Area summation in human vision at and above detection threshold
Tim S. Meese and Robert J. Summers

Several equations, detailed below, were presented incorrectly.

The inline equation towards the top right of p. 2891 should read:

\[\text{resp}_{\text{overall}} = \left[\sum_{i=1}^{n} (|\text{resp}_i|^m)^{1/m} \right] \]

The inline equation on the top left hand side of p. 2893 should read:

\[c = 100((L_{\text{max}} - L_{\text{min}})/(L_{\text{max}} + L_{\text{min}})) \]

Equation (3.2) should read:

\[\text{Minkowski sum}(\text{ped}, \text{test}) = \left[\sum_{i=1}^{n} (\text{mech}_i(\text{ped} + \text{test})^{0.4} - \text{mech}_i(0.4)^m)^{1/m} \right] \]

The calculations reported in Meese & Summers (2007) used the correct forms of these equations.

Susceptible–infected–recovered epidemics in dynamic contact networks
Erik Volz and Lauren Ancel Meyers

On p. 2928, equations (2.17), (2.18) and table 4 were presented incorrectly.

They are now presented correctly as:

\[f_S(p_S, M_S) = \rho[I\{alter \in S\} \times I\{alter' \in S\}] - I\{alter \in S\} \times I\{alter' \notin S\} \]
\[= \rho(M_S - p_S) = \rho((\theta)g'(\theta)(1) - p_S). \]

\[M_I = (-\dot{S})(d_{S1} + 1)g'(1) - \mu M_I. \]

Table 4. Deterministic NE model. (This system of equations is used to model the spread of an SIR-type epidemic in a dynamic semi-random network with stochastic exchange of neighbours at constant rate \(\rho \).)

\[\dot{\theta} = -r_1 \theta \]
\[p_S = r_4 p_1 (1 - \theta g'(\theta)g'(\theta)) + \rho(\theta)g'(\theta)(1) - p_S \]
\[p_1 = r_1 p_2 (\theta g'(\theta)g'(\theta) - p_1 (1 - p_1)r - p_1 \mu + \rho(M_I - p_1) \]
\[M_I = -\mu M_I + r_1 (\theta^2 g'(\theta) + \theta g'(\theta))g'(1) \]
\[S = g(\theta) \]