Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology

Vivien Béziat, Hugo G. Hilton, Paul J. Norman and James A. Traherne

Summary

Killer-cell immunoglobulin-like receptors (KIRs) are components of two fundamental biological systems essential for human health and survival. First, they contribute to host immune responses, both innate and adaptive, through their expression by natural killer cells and T cells. Second, KIR play a key role in regulating placentation, and hence reproductive success. Analogous to the diversity of their human leucocyte antigen class I ligands, KIR are extremely polymorphic. In this review, we describe recent developments, fuelled by methodological advances, that are helping to decipher the KIR system in terms of haplotypes, polymorphisms, expression patterns and their ligand interactions. These developments are delivering deeper insight into the relevance of KIR in immune system function, evolution and disease.

Keywords: expression; haplotypes; killer-cell immunoglobulin-like receptors; ligands; natural killer cell; polymorphism.

Introduction

Killer-cell immunoglobulin-like receptors (KIRs) are type I transmembrane glycoproteins belonging to the immunoglobulin superfamily. They are primarily expressed on natural killer (NK) cells but they are also expressed on subsets of CD4, CD8 and γδ T cells. Comprising both activating and inhibitory forms they represent an archetypal paired receptor system. The best characterized ligands for KIR are HLA class I molecules that express either the Bw4, C1 or C2 motif (Fig. 1).

The functional activity and development of KIR-expressing lymphocytes are modulated by interactions between these receptors and their ligands. A major function of circulating cytotoxic NK cells is to recognize and eliminate cells that fail to express self HLA class I molecules in the surveillance for virus-infected or transformed cells. By contrast, a major function of non-cytotoxic NK cells in the uterus is to secrete cytokines to regulate placentation during pregnancy. This occurs through a mechanism of maternal allogenic recognition involving interaction between KIR on maternally derived uterine NK cells with HLA on fetally derived cells. The KIR system acts to diversify NK cell stimulation potential through specificity of interaction and strength of signalling. In this regard, weakly inhibitory KIR/HLA combinations permit a lower threshold for cell activation than do strongly inhibitory KIR/HLA combinations.

KIR genes are located in the leucocyte receptor complex on human chromosome 19q13.4. The genes are variably present in the germline between individuals, forming haplotypes with diverse gene content (Fig. 2), and numerous alleles exist for many of the genes. Despite the major implications of KIR variation for human health it is known that genome-wide studies have poorly captured the diversity at the KIR locus. Through focused analyses, constituent polymorphism has been described at the basic...
levels – gene content of haplotypes, copy number, alleles and their frequencies. Resulting information has supported genetic, functional and disease investigation. In this review we discuss the outstanding challenges in KIR analysis and the recent methodological developments that are facilitating new discoveries.

KIR genetics

Functional consequences of KIR polymorphism

Four influential discoveries cultivated the fundamental principle that genetic variation of KIR has a direct impact...
on NK cell function, and stimulated ongoing research into the impact of this variation on human health; (i) the KIR genomic region has variable gene content,23 (ii) KIR allelic variation affects KIR allotype function,24,25 (iii) there are multiple alleles for each KIR gene26 and (iv) this genetic variation correlates with ability to control disease or reproduce.27–30 (Fig. 3). Even a single nucleotide mutation can dramatically change receptor expression,25,31–33 ligand specificity34–36 or signalling strength. KIR gene copy number variation influences NK cell education, shaping the NK cell repertoire.37 Lastly, combinatorial diversity of KIR and HLA class I alleles also impacts NK cell function, because any given KIR allotype has differential reactivity to the allotypes of its cognate HLA class I ligand.38–43 In this scenario one may expect specific alleles or combinations to be beneficial for resisting specific infections, or stimulating immune-mediated disease.44 This combinatorial diversity is amplified by hosting the KIR and HLA genes on separate chromosomes, and the result is many millions of different cognate KIR/HLA class I genotypes, tending to individuality.45,46 Hence, through evolving multiple genetic mutations in the KIR locus, the human population probably generates and maintains considerable diversity in immunity to evolutionarily nimble and diverse pathogens.17 That there is little in common between human, chimpanzee and orang-utan KIR loci,47,48 and that distributions of KIR genes track with ethnicity and geography49–51 are testament to this hypothesis of rapid evolution.

KIR diversity and balancing selection

The interest in KIR genetic variation was piqued from early studies involving relatively small numbers and simple methods. The reason is that multiple diverse genotypes were detected in few individuals23,26,52 and the only plausible explanation was a highly heterogeneous genetic system with multiple common variants. These early studies therefore provided the first evidence that KIR may be subject to natural selection that maintains high diversity, just like it does for HLA.19,53 The Yucpa population from Venezuela has low genomic diversity as a consequence of serial founder effects.54 There are only two common KIR haplotypes in the Yucpa (one A and one B; see Fig. 2 for nomenclature), but between them they carry all of the expressed KIR genes.55 This situation is extremely unlikely without the impact of a form of natural selection called balancing selection, which maintains genetic variation of specific loci in the population.56 Indeed, all human populations studied to date have a representation of KIR A and B haplotypes51,56 and the prevailing hypothesis is that the A haplotypes

Figure 2. Structural haplotypes of the KIR gene cluster and recombination mechanisms. Numerous killer-cell immunoglobulin-like receptor (KIR) haplotypes with different gene content have been described. These haplotypes have been generated through serial duplications and deletions of chromosomal segments containing KIR genes. The distinction between alleles and genes is, therefore, sometimes blurred; for example KIR2DS3 can be located in two different positions within the KIR locus. (a) The arrangements of genes in 12 common European haplotypes18 are shown. Typically, a person inherits between 14 and 24 KIR genes (between 7 and 12 KIR genes per haplotype). KIR2DP1 and KIR3DP1 are pseudogenes. Two broad haplotypes exist – A (light blue background) and B (pink background), resulting in genotypes that are an ‘AA’, ‘AB’ or ‘BB’. A haplotypes have a single arrangement of seven expressed genes that encode mostly inhibitory KIR, which are diversified by allelic variation. B haplotypes have varied gene arrangements and tend to comprise more activating genes and less allelic diversity. The A haplotype can be divided into two types depending on whether the KIR2DS4 gene is full-length (KIR2DS4) or carries a frameshift deletion (KIR2DS4 del). (b) Diversity has been generated by homologous recombination, particularly at a recombination hotspot (*) centrally sited within the gene cluster,19 which has shuffled the centromeric (cen) and telomeric (tel) parts of the locus encompassing allelic and gene-content motifs. (c) Further diversity has been generated through continuing cycles of unequal crossing-over (non-allelic homologous recombination), which result in re-assertion and addition or subtraction of genes in a ‘cut & paste’-like manner.20,21 So called fusion genes composed of parts of different KIR genes have been generated by unequal crossover events when the recombination has occurred within genes.21,22

Table: Structural haplotypes of the KIR gene cluster and recombination mechanisms.

Haplotype (cen : tel)	Haplotype group	Allele frequency
ca01 : TA01	A	0.42
ca01 : TA01	A	0.13
ca01 : TA01	B	0.11
ca01 : TA01	B	0.07
cb02 : TA01	B	0.06
cb01 : TA01	B	0.05
cb01 : TA01	B	0.03
cb01 : TA01	B	0.02
cb01 : TA01	B	0.02
cb01 : TA01	B	>0.01
ca01 : TB01	B	0.01
cb02 : TB01	B	0.02

Haplotype (cen : tel) | Frequency

Haplotype (cen : tel)	Frequency
ca01 : TA01	0.42
ca01 : TA01	0.13
ca01 : TA01	0.11
ca01 : TA01	0.07
cb02 : TA01	0.06
cb01 : TA01	0.05
cb01 : TA01	0.03
cb01 : TA01	0.02
cb01 : TA01	0.02
cb01 : TA01	>0.01
ca01 : TB01	0.01
cb02 : TB01	0.02
are good for fighting infection57,58 whereas B haplotypes are more beneficial for reproduction.17,59

The impact of balancing selection is also seen clearly in the DNA sequences of \textit{KIR} genes.19,38 Namely, a greater number of common sequences, and greater divergence between them is present in the \textit{KIR} locus than would be expected if there were no selection, and when compared with other parts of the genome. A good example is \textit{KIR3DL1/S1}, which has over 100 alleles characterized (Fig. 4)60 and has three divergent allele lineages that have been maintained by balancing selection for millions of years.61 A synergy of population genetics, phylogenetic analysis and comparison of nucleotide substitution rates among codons showed that this diversity is focused towards the parts of the \textit{KIR} molecule that bind the HLA class I and peptide.61 The prediction that these major lineages of \textit{KIR3DL1/S1} have distinct ligand HLA/peptide-binding properties has been borne out with crystallographic and functional studies.35,39,41,42,62–65 Expansion of the phylogenetic analyses to include other \textit{KIR} molecules revealed natural selection has consistently been focused towards residues that affect interaction with the HLA class I ligand,66 as well as those that affect the signalling properties of the receptor.67

KIR and HLA co-evolution

Specific combinations of cognate KIR and HLA class I ligand correlate in frequency across the world, indicating that co-evolution between them continues in modern humans.69 Again, high-resolution analysis of the Yucpa population yields further insight into this phenomenon. The population has extremely high frequency of HLA-C7 and corresponding high frequency of a \textit{KIR2DL3} allotype, unique to the Yucpa, having reduced C7 binding.55 By comparison, the KhoeSan population from Southern Africa has one of the highest aggregate frequencies of HLA-C allotypes expressing the C2 motif. Here, a KIR allotype that switched binding specificity entirely from C2 to C1 has evolved.34 Both of these binding changes are due to substitutions at residues subject to balancing selection (Fig. 5).66 Hence, in both populations it appears that KIR have been able to respond rapidly and specifically to HLA class I frequency changes (of unknown aetiology). In contrast, in the Māori of New Zealand, a very low frequency of HLA-B allotypes expressing the Bw4 motif (again of unknown aetiology) has been countered by an increase in frequency of HLA-A allotypes that express

Figure 3. Major factors that influence natural killer (NK) cell function, expression and killer-cell immunoglobulin-like receptors (KIR) ligand binding.

Figure 4. \textit{KIR} allele counts and \textit{KIR3DS1} frequency worldwide plots. (a) Number of alleles reported in the December 2015 release of the IPD KIR database.60 The advent of killer-cell immunoglobulin-like receptor (KIR) analysis by next-generation sequencing is rapidly increasing the number of recognized \textit{KIR} alleles.68 Blue are genes encoding inhibitory KIR, orange activating KIR and grey are pseudogenes. There are 753 alleles in total. (b) As an example of how \textit{KIR} gene frequencies can vary significantly across populations, \textit{KIR3DS1} gene frequency across the world and (c) Europe are shown (data from The Allele Frequency Net Database56).
The KIR allele frequencies can be determined using various databases and resources, including the Allele Frequency Net Database (www.allelefrequencies.net/), the Immuno Polymorphism Database (www.ebi.ac.uk/ipd/), and the LRC Haplotype Project (vega.sanger.ac.uk/info/data/LRC_Homo_sapiens.html). These databases provide a repository for KIR allele frequencies and listings of KIR genes, and can distinguish the broad A/B haplotypes.

KIR disease association studies

Combinations of KIR and HLA class I variants influence resistance to infections, susceptibility to autoimmune diseases and pregnancy syndromes, as well as outcome after haematopoietic stem cell transplantation (see The KIR and Diseases Database; Table 1). The influence of HLA class I variants on disease association analyses in large cohorts, and access to the wealth of previously generated single nucleotide polymorphism array data.

Table 1. KIR and HLA databases and resources

Database Name	Website
Immuno Polymorphism Database	www.ebi.ac.uk/ipd/
Allele Frequency Net Database	www.allelefrequencies.net/
dbMHC and dbLRC	www.ncbi.nlm.nih.gov/gp/mhc/ www.ncbi.nlm.nih.gov/gp/lrc/
LRC Haplotype Project	vega.sanger.ac.uk/info/data/LRC_Homo_sapiens.html

The Immuno Polymorphism Database (IPD) provides a repository for killer-cell immunoglobulin-like receptors (KIR) sequences and includes, allele alignments, fully sequenced KIR haplotypes, donor KIR B-content group calculator, allele ethnicity tool and primer/probe search tool. The Allele Frequency Net Database (AFND) provides a repository for KIR allele frequencies and listings of KIR disease associations. dbMHC and dbLRC databases provides sequences and frequency distributions for alleles of the MHC and leucocyte receptor complex (LRC) as well as an alignment viewer, primer/probe search tool and typing kit interface. The LRC Haplotype Project provides DNA sequence data from several human LRC haplotypes including contig maps, annotation and a catalogue of all single nucleotide polymorphisms and insertions/deletions.

KIR imputation

A statistical model that infers KIR genotypes from whole-genome single nucleotide polymorphism data has been developed with about 97% accuracy for the majority of KIR genes, and can distinguish the broad A/B haplotypes. This method overcomes many of the obstacles caused by the complexity of gene content diversity to enable efficient KIR disease association analyses in large cohorts, and access to the wealth of previously generated single nucleotide polymorphism array data.

KIR ligands

Such studies of human populations at high resolution reveal functionally important changes occurring on a fine scale, the sum of which throughout human evolution has resulted in the strong signature of balancing selection throughout the KIR locus.

KIR allelic variation

There is little doubt that the most basic level of presence/absence of KIR impacts NK cell activity, and that the number of those genes present can influence NK cell development or control of disease. However, the prevailing theme of the genetic studies to date is that analysis of gene content identifies the fundamental tenets, which are then refined following higher-resolution analyses of the alleles. This stems from the realization that KIR alleles have different magnitudes of effect, creating hierarchical series of phenotypes. From this, testable hypotheses can be formed about the extent to which each gene or allele, in conjunction with ligand variation, can predispose to a phenotype. For example, the cell surface expression of KIR3DL1 and the ability to recognize HLA-Bw4 ligand vary according to allele, and hence KIR3DL1 alleles should be analysed accordingly in the disease context. Similarly, polymorphism in the extracellular domain of KIR2DL1 influences the binding affinity to HLA-C2. Over 200 associations of KIR genes with disease resistance or susceptibility are published, and the handful studied at high resolution are proving informative. The field is therefore ripe for harvesting new information through in-depth analyses.

KIR imputation

A statistical model that infers KIR genotypes from whole-genome single nucleotide polymorphism data has been developed with about 97% accuracy for the majority of KIR genes, and can distinguish the broad A/B haplotypes. This method overcomes many of the obstacles caused by the complexity of gene content diversity to enable efficient KIR disease association analyses in large cohorts, and access to the wealth of previously generated single nucleotide polymorphism array data.
class I and KIR gene variation on human immunodeficiency virus (HIV) disease outcome has been particularly well studied (Fig. 6). The variation at these genes has been described as a double-edged sword because a particular genotype that confers protection from one disease (e.g., infection) could bestow increased risk to another disease type (e.g., autoimmunity or cancer). Population stratification is an important consideration in KIR association studies. It becomes problematic to analyse genes under strong selection and rapid evolution, such as the KIR, in admixed (mixed ancestry) populations where gene frequencies can vary significantly between subpopulations (Fig. 4). Approaches for KIR genetic analysis are improving in resolution and throughput (Fig. 7). Statistical developments offer additional strategies, such as principle component analysis of ancestry-informative markers in case-control analysis to address admixture issues.

KIR ligand binding

KIR and HLA allotype interactions

Three key advancements have progressed understanding of the recognition of HLA class I by KIR: (i) the crystal structures of KIR in complex with their HLA class I ligands, (ii) the development of soluble KIR and HLA allotype interactions, and (iii) their use in a multiplex immunoassay against a broad panel of HLA class I allotypes (Fig. 3). These tools have enabled fine-scale analyses of KIR and HLA class I interaction diversity.

Two-immunoglobulin domain inhibitory KIRs (KIR2DL1-3) bind HLA-C (Fig. 1). Originally considered separate genes, KIR2DL2 and KIR2DL3 are now known to segregate as alleles of the same gene, termed KIR2DL2/3. Initial studies indicated a simple bipartite system in which KIR2DL2/3 recognizes HLA-C allotypes with asparagine at residue 80 (the HLA-C1 motif), and KIR2DL1 recognizes HLA-C allotypes with lysine at residue 80 (the HLA-C2 motif). Dimorphism at residue 44 of the KIR molecule causes these specificity differences, where KIR2DL2/3 has asparagine and KIR2DL1 has methionine. Crystal structures showed that K44 of KIR2DL2 forms a hydrogen bond with the N80 of HLA-C1. By contrast, M44 of KIR2DL1 has no direct contact with HLA-C but forms part of a charge pocket that accommodates the K80 of HLA-C2. Other residues are involved in the interaction however, and their polymorphism means that there is a range of binding characteristics determined by KIR allotype. The interactions of KIR2DL are further diversified by polymorphism within the subsets of C1-bearing and C2-bearing HLA allotypes. The basis for these hierarchies may occur due to polymorphism at sites other than position 80, or the distinct repertoires of peptide presented by the different HLA-C allotypes. An additional feature of HLA-C polymorphism is the differential cell surface expression exhibited by individual allotypes, although how this variation impacts NK cell reactivity is yet to be fully defined.

KIR2DL3 allotypes form a continuum of binding strength and specificity that includes several inactivated or weakened variants. Studies using soluble KIR showed that allotype KIR2DL3*001 is C1-specific...
allelotyping and copy number typing by pyrosequencing and next-generation sequencing (NGS), (iv) imputation infers which alleles are present (e.g. KIR Filter Fish (KFF)). A single dimorphism in the transmembrane domain distinguishes the functional properties of KIR2DL1, which has evolved to be a highly specific receptor for HLA-C2. Yawata et al. first reported that NK cells educated via KIR2DL1*004 had lower interferon-γ production than those educated via KIR2DL1*003. This occurs because KIR2DL1*004 has weak affinity for HLA-C2 targets as well as reduced capacity for intracellular signal generation. A single dimorphism in the transmembrane region determines the signalling capacity; allelotypes with R245 transduce a functional inhibitory signal and those with C245 have reduced inhibitory signalling. Super-resolution microscopy has revealed that the nanoscale organization of KIR at cell surfaces depends on the transmembrane sequence, which in turn affects downstream signalling. Further modifying the functional range of KIR2DL1 are polymorphisms in the extracellular and cytoplasmic domains that regulate avidity and specificity, as well as the level of cell-surface expression (Fig. 1).

Like the inhibitory KIR2D, the interactions between inhibitory KIR3D and their cognate ligands are diversified by their considerable polymorphism. KIR3DL1 recognizes HLA-A and HLA-B alleles that encode the Bw4 motif, a region that spans residues 77–83 on the α1 helix of the molecule (Fig. 1). Recognition of Bw4 by KIR3DL1 is sensitive to polymorphism both within and outside the Bw4 motif, as well as to the sequence of the bound peptide. Early work showed that HLA-Bw4 allotypes with I80 formed more potent ligands for KIR3DL1 than those with T80, a functional difference reinforced by associations with disease outcome.

However, recent high-resolution studies have identified several I80 Bw4 allotypes that are poorly recognized by KIR3DL1, providing weaker KIR3DL1 ligands than selected T80 Bw4 allotypes. Compounding the difficulty of understanding the interactions between KIR3D and Bw4 is the extensive functional polymorphism of KIR3DL1, which changes its cell-surface expression and capacity to recognize the Bw4 epitope.

Activating KIR ligand interactions

Although disease associations and sequence homology with their inhibitory counterparts suggest that activating KIR recognize HLA class I, their cognate ligands have been harder to identify (Fig. 1). As the body of research dedicated to activating KIR has grown, it has...
become clear that three conserved features of their biology are likely to have hampered the process of ligand discovery; (1) their low affinity for HLA class I,\(^{11,40,105,126,127}\) (2) narrow specificity,\(^{11,126-128}\) and (3) high peptide selectivity.\(^{10,11,64,127}\) These features are epitomized by KIR2DS2*001, which binds weakly to C1-bearing HLA-C*1601 and HLA-C*0302\(^{126,127}\) and recognizes HLA-A*11:01 in a peptide-dependent manner.\(^{10}\) Another possibility is that activating KIR recognize virus-induced ligands\(^{129,130}\) or altered self-HLA class I molecules caused by viral infection. Recent work has identified open conformers (not bound to \(\beta_2\)-microglobulin or peptide) of non-classical HLA class I molecule, HLA-F, as ligands of KIR3DS1.\(^{88}\) Because HLA-F can be expressed on activated or HIV-1-infected lymphocytes, KIR3DS1-HLA-F interaction could be important in the control of the T-cell response\(^{131}\) and/or HIV-1 infection.

Activating KIR are less polymorphic than inhibitory KIR (Fig. 4).\(^{132}\) However, the exploration of functional allotypic variation in activating KIR is in its infancy, and several studies point to its potential importance. Examples include the observation that KIR2DS1 allotypes recognize C2-bearing HLA-C with a range of avidities\(^{40}\) and that KIR3DS1*014, but not KIR3DS1*013, recognizes the HLA-Bw4 epitope.\(^{65}\) Further, epidemiological studies suggest that specific variants of KIR2DS5, for which a ligand remains elusive, protect against the development of reproductive disorders.\(^{76,133}\)

Reporter systems could be useful tools to screen for activating KIR ligands and peptide influences of inhibitory KIR.\(^{123}\) The reporter cells are constructed to express the extracellular domains of activating KIR fused to the human CD3\(^{5}\) cytoplasmic domain. Signalling through these hybrid receptors results in the expression of green fluorescent protein, which can be detected by flow cytometry. This method proved helpful to show that HLA-F open conformers are ligands for KIR3DS1.\(^{88}\)

KIR peptide-dependence

The emerging field of peptidomics has relevance to the KIR field because binding of KIR to their respective HLA class I ligand is peptide-dependent.\(^{134}\) There are different mechanisms by which viral infection can rapidly and radically affect the HLA class I peptide repertoire. Some viruses have evolved to evade NK cell immunity through the selection of mutations in MHC-presented peptides that enhance binding to inhibitory NK cell receptors including the C-type lectin-like CD94:NKG2A heterodimer receptor and KIR2DL3.\(^{135,136}\) Conversely, virus-induced changes in peptide repertoire may promote beneficial action through KIR by disrupting HLA class I recognition by inhibitory KIR, releasing constraint on NK cells to mount a positive clearance response to infected cells.\(^{135}\) Structural analysis of peptide interaction by NK receptors and better understanding of the mechanisms by which viruses evade the NK cell response could assist the development of novel targeted interventions to exploit the antiviral activities of NK cells.

KIR gene expression

NK and T-cell KIR repertoire

With the exception of KIR2DL4 and KIR3DL3,\(^{137,138}\) KIR gene expression is clonally distributed and only a fraction of NK and T cells express a given KIR. KIR repertoire formation is complex. At least six factors are recognized to influence KIR repertoire; (i) transcriptional regulation, (ii) KIR gene content, (iii) allelic variation, (iv) cellular differentiation, (v) self-HLA class I ligands and (vi) infection (Fig. 3).

KIR repertoire formation is governed by bi-directional promoter activity and epigenetic silencing. High CpG methylation of the KIR proximal promoter was reported in NK cells and CD8\(^+\) T cells lacking expression of the corresponding KIR molecule, and vice versa.\(^{139-141}\) KIR expression requires the intermediate promoter Pro1,\(^{142}\) however, the strength of KIR proximal promoter antisense activity is probably responsible for clonal KIR distribution in NK and T cells.\(^{7,142-144}\) The relative affinity of binding sites for transcription factors involved in sense versus antisense promoter activity determines the probability of generating the sense transcript required for gene activation.\(^{142,143}\) A recent mouse study suggests that activating receptor-mediated signalling might regulate this process during NK cell development.\(^{144}\) Polymorphisms in the KIR promotor also impact KIR expression.\(^{142,146,147}\)

Beside epigenetic and transcriptional regulation, KIR repertoire formation is also dependent on KIR gene content and allelic variations. Each KIR gene is usually present in between zero and three copies in a given individual. As well as when the gene is absent, KIR expression is also abolished in individuals that are homozygous for a null allele, or who only carry the null allele of the gene — e.g. KIR3DL1*004 null allele is present at a mean frequency of 24-2% (SD 10-3) in worldwide populations.\(^{56}\) The frequency of cells positive for a given KIR is tightly linked to KIR gene copy number; a donor with two copies of KIR3DL1 will have a greater frequency of KIR3DL1\(^+\) NK cells than donors with only one copy,\(^{37,38,142}\) suggesting that each KIR gene copy is regulated independently. Additionally, NK cell KIR expression is related to cellular differentiation. KIR expression is weak or absent in immature NKG2A\(^+\) CD56\(^{dim}\) NK cells and increases gradually with maturation, reaching its maximum level in NKG2A\(^+\) CD56\(^{dim}\) NK cells.\(^{148-150}\) Similar observation was made for T cells, in which KIR expression is virtually absent in CD4 and...
CD8 naive T cells and reaches its maximal level in differentiated effector memory T cells. Accordingly, KIR expression is low in less mature cord blood NK and T cells compared with healthy adult control cells.

Unlike T- and B-cell repertoire formation, there is no evidence for negative selection or deletion of NK cells expressing a combination of receptors that could be harmful or useless. Instead, in a process termed education, only NK cells expressing self-specific HLA class I inhibitory receptors (NKG2A or KIR) become fully functionally competent. The degree to which NK cell education shapes the KIR repertoire has been a matter of debate. Using a mathematical and phenotypic approach, Andersson et al. demonstrated that an adult's NK cell KIR repertoire formation was largely stochastic, in line with probabilistic expression of KIR under bidirectional proximal promoter activity and no selection. However, other studies showed a slight but significant bias of the global KIR repertoire in adults toward the expression of KIRs able to recognize self-HLA class I. Paradoxically, the same authors demonstrated that KIR repertoire in newborns was not biased toward self-HLA class I recognition. This observation suggested that KIR repertoire acquisition was indeed stochastic but the slight bias observed in adults might be driven by infections encountered later in life.

In 2004, Guma et al. showed that expression of NKG2C, an activating receptor for HLA-E, was increased in individuals infected with the human cytomegalovirus (HCMV) and that NKG2C+ cells expressed high level of KIRs. It was later demonstrated that these HCMV-associated NKG2C+ NK cells express self-specific KIRs and account for the vast majority of adult KIR repertoire deviation toward self HLA class I. HCMV-adapted NK cells lacking NKG2C expression were also reported, most of them expressing activating KIRs. Using a large NKG2C-deficient cohort, it was recently demonstrated that adaptive NK cell responses could occur in the absence of both activating KIRs and NKG2C; however, these adaptive NK cells also largely display repertoire deviation toward self-specific inhibitory KIR expression. Also, self-specific inhibitory KIR expression is not required for generating adaptive NK cells but is probably necessary for optimal functions. Indeed, HCMV+ TAP-deficient individuals, with a considerable decrease of HLA class I expression at the cell surface, can develop NKG2C+ adaptive NK cells but these cells remain hypofunctional.

Studies reporting adaptive NK cell expansion in various viral infections including HIV, hepatitis B virus, hepatitis C virus, chikungunya virus and hantavirus show that adaptive NK cells only occur in HCMV+ individuals, perhaps as the result of opportunistic viral reactivation. To date, apart from HCMV, no other viruses have been seen to correlate with the appearance of adaptive NK cells, and associated KIR repertoire deviations, including herpes simplex virus (both HSV-1 and HSV-2) and varicella-zoster virus. Instead, it was shown that acute Epstein–Barr virus infection induces NKG2A+ CD57+ expansion lacking KIR expression. Altogether, these findings suggest that KIR, and adaptive NK cells, might have mainly evolved to control HCMV. Supporting this hypothesis, HCMV developed several strategies to escape NK cell control. Viral proteins induce HLA-E expression while decreasing classical HLA class I (HLA-A, B and C) expression at the cell surface of infected cells, allowing the virus to selectively escape NKG2A+ NK cells and interfere with CD8+ T-cell recognition, respectively. NKG2C and inhibitory KIRs are expressed in HCMV+ individuals towards inhibitory KIR that recognize self HLA class I. Activating KIRs could play a similar role to NKG2C and recognize unknown HCMV-induced ligands, similarly to Ly49H/m157 in mouse.

The role of KIR expression in T cells remains unclear and most of the studies have focused on CD8 T cells, which contain the largest KIR7 subset within the T-cell compartment. Although NK cell KIR repertoire is considered stable in time, the frequency of KIR7 T cells increases with age, due to accumulation of terminally differentiated T cells. Interestingly, HCMV-specific CD8 T cells almost completely lack KIR expression, and the specificity of KIR-expressing cells remains largely unknown. In contrast, it was shown that KIR7 CD4+ T cells display specificity against HCMV but not Epstein–Barr virus or HSV-1. It is clear that inhibitory and activating KIR can, respectively, dampen and co-stimulate T-cell receptor-mediated activation in CD4 and CD8 T cells. Unlike NK cells, self-specific inhibitory KIR expression does not educate T cells, as they do not display enhanced functional responses upon T-cell receptor triggering. Instead, it was shown that ex vivo KIR7 effector memory CD8+ T cells were hyporesponsive to T-cell receptor triggering compared with KIR7 effector memory CD8+ T cells. It was proposed that KIR expression protects from activation-induced cell death in a ligand-independent manner, perhaps explaining their accumulation with aging.

KIR repertoire analysis

KIR repertoire analysis has proved important in the study of NK cell function. Future studies will need to systematically analyse in-depth KIR repertoire of organ resident NK cells, which are known to display unique KIR
repertoires, at least in the uterus and the liver. When studying the KIR repertoire all the parameters that are known to influence KIR expression should be considered (Fig. 3), most of all KIR genotypes and cellular differentiation markers. Cytometry panels require many colours to include as many KIR as possible, together with differentiation markers including at least NKG2A, NKG2C and preferably other markers specific to adaptive NK cells (e.g. FcγR1, CD57 and NKP30). Strategies for KIR repertoire analysis using high-dimensional FACS analysis were recently described. Several limitations remain in such analysis, such as mis-binding of antibodies relating to amino acid substitutions in particular KIR allotypes. For example, anti-KIR2DL3 ECM41 antibody does not recognize KIR2DL3*015 or KIR2DL3*005. These allotypes are recognized by antibodies with specificity for receptors encoded by other KIR genes (Table 2). New next-generation sequencing techniques will allow fast and cost-effective KIR typing at allelic resolution and will facilitate KIR repertoire interpretation. In addition, high-dimensional mass cytometry (mass cytometry by time-of-flight) is a powerful tool for investigating NK cell repertoire diversity through the analysis of many cellular markers simultaneously (Fig. 9). The approach is being used to characterize the phenotypes of lymphocytes and their abundance in biopsies of patients, to gain insight into, for example, how receptor genotypes influence disease susceptibility in a cell-type-specific manner. Once identified, discrete NK cell subpopulations associated with disease could be harnessed for immunotherapeutic strategies or may predict response to treatment. Combined with other single-cell techniques, e.g. RNA-Seq, this could be an important step forward to personalized and more cost-effective treatment.

Although the new methods are increasing scale and resolution of all aspects of KIR study, one obstacle that future repertoire studies will need to overcome is the current lack of antibodies that specifically recognize KIR2DS2, KIR3DS1, KIR2DS3 and KIR2DS5 (Table 2). Although antibody combinations can help to decipher these activating KIRs, they do not allow analysis at single KIR level because of antibody cross-reactivity. Aptamers, short single-stranded nucleic acid oligomers that bind to a specific target molecule, with their unique features of high binding affinity and specificity, could offer a useful alternative to antibodies in discriminating subtly different forms of KIR. Improving KIR repertoire analysis will contribute to our understanding of clinical situations where KIR have a proven or suspected role such as antiviral immune response, transplantation, autoimmunity and reproduction.

KIR model systems

Mouse NK cells do not express KIR but instead Ly49 receptors (C-type lectin-like type II transmembrane disulphide-bonded homodimers), which perform analogous

Figure 8. Natural killer (NK) cell strategies in human choriomeningitis virus (HCMV) infection. Viral proteins up-regulate HLA-E expression to selectively inhibit NK cells through the NKG2A inhibitory receptor. Concomitantly, the virus down-regulates classical HLA class I expression to evade CD8+ T cells. NKG2C allows NK cells to detect HLA-E+ HLA class I-infected cells. Hence, ‘missing-self’ (no HLA class I) triggers activation of NK cells already educated/licenced by self-HLA class I molecules. Non-infected cells are protected from NK cell cytotoxicity by recognition of HLA class I by inhibitory killer-cell immunoglobulin-like receptors (KIR), which curbs activation through NKG2C. Activating KIR may directly recognize ‘altered-self’ ligands that are induced by the virus.
functions. For example, like KIR genes, Ly49 genes encode both activating and inhibitory NK receptors that regulate NK cell biology through binding MHC class I molecules. Despite differences between mice and humans with regard to the immune and reproductive systems, the mouse has been used to study how imbalance of NK cell inhibition or activation potential influences pregnancy. Humanized mice of homogeneous genetic background might in the future enable study of individual KIR and HLA class I variants in isolation. Using a mouse transgenic for an HLA-B allele that encodes the Bw4 epitope, a recent study investigated the roles of cell-intrinsic and cell-extrinsic HLA class I molecules for educating human NK cells. Because mice and humans are so divergent, primates are used as in vivo models to study NK cell biology. Some non-human simian species show a comparable level of diversity and complexity in KIR haplotypes to humans. However, there are extensive differences in size and organization between the KIR loci of higher primate species. It is evident in primates that different lineages of KIR genes have been expanded concomitantly with species-specific evolution of MHC class I genes. In rhesus macaque, an important animal model of human diseases such as AIDS, binding of certain KIR is influenced by the same MHC epitopes (Bw4 and Bw6) that are important determinants of human KIR interactions. In the last decade, progress has been made in characterizing KIR

Table 2. Specificities and reported cross-reaction of killer-cell immunoglobulin-like receptors (KIR) antibodies

Clone	Specificity	Reported cross-reaction and (comments)	Reference
143211	KIR2DL1	KIR2DS5	192
HP-3E4	KIR2DL1	KIR2DS1 and KIR2DS4	193
E86	KIR2DL1, KIR2DS1	KIR2DL3*005	187,194,195
11PB6	KIR2DL1, KIR2DS1	KIR2DL3*005	194
HP-MA4	KIR2DL1, KIR2DS1	KIR2DS3 and KIR2DS5	192,193
GL183	KIR2DL2, KIR2DL3, KIR2DS2		196–198
DX27	KIR2DL2, KIR2DL3, KIR2DS2		52
CH-L	KIR2DL2, KIR2DL3, KIR2DS2		199
180701	KIR2DL3	(Does not recognize KIR2DL3*005 and *015)	187
ECM41	KIR2DL3	(Does not recognize KIR2DL3*005 and *015)	194
UP-R1	KIR2DL5		200
IF12	KIR2DS2, KIR2DL3		201
179315	KIR2DS4		140
JJC11-6	KIR2DS4	KIR2DS3	192
FES172	KIR2DS4		202
DX9	KIR3DL1		203
5-133	KIR3DL1, KIR3DL2	All KIRs except KIR2DS1 and KIR2DS3	192
Z27	KIR3DL1, KIR3DS1		204–206
DX30	KIR3DL1/KIR3DL2		207
DX31	KIR3DL2		207
NKVFS1	PanKIR2D		208

Sequence homogeneity between KIR genes at the genomic level translates to high similarity between encoded protein products. As such, analysis of KIR expression is not trivial in primary cells because of the cross-reaction of available antibodies, in particular between activating and inhibitory isoforms. This can lead to misinterpretation of cell-staining results. These cross-reactions must be taken into account when analysing KIR expression. Staining experiments can be supported with control stains, references, representative stains on relevant donors and precise descriptions of strategies for differential staining using sets of antibodies.

![Figure 9](image-url) Natural killer (NK) cell analysis by mass cytometry by time-of-flight. By interrogation of multiple markers simultaneously, cell phenotypes can be compared between, for example, patients versus controls or between different tissue sites. The approach allows alterations in lymphocyte composition or abundance to be detected that are linked to killer-cell immunoglobulin-like receptors (KIR) genotypes and disease.
genes in primates and developing specific genotyping assays.218,219 Specific interactions between KIRs of primates and MHC class I ligands are being identified and monoclonal antibodies against primate KIR proteins are being generated.220,221 These advances are enabling phenotypic characterization of KIR expression on NK cells and T-cell subsets in primates and investigation of KIR-MHC biology in primate models of infectious disease.222–224

Therapeutic intervention

As KIRs are expressed on effector cells such as adaptive NK cells and effector memory T cells, which have undergone clonal expansion, it is not surprising that KIRs are often found expressed on malignant cells. For instance, in NK and T-cell large granular lymphocytosis lymphocytes often express activating or inhibitory KIRs in a clonal manner.225–228 Patients with Sezary syndrome typically display CD4+ T cells expressing KIR3DL2, which might contribute to disease onset.228,229 For this reason, KIR are considered as a potential therapeutic target because they are only expressed on a small subset of normal lymphocytes, the deletion of which is unlikely to be harmful.230

Genetic information on KIR and HLA is already being used clinically to choose donors for haematopoietic stem cell transplantation for optimal outcome.231 Indeed, it is estimated that a significant reduction of relapse after transplantation for acute myeloid leukaemia can be achieved by choosing donors based on their KIR and HLA class I genotype.232,233 This could be extended in the future to help, for example, sperm donors with the lowest risk of adverse pregnancy outcomes in assisted reproduction. In-depth understanding of the molecular pathways that control NK cells will be critical to the therapeutic manipulation and in adoptive transfer strategies of these powerful lymphocytes,234 such as in cancer immunotherapy.16,29,235,236 Immune-modulation therapies that alter NK and T-cell function are already in development. For example Lirilumab, the monoclonal antibody that binds to KIR, is currently in a phase II clinical trial for lymphoma.237 By blocking the interaction of inhibitory KIR with their HLA class I ligands this antibody facilitates activation of NK cells by impeding inhibitory signalling, potentially promoting destruction of tumour cells.

Conclusion

Analysis of complex genomics represents a significant new frontier for immunology. Challenges lie in determining allelic copies precisely and developing molecular and computational strategies to analyse them at the scale required to definitively relate them to phenotypes. For the KIR gene cluster this process is underway and yielding valuable insights. KIR, therefore, provide a useful model for developing analysis methods for other families of proteins shaped by multi-allelic copy number variation, immune-related or otherwise. An important advance has been the development of targeted techniques and bioinformatics tools to precisely type and analyse HLA and KIR copy number and alleles with great accuracy and in high sample numbers. Understanding how KIR variation influences the initiation and progression of disease will be achieved through the application of these novel methods in multidisciplinary projects involving geneticists, statisticians, structural biologists, immunologists and clinicians. The overarching question is how the signals from lymphocyte receptor interactions determined at the genetic level translate to differing functionality and outcomes in settings of infections, pregnancy, autoimmunity and cancer. Understanding the cellular and molecular mechanisms underlying the KIR-HLA system will contribute to the development of interventions and therapies to ameliorate adverse consequences when these mechanisms go awry.

Summary

The advent of next-generation sequencing is set to allow the determination of KIR and HLA sequences at super-resolution. Combining such studies with high-resolution functional mapping of these polymorphic genes will provide unprecedented insight, not only into the molecular mechanisms that govern the interactions between receptor and ligand, but also into the pathophysiology of infectious and non-infectious disorders in which KIR and HLA play critical roles.

Acknowledgements

V.B. is supported by the French National Research Agency (ANR) (grant no. NKIR-ANR-13-PDOC-0025-01). P.J.N. and H.H. are supported by U.S. National Institutes of Health grant R01 AI17892. J.A.T. is supported by the European Research Council (ERC) and Medical Research Council (MRC).

Disclosures

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1 Battistini L, Borellino G, Sowicki G, Puccia F, Salvetti M, Ristori G et al. Phenotypic and cytokine analysis of human peripheral blood γδ T cells expressing NK cell receptors. J Immunol 1997; 159:3723–30.
2 Young NT, Uhberg M, Phillips JL, Lanier LL, Parham P. Differential expression of leukocyte receptor complex-encoded Ig-like receptors correlates with the transition from effector to memory CTL. J Immunol 2001; 166:3933–41.
3 Patterson S, Chaudos A, Neville DC, Foggi A, Butters TD, Roberts IA et al. Human invariant NKT cells display alloreactivity instructed by invariant TCR-CD1d interaction and killer Ig receptors. J Immunol 2008; 181:3268–76.
van Bergen J, Kooy-Winkelaar EM, van Dongen H, van Gaalen FA, Thompson A, Huizinga TW et al. Functional killer Ig-like receptors on human memory CD4+ T cells specific for cytomegalovirus. J Immunol 2009; 182:4175–82.

Antosf ̈i N, Doneus JM, Peyrat MA, Ygalon S, Bonnaud O, Boisy D et al. Coordinated expression of B- and T-cell inhibitory MHC class I receptor and acquisition of cytotoxic function in human CD8+ T cells. J Immunol 2004; 173:7233–9.

Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23:225–74.

Bjorkstrom NK, Beizai V, Cichocki F, Liu LL, Levine J, Larsson S et al. CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood 2012; 120:3455–65.

Brentola N, Ben-Meir A, Marie-Car ̈ dine A. Cutting edge: selective expression of inhibitory or activating killer Ig-like receptors in circulating CD4+ T lymphocytes. J Immunol 2008; 180:2767–71.

Barclay AN, Hatherley D. The counterbalance theory for evolution of paired receptors. Immunology 2008; 29:675–8.

Liu J, Yao Z, Ko HL, Shen M, Ren EC. Activating killer cell immunoglobulin-like receptor (KIR) binding to CD2AD1 mediates recognition of self and killing of HLA-C allotypes. J Immunol 2009; 183:7574–82.

Cooper M, Ager ̈a H, Nilsson WI, Ask BA, Henn BM et al. Three common alleles of KIR2DL4 (CD158e) encode constitutively expressed, inducible and secreted receptors in NK cells. Eur J Immunol 2007; 37:199–211.

Mulderney TJ, Hou L, Steiner NK, Chen M, Belle I, Ng J et al. Promoter variants of KIR2DL5 add to diversity and may impact gene expression. Immunogenetics 2006; 60:287–94.

Hilton HG, Norman PJ, Nematz Gorgani N, Goyos A, Hollenbach IA, Henn BM et al. Loss and gain of natural killer cell receptor function in an African Hunter-Gatherer population. PLoS Genet 2015; 11:e1005439.

Vivian JP, Duncan RC, Berry R, O’Connor GM, Reid HH, Boddie T et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature 2011; 479:401–5.

Winter CC. Long EO. A single amino acid in the p80 killer cell inhibitor receptor controls the ability of natural killer cells to discriminate between the two groups of HLA-C allotypes. J Immunol 1997; 159:6268–82.

Beizai V, Traherne JA, Hou L, Sayre R, Pellett F, Gladman D et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nat Immunol 2009; 10:453–4.

Boudreau JE, Mulderney TJ, Le Luduec JB, Barker E, Hou KC. KIR2DL3 and HLA-B density and binding calibrate NK education and response to HIV. J Immunol 2016; 196:3989–410.

Hilton HG, Gueulein LA, Goyos A, Nematz Gorgani N, Bushnell DA, Norman PJ et al. Polymorphic HLA-C receptors balance the functional characteristics of KIR haplotypes. J Immunol 2015; 196:3160–70.

Saunders PM, Pymm P, Pietra G, Hughes VH, Hitchen C, O’Connor GM et al. Killer cell immunoglobulin-like receptor 3DL1 polymorphism defines distinct hierarchies of HLA class I recognition. J Exp Med 2016; 213:791–807.

Thananchai H, Gillispie G, Martin MP, Basha ̈irova A, Yawata N, Yawata M. Cutting edge: allelic-specific and peptide-dependent interactions between KIR2DL1 and HLA-A and HLA-B. J Immunol 2007; 178:33–7.

Frazier WR, Steiner N, Hou L, Dakshamahurthy S, Hurley CK. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C ligand. J Immunol 2013; 190:6198–208.

Basha ̈irova AA, Martin MP, McVicar DW, Carrington M. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Ann Rev Genomics Hum Genet 2006; 7:277–300.

Norman PJ, Hollenbach JA, Nematz Gorgani N, Gueulein LA, Hilton HG, Pando M et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet 2013; 9:e1003938.

Nematz Gorgani N, Edinur HA, Hollenbach IA, Traherne JA, Dunn PP, Chambers G et al. KIR diversity in Mestizos and Polynesians: populations in which HLA-B is not a significant KIR ligand. Immunogenetics 2014; 66:597–611.

Gueulein LA, Okor Aguilar AM, Abi-Rached L, Parham P. Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orang-utan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J Immunol 2007; 179:491–504.

Khakoo SI, Rajalingam R, Shum BP, Weidenbach K, Flodin L, Muir DG et al. Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 2000; 12:687–98.

Norman PJ, Stephens HA, Verity DW, Chandanayangong D, Vaughan RW. Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics 2001; 52:195–205.

Tonova M, Lepage V, Lafay G, Dulphy N, Busson M, Lester S et al. Genomic diversity of natural killer cell receptor genes in three populations. Tissue Antigens 2001; 57:358–66.

Hollenbach JA, Nocodd I, Lauder MB, Single RM, Trachtenberg EA. Killer cell immunoglobulin-like receptor (KIR) gene content variation in the HGDP-CEPH popu- lations. Immunogenetics 2012; 64:719–37.

Valiante NM, Ulherberg M, Shilling HG, Lienert-Weidenbach K, Arnett KL, D’Andre a A et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 1997; 7:379–91.

Hedrick PW, Thomson G. Evidence for balancing selection at HLA. Genetics 1983; 104:649–56.

Greenberg JH, Turner CG, Zergura SL, Campbell L, Fox JA, Laughlin WS et al. The settlement of the Americas: a comparison of the linguistic, dental, and genetic evidence [and comments and reply]. Curr Anthrop 1986; 27:477–97.

Gendrefidh K, Norman PJ, Abi-Rached L, Graef T, Moosta AK, Larri uze L et al. Co-evolution of KIR3DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. Proc Natl Acad Sci USA 2009; 106:18942–7.
Abi-Rached L, Parham P. Natural selection drives recurrent formation of activating KIR.

Kulkarni S, Martin MP, Carrington M. The Yin and Yang of HLA and KIR in human evolution and adaptation led to major qualitative differences in the variable receptors that impacts both HLA and peptide sensitivity. J Immunol 2014; 192:2875-84.

Fadda L, O’Connor GM, Kumar S, Pinchocka-Irachchi A, Gardner CM, Carrington M et al. Common HIV-1 peptide variants mediate differential binding of KIR to HLA-Bw4 molecules. J Virol 2011; 85:17902–7.

O’Connor GM, Vivian JP, Wicki A, Gutieñez E, Pumplin Y, Laftab RA, Price DA et al. Peptide-dependent recognition of HLA-B*57:01 by KIR3DS1. J Virol 2015; 89:5213–21.

O’Connor GM, Yamada E, Rampersaud A, Thomas R, Carrington M, McVicar DW. Analysis of binding of KIR3DS1*0104 to HLA suggests distinct evolutionary history of KIR3DS1. J Immunol 2011; 187:2162-71.

Abs-Rached L, Moesta AK, Rajalingam R, Guethlein L, Parham P. Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet 2010; 6:e1001192.

Abs-Rached L, Parham P. Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 2005; 200:1319–32.

Norman PJ, Hellenbach JA, Nematzegañi N, Marin WM, Norberg SJ, Ashouri E et al. Defining KIR and HLA class I genotypes at highest resolution via high-throughput sequencing. Am J Hum Genet 2016; 119:375-91.

Single RM, Martin MP, Gao X, Meyer D, Yeager M, Kidd JR et al. Global diversity and evidence for coevolution of KIR and HLA. Nat Rev Genet 2007; 9:311-14.

Fan QR, Long EO, Wiley DC. Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat Immunol 2001; 2:452-60.

Pelak K, Need AC, Fellay J, Shianna KV, Feng S, Urban TJ et al. Copy number variation of KIR genes influences HIV-1 control. PLoS Biol 2011; 9:e1001208.

O’Connor GM, Guinan KE, Cunningham RT, Middleton D, Parham P, Gardner CM. Functional polymorphism of the KIR3DL1/S1 receptor on human NK cells. J Immunol 2017; 198:237-41.

Song S, Miranda CJ, Braun L, Meyer K, Frakes AE, Ferriáuilo L et al. Major histo-compatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis. Nat Med 2016; 22:397-403.

Ahn RM, Mohlehi H, Martin MP, Abad-Santos M, Bowcock AM, Carrington M et al. Inhibitory KIR3DL1 alleles are associated with psoriasis. Br J Dermatol 2015; 174:449–51.

Augusto DG, O’Connor GM, Lobo-Avelos SC, Baas S, Martin MP, Carrington M et al. Peptidome is associated with KIR2DL2 expression levels and provides evidence that KIR2DL2 may bind HLA-A3 and A11 in vivo. Eur J Immunol 2015; 45:2052-60.

Nakimuli A, Chazara O, Hiby SE, Apps R, Magnus P, Trogstad L et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and association studies. Tissue Antigens 2016; 88:650–2.

Apps R, Del Prete GQ, Chatterjee P, Lara A, Brunme LL, Brockman MA et al. HIV-1 Fvpe Mediates HLA-C Disregulation. Cell Host Microbe 2016; 19:886-95.

Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 1999; 10:661-71.

Garcia-Beltran WF, Holzem H, Martin MP, Chuong AW, Pacheco Y, Simoncini CR et al. Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat Immunol 2016; 17:1667-74.

Burian A, Wang KL, Fiston KA, Lee N, Ishitani S, Strong BK et al. HLA-F and MHC-I Open Conformers Bind Natural Killer Cell Ig-Like Receptor KIR3DS1. PLoS ONE 2016; 11:e0163297.

Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, Schneidewind A et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct HLA/KIR subtypes. J Exp Med 2007; 204:3027-40.

Apps R, Qi Y, Carlson JM, Chen H, Gao X, Thomas R et al. Influence of HLA-C expression level on HIV control. Science 2013; 340:87–91.

Thomas R, Apps R, Qi Y, Gao X, Male V, O’Hugain C et al. HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C. Nat Genet 2009; 41:1290-4.

Brucknerud S, Evans EI, Toebes M, Goonetilleke N, Liu MK, diGloria K et al. An early HIV mutation within an HLA-B*57-restricted T cell epitope abrogates binding to the killer inhibitory receptor 3DL1. J Virol 2011; 85:5415-22.

Thananchai H, Makadzange T, Mamaka K, Kuroki K, Peng Y, Conlon C et al. Reciprocal recognition of an HLA-Cw4-restricted HIV-1 gp120 epitope by CD8+ T cells and NK cells. AIDS 2009; 23:1389-93.

Alter G, Heckerman D, Schneidewind A, Fadda L, Kadie CM, Carlson JM et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 2011; 476:96-100.

Jiang W, Johnson C, Simicke N, López-Alvarez MR, Di D, Twosedale J et al. qKAT: a high-throughput qPCR method for KIR gene copy number and haplotype determination. Genome Med 2016; 8:99.

Vendelbois S, de Boer M, Goosse KA, Ho CK, Geisser J, Swhen WT et al. Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus is conserved across humans. PLoS ONE 2013; 8:e76719.

Roberts CH, Jiang W, Jayaraman J, Twosedale J, Holland MJ, Trajera JA. Killer-cell Immunoglobulin-like Receptor gene linkage and copy number variation analysis by droplet digital PCR. Genome Res 2014; 24:620.

Boyington JC, Motylla SA, Schuck P, Brooks AG, Sun PD. Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 2000; 405:537-43.

Winter CC, Gumperz JE, Parham P, Long EO, Wagmann N. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allo-type recognition. J Immunol 1998; 161:571-7.

Winter CC, Long EO. Binding of soluble KIR-Fc fusion proteins to HLA class I. Meth- odol Biol Rev 2000; 121:239-50.

Hilton HG, Moesta AK, Guethlein LA, Bloukhuis J, Parham P, Norman PJ. The production of KIR-Fc fusion proteins and their use in a multiplex HLA class I binding assay. J Immunol Methods 2015; 425:79-87.

Moesta AK, Norman PJ, Yawata M, Yawata N, Glimmer M, Parham P. Synergistic polymorphism at two positions distal to the ligand-binding site makes KIR2DL2 a stronger receptor for HLA-C than KIR2DL1. J Immunol 2008; 180:5969-79.

Colomina M, Bordillon G, Falco M, Ferrari GB, Strominger JL. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1- and NK2-specific natural killer cells. Proc Natl Acad Sci USA 1993; 90:12000-4.

Moretta A, Vitale M, Bottino C, Orenso AM, Morelli L, Augugliaro R et al. PS8 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of NK cells in cloning different specificities. J Exp Med 1993; 178:597-604.

Fadda L, Borghi G, Ahmed P, Chent K, Pagono SV, Cazaly A et al. Peptide antagonism as a mechanism for NK cell activation. Proc Natl Acad Sci USA 2010; 107:10160-5.

Frazier WR, Steiner N, Hou L, Dakshanamurthy S, Hurley CK. Allelic variation in KIR2DL3 generates a KIR2DL2-like receptor with increased binding to its HLA-C molecular mimicry. J Immunol 2013; 190:6419-38.

Bari R, Thapa R, Bao J, Li Y, Zheng L, Leung W et al. KIR2DL2/KIR2DL3-E(35) alleles are functionally stronger than -Q(35) alleles. Sci Rep 2016; 6:32689.
Moesta AK, Ab-Rached L, Norman PJ, Parham P. Chimpanzees use more varied receptors and ligands than humans for inhibitory killer cell Ig-like receptor recognition of the MHC-C1 and MHC-C2 epitopes. J Immunol 2009; 182:3628–37.

Hilton HG, Vago L, Older Aguilar AM, Moesta AK, Graef T, Ab-Rached L et al. Mutation at selected positions in the binding site for HLA-C shows that KIR2DL1 is a more refined but less adaptable NK cell receptor than KIR2DL3. J Immunol 2012; 189:1418–90.

Yasuda M, Yasuda N, Draghi M, Partheniou F, Little AM, Parham P. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 2008; 112:2369–80.

Bari R, Bell T, Leung WH, Vong QP, Chan WK, Das Gupta N. Recognition of HLA-Cw4 by human NK cells. J Immunol 2010; 184:3222–30.

Ozsaniana A, Williamson DJ, Cordoba SP, Morgan DJ, Kennedy PR, Stacey K et al. The size of activating and inhibitory killer cell Ig-like receptor nanoclusters is controlled by the transmembrane sequence and affects signaling. Cell Rep 2016; 15:1957–72.

Gumperz JE, Litwin V, Phillips JH, Lanier LL. Cyto-toires toward a balance of missing self-response. Immunol Rev 2009; 227:64–74.

Kuranov AB, Kotter I, Henes JC, Abisheva ST, Steiert I, Riewerts F. Three structurally and functionally divergent kinds of promoters regulate expression of the MHC-C1 and MHC-C2 epitopes. J Immunol 2005; 174:1635–43.

Chang HW, Kurago ZB, Stewart CA, Wilson MJ, Martin MP, Mace BE et al. DNA methylation maintains allele-specific KIR gene expression in human natural killer cells. J Exp Med 2003; 197:245–53.

Li G, Yu M, Weyand CM, Goronzy JJ. Epigenetic regulation of killer immunoglobulin-like receptor expression in T cells. Blood 2009; 114:1222–30.

Ivarsson MA, Michaelsson J, Fauriat C. Activating killer cell Ig-like receptors in health and disease. Immunol Rev 2015; 267:30–52.

van der Veken LT, Diez Campelo M, van der Hoorn MA, Hagedoorn RS, van Egmond T. Heritable variation in HLA-C expression associated with viral escape from KIR2DL3+ natural killer cells: data from an observational cohort in South Africa. PLoS Med 2015; 12:e1001960; discussion e1001990.

Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med 1999; 189:1093–100.

Teijlingen NH et al. Selection of an HLA-C*09:01- Restricted HIV-1 p24 gag peptide variant is associated with viral escape from KIR2DL3+ natural killer cells: data from an observational cohort in South Africa. PLoS Med 2015; 12:e1001960; discussion e1001990.
159 Guma M, Angulo A, Vilches C, Gomez-Lozano N, Malat N, Lopez-Boit M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood 2004; 104:3664–71.

160 Beziat V, Liu LL, Malmberg JA, Ivarsson MA, Soderberg E, Bjorkstrom NK, Retiere C et al. NK cell responses to CMV antigens are biased toward receptors with a KIR3DL4 specificity. J Immunol 2016; 199:2325–33.

161 Lindgren T, Ahlm C, Mohamed N, Evander M, Ljunggren HG, Bjorkstrom NK. Longitudinal analysis of the H-2 phenotype of the target. J Exp Med 2014; 205:1075–89.

162 Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulations. J Immunol 2016; 196:3818–27.

163 Hamelet J, Lollis B, Chevalier H, Stucki C, Salleron J, Cottaz F et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med 2015; 7:258ra415.

164 Beziat V, Traherne J, Malmberg JA, Ivarsson MA, Bjorkstrom NK, Retiere C et al. Tracking dynamic expansion of human NK-cell subsets by high-resolution analysis of KIR repertoires and cellular differentiation. Eur J Immunol 2014; 44:2192–6.

165 Baggio C, Chapman TL, Bjorkman P, Formanauskas D, Mcarthur AS, Phillips JR et al. Modulation of natural killer cell cytotoxicity in human cytomegalovirus infection: the KIR system
role of endogenous class I major histocompatibility complex and a viral class I homo-
log. J Exp Med 1998; 187:1681–7.
208 Spaggiari GM, Contini P, Carosio R, Arrigo M, Ghiò M, Oddone D et al. Soluble
HLA class I molecules induce natural killer cell apoptosis through the engagement of
CD94: evidence for a negative regulation exerted by members of the inhibitory receptor
superfamily. Blood 2002; 99:1706–14.
209 Zhang H, Zhou L, Zhu Z, Yang C. Recent progress in aptamer-based functional
probes for bioanalysis and biomedicine. Chemistry 2016; 22:9886–900.
210 Baham MM, Makriyannis AP. Ly49 receptors: evolution, genetic diversity, and impact
on immunity. Immunol Rev 2015; 267:157–72.
211 Moffett A, Colecchi F. Co-evolution of NK receptors and HLA ligands in humans is
driven by reproduction. Immunol Rev 2015; 267:283–97.
212 Belkin D, Torkar M, Chang C, Barten R, Tolaini M, Haude A et al. Killer cell Ig-like
receptor and leukocyte Ig-like receptor transgenic mice exhibit tissue- and cell-specific
transgene expression. J Immunol 2003; 171:3056–63.
213 Boudreau JE, Liu XR, Zhao Z, Zhang A, Shultz LD, Greiner DL et al. Cell-extrinsic
MHC Class I molecule engagement augments human NK cell education programmed
by cell-intrinsic MHC Class I. Immunity 2016; 45:280–91.
214 Kruse PH, Rosner C, Walter L. Characterization of rhesus macaque KIR genotypes
and haplotypes. Immunogenetics 2010; 62:281–93.
215 Avendam A, Petersen B, Rosner C, Neff J, Roos C, Eberle M et al. A novel system of
polymorphic and diverse NK cell receptors in primates. PLoS Genet 2009; 5:e1000668.
216 Guethlein LA, Norman PJ, Hilton IH, Parham P. Co-evolution of MHC class I and
variable NK cell receptors in placental mammals. Immunol Rev 2015; 267:259–82.
217 Rosner C, Kruse PH, Hermes M, Otto N, Walter L. Rhesus macaque inhibitory and ac-
tivating KIR3D interact with Manu-A-encoded ligands. J Immunol 2011; 186:2156–63.
218 Moreland AJ, Guethlein LA, Reeves RK, Broman KW, Johnson RP, Parham P et al.
Characterization of killer immunoglobulin-like receptor genetics and comprehensive
genotyping by pyrosequencing in rhesus macaques. Immunogenetics 2011; 12:295.
219 Bumber BN, Evans DT. The killer-cell immunoglobulin-like receptors of macaques.
Immunol Rev 2015; 267:246–58.
220 Older Aguilar AM, Guethlein LA, Hermes M, Walter L, Parham P. Rhesus macaque
KIR bind human MHC class I with broad specificity and recognize HLA-C more effec-
tively than HLA-A and HLA-B. Immunogenetics 2011; 63:577–85.
221 Hermes M, Weid S, Gorth A, Dressel R, Koch J, Walter L. Characterisation of mouse
genomonal antibodies against rhesus macaque killer immunoglobulin-like receptors
KIR3D. Immunogenetics 2012; 64:845–8.
222 Hermes M, Albrecht C, Schroth A, Brameier M, Walter L. Expression patterns of killer
cell immunoglobulin-like receptors (KIR) of NK-cell and T-cell subsets in Old World
monkeys. PLoS ONE 2011; 6:e24936.
223 Albrecht C, Malakun D, Brameier M, Hermes M, Ansari AA, Walter L. Progression to
AIDS in SIV-infected rhesus macaques is associated with distinct KIR and MHC class
I polymorphisms and NK Cell dysfunction. Front Immunol 2014; 5:600.