Plant peroxisomes: A nitro-oxidative cocktail

Francisco J. Corpasa,⁎, Juan B. Barrossob, José M. Palmaa, Marta Rodriguez-Ruiza

a Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, 1, 18008 Granada, Spain

b Biochemistry and Cell Signaling in Nitric Oxide Group, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario “Las Lagunillas” s/n, University of Jaén, E-23071 Jaén, Spain

ARTICLE INFO

Key words:
Hydrogen peroxide
Nitric oxide
Peroxisomes
Peroxynitrite
Reactive oxygen species
Reactive nitrogen species

ABSTRACT

Although peroxisomes are very simple organelles, research on different species has provided us with an understanding of their importance in terms of cell viability. In addition to the significant role played by plant peroxisomes in the metabolism of reactive oxygen species (ROS), data gathered over the last two decades show that these organelles are an endogenous source of nitric oxide (NO) and related molecules called reactive nitrogen species (RNS). Molecules such as NO and H2O2 act as retrograde signals among the different cellular compartments, thus facilitating integral cellular adaptation to physiological and environmental changes. However, under nitro-oxidative conditions, part of this network can be overloaded, possibly leading to cellular damage and even cell death. This review aims to update our knowledge of the ROS/RNS metabolism, whose important role in plant peroxisomes is still underestimated. However, this pioneering approach, in which key elements such as β-oxidation, superoxide dismutase (SOD) and NO have been mainly described in relation to plant peroxisomes, could also be used to explore peroxisomes from other organisms.

1. Introduction

In morphological terms, peroxisomes are very simple organelles composed of a dense matrix surrounded by a single membrane. Antioxidant catalase and H2O2-producing flavin oxidases are essential enzymatic components of these organelles. However, it is surprising to note that their biochemical composition can change depending on the organism, organ type, development stage and environment involved [25,44,53,88,97,112,113].

In higher plants, peroxisomes possess extraordinary metabolic plasticity because they house a wide range of pathways such as fatty acid β-oxidation, glyoxylate cycles, photorespiration, purine catabolism, plant hormone biosynthesis (indole-3-acetic acid and jasmonic acid) and polyamine catabolism [20,54,63,85,88,108]. Many of these pathways involve other subcellular compartments, suggesting that peroxisomes must have a pertinent retrograde signaling among the different subcellular compartments which must integrate their functions under optimal physiological conditions or trigger appropriate responses in unforeseen adverse situations [55].

In some cases, these metabolic interactions may involve dynamic and reversible functional and morphological adaptations between peroxisomes and other organelles such as chloroplasts and oil bodies during physiological processes such as photorespiration [19,51,84] and seed germination [35] which enable metabolic exchanges between the organelles to be optimized [63]. So far, over 300 plant peroxisomal proteins have been identified [69,93]; however, innovative approaches using proteomic and bioinformatic technologies, in which key components with hitherto unknown functions [3,47,60,62,71,88,99] have been described in relation to plant peroxisomes, could also be used to explore peroxisomes from other organisms.
metabolism with complex regulatory antioxidative machinery. The data indicate that plant peroxisomes have a nitro-oxidative behavior has been described during the natural senescence of leaves [16]. The antioxidant enzyme superoxide dismutase (SOD), which catalyzes the reduction of superoxide radicals (O$_2^-$) into H$_2$O$_2$ and O$_2$, is also present in peroxisomes. SOD, specifically Mn-SOD, was first described in plant peroxisomes in 1983 [43], whose presence was strongly questioned until CuZn-SOD was described in animal peroxisomes many years later [61]. Since then, an increasing number of reports have confirmed the presence of SOD in peroxisomes (see Table 2), which is now universally accepted as a key antioxidant enzyme in all types of peroxisomes. However, it is worth mentioning two important characteristics of the peroxisomal SOD. While CuZn-SOD has been exclusively found in the matrix of animal peroxisomes, the number, type and localization (matrix and/or membrane) of SOD in plant peroxisomes can change radically (HO$_2$), alkoxyl radicals (RO·), peroxyl radicals (ROO·) and non-radical O$_2$ derivatives such as hydrogen peroxide (H$_2$O$_2$). Superoxide radicals and hydrogen peroxide are two of the most studied ROS in plants. ROS are generated under physiological conditions and plants containing a complex battery of antioxidant defence systems to regulate their production [4]. Interestingly, peroxisomes are important sites for the generation of these ROS, mainly via photorespiration and fatty acid β-oxidation pathways [25,32,40,42,83]. Thus, peroxisomes as cell compartments, with high rates of H$_2$O$_2$ production, play an important role in defence mechanisms and ROS-mediated cross-talk between cell compartments. The principal ROS regulatory enzymatic systems in plant peroxisomes include catalase, all ascorbate-glutathione cycle components as well as superoxide dismutase (SOD). Interestingly, some of these antioxidant components are located in both the peroxisomal matrix and membrane. The peroxisomal β-oxidation pathway, which generates significant amounts of H$_2$O$_2$, was first described in the germinating castor bean [18] and was later found in rat liver [66]. In germinating seeds, triglycerides are mobilized as a source of energy during the non-autotrophic stage prior to photosynthesis. Thus, fatty acids enter peroxisomes via ATP-binding cassette (ABC) transporters of subfamily D. They are then oxidized to fatty acyl-CoA in peroxisomes and shortened by two carbons in each β-oxidation cycle. Finally, acetyl-CoA is converted to four-carbon molecules by the glyoxylate cycle, which then undergo gluconeogenesis in the mitochondrion and cytosol to provide energy for seedling development [14,57,78]. However, H$_2$O$_2$, which acts as a priming factor involving specific changes at the proteome, transcriptome and hormonal levels, is not simply a byproduct of peroxisomal β-oxidation [6,83,144]. Another important source of intracellular H$_2$O$_2$ is the peroxisomal glycolate oxidase (GOX), which is involved in photosynthesis [48]. In addition to the importance of this pathway as a major determinant of C$_3$ crop biomass production, photosynthetic H$_2$O$_2$ appears to participate in pathogen defense [16]. Catalase (CAT) is one of the most representative peroxisomal antioxidant enzymes. While only one catalase isoform is encoded by a single gene in animal cells, catalase is present in the form of multiple isoforms encoded by a small gene family in plant cells [46,49,57]; consequently, the number and expression of various CAT isoforms change during plant development and under different environmental conditions. Given the oxidative metabolism of peroxisomes, various studies have evaluated the oxidative stability of plant catalase activity in the presence of high concentrations of H$_2$O$_2$ (up to 100 mM). However, its oxidation at multiple sites does not affect catalase activity [2]. On the other hand, there is evidence to show that NO-donors, such as S-nitrosglutathione (GSNO) and DETA NONOate, as well as nitrating agents, such as peroxyxinitrite (ONO'O), cause the down-regulation of catalase activity ([15,17,87]). This inhibition of catalase activity could reflect a reduced capacity to remove H$_2$O$_2$ and consequently an increase in the nitro-oxidative metabolism [21,22]. This behavior has been described during the natural senescence of leaves and pepper fruit ripening, when both NO and catalase activity decline [15,24]. In this context, catalase can be regarded as a key enzyme involved in increasing cell longevity [36]. The antioxidant enzyme superoxide dismutase (SOD), which catalyzes the disproportionation of O$_2^-$ into H$_2$O$_2$ and O$_2$, is also present in peroxisomes. SOD, specifically Mn-SOD, was first described in plant peroxisomes in 1983 [43], whose presence was strongly questioned until CuZn-SOD was described in animal peroxisomes many years later [61]. Since then, an increasing number of reports have confirmed the presence of SOD in peroxisomes (see Table 2), which is now universally accepted as a key antioxidant enzyme in all types of peroxisomes. However, it is worth mentioning two important characteristics of the peroxisomal SOD. While CuZn-SOD has been exclusively found in the matrix of animal peroxisomes, the number, type and localization (matrix and/or membrane) of SOD in plant peroxisomes can change
Table 2. Superoxide dismutases (SODs) localized in plant and animal peroxisomes.

Source	SOD Isozyme	Reference
Plants		
Pea	Mn-SOD	[43,90]
Watermelon	Cu/Zn-SOD, Mn-SOD	[100,104]
Carnation	Fe-SOD, Mn-SOD	[39]
Castor bean	Mn-SOD	[41]
Sunflower	Cu/Zn-SOD	[33]
Cucumber	Cu/Zn-SOD, Mn-SOD	[33]
Cotton	Cu/Zn-SOD	[33]
Tomato	SOD	[79]
Olive	Cu/Zn-SOD	[28,120]
Pepper	Mn-SOD	[77]
Rice	Fe-SOD, Cu/Zn-SOD	[91]
Animals		
Humans		
Hepatoma cells	Cu/Zn-SOD	[61]
Fibroblast	Cu/Zn-SOD	[61]
Rat		
Liver	Cu/Zn-SOD	[37]
Brain	Cu/Zn-SOD	[80]
Fish liver	Cu/Zn-SOD	[86]
Molluscs digestive gland	Cu/Zn-SOD	[86]
Crustaceans digestive gland	Cu/Zn-SOD	[86]

Depending on the plant species (see Table 2). Moreover, to our knowledge, none of the SOD proteins localized in peroxisomes contain a classic PTS1 or PTS2. In this context, peroxisomal Cu/Zn-SOD in mammals has been demonstrated to use a piggyback import mechanism, where physiological interaction with the copper chaperone of SOD (CCS) functions as a shuttle [51]. The ascorbate-glutathione (Asc-GSH) cycle constitutes a complementary system which enables plants to control H₂O₂ content. This cycle is composed of 4 enzymes: ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR), as well as antioxidants ascorbate and glutathione, and also requires NADPH as a reducing agent. Although the Asc-GSH cycle was initially found in cytosol and chloroplasts, these enzyme components have also been reported in plant peroxisomes, with APX being the first enzyme found to be present in peroxisomal membranes [13,26,117]. The other components were later identified and characterized in the peroxisomes of different plant species [59,77,81,102]. It is important to point out that the subcellular localization of the Asc-GSH cycle is peculiar to peroxisomes, as, while the APX enzyme is located on the outer surface of the membrane, the GR and DHAR enzymes are present in the matrix, and the MDAR enzyme is located in both the matrix and membrane [67,72]. Although the peroxisomal Asc-GSH cycle is involved in the mechanism of response to environmental stresses (for review, see [98]), it also appears to protect oil bodies close to peroxisomes from oxidative damage [45].

Nitric oxide (NO) is a free radical messenger belonging to a family of related molecules called reactive nitrogen species (RNS). These include molecules such as S-nitrosothiols (SNOs), S-nitrosoglutathione (GSNO), peroxynitrite (ONOO⁻) and nitro-fatty acids (NO₂⁻FA), which directly or indirectly perform a broad spectrum of regulatory functions. Peroxisomes from oxidative damage [45]. Later, it became possible to visualize peroxisomal NO production in vivo with the aid of specific, cell-permeable fluorescent probes to detect NO such as DAF-FM DA and DAR-4M AM. Confocal laser scanning microscopy (CLSM) was also used to analyze Arabidopsis thaliana transgenic plants expressing green or cyan fluorescent proteins by constructing peroxisomal targeting signal 1 (PTS1) [26]. Fig. 1 shows the visualization of NO and ONOO⁻ in the guard cells of transgenic Arabidopsis thaliana expressing CFP-PTS1. Another set of experimental data which evidence the RNS metabolism in plant peroxisomes is related to the identification of peroxisomal proteins which undergo RNS-mediated post-translational modifications, including nitration and S-nitrosylation and affect peroxisomal protein function (Table 3).

Additionally, genetic techniques using Arabidopsis knock out mutants have shown that peroxisomal NO is generated by an NOS-like protein. By using Arabidopsis pex12 and pex13 mutants, it has been possible to demonstrate the absence of peroxisomal NO generation, suggesting that an NOS-like protein is involved [27]. Moreover, analysis of peroxisomal NO content in Arabidopsis pex5 and pex7 knockout mutants subjected to RNA interference (RNAi) called pex5i and pex7i, respectively, enabled us to pinpoint the NOS-like protein responsible for NO generation in peroxisomes, which was imported via the PTS2 pathway [21,22]. Similar findings were also obtained with respect to the iNOS peroxisomal isoform present in rat hepatocytes, which is also imported through the PTS2 pathway [73], suggesting that both plants and animals contain a similar mechanism for importing the protein responsible for NO generation into peroxisomes.

3. Roles of peroxisomal ROS/RNS under physiological and stress conditions

The metabolic plasticity of plant peroxisomes is caused by their specific functions in various physiological processes and by their involvement in the mechanism of response to adverse environmental conditions.

3.1. Physiological conditions: seed and pollen germination, stomatal movement, senescence and fruit ripening

Peroxisomes are key elements in seed germination, as seedling growth in the dark requires the conversion of fatty acids to sugars through β-oxidation and gluconeogenesis [50,52,103]. During this process, large amounts of H₂O₂ are produced, thus promoting seed germination [114], which boosts the production of endogenous ethylene and leads to cell elongation in the root tip [56]. On the other hand, excess peroxisomal H₂O₂ appears to be regulated by the membrane-bound components of the ascorbate-glutathione (APX and MDAR) cycle in order to protect oil bodies against oxidative damage, which can inactivate the triacylglycerol lipase sugar-dependent1 and prevent the supply of carbon for seedling establishment [45]. Although seed germination is also stimulated by NO [9,64], the direct involvement of peroxisomal NO has not yet been confirmed. However, peroxisomal NO has been demonstrated to mediate auxin-induced lateral root organogenesis [105]. On the other hand, peroxisomal NO is directly involved in pollen germination and tube growth, and its target to the ovule [94–96].

In leaves, stomatal movement is highly regulated by external stimuli (light, CO₂ levels, water balance and pathogens) and also by internal molecules including hormones (ABA and salicylic acid) and ROS/RNS (H₂O₂ and NO) [10,82,111]. Fig. 1B shows the presence of...
chloroplasts. D and H, merged images for corresponding panels. C and G, chlorophyll autofluorescence (blue) attributable to the detection in the same guard cells of nitric oxide and peroxynitrite, respectively. A and E, seedlings expressing CFP-PTS1. A and B, fluorescence punctates (red) attributable to CFP-PTS1, indicating the localization of peroxisomes in guard cells. B and F, fluorescence punctates (green) attributable to the detection in the same guard cells of nitric oxide and peroxynitrite, respectively. C and G, chlorophyll autofluorescence (blue) attributable to the detection of chloroplasts. D and H, merged images for corresponding panels.

Peroxisomal NO and ROS are also involved in leaf senescence, which is characterized by programmed degeneration controlled by multiple developmental and environmental signals. This process is mainly characterized by a decline in photosynthesis, marked chlorophyll and protein loss, disintegration of organelle structures and a dramatic increase in lipid peroxidation where the imbalance between ROS production and antioxidative systems in the different subcellular compartments is significantly affected [12,89,92]. As the senescence of Arabidopsis leaves progresses, the isoforms Cat2 and Cat3 have been shown to decrease, which could be a signal for cells to promote senescence [122]. Similarly, during the natural senescence of pea leaves, the decrease in catalase activity is accompanied by a down-regulation of NO generation [24]. A similar observation has been made during pepper fruit ripening, which can be regarded as a process of senescence, where catalase activity is also down-regulated and is accompanied by increased nitration [15]. Furthermore, Arabidopsis mutants called pepu (peroxisome unusual positioning), characterized as containing aggregated peroxisomes, have also been found to contain high levels of oxidized proteins and inactive catalase. These aggregates are damaged peroxisomes which are selectively degraded by pexophagy at the senescence stage [107]. This suggests that H$_2$O$_2$ is a signal for pexophagy which contributes to the removal of damaged peroxisomes in the cell [118]. However, other data indicate that misfolded or aggregated peroxisomal matrix proteins may be cellular signals for pexophagy, where the protease LON2 is involved in protein quality control [119].

Table 3

NO-derived post-translational modification	Peroxisomal enzyme	Identification
Tyrosine nitration	Catalase	Immunoactive with antibody against nitrotyrosinec
	Monodehydroascorbate reductasea	
	Glycolate oxidase	
	Malate dehydrogenase, Hydroxypyruvate reductasea	
S-nitrosylation	Catalase	Preincubation with GSNO (NO donor) and biotin-switchb
	Monodehydroascorbate reductasea	
	Glycolate oxidase	
	Malate dehydrogenase, Hydroxypyruvate reductase	

a Lozano-Juste et al., 2011 [75]; Chaki et al., 2015 [15].
b Ortega-Galisteo et al., 2012 [87].
c Begara-Morales et al., 2015 [8].
d Corpas et al., 2013 [30].

NO (green color) in peroxisomes and the cytosol. Although it has been well established that NO induces stomatal closure as part of a mechanism of response to water deficit [82] and also restricts the entry of pathogenic microorganisms [1], the direct involvement of peroxisomal NO has not yet been confirmed. In this respect, it has been reported that Arabidopsis peroxisomal NADP-isocitrate dehydrogenase (ICDH) knock out mutants show a reduced stomatal aperture as compared to wild type plants [68]. The fact that NADPH generated by this enzyme is necessary for peroxisomal NO generation can be used as indirect evidence of the involvement of peroxisomal NO in stomatal movement. ROS have also been shown to be involved in stomatal movement. Thus, in maize plants grown under drought stress conditions, high accumulation rates of H$_2$O$_2$ in guard cells have been reported to result in stomatal closure [116]. This closely correlates with the regulation of Arabidopsis catalase 3, which, in turn, enables H$_2$O$_2$ to be modulated in stomatal guard cells [123].

3.2. Stress conditions: salinity and heavy metals (Cd and lead)

The involvement of the plant peroxisomal ROS metabolism in the mechanism of response to biotic and abiotic stress has been confirmed by numerous examples (see [20]). However, less information is available on the involvement of peroxisomal NO. In this context, several studies have provided sufficient evidence to indicate that, under certain environmental stress conditions such as salinity and heavy metals, the peroxisomal NO metabolism is significantly triggered, resulting in the generation of cellular nitro-oxidative stress (Table 4).

In Arabidopsis thaliana seedlings grown under salinity stress...
(100 mM NaCl), an increase in peroxisomal NO content has been reported. This also promotes its accumulation in the cytosol, thus contributing to the generation of ONOO⁻ and consequently to an increase in protein tyrosine nitration [29], which is regarded as a marker of nitrosative stress [27]. Similarly, in Arabidopsis seedlings exposed to cadmium (150 µM) stress, peroxisomal NO content was found to increase, which was accompanied by increased superoxide radical content and, accordingly, higher peroxynitrite production [21,22]. Likewise, Arabidopsis grown in the presence of 150 µM lead (Pb²⁺) also caused NO, O₂⁻ and ONOO⁻ overproduction. Furthermore, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase and two photorespiration enzymes glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), have shown that only the catalase was clearly a marker of nitrosative stress [27]. Similarly, in Arabidopsis seedlings exposed to cadmium (150 µM) stress, peroxisomal NO content was found to increase, which was accompanied by increased superoxide radical content and, accordingly, higher peroxynitrite production [21,22]. Likewise, Arabidopsis grown in the presence of 150 µM lead (Pb²⁺) also caused NO, O₂⁻ and ONOO⁻ overproduction. Furthermore, biochemical and gene expression analyses of peroxisomal enzymes, including the antioxidant catalase and two photorespiration enzymes glycolate oxidase (GOX) and hydroxypyruvate reductase (HPR), have shown that only the catalase was clearly a marker of nitrosative stress [27].

4. Conclusions

In plants, RNS and ROS are two families of related molecules generated in the cellular metabolism where peroxisomes are important organelles. Molecules, such as NO, GSNO and H₂O₂, which are endogenously produced by peroxisomes, can act as signal elements involved in different transduction pathways of cellular communication. Fig. 2 summarizes the principal elements involved in the endogenous peroxisomal metabolism of NO/H₂O₂, which can diffuse out of these organelles and affect other cell compartments. Nitric oxide generated from L-arginine by NOS-like activity interacts with superoxide radicals (O₂⁻) to generate peroxynitrite (ONOO⁻), which can mediate the protein tyrosine nitration of specific peroxisomal target proteins (Table 3). On the other hand, NO can react with reduced glutathione (GSH) to produce S-nitrosoglutathione (GSNO) which, through a process of transnitrosylation, affects other peroxisomal enzymes (Table 3). Although, little is known about the permeability of GSNO through cellular membranes [11,101], it is possible to suggest that NO, and perhaps GSNO, is released through the peroxisomal membrane to the cytosol and initiates a signaling cascade or interacts with other biomolecules; this causes post-translational modifications or is part of a mechanism of response to various types of stresses. Hydrogen peroxide is produced via different biochemical pathways, such as β-oxidation and photorespiration, in plant peroxisomes. Additionally, O₂⁻ generated by certain enzymes, such as xanthine oxidase (XOD, part of the purine metabolism) [32], can be dismutated to H₂O₂ by the

![Peroxisome Diagram](image-url)
enzyme superoxide dismutase (SOD). Although, peroxisomal H₂O₂ levels are controlled by catalase located in the matrix or by membrane-bound ascorbate peroxidase (APX), this does not discard the potential presence of H₂O₂-transporting aquaporins in the peroxisomal membrane [115]. Additionally, in this peroxisomal model, it is also important to mention the presence of other ascorbate-glutathione cycle components (MDAR, DHAR and GR) as well as a group of NADPH-regenerating enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH) and NADP-dependent isocitrate dehydrogenase (NADP-ICDH). This group of enzymes provides the NADPH necessary for both GR and L-arginine NOS-like activities.

In summary, peroxisomal studies have opened up exciting new avenues of investigation for the community of researchers working on cellular integration. Molecules such as NO and H₂O₂ act as retrograde avenues of investigation for the community of researchers working on the role of peroxisomes in the immune response and in various diseases. The importance of peroxisomes in health and disease, as well as the potential therapeutic applications, is highlighted in the recent review by F. J. Corpas et al. [136].

Conflict of interest

The authors declare that there are no conflicts of interest.

Acknowledgements

FJC and JMP research is supported by the ERDF-cofounded grants from the Ministry of Economy and Competitiveness (AGL2015-65104-P) and Junta de Andalucía (group BIO192). Research in JBB laboratory is supported by an ERDF grant co-financed by the Ministry of Economy and Competitiveness (BIO2015-66390-P) and Junta de Andalucía (group BIO286), Spain. M.R.R acknowledges an FPI fellowship from the Ministry of Science and Innovation, Spain (AGL2011-26044).

References

[1] S. Agural, G. Gayatri, A.S. Raghavendra, Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens, Nitric Oxide 43 (2014) 89–96.

[2] P. Anand, Y. Kwak, R. Simha, R.F. Donaldson, Hydrogen peroxide induced oxidation of peroxisomal malate synthase and catalase, Arch. Biochem. Biophys. 491 (2009) 25–31.

[3] Y. Arai, M. Hayashi, M. Nishimura, Proteomic identification and characterization of a novel peroxisomal adenosine nucleoside transporter supplying ATP for fatty acid beta-oxidation in soybean and Arabidopsis, Plant Cell 20 (2008) 3227–3240.

[4] K. Asada, Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol. 141 (2006) 391–396.

[5] A. Baker, L.A. Graham, M. Holdsworth, S.M. Smith, F.L. Theodorou, Chewing the fat: beta-oxidation in signalling and development, Trends Plant Sci. 11 (2006) 124–132.

[6] G. Barba-Espin, P. Díaz-Vivancos, M.J. Clemente-Moreno, A. Albacete, L. Faiá, M. Faiá, F. Pérez-Alfocea, A.J. Hernández, Interaction between hydrogen peroxide and plant hormones during germination and the early growth of pea seedlings, Plant Cell Environ. 33 (2010) 981–994.

[7] J.B. Barroso, F.J. Corpas, A. Carreras, L.M. Sandalio, R. Valderrama, J.M. Palma, A. Lopuáñez, J.A. López, L.A. del Río, Localization of nitric-oxide synthase in plant peroxisomes, J. Exp. Bot. 51 (1999) 3679–3678, J. B. Barroso, F.J. Corpas, J.M. Palma, L.M. Sandalio, M. Gómez, L.A. del Río, Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants, Plant Physiol. 136 (2004) 2722–2733.

[8] J.B. Barroso, J.B. Barroso, Peroxosomal nitric oxide synthase (NOS) protein is imported by peroxisomal targeting signal type 2 (PTS2) in a process that depends on the cytosolic receptor PEX7 and calmodulin, FEBS Lett. 598 (2014) 2049–2054.

[9] F.J. Corpas, J.B. Barroso, Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O₂˙−) in Arabidopsis peroxisomes, affects catalase activity, Nitric Oxide (2017). http://dx.doi.org/10.1016/j.niox.2016.12.010.

[10] F.J. Corpas, J.B. Barroso, A. Carreras, M. Quiroa, A.M. León, M.C. Romero-Puertas, F.J. Esteban, R. Valderrama, J.M. Palma, L.M. Sandalio, M. Gómez, L.A. del Río, Cellular and subcellular localization of endogenous nitric oxide in young and senescent pea plants, Plant Physiol. 136 (2004) 2722–2733.

[11] F.J. Corpas, J.B. Barroso, Peroxins as a source of reactive oxygen species and nitric oxide signal molecules in plant cells, Trends Plant Sci. 6 (2001) 135–140.

[12] F.J. Corpas, J. B. Corpas, R. T. Reale, Identification and immunochromatographic characterization of a family of peroxisome membrane proteins (PMPs) in oilseed glyoxysomes, Eur. J. Cell Biol. 65 (1994) 280–290.

[13] F.J. Corpas, M. Chaki, M. Letierrier, J.B. Barroso, Protein tyrosine nitration: a new challenge in plants, Plant Behav. 4 (2009) 390–923.

[14] F.J. Corpas, A. Fernández-Ocaña, A. Carreras, R. Valderrama, F. Luque, F.J. Esteban, M. Rodríguez-Serrano, M. Chaki, J.R. Pedrjas, M.L. Sandalio, L.A. del Río, J.B. Barroso, The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves, Plant Cell Physiol. 47 (2006) 984–994.

[15] F.J. Corpas, M. Hayashi, S. Mano, M. Nishimura, J.B. Barroso, Peroxins are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants, Plant Physiol. 151 (4) (2009) 2083–2094.

[16] F.J. Corpas, M. Letierrier, J.C. Bergara-Morales, R. Valderrama, M. Chaki, J. López-Jaramillo, F. Luque, J.M. Palma, M.N. Padilla, B. Sánchez-Calvo, C. Mata-Pérez, J.B. Barroso, Inhibition of peroxisomal hydroxyproline reductase (HPR1) by tyrosine nitration, Biochim. Biophys. Acta 1830 (2013) 4981–4989.

[17] F.J. Corpas, M. Chaki, R. Valderrama, M. Airaki, M. Chaki, J.M. Palma, J.B. Barroso, Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress, Plant Sci. 181 (2013) 604–613.

[18] F.J. Corpas, J.M. Palma, L.M. Sandalio, R. Valderrama, J.B. Barroso, L.A. del Río, Peroxosomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves, Plant J. 165 (2006) 1318–1330.

[19] F.J. Corpas, L.M. Sandalio, L.A. del Río, R.N. Trelease, Copper–zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants, N. Phytol. 138 (1998) 307–314.

[20] L. Cross, H.T. Eebed, A. Baker, Peroximase biogenesis, protein targeting mechanisms and PEX gene functions in plants, Biochim. Biophys. Acta 1863 (2016) 850–862.

[21] S. Cui, Y. Hayashi, M. Otomo, S. Mano, K. Oikawa, M. Hayashi, M. Nishimura, Sucrose production mediated by lipid metabolism suppresses the physical interaction of peroxisomes and cell bodies during germination of Arabidopsis thaliana, J. Biol. Chem. 291 (2016) 19734–19745.

[22] R.G. Cutler, Oxidative stress and aging: catalase is a longevity determinant enzyme, Rejuvenation Res. 8 (2005) 138–140.

[23] G.S. Dhamu, S. Gulati, A.K. Singh, J.K. Orak, K. Asayama, I. Singh, Demonstration of Cu-Zn superoxide dismutase in rat liver peroxisomes, Biochemical and immunochromatographic evidence, J. Biol. Chem. 267 (10) (1992) 6965–6973.

[24] R. Dehnen, M.K. Cheung, J. Bright, B. Henson, J.T. Hancock, S.J. Heil, ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells, J. Exp. Bot. 55 (2004) 205–212.

[25] M.J. Dröllard, A. Pascal, Isoxymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence, Plant Physiol. 94 (1990) 1187–1192.

[26] L.A. del Río, F.J. Corpas, L.M. Sandalio, J.M. Palma, M. Gómez, J.B. Barroso, Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. 53: 1255–1272, J Exp. Bot. 53 (2002) 1255–1272.
[62] S.K. Kessel-Vigelius, J. Wiese, M.G. Schroers, T.J. Wrobel, F. Hahn, N. Linka, An evidence for the presence of L.A. del Río, R.P. Donaldson, Production of superoxide radicals in glyoxysomal L.A. del Río, E. López-Huertas, ROS generation in peroxisomes and its role in cell L.A. del Río, A.U. Igamberdiev, P.J. Lea, The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms, Physiolochemistry 60 (2002) 651–674.

[72] C.S. Lisenbee, M.J. Lingard, R.N. Trelease, Arabidopsis peroxisomes possess biogenesis of catalase in glyoxysomes and leaf-type peroxisomes of peroxisomes-catalyzed beta oxidation of fatty acids, J. Biol. Chem. 281 (2006) 33511–33520.

[75] J. Lozano-Juste, R. Colom-Moreno, J. León, In vivo protein tyrosine nitration in Arabidopsis thaliana, J. Exp. Bot. 62 (2011) 3501–3517.

[80] M. Müller, B. Zechmann, G. Zellnig, Ultrastructural localization of glutathione in plant catalase genes inferred from exon-intron structures: isozyme divergence in soybean seed germination through ethylene production in response to reactive oxygen species, Ann. Bot. 111 (2013) 95–102.

[86] J.M. Palma, L.A. del Río, Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants, J. Exp. Bot. 57 (2006) 1749–1763.

[91] M. Palma, F. Sevilla, L.A. del Río, A. Jiménez, J.A. Hernández, L.A. del Río, Monodehydroascorbate reductase. Genomic clone characterization and functional analysis under environmental stress conditions, Plant Physiol. 138 (2005) 255–266.

[92] P.B. Lazarow, Rat liver peroxisomes catalyze the beta oxidation of fatty acids, J. Biol. Chem. 253 (1978) 1522–1528.

[93] I. Pracharoenwattana, S.M. Smith, When is a peroxisome not a peroxisome?, Trends Plant Sci. 13 (2008) 537–539.

[94] J.M. Palma, F.J. Corpas, L.A. del Río, Proteome of plant peroxisomes: new insights of metabolites and properties of Oryza sativa fi 1017.

[95] J.M. Palma, F. Sevilla, L.A. del Río, Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants, J. Exp. Bot. 57 (2006) 1747–1758.

[96] S.A. Reichler, J. Torres, A.L. Rivera, V.A. Cintolesi, G. Clark, S.J. Roux, K. Oikawa, S. Mano, S. Kondo, M. Yamada, K. Hayashi, M. Kagawa, T. Kadota, A. Sakamoto, W. Higashi, S. Watanabe, M. Mitsui, T. Shigemasa, A. Iino, T. Osu, D.W. Kim, K. Watanabe, A. Sasaki, M. Nitosu, T. Berberich, T. Kusano, Y. Takahashi, Constitutively and highly expressed Orysa sativum polyamine oxidases localize in peroxisomes and catalyse polyamine back conversion, Amino Acids 42 (2012) 867–878.

[97] A. Ortez, H.D. Fahming, R. Cajaraville, Immunocatalysis of four antioxidant enzymes in digestive glands of molluscs and crustaceans and fish liver, Histochem. Cell Biol. 114 (5) (2000) 393–404.

[98] K. Oikawa, S. Mano, S. Kondo, K. Hayashi, M. Kagawa, T. Kadota, A. Sakamoto, W. Higashi, S. Watanabe, M. Mitsui, T. Shigemasa, A. Iino, T. Hayashi, Y. Nishimura, M. Nishimura, Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis, Nat. Plants 1 (2015) 15035.

[99] Y. Ono, D.W. Kim, K. Watanabe, A. Sasaki, M. Nitosu, T. Berberich, T. Kusano, Y. Takahashi, Constitutively and highly expressed Orysa sativum polyamine oxidases localize in peroxisomes and catalyse polyamine back conversion, Amino Acids 42 (2012) 867–878.

[100] J.M. Palma, F.J. Corpas, L.A. del Río, Proteome of plant peroxisomes: new perspectives on the role of these organelles in cell biology, Proteomics 9 (2009) 2301–2312.

[101] J.M. Palma, A. Jiménez, L.M. Sandalio, F.J. Corpas, M. Lundqvist, M. Gómez, F. Sevilla, L.A. del Río, Antioxidative enzymes from chloroplasts, mitochondria, and peroxisomes during leaf senescence of nodulated pea plants, J. Exp. Bot. 57 (2006) 1747–1758.

[102] J.M. Palma, F. Sevilla, A. Jiménez, L.M. Sandalio, F.J. Corpas, P. Álvarez de Morales, D.M. Camejo, Physiology of pepper fruit and the metabolism of NADP-isocitrate dehydrogenase is required for Arabidopsis stomatal movement, Protoplasma 253 (2016) 403–415.

[103] P. Bi, J. Hu, Using co-expression analysis and stress-based screens to uncover Arabidopsis peroxisomal proteins involved in drought response, PLoS One 10 (2015) e0137762.
germination and pollen tube growth via nitric oxide, J. Exp. Bot. 60 (2009) 2129–2138.

[97] S. Reumann, B. Bartel, Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics, Curr. Opin. Plant Biol. 34 (2016) 17–26.

[98] S. Reumann, F.J. Corpas, The peroxisomal ascorbate–glutathione pathway: molecular identification and insights into its essential role under environmental stress conditions, in: N.A. Anjum, M.-T. Chan, S. Umar (Eds.), Ascorbate-Glutathione Pathway and Stress Tolerance in Plants, Springer, 2010, pp. 387–404 (ISBN 978-90-481-9403-2).

[99] S. Reumann, S. Quan, P. Yang, K. Manandhar-Shrestha, D. Holbrook, N. Linka, R. Switzenberg, C.G. Wilkerson, A.P. Weber, L.J. Olsen, J. Hu, In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes, Plant Physiol. 150 (2009) 125–143.

[100] M. Rodriguez-Serrano, L.M. Sandalio, L.A. del Río, J.M. Palma, Glutathione reductase from pea leaves: characterization of the isoenzyme from watermelon (Citrus lanatus Schrad.) cotyledons, J. Exp. Bot. 58 (2007) 2417–2427.

[101] J.M. Romero, O.A. Bizzozero, Extracellular S-nitrosglutathione, but not S-nitrosocysteine or NO2-, mediates protein S-nitration in rat spinal cord slices, J. Neurochem. 99 (4) (2006) 1299–1310.

[102] M.C. Romero-Puertas, F.J. Corpas, L.M. Sandalio, M. Leterrier, M. Rodríguez-Serrano, L.A. del Río, J.M. Palma. Peroxisomal beta-oxidation is essential for seedling establishment, Plant J. 45 (2006) 1162–1174.

[103] E.L. Rybolt, P.J. Eastmond, A.D. Gilday, S.P. Slocombe, T.R. Larson, A. Baker, I.A. Graham, The Arabidopsis thaliana multifunctional protein gene (MFP2) of peroxisomal beta-oxidation is essential for seedling establishment, Plant J. 45 (2006) 930–941.

[104] L.M. Sandalio, L.A. del Río, IntrazYGanelar distribution of superoxide dismutase in plant peroxisomes (glyoxysomal and leaf peroxisomes), Plant Physiol. 88 (1988) 1215–1218.

[105] M. Schlicht, J. Ludwig-Müller, C. Burbach, D. Volkman, F. Baluska, Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide, New Phytol. 200 (2013) 473–482.

[106] M. Schrader, H.D. Fahimi, The peroxisome: still a mysterious organelle, Histochem. Cell Biol. 129 (4) (2008) 421–440.

[107] M. Shibata, K. Oikawa, Yoshimoto, M. Kondo, S. Mano, K. Yamada, M. Hayashi, W. Sakamoto, Y. Ohsumi, M. Nishimura, Highly oxidized peroxisomes are selectively degraded via autophagy in Arabidopsis, Plant Cell 25 (2013) 4967–4983.

[108] G.M. Spiess, B.K. Zolman, Peroxisomes as a source of auxin signaling molecules, Subcell. Biochem. 69 (2013) 257–281.

[109] D.B. Stolz, R. Zamora, Y. Vodovozov, P.A. Loughran, T.R. Billiar, Y.M. Kim, R.L. Simmons, S.C. Watkins, Peroxosomal localization of inducible nitric oxide synthase in hepatocytes, Hepatology 36 (2002) 81–93.

[110] Y. Ueda, N. Uehara, H. Sasaki, K. Kobayashi, T. Yamakawa, Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves, Plant Physiol. Biochem. 70 (2013) 396–402.

[111] P. Wang, Y. Du, Y. Hou, Y. Zhao, C. Hsu, F. Yuan, X. Zhu, TaoWA, C. Song, J. Zhu, Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1, Proc. Natl. Acad. Sci. USA 112 (2014) 613–618.

[112] X. Wang, S. Li, Y. Liu, C. Ma, Redox regulated peroxisome homeostasis, Redox Biol. 4 (2015) 104–108.

[113] R.J. Wanders, H.R. Waterham, S. Ferdinandusse, Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum, Front. Cell Dev. Biol. 3 (2016) 83.

[114] L. Wojtyla, K. Lechosinska, S. Kubala, M. Garnczarska, Different modes of hydrogen peroxide action during seed germination, Front. Plant Sci. 7 (2016) 66.

[115] M.M. Wudick, D.T. Lau, C. Maurel, A look inside: localization patterns and functions of intracellular plant aquaporins, New Phytol. 184 (2009) 289–302.

[116] Y. Yao, X. Liu, H. Rennenberg, X. Wang, Drought-induced H2O2 accumulation in subsidiary cells is involved in regulatory signalling of stomatal closure in maize leaves, Planta 238 (2013) 217–227.

[117] K. Yamaguchi, H. Mori, M. Nishimura, A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin, Plant Cell Physiol. 36 (1995) 1157–1162.

[118] K. Yoshimoto, M. Shibata, M. Kondo, K. Oikawa, M. Sato, K. Toyooka, K. Shirasa, M. Nishimura, Y. Ohsumi, Quality control of plant peroxisomes in organ specific manner via autophagy, J. Cell Sci. 127 (2014) 1161–1168.

[119] P.G. Young, B. Bartel, Pexophagy and peroxisomal protein turnover in plants, Biochim. Biophys. Acta 1863 (2009) 1001–1005.

[120] A. Zafra, M.I. Rodríguez-García, J.J. Zou, X.D. Li, D. Ratnasekera, C. Wang, W.X. Liu, L.F. Song, W.Z. Zhang, F.J. Corpas, M.I. Rodríguez-García, J.D. Alché, Peroxosomal localization of CuZn superoxide dismutase in the male reproductive tissues of the olive tree, Microsc. Microanal. 18 (2012) 33–34.

[121] A. Zafra, M.I. Rodríguez-García, J.D. Alché, Cellular localization of ROS and NO in olive reproductive tissues during flower development, BMC Plant Biol. 10 (2010) 36.

[122] P. Zimmermann, C. Heinlein, G. Orendi, U. Zentgraf, Senescence-specific regulation of catases in Arabidopsis thaliana (L.) Heynh, Plant Cell Environ. 29 (2006) 1049–1060.

[123] J.J. Zou, X.D. Li, D. Ratnasekera, C. Wang, W.X. Liu, F.L. Song, W.Z. Zhang, W.H. Wu, Arabidopsis calcium-dependent protein kinase 8 and catase 3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress, Plant Cell 27 (2015) 1445–1460.