LETTER

Design of multi-octave continuous power amplifier based on broadband matching technique

Guohua Liu¹, a), Guoxiang Zhou¹, Sudong Li¹, Zhiwei Zhang¹, Cantianci Guo¹, and Zhiqun Cheng¹, b)

Abstract This paper presents a multi-octave broadband continuous power amplifier based on the simplified real frequency method. By analyzing the load-pull impedance trajectory along with frequency increase at both ends of the transistor’s input and output, the input impedance value of the matching circuit can be more coincident with the pull data in the wide band range, which meets the requirement of expanding the bandwidth of the power amplifier. Meanwhile, combining with simplified real frequency method, it can greatly simplify the process of designing broadband matching network. In order to verify the validity of the theory, the power amplifier is designed and fabricated. The measured results show that the maximum output power reached 42.5dBm and the drain efficiency is from 63% to 71% in the 1-3.2 GHz frequency band.

Keywords: continuous, multi-octave, power amplifier, simplified real frequency method, drain efficiency

Classification: Microwave and millimeter-wave devices, circuits, and modules

1. Introduction

With the rapid development of communication technology, many countries have officially entered the era of 5G [1, 2, 3, 4]. In the 5G communication, one of the most important technical features is the ability to connect potentially tens of billions of things with high bandwidth and low latency [5]. Higher requirements are placed on the performance of the designed radio frequency (RF) power amplifiers (PAs). In particular, it is required to meet the requirements of wide bandwidth [6].

At present, the expansion of amplifier bandwidth by designers adopt the idea of continuous class [7, 8, 9, 10]. With the increase of harmonic control factor, the area of optimal impedance solution is expanded. Unfortunately, the design process of continuous class is arduous because the load network matched at several frequency points. Several broadband PAs are designed and realized based on the in-band continuous class mode-transferring operation [11] and multi-stage transmission-line-based low-pass matching network [12, 13]. The series of continuous modes with the fundamental impedance real part variation give more design freedom to realize broadband high-efficiency PA [14]. Using filter structure as the matching circuit, the broadband design can be realized by filtering the high harmonics. However, there are some difficulties in the design of the in-band attenuation and transition band of the filter structure, and it is difficult to precisely realize the design of the specified frequency band. Due to the difficulty of impedance solution in designing continuous amplifiers, many scholars used network synthesis method and algorithm to optimize them. A two-port network is established by using the scattering parameters, and a lossless matching network is optimized [15, 16, 17, 18, 19]. In addition, the designer adopts the hybrid class harmonic control network to make the amplifier work in different class J/F/F⁻¹ at different frequency points, which expands the bandwidth beyond one octave. Ultra-wide band PAs employ both series of continuous and inverse continuous modes are examined [20, 21, 22], the solution spaces of fundamental impedance are expanded. In [23], a phase shift parameter is introduced in the voltage waveform formula of the hybrid continuous mode between class J and continuous class F. Although the idea of mixed class can extend the bandwidth, the matching circuit structure of controlling multiple frequency points is relatively complex, which requires precise control harmonics at each frequency point. Lots of carefully debug is required to achieve good performance.

In order to reduce the difficulty of existing work and further expand the bandwidth, this paper uses the GaN high electron mobility transistor (HEMT). By analyzing the rule of the optimal impedance data of the transistor’s load-pull and source-pull with the frequency variation, the input impedance of the designed matching circuit is coincident with the optimal impedance value at more frequency points. A broadband amplifier is designed, and then the design process is simplified by using simplified real frequency method.

2. Principles of theoretical analysis

2.1 Extension of continuous modes

Compared with the traditional class-F mode, continuous class-F mode greatly expands the design space. Since the second harmonic impedance is pure reactance, the design of amplifiers with bandwidth exceeding one octave is limited. An extended continuous mode amplifier is proposed to maintain higher average efficiency in a wide band [14]. Ideal inverse class F power amplifier transistor current to the voltage and current waveform are a half sine wave and a square wave, respectively. Similar to continuous class-F amplifier, the continuous inverse class-F work mode was proposed by Carrubba [24], which adds two variables to expand into a...
continuous inverse class-F amplifier. The continuous inverse class-F and extension of continuous inverse class-F current waveform are shown respectively as:

\[i(\theta) = (i_{DC} - i_1 \cos \theta + i_3 \cos 3\theta) \cdot (1 - \gamma \sin \theta) \quad (1) \]
\[i(\theta) = (1 - k_1 \cos \theta + k_3 \cos 3\theta) \cdot (1 + \alpha \cos \theta) \cdot (1 - \gamma \sin \theta) \quad (2) \]

where \(-1 \leq \gamma \leq 1, i_{DC} = 0.37, i_1 = 0.43, i_3 = 0.06\).

The extended continuous inverse class-F fundamental wave, second harmonic and third harmonic admittances are expressed as:

\[Y_{1,CF-1} = \sqrt{2} (k_1 - a) + j \beta \left[1 - \frac{\alpha}{4} (k_1 + k_3) \right] \quad (3) \]
\[Y_{2,CF-1} = a (k_1 - k_3) + j \beta (a - k_1 - k_3) \quad (4) \]
\[Y_{3,CF-1} = \infty \quad (5) \]

2.2 Simplified real frequency method (SRFM)

The performance of matching circuit is usually measured by transducer power gain (TPG). TPG is defined as the ratio of load input power to source output power, which is the main optimization parameter of SRFM.

The lossless matching network between the transistor output end and the terminal load is regarded as a balanced network \(E \) [25], the Belevitch form of its normalized reflection coefficient is \(E_{22}(s) = h(s)/g(s) \). \(E_{22} \) is reflection coefficient of the port. Both \(h(s) \) and \(g(s) \) are Hurwitz polynomials of \(n \) terms. Through the rule of lossless network, the relation of \(h(s) \) and \(g(s) \) meets the following condition:

\[g(s) \cdot g(-s) = h(s) \cdot h(-s) + f(s) \cdot f(-s) \quad (6) \]
\[f(s) = s^k \quad (7) \]

where \(f(s) \) can be constructed by specifying the number of transmission zeros matching on the network, \(k \) is the number of transmission zeros. The scattering parameters of the lossless reciprocity network can be obtained by the molecular polynomial \(h(s) \), which is an important idea to simplified the real frequency method.

![Matching network of SRFT](image)

In Fig. 1, it is assumed that the output impedance of the transistor is \(Z_4(s) \), which is matched to the terminal resistance load \(R_L \) through the network \(E \) in a wide frequency band. \(E_{ij}(1,2) \) is the normalized scattering parameter of the transistor. \(L_{ij}(1,2) \) is the normalized scattering parameter of the transistor. The transmission power gain is expressed as:

\[TPG = \frac{|E_{21}|^2 \cdot |L_{21}|^2}{|1 - E_{22}L_{11}|^2} \quad (8) \]

3. Multi-octave amplifier design process

3.1 Design of output-matching network

The key to the design of broadband power amplifier is the realization method of broadband matching network. According to the theoretical analysis and brief discussion of the real frequency method in the previous section, the impedance data of each frequency point in the frequency band should be provided when the real frequency synthesis method is used in the design of power amplifier.

The load-pull impedance is related to the transistor working point, input power and working frequency. In this design, the transistor gate bias is set to \(-2.8 \) V, the drain voltage is \(28 \) V, the input power is \(28 \) dBm, and the sweep frequency is from \(1.0 \) GHz to \(3.2 \) GHz, where the frequency interval is \(0.2 \) GHz. Figure 2 shows the load-pull impedance trajectory with frequency, where the black triangle represents the load impedance at the highest power added efficiency (PAE), and the hollow triangle shows the combined value of the load impedance corresponding to the highest PAE and the maximum output power at the same frequency point.

From the analysis of the impedance-frequency variation trend, when the working frequency increases, the optimal load impedance moves from the inductance area to the capacitance area of the Smith chart while the reactance moves from the inside of the chart to the outside, indicating that the reactance decreases with the increase of frequency. Overall, the output load impedance of transistor’s parasitic rotates by counterclockwise with the increase of frequency. Through the previous analysis, the physical can realize the impedance matching circuit with the increase of the frequency and the clockwise direction, which is a filtering structure [26]. At this point, the load impedance \(Z_L \) matched to the optimal impedance \(Z_{opt} \), however, the direction of the two impedance trajectories is opposite. The two impedance trajectories can only achieve good matching at the intersection points or a short band.

![Simulation of load-pull and matching analysis](image)

To illustrate the principle of broadband matching, the two intersecting impedance characteristic curves \(Z_{opt} \) and \(Z_L \) in Fig. 2 will be analyzed. \(Z_{opt} \) represents the optimal impedance of the transistor, and \(Z_L \) represents the load impedance seen from the output end of the transistor. As the frequency increases, the former rotates by counterclockwise, and the latter rotates by clockwise. It is not hard to see that two curves intersect points corresponding to the two indicators at local maximum, thus it expands the bandwidth. But between the two points of intersection, the output power will be reduced due to impedance mismatch. The above re-
Load and source optimization of impedance response curve can be realized by means of series and parallel resonant circuit or filter. According to the results of the load-pull in the Table I, using the SRFM algorithm, the optimization goal of TPG is set to 0.9 and frequency range is from 0.5 GHz to 4 GHz. Finally, using integrated third-order LC circuit prototype, the LC output matching circuit and simulation results of S-parameters are shown in Fig. 3 and Fig. 4. Fig. 3 is a lumped parameter third-order LC low-pass structure.

Frequency (GHz)	Zopt (load/Ω)	Frequency (GHz)	Zopt (source/Ω)
1	23.5+j*19.6	1	16+j*5.4
1.5	17.2+j*16.4	1.5	12.2+j*5.4
2	19.6+j*15.8	2	7.4+j*3.8
2.5	16.5+j*5.97	2.5	8.2+j0.14
3	13.8+j*7.6	3	8.8+j*7

In the design of wideband harmonic control amplifier, the result of source-pull should not be neglected in order to obtain high output power and drain efficiency.

![Fig. 5 Simulation of source-pull and matching analysis](image)

Similar to the output-matching network design, source-pull impedance data of each frequency point will be calculated using the simplified real frequency optimization program. The frequency covers from 0.5 GHz to 3.3 GHz. Finally, the lumped parameter of the input matching circuit and simulation results of S-parameter are demonstrated in Fig. 6 and Fig. 7.

![Fig. 6 Optimized input matching network](image)

3.2 Design of input-matching network

The design procedure of the input matching network is similar to that of the output matching network. The optimal source impedance distributed on Smith chart is shown in Fig. 5. As you can see from it, the optimal source impedance rotates by counterclockwise with the increase of frequency values. The optimal impedance move to the capacitance area from the inductance area. When it works at more than 1.4 GHz frequency, source impedance moves to the capacitance area, as conjugate transistor input impedance is inductive. Through the analysis shows that the actual impedance matching circuit is clockwise with the increase of frequency, it is conducive to the input matching circuit design of broadband.

![Fig. 7 Simulated small-signal frequency responses of input matching network](image)

The multi-section ladder resonant LC network is converted into the form of microstrip line by Richard transform and Kiruoda’s rule [27] and the amplifier is tested and simulated at radio frequency. Finally, the multi-octave output and input matching network are designed and optimized. After the simulation and optimization, the schematic of the multi-octave PA is illustrated in Fig. 8.
4. Implementation and measurement

According to the above method, the power amplifier circuit is designed using CGH40010F GaN HEMT based on Rogers 4350B (relative dielectric constant of 3.66, substrate thickness of 30mil). The gate voltage is set to 2.8 V, the drain bias voltage is set to 28 V, which makes the PA working at class-AB. And the final fabricated power amplifier is shown in Fig. 9.

![Photograph of the fabricated PA](image)

Fig. 9 Photograph of the fabricated PA

![Complete circuit schematic of the proposed PA](image)

Fig. 8 Complete circuit schematic of the proposed PA

The amplifier gain begins to decline at the output of 40 dBm and then decreases rapidly as the output power increases. The measurement results of efficiency, output power and gain are in good agreement with the simulation results.
Table II [28, 29, 30] lists the performance comparison of some related PAs. It can be seen from the Table II that the proposed PA has a larger bandwidth than that of other related PAs. It can be clearly observed that the proposed PA takes various aspects of the indicators into account such as bandwidth, power and efficiency so that better practical applications can be achieved.

5. Conclusion

This paper presents a multi-octave broadband continuous power amplifier based on the SRFM. By analyzing the frequency variation rule of the load-pull data at both ends of the transistor’s input and output, the input impedance values of the matching circuit are more coincident with the source-pull data in the wide band range. Meanwhile, combining with SRFM, it can greatly simplify the process of designing broadband matching network. The measured results show that the maximum output power up to 42.5 dBm and the drain efficiency is from 63% to 71% in the frequency range of 1-3.2 GHz. Compared to other related PAs, which shows that the proposed PA has good performance both efficiency and bandwidth. It is very suitable for practical application.

References

[1] M.G. Sadeque, et al.: “Design of a broadband continuous class-F RF power amplifier for 5G communication system,” IEEE Regional Symposium on Micro and Nanoelectronics (2019) 145 (DOI: 10.1109/869715.2019.8943508).
[2] G. Nikandish, et al.: “Breaking the bandwidth limit: a review of broadband Doherty power amplifier design for 5G,” IEEE Microw. Mag. 21 (2020) 57 (DOI: 10.1109/mmm.2019.2963607).
[3] T.-W. Li, et al.: “Millimeter-wave continuous-mode power amplifier for 5G MIMO applications,” IEEE Trans. Microw. Theory Techn. 67 (2019) 3088 (DOI: 10.1109/tmtt.2019.2906592).
[4] S.K. Dhar, et al.: “Input harmonic controlled broadband continuous class F power amplifiers for Sub 6 GHz 5G applications,” IEEE Trans. Microw. Theory Techn. 68 (2020) 3120 (DOI: 10.1109/tmtt.2020.2984603).
[5] K. Nakatani, et al.: “A Ka-band high efficiency Doherty power amplifier MMIC using GaN/HEMT for 5G application,” 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G) (2018) 1 (DOI: 10.1109/imwws-5g.2018.8484612).
[6] X. Li, et al.: “Class-X—harmonically tuned power amplifiers with maximally flat waveforms suitable for over one-octave bandwidth designs,” IEEE Trans. Microw. Theory Techn. 66 (2018) 1939 (DOI: 10.1109/tmtt.2018.2791971).
[7] S.C. Cripps, et al.: “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microw. Wireless Compon. Lett. 19 (2009) 665 (DOI: 10.1109/lmwc.2009.2029754).
[8] N. Tuffy, et al.: “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Trans. Microw. Theory Techn. 60 (2012) 1952 (DOI: 10.1109/tmtt.2012.2187534).
[9] V. Carrubba, et al.: “Exploring the design space for broadband pass using the novel “continuous inverse class-F mode,” European Microwave Conference (2011) 333.
[10] W. Shi, et al.: “A series of inverse continuous modes for designing broadband power amplifiers,” IEEE Microw. Wireless Compon. Lett. 26 (2016) 525 (DOI: 10.1109/lmwc.2016.2574820).
[11] K. Chen and D. Peroulis: “Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous class-F-1/f mode transferring,” IEEE Trans. Microw. Theory Techn. 60 (2012) 4107 (DOI: 10.1109/tmtt.2012.2221142).
[12] M. Hayati and F. Shama: “A harmonic-suppressed high-efficiency class-F power amplifier with Elliptic-function low-pass filter,” AEU-International Journal of Electronics and Communications, 70 (2016) 1417 (DOI: 10.1016/j.aeue.2016.08.004).
[13] X. Chen, et al.: “Design of broadband continuous class-F-1 power amplifier using filtering matching network,” 2018 International Conference on Microwave and Millimeter Wave Technology (ICMWM) (2018) 1 (DOI: 10.1109/icmmt.2018.8563527).
[14] J. Chen, et al.: “Design of broadband high-efficiency power amplifiers based on a series of continuous modes,” IEEE Microw. Wireless Compon. Lett. 24 (2014) 631 (DOI: 10.1109/lmwc.2014.2331457).
[15] D.Y. Wu, et al.: “Design of a broadband and highly efficient 45W GaN power amplifier via simplified real frequency technique,” International Microwave Symposium (2010) 1090 (DOI: 10.1109/mwsym.2010.5518045).
[16] Z. Dai, et al.: “A new distributed parameter broadband matching method for power amplifier via real frequency technique,” IEEE Trans. Microw. Theory Techn. 63 (2015) 449 (DOI: 10.1109/tmtt.2014.2385087).
[17] H. Xingwei, et al.: “Design of highly efficient broadband harmonic-optimised GaN power amplifier via modified simplified real frequency technique,” Electron. Lett. 53 (2017) 1414 (DOI: 10.1049/el.2017.2849).
[18] F. Meng, et al.: “A new approach to design a broadband Doherty power amplifier via dual-transformation real frequency technique,” IEEE Access (2018) 48588 (DOI: 10.1109/access.2018.2868238).
[19] S. Kilinc and B.S. Yarman: “Design of an ultra-wideband GaN power amplifier via real frequency technique,” Mediterranean Microwave Symposium (2018) 179 (DOI: 10.1109/mms.2018.8612071).
[20] C. Ni, et al.: “Design of broadband high-efficient PA based on hybrid continuous mode,” The Journal of Engineering 2017 (2017) 1 (DOI: 10.1049/joe.2016.0310).
[21] Z. Zhang and Z. Cheng: “A multi-octave power amplifier based on mixed continuous modes,” IEEE Access 7 (2019) 178201 (DOI: 10.1109/access.2019.2957926).
[22] F.Y. Li, et al.: “Design of a 1.4–3.6 GHz high-efficiency broadband power amplifiers with mixed operation modes,” Asia Pacific Microwave Conference (2018) 944 (DOI: 10.23919/apmc.2018.8617440).
[23] C. Huang, et al.: “Design of broadband high-efficiency power amplifiers based on the hybrid continuous modes with phase shift parameter,” IEEE Microw. Wireless Compon. Lett. 28 (2018) 159 (DOI: 10.1109/lmwc.2017.2787061).
[24] V. Carrubba, et al.: “The continuous inverse class-F mode with resistive second-harmonic impedance,” IEEE Trans. Microw. Theory Techn. 60 (2012) 1928 (DOI: 10.1109/tmtt.2012.2189226).
[25] B.S. Yarman: Design of Ultra Wideband Antenna Matching Networks: Via Simplified Real Frequency Technique (Springer Science & Business Media, Heidelberg, 2008).
[26] K. Chen and D. Peroulis: “Design of highly efficient broadband class-F power amplifier using synthesized low-pass matching networks,” IEEE Trans. Microw. Theory Techn. 59 (2011) 3162 (DOI: 10.1109/tmtt.2011.2169060).
[27] Z. Dai, et al.: “A new distributed parameter broadband matching method for power amplifier via real frequency technique,” IEEE

Table II: Comparison of recently published PAs

Refs	$f_{ ext{op}}$ (GHz)	DE (%)	$P_{ ext{out}}$ (dBm)	Gain (dB)	BW (%)
[28]	2.2-2.8	65.9-79.7	39.6-41.3	9-12.2	24
[29]	1.6-2.4	52-73	38.7-39.7	11.5-13	40
[30]	1.3-2.4	70-86	37-40	9.1-12	64
[11]	1.3-3.3	70-87	40-40.3	9.8-11.5	87
[23]	1.2-3.6	60-72	40-42.2	10.5-12	100
This work	1.3-2.2	63-71	38.8-41.7	9.4-11.6	104
[28] N. Poluri and M.M. De Souza: “High-efficiency modes contiguous with class B/J and continuous class F-1 amplifiers,” IEEE Microw. Wireless Compon. Lett. 29 (2019) 137 (DOI: 10.1109/lmwc.2018.2886655).

[29] X. Du, et al.: “Novel design space of load modulated continuous class-B/J power amplifier,” IEEE Microw. Wireless Compon. Lett. 28 (2018) 156.

[30] X. Li, et al.: “Class-X—harmonically tuned power amplifiers with maximally flat waveforms suitable for over one-octave bandwidth designs,” IEEE Trans. Microw. Theory Techn. 66 (2018) 1939 (DOI: 10.1109/tmtt.2018.2791971).