Petrochemical features of the dike complex of the Vorontsovskoye gold-ore deposit (Northern Urals)

Oksana Borisovna AZOVSKOVA*, Mikhail Yuryevich ROVNUSHKIN**, Elena Industrovna SOROKA***

Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of RAS, Ekaterinburg, Russia

Keywords: Northern Urals, Vorontsovskoye gold-ore deposit, dikes, petrochemistry, kalifeldspath metasomatism, Carlin-type.

Introduction

The Vorontsovskoye deposit is located near Krasnoturyinsk in the north of the Sverdlovsk region. It is one of the most significant gold-ore sites in the Urals. Productive gold-sulphide mineralization has Au–As–Hg–Tl–Sb trend and can be associated with the “Carlin-type” for a number of characteristics [1, 2]. At the same time, there are some signs of polygenic and its associated intrusive bodies, date back to the early Devonian. Intrusions of the Auerbah complex, which form the wing of a slightly pitching monoclinal structure within the volcano-tectonic depression (graben-synclinal fold).

Gold mineralization is localized in the volcanogenic-sedimentary formations of the Krasnoturyinskaya suite (D kr), which form the wing of a slightly pitching monoclinal structure within the volcano-tectonic depression (graben-synclinal fold). Ore-bearing formations are carbonate (brecciated limestone, carbonate breccia) and igneous-sedimentary (tuff siltstones, tuffaceous sandstones, tuffites) formations of the Lower Devonian. They are intruded with numerous dikes of basic and medium composition, which actually form a complex ore fold within the deposit (Fig. 1).

According to the geological works of various stages of the Auerbah ore cluster, to which the Vorontsovskoye deposit associated with, it is characterized by a large variety of dikes: dolerites and gabbro-dolerites, pyroxene-plagioclase, plagioclase and amphibole-plagioclase porphyrites, diorite- and quartzdiorite porphyry, lamprophyres of spessartite type, odonite, and kersantite. It should be noted that in most cases their determination is based only on petrographic research data. The dikes of the Vorontsovskoye deposit were slightly studied previously [3, 5], but the systemic work was not carried out. Their mineragenic type and a possible role in the formation of gold mineralization remains debated. This determines the relevance of the research, the first results of which are presented in this paper.

Methods and research methods, results of the work

During field works in 2017, more than 30 dikes were tested within the existing open-cut mining; structural measurements were carried out.

According to the results of measurements of dip azimuth (using historical measures), a graph was constructed (Fig. 2). It shows that there is a system discrete distribution of the poles in the Vorontsovskoye deposit. The systems of dikes of the north-northeast (340°–62°), south-southeast (90°–190°) and western (235°–292°) dips are distinguished. Dip angles more than 60° are characteristic for all systems. Th e fi rst two systems with similar dip azimuth values are also noted in the work of I. V. Vikentyev [4].
There are no obvious patterns in the distribution of dikes belonging to different groups by chemical composition, which may be due to a lack of data.

Data on the chemical composition of dikes are given in Table 1 (the analyses were performed in the laboratory of FHMI IGG of RAS, analyst is N. P. Gorbunov). Petrographic studies showed that all dikes were altered to some extent by the imposed metamorphic and metasomatic processes. The following Table 1 excludes full metasomatites, intensely sulfidized differences and analysis with values of the indicator “P.p.p.” ≥ 7.
Table 1. The chemical composition of dikes of the Vorontsovskoye gold-ore deposit.
Таблица 1. Химический состав даек Воронцовского месторождения.

Sl. No.	Sample, No.	1	2	3	4	5	6	7	8	9
		SiO₂	TiO₂	Al₂O₃	Fe₂O₃	FeO	MnO	MgO	CaO	Na₂O
1-20	4/17	50.31	0.74	16.09	4.33	6.8	0.13	6.62	7.71	2.25
	6/17	46.88	0.75	16.44	7.18	5.6	0.20	7.35	6.54	2.95
	7/17	50.84	0.99	16.07	5.33	5.3	0.16	6.08	5.57	3.11
	10/17	54.53	0.64	16.06	4.77	4.3	0.14	4.99	8.69	2.47
	11/17	49.63	0.61	15.30	5.30	6.0	0.32	6.08	9.40	2.76
	14/17	53.60	0.66	18.50	3.88	4.9	0.16	6.08	10.16	3.05
	17/17	51.50	0.54	18.15	3.72	2.8	0.20	4.25	9.78	3.87
	21-1/17	49.45	0.64	18.41	5.45	3.9	0.25	4.25	10.59	2.87
	21-2/17									
	25/17									
Percentage of other impurities	3.6	4.8	5.6	2.8	5.0	1.3	3.4	2.1	3.2	
Amount	99.77	99.70	99.74	99.76	99.69	99.79	100.02	99.73		

Sl. No.	Sample, No.	1	2	3	4	5	6	7	8	9
		SiO₂	TiO₂	Al₂O₃	Fe₂O₃	FeO	MnO	MgO	CaO	Na₂O
21–27	26/17	50.31	0.74	16.09	4.33	6.8	0.13	6.62	7.71	2.25
	26-1/17	46.88	0.75	16.44	7.18	5.6	0.20	7.35	6.54	2.95
	28/17	50.84	0.99	16.07	5.33	5.3	0.16	6.08	5.57	3.11
	29-2/17	54.53	0.64	16.06	4.77	4.3	0.14	4.99	8.69	2.47
	30/17	49.63	0.61	15.30	5.30	6.0	0.32	6.08	9.40	2.76
	31/17	53.60	0.66	15.30	3.88	4.9	0.16	4.25	9.78	3.87
	32/17	51.50	0.54	18.50	3.72	2.8	0.20	4.25	10.59	2.87
	33/17	49.45	0.64	18.15	5.45	3.9	0.25	4.25	10.59	2.87
Percentage of other impurities	3.6	4.8	5.6	2.8	5.0	1.3	3.4	2.1	3.2	
Amount	99.98	99.70	99.74	99.76	99.69	99.79	100.02	99.73		

Note: No. 1–20 samples of 2017, No. 21–27 samples of 2009.
In the classification TAS-diagram (Fig. 3), the dikes of the Vorontsovskoye deposit fall mainly in the area of the main rocks, and only some of them – in the area of the middle rocks. It is noteworthy that there are not only quartz diorites among the dikes but also diorites typical of the area as a whole. In addition, the presence of two trends – normal alkalinity condition and hyperalkalinity – is clearly visible, and in the latter, there are dikes corresponding in composition to ultrabasic formations – picrobasalts.

According to the petrographic characteristics, several main types of dikes are distinguished (the corresponding numbers are given in parentheses for Table 1):

1. Porphyric pyroxene-plagioclase dikes (from essentially pyroxene to essentially plagioclase ones) of basalt, less often andesibasalt composition (Nos. 1, 2, 3, 5, 7, 8, 13, 19, 20).
2. Dolerites, incl. porphyritic ones (Nos. 4, 28).
3. Porphyritic amphibole-plagioclase dikes (± pyroxene) of predominantly andesitic composition (6, 16, 23, 29).
4. Gabбро, gabbro-dolerity, incl. alkaliitized (Nos. 9, 14, 15).
5. Gabbrodiorite-diorite (Nos. 12, 26).
6. Lamprophyre of spessartite type (Nos. 18, 25) and kersantite (No. 27).

It should be noted that moderate alkaline and alkaliitized differences (with the exception of lamprophyres and relatively coarse-grained gabbroids) are quite difficult to identify in conventional petrographic studies; and the presence of potassium feldspar is mainly determined by using more detailed physical methods of research – a scanning electron microscope (SEM). Micrographs of individual species of dikes are shown in Fig. 4, 5.

The relationship of dikes of different composition within the field is still unclear, although there are separate observations, for example, a distinct intersection (pyroxene) - plagioclase porphyry dikes of the average composition of the dike of corniferous lamprophyre of the spessartite type (Fig. 5).

According to the results of studies of polished thin sections carried out using the JSM-6390LV scanning electron microscope (JEOL) with the IncaEnergy-450 energy-dispersive spectrometer and the CamecaSX100 electron probe microanalyzer, the composition was specified of disseminated minerals in the most common porphyritic dikes – pyroxene-plagioclase of basic composition and amphibole-plagioclase of medium composition (studies were conducted on previously selected samples). It is determined that plagioclase of disseminated minerals in dikes of both types is represented by labradorite with small differences in the content of the anorthite minal. The compositions of pyroxene correspond to augite, and amphibole – hornblende (Table 2).
Figure 4. Photos of thin sections of individual types of dikes of the Vorontsovskoye deposit (on the left hand side – without an analyzer, on the right-hand side – in crossed Nicol). Ruler – 500 microns. a, b – Px–Pl-porphyry dike of basic composition, sample 4/17 (No. 1); c, d – (Px)–Pl-porphyry dike of andesite-andesite-basalt composition, sample 6/17 (No. 2); e, f – porphyric gabbro-monzogabbro, sample 25/17 (No 9); g, h – porphyric gabbro-diorite, sample 28/17 (No. 12).

Рисунок 4. Фотографии шлифов отдельных типов даек Воронцовского месторождения (слева – без анализатора, справа – в скрещенных николях). a, b – Px–Пл-порфировая дайка основного состава, обр. 4/17 (№ 1); c, d – (Px)–Пл-порфировая дайка андезит-андезибазальтового состава, обр. 6/17 (№ 2); e, f – габбро-монцогаббро порфировидное, обр. 25/17 (№ 9); g, h – габбро-диорит порфировидный, обр. 28/17 (№ 12).

22 Азовская О.Б. и др. Petrochemical features of the dike complex of the Vorontsovskoye gold-ore deposit (Northern Urals) // Известия УГГУ. 2019. Вып. 1(53). С. 18-27. DOI 10.21440/2307-2091-2019-1-18-27
Table 2. The chemical composition of disseminated minerals in the main dikes of the Vorontsovskoye deposit according to microprobe studies.

SiO₂	TiO₂	Al₂O₃	FeO	MnO	MgO	CaO	Na₂O	K₂O	Sample
51.22	0.03	29.29	0.92	0.01	0.13	13.57	3.9	0.36	4 Вор-91-5а
51.68	0.04	29.11	0.82	0.01	0.11	13.22	4.10	0.34	5 Вор-91-5б
52.35	0.04	29.25	0.76	0.01	0.14	11.88	4.13	0.77	7 Вор-103-2

Note: N is the number of identifications; values are italicized < 2σ. CamecaMX 100 microprobe analyzer, the Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences, the analyst is D. S. Zamyatin.

Figure 5. An example of the relationship of dikes of different composition. a – suppression of (Px)–Pl-porphyritic dyke of andesite-andesibasalt composition (1) with a dike of spessartite (2); bc – general view in thin section (Px)–Pl-porphyry dike, without analyzer (b) and in crossed nicol (c), sample 34-4-1/17 (№ 17); d, e – general view in thin section of spessartite dikes, without analyzer (d) and in crossed nicol (e), sample 34-2/17 (№ 18).
In addition, in the detailed studies of polished thin sections in dikes similar in composition (samples 4/17, 6/17), occurrences of quartz-kalifeldspar metasomatism were found. They are small plots and irregularly shaped patches composed by the chloride-quartz-potassium feldspar-pyrite association (Fig. 6, b). Titanite (sphene) usually occurs, and galenite is sometimes intruded in pyrite. Potassium feldspar is characterized by the admixture of a small amount of barium (Ba, 0.32–0.53% w.). In the same thin sections, potassium and sodium-potassium feldspar were observed in the form of uneven discontinuous margins (with intimate intergrowth) at the edges of disseminated plagioclase (Fig. 6, a) and, in some cases, in the form of patches (antiperthites?) in the inner parts of large disseminated minerals. It can be assumed that this potassium feldspar is “petrean” or that associated with some previous process of kalifeldsparization.

In the process of exploratory development in 2009–2010, occurrences of intense kalifeldsparization in tuff siltstones were identified at the Vorontsovskoye deposit within one of the ore blocks opened by the existing open-cut mining [6]. Optically, these kalifeldsparitized sites did not stand out and were detected by abnormally high potassium levels (up to 7–10% of weight according to ICP-MS). Potassium feldspar in metasomatites is represented by a fine-grained aggregate (20–50 µm, rarely up to 200 µm) in association with quartz. According to the results of microprobe determinations and X-ray diffraction analysis of rocks, it can be assumed that these are orthoclase and/or sanidine. It should also be noted that earlier V. N. Sazonov with his coauthors [3] identified propylitized rocks in the area of the deposit with ice spar replacing plagioclase.

Discussion of results and conclusions

The importance of dikes in the formation of the Vorontsovskoye gold-ore deposit remains debated. Typically, the “dense” dike ore fold is observed only within the deposit, which confirms the important role of dikes as a factor of structural control [4]. The dike complexes of most Carlin-type deposits of the state of Nevada (USA) [4, 7, 8–10] and separate objects within the territory of ore fold is observed only within the deposit, which confirms the important role of dikes as a factor of structural control [4]. The same thin sections, potassium and sodium-potassium feldspar were observed in the form of uneven discontinuous margins (with intimate intergrowth) at the edges of disseminated plagioclase (Fig. 6, a) and, in some cases, in the form of patches (antiperthites?) in the inner parts of large disseminated minerals. It can be assumed that this potassium feldspar is “petrean” or that associated with some previous process of kalifeldsparization.

In the process of exploratory development in 2009–2010, occurrences of intense kalifeldsparization in tuff siltstones were identified at the Vorontsovskoye deposit within one of the ore blocks opened by the existing open-cut mining [6]. Optically, these kalifeldsparitized sites did not stand out and were detected by abnormally high potassium levels (up to 7–10% of weight according to ICP-MS). Potassium feldspar in metasomatites is represented by a fine-grained aggregate (20–50 µm, rarely up to 200 µm) in association with quartz. According to the results of microprobe determinations and X-ray diffraction analysis of rocks, it can be assumed that these are orthoclase and/or sanidine. It should also be noted that earlier V. N. Sazonov with his coauthors [3] identified propylitized rocks in the area of the deposit with ice spar replacing plagioclase.

The role of dikes as a magmatic factor is more difficult. In the eastern part of Nevada, where a large number of deposits of this type are found, four cases of magmatic activity are noted; one of them (magmatism of the Eocene period) is considered to be important in the formation of ore mineralization [4, 7, 10]. As for the Vorontsovskoye deposit is concerned, most researchers assume some kind of connection of gold mineralization with magmatic and post-magmatic processes, but there is no certainty in this matter. In this regard, an important result is the identification of occurrences of kalifeldspar (quartz-kalifeldspar) metasomatism, which is presumably associated with dikes of increased alkalinity and may play a role in the formation of gold-ore mineralization. These dike complexes are much more likely to the Auerbah complex, the 2nd and 3rd phases of which have a sub-alkaline and high-potassium specialization (The tale of the Urals series..., A. V. Zhdanov, 2009). At the same time, occurrences of kalifeldspar metasomatism may lend credence to assumptions of O. V. Minina [14], A. I. Grabezhev [15] and some other researchers concerning the possible belonging of gold-ore mineralization to the upper and/or peripheral parts of a large porphyry system.

Acknowledgements

This work was performed within the framework of the state order of the Zavaritsky Institute of Geology and Geochemistry of the Ural Branch of the Russian Academy of Sciences (State registration No AAAA-A18-118052590030-2).
6. Rovnushkin M. Yu., Gulyaeva, T. Ya., Galakhova O. L. 2010, Occurrence of kalifeldspath metasomatism within the Vorontsovskoye gold-ore deposit. Ezhegodnik-2010 [Yearbook-2010], vol.157, pp. 241–244. (In Russ.)
7. Cline J. S., Hofstra F. F. 2000, Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA. European Journal of Mineralogy, vol.12, no. 1, pp. 195–212. https://dx.doi.org/10.1127/ejm/12/1/0195
8. Cline J. S., Hofstra F. F., Muntean J. L. et al. 2005, Carlin-type gold deposits in Nevada: critical geologic characteristics and viable models. Economic Geology. 100th Anniversary volume, pp. 451–484. URL: https://pyrite.utah.edu/fieldtrips/SEGFnevada2007/Readings/General_CTD/Cline2005.pdf
9. Ressel M. W., Henry C. D. 2006, Igneous geology of the Carlin Trend, Nevada: development of the eocene plutonic complex and significance for Carlin-type gold deposits. Economic Geology, vol.101, no. 2, pp. 347–383. https://doi.org/10.2113/econgeo.105.5.971
10. Almeida C. M., Olivo G. R., Chouinard A., Weakly Ch., Poirier G. 2010, Mineral Paragenesis, alteration, and geochemistry of the two types of gold ore and the host rocks from the Carlin-type deposits in the southern part of the Goldstrike Property, Northern Nevada: implications for sources of ore-forming elements, ore genesis, and mineral exploration. Economic Geology, vol.105, pp. 971–1004.
11. Liu J., Dai H., Zhai D., Wang J., Wang Y, Yang L., Mao G. et al. 2015, Geological and geochemical characteristics and formation mechanism of the Zhaishang Carlin-like type gold deposit, western Qining Mountains, China. Ore Geology Reviews, vol. 64. https://doi.org/10.1016/j.oregeo-rev.2014.07.016
12. Wang L., Zhu Y. 2015, Multi-stage pyrite and hydrothermal mineral assemblage of the Hatugold district (west Junggar, Xinjiang, NW China): Implications formetalogenic evolution. Ore Geology Reviews, vol. 69, pp. 243–267. https://dx.doi.org/10.1016/j.oregeo-rev.2015.02.021
13. Zhu J.-J., Hu R.-Zh., Richards J. P., Bi X.-W., Stem R., Lu G. 2017, No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang basin, Southwest China. Ore Geology Reviews, vol. 84, pp. 328–337. https://dx.doi.org/10.1016/j.oregeo-rev.2017.01.014
14. Minina O. V. 1994, Auerbah complex ore-magmatic system in the Middle Urals. Otechestvennaya geologiya [Russian Geology], No. 7, pp. 17–23. (In Russ.)
15. Grabezhev A. I., Ronkin Yu. L., Puchkov V. N., Gerdes A., Rovnushkin M. Yu. 2014, Krasnoturyinsk copper-scarn ore field (Northern Urals): U-Pb age of ore-controlling diorites and their place in the metallogeny of the region. Doklady Akademii nauk [Doklady Earth Sciences], vol. 456, no. 4, pp. 443–447. (In Russ.) https://doi.org/10.7868/S0869565214160191

The article was received on December 18, 2018
Петрохимические особенности дайкового комплекса Воронцовского золоторудного месторождения (Северный Урал)

Оксана Борисовна АЗОВСКОВА, Михаил Юрьевич РОВНУШКИН, Елена Индуствровна СОРОКА

Институт геологии и геохимии им. А. Н. Заварицкого УрО РАН, Екатеринбург, Россия

Актуальность работы. Воронцовское месторождение представляет собой уникальный пример месторождения золота карлинского типа на Урале // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.

Цель работы. Изучение состава и петрохимических особенностей дайкового комплекса Воронцовского месторождения как одного из возможных факторов формирования золоторудного оруденения.

Методы исследования. Проведены замеры элементов замещения дайков в пределах действующего карьеры с вынесением результатов на анизотропную сетку. Выполнен статистический анализ образцов дайков, использование также имеющихся данных прошлых лет.Петрограfi ческое изучение дайков сопровождалось исследованием образцов при помощи сканирующего электронного микроскопа [5630LV (EOL)] с ЭДС-спектрометром IncaEnergy 450 и электронно-зондового микроанализатора Cameca SX100.

Результаты работы. На первом этапе исследований уточнена структурная позиция дайков, проведено обобщение результатов петрограfi ческих, петрохимических работ и данных, полученных на микроанализаторах. Установлено значительное преобладание основных дайков при вариациях составов от пирокластического до габброидного (андезибазальты). Выявлены специфические дайки с повышенной и высокой шелочностью (в том числе амфиболовые) с составами от умеренно-шелочных и шелочного пирокластического до мафических и амфиболовых метасоматов. В дайках нормального ряда зафиксированы проявления калишпатового метасоматоза с минеральной ассоциацией хлорит-кварц-КПШ-пирит (± галенит). Ранее участки калишпатизации наблюдались во вмещающих туфоалевролитах.

Вывoды. Наличие дайкового штокверка можно рассматривать как положительный структурный фактор в образовании месторождения. Его роль как магматического фактора неясна, однако можно предположить, что проявления калишпатизации генетически связаны с дайками повышенной шелочности.

Ключевые слова: Северный Урал, Воронцовское золоторудное месторождение, дайки, петрохимия, калишпатовый метасоматоз, карлинский тип.

Работа выполнена в рамках темы государственного задания ИГТ УрО РАН (гос. регистрация №АААА-A18-118052590030-2).

ЛИТЕРАТУРА

1. Сазонов В. Н., Мурзин В. В., Григорьев Н. А. Воронцовское золоторудное месторождение – пример минерализации карлинского типа на Урале // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.
2. Мурзин В. В., Наумов Е. А., Азовскова О. Б., Варавлов Д. А., Ровнушкин М. Ю., Пиражно Ф. // The Vorontsovskoe Au–Hg–As ore deposit (Northern Urals, Russia): Geological setting, ore mineralogy, geochemistry, geochronology and genetic model // Ore Geology Reviews. 2017. Vol. 85. Р. 271–298. https://dx.doi.org/10.1016/j.oregeorev.2016.10.037
3. Вякентьев И. В., Тюкова Е. Э., Мурзин В. В. и др. // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.
4. Сазонов В. Н., Мурзин В. В., Григорьев Н. А., Гладковский Б. А. Эндогенное оруденение девонского андезитоидного вулкано-плутонического комплекса (Урал) // Ежегодник-2010: труды ИГГ УрО РАН. 2011. Вып. 158. С. 187–190.
5. Нечкин Г. С., Ровнушкин М. Ю. // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.
6. Ровнушкин М. Ю., Гуляева Т. Я., Гапахова О. Л. // Геология рудных месторождений. 1998. Т. 40, № 2. С. 157–170.
7. Клине Дж. С., Хофстрай Ф. Ф. // The Getchell Carlin-type gold deposit, Nevada, USA // European Journal of Mineralogy. 2000. Vol. 12, № 1. Р. 195–212. https://dx.doi.org/10.1127/ejm/12/1/0195
8. Клине Дж. С., Хофстрай Ф. Ф., Мунген Дж. Л. и др. // Economic Geology. 2005. 100th Anniversary Volume, № 3. Р. 451–484. URL: https://pyrite.uta.edu/fieldtrips/SEGNEvada2007/Readings/General_CTD/ Cline2005.pdf
9. Рассел Р. М., Генри С. Д. // Economic Geology. 2006. Vol. 101, № 2. Р. 347–383. https://dx.doi.org/10.2113/gsecongeo.101.2.347
10. Альмейда С. М., Олив Г. Р., Шуинард Э., Вейклик Ч., Поирье Г. // Mineral Paragenesis, alteration, and geochemistry of the two types of gold ore and the host rocks from the Carlin-type deposits in the southern part of the Goldstrike Property, Northern Nevada: implications for sources of ore-forming elements, ore genesis, and mineral exploration // Economic Geology. 2010. Vol. 105, № 5. Р. 971–1004. https://doi.org/10.2113/econgeo.105.5.971
11. Лью Д., Дай Г., Чжоу Д., Чен Г., Линг Г., Мао Г. и др. // Economic Geology. 2015. Vol. 64. Р. 273–298. https://doi.org/10.2113/eoregeov.2014.07.016
12. Дуглас Л., Чжоу М. // Economic Geology. 2015. Vol. 64. Р. 273–298. https://doi.org/10.2113/eoregeov.2015.02.021
13. Zhu J.-J., Hu R.-Zh., Richards J. P., Bi X.-W., Stern R., Lu G. No genetic link between Late Cretaceous felsic dikes and Carlin-type Au deposits in the Youjiang basin, Southwest China // Ore Geology Reviews. 2017. Vol. 84. P. 328–337. https://dx.doi.org/10.1016/j.oregeorev.2017.01.014
14. Минина О. В. Ауэрбаховская комплексная рудно-магматическая система на Среднем Урале // Отечественная геология. 1994. № 7. С. 17–23.
15. Грабежев А. И., Ронкин Ю. Л., Пучков В. Н., Гердес А., Ровнушкин М. Ю. Краснотурьинское медно-скарновое рудное поле (Северный Урал): U–Pb возраст рудоконтролирующих диоритов и их место в схеме металлологии региона // ДАН. 2014. Т. 456, № 4. С. 443–447.

Статья поступила в редакцию 18 декабря 2018 г.