Learning Cross-lingual Embeddings from Twitter via Distant Supervision

Jose Camacho-Collados♦* Yerai Doval♦* Eugenio Martínez-Cámara*
Luis Espinosa-Anke♦ Francesco Barbieri♣ Steven Schockaert♦
♦ School of Computer Science and Informatics, Cardiff University, United Kingdom
♥ Escola Superior de Enxeñaría Informática, Universidade de Vigo, Spain
♠ DaSCI Institute, University of Granada, Spain ♣ Telefónica Innovation Alpha, Spain
♦{camachocolladosj,espinosa-ankel,schockaerts1}@cardiff.ac.uk,
♥yerai.doval@uvigo.es, ♠emcamara@decsai.ugr.es,
♣francesco.barbieri@telefonica.com

Abstract

Cross-lingual embeddings represent the meaning of words from different languages in the same vector space. Recent work has shown that it is possible to construct such representations by aligning independently learned monolingual embedding spaces, and that accurate alignments can be obtained even without external bilingual data. In this paper we explore a research direction which has been surprisingly neglected in the literature: leveraging noisy user-generated text to learn cross-lingual embeddings particularly tailored towards social media applications. While the noisiness and informal nature of the social media genre poses additional challenges to cross-lingual embedding methods, we find that it also provides key opportunities due to the abundance of code-switching and the existence of a shared vocabulary of emoji and named entities. Our contribution consists in a very simple post-processing step that exploits these phenomena to significantly improve the performance of state-of-the-art alignment methods.

1 Introduction

Twitter provides a wealth of uncurated text (Derczynski et al., 2013) and has been found to constitute a valuable source for developing natural language processing (NLP) systems in, for example, sentiment analysis (Martínez-Cámara et al., 2014), sarcasm detection (Felbo et al., 2017) or humour and irony modeling (Reyes et al., 2012). Given their abundance and multilingual nature, we argue that tweets are a powerful but surprisingly neglected source for learning cross-lingual vector representations of words (henceforth, cross-lingual embeddings).

Cross-lingual embeddings are the result of mapping two or more monolingual word embedding spaces into a shared vector space in which words and their translations are represented by similar vectors. Along with obvious applications in, for example, machine translation (Artetxe et al., 2018c; Lample et al., 2018a,b), cross-lingual embeddings also constitute a major step forward towards knowledge transfer between languages (Ruder et al., 2018), usually having English as source or pivot. Several recent approaches have shown that accurate mappings are indeed possible with minimal amounts of supervision, to the point that external bilingual data may no longer be needed (Conneau et al., 2018; Artetxe et al., 2018b; Xu et al., 2018). However, previous work has mostly focused on controlled or noise-free environments, reporting results from using clean and comparable corpora as source. In this paper we make a case for the potential (and discuss the limitations) of social media data for learning cross-lingual embeddings, thus parting ways with the traditional ‘noise-free’ setting explored in most recent literature.

In monolingual settings, it has already been shown that word embeddings trained on Twitter lead to increased performance in social media NLP tasks (Tang et al., 2014; Godin et al., 2015; Yang et al., 2018). One of the main reasons is that such embeddings cover a much wider range of slang terms and neologisms, and therefore provide a more faithful snapshot of the particularities of the language used in social media. Twitter-specific cross-lingual embeddings can thus also be expected to provide solid grounds for cross-lingual social media NLP tasks. In this paper, we demonstrate that this is indeed the case for, specifically, word translation and cross-lingual sentiment analysis, where we use data in English train classifiers for other languages.

Another crucial advantage of Twitter is that multilingual Twitter data is peppered with a signif-
significant number of shared tokens. This is relevant, as previous work has demonstrated that the shared meaning of numerals can be exploited for effectively learning cross-lingual embeddings in self-supervised fashion (Artetxe et al., 2017). For instance, we can assume that the embedding for ‘5’ will embody similar properties in, e.g., English and Spanish. We can also assume that embeddings for emoji obtained from tweets in different languages will generally represent the same or a very similar meaning (Barbieri et al., 2016b). Finally, and most importantly, we also take advantage of the fact that many words in non-English tweets have an exact counterpart in English, which can be attributed to code-switching and to the presence of interlingual homographs, including many named entities.

We exploit this vocabulary of shared tokens across tweets from different languages to implement a very simple post-processing technique, which maps identical tokens from different languages to the same vector in the cross-lingual embedding space. Clearly, it is overly simplistic to assume that two words from different languages have the same meaning simply because they are spelled in the same way, and even emoji sometimes have language-specific meanings. Surprisingly, however, we find that such a simple post-processing strategy nonetheless leads to substantial performance gains in the tasks of word translation and cross-lingual sentiment analysis.

2 Related Work

2.1 Cross-lingual word embeddings

Cross-lingual embeddings are becoming increasingly popular in NLP (Upadhyay et al., 2016; Ruder et al., 2018), especially since the recent introduction of models requiring almost no supervision (Mikolov et al., 2013b; Faruqui and Dyer, 2014; Xing et al., 2015; Smith et al., 2017; Artetxe et al., 2017; Doval et al., 2018). These models have shown to be highly competitive compared to fully supervised baselines (which are typically trained on parallel corpora).

Despite their effectiveness, these recent models still need some form of supervision signal, which often takes the form of a bilingual dictionary. This limitation motivated the emergence of fully unsupervised models, based on, among others, adversarial training (Zhang et al., 2017; Conneau et al., 2018; Xu et al., 2018; Chen and Cardie, 2018). However, as shown by Søgaard et al. (2018), some of these fully unsupervised methods (e.g., Conneau et al. (2018)) may be brittle when dealing with different types of languages and corpora. In a parallel direction, Artetxe et al. (2018b) proposed an alternative unsupervised model for learning cross-lingual embeddings, based on a similarity-based dictionary initialization and a linear transformation. While this approach proved to be more robust, and can even surpass supervised models exploiting synthetic or external bilingual dictionaries (Mikolov et al., 2013b; Xing et al., 2015; Smith et al., 2017), they only considered standard corpora.

In this paper we evaluate some of the most prominent cross-lingual embedding models in the more challenging setting of social media. Our evaluation shows that unsupervised models often struggle with noisy user-generated text, and the resulting aligned spaces seem to perform poorly in standard evaluation benchmarks (both intrinsic and extrinsic).

2.2 Cross-lingual sentiment analysis

As with most NLP tasks, the availability of training data and linguistic resources for sentiment analysis (SA) is generally skewed towards English, which motivates the creation of cross-lingual SA systems. However, most existing work in cross-lingual SA is built upon (1) machine translation systems (Salameh et al., 2015; Zhou et al., 2016); (2) parallel (Meng et al., 2012; Chen et al., 2018) or comparable corpora (Rasooli et al., 2018); or (3) synthetic corpora developed with documents written in the source and the target language (Vilares et al., 2017). Consequently, all these works depend on the availability of annotated data or the quality of off-the-shelf machine translation systems, which are generally ill-suited for social media text. In contrast, the approach we consider in this paper effectively enables zero-shot cross-lingual transfer in sentiment analysis without the need for external bilingual resources.
3 Learning Cross-lingual Embeddings

Most approaches for learning cross-lingual embeddings without parallel corpora make use of standard pre-trained monolingual vectors. These are mapped onto a shared cross-lingual space, usually with the help of external bilingual dictionaries. As an alternative, in this paper we consider automatically acquired dictionaries. In Section 3.1, we discuss how these dictionaries can be constructed from Twitter data. These dictionaries will then be used as the supervision signal for well-known state-of-the-art methods, which are briefly recalled in Section 3.2. Finally, we introduce a simple post-processing step which drastically improves performance in different benchmarks (Section 3.3).

3.1 Automatic creation of a bilingual dictionary

There are two main approaches to automatic dictionary construction from monolingual corpora: by distant supervision or by relying on the distribution of monolingual embeddings. In our method, we will rely on distant supervision signals from Twitter. However, let us first briefly introduce the latter “fully unsupervised” methods.

Unsupervised (distributional). Approaches from this class construct a dictionary by exploiting the distribution of monolingual embeddings. There are two prominent methods that rely on this intuition: Artetxe et al. (2018b) exploit the structural similarity of monolingual embeddings, specifically, the fact that cross-lingual synonyms have close similarity distributions across different languages. Conneau et al. (2018), on the other hand, learn this initial bilingual dictionary through adversarial training.

Distant supervision (identical tokens). To construct a synthetic bilingual dictionary in an automatic fashion, we rely on the following intuition: whenever a token appears in both monolingual corpora, we assume it has the same meaning. In other words, our dictionary only contains trivial entries, where a word is equal to its (presumed) translation. These identical tokens can be split into the following three types:

(i) Numerals: Given their extensive usage, Arabic numerals constitute a ubiquitous cross-lingual distant supervision signal. They were first leveraged by Artetxe et al. (2017).

(ii) Emoji: Emoji are ideograms depicting people, objects and scenes (Cappallo et al., 2015), which co-exist with words in social media communication. While some emoji preserve cultural differences, they have been shown to share similar meaning across languages and countries (Barbieri et al., 2016b). One of their potential advantages with respect to numerals, in addition to their prevalence in social media, is their diversity, as there are emoji for a wide range of domains such as medicine (trương), sports (🏀), business (💰) or geography (📍). Emoticons such as smileys, e.g., :-), provide a similar bilingual signal.

(iii) Shared words: English words are often used by non-English speakers in spontaneous communication in social media. This phenomenon is particularly common in languages that are related to or which share their alphabet with English, where vocabularies of shared words may arise due to the existence of interlingual homographs⁴ or code-switching environments. Even in more distantly related languages, English words are used in the form of many borrowed and loan words, especially in digital communication.

3.2 Alignment strategies

Various methods have been proposed for aligning two monolingual embedding spaces. Two recent methods in particular have obtained outstanding results in both unsupervised and semi-supervised settings: MUSE (Conneau et al., 2018) and VecMap (Artetxe et al., 2018a). Recall that the seed supervision signal required for these methods comes in the form of a bilingual dictionary, which may be external or automatically generated. These two methods are similar in that they learn an orthogonal linear transformation which maps one monolingual embedding space into the other. In VecMap this is done using SVD, while MUSE uses Procrustes analysis. VecMap applies this approach in an iterative fashion, where at each step the previously used bilingual dictionary is extended based on the current alignment. It is also worth noting that after the initial orthogonal transformation, VecMap fine-tunes the resulting embeddings by giving more weight to highly correlated embedding components, improving its per-

⁴Clearly, there are examples of words which are written in the same way in two languages, but which have a different meaning. For instance, the correct English translation of the Spanish word sensible is sensitive, not sensible. Nonetheless, such a naive assumption proves to be indisputably helpful.
performance in word translation.

Finally, let us refer to Doval et al. (2018), who recently proposed a method which extends VecMap and MUSE with a post-processing step. This method consists in applying an additional linear transformation, learned by linear regression on the translation pairs from external bilingual dictionaries. In this way, cross-lingual synonyms are mapped to their corresponding average embedding. Note that this dictionary can again be obtained through distant supervision, although this was not explored in Doval et al. (2018).

3.3 Averaging cross-lingual embeddings

We put forward a simple post-processing step inspired by Doval et al. (2018). However, in contrast to the latter method, which modifies the vector representations of all words, we simply replace the representations of the words in our synthetic dictionary by the average of their initial vector and the initial vector of their presumed translation, leaving all other vectors unchanged. In our experimental results, we show that, surprisingly, this simple approach leads to substantially better results than those obtained by competing baselines. Our method crucially relies on the availability of a sufficiently large bilingual dictionary. In this regard, one of the main contributions of this paper is showing that suitable dictionaries can be obtained automatically from Twitter corpora.

In addition to this vanilla averaging method, we also consider a variant in which the average is weighted by frequency:

$$\tilde{\mu}_{w_1, w_2} = \frac{f_1 \tilde{v}_1 + f_2 \tilde{v}_2}{f_1 + f_2}$$

(1)

where f_1 and f_2 are the number of occurrences of the tokens w_1 and w_2 in their corresponding monolingual corpora, and \tilde{v}_1 and \tilde{v}_2 represent the embeddings of w_1 and w_2 in the cross-lingual vector space. The main intuition behind this alternative is that even when a word occurs in tweets from both languages, it may still be underrepresented in one of them. This would be the case, for instance, if in one of the languages the word were only used in a code-switching context, or simply because of it being less prominent due to cultural or geographical differences. For instance, the word NFL, which stands for National Football League in the United States is also used in Spain, but much less frequently. We can thus expect that its Spanish embedding will be less accurate than the English one. Therefore, in this case it would make sense to give more prominence to the English vector. We will use Plain and Weighted to refer to our standard and weighted averaging strategies respectively.

4 Evaluation

We analyze the performance of cross-lingual word embeddings in the context of Twitter corpora, focusing in particular on the effectiveness of our post-processing method. First, however, let us describe the setting for cross-lingual embedding training.

Corpus compilation We collected five monolingual Twitter corpora between October 2015 and July 2018. These corpora were independently gathered using geolocalized tweets which were tagged with specific languages: United States (English), Spain (Spanish), Italy (Italian), Germany (German) and Iran (Farsi). To encourage more tweet diversity, only a maximum of twenty tweets per user were retained. After preprocessing (tokenization and duplicate removal), the final corpora consisted of 21,461,242 tweets for English, 10,122,552 for Spanish, 4,546,509 for Italian, 7,906,181 for German and 3,724,606 for Farsi.

Monolingual embeddings All comparison systems use the same monolingual embeddings as input. These embeddings were trained on the Twitter corpora described above using FastText (Bojanowski et al., 2017). FastText was chosen due to its handling of subword units, making it more robust to misspellings as compared to alternatives like Word2Vec (Mikolov et al., 2013a) or GloVe (Pennington et al., 2014). The monolingual embeddings were trained with FastText’s default hyperparameters, fixing the dimension size to 100.

Distant supervision As explained in Section 3.1, we automatically extracted bilingual dictionaries of identical tokens to be used as supervision for the cross-lingual models. This resulted in dictionaries of 122,469 word pairs for English-Spanish, 66,037 for English-Italian, 93,695 for English-German and 6,142 for English-Farsi.

Comparison systems We used VecMap (Artetxe et al., 2018b) and MUSE (Conneau et al., 2018)
to obtain the initial cross-lingual word embeddings, experimenting with their (semi-)supervised and unsupervised settings. In the former case, the supervision came from our synthetic dictionaries of identical tokens. The semi-supervised version of VecMap (Artetxe et al., 2018a) is used as our base model on which we evaluate two post-processing techniques: Meemi (Doval et al., 2018) and our proposed averaging strategy. For all the baseline systems we followed their official implementations on GitHub.

4.1 Intrinsic evaluation: Word translation

The task of word translation, or bilingual dictionary induction, consists in retrieving the correct translation in a target language given a word in a source language.

Experimental setting To predict the translation of a word, we return its nearest neighbor from the other language in the cross-lingual embedding space, using cosine similarity. The performance is evaluated with the precision at k metric (P-k, where \(k \in \{1, 5, 10\} \)), which is defined in this context as the percentage of test instances for which the correct answer is among the \(k \) highest ranked candidates. For this task, we used the standard test sets released by Conneau et al. (2018) and those extracted from Europarl (Dinu et al., 2015; Artetxe et al., 2017).

Results As can be observed in Table 1, the plain and weighted averaging methods yield the best overall results in Spanish, Italian and German. A similar pattern can be observed for Farsi, although in this case the results are poor overall. The base VecMap embeddings perform better in the distantly supervised setting than in the unsupervised setting, which lends support to the usefulness of synthetically constructed dictionaries in the social media context. This trend contrasts with previous analyses in more standard corpora (Vulić and Korhonen, 2016), where this seeding was proved inferior to other strategies. However, this behaviour is not consistent in the case of MUSE, which differs from what was found by Søgaard et al. (2018) on more standard corpora. With the exception of English-Farsi, where it fails to generalize, VecMap outperforms MUSE in both supervised and unsupervised settings.

Table 1 also shows that going from English to Farsi is challenging for all the tested models. This may be attributed to the structural differences between this language and English, and a reflection of cultural differences, which in turn causes a lower prevalence of English words. Indeed, the bilingual dictionary of identical tokens for Farsi is notably the smallest one: 6,142 word pairs against 66,037 for the second-smallest dictionary.

Finally, it is important to highlight that the test dictionaries contain a large number of words whose translation is identical to the word itself. Therefore, the fact that the tested methods use synthetic dictionaries which are based on identical tokens might be regarded as giving them an unfair advantage in this task. In particular, this means that the scores obtained for P@1 may be artificially high, especially for Spanish and Italian, where the number of words with identical translations is considerable. However, we should stress that the training dictionaries are obtained automatically from the training corpora, and they were used by all comparison systems in the distantly supervised mode. Furthermore note that they share

Supervision	Model	EN-ES	EN-IT	EN-DE	EN-FA					
	Europarl	Facebook								
Unsupervised	MUSE	8.3 14.1 17.8	6.8 15.3 19.0	8.7 13.7 17.1	6.7 14.4 18.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
	VecMap	9.5 17.0 19.4	8.1 16.4 20.4	9.2 16.9 20.9	8.8 17.0 22.3	0.2 0.4 0.9	0.1 0.4 0.5	0.0 0.0 0.0	0.0 0.0 0.0	
Distant	MUSE	2.7 5.4 7.2	2.6 5.3 7.0	3.6 9.1 12.4	4.0 10.0 13.6	1.3 2.7 3.5	1.4 3.0 4.1	0.1 0.4 0.9	0.1 0.4 0.9	
	VecMap	10.1 17.8 21.2	8.5 16.9 21.6	9.6 17.0 21.0	9.1 16.8 21.8	3.4 6.9 9.7	2.6 6.7 9.6	0.2 0.5 1.1	0.2 0.5 1.1	
	Plain	21.1 25.9 29.6	16.7 20.2 23.2	20.3 28.3 33.1	22.4 31.3 35.7	24.0 27.3 29.4	16.2 19.4 21.3	1.3 1.7 2.0	1.3 1.7 2.0	
	Weighted	20.8 28.6 33.7	16.7 22.8 28.5	19.4 28.8 33.7	21.2 28.9 33.5	24.3 26.2 28.6	16.2 18.0 19.9	1.2 1.5 1.8	1.2 1.5 1.8	

Table 1: Word translation results on 4 target languages: Spanish (ES), Italian (IT), German (DE) and Farsi (FA).
no connection with the test corpora other than being in the same language. In what follows we discuss the capability of our post-processing technique by means of a qualitative analysis.

Analysis We performed error analysis on our model, examining wrong translations, and found that in many cases, the mistranslated word was very similar the correct translation. For example, in our weighted model the English verb *requested* is mapped to the Spanish verb *mandado* (*ordered*), and is also near its gold translation, *pedido*. As far as the baseline post-processing technique is concerned (i.e., Meemi), we can observe substantial drops in the quantitative scores with respect to the base model VecMap. A quick review of the output reveals a general trend of translating source words to target words in the same language (i.e., an English word in the source domain is often translated to some English word which also exists in the target domain). This phenomenon can also be observed for our model. For example, the five nearest neighbors of the English word *recognize* are also English words from the induced Spanish dictionary: *recognize, recognizes, acknowledge, acknowledged* and *acknowledgement*. While this is not the intended result for the bilingual dictionary induction task, this reveals a seamless integration of both languages which may partially explain the success of these embeddings in cross-lingual sentiment analysis (Section 4.2).

Finally, we performed a more qualitative analysis on the types of translations that cannot be found in standard dictionaries, for which cross-lingual embeddings trained on Twitter are particularly well-suited. Table 2 shows some examples for translations of selected English slang words and neologisms found in our weighted model (top three nearest neighbours according to cosine similarity). From the examples presented, we may highlight, e.g., the *chillax* case, a neologism composed of the verbs *chill* and *relax*, which translates also to colloquial ways of referring to the same idea across languages (*relajadito* in Spanish), and perhaps evoking more the notion of coziness in German (*gemütlich*). Let us also highlight acronyms like *wth* and *omfg*, whose translations denote surprise, but in an informal register (go-

with	superned	
puff	schufa	ha
agg	chissene	hahh
madreminia	chdto	niaa
chill	omfg	mlg

Table 2: Translations of slang words and neologisms.

In this section we test the performance of our cross-lingual embeddings in the sentiment analysis (SA) task. We focus in particular on polarity classification (Pang and Lee, 2008).

Experimental setting We selected an annotated dataset of English tweets as training data, and annotated datasets of Spanish, Italian and German tweets as test data. Since our main aim is the comparison of the cross-lingual embeddings, we used a standard Bidirectional Long Short-Term Memory (BiLSTM) architecture as classification system, with the same configuration across all experiments.9 We used the cross-lingual embeddings for initializing the embedding layer. Given our cross-lingual evaluation setting, the weights of this embedding layer were not updated during training.

Datasets As training data we used the English dataset of the Sentiment Analysis in Twitter task of SemEval 2016 (Nakov et al., 2016). For evaluation we used the General Corpus of TASS (GCTASS) (Villena-Román et al., 2013), COST (Martínez-Cámara et al., 2015) and InterTASS (Díaz-Galiano et al., 2018) for Spanish, Sentipolc (Barbieri et al., 2016a) for Italian and SB-10K (Cieliebak et al., 2017) for German. Table 4 lists statistics of these datasets. We carried out both two-class (positive and negative) and three-class (positive, neutral and negative) evaluations with the GCTASS, InterTASS, Sentipolc and SB-10K datasets, and a two-class evaluation with COST.

9In the Europarl test sets word translations were obtained from alignments of the European Parliament proceedings, and therefore reflect a realistic distribution of the languages in that domain.

9More details about the model and configuration (hyperparameters, etc.) are provided in the appendix.
Table 3: Macro-average F1 and accuracy (%) results in the cross-lingual SA evaluation, using different embeddings as features.

Supervision	Model	COST (ES)	GCTASS (ES)	InterTASS (ES)	Sentipolc (IT)	SB-10K (DE)													
	F1 Acc	F1 Acc F1 Acc																	
Unsupervised	MUSE	50.0	58.0	5.2	26.1	37.0	58.4	24.0	28.2	32.0	45.8	22.1	25.9	31.1	27.8	33.4	60.0	62.5	
	VecMap	57.9	61.5	22.8	35.6	37.8	57.6	22.9	27.4	33.7	45.3	21.2	24.5	26.3	32.0	36.6	45.8	56.1	56.2
Distant	MUSE	49.4	57.7	25.1	52.3	37.9	58.3	22.9	33.8	35.1	45.9	23.3	25.4	28.1	32.8	45.8	56.1	56.2	
	VecMap	46.8	56.2	24.1	43.4	37.0	58.3	25.5	36.4	33.1	46.2	22.3	25.7	27.0	32.3	40.0	50.3	53.3	60.0
	Meemi	45.1	54.9	25.5	41.0	37.2	58.0	26.3	36.9	33.0	45.1	24.8	25.9	25.0	32.3	46.2	57.3	57.7	65.4
	Plain	77.4	77.5	33.0	46.2	50.7	62.4	33.4	33.4	63.4	63.4	26.7	28.7	37.6	38.1	42.2	47.5	57.9	63.8
	Weighted	80.4	80.5	42.6	53.5	64.7	66.2	45.3	51.7	65.9	67.2	30.7	32.0	51.3	51.7	44.8	57.3	57.7	65.4

Table 4: Size of the cross-lingual SA test datasets.

Dataset	Positive	Neutral	Negative	Total
SemEval_EN	3,094	2,043	863	5,999
GCTASS_ES	22,233	1,305	15,845	39,382
InterTASS_ES	642	216	768	1,625
COST_ES	5,637	-	5,789	11,426
Sentipolc_IT	316	255	734	1,305
SB-10K_DE	533	351	216	1,426

Lower and upper bounds

In addition to the comparison systems, in this experiment we also considered two lower bound systems and one upper bound, aimed at providing a broader context for our experimental results. As lower bound systems we included: (1) always predicting the majority class from the SemEval 2016 training corpus; and (2) training and testing the neural network with a set of monolingual English embeddings (FastText EN). This latter baseline is introduced as a sanity check, as its only source for cross-lingual transfer comes from the fact that the vocabularies of different languages may overlap. The upper bound is a monolingual BiLSTM classification system which is trained for each test dataset using the associated training data.

Results

Table 3 summarizes the results for this cross-lingual SA evaluation. Our main findings, which are consistent for the three languages, are as follows: (a) there are no large differences between the unsupervised and distantly supervised variants of MUSE and VecMap, which in general behave similarly to the two lower bound baselines; (b) the results of the Meemi post-processing technique are also in line with the base VecMap model; (c) our two post-processing techniques lead to substantial improvements over the base VecMap model; and (d) using frequency weighting clearly outperforms the unweighted variant of our model, with peak performances on COST and InterTASS.

In general, the results provided by our simple post-processing technique are encouraging, especially taking into account that (1) these embeddings were learned without making use of any external resources or bilingual data, (2) no data in the target language was used for training, and (3) the distribution of the English dataset used for training clearly differs from all these datasets (see Table 4). What is particularly surprising is the performance gap of our proposed technique with respect to the state-of-the-art cross-lingual embeddings of VecMap and MUSE. In fact, our weighted postprocessing technique leads to improvements of over 40% over the base models in most cases.

Analysis

The main difference of our proposed averaging methods compared to VecMap and MUSE lies in the fact that they are creating anchor points between languages. This turns out to be essential in a zero-shot cross-lingual transfer task. As argued in Section 3.1, identical tokens such as emoji, numerals or homographs provide a reliable bilingual signal, and anchoring them to a middle point in the vector space facilitates the learning process. For example, the following Spanish tweet *Buenos Dias a todos, menos a mi :(* (Good Morning everyone, except for me) was tagged as positive for both VecMap and MUSE, irrespective of their supervision. Similarly, VecMap and MUSE
tagged the Italian tweet *Alla ricerca del nirvana* (*Looking for nirvana*) as negative. These systems thus overlooked a key emotion feature, i.e., :), and a critical loanword, i.e., *nirvana*. In contrast, the same sentiment analysis model trained with our weighted cross-lingual embeddings correctly classified these two examples.

5 Ablation analysis

As shown throughout all the experiments, using identical tokens as supervision proved more robust than fully-unsupervised methods. In order to get more insights from the results achieved in both evaluation tasks, we performed an ablation test on the different types of identical tokens in the synthetic dictionaries (see Section 3.1). For this analysis, we focus on the base VecMap model and our proposed weighted post-processing strategy.

Table 5 shows the results of this ablation test on the two considered tasks: word translation (Word trans.) and cross-lingual sentiment analysis (SA).

Model	Supervision	EN-ES	EN-IT	EN-DE	EN-FA													
		Word trans.	SA															
		P1	P5	P10	F1	Acc	P1	P5	P10	F1	Acc	P1	P5	P10	F1	Acc		
All	8.5	16.9	21.6	25.5	36.4	9.1	16.8	21.8	22.3	25.7	2.6	6.7	9.6	40.0	50.3	0.2	0.5	1.1
Numerals	7.6	15.7	20.2	23.1	36.1	8.6	17.2	21.9	23.6	24.8	2.7	6.4	9.3	38.9	43.4	0.0	0.0	0.0
Emoji	7.8	16.9	21.2	27.3	32.6	8.6	16.8	21.8	22.6	24.7	3.1	6.2	8.5	44.3	55.5	0.5	1.3	1.7
Words	8.1	17.0	21.6	23.5	31.6	8.8	17.5	22.0	20.7	24.6	2.8	6.5	8.7	44.8	57.7	0.3	1.4	2.0
Unsup.	8.1	16.4	20.4	22.9	27.4	8.8	17.0	22.3	21.2	24.5	0.1	0.4	0.5	36.6	45.8	0.0	0.0	0.0

Table 5: Ablation test. Tasks: word translation (Word trans.) and cross-lingual sentiment analysis (SA).

Due to space constraints and for the sake of clarity, for this ablation test, Table 5 shows the results on the Facebook datasets on word translation and on the 3-class configuration on SA, using the most recent InterTASS dataset for Spanish.

6 Conclusion

The main contribution of this paper is two-fold. On the one hand, we have presented a comprehensive study on the performance of state-of-the-art methods for learning cross-lingual embeddings without external bilingual data in the domain of social media communication. The overall results are encouraging, as they show that high-quality cross-lingual embeddings can be obtained directly from noisy user-generated corpora without external resources via distant supervision. These embeddings can be leveraged for cross-lingual downstream applications where training data may be scarce, as shown in our sentiment analysis experiments. However, our evaluation suggests there is significant room for improvement overall. Our results show that, especially in the case of distant languages such as English-Farsi, state-of-the-art cross-lingual mappings fail to learn an accurate mapping between the languages.

On the other hand, we have also introduced a simple post-processing technique which alters the embeddings of tokens that appear in both languages by simply averaging their initial embeddings. Despite its simplicity, our proposed technique clearly improves the quality of state-of-the-art cross-lingual word embedding approaches. In fact, we showed how a standard sentiment analysis system can achieve results of up to 80% in accuracy without the need of any training data in the test language by using our proposed method.
improving the state of the art by more than 40% in several cases. The results also suggest that our method can be further improved by tuning it to specific applications or by exploiting the underlying idea to local neighbours in the vector space, amplifying its impact. In general, these results open up exciting avenues of research on cross-lingual applications where annotated data in English can be exploited for other languages with few resources. The construction of cross-lingual embedding models also paves the way for the development of unsupervised machine translation systems (Artetxe et al., 2018c; Lample et al., 2018b), in this case specifically targeting noisy user-generated text for which parallel data is extremely scarce, and not even available at all for widely spoken language pairs. Indeed, standard machine translation tools are generally not suited for the kind of noisy text that is found in social media, where the language used is very dynamic and new terms are constantly being introduced.

Acknowledgments

Jose Camacho-Collados and Steven Schockaert were supported by ERC Starting Grant 637277. Yerai Doval is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO) through projects FFI2014-51978-C2-2-R, TIN201785160C21-R and TIN201785160C22-R; the Spanish State Secretariat for Research, Development and Innovation (which belongs to MINECO) and the European Social Fund (ESF) under an FPI fellowship (BES-2015-073768) associated to project FFI2014-51978-C2-1-R; and by the Galician Regional Government under project ED431D 2017/12. Eugenio Martínez Cámara was supported by the Spanish Government Programme Juan de la Cierva Formación (FJCI-2016-28353).

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no bilingual data. In Proceedings of ACL, pages 451–462.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a. Generalizing and improving bilingual word embedding mappings with a multi-step framework of linear transformations. In Proceedings of AAAI.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018b. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of ACL, pages 789–798.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2018c. Unsupervised neural machine translation. In Proceedings of ICLR.

Francesco Barbieri, Valerio Basile, Danilo Croce, Malvina Nissim, Nicole Novielli, and Viviana Patti. 2016a. Overview of the evalita 2016 sentiment polarity classification task. In Proceedings of CLiC-it.

Francesco Barbieri, German Kruszewski, Francesco Ronzano, and Horacio Saggion. 2016b. How cosmopolitan are emojis?: Exploring emojis usage and meaning over different languages with distributional semantics. In Proceedings of ACM MM, pages 531–535.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association of Computational Linguistics, 5(1):135–146.

Spencer Cappallo, Thomas Mensink, and Cees GM Snoek. 2015. Image2emoji: Zero-shot emoji prediction for visual media. In Proceedings of ACM MM, pages 1311–1314.

Xilun Chen and Claire Cardie. 2018. Unsupervised multilingual word embeddings. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 261–270.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire Cardie, and Kilian Weinberger. 2018. Adversarial deep averaging networks for cross-lingual sentiment classification. Transactions of the Association for Computational Linguistics, 6:557–570.

François Chollet. 2015. Keras. https://github.com/fchollet/keras.

Mark Ciocliebak, Jan Milan Deriu, Dominic Egger, and Fatih Uzdil. 2017. A twitter corpus and benchmark resources for german sentiment analysis. In Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, pages 45–51. Association for Computational Linguistics.

Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018. Word translation without parallel data. In Proceedings of ICLR.

Leon Derczynski, Alan Ritter, Sam Clark, and Kalina Bontcheva. 2013. Twitter part-of-speech tagging for all: Overcoming sparse and noisy data. In Proceedings of RANLP, pages 198–206.

Manuel C. Díaz-Galiano, Eugenio Martínez-Cámara, M. Ángel García Cumbreras, Manuel García Vega, and Julio Villena Román. 2018. The democratization of deep learning in TASS 2017. Procesamiento del Lenguaje Natural, 60:37–44.
Georgiana Dinu, Angeliki Lazaridou, and Marco Baroni. 2015. Improving zero-shot learning by mitigating the hubness problem. In Proceedings of ICLR, Workshop track.

Yerai Doval, Jose Camacho-Collados, Luis Espinosa-Anke, and Steven Schockaert. 2018. Improving cross-lingual word embeddings by meeting in the middle. In Proceedings of EMNLP.

Manaal Faruqui and Chris Dyer. 2014. Improving vector space word representations using multilingual correlation. In Proceedings of EACL, pages 462–471.

Bjarke Helbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. 2017. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Proceedings of EMNLP, pages 1615–1625.

Frédéric Godin, Baptist Vandersmissen, Wesley De Neve, and Rik Van de Walle. 2015. Named Entity Recognition for Twitter Microposts using Distributed Word Representations. In Proceedings of ACL Workshop on Noisy User-generated Text, pages 146–153.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735–1780.

Guillaume Lample, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018a. Unsupervised machine translation using monolingual corpora only. In Proceedings of ICLR.

Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. 2018b. Phrase-based & neural unsupervised machine translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 5039–5049.

E. Martínez-Cámara, M. T. Martín-Valdivia, L. A. Ureña López, and A. Montejo-Ríos. 2014. Sentiment analysis in Twitter. Natural Language Engineering, 20(1):128.

Eugenio Martínez-Cámara, M. Teresa Martín-Valdivia, L. Alfonso Urea-López, and Ruslan Mitkov. 2015. Polarity classification for Spanish tweets using the COST corpus. Journal of Information Science, 41(3):263–272.

Xin Fan Meng, Furu Wei, Xiaohua Liu, Ming Zhou, Ge Xu, and Houfeng Wang. 2012. Cross-lingual mixture model for sentiment classification. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 572–581. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013b. Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, pages 807–814.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio Sebastiani, and Veselin Stoyanov. 2016. Semeval-2016 task 4: Sentiment analysis in Twitter. In Proceedings of SemEval, pages 1–18.

Bo Pang and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval, 2:1–135.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of EMNLP, pages 1532–1543.

Mohammad Sadegh Rasouli, Noura Farra, Axinia Radeva, Tao Yú, and Kathleen McKeown. 2018. Cross-lingual sentiment transfer with limited resources. Machine Translation, 32(1):143–165.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi. 2012. From humor recognition to irony detection: The figurative language of social media. Data & Knowledge Engineering, 74:1–12.

Sebastian Ruder, Ivan Vulić, and Andreas Søgaard. 2018. A survey of cross-lingual word embedding models. Journal of Artificial Intelligence Research.

Mohammad Salameh, Saif Mohammad, and Svetlana Kiritchenko. 2015. Sentiment after translation: A case-study on arabic social media posts. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 767–777, Denver, Colorado. Association for Computational Linguistics.

Samuel L. Smith, David HP. Turban, Steven Hamblin, and Nils Y. Hammerla. 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In Proceedings of ICLR.

Anders Søgaard, Sebastian Ruder, and Ivan Vulić. 2018. On the limitations of unsupervised bilingual dictionary induction. In Proceedings of ACL, pages 778–788.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. 2014. Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of ACL, pages 1555–1565.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. 2016. Cross-lingual models of word embeddings: An empirical comparison. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.
David Vilares, Miguel A. Alonso, and Carlos Gmez-Rodriguez. 2017. Supervised sentiment analysis in multilingual environments. *Information Processing & Management*, 53(3):595 – 607.

Julio Villena-Román, Sara Lana-Serrano, Eugenio Martínez-Cámara, and José Carlos González-Cristóbal. 2013. TASS - workshop on sentiment analysis at sepm. *Procesamiento del Lenguaje Natural*, 50(0):37–44.

Ivan Vulić and Anna Korhonen. 2016. On the role of seed lexicons in learning bilingual word embeddings. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, volume 1, pages 247–257.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin. 2015. Normalized word embedding and orthogonal transform for bilingual word translation. In *Proceedings of NAACL*, pages 1006–1011.

Ruochen Xu, Yiming Yang, Naoki Otani, and Yuexin Wu. 2018. Unsupervised cross-lingual transfer of word embedding spaces. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 2465–2474. Association for Computational Linguistics.

Xiao Yang, Craig Macdonald, and Iadh Ounis. 2018. Using word embeddings in twitter election classification. *Information Retrieval Journal*, 21(2):183–207.

Meng Zhang, Yang Liu, Huanbo Luan, and Maosong Sun. 2017. Earth mover’s distance minimization for unsupervised bilingual lexicon induction. In *Proceedings of EMNLP*, pages 1934–1945.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2016. Cross-lingual sentiment classification with bilingual document representation learning. In *Proceedings of ACL*, pages 1403–1412.

Appendix: Sentiment Analysis Classification System

We provide specific details of the classification system used in our sentiment analysis experiments (Section 4.2 of the paper). As classification system, we made use of a standard Bidirectional Long Short-Term Memory (BiLSTM) recurrent neural network architecture (Hochreiter and Schmidhuber, 1997), developed in Keras (Chollet, 2015). In the following we describe the details and hyperparameters of the specific architecture which is used across all experiments. The goal of the neural network is the classification of the opinion of tweets, hence the input is composed of a sequence of tokens of a tweet, and the output is the sentiment meaning of the tweet (t). Specifically, the input of the neural network is the sequence of tokens $t_{1:l}$.

The first layer is the embeddings lookup layer, which returns the sequence $s \in \mathbb{R}^{l \times 100}$. Since our aim is to test our cross-lingual embeddings, which were used to initialize the embedding layer, in a cross-lingual setting, the embedding weights are not updated during the training of the network. The output of the embedding layer is encoded by a BiLSTM, which is an elaboration of two Long Short-Term Memory (LSTM) layers. One of the LSTM layers processes the sequence $s_{1:l}$ ($LSTM^a$), and the second one processes the sequence $s_{l+1:2l}$ ($LSTM^b$). We concatenated the output of the two LSTM layers, which are the state vectors of each token of the sequence s. Since the number of internal units of each LSTM layer is 128, the output of the BiLSTM layer is the sequence $c \in \mathbb{R}^{l \times 256}$.

Two fully connected layers activated by the ReLU function (Nair and Hinton, 2010) process the sequence to the output of the BiLSTM layer. The output dimensions of the two fully connected layers are 64 and 32, respectively. A dropout layer is added after each fully connected layer, with a rate value of 0.5. L_2 regularization is applied to the weights of the fully connected layers with a value of 0.001, and to the output of the fully connected layers with a value of 0.0001. The output of the last fully connected layer is flattened, hence the dimension of the sequence c after the processing of the two dense layers is $\mathbb{R}^{l \times 32}$. The last layer
is a softmax classification function. The output dimension of the softmax layer depends on the number of opinion labels (o), which in our case is 2 or 3 ($o \in \{2, 3\}$). Finally, the training is performed by a cross-entropy loss function, and optimized using Adam. For the sake of clarity, Figure 1 depicts the architecture of the neural network architecture.