Mean Curvature Flows and Isotopy of Maps Between Spheres

Mao-Pei Tsui & Mu-Tao Wang
February 19, 2003, revised September 4, 2003

email: tsui@math.columbia.edu, mtwang@math.columbia.edu

Abstract

Let f be a smooth map between unit spheres of possibly different dimensions. We prove the global existence and convergence of the mean curvature flow of the graph of f under various conditions. A corollary is that any area-decreasing map between unit spheres (of possibly different dimensions) is isotopic to a constant map.

1 Introduction

Let Σ_1 and Σ_2 be two compact Riemannian manifolds and $M = \Sigma_1 \times \Sigma_2$ be the product manifold. We consider a smooth map $f : \Sigma_1 \to \Sigma_2$ and denote the graph of f by Σ; Σ is a submanifold of M by the embedding $id \times f$. In [17], [18], and [19], the second author studies the deformation of f by the mean curvature flow (see also the work of Chen-Li-Tian [2]). The idea is to deform Σ along the direction of its mean curvature vector in M with the hope that Σ will remain a graph. This is the negative gradient flow of the volume functional and a stationary point is a “minimal map” introduced by Schoen in [12]. In [19], the second author proves various long-time existence and convergence results of graphical mean curvature flows in arbitrary codimensions under assumptions on the Jacobian of the projection from Σ to Σ_1. This quantity is denoted by $*\Omega$ in [19] and $*\Omega > 0$ if and only if Σ is a graph over Σ_1 by the implicit function theorem. A crucial observation
in [19] is that $\star \Omega$ is a monotone quantity under the mean curvature flow when $\star \Omega > \frac{1}{\sqrt{2}}$.

In this paper, we discover new positive geometric quantities preserved by the graphical mean curvature flow. To describe these results, we recall the differential of f, df, at each point of Σ is a linear map between the tangent spaces. The Riemannian structures enables us to define the adjoint of df. Let $\{\lambda_i\}$ denote the eigenvalues of $\sqrt{(df)^T df}$, or the singular values of df, where $(df)^T$ is the adjoint of df. Note that λ_i is always nonnegative. We say f is an area decreasing map if $\lambda_i \lambda_j < 1$ for any $i \neq j$ at each point. In particular, f is area-decreasing if the df has rank one everywhere. Under this condition, the second author proves the Bernstein type theorem [21] and interior gradient estimates [22] for solutions of the minimal surface system. It is also proved in [23] that the set of graphs of area-decreasing linear transformations forms a convex subset of the Grassmannian. We prove that this condition is preserved along the mean curvature flow and the following global existence and convergence theorem.

Theorem A. Let Σ_1 and Σ_2 be compact Riemannian manifolds of constant curvature k_1 and k_2 respectively. Suppose $k_1 \geq |k_2|$, $k_1 + k_2 > 0$ and $\dim(\Sigma_1) \geq 2$. If f is a smooth area decreasing map from Σ_1 to Σ_2, the mean curvature flow of the graph of f remains the graph of an area decreasing map, exists for all time, and converges smoothly to the graph of a constant map.

We remark that the condition $k_1 \geq |k_2|$ is enough to prove the long time existence of the flow. The following is an application to determine when a map between spheres is homotopically trivial.

Corollary A. Any area-decreasing map from S^n to S^m with $n \geq 2$ is homotopically trivial.

When $m = 1$, the area-decreasing condition always holds and the above statement follows from the fact that $\pi_n(S^1)$ is trivial for $n \geq 2$. We remark that the result when $m = 2$ is proved by the second author in [20] using a somewhat different method. The higher homotopy groups $\pi_n(S^m)$ has been computed in many cases and it is known that homotopically nontrivial maps do exist when $n \geq m$. Since an area-decreasing map may still be surjective when $n > m$, we do not know any topological method that would imply such a conclusion.

We would like to thank Professor R. Hamilton, Professor D. H. Phong and
Professor S.-T. Yau for their constant advice, encouragement and support.

2 Preliminaries

In this section, we recall notations and formulae for mean curvature flows. Let \(f : \Sigma_1 \to \Sigma_2 \) be a smooth map between Riemannian manifolds. The graph of \(f \) is an embedded submanifold \(\Sigma \) in \(M = \Sigma_1 \times \Sigma_2 \). At any point of \(\Sigma \), the tangent space of \(M \), \(T_M \) splits into the direct sum of the tangent space of \(\Sigma \), \(T_\Sigma \) and the normal space \(N_\Sigma \), the orthogonal complement of the tangent space \(T_\Sigma \) in \(T_M \). There are isomorphisms \(T_\Sigma \to T_\Sigma \) by \(X \mapsto X + (df)(X) \) and \(T_\Sigma \to N_\Sigma \) by \(Y \mapsto Y - (df)^T(Y) \) where \((df)^T : T_\Sigma \to T_\Sigma \) is the adjoint of \(df \).

We assume the mean curvature flow of \(\Sigma \) can be written as a graph of \(f_t \) for \(t \in [0, \epsilon) \) and derive the equation satisfied by \(f_t \). The mean curvature flow is given by a smooth family of immersions \(F_t \) of \(\Sigma \) into \(M \) which satisfies

\[
\left(\frac{\partial F}{\partial t} \right)^+ = H
\]

where \(H \) is the mean curvature vector in \(M \) and \((\cdot)^+\) denotes the projection onto the normal direction since the difference is only a tangential diffeomorphism (see for example White [24] for the issue of parametrization). By the definition of the mean curvature vector, this equation is equivalent to

\[
\left(\frac{\partial F}{\partial t} \right)^+ = \left(\Lambda^{ij} \nabla^M_{\frac{\partial}{\partial x^i}} \frac{\partial F}{\partial y^A} \right)^+
\]

where \(\Lambda^{ij} \) is the inverse to the induced metric \(\Lambda_{ij} = \langle \frac{\partial F}{\partial y^i}, \frac{\partial F}{\partial y^j} \rangle \) on \(\Sigma \).

In terms of coordinates \(\{y^A\}_{A=1 \ldots n+m} \) on \(M \), we have

\[
\Lambda^{ij} \nabla^M_{\frac{\partial}{\partial x^i}} \frac{\partial F}{\partial y^A} = \Lambda^{ij} \left(\frac{\partial^2 F^A}{\partial x^i \partial x^j} + \frac{\partial F^B}{\partial x^i} \frac{\partial F^C}{\partial x^j} \Gamma^A_{BC} \right) \frac{\partial}{\partial y^A}
\]

where \(\Gamma^A_{BC} \) is the Christoffel symbol of \(M \) and thus

\[
\left(\Lambda^{ij} \nabla^M_{\frac{\partial}{\partial x^i}} \frac{\partial F}{\partial x^j} \right)^+ = \Lambda^{ij} \left(\frac{\partial^2 F^A}{\partial x^i \partial x^j} + \frac{\partial F^B}{\partial x^i} \frac{\partial F^C}{\partial x^j} \Gamma^A_{BC} - \tilde{\Gamma}^k_{ij} \frac{\partial F^A}{\partial x^k} \right) \frac{\partial}{\partial y^A}
\]

where \(\tilde{\Gamma}^k_{ij} \) is the Christoffel symbol of the induced metric on \(\Sigma \).
By assumption, the embedding is given by the graph of f_t. We fix a coordinate system $\{x^i\}$ on Σ_1 and consider $F: \Sigma_1 \times [0, T) \to M$ given by

$$F(x^1, \ldots, x^n, t) = (x^1, \ldots, x^n, f^{n+1}, \ldots, f^{n+m}).$$

We shall use $i, j, k, l = 1 \cdots n$ and $\alpha, \beta, \gamma = n+1 \cdots n+m$ for the indices.

Therefore $\frac{\partial F}{\partial t} = \frac{\partial f}{\partial t} \frac{\partial}{\partial y}$ and

$$\Lambda^{ij}(\frac{\partial^2 F^A}{\partial x^i \partial x^j} + \frac{\partial F^B}{\partial x^i} \frac{\partial F^C}{\partial x^j} \Gamma^{A}_{BC}) \frac{\partial}{\partial y^A} = \Lambda^{ij}(\frac{\partial^2 f^\alpha}{\partial x^i \partial x^j} + \Gamma^l_{ij} \frac{\partial}{\partial y^l} + \frac{\partial f^\beta}{\partial x^i} \frac{\partial f^\gamma}{\partial x^j} \Gamma^\alpha_{\beta\gamma} \frac{\partial}{\partial y^\alpha}).$$

Thus the mean curvature flow equation is equivalent to the normal part of

$$\frac{\partial f^\alpha}{\partial t} - \Lambda^{ij}(\frac{\partial^2 f^\alpha}{\partial x^i \partial x^j} + \frac{\partial f^\beta}{\partial x^i} \frac{\partial f^\gamma}{\partial x^j} \Gamma^\alpha_{\beta\gamma}) \frac{\partial}{\partial y^\alpha} - \Lambda^{ij} \Gamma^l_{ij} \frac{\partial}{\partial y^l} = 0$$

is zero.

Now given any vector $a^i \frac{\partial}{\partial y^i} + b^\alpha \frac{\partial}{\partial y^\alpha}$, the equation that the normal part being zero is equivalent to

$$b^\alpha - a^i \frac{\partial f^\alpha}{\partial x^i} = 0 \tag{2.1}$$

for each α. Therefore we obtain the evolution equation for f

$$\frac{\partial f^\alpha}{\partial t} - \Lambda^{ij}(\frac{\partial^2 f^\alpha}{\partial x^i \partial x^j} + \frac{\partial f^\beta}{\partial x^i} \frac{\partial f^\gamma}{\partial x^j} \Gamma^\alpha_{\beta\gamma} + \Gamma^k_{ij} \frac{\partial f^\alpha}{\partial x^k}) = 0. \tag{2.2}$$

where Λ^{ij} is the inverse to $g_{ij} + h_{\alpha\beta} \frac{\partial f^\alpha}{\partial x^i} \frac{\partial f^\beta}{\partial x^j}$ and $g_{ij} = \langle \frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \rangle$ and $h_{\alpha\beta} = \langle \frac{\partial}{\partial y^\alpha}, \frac{\partial}{\partial y^\beta} \rangle$ are the Riemannian metrics on Σ_1 and Σ_2, respectively. Γ^k_{ij} and $\Gamma^\alpha_{\beta\gamma}$ are the Christoffel symbols of g_{ij} and $h_{\alpha\beta}$ respectively.

(2.2) is a nonlinear parabolic system and the usual derivative estimates do not apply to this equations. However, the second author in [19] identifies a geometric quantity in terms of the derivatives of f^α that satisfies the maximum principle; this quantity and its evolution equation are recalled in the next section.
3 Two evolution equations

In this section, we recall two evolution equations along the mean curvature flow. The basic set-up is a mean curvature flow $F : \Sigma \times [0, T) \to M$ of an n dimensional submanifold Σ inside an $n + m$ dimensional Riemannian manifold M. Given any parallel tensor on M, we may consider the pullback tensor by F_t and consider the evolution equation with respect to the time-dependent induced metric on $F_t(\Sigma) = \Sigma_t$. For the purpose of applying maximum principle, it suffices to derive the equation at a space-time point. We write all geometric quantities in terms of orthonormal frames keeping in mind all quantities are defined independent of choices of frames. At any point $p \in \Sigma_t$, we choose any orthonormal frames $\{e_i\}_{i=1 \cdots n}$ for $T_p \Sigma_t$ and $\{e_\alpha\}_{\alpha = n+1 \cdots n+m}$ for $N_p \Sigma_t$. The second fundamental form $h_{\alpha ij}$ is denoted by $h_{\alpha ij} = \langle \nabla^M e_i e_j, e_\alpha \rangle$ and the mean curvature vector is denoted by $H_\alpha = \sum_i h_{\alpha ii}$. For any j, k, we pretend $h_{n+i, jk} = 0$ if $i > m$.

When $M = \Sigma_1 \times \Sigma_2$ is the product of Σ_1 and Σ_2, we denote the projections by $\pi_1 : M \to \Sigma_1$ and $\pi_2 : M \to \Sigma_2$. By abusing notations, we also denote the differentials by $\pi_1 : T_p M \to T_{\pi_1(p)} \Sigma_1$ and $\pi_1 : T_p M \to T_{\pi_2(p)} \Sigma_2$ at any point $p \in M$. The volume form Ω of Σ_1 can be extended to a parallel n-form on M. For an oriented orthonormal basis e_1, \ldots, e_n of $T_p \Sigma$, $\Omega(e_1, \ldots, e_n) = \Omega(\pi_1(e_1), \ldots, \pi_1(e_n))$ is the Jacobian of the projection from $T_p \Sigma$ to $T_{\pi_1(p)} \Sigma_1$. This can also be considered as the pairing between the n-form Ω and the n-vector $e_1 \wedge \cdots \wedge e_n$ representing $T_p \Sigma$. We use $*\Omega$ to denote this function as p varies along Σ. By the implicit function theorem, $*\Omega > 0$ at p if and only if Σ is locally a graph over Σ_1 at p. The evolution equation of $*\Omega$ is calculated in Proposition 3.2 of [10].

When Σ is the graph of $f : \Sigma_1 \to \Sigma_2$, the equation at each point can be written in terms of singular values of df and special bases adapted to df. Denote the singular values of df, or eigenvalues of $(df)^T df$, by $\{\lambda_i\}_{i=1 \cdots n}$. Let r denote the rank of df. We can rearrange them so that $\lambda_i = 0$ when i is greater than r. By singular value decomposition, there exist orthonormal bases $\{a_i\}_{i=1 \cdots n}$ for $T_{\pi_1(p)} \Sigma_1$ and $\{a_\alpha\}_{\alpha = n+1 \cdots n+m}$ for $T_{\pi_2(p)} \Sigma_2$ such that

$$df(a_i) = \lambda_i a_{n+i}$$
for \(i \) less than or equal to \(r \) and \(df(a_i) = 0 \) for \(i \) greater than \(r \). Moreover,

\[
e_i = \begin{cases}
\frac{1}{\sqrt{1+\lambda_i^2}}(a_i + \lambda_i a_{n+i}) & \text{if } 1 \leq i \leq r \\
a_i & \text{if } r + 1 \leq i \leq n
\end{cases}
\]

(3.1)

becomes an orthonormal basis for \(T_p\Sigma \) and

\[
e_{n+p} = \begin{cases}
\frac{1}{\sqrt{1+\lambda_{n+p}^2}}(a_{n+p} - \lambda_{n+p} a_p) & \text{if } 1 \leq p \leq r \\
a_{n+p} & \text{if } r + 1 \leq p \leq m
\end{cases}
\]

(3.2)

becomes an orthonormal basis for \(N_p\Sigma \).

In terms of the singular values \(\lambda_i \),

\[
\ast \Omega = \frac{1}{\sqrt{\prod_{i=1}^n (1 + \lambda_i^2)}}
\]

(3.3)

With all the notations understood, the following result is essentially derived in Proposition 3.2 of [19] by noting that \((\ln \ast \Omega)_k = -(\sum_i \lambda_i h_{n+i,ik}) \).

Proposition 3.1 Suppose \(M = \Sigma_1 \times \Sigma_2 \) and \(\Sigma_1 \) and \(\Sigma_2 \) are compact Riemannian manifolds of constant curvature \(k_1 \) and \(k_2 \) respectively. With respect to the particular bases given by the singular value decomposition of \(df \), \(\ln \ast \Omega \) satisfies the following equation.

\[
\left(\frac{d}{dt} - \Delta \right) \ln \ast \Omega = \sum_{\alpha,i,k} h_{\alpha ik}^2 + \sum_{k,i} \lambda_i^2 h_{n+i,ik}^2 + 2 \sum_{k,i<j} \lambda_i \lambda_j h_{n+j,ik} h_{n+i,jk} + \sum_i \frac{\lambda_i^2}{1 + \lambda_i^2} \left[(k_1 + k_2) \left(\sum_{j \neq i} \frac{1}{1 + \lambda_j^2} \right) + k_2 (1 - n) \right]
\]

(3.4)

Next we recall the evolution equation of parallel two tensors from [15]. The calculation indeed already appears in [17]. The equation will be used later to obtain more refined information. Given a parallel two-tensor \(S \) on \(M \), we consider the evolution of \(S \) restricted to \(\Sigma_t \). This is a family of time-dependent symmetric two tensors on \(\Sigma_t \).
Proposition 3.2 Let S be a parallel two-tensor on M. Then the pull-back of S to Σ_t satisfies the following equation.

\[
\left(\frac{d}{dt} - \Delta\right) S_{ij} = -h_{ai}H_{\alpha}S_{lj} - h_{aj}H_{\alpha}S_{li} \\
+ R_{kika}\ S_{aj} + R_{kjka}\ S_{ai} \\
+ h_{aki}h_{aki}S_{lj} + h_{aki}h_{akj}S_{li} - 2h_{aki}h_{bjk}\ S_{\alpha\beta}
\]

where Δ is the rough Laplacian on two-tensors over Σ_t and $S_{ai} = S(e_\alpha, e_i)$, $S_{\alpha\beta} = S(e_\alpha, e_\beta)$, and $R_{kika} = R(e_k, e_i, e_k, e_\alpha)$ is the curvature of M.

The evolution equations (3.5) of S can be written in terms of evolving orthonormal frames as in Hamilton [8]. If the orthonormal frames

\[
F = \{F_1, \cdots, F_a, \cdots, F_n\}
\]

are given in local coordinates by

\[
F_a = F^i_a \frac{\partial}{\partial x^i} .
\]

To keep them orthonormal, i.e. $g_{ij}F^i_a F^j_a = \delta_{ab}$, we evolve F by the formula

\[
\frac{\partial}{\partial t} F^i_a = g^{ij}g^{\alpha\beta}h_{\alpha jl}H_{\beta}F^l_a .
\]

Let $S_{ab} = S_{ij} F^i_a F^j_b$ be the components of S in F. Then S_{ab} satisfies the following equation

\[
\left(\frac{d}{dt} - \Delta\right) S_{ab} = \ R{caca} S_{ab} + R{cbca} S_{oa} \\
+ h_{acd}h_{aaco}S_{db} + h_{acd}h_{acbo}S_{da} \\
- 2h_{aca}h_{bcb}\ S_{\alpha\beta} .
\]

4 Preserving the distance-decreasing condition

In this section, we show the condition $|df| < 1$, or each singular value $\lambda_i < 1$, is preserved by the mean curvature flow. This result will not be used
in proof of the Theorem A. But the proof of Theorem A depends on the
computation in this section. The tangent space of $M = \Sigma_1 \times \Sigma_2$ is identified
with $T\Sigma_1 \oplus T\Sigma_2$. Let π_1 and π_2 denote the projection onto the first and second
summand in the splitting. We define the parallel symmetric two-tensor S by

$$S(X, Y) = \langle \pi_1(X), \pi_1(Y) \rangle - \langle \pi_2(X), \pi_2(Y) \rangle$$

(4.1)

for any $X, Y \in TM$.

Let Σ be the graph of $f : \Sigma_1 \to \Sigma_1 \times \Sigma_2$. S restricts to a symmetric
two-tensor on Σ and we can represent S in terms of the orthonormal basis
(3.1).

Let r denote the rank of df. By (3.1), it is not hard to check

$$\pi_1(e_i) = \frac{a_i}{\sqrt{1 + \lambda_i^2}}, \pi_2(e_i) = \frac{\lambda_i a_{n+i}}{\sqrt{1 + \lambda_i^2}} \quad \text{for } 1 \leq i \leq r ,$$

and $\pi_1(e_i) = a_i, \pi_2(e_i) = 0$ for $r + 1 \leq i \leq n$. (4.2)

Similarly, by (3.2) we have

$$\pi_1(e_{n+p}) = \frac{-\lambda_p a_p}{\sqrt{1 + \lambda_p^2}}, \pi_2(e_{n+p}) = \frac{a_{n+p}}{\sqrt{1 + \lambda_p^2}} \quad \text{for } 1 \leq p \leq r ,$$

and $\pi_1(e_{n+p}) = 0, \pi_2(e_{n+p}) = a_{n+p}$ for $r + 1 \leq p \leq m$. (4.3)

From the definition of S, we have

$$S(e_i, e_j) = \frac{1 - \lambda_i^2}{1 + \lambda_i^2} \delta_{ij} .$$

(4.4)

In particular, the eigenvalues of S are

$$\frac{1 - \lambda_i^2}{1 + \lambda_i^2}, \quad i = 1 \ldots n .$$

(4.5)

Notice that S is positive-definite if and only if

$$|\lambda_i| < 1$$

for any singular value λ_i of df. 8
Now, at each point we express S in terms of the orthonormal basis \(\{e_i\}_{i=1}^n \) and \(\{e_\alpha\}_{\alpha=n+1}^{n+m} \). Let \(I_{k\times k} \) denote a \(k \) by \(k \) identity matrix. Then \(S \) can be written in the block form

\[
S = \begin{pmatrix}
B & 0 & D & 0 \\
0 & I_{n-r\times n-r} & 0 & 0 \\
D & 0 & -B & 0 \\
0 & 0 & 0 & -I_{m-r\times m-r}
\end{pmatrix}
\]

(4.6)

where \(B \) and \(D \) are \(r \) by \(r \) matrices with \(B_{ij} = \frac{1-\lambda^2}{1+\lambda^2} \delta_{ij} \) and \(D_{ij} = S(e_i, e_{n+j}) = \frac{-2\lambda}{1+\lambda^2} \delta_{ij} \) for \(1 \leq i, j \leq r \). We show that the positivity of \(S \) is preserved by the mean curvature flow. We remark that a similar positive definite tensor has been considered for the Lagrangian mean curvature flow in Smoczyk [14] and Smoczyk-Wang [15]. The following lemma shows that the distance decreasing condition is preserved by the mean curvature flow if \(k_1 \geq |k_2| \).

Lemma 4.1 The condition

\[
T_{ij} = S_{ij} - \epsilon g_{ij} > 0 \quad \text{for some } \epsilon \geq 0
\]

(4.7)

is preserved by the mean curvature flow if \(k_1 \geq |k_2| \).

Proof. We compute the evolution equation for \(T_{ij} \). From Proposition (3.2) and

\[
\frac{\partial}{\partial t} q_{ij} = -2h_{\alpha ij} H_{\alpha},
\]

we have

\[
(\frac{d}{dt} - \Delta)T_{ij} = -h_{\alpha il} H_{\alpha} T_{lj} - h_{\alpha j} H_{\alpha} T_{li} + R_{kika} S_{\alpha j} + R_{kka} S_{\alpha i} + h_{\alpha kl} h_{\alpha k} T_{lj} + h_{\alpha kl} h_{\alpha k} T_{li} + 2\epsilon h_{\alpha i} h_{\alpha k} T_{k} + 2\epsilon h_{\alpha i} h_{\alpha k} T_{k} - 2h_{\alpha i} h_{\beta kj} S_{\alpha \beta}.
\]

(4.8)

To apply Hamilton’s maximum principle, it suffices to prove that \(N_{ij} V^i V^j \geq 0 \) for any null eigenvector \(V \) of \(T_{ij} \), where \(N_{ij} \) is the right hand side of (4.8). Since \(V \) is a null eigenvector of \(T_{ij} \), it satisfies \(\sum_j T_{ij} V^j = 0 \) for any \(i \), and thus \(N_{ij} V^i V^j \) is equal to

\[
2\epsilon h_{\alpha i} h_{\alpha k} V^i V^j + 2R_{kika} S_{\alpha j} V^i V^j - 2h_{\alpha i} h_{\beta kj} S_{\alpha \beta} V^i V^j.
\]

(4.9)
Obviously, the first term of (4.9) is nonnegative. Applying the relation in (4.6) to the last term of (4.9) we obtain

\[-2h_{\alpha ki}h_{\beta kj}S_{\alpha \beta}V^iV^j = \sum_{1 \leq p, q \leq r} 2h_{n + pk_i h_{n + qk_j} S_{pq} V^iV^j} + \sum_{r + 1 \leq p, q \leq m} 2h_{n + pk_i h_{n + qk_j} V^iV^j}.\]

Since \(T_{pq} \geq 0\) implies that \(S_{pq} \geq \epsilon g_{pq}\), we obtain \(-2h_{\alpha ki}h_{\beta kj}S_{\alpha \beta}V^iV^j \geq 0\). In the next lemma we show that \(R_{kik\alpha}S_{\alpha j}\) is nonnegative definite whenever \(S_{ij}\) is under the curvature assumption \(k_1 \geq |k_2|\).

\[\square\]

Lemma 4.2

\[R_{kik\alpha}S_{\alpha j} = \lambda_1^2 \left(k_1 - k_2 \right) (n - 1) + (k_1 + k_2) \sum_{k \neq i} \frac{1 - \lambda_2^2}{1 + \lambda_2^2} \delta_{ij}.\] (4.10)

Proof. We follow the calculation of the curvature terms in \[19\].

\[
\sum_k R(e_\alpha, e_k, e_k, e_i)
= \sum_k R_1(\pi_1(e_\alpha), \pi_1(e_k), \pi_1(e_k), \pi_1(e_i)) + R_2(\pi_2(e_\alpha), \pi_2(e_k), \pi_2(e_k), \pi_2(e_i))
= \sum_k k_1 \left[\langle \pi_1(e_\alpha), \pi_1(e_k) \rangle \langle \pi_1(e_k), \pi_1(e_i) \rangle - \langle \pi_1(e_\alpha), \pi_1(e_i) \rangle \langle \pi_1(e_k), \pi_1(e_k) \rangle \right]
+ k_2 \left[\langle \pi_2(e_\alpha), \pi_2(e_k) \rangle \langle \pi_2(e_k), \pi_2(e_i) \rangle - \langle \pi_2(e_\alpha), \pi_2(e_i) \rangle \langle \pi_2(e_k), \pi_2(e_k) \rangle \right].
\]

Notice that \(\langle \pi_2(X), \pi_2(Y) \rangle = \langle X, Y \rangle - \langle \pi_1(X), \pi_1(Y) \rangle\) since \(T\Sigma_1 \perp T\Sigma_2\). Therefore

\[
\sum_k R(e_\alpha, e_k, e_k, e_i)
= \sum_k \left(k_1 + k_2 \right) \left[\langle \pi_1(e_\alpha), \pi_1(e_k) \rangle \langle \pi_1(e_k), \pi_1(e_i) \rangle - \langle \pi_1(e_\alpha), \pi_1(e_i) \rangle \langle \pi_1(e_k) \rangle^2 \right]
+ k_2 (n - 1) \langle \pi_1(e_\alpha), \pi_1(e_i) \rangle
\]
Now use $\pi_1(e_α) = -\lambda_p \pi_1(e_p) \delta_{α,n+p}$ and $S(e_j, e_{n+p}) = -\frac{2\lambda_j \delta_{jp}}{1 + \lambda_j^2}$ in (4.6), we have

$$\sum_{α,k} R_{kikα} S_{αj} = - \sum_{p,k} R_{n+p,kki} S_{n+p,j}$$

$$= \sum_{p,k} \left\{ \lambda_p (k_1 + k_2) \left[\langle \pi_1(e_p), \pi_1(e_k) \rangle \langle \pi_1(e_k), \pi_1(e_i) \rangle - \langle \pi_1(e_p), \pi_1(e_i) \rangle \langle \pi_1(e_k) \rangle^2 \right] + \lambda_p k_2 (n - 1) \langle \pi_1(e_p), \pi_1(e_i) \rangle \right\} S_{n+p,j}$$

$$= - \frac{2\lambda^2}{1 + \lambda^2} (k_1 + k_2) \left[\frac{\delta_{ij}}{(1 + \lambda^2)^2} - \frac{\delta_{ij}}{1 + \lambda^2} \sum_k |\pi_1(e_k)|^2 \right]$$

$$+ k_2 (n - 1) \frac{\delta_{ij}}{1 + \lambda^2} \}.$$

Recall that $|\pi_1(e_k)|^2 = \frac{1}{1 + \lambda_k^2}$ and we obtain

$$R_{kikα} S_{αj} = \frac{2\lambda^2 \delta_{ij}}{(1 + \lambda^2)^2} \left[(k_1 + k_2) \left(\sum_{k \neq i} 1 \frac{1}{1 + \lambda_k^2} \right) + k_2 (1 - n) \right].$$

This can be further simplified by noting

$$(k_1 + k_2) \left(\sum_{k \neq i} 1 \frac{1}{1 + \lambda_k^2} \right) + k_2 (1 - n) = \frac{(k_1 - k_2) (n - 1)}{2} + (k_1 + k_2) \sum_{k \neq i} 1 \frac{1 - \lambda_k^2}{2(1 + \lambda_k^2)} \quad (4.11)$$

where we use the following identity for each i

$$\left(\sum_{k \neq i} \frac{1}{1 + \lambda_k^2} \right) - \frac{n - 1}{2} = \sum_{k \neq i} \left(\frac{1}{1 + \lambda_k^2} - \frac{1}{2} \right) = \sum_{k \neq i} \frac{1 - \lambda_k^2}{2(1 + \lambda_k^2)}.$$

\[\square\]

5 Preserving the area-decreasing condition

In this section, we show that the area decreasing condition is preserved along the mean curvature flow. In the following, we require that $n = \text{dim}(\Sigma_1) \geq 2$. By (4.5), the sum of any two eigenvalues of S is

$$\frac{1 - \lambda_i^2}{1 + \lambda_i^2} + \frac{1 - \lambda_j^2}{1 + \lambda_j^2} = \frac{2(1 - \lambda_i^2 \lambda_j^2)}{(1 + \lambda_i^2)(1 + \lambda_j^2)}. \quad (5.1)$$
Therefore the area decreasing condition $|\lambda_i \lambda_j| < 1$ for $i \neq j$ is equivalent to the two-positivity of S, i.e. the sum of any two eigenvalues is positive. We remark that curvature operator being two-positive is preserved by the Ricci flow, see Chen [1] or Hamilton [8] for detail.

The two-positivity of a symmetric two tensor P can be related to the convexity of another tensor $P^{[2]}$ associated with P. The following notation is adopted from Caffarelli-Nirenberg-Spruck [3]. Let P be a self-adjoint operator on an n-dimensional inner product space. From P we can construct a new self-adjoint operator

$$P^{[k]} = \sum_{i=1}^{k} 1 \otimes \cdots \otimes P_i \otimes \cdots \otimes 1$$

acting on the exterior powers Λ^k by

$$P^{[k]}(\omega_1 \wedge \cdots \wedge \omega_k) = \sum_{i=1}^{k} \omega_1 \wedge \cdots \wedge P(\omega_i) \wedge \cdots \wedge \omega_k.$$

With the definition of $P^{[k]}$, we have the following lemma.

Lemma 5.1 Let $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ be the eigenvalues of P with corresponding eigenvectors $v_1 \cdots v_n$. Then $P^{[k]}$ has eigenvalues $\mu_{i_1} + \cdots + \mu_{i_k}$ and eigenvectors $v_{i_1} \wedge \cdots \wedge v_{i_k}$, $i_1 < i_2 \cdots < i_k$.

Recall that the Riemannian metric g and S are both in $T\Sigma \otimes T\Sigma$, the space of symmetric two tensor on Σ. We can identify S with a self-adjoint operator on the tangent bundle through the metric g. Therefore $S^{[2]}$ and $g^{[2]}$ are both sections of $(\Lambda^2(T\Sigma))^* \otimes \Lambda^2(T\Sigma)$ associated to S and g respectively. We shall use orthonormal frames in the following calculation; this has the advantage that g is the identity matrix and we will not distinguish lower index and upper index. With the above interpretation and (5.1), we have the following lemma.

Lemma 5.2 The area decreasing condition is equivalent to the convexity of $S^{[2]}$.

To show that the area decreasing condition is preserved, it suffices to prove that the convexity of $S^{[2]}$ is preserved. In fact, we prove the stronger result that the convexity of $S^{[2]} - \epsilon g^{[2]}$ for $\epsilon > 0$ is preserved.
We compute the evolution equation of $S^{[2]} - \epsilon g^{[2]}$ in terms of the evolving orthonormal frames $\{F_a\}_{a=1\ldots n}$ introduced earlier in (3.6). We will use indices a, b, \ldots to denote components in the evolving frames. Denote $S_{ab} = S(F_a, F_b)$ and $g_{ab} = g(F_a, F_b) = \delta_{ab}$. Since $\{F_a \wedge F_b\}_{a,b}$ form a basis for $\Lambda^2 T\Sigma$, we have

\[
S^{[2]}(F_a \wedge F_b) = S(F_a) \wedge F_b + F_a \wedge S(F_b) = S_{ac}F_c \wedge F_b + F_a \wedge S_{ac}F_c
\]

\[
= \sum_{c<d} (S_{ac}\delta_{bd} + S_{bd}\delta_{ac} - S_{ad}\delta_{bc} - S_{bc}\delta_{ad}) F_c \wedge F_d\quad \text{and}
\]

\[
g^{[2]}(F_a \wedge F_b) = \sum_{c<d} (2\delta_{ad}\delta_{bd} - 2\delta_{ad}\delta_{bc}) F_c \wedge F_d.
\]

We denote $S_{(ab)(cd)}^{[2]} = (S_{ac}\delta_{bd} + S_{bd}\delta_{ac} - S_{ad}\delta_{bc} - S_{bc}\delta_{ad})$ and $g^{[2]}_{(ab)(cd)} = 2\delta_{ad}\delta_{bd} - 2\delta_{ad}\delta_{bc}$. Thus the evolution equation of $S^{[2]} - \epsilon g^{[2]}$ in terms of the evolving orthonormal frames is

\[
\left(\frac{d}{dt} - \Delta\right) (S_{ac}\delta_{bd} + S_{bd}\delta_{ac} - S_{ad}\delta_{bc} - S_{bc}\delta_{ad} - 2\epsilon\delta_{ad}\delta_{bd} + 2\epsilon\delta_{ad}\delta_{bc})
\]

\[
= Re_{aea}S_{ac}\delta_{bd} + Re_{eae}S_{ac}\delta_{bd} + Re_{eaS_{ac}\delta_{ad}} - Re_{eae}S_{ac}\delta_{ad} - Re_{eae}S_{ac}\delta_{ad}
\]

\[
+ h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd}
\]

\[
- h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd}
\]

\[
- 2h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd} + h_{ae}h_{ae}S_{ac}\delta_{bd}.
\]

Now, we are ready to prove that the area decreasing condition is preserved along the mean curvature flow.

Lemma 5.3 Under the assumption of Theorem A, with S defined in (4.1) and $S^{[2]}$ defined in (5.2), suppose there exists an $\epsilon > 0$ such that

\[
S^{[2]} - \epsilon g^{[2]} \geq 0
\]

holds on the initial graph. Then this is preserved along the mean curvature flow.

Proof. Set

\[
M_\eta = S^{[2]} - \epsilon g^{[2]} + \eta g^{[2]}.
\]

Suppose the mean curvature flow exists on $[0, T)$. Consider any $T_1 < T$, it suffices to prove that $M_\eta > 0$ on $[0, T_1]$ for all $\eta < \frac{1}{2T_1}$. If not, there will
be a first time $0 < t_0 \leq T_1$ where $M_\eta = S[2] - \epsilon g[2] + \eta t g[2]$ is nonnegative definite and has a null eigenvector $V = V^{ab} F_a \wedge F_b$ at some point $x_0 \in \Sigma_{t_0}$. We extend V^{ab} to a parallel tensor in a neighborhood of x_0 along geodesic emanating out of x_0, and defined V^{ab} on $[0, T]$ independent of t. Define

$$f = \sum_{a < b, c < d} V^{ab} M_\eta V^{cd},$$

then by (5.2), f equals

$$\sum_{a < b, c < d} (S_{ac} g_{bd} + S_{bd} g_{ac} - S_{bc} g_{ad} + 2(\eta t - \epsilon)(g_{ac} g_{bd} - g_{ad} g_{bc})) V^{ab} V^{cd}.$$

At (x_0, t_0), we have $f = 0$, $\nabla f = 0$ and $(\frac{d}{dt} - \Delta) f \leq 0$ where ∇ denotes the covariant derivative and Δ denotes the Laplacian on Σ_{t_0}. We may assume that at (x_0, t_0) the orthonormal frames $\{F_a\}$ is given by $\{e_i\}$ in (3.1). In the following, we use the orthonormal basis $\{e_i\}$ to write down the condition $f = 0$ and $\nabla f = 0$ at (x_0, t_0). The basis $\{e_i\}$ diagonalizes S with eigenvalues $\{\lambda_i\}$ and we order $\{\lambda_i\}$ such that

$$\lambda_1^2 \geq \lambda_2^2 \geq \cdots \geq \lambda_n^2$$

and

$$S_{nn} = \frac{1 - \lambda_n^2}{1 + \lambda_n^2} \geq \cdots \geq S_{22} = \frac{1 - \lambda_2^2}{1 + \lambda_2^2} \geq S_{11} = \frac{1 - \lambda_1^2}{1 + \lambda_1^2}.$$ (5.5)

It follows from Lemma (5.1) that $\{e_i \wedge e_j\}_{i < j}$ are the eigenvectors of M_η. Thus we may assume that

$$V = e_1 \wedge e_2.$$ (5.6)

At (x_0, t_0), the condition $f = 0$ is the same as

$$S_{11} + S_{22} = 2\epsilon - 2\eta t_0 > 0.$$ (5.7)

This is equivalent to

$$\frac{2(1 - \lambda_1^2 \lambda_2^2)}{(1 + \lambda_1^2)(1 + \lambda_2^2)} = 2(\epsilon - \eta t_0) > 0.$$

Thus

$$\lambda_1 \lambda_2 < 1$$

and

$$\lambda_i < 1$$

for $i \geq 3$. (5.8)
Next, we compute the covariant derivative of the restriction of S on Σ.

$$(\nabla_{e_i}S)(e_j, e_k) = e_i(S(e_j, e_k)) - S(\nabla_{e_i}e_j, e_k) - S(e_j, \nabla_{e_i}e_k) = S(\nabla_{e_i}^M e_j - \nabla_{e_i}e_j, e_k) + S(e_j, \nabla_{e_i}^M e_k - \nabla_{e_i}e_k) = h_{aij}S_{ak} + h_{\beta ik}S_{\beta j}. $$

So

$$S_{jk,i} = h_{aij}S_{ak} + h_{\beta ik}S_{\beta j}.$$

Recall that V_{ab} is parallel at (x_0, t_0), $V_{12} = 1$ and all other components of V^{ab} is zero. At (x_0, t_0), $\nabla f = 0$ is equivalent to

$$0 = \sum_{i<j,k<l} \nabla_{e_p}((S_{ik}\delta_{jl} + S_{jl}\delta_{ik} - S_{il}\delta_{jk} - S_{jk}\delta_{il} + 2(\eta t - \epsilon)(\delta_{ik}\delta_{jl} - \epsilon\delta_{il}\delta_{jk}))V^{ij}V^{kl}) = \nabla_{e_p}S_{11} + \nabla_{e_p}S_{22} = 2h_{\alpha p1}S_{\alpha 1} + 2h_{\beta p2}S_{\beta 2}. $$

Since $S_{n+q,l} = -\frac{2\lambda_{n+q,l}}{1+\lambda^2}$, we have

$$\frac{\lambda_1}{1+\lambda^2_1}h_{n+1,p1} + \frac{\lambda_2}{1+\lambda^2_2}h_{n+2,p2} = 0 \quad (5.9)$$

for any p.

By (5.3), at (x_0, t_0), we have

$$\left(\frac{d}{dt} - \Delta\right)f = 2\eta + 2R_{k1\alpha}S_{\alpha 1} + 2R_{k2\alpha}S_{\alpha 2} + 2h_{akj}h_{ak1}S_{j1} + 2h_{akj}h_{ak2}S_{j2} - 2h_{ak1}h_{\beta k1}S_{\alpha \beta} - 2h_{ak2}h_{\beta k2}S_{\alpha \beta}. \quad (5.10)$$

The ambient curvature term can be calculated using Lemma 4.2 and we derive

$$\sum_{k,\alpha} R_{k1\alpha}S_{\alpha 1} + R_{k2\alpha}S_{\alpha 2}. $$

$$= (k_1 - k_2)(n - 1)\sum_{i=1}^{2} \frac{\lambda^2_i}{(1 + \lambda^2_i)^2} + (k_1 + k_2)\sum_{i=1}^{2} \frac{\lambda^2_i}{(1 + \lambda^2_i)^2} \left[\sum_{j \neq i} \frac{1 - \lambda^2_j}{(1 + \lambda^2_j)^2}\right]. \quad (5.11)$$
This can be simplified as

\[
(k_1 - k_2)(n - 1) \sum_{i=1}^{2} \frac{\lambda_i^2}{(1 + \lambda_i^2)^2} + (k_1 + k_2) \sum_{i=1}^{2} \frac{\lambda_i^2}{(1 + \lambda_i^2)^2} \left[\sum_{j>3} \frac{1 - \lambda_j^2}{(1 + \lambda_j^2)} \right]
\]

\[
+ (k_1 + k_2) \left[\frac{\lambda_1^2}{(1 + \lambda_1^2)^2} \frac{1 - \lambda_2^2}{(1 + \lambda_2^2)^2} + \frac{\lambda_2^2}{(1 + \lambda_2^2)^2} \frac{1 - \lambda_1^2}{(1 + \lambda_1^2)^2} \right]
\]

\[
= (k_1 - k_2)(n - 1) \sum_{i=1}^{2} \frac{\lambda_i^2}{(1 + \lambda_i^2)^2} + (k_1 + k_2) \sum_{i=1}^{2} \frac{\lambda_i^2}{(1 + \lambda_i^2)^2} \left[\sum_{j>3} \frac{1 - \lambda_j^2}{(1 + \lambda_j^2)} \right]
\]

\[
+ (k_1 + k_2) \left[\frac{(\lambda_1^2 + \lambda_2^2)(1 - \lambda_1^2 \lambda_2^2)}{(1 + \lambda_1^2)(1 + \lambda_2^2)^2} \right].
\]

\[(5.12)\]

This is nonnegative by equation (5.8).

Using the relations in (4.6) again, the last four terms on the right hand side of (5.10) can be rewritten as

\[
\sum_{p,k} 2h_{n+p,k1}^2 S_{11} + 2h_{n+p,k2}^2 S_{22} + 2h_{n+p,k1}^2 S_{pp} + 2h_{n+p,k2}^2 S_{pp}
\]

\[
= \sum_{k} (2h_{n+k1}^2 S_{11} + 2h_{n+k2}^2 S_{22} + 2h_{n+k1}^2 S_{pp} + 2h_{n+k2}^2 S_{pp})
\]

\[
+ 2h_{n+k1}^2 S_{11} + 2h_{n+k2}^2 S_{22} + 2h_{n+k1}^2 S_{11} + 2h_{n+k2}^2 S_{22}
\]

\[
+ \sum_{q \geq 3,k} 2h_{n+q,k1}^2 S_{11} + 2h_{n+q,k2}^2 S_{22} + 2h_{n+q,k1}^2 S_{pp} + 2h_{n+q,k2}^2 S_{pp}.
\]

\[(5.13)\]

Since \(S_{ii} \geq S_{11}\) for \(i \geq 2\), it is clear that (5.13) is nonnegative if \(S_{11} \geq 0\). Otherwise, from (5.7), we may assume that

\[
S_{11} < 0, \quad S_{22} > 0 \text{ and } S_{11} + S_{22} > 0.
\]

\[(5.14)\]

In particular, we have \(\lambda_2^2 < \lambda_1^2\) and \(\lambda_1^2 \lambda_2^2 < 1\). From (5.9), we have

\[
h_{n+1,p1}^2 = \frac{\lambda_1^2(1 + \lambda_2^2)^2}{\lambda_1^2(1 + \lambda_2^2)^2} h_{n+2,p2}^2.
\]

Since \(\lambda_2^2 < \lambda_1^2\) and \(\lambda_1^2 \lambda_2^2 < 1\), we have \(\frac{\lambda_2^2(1 + \lambda_2^2)^2}{\lambda_1^2(1 + \lambda_2^2)^2} < 1\). Thus

\[
h_{n+1,p1}^2 \leq h_{n+2,p2}^2 \text{ for all } p \geq 1.
\]

\[(5.15)\]
Recall that $S_{qq} \geq S_{22}$ for $q \geq 3$. The right hand side of (5.13) can be regrouped as

$$\sum_k \left[(4h_{n+1,k1}^2S_{11} + 4h_{n+2,k2}^2S_{22}) + 2h_{n+2,k1}^2(S_{11} + S_{22}) + 2h_{n+1,k2}^2(S_{11} + S_{22}) \right] + \sum_{q \geq 3,k} \left[2h_{n+q,k1}^2(S_{11} + S_{qq}) + 2h_{n+q,k2}^2(S_{22} + S_{qq}) \right].$$

This is nonnegative by (5.5), (5.14), and (5.15). Thus, we have $$(d/dt - \Delta)f \geq 2\eta > 0$$ at (x_0, t_0) and this is a contradiction. \hfill \Box

Remark: The condition $S_{[2]} - \epsilon g^{[2]} \geq 0$ is equivalent to

$$\left(1 - \lambda_i^2 \lambda_j \right) \left(1 + \lambda_i^2 \right) \left(1 + \lambda_j^2 \right) \geq \epsilon$$

for all $i \neq j$. In particular, we have $\lambda_i^2 \leq \frac{1-\epsilon}{\epsilon}$. This implies that the Lipschitz norm of f is preserved along the mean curvature flow.

6 Long time existence and convergence

In this section, we prove Theorem A using the evolution equation (3.4) of $\ln \ast \Omega$.

Proof of Theorem A. Since $|\lambda_i \lambda_j| < 1$ for $i \neq j$ and Σ_1 is compact, we can find an $\epsilon > 0$ such that $\frac{(1-\lambda_i^2 \lambda_j^2)}{(1+\lambda_i^2)(1+\lambda_j^2)} \geq \epsilon$ for all $i \neq j$. By Lemma (5.3), the condition $\frac{(1-\lambda_i^2 \lambda_j^2)}{(1+\lambda_i^2)(1+\lambda_j^2)} \geq \epsilon$ for all $i \neq j$ is preserved along the mean curvature flow. In particular, we have $|\lambda_i \lambda_j| \leq \sqrt{1-\epsilon}$ and $\lambda_i^2 \leq \frac{1-\epsilon}{\epsilon}$. This implies Σ_t remains the graph of a map $f_t : \Sigma_1 \to \Sigma_2$ whenever the flow exists. Each f_t has uniformly bounded $|df_t|$.

We look at the evolution equation (3.4) of $\ln \ast \Omega$. The quadratic terms of the second fundamental form in equation (3.4) is

$$\sum h_{\alpha \gamma k}^2 + \sum \lambda_i^2 h_{n+i,ik}^2 + 2 \sum \lambda_i \lambda_j h_{n+j,ijk} h_{n+i,jk} = \delta |A|^2 + \sum \lambda_i^2 h_{n+i,ik}^2 + (1 - \delta)|A|^2 + 2 \sum \lambda_i \lambda_j h_{n+j,ijk} h_{n+i,jk}.$$

Let $1 - \delta = \sqrt{1-\epsilon}$. Using $|\lambda_i \lambda_j| \leq 1 - \delta$, we conclude that this term is bounded below by $\delta |A|^2$.

17
By equation (4.11), the curvature term in (3.4) equals

\[
\frac{(k_1 - k_2)(n - 1)}{2} \sum_{i=1}^{n} \frac{\lambda_i^2}{1 + \lambda_i^2} + (k_1 + k_2) \sum_{i=1}^{n} \frac{\lambda_i^2}{1 + \lambda_i^2} \left[\sum_{j \neq i}^{n} \frac{1 - \lambda_j^2}{2(1 + \lambda_j^2)} \right]. \tag{6.1}
\]

The second term on the right hand side of (6.1) can be simplified as

\[
\sum_{i=1}^{n} \frac{\lambda_i^2}{1 + \lambda_i^2} \left[\sum_{j \neq i}^{n} \frac{1 - \lambda_j^2}{2(1 + \lambda_j^2)} \right] = \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{\lambda_i^2 - \lambda_i^2 \lambda_j^2}{2(1 + \lambda_i^2)(1 + \lambda_j^2)} \tag{6.2}
\]

This is non-negative because \(|\lambda_i \lambda_j| \leq 1 - \delta\). Thus \(\ln \ast \Omega\) satisfies the following differential inequality with \(k_1 \geq |k_2|\):

\[
\frac{d}{dt} \ln \ast \Omega \geq \Delta \ln \ast \Omega + \delta|A|^2. \tag{6.3}
\]

According to the maximum principle for parabolic equations, \(\min_{\Sigma^t} \ln \ast \Omega\) is nondecreasing in time. In particular, \(\ast \Omega \geq \min_{\Sigma^t} \ast \Omega = \Omega_0\) is preserved and \(\ast \Omega\) has a positive lower bound. Let \(u = \frac{\ln \ast \Omega - \ln \Omega_0 + c}{-\ln \Omega_0 + c}\) where \(c\) is a positive number such that \(-\ln \Omega_0 + c > 0\). Recall that \(0 < \ast \Omega \leq 1\). This implies that \(0 < u \leq 1\) and \(u\) satisfies the following differential inequality

\[
\frac{d}{dt} u \geq \Delta u + \frac{\delta}{-\ln \Omega_0 + c}|A|^2.
\]

Because \(u\) is also invariant under parabolic dilation, it follows from the blow-up analysis in the proof of Theorem A [19] that the mean curvature flow of the graph of \(f\) remains a graph and exists for all time under the assumption that \(k_1 \geq |k_2|\).

Using \(\lambda_i^2 \leq \frac{1-\epsilon}{\epsilon}\) and \(\lambda_i \lambda_j \leq \sqrt{1 - \epsilon}\), it is not hard to show

\[
(k_1 + k_2) \sum_{i<j} \frac{\lambda_i^2 + \lambda_j^2 - 2\lambda_i^2 \lambda_j^2}{2(1 + \lambda_i^2)(1 + \lambda_j^2)} \geq c_1 \sum_{i=1}^{n} \lambda_i^2 \geq c_1 \ln \prod_{i=1}^{n} (1 + \lambda_i^2) \tag{6.4}
\]

where \(c_1\) is a constant that depends on \(\epsilon, k_1\) and \(k_2\).
Recall equation (3.3) and we obtain

$$\frac{d}{dt} \ln *\Omega \geq \Delta \ln *\Omega - c_3 \ln *\Omega.$$

By the comparison theorem for parabolic equations, $\min_{\Sigma_t} \ln *\Omega$ is non-decreasing in t and $\min_{\Sigma_t} \ln *\Omega \to 0$ as $t \to \infty$. This implies that $\min_{\Sigma_t} *\Omega \to 1$ and $\max |\lambda_i| \to 0$ as $t \to \infty$. We can then apply Theorem B in [19] to conclude smooth convergence to a constant map at infinity.

\section*{References}

[1] H. Chen, \textit{Pointwise quarter-pinched 4 manifolds}. Ann. Global Anal. 9 (1991), 161–176.

[2] J.-Y. Chen, J.-Y. Li and G. Tian, \textit{Two-dimensional graphs moving by mean curvature flow}. Acta Math. Sin. (Engl. Ser.) 18 (2002), no. 2, 209–224.

[3] L. Caffarelli, L. Nirenberg and J. Spruck, \textit{The Dirichlet problem for non-linear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian.}, Acta Math. 155 (1985), no. 3–4, 261–301.

[4] K. Ecker and G. Huisken, \textit{Interior estimates for hypersurfaces moving by mean curvature}. Invent. Math. 105 (1991), no. 3, 547–569.

[5] J. Eells and J. H. Sampson, \textit{Harmonic mappings of Riemannian manifolds}. Amer. J. Math. 86 (1964) 109–160.

[6] R. Hamilton, \textit{Three-manifolds with positive Ricci curvature}. J. Differential Geom. 17 (1982), no. 2, 255–306

[7] R. Hamilton, \textit{Four-manifolds with positive curvature operator}. J. Differential Geom. 24 (1986), no. 2, 153–179.

[8] R. S. Hamilton, \textit{Harnack estimate for the mean curvature flow}. J. Differential Geom. 41 (1995), no. 1, 215–226.

[9] R. S. Hamilton, \textit{The formation of singularities in the Ricci flow}. Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), 7–136, Internat. Press, Cambridge, MA, 1995.
[10] G. Huisken, *Asymptotic behavior for singularities of the mean curvature flow*. J. Differential Geom. **31** (1990), no. 1, 285–299.

[11] T. Ilmanen, *Singularities of mean curvature flow of surfaces*. preprint, 1997. Available at http://www.math.ethz.ch/~ilmanen/papers/pub.html

[12] R. Schoen, *The role of harmonic mappings in rigidity and deformation problems*. Complex geometry (Osaka, 1990), 179–200, Lecture Notes in Pure and Appl. Math., 143, Dekker, New York, 1993.

[13] L. Simon, *Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems*. Ann. of Math. (2) **118** (1983), no. 3, 525–571.

[14] K. Smoczyk, *Longtime existence of the Lagrangian mean curvature flow*. MPI preprint no.71/2002.

[15] K. Smoczyk and M.-T. Wang, *Mean curvature flows of Lagrangian submanifolds with convex potentials*. J. Differential Geom. 62 (2002), no.2, 243-257.

[16] M.-P. Tsui and M.-T. Wang, *A Bernstein type result for special lagrangian submanifolds*. Math. Res. Lett. 9 (2002), no.4, 529-536.

[17] M.-T. Wang, *Mean curvature flow of surfaces in Einstein Four-Manifolds*. J. Differential Geom. 57 (2001), no.2, 301-338.

[18] M.-T. Wang, *Deforming area preserving diffeomorphism of surfaces by mean curvature flow*. Math. Res. Lett. 8 (2001), no.5-6, 651-662.

[19] M.-T. Wang, *Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension*. Invent. Math. 148 (2002) 3, 525-543.

[20] M.-T. Wang, *Subsets of grassmannians preserved by mean curvature flow*. preprint, 2002.

[21] M.-T. Wang, *On graphic Bernstein type results in higher codimensions*. Trans. Amer. Math. Soc. 355 (2003), no. 1, 265–271.
[22] M.-T. Wang, *Interior gradient bounds for solutions to the minimal surface system.* to appear in Amer. J. Math.

[23] M.-T. Wang, *Gauss maps of the mean curvature flow.* Math. Res. Lett. 10 (2003), no. 2-3, 287–299.

[24] B. White, *A local regularity theorem for classical mean curvature flow.* preprint, 1999 (revised 2002).

Available at http://math.stanford.edu/~white/preprint.htm