ARTIGO ORIGINAL

Day-1 PELOD-2 and day-1 ‘‘quick’’ PELOD-2 scores in children with sepsis in the PICU

Mianling Zhong, Yuge Huang, Tufeng Li, Lu Xiong, Ting Lin, Miaofen Li e Dongqiang He

Children’s Medical Center of the Affiliated Hospital of Guangdong Medical University, Zhanjiang, China

Recebido em 13 de janeiro de 2019; aceito em 18 de julho de 2019

Abstract

Objectives: This study aimed to evaluate the predictive validity of the day-1 PELOD-2 and day-1 ‘‘quick’’ PELOD-2 (qPELOD-2) scores for in-hospital mortality in children with sepsis in a pediatric intensive care unit (PICU) of a developing country.

Methods: The data of 516 children diagnosed as sepsis were retrospectively analyzed. The children were divided into survival group and non-survival group, according to the clinical outcome 28 days after admission. Day-1 PELOD-2, day-1 qPELOD-2, pediatric SOFA (pSOFA), and P-MODS were collected and scored. Receiver operating characteristic (ROC) curves were plotted, and the efficiency of the day-1 PELOD-2, day-1 qPELOD-2 score, pSOFA, and P-MODS for predicting death were evaluated by the area under the ROC curve (AUC).

Results: The day-1 PELOD-2 score, day-1 qPELOD-2 score, pSOFA, and P-MODS in the non-survivor group were significantly higher than those in the survivor group. ROC curve analysis showed that the AUCs of the day-1 PELOD-2 score, day-1 qPELOD-2 score, pSOFA, and P-MODS for predicting the prognosis of children with sepsis in the PICU were 0.916, 0.802, 0.937, and 0.761, respectively (all p < 0.05).

Conclusions: Both the day-1 PELOD-2 score and day-1 qPELOD-2 score were effective and able to assess the prognosis of children with sepsis in a PICU of a developing country. Additionally, the day-1 PELOD-2 score was superior to the day-1 qPELOD-2 score. Further studies are needed to verify the usefulness of the day-1 qPELOD-2 score, particularly outside of the PICU.

© 2019 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PALAVRAS-CHAVE
Escore PELOD-2; Escore ‘‘quick’’ PELOD-2; Sepse; Prognóstico; Crianças

Introdução

A sepse é uma das principais causas de morte em adultos1 e crianças.2-5 Na última edição do Terceiro Consenso Internacional,6 a Força-Tarefa para Atualização das Definições de Sepse definiu sepse como uma disfunção orgânica potencialmente fatal que ocorre devido a uma resposta desregulada do hospedeiro à infecção e essa definição despertou discussões acaloradas no campo da medicina voltado ao tratamento de pacientes gravemente enfermos.7 A força-tarefa do Sepsis 3 propôs o uso do escore Sequential Organ Failure Assessment (SOFA) para pontuar a disfunção orgânica em pacientes adultos com suspeita de infecção. Além disso, a força-tarefa do Sepsis 3 reconheceu que os novos critérios não são destinados a crianças e que os estudos futuros devem considerar a fisiologia específica da idade e a estratificação dos riscos inerentes à idade.

Leclerc et al.3 analisaram de forma secundária a base de dados usada para o desenvolvimento e validação do Pediatric Logistic Organ Dysfunction-2 (PELOD-2).8 Os autores concluíram que o escore PELOD-2 no dia 1 foi altamente predictivo de mortalidade hospitalar entre crianças internadas na Unidade de Terapia Intensiva Pediátrica (UITP) com suspeita de infecção, o que sugeriu seu uso promissor para padronizar definições e critérios de diagnóstico com relação à sepse pediátrica. Adicionalmente, os autores investigaram o desempenho preditivo de um escore ‘‘quick’’ PELOD-2 (Escala de Coma de Glasgow < 11, taquicardia e hipotensão sistêmica) (tabela S1), que foi inspirado no escore ‘‘quick’’ SOFA (qSOFA) (atividade mental alterada, taquipneia e hipotensão), e o desempenho preditivo do escore qPELOD-2 comparado de forma favorável a estudos que validam o escore qSOFA em adultos (área abaixo da curva [AUC], 0.82; IC de 95%, 0.76–0.87).9 A finalidade de nosso estudo foi avaliar a validade preditiva do PELOD-2 no dia1 e ‘‘quick’’ PELOD-2 no dia 1 com relação à mortalidade hospitalar em crianças com sepse em uma UTIP de um país em desenvolvimento.

Métodos

Foi feito um estudo transversal na Unidade de Terapia Intensiva Pediátrica do primeiro Affiliated Hospital of Guangdong Medical University na cidade de Zhanjiang, Província de Guangdong, China, de 1º de junho de 2016 a 1º de junho de 2018. Foram coletados vários dados retrospectivamente para estimar o escore PELOD-2 no dia 1, escore qPELOD-2 no dia 1, qSOFA e Pediatric Multiple Organ Dysfunction Score (P-MODS). Caso uma variável tenha sido medida mais de uma vez no primeiro dia, o pior valor da variável foi usado para calcular o PELOD-2 no dia 1, qPELOD-2 no dia 1, qSOFA e P-MODS. Sexo, idade, local de infecção, duração da internação na UTIP, tempo total de internação, necessidade de ventilação mecânica, duração do suporte ventilatório e necessidade de drogas vasoativas tiveram de ser registrados em um formulário de coleta de dados designado para o estudo.

Os critérios de inclusão foram: (1) atendimento aos critérios de diagnóstico da Conferência Internacional de Sepse
em Pediatria emitidos em 200511; (2) duração da internação na UTIP \geq 24h; (3) idade do paciente entre um mês e 14 anos; e (4) disponibilidade dos dados clínicos completos. Os critérios de exclusão foram: (1) duração da internação na UTIP inferior a 24 horas ou óbito nas primeiras 24 horas de internação; (2) idade inferior a um mês ou acima de 14 anos; (3) transferência para outro hospital; ou (4) dados clínicos incompletos (fig. 1).

Este estudo seguiu as normas de ética médica e foi aprovado pelo Comitê de Ética do primeiro Affiliated Hospital of Guangdong Medical University (2018-027). Além disso, excluímos o consentimento informado devido à natureza observacional do estudo.

Análise estatística

Foi feita com o software SPSS (IBM SPSS Estatística para Windows, Versão 21.0, NY, EUA) e o software MedCalc (MedCalc Software, versão 15.2.2, Ostend, Bélgica). Os resultados foram expressos como mediana e intervalos interquartis (IQRs) para as variáveis contínuas e como frequências e percentuais para as variáveis categóricas. O teste de Kolmogorov-Smirnov foi usado para testar a normalidade dos dados qualitativos. Os testes T foram usados para os dados quantitativos normais. O teste U de Mann-Whitney foi usado para os dados quantitativos anormais. As variáveis categóricas foram comparadas com o teste χ^2. Um valor de $p < 0,05$ bilateral foi considerado estatisticamente significativo.

O desempenho dos escores para discriminar mortalidade hospitalar foi avaliado com a AUC. Foram feitas comparações entre os escores com o método de DeLong12 para comparar as AUCs e o Índice de Melhoria da Discriminação Integrada13 para avaliar a reclassificação de probabilidades preditivas entre sobreviventes e não sobreviventes. O índice de Youden14 foi usado para avaliar os valores de corte ideais dos escores PELOD-2 e qPELOD-2 para discriminar a mortalidade hospitalar.

Estimativa do tamanho da amostra

O principal índice de avaliação deste estudo foi a AUC da curva ROC. Visamos a avaliar o desempenho dos escores d1PELOD-2 e d1qPELOD-2 para discriminar a mortalidade hospitalar. Uma pesquisa relacionada mostrou que as AUCs dos escores d1PELOD-2 e d1qPELOD-2 foram 0,91 e 0,82, respectivamente.8 A proporção entre sobreviventes e não sobreviventes foi 37:63.15 O nível de significância foi 0,05, a eficácia foi 0,8 e a proporção de atribuição entre as amostras foi 50. Como o estudo foi um estudo observacional retrospectivo, a taxa de abandono foi 0%. O tamanho da amostra foi estimado pelo software PASS11.0 e foram necessárias 306 crianças com sepse. Por fim, 516 crianças com sepse internadas na UTIP foram incluídas no estudo.

Resultados

Atenderam aos critérios de inclusão 516 pacientes. Entre eles, 238 (46,1%) atenderam aos critérios para sepse, 262 (50,8%) aos critérios para sepse grave e 16 (3,1%) aos critérios para choque séptico. Dos 488 sobreviventes das visitas
O escoro PELOD-2 no dia 1, o escoro qPELOD-2 no dia 1, pSOFA e P-MODS no grupo não sobrevivente foram significativamente maiores do que os no grupo sobrevivente [escoro PELOD-2 no dia 1: 6,5 (4-8) em comparação a 0 (0-2), escoro qPELOD-2 no dia 1: 1 (1-2) em comparação a 0 (0-1), escoro pSOFA: 7,5 (6-11) em comparação a 3 (2-4), P-MODS: 3 (2-6) em comparação a 1 (1-2), todos p < 0,05] (tabela 1). A análise da curva ROC mostrou que as AUCs do escoro

Tabela 1 Características demográficas e clínicas dos sobreviventes e não sobreviventes

Característica	Sobreviventes (n = 488)	Não sobreviventes (n = 28)	Valor de p
Sexo masculino, n (%)	311 (63,7)	16 (57,1)	0,482
Idade, mediana (IQR), meses	8 (2-36)	12 (3-36)	0,479
Local da infecção, n (%)			
Sistema respiratório	280 (57,4)	11 (39,3)	
Sistema nervoso	72 (14,8)	6 (21,4)	
Sistema digestivo	43 (8,8)	2 (7,1)	
Sangue	6 (1,2)	0	
Trato urinário	13 (2,6)	0	
Outro	74 (15,2)	9 (32,1)	
Classificação de sepsse			
N° de pacientes com sepsse (%)	238 (49)	0 (0)	≤ 0,001
N° de pacientes com sepsse grave (%)	242 (50)	20 (71)	
N° de pacientes com choque séptico (%)	8 (1)	8 (29)	
N° de pacientes com necessidade de ventilação mecânica (%)	69 (14,1)	22 (78,6)	≤ 0,001
N° de pacientes com necessidade de infusão de drogas vasoativas no dia 1 (%)	8 (1,6)	6 (21,4)	≤ 0,001
Exame auxiliar			
Escala de Glasgow [escore, mediana (IQR)]	13 (11-13)	7 (4-9)	≤ 0,001
PaO2 [mmHg, mediana (IQR)]	97 (80-115)	104 (62-136)	0,887
PaCO2 [mmHg, mediana (IQR)]	30,7 (25,6-35,0)	27,2 (22,6-38,5)	0,536
Concentração de ácido lático [umol/L, mediana (IQR)]	1,2 (0,8-2,0)	2,9 (1,1-10,3)	≤ 0,001
Valores de creatinina [umol/L, mediana (IQR)]	22,6 (17,0-31,0)	30,0 (16,5-55,3)	0,051
Nitrogênio/mol no sangue [mmol/L, mediana (IQR)]	3,2 (2,4-4,3)	4,4 (2,8-6,7)	0,006
Concentração de bilirrubina total [umol/L, mediana (IQR)]	6,4 (4,6-10,3)	8,7 (5,9, 19)	0,04
Concentração de fibrinogênio [g/L, mediana (IQR)]	2,7 (2,0-3,5)	1,8 (1,2-3,0)	0,001
Valores de leucócitos [*109/L, mediana (IQR)]	13,4 (9,0,19,0)	15,4 (9,5, 20,6)	0,407
Valores de plaquetas [*109/L, mediana (IQR)]	323 (240,427)	292 (211,388)	0,132
Escores no dia 1 [escore, mediana (IQR)]			
PELOD-2	0 (0-2)	6,5 (4-8)	≤ 0,001
qPELOD-2	0 (0-1)	1 (1-2)	≤ 0,001
pSOFA	3 (2-4)	7,5 (6-11)	≤ 0,001
pMODS	1 (1-2)	3 (2-6)	≤ 0,001
Desfechos, Mediana (IQR)			
Duração do suporte ventilatório, d	0 (0-0)	2 (1-5)	≤ 0,001
TI UTIP≤72h (%)	251 (51,4)	16 (57,1)	0,698
TI UTIP, d	1 (1-8)	3 (2-6)	0,686
TI Hospitale, d	9 (6-15)	3 (2-6)	≤ 0,001

IQR, intervalos interquartis; PELOD-2, Pediatric Logistic Organ Dysfunction Score-2; P-MODS, Pediatric Multiple Organ Dysfunction Score; pSOFA, pediatric Sequential Organ Failure Assessment; qPELOD-2, quick Pediatric Logistic Organ Dysfunction Score-2; TI, tempo de internação; UTIP, unidade de terapia intensiva pediátrica.

Tableira, 311 (63,7%) eram homens e a idade mediana (IQR) foi 8 (2-36) meses. Dentre os 28 não sobreviventes, 16 (57,1%) eram homens com idade mediana (IQR) de 12 (3-36) meses. Não houve diferenças significativas no sexo, idade, local de infecção ou duração da internação na UTIP entre os dois grupos (todos p > 0,05). As características demográficas e clínicas dos sobreviventes e não sobreviventes são mostradas na tabela 1.
Tabela 2 Capacidade preditiva dos escores PELOD-2, qPELOD-2, pSOFA e P-MODS com relação à mortalidade hospitalar

Pontuação Sistema	AUC	IC DE 95%	Ponto de Corte	SE (%)	ES (%)	VP+ (%)	VP- (%)	Valor de z	Valor de p
PELOD-2	0,916	0,888-0,938	> 2	89	81	21	99	14,228	≤ 0,001
qPELOD-2	0,802	0,765-0,836	> 0	89	62	12	99	7,905	≤ 0,001
pSOFA	0,937	0,913-0,957	> 5	86	88	29	99	26,436	≤ 0,001
pMODS	0,761	0,722-0,798	> 2	64	82	17	98	4,688	≤ 0,001

AUC, área abaixo da curva; ES, especificidade; IC de 95%, intervalo de confiança de 95%; PELOD-2, Pediatric Logistic Organ Dysfunction Score; P-MODS, Pediatric Multiple Organ Dysfunction Score; pSOFA, pediatric Sequential Organ Failure Assessment; qPELOD-2, quick Pediatric Logistic Organ Dysfunction Score; SE, sensibilidade; VP+, valor preditivo positivo; VP-, valor preditivo negativo.

Figura 2 Curvas preditivas da característica de operação do receptor dos escores PELOD-2, qPELOD-2, pSOFA e pMODS com relação à mortalidade hospitalar.

PELOD-2 no dia 1, escore qPELOD-2 no dia 1, pSOFA e p-MODS preditivas do prognóstico de crianças com sepse na UTIP foram 0,916 (0,888-0,938), 0,802 (0,765-0,836), 0,937 (0,913-0,957) e 0,761 (0,722-0,798), respectivamente (todas p < 0,05) (tabela 2; fig. 2). Isso indica que o escore PELOD-2 no dia 1 mostrou discriminação excelente com relação à mortalidade hospitalar. O ponto de corte ideal para o escore PELOD-2 para discriminar a mortalidade foi um escore acima de 2 pontos. Não houve diferença significativa na AUC entre o escore PELOD-2 no dia 1 e pSOFA (p > 0,05). Contudo, houve diferença significativa na AUC do escore PELOD-2 no dia 1 e o do qPELOD-2 no dia 1 e do P-MODS.

Discussão

A definição de sepse pediátrica pelo Consenso de 2005 mantém a exigência dos critérios da Síndrome da Resposta Inflamatória Sistêmica (SIRS) e forneceu explicação adicional sobre as definições de falência dos órgãos.11 A validade dos critérios SIRS para identificar e avaliar a gravidade dos pacientes diagnosticados com sepse foi contestada em adultos, devido à falta de sensibilidade e especificidade.10,16 O Sepsis-3 tem como base o escore SOFA.17 Contudo, o escore SOFA não é adaptado para crianças. Portanto, as definições atuais de sepse pediátrica continuam essencialmente com base no Sepsis2, que não é bom para pesquisa clínica.18 O escore PELOD-2 foi usado para pontuar a disfunção orgânica em pacientes pediátricos com suspeita de infecção. Vários estudos mostraram que o escore PELOD-2 apresenta uma excelente discriminação da mortalidade hospitalar.19-22 Nossa pesquisa mostra que o escore PELOD-2 no dia 1 demonstra excelente discriminação da mortalidade hospitalar em uma UTIP de um país em desenvolvimento, que sugere seu uso promissor na padronização de definições e critérios de diagnóstico da sepse pediátrica. Além disso, o escore qPELOD-2 no dia 1 apresenta boa validade preditiva da mortalidade hospitalar (AUC, 0,802, IC de 95%, 0,765-0,836). Nosso estudo indica que tanto o PELOD-2 quanto o qPELOD-2 no dia 1 apresentam boa validade preditiva da mortalidade hospitalar em crianças com sepse em uma UTIP de um país em desenvolvimento, raramente relatada.

O escore SOFA foi desenvolvido para avaliar a condição e o prognóstico da doença de um paciente com base no grau de disfunção orgânica. Adicionalmente, a utilidade do escore SOFA já foi validada anteriormente em grandes cortes de pacientes gravemente doentes.10,23,24 Matics e Sanchez-Pinto propuseram uma versão pediátrica do escore SOFA (pSOFA), desenvolvida para adaptar o escore SOFA original aos pontos de corte ajustados à idade para os sistemas cardiovascular e renal e ao expandir os critérios respiratórios para incluir substitutos não invasivos da lesão pulmonar.15 Além disso, os autores concluíram que o escore pSOFA máximo apresentou excelente validade preditiva da mortalidade hospitalar (AUC, 0,94,IC de 95%, 0,92-0,95), porém há necessidade de pesquisa adicional. Em nosso estudo, concluímos que o escore pSOFA (AUC, 0,937, IC de 95%, 0,913-0,957) é válido e consegue avaliar o prognóstico de crianças com sepse em uma UTIP de um país em desenvolvimento, levando à promoção da pSOFA em países em desenvolvimento. Enquanto isso, em nosso estudo, descobrimos que o ponto de corte ideal do escore pSOFA, para diferenciar a mortalidade hospitalar, foi um escore maior do que 5 pontos, diferente do ponto de corte encontrado por Matics e Sanchez-Pinto em crianças com sepse em uma UTIP de um país desenvolvido. Essa observação exige validação adicional.

Nosso estudo tem diversas limitações. Primeira, como um estudo observacional retrospectivo, não temos dados suficientes para calcular todos os escores diários para avaliar dinamicamente a condição dos pacientes. Segunda, o tamanho relativamente pequeno da amostra pode ter resultado
em uma estimativa menos exata da precisão dos escores PELOD-2 no dia 1 e da qPELOD-2 no dia 1. Terceira, incluímos apenas crianças internadas na UTIP e, portanto, não consideramos crianças de diferentes fases do tratamento agudo (ambulatorial, emergência e enfermaria do hospital). Essas limitações reduzem a generalização de nossos achados e enfatizam a necessidade de estudos multicêntricos prospectivos futuros.

Os dois escores PELOD-2 e qPELOD-2 no dia 1 são válidos e conseguem avaliar o prognóstico de crianças com sepse em uma UTIP de um país em desenvolvimento. Ademais, o escoro PELOD-2 é superior ao escoro qPELOD-2. São necessários estudos adicionais para determinar a utilidade do escoro qPELOD-2, principalmente fora da UTIP.

Conflitos de interesse
Os autores declaram não haver conflitos de interesse.

Aprovação do Conselho de Ética e consentimento para participar
Este estudo seguiu as normas de ética médica e foi aprovado pelo Comitê de Ética do Affiliated Hospital of Guangdong Medical University (2018-027). Além disso, excluímos o consentimento informado devido à natureza observacional do estudo.

Agradecimentos
A todos os médicos, enfermeiros e pacientes do Centro Médico da Criança do Affiliated Hospital of Guangdong Medical University.

Apêndice A. Material adicional
Pode-se consultar o material adicional para este artigo na sua versão eletrônica disponível em doi:10.1016/j.jpedp.2019.07.007.

Referências
1. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA. 2014;312:90–2.
2. Ruth A, McCracken CE, Fortenberry JD, Hall M, Simon HK, Hebar KB. Pediatric severe sepsis: current trends and outcomes from the Pediatric Health Information Systems database. Pedi atr Crit Care Med. 2014;15:828–38.
3. Giuliano JS, Markovitz BP, Brierley J, Levin R, Williams G, Lum LC, et al. Sepsis Prevalence, I. Therapies Study I. Pediatric Acute Lung and N. Sepsis Investigators. Comparison of Pediatric Severe Sepsis Managed in U.S. and European ICUs. Pedi atr Crit Care Med. 2016;17:522–30.
4. Tan B, Wong JJ, Sultana R, Koh J, Jit M, Mok YH, et al. Global Case-Fatality Rates in Pediatric Severe Sepsis and Septic Shock: A Systematic Review and Meta- analysis. JAMA Pedi atr. 2019;11:1E1–10.
5. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, Schlabach L, Reinhart K, Kinsoon N. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6:223–30.
6. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315:801–10.
7. Singer M. The new sepsis consensus definitions (Sepsis-3): the good, the not-so-bad, and the actually-quite-prettty. Intensive Care Med. 2016;42:2027–9.
8. Leclerc F, Duhamel A, Dekeny Y, Grandbastien B, Leteurtre S. Can the Pediatric Logistic Organ Dysfunction-2 Score on Day 1 Be Used in Clinical Criteria for Sepsis in Children? Pediatr Crit Care Med. 2017;18:758–63.
9. Leteurtre S, Duhamel A, Salleron J, Grandbastien B, Lacroix J, Leclerc F. Pelod-2: an update of the Pediatric logistic organ dysfunction score. Crit Care Med. 2013;41:1761–73.
10. Raith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, et al. New Zealand Intensive Care Society Centre for and E. Resource. Prognostic Accuracy of the sofa Score SIRS Criteria, and qSofa Score for In-Hospital Mortality Among Adults With Suspected Infection Admitted to the Intensive Care Unit. JAMA. 2017;317:290–300.
11. Goldstein B, Giror B, Randolph A. International Consensus Conference on Pediatric Sepsis International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8.
12. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.
13. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27:157–72, discussion 207–112.
14. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005;47:458–72.
15. Matics TJ, Sanchez-Pinto LN. Adaptation and Validation of a Pediatric Sequential Organ Failure Assessment Score and Evaluation of the Sepsis-3 Definitions in Critically Ill Children. JAMA Pedi atr. 2017;11:1e127352.
16. Kaukonen KM, Bailey M, Pilcher D, Cooper DJ, Bellomo R. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med. 2015;372:1629–38.
17. Seymour CW, Liu VX, Iwashyna TJ, Brunekhorst FM, Rea TD, Sche rag A, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sep sis and Septic Shock (Sepsis-3). JAMA. 2016;315:762–74.
18. Schlabach LJ. Time for Sepsis-3 in Children? Pediatr Crit Care Med. 2017;18:805–6.
19. Leteurtre S, Duhamel A, Deken V, Lacroix J, Leclerc F. Daily estimation of the severity of organ dysfunctions in critically ill children by using the pelod-2 score. Crit Care. 2015;19:324.
20. Goncalves JR, Severo M, Rocha C, Jardim J, Mota T, Ribeiro A. Performance of PRISM III and Pelod-2 scores in a pediatric intensive care unit. Eur J Pediatr. 2015;174:1305–10.
21. Zhang L, Huang H, Cheng Y, Xu L, Huang X, Pei Y, et al. Predictive value of four pediatric scores of critical illness and mortality on evaluating mortality risk in pediatric critical patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018;30:51–6.
22. Schlabach LJ, Staney L, Bellomo R, MacLaren G, Pilcher D. Prognostic accuracy of age-adapted sofa, SIRS Pelod-2, and qSofa for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med. 2018;44:179–85.
23. Rodrigues Filho EM, Fernandes R, Garcez A, sofa in the first 24 hours as an outcome predictor of acute liver failure. Rev Bras Ter Intensiva. 2018;30:64–70.
24. Jenitzer JC, Bennett C, Wiley BM, Murphree DH, Keegan MT, Gajic O, et al. Predictive Value of the Sequential Organ Failure Assessment Score for Mortality in a Contemporary Cardiac Intensive Care Unit Population. J Am Heart Assoc. 2018;7:E1–15.