The production of high-value proteins in plant has become a reality with numerous products on the market. Plant based platforms have several advantages such as low upstream costs, no risk of contamination with human or animal pathogens, absence of bacterial toxins, easy and rapidly scale up with low investment cost, availability of different technology to reduce downstream process cost, etc. Foreign proteins can be produced by utilizing either transient expression in leaves or transgenic expression systems in whole plants or plant cell culture. Both transient and stable systems are fully scalable and several large scale manufacture facilities are available, including those that satisfy good manufacturing practice (GMP). Recombinant protein yields are widely variable and depend on numerous factors such as plant species, promoter, enhancers, incorporation of intron sequences, mRNA stability, 5' and 3' untranslated regions, codon usage, protein folding and stability, etc. Different technologies have been developed to increase transcription efficiency, mRNA stability and translation effectiveness and to improve protein folding and stability. Among the post-translational factors, subcellular localization is of particular interest as it has a profound impact on...
protein yields. In leaves, some complex proteins are usually targeted to the apoplastic space where proteolysis can occur; alternatively if Golgi post-translational modifications are not necessary to obtain a fully active molecule, they can be retained on the endoplasmic reticulum (ER). In leaves, an alternative destination is to target the recombinant protein to vacuoles. Plant vacuoles are multifunctional organelles, essential to plant life, which share some of their properties with the lysosomes in animal cells. Although plant vacuoles are lytic compartments, they also have unique functions such as reservoirs for ions and metabolites, plant defense, detoxification processes, general cell homeostasis, etc. In seeds and specialized tissues that evolve to store high amounts of proteins, special storage compartments called protein storage vacuole (PSV) or ER derived protein bodies (PB) are found. Foreign proteins sorted to these special compartments accumulate in large amounts and in stable forms for long periods of time. Deposition of recombinant proteins in central vacuoles of vegetative tissues has initially been considered inadequate since this compartment was expected to be hostile. For example, green fluorescent protein is unstable in the central vacuole of Arabidopsis thaliana leaves or cultured cells since light triggers vacuolar acidification and proteolysis by cysteine proteases. Despite the lytic characteristics of central vacuole, when seed storage proteins are ectopically expressed in leaf tissue, they are located in neutral vacuoles that resemble seed PSV. In addition, different types of vacuoles can be generated from existing vacuoles as a consequence of environmental changes or stage of development. Taking all these facts into consideration, vacuoles of vegetative tissue are highly dynamic structures whose characteristics are affected by environmental conditions, development programs and even ectopic deposition of proteins. Herein we discuss the current status of the employment of vacuolar delivery in vegetative tissues as a strategy to enhance heterologous protein yields. Accumulation of foreign protein in reproductive seed storage compartments has been reviewed elsewhere. Selected examples of vacuolar sorted recombinant proteins in vegetative tissue are presented in Table 1, and we shall highlight their particularities.

Production of egg white avidin or streptavidin in plants is of interest since they are efficient biocontrol agents. Avidin binds with very high affinity to biotin, which impairs the activity of carboxylases, enzymes that are essential for cellular metabolism in different organisms including insects and plants. Taking into account that 80% of biotin pools of plant cells are located in the cytoplasm and the rest in the mitochondria and chloroplast, delivery of avidin to vacuole was hypothesized as a safe strategy to avoid detrimental effects caused by biotin sequestration. Avidin and streptavidin were expressed in transgenic Nicotiana tabacum fused to the NH2 terminus (Nt) vacuolar sorting signal (VSS) MESKFAHIVFLLLATPFETL-LARKESDGPE of potato proteinase inhibitor I (PPI-I) that is sufficient to target to vacuoles that have δ-TIP on their tonoplast defined as ΔV. ΔV–sorted avidin yields in leaves were around 1.5% TSP and remained relatively constant throughout leaf lifetime. Avidin was detected in protein body-like structures within the vacuole. Plants had a normal phenotype and produced fertile pollen and seeds. Furthermore, avidin was also fused to a different type of VSS: sugarcane legumain sequence specific (ssVSS) that targets to lytic vacuoe (LV). The expression was analyzed in transgenic sugarcane. The highest avidin levels in leaves, stem and roots were found for the ΔV sorted version, compared to the LV, ER, apoplast or cytosol targeted variants, but these plants developed a biotin deficient phenotype. In contrast, sugarcane plants that expressed LV–avidin had a normal phenotype but avidin suffered a site-specific limited proteolysis. Therefore, sugarcane ΔV was shown to be a stable environment for recombinant protein accumulation. It is worth noticing that the co-existence of 2 different types of vacuoles in the same cells has been described in a limited number of cell types; sugarcane has the unusual capacity to accumulate sucrose in stem cell vacuoles and contains several types of vacuoles that differ in their pH and capacity to hydrolyze different substrates. Unlike sugarcane, N. tabacum leaves does not specialize in storage. However, they were able to accumulate ΔV–sorted avidin in a stable form.

A further example of stable deposition of proteins in sugarcane vacuoles is the cellulolytic enzyme that also needs to be compartmentalized to avoid interference with the cell wall structure. The production of this enzyme is of interest to make cost-competitive cellulosic ethanol. Fungal cellobiohydrolase (CBH) I and II and bacterial endoglucanase (EG) accumulated to higher levels when fused to the barley polyamine oxidase Ct VSS compared to the fusion to an ER-retention signal. Yields of CBH I, CBH II and EG
Protein	Production Host	Transformation Method	Plant Organ	Vacular Signal	Yields of proteins sorted to different subcellular Localizations	Level, stability or other relevant information	References		
Egg white Avidin	*Nicotiana tabacum* (tobacco)	Stable	Leaves	Nt VSS (MESKF AHI VFLATPF ETLARK EDGPE) potato proteinase inhibitor I (PPI-I)	ER: Vacuole 1.5% Apoplast 0.25% Cytosol 1.5%	Avidin was found in protein body-like structures within the vacuole	Murray et al., 2002		
Egg white Avidin	*Saccharum officinarum* (sugarcane)	Stable	Stems (cane)	Nt svVSS s legumain (LV) Nt VSS (PPI-I) (ΔV)	NR	NR	Jackson et al., 2010		
Cellobiohydrolase I CBH I	*Saccharum officinarum* (sugarcane)	Stable	Green leaves	Ct VSS (DELKA EAK) barley polyamine oxidase	2.38 AU/mg 7.33 AU/mg 281.36 ng/mg	VacCBH II yield was 2-fold higher than ER-CBH II and CBH II yields were reduced in senescent leaves and EG was not detected	Harrison et al., 2011, 2014		
Bacteriophage CP933 endolysin (E1)	*Nicotiana benthamiana*	Transient	(PVX)	Leaves	Nt VSS potato proteinase inhibitor I (PPI-I) (ΔV)	NR 0.6 mg/g NR	Cyto-EL produced severe growth detriment. Vac-EL had no toxic effect	Kovalskaya et al., 2016, 2012	
Human tissue trans-glutaminase (TG2)	*Nicotiana benthamiana*	Transient	Leaves	Ct VSS (KISIA) Amaranth 11S globulin	9.5 μg/g 9.9μg/g 0.6 μg/mg 1.1 μg/mg	Vacuolar glucocerebrosidase was stable	Marin Viegas et al., 2015		
Glucocerebrosidase	*Daucus arota* subsp. sativus (carrot)	Stable	Suspension culture cells	Ct VSS (DLYVDTM) Tobacco chitinase A	— NR NR	—	Shaaflie et al., 2007		
Collagen (rhCOL1)	*Nicotiana tabacum* (tobacco)	Stable	Leaves	Nt svVSS (NPIRL) barley aleurain	— 2% NS NS	vac-rhCOL1 yield was 10-fold higher than apo- and cyto-rhCOL1 ones.	Stein et al., 2009		
Silk-like protein (DP1B)	*Arabidopsis thaliana*	Stable	Leaves	Nt svVSS (NPIRL) sweet potato sporamin	6.7% NS 8.5%	Vacuolar DP1B was unstable	Yang et al., 2005		
human α1-proteinase inhibitor (α1-PI)	*Solanium lycopersicum* (tomato)	Stable	Leaves	Nt svVSS (NPIRL) sweet potato sporamin	3.05% 1.89% 1.40% 0.45%	ER-α1-PI-Δns yield was 1.6-fold higher than vac-α1-PI yield	Jha et al., 2012		
Human complement 5a C5a	*Nicotiana tabacum* (tobacco)	Stable	Leaves	Ct VSS (AFVY) Phaseolin 7S globulin	0.0003% 0.001% 0.0002%	Vac C5a yield was 3 to 5-fold higher in ER-C5a and Apo-C5a	Nausch et al., 2012		
Interleukin 6 (IL6)	*Nicotiana benthamiana*	Transient	Leaves	Ct VSS (AFVY) Phaseolin 7S globulin	0.2% 0.7% 558 μg/mg	Vac C5a yield was 3.5-fold higher than ER-C5a yield	Nausch et al., 2012		
Human Ig G1 and G4	*Nicotiana tabacum* (tobacco)	Stable	BY2 cells	Ct VSS (DLYVDTM) Tobacco chitinase A	NR NR NR	Apo-IgG yield was higher than ER- and vac-IgG ones.	Shaaltiel et al., 2012		
Mouse IgG	*Nicotiana tabacum* (tobacco)	Stable	BY2 cells	Nt svVSS (NPIRL) sweet potato sporamin	— 28.5-80 ng/g — —	IgG exhibit paucimannose glycan structure	Misaki et al., 2015, 2013, 2011		
Mouse Ig G1	*Nicotiana benthamiana*	Transient	Leaves	Ct VSS (KISIA) and svVSS (NIFRGF) Amaranth 11S globulin	1.7% 1.6% 0.13%	ER- and vac-Abs yield were 10-15-fold higher than sec-Ab	Ocampo et al., 2016, 2011		

Foreign proteins were grouped based on their characteristics in: I) cytotoxic or with detrimental effect on plant growth (light blue), II) fibrous proteins (yellow), III) secretory mammalian protein (pink). Ct, COOH terminus; Nt, NH2 terminus; VSS: vacuolar sorting signal, LV: lytic vacuole, ΔV: delta vacuole, %: g. protein of interest per 100 g total soluble protein, NR no reporter, NS: no stable, AU: arbitrary units.
were reduced in senescent leaves probably due to endo- and exo-peptidases released during leaf senescence.20,21 These results emphasize the importance of the development stage for a foreign protein deposition in leaves.

Another toxic protein that was successfully expressed in *Nicotiana benthamiana* leaves is the bacteriophage CP933 endolysin (EL), an enzyme that hydrolyzes peptidoglycan. This feature makes EL a promising antimicrobial agent for antibiotic-resistant microorganism. EL was targeted to ΔV by fusion to Nt VSS of PPI-I. Plants producing the ΔV-EL did not exhibit the severe detrimental effects on growth found in cytosolic-EL plants. This result suggests that sequestration of EL in the vacuole reduces its toxicity.22

Transglutaminases 2 (TG2) are also challenging proteins for the different expression systems since their cross-linking activity has toxic effects on cell growth and development.34 Attempts to produce transgenic BY-2 expressing cytosolic-TG2 were unsuccessful, probably due to the toxic effect of this enzyme.25 We have recently shown, by using transient expression in *Nicotiana benthamiana* leaves, that ER-TG2 and vac-TG2 yields are 9 to 16-fold higher than cytosolic and secretory versions.23 Therefore, compartmentalization of TG within the endomembrane systems avoids cytosolic toxicity and also apoplastic proteolysis.

Glucocerebrosidase is an acid-β-glucosidase used in enzyme replacement therapy for Gaucher’s disease, a rare lysosomal storage disorder. The manufacture cost of this enzyme in other expression systems was very high; therefore, Protalix Biotherapeutics developed a technology to produce it in carrot suspension culture. Two variants were produced by fusion to the Ct-VSS from tobacco chitinase A (DLLVDTM) and also to an ER retention sequence. Vacular glucocerebrosidase yields were higher than ER variants. In addition, pau-cimannose glycan structures in vacuolar glucocerebrosidase favored mannose receptor-mediated uptake by macrophages which made this variant more effective therapeutically than the ER version.24

Deposition of proteins with the ability to produce fibers on vacuoles of vegetative tissues has also been assayed. For example, human collagen type I (rhCOL1) is a heterotrimeric protein that requires essential posttranslational modifications to self-organize into fibers. These modifications are performed by human prolyl-4-hydroxylases (P4H) and lysyl hydroxylase 3 (LH3). The genes encoding for rhPCOL1 α 1 and α 2 chains, P4H α, P4H β, and LH3 were expressed in transgenic tobacco plants using different targeting signals to sort to vacuoles (barley aleurain Nt ssVSS MAHARVLLALAVLATAAVAVASSSFADSNPIRPVTDRAASTLA), apoplast or cytosol.25 Cytoplasm sorted rhCOL1 was not detectable, while apoplast-targeted rhCOL1 yields were very low. Vac-rhCol1 yields were the highest, and molecules were able to form stable triple helical structures that were fully functional in inducing proliferation of human cells.25 These results highlight that leaf vacuoles are a suitable compartment to store rhCOL1. Another fibrous protein: the spider dragkine silk (DP18) was also fused to a ssVSS: the NPIRL from sporamine. Different sorted version were expressed in transgenic *A. thaliana*. However, in this case only the ER variant accumulated at high levels while vac-DP18 was not stable.26

Moreover, different biopharmaceuticals proteins have been produced successfully in vacuoles of vegetative tissues. Human α 1-proteinase inhibitor (α1-PI), also known as α1- antitrypsin, is a serine protease inhibitor essential to keep lung elasticity. The production of a glycosylated biologically active α1-PI has been assayed in different systems, but none of them could fulfill the requirements of cost-effective production, clinical safety and biological activity. Consequently, this protein was expressed in *Solanum lycopersicum* (tomato) by using different sorting signal to target to cytosol, apoplast, ER and vacuole [Nt ssVSS (NPIRL) sweet potato sporamine]. The highest average yields in T1 progeny were 3.05 % TSP for ER, 1.89% for vacuolar, 1.40% for apoplast and 0.08 % for cytosolic forms. Although vacular α1-PI was produced in tomato leaves with comparable yields respect to the ER form, the enzyme exhibit lower specific activity.27

Another example of therapeutic protein sorted to vacuoles is human complement factor 5a (C5a) that was expressed in leaves and seeds of transgenic *N. tabacum*. The Ct VSS AFVY of phaseolin 7S storage protein was used to target C5a to the vacuole. Vac-C5a yields were 3 to 5-fold higher than ER- or apo-C5a. These C5a versions were also transiently expressed in *Nicotiana benthamiana* leaves using an hybrid binary vector (MagnICON) based on tobacco mosaic virus (TMV) that contains viral sequences required for RNA replication leading to amplification of RNA transcript, and also the highest yields were
detected for vac-C5a variants (3.5-fold higher than ER). Therefore vacuoles were found as the most suitable compartment to produce C5a, and the higher yields were attributed to the selection of the AFVY Ct, which is considered a PSV-specific targeting signal. The authors argue that although lytic vacuoles are expected to be prevalent in vegetative tissues, the expression of storage protein derived sequence could induce the formation of storage organelles in vegetative tissue. Unexpected transient overexpression of ER-C5a and vac-C5a in *Nicotiana benthamiana* was accompanied by cytotoxic effects and a rapid decrease of recombinant C5a even though it is not anticipated that this protein could interfere with plant metabolism. Due to toxic effect, yields for vac-C5a (0.7% TSP) were higher than ER-C5a (0.2% TSP) but for non toxic protein using MagnICON system around 10% TSP were expected. Using the same sorting strategy, human interleukin (IL) 6 was expressed in stable transgenic *N. tabacum* and temporally in *Nicotiana benthamiana*, but ER sorted-IL6 produced yields 6.25 higher than vac-IL6, although IL6 was also fused to AFVY Ct VSS. ER-targeted IL6 in leaves using the MagnICON system resulted in yields of up to 7% TSP and none cytotoxic effect were observed. Deposition of antibodies (Abs) in vacuoles of vegetative tissues had also been studied and information about trafficking and modifications in different compartments was obtained based on its N-glycosylation pattern. The N-glycosylation of proteins starts in the ER with the transfer of the Glc3Man9GlcNAc2 oligosaccharide to a specific Asn residues on the nascent polypeptide followed of a limited trimming in both the ER and Golgi and sequential addition of monosaccharides, as the protein travel through the Golgi complex, to yield complex N-glycans, typically GlcNAc2Man3FucXylGlcNAc2 structures (Fig. 1). Secretory plant N-glycans contain galactose β 1,3 and fucose α 1,4 linked to the terminal GlcNAc forming the called Lewis A oligosaccharide structure. In addition, paucimannosidic, that derives from the removal of terminal GlcNAc residues from

Figure 1. Schematic representation of the plant N-glycans processing pathway. The arrows indicate the trafficking pathways. N-glycosylation of vacuolar proteins suggests a direct ER-vacuole transport route bypassing the Golgi apparatus, and also the classical Golgi-dependent pathway. ER, endoplasmic reticulum; Asn, asparagine; GlcNAc, N-acetylgalactosamine Man, mannose; Fuc, fucose; Xyl, xylose; Gal, galactose. **High-mannose type:** Man 9 Man9GlcNAc2; Man 8: Man8GlcNAc2. Man 7: Man7GlcNAc2 oligosaccharides. **Complex type:** GlcNAc2Man3GlcNAc2 and GlcNAc2Man3XylFucGlcNAc2 oligosaccharides; **Lewis (A)** GalFucGlcNAc2Man3XylFucGlcNAc2 oligosaccharide. **Paucimannosidic type:** Man3XylFucGlcNAc2; ManXylFucGlcNAc2, ManXylGlcNAc2, ManFucGlcNAc2 oligosaccharides.
complex N-glycans, are present in vacuolar and secreted proteins.36-38 Humans IgG1 and IgG4 were expressed, in transgenic suspension-cultured of tobacco BY2, sorted to different compartments, resulting in secretory versions producing higher yields than ER and vacuolar versions.30,31 In addition, a mouse IgG fused to the sporamin Nt ssVSS (NPIRL) was produced also in transgenic BY2 cells, in intact form at levels of 8.5-80 ng/g and paucimannose Man3FucXylGlcNAc2 as main N-glycan structure.32 We had also produced a vacuolar mouse IgG1 by transient expression in *Nicotiana benthamiana* leaves. To target the Ab to vacuoles, the heavy chain was fused to 2 sequences derived from amaranth 11S storage protein: KISLA Ct VSS (vac1-Ab) and NIFRGF ssVSS (vac2-Ab), and as control ER-Ab and sec-Ab variants were produced. ER-Ab and vac-Ab accumulations levels were 10-15-fold higher than sec-Ab.33 Although NPIRL motif is typical of lytic vacuole proteins and the short and hydrophobic C terminus are distinctive of storage proteins39, no significant differences were found between vac1-Ab and vac2-Ab yields. Another important finding of our work, was the presence of oligomannosidic (Man 7-9) as the major glycoform in vac-Abs (75%), what suggests a direct transport from the ER to vacuoles bypassing the Golgi apparatus.33 Furthermore vac-Abs have 25% of GlcNAc2Man3XylFucGlcNAc2 therefore removal of terminal GlcNAc residues in the vacuole did not occur.33

Ability of plants cells to accumulate toxic proteins in vacuoles is not surprising since variety of natural and synthetic chemicals are inactivated and transported to vacuole by different detoxification mechanisms.40 For example, some xenobiotic compounds are conjugated to glutathione in the cytosol and then transported to vacuole by an ATP-dependent tonoplast transporter.40 Plant secondary metabolites, such as flavonoids are also delivery to vacuoles using tonoplast transporters, but for anthocyanins a transport mediated by vesicle trafficking has also been described.41 Anthocyanins are uploaded into the ER compartment by membrane translocators, followed by an ER to vacuole transport either by a direct route (bypassing Golgi) or by Golgi dependent pathway.41

Figure 2. Comparison of yields obtained when proteins were sorted to different compartments in the secretory pathway. X axis represents the ratio of yields obtained for vacuolar-/ER-versions (Vac/ER), vacuolar-/secreted-forms (Vac/apo) or vacuolar-/cytosolic-variants (Vac/cyto). The obtained value are shown in each bar. The X axis has a maximum value of 3.5 and higher values are not to at scale. The bar color represents the plant species used to express the different proteins showed in the Y axis. α1-PI: human α1-proteinase inhibitor, TG2: Human tissue transglutaminase, IL6: Interleukin 6, C5a: Human complement 5a, IgG1: Immunoglobulin G1, EG: Endoglucanase, CBH I: Cellobiohydrolase I, CBH II: Cellobiohydrolase II.
From the 15 vegetative vacuole-sorted proteins listed in Table 1, accumulation levels of variants fused to different targeting signals, were informed only for 8 and the results are summarized in Fig. 2. Vacuolar sorted variants had yields 3.0-9.0 and 1.2-16.5-fold-times higher than their cytosolic or apoplastic counterparts, respectively. Although these values are based on a reduced number of proteins (5), other proteins in Table 1 such as rhCol1, EL, CBH I, CBH II and EG had the same behavior, but apoplast or cytosolic yields were not reported due to instability or low levels (Table 1). Therefore for 10 proteins the fusion to vacuolar sorting signals enhanced the production of recombinant proteins. The impact of vacuolar versus ER location on foreign protein accumulation was variable. For proteins that produced detrimental effect in cellular metabolism, such as CBH II, EG, C5a and CBH I, vacuolar sorted forms yields were 1.2-4.7 higher than ER retained variants. In contrast, ER-IL6- and ER-α1-PI had higher accumulation levels than their vacuolar counterparts. Vacuolar- and ER-sorted forms of mouse IgG1- and TG2 had equal protein yields. These results indicate that a vacuolar sorting strategy is superior to apoplastic or cytosolic targeting, and could be also better that ER retention.

To target foreign proteins to vacuoles, different signals have been used located either in the N or C terminus, including a NPIR/NPIXL sequence specific motif typical of protease inhibitors or vacuolar proteases [Nt-ssVSS of barley aleurain, legumain, and sweet potato sporamin] or short-hydrophobic Ct characteristic of chitinases, cereal lectins or storage proteins (Ct-VSS of phaselins 7S globulin, amaranth 11S protein, barley polyamine oxidase and tobacco chitinase A).42 Both types of VSSs were demonstrated to be useful to maximize recombinant protein levels. Although Nt-VSS and Ct-VSS were supposed to target proteins to lytic and storage vacuoles, respectively, both type of motif targeted proteins to central vacuole of vegetative tissue by a molecular mechanism that is currently unclear.43 The N-glycosylation pattern of the foreign exemplified differences in vacuolar sorting mechanism, for example glucocerebrosidase-Ct-VSS exhibited paucimannose structures and complex glycan added in the trans Golgi; supporting a Golgi dependent transport24 while a mouse IgG1 fused to a ssVSS and Ct-VSS of amaranth storage proteins is decorated with Man 7 and Man 8 glycans supporting a direct transport bypassing the Golgi (Fig. 1) These glycosylation patterns maybe adequate for some foreign proteins such as glucocerebrosidase whose vacuolar variant is easily internalized by human cells, but it is no convenient for therapeutic antibodies since effectors’ functions are dependent of heavy chain glycosylation. Nevertheless vacuolar sorted antibodies could be useful for diagnostic, purification and other research applications.

Table 1 and Fig. 2 also showed also that vacuolar targeting is an effective strategy to produce high yields of intact and fully active proteins in several plant species such as Nicotiana benthamiana, tobacco, tomato, sugarcane and carrot. The only species that showed unsatisfactory results was arabidopsis. Other important conclusion is that the accumulation levels of vacuolar sorted foreign proteins were dependent of the developmental stage and physiological condition of leaves, therefore to achieve high yields samples should be collected prior senescence.20,21

In conclusion, vacuolar sorting in vegetative plant tissues is a satisfactory strategy to enhance protein yields and the obtained results are superior than targeting to cytosol or to apoplast an could be also better than ER retention for cytotoxic proteins. For recombinant glycosylated proteins will be desirable to have a better understanding of the mechanism that control vacuolar delivery by the different targeting routes in order to predict glycosylation pattern.

Abbreviations

- Ab: monoclonal antibody
- CBH I: Cellulbiohydrolase I
- CBH II: Cellulbiohydrolase II
- Ct: COOH terminus
- C5a: human complement 5a
- DP1B: silk-like protein
- EG: endoglucanase
- EL: bacteriophage CP933 endolysin
- ER: endoplasmic reticulum
- GMP: good manufacturing practice
- IL6: interleukin 6
- IgG: immunoglobulin
- LV: lytic vacuole
- Nt: NH2 terminus
- PB: protein bodies
- PSV: protein storage vacuole
- PPI-I: potato proteinase inhibitor I
- rhCOL1: human collagen type I
- ssVSS: sequence specific VSS
- TG2: human tissue transglutaminase
- TIP: tonoplast intrinsic proteins
TSP total soluble protein
VSS vacuolar sorting signal
α1-PI human α1-proteinase inhibitor
ΔV delta vacuole

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Funding
This research was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) through the grants PICT Start Up-2015-0010 and by Universidad Nacional de La Plata (grant 11X/630). VSMV and CGO are fellows at CONICET. SP is researcher from CONICET and Professor of the Facultad de Ciencias Exactas-UNLP.

Author Contributions
VSMV; CGO and SP wrote the paper. Authors contributed equally to this work.

References
[1] Sack M, Hofbauer A, Fischer R, Stoger E. The increasing value of plant-made proteins. Curr Opin Biotechnol 2015; 32:163-70; PMID:25578557; https://doi.org/10.1016/j.copbio.2014.12.008
[2] Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. Plant Sci 2012; 184:83-101; PMID:22284713; https://doi.org/10.1016/j.plantsci.2011.12.004
[3] Yao J, Weng Y, Dickey A, Wang KY. Plants as factories for human pharmaceuticals: Applications and challenges. Int J Mol Sci 2015; 16:28549-65; PMID:26633378; https://doi.org/10.3390/ijms161226122
[4] Gleba YY, Tusé D, Giritch A. Plant viral vectors for delivery by agrobacterium. Curr Top Microbiol Immunol. 2014;375:155-92. doi:10.1007/82_2013_352. Review. PubMed PMID:23949286.
[5] Goulet C, Khalf M, Sainsbury F, D’Aoust MA, Michaud D. A protease activity-depleted environment for heterologous proteins migrating towards the leaf cell apoplast. Plant Biotechnol J 2012; 10:83-94; PMID:21895943; https://doi.org/10.1111/j.1467-7652.2011.00643.x
[6] Pillay P, Schluter U, Van Wyk S, Kunert KJ, Vorster BJ. Proteolysis of recombinant proteins in bioengineered plant cells. Bioengineered 2014; 5:15-20; PMID:23778319; https://doi.org/10.4161/bioe.25158
[7] Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 2008; 6:633-48; PMID:18452504; https://doi.org/10.1111/j.1467-7652.2008.00344.x
[8] Hood E, Cramer C, Medrano G, Xu J. Protein targeting: Strategic planning for optimizing protein products through plant biotechnology. In A. Altman and P.M. Hasegawa (Eds.), Plant Biotechnology and Agriculture, pp. 35–54. San Diego, CA: Academic Press. ISBN 9780123814661; https://doi.org/10.1016/B978-0-12-381466-1.00003-1.
[9] Marty F. Plant vacuoles. Plant Mol Biol 1998; 11:587-99.
[10] Herman EM, Larkins BA. Protein storage bodies and vacuoles. Plant Cell 1999; 11:601-14; PMID:10213781; https://doi.org/10.1105/tpc.11.4.601
[11] Takaiwa F. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment. Bioengineered 2013; 4:136-9; PMID:23563599; https://doi.org/10.4161/bioe.24187
[12] Takamura K, Shimada T, Ono E, Tanaka Y, Nagatani A, Higashi SI, Watanabe M, Nishimura M, Hara-Nishimura I. Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J 2003; 35:545-55; PMID:12904216; https://doi.org/10.1104/j.1365-313X.2003.01822.x
[13] Park M, Kim SJ, Vitale A, Hwang I. Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Plant Physiol 2004; 134:625-39; PMID:14730078; https://doi.org/10.1104/pp.103.030635
[14] Jauh GY, Fischer AM, Grimes HD, Ryan Jr. CA, Rogers JC. Delta tonoplast intrinsic protein defines unique plant vacuole functions. Proc. Natl. Acad. Sci. USA 1998; 95:12995-9; https://doi.org/10.1073/pnas.95.22.12995
[15] Jauh G-Y, Phillips TE, Rogers JC. Tonoplast intrinsic protein isoforms as markers for vacuolar functions. Plant Cell 1999; 11:1967-82; PMID:10521518; https://doi.org/10.1105/tpc.11.10.1867
[16] Murray C, Sutherland PW, Phung MM, Lester MT, Marshall RK, Christeller JT. Expression of biotin-binding proteins, avidin and streptavidin, in plant tissues using plant vacuolar targeting sequences. Transgenic Res 2002; 11:199-214; PMID:12054353; https://doi.org/10.1023/A:1015237610263
[17] Jackson MA, Nutt KA, Hassall R, Rae AL. Comparative efficiency of subcellular targeting signals for expression of a toxic protein in sugarcane. Funct Plant Biol 2010; 37:785-93; https://doi.org/10.1071/FP09243
[18] Frigerio L, Hinz G, Robinson DG. Multiple vacuoles in plant cells: Rule or exception? Trafﬁc 2008; 9:1564-70; PMID:18537999; https://doi.org/10.1111/j.1600-0854.2008.00776.x
[19] Rae AL, Jackson MA, Nguyen CH, Bonnett GD. Functional specialization of vacuoles in sugarcane leaf and stem. Trop Plant Biol 2009; 2:13-22; https://doi.org/10.1007/s12042-008-9019-9
[20] Harrison MD, Geijskes J, Coleman HD, Shand K, Kinkema M, Palupe A, Hassall R, Sainz M, Lloyd R, Miles S, et al. Accumulation of recombinant cellobiohydrolase and endoglucanase in the leaves of mature transgenic sugar cane. Plant Biotechnol J 2011; 9:884-96; PMID:21356003; https://doi.org/10.1111/j.1365-7672.2011.00597.x
[21] Harrison MD, Geijskes RJ, Lloyd R, Miles S, Palupe A, Sainz MB, Dale JL. Recombinant cellulase accumulation in the
leaves of mature, vegetatively propagated transgenic sugarcane. Mol Biotechnol 2014; 56:795-802; PMID:24793894; https://doi.org/10.1007/s12033-014-9758-9

[22] Kovalskaya N, Foster-Frey J, Donovan DM, Bauchan G, Hammond RW. Antimicrobial activity of bacteriophage endolysin produced in nicotiana benthamiana plants. J Microbiol Biotechnol 2015: 26:160-70; https://doi.org/10.4014/jmb.1505.05060

[23] Marin Viegas VS, Acevedo GR, Bayardo MP, Chirido FG, Petrucelli S. Production of the main celiac disease auto-antigen by transient expression in nicotiana benthamiana. Front Plant Sci 2015; 6:1067; PMID:26648956

[24] Shaaltiel Y, Bartfeld D, Hashmueli S, Baum G, Brill-Marin Viegas VS, Acevedo GR, Bayardo MP, Chirdo FG, Kovalskaya N, Foster-Frey J, Donovan DM, Bauchan G. Differenced human interleukin 6 in nicotiana benthamiana. PLoS One 2012; 7:e53023; PMID:23285250; https://doi.org/10.1371/journal.pone.0053023

[25] Stein H, Wilensky M, Tsafir Y, Rosenthal M, Amir R, Avraham T, Ofir K, Dgany O, Yayon A, Shosevoy O. Production of bioactive, post-translationally modified, hetero- trimeric, human recombinant type-i collagen in transgenic tobacco. Biomacromolecules 2009; 10:2640-5; PMID:19678700; https://doi.org/10.1021/bm900571b

[26] Yang J, Barr LA, Fahnestock SR, Liu ZB. High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 2005: 14:313-24; PMID:16145839; https://doi.org/10.1007/s11248-005-0272-5

[27] Jha S, Agarwal S, Sanyal I, Jain GK, Amla DV. Differential subcellular targeting of recombinant human alpha 1-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants. Plant Sci 2012; 196:53-66; PMID:23017899; https://doi.org/10.1016/j.plantsci.2012.07.004

[28] Nausch H, Mischofsky H, Koslowski R, Meyer U, Broer I, Huckauf J. Expression and subcellular targeting of human complement factor c5a in nicotiana species. Plant Sci 2012; 196:53-66; PMID:23017899; https://doi.org/10.1016/j.plantsci.2012.07.004

[29] Shaaltiel Y, Hashmueli S, Bartfeld D, Baum G, Ratz T, Mizrachi E, Forster Y. System and method for production of antibodies in plant cell culture. Patent no.: US 8119406 B2/2012.

[30] Tekoah Y, Shulman A, Kizhner T, Ruderfer I, Fux L, Natal Y, Bartfeld D, Ariel T, Gingis–Velitski S, Hanania U, et al. Large-scale production of pharmaceutical proteins in plant cell culture—the protalix experience. Plant Biotechnol J 2015; 13:1199-208; PMID:26102075; https://doi.org/10.1111/pbi.12428

[31] Misaki R, Sakai Y, Omasa T, Fujiyama K, Seki T. N-terminal vacular sorting signal at the mouse antibody alters the n-linked glycosylation pattern in suspension-cultured tobacco by2 cells. J Biosci Bioeng 2011; 112:476-84; PMID:21802986; https://doi.org/10.1016/j.jbiosc.2011.07.002

[32] Ocampo CG, Lareu F, Marin Viegas VS, Manganos S, Loos A, Steinkellner H, Petrucelli S. Vacuolar targeting of recombinant antibodies in nicotiana benthamiana. Plant Biotechnol J 2016. E-Pub ahead of print. https://doi.org/10.1111/pbi.12580; PubMed PMID:27159528.

[33] Griffin M, Casadio R, Bergamini CM. Transglutaminases: Nature’s biological glues. Biochem J 2002; 368:377-96; PMID:12366374; https://doi.org/10.1042/bj20021234

[34] Sorrentino A, Schillberg S, Fischer R, Rao R, Porta R, Mari- niello L. Recombinant human tissue transglutaminase produced into tobacco suspension cell cultures is active and recognizes autoantibodies in the serum of celiac patients. Int J Biochem Cell Biol 2005; 37:842-51; PMID:15694843; https://doi.org/10.1016/j.biocel.2004.11.001

[35] Komord V, Fitchette A, Menu-Bouauiche L, Saint-Jore- Dupas C, Plasson C, Michaud D, Faye L. Plant-specific glycosylation patterns in the context of therapeutic protein production. Plant Biotechnol J 2010; 8:564-87; PMID:20233335; https://doi.org/10.1111/j.1467-7652.2009.00497.x

[36] Schneider J, Castillo A, Pabst M, Gruber C, Strasser R, Gattinger P, Seifert GJ, Steinkellner H. Characterization of plants expressing the human beta 1,4-galactosyltrasferase gene. Plant Physiol Biochem 2015; 92:39-47; PMID:25900423; https://doi.org/10.1016/j.plaphy.2015.04.010

[37] Liebminger E, Veit C, Pabst M, Batoux M, Zipfel C, Altmann F, Mach L, Strasser R. Beta-n-acetylhexasaminidases hexo1 and hexo3 are responsible for the formation of pneapolisidic n-glycans in arabidopsis thaliana. J Biol Chem 2011; 286:10793-802; PMID:21252225; https://doi.org/10.1074/jbc.M109.084466

[38] Matsuoka K, Neuhaus J. Cis-elements of protein trans- port and involvement in stress responses. Int J Mol Sci 2013; 14:14950-73; PMID:23867610; https://doi.org/10.3390/ijms140714950

[39] Matsuoka K, Neuhaus J. Cis-elements of protein trans- port and involvement in stress responses. Int J Mol Sci 2013; 14:14950-73; PMID:23867610; https://doi.org/10.3390/ijms140714950

[40] Coleman J, Blake-Kalff M, Davies E. Detoxification of xenobiots by plants: Chemical modification and vacuo- lar compartmentation. Trend Plant Sci 1997; 2:144-51; https://doi.org/10.1016/S1476-7652(97)80109-2

[41] Almon E, Galili G, Dym O, Boldin-Adamsky SA, Silman A, Dugast J, Alm M, Casadio R, Bergamini CM. Transglutaminases: Nature’s biological glues. Biochem J 2002; 368:377-96; PMID:12366374; https://doi.org/10.1042/bj20021234

[42] Robinson DG, Pimpl P. Receptor-mediated transport of xenobiotics by plants: Chemical modi- cation and vacuo- lar proteins: A critical analysis and a new model. Plant Biotechnol J 2007: 5:579-90; PMID:17524049; https://doi.org/10.10111/j.1467-7652.2007.00263.x

[43] Matsuoka K, Neuhaus J. Cis-elements of protein trans- port to the plant vacuoles. J Exp Bot 1999; 50:165-74; https://doi.org/10.1093/jxb/50.331.165

[44] Coleman J, Blake-Kalff M, Davies E. Detoxification of xenobiots by plants: Chemical modification and vacuo- lar compartmentation. Trend Plant Sci 1997; 2:144-51; https://doi.org/10.1016/S1476-7652(97)80109-2

[45] Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A. Plant flavonoids- biosynthesis, transport and involvement in stress responses. Int J Mol Sci 2013; 14:14950-73; PMID:23867610; https://doi.org/10.3390/ijms140714950

[46] Matsuoka K, Neuhaus JM. Cis-elements of protein trans- port to the plant vacuoles. J Exp Bot 1999; 50:165-74; https://doi.org/10.1093/jxb/50.331.165

[47] Robinson DG, Pimpl P. Receptor-mediated transport of vacuolar proteins: A critical analysis and a new model. Protosoluma 2014; 251:247-64; PMID:24019013; https://doi.org/10.1007/s00709-013-0542-7