DETECTION OF FORBIDDEN LINE COMPONENTS OF LITHIUM-LIKE CARBON IN STELLAR SPECTRA

KLAUS WERNER1, THOMAS RAUCH1, DENNY HOYER1, AND PASCAL QUINET2,3

1 Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University Tübingen, Sand 1, D-72076 Tübingen, Germany
2 Physique Atomique et Astrophysique, Université de Mons—UMONS, B-7000 Mons, Belgium
3 IPNAS, Université de Liège, Sart Tilman, B-4000 Liège, Belgium

Received 2016 July 8; revised 2016 July 23; accepted 2016 July 24; published 2016 August 3

ABSTRACT

We report the first identification of forbidden line components from an element heavier than helium in the spectrum of astrophysical plasmas. So far, these components were identified only in laboratory plasmas and not in astrophysical objects. Forbidden components are well known for neutral helium lines in hot stars, particularly in helium-rich post-AGB stars and white dwarfs. We discovered that two hitherto unidentified lines in the ultraviolet spectra of hot hydrogen-deficient (pre-) white dwarfs can be identified as forbidden line components of triply ionized carbon (C IV). The forbidden components (3p–4f and 3d–4d) appear in the blue and red wings of the strong, Stark broadened 3p–4d and 3d–4f lines at 1108 Å and 1169 Å, respectively. They are visible over a wide effective temperature range (60,000–200,000 K) in helium-rich (DO) white dwarfs and PG 1159 stars that have strongly oversolar carbon abundances.

Key words: atomic data – atomic processes – stars: atmospheres – white dwarfs

1. INTRODUCTION

Forbidden line components are atomic transitions with Δℓ ≠ ±1, where ℓ is the angular quantum number. They are associated with the mixing of upper states induced by the plasma electric microfield, leading to transitions that are normally disallowed by the selection rules for electric dipole transitions. This effect should not be confused with forbidden lines associated with magnetic dipole, electric quadrupole, or other higher multipole transitions which are well known tools for analyzing emission lines from thin astrophysical plasmas, e.g., a multitude of forbidden lines in planetary nebulae (Bowen 1927) and He-like triplets in X-ray spectra of stellar coronae (Gabriel & Jordan 1969). The forbidden line components investigated here are not restricted to low densities because they do not involve metastable states. In contrast, they appear as absorption lines at high densities when line broadening by the Stark effect is important.

The most prominent examples for numerous forbidden components are neutral helium lines in optical spectra of white dwarfs (e.g., Liebert et al. 1976; Beauchamp et al. 1995), originally detected in B-type stars by Struve (1929) at He I λ4471 Å. This 2 3P − 4 3D transition is accompanied by the forbidden Δℓ = 2 component 2 3P − 4 3F. Detailed descriptions of the physical process associated with the formation of forbidden components in neutral helium can be found in, e.g., Barnard et al. (1969, 1974), Griem (1974), Adler & Piel (1991), and Griem (2005).

To our best knowledge, forbidden components of elements heavier than helium have hitherto not been identified in astrophysical plasmas but have been identified in laboratory plasmas. Boettcher et al. (1987) report the detection of such components in lithium-like (i.e., one valence electron) C IV and N V. They can be used for plasma diagnostics because they are strongly density dependent. Another example is lithium itself. Li λ602 Å 2p–4d, with its forbidden 2p–4p and 2p–4f components, is used for diagnostics (e.g., Cvejić et al. 2014) in plasmas where helium with its forbidden components is not present for that purpose.

The first to investigate the presence of forbidden line components in stellar spectra was, as mentioned, Struve (1929). He wrote: “Of the various elements only helium seems to promise any results. Hydrogen shows no new lines outside the Balmer components, which are blended. All other elements are either faint in the stars or not very susceptible to Stark effect.”

At last we can report here on the detection of forbidden line components of a heavier species, namely carbon in stellar spectra. They occur in hot (pre-) white dwarfs, namely, the same two C IV transitions discovered in the plasma experiment by Boettcher et al. (1987). The detection is favored by the conditions encountered in hot white dwarf atmospheres. Broad C IV lines due to strong Stark effect, and, often, highly enriched carbon abundance. Because of the strong density dependence of the line strengths, they can potentially be used as sensitive gravity indicators in stellar spectra.

2. DETECTION OF FORBIDDEN C IV COMPONENTS

We have detected two forbidden C IV components in ultraviolet spectra of three DO (i.e., He-dominated) white dwarfs and seven PG 1159 (He–C–O dominated) stars (Figure 1). The DOs’ effective temperature and surface gravity ranges are $T_{\text{eff}} = 60,000$–70,000 K and $\log(g/\text{cm/s}^2) = 7.5$–7.8, and their carbon abundances range between $C = 0.0015$ and 0.021 (mass fraction). The PG 1159 stars are hotter ($T_{\text{eff}} = 85,000$–200,000 K) and have surface gravities between $\log g = 6.5$ and 8. Their carbon abundances are significantly higher ($C = 0.39$–0.59). All the stars have in common the fact that the profiles of the allowed C IV transitions are very broad because of linear Stark effect in comparison to most other metal lines (e.g., from C III and O IV visible in some spectra displayed in Figure 1).

The detected forbidden components are 3p–4f (Δℓ = 2; Figure 2) in the blue wing of the allowed 3p–4d line at 1108 Å, and 3d–4d (Δℓ = 0) in the red wing of the allowed 3d–4f line at 1169 Å. Their profiles are asymmetric, with the broader
wing pointing away from the adjacent allowed line. In some spectra, the $3p - 4f$ transition can be resolved as two fine-structure components. The spacing between the allowed and forbidden components is about 0.5 Å. All C IV lines are multiplets, with noticeable splittings because the energy levels are doublets. In Table 1, we present the wavelengths of the forbidden components as calculated from the level energies listed in the National Institute of Standards and Technology (NIST) database\(^4\) together with new pseudo-relativistic Hartree-Fock oscillator strengths computed using Cowan’s atomic structure codes (Cowan 1981).

We are confident that the identification of the two absorption features as forbidden C IV components is correct and that they

\(^4\) http://www.nist.gov/pml/data/asd.cfm
We noticed the forbidden lines during previous analyses of some of the stars presented here; however, so far they have remained unidentified. They are most prominent in the DO white dwarfs (top three spectra in Figure 1) and generally weaker in the hottest PG 1159 stars. As can be judged from the model for RXJ2117.1+3412, the 3d–4d line in this star is blended by a Ne VIII line; however, the other forbidden component 3p–4f is clearly visible.

The displayed spectra are overplotted with models whose relevant parameters (\(T_{\text{eff}}\), log g, carbon abundance) are given in the right panel of Figure 1. Most of them were derived in our earlier work, while a few are from work in progress, involving new observations (see below). For concision we abstain from individual references. As representative examples we mention our detailed work on the DO white dwarf RE 0503-289 (Rauch et al. 2016 and references therein) and on two PG 1159 stars (Werner et al. 2015). Regarding the observations, the majority of the spectra from the objects in the present study were recorded with the Far Ultraviolet Spectroscopic Explorer. All were described in the publications mentioned. Spectra of PG 0111+002, PG 0109+111, and PG 1707+427, however, are from observations we recently performed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope (Proposal ID 13769). The details of these observations and their spectral analyses are deferred to a later paper (D. Hoyer et al. 2016, in preparation).

3. DISCUSSION AND CONCLUSIONS

Appropriate quantum-mechanical calculations for the Stark line broadening of forbidden C IV components are not available. Godbert et al. (1994a) performed such calculations for the interpretation of laboratory spectra with a computer code presented by Calisti et al. (1990), but to the best of our knowledge, they were not published. For the 3p–4f transition, broadening data were published by Dimitrijević et al. (1991); however, they are useless in our context because it was assumed to be an isolated line. At the moment, we are only able to include the lines by assuming linear Stark effect (as for the allowed components) in the approximation presented by Werner et al. (1991) and guessing their strengths by arbitrarily upscaling theoretical \(f\)-values computed by us. As an example we show in Figure 3 (black line) the result of this procedure in the case of the DO white dwarf RE 0503-289. The \(f\)-values do not stem from other elements. First, none of the ions hitherto identified in the investigated stars are visible over the entire, large \(T_{\text{eff}}\) range covered by the stars. Second, the observed asymmetric line profiles are neither expected nor observed from allowed transitions.

![Figure 2](image2.png)

Figure 2. Grotrian diagram of the lithium-like C IV ion. Solid lines indicate the observed dipole allowed transitions, and dashed lines indicate the identified forbidden components.

![Table 1](image3.png)

\(nl - n'l'\)	\(j - j'\)	\(f\)	\(\lambda/\AA\)
3p–4f	1/2–5/2	1.199 \times 10^{-5}	1106.40
	3/2–5/2	1.730 \times 10^{-6}	1106.79
	–7/2	1.042 \times 10^{-5}	1106.77
3d–4d	3/2–3/2	6.886 \times 10^{-7}	1170.20
	–5/2	2.937 \times 10^{-7}	1170.14
	5/2–3/2	1.958 \times 10^{-7}	1170.32
	–5/2	7.977 \times 10^{-7}	1170.27

Table 1

Wavelengths \(\lambda\) and Oscillator Strengths \(f\) of the Two Forbidden C IV Components’ Multiplets

![Figure 3](image4.png)

Figure 3. Details from Figure 1 showing the DO white dwarf RE 0503-289 and a model without the forbidden components (thin, red line). In addition, two more models that include the C IV forbidden components in an approximate manner (see the text) are overplotted. Thick solid black line: \(f\)-values artificially increased. Thick blue dashed line: Stark broadening parameter increased.
required scaling by factors of 400 and 10,000 for the 3p–4f and 3d–4d transitions, such that they amount to about $f = 0.004$–0.008. The line positions are matched while the asymmetries are not, because our assumption for broadening is poor. The extended wings that point away from the allowed line components are not broad enough in the model. An arbitrary increase of the Stark damping constant by a factor of six and a further increase of the f-values by a factor of two results in a better fit, but then the steep wings pointing toward the allowed line components are too broad (Figure 3, dashed blue line).

The asymmetric line shape of the forbidden components (with their steep wing always toward the adjacent allowed line) is identical to the behavior of such lines of neutral helium in stellar atmospheres. Under certain circumstances, the asymmetry can be very pronounced, as was demonstrated by Beauchamp & Wesemael (1998, their Figure 2) and was explained as the effect of varying ratios of line widths to the separation of forbidden and allowed components as a function of formation depths of line cores and wings.

The detection of the C IV 3d–4d forbidden component at 1171 Å in the experiment by Boettcher et al. (1987, observed in second order) was subsequently questioned by Godbert et al. (1994b), who argued that the respective spectral feature is an impurity line, namely the $\lambda 585$ Å C III 2p 3s–2p2 line (at 1171 Å in fourth order). In light of our observations in white dwarfs we conclude that Boettcher et al. (1987) indeed saw the C IV 3d–4d component at least contributing to the impurity line.

The forbidden components of C IV originally identified in laboratory plasmas (Boettcher et al. 1987) and now in stellar spectra are $n = 3$–4 transitions, where n is the principal quantum number. The 3d–4d forbidden component of lithium-like N V was also detected by Boettcher et al. (1987). It is located at 749 Å and is therefore not accessible in stellar spectra because of extinction by interstellar neutral hydrogen. The respective $n = 3$–4 lines of lithium-like O VI have even shorter wavelengths. O VI has strong and broad lines, comparable to the C IV lines, in the ultraviolet spectra of the PG 1159 stars presented here. Candidates for forbidden components are $n = 4$–5 transitions, but we could not identify any.

D.H. and T.R. are supported by the German Aerospace Center (DLR) under grants 50 OR 1501 and 50 OR 1507. Financial support from the Belgian FRS-FNRS is also acknowledged. P.Q. is the research director of this organization. The TMAD service (http://astro.uni-tuebingen.de/~TMAD) used to compile atomic data for this paper was constructed as part of the activities of the German Astrophysical Virtual Observatory. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and of NASA’s Astrophysics Data System Bibliographic Services. Some/all of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST).

Facilities: HST(STIS, COS), FUSE.

REFERENCES

Adler, H. G., & Piel, A. 1991, JQSRT, 45, 11

Barnard, A. J., Cooper, J., & Shamey, L. J. 1969, A&A, 1, 28

Barnard, A. J., Cooper, J., & Smith, E. W. 1974, JQSRT, 14, 1025

Beauchamp, A., & Wesemael, F. 1998, ApJ, 496, 395

Beauchamp, A., Wesemael, F., Bergeron, P., & Liebert, J. 1995, ApJL, 441, L85

Boettcher, F., Musielok, J., & Kanze, H.-J. 1987, PhRvA, 36, 2265

Bowen, I. S. 1927, Natur, 120, 473

Calisti, A., Khelfaoui, F., Stamm, R., Talin, B., & Lee, R. W. 1990, PhRvA, 42, 5433

Cowan, R. D. 1981, The Theory of Atomic Structure and Spectra (Berkeley, CA: Univ. California Press)

Dimitrijević, M., Stambulchik, E., Gavrilović, M. R., Jovićević, S., & Konjević, N. 2014, AcSpe, 100, 86

Gabriel, A. H., & Jordan, C. 1969, Natur, 221, 947

Godbert, L., Calisti, A., Stamm, R., et al. 1994a, PhRvE, 49, 5889

Godbert, L., Calisti, A., Stamm, R., et al. 1994b, PhRvE, 49, 5644

Griem, H. R. 1974, Spectral Line Broadening by Plasmas (New York: Academic)

Griem, H. R. 2005, Principles of Plasma Spectroscopy (Cambridge: Cambridge Univ. Press)

Liebert, J., Beaver, E. A., Robertson, J. W., & Strittmatter, P. A. 1976, ApJL, 204, L119

Rauch, T., Quinet, P., Hoyer, D., et al. 2016, A&A, 590, A128

Struve, O. 1929, ApJ, 69, 173

Werner, K., Heber, U., & Hunger, K. 1991, A&A, 244, 437

Werner, K., Rauch, T., & Kruk, J. W. 2015, A&A, 582, A94