Title
Summertime, and the livin' is easy: Winter and summer pseudoseasonal life expectancy in the United States

Permalink
https://escholarship.org/uc/item/1zf7b9f9

Journal
DEMOGRAPHIC RESEARCH, 37(45)

ISSN
1435-9871

Authors
Ho, Tina
Noymer, Andrew

Publication Date
2017-11-16

DOI
10.4054/DemRes.2017.37.45

Peer reviewed
Summertime, and the livin’ is easy:
Winter and summer pseudoseasonal
life expectancy in the United States

Tina Ho∗
Andrew Noymer†,‡
noymer@uci.edu

March 13, 2017

Abstract
In temperate climates, mortality is seasonal with a winter-dominant pattern, due in part to pneumonia and influenza. Cardiac causes, which are the leading cause of death in the United States, are also winter-seasonal although it is not clear why. Interactions between circulating respiratory viruses (e.g., influenza) and cardiac conditions have been suggested as a cause of winter-dominant mortality patterns. We propose and implement a way to estimate an upper bound on mortality attributable to winter-dominant viruses like influenza. We calculate ‘pseudo-seasonal’ life expectancy, dividing the year into two six-month spans, one encompassing winter the other summer. During the summer when the circulation of respiratory viruses is drastically reduced, life expectancy is about one year longer. We also quantify the seasonal mortality difference in terms of seasonal “equivalent ages” (defined herein) and proportional hazards. We suggest that even if viruses cause excess winter cardiac mortality, the population-level mortality reduction of a perfect influenza vaccine would be much more modest than is often recognized.

∗Program in Public Health, University of California, Irvine
†Department of Population Health and Disease Prevention, University of California, Irvine
‡To whom correspondence should be addressed. 653 E Peltason Drive, Irvine CA 92697-3957, USA. noymer@uci.edu
Introduction

The primary goal of this paper is to forecast the best-case scenario of life expectancy improvements that would accrue from the widespread uptake of a perfect flu vaccine. To accomplish this, we analyze life expectancy in the United States from a seasonal perspective. We calculate two life expectancies per 12-month period (“pseudowinter” and “pseudosummer”), using methods described below. The point is to estimate life expectancy in the absence of respiratory viruses (most notably, influenza), using pseudosummer as an approximation. Pseudowinter, on the other hand, estimates life expectancy in the presence of these viruses. The difference between life expectancy in pseudowinter and pseudosummer gives an upper bound on the potential mortality impact of a perfect flu vaccine. The pseudoseasonal approach also illuminates within-year mortality fluctuations.

Mortality in temperate climates is highly seasonal, with winter peaks and summer troughs (Rosenberg 1966, Land and Cantor 1983, Kalkstein and Davis 1989, Mackenbach et al. 1992, Rau 2006). Respiratory and cardiovascular causes, including stroke (Sheth et al. 1999), dominate the seasonal effects, with cancer being negligibly cyclical (Crombie et al. 1995). Heat wave mortality peaks are ephemeral interruptions of this overall pattern (e.g., Basu and Samet 2002, Klinenberg 2002, Valleron and Boumendil 2004, Kaiser et al. 2007, Toulemon and Barbieri 2008, Rocklöv et al. 2011, Robine et al. 2012, Åström et al. 2013). Heat wave-associated deaths have a different composition by cause compared to summer mortality (Huynen et al. 2001, Basagaña et al. 2011), although Rey et al. (2007) report increases in most causes at older ages. Heat wave mortality interacts with air pollution (Rooney et al. 1998, Bhaskaran et al. 2009). Both severity and duration of heat waves are important for mortality (Anderson and Bell 2009).
Temperature is thought to play a role in mortality seasonality (Braga et al. 2001, 2002, Curriero et al. 2002, Mercer 2003). However, temperature-associated deaths in a literal sense (e.g., hypothermia or heat stroke) are relatively unimportant, with cold-related deaths slightly exceeding heat-related deaths, at least in the United States (Berko et al. 2014). Nonetheless, the expansion over time of adequate winter heating in the United States has been suggested as a possibly-overlooked factor in the long-term decline of heart disease (Seretakis et al. 1997). Insufficient winter heating among the poor may not play a significant role in mortality in Britain (Wilkinson et al. 2004). Healy (2003) demonstrate that the coefficient of seasonal variation in mortality (CSVM) is correlated with mean winter temperature (warmer temperature, higher CVSM) at the country level in Europe; see also Keatinge et al. (1997) and Díaz et al. (2005). Analitis et al. (2008) also find an association between cold weather and mortality in European cities, and similarly note greater cold effect in warmer climates. Yang et al. (2012) and Zhao et al. (2015) find similar results in subtropical Asia. Kysely et al. (2009) find increased cardiovascular mortality in all ages above 25 during cold spells in the Czech republic. Mortality in nursing homes appears to be sensitive to both hot and cold temperature extrema (Stafoggia et al. 2006, Hajat et al. 2007).

The role of temperature in mortality is an important topic in historical demography, too large to survey completely here. Much of this work focuses on summer mortality, especially diarrhea among infants and children (e.g., Galloway 1985, Breschi and Livi-Bacci 1986a, b, c, Woods et al. 1989). There is a smaller body of work on winter peaks in infant mortality before the twentieth century. In particular, the hypothermia hypothesis suggests that neonatal mortality increased in cold periods (Dalla-Zuanna and Rosina 2009, 2011; see also Derosas 2009, 2010 and Dalla-Zuanna and Rosina 2010). Analyzing historical data from a cold-winter climate, Aström et al. (2016) find that warmer spells are associated with lower mortality. Ekmper et al. (2009) find strong a strong social class influence on temperature-mortality relationships in historical data from the Netherlands, and review some of the literature on cold and mortality in the past.

Cold temperature affects susceptibility to viruses in mice (Foxman et al., 2015) and in human cells in vitro (Foxman et al., 2016), although the evidence in humans is mixed (Dowling et al. 1958, Douglas et al. 1968). There may be synergistic effects of temperature and humidity (Lowen et al. 2007, Mäkinen et al. 2009, Shaman and Kohn 2009, te Beest et al. 2013). In the United States, mortality peaks coincide with the Christmas and New Year’s holidays, which occur during the northern hemisphere winter (Phillips et al.
However, Christmas effects on cardiovascular mortality also occur in New Zealand, where the holiday falls in the summertime (Knight et al. 2016). Hypovitaminosis D, which is seasonal with winter peaks (Kasahara et al. 2013), is also thought to play a role in fatal diseases (Holick 2007).

The root causes of mortality seasonality remain poorly understood (Dowell 2001, Cheng 2005). There seems to be a nexus between viral activity and adverse cardiovascular events (Bainton et al. 1978, Kunst et al. 1993, Madjid et al. 2004, Huy et al. 2012, Udell et al. 2013). However, the extent to which respiratory virus transmission during the winter (Glezen et al. 1987) causes increased mortality from other causes is debated (Reichert et al. 2004, Warren-Gash et al. 2012, Foster et al. 2013). The role of astronomical season (viz., through associated weather changes) in the cyclicity of infectious disease is also debated (Fisman 2012, Treanor 2016), with the school calendar (Grenfell and Anderson 1989), and dynamic resonance (Dushoff et al. 2004) among alternate hypotheses. The plurality of explanations suggests to us that “the mechanisms underlying seasonality of viral transmission” still remain essentially unexplained (Yorke et al. 1979, pp. 104–5). Determining the causes of seasonality of respiratory virus transmission is beyond our scope. Rather, we are concerned with estimating the mortality consequences of such seasonality.

Data and methods

We present a simple and, to the best of our knowledge, novel, approach to estimate the overall impact of winter-circulating viruses, especially influenza, on mortality. We divide the year into two six-month “pseudoseasons”, and calculate life expectancy for these periods. The seasonal binning approach using all-cause mortality avoids potential classification pitfalls of counterfactual approaches such as cause-deleted life tables or other approaches which rely on cause of death reporting (f.e., Stewart 2011). An influenza-deleted life expectancy is calculated with flu mortality statistically removed (Manton et al. 1986), while our approach studies all-cause mortality, but truly in the absence of the flu virus, i.e., in the summertime. The major strength of our approach is that our mortality estimates are not hypothetical “as if” constructs, but reflect observed conditions when no (or very little) flu virus circulates. Among the problems this avoids are classification errors regarding what is an influenza death (cf. Noymer and Nguyen 2013).

The noncirculation of flu viruses in the summertime is not absolute, as figure 1 shows. This is a time series plot of respiratory specimens (f.e., nasal
swabs) positive for any strain of the influenza virus (as a percentage, so peaks are not reflective of more samples during the winter). Note that even in the peaks, most samples test negative; there are many causes of upper respiratory illness other than influenza virus. Most peaks of influenza occur in the shaded pseudowinters, but the 2009 swine-origin influenza pandemic is a major exception. During influenza pandemics, which involve emergence of new strains, viral circulation in the summer is more likely (Webster et al., 1992).

From the mortality detail files of the National Center for Health Statistics (NCHS [2015]), we extracted monthly data on every death in the United States, January 1959 to December 2014. The data were then aggregated by sex and 22 age groups (0, 1–4, 5–9, ... , 95–99, ≥100), and binned into six-month pseudoseasons. Pseudowinter is November through April, and pseudosummer is May through October; pseudoseasons do not nest into calendar years. In long-run averages, these six-month periods best capture influenza

\footnote{Prior to 1959, digitized mortality data are not available for the United States that are simultaneously disaggregatable by age, sex, and month.}
Figure 2: Life expectancy ($e(0)$) time series by sex and by pseudoseason. The band enveloping the series is two years in height, centered on the calendar-year $e(0)$ estimates from Human Mortality Database (2016); it is not an uncertainty interval.

virus circulation or lack thereof (Thompson et al. 2009). The data begin with pseudosummer 1959 and end with pseudosummer 2014 (56 pseudosummer). There are 54 pseudowinters (1960–61 to 2013–14). Data for January through April 1959 were discarded since using these data for pseudowinter 1959–60 would be biased due to the omission of November and December 1958. Similarly, November and December 2014 were discarded. We constructed denominators using age- and sex-specific calendar-year exposure data from the Human Mortality Database (2016). We graduated these person-years-at-risk data to months, adjusting for days per month and leap years, and then re-aggregated to make pseudoseasonal exposures. We then calculated sex- and age-specific death rates for each pseudoseason, from which we calculated sex-specific life tables in the standard way (Keyfitz 1971, Preston et al. 2001).
Figure 3: Summer advantage over winter in pseudoseasonal life expectancy, females (upper series) and males (lower series).

Results

Figure 2 presents four \(e(0) \) (life expectancy) time series: pseudowinter (solid) and pseudosummer (dashed), for both males (lower series, blue) and females (upper series, red). The gray tubes enveloping each sex are 2-year wide bands centered on calendar-year life expectancy from the Human Mortality Database (HMD); these are not uncertainty intervals. The top of the gray band represents the calendar-year \(e(0)+1 \), so the summer pseudoseasonal life expectancy is never greater than one year above the neighboring calendar-year life expectancy. Similarly, since the bottom of the gray band is the calendar-year \(e(0)−1 \), it shows that winter pseudoseasonal life expectancy is always within one year of the neighboring calendar-year \(e(0) \). Using the HMD \(e(0) \) data as the center of the band also provides an external check of our life expectancy calculations, since our pseudoseasonal data should fairly neatly sandwich the calendar-year series.

Figure 3 shows the difference between \(e(0) \) in summers and their preceding winters (from the summer of 1960 minus the winter of 1959–60, to the summer of 2014 minus the winter of 2013–14). There are three important features. First, no secular time trend is evident. Second, the data are strongly negatively autocorrelated: declines are followed by increases,
Figure 4: Heatmap of winter:summer ratio, 1960–2014. At younger ages (above childhood), summer has higher mortality, although this has decreased over time. At older ages, winters have higher mortality.

and vice versa. Third, in addition to higher life expectancy, women have a higher summer−winter difference, 1.13±0.21 years, versus 0.82±0.21 years for males (mean±SD).

Figure 4 is a heat map of the winter:summer ratio of the mortality rate by age (M_x), over time. Several features of figure 4 are especially relevant to seasonal differences. First, summer advantage in mortality is an age-related phenomenon. At younger ages (approximately 5–35), summers are more deadly. The summer excess is more pronounced for males, and is declining over time. It is particularly noticeable in the so-called accident bump (Pampel, 2001). Indeed, summer mortality at younger ages is associated with motor vehicle fatalities (Farmer and Williams, 2005) and external causes generally (Feinstein, 2002). Winter overtakes summer above age 45, where death rates are (much) higher in absolute terms.

Figure 5 helps quantify the pseudoseasonal differences seen in figure 4. Here we present, on a year-by-year basis, the proportional hazard (P^Y) of summer mortality for age ≥ 45, separately by sex. Thus, we model $W = P^Y S$ where W is the N-element (agewise) vector of winter death rates for
Figure 5: Proportional hazard analysis. The proportional hazard is winter death rates above age 45 as a multiple of summer death rates.

A given year, P_Y is the year-specific proportional hazard (scalar), and S is the vector of summer death rates. The proportional hazard is estimated as:

$$P_Y = \exp \left(\frac{\sum_{x=45}^{\infty} \left[\log (M^W_x) - \log (M^S_x) \right]}{N} \right)$$

where the superscripts (W, S) refer to winter and summer and M_x is the age-specific death rate. The proportional hazard is the same as the winter to summer ratio of the geometric mean death rate (see Schoen 1970). Figure 5 shows that most winters have a mortality pattern that is between 110%–115% of the previous summer’s mortality. The proportional hazard model is an excellent fit, with all the year-specific $R^2 > 0.99$, which is not especially surprising, since it is based on pairwise comparisons of adjacent pseudoseasons. There are no meaningful sex differences in the proportional hazard.\footnote{This is in contrast to Denmark, where Rau and Doblhammer (2003) find greater seasonal fluctuations for males.}

If we drop the Y superscript and model a single proportional hazard for the entire data set, then W and S become year \times age matrices, and P is 1.119 for males and 1.124 for females. Naturally, when modeling the
whole time span with a single P, the goodness of fit declines, but it is still not poor: $R^2 = 0.89$ for males and $R^2 = 0.88$ for females.

Discussion

Taking only mortality into account, how much happier should an adult be during the summer? Death rates will be, typically, 10% to 15% higher in the winter (figure 5). However, by the time summer arrives, up to half a year will have passed, and death rates will be higher due to aging, even half a year’s worth. How does winter:summer mortality difference compare to age-related changes? We propose calculating “equivalent ages”, as follows. In table 1 the M_x columns give death rates by age, sex, and pseudoseason. The “w.e.a.” columns give the *winter equivalent age*, or the age at which one would have to be in the winter to experience the same (summer) death rate. Similarly, the “s.e.a.” columns give the *summer equivalent age*, or the summer age that experiences the same (winter) death rate. The M_x, w.e.a. and s.e.a. are calculated from a Gompertz mortality model estimated by Poisson regression (cf. Abdullatif and Novmer 2016, p. 207), the coefficients of which are given at the top of the table. Symbolically:

\[
M^S_x = \exp(\hat{\alpha}^S + \hat{\beta}^S \cdot x^S) \hspace{1cm} (2)
\]

\[
M^W_x = \exp(\hat{\alpha}^W + \hat{\beta}^W \cdot x^W) \hspace{1cm} (3)
\]

\[
w.e.a.(x^S) = (\hat{\alpha}^S - \hat{\alpha}^W + \hat{\beta}^S \cdot x^S)/\hat{\beta}^W \hspace{1cm} (4)
\]

where S,W superscripts are for summer and winter, x is age, and $\hat{\alpha}, \hat{\beta}$, are estimated coefficients. The solution for $w.e.a.(x^S)$ in (4) comes from setting mortality rates (i.e., (2) and (3)) equal, and solving for x^W in terms of x^S and the estimated coefficients. Thus, if $w.e.a.(x^S)$ is plugged into (3) for x^W, it will produce a death rate equivalent to the desired M^S_x. The same formula holds, *mutatis mutandis*, for s.e.a.(x^W). The (winter/summer) equivalent age is a function of the estimated Gompertz coefficients for both pseudoseasons and of the age for which an equivalency is being calculated.

Table II gives specific examples, using 2010 data. An 80 year old woman in the winter experiences death rates of an 81 year old woman in the summer. Death rates are higher in the winter, so the equivalent age in the summer is older. The difference is one year of age. On the other hand, a 70 year old man living in the summer has death rates equivalent to a 69.1 year old man in the winter. Summer mortality is more lenient and therefore it’s as if he is a younger man, compared to winter. The absolute value of the difference
Table 1: Equivalent age analysis for 2010, as explained in the main text. M_x: modeled death rate per 100,000; w.e.a. is “winter equivalent age”, or the age at which an individual would experience the same death rate, living in the winter, and s.e.a. is the same, mutatis mutandis, for living in the summer. Coefficients from a Poisson regression; the prediction equation is: $M_x = \exp(\alpha + \beta x)$.

between biological age and w.e.a. or s.e.a. becomes larger as biological age increases, since M_x increases exponentially with age.

There is a micro-macro disconnect here: for populations, mortality is clearly lower in the summer, holding age constant. From the point of view of an individual, holding age constant is meaningless; one cannot go from winter to summer without aging approximately half a year. Thus, the winter-into-summer mortality changes experienced by an individual are less than the ceteris paribus analysis represented by the proportional hazards (and the summer-into-winter changes, more).

In terms of life expectancy, the effect of the winter increase in mortality is similarly modest: on average, just over one year of life expectancy for women and just under one year for men. If we could wave a magic wand, eradicating influenza, respiratory syntical virus, and other pathogens which circulate in the winter, and, what is more, making the winter pattern of cardiac mortality look like the summer pattern (regardless of the reason for its seasonality), this would be equivalent to about seven years’ worth (in terms of time) of recent mortality progress (i.e., based on the slopes of figure 2).

The reason for this modest difference is easy to see, at least in retrospect. If we could eradicate influenza, then it would be like living in the summer.
To put it another way, people would experience their “summer equivalent age”, as in the example above. Although reducing death rates by about 12% seems like a great thing, it only makes a small difference in equivalent age, and, therefore, has a modest effect on $e(0)$. Mindel Sheps’s (1958) observation that changes in death rates usually are smaller when viewed through the lens of concomitant changes in survival rates, is highly relevant. The appreciable pseudoseasonal difference in M_x results in a rather modest difference in $e(0)$ because life expectancy is the integral of the life table ℓ_x, or survivor, column, not the M_x column. The Gompertzian relationship that holds above age 45, where by far the majority of deaths occur, guarantees that age-associated increases in mortality would swamp the hypothetical change generated by eradication of influenza.

The novelty of our approach lies not in the idea that elimination of a seemingly-major cause (in this case, approximated by pseudosummer) will have a small impact on $e(0)$. This is well understood; for example, Keyfitz (1985) (pp. 62–72) considers it in relation to the Shannon entropy, H, of the life table ℓ_x column. Because of competing risks of, say, heart disease, even eradicating cancer does not cause huge changes in $e(0)$ (ibid.), so it is clear that removing influenza deaths also won’t have a big effect. Vaupel’s study (1986) of the relation between $e(0)$ and M_x is also relevant. The greater mortality seasonality of women as measured by life expectancy differences (figure 3) than as measured by the winter:summer proportional hazard (figure 5), is consistent with this; the effect of a constant multiple of M_x affects $e(0)$ differently at different levels of M_x. What the present study shows, however, is that the total mortality impact of influenza (viz., including knock-on effects of flu on heart disease) is not very large in the grand scheme of things.

Another approach to estimating the role of viruses in all-cause mortality would be to use direct measures of viral circulation (as in figure 1) instead of summer and winter as instrumental indicators. This would have the disadvantage of not being applicable to historical data (viral surveillance like that shown in figure 1 begins in the late 1990s). On the other hand, an advantage is that it could be applied to the tropics, where influenza circulation is more haphazard (see f.e. Aungkulanon et al. 2015), and therefore the colinearity of flu season and “winter” is neither an appropriate identification strategy nor a lurking problem. Using nominal influenza mortality as an instrument, instead of the seasons, is another possibility, but is not without its problems (Noymer and Nguyen, 2013).

This study has a number of strengths and weaknesses. The principal strength is that it uses all-cause mortality and so automatically includes
any influenza-related deaths that would ordinarily be missed. One limitation is that we can only observe summers that follow winters, and vice versa. The more lenient mortality of the summer leads to the accumulation of frail individuals who then become more likely to die in the winter. Similarly, the more severe mortality of the winter leaves a more robust residual population, less likely to die in the summer; here we use “robust” and “frail” in the usual demographic sense (Keyfitz and Littman 1979, Vaupel et al. 1979, Vaupel and Yashin 1985, Manton et al. 1986). Thus, diminution of winter mortality from the invention of a perfect influenza vaccine could precipitate small increases in summer mortality, as a result of perturbing the frail/robust cycle. Goldstein et al. (2012) (p. 833) likewise speculate that these effects are limited in magnitude. The negative autocorrelation seen in figures 3 and 5 may well be driven by similar effects. It is also possible that influenza and other respiratory pathogens are under-ascertained in the summertime, and thus that the roots of seasonal mortality are misunderstood, although this seems unlikely given figure 1 and other work (Hayward et al., 2014).

Conclusion

It is reasonably well established that at least part of the reduction in cardiovascular mortality during the summer is due to the absence of influenza virus (Warren-Gash et al. 2009, 2011). The connection between influenza vaccine use and reduction of wintertime heart mortality is less clear, but has been studied (Seo et al. 2014). Influenza vaccine use is correlated with general health-seeking behavior, and so confounding is a problem in a direct empirical approaches to this question. In this study, we took an indirect approach, using whole-population data, and summers as a sort of natural experiment.

The question of mortality in a world with much more effective flu vaccines is not purely of theoretical importance. One of the chief reasons influenza vaccine is not optimally effective is the constant evolution of the virus (Treanor 2004). This leads directly to two related obstacles to good population-level immunity: the need to reformulate the flu vaccine each year, with not all years having equal vaccine efficacy (Keitel et al. 1997), and the need for people to be revaccinated each year. Progress is being made toward a vaccine that solves both of these problems (Pica and Palese, 2013). A universal flu vaccine (as such shots are called) is a clearly-expressed public health desideratum (Fineberg 2014), but remains on the drawing board.
Realistic expectations for mortality changes should be part of the policy analysis in this area.

In conclusion, the effect of influenza on life expectancy in the United States is less than 1.25 years for women and less than 1.0 year for men. This estimate is based on summer-winter differences and so implicitly includes the knock-on effect of influenza on other causes, most notably heart disease. This must be regarded as an upper bound on the gains to life expectancy from a universal flu vaccine, which could — theoretically — eradicate influenza, but not other winter-circulating respiratory pathogens. The morality impact of such a vaccine would be neither negligible nor enormous.

Acknowledgments

The idea for this paper is an offshoot of a stimulating conversation with Viggo Andreasen. For helpful suggestions, we thank Bob Schoen and Monica He King, as well as seminar audiences at Ohio State, Université de Montréal, and both the Health Policy Research Institute and the Institute for Mathematical Behavioral Sciences at UC, Irvine. Carter Butts suggested the title. Rahema Haseeb provided research assistance.

References

Áström, Daniel Oudin, Sören Edvinsson, Daniel Hondula, Joacim Rocklöv, and Barbara Schumann. 2016. “On the association between weather variability and total and cause-specific mortality before and during industrialization in Sweden.” Demographic Research 35(33):991–1010.

Áström, Daniel Oudin, Bertil Forsberg, Sören Edvinsson, and Joacim Rocklöv. 2013. “Acute fatal effects of short-lasting extreme temperatures in Stockholm, Sweden: Evidence across a century of change.” Epidemiology 24(6):820–829.

Abdullatif, Viyta N. and Andrew Noymer. 2016. “Clostridium difficile infection: An emerging cause of death in the twenty-first century.” Biodemography and Social Biology 62(2):198–207.

Analitis, A., K. Katsouyanni, A. Biggeri, M. Baccini, B. Forsberg, L. Bisanti, U. Kirchmayer, F. Ballester, E. Cadum, P. G. Goodman, A. Hojsi, J. Sunyer, P. Tititan, and P. Michelozzi. 2008. “Effects of cold weather on mortality: Results from 15 European cities within the PHEWE project.” American Journal of Epidemiology 168(12):1397–1408.

Anderson, Brooke G. and Michelle L. Bell. 2009. “Weather-related mortality: How heat, cold, and heat waves affect mortality in the United States.” Epidemiology 20(2):205–213.

Aungkulanon, Suchunya, Po-Yung Cheng, Khatnita Kusreesakul, Kanitta Bundhamcharoen, Malinee Chittaganpitch, McCarron Margaret, and Sonja Olsen. 2015. “Influenza-associated mortality in Thailand, 2006–2011.” Influenza and Other Respiratory Viruses 9(6):298–304.

Aungkulanon, Suchunya, Po-Yung Cheng, Khatnita Kusreesakul, Kanitta Bundhamcharoen, Malinee Chittaganpitch, McCarron Margaret, and Sonja Olsen. 2015. “Influenza-associated mortality in Thailand, 2006–2011.” Influenza and Other Respiratory Viruses 9(6):298–304.

Bainton, David, Glynne R Jones, and David Hole. 1978. “Influenza and ischaemic heart disease – A possible trigger for acute myocardial infarction?” International Journal of Epidemiology 7(3):231–239.

Basagaña, Xavier, Claudio Sartini, Jose Barrera-Gómez, Payam Dadvand, Jordi Cuinilla, Bart Ostro, Jordi Sunyer, and Mercedes Medina-Ramon. 2011. “Heat waves and cause-specific mortality at all ages.” Epidemiology 22(6):765–772.
Basu, Rupa and Jonathan M. Samet. 2002. “Relation between elevated ambient temperature and mortality: A review of the epidemiologic evidence.” *Epidemiologic Reviews* 24(2):190–202.

Berko, Jeffrey, Deborah D. Ingram, Shubhayu Saha, and Jennifer D. Parker. 2014. “Deaths attributed to heat, cold, and other weather events in the United States, 2006–2010.” *National Health Statistics Reports* 76.

Bhaskaran, K., S. Hajat, A. Haines, E. Herrett, P. Wilkinson, and L. Smeeth. 2009. “Effects of ambient temperature on the incidence of myocardial infarction.” *Heart* 95(21):1760–1769.

Braga, Alfésio L. F., Antonella Zanobetti, and Joel Schwartz. 2002. “The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities.” *Environmental Health Perspectives* 110(9):859–863.

Breschi, Marco and Massimo Livi-Bacci. 1986a. “Saison et climat comme contraintes de la survie des enfants: L’expérience italienne au XIXe siècle.” *Population* 41(1):9–35.

———. 1986b. “Stagione di nascita e clima come determinanti della mortalità infantile negli stati sardi di terraferma.” *Genus* 42(1/2):87–101.

———. 1986c. “Effect du climat sur la mortalité infantile: Résultats pour la Savoie, le Piémont et la Ligurie en 1828–1837.” *Population* 41(6):1072–1074.

CDC. 2015. *Weekly U.S. Influenza Surveillance Report*. http://www.cdc.gov/flu/weekly/ Accessed 9 June 2016.

Cheng, Tsung O. 2005. “Mechanism of seasonal variation in acute myocardial infarction.” *International Journal of Cardiology* 100(1):163–164.

Crombie, D L, D M Fleming, K W Cross, and R J Lancashire. 1995. “Concurrence of monthly variations of mortality related to underlying cause in Europe.” *Journal of Epidemiology and Community Health* 49(4):373–378.

Curriero, Frank C., Karlyn S. Heiner, Jonathan M. Samet, Scott L. Zeger, Lisa Strug, and Jonathan A. Patz. 2002. “Temperature and mortality in 11 cities of the eastern United States.” *American Journal of Epidemiology* 155(1):80–87.

Dalla-Zuanna, Gianpiero and Alessandro Rosina. 2009. “The fatal season: An analysis of extremely high winter neonatal mortality.” *Transylvanian Review* 18(1):245–276.

———. 2010. “A note on: The joint effect of maternal malnutrition and cold weather on neonatal mortality in -century Venice: An assessment of the hypothermia hypothesis, *Population Studies* 63(3):233–251 by Renzo Derosas.” *Population Studies* 64(2):193–195.

———. 2011. “An analysis of extremely high nineteenth-century winter neonatal mortality in a local context of northeastern Italy.” *European Journal of Population* 27(1):33–55.

Derosas, Renzo. 2009. “The joint effect of maternal malnutrition and cold weather on neonatal mortality in nineteenth-century Venice: An assessment of the hypothermia hypothesis.” *Population Studies* 63(3):233–251.

———. 2010. “Reply to the note by Dalla-Zuanna and Rosina.” *Population Studies* 64(2):197–198.

Díaz, Julio, Ricardo García, César Lópe, Cristina Linare, Aurelio Tobias, and Luis Prieto. 2005. “Mortality impact of extreme winter temperatures.” *International Journal of Biometeorology* 49(3):179–183.

Douglas, R. Gordon, Jr., Keith M. Lindgren, and Robert B. Couch. 1968. “Exposure to cold environment and rhinovirus common cold.” *New England Journal of Medicine* 279(14):742–747.

Dowell, Scott F. 2001. “Seasonal variation in host susceptibility and cycles of certain infectious diseases.” *Emerging Infectious Diseases* 7(3):369–374.
Dowling, Harry F., George Gee Jackson, Irwin G. Spiesman, and Tohru Inouye. 1958. “Transmission of the common cold to volunteers under controlled conditions. III. The effect of chilling of the subjects upon susceptibility.” *American Journal of Hygiene* 68(1):59–65.

Dushoff, Jonathan, Joshua B. Plotkin, Simon A. Levin, and David J. D. Earn. 2004. “Dynamical resonance can account for seasonality of influenza epidemics.” *Proceedings of the National Academy of Sciences of the United States of America* 101(48):16,915–16,916.

Ekamper, Peter, Frans van Poppel, Coen van Duin, and Joop Garssen. 2009. “150 Years of temperature-related excess mortality in the Netherlands.” *Demographic Research* 21(14):385–426.

Farmer, C. M. and A. F. Williams. 2005. “Temporal factors in motor vehicle crash deaths.” *Injury Prevention* 11(1):18–23.

Feinstein, Craig A. 2002. “Seasonality of deaths in the U.S. by age and cause.” *Demographic Research* 6(17):469–486.

Fineberg, Harvey V. 2014. “Pandemic preparedness and response: Lessons from the H1N1 influenza of 2009.” *New England Journal of Medicine* 370(14):1335–1342.

Fisman, D. 2012. “Seasonality of viral infections: Mechanisms and unknowns.” *Clinical Microbiology and Infection* 18(10):946–954.

Foster, E. D., J. E. Cavanaugh, W. G. Haynes, M. Yang, A. K. Gerke, F. Tang, and P. M. Polgreen, 2013. “Acute myocardial infarctions, strokes and influenza: Seasonal and pandemic effects.” *Epidemiology and Infection* 141(4):735–744.

Foxman, Ellen F., James A. Storer, Kiran Vanaja, Andre Levchenko, and Akiko Iwasaki, 2016. “Two interferon-independent double-stranded RNA-induced host defense strategies suppress the common cold virus at warm temperature.” *Proceedings of the National Academy of Sciences of the United States of America* 113(30):8496–8501.

Galloway, P. R. 1985. “Annual variations in deaths by age, deaths by cause, prices, and weather in London 1670 to 1830.” *Population Studies* 39(3):487–505.

Glezen, W. Paul, Michael Decker, Sheldon W. Joseph, and Raymond G. Mercready Jr. 1987. “Acute respiratory disease associated with influenza epidemics in Houston, 1981–1983.” *Journal of Infectious Diseases* 155(6):1119–1126.

Goldstein, Edward, Cecile Viboud, Vivek Charu, and Marc Lipsitch, 2012. “Improving the estimation of influenza-related mortality over a seasonal baseline.” *Epidemiology* 23(6):829–838.

Grenfell, B. T. and R. M. Anderson. 1989. “Pertussis in England and Wales: An investigation of transmission dynamics and control by mass vaccination.” *Proceedings of the Royal Society of London, Series B: Biological Sciences* 236(1284):pp. 213–252.

Hajat, S., R. S. Kovats, and K. Lachowycz. 2007. “Heat-related and cold-related deaths in England and Wales: Who is at risk?” *Occupational and Environmental Medicine* 64(2):93–100.

Hayward, Andrew C., Ellen B. Frgaszsz, Alison Bermingham, Lili Wang, Andrew Copas, W. John Edmunds, Neil Ferguson, Nilu Goonetilleke, Gabrielle Harvey, Jana Kovar, Megan S. C. Lim, Andrew McMichael, Elizabeth R. C. Millett, Jonathan S. Nguyen-Van-Tam, Irwin Nazareth, Richard Pebody, Faiza Tabassum, John M Watson, Fatima B. Wurie, Anne M. Johnson, and Maria Zambon, 2014. “Comparative community burden and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study.” *Lancet Respiratory Medicine* 2(6):445–454.

Healy, J. D. 2003. “Excess winter mortality in Europe: A cross country analysis identifying
key risk factors.” *Journal of Epidemiology and Community Health* 57(10):784–789.

Holick, Michael F. 2007. “Vitamin D deficiency.” *New England Journal of Medicine* 357(3):266–281.

Human Mortality Database. 2016. http://www.mortality.org/. Accessed 15 August 2016.

Huy, Christina, Dorothee Kuhn, Sven Schneider, and Iris Zöllner. 2012. “Seasonal waves of influenza and cause-specific mortality in Germany.” *Central European Journal of Medicine* 7(4):450–456.

Huynen, Maud M. T. E., Pim Martens, Dieneke Schram, Matty P. Weijenberg, and Anton E. Kunst. 2001. “The impact of heat waves and cold spells on mortality rates in the Dutch population.” *Environmental Health Perspectives* 109(5):463–470.

Kaiser, Reinhard, Alain Le Tertre, Joel Schwartz, Carol A. Gotway, W. Randolph Daley, and Carol H. Rubin. 2007. “The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality.” *American Journal of Public Health* 97(S1):S158–S162.

Kalkstein, Laurence S. and Robert E. Davis. 1989. “Weather and human mortality: An evaluation of demographic and interregional responses in the United States.” *Annals of the Association of American Geographers* 79(1):44–64.

Kasahara, Amy K., Ravinder J. Singh, and Andrew Noymer. 2013. “Vitamin D (25OHD) serum seasonality in the United States.” *PLoS One* 8(6):e65,785.

Keatinge, W. R., G. C. Donaldson, K. Bucher, G. Jendritsky, E. Cordioli, M. Martinelli, L. Dardanoni, K. Katsoyanni, A. E. Kunst, J. P. Mackenbach, C. McDonald, S. Nayha, and I. Vuori. 1997. “Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe.” *Lancet* 349(9062):1341–1346.

Keitel, Wendy A., Thomas R. Cate, Robert B. Couch, Linda L. Huggins, and Kenneth R. Hess. 1997. “Efficacy of repeated annual immunization with inactivated influenza virus vaccines over a five year period.” *Vaccine* 15(10):1114–1122.

Keyfitz, N., and G. Littman. 1979. “Mortality in a heterogeneous population.” *Population Studies* 33(2):333–342.

Keyfitz, Nathan. 1970. “Finding probabilities from observed rates, or how to make a life table.” *American Statistician* 24(1):28–33.

———. 1985. *Applied mathematical demography*. Springer, New York, second ed.

Klinenberg, Eric. 2002. *Heat wave: A social autopsy of disaster in Chicago*. University of Chicago Press.

Knight, Josh, Chris Schilling, Adrian Barnett, Rod Jackson, and Phillip Clarke. 2016. “Revisiting the ‘Christmas holiday effect’ in the southern hemisphere.” *Journal of the American Heart Association* 5(12):e005,098.

Kunst, Anton E., Casper W. N. Looman, and Johan P. Mackenbach. 1993. “Outdoor air temperature and mortality in the Netherlands: A time-series analysis.” *American Journal of Epidemiology* 137(3):331–341.

Kysely, Jan, Lucie Pokorna, Jan Kyncl, and Bohumir Kriz. 2009. “Excess cardiovascular mortality associated with cold spells in the Czech Republic.” *BMC Public Health* 9(1):19.

Land, Kenneth C. and David Cantor. 1983. “ARIMA models of seasonal variation in U.S. birth and death rates.” *Demography* 20(4):541–568.

Lowen, Anice C, Samira Mubareka, John Steel, and Peter Palese. 2007. “Influenza virus transmission is dependent on relative humidity and temperature.” *PLoS Pathogens* 3(10):e151.

Mackenbach, J. P., A. E. Kunst, and C. W. Looman. 1992. “Seasonal variation in mortality in The Netherlands.” *Journal of Epidemiology and Community Health* 46(3):261–265.
Madjid, Mohammad, Ibrahim Aboshady, Imran Awan, Silvio Litovsky, and S. Ward Casscells. 2004. “Influenza and cardiovascular disease: Is there a causal relationship?” Texas Heart Institute Journal 31(1):4–13.

Mäkinen, Tiina M., Raija Juvonen, Jari Jokelainen, Terttu H. Harju, Ari Peitso, Aini Bloigu, Sylvi Silvermoinen-Kassinen, Maija Leinonen, and Juhani Hassi. 2009. “Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections.” Respiratory Medicine 103(3):456–462.

Manton, Kenneth G., Eric Stallard, and James W. Vaupel. 1986. “Alternative models for the heterogeneity of mortality risks among the aged.” Journal of the American Statistical Association 81(395):635–644.

Mercer, James B. 2003. “Cold—An underrated risk factor for health.” Environmental Research 92(1):8–13.

National Center for Health Statistics. 2015. Mortality multiple cause-of-death data files, http://www.cdc.gov/nchs/nvss/mortality_public_use_data.htm. National Center for Health Statistics. Accessed 12 December 2015.

Noymer, Andrew and Ann M. Nguyen. 2013. “Influenza as a proportion of pneumonia mortality: United States, 1959–2009.” Biodemography and Social Biology 59(2):178–190.

Pampel, Fred C. 2001. “Gender equality and the sex differential in mortality from accidents in high income nations.” Population Research and Policy Review 20(5):397–421.

Phillips, David, Gwendolyn E. Barker, and Kimberly M. Brewer. 2010. “Christmas and New Year as risk factors for death.” Social Science & Medicine 71(8):1463–1471.

Phillips, David P., Jason R. Jarvinen, Ian S. Abramson, and Rosalie R. Phillips. 2004. “Cardiac mortality is higher around Christmas and New Year’s than at any other time: The holidays as a risk factor for death.” Circulation 110(25):3781–3788.

Pica, Natalie and Peter Palese. 2013. “Toward a universal influenza virus vaccine: Prospects and challenges.” Annual Review of Medicine 64(1):189–202.

Preston, Samuel H., Patrick Heuveline, and Michel Guillot. 2001. Demography: Measuring and modeling population processes. Blackwell, Oxford.

Rau, Roland. 2006. Seasonality in human mortality: A demographic approach. No. 3 in Demographic Research Monographs, Springer, Berlin.

Rau, Roland and Gabriele Dobhammer. 2003. “Seasonal mortality in Denmark: The role of sex and age.” Demographic Research 9(9):197–222.

Reichert, Thomas A., Lone Simonsen, Ashutosh Sharma, Scott A. Pardo, David S. Pedson, and Mark A. Miller. 2004. “Influenza and the winter increase in mortality in the United States, 1959–1999.” American Journal of Epidemiology 160(5):492–502.

Robine, J.-M., J.-P. Michel, and F. R. Herrmann. 2012. “Excess male mortality and age-specific mortality trajectories under different mortality conditions: A lesson from the heat wave of summer 2003.” Mechanisms of Ageing and Development 133(6):378–386.

Rocklöv, Joacim, Kristie Ebi, and Bertil Forsberg. 2011. “Mortality related to temperature and persistent extreme temperatures: A study of cause-specific and age-stratified mortality.” Occupational and Environmental Medicine 68(7):531–536.

Rooney, Cleone, Anthony J. McMichael, R. Sari Kovats, and Michel P. Coleman. 1998. “Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave.” Journal of Epidemiology and Community Health 52(8):482–486.

Rosenberg, Harry M. 1966. “Recent developments in seasonally adjusting vital statistics.” Demography 3(2):305–318.
Seo, Yu Bin, Won Suk Choi, Ji Hyeon Baek, Jacob Lee, Joon Young Song, Jin Soo Lee, Hee Jin Cheong, and Woo Joo Kim. 2014. “Effectiveness of the influenza vaccine at preventing hospitalization due to acute exacerbation of cardiopulmonary disease in Korea from 2011 to 2012.” Human Vaccines & Immunotherapeutics 10(2):423–427.

Seretakis, Dimitrios, Pagona Lagiou, Loren Lipworth, Lisa B. Signorello, Kenneth J. Rothman, and Dimitrios Trichopoulos. 1997. “Changing seasonality of mortality from coronary heart disease.” Journal of the American Medical Association 278(12):1012–1014.

Shaman, Jeffrey and Melvin Kohn. 2009. “Absolute humidity modulates influenza survival, transmission, and seasonality.” Proceedings of the National Academy of Sciences of the United States of America 106(9):3243–3248.

Sheps, Mindel C. 1958. “Shall we count the living or the dead?” New England Journal of Medicine 259(25):1210–1214.

Sheth, Tej, Cyril Nair, James Muller, and Salim Yusuf. 1999. “Increased winter mortality from acute myocardial infarction and stroke: The effect of age.” Journal of the American College of Cardiology 33(7):1916–1919.

Stafoggia, Massimo, Francesco Forastiere, Daniele Agostini, Annibale Biggeri, Luigi Bisanti, Emilio Cadum, Nicola Caranci, Francesca de’Donato, Sara De Lisi, Moreno De Maria, Paola Michelozzi, Rossella Miglio, Paolo Pandolfi, Sally Picciotto, Magda Rognoni, Antonio Russo, Corrado Scarnato, and Carlo A. Perucci. 2006. “Vulnerability to heat-related mortality: A multicity, population-based, case-crossover analysis.” Epidemiology 17(3):315–323.

Stewart, Quincy Thomas. 2011. “The cause-deleted index: Estimating cause of death contributions to mortality.” Mathematical Population Studies 18(4):234–257.

Stee Beest, Dennis E., Michiel van Boven, Mariëtte Hooiveld, Carline van den Dool, and Jacco Wallinga. 2013. “Driving factors of influenza transmission in the Netherlands.” American Journal of Epidemiology 178(9):1469–1477.

Thompson, William W., Eric Weintraub, Praveen Dhankhar, Po-Yung Cheng, Lynnette Brammer, Martin I. Meltzer, Joseph S. Bresee, and David K. Shay. 2009. “Estimates of US influenza-associated deaths made using four different methods.” Influenza and Other Respiratory Viruses 3(1):37–49.

Toulemon, Laurent and Magali Barbieri. 2008. “The mortality impact of the August 2003 heat wave in France: Investigating the ‘harvesting’ effect and other long-term consequences.” Population Studies 62(1):39–53.

Trenor, John. 2004. “Influenza vaccine: Outmaneuvering antigenic shift and drift.” New England Journal of Medicine 350(3):218–220.

Trenor, John J. 2016. “Influenza vaccination.” New England Journal of Medicine 375(13):1261–1268.

Udell, Jacob A., Rami Zawi, Deepak L. Bhatt, Maryam Keshk-Jahromi, Fiona Gaughran, Arintaya Phrommintikul, Andrzei Ciszewski, Hossein Vakili, Elaine B. Hoffman, Michael E. Parkouh, and Christopher P. Cannon. 2013. “Association between influenza vaccination and cardiovascular outcomes in high-risk patients: A meta-analysis.” Journal of the American Medical Association 310(16):1711–1720.

Valleron, Alain-Jacques and Ariane Boumendil. 2004. “Épidémiologie et canicules: Analyses de la vague de chaleur 2003 en France.” Comptes Rendus Biologies 327(12):1125–1141.

Vaupel, J. W. 1986. “How change in age-specific mortality affects life expectancy.” Population Studies 40(1):147–157.

Vaupel, James W., Kenneth G. Manton, and Eric Stallard. 1979. “The impact of heterogeneity in individual frailty on the dynamics of mortality.” Demography 16(3):439–454.

Vaupel, James W. and Anatoli I. Yashin. 1985. “The deviant dynamics of death in heterogeneous populations.” Sociological Methodology 15:179–211.

Warren-Gash, Charlotte, Krishnan Bhaskaran, Andrew Hayward, Gabrielle M. Leung, Su-Wei Lo, Chit-Ming Wong, Joanna Ellis, Richard Pebody, Liam Smeeth, and Benjamin J. Cowling. 2011. “Circulating influenza virus,
climatic factors, and acute myocardial infarction: A time series study in England and Wales and Hong Kong.” *Journal of Infectious Diseases* 203(12):1710–1718.

Warren-Gash, Charlotte, Andrew C. Hayward, Harry Hemingway, Spiros Denaxas, Sara L. Thomas, Adam D. Timmis, Heather Whitaker, and Liam Smeeth. 2012. “Influenza infection and risk of acute myocardial infarction in England and Wales: A CALIBER self-controlled case series study.” *Journal of Infectious Diseases* 206(11):1652–1659.

Warren-Gash, Charlotte, Liam Smeeth, and Andrew C. Hayward. 2009. “Influenza as a trigger for acute myocardial infarction or death from cardiovascular disease: A systematic review.” *Lancet Infectious Diseases* 9(10):601–610.

Webster, Robert G., William J. Bean, Owen T. Gorman, Thomas M. Chambers, and Yoshihiro Kawaoka. 1992. “Evolution and ecology of influenza A viruses.” *Microbiological Reviews* 56(1):152–179.

Wilkinson, Paul, Sam Pattenden, Ben Armstrong, Astrid Fletcher, R. Sari Kovats, Punam Mangtani, and Anthony J. McMichael. 2004. “Vulnerability to winter mortality in elderly people in Britain: Population based study.” *British Medical Journal* 329(7467):647.

Woods, R. I., P. A. Watterson, and J. H. Woodward. 1989. “The causes of rapid infant mortality decline in England and Wales, 1861–1921. Part II.” *Population Studies* 43(1):113–132.

Yang, Jun, Chun-Quan Ou, Yan Ding, Ying-Xue Zhou, and Ping-Yan Chen. 2012. “Daily temperature and mortality: A study of distributed lag non-linear effect and effect modification in Guangzhou.” *Environmental Health* 11(1):art. no. 63.

Yorke, James A., Neal Nathanson, Giulio Pianigiani, and John Martin. 1979. “Seasonality and the requirements for perpetuation and eradication of viruses in populations.” *American Journal of Epidemiology* 109(2):103–123.

Zhao, Zhongwei, Yuan Zhu, and Edward Jow-Ching Tu. 2015. “Daily mortality changes in Taiwan in the 1970s: An examination of the relationship between temperature and mortality.” *Vienna Yearbook of Population Research* 13:71–90.