Abstract. Soare [23] proved that the maximal sets form an orbit in \(E\). We consider here \(D\)-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer [15]. Some orbits of \(D\)-maximal sets are well understood, e.g., hemimaximal sets [8], but many are not. The goal of this paper is to define new invariants on computably enumerable sets and to use them to give a complete nontrivial classification of the \(D\)-maximal sets. Although these invariants help us to better understand the \(D\)-maximal sets, we use them to show that several classes of \(D\)-maximal sets break into infinitely many orbits.

1. Introduction

Let \(E\) denote the structure of computably enumerable (c.e.) sets under set inclusion. Understanding the lattice-theoretic properties of \(E\) and the interplay between computability and definability in \(E\) are longstanding areas of research in classical computability theory. In particular, researchers have worked to understand the automorphism group of \(E\) and the orbits of \(E\). The orbit of a c.e. set \(A\) is the collection of c.e. sets \([A] = \{B \in E \mid (\exists \Psi : E \sim \sim E) (\Psi(A) = B)\}\). One of the major questions in classical computability is the following.

Question 1.1. What are the (definable) orbits of \(E\), and what degrees are realized in these orbits? How can new orbits be constructed from old ones?

In the seminal work [23], Soare proved that the maximal sets form an orbit using his Extension Theorem. Martin [21] had previously shown that the maximal sets are exactly those c.e. sets of high degree, thus describing the definable property of being maximal in degree-theoretic terms. In addition, Harrington had shown that the creative sets form an orbit (see [24], Chapter XV). In time, Soare’s Extension Theorem was generalized and applied widely to construct many more orbits of \(E\).
For example, Downey and Stob [8] showed that the hemimaximal sets, i.e., splits of maximal sets, form an orbit and studied their degrees. In particular, any maximal or hemimaximal set is automorphic to a complete set. On the other hand, Harrington and Soare [12] defined a first order nontrivial property Q such that if A is a c.e. set and $Q(A)$ holds, then A is not automorphic to a complete set. These results are the first partial answers to the following question related to Question 1.1.

Question 1.2. Which orbits of E contain complete sets?

It turns out that until recently all known definable orbits of E, besides the orbit of creative sets, were orbits of \mathcal{D}-hhsimple sets, generalizations of hhsimple sets (see [6]). (We give extensive background on all definitions and ideas mentioned here in §2.)

The Slaman-Woodin Conjecture [22] asserts that the set
\[
\{ (i, j) \mid (\exists \Psi : \mathcal{E} \sim \mathcal{E}) [\Psi(W_i) = W_j] \}
\]
is Σ^1_1-complete. The conjecture was based on the belief that information could be coded into the orbits of hhsimple sets. Cholak, Downey and Harrington proved a stronger version of the Slaman-Woodin Conjecture.

Theorem 1.3 (Cholak, Downey and Harrington [6]). There is a computably enumerable set A such that the index set $\{ i \in \omega \mid W_i \cong A \}$ is Σ^1_1-complete.

In a surprising twist (again see [6]), the sets A witnessing Theorem 1.3 cannot be simple or hhsimple (showing that the original idea behind the conjecture fails). It is still open, however, if the sets in Theorem 1.3 can be \mathcal{D}-hhsimple. Moreover, the behavior of hhsimple sets under automorphisms is now completely understood. Specifically, two hhsimple sets are automorphic if and only if they are Δ^0_3-automorphic [2, Theorem 1.3]. There is no similar characterization of when \mathcal{D}-hhsimple sets are automorphic.

Here we consider \mathcal{D}-maximal sets, a special case of \mathcal{D}-hhsimple sets but a generalization of maximal sets, to gain further insight into Questions 1.1 and 1.2. A c.e. set is \mathcal{D}-maximal if for all W there is a c.e. set D disjoint from A such that $W \subseteq^* A \cup D$ or $W \cup (A \cup D) =^* \omega$. We can understand a given \mathcal{D}-maximal set A in terms of the collection $\mathcal{D}(A)$ of c.e. sets that are disjoint from A.

The goal of this paper is to provide a complete nontrivial classification of the \mathcal{D}-maximal sets in terms of how $\mathcal{D}(A)$ is generated. In §3, we describe ten types of ways $\mathcal{D}(A)$ can be generated for any c.e. set.
We then show in §5 and §6 that there is a complete and incomplete \(D\)-maximal set of each type. Since several kinds of \(D\)-maximal sets arise from taking splits of other kinds of sets, we require an analysis of how \(D(A)\) behaves under splittings, provided in §4. The first six types of \(D\)-maximal sets were already well understood ([23], [8], [3], [5]). Furthermore, Herrmann and Kummer [15] had constructed \(D\)-maximal sets that were not of the first six types (in particular, as splits of hhsimple and atomless \(r\)-maximal sets). We, however, show that there are four types of examples of \(D\)-maximal sets besides the first six and that each of these types breaks up into infinitely many orbits. Moreover, we provide an overarching framework for understanding and constructing these examples. We discuss \(D\)-maximal sets of the first six types and the type that arises as a split of an \(r\)-maximal set in §5. In §6, we show how the remaining three types arise as splits of hhsimple sets. For ease of reading, we discuss open questions as they arise. In particular, open questions can be found in §3.5, §4.3, and §6.6.

2. Background and definitions

All sets considered in this paper are computably enumerable (c.e.), infinite, and coinfinite unless explicitly specified. Let \(E^*\) be the structure \(E\) modulo the ideal of finite sets \(F\). By Soare [23], it is equivalent to work with \(E^*\) instead of \(E\) in the sense that two sets \(A\) and \(B\) are in the same orbit in \(E\) if and only if they are in the same orbit in \(E^*\).

Given a c.e. set \(A\), we define

\[L(A) = (\{W \cup A \mid W \text{ a c.e. set}\}, \subseteq),\]

and we let \(L^*(A)\) be the structure \(L(A)\) modulo \(F\). Recall that \(A\) is maximal if for all \(B \in L^*(A)\), if \(B \neq^* A\), then \(B =^* \omega\).

If we understand the orbit of \(A\), we can sometimes understand the orbits of splits of \(A\).

Definition 2.1.

(i) We call \(A_0 \sqcup A_1 = A\) a splitting of \(A\), and we call \(A_0\) and \(A_1\) splits of \(A\) or halves of the splitting of \(A\). We say that this splitting is trivial if either of \(A_0\) or \(A_1\) are computable.

(ii) We call \(A_0 \sqcup A_1 = A\) a Friedberg splitting of \(A\) if the following property holds for any c.e. \(W\): if \(W \sqcap A\) is not c.e. then neither of \(W \sqcap A_i\) are c.e. as well.

(iii) Given a property \(P\) of c.e. sets, we say that a noncomputable c.e. set \(A\) is hemi-\(P\) if there is a noncomputable c.e. set \(B\) disjoint from \(A\) such that \(A \sqcup B\) satisfies \(P\).

Note that if \(P\) is a definable property in \(E\) or \(E^*\), then hemi-\(P\) is also definable there.
2.1. \mathcal{D}-hhsimple and \mathcal{D}-maximal sets.

2.1.1. Motivation. Recall that a coinfinite set A is hhsimple if and only if $\mathcal{L}^*(A)$ is a boolean algebra ([17], see also Soare [24]). Hence, A is maximal if and only if $\mathcal{L}^*(A)$ is the two element boolean algebra.

Theorem 2.2 (Lachlan [17]). If a set H is hhsimple, then $\mathcal{L}^*(H)$ is a Σ^0_3 boolean algebra. Moreover, for every Σ^0_3 boolean algebra \mathcal{B}, there is a hhsimple set H such that $\mathcal{L}^*(H)$ is isomorphic to \mathcal{B}.

Given Theorem 2.2, we say that a hhsimple set H has flavor \mathcal{B} if $\mathcal{L}^*(H)$ is isomorphic to the Σ^0_3 boolean algebra \mathcal{B}. Note that the ordering \leq on a Σ^0_3 boolean algebra is $0'''$-computable.

2.1.2. Working modulo $\mathcal{D}(A)$. Given a set A, we define

\[
\mathcal{D}(A) = \{ B : B \in \mathcal{L}(A) \& B - A \text{ c.e.} \},
\]

and let $\mathcal{D}^*(A)$ be the structure $\mathcal{D}(A)$ modulo \mathcal{F}. Since $\mathcal{D}^*(A)$ is an ideal in the lattice $\mathcal{L}^*(A)$, we can take the quotient lattice $\mathcal{L}^*(A)/\mathcal{D}^*(A)$.

Theorem 2.2 motivates the following definition.

Definition 2.3. (Herrmann and Kummer [15]) A set A is \mathcal{D}-hhsimple if $\mathcal{L}^*(A)/\mathcal{D}^*(A)$ is a boolean algebra, and A is \mathcal{D}-maximal if $\mathcal{L}^*(A)/\mathcal{D}^*(A)$ is the two element boolean algebra.

By unraveling Definition 2.3, we have the following working definition of \mathcal{D}-maximality.

Definition 2.4. A set A is \mathcal{D}-maximal if for all W there is a c.e. set D disjoint from A such that $W \subseteq^* A \cup D$ or $W \cup (A \cup D) =^* \omega$.

Another useful characterization of the \mathcal{D}-maximal sets is given in the next lemma.

Lemma 2.5 (Cholak et al. [5] Lemma 2.2). Let A be a c.e. non-computable set. The set A is \mathcal{D}-maximal if and only if, for all c.e. $W \supseteq A$, either $W - A$ is c.e. or there exists a computable R such that $A \subseteq R \subseteq W$.

Herrmann and Kummer [15] studied the \mathcal{D}-hhsimple sets in the context of diagonal sets. A set is diagonal if it has the form $\{ e \in \omega \mid \psi_e(e) \}$ for some computable enumeration $\{ \psi_i \}_{i \in \omega}$ of all partial computable functions. In [15], they showed that a set is not diagonal if and only if it is computable or \mathcal{D}-hhsimple. Note that this result implies that the property of being diagonal is elementary lattice-theoretic.
2.2. Known examples of \mathcal{D}-maximal sets. Maximal sets and hemimaximal sets (which form distinct orbits [23], [8]) are clearly \mathcal{D}-maximal. Similarly, a set that is maximal on a computable set is also \mathcal{D}-maximal. Others, however, have constructed additional kinds of \mathcal{D}-maximal sets, in particular, Herrmann and hemi-Herrmann sets and sets with A-special lists, which we define now. It is easy to check that these sets are \mathcal{D}-maximal from their respective definitions.

Definition 2.6. (i) We say that a c.e. set A is r-separable if, for all c.e. sets B disjoint from A, there is a computable set C such that $B \subseteq C$ and $A \subseteq \overline{C}$. We say that A is strongly r-separable if, additionally, we can choose C so that $C - B$ is infinite.

(ii) We say that a set A is Herrmann if A is both \mathcal{D}-maximal and strongly r-separable.

(iii) Given a set A, we call a list of c.e. sets $\mathcal{F} = \{F_i : i \in \omega\}$ an A-special list if \mathcal{F} is a collection of pairwise disjoint noncomputable sets such that $F_0 = A$ and for all sets W, there is an i such that $W \subseteq^* \bigcup_{i \leq l} F_i$ or $W \cup \bigcup_{i \leq l} F_i =^* \omega$.

(iv) We say a set A is r-maximal if for every computable set R, either $R \cap \overline{A} =^* \emptyset$ (so $R \subseteq A$) or $R \cap \overline{A} =^* \emptyset$ (so $\overline{A} \subseteq A$), i.e., no infinite computable set splits \overline{A} into two infinite sets.

(v) A c.e. set B is atomless if for every c.e. set C, if $B \subseteq C \neq^* \omega$, then there is a c.e. set E such that $C \subset^* E \subset^* \omega$, i.e., B does not have a maximal superset.

Herrmann and hemi-Herrmann sets were defined by Hermann and further discussed in [5]. The main results in [5] for our purposes are that such sets exist (Theorem 2.5) and that these sets form distinct (Theorem 6.9) definable (Definition 2.3) orbits (Theorems 4.1, 6.5) each containing a complete set (Theorems 7.2, 6.7(i)).

The notion of a set A with an A-special list was introduced in [3, §7.1]. There, Cholak and Harrington showed that such sets exist and form a definable Δ_4^0 but not Δ_3^0 orbit. This orbit remains the only concrete example of an orbit that is not Δ_3^0. Furthermore, as mentioned earlier Herrmann and Kummer [15] had constructed \mathcal{D}-maximal splits of hhsimple and atomless r-maximal sets in addition to the ones mentioned above. We will discuss these examples later (see §6.0.1), but first we explore the notion of a generating set for $\mathcal{D}(A)$ for an arbitrary (not necessarily \mathcal{D}-maximal) set A.

3. Generating sets for $\mathcal{D}(A)$

In this section, we only assume that the sets considered are computably enumerable. In later sections, we will work explicitly with
\(\mathcal{D}\)-maximal sets. We will use the framework of generating sets to understand and classify the different kinds of \(\mathcal{D}\)-maximal sets.

Definition 3.1. We say a (possibly finite or empty) collection of c.e. sets \(G = \{D_0, D_1, \ldots\}\) generates \(\mathcal{D}(A)\) (equivalently \(G\) is a generating set for \(\mathcal{D}(A)\)) if each \(D_i\) is disjoint from \(A\) for all \(i \in \omega\) and for all c.e. sets \(D\) that are disjoint from \(A\), there is a finite set \(F \subseteq \omega\) such that \(D \subseteq^* \bigcup_{j \in F} D_j\). In this case, we say that \(\{D_j | j \in F\}\) covers \(D\). If \(G\) generates \(\mathcal{D}(A)\), we write \(\mathcal{D}(A) = \langle G \rangle\). We say \(\{D_0, D_1, \ldots\}\) partially generates \(\mathcal{D}(A)\) if there is some collection of sets \(G\) containing \(\{D_0, D_1, \ldots\}\) such that \(\langle G \rangle = \mathcal{D}(A)\).

We list a few basic observations.

Lemma 3.2. (i) Generating sets always exist for \(\mathcal{D}(A)\). In particular, \(\mathcal{D}(A)\) is generated by the collection of all c.e. sets that are disjoint from \(A\).

(ii) Let \(\Phi\) be an automorphism of \(E^*\). If for all c.e. \(W\), we set \(\hat{W} := \Phi(W)\), then \(\{D_0, D_1, \ldots, R_0, R_1, \ldots\}\) generates \(\mathcal{D}(A)\) if and only if \(\{\hat{D}_0, \hat{D}_1, \ldots, \hat{R}_0, \hat{R}_1, \ldots\}\) generates \(\mathcal{D}(\hat{A})\).

(iii) \(\mathcal{D}(A) = \langle \emptyset \rangle\) iff \(A\) is simple.

3.1. Simplifying generating sets.

Generating sets for \(\mathcal{D}(A)\) are far from unique. Here we develop some tools for finding less complex generating sets for \(\mathcal{D}(A)\). We use different tools based on whether or not \(\mathcal{D}(A)\) has a finite generating set.

3.1.1. Finite generating sets.

Lemma 3.3. If a finite collection of sets \(G\) generates \(\mathcal{D}(A)\), then \(\mathcal{D}(A) = \langle \emptyset \rangle\), \(\mathcal{D}(A) = \langle R \rangle\) for some infinite computable set \(R\), or \(\mathcal{D}(A) = \langle W \rangle\) for some noncomputable c.e. set \(W\). Moreover, if \(\{\hat{D}\}\) and \(\{\hat{D}\}\) both generate \(\mathcal{D}(A)\), then \(\hat{D} =^* \hat{D}\).

Proof. The union \(W\) of the finitely many sets in \(G\) is c.e. and disjoint from \(A\) and clearly generates \(\mathcal{D}(A)\). If \(W\) is finite, then \(\mathcal{D}(A) = \langle \emptyset \rangle\), and otherwise, we are in the remaining two cases. For the last statement, \(\hat{D} \subseteq^* \hat{D}\) and \(D \subseteq^* \hat{D}\) by the definition of generating set.

The collection of all c.e. sets that have finite generating sets is definable.

Lemma 3.4. The statement “A single set generates \(\mathcal{D}(A)\)” is an elementarily definable statement in \(E^*\) under inclusion.
3.1.2. **Infinite generating sets.** Infinite generating sets can be much more complex, depending on whether all (or many of) the elements can be chosen to be computable or pairwise disjoint.

Lemma 3.5. If \(\{R_0, R_1, \ldots\} \cup \mathcal{G} \) generates \(\mathcal{D}(A) \) where \(R_i \) is computable for all \(i \in \omega \), then there exists a pairwise disjoint collection of computable sets \(\{\hat{R}_0, \hat{R}_1, \ldots\} \) so that \(\{R_0, \hat{R}_1, \ldots\} \cup \mathcal{G} \) generates \(\mathcal{D}(A) \).

Proof. If \(\{R_0, R_1, \ldots\} \cup \mathcal{G} \) generates \(\mathcal{D}(A) \), we inductively define \(\{\hat{R}_0, \hat{R}_1, \ldots\} \). Let \(\hat{R}_0 = R_0 \). Given the pairwise disjoint collection of computable sets \(\{\hat{R}_0, \ldots, \hat{R}_n\} \), let \(m \) be the least index such that \(R_m - \bigcup_{i \leq n} \hat{R}_i \) is infinite. If no such \(m \) exists, \(\{\hat{R}_0, \ldots, \hat{R}_n\} \cup \mathcal{G} \) generates \(\mathcal{D}(A) \). Otherwise, let \(\hat{R}_{n+1} = R_m - \bigcup_{i \leq n} \hat{R}_i = R_m \cap \bigcup_{i \leq n} \hat{R}_i \). The collection \(\{\hat{R}_0, \hat{R}_1, \ldots\} \) satisfies the conclusion of the lemma since for each \(i \in \omega \) there is an \(m \) such that \(\bigcup_{j \leq i} \hat{R}_j \subseteq^* \bigcup_{j \leq m} \hat{R}_j \).

Lemma 3.6. If \(\mathcal{D}(A) \) has an infinite pairwise disjoint generating set, then \(\mathcal{D}(A) \) is also generated by an infinite collection of pairwise disjoint infinite sets containing only computable sets, only noncomputable sets, or only one noncomputable set.

Proof. Suppose that the collection \(\mathcal{G} = \{D_0, D_1, \ldots, R_0, R_1, \ldots\} \) generates \(\mathcal{D}(A) \) and consists of pairwise disjoint sets such that \(D_i \) is noncomputable and \(R_i \) is computable for all \(i \in \omega \). Suppose that there are both computable and noncomputable sets in \(\mathcal{G} \). We may assume all of these sets are infinite. If \(\mathcal{G} \) contains only finitely many \(D_i \), the finite union of the \(D_i \)'s together with \(\{R_0, R_1, \ldots\} \) generates \(\mathcal{D}(A) \). If \(\mathcal{G} \) contains infinitely many \(D_i \)'s, then \(\{D_0, D_1, \ldots, \hat{D}_i := D_i \cup R_i \} \), where \(\hat{D}_i \), generates \(\mathcal{D}(A) \). Note that \(D_i \) being noncomputable implies that \(\hat{D}_i \) is noncomputable.

Lemma 3.7. If \(\{R_0, R_1, \ldots\} \) and \(\{D_0, D_1, \ldots\} \) are pairwise disjoint generating sets for \(\mathcal{D}(A) \) and all sets in \(\{R_0, R_1, \ldots\} \) are computable, then all sets in \(\{D_0, D_1, \ldots\} \) are computable.

Proof. By definition of generating set, there is a finite \(F \subset \omega \) such that \(D_i \subseteq^* \bigcup_{j \in F} R_j \). It suffices to show that \(\bigcup_{j \in F} R_j - D_i \) is a c.e. set. There is a finite \(H \subset \omega \) such that \(\bigcup_{j \in F} R_j \subseteq^* \bigcup_{j \in H} D_j \). Since the \(D_i \) are pairwise disjoint, \(i \in H \). Set \(\hat{H} := H - \{i\} \). Then \((\bigcup_{j \in F} R_j - D_i) \subseteq^* \bigcup_{j \in \hat{H}} D_j \). Since \(D_i \) and \(\bigcup_{j \in \hat{H}} D_j \) are disjoint,

\[
\bigcup_{j \in F} R_j - D_i =^* \bigcup_{j \in F} R_j \cap \bigcup_{j \in \hat{H}} D_j,
\]

which is c.e.
We may assume that we have a generating set for $\mathcal{D}(A)$ whose union is A.

Lemma 3.8. If $\{D_0, D_1, \ldots\} \cup \mathcal{G}$ generates $\mathcal{D}(A)$ (and $\{D_0, D_1, \ldots\}$ is a collection of pairwise disjoint sets), then there exists a (pairwise disjoint) collection of sets $\{\tilde{D}_0, \tilde{D}_1, \ldots\}$ such that $\tilde{A} = \bigcup_{i \in \omega} \tilde{D}_i$ and $\{\tilde{D}_0, \tilde{D}_1, \ldots\} \cup \mathcal{G}$ generates $\mathcal{D}(A)$.

Proof. If $X = A - \bigcup_{i \in \omega} D_i$ and $X = \{x_0 < x_1 < \ldots\}$, we can take $\tilde{D}_i := D_i \cup \{x_i\}$. \hfill \Box

We can also simplify partial generating sets that are not pairwise disjoint.

Lemma 3.9. Let $\{D_0, D_1, \ldots\}$ be a list of noncomputable c.e. sets whose union with \mathcal{G} generates $\mathcal{D}(A)$. Then, there is a collection of noncomputable c.e. sets $\{\tilde{D}_0, \tilde{D}_1, \ldots\}$ whose union with \mathcal{G} generates $\mathcal{D}(A)$ such that all the sets are either pairwise disjoint or nested so that $\tilde{D}_{n+1} - \tilde{D}_n$ is not c.e. for all $n \in \omega$.

Proof. In a highly noneffective way, we build a list $\{\tilde{D}_0, \tilde{D}_1, \ldots\}$, satisfying our conclusion. To ensure that this list partially generates $\mathcal{D}(A)$ as described, we construct this list so that each \tilde{D}_i is disjoint from A and every D_i is contained in the union of finitely many \tilde{D}_i’s.

We attempt to inductively construct the list to consist of pairwise disjoint sets based on an arbitrary starting point $k \in \omega$. For each $k \in \omega$, we inductively define a function $l_k : \omega \rightarrow \omega$. We set $l_k(0) := k$ and $\tilde{D}_0 = \bigcup_{i \leq l_k(0)} D_i$. We let $l_k(n + 1)$ be the least number (if it exists) such that $\bigcup_{i \leq l_k(n+1)} D_i - \bigcup_{i \leq l_k(n)} D_i$ is a c.e. set. Let \tilde{D}_{n+1} be this c.e. set. Then, $\bigcup_{i \leq n} \tilde{D}_i = \bigcup_{i \leq l_k(n)} D_i$. If for some initial choice of k, the function l_k has domain ω, then the sets in $\{\tilde{D}_0, \tilde{D}_1, \ldots\}$ are pairwise disjoint.

Otherwise, the above procedure fails for all initial choices of k. Then, each l_k is a strictly increasing function defined on some nonempty finite initial segment of ω. Let $m : \omega \rightarrow \omega$ be defined so that $m(k)$ is the maximum value of l_k. For all k, $m(k) \geq k$. Moreover, for all k and $l > m(k)$, $\bigcup_{i \leq l} D_i - \bigcup_{i \leq m(k)} D_i$ is never a c.e. set. We define a strictly increasing function $\tilde{m} : \omega \rightarrow \omega$ inductively by setting $\tilde{m}(0) = m(0)$ and $\tilde{m}(n + 1) = m(\tilde{m}(n) + 1)$. By construction, the list given by $\tilde{D}_n = \bigcup_{i \leq \tilde{m}(n)} D_i$ has the desired nesting property. \hfill \Box
3.2. Standardized Types of generating sets. We use the results from §3.1 to show that any c.e. set \(A \) has a generating set for \(D(A) \) of one of ten standardized types. We can then classify c.e. sets by the complexity of their generating sets.

Theorem 3.10. For any c.e. set \(A \), there exists a collection of c.e. sets \(G \) of one of the following types that generates \(D(A) \).

- **Type 1:** \(G = \{ \emptyset \} \).
- **Type 2:** \(G = \{ R \} \), where \(R \) is an infinite computable set.
- **Type 3:** \(G = \{ W \} \), where \(W \) is an infinite noncomputable set.
- **Type 4:** \(G = \{ R_0, R_1, \ldots \} \), where the \(R_i \) are infinite pairwise disjoint computable sets.
- **Type 5:** \(G = \{ D_0, R_0, R_1, \ldots \} \), where \(D_0 \) is the only noncomputable set and all the sets are infinite and pairwise disjoint.
- **Type 6:** \(G = \{ D_0, D_1, \ldots \} \), where the \(D_i \) are infinite pairwise disjoint noncomputable sets.
- **Type 7:** \(G = \{ D_0, R_0, R_1, \ldots \} \), where \(D_0 \) is the only noncomputable set and the \(R_i \) are infinite pairwise disjoint sets.
- **Type 8:** \(G = \{ D_0, D_1, \ldots, R_0, R_1, \ldots \} \), where the \(D_i \) are pairwise disjoint noncomputable sets and the \(R_i \) are infinite pairwise disjoint computable sets.
- **Type 9:** \(G = \{ D_0, D_1, \ldots, R_0, R_1, \ldots \} \), where the \(R_i \) are infinite pairwise disjoint computable sets and the \(D_i \) are infinite nested noncomputable sets such that, for all \(l \in \omega \), \(D_{l+1} - D_l \) is not c.e. and there are infinitely many \(j \) such that \(R_j - D_l \) is infinite.
- **Type 10:** \(G = \{ D_0, D_1, \ldots \} \), where the \(D_i \) are infinite nested noncomputable sets such that \(D_{l+1} - D_l \) is not c.e. for all \(l \in \omega \).

Proof. (1) If there is a finite generating set for \(D(A) \), then there is a generating set of Type 1, 2 or 3 for \(D(A) \) by Lemma 3.3. (2) If \(D(A) \) has an infinite generating set consisting of pairwise disjoint sets, then \(D(A) \) has a generating set of Type 4, 5, or 6 by Lemma 3.6. Moreover, by Lemma 3.7, if \(D(A) \) has a generating set of Type 4, then \(D(A) \) does not have a generating set of Type 6. (3) If \(D(A) \) has an infinite generating set consisting only of computable sets, we can assume these computable sets are pairwise disjoint by Lemma 3.5. Otherwise, as in Lemma 3.3 and by Lemma 3.5, there is a generating set for \(D(A) \) such that the number of necessary noncomputable sets is one or infinitely many and all the computable sets are pairwise disjoint. (3a) If \(D(A) \) has a generating set of Type 7, we are done. Otherwise, infinitely many noncomputable sets are needed, and, by Lemma 3.9, these noncomputable sets can be taken to be either pairwise disjoint or nested. (3b) If these noncomputable sets can be chosen to be pairwise
disjoint, \(\mathcal{D}(A) \) has a generating set of Type 8. (3c) Otherwise, check whether \(\mathcal{D}(A) \) has a generating set of Type 9.

If there are negative answers to (1), (2), (3a), (3b) and (3c), then the noncomputable sets are nested and almost all the computable sets are almost contained in one of the noncomputable sets. For each noncomputable set \(D \) in this generating set, we can take the union of \(D \) and the remaining finitely many computable sets to obtain a generating set of Type 10 for \(\mathcal{D}(A) \).

□

Note that \(\mathcal{D}(A) \) may have generating sets of different types. However, the Types are listed in order of increasing complexity. By following the procedure outlined in the proof of Theorem 3.10, we will always find a generating set for \(\mathcal{D}(A) \) of lowest possible complexity. Hence, we can classify the c.e. sets by the Type complexity of their generating set.

Definition 3.11. We say the c.e. set \(A \) is Type \(n \) if there is a generating set for \(\mathcal{D}(A) \) of Type \(n \) but no generating set for \(\mathcal{D}(A) \) of Type \(m \) for all \(m < n \).

We more closely examine sets of a given Type in §3.4, but it is helpful to first observe the behavior of generating sets under splitting.

3.3. Splits and generating sets for \(\mathcal{D}(A) \).

Lemma 3.12. Suppose \(R \) is computable, \(A_0 \sqcup R = A \), and \(\mathcal{G} \subseteq \mathcal{D}(A) \). Then \(\mathcal{G} \) generates \(\mathcal{D}(A) \) iff \(\mathcal{G} \cup \{R\} \) generates \(\mathcal{D}(A_0) \).

Proof. Let \(D \) be c.e. and disjoint from \(A_0 \). Since \(D - A = D \cap \overline{R} \) is c.e. and disjoint from \(A \), the set \(D \) is covered by \(R \) and finitely many sets in \(\mathcal{G} \).

□

Corollary 3.13. A set \(A \) is half of a trivial splitting of a simple set iff \(\mathcal{D}(A) = \langle R \rangle \) for some computable \(R \).

Lemma 3.14. If \(\mathcal{G} \) generates \(\mathcal{D}(A) \) and \(A_0 \sqcup A_1 \) is a Friedberg splitting of \(A \), then \(\mathcal{G} \cup \{A_1\} \) generates \(\mathcal{D}(A_0) \).

Proof. Let \(D \) be a c.e. set. If \(D - A \) is not c.e., then \(D - A_0 \) is not c.e. and \(D \) is not disjoint from \(A_0 \). So, assume that \(D - A \) is a c.e. set. If \(D \) is disjoint from \(A_0 \), then \(D \) is covered by \(A_1 \) and finitely many sets in \(\mathcal{G} \).

□

Corollary 3.15. If \(A \) is half of a Friedberg splitting of a simple set, then \(\mathcal{D}(A) = \langle W \rangle \) where \(W \) is not computable.
Suppose that \(A_0 \sqcup A_1 = A \) is a nontrivial splitting that is not Friedberg. We would like a result describing a generating set for \(\mathcal{D}(A_0) \) similar to Lemmas 3.12 and 3.14, but such a result is not clear. For the splitting \(A_0 \sqcup A_1 = A \), there is a set \(W \) such that \(W - A \) is not c.e. but \(W - A_0 \) is a c.e. set. Since \(W - A \) may not be contained in a finite union of generators for \(\mathcal{D}(A) \) (for example, if \(A \) is simple), the set \(A_1 \) and the generators for \(\mathcal{D}(A) \) may not generate \(\mathcal{D}(A_0) \). Also, Lemma 4.13 shows that the converse of Lemma 3.14 fails.

3.4. Understanding the Types. Sets of Types 1, 2, and 3 are particularly well understood. By Lemma 3.2, \(S \) is simple iff \(S \) is of Type 1; there are no infinite c.e. sets disjoint from \(S \). By this fact and Lemma 3.12, \(A \sqcup R \) is simple iff \(A \) is Type 2. By Lemma 3.14, if \(A \) is half of a Friedberg splitting of a simple set, then \(A \) is of Type 3. Moreover, sets of these Types are definable.

Lemma 3.16. The statement “\(A \) is Type 1 (respectively 2, 3)” is elementarily definable in \(E^* \) under inclusion.

Proof. The set \(A \) is Type 1 iff \(A \) is simple, and \(A \) is Type 2 iff there is a computable set \(R \) disjoint from \(A \) such that \(A \sqcup R \) is simple. The set \(A \) is Type 3 iff there is a c.e. set \(D \) such that \(D \) is disjoint from \(A \) and for all c.e. sets \(W \) disjoint from \(A \), \(W \subseteq^* D \). \(\square \)

In §5, we will show that there are \(\mathcal{D} \)-maximal sets of all ten Types. Moreover, we will show that \(\mathcal{D} \)-maximal sets of Type 4, 5 and 6 are definable, somewhat extending Lemma 3.16. However, the following question is open.

Question 3.17. Is there a result similar to Lemma 3.16 for the remaining Types of sets in a general setting?

We finish this section with a remark on the behavior of sets of various Types under trivial or Friedberg splitting.

Remark 3.18. Suppose \(A_0 \sqcup A_1 = A \) is a trivial or Friedberg splitting and \(A_0 \) is not computable. If \(A \) is Type 1 or 2, then either \(A_0 \) is Type 2 (\(A_0 \sqcup A_1 = A \) is a trivial splitting) or Type 3 (\(A_0 \sqcup A_1 = A \) is a Friedberg splitting). If \(A \) is Type 3, then \(A_0 \) is Type 3. If \(A \) is Type 4, then \(A_0 \) is Type 4 (\(A_0 \sqcup A_1 = A \) is a trivial splitting) or Type 5. If \(A \) is Type 5 (6, 7, or 8), then \(A_0 \) is Type 5 (6, 7, or 8) (replace \(D_0 \) with the union of \(D_0 \) and \(A_1 \)). If \(A \) is Type 9 (10), then \(A_0 \) is Type 9 (10) (replace each \(D_i \) with the union of \(D_i \) and \(A_1 \)).

We now examine the last four types more carefully. First, we explore the subtle difference between Types 9 and 10, which is encoded in the last clauses of these Types’ definitions.
3.4.1. Type 10 sets and r-maximality. Type 10 sets can arise as splits of r-maximal sets.

Lemma 3.19. If A is half of a splitting of an r-maximal set (so not of Type 1) and A is not Type 2 or 3, then A is Type 10.

Proof. We will show that if A is Type 4, 5, 6, 7, 8, or 9 (and hence not of Type 1, 2, or 3) then A is not half of a splitting of an r-maximal set. Fix some infinite generating set \mathcal{G} for $\mathcal{D}(A)$ of Type 4, 5, 6, 7, 8, or 9.

Let B be a set disjoint from A (such sets exist since A is not Type 1). We show that $A \sqcup B$ is not r-maximal. Since \mathcal{G} is a generating set, B is contained in some finite union of sets in \mathcal{G}. Every c.e. superset of an r-maximal set is either almost equal to ω or r-maximal itself. Since A does not have Type 2 or 3, $A \sqcup B \neq \omega$ and we can assume B is the union of these finitely many generators. We proceed by cases. For \mathcal{G} of Type 4, 5, or 7, an R_i not part of the union witnesses that $A \sqcup B$ is not r-maximal. For \mathcal{G} of Type 6, an infinite computable subset of some D_i not part of the union demonstrates that $A \sqcup B$ is not r-maximal. For \mathcal{G} of Type 8 or 9, assume that $B \subseteq \bigcup_{j \leq i} R_j \cup \bigcup_{j \leq i} D_j$. If A and \mathcal{G} have Type 8, there is some D_i such that $D_i \cap \bigcup_{j \leq i} R_j$ is infinite. An infinite computable subset of this intersection demonstrates that $A \sqcup B$ is not r-maximal. Finally, suppose \mathcal{G} is Type 9. By the last clause of Type 9, there is an $r > i$ such that $R_r - D_i$ is infinite. The computable set R_r witnesses that $A \sqcup B$ is not r-maximal.

\[\square \]

Note that we cannot eliminate the assumption that A is not Type 2 or 3 in Lemma 3.19. If $A \sqcup R$ is a trivial splitting of an r-maximal set, then $A \sqcup R$ is simple. By Corollary 3.13, $\mathcal{D}(A) = \{ R \}$ and A is Type 2. Similarly, by Corollary 3.15, if $A \sqcup B$ is a Friedberg splitting of an r-maximal set, A is Type 3.

Question 3.20. Does the converse to Lemma 3.19 hold, i.e., if A is Type 10 then is A a split of an atomless r-maximal set?

We can, however, prove this statement with an additional assumption.

Lemma 3.21. If A is \mathcal{D}-maximal and Type 10, then A is half of a splitting of an atomless r-maximal set.

Proof. Let $\mathcal{G} = \{ D_0, D_1, \ldots \}$ be a Type 10 generating set for $\mathcal{D}(A)$. Since being r-maximal is closed under superset and $A \sqcup D_i$ is atomless for all $i \in \omega$, it is enough to show that $A \sqcup D_i$ is r-maximal for some $i \in \omega$. Suppose otherwise. We show that A is not Type 10 by constructing an infinite collection of infinite computable pairwise disjoint
sets all disjoint from \(A \) such that \(R_i - D_i \) is infinite for all \(i \in \omega \). Thus, by the procedure in the proof of Theorem 3.10 and Definition 3.11, \(A \) is not Type 10. Specifically, the generating set \(\{D_0, D_1, \ldots, R_0, R_1, \ldots\} \) for \(\mathcal{D}(A) \) witnesses that statement (3c) has a positive answer.

We assume inductively that \(R_0, \ldots, R_n \) are infinite computable pairwise disjoint sets all disjoint from \(A \) such that \(R_j - D_j \) is infinite for all \(j \leq n \). Suppose that \(A \cup D_{n+1} \cup \bigcup_{i \leq n} R_i = C \) is not \(r \)-maximal. So, \(\overline{C} \) is split by some infinite computable set \(R \). Since \(A \) is \(\mathcal{D} \)-maximal, either \(R \) is disjoint from \(A \) or there is an infinite disjoint c.e. set \(D \) such that \(D \cup A \cup R = \omega \). In the former case, we set \(R_{n+1} := R - \bigcup_{i \leq n} R_i \). Since \(R \) splits \(\overline{C} \), \(R_{n+1} \) is computable, infinite, and coinfinite. In the latter case, \(\overline{R} \subseteq D \cup A \). So, \(\overline{R} \cap D \) is an infinite computable set disjoint from \(A \). Since \(R \) splits \(\overline{C} \) and \((\overline{R} \cap D) \cup R \cup \overline{C} = \omega \), \(\overline{R} \) also splits \(\overline{C} \). Then, \(R_{n+1} := \overline{R} - \bigcup_{i \leq n} R_i \) is computable, infinite, and coinfinite. In either case, \(R_{n+1} - D_{n+1} \) is infinite, as desired.

There are several examples in the literature of sets \(A \) that are \(\mathcal{D} \)-maximal splits of atomless \(r \)-maximal sets (see §5.2). Given Lemma 3.21, it is natural to ask what kinds of splittings of atomless \(r \)-maximal sets result in such examples. By Corollaries 3.13 and 3.15, these splittings are not trivial or Friedberg since \(r \)-maximal sets are simple. We address this question in §4.2.

3.4.2. Types 7, 8 and 9: the hh-simple-like types. In this section, we discuss how some sets of Types 7, 8 and 9 behave similarly to splits of hh-simple sets. First, we show that we can further refine generating sets for these Types.

Lemma 3.22. If a set \(A \) is Type 7, there exists a Type 7 generating set \(\{D_0, R_0, R_1, \ldots\} \) for \(\mathcal{D}(A) \) such that:

1. for all \(j \in \omega \), the set \(R_j - D_0 \) is infinite, and hence \(\overline{A} - D_0 \) is infinite.
2. \(D_0 \subseteq \bigcup_{i \in \omega} R_i = \overline{A} \).

Proof. Given some Type 7 generating set \(\{D_0, R_0, R_1, \ldots\} \) for \(\mathcal{D}(A) \), if \(R_j \subset^* D_0 \) for some \(j \), we can remove \(R_j \) from the list of generators. Infinitely many \(R_j \) will remain since otherwise \(A \) would be of lower Type. For the remaining \(j \), \(R_j - D_0 \) is infinite. Then, by Lemma 3.8, we can adjust the \(R_j \) so that \(D_0 \subseteq \bigcup_{i \in \omega} R_i = \overline{A} \). □

For sets of Type 8 or 9, for the first time, we will place conditions on the order of the sets in the generating set. We use this property when we show that Type 8 and 9 \(\mathcal{D} \)-maximal sets exist. The proof, though
more difficult than that of Lemma 3.22 due to this ordering, is similar to the proof of Lemma 3.9.

Lemma 3.23. If a set \(A \) is Type 8 (respectively 9), there exists a Type 8 (respectively 9) generating set such that:

1. for all \(i > j \), \(D_i \cap R_j = \emptyset \) (respectively \((D_i - D_{i-1}) \cap R_j = \emptyset \) for Type 9).
2. for all \(j \), the set \(R_j - \bigcup_{i \leq j} D_i \) is infinite.
3. \(\bigcup_{i \in \omega} D_i \subseteq \bigcup_{i \in \omega} R_i = \overline{A} \).

(So, \(\overline{A} - \bigcup_{i \in \omega} D_i \) is infinite.)

Proof. Suppose that \(\mathcal{G} = \{ \bar{D}_0, \bar{D}_1, \ldots, \bar{R}_0, \bar{R}_1, \ldots \} \) is Type 8 or Type 9 and generates \(\mathcal{D}(A) \). By Lemma 3.8, we can assume that \(\overline{A} = \bigcup_{i \in \omega} \bar{R}_i \). We inductively define a new generating set \(\{ \bar{D}_0, \bar{D}_1, \ldots, \bar{R}_0, \bar{R}_1, \ldots \} \) for \(\mathcal{D}(A) \) with the desired properties and helper functions \(d \) and \(r \) from \(\omega \) to \(\omega \).

Set \(D_0 = \bar{D}_0 \) and \(d(0) = 0 \). We claim that there exists an \(i \in \omega \) such that \(\bar{R}_i - D_0 \) is infinite. This is true by definition if \(\mathcal{G} \) is Type 9. Suppose \(\mathcal{G} \) is Type 8. If the claim is false, then \(\bar{R}_i \subseteq D_0 \) for all \(i \in \omega \). So, \(\{ \bar{D}_0, \bar{D}_1, \ldots \} \), a collection of pairwise disjoint c.e. sets, would generate \(\mathcal{D}(A) \), and \(A \) would be at most Type 6, a contradiction. Let \(l \) be least such that \(\bar{R}_l - D_0 \) is infinite. Let \(R_0 = \bigcup_{j \leq l} \bar{R}_j \) and \(r(0) = l \).

Assume that, for all \(j \leq i \), \(D_j, R_j, d(j) \) and \(r(j) \) are defined so that \(D_i \) is not computable, \(R_i \) is computable, and

\[
\bigcup_{j \leq d(i)} \bar{D}_j \cup \bigcup_{j \leq r(i)} \bar{R}_j \subseteq^* \bigcup_{j \leq i} (D_j \cup R_j).
\]

We claim there exists some (and hence a least) \(l \in \omega \) such that \(\bigcup_{d(i) < j \leq l} \bar{D}_j - \bigcup_{j \leq i} R_j \) is not computable. If not, for all \(k > d(i) \),

\[
\bar{D}_k - \left(\bigcup_{j \leq i} R_j \cup \bigcup_{d(i) < j < k} \bar{D}_j \right)
\]

is computable. Then, these computable sets, the computable sets \(\{ \bar{R}_{r(i)+1}, \bar{R}_{r(i)+2}, \ldots \} \), and the noncomputable set \(\bigcup_{j \leq i} (D_j \cup R_j) \) generate \(\mathcal{D}(A) \). Now, we can apply Lemma 3.5 to the computable sets in this list to show that \(A \) is at most Type 7. So, the desired least \(l \) exists.

Set \(d(i + 1) = l \) and \(D_{i+1} = \bigcup_{d(i) < j \leq l} \bar{D}_j - \bigcup_{j \leq i} R_j \). If \(\mathcal{G} \) is Type 9, we also add the elements of \(D_i \) to \(D_{i+1} \) to ensure the nesting property is satisfied.

Let \(l > r(i) \) be least such that \(\bar{R}_l - \bigcup_{j \leq i+1} D_j \) is infinite. Again, such an \(l \) exists by definition if \(\mathcal{G} \) is Type 9. If \(\mathcal{G} \) is Type 8 and \(l \) fails to exist, none of the remaining \(\bar{R}_i \) are needed to generate \(\mathcal{D}(A) \). Since
the sets in \(\{ \tilde{D}_j \mid j \leq i + 1 \} \) are pairwise disjoint (\(G \) is Type 8), \(A \) is at most Type 6, a contradiction. So, we can set \(R_{i+1} = \bigsqcup_{r(i) < j \leq l} \tilde{R}_j \) and \(r(i + 1) = l \). By construction, \(\{ D_0, D_1, \ldots, R_0, R_1, \ldots \} \) has the desired properties. □

Hence, if \(A \) is Type 7, 8, or 9, we obtain the following analogue to Theorem 2.2.

Corollary 3.24. Suppose that \(A \) is Type 7, 8, or 9, and let \(\tilde{D} = \bigsqcup_{i \in \omega} D_i \cup A \). Unless \(A \) is of Type 7, \(\tilde{D} \) is not a c.e. set. The sets \(\{ R_0, R_1, \ldots \} \) and finite boolean combinations of these sets form an infinite \(\Sigma^0_3 \) boolean algebra, \(B \), which is a substructure of \(L^*(\tilde{D}) \).

Proof. The relation \(\subseteq^* \) is \(\Sigma^0_3 \). Each \(R_i \) is complemented and infinitely different from \(R_j \) for all \(j \neq i \). □

This substructure might be proper if \(R_i \cap \tilde{D} \) is finite for all \(i \in \omega \). If \(B \) is not proper then, for all \(i \), \(L^*(\tilde{D} \cap \overline{R_i}) \) must be a boolean algebra and hence \(\tilde{D} \) must be hhsimple inside \(R_i \). By Lemma 3.23, \(R_i \cap \tilde{D} \) is a c.e. set.

If \(A \) is \(\mathcal{D} \)-maximal, then the converse holds. Assume that \(A \) is \(\mathcal{D} \)-maximal and \(\tilde{D} \) is hhsimple inside \(R_i \) for all \(i \). Given a set \(W \), there is a finite set \(F \subset \omega \) such that either \(W \subseteq^* \tilde{D} \cup \bigsqcup_{i \in F} R_i \) or \(W \cup \tilde{D} \cup \bigsqcup_{i \in F} R_i =^* \omega \). In either case, \(W \) is complemented inside \(L^*(\tilde{D}) \). So, \(L^*(\tilde{D}) \) is a boolean algebra.

In §6, we show that \(\mathcal{D} \)-maximal sets of Types 7, 8, and 9 exist. When we construct these three Types of sets, we will ensure that \(\tilde{D} \) is hhsimple inside \(R_i \) for all \(i \in \omega \), and, moreover, for all \(i \geq j \), \(D_j \cap R_i \) is infinite and noncomputable. Our construction and Corollary 3.24 lead us to call Types 7, 8, and 9 hhsimple-like. For Type 7 we have the following corollary.

Corollary 3.25. There is half of a splitting of a hhsimple set that is \(\mathcal{D} \)-maximal and Type 7.

Again, we can ask what kind of split is needed. By Lemma 3.12 and 3.14, it cannot be a trivial or Friedberg splitting. Note that Corollary 3.25 as presented is known, see Herrmann and Kummer [15, Theorem 4.1 (1)]. In fact, Herrmann and Kummer prove something stronger; see §6.0.1. They also directly prove that these splits cannot be trivial or Friedberg.

3.5. **Questions.** First, it is natural to ask as we did in Question 3.17 if all the Types are definable. In a related vein, it is natural to wonder
whether Types 7, 8, 9, and 10 should be further subdivided. We con-
struct the D-maximal sets of Types 7, 8, and 9 very uniformly; for all
$i, \bigcup_{j \leq i} D_i$ is hhsimple inside R_i and, for all $i \geq j$, $D_j \cap R_i$ is infinite
and noncomputable. Perhaps one could further divide Types 7, 8, and
9 into finer types determined by whether \bar{D} is hhsimple inside
R_i or not, or, whether for all $i \geq j$, $D_j \cap R_i$ is infinite and noncomputable,
or not. It is far from clear if this is productive. We suggest that the
reader look at §6 before considering these questions.

We also asked in Question 3.20 whether Type 10 sets must be splits
of atomless r-maximal sets.

4. Splits & D-maximality

4.1. Friedberg Splits. Recall that Friedberg splittings always exist.

Theorem 4.1 (Friedberg [11]). Every noncomputable c.e. set A has a
Friedberg splitting $A_0 \sqcup A_1 = A$. Moreover, a code for the splitting can
be found effectively in the code for A.

We provide some examples where the halves of Friedberg splittings
are a proper subclass of the halves of nontrivial splittings of the same
set (see Remark 4.11 and the immediately following paragraph). We
expect that there are other examples of this kind, but we do not know
of any. This leads to the following question.

Question 4.2. Is there is a definable property P such that the halves
of Friedberg splittings of sets satisfying P are a proper subset of the
halves of nontrivial splittings of sets satisfying P (the hemi-P sets)?

A good first resource for information on splits is Downey and Stob [9].

We generalize the following lemma to D-maximal sets in Lemma 4.5.

Lemma 4.3 (Downey and Stob [8]). Every nontrivial splitting of a
maximal set is a Friedberg splitting.

Proof. Let $M_0 \sqcup M_1 = M$. Assume that $W - M$ is not c.e., but $W - M_0$ is
a c.e set. By maximality, $\overline{M} \subseteq^* W$. Then, $M_0 \sqcup (M_1 \cup (W - M_0)) =^* \omega$,
and, hence, M_0 is computable. \hfill \Box

Downey and Stob used Lemma 4.3 in a fundamental way to prove that
hemimaximal sets are all Δ^0_3-automorphic.

We need one more result on splittings of maximal sets for our later
work.

Lemma 4.4. If a noncomputable set A is half of a splitting of an
atomless set, then A is not half of a splitting of a maximal set.
Proof. Assume that $A \sqcup A_1$ is an atomless set and $A \sqcup A_2$ is maximal. Since $A \sqcup A_1$ is atomless, $A \sqcup A_1$ cannot be (almost) a subset of $A \sqcup A_2$. Since $A \sqcup A_2$ is maximal, $(A \sqcup A_2) \cup (A \sqcup A_1) = ^* \omega$. Therefore, $A \sqcup (A_1 \cup A_2) = ^* \omega$, and A is computable.

We now turn to splittings of \mathcal{D}-maximal sets. The next few lemmas are explicit or implicit in [5].

Lemma 4.5. Every nontrivial splitting of a \mathcal{D}-maximal set is a Friedberg splitting.

Proof. Let $M_0 \sqcup M_1 = M$. Assume that $W - M$ is not c.e. but that $W - M_0$ is a c.e. set. By \mathcal{D}-maximality, there is a set D disjoint from M such that $W \cup D \cup M = ^* \omega$. But then $M_0 \cup (M_1 \cup D \cup (W - M_0)) = ^* \omega$, and, hence, M_0 is computable. □

Lemma 4.5 suggests the following question.

Question 4.6. Let \mathcal{F} be the class of c.e. sets all of whose nontrivial splittings are Friedberg. How does \mathcal{F} and the class of \mathcal{D}-maximal sets compare? Is \mathcal{F} a definable class?

Lemma 4.7 (Theorem 6.8 of [5]). If $A \sqcup X$ is a splitting of a \mathcal{D}-maximal set and A is not computable, then A is also \mathcal{D}-maximal.

Proof. For all W, there is a set D such that $D \cap (A \sqcup X) = \emptyset$ and either $W \subseteq^* D \sqcup A \sqcup X$ or $W \cup (D \sqcup A \sqcup X) = ^* \omega$. In the first case, $W \subseteq^* (D \sqcup X) \sqcup A$. In the second case, $W \cup ((D \sqcup X) \sqcup A) = ^* \omega$. □

Lemma 4.8. If R is computable and disjoint from a noncomputable set A, then A is \mathcal{D}-maximal iff $A \sqcup R$ is \mathcal{D}-maximal.

Proof. (\Rightarrow) Suppose A is \mathcal{D}-maximal. Then, for all sets W, there is a set D disjoint from A such that either $W \subseteq^* A \sqcup D$ or $W \cup A \cup D = ^* \omega$. Since $D = (D \cap R) \sqcup (D \cap \overline{R})$, the set $D \cap \overline{R}$ is disjoint from $A \sqcup R$ and either $W \subseteq^* (A \sqcup R) \sqcup (D \cap \overline{R})$ or $W \cup (A \sqcup R) \cup (D \cap \overline{R}) = ^* \omega$.

(\Leftarrow) Follows from Lemma 4.7. □

4.2. **Anti-Friedberg splits.** Lemmas 4.5 and 4.7 together say that every splitting $A_0 \sqcup A_1$ of a \mathcal{D}-maximal set is either trivial or Friedberg and results in a \mathcal{D}-maximal set A_0 as long as A_0 is noncomputable. It is natural to ask whether every \mathcal{D}-maximal set A_0 is the result of a trivial or Friedberg splitting. We introduce another splitting notion to help us explore this issue.

Definition 4.9. Let $A_0 \sqcup A_1$ be a nontrivial splitting of a set A. We say $A_0 \sqcup A_1$ is an *anti-Friedberg splitting* of A if for all sets W, either
(1) there is a set D such that $D \cap A_0 =^* \emptyset$ and $W \cup D \cup A =^* \omega$ or
(2) $W - A_0$ is c.e. set.

A splitting that is anti-Friedberg but not Friedberg is called a proper anti-Friedberg splitting.

Note that the order of the sets A_0 and A_1 matters in Definition 4.9.

In a Friedberg splitting, if W is a set such that $W - A$ is not c.e., elements in W flow nontrivially into A_0 and A_1. In an anti-Friedberg splitting, such a flow can only happen for those W with a D disjoint from A such that $W \cup A \cup D =^* \omega$. The next lemma shows that anti-Friedberg splittings are intimately related to \mathcal{D}-maximal sets.

Lemma 4.10. If A_1 is a noncomputable c.e. set disjoint from A_0, then A_0 is \mathcal{D}-maximal iff $A_0 \sqcup A_1$ is an anti-Friedberg splitting.

Proof. (\Rightarrow) For all sets W, there is a set D disjoint from A_0 such that either $W \subseteq^* A_0 \cup D$ (so $W - A_0 =^* W \cap D$ is c.e.) or $W \cup A_0 \cup D =^* \omega$.

(\Leftarrow) For all sets W, there is a set D such that $D \cap A_0 =^* \emptyset$ and either $W \cup D \cup A_0 =^* \omega$ or $W - A_0 = D$ is a c.e. set. In the latter case, $W \subseteq^* A_0 \cup (W - A_0)$. \hfill \Box

Thus, any nontrivial splitting that results in a \mathcal{D}-maximal set is an anti-Friedberg splitting. So, when we construct atomless r-maximal sets (which are \mathcal{D}-maximal sets of Type 10) in §5.2 and \mathcal{D}-maximal halves of splittings of hhsimple sets (which are \mathcal{D}-maximal sets of Type 7) in §6, we are constructing anti-Friedberg or trivial splittings. We claim that these splittings are neither trivial nor Friedberg, and hence, are properly anti-Friedberg splittings. Both hhsimple and atomless r-maximal sets are simple. Let A be a hhsimple or atomless r-maximal set, and let $A_0 \sqcup A_1 = A$ be a trivial or Friedberg splitting of A. By Corollaries 3.13 and 3.15, $\mathcal{D}(A_0) = \{A_1\}$. If A_0 is the \mathcal{D}-maximal set of Type 7 or 10 we construct, a generating set for $\mathcal{D}(A_0)$ of this form cannot exist. Hence, the splittings we construct to obtain \mathcal{D}-maximal sets of Type 7 and 10 are properly anti-Friedberg splittings.

We remark that there are many other examples of properly anti-Friedberg splittings.

Remark 4.11. If a set A is \mathcal{D}-maximal but not simple, there is a computable set R disjoint from A. Let X be a noncomputable c.e. subset of R. Then, R witnesses that $A \sqcup X$ is not Friedberg since $R - (A \sqcup X)$ is not c.e. but $R - A = R$ is a c.e. set. Hence, $A \sqcup X$ is properly anti-Friedberg by Lemma 4.10.

We now characterize when an anti-Friedberg splitting is proper.
Lemma 4.12. Suppose $A \sqcup B$ is an anti-Friedberg splitting (so A is D-maximal). Then, $A \sqcup B$ is D-maximal iff $A \sqcup B$ is a Friedberg splitting.

Proof. (\Rightarrow) Follows from Lemma 4.5.

(\Leftarrow) Consider a set D disjoint from A. Since $D - A = D$ is c.e. and $A \sqcup B$ is a Friedberg splitting, $D - B = D - (A \sqcup B)$ must also be a c.e. set. For all sets W, there is a D disjoint from A such that $W \subseteq^* A \sqcup B \cup (D - B)$ or $W \cup (A \sqcup B \cup (D - B)) =^* \emptyset$. So, $A \sqcup B$ is also D-maximal.

Thus, if D is disjoint from a D-maximal set A, then the union $A \sqcup D$ need not be D-maximal. If $A \sqcup D$ is D-maximal then, since all splits of D-maximals are trivial or Friedberg, Remark 3.18 explains how the types of A and $A \sqcup D$ relate. We contrast Remark 3.18 with the following result.

Lemma 4.13. If $A_0 \sqcup A_1 = A$ is an anti-Friedberg splitting of an r-maximal set A (such splittings exist see §5.2), then $\{A_0\}$ generates $D(A_1)$.

Proof. Let W be disjoint from A_1. So, $W - A = W - A_0$. Since $A_0 \sqcup A_1$ is an anti-Friedberg splitting, either $W - A$ is c.e. or there is a set D such that $D \cap A_0 =^* \emptyset$ and $W \cup D \cup A =^* \omega$. First, suppose the latter. Since all balls enter W, D or A, the set of balls that enter D before entering W or A is computable. Let R be this set. Then, R is disjoint from A_0, and $W \cup R \cup A =^* \emptyset$. Since A is r-maximal, either $\overline{A} \subseteq R$ or $R \subseteq^* A$. If $\overline{A} \subseteq R$, then $(R \cup A_1) \sqcup A_0 =^* \emptyset$ and hence A_0 is computable, a contradiction. If $R \subseteq^* A$, then $R \subseteq^* A_1$. This implies that $(W \cup A_0) \sqcup A_1 =^* \omega$ and that A_1 is computable, a contradiction. So, $W - A$ is a c.e. set. Since A is simple, $W - A =^* \emptyset$ and $W \subseteq^* A_0$, as desired.

We do not know an analogous lemma for when A is hh-simple.

Question 4.14. Is there an analogous result to Lemma 4.13 for hh-simple sets?

4.3. Questions on Friedberg and anti-Friedberg splittings. As mentioned above, Downey and Stob [8] showed that the hemimaximal sets form an orbit. They also proved that, under very favorable conditions on the property P, the hemi-P sets form an orbit. In a similar vein, they [10] showed that, for any set, all e^*-Friedberg splittings form an orbit. Not all Friedberg splittings are e^*-Friedberg. Recall that the hemi-Herrmann sets form an orbit ([5], see §2.2). In general, it is natural to ask what can be said about orbits of anti-Friedberg splittings. Here are some concrete questions in that direction.
Question 4.15. (1) If $A_0 \sqcup A_1 = \hat{A}_0 \sqcup \hat{A}_1$ are anti-Friedberg splittings, are A_0 and \hat{A}_0 automorphic? This is true for special kinds of Friedberg splittings, see [9, Theorem 2.8].

(2) If A and \hat{A} are (Δ^0_3-automorphic) automorphic hh-simple sets (atomless r-maximal sets) and $A_0 \sqcup A_1 = A$ and $\hat{A}_0 \sqcup \hat{A}_1 = \hat{A}$ are anti-Friedberg splittings, then are A_0 and \hat{A}_0 automorphic? Again, this is true under certain conditions for Friedberg splittings, see Downey and Stob [9, §2].

In §6.6, we show how a positive answer to the second question above would be very useful.

See Questions 4.2, 4.6, and 4.14 for additional problems about Friedberg and anti-Friedberg splittings.

5. \mathcal{D}-maximal sets of all Types exist

Theorem 5.1. There are complete and incomplete \mathcal{D}-maximal sets of each Type. Moreover, for any \mathcal{D}-maximal set A,

(1) A is maximal iff A is Type 1.

(2) There is a computable set R such that $A \cup R$ is maximal (i.e. A maximal inside R) iff A is Type 2.

(3) A is hemimaximal iff A is Type 3.

(4) A is Herrmann iff A is Type 4.

(5) A is hemi-Herrmann iff A is Type 5.

(6) A has an A-special list iff A is Type 6.

So, for each of the first six Types, the \mathcal{D}-maximal sets of that Type form a single orbit. The \mathcal{D}-maximal sets of each of the remaining four Types break up into infinitely many orbits.

In §5.1, we show that there are \mathcal{D}-maximal sets of each of the first six types by proving the stronger statement in the corresponding subcase of Theorem 5.1. The orbits of the first five Types are known to contain complete and incomplete sets, so we only need to address the Type 6 case to finish the proof of Theorem 5.1 for the first six Types.

In §5.2 we present a construction of \mathcal{D}-maximal sets of Type 10 (by taking advantage of prior work). We also show that these sets break into infinitely many orbits and that they can be complete and incomplete. In §6, we construct both complete and incomplete hh-simple-like \mathcal{D}-maximal sets, i.e., Type 7, 8, and 9 \mathcal{D}-maximal sets. We also prove that these sets break up into infinitely many orbits by defining a further invariant on each of these Types. It remains open, however, whether every \mathcal{D}-maximal set of one of the last four Types is automorphic to a complete set.
5.1. **The first six parts of Theorem 5.1.** Recall that A is simple iff $\mathcal{D}(A) = \{\emptyset\}$. So, a simple set A is \mathcal{D}-maximal iff for all W either $W \subseteq^* A$ or $W \cup A =^* \omega$ iff A is maximal. Hence, a \mathcal{D}-maximal set is Type 1 iff it is maximal. By Lemmas 3.12, 3.14 and 4.5, a set A is \mathcal{D}-maximal and $\{X\}$ generates $\mathcal{D}(A)$ iff for all sets W either $W \subseteq^* A \cup X$ or $W \cup (A \cup X) =^* \omega$ iff $A \cup X$ is maximal. Hence, the first three subcases of Theorem 5.1 hold.

Lemma 5.2.

(i) A set A is \mathcal{D}-maximal and Type 4 iff A is Herrmann.

(ii) A set A is \mathcal{D}-maximal and Type 5 iff A is hemi-Herrmann.

Proof. (i) (\Rightarrow) Suppose A is a \mathcal{D}-maximal Type 4 set. We show that A is strongly r-separable. Let B be a set disjoint from A. By assumption and Lemma 3.8, there exist pairwise disjoint computable sets $R_1, \ldots, R_n, R_{n+1}$ belonging to a generating set for $\mathcal{D}(A)$ such that $B \subseteq \bigcup_{1 \leq i \leq n} R_i$. The computable set $C = \bigcup_{1 \leq i \leq n} R_i$ witnesses that A is strongly r-separable. (\Leftarrow) Given a Herrmann set A, we inductively construct a Type 4 generating set for $\mathcal{D}(A)$ as follows. Suppose D_0, D_1, \ldots, D_n are pairwise disjoint computable sets that are all disjoint from A. If W_n is disjoint from A, set $D = W_n \cup \bigcup_{i \leq n} D_i$, and otherwise, set $D = \bigcup_{i \leq n} D_i$. Since A is strongly r-separable, there exists a computable set C such that $D \subseteq C$ and $C - D$ is infinite. Setting $D_{n+1} = C - \bigcup_{i \leq n} D_i = C \cap \bigcup_{i \leq n} D_i$ completes the construction.

(ii) By Lemmas 3.14, 4.5, 4.7, and 5.2 (i), the hemi-Herrmann sets are \mathcal{D}-maximal of Type 5. The other direction is straightforward.

Lemma 5.3. A set A is \mathcal{D}-maximal and Type 6 iff A has an A-special list.

Proof. Note that if $\{A, D_0, D_1, \ldots\}$ is an A-special list and a set W is disjoint from A, then $W \subseteq^* \bigcup_{1 \leq i \leq 1} D_i$. Otherwise, the condition $W \cup \bigcup_{i \leq 1} D_i =^* \omega$ would hold, implying that $A = D_0$ would be computable. So, a \mathcal{D}-maximal set A has a Type 6 generating set $\{D_0, D_1, \ldots\}$ iff $\{A, D_0, D_1, \ldots\}$ is an A-special list.

Recall that maximal, hemimaximal, Herrmann, hemi-Herrman, and sets with A-special lists form distinct definable orbits (see §2.2). Although it was previously shown that there are complete Herrmann and hemi-Herrmann sets, it is not explicitly shown in Cholak and Harrington [3] that a complete or incomplete set with an A-special list exists. In Remark 6.9, we discuss how the construction found in [3]
of sets with A-special lists can be modified to ensure the resulting set is complete or incomplete.

5.2. \mathcal{D}-maximal sets of Type 10 and atomless r-maximal sets. Lerman and Soare constructed an atomless r-maximal set A and a nontrivial splitting $A_0 \sqcup A_1 = A$ so that $A_1 \cup (W - A)$ is c.e. for every coinitial $W \in \mathcal{L}^*(A)$ in [18, Theorem 2.15]. Herrmann and Kummer proved that such a split A_0 is \mathcal{D}-maximal [15, Proposition 4.5]. By Lemma 4.4 and the first 3 subcases of Theorem 5.1, A_0 does not have Type 1, 2 or 3. Therefore, by Lemma 3.19, A_0 is in fact a Type 10 \mathcal{D}-maximal set.

The construction of Lerman and Soare is a version of John Norstad’s construction (unpublished) that has been modified several times (see [24, Section X.5]). Here we briefly discuss how to alter the construction in Cholak and Nies [4, Section 2] to directly show that $A_0 \sqcup A_1$ is an anti-Friedberg splitting (so A_0 is \mathcal{D}-maximal by Lemma 4.10). For the remainder of this section, we assume that the reader is familiar with [4].

As we enumerate A, we build the splitting $A = A_0 \sqcup A_1$. All the balls that are dumped by the construction are added to A_1. Since A_0 would be empty without any other action, we add requirements S_e to ensure that A_0 is not computable. Specifically, we have

S_e: \[W_e \neq \overline{A_0}. \]

We say that S_e is met at stage s if there is an $x \leq s$ such that $\varphi_{e,s}(x) = 1$ but $x \in A_{0,s}$. We also add a Part III to the construction in [4, Construction 2.5].

Part III: Let $x = d^s_{e,0}$. If S_e is met or x has already been dumped into A at stage s, do nothing. Otherwise, if $\varphi_{e,s}(x) = 1$, add x to A_0 and realign the markers as done in Parts I and II.

It straightforward to show that S_e is met and that Part III does not impact the rest of the construction. So, it is left to show that $A_0 \sqcup A_1$ is an anti-Friedberg splitting. By requirement P_e and [4, Lemma 2.3], either $W_e \subseteq^* H_e$ or $\overline{A} \subseteq^* W_e$. In the latter case, $A_0 \cup A_1 \cup W_e =^* \omega$. So assume that $W_e \subseteq^* H_e$. We show that $W_e - A_0$ is a c.e. set. [4, Definition 2.9, Lemma 2.11] provides a c.e. definition of H_e. To guarantee that $W_e - A_0$ is c.e., we have to slightly alter the definition of s' in [4, Definition 2.9]. In particular, choose s' so that if S_i will be met at some stage, then it is met by stage s', for all $i \leq e$. This change at most increases the value of s'. This alteration in s', [4, Lemma 2.10],
and the construction together imply that \(H_e \setminus A_0 \) is empty. Since \(W_e \subseteq^* H_e \),
\[
((H_e \setminus A_0) \cap W_e) \cup (W_e \cap A_1) =^* W_e - A_0.
\]
Hence, \(W_e - A_0 \) is c.e. as required.

This construction of \(A_0 \) clearly mixes with finite restraint; rather than using \(d_s(e,0) \) for \(S \), use the least \(d_s(e,j) \) above the restraint. Hence, we can build \(A_0 \) incomplete. To code the halting set into \(A_0 \), we have to alter the dumping slightly. If a ball \(x = d_s(e,0) \) is dumped into \(A_0 \), always add it to \(A_0 \). All other dumped balls go into \(A_1 \). Now if \(e \) enters \(K \) at stage \(s \), also add \(d_s(e,0) \) into \(A_0 \). It is not hard to show that \(A_0 \) is complete and half of an anti-Friedberg splitting (just alter the above \(s' \) in the c.e. definition of \(H_e \) so that \(K \upharpoonright e + 1 = K_{e'} \upharpoonright e + 1 \)).

Cholak and Nies [4, Section 3] go on to construct infinitely many atomless \(r \)-maximal sets \(A^e_n \) that all reside in different orbits. We use the ideas there together with our modified construction to obtain \(A^n = A^n_0 \sqcup A^n_1 \). We claim that the sets \(A^n_0 \) also fall into infinitely many distinct orbits. Assume that \(A^n_0 \sqcup B \) is an atomless \(r \)-maximal set. Since \(A^n_0 \) is not computable, \(A^n_0 \sqcup (A^n_1 \cup B) \neq^* \omega \). A \(T^{n+1} \)-embedding of \(\mathcal{L}^\ast(A^{n+1}) \) into \(\mathcal{L}^\ast(A^n_0 \sqcup (A^n_1 \cup B)) \) would provide a \(T^{n+1} \)-embedding of \(\mathcal{L}^\ast(A^{n+1}) \) into \(\mathcal{L}^\ast(A^n_0 \sqcup A^n_1) \). By [4, Lemma 3.5, Theorem 3.6], the latter cannot exist so neither can the former. In \(\mathcal{L}^\ast(A^n_0 \sqcup A^n_1) \), \(B \) is contained by some \(H^n_0 \), where \(e = i^{0m} \), for some \(m \) (see [4, Theorem 2.12]). By definition of \(T^n \), the tree above \(0^m \) is isomorphic to \(T^n \). So there is a \(T^n \)-embedding of \(\mathcal{L}^\ast(A^n) \) into \(\mathcal{L}^\ast(A^n_0 \sqcup (A^n_1 \cup B)) \) and hence into \(\mathcal{L}^\ast(A^n_0 \sqcup B) \). Thus, none of the \(A^n_0 \) belong to the same orbit.

6. Building hh-simple-like \(\mathcal{D} \)-maximal sets

We continue with the proof of Theorem 5.1. We construct \(\mathcal{D} \)-maximal sets of Types 7, 8, and 9 and show that the collection of sets of each of these Types breaks up into infinitely many orbits.

In §3.4.2, we discussed how sets of Types 7, 8, and 9 are like hh-simple sets. Lachlan’s construction in the second half of Theorem 2.2 serves as the backbone of our constructions, but we also use it modularly within these constructions. Our approach is to treat this theorem as a blackbox.

In §6.1, we describe how to construct a set \(H \) that is close to being hh-simple and is associated with a boolean algebra with a particularly nice decomposition. In §6.2, we add requirements ensuring that the construction in §6.1 results in a hh-simple set with a \(\mathcal{D} \)-maximal split of Type 7, 8, or 9.
6.0.1. **Herrmann and Kummer’s Result.** It is important to note that Herrmann and Kummer [15, Theorem 4.1 (1)] already constructed \mathcal{D}-maximal splits of hh-simple sets. In fact, their result is stronger than the result presented here, in the sense that, given any infinite Σ^0_3 boolean algebra \mathcal{B}, they provide a construction of a \mathcal{D}-maximal split of a hh-simple set of flavor \mathcal{B}. Although Herrmann and Kummer show that their split of a hh-simple is, in our language, not of Type 1, 2, or 3, they do not further differentiate between sets of Type 7, 8, or 9. Furthermore, they do not show that the collections of such sets break into infinitely many orbits, as we do here.

The proof of [15, Theorem 4.1 (1)] is rather difficult and spans several papers, including [13] and [14]. These papers together provide a fine analysis of Lachlan’s result and of decompositions of infinite boolean algebras. This analysis is in terms of Σ^0_3 ideals of $2^{<\omega}$, and the proof of [15, Theorem 4.1 (1)] divides into three cases based on structural properties of the given Σ^0_3 ideal.

We claim it is possible to obtain Herrmann and Kummer’s result via a modification of the construction below by translating their work into the language of boolean algebras. However, since this general approach would increase the complexity of the proof and our goals are different, we focus on sets corresponding to boolean algebras with especially nice decompositions.

6.0.2. **Background on Small Major Subsets.** We need some background on smallness and majorness for our construction. These notions will be used in §6.2.3 and §6.4. One can delay reading this section until then.

Smallness and majorness were introduced by Lachlan in [16] and further developed in [25]. See also [24, X.4.11], [20], and [2] for more on these concepts.

Definition 6.1. Let B be a c.e. subset of a c.e. set A. We say that B is a small subset of A if, for every pair of c.e. sets X and Y, $X \cap (A - B) \subseteq^* Y$ implies that $Y \cup (X - A)$ is a c.e. set.

Definition 6.2. Let C be a c.e. subset of a c.e. set B. We say that C is major in B, denoted $C \subseteq_m B$, if $B - C$ is infinite and for every c.e. set W, the containment $\overline{B} \subseteq^* W$ implies $\overline{C} \subseteq^* W$.

We need the following straightforward results about small major subsets.

Lemma 6.3. Let E and F be subsets of D, and let R be a computable set.

1. (Stob) Suppose E is small in D. If $D \subseteq \hat{D}$, then E is small in \hat{D}. Similarly, if $\hat{E} \subseteq E$, then \hat{E} is small in D.
(2) \((\text{Stob})\) If \(E\) is small in \(D\), then set \(E \cap R\) is small in \(D \cap R\).

(3) If \(E\) is major in \(D\), then \(E \cap R =^* D \cap R \) or \(E \cap R\) is major in \(D \cap R\).

(4) If \(F\) is major in \(E\) and \(E\) is major in \(D\), then \(F\) is major in \(D\).

(5) If \(E\) is major in \(D\) then \(E\) is simple inside \(D\).

(6) If \(E\) is major in \(D\) and \(D\) is hh-simple, then every hh-simple superset of \(E\) contains \(D\).

\text{Proof.} (1), (2) The proofs of these statements can be found in [2]. (3) If \(\overline{D} \cap \overline{R} = \overline{D} \cup \overline{R} \subseteq^* W\), then \(E \cup \overline{R} = \overline{E} \cap \overline{R} \subseteq^* W\).

(4) If \(\overline{D} \subseteq^* W\), then \(\overline{E} \subseteq^* W\) and, hence, \(\overline{F} \subseteq^* W\).

(5) Suppose that there is an infinite c.e. set \(W \subseteq^* (D - E)\). Then, there is an infinite computable set \(R \subseteq^* (D - E)\) such that \(\overline{D} \subseteq^* \overline{R}\) but \(\overline{E} \not\subseteq^* \overline{R}\).

(6) Let \(H\) be a hh-simple superset of \(E\). Then, there is a c.e. set \(W\) such that \(H \subseteq^* W, D \cup W = \omega\), and \(W \cap D \subseteq^* H\). So, \(\overline{D} \subseteq^* W\). If \(D - H\) is infinite, \(\overline{E} \not\subseteq^* W\), a contradiction. So, \(D \subseteq^* H\).

The following theorem by Lachlan will be very useful:

\textbf{Theorem 6.4} (Lachlan [16] (also see [24, X 4.12])). \textit{There is an effective procedure that, given an infinite c.e. noncomputable set \(W\), outputs a small major subset of \(W\).}

\textbf{6.1. Construction overview.} Let \(B\) be a \(\Sigma_3^0\) boolean algebra with infinitely many pairwise incomparable elements. We call a subset \(\{b_i\}_{i \in \omega}\) of \(B\) a \textit{skeleton} for \(B\) if the elements in \(\{b_i\}_{i \in \omega}\) are pairwise incomparable and, for every element of \(B\), either it or its complement is below the join of finitely many elements in \(\{b_i\}_{i \in \omega}\). If \(\{b_i\}_{i \in \omega}\) is a skeleton for \(B\) and \(B_b := B \mid [0, b]\) for any \(b \in B\), then \(B = \bigoplus_{i \in \omega} B_{b_i}\). For the remainder of \S 6, we fix an arbitrary \(\Sigma_3^0\) boolean algebra \(B\) that has a computable skeleton \(\{b_i\}_{i \in \omega}\). We show how to construct a set \(H\) that is hh-simple (or close to hh-simple) with flavor \(B\). (Our construction can be made to work for any boolean algebra with a \(0^\prime\)-computable skeleton, but the added complexity does not gain us a sufficiently better result.)

To obtain the set \(H\) that is close to being hh-simple, we will simultaneously build a list \(\{R_i\}_{i \in \omega}\) of pairwise disjoint infinite computable sets, a set \(A\) disjoint from each \(R_i\), and subsets \(H_i\) of each \(R_i\) via Lachlan’s construction (Theorem 2.2). Specifically, we build these objects so that \(\mathcal{L}^*(R_i - H_i)\) is isomorphic to \(B_{b_i}\) and \(H = A \sqcup \bigcup_{i \in \omega} H_i\). For notational simplicity, we let \(D = \bigcup_{i \in \omega} H_i\). Then, \(\mathcal{B}\) is isomorphic to a (possibly proper) substructure of \(\mathcal{L}^*(H)\). The structures \(\mathcal{B}\) and \(\mathcal{L}^*(H)\)
are isomorphic if, in addition, for every c.e. set \(W \) there exists an \(n \in \omega \) so that \(W \subseteq ^* (H \cup \bigcup_{i \leq n} R_i) \) or \(W \cup H \cup \bigcup_{i \leq n} R_i = ^* \omega \).

We make two remarks. First, although Lachlan's construction can be done uniformly inside any computable set, the list \(\{R_i\}_{i \in \omega} \) we construct will not be uniformly computable. Hence, we must ensure that \(H \) is a c.e. set. Second, since \(L^*(H) \) is a boolean algebra, for every c.e. superset \(W \) of \(H \) there is a c.e. set \(\tilde{W} \) such that \(W \cup \tilde{W} \cup H = \omega \) and \(W \cap \tilde{W} \subseteq H \).

So, there is a computable set \(R \) such that \(R \cap H = W \cap H \). Thus, if we construct \(H \) and \(\{R_i\}_{i \in \omega} \) with the properties detailed above, \(R \) or \(\overline{R} \) is contained in the union of a finite subset of \(\{R_i\}_{i \in \omega} \) for any computable superset \(R \) of \(H \). Note that construction of lists like \(\{R_i\}_{i \in \omega} \) appeared in some form in many constructions by Cholak and his coauthors and others, e.g., Dëgtev [7].

6.2. Requirements.

6.2.1. \(D \)-maximal sets of Type 7. We formally state the requirements necessary to construct a \(D \)-maximal set \(A \) such that \(A \cup D \) is a splitting of a hhsimple set \(H \) of flavor \(B \). As mentioned above, we simultaneously construct a pairwise disjoint list of infinite computable sets \(R_i \) that are all disjoint from \(A \) and sets \(H_i \) contained in \(R_i \) so that the union of \(A \) and \(D = \bigcup_{i \in \omega} H_i \) equals \(H \). We require that these objects satisfy the requirements:

\[R_e: \quad W_e \subseteq ^* A \cup D \cup \bigcup_{i \leq e} R_i \text{ or } W_e \cup A \cup D \cup \bigcup_{i \leq e} R_i = ^* \omega, \]

\[S_e: \quad \overline{A} \neq W_e, \]

and

\[L_i: \quad \mathcal{E}^*(R_i - H_i) \text{ is isomorphic to } B_i. \]

We satisfy the \(S_e \) requirements as usual, and they imply that \(A \) is not computable. We satisfy the \(L_i \) requirements, guaranteeing that \(\mathcal{L}(A \cup D) \) is isomorphic to \(B \), by applying Lachlan’s construction. The \(R_e \) requirements ensure that \(A \) is \(D \)-maximal and that \(\{D\} \cup \{R_i\}_{i \in \omega} \) generates \(D(A) \) (if \(D \) is a c.e. set). The \(R_e \) requirements take some work, as does ensuring that all constructed sets are computably enumerable.
6.2.2. \(\mathcal{D}\)-maximal sets of Types 8 and 9. To construct a \(\mathcal{D}\)-maximal set of either Type 8 or 9, we must construct a generating set for \(\mathcal{D}(A)\) of the proper form \(\{D_0, D_1, \ldots, R_0, R_1, \ldots\}\). This generating set contains infinitely many properly c.e. sets rather than a single properly c.e. set as in the Type 7 case. Hence, we must modify the \(\mathcal{D}\)-maximality requirements for these cases.

\[R_e': \quad W_e \subseteq A \cup \bigcup_{i \leq e} D_i \cup \bigsqcup_{i \leq e} R_i \text{ or } W_e \cup A \cup \bigcup_{i \leq e} D_i \cup \bigsqcup_{i \leq e} R_i = \omega. \]

We still construct the lists \(\{R_i\}_{i \in \omega}\) and \(\{H_i\}_{i \in \omega}\) as in the Type 7 case. In the Type 8 case, we now use the Friedberg Splitting Theorem (Theorem 4.1) to break \(H_i\) into \(i + 1\) infinite disjoint sets \(H_{i,j}\) for \(0 \leq j \leq i\). Then, we set \(D_j = \bigsqcup_{i \in \omega, i \geq j} H_{i,j}\). Note that \(D_j \cap R_i = \emptyset\) if \(i < j\) and the list \(\{D_i\}_{i \in \omega}\) is pairwise disjoint.

In the Type 9 case, we use the \(H_i\) to construct the nested list of c.e. sets \(\{D_i\}_{i \in \omega}\) so that for all \(i \in \omega\):

1. \(D_i \cap \bigsqcup_{j \leq i} R_j = D_j \cap \bigsqcup_{j \leq i} R_j = H_j\) for \(j \leq i\),
2. \(D_i \cap \bigsqcup_{j \leq i} R_j\) is simple inside \(D_{i+1} \cap \bigsqcup_{j \leq i} R_j\), so \((D_{i+1} - D_i) \cap \bigsqcup_{j \leq i} R_j\) contains no infinite c.e. sets.

Remark 6.5. Observe that conditions (1) and (2) imply that for any \(l\), either \(D_i = \ast D_{i+1}\) on \(R_l\) or \(D_i\) is simple inside \(D_{i+1}\) on \(R_l\). Hence, \((D_{i+1} - D_i) \cap R_l\) contains no infinite c.e. sets.

Let \(\bar{D} = \bigcup_{i \leq e} D_i\). In both the Type 8 and 9 cases,

\[\bar{D} \cap \bigsqcup_{i \leq e} R_i = \bigcup_{i \leq e} D_i \cap \bigsqcup_{i \leq e} R_i \]

by the descriptions above. However, the constructions must ensure that each \(D_i\) is in fact a c.e. set.

6.2.3. Type 9 and small majorness. To ensure that property (2) holds in the Type 9 case, we satisfy the following requirements. (See §6.0.2 for definitions.)

\[I_i: \quad D_i \cap \bigsqcup_{j \leq i} R_j\text{ is a small major subset of } D_{i+1} \cap \bigsqcup_{j \leq i} R_j \]

We use Lachlan’s Theorem 6.4 to modularly to meet \(I_i\) (see Lemma 6.7 for the proof).
6.3. **Sufficiency of requirements.** If the requirements listed in §6.2 are met as described, the set A certainly will be a \mathcal{D}-maximal set of Type at most 7, 8, or 9 respectively (since $\mathcal{D}(A)$ has a generating set of that Type). However, we also must ensure that $\mathcal{D}(A)$ does not have lower Type.

In the following, we examine the Type 7, 8, and 9 cases together as much as possible. To do so and for notational simplicity, in the Type 7 case, set $D_0 = D$ and $D_i = \emptyset$ for all $i \neq 0$.

6.3.1. **Not Type 1, 2, 3 or 10.** First, note that the requirements \mathcal{S}_i guarantee that A is not simple. Therefore, $\mathcal{D}(A)$ is not Type 1 by Lemma 3.2. If A is Type 2 or 3, there is a c.e. set W_e such that $A \sqcup W_e$ is maximal by Theorem 5.1 (2) and (3). Assume that W_e is disjoint from A. By requirement \mathcal{R}_e, either $W_e \subseteq^* \bigcup_{i \leq e} D_i \cup \bigcup_{i \leq e} R_i$ or $A \sqcup (W_e \cup \bigcup_{i \leq e} D_i \cup \bigcup_{i \leq e} R_i) =^* \omega$. The latter case implies that A is computable. Since A is not computable by the requirements \mathcal{S}_i, the latter case cannot hold. In the former case, the set $R_e \sqcup A \sqcup W_e$ witnesses that $A \sqcup W_e$ is not maximal (or even r-maximal). Therefore A is not Type 2 or 3. By definition, the set A is not Type 10 (since $\mathcal{D}(A)$ has a generating set of Type 7, 8, or 9). Lemmas 3.19 and 3.21, however, demonstrate that this is not simply an artifact of our definition since $A \sqcup W_e$ is not r-maximal for any W_e disjoint from A. Thus, A is not Type 1, 2, 3, or 10.

6.3.2. **A Technical Lemma.** We need the following lemma to show that the sets we construct are not of lesser Type. Lemma 6.6 is the one place where we use that these Types are realized very uniformly, as discussed at the end of §3.4.2. It is unclear how to separate these Types otherwise.

Lemma 6.6. Let $\tilde{D} = \bigcup_{i \in \omega} D_i$. Let W_e be disjoint from A. Then, $W_e \subseteq^* \tilde{D}$ or $W_e - \tilde{D}$ is not a c.e. set. Moreover, for the Type 8 and 9 cases, $W_e \subseteq^* \bigcup_{i \leq e} D_i$ or $W_e - D_i$ is not c.e. for all $i \leq e$.

Proof. By requirement \mathcal{R}_e, either $W_e \subseteq^* \bigcup_{i \leq e} D_i \cup \bigcup_{i \leq e} R_i$ or $A \sqcup (W_e \cup \bigcup_{i \leq e} D_i \cup \bigcup_{i \leq e} R_i) =^* \omega$. Since requirements \mathcal{S}_i ensure that A is noncomputable, the latter statement cannot hold. So, $W_e \subseteq^* \bigcup_{i \leq e} D_i \cup \bigcup_{i \leq e} R_i$. Since $\tilde{D} \cap \bigcup_{i \leq e} R_i = \bigcup_{i \leq e} D_i \cap \bigcup_{i \leq e} R_i$, we have that $W_e - \tilde{D} \subseteq^* \bigcup_{i \leq e} R_i$. Suppose that $W_e \not\subseteq^* \bigcup_{i \leq e} D_i \subset \tilde{D}$.

By requirement \mathcal{L}_i, the set H_i is hhsimple inside R_i. Therefore, $\tilde{D} \cap \bigcup_{i \leq e} R_i = \bigcup_{i \leq e} D_i \cap \bigcup_{i \leq e} R_i$ is hhsimple inside $\bigcup_{i \leq e} R_i$. So, $W_e - \tilde{D} = W_e - \bigcup_{i \leq e} D_i$ is not a c.e. set.
For the Type 8 case, recall that D_0, D_1, \ldots, D_i form a Friedberg splitting of their union inside R_i. Hence, $W_e - D_i$ is not a c.e. set for all $i \leq e$. For the Type 9 case, we argue by reverse induction. Since $D_e = \bigcup_{i \leq e} D_i$ (these sets are nested), $W_e - D_e$ is not a c.e. set. Assume that $W_e - D_{j+1}$ is not c.e. for $j + 1 \leq e$. Then, there exists some $i \leq e$ such that $(W_e - D_{j+1}) \cap R_i$ is not a c.e. set (and, so, is infinite).

Suppose $W_e - D_j$ is a c.e. set. Then, $(W_e - D_j) \cap R_i$ is c.e. and infinite as well. Since $(W_e - D_{j+1}) \cap R_i$ is not c.e., D_j is not almost equal to D_{j+1} on R_i. So, the c.e. set $(W_e - D_j) \cap D_{j+1} \cap R_i$ is infinite and witnesses that D_j is not simple inside D_{j+1} on R_i, contradicting Remark 6.5. Therefore, $W_e - D_i$ is not c.e. for $i \leq e$. □

6.3.3. Not Type 4, 5, or 6. Now assume that the \mathcal{D}-maximal set A constructed has a generating set for $\mathcal{D}(A)$ of Type 4, 5, or 6. Since A is \mathcal{D}-maximal, D_0 is almost contained in the union of finitely many of these generators. Then, there is another infinite generator W_e in this generating set almost disjoint from D_0. The fact that $W_e - D_0$ is c.e. contradicts Lemma 6.6.

6.3.4. Type 8 is not Type 7. Suppose that $\{\tilde{D}, \tilde{R}_0, \tilde{R}_1, \ldots\}$ is a Type 7 generating set for $\mathcal{D}(A)$, where A is constructed via the Type 8 construction described above. By construction, there is an e such that $\tilde{D} \subseteq^* \bigcup_{i \leq e} R_i \cup \bigcup_{i \leq e} D_i$, so D_e and \tilde{D} are almost disjoint. Then, there is an l such that $\bigcup_{i \leq e} R_i \cup \bigcup_{i \leq e} D_i \subseteq^* \tilde{D} \cup \bigcup_{i \leq l} \tilde{R}_i$; thus, $D_e \subseteq^* \bigcup_{i \leq l} \tilde{R}_i$. Finally, there is a k such that $\tilde{D} \cup \bigcup_{i \leq l} \tilde{R}_i \subseteq^* \bigcup_{i \leq k} R_i \cup \bigcup_{i \leq k} D_i$. Now, by construction, $R_{k+1} - \tilde{D}$ is infinite. Hence, there is an $m > l$ such that $\tilde{R}_m - \tilde{D}$ is infinite. Then, $\tilde{R}_m - D_e = \tilde{R}_m$ is an infinite c.e. set disjoint from D_e, contradicting Lemma 6.6.

6.4. Small Major Subsets and Type 9 Sets. In order to show that the set A resulting from the construction outlined for the Type 9 case is not of Type 7 or Type 8, we need the following lemma.

Lemma 6.7. Suppose we obtain the lists $\{D_i\}_{i \in \omega}$ and $\{R_i\}_{i \in \omega}$ while constructing a \mathcal{D}-maximal set A according to the Type 9 requirements outlined in §6.2. The following statements hold for $j \leq i$.

1. Either $D_j =^* D_i$ on $\bigcup_{i \leq j} R_i$ or $D_j \cap \bigcup_{i \leq j} R_i$ is small major in $D_i \cap \bigcup_{i \leq j} R_i$. In the latter case, D_j is simple inside D_i on $\bigcup_{i \leq j} R_i$.
2. Either $D_j =^* D_i$ on R_i or D_j is a small major subset of D_i on R_i. In the latter case, D_j is simple inside D_i on R_i.
Proof. We prove (1) by induction on \(i \geq j \). The base case \(i = j \) holds trivially. Suppose the statement holds for \(i \geq j \). Requirement \(\mathcal{I}_i \) and Lemma 6.3 (1), (4) imply that \(D_j \cap \bigcup_{l \leq i} \bar{R}_l \) is small major in \(D_{i+1} \cap \bigcup_{l \leq i} \bar{R}_l \). The result follows by Lemma 6.3 (2), (3).

The proof of (2) is similar but also uses the construction property that \(D_i \cap R_j = D_j \cap R_j \) for \(j \neq i \) and Lemma 6.3 (3). The second half of both statements holds by Lemma 6.3 (5).

\[\square \]

6.4.1. Type 9 not Type 7. We now show that the \(\mathcal{D} \)-maximal set \(A \) obtained via the Type 9 construction is not Type 7. Assume that \(\{ \bar{D}, \bar{R}_0, \bar{R}_1, \ldots \} \) is a Type 7 generating set for \(\mathcal{D}(A) \). By the \(\mathcal{R}'_e \) requirements, there is some \(e \) such that \(\bar{D} \subseteq^* \bigcup_{i \leq e} R_i \cup \bigcup_{i \leq e} D_i \).

Since \(D_e \subseteq D_{e+1} \) and \((D_{e+1} - D_e) \cap \bigcup_{i \leq e} R_i = \emptyset \), it follows that \(D_{e+1} \cap \bar{D} \subseteq^* D_e \). By definition of a generating set, there is an \(l \) such that

\[
\bigcup_{i \leq e+1} R_i \cup \bigcup_{i \leq e+1} D_i \subseteq^* \bar{D} \cup \bigcup_{i \leq l} \bar{R}_i.
\]

Similarly, there is a \(k \) such that \(\bar{D} \cup \bigcup_{i \leq l} \bar{R}_i \subseteq^* \bigcup_{i \leq k} R_i \cup \bigcup_{i \leq k} D_i \). By construction, \(R_{k+1} - \bar{D} \) is infinite. Since \(R_{k+1} \) is disjoint from \(\bigcup_{i \leq e} R_i \), there is an \(m > l \) such that \((\bar{R}_m \cap \bigcup_{i \leq e} R_i) - \bar{D} \) is infinite. By (6.7.1), \(\bar{R}_m \cap D_{e+1} \subseteq^* \bar{D} \). Since \(D_{e+1} \cap \bar{D} \subseteq^* D_e \), \(\bar{R}_m \cap (D_{e+1} - D_e) = \emptyset \). By requirement \(\mathcal{I}_e \), \(D_e \cap \bigcup_{i \leq e} R_i \) is small inside \(D_{e+1} \cap \bigcup_{i \leq e} R_i \). So, by smallness, the infinite set \((\bar{R}_m \cap \bigcup_{i \leq e} R_i) - (D_{e+1} \cap \bigcup_{i \leq e} R_i) = (\bar{R}_m \cap \bigcup_{i \leq e} R_i) - D_{e+1} \) is c.e., contradicting Lemma 6.6. Thus, \(A \) does not have Type 7.

6.4.2. Type 9 not Type 8. Lastly, we show that the \(\mathcal{D} \)-maximal set \(A \) obtained via the Type 9 construction is not Type 8. Assume that \(\{ \bar{D}_0, \bar{D}_1, \ldots \bar{R}_0, \bar{R}_1, \ldots \} \) is a Type 8 generating set for \(\mathcal{D}(A) \). We may assume that this generating set satisfies the properties in Lemma 3.23.

By the \(\mathcal{R}'_e \) requirements and the definition of generating set, we have the following facts. There is an \(l \) such that \(D_0 \subseteq^* \bigcup_{i \leq l} \bar{R}_i \cup \bigcup_{i \leq l} \bar{D}_i \). Then, there is a \(k \) such that

\[
\bigcup_{i \leq l} \bar{R}_i \cup \bigcup_{i \leq l} \bar{D}_i \subseteq^* \bigcup_{i \leq k} R_i \cup \bigcup_{i \leq k} D_i.
\]

Next, there is an \(m > l \) such that

\[
\bigcup_{i \leq k+1} R_i \cup \bigcup_{i \leq k+1} D_i \subseteq^* \bigcup_{i \leq m} \bar{D}_i \cup \bigcup_{i \leq m} \bar{R}_i.
\]
Finally, there is a \(r > k + 1 \) such that
\[
\bigcup_{i \leq m} \tilde{D}_i \cup \bigcup_{i \leq m} \tilde{R}_i \subseteq^* \bigcup_{i \leq r} R_i \cup \bigcup_{i \leq r} D_i.
\]

By construction, \(R_{r+1} - \tilde{D} = R_{r+1} - D_{r+1} \) is infinite. There is also an \(n > m \) such that \(R_{r+1} \subseteq^* \bigcup_{i \leq n} \tilde{D}_i \cup \bigcup_{i \leq n} \tilde{R}_i \). Hence, there is an \(\tilde{m} > m \) such that \(\tilde{R}_{\tilde{m}} \cap (R_{r+1} - \tilde{D}) \) is infinite or \(\tilde{D}_{\tilde{m}} \cap (R_{r+1} - \tilde{D}) \) is infinite. In the latter case, \(\tilde{D}_{\tilde{m}} - \bigcup_{i \leq l} \tilde{R}_i \) is an infinite c.e. set disjoint from \(D_0 \) but not contained in \(\tilde{D} \), contradicting Lemma 6.6. So, the former holds.

By the choice of \(l \) and \(m \), \((D_{k+1} - D_k) \cap \tilde{R}_{\tilde{m}} \subseteq^* \bigcup_{k < i \leq \tilde{m}} \tilde{D}_i \). Let \(Y = \tilde{R}_{\tilde{m}} \cap \bigcup_{k < i \leq \tilde{m}} \tilde{D}_i \). Since \(\{ \tilde{D}_i \}_{i \in \omega} \) consists of pairwise disjoint sets, \(Y \) is a c.e. set such that \(D_0 \cap Y \neq 0 \). Now \(\tilde{R}_{\tilde{m}} \cap (D_{k+1} - D_k) \subseteq^* Y \), so certainly \((\tilde{R}_{\tilde{m}} \cap R_{r+1}) \cap (D_{k+1} - D_k) \subseteq^* Y \). Since \(D_k \cap \bigcup_{j \leq k} \tilde{R}_j \) is small in \(D_{k+1} \cap \bigcup_{j \leq k} \tilde{R}_j \) by requirement \(\mathcal{L}_k \), \(Y \cup [(\tilde{R}_{\tilde{m}} \cap R_{r+1}) - (D_{k+1} \cap \bigcup_{j \leq k} \tilde{R}_j)] \) is a c.e. set. Note that \(r + 1 > k \). This set is disjoint from \(D_0 \) since \(Y \) is and since \(R_{r+1} \subseteq \bigcup_{j \leq k} \tilde{R}_j \). Moreover, this c.e. is infinite since it contains \(\tilde{R}_{\tilde{m}} \cap (R_{r+1} - \tilde{D}) \), contradicting Lemma 6.6. Hence, \(A \) is a Type 9 \(\mathcal{D} \)-maximal set.

6.5. Infinitely many orbits of \(\mathcal{D} \)-maximal sets of Types 7, 8, 9.

By Lemma 3.2, two automorphic sets share the same Type. We show here, however, that the collection of \(\mathcal{D} \)-maximal sets of Type 7 (respectively Type 8, Type 9) breaks into infinitely many orbits. Specifically, for each of these Types, we construct infinitely many pairwise nonautomorphic \(\mathcal{D} \)-maximal sets of the given Type. For each of these Types, we will take two boolean algebras \(\mathcal{B} = \oplus_{i \in \omega} B_{b_i} \) and \(\bar{\mathcal{B}} = \oplus_{i \in \omega} \bar{B}_{b_i} \) (with computable skeletons \(\{ b_i \}_{i \in \omega} \) and \(\{ \bar{b}_i \}_{i \in \omega} \) respectively). We then will consider the \(\mathcal{D} \)-maximal sets \(A \) and \(\bar{A} \) obtained via the given Type construction based on \(\mathcal{B} \) and \(\bar{\mathcal{B}} \) respectively. Each of \(A \) and \(\bar{A} \) will have a generating set of the appropriate Type, denoted as usual with the sets in the generating set for \(\mathcal{D}(\bar{A}) \) marked with tildes. We suppose that \(\Phi : \mathcal{E}^* \to \mathcal{E}^* \) is an automorphism with \(\Phi(\bar{A}) = A \), i.e., \(\bar{A} \) and \(A \) are automorphic. For notational simplicity, we denote \(\Phi(\bar{W}) \) by \(\bar{W} \) for any c.e. set \(W \).

6.5.1. Type 7. First, suppose that \(A \) and \(\bar{A} \) are Type 7. Since \(A \) is \(\mathcal{D} \)-maximal, there exists an \(l \) such that \(\Phi(\bar{D}) = \bar{D} \subseteq^* D \cup \bigcup_{i < l} R_i \). By construction and Corollary 3.24, \(\oplus_{i > l} B_{b_i} \) is a subalgebra of \(\bar{\mathcal{B}} \). This containment is not possible if the Cantor Bendixson rank of \(B_{b_i} \) is greater than the rank of \(\bar{\mathcal{B}} \).
We leave it to the reader to construct infinitely many computable boolean algebras \(B_j \) each equipped with a computable skeleton \(\{b_{j,i}\}_{i \in \omega} \) such that \(B_j = \oplus B_{b_{j,i}} \) and the rank of \(B_{b_{j+1,i}} \) is larger than the rank of \(B_j \). By the argument above, this collection of boolean algebras gives rise to an infinite collection of pairwise nonautomorphic \(\mathcal{D} \)-maximal Type 7 sets.

6.5.2. Type 8. Now suppose that \(A \) and \(\tilde{A} \) are Type 8. Since \(A \) is \(\mathcal{D} \)-maximal, there is an \(i \) such that \(\hat{D}_0 \subseteq^* \bigcup_{i \leq l} D_i \cup \bigcup_{i \leq l} R_i \). Similarly, there is an \(n \) such that

\[
\bigcup_{i \leq l} D_i \cup \bigcup_{i \leq l} R_i \subseteq^* \bigcup_{i \leq n} \hat{D}_i \cup \bigcup_{i \leq n} \hat{R}_i.
\]

For \(m > n \), inside \(\hat{R}_m \), there is a hhsimple set \(\hat{H} \) of flavor \(\tilde{B}_{b_m} \) such that \(\hat{H} = \hat{R}_m \cap \bigcup_{i \leq m} \hat{D}_i \). Also, \(\hat{D}_0 \) is a Friedberg split of \(\hat{H} \) by construction. Fix a \(k > l \) such that \(\hat{R}_m \subseteq^* \bigcup_{i \leq k} D_i \cup \bigcup_{i \leq k} R_i \).

We will explore what \(\hat{H} \) and \(\hat{R}_m \) look like. First, note that for all \(i \leq l \), \(\hat{R}_m \cap R_i \subseteq^* \hat{R}_m \cap \bigcup_{i \leq n} D_i \subseteq^* \hat{H} \). Similarly, for all \(i \leq l \), \(\hat{R}_m \cap D_i \subseteq^* \hat{H} \). Since \(\hat{D}_0 \cap \hat{R}_m \) is a Friedberg split of \(\hat{H} \) and, for \(l < i \leq k \), \(\hat{D}_0 \) and \(\hat{D}_i \) are almost disjoint, \((\hat{R}_m - \hat{H}) \cap \bigcup_{l \leq i \leq k} D_i =^* \emptyset \).

Therefore, there is at least one \(r \) such that \(l < r \leq k \) and \((\hat{R}_m - \hat{H}) \cap R_r \) is infinite. Let \(F \) be the finite set of all such \(r \). For all \(r \in F \) and \(i \leq k \), we have that \(D_i \cap R_r \cap \hat{R}_m \subseteq^* R_r \cap \hat{H} \). So, \(\tilde{B}_{b_m} \) is a subalgebra of \(\oplus_{r \in F} B_{b_r} \). This is impossible if the rank of \(\tilde{B}_{b_m} \) is greater than the rank of \(\oplus_{r \in F} B_{b_r} \).

We again leave it to the reader to construct infinitely many computable boolean algebras \(B_j \) each equipped with a computable skeleton \(\{b_{j,i}\}_{i \in \omega} \) such that \(B_j = \oplus B_{b_{j,i}} \) and the rank of \(B_{b_{j+1,i}} \) is larger than the rank of the join of finitely many \(B_{j,z} \). In fact, the collection of boolean algebras from the Type 7 case in \(\S 6.5.1 \) suffices.

6.5.3. Type 9. We assume the same setup as for the Type 8 case but for sets of Type 9. As above, there exist \(l \) and \(n \) such that

\[
\hat{D}_0 \subseteq^* \bigcup_{i \leq l} D_i \cup \bigcup_{i \leq l} R_i \subseteq^* \bigcup_{i \leq n} \hat{D}_i \cup \bigcup_{i \leq n} \hat{R}_i.
\]

For \(m > n \), inside \(\hat{R}_m \), there is a hhsimple set \(\hat{H} = \hat{R}_m \cap \hat{D}_m \) of flavor \(\tilde{B}_{b_m} \). Let \(k > l \) be such that \(\hat{R}_m \subseteq^* \bigcup_{i \leq k} D_i \cup \bigcup_{i \leq k} R_i \). As before, for all \(i \leq l \), \(\hat{R}_m \cap (R_i \cup D_i) \subseteq^* \hat{R}_m \cap \bigcup_{i \leq n} \hat{D}_i \subseteq^* \hat{H} \).

At this point, the argument differs. By Lemma 6.7 (2), \(D_0 \cap R_r \) almost equals or is small major in \(D_r \cap R_r \) for any \(r \). So, for any
6.8. Questions on the orbits of Type 7, 8, 9 \mathcal{D}-maximal sets.

We know nothing about the structure of the infinitely many orbits containing Type 7, 8, or 9 \mathcal{D}-maximal sets. Recall that, by Corollary 3.24, each set of Type 7, 8, or 9 is associated with a boolean algebra \mathcal{B} (which depends on a choice of generating set). We think of the input boolean algebra to our construction as a partial invariant for the resulting \mathcal{D}-maximal sets of Type 7, 8, and 9. Suppose \mathcal{B} is a computable boolean algebra with a computable skeleton. If \mathcal{A} is the \mathcal{D}-maximal set resulting from our construction with input \mathcal{B} and $\hat{\mathcal{A}}$ is automorphic to \mathcal{A}, Corollary 3.24 and Lemma 3.2 imply that $\hat{\mathcal{A}}$ is hhsimple-like and associated with a boolean algebra of “similar” rank. These observations lead to the following question.

Question 6.8. Suppose that the \mathcal{D}-maximal sets \mathcal{A} and $\hat{\mathcal{A}}$, both of Type 7, 8, or 9, are associated with the boolean algebras \mathcal{B} and $\hat{\mathcal{B}}$ respectively. If \mathcal{B} and $\hat{\mathcal{B}}$ are isomorphic (or have the same or “similar” rank), are \mathcal{A} and $\hat{\mathcal{A}}$ automorphic?

We make a few comments about Question 6.8. We begin with the Type 7 case. Let \mathcal{A} and $\hat{\mathcal{A}}$ be Type 7 \mathcal{D}-maximal sets. Suppose that $\{D, R_0, R_1, \ldots\}$ is the generating set for $\mathcal{D}(\mathcal{A})$ and that $\mathcal{D}(\hat{\mathcal{A}})$ has a generating set of the same form with all sets marked by tildes. Finally,
assume that $A \sqcup D$ and $\tilde{A} \sqcup \tilde{D}$ are both hhsimple sets of flavor boolean algebra \mathcal{B}. So, by Maass \cite{19}, $A \sqcup D$ and $\tilde{A} \sqcup \tilde{D}$ are automorphic, but we do not know whether A and \tilde{A} are automorphic. By Lemma 4.10, a positive answer to the second part of Question 4.15 would give a positive answer here. A more direct approach would be to use an extension theorem to map D to \tilde{D} and the R_i to the \tilde{R}_i. We can take computable subsets of D to computable sets of \tilde{D}. But it is not clear how to ensure that $D \cap R_i$ is taken to $\tilde{D} \cap \tilde{R}_i$. It seems possible that this could be done by directly building the isomorphism. If an isomorphism could be built in the Type 7 case, we speculate that an isomorphism could be built in the more complicated Type 8. However, the Type 9 case seems fundamentally more difficult. In that case, one needs to ensure that D_{i+1} automorphic to \tilde{D}_{i+1} via an automorphism taking D_i to \tilde{D}_i. This is seems beyond the limits of current extension theorem technology.

Note that the above comments only apply to D-maximal sets of Types 7, 8, and 9. By Corollary 3.24, without the D-maximality assumption, we only know that the boolean algebra \mathcal{B} that corresponds to the sets of Types 7, 8, and 9 is a proper substructure of $\mathcal{L}(\tilde{D})$. Hence, we have no insight into the question of when Type 7, 8, and 9 sets are automorphic.

Finally, given a computable boolean algebra \mathcal{B} with a computable skeleton, we will construct D-maximal sets A_0 and A_1 of Types 7, 8, and 9 respectively of flavor \mathcal{B} such that A_0 is complete and A_1 is not (see Remark 6.9). We also leave as a question whether A_0 and A_1 are automorphic.

6.7. The Construction. We give the details of the construction of D-maximal sets of Types 7, 8, and 9. We focus on the construction of Type 9 D-maximal sets A as this case is the most complicated, and we leave the adjustments for the Type 7 and 8 cases to the reader.

We construct the set A using a Π^0_2-tree argument that is very similar to the Δ^0_3-isomorphism method. Here the tree T is contained in $2^{<\omega}$ and as usual we define a stage s computable approximation f_s to the true path f so that $f = \lim \inf_s f_s$ and $T = \{\alpha \in 2^{<\omega} \mid \alpha \leq f_s \text{ for some } s\}$. We view our tree as growing downward since elements mainly move down through the tree. We say a node α is visited at stage s if $\alpha \leq f_s$ and α is reset at stage s if $f_s <_L \alpha$.

At each node $\alpha \in T$, we attempt to build a computable set R_α and c.e. set D_α. For λ the empty node, the resulting D_λ is A, and we set $R_\lambda = \emptyset$. We build these sets so that the collection $\{D_\alpha \mid \lambda \neq \alpha \prec f\} \cup \{R_\alpha \mid \lambda \neq \alpha \prec f\}$ is a generating set for $D(A)$.
We ensure that R_α is computable for $\alpha < f$ by enumerating the set \overline{R}_α as well. Specifically, at each node $\alpha \in T$, we construct a set \overline{R}_α so that $\overline{R}_\alpha = ^* \overline{R}_\alpha$ if $\alpha < f$. Once an element enters any R_α, D_α, or \overline{R}_α, it remains there. So, these are all c.e. sets. Moreover, no element enters any of these sets before the element has been placed on the tree.

We recast the requirements S_α and R'_α in this tree language. For $\alpha \in 2^{<\omega}$ with $|\alpha| = e$, we have the requirements:

S_α:

$\overline{A} \neq W_e$.

R'_α:

$W_e \subseteq ^* \bigcup_{\beta < \alpha} D_\beta \cup \bigcup_{\beta < \alpha} R_\beta$ or $W_e \cup \bigcup_{\beta \leq \alpha} D_\beta \cup \bigcup_{\beta < \alpha} R_\beta = ^* \omega$.

We will address the requirements L_e and L'_α after we describe how to meet the above requirements. First, we describe the movement of balls down the tree. Given $\beta \in 2^{<\omega}$, we let β^- denote the node immediately preceding β.

The position function $\alpha(x, s)$ is the location of an element x on the tree T at stage s. Elements on the tree either move downward from the root λ by gravity or are pulled leftward by action for requirement R'_α. Meanwhile, the requirement S_α restrains movement down the tree while it secures a witness denoted x_α. We say that x is β-allowed at stage s if $x > |\beta|$, x is not in $\bigcup_{\gamma \leq \beta} R_\gamma$ or $\bigcup_{\gamma \leq \beta} D_\gamma$ and x has been enumerated into \overline{R}_γ for all $\gamma \leq \beta$. By induction on $\beta \subset f$, almost all balls not in $\bigcup_{\gamma \leq \beta} R_\gamma$ or $\bigcup_{\gamma \leq \beta} D_\gamma$ are β-allowed.

Given f_s, we determine the position function $\alpha(x, s)$ by the following rules (defined inductively on the length of $\alpha < f_s$). At stage s, the ball s enters the tree and is placed on node λ, i.e., we set $\alpha(s, s) = \lambda$, and we enumerate s into \overline{R}_λ. Hence, s is λ-allowed. Now consider $\alpha \leq f_s$. The node α may pull any x for R'_α at stage s if $\alpha < L \alpha(x, s - 1)$, x is $\alpha(x, s - 1) \cap f_s$-allowed, and, for all stages t, if $x \leq t \leq s$, then $\alpha \leq_L f_t$. In this case, move x to $\alpha(x, s - 1) \cap f_s$ so that $\alpha(x, s) = \alpha(x, s - 1) \cap f_s$.

On the other hand, suppose that x is α-allowed, x is not the current witness x_{α^-} for S_{α^-}, and, for all stages t, if $x \leq t \leq s$, then $\alpha \leq_L f_t$. In this case, move x to α at stage s so that $\alpha(x, s) = \alpha$. If an element x on the tree is not moved by these rules for any $x \leq f_s$ and $\alpha(x, s - 1)$ is not reset at stage s, set $\alpha(x, s) = \alpha(x, s - 1)$. If $\alpha(x, s - 1)$ is reset at stage s, let $\alpha(x, s) = \alpha(x, s - 1) \cap f_s$.

Note that, throughout the construction, we only move x to some node β at stage s (i.e., set $\alpha(x, s) = \beta$) if (1) x is (at least) β^--allowed and (2) $\beta \leq f_s$ or β pulled x (in which case there was an earlier stage t such that $\beta \leq f_t$). In addition, we ensure the following if $\alpha < f$. First,
infinitely many balls will reach α and be α-allowed. Second, for each ball that is α-allowed at node α, we add another ball to \(R_\alpha \). Third, all but finitely many balls are enumerated into \(R_\alpha \) or \(\bar{R}_\alpha = \bar{R}_\alpha \) and each of these sets is infinite. We now describe the details of each requirement’s action.

6.7.1. Action for \(S_\alpha \).

Assigning witnesses to \(S_\alpha \). We meet \(S_\alpha \) in the usual way. For any \(\beta \in 2^{<\omega} \), we let \(x_{\beta,s} \) denote the stage \(s \) witness for \(S_\alpha \). The witness \(x_{\beta,0} \) is undefined. Suppose that \(x_{\beta,s} \) is undefined and there is a stage \(t > s \) and an element \(x \geq 2|\beta| \) such that \(\beta \leq f_t \) and \(\alpha(x,t) = \beta \). At the least such stage \(t > s \), define \(x_{\beta,t} \) to be the least \(x \) such that \(\alpha(x,s) = \beta \). Once \(x_{\beta,t} \) is defined, we let \(x_{\beta,t}' = x_{\beta,t} \) unless \(f_{t'} < L \beta \) for \(t' > t \). In this case, we release \(x_{\beta,t'} \) at that stage. The node \(\beta \) may not take any action while \(x_{\beta,s} \) is undefined.

Placing witnesses into \(D_\lambda \). Suppose \(\alpha \not\leq f_s \), \(W_{e,s} \cap D_{\lambda,s} = \emptyset \), |\(\alpha \)| = \(e \), and there is an \(x_{\beta,s} \geq 2e \) such that \(|\beta| = |\alpha| = e \) and \(x_{\beta,s} \in W_e \). Then, enumerate \(x \) into \(D_\lambda \) and \(\bar{R}_\gamma \) for all \(\gamma \in T \) and remove \(x \) from the tree. This is the only way balls enter \(D_\lambda \).

Suppose that \(\alpha \prec f \) and \(D_\lambda = W_e \). By the assumption that infinitely many balls will reach \(\alpha \), it is straightforward to show that some witness \(x_{\beta,s} \in W_e \) is enumerated into \(D_\lambda \) to meet \(S_\alpha \), a contradiction. As usual, \(S_\alpha \) acts at most once (and at most one \(S_\alpha \) acts for a given \(e = |\alpha| \)) and \(D_\lambda \) is coinfinite since each witness satisfies \(x_{\beta,s} \geq 2|\beta| \).

Remark 6.9. Our action for \(S_\lambda \) mixes with both finite permitting and coding (but not necessarily both simultaneously). For permitting, we ask for permission when we want to place a ball into \(D_\lambda \). If we get permission, then we add the ball to \(D_\lambda \). While waiting for permission, we set up a new ball as another witness \(x_\lambda \). If enumerating that ball into \(D_\lambda \) would also satisfy \(S_\lambda \), we ask again for permission. Under finite permitting, we will eventually receive permission to enumerate some witness for \(S_\lambda \) into \(D_\lambda \). Hence, we can construct \(D_\lambda \) to be incomplete.

Fix a c.e. set \(W \) such as \(K \). To code \(W \) into \(D_\lambda \), when \(W \) changes below \(e \) at stage \(s \), dump all currently defined witnesses \(x_{\beta,s} \) for \(|\beta| \geq e \), into \(D_\lambda \). To determine \(W \) below \(e \), wait until there is a witness \(x_{\alpha,s} \) not in \(D_\lambda \) for \(|\alpha| = e \). Then, \(D \) below \(e \) will not change after stage \(s \). So, we can construct \(D_\lambda \) to be complete.

These remarks also apply to the construction of a set with an \(A \)-special list in Cholak and Harrington [3, Section 7.2].
6.7.2. Action for \mathcal{R}'_α. To meet \mathcal{R}'_α, we need to know whether the following c.e. set is infinite. For $e = |\alpha|$, we define the set

$$\tilde{W}_e = \{x \mid (\exists s)\{x \text{ is } \alpha^-\text{-allowed at or before stage } s \& x \in W_{e,s}\}\}.$$

The action for \mathcal{R}'_α depends on whether the set

$$X_{\alpha^-} = \tilde{W}_e \setminus (\bigcup_{\beta < \alpha} R_\beta \cup \bigcup_{\beta < \alpha} D_\beta)$$

is infinite. Notice that \tilde{W}_e and X_{α^-} depend only on nodes that are proper subnodes of α. By definition, $\alpha^-\text{-allowed balls are not in } \bigcup_{\beta < \alpha} R_\beta \cup \bigcup_{\beta < \alpha} D_\beta$. Recall our promise that $\alpha^- \prec f$ implies that infinitely many balls will be $\alpha^-\text{-allowed}$. Hence, X_{α^-} is infinite if and only if infinitely many $\alpha^-\text{-allowed}$ balls enter W_e before they enter $\bigcup_{\beta < \alpha} R_\beta \cup \bigcup_{\beta < \alpha} D_\beta$.

Each α in the tree encodes a guess as to whether X_{α^-} is infinite. In particular, $\alpha(|\alpha| - 1) = 0$ indicates the guess that X_{α^-} is infinite. The statement X_{α^-} is infinite is Π^0_2, so this information can be coded into a tree in the standard way. Specifically, we can define the true path f and the stage s approximation to the true path f_s so that α encodes a correct guess if $\alpha \preceq f$. Since these definitions are standard, we leave them to the reader. Similar constructions with all the details can be found in [1] and [26].

We define a helper set P_α based on the guess encoded by α. If α encodes the guess that X_{α^-} is infinite, we let $P_\alpha = X_{\alpha^-}$. Otherwise, we let $P_\alpha = \omega \setminus (\bigcup_{\beta < \alpha} R_\beta \cup \bigcup_{\beta < \alpha} D_\beta)$. If X_{α^-} is in fact finite, then W_e is almost contained in $\bigcup_{\beta < \alpha} R_\beta \cup \bigcup_{\beta < \alpha} D_\beta$, and \mathcal{R}'_α is met. We describe the action for \mathcal{R}'_α and show that \mathcal{R}'_α is also met if X_{α^-} is infinite and $\alpha \prec f$.

If $\alpha \preceq f_s$ and $x_{\alpha,s}$ is defined at stage s, then α pulls the least available balls that are greater than $|\beta|$ and in P_α for \mathcal{R}'_α until it has secured two such balls x and y. Any ball may be pulled at most once by a given node α. If \mathcal{R}'_α has secured two balls $x, y \in P_\alpha$ with $\alpha(x, s) = \alpha(y, s) = \alpha \preceq f_s$, we enumerate x into \tilde{R}_α, so that x is α-allowed at stage s, and enumerate y into $\tilde{R}_{\alpha,s}$. If there are any other balls z such that $\alpha(z, s) = \alpha$, we enumerate these balls into $R_{\alpha,s}$. Some of these balls might be in some D_β where $\beta \prec \alpha$. For any β, if a ball is added to R_β, then also add it to \tilde{R}, for all γ extending β. By construction, if $\alpha \prec f$, the only balls not in R_α or \tilde{R}_α are the balls x such that $\alpha(x, s) <_L \alpha$ or x is one of finitely many unused potential witnesses for S_β with $|\beta| \leq |\alpha|$. Hence, R_α is computable.
Suppose that \(\alpha \prec f \). Since \(P_\alpha \) is infinite and all but finitely many balls pass through \(\alpha \), there are infinitely many stages \(s \) such that \(\alpha \prec f_s \) and the node \(\alpha \) holds two balls in \(P_\alpha^- \) for \(\mathcal{R}'_\alpha \). Hence, infinitely many balls will reach \(\alpha \) and be \(\alpha \)-allowed. Moreover, both \(R_\alpha \) and \(\tilde{R}_\alpha \) will be infinite. By construction, \(\bigcup_{\beta \ll \alpha} R_\beta \cup \bigcup_{\beta \ll \alpha} D_\beta \cup P_\alpha = \ast \omega \). So, if \(X_\alpha^- \) is infinite, \(\bigcup_{\beta \ll \alpha} R_\beta \cup \bigcup_{\beta \ll \alpha} D_\beta \cup W_e = \ast \omega \). Therefore, \(\mathcal{R}'_\alpha \) is met.

6.7.3. Meeting the other requirements. We divide \(R_\alpha \) into two parts: \(R^-_\alpha = \bigcup_{\beta \ll \alpha} (R_\alpha \setminus D_\beta) \), the balls that enter \(R_\alpha \) before being placed in any \(D_\beta \) for \(\beta \prec \alpha \), and the remaining balls \(R^+_\alpha = R_\alpha - R^-_\alpha \). Clearly, \(R^-_\alpha \subseteq \bigcup_{\beta \ll \alpha} D_\beta \). Since the infinitely many pairs of balls pulled for \(\mathcal{R}'_\alpha \) are not in \(D_\beta \) for any \(\beta \prec \alpha \), \(R^+_\alpha \) is infinite if \(\alpha \prec f \).

Recall Lachlan’s construction (Theorem 2.2) that for \(B_e \) there is a hh-simple set of flavor \(\mathcal{B}_e \). Apply this construction to \(R^+_\alpha \) to get \(H_e \) and meet requirement \(\mathcal{L}_e \). For the Type 9 case, use Lachlan’s small major subset construction (Theorem 6.4) to satisfy \(\mathcal{L}_e \) and the construction assumptions in §6.2.2, i.e., build \(D_e \) so that \(D_e \cap R_j = H_j \) for \(j \leq e \) and \(D_e \) is small major in \(D_{e+1} \) on \(\bigcup_{j \leq e} R_j \). (For the Type 7 case, add all balls in \(H_e \) into \(D_{\lambda+} \). For the Type 8 case, construct a Friedberg splitting \(\bigcup_{j \leq e} H_{e,j} \) of \(H_e \) and add the balls in \(H_{e,j} \) into \(D_j \).) This ends the construction. \(\square \)

References

[1] Peter Cholak. Automorphisms of the lattice of recursively enumerable sets. *Mem. Amer. Math. Soc.*, 113(541):viii+151, 1995. ISSN 0065-9266.

[2] Peter Cholak and Leo A. Harrington. Isomorphisms of splits of computably enumerable sets. *J. Symbolic Logic*, 68(3):1044–1064, 2003. ISSN 0022-4812.

[3] Peter Cholak and Leo A. Harrington. Extension theorems, orbits, and automorphisms of the computably enumerable sets. *Trans. Amer. Math. Soc.*, 360(4):1759–1791, 2008. ISSN 0002-9947. math.LO/0408279.

[4] Peter Cholak and André Nies. Atomless r-maximal sets. *Israel J. Math.*, 113:305–322, 1999. ISSN 0021-2172.

[5] Peter Cholak, Rod Downey, and Eberhard Herrmann. Some orbits for \(\mathcal{E} \). *Ann. Pure Appl. Logic*, 107(1-3):193–226, 2001. ISSN 0168-0072. doi: 10.1016/S0168-0072(00)00060-9. URL http://dx.doi.org/10.1016/S0168-0072(00)00060-9.
[6] Peter A. Cholak, Rodney Downey, and Leo A. Harrington. On the orbits of computably enumerable sets. *J. Amer. Math. Soc.*, 21(4):1105–1135, 2008. ISSN 0894-0347. doi: 10.1090/S0894-0347-08-00604-8. URL http://dx.doi.org/10.1090/S0894-0347-08-00604-8.

[7] A. N. Dégtev. Minimal 1-degrees, and truth-table reducibility. *Sibirsk. Mat. Ž.*, 17(5):1014–1022, 1196, 1976. ISSN 0037-4474.

[8] R. G. Downey and Michael Stob. Automorphisms of the lattice of recursively enumerable sets: orbits. *Adv. Math.*, 92(2):237–265, 1992. ISSN 0001-8708. doi: 10.1016/0001-8708(92)90065-S. URL http://dx.doi.org/10.1016/0001-8708(92)90065-S.

[9] Rod Downey and Michael Stob. Splitting theorems in recursion theory. *Ann. Pure Appl. Logic*, 65(1):106 pp, 1993. ISSN 0168-0072.

[10] Rod Downey and Michael Stob. Friedberg splittings of recursively enumerable sets. *Ann. Pure Appl. Logic*, 59(3):175–199, 1993. ISSN 0168-0072. doi: 10.1016/0168-0072(93)90092-R. URL http://dx.doi.org/10.1016/0168-0072(93)90092-R.

[11] Richard M. Friedberg. Three theorems on recursive enumeration. I. Decomposition. II. Maximal set. III. Enumeration without duplication. *J. Symb. Logic*, 23:309–316, 1958. ISSN 0022-4812.

[12] Leo Harrington and Robert I. Soare. Post’s program and incomplete recursively enumerable sets. *Proc. Nat. Acad. Sci. U.S.A.*, 88(22):10242–10246, 1991. ISSN 0027-8424.

[13] E. Herrmann. Automorphisms of the lattice of recursively enumerable sets and hyperhypersimple sets. In *Proceedings of the fourth Easter conference on model theory (Gross Köris, 1986)*, volume 86 of *Seminarberichte*, pages 69–108. Humboldt Univ. Berlin, 1986.

[14] Eberhard Herrmann. Automorphisms of the lattice of recursively enumerable sets and hyperhypersimple sets. In *Logic, methodology and philosophy of science, VIII (Moscow, 1987)*, volume 126 of *Stud. Logic Found. Math.*, pages 179–190. North-Holland, Amsterdam, 1989. doi: 10.1016/S0049-237X(08)70044-2. URL http://dx.doi.org/10.1016/S0049-237X(08)70044-2.

[15] Eberhard Herrmann and Martin Kummer. Diagonals and \mathcal{D}-maximal sets. *J. Symbolic Logic*, 59(1):60–72,
Alistair H. Lachlan. The elementary theory of the lattice of recursively enumerable sets. *Duke Math. J.*, 35:123–146, 1968.

Robert I. Soare. Automorphisms of the lattice of recursively enumerable sets I: maximal sets. *Ann. of Math. (2)*, 100:80–120, 1974.

Robert I. Soare. *Recursively Enumerable Sets and Degrees*. Perspectives in Mathematical Logic, Omega Series. Springer–Verlag, Heidelberg, 1987.

M. Stob. *The Structure and Elementary Theory of the Recursive Enumerable Sets*. PhD thesis, University of Chicago, 1979.

Rebecca Weber. Invariance in E^* and E_Π^1. *Trans. Amer. Math. Soc.*, 358(7):3023–3059 (electronic), 2006.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556-5683

E-mail address: Peter.Cholak.1@nd.edu
URL: http://www.nd.edu/~cholak

Department of Mathematics, Wellesley College, Wellesley, MA 02482

E-mail address: karen.lange@wellesley.edu
URL: http://palmer.wellesley.edu/~klange/