Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against *Escherichia coli*

Muhammad Adnan1†, Roqaia Bibi1†, Sakina Mussarat1†, Akash Tariq1† and Zabta Khan Shinwari2†

Abstract

Medicinal plants have always been part of human culture and have the potential to cure different diseases caused by microorganisms. In Pakistan, biologists are mainly focusing on plants’ antimicrobial activities against *Escherichia coli* due to its increasing resistance to antibiotics. In total, extracts from 34 ethnomedicinally valuable Pakistani plants were reported for in-vitro anti-*E. coli* activities. Mostly methanolic extracts of medicinal plants were used in different studies, which have shown comparatively higher inhibitory activities against *E. coli* than n-hexane and aqueous extracts. It has been found that increasing concentration (mg/ml) of methanolic extract can significantly increase (p < 0.01) anti-*E. coli* activities. Not all medicinal plants are extracted in solvents others than above, which should also be tested against *E. coli*. Moreover, medicinal plant species must be fully explored phytochemically, which may lead to the development of new drugs.

Keywords: Medicinal plants, Biological screening, Ethnomedicines, Phytochemistry, Bacteria

Introduction

Therapeutic properties of medicinal plants are well recognized at global level [1]. As an estimate, over 50% of modern clinical drugs have natural products’ origin [2]. World Health Organization has emphasized on the use of traditional medicines and reported about 80% of population from developing countries relies on medicinal plants for their primary health care [3,4]. It is believed that more than 8,000 plants species in South Asia carries medicinal properties, of which 1000 exists in Pakistan [5]. Local people use these medicinal plants for the treatment of various ailments through their indigenous knowledge [6]. However, due to modernization, traditional medicines are only practiced in remote rural areas [7,8].

In Pakistan, pathogenic bacteria are causing serious infectious diseases like gastro-intestinal, pneumonia, pulmonary and skin related. A number of Pakistani medicinal plants have been tested for their antimicrobial activities [9]. These plants contain different phytochemicals such as alkaloids, glycosides, saponins, resins, oleoresins, sesquiterpene lactones and oils (essential and fixed). Other compounds like furanocoumarins, hydroxycoumarins, napthoquinones, acylphloroglucinols and sterones have also been isolated from these species. It was identified that 74% of the 119 plant derived drugs were discovered as a result of isolation of active substances from medicinal plants [10].

Escherichia coli are gram negative bacteria, and mainly responsible for urinary tract and gastro-intestinal infections in human [11]. They are the best and most studied free-living microorganisms [12,13]. Some strains of *E. coli* live as harmless commensalism in animals’ intestines while others causes serious diseases. These strains included enteropathogenic, enterohemorrhagic, enteroinvasive, enterotoxigenic, and enteropathogenic [14]. The enterohemorrhagic *E. coli* strain (EHEC) O157:H7 was first recognized as a gastro-intestinal pathogen in 1982 and became a world-wide public health problem [15]. However, most of the diseases caused by these bacteria are being treated locally using medicinal plants. Different methods like biological screening, isolation of compounds and clinical trials have been used to find out the efficacy...
of medicinal plants against microorganisms causing a particular disease [16,17].

Emergence of multiple drug resistant bacterial strains due to indiscriminate use of antibiotics has generated a keen interest in the discovery of effective plants derived drugs [18]. E. coli are showing increased resistance to different antibiotics like amoxicillin and trimethoprim [19,20]. Hence, searching of alternative and effective medicines from plants against such resistant bacteria has become an important concern all over the world [21]. Antibiotics on one side became ineffective to bacterial strains but also costly for the poor communities of developing world [22,23]. Furthermore, the antibiotics may be associated with adverse effects including hypersensitivity and immune suppression [24]. Therefore, this review was designed with the aim to (i) compile the available fragmented literature on anti-E. coli effect of Pakistani medicinal plants, and (ii) suggest measures on newer and safer herbal drugs for the diseases caused by the E. coli. Furthermore, this review will provide knowledge on ethnomedicines and phytochemistry of those Pakistani medicinal plants having anti-E. coli potential. Above all, this review will provide baseline information for chemists, pharmacists and pharmacologists to carry out in-depth in-vitro and in-vivo activities for the development of novel drugs against E. coli with low cost and less side effects on living system.

Methodology

Literature selection

Online literature on antibacterial activities of Pakistani medicinal plants against E. coli was searched and gathered using online bibliographic databases including Google Scholar, ISI Web of Knowledge and Science Direct Navigator, as well as some libraries sources. An extensive number of published and unpublished articles and reports were found on Pakistani medicinal plants extracted with different solvents (methanol, ethanol, ethyl acetate, n-hexane, chloroform etc.) for theirs in-vitro biological screening. In total, 112 plants were found tested for their in-vitro anti-E. coli in Pakistan. However, this review consisted of 34 plants, on which sufficient information were available regarding extracts’ concentrations (mg/ml) necessary for maintaining uniformity in the data. This study is the combination of anti-E. coli activities, ethnomedicinal properties and phytochemistry of reported medicinal plants that were collected from the available literature.

Extraction techniques used in Pakistan

Extraction is the process of separation of active metabolites of medicinal plants using different solvents through standard procedures. Common techniques used in Pakistan for extraction process are Maceration, Infusion, Percolation, Decoction and Soxhlet [25,26]. Maceration is the most proffered technique, in which powdered plant-drug is kept in a container with solvent for a defined period with frequent stirring until soluble matter is dissolved [27].

Data organization and statistical analysis

Data was organized and tabulated using Microsoft Excel 2007 and Word 2007. First table was designed on the in-vitro anti-E. coli activities of Pakistani medicinal plants. This table consisted of data on the concentrations of plant extracts (uniformed to mg/ml) and their anti-E. coli zone of inhibition (uniformed to mm). Second table composed of ethnomedicinal properties and phytochemistry of reported medicinal plants. Figure 1 depicts total number of medicinal plants used against E. coli in Pakistan, which justifies the criteria of species’ selection for this review. Pearson correlation was applied using SPPS between plant extracts’ concentrations and anti-E. coli zone of inhibition.
(Figures 2 and 3). Furthermore, Figure 4 was developed in Chemdraw, which illustrates active phytochemical of selected medicinal plants having anti-
\textit{E. coli} activities.

Discussion

Medicinal plants extracted with methanol and ethanol

Methanol and ethanol are organic compounds used for the extractions of different medicinal plants. These solvents are mostly preferred throughout the world for extraction process [28]. Present review showed that majority of plant species (19) were extracted using methanol solvent (Figure 1). The higher use of methanol might be associated with its higher antibacterial activities in comparison to other solvents. Statistically plant extracts’ of methanol concentrations (mg/ml) in DMSO have significantly increased the anti-
\textit{E. coli} inhibitory activities (Figures 2 and 3).

Ethanolic extracts of certain plants also showed excellent inhibitory activities. Anti-
\textit{E. coli} inhibitory activities of methanol and ethanol might be related to their polar nature, due to which these solvents can easily degrade the cell wall of medicinal plants and helps in releasing polyphenols from cells. Ncube et al. [27] mentioned that polyphenols are best in their antibacterial activities. Polyphenols are organic in nature, which can be obtained through methanolic and ethanolic extractions [16].

Withania somnifera

\textit{W. somnifera} is widely used as traditional medicine in remote areas of Pakistan for various ailments (Table 1). Mahmood et al. [29] described that methanolic extract of \textit{W. somnifera} at different concentrations 15, 10, 5 and 3 mg/ml showed 8, 7, 3.7 and 1 mm inhibition against \textit{E. coli}, respectively. Leaves extract of \textit{W. somnifera} showed 18 mm inhibition against \textit{E. coli} at 10 mg/ml concentration [30] (Table 2). These strong antibacterial activities of \textit{W. somnifera} might be due to the presence of Withanolides (Figure 4.3), which have been isolated from the leaves [31] (Table 1).

Justicia adhatoda

\textit{J. adhatoda} is traditionally being used for the treatment of variety of diseases caused by \textit{E. coli} and other microorganisms (Table 1). Limited inhibition of methanolic extracts of its leaves was found against \textit{E. coli} (Table 2). \textit{J. adhatoda} showed 2 mm inhibition at 15 mg/ml concentration, 1.6 mm inhibition at 12.5 mg/ml concentration, 1.5 mm at 10 mg/ml and 1.4 mm at 7.5 mg/ml

Figure 2 Pearson correlations between medicinal plant extracts’ concentrations (mg/ml) and inhibition zones of \textit{E. coli} (mm).
concentration when dissolved in DMSO (Table 2). Studies have revealed the presence of alkaloids in the methanolic extract of its leaves (Table 1). Alkaloids isolated from J. adhatoda showed bronchodilator activity [86], however not evaluated for antimicrobial activities.

Althaea officinalis
Roots of A. officinalis are very useful and traditionally used for intestinal and respiratory problems. The methanolic extract of roots, leaves and flowers of A. officinalis when dissolved in DMSO have shown 1.9 mm inhibition against E. coli (Table 2). Phytoconstituents like altheahexacosanyl lactone (Figure 4.1), altheacalamene, β-sitositerol, altheacoumarin glucoside and other constituents have been obtained from the methanolic and ethanolic extract of root, seeds and leave of A. officinalis (Table 1). The anti-E. coli activity of this plant could be due to presence of these compounds. However, further studies are required in order to find out the constituents that may have strong potential against E. coli.

Azadirachta indica
Ethnomedicinally, A. indica is considered one of medicinal plants having great potential against variety of diseases (Table 1). For instance, the decoction of leaves is used for curing digestive and gastric problems. Leaves are dried, crushed and powder is mixed with small quantity of water and taken as remedies of freckles on face and increase appetite by lessening stomach flatulence and killing intestinal worms [35,36]. Ethanolic extract of leaves of A. indica showed 18 and 23 mm inhibition at 50 and 75 mg/ml, respectively against E. coli [78]. More than 135 compounds have been isolated so far from different parts of A. indica, however not of them are

Figure 3 Pearson correlations of different concentration of medicinal plants extracts dissolved in DMSO solvent (mg/ml) and inhibition zones of E. coli (mm).
studied for their biological activities. Nimbin (Figure 4.2) and Nimbidin are major crude bitter principle extracted from the oil of seed kernels of *A. indica*, which have demonstrated several biological activities including anti-fungal, antibacterial and anti-inflammatory [76].

Mentha longifolia Traditionally the decoction of *M. longifolia* is used for cholera, diarrhea and stomach problems in the rural area of Pakistan [61]. The ethanolic extract of leaves of *M. longifolia* showed 18 mm inhibition against *E. coli* when dissolved in their respective solvent at 10 mg/ml (Table 1). Monoterpenes and sesquiterpenes present in aerial parts were found to possess antibacterial activities [87]. *M. longifolia* has also been scientifically proved for its insecticidal [87], antispasmodic and antiplatelet properties [88].

Delonix regia Ethnomedicinally, the root of *D. regia* has been proved very potent against abdominal pain while leaves are used as anti-inflammatory. *In-vitro* ethanolic extract of *D. regia* has shown 10 mm zone of inhibition at 100 mg/ml concentration against *E. coli* [12] (Table 2). Large number of phytoconstituents such as tannins, triterpenoids,
Plant Species/ Family names	Part used	Extract	Phytoconstituents	Ethnobotany	Mode of preparation	Route of admin.	References
Althaea officinalis Linn Malvaceae	Seed, root, leaves, flower	Methanol	n-hexacos-2-enyl-1,5-olide (altheahexacosanyl lactone), 2β-hydroxyalcaline (altheacalaline) and 5,6-dihydroxycoumarin-5-dodecanolate-6β-D-glucopyranoside (altheacumarin glucoside), lauric acid, β-sitosterol and lanosterol. Dihydrokaempferol 4′-O-glucoside, Tiliroside, Hypolaetin 8-0-gentiobioside	Expectorant, demulcent, burns, snake bite, asthma, bronchitis pneumonia, rheumatism, kidney and bladder problems	Decotions of the plant, especially of the root, are very useful for intestinal problems. Seeds, leaves and flowers are boiled in wine or milk and taken to relieve diseases like chest, coughs, bronchitis and whooping-cough.	Oral, dermal	[32-34]
Azadirachta indica Adr. Juss. Meliaceae	Leaves	Ethanol	Azadirachtin	Antiseptic, digestive and gastric problems, skin diseases, stomach flatulence	Decotion of leaves is taken for digestive and gastric problems. Fresh leaves are boiled in water and tied on wounds. Leaves are dried, crushed and powder is mixed with small quantity of water and taken for the remedy of freckles on face and increase appetite by lessening stomach flatulence and killing worms.	Oral, dermal	[35-37]
Calendula arvensis L. Compositaeae	Leaves	Ethanol	28-Oβ-D-glucopyranoside-3-β-O-[Oβ-D-galactopyranosyl (1→3)]-β-D-glucopyranoside. 3β-O-[Oβ-D-galactopyranosyl (1→3)]-β-D-glucopyranoside.	Hepatitis and spleen enlargement control	Decotion of leaves is used as required.	Oral	[35,38]
Calotropis procera Ait. f., Hort. Solanaceae	Stem, leaves	Methanol, aqueous	alkaloids, flavonoids, tanins, steroids, triterpenoids, saponins	Expectorant, antihelmentic, cholera, asthma, earache, pyorrhea, gastro-intestinal diseases	Stem latex is used in earache and asthma. Infusion of leaves used for stomach problems.	Oral, dermal	[35,39]
Cannabis sativa L. Cannabaceae	Leaves	Ethanol	Anhydrocannabinatine Cannabisatine cannabinoids N-(p-hydroxy-p-phenylethyl)-p-hydroxy-(trans)-cinnamide	Sedative, anodyne, narcotic	Whole plant extract is effective cure of livestock dysentery. Cannabis is also used for the treatment of number of condition including AIDS, multiple sclerosis and thermotherapy induced nausea. Its decotion is used for the treatment of the cancer, nerve protection, fever and high blood pressure. It cause hallucination when drunk in excessive quantity.	Oral, dermal	[40-42]
Carum copticum L. Apiaceae	Methanol, ethanol, n-hexane, acetone	Appetizers, kidney stone, digestion and whooping cough	Seeds are taken with little salt for gas trouble as stomach tonic.	Oral	[36,43]		
Table 1 Ethnobotany and phytochemistry of Pakistani medicinal plants (Continued)							
---------------------------------	-----------------	---------------------------------	---	-----------------	-----------------		
Cichorium Intybus L. Asteraceae	**Root**	**Methanol**	([lup-12,20 (29)-di-en-3β-ol-3β-L-arabinofuranosyl-2'-hexadecanoate])	Abdominal pain, diarrhea	Oral [34,40,44]		
Cinnamomum zeylanicum Blume. Lauraceae	**Kohat**	**n-hexane**	carboxydrates, alkaloids, tannins, steroids, tannins, flavonoids, glycosides	Toothache and sore gums, carminative, stimulant, anti-microbial, anti-fungal	Oral [45]		
Cistanche tubulosa (Schenk) R. Wight. Orobancheaceae	**Stem**	**Methanol**	Glycosides, monoterpenes				
Datura inoxia Mill. Solanaceae	**Seed**	**Methanol**	Daturadiol, daaturaolone, 3β,6β-dihydroxyoleane-12-ene, 3-oxo-6β-hydroxyoleane-12-ene	anti-inflammatory, laxative, anti-spasmodic, sedative, malaria	Oral, dermal [34,35,47]		
Delonix regia L. Leguminosae	**Stem, bark, leaves**	**Ethanol, methanol**	L-Azetidine-2-carboxylic acid, lupeol, epilupeol, b-sitosterol, stigmasterol and p- methoxybenzaldehyde alka-loid, tannins, triterpenoids, steroids, glycosides, flavonoids, so-flavavones, flavones, anthocyanine, coumarines, lignins, vitamin-A, vitamin-E, vitamin-C, ß-Amyrin, hesperitin	Abdominal pains, bronchitis and pneumonia	Oral [48-50]		
Dodonaea viscosa L. Capparidaceae	**Leaves, aerial parts**	**Ethanol**	Tannins, saponins, flavanoids and terpenoids	Astringent, anti rheumatic, swelling cutaneous, skeletal and gastro-intestinal diseases and burns	Oral, dermal [40,51]		
Eucalyptus camaldulensis Dehnh. Myrtaceae	**Leaves**	**Ethanol**	Ellagitannins, flavonoids, phloroglucinol derivatives and galloyl esters.	Flu and cold	Oral [36,52]		
Ficus carica L. Moraceae	**Leaves, fruit**	**Ethanol**	Steroids, triterpenoids, cumarines, flavanoids and glycoside	Respiratory, gastro intestinal, urinary and cutaneous diseases, demulcent, laxative, anti-septic, constipation, flatulence, measles, dysentery, bladder problems and verrucas	Oral, dermal [34,53]		
Glycyrrhiza gilbra L. Leguminosae	**Root**	**Ethanol**	Glycyrrhizin	Respiratory illness, cough	Oral [54]		

Adnan et al. Annals of Clinical Microbiology and Antimicrobials 2014, 13:40
http://www.ann-clinmicrob.com/content/13/1/40
Plant Name	Part Used	Extract Used	Phytochemicals	Medical Uses			
Hyssopus officinalis	Leaves	Methanol	a-Glucosidase inhibitors, quercetin 7-0-β-D-apiofuranosyl 1→2)-β-D-xylopyranoside and quercetin 7-0-β-D-apiofuranosyl 1→2)-β-D-xylopyranoside 3′-O-β-D-glucopyranoside	asthma, cough, bronchitis, fever, trauma, rheumatism			
Justicia adhatoda	Leaves	Methanol	Alkaloids	Diuretic, jaundice, antispasmodic cough, asthma, bronchitis, tuberculosis, rheumatism, gastro-intestinal, diarrhea, dysentery, antimicrobial			
Malva neglecta Wall.	Leaves	Methanol	(2-methyl-3-methoxy-5,6-dihydroxy-1,4-naphthoquinone)	Grind the leaves and mix it with honey. The paste is used dermally around the swelling. Decoction is used for respiratory diseases and diarrhea.			
Malva sylvestris L. Wall.	Leaves, root, flower	Methanol	5-Hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-(α-L-rhamnopyranosyl oxy)-4H-chromen-3-yl-β-D-glucopyranosyl (1→2)-β-D-glucopyranosyl(1→4)-[6-O-{(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-β-D-glucopyranosyl(1→2)](α-L-rhamnopyranoside, 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-(α-L-rhamnopyranosyl oxy)-4H-chromen-3-yl-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl(1→4)-[6-O-{(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-β-D-glucopyranosyl(1→2)](α-L-rhamnopyranosyl oxy)-4H-chromen-3-yl-β-D-glucopyranosyl(1→4)-[6-O-{(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-β-D-glucopyranosyl(1→2)](α-L-rhamnopyranoside	Wounds, gum diseases, dental, cutaneous diseases			
Mentha longifolia L.	Leaves	Ethanol	Longifone, (longiside-A and -B) and flavanone-glycosides (longitron) tricetin 7-O-methyl ether 3′-O-glucoside 5′-O-rhammoside, tricetin 3′-O-glucoside 5′-O-rhamnoside and tricetin 3′-O-rhamnosyl 1→4-rhamnoside	Carminative, diarrheal, dysentery and stomachache			
Olean europaea. L.	Leaves	Ethanol	Oleuropein, Hydroxytyrosol, Leteoline-7-glucoside	Oral			
Otostegia limbata Benth.	Leaves, root, methanol	Ethanol, methanol	5-Hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-(α-L-rhamnopyranosyl oxy)-4H-chromen-3-yl-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl(1→4)-[6-O-{(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-β-D-glucopyranosyl(1→2)](α-L-rhamnopyranoside, 5-hydroxy-2-(4-hydroxyphenyl)-4-oxo-7-(α-L-rhamnopyranosyl oxy)-4H-chromen-3-yl-β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl(1→4)-[6-O-{(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-β-D-glucopyranosyl(1→2)](α-L-rhamnopyranoside	Oral			
Paeonia emodi Wall. ex Royle	Root, flower, leaves	Methanol	Monoterpenes, monoterpen glycosides, triterpenoids, flavonoids, phenols and tannins	Backache, epilepsy, convulsions, uterine diseases, vomiting, cholera, whooping cough, diarrhea	The leaves of Ruta graveolens, Paeonia emodi root, are grounded together and sieved through a cloth. Mamorlica charantia and water are mixed together and added to sufuf formed.	Oral, dermal	[34,66-68]
Phyllanthus emblica							
L. Euphorbiaceae	Fruit, leaves	Methanol	kaempferol-3-O-α-L-(6″-methyl)-rhamnopyranoside, kaempferol-3-O-α-L-(6″-ethyl)-rhamnopyranoside 5-hydroxymethylfurural Quercetin, gallicacid	Carminative, stomachic, diuretic, laxative cooling effect, asthma, bronchitis, scurvy, cardiac, tuberculosis, diabetes, gonorrhea, rheumatism, jaundice, dysentery, diarrhea	Dried fruits are grind and taken with water against dysentery and diarrhea	Oral	34,69,70
Ricinus communis							
L. Euphorbiaceae	Leaves, seed	Ethanol	DPPH (1,1-diphenyl-2-picylhydrazyl), Gallic acid, quercetin, gentisic acid, rutin, epicatechin and ellagic acid	Emetic, narcotic, purgative, swelling, prolapse of uterus, gastro-intestinal diseases, rheumatism, paralysis, asthma, cough and constipation	Seed oil mixed with decoction of jaman (Corokia Oblique) leaves is given to cattle for constipation problems and increase appetite. Its leaf extract with (Grewia sp) bark fiber and fruit is frequently used for prolapse of uterus and easy delivery and to hasten release of birth in cattle.	Oral, dermal	34,40,71
Solanum surattense							
Burm. f. Solanaceae	Whole plant	Methanol	Chest pain, vomiting, burning feet, cough, asthma, expectorant, stomachache, diuretic, gonorrhea, urinary, gastro-intestinal diseases	Fruit is dried, crushed and powder is taken for abdomen pain and gas trouble.	Oral	29,36,59	
Solanum xanthocarpum							
Schrad. and Wendl. Sert. Hanov. Solanaceae	Leaves, stem, flower, root	Ethanol	Carpesterol and four steroidal glycosides, alkaloids, sterols, saponine, flavonoids, glycosides	200 g seeds are ground and the resulting powder is used orally after washing urethra with a sugar and potash alum (potassium alum) mixture for 4–5 days. 50 g seeds are mixed with fodder and fed to animal for 3–4 days.	Oral	34,74,75	
Trigonella foenum graecum							
L. Leguminosae	Seeds, stem, leaves	Ethanol	5,7,3′-trihydroxy-5′-methoxyisoflavone, biochanin A, formononetin, irilone, tricin, daidzein, calycosin, orientin-2″-O-p-trans-coumarate, vitexin-2″-O-p-trans-coumarate, and tricin-7-O-β-D-glucopyranoside	Anticancer, anti-inflammatory, anti-septic, aphrodisiac, astrigent, anthelmintic, wound healing, gastroprotective, chronic cough, leprosy, heart disease, antidiabetic, diarrhea, urethra prolapse	Oral	72,73	
Viscum album							
L. Loranthaceae	Leaves, twigs	Ethyl acetate, chloroform, ethanolic, methanolic, aqueous	4′-O-[β-D-Apioyl (1 → 2)]-β-D-glucosyl]-5-hydroxy-7-O-sinapylflavanone, 3-(4-acetoxy-3,5-dimethoxy)-phenyl-2E-propenyl-β-D-glucopyranoside, 3-(4-hydroxy-3,5-dimethoxy)-phenyl-2E-propenyl-β-D-glucopyranoside, 5,7-dimethoxy-4-O-β-D-glucopyranoside flavanone, 4,5-dimethoxy-7-hydroxy flavanone, and 5,7-dimethoxy-4′-hydroxy flavanone	Anti-inflammatory, emetic, purgative, anti – diabetic, hemia	Oral	76	
Withania somnifera							
Dunal. Solanaceae	Fruit, leaves	Methanol, ethanolic	withanosides I, II, III, IV, V, VI, and VII	Anthelmintic, leucorrhoea, tuberculosis abdominal pain	Fruit is given to children for removing abdominal pain. Decoction is used for blood purification.	Oral	35,31
Ziziphus vulgaris Miller, Rhamnaceae	Fruit	Methanol	3-O-robinobioside, quercetin 3-O-rutinoside, 3-O-α-L-arabinosyl-(1 → 2)-α-L-rhamnoside, 3-O-β-D-xylosyl-(1 → 2)-α-L-rhamnoside, 3′,5′-di-C-β-D-glucosylphloretin, 3-O-β-D-xylosyl-(1 → 2)-α-L-rhamnoside-4′-O-α-L-rhamnoside, Laxative, cutaneous and gastro-intestinal diseases	Infusion	Oral	[29,35]	

Table 2 Antibacterial activities of Pakistani medicinal plants against *E. coli* at different concentration

Plant Species	Location	Part used	Extract	Concentration (mg/ml)	Zone of inhibition (mm)	References
A. officinalis	Muzaffarabad	Root, leaves, flower	Methanol	15 (D)	1.9	[77]
A. indica	Faisalabad	Leaves	Ethanolic	50 (C)	18	[78]
			75 (C)	23		
C. arvensis	Cherat, Mardan, Malakand, Kohat	Leaves	Ethanolic	10 (C)	18	[30]
C. procera	Kohat	Stem	n-hexane	4 (D)	4	[17]
			Methanol	4 (D)	5.1	
			Aqueous	4 (D)	5	
			Chloroform	4 (D)	5.5	
			Butanol	4 (D)	6	
			n-hexane	2 (D)	3	
			Methanol	2 (D)	3	
			Aqueous	2 (D)	3.4	
			Chloroform	2 (D)	2	
			Butanol	2 (D)	3.5	
		Leaves	n-hexane	4 (D)	8.1	
			Aqueous	4 (D)	7.9	
			Chloroform	4 (D)	7.9	
			Butanol	4 (D)	6	
			n-hexane	2 (D)	6.8	
			Aqueous	2 (D)	6	
			chloroform	2 (D)	5.2	
			Butanol	2 (D)	5.1	
C. sativa	Cherat, Mardan, Malakand, Kohat	Leaves	Ethanolic	10 (C)	20	[30]
C. copticum	Kohat	Methanol	50 (D)	10	[9]	
		Ethanol	50 (D)	11		
		n-hexane	50 (D)	8		
C. Intybus	Sawabi, Gawadar	n-hexane	20 (D)	6.3	[79]	
		Chloroform	20 (D)	7		
		Ethyl acetate	20 (D)	6.3		
C. Intybus	Mardan	Roots	Methanol	20 (D)	7.4	[80]
		n-hexane	20 (D)	5		
		chloroform	20 (D)	6.2		
		Ethyl acetate	20 (D)	7		
Cichorium Noenum L. Asteraceae	Sawabi, Gawadar	Methanol	20 (D)	3.4	[79]	
		n-hexane	20 (D)	7		
		Chloroform	20 (D)	5		
		Ethyl acetate	20 (D)	5		
		Aqueous	20 (D)	3.4		
C. zeylanicum	Kohat	n-hexane	50 (D)	10	[9]	
Table 2 Antibacterial activities of Pakistani medicinal plants against E. coli at different concentration (Continued)

Plant	Location/Region	Sample	Concentration	CMI	Reference	
C. tubulosa	KDA Karak	Methanolic	4 (D)	6	[81]	
			2 (D)	4.1		
		Aqueous	4 (D)	4		
			2 (D)	3		
			1 (D)	1		
		Ethyl acetate	4 (D)	5.5		
			2 (D)	3.1		
		Chloroform	4 (D)	4.5		
			2 (D)	4		
		n-hexane	4 (D)	5		
			2 (D)	4.1		
			1 (D)	3.2		
		n-botanol	4 (D)	7		
			2 (D)	6.5		
			1 (D)	5		
C. arvensis	Peshawar	Leaves	Methanol	0.1 (C)	5	[82]
		n-hexane	0.1 (C)	6.2		
		Chloroform	0.1 (C)	7.1		
		Ethyl acetate	0.1 (C)	6.2		
		Stem	Methanol	0.1 (C)	4	
		n-hexane	0.1 (C)	6		
		Chloroform	0.1 (C)	6.2		
		Ethyl acetate	0.1 (C)	5.5		
		Aqueous	0.1 (C)	3		
		Root	Methanol	0.1 (C)	3.2	
		n-hexane	0.1 (C)	3.7		
		Chloroform	0.1 (C)	5.3		
		Ethyl acetate	0.1 (C)	3.3		
D. innoxia	Mirpur (Azad Jammu Kashmir)	Methanol	3 (C)	2	[8]	
			5 (C)	3.5		
			7.5 (C)	4.5		
			10 (C)	6		
			12.5 (C)	7		
			15 (C)	8		
D. regia	Karachi	Flower	Ethanol	100 (C)	10	[12]
D. viscosa	Kohat	Aerial parts	Ethanolic	3.2 (D)	11	[11]
E. gerardiana	Baluchistan	Whole plant	Methanol	15 (D)	2.6	[77]
			12.5 (D)	1.6		
			10 (D)	1.5		
			7.5 (D)	1.5		
			5 (D)	1.4		
E. camaldulensis	Cherat, Mardan, Malakand, Kohat	Leaves	Ethanolic	10 (C)	18	[30]
F. canica	Cherat, Mardan, Malakand, Kohat	Leaves	Ethanolic	10 (C)	23	[30]
Table 2 Antibacterial activities of Pakistani medicinal plants against *E. coli* at different concentration (Continued)

Plant	Region	Part(s)	Solvent(s)	Concentration (D)	MIC (μg/mL)	Ref.
G. glabra	Peshawar Root Methanol	15 (D)	3.6 [77]			
		12.5 (D)	1.6			
		10 (D)	1.5			
		7.5 (D)	1.4			
		5 (D)	1.4			
H. officinalis	Azad Jammu Kashmir Leaves Methanol	15 (D)	1.4 [77]			
		12.5 (D)	1.2			
J. adhatoda	Margalla Hills Leaves Methanol	15 (D)	2 [77]			
		12.5 (D)	1.6			
		10 (D)	1.5			
		7.5 (D)	1.4			
		5 (D)	1.4			
M. neglecta	Swat Methanolic n-hexane Chloroform Aqueous	4 (D)	13 [83]			
		4 (D)	13.5			
		4 (D)	14			
		4 (D)	10			
M. sylvestris	Rawal Dam Leaves, root, flower Methanol	15 (D)	1.8 [77]			
		12.5 (D)	1.6			
		10 (D)	1.6			
		7.5 (D)	1.6			
		5 (D)	1.4			
M. longifolia	Cherat, Mardan, Malakand, Kohat Leaves Ethanol	10 (C)	18 [30]			
N. microphyllum	Swat n-hexane Chloroform Aqueous	4 (D)	13 [83]			
		4 (D)	12			
		4 (D)	10			
O. europaea	Cherat, Mardan, Malakand, Kohat Leaves Ethanol	10 (C)	18 [30]			
O. limbata	Cherat, Mardan, Malakand, Kohat Leaves Ethanol	10 (C)	13 [30]			
Otostegia limbata	Abottabad Aerial parts Ethanol methanolic	8 (C)	11.5 [1]			
		8 (C)	6			
Phyllanthus emblica	Kohat Methanol	50 (D)	9.66 [9]			
R. communis	Karachi Leaves Ethanol	100 (C)	12 [12]			
S. surattense	Mirpur (Azad Jammu Kashmir) Methanol	3 (C)	1 [8]			
		5 (C)	2.5			
		7.5 (C)	3			
		10 (C)	3.8			
		12.5 (C)	4			
		15 (C)	5			
S. xanthocarpum	Lahore Leaves, stern, flower, Ethanol	5 (C)	11.84 [84]			
		50 (C)	14.52			
		100 (C)	16.78			
T. foenum	Karachi Seeds Ethanol	100 (C)	10 [12]			
V. album	Azad Jammu Kashmir Leaves, twigs Ethyle acetate	100 (C)	24.96 [85]			
steroids, glycosides, flavonoids, L-Azetidine-2-carboxylic acid, lupeol etc. have been isolated from the plant when extracted with alcoholic solvents (Table 1).

Dodonaea viscosa

Traditional healers of Pakistan use mostly leaves’ infusion of *D. viscosa* for curing different diseases caused by microbial agents (Table 1). The ethanolic extract of aerial parts of *D. viscosa* dissolved in DMSO solvent at 3.2 mg/ml concentration showed 11 mm inhibition zone [11] against *E. coli* (Table 2) that might be associated with the presence of tannins, saponins, flavonoids and terpenoids in the studied parts [51].

Medicinal plants extracted with butanol

Butanolic extracts of Pakistani medicinal plants also showed optimum anti-*E. coli* inhibitory activities. However, the use of butanol for plant extraction is very limited in Pakistan. Present review reported only 2 plants out of 34 extracted with butanol (Figure 1). Increase in concentration of butanolic extract in DMSO has significantly increased the inhibition zone against *E. coli* (Figure 3).

Calotropis procera

Traditional healers in the remote areas of Pakistan use *C. procera* in the form of infusion against gastro-intestinal troubles. The butanolic extract of stem and leaves of *C. procera* showed 6 mm inhibition against *E. coli* at 4 mg/ml concentration dissolved in DMSO (Table 2). Saponins, alkaloids, triterpenoids and flavonoids classes of compounds might be responsible for its strong anti-*E. coli* activity [39].

Cistanche tubulosa

No traditional uses of this plant has been reported in Pakistan, however, *in-vitro* scientific validation against *E. coli* provide a strong base for this plant to be used as potent medicinal plant. Butanolic extract of *C. tubulosa* dissolved in DMSO showed 7 and 6.5 mm inhibition against *E. coli* at concentration of 4 and 2 mg/ml, respectively (Table 2). Secondary metabolites such as glycosides and monoterpenes have been isolated from the butanolic extracts of this plant.

Medicinal plants’ aqueous extracts

Water is also used as a solvent for the extraction of medicinal plants in Pakistan. Extraction of plants with organic solvents gives more consistent antimicrobial activities as compared to inorganic solvents [89]. Reason behind less activities of inorganic solvent might be due to the presence of better medium for growth and occurrence of microorganisms [90]. Furthermore, water-soluble compounds, such as polysaccharides and polypeptides have no real impact as antimicrobial agents [16]. This could be the main reason of limited use of water for the extraction of medicinal plants in Pakistan. Present review showed that only 2 plants that have been extracted using water as solvent (Figure 1). Negative correlation was found between concentration of aqueous extract of medicinal plants and the zone of anti-*E. coli* inhibition (Figure 3).

Calotropis procera

C. procera has shown antibacterial activities due to the presence of different phytoconstituents like flavonoids, tannins etc. Aqueous extracts of the leaves of *C. procera* showed 7.9 mm (4 mg/ml) and 6 mm (2 mg/ml) inhibition against *E. coli*, when dissolved in DMSO [17].

Table 2 Antibacterial activities of Pakistani medicinal plants against *E. coli* at different concentration (Continued)

Plant	Location	Extract	Concentration (C)	Inhibition Zone (mm)
W. somnifera	Mirpur (Azad Jammu Kashmir)	Methanol	3 (C)	1
			5 (C)	3.7
			7.5 (C)	4
			10 (C)	7
			12.5 (C)	8
			15 (C)	8
W. somnifera	Cherat, Mardan, Malakand, Kohat	Leaves	Methanol 10 (C)	18
Z. vulgaris	Mianwali	Fruits	Methanol 15 (D)	1.4

C = Concentration in the respective solvent; *D* = Concentration in DMSO solvent.
Malva neglecta
Traditionally the plant is used against gastro-intestinal problems [40]. Aqueous extract of M. neglecta showed anti-E. coli inhibition zone of 10 mm on dissolving in DMSO at 4 mg/ml concentration [84] (Table 2). No study has been reported on the phytochemical screening of M. neglecta (Table 1).

Medicinal plants extracted with ethyl acetate
Literature review has shown limited use of ethyl acetate for the extraction of medicinal plant in Pakistan against E. coli. Out of 34 medicinal plants, only 2 were extracted with ethyl acetate that showed inhibition against E. coli (Figure 1). Significant positive correlation was observed between the concentration of pure ethyl acetate extract and anti-E. coli inhibitory potential (Figure 2). Increase concentration of ethyl acetate in DMSO also increases inhibition potential again E. coli, however statistically it not significant (Figure 3).

Viscum album
Traditionally, local people use V. album for variety of ailments like gastro-intestinal and anti-inflammatory (Table 1). The ethyl acetate extract of V. album showed 24.96 mm inhibition against E. coli at concentration of 100 mg/ml that might be due to the presence of variety of active phytoconstituents like 4′-O-[(β-D-Apisosyl (1 → 2)]-β-D-glucosyl]-5-hydroxyl-7-O-sinapylflavanone, 3-(4-acetoxy-3,5-dimethoxy)-phenyl-2E-propenyl-β-D glucopyranoside and 5,7-dimethoxy-4′-hydroxy flavanone etc. [91,92].

Cichorium intybus
C. intybus is traditionally used for the treatment of abdominal pain and diarrhea (Table 1). Root extract of C. intybus showed 7 mm inhibition against E. coli at 20 mg/ml concentration dissolved in DMSO solvent [80]. Antibacterial activity of C. intybus might be associated with the presence of different phytoconstituents (Table 2). There is no study reported on the ethyl acetate soluble phytoconstituents in the world. However, methanol soluble phytochemical are [lup-12,20 (29)-dien-β-ol-3β-L-arabinofuranosyl-2′-hexadecanoate], [lup-12,20 (29)-dien-3β-olyl hexadecanoate] and [4β-(pent-2-enylo lactone)-hexatriacontane] (Table 1).

Medicinal plants extracted with chloroform
Literature study has indicated chloroform with high inhibition against E. coli. In total, 7 medicinal plants were extracted with chloroform (Figure 1). Significant positive correlation was found between anti-E. coli inhibition zone and concentration of plant extracts in their respective solvent.

Malva neglecta
Ethnomedicinal properties of M. neglecta have already been discussed above. Chloroform extract of M. neglecta showed 14 mm zone of inhibition against E. coli at 4 mg/ml when dissolved in DMSO [83] (Table 2).

Cichorium intybus
Chloroform extract of C. intybus has shown in-vitro inhibitory activity against E. coli. It showed 6.22 mm anti-E. coli inhibition zone at concentration of 20 mg/ml dissolved in DMSO [80].

Medicinal plants extracted with n-hexane
N-hexane extracts does not exhibit better anti-E. coli activities. N-hexane extracts of different plants like Terminalia catappa and Dodonaea viscosa have been found with no antibacterial activities [11,93]. However, the present review showed that certain plants exhibit antibacterial activities when extracted with n-hexane solvent. In total, 10 out of 34 medicinal plants were extracted with n-hexane showing antibacterial activity (Figure 1), which could be due to difference in the phytochemistry between plants [27].

Cinnamomum zeylanicum
Traditional importance of C. zeylanicum could be observed due to its varied utilization against different ailments (Table 1). N-hexane extract of C. zeylanicum at 50 mg/ml in DMSO has shown 10 mm inhibition against E. coli [9] (Table 2) that might be due to the presence of active phytoconstituents isolated from the bark of C. zeylanicum [45].

Carum copticum
Ethnomedicinally, C. copticum induces appetite, remove kidney stone as well use for the treatment of digestion and whooping cough. Its seeds are taken with salt for gastric trouble (Table 1). According to Shinwari et al. [9] the n-hexane extract of this plant showed 8 mm zone of inhibition against the E. coli at 50 mg/ml in DMSO (Table 2). There is no study conducted so far on the phytochemistry of this plant.

Conclusions
The present review concluded that inhabitants of remote areas of Pakistan are greatly dependent on ethnomedicinal plants for the treatment of different ailments caused by E. coli. Majority of medicinal plants have been proved in-vitro for their therapeutic activities against E. coli. Different organic and inorganic solvents have been used in Pakistan for medicinal plants extraction, however, methanol being used the most. Different compounds such as nimbin, alkaloids of J. adathoda; glycosides of W. somnifera etc. were found inhibiting the growth of E. coli. Ethnomedicinal knowledge provides baseline information for
the search of novel drugs and compounds against variety of infectious diseases cause by microorganisms. Therefore, detailed ethnomedical studies should be carried out in Pakistan in order to conserve this valuable knowledge before its extinction. Moreover, solvents other than methanol should also give preference in future as it could lead to the separation of some new therapeutic compounds that could be active against E. coli. Phytochemical screening of unexplored plants like M. neglecta, C. coticum etc. should be given focussed as it could result in development of new antimicrobial drugs with fewer side effects.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors have fully contributed in writing and revising the manuscript critically. All authors read and approved the final manuscript.

Acknowledgements

The authors are highly indebted to departmental colleagues for their support.

Author details

1Department of Botany, Kohat University of Science and Technology, Kohat 26000, Pakistan. 2Department of Biotechnology, Quaid-i-Azam University Islamabad, 44000 Islamabad, Pakistan.

Received: 21 March 2014 Accepted: 27 July 2014

Published: 19 August 2014

References

1. Anwar F, Ali M, Hussain AI, Shahid M: Antioxidant and antimicrobial activities of essential oil and extracts of fennel (Foeniculum vulgare Mill.) seeds from Pakistan, Flavour Frag J 2009, 24:170–176.
2. Stuffness M, Drous J: Current status of the NCI plant and animal product program. Nat Prod 1982, 45(1):1–14.
3. Bashir A, Ali N, Bashir S, Choudhary MI: Biological activities of aerial parts of Tylophora hirsuta Wall. Afr J Biotechnol 2009, 8(18):4627–4631.
4. Olayiyiowa A: WHO’s traditional medicine programme: progress and perspective. WHO Chron 1984, 38(2):76–81.
5. Bashir S, Erum A, Kaiser R, Saleem U, Riaqia-Tulain U, Alamgeer: Antimicrobial activity of some ethno-medicinal plants used in Pakistan. Res Pharm 2012, 21(4):42–45.
6. Hocking GA: Pakistani medicinal plants. Quat Plant Mat Veg 1958, 6:121–136.
7. Ibrar M, Hussain F, Sultan A: Ethnobotanical studies on plant resources of Ranyal Hills, District Shangla. Pakistan J Bot 2007, 32(2):329–337.
8. Mahmood A, Mahmood A, Tabassum A: Ethnobotanical survey of plants from District Sialkot, Pakistan. J Appl Pharm 2011, 03(2):212–220.
9. Shimwari ZK, Salima M, Faisal R, Huda S, Arjar M: Biological screening of Indigenous knowledge based plants used in Diarrheal treatment. Pak J Bot 2013, 45(4):1375–1382.
10. Saroya AS: Herbalism, Phytochemistry and Ethnopharmacology. Enfield, New Hampshire New York: Science Publishers; 2011.
11. Khurram M, Khan MA, Hameed A, Abbasi N, Qayum A, Inayat H: Antibacterial activities of dodonaea viscosa using contact bioautography technique. Molecular 2009, 14:1332–1341.
12. Khursheed R, Naz A, Naz E, Shafir H, Rozvani GH: Antibacterial, antimecial and phytochemical analysis of ricinus communis linn, trigonella foenum grecum linn and delonix regia (Bojer ex Hook) Raf of Pakistan. Romanian Biotechnol Lett 2012, 17(3):7237–7244.
13. Hussain S, Jamil M, Ulah F, Khan A, Ulah F, Afzan M, Ahmad S, Khaatoon L: Antimicrobial and antioxidant activities of the plant Heliotropium strigosum. Afr J Biotechnol 2010, 9(47):7738–7743.
14. Welch RA, Burland V, Plunkett G, Redford P, Roesch P, Rasko D, Buckles EL, Liu SR, Boutin A, Hackett J, Stroud D, Mayhew GF, DRose J, Zhou S, Schwartz DC, Perna NT, Mobley HLT, Donnenberg MS, Blattner FR: Extensive genomic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 2000, 99(26):17020–17024.
15. Riley L, Remis W, Helgenson RS: Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 1983, 308:681–685.
16. Cowan MM: Plant products as antimicrobial agents. Clin Microbiol Rev 1999, 12:564–582.
17. Bibi Z: Antimicrobial Activity of Calotropis Procera. A Thesis Submitted for Fulfillment of Degree of Masters in Chemistry, KUST; Kohat, 2013.
18. Cohen ML: Epidemiology of drug resistance: implications for a post antimicrobial era. Science 1992, 257:1050–1055.
19. Annes R, Manges MPH, James R, Johnson MD, Foroman B, Timothy T, Bryan O, Kathleen E, Fullerton MPH, Lee W, Riley MD: Widespread distribution of urinary tract infections caused by a multidrug-resistant escherichia coliocol group. N Engl J Med 2001, 345(14):1007–1013.
20. Goetsch W, Ven Pelt W, Nagelkerke N, Hendrix MGR, Petite PL, Sabbe LJM, Griethuysen AJA, Neeling AJD: Increasing resistance to florquinolones in E. coli from urinary tract infections in the Netherlands. J Antimicrob Chemother 2000, 46:223–228.
21. Kafaru E: Immense Help Formative Workshop. In Essential Pharmacology. 1 edition. Lagos, Nigeria Publishers; 1994.
22. Alder JG: Daptomycin, a new drug class for the treatment of Gram-positive infections. Drugs Today 2005, 41:81.
23. Walsh FM, Arnees SGB: Microbiology and drug resistance mechanisms of fully resistant pathogens. Curr Op Micro 2004, 7:449–444.
24. Bibi Y, Nisa S, Chaudhary FM, Zia M: Antibacterial activity of some selected medicinal.plants of Pakistan. BMC Complement Altern Med 2011, 11(52):1–7.
25. Rauf A, Khan A, Rasoool S, Shah ZA, Saleem M: In-vitro anti fungal activity of three selected Pakistani medicinal plants. Middle-East J Med Plants Res 2012, 12(4):41–43.
26. Ishrah S, Butt M, Younus H: In-vitro antibacterial activity of two medicinal plants Neem (Azadirachta indica) and Peppermint. Int Res J Pharma 2011, 01(9):1–14.
27. Ncube NS, Afolayan AJ, Okoh AI: Assessment techniques of antimicrobials properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol 2008, 7(12):1792–1806.
28. Alero AAJ: Antimicrobial activity of Solanum somnifera dunal. Curr Op Microb 2006, 9(4):369–372.
29. Mahmood A, Mahmood A, Mahmood M: In vitro biological activities of most common medicinal plants of family solanaceae. World Appl Sci J 2012, 17(8):1026–1032.
30. Subhan F, Islam T, Asif M, Rehman H: Exploration of Medicinal Plants Activity Against Human Pathogenic Bacteria, A thesis submitted for fulfillment of degree of BS (Hons), Microbiology department. KUST: Kohar, 2013.
31. Maruoka H, Munkami T, Kishi A, Yoshikawa M: Structures of Withanolides VIII, IX, X, V, VI, and VII, new withanolide glycosides, from the roots of Indianwithania somnifera dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated Guinea-Pig ileum. Bioorg Med Chem 2001, 9:1499–1507.
32. Rani S, Khan SA, Ali M: Phytochemical investigation of the seeds of Althea officinalis L. Nat Prod Res 2010, 24(14):1358–1364.
33. Gude J, Bieganowska ML: Chromatographic investigations of flavonoid compounds in the leaves and flowers of some species of the genus althea. Chromatographia 1990, 30(5):333–336.
34. Husain SZ, Malik RN, Javadi M, Bibi S: Ethnobotanical properties and uses of medicinal plants of Morgh biodiversity park, Rawalpindi. Pak J Bot 2008, 40(5):1897–1911.
35. Munad W, Azzulah A, Adnan M, Tariq A, Khan KU, Waheed S, Ahmad A: Ethnobotanical assessment of plant resources of Banda Daud Shah, District Karak, Pakistan. J Ethnobot Ethnomed 2013, 9:57.
36. Sultana S, Khan MA, Ahmad M, Zafar M: Indigenous knowledge of folk herbal medicines by the women of district Chakwal. Pakistan Ethnobot Leaflets 2006, 10:243–253.
37. Ley SV, Denholme AA, Wood A: The Chemistry of Azadirachtin. Nat Prod Rep 1993, 10:109–157.
38. Babadjimay RC, Faure R, Boukef K, Balansard GAnd E, Vidal E, Arvensisole A and B, Triterpenoid Saponins from Calendula Arvensis. Phytochemistry 1987, 26(6):1785–1788.
39. Hasan SW, Bilbil FL, Lada MI, Umar RA, Dangoggo SM, Saidu Y, Abubaker MK, Faruk UZ: Evaluation of antifungal activity and phytochemical analysis of leaves, roots and stem bark of Calotrops procera, (Asclepiadaceae). Pak J Biol Sci 2006, 9(6):2624–2629.
1. Acq F, Habib Ahmad H, Alam M: Traditional uses of medicinal plants of Nandiar Khwarw catchment (District Battagram), Pakistan. J Med Plants Res 2011, 5(13):49–48.

2. Mahmoud A, Elschi, Slade D: Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 2003, 7859–548.

3. Turner TE, Elschi MA, Boeren Eg: Constituent of Cannabis Sativa L. XVII. A review of the natural constituents. J Nat Prod 2000, 43(2):169–294.

4. Ahmad M, Khan MA, Manzoor S, Zafar M, Sultana S: Check list of medicinal flora of Tehsil Isakhel, District Mianwali-Pakistan. Ethnobotanical Leaflets 2006, 10:41–48.

5. Kumari R, Ali M, Aeri V: Two new triterpenoids from Cichorium intybus L. Roots. J Asian Nat Prod Res 2012, 14(7):1–17.

6. Belemkar S, Kumar A, Pata MK: Pharmacological screening of herbal extract of pipper nigrum (Maricha) and Cinnamonum zeylanicum (Dalchini) for anticonvulsant activity. Ethnopharmacology 2013, 2(2):1–5.

7. Hox H, Morikawa T, Bhatia D, Kandanadass T: A review on some indigenous medicinal plants with hepatoprotective activity. J Chem Pharma Sci 2013, 6(2):85–92.

8. Jahan I, Rahman MS, Rahman MZ, Kaisar MA, Islam MS, Wahab A, Rashid MA: Chemical and biological investigations of Delonix regia (Bojer ex Hook). Fit Acta Pharm 2010, 66:207–215.

9. Sung ML, Fowden L: Azetidin-2-carboxylic acid from the legume Delonix regia. Phytochemistry 1969, 8(1):2095–2096.

10. Prakash NKR, Selvi CR, Saskaia V, Dhanalakshmi S, Prakash SB: Phytochemistry and Bio-Efficacy of a weed, Dodonaea viscosa. Int J Pharm Sci 2012, 4(2):509–512.

11. Singab AN, Ayoub N, Emer A-S, Martiskainen O, Sinkkonen J, Pihlaja K: Phenolic constituents of eucalyptus camaldulensis Dehnh, with potential antioxidant and cytotoxic activities. Rec Nat Prod 2011, 5(4):271–280.

12. Valkar MC, Alcantara AF: De C: Chemical constituents and biological activities of species of Justicia-a review. Revista Brasileira De Farmacognosia Brasil. J Pharmacogn 2011, 21(2):220–238.

13. Kumar A, Ram J, Samarth RM, Kumar M: Modulatory influence of Adhatoda vasica Nees leaf extract against gamma irradiation in Swiss albino mice. Phytotherapy 2005, 12:285–293.

14. Ilahi I, Iqbal Z, Rehman SU: Cistanche tubulosa (Schenk) r, wight an important medicinal plant occurring in sand dunes of Karak, N.W.F.P., Pakistan. Pak J Bot 2010, 42(1):537–547.

15. Verkhirouva O, Golubov K, Psenichnov E, Arzanova I, Ubezov K, Sultana O, Salkhov S, Williams HW, Rebenspurs IH, Puuchabn LS, Srpianovc RD: Malvone A, a phytalexin found in Malva sylvestris (family Malvaceae). Phytochemistry 2006, 67:2376–2379.

16. Ali MS, Saleem M, Ahmad W, Parvez M, Yazdagni R: A chlorinated monoterpenic ketone, acetylated-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae). Phytochemistry 2002, 59:889–895.

17. Sharaf M, Ansari MAF, Saleh NAM: Flavone glycosides from Mentha longifolia. Fitoterapia 1999, 70:478–483.

18. Khan MY, Panchal S, Vyas N, Butani A, Kumar V: Olea europaea: a phytobiochemical review. Pharmacog Rev 2007, 1(1):112–116.

19. Benavente GJ, Castillo J, Lorente A, Ortno A, Del Rio JA: Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem 2000, 68:457–462.

20. Khan A, Ahmad VU, Farooq U, Bader S, Arshad S: Two new flavonoid glycosides from ostotea limbata benth. Chem Pharm Bull 2009, 57(3):276–279.

21. Shao-Hua W, Wub DG, Chen YW: Chemical constituents and bioactivities of plants from the genus paonia. Chem Biodiver 2010, 7:590–104.

22. Jan S, Khan MA, Din SU, Murad W, Hussain M, Ghan A: Herbal remedies used for gastrointestinal disorders in Kaghlan Valley, NWFP, Pakistan. Pak J Weed Sci Res 2008, 14(3):169–200.

23. Raz N, Anis I, Malik A, Ahmed Z, Rehman AU, Muhammad P, Nawaz SA, Choudhary MH: Paeonins A and B, lipoxigenase inhibiting monoterpane galactosides from Paeonia emodi. Chem Pharm Bull 2003, 51(3):252–254.

24. Dhale DA, Mogule UP: Phytochemical screening and antibacterial activity of phyllanthus emblica (LL). Sci Res Rep 2011, 7(138):142.

25. Rehman HU, Yasin KA, Choudhary MA, Khalig N, Rahman AU, Muhammad Iqbal Choudhary M, Malik S: Studies on the chemical constituents of Phyllanthus emblica. Nat Prod Res 2007, 21(7):755–781.

26. Singh PP, Ambika, Chauhan SMS: Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem 2009, 114:1069–1072.

27. Singh OM, Singh TP: Phytochemistry of Solanum xanthocarpum: an amazing traditional healer. J Sci Ind Res 2010, 69:732–740.

28. Singh OM, Subharani K, Singh N, Devi NB, Nevidita L: Isolation of steroidal glycosides from Solanum xanthocarpum and studies on their antifungal activities. Nat Prod Res 2007, 21(7):585–590.

29. Guo-Rong Wang GR, Tang WZ, Yao QQ, Zhong H, Liu YJ: New flavonoids with 285 cell proliferation promoting effect from the seeds of Trigonella foenum-graecum L. J Nat Med 2010, 64:358–361.

30. Abbasi AM, Khan SM, Ahmad M, Khan MA, Quave CL, Pieroni A: Botanical ethnovegetarian therapies in three districts of the Lesser Himalayas of Pakistan. J Ethnobiol Ethnomed 2013, 9(1):1–20.

31. Biswas K, Chattopadhyay I, Banejee RK, Bandypadhyay U: Biological activities and medicinal properties of neem (Azadirachta indica). Curr Sci 2002, 82(11):1336–1345.

32. Walter C, Shivani DK, Atal I, Malik R: Antibacterial activity in herbal products used in pakistan, Pak J Bot 2011, 43:155–162.

33. Aslam F, Rehman KU, Asghar M, Sarwar M: Antibacterial activity of various phytocoenets of Neem. Pak J Agri Sci 2009, 46(3):209–213.

34. Ahmad A: Antimicrobial, Antioxidative and Photochemical Evaluation of Chichorium intybus and Related Species, A thesis submitted for fulfillment of degree of Masters of Philosophy in Chemistry. KUST: Kohat; 2010.

35. Sattar FI, Antibacterial and Antifungal Activities of Chichorium intybus, A thesis submitted for fulfillment of degree of Masters in Chemistry. Kohat: kust; 2010.

36. Rehman A: Antibacterial and Ant-Fungal Activity of Medicinal Plant Cistanche Tubulosa, A thesis submitted for fulfillment of degree of Msc, chemistry department. KUST: Kohat; 2013.

37. Raza M, Forza, Rehman A, Wahab A, Iqbal H, Ullah H, Ahmad S, Ahmad I, Shah SM: Comparative antibacterial study of convolvulus arvensis collected from different areas of Khyber Pakhtunkhwa, Pakistan. Int Res J Pharm 2012, 3(10):220–222.

38. Imitaz B: Antimicrobial Activity of Malva Neglecta and Nasturtium Microphyllum, A thesis submitted for fulfillment of degree of BS (Hons), chemistry department. KUST: Kohat; 2011.

39. Ghani MU, Farooq MU, Khan MTJ: Phytochemical investigations and evaluation of antibacterial and Irritant potential of different extract of whole plant of solanum xanthocarpum shrub and wendel. J Chin Chem Soc 2010, 57:1257–1262.

40. Hussain MA, Khan MQ, Hassan N: Antimicrobial screening of viscum album L. extracts, Jnd Int Conf Environ Sci Technol ICBE 2011, 6:260–208.

41. Rachana, Sujata B, Mamta P, Manjula KP, Sonam S: Review and Future perspectives of using vasicine, and related compounds. JIPUS 2011, 1:85–98.

42. Papachristos DP, Stamopoulos DC: Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus Say (Coleoptera: Bruchidae). J Stored Prod Res 2002, 38:117–128.

43. Samarth RM, Khan A: Mentha piperita (Linn) leaf extract provides protection against radiation induced chromosomal damage in bone marrow of mice. Indian J Exp Biol 2003, 41:229–237.

44. Tiwari P: Phytochemical screening and extraction: a review, Int Phar Sci 2011, 1(1):98–106.

45. Lopornik B, Prosek M, Wondra AC: Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 2005, 71:142–222.
91. Shelar P, Reddy Svk, Shelar SGS, Reddy GVS: Medicinal value of mangroves and its antimicrobial properties – a review. Continental J Fisheries Aquatic Sci 2012, 6(1):26–37.
92. Choudhary MI, Maher S, Begum A, Khan AA, Ali S, Khan A, Rehman SU, Rahman AU. Characterization and antiglycation activity of phenolic constituents from Viscum album (European Mistletoe). Chem Pharm Bull 2010, 58(7):980–982.
93. Muhammad, Mudi SY. Phytochemical screening and antimicrobial activities of Terminalia catappa. Leaf Extracts 2011, 23(1):35–39.

doi:10.1186/s12941-014-0040-6
Cite this article as: Adnan et al. Ethnomedicinal and phytochemical review of Pakistani medicinal plants used as antibacterial agents against Escherichia coli. Annals of Clinical Microbiology and Antimicrobials 2014 13:40.