementary Figure 3a). The phosphate lock-based HUaa-E34K–HUaa-E34K DNA interaction interfaces were retained and dictated the tilt and twist around the DNA (Supplementary Figure 5d).

In summary, combing crystal structures and solution states we showed that HUaa-body and HUaa-arms based multimerization is dependent on pH and salt concentrations. Furthermore, we revealed a role of HUaa surface charge in HUaa–HUaa coupling-dependent adaptability of HU–DNA interfaces that dictates the transition between DNA bundles and filaments.

HU-dependent nucleoid remodeling correlates to global gene expression changes. To show that nucleoid remodeling, we observed under different growth phases and acidic stress condition, is related to changes in global gene expression, we measured gene expression in using RNA-seq (see Methods). SXT imaging showed that nucleoid material is less condensed in the lag phase compared with the log phase. By differential expression analysis of genes between the log phase and lag phase in WT cells, we found that 199 genes were upregulated, whereas 73 genes were downregulated in the lag phase (Fig. 6a and Supplementary Data 1). We interpret that the less-condensed nucleoid in the lag phase correlates with higher gene expression and the more-condensed nucleoid in the growth phase strongly correlates with the lower expression of the same genes. This link between nucleoid remodeling and gene expression in combination with specific gene regulatory mechanisms may be critical for the global gene expression reprogramming to prepare E. coli for the transition into the exponential growth24,25. SXT imaging also showed that the nucleoid region was less condensed in WT cells grown under acidic conditions compared to those grown at pH 7.0. In contrast to a significant separation of nucleoid region from the cytosolic material at pH 7.0, we observed diffused borders between the nucleoid region and the cytosolic material at pH 5.0. By differential gene expression analysis in WT cells between the normal and acidic growth conditions, we found that 245 genes were upregulated and 161 genes were downregulated in cells grown under the acidic condition (Fig. 6b and Supplementary Data 2). In agreement with previous studies26, we observed upregulation of genes, such as asr in our analysis, are important for survival under acid stress. Although differential expression of many of the genes could result from a direct response to acidic stress through specific TFs-mediated gene regulation, we found that only 175 genes were upregulated at pH 5.0 when HU was absent, suggesting that differential expression under acidic condition is at least partially dependent on HU (Fig. 6c and Supplementary Data 3).

We have demonstrated that HUaa–HUaa coupling mediated by the surface charge residues is critical for the higher-order organization of DNA into bundles and changes in E34 protonation state owing to a change in pH or the E34K mutation
could result in the reorganization of DNA from bundles into filaments. We hypothesized that a change in the HUα composition under different growth phases, which is known to occur in E. coli, and or the changes in E34 protonation state owing to changes in cytosolic pH could account for gene expression changes we observed. To test our hypothesis, we measured the gene expression of HUα mutant (HUαE34K) cells with or without the presence of HUβ under normal and acidic growth conditions. Although E. coli uses an active mechanism of pH homeostasis, we expected that external acidic conditions would cause a rapid decrease in cytoplasmic pH. Surprisingly, the E34K mutation in HUα did not influence the gene expression both in the presence or the absence of HUβ under both normal growth conditions and acidic stress conditions (Fig. 6d–f and Supplementary Data 4–5). We speculate that the higher-order organization through HUα–HUα coupling mediated by the residue E34 plays an architectural role in the nucleoid structure without affecting gene expression. We propose that HU-mediated
restraining of supercoils may play a direct role in controlling global gene expression.

Discussion

3D genome organization is crucial for cellular behaviors and genetic transmission. 3D genome is also highly dynamic and its reconfiguration through an influence on gene expression is important, at least in some eukaryotes, for cellular differentiation during embryonic development. In eukaryotic cells, gene expression is linked to an unwinding of DNA, and the loose euchromatin marks the regions of global gene expression.

In the prokaryotic world, the nucleoid is a discrete, internally organized unit wherein the overall arrangement of DNA regulates gene expression globally. The E. coli nucleoid, the functionally and spatially organized form of a single 4.6 megabase-pairs size haploid chromosome, serves a simple model to study 3D configuration of a genome and its dynamic reconfiguration during environmental changes. However, high-resolution visualization of the nucleoid to better understand organizational features as well as unraveling molecular mechanisms, especially involving biochemical factors such as NAPs, responsible for maintaining 3D genome architecture has presented major challenges. Using the X-ray-based imaging technology—SXT, we determined the

Fig. 6 Global gene expression owing to lag phase, acidic growth, or HU mutations. Volcano plots showing log2-fold change (logFC) in transcript abundance plotted against log10 FDR (false discovery rate). Each dot represents a gene. Vertical bars indicate logFC cutoff of −1.5 and 1.5 and a horizontal bar indicates FDR cutoff of −log10 0.05. Orange dots indicate differentially expressed (DE) genes with absolute logFC values >1.5 and FDR values <0.05.

a Differential gene expression between log phase and lag phase in WT strain (SCV96). A positive logFC value indicates higher expression of a gene in lag phase relative to log phase, whereas a negative logFC value indicates lower expression of a gene in lag phase (see also Supplementary Data 1).

b–e Differential gene expression between pH 7.0 and pH 5.0 in ΔhupAΔhupB (SCV27), hupAE34K hupB + (SCV56), and hupAE34KΔhupB (SCV85). A positive logFC value indicates higher expression of a gene at pH 5.0 relative to pH 7.0, whereas a negative logFC indicates lower expression of a gene at pH 5.0. Cells were harvested in lag phase at both pH (see also Supplementary Data 2–4).

f Differential gene expression between the strain harboring wild-type HUα but lacking HUβ (SCV19) and strain harboring HUαE34K but lacking HUβ (SCV85). A positive logFC indicates higher expression of a gene in SCV19 relative to SCV85, whereas a negative logFC indicates higher expression of a gene in SCV85 (see also Supplementary Data 5).
architecture of the bacterial nucleoid region in near-native state at 60 nm resolution. We observed that the nucleoid region consisted of a condensed core surrounded by spatially isolated domains or macromdomains consistent with previously proposed features of the nucleoid. Our studies validated the role of HUαα, the most-abundant NAP in promoting megabase range DNA communication for maintaining the architecture of the nucleoid macromdomains as was previously identified by Chromosome Conformation Capture Analysis (3C)6,10. We could also visualize dynamic reorganization of the domain in response to environmental changes and by mutation of HUαα, which is in conjunction with other factors, like DNA-specific NAPs, RNA polymerase modulators, and topoisomerases such as DNA gyrase35–37. Although, we observed distinct sub-regions such as nucleoid core and macromdomains, within the nucleoid region in E. coli, their exact composition and protein:nucleic acid ratio cannot be determined with SX1T alone. Nevertheless, our observations correlate with previous observations of longitudinal density bundling and radial confinement of E. coli nucleoid18,38,39.

Similar to histones in eukaryotes, HU that binds non-sequence-specific DNA, is essential for bacterial nucleoid condensation that relates to global gene expression3,40. Our gene expression analysis indicates that the nucleoid remodeling may be crucial for the reprogramming of gene expression for environmental adaptation and provide a testable model of the relationship between HU structural assemblies, nucleoid architecture, and gene expression. Our characterization of the hierarchical organization of HUαα–DNA nucleoprotein complexes in solution utilizing SAXS provided evidence for DNA bundling similar to previous reports3.41. We further found that the DNA bundle transformed to rigid filament-like structures by varying pH and ionic strength similar to the HU–DNA nucleoprotein complexes formed at high HUαα:DNA ratios (>30 HUαα per 100 bp DNA)12,43. Considering uniformly distributed HU across the nucleoid as previously shown11 with only one HU dimer per ~150 bp DNA, we propose that sparsely bound HUαα can bundle multiple DNA segments in the nucleoid while still allowing efficient exchange of other DNA supercoil modifiers. Furthermore, we suggest that the transition from a DNA bundle to a filament structure depending on HU/ DNA ratio, environmental pH, or ionic strength contributes to the nucleoid remodeling.

In the past, crystal structures of several HUαα–DNA complexes have been reported. HU–DNA complexes with structurally aberrant DNA proposed DNA bending involving HU arms as a mode of DNA binding14. In addition, multiple other models proposed HU–DNA complex involving single DNA-duplex strand in a nucleoprotein complex44–47. In contrast, in our crystal structures we observed that a two linear DNAs are bound across two opposite faces of HUαα dimer. In addition, we found that multiple HUαα dimers can bundle DNA strands through HUαα–HUαα coupling involving HU body reinforced by HU arms. We further revealed that changes in HU surface charge by varying pH, salt, or surface charged mutation7,8 cause repulsive separation of HU dimers along the DNA-transforming DNA bundles into filaments. Altering of the DNA bundling explains nucleoid remodeling in rapidly growing E. coli cells and further evidence the role of HUαα in previously identified long-range DNA interactions10.

Although intercalation of the HUαα arms with structurally specific aberrant DNA may be a lock-and-key mechanism for binding damaged DNA sites14, the dynamic HUαα–HUαα coupling is a universal mechanism for the binding sequence-independent DNA. HUαα–HUαα coupling that involves both, HUαα body and arms, distinguish general DNA condensation complexes from specific aberrant DNA complexes. Collectively, our results defined a molecular mechanism whereby changes in HUαα–HUαα multimerization alter DNA bundling affecting nucleoid remodeling that can change global gene expression in E. coli to synchronize the genetic response to external conditions. Our multi-scale study supports the previously presented idea that for HU-directed bacterial nucleoid remodeling its molecular functionality is key to its macroscopic behavior and manifests at the nanoscale extending into the mesoscale.

Future studies using correlative light and SX1T microscopy to label specific sites in the nucleoid will provide more insights into nucleoid dynamics that regulates gene expression reprogramming during environmental adaptations. Nevertheless, this study has broad significance in understanding the nucleoid architecture in bacteria and bring insights into HU-mediated nucleoid condensation, leading to concerted changes in the basal transcription program. These observations make HU interactions an attractive target for controlling not only pathogenesis but also, microbial systems in general.

Methods

Construction of bacterial strains. HUααE34K mutant strain was generated by Lambda red recombination35 in two steps using the plasmid pSiSM6. In the first step, the pBAD-hupA open reading frame (ORF) was replaced with a pBAD-ccdB-kan cassette that expresses CcdB toxin under the arabinoside inducible promoter pBAD and encodes a kanamycin resistance protein. The recombinants were selected on LB agar plates containing 1% glucose and 30 μg ml⁻¹ kanamycin. The recombinants were verified by PCR using the primers that bind outside the hupA transcribed region but do not interfere with the expression of the recombinants on LB agar plates supplemented with 0.02% arabinose that induces the toxin CcdB. In the second step, a synthetic double-stranded DNA (synthesized by Integrated DNA Technologies–https://www.idtdna.com/pages) encoding hupA/E34K with 46 nucleotides of homology to the 5’ and 3’ end of the hupA gene was recombined at the hupA locus. The recombinants were selected on LB agar with 0.02% arabinose and subsequently were verified by Sanger sequencing. After sequence verification, the plasmid pSiSM6 was removed by repeatedly growing the strain at 37°C and checking for ampicillin sensitivity. The final strain SCV56 with mutation hupA/E34K was used for further DNA-seq experiments.

Construction of 46 DNA complexes. The following DNA-duplex strands were constructed. The ΔHupA (SCV18) and ΔHupB (SCV19) strains were made by Lambda red recombination using the plasmid pSiSM6 in the two steps. The selection of the recombinants was done with the steps described for SCV56. In the first step, the hupA ORF from codons 2 to 60 or the hupB ORF from codons 2 to 64 was replaced with the pBAD-ccdB-kan cassette. In the second step, a 70 nucleotides long single-stranded oligonucleotide corresponding to sense strand was recombined. The sequence of the oligonucleotide for hupA is:

GCAATTTGATATTCCCTAACGGGTCTCCTCAGGGTTGCGATTAATCTCCTCAGCA

TACAGTTGTTTATCGGTCTCTC

for hupB is:

ACCTTTAGCGACGCGGTGATCTTTCTTACCGGTCACTCTTCTCTTC

CTCCTTTATTTATATGCAC

The strain lacking both HU subunits hupA and hupB was constructed by transducing the hupB11 allele into the strain SCV18 by standard P1vir transduction. The strain hupA/E34K hupB::CamR (SCV85) was constructed by transducing the hupB11 allele into SCV56. The hupA deletion of the strain SCV18 was created and restored to wild-type hupA gene in two steps to create the strain SCV96 that served as a parent wild-type strain. In the first step, the pBAD-ccdB-kan cassette was introduced at the hupA locus and a wild-type copy of hupA gene amplified from MG1655 was recombined in the second step. The wild-type status of hupA gene was verified by Sanger sequencing.

HUαα and HUααE34K protein expression and purification. HUαα and HUααE34K genes cloned in expression vector pET15b (Novagen) with tobacco etch virus (TEV) protease-cleavable site following the His6 site were purchased from Genewiz. The plasmids were transformed into BL21(DE3)/pLysS strains. Overnight cultures were grown in LB broth (LB) media with 100 μg ml⁻¹ ampicillin and 25 μg ml⁻¹ chloramphenicol antibiotics at 37°C. Next day, cultures grown in LB media with 0.02% arabinose at 37°C, up to an optical density of 0.60–0.80 followed by induction with 0.5 μl isopropyl 1-thio-β-galactopyranoside. The cells were harvested after 4 h by centrifugation and resuspended in buffer A (10 μl HEPES pH 7.9, 0.5 μl NaCl, 5 μl imidazole) with an additional 0.1% Triton X-100, 2 mM PMSE, 0.5 mg ml⁻¹ lysozyme, 25 μg ml⁻¹ DNase I, 20 μg ml⁻¹ CaCl2, and 4 mM MgCl2. Cells were lysed by passage through a constant cell disruptor (Constant Systems Ltd.) at 5°C and 21 kpsi. After lysis, cellular debris was pelleted by centrifugation at 20,000 × g. Cleared cell lysate was batch-bonded onto Ni-NTA resin (Qiagen) by rocking overnight at 4°C. Resin was batch washed in buffer A, then washed with 10×CV buffer A + 20 μl imidazole. Elution was carried out with 10× CV buffer A + 250 μl imidazole. The Ni-NTA eluate was dialyzed overnight in buffer A. Next, the His tag was removed using TEV
protease. The cleaved protein was further purified by passing on Ni-NTA column to remove the His tag as well as TEV protease that stayed bound to the column. The flow through was then purified into buffer B (25 mM HEPES pH 7.9, 200 mM NaCl) in 3.5 K MWCO Slide-A-Lyzer (Thermo Scientific). Dialysis was then performed by cation exchange chromatography on a HiTrap SP HP column (GE Healthcare). Protein was bound onto the column then eluted with a gradient starting from buffer B to buffer 9–1 M NaCl. Purified protein at concentration of ~1 mg/mL was then flash frozen and stored at −80 °C. Protein concentration of all purified HU was determined by the Bradford assay (Bio-Rad) and then overnight cultures were diluted 1:1000 in fresh regular LB broth (pH 7.0) or LB with pH 5.0. LB with pH 5.0 was prepared as follows: For (Lennox) broth and then overnight cultures were diluted 1:1000 in fresh regular LB media at 37 °C buffered to pH ~5 (buffered with 0.1M sodium acetate) and was concentrated 10 mg ml~1 was dissolved and annealed in water. Concentrated NaCl) in 3.5 K MWCO Slide-A-Lyzers (Thermo Scientific). activity was then measured on a Thermo Scientific is used was a standard. Concentrations of HU were verified with a modified Lowry assay (Thermo Scientific).

Data collection and structural analysis. Structures of HUδα DNA and HUδαE34K DNA complexes were solved by molecular replacement with X-ray diffraction data collected from cryo-cooled crystals at the SIBYLS Beamline BL 12.3.1 at 1.03 Å using a Pilatus 2M detector with the sample-to-detector distance of 1.5 m, resulting in scattering vectors, q, ranging from 0.1 Å⁻¹ to 0.3 Å⁻¹. The scattering vector is defined as \(q = 4 \pi \sin(\theta) / \lambda \), where \(\theta \) is the scattering angle. All experiments were performed at 10 °C. For protein–DNA assemblies, protein HUδαE34K was mixed with 80 bp DNA ~5 min prior data collection at the HUδαE34K–80 bp DNA under certain buffer conditions showed diffraction peaks dehydrated over 0.1M Na-malonate, pH 4.0 and 50 mM NaCl. The molecular replacement phases yielded clear density for double-stranded DNA. The SAXS profiles of HUδα-80 bp DNA under certain buffer conditions showed diffraction peaks defined by d-spacing between parallel DNAs, indicating formation of a crystalline phase in solution. These SAXS profiles cannot be used to obtain the radius of gyration, \(R_g \), or the \(P(r) \) function. The SAXS profiles for HUδα-80 bp DNA, HUδαE34K–80 bp DNA, HUδαE34K-80 bp DNA and HUδαE34K–80 bp DNA with 3 s X-ray exposures for 5 mins continuously exchanged into different buffer conditions (please see SASSDB data base for the buffer composition). Integral of ratio of the background of frames collected provided a signal plot for accurate buffer sub-

Transcription profiling. For RNA-Seq, strains were first grown overnight in LB (Lennox) broth and then overnight cultures were diluted 1:1000 in fresh regular LB broth (pH 7.0) or LB with pH 5.0. LB with pH 5.0 was prepared as follows: For 200 ml 35 mM of 0.2% tryptone, 50 mM of 0.2% yeast extract and 50 mM of NaCl were mixed, the components of LB (Lennox broth) were added, and then the volume was brought up to 150 ml with Milli Q water. The final pH of the media was pH 5.0. Cells were harvested at OD600 0.2–0.3, which we refer to as log phase and 0.4–0.5, which we refer to as mid log phase in this study. For total RNA isolation, a frozen pellet of cells was resuspended in 1 ml 75% ethanol, made with DEPC-treated water, by vortexing for 15 min at room temperature to dry the pellet. To the pellet, 50 µl of Pepsin reagent with >89% of bases above the threshold, and 80% of the reads were trimmed for adapters and low-quality bases using Cutadapt software. Alignment of the reads to the E. coli K12 MG1655 reference genome and the annotated transcriptome was done using STAR.

Transcriptional abundances were calculated by RSEM, and differential expression analysis was done using the glmTreat function in edgeR. We identified differentially expressed genes based on a fold change of 2.0 and log2 (log with base 2) fold change of 1.5. The RNA-Seq data have been deposited to the Gene Expression Omnibus (GEO) data base and can be accessed with the GEO accession number: GSE134667.

Data collection and structural analysis. Structures of HUδα-DNA and HUδαE34K-DNA complexes were solved by molecular replacement with X-ray diffraction data collected from cryo-cooled crystals at the SIBYLS Beamline BL 12.3.1 and BL 8.3.1 of the Advanced Light Source (ALS, Berkeley, CA). The data were indexed, integrated and processed with XDS and the molecular replacement phases were defined by molecular replacement in PHASE using the refined structure of HUδα (PDBID: 4YEX). Matthews coefficient was utilized to determine the contents of the ASU. The molecular replacement phases yielded clear density for double-stranded DNA. Ideal DNA helices were placed manually into the density and the model was refined using Phenix Refine (58) using an initial model from Bcl2fastq v2.17. The SAXS profiles of HUδα-80 bp DNA under certain buffer conditions showed diffraction peaks defined by d-spacing between parallel DNAs, indicating formation of a crystalline phase in solution. These SAXS profiles cannot be used to obtain the radius of gyration, \(R_g \), or the \(P(r) \) function. The SAXS profiles for HUδα-80 bp DNA, HUδαE34K–80 bp DNA, HUδαE34K-80 bp DNA and HUδαE34K–80 bp DNA complexed collected previously, which did not show diffraction peaks were investigated by comparing radius of gyration, \(R_g \) derived by the Guinier approximation:

\[
\ln I(q) = \ln I(0) - \frac{1}{3} q^2 R_g^3
\]
using the program GROMOS54. The distance r where P(r) functions approach zero intensity specifies the maximal dimension (Dmax) of the macromolecule (Supplementary Figures 2e, f and 2a). P(r) functions were normalized to volume of correlation of the assemblies calculated in SCATTER and listed in the Supplementary Table 2.

Solution structure modeling. Experimental scattering profiles of HUαα-80bp DNA complexes that showed distortion peaks were investigated for the behavior of Intensity in the low q range (low layer angle) in the double logarithmic scale and HU-αα-80bp DNA complexes at pH 6.5 and above from their corresponding pools of models. We applied ensemble analysis88 to match the SAXS curves of HUαα-80bp DNA complexes at different protein:DNA ratios using various protein–DNA-binding modes in these multi-component systems. A pool of HUαα-80bp DNA complexes with different protein–DNA ratios and protein–DNA bridge (covering two to three neighboring DNA) were generated based on our crystals structures. The extended arm of HU and missing regions if any were built based on the complete protein models from HUαα-DNA crystal structure at pH 4.5. A selection of sub-ensemble of HUαα-80bp DNA complexes coexisting in solution was guided by the fit to the experimental SAXS data using FoXS and Multi-FOXS89. The complexes were weighted and allowed selection of a minimal ensemble to avoid over-fitting of SAXS data. The match of theoretical weighted profiles to the experimental curve confirmed a filament-like structure for HUαα-80bp DNA complexes. Structures were visualized in CHIMERA92. Data and the related models were deposited in the SASBDB data base (https://www.sasbdb.org/). The SASBDB data base accession codes and experimental SAXS parameters are reported in Supplementary Table 2.

Statistics and reproducibility. Descriptive statistics to obtain mean and standard deviation (for Fig. 1 and Supplementary Figure 3) were performed in OriginLab (OriginLab, Northampton, MA). Statistical significance was also assessed in OriginLab using a two-sided two-sample t test. For cell growth assay, the data were derived from n = 3 biological replicates. We used three independent biological replicates for each condition and/or genotype to detect differential gene expression in RNA-sequencing experiments. Statistics for LAC Histogram were determined from n = 10 independent bacterial cell for each experimental condition. SAXS experiments were repeated 2/3 times independently. We confirm that all attempts to replicate experiments were successful.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this Article.

Data availability

Atomic coordinates and structure factors for the crystal structures are deposited in the Protein Data Bank (PDB—https://www.rcsb.org/) (PDB: 6O8Q, 6O6K, and 6OAJ (Fig. 5 and Supplementary Figures 4, 5)). SAXS data are deposited in the Small-Angle Scattering Biological Data Bank (SASBDB— and SASBRO IDs are listed in the Supplementary Table 2 and figure legend of Supplementary Figure 3 (Fig. 4 and Supplementary Figures 2, 3)). Soft X-ray tomography data are available here (https://ncict-nsalib.lbl.gov:5001/fdsdownload/XKhnLbGvYq/Nature%20comm). The RNA-Seq are deposited in the Gene Expression Omnibus data base (GEO) with accession code GSE134667 (Fig. 6). All data are available from the authors upon reasonable request.

Received: 17 December 2019; Accepted: 19 May 2020; Published: 09 June 2020

References

1. Dormann, C. J. DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect. Immun. 59, 745–749 (1991).
2. Dormann, C. J. Co-operative roles for DNA supercoiling and nucleoid-associated proteins in the regulation of bacterial transcription. Biochim. Biophys. Acta 41, 542–547 (2013).
3. Meyer, S., Reverchon, S., Nasser, W. & Muskeliulidhi, G. Chromosomal supercoiling of transcription: in the light of a new concept. Curr. Genet. 64, 555–565 (2018).
4. Travers, A. & Muskeliulidhi, G. DNA supercoiling—a global transcriptional regulator for enterobacterial growth? Nat. Rev. Microbiol. 3, 157–169 (2005).
5. Azam, T. A. & Ishihama, A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 274, 33105–33113 (1999).
6. Berger, M. et al. Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep. 11, 59–64 (2010).
7. Hammel, M. et al. HU multimerization shift controls nucleoid compaction. Sci. Adv. 2, e1600650 (2016).
8. Kar, S., Edgar, R. & Adhya, S. Nucleoid remodeling by an altered HU protein: reorganization of the transcription program. Proc. Natl Acad. Sci. USA 102, 16397–16402 (2005).
9. Berger, M. et al. Genes on a wire: the nucleoid-associated protein HU insulates transcription units in Escherichia coli. Sci. Rep. 6, 31312 (2016).
10. Liyo, V. S. et al. Multiscale structuring of the E. coli chromosome by nucleoid-associated and condensin proteins. Cell 172, 771–783 (2018).
11. Prieto, A. J. et al. Genomics analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res. 40, 3524–3537 (2012).
12. Wang, W., Li, G. W., Chen, C., Xie, X. S. & Zhuang, X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333, 1445–1449 (2011).
13. Kamaresh, D. & Rouviere-Yaniv, J. The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J. 19, 6527–6535 (2000).
14. Schwinger, K. K., Lemberg, K. M., Zhang, Y. & Rice, P. A. Flexible DNA bending in HU-DNA cocrystal structures. EMBO J. 22, 3749–3760 (2003).
15. Claret, L. & Rouviere-Yaniv, J. Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J. Mol. Biol. 273, 93–104 (1997).
16. Le Gros, M. A., McDermott, G. & Larabell, C. A. X-ray tomography of whole cells. Curr. Opin. Struct. Biol. 15, 593–600 (2005).
17. Le Gros, M. A. et al. Soft X-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo. Cell Rep. 17, 2125–2136 (2016).
18. Fisher, J. K. et al. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153, 882–895 (2013).
19. Robinow, C. & Kellenberger, E. The bacterial nucleoid revisited. Microbiol. Rev. 68, 211–232 (1994).
20. Valens, M., Penaud, S., Rossignol, M., Cornet, F. & Boccard, F. Macromolecular organization of the Escherichia coli chromosome. EMBO J. 23, 3430–3441 (2004).
21. Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).
22. Liu, Y. et al. A model for chromosome organization during the cell cycle in live E. coli. Sci. Rep. 5, 17133 (2015).
23. Porod, G. in Small Angle X-Ray Scattering (eds Glatter, O. & Kratky, O.) 17–51 (Academic Press, 1982).
24. Zaslaver, A. et al. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3, 623–628 (2006).
25. Pin, C. et al. Network analysis of the transcriptional pattern of young and old cells of Escherichia coli during lag phase. BMC Syst. Biol. 3, 108 (2009).
26. Tucker, D. L., Tucker, N. & Conway, T. Gene expression profiling of the pH response in Escherichia coli. J. Bacteriol. 184, 6551–6558 (2002).
27. Foster, J. W. Escherichia coli acid resistance: tales of an amateur acidophile. Nat. Rev. Microbiol. 2, 898–907 (2004).
28. Krulwich, T. A., Sachs, G. & Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 9, 330–340 (2011).
29. Martinez, K. A. II et al. Genetic analysis of the pH response to acid stress in individual cells of Escherichia coli and Bacillus subtilis observed by fluorescence ratio imaging microscopy. Appl. Environ. Microbiol. 78, 3706–3714 (2012).
30. Frenkel-Krispin, D. et al. Nucleoid restructuring in stationary-state bacteria. Mol. Microbiol. 51, 395–405 (2004).
31. Kleckner, N. et al. The bacterial nucleoid: nature, dynamics and sister segregation. Curr. Opin. Microbiol. 22, 127–137 (2014).
32. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14, 762–775 (2014).
33. Clowrey, E. J. et al. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151, 724–737 (2012).
34. Dormann, C. J. Genome architecture and global gene regulation in bacteria: making progress towards a unified model? Nat. Rev. Microbiol. 11, 349–355 (2013).
35. Badrinarayanan, A., Le, T. B. & Laub, M. T. Bacterial chromosome organization and segregation. Annu Rev. Cell Dev. Biol. 31, 171–199 (2015).
36. Sobetzko, P., Travassos, A. & Mukherjishvili, G. Gene order and chromosome dynamics coordinate stiopatetional gene expression during the bacterial growth cycle. Proc. Natl Acad. Sci. USA 109, E42–E50 (2012).
37. Wiggins, P. A., Cheveralls, K. C., Martin, J. S., Lintner, R. & Kondov, J. Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament. Proc. Natl Acad. Sci. USA 107, 4991–4995 (2010).
38. Berlatzky, I. A., Rouvinski, A. & Ben-Yehuda, S. Spatial organization of a replicating bacterial chromosome. Proc. Natl Acad. Sci. USA 105, 14136–14140 (2008).
39. Victor, T. W. et al. X-ray fluorescence nanotomography of single bacteria with a sub-15 nm beam. Sci. Rep. 8, 13415 (2018).
40. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat. Rev. Microbiol. 8, 185–195 (2010).
41. Tagliar, A., Motter, S. G. & Pohjanpelto, C. N. Bacterial RNA polymerase is involved in chromosomal organization. J. Mol. Biol. 336, 227–237 (2004).
42. Kundukud, R., Cong, P., van der Maarel, J. R. & Doyle, P. S. Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein. Nucl. Acids Res. 41, 8280–8288 (2013).
43. van Noort, J., Verbrugge, S., Goosen, N., Dekker, C. & Dame, R. T. Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl Acad. Sci. USA 101, 6969–6974 (2004).
44. Berlatzky, I. A., Rouvinski, A. & Ben-Yehuda, S. Spatial organization of a replicating bacterial chromosome. Proc. Natl Acad. Sci. USA 105, 14136–14140 (2008).
45. We thank Andrei Trostel for help in RNA extraction from some of the samples tested here.

Competition interests

The authors declare no competing interests.

Supplementary information

Additional information is available for this paper at https://doi.org/10.1038/s41467-020-16724-5.

Correspondence and requests for materials should be addressed to M.H.

Peer reviewer information Nature Communications thanks Wataru Kagawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.