Inflammatory myofibroblastic tumors of the pancreas in children
A case report and literature review

Hsien-Kuan Liu, MD, a, Yung-Cheng Lin, MD, a, Ming-Lun Yeh, MD, a, Yaw-Sen Chen, MD, a,
Yu-Tsun Su, MD, a, Ching-Chung Tsai, MD, PhD. a,b

1. Introduction

An inflammatory myofibroblastic tumor (IMT) is characterized histologically by proliferation of fibrous tissue with associated moderate or marked inflammation, also called inflammatory pseudotumors or plasma cell granulomas. There are not many reports on pancreatic IMTs because of the rare nature of the condition, so the incidence is difficult to obtain. The most common gastrointestinal tract symptoms of this tumor are mass, pain, fever, weight loss, and malaise. Diagnosis is based on the histological findings, which consists of variable quantities of plasma cells, lymphocytes, eosinophils, foamy histiocytes, and mast cells with an inflammatory component. IMTs of the pancreas exhibit slow growth and do not undergo malignant transformation or exhibit distant metastasis, and most are surgically excised. We report a 15-year-old male patient with an IMT and a literature review regarding the differential diagnostic, histopathological, and therapeutic features of this condition.

2. Case report

A 15-year-old boy was admitted to E-Da Hospital, Kaohsiung city, Taiwan, with an intraabdominal tumor. He complained of abdominal pain over the left upper quadrant with intermittent fever for 7 days. The results of laboratory examinations were as follows: white blood cell count, 15,640 × 10^9 cells/L; neutrophils, 79.9%; hemoglobin, 9.7 g/dL (or 150 mmol/L); hematocrit, 31.1%; platelet count, 432 × 10^9/L; glucose, 93 mg/dL; alanine transaminase, 14 U/L (normal range 0–44 U/L); aspartate transaminase, 21 U/L (normal range 0–38 U/L); carcinoembryonic antigen (CEA), 1.0 ng/mL (normal <5.0 ng/mL); and carbohydrate antigen 19–9 (CA 19–9), 3.0 U/mL (normal <37.0 U/mL). Abdominal sonography revealed one 3.9 cm cystic lesion with a 3.7 cm hyperechoic component in the left upper quadrant of the abdomen (Fig. 1).

An ultrasound-guided aspiration biopsy was performed, with aspiration cytology showing numerous neutrophils and few spindle cells, and immunohistochemical studies of the biopsy specimen indicating positivity for vimentin and muscle actin antibody (HHF-35). These results indicate a tumor of a fibroblastic and muscular origin, respectively (Fig. 2).

Two weeks later, postoperative findings indicated a pancreatic tail tumor, about 5 cm × 5 cm × 4.3 cm in size, with adhesion and invasion of the transverse colon. Segmental resection of the
involved, such as local pain, malaise, loss of appetite, wasting, and subfebrile elevation of temperature.[1] Histologically, IMT is composed of myofibroblastic spindle cells and inflammatory components of variable quantities of plasma cells, lymphocytes, eosinophils, foamy histiocytes, and mast cells.[3] The definitive etiology of IMT is not clear; however, some possible causes such as genetic predisposition and infection have been proposed.[11–13] Anaplastic lymphoma kinase and p80 expression as well as chromosomal rearrangements involving 2p23 have been reported to be related to IMT.[12,14] The differential diagnoses of IMC include low grade myofibroblastic sarcomas and some benign, neoplastic spindle cell lesions, such as leiomyoma and solitary fibrous tumor.[15] The concept of IMT being a benign reactive lesion is doubtful owing to its high recurrence (as high as 37%), the presence of regional metastases, and the evidence of acquired clonal chromosomal abnormality. However, the issue of reactive or neoplastic pathogenesis of this lesion remains unsolved.[16] An IMT of the pancreas is not common, and clinically and radiologically, this rare pancreatic myofibroblastic tumor presents as an abdominal mass lesion that mimics a malignancy such as pancreaticoblastoma, solid-pseudopapillary tumor, or insulinoma.

Pancreatoblastoma, the most common pancreatic neoplasm in young children, should be considered in the differential diagnosis. On computed tomography scan, pancreaticoblastomas are heterogeneous and often multilocular with hyperechoic and enhancing septa, as opposed to IMTs, which usually appear as homogenous and well-defined solid masses.[17]

Solid-pseudopapillary tumors, which are slow-growing tumors usually located in the pancreatic tail, are often large and encapsulated or circumscribed, with marked degenerative and hemorrhagic components. Solid-pseudopapillary tumors are most commonly diagnosed in adolescent girls and young women (83%–98.5%), especially in blacks and East Asians.[17] On ultrasonography, the tumors are usually visualized as an echogenic cyst.

Islet cell tumors are either insulinomas or gastrinomas. Insulinomas are composed of beta-cells and cause fasting hyperinsulinemic hypoglycemia, and are most common in the body and tail of the pancreas (63%). In contrast, the vast majority of gastrinomas involve the head of the pancreas (71%).[17]

Evidence supporting an autoimmune etiology includes the association of IMTs with other autoimmune diseases such as Sjögren syndrome and idiopathic thrombocytopenic purpura.[18,19] Nevertheless, there is no evidence that IMTs are associated with a preceding inflammatory or traumatic process.[20]

IMTs of the pancreas exhibit slow growth and do not undergo malignant transformation or exhibit distant metastasis.[3] Theoretically, resection of the mass lesion would lead to prompt resolution of symptoms. However, this rare pancreatic lesion may recur in some instances, such as after incomplete resection. One adult patient was reported to experience local recurrence of a pancreatic myofibroblastic tumor about 1 year after the Whipple procedure.[20]

IMTs of the pancreas are extremely rare in children, and only 11 cases have been reported in the literature (Table 1).[21–28] Most of the reported pediatric cases were girls (8/11, 73%), with only 3 boys (3/11, 27%). Our patient is therefore the 4th reported male child to have this kind of pancreatic tumor. There was no predominant location of the pediatric pancreatic IMTs in the literature review (head: 7 cases, body with or without the tail: 4 cases). To the best of our knowledge, this boy is a unique case as
the tumor was located in the pancreatic tail only, sparing the body. Compared to pediatric patients, in almost all adult cases, the mass lesions have been found in the pancreatic head. In addition, unlike in other pediatric patients, the tumor in this patient invaded the transverse colon. Most patients encountering IMTs of the pancreas undergo surgical excision. Since it is a benign lesion, the administration of corticosteroids instead of an operation has been reported in 4 adults and 1 child (tumor size ranging from 2.2–4 cm), and all 5 cases showed remission or regression of the tumors. Although there is only 1 reported case of treatment with corticosteroids in a child to date, such treatment could be considered in the future.

4. Conclusion

In summary, IMT is an uncommon mass rarely located in the pancreas, with only 11 cases reported in the literature. However, it must be included in the differential diagnosis, along with other pancreatic tumors. Most patients encountering IMTs of the pancreas undergo surgical excision, and only 4 adults and 1 child have been reported to receive medical treatment with corticosteroids. Such treatment should consider in pediatric cases; however, more studies are needed to assess corticosteroids as a treatment modality where complete surgical resection cannot be performed.

References

[1] Coffin CM, Watterson J, Priest JR, et al. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor): A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol 1995;19:859–72.
[2] McClain MB, Burton EM. Pancreatic pseudotumor in an 11-year-old child: imaging findings. Pediatr Radiol 2000;30:610–13.
[3] Mombarta-E, Goldschmeding R, Schlingemann RO, et al. What is orbital pseudotumor? Surv Ophthalmol 1996;41:66–78.
[4] Missett DL, Podoshin L, Fradis M, et al. Inflammatory pseudotumor of the neck. Otolaryngol Head Neck Surg 1991;105:864–7.
[5] Williams SB, Foss RD, Ellis GL. Inflammatory pseudotumors of the major salivary glands. Clinicopathologic and immunohistochemical analysis of six cases. Am J Surg Pathol 1992;16:896–902.
[6] Nakanuma Y, Tsuneyama K, Masuda S, et al. Hepatic inflammatory pseudotumor associated with chronic cholangitis; report of three cases. Hum Pathol 1994;25:586–91.
[7] Thomas RM, Jaffe ES, Zarate-Osorno A, et al. Inflammatory pseudotumor of the spleen. A clinicopathologic and immunophenotypic study of eight cases. Arch Pathol Lab Med 1993;117:921–6.
[8] Georgia JD, Lawrence DP, DeNobile RW. Inflammatory pseudotumor in the retrorectal space: CT and MR appearance. J Comput Assist Tomogr 1996;20:410–2.
[9] Ramachandra S, Hollowood K, Biceglia M, et al. Inflammatory pseudotumor of soft tissue: a clinicopathological and immunohistochemical analysis of 18 cases. Histopathology 1999;32:213–23.
[10] Weiland TL, Scheithauer BW, Rock MG, et al. Inflammatory pseudotumor of nerve. Am J Surg Pathol 1996;20:1212–8.
[11] Nikutakis NG, Brooks JK, Franke B, et al. Inflammatory myofibroblastic tumour of oral cavity: review of literature and presentation of an ALK positive case. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;98:197–8.
[12] Coffin CM, Patel A, Perkins S, et al. ALK1 and p58 expression and clinical presentation of childhood inflammatory myofibroblastic tumor. Mod Pathol 2001;14:569–76.
[13] Gomez-Roman JJ. Human herpes virus 8 genes are expressed in inflammatory myofibroblastic tumour. A true neoplasm or reactive lesion? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005;100:460–6.
[14] Volker HU, Scheich M, Holler S, et al. Differential diagnosis of laryngeal spindle cell carcinoma and inflammatory myofibroblastic tumour: Report of two cases with similar morphology. Diagn Pathol 2007;2:1–7.
[15] Al-Sindi KA, Al-Shehabi MH, Al-Khalifa SA. Inflammatory myofibroblastic tumour of paranasal sinuses. Saudi Med J 2007;28:623–7.
[16] Ellen M, Chung , Mark D, et al. Pancreatic tumors in children: radiologic-pathologic correlation. RadioGraphics 2006;26:1211–38.
[17] Eckstein RP, Hollings RM, Martin PA, et al. Pancreatic pseudotumor arising in association with Sjogren’s syndrome. Pathology 1995;27:284–8.
[18] Freund E, Blik R, Yaniv I, et al. Inflammatory pseudotumor in childhood: a diagnostic and therapeutic dilemma. Arch Surg 1991;126:635–3.
[19] Johnson RL, Page DL, Dean RH. Pseudotumor of the pancreas. South Med J 1983;76:647–9.
[20] Scott L, Blair G, Taylor G, et al. Inflammatory pseudotumor in children. J Pediatr Surg 1988;23:755–8.
[21] Slavotinek JP, Bourne AJ, Sage MB, et al. Inflammatory pseudotumour of the pancreas in a child. Pediatr Radiol 2000;31:801–5.
[22] Stringer MD, Ramani P, Yeung CK, et al. Abdominal inflammatory myofibroblastic tumour in children. Br J Surg 1992;31:1311–4.
[23] Shankar KR, Losty PD, Khine MM, et al. Pancreatic inflammatory tumour. A rare entity in childhood. J Coll Surg Edinb 1998;43:422–3.

Table 1

Age, years	Gender	Symptoms/signs	Location	Size	Operative procedures	Follow-up	Author
2.5	Female	Fever, anemia, abdominal mass and skin rash	Body	Not available	Distal pancreatectomy	Not available	Scott et al [21]
4	Female	Malaise, lethargy, a vesicular skin rash	Head	3 x 3 cm	Whipple procedure	Disease-free at 48 months	Slavotinek et al [22]
5	Female	Abdominal pain and mass	Head and tail	10.7 x 9.9 x 9.4 cm	Whipple procedure	Disease-free at 9 months	Slavotinek et al [22]
8	Female	Jaundice, anemia, weight loss	Head	Not available	Whipple procedure	Disease-free at 24 months	Shankar et al [24]
8	Female	Jaundice, pruritus, decreased appetite, weight loss, epigastric pain, tea-colored urine	Head	3.2 x 1.6 x 3.4 cm	Whipple procedure	Disease-free at 12 months	Uozumi et al [25]
11	Female	Abdominal mass	Body	12 x 10 x 6 cm	Pancreatectomy, unspecified	Not available	Abravanel et al [22]
13	Female	Jaundice, Vomiting, anemia, weight loss	Head	4 x 3 x 2.5 cm	Whipple procedure	Disease-free at 6 years	Dagan et al [25]
11	Male	Abdominal mass, lethargy	Body and tail	10 x 10 x 7 cm	Medical treatment (Prednisone and propylactic coformicine)	Disease-free at 36 months	Morris-Still et al [26]
10	Male	Abdominal pain, jaundice, anorexia	Head	2.2 cm	Distal pancreatectomy	Disease-free at 6 years	Dagan et al [25]
0.5	Male	Jaundice and pruritus	Head to uncinate process	3.7 cm	Whipple procedure	Disease-free at 3.5 years	Ales Tomač et al [26]
15	Male	Abdominal pain, fever	Tail	5 x 5 x 4.3 cm	Distal pancreatectomy	Disease-free at 3 years	This article
[25] Dagash H, Koh C, Cohen M, et al. Inflammatory myofibroblastic tumor of the pancreas: a case report of 2 pediatric cases—steroids or surgery? J Pediatr Surg 2009;44:1839–41.
[26] Morris-Stiff G, Vujaníc GM, Al-Wafi A, et al. Pancreatic inflammatory pseudotumor: an uncommon childhood lesion mimicking a malignant tumour. Pediatr Surg Int 1998;13:52–4.
[27] Abrehanel P, Sarfary S, Gal R, et al. Plasma cell granuloma of the pancreas. Arch Pathol Lab Med 1984;108:531–2.
[28] Tomazic A, Gvardijancic D, Maucec J, et al. Inflammatory myofibroblastic tumor of the pancreatic head—a case report of a 6 months old child and review of the literature. Radiol Oncol 2015;49:265–70.
[29] Casadei R, Piccoli L, Valeri B, et al. Inflammatory pseudotumor of the pancreas resembling pancreatic cancer: clinical, diagnostic and therapeutic considerations. Chirurgia Italiana 2004;56:849–58.
[30] Liu TH, Consorti ET. Inflammatory pseudotumor presenting as a cystic tumor of the pancreas. J Am Surg 2000;66:993–7.
[31] Iñarraja L, Franquet T, Caballero P, et al. CT findings in circumscribed upper abdominal idiopathic retroperitoneal fibrosis. J Comput Assist Tomogr 1986;10:1063–4.
[32] Clark A, Zeman RK, Choyke PL, et al. Pancreatic pseudotumors associated with multifocal idiopathic fibrosclerosis. Gastrointest Radiol 1988;13:30–2.