Depression as a risk factor for the development of rheumatoid arthritis: a population-based cohort study

Isabelle A Vallerand,1,2 Ryan T Lewinson,1 Alexandra D Frolkis,3 Mark W Lowerison,2 Gilaad G Kaplan,2,3 Mark G Swain,3 Andrew G M Bulloch,2,4 Scott B Patten,2,4 Cheryl Barnabe2,3

ABSTRACT

Objectives Major depressive disorder (MDD) is associated with increased levels of systemic proinflammatory cytokines, including tumour necrosis factor alpha. As these cytokines are pathogenic in autoimmune diseases such as rheumatoid arthritis (RA), our aim was to explore on a population-level whether MDD increases the risk of developing RA.

Methods A retrospective cohort study was conducted using The Health Improvement Network (THIN) database (from 1986 to 2012). Observation time was recorded for both the MDD and referent cohorts until patients developed RA or were censored. Cox proportional hazards models were used to determine the risk of developing RA among patients with MDD, accounting for age, sex, medical comorbidities, smoking, body mass index and antidepressant use.

Results A cohort of 403 932 patients with MDD and a referent cohort of 5 339 399 patients without MDD were identified in THIN. Cox proportional hazards models revealed a 31% increased risk of developing RA among those with MDD in an unadjusted model (HR = 1.31, 95% CI 1.25 to 1.36, p < 0.0001). When adjusting for all covariates, the risk remained significantly increased among those with MDD (HR = 1.38, 95% CI 1.31 to 1.46, p < 0.0001). Antidepressant use demonstrated a confounding effect that was protective on the association between MDD and RA.

Conclusion MDD increased the risk of developing RA by 38%, and antidepressants may decrease this risk in these patients. Future research is necessary to confirm the underlying mechanism of MDD on the pathogenesis of RA.

Key messages

What is already known about this subject?
► Recent evidence suggests major depressive disorder (MDD) may be associated with increased levels of systemic inflammatory cytokines that are thought to be important in the pathophysiology of rheumatoid arthritis (RA).

What does this study add?
► Based on the inflammatory hypothesis of depression, we investigated the possibility that MDD may increase the risk of developing RA.
► In this study evaluating over 5 million patients over 25 years, we found that patients with MDD were at a 38% increased risk of subsequently developing RA.
► Antidepressant medication use had a confounding effect that was protective on the association between MDD and RA.

How might this impact on clinical practice?
► MDD may be a risk factor for development of RA, but this risk may be lowered through treatment with antidepressants.

INTRODUCTION

The pathophysiology of rheumatoid arthritis (RA) is a consequence of local and systemic inflammation driving joint damage, morbidity and mortality.1,4,5 However, the inciting risk factors for disease development remain less well understood. Some risk factors for RA have been demonstrated consistently, such as female sex, smoking and genetics (HLA-DR4),4,5 but these only partially explain individual risk. At a molecular level, tumour necrosis factor alpha (TNFα), a proinflammatory cytokine, plays an important role in RA pathophysiology.6,7 However, it remains unknown whether elevated TNFα levels induced by means of a different disease process could independently increase the risk of developing RA.

Patients with RA are recognised to have an increased risk of major depressive disorder (MDD),6 and a systematic review and meta-analysis has shown that the prevalence of MDD in patients with RA is estimated to be 16.8% (95% CI 10% to 24%).7 Interestingly, we previously demonstrated that MDD can increase the risk of developing psoriatic arthritis, another inflammatory arthropathy,3 but it is not known whether MDD can increase
the risk of RA. MDD has been identified to have a direct
effect on systemic inflammation.9 For instance, individ-
uals with MDD exhibit increased serum concentrations of
TNF\(\alpha\) relative to healthy controls independent of
underlying inflammatory disease.10 A relationship exists
between serum TNF\(\alpha\) concentrations and brain 5-HTT
(serotonin) receptors, proposing a molecular link
between MDD and inflammation.11 Based on this and the
association of TNF\(\alpha\) with RA pathogenesis, it is possible
that exposure to MDD may increase the risk of subse-
quently developing RA. In addition, MDD is known to
be associated with numerous adverse health behaviours
such as physical inactivity, poor dietary choices and
smoking and these could be contributing factors towards
an elevated RA risk.

Based on the understanding that MDD may have
inflammatory associations and can predispose to adverse
health behaviours, we hypothesised that patients with
MDD are at a significantly increased risk of developing
RA compared with the general population without MDD.

\section*{METHODS}

\textbf{Data source}

THIN is an electronic database that contains general
practice medical records from over 5\% of the UK
population, with over 25 years of follow-up.12 In the
UK, specialist referrals are sent from each patient’s
general practitioner (GP) and information from special-
ists’ offices are returned to the GP and subsequently
recorded in THIN. It has also been demonstrated that
patients registered in THIN have similar age and sex
distributions to the general UK population.13,14 There-
fore, THIN is well suited for epidemiological studies and
has been used previously for the study of both RA15 and
MDD.12

\textbf{Study population}

We identified all individuals aged 10–90 years who have
been registered in THIN for at least 1 year. Any individ-
uals with a diagnostic Read code for RA or MDD during
the first year of follow-up in THIN were excluded so that
only incident cases of RA and MDD were considered.
Among patients included in the study, their inception
date in THIN was considered as the start of follow-up in
the study.16

\textbf{Exposure}

The primary exposure in this study was incident MDD,
defined by the presence of any diagnostic Read code
for MDD, excluding patients with any codes for bipolar
disorder, after at least 1 year in THIN, as done previ-
ously.8,16 The date of exposure was identified by the first
recorded MDD Read code. Cases of MDD developing
after RA were excluded from this study in order to ensure
the appropriate temporal association between MDD and
incident RA.

\textbf{Outcome}

The primary outcome of interest was development of
RA. A diagnosis of RA was defined by the presence of at
least one diagnostic Read code for RA.15 Eligible Read
codes were determined by two physicians (CB, a rheuma-
ologist and RTL, a physician-scientist with expertise in
musculoskeletal health), in a similar fashion to previous
research.15 All patients were followed until the earlier
of (1) first diagnostic RA Read code, (2) transfer out of
practice, (3) death, (4) end of data collection period (up
to 15 May 2012). Observations were censored in patients
where a RA Read code was not recorded during the study
period. As described above, we ensured only incident
cases of RA were considered by excluding any patient
with a Read code for RA within 1 year of registration in
THIN.

\textbf{Covariates}

Covariates assessed included baseline age (assessed both
continuously and categorically (onset age <45 or \(\geq 45\)),17
sex, body mass index (BMI) (kg/m\(^2\)), smoking status
(current, ex-smoker or never), other major medical
comorbidities (defined using the Charlson Comorbid-
ity Index) and use of antidepressants. The baseline values
for age, sex, BMI and smoking status were all determined
based on their value at the time point closest to each
patient’s start date in the study. Due to the large propor-
tion of missing data for BMI, we performed multiple
imputation (m=20) on the BMI variable. Charlson
Comorbidity Index for each patient considered all Read
codes up to 3 years from the patient’s start date.18 Anti-
depressant use was classified based on the presence of
at least one antidepressant drug code during the study
period and occurring after the MDD diagnosis in the
exposed cohort. Antidepressant use included any agents
from the following categories: (1) selective serotonin
reuptake inhibitors, (2) selective norepinephrine reup-
take inhibitors, (3) serotonin modulators, (4) atypical
antidepressants, (5) monoamine oxidase inhibitors or
(5) tricyclic antidepressants.

\textbf{Statistical analysis}

All analyses were performed using STATA/MP V.13.1
with a significance level set at alpha 0.05. The study
index date was the patient’s start date in THIN, the time
of exposure was the date of first diagnosis of MDD (if
applicable) and the time of outcome was the first date
on which one of the outcome criteria were fulfilled. For
patients who developed MDD, their data were partitioned
and analysed according to unexposed time (before diag-
nosis) and exposed time (after their first MDD Read
code). This was done to minimise the risk of survival
bias.16 Cox proportional hazards models were used to
evaluate the risk of developing RA based on the exposure
of MDD, expressed as a HR. An unadjusted model and a
fully adjusted model were developed, with all covariates
included in the full model. To identify any variables that
produced a confounding effect, a backwards elimination
procedure was used where each term was removed from the model, one at a time to determine whether they induced a substantial (>10%) change to the estimated HR. The proportional hazards assumption was evaluated by testing the Schoenfeld residuals and constructing a log-log plot, and based on these, it was concluded that there was no evidence of violation.

Sensitivity analyses were conducted to evaluate whether the association found was robust against modifications to the inclusion criteria. As such, we applied a 3-year washout period for MDD, where patients with a diagnosis of MDD during those periods were considered prevalent and therefore excluded from analyses. Additionally, a sensitivity analysis was used to establish sufficient follow-up time for outcomes to be observed by imposing a minimum 3 years of follow-up time in THIN. To explore the impact of imposing a minimum timeframe between the exposure and outcome, a sensitivity analysis was performed to restrict the results to patients with a minimum of 6 months between a diagnosis of MDD and RA. A more specific case definition of RA was tested in an additional sensitivity analysis where patients were only coded as having RA if they had any RA Read code and the presence of at least one disease-modifying antirheumatic drug (DMARD) medication. Last, since some patients in the general population were exposed to antidepressants without an MDD Read code (as these medications are often used for other non-MDD indications), a sensitivity analysis was performed where the risk of developing RA was compared between those in the general population who were exposed, to those who were not exposed to antidepressants. As well, the proportion of patients who developed RA among those who were exposed was compared with the patients unexposed to antidepressants in the MDD cohort. These results were reported in a descriptive manner to help determine whether there may be an independently protective effect or confounding effect of antidepressants on the risk of developing RA.

RESULTS
We identified a cohort of 403,932 patients with MDD and a referent cohort of 5,339,399 patients in the general population without an MDD diagnosis at any time during observation. A flow diagram of patient disposition is demonstrated in figure 1. Patients included in this study had similar age and sex distributions to the population before applying the exclusion criteria (table 1). The median follow-up time for patients included in the study was 6.7 years (IQR: 9.3 years). Overall, patients in the MDD cohort were older, more likely to be female, current smokers, more likely to have at least one comorbid disease and use antidepressants (all p<0.0001, table 1). In the MDD cohort, 88.3% of patients had used antidepressants at any point during follow-up compared with 15.1% of patients in the referent cohort. Among those with MDD, there were 2192 patients who developed RA (0.54%) with an incidence rate of 85.4 per 100,000 person-years. In the general population cohort, there were 24,021 patients who developed RA (0.45%) with an incidence rate of 52.8 per 100,000 person-years. Patients in the MDD cohort developed RA at an earlier age (median: 56.0, IQR: 19.6 years) compared with those in the referent cohort (median: 61.0, IQR: 21.9 years). Figure 2 demonstrates the Kaplan-Meier failure curves for the MDD and referent cohorts on the risk of developing RA.

The crude, unadjusted risk of developing RA was 31% higher among those with MDD compared with the general population (HR=1.31, 95% CI 1.25 to 1.36, p<0.0001) (table 2). Initially, evidence of effect modification by age was detected statistically (p<0.0001); however, when results were stratified by younger onset of MDD<45 years vs older onset≥45 years, the estimated HRs differed by approximately 6%, thus to focus on clinical relevance, the age interaction was suppressed and a fully adjusted model was constructed. After adjusting for age (as a continuous variable), sex, smoking status, BMI, Charlson Comorbidity index and antidepressant use, the risk of developing RA among those with MDD remained significantly increased (HR=1.38, 95% CI 1.31 to 1.46, p<0.0001). In a backward elimination procedure used to examine whether any variables had a confounding effect, only the removal of the antidepressant variable produced a substantial change (ie, ≥10%) to the estimated HR. Antidepressants appeared to produce a confounding effect...
Table 1 Baseline characteristics of patients with MDD and the general population

Variable	MDD cohort (n=403 932)	General population (n=5 339 399)	P values
Age			<0.0001
Median (IQR) years*	36.6 (24.0)	35.5 (27.7)	
Sex			<0.0001
Females†	40 749 (65.1%)	2 648 590 (49.6%)	
Obesity status			<0.0001
BMI<30 kg/m²	156 437 (38.7%)	2 231 430 (41.8%)	
BMI≥30 kg/m²	33 021 (8.2%)	369 156 (6.9%)	
Missing‡	214 474 (53.1%)	2 738 813 (51.3%)	
Smoking status			<0.0001
Current	105 256 (26.1%)	1 004 206 (18.8%)	
Ex-smoker	32 481 (8.0%)	474 452 (8.9%)	
Never	187 864 (46.5%)	2 711 850 (50.8%)	
Missing	78 331 (19.4%)	1 148 891 (21.5%)	
Charlson comorbidity index§			<0.0001
0	314 913 (78.0%)	4 339 935 (81.3%)	
1	64 856 (16.1%)	637 332 (11.9%)	
2	11 864 (2.9%)	139 174 (2.6%)	
3	4270 (1.1%)	52 177 (1.0%)	
≥4	8029 (2.0%)	170 781 (3.2%)	
Antidepressant use			<0.0001
Users	356 493 (88.3%)	804 444 (15.1%)	
Non-users	47 439 (11.7%)	4 534 955 (84.9%)	

Values show the number (per cent) of patients with a given characteristic.
*Median age in all patients before exclusion—MDD: 36.5 (23.8); General population: 35.1 (29.0).
†Sex (%) in all patients before exclusion—MDD: 65.3% females; General population: 51.4% females.
‡BMI—represented here as baseline data before multiple imputation.
§Higher=more severe or greater number of medical comorbidities.

BMI, body mass index; MDD, major depressive disorder.

association which had a protective effect on the risk of developing RA.

In a sensitivity analysis where the initial washout period was extended from patients being registered in THIN for a minimum of 1 year to 3 years, the risk of RA among those with MDD remained significantly elevated (HR=1.40, 95% CI 1.28 to 1.53, p<0.0001). Similarly, a sensitivity analysis used to ensure a minimum of a 3 year follow-up period in THIN also demonstrated that the hazard remained significantly higher in those with MDD (HR=1.34, 95% CI 1.24 to 1.45, p<0.0001). When a minimum of 6 months between a diagnosis of MDD and RA was applied, a similar significant association was observed (HR=1.28, 95% CI 1.18 to 1.38, p<0.0001). Using a more specific definition of the RA outcome where a patient had to have a Read code and a code for a DMARD medication, the results remained significant (p<0.0001) but increased in magnitude (HR=1.63, 95% CI 1.54 to 1.72, p<0.0001). Last, when assessing the effect of antidepressants on RA risk among the general population without an MDD code, it was found that 0.68% of those using antidepressants developed RA compared with 0.41% among those who did not use antidepressants. In the cohort with MDD, the risk was lower among those using antidepressants where 0.51% developed RA compared with 0.77% among those not being treated with antidepressants.

DISCUSSION

The present study highlights that patients with MDD are at a 38% increased risk of subsequently developing RA. In perspective, this risk is about equivalent or slightly higher than the risk imposed by obesity on development of RA. This increased risk was not sensitive to the washout period, follow-up or exposure time in this study, but antidepressant medication was identified as a confounder resulting in the risk of RA being reduced, underscoring the important effect of MDD on developing RA. This finding adds to our understanding on the relationship between MDD and inflammatory arthritis, where previous research has shown MDD increases the risk
Figure 2 Kaplan-Meier failure curves with development of RA stratified by depression exposure. Here, it can be seen that study follow-up was up to 25 years and that the probability of developing RA was greater among those with MDD (blue) compared with the general population cohort group (red). MDD, major depressive disorder; RA, rheumatoid arthritis.

Importantly, while the risk of RA was higher among those with MDD, the absolute risk of RA remained low. Thus, clinically, our data would not support any role for RA screening among those with MDD; however, physicians involved in the care of patients with MDD should be aware that RA may be relatively more common among this group, and so prompt referral to a rheumatologist should be initiated if clinical suspicion for RA arises.

MDD is known to be associated with detrimental health behaviours such as poor diet and physical inactivity. It remains possible that these maladaptive health behaviours, indirectly captured in our study as MDD, contribute to an increased risk of RA. Supporting this possibility, it has been shown that RA flares can be exacerbated by diet and that regular physical activity can help improve function. Alternatively, recent studies in molecular neuropsychiatry have demonstrated that MDD is associated with increased levels of serum TNFα and increased TNFβ levels in patients with MDD is correlated with increased serotonin transporter availability, together suggesting a systemic inflammatory component in MDD. RA severity is known to be associated with elevations in TNFβ levels, and thus it remains possible that MDD drives a state of inflammation leading to an increased risk of RA in predisposed individuals. Unfortunately, as THIN does not routinely document diet, physical activity or inflammatory markers, it is presently not possible to conclude which of the above possible mechanisms contributes to the observed increased risk of RA among those with MDD. However, our identification of an association between MDD and RA provides impetus for future studies to test the influence of diet, physical activity and inflammation on driving RA development.

Of note, a recent study from the USA documented the risk of RA increased in a dose-response relationship with the number of post-traumatic stress disorder (PTSD) symptoms a patient experienced. PTSD is a psychiatric disorder also associated with both systemic inflammation and poor health behaviours, thus it seems our findings are consistent with this previous work.

Our study also revealed that patients with MDD treated with antidepressants were at a lower risk of RA (0.51%) compared with patients with MDD without antidepressant medication (0.77%). These results represent the possibility that treated MDD has a reduced risk of RA compared with untreated MDD. Treated MDD may improve health behaviours or mitigate any inflammatory associations and render these patients more similar to the general population without MDD. When exploring the relationship between antidepressants and RA development in the general population, the risk was higher among those using antidepressants (0.68%) compared with those not using these medications (0.41%), thus suggesting that antidepressants are not likely to have an independently protective effect.

Table 2 HRs for the risk of RA

Model	HR (95% CI)	P values
Unadjusted model		
Depression	1.31 (1.25 to 1.36)	<0.0001
Multivariable adjusted model*		
Depression	1.38 (1.31 to 1.46)	<0.0001
Age (per 1 year)	1.03 (1.03 to 1.03)	<0.0001
Male sex	0.48 (0.46 to 0.49)	<0.0001
Charlson comorbidity index	1.41 (1.39 to 1.43)	<0.0001
BMI	1.02 (1.02 to 1.03)	<0.0001
Smoking		
Current	1.74 (1.69 to 1.80)	<0.0001
Ex-smoker	1.40 (1.34 to 1.46)	<0.0001
Antidepressant use	0.74 (0.71 to 0.76)	<0.0001

Cox proportional hazards models were used to estimate the HRs of developing RA based on whether patients had depression or not (ie, depression vs general population). Depression significantly increases the risk of developing RA when using unadjusted models as well as models accounting for numerous covariates. Values show the number (per cent) of patients with a given characteristic.

*Observations with missing data were omitted from the models, except BMI which was handled using multiple imputation. BMI, body mass index; RA, rheumatoid arthritis.
on RA pathogenesis. It is possible that these patients without MDD are being treated with antidepressants for other health problems, which may slightly increase their risk of developing RA. As such, it appears that treating depression with antidepressants can help to lower the risk of developing RA but there is insufficient evidence to suggest any role for the prevention of RA in general by using antidepressants. One limitation in this conclusion is that those patients with MDD pursuing/benefitting from non-pharmacological therapeutic strategies including psychotherapy are not identifiable in our dataset.

This analysis capitalises on a large sample size with long follow-up, which allowed us to study the relatively infrequent outcome of RA on a population-level. However, it is also important to recognise that while numerous covariates were considered, there may be additional variables not accounted for in this study (eg, antibodies), and we are unable to develop a causal model for why MDD increases the risk of RA. Additionally, given the large sample size and high statistical power of this study, it is important to prioritise the clinical relevance of any statistically significant results. Although we excluded a large number of patients from THIN by applying a stringent exclusion criteria (to enable survival analyses on patients with complete time to event data), the risk of selection bias is low given that the age and sex distribution in the included referent cohort resembled the general population closely and is consistent with existing literature. While misclassification of cases is always a risk in database research, this would be expected to occur at random which would dilute the overall HR observed towards the null value and thus provide a conservative estimate of risk. Last, although our focus in this study was not to investigate treatment response directly, THIN is a suboptimal data source for studying treatment response or length of treatment since it does not have sufficiently detailed data to make inferences about adherence, severity or the time point at which remission or relapse of MDD may have occurred. As such, future studies should aim to further investigate the role of antidepressant treatment for MDD in the prevention of chronic autoimmune diseases like RA.

In conclusion, this study has demonstrated that patients with MDD have approximately a 38% increased risk of developing RA, and this risk seemed to be reduced when patients with MDD were treated with antidepressants. While the precise mechanism by which MDD contributes to this increased risk remains unknown, future research should investigate the possibility of adverse health behaviours and systemic inflammation as inciting factors. Clinically, prompt referral to rheumatology should be made when patients with MDD present with musculoskeletal symptoms characteristic of RA.

Contributors IAV, RTL and CB developed the study topic. CB contributed expert advice on RA. SBP and AGMB provided expert advice on MDD. IAV, ADF and MWL contributed to data systems development and extraction. GKK, MGS, AGMB, SBP and CB provided methodological expertise. Statistical analyses were performed by IAV with critical review by RTL, ADF, MWL, GKK, SBP and CB. IAV drafted the manuscript, tables and figures, with all authors providing critical review. All authors approved the final version of this manuscript.

Funding IAV was supported to conduct this study by a Summer Studentship from the Canadian Rheumatology Association and a Alberta Innovates MD/PhD Studentship. This work was also funded through a Canadian Institutes of Health Research Team Grant in Inflammation in Chronic Disease (THC-152031). Funding agencies played no role in designing or conducting the study, analyzing data or writing the manuscript.

Competing interests None declared.

Patient consent Not required.

Ethics approval University of Calgary Institutional Review Board and the Scientific Review Committee of IMS Health.

Provenance and peer review Not commissioned; externally peer reviewed.

Data statement To comply with the licensing agreement with The Health Improvement Network, the data is not available.

Open access This is an Open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES

1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016;388:2023–38.
2. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365:2205–12.
3. Avilhã-Zubieta JA, Choi HK, Sadatsafavi M, et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum 2008;59:1690–7.
4. Silman AJ, MC H. Epidemiology of the rheumatic diseases. 2nd edn. Oxford: University Press, 2001.
5. Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001;344:907–16.
6. Jacob L, Rockel T, Kostev K. Depression risk in patients with rheumatoid arthritis in the United Kingdom. Rheumatol Ther 2017;4:195–200.
7. Matcham F, Rayner L, Steer S, et al. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 2013;52:2136–48.
8. Levinson RT, Valland IA, Lowerson MW, et al. Depression is associated with an increased risk of psoriatic arthritis among patients with psoriasis: a population-based study. J Invest Dermatol 2017;137:828–35.
9. Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun 2013;31:105–14.
10. Dowlati Y, Herrmann N, Swardfager W, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry 2010;67:446–57.
11. Krishnadas R, Nicol A, Sassarini J, et al. Circulating tumour necrosis factor is highly correlated with brainstem serotonin transporter availability in humans. Brain Behav Immun 2016;51:29–38.
12. Rait G, Walters K, Griffin M, et al. Recent trends in the incidence of recorded depression in primary care. Br J Psychiatry 2009;195:520–4.
13. Wallace H, Shorvon S, Tallis R. Age-specific incidence and prevalence rates of treated epilepsy in an unselected population of 2,052,922 and age-specific fertility rates of women with epilepsy. Lancet 1998;352:1970–3.
14. Bhayat F, Das-Gupta E, Smith C, et al. The incidence of and mortality from leukaemias in the UK: a general population-based study. BMC Cancer 2009;9:252.
15. Ogdie A, Haynes K, Troxel AB, et al. Risk of mortality in patients with psoriatic arthritis, rheumatoid arthritis and psoriasis: a longitudinal cohort study. Ann Rheum Dis 2014;73:149–53.
16. Josephson CB, Lowerson M, Valland I, et al. Association of depression and treated depression with epilepsy and seizure outcomes: a multicohort analysis. JAMA Neurol 2017;74:533–9.
17. Zisook S, Lesser I, Stewart JW, et al. Effect of age at onset on the course of major depressive disorder. Am J Psychiatry 2007;164:1539–46.
18. St Germaine-Smith C, Liu M, Quan H, et al. Development of an epilepsy-specific risk adjustment comorbidity index. Epilepsia 2011;52:2161–7.
19. Zhou Z, Rahme E, Abramowicz M, et al. Survival bias associated with time-to-treatment initiation in drug effectiveness evaluation: a comparison of methods. Am J Epidemiol 2005;162:1016–23.
20. Finch A, Turesson C. The impact of obesity on the development and progression of rheumatoid arthritis. Ann Rheum Dis 2014;73:1911–3.
21. Trudel-Fitzgerald C, Tworoger SS, Poole EM, et al. Prospective changes in healthy lifestyle among midlife women: when psychological symptoms get in the way. Am J Prev Med 2016;51:327-35.
22. Tedeschi SK, Frits M, Cui J, et al. Diet and rheumatoid arthritis symptoms: survey results from a rheumatoid arthritis registry. Arthritis Care Res 2017;69:1920–5.
23. Minor MA, Hewett JE, Webel RR, et al. Efficacy of physical conditioning exercise in patients with rheumatoid arthritis and osteoarthritis. Arthritis Rheum 1989;32:1396–405.
24. Beckham JC, Caldwell DS, Peterson BL, et al. Disease severity in rheumatoid arthritis: relationships of plasma tumor necrosis factor-alpha, soluble interleukin 2-receptor, soluble CD4/CD8 ratio, neopterin, and fibrin D-dimer to traditional severity and functional measures. J Clin Immunol 1992;12:353–61.
25. Lee YC, Agnew-Blais J, Malspeis S, et al. Post-Traumatic stress disorder and risk for incident rheumatoid arthritis. Arthritis Care Res 2016;68:292–8.
26. Passos IC, Vasconcelos-Moreno MP, Costa LG, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry 2015;2:1002–12.
27. Winning A, Gilssanz P, Koenen KC, et al. Post-traumatic stress disorder and 20-year physical activity trends among women. Am J Prev Med 2017;52:753–60.
28. Lewinson RT, Vallerand IA, Parsons LM, et al. Psoriasis and the risk of foot and ankle tendinopathy or enthesopathy in the absence of psoriatic arthritis: a population-based study. RMD Open 2018;4:e000668.