The Effect of Recombination on the Neutral Evolution of Genetic Robustness

Gergely J. Szöllős and Imre Derényi

Biological Physics Department, Eötvös University, Budapest

Abstract

Conventional population genetics considers the evolution of a limited number of genotypes corresponding to phenotypes with different fitness. As model phenotypes, in particular RNA secondary structure, have become computationally tractable, however, it has become apparent that the context dependent effect of mutations and the many-to-one nature inherent in these genotype-phenotype maps can have fundamental evolutionary consequences. It has previously been demonstrated that populations of genotypes evolving on the neutral networks corresponding to all genotypes with the same secondary structure only through neutral mutations can evolve mutational robustness [Nimwegen et al. Neutral evolution of mutational robustness, 1999 PNAS], by concentrating the population on regions of high neutrality. Introducing recombination we demonstrate, through numerically calculating the stationary distribution of an infinite population on ensembles of random neutral networks that mutational robustness is significantly enhanced and further that the magnitude of this enhancement is sensitive to details of the neutral network topology. Through the simulation of finite populations of genotypes evolving on random neutral networks and a scaled down microRNA neutral network, we show that even in finite populations recombination will still act to focus the population on regions of locally high neutrality.
I. INTRODUCTION

Robustness is the invariance of phenotypes in the face of perturbation [1]. It has been found to be present in living organisms at all levels of organizational complexity ranging from protein structure to small genetic circuits [2, 3], genome-scale networks such as metabolic networks [4, 5] and even entire organisms. The evolutionary mechanism for the observed robustness has, however, been far from clear. The fundamental problem lies in determining whether robustness is an evolved property or intrinsic to genetic systems [1]. An important stepping stone in solving this problem is establishing a theoretical understanding of under what conditions and to what extent natural selection can lead to the evolution of robustness.

According to the classic results of Kimura and Maruyama the average fitness of an asexually reproducing population (in the limit of very large populations) depends only on the mutation rate and is independent of the details of the fitness landscape [6]. This result, however, as stated in their paper, only holds under the assumption that the fittest genotype does not have any neutral sites. If neutral mutations are taken into account the average fitness of the population will depend on both the mutation rate and the details of the fitness landscape [7]. A growing body of work has explored the effect of neutral mutations on mutation-selection balance in infinite populations (quasispecies) and the balance of mutation-selection and drift in finite populations. Quasispecies theory [7] and simulations of finite populations of genotypes evolving with phenotype defined by RNA secondary structure [8, 9] or simple lattice models of protein folding [10] have established that a selective pressure to evolve robustness against mutations exists. The net effect of this selection pressure is to concentrate the population in regions of genotype space where the density of neutral sequences is higher, selecting individual sequences with an increased robustness against mutations. Focusing on the case where all mutations are either neutral or lethal, van Nimwegen et al. [11] were able to solve the quasispecies equations and have demonstrated that the extent to which mutational robustness (the average number of neutral neighbors) evolves depends solely on the topology of the network of neutral genotypes.

In this work we examine the effects of recombination on the evolution of mutational robustness on networks of neutral genotypes and its dependence on the topology of the network, both in the limit of infinite populations and for finite populations. Previous work on the effects of recombination on the population dynamics on networks of neutral genotypes is scarce, Xia et al. [12] have shown that in a simple lattice model of protein folding recombination leads to increased
thermodynamic stability, but have not addressed the evolution of mutational robustness. In a wider context the effects of recombination on the evolution of robustness has been studied in highly simplified model developmental networks [13], where simulation results suggest that recombination between model gene networks imposes selection for mutational robustness, and that negative epistasis evolves as a byproduct of this selection. Even though the evolution of mutational robustness in network of neutral genotypes under recombination has not been previously studied in detail the observation that recombination has a contracting property (i.e. it always creates genotypes that are within the boundaries of the current mutational cloud) has lead to the expectation that it should concentrate the population in those regions of genotype space in which the density of neutral genotypes is highest [7].

In order to gauge the most general effects of recombination we define ensembles of random networks of neutral genotypes and demonstrate that recombination leads to the concentration of the population in highly neutral region of the genotype space, and hence the evolution of mutational robustness, in these generic neutral networks. Turning to finite populations we show that similar to the case where only mutation is present (cf. [11]) the evolution of mutational robustness requires the population to be sufficiently polymorphic (i.e. the product of the population size and the mutation rate, μN, must be greater then one). We also demonstrate using a scaled down analog of microRNA stem-loop hairpin structures that, provided a sufficiently polymorphic population, recombination will lead to the evolution of mutational robustness on larger and more realistic neutral networks by concentrating the population on local regions of genotype space with high neutrality.

II. MODEL

A. Population dynamics

Considering the genotype space of sequences of length L over some alphabet A, following van Nimwegen et al. [11] we assume that genotype space contains a neutral network of high, but equal fitness genotypes – those sharing a common preferred phenotype. We assume, further, that the majority of the population is concentrated on this neutral network, i.e. that the remaining part of genotype space consist of genotypes with markedly lower fitness, such that to good approximation all such phenotypes maybe considered lethal. For our evolutionary process we assume a selection-
mutation-recombination dynamics with constant population size \(N \). We consider all mutations or recombination events leading off the neutral subset of genotypes \(G \) with high fitness to be fatal. Each individual of the population suffers mutations at a rate \(\mu L \) and undergoes recombination with a random member of the population at a rate \(\rho L \). Individuals who acquire a fatal genotype (one not part of the the neutral network) are replaced through reproduction of a random individual of the population.

In the limit of large populations the stationary distribution of the population on a given neutral network \(G \) only depends on the ratio \(r = \rho/\mu \) and the neutral network \(G \). Considering one-point recombination crossover events and denoting the number of neutral genotypes in \(G \) by \(M \) and the frequency of genotype \(i \in \{0, M\} \) in the population by \(x_i \) the time evolution of our system in the \(N \to \infty \) limit is given by:

\[
\dot{x}_i = \sigma x_i - (\mu L + \rho L)x_i + \mu \sum_{j=1}^{M} M_{ij}x_j + \rho \sum_{k=1}^{M} \sum_{l=1}^{M} R_{ikl}x_kx_l,
\]

where \(M_{ij} = 1 \) if genotype \(i \) can be derived from genotype \(j \) by replacing a single letter and zero otherwise, \(R_{ikl} \) equals the number of recombination (one-point crossover) events through which genotypes \(k \) and \(l \) yield genotype \(i \), and

\[
\sigma = (\mu L + \rho L) - \sum_{i=1}^{M} \left(\mu \sum_{j=1}^{M} M_{ij}x_j + \rho \sum_{k=1}^{M} \sum_{l=1}^{M} R_{ikl}x_kx_l \right).
\]

is the uniform growth rate of the population, that compensates for the disappearance of lethal genotypes generated by mutation and recombination, ensuring that the population size remains constant, i.e. \(\sum_i \dot{x}_i = 0 \) at all times. We compute the limit distribution of the population \((x_i^{st}) \) by numerically computing the stationary solution of equations (1).

For finite \(N \) stochasticity resulting from the discrete nature of the reproduction process must also be taken into consideration. Considering discrete generations we may proceed by solving equation (1) while introducing sampling noise (i.e. drift) by sampling the population at unit time intervals, the mutation and recombinations rates will then be in units of events per generation. Sampling consists of choosing \(N \) individuals and assigning each a genotype \(i \) with probability \(x_i \) and subsequently updating \(x_i \) accordingly and integrating equation (1) for one generation time before performing sampling again. The resulting stochastic population dynamics depends on the product of the mutation rate and population size \(\mu N \), the ratio of the mutation and recombination rates \(r \), and the structure of \(G \). For sufficiently large sample size the stochastic dynamics of our
model only depends on the combined parameters μN and r. Appropriately large sample size N was chosen by increasing N (while keeping μN and r fixed) until the effects of sample size became negligible ($N \lesssim 1000$).

Computing R_{ikl} requires enumerating all $M \times M \times L$ possible recombination events. This is only feasible for M not larger then a few thousand genotypes. For larger neutral networks calculation of the infinite population limit stationary distribution is not currently tractable, it is still possible, however, to simulate the finite population dynamics as the complexity of these computations scales with $O(N^2 L)$ and not $O(M^2 L)$. In these simulations we average over several runs starting form random initial conditions.

B. Random neutral networks

We investigated the effects of recombination on two types of random neutral network ensembles. In both cases we choose an alphabet of size 4 and generated random neutral networks consisting of M genotypes of length L. The first type of random networks (hereafter referred to as uniform attachment networks) were generated by choosing a random seed genotype and adding a random neighboring genotype (one that can be obtained from it by a single mutation). This process was continued by selecting a random genotype from those already added to the network and adding one its neighbors not already in the network at random until the network contains M genotypes. The second type of random networks (hereafter referred to as preferential attachment networks) were grown at each step by choosing genotypes from those already added to the network with a probability proportional to the number of neighbors the genotype already has in the network, and adding a neighbor not contained in the network at random until the network contained M genotypes.

This choice of random ensembles is motivated by the expected differences in the topology of networks belonging to the two ensembles. Preferential networks have a topology where the most connected genotypes are also more centrally located on average.

C. Scaled down microRNA neutral network

The structure of microRNA precursor stem-loops, have been shown to exhibit a significantly high level of robustness in comparison with random RNA sequences with similar stem-loop struc-
tures [14]. This observation makes the neutral networks with identical stem-loop like secondary structure a natural testing ground for the evolution of mutational robustness. To construct a neutral network on which the above population dynamics is computationally tractable we proceed to construct a scaled down analog of such stem-loop structures. We downloaded all currently available miRNA stem-loop precursor sequences from miRBase [15]. Analysis of the sequences and the corresponding structures indicated that hairpin like stem-loops consisted of, on average, a 7.241-base-long loop and a 50.429-base-pair-long stem region. To first approximation we may consider the neutral network of a hairpin like structure to consist of large quasi-independent regions corresponding to mutations in the central loop region that are connected by more rare mutations in the stem region. Aiming to approximate the neutral networks of stem-loop structures by that of a single such region we used the Vienna RNA secondary structure prediction package [16] to find connected neutral networks (a set of genotypes that can be reached through single mutations) of the hairpin like structure with 3-base-pair-long stem and a 7-base-long loop region. In the following we present results for the $M = 37972$ connected neutral network that contains the sequence GACUCGCACUGUC.

III. RESULTS

A. The effects of recombination in the infinite population limit

van Nimwegen et al. [11] have shown that in the limit of large populations the average number of neutral single mutant neighbors in a population in selection-mutation balance is larger then the average number of neutral neighbors in the network. The population tends to concentrate in parts of the network with enhanced neutrality. Introducing recombination and numerically computing the stationary distribution of the population in selection-mutation-recombination balance using equation (1) we observe that recombination concentrates the population even further. This observation can be quantified by comparing the entropy of the stationary population distributions $x_i^{st.}$ defined by:

$$H = \ln \frac{1}{M} - \sum_{i=1}^{M} x_i^{st.} \ln x_i^{st.}.$$ \hspace{1cm} (3)
for different values of r. To assess the mutational robustness of the population we compute the average number of neutral neighbors of a random individual in the population:

$$D = \sum_{i=1}^{M} x_i^\text{st} d_i,$$

where d_i is the number genotypes in the neutral network that can be obtained from genotype i by replacing a single letter. To obtain a measure of the extent to which excess mutational robustness emerges solely as an effect of the population dynamics we compare this value to the average neutrality of the network:

$$D_0 = \frac{1}{M} \sum_{i=1}^{M} d_i.$$

To compute the above averages we generated 10^5 random neutral networks with $M = 200$ and $L = 20$ of both types and averaged H and D/D_0 over them. We also generated networks with larger M (and L) values and found qualitatively similar results. We note that due to the finite nature of both the mutation rate and population size in natural populations (together quantified by μN) it is networks of relatively small M that are most relevant biologically, in the sense that natural populations with finite μN are in effect restricted to some relatively small region of the neutral network for time scales long enough for local selection-mutation-recombination balance to be achieved. This implies that the extent to which robustness is evolved is determined by the local topology. The exploration of the entire neutral network occurs on a much longer time scale. This long time scale exploration is of secondary importance from the perspective of the evolution of mutational robustness as the topology of the neutral network beyond the mutational cloud is in effect invisible to the population dynamics.

As shown in Fig. 1.a. and Fig. 1.c. recombination leads to a similar increase in entropy in both uniform attachment and preferential attachment random networks. The entropy increase as a function of r is slightly less significant for preferential attachment networks $H = 0.726 \pm 0.128, \ 0.982 \pm 0.14, \ 2.102 \pm 0.19, \ 3.379 \pm 0.143$ for $r = 0, 1, 10, 100$, respectively, then for uniform attachment networks, $H = 0.492 \pm 0.76, \ 1.449 \pm 0.202, \ 2.518 \pm 0.207, \ 3.541 \pm 0.219$ for $r = 0, 1, 10, 100$, respectively.

If we look, however, at the increase in average mutational robustness (Fig. 1.b. and Fig. 1.d.) we find that as a function of r it is significantly larger for preferential attachment networks $D/D_0 = 1.775 \pm 0.067, \ 2.200 \pm 0.108, \ 3.079 \pm 0.268, \ 3.951 \pm 0.494$ for $r = 0, 1, 10, 100$, respectively, then for uniform attachment networks, $D/D_0 = 1.684 \pm 0.087, \ 2.024 \pm 0.125, \ 2.569 \pm 0.260, \ 3.045 \pm$
0.422 for $r = 0, 1, 10, 100$, respectively. This suggests that in preferential attachment networks, were the expected neutrality of genotypes with high centrality reaches higher levels, evolve higher levels of mutational robustness.

B. The effects of recombination in finite populations

Similar to the case where only mutation is present the evolution of mutational robustness in the presence of recombination requires that the population be sufficiently polymorphic, i.e. that the product of the mutation rate and the population be greater then unity. If, however, this condition is satisfied the presence of recombination leads to the evolution of increased mutational robustness under rather general circumstances. To quantify the extent to which mutational robustness increases we proceed by considering the time average over the stochastic population dynamics. Due to the separation of the time scales at which the population attains local selection-mutation-recombination balance and the much longer time-scale over which it explores the entire neutral network, averaging over a set of random initial conditions was used to attain a computationally tractable approximation of the long time average.

Performing simulations for different values of μN shows that D/D_0 approaches its infinite population as μN is increased (see Fig.2.). This indicates that recombination concentrates the population on local regions of higher neutrality for smaller μN as well. In order to examine the effects of recombination on a more realistic neutral network we also performed simulations on a scaled down version of a microRNA stem-loop (Fig.3.). We found that for all values of μN the extent to which the population evolves mutational robustness is higher in the presence of recombination then in its absence.

IV. CONCLUSIONS

We examined the effects of recombination on the extent to which populations evolving on neutral networks exhibit mutational robustness. Our results show that recombination leads to enhanced mutational robustness under very general circumstances. Calculating the stationary limit distribution of populations evolving on neutral networks drawn from two different random ensembles in the infinite population limit indicate that populations in which recombination is present are more sensitive to details of the topology than populations where only mutation is present. In par-
ticular, neutral networks where genotypes of high centrality exhibit larger neutrality evolve greater mutational robustness.

While our results indicate that significant mutational robustness readily evolves in the presence recombination, this result must be considered with the caveat that evolution of mutational robustness through neutral dynamics requires sufficient polymorphism to be present in the population. Our results shown, however, that provided this condition is met, recombination leads to increased values of mutational robustness in comparison to populations where only mutation is present.

Acknowledgments

This work was supported by the Hungarian Science Foundation (K60665).

[1] de Visser, JAGM et al.: Perspective: Evolution and Detection of Genetic Robustness. Evolution 57(9), 1959-1972 (2003).
[2] Ciliberti, S ,Martin, OC and Wagner, A: Robustness can evolve gradually in complex regulatory networks with varying topology. PLoS Computational Biology 3(2) e15 (2007).
[3] Zauner, H and Sommer, RJ: Evolution of robustness in the signaling network of Pristionchus vulva development. Proc. Natl. Acad. Sci. USA 104(24), 10086-10091 (2007).
[4] Kacser, H and Burns, JA: The molecular basis of dominance. Genetics 97, 639-666 (1981).
[5] Albert, R, Jeong, H and Barabasi, AL: Error and attack tolerance of complex networks. Nature 406, 378-382 (2000).
[6] Kimua, M and Maruyama, T: The mutational load with epistatic gene interactions in fitness. Genetics 54, 1337-1351 (1966).
[7] Wilke, CO and Adami, C: Evolution of mutational robustness. Mutation Research 522, 3-11 (2003).
[8] Wagner, A and Stadler, PF: Viral RNA and evolved mutational robustness J. Exp. Zool.(Mol. Dev. Evol.) 285 119-127 (1999).
[9] Huynen, MA and Hogeweg, P: Pattern generation in molecular evolution: exploitation of the variation in RNA landscapes. J. Mol. Evol. 39, 71-79 (1994).
[10] Bornberg-Bauer, E and Chan, HS: Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space. Proc. Natl. Acad. Sci. USA 96(19), 10689-10694 (1999).
[11] van Nimwegen, E., Crutchfield, J.P. and Huynen, M: Neutral evolution of mutational robustness. Proc. Natl. Acad. Sci. USA 96(17), 9716-9720 (1999).

[12] Xia, Y. and Levitt, M: Roles of mutation and recombination in the evolution of protein thermodynamics. Proc. Natl. Acad. Sci. USA 99(16), 10382-10387 (2002).

[13] Azevedo, R.B.R. et al.: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440, 87-90 (2006).

[14] Borenstein, E. and Ruppin, E: Direct evolution of genetic robustness in microRNA. Proc. Natl. Acad. Sci. USA 103(17) 6593-6598 (2006).

[15] Griffiths-Jones S et al.: miRBase: microRNA sequences, targets and gene nomenclature. NAR 34, D140-D144 (2006).

[16] Hofacker, I.L. et al.: Fast Folding and Comparison of RNA Secondary Structures. Monatshefte f. Chemie 125 167-188 (1994).
FIG. 1: Histograms of the entropy H and mutational robustness enhancement D/D_0 for different values of r. Numerically calculating the stationary distribution of the population on 10^5 neutral networks $M = 200$ genotypes of length $L = 20$ randomly drawn from the uniform attachment ensemble (a, b) and preferential attachment ensembles (b, c) indicated that recombination leads to significant enhancement of mutational robustness under very general conditions. Comparison of the results for the two ensembles suggests that preferential attachment networks, where genotypes of higher centrality are more neutral, evolve higher levels of mutational robustness.
FIG. 2: Simulations on a random uniform attachment network with $M = 200$, $L = 20$ with different values of μN show that the extent to which mutational robustness is evolved increases as μN becomes larger. (a-c) snapshots of the time evolution of mutational robustness enhancement D/D_0 in a population evolving on the same random uniform attachment network with different values of μN, time is indicated in units of $2N$ generations. Recombination was turned on at $t = 30$ (indicated by the arrow). (d) mutational robustness enhancement D/D_0 as a function of μN for the same network with $r = 10$ as calculated from 100 simulations with random initial conditions, where the population was allowed to evolve for $100 \times 2N$ generations, the error bars indicate the variance in the time averages over runs with random initial conditions. The dashed line indicates the value of the mutational robustness enhancement D/D_0 in the $N \rightarrow \infty$ limit, throughout.
FIG. 3: To investigate a more realistic neutral network we performed simulations using a scaled down analog of microRNA stem-loop hairpin structures (a) consisting of a 7 nucleotide long loop and a 3 nucleotide long stem region. (b) The extent of mutational robustness was found to be higher in the presence of recombination ($r = 10$) then without it ($r = 0$) for all values of μN. Simulations for different values of μN were performed for a set of 20 random initial conditions starting from which the population was allowed to evolve for $100 \times 2N$ generations, the error bars indicate the variance in the time averages over runs with random initial conditions. The dashed line indicates the value of D_0 throughout.