Glueballs from the Bethe-Salpeter equation

Helios Sanchis-Alepuz,1 Christian S. Fischer,1 Christian Kellermann, and Lorenz von Smekal2

1Institut für Theoretische Physik, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
2Institut für Kernphysik, TU Darmstadt, Theoriezentrum, Schloßgartenstraße 2, 64289 Darmstadt, Germany
(Dated: March 23, 2015)

We formulate a framework to determine the mass of glueball states of Landau gauge Yang-Mills theory in the continuum. To this end we derive a Bethe-Salpeter equation for two gluon bound states including the effects of Faddeev-Popov ghosts. We construct a suitable approximation scheme such that the interactions in the bound state equation match a corresponding successful approximation of the Dyson-Schwinger equations for the Landau gauge ghost and gluon propagators. Based upon a recently obtained solution for the propagators in the complex momentum plane we obtain results for the mass of the 0\(^{++}\) and 0\(^{--}\) glueballs. In the scalar channel we find a mass value in agreement with lattice gauge theory.

I. INTRODUCTION

The 'physical' spectrum of pure Yang-Mills theory is made out of glueballs [1]. There is substantial evidence, both from lattice calculations (see [2–9] and Refs. therein) and results from Dyson-Schwinger equations (DSEs) for the Landau gauge gluon propagator [3–9] that transverse gluons violate positivity and therefore cannot be part of the asymptotic state space of the theory. Consequently, the first physical excitation of the Yang-Mills vacuum is the lowest lying glueball state.

It is an important task to determine the mass of this state. Indeed, the properties of glueballs have been investigated since their prediction in the middle of the 1970s [1]. Today, the glueball masses in pure Yang-Mills theory are known rather accurately owing to high statistics lattice calculations [7–9]. Unquenched lattice calculations are also available, although there are considerable uncertainties in the determination of unquenched glueball masses [10–14]. This is mainly due to severe problems with the signal to noise ratio, thus requiring large statistics. In principle, it is also not easy to disentangle states with large glueball components from states dominated by other constituents such as quark-antiquark pairs. Naturally, this problem has a counterpart in the experiments: a glueball cannot be distinguished from a meson by quantum numbers and masses only. The determination of the decay channels of a given state is therefore vital for its identification. Ongoing and new experiments such as BES III [15] and PANDA [16] have dedicated parts of their programs to the identification of heavy glueballs. In the charmonium region and beyond.

Alternative theoretical frameworks such as Hamiltonian many body [17–20] and strong coupling methods [21], potential approaches [22], Wilson loop based calculations [23], flux tube models [24], chiral Lagrangians [26–28], light front quantization [29] and the AdS/QCD approach [30] have shed some light on potential mass patterns and identifications of experimental states dominated by their glueball content. However, it seems fair to state that a detailed understanding of glueball formation from the underlying dynamics of Yang-Mills theory is still missing. In this paper we report on further steps towards such an understanding.

Working in Landau gauge, we construct homogeneous Bethe-Salpeter equations (BSEs) for glueballs which take into account the dynamics of gluon and ghost propagation as well as their interactions with one another. This is detailed in Sections II and III, where we also discuss the general form of Bethe-Salpeter vertices for any quantum number. The calculation is performed in Euclidean space, which implies that the bound-state constituents are probed for complex momenta. In the literature, exploratory BSE calculations using instantaneous approximations [31] or extrapolations of the propagators into the complex momentum plane [32] can be found. In this work we present first results for self-consistent and covariant BSE calculation of glueballs in Landau gauge using explicit solutions for the ghost and gluon propagator DSEs in the complex momentum plane [4]. These are summarized in Section IV.

II. BOUND STATE EQUATIONS FOR GLUEBALLS

Our goal in this section is to provide a Bethe-Salpeter equation describing a glueball made from two gluons that are solutions of the DSE for the gluon propagator. A similar concept has proven very successful in the context of mesons, where the BSE of a quark-antiquark pair is used in connection with the corresponding DSE for the quark propagator, see e.g. [33–35] for reviews. A key property of this framework is consistency of the approximations made in the DSE and BSE. For mesons this implies to satisfy an axial Ward-Takahashi identity thus implementing constraints due to chiral symmetry and its breaking. One way of devising such a truncation is to derive both the truncation of the DSE and the truncation of the BSE on common grounds using a two particle irreducible effective action (2PIEA). In the following we work along this strategy. Since we are working in Landau gauge we need to take into account the Faddeev-Popov ghosts. Thus we need a generalization of the usual BSE scheme that allows for mixing of bound states of different fields.
In the following we will give a derivation of a suitable set of bound state equations that provide the necessary couplings of bound state amplitudes with different field content \[36\].

We consider the following 2PIEA,

\[
\Gamma[D, G] = \frac{1}{2} \text{Tr} \ln D_0 D^{-1} + \frac{1}{2} \text{Tr} D_0^{-1} D - \text{Tr} \ln G_0 G^{-1} - \text{Tr} G_0^{-1} G + \Gamma_2[D, G],
\]

where \(D\) and \(G\) are the gluon and ghost propagators. The interaction term is given diagrammatically by

\[
\Gamma_2[D, G] = -\frac{1}{12} + \frac{1}{2}.
\]

Each term contains one bare and one dressed vertex, the latter being represented by the shaded circles. The 2PIEA is already truncated, i.e. we have left out all diagrams including the four-gluon interaction. Furthermore, the dressed ghost-gluon and three-gluon vertices are assumed to be represented by suitable explicit expressions that capture the essence of the non-perturbative interactions. Such Ansätze have been employed successfully in the past \[34\]; we come back to this point in Section IV.

The corresponding Dyson-Schwinger equations for the ghost- and gluon propagators can be found by variation of the effective action with respect to a propagator, i.e.

\[
\delta \Gamma[D, G] = -D^{-1} + D_0^{-1} + \Sigma_D[D, G] = 0
\]

\[
\delta \Gamma[D, G] = 2G^{-1} - 2G_0^{-1} + \Sigma_G[D, G] = 0,
\]

where we have \(\Sigma_A = \frac{\delta \Gamma_2}{\delta A}\) with \(A \in \{D, G\}\). Diagrammatically, the resulting DSEs read

\[
\begin{align*}
\Gamma_2[D, G] &= -\frac{1}{12} + \frac{1}{2}.
\end{align*}
\]

We now proceed along the lines of Ref. \[36\]. In the following we will use a shorthand notation omitting the space-time arguments and indicating primed arguments by primed functions. We denote the solutions of DSEs \[33\] and \[41\] by \(\hat{D}\) and \(\hat{G}\) and perform a variation in two variables. Keeping only the linear terms we arrive at

\[
\begin{align*}
\Gamma_2[D, G] &= -\frac{1}{12} + \frac{1}{2}.
\end{align*}
\]

Using again the equations of motion we require for the solutions \(\hat{D}\) and \(\hat{G}\) to be stable that

\[
\int d^4x' d^4y' \delta^2 \Gamma[D, G] \bigg|_{\hat{D}, \hat{G}} \delta' \hat{D} + \int d^4x' d^4y' \delta^2 \Gamma[D, G] \bigg|_{\hat{D}, \hat{G}} \delta' \hat{G} = 0
\]
and
\[\int d^4x' d^4y' \frac{\delta^2 \Gamma[D, G]}{\delta G \delta D'} \bigg|_{D, G} \delta_D' + \frac{\delta^2 \Gamma[D, G]}{\delta G \delta G'} \bigg|_{D, G} \delta_G' = 0. \] (10)

Diagrammatically, the scattering kernels of the BSEs can be obtained by cutting a further line in the self-energy diagrams with respect to the desired second constituent in the bound state. The variations \(\delta_D' \), \(\delta_G' \) are identified with the Bethe-Salpeter vertices \(\chi_D \) and \(\chi_G \).

We then find the following coupled system of BSEs for ghost and gluon bound states

\[\chi_D = \chi_D - 2 \chi_D + \dagger \] (11)

\[\chi_G = \chi_D + \chi_G + \dagger, \] (12)

where the arrow indicates symmetrization of the kernels with respect to the dressed vertices. The resulting coupled system of two-body equations serves to describe glueballs as bound states of either a gluon or a ghost-antighost pair. The latter is necessary in Landau gauge and represents contributions from the Faddeev-Popov determinant to the glueball masses. We will later discuss the relative importance of both contributions in different channels. For now we just emphasize that neither the ghosts nor the gluons are physical constituents in the sense that they do not appear as propagating particles in the positive definite part of the asymptotic state space of QCD [4-6]. Note, that there is no mixed gluon-ghost (or gluon-antighost) contribution to the glueball vertex. Such gluon-(anti)ghost bound states, if existent, may be members of a BRST quartet together with transverse gluons and, thus, part of the unphysical Hilbert space [37].

The above system of BSEs within Yang-Mills theory can be further generalized to full QCD by including quark contributions. Considering the corresponding effective action

\[\Gamma[D, G, S] = \frac{1}{2} \text{Tr} \ln D_0 D^{-1} + \frac{1}{2} \text{Tr} D_0^{-1} D \]

\[- \text{Tr} \ln G_0 G^{-1} - \text{Tr} G_0^{-1} G \]

\[- \text{Tr} \ln S_0 S^{-1} - \text{Tr} S_0^{-1} S + \Gamma_2[D, G, S], \] (13)

we can apply the same derivation as before considering variations with respect to all types of propagators. We then find the full system of coupled bound state two-body equations

\[\chi_D = \chi_D - 2 \chi_D - 2 \chi_S + \dagger \] (15)

\[\chi_G = \chi_D + \chi_G + \dagger, \] (16)

\[\chi_S = \chi_D + \chi_G + \dagger. \] (17)

This set of BSEs describes mesons and glueballs in an approximation that can be seen as a generalized ladder truncation. Note, that the last diagram in (15) and the first of (17) provide for glueball/meson mixing. Although in this work we will restrict our explicit calculations to pure Yang-Mills theory we would like to add some com-
ments on the influence of these terms onto the flavor singlet meson spectra.

In the pseudoscalar channel these terms generate a contribution to $\eta-\eta'$ splitting. In the framework of BSEs the conventional approach to this problem is to include beyond rainbow-ladder terms connected with the axial anomaly in the quark-gluon interaction 38,40. Our framework provides the additional effect of a direct mixing of the flavor-singlet η_0-meson with the $J^{PC}=0^{-+}$ pseudoscalar glueball. Both effects together affect the η_0-meson mass. Our set of BSEs provides the simplest means of consistently including such glueball/meson mixing into BSE calculations. However, since in lattice calculations the mass of the pure glue pseudoscalar glueball is found to be around 2.5 GeV $^{[9]}$, it is not clear how large these mixing effects might be.

Considerable mixing effects may be expected, however, in the scalar meson sector, where there seem to be more states than one can accommodate in conventional quark anti-quark multiplets $^{[41]}$. While some of these states can well be accounted for by large four-quark components $^{[12,13]}$, others may very well be characterized by a dominant glueball contribution. The set of Equations (15) to (17) may well provide a viable starting point for sophisticated investigations of a realistic scalar meson spectrum.

In the following, we will focus on the coupled system of bound states for a pure gauge theory neglecting quarks (Eqs. (11) and (12)). To solve this system numerically, we need reliable information on the nonperturbative propagators of ghosts and gluons as well as a general expression for the bound state vertices χ_D and χ_G. In the next section we will discuss the latter, providing suitable expressions for arbitrary quantum numbers of glueballs.

III. BOUND STATE VERTEXES FOR GLUEBALLS

We will now show how suitable bound state vertexes χ_D and χ_G to be used in Eqs. (11) and (12) can be constructed. We start our present discussion from some general observations.

A bound state of two relativistic particles can be described by three quantum numbers: total spin J, parity P and charge parity C. Furthermore there are only two characteristic momenta involved, conveniently chosen to be the total momentum t_μ and the relative momentum t_μ. These two vectors can be used to construct suitable vertexes χ_D and χ_G for our bound state problem. The idea is to construct basic invariant vertexes with correct parity and charge conjugation properties and supplement these with an appropriate tensor representing a given total spin.

Let us first consider the vertex χ_D for the two-gluon bound state. A general scalar bound state vertex has to transform like a rank two Lorentz tensor for gluonic constituents, yet it has to be invariant under Lorentz transformations for it is meant to represent a scalar. Thus we are looking for a structure that transforms like

$$A^\mu \Lambda^\lambda_\nu T_{\kappa\lambda} = T_{\mu\nu}.$$

There exist only two tensor structures with $J = 0$ that satisfy $^{[18]}$, namely the metric tensor and a combination of the totally antisymmetric tensor and characteristic momenta:

$$\Gamma^0_{\mu\nu} = g_{\mu\nu}, \quad \Gamma^0_{\mu\nu} = \epsilon_{\kappa\lambda\mu\nu}r_{\kappa}t_{\lambda}$$

Whereas the first represents a parity-even state, the second choice is odd under parity transform.

For the vertex χ_G composed of ghost fields the situation is trivial, since we are looking for a term that couples to scalars and transforms like a scalar itself. The appropriate vertex is the identity in Lorentz space and has positive parity. This restricted choice has interesting implications as discussed below.

In addition to the basic tensors in Eqs. (19), representing the Lorentz structure of the constituents, we need suitable tensors representing a given total momentum J of the bound state. A Lorentz tensor representing a massive field with total spin J is required to have precisely $2J+1$ independent components to represent the possible spin polarizations. The construction of such tensors is known and a detailed treatment can be found e.g. in $^{[40]}$. We will repeat parts of the construction here in a slightly more explicit form focused directly on the construction of Bethe-Salpeter vertices. Consider first tensors $T_{a_1 \ldots a_J}$ in three-space of rank J. To represent angular momentum J we require the tensor to be symmetric in all indices $T_{a_1 \ldots a_J} = T_{\{a_1 \ldots a_J\}}$ and traceless with respect to any pair of indices $\sum_m T_{\ldots m \ldots} = 0$. The first constraint leaves the tensor with $\frac{1}{2}(J^2 + 3J + 2)$ independent components, while the second imposes $\frac{1}{2}(J^2 - J)$ further restrictions, thus leading to a tensor with $2J+1$ independent components, as required. The construction of tensors in three-space is now easily transferred to four-tensors. If we require the tensor $T_{\mu_1 \ldots \mu_J}$ to be transverse to the total momentum of the particle in every index $t^\nu \nabla_{\nu} = 0$ and adopt the particles rest-frame, we see that all components with time-like indices vanish, leaving only components with space-like indices. So we are left with nothing else but the three-tensor considered before, which has $2J+1$ independent components. Thus we find the constraints for a Lorentz-tensor $T_{\mu_1 \ldots \mu_J}$ of rank J to represent angular momentum J:

1. T is symmetric in all indices,

$$T_{\mu_1 \ldots \mu_J} = T^{\mu_1 \ldots \mu_J}.$$

It is also possible to construct tensors representing half-odd integer spin. Since we are dealing with Bethe-Salpeter equations of two particles in the same representation, so that the total angular momentum is integer, we will not consider this possibility here but instead refer the interested reader again to $^{[40]}$.

2. T is transverse to the total momentum of the particle in every index,

$$t^{\nu} T^{J}_{\cdots\nu} = 0. \quad (21)$$

3. T is traceless in every pair of indices in the rest-frame,

$$T^{J}_{\cdots\lambda} = 0. \quad (22)$$

For the glueball masses we only need one such tensor from each multiplet. To construct such a tensor for angular momentum J one can build the J-fold tensor product of a transverse projector that transforms like a vector and then subtract the traces with respect to every pair of indices. Starting with $J = 1$, a suitable transverse four-vector can be obtained by contracting the transverse projector $r_{\mu\nu}$ (with respect to the total momentum t) and the relative momentum r,

$$Q_{\mu} = r_{\mu\nu} r^{\nu} = \left(g_{\mu\nu} - \frac{t_{\mu} t_{\nu}}{t^2}\right) r^{\nu} = \left(r_{\mu} - \frac{(r \cdot t) t_{\mu}}{t^2}\right). \quad (23)$$

With only one Lorentz index this transverse vector already gives a possible angular momentum tensor for $J = 1$. For higher J one builds symmetric J-fold tensor products of (23) by

$$\tilde{Q}_{\mu_1 \cdots \mu_J} = \prod_{\mu_{\alpha}} \times \cdots \times \prod_{\mu_{\beta}} Q_{\mu_{\alpha}, \cdots, \mu_{\beta}}. \quad (24)$$

The next step is to remove the traces of these tensors with respect to every pair of indices. This can be achieved with the general formula

$$T_{\mu_1 \cdots \mu_J} = \tilde{Q}_{\mu_1 \cdots \mu_J} - (2J - 1)^{-1} \sum_{P_{\mu_k}} \tau_{\mu_1 \mu_2} \tilde{Q}^{\kappa}_{\kappa \mu_3 \cdots \mu_J} + (2J - 1)^{-1} (2J - 3)^{-1} \sum_{P_{\mu_k}} \tau_{\mu_1 \mu_2} \tau_{\mu_3 \mu_4} \tilde{Q}^{\kappa \lambda}_{\kappa \lambda \mu_5 \cdots \mu_J} - \cdots, \quad (25)$$

where \sum_{P} denotes the sum over all essentially different permutations of the indices\(^2\). We furthermore define

$$f_2 = r^2 - \frac{(r \cdot t)^2}{t^2}, \quad (26)$$

and the tensors\(^3\)

$$B^{J}_{\mu_1 \cdots \mu_J} = f_2^J \delta_{\{\mu_1 \mu_2 \cdots \mu_{J+2}\}} \tilde{Q}^{\{J-2\}}_{\mu_1 \mu_2 \cdots \mu_J}, \quad 2J < J, \quad (27)$$

$$B^{J}_{\mu_1 \cdots \mu_J} = f_2^J \delta_{\{\mu_1 \mu_2 \cdots \mu_{J+1}\}} \tilde{Q}^{\{J\}}_{\mu_1 \mu_2 \cdots \mu_J}, \quad 2J = J. \quad (28)$$

Using (25) and (24) together with the above definition, we finally obtain the desired total spin tensors in closed form as

$$T_{\mu_1 \cdots \mu_J} = \tilde{Q}_{\mu_1 \cdots \mu_J} + \sum_{2J \leq J} \frac{(-1)^J}{2^J J!} \left(\prod_{k=1}^{J} 2(J - k) + 1 \right)^{-1} B^{J}_{\mu_1 \cdots \mu_J}. \quad (29)$$

With these we have access to higher orbital angular momentum states built for glueballs with two gluon constituents (with $C = +1$) in the Lorentz singlet channels.

\(^2\) This means that the sum has to be divided by appropriate combinatorial factors.

\(^3\) For the convenience of the reader we have denoted the rank of the raw tensors as a superscript.
even (odd) J tensors is positive (negative). Hence there are neither contributions from ghost anti-ghost pairs to glueballs for even J and with quantum numbers J^{-+}, nor for odd J with J^{++}. For the gluonic vertices the natural parity of the total spin tensors can be supplemented by the odd parity basis element given in (19), thus changing the overall parity of the tensor representation. This is not possible for the ghost vertices. Consequently, we only find the restricted set (34) and (35) of possible quantum numbers for glueball states with ghost contributions.

Another potential restriction for the contribution of gluonic vertices to glueballs has been frequently discussed in the literature in the context of model building [47]: if the gluonic constituents were massless and on-shell, Yang’s theorem [48] would restrict the number of allowed quantum numbers drastically. In our framework this constraint appears to be almost irrelevant. The non-perturbative gluonic constituents that appear in the BSE are neither on-shell nor massless. Instead they acquire a dynamically generated mass, as discussed in more detail in the next section. Thus, gluonic contributions in Yang-forbidden channels may be suppressed but certainly not forbidden. These channels are the 1^{++} and all odd J^{-+}-channels. Since in the 1^{++}-channel ghost contributions are absent as well, the potentially suppressed gluonic contributions may lead to an ‘unnaturally’ large glueball mass in this channel. This is indeed observed in lattice calculations [8, 9]. In the odd J^{-+}-channels, however, ghost contributions are allowed. If the suppression of the gluonic contributions were strong, these states could be termed ‘ghostballs’. We will study such states in future work.

In addition, there may be another basic vertices for the gluons in the spin 2 channel, traceless symmetric tensors. For example, Landau constructed one for QED with $J^{PC} = 2^{++}$ [45]. The explicit form of this basic $J = 2$ tensor with our notations would read

\[
\Gamma_{\mu \nu; \mu_1 \mu_2}^{2^{++}} = t^4 \left(-\frac{1}{2} g_{\mu \nu} g_{\mu_1 \mu_2} + \frac{1}{2} g_{\mu_1 \nu} g_{\mu_2 \nu} + \frac{1}{2} g_{\mu_1 \mu_2} g_{\nu_1 \nu} \right) + t^2 \left(\frac{1}{3} g_{\mu_1 \nu_1} t_{\mu_2} - \frac{1}{2} g_{\mu_1 \nu_2} t_{\nu_2} + \frac{1}{2} g_{\mu_2 \nu_1} t_{\nu_1} \right) + \frac{2}{3} t_{\mu_1} t_{\nu_2} \right)
\]

where the pair (μ, ν) denotes the Lorentz indices of the gluon constituents and (μ_1, μ_2) the one of the bound state. With such a tensor vertices for a given set of quantum numbers J^{PC} can be constructed in a similar way as from the two singlet tensors in Eqs. (19).

Having discussed the derivation of the bound state equations we will use to describe glueballs and the form of the necessary bound state vertices, we will now turn to the numerical part of our investigation. We will find that it is necessary to solve the system of coupled DSEs of ghost and gluon fields for complex momenta in order to use the resulting propagators in our calculation of glueballs.

Note that in the context of this discussion of Yang’s theorem it is irrelevant whether the mass generation mechanism leads to an infrared vanishing gluon propagator (‘scaling’) or an infrared finite propagator (‘decoupling’). Furthermore, ‘mass generation’ in this context does not mean that the gluon propagator acquires a pole at time-like momenta, but merely that the zero-momentum pole of the free propagator disappears due to interactions.

IV. THE YANG-MILLS SYSTEM IN THE COMPLEX PLANE

We solve the coupled system of bound state equations, (15) and (16) in pure Yang-Mills theory in Euclidean momentum space. In the rest frame of the glueball, its total momentum is then given by $(0, 0, 0, im_B)$ with m_B is the bound-state mass. Without loss of generality, the total momenta can be shared equally between the two constituents. Their momenta are then given by $r_{\pm} = (r \pm t)/2$, with relative momentum r between the constituents. It is then clear that the internal propagator lines in BSEs are given by solutions of the DSEs for complex momenta.

These can be obtained from the corresponding coupled set of Dyson-Schwinger equations. In Landau gauge the ghost propagator $D_G(p^2)$ and the gluon propagator $D_{\mu \nu}(p^2)$ are given by

\[
D_{\mu \nu}(p^2) = \left(\delta_{\mu \nu} - \frac{p_\mu p_\nu}{p^2} \right) \frac{Z(p^2)}{p^2}, \quad (37)
\]

\[
D_G(p^2) = - \frac{G(p^2)}{p^2}, \quad (38)
\]

where the diagonal color structure has been omitted for brevity. Note that the gluon is transverse also non-perturbatively, thus spurious glueball states due to longi-
Figure 1. Left: Results for the gluon dressing function $Z(p^2)$ from the DSEs [51] for real and space-like momenta, compared with lattice calculations [61]. Right: Results for the gluon spectral function from DSEs for time-like momenta. Shown is the result from Ref. [6] together with result obtained in the same truncation scheme but with slightly different numerics, see main text for further explanations.

Figure 2. Real part of the gluon propagator function $D(p^2) = Z(p^2)/p^2$ in the complex $z = p^2$ plane [4].

tudinal modes, as present in some potential models [22], are naturally avoided. The coupled system of DSE (omitting two-loop diagrams) has been displayed diagrammatically in Eqs. (5)-(6). This system of equations has been considered frequently in the past years. It has been solved analytically in the deep infrared, where exact solutions without any truncations are possible [49, 50]. Two qualitatively different solutions have been found named ‘scaling’ and ‘decoupling’ [51, 52]. Whereas the scaling solution consists of infrared power laws for all Green’s functions with an infrared vanishing gluon propagator and an infrared divergent ghost, the decoupling solution is characterized by an infrared finite gluon propagator and a finite ghost dressing function. Current lattice calculations on large volumes clearly favor the decoupling type of solutions [53]; there is, however, an ongoing discussion on potentially significant effects from different gauge fixing strategies in the deep infrared [54, 55]. In this work we concentrate on decoupling type of solutions, which have been associated with a dynamically generated ‘gluon mass’ [5]. As already mentioned above, these still maintain transversality. At finite momenta, the equations have to be solved numerically and approximations for the dressed vertices need to be introduced. A suitable truncation scheme has been introduced in Ref. [60] and improved in Ref. [51]. It involves educated ansaetze for the ghost-gluon and three-gluon vertex and neglects the effects of the four-gluon interaction completely. The resulting modified system of equations has exactly the structure of the system (3) and (4) obtained from the variation of the 2PIEA (1) in Section II. For real momenta, we show the numerical solution for the gluon dressing function in Fig. 1. As can be seen from the comparison with the lattice results [61], there is very good agreement in the infrared and ultraviolet momentum region, whereas in the mid-momentum region one observes quantitative deviations. These deviations are certainly in parts due to the neglected four-gluon interactions in the DSEs (5)-(6). They can be compensated, however, by suitably optimizing the input used for the dressed three-gluon vertex by simultaneously solving its own DSE together with those for the propagators [62].

5 Of course, this ‘mass’ is not to be identified with the mass of a physical particle. The analytic structure of the gluon propagator is clearly different from a simple mass pole [6].
The system of DSEs [5], [6] for the ghost and gluon propagator has been solved in the complex p^2 plane recently, see Ref. [6] for details. As explained above, this complex solution constitutes a vital input into the corresponding Bethe-Salpeter equation for the glueballs and is used in the following. In this respect it is important to note that the analytic structure of the gluon and ghost propagators as obtained in Ref. [6] shows branch cuts along the time-like momentum axis, i.e. for negative invariant momentum squared, but no singularities away from the real axis in the complex p^2 plane. For the real part of the gluon propagator this can be seen in Fig. 2 corresponding plots for the imaginary part and the ghost dressing function can be found in Ref. [6]. This behavior greatly helps in the numerical treatment of the BSE. Along the time-like axis of negative p^2 one can extract the gluon spectral function, which is shown in the right plot of Fig. 1. We have plotted the result from Ref. [6] together with a corresponding result obtained from an improved numerical method. The corresponding results are very similar except on a narrow region around the cut on the negative p^2-axis. As a result, one obtains a considerable smoother spectral function, as can be seen in Fig. 1. We use this improved result in the present work.

Finally, a comment on the scale is in order. This is fixed by comparison with the lattice results for the gluon propagator and remains fixed, i.e. it is not adjusted again in the glueball calculations. Thus, in principle, we obtain absolute values for the glueball masses.

V. LOWEST LYING GLUEBALL MASSES

We have solved the BSEs for a glueball in the scalar and pseudoscalar channel using the bound state equations (11) and (12) together with the vertices (30) to (33). For the propagators of ghosts and gluons we use the numerical results discussed in the last section.

Bound state vertices are not primitively divergent vertices and therefore they generically go to zero like power laws for large momenta. In contrast to the behavior of meson BSEs, however, (11) and (12) also admit solutions with a logarithmic behavior in the UV. (Details on the asymptotic behavior of glueball BSEs together with an explicit analytic analysis will be given elsewhere.) These solutions do not correspond to bound states. In order to guide the iterative numerical procedure to the correct bound state solution it turns out to be sufficient to introduce an additional Pauli-Villars term into the purely gluonic diagram of (11) that depends on the momentum of the exchanged gluon propagator. Namely, we replace $Z(k^2) \to Z(k^2)(1 + k^2/\Lambda_{PV}^2)^{-1}$, with k^2 the momentum of the exchanged gluon and Λ_{PV} a cutoff scale. By inspection of the Bethe-Salpeter vertex functions we have verified, that such a term does not simply modify the logarithmic solutions of the BSE above the scale Λ_{PV}^2 but indeed drives the equation to a different and well-behaved solution. We find that the resulting glueball masses are insensitive to all values $\Lambda_{PV}^2 > 100$ GeV2 of the scale that we have probed.

We present our results in Table I together with corresponding ones from lattice gauge theory, the Hamiltonian approach and Regge theory. Additionally, we compare to a rather recent calculation in a non-relativistic constituent model.

Comparing with the lattice results, we find that the state with quantum numbers 0^{++} is well reproduced on the five percent level. Compared with the lattice, the good agreement of our result for the lowest lying scalar glueball is remarkable, though probably not surprising. As explained above, our truncation scheme for the ghost/gluon DSEs produces solutions which are pointwise similar to the lattice results in the low and high momentum region and display a twenty percent difference for momenta around 1 GeV. Thus the overall quality of the truncation scheme is well below the twenty percent range and thus in agreement with our findings for the scalar glueball mass. The remaining deficiencies in our truncation scheme are in the details of the three-gluon and the missing four-gluon interactions.

In contrast, the mass of the pseudoscalar glueball is much higher than that predicted by lattice calculations as well as by other approaches. As discussed in Section III there are no ghost contributions in these channels, leaving a greatly reduced BSE with only one gluonic diagram to be solved. This diagram is, in turn, largely dominated by the three-gluon vertex, both directly and via the solution of the DSE for the gluon propagator. Since the ansatz used here was devised in the context of the study of gluon and ghost DSEs for real momenta, it is conceivable that the behavior of this ansatz in the complex plane affects significantly the glueball spectrum in particular for states with no ghost-antighost content. The study of the connection between the details of the non-perturbative gluon self-interactions and their impact on glueball masses will be the subject of future work.

VI. SUMMARY

In this paper we have presented a framework that allows to calculate glueball properties from the dynamics

J^{PC}	lattice	Hamiltonian	Regge theory	constituent models	this work
0^{++}	1.71 (5)(8)	1.98 [18]	1.71 [25]	1.64	
	1.73 (5)(8)	1.58 [23]	1.86 [22]		
0^{-+}	2.56 (4)(1)	2.22 [18]	2.61 [25]	4.53	
	2.59 (4)(13)	2.56 [23]	2.49 [22]		

Table I. Scalar and pseudoscalar glueball masses (in GeV) from various studies. We quote the Model B data from Ref. [22].
of Landau gauge Yang-Mills theory. We have constructed a set of bound state equations that includes both ghosts and gluons degrees of freedom thus taking into account also the effects of the Faddeev-Popov determinant. This set of equations allows for mixing of bound state contributions from different species of particles and is readily generalized to full QCD, including quarks. It thus naturally incorporates meson/glueball mixing. Furthermore we have presented suitable representations for the bound state vertices for arbitrary quantum numbers J^{PC}.

As an illustration of the framework, we have calculated the scalar and pseudoscalar glueball mass. Our result for the scalar glueball state is certainly encouraging, although in the pseudoscalar channel the mass is exceedingly high. Compared to the recent exploratory approach of Ref. [32] we have made a number of technical improvements. Most important are the use of explicit solutions of the ghost and gluon propagators in the complex momentum plane. Furthermore, our approach fully maintains multiplicative renormalizability.

Our framework for calculations of glueball properties offers various prospects of improvements and applications in the near future. First, different ansatze for the three-gluon vertex should be used and its impact on the spectrum analyzed. It would be desirable, although technically very demanding, to use dynamical three-point vertices as in [62] and to include the four-gluon interaction contributions into our framework. On the other hand, a very important extension is the inclusion of meson/glueball mixing along the lines of Eqs. [15] to [17]. This will allow to leave the sector of pure gauge field calculations of glueballs and thus provide access to realistic glueball properties in the future.

Acknowledgements

We thank Reinhard Alkofer and Richard Williams for fruitful discussions. This work was supported by an Erwin Schrödinger fellowship J3392-N20 from the Austrian Science Fund (FWF), the Helmholtz Young Investigator Grant VH-NG-332, the Helmholtz International Center for FAIR within the LOEWE program of the State of Hesse, the European Commission FP7-PEOPLE-2009-RG No. 249203, and by the BMBF contract 06GI7121.

[1] H. Fritzsch and P. Minkowski, Nuovo Cim. A 30 (1975) 393.
[2] P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly, A. Sternbeck, L. von Smekal, A. G. Williams and J. -b. Zhang, Phys. Rev. D 76 (2007) 094505 [hep-lat/0703022].
[3] A. Maas, arXiv:1106.3942 [hep-ph].
[4] L. von Smekal, A. Hart, et al., Phys. Rev. Lett. 79 (1997) 3591 [hep-ph/9705242].
[5] R. Alkofer, W. Detmold, C. S. Fischer and P. Maris, Phys. Rev. D 70 (2004) 014014 [hep-ph/0309077].
[6] S. Strauss, C. S. Fischer and C. Kellermann, Phys. Rev. Lett. 109 (2012) 252001 [arXiv:1208.6239 [hep-ph]].
[7] G. S. Bali et al. [UKQCD Collaboration], Phys. Lett. B 309 (1993) 375 [hep-lat/9304012].
[8] C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901040].
[9] Y. Chen, A. Alexandru, S. J. Dong, T. Draper, I. Horvath, F. X. Lee, K. F. Liu and N. Mathur et al., Phys. Rev. D 73 (2006) 014516 [hep-lat/0510074].
[10] A. Hart et al. [UKQCD Collaboration], Phys. Rev. D 65 (2002) 034502 [hep-lat/0108022].
[11] G. S. Bali et al. [TXL and T(X)L Collaborations], Phys. Rev. D 62 (2000) 054503 [hep-lat/0003012].
[12] A. Hart et al. [UKQCD Collaboration], Phys. Rev. D 74 (2006) 114504 [hep-lat/0608026].
[13] C. M. Richards et al. [UKQCD Collaboration], Phys. Rev. D 82 (2010) 034501 [arXiv:1005.2473 [hep-lat]].
[14] E. Gregory, A. Irving, B. Lucini, C. McNeile, A. Rago, C. Richards and E. Rinaldi, arXiv:1208.1858 [hep-lat].
[15] D. M. Asner, T. Barnes, J. M. Bian, I. I. Bigi, N. Brambilla, I. R. Boyko, V. Bytev and K. T. Chao et al., Int. J. Mod. Phys. A 24 (2009) S1 [arXiv:0809.1869 [hep-ex]].
[16] M. F. M. Lutz et al. [PANDA Collaboration], arXiv:0903.3905 [hep-ex].
[17] A. Szczepaniak, E. S. Swanson, C. -R. Ji and S. R. Cotanch, Phys. Rev. Lett. 76 (1996) 2011 [hep-ph/9511422].
[18] A. P. Szczepaniak and E. S. Swanson, Phys. Lett. B 577 (2003) 61 [hep-ph/0308268].
[19] F. J. Llanes-Estrada, P. Bicudo and S. R. Cotanch, Phys. Rev. Lett. 96 (2006) 081601 [hep-ph/0507205].
[20] P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. G. Robertson, Eur. Phys. J. C 52 (2007) 363 [hep-ph/0602172].
[21] H. P. Pavel, Phys. Lett. B 685 (2010) 353 [arXiv:0912.5456 [hep-th]]; Phys. Lett. B 700 (2011) 265 [arXiv:1104.1576 [hep-th]].
[22] F. Brau and C. Semay, Phys. Rev. D 70 (2004) 014017 [hep-ph/0412173]; V. Mathieu, C. Semay and B. Silvestre-Brac, Phys. Rev. D 77 (2008) 094009 [arXiv:0803.0815 [hep-ph]].
[23] A. B. Kaidalov and Y. .A. Simonov, Phys. Lett. B 477 (2000) 163 [hep-ph/9912434].
[24] F. Buusseret, Phys. Rev. C 76 (2007) 025206 [arXiv:0705.0916 [hep-ph]].
[25] F. Buusseret, V. Mathieu and C. Semay, Phys. Rev. D 80 (2009) 074021 [arXiv:0906.3098 [hep-ph]].
[26] S. He, M. Huang and Q. -S. Yan, Phys. Rev. D 84 (2011) 054003 [arXiv:0903.5032 [hep-ph]].
[27] S. Janowski, D. Parganlija, F. Giacosa and D. H. Rischke, Phys. Rev. D 84 (2011) 054007 [arXiv:1103.3238 [hep-ph]].
[28] W. I. Eshraith, S. Janowski, F. Giacosa and D. H. Rischke, arXiv:1208.6474 [hep-ph].
[29] B. H. Allen and R. J. Perry, Phys. Rev. D 62 (2000) 025005 [hep-th/9908124]; S. Dalley and B. van de Sande, Phys. Rev. D 62 (2000) 014507 [hep-lat/9911035].
[30] H. Boschi-Filho, N. R. F. Braga, F. Jugeau and M. A. C. Torres, arXiv:1208.2291 [hep-th].
[31] S. Rai Choudhury and A. N. Mitra, Phys. Rev. D 28 (1983) 2201; J. Y. Cui, J. M. Wu and H. Y. Jin, Phys. Lett. B 424 (1998) 381 [hep-ph/9711379].
[32] J. Meyers and E. S. Swanson, arXiv:1211.4648 [hep-ph].
[33] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297 [nucl-th/0301049].
[34] C. S. Fischer, J. Phys. G G 32 (2006) R253 [hep-ph/0605173].
[35] A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y. X. Liu, C. D. Roberts and P. C. Tandy, Commun. Theor. Phys. 58 (2012) 79 [arXiv:1201.3366 [nucl-th]].
[36] J. Meyers and E. S. Swanson, arXiv:1211.4648 [hep-ph].
[37] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297 [nucl-th/0301049].
[38] C. S. Fischer, J. Phys. G G 32 (2006) R253 [hep-ph/0605173].
[39] A. Bashir, L. Chang, I. C. Cloet, B. El-Bennich, Y. X. Liu, C. D. Roberts and P. C. Tandy, Commun. Theor. Phys. 58 (2012) 79 [arXiv:1201.3366 [nucl-th]].
[40] J. Meyers and E. S. Swanson, arXiv:1211.4648 [hep-ph].
[41] K. Nakamura et al. [Particle Data Group Collaboration], J. Phys. G G 37 (2010) 075021.
[42] R. Alkofer, C. S. Fischer and R. Williams, Eur. Phys. J. A 38 (2008) 53 [arXiv:0804.3478 [hep-ph]].
[43] R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, Phys. Lett. B 611, 279 (2005); C. S. Fischer and J. M. Pawlowski, Phys. Rev. D 75, 025012 (2007); Phys. Rev. D80 (2009) 052023.
[44] C. Lerche, L. von Smekal, Phys. Rev. D 65 (2002) 125006; D. Zwanziger, Phys. Rev. D 67, 105001 (2003); J. M. Pawlowski, D. F. Litim, S. Nedelko and L. von Smekal, Phys. Rev. Lett. 93, 152002 (2004); C. S. Fischer, A. Maas, J. M. Pawlowski, Annals Phys. 324 (2009) 2408-2437.
[45] A. C. Aguilar, D. Binosi and J. Papavassiliou, Phys. Rev. D 78 (2008) 025010; Ph. Boucaud, et al. JHEP 0806, 012 (2008); JHEP 0806, 099 (2008). D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78, 065047 (2008).
[46] A. Cucchieri and T. Mendes, Phys. Rev. D 78 (2008) 094503; Phys. Rev. Lett. 100, 241601 (2008). I. L. Bogolubsky et al., Phys. Lett. B676 (2009) 69.
[47] L. von Smekal, arXiv:0812.0654 [hep-th].
[48] A. Sternbeck, L. von Smekal, Eur. Phys. J. C68 (2010) 487; A. Maas et al., Eur. Phys. J. C 68 (2010) 183.
[49] A. Cucchieri and T. Mendes, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033 [hep-lat]].
[50] A. Maas, Phys. Lett. B689 (2010) 107.
[51] A. Sternbeck and M. Müller-Preussker, Phys. Lett. B 726 (2013) 396 [arXiv:1211.3057 [hep-lat]].
[52] D. Dudal, M. S. Guimaraes, I. F. Justo and S. P. Sorella, Eur. Phys. J. C 75, no. 2, 83 (2015) [arXiv:1411.2500 [hep-th]].
[53] A. C. Aguilar, D. Binosi and J. Papavassiliou, Phys. Rev. D 78 (2008) 025010; Ph. Boucaud, et al. JHEP 0806, 012 (2008); JHEP 0806, 099 (2008). D. Dudal, J. A. Gracey, S. P. Sorella, N. Vandersickel and H. Verschelde, Phys. Rev. D 78, 065047 (2008).
[54] A. Cucchieri and T. Mendes, Phys. Rev. D 78 (2008) 094503; Phys. Rev. Lett. 100, 241601 (2008). I. L. Bogolubsky et al., Phys. Lett. B676 (2009) 69.
[55] L. von Smekal, arXiv:0812.0654 [hep-th].
[56] A. Cucchieri and T. Mendes, Phys. Rev. D 81 (2010) 016005 [arXiv:0904.4033 [hep-lat]].
[57] A. Maas, Phys. Lett. B543 (2002) 177.
[58] A. Cucchieri and R. Alkofer, Phys. Lett. B 536, 177 (2002) [hep-ph/0202022].
[59] A. Sternbeck, E. M. Ilgenfritz, M. Muller-Preussker, A. Schiller and I. L. Bogolubsky, PoS LAT2006, 076 (2006) [arXiv:hep-lat/0601053].
[60] M. Q. Huber and L. von Smekal, JHEP 1304 (2013) 149 [arXiv:1211.6092 [hep-th]]; A. Blum, M. Q. Huber, M. Mitter and L. von Smekal, Phys. Rev. D 89 (2014) 6, 061703 [arXiv:1401.0713 [hep-ph]]; G. Eichmann, R. Williams, R. Alkofer and M. Vujinovic, Phys. Rev. D 89 (2014) 10, 105014 [arXiv:1402.1365 [hep-ph]].
[61] K. I. Aoki, M. Bando, T. Kugo and M. G. Mitchell, Prog. Theor. Phys. 85 (1991) 355.
[62] D. Binosi, D. Ibanez and J. Papavassiliou, JHEP 1409 (2014) 059 [arXiv:1407.3677 [hep-ph]].
[63] A. Cucchieri and R. Alkofer, Phys. Rev. D 78, 114501 (2008) [arXiv:0802.2815 [hep-ph]].
[64] A. C. Aguilar, D. Binosi and J. Papavassiliou, JHEP 1409 (2014) 059 [arXiv:1407.3677 [hep-ph]].