Original Research Article

https://doi.org/10.20546/ijcmas.2020.911.387

Influence of Irrigation Management Practices and Different Establishment Methods on Nutrient Use Efficiency of Rice

T. Theerthana¹*, P. S. Fathima2, G. R. Denesh3, S. S. Prakash4 and N. N. Asha5

¹University of Agricultural Sciences, GKVK, Bengaluru, India
²Department of Agronomy, COA, V.C. Farm, Mandya, UAS, Bengaluru, India
³AICRP Rice, ZARS, V.C. Farm, Mandya, UAS, Bengaluru, India
⁴Department of Soil Science and Agricultural Chemistry, COA, V.C. Farm, Mandya, UAS, Bengaluru, India
⁵Department of Agricultural Microbiology, COA, V.C. Farm, Mandya, UAS, Bengaluru India

*Corresponding author

A B S T R A C T

A field experiment was conducted at Zonal Agricultural Research Station, V. C. Farm, Mandya, to study the effect of irrigation management practices and rice establishment methods on growth and yield of rice (Oryza sativa L.) during Kharif 2018. The experiment was laid out in split plot design with three main plot irrigation methods and five sub plot rice establishment methods. The combination of 15 treatments was replicated thrice. The results revealed significantly higher leaf area (920.61 cm² hill⁻¹), dry matter production (70.82 g hill⁻¹) at harvest, net returns (42,495 Rs. ha⁻¹) and B:C ratio (2.00) in alternate wetting and drying up to PI followed by flooding 3 ± 2 cm after PI method of irrigation. While among establishment methods, manual transplanting recorded significantly higher grain yield (5253 kg ha⁻¹). Interaction between alternate wetting and drying up to PI followed by flooding 3 ± 2 cm after PI and mechanical transplanting recorded higher gross returns (99,377 Rs. ha⁻¹), net returns (55,112 Rs. ha⁻¹) and B:C ratio (2.25).

Keywords: Irrigation Management Practices, Rice

Introduction

Rice which belongs to Poaceae family is the second important crop after wheat in the world. It is the staple food in Asia, Latin America, parts of Africa and the Middle East. Half of the world’s population subsists wholly or partially on rice (Yadav et al., 2009). In India, rice cultivation area extends from 8° S to 34° S latitude i.e. extending almost throughout the country such as areas lying below sea level (Kerala) and up to an altitude of 2000 m mean sea level (Kashmir) (Somasundaram et al., 2000). The area occupied by rice crop is around 43.99 million ha in India with a production and productivity of 109.69 million tonnes and 2494 kg ha⁻¹, respectively (Anon., 2017). Rice is the staple food for more than 2/3rd of population in our national food security and is a means of livelihood for millions of rural families, the slogan “Rice for life” is most appropriate.
In terms of area cultivated, rice ranks second. Forty percent of world population uses rice as a prime source of calories. In terms of calorific value, rice crop occupies first place than any other cereal crops. 74.8 g carbohydrates, 2.6 g fat and 8.4 g protein in the form of oryzenin is present in 100 g of rice grain. The remaining are other minerals, amino acids and fibre content. Thus 100 g of rice can supply 477 kcal of energy.

It is estimated that, by 2025 the rice demand will be 140 million tonnes in India (Hugar et al., 2009). In order to attain this target, the productivity of rice has to be ushered to the level of 3.3 tonnes ha$^{-1}$ from present level of 2.2 tonnes ha$^{-1}$ (Anjani et al., 2014). Increase in production has undoubtedly to come from increased productivity under shrinking resources.

The increasing global demand for water in many sectors, including agriculture and intensifying water dearth has become a universal concern. In the next two decades, the share of water devoted to irrigation is expected to decline by 10 to 15% (Dhawan, 2017). Increasing water paucity is becoming real threat to rice cultivation. Around 13 million ha of Asia’s wet-season rice and 2 million ha of its dry-season rice will encounter “physical water scarcity” by 2025 (Bouman and Tuong, 2001). Hence efficient water use technology which also conserves soil health, sustainability as well as economical stability is the only approach to save water for escalating irrigated agriculture (Subramaniam et al., 2013). To accomplish this, diverse approaches have to be adopted and among them, enhancing water productivity or water use efficiency (WUE) is of foremost importance. Survey of literature shows that average WUE of major crops in India varies from 0.28 to 1.60 kg m$^{-3}$ with ample differences among crop species.

Water has been taken for granted in irrigated rice production for centuries, but the looming water crisis may change the method of rice production in the future. Water saving technologies that were examined in the early 1970’s such as maintaining soil under saturated condition and alternate wetting and drying are receiving renovated attention by researchers. One operation that has been revealed to trim down water use in rice systems is an irrigation management practice referred to as Alternate Wetting and Drying (AWD) (Lampayan et al., 2015). AWD has been reported to lessen water inputs by 23% (Bouman and Tuong, 2001) compared to continuously flooded rice systems. As compared with conventional methods, rice grown on saturated soil culture with raised beds reduced the quantity of water use by approximately 32 per cent (Borell et al., 1997).

One of the cultural practices which affect the rice crop through its effect on growth and development is method of establishment (Gopi et al., 2006). Due to non availability of irrigation water, loss of applied nutrients and dearth of labour during peak periods, amplified labour wages make transplanting and manual weeding costly. Thus the area under transplanted rice in world is waning in recent years. Hence, there is call for exploring alternate crop establishment methods to augment the productivity of rice (Farooq et al., 2011). This can be accomplished by adopting diverse establishment techniques in rice such as direct seeded rice, broadcasting, mechanical transplanting, drum seeded rice etc. Mechanical transplanting or direct seeded rice enables timely planting/seeding and better crop stand (Malik et al., 2019). Direct seeded rice can lessen the labour requirement by as much as 50 per cent (Singh et al., 2006).

Challenge is to develop advanced technologies and production systems that
allow rice production to be sustained or improved in the face of waning water availability. With the intention to find out the efficient water and nutrient saving technology and method of establishment, a field experiment was undertaken.

Materials and Methods

The experiment was conducted at Zonal Agricultural Research Station, V. C. Farm, Mandya, University of Agricultural Sciences, Bengaluru under Cauvery Command Area of Karnataka to study the effect of irrigation management practices and rice establishment methods on growth and yield of rice during Kharif 2018. The experiment was laid out in a split plot design comprised of three main plot irrigation treatments, viz. Continuous flooding, Maintenance of saturation up to panicle initiation (PI) and flooding after PI and Alternate wetting and drying (AWD) up to panicle initiation (PI) and flooding after PI and five sub plot rice establishment treatments, viz. Drum seeded rice, Broadcasting of sprouted rice, Semi-dry rice, Mechanical transplanting and Manual transplanting. The combination of 15 treatments replicated thrice and medium duration paddy variety ‘MTU 1001’ was used for the field experiment.

Soil of the experimental site was sandy loam containing organic carbon (0.67 %), available nitrogen (270.04 kg/ha), phosphorus (87.03 kg/ha) and potassium (287.14 kg/ha). The experiment comprised of three different irrigation methods. Irrigation was applied and quantified through PVC pipes connected to water meter. Fifteen days prior to sowing, 10 t ha\(^{-1}\) FYM was applied to the experimental plots and it was incorporated into the soil. Recommended dose of 100 kg N ha\(^{-1}\), 50 kg P\(_2\)O\(_5\) ha\(^{-1}\), 50 kg K\(_2\)O ha\(^{-1}\), 20 kg ZnSO\(_4\) ha\(^{-1}\) fertilizers were applied through urea, single super phosphate (SSP), muriate of potash (MOP) and zinc sulphate (ZnSO\(_4\)), respectively. 50% of N, full amount of P, K and ZnSO\(_4\) were applied as basal dose and the remaining quantity of N was applied in two splits and was top dressed at 35 and 60 DAS. However, 0.4% FeSO\(_4\) and humic acid was sprayed at 45 and 65 DAS to overcome the deficiency of iron. Irrigation was provided at daily basis for Continuous flooding method, once in 2-3 days for Maintenance of saturation up to panicle initiation (PI) and flooding after PI and once in 5-6 days for AWD depending on the soil condition. Necessary aftercare operations were followed as per the recommendations. No major pest and disease incidences were noticed during crop growth. Observations on growth parameters were recorded at regular intervals – 30, 60, 90 days after sowing and at harvest. Observations recorded during different phenological phases of rice crop were analyzed statistically to find out the result and to draw a conclusion of the experiment conducted. Fisher’s method of analysis of variance (ANOVA) was used in the analysis as given by Gomez and Gomez (1984). Significance between the treatments was tested by “F” test. Whereas, difference between the treatments mean were tested by critical difference (CD) at 5% level of significance.

Results and Discussion

Leaf area

The data on leaf area as influenced by irrigation and rice establishment methods recorded at 30, 60, 90 DAS and at harvest are presented below in table 1.

At 30 and 60 DAS, effect of irrigation methods was non significant. While at 90 DAS and at harvest, alternate wetting and drying up to PI followed by flooding after PI recorded higher leaf area (1228.46 and 920.61...
Similar observations were also made by Nguyen et al., (2009). It might be due to more plant dry matter which resulted in greater leaf area at tillering and heading stages as recorded in this study. Bouman et al., (2005) have also observed that the reduction in leaf area might be due to reduced turgor pressure under moisture stress conditions which affected the leaf cell expansion. Among establishment methods, at 30 DAS, semi dry rice recorded significantly higher leaf area (165.62 cm2 hill$^{-1}$) over rest of the methods (13.91 to 102.83 cm2 hill$^{-1}$). At 60, 90 DAS and at harvest, mechanical transplanting recorded significantly higher leaf area (721.85, 1528.53 and 1020.46 cm2 hill$^{-1}$, respectively) was superior over rest of the establishment methods. Among interactions, continuous flooding with semi dry rice (191.71 cm2 hill$^{-1}$) at 30 DAS, continuous flooding with mechanical transplanting (854.08 cm2 hill$^{-1}$) at 60 DAS, alternate wetting and drying up to PI followed by flooding after PI method of irrigation recorded significantly higher leaf area (1640.11 and 1145.52 cm2 hill$^{-1}$, respectively) at 90 DAS and at harvest, respectively recorded significantly higher leaf area than rest of the interactions.

Dry matter production (g hill$^{-1}$)

The data on dry matter production as influenced by irrigation and establishment methods of rice are presented in Table 2.

At 30 and 60 DAS, continuous flooding recorded higher dry matter production (1.82 and 12.62 g hill$^{-1}$, respectively) and was on par with other methods (1.58 to 1.60 g and 11.35 to 12.43 g hill$^{-1}$, respectively). However, at 90 DAS and at harvest, alternate wetting and drying up to PI followed by flooding after PI method of irrigation recorded significantly higher dry matter (38.39 and 70.82 g hill$^{-1}$, respectively) as compared to rest of the methods (33.10 to 35.42 g hill$^{-1}$ and 63.94 to 64.36 g hill$^{-1}$, respectively). The increased dry matter production in alternate wetting and drying up to PI followed by flooding after PI might be due to effective utilization of available resources which was favored by aeration of soil in intermittent wetting and drying. These findings were in accordance with Christine et al., (2007). Semi dry rice recorded significantly higher dry matter (3.19 g hill$^{-1}$) over rest of the methods (0.27 to 1.98 g hill$^{-1}$) at 30 DAS. However, at 60, 90 DAS and at harvest, mechanical transplanting among establishment methods recorded significantly higher dry matter (15.04, 47.77 and 78.50 g hill$^{-1}$, respectively) over rest of the methods (10.11 to 13.06 g hill$^{-1}$, 28.12 to 35.85 g hill$^{-1}$ and 57.35 to 67.77 g hill$^{-1}$, respectively). Similar trend of total dry matter production was observed at 60, 90 DAS and at harvest due to optimum nutrient supply and production of more number of leaves and leaf area which helped in absorption of more solar radiation hence more photosynthesis and more above ground biomass. These results are also in line with findings of Yadav et al., (2010). Interaction between alternate wetting and drying up to PI followed by flooding after PI and mechanical transplanting recorded higher dry matter at 30, 60, 90 DAS and at harvest (3.69, 17.79, 51.25 and 88.12 g hill$^{-1}$, respectively) and was significantly superior over rest of the methods (0.24 to 2.73, 8.44 to 14.79, 22.23 to 46.17 and 46.62 to 76.05 g hill$^{-1}$, respectively).

Grain yield (kg ha$^{-1}$)

Data presented in Table 2 on grain yield varied significantly due to establishment methods and interaction between irrigation and establishment methods. No significant difference in grain yield was observed among irrigation methods. However, continuous flooding recorded higher grain yield (4916 kg
than alternate wetting and drying up to PI followed by flooding after PI (4849 kg ha\(^{-1}\)) and maintenance of saturation up to PI followed by flooding after PI (4828 kg ha\(^{-1}\)). Higher grain yield recorded by manual transplanting (5253 kg ha\(^{-1}\)) was statistically on par with mechanical transplanting and semi dry rice (5171 and 4953 kg ha\(^{-1}\), respectively) and was significantly superior over rest of the establishment methods (4197 to 4749 kg ha\(^{-1}\)). Interaction between alternate wetting and drying up to PI followed by flooding after PI and manual transplanting recorded higher grain yield (5745 kg ha\(^{-1}\)) and was statistically similar with interaction of alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (5613 kg ha\(^{-1}\)), maintenance of saturation up to PI followed by flooding after PI with manual transplanting (5202 kg ha\(^{-1}\)), continuous flooding with semi dry rice (5189 kg ha\(^{-1}\)) and maintenance of saturation up to PI followed by flooding after PI with drum seeded rice (5137 kg ha\(^{-1}\)). However, former treatment was significantly superior over rest of the interactions (4093 to 5104 kg ha\(^{-1}\)). It might be due to planting of seedlings before third phyllochron, leading to quick crop establishment and longer tillering period which resulted in higher yield attributes and hence yield in case of transplanted rice. However, increase in grain yield in semi dry and drum seeded rice may be attributed to the early establishment, growth and development of crop along with irrigation methods. These results are in confirmation with the findings of Shantappa (2014).

Nutrient status of soil after harvest of crop

Nutrients uptake by rice (kg ha\(^{-1}\))

Nitrogen uptake by rice grain (kg ha\(^{-1}\))

Nitrogen uptake by rice grain varied significantly with establishment methods and interaction are presented in Table 3. Among irrigation methods, alternate wetting and drying up to PI followed by flooding after PI recorded higher nitrogen uptake by grain (61.52 kg ha\(^{-1}\)) which was on par with continuous flooding (61.51 kg ha\(^{-1}\)) and maintenance of saturation up to PI followed by flooding after PI (60.88 kg ha\(^{-1}\)). Higher available nitrogen content in alternate wetting and drying up to PI followed by flooding after PI might be due to effective mineral uptake by roots with larger surface area (Taiz and Zeiger, 2006). Among establishment methods, manual transplanting recorded significantly higher nitrogen uptake by grain (66.49 kg ha\(^{-1}\)) as compared to rest of the methods (54.08 to 63.74 kg ha\(^{-1}\)). Lower nitrogen uptake by grain (54.08 kg ha\(^{-1}\)) was recorded by broadcasting of sprouted rice. This may be due to the water stress conditions created by the competition from more plants per unit area which might have made the roots unable to take up nutrients from the soil due to slow ion diffusion and water movement rates as well as lack of root activity (Dubey and Pessarakli, 2001). Alternate wetting and drying up to PI followed by flooding after PI with manual transplanting recorded significantly higher nitrogen uptake by grain (73.25 kg ha\(^{-1}\)) over rest of the interactions (52.01 to 68.13 kg ha\(^{-1}\)). The root growth and activity was found better in case of seedlings transplanted with alternate wetting and drying method of irrigation due to the prolific growth of root which helped plants to absorb more nitrogen and accumulate in grains from comparatively deeper layers. Similar results were recorded by Dass and Chandra, (2012).

Nitrogen uptake by rice straw (kg ha\(^{-1}\))

Alternate wetting and drying up to PI followed by flooding after PI recorded higher nitrogen uptake by straw (58.64 kg ha\(^{-1}\)) and was on par with rest of the irrigation methods (56.85 to 57.14 kg ha\(^{-1}\)). Mechanical
transplanting recorded significantly higher nitrogen uptake by straw (61.86 kg ha\(^{-1}\)) as compared to rest of the methods (54.91 to 57.53 kg ha\(^{-1}\)). Lower nitrogen uptake by straw (54.91 kg ha\(^{-1}\)) was recorded by broadcasting of sprouted rice. Nutrient uptake is a function of soil physical, chemical and biological properties, plant population, quantity of dry matter accumulated by crop and amount of fertilizer applied. Nitrogen uptake is a product of above ground biomass and nitrogen content (Taiz and Zeiger, 2006), which has enhanced the nitrogen uptake significantly in rice by mechanical transplanting method. Among interactions, alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting recorded significantly higher nitrogen uptake by straw (64.20 kg ha\(^{-1}\)) as compared to rest of the interactions (52.99 to 61.92 kg ha\(^{-1}\)).

Total nitrogen uptake (Kg ha\(^{-1}\))

The total nitrogen uptake in different irrigation methods was non significant. However, alternate wetting and drying up to PI followed by flooding after PI recorded higher total nitrogen uptake at harvest (120.06 kg ha\(^{-1}\)) compared with rest of the methods (118.02 to 118.36 kg ha\(^{-1}\)). Among establishment methods, mechanical transplanting recorded significantly higher total nitrogen uptake (125.60 kg ha\(^{-1}\)) followed by manual transplanting (123.79 kg ha\(^{-1}\)). Lower total nitrogen uptake (108.99 kg ha\(^{-1}\)) was recorded in broadcasting of sprouted rice. This may be due to transplanting of younger seedlings in which the root injury is minimum and presence of more active roots, which resulted in rapid and stable establishment by utilizing more nutrients and moisture for longer period. The results are in conformity with Satyanarayana and Babu (2004). Interaction between alternate wetting and drying up to PI followed by flooding after PI and manual transplanting recorded significantly higher total nitrogen uptake (134.04 kg ha\(^{-1}\)) which was closely followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (132.33 kg ha\(^{-1}\)) compared to rest of the interactions (109.08 to 125.43 kg ha\(^{-1}\)).

Phosphorus uptake by rice grain (kg ha\(^{-1}\))

Data on phosphorus uptake by rice grain at harvest as influenced by irrigation and establishment methods are presented in Table 4. Phosphorus uptake by rice grain was non significant among irrigation methods. However, continuous flooding recorded higher phosphorus uptake by grain at harvest (11.33 kg ha\(^{-1}\)) than rest of the irrigation methods (10.87 to 11.05 kg ha\(^{-1}\)). Among establishment methods, manual transplanting recorded significantly higher phosphorus uptake by grain (13.80 kg ha\(^{-1}\)) followed by mechanical transplanting (12.45 kg ha\(^{-1}\)) as compared to rest of the methods (7.04 to 11.50 kg ha\(^{-1}\)). Among interactions, alternate wetting and drying up to PI followed by flooding after PI with manual transplanting recorded significantly higher phosphorus uptake by grain (16.85 kg ha\(^{-1}\)) followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (15.13 kg ha\(^{-1}\)) over rest of the interactions (6.17 to 14.02 kg ha\(^{-1}\)). Effective absorption of nutrients was seen under early established seedlings. This might be due to the well developed root system. The results are in close agreement with the findings of Dass and Chandra, (2012).

Phosphorus uptake by rice straw (Kg ha\(^{-1}\))

No significant difference was observed in different irrigation methods. However, higher phosphorus uptake by straw (9.37 kg ha\(^{-1}\)) was recorded by alternate wetting and drying
up to PI followed by flooding after PI followed by maintenance of saturation up to PI followed by flooding after PI (8.83 kg ha\(^{-1}\)) and continuous flooding (8.46 kg ha\(^{-1}\)). Mechanical transplanting recorded significantly higher phosphorus uptake by straw (11.02 kg ha\(^{-1}\)) as compared to rest of the methods (7.44 to 9.00 kg ha\(^{-1}\)). Interaction between alternate wetting and drying up to PI followed by flooding after PI and mechanical transplanting recorded significantly higher phosphorus uptake by straw (11.98 kg ha\(^{-1}\)) which was closely followed by continuous flooding with mechanical transplanting (10.86 kg ha\(^{-1}\)) over rest of the interactions (6.75 to 10.64 kg ha\(^{-1}\)).

Continuous flooding brought the phosphorus to available form and hence the uptake was more. Whereas, in case of alternate wetting and drying, plant roots were successful in excavating the soil and hence increase in uptake of phosphorus present around the plant roots. Similar results were reported in the findings of Chandrapala et al., (2010).

Total phosphorus uptake (Kg ha\(^{-1}\))

Total phosphorus uptake was higher in alternate wetting and drying up to PI followed by flooding after PI (20.24 kg ha\(^{-1}\)) and the effect was non significant when compared to rest of the methods (19.79 to 19.88 kg ha\(^{-1}\)). Among establishment methods, mechanical transplanting recorded significantly higher total phosphorus uptake (23.46 kg ha\(^{-1}\)) followed by manual transplanting (22.76 kg ha\(^{-1}\)) as compared to rest of the methods (14.48 to 20.50 kg ha\(^{-1}\)). This may be due to the synchrony between supply and uptake of nutrients through proliferated root system (Chandrapala et al., 2010). Among interactions, alternate wetting and drying up to PI followed by flooding after PI with manual transplanting recorded significantly higher total phosphorus uptake (27.49 kg ha\(^{-1}\)) followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (27.11 kg ha\(^{-1}\)) as compared to rest of the interactions (13.15 to 23.88 kg ha\(^{-1}\)).

Potassium uptake by rice grain (kg ha\(^{-1}\))

Data on potassium uptake as influenced by irrigation methods and establishment methods are presented in Table 5. Irrigation had no significant effect on potassium uptake by grain. However, alternate wetting and drying up to PI followed by flooding after PI recorded higher potassium uptake by grain (47.43 kg ha\(^{-1}\)) among irrigation methods. Manual transplanting recorded significantly higher potassium uptake by grain (48.68 kg ha\(^{-1}\)) followed by mechanical transplanting (48.06 kg ha\(^{-1}\)) and semi dry rice (47.64 kg ha\(^{-1}\)) over rest of the establishment methods (45.59 to 47.08 kg ha\(^{-1}\)). Potassium uptake by the crop is influenced by potassium content and dry matter production, so significant difference was found as confirmed by the findings of Rani and Sukumari (2013).

Among interactions, alternate wetting and drying up to PI followed by flooding after PI with manual transplanting recorded significantly higher potassium uptake by grain (50.01 kg ha\(^{-1}\)) followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (49.56 kg ha\(^{-1}\)) and maintenance of saturation up to PI followed by flooding after PI with manual transplanting (49.21 kg ha\(^{-1}\)) as compared to rest of the interactions (45.16 to 48.84 kg ha\(^{-1}\)).

Potassium uptake by rice straw (kg ha\(^{-1}\))

Different irrigation methods have no significant effect on potassium uptake by straw. However, alternate wetting and drying up to PI followed by flooding after PI
recorded higher potassium uptake by straw (73.16 kg ha\(^{-1}\)). Mechanical transplanting recorded significantly higher potassium uptake by straw (76.52 kg ha\(^{-1}\)) over rest of the establishment methods (69.03 to 72.28 kg ha\(^{-1}\)).

Mechanical transplanting produced higher dry matter which may be due to the effective absorption of the potassium by plants. Similar results were reported by Hugar et al., (2009). Interaction between alternate wetting and drying up to PI followed by flooding after PI and mechanical transplanting recorded significantly higher potassium uptake by straw (78.82 kg ha\(^{-1}\)) as compared to rest of the interactions (68.42 to 75.98 kg ha\(^{-1}\)).

Total potassium uptake (kg ha\(^{-1}\))

No significant variations were found among irrigation methods with respect to total potassium uptake. Among establishment methods, mechanical transplanting recorded significantly higher total potassium uptake (124.58 kg ha\(^{-1}\)) as compared to rest of the methods (114.62 to 120.96 kg ha\(^{-1}\)). The results obtained are in conformity with the earlier findings of Jayadeva and Prabhakara Shetty (2008) and Satyanarayana and Babu, (2004).

Among interactions, AWD with mechanical transplanting recorded significantly higher total potassium uptake (128.38 kg ha\(^{-1}\)) followed by alternate wetting and drying up to PI followed by flooding after PI with manual transplanting (125.99 kg ha\(^{-1}\)) over rest of the interactions (113.27 to 124.59 kg ha\(^{-1}\)).

Chemical properties of soil after harvest

The data on pH, EC (dSm\(^{-1}\)), organic carbon (per cent OC) and available nutrient status of the soil (kg ha\(^{-1}\)) is presented in table 6.

pH, EC and per cent OC of soil after harvest of crop

Among irrigation methods, continuous flooding recorded higher pH and EC (7.92 and 0.21 dS m\(^{-1}\), respectively) which were on par with alternate wetting and drying up to PI followed by flooding after PI (7.86 and 0.20 dS m\(^{-1}\), respectively) and maintenance of saturation up to PI followed by flooding after PI (7.84 and 0.20 dS m\(^{-1}\), respectively). However, AWD recorded higher OC (0.62%) and was at par with rest of the methods (0.56 to 0.61%). Among establishment methods, drum seeded rice recorded higher pH and EC (8.05 and 0.21 dS m\(^{-1}\), respectively) while semi dry rice recorded higher OC (0.68%) and were statistically on par with rest of the methods. Interaction effect between irrigation methods and establishment methods was not significant with respect to pH, EC and per cent OC.

Available nitrogen status of the soil (kg ha\(^{-1}\))

Alternate wetting and drying up to PI followed by flooding after PI recorded higher available nitrogen content in soil (274.19 kg ha\(^{-1}\)) whereas, continuous flooding recorded lower available nitrogen content in soil (248.27 kg ha\(^{-1}\)). This may be due to the various forms of nitrogen losses under submerged condition (Taiz and Zeiger, 2006). Among establishment methods, both drum seeded rice and broadcasting of sprouted rice recorded higher available nitrogen content in soil (264.15 kg ha\(^{-1}\)) and was on par with rest of the methods of establishment (253 to 259.97 kg ha\(^{-1}\)). The results are in line with Chandrapala et al., (2010). Among interactions, alternate wetting and drying up to PI followed by flooding after PI with broadcasting of sprouted rice recorded higher available nitrogen content in soil (293.42 kg ha\(^{-1}\)) and effect was non significant.
Table 1 Leaf area at different growth stages and at harvest as influenced by irrigation management practices and establishment methods in rice

Treatment	Leaf area (cm² hill⁻¹)	At harvest		
	DAS 30	60	90	
Irrigation methods (I)				
I₁: Continuous flooding	94.51	605.80	1059.29	836.62
I₂: Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	82.32	596.49	1133.55	831.22
I₃: Alternate wetting and drying up to PI followed by flooding 5±2cm	82.94	544.58	1228.46	920.61
S.Em.⁺	3.33	13.62	21.65	11.03
CD (p= 0.05)	NS	NS	84.81	43.21
Rice establishment methods (E)				
E₁: Drum seeded rice	67.53	502.56	985.53	822.65
E₂: Broadcasting of sprouted rice	102.83	626.78	899.88	745.55
E₃: Semi dry rice	165.62	485.08	1147.31	880.98
E₄: Mechanical transplanting	13.91	721.85	1528.53	1020.46
E₅: Manual transplanting	83.06	575.16	1140.91	844.44
S.Em.⁺	3.70	15.56	18.98	17.68
CD (p= 0.05)	10.81	45.42	51.60	
Interaction				
I₁E₁	75.57	439.33	1051.31	895.31
I₁E₂	110.20	684.64	1000.11	889.81
I₁E₃	191.71	405.34	977.71	810.38
I₁E₄	12.26	854.08	1555.95	981.59
I₁E₅	82.80	645.59	711.36	606.02
I₂E₁	75.05	641.11	910.08	701.61
I₂E₂	92.99	618.68	807.68	644.63
I₂E₃	141.88	512.20	1326.51	937.00
I₂E₄	13.51	601.55	1389.55	934.27
I₂E₅	88.15	608.91	1233.92	938.60
I₃E₁	51.97	427.25	995.20	871.04
I₃E₂	105.29	577.01	891.84	702.22
I₃E₃	163.28	537.72	1137.71	895.57
I₃E₄	15.95	709.92	1640.11	1145.52
I₃E₅	78.24	470.98	1477.44	988.69
S.Em.⁺	6.63	27.69	36.51	29.52
CD (p= 0.05)	18.72	78.67	95.95	89.37

Note: NS – Non significant
Treatment	Dry matter production (g hill\(^{-1}\))	Grain yield (kg ha\(^{-1}\))			
	DAS 30	60	90	At harvest	
Irrigation methods (I)					
I\(_1\): Continuous flooding	1.82	12.62	33.10	64.36	4916
I\(_2\): Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	1.58	12.43	35.42	63.94	4828
I\(_3\): Alternate wetting and drying up to PI followed by flooding 3±2cm	1.60	11.35	38.39	70.82	4849
S.Em+	0.06	0.28	0.68	0.85	190
CD (p= 0.05)	NS	NS	2.65	3.32	NS
Rice establishment methods (E)					
E\(_1\): Drum seeded rice	1.30	10.47	30.80	63.28	4749
E\(_2\): Broadcasting of sprouted rice	1.98	13.06	28.12	57.35	4197
E\(_3\): Semi dry rice	3.19	10.11	35.85	67.77	4953
E\(_4\): Mechanical transplanting	0.27	15.04	47.77	78.50	5171
E\(_5\): Manual transplanting	1.60	11.98	35.65	64.96	5253
S.Em+	0.07	0.32	0.59	1.36	121
CD (p= 0.05)	0.21	0.95	1.73	3.97	354
Interaction					
I\(_1\)E\(_1\)	1.59	12.69	32.85	68.87	4932
I\(_1\)E\(_2\)	1.44	12.53	31.25	68.45	4544
I\(_1\)E\(_3\)	1.50	10.67	30.55	62.34	5189
I\(_1\)E\(_4\)	3.14	14.26	48.62	75.51	5104
I\(_1\)E\(_5\)	0.24	8.44	22.23	46.62	4811
I\(_2\)E\(_1\)	0.31	9.81	28.44	53.97	5137
I\(_2\)E\(_2\)	0.26	9.15	25.24	49.59	3953
I\(_2\)E\(_3\)	1.79	13.36	41.45	72.08	5050
I\(_2\)E\(_4\)	2.12	13.45	43.42	71.87	4797
I\(_2\)E\(_5\)	2.02	12.89	38.56	72.20	5202
I\(_3\)E\(_1\)	1.45	11.20	31.10	67.00	4177
I\(_3\)E\(_2\)	1.00	8.90	27.87	54.02	4093
I\(_3\)E\(_3\)	1.70	12.02	35.55	68.89	4619
I\(_3\)E\(_4\)	3.69	17.79	51.25	88.12	5613
I\(_3\)E\(_5\)	2.73	14.79	46.17	76.05	5745
S.Em+	0.13	0.58	1.14	2.27	267
CD (p= 0.05)	0.36	1.64	3.00	6.87	614

Note: NS - Non significant
Table 3 Nitrogen uptake at harvest as influenced by irrigation management practices and establishment methods in rice

Treatments	N uptake (kg ha\(^{-1}\))		
	Grain	Straw	Total
Irrigation methods (I)			
I\(_1\): Continuous flooding	61.51	56.85	118.36
I\(_2\): Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	60.88	57.14	118.02
I\(_3\): Alternate wetting and drying up to PI followed by flooding 3\pm2cm	61.52	58.64	120.16
S.Em+	0.78	0.58	1.30
CD (p= 0.05)	NS	NS	NS
Rice establishment methods (E)			
E\(_1\): Drum seeded rice	60.27	56.13	116.40
E\(_2\): Broadcasting of sprouted rice	54.08	54.91	108.99
E\(_3\): Semi dry rice	61.93	57.53	119.46
E\(_4\): Mechanical transplanting	63.74	61.86	125.60
E\(_5\): Manual transplanting	66.49	57.30	123.79
S.Em+	0.49	0.32	0.56
CD (p= 0.05)	1.43	0.93	1.65
Interaction			
I\(_1\)E\(_1\)	61.83	57.52	119.35
I\(_1\)E\(_2\)	57.11	56.09	115.43
I\(_1\)E\(_3\)	64.89	55.74	120.63
I\(_1\)E\(_4\)	63.51	61.92	125.43
I\(_1\)E\(_5\)	60.21	52.99	113.20
I\(_2\)E\(_1\)	64.12	54.95	119.07
I\(_2\)E\(_2\)	52.01	54.07	106.08
I\(_2\)E\(_3\)	62.69	59.11	121.80
I\(_2\)E\(_4\)	59.57	59.46	119.03
I\(_2\)E\(_5\)	66.02	58.12	124.14
I\(_3\)E\(_1\)	54.86	55.91	111.44
I\(_3\)E\(_2\)	53.13	54.56	111.02
I\(_3\)E\(_3\)	58.22	57.74	115.96
I\(_3\)E\(_4\)	64.83	61.20	132.33
I\(_3\)E\(_5\)	73.25	60.79	134.04
S.Em+	1.09	0.76	1.56
CD (p= 0.05)	2.48	1.62	2.85

Note: NS - Non significant
Table 4: Phosphorus uptake at harvest as influenced by irrigation management practices and establishment methods in rice

Treatments	P uptake (kg ha\(^{-1}\))		
	Grain	Straw	Total
Irrigation methods (I)			
I\(_1\): Continuous flooding	11.33	8.46	19.79
I\(_2\): Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	11.05	8.83	19.88
I\(_3\): Alternate wetting and drying up to PI followed by flooding 3±2cm	10.87	9.37	20.24
S.Em+	0.59	0.31	0.88
CD (p= 0.05)	NS	NS	NS
Rice establishment methods (E)			
E\(_1\): Drum seeded rice	10.62	8.02	18.64
E\(_2\): Broadcasting of sprouted rice	7.04	7.44	14.48
E\(_3\): Semi dry rice	11.50	9.00	20.50
E\(_4\): Mechanical transplanting	12.45	11.02	23.46
E\(_5\): Manual transplanting	13.80	8.96	22.76
S.Em+	0.51	0.30	0.55
CD (p= 0.05)	1.48	0.88	1.61
Interaction			
I\(_1\)E\(_1\)	11.52	8.58	20.10
I\(_1\)E\(_2\)	7.99	8.21	16.20
I\(_1\)E\(_3\)	13.58	7.89	21.47
I\(_1\)E\(_4\)	13.02	10.86	23.88
I\(_1\)E\(_5\)	10.53	6.75	17.28
I\(_2\)E\(_1\)	13.21	7.44	20.65
I\(_2\)E\(_2\)	6.17	6.98	13.15
I\(_2\)E\(_3\)	12.65	10.05	22.70
I\(_2\)E\(_4\)	9.19	10.21	19.40
I\(_2\)E\(_5\)	14.02	9.49	23.51
I\(_3\)E\(_1\)	7.14	8.03	15.17
I\(_3\)E\(_2\)	6.96	7.12	14.08
I\(_3\)E\(_3\)	8.26	9.07	17.33
I\(_3\)E\(_4\)	15.13	11.98	27.11
I\(_3\)E\(_5\)	16.85	10.64	27.49
S.Em+	0.98	0.56	1.23
CD (p= 0.05)	2.57	1.52	2.78

Note: NS - Non significant
Table 5 Potassium uptake at harvest as influenced by irrigation management practices and establishment methods in rice

Treatments	K uptake (kg ha⁻¹)							
	Grain	Straw	Total					
Irrigation methods (I)								
I₁: Continuous flooding	47.39	71.14	118.53					
I₂: Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	47.40	71.79	119.19					
I₃: Alternate wetting and drying up to PI followed by flooding 3±2cm	47.43	73.16	120.60					
S.Em⁺	0.31	0.97	1.07					
CD (p= 0.05)	NS	NS	NS					
Rice establishment methods (E)								
E₁: Drum seeded rice	47.08	70.33	117.41					
E₂: Broadcasting of sprouted rice	45.59	69.03	114.62					
E₃: Semi dry rice	47.64	72.00	119.64					
E₄: Mechanical transplanting	48.06	76.52	124.58					
E₅: Manual transplanting	48.68	72.28	120.96					
S.Em⁺	0.41	0.33	0.54					
CD (p= 0.05)	1.21	0.97	1.58					
Interaction								
I₁E₁	47.13	71.79	118.92					
I₁E₂	46.08	70.56	116.64					
I₁E₃	48.84	69.48	118.32					
I₁E₄	48.09	76.50	124.59					
I₁E₅	46.82	67.36	114.18					
I₂E₁	48.23	68.97	117.20					
I₂E₂	45.16	68.11	113.27					
I₂E₃	47.87	74.17	122.04					
I₂E₄	46.53	74.23	120.76					
I₂E₅	49.21	73.49	122.70					
I₃E₁	45.87	70.23	116.10					
I₃E₂	45.52	68.42	113.94					
I₃E₃	46.21	72.36	118.57					
I₃E₄	49.56	78.82	128.38					
I₃E₅	50.01	75.98	125.99					
S.Em⁺	0.71	1.09	1.36					
CD (p= 0.05)	2.10	1.68	2.74					

Note: NS - Non significant
Table 6: Available nutrients status in soil after harvest as influenced by irrigation management practices and establishment methods in rice

Treatments	pH	Ec (dS m⁻¹)	OC (%)	Available N (kg ha⁻¹)	Available P₂O₅ (kg ha⁻¹)	Available K₂O (kg ha⁻¹)
Irrigation methods (I)						
I₁: Continuous flooding	7.92	0.21	0.61	248.27	97.44	213.23
I₂: Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	7.84	0.20	0.56	257.46	99.73	211.50
I₃: Alternate wetting and drying up to PI followed by flooding 3±2cm	7.86	0.20	0.62	274.19	99.65	212.29
S.Em+	0.13	0.01	0.01	8.87	1.02	2.72
CD (p= 0.05)	NS	NS	NS	NS	NS	NS
Rice establishment methods (E)						
E₁: Drum seeded rice	8.05	0.21	0.59	264.15	98.30	213.75
E₂: Broadcasting of sprouted rice	8.04	0.21	0.58	264.15	99.61	212.26
E₃: Semi dry rice	7.99	0.20	0.68	258.58	100.70	212.40
E₄: Mechanical transplanting	7.43	0.20	0.49	259.97	97.15	213.42
E₅: Manual transplanting	7.88	0.21	0.64	253.00	98.93	209.87
S.Em+	0.29	0.01	0.01	9.04	1.71	0.92
CD (p= 0.05)	NS	NS	NS	NS	NS	NS
Interaction						
I₁E₁	7.99	0.22	0.53	259.97	100.17	213.55
I₁E₂	8.04	0.21	0.56	255.79	96.84	211.78
I₁E₃	7.95	0.22	0.57	243.25	94.58	215.36
I₁E₄	7.88	0.20	0.51	251.61	99.98	214.58
I₁E₅	7.76	0.21	0.55	230.70	95.63	210.87
I₂E₁	8.04	0.18	0.57	255.79	96.02	213.20
I₂E₂	8.01	0.21	0.55	243.25	100.56	215.28
I₂E₃	8.61	0.19	0.55	268.34	104.70	211.17
I₂E₄	6.61	0.19	0.54	255.79	94.97	210.04
I₃E₅	7.94	0.23	0.54	264.15	97.91	207.82
I₁E₁	8.11	0.22	0.55	276.70	98.71	214.51
I₁E₂	8.06	0.20	0.53	293.42	101.44	209.72
I₁E₃	7.40	0.19	0.54	264.15	102.82	210.66
I₁E₄	7.79	0.20	0.50	272.52	92.01	215.65
I₃E₅	7.94	0.20	0.54	264.15	103.26	210.92
S.Em+	0.46	0.01	0.02	16.57	2.83	3.07
CD (p= 0.05)	NS	NS	NS	NS	NS	NS

Note: NS - Non significant
Table 7 Nutrient use efficiency as influenced by irrigation management practices and establishment methods in rice

Treatments	Nitrogen use efficiency (kg grain kg\(^{-1}\) N)	Phosphorus use efficiency (kg grain kg\(^{-1}\) P\(_2\)O\(_5\))	Potassium use efficiency (kg grain kg\(^{-1}\) K\(_2\)O)
Irrigation methods (I)			
I₁: Continuous flooding	49.16	98.32	98.32
I₂: Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	48.28	96.56	96.56
I₃: Alternate wetting and drying up to PI followed by flooding 3±2cm	48.49	96.99	96.99
S.Em+	1.90	3.80	3.80
CD (p= 0.05)	NS	NS	NS
Rice establishment methods (E)			
E₁: Drum seeded rice	47.49	94.97	94.97
E₂: Broadcasting of sprouted rice	41.97	83.93	83.93
E₃: Semi dry rice	49.53	99.06	99.06
E₄: Mechanical transplanting	51.71	103.43	103.43
E₅: Manual transplanting	52.53	105.05	105.05
S.Em+	1.21	2.43	2.43
CD (p= 0.05)	3.54	7.09	7.09
Interaction			
I₁E₁	49.32	98.64	98.64
I₁E₂	45.44	90.88	90.88
I₁E₃	51.89	103.78	103.78
I₁E₄	51.04	102.08	102.08
I₁E₅	48.11	96.21	96.21
I₂E₁	51.37	102.73	102.73
I₂E₂	39.53	79.06	79.06
I₂E₃	50.50	101.01	101.01
I₂E₄	47.97	95.94	95.94
I₂E₅	52.02	104.05	104.05
I₃E₁	41.77	83.54	83.54
I₃E₂	40.93	81.86	81.86
I₃E₃	46.19	92.38	92.38
I₃E₄	56.13	112.26	112.26
I₃E₅	57.45	114.89	114.89
S.Em+	2.67	5.35	5.35
CD (p= 0.05)	6.14	12.27	12.27

Note: NS - Non significant
Table 8 Economics as influenced by irrigation management practices and establishment methods in rice

Treatments	Cost of cultivation (₹ ha⁻¹)	Gross returns (₹ ha⁻¹)	Net returns (₹ ha⁻¹)	B: C ratio
Irrigation methods (I)				
I₁: Continuous flooding	45850	84777	38927	1.86
I₂: Maintenance of saturation up to panicle initiation (PI) followed by flooding after PI	43650	83634	39984	1.92
I₃: Alternate wetting and drying up to PI followed by flooding 3±2cm	42050	84545	42495	2.00
Rice establishment methods (E)				
E₁: Drum seeded rice	42840	81955	39115	1.91
E₂: Broadcasting of sprouted rice	42590	72832	30242	1.71
E₃: Semi dry rice	40390	85574	45184	2.12
E₄: Mechanical transplanting	46065	90680	44615	1.97
E₅: Manual transplanting	47365	90552	43187	1.92
Interaction				
I₁E₁	44840	85191	40351	1.90
I₁E₂	44590	78863	34273	1.77
I₁E₃	42390	88572	46182	2.09
I₁E₄	48065	88855	40790	1.85
I₁E₅	49365	82406	33041	1.67
I₂E₁	42640	87694	45054	2.06
I₂E₂	42390	68681	26291	1.62
I₂E₃	40190	87804	47614	2.18
I₂E₄	45865	83809	37944	1.83
I₂E₅	47165	90181	43016	1.91
I₃E₁	41040	72980	31940	1.78
I₃E₂	40790	70952	30162	1.74
I₃E₃	38590	80346	41756	2.08
I₃E₄	44265	99377	55112	2.25
I₃E₅	45565	99068	53503	2.17

Note: NS - Non significant

Available phosphorus status of the soil (kg ha⁻¹)

Among irrigation methods, maintenance of saturation up to PI followed by flooding after PI recorded higher available phosphorus content in soil (99.73 kg ha⁻¹) an was at par with alternate wetting and drying up to PI followed by flooding after PI (99.65 kg ha⁻¹) and continuous flooding (97.44 kg ha⁻¹). This
can be attributed to lower uptake of phosphorus by grain and straw which was due to higher available phosphorus in soil after harvest of rice crop as confirmed in this study. These results are also in accordance with the findings of Jat et al., (2015). Semi dry rice recorded higher available phosphorus content in soil (100.70 kg ha\(^{-1}\)) followed by broadcasting of sprouted rice (99.61 kg ha\(^{-1}\)) while mechanical transplanting recorded lower available phosphorus content in soil (97.15 kg ha\(^{-1}\)). Similar results were recorded by Jat et al., (2015). Interaction between irrigation and establishment methods had no significant effect on available phosphorus content in soil.

Available potassium status of the soil (kg ha\(^{-1}\))

Higher available potassium content in soil (213.23 kg ha\(^{-1}\)) was recorded in continuous flooding. Whereas, lower available potassium content in soil (211.50 kg ha\(^{-1}\)) was recorded under maintenance of saturation up to PI followed by flooding after PI. The results are in conformity with the findings of Jayadeva and Prabhakara Shetty (2008). Drum seeded rice recorded higher available potassium content in soil (213.75 kg ha\(^{-1}\)) and the effect was non significant when compared to rest of the methods. This may be due to poor uptake of nutrient from the soil (Chandrapala et al., 2010). Among interactions, alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting recorded higher available potassium content in soil (215.65 kg ha\(^{-1}\)). However, the data showed non significant difference among different interactions.

Nutrient use efficiency (kg kg\(^{-1}\) nutrient)

The data on nutrient use efficiency of rice as influenced by irrigation and establishment methods are presented in the Table 7.

Nitrogen use efficiency (NUE) (kg grain kg\(^{-1}\) N)

Among the different irrigation methods, the nitrogen use efficiency was non-significant. Among establishment methods, manual transplanting recorded higher NUE (52.53 kg grain kg\(^{-1}\) N) followed by mechanical transplanting (51.71 kg grain kg\(^{-1}\) N) and were significantly higher as compared to rest of the methods (41.97 to 49.53 kg grain kg\(^{-1}\) N). However, among interactions, alternate wetting and drying up to PI followed by flooding after PI with manual transplanting recorded significantly higher NUE (57.45 kg grain kg\(^{-1}\) N) which was closely followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (56.13 kg grain kg\(^{-1}\) N) as compared to rest of the interactions (39.53 to 52.02 kg grain kg\(^{-1}\) N). This may be due to the effective utilization of nitrogen through reduced losses in alternate wetting and drying method of irrigation and effective absorption of nutrients through well developed deep root systems in transplanted rice. Similar results were reported by Borkar et al., (2008).

Phosphorus (PUE) (kg grain kg\(^{-1}\) P\(_2\)O\(_5\)) and Potassium use efficiency (KUE) (kg grain kg\(^{-1}\) K\(_2\)O)

Among irrigation methods, continuous flooding recorded higher PUE and KUE (98.32 kg grain kg\(^{-1}\) P\(_2\)O\(_5\) and K\(_2\)O) followed by alternate wetting and drying up to PI followed by flooding after PI (96.99 kg grain kg\(^{-1}\) P\(_2\)O\(_5\) and K\(_2\)O) and maintenance of saturation up to PI followed by flooding after PI (96.56 kg grain kg\(^{-1}\) P\(_2\)O\(_5\) and K\(_2\)O). Manual transplanting among establishment methods recorded significantly higher PUE and KUE (105.05 kg grain kg\(^{-1}\) P\(_2\)O\(_5\) and K\(_2\)O) followed by mechanical transplanting (103.43 kg grain kg\(^{-1}\) P\(_2\)O\(_5\) and K\(_2\)O) as compared to rest of the methods (83.93 to 99.06 kg grain
kg-1 P\textsubscript{2}O\textsubscript{5} and K\textsubscript{2}O). Interaction between alternate wetting and drying up to PI followed by flooding after PI and manual transplanting recorded significantly higher PUE and KUE (114.89 kg grain kg-1 P\textsubscript{2}O\textsubscript{5} and K\textsubscript{2}O) which was closely followed by alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting (112.26 kg grain kg-1 P\textsubscript{2}O\textsubscript{5} and K\textsubscript{2}O) over rest of the interactions (81.86 to 104.05 kg grain kg-1 P\textsubscript{2}O\textsubscript{5} and K\textsubscript{2}O). Among establishment methods, manual transplanting and mechanical transplanting recorded higher NUE, PUE and KUE. The possible reason may be due to transplanting of young age seedlings where root injury is minimal and that helped in quick establishment after transplantation and hence efficient utilization of applied nutrients for its growth and development. Results are in confirmation with Sowmyalatha (2015).

Economics

The data on cost of cultivation, gross returns, net returns and B: C ratio of rice as influenced by irrigation and establishment methods and their interactions are presented in Table 8.

Cost of cultivation (₹ ha-1)

Among irrigation methods, alternate wetting and drying up to PI followed by flooding after PI recorded lower cost of cultivation (42,050 ₹ ha-1) over rest of the methods (43,650 to 45,850 ₹ ha-1). Among establishment methods, lower cost of cultivation (40,390 ₹ ha-1) was recorded in semi dry rice than other methods (42,590 to 47,365 ₹ ha-1). Among treatment combinations, alternate wetting and drying up to PI followed by flooding after PI with semi dry rice recorded lower total cost of cultivation (38,590 ₹ ha-1) as compared to rest of the treatment combinations (40,190 to 49,365 ₹ ha-1). Lower cost of cultivation under alternate wetting and drying up to PI followed by flooding after PI may be due to the reduced irrigation costs while lower cost of cultivation in semi dry rice may be due to the reduced puddling, nursery raising and transplanting costs (Shantappa, 2014).

Gross and net returns (₹ ha-1)

Continuous flooding recorded higher gross returns (84,777 ₹ ha-1) than other methods (83,634 to 84,545 ₹ ha-1) whereas, alternate wetting and drying up to PI followed by flooding after PI recorded higher net returns (42,495 ₹ ha-1) than other methods (38,927 to 39,984 ₹ ha-1) among irrigation methods. Among establishment methods, mechanical transplanting recorded higher gross returns (90,680 ₹ ha-1) as compared to rest of the methods (72,832 to 90,552 ₹ ha-1) however, semi dry rice recorded higher net returns (45,184 ₹ ha-1) as compared to rest of the methods (30,242 to 44,615 ₹ ha-1). However, lower gross and net returns were recorded in broadcasting of sprouted rice (72,832 and 30,242 ₹ ha-1). Higher gross returns may be due to higher grain and straw yield whereas, higher net returns may be mainly due to lower cost of cultivation. Similar results were reported by Manjunatha et al., (2009b) and Jayadeva and Prabhakara Shetty (2008). Among treatment combinations, higher gross returns and net returns (99,377 and 55,112 ₹ ha-1, respectively) were recorded in alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting over rest of the treatment combinations (68,681 to 99,068 and 26,291 to 53,503 ₹ ha-1, respectively).

B: C ratio

Among irrigation methods, alternate wetting and drying up to PI followed by flooding after PI recorded higher B: C ratio (2.00) than other methods (1.86 to 1.92). However, among establishment methods, semi dry rice
recorded higher B: C ratio (2.12) over other methods (1.71 to 1.97). Alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting among treatment combinations recorded higher B: C ratio (2.25) than rest of the treatments (1.67 to 2.18). Higher B: C ratio may be due to higher net returns and lesser cost of cultivation. These results are in line with Jayadeva and Prabhakara Shetty (2008).

In conclusion the efficient water saving technology and method of establishment on nutrient uptake in rice has been evaluated. Among irrigation methods, alternate wetting and drying up to PI followed by flooding after PI recorded higher leaf area than other methods at 90 DAS and at harvest. In establishment methods, mechanical transplanting recorded significantly higher leaf area. However, at 90 DAS and at harvest, alternate wetting and drying up to PI followed by flooding after PI method of irrigation recorded significantly higher dry matter. However, at 60, 90 DAS and at harvest, mechanical transplanting among establishment methods recorded significantly higher dry matter over rest of the methods. Manual transplanting among rice establishment methods recorded significantly higher grain yield. Among rice establishment methods, mechanical transplanting recorded significantly higher total nitrogen uptake, total phosphorus uptake and total potassium uptake. However, manual transplanting recorded higher NUE, PUE and KUE. Among irrigation methods, alternate wetting and drying up to PI followed by flooding after PI recorded lower cost of cultivation, higher net returns and B: C ratio. Among treatment combinations, higher gross returns, net returns and B: C ratio was recorded in alternate wetting and drying up to PI followed by flooding after PI with mechanical transplanting.

References

Anjani, K., Dasgupta, Pragnakumar and Rakesh. 2014, Emerging opportunities and challenges in rice production. *Popular Kheti.*, 2(2): 6-11.

Anonymous, 2017, Area, production and productivity of rice in India. *Ministry of Agriculture and Farmers Welfare*, Govt. of India. pp. 1-2.

Borell, A. K., Garside, A. and Fukai, S., 1997, Improving efficiency of water use for irrigated rice in a semi-arid tropical environment. *Field Crops Res.*, 52: 231-248.

Borkar, L. S., Khawale, V. S., Raut, B., Patil, T. S. and Kolte, H. S., 2008, Studies on spacing and nitrogen management under system of rice intensification (SRI). *J. Soils Crops*, 18(2): 438-441.

Bouman, B. A. M. and Toung, T. P., 2001, Field water management to save water and increase productivity in irrigated low land rice. *Agric. Water Manag.*, 49: 11-30.

Bouman, B. A. M., Peng, S., Castaneda, A. R. and Visperas, R. M., 2005, Yield and water use of irrigated tropical aerobic rice systems. *Agric. Water Manag.*, 74: 87-105.

Chandrapala, A. G., Yakadri, M., Mahender, K. R. and Bhupal, R. G., 2010, Productivity and economics of rice (*Oryza sativa* L.)-maize (*Zea mays* L.) as influenced by methods of crop establishment, Zn and S application in rice. *Indian J. Agron.*, 55(3): 171-176.

Christine, K., Klaus, D., Xunhua, Z., Zhang, X., Shan, L., Hongbin, T. and Burkhard, S., 2007, Fluxes of methane and nitrous oxide in water-saving rice production in north China. *Nutr. Cycl. Agroecosyst.*, 77: 293-304.

Dass, A. and Chandra, S., 2012, Effect of different components of SRI on yield, quality, nutrient accumulation and
Dhawan, V., 2017, Water and Agriculture in India. Presented in: Glob. Forum Food Agric., pp. 17-24.

Dubey, R. S. and Pessarakli, M., 2001, Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In: Passarakli M (Ed). Handbook of Plant and Crop Physiology (2nd Edn), Marcel Dekker Inc, New York, pp 636-655.

Farooq, M., Kadambot, H. M., Siddique, Rehman, H., Aziz, T., Dong Jin Lee and Wahid, 2011, Rice direct seeding: Experience challenges and opportunities. Soil Tillage Res., 111: 87-98.

Gopi, R., Ramesh, S., Pandian, B. J., Chandrasekaran, B. and Sampathkumar, T., 2006, Evaluation of crop establishments and split application of N and K on growth, yield attributes, yield and economics of hybrid rice Co RH2. Asian J. Plant Sci., 5(6): 1022-1026.

Hugar, A. Y., Chandrappa, H., Jayadeva, H. M., Salish, A. and Mallikarjun, G. B., 2009, Comparative performance of different rice establishment methods in Bhadra command area. Karnataka J. Agric. Sci., 22(5): 992-994.

Jat, A. L., Srivastava, V. K. and Rajesh, K. S., 2015, Effect of crop-establishment methods and integrated nitrogen management on productivity of hybrid rice (Oryza sativa)–wheat (Triticum aestivum) cropping system. Indian J. Agron., 60(3): 341-346.

Jayadeva, H. M. and Prabhakara Shetty, T. K., 2008, Influence of crop establishment techniques and sources of nutrients on productivity, energetic and economics of rice. Oryza., 45(2): 165-168.

Lampayan, R. M., Rejesus, R. M., Singleton, G. R. and Bouman, B. A. M., 2015, Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Res., 170: 95–108.

Malik, R. K., Kamboj, B. R., Jat, M. L., Sidhu, H. S., Bana, A., Singh, V., Saharawat, Y. S., Pundir, A., Sahnawaz, R. D., Anuradha, T. and Kumaran, N., 2019, No-till and unpuddled mechanical transplanting of rice-operational manual. Gates Open Res, 3.

Manjunatha, B. N., Basavarajappa, R. and Pujari, B. T., 2009b, Effect of age of seedlings on growth, yield and water requirement by different system of rice intensification. Karnata j. of Agric. Sci., 23(2): 231-234.

Nguyen, H. T., Fischer, K. S. and Fukai, S., 2009, Physiological responses to various water saving systems in rice. Field Crops Res., 112: 189-198.

Rani, S. and Sukumari, P., 2013, Root growth, nutrient uptake and yield of medicinal rice njavara under different establishment techniques and nutrient sources. Am. J. Plant Sci., 4: 1568-1573.

Satyanarayana, A. and Babu, K. S., 2004, A revolutionary method of rice cultivation. In: Manual on system of rice intensification (SRI), Acharya N. G. Ranga Agric. Univ., pp. 6.

Shantappa, D., 2014, Studies on establishment techniques, irrigation water levels and weed management practices on productivity and emission of green house gasses (Ghgs) in rice (Oryza sativa L.). Ph.D. Thesis, Univ. Agric. Sci., Raichur.

Singh, Y. P. Singh, G. Singh, S. P. Kumar, A. Sharma, G., Singh, M. K., Mortin, M. and Johnson, D. E., 2006, Effect of weed management and crop establishment methods on weed
dynamics and grain yield of rice. *Indian J. Weed Sci.*, 38(1-2): 20-24.

Somasundaram, K., Annadurai, K., Manoharan, M. L., Kavimani, R. and Vijayalakshmi, 2000, *Handbook on rice production technology*. Golden net printers, Trichy, pp. 122.

Sowmyalatha, B. S., 2015, Standardization of agro-techniques for mechanized system of rice (*Oryza sativa* L.) intensification. *Ph.D Thesis.*, *Univ. Agric. Sci.*, Bengaluru.

Subramaniam, G., Kumar, M. R., Humayaun, P., Sriniva, V., Kumari, R. B., Vijayabharathi, R., Singh, A., Surekha, K., Padmavathi, C. H., Somashekar, N., Rao, R. P., Latha, P. C., Rao, S. L. V., Babu, V. R., Viraktamath, B. C., Goud, V. V., Gujja, B. and Om, R., 2013, Assessment of different methods of rice cultivation affecting growth parameters, soil chemical, biological and microbiological properties, water saving and grain yield in rice-rice system. *Paddy Water Environ.*, pp. 254-263.

Taiz, L. and Zeiger, E., 2006, *Plant Physiology* (4th Edn), Sinauer Associates, Massachusetts, pp. 690.

Yadav, A. S., Jaidev, Ram, H. and Upadhyay, M. K., 2010, Effect of nitrogen levels and plant geometry on growth, yield and root characteristics of hybrid rice (*Oryza sativa*). *Crop Res.*, 40(3): 16-19.

Yadav, D. B., Yadav, A., and Punia, S. S., 2009, Evaluation of bispyribac-sodium for weed control in transplanted rice. *Indian J. Weed Sci.*, 41(1-2): 23-27.

How to cite this article:

Theerthana, T., P. S. Fathima, G. R. Denesh, S. S. Prakash and Asha, N. N. 2020. Influence of Irrigation Management Practices and Different Establishment Methods on Nutrient Use Efficiency of Rice. *Int.J.Curr.Microbiol.App.Sci.* 9(11): 3213-3233.

doi: https://doi.org/10.20546/ijcmas.2020.911.387