Epidermal Growth Factor Receptor-mediated Cell Motility: Phospholipase C Activity Is Required, but Mitogen-activated Protein Kinase Activity Is Not Sufficient for Induced Cell Movement

Philip Chen, Heng Xie, M. Chandra Sekar, Kiran Gupta, and Alan Wells*

Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama 35294; and *Pathology and Laboratory Medicine Service, Birmingham Veterans Administration Medical Center, Birmingham, Alabama 35294

Abstract. We recently have demonstrated that EGF receptor (EGFR)-induced cell motility requires receptor kinase activity and autophosphorylation (P. Chen, K. Gupta, and A. Wells. 1994. J. Cell Biol. 124:547–555). This suggests that the immediate downstream effector molecule contains a src homology-2 domain. Phospholipase Cγ (PLCγ) is among the candidate transducers of this signal because of its potential roles in modulating cytoskeletal dynamics. We utilized signaling-restricted EGFR mutants expressed in receptor devoid NR6 cells to determine if PLC activation is necessary for EGFR-mediated cell movement.

Exposure to EGF (25 nM) augmented PLC activity in all five EGFR mutant cell lines which also responded by increased cell movement. Basal phosphoinositide turnover was not affected by EGF in the lines which do not present the enhanced motility response. The correlation between EGFR-mediated cell motility and PLC activity suggested, but did not prove, a causal link. A specific inhibitor of PLC, U73122 (1 μM) diminished both the EGF-induced motility and PLC responses, while its inactive analogue U73343 had no effect on these responses. Both the PLC and motility responses were decreased by expression of a dominant-negative PLCγ-I fragment in EGF-responsive infectant lines. Lastly, anti-sense oligonucleotides (20 μM) to PLCγ-I reduced both responses in NR6 cells expressing wild-type EGFR. These findings strongly support PLCγ as the immediate post receptor effector in this motogenic pathway.

We have demonstrated previously that EGFR-mediated cell motility and mitogenic signaling pathways are separable. The point of divergence is undefined. All kinase-active EGFR mutants induced the mitogenic response while only those which are autophosphorylated induced PLC activity. U73122 did not affect EGF-induced thymidine incorporation in these motility-responsive infectant cell lines. In addition, the dominant-negative PLCγ-I fragment did not diminish EGF-induced thymidine incorporation. All kinase active EGFR stimulated mitogen-activated protein (MAP) kinase activity, regardless of whether the receptors induced cell movement; this EGF-induced MAP kinase activity was not affected by U73122 at concentrations that depressed the motility response. Thus, the signaling pathways which lead to motility and cell proliferation diverge at the immediate post-receptor stage, and we suggest that this is accomplished by differential activation of effector molecules.

Cell movement is essential for numerous normal biological and physiological events such as wound healing, fetal development, bone remodeling, angiogenesis, and the inflammatory response. Aberrant cell movement, on the other hand, contributes to the pathogenesis of many diseases, such as atherosclerosis and tumor invasion and metastasis. Cell movement is modulated by signals from extracellular environment. However, the intracellular signal transduction pathways that lead to this biological response are not fully delineated.

The epidermal growth factor receptor (EGFR), upon ligand stimulation, elicits augmented cell movement (4, 6, 11). This cellular response is separable from EGF-induced mitogenesis (11). Our previous study demonstrated that EGF-induced cell movement depends on functional tyrosine kinase activity and the presence of at least one autophosphorylated EGFR mutant. This suggests that PLCγ may play a role in mediating the motogenic signal. In this study, we investigated the role of PLCγ in EGFR-mediated cell movement using signaling-restricted EGFR mutants expressed in receptor-devoid NR6 cells.
Phosphorylatable tyrosine within the carboxy-terminal regulatory region of the EGFR. Phospho-tyrosine motifs interact with src homology 2 (SH2) domains in effector molecules activating these second messengers (9, 30); these SH2 domain interactions with phosphotyrosines display varying degrees of specificity according to the amino acids surrounding the tyrosine (18, 26, 29, 36, 42, 43, 55). Multiple EGFR phospho-tyrosine motifs are capable of signaling cell movement, suggesting either a promiscuity in the interactions with SH2 domains or parallel intracellular pathways leading to cell movement (11). Thus, the search for the immediate downstream molecules that mediates the motility response has been pointed toward SH2 domain containing signal transducers.

Phospholipase Cγ (PLCγ) is activated by the EGFR tyrosine kinase after physical associating with the receptor via its SH2 domains (27). PLCγ activity and subsequent effector molecules can be linked to the motogenic machinery. PLCγ is capable of associating via its SH3 domain with actin filaments (3). PLCγ hydrolyzes PIP2 to produce IP3 and DAG. This hydrolysis releases profilin and gelsolin, actin-sequestering and -severing proteins (2, 19). IP3 mobilizes intracellular calcium which also has been shown to modulate actin assembly (44). These findings provide a theoretic framework for the participation of PLCγ in the pathway leading to cell motility. Recent studies have demonstrated that PLCγ activity is required for chemotactic transmigration of cells through a collagen gel in response to PDGF-BB (8, 25). However, the cell property elicited by PLCγ activation (i.e., cell movement, enhanced gel proteolysis, etc.) is undefined.

In this study, we utilize the EGFR-devoid NR6 fibroblast cell line (33) to investigate the link between EGFR-induced cell movement and PLCγ activity. Various EGFR mutants were expressed in this cell background to avoid signaling from native EGFR (20, 52). The EGFR constructs varied in their ability to elicit a motogenic response upon activation (11). EGF-induction of PLCγ activity and cell movement correlated closely. A pharmacological agent which specifically inhibits PLC activity abrogated induced cell movement, but had no effect on EGFR-mediated mitogenesis. Molecular inhibition of PLCγ activity by antisense oligonucleotides or a dominant-negative fragment (23) also diminished the motility response. Lastly, in an attempt to map further downstream intermediaries, activation of mitogen-activated protein (MAP) kinase was found not to be sufficient to induce cell movement.

Materials and Methods

Generation of NR6 Cells Expressing EGFR Constructs

The construction of the EGFR and stable expression in NR6 cells were by standard methods, and have been described previously (11, 52). Briefly, wild-type (WT) EGFR is a full-length cDNA (46) derived from a placental cDNA library (53). The kinase-inactive counterpart in which methionine replaces lysine in the ATP-binding pocket (13), c958f, c991, and c1000 represent EGFR in which stop codons are introduced just distal to the amino acid number indicated. c1000f was created from c1000 by replacing the sole remaining autophosphorylation site at Y1062 with a phenylalanine (P992) (10). The fusion mutants c958f, c991, and c958f1062-1063 link a minimal kinase-active EGFR (50) to the phosphotyrosine motifs around Y995 and Y1164, respectively. c180f3 represents a full-length EGF in which the three major autophosphorylation sites Y1173, Y1184, and Y1068 (17) have been negated by phenylalanine replacement. The EGFR are shown schematically in Table I.

The constructs were expressed on NR6 cells, 3T3-derivatives which lack endogenous receptors (33). This was accomplished by retroviral-mediated transduction as previously described (51). Polyclonal lines were established by selection in G418 (GIBCO BRL, Gaithersburg, MD). The transfected cell lines presented high, but physiologic levels of receptors (50,000-250,000 EGF-binding sites per cell) with similar dissociation constants (Kd were 0.2-0.7 nM); different EGFR levels within this range do not affect ligand-induced cell motility (11). All of the EGFR possessed kinase activity, except for M72; the cells which presented the kinase-active EGFR all demonstrated a mitogenic response to EGF.

Cell Motility Assay

EGF-induced migration was assessed by the ability of the cells to move into an acellular area as previously described (11, 14). Briefly, NR6 cells were plated on plastic and grown to confluence in MEMα with 7.5% FBS. After 24 h of incubation in media with 1% dialyzed FBS, an area was denuded by a rubber policeman at the center of the plate. The cells were then treated with or without 25 nM EGF and incubated at 37°C. Photographs were taken at 0 and 24 h and the relative distance traveled by the cells at the acellular front was determined. The EGF-induced migration was calculated as a percent of basal motility observed in the non-EGF-treated cells tested in parallel at each time point. Mitomycin-C (0.5 μg/ml) was present throughout the motility assays to avoid interference from the mitogenic response.

PLC Activity Assays

PLC activity was monitored by a functional assay in which the production of inositol phosphate species (IP) was measured (38, 39). NR6 cells expressing mutant EGFR receptors were grown to ~90% confluence, under the same conditions used in motility assays. Cells were labeled in serum free media containing 5 μCi/ml [3H]myo-inositol for 12-14 h, after which the cells were washed twice with PBS to remove unincorporated label. LiCl (10 mM) was introduced to inhibit IP3 hydrolysis by inositol phosphatases. After 15 min of LiCl incubation, saturation level of EGF (25 nM) was added and the incubation continued for another 30 min. The reaction was terminated by removing the media and adding boiling water to the cells. Cell lysates were collected and boiled for 5 min. The lysates were briefly centrifuged to remove particulate material, and the soluble cytosolic fraction retained for analysis.

Inositol-1,4,5-trisphosphate (IP3) mobilizes intracellular calcium which also has been shown to modulate the protein content in the lysate determined by Bradford Protein Assay (Bio Rad Labs., Hercules, CA). The EGFR-elicited PLC activity was expressed as percent of non-EGF-treated basal IP production to account for variations in labeling.

A complete profile of the individual inositol phosphate species was generated by HPLC separation to confirm the anion-exchange chromatography (38). Split samples from the cell lysate were injected into a Partisil 10 SAX anion-exchange analytical column (0.45 x 25 cm). Inositol was eluted with water and IP with 100 mM ammonium formate and 100 mM formic acid. The IP content was quantitated by scintillation counting and normalized against the protein content in the lysate determined by Bradford Protein Assay. (Bio Rad Labs., Hercules, CA). The EGF-elicited PLC activity was expressed as percent of non-EGF-treated basal IP production to account for variations in labeling.

The flow rate was set at 1.2 ml/min and 1-min fractions were collected. PLC activity responsiveness after prolonged EGF treatment was determined after 12 h of continuous exposure of cells to EGF. After 12 h of incubation, 10 mM LiCl was added. After an additional 30-min incubation, cells were lysed and lysates were analyzed as described above.

Thymidine Incorporation Assay

EFG-induced mitogenesis was assessed by the incorporation of [3H]thymidine in the target cells. Cells were plated on plastic and grown to confluence in MEMα with 7.5% FBS. The cells were then switched to media containing 1% dialyzed FBS for 24 h. The cells were subsequently treated with or without EGF (25 nM) and incubated at 37°C for 16 h. [3H]thymidine (5 μCi/ml) was added and incubation continued for another 10 h. The cells were then washed with ice-cold PBS twice and incubated in 5% trichloroacetic acid at 4°C for 30 min. After two washes with PBS the cells were lysed in 0.2 N NaOH and the incorporated [3H]thymidine counted by scintillation counter.
Pharmacological PLC Inhibitors

The pharmacological agents, U73122 (1-[6-((17b-3-methoxy-1,3,5(10)-
trien-17-y)amino)hexyl)1H-pyrrole-2,5-dione) and its inactive congener, U73343 (1-[6-((17b-3-methoxy-1,3,5(10)-trien-17-y)amino)hexyl]-2,5-
pyrrolidine-dione), were added to the cells to inhibit PLC activity (7, 41).

Cloning and Expression of Dominant-negative PLCy-1 in NR6 Cells

A dominant-negative PLCy-1 gene fragment (designated as PLCz) which encodes the Z region SH2 and SH3 domains (amino acids 517-903) of this enzyme (23) was cloned from a human placenta cDNA library by standard PCR techniques. The oligonucleotide primers used were: 5' sense CTCTCAGAATTCTACATGCTGATGGAGAAGACGAAG; 3' anti-sense stop 905: GGCGAGCTCCATACGTGAGGAAAGAGCAGAAG. These primers have XbaI and HindIII sites to allow subsequent cloning into the pXf vector for expression. Cloning placed the PLCz fragment under the control of a SV40 early promoter present in the pXf vector (12). The pXf vector contains a DHFR gene transcribed from a second SV40 early promoter.

The pXf/PLCz expression vector was transfected into selected NR6 in
ductant cell lines (c1000, c1086F3, and c991) using the lipofectin reagent (GIBCO BRL). Cells were selected in 400 mM methotrexate. Stable expression of PLCz in these cell lines was demonstrated by western blotting with mixed monoclonal anti-PLCy-1 antibodies (UBI; 05-163). The PLCz expressing cell lines were tested for PLC activity, cell movement, and thymidin incorporation as described above.

Anti-sense PLCy-1 Oligonucleotides

Anti-sense PLCy oligonucleotides were employed to down-regulate PLCy expression. Oligonucleotide A1 (GGGGGTCCCGACGCCCGCCAT) was a 21-mer anti-sense to the sequence encoding the first seven amino acids in the rat PLCy sequence. Al-thio was the same sequence with the first and second bases changed (GGGGGTCCCGACGCCCGCCAT) to alter the specificity of any effects. The oligonucleotides were dissolved in medium containing serum proteins to com-

MAP Kinase Assay

MAP kinase was measured as the rate of phosphorylation of the MAP kinase-specific substrate myelin basic protein (MBP) by cell extract as described previously (35). Briefly, cell plasma membranes were isolated, and the MAP kinase activity was measured as the increase of MBP phosphorylation over time. The MAP kinase activity was determined as the increase in MBP phosphorylation over time. The MAP kinase activation was demonstrated by comparing the MAP kinase activity of EGF-treated treated cells to non-EGF-treated cells; the EGF-induced MAP kinase activity was calculated and expressed as the percent of activity seen in non-EGF-treated cells. The effects of U73122 on EGF-induced MAP kinase activity was assessed. 1 M of U73122 was introduced to the cells 15 min before the addition of EGF and the EGF-induced MAP kinase activity was evaluated as above.

Results

EGF Induces PLC Activity Only in Cell Lines which Demonstrate EGF-enhanced Movement

Previously, we demonstrated that EGF augments cell movement only in NR6 cells that express EGFR constructs which contain at least one autophosphorylatable tyrosine (11). Cell movement was determined by the ability of cells to move into a denuded area on a culture dish. To standardize the assays, the EGF-induced movement after 24 h of EGF exposure was calculated as a percent of basal motility observed in non-EGF-treated cells tested in parallel. NR6 cells expressing EGFR constructs which undergo autophosphorylation (WT, c1000, c958[488-996], c958[146-154]) demonstrated enhanced movement in the presence of saturating concentrations of EGF (25 nM) (Table I); this is in agreement with our earlier report (11). An additional mutant c1186F3, a full-length receptor with the three major autophosphorylatable tyrosines (Y1173, Y1184 and Y1068) replaced by phenylala-

Chen et al. PLoS in EGFR-mediated Motility 849

nines, was tested for EGF-induced motility. As would be predicted (11, 43), this construct underwent autophosphorylation upon EGF stimulation, presumably at the remaining two minor phospho-tyrosine motifs (centered on Y992 and Y1068 [43, 50]). The NR6 cells expressing this EGFR construct also demonstrated augmented cell movement in the presence of EGF. The parental NR6 cells, devoid of endoge-

These findings suggested that activation of the immediate downstream effectors molecule in the signaling pathway leading to enhanced cell movement involved SH2 domain inter-

actions. EGFR must be autophosphorylated to be able to activate PLCy (35, 48), a signaling molecule which has been implicated in altering cell motility (8, 19, 25). Therefore, we tested the various NR6 cell lines for EGF-induced PLC activity (Table I). PLC activity was assessed by the generation of [3H]inositol phosphates in cells metabolically labeled with [3H]myo-inositol. PLCy upon activation hydrolyzes PIP2 to generate IP3 and DAG; IP3 is rapidly converted to IP by either direct stepwise dephosphorylation or following
Table I. EGF-induced PLCγ Activity and Cell Migration in NR6 Cells Expressing EGFR Constructs

Construct	Schematic of EGFR receptor	Phosphotyrosyl† Migration‡ PLC activity§		
Parental	No EGF Receptor	NA	101 ± 4	97 ± 2
WT		+ + +	225 ± 41	337 ± 74
M721		–	99 ± 11	91 ± 5
c1000		+	170 ± 11	335 ± 55
c1000F902		–	121 ± 14	121 ± 4
c991		–	105 ± 18	110 ± 10
c973		–	114 ± 4	101 ± 11
c1186F3		+	207 ± 11	383 ± 109
c9581F908-906		+	177 ± 25	240 ± 75
c958f1146-1154		+	172 ± 23	259 ± 81

- Extracellular ligand-binding domain
- Transmembrane domain
- Tyrosine kinase domain
- Carboxy-terminal regulatory domain
- Domain around autophosphorylatable tyrosine Y902
- Domain around autophosphorylatable tyrosine Y1064
- Domain around autophosphorylatable tyrosine Y1148
- Domain around autophosphorylatable tyrosine Y1173

M721, lysine replaced by methionine in the ATP-binding pocket of the tyrosine kinase domain.
F, phenylalanine replacing the autophosphorylated tyrosines at the indicated sites.

* EGF-induced migration after 24 h of exposure to 25 nM EGF, expressed as percentage of non-EGF-treated cells, mean ± SEM, n = 3 to 7.
† EGF-induced migration after 24 h of exposure to 25 nM EGF, expressed as percentage of non-EGF-treated cells, mean ± SEM, n = 3 to 7.
§ PLC activation by EGF is demonstrable even after 12 hours of exposure.

NR6 cell movement in response to EGF is observed only after 6–12 h of exposure (11). However, PLC activity was monitored during the initial 30 min of EGF stimulation to avoid interference from inositol turnover and recycling and depletion of [PH]-labeled inositol. Furthermore, as EGF exposure stimulates phospho-inositide metabolism (Table I, Fig. 1), EGF treatment may be expected to exacerbate the depletion of labeled inositol. However, it was critical to determine if IP_3 production was increased throughout the migration assays.

EGF-augmented PLC activity was measured after 12 h of EGF stimulation (Fig. 2). After metabolic labeling of NR6 cells expressing WT EGFR, the cells were washed, incubated in media without [3H]myoinositol, and either treated or not with saturation concentrations of EGF (25 nM). After a further 12-h incubation, LiCl (10 mM) was added to prevent IP hydrolysis, and production of IP was determined. Cells which were not exposed to EGF during the 12 h after labeling incubation, demonstrated significant induction of PLC activity in response to addition of EGF; the absolute amount of label recovered in the IP fraction was reduced 15–20% in cells stimulated 12 h after labeling.
Figure 1. EGF-induced inositol phosphate production profile in NR6 cells expressing WT EGF receptor. Cells were labeled 12-14 h with \[^{3}H\]myo-inositol and then treated with or without EGF (25 nM) for 30 min in the presence of LiCl (10 mM). Cytosolic extracts were obtained and fractionated by HPLC. Fractions were collected and the \[^{3}H\]inositol phosphate contents quantified by scintillation counting. Relative amounts of individual inositol phosphate contents are reported as the actual cpm from scintillation counting. Peaks were identified by known standards run in parallel. On Dowex mini-column chromatography the species collected are GPI, cIP and IP. EGF treated (EGF) inositol phosphate production profile is depicted as solid line and no EGF treatment (no tx) as dashed line. GPI, glycerol phosphoinositol; cIP, cyclic inositol phosphate; IP, inositol monophosphate; IP3, inositol trisphosphate. This figure is of a representative analysis.

pared to cells stimulated immediately after labeling with \[^{3}H\]myoinositol. The WT-expressing NR6 cells which were exposed to EGF throughout the 12-h incubation produced \[^{3}H\]IP at nearly twice the rate of unstimulated cells. HPLC analyses revealed that IP3 was being generated at a higher rate in the EGF-exposed cells than in the non-treated cells (Fig. 2 b); the relative EGF-induction and species profile of IP3 accumulation was similar to that seen with the 30-min EGF exposure.

Pharmacologic Agents Which Inhibit PLC Activity Also Decrease EGF-induced Cell Motility

The correlation between EGF-induced PLC activity and cell motility suggested that PLC\(\gamma\) is the immediate downstream effector in the EGFR-mediated motogenic pathway. However, this correlation may represent an epiphenomenon due to promiscuity of phospho-tyrosine/SH2 domain interactions (11, 35, 42). A causal relationship between PLC\(\gamma\) and cell motility would be demonstrated if inhibition of PLC reduced cell movement.

Pharmacological agents can inhibit specific enzymes in complex biochemical pathways. U73122 has been shown to inhibit specifically PLC while its inactive analogue U73343 does not affect this enzymatic activity (7, 41). EGF-induced PLC activity and cell motility were determined in the presence of these agents (Fig. 3). In three cell lines expressing responsive EGFR constructs (WT, c1186F3, and c1000), U73122 inhibited EGF-induction of both PLC activity and cell movement; the inactive analogue, U73343, had little effect on these responses. We noted only partial inhibition of both PLC and cell motility at the doses used (1 and 2 \(\mu\)M); higher concentrations which fully blocked EGF-induction of PLC activity (>5 \(\mu\)M) resulted in cell toxicity over the 12-24 h required for the motility assays (data not shown). The effect of U73122 on basal cell movement and IP production was negligible (<15% decrease) in these cell lines.

Figure 2. EGF-induced PLC activity in NR6 cells expressing WT EGF receptors. PLC activity was measured as the production of inositol phosphates by anion-exchange chromatography (A) or HPLC separation (B). Cells were labeled 12-14 h with \[^{3}H\]myoinositol and then incubated in media without label for 12 h in the absence or presence of EGF (25 nM). Inositol phosphate production was measured for 30 min; LiCl (10 mM) was present only for 15 min before and during the 30-min measurement period. Relative amounts of inositol phosphates productions are reported as the actual cpm per \(\mu\)g protein in cytosol extract in A or cpm in B. (A) No EGF/no EGF, basal inositol phosphate production during the 30-min incubation; no EGF/EGF, acute (30 min) EGF-induced inositol phosphate production after 12 h after removal of label; EGF/EGF, inositol phosphate produced over 30-min assay period after 12 h of continuous exposure to 25 nM EGF. Mean \pm\ SEM, \(n = 3\), each experiment in triplicate; \(P < 0.01\) between no EGF/no EGF and EGF/EGF. (B) The analysis shown was performed as described in Fig. 1. EGF treated (EGF) inositol phosphate production profile is depicted as solid line and no EGF treatment (no tx) as dashed line. GPI, glycerol phosphoinositol; cIP, cyclic inositol phosphate; IP, inositol monophosphate; IP3, inositol trisphosphate. This figure is of a representative analysis.
Figure 3. Effects of the pharmacologic agents U73122 and U73343 on EGF-induced (A) PLC activity and (B) cell movement in three NR6 cell lines. NR6 cells lines expressing WT, c'1186F3, and c'1000 EGFR all demonstrated EGF-induced PLC activity and cell motility responses. Cells were treated with EGF (25 nM) in the presence or absence of U73122 or U73343 (1 μM) during the assay periods (30 min for PLC activity, 24 h for cell migration). The effects of U73122 and U73343 on the EGF-induced responses were calculated as percent of the EGF-induced responses observed in the absence of U73122 and U73343. ■, EGF-induced PLC activity or cell migration in the absence of drug treatment; ●, basal PLC activity or cell migration as percent of EGF-induced responses; □, EGF-induced response in the presence of the inactive congener U73343; △, EGF-induced response in the presence of U73122. Values are mean ± SD; n = 3-6.

A Dominant-negative PLCγ-1 Fragment or Antisense Oligonucleotides Diminish EGF-induction of Both PLC Activity and Cell Motility

Specific interruption of EGFR activation of PLCγ is required to demonstrate a causal relation between induced PLC activity and cell motility. U73122 is not specific for the tyrosine kinase activated isoform of PLC, PLCγ, and may also inhibit other phospholipases which are triggered by the EGFR (32). Therefore, we attempted to either block the activation of PLCγ by interfering with its binding to EGFR or to down-regulate the level of PLCγ in the cell.

The Z region of human PLCγ-1, covering the SH2-SH2-SH3 domains, was isolated by reverse transcriptase/PCR and cloned into an eukaryotic expression vector. PLCz was expressed in three selected infectant NR6 lines (c'1000, c'1186F3, and c'991), as determined by immunoblotting with a mixture of monoclonal antibodies (data not shown). PLC activity and cell movement were tested in these infectant sublines (Fig. 4). The presence of PLCz disrupted both EGF-induced responses in parallel. The infectant PLCz sublines demonstrated lower basal PLC activity than their respective infectant lines, but basal cell movement was unchanged. EGF-induction of these responses was blocked or severely diminished in the PLCz sublines.

Anti-sense oligonucleotides down-regulated PLCγ activity in the WT EGFR infectant cells (Fig. 5). The sense oligonucleotide control had no affect on EGF-induced cell responses. Two distinct anti-sense oligonucleotides were tested for the ability to decrease the EGF-induced PLC and motility responses. Accumulations of IPs were decreased by 35-60% in these cells, and augmented cell movement by 56-82%; basal activities were relatively unaffected by these treatments. The slightly greater inhibition of cell movement compared to IP generation may be due to extended exposure to anti-sense down-regulation in the cell migration assay; the oligonucleotides were present for 8 h before addition of EGF and remained in the media throughout the 24-h motility assay. As anti-sense down-regulation does not affect previously synthesized proteins, the extended exposure in the migration assay may result in a greater decrease in PLC activity during the measurement of this response.

Induced Cell Motility Correlates with PLC Activity

EGF-induction of PLC activity was compared to induction of cell movement (Fig. 6). NR6 cell lines which expressed...
Effects of anti-sense PLCγ oligonucleotides on EGF-induced PLC activity and cell movement in NR6 cells. NR6 cell lines expressing WT EGFR were treated with EGF (25 nM) in the presence or absence of anti-sense PLCγ oligonucleotide (20 mM) during the assay periods (8 h preincubation for PLC activity, 8 h before incubation plus subsequent 24-h assay period for cell migration). Oligonucleotide A1 was a 21-mer anti-sense to the sequence encoding the first seven amino acids in the rat PLCγ sequence. Al-thio was the same sequence with the first and the last base containing sulfur groups to prevent degradation. A2 was a 21-mer anti-sense to the sequence encoding the amino acids 217-223. A sense sequence S1, a 21-mer encoding amino acids 945-951, that was used as a control to demonstrate the inhibitory effects on PLC activity was sequence specific. The effects of these oligonucleotides on the EGF-induced responses were expressed as percent of the EGF-induced responses observed in the absence of EGF and oligonucleotide treatment. Solid bars depict PLC activity or cell migration in the absence of EGF treatment; hatched bars are EGF-induced responses. Values are mean ± SD; n > 3.

Correlation of EGF-induced PLC activity with cell migration responses. EGF-induced PLC activity and cell migration was calculated as percent of non-EGF-treated responses for each NR6 cell line tested. O, cell lines expressing EGFR constructs that do not respond to EGF in migration and PLC activity; Y, cell lines expressing EGFR constructs that undergo autophosphorylation upon EGF stimulation and demonstrate augmented PLC activity and cell migration responses; U, responses demonstrated by the three EGF-responsive cell lines (Fig. 3) in the presence of U73122 (1 µM); Z, responses demonstrated by the two EGF-responsive cell lines expressing dominant negative PLCγ. Numbers denote cell lines expressing various mutant EGFR constructs (1, ALA; 2, c1186F3; 3, c1000; 4, c957Pss-9'5; 5, c958I163-155; 6, M72; 7, c1000F99; 8, c973; and 9, c991). Ala, Al-thio, Alc, and Als represent WT EGFR expressing cells treated with anti-sense PLCγ oligonucleotides A1, Al-thio, A2, and S1, respectively. Values are the mean of the cumulative responses for each cell line tested; n = 3-12 for individual responses in each cell line tested. R, 0.81; P < 0.001. The correlation strongly (r, 0.81; P < 0.001), exhibiting a positive linear relationship.

EGF-induced Mitogenesis Is Independent of the Inhibition of EGF-induced PLC Activity

We have shown previously that EGF-induced motogenesis is separate from the mitogenic response (11): all EGFR con-

autophosphorylatable (Fig. 6, Y) and non-autophosphorylatable (Fig. 6, O) EGFR represented the doubly responsive and doubly nonresponsive lines, respectively. U73122 treatment (Fig. 6, U) partially inhibited both parameters in the three responsive cell lines tested (Fig. 3). Diminution of PLC activity correlated with reduced cell motility in the infectant sublines expressing PLCγ (Fig. 6, Z) and the WT EGFR line treated with the oligonucleotides (Fig. 6, A). EGF-induced PLC activity and cell motility was expressed as percent of basal (non-EGF-treated). The two responses correlated strongly (r, 0.81; P < 0.001), exhibiting a positive linear relationship.

EGF-induced Mitogenesis Is Independent of the Inhibition of EGF-induced PLC Activity

We have shown previously that EGF-induced motogenesis is separate from the mitogenic response (11): all EGFR con-

autophosphorylatable (Fig. 6, Y) and non-autophosphorylatable (Fig. 6, O) EGFR represented the doubly responsive and doubly nonresponsive lines, respectively. U73122 treatment (Fig. 6, U) partially inhibited both parameters in the three responsive cell lines tested (Fig. 3). Diminution of PLC activity correlated with reduced cell motility in the infectant sublines expressing PLCγ (Fig. 6, Z) and the WT EGFR line treated with the oligonucleotides (Fig. 6, A). EGF-induced PLC activity and cell motility was expressed as percent of basal (non-EGF-treated). The two responses correlated strongly (r, 0.81; P < 0.001), exhibiting a positive linear relationship.

EGF-induced Mitogenesis Is Independent of the Inhibition of EGF-induced PLC Activity

We have shown previously that EGF-induced motogenesis is separate from the mitogenic response (11): all EGFR con-

autophosphorylatable (Fig. 6, Y) and non-autophosphorylatable (Fig. 6, O) EGFR represented the doubly responsive and doubly nonresponsive lines, respectively. U73122 treatment (Fig. 6, U) partially inhibited both parameters in the three responsive cell lines tested (Fig. 3). Diminution of PLC activity correlated with reduced cell motility in the infectant sublines expressing PLCγ (Fig. 6, Z) and the WT EGFR line treated with the oligonucleotides (Fig. 6, A). EGF-induced PLC activity and cell motility was expressed as percent of basal (non-EGF-treated). The two responses correlated strongly (r, 0.81; P < 0.001), exhibiting a positive linear relationship.

EGF-induced Mitogenesis Is Independent of the Inhibition of EGF-induced PLC Activity

We have shown previously that EGF-induced motogenesis is separate from the mitogenic response (11): all EGFR con-

autophosphorylatable (Fig. 6, Y) and non-autophosphorylatable (Fig. 6, O) EGFR represented the doubly responsive and doubly nonresponsive lines, respectively. U73122 treatment (Fig. 6, U) partially inhibited both parameters in the three responsive cell lines tested (Fig. 3). Diminution of PLC activity correlated with reduced cell motility in the infectant sublines expressing PLCγ (Fig. 6, Z) and the WT EGFR line treated with the oligonucleotides (Fig. 6, A). EGF-induced PLC activity and cell motility was expressed as percent of basal (non-EGF-treated). The two responses correlated strongly (r, 0.81; P < 0.001), exhibiting a positive linear relationship.

EGF-induced Mitogenesis Is Independent of the Inhibition of EGF-induced PLC Activity

We have shown previously that EGF-induced motogenesis is separate from the mitogenic response (11): all EGFR con-
structs which exhibited exo-kinase activity elicited mitogenesis, low dose D-actinomycin blocked motility but did not affect EGF-induced mitogenesis, and mitomycin-C treatment abrogated proliferation but spared the ligand-induced motility. The point of divergence of these two EGF-mediated signaling pathways is unknown. That augmented PLC activity was observed only in the cells expressing autophosphorylatable EGFR (Table I) suggested that the separation of the pathways may occur at the immediate postreceptor level. To further establish the divergence of signals, we assessed EGF-induced mitogenesis in the presence of U73122 (Fig. 7) and in infectant sublines expressing PLCz (Fig. 8). EGF-induced mitogenesis was determined by incorporation of [3H]thymidine. At concentrations of U73122 (1 μM) that inhibit EGF-induced PLC activity and cell motility, thymidine incorporation was not diminished regardless of the autophosphorylation status of the expressed EGFR. In the c1000PLCz and c186F3PLCz sublines, [3H]thymidine incorporation, if anything, was increased, not decreased. Thus, disruption of EGFR-mediated PLCγ activity and blockage of induced cell movement does not negatively affect the mitogenic response.

Activation of MAP Kinase Is Not Sufficient to Elicit EGF-induced Cell Motility

Activation of the MAP kinase cascade has been implicated in linking receptor tyrosine kinases to numerous biological responses including mitogenesis and differentiation (15, 28). EGFR-mediated signals activate MAP kinase; this activation, however, can be accomplished by EGFR in which the five mapped autophosphorylation sites have been replaced by phenylalanines (16). We have shown that EGF-induced motility response requires phospho-tyrosine motifs in the receptor (11). These findings suggested that activation of MAP kinase pathway is not sufficient to elicit cell motility.

To demonstrate that the MAP kinase activation is not sufficient for signaling cell movement, we determined the EGF-induced MAP kinase activity in NR6 cells expressing both motogenic (WT and c1000) and nonmotogenic (c1000F992 and c973) EGFR constructs. EGF-stimulated phosphorylation of MBP was similar in cells expressing WT and c973 EGFR constructs (Figs. 9 and 10). Augmented MAP kinase activity was mirrored by EGF-induced tyrosyl phosphorylation of p42 MAP kinase. These findings confirm that the ability to trigger MAP kinase by an EGFR lacking the carboxy-terminal region is intrinsic to the receptor. Thus, activation of MAP kinase pathway correlates with EGF-induced mitogenesis, but this activation is not sufficient to elicit enhanced motogenesis.

Discussion

We demonstrated previously that EGF-induced cell motility requires the presence of a phospho-tyrosine motif in the intracellular regulatory region of the EGFR (11). This suggests that the immediate downstream effector molecule in the motogenic pathway was activated by SH2 domain interactions. Numerous SH2-containing effector molecules interact with, and are activated by EGFR (9, 37, 40, 45, 49, 55). At least three of these pathways can be linked to cell motility. Activation of small GTP-binding proteins of the rho subfamily leads to formation of focal adhesions (34), which is con-

Figure 8. Effect of expressing dominant negative PLCz on EGF-induced [3H]thymidine incorporation in infectant NR6 cell lines. EGF-induced [3H]thymidine incorporation in three mutant EGFR cell lines with or without the expression of PLCz. Equivalent numbers of cells (~100,000 cells) in each cell line were tested. The incorporated [3H]thymidine is expressed as cpm. Solid bars depict basal incorporation with no treatment; hatched bars are EGF-stimulated incorporation (25 nM EGF). Shown are mean ± SD for six determinations.

Figure 9. EGF-induced MAP kinase activity in infectant NR6 cell lines expressing mutant EGF receptors. MAP kinase activity in (A) WT, (B) c973, (C) c1000, and (D) c1000F992 was measured as phosphorylation of the MAP kinase specific substrate MBP by cytosolic extract and expressed as picomoles ATP incorporated/mg protein in cell extract. The effect of U73122 (1 μM) was also tested in parallel. ◦, basal activity observed in non-EGF-treated cells; ●, activity observed with 25 nM EGF treatment; ▲, activity observed in cells treated with U73122; ▼, EGF-induced activity observed in cells treated with U73122. A–D are of representative analyses.
pressed as percent of basal MAP kinase activity, i.e., basal activity mean + SD; n = 2-4 for each cell line tested.

nM, activity observed with 25 nM EGF treatment; @, EGF observed in non-EGF-treated cells; z, activity observed with 25 nM treatment on EGF-induced MAP kinase activity also is expressed as percent of the MAP kinase induced MAP kinase activity in the presence of U73122. Values are mean ± SD; n = 2-4 for each cell line tested.

consistent with the conclusion that activation of GAP by the PDGFβ receptor inhibits cell movement (25). Recent studies have demonstrated that phosphatidylinositol 3' kinase activation is required for chemotaxis signaled via the PDGFβ receptor (25, 54). A third signaling pathway which involves PLCγ may promote cell motility. PLC hydrolysis of PIP2 releases actin-severing and -sequestering proteins which lead to the dissolution of stress fibers and focal adhesions, enabling a cell to move (2, 19, 44). In addition, activation of PLCγ has been shown to be required for (25, 54) or associated with (8) PDGFβ receptor-mediated chemotaxis. The specific intermediary effector molecules in the motogenic pathway have not been investigated in other receptors with intrinsic tyrosine kinase activity.

We investigated the necessity of PLCγ activation in EGFR-mediated motogenesis. We examined a series of cell lines expressing genetically engineered EGFR for EGF-induced PLC activity. Activation of PLCγ by EGFR was determined by a functional assay because EGFR may phosphorylate PLCγ without activating it (unpublished observations), presumably by phosphorylation of non-activating tyrosines (24), and PLCγ may be activated non-enzymatically by EGFR (22). Enhanced inositol phosphate production was observed only in the cell lines which demonstrate EGFR-mediated cell movement (Table I). EGFR-enhanced PLCγ activity in all cell lines expressing autophosphorylated EGFR, further demonstrating the promiscuity of SH2 domain interactions with EGFR phospho-tyrosine motifs. EGF-induced cell movement was noted only in cells which also were responsive by PLC activity. This correlation between the biochemical and biologic responses suggested that PLCγ was the immediate downstream effector.

Specific inhibition of PLCγ was required to demonstrate a causal relationship between this enzyme and cell motility. A specific inhibitor of phospholipase C activity, U73122, was employed to determine whether inhibition of PLCγ would also block induced cell movement. Concurrent exposure of the cells to EGF and U73122 diminished both PLC activity and cell movement. The drug had little effect on the basal rates of either parameter. This agent inhibits all PLC isoforms, and may have some activity towards other phospholipases (32). To diminish the activation of PLCγ by EGFR, a dominant-negative PLC fragment, consisting of the Z region (23), was expressing in select infectant lines. EGF induction of both PLC activity and cell motility was decreased in these cells. As this fragment is postulated to exert its inhibitory effect by binding to receptor phospho-tyrosine motifs, it is possible that other, non-PLCγ SH2-mediated interactions also are interrupted. The U73122 data points to a phospholipase and the PLCγ data indicate a SH2 domain containing molecule as being required for induced cell motility; PLCγ is the only candidate which fulfills both parameters. However, to definitively identify PLCγ as a required intermediary, we down-regulated this enzyme activity by anti-sense oligonucleotides. Cells expressing the WT EGFR were exposed to anti-sense oligonucleotides directed towards two distinct regions of PLCγ. This treatment partially abrogated both PLC activity and motility responses in parallel (Fig. 6). Thus, PLCγ is required for EGFR-mediated movement. These experiments place PLCγ directly downstream of the EGFR.

These findings do not imply that other pathways are not necessary for the full motility response. Kundra and colleagues (25) present evidence that both PLCγ and PI-3' kinase are required for PDGF-BB-induced chemotaxis through a collagen matrix. However, chemotaxis in such an assay results from a number of cell phenotypes, of which cell movement is just one. Therefore, it is not certain that cell movement in itself requires other immediate effector molecules to be activated by the receptor. In addition, certain other signaling pathways may modulate the motility response. Activation of GAP (25) or protein kinase C (PKC) (unpublished observations) limit cell migration; presumably through modulation of net cell adhesiveness. To determine which other signaling pathways, if any, are required to induce cell movement will need similar analyses demonstrating both positive and negative correlations.

EGFR-mediated cell motility is separable from mitogenesis (4, 11), but the level at which the signaling pathways diverge is undefined. PLCγ activation is not required for EGFR-induced mitogenesis as EGFR constructs which do not activate PLCγ can elicit the mitogenic response (16, 48, 52). We now show that inhibition of PLCγ activity by U73122 or PLCz does not lead to a reduction in the mitogenic response. In fact, in the PLCγ-responsive lines, we note a slight but consistent increase in thymidine incorporation in the presence of U73122 (Fig. 7) and in the cells expressing PLCz (Fig. 8). This may be due to abrogation of feedback inhibition of EGFR signaling by PKC (53); a negative regulatory loop in which PLCγ or PLD (unpublished observations) generates diacylglycerol which then activates PKC. EGFR constructs which are resistant to PKC inhibition (53) are being expressed on NR6 cells to test this postulate. Though these findings do not eliminate the possibility of redundant parallel pathways in signaling mitogenesis as seen with the PDGF receptor (47), they strongly support a divergence of the mitogenic and motogenic signaling pathways by differential activation by the EGFR itself.

We are attempting to define further downstream effector molecules in the motogenic pathway. Signaling through EGFR and related tyrosine kinases activates the MAP ki-
nase. This molecule occupies a central role in transducing signals from the extracellular milieu to the nucleus. In addition, MAP kinase elicits numerous cellular responses without involving transcription (28, 31). We sought to determine if activation of MAP kinase was sufficient to elicit cell motility. In the intact NR6 cell line which expresses the nonmotogenic c1000F992 and c973 EGFR, EGF exposure increased MAP kinase activity (assessed by MBP phosphorylation) equivalently to the increase seen in WT EGFR-expressing cells (Fig. 9). This finding is in agreement with published results using another non-autophosphorylated EGFR in 3T3 cells (16). We cannot determine if MAP kinase is necessary for EGFR-mediated cell motility, either in a parallel pathway or as being permissive for cell movement, due to the lack of nontoxic inhibitors and suitably signaling-restricted EGFR constructs. However, activation of MAP kinase is not sufficient, in itself, to elicit the motogenic response. It is likely that MAP kinase is not involved directly in the EGFR-mediated motogenic signaling pathway, but rather in the mitogenic or other signaling pathways.

We thank Harvey Herschman for the gift of NR6 cells. This work was supported in part by grants from the National Institutes of Health (DK5234, to M. C. Sekar) and the American Cancer Society (CB118 to A. Wells). P. Chen was supported by the University of Alabama at Birmingham School of Medicine Dean's Office.

References

Received for publication 30 March 1994 and in revised form 8 August 1994.

The Journal of Cell Biology, Volume 127, 1994 856
stimulation of mouse pancreatic minilobules with carbamylcholine. J. Biol. Chem. 262:340–344.
39. Sekar, M. C., V. Sambandam, and J. M. McDonald. 1993. Bombesin and muscarinic receptor activation in rat pancreas generate cyclic inositol monophosphate: possible involvement of different phospholipase isozymes. Biochem. Biophys. Res. Commun. 192:1079–1085.
40. Silvennoinen, O., C. Schindler, J. Schlessinger, and D. E. Levy. 1993. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science (Wash. DC). 261:1536–1539.
41. Smith, R. J., L. M. Sam, J. M. Justen, G. L. Bundy, G. A. Bala, and J. E. Bleasdale. 1990. Receptor-coupled signal transduction in human polymorphonuclear neutrophils: effects of a novel inhibitor of phospholipase C-dependent processes on cell responsiveness. J. Pharmacol. Exp. Ther. 253:688–697.
42. Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W. G. Haser, F. King, T. Roberts, S. Ratnofsky, R. J. Lechleider, et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell. 72:767–778.
43. Sorkin, A., K. Helin, C. M. Waters, G. Carpenter, and L. Beguinot. 1992. Multiple autophosphorylation sites of the epidermal growth factor receptor are essential for receptor kinase activity and internalization: contrasting significance of tyrosine 992 in the native and truncated receptors. J. Biol. Chem. 267:8672–8678.
44. Stossel, T. P. 1993. On the crawling of animal cells. Science (Wash. DC). 260:1086–1094.
45. Suen, K.-L., X. R. Bustelo, T. Pawson, and M. Barbacid. 1993. Molecular cloning of the mouse grb2 gene: differential interaction of the grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors. Mol. Cell. Biol. 13:5500–5512.
46. Ullrich, A., L. Coussens, J. S. Hayflick, T. J. Dull, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, J. Downward, et al. 1984. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature (Lond.). 307:418–425.
47. Valius, M., and A. Kazlauskas. 1993. Phospholipase C-γ1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell. 73:321–334.
48. Vega, Q., C. Cochet, O. Filhol, C.-P. Chang, S. G. Rhee, and G. N. Gill. 1992. A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol. Cell. Biol. 12:128–135.
49. Vogel, W., R. Lammers, J. Huang, and A. Ullrich. 1993. Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science (Wash. DC). 259:1611–1614.
50. Walton, G. M., W. S. Chen, M. G. Rosenfeld, and G. N. Gill. 1990. Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J. Biol. Chem. 265:1750–1754.
51. Wells, A., and J. M. Bishop. 1988. Genetic determinants of neoplastic transformation by the retroviral oncogene v-erbB. Proc. Nat. Acad. Sci. USA. 85:7597–7601.
52. Wells, A., J. B. Welsh, C. S. Lazar, H. S. Wiley, G. N. Gill, and M. G. Rosenfeld. 1990. Ligand-induced transformation by a non-internalizing EGF receptor. Science (Wash. DC). 247:962–964.
53. Welsh, J. B., G. N. Gill, M. G. Rosenfeld, and A. Wells. 1991. A negative feedback loop attenuates EGF-induced morphological changes. J. Cell Biol. 114:533–543.
54. Wennstrom, S., A. Siegbahn, K. Yokote, A. K. Arvidsson, C. H. Heldin, S. Mori, and L. Claesson-Welsh. 1994. Membrane ruffling and chemotaxis transduced by the PDGF/β-receptor require the binding site for phosphatidylinositol 3' kinase. Oncogene. 9:651–660.
55. Wood, E. R., O. B. McDonald, and N. Sahyoun. 1992. Quantitative analysis of SH2 domain binding: evidence for specificity and competition. J. Biol. Chem. 267:14138–14144.