HUNEKE’S DEGREE-COMPUTING PROBLEM

MOHSEN ASGHARZADEH

ABSTRACT. We deal with a problem posted by Huneke on the degree of generators of symbolic powers.

1. INTRODUCTION

Let \(A_m := K[x_1, \ldots, x_m] \) be the polynomial ring of \(m \) variables over a field \(K \). We drop the subscript \(m \), when there is no doubt of confusion. Let \(I \) be an ideal of \(A \). Denote the \(n \)-th symbolic power of \(I \) by \(I^{(n)} := \bigcap_{p \in \text{Ass}(I)} (I^n A_p \cap A) \). Huneke [7] posted the following problem:

Problem 1.1. (Understanding symbolic powers). Let \(p \triangleright A \) be a homogeneous and prime ideal generated in degrees \(\leq D \). Is \(p^{(n)} \) generated in degrees \(\leq Dn \)?

The problem is clear when \(m < 3 \). We present three observations in support of Huneke’s problem. The first one deals with rings of dimension 3:

Observation A. Let \(I \triangleright A_3 \) be a radical ideal and generated in degrees \(\leq D \). Then \(I^{(n)} \) generated in degrees \(< (D + 1)n \) for all \(n \gg 0 \).

The point of this is to connect the Problem 1.1 to the fruitful land \(H^0_m(\cdot) \). This unifies our interest on symbolic powers as well as on the (LC) property. The later has a role on tight closure theory. It was introduced by Hochster and Huneke.

Corollary 1.2. Let \(I \triangleleft A_3 \) be any radical ideal. There is \(D \in \mathbb{N} \) such that \(I^{(n)} \) is generated in degrees \(\leq Dn \) for all \(n > 0 \).

Observation B. Let \(I \triangleleft A_4 \) be an ideal of linear type generated in degrees \(\leq D \). Then \(I^{(n)} \) is generated in degrees \(\leq Dn \).

I am grateful to Hop D. Nguyen for suggesting the following example to me:

Example 1.3. There is a radical ideal \(I \triangleleft A_6 \) generated in degrees \(\leq 4 \) such that \(I^{(2)} \) does not generated in degrees \(\leq 2.4 = 8 \).

There is a simpler example over \(A_7 \). Via the flat extension \(A_6 \to A_n \) we may produce examples over \(A_n \) for all \(n > 5 \). One has the following linear growth formula for symbolic powers:

Observation C. Let \(I \) be any ideal such that the corresponding symbolic Rees algebra is finitely generated. There is \(E \in \mathbb{N} \) such that \(I^{(n)} \) is generated in degrees \(\leq En \) for all \(n > 0 \).

2010 Mathematics Subject Classification. 13F20; 13A02.

Key words and phrases. Degree of generators; Polynomial rings; Symbolic powers.
Observation C for monomial ideals follows from [8, Thorem 2.10] up to some well-known facts. In this special case, we can determine E:

Corollary 1.4. Let I be a monomial ideal. Let f be the least common multiple of the generating monomials of I. Then $I^{(n)}$ is generated in degrees $\leq \deg(f)n$ for all $n > 0$.

We drive this sharp bound when I is monomial and radical not only by the above corollary, but also by an elementary method. There are many examples of ideals such as I such that the corresponding symbolic Rees algebra is not finitely generated but there is $D \in \mathbb{N}$ such that $I^{(n)}$ is generated in degrees $\leq Dn$ for all $n > 0$. Indeed, Roberts constructed a prime ideal p over A_3 such that the corresponding symbolic Rees algebra were not be finitely generated. However, we showed in Corollary 1.2 that there is D such that $p^{(n)}$ is generated in degrees $\leq Dn$ for all $n > 0$. These suggest the following:

Problem 1.5. Let $I \triangleleft A$ be any ideal. There is $f \in \mathbb{Q}[X]$ such that $I^{(n)}$ is generated in degrees $\leq f(n)$ for all $n > 0$. Is f linear?

Section 2 deals with preliminaries. The reader may skip it, and come back to it as needed later. In Section 3 we present the proof of the observations. Section 4 is devoted to the proof of Example 1.3. We refer the reader to [1] for all unexplained definitions in the sequel.

2. PRELIMINARIES

We give a quick review of the material that we need. Let R be any commutative ring with an ideal a with a generating set $a := a_1, \ldots, a_r$. By $H^i_a(M)$, we mean the i-th cohomology of the Čech complex of a module M with respect to a. This is independent of the choose of the generating set. For simplicity, we denote it by $H^i_a(M)$. We equip the polynomial ring A with the standard graded structure. Then, we can use the machinery of graded Čech cohomology modules.

Notation 2.1. Let $L = \bigoplus_{n \in \mathbb{Z}} L_n$ be a graded A-module and let $d \in \mathbb{Z}$.

i) The notation $L(d)$ is referred to the d-th twist of L, i.e., shifting the grading d steps.

ii) The notation $\text{end}(L)$ stands for $\sup\{n : L_n \neq 0\}$.

iii) The notation $\text{beg}(L)$ stands for $\inf\{n : L_n \neq 0\}$.

Discussion 2.2. Denote the irrelevant ideal $\bigoplus_{n \geq 0} A_n$ of A by m.

i) We use the principals that $\sup\{\emptyset\} = -\infty$, $\inf\{\emptyset\} = +\infty$ and that $-\infty < +\infty$.

ii) Let M be a graded A-module. Then $H^i_m(M)$ equipped with a \mathbb{Z}-graded structure and $\text{end}(H^i_m(M)) < +\infty$.

Definition 2.3. The Castelnuovo-Mumford regularity of M is

$$\text{reg}(M) := \sup\{\text{end}(H^i_m(M)) + i : 0 \leq i \leq \dim M\}.$$

The $\text{reg}(M)$ computes the degrees of generators in the following sense.
Fact 2.4. A graded module M can be generated by homogeneous elements of degrees not exceeding $\text{reg}(M)$.

The following easy fact translates a problem from symbolic powers to a problem on Čech cohomology modules.

Fact 2.5. Let $I \triangleleft A$ be a radical ideal of dimension one. Then $I^{(n)}/I^n = H^0_m(A/I^n)$.

We will use the following results:

Lemma 2.6. (See [2]) Let $I \triangleleft A$ be a homogeneous ideal such that $\dim A/I \leq 1$. Then $\text{reg}(I^n) \leq n \text{reg}(I)$ for all n.

Also, see [5]. Let us recall the following result from [4] and [10]. The regularity of $\text{reg} I^{(n)}$ is equal to $dn + e$ for all large enough n. Here d is the smallest integer n such that

$$(x : x \in I, \text{ and } x \text{ is homogeneous of degree at most } n)$$

is a reduction of I, and e depends only on I. In particular, e is independent of n.

Lemma 2.7. (See [2] Corollary 7]) Let $I \triangleleft A$ be a homogeneous ideal with $\dim A/I = 2$. Then $\text{reg} I^{(n)} \leq n \text{reg}(I)$.

The above result of Chandler generalized in the following sense:

Lemma 2.8. (See [8] Corollary 2.4]) Let $I \triangleleft A$ be a homogeneous ideal with $\dim A/I \leq 2$. Denotes the maximum degree of the generators of I by $d(1)$. There is a constant e such that for all $n > 0$ we have $\text{reg} I^{(n)} \leq nd(1) + e$.

3. PROOF OF THE OBSERVATIONS

If symbolic powers and the ordinary powers are the same, then Huneke’s bound is tight. We start by presenting some non-trivial examples to show that the desired bound is very tight. Historically, these examples are important.

Example 3.1. (This has a role in [8] Page 1801]) Let $R = \mathbb{Q}[x,y,z,t]$ and let $I := (xz, xt^2, y^2z)$. Then $I^{(2)}$ is generated in degrees $\leq 6 = 2 \times 3$. Also, $\text{beg}(I^{(2)}) = 2 \text{beg}(I)$.

Proof. The primary decomposition of I is given by

$$I = (x, y^2) \cap (z, t^2) \cap (x, z).$$

By definition

$$I^{(2)} = (x, y^2)^2 \cap (z, t^2)^2 \cap (x, z)^2 = (x^2z^2, x^2zt^2, xy^2z^2, x^2t^4, xy^2z^2, y^4z^2).$$

Thus, $I^{(2)}$ is generated in degrees ≤ 6. Clearly, $\text{beg}(I^{(2)}) = 4 = 2 \times \text{beg}(I)$. □

Example 3.2. Let $R = \mathbb{Q}[a, b, c, d, e, f]$ and let $I := (abc, abf, ace, ade, adf, bcd, bde, bcf, cdf, cef)$. Then $I^{(2)}$ is generated in degrees $\leq 6 = 2 \times 3$. Also, $\text{beg}(I^{(2)}) = 5 < 6 = 2 \times \text{beg}(I)$.
Sturmfels showed that $\operatorname{reg}_1(I^2) = 7 > 6 = 2 \operatorname{reg}_1(I)$. Also, see Discussion 3.3.

Proof. This deduces from Corollary 1.4. Let us prove it by hand. The method is similar to Example 3.1. We left to reader to check that $I^{(2)}$ is generated by the following degree 5 elements

$$ \{bcdef, acdef, abdef, abcef, abcde, abcdf, abcdg\}, $$

plus to the following degree 6 elements

$$ \{c^2e^2f^2, bc^2e^2f^2, b^2c^2e^2f^2, c^2def^2, ab^2ef^2, c^2d^2f^2, \}

$$

\begin{align*}
acd^2f^2, a^2d^2ef, a^2bdf^2, a^2b^2f, b^2de^2f, a^2c^2ef, \\
- a^2d^2ef, b^2c^2f, a^2b^2cf, b^2d^2e^2, abd^2e^2, a^2d^2e^2, \\
a^2cde^2, a^2c^2e^2, b^2de^2e, a^2bc^2e, b^2c^2d^2, ab^2c^2d, a^2b^2c^2e^2. \\
- \end{align*}$

Thus $I^{(2)}$ is generated in degrees $\leq 6 = 2 \times 3$. Clearly, $\operatorname{deg}(I^{(2)}) = 5 < 6 = 2 \times \operatorname{deg}(I)$.

Proposition 3.3. Let $I \subset A$ be a homogeneous ideal such that $\dim A/I \leq 1$. Then $I^{(n)}$ generated in degrees $\leq \max \{n \operatorname{reg}(I) - 1, nD\}$ for all n.

Proof. Let D be such that I is generated in degree $\leq D$. Recall that $D \leq \operatorname{reg}(I)$. We note that I^n generated in degree $\leq Dn$. As $\dim(A/I) = 1$ and in view of Fact 2.4, one has $I^{(n)}/I^n = H^0_m(A/I^n)$. Now look at the exact sequence

$$ 0 \longrightarrow I^n \rightarrow I^{(n)} \xrightarrow{\pi} I^{(n)}/I^n \longrightarrow 0. $$

Suppose $\{f_1, \ldots, f_s\}$ is a homogeneous system of generators for I^n. Also, suppose $\{\overline{g}_1, \ldots, \overline{g}_s\}$ is a homogeneous system of generators for $I^{(n)}/I^n$, where $g_j \in I^{(n)}$ defined by $\pi(g_j) = \overline{g}_j$. Hence, $\operatorname{deg}(g_j) = \operatorname{deg}(\overline{g}_j)$.

Let us search for a generating set for $I^{(n)}$. To this end, let $x \in I^{(n)}$. Hence $\pi(x) = \sum j s_j \overline{g}_j$ for some $s_j \in A$. Thus $x - \sum j s_j g_j \in \ker(\pi) = \operatorname{im}(\rho) = I^n$. This says that $x - \sum j s_j g_j = \sum i r_i f_i$ for some $r_i \in A$. Therefore, $\{f_1, \ldots, f_s\}$ is a homogeneous generating set for $I^{(n)}$.

Recall that $\operatorname{deg}(f_i) \leq nD$. Fixed n, and let $1 \leq j \leq s$. Its enough to show that

$$ \operatorname{deg}(g_j) \leq n \operatorname{reg}(I) - 1. $$

Keep in mind that $m \geq 3$. One has $\operatorname{depth}(A_m) = m > 2$. By [1] Proposition 1.5.15(e)], $\operatorname{grade}(m, A) \geq 2$. Look at

$$ 0 \longrightarrow I^n \longrightarrow A \longrightarrow A/I^n \longrightarrow 0. $$

This induces the following exact sequence:

$$ 0 \simeq H^0_m(A) \longrightarrow H^0_m(A/I^n) \longrightarrow H^1_m(I^n) \longrightarrow H^1_m(A) \simeq 0. $$

Thus, $H^0_m(A/I^n) \simeq H^1_m(I^n)$. In view of Lemma 2.6

$$ \operatorname{end}(H^0_m(I^n)) + 1 \leq \operatorname{reg}(I^n) \leq \operatorname{reg}(I)n. $$

Therefore, $\operatorname{end}(I^{(n)}/I^n) < \operatorname{reg}(I)n$. By Fact 2.4

$$ \operatorname{deg}(g_j) = \operatorname{deg}(\overline{g}_j) \leq \operatorname{end}(I^{(n)}/I^n) < \operatorname{reg}(I)n.$$
as claimed.

Definition 3.4. The ideal I has a linear resolution if its minimal generators all have the same degree and the nonzero entries of the matrices of the minimal free resolution of I all have degree one.

Discussion 3.5. In general powers of ideals with linear resolution need not to have linear resolutions. The first example of such an ideal was given by Terai, see [3]. It may be worth to note that his example were used in Example 3.2 for a different propose.

However, we have:

Corollary 3.6. Let $I \subset A$ be an ideal with a linear resolution, generated in degrees $\leq D$ such that $\dim A/I \leq 1$. Then $I^{(n)}$ generated in degrees $\leq Dn$ for all n.

Proof. It follows from Definition 3.4 that $\text{reg}(I) = D$. Now, Proposition 3.3 yields the claim. □

Theorem 3.7. Let $I \subset A_4$ be an (radical) ideal generated in degrees $\leq D$. There is an integer E such that $I^{(n)}$ is generated in degrees $\leq En$. Suppose in addition that I is of linear type. Then $I^{(n)}$ is generated in degrees $\leq Dn$.

Proof. We note that I^n generated in degree $\leq Dn$. Suppose first that $\text{ht}(I) = 1$. Then $I = (x)$ is principal, because height-one radical ideals over unique factorization domains are principal. In this case $I^{(n)} = (x^n)$, because it is a complete intersection. In particular, $I^{(n)}$ generated in degrees $\leq Dn$. The case $\text{ht}(I) = 3$ follows by Corollary 3.6. Then without loss of the generality we may assume that $\text{ht}(I) = 2$. Suppose $I^{(n)}$ generated in degrees $\leq D_n$. Then

$$D_n \leq \text{reg}(I^{(n)}) \leq n \text{reg}(I^{3.4}) nD.$$

The proof in the linear-type case is complete. □

Theorem 3.8. Let $I \subset A_3$ be a homogeneous radical ideal, generated in degrees $\leq D$ and of dimension 1. Then $I^{(n)}$ generated in degrees $<(D+1)n$ for all $n \gg 0$.

Proof. Keep the proof of Theorem 3.7 in mind. Then, we may assume $\dim(A_3/I) = 1$. By the proof of Proposition 3.3 we need to show $H^1_m(I^n)$ generated in degrees $<(D+1)n$ for all $n \gg 0$. By [10], $\text{reg}(I^n) = a(I)n + b(I)$ for all $n \gg 0$. This is well-known that $a(I) \leq D$, see [10]. For all $n > b(I)$ sufficiently large,

$$\text{end}(H^1_m(I^n)) + 1 \leq \text{reg}(I^n) = a(I)n + b(I) \leq Dn + b(I) \leq (D+1)n,$$

as claimed. □

Corollary 3.9. Let $I \subset A_3$ be any radical ideal. There is $D \in \mathbb{N}$ such that $I^{(n)}$ is generated in degrees $\leq Dn$ for all $n > 0$.

In a paper by Rees [11], there is a height-one prime ideal (over a normal domain) such that non of its symbolic powers is principal.
Proof. Suppose \(I \) is generated in degrees \(\leq E \) for some \(E \). Let \(n_0 \) be such that \(I^{(n)} \) generated in degrees \(< (E+1)n \) for all \(n > n_0 \), see the above theorem. Let \(\ell_i \) be such that \(I^{(n)} \) generated in degrees \(< \ell_i \). Now, set \(e_i := \floor{\frac{\ell_i}{n}} + 1 \). Then \(I^{(n)} \) is generated in degrees \(< e_i n \) for all \(n \). Let
\[
D := \sup \{ E, e_i : 1 \leq i \leq n_0 \}.
\]
Clearly, \(D \) is finite and that \(I^{(n)} \) is generated in degrees \(\leq Dn \) for all \(n > 0 \). \(\square \)

Corollary 3.10. Let \(I \triangleleft A_3 \) be a homogeneous radical ideal. Then \(I^{(n)} \) and \(I^n \) have the same reflexive-hull.

Proof. Set \(A := A_3 \). Without loss of the generality, we may assume that \(\text{ht}(I) = 2 \). Set \((\cdot)^* := \text{Hom}_A(\cdot, A) \). We need to show \((I^{(n)})^* \simeq (I^n)^* \). As, \(I^{(n)}/I^n = H^0_{m}(A/I^n) \) is of finite length, \(\text{Ext}^i_A(I^{(n)}/I^n, A) = 0 \) for all \(i < 3 \), because depth\((A) = 3 \). Now, we apply \((\cdot)^* \) to the following exact sequence
\[
0 \rightarrow I^n \rightarrow I^{(n)} \rightarrow I^{(n)}/I^n \rightarrow 0,
\]
to observe \((I^{(n)})^* \simeq (I^n)^* \). From this we get the claim. \(\square \)

To prove Observation C we need:

Fact 3.11. (See [9, Theorem 3.2]) Let \(I \) be a monomial ideal in a polynomial ring over a field. Then the corresponding symbolic Rees algebra is finitely generated.

Here, we present the proof of Observation C:

Proposition 3.12. Let \(I \) be any ideal such that the corresponding symbolic Rees algebra is finitely generated (e.g. \(I \) is monomial). There is \(D \in \mathbb{N} \) such that \(I^{(n)} \) is generated in degrees \(\leq Dn \) for all \(n > 0 \).

Proof. (Suppose \(I \) is monomial. Then \(\mathcal{R} := \bigoplus_{i \geq 0} I^{(i)} \) is finitely generated, see Fact 3.11.) The finiteness of \(\mathcal{R} \) gives an integer \(\ell \) such that \(\mathcal{R} = R[I^{(i)} : i \leq \ell] \). Let \(e_i \) be such that \(I^{(i)} \) is generated in degree less or equal than \(e_i \) for all \(i \in \mathbb{N} \). Set \(d_i := \floor{\frac{\ell_i}{n}} + 1 \) for all \(i \leq \ell \). The notation \(D \) stands for \(\max\{d_i : \text{for all } i \leq \ell\} \). We note that \(D \) is finite. Let \(n \) be any integer. Then
\[
I^{(n)} = \sum j_1^{(j_1)} \ldots j_n^{(j_n)}, \quad \text{where } j_1 + \ldots + j_n = n \text{ and } 1 \leq j_i \leq \ell \quad \text{for all } 1 \leq i \leq n.
\]
This implies that
\[
e_n \leq e_{j_1} + \ldots + e_{j_n} \\
\leq j_1 d_{j_1} + \ldots + j_n d_{j_n} \\
\leq j_1 D + \ldots + j_n D \\
= D(j_1 + \ldots + j_n) \\
= Dn,
\]
as claimed. \(\square \)

Corollary 3.13. Let \(I = (f_1, \ldots, f_t) \) be a monomial ideal. Set \(E := \deg f_1 + \ldots + \deg f_t \). Then \(I^{(n)} \) is generated in degrees \(\leq En \) for all \(n > 0 \).
Proof. We may assume $I \neq 0$. Thus, $\text{ht}(I) \geq 1$. Let f be the least common multiple of the generating monomials of I. In view of [8 Thorem 2.9] and for all $n > 0$,

$$\text{reg}(I^{(n)}) \leq (\deg f)n - \text{ht}(I) + 1 \quad (\ast)$$

The notation e_n stands for the maximal degree of the number of generators of $I^{(n)}$. Due to Fact 2.4 we have $e_n \leq \text{reg}(I^{(n)})$. Putting this along with (\ast) we observe that

$$e_n \leq \text{reg}(I^{(n)}) \leq (\deg f)n - \text{ht}(I) + 1 \leq (\deg f)n$$

for all $n > 0$. It is clear that $\deg f \leq \deg(\prod f_i) = \sum_i \deg f_i = D$. \hfill \Box

One may like to deal with the following sharper bound:

Corollary 3.14. Let I be a monomial ideal and let f be the least common multiple of the generating monomials of I. Then $I^{(n)}$ is generated in degrees $\leq \deg f n$ for all $n > 0$.

The following is an immediate corollary of Corollary 3.14. Let us prove it without any use of advanced technics such as the Castelnuovo-Mumford regularity.

Remark 3.15. Let I be a monomial radical ideal generated in degrees $\leq D$. Then $I^{(n)}$ is generated in degrees $\leq Dn$. Indeed, first we recall a routine fact. By $[u, v]$ we mean the least common multiple of the monomials u and v. Denote the generating set of a monomial ideal K by $G(K)$. Also, if $K = (u : u \in G(K))$ and $L = (v : v \in G(L))$ are monomial, then

$$K \cap L = \langle [u, v] : u \in G(K), \text{ and } v \in G(L) \rangle \quad (\ast)$$

Now we prove the desired claim. Let I be a radical monomial ideal generated in degrees $\leq D$. The primary decomposition of I is of the form

$$I = (X_{i_1}, \ldots, X_{i_k}) \cap \ldots \cap (X_{j_1}, \ldots, X_{j_l})$$

Set

$$\sum := \{X_i \in p_i \setminus \bigcup_{j \neq i} p_j \text{ for some } i\}.$$

In view of (\ast), we see that $|\sum| = D$. By definition,

$$I^{(n)} = (X_{i_1}, \ldots, X_{i_k})^n \cap \ldots \cap (X_{j_1}, \ldots, X_{j_l})^n \quad (\ast)$$

Recall that

$$(X_{i_1}, \ldots, X_{i_k})^n = (X_{i_1}^{m_1} \cdots X_{i_k}^{m_k} : \text{where } m_1 + \cdots + m_k = n) \quad (\ast, \ast)$$

Combining (\ast) along with (\ast, \ast) and (\ast) we observe that any monomial generator of $I^{(n)}$ is of degree less or equal than Dn.
4. PROOF OF EXAMPLE 4.3

We start by a computation from Macaulay2.

Lemma 4.1. Let $A := \mathbb{Q}[x, y, z, t, a, b]$ and let $M := (x(x - y)ya, (x - y)ztb, yz(xa - tb))$. Set $f := xy(x - y)ztab(ya - tb)$. The following holds:

i) $(M^2 :_A f) = (x, y, z)$,

ii) M is a radical ideal and all the associated primes of M have height 2. In fact $\text{Ass}(M) = \{(b, a), (b, x), (y, x), (z, x), (t, x), (b, y), (z, y), (t, y), (a, t), (a, z), (z, x - y), (x - y, ya - tb)\}$

Proof.

i1 : R=QQ[x,y,z,t,a,b]
o1 = R
i2 : M=ideal(x*(x-y)*y*a,(x-y)*z*t*b,y*z*(x*a-t*b))
o2 = ideal(x(x-y)ya,(x-y)ztb,yz(xa-tb))
o3 : Ideal of R
i3 : Q = quotient(I, f[x,y*(x-y)*z*t*a*b*(y*a-t*b)])
o3 = ideal(z, y, x)
o4 : Ideal of R
i4 : associatedPrimes M
o4 = {ideal(b,a), ideal(b,x), ideal(y,x), ideal(z,x), ideal(t,x), ideal(b,y), ideal(z,y), ideal(t,y), ideal(a,t), ideal(a,z), ideal(z,x-y), ideal(x-y, y*a-t*b)}
o4 : List

It is easy to see that M is radical. These prove the items i) and ii). □

Lemma 4.2. Adopt the above notation. Then $M^{(2)} = M^2 + (f)$.

Sketch of Proof. Denote the set of all associated prime ideals of M by $\{p_i : 1 \leq i \leq 12\}$ as listed in Lemma 4.1. Revisiting Lemma 4.1 we see that M is radical. Thus $M = \bigcap_{1 \leq i \leq 12} p_i$. By definition,

$$M^{(2)} = \bigcap_{1 \leq i \leq 12} p_i^2$$

For Simplicity, we relabel $A := p_2^2, B := p_3^2$ and so on. Finally, we relabel $L := p_{12}^2$. In order to compute this intersection we use Macaulay2.

i5 : Y = intersect(A,B,C,D,E,F,G,H,I,X,K,L)
o5 : Ideal of R
i6 : N = ideal(x*y*(x-y)*z*t*a*b*(y*a-t*b))
o7 : Ideal of R
i8 : M*M+N == Y
o8 = true

The output term “true” means that the claim “$M^{(2)} = M^2 + (f)$” is true. □
Now, we are ready to present:

Example 4.3. Let $A := \mathbb{Q}[x, y, z, t, a, b]$ and $J := (x(x - y)ya, (x - y)ztb, yz(xa - tb))$. Then J generated by degree-four elements and $J^{(2)}$ has a minimal generator of degree 9.

Proof. Let f be as of Lemma 4.1. In the light of Lemma 4.1 $(J^2 :_A f) = (x, y, z)$. Thus, $f \notin J^2$. This means that f is a minimal generator of $J^{(2)}$. Since $\deg(f) = 9$ we get the claim. □

A somewhat simpler example (in dimension 7) is:

Example 4.4. Let $A := \mathbb{Q}[x, y, z, a, b, c, d]$ and $I := (xyab, xzcd, yz(ab - cd))$. Then I is radical, binomial, Cohen-Macaulay of height 2. Clearly, I is generated in degree 4. But $I^{(2)}$ has a minimal generator of degree 9.

Proof. Let $f = xyzabcd(ac - bd)$. By using Macaulay2, we have $(I^2 :_A f) = (x, y, z)$. The same computation shows that I is radical, binomial, Cohen-Macaulay of height 2. Clearly, I is generated in degree 4. But $I^{(2)} = I^2 + (f)$, and f is a minimal generator of $I^{(2)}$ of degree 9. □

Acknowledgement. I thank Hop D. Nguyen for finding a gap, for fill in the gap, and for several simplifications. We check some of the examples by the help of Macaulay2.

References

[1] W. Bruns and J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, 39, Cambridge, (1998).
[2] Karen A. Chandler, *Regularity of the powers of an ideal*, Comm. Algebra 25 (1997), 3773-3776.
[3] A. Conca, *Hilbert function and resolution of the powers of the ideal of the rational normal curve*, J. Pure Appl. Algebra, 152 (2000) 65-74.
[4] S. Cutkosky, J. Herzog, and N.V. Trung, *Asymptotic behavior of the Castelnuovo–Mumford regularity*, Compositio Math. 118 (1999), 243-261.
[5] A.V. Geramita, A. Gimigliano and Y. Pitteloud, *Graded Betti numbers of some embedded rational n-folds*, Math. Ann. 301 (1995), 363-380.
[6] D. Grayson, and M. Stillman, *Macaulay2: a software system for research in algebraic geometry*, Available at http://www.math.uiuc.edu/Macaulay2/
[7] C. Huneke, *Open problems on powers of ideals*, Notes from a workshop on Integral Closure, Multiplier Ideals and Cores, AIM, December 2006.
[8] J. Herzog, L.T. Hoa and N.V. Trung *Asymptotic linear bounds for the Castelnuovo-Mumford regularity*, Trans. Amer. Math. Soc. 354 (2002), 1793-1809.
[9] J. Herzog, T. Hibi, and N.V. Trung, *Symbolic powers of monomial ideals and vertex cover algebras*, Adv. Math. 210 (2007), 304-322.
[10] V. Kodiyalam, *Asymptotic behavior of Castelnuovo-Mumford regularity*, Proc. AMS 128 (2000), 407-411.
[11] D. Rees, *On a problem of Zariski*, Illinois J. Math. 2, (1958) 145-149.
[12] P. Roberts, *A prime ideal in a polynomial ring whose symbolic blow-up is not Noetherian*, Proc. AMS. 94 (1985), 589-592.
[13] B. Sturmfels, *Four counterexamples in combinatorial algebraic geometry*, J. Algebra 230 (2000), 282-294.

E-mail address: mohsenasgharzadeh@gmail.com