LAGRANGIAN AND HAMILTONIAN FORMALISM IN FIELD THEORY: A SIMPLE MODEL

KATARZYNA GRABOWSKA
Faculty of Physics
University of Warsaw
Hoza 69, 00-681 Warszawa, Poland
(Communicated by Manuel de León)

Abstract. The static of smooth maps from the two-dimensional disc to a smooth manifold can be regarded as a simplified version of the Classical Field Theory. In this paper we construct the Tulczyjew triple for the problem and describe the Lagrangian and Hamiltonian formalism. We outline also natural generalizations of this approach to arbitrary dimensions.

1. Introduction. The main purpose of this work is to implement the Tulczyjew triple approach of the Analytical Mechanics [34, 35] into the statics of multi-dimensional objects, i.e. smooth maps from a disc $D \subset \mathbb{R}^n$ into a manifold M. This problem can be regarded as a toy model for the Classical Field Theory, since the set of smooth maps from \mathbb{R}^n to M can be treated as a set of sections of the trivial bundle $pr_1 : \mathbb{R}^n \times M \to \mathbb{R}^n$. In comparison with general geometric approaches [10, 11, 33] the situation is considerably simplified, because the bundle is trivial and the base manifold \mathbb{R}^n has a canonical volume form and a canonical base of sections of the tangent bundle. For $n = 1$ and M being the space of configurations of a mechanical system we recover the model of the autonomous mechanics.

We work with this geometrically simple version of the Classical Field Theory to present the main ideas of our approach to the Lagrangian and Hamiltonian formalism that differs from the ones which are present in the literature [23]. Since we skipped topological difficulties in this case, we could concentrate on the recognition of physically important objects, like the phase space, phase dynamics, Legendre map, Hamiltonian, etc. These issues are usually not elaborated well in the literature, as the Classical Field Theory models use to concentrate on the Euler-Lagrange equations. Of course, we recover also the commonly accepted Euler-Lagrange equations, this time without requiring any regularity of the Lagrangian.

The methods we use are based on expressing the theory in terms of differential relations rather than maps or tensor fields. For the price of dealing with differential calculus of relations we get, in our opinion, better understanding of geometric structures involved. It was also shown in [17, 15] that using the same philosophy one can pass easily to the more complicated geometrical framework based on Lie
or general algebroids. In the case of Analytical Mechanics similar generalizations were proposed by many authors (e.g. [27, 28, 25]), but the approach presented in [17, 15], being ideologically simpler, will be our starting point.

We would like to point out that all the constructions we perform are motivated by the variational calculus that we consider to be the fundamental idea of Classical Mechanics and Field Theory. The origin of geometric structures we use lies in the rigorous formulation of the variational principle including boundary terms that one can find in [33, 30]. Nevertheless, we do not enter into details of the variational calculus and we treat it rather as a guide-line for recognizing which geometrical structures are appropriate in this case.

The problem itself, i.e. the generalization of the symplectic framework for autonomous mechanics to higher dimensions is not new and was first treated by Günther in [19]. The underlying geometric structure of Günther’s theory, known as k-symplectic structure, was described systematically in [1, 2]. Recently, Rey, Roman-Roy, Salgado and Valarino renewed the theory and described its Lie algebroid version [32]. Our work is also related to the multisymplectic approach to the Classical Field Theory developed by Gotay, Isenberg, Marsden and others and presented e.g. in [10, 11, 12, 13]. The original idea of the multisymplectic structure has been thoroughly investigated and developed by many authors, see eg. several papers by J. F. Cariñena, M. Crampin, L.A. Ibort and F. Cantrijn, M. De Leon [4, 5, 3] and A. Echeverria-Enríquez, M. C. Muñoz-Lecanda [6] for general analysis of the multisymplectic structure and its application to the Classical Field Theories and by M. Forger, C. Paufler, H. Römer [7, 8], J. Vankershaver, F. Cantrijn, M. De Leon [37] for the discussion of more detailed problems associated to the structure. An interesting discussion one can find also in the paper by F. Helein and J. Kouneiher [20]. Since the literature on the subject is very reach we mention only some of the papers. The Tuczyjew triple in the context of multisymplectic field theories appeared recently in [26]. A similar diagram with slight differences on Hamiltonian side one can find also in [9]. However, the approach to the Lagrangian and Hamiltonian formalisms developed in our paper is different, since we do not use the framework based on Klein’s ideology. Moreover, all the geometrical objects we use are not just postulated but obtained by starting from basic general principles and studying carefully what geometry actually arises, together with clarifying all its complexity. We treat this simple model as the first step in developing our proposal of a language for geometrically advanced classical fields.

For the presentation of our general idea, let us recall briefly how concepts of Variational Calculus that come from statics of mechanical systems are used in the dynamics of a classical autonomous mechanical system without constraints. The following short summary is based on ideas of W.M. Tulczyjew published e.g. in [34] and presented also in numerous seminars and lectures. Let us start with the simplest case of statics of mechanical system. We shall assume that the set of all possible configurations of the system is a differential manifold Q. The tangent and cotangent fibrations will also be used:

$$
\tau_Q : TQ \rightarrow Q, \quad \pi_Q : T^*Q \rightarrow Q.
$$

In statics we are usually interested in equilibrium configurations of a system itself, i.e. isolated system, as well as the system with interaction with other static systems. The system alone or in interaction is examined by preforming processes and calculating cost of each process. We assume that all the processes are quasistatic,
i.e. they are slow enough to avoid any dynamical effects. Every process can be represented by a one dimensional smooth, oriented submanifold with border. It may happen that for some reasons not all the processes are admissible, i.e. the system is constrained. All the information about a system is therefore encoded in three objects: a configuration manifold \(Q \), a set of all admissible processes and a cost function, that assigns a number to every process. The cost function should fulfill some additional conditions, e.g. it should be additive in a sense that if we break a process into two subprocesses the cost of the whole process should be equal to the sum of costs of the two subprocesses. Usually we assume that a cost function is local, i.e. for each process it is an integral of a certain positively homogeneous function \(W \) on \(TQ \). There are distinguished systems, called regular for which all the processes are admissible and the function \(W \) is a differential of certain function \(U : Q \rightarrow \mathbb{R} \). In such a case \(U \) is called an internal energy function.

An equilibrium point of a system is such a point \(q \in Q \) that all the processes starting from \(q \) have positive cost, at least initially, i.e. for some smaller subprocess with the same initial point. Usually we formulate only first order necessary condition for an equilibrium point that says that a point \(q \) can be an equilibrium point of the system if

\[
W(\delta q) \geq 0
\]

for all vectors \(\delta q \in T_qQ \) tangent to admissible processes. We denote by \(\Delta \) the set of vectors tangent to admissible processes. For regular systems the equilibrium condition assumes the form

\[
dU(q) = 0.
\]

We examine the interaction of two systems by creating composed systems. We can compose systems that have the same configuration space \(Q \). The composite system is described by the intersection of the sets of admissible processes and the sum of cost functions. We describe our system by making a list of all systems that composed with our system have certain admissible configuration \(q \) as an equilibrium point. We observe that at each admissible \(q \) all the external systems interacting with our systems can be classified according to the effect they have on our system. Moreover, in every class we can find a regular system, therefore the whole class can be represented by the differential of the internal energy of that regular system at point \(q \). An equivalence class of external systems interacting with our system we call a force. A force is represented by a covector, i.e. an element of \(T^*Q \). Instead of making a list of all external systems in equilibrium with our system at point \(q \) we can give a subset of \(T_q^*Q \) representing those systems. The subset of \(T^*Q \) of all forces in equilibrium with our system at all admissible points we call the constitutive set. For a large class of static systems the constitutive set contains the complete information of the system. For a regular system the constitutive set is \(D = dU(Q) \). The passage from the triple \((Q, \Delta \subset TQ, W) \) describing our system to the constitutive set \(D \subset T^*Q \) is called the Fenchel-Legendre transformation.

To apply the above procedure to dynamics of mechanical systems we have to recognize configurations, virtual displacements and cost functions. There are at least two approaches to the problem. The first deals with finite time interval \([t_0, t_1]\) and the second with infinitesimal time interval represented by a Dirac \(\delta \) distribution. The finite case provides a useful representation of objects coming from statics, while infinitesimal approach leads to differential equations for phase trajectories that are commonly used in physics. We skip the details of the construction and provide here only a summary of the results of both approaches. Let \(M \) denote the manifold
of positions of the mechanical system we describe. We will use also tangent and
cotangent bundles $\tau_M : TM \rightarrow M, \pi_M : T^*M \rightarrow M$.

For finite time interval $[t_0, t_1]$ the configurations are smooth paths
$$\gamma : \mathbb{R} \supset [t_0, t_1] \rightarrow M$$
and virtual displacements are smooth maps
$$\delta\gamma : \mathbb{R} \supset [t_0, t_1] \rightarrow TM.$$
For regular systems the role of internal energy plays an action functional
$$S(\gamma) = \int_{t_0}^{t_1} L(t\gamma(t))dt.$$ \hfill (1.1)
In the above formula $t\gamma(t)$ denotes the tangent prolongation of the curve gamma
at point t. The set of configurations is no longer a differential manifold, therefore
the concept of a cotangent bundle is not obvious. In case of classical mechanics we
represent a covector at a configuration γ by three objects
$$f : [t_0, t_1] \rightarrow T^*M, \quad p_0 \in T^*_{\gamma(t_0)}M, \quad p_1 \in T^*_{\gamma(t_1)}M,$$ \hfill (1.2)
where $\pi_M \circ f = \gamma$. The idea of such a representation is given by performing variation
of the functional S and separating boundary terms as in the procedure of deriving
Euler-Lagrange equations. The constitutive set is therefore given by the equations
$$f(t) = \mathcal{E}L(t^2\gamma(t)), \quad p_0 = \mathcal{P}L(t\gamma(t_0)), \quad p_1 = \mathcal{P}L(t\gamma(t_1)),$$ \hfill (1.3)
where \mathcal{E} is an Euler-Lagrange operator, $\mathcal{P}L$ denotes the vertical differential of the
Lagrangian L with respect to the projection τ_M and $t^2\gamma, t\gamma$ are second and first
tangent prolongations of the curve γ.

Passing to the infinitesimal formulation we replace finite domain of integration
$[t_0, t_1]$ with Dirac δ distribution at point t. We end up with configurations being
elements of TM, virtual displacements being elements TTM and “internal energy”
being just a Lagrangian. The cost function in this case is the differential of a
Lagrangian that can be evaluated on a virtual displacement $\delta t\gamma(t)$ of a configuration
$t\gamma(t)$
$$\delta t\gamma(t) \rightarrow \langle dL(t\gamma(t)), \delta t\gamma(t) \rangle.$$
The constitutive set is then the graph of dL. The convenient representation of the
elements of cotangent bundle in the finite time interval formulation provides us with
another useful interpretation of the constitutive set. For the finite time interval the evaluation of (f, p_0, p_1) on $\delta\gamma$ reads
$$\int_{t_0}^{t_1} \langle f(t), \delta\gamma(t) \rangle dt + \langle p_1, \delta\gamma(t_1) \rangle - \langle p_0, \delta\gamma(t_0) \rangle.$$ \hfill (1.4)
In infinitesimal case we get
$$\langle f(t), \delta\gamma(t) \rangle + \frac{d}{dt} \langle p(t), \delta\gamma(t) \rangle.$$ \hfill (1.5)
In absence of external forces another description of a constitutive set can be derived
from equation
$$\frac{d}{dt} \langle p(t), \delta\gamma(t) \rangle = \langle dL(t\gamma(t)), \delta t\gamma(t) \rangle.$$ \hfill (1.6)
The left hand side is the so called tangent evaluation between a vector tangent to
T^*M and a vector tangent to TQ such that they have common tangent projection
on TQ. More precisely, if $p : \mathbb{R} \to T^*M$ and $\delta \gamma : \mathbb{R} \to TM$ are two curves covering the same curve $\gamma : \mathbb{R} \to M$ than
\[
\langle \langle tp(t), t\delta \gamma(t) \rangle \rangle = \frac{d}{dt} (p(t), \delta \gamma(t)).
\] (1.7)

Since vector $t\delta \gamma(t)$ and $\delta t \gamma(t)$ are connected by the canonical flip κ_M:
\[
\kappa_M(\delta t \gamma(t)) = t\delta \gamma(t)
\]
the differential of a lagrangian $dL(\gamma(t))$ and tangent vector $tp(t)$ are connected by the Tulczyjew α_M, which is dual to κ_M:
\[
\alpha_M : TT^*M \longrightarrow T^*TM.
\]

We have in this way obtained another description of the constitutive set called the phase dynamics and given by the formula:
\[
TT^*M \supset D = \alpha^{-1}_M(dL(TM)).
\] (1.8)

If the system is autonomous than the constitutive set for any time t is the same. The condition for the curve $p : \mathbb{R} \supset I \to T^*M$ to be the phase trajectory of the system is that
\[
\forall t \in I \quad tp(t) \in D
\]
A curve $\gamma : I \to M$ satisfies, in turn, the corresponding Euler-Lagrange equation, if the curve $I \ni t \mapsto \alpha^{-1}_M(dL(\gamma(t))) \in TT^*M$ is the tangent prolongation of its projection to T^*M (see [17, 15]).

All the structures needed for generating the dynamics from a Lagrangian can be summarized in the following commutative diagram:

The map α_M is an isomorphism of double vector bundles. It is also a symplectomorphism of the symplectic manifolds $(TT^*M, d_T\omega_M)$ and (T^*TM, ω_TM), where $d_T\omega_M$ is a complete lift of canonical symplectic form ω_M on T^*M and ω_TM is the canonical symplectic form on T^*TM.

It may happen that the phase dynamics is an implicit differential equation, i.e. it is not the image of a vector field. In some cases, however, the phase dynamics is the image of a Hamiltonian vector field for some function $H : T^*M \to \mathbb{R}$. In such a case we can write:
\[
\mathcal{D} = \beta^{-1}_M(dH(T^*M)),
\] (1.9)
where β_M is the canonical isomorphism between TT^*M and T^*TM given by the canonical symplectic form ω_M on T^*M,
\[
\beta_M : TT^*M \longrightarrow T^*TM, \quad \langle \beta_M(v), w \rangle = \omega_M(v, w).
\]
Let us recall for the future reference that the canonical symplectic form ω_M is defined by

$$\omega_M = d\vartheta_M,$$ \hspace{1cm} (1.10)

where ϑ_M is the Liouville form given by

$$\vartheta_M(v) = \langle \tau_{T^*M}(v), T\pi_M(v) \rangle.$$ \hspace{1cm} (1.11)

The structures needed for Hamiltonian mechanics can be presented in the following commutative diagram:

The map β_M is an isomorphism of double vector bundles.

The formulation of the autonomous mechanics described above has at least two important features when compared with the ones in textbooks: it is very simple and can be easily generalized to more complicated cases including constraints, nonautonomous mechanics, and mechanics on algebroids [16, 17]. And last but not least: we need no regularity conditions for the Lagrangian. The Lagrangian and Hamiltonian can be functions, but one of them or both can be replaced by families of functions generating Lagrangian submanifolds in T^*T^*M and T^*T^*M, respectively.

Moreover generating object for dynamics on Lagrangian side can be replaced by a one form not being the differential of a Lagrangian function. It happens e.g. for systems with friction. The crucial role is played by two mappings: α_M and β_M.

In what follows we replace ‘one dimensional’ objects, like time intervals and paths in a manifold M by ‘two dimensional objects’, like discs and maps $u : \mathbb{R}^2 \to M$. We decided to keep $n = 2$ just for simplicity. However, generalization of our results to any natural n is straightforward.

In our presentation we skip all the initial considerations about different representations of constitutive sets and present only geometrical structures that arise from our approach. We shall find the phase space and the analog of the fundamental map α_M that allows us to obtain the phase equations from the Lagrangian. Then, we continue with the Hamiltonian formalism by recognizing what kind of a geometric object the Hamiltonian is, and by finding an analog of the map β_M.

2. **Notation.** Let M be a smooth manifold of dimension m. We denote by $\tau_M : TM \to M$ the tangent vector bundle and by $\pi_M : T^*M \to M$ the cotangent bundle of the manifold M. If $(q^a)_{n=1}^m$ is a local coordinate system in $U \subset M$, then we have the induced coordinate systems (q^a, \dot{q}^b) in $\tau_M^{-1}(U) \subset TM$ and (q^a, p_b) in $\pi_M^{-1}(U) \subset T^*M$. The above coordinates correspond to local sections (dq^b) of T^*M and $(\frac{\partial}{\partial q^a})$ of TM, respectively.
Let u be a smooth map from \mathbb{R}^2 to M. Since in the source space \mathbb{R}^2 we have two distinguished vector fields $\partial_x = \frac{\partial }{\partial x}$, $i = 1, 2$, the first jet $j^1 u(x)$ of the mapping u at a point $x = (x^1, x^2)$ can be identified with a pair of vectors tangent to M at the point $u(x)$, i.e.

$$j^1 u(x) = (v_1, v_2), \quad \text{where} \quad v_i = (T_x u)(\partial_{x^i}) \in T_{u(x)} M.$$

Therefore the set $J_x(\mathbb{R}^2, M)$ of the first jets of maps $\mathbb{R}^2 \to M$ at $x = (x^1, x^2) \in \mathbb{R}^2$ will be identified with

$$\tilde{T} M = TM \times_M TM$$

and the element of $\tilde{T} M$, corresponding to u at x, will be denoted by $\tilde{t} u(x)$. The manifold $\tilde{T} M$ has a natural bundle structure over M:

$$\tilde{T} M \ni \tilde{t} u(x) \mapsto u(x) \in M.$$

The above projection will be denoted by τ^2_M. Like for the tangent bundle, we have the adapted set of local coordinates $(q^a, \dot{q}^1, \dot{q}^2)$ in $(\tau^2_M)^{-1}(U) \subset \tilde{T} M$. The bundle τ^2_M is a vector bundle. Its dual $(\tilde{T} M)^*$ can be identified with

$$\tilde{T}^* M = T^* M \times_M T^* M$$

with the obvious pairing with $\tilde{T} M$. The projection onto M in the dual bundle will be denoted by π^2_M. We have also the adapted set of local coordinates (q^a, p_{b1}, p_{c2}) in $(\pi^2_M)^{-1}(U) \subset \tilde{T}^* M$.

3. Variational approach. We start with Variational Calculus which is our guideline for recognizing geometrical objects representing physical quantities. Let L be a smooth function on the manifold $\tilde{T} M$ of the first jets of maps from $C^\infty(\mathbb{R}^2, M)$. Any Lagrangian defines an action functional S on maps $u : D \to M$ from the unit disc $D \subset \mathbb{R}^2$ into M:

$$S(u) = \int_D L(u^a(x), \dot{u}^1_1(x), \dot{u}^2_2(x))dx^1 dx^2,$$

where $u^a(x) = q^a(u(x))$ and $\dot{u}^1_1(x) = \frac{\partial u^a}{\partial x^1}(x) = \dot{q}^1_1(\tilde{t} u(x))$, $\dot{u}^2_2(x) = \frac{\partial u^a}{\partial x^2}(x) = \dot{q}^2_2(\tilde{t} u(x))$. Note that the fact that Lagrangian can be just a function on $\tilde{T} M$ is due to the existence of the canonical volume form $dx^1 \wedge dx^2$ on \mathbb{R}^2. We can therefore identify scalar densities, i.e. objects that can be integrated, with functions.

Variations of u are maps δu from D to TM covering u:

$$\begin{array}{c}
D \quad \delta u \\
\downarrow \delta u \\
\tilde{T} M \\
\downarrow \tau_M \\
M
\end{array}$$

and coming from homotopies $\chi \in C^\infty(\mathbb{R} \times \mathbb{R}^2, M)$ of maps $C^\infty(\mathbb{R}^2, M)$. If $u(x) = \chi(0, x)$, then $\delta u(x)$ is a vector tangent to the curve $t \mapsto \chi(t, x)$ at $t = 0$. In the following we perform the standard calculus of a variation of S with respect to the variation δu:

$$\langle dS, \delta u \rangle = \frac{d}{dt} \bigg|_{t=0} \int_D L(u^a(t, x), \frac{\partial }{\partial x^1} \chi^b(t, x), \frac{\partial }{\partial x^2} \chi^c(t, x))dx^1 dx^2 =$$
where
\[\delta \dot{u}^i(x) = \frac{\partial \chi^a}{\partial t \partial x_i}(0, x). \]

Using the Stokes theorem, we obtain
\[\ldots = \int_D \left(\frac{\partial L}{\partial q^a} - \frac{\partial}{\partial x_1} \frac{\partial L}{\partial q^a_1} - \frac{\partial}{\partial x_2} \frac{\partial L}{\partial q^a_2} \right) \delta u^a dx^1 dx^2 + \int_{\partial D} \left(\frac{\partial L}{\partial q^a_1} dx^2 - \frac{\partial L}{\partial q^a_2} dx^1 \right) \delta u^a, \]

where the last integral is calculated over \(\partial D \) oriented as in the Stokes theorem, using the canonical orientation of \(\mathbb{R}^2 \). Looking for the stationary points of the action functional \(S, \delta u \) we put the condition \(\langle dS, \delta u \rangle = 0 \) for every \(\delta u \). In the set of all maps \(\delta u D \to TM \) representing variations there is a subset of variations vanishing on boundary. For such variations the condition \(\langle dS, \delta u \rangle = 0 \) has a form
\[\int_D \left(\frac{\partial L}{\partial q^a} - \frac{\partial}{\partial x_1} \frac{\partial L}{\partial q^a_1} - \frac{\partial}{\partial x_2} \frac{\partial L}{\partial q^a_2} \right) \delta u^a dx^1 dx^2 = 0 \]

which means that
\[\frac{\partial L}{\partial q^a} - \frac{\partial}{\partial x_1} \left(\frac{\partial L}{\partial q^a_1} \right) - \frac{\partial}{\partial x_2} \left(\frac{\partial L}{\partial q^a_2} \right) = 0 \] (3.1)
on the disc. The boundary term
\[\int_{\partial D} \left(\frac{\partial L}{\partial q^a_1} dx^2 - \frac{\partial L}{\partial q^a_2} dx^1 \right) \delta u^a \]
has to vanish independently. The equation (3.1) is traditionally called the Euler-Lagrange equation. The boundary term is an analog of the momentum in the Classical Mechanics. The momentum evaluated on a variation \(\delta u \) gives a one-form on \(\mathbb{R}^2 \) (to be integrated over \(\partial D \)). It follows that the phase space is a space of covectors on \(M \) with values in the cotangent space of \(\mathbb{R}^2 \) that can be denoted by
\[T^*M \otimes (\mathbb{R}^2)^*. \]

Since the first factor in the above product is a vector bundle and another just a vector space the product should be understood as the vector bundle over \(M \) with fibres \(T^*M \otimes (\mathbb{R}^2)^* \). In the following we use the basis \((dx^1, -dx^2)\) to identify \((\mathbb{R}^2)^*\) with \(\mathbb{R}^2 \), which means that the covector \(a \, dx^1 + b \, dx^2 \) is identified with the pair \((b, -a)\). The phase space can be therefore understood as
\[T^*M \otimes (\mathbb{R}^2)^* \simeq T^*M \otimes \mathbb{R}^2 \simeq T^*M \times_M T^*M = \tilde{T}^*M. \]
The Legendre map which associates a momentum to an infinitesimal configuration will be discussed later.

In the calculation of the differential of the action functional we have used implicitly a mapping
\[\kappa : T_{\chi^h}T^*M \to \tilde{T}^*TM \] (3.2)
defined as follows. Starting from a homotopy \(\chi \) we can construct an element of \(T_{\chi^h}T^*M \) by taking the tangent vector of the curve \(\mathbb{R} \ni t \mapsto \chi^h(t, x) \in T^*M \) at \(t = 0 \). From the same homotopy we get \(\mathbb{R}^2 \ni (x) \mapsto t\chi(t, x) \in TM \). The first jet at \(x \) of the last map is an element of \(\tilde{T}^*TM \). Therefore
\[\kappa(t \chi^h(0, x)) = t \chi(0, x). \] (3.3)
The above definition is analogous to the definition of the canonical flip \(\kappa_M : TTM \to TTM \).

Using the local coordinate system \((q^a)\) on \(M\), we can construct local coordinates on \(\hat{T}TM \) and \(\hat{T}^2TM \). The coordinates on \(\hat{T}TM \) will be denoted by

\[
(q^a, \delta q^b, \dot{q}_1^c, \dot{q}_2^d, \delta \dot{q}_1^f, \delta \dot{q}_2^f)
\]

and the ones on \(\hat{T}^2TM \) by

\[
(q^a, \delta q^b, \dot{q}_1^c, \dot{q}_2^d, \delta \dot{q}_1^f, \delta \dot{q}_2^f).
\]

Since

\[
\kappa(q^a, \dot{q}_1^b, \dot{q}_2^c, \delta q^d, \delta \dot{q}_1^e, \delta \dot{q}_2^e) = (q^a, \delta q^b, \dot{q}_1^c, \dot{q}_2^d, \delta \dot{q}_1^f, \delta \dot{q}_2^f),
\]

using the same notation for coordinates in different spaces does not lead to any confusion.

4. The Lagrangian side. In the previous section we recognized the phase space as \(\hat{T}^*M \). In the following it will be useful to remember that the space \(\hat{T}^*M \) has been identified with \(T^*M \otimes (\mathbb{R}^2)^* \). We shall define now a pairing between the space of jets of maps \(p \in C^\infty(\mathbb{R}^2, \hat{T}^*M) \) at the point \((0, 0)\), i.e. \(\hat{T}^2T^*M \), and jets of variations \(\delta u \in C^\infty(\mathbb{R}^2, TM) \) at \((0, 0)\), i.e. \(\hat{T}TM \). (Using the structure of \(\mathbb{R}^2 \) we identify \(J^1(\mathbb{R}^2, \hat{T}^*M) \) with \(\mathbb{R}^2 \times \hat{T}^2T^*M \) and \(J^1(\mathbb{R}^2, TM) \) with \(\mathbb{R}^2 \times \hat{T}TM \), like in the case of jets of maps \(C^\infty(\mathbb{R}^2, M) \).)

The space \(\hat{T}^2T^*M \) has two vector bundle structures: the canonical one over \(\hat{T}^*M \), and the tangent one over \(\hat{T}M \). The tangent projection \(\hat{T} \pi^2_M \) can be constructed as follows: an element \(w \in \hat{T}^2T^*M \) has a representative \(\eta : \mathbb{R}^2 \to \hat{T}^*M, w = \hat{T} \eta(0, 0) \).

The projection \(\hat{T} \pi^2_M \) is given by

\[
\hat{T} \pi^2_M(w) = \hat{T}(\pi^2_M \circ \eta)(0, 0).
\]

Both bundles are vector bundles which form together a double vector bundle [24]:

\[
\begin{array}{c}
\hat{T}^2T^*M \\
\hat{T}^*M \\
\hat{T}M \\
\hat{T}M \\
M
\end{array}
\]

\[
\begin{array}{c}
\hat{T} \pi^2_M \\
\hat{T} \pi^1_M \\
\pi^2_M \\
\pi^1_M \\
\pi^1_M \\
\pi^2_M
\end{array}
\]

Since the space of infinitesimal configurations \(\hat{T}M \) has also a vector bundle structure over \(M \), the cotangent bundle \(T^* \hat{T}M \) is a double vector bundle with the canonical projection on \(\hat{T}M \) and the second projection on \(\hat{T}^*M \) (cf. for example [17, 14]). The second projection is defined as follows: any element \(a \) of \(T^*_v \hat{T}M \) is a linear function on the vector space \(T_v \hat{T}M \). Restricting \(a \) to the subspace of vectors tangent to the fibre of projection \(\tau^2_M \) (which is isomorphic to the fibre itself), we
can associate with it an element of T^*M. The projection will be denoted by ξ. The structure of the double vector bundle $T^*\hat{T}M$ can be put into the following diagram:

\[T^*\hat{T}M \quad \xi \quad \pi_{T^2M} \]

\[\hat{T}^*M \quad \tau_{\hat{T}M} \quad \pi_{\hat{T}M} \]

\[M \]

The double vector bundle $T^*\hat{T}M$ is canonically isomorphic with $T^*\hat{T}^*M$.

Let $\hat{t}p$ and $\hat{t}\delta u$ be elements of $T^*\hat{T}^*M$ and $T^*\hat{T}M$, respectively, such that they have the same projection on $T^*\hat{T}M$. Let p and δu denote the representatives covering the same map $u : \mathbb{R}^2 \rightarrow M$. Interpreting an element of $T^*\hat{T}^*M$ as a covector on M with values in $(\mathbb{R}^2)^*$, we can define the mapping

\[\mathbb{R}^2 \ni (x^1, x^2) \mapsto (p(x^1, x^2), \delta u(x^1, x^2)) \in ((\mathbb{R}^2)^*)^* \]

where the target space is the fiber of $T^*\mathbb{R}^2$. The mapping can be viewed as a one-form on \mathbb{R}^2. The differential of the above one-form is a two-form on \mathbb{R}^2 which, due to the existence of the canonical form $dx^1 \wedge dx^2$, can be identified with a function. The formula

\[\langle \hat{t}p, \hat{t}\delta u \rangle dx^1 \wedge dx^2 = d\langle p, \delta u \rangle(0, 0) \tag{4.3} \]

defines a pairing between $T^*\hat{T}^*M$ and $T^*\hat{T}M$ over $T^*\hat{T}M$. The above pairing is of course degenerate.

Using the basis $(dx^2, -dx^1)$ of sections of $T^*\mathbb{R}^2$ and the local coordinate system (q^a) on M, we can construct local linear coordinates (q^a, p_1^a, p_2^a) in the phase space $T^*\hat{T}^*M$, associated with local sections $(dq^b \otimes dx^2, -dq^c \otimes dx^1)$. Note that in our convention the coordinates (q^a, p_1^a, p_2^a) are associated with the element $p_1^a dq^b \otimes dx^2 - p_2^a dq^c \otimes dx^1$. In the space of jets $T^*\hat{T}^*M$ we have therefore the adapted system of coordinates

\[(q^a, p_1^a, p_2^a, \dot{q}_1^a, \dot{q}_2^a, \ddot{q}_1^a, \ddot{q}_2^a, \dot{p}_{11}^a, \dot{p}_{12}^a, \dot{p}_{21}^a, \dot{p}_{22}^a) \]

On the other hand, in the space \hat{T}^*T^*M of jets of variations we have also an adapted set of coordinates induced by the coordinates on M:

\[(q^a, \delta q^b, \dot{q}_1^a, \dot{q}_2^a, \ddot{q}_1^a, \ddot{q}_2^a) \]

In the above coordinates the evaluation reads:

\[\langle \hat{t}p, \hat{t}\delta u \rangle = (\dot{p}_{11}^a + \dot{p}_{22}^a)\delta q^a + \dot{p}_{12}^a \delta \dot{q}_1^a + \dot{p}_{21}^a \delta \dot{q}_2^a + \dot{p}_{12}^a \delta \dot{q}_1^a + \dot{p}_{21}^a \delta \dot{q}_2^a \tag{4.4} \]

Now we are ready to define the mapping

\[\alpha : \hat{T}^*T^*M \rightarrow T^*\hat{T}M \]

by the condition

\[\langle \alpha(w), v \rangle = \langle w, \kappa(v) \rangle, \]

\[\langle \kappa(w), v \rangle = \langle w, \alpha(v) \rangle, \]

\[\langle \alpha(w), \alpha(v) \rangle = \langle w, v \rangle. \]
where $w \in \mathcal{T}^*\mathcal{T} M$, $v \in \mathcal{T}^*\mathcal{T} M$, and the evaluation on the left side of the equation is the canonical evaluation between $\mathcal{T}^*\mathcal{T} M$ and $\mathcal{T}^*\mathcal{T} M$. The evaluation on the right side is the one defined in (4.4). In local coordinates the mapping α reads

$$\alpha(q^a, p^1_a, p^2_b, \dot{q}^a_1, \dot{q}^a_2, \dot{p}^1_b, \dot{p}^2_c, \dot{p}^1_k, \dot{p}^2_l) = (q^a, \dot{q}^a_1, \dot{q}^a_2, \dot{p}^1_b, \dot{p}^2_c).$$

The mapping α is an analog of $\alpha_M : \mathcal{T}\mathcal{T}^* M \to \mathcal{T}\mathcal{T}^* M$ used by Tulczyjew in the autonomous mechanics.

Definition 4.1. The phase equations for the system with the Lagrangian L are induced by the subset

$$D = \alpha^{-1}(dL(\hat{T} M))$$

in an obvious way: a mapping $p : \mathbb{R}^2 \subset \mathcal{O} \rightarrow \mathcal{T}^* M$, where \mathcal{O} is an open subset of \mathbb{R}^2, is a solution of the phase equations if

$$\alpha(\tilde{\mathcal{L}} p(x, y)) = dL(\pi^*_M \circ p)(x, y)$$

for any $(x, y) \in \mathcal{O}$.

The important difference with the case of Classical Mechanics is that α is no longer an isomorphism, therefore α^{-1} is a relation only, not a mapping. In local coordinates we obtain

$$\dot{p}^1_a + \dot{p}^2_a = \frac{\partial L}{\partial q^a}, \quad p^1_b = \frac{\partial L}{\partial q^1_1}, \quad p^2_c = \frac{\partial L}{\partial q^2_2}.$$

The Legendre map, that associates a momentum to an infinitesimal configuration, is defined as:

$$\lambda_L : \mathcal{T} M \rightarrow \mathcal{T}^* M, \quad \lambda_L = \xi \circ dL.$$

In coordinates it reads

$$\lambda_L(q^a, \dot{q}^a_1, \dot{q}^a_2) = \left(\dot{q}^a_1, \frac{\partial L}{\partial q^a_1}, \frac{\partial L}{\partial q^a_2}\right)$$

The Euler-Lagrange equations for configurations

$$u : \mathbb{R}^2 \ni (x^1, x^2) \mapsto (q^a(x^1, x^2)) \in M$$

can be formulated in the following way

$$\tilde{\mathcal{L}} \lambda_L = \alpha^{-1} \circ dL$$

that in coordinates reads

$$\dot{q}^a_1 = \frac{\partial q^a}{\partial x^1},$$

$$\dot{q}^a_2 = \frac{\partial q^a}{\partial x^2},$$

$$\frac{\partial L}{\partial q^a} - \frac{\partial}{\partial x^1} \frac{\partial L}{\partial q^a_1} - \frac{\partial}{\partial x^2} \frac{\partial L}{\partial q^a_2} = 0.$$

The equations we obtained are in full agreement with equations commonly accepted in Classical Field Theory (cf. [10, 21]).
All the structure needed for generating the phase equations from the Lagrangian can be presented in the following diagram:

(4.9)

5. The Hamiltonian side. In the autonomous mechanics the basic structure is the canonical symplectic form ω_M on the cotangent bundle being the phase space. Using the form ω_M, we associate the Hamiltonian vector field to any Hamiltonian—a smooth function on the phase space. In our case, the phase space is not a symplectic manifold any more, but still we can establish a correspondence between the cotangent bundle of the phase space and the space $\mathbb{T}^* \tau^2 M$ of jets of maps from $C^\infty(\mathbb{R}^2, \mathbb{T}^* M)$. We present here two ways of constructing the appropriate mapping.

The first method is based on the fact that the phase bundle is a vector bundle over M, so we have the canonical antisymplectomorphism (cf. [14, 24])

$$\mathbb{T}^* \tau^2 M \cong \mathbb{T}^* \mathbb{T}^* M.$$

Denoting the above antisymplectomorphism by R and composing it with α we obtain

$$\beta = \alpha \circ R : \mathbb{T}^* \tau^2 M \to \mathbb{T}^* \mathbb{T}^* M$$

(5.1)

Since R and α are double vector bundle morphisms, we obtain the following diagram for the mapping β:

(5.2)

The projection $\zeta : \mathbb{T}^* \mathbb{T}^* M \to \mathbb{T}^* M$ is an analog of ξ in (4.2) and a particular instance of the canonical projection $\mathbb{T}^* E^* \to E$ for a vector bundle E. If we use
the system of local coordinates on \tilde{T}^*T^*M as previously,

$$(q^a, p^1_b, p^2_c, \dot{q}^d_1, \dot{p}^1_{b1}, \dot{p}^2_{p1}, \dot{q}^2_{b2}, \dot{p}^2_{k2}),$$

and the system of coordinates

$$(q^a, p^1_b, p^2_c, \varphi_d, \psi^1, \psi^2),$$

derived from the coordinates (q^a, p^1_b, p^2_c) and associated to the local sections (dq^a, dp^1_b, dp^2_c), we get that

$$\beta(q^a, p^1_b, p^2_c, \dot{q}^d_1, \dot{p}^1_{b1}, \dot{p}^2_{p1}, \dot{q}^2_{b2}, \dot{p}^2_{k2}) = (q^a, p^1_b, p^2_c, -\dot{p}^1_{d1} - \dot{p}^2_{d2}, \dot{q}^1, \dot{q}^2).$$ \hspace{1cm} (5.3)

For any Hamiltonian

$$H : \tilde{T}^*M \longrightarrow \mathbb{R},$$

the phase dynamic is represented by the subset

$$\mathcal{D} = \beta^{-1}(dH(\tilde{T}^*M)) \subset \tilde{T}^*T^*M.$$ \hspace{1cm} (5.4)

Also in this case, β^{-1} is a relation only. In local coordinates we obtain the phase equations

$$-\dot{p}^1_{d1} - \dot{p}^2_{d2} = \frac{\partial H}{\partial q^a},$$

$$\dot{q}^1 = \frac{\partial H}{\partial p^1_c},$$

$$\dot{q}^2 = \frac{\partial H}{\partial p^2_c}.$$

An alternative way of constructing the mapping β does not refer to the map α. Let us denote by pr_1, pr_2 the projections on the first and the second factor of $\tilde{T}^*M = T^*M \times M$. In local coordinates, we have

$$pr_1 : \tilde{T}^*M \ni (q^a, p^1_b, p^2_c) \longrightarrow (q^a, p^1_b) \in T^*M,$$

$$pr_2 : \tilde{T}^*M \ni (q^a, p^1_b, p^2_c) \longrightarrow (q^a, p^2_c) \in T^*M.$$

Applying the tangent lift to the both projections we obtain

$$Tpr_1 : \tilde{T}^*M \ni (q^a, p^1_b, p^2_c, \dot{q}^d_1, \dot{p}^1_{b1}, \dot{p}^2_{p1}, \dot{q}^2_{b2}, \dot{p}^2_{k2}) \longrightarrow (q^a, p^1_b, q^a, p^1_b) \in T^*T^*M,$$

$$Tpr_2 : \tilde{T}^*M \ni (q^a, p^1_b, p^2_c, \dot{q}^d_1, \dot{p}^1_{b1}, \dot{p}^2_{p1}, \dot{q}^2_{b2}, \dot{p}^2_{k2}) \longrightarrow (q^a, p^2_c, q^a, p^2_c) \in T^*T^*M.$$

Composing the cartesian product of the above tangent mappings with the inclusion

$$\iota : \tilde{T}^*M \ni \tilde{T}^*M \times \tilde{T}^*M,$$

we get

$$(Tpr_1 \times Tpr_2) \circ \iota : \tilde{T}^* \tilde{T}^*M \longrightarrow T^*T^*M \times T^*T^*M$$

$$(q^a, p^1_b, p^2_c, \dot{q}^d_1, \dot{p}^1_{b1}, \dot{p}^2_{p1}, \dot{q}^2_{b2}, \dot{p}^2_{k2}) \longrightarrow ((q^a, p^1_b, q^a, p^1_b), (q^a, p^2_c, q^a, p^2_c)).$$

To the both factors of the image of the composition $(Tpr_1 \times Tpr_2) \circ \iota$ we apply the canonical map $\beta_M : T^*T^*M \rightarrow T^*T^*M$ that comes from the canonical symplectic form ω_M on the cotangent bundle T^*M. The target space of the composition

$$(\beta_M \times \beta_M) \circ (Tpr_1 \times Tpr_2) \circ \iota$$
which, in turn, can be mapped to T^*T^*M by means of the phase lift of the inclusion
\[j : T^*M \hookrightarrow T^*T^*M. \]

Finally, we end up with the map
\[j^* \circ (\beta_M \times \beta_M) \circ (Tpr_1 \times Tpr_1) \circ \iota : \tilde{T}^* T^* M \longrightarrow T^* \tilde{T}^* M. \tag{5.5} \]

Proposition 5.1. The mappings defined in (5.1) and (5.5) coincide, i.e.
\[\beta = j^* \circ (\beta_M \times \beta_M) \circ (Tpr_1 \times Tpr_1) \circ \iota. \]

Proof. Let us start with recalling the definition of the canonical isomorphism \mathcal{R}_E for a general vector bundle $E \rightarrow M$. The graph of \mathcal{R}_E is the Lagrangian submanifold generated in $T^*(E \times E^*) \cong T^*E \times T^*E^*$ by the evaluation function
\[E \times_M E^* \ni (y, a) \mapsto \langle a, y \rangle \in \mathbb{R}, \]
defined on the submanifold $E \times_M E^*$ of $E \times E^*$. We see that, by definition, for any element $\varphi \in T^*E$, its image $\mathcal{R}_E(\varphi)$ has the same projections onto E and E^* as φ. If we take now two curves
\[\mathbb{R} \ni t \mapsto \gamma(t) \in E, \]
\[\mathbb{R} \ni t \mapsto \eta(t) \in E^*, \]
covering the same curve in M and such that $\gamma(0)$ and $\eta(0)$ are equal to the projections of φ to E and E^* respectively, we can write
\[\langle (\varphi, \mathcal{R}_E(\varphi)), (t\gamma(0), t\eta(0)) \rangle = \frac{d}{dt}_{|t=0} \langle \gamma(t), \eta(t) \rangle, \]
or
\[\langle \mathcal{R}_E(\varphi), t\eta(0) \rangle = \frac{d}{dt}_{|t=0} \langle \eta(t), \gamma(t) \rangle - \langle \varphi, t\gamma(0) \rangle. \tag{5.6} \]

Let now $\psi : \mathbb{R}^2 \rightarrow T^*M$ be a homotopy such that $\psi(0, 0)$ is the projection of v and w on T^*M, the curve $a \rightarrow \psi(a, 0)$ is a representative of v, and $b \rightarrow \psi(0, b)$ is a representative of w. Using the definitions of ω_M and ϑ_M (see (1.10.11)), we can write that
\[\omega_M(v, w) = \left. \frac{d}{db}_{|b=0} \theta_M(t\psi(\cdot, b)(0)) - \frac{d}{da}_{|a=0} \theta_M(t\psi(a, \cdot)(0)) \right|_{b=0} = \left. \frac{d}{db}_{|b=0} \langle \psi(0, b), t(\pi_M \circ \psi(\cdot, b))(0) \rangle - \frac{d}{da}_{|a=0} \langle \psi(a, 0), t(\pi_M \circ \psi(a, \cdot))(0) \rangle \right|_{b=0}. \]

We can simplify the above formula a little bit introducing curves
\[p_1(a) = \psi(a, 0), \quad p_2(b) = \psi(0, b), \]
which represent v and w, respectively, and a homotopy in M defined by
\[\rho = \pi_M \circ \psi. \]
In the new notation we have
\[\omega_M(v, w) = \left. \frac{d}{dt}_{|t=0} \langle p_2(t), tp(\cdot, b)(0) \rangle - \frac{d}{da}_{|a=0} \langle p_1(a), t(r(a, \cdot))(0) \rangle \right|_{b=0}. \tag{5.7} \]
Now, we can start the main part of the proof, which is done by simple calculations. We are going to show that the following diagram is commutative:

\[
\begin{array}{ccc}
\bar{\mathcal{T}}M & \xrightarrow{\alpha} & \mathcal{T}M \\
\mathcal{T}^* \bar{\mathcal{T}}M & \xrightarrow{\beta} & \mathcal{T}^* \mathcal{T}M
\end{array}
\]

(5.8)

We have used the symbol \(\beta\) for the long expression \(j^* \circ (\beta_M \times \beta_M) \circ (\mathcal{T}pr_1 \times \mathcal{T}pr_1) \circ \iota\) and the shorter \(\mathcal{R}\) for \(\mathcal{R}_{\mathcal{T}^2 M}\). The commutativity of the diagram (5.8) means that, for any \(w \in \mathcal{T}^* \mathcal{T}M\) and \(u \in \mathcal{T}^* \mathcal{M}\) such that they have the same projection on \(\bar{\mathcal{T}}M\), we have

\[
\langle \beta(w), u \rangle = \langle \mathcal{R} \circ \alpha(w), u \rangle.
\]

(5.9)

To calculate the right-hand side of the equation (5.9), we need the representatives of \(u\) and \(w\). Let

\[
\mathbb{R} \ni t \mapsto \eta(t) = (\eta_1(t), \eta_2(t)) \in \mathcal{T}^* \mathcal{M}
\]

be a curve that represents the vector \(u\), i.e.

\[
u = t \eta(0).
\]

The element \(w\) of \(\mathcal{T}^* \mathcal{T}M\) is represented by the mapping

\[
\mathbb{R}^2 \ni (x, y) \mapsto p(x, y) = (p_1(x, y), p_2(x, y)) \in \mathcal{T}^* \mathcal{M}.
\]

W can also choose a mapping

\[
\mathbb{R}^3 \ni (t, x, y) \mapsto \chi(t, x, y) \in \mathcal{M}
\]

such that

\[
\chi(t, 0, 0) = \pi_M^2 \circ \eta(t), \chi(0, x, y) = \pi_M^2 \circ p(x, y).
\]

Let us start with the R.H.S. of (5.9) using (5.6):

\[
\langle \mathcal{R} \circ \alpha(w), u \rangle = \langle \mathcal{R} \circ \alpha(\mathcal{T}p(0, 0)), \mathcal{T} \eta(0) \rangle =
\]

\[
d \frac{d}{dt}_{|t=0} \langle \eta(t), \mathcal{T} \chi(t, \cdot, \cdot)(0, 0) \rangle - \langle \mathcal{T} \eta(0), \mathcal{T} \mathcal{T} \chi(\cdot, \cdot, \cdot)(0, 0, 0) \rangle.
\]

Using the definition of \(\alpha\) and the tangent evaluation, we can write the above expression as

\[
\frac{d}{dt}_{|t=0} \langle \eta(t), \mathcal{T} \chi(t, \cdot, \cdot)(0, 0) \rangle - \langle \mathcal{T} p(0, 0), \mathcal{T} \mathcal{T} \chi(\cdot, \cdot, \cdot)(0, 0, 0) \rangle.
\]

(5.10)

Finally, replacing \(\eta\) by the pair \((\eta_1, \eta_2)\) and using the definition of the evaluation \(\langle \cdot, \cdot \rangle\), we obtain the final form

\[
\langle \mathcal{R} \circ \alpha(w), u \rangle = \frac{d}{dt}_{|t=0} \langle \eta_1(t), \mathcal{T} \chi(t, \cdot, 0)(0) \rangle + \frac{d}{dt}_{|t=0} \langle \eta_2(t), \mathcal{T} \chi(t, 0, \cdot)(0) \rangle +
\]

\[- \frac{d}{dx}_{|x=0} \langle p_1(x, 0), \mathcal{T} \chi(\cdot, x, 0)(0) \rangle - \frac{d}{dy}_{|y=0} \langle p_2(0, y), \mathcal{T} \chi(\cdot, 0, y)(0) \rangle.
\]

(5.10)

Before we start with the L.H.S., let us note that (using representatives) we have

\[
n(\mathcal{T} p(0, 0)) = (\mathcal{T} p_1(\cdot, 0)(0), \mathcal{T} p_2(\cdot, 0)(0), \mathcal{T} p_1(0, \cdot)(0), \mathcal{T} p_2(0, \cdot)(0))
\]
and

\[Tpr_1 \times Tpr_2(tp_1(\cdot, 0)(0), tp_2(\cdot, 0)(0), tp_1(0, \cdot)(0), tp_2(0, \cdot)(0)) = (tp_1(\cdot, 0)(0), tp_2(0, \cdot)(0)). \]

Now, we can do our calculation as follows:

\[(j^* \circ (\beta_M \times \beta_M) \circ (Tpr_1 \times Tpr_1) \circ \iota(w), u,_) =\]

\[(j^* \circ (\beta_M \times \beta_M) \circ (Tpr_1 \times Tpr_1) \circ \iota(tp(0, 0)), \eta(0),) =\]

\[\langle (\beta_M \times \beta_M)(tp_1(\cdot, 0)(0), tp_2(0, \cdot)(0)), Tj(\eta(0)) \rangle. \quad (5.11) \]

Taking into account that \[T\beta(\eta(0)) = (\eta_1(0), \eta_2(0)), \]
we can express (5.11) as

\[\langle \beta_M(tp_1(\cdot, 0)(0), \eta_1(0)), \eta_2(0) \rangle + \langle \beta_M(tp_2(0, \cdot)(0)), \eta_2(0) \rangle = \]

\[\omega_M(tp_1(\cdot, 0)(0), \eta_1(0)) + \omega_M(tp_2(0, \cdot)(0), \eta_2(0)). \]

Now, we can use (5.7) for the final form of the L.H.S of equation (5.9):

\[\langle \hat{\beta}(w), u \rangle = \frac{d}{db}_{|b=0} \langle \eta_1(b), t\chi(b, \cdot, 0)(0) \rangle - \frac{d}{da}_{|a=0} \langle p_1(a, 0), t\chi(\cdot, a, 0)(0) \rangle \]

\[\frac{d}{db}_{|b=0} \langle \eta_2(b), t\chi(b, 0, \cdot)(0) \rangle - \frac{d}{da}_{|a=0} \langle p_2(0, a), t\chi(\cdot, 0, a)(0) \rangle. \quad (5.12) \]

It is easy to see that (5.10) and (5.12) coincide. \[\square \]

The above proof is very technical, but tracing the calculations one can make at least one important observation. In the final form of the R.H.S and the L.H.S one can see that momentum \((p_1, p_2)\) is always evaluated on \(t\chi(\cdot, x, y)(0)\), i.e. on a tangent vector with respect to the first parameter \(t\) of \(\chi\). The latter can be denoted by \(\delta u\) and understood as a variation of the configuration \(u\). In (5.10) it appears by definition from the tangent evaluation, but in (5.12) it comes from the calculation. The geometrical structure reflects therefore the idea that the momentum is to be evaluated on the variation rather than on the infinitesimal configuration. In Classical Mechanics the difference is not visible, because both, infinitesimal configurations and variations, are tangent vectors. In our case the difference is visible but does not have much consequence, because the bundle of momenta is the dual vector bundle of the bundle of infinitesimal configurations. In more general cases of Field Theory it is no longer true. The Hamiltonian side is then more complicated.

In Classical Mechanics the mapping \(\beta_M\) comes from the canonical symplectic form on the cotangent bundle \(T^*M\). We can therefore ask, whether the mapping \(\beta\) we have just constructed is related to some tensor field, which can be regarded as a canonical structure on the phase space. It is easy to see that, indeed, the mapping \(\beta\) is related to the field

\[\omega^2_M \in \text{Sec}(\overset{2}{T^*T^*}M \otimes \overset{2}{T^*T^*}M), \]

which in local coordinates reads

\[\omega^2_M = d^1q^a \otimes dp^1_a + d^2q^b \otimes dp^2_b - d^1p^1_c \otimes dq^c - d^2p^2_d \otimes dq^d. \]
Here, \((d^i q^a, d^i p^a, d^i p^b)\) is the basis in the first (if \(i = 1\)) or the second (if \(i = 2\)) factor of \(\mathcal{T}^2 \mathcal{T}^* M = \mathcal{T}^* \mathcal{T}^* M \times \mathcal{T}^* \mathcal{T}^* M \mathcal{T}^* \mathcal{T}^* M\). Since
\[
\mathcal{T}^2 \mathcal{T}^* M \otimes \mathcal{T}^* \mathcal{T}^* M \simeq \mathcal{T}^* \mathcal{T}^* M \otimes \mathcal{T}^* \mathcal{T}^* M \mathcal{T}^* \mathcal{T}^* M \mathcal{T}^* \mathcal{T}^* M \otimes \mathcal{T}^* \mathcal{T}^* M,
\]
\(\tilde{\omega}_M\) can be viewed as a 'bi-form' or a pair of symplectic forms on the first and the second factor of \(\mathcal{T}^* M\). This establishes a connection between the mapping \(\beta\) and the poli-symplectic formalism of Günther ([19]).

6. Example. As an example of application of our construction we will use the bosonic string theory. In the literature, one can find two approaches to the subject. In one of them, due to Polyakov [31], configurations are mappings from a two-dimensional manifold \(X\) of the string into the product of Minkowski space and the space of symmetric tensors on \(X\). It means that not only the space-time position of the string is subject to variations, but also the metric on the string itself. In the simpler approach by Nambu [18, 29], the metric on the string is fixed to be the pull-back of the Minkowski metric by the string-space-time configuration. In the Nambu approach we deal therefore with mappings from the two-dimensional manifold to the Minkowski space. In our example we will use the Nambu version with another simplification by taking \(X = \mathbb{R}^2\).

The Minkowski space \((M, V, \eta)\) is a four-dimensional affine space with the model vector space \(V\) equipped with a bilinear symmetric form \(\eta\) of signature \((+ - - -)\). We will denote by \(\tilde{\eta}\) the associated self-adjoint map from \(V\) to \(V^*\). Using the affine structure, we can identify the tangent bundle \(\tau_M : T M \rightarrow M\) with the trivial bundle \(M \times V \rightarrow M\), and the cotangent bundle \(\pi_M : T^* M \rightarrow M\) with the trivial bundle \(M \times V^* \rightarrow M\). The spaces that appear in the Lagrangian picture are therefore
\[
\mathcal{T}^2 M = M \times V \times V, \\
\mathcal{T}^* M = M \times V^* \times V^*, \\
\mathcal{T}^* \mathcal{T}^* M = (M \times V \times V) \times (V^* \times V^* \times V^*), \\
\mathcal{T}^* \mathcal{T}^* \mathcal{T}^* M = (M \times V^* \times V^*) \times (V \times V^* \times V^*) \times (V \times V^* \times V^*).
\]
The first jet of a mapping \(u : \mathbb{R}^2 \rightarrow M\) at the point \((x^1, x^2)\) is identified with a triple \((q, v_1, v_2)\), where \(q = u(x^1, x^2)\), \(v_1\) is a vector tangent to the curve \(t \mapsto u(x^1 + t, x^2)\) at \(t = 0\), and \(v_2\) is a vector tangent to the curve \(t \mapsto u(x^1, x^2 + t)\) at \(t = 0\). The Lagrangian at the point \(j^1 u\) is the scalar density associated to \(u^* \eta\) which (after identification with the function on \(M \times V \times V\)) gives
\[
L(q, v_1, v_2) = \sqrt{-\det g}, \tag{6.1}
\]
where
\[
g = \begin{bmatrix} \eta(v_1, v_1) & \eta(v_1, v_2) \\ \eta(v_1, v_2) & \eta(v_2, v_2) \end{bmatrix}.
\]
The Lagrangian is defined on the open set of \(M \times V \times V\), where the determinant of the matrix \(g\) is negative. Denoting with \((q, p^1, p^2)\) an element of \(\mathcal{T}^* M = M \times V^* \times V^*\), and with \((q, p^1, p^2, v_1, p^1, p^2, v_2, p^1, p^2)\) an element of \(\mathcal{T}^* \mathcal{T}^* M\), we obtain the phase equations
\[
v_1 = \frac{dq}{dx_1}, \quad v_2 = \frac{dq}{dx_2}, \tag{6.2}
\]
so that we obtain

\begin{align}
\alpha & = \left[\eta(v_1, v_2)\eta(v_2) - \eta(v_2, v_2)\eta(v_1) \right], \\
\beta & = \left[\eta(v_1, v_2)\eta(v_1) - \eta(v_1, v_1)\eta(v_2) \right], \\
p_1 + p_2^2 & = 0.
\end{align}

On the Hamiltonian side, if we identify \(\alpha\) and \(\beta\), we have

\begin{align}
p_1 & = \frac{1}{\sqrt{-\det g}} \left[\eta(v_1, v_2)\eta(v_2) - \eta(v_2, v_2)\eta(v_1) \right], \\
p_2 & = \frac{1}{\sqrt{-\det g}} \left[\eta(v_1, v_2)\eta(v_1) - \eta(v_1, v_1)\eta(v_2) \right], \\
p_1^2 + p_2^2 & = 0.
\end{align}

The Legendre map is in our example reversible, therefore we can express infinitesimal configurations in terms of momenta:

\begin{align}
v_1 & = \frac{-1}{\sqrt{-\det g}} \left[\eta(p^1, p^2)\eta^{-1}(p^2) - \eta(p^2, p^2)\eta^{-1}(p^1) \right], \\
v_2 & = \frac{-1}{\sqrt{-\det g}} \left[\eta(p^1, p^2)\eta^{-1}(p^1) - \eta(p^1, p^1)\eta^{-1}(p^2) \right].
\end{align}

In the above formulae we used the same letter \(\eta\) for the bilinear form associated to \(\eta\) on the dual side. The matrix \(g\), in terms of momenta, takes the form

\begin{equation}
g = \begin{bmatrix}
-\eta(p^2, p^2) & \eta(p^1, p^2) \\
\eta(p^1, p^2) & -\eta(p^1, p^1)
\end{bmatrix}.
\end{equation}

Starting from the Hamiltonian

\(H(q, p^1, p^2) = -\sqrt{-\det g}\),

we obtain the phase equations of the form

\begin{align}
\frac{dq}{dx} & = \frac{1}{\sqrt{-\det g}} \left[\eta(p^1, p^2)\eta^{-1}(p^2) - \eta(p^2, p^2)\eta^{-1}(p^1) \right], \\
\frac{dq}{dx^2} & = \frac{1}{\sqrt{-\det g}} \left[\eta(p^1, p^2)\eta^{-1}(p^1) - \eta(p^1, p^1)\eta^{-1}(p^2) \right], \\
\frac{dp_1}{dx} + \frac{dp_2}{dx^2} & = 0.
\end{align}

which are of course the same as the phase equations generated by the Lagrangian description of the system. Let us finish this example with writing down the fundamental maps \(\alpha\) and \(\beta\): On the Lagrangian side we have

\(T^*\tilde{T}M = (M \times V \times V) \times (V^* \times V^* \times V^*)\),

so that

\(\alpha(q, p^1, p^2, v_1, p_1^1, p_1^2, v_2, p_2^1, p_2^2) = (q, v_1, v_2, p_1^1 + p_2^2, p_1^1, p_2^2)\).

On the Hamiltonian side, if we identify \(T^*\tilde{T}^*M\) with \((M \times V^* \times V^*) \times (V^* \times V \times V)\), we obtain

\(\beta(q, p^1, p^2, v_1, p_1^1, p_1^2, v_2, p_2^1, p_2^2) = (q, p^1, p^2, -p_1^1 - p_2^2, v_1, v_2)\).

7. Conclusions. We have presented a toy model of a Classical Field Theory to introduce main concepts of a new approach to Lagrange and Hamilton formalisms. The starting point was the Tulczyjew triple in the Classical Mechanics, generalized now to the case of fields. In this approach all main ingredients are present: starting with a Lagrangian, not only the Euler-Lagrange field equation has been derived, but also the phase space and phase dynamics have been recognized, together with the Legendre map and the Hamiltonian picture. The latter suggests that momenta are dual rather to infinitesimal variations (displacements) than to infinitesimal configurations (‘velocities’). The main difference with respect to the classical situation...
is that, to construct the phase dynamics, relations are used instead of mappings. This approach, presented here for maps from the disc into a manifold, can be naturally generalized to sections of a fibration and to an ‘algebroid’ setting as well. We postpone these studies to a separate paper.

We have done all the constructions for smooth maps \(u : \mathbb{R}^n \to M \) for \(n = 2 \). The generalization to arbitrary \(n \) is straightforward. We replace the functor \(\mathcal{T} \) with \(\mathcal{T}^n \) and \(\mathcal{T}^* \) with \(\mathcal{T}^n \) and obtain

\[
\mathcal{T}^n M = TM \times_M TM \times_M \cdots \times_M TM
\]
as the configuration space,

\[
\mathcal{T}^n M^* = T^*M \times_M T^*M \times_M \cdots \times_M T^*M
\]
as the phase space. All the structures can be summarized in the diagrams analogous to (4.9) and (5.2): the diagram

\[
\begin{array}{ccc}
\mathcal{T}^n M & \xrightarrow{\alpha_n} & \mathcal{T}^n M^* \\
\mathcal{T}^n M & \xrightarrow{id} & \mathcal{T}^n M \\
\mathcal{T} M & \xrightarrow{id} & \mathcal{T} M \\
M & \xrightarrow{id} & M
\end{array}
\]

for Lagrangian side and the diagram

\[
\begin{array}{ccc}
\mathcal{T}^n M & \xleftarrow{\beta_n} & \mathcal{T}^n M^* \\
\mathcal{T} M & \xleftarrow{id} & \mathcal{T} M \\
M & \xleftarrow{id} & M
\end{array}
\]

for the Hamiltonian side. The differential equation for phase maps

\[
p : \mathbb{R}^n \supset \mathcal{O} \to \mathcal{T}^n M
\]
describing the system is a subset \(D \) of \(\mathcal{T}^n M \) obtained either from a Lagrangian

\[
L : TM \to \mathbb{R}, \quad D = \alpha_n^{-1}(dL^n(TM))
\]
or in some cases from a Hamiltonian

\[
H : T^*M \to \mathbb{R}, \quad D = \beta_n^{-1}(dH^n(T^*M)).
\]
REFERENCES

[1] A. Awane, *k*-symplectic structures, J. Math. Phys., 33 (1992), 4046–4052.
[2] A. Awane and M. Goze, “Pfaffian Systems, k-Symplectic Systems,” Kluwer Acad. Pub., Dordrecht 2000.
[3] F. Cantrijn, L. A. Ibort and M. de Leon, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225-236.
[4] J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order theories, Differential Geom. Appl., 1 (1991), 354–374.
[5] J. F. Cariñena, M. Crampin and L. A. Ibort, On the geometry of multisymplectic manifolds, J. Austral. Math. Soc. A, 66 (1999), 303–330.
[6] A. Echeverría-Enríquez and M. C. Muñoz-Lecanda, Geometry of multisymplectic Hamiltonian first order theory, J. Math. Phys., 41 (2000), 7402–7444.
[7] M. Forger, C. Paufler and H. Römer, A general construction of Poisson brackets on exact multisymplectic manifolds, Rep. Math. Phys., 51 (2003), 187–195.
[8] M. Forger, C. Paufler and H. Römer, Hamiltonian multivector fields and Poisson forms in multisymplectic field theories, J. Math. Phys., 46 (2005), 112903, 29 pp.
[9] G. Giachetta and L. Mangiarotti, Constrained Hamiltonian systems and Gauge theories, Int. J. Theor. Phys., 34 (1995), 2353–2371.
[10] M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part I: Covariant field theory, arXiv:physics/9801019v2, (2004).
[11] M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories, arXiv:math-ph/0411032v1, (2004).
[12] M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism, in “Francaviglia, M., editor, Mechanics, Analysis, and Geometry: 200 Years After Lagrange,” 203-235. North Holland, Amsterdam (1991).
[13] M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations II. Space + time decomposition, Differential Geom. Appl., 1 (1991), 375–390.
[14] J. Grabowski and P. Urbański, Algebroids – general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111–1141.
[15] K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204 (25pp).
[16] K. Grabowska, J. Grabowski and P. Urbanski, AV-differential geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004), 398–446.
[17] K. Grabowska, J. Grabowski and P. Urbanski, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559–575.
[18] T. Gotô, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys., 46 (1971), 1560–1569.
[19] C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23–53.
[20] F. Helein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker vs. De Donder-Weyl, Adv. Theor. Math. Phys., 8 (2004), 565–601.
[21] J. Kijowski, *Elasticità finita e relativistica: introduzione ai metodi geometrici della teoria dei campi*, Pitagora Editrice (Bologna) (1991).
[22] J. Kijowski and W. M. Tulczyjew, “A Symplectic Framework for Field Theories,” Lecture Notes in Physics, 107, Springer-Verlag, Berlin-New York, 1979.
[23] J. Klein, *Espaces variationelles et mécanique*, Ann. Inst. Fourier (Grenoble), 12 (1962), 1–124.
[24] K. Konieczna and P. Urbański, Double vector bundles and duality, Arch. Math. (Brno), 35 (1999), 59–95.
[25] M. de León, J.-C. Marrero, E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241–308.
[26] M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and lagrangian submanifolds in classical field theories, in “Applied Differential Geometry and Mechanics,” Editors W. Sarlet and F. Cantrijn, Univ. of Gent, Gent, Academia Press (2003), 21–47.
[27] E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295–320.
[28] E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356–380.
[29] Y. Nambu, “Lectures prepared for the Copenhagen Summer Symposium,” (unpublished) (1970).
[30] A. De Nicola and W. M. Tulczyjew, A variational formulation of electrodynamics with external sources, Int. J. Geom. Methods Mod. Phys., 6 (2009), 173–200.
[31] A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207–210.
[32] A. M. Rey, N. Roman-Roy, M. Salgado and S. Vilariño, k-Cosymplectic classical field theories: Tulczyjew, Skinner-Rusk and Lie algebroid formulations, arXiv:math-ph/0602038v2, (2008).
[33] W. M. Tulczyjew, The origin of variational principles in Classical and quantum integrability, (Warsaw, 2001), Banach Center Publications 59, Polish Acad. Sci., (2003), 41–75.
[34] W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation, Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplessica e Fisica Matemativa, INDAM, Rome, 1973), pp. 247-258. Academic Press, London, (1974).
[35] W. M. Tulczyjew, “Geometric Formulation of Physical Theories,” Bibliopolis, 1989.
[36] W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, The Infeld Centennial Meeting (Warsaw, 1998), Acta Phys. Polon. B, 30 (1999), 2909–2978.
[37] J. Vankershaver, F. Cantrijn, M. De Leon and M. De Diego, Geometric aspects of nonholonomic field theories, Rep. Math. Phys., 46 (2005), 387–411.

Received July 2010; revised November 2010.

E-mail address: Katarzyna.Konieczna@fuw.edu.pl