A Study on the Consolidation and Permeability Behaviour of Soils of State of Tamil Nadu, India

S Jayalekshmi¹ and V Elamathi²

¹Professor, National Institute of Technology, Tiruchirappalli, Tamil Nadu.
²Research Scholar, National Institute of Technology, Tiruchirappalli, Tamil Nadu.
Email: elamathivenkat@gmail.com

Abstract. In order to study the consolidation behavior, clay soil samples from 20 various locations of Tamil Nadu, India were collected and subjected to one dimensional consolidation tests. Coefficient of consolidation c_v, coefficient of volume change m_v, and coefficient of permeability k were plotted against consolidation pressure σ for all the soils. The results showed that the variation of c_v with pressure σ is not constant for all the soils. It was observed that various soils have shown various trends. Hence, the trends obtained in the study were compared with the literature. From the study, it was found that the variations in the trends were due to mineralogical effects. The consolidation behavior of soil is found to be influenced by clay mineralogy. Similarly $k-\sigma$, $m_v-\sigma$ trends were also compared. The study shows that clay mineralogy has reasonable effects on the consolidation and permeability behavior of soil.

1. Introduction

Settlement occurs when a foundation is laid over the clay soil and leads to severe damages to the superstructure. Settlement is due to consolidation of soil beneath the foundation. Hence it is necessary to find the parameters causing the consolidation of soil. Consolidation is controlled by coefficient of consolidation c_v [4] in which c_v gives the rate of settlement of the soil. It is necessary to know the rate of settlement of clay for design purposes. The time required for a given amount of settlement is predicted using c_v. Since consolidation test is a time consuming process, many authors attempted to correlate c_v with index properties like activity, liquidity index I_l and plasticity index I_p [5], shrinkage index I_s [6], liquid limit w_L [7,9], and Plasticity index I_p[8,9]. Coefficient of consolidation c_v is a function of coefficient of permeability k and coefficient of volume change m_v [4] which is given as:

$$c_v = \frac{k}{m_v}$$

As the consolidation pressure increases, the soil shrinks in volume, because of expulsion of water from the soil pores. The rate of expulsion of water depends on the permeability of soil k. Hence, the consolidation and permeability of soil is studied using the parameters coefficient of consolidation c_v, coefficient of volume change m_v, and coefficient of permeability k for the applied consolidation pressure σ. It is also observed that $c_v-\sigma$ trends for all soils were not same. c_v of some soils were
increasing and some were decreasing. Analysing the variations in the c_v-σ trends obtained in the laboratory for the clay minerals kaolinite, illite and montmorillonite and powdered quartz with water and CCl$_4$ as pore fluids, it was found that, the c_v increased with consolidation pressure σ for kaolinite and illite whereas it decreased for montmorillonite [11]. Variations in the c_v-σ trend from various literatures have been tabulated in Table 1. According to Table 1, c_v obtained in the present study is strongly influenced by clay mineralogy. The soils with increasing trends in the c_v-σ plot may contain kaolinite and illite as dominant mineral and those with decreasing trend may have montmorillonite in greater amount.

Coefficient of volume change m_v and coefficient of permeability k decrease with increase in consolidation pressure σ [11]. Higher range of values for m_v was observed for montmorillonite (1×10^{-2} to 9×10^{-5} m2/kN), whereas, illite (1.5×10^{-3} to 1.5×10^{-4} m2/kN) and kaolinite (2×10^{-5} to 1×10^{-4} m2/kN) showed lower range of values. Kaolinite (7×10^{-7} cm/s to 1×10^{-7} cm/s) showed higher range of values of k whereas montmorillonite (1×10^{-8} to 1×10^{-10} cm/s) showed lower range of values, illite (7×10^{-7} to 1×10^{-7} cm/s) lies between the two. The present study has also shown decreasing trends for both m_v and k similar to [11]. Volume change behavior of soils is strongly influenced by mineral composition [17]. The influence of volume change behavior on c_v increases with increase in consolidation pressure σ [17].

Soil Type	w_L	Dominant mineral	c_v-σ trend	Reference
Kaolinite	49.0	Kaolinite	Increases	[15]
BC soil-1	73.5	Montmorillonite	Decreases	[16]
Illitic soil	73.4	Illite	Increases	
Montmorillonite	321	Montmorillonite	Decreases	[11]
Illite	131	Illite	Increases	
Kaolinite	53	Kaolinite	Increases	
Group M-I	M-486	Montmorillonite	Decreases	[13, 14]
Group I-Q	I-72	Illite	Increases	
Group K-I	K-77	Kaolinite	Increases	
Bisaccia clay	110	Smectite	Decreases	[17]
Marino clay	50	Kaolinite	Increases	

The coefficients of permeability k of clays are controlled by both mechanical and physico-chemical factors [12]. The compressibility behavior of kaolinite, illite and powdered quartz is governed by mechanical factors and the compression behavior of montmorillonite is governed by physicochemical factors [11]. Mechanical factors denote size, shape, and the geometrical arrangement of the clay particles whereas physicochemical factors denotes i.e. diffused double layer [12]. Hence clay minerals like montmorillonite, kaolinite and illite plays a major role in consolidation behavior of clay. The individual effects of montmorillonite, kaolinite and illite on the consolidation behavior of soil were studied [11]. 40 different mixtures of montmorillonite, Kaolinite, Illite, and Quartz of various percentages were examined. The variation of compressibility and permeability of soil with the proportion of minerals and it was observed that compressibility of soil is heavily dependent on the mineral composition of soil specimen [13,14]. However, natural soil contains clay minerals in different proportions which are to be quantified in order to find the amount of dominant minerals in the soil.
Behavior of soil depends on the percentage of dominant mineral present in the soil. Each of the constituent clay mineral contributes to the macroscopic behavior. The proportions of the minerals in a soil sample are primarily responsible for the variations in the index properties, coefficient of consolidation, permeability, and the compression index [13].

2. Materials and experiments
Clay soil samples from 20 different locations of various districts of state of Tamil Nadu, India were collected in order to study the consolidation behavior of soil. Test pit method is used for collecting samples. Test pits are made at depths of 1 to 1.5 m and bulk, disturbed samples are collected from the pit. Then the soils are air dried, hand crushed and sieved in 425μ sieve and subjected to experimental tests in accordance with ASTM standards [1,2,3].

Soil samples are remolded at 1.1 times the liquid limit and compacted in three layers in the consolidation ring of 60 mm diameter and 20 mm height. The soil samples are subjected to one dimensional consolidation for the consolidation pressure range σ of 25 kPa, 50 kPa, 100 kPa, 200 kPa, 400 kPa, 800 kPa, 1600 kPa.

3. Results and discussion
All the soils have been tested for index properties [1,2] and consolidation properties [3]. Liquid limit of the soils tested ranges from 25 to 61% and the clay fraction varies from 19 to 64%. Values of consolidation characteristics of c_v and m_v for all the soils are obtained from one dimensional consolidation tests. Coefficient of permeability k is determined from equation 1.

When coefficient of consolidation c_v is plotted against consolidation pressure σ, variations were observed in the trends of c_v-σ plot. Table 2 lists c_v-σ response and the dominant mineral in the soils of the present study predicted based on the findings in Table1. From Table 2, it can be seen that, liquid limit ranges from 25-30% for kaolinite, 29-40% for illite and 46-62% for montmorillonite dominated soils. Coefficient of volume m_v and coefficient of permeability k decreases with increase in consolidation pressure σ for all the soils tested.

Sample No.	W.L.	USCS classification	c_v-σ response	Dominant mineral predicted based on literature review
S1	30	CL	Increases	Kaolinite
S2	62	CH	Decreases	Montmorillonite
S3	49	CH	Decreases	Montmorillonite
S4	25	ML	Increases	Kaolinite
S5	61	CH	Decreases	Montmorillonite
S6	60	CH	Decreases	Montmorillonite
S7	44	CH	Decreases	Montmorillonite
S8	46	CH	Decreases	Montmorillonite
S9	42	CH	Decreases	Montmorillonite
S10	29	CL	Increases	Illite
S11	37	CL	Increases	Illite
S12	46	CH	Decreases	Montmorillonite
Increases Illite
S14 30 ML Increases Kaolinite
S15 32 CL Increases Illite
S16 40 CL Increases Illite
S17 32 CL Increases Kaolinite
S18 50 CH Decreases Montmorillonite
S19 58 CH Decreases Montmorillonite
S20 55 CH Decreases Montmorillonite

In order to study the variations clearly, three samples S4, S16 and S18 with predicted dominant mineral as kaolinite, illite and montmorillonite respectively are considered and analysed using cv-σ, mv-σ and k-σ plots. Figure 1 gives log of time versus compression curve for the consolidation pressure of 25 kPa for the considered soil samples S4, S16 and S18.

![Figure 1. Time – compression curve for the consolidation pressure of 25 kPa for the soil samples S4, S16, S18 where K, I, M indicates Kaolinite, illite, montmorillonite dominated soil.](image)

3.1. Factor affecting the variations in the cv-σ plot
Soils S4, S14, S17, S1, S15, S10, S16, S11, S13, S7 have shown increasing trends whereas soils S9, S8, S20, S19, S5, S12, S2, S3, S18, S6 have shown decreasing trends. Table 1 show that the variation in the cv-σ plot is due to the presence of dominant mineral in the soil. However soils will not contain only one mineral. But the soil exhibits the behavior of dominant mineral as shown in Table 1. The consolidation and swelling behavior of kaolinite and illite dominated soils were similar [13]. This is evident from figure 2 in which S4 and S16 has shown increasing trend and the dominant mineral is predicted as kaolinite and illite for S4 and S16 respectively. S18 with montmorillonite as dominant mineral has shown decreasing trend.
5.

Figure 2. Variation of c_v with σ for the soil samples S4, S16, S18 where K, I, M indicates kaolinite, illite, montmorillonite dominated soil.

3.2. Volume change behavior of soil samples tested
As the consolidation pressure increases, water diffuses away from the soil, thus soil gradually takes up the pressure and shrinks in volume. Volume change is influenced by stress level [17]. The volume change is governed by two mechanisms. For kaolinite clay shearing resistance at inter particle level predominate and for montmorillonite clay, the volume change is caused by the diffuse double layer repulsive forces [19]. The shear resistance of kaolinite is a function of clay fabric and surface friction [20]. Figure 3 shows the response of m_v with σ for the soil samples S4, S16 and S18 for which dominant mineral is predicted as kaolinite, illite, and montmorillonite respectively. The plot obtained in the present study is similar to that obtained for kaolinite, illite and montmorillonite in [11]. Thus the predicted dominant mineral matches.

Figure 3. Variation of m_v with σ for the soil samples S4, S16, S18 where K, I, M indicates kaolinite, illite, montmorillonite dominated soil

3.3. Permeability behavior of soil samples tested
k-σ plot is obtained for soil samples S4, S16 and S18 as shown in figure 4. Coefficient of permeability k showed higher range of values for kaolinite, lower range of values for montmorillonite and illite lies
between the two [11]. From figure 4, it is seen that higher range of values of k were observed for S4 and S16 with kaolinite and illite as dominant mineral and lower range of values were observed for S18 with montmorillonite as dominant mineral. The trend obtained in the present study is similar to [11]. Permeability of soil k depends on mechanical and physico chemical i.e., kaolinite and illite are greatly influenced by mechanical factors whereas montmorillonite is influenced by physico chemical factors [18]. Thus, the behavior of kaolinite and illite are governed by short-range particle interactions due to grain size and shape whereas the behavior of montmorillonite is governed by long-range particle interactions due to diffused double layer [11].

Kaolinite and illite dominated soils exhibited similar consolidation behavior. This is evident from Fig. 4 in which S4 and S16 show increasing trend and the dominant mineral is predicted as kaolinite and illite for S4 and S16 respectively. The trends of S4 and S16 for all c_v-σ, m_v-σ, k-σ plots lies closer whereas more gap exists for S18. This indicates that kaolinite and illite dominated soils exhibit similar behavior (short range particle interaction), but montmorillonite exhibits physico chemical behavior (long range particle interaction).

![Figure 4. Variation of k with σ for the soil samples S4, S16, S18 where K, I, M indicates kaolinite, illite, montmorillonite dominated soil](image)

3.4. Relationship between c_v and Index properties

Table 3. Correlations for c_v using index properties from various literatures

S.No.	Equation	R²	Source
1.	$c_v = \frac{3}{100(I_r)^{1/5}}$ (m²/s)	0.94	[16]
2.	$c_v = -4 \times 10^{-9} w_c + 4 \times 10^{-7}$ (m²/s)	0.8298	[10]
3.	$c_v = 0.6155 - 0.0183 I_p$ (m²/yr)	0.994	[8]
In order to calculate c_v, correlations between c_v and index properties given by many literature are listed in Table 3. Index properties w_L, w_p, w_S, I_P and I_S are plotted against c_v for all consolidation pressure range σ of 25 kPa, 50 kPa, 100 kPa, 200 kPa, 400 kPa, 800 kPa, 1600 kPa as shown in figure 5 and figure 6. For the soil samples tested, shrinkage limit correlates better with c_v than any other parameter, and with $R^2=0.824$ for which correlation is as follows:

$$c_v = 3E^{-21} f_s^{10.86}$$

(2)

4. Conclusion
- The present study shows that shrinkage limit has a better correlation with coefficient of consolidation than the liquid limit, plastic limit and shrinkage index.
- Variation in c_v-σ, m_c-σ, k-σ plots were observed for all the soils and it was found that the dominant clay mineral present in the soil sample is responsible for the variation.
The dominant clay mineral is predicted for the soil samples of the present study on the basis of literature review (Table 1).

The trends obtained for c_v-σ, m_v-σ, k-σ with kaolinite, illite and montmorillonite dominated soils matches well with [11].

The response of c_v, m_v, k for kaolinite and illite dominated soils were similar as stated by [13].

Works were carried out on pure minerals and mineral mixtures (controlled condition) [11,14]. But the present study involves testing of natural soil samples.

The proportion of each mineral present in the soil varies for all the soil. Each mineral amount has their individual effect on the consolidation behavior of soil.

Hence quantification of minerals is necessary in order to study effect of individual mineral on the consolidation behavior of the soil.

Here in this study only three clay minerals were considered. But the presence of other clay minerals wills also have their significant effect on the behavior of soil.

In summary, it is concluded that when combinations of mineral exists in sampled soil, especially containing clay, consolidation behavior and permeability behavior at various consolidation pressure, can be indicative of the dominant mineral present.

Acknowledgement
The authors acknowledge with thanks, for the facilities offered, by the Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, India. Also, grateful to the Ministry of Education (MoE), India, for providing scholarship, to carry out the research work.

References
[1] ASTM D4318 - 17e1 2017 - Standard test methods for liquid limit, plastic limit, and plasticity index of soils.
[2] ASTM Standard D427-04 2007 Determination of shrinkage limit using mercury.
[3] ASTM D 2435-96 1996 Standard test method for one-dimensional consolidation properties of soils.
[4] Terzaghi K and Peck R B 1967 Soil mechanics in engineering practice John Wiley and Sons (New York).
[5] Carrier W D III 1985 Consolidation parameters derived from index tests Geotechnique 35(2) 211–213.
[6] Sridharan A and Nagaraj H B 2004 Coefficient of consolidation and its correlation with index properties of remolded soils Geotechnical Testing Journal ASTM 27(5) 1-6.
[7] Asma Y, Al Taee’e, and Abbas F Al- Ameri 2011 Estimation of relationship between coefficient of consolidation and liquid limit of middle and south Iraqi soils Journal of engineering 17(3) 430-440.
[8] Kok Shien N, Yee Ming C and Nur Izzati A L 2018 Prediction of consolidation characteristics from index properties E3S Web of Conferences 65 1-5.
[9] Solanki C H 2011 Quick settlement computation of shallow foundation using soil index and plasticity characteristics Pan- Am CGS Geotechnical conference 1-5.
[10] Priyadarshini Devi S, Rambha Devi K, Prasad D S V and Prasada Raja G V R 2015 Study on consolidation and correlation with index properties of different soils in Manipur valley International Journal of Engineering Research and Development 11(5) 57-63.
[11] Robinson G R and Allam M M 1998 Effect of clay mineralogy on coefficient of consolidation Clays and Clay Minerals 46(5) 596-600.
[12] Olson R E and Mesri G 1970 Mechanisms controlling the compressibility of clays Journal of the Soil Mechanics and Foundations Division 96 (6) 1863-1878.
[13] Tiwari B and Ajmera B 2011 Consolidation and swelling behavior of major clay minerals and their mixtures Applied Clay Science 54 264–273.
[14] Tiwari B and Ajmera B 2011 Consolidation and permeability of clay minerals - Expansive to Non-expansive Geo-Frontiers ASCE 2414-2423.
[15] Sridharan A, Sivapullah P V and Stalin V K 1994 Effect of short duration of load increment on the compressibility of soils Geotechnical Testing Journal ASTM 17 488-496.
[16] Sridharan A and Nagaraj H B 2004 Coefficient of consolidation and its correlation with index properties of remolded soils Geotechnical Testing Journal 27(5).

[17] Di Maio C, Santoli L and Schiavone P 2004 Volume change behaviour of clays: the influence of mineral composition, pore fluid composition and stress state Mechanics of Materials 36 435–451.

[18] Mesri G and Olson R E 1971 Mechanisms controlling the permeability of clays Clays and Clay minerals 19 151-158.

[19] Sridharan A and Venkatappa Rao G 1973 Mechanisms controlling volume change of saturated clays and the role of the effective stress concept Geotechnique 23 (3) 359-382.

[20] Sudhakar M Rao and Sridharan A 1985 Mechanism controlling the volume change behavior of kaolinite Clays and Clay Minerals 33(4) 323-328.