Cost-effectiveness analysis of whole-genome sequencing during an outbreak of carbapenem-resistant *Acinetobacter baumannii*

Thomas M. Elliott MHEcon, Patrick N. Harris PhD, Leah W. Roberts PhD, Michelle Doidge B Nurs, Trish Hurst B Nurs, Krispin Hajkowicz FRACP, Brian Forde PhD, David L. Paterson PhD, and Louisa G. Gordon PhD

Abstract

Background: Whole-genome sequencing (WGS) shotgun metagenomics (metagenomics) attempts to sequence the entire genetic content straight from the sample. Diagnostic advantages lie in the ability to detect unsuspected, uncultivable, or very slow-growing organisms.

Objective: To evaluate the clinical and economic effects of using WGS and metagenomics for outbreak management in a large metropolitan hospital.

Design: Cost-effectiveness study.

Setting: Intensive care unit and burn unit of large metropolitan hospital.

Patients: Simulated intensive care unit and burn unit patients.

Methods: We built a complex simulation model to estimate pathogen transmission, associated hospital costs, and quality-adjusted life years (QALYs) during a 32-month outbreak of carbapenem-resistant *Acinetobacter baumannii* (CRAB). Model parameters were determined using microbiology surveillance data, genome sequencing results, hospital admission databases, and local clinical knowledge. The model was calibrated to the actual pathogen spread within the intensive care unit and burn unit (scenario 1) and compared with early use of WGS (scenario 2) and early use of WGS and metagenomics (scenario 3) to determine their respective cost-effectiveness. Sensitivity analyses were performed to address model uncertainty.

Results: On average compared with scenario 1, scenario 2 resulted in 14 fewer patients with CRAB, 59 additional QALYs, and $75,099 cost savings. Scenario 3, compared with scenario 1, resulted in 18 fewer patients with CRAB, 74 additional QALYs, and $93,822 in hospital cost savings. The likelihoods that scenario 2 and scenario 3 were cost-effective were 57% and 60%, respectively.

Conclusions: The use of WGS and metagenomics in infection control processes were predicted to produce favorable economic and clinical outcomes.

(Received 16 August 2021; accepted 25 October 2021)
have been shown to be effective at reducing contamination and are cost-effective.\(^6\) Identifying environmental contamination early in outbreaks is critical to limiting their spread.

Hospital infection control teams use microbiological screening to identify pathogens, their susceptibility in patients and for environmental screening. This process takes 1–3 days for bacteria that are cultured on routine media, with antimicrobial susceptibility testing adding 1–2 days.\(^7\) Whole-genome sequencing (WGS) has higher precision compared with conventional typing methods and is used to detect outbreaks,\(^8\) monitor the evolution of drug resistance,\(^9\) and reconstruct transmission routes.\(^10\) WGS requires the sample to be cultured beforehand, whereas WGS shotgun metagenomics (metagenomics) attempts to sequence the entire genetic content straight from the sample. Metagenomics can characterize the subtypes, antimicrobial resistance, and pathogenic gene carriage of the microbial population.\(^11\) Turnaround times for metagenomics range from 2 to 7 days from sample collection to results.\(^12\) Because time to diagnosis is not always shortened, the diagnostic advantages lie in the ability to detect unsuspected, uncultivable, or very slow-growing organisms, which produce negative results with standard assays.\(^7\) The overwhelming amount of host DNA present in primary clinical specimens collected from patients poses a major challenge in metagenomics, but this is not an issue when it is used on environmental samples.\(^7\)

The importance of WGS in limiting multidrug-resistant organism (MDRO) nosocomial infections has been identified in outbreak\(^13\) and nonoutbreak settings.\(^14\) Significant cost savings could be realized as the reduction in cases, and subsequent resources used for contact precautions, outweigh the additional cost of sequencing,\(^15\) but more evidence on the economic impact of WGS within infection control is needed. To our knowledge, the economic impact of metagenomics has not been studied, specifically in environmental contamination screening.

To address this gap, we performed a cost-effectiveness analysis of WGS and metagenomics of environmental samples to inform future resource use of WGS based on a hospital CRAB outbreak.

Methods

In the intensive care and burn units of a large metropolitan hospital in Brisbane, Australia, we used a hybrid agent-based and discrete-event simulation model to assess the management of a CRAB outbreak, and we incorporated background MDRO nosocomial infections and environmental screening. This study was approved by the QIMR Berghofer Medical Research Institute Human Research Ethics Committee (P2353) and the Queensland Government Public Health Act Human Research Ethics Committee (RD007427).

The outbreak

The hospital is a 978-bed, tertiary-care facility in Queensland, Australia, comprised of open-ward, 4-bed, 2-bed, and single-bed accommodation combinations. The outbreak predominantly affected a 34-bed ICU and an 18-bed burn unit over a 32-month period. Active transmission of 17 cases of sequence type (ST) 1050 (ST1050) CRAB were identified between May and August 2016; 6 cases were identified between December 2016 and August 2017; and 8 cases were identified between May and August 2018 (Fig. 1).\(^16\) Monthly WGS reporting starting in June 2016 identified environmental contamination as the likely source of the ongoing outbreak. Environmental metagenomics was introduced in November 2017 but had reduced sensitivity due to low DNA yields from sampling. Instead, areas of high bacterial load, such as drains and burn baths, were targeted in 2018, which revealed 4 areas positive for CRAB. Immediate reporting of WGS results were available when the CRAB outbreak resurfaced in May 2018. Additional details about the outbreak, implementation of metagenomics, environmental swabbing, and sequencing outcomes are discussed in the Supplementary Materials and by Roberts et al.\(^16\)

Comparison groups

We evaluated the cost-effectiveness of 3 screening scenarios as follows:

Scenario 1: The observed outbreak described above with initially no WGS, no metagenomics and environmental swabbing concentrating on high touch areas. WGS, metagenomics and environmental swabbing of high load areas were introduced later as described above (Fig. 1).

Scenario 2: Hypothetically testing immediate WGS use prior to the start of the outbreak. This would lead to identifying the need for environmental swabbing to focus on high bacterial load areas. As in Scenario 1, metagenomics was introduced in November 2017.

Scenario 3: Hypothetically testing WGS and metagenomics use prior to the start of the outbreak.

Model structure

Using AnyLogic dynamic simulation modeling software (AnyLogic, Chicago, IL), the evaluation combined methods of cost-effectiveness analysis,\(^17\) infectious disease modeling and system dynamics.\(^18\) A network approach was taken to connect the hospital environment, the dynamics of pathogen transmission, environmental pathogen contamination, patient movements, and decisions by the hospital infection control team. The intensive care and burns units were modeled; 29 of the 31 ST1050 CRAB cases were detected in these units. The model ran for 32 months
Fig. 3. Scatterplot of incremental costs and QALYs (all patients) for scenario 3 versus scenario 1. Each dot represents an incremental cost and incremental QALY pairing, using the assigned distributions around each model parameter, selected randomly during 5,000 iterations. Dots falling below the diagonal line (the willingness-to-pay threshold of AU$50,000 per QALY) are considered cost-effective. The proportion of simulations considered cost-effective was 60.1%. Note: QALYs, quality-adjusted life years.

Fig. 2. Introduction of WGS and metagenomics into microbiology culture infection control process. Note. micro, microbiology; enviro, environmental; WGS, whole-genome sequencing; HTA, high-touch area.

Patient hospital episode information was obtained from the hospital-based corporate information system (HBCIS) for all patients who spent time in either the intensive care or burns units between April 1, 2016, and January 1, 2019. HBCIS routinely collects all patient separations and patient days (or occupied bed days) that occur in public hospitals. Hospital daily admission rate, ward admission probability, ward transfer proportions, and ward length of stay were estimated empirically from the HBICS data set (Supplementary Tables S4–S8). Ward stays were estimated as independent \(\gamma \) distributions for all observed ward pair combinations using the methods of moments approach.\(^{20}\)

The sensitivity of detecting environmental CRAB contamination with microbiology cultures was estimated at 40% and metagenomics at 80% (Table 1). These estimates were calculated from 5 positive environmental samples from 50 sequenced samples. Due to the uncertainty of samples not being detected, these values were varied in sensitivity analysis (Table 1).

The daily incidences of common MDROs were extracted from 3 years (April 2016 to January 2019) of MDRO surveillance data and converted to probabilities (Supplementary Table S2). ICD-10 codes from the HBICS data set identified the bloodstream, respiratory, and urinary tract infection rates for each of the MDROs (Table S3). The frequency of deaths in hospital from patients infected with any of the MDROs were obtained from published reports\(^{21}\) and ranged from 0.7% for Clostridiodioides difficile infection to 36.6% for vancomycin-resistant Enterococcus (Table S2).

Genetic relatedness was determined by examining the number of core-genome single-nucleotide polymorphisms (SNPs) that differ between any 2 isolates (pairwise core-genome SNP distance). Genetically related isolates were subdivided into clusters when the SNP distances between them were under a 5 SNPs per megabase threshold.\(^{22}\) Two years (December 2017 to December 2019) of processed MDRO WGS results identified clusters of extended spectrum \(\beta \)-lactamase (ESBL)–producing Escherichia coli and ESBL–producing Klebsiella pneumoniae.

Health utilities are cardinal values that represent the strength of an individual’s preferences for specific health-related outcomes. They are scored on a scale between 0, worst health to 1, perfect health. Health utilities are used to calculate QALYs, a measure of patient benefit, where the length of time in a health state is
Table 1. Parameter Description, Values, and Sources Used in the Hybrid Simulation Model

Parameter	Value	Source
Initialization		
Initial starting population, no.	106	HBCIS data
Ward	Burns, ICU, ID, other, readmission	Building floor plans
Population entry rate, average patients per day	7.40	HBCIS data
Ward admission, transfers and LOS	see Supplementary Tables S4–S8	HBCIS data
Outbreak spread		
Transmission patient parameter β_1	0.65	Calibration
Transmission patient parameter β_2	0.014	Calibration
Transmission env. parameter λ_1	0.045	Calibration
Transmission env. parameter λ_2	0.019	Calibration
β_1 to β_2 change date	1/10/2016	Assumption based on outbreak data
Infection control		
Microbiology test processing time, d	2	Clinical data
Genome sequencing processing time, d (range)	7 (3–10)	Clinical data
Outbreak trigger test	3 cases in 5 days	Clinical data
Outbreak ceases	0 cases within 7 days	Clinical data
Environmental swab test	1+ cases in week after screening	
Prob. effective swab returns positive result when contaminatedd	0.40 (0.34, 0.46)a (\(\alpha = 189.23, \beta = 283.84\))^2	Clinical data
Prob. metagenomics returns positive result when contaminatedd	0.80 (0.68, 0.92)a (\(\alpha = 252.04, \beta = 63.01\))^b	Clinical data
Environmental contamination		
Prob. of contaminating HTA of single bed	0.14	Ng 2018, Lerner 2020a
Prob. of contaminating HTA of multi bed	0.09	Ng 2018, Lerner 2020a
Prob. of contaminating drainage of en suite bathroom	0.17	Calibration
Costs		
Microbiology test cost, AU$	$82	Elliott (2020)
WGS cost, AU$	$150 (120,180)$^a (\(\alpha = 44.44, \beta = 3.38\))^c	Study cost
Basic bedroom cleaning cost, AU$	$70	Elliott (2020)
Advanced bedroom cleaning cost, AU$	$140	Assumption of double basic cost
Bed closure, AU$	$231	Page (2017)
Bed closure in ICU, AU$	$466	Page (2017)
Environmental screening swab, AU$	$3	Fishersci (2020)
Environmental screening culture, AU$	$34	Elliott (2020)
Metagenomics, AU$	$355 (251,459)$^a (\(\alpha = 44.44, \beta = 7.99\))^c	Ace Sequencing quote
PPE, AU$	$52	Otter (2016)
CRAB infection parameters		
Sepsis rate	0.77	AGAR report
RTI rate	0.50	ICD-10 (OGN)(S) (Table S3)
UTI rate	0.27	ICD-10 (OGN)(R) (Table S3)
Mortality rate	0.08 (0.06, 0.15)a (\(\alpha = 10.73, \beta = 128.65\))^b	ICD-10 (OGN)(U) (Table S3)
Cost of antibiotic treatment per patient, AU$		
CRAB (colistin + tigecycline or colistin + meropenem)	$3,199	Viehman (2014) and hospital pharmacy pricing

(Continued)
adjusted to reflect the quality of life (health utility score). Health utilities were used in the model to estimate the health impact of sepsis (0.53), urinary tract infection (0.73), respiratory tract infection (0.58), and an uninfected health state (0.82)\(^{6,23}\) (Table 1). We applied a negative health utility when patients were isolated.\(^{24}\)

Healthcare costs, which were calculated in 2020 Australian dollars (1 \(\text{AU}\) = 0.68 USD\(^{25}\)), were assigned to WGS (AU\$150, US\$102), metagenomics (AU\$355, US\$241), microbiology culture tests (AU\$82, US\$56), cleaning (AU\$70/AU\$46, US\$48/US\$31), closed bed days (AU\$216/AU\$466, US\$147/US\$317), personal protective equipment (PPE) (AU\$52, US\$35), environmental screening (AU\$3, US\$2) and antibiotic treatments (AU\$176–AU\$4,585, US\$120–US\$3,118) (Table 1 and Supplementary Table S3).\(^{26–29}\) The WGS and metagenomics costs comprised of sequencing and bioinformatics costs. Metagenomics was more expensive than WGS due to samples having \(\sim\)5 times more genetic content.

Analysis

The main outcomes were number of MDRO cases, hospital costs, and QALYs. Model outcomes were aggregated from events that emerged from the interacting processes of ‘patient flow dynamics,’ ‘pathogen transmission dynamics,’ and ‘outbreak control team decisions.’ These outcomes were averaged \(>\)5,000 stochastic model simulations and presented as means and interquartile range (IQRs). Future costs and QALYs were discounted at 5% per year to provide present values. Incremental cost-effectiveness ratios were calculated as the difference in costs between 2 groups divided by the difference in QALYs.\(^{17}\) Probabilistic sensitivity analyses were undertaken to assess the likelihood of the scenario being cost-effective, considered at a willingness-to-pay threshold of AU\$50,000 per QALY (Fig. 2). This compared with Scenario 2 outcomes of 14 fewer patients with CRAB, 59 additional QALYs and AU\$75,099 (US\$51,067) cost savings. When scenario 3 was compared with scenario 1, there were 18 fewer patients with CRAB, 74 additional QALYs and AU\$93,822 (US\$63,799) cost savings (Table 2).

Results

In scenario 1, the infection control team detected on average 30 (IQR, 3–39) patients with CRAB, accrued total hospital costs of AU\$1,677,308; US\$966,664, US\$1,140,569) and 6,578 QALYs (IQR, 6,476, 6,707) (Table 2). When compared with Scenario 2 outcomes of 14 fewer patients with CRAB, 59 QALYs and AU\$50,000 (US\$34,000) per QALY (Fig. 2). This compared with Scenario 3 outcomes of 37 fewer patients with CRAB, 74 additional QALYs and AU\$28,033 (US\$18,288) cost savings.

Plots of incremental cost-effectiveness ratios identified 58% (scenario 2 vs 1), 60% (scenario 3 vs 1) and 53% (scenario 2 vs 3) of iterations were cost-effective at AU\$50,000 per QALY. Both Scenario 2 and 3 were cost saving and improvements in patient QALYs compared with scenario 1. The increase in QALYs was primarily driven by increases in patient quality of life.

Microbiology culture tests were a major driver of total costs with 66.3%, 72.0%, and 72.6% of total costs for scenario 1, scenario 2 and scenario 3, respectively (Supplementary Fig. S2). Metagenomics and WGS are relatively small fractions of total hospital costs (~<2%).

Discussion

Our results showed the joint use of WGS and metagenomics were associated with smaller outbreaks, lower hospital costs, and an increase in accrued QALYs. Cost savings accrued from avoided treatments and fewer contact precautions resulting from fewer CRAB cases. We highlight the relatively small cost of WGS.
Table 2: Projected Health and Economic Outcomes Over the Outbreak by Scenario

Variable	Scenario 1 (Calibrated), Mean (IQR)	Scenario 2 (WGS), Mean (IQR)	Scenario 3 (WGS & Metagenomics), Mean (IQR)	S1 vs S2, Mean Diff (%)	S1 vs S3, Mean Diff (%)	S2 vs S3, Mean Diff (%)
No. infections and colonizations						
CRAB ST1050	30 (3–30)	15 (3, 18)	11 (3–13)	–14 (–49)	–18 (–62%)	–4 (–25%)
Microbiology costs, AU$⁶ᵃᵇ	$1,067,165 ($1,055,634–$1,080,028)	$1,104,117 ($1,082,526–$1,121,067)	$1,099,269 ($1,082,536–$1,112,690)	$36,952 (3)	$32,104 (3)	$–4,848 (0%)
Enviro. sampling costs, AU$⁶ᶜ	$1,005 ($0–$1147)	$1,884 ($39–$2,171)	$105 ($6–$137)	$879 (87)	$–900 (–90)	$–1,779 (–94)
Metagenomics costs, AU$⁶	$15,905 ($0–$13,552)	$23,146 ($19,990–$25,793)	$22,642 ($19,747–$25,184)	$–12,262 (–77)	$–2,561 (–16)	$9,701 (266)
WGS costs, AU$⁶ᵇ	$5,178 ($4,267–$5,947)	$23,146 ($19,990–$25,793)	$22,642 ($19,747–$25,184)	$17,968 (347)	$17,464 (337)	$505 (2)
PPE costs, AU$⁶ᵇ	$287,596 ($242,741–$316,662)	$255,594 ($228,459–$275,694)	$248,919 ($226,492–$267,233)	$–32,002 (–11)	$–38,678 (–13)	$–6,675 (–3)
Other costs, AU$⁶ᵇ, d	$49,578 ($210–$3,494)	$6,910 ($210–$2,064)	$4,848 ($210–$1,540)	$–42,669 (–86)	$–44,730 (–90)	$–2,062 (–30)
Treatment costs, AU$						
CRAB ST1050	$91,217 ($9,597–$139,291)	$46,977 ($9,597–$69,654)	$35,047 ($9,597–$54,985)	$–44,240 (–48)	$–56,171 (–62)	$–11,931 (–25)
Total hospital costs, AU$⁶ᵇ	$1,608,571 ($1,421,564–$1,677,308)	$1,533,471 ($1,437,392–$1,586,882)	$1,514,748 ($1,439,823–$1,557,703)	$–75,099 (–5)	$–93,822 (–6)	$–18,723 (–1)
QALYs	6,578 (6,476–6,707)	6,637 (6,543–6,738)	6,652 (6,566–6,744)	59 (1)	74 (1)	15 (0%)

Note. IQR, interquartile range; WGS, whole-genome sequencing; CRAB, carbapenem-resistant Acinetobacter baumannii; ST1050, subtype 1050; Q, quartile; enviro, environmental; MDROs, multidrug-resistant organisms; QALYs, quality-adjusted life years; PPE, personal protective equipment; diff, difference; PCR, polymerase chain reaction assay.

ᵃMicrobiological culture and PCR.
ᵇCosts attributed to MDROs arising in addition to the ST1050 CRAB outbreak were included; however, no differences were observed across scenarios.
ᶜEnvironmental swabs and microbiological cultures.
ᵈCleaning costs and closed bed-day costs.
surveillance across 8 MDRO species (WGS cost AU$22,642 (US $15,397) and metagenomics cost AU$13,343 (US$9,073) and how they are dwarfed by microbiology culture costs (AU $1,099,269, US$747,503), antibiotic treatment costs (AU $125,622, US$85,423), and cost of PPE (AU$248,919, US$169,265). Sensitivity analyses indicated that WGS and metagenomics use was cost-effective in this context with a high degree of confidence when model inputs varied from their base values.

Several studies report on the economic benefits of WGS; however, to the best of our knowledge, this is the first economic evaluation on the use of metagenomics for infection control. Our previous work on an ESBL E. coli outbreak in 5 extended-stay wards predicted significant cost savings if WGS was implemented early and a budget impact analysis reported that statewide WGS surveillance targeting 6 MDROs could be cost saving. Furthermore, removing contact precautions for MDROs at low risk of spreading, confirmed from WGS data, may reduce hospital costs further. International studies have identified cost savings from WGS through interventions targeting transmission routes and reducing the spread of MRSA.

Within our model, the stochastic processes created significant variance in the number of patients with CR-Ab across the scenarios that heavily drive the subsequent costs savings (−AU$781,840 to AU$264,347; −US$531,651 to US$179,756) and QALYs gained (−287 to 479). Approximately 20% of simulations resulted in no outbreaks occurring. Outbreak fadeouts are a hazard of stochastic outbreak simulations. When the ~20% of iterations without an outbreak were removed, the likelihood of cost-effectiveness increased to 61% and 64% for scenario 2 and scenario 3 respectively (Supplementary Table S10). Understanding how and why stochastic simulations deviate from deterministic simulations is being viewed with increasing importance. For an outbreak to start, the pathogen must lie undetected long enough to spread to another patient or environmental object, which is influenced by stochastic parameters such as the patient’s length of stay, the regularity of screening, and ward transfer locations. The highly surveilled nature of the intensive care unit and burn unit added to the possibility that no outbreak occurs because patients would remain undetected for no longer than a few days. Several models are suitable for analyzing infection diseases. The trade-offs between compartmental models, agent-based simulation, and network-driven models are well documented. We chose an individual-based structure due to the data and computational software available to us, along with this level of detail being required to model the impact of WGS interventions and believe this is a valid choice.

The excessive cost and time to return a result has in the past been perceived as a limiting factor of implementing WGS into hospital practice. The cost of pathogen WGS continues to decrease, with international studies quoting the price between US$70, £100 and AU$350 (US$238). The WGS cost of AU$150 (US $102) used in this study, the current operating price by our sequencing partners, consists of AU$124 (US$84) for the sequencing of the pathogen and AU$26 (US$18) for the bioinformatics. The bioinformatics costs dropped from AU$75 (US$51) due to the recently established pipeline creating a more automated analysis. Because WGS was not a dominant cost in the model, changing the cost of sequencing in sensitivity analysis did not change the outcomes. A 7-day WGS turnaround time is too long, although our model found little impact in reducing it to 3 days. This could be due to the outbreak occurring in already highly surveilled wards of the hospital. Reducing WGS turnaround time would likely have greater impact on outbreak size outside the ICU.

This study had several limitations. This retrospective evaluation was based on a single hospital outbreak, which limits the generalizability of these findings. The results were dependent on decisions during model construction and several input parameters, which in line with the nature of infectious disease modeling, led to substantial uncertainty. Healthcare worker-to-patient transmission was not directly modeled, although spread to other rooms within the ward represents this type of transmission due to limited patient mobility. It was not possible to collect health utility scores directly from patients in this study, and scarce evidence was available in the literature. In the absence of other evidence, the sensitivity of metagenomics and microbiology cultures on detecting environmental CRAB contamination were estimated from 5 cases; however, sensitivity analyses on these values did not change the favorable incremental cost per QALY ratios. Parameters used in the model, like the environmental contamination values, did not have strong supporting evidence. Targeted metagenomics was used in this study because untargeted metagenomics as a surveillance tool has not been fully explored and would likely have lower sensitivity. Balanced against these limitations, is the use of a detailed simulation model, informed by accurate outbreak data, historical sequencing data, and 3 years of MDRO surveillance data. Our modeling incorporated the stochastic nature of outbreaks by limiting outbreak pathways through techniques like blocking, which removes unnecessary variation. Limiting the maximum number of transmissions to 3 in the binomial distribution formula was an example of blocking. On balance, based on our analysis and using realistic model parameters, targeted metagenomics, as used in this hospital, yielded good value for the money spent.

In conclusion, introducing WGS and metagenomics into infection control was likely to have favorable economic and clinical outcomes. The low proportion of costs attributed to sequencing all MDROs within the ICU and burns unit (<2%) highlights the manageable ongoing costs and encourages further sequencing studies in other hospital settings. Implementing these sequencing technologies is likely to yield decreased hospital costs, decreased infections, and increased QALYs.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/ash.2021.233

Acknowledgments. We acknowledge all staff at the Royal Brisbane and Women’s Hospital and Pathology Queensland who were involved in patient care and the clinical response to the outbreak described in this study.

Financial support. This study was supported by Queensland Genomics, Queensland Health, the Queensland government.

Conflicts of interest. All authors report no conflicts of interest relevant to this article.

References
1. Acinetobacter in Healthcare Settings. Centers for Disease Control and Prevention website. https://www.cdc.gov/hai/organisms/acinetobacter.html. Published 2019. Accessed November 10, 2021.
2. Venditti C, Vulcano A, D’Arezzo S, et al. Epidemiological investigation of an Acinetobacter baumannii outbreak using core genome multilocus sequence typing. J Glob Antimicrob Resist 2019;17:245–249.
3. Rossi I, Royer S, Ferreira ML, et al. Incidence of infections caused by carbapenem-resistant Acinetobacter baumannii. Am J Infect Control 2019; 47:1431–1435.
4. Umezawa K, Asai S, Oshima T, et al. Outbreak of drug-resistant Acinetobacter baumannii ST219 caused by oral care using tap water from
contaminated hand hygiene sinks as a reservoir. *Am J Infect Control* 2015;43:1249–1251.

5. Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gospell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. *J Hosp Infect* 2012;80:52–55.

6. White NM, Barnett AG, Hall L, et al. Cost-effectiveness of an environmental cleaning bundle for reducing healthcare-associated infections. *Clin Infect Dis* 2020;70:2461–2468.

7. Chiang AD, Dekker JP. From the pipeline to the bedside: advances and challenges in clinical metagenomics. *J Infect Dis* 2020;221:S331–S340.

8. McGann P, Bunin JL, Snesrud E, et al. Real-time application of whole-genome sequencing for outbreak investigation—what is an achievable turn-around time? *Diagn Microbiol Infect Dis* 2016;85:277–282.

9. Matsumura Y. Detection of antimicrobial resistance determinants using whole-genome sequencing. *Japan J Chemother* 2020;68:198–203.

10. Fujikura Y, Hamamoto T, Kanayama A, Kaku K, Yamagishi J, Kawana A. Bayesian reconstruction of a vancomycin-resistant *Enterococcus* transmission route using epidemiologic data and genomic variants from whole-genome sequencing. *J Hosp Infect* 2019;103:395–403.

11. Forbes JD, Knox NC, Peterson CI, Reimer AR. Highlighting clinical metagenomics for enhanced diagnostic decision making: a step towards wider implementation. *Comput Struct Biotech J* 2018;16:108–120.

12. Simner PJ, Miller S, Carroll KC. Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. *Clin Infect Dis* 2018;66:778–788.

13. Elliott TM, Lee XJ, Foeglein A, Harris PN, Gordon LG. A hybrid simulation model approach to examine bacterial genome sequencing during a hospital outbreak. *BMJ Infect Dis* 2020;20:72.

14. Elliott TM, Hare N, Hjäkowicz K, et al. Evaluating the economic effects of genomic sequencing of pathogens to prioritise hospital patients competing for isolation beds. *Australian Health Rev* 2021;45:59–65.

15. Kumar P, Sundermann AJ, Martin EM, et al. Method for economic evaluation of bacterial whole genome sequencing surveillance compared to standard of care in detecting hospital outbreaks. *Clin Infect Dis* 2021;73:e9–e18.

16. Roberts LW, Forde BM, Hurst T, et al. Genomic surveillance, characterisation and intervention of a polymicrobial multidrug-resistant outbreak in critical care. *Microbial Genomics* 2021. doi: 10.1099/mgen.0.000530.

17. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculptur MJ, Paltiel AD. Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group–6. *Med Decision Making* 2012;32:722–732.

18. Pethes R, Ferenci T, Kovács L. Infectious hospital agents: an individual-based simulation framework. Paper presented at the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC); October 9–12, 2016.

19. Gurieva T, Dautzenberg MJ, Gniazdowski M, Derde LPG, Bonten MJM, Bootma MCJ. The transmissibility of antibiotic-resistant enterobacteria in intensive care units. *Clin Infect Dis* 2018;66:489–493.

20. Briggs A, Sculpteur M, Claxton K. Decision Modelling for Health Economic Evaluation. London: Oxford University Press; 2006.

21. Coombs GBJ, Daley D, Collignon P, et al. Australian Group on Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

22. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. Delineating community outbreaks of *Salmonella enterica serovar typhimurium* by use of whole-genome sequencing: insights into genomic variability within an outbreak. *J Clin Microbiol* 2015;53:1063–1071.

23. Lee BY, Bailey RR, Smith KJ, et al. Universal methicillin-resistant *Staphylococcus aureus* (MRSA) surveillance for adults at hospital admission: an economic model and analysis. *Infect Control Hosp Epidemiol* 2010;31:598–606.

24. Mac S, Fitzpatrick T, Johnstone J, Sander B. Vancomycin-resistant enterococci (VRE) screening and isolation in the general medicine ward: a cost-effectiveness analysis. *Antimicrob Resist Infect Control* 2019;8:168.

25. Conversion rates. Organisation for Economic Co-operation and Development website. https://www.oecd-ilibrary.org/finance-and-investment/purchasing-power-parities-ppp/indicator/english_1290ee5a-en. Published 2020. Accessed November 8, 2021.

26. Page K, Barnett AG, Graves N. What is a hospital bed day worth? A contingent valuation study of hospital chief executive officers. *BMJ Health Serv Res* 2017;17:137.

27. Viehman JA, Nguyen MH, Doi Y. Treatment options for carbapenem-resistant and extensively drug-resistant *Acinetobacter baumannii* infections. *Drugs* 2014;74:1315–1333.

28. Otter JA, Burgess P, Davies F, et al. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: an economic evaluation from a hospital perspective. *Clin Microbiol Infect* 2017;23:188–196.

29. Puritan sterile large foam swab, polypropylene handle w/thumb stop. Fisher Scientific website. https://www.fishersci.com/shop/products/puritan-macro-fume-tipped-applicators/22029573. Published 2020. Accessed May 11, 2020.

30. Lee XJ, Elliott TM, Harris PNA, et al. Clinical and economic outcomes of genome sequencing availability on containing a hospital outbreak of resistant *Escherichia coli* in Australia. *Value Health* 2020;23:994–1002.

31. Gordon LG, Elliott TM, Forde B, et al. Budget impact analysis of routinely using whole-genomic sequencing of six multidrug-resistant bacterial pathogens in Queensland, Australia. *BMJ Open* 2021;11:e041968.

32. Dymond A, Davies H, Mealing S, et al. Genomic surveillance of methicillin-resistant *Staphylococcus aureus*: a mathematical early modeling study of cost-effectiveness. *Clin Infect Dis* 2020;70:1613–1619.

33. McBryde ES. Mathematical and statistical modelling of infectious diseases in hospitals. PhD dissertation. Eprints Repository website. https://eprints.universitytq.edu.au/16330/. 2006. Accessed November 10, 2021.

34. Keeling MJ, Ross JV. On methods for studying stochastic disease dynamics. *J R Soc Interface* 2008;5:171–181.

35. van Kleef E, Robotham JV, Ilit M, Deeny SR, Edmunds WJ. Modelling the transmission of healthcare-associated infections: a systematic review. *BMJ Infect Dis* 2013;13:294.

36. University TPS. 4.1 - blocking scenarios. STAT 503: design of experiments, 2012, 2013. University TPS. 4.1 - blocking scenarios. STAT 503: design of experiments, 2012, 2013.

37. Ng DHL, Marimuthu K, Lee JJ, et al. Cost-effectiveness analysis. *Antimicrob Resist Infect Control* 2020:7:1251.

38. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

39. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

40. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

41. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

42. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

43. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

44. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

45. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.

46. 2019. Antimicrobial Resistance Sepsis Outcomes Programs: 2018 Report. Sydney: Australian Commission on Safety and Quality in Health Care; 2019.