On some crystalline representations of
$GL_2(\mathbb{Q}_p)$

Vytautas Paškūnas

February 9, 2009

Abstract

We show that the universal unitary completion of certain locally algebraic representation of $G := GL_2(\mathbb{Q}_p)$ with $p > 2$ is non-zero, topologically irreducible, admissible and corresponds to a 2-dimensional crystalline representation with non-semisimple Frobenius via the p-adic Langlands correspondence for G.

1 Introduction

Let $G := GL_2(\mathbb{Q}_p)$ and B be the subgroup of upper-triangular matrices in G. Let L be a finite extension of \mathbb{Q}_p.

Theorem 1.1. Assume that $p > 2$, let $k \geq 2$ be an integer and let $\chi : \mathbb{Q}_p^\times \rightarrow L^\times$ a smooth character with $\chi(p)^2p^{k-1} \in o_L^\times$. Assume that there exists a G-invariant norm $\|\cdot\|$ on $(\text{Ind}_B^G \chi \otimes |\cdot|^{-1}) \otimes \text{Sym}^{k-2} L^2$. Then the completion E is a topologically irreducible, admissible Banach space representation of G. Moreover, if we let E^0 be the unit ball in E then

$$V_{k,2\chi(p)^{-1}} \otimes (\chi|\chi|) \cong L \otimes_{o_L} \varinjlim V(E^0/\varpi^n E^0),$$

where V is Colmez’s Montreal functor, and $V_{k,2\chi(p)^{-1}}$, is a 2-dimensional irreducible crystalline representation of $G_{\mathbb{Q}_p}$ the absolute Galois group of \mathbb{Q}_p, with Hodge-Tate weights $(0,k-1)$ and the trace of crystalline Frobenius equal to $2\chi(p)^{-1}$.
As we explain in [5], the existence of such G-invariant norm follows from the recent work of Colmez, [6]. Our result addresses Remarque 5.3.5 in [3]. In other words, the completion E fits into the p-adic Langlands correspondence for $GL_2(\mathbb{Q}_p)$.

The idea is to “approximate” $(\text{Ind}_B^G \chi \otimes \chi | \cdot |^{-1}) \otimes \text{Sym}^{k-2} L^2$ with representations $(\text{Ind}_B^G \chi \delta_x \otimes \chi \delta_{x-1} | \cdot |^{-1}) \otimes \text{Sym}^{k-2} L^2$, where $\delta_x : \mathbb{Q}_p^\times \rightarrow L^\times$ is an unramified character with $\delta_x(p) = x \in 1 + pL$. If $x^2 \neq 1$ then $\chi \delta_x \neq \chi \delta_{x-1}$ and the analog of Theorem 1.1 is a result of Berger-Breuil [3]. This allows to deduce admissibility. This “approximation” process relies on the results of Vignéras [14]. Using Colmez’s functor V we may then transfer the question of irreducibility to the Galois side. Here, we use the fact that for $p > 2$ the representation $V_{k,\pm 2p(k-1)/2}$ sits in the p-adic family studied by Berger-Li-Zhu in [2].

Acknowledgements. I thank Laurent Berger, Christophe Breuil, Gaëtan Chenevier and Pierre Colmez for answering my questions. I also thank Guy Henniart, Ariane Mézard and Rachel Ollivier for organizing ‘Groupe de Travail sur les représentations p-adiques de $GL_2(\mathbb{Q}_p)$’, where I learnt about Colmez’s functor. This paper was written when I was visiting IHÉS and Université Paris-Sud, supported by Deutsche Forschungsgemeinschaft. I would like to thank these institutions.

2 Notation

We fix an algebraic closure $\overline{\mathbb{Q}}_p$ of \mathbb{Q}_p. We let val be the valuation on $\overline{\mathbb{Q}}_p$ such that $\text{val}(p) = 1$, and we set $|x| := p^{-\text{val}(x)}$. Let L be a finite extension of \mathbb{Q}_p contained in $\overline{\mathbb{Q}}_p$, \mathfrak{o}_L the ring of integers of L, ϖ_L a uniformizer, and \mathfrak{p}_L the maximal ideal of \mathfrak{o}_L. Given a character $\chi : \mathbb{Q}_p^\times \rightarrow L^\times$ we consider χ as a character of the absolute Galois group $G_{\mathbb{Q}_p}$ of \mathbb{Q}_p via the local class field theory by sending the geometric Frobenius to p.

Let $G := GL_2(\mathbb{Q}_p)$, B the subgroup of upper-triangular matrices. Given two characters $\chi_1, \chi_2 : \mathbb{Q}_p^\times \rightarrow L^\times$ we consider $\chi_1 \otimes \chi_2$ as a character of B, which sends a matrix $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ to $\chi_1(a) \chi_2(d)$. Let Z be the centre of G, $K := GL_2(\mathbb{Z}_p)$, $I := (\begin{smallmatrix} \mathbb{Z}_p^\times & \mathbb{Z}_p \\ p\mathbb{Z}_p & \mathbb{Z}_p^\times \end{smallmatrix})$ and for $m \geq 1$ we define

$$K_m := \begin{pmatrix} 1 + p^m \mathbb{Z}_p & p^m \mathbb{Z}_p \\ p^m \mathbb{Z}_p & 1 + p^m \mathbb{Z}_p \end{pmatrix}, \quad I_m := \begin{pmatrix} 1 + p^m \mathbb{Z}_p & p^{m-1} \mathbb{Z}_p \\ p^m \mathbb{Z}_p & 1 + p^m \mathbb{Z}_p \end{pmatrix}.$$

Let \mathfrak{H}_0 be the G-normalizer of K, so that $\mathfrak{H}_0 = KZ$, and \mathfrak{H}_1 the G-normalizer of I, so that \mathfrak{H}_1 is generated as a group by I and $\Pi := (\begin{smallmatrix} 0 & 1 \\ p & 0 \end{smallmatrix})$. We note that
if \(m \geq 1 \) then \(K_m \) is normal in \(\mathfrak{K}_0 \) and \(I_m \) is normal in \(\mathfrak{K}_1 \). We denote
\[s := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

3 Diagrams

Let \(R \) be a commutative ring, (typically \(R = L, \mathfrak{o}_L \) or \(\mathfrak{o}_L/\mathfrak{p}^n_L \)). By a diagram \(D \) of \(R \)-modules, we mean the data \((D_0, D_1, r)\), where \(D_0 \) is a \(R[\mathfrak{K}_0] \)-module, \(D_1 \) is \(R[\mathfrak{K}_1] \)-module and \(r : D_1 \to D_0 \) is a \(\mathfrak{K}_0 \cap \mathfrak{K}_1 = IZ \)-equivariant homomorphism of \(R \)-modules. A morphism \(\alpha \) between two diagrams \(D, D' \) is given by \((\alpha_0, \alpha_1)\), where \(\alpha_0 : D_0 \to D'_0 \) is a morphism of \(R[\mathfrak{K}_0] \)-modules, \(\alpha_1 : D_1 \to D'_1 \) is a morphism of \(R[\mathfrak{K}_1] \)-modules, and the diagram

\[
\begin{array}{ccc}
D_0 & \xrightarrow{\alpha_0} & D'_0 \\
\downarrow r & & \downarrow r' \\
D_1 & \xrightarrow{\alpha_1} & D'_1
\end{array}
\]

commutes in the category of \(R[IZ] \)-modules. The condition (1) is important, since one can have two diagrams of \(R \)-modules \(D \) and \(D' \), such that \(D_0 \cong D'_0 \) as \(R[\mathfrak{K}_0] \)-modules, \(D_1 \cong D'_1 \) as \(R[\mathfrak{K}_1] \)-modules, however \(D \not\cong D' \) as diagrams. The diagrams of \(R \)-modules with the above morphisms form an abelian category. To a diagram \(D \) one may associate a complex of \(G \)-representations:

\[
cInd_{\mathfrak{K}_1}^G D_1 \otimes \delta \xrightarrow{\partial} cInd_{\mathfrak{K}_0}^G D_0,
\]

where \(\delta : \mathfrak{K}_1 \to R^\times \) is the character \(\delta(g) := (-1)^{\text{val} \det g} \); \(cInd_{\mathfrak{K}_1}^G D_1 \) denotes the space of functions \(f : G \to D_1 \), such that \(f(kg) = k f(g) \), for \(k \in \mathfrak{K}_1 \) and \(g \in G \), and \(f \) is supported only on finitely many cosets \(\mathfrak{K}_1 g \). To describe \(\partial \), we note that Frobenius reciprocity gives \(\text{Hom}_G(cInd_{\mathfrak{K}_1}^G D_1 \otimes \delta, cInd_{\mathfrak{K}_0}^G D_0) \cong \text{Hom}_{\mathfrak{K}_1}(D_1 \otimes \delta, cInd_{\mathfrak{K}_0}^G D_0) \), now \(\text{Ind}_{IZ}^G D_0 \) is a direct summand of the restriction of \(cInd_{\mathfrak{K}_0}^G D_0 \) to \(\mathfrak{K}_1 \), and \(\text{Hom}_{\mathfrak{K}_1}(D_1 \otimes \delta, \text{Ind}_{IZ}^G D_0) \cong \text{Hom}_{IZ}(D_1, D_0) \), since \(\delta \) is trivial on \(IZ \). Composition of the above maps yields a map \(\text{Hom}_{IZ}(D_1, D_0) \to \text{Hom}_G(cInd_{\mathfrak{K}_1}^G D_1 \otimes \delta, cInd_{\mathfrak{K}_0}^G D_0) \), we let \(\partial \) be the image of \(r \). We define \(H_0(D) \) to be the cokernel of \(\partial \) and \(H_1(D) \) to be the kernel of \(\partial \). So we have an exact sequence of \(G \)-representations:

\[
0 \to H_1(D) \to cInd_{\mathfrak{K}_1}^G D_1 \otimes \delta \xrightarrow{\partial} cInd_{\mathfrak{K}_0}^G D_0 \to H_0(D) \to 0
\]

Further, if \(r \) is injective then one may show that \(H_1(D) = 0 \), see [14] Prop. 0.1. To a diagram \(D \) one may associate a \(G \)-equivariant coefficient system
\(V\) of \(R\)-modules on the Bruhat-Tits tree, see [9, §5], then \(H_0(D)\) and \(H_1(D)\) compute the homology of the coefficient system \(V\) and the map \(\partial\) has a natural interpretation. Assume that \(R = L\) (or any field of characteristic 0), and let \(\pi\) be a smooth irreducible representation of \(G\) on an \(L\)-vector space, so that for all \(v \in \pi\) the subgroup \(\{g \in G : gv = v\}\) is open in \(G\). Since the action of \(G\) is smooth there exists an \(m \geq 0\) such that \(\pi^{l_m} \neq 0\). To \(\pi\) we may associate a diagram \(D := (\pi^{l_m} \hookrightarrow \pi^{K_m})\). As a very special case of a result by Schneider and Stuhler [12, Thm V.1], [11, §3], we obtain that \(H_0(D) \cong \pi\).

We are going to compute such diagrams \(D\), attached to smooth principal series representations of \(G\) on \(L\)-vector spaces. Given smooth characters \(\theta_1, \theta_2 : \mathbb{Z}_p^\times \to L^\times\) and \(\lambda_1, \lambda_2 \in L^\times\) we define a diagram \(D(\lambda_1, \lambda_2, \theta_1, \theta_2)\) as follows. Let \(c \geq 1\) be an integer, such that \(\theta_1\) and \(\theta_2\) are trivial on \(1 + p^n\mathbb{Z}_p\).

We set \(J_c := (K \cap B)K_c = (I \cap B)K_c\), so that \(J_c\) is a subgroup of \(I\). We let \(\theta : J_c \to L^\times\) be the character:

\[
\theta\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) := \theta_1(a)\theta_2(d).
\]

We let \(D_0 := \text{Ind}_K^G \theta\), and we let \(p \in \mathbb{Z}\) act on \(D_0\) by a scalar \(\lambda_1\lambda_2\), so that \(D_0\) is a representation of \(\mathfrak{R}_0\). We set \(D_1 := D_0^l\) so that \(D_1\) is naturally a representation of \(IZ\). We are going to put an action of \(\Pi\) on \(D_1\), so that \(D_1\) is a representation of \(\mathfrak{R}_1\). Let

\[
V_1 := \{f \in D_1 : \text{Supp } f \subseteq I\}, \quad V_s := \{f \in D_1 : \text{Supp } f \subseteq J_c sI\}. \quad (4)
\]

Since \(I\) contains \(K\) we have \(J_c sI = (B \cap K)sI = IsI\), hence \(D_1 = V_1 \oplus V_s\).

For all \(f_1 \in V_1\) and \(f_s \in V_s\), we define \(\Pi \cdot f_1 \in V_s\) and \(\Pi \cdot f_s \in V_1\) such that

\[
[\Pi \cdot f_1](sg) := \lambda_1 f_1(\Pi^{-1} g)\Pi, \quad [\Pi \cdot f_s](g) = \lambda_2 f_s(s \Pi g \Pi^{-1}), \quad \forall g \in I; \quad (5)
\]

Every \(f \in D_1\) can be written uniquely as \(f = f_1 + f_s\), with \(f_1 \in V_1\) and \(f_s \in V_s\), and we define \(\Pi \cdot f := \Pi \cdot f_1 + \Pi \cdot f_s\).

Lemma 3.1. The equation (5) defines an action of \(\mathfrak{R}_1\) on \(D_1\). We denote the diagram \(D_1 \hookrightarrow D_0\) by \(D(\lambda_1, \lambda_2, \theta_1, \theta_2)\). Moreover, let \(\pi := \text{Ind}_K^G \chi_1 \otimes \chi_2\) be a smooth principal series representation of \(G\), with \(\chi_1(p) = \lambda_1, \chi_2(p) = \lambda_2, \chi_1|_{\mathbb{Z}_p^\times} = \theta_1\) and \(\chi_2|_{\mathbb{Z}_p^\times} = \theta_2\). There exists an isomorphism of diagrams \(D(\lambda_1, \lambda_2, \theta_1, \theta_2) \cong (\pi^{l_c} \hookrightarrow \pi^{K_c})\). In particular, we have a \(G\)-equivariant isomorphism \(H_0(D(\lambda_1, \lambda_2, \theta_1, \theta_2)) \cong \pi\).

Proof. We note that \(p \in \mathbb{Z}\) acts on \(\pi\) by a scalar \(\lambda_1\lambda_2\). Since \(G = BK\), we have \(\pi|_K \cong \text{Ind}_{B \cap K}^G \theta\), and so the map \(f \mapsto [g \mapsto f(g)]\) induces an
isomorphism \(\iota_0 : \pi^{K_c} \cong \text{Ind}_{N}^{G} \theta = D_0 \). Let \(F_1 := \{ f \in \pi : \text{Supp} f \subseteq BI \} \) and \(F_s := \{ f \in \pi : \text{Supp} f \subseteq BsI \} \). Iwasawa decomposition gives \(G = BI \cup BsI \), hence \(\pi = F_1 \oplus F_s \). If \(f_1 \in F_1 \) then Supp(\(\Pi f_1\)) = (Supp \(f_1\))\(\Pi^{-1} = BI\Pi^{-1} = BsI\). Moreover,

\[
[\Pi f_1](sg) = f_1(sg\Pi) = f_1(s\Pi(\Pi^{-1}g\Pi)) = \chi_1(p)f_1(\Pi^{-1}g\Pi), \quad \forall g \in I \tag{6}
\]

Similarly, if \(f_s \in F_s \) then Supp(\(\Pi f_s\)) = (Supp \(f_s\))\(\Pi^{-1} = BsI\Pi^{-1} = BI\), and

\[
[\Pi f_s](g) = f_1(g\Pi) = f_1((\Pi)s(\Pi^{-1}g\Pi)) = \chi_2(p)f_s(s(\Pi^{-1}g\Pi)), \quad \forall g \in I \tag{7}
\]

Now \(\pi^{L_c} = F_1^{L_c} \oplus F_s^{L_c} \subset \pi^{K_c} \). Let \(\iota_1 \) be the restriction of \(\iota_0 \) to \(\pi^{L_c} \) then it is immediate that \(\iota_1(F_1^{L_c}) = V_1 \) and \(\iota_1(F_s^{L_c}) = V_s \), where \(V_1 \) and \(V_s \) are as above. Moreover, if \(f \in D_1 \) and \(\Pi \cdot f \) is given by \(\overline{5} \) then \(\Pi \cdot f = \iota_1(\Pi_{1^{-1}}(f)) \). Since \(\mathfrak{R}_1 \) acts on \(\pi^{L_c} \), we get that \(\overline{5} \) defines an action of \(\mathfrak{R}_1 \) on \(D_1 \), such that \(\iota_1 \) is \(\mathfrak{R}_1 \)-equivariant. Hence, \((\iota_0, \iota_1) \) is an isomorphism of diagrams \((\pi^{L_c} \hookrightarrow \pi^{K_c}) \cong (D_1 \hookrightarrow D_0) \).

\textbf{4 Main result}

In this section we prove the main result.

\textbf{Lemma 4.1.} Let \(U \) be a finite dimensional \(L \)-vector space with subspaces \(U_1, U_2 \) such that \(U = U_1 \oplus U_2 \). For \(x \in L \) define a map \(\phi_x : U \rightarrow U \), \(\phi_x(v_1 + v_2) = xv_1 + v_2 \), for all \(v_1 \in U_1 \) and \(v_2 \in U_2 \). Let \(M \) be an \(\mathfrak{a}_L \)-lattice in \(V \), then there exists an integer \(a \geq 1 \) such that for \(x \in 1 + \mathfrak{p}_L^a \) we have \(\phi_x(M) = M \).

\textbf{Proof.} Let \(N \) denote the image of \(M \) in \(U/U_2 \). Then \(N \) contains \((M \cap U_1) + U_2 \), and both are lattices in \(U/U_2 \). Let \(a \geq 1 \) be the smallest integer, such that \(\mathfrak{p}_L^{-a}(M \cap U_1) + U_2 \) contains \(N \). Suppose that \(x \in 1 + \mathfrak{p}_L^a \) and \(v \in M \). We may write \(v = \lambda v_1 + v_2 \), with \(v_1 \in M \cap U_1 \), \(v_2 \in U_2 \) and \(\lambda \in \mathfrak{p}_L^{-a} \). Now \(\phi_x(v) = v + \lambda(x - 1)v_1 \in M \). Hence we get \(\phi_x(M) \subseteq M \) and \(\phi_x^{-1}(M) \subseteq M \). Applying \(\phi_x^{-1} \) to the first inclusion gives \(M \subseteq \phi_x^{-1}(M) \).

We fix an integer \(k \geq 2 \) and set \(W := \text{Sym}^{k-2} L^2 \), an algebraic representation of \(G \). Let \(\pi := \pi(\chi_1, \chi_2) := \text{Ind}_B^G \chi_1 \otimes \chi_2 \) be a smooth principal series \(L \)-representation of \(G \). We say that \(\pi \otimes W \) admits a \(G \)-invariant norm, if there exists a norm \(\| \cdot \| \) on \(\pi \otimes W \), with respect to which \(\pi \otimes W \) is a normed \(L \)-vector space, such that \(\|gv\| = \|v\| \), for all \(v \in \pi \otimes W \) and \(g \in G \).
Let \(c \geq 1 \) be an integer such that both \(\chi_1 \) and \(\chi_2 \) are trivial on \(1 + p^c \mathbb{Z}_p \).

Let \(D \) be the diagram \(\pi^c \otimes W \hookrightarrow \pi^{K_c} \otimes W \). Since \(H_0(\pi^c) \hookrightarrow \pi^{K_c} \cong \pi \), by tensoring (2) with \(W \) we obtain \(H_0(D) \cong \pi \otimes W \). Assume that \(\pi \otimes W \) admits a \(G \)-invariant norm \(|| \cdot || \), set \((\pi \otimes W)^0 := \{ v \in \pi \otimes W : ||v|| \leq 1 \} \). Then we may define a diagram \(\mathcal{D} = (D_1 \hookrightarrow D_0) \) of \(\mathfrak{o}_L \)-modules:

\[
\mathcal{D} := ((\pi^c \otimes W) \cap (\pi \otimes W)^0 \hookrightarrow (\pi^{K_c} \otimes W) \cap (\pi \otimes W)^0).
\]

In this case Vignéras [14] has shown that the inclusion \(\mathcal{D} \hookrightarrow D \) induces a \(G \)-equivariant injection \(H_0(\mathcal{D}) \hookrightarrow H_0(D) \), such that \(H_0(\mathcal{D}) \otimes_{\mathfrak{o}_L} L = H_0(D) \); \(H_1(\mathcal{D}) = 0 \). Moreover, \(H_0(\mathcal{D}) \) does not contain an \(\mathfrak{o}_L \)-submodule isomorphic to \(L \), see [14] Prop 0.1. Since \(H_0(D) \) is an \(L \)-vector space of countable dimension, this implies that \(H_0(\mathcal{D}) \) is a free \(\mathfrak{o}_L \)-module. By tensoring (2) with \(\mathfrak{o}_L/\mathfrak{p}_L^n \) we obtain

\[
H_0(\mathcal{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^n \cong H_0(\mathcal{D} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^n).
\]

Proposition 4.2. Let \(\pi = \pi(\chi_1, \chi_2) \) be a smooth principal series representation, assume that \(\pi \otimes W \) admits a \(G \)-invariant norm and let \(\mathcal{D} \) be as above. Then there exists an integer \(a \geq 1 \) such that for all \(x \in 1 + \mathfrak{p}_F^b \), with \(b \geq a \), there exists a finitely generated \(\mathfrak{o}_L[G] \)-module \(M \) in \(\pi(\chi_1 \delta_x^{-1}, \chi_2 \delta_x) \otimes W \), which is free as an \(\mathfrak{o}_L \)-module and a \(G \)-equivariant isomorphism

\[
M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b \cong H_0(\mathcal{D}) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/\mathfrak{p}_L^b,
\]

where \(\delta_x : \mathbb{Q}_p^\times \to L^\times \) is an unramified character with \(\delta_x(p) = x \).

Proof. Apply Lemma [11] to \(U = D_1, U_1 = V_1 \otimes W, U_2 = V_s \otimes W \) and \(M = D_1 \), where \(V_1 \) and \(V_s \) are given by (4). Then we get an integer \(a \geq 1 \), such that for all \(x \in 1 + \mathfrak{p}_F^a \), \(\phi_x(D_1) = D_1 \). It is immediate that \(\phi_x \) is \(\mathfrak{g}_0 \)-equivariant. We define a new action \(\ast \) of \(\Pi \) on \(D_1 \), by setting \(\Pi \ast v := \phi_x(\Pi \phi_x^{-1}(v)) \).

This gives us a new diagram \(D(x) \), so that \(D(x)_0 = D_0 \) as a representation of \(\mathfrak{g}_0 \), \(D(x)_1 = D_1 \) as a representation of \(\mathfrak{g}_0 \), the \(\mathfrak{g}_0 \)-equivariant injection \(D(x)_1 \hookrightarrow D(x)_0 \) is equal to the \(\mathfrak{g}_0 \)-equivariant injection \(D_1 \hookrightarrow D_0 \), but the action of \(\Pi \) on \(D_1 \) is given by \(\ast \), (here by \(\ast \) we really mean an equality, not an isomorphism). If \(f_1 \in V_1 \) and \(f_s \in V_s \) then

\[
\Pi \ast (f_1 \otimes w) = f'_s (\Pi w), \quad \Pi \ast (f_s \otimes w) = f'_1 (\Pi w), \quad \forall w \in W,
\]

where \(f'_s \in V_s, f'_1 \in V_1 \) and for all \(g \in I \) we have:

\[
f'_s(sg) = x^{-1}[\Pi \ast f_1](sg) = x^{-1}l_1 f_1 (\Pi^{-1} g \Pi),
\]

\[
f'_1(g) = x[\Pi \ast f_s](g) = x l_2 f_s(s \Pi g \Pi^{-1}).
\]
Hence, we have an isomorphism of diagrams $D(x) \cong D(x^{-1}\lambda_1, x\lambda_2, \theta_1, \theta_2)$ and so Lemma 3.1 gives $H_0(D(x)) \cong \pi(x_1\delta_{x^{-1}}, x_2\delta_{x}) \otimes W$. Now, let $b \geq a$ be an integer and suppose that $x \in 1 + p_b^L$. Since, $\Pi \cdot D = \phi_x(D) = \phi_x^{-1}(D) = D_1$ we get

$$\Pi \ast (D_0 \cap D_1) = \Pi \ast D_1 = \phi_x((\Pi \phi_x^{-1}(D_1))) = D_1.$$

So if we let $D(x)_0 := D_0$ and $D(x)_1 := D(x)_0 \cap D(x)_1$, where Π acts on $D(x)_1$ by \ast then the diagram $D(x) := (D(x)_1 \hookrightarrow D(x)_0)$ is an integral structure in $D(x)$ in the sense of [14]. The results of Vigneras cited above imply that $M := H_0(D(x))$ is a finitely generated $\mathfrak{o}_L[G]$-submodule of $\pi(x_1\delta_{x^{-1}}, x_2\delta_{x}) \otimes W$, which is free as an \mathfrak{o}_L-module, and $M \otimes_{\mathfrak{o}_L} L \cong \pi(x_1\delta_{x^{-1}}, x_2\delta_{x}) \otimes W$. Moreover, since ϕ_x is the identity modulo p_b^L, we have $\Pi \ast v \equiv \Pi \cdot v (\mod \omega^b_k(D_1)$, for all $v \in D_1$, and so the identity map $\mathcal{D}(x)_0 \to D_0$ induces an isomorphism of diagrams $\mathcal{D}(x) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_b^L \cong \mathcal{D} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_b^L$. Now (8) gives $H_0(D) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_b^L \cong M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_b^L$. \hfill \square

Let $k \geq 2$ be an integer and $a_p \in p_L$, following Breuil [5] we define a filtered φ-module D_{k,a_p}: D is a 2-dimensional L-vector space with basis $\{e_1, e_2\}$, an L-linear automorphism $\varphi : D \to D$, given by

$$\varphi(e_1) = p^{k-1}e_2, \quad \varphi(e_2) = -e_1 + a_pe_2;$$

a decreasing filtration $(\text{Fil}^i D)_{i \in \mathbb{Z}}$ by L-subspaces, such that if $i \leq 0$ then $\text{Fil}^i D = D$, if $1 \leq i \leq k-1$ then $\text{Fil}^i D = Le_1$, if $i \geq k$ then $\text{Fil}^i D = 0$. We set $V_{k,a_p} := \text{Hom}_{\varphi,\text{Fil}}(D_{k,a_p}, B_{\text{cris}})$. Then V_{k,a_p} is a 2-dimensional L-linear absolutely irreducible crystalline representation of $G_{\mathbb{Q}_p} := \text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ with Hodge-Tate weights 0 and $k - 1$. We denote by χ_{k,a_p} the trace character of V_{k,a_p}. Since $G_{\mathbb{Q}_p}$ is compact and the action is continuous, $G_{\mathbb{Q}_p}$ stabilizes some \mathfrak{o}_L-lattice in V_{k,a_p} and so χ_{k,a_p} takes values in \mathfrak{o}_L.

Proposition 4.3. Let m be the largest integer such that $m \leq (k-2)/(p-1)$. Let $a_p, a_p' \in p_L$, and assume that $\text{val}(a_p) > m$, $\text{val}(a_p') > m$. Let $n \geq em$ be an integer, where $e := e(L/\mathbb{Q}_p)$ is the ramification index. Suppose that $a_p \equiv a_p' (\mod p^n_L)$, then $\chi_{k,a_p}(g) \equiv \chi_{k,a_p'}(g) (\mod p^{n-em}_L)$ for all $g \in G_{\mathbb{Q}_p}$.

Proof. This a consequence of a result of Berger-Li-Zhu [2]. In [2] they construct $G_{\mathbb{Q}_p}$-invariant lattices T_{k,a_p} in V_{k,a_p}. The assumption $a_p \equiv a_p' (\mod p^n_L)$ implies $T_{k,a_p} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p^{n-em}_L \cong T_{k,a_p'} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p^{n-em}_L$, see Remark 4.1.2 (2) in [2]. This implies the congruences of characters. \hfill \square

Let $k \geq 2$ be an integer and $\lambda_1, \lambda_2 \in L$, such that $\lambda_1 + \lambda_2 = a_p$ and $\lambda_1\lambda_2 = p^{k-1}$ (enlarge L if necessary). Assume that $\text{val}(\lambda_1) \geq \text{val}(\lambda_2) > 0$. Let
\[\chi_1, \chi_2 : \mathbb{Q}_p^\times \to L^\times \] be unramified characters, with \(\chi_1(p) = \lambda_1^{-1} \) and \(\chi_2(p) = \lambda_2^{-1} \), let \(M \) be a finitely generated \(\mathfrak{o}_L[G] \)-module in \(\pi(\chi_1, \chi_2 \cdot |^{-1}) \otimes W \), where \(W := \text{Sym}^{k-2} L^2 \). If \(\lambda_1 \neq \lambda_2 \) then Berger-Breuil have shown that the unitary \(L \)-Banach space representation of \(G \):

\[
E_{k, \omega} := L \otimes_{\mathfrak{o}_L} \lim_{\rightarrow} M/\omega^n_L M
\]

is non-zero, topologically irreducible, admissible in the sense of [13], and contains \(\pi(\chi_1, \chi_2 \cdot |^{-1}) \otimes W \) as a dense \(G \)-invariant subspace, [3] §5.3]. Moreover, the dual of \(E_{k, \omega} \) is isomorphic to the representation of Borel subgroup \(B \) constructed from \((\varphi, \Gamma) \)-module of \(V_k, \omega \).

Let \(\text{Rep}_{\mathfrak{o}_L} G \) be the category of finite length \(\mathfrak{o}_L[G] \)-modules with a central character, such that the action of \(G \) is smooth (i.e. the stabilizer of a vector is an open subgroup of \(G \).) Let \(\text{Rep}_{\mathfrak{o}_L} \mathcal{G}_{Q_p} \) be the category of \(\mathfrak{o}_L[G] \)-modules of finite length. Colmez in [6] IV.2.14] has defined an exact covariant functor \(V : \text{Rep}_{\mathfrak{o}_L} G \to \text{Rep}_{\mathfrak{o}_L} \mathcal{G}_{Q_p} \). The constructions in [3] and [6] are mutually inverse to one another. This means if we assume \(\lambda_1 \neq \lambda_2 \) and let \(M \) be as above, then

\[
V_{k, \omega} \cong L \otimes_{\mathfrak{o}_L} \lim_{\rightarrow} V(M/\omega^n_L M). \tag{11}
\]

The fact that \(M/\omega^n_L M \) is an \(\mathfrak{o}_L[G] \)-module of finite length follows from [1] Thm A.

Theorem 4.4. Assume that \(p > 2 \), and let \(\lambda = \pm p^{(k-1)/2} \), and \(\chi : \mathbb{Q}_p^\times \to L^\times \) a smooth character, with \(\chi(p) = \lambda^{-1} \). Assume that there exists a \(G \)-invariant norm \(\| \cdot \| \) on \(\pi(\chi, \chi \cdot |^{-1}) \otimes W \), where \(W := \text{Sym}^{k-2} L^2 \). Let \(E \) be the completion of \(\pi(\chi, \chi \cdot |^{-1}) \otimes W \) with respect to \(\| \cdot \| \). Then \(E \) is non-zero, topologically irreducible, admissible Banach space representation of \(G \). Moreover, if we let \(E^0 \) be the unit ball in \(E \) then

\[
V_{k, 2\lambda} \otimes (\chi|\chi|) \cong L \otimes_{\mathfrak{o}_L} \lim_{\rightarrow} V(E^0/\omega^n_L E^0).
\]

Proof. Since the character \(\chi|\chi| \) is integral, by twisting we may assume that \(\chi \) is unramified. We denote the diagram

\[
\pi(\chi, \chi \cdot |^{-1})^{\mathcal{D}_1} \otimes W \hookrightarrow \pi(\chi, \chi \cdot |^{-1})^{\mathcal{D}_1} \otimes W
\]

by \(D = (D_1 \hookrightarrow D_0) \). Let \(\mathcal{D} = (\mathcal{D}_1 \hookrightarrow \mathcal{D}_0) \) be the diagram of \(\mathfrak{o}_L \)-modules with \(\mathcal{D}_1 = D_1 \cap E^0 \) and \(\mathcal{D}_0 = D_0 \cap E^0 \). Let \(a \geq 1 \) be the integer given by Proposition 4.2] for each \(j \geq 0 \), we fix \(x_j \in 1 + \mathfrak{p}_L^{x+j}, x_j \neq 1 \) and a finitely
generated $\mathfrak{o}_L[G]$-submodule M_j in $\pi(\chi\delta_x^{-1}, \chi\delta_x | \cdot |^{-1}) \otimes W$, (which is then a free \mathfrak{o}_L-module), such that

$$H_0(D) \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_L^{a+j} \cong M_j \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_L^{a+j}.$$

This is possible by Proposition 4.2. To ease the notation we set $M := H_0(D)$. Let $a_p(j) := \lambda x_j^{-1} + \lambda x_j$, $a_p := 2\lambda$ and let m be the largest integer, such that $m \leq (k - 2)/(p - 1)$. Since $p > 2$, $x_j + x_j^{-1}$ is a unit in \mathfrak{o}_L, and so $\text{val}(a_p(j)) = \text{val}(a_p) = (k - 1)/2 > m$. (Here we really need $p > 2$.) Moreover, we have $a_p \equiv a_p(j) \pmod{p_L^{j+a+em}}$, where $e := e(L/\mathbb{Q}_p)$ is the ramification index. Now since $x_j \neq 1$ we get that $\lambda x_j \neq x_j^{-1}$, and hence we may apply the results of Berger-Breuil to $\pi(\chi\delta_x^{-1}, \chi\delta_x | \cdot |^{-1}) \otimes W$. Let $T_{k,a_p(j)} := \lim \n V(M_j/\varpi^a L M_j)$. Then (11) gives that $T_{k,a_p(j)}$ is a $G_{\mathbb{Q}_p}$-invariant lattice in $V_{k,a_p(j)}$. Since $M \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_L^{a+j} \cong M_j \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_L^{a+j}$ we get

$$V(M/\varpi^a L M) \cong V(M_j/\varpi^a L M_j) \cong T_{k,a_p(j)} \otimes_{\mathfrak{o}_L} \mathfrak{o}_L/p_L^{a+j}. \quad (12)$$

Set $V := L \otimes_{\mathfrak{o}_L} \lim \n V(M/\varpi^a L M)$. Then (12) implies that V is a 2-dimensional L-vector space. Let χ_V be the trace character of V, then it follows from (12) that $\chi_V \equiv \chi_{k,a_p(j)} \pmod{p_L^{a+j}}$. Since $a_p \equiv a_p(j) \pmod{p_L^{j+a+em}}$, Proposition 4.3 says that $\chi_{k,a_p} \equiv \chi_{k,a_p(j)} \pmod{p_L^{a+j}}$. We obtain $\chi_V \equiv \chi_{k,a_p} \pmod{p_L^{a+j}}$, for all $j \geq 0$. This gives us $\chi_V = \chi_{k,a_p}$. Since V_{k,a_p} is irreducible, the equality of characters implies $V \cong V_{k,a_p}$.

Set $\widehat{M} := \lim \n M/\varpi^a L$, and $E' := \widehat{M} \otimes_{\mathfrak{o}_L} L$. Since M is a free \mathfrak{o}_L-module, we get an injection $M \hookrightarrow \widehat{M}$. In particular E' contains $\pi(\chi, \chi | \cdot |^{-1}) \otimes W$ as a dense G-invariant subspace. We claim that E' is a topologically irreducible and admissible G-representation. Now [2 Thm.4.1.1, Prop.4.1.4] say that the semi-simplification of $T_{k,a_p(j)} \otimes_{\mathfrak{o}_L} k_L$ is irreducible if $p + 1 \nmid k - 1$ and isomorphic to $$\begin{pmatrix} \mu_{\sqrt{-1}}^{(k-1)/(p+1)} & 0 \\ 0 & \mu_{-\sqrt{-1}}^{(k-1)/(p+1)} \end{pmatrix} \otimes \omega(k-1)/(p+1),$$ if $p + 1|k - 1$, where $\mu_{\pm\sqrt{-1}}$ is the unramified character sending arithmetic Frobenius to $\pm\sqrt{-1}$, and ω is the cyclotomic character. Then [3 Thm A] implies that if $p + 1 \nmid k - 1$ then $M_j \otimes_{\mathfrak{o}_L} k_L$ is an irreducible supersingular representation of G, and if $p + 1|k - 1$ then the semi-simplification of $M_j \otimes_{\mathfrak{o}_L} k_L$ is a direct sum of two irreducible principal series. The irreducibility of principal series follows from [11 Thm. 33], since $\sqrt{-1} \neq \pm 1$, as $p > 2$. Since $M \otimes_{\mathfrak{o}_L} k_L \cong M_j \otimes_{\mathfrak{o}_L} k_L$, we get that $M \otimes_{\mathfrak{o}_L} k_L$ is an admissible representation of G (so that for every open subgroup U of G, the space of U-invariants is finite dimensional). This implies that E' is admissible.
Suppose that E_1 is a closed G-invariant subspace of E' with $E' \neq E_1$. Let $E_1^0 := E_1 \cap \hat{M}$. We obtain a G-equivariant injection $E_1^0 \otimes_{o_L} k_L \hookrightarrow M \otimes_{o_L} k_L$. If $E_1^0 \otimes_{o_L} k_L = 0$ or $M \otimes_{o_L} k_L$ then Nakayama’s lemma gives $E_1^0 = 0$ and $E_1^0 = \hat{M}$, respectively. If $p+1 \dagger k - 1$ then $M \otimes_{o_L} k_L$ is irreducible and we are done. If $p+1|k-1$ then $E_1^0 \otimes_{o_L} k_L$ is an irreducible principal series, and so $V(E_1^0 \otimes_{o_L} k_L)$ is one dimensional, [6 IV.4.17]. But then $V_1 := L \otimes_{o_L} \varprojlim V(E_1^0/\varpi^m E_1^0)$ is a 1-dimensional subspace of $V_{k,ap}$ stable under the action of G_{Q_p}. Since $V_{k,ap}$ is irreducible we obtain a contradiction.

Since E' is a completion of $\pi(\chi, \chi| \bullet|^{-1}) \otimes W$ with respect to a finitely generated $o_L[G]$-submodule, it is the universal completion, see eg [7 Prop. 1.17]. In particular, we obtain a non-zero G-equivariant map of L-Banach space representations $E' \to E$, but since E' is irreducible and $\pi(\chi, \chi| \bullet|^{-1}) \otimes W$ is dense in E, this map is an isomorphism.

\[\square \]

Corollary 4.5. Assume that $p > 2$, and let $\chi : \mathbb{Q}_p^\times \to L^\times$ a smooth character with $\chi(p)^2 p^{k-1} = 1$. Assume that there exists a G-invariant norm $\| \bullet \|$ on $\pi(\chi, \chi| \bullet|^{-1}) \otimes W$, where $W := \text{Sym}^{k-2} L^2$. Then every bounded G-invariant o_L-lattice in $\pi(\chi, \chi| \bullet|^{-1}) \otimes W$ is finitely generated as an $o_L[G]$-module.

Proof. The existence of a G-invariant norm implies that the universal completion is non-zero. It follows from Theorem 4.4 that the universal completion is topologically irreducible and admissible. The assertion follows from the proof of [3, Cor. 5.3.4].

\[\square \]

For the purposes of [10] we record the following corollary to the proof of Theorem 4.4.

Corollary 4.6. Assume $p > 2$, and let $\chi : \mathbb{Q}_p^\times \to L^\times$ be a smooth character, such that $\chi^2(p) p^{k-1}$ is a unit in o_L. Assume there exists a unitary L-Banach space representation $(E, \| \bullet \|)$ of G containing $(\text{Ind}_G^L \chi \otimes \chi| \bullet|^{-1}) \otimes \text{Sym}^{k-2} L^2$ as a dense G-invariant subspace, such that $\| E \| \subseteq |L|$. Then there exists $x \in 1+p_L, x^2 \neq 1$ and a unitary completion E_x of $(\text{Ind}_G^L \chi \delta_x \otimes \chi \delta_x^{-1}| \bullet|^{-1}) \otimes \text{Sym}^{k-2} L^2$, such that $E_x \otimes_{o_L} k_L \cong E_x^0 \otimes_{o_L} k_L$, where E_x^0 is the unit ball in E_x and E^0 is the unit ball in E.

Proof. Let $\pi := \text{Ind}_G^L \chi \otimes \chi| \bullet|^{-1}$ and $M := (\pi \otimes W) \cap E^0$. Now $M \cap \varpi L E^0 = (\pi \otimes W) \cap \varpi L E^0 = \varpi L M$. So we have a G-equivariant injection $\iota : M/\varpi L M \hookrightarrow E^0/\varpi L E^0$. We claim that ι is a surjection. Let $v \in E^0$, since $\pi \otimes W$ is dense in E, there exists a sequence $\{v_n\}_{n \geq 1}$ in $\pi \otimes W$ such that $\lim v_n = v$. We also have $\lim ||v_n|| = ||v||$. Since $\| E \| \subseteq |L| \cong \mathbb{Z}$, there exists $m \geq 0$ such

\[\square \]
that \(v_n \in M \), for all \(n \geq m \). This implies surjectivity of \(\iota \). So we get
\[M \otimes_{\mathfrak{o}_L} k_L \cong E^0 \otimes_{\mathfrak{o}_L} k_L. \]

By Corollary 4.3 we may find \(u_1, \ldots, u_n \in M \) which generate \(M \) as an \(\mathfrak{o}_L[G] \)-module. Further, \(u_i = \sum_{j=1}^{m_i} v_{ij} \otimes w_{ij} \) with \(v_{ij} \in \pi \) and \(w_{ij} \in W \). Since \(\pi \) is a smooth representation of \(G \) there exists an integer \(c \geq 1 \) such that \(v_{ij} \) is fixed by \(K_c \) for all \(1 \leq i \leq n, 1 \leq j \leq m_i \). Set
\[D := (((\pi^{K_c} \otimes W) \cap M) \hookrightarrow (\pi^{K_c} \otimes W) \cap M), \quad D := (\pi^{I_c} \otimes W) \hookrightarrow \pi^{K_c} \otimes W) \]
and let \(M' \) be the image of \(H_0(D) \hookrightarrow H_0(D) \cong \pi \otimes W \). It follows from (3) that
\(M' \) is generated by \((\pi^{K_c} \otimes W) \cap M \) as an \(\mathfrak{o}_L[G] \)-module. Hence, \(M' \subseteq M \).

In particular, \(H_0(D) \otimes_{\mathfrak{o}_L} k_L \cong M \otimes_{\mathfrak{o}_L} k_L \). The assertion follows from the proof of Theorem 4.4.

5 Existence

Recent results of Colmez, which appeared after the first version of this note, imply the existence of a \(G \)-invariant norm on \((\text{Ind}_{\mathfrak{G}}^G \chi \otimes \chi \mid \cdot \mid^{-1}) \otimes \text{Sym}^{k-2} L^2, \chi^2(p) p^{k-1} \in \mathfrak{o}_L^\times \), thus making our results unconditional. We briefly explain this.

We continue to assume \(p > 2, k \geq 2 \) an integer and \(a_p = 2p^{(k-1)/2} \). The representation \(V_{k,a_p} \) of \(\mathfrak{G}_{Q_p} \) sits in the \(p \)-adic family of Berger-Li-Zhu, [2, 3.2.5]. Moreover, all the other points in the family correspond to the crystalline representations with distinct Frobenius eigenvalues, to which the theory of [3] applies. Hence [6] II.3.1, IV.4.11] implies that there exists an irreducible unitary \(L \)-Banach space representation \(\Pi \) of \(\text{GL}_2(Q_p) \), such that \(V(\Pi) \cong V_{k,a_p} \). If \(p \geq 5 \) or \(p = 3 \) and \(k \equiv 3 \) (mod 8) and \(k \equiv 7 \) (mod 8), the existence of such \(\Pi \) also follows from [8]. It follows from [6] VI.6.46] that the set of locally algebraic vectors \(\Pi^{alg} \) of \(\Pi \) is isomorphic to \((\text{Ind}_{\mathfrak{G}}^G \chi \otimes \chi \mid \cdot \mid^{-1}) \otimes \text{Sym}^{k-2} L^2, \chi \) is an unramified character with \(\chi(p) = p^{-(k-1)/2} \). The restriction of the \(G \)-invariant norm of \(\Pi \) to \(\Pi^{alg} \) solves the problem. Moreover, if \(\delta : \mathbb{Q}_p^\times \rightarrow L^\times \) is a unitary character then we also obtain a \(G \)-invariant norm on \(\Pi^{alg} \otimes \delta \circ \det \).

References

[1] L. Barthel and R. Livné, ‘Irreducible modular representations of \(\text{GL}_2 \) of a local field’, Duke Math. J. 75, no 2, 1994.
[2] L. Berger, H. Li and H. Zhu 'Construction of some families of 2-dimensional crystalline representations', Mathematische Annalen 329 (2004), no. 2, 365–377.

[3] L. Berger and C. Breuil, 'Sur quelques représentations potentiellement cristallines de GL$_2$(Q$_p$)', to appear in Astérisque.

[4] L. Berger, 'Représentations modulaires de GL$_2$(Q$_p$) et représentations galoisiennes de dimension 2', to appear in Astérisque.

[5] C. Breuil, 'Sur quelques représentations modulaires et p-adiques de GL$_2$(Q$_p$). II', J. Inst. Math. Jussieu 2, 2003, 1-36.

[6] P. Colmez, 'Représentations de GL$_2$(Q$_p$) et (φ, Γ)-modules', preprint Jan (2009).

[7] M. Emerton, 'p-adic L-functions and unitary completions of representations of p-adic reductive groups' Duke Math. J. 130 (2005), no. 2, 353-392.

[8] M. Kisin, 'Deformations of G$_{Q_p}$ and GL$_2$(Q$_p$) representations', preprint.

[9] V. Paškūnas, 'Coefficient systems and supersingular representations of GL$_2$(F)', Mémoires de la SMF, 99, 2004.

[10] V. Paškūnas, 'Admissible unitary completions of locally Q$_p$-rational representations of GL$_2$(F)', arXiv:0805.1006, preprint 2008.

[11] P. Schneider and U. Stuhler, 'Resolutions for smooth representations of the general linear group over a local field' J. reine angew. Math. 436, 19-32 (1993);

[12] P. Schneider and U. Stuhler, 'Representation theory and sheaves on the Bruhat-Tits building' Publ. Math. IHES 85, 97-191 (1997);

[13] P. Schneider and J. Teitelbaum, 'Banach space representations and Iwasawa theory', Israel J. Math. 127, 359-380 (2002).

[14] M.-F. Vignéras, ‘A criterion for integral structures and coefficient systems on the tree of PGL(2, F)’, Pure and Applied Mathematics Quarterly, Volume 4, Number 4, 2008 (Jean-Pierre Serre special issue, part I).