Hidradenitis suppurativa (HS) is a chronic, often debilitating, skin condition that historically does not respond well to treatment. Although there is no cure for HS, symptoms can be managed if the appropriate diagnosis is made. HS most commonly develops in postpubertal women and manifests as painful, deep-seated, inflamed lesions, including nodules, sinus tracts, and abscesses. HS flares are marked by increased pain and suppuration at varying intervals and can occur in women before menstruation. HS is commonly misdiagnosed; physicians might mistake a lesion for an infection, abscess, or sexually transmitted infection. Incision and drainage of these lesions often leads to recurrence. Given that management of this chronic disease is often difficult, we sought to outline current diagnosis and management strategies for HS.

© 2019 The Author(s). Published by Elsevier Inc. on behalf of Women’s Dermatologic Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
tracts, and elimination of existing nodules and sinus tracts before treatment of existing lesions before they develop into chronic sinus abscesses across the entire area (Hurley, 1989; Lee and Eisen, 2015).

Treatment for all stages involves prevention of lesion formation, treatment of existing lesions before they develop into chronic sinus tracts, and elimination of existing nodules and sinus tracts before extensive scarring occurs (Lockwood, 2017). However, treatment regimens are tailored by the stage of the disease. Regardless of the stage, patients should be counseled on weight loss and smoking cessation if they are overweight or smoke, because obesity and cigarette smoking are strongly associated with HS. Patients should also be advised to avoid tight-fitting clothing and excessive friction to the involved areas.

Medical therapy

Medical treatment of HS has proven to be historically difficult due to a lack of pathophysiologic insight, but patients' symptoms can often be managed with medical therapies alone. Treatment is determined based on the Hurley staging system, with topical therapies used as first-line therapy for less invasive disease and systemic antibiotics or biologics, surgery, and light therapy reserved for more extensive disease.

Stage I

Topical clindamycin is often the first-line therapy for mild HS, with evidence from multiple trials supporting its efficacy, relative safety, and tolerability. Patients may experience a slight burning sensation when the antibiotic is applied to lesions. A randomized 3-month trial conducted by Clemmensen (1983) supported the efficacy and tolerability of topical clindamycin 1% solution for inflammatory abscesses. The mechanism of clindamycin in the treatment of HS appears to be associated with the drug's anti-inflammatory properties. Thirty patients with recurrent HS were enrolled in a double-blind trial to determine the effect of clindamycin versus placebo. Patient assessment, numbers of abscesses, inflammatory nodules, and pustules were the outcomes measured. For each parameter, clindamycin 1% solution was significantly superior to placebo (p < .01; Clemmensen, 1983).

Intralesional corticosteroids, such as triamcinolone 10 mg/mL, can be useful as an adjunct to reduce the symptoms of an early, painful lesion. Corticosteroids locally bind to the glucocorticoid receptor to reduce inflammation, rubor, and pain. A case series of 36 patients conducted by Riis et al. (2016) demonstrated that intralesional corticosteroids decreased erythema, edema, suppuration, and patient-reported pain (p < .0001).

Punch debridement of a newly inflamed nodule can be effective in eliminating a new lesion and preventing progression into an abscess or sinus tract (Danby et al., 2015). Punch debridement should be considered for only early or small acute or subacute inflammatory lesions, often involving one folliculopilosebaceous unit (Danby et al., 2015).

Finally, patients with Stage I HS may benefit from treatment with topical resorcinol, a chemical peeling agent with anti-inflammatory and keratolytic properties. According to Pascual et al. (2017), topical 15% resorcinol was associated with reductions in pain and size in both acute and long-standing lesions. Ultrasonographic follow-up was used in the study and showed that clinical resolution occurred more quickly than ultrasonographic resolution; therefore, the authors recommended continuing the use of topical resorcinol for several weeks after apparent clinical resolution (Pascual et al., 2017).

Stage II

Patients with more invasive HS may benefit from systemic antibiotics. First-line treatment is oral tetracyclines: 100 mg doxycycline once or twice daily, 100 mg minocycline once or twice daily, or tetracycline 500 mg twice daily. Systemic antibiotics are the medications most often prescribed for patients with HS and have been shown to be the most effective traditional therapy. Tetracyclines have been shown to suppress lymphocytes, neutrophils, and histiocytes and are therefore used for their anti-inflammatory properties (Alhusayen and Shear, 2015). Patients who are prescribed doxycycline should be advised to use plenty of sunscreen and wear sun protective hats and clothing because doxycycline sensitizes the skin to sun (Frost et al., 1972).

Patients who do not respond to oral tetracyclines may try the combination of clindamycin (300 mg twice daily) and rifampin (600 mg once daily). A 2009 retrospective study of 116 patients with HS who were treated with this regimen determined the efficacy on HS lesions (Gener et al., 2009). The main outcome measure was disease severity, assessed with the Sartorius score (a disease severity assessment tool) before and after 10 weeks of treatment. The Sartorius score is composed by counting involved regions, nodules, and sinus tracts. Three points are allotted per region involved, two points per nodule, four points per fistula, one point for scar, and one point each for other. Additionally, the longest distance between two relevant lesions <5 cm is awarded two points, >10 cm four points, and >10 cm eight points. If lesions are clearly separated by normal skin in each region, zero points are awarded; if not, six points are given (Table 1).

Results showed a dramatic improvement in the Sartorius score at the end of treatment (p < .001) (Gener et al., 2009). Although the treatment is effective, the mechanism of action of these drugs on improving HS lesions is not understood and needs further elucidation. A recent randomized control study by Caposiena Caro et al. (2019) demonstrated that oral clindamycin alone may be effective in improving HS lesions, although physicians need to be aware of the risk of pseudomembranous colitis associated with clindamycin. Rifampin may not be a necessary antibiotic, but further studies should be conducted to determine which regimen is superior. Rifampin induces the cytochrome p450 system, so a thorough medication review with the patient should be performed to ensure no drug–drug interactions.

Dapsone, an antineutrophilic and antioesinophilic antibiotic, can be effective in mild-to-moderate HS as a monotherapy. In a retrospective review of 24 patients with HS, 25% achieved significant improvement and 12.5% experienced slight improvement in their disease after treatment with dapsone (Yazdanyar et al., 2011). The drug is also relatively safe if monitored appropriately. Importantly, patients should be tested for G6PD deficiency before beginning therapy with dapsone because hemolysis is a well-known adverse effect and more likely to occur in G6PD deficient individuals (Alhusayen and Shear, 2015).

Oral retinoids may also be used for patients with stage II HS. Acitretin has demonstrated the most efficacy. Its mechanism of action is thought to include the normalization of epithelial cells through interaction with the retinoic acid receptor. According to a prospective study of 17 patients with HS, symptom and lesion improvement occurred after 2 months of treatment and persisted for several months (Matusiak et al., 2014). The mean acitretin dose was 0.56 ± 0.08 mg/kg/day. The main reasons patients decided to discontinue treatment with retinoids include intolerable side effects (redness, itching and scaling of skin, dry skin) and treatment inefficacy (Matusiak et al., 2014). Isotretinoin has typically not been effective in patients with HS (Soria et al., 2009). Retinoids are teratogenic, so their use in women of childbearing age must be...
Increased androgens are thought to play a role in the development of HS lesions, so hormonal therapy can be useful in patients with mild-to-moderate HS (Kraft and Searles, 2007). Cyproterone acetate, an antiandrogen and progestin medication, has been shown to be effective in women with HS. It can be used by itself or in combination with oral contraceptive pills. In a randomized, double-blind crossover study, 24 women were assigned to take ethinylestradiol 50 mg/cyproterone acetate 50 mg or ethinylestradiol 50 μg/norgestrel 500 μg, and both treatments produced substantial improvement in disease (Mortimer et al., 1986).

Spironolactone 100 mg daily is an antiandrogen and may be used alone or in combination with cyproterone acetate or oral contraceptive pills for the improvement and prevention of HS lesions (Kraft and Searles, 2007). A retrospective chart review published in January 2019 showed that patients taking spironolactone achieved significant disease improvement with regard to pain, inflammatory lesions, and HS Physician’s Global Assessment score. No change was found for Hurley stage or fistulas, and there was no difference in improvement between patients who received <75 mg of spironolactone daily and those who received >100 mg daily (Golbari et al., 2019). Hormonal therapy is contraindicated in pregnant women due to adverse effects on the fetus.

Surgical removal of lesions is a final, definitive treatment option for patients with Stage II or III disease, especially those with extensive, recurrent HS lesions. Five surgical approaches can be considered: local destruction via cryosurgery, cryoinfusion, electrocautery, and photodynamic therapy; incision and drainage; standard, wide unroofing and debridement of individual sinus tracts; or complete surgical excision beyond all clinically apparent margins with either complete closure or partial thickness skin graft (Danby et al., 2015). Each surgical option has pros and cons, and treatment decisions should be tailored to the individual patient. Incision and drainage may provide temporary relief, but it is generally not advised due to frequent recurrence of cysts after the procedure.

Very wide unroofing and debridement of individual sinus tracts allows for healing by secondary intention and is a definitive treatment for a symptomatic area, but it does not prevent new lesions or decrease inflammation. Complete excision is an effective, definitive treatment but may have negative cosmetic results. Of these techniques, a prospective study conducted by Menderes et al. (2010) found that conservative treatment methods, such as punch debridement and standard unroofing, had little or no effect, especially on gluteal, perineal/perianal, and axillary HS. The only successful surgical treatment was wide surgical excision (Menderes et al., 2010).

Stage III

Patients with refractory disease not responsive to oral antibiotics, oral retinoids, or hormonal therapy may benefit from tumor necrosis factor (TNF)-alpha inhibitors. Adalimumab and infliximab have both been shown to be helpful in reducing symptoms of current lesions and recurrence of new lesions. Adalimumab is approved by the U.S. Food and Drug Administration (FDA) for the treatment of HS based on the PIONEER I and II trials. Pioneer I and II were double-blind, placebo-controlled studies in which 307 patients received either 40 mg of adalimumab every other week or matching placebo for 12 weeks. The primary end point was clinical response, defined as at least a 50% reduction from baseline in the abscess and inflammatory-nodule count, with no increase in abscess or draining fistula counts at week 12. Clinical response rates were significantly higher for the groups receiving adalimumab weekly than for the placebo groups: 58.9% vs. 27.6% in PIO-NEER II (p < .001; Kimball et al., 2016).

Adalimumab is also FDA-approved for stage II (moderate) HS. Although infliximab has not been FDA-approved for the treatment of HS, it is often used off-label to achieve rapid control of severe disease (Grant et al., 2010). Although adalimumab is the only FDA approved biologic therapy for HS, a retrospective study was performed in 2012 to compare two cohorts of 10 adult patients with severe HS. Ten patients were treated with infliximab (three infusions of 5 mg/kg at weeks 0, 2, and 6), and 10 other patients were treated with 40 mg of adalimumab every other week. In both groups, HS severity decreased, but infliximab performed better in all aspects (Sartorius score, quality of life index; van Rappard

Stage	Medication	Comments/precautions
Hurley stage I	Topical clindamycin 1% BID during flares, qd for maintenance	Well tolerated
	Topical 15% resorcinol BID during flares, qd for maintenance	
	Punch debridement of newly inflamed nodule	
Hurley stage II	Oral antibiotics:	
	Doxycycline 100 mg qd or BID	
	Minocycline 100 mg qd or BID	
	Tetracycline 500 mg BID	
	Clindamycin 300 mg BID + rifampin 600 mg qd	
	Dapsone 50–200 mg qd	
	Acitretin 0.56 ± 0.08 mg/kg qd	
	Spironolactone 100 mg qd	
Hurley stage III	Adalimumab 40 mg weekly	
	Infliximab 5 mg/kg at weeks 0, 2, and 6	
	Prednisone 40–60 mg for 3–4 days with a 7–10 day taper	
	Ustekinumab (45–90 mg at weeks 0, 4, 16, and 28)	
	Anakinra 100 mg qd	

BID, twice daily; qd, one a day.
E. Nesbitt et al. / International Journal of Women's Dermatology 6 (2020) 80–84

Further research on the efficacy of adalimumab versus infliximab could help elucidate the results of this study.

Etanercept, another TNF-alpha inhibitor, has not proven to be useful in the treatment of HS (Adams et al., 2010). TNF-alpha inhibitors must be used for long-term management, and patients must be advised that the disease will likely relapse if TNF-alpha inhibitors are stopped. Acute severe flares of HS can be managed with a 3- to 4-day course of prednisone, 40 to 60 mg per day tapered over the subsequent 7 to 10 days (Nazary et al., 2011).

Emerging therapies for Hurley stage III HS include the IL-12/23 receptor antagonist ustekinumab, IL-1 receptor antagonists anakinra and canakinumab, and IL-1 alpha inhibitor MABp1. All of these biologic therapies have been reported to be helpful in the treatment of severe or refractory HS, although relapse is common after stopping treatment. A study by Blok et al. (2016) evaluated the use of ustekinumab (45 or 90 mg at weeks 0, 4, 16, and 28) in 17 patients with severe HS. Of those 17 patients, 12 completed the protocol, and 82% of these patients experienced a moderate-to-marked improvement in their disease (Blok et al., 2016).

A randomized clinical trial was performed to determine the efficacy of anakinra in treating severe HS. Twenty patients were recruited; 10 patients received placebo and the remaining 10 patients received anakinra. Seventy percent of patients in the anakinra arm showed improvement, whereas only 20% of patients in the placebo group showed improvement after 24 weeks. Extensive studies evaluating the efficacy of these biologics are limited, but as these drugs become more accessible in the future, more information on their efficacy will likely become available (Tzanetakou et al., 2016).

If multiple medical therapies have failed, patients with Hurley stage III lesions should be referred to plastic surgery or general surgery for excision of lesions. As noted earlier, the best outcomes follow widespread surgical excision of the lesions.

Table 2
Treatment of hidradenitis suppurativa IN pregnancy.

Medication	Comments/precautions
Safe IN pregnancy	
Topical clindamycin 1% BID	Clindamycin is a pregnancy category B drug and considered safe in pregnancy; rifampin is pregnancy category C and has not been associated with increased birth defects (evidence is limited)
Clindamycin 300 mg BID	
+ rifampin 600 mg qd	
Dapsone 50–200 mg qd	Presumed safe in pregnancy (evidence is limited)
Adalimumab 40 mg qd	No increased risk of adverse birth outcomes
Infliximab 5 mg/kg at weeks 0, 2, and 6	No increased risk of adverse birth outcomes
Contraindicated IN pregnancy	
Oral tetracyclines	Pregnancy class D; can cause dental staining and enamel hypoplasia in developing fetus Antiandrogen effects can cause feminization of a male fetus
Spironolactone	
Retinoids	Absolutely contraindicated in pregnancy due to severe birth defects
Surgical management	Although not completely contraindicated, surgical management of lesions should be addressed after pregnancy.

If BID, twice daily; qd, one a day.

Other biologics (e.g., etanercept, ustekinumab, and anakinra) during pregnancy is unclear.

Hormone-based and retinoid therapies are contraindicated in pregnant women. Furthermore, surgical procedures should be avoided whenever possible during pregnancy (Table 2).

Emerging therapies

Laser and light therapy have been used in recent years as adjunctive therapy for HS lesions. Laser and light therapy work to reduce the occurrence of painful HS flare-ups by decreasing the number of hair follicles, sebaceous glands, and bacteria in affected areas and by ablatively debulking chronic lesions (Hamzavi et al., 2015). In a study conducted by Hamzavi et al. (2015), the severity of the patient’s disease determined the laser/light therapy they received. Those with less extensive disease (Hurley stage I and II) benefited from hair follicle and bacterial load reduction with Nd:YAG laser and photodynamic therapy. Those with more advanced disease (advanced Hurley stage II or III) demonstrated a better response with CO2 laser vaporization and excision of sinus tracts. Both therapies appear to be effective with low complication rates. The most common side effect of laser/light therapy is pain in the treated area (Hamzavi et al., 2015). A retrospective study by Mikkelsen et al. (2015) reported that patients felt their lesions greatly improved and 91% would recommend laser surgery to other patients with HS.

Metformin is an emerging therapy that may be helpful in the treatment of HS. The exact mechanism of action in the treatment of HS is currently unknown, although it has been proposed that metformin acts via an antiandrogenic mechanism to improve HS. The efficacy of treatment with metformin has been demonstrated in multiple studies, with Verdolini et al. (2013) completing the pilot study. The recommended starting dose is 500 mg once daily with the maximum dose at 500 mg TID. Minimal side effects are typically experienced by patients, and the most significant side effect is nausea (Verdolini et al., 2013). Diarrhea is also a common side effect in patients taking metformin. Metformin appears to be
an excellent alternative to high-dose, long-term antibiotics for the treatment of HS.

In a pilot study by Brocard et al. (2007), patients with Hurley stage I or II HS benefitted from treatment with zinc salts. All patients received 90 mg of zinc gluconate per day and noted a clinical response. Many saw partial remission of the lesions, and approximately one quarter of patients experienced complete remission. Patients did tend to relapse after tapering to <60 mg per day, and a small percentage of patients experienced gastrointestinal side effects from the medication (Brocard et al., 2007). Zinc salts have anti-inflammatory and antioxidant properties, so zinc cannot cure the condition but instead can stop HS from progressing and prevent flares. More research needs to be conducted on their efficacy, but these agents appear to be helpful supplemental medical therapies in the treatment of HS.

Conflict of interest

None.

Funding

None.

Study Approval

N.A.

References

Adams DR, Yanikura JA, Fogelberg AC, Anderson BE. Treatment of hidradenitis suppurativa with etanercept injection. Arch Dermatol 2010;146(5):501–4.

Ahluwaiyan R, Shear NH. Scientific evidence for the use of current traditional systemic therapies in patients with hidradenitis suppurativa. J Am Acad Dermatol 2015;73(5 Suppl 1):S42–6.

Androulakis I, Zavos C, Christopoulos P, Mastorakos G, Gazouli M. Safety of anti-tumor necrosis factor therapy during pregnancy in patients with inflammatory bowel disease. World J Gastroenterol 2015;21(47):13205–11.

Blok JL, Li K, Brodmerkel C, Horvátovich P, Jonkman MF, Horváth B. Ustekinumab in hidradenitis suppurativa: clinical results and a search for potential biomarkers in serum. Br J Dermatol 2016;174(4):839–46.

Brocard A, Knol AC, Khammari A, Dréno B. Hidradenitis suppurativa and zinc: a new therapeutic approach. A pilot study. Dermatology 2007;214(4):325–7.

Caposiena Caro RD, Cannizzaro MV, Botti E, Di Matteo C, Gaziano R, et al. Clindamycin versus clindamycin plus rifampicin in hidradenitis suppurativa: a double-blind, placebo-controlled crossover trial. J Am Acad Dermatol 2010;62(2):205–17.

Hamzavi HI, Griffith JL, Riyaz F, Hessam S, Bechara FG. Laser and light-based treatment options for hidradenitis suppurativa. J Am Acad Dermatol 2015;73(5 Suppl 1):S78–81.

Hurley HJ. Axillary hyperhidrosis, apocrine bromhidrosis, hidradenitis suppurativa, and familial benign pemphigus: surgical approach. In: Roenigk RK, Roenigk HH, editors. Dermatologic surgery. New York, NY: Dekker; 1989. p. 729.

Kimball AB, Okun MM, Williams DA, Gottlieb BA, Papp KA, Zouboulis CC, et al. Two phase 3 trials of adalimumab for hidradenitis suppurativa. New Engl J Med 2016;375(5):322–34.

Kraft JN, Sears GE. Hidradenitis suppurativa in 64 female patients: retrospective study comparing oral antibiotics and antiandrogen therapy. J Cutan Med Surg 2007;11(4):125–31.

Lee RA, Eisen DB. Treatment of hidradenitis suppurativa with biologic medications. J Am Acad Dermatol 2015;73(5 Suppl 1):S82–8.

Lockwood SJ. Hidradenitis suppurativa – a disease primer. Ads-Info: New York City, NY; 2017.

Matsusiak L, Bieneck A, Szepeciwczko JC. Acitretin treatment for hidradenitis suppurativa: a prospective series of 17 patients. Br J Dermatol 2014;171(1):170–4.

Menderes A, Sunay O, Vayvada H, Yilmaz M. Surgical management of hidradenitis suppurativa. Int J Med Sci 2010;7(4):240–7.

Mikkelsen PR, Dufour DN, Zarchi K, Jemec GB. Recurrence rate and patient satisfaction of CO2 laser vaporization of lesions in patients with hidradenitis suppurativa: a retrospective study. Dermatol Surg 2015;41(2):255–60.

Mortimer PS, Dawber RP, Gales MA, Moore RA. A double-blind controlled cross-over trial of cypionate acetate in females with hidradenitis suppurativa. Br J Dermatol 1986;115(3):263–8.

Nazary M, van der Zee HH, Prens EP, Folkerts G, Boer J. Pathogenesis and pharmacotherapy of hidradenitis suppurativa. Eur J Pharmacol 2011;672(1–3):1–8.

Pascual JC, Encabo B, Ruiz de Apodaca RF, Romero D, Solvay J, Jemec GB. Topical 15% resorcinol for hidradenitis suppurativa: an uncontrolled prospective trial with clinical and ultrasonographic follow-up. J Am Acad Dermatol 2017;77(6):1175–8.

Perp N, Zampella JG, Okoye GA. Management of hidradenitis suppurativa in pregnancy. J Am Acad Dermatol 2017;76(5):979–89.

Pisut TD, Boer J, Prens EP, Saunte DM, Deckers IE, Estemam L, et al. Intraleosional tacrolimine for flares of hidradenitis suppurativa (HS): a case series. J Am Acad Dermatol 2016;75(6):1151–5.

Simonart T. Hidradenitis suppurativa and smoking. J Am Acad Dermatol 2010;62(1):169–50.

Snider D. Pregnancy and tuberculosis. Chest 1984;86(3 Suppl):105–35.

Soria A, Canouei-Poitline F, Wolkenstein P, Poli F, Gabison G, Poug F, et al. Absence of efficacy of oral isotretinoin in hidradenitis suppurativa: a retrospective study based on patients’ outcome assessment. Dermatology 2009;209(2):134–5.

Tzanetakou V, Kanni T, Ghiassou S, Katoilis A, Papadavid E, Netea MG, et al. Safety and efficacy of anakinra in severe hidradenitis suppurativa: a randomized clinical trial. JAMA Dermatol 2016;152(1):52–9.

van Rappard DC, Leenarts MF, Meijerink-van ’t Oost I, Oost L, Mekkes JR. Comparing treatment outcome of infliximab and adalimumab in patients with severe hidradenitis suppurativa. J Dermatol Treat 2012;23(4):284–9.

Vennila V, Madhu V, Rajesh R, Ealla KKR, Vellandula SR, Santoshi S. Tetracycline induced discoloration of deciduous teeth: case series. J Int Oral Health 2014;6(3):115–9.

Verdolini R, Clayton N, Smith A, Alwashi N, Mannello B. Metformin for the treatment of hidradenitis suppurativa: a little help along the way. J Eur Acad Dermatol Venereol 2013;27(9):1101–8.

Vinet E, Pineau C, Gordon C, Clarke AE, Bernatsky S. Biological therapy and pregnancy outcomes in women with rheumatic diseases. Arthritis Rheum 2009;61(5):587–92.

Vink F, Thomsen SF. Hidradenitis suppurativa: causes, features, and current treatments. J Clin Aesthet Dermatol 2018;11(10):17–23.

Yarur A, Kane SV. Update on pregnancy and breastfeeding in the era of biologics. Liver Dis 2013;45(10):787–94.

Zadanyan S, Boer J, Ingvarsson G, Szepeciwczko JC, Jemec GB. Dapson therapy for hidradenitis suppurativa: a series of 24 patients. Dermatology 2011;222(4):342–6.