Abstract

Image processing plays an important role in various field of human endeavor. Retinex method is widely used to improve the quality of the processed images. It provides better dynamic range compression, lightness rendition and color constancy. It also aimed at mimicking human vision system and lead to efficient algorithm for enhancing local image contrast. Various researchers proposed distinctive methods for enhancing image quality. The oldest and most popular image enhancement algorithm is histogram equalization which is used to improve the contrast of image. Other methods are Single-Scale and Multi-Scale Retinex (MSR) used for image quality enhancement, but cause some halation problem, high computation time and does not preserve edges. Recursive bilateral filter can able to do its best for solving the problems faced in previous algorithms but still has high computation time. In this paper, we proposed fast and efficient method for improving the quality of an image and reducing the computational time using three main steps: 1. Apply Fast Fourier transform to the input image, to convert the image frequency domain from spatial domain and multiply gaussian filter with illumination in frequency domain, this will speed up the processing time and provide better result. 2. Retinex algorithm is used to
estimate the reflectance by subtracting illumination image from original image. 3. Bi-histogram equalization to improve its visual effect. Lastly, the algorithm is evaluated from subjective and objective aspect. Experimental results demonstrate the effectiveness of the proposed method.

References

1. Tarun D., A fast method of contrast enhancement using histogram equalization, International journal of electronics and communication engineering, volume 4, number 4 (2011), pp. 383-390.
2. Yeong-taekgi M., Contrast enhancement using brightness preserving bi- histogram equalization, IEEE transactions on consumer electronics, vol. 43, no. 1, February 1997.
3. Yu W., Qian C., Baomin Z., Image enhancement based on equal area dualistic sub-image histogram equalization method, IEEE transactions on consumer electronics, vol. 45, no. 1, February 1999.
4. Jobson D. J., Rahman Z., and Woodell G. A., “A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, July 1997.
5. LI Fu-wen, JIN Wei-qi, CHEN Wei-li. Global Color Image Enhancement Algorithm Based on Retinex Model. Transactions of Beijing Institute of Technology, 2010, 8(8), pp. 947-951.
6. Hu W., Wang R., Fang S., Hu Q., “Retinex Algorithm for Image Enhancement Based on Bilateral Filtering, 2010”, journal of engineering graphics,2, pp. 104-109.
7. Jason L. M., Marwan Y. A. and Evan H. “Advanced Image processing with DirectX® 9 Pixel shaders” From ShaderX2 -Shader Programming Tips and Tricks with DirectX9,2003
8. Di I., Zhang Y. Wen P., Bai L., “A Retinex Algorithm for Image Enhancement Based on Recursive Bilateral Filtering, 2015”, international conference on computational intelligent and security
9. Pizer et. al," adaptive histogram equalization and its variation, 1987" computer vision, graphics and image processing, vol 39, pp 355-368
10. Pinaso et. al “contrast limited adaptive histogram equalization image Processing to Improve the Detection of Simulated Speculations in Dense Mammograms, 1998” Journal of Digital Imaging, Vol 11, pp 193-200
11. Edwin H. L. and John J. M.," lightness and Retinex theory, 1971 “journal of optical society of America, Polaroid Corporation, Cambridge, Massachusetts 02139
12. Prabhu M., Rajarajan S. and Karthikeyan M. P. “Implementing Histogram Equalization and Retinex Algorithms for Image Contrast Enhancement, 2014”, International Journal of Applied Engineering research volume 9, Number 20 (2014) pp. 7311-7318
13. Doo Hyun Choi, Ick Hoon Jang, Mi Hye Kim, and Nam Chul Kim," color image enhancement using single-scale Retinex based on an improved image formation model, 2008", European Signal Processing Conference.
14. Petro A. B., Catalina S., Jean-Michel M., Multiscale Retinex, Image Processing On Line, 4 (2014), pp. 71–88. http://dx.doi.org/10.5201/ipol.2014.107
15. Lokesh B. S. et. al" Retinex processing for automatic image enhancement using wavelet transformation ,2018” International Journal of Advance Research, Ideas and Innovations in Technology, volume 4, Issue 3, pp 1623-1626
16. Shiping M. et. al," A Low-Light Sensor Image Enhancement Algorithm Based on HSI Color Model ,2018”, Sensors 2018, 18, 3583; doi:10.3390/s18103583
Index Terms

Computer Science Algorithms

Keywords

Image enhancement, Retinex algorithm, Fast Fourier transform, Bi-histogram equalization