Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection

Y.P. Zhong, Z.L. Wang, J.M. Martinis, A.N. Cleland, A.N. Korotkov & H. Wang

A fundamental challenge for quantum information processing is reducing the impact of environmentally induced errors. Here we demonstrate a quantum error detection and rejection protocol based on the idea of quantum uncollapsing, using this protocol to reduce the impact of energy relaxation owing to the environment in a three-qubit superconducting circuit. We encode quantum information in a target qubit, and use the other two qubits to detect and reject errors caused by energy relaxation. This protocol improves the storage time of a quantum state by a factor of roughly three, at the cost of a reduced probability of success. This constitutes the first experimental demonstration of the algorithm-based improvement in the lifetime of a quantum state stored in a qubit.
Superconducting quantum circuits are very promising candidates for building a quantum processor owing to the combination of good qubit performance and the scalability of planar integrated circuits1–10. In addition to recent, very significant improvements in the materials and qubit geometries in such circuits, external control and measurement protocols are being developed to improve performance. This includes the use of dynamical decoupling11, measurement-based feedback controls12,13 and preliminary experiments14 with quantum error correction (QEC) codes, which allow the removal of artificially induced errors14–18. To date, however, there has been little experimental progress in control sequences that reduce a significant source of qubit error: energy dissipation due to the environment.

Although there are QEC proposals to correct intrinsic dissipation errors18,19, these have not yet been demonstrated experimentally, mostly due to gate fidelity limitations. Quantum error detection and rejection (QEDR)20,21 provide an alternative, albeit non-deterministic approach to handling errors, avoiding some of the complexity of full QEC by simply rejecting errors when they are detected. Using a variant of quantum uncollapsing that combines a weak measurement with its reversal22–25, QEDR has been predicted to significantly reduce the impact of energy relaxation in qubits21, one of the dominant sources of error in superconducting quantum circuits1–3.

The QEDR protocol based on uncollapsing22 is illustrated in Fig. 1a. Starting with a qubit in a superposition of its ground $|g\rangle$ and excited $|e\rangle$ states, $|\psi_i\rangle = \alpha|g\rangle + \beta|e\rangle$, a weak measurement is performed that detects the $|e\rangle$ state with probability (measurement strength) $p<1$. In the null-measurement outcome ($|e\rangle$ state not detected), this produces the partially collapsed state $|\psi_i\rangle = \alpha|g\rangle + \beta\sqrt{1-p}|e\rangle$ (the squared norm equals the outcome probability). The system is then stored for a time τ, during which it can decay (jump) to the $|e\rangle$ state or remain in the no-jump state $|\psi_i\rangle = \alpha|g\rangle + \beta\sqrt{1-p}e^{-i\omega\tau/2}|e\rangle$, where $\omega=1/T_1$ is the energy relaxation rate. (Instead of

![Figure 1](https://example.com/figure1.png)

Figure 1 Device geometry and uncollapsing protocol used for QEDR. (a) Quantum uncollapsing protocol in the phase qubit22,23. Top: pulse sequence, where the weak measurement with strength p is followed by a delay (storage time) τ, and then the measurement reversal, involving a π_2 rotation, a weak measurement with strength p_o, and a second π_2 rotation. Bottom: the delta-like electrical pulses lower the tunnel barrier for the qubit states on the left of the potential landscape to allow partial tunnelling of the $|e\rangle$ state into the well on the right. (b,c) Optical micrograph and simplified schematic of the device. Circuit elements are as labelled; those not used in this experiment are in grey. (d) Illustration of the qubit–resonator–qubit (QRQ) swap, analogous to the qubit–resonator–qubit (QRQ) swap appearing in the full uncollapsing protocol. (e) QEDR protocol, where we start with Q_1 in $|\psi\rangle$, consisting of the following steps: (1) the first weak measurement is performed using the first QRQ swap involving Q_1–resonator B swap with swap probability (measurement strength) p (p_o), followed by a full iSWAP between resonator B and qubit Q_2 (Q_3). Right: the on-resonance, unit-amplitude qubit-resonator vacuum Rabi oscillations in the qubit $|e\rangle$ state probability P_o (vertical axis), starting with the qubit in $|e\rangle$ and resonator in $|0\rangle$. The measurement strength $p=1-P_o$ is set by the interaction time (horizontal axis). (e) QEDR protocol, where we start with Q_1 in $|\psi\rangle$, consisting of the following steps: (1) the first weak measurement is performed using the first QRQ swap involving Q_1–resonator B swap with swap probability p. Q_2 is measured immediately, and only null outcomes (Q_2 in $|0\rangle$) are accepted. (2) The state is swapped from Q_1 into memory qubit M_1 and stored for a relatively long time τ_2, following which the state is swapped back into Q_1. (3) The weak measurement reversal is performed using a π_2 rotation on Q_1 and a second QRQ swap with swap probability p_o to qubit Q_2. Q_3 is then measured, and only null outcomes (Q_3 in $|0\rangle$) are accepted. (4) The double-null outcomes are analysed using tomography of Q_1 to evaluate Q_1’s final density matrix. To save time and reduce errors, we do not perform the final π_2 rotation appearing in the full uncollapsing protocol.
using the master equation formalism for the density matrix to account for the energy relaxation, here we prefer to use the Kraus operator-based jump and no-jump scenarios, as this gives more physical insight. See Supplementary Notes 2 and 3, and elsewhere21,22 for details.) The uncoupling measurement is then performed, comprising a π rotation and a second weak measurement with strength p_{nu} followed by a final π_y rotation that undoes the first rotation. Only outcomes that yield a second null measurement are kept. These double-null outcomes give the result $|\psi_{\text{f}}^i\rangle = |g\rangle$ if the system jumped to $|g\rangle$ during the time interval τ, while in the no-jump case, the final state is

$$|\psi_{\text{f}}^n\rangle = \alpha \sqrt{1-p_{\text{nu}}} |g\rangle + \beta \sqrt{1-p_{\text{nu}}} e^{-i\tau/2} |c\rangle.$$

Remarkably, the final no-jump state is identical to $|\psi_{\text{f}}^i\rangle$ if we choose $1 - p_{\text{nu}} = (1-p)e^{-i\tau}$; the probability of this (desired) outcome is $P_{\text{f}}^{\text{ni}} = (1-p) |\psi_{\text{f}}^i\rangle |\psi_{\text{f}}^n\rangle = (1-p)e^{-i\tau}$, while the probability of the undesirahle jump outcome $|\psi_{\text{f}}^n\rangle$ is $P_{\text{f}}^{\text{nj}} = |\beta|^2 (1-p)^2 e^{-i\tau} (1-e^{-i\tau})$. These two probabilities do not add to one; the remaining probability covers situations other than these double-null measurement outcomes. As the probability P_{f} fails to zero more quickly than P_{f}^{ni} as $p \rightarrow 1$, increasing the measurement strength p towards 1 results in a higher likelihood of recovering the initial state. This comes at the expense of a low probability $P_{\text{DN}} = P_{\text{f}}^{\text{ni}} + P_{\text{f}}^{\text{nj}}$ of the double-null result. The resulting density matrix is $\rho_{\text{f}} = (P_{\text{f}}^{\text{ni}} |\psi_{\text{f}}^i\rangle \langle \psi_{\text{f}}^i| + P_{\text{f}}^{\text{nj}} |\psi_{\text{f}}^n\rangle \langle \psi_{\text{f}}^n|) / P_{\text{DN}}$.

The QEDR protocol in Fig. 1a relies on partial tunnelling to perform the weak measurement. We have performed the protocol in this way, but found that this gave low fidelities. We therefore, in addition, implemented a weak measurement using a partial swap between the target qubit and an ancilla qubit, followed by a projective measurement of the ancilla; the two weak measurements in the QEDR protocol thus required two ancilla qubits. Using this alternative measurement, here we show that a quantum state suffering from dissipation errors can be almost fully recovered, although only by rejecting a large fraction of the measurement outcomes. This allowed us to extend the intrinsic lifetime of a quantum state by a factor of about three. A somewhat similar protocol has been demonstrated with photonic qubits, but only to suppress intentionally generated errors26.

Results

Implementation of the weak measurement. The device we used to implement the QEDR protocol is similar to that in Lucero \textit{et al.}27 (shown in Fig. 1b,c), with three phase qubits, Q_1, Q_2 and Q_3, coupled to a common, half-wavelength coplanar waveguide bus resonator B, with a memory resonator M_1 also coupled to Q_1. Relevant parameters are tabulated in Supplementary Table 1 (see Supplementary Note 1 for sample fabrication details).

The partial measurement method is illustrated in Fig. 1d. Qubit Q_1 is the target, and Q_2 and Q_3 are ancillae, entangled with Q_1 via the resonator bus B, such that a projective measurement of Q_2 or Q_3 results in a weak measurement of Q_1. The entanglement begins with a partial swap between Q_1 and the resonator B: When qubit Q_1, initially in $|e\rangle$, is tuned to resonator B, the probability P_ϵ of finding the qubit in $|e\rangle$ oscillates with unit amplitude at the vacuum Rabi frequency28–30. A partial swap with swap probability $p = 1 - P_\epsilon$ is achieved by controlling the interaction time, entangling Q_1 and B. We then use a complete swap (an iSWAP) between resonator B and qubit Q_2 (Q_3), transferring the entanglement, followed by a projective measurement of Q_2 (Q_3). In general, we start with Q_1 in $|\psi_{\text{f}}^i\rangle = |g\rangle + |c\rangle$ and perform the qubit–resonator–qubit (QRQ) swap, followed by measurement of the ancilla. A null outcome (Q_2 or Q_3 in $|g\rangle$) yields the Q_1 state $|g\rangle + \beta |c\rangle e^{i\tau/2}$, as with partial tunnelling. The swap probability p is therefore equivalent to the measurement strength.

Full QEDR sequence. Our QEDR protocol can protect against energy decay of the quantum state. However, as dephasing in these qubits is an important error source, against which the QEDR protocol does not protect, we store the intermediate quantum state in the memory resonator M_1, which does not suffer from dephasing (as indicated by $T_\text{2} \approx 2T_\text{1}$ for the resonator; see Supplementary Table 1).

Our full QEDR protocol is thus shown in Fig. 1e, starting with the initial state of the system as

$$|\psi_{\text{f}}\rangle = (z |ggg\rangle + \beta |egg\rangle) \otimes |00\rangle,$$

where $|q_1q_2q_3\rangle$ represents the state of the qubits Q_1, Q_2 and Q_3, with the ground state $|00\rangle$ of the B and M_1 resonators listed last. In step 1, we use a QRQ swap between Q_1 and Q_2 with swap probability (measurement strength) p, followed immediately by measurement of Q_2. This step takes a time τ_1 of up to 15 ns, depending on p. A null outcome (Q_2 in $|g\rangle$) yields $|\psi_{\text{f}}\rangle = (z |ggg\rangle |00\rangle + \beta |egg\rangle |00\rangle)$ (a more precise expression appears in Supplementary Note 2). In step 2, we swap the quantum state from Q_1 into M_1, wait a relatively long time $\tau = \tau_2$, during which the state in M_1 decays at a rate $\Gamma = 1/\tau_1$, and we then swap the state back to Q_1. In the no-jump case, the state

![Figure 2](url)
becomes $|\psi_f^{\text{QEDR}}\rangle = 2|\langle gg|00\rangle|00\rangle + \beta \sqrt{1 - p} e^{-\Gamma_2/2} |\langle gg|00\rangle|00\rangle$. We then perform step 3, comprising a π_s rotation on Q_1 followed by the second QEQP swap with strength p_QEQP involving Q_2, B and Q_3, which takes a time τ_3. τ_3 is between 20 and 35 ns, depending on p_QEQP dominated by the 20-ns-duration π_s pulse. Q_3 is then measured, with a null outcome (Q_2 in $|g\rangle$) corresponding to

$$
|\psi_f^{\text{QEDR}}\rangle = (\beta \sqrt{1 - p} e^{-\Gamma_2/2} |\langle gg|00\rangle|00\rangle \otimes |gg\rangle |00\rangle).
$$

We recover the initial state $|\psi_i\rangle$ if we set $1 - p = (1 - p) e^{-\Gamma_2}$, with the undesired jump cases mostly eliminated by the double-null selection. To shorten the sequence, we do not perform the final π_s rotation, so the amplitudes of Q_1’s $|g\rangle$ and $|e\rangle$ states are reversed compared with the initial state. In step 4, we apply tomography pulses and then measure Q_1 to determine its final state, keeping the results that correspond to the double-null outcomes (Q_2 and Q_3 in $|g\rangle$).

Characterizing the QEDR performance. We use quantum process tomography to characterize the performance of the protocol, starting with the four initial states $|\langle gg|00\rangle, |\langle gg|00\rangle, |\langle gg|00\rangle, |\langle gg|00\rangle$ and measuring the one-qubit process matrix χ. As we reject outcomes, where Q_2 and Q_3 are not measured in $|g\rangle$, the process is not trace preserving, so the linear map satisfies $\rho_B + \sum_{n=0}^{n=N} \frac{\mathcal{L}_{ee} E_n \rho_B E_n^\dagger}{\text{Tr}(E_n^\dagger E_n)}$, where ρ_B and ρ_e are the normalized initial and final density matrices of Q_1, and E_n is the standard Pauli basis $\{I, X, Y, Z\}$. We define the process fidelity \mathcal{F} as $^{15} \mathcal{F} = \text{Tr}(\chi^{\text{ideal}})/\text{Tr}(\chi)$, where χ^{ideal} corresponds to the desired unitary operation (here given by π_s), and the divisor accounts for postselection. There are other ways to define the process fidelity \mathcal{F}; for instance, one can average the state fidelity over a set of pure initial states, either with or without weighting by the selection probability. We have analysed the data using various definitions of the fidelity and found similar fidelity improvement due to QEDR for all of them. See Supplementary Note 4 for more details.

We first tested the process with no storage, entirely omitting step 2 in Fig. 1e, and choosing $p_\text{null} = p$. We also delayed the measurement of Q_2 to the end of step 3 to minimize crosstalk (see Methods). Figure 2a shows the measured $\mathcal{F}/\text{Tr}(\chi)$ for $p = p_\text{null} = 0.75$; the calculated process fidelity is $\mathcal{F} = 0.92$. In Fig. 2b, we show the measured process fidelity \mathcal{F} as a function of the QRQ measurement strength $p = p_\text{QEQP}$ (blue circles).

We can compare our no-storage uncollapsing fidelity to that obtained using partial tunnelling for the weak measurement of a single qubit, shown in Fig. 2b (red circles). We see that even though the QEQP-based protocol is more complex, it achieves much better fidelities for $p \geq 0.5$. This is mostly because of strong dephasing and two-level state effects during the partial tunnelling current pulse (see inset in Fig. 2b).

Protection from energy relaxation. We then tested the full QRQ protocol’s ability to protect from energy decay. The uncollapsing strength p_null is given by $^{22} 1 - p_\text{null} = (1 - p) k_3/k_1$, where $k_3 = \exp(-\tau_3/\tau_1)$, and k_1 and k_3 are similar energy relaxation factors for the steps 1 and 3 (here $k_1 \approx k_3 \approx 0.985$; see

Figure 3 | QEDR-based quantum state protection from energy relaxation. (a) Process fidelity \mathcal{F} as a function of measurement strength p for the full QEDR protocol for three storage times $\tau_2 = 0.9, 1.7$ and 3 μs in a memory resonator M_1 ($\tau_1 = 2.5 \mu$s). The uncollapsing swap probability p_null is indicated on the top axis (see text). Circles with error bars are measured data; lines are simulations (see Supplementary Note 3). Horizontal dashed lines in each panel give the free-decay process fidelity; the improvement from QEDR is most significant for larger τ_2. Error bars represent statistical errors (s.d.). These statistical errors increase with increasing QRQ measurement strength p, mainly due to the decrease in sample size (fewer double-null outcomes), while errors due to uncertainties in p_null are less than 10% of those shown in the figure (see Supplementary Note 3); we compensate for dynamic phases (see Supplementary Note 3). (b) Final density matrices (bars with colour) without (top row) and with (bottom row) QEDR, with $p = 0.75$, for the four initial states as labelled, following a $\tau_3 = 3 \mu$s storage time ($e^{-\tau_3/\tau_1} = 0.3$). The desired error-free density matrices are shown by black frames. We only display the absolute values of the density matrix elements $|\rho_{ij}|$. Note that the QEDR-protected final states differ from the initial state by a π rotation.
Supplementary Note 3). In Fig. 3a, we display the measured fidelities for the storage durations $t_2 = 0.9$, 1.7 and 3 μs for the memory resonator with $T_1 = 2.5\,\mu$s, compared with simulations using the pure dephasing factor $\kappa_0 = 0.95$ (see Korotkov and Keane22 and Supplementary Note 3). The simulations are in excellent agreement with the data, and we see a marked improvement in the storage fidelity using QEDR over that of free decay (dashed line in each panel).

It is interesting to note that in Fig. 3a, the process fidelity is significantly improved even for zero measurement strength $p = 0$ (note that $p_0 > 0$), implying that a simpler QEDR protocol still provides some protection against energy relaxation.

Another way to test QEDR is to monitor the evolution of individual quantum states. In Fig. 3b, we display the final density matrices measured either without (top row) or with (bottom row) QEDR, for four initial states in Q_3, with storage in the memory M_1 for $t_2 \approx 3\,\mu$s. Other than for the initial ground state $|g\rangle$, which does not decay, we see that the QEDR-protected states are much closer to the desired outcomes than the free-decay states (note the π rotation). If we look at the off-diagonal terms in the middle panels, they have decayed from 0.5 to about 0.4; this decay takes about 1.1 μs without QEDR, so the lifetime is increased by 3 μ/s without QEDR, so the lifetime is increased by 3 μ/s.

Discussion

The price paid for the lifetime improvement is the small fraction of outcomes accepted by the QEDR postselection, shown in Fig. 4. The double-null probability P_{DN} decreases with increasing measurement strength p for all initial states. A balance must therefore be struck between a larger T_1 improvement, occurring for larger p, and a larger fraction of accepted outcomes, which occurs for smaller p.

QEDR will be challenging to implement in large-scale qubit circuits, as it does not scale well, in particular when the fraction of successful outcomes is small; QEC, when it becomes an experimental reality, will clearly provide a far more efficient route to fault-tolerance, even though it requires significantly more resources (qubits and gates) than does QEDR (see Supplementary Note 5). However, the simplest QEC proposal for energy relaxation19 is expected to only yield a factor of about two improvement in the state lifetime (assuming gate execution is almost perfect), which is less than the factor of three improvement demonstrated here using QEDR. The simpler QEDR protocol can therefore serve as a suitable intermediate to QEC, applicable to small and medium scale quantum circuits.

Methods

Readout correction and crosstalk cancellation. All data are corrected for the qubit readout fidelities before further processing. The readout fidelities for $|g\rangle$ (F_g) and $|e\rangle$ (F_e) of Q_1, Q_2 and Q_3 are $F_g = 0.95$, $F_1 = 0.89$, $F_2 = 0.84$, $F_3 = 0.94$, $F_e = 0.91$, respectively. Crosstalk is another concern when performing QEDR to protect quantum states. We read out Q_2 immediately after the first QRQ swap in step 1 in Fig. 1e to avoid decay in Q_2. However, due to measurement crosstalk in the qubit circuit, this measurement can result in excitations in resonator B; while this does not directly affect the other qubits, we must reset the resonator prior to the second QRQ swap. This is done during the storage in the memory resonator by performing a swap between B and Q_3, and then using a spurious two-level defect coupled to Q_3 to erase the excitation in Q_3. As the storage time in M_1 is several microseconds, there is sufficient time to reset both B and Q_3, prior to the second QRQ swap.

The intermediate reset of B could not be performed when doing the experiments in Fig. 2, for which there is no storage interval. To avoid crosstalk in those measurements, we postponed the measurement of Q_2 until the end of the second QRQ sequence to step 3 of Fig. 1e. The $|e\rangle$ state probability in Q_3 drops by about 6% during this delay time, as estimated from $Q_3's T_1$. We have corrected for this drop when evaluating the QEC measurements for Fig. 2.

References

1. You, J. & Nori, F. Superconducting circuits and quantum information. Phys. Today 58, 42–47 (2005).
2. Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).
3. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum computing: an outlook. Science 339, 1169–1174 (2013).
4. Sun, G. et al. Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system. Nat. Commun. 1, 51 (2010).
5. Niskanen, A. O. et al. Quantum coherent tunable coupling of superconducting qubits. Science 336, 723–726 (2011).
6. Marzantoni, M. et al. Implementing the quantum von neumann architecture with superconducting circuits. Science 334, 61–65 (2011).
7. Abdumalikov, Jr A. A. et al. Experimental realization of non-Abelian non-adiabatic geometric gates. Nature 496, 482–485 (2013).
8. Paik, H. et al. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011).
9. Rigetti, C. et al. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012).
10. Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).
11. Bylander, J. et al. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nat. Phys. 7, 565–570 (2011).
12. Ristè, D., Bultink, C. C., Lehnert, K. W. & DiCarlo, L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys. Rev. Lett. 109, 240502 (2012).
13. Vijay, R. et al. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77–80 (2012).
14. Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).
15. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
16. Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).
17. Yao, X. C. et al. Experimental demonstration of topological error correction. Nature 482, 489–494 (2012).
18. Leung, D. W., Nielsen, M. A., Chuang, I. L. & Yamamoto, Y. Approximate quantum error correction can lead to better codes. Phys. Rev. A 56, 2567–2573 (1997).
19. Leghtas, Z. et al. Hardware-efficient autonomous quantum memory protection. Phys. Rev. Lett. 111, 120501 (2013).
20. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).
21. Keane, K. & Korotkov, A. N. Simplified quantum error detection and correction for superconducting qubits. Phys. Rev. A 86, 012333 (2012).
22. Korotkov, A. N. & Keane, K. Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010).
23. Katz, N. et al. Reversal of the weak measurement of a quantum state in a superconducting phase qubit. Phys. Rev. Lett. 101, 200401 (2008).
24. Korotkov, A. N. & Jordan, A. N. Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006).
25. Sun, Q., Al-Amri, M. & Zubairy, M. S. Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009).
26. Kim, Y.-S., Lee, J.-C., Kwon, O. & Kim, Y.-H. Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117–120 (2012).
27. Lucero, E. et al. Computing prime factors with a Josephson phase qubit quantum processor. Nat. Phys. 8, 719–723 (2012).
28. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).
29. Wang, Z. L. et al. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett. 102, 163503 (2013).
30. Amri, M. A., Scully, M. O. & Zubairy, M. S. Reversing the weak measurement on a qubit. J. Phys. B 44, 165509 (2011).
31. Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).
32. Pedersen, L. H., Møller, N. M. & Mølmer, K. Fidelity of quantum operations. Phys. Lett. A 367, 47–51 (2007).

Acknowledgements
This work was supported by the National Basic Research Program of China (2012CB927404, 2014CB921201), the National Natural Science Foundation of China (11222437, 11174248, and 11310046), Zhejiang Provincial Natural Science Foundation of China (LR12A04001), IARPA/ARO grant W911NF-10-1-0334, and ARO MURI grant W911NF-11-1-0268. H.W. acknowledges support by Program for New Century Excellent Talents in University (NCET-11-0456). Devices were made at the UC Santa Barbara Nanofabrication Facility, a part of the NSF-funded National Nanotechnology Infrastructure Network.

Author contributions
Y.P.Z., A.N.K. and H.W. designed and analysed the experiment carried out by Y.P.Z. All authors contributed to the experimental set-up and helped to write the paper.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Zhong, Y. P. et al. Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection. Nat. Commun. 5:3135 doi: 10.1038/ncomms4135 (2014).