Epidemiology of Plasmid Lineages Mediating the Spread of Extended-Spectrum Beta-Lactamases among Clinical Escherichia coli

Bejan Mahmud,a Meghan A. Wallace,b Kimberly A. Reske,c Kelly Alvarado,b Carol E. Muenks,b David A. Rasmussen,d,e Carey-Ann D. Burnham,b,c,f,g Cristina Lanzas,h Erik R. Dubberke,c Gautam Dantas,b,f,i

aThe Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
bDepartment of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
cDepartment of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
dDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
eBioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
fDepartment of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
gDepartment of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
hDepartment of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
iDepartment of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA

ABSTRACT The prevalence of extended-spectrum beta-lactamases (ESBLs) among clinical isolates of Escherichia coli has been increasing, with this spread driven by ESBL-encoding plasmids. However, the epidemiology of ESBL-disseminating plasmids remains understudied, obscuring the roles of individual plasmid lineages in ESBL spread. To address this, we performed an in-depth genomic investigation of 149 clinical ESBL-like E. coli isolates from a tertiary care hospital. We obtained high-quality assemblies for 446 plasmids, revealing an extensive map of plasmid sharing that crosses time, space, and bacterial sequence type boundaries. Through a sequence-based network, we identified specific plasmid lineages that are responsible for the dissemination of major ESBLs. Notably, we demonstrate that IncF plasmids separate into 2 distinct lineages that are enriched for different ESBLs and occupy distinct host ranges. Our work provides a detailed picture of plasmid-mediated spread of ESBLs, demonstrating the extensive sequence diversity within identified lineages, while highlighting the genetic elements that underlie the persistence of these plasmids within the clinical E. coli population.

IMPORTANCE The increasing incidence of nosocomial infections with extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli represents a significant threat to public health, given the limited treatment options available for such infections. The rapid ESBL spread is suggested to be driven by localization of the resistance genes on conjugative plasmids. Here, we identify the contributions of different plasmid lineages in the nosocomial spread of ESBLs. We provide further support for plasmid-mediated spread of ESBLs but demonstrate that some ESBL genes rely on dissemination through plasmids more than the others. We identify key plasmid lineages that are enriched in major ESBL genes and highlight the encoded genetic elements that facilitate the transmission and stable maintenance of these plasmid groups within the clinical E. coli population. Overall, our work provides valuable insight into the dissemination of ESBLs through plasmids, furthering our understating of factors underlying the increased prevalence of these genes in nosocomial settings.

KEYWORDS Escherichia coli, beta-lactamases, plasmid-mediated resistance
Since their first report in the 1980s, extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales have spread globally; it is now estimated that approximately 1.5 billion people are colonized with such organisms (1). Infections with ESBL-producing Enterobacterales are associated with a higher likelihood of treatment failure, higher mortality, and added financial burdens on the patients and the healthcare system (2).

While historically the TEM and SHV ESBL families were the predominant genes found in infectious isolates, the CTX-M group of ESBLs has emerged more recently as the most prevalent and has driven the global ESBL dissemination (3, 4). *Escherichia coli* is the primary carrier of the CTX-M family of ESBLs (3), and the rates of community carriage of ESBL-producing *E. coli* are on the rise, particularly in low- and middle-income countries (5). The spread of ESBL *E. coli* in nosocomial settings is even more pervasive: the rates of ESBL production among clinical *E. coli* isolates have steadily increased globally over the years, with the reported ESBL rates among hospital-associated infections in the US being as high as 27.7% (4, 6, 7).

The widespread dissemination of the CTX-M gene family in health care settings is attributed to the association of these genes with mobile genetic elements (MGEs) (5) in this environment with high antibiotic selective pressure. Of particular interest are the conjugative IncF family of plasmids, which have been reported as one of the primary culprits for the spread of ESBLs (8–11). Consequently, various plasmid curing mechanisms, such as conjugation inhibitors, have been proposed to be used clinically to ease the ESBL resistance burden (12, 13). However, the potential benefits of such proposals remain partially obscured by the understudied epidemiology of ESBL-encoding plasmids. Specifically, while numerous studies have successfully described plasmids carrying ESBLs, such efforts have typically focused on epidemiologically unrelated plasmids (14–19), had a relatively small plasmid set (14, 20–24), or were methodologically limited in their resolution (15–18, 21, 25–28). As such, questions remain regarding the dynamics of plasmids mediating the spread of ESBLs within defined health care systems. Specifically, the extent of plasmid sharing within a clinical *E. coli* population, the roles of different plasmid lineages in the local spread of individual ESBLs, and the long-term genetic stabilities of such lineages remain underexplored.

To address the above knowledge gaps, we conducted an in-depth, high-resolution, genomic analysis of 149 clinical ESBL *E. coli* isolates collected over a 3-year period from a single tertiary-care hospital. We identified an extensive network of plasmid sharing that crosses time, space, and phylogenetic barriers. IncF plasmids were found to be significantly enriched in ESBL genes, constituting 2 distinct plasmid lineages that are associated with different ESBL genes and occupy varying host ranges. However, plasmid-mediated resistance spread was not uniform, as certain ESBLs were predominantly chromosomally encoded and may thus rely more on bacterial host clonal expansion for their dissemination.

RESULTS

Sample description. A total of 367 blood or urine specimens that grew ESBL *E. coli* were collected during the study period from patients admitted to the medical and/or oncology wards and intensive care units of the Barnes-Jewish Hospital between June 2016 and December 2019. After excluding duplicate specimens collected within 14 days of an initial specimen, 313 specimens were eligible for inclusion (see Materials and Methods). Of these, remnant specimens were available for 149 *E. coli* isolates (47.6% of the total eligible specimens), originating from a cohort of 129 patients; most of the patients contributed only a single isolate (see Materials and Methods) (Table S1). All isolates displayed phenotypic susceptibility patterns characteristic of ESBL-producing strains, namely, resistant to at least one third generation cephalosporin and susceptible to cephemycins (see Materials and Methods). Phylogenetic clustering of isolates by specimen type (urine versus blood) and collection ward (medical versus oncology) was not observed (Fig. 1a). Multi-locus sequence typing using the Achtman scheme (29) identified 27 distinct sequence types
FIG 1 Abundance of *E. coli* sequence types (STs) and extended-spectrum beta-lactamases (ESBLs). (a) Maximum likelihood phylogenetic tree from the alignment of 2,888 core genes of the 149 ESBL *E. coli* isolates. The outer rings are colored to indicate the major STs, collection wards, and the types of originating clinical specimens. Sequence typing of the isolates was done using the Achtman scheme. (b) Abundances of ESBL genes and major STs are shown as bar plots. The identified ST-ESBL pairs are shown in circles, and the sizes of the circles are proportional to the number of instances of the given pair identified in our isolate set; the ST-ESBL pair counts are indicated in the circles. The isolates containing multiple copies of the same gene were counted only once toward the corresponding ST-ESBL pair.
(STs) (Fig. S1). Consistent with the previous reports of its global prevalence (30, 31), ST131 was most frequently recovered from our patient cohort (Fig. 1b and Fig. S1).

Variability in genetic origins of ESBLs. Overall, we identified 8 distinct ESBL genotypes in our isolates (Fig. 1b). Among identified ESBLs, blaCTX-M-15 was the most common (Fig. 1b and Fig. S1). Similarly, the blaCTX-M-15-ST131 pairing was most common in our data set; however, significant enrichment of the gene in ST131 hosts was not observed ($P = 0.36$, Chi-Square goodness of fit, Bonferroni correction for multiple comparisons). Instances of isolates carrying 2 distinct ESBL genes were uncommon but present, with 2 isolates encoding both blaCTX-M-15 and blaCTX-M-14, another isolate encoding for blaCTX-M-27 and blaCTX-M-55, and the pair of blaCTX-M-15 and blaCTX-M-14 found in yet another isolate (Data Set S1, Sheet A). Despite displaying an ESBL-like phenotype (see Materials and Methods), no known ESBL genes were identified in 8 of the isolates (Data Set S1, Sheet A).

The genetic origin (chromosomal versus plasmidic) of resistance genes is a major determinant of transmission routes (vertical versus horizontal) and has been noted to affect antibiotic susceptibility in the bacterial host (32). Accordingly, we investigated the distribution of ESBLs between chromosomal and plasmidic contigs in our cohort (Table S2). The genetic origins of the major ESBL genotypes varied considerably. blaCTX-M-14 was spread evenly between the 2 genetic elements. blaCTX-M-15 was predominantly encoded chromosomally, whereas blaCTX-M-27 and blaCTX-M-55 were predominantly found in plasmids (Table S2).

Amplification of blaCTX-M-14 within a persistent E. coli lineage. Several isolates in our set carried multiple copies of a given ESBL gene. The presence and biological significance of multiple ESBL gene copies in E. coli isolates have been noted before (33–35). Specifically, isolates with multiple copies of blaCTX-M-15, blaCTX-M-14, blaCTX-M-27, or blaCTX-M-55 were identified in our set (Data Set S1, Sheet A). Most notably, isolate 146 was found to carry 4 copies of blaCTX-M-14, 3 encoded in distinct and distant chromosomal loci and 1 copy carried in a plasmid (Fig. 2 and Fig. S2b). Interestingly, isolate 146 was the latest of the 3 isolates (144-146) cultured across a year-long period from urine samples of the same patient. These isolates likely constitute a single lineage, and all carry a 75-Kb plasmid encoding blaCTX-M-14 (Fig. 2 and Fig. S2a). However, the isolates differ in the number of chromosomal copies of blaCTX-M-14 with 2 copies in 145 and none in 144, suggesting that this lineage has experienced an enrichment in the blaCTX-M-14 copy number over the course of the disease. Furthermore, isolates from the same lineage were also identified in urine samples collected over a 2-year period from other patients.
FIG 3 Transposases associated with major extended-spectrum beta-lactamases (ESBLs). Conserved genetic cassettes encoding \(\text{bla}_{\text{CTX-M-14}} \) (a), \(\text{bla}_{\text{CTX-M-55}} \) (b), \(\text{bla}_{\text{CTX-M-15}} \) (c,d), and \(\text{bla}_{\text{CTX-M-27}} \) (e,f). BLASTn similarity scores of 100% (rounded to the nearest integer) colored in accordance with the matching orientation (i.e., forward or reverse). Protein annotations are shown in arrows. ESBLs and relevant nearby open reading frames are colored. Truncated open reading frames are indicated with Δ. The chromosomal (C) or plasmidic (P) origins of the genetic elements are indicated.

(Fig. 2), and all similarly carry the aforementioned \(\text{bla}_{\text{CTX-M-14}} \)-encoding 75-Kb plasmid (Fig. S2a). Chromosomal copies of \(\text{bla}_{\text{CTX-M-14}} \) were also identified in 2 other isolates (Fig. 2), suggesting that resistance gene amplification is not limited to the patient harboring isolates 144–146 and is a more general feature of this lineage. These data demonstrate the clinical persistence of an infectious \(E. coli \) lineage, and dissemination and amplification of an ESBL through association with this lineage.

ESBLs are commonly encoded within conserved transposable elements. ESBL genes were often encoded near transposases within conserved cassettes. Analysis of the \(\text{bla}_{\text{CTX-M-14}} \) genomic context within chromosomal and plasmidic copies of the gene found in isolates 144, 145, and 146 identified the gene within a conserved cassette encoding the \(\text{ISE} \text{cp}1 \) transposase upstream of the gene in all instances (Fig. S2b). Such genetic organization was observed in other, distantly related isolates carrying \(\text{bla}_{\text{CTX-M-14}} \) (Fig. 3a), with the gene located downstream of \(\text{ISE} \text{cp}1 \) in 92.3% (36/39) of the instances in our data set. Similarly, \(\text{bla}_{\text{CTX-M-55}} \) was most commonly (56.4%, 11/18) observed to be encoded within a conserved cassette downstream of the \(\text{ISE} \text{cp}1 \) (Fig. 3b); \(\text{bla}_{\text{CTX-M-55}} \) was often (33.3%, 6/18) found downstream of \(\text{IS} \text{15} \) as well. \(\text{ISE} \text{cp}1 \) was also associated with \(\text{bla}_{\text{CTX-M-15}} \), which was typically (65.4%, 53/81) found to be located within a conserved unit downstream of the transposase (Fig. 3c). This \(\text{ISE} \text{cp}1 \)-\(\text{bla}_{\text{CTX-M-15}} \) configuration is seldom found within a larger conserved window that also encodes for the TEM-1 broad-spectrum beta-lactamase and the \(\text{Tn} \text{3} \) resolvase (36). Such prevalent association of \(\text{ISE} \text{cp}1 \) with 3 of the 4 most common ESBL genotypes suggests that the transposase is predominantly responsible for the dissemination of ESBLs within our clinical population.

Another notable transposase associated with \(\text{bla}_{\text{CTX-M-15}} \) is \(\text{IS} \text{26} \), which was commonly (29.6%, 24/81) found upstream of the resistance gene (35) (Fig. 3d). \(\text{IS} \text{26} \) may also drive the mobilization of \(\text{bla}_{\text{CTX-M-27}} \) within our clinical isolates, as the transposase was identified upstream of \(\text{bla}_{\text{CTX-M-27}} \) in 83.9% (26/31) of instances, commonly encoding \(\text{IS} \text{903} \) (35.5%, 11/31) (Fig. 3e) or \(\text{IS} \text{15} \) (38.7%, 12/31) (Fig. 3f) downstream of the resistance gene. The latter conformation, \(\text{IS} \text{26}-\text{bla}_{\text{CTX-M-27}}-\text{IS} \text{15} \), was located within a conserved ~20-Kb window (37). An \(\text{IS} \text{26} \)-flanked sub-region within this window was found inverted in 1 of our plasmids, suggesting its capacity for mobilization independent of the 20-Kb segment (Fig. 3f). All major ESBL genotypes found in our set are commonly encoded within conserved windows proximal to transposases (primarily \(\text{ISE} \text{cp}1 \) and \(\text{IS} \text{26} \)), which have likely contributed to
within-isolate gene multiplication events and facilitated the within-population spread of the resistance genes (i.e., through transposition to a plasmid).

Sharing of plasmids across space, time, and genetic barriers. Plasmids are the predominant units of horizontal transmission of ESBLs and are likely responsible for their rapid global spread (38). We conducted an in-depth analysis of the total plasmid content of our isolate set to identify genetic patterns associated with the spread of ESBLs. Contigs were labeled as plasmidic if they were: i) under 1 M-bp in length and ii) circular. We identified 446 plasmidic contigs, with the mode of 2 plasmids/isolate and a range of 1–10 plasmids/isolate. The identified plasmid sizes ranged from 1,547 bp to 320,261 bp and displayed a multimodal distribution, with a large number of plasmids under 20 Kb in size and mostly devoid of antimicrobial resistance genes (Fig. 4a).

We identified numerous instances of plasmid sharing between distantly related isolates (>550 core single-nucleotide polymorphisms [SNPs]) (Fig. S3). Plasmids were compared via BLASTn in all pairwise combinations, and the hits with ≥95% coverage, ≥99% identity, and not differing in size by more than 10% of the larger of the two plasmids were considered as potential instances of plasmid sharing. Furthermore, to account for acquisition/loss of transposable fragments by plasmids (Fig. S4a) and to minimize the rate of false matches, we only considered plasmid pairs where the corresponding sizes did not differ by more than 10% of the larger value. We identified an extensive network of plasmid sharing within our sample set (Fig. 4b). Sharing of plasmids across STs is common, with 31 unique ST pairs identified in this network. Near-identical plasmids were found in isolates collected as long as 3 years apart from distinct patients (mean of 383 days between collections); moreover, a quarter of such plasmids were present in isolates from both medical and oncology wards. We also observed sharing of ESBL-encoding plasmids by phylogenetically distant isolates (Fig. 4b). Notably, near-identical \textit{bla}_{CTX-M-55}\textendash encoding plasmids were present in urine isolates (103 and 138) collected a year apart from distinct patients (Fig. S4a). Numerous instances of phylogenetically distant isolates carrying multiple near-identical plasmids were also identified. Most notably, blood isolates 113 and 114, collected 2 months apart from the same patient, both carried a \textit{bla}_{CTX-M-55}\textendash encoding 48-Kb and a

![Fig 4](https://journals.asm.org/journal/msystems)
103-Kb plasmids (Fig. S4b and c). Our network analysis of shared plasmids demonstrates the persistence of plasmids across space and time within a diverse set of clinical hosts, and commonplace plasmid sharing unrestricted by ST boundaries.

ESBLs are disseminated through distinct plasmid groups. The plastic genetic architecture of plasmids impedes efficient tracking of plasmid families responsible for dissemination of resistance genes based on high BLAST coverage and identity matches alone (39) (Fig. S4d). To address that, we implemented an average-nucleotide identity (ANI)-based clustering method that reveals groups of functionally related plasmids (40). Briefly, ANI scores were calculated for all pairwise combinations of the 446 plasmids. ANI values were filtered by coverage and transformed into edge weights to be used in a network with each plasmid represented by a node. After network spatialization, the clusters were identified via modularity optimization (see Materials and Methods). We identified 15 groups (hereafter referred to as modules) of related plasmids (Fig. 5a). The identified modules separate well by replicon types (Fig. 5b) and mobilization families (Fig. S5b), and primarily consisted of similarly-sized plasmids (Fig. S5a).

Specific plasmid modules are significantly associated with different ESBL genes, presenting such modules as primary agents of horizontal spread of ESBLs. Module 6 was identified to be significantly enriched in bla_{CTX-M-15} (P = 0.009, Chi-Square goodness of fit) (Fig. S5c). Module 6 comprises 36 plasmids belonging predominantly to the Incl group (Fig. S5b) and encoding the MOBP family of relaxases (Fig. S5b). Plasmids within module 6 were found in isolates representing 13 distinct sequence types (Fig. 5c), with only 36% (13/26) associated with ST131, suggesting a broader host range of this plasmid group relative to other modules. As before, bla_{CTX-M-15} genes within this module were predominantly (71.4%, 5/7) encoded downstream of IS^{Ecp1}. Module 11 plasmids, on the other hand, were found to be significantly enriched in bla_{CTX-M-14} (P = 4.8 × 10⁻⁴, Chi-Square goodness of fit); this module consists of 8 IncB plasmids with MOBP family of relaxases, primarily hosted by ST131 (4/8, 50%) and ST648 (3/8, 37.5%) <i>E. coli</i> isolates.

IncF family of plasmids have been hypothesized to be the primary carriers of ESBLs, particularly of bla_{CTX-M-15} (8–11). Both antibiotic resistance genes (P = 0.0104, Chi-Square goodness of fit) and ESBLs (P = 2.35 × 10⁻¹⁹, Chi-Square goodness of fit) were enriched in IncF plasmids relative to other plasmid types (Fig. S5c and d). Interestingly, while all IncF plasmids tend to cluster together in our network (Fig. 5b), they were
Plasmids Underlying the Clinical Spread of ESBLs

DISCUSSION

The spread of ESBLs among clinical E. coli isolates has been rapid, and the rate of ESBL carriage among hospital-associated infections has been on the rise (4, 6, 7). This spread is primarily facilitated by the association of CTX-M family of ESBLs with MGEs, particularly transposable elements and plasmids (5). Here, we conducted an in-depth characterization of clinical ESBL E. coli isolates collected from a single tertiary care hospital, with a particular focus on the epidemiology of ESBLs and the MGEs underlying the spread of the resistance genes. We identified 8 distinct ESBLs within our set of 149 isolates, with large predominance of \textit{bla}_{\text{CTX-M-15}}, \textit{bla}_{\text{CTX-M-27}}, \textit{bla}_{\text{CTX-M-14}}, and \textit{bla}_{\text{CTX-M-55}} (Fig. 1b). This is mostly in agreement with prior reports (5); however, \textit{bla}_{\text{CTX-M-55}} has been primarily associated with animal reservoirs in Asia (41), and to our knowledge, its prevalence among hospital clinical isolates in North America has not been reported before. Interestingly, the 4 most common ESBL genes vary vastly in their genetic origins: while \textit{bla}_{\text{CTX-M-15}} is predominantly encoded in bacterial chromosomes, plasmids are the most common carriers of \textit{bla}_{\text{CTX-M-27}} and \textit{bla}_{\text{CTX-M-55}} and \textit{bla}_{\text{CTX-M-14}} is split near-evenly between the two DNA types (Table S2). The reasons behind such contrasting distributions in genetic origins are unknown. Globally, \textit{bla}_{\text{CTX-M-15}} is the most predominant ESBL variant in most regions, with certain exceptions where the predominance of \textit{bla}_{\text{CTX-M-14}} is observed instead (5). \textit{bla}_{\text{CTX-M-27}} and \textit{bla}_{\text{CTX-M-55}} are not as common; however, their prevalence has been on the rise recently (5). Transfer of genes between plasmids and chromosomes via transposable elements is well established, and it has been suggested that over long periods of time plasmidic genes that are beneficial to the bacterial host are transferred to

Separated into two distinct modules (1 & 3) (Fig. 5a). Beyond sharing the replicon type, the 2 plasmid modules also commonly encode relaxases belonging to the MOBF family (Fig. S5b). However, the modules differ in numbers of member plasmids, and module 1 is the larger of the two and the largest module in the network, consisting of 94 plasmids; in comparison, module 3 has 44 plasmids. The sizes of the member plasmids differed significantly ($P = 0.01$, Mann-Whitney U Test) between modules 1 (mean = 117.4 Kb; median = 119.1 Kb) and 3 (mean = 100.2 Kb; median = 75.1 Kb). The 2 modules also have differing host ranges: while most of the module 1 plasmids are carried by ST131 E. coli (70/94, 74.5%), the 2 most common module 3 hosts were ST38 (16/44, 36.4%) and ST744 (5/44, 11.4%) (Fig. 5c). The 2 modules also vary in their associations with specific ESBL genotypes. While module 1 plasmids are highly enriched in \textit{bla}_{\text{CTX-M-15}} ($P = 2.88 \times 10^{-6}$, Chi-Square goodness of fit) and \textit{bla}_{\text{CTX-M-27}} ($P = 4.64 \times 10^{-13}$, Chi-Square goodness of fit), genes, module 3 was enriched in \textit{bla}_{\text{CTX-M-55}} ($P = 3.16 \times 10^{-13}$, Chi-Square goodness of fit) and \textit{bla}_{\text{CTX-M-14}} ($P = 2.47 \times 10^{-16}$, Chi-Square goodness of fit) (Fig. S5c). Notably, while \textit{bla}_{\text{CTX-M-15}} overall and within module 2 was predominantly associated with ISEcp1, the gene was primarily (64.3%, 9/14) associated with ISEcp1 within module 1. Analysis of the module 1 pan-genome revealed the genetic variability within this group, devoid of a core (present in >99% of plasmids) set among the 1,092 total encoded genes (Fig. S6a). However, the majority of plasmids within this module (92.6%, 87/94) were found to encode the \textit{ccdB}/\textit{ccda} toxin/antitoxin pair. Moreover, yet another toxin/antitoxin pair, \textit{pemK}/\textit{pemI}, was commonly (85.1%, 80/94) encoded within this module. Similarly, the genetic content of the module 3 plasmids was highly variable, lacking core genes among the 1,109 total coding sequences (Fig. S6b). Plasmid addiction systems were also identified in this module, with the \textit{vapC}/\textit{vapB} and \textit{pemK}/\textit{pemI} toxin/antitoxin pairs encoded in 21 (47.7%) and 13 (29.5%) of the member plasmids. These finding were further corroborated through our functional annotation of the encoded genes and GO term enrichment analysis within plasmid modules. Both modules 1 and 3 were significantly enriched in genes involved in conjugation ($P = 8.85 \times 10^{-197}$ and $P = 2.34 \times 10^{-158}$, respectively) and plasmid maintenance ($P = 1.63 \times 10^{-197}$ and $P = 2.89 \times 10^{-16}$, respectively), relative to other plasmid modules in our network. Taken together, the mobilizable nature of these 2 modules in addition to the enrichment of plasmid maintenance mechanisms likely underlie the widespread and stable presence of such plasmids within the diverse clinical E. coli population.

Month YYYY Volume XX Issue XX 10.1128/msystems.00519-22

Downloaded from https://journals.asm.org/journal/msystems on 01 September 2022 by 128.252.79.225.
the chromosome (42–44). Thus, it may be speculated that varying prevalence of the ESBLs and the long-term chromosomal capture of plasmidic genes may explain the observed trends in their genetic origins; however, further investigation is necessary to test this hypothesis.

The commonplace transfer of ESBLs between plasmids and chromosomes is further demonstrated by identification of the resistance genes in conserved genetic contexts in both chromosomal and plasmidic contigs; presence of transposases within these conserved windows further supports their mobilizable nature. *ISEcp1* was the most common ESBL-associated transposase in our set (Fig. 3a to c) and more broadly (45). Beyond mediating mobilization, *ISEcp1* also serves as a promotor for the expression of the downstream ESBLs (46–49). Another prevalent ESBL-associated transposase in our isolate collection was *IS26*, which was found upstream of both *bla*_{CTX-M-15} and *bla*_{CTX-M-27} (Fig. 3d-f). The identified *IS26-bla*_{CTX-M-15}-Δ*Tn2* has been reported before, and this genetic configuration was suggested to drive the amplification of *bla*_{CTX-M-15} as part of the mechanism engendering non-carbapenemase carbapenem-resistance in Enterobacteriales (35). We observed a similar instance of duplication of the *IS26-bla*_{CTX-M-15}-Δ*Tn2* cassette in one of the plasmids (Fig. 3d). We also observed putative *IS26*-mediated duplication of *bla*_{CTX-M-27} (Fig. 3e) and *ISEcp1*-mediated amplifications of *bla*_{CTX-M-14} (Fig. 3b) and *bla*_{CTX-M-55} (Fig. 3b); however, the clinical importance of these gene amplification events could not be established.

Plasmids are the primary elements of horizontal spread of ESBLs. Indeed, we identified a large network of plasmid sharing between phylogenetically distant isolates (Fig. 4b), including instances of within- and between-patient ESBL plasmid sharing (Fig. 5a and c). The highly variable genetic architecture of plasmids has been noted before (50), and extensive variations in encoded genes have been reported even for groups of environmentally-related plasmids (39). Similarly, our plasmid set also shows extensive sequence diversity (Fig. 5d). Such variability impedes the efficient tracking of plasmid groups within bacterial populations and identification of associated genetic patterns. To circumvent these challenges, we implemented a recently reported ANI-based network analysis of plasmids (40), which allowed us to identify clusters of circulating plasmids within the given *E. coli* population and determine the plasmid modules primarily responsible dissemination of ESBLs within this catchment area. We identified the enrichments of *bla*_{CTX-M-15} in module 6, consisting of IncI plasmids occupying a wide host range, and module 1, comprising IncF plasmids mainly restricted to ST131 *E. coli*. However, while *bla*_{CTX-M-15} was primarily found downstream of the *ISEcp1* transposase within module 6, the gene was mostly found in *IS26*-encoding genetic cassettes in module 1, suggesting that the 2 plasmid groups constitute 2 distinct dissemination routes within the clinical *E. coli* population. IncI plasmids are described predominantly in European poultry *E. coli* isolates and have been primarily associated with the *bla*_{CTX-M-1} spread (51–55). However, IncI plasmids carrying *bla*_{CTX-M-15} have been previously identified in both human and animal *E. coli* isolates (36, 56). Moreover, recombination events involving *bla*_{CTX-M-15} carried by IncI plasmids have been suggested to underlie the emergence of novel, hybrid CTX-M beta-lactamas (57). Similarly, module 11, consisting of IncB family of plasmids, was found to be enriched in *bla*_{CTX-M-14} genes. IncB family, also labeled as IncO, are less prevalent among the ESBL *E. coli* population but have been reported to carry ESBLs (55, 58, 59); however, to our knowledge, this is the first reported instance of IncB/O plasmid-encoded *bla*_{CTX-M-14}. Importantly, although we identified significant enrichment of *bla*_{CTX-M-14} in IncB/O plasmids, the corresponding module 11 comprises only 8 plasmids, and as such the generalizability of this finding necessitates further investigations.

Previous reports establish IncF plasmids as the primary disseminators of ESBLs, most notably *bla*_{CTX-M-15} and *bla*_{CTX-M-14} (5, 15, 52, 59–65). Similarly, in our cohort, IncF plasmids were found to be significantly enriched in ESBLs relative to other plasmid families (Fig. 5c). Furthermore, our network analysis of plasmids indicated that the IncF plasmids exist within at least 2 major lineages (modules 1 & 3) with varying ESBL profiles and host preferences (Fig. 5b and Fig. 5c). While the association between...
ST131 *E. coli* and IncF plasmids has been noted (19, 60, 61, 66), only one of the IncF lineages in our cohort, module 1, was predominantly present in ST131 hosts. Module 3, despite being the smaller of the 2 IncF modules, had a broader host range, including 16 different STs (compared to 13 STs among the module 1 hosts), most commonly (36.4%) isolated from ST38 hosts. The 2 modules encompassed high gene content variability (Fig. S6); however, mobilization elements and plasmid addiction systems were commonly found within both plasmid modules, suggesting that there is a relatively constant backbone structure that includes elements essential for propagation and maintenance of these plasmids, while the accessory components of the plasmids undergo rapid and substantial diversification. Indeed, a recent genomic analysis of environmental and livestock IncF plasmids also identified a stable backbone structure within groups of related plasmids as well as a largely variable accessory sets of genes (39). Such diversity in the accessory gene content is suggested to be engendered by niche adaptations; however, there is a need for further investigations demonstrating the emergence of such variations and their roles in plasmid biology within variable environments.

Although we have performed comprehensive profiling of a large cohort of ESBL-producing strains, we acknowledge important study limitations. For one, our plasmid analysis only considered circular contigs within 1M bp. While such inclusion criteria would minimize the incidences of false positives (i.e., chromosomal sequences identified as plasmidic), it would omit any linear contigs of plasmidic origin. Thus, our plasmid analysis almost certainly didn’t capture the entire plasmidome of our sample set. However, given our hybrid sequencing and assembly approaches, most of the assembled contigs (72.0%, 601/835) could be accurately assigned to be of either chromosomal or plasmidic origins, and the majority of unassigned contigs were below 10,000 bp in length (median of 5,937 bp) (Fig. S7). Furthermore, the genetic nature (i.e., chromosome or plasmid) of 93.7% (164/175) of the ESBL-encoding contigs in our set could be determined. Given our aim to investigate the agents of ESBL spread, plasmid modules not associated with ESBL carriage were left underexplored. This was particularly true of the small plasmids, such as those found within modules 4 and 5, which were highly conserved and found within a diverse host range. The biological significance of these plasmids warrants further investigations, and our extensive sequencing and gene enrichment data (Data Set S1, Sheet B) will facilitate such future explorations. Furthermore, given that all bacterial isolates in the study originated from a single hospital system, future investigations focusing on more diverse geographical settings are necessary to determine the generalizability of our findings. Lastly, we also explicitly focused on clinical ESBL *E. coli* isolates given the growing importance of these organisms; as such, the broader implications of our findings regarding the nature and epidemiology of the described MGEs in non-ESBL clinical isolates or community-associated *E. coli* strains need additional validation.

In conclusion, we conducted an in-depth genomic analysis of infectious ESBL *E. coli* isolates from a single tertiary care hospital. Our analysis revealed the major ESBLs in circulation within the given population and identified MGEs associated with major resistance genes. Our high-quality genomic assemblies enabled us to characterize a nearly complete set of plasmids and detect clusters of related plasmids that are primarily responsible for the spread of ESBLs within the clinical *E. coli* population. Given the global ubiquity of ESBL *E. coli* colonization (1), similar network analyses of non-clinical isolates are warranted to investigate the spread of the identified plasmid groups outside of nosocomial settings.

MATERIALS AND METHODS

Sample collection. All specimens and data used in this study were retrospective and collected during routine clinical care; as a result, this study was approved by the Washington University in St. Louis Human Research Protection Office with a waiver of informed consent. The study was conducted at a 1250-bed, tertiary care hospital in St. Louis, Missouri. The hospital’s Medical Informatics database was queried to retrospectively identify all blood and urine cultures positive
for "ESBL-like" E. coli from 2016–2019. Patients with urine and/or blood cultures positive for ESBL-like E. coli were included in the study cohort if they met the following criteria:

1. Admitted to a medicine, oncology, or medical ICU ward during the study period.
2. ESBL E. coli isolate was collected from a clinical specimen within 24 h prior to admission to the study ward through 24 h after discharge from the study ward.

For patients with >1 blood or urine specimens positive for E. coli during the study period, specimens of the same type (i.e., urine or blood) collected within 14 days of a prior positive specimen were excluded.

ESBL-like was defined as phenotypic susceptibility suggestive of an ESBL-producing strain: resistant to first-generation cephalosporins, resistant to at least one third-generation cephalosporin (with ceftazidime and ceftriaxone being routinely tested), and susceptible to cephapemycins (with cefotetan being routinely tested). Antibiotic susceptibility testing (AST) was performed on all isolates selected for inclusion in the study cohort.

AST was performed on all isolates according to the Clinical and Laboratory Standards Institute M100 document. In short, an 18-h culture of each organism on tryptic soy agar with 5% sheep’s blood (Hardy Diagnostics) was used to make a 0.5 McFarland standard in saline. This suspension was inoculated on Mueller-Hinton agar (Hardy Diagnostics) in such a way to create a lawn of growth. Antibiotic disks (Hardy Diagnostics and BD, Franklin) were dropped on the Mueller-Hinton agar and incubated for 16–18 h. Each organism was tested against the following antibiotics: ampicillin (10 μg), cefazolin (30 μg), cefotan (30 μg), ceftazidime (30 μg), ceftriaxone (30 μg), cefepime (30 μg), meropenem (10 μg), ertapenem (10 μg), imipenem (10 μg), cefotazidime-tazobactam (30 μg/10 μg), ceftazidime-avibactam (30 μg/20 μg), ampicillin-sulbactam (20 μg), piperacillin (5 μg), doxycycline (30 μg), gentamicin (10 μg), amikacin (30 μg), nitrofurantoin (300 μg), cefepide (30 μg), piperacillin-tazobactam (110 μg), fosfomycin (200 μg), colistin (10 μg), aztreonam (30 μg), trimethoprim-sulfamethoxazole (23.75 μg/1.25 μg), and tigecycline (15 μg). Zone sizes were measured using a metric ruler, and interpretations were given based on the M100 guidelines (67).

Whole-genome sequencing and de novo genome assembly. Where appropriate, the parameters used for the computational tools are provided parenthetically. Isolates were grown overnight on tryptic soy agar with 5% sheep’s blood (Hardy Diagnostics), and colonies were collected and resuspended in deionized water. Total genomic DNA from each suspension was isolated using the QiAamp Bacteremia DNA Kit (Qiagen) and quantified using the Qubit dsDNA HS and BR Assay Kits (Invitrogen). For each isolate, 0.5 ng of the extracted DNA was used as the input for Illumina library preparation using the Nextera kit (Illumina) (68). Libraries were pooled and sequenced on the NovaSeq 6000 platform (Illumina) to obtain 2 × 150 bp reads. The reads were demultiplexed by index pair, quality trimmed by Trimmomatic (v0.38, SLIDINGWINDOW:4:20, LEADING:10, TRAILING:10, MINLEN:60) (69), and decontaminated using Deconseq (v4.3, -dbs hsref38) (70). All isolates were also sequenced using the Oxford Nanopore Technologies long-read sequencing platform. Total genomic DNA was extracted as before, but the lysates in PowerBead Tubes were vortexed only for 90 s to yield high molecular weight DNA fragments. For each isolate, 1 μg of DNA was used to prepare sequencing libraries using the NEBNext kit (New England BioLabs) and sequenced using the MinION platform. The output fastq files were filtered using Filtlong (v2.0, min_length 1000, keep_percent 95, target_bases 50000000) and used for de novo genome assembly using Filtlong (v2.0, -min_length 1000, -keep_percent 95, -target_bases 50000000) (https://github.com/rwick/Filtlong) and used for de novo genome assembly using Fye (v2.8.1, -plasmids) (71).

Phylogenetic analysis. Assembled contigs were annotated using Prokka (v1.14.5, -mincontiglen 200, -force, -rnammer) (73). The resulting gff files were used to identify the core genome set and construct a corresponding alignment using Roary (v3.13.0, -g 500000, -e) (74). The core genome alignment was used to construct a maximum likelihood tree with FastTree (v2.1.10, -nt, -gtr) (75). The resulting/newick file was visualized in iTOL (76). In silico MLST was performed via the MLST tool (v2.19, --scheme ecoli_4) (https://github.com/tseemann/mlst-newick) was used to construct a maximum likelihood tree with FastTree (v2.1.10, -nt, -gtr) (75). The resulting/newick file was visualized in iTOL (76). In silico MLST was performed via the MLST tool (v2.19, --scheme ecoli_4) (https://github.com/tseemann/mlst-newick) was used to construct a maximum likelihood tree with FastTree (v2.1.10, -nt, -gtr) (75). The resulting/newick file was visualized in iTOL (76). In silico MLST was performed via the MLST tool (v2.19, --scheme ecoli_4) (https://github.com/tseemann/mlst-newick) was used to construct a maximum likelihood tree with FastTree (v2.1.10, -nt, -gtr) (75).

ESBL identification. Encoded ESBLs were identified using AMRFinder (v3.10.16) on the Prokka-generated gff files. Only for the determination of the genetic origins (chromosomal or plasmidic) of the identified ESBLs, the linear contigs <1 Mbp in size were assigned as putative plasmids if the corresponding isolate chromosomal contig was complete (i.e., circular); however, such putatively plasmidic contigs were not considered for the plasmid sharing and ANI-based network analyses. Transposases neighboring ESBLs were first annotated through Prokka and subsequently validated by aligning the protein sequences against the ISfinder database (77). The analysis and visualization of the genomic contexts of ESBL genotypes was done using EasyFig (v2.2.3) (78).

Plasmid typing and functional annotation. For our plasmid analysis, we only included circular contigs <1 Mbp in size, resulting in 446 plasmidic contigs. Replicon typing of the plasmid sequences was done using PlasmidFinder (v2.0.1) (79) using the Enterobacteriales database with 95% minimum identity and 60% minimum coverage. The encoded relaxases were identified and classified through MOBscan (80) using the Prokka-generated faa files. The functional annotation of the plasmid-encoded genes was done using Blast2GO (81) using the default parameters. For the analysis of plasmid sharing, pairs of
Plasmids were aligned to each other in all possible, non-redundant combinations using the default BLASTn parameters.

Plasmid cluster analysis. The plasmid clustering method was first reported elsewhere (40) and was used here with modifications. The pairwise ANI values were calculated for all nonredundant plasmid combinations using fastANI (v1.33) (82) with the following parameters: fragLen 250 and minFraction 0.5. A custom Python script was used to remove self-comparisons and average the values for reciprocal pairs. The resulting pairwise ANI values were transformed to edge weights to be used in the subsequent plasmid network as follows:

$$\text{Edge weight} = \frac{1}{1 + 100(1 - \text{ANI}/100)}$$

(1)

The plasmid network was constructed using the linear logarithmic version of ForceAtlas2 (83) within Gephi. In this network, plasmids were represented as nodes, and pairs of nodes with non-zero ANI scores were linked together with edges weights calculated as above (Equation 1). ForceAtlas2 was used with the following parameters: approximation 1.2, scaling 0.1, gravity 1.0, and edge weight influence 1.0. The plasmid clusters within the spatialized network were identified by using the modularity optimization algorithm built within Gephi (84, 85). Lastly, modules with fewer than 4 plasmids were excluded.

Statistical analysis. The enrichment of genes and GO terms in plasmid modules and sequence types was done using the Chi-Square goodness of fit test. In each instance, the expected values were calculated to be proportional to the number of plasmids within the tested module relative to the total number of plasmids. The observed and expected values were used as inputs for the “chisquare” function within the SciPy library in Python. The resulting P-values were adjusted for multiple comparisons using the Bonferroni method in the “p.adjust” function within the stats library in R. The enrichment of ESBLs in STs, and ESBLs and ARGs in IncF plasmids were also tested as described.

Data availability. All isolate assemblies as well as the sequencing data from Illumina and Oxford Nanopore Technologies platforms are available in NCBI GenBank under BioProject accession no. PRJNA824420, which includes short- (accession no. SRR18678975-9123) and long-read (accession no. SRR18681602-750) SRA, as well as the BioSample hybrid assemblies (accession no. SAMN27404312-460) for all 149 isolates in the study.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

DATA SET S1, XLSX file, 0.8 MB.

FIG S1, TIF file, 0.4 MB.

FIG S2, TIF file, 1 MB.

FIG S3, TIF file, 0.1 MB.

FIG S4, TIF file, 1.7 MB.

FIG S5, TIF file, 2.5 MB.

FIG S6, TIF file, 0.1 MB.

FIG S7, TIF file, 0.3 MB.

TABLE S1, DOCX file, 0.01 MB.

TABLE S2, DOCX file, 0.01 MB.

ACKNOWLEDGMENTS

We thank members of the Dantas lab for helpful feedback on this work and manuscript. We thank the Edison Family Center for Genome Sciences and Systems Biology staff (Eric Martin, Brian Koebbe, MariaLynn Crosby, and Jessica Hoisington-López) for their expertise and support in sequencing and high-throughput computing.

This work was supported in part by awards to G.D. through the National Institute of Allergy and Infectious Diseases of the NIH (grant numbers U01AI123394 and R01AI155893); the Agency for Healthcare Research and Quality (grant number R01HS027621); and the Congressionally Directed Medical Research Program of the US Department of Defense (grant number W81XWH1810225). This work was supported in part by an award to C.L. through the Centers for Disease Control and Prevention (grant number U01CK00587).

The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.
REFERENCES

1. Woerther PL, Burdet C, Chachaty E, Andremont A. 2013. Trends in human fecal carriage of extended-spectrum beta-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 26:744–758. https://doi.org/10.1128/CMR.00023-13

2. Maslikowska JA, Walker SAN, Elligsen M, Mittmann N, Palmay L, Daneman N, Simor A. 2016. Impact of infection with extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J Hosp Infect 92:33–41. https://doi.org/10.1016/j.jhin.2015.10.001

3. D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. 2013. CTX-M-type beta-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol 303:305–317. https://doi.org/10.1016/j.ijmm.2013.02.008

4. Doi Y, Iovleva A, Bonomo RA. 2017. The ecology of extended-spectrum beta-lactamases (ESBLs) in the developed world. J Travel Med 24:544–551. https://doi.org/10.1093/jtmm/jaw102

5. Bevan ER, Jones AM, Hawkey PM. 2017. Global epidemiology of CTX-M beta-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72:2145–2155. https://doi.org/10.1093/jac/dkx146

6. Lob SH, Nicolle LE, Hoban DJ, Kazmierczak KM, Badał RE, Sahm DF. 2016. Susceptibility patterns and ESBL rates of Escherichia coli isolated from Canadian hospitals over a 5 year period. CANWARD 2007–11. J Antimicrob Chemother 68:57–65. https://doi.org/10.1093/jac/dkt027

7. Aygekum A, Fajardo-Lubian A, Ansong D, Partridge SR, Agbenyega T, Iredell JR. 2016. blaCTX-M-15 carried by IncF-type plasmids is the dominant ESBL gene in Escherichia coli and Klebsiella pneumoniae at a hospital in Ghana. Diagn Microbiol Infect Dis 84:328–333. https://doi.org/10.1016/j.diagmicrobio.2015.12.010

8. Irgang A, Falgenhauer L, Fischer J, Ghosh H, Guiral E, Guerra B, Schmoger S, Imirzalioglu C, Chakraborty T, Hammerl JA, Käsbohrer A. 2013. Molecular epidemiology of extended-spectrum beta-lactamase-, AmpC beta-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period. CANWARD 2007–11. J Antimicrob Chemother 68:57–65. https://doi.org/10.1093/jac/dkt027

9. Markova SK, Schneider I, Ivanova D, Mitov I, Bumpeamfeid A. 2014. Predominance of IncL/M and IncF plasmid types among CTX-M-ESBL-producing Escherichia coli and Klebsiella pneumoniae in Bulgarian hospitals. APMIS 122:608–615. https://doi.org/10.1111/apm.12004

10. Madec JY, Haenni M. 2018. Antimicrobial resistance plasmid reservoir in food and food-producing animals. Plasmid 99:72–81. https://doi.org/10.1016/j.plasmid.2018.09.001

11. Koraimann G. 2018. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. EcoSal Plus 8. https://doi.org/10.1128/ecosalplus-ESP-0003-2018

12. Lopatkin AJ, Meredith HR, Simnani JK, Pfeiffer C, Durrett R, You L. 2017. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 8:1689. https://doi.org/10.1038/s41467-017-01532-1

13. de Been M, Lanza VF, de Toro M, Scharringer J, Dohmen W, Du Y, Hu J, Lei Y, Li N, Tooming-Klunderud A, Heederik DJJ, Fluit AC, Bontem MUM, Willems RJL, de la Cruz F, van Schaik W. 2014. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet 10:e1004776. https://doi.org/10.1371/journal.pgen.1004776

14. Deng Y, He L, Chen S, Zheng H, Zeng Z, Liu Y, Sun Y, Ma J, Chen Z, Liu J-H. 2017. F33:A-:B- and F2:A-:B- plasmids mediate dissemination of rmtB-qepA in Enterobacteriaceae from pets in China. Antimicrob Agents Chemother 55:4971–4978. https://doi.org/10.1128/AAC.02201-18

15. Baraniak A, Fiett J, Sulikowska A, Hryniewicz W, Gniadkowski M. 2002. Conjugative spread of CTX-M-15 ESBL Enterobacteriaceae in Poland. Antimicrob Agents Chemother 46:151–159. https://doi.org/10.1128AAC.46.1.151-159.2002

16. Koraimann G, Salmon-Divon M, Navon-Venezia S. 2020. Meta-analysis of pandemic Escherichia coli ST131 plasmidome proves restricted plasmid-clade associations. Sci Rep 10. https://doi.org/10.1038/s41598-019-56763-7

17. Brolund A, Rajer F, Giske CG, Mefeors Ô, Titelman E, Sandgren L. 2019. Dynamics of resistance plasmids in extended-spectrum-beta-lactamase-producing Enterobacteriaceae during postinfection colonization. Antimicrob Agents Chemother 63:e00201-18. https://doi.org/10.1128/AAC.00201-18

18. Woodford N, Carattoli A, Kariškis E, Underwood A, Ellington MJ, Livermore DM. 2009. Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 53:4472–4482. https://doi.org/10.1128/AAC.00688-09

19. Partridge SR, Zong Z, Iredell JR. 2011. Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 from Escherichia coli. Antimicrob Agents Chemother 55:4971–4978. https://doi.org/10.1128/AAC.00214-11

20. Nosalas A, Càntov R, Moreira R, Peixe L, Baquerizo F, Compe TM. 2007. Emergence and dissemination of Enterobacteriaceae isolates producing CTX-M-1-like enzymes in Spain are associated with IncFII (CTX-M-15) and broad-host-range (CTX-M-1, -2, and -32) plasmids. Antimicrob Agents Chemother 51:796–799. https://doi.org/10.1128/AAC.01070-06

21. Moodley A, Guarabassani L. 2009. Transmission of IncN plasmids carrying blaCTX-M-1 between commensal Escherichia coli in pigs and farm workers. Antimicrob Agents Chemother 53:1709–1711. https://doi.org/10.1128/AAC.00149-06

22. Deng Y, He L, Chen S, Zheng H, Zeng Z, Liu Y, Sun Y, Ma J, Chen Z, Liu J-H. 2011. F33:A-:B- and F2:A-:B- plasmids mediate dissemination of rmtB blaCTX-M-9 group genes and rmtB-qepA in Enterobacteriaceae isolates from pets in China. Antimicrob Agents Chemother 55:4926–4923. https://doi.org/10.1128/AAC.00133-11

23. Nishida K, Mihara K, Takino T, Nakane S, Takakura Y, Hashida M, Sekazi H. 1991. Hepatic disposition characteristics of electrically charged macromolecules in rat in vivo and in the perfused liver. Pharm Res 8:434–447. https://doi.org/10.1023/A:1015886708598

24. Coque TM, Novais A, Carattoli A, Peixe L, Pitout J, Peixe L, Baquerizo F, Càntov R, Nordmann P. 2008. Dissemination of clonally related Escherichia coli strains expressing extended-spectrum-beta-lactamase CTX-M-15. Emerg Infect Dis 14:195–200. https://doi.org/10.1128/eid.402.07350

25. Wirth T, Falush D, Lan R, Colwell C, Menza P, Wieler LH, Karch H, Reeves PR, Maiden MCJ, Ochman H,achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x
