Function spaces and capacity related to a Sublinear Expectation: application to G-Brownian Motion Paths

Laurent Denis · Mingshang Hu · Shige Peng

January 15, 2010

Abstract In this paper we give some basic and important properties of several typical Banach spaces of functions of G-Brownian motion paths induced by a sublinear expectation–G-expectation. Many results can be also applied to more general situations. A generalized version of Kolmogorov’s criterion for continuous modification of a stochastic process is also obtained. The results can be applied in continuous time dynamic and coherent risk measures in finance in particular for path-dependence risky positions under situations of volatility model uncertainty.

Keywords Capacity · Sublinear expectation · G-Expectation · G-Brownian motion · Dynamical programming principle

1 Introduction

How to measure the risk of financial losses in a financial market is still a challenging problem. In a seminal paper [1] a basic notion of coherent risk measures...
was introduced: Let \mathcal{H} be a linear space of financial losses, considered as a space of random variables. A coherent risk measure $\mathbb{E} : \mathcal{H} \to \mathbb{R}$ is a real valued (monetary value) functional with the properties of constant preserving (called cash invariance), monotonicity, convexity and positive homogeneity. Namely, a coherent risk measure is in fact a sublinear expectation \mathbb{E} defined on \mathcal{H} (see Theorem 9 or Definition 37). It was proved that a sublinear expectation has the following representation (see [1, 10, 18]): There exists a family of linear expectations $\{\mathbb{E}_\theta\}_{\theta \in \Theta}$ such that

$$\mathbb{E}[X] = \max_{\theta \in \Theta} \mathbb{E}_\theta[X], \quad X \in \mathcal{H}.$$

The meaning in economics of this representation is that the risk measure \mathbb{E} is in fact the robust super-expectation over the family of uncertainty of linear expectations $\{\mathbb{E}_\theta\}_{\theta \in \Theta}$.

As an example, let us consider a typical situation in a financial market where the price of a stock satisfies the equation

$$dS_t = S_t(\gamma^\theta_t dt + \sigma^\theta_t dW_t),$$

where W is a standard Brownian motion, and $(\gamma^\theta_t, \sigma^\theta_t)_{t \geq 0}$, $\theta \in \Theta$, are unknown processes parameterized by $\theta \in \Theta$. A financial loss X is formulated as a given random variable depending on the path of S or, equivalently, on the path of $B^\theta = \int_0^t (\gamma^\theta_s ds + \sigma^\theta_s dW_s)$. For each fixed $\theta \in \Theta$, let P_θ be the probability measure on the space of continuous paths $(\Omega, \mathcal{F}) = (C(0, \infty), \mathcal{B}(C(0, \infty)))$ induced by $(B^\theta_t)_{t \geq 0}$, and \mathbb{E}_θ the corresponding expectation. The risk measure of X under the above uncertainty is formulated as

$$\mathbb{E}[X] = \sup_{\theta \in \Theta} \mathbb{E}_\theta[X].$$

A typical situation is that each probability P_θ is absolutely continuous with respect to the ‘reference measure’ P_0 corresponding to the case when $B^\theta_t \equiv W_t$. In this case the uncertainty can only comes from γ^θ and thus is called drift uncertainty. Chen and Epstein [6] proposed to use g-expectation, (small g, introduced in [23]) for a robust valuation: $\mathbb{E}_g[X] = \sup_{\theta \in \Theta} \mathbb{E}_\theta[X]$. It was also proved (see [15, 6]) that this corresponds to the case where the uncertain drift has the form $\{\gamma^\theta_s \in K, s \geq 0\}$, for some $K \subset \mathbb{R}$. [20, 19] proposed to use g-expectation as a time consistent risk measure. [11] proved that any coherent and time consistent risk measure absolutely continuous with respect to P_0 can be approximated by a g-expectation.

But in finance there is an important situation called ‘volatility uncertainty’ in which the uncertainty comes from the “volatility coefficient” $\{\sigma^\theta, \theta \in \Theta\}$. A major difficulty here is that the probabilities $\{P_\theta\}_{\theta \in \Theta}$ are mutually singular and thus the corresponding \mathbb{E} cannot be dominated by any g-expectation. This type of uncertainty was initially studied by Avellaneda, Levy and Paras [3] and Lyons [22], for the superhedging of European options with payoffs depending only on the terminal value B^θ_T, the discrete-time case has been also studied in [10]. But for the superhedging of a general path-dependence option, the difficulty was dramatically increased. This situation was studied independently by [24] and [14] with very different approaches. Motivated by the problem of coherent
risk measures under the volatility uncertainty, [26] introduced a sublinear expectation on a well-defined space $L^1_G(\Omega)$ under which the increments of the canonical process $(B_t)_{t \geq 0}$ are zero-mean, independent and stationary and can be proved to be ‘G-normally distributed’ (see [29]). This type of processes is called ‘G-Brownian motion’ and the corresponding sublinear expectation $\mathbb{E}[\cdot]$ is called ‘G-expectation’ (capital G). Recently, we have discovered a strong link between the framework of [24], [25], [26], [27] and the one introduced in [14].

A well-known and fundamentally important fact in probability theory is that the linear space $L^1_B(\Omega)$ coincides with the $E_{P_0}[|\cdot|]$-norm completion of the space of bounded and continuous functions $C_b(\Omega)$ or bounded and \mathcal{F}-measurable functions $B_b(\Omega)$, or even smaller one, the space $L_{ip}(\Omega) \subset C_b(\Omega)$ of bounded and Lipschitz cylinder functions (see Section 3 for its definition).

Similar problems arise in the theory of G-Brownian motion: The space $L^1_G(\Omega)$ is defined as the $\mathbb{E}[\cdot]|\cdot|^{-}\text{n}orm completion of $L_{ip}(\Omega)$. Can we prove that each element $X \in L^1_G(\Omega)$ can be identified as an element of L^1, the space of all \mathcal{F}-measurable random variables X such that $\mathbb{E}[|X|] < \infty$? Furthermore, what is the relation between the $\mathbb{E}[\cdot]|\cdot|^{-}\text{n}orm completions of $B_b(\Omega)$, $C_b(\Omega)$ and $L_{ip}(\Omega)$?

In this paper we give an affirmative answer to the first problem. For the second problem, we will prove that, in fact, the $\mathbb{E}[\cdot]|\cdot|^{-}\text{n}orm completions of $L_{ip}(\Omega)$ and $C_b(\Omega)$ are the same, but they are strict subspace of the $\mathbb{E}[\cdot]|\cdot|^{-}\text{n}orm$-completion of $B_b(\Omega)$.

In this paper a weakly compact family \mathcal{P} of probability measures on (Ω, \mathcal{F}) is constructed so that the G expectation is the upper expectation of \mathcal{P}, i.e.:

$$\mathbb{E}[X] = \sup_{P \in \mathcal{P}} E_P[X] \text{ for each } X \in L_{ip}(\Omega).$$

Following [21], we define the corresponding regular Choquet capacity:

$$c(A) := \sup_{P \in \mathcal{P}} P(A), \ A \in \mathcal{B}(\Omega).$$

We then can prove that each element $X \in L^1_G(\Omega)$ has a c-quasi continuous version on Ω. Moreover we have $C_b(\Omega) \subset L^1_G(\Omega) \subset L^1$ (see also [17], [14] for a different approach).

This paper is organized as follows: in Section 2, we use a family of probability measures \mathcal{P} on $(\Omega, \mathcal{B}(\Omega))$ to define a sublinear expectation as the upper expectation of \mathcal{P}, as well as the related capacity, especially, we use a weakly compact family of probability measures to define the corresponding regular sublinear expectation and regular capacity. Here Ω is assumed to be a general complete separable metric space of which $C(0, \infty)$ and $D(0, \infty)$ (the path space of càdlàg processes) are typical examples. Each element of $\mathbb{E}[\cdot]|P|^{1/p}$-completion of $C_b(\Omega)$ is proved to has a quasi-continuous version. Concrete characterizations of completions of different function spaces are given. As a by-product, we obtain a generalized version of Kolmogorov’s criterion for continuous modification of a stochastic process. In Section 3, we let $\Omega = C^d[0, \infty)$ and use a method of stochastic control to prove that G-expectation is a upper expectation associated to a weakly compact family \mathcal{P} and then apply the results of Section 2 to the G-expectation and the corresponding functional spaces.
2 Integration theory associated to an upper probability

Let Ω be a complete separable metric space equipped with the distance d, $\mathcal{B}(\Omega)$ the Borel σ-algebra of Ω and \mathcal{M} the collection of all probability measures on $(\Omega, \mathcal{B}(\Omega))$.

- $L^0(\Omega)$: the space of all $\mathcal{B}(\Omega)$-measurable real functions;
- $B_b(\Omega)$: all bounded functions in $L^0(\Omega)$;
- $C_b(\Omega)$: all continuous functions in $B_b(\Omega)$.

All along this section, we consider a given subset $P \subseteq \mathcal{M}$.

2.1 Capacity associated to P

We denote $c(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega)$.

One can easily verify the following theorem.

Theorem 1. The set function $c(\cdot)$ is a Choquet capacity, i.e. (see [12, 13]),

1. $0 \leq c(A) \leq 1, \quad \forall A \subset \Omega$.
2. If $A \subset B$, then $c(A) \leq c(B)$.
3. If $(A_n)_{n=1}^{\infty}$ is a sequence in $\mathcal{B}(\Omega)$, then $c(\bigcup A_n) \leq \sum c(A_n)$.
4. If $(A_n)_{n=1}^{\infty}$ is an increasing sequence in $\mathcal{B}(\Omega)$: $A_n \uparrow A = \bigcup A_n$, then $c(\bigcup A_n) = \lim_{n \to \infty} c(A_n)$.

Furthermore, we have

Theorem 2. For each $A \in \mathcal{B}(\Omega)$, we have

$$c(A) = \sup \{ c(K) : K \text{ compact } K \subset A \}.$$

Proof. It is simply because

$$c(A) = \sup_{P \in \mathcal{P}} \sup_{K \text{ compact } K \subset A} P(K) = \sup_{K \text{ compact } P \in \mathcal{P}} P(K) = \sup_{K \text{ compact } K \subset A} c(K).$$

Definition 3. We use the standard capacity-related vocabulary: a set A is polar if $c(A) = 0$ and a property holds “quasi-surely” (q.s.) if it holds outside a polar set.
Remark 4. In other words, $A \in \mathcal{B}(\Omega)$ is polar if and only if $P(A) = 0$ for any $P \in \mathcal{P}$.

We also have in a trivial way a Borel-Cantelli Lemma.

Lemma 5. Let $(A_n)_{n \in \mathbb{N}}$ be a sequence of Borel sets such that

$$\sum_{n=1}^{\infty} c(A_n) < \infty.$$

Then $\limsup_{n \to \infty} A_n$ is polar.

Proof. Applying the Borel-Cantelli Lemma under each probability $P \in \mathcal{P}$. \square

The following theorem is Prohorov’s theorem.

Theorem 6. \mathcal{P} is relatively compact if and only if for each $\varepsilon > 0$, there exists a compact set K such that $c(K^c) < \varepsilon$.

The following two lemmas can be found in [21].

Lemma 7. \mathcal{P} is relatively compact if and only if for each sequence of closed sets $F_n \downarrow \emptyset$, we have $c(F_n) \downarrow 0$.

Proof. We outline the proof for the convenience of readers.

“\Rightarrow” part: It follows from Theorem 6 that for each fixed $\varepsilon > 0$, there exists a compact set K such that $c(K^c) < \varepsilon$. Note that $F_n \cap K \downarrow \emptyset$, then there exists an $N > 0$ such that $F_n \cap K = \emptyset$ for $n \geq N$, which implies $\lim_{n \to \infty} c(F_n) < \varepsilon$. Since ε can be arbitrarily small, we obtain $c(F_n) \downarrow 0$.

“\Leftarrow” part: For each $\varepsilon > 0$, let $(A^k_i)_{i=1}^{\infty}$ be a sequence of open balls of radius $1/k$ covering Ω. Observe that $(\bigcup_{i=1}^{n_k} A^k_i)^c \downarrow \emptyset$, then there exists an n_k such that $c((\bigcup_{i=1}^{n_k} A^k_i)^c) < \varepsilon 2^{-k}$. Set $K = \cap_{k=1}^{\infty} \bigcup_{i=1}^{n_k} A^k_i$. It is easy to check that K is compact and $c(K^c) < \varepsilon$. Thus by Theorem 6 \mathcal{P} is relatively compact. \square

Lemma 8. Let \mathcal{P} be weakly compact. Then for each sequence of closed sets $F_n \downarrow F$, we have $c(F_n) \downarrow c(F)$.

Proof. We outline the proof for the convenience of readers. For each fixed $\varepsilon > 0$, by the definition of $c(F_n)$, there exists a $P_n \in \mathcal{P}$ such that $P_n(F_n) \geq c(F_n) - \varepsilon$. Since \mathcal{P} is weakly compact, there exist P_{n_k} and $P \in \mathcal{P}$ such that P_{n_k} converge weakly to P. Thus

$$P(F_m) \geq \limsup_{k \to \infty} P_{n_k}(F_m) \geq \limsup_{k \to \infty} P_{n_k}(F_{n_k}) \geq \lim_{n \to \infty} c(F_n) - \varepsilon.$$

Letting $m \to \infty$, we get $P(F) \geq \lim_{n \to \infty} c(F_n) - \varepsilon$, which yields $c(F_n) \downarrow c(F)$. \square

Following [21] (see also [9][18]) the upper expectation of \mathcal{P} is defined as follows: for each $X \in L^0(\Omega)$ such that $E_P[X]$ exists for each $P \in \mathcal{P}$,

$$\mathbb{E}[X] = \mathbb{E}^\mathcal{P}[X] := \sup_{P \in \mathcal{P}} E_P[X].$$

It is easy to verify
Theorem 9. The upper expectation $\mathbb{E}[\cdot]$ of the family \mathcal{P} is a sublinear expectation on $B_0(\Omega)$ as well as on $C_b(\Omega)$, i.e.,

1. for all X, Y in $B_0(\Omega)$, $X \geq Y \implies \mathbb{E}[X] \geq \mathbb{E}[Y]$.
2. for all X, Y in $B_0(\Omega)$, $\mathbb{E}[X + Y] \leq \mathbb{E}[X] + \mathbb{E}[Y]$.
3. for all $\lambda \geq 0$, $X \in B_0(\Omega)$, $\mathbb{E}[\lambda X] = \lambda \mathbb{E}[X]$.
4. for all $c \in \mathbb{R}$, $X \in B_0(\Omega)$, $\mathbb{E}[X + c] = \mathbb{E}[X] + c$.

Moreover, it is also easy to check

Theorem 10. We have

1. Let $\mathbb{E}[X_n]$ and $\mathbb{E}[\sum_{n=1}^{\infty} X_n]$ be finite. Then $\mathbb{E}[\sum_{n=1}^{\infty} X_n] \leq \sum_{n=1}^{\infty} \mathbb{E}[X_n]$.
2. Let $X_n \uparrow X$ and $\mathbb{E}[X_n], \mathbb{E}[X]$ be finite. Then $\mathbb{E}[X_n] \uparrow \mathbb{E}[X]$.

Definition 11. The functional $\mathbb{E}[\cdot]$ is said to be regular if for each $\{X_n\}_{n=1}^{\infty}$ in $C_b(\Omega)$ such that $X_n \downarrow 0$ on Ω, we have $\mathbb{E}[X_n] \downarrow 0$.

Similar to Lemma 7 we have:

Theorem 12. $\mathbb{E}[\cdot]$ is regular if and only if \mathcal{P} is relatively compact.

Proof. “\Rightarrow” part: For each sequence of closed subsets $F_n \downarrow \emptyset$ such that $F_n, n = 1, 2, \cdots$, are non-empty (otherwise the proof is trivial), there exists $\{g_n\}_{n=1}^{\infty} \subset C_b(\Omega)$ satisfying

$$0 \leq g_n \leq 1, \quad g_n = 1 \text{ on } F_n \text{ and } g_n = 0 \text{ on } \{\omega \in \Omega : d(\omega, F_n) \geq \frac{1}{n}\}.$$

We set $f_n = \bigwedge_{i=1}^{n} g_i$, it is clear that $f_n \in C_b(\Omega)$ and $1_{F_n} \leq f_n \downarrow 0$. $\mathbb{E}[\cdot]$ is regular implies $\mathbb{E}[f_n] \downarrow 0$ and thus $c(F_n) \downarrow 0$. It follows from Lemma 7 that \mathcal{P} is relatively compact.

“\Leftarrow” part: For each $\{X_n\}_{n=1}^{\infty} \subset C_b(\Omega)$ such that $X_n \downarrow 0$, we have

$$\mathbb{E}[X_n] = \sup_{P \in \mathcal{P}} \mathbb{E}_P[X_n] = \sup_{P \in \mathcal{P}} \int_0^\infty P(\{X_n \geq t\})dt \leq \int_0^\infty c(\{X_n \geq t\})dt.$$

For each fixed $t > 0$, $\{X_n \geq t\}$ is a closed subset and $\{X_n \geq t\} \downarrow \emptyset$ as $n \uparrow \infty$. By Lemma 7 $c(\{X_n \geq t\}) \downarrow 0$ and thus $\int_0^\infty c(\{X_n \geq t\})dt \downarrow 0$. Consequently $\mathbb{E}[X_n] \downarrow 0$. \hfill \square

2.2 Functional spaces

We set, for $p > 0$,

- $\mathcal{L}^p := \{X \in L^0(\Omega) : \mathbb{E}[|X|^p] = \sup_{P \in \mathcal{P}} \mathbb{E}_P[|X|^p] < \infty\}$;
- $\mathcal{N}^p := \{X \in L^0(\Omega) : \mathbb{E}[|X|^p] = 0\}$;
• $\mathcal{N} := \{X \in L^0(\Omega) : X = 0, \text{c-q.s.}\}$.

It is seen that \mathcal{L}^p and \mathcal{N}^p are linear spaces and $\mathcal{N}^p = \mathcal{N}$, for each $p > 0$. We denote $\mathbb{L}^p := \mathcal{L}^p/\mathcal{N}$. As usual, we do not take care about the distinction between classes and their representatives.

Lemma 13. Let $X \in \mathbb{L}^p$. Then for each $\alpha > 0$

$$c(\{|X| > \alpha\}) \leq \frac{E[|X|^p]}{\alpha^p}. $$

Proof. Just apply Markov inequality under each $P \in \mathcal{P}$.\hfill \Box

Similar to the classical results, we get the following proposition and the proof is omitted which is similar to the classical arguments.

Proposition 14. We have

1. For each $p \geq 1$, \mathbb{L}^p is a Banach space under the norm $\|X\|_p := (E[|X|^p])^{\frac{1}{p}}$.

2. For each $p < 1$, \mathbb{L}^p is a complete metric space under the distance $d(X,Y) := E[|X - Y|^p]$.

We set $\mathcal{L}^\infty := \{X \in L^0(\Omega) : \exists$ a constant M, s.t. $|X| \leq M$, q.s.$\}$; $\mathbb{L}^\infty := \mathcal{L}^\infty/\mathcal{N}$.

Proposition 15. Under the norm $\|X\|_\infty := \inf \{M \geq 0 : |X| \leq M, \text{ q.s.}\}$, \mathbb{L}^∞ is a Banach space.

Proof. From $\{|X| > \|X\|_\infty\} = \bigcup_{n=1}^{\infty} \{|X| \geq \|X\|_\infty + \frac{1}{n}\}$ we know that $|X| \leq \|X\|_\infty$, q.s., then it is easy to check that $\|\cdot\|_\infty$ is a norm. The proof of the completeness of \mathbb{L}^∞ is similar to the classical result.\hfill \Box

With respect to the distance defined on \mathbb{L}^p, $p > 0$, we denote by

- \mathbb{L}^p_b the completion of $B_b(\Omega)$.
- \mathbb{L}^p_c the completion of $C_b(\Omega)$.

By Proposition 14 we have

$$\mathbb{L}^p_c \subset \mathbb{L}^p_b \subset \mathbb{L}^p, \quad p > 0.$$

The following Proposition is obvious and the proof is left to the reader.
Proposition 16. We have

1. Let \(p, q > 1, \frac{1}{p} + \frac{1}{q} = 1 \). Then \(X \in \mathbb{L}^p \) and \(Y \in \mathbb{L}^q \) implies
 \[
 XY \in \mathbb{L}^1 \quad \text{and} \quad \mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}};
 \]

Moreover \(X \in \mathbb{L}^p_c \) and \(Y \in \mathbb{L}^q_c \) implies \(XY \in \mathbb{L}^1_c \);

2. \(\mathbb{L}^{p_1} \subset \mathbb{L}^{p_2}, \mathbb{L}^{q_1}_b \subset \mathbb{L}^{q_2}_b, \mathbb{L}^{p_1}_c \subset \mathbb{L}^{p_2}_c, 0 < p_2 \leq p_1 \leq \infty \);

3. \(\|X\|_p \uparrow \|X\|_\infty \), for each \(X \in \mathbb{L}^\infty \).

Proposition 17. Let \(p \in (0, \infty) \) and \((X_n) \) be a sequence in \(\mathbb{L}^p \) which converges to \(X \) in \(\mathbb{L}^p \). Then there exists a subsequence \((X_{n_k}) \) which converges to \(X \) quasi-surely in the sense that it converges to \(X \) outside a polar set.

Proof. Let us assume \(p \in (0, \infty) \), the case \(p = \infty \) is obvious since the convergence in \(\mathbb{L}^\infty \) implies the convergence in \(\mathbb{L}^p \) for all \(p \).

One can extract a subsequence \((X_{n_k}) \) such that
\[
\mathbb{E}(|X - X_{n_k}|^p) \leq 1/k^{p+2}, \quad k \in \mathbb{N}.
\]

We set for all \(k \)
\[
A_k = \{|X - X_{n_k}| > 1/k\},
\]
then as a consequence of the Markov property (Lemma 13) and the Borel-Cantelli Lemma 5, \(c \lim_{k \to \infty} A_k = 0 \). As it is clear that on \((\lim_{k \to \infty} A_k)^c \), \((X_{n_k}) \) converges to \(X \), the proposition is proved.

We now give a description of \(\mathbb{L}^p_b \).

Proposition 18. For each \(p > 0 \),
\[
\mathbb{L}^p_b = \{X \in \mathbb{L}^p : \lim_{n \to \infty} \mathbb{E}[|X|^p 1_{(|X| > n)}] = 0\}.
\]

Proof. We denote \(J_p = \{X \in \mathbb{L}^p : \lim_{n \to \infty} \mathbb{E}[|X|^p 1_{(|X| > n)}] = 0\} \). For each \(X \in J_p \) let \(X_n = (X \land n) \lor (-n) \in \mathbb{B}_b(\Omega) \). We have
\[
\mathbb{E}[|X - X_n|^p] \leq \mathbb{E}[|X|^p 1_{(|X| > n)}] \to 0, \text{ as } n \to \infty.
\]

Thus \(X \in \mathbb{L}^p_b \).

On the other hand, for each \(X \in \mathbb{L}^p_b \), we can find a sequence \(\{Y_n\}_{n=1}^{\infty} \) in \(\mathbb{B}_b(\Omega) \) such that \(\mathbb{E}[|X - Y_n|^p] \to 0 \). Let \(y_n = \sup_{\omega \in \Omega} |Y_n(\omega)| \) and \(X_n = (X \land y_n) \lor (-y_n) \).

Since \(|X - X_n| \leq |X - Y_n| \), we have \(\mathbb{E}[|X - X_n|^p] \to 0 \). This clearly implies that for any sequence \((\alpha_n) \) tending to \(\infty \), \(\lim_{n \to \infty} \mathbb{E}[|X - (X \land \alpha_n) \lor (-\alpha_n)|^p] = 0 \).

Now we have, for all \(n \in \mathbb{N} \),
\[
\mathbb{E}[|X|^p 1_{(|X| > n)}] = \mathbb{E}[(|X| - n + n)^p 1_{(|X| > n)}] \leq (1 + 2^{p-1}) \mathbb{E}[(|X| - n)^p 1_{(|X| > n)}] + n^p c(|X| > n).
\]
The first term of the right hand side tends to 0 since
\[
\mathbb{E}[(|X| - n)^p 1_{\{|X| > n\}}] = \mathbb{E}[(|X| - (X \wedge n) \vee (-n))^p] \to 0.
\]
For the second term, since
\[
\frac{n^p}{2^p} 1_{\{|X| > n\}} \leq (|X| - \frac{n}{2^p})^p 1_{\{|X| > n\}} \leq (|X| - \frac{n}{2^p} 1_{\{|X| > \frac{n}{2^p}\}}),
\]
we have
\[
\frac{n^p}{2^p} c(|X| > n) = \frac{n^p}{2^p} \mathbb{E}[1_{\{|X| > n\}}] \leq \mathbb{E}[(|X| - \frac{n}{2^p})^p 1_{\{|X| > \frac{n}{2^p}\}}] \to 0.
\]
Consequently \(X \in J_p \).

Proposition 19. Let \(X \in \mathbb{L}^1_p \). Then for each \(\varepsilon > 0 \), there exists a \(\delta > 0 \), such that for all \(A \in \mathcal{B}(\Omega) \) with \(c(A) \leq \delta \), we have \(\mathbb{E}||X|_{\mathbb{A}}| \leq \varepsilon \).

Proof. For each \(\varepsilon > 0 \), by Proposition [18] there exists an \(N > 0 \) such that \(\mathbb{E}[|X|_{\mathbb{A}}|_{\{|X| > N\}}] \leq \frac{\varepsilon}{2} \). Take \(\delta = \frac{\varepsilon}{2N} \). Then for a subset \(A \in \mathcal{B}(\Omega) \) with \(c(A) \leq \delta \), we have
\[
\mathbb{E}[|X|_{\mathbb{A}}|] \leq \mathbb{E}[|X|_{\mathbb{A}}|_{\{|X| > N\}}] + \mathbb{E}[|X|_{\mathbb{A}}|_{\{|X| \leq N\}}] \\
\leq \mathbb{E}[|X|_{\mathbb{A}}|_{\{|X| > N\}}] + Nc(A) \leq \varepsilon.
\]
\[\square\]

It is important to note that not every element in \(\mathbb{L}^p \) satisfies the condition \(\lim_{n \to \infty} \mathbb{E}[|X|^p 1_{\{|X| > n\}}] = 0 \). We give the following two counterexamples to show that \(\mathbb{L}^1 \) and \(\mathbb{L}^1_0 \) are different spaces even under the case that \(\mathcal{P} \) is weakly compact.

Example 20. Let \(\Omega = \mathbb{N} \), \(\mathcal{P} = \{P_n : n \in \mathbb{N}\} \) where \(P_1(\{1\}) = 1 \) and \(P_n(\{1\}) = 1 - \frac{1}{n} \), \(P_n(\{n\}) = \frac{1}{n} \), for \(n = 2, 3, \ldots \). \(\mathcal{P} \) is weakly compact. We consider a function \(X \) on \(\mathbb{N} \) defined by \(X(n) = n, n \in \mathbb{N} \). We have \(\mathbb{E}[|X|] = 2 \) but \(\mathbb{E}[|X|_{\mathbb{A}}|] = 1 \not\to 0 \). In this case, \(X \in \mathbb{L}^1 \) but \(X \not\in \mathbb{L}^1_0 \).

Example 21. Let \(\Omega = \mathbb{N} \), \(\mathcal{P} = \{P_n : n \in \mathbb{N}\} \) where \(P_1(\{1\}) = 1 \) and \(P_n(\{1\}) = 1 - \frac{1}{n} \), \(P_n(\{kn\}) = \frac{1}{n} \), \(k = 1, 2, \ldots, n, \) for \(n = 2, 3, \ldots \). \(\mathcal{P} \) is weakly compact. We consider a function \(X \) on \(\mathbb{N} \) defined by \(X(n) = n, n \in \mathbb{N} \). We have \(\mathbb{E}[|X|] = \frac{n^2}{2n} \) and \(n\mathbb{E}[1_{\{|X| \geq n\}}] = \frac{1}{n} \not\to 0 \), but \(\mathbb{E}[|X|_{\mathbb{A}}|_{\{|X| \geq n\}}] = \frac{1}{2} + \frac{1}{2n} \not\to 0 \). In this case, \(X \) is in \(\mathbb{L}^1 \), continuous and \(n\mathbb{E}[1_{\{|X| \geq n\}}] \to 0 \), but it is not in \(\mathbb{L}^1_0 \).

2.3 Properties of elements in \(\mathbb{L}^1_p \)

Definition 22. A mapping \(X \) on \(\Omega \) with values in a topological space is said to be quasi-continuous (q.c.) if
\[
\forall \varepsilon > 0, \text{ there exists an open set } O \text{ with } c(O) < \varepsilon \text{ such that } X|_O \text{ is continuous.}
\]
Definition 23. We say that $X : \Omega \to \mathbb{R}$ has a quasi-continuous version if there exists a quasi-continuous function $Y : \Omega \to \mathbb{R}$ with $X = Y$ q.s..

Proposition 24. Let $p > 0$. Then each element in L_p^c has a quasi-continuous version.

Proof. Let (X_n) be a Cauchy sequence in $C_b(\Omega)$ for the distance on \mathbb{L}^p. Let us choose a subsequence $(X_{n_k})_{k \geq 1}$ such that
\[
\mathbb{E}[|X_{n_{k+1}} - X_{n_k}|^p] \leq 2^{-2k}, \quad \forall k \geq 1,
\]
and set for all k,
\[
A_k = \bigcup_{i=k}^{\infty}\{|X_{n_{i+1}} - X_{n_i}| > 2^{-i/p}\}.
\]
Thanks to the subadditivity property and the Markov inequality, we have
\[
c(A_k) \leq \sum_{i=k}^{\infty}\mathbb{E}[|X_{n_{i+1}} - X_{n_i}|^p] \leq \sum_{i=k}^{\infty}2^{-i} = 2^{-k+1}.
\]
As a consequence, $\lim_{k \to \infty} c(A_k) = 0$, so the Borel set $A = \bigcap_{k=1}^{\infty} A_k$ is polar.

As each X_{n_k} is continuous, for all $k \geq 1$, A_k is an open set. Moreover, for all k, (X_{n_k}) converges uniformly on A_k^c so that the limit is continuous on each A_k^c.

This yields the result. \(\square\)

The following theorem gives a concrete characterization of the space \mathbb{L}_c^p.

Theorem 25. For each $p > 0$,
\[
\mathbb{L}_c^p = \{X \in \mathbb{L}^p : X has a quasi-continuous version, \lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] = 0\}.
\]

Proof. We denote
\[
J_p = \{X \in \mathbb{L}^p : X has a quasi-continuous version, \lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] = 0\}.
\]

Let $X \in \mathbb{L}_c^p$, we know by Proposition 24 that X has a quasi-continuous version. Since $X \in \mathbb{L}_c^p$, we have by Proposition 18 that $\lim_{n \to \infty} \mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] = 0$. Thus $X \in J_p$.

On the other hand, let $X \in J_p$ be quasi-continuous. Define $Y_n = (X \wedge n) \vee (-n)$ for all $n \in \mathbb{N}$. As $\mathbb{E}[|X|^p \mathbf{1}_{\{|X| > n\}}] \to 0$, we have $\mathbb{E}[|X - Y_n|^p] \to 0$.

Moreover, for all $n \in \mathbb{N}$, as Y_n is quasi-continuous, there exists a closed set F_n such that $c(F_n) < \frac{1}{n^{p+1}}$ and Y_n is continuous on F_n. It follows from Tietze’s extension theorem that there exists $Z_n \in C_b(\Omega)$ such that $|Z_n| \leq n$ and $Z_n = Y_n$ on F_n.

We then have
\[
\mathbb{E}[|Y_n - Z_n|^p] \leq (2n)^p c(F_n) \leq \frac{(2n)^p}{n^{p+1}}.
\]
So $\mathbb{E}[|X - Z_n|^p] \leq (1 + 2^{p-1})(\mathbb{E}[|X - Y_n|^p] + \mathbb{E}[|Y_n - Z_n|^p]) \to 0$, and $X \in \mathbb{L}_c^p$. \(\square\)
We give the following example to show that L_c^p is different from L_b^p even under the case that \mathcal{P} is weakly compact.

Example 26. Let $\Omega = [0,1]$, $\mathcal{P} = \{\delta_x : x \in [0,1]\}$ is weakly compact. It is seen that $L_b^p = C_b(\Omega)$ which is different from L_c^p.

We denote $L_c^\infty := \{X \in L^\infty : X$ has a quasi-continuous version\}, we have

Proposition 27. L_c^∞ is a closed linear subspace of L^∞.

Proof. For each Cauchy sequence $\{X_n\}_{n=1}^\infty$ of L^∞ under $\|\cdot\|_\infty$, we can find a subsequence $\{X_{n_i}\}_{i=1}^\infty$ such that $\|X_{n_{i+1}} - X_{n_i}\|_\infty \leq 2^{-i}$. We may further assume that each X_n is quasi-continuous. Then it is easy to prove that for each $\varepsilon > 0$, there exists an open set G such that $c(G) < \varepsilon$ and $|X_{n_{i+1}} - X_{n_i}| \leq 2^{-i}$ for all $i \geq 1$ on G^c, which implies that the limit belongs to L_c^∞. \(\square\)

As an application of Theorem 25, we can easily get the following results.

Proposition 28. Assume that $X : \Omega \to \mathbb{R}$ has a quasi-continuous version and that there exists a function $f : \mathbb{R}^+ \to \mathbb{R}$ satisfying $\lim_{t \to \infty} \frac{t^p}{f(t)} = \infty$ and $E[f(|X|)] < \infty$. Then $X \in L_c^p$.

Proof. For each $\varepsilon > 0$, there exists an $N > 0$ such that $\frac{t^p}{f(t)} \geq \frac{1}{\varepsilon}$, for all $t \geq N$. Thus

$$E[|X|^p 1_{\{|X| > N\}}] \leq \varepsilon E[f(|X|) 1_{\{|X| > N\}}] \leq \varepsilon E[f(|X|)].$$

Hence $\lim_{N \to \infty} E[|X|^p 1_{\{|X| > N\}}] = 0$. From Theorem 25 we infer $X \in L_c^p$. \(\square\)

Lemma 29. Let $\{P_n\}_{n=1}^\infty \subset \mathcal{P}$ converge weakly to $P \in \mathcal{P}$. Then for each $X \in L^\infty_c$, we have $E_{P_n}[X] \to E_P[X]$.

Proof. We may assume that X is quasi-continuous, otherwise we can consider its quasi-continuous version which does not change the value E_Q for each $Q \in \mathcal{P}$. For each $\varepsilon > 0$, there exists an $N > 0$ such that $E[|X|^p 1_{\{|X| > N\}}] < \frac{\varepsilon}{2}$. Set $X_N = (X \wedge N) \vee (-N)$. We can find an open subset G such that $c(G) < \frac{\varepsilon}{3N}$ and X_N is continuous on G^c. By Tietze’s extension theorem, there exists $Y \in C_b(\Omega)$ such that $|Y| \leq N$ and $Y = X_N$ on G^c. Obviously, for each $Q \in \mathcal{P},$

$$|E_Q[X] - E_Q[Y]| \leq E_Q[|X - X_N|] + E_Q[|X_N - Y|] \leq \frac{\varepsilon}{2} + 2N\frac{\varepsilon}{4N} = \varepsilon.$$

It then follows that

$$\limsup_{n \to \infty} E_{P_n}[X] \leq \lim_{n \to \infty} E_{P_n}[Y] + \varepsilon = E_P[Y] + \varepsilon \leq E_P[X] + 2\varepsilon,$$

and similarly $\liminf_{n \to \infty} E_{P_n}[X] \geq E_P[X] - 2\varepsilon$. Since ε can be arbitrarily small, we then have $E_{P_n}[X] \to E_P[X]$. \(\square\)

Remark 30. For continuous X, the above lemma is Lemma 3.8.7 in [4].
Theorem 36. Let X be a process indexed by I. In the above definition, quasi-modification is also called modification in some papers.

Remark 32. It is important to note that X does not necessarily belong to L_1^1.

Proof. For the case $E[X] > -\infty$, if there exists a $\delta > 0$ such that $E[X_n] > E[X] + \delta$, $n = 1, 2, \ldots$, we then can find a $P_n \in \mathcal{P}$ such that $E_{P_n}[X_n] > E[X] + \delta - \frac{1}{n}$, $n = 1, 2, \ldots$. Since \mathcal{P} is weakly compact, we then can find a subsequence $\{P_{n_i}\}_{i=1}^{\infty}$ that converges weakly to some $P \in \mathcal{P}$. From which it follows that

$$E_P[X] = \lim_{j \to \infty} E_{P_n}[X_{n_j}] \geq \limsup_{j \to \infty} E_{P_{n_j}}[X_{n_j}] \geq \limsup_{j \to \infty} \{E[X] + \delta - \frac{1}{n_j}\} = E[X] + \delta, \quad i = 1, 2, \ldots.$$

Thus $E_P[X] \geq E[X] + \delta$. This contradicts the definition of $E[\cdot]$.

We immediately have the following corollary.

Corollary 33. Let \mathcal{P} be weakly compact and let $\{X_n\}_{n=1}^{\infty}$ be a sequence in L_1^1 decreasingly converging to 0 q.s.. Then $E[X_n] \downarrow 0$.

2.4 Kolmogorov’s criterion

Definition 34. Let I be a set of indices, $(X_t)_{t \in I}$ and $(Y_t)_{t \in I}$ be two processes indexed by I. We say that Y is a quasi-modification of X if for all $t \in I$, $X_t = Y_t$ q.s..

Remark 35. In the above definition, quasi-modification is also called modification in some papers.

We now give a Kolmogorov criterion for a process indexed by \mathbb{R}^d with $d \in \mathbb{N}$.

Theorem 36. Let $p > 0$ and $(X_t)_{t \in [0,1]^d}$ be a process such that for all $t \in [0,1]^d$, X_t belongs to L^p. Assume that there exist positive constants c and ε such that

$$E[|X_t - X_s|^p] \leq c|t - s|^{d+\varepsilon}.$$

Then X admits a modification \tilde{X} such that

$$E\left[\left(\sup_{s \neq t} \frac{|\tilde{X}_t - \tilde{X}_s|}{|t - s|^\alpha}\right)^p\right] < \infty,$$

for every $\alpha \in [0, \varepsilon/p]$. As a consequence, paths of \tilde{X} are quasi-surely Hölder continuous of order α for every $\alpha < \varepsilon/p$ in the sense that there exists a Borel set N of capacity 0 such that for all $w \in N^c$, the map $t \to \tilde{X}(w)$ is Hölder continuous of order α for every $\alpha < \varepsilon/p$. Moreover, if $X_t \in L_1^p$ for each t, then we also have $\tilde{X}_t \in L_1^p$.

12
Proof. Let D be the set of dyadic points in $[0, 1]^d$:

$$D = \left\{ \left(\frac{i_1}{2^n}, \ldots, \frac{i_d}{2^n} \right); \ n \in \mathbb{N}, i_1, \ldots, i_d \in \{0, 1, \ldots, 2^n\} \right\}.$$

Let $\alpha \in [0, \varepsilon/p)$. We set

$$M = \sup_{s, t \in D, s \neq t} \frac{|X_t - X_s|}{|t - s|^\alpha}.$$

Thanks to the classical Kolmogorov’s criterion (see Revuz-Yor [31]), we know that for any $P \in \mathcal{P}$, $E_P[M]$ is finite and uniformly bounded with respect to P so that

$$E[M] = \sup_{P \in \mathcal{P}} E_P[M] < \infty.$$

As a consequence, the map $t \mapsto X_t$ is uniformly continuous on D quasi-surely and so we can define

$$\forall t \in [0, 1]^d, \hat{X}_t = \lim_{s \to t, s \in D} X_s.$$

It is now clear that \hat{X} satisfies the enounced properties. \hfill \Box

3 G-Brownian motion under G-expectations

In this section we consider the following path spaces: $\Omega = C^d_0(\mathbb{R}^+)$ the space of all \mathbb{R}^d-valued continuous paths $(\omega_t)_{t \in \mathbb{R}^+}$, with $\omega_0 = 0$, equipped with the distance

$$\rho(\omega^1, \omega^2) := \sum_{i=1}^{\infty} 2^{-i} \left(\max_{t \in [0, i]} \{|\omega^1_t - \omega^2_t|\} \land 1 \right).$$

It is clear that (Ω, ρ) is a complete separable metric space. We also denote $\Omega_T = \{ \omega, \lambda T : \omega \in \Omega \}$ for each fixed $T \in [0, \infty)$.

Let \mathcal{H} be a vector lattice of real functions defined on Ω such that if $X_1, \ldots, X_n \in \mathcal{H}$ then $\varphi(X_1, \ldots, X_n) \in \mathcal{H}$ for each $\varphi \in C_{b, \text{Lip}}(\mathbb{R}^n)$, where $C_{b, \text{Lip}}(\mathbb{R}^n)$ denotes the space of all bounded and Lipschitz functions on \mathbb{R}^n.

Definition 37. A functional $E : \mathcal{H} \mapsto \mathbb{R}$ is called a sublinear expectation on \mathcal{H} if it satisfies:

1. **Monotonicity:** for all X, Y in \mathcal{H}, $X \geq Y \implies E[X] \geq E[Y]$.
2. **Sub-additivity:** for all X, Y in \mathcal{H}, $E[X + Y] \leq E[X] + E[Y]$.
3. **Positive homogeneity:** for all $\lambda \geq 0$, $X \in \mathcal{H}$, $E[\lambda X] = \lambda E[X]$.
4. **Constant translatability:** for all $c \in \mathbb{R}$, $X \in \mathcal{H}$, $E[X + c] = E[X] + c$.

13
A d-dimensional random vector X with each component in \mathcal{H} is said to be G-normally distributed under the sublinear expectation $\mathbb{E}[\cdot]$ if for each $\varphi \in C_{b,Lip}(\mathbb{R}^d)$, the function u defined by

$$u(t, x) := \mathbb{E}[\varphi(x + \sqrt{t}X)], \quad t \geq 0, \quad x \in \mathbb{R}^d$$

satisfies the following G-heat equation:

$$\frac{\partial u}{\partial t} - G(D^2 u) = 0, \quad \text{on } (t, x) \in [0, \infty) \times \mathbb{R}^d,$$

$$u(0, x) = \varphi(x),$$

where $D^2 u$ is the Hessian matrix of u, i.e., $D^2 u = (\partial^2_{x_i x_j} u)_{i,j=1}^d$ and

$$G(A) = \frac{1}{2} \sup_{\gamma \in \Theta} \text{tr}[\gamma \gamma^T A], \quad A = (A_{ij})_{i,j=1}^d \in \mathbb{S}_d. \quad (1)$$

\mathbb{S}_d denotes the space of $d \times d$ symmetric matrices. Θ is a given non empty, bounded and closed subset of $\mathbb{R}^{d \times d}$ which is the space of all $d \times d$ matrices.

Remark 38. The above G-heat equation has a unique viscosity solution. We refer to [3] for the definition, existence, uniqueness and comparison theory of this type of parabolic PDE (see also [29] for our specific situation). If G is non-degenerate, i.e., there exists a $\beta > 0$ such that $G(A) - G(B) \geq \beta \text{tr}[A - B]$ for each $A, B \in \mathbb{S}_d$ with $A \succeq B$, then the above G-heat equation has a unique $C^{1,2}$-solution (see e.g. [22]).

We consider the canonical process: $B_t(\omega) = \omega_t$, $t \in [0, \infty)$, for $\omega \in \Omega$. We introduce the space of finite dimensional cylinder random variables: for each fixed $T \geq 0$, we set

$$L_{ip}(\Omega_T) := \{\varphi(B_{t_1}, B_{t_2}, \ldots, B_{t_n}) : \forall n \geq 1, t_1, \ldots, t_n \in [0, T], \forall \varphi \in C_{b,Lip}(\mathbb{R}^{d \times n})\},$$

It is clear that $L_{ip}(\Omega_T) \subseteq L_{ip}(\Omega_T) \subseteq C_b(\Omega_T)$, for $t \leq T$. We also denote

$$L_{ip}(\Omega) := \bigcup_{n=1}^{\infty} L_{ip}(\Omega_n) \subseteq C_b(\Omega).$$

We can construct (see [20,27]) a consistent sublinear expectation called $G-$expectation $\mathbb{E}[\cdot]$ on $L_{ip}(\Omega)$, such that B_t is G-normally distributed under $\mathbb{E}[\cdot]$ and for each $s, t \geq 0$ and $t_1, \ldots, t_N \in [0, t]$ we have

$$\mathbb{E}[\varphi(B_{t_1}, \ldots, B_{t_N}, B_{t+s} - B_t)] = \mathbb{E}[\psi(B_{t_1}, \ldots, B_{t_N})], \quad (2)$$

where $\psi(x_1, \ldots, x_N) = \mathbb{E}[\varphi(x_1, \ldots, x_N, \sqrt{s}B_t)]$. Under $G-$expectation $\mathbb{E}[\cdot]$, the canonical process $\{B_t : t \geq 0\}$ is called $G-$Brownian motion.

Remark 39. Relation [3] implies that the increments of B are independent and stationary distributed with respect to the sublinear expectation $\mathbb{E}[\cdot]$. The condition that B_t is G-normally distributed can be also automatically obtained provided that $\mathbb{E}[\|B_t\|^2] \leq Ct^2$ (see [29]).

14
The topological completion of $L_{ip}(\Omega_T)$ (resp. $L_{ip}(\Omega)$) under the Banach norm $\mathbb{E}[\cdot]$ is denoted by $L_{ip}^c(\Omega_T)$ (resp. $L_{ip}^c(\Omega)$). $\mathbb{E}[\cdot]$ can be extended uniquely to a sublinear expectation on $L_{ip}^c(\Omega)$.

In the previous section the sublinear expectation $\mathbb{E}[\cdot]$ is induced as an upper expectation associated to a family \mathcal{P} of probability measures. In this Section $\mathbb{E}[\cdot]$ will always be the G-expectation. We will prove that $C_b(\Omega) \subset L_{ip}^c(\Omega)$ and that, in fact, $\mathbb{E}[\cdot]$ is the upper expectation of a weakly compact family \mathcal{P} on Ω, thus all results in Section 2 hold true.

3.1 G-Expectation as an upper-Expectation

In this subsection we will construct a family \mathcal{P} of probability measures on Ω, for which the upper expectation coincides with the G-expectation $\mathbb{E}[\cdot]$ on $L_{ip}(\Omega)$. Let (Ω, \mathcal{F}, P) be a probability space and $(W_t)_{t \geq 0} = (W_t^i)_{i=1, t \geq 0}$ a d-dimensional Brownian motion in this space. The filtration generated by \bar{W} is denoted by

$$\mathcal{F}_t := \sigma\{W_u, 0 \leq u \leq t\} \vee \mathcal{N}, \quad \mathcal{F}_t^s := \sigma\{W_{s+u} - W_s, 0 \leq u \leq t\} \vee \mathcal{N},$$

where \mathcal{N} is the collection of P-null subsets. We also denote, for a fixed $s \geq 0$,

$$\mathcal{F}_t^s := \sigma\{W_{s+u} - W_s, 0 \leq u \leq t\} \vee \mathcal{N}, \quad \mathcal{F}_t^s := \{\mathcal{F}_t^s\}_{t \geq 0}.$$

Let Θ be a given bounded and closed subset in $\mathbb{R}^{d \times d}$. We denote by $\mathcal{A}_{t,T}^{\Theta}$, the collection of all Θ-valued \mathcal{F}-adapted process on an interval $[t, T] \subset [0, \infty)$. For each fixed $\theta \in \mathcal{A}_{t,T}^{\Theta}$ we denote

$$B_{t,T}^{i,\theta} := \int_t^T \theta_s dW_s.$$

In this section we will prove that, for each $n = 1, 2, \ldots$, $\varphi \in C_b, \text{Lip}(\mathbb{R}^{n \times n})$ and $0 \leq t_1, \ldots, t_n < \infty$, the G-expectation defined in [26, 27] can be equivalently defined by

$$\mathbb{E}[\varphi(B_{t_1}, B_{t_2} - B_{t_1}, \ldots, B_{t_n} - B_{t_{n-1}})] = \sup_{\theta \in \mathcal{A}_{t,T}^{\Theta}} E_P[\varphi(B_{t_1}^{i,\theta}, B_{t_2}^{i,\theta}, \ldots, B_{t_n}^{i,\theta})].$$

Given $\varphi \in C_b, \text{Lip}(\mathbb{R}^n \times \mathbb{R}^d)$, $0 \leq t \leq T < \infty$ and $\zeta \in L^2(\Omega, \mathcal{F}_t, P; \mathbb{R}^n)$, we define

$$\Lambda_{t,T}[\zeta] = \text{ess sup}_{\theta \in \mathcal{A}_{t,T}^{\Theta}} E_P[\varphi(\zeta, \int_t^T \theta_s dW_s)|\mathcal{F}_t]. \quad (3)$$

Lemma 40. For each θ^1 and θ^2 in $\mathcal{A}_{t,T}^{\Theta}$, there exists $\theta \in \mathcal{A}_{t,T}^{\Theta}$ such that

$$E_P[\varphi(\zeta, B_{t,T}^{i,\theta})|\mathcal{F}_t] = E_P[\varphi(\zeta, B_{t,T}^{i,\theta^1})|\mathcal{F}_t] \vee E_P[\varphi(\zeta, B_{t,T}^{i,\theta^2})|\mathcal{F}_t]. \quad (4)$$

Consequently, there exists a sequence $\{\theta^i\}_{i=1}^\infty$ of $\mathcal{A}_{t,T}^{\Theta}$, such that

$$E_P[\varphi(\zeta, B_{t,T}^{i,\theta^i})|\mathcal{F}_t] \nearrow \Lambda_{t,T}[\zeta], \quad P\text{-a.s..} \quad (5)$$
We also have, for each \(s \leq t \),

\[
E_P[\operatorname{ess} \sup_{\theta \in \mathcal{A}_t^{\theta, \omega}} E_P[\varphi(\zeta, \int_t^T \theta_s dW_s)|\mathcal{F}_t]|\mathcal{F}_s] = \operatorname{ess} \sup_{\theta \in \mathcal{A}_t^{\theta, \omega}} E_P[\varphi(\zeta, \int_t^T \theta_s dW_s)|\mathcal{F}_s].
\]

(6)

Proof. We set \(A = \left\{ \omega : E_P[\varphi(\zeta, B_t^{\theta, \omega})|\mathcal{F}_t](\omega) \geq E_P[\varphi(\zeta, B_T^{\theta, \omega})|\mathcal{F}_t](\omega) \right\} \) and take \(\theta_s = I_{[t,T]}(s)(I_A \theta_s^1 + I_A \theta_s^2) \). Since

\[
\varphi(\zeta, B_t^{\theta, \omega}) = I_A \varphi(\zeta, B_t^{\theta, \omega}) + I_A \varphi(\zeta, B_T^{\theta, \omega}),
\]

we derive (41) and then (43). (6) follows from (41) and Yan’s commutation theorem (cf \(\text{[33]} \) in Chinese and Thm. a3 in the Appendix of \(\text{[24]} \)).

Lemma 41. The mapping \(\Lambda_{t,T}[] : L^2(\Omega, \mathcal{F}_t, P; \mathbb{R}^n) \rightarrow L^2(\Omega, \mathcal{F}_t, P; \mathbb{R}) \) has the following regularity properties: for each \(\zeta, \zeta' \in L^2(\mathcal{F}_t) \):

(i) \(\Lambda_{t,T}[\zeta] \leq C_\varphi \).

(ii) \(|\Lambda_{t,T}[\zeta] - \Lambda_{t,T}[\zeta']| \leq k_\varphi |\zeta - \zeta'| \).

where \(C_\varphi = \sup_{(x,y)} \varphi(x,y) \) and \(k_\varphi \) is the Lipschitz constant of \(\varphi \).

Proof. We only need to prove (ii). We have

\[
\Lambda_{t,T}[\zeta] - \Lambda_{t,T}[\zeta'] \leq \operatorname{ess} \sup_{\mathcal{A}_t^{\theta, \omega}} E_P[\varphi(\zeta, \int_t^T \theta_s dW_s) - \varphi(\zeta', \int_t^T \theta_s dW_s)|\mathcal{F}_t]
\]

\[
\leq k_\varphi |\zeta - \zeta'|
\]

and, symmetrically, \(\Lambda_{t,T}[\zeta'] - \Lambda_{t,T}[\zeta] \leq k_\varphi |\zeta - \zeta'| \). Thus (ii) follows.

Lemma 42. For each \(x \in \mathbb{R}^n \), \(\Lambda_{t,T}[x] \) is a deterministic function. Moreover,

\[
\Lambda_{t,T}[x] = \Lambda_{0,T-t}[x].
\]

(7)

Proof. Since the collection of processes \((\theta_s)_{s \in [t,T]} \) with

\[
\left\{ \theta_s = \sum_{j=1}^N I_{A_j \theta}^j s : \{A_j\}_{j=1}^N \text{ is an } \mathcal{F}_t \text{-partition of } \Omega, \theta^j \in \mathcal{A}_{t,T}^{\theta} \text{ is } (\mathcal{F}_t) \text{-adapted} \right\}
\]

is dense in \(\mathcal{A}_{t,T}^{\theta} \), we can take a sequence \(\theta^j s = \sum_{j=1}^N I_{A_j \theta}^j s \) of this type of processes such that \(E_P[\varphi(x, B_t^{\theta, \omega})|\mathcal{F}_t] \rightarrow \Lambda_{t,T}[x] \). But

\[
E_P[\varphi(x, B_t^{\theta, \omega})|\mathcal{F}_t] = \sum_{j=1}^N I_{A_j \theta}^j E_P[\varphi(x, B_t^{\theta, \omega})|\mathcal{F}_t] = \sum_{j=1}^N I_{A_j \theta}^j E_P[\varphi(x, B_t^{\theta, \omega})]
\]

\[
\leq \max_{1 \leq j \leq N} E_P[\varphi(x, B_t^{\theta, \omega})] = E_P[\varphi(x, B_t^{\theta, \omega})],
\]

16
where, for each i, j, is a maximizer of $\{E_P[\varphi(x, B_T^{t,\theta^{ij}})]\}_{j=1}^{N_i}$. This implies that

$$\lim_{i \to \infty} E_P[\varphi(x, B_T^{t,\theta^{ij}})] = \Lambda_{t,T}[x], \quad a.s.$$

and thus $\Lambda_{t,T}[x]$ is a deterministic number. In the above proof, we know that

$$ess \sup_{\theta \in \Theta_0} E_P[\varphi(x, B_T^{t,\theta})] = ess \sup_{\theta \in \Theta_0} E_P[\varphi(x, \int_0^{T-t} \theta_s dW_s^1)],$$

where $W_t^i = W_{t+s} - W_t$, $s \geq 0$, and Θ_0 is the collection of Θ-valued and \mathbb{F}-adapted processes on $[0, T-t]$. Thus (7) follows.

We will denote $u_{t,T}(x) := \Lambda_{t,T}[x]$, $t \leq T$. By Lemma 43, $u_{t,T}(\cdot)$ is a bounded and Lipschitz function.

Lemma 43. For each $\zeta \in L^2(\Omega, \mathcal{F}_t, P; \mathbb{R}^n)$, we have

$$u_{t,T}(\zeta) = \Lambda_{t,T}[\zeta], \quad a.s.$$

Proof. By the above regularities of $\Lambda_{t,T}[]$ and $u_{t,T}(\cdot)$ we only need to check the situation where ζ is a step function, i.e., $\zeta = \sum_{j=1}^{N} I_{A_j} x_j$, where $x_j \in \mathbb{R}^n$ and $\{A_j\}_{j=1}^{N}$ is an \mathcal{F}_t-partition of of Ω. For each x_j, let $\{\theta^{ij}\}_{i=1}^{\infty}$ of Θ_0 be (\mathbb{F}_t)-adapted process such that

$$\lim_{i \to \infty} E_P[\varphi(x_j, B_T^{t,\theta^{ij}})] = \Lambda_{t,T}[x_j] = u_{t,T}(x_j).$$

Setting $\theta^i = \sum_{j=1}^{N} \theta^{ij} I_{A_j}$, we have

$$\Lambda_{t,T}[\zeta] = \sum_{j=1}^{N} I_{A_j} E_P[\varphi(x_j, B_T^{t,\theta^{ij}})] = E_P[\varphi(\sum_{j=1}^{N} I_{A_j} x_j, B_T^{t,\sum_{j=1}^{N} I_{A_j} \theta^{ij}})|\mathcal{F}_t]$$

$$= \sum_{j=1}^{N} I_{A_j} E_P[\varphi(x_j, B_T^{t,\theta^{ij}})|\mathcal{F}_t] \to \sum_{j=1}^{N} I_{A_j} u_{t,T}(x_j) = u_{t,T}(\zeta).$$

On the other hand, for each given $\theta \in \Theta_0$, we have

$$E_P[\varphi(\zeta, B_T^{t,\theta})|\mathcal{F}_t] = E_P[\varphi(\sum_{j=1}^{N} I_{A_j} x_j, B_T^{t,\theta})|\mathcal{F}_t]$$

$$= \sum_{j=1}^{N} I_{A_j} E_P[\varphi(x_j, B_T^{t,\theta})|\mathcal{F}_t]$$

$$\leq \sum_{j=1}^{N} I_{A_j} u_{t,T}(x_j) = u_{t,T}(\zeta).$$

We thus have $ess \sup_{\theta \in \Theta_0} E_P[\varphi(\zeta, B_T^{t,\theta})|\mathcal{F}_t] \leq u_{t,T}(\zeta)$. The proof is complete.

17
The following result generalizes the well-known dynamical programming principle:

Theorem 44. For each \(\varphi \in C_{b,\text{Lip}}(\mathbb{R}^n \times \mathbb{R}^d) \), \(0 \leq s \leq t \leq T \) and \(\zeta \in L^2(\Omega, \mathcal{F}_s, P; \mathbb{R}^n) \) we have

\[
\text{ess sup}_{\theta \in A_{s,T}^\theta} E_P[\varphi(\zeta, B^s_{t+h}, B^t_{T}) | \mathcal{F}_s] = \text{ess sup}_{\theta \in A_{s,T}^\theta} E_P[\psi(x, y, B^s_{t+h}, B^t_{T}) | \mathcal{F}_s],
\]

where \(\psi \in C_{b,\text{Lip}}(\mathbb{R}^n \times \mathbb{R}^d) \) is given by

\[
\psi(x, y) := \text{ess sup}_{\bar{\theta} \in A_{T-T}^{\bar{\theta}}} E_P[\varphi(x, y, B^s_{T}, B^t_{T}) | \mathcal{F}_T] = \sup_{\bar{\theta} \in A_{T-T}^{\bar{\theta}}} E_P[\varphi(x, y, B^s_{T}, B^t_{T})].
\]

Proof. It is clear that

\[
\text{ess sup}_{\theta \in A_{s,T}^\theta} E_P[\varphi(\zeta, B^s_{t+h}, B^t_{T}) | \mathcal{F}_s] = \text{ess sup}_{\theta \in A_{s,T}^\theta} \left\{ \text{ess sup}_{\bar{\theta} \in A_{T-T}^{\bar{\theta}}} E_P[\varphi(\zeta, B^s_{t+h}, B^t_{T}) | \mathcal{F}_T] \right\}.
\]

It follows from (6) and Lemma 43 that

\[
\text{ess sup}_{\theta \in A_{s,T}^\theta} E_P[\varphi(\zeta, B^s_{t+h}, B^t_{T}) | \mathcal{F}_s] = E_P[\psi(\zeta, B^s_{t+h}, B^t_{T}) | \mathcal{F}_s],
\]

We thus have (8). \(\square \)

For each given \(\varphi \in C_{b,\text{Lip}}(\mathbb{R}^d) \) and \((t, x) \in [0, T] \times \mathbb{R}^d \), we set

\[
v(t, x) := \sup_{\theta \in A_{t,T}^\theta} E_P[\varphi(x + B^t_{T})].
\]

Since for each \(h \in [0, T-t] \),

\[
v(t, x) = \sup_{\theta \in A_{t,T}^\theta} E_P[\varphi(x + B^t_{T})] = \sup_{\theta \in A_{t,T}^\theta} E_P[\varphi(x + B^t_{t+h}, B^t_{T})] = \sup_{\theta \in A_{t,T}^\theta} E_P[v(t+h, x + B^t_{t+h})].
\]

This gives us the well-known dynamic programming principle:

Proposition 45. We have

\[
v(t, x) = \sup_{\theta \in A_{t,T}^\theta} E_P[v(t+h, x + B^t_{t+h})],
\]

(9)
Lemma 46. v is bounded by $\sup |\varphi|$. It is a Lipschitz function in x and $\frac{1}{2}$-holder function in t.

Proof. We only need to prove the regularity in t.

$$
\sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P[v(t+h, x + B_{t+h}^\theta) - v(t+h, x)] = v(t, x) - v(t + h, x).
$$

Since v is a Lipschitz function in x, the absolute value of the left hand is bounded by

$$
C \sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P[|B_{t+h}^\theta|] \leq C_1 h^{1/2}.
$$

The $\frac{1}{2}$-holder of v in t is obtained.

Theorem 47. v is a viscosity solution of the G-heat equation:

$$
\frac{\partial v}{\partial t} + G(D^2 v) = 0, \quad \text{on } (t, x) \in [0, T) \times \mathbb{R}^d,
$$

$$
v(T, x) = \varphi(x),
$$

where the function G is given in (1).

Proof. Let $\psi \in C^{2,3}_b((0,T) \times \mathbb{R}^d)$ be such that $\psi \geq v$ and, for a fixed $(t, x) \in (0,T) \times \mathbb{R}^d$, $\psi(t, x) = v(t, x)$. From the dynamic programming principle (9) it follows that

$$
0 = \sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P[v(t+h, x + B_{t+h}^\theta) - v(t, x)]
$$

$$
\leq \sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P[\psi(t+h, x + B_{t+h}^\theta) - \psi(t, x)]
$$

$$
= \sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P \left[\int_t^{t+h} \left(\frac{\partial \psi}{\partial s} + \frac{1}{2} \text{tr}[\theta_s \theta_s^T D^2 \psi] \right) (s, x + \int_t^s \theta_r dW_r) ds \right].
$$

Since $(\frac{\partial \psi}{\partial s} + \frac{1}{2} \text{tr}[\theta_s \theta_s^T D^2 \psi])(s, y)$ is uniformly Lipschitz in (s, y), we have for small $h > 0$

$$
E_P \left[\frac{\partial \psi}{\partial s} + \frac{1}{2} \text{tr}[\theta_s \theta_s^T D^2 \psi] \right] (s, x + \int_t^s \theta_r dW_r) \leq E_P \left[\frac{\partial \psi}{\partial s} + \frac{1}{2} \text{tr}[\theta_s \theta_s^T D^2 \psi] \right] (t, x) + Ch^{1/2}.
$$

Thus

$$
\sup_{\theta \in \mathcal{A}^0_{t,t+h}} E_P \int_t^{t+h} \left(\frac{\partial \psi}{\partial s} + \frac{1}{2} \text{tr}[\theta_s \theta_s^T D^2 \psi] \right) (t, x) ds + Ch^{3/2} \geq 0.
$$

Thus

$$
\left(\frac{\partial \psi}{\partial s} + \frac{1}{2} \sup_{\gamma \in \Theta} \text{tr}[\gamma \gamma^T D^2 \psi] \right) (t, x) h + Ch^{3/2} \geq 0
$$
and then $\frac{\partial \psi}{\partial t} + G(D^2 \psi))(t, x) \geq 0$. By the definition, v is a viscosity subsolution. Similarly we can prove that it is also a supersolution.

We observe that $u(t, x) := v(T - t, x)$, thus u is a viscosity solution of $\frac{\partial u}{\partial t} - G(D^2 u) = 0$, with Cauchy condition $u(0, x) = \varphi(x)$.

From the uniqueness of the viscosity solution of G-heat equation and Theorem 44 we get immediately:

Proposition 48.

$$
E[\varphi(B^0_{t_1}, B^0_{t_2}, \ldots , B^0_{t_n})] = \sup_{\theta \in A^{\theta}_{0,T}} E_{P_\theta}[\varphi(B^0_{t_1}, B^0_{t_2}, \ldots , B^0_{t_n})] \\
= \sup_{\theta \in A^{\theta}_{0,T}} E_{P_\theta}[\varphi(B^0_{t_1}, B^0_{t_2}, \ldots , B^0_{t_{n-1}})],
$$

where P_θ is the law of the process $B^0_{t} = \int_0^t \theta_s dW_s$, $t \geq 0$, for $\theta \in A^{\theta}_{0,\infty}$.

Now we prove that $\{P_\theta, \theta \in A^{\theta}_{0,\infty}\}$ is tight, this is important in the following subsection.

Proposition 49. The family of probability measures $\{P_\theta, \theta \in A^{\theta}_{0,\infty}\}$ on $C^d_0(\mathbb{R}^+) \quad$ is tight.

Proof. We apply Itô’s formula to $(B^0_{t})_{t \geq s}$:

$$
|B^0_{t}|^4 = \int_s^t 4 |B^0_{r}|^2 B^0_{r} \, dB^0_{r} + 2 \int_s^t \text{tr}[\theta_r \theta_r^T (I_d |B^0_{r}|^2 + 2 B^0_{r} \otimes B^0_{r})] \, dr.
$$

We thus have

$$
E_{P_\theta}[|B_t - B_s|^4] = 2E \int_s^t \text{tr}[\theta_r \theta_r^T (I_d |B^0_{r}|^2 + 2 B^0_{r} \otimes B^0_{r})] \, dr \\
= 2E \int_s^t (|\theta_r|^2 |B^0_{r}|^2 + 2(\theta_r, B^0_{r})^2) \, dr \\
\leq C \int_s^t |B^0_{r}|^2 \, dr \leq Cd \int_s^t (r - s) \, dr \\
= C d \frac{(t - s)^2}{2}.
$$

We then apply the well-known result of moment criterion for tightness of Kolmogorov-Chentsov’s type to conclude that $\{P_\theta, \theta \in A\}$ is tight.

3.2 Capacity related to G-expectation

We denote $\mathcal{P}_1 = \{P_\theta : \theta \in A^{\theta}_{0,\infty}\}$ and $\mathcal{P} = \overline{\mathcal{P}_1}$ the closure of \mathcal{P}_1 under the topology of weak convergence. By Proposition 19 \mathcal{P}_1 is tight and then \mathcal{P} is weakly compact. We set

$$
c(A) := \sup_{P \in \mathcal{P}} P(A), \quad A \in \mathcal{B}(\Omega).
$$
For each \(X \in L^0(\Omega) \) such that \(E_P[X] \) exists for each \(P \in \mathcal{P} \), we set

\[
\hat{E}[X] = \mathbb{E}^\mathcal{P}[X] = \sup_{P \in \mathcal{P}} E_P[X].
\]

Now we prove that

\[
L^1_\mathcal{G}(\Omega_T) = \{ X \in L^0(\Omega_T) : X \text{ has a q.c. version, } \lim_{n \to \infty} \hat{E}[|X|1_{\{|X|>n\}}] = 0 \},
\]

\[
L^1_\mathcal{G}(\Omega) = \{ X \in L^0(\Omega) : X \text{ has a q.c. version, } \lim_{n \to \infty} \hat{E}[|X|1_{\{|X|>n\}}] = 0 \},
\]

\[
\mathbb{E}[X] = \hat{E}[X], \quad \forall X \in L^1_\mathcal{G}(\Omega),
\]

where q.c. denotes quasi-continuous for simplicity.

For proving this we need the following lemma.

Lemma 50. Let \(K \) be a compact subset of \(\Omega_T \) equipped with the distance \(\rho(\omega^1,\omega^2) = \max_{0 \leq t \leq T} |\omega^1_t - \omega^2_t| \). Then for each \(\Phi \in C_b(\Omega_T) \), there exists a sequence \(\{\Phi_n\}_{n=1}^\infty \subset L_{ip}(\Omega_T) \) with \(\|\Phi_n\|_{\sup} \leq \|\Phi\|_{\sup} \) such that \(\Phi_n \) converges uniformly to \(\Phi \) on \(K \).

Proof. This is just the consequence of the Stone-Weierstrass theorem. \(\square \)

Theorem 51. We have

\[
L^1_\mathcal{G}(\Omega_T) = \{ X \in L^0(\Omega_T) : X \text{ has a q.c. version, } \lim_{n \to \infty} \hat{E}[|X|1_{\{|X|>n\}}] = 0 \},
\]

\[
\mathbb{E}[X] = \hat{E}[X], \quad \forall X \in L^1_\mathcal{G}(\Omega_T).
\]

Proof. It follows from Proposition [48] that

\[
\mathbb{E}[X] = \hat{E}[X], \quad \forall X \in L_{ip}(\Omega_T).
\]

Thus \(L^1_\mathcal{G}(\Omega_T) \) can be seen as the completion of \(L_{ip}(\Omega_T) \) under the norm \(\hat{E}[|\cdot|] \). For any fixed \(\psi \in C_b(\Omega_T) \), since \(\mathcal{P} \) is tight, we have for each \(n \in \mathbb{N} \), there exists a compact set \(K_n \subset \Omega_T \) such that \(c(K_n^c) < \frac{1}{n} \). For this \(K_n \), by Lemma 50 there exists a \(\varphi_n \in L_{ip}(\Omega_T) \) such that

\[
\|\varphi_n\|_{\sup} \leq \|\psi\|_{\sup} \quad \text{and} \quad \sup_{\omega \in K_n} |\varphi_n(\omega) - \psi(\omega)| < \frac{1}{n}.
\]

Thus

\[
\hat{E}[|\varphi_n - \psi|] \leq 2 \|\psi\|_{\sup} c(K_n^c) + \frac{1}{n} c(K_n) < (2 \|\psi\|_{\sup} + 1) \frac{1}{n} \to 0.
\]

It then follows that \(C_b(\Omega_T) \subset L^1_\mathcal{G}(\Omega_T) \), by Theorem 25 we obtain the result. \(\square \)

Remark 52. The above results also hold for \(L^1_\mathcal{G}(\Omega) \), the proof is similar.
We also set
\[\bar{c}(A) := \sup_{P \in \mathcal{P}_1} P(A), \quad A \in \mathcal{B}(\Omega). \]

It is easy to verify the following
1. \(\bar{c}(A) \leq c(A) \) for each \(A \in \mathcal{B}(\Omega) \).
2. \(\bar{c}(O) = c(O) \) for each open set \(O \subset \Omega \).

Thus, a function is \(c \)-quasi-continuous if and only if it is \(\bar{c} \)-quasi-continuous, so we simply write quasi-continuous function. For each \(X \in L^0(\Omega) \) such that \(E_P[X] \) exists for each \(P \in \mathcal{P}_1 \), we set
\[\bar{E}[X] = E^{\mathcal{P}_1}[X] = \sup_{P \in \mathcal{P}_1} E_P[X]. \]

It is easy to verify the following
1. \(\bar{E}[X] \leq \hat{E}[X] \) for each \(X \) which makes both expectation meaningful.
2. \(\bar{E}[X] = \hat{E}[X] \) for each bounded quasi-continuous function \(X \).

Similar to the proof of Theorem 51, we get the following theorem.

Theorem 53. We have
\[
L^1_G(\Omega_T) = \{ X \in L^0(\Omega_T) : X \text{ has a q.c. version}, \lim_{n \to \infty} \bar{E}[|X|1_{\{|X|>n\}}] = 0 \},
\]
\[
L^1_G(\Omega) = \{ X \in L^0(\Omega) : X \text{ has a q.c. version}, \lim_{n \to \infty} \bar{E}[|X|1_{\{|X|>n\}}] = 0 \},
\]
\[
\bar{E}[X] = \hat{E}[X], \quad \forall X \in L^1_G(\Omega).
\]

Remark 54. Theorem 51 holds for \(\bar{E}[\cdot] \) under the capacity \(c(\cdot) \). But it does not necessarily hold for \(\hat{E}[\cdot] \) under the capacity \(\bar{c}(\cdot) \).

Acknowledgement

This works was initiated while L. Denis was visiting the Shandong University in Jinan. He wishes to thank Pr. Peng and all the members of the School of Mathematics in Jinan for their kind hospitality. His work is supported by the chair "risque de crédit", Fédération bancaire Française.

S. Peng thanks the partial support from The National Basic Research Program of China (973 Program) grant No. 2007CB814900 (Financial Risk).
References

[1] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Mathematical Finance 9, no. 3, pp 203-228 (1999)

[2] Atlan, M.: Localizing volatilities. Indiana Univ. Math. J. 20, pp 565-578 (1970/1971)

[3] Avellaneda, M., Levy, A., Paras, A.: Pricing and hedging derivative securities in markets with uncertain volatilities. Appl. Math. Finance 2, 73-88 (1995)

[4] Bogachev, V.I.: Gaussian Measures. Amer. Math. Soc., Mathematical Surveys and Monographs, Vol 62 (1998)

[5] Bouleau, N., Hirsch, F.: Dirichlet forms and analysis on Wiener space. De Gruyter Studies in Math. (1991)

[6] Chen, Z., Epstein, L.: Ambiguity, risk and asset returns in continuous time. Econometrica, 70(4), 1403-1443 (2002)

[7] Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, pp 131-295 (1955)

[8] Crandall, M., Ishii, H., Lions, P.-L.: User’s Guide To Viscosity Solutions Of Second Order Partial Differential Equations. Bulletin Of The American Mathematical Society, 27(1), 1-67 (1992)

[9] Delbaen, F.: Representing martingale measures when asset prices are continuous and bounded. Math. Finance 2, No.2, 107-130 (1992)

[10] Delbaen, F.: Coherent measures of risk on general probability space. In: Advances in Finance and Stochastics, Essays in Honor of Dieter Sondermann (Sandmann, K., Schonbacher, P.J. eds.), Springer Verlag, Berlin, pp 1-37 (2002)

[11] Delbaen, F., Peng, S., Rosazza Gianin, E.: Representation of the penalty term of dynamic concave utilities. to appear in FIST.

[12] Dellacherie, C.: Capacités et Processus Stochastiques. Springer Verlag (1972)

[13] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. Hermann, Paris (1978)

[14] Denis, L., Martini, C.: A theoretical framework for the pricing of continent claims in the presence of model uncertainty. Annals of Applied Probability 16, Vol. 2 , 827-852 (2006)

[15] El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equation in finance. Mathematical Finance 7(1), 1-71 (1997)
[16] El Karoui, N., Quenez, M.-C.: Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market. SIAM Control and Optimization, vol. 33, No 1, pp 29-66 (1995)

[17] Feyel, D., De La Pradelle, A.: Espaces de Sobolev Gaussiens. Ann. Inst. Fourier, 39-4, pp 875-908 (1989)

[18] Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance and Stochastics 6 (4), 429-447 (2002)

[19] Frittelli, M., Rossaza Gianin, E.: Putting order in risk measures. Journal of Banking and Finance, 26(7), 1473-1486 (2002)

[20] Frittelli, M., Rossaza Gianin, E.: Dynamic convex risk measures. Risk Measures for the 21st Century, Edit. Szegő, Wiley Finance, 227-247 (2004)

[21] Huber, P., Strassen, V.: Minimax tests and the Neyman-Pearson Lemma for capacity. The Annals of Statistics, Vol. 1, No. 2 pp 252-263 (1973)

[22] Lyons, T.J.: Uncertain volatility and the risk-free synthesis of derivatives. Journal of Applied Finance Vol 2 (1995)

[23] Peng, S.: Backward SDE and related g-expectations. Backward stochastic differential equations, in El N. Karoui and L. Mazliak, eds. Pitman Res. Notes Math. Ser. Longman Harlow, vol. 364, 141-159 (1997)

[24] Peng, S.: Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims. Acta Mathematicae Applicatae Sinica, English Series 20(2), 1-24, Springer (2004)

[25] Peng, S.: Nonlinear expectations and nonlinear Markov chains. Chin. Ann. Math.26B(2), 159-184 (2005)

[26] Peng, S.: G-Expectation, G-Brownian Motion and Related Stochastic Calculus of Itô’s type. In Stochastic Analysis and Applications, The Able Symposium 2005, Abel Symposia 2, Edit Benth et al., 541-567 (2007)

[27] Peng, S.: Multi-Dimensional G-Brownian Motion and Related Stochastic Calculus under G-Expectation. Stochastic Processes and their Applications 118, 2223-2253 (2008)

[28] Peng, S.: Law of Large Numbers and Central Limit Theorem under Nonlinear Expectations. [http://arxiv.org/PS_cache/math/pdf/0702/0702358v1.pdf] (2007)

[29] Peng, S.: G-Brownian Motion and Dynamic Risk Measure under Volatility Uncertainty. Lecture Notes. [http://arxiv.org/PS_cache/arxiv/pdf/0711/0711.2834v1.pdf] (2007)

[30] Rosazza, G. E.: Some examples of risk measures via g–expectations. Insurance: Mathematics and Economics, Volume 39, 19-34 (2006)
[31] Revuz, D., Yor, M.: Continuous Martingale and Brownian Motion. Springer Verlag, Berlin-Heidelberg-New York (1994)

[32] Wang, L.: On the regularity of fully nonlinear parabolic equations: II. Comm. Pure Appl. Math. 45, 141-178 (1992)

[33] Yan, J.A.: On the commutability of essential infimum and conditional expectation operators. Chinese Science Bulletin, 30(8), 1013-1018 (1985)