Software-based analysis of 1-hour Holter ECG to select for prolonged ECG monitoring after stroke

Sonja Gröschel, Björn Lange, Katrin Wasser, Marianne Hahn, Rolf Wachter, Klaus Gröschel, Timo Uphaus

1Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
2Department of Cardiology II, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
3Department of Neurology, University Medicine Göttingen, Göttingen, Germany
4Clinic and Polyclinic for Cardiology, University Hospital Leipzig, Leipzig, Germany
5Clinic for Cardiology and Pneumology, University Medicine Göttingen, Göttingen, Germany
6German Cardiovascular Research Center (DZHK), partner site Göttingen, Göttingen, Germany

Correspondence
Klaus Gröschel, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Germany. Tel: +496131173105; Fax: +49613117473105; E-mail: klaus.groeschel@unimedizin-mainz.de

Abstract
Objective: Identification of ischemic stroke patients at high risk for paroxysmal atrial fibrillation (pAF) during 72 hours Holter ECG might be useful to individualize the allocation of prolonged ECG monitoring times, currently not routinely applied in clinical practice. Methods: In a prospective multicenter study, the first analysable hour of raw ECG data from prolonged 72 hours Holter ECG monitoring in 1031 patients with acute ischemic stroke/TIA presenting in sinus rhythm was classified by an automated software (AA) into “no risk of AF” or “risk of AF” and compared to clinical variables to predict AF during 72 hours Holter-ECG. Results: pAF was diagnosed in 54 patients (5.2%; mean age: 78 years; female 56%) and was more frequently detected after 72 hours in patients classified by AA as “risk of AF” (n = 21, 17.8%) compared to “no risk of AF” (n = 33, 3.6%). AA-based risk stratification as “risk of AF” remained in the prediction model for pAF detection during 72 hours Holter ECG (OR3.814, 95% CI 2.024-7.816, P < 0.001), in addition to age (OR1.084, 95% CI 1.021-1.049, P = 0.007) and prior treatment with thrombolysis (OR2.639, 95% CI 1.313-7.816, P = 0.001), NIHSS (OR 1.087, 95% CI 1.023-1.154, P = 0.007) and prior treatment with thrombolysis (OR2.639, 95% CI 1.313-5.306, P = 0.006). Similarly, risk stratification by AA significantly increased the area under the receiver operating characteristic curve (AUC) for prediction of pAF detection compared to a purely clinical risk score (ASSF alone: AUC 0.751; 95% CI 0.724-0.778; AUC for the combination: 0.789, 95% CI 0.763-0.814; difference between the AUC P = 0.002). Interpretation: Automated software-based ECG risk stratification selects patients with high risk of AF during 72 hours Holter ECG and adds predictive value to common clinical risk factors for AF prediction.

Introduction
Atrial fibrillation (AF) as a common cause of ischemic stroke is associated with increased mortality and disability.1 The incidence of AF rises with increasing age; thus, the burden of both AF and the incidence of AF-related stroke is expected to steeply increase in the next decades due to the anticipated ageing of the population.2,3 Another factor contributing to the increased incidence of AF and AF-related stroke is the enhanced implementation of extended intervals of electrocardiogram (ECG) monitoring in clinical practice, as has been demonstrated by several studies.4 Nonetheless, the percentage of patients receiving prolonged ECG monitoring after ischemic stroke is still low5,6 and its application needs further implementation in routine clinical practice in order to take advantage of the highly effective secondary preventive effect of oral anticoagulative medication in case of paroxysmal AF (pAF) detection.7 However, efforts to increase the detection rates of pAF after ischemic stroke are equally increasing the workload for ECG analysis and interpretation.8 In order to overcome these obstacles, selection criteria for...
patients undergoing prolonged monitoring times are needed, especially in the case of limited resources, working towards a more personalized medicine. Therefore, we recently proposed a scoring system (the Age and Stroke NIHSS≥5 to Find AF (ASSF) score), based solely on clinical variables available at patients’ admission, calculating the risk for pAF detection during 72 hours of Holter ECG monitoring, which might contribute to motivate patients and physicians to tolerate and initiate prolonged Holter ECG monitoring.

Currently, atrial cardiopathy is discussed as a precursor condition of AF, which is characterized by endothelial dysfunction, fibrosis, impaired myocyte function and dilatation of the left atrium, and might also cause a thromboembolic state in the left atrium in the absence of AF. The morphological changes within the left atrium are accompanied by electrical changes, premature beats, supraventricular runs, the latter shown to be associated with increased risk of cerebral re-ischemia, supporting the clinical relevance of an intensified analysis of ECG data. In addition to clinical variables, automated software-based analysis might be capable of identifying the aforementioned ECG variations and could further individualize the allocation of prolonged ECG monitorings.

Within the current analysis, we hypothesized that patient stratification by an automated software method (AA) based on one hour of Holter ECG raw data increases the diagnostic yield of pAF during 72 hours of rhythm monitoring in stroke patients compared to assessment of clinical variables alone.

Methods

Study population

Data are available upon reasonable request from the corresponding author. The current analysis included individual patients from the prospective, multicenter observational IDEAS study, examining 72-hour Holter ECG monitoring in patients presenting with ischemic stroke or transient ischemic attack (TIA) with regard to detection of pAF. The detailed screening and exclusion numbers of patients are depicted in Figure 1 following the Standards for Reporting Diagnostic accuracy studies (STARD) guidelines. The following characteristics led to patient exclusion: age under 18 years, known AF or documented AF on admission ECG, life expectancy below one year or a pacemaker with an atrial lead. The full study protocol and the primary study results are accessible as original publication.

Here, we report the diagnostic accuracy of the risk stratification performed by an automated software algorithm for ECG analysis (SRA clinic®, Apoplex Medical Technologies, Pirmasens, Germany) with regard to detection of pAF during the subsequent 72 hours of Holter ECG and the ability to identify patients at high “risk for pAF”. The STARDS checklist was followed; for details see online only supplementary material Table S1.

Standard protocol approval, patient consent

The study protocol was approved by the Ethics Committee of the Arztekammer Westfalen-Lippe (AZ2009-363-5S) and by all local ethics boards. Either patients or their legal representatives gave written informed consent to the study. The study was conducted in accordance with the Declaration of Helsinki.

Data collection

Patient characteristics were obtained by a standardized questionnaire, including a detailed medical history and stroke severity as measured by the modified Rankin Scale (mRS) and the National Institute of Health Stroke Scale (NIHSS). All rating physicians underwent video training for assessment of clinical stroke scales (mRS, NIHSS).

ECG analysis

Automated analysis software (AA) used the first hour of Holter ECG monitoring for stratification into the groups “no risk of AF” and “risk of AF.” In short, the AA creates a report of whether pAF is detectable, mainly based on the regularity of preceding R-R intervals. Patients classified as “AF” within the first hour of ECG recording (n = 12) were excluded from further analysis. We evaluated patients classified as “no risk of AF” in comparison to patients with “risk of AF” with regard to detection of AF within the following 72-hour Holter ECG monitoring, which was started within 12 hours after hospital admission. For recording, a commercially available 3-lead Holter monitoring device (Lifecard CF, Spacelabs, Healthcare, Issaquah, WA) was applied.

The ECG analysis with regard to detection of AF in 72-hour Holter ECG was performed as recently described by our group.

Definition of atrial fibrillation

We followed the AF definition of current guidelines, that is, an absolute arrhythmia, without detectable p-waves, lasting at least 30 seconds, absolute irregular R-R intervals and no repetitive ECG pattern.

Statistical analysis

Data are presented as median (± interquartile range (IQR)) or numbers with percentages, if not indicated
otherwise. For univariate analysis Student’s t test, Mann-Whitney U test, Chi-square test, or Fisher’s exact test were used where appropriate. Multiple binominal regression analyses were conducted including variables with $P < 0.05$. Receiver operating characteristic (ROC) curves were drawn and calculated for estimation of prognostic information on detection of pAF in 72-hour Holter ECG. Area under the ROC curve (AUC) analyses were compared using the MedCalc for Windows software (version 18.11.3, MedCalc software, Mariakerke, Belgium). A significant difference was considered for $P < 0.05$. Patients with missing ECG raw data were excluded from the current analysis, for details see Figure 1. Statistical analysis was performed using SPSS (version 23, IBM, Armonk, NY, USA).

Results

Between May 2010 and January 2011, 7174 patients were evaluated for eligibility. The diagnostic accuracy of risk stratification by AA, based on the first hour of Holter ECG recording, regarding detection of pAF in the following 72-hour Holter ECG monitoring, was assessed in 1043 patients. AA classified 12 patients as experiencing AF within the first analysable hour of ECG recording; after their exclusion 1031 patients remained for the final analysis. Figure 1 depicts the flow of patients through the study. The mean age of participants was 66.9 years (standard deviation ± 13.1), stroke severity according to NIHSS at hospital admission was 2 (IQR 0-4), and pAF was detected in 54 of 1031 (5.2%) patients.

Patients with a final diagnosis of pAF during 72 hours of Holter ECG monitoring were more frequently classified by AA analysis (performed within the first analysable hour of ECG recording) as “risk of AF” compared to patients without final diagnosis of pAF (pAF 21 (38.9%) vs. no AF 97 (9.9%); $P < 0.001$). Moreover patients with diagnosis of pAF were significantly older (pAF 78.0 years, IQR 72-81 vs. no AF 69 years, IQR 58-75, $P < 0.001$) and presented with more severe stroke symptoms at admission compared to patients without AF detection (NIHSS: pAF 4, IQR 1-9 vs. no AF 2 IQR 0-4, $P = 0.002$; mRS: pAF 2, IQR 1-4 vs. no AF 2, IQR 1-3, $P = 0.045$). Concomitant...
disease such as arterial hypertension, diabetes mellitus, coronary artery disease, congestive heart failure and dyslipidaemia were evenly distributed between the patients with and without detection of pAF. Nonetheless, patients with pAF detection more frequently received treatment with intravenous thrombolysis (pAF 17 (31.5%) vs. no AF 95 (9.9%), \(P < 0.001\)) and less frequently presented with transient symptoms (pAF 7 (13.0%) vs. no AF 243 (24.9%), \(P = 0.047\)). Transesophageal echocardiography was available in a subset of patients (\(n = 190\)); patients with pAF-detection showed increased left atrial diameter (LAD) compared to patients without pAF-detection (pAF 45.5 mm, IQR 42.8-47 vs. no AF 43 mm, IQR 41-45, \(P = 0.006\)). The AS5F score, which incorporates classical risk factors for AF diagnosis such as stroke severity and age, was higher in patients with AF diagnosis compared to patients without (pAF 69, IQR 62.8-78.8 vs. no AF 59.9, IQR 50.9-66.8, \(P < 0.001\)). For details, see Table 1.

Multivariable regression analysis including variables which were imbalanced on the univariate level (\(P < 0.05\)) revealed the following independent risk factors for pAF detection during 72 hours of Holter ECG monitoring: “risk of AF” by AA (odds ratio (OR) 3.814, 95% confidence interval (CI) 2.024-7.186, \(P < 0.001\)), age (OR 1.052, 95% CI 1.021-1.084, \(P = 0.001\)), NIHSS (OR 1.087, 95% CI 1.023-1.154, \(P = 0.007\)), and treatment with

Table 1. Baseline characteristics of the study population.

Variable	pAF	noAF	\(P\) value
N	54	977	
“risk of AF” 1h Holter ECG	21(38.9%)	97(9.9%)	<0.001
Female	30 (55.6%)	431 (44.1%)	0.100
Age	78 (72-81)	69 (58-75)	<0.001
BMI	27.9 (24.5-31.6)	26.5 (24.5-29.4)	0.315
History of stroke	11 (20.4%)	167 (17.1%)	0.535
History of TIA	5 (9.3%)	81(8.3%)	0.802
Arterial hypertension	40 (74.1)	596 (61.3)	0.059
Diabetes mellitus	15 (28.8)	187 (19.7)	0.108
Coronary artery disease	10 (18.5)	163 (16.7)	0.725
Congestive heart failure	5 (9.3)	56 (5.7)	0.285
Hyperlipidaemia	21 (38.9)	345(35.8)	0.648
Current/former tobacco use	21 (38.9)	491(51.0)	0.082
Stenosis of the internal carotid artery	817/945 (86.5)	46/53 (86.8)	0.424
None	86/945 (9.1)	3/53 (5.7)	
Symptomatic	42/945 (4.4)	4/53 (7.5)	
ASPECT grouped (n = 1023)	0.248		
\(\leq 8\)	131/969 (13.5)	11/54 (20.4)	
9	238/969 (24.6)	15/54 (27.8)	
10	600/969 (61.9)	28/54 (51.9)	
ASPECT total (n = 1023)	9.30 ± 1.33	9.22 ± 0.98	0.655
AS5F Score	69.0 (62.8-78.8)	59.9 (50.9-66.8)	<0.001
NIHSS at admission	4 (1-9)	2 (0-4)	0.002
mRS at admission	2 (1-4)	2 (1-3)	0.045
LAD [mm]	45.5 (42.8-47)	43 (41-45)	0.006
i.v. thrombolysis	17 (31.5)	95 (9.9)	<0.001
Qualifying event	47 (87.0)	734 (75.1)	0.047

Data are presented as number (%) except for age, NIHSS, mRS, and LAD, which are presented as median (range). pAF, paroxysmal atrial fibrillation; TIA, transient ischemic attack; AS5F, Age and Stroke NIHSS > 5 to Find AF; NIHSS, National Institute of Health Stroke Scale; mRS, modified Rankin Scale; LAD, Left atrial diameter.

Table 2. Multiple logistic regression analysis results for detection of paroxysmal atrial fibrillation.

Variable	OR	95% CI	\(P\) value
“risk of AF”	3.814	2.024-7.186	<0.001
Age	1.052	1.021-1.084	0.001
NIHSS	1.087	1.023-1.154	0.007
i.v. thrombolysis	2.639	1.313-5.306	0.006

Corrected for “risk of AF”, Age, NIHSS, Stroke compared to TIA, i.v. thrombolysis.

Abbreviations: OD, odds ratio; CI, confidence interval; AF, atrial fibrillation; NIHSS, National Institute of Health Stroke Scale; i.v. thrombolysis, intravenous thrombolysis; TIA, transient ischemic attack.
Table 3. Characteristics of patients with “risk of AF” compared to “no risk of AF” as classified by AA (in first analysable hour ECG).

Variable	‘risk of AF’	‘no risk of AF’	P value
N	118	913	<0.001
pAF	21 (17.8)	33 (3.6)	<0.001
female	50 (42.4)	411 (45.0)	0.587
Age	76 (71-82)	68 (58-75)	<0.001
BMI	26.4 (24.3-28.5)	26.6 (24.5-29.7)	0.237
History of stroke	28 (23.7)	150 (16.4)	0.048
History of TIA	12 (10.2)	74 (8.1)	0.445
Arterial hypertension	78 (66.1)	560 (61.4)	0.323
Diabetes mellitus	27 (23.1)	181 (19.9)	0.416
Coronary artery disease	32 (27.1)	141 (15.4)	0.001
Congestive heart failure	15 (12.7)	46 (5.0)	0.001
Hyperlipidaemia	45 (38.8)	321 (35.6)	0.504
Current/former tobacco use	44 (37.9)	468 (52.0)	0.004
Stenosis of the internal carotid artery	762/905 (86.4)	101/118 (87.1)	0.553
Symptomatic	81/905 (9.2)	8/53 (6.9)	
Asymptomatic	39/905 (4.4)	7/53 (6.0)	
ASPECT grouped (n = 1023)	129/905 (14.3)	13/118 (11.0)	0.655
s8	227/905 (25.1)	26/118 (22.0)	
9	549/905 (60.7)	79/118 (66.9)	
ASPECT total (n = 1023)	9.29 ± 1.31	9.36 ± 1.34	0.573
AS5F- Score	66.8 (61.6-72.3)	59.2 (50.8-66)	<0.001
NIH-SS at admission	3 (1-5)	2 (0-4)	0.021
mRS at admission	2 (1-3)	2 (1-3)	0.026
LAD [mm]	44 (43-46)	43 (41-45)	0.052
i.v. thrombolysis	17 (14.4)	95 (10.6)	0.210
Qualifying event	92 (78.0)	689 (75.5)	0.551

Data are presented as number (%) except for age: median (range), NIH-SS: median (range), mRS: median (range), LAD: median (range), pAF, paradoxical atrial fibrillation; TIA, transient ischemic attack; AS5F, Age and Stroke NIHSS≥5 to Find AF; NIH-SS, National Institute of Health Stroke Scale; mRS, modified Rankin Scale; LAD, Left atrial diameter.

Intravenous thrombolysis (OR 2.639, 95% CI 1.313-5.306, P = 0.006). LAD was not considered for multivariable analysis, due to limited availability (n = 190 patients). Moreover we did not consider mRS for multivariable analysis, as NIHSS was already included as a variable rating clinical stroke severity, or the AS5F score, due to the overlap with age, stroke severity, and stroke classification into persisting compared to transient symptoms. For details, see Table 2.

In comparison to the AS5F score as an established clinical composite risk score for pAF detection during 72 hours of Holter ECG monitoring, AA exhibited additional predictive value: the AUC was 0.751 (95% CI 0.724-0.778, P < 0.001) for AS5F and 0.645 (95% CI 0.615-0.674, P < 0.001) for AA risk stratification (Figure 2). A combination of AS5F and AA significantly improved the AUC to 0.789 (95% CI 0.763-0.814, P < 0.001, p for difference between the AUC 0.022). Moreover risk stratification by AA reduced the number needed to screen (NNS), that is, the number of patients receiving 72-hour Holter ECG monitoring necessary to detect one patient with pAF, from 9 (high-risk group classified by AS5F score) to 7; the NNS can be further reduced to 5 by combining the clinical score and AA-based risk stratification.

Detailed patient characteristics stratified by “risk/no risk of AF” are presented in Table 3. Patients classified as “risk of AF” were more frequently diagnosed with pAF compared to patients classified as “no risk of AF” (21 (17.8%) vs. 33 (3.6%), P < 0.001). Moreover, patients classified as “risk of AF” were older (76 years (71-82) vs. 68 years (58-78), P < 0.001) and had a higher probability of previous history of stroke (28 (23.7%) vs. 150 (16.4%), P = 0.048). Concerning concomitant diseases, patients classified as “risk of AF” by AA more frequently suffered from coronary artery diseases (32 (27.1%) vs. 141 (15.4%), P = 0.001) and congestive heart failure (15 (12.7%) vs 56 (5.0%), P = 0.001) compared to patients classified as “no risk of AF”. On the contrary, patients with “risk of AF” as opposed to “no risk of AF” as classified by AA were less frequently current or former tobacco users (44 (37.9%) vs. 468 (52%), P = 0.004). The AS5F score as a composite risk score for pAF detection during 72 hours of Holter ECG was higher in patients classified as “risk of AF” compared to patients classified as “no risk of AF” (66.8 IQR 61.6-72.3 vs. 59.2 IQR 50.8-66.0, P < 0.001). In addition, patients with “risk of AF” presented with more severe and disabling stroke symptoms compared to patients classified as “no risk of AF” by AA (NIHSS: 3, IQR 1-5 vs. 2, IQR 1-3, P = 0.021; mRS: 2, IQR 1-3 vs. 2, IQR 1-3, P = 0.026). For details, see Table 3. Multiple logistic regression analysis with variables which were unbalanced (P < 0.05) on the univariate level revealed the following patient characteristics to be associated with the patient group “risk of AF” as classified by AA within the first analysable hour of ECG recording age (OR 1.073, 95% CI 1.048-1.097, P < 0.001) and pAF detection during 72-hour Holter ECG (OR 3.739, 95% CI 1.989-7.026, P < 0.001).
1.989-7.026, P < 0.001). Again, due to an overlap with previously included variables, the ASSF score and mRS were not considered for additional multivariable analysis. For details see Table 4.

The test characteristics of the AA-based risk stratification into “risk of AF” and a combination of a clinical score (ASSF) with the AA-based risk stratification are demonstrated in Table 5. The AA-based risk stratification into “risk of AF” exhibits a higher specificity (90.1%, 95% CI 25.9-53.1%) than sensitivity (38.9%, 95% CI 25.9-53.1%). This is in line with a higher negative predictive value (NPV 96.4%, 95% CI 95.6-97.1%) than positive predictive value (PPV 17.8%, 95% CI 12.9-24.1%) of the AA-based classification into “risk of AF” with regard to pAF detection. The negative predictive value and the sensitivity for pAF detection during 72-hour Holter ECG could be further increased by using a combination of the AA-based classification into “risk of AF” and the ASSF score (sensitivity 63.0%, 95% CI 48.7-75.7%; NPV 97.8%, 95% CI 96.9-98.4%), whereas the specificity remained almost unchanged for the combination (89.1%, 95% CI 86.9-90.9%).

Table 5. Test effectiveness of AA-based risk stratification into “risk of AF” and a combination of a clinical risk score (ASSF) and “Risk of AF”.

Risk of AF	95% CI	Risk of AF + ASSF	95% CI	
Sensitivity	38.9%	25.9-53.1%	63.0%	48.7-75.7%
Specificity	90.1%	88.0-91.9%	89.1%	86.9-90.9%
PPV	17.8%	12.9-24.1%	24.1%	19.5-29.4%
NPV	96.4%	95.6-97.1%	97.8%	96.9-98.4%
AUC	0.645	0.615-0.674	0.789	0.763-0.814
Accuracy	87.4%	85.2-89.4%	87.7%	85.5-89.6%

Abbreviations: AA, automated analysis; 95% CI, 95% confidence interval; AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value.

Moreover the high NPV for pAF detection (96.4%) of AA-based classification into “risk of AF” suggests that this approach excludes patients with a low probability of pAF-diagnosis within the next 71 hours of Holter ECG monitoring. Nonetheless, the AA-based classification is not without restrictions and randomized trials showed an increase in pAF detection rates with prolonged monitoring times; thus, the ultimate goal should be the application of guideline-recommended ECG monitoring for at least 72 hours as part of the stroke-unit work-up in all patients after ischemic stroke.

Due to the high secondary preventive effect of cerebral re-ischemia by means of oral anticoagulation in patients with pAF, recent studies aimed to increase the diagnostic yield of AF after ischemic stroke. Higher detection rates of pAF were achieved in observational studies16,21-23 and randomized trials3,24 by merely prolonging monitoring times. However, only a minority of patients are actually receiving prolonged ECG monitoring in clinical practice.3,6,25 The reasons for underutilization of prolonged ECG monitoring are manifold. The cohesive time- and resource-consuming analysis of increasing ECG data might detract from implementation of prolonged ECG monitoring into clinical practice. With this in mind, the ECG-based automated risk stratification offers a more resource-effective approach to patient selection and thereby potentially overcomes the staff- or cost-barrier to implement prolonged monitoring times into clinical practice. Moreover, it is currently under debate whether stroke patients should undergo prolonged monitoring irrespective of the assumed stroke aetiology or only in case of certain strokes, especially those considered crypto-genic/ESUS (embolic stroke of unknown source). Therefore, risk stratification systems including clinical features,9 biomarkers26 and ECG parameters14 are needed to identify patients with a high probability of AF detection within prolonged monitoring periods. In this regard, the concept of atrial cardiopathy,27 as a precursor of pAF, might be able to select patients at high risk of developing AF. Biomarkers of atrial stretch,26 atrial enlargement28 and electrical changes within cardiomyocytes, detectable on surface,29 and Holter ECG recordings,14 are associated with atrial myopathy. Indeed, risk stratification as “risk of AF” by the AA was associated with coronary artery disease and congestive heart failure, both common clinical risk factors of atrial cardiopathy.27,28 This suggests that the AA-based risk stratification used here could potentially aid in detecting electrical changes within the left atrium associated with atrial cardiopathy.

The question remains whether pAF detected during prolonged ECG monitoring is clinically relevant. Does it simply increase the proportion of patients diagnosed with pAF? Or does the resulting oral anticoagulation in these...
patients reduce recurrent stroke? A recent meta-analysis demonstrated a reduction of recurrent cerebral ischemic events by ECG monitoring after stroke, arguing to anticoagulate stroke patients with pAF detected by prolonged monitoring. Nonetheless, a randomized trial demonstrating a reduction in ischemic stroke rates by means of prolonged ECG monitoring as primary outcome is needed to establish the necessity of prolonged monitoring as effective stroke prevention in clinical practice. The AA utilized in our study could be used for both evaluation of ECG telemetry recorded during Stroke Unit monitoring and Holter ECG data. Recently, the same AA was also used in patients with cryptogenic stroke to select those who may benefit from prolonged cardiac monitoring afforded by an implantable device. In a comparable approach, a recent study demonstrated that application of an artificial intelligence algorithm on 12-lead ECG in sinus rhythm was able to select patients at high risk for developing AF and might thereby not only decrease the diagnostic workload of ECG analysis but also increase the diagnostic yield of AF.

Moreover our data support a more intensified screening for pAF in patients with increased age, previous administration of intravenous thrombolysis or more severe stroke symptoms at admission, as measured by the NIHSS. These observations are in line with the literature and are underlined by the ASSF score, which calculates the risk of pAF detection during 72 hours of Holter ECG monitoring based solely on clinical parameters readily available at the patient’s admission such as age, transient in contrast to persisting symptoms and clinical deficits. Our study suggests that the integration of clinical risk factors into ECG-based risk stratification could further increase its diagnostic accuracy. Nonetheless, further studies are needed to confirm our observation. Moreover all ECG recordings underwent core-laboratory analysis; however, there is the possibility that AF might have been overlooked, which represents a potential bias in our results.

Although this study benefits from the large sample size and data collection within a prospective multicenter study, it should be noted that the software analysis in our study was performed on Holter ECG data; the value of this type of automated analysis within telemetry data may lead to different results due to reduced ECG quality. Prior to broad applicability of the algorithm in clinical practice, further studies need to address its utility in analysing Stroke Unit telemetry ECG recordings.

Conclusions

Our study suggests that ECG-based risk stratification by AA might be a tool - in addition to established clinical scores (e.g., ASSF) – to identify patients at high risk for pAF and thereby contribute to a more personalized approach to medicine aiming for prolonged monitoring times preferably within patients at higher risk in order to overcome obstacles of limited resources.

Acknowledgments

This work was supported by the Else Kröner-Fresenius Stiftung (2018_EKMS.21) to T.U. The automated analysis software (SRAclinic) was kindly provided by Apoplex Medical Technologies GmbH (Pirmasens, Germany). The authors thank Dr. L. Rosin for his efforts within the IDEAS trial. The authors also thank Dr. Cheryl Ernest for proofreading and editing the manuscript.

Conflict of Interest

TU reports personal fees from Merck Serono and Pfizer, grants from Else Kröner-Fresenius Stiftung. RW reports having been an investigator or consultant for, or received fees from Bayer, Berlin Chemie, Bristol-Myers-Squibb, Boehringer Ingelheim, CVRx, Daiichi Sankyo, Gilead, Johnson & Johnson, Medtronic, Novartis, Pfizer, Sanofi, Servier since 2003. He received research grants from Boehringer Ingelheim, European Union and Bundesministerium für Bildung und Forschung (BMBF). KG reports personal fees and/or non-financial support from Bayer, Boehringer Ingelheim, Bristol-Meyers Squibb, Daiichi Sankyo and Pfizer. SG, BL, KW and MH report no disclosures.

References

1. McGrath ER, Kapral MK, Fang J, et al. Association of atrial fibrillation with mortality and disability after ischemic stroke. Neurology 2013;81(9):825–832.
2. Otite FO, Khandelwal P, Chaturvedi S, et al. Increasing atrial fibrillation prevalence in acute ischemic stroke and TIA. Neurology 2016;87(19):2034–2042.
3. Yin GS, Howard DP, Paul NL, et al. Age-specific incidence, outcome, cost, and projected future burden of atrial fibrillation-related embolic vascular events: a population-based study. Circulation 2014;130(15):1236–1244.
4. Wachter R, Gröschel K, Gelbrich G, et al. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AFRANDOMISED): an open-label randomised controlled trial. Lancet Neurol 2017;16 (4):282–290.
5. Edwards JD, Kapral MK, Fang J, et al; Investigators of the Registry of the Canadian Stroke N. Underutilization of ambulatory ECG monitoring after stroke and transient ischemic attack: missed opportunities for atrial fibrillation detection. Stroke 2016;47(8):1982–1989.
6. Lip GY, Hunter TD, Quiroz ME, et al. Atrial fibrillation diagnosis timing, ambulatory ECG monitoring utilization, and risk of recurrent stroke. Circ Cardiovasc Qual Outcomes 2017;10(1).

7. Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med 2007;146(12):857–867.

8. Uphaus T, Grings A, Gröschel S, et al. Automatic detection of paroxysmal atrial fibrillation in patients with ischaemic stroke: better than routine diagnostic workup? Eur J Neurol 2017;24(7):990–994.

9. Uphaus T, Weber-Kruger M, Grond M, et al. Development and validation of a score to detect paroxysmal atrial fibrillation after stroke. Neurology 2019;92(2):e115–e124.

10. Leifer D, Rundeck T. Atrial cardiopathy: a new cause for stroke? Neurology 2019;92(4):155–156.

11. Fan K, Lee KL, Chow WH, et al. Internal cardioversion of chronic atrial fibrillation during percutaneous mitral commissurotomy: insight into reversal of chronic stretch-induced atrial remodeling. Circulation 2002;105(23):2746–2752.

12. Manninger M, Zweiker D, van Hunnik A, et al. Arterial hypertension drives arrhythmia progression via specific structural remodeling in a porcine model of atrial fibrillation. Heart Rhythm 2018;15(9):1328–1336.

13. Gladstone DJ, Dorian P, Spring M, et al. Atrial premature beats predict atrial fibrillation in cryptographic stroke: results from the EMBRACE trial. Stroke 2015;46(4):936–941.

14. Weber-Kruger M, Lutz C, Zapf A, et al. Relevance of supraventricular runs detected after cerebral ischemia. Neurology 2017;89(15):1545–1552.

15. Larsen BS, Kumarathurai P, Falkenberg J, et al. Excessive atrial ectopy and short atrial runs increase the risk of stroke beyond incident atrial fibrillation. J Am Coll Cardiol 2015;66(3):232–241.

16. Grond M, Jauss M, Hamann G, et al. Improved detection of silent atrial fibrillation using 72-hour Holter ECG in patients with ischemic stroke: a prospective multicenter cohort study. Stroke 2013;44(12):3357–3364.

17. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 2016;6(11):e012799.

18. Schaefer JR, Leussler D, Rosin L, et al. Improved detection of paroxysmal atrial fibrillation utilizing a software-assisted electrocardiogram approach. PLoS One 2014;9(2):e89328.

19. Gröschel S, Lange B, Grond M, et al. Automatic Holter-ECG analysis in ischemic stroke patients to detect paroxysmal atrial fibrillation: ready to replace physicians? Eur J Neurol 2020;27(7):1272–1278.

20. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016;37(38):2893–2962.

21. Sporsato LA, Cipriano LE, Saposnik G, et al. Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. Lancet Neurol 2015;14(4):377–387.

22. Stahenberg R, Weber-Kruger M, Seegers J, et al. Enhanced detection of paroxysmal atrial fibrillation by early and prolonged continuous holter monitoring in patients with cerebral ischemia presenting in sinus rhythm. Stroke 2010;41(12):2884–2888.

23. Rizos T, Gunther J, Jenetzký E, et al. Continuous stroke unit electrocardiographic monitoring versus 24-hour Holter electrocardiography for detection of paroxysmal atrial fibrillation after stroke. Stroke 2012;43(10):2689–2694.

24. Higgins P, MacFarlane PW, Dawson J, et al. Noninvasive cardiac event monitoring to detect atrial fibrillation after ischemic stroke: a randomized, controlled trial. Stroke 2013;44(9):2525–2531.

25. Geraghty O, Korompoki E, Filippidis FT, et al. Cardiac diagnostic work-up for atrial fibrillation after transient ischaemic attacks in England and Wales: results from a cross-sectional survey. BMJ Open 2016;6(11):e012714.

26. Wasser KG, Uphaus T, Liman J, et al. Brain natriuretic peptide and discovery of atrial fibrillation after stroke—a subanalysis of the Find-AF RANDOMISED trial. Stroke. 2019.

27. Shen MJ, Arora R, Jalife J. Atrial myopathy. JACC Basic Transl Sci 2019;4(5):640–654.

28. Calenda BW, Fuster V, Halperin JL, Granger CB. Stroke risk assessment in atrial fibrillation: risk factors and markers of atrial myopathy. Nat Rev Cardiol. 2016;13(9):549–559.

29. Goda T, Sugiyama Y, Ohara N, et al. P-wave terminal force in lead V1 predicts paroxysmal atrial fibrillation in acute ischemic stroke. J Stroke Cerebrovasc Dis 2017;26(9):1912–1915.

30. Tsivgoulis G, Katsanos AH, Kohrmann M, et al. Duration of implantable cardiac monitoring and detection of atrial fibrillation in ischemic stroke patients: a systematic review and meta-analysis. J Stroke 2019;21(3):302–311.

31. Adami A, Gentile C, Hepp T, et al. Electrocardiographic RR interval dynamic analysis to identify acute stroke patients at high risk for atrial fibrillation episodes during stroke unit admission. Transl Stroke Res 2019;10(3):273–278.

32. Reinke F, Bettin M, Ross LS, et al. Refinement of detecting atrial fibrillation in stroke patients: results from the TRACK-AF Study. Eur J Neurol 2018;25(4):631–636.

33. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet 2019;394(10201):861–867.
34. Haeusler KG, Gröschel K, Kohrmann M, et al. Expert opinion paper on atrial fibrillation detection after ischemic stroke. Clin Res Cardiol 2018;107 (10):871–880.
35. Wachter R, Weber-Kruger M, Seegers J, et al. Age-dependent yield of screening for undetected atrial fibrillation in stroke patients: the Find-AF study. J Neurol 2013;260(8):2042–2045.

Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Standards for Reporting of Diagnostic Accuracy Studies (STARD) Checklist.