2D MXenes as Co-catalysts in Photocatalysis:
Synthetic Methods

Yuliang Sun1,2, Xing Meng1,2,3*, Yohan Dall’Agnese4, Chunxiang Dall’Agnese1, Shengnan Duan1,2, Yu Gao1,2, Gang Chen1,2, Xiao-Feng Wang1,2*

* Xing Meng, mengxing@jlu.edu.cn; Xiao-Feng Wang, xf_wang@jlu.edu.cn

1 Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People’s Republic of China
2 Jilin Key Engineering Laboratory of New Energy Materials and Technologies, Jilin University, Changchun 130012, People’s Republic of China
3 A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
4 Institute for Materials Discovery, Faculty of Maths and Physical Sciences, University College London, London WC1E 7JE, UK

HIGHLIGHTS

- Two-dimensional transition metal carbides/nitrides (MXenes) as co-catalysts were summarized and classified according to the different synthesis methods used: mechanical mixing, self-assembly, in situ decoration, and oxidation.
- The working mechanism for MXenes application in photocatalysis was discussed. The improved photocatalytic performance was attributed to enhancement of charge separation and suppression of charge recombination.

ABSTRACT Since their seminal discovery in 2011, two-dimensional (2D) transition metal carbides/nitrides known as MXenes, that constitute a large family of 2D materials, have been targeted toward various applications due to their outstanding electronic properties. MXenes functioning as co-catalyst in combination with certain photocatalysts have been applied in photocatalytic systems to enhance photogenerated charge separation, suppress rapid charge recombination, and convert solar energy into chemical energy or use it in the degradation of organic compounds. The photocatalytic performance greatly depends on the composition and morphology of the photocatalyst, which, in turn, are determined by the method of preparation used. Here, we review the four different synthesis methods (mechanical mixing, self-assembly, in situ decoration, and oxidation) reported for MXenes in view of their application as co-catalyst in photocatalysis. In addition, the working mechanism for MXenes application in photocatalysis is discussed and an outlook for future research is also provided.

KEYWORDS MXenes; Photocatalysis; Co-catalyst; Synthetic methods
1 Introduction

Energy shortage and environmental pollution have become the two major issues faced by humanity due to limited fossil fuel resources and increasing consumption. Developing sustainable and clean energy is the key to addressing these two problems [1–15]. In being clean and inexhaustible, solar energy shows great potential to be one of the most promising future energy sources. Solar energy can be exploited in photovoltaic technologies [16], CO₂ photoreduction [17, 18], N₂ photo-fixation [19], degradation of organic compounds [20–26], and photocatalytic water splitting [27]. In renewable hydrogen fuel-based photocatalytic water-splitting systems [28–30], photocatalysts play a critical role [31, 32]. Photo-catalyzed solar energy conversion can be divided into three steps: (1) light absorption, (2) charge separation and transfer, and (3) surface reaction. Any improvement on each of these steps will contribute to enhancing the total conversion efficiency. Conventional photocatalysts such as TiO₂, g-C3N4, and CdS demonstrate low photocatalytic efficiency due to rapid charge recombination in these materials. Using noble metals such as Pt, Ru, and Pd as co-catalysts will increase cost, although such materials can enhance charge separation ability and suppress recombination of charges. A co-catalyst that is both efficient and cheap is thus urgently needed to promote the development of photocatalysis.

MXenes, comprising transition metal carbides, nitrides, and carbonitrides, are a new family of two-dimensional (2D) materials that have attracted much attention in recent years [2]. The general formula of MXene is M_{n+1}Xₙ (n = 1, 2, 3), where M represents a transition metal, such as Sc, Ti, Zr, Hf, V, Nb, Ta, and Mo, while X represents C and/or N. Owing to their unique structure and superior photoelectronic properties, layered structure MXenes show various potential applications in different areas, such as energy storage [3, 33–38], electromagnetic interference shielding [39, 40], gas sensors [41], wireless communication [42], water treatment [43, 44], solar cells [45–47], and catalysis [41, 48–51]. 2D MXenes are being increasingly studied in the past few years, as evidenced by the rapidly increasing number of scientific articles published per year (Fig. 1a). MXenes are usually synthesized by selectively etching the A layer from MAX phases, which constitute a family of tertiary ductile ceramics, where the A layer is made of an element such as Al, Ga [52], or Si [53]. After selective etching of the A layer, 2D MX layers with surface functional groups (–O, –OH, –F, or a mixture of several groups denoted as Tₓ) are left. The most widely used methods for selective etching are wet chemical HF etching and in situ HF etching (using a mixture of acids and fluoride salts), although other routes using tetramethylammonium hydroxide (TMAOH) [54, 55], electrochemical [56, 57], or etching with NaOH [58], and ZnCl₂ [49] have also been explored. Generally, multilayered MXenes are produced by HF etching, whereas single or few-layered MXene flakes are obtained by in situ HF etching or through delamination of a multilayered MXene by intercalation of large organic molecules (Fig. 1b). The etching methods of Ti₃C₂Tₓ MXene, which is the first discovered and the most studied MXene, have been reviewed elsewhere [59, 60].

In view of the rapid development in the application of 2D MXenes, several reviews on their synthesis [59–61], and application in energy storage [33, 48, 62] and catalysis

![Fig. 1](a) The rapid expansion of 2D MXenes materials and (b) the most widely used methods to synthesize MXenes
have been reported. MXenes are promising for application in photocatalysis because of their large surface area, good conductivity, presence of a sufficient number of active sites, and containing suitable elements for effective photocatalysis, but they cannot be directly used as photocatalysts since MXenes are generally not semiconductors. Although there are some MXene semiconductors that have been predicted theoretically, these have not yet been experimentally synthesized. In this review, we give a detailed discussion on MXene as a co-catalyst in photocatalysis and describe the different methods used for the synthesis of MXene-derived photocatalysts, along with problems encountered in this system and a prospective outlook on future research in this field.

2 Synthetic Methods for MXenes as Co-catalysts in Photocatalysis

In view of their good conductivity and large surface area, MXenes have been applied in photocatalysis both to replace noble metal co-catalysts and to enhance the charge separation ability of the photocatalyst. The most common methods used for the preparation of photocatalyst composites include mechanical mixing, self-assembly, in situ decoration and oxidation, or a combination of the three methods.

2.1 Mechanical Mixing and Self-assembly

Mechanical mixing is the easiest method to form photocatalyst composites. Stirring the two components in the liquid phase or grinding of powders can be used for sample preparation. Interestingly, due to electrostatic attraction, photocatalysts with positive charge are easily combined with MXenes whose surfaces are enriched with negative charges, leading to self-assembled photocatalyst composites. In addition, the self-assembling property could be further improved by using other induced techniques simultaneously, where the photocatalysts and co-catalysts are prepared in advance.

An et al. demonstrated that synergetic effects of Ti$_3$C$_2$ MXene and Pt when used as dual co-catalysts enhanced the photoactivity of g-C$_3$N$_4$ for hydrogen evolution, where HF-etched exfoliated Ti$_3$C$_2$ and g-C$_3$N$_4$ were mixed in liquid by stirring followed by photodeposition of Pt on the composites. The photoactivity of the dual...

![Fig. 2 Schematic showing charge separation between MXene co-catalyst and a photocatalyst taken from Ye et al. Reprinted with permission from Ref. [69]. Copyright 2018 John Wiley & Sons. Ran et al. Reprinted with permission from Ref. [70]. Copyright 2017 Nature Publishing Group. Peng et al. Reprinted with permission from Ref. [71]. Copyright 2016 American Chemical Society](image-url)
co-catalysts-modified photocatalysts (g-C_3N_4/Ti_3C_2/Pt) was much better than that of Pt- or Ti_3C_2-only systems, reaching 5.1 mmol h^{-1} g^{-1} in hydrogen production (Fig. 4a). This enhanced performance was due to the presence of Ti_3C_2 MXene that facilitated interfacial charge separation and carrier transport from the conduction band (CB) of g-C_3N_4 to Pt. Our group prepared g-C_3N_4/Ti_3C_2Tx composites by grinding g-C_3N_4 and Ti_3C_2Tx powders together followed by annealing in different gas atmospheres, to tune the surface termination groups (Fig. 4b) [74]. X-ray photoelectron spectroscopy data showed an increase in –O termination groups accompanied by a decrease in –F termination groups on the surface of Ti_3C_2. Ti_3C_2 with –O termination groups had better photoactivity, revealing that the presence of such groups in Ti_3C_2 had a positive effect on hydrogen production by increasing the number of active sites. Moreover, this finding was consistent with density functional theory (DFT) simulation results. The ΔΔG_H of Ti_3C_2 with –O terminations was found to be as low as 0.01 eV, which is lower than that of Pt (111). In a similar study, Ye et al. [69] treated HF-etched Ti_3C_2 with KOH to convert –F groups into –OH groups, and then combined the KOH-treated Ti_3C_2 with TiO_2 (P25) powder by stirring in water (Fig. 3c). DFT calculations demonstrated that –OH groups played the role of active sites for the adsorption and activation of CO_2 reduction [69]. Experimentally, the photoactivities for CO_2 reduction were increased 3 times and 277 times after KOH treatment, for CO and CH_4, respectively (Fig. 4d). Interestingly, increasing the number of –OH groups not only improved the photo-conversion efficiency but also changed the nature of the products. The –OH groups resulting from KOH treatment provided more active sites for CO_2 adsorption and enabled greater electron transfer to CO_2 and facilitated its reduction to CH_4. Though the surface termination groups can be changed through annealing and KOH treatments, –F groups could not be completely exchanged. More studies to precisely tailor the termination groups need to be carried out in the future.

![Fig. 3 TEM images of photocatalysts combined with a MXene by mechanical mixing taken from a An et al. Reprinted with permission from Ref. [72]. Copyright 2018 The Royal Society of Chemistry. b Xie et al. Reprinted with permission from Ref. [73]. Copyright 2018 Elsevier. c Ye et al. Reprinted with permission from Ref. [69]. Copyright 2018 John Wiley & Sons. d Liu et al. Reprinted with permission from Ref. [44]. Copyright 2018 Elsevier](https://doi.org/10.1007/s40820-019-0309-6)
Xie et al. [73] used an electrostatic self-assembly process to combine positively charged CdS nanosheets and Ti$_3$C$_2$ nanosheets (possessing negative charge) (Fig. 3b) for CO$_2$ reduction (Fig. 4c). Cai et al. [75] synthesized Ag$_3$PO$_4$/Ti$_3$C$_2$ by electrostatically driven self-assembly method, which had the advantage of being a mild method that prevented Ti$_3$C$_2$ from oxidation. The composites showed better performance than reduced graphene oxide (rGO), and this preparation procedure provided a new direction to the preparation of semiconductor-MXene composites. Liu et al. [44] fabricated a 2D layered and stacked g-C$_3$N$_4$/Ti$_3$C$_2$ composite by evaporation-induced self-assembly and used it to degrade...
organic pollutants (ciprofloxacin) (Fig. 3d). Both photogenerated holes and superoxide radicals (\(\cdot O_2^-\)) resulting from ciprofloxacin decomposition (Fig. 4f); in this process, self-assembly was an efficient method that allowed intimate mixing of the components in the composite. The sample was also more homogeneous than mechanically mixed ones because of the electrostatic attraction between the charged entities. However, opposite charges on each surface were required for self-assembly, which limited wider application of this process. Therefore, other techniques to induce self-assembly such as evaporation-induced self-assembly were developed to widen the range of application of products [44].

The above-mentioned MXene-based composites prepared by mechanical mixing and self-assembly methods for photocatalysis application are summarized in Table 1. Results from all these works prove that 2D MXene is an efficient additive material to enhance charge separation and charge transfer during photocatalysis. In these two methods, the properties of MXenes are retained by avoiding high temperature and use of other solvents or surfactant. No change in oxidation or surface termination groups occurs in these synthesis methods. Therefore, these two are the easiest and allow synthesis under the mildest conditions.

2.2 In Situ Decoration of Semiconductors onto the Surface of MXenes

In contrast to composites prepared by mechanical mixing of materials, in situ decoration methods consist in synthesizing a different material directly onto the MXene surface. As a result, in situ synthetized materials and MXenes are chemically bonded, which could be an important advantage in some designs. However, the range of viable synthetic conditions for in situ decoration is limited, because MXenes are easily oxidized in solution, especially at high temperatures [107]. It is therefore necessary to use mild conditions to protect MXenes from oxidation, especially when mono- and few-layered MXenes are used. So far, g-C_3N_4, TiO_2, CdS, and bismuth compounds have been bonded to various MXenes using this strategy.

g-C_3N_4 is one 2D semiconductor material that is combined with MXenes used as a co-catalyst in the photocatalysis process (Fig. 5). MXene can be added during the calcination of a precursor, such as melamine and thiourea, but the high calcination temperature (around 550 °C) may cause the oxidation of MXene into TiO_2. The high photoactivity of g-C_3N_4/MXene is attributed to the efficient charge separation; moreover, the heterojunction formed by TiO_2/g-C_3N_4 also plays an important role in charge separation [108]. Shao et al. [81] synthesized Ti_2C/g-C_3N_4 by melamine calcination and used it in hydrogen production (Fig. 5a, d). Though the ratio of Ti_2C in the composite was as low as 0.4 wt%, a peak due to TiO_2 resulting from the oxidation of Ti_2C could be seen in the XRD pattern. Liu et al. [19] synthesized TiO_2/C/g-C_3N_4 heterojunction by melamine calcination (Fig. 5b), where Ti_3C_2 was oxidized to TiO_2/C during the calcination process. This composite was highly effective in the reaction of nitrogen reduction to ammonia, with the best performance reaching as high as 250.6 μmol h^{-1} g^{-1}, which was better than that of TiO_2/C and g-C_3N_4 (Fig. 5e). Xu et al. [82] synthesized Ti^{3+}-rich Ti_3C_2/g-C_3N_4 by calcination of thiourea and employed it as an electrode for CO_2 reduction in a photoelectrochemical (PEC) system (Fig. 5c, f), achieving a total CO_2 reduction rate of 25.1 mmol h^{-1} g^{-1}. The Ti^{3+} species suppressed charge recombination at the Ti_3C_2/g-C_3N_4 heterojunctions, leading to a corresponding increase in CO_2 conversion efficiency.

Apart from the above-mentioned synthesis methods, composite photocatalysts can also be synthesized by combining TiO_2, a metal sulfide, or a bismuthide with MXene under hydrothermal conditions (Fig. 6). Gao et al. [83] synthesized TiO_2/Ti_3C_2 nanocomposites by a hydrothermal method using TiSO_4 as a precursor for methyl orange (MO) degradation (Fig. 6a), where small TiO_2 particles could be observed on the surface of multilayered Ti_3C_2. Wang et al. [84] employed TiCl_4 as the precursor in the hydrothermal synthesis of rutile TiO_2/Ti_3C_2T_x for hydrogen production by water splitting (Fig. 6d). The photocatalytic activity of TiO_2 when combined with other MXenes (Ti_2CT_x and Nb_5CT_x flakes) as co-catalysts was also explored; results proved that in general, MXenes could be used as effective co-catalysts for solar hydrogen production. Ran et al. [70] combined CdS and Ti_3C_2 particles by a one-step hydrothermal reaction (Fig. 6b). A hydrogen production rate of 14,342 μmol h^{-1} g^{-1} was achieved when using Ti_3C_2 as the co-catalyst; this performance is 136.6 times higher than that of the pure CdS photocatalyst. The effectiveness and versatility of Ti_3C_2 MXene as a co-catalyst for photocatalytic hydrogen production was demonstrated by other metal sulfides (ZnS) [91] photocatalysts as well. Xie et al. [73] showed that Ti_3C_2
Table 1 MXene-based composites prepared by different synthetic methods for photocatalysis applications

Sample	MXene (synthetic method)	Sample synthesis	Reactant	Sacrificial agent	Rate	Precursor	Refs.	
g-C3N4/3%Ti3C2/2%Pt	Ti3C2 flakes (HF 48%, 20 h, 60 °C and H2O delamination, 12 h, ultrasonication)	(1) Ti3C2 stirring dispersions (2) Pt UV deposition	H2O	10 vol% triethanolamine (TEOA)	5100 μmol/h gcat.	–	An et al. [72]	
g-C3N4/Ti3C2T (1:0.3)	Multilayer Ti3C2 (HF 49%, 24 h)	Grinding in a mortar	H2O	10 vol% TEOA	88 μmol/h gcat.	–	Sun et al. [74]	
CdS/0.5%Ti3C2T	Ti3C2 flakes (LiF 1 g/HCl 9 M, 24 h, 35 °C)	(1) Ultrasonication (2) Stirring in water	4-NA	40 mg ammonium formate in 30 mL solution	180 mg/L/h	–	Xie et al. [73]	
P25/5%Ti3C2-OH	Multilayer Ti3C2 (HF 49%, 24 h and KOH 2 M, 4 h)	Stirring in water	CO2	–	28.35 μmol/h gcat.	–	Ye et al. [69]	
a-Fe2O3/Ti3C2 (1:2)	Multilayer Ti3C2	(1) Stirring in ethanol (2) Ultrasonication	Rhodamine B (RhB)	–	5 mg/L/h	–	Zhang et al. [76]	
g-C3N4/Ti3C2 (100:3)	Ti3C2 flakes (HF 40%, 24 h and H2O intercalation, 5 h, ultrasonication)	(1) Ultrasonication (2) Stirring in water at 60 °C	Ciprofloxacin	–	18 mg/L/h	–	Liu et al. [44]	
TiO2/5%Ti3C2	Ti3C2 flakes (LiF 1 g/HCl 6 M, 24 h, 35 °C)	Sonication	H2O	25% Methanol	2650 μmol/h gcat.	–	Su et al. [77]	
Ag3PO4/2%Ti3C2	Ti3C2 flakes (NaF 3.35 g/HCl 36–38 wt%, 12 h, 60 °C)	(1) Stirring in water with AgNO3 (2) Adding Na2HPO4	H2O	Tetracycline hydrochloride (TC-H) etc.	–	192 mg/L/h	–	Cai et al. [75]
3%Ti3C2/g-C3N4	Ti3C2 flakes (LiF 1.5 g/HCl 16 M, 24 h, 35 °C)	(1) Sonication in HCl (2) Stirring	H2O	10 vol% TEOA	73.3 μmol/h gcat.	–	Su et al. [78]	
TiO2/0.5%Ti3C2/1%CoS	Multilayer Ti3C2 (HF 49%, 4 h)	(1) Stirring in 2-methylimidazole (2) Hydrothermal 140 °C for 12 h with thioacetamide	H2O	20 vol% methanol	950 μmol/h gcat.	Co(NO3)2 2-methylimidazole and thioacetamide	Zhao et al. [79]	
Sample	MXene (synthetic method)	Sample synthesis	Reactant	Sacrificial agent	Rate	Precursor	Refs.	
--------	--------------------------	------------------	----------	------------------	------	-----------	-------	
CdS/MoS2/2%Ti3C2Tx	Ti3C2 flakes (HF 49%, 72 h, ultrasonication in H2O, 2 h)	(1) MoS2 synthesis (2) Stirring with Ti3C2 (3) Add CH3N2S and Cd(CH3COO)2 (4) Hydrothermal 160 °C for 24 h	H2O	0.25 M Na2S and 0.35 M Na2SO3	9679 μmol/h/gcat.	Cd(CH3COO)2, CH3N2S, MoS2	Chen et al. [80]	
0.4%Ti2C/g-C3N4	Ti2C flakes (NH4F 16 g/HCl 9 M, 24 h)	(1) Stirring ethanol	H2O	10 vol% TEOA	950 μmol/h/gcat.	Melamine	Shao et al. [81]	
10%TiO2/C/g-C3N4	Multilayer Ti3C2 (HF 49%, 4 h)	(1) Stirring in water (2) 550 °C, 2 h in muffle	N2	20 vol% methanol	250 μmol/h/gcat.	Melamine	Liu et al. [19]	
Pd-Ti3C2/g-C3N4 (1:10)	Multilayer Ti3C2 (HF 40%, 24 h)	(1) Grinding (2) 500 °C, 2 h in muffle (3) Pd electrodeposition	CO2	0.1 M KHCO3	25,100 μmol/h/gcat.	Thiourea	Xu et al. [82]	
0.001 molTiO2/Ti3C2	Multilayer Ti3C2 (HF 49%, 24 h, 60 °C)	(1) Stirring (2) Hydrothermal 180 °C, 18 h	Methyl orange (MO)	–	40 mg/L/h	TiSO4	Gao et al. [83]	
TiO2/5%Ti3C2	Ti3C2 flakes (HF 48%, 15 h and DMSO delamination, 15 h)	(1) Stirring in ice-water bath (2) Heated 95 °C, 4 h	H2O	25% methanol	43 μmol/h/gcat.	TiCl4	Wang et al. [84]	
TiO2/5%TiC	TiC flakes (HF 10%, 10 h and DMSO delamination)							
TiO2/5%Nb2C	Nb2C flakes (HF 48%, 90 h and 20% isopropyl alcohol delamination)							
CdS/2.5%Ti3C2	Ti3C2 nanoparticles (HF 49%, 20 h, 60 °C and H2O delamination, ultrasonication, 5 h)	(1) Stirring in water (2) Hydrothermal 180 °C, 12 h	H2O	Lactic acid (88 vol%)	14,342 μmol/h/g	Cd(Ac)2	Ran et al. [70]	
Sample	MXene (synthetic method)	Sample synthesis	Reactant	Sacrificial agent	Rate	Precursor	Refs.	
--------	--------------------------	------------------	----------	------------------	------	-----------	-------	
TiO₂/C/BiVO₄ (1:1079)	Ti₃C₂ flakes (LiF 1.5 g/HCl 16 M, 48 h, 50 °C)	(1) Stirring in water (2) Hydrothermal 100 °C, 6 h	RhB	–	3.1 mg/L/h	Bi(NO₃)₃	Shi et al. [85]	
TiO₂/Ti₃C₂ (1:1)	Multilayer Ti₃C₂ (HF 40%, 26 h, 60 °C)	(1) Stirring in 10 M NaOH (2) Hydrothermal 180 °C, 10 h	Methylene blue (MB)	–	8.5 mg/L/h	NH₄VO₃	P25	Luo et al. [86]
BiOBr/Ti₃C₂ (250:1)	Ti₃C₂ flakes (LiF 3 g/HCl 9 M, 24 h, 35 °C)	(1) Stirring (2) Refluxed 80 °C, 2 h	RhB	–	24 mg/L/h	Bi(NO₃)₃ and KBr	Liu et al. [87]	
2%Ti₃C₂/Bi₂WO₆	Ti₃C₂ flakes (HF 40%, 72 h and DMSO delamination, ultrasonication, 1 h)	(1) Stirring (2) Hydrothermal 120 °C, 24 h	CO₂	–	2.22 μmol/h/gcat.	Bi(NO₃)₃	Cao et al. [88]	
Bi₀.⁹Gd₀.₁Fe₀.⁸Sn₀.₂O₃/Ti₃C₂	Multilayer Ti₃C₂ (HF 39%, 36 h)	(1) Stirring in 0.01 M acetic acid and ethylene glycol (2) Sonicated, 2 h, 60 °C (3) stirring 1 h, 80 °C	Congo red	–	–	Na₂WO₄	Bi₁₋ₓGdₓFe₁₋ₓSnₓ	Tariq et al. [89]
In₂S₃/TiO₂@Ti₃C₂	Multilayer Ti₃C₂ (HF 50%, 20 h)	(1) Stirring (2) Hydrothermal 180 °C, 24 h	MO	–	18 mg/L/h	In(NO₃)₃	Wang et al. [90]	
ZnS/0.75 wt%Ti₃C₂	Ti₃C₂ flakes (HF, 24 h, 25 °C)	(1) Stirring in ethanol–glycerol (2) Hydrothermal 180 °C, 10 h	H₂O	20 vol% lactic acid	502.6 μmol/h/gcat.	CH₃CSNH₂	ZnCl₂	Tie et al. [91]
Ti₃C/3%TiO₂/1%Ag	Multilayer Ti₂C (HF 48%)	(1) Stirring for volatiles evaporation (2) Annealing in H₂ at 400 °C	Salicylic acid	–	32.4 μmol/h	Titanium isoproplate	Wojciechowski et al. [92]	
Table 1 (continued)

Sample	MXene (synthetic method)	Sample synthesis	Reactant	Sacrificial agent	Rate	Precursor	Refs.
TiO2/Ti3C2 (12 h)	Multilayer Ti3C2 (HF 49%, 12 h, 60 °C)	Hydrothermal 160 °C for different time, NaBF4 and HCl	MO	–	24 mg/L/h	–	Peng et al. [71]
TiO2/Ti3C2 (20 h)	Multilayer Ti3C2 (HF 49%, 12 h, 60 °C)	Hydrothermal 200 °C for different time, NH4F	MB	–	6 mg/L/h	–	Peng et al. [93]
HC-TiO2	Ti3C2 flakes (tetramethylammonium hydroxide 25%, 24 h)	Hydrothermal 160 °C, 9 h	H2O	10 vol% TEOA	33.04 μmol/h/gcat.	–	Jia et al. [94]
4%Cu/TiO2@Ti3C2_T_x 12 h	Multilayer Ti3C2 (HF 49%, 12 h, 60 °C)	(1) Hydrothermal 160 °C for different time, NaBF4 and HCl (2) Photodepositing copper nanodots	H2O	6.7 vol% methanol	764 μmol/h/gcat.	–	Peng et al. [95]
Ti3C2/TiO2/CuO (100:1)	Multilayer Ti3C2 (HF 49%, 24 h, 60 °C)	(1) Dissolved in water (2) Annealing in argon, 500 °C, 30 min	MO	–	15 mg/L/h	–	Lu et al. [96]
C/TiO2 700 °C-150 sccm	Multilayer Ti3C2 (HF 40%, 90 h, 55 °C)	Heated in CO2 at different temperature and different rate, 1 h	H2O	10 vol% TEOA	480 μmol/h/gcat.	–	Yuan et al. [97]
TiO2/Ti3C2 (TT550 °C)	Multilayer Ti3C2 (HF 50%, 48 h)	Calcination at different temperature	CO2	–	4.4 μmol/h/gcat.	–	Low et al. [98]
Nb2O5/C/Nb2C-1 h	Multilayer NbC (HF 50%, 90 h)	Annealing in CO2, 850 °C for different time	H2O	25% methanol	7.81 μmol/h/gcat.	–	Su et al. [99]
Microporous-MXene/TiO2 nanodots	Multilayer Ti3C2 (HF 50%, 90 h)	High-energy ball milling in air, 1.5 h, 200 rpm	RhB, etc.	–	–	–	Cheng et al. [100]
C/TiO2	Multilayer Ti3C2 (HF 40%, 2.5 h)		MB	–	2.13 mg/L/h	–	Li et al. [101]
Sample	MXene (synthetic method)	Sample synthesis	Reactant	Sacrificial agent	Rate	Precursor	Refs.
--------	--------------------------	------------------	---------	------------------	------	-----------	-------
TiO₂/Ti₃C₂@AC-48 h	Multilayer Ti₃C₂ (HF 49%, 24 h)	Heated in H₂O for different time at 60 °C	H₂O	29 g/L ascorbic acid (AA)	33.4 μmol/h/gcat.	–	Sun et al. [102]
Ti₃C₂/TiO₂-500/Pt	Multilayer Ti₃C₂ (HF 40%, 72 h)	(1) Hydrothermal in 1 M NaOH and 30% H₂O₂, 140 °C, 12 h (2) Immersed in 0.1 M HCl, 24 h (3) Annealing in muffle for different time	H₂O	20 vol% methanol	H₂ 1596.35 μmol/h/gcat.	–	Li et al. [103]
LDC-S-TiO₂/C	Multilayer Ti₃C₂ (HF 40%, 48 h, 45 °C)	(1) Ball mixing with sulfur (2) Hydrothermal 155 °C, 12 h (3) Annealing in CO₂ at 700 °C for 2 h (4) Annealing in air at 450 °C, 2 h	H₂O	0.01 M AgNO₃	O₂ 500 μmol/h/gcat.	–	Yuan et al. [104]
TiO₂/Ti₃C₂	Multilayer Ti₃C₂ (HF 30%, 10 h, 40 °C)	Hydrothermal 160 °C for 12 h, NaBF₄ and HCl	Carbamazepine	–	1.48 mg/L/h	–	Shahzad et al. [105]
Ti₃C₂/TiO₂/15%MoS₂	Multilayer Ti₃C₂ (HF 40%, 72 h)	(1) Hydrothermal 160 °C for 12 h with NaBF₄ and HCl (2) Hydrothermal 200 °C for 24 h with Na₂MoO₄ and CN₂H₃S	H₂O	TEOA	6425 μmol/h/gcat.	NaBF₄, HCl, Na₂MoO₄ and CN₂H₃S	Li et al. [106]
flakes enabled the local confinement of Cd²⁺ released during photo-corrosion and thus enhanced the stability of the metal sulfide. Besides CdS, In₂S₃/Ti₃C₂Tx hybrids synthesized by hydrothermal method have been used for methyl orange degradation as reported by Wang et al. [90]. Among the hybrids based on other additives (carbon nanotubes (CNT), rGO, MoS₂, and TiO₂), Ti₃C₂-based composites showed the best photocatalytic activity, which is attributed to their high electrical conductivity. Shi et al. [85] synthesized TiO₂/C/BiVO₄ composites by hydrothermal method for the degradation of Rhodamine B, where Ti₃C₂ was employed both as a support for the growth of BiVO₄ nanoparticles and as a precursor for the generation of 2D-carbon upon oxidation. The electron transfer process was accelerated by the presence of Ti₃C₂-derived 2D-carbon layers, thus improving the photocatalytic performance for Rhodamine B degradation. Ultrathin 2D/2D heterojunction of MXene/Bi₂WO₆ prepared by the in situ growth of ultrathin Bi₂WO₆ nanosheets on the surface of ultrathin Ti₃C₂ nanosheets for photocatalytic CO₂ reduction was reported by Cao et al. [88] (Fig. 6c). The CH₃ and CH₂OH yield were 4.6 times higher than those obtained with pristine Bi₂WO₆, which was ascribed to the enhanced CO₂ adsorption arising from the increased specific surface area and improved pore structure of the layered heterojunction. The different composites/hybrids containing MXene or MXene-derived products prepared by hydrothermal methods and used in photocatalysis are listed in Table 1.

The synthetic process for MXenes-based composites includes doping into the photocatalysts or using MXene as a support for in situ decoration of the semiconductor photocatalyst. The chemical reactions taking place during photocatalyst formation led to increased interfacial area, thus providing greater possibilities for the transfer of photogenerated electrons. However, one disadvantage of this method is the oxidation of MXenes during photocatalyst synthesis. Although difficult to precisely characterize, conditions of formation of the photocatalysts may be too harsh and cause structural degradation of MXenes, especially in the case of single-layered MXenes, due to their lower stability toward oxidation.
2.3 MXene-Derived Photocatalysts

Different from mechanical mixing, self-assembly, and decoration methods, the in situ oxidation method using MXene (Ti$_3$C$_2$ is the most studied example) as a precursor for the synthesis of photocatalysts has also been explored (Fig. 7). Peng’s group tuned the facet of TiO$_2$/Ti$_3$C$_2$ using a hydrothermal method without using an additional TiO$_2$ precursor (Fig. 7a, b) [71, 93]. NaBF$_4$ and NH$_4$F were used as reagents to, respectively, control morphology in the synthesis of (001) TiO$_2$/Ti$_3$C$_2$ and (111) TiO$_2$/Ti$_3$C$_2$, which were then applied in methyl orange degradation. Both the facet type of TiO$_2$ and the ratio of TiO$_2$ to Ti$_3$C$_2$ could be controlled by changing the duration of the hydrothermal reaction. Jia et al. [94] obtained closely aggregated TiO$_2$ nanorods with high carbon doping starting from Ti$_3$C$_2$ flakes and demonstrated a better photoactivity than commercially available P25 for hydrogen production (Fig. 7c). The carbon doping also changed the electron structure of TiO$_2$ and enhanced its light absorption ability. Peng et al. [95] also used Ti$_3$C$_2$ as a hole trap and Cu as an electron trap to separate the charges through a dual-carrier-separation mechanism, showing the potential of MXene as an efficient functional material for photocatalysis (Fig. 7d).

Calcination under atmosphere containing gases such as CO$_2$ and O$_2$ is another method used for the controlled oxidation of MXenes (Fig. 8). Lu et al. [96] obtained Ti$_3$C$_2$/TiO$_2$/CuO by annealing Cu(NO$_3$)$_2$ and Ti$_3$C$_2$ together under argon atmosphere (Fig. 8a). Because of its good electronic conductivity, the incorporation of Ti$_3$C$_2$ improved electron/hole separation and led to better methyl orange degradation. Yuan et al. [97] annealed Ti$_3$C$_2$ in CO$_2$ to prepare 2D-layered C/TiO$_2$ hybrids used in hydrogen production, in which the presence of 2D carbon layers increased electron transport channels and enhanced charge separation efficiency (Fig. 8b). In addition, the effects of oxidation temperature
and CO₂ on the grain size and crystal structure of TiO₂ were also investigated, revealing that increasing oxidation temperature and CO₂ gas flux led to larger grain sizes and more rutile TiO₂ formation. Low et al. [98] calcined Ti₃C₂ at different temperatures, enabling the in situ growth of TiO₂ nanoparticles on Ti₃C₂ nanosheets, thus forming TiO₂/Ti₃C₂ composites with different loading amounts of TiO₂ with the aim to improve performance in CO₂ reduction reaction (Fig. 8c). Interestingly, three main products were obtained during the photocatalytic CO₂ reduction process due to the sufficiently high intrinsic reduction potential of TiO₂. Results of the study also pointed out that excess of Ti₃C₂ in the composite could have an adverse effect on photocatalytic performance. Su et al. [99] used CO₂ to partially oxidize Nb₂C to form Nb₂O₅/Nb₂C composites for hydrogen production, where Nb₂O₅ and metallic Nb₂C served, respectively, as the semiconductor photocatalyst and co-catalyst (Fig. 8d). The easily formed junction at the interface served as an electron sink to efficiently capture photogenerated electrons and suppress recombination of photogenerated electron–hole pairs, thus enhancing the efficiency of charge separation and contributing to improved photocatalytic activity [71, 93, 99, 102].

Besides the hydrothermal method and calcination, other routes such as chemical oxidation and high-energy ball milling were also used to oxidize MXenes (Fig. 9). Cheng et al. [100] oxidized Ti₃C₂ flakes with 30% H₂O₂ to form microporous-MXene/TiO₂₋ₓ nanodots (Fig. 9a). This composite worked as a photo-Fenton bifunctional catalyst for Rhodamine B degradation under both dark and illumination conditions. Li et al. [101] synthesized TiO₂@C nanosheets from Ti₂C by high-energy ball milling and used it for methylene blue degradation (Fig. 9b). Shortly thereafter, our group used water to oxidize Ti₃C₂ to be applied in hydrogen
production using Eosin Y as a sensitizer [102]. Similar to other oxidized MXenes, amorphous carbon and TiO₂ were formed after oxidation (Fig. 9c, d). The various MXene-derived composites obtained by in-situ oxidation to be used as photocatalysts are listed in Table 1.

The MXenes oxidation is different from other methods because of the residual presence of carbon (mostly amorphous carbon) after oxidation, and the M element is oxidized into metal oxide on the carbon layer. Thus, the composite obtained is of the form metal oxide/MXenes/C. Both MXenes and C can be used as co-catalysts in the photocatalysis process. However, in this method, the ratio of the photocatalyst to MXenes varies within a certain range since no precursor is introduced. The limitation of this method is that only a few semiconductors (depending on M element) can be used as the photocatalyst.

3 Mechanism of MXenes as Co-catalysts

Since MXenes are conductors and serve as co-catalysts, the mechanism of action of a MXenes-based photocatalytic system is through accelerated charge separation and suppression of carrier recombination [69–71]. The photocatalysts absorb visible light and photogenerated electrons are excited to the CB, while holes are left in the valence band (VB). The excited charge carriers are transferred to MXenes at the interface mainly because of the higher potential of MXenes. Electrons transfer to MXenes without recombination and react on the MXene surface to generate H₂ by reducing H⁺ [74, 78, 81, 91, 94, 102, 103], CH₄ and CO by reducing CO₂ [88, 98], or NH₃ by reducing N₂ [19], as shown in Fig. 10 process (a). In process (b), holes transfer to MXenes and react to produce OH⁻ that can be utilized for degradation of organics [71, 93, 95]; electrons can also produce OH⁻ for organic degradation [71, 93]. The charge transfer process
from the photocatalyst to MXenes improves electron–hole pair separation and suppresses charge recombination in photocatalysts, thus enhancing the photoactivity.

Another advantage of using MXenes in photocatalysis is due to their termination groups. For example, −O termination groups show the best potential for hydrogen production because of their low $|\Delta G|_{H}$ and the availability of active sites for the adsorption of hydrogen atoms [70, 74]. Though termination groups are important in photocatalysis, currently, it has not been possible to precisely control the relative concentrations of the different termination groups. Using presently available synthetic methods, changing the different reaction conditions can partially modify the termination groups on MXenes surface and thereby affect their performance in photocatalysis.

4 Conclusion and Outlook

In summary, the application of MXenes in photocatalysis has shown rapid development since 2015. Among the MXenes family, Ti$_3$C$_2$ has been the most studied MXene. Mechanical mixing and self-assembly are mild and easy methods of synthesis, where the ratio of MXenes to the photocatalyst can be controlled. In addition, MXenes can also be doped into the photocatalysts by in situ decoration of a semiconductor photocatalyst. The large interfacial area afforded by
the doping process improves electron transfer. However, the MXenes oxidation method has the advantage of obtaining both carbon and MXenes as co-catalysts by forming a metal oxide/MXenes/C structure. Though the above-mentioned four synthetic methods are generally used for photocatalysts, with further development in the field of MXenes, new processes may be discovered.

Besides developing improved synthetic methods, the other aspects that need to be focused on in the future are as follows:

1. Controlling the morphologies of MXenes. MXene flakes show larger surface area than multilayered MXenes, since mono- or few-layered MXenes provide a greater number of active sites for photocatalytic reactions. The flakes are also convenient for building structures, such as quantum dots, spheres, and nanorods. However, the instability of MXenes should be taken into account during heat treatment [107].

2. MXenes combine with efficient photocatalysts. MXenes can be used as co-catalysts to combine with many semiconductor photocatalysts due to their excellent electronic conductivity and the presence of numerous hydrophilic groups on the surface. Hundreds of semiconductor photocatalysts have been reported for photocatalysis so far. Attention should be paid to combining the efficient and cheap photocatalysts with MXenes to achieve better photocatalytic performance. So far, only g-C₃N₄, CdS, ZnS, TiO₂, CuO, Nb₂O₅, BiVO₄, Ag₃PO₄, α-Fe₂O₃, In₂S₃, Bi₂WO₆, BiₓMo₆Oₓ₋ₓ, Fe₇S₁₉O₄, and BiOBr have been explored, with TiO₂ and g-C₃N₄ attracting the most attention.

3. Surface modification of MXenes. Surface termination groups significantly affect the properties of MXenes, and thus, tuning the surface termination groups and modifying the MXenes surface are expected to greatly influence its potential as co-catalyst.

4. Synthesis of new MXenes. To date, only a small fraction of the different possible MXenes has been synthesized in laboratories. Some MXenes showing semiconducting properties have been reported based on theoretical calculations. Theoretical predictions help in the synthesis of semiconductor MXenes and applied in photocatalysis. Once obtained experimentally, potential MXenes can be applied as photocatalysts, thus widening the application range of MXenes. Moreover, new types of transition metal borides (MBenes) have also been predicted [34, 109] and have shown potential for photocatalysis applications. More work needs to be done in this direction.

5. Developing new synthesis methods for MXenes. HF and in situ HF wet chemical treatment are by far the most used methods in MXenes synthesis. Other HF-free methods are emerging and leading to MXenes with different properties. Yet, these have not been investigated in photocatalytic applications, and thus, the effect of the type of synthesis process used on the final performance of the MXene is currently not understood.

In short, due to tremendous effort of scientists worldwide, the great potential of MXenes in photocatalysis has been revealed. With the fast-growing development in this area, it is expected that more and more studies will focus on the applications of MXenes photocatalysis and pave the way to the commercialization of photocatalytic technologies based on these materials.

Acknowledgements This work was supported by the National Natural Science Foundation of China (No. 11574111 and No. 11974129 to X.-F. W.) and “the Fundamental Research Funds for the Central Universities.”

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306

2. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26, 992–1005 (2014). https://doi.org/10.1002/adma.201304138

3. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98

4. M. Liu, Z. Yang, H. Sun, C. Lai, X. Zhao, H. Peng, T. Liu, A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries. Nano Res. 9, 3735–3746 (2016). https://doi.org/10.1007/s12274-016-1244-1

5. C. Hou, Z. Tai, L. Zhao, Y. Zhai, Y. Hou et al., High performance MnO@C microgels with a hierarchical structure and tunable carbon shell for efficient and durable lithium
storage. J. Mater. Chem. A 6, 9723–9736 (2018). https://doi.org/10.1039/c8ta02863j

6. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong et al., In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 20414–20425 (2018). https://doi.org/10.1039/c8nr06345a

7. M. Liu, Q. Meng, Z. Yang, X. Zhao, T. Liu, Ultra-long-term cycling stability of an integrated carbon-sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 5090–5093 (2018). https://doi.org/10.1039/c8cc01889h

8. W. Du, X. Wang, J. Zhan, X. Sun, L. Kang et al., Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907–915 (2019). https://doi.org/10.1016/j.electacta.2018.11.074

9. C. Hou, J. Wang, W. Du, J. Wang, Y. Du et al., One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 7, 13460–13472 (2019). https://doi.org/10.1039/c9ta03551f

10. M. Idrees, S. Batool, J. Kong, Q. Zhang, H. Liu et al., Polyborosilazane derived ceramics-nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925–937 (2019). https://doi.org/10.1016/j.electacta.2018.11.088

11. K. Le, Z. Wang, F. Wang, Q. Wang, Q. Shao et al., Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 5193–5202 (2019). https://doi.org/10.1039/c9ta00615j

12. R. Li, X. Zhu, Q. Fu, G. Liang, Y. Chen et al., Nanosheet-based NbO2Oy hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 2493–2496 (2019). https://doi.org/10.1039/c8cc09992c

13. Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe2O3/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114–123 (2019). https://doi.org/10.1016/j.electacta.2019.05.073

14. L. Yang, M. Shi, J. Jiang, Y. Liu, C. Yan, H. Liu, Z. Guo, Heterogeneous interface induced formation of balsam pear-like ppy for high performance supercapacitors. Electrochim. Acta 244, 27–30 (2019). https://doi.org/10.1016/j.electacta.2019.02.064

15. M. Liu, Y. Liu, Y. Yan, F. Wang, J. Liu, T. Liu, A highly conductive carbon–sulfur film with interconnected mesopores as an advanced cathode for lithium-sulfur batteries. Chem. Commun. 53, 9097–9100 (2017). https://doi.org/10.1039/c7cc04523a

16. T. Hisatomi, K. Domen, Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. Faraday Discuss. 198, 11–35 (2017). https://doi.org/10.1039/c6fd00221h

17. V.-H. Nguyen, J.C.S. Wu, Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Appl. Cataly. A Gen. 550, 122–141 (2018). https://doi.org/10.1016/j.apcata.2017.11.002

18. X. Zhang, Z. Zhang, J. Li, X. Zhao, D. Wu, Z. Zhou, Ti2CO2MXene: a highly active and selective photocatalyst for CO2 reduction. J. Mater. Chem. A 5, 12899–12903 (2017). https://doi.org/10.1039/c7ta03557h

19. Q. Liu, L. Ai, J. Jiang, MXene-derived TiO2@g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 6, 4102–4110 (2018). https://doi.org/10.1039/c7ta09350k

20. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694–1601713 (2017). https://doi.org/10.1002/adma.201601694

21. D. Pan, S. Ge, J. Zhao, Q. Shao, L. Guo, X. Zhang, J. Lin, G. Xu, Z. Guo, Synthesis, characterization and photocatalytic activity of mixed-metal oxides derived from NiCoFe ternary layered double hydroxides. Dalton Trans. 47, 9765–9778 (2018). https://doi.org/10.1039/c8dt10454e

22. J. Zhao, S. Ge, D. Pan, Q. Shao, J. Lin et al., Solvothermal synthesis, characterization and photocatalytic property of zirconium dioxide doped titanium dioxide spinozo hollow microspheres with sunflower pollen as bio-templates. J. Colloid Interface Sci. 529, 111–121 (2018). https://doi.org/10.1016/j.jcis.2018.05.091

23. Y. Sheng, J. Yang, F. Wang, L. Liu, H. Liu, C. Yan, Z. Guo, Sol-gel synthesized hexagonal boron nitride/titania nanocomposites with enhanced photocatalytic activity. Appl. Surf. Sci. 465, 154–163 (2019). https://doi.org/10.1016/j.apsusc.2018.09.137

24. J. Tian, Q. Shao, J. Zhao, D. Pan, M. Dong et al., Microwave solvothermal carboxymethyl chitosan template synthesized of TiO2/ZrO2 composites toward enhanced photocatalytic degradation of Rhodamine B. Colloid Interface Sci. 541, 18–29 (2019). https://doi.org/10.1016/j.jcis.2019.01.069

25. J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss et al., Microwave hydrothermal synthesis of In2O3-ZnO nanocomposites and their enhanced photoelectrochemical properties. J. Electrochem. Soc. 166, H3074–H3083 (2019). https://doi.org/10.1149/2.0071905jes

26. H. Singh, L.Z. Zhao, N. Wang, H. Liu, A. Umar, J. Zhang, T. Wu, Z. Guo, Enhanced photocatalytic activity of B, N-codoped TiO2 by a new molten nitrate process. Electrochim. Acta, 19, 839–849 (2019). https://doi.org/10.1016/j.electacta.2019.05.073

27. Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss et al., Progress on the photocatalytic reduction removal of chromium contamination. Chem. Rec. 19, 873–882 (2019). https://doi.org/10.1002/crr.201800153

28. G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu et al., Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale (Advanced Article, 2019). https://doi.org/10.1039/c9nr03474a
29. B. Lin, Z. Lin, S. Chen, M. Yu, W. Li et al., Surface intercalated spherical MoS$_2$Se$_{2(1−x)}$ nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 8279–8287 (2019). https://doi.org/10.1039/c9dt01218d

30. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2267 (2018). https://doi.org/10.1021/acscatal.7b03437

31. M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang et al., A review of TiO$_2$ nanosheet-based catalysts for sustainable H$_2$ generation. Int. J. Hydrog. Energy 42, 8418–8449 (2017). https://doi.org/10.1016/j.ijhydene.2016.12.052

32. L. Clarizia, D. Russo, I. Di Somma, R. Andreozzi, R. Marotta, Hydrogen generation through solar photocatalytic processes: a review of the configuration and the properties of effective metal-based semiconductor nanomaterials. Energies 10, 1624–1644 (2017). https://doi.org/10.3390/en10101624

33. X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem. 27, 73–85 (2018). https://doi.org/10.1016/j.jenergychem.2017.08.004

34. Z. Guo, J. Zhou, Z. Sun, New two-dimensional transition metal borides for Li ion batteries and electrocatalysis. J. Mater. Chem. A 5, 23530–23535 (2017). https://doi.org/10.1039/c7ta08665b

35. H. Jiang, Z. Wang, Q. Yang, L. Tan, L. Dong, M. Dong, Ultrathin Ti$_3$C$_2$T (MXene) nanosheet-wrapped NiSe$_2$ octahedral crystal for enhanced supercapacitor performance and synergetic electrolytic water splitting. Nano-Micro Lett. 11, 31 (2019). https://doi.org/10.1007/s40820-019-0261-5

36. Y.T. Liu, P. Zhang, N. Sun, B. Anasori, Q.Z. Zhu, H. Liu, Y. Gogotsi, B. Xu, Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30, 1707334 (2018). https://doi.org/10.1002/adma.201707334

37. L. Yu, L. Hu, B. Anasori, Y.-T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, B. Xu, MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018). https://doi.org/10.1021/acsenergylett.8b00718

38. H. Liu, X. Zhang, Y. Zhu, B. Cao, Q. Zhu et al., Electrostatic self-assembly of 0D-2D SnO$_2$ quantum dots/Ti$_3$C$_2$T MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 11, 65 (2019). https://doi.org/10.1007/s40820-019-0296-7

39. F. Shahzad, M. Alhabe, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137 (2016). https://doi.org/10.1126/science.aag2421

40. M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017). https://doi.org/10.1021/acsami.7b04602

41. J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang et al., Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 352, 306–327 (2017). https://doi.org/10.1016/j.ccr.2017.09.012

42. A. Sarycheva, A. Polemi, Y. Liu, K. Dandekar, B. Anasori, Y. Gogotsi, 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018). https://doi.org/10.1126/sciadv.aau0920

43. Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, X. Peng, Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water. ACS Appl. Mater. Interfaces 7, 1795–1803 (2015). https://doi.org/10.1021/am5074722

44. N. Liu, N. Lu, Y. Su, P. Wang, X. Quan, Fabrication of g-C$_3$N$_4$/Ti$_3$C$_2$ composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Sep. Purif. Technol. 211, 782–789 (2019). https://doi.org/10.1016/j.seppur.2018.10.027

45. C. Dall’Agnese, Y. Dall’Agnese, B. Anasori, W. Sugimoto, S. Mori, Oxidized Ti$_3$C$_2$ MXene nanosheets for dye-sensitized solar cells. New J. Chem. 42, 16446–16450 (2018). https://doi.org/10.1039/c8nj03246g

46. L. Yang, Y. Dall’Agnese, K. Hantanaisirakul, C.E. Shuck, K. Maleski et al., SnO$_2$–Ti$_3$C$_2$ MXene electron transport layers for perovskite solar cells. J. Mater. Chem. A 7, 5635–5642 (2019). https://doi.org/10.1039/c8ta12140k

47. H.C. Fu, V. Ramalingam, H. Kim, C.H. Lin, X. Fang, H.N. Alsharaee, J.H. He, MXene-contacted silicon solar cells with 11.5% efficiency. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201900180

48. H. Wang, Y. Wu, X. Yuan, G. Zeng, J. Zhou, X. Wang, J.W. Chew, Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges. Adv. Mater. 30, 1704561 (2018). https://doi.org/10.1002/adma.201704561

49. M. Li, J. Lu, K. Luo, Y. Li, K. Chang et al., Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019). https://doi.org/10.1021/jacs.9b00574

50. X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-C$_3$N$_4$ nanosheets and study of their photocatalytic H$_2$ evolution activity. J. Mater. Chem. A 2, 18924–18928 (2014). https://doi.org/10.1039/c4ta04487h

51. J. Peng, X. Chen, W.-J. Ong, X. Zhao, N. Li, Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). https://doi.org/10.1016/j.chempr.2018.08.037

52. Z.W. Seh, K.D. Fredrickson, B. Anasori, J. Kibsgaard, A.L. Strickler et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016). https://doi.org/10.1021/acseng Energylett.6b000247

53. M. Alhabe, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. Gogotsi, Selective etching of silicon from Ti$_3$SiC$_2$ (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018). https://doi.org/10.1002/anie.201802232
54. J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng et al., Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 128, 14789–14794 (2016). https://doi.org/10.1002/ange.201606643

55. S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018). https://doi.org/10.1002/anie.201809962

56. M.R. Lukatskaya, J. Halim, B. Dyatkin, M. Naguib, Y.S. Buranov et al., Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases. Angew. Chem. Int. Ed. 53, 4877–4880 (2014). https://doi.org/10.1002/anie.201402513

57. S.Y. Pang, Y.T. Wong, S. Yuan, Y. Liu, M.K. Tsang et al., Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141(24), 9610–9616 (2019). https://doi.org/10.1021/jacs.9b02578

58. T. Li, L. Yao, Q. Liu, J. Gu, R. Luo et al., Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018). https://doi.org/10.1002/anie.201800887

59. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (MXene) using a binary aqueous system. Nanotechnology 29, 7633–7644 (2017). https://doi.org/10.1021/acs.cemater.7b02847

60. X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials. Chem. Soc. Rev. 47, 8744–8765 (2018). https://doi.org/10.1039/c8cs00649k

61. V.M. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, Recent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J. Mater. Chem. A 5(7), 3039–3068 (2017). https://doi.org/10.1039/c6ta06772g

62. J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019). https://doi.org/10.1039/c8cs00324f

63. Z. Guo, J. Zhou, L. Zhu, Z. Sun, MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 4, 11446–11452 (2016). https://doi.org/10.1039/c6ta04414j

64. S.-Y. Xie, J.-H. Su, H. Zheng, Group-IV analogues of MXene: promising two-dimensional semiconductors. Solid State Commun. 291, 51–53 (2019). https://doi.org/10.1016/j.ssc.2019.01.017

65. C.-F. Fu, X. Li, Q. Luo, J. Yang, Two-dimensional multilayer M2CO2 (M = Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. J. Mater. Chem. A 5, 24972–24980 (2017). https://doi.org/10.1039/c7ta08812d

66. Z. Guo, N. Miao, J. Zhou, B. Sa, Z. Sun, Strain-mediated type-I/type-II transition in MXene/blue phosphorene van der Waals heterostructures for flexible optical/electronic devices. J. Mater. Chem. C 5, 978–984 (2017). https://doi.org/10.1039/c6tc04349f

67. J. Cui, Q. Peng, J. Zhou, Z. Sun, Strain-tunable electronic structures and optical properties of semiconducting MXenes. Nanotechnology 30, 345205 (2019). https://doi.org/10.1088/1361-6528/abf122

68. A. Mostafaei, E. Faizabadi, E.H. Semisori, Theoretical studies and tuning the electronic and optical properties of Zr2CO2 monolayer using biaxial strain effect: modified Becke–Johnson calculation. Physica E 114, 113559 (2019). https://doi.org/10.1016/j.physe.2019.113559

69. M. Ye, X. Wang, E. Liu, J. Ye, D. Wang, Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem 11, 1606–1611 (2018). https://doi.org/10.1002/cssc.201800083

70. J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, TiC2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 8, 13907 (2017). https://doi.org/10.1038/ncomms13907

71. C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, F. Peng, Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 8, 6051–6060 (2016). https://doi.org/10.1021/acsami.5b11973

72. X. An, W. Wang, J. Wang, H. Duan, J. Shi, X. Yu, The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4. Phys. Chem. Chem. Phys. 20, 11405–11411 (2018). https://doi.org/10.1039/c8cp01123k

73. X. Xie, N. Zhang, Z.-R. Tang, M. Anpo, Y.-J. Xu, Ti3C2T x MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl. Catal. B 237, 43–49 (2018). https://doi.org/10.1016/j.apcbio.2018.05.070

74. Y. Sun, D. Jin, Y. Sun, X. Meng, Y. Gao et al., G-C3N4/Ti3C2T x (MXenes) composite with oxidized surface groups for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 6, 9124–9131 (2018). https://doi.org/10.1039/c8ta02706d

75. T. Cai, L. Wang, Y. Liu, S. Zhang, W. Dong et al., Ag2PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photo-corrosion performance. Appl. Catal. B 239, 545–554 (2018). https://doi.org/10.1016/j.apcatb.2018.08.053

76. H. Zhang, M. Li, J. Cao, Q. Tang, P. Kang, C. Zhu, M. Ma, 2D a-Fe2O3 doped Ti3C2 MXene composite with enhanced visible light photocatalytic activity for degradation of Rhodamine B. Ceram. Int. 44, 19958–19962 (2018). https://doi.org/10.1016/j.ceramint.2018.07.262

77. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., Monolayer Ti3C2T x as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2. ACS Appl. Energy Mater. 2, 4640–4651 (2019). https://doi.org/10.1021/acsenerm.8b02268
78. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo et al., 2D/2D heterojunction of Ti$_7$C$_6$/g-C$_3$N$_4$ nanosheets for improved photocatalytic hydrogen evolution. Nanoscale 11, 8138–8149 (2019). https://doi.org/10.1039/c9nr00168a

79. J.-H. Zhao, L.-W. Liu, K. Li, T. Li, F.-T. Liu, Conductive Ti$_3$C$_2$ and MOF-derived CoS$_2$ boosting the photocatalytic hydrogen production activity of TiO$_2$. CrystEngComm 21, 2416–2421 (2019). https://doi.org/10.1039/c8ce02050g

80. R. Chen, P. Wang, J. Chen, C. Wang, Y. Ao, Synergetic effect of MoS$_2$ and MXene on the enhanced H$_2$ evolution performance of CdS under visible light irradiation. Appl. Surf. Sci. 473, 11–19 (2019). https://doi.org/10.1016/j.apsusc.2018.12.071

81. M. Shao, Y. Shao, J. Chai, Y. Qu, M. Yang et al., Synergistic effect of 2D Ti$_3$C and g-C$_3$N$_4$ for efficient photocatalytic hydrogen production. J. Mater. Chem. A 5, 16748–16756 (2017). https://doi.org/10.1039/c7ta04122e

82. Y. Xu, S. Wang, J. Yang, B. Han, R. Nie et al., Highly efficient photoelectrocatalytic reduction of CO$_2$ on the Ti$_3$C$_2$/g-C$_3$N$_4$ heterojunction with rich Ti$^{4+}$ and pyri-N species. J. Mater. Chem. A 6, 15213–15220 (2018). https://doi.org/10.1039/c8ta03135c

83. Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, X. Cao, Hydrothermal synthesis of TiO$_2$/Ti$_3$C$_2$ nanocomposites with enhanced photocatalytic activity. Mater. Lett. 150, 62–64 (2015). https://doi.org/10.1016/j.matlet.2015.02.135

84. H. Wang, R. Peng, Z.D. Hood, M. Naguib, S.P. Adhikari, Z. Wu, Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. Chemosensch 9, 1490–1497 (2016). https://doi.org/10.1002/cssc.201600165

85. L. Shi, C. Xu, D. Jiang, X. Sun, X. Wang et al., Enhanced interaction in TiO$_2$/BiVO$_4$ heterostructures via MXene Ti$_3$C$_2$-derived 2D-carbon for highly efficient visible-light photocatalysis. Nanotechnology 30, 075601 (2019). https://doi.org/10.1088/1361-6528/aaaf31

86. Q. Luo, B. Chai, M. Xu, Q. Cai, Preparation and photocatalytic activity of TiO$_2$-loaded Ti$_3$C with small interlayer spacing. Appl. Phys. A 124, 495 (2018). https://doi.org/10.1007/s00339-018-1909-6

87. C. Liu, Q. Xu, Q. Zhang, Y. Zhu, M. Ji et al., Layered BiOBr/Ti$_3$C$_2$ MXene composite with improved visible-light photocatalytic activity. J. Mater. Sci. 54, 2458–2471 (2018). https://doi.org/10.1007/s10853-018-2990-0

88. S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, 2D/2D heterojunction of ultrathin MXene/Bi$_2$WO$_6$ nanosheets for improved photocatalytic CO$_2$ reduction. Adv. Funct. Mater. 28, 1800136 (2018). https://doi.org/10.1002/adfm.201800136

89. A. Tariq, S.I. Ali, D. Akinwande, S. Rizwan, Efficient visible-light photocatalysis of 2D-MXene nanohybrids with Gd$^{3+}$ and Sn$^{4+}$-codoped bismuth ferrite. ACS Omega 3, 13828–13836 (2018). https://doi.org/10.1021/acsomega.8b01951

90. H. Wang, Y. Wu, T. Xiao, X. Yuan, G. Zeng et al., Formation of quasi-core-shell In$_2$S$_3$/anatase TiO$_2$ @metallic Ti$_3$C$_2$T$_x$ hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Catalysis B 233, 213–225 (2018). https://doi.org/10.1016/j.apcatb.2018.04.012

91. L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, In situ decoration of ZnS nanoparticles with Ti$_3$C$_2$ MXene nanosheets for efficient photocatalytic hydrogen evolution. J. Colloid Interface Sci. 545, 63–70 (2019). https://doi.org/10.1016/j.jcis.2019.03.014

92. T. Wojciechowski, A. Rozmysłowska-Wojciechowska, G. Matysyczek, M. Wrzecionek, A. Olszyna et al., Ti$_3$C MXene modified with ceramic oxide and noble metal nanoparticles: synthesis, morphostructural properties, and high photocatalytic activity. Inorg. Chem. 58, 7602–7614 (2019). https://doi.org/10.1021/acs.inorgchem.9b01015

93. C. Peng, H. Wang, H. Yu, F. Peng, (111) TiO$_2$-x/Ti$_3$C$_2$: Synergy of active facets, interfacial charge transfer and Ti$^{4+}$ doping for enhance photocatalytic activity. Mater. Res. Bull. 89, 16–25 (2017). https://doi.org/10.1016/j.materresbull.2016.12.049

94. G. Jia, Y. Wang, X. Cui, W. Zheng, Highly carbon-doped TiO$_2$ derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 6, 13480–13486 (2018). https://doi.org/10.1021/acssuschemeng.8b03406

95. C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao et al., High efficiency photocatalytic hydrogen production over ternary Cu/TiO$_2$@Ti$_3$C$_2$T$_x$ enabled by low-work-function 2D titanium carbide. Nano Energy 53, 97–107 (2018). https://doi.org/10.1016/j.nanoen.2018.08.040

96. Y. Lu, M. Yao, A. Zhou, Q. Hu, L. Wang, Preparation and photocatalytic performance of Ti$_3$C$_2$/TiO$_2$CuO ternary nanocomposites. J. Nanomater. 2017, 1978764 (2017). https://doi.org/10.1155/2017/1978764

97. W. Yuan, L. Cheng, Y. Zhang, H. Wu, L. Zheng, 2D layered Carbon/TiO$_2$ hybrids derived from Ti$_3$C$_2$ MXenes for photocatalytic hydrogen evolution under visible light irradiation. Adv. Mater. Interfaces 4, 1700577 (2017). https://doi.org/10.1002/admi.201700577

98. J. Low, L. Zhang, T. Tong, B. Shen, J. Yu, TiO$_2$/MXene Ti$_3$C$_2$ composite with excellent photocatalytic CO$_2$ reduction activity. J. Catal. 361, 255–266 (2018). https://doi.org/10.1016/j.jcat.2018.03.009

99. T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov et al., One-step synthesis of Nb$_2$O$_5$/C/Nb$_2$C (MXene) composites and their use as photocatalysts for hydrogen evolution. Ceram. Int. 44, 688–699 (2018). https://doi.org/10.1002/csci.201702317

100. X. Cheng, L. Zu, Y. Jiang, D. Shi, X. Cai, Y. Ni, S. Lin, Y. Qin, A titanium-based photo-fenton bifunctional catalyst of np-MXene/TiO$_2$-x nanodots for dynamic enhancement of catalytic efficiency in advanced oxidation processes. Chem. Commun. 54, 11622–11625 (2018). https://doi.org/10.1039/c8cc05866k

101. J. Li, S. Wang, Y. Du, W. Liao, Enhanced photocatalytic performance of TiO$_2$/C nanosheets derived from two-dimensional Ti$_3$CT$_x$. Ceram. Int. 44, 7042–7046 (2018). https://doi.org/10.1016/j.ceramint.2018.01.139
102. Y. Sun, Y. Sun, X. Meng, Y. Gao, Y. Dall’Agnese et al., Eosin Y-sensitized partially oxidized Ti$_3$C$_2$ MXene for photocatalytic hydrogen evolution. Catal. Sci. Technol. 9, 310–315 (2019). https://doi.org/10.1039/c8cy02240b

103. Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Ti$_3$C$_2$ MXene-derived Ti$_3$C$_2$/TiO$_2$ nanoflowers for noble-metal-free photocatalytic overall water splitting. Appl. Mater. Today 13, 217–227 (2018). https://doi.org/10.1016/j.apmt.2018.09.004

104. W. Yuan, L. Cheng, Y. An, S. Lv, H. Wu, X. Fan, Y. Zhang, X. Guo, J. Tang, Laminated hybrid junction of sulfur-doped TiO$_2$ and a carbon substrate derived from Ti$_3$C$_2$ MXenes: toward highly visible light-driven photocatalytic hydrogen evolution. Adv. Sci. 5, 1700870 (2018). https://doi.org/10.1002/advs.201700870

105. A. Shahzad, K. Rasool, M. Nawaz, W. Miran, J. Jang et al., Heterostructural TiO$_2$/Ti$_3$C$_2$T$_x$ (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 349, 748–755 (2018). https://doi.org/10.1016/j.cej.2018.05.148

106. Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue et al., 2D/2D/2D heterojunction of Ti$_3$C$_2$ MXene/MoS$_2$ nanosheets/TiO$_2$ nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity. Appl. Catal. B 246, 12–20 (2019). https://doi.org/10.1016/j.apcatb.2019.01.051

107. C.J. Zhang, S. Pinilla, N. McEvoy, C.P. Cullen, B. Anasori et al., Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017). https://doi.org/10.1021/acs.chemmater.7b00745

108. M. Sharma, S. Vaidya, A.K. Ganguli, Enhanced photocatalytic activity of g-C$_3$N$_4$-TiO$_2$ nanocomposites for degradation of Rhodamine B dye. J. Photochem. Photobiol. A 335, 287–293 (2017). https://doi.org/10.1016/j.jphotochem.2016.12.002

109. L.T. Alameda, P. Moradifar, Z.P. Metzger, N. Alem, R.E. Schaak, Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene. J. Am. Chem. Soc. 140, 8833–8840 (2018). https://doi.org/10.1021/jacs.8b04705