The Structural Basis of Long-Term Potentiation in Hippocampal Synapses, Revealed by Electron Microscopy Imaging of Lanthanum-Induced Synaptic Vesicle Recycling

John E. Heuser*

Hippocampal neurons in dissociated cell cultures were exposed to the trivalent cation lanthanum for short periods (15–30 min) and prepared for electron microscopy (EM), to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses of these cultures—including synaptic vesicle depletion and proliferation of vesicle-recycling structures—but the overall architecture of a large proportion of the synapses in the cultures was dramatically altered, due to large postsynaptic “bulges” or herniations into the presynapses. Moreover, in most cases, these postsynaptic herniations or protrusions produced by lanthanum were seen by EM to distort or break or “perforate” the so-called postsynaptic densities (PSDs) that harbor receptors and recognition molecules essential for synaptic function. These dramatic EM observations lead us to postulate that such PSD breakages or “perforations” could very possibly create essential substrates or “tags” for synaptic growth, simply by creating fragmented free edges around the PSDs, into which new receptors and recognition molecules could be recruited more easily, and thus, they could represent the physical substrate for the important synaptic growth process known as “long-term potentiation” (LTP). All of this was created simply in hippocampal dissociated cell cultures, and simply by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum, but we argued in this report that such fundamental changes in synaptic architecture—given that they can occur at all—could also occur at the extremes of normal neuronal activity, which are presumed to lead to learning and memory.

Keywords: hippocampal synapses, synaptic vesicle, endocytosis, lanthanum, long-term potentiation, postsynaptic densities (PSDs)

INTRODUCTION

Of all the important structural features of the synapse that have been viewed in the electron microscope over the decades, a feature that has been the most correlated with long-term potentiation (LTP), especially in the context of electron microscopy (EM) preparations generated from hippocampal tissues that were experimentally manipulated into LTP conditions,
would have to be the perforated postsynaptic density (or perforated PSD).

It was the research work of one of the leading electron microscopists of the hippocampus, Yuri Geinesman, to establish this correlation (Geinisman et al., 1986, 1987a,b, 1991, 1992a,b, 1993, 1994, 1996; Geinisman, 1993, 2000). Another top electron microscopist of the hippocampus, Kirsten Harris, reported perforated PSDs almost as often, but remained more agnostic about their role in hippocampal LTP (Harris and Stevens, 1989; Chicurel and Harris, 1992; Spacek and Harris, 1997; Sorra et al., 1998; Fiala et al., 2002; Harris et al., 2003; Spacek and Harris, 2004; Bourne and Harris, 2011; Bailey et al., 2015; Watson et al., 2016). Likewise, two other top EM labs that published a lot on the hippocampus, Michael Stewart's in Milton Keynes, England (Dhanrajan et al., 2004; Popov et al., 2004; Stewart et al., 2005a,b; Medvedev et al., 2010), and Dominique Muller's in Geneva, Switzerland (Stoppini et al., 1991; Toni et al., 1999, 2001; Luscher et al., 2000), reported finding perforated PSDs in a lot of publications and also made outstanding contributions toward understanding how these might be involved in LTP or "synaptic learning" (Stoppini et al., 1991; Toni et al., 1999, 2001; Luscher et al., 2000; Dhanrajan et al., 2004; Popov et al., 2004; Stewart et al., 2005a,b; Medvedev et al., 2010). All this history culminated with the later, outstandingly beautiful cryo-EM work on this same topic, which came from Michael Frotscher's lab in Freiberg, Germany (Zhao et al., 2012a,b,c). Along the way, and right up to the present day, many other EM labs have weighed in with valuable correlative data and their own ideas on how LTP might come about (Tarrant and Routtenberg, 1977; Calverley and Jones, 1987a,b; Petit et al., 1988; Markus et al., 1994; Neuhoff et al., 1999; Kennedy, 2016, 2018; Sun et al., 2021), and numerous reviews of perforated synapses have been published (although without any serious attempt to correlate them with learning or memory) (Petralia et al., 2015, 2016, 2017, 2018, 2021).

At hippocampal synapses, the postsynaptic densities or PSDs are ordinarily disk-shaped entities that are generally located directly across from presynaptic neurotransmitter release sites (Gray, 1959, 1976; Blomberg et al., 1977; Cohen et al., 1977; Cohen and Siekevitz, 1978; Carlin et al., 1980; Dosemeci et al., 2001; Tao-Cheng et al., 2009; High et al., 2015). They generally appear almost continuous in thickness and density across the breadth of the disk, and even though recent close inspections have begun to suggest that each PSD disk may have a sub-structure, and may be composed of sub-modules or "nanomodules" (MacGillavry et al., 2013; Broadhead et al., 2016; Zeng et al., 2016; Biederer et al., 2017; Chen et al., 2018, 2020; Crosby et al., 2019; Trotter et al., 2019; Obashi et al., 2021; Ramsey et al., 2021; Wernger et al., 2022), these PSD components pack closely enough together to create the general impression in the EM of a continuous plaque or a disk.

“Perforated” PSDs, in contrast, are variable in outline. They look more like irregular and discontinuous patches in the EM, but they are presumed to be composed of the same components that are found in the more normal, continuous PSD disks. Reviewing the aforementioned references, one can find a wide range of thoughts about them, everything from conclusions that such “perforated” PSDs are in the process of division of one plaque into two (ultimately to form two different postsynaptic spines, in some of the bolder claims), to conclusions that they are simply a by-product of synaptic activity. But overall, “perforated” PSDs have generally been interpreted as synapses-in-augmentation, as would be expected if they were the structural correlates of the synaptic enhancement that is presumed by everyone to be the fundamental basis of LTP (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973; Carlin and Siekevitz, 1983; Lomo, 2003, 2018; Bailey et al., 2015).

In this report, we presented serendipitous observations that could help to explain exactly how “bursts” of presynaptic activity could cause perforated PSDs to form, in the first place. Specifically, we argued that these bursts of presynaptic activity could create delays in the process of synaptic vesicle recycling, which could make the presynapse expand in surface area, and do in such a manner that it could actually strain and break the normal plaque-like PSD into a “perforated” PSD.

Our EM images were obtained from primary (disassociated cell) hippocampal cultures prepared by classical techniques (Skrede and Westgaard, 1971; Schwartzkroin and Wester, 1975; Ransom et al., 1977; Mayer et al., 1989; Lu et al., 1998; Scott et al., 2001; Blanpied et al., 2002). These were chemically stimulated via direct application of low doses (0.1 mM) of the trivalent cation, lanthanum (La + + +). This magical trivalent cation has been used to stimulate spontaneous neurosecretion in many different preparations over the past half century (Miledi, 1971; Curtis et al., 1986; Coniglio et al., 1993; Powis et al., 1994; Powis and Clark, 1996; Lerner et al., 2006; Chung et al., 2008; Wasser and Kavalali, 2009; Ramirez and Kavalali, 2011), but still, no one knows exactly how or why it does so, especially because it is generally considered to be a “super calcium” that actually blocks most calcium channels, and thus blocks most calcium-evoked neurosecretory phenomena, it does not stimulate them (dos Remedios, 1981; Lansman, 1990; Reichling and MacDermott, 1991; Meir et al., 1998).

When we first faced this conundrum 50 years ago (the conundrum of why lanthanum blocks calcium-induced neurosecretion but hugely stimulates spontaneous transmitter release, in the form of huge bursts of miniature endplate potentials or “m.e.p.p.’s” at the NMI), we simply could not explain it, but nevertheless we “used” the phenomenon to deplete synaptic vesicles from frog neuromuscular junctions, and thus to expose for the first time the resultant membranous transformations that turned out to represent synaptic vesicle recycling (Heuser and Miledi, 1971; Heuser, 1976, 1989a,b). Our scientific colleagues in those days quickly followed suit, and also used lanthanum to show that a dramatic expansion of the presynaptic membrane can accompany this spontaneous lanthanum-induced transmitter discharge, due to a slowdown of synaptic vesicle recycling and accumulation of vesicle membrane on the presynaptic surface (von Wedel et al., 1981; Jones et al., 1982; Segal et al., 1985; Robitaille and Tremblay, 1987; Torri-Tarelli et al., 1987, 1990; Valtorta et al., 1988). In fact, we intend to show here—by classical thin-section EM—that it is this presynaptic expansion, which is most dramatic in hippocampal cultures, and furthermore, that the unique distortion(s) which this expansion creates on the postsynaptic side of hippocampal
synapses can greatly help to explain how and why their PSDs can become perforated during enhanced synaptic activity.

RESULTS

Structural Evidence of Lanthanum’s Stimulatory Effects

A total of 57 separate experiments were performed with lanthanum on hippocampal cultures, adjusting the time of exposure (5–30 min), the dose of lanthanum (0.1–1 mM), the level of calcium counter ions (0–1 mM), and the method of fixation for EM (glutaraldehyde in cacodylate buffer vs. in Hepes buffer). Such classical dissociated cell hippocampal cultures invariably display a huge range of synaptic types, only vaguely reflecting the characteristic and stereotypical forms of synapses observed in the intact hippocampus or in hippocampal slices (Skrede and Westgaard, 1971; Schwartzkroin and Wester, 1975; Ransom et al., 1977; Mayer et al., 1989; Lu et al., 1998; Scott et al., 2001; Blanpied et al., 2002). Nevertheless, most of the synapses that manage to reform in such dissociated cell cultures fall into two major categories: bouton-like (e.g., onto dendritic protrusions that are generally described as primitive “spines”), and plaque-like (e.g., directly onto the shafts of the primitive, disoriented dendrites in such cultures). The former types of synapses typically have single PSD plaques that are generally considered to be “excitatory.” These are the so-called “asymmetric” synapses, due to their relatively thick PSDs. The latter typically display 2 or 3 adjacent plaques in the dendritic shaft and are generally considered “inhibitory.” These are the so-called “symmetric” synapses, due to their relatively thin and often barely perceptible PSDs (Gray, 1959, 1976; Blomberg et al., 1977; Cohen et al., 1977; Cohen and Siekevitz, 1978; Carlin et al., 1980; Dosemeci et al., 2001; Tao-Cheng et al., 2009; High et al., 2015).

Lanthanum promptly changes the appearance of both bouton-like and plaque-like presynaptic terminals, replacing many of their synaptic vesicles with clathrin-coated vesicles, even in the first 5–10 min after application, and at later times, leaves many of these presynaptic terminals almost empty, or at best, partially filled with irregular membrane forms (as well as residual clathrin-coated vesicles and “empty cages”) (Figures 1–6). Essentially, these are the structural changes that we observed originally at the frog NMJ (Heuser and Miledi, 1971; Heuser, 1976, 1989a,b), which initiated the whole idea that synaptic vesicle membrane could be recycled, and that we have recently been able to observe in mammalian NMJs as well (Heuser and Tenkova, 2020).

Consequences of Lanthanum’s Stimulatory Effects Projected Onto the Postsynapse

Most unexpected, however, was the dramatic change in the overall configuration of these cultured synapses, a configuration that began to appear in lanthanum at 10 min, and peaked in abundance at 20 min (and seemed to die down by 30 min). This was manifested as a discrete “bulge” of the postsynapse, directly into the midst of the presynaptic terminal (Figures 1–6). Generally, the postsynaptic protrusions observed in lanthanum occupy a considerable portion of the presynaptic cytoplasm, and draw a considerable mass of postsynaptic cytoplasm into them. In the EM, this bolus of cytoplasm generally appears featureless, or appears finely mesh-like in appearance. It does not look like an active, actin-based growth from the postsynapse, but more like a passive inclusion, only occasionally containing any recognizable postsynaptic membranous organelle.

It is important to consider one clue as to how or why these protrusions form in the first place. This comes from closely examining the membrane of the presynapse that forms the protrusion (or we could say in the invagination, when considered from the presynaptic side). It typically displays all the “spikes” and “clathrin cage fragments” seen in other regions of the presynapse that are undergoing rapid and abundant clathrin-coated vesicle formation. That is, it looks in the EM as if the presynaptic membrane is “committed to endocytosis” in these involutions, or is “trying” to perform endocytosis in the regions that have been drawn inwards into the protrusion.

Unique Positioning of the Postsynaptic Protrusions and Distortions

Perhaps the most important aspect of these postsynaptic protrusions in the present context, however,—that of considering their possible role in LTP—is that they typically occur right in the midst of the PSD. As a consequence, they occasionally drag portions of the PSD inward as they form, depositing these PSD fragments along the “necks” of the invaginations. More often, however, PSD components appear to be excluded from these invaginations—to somehow “hang back”—such that the PSD becomes perforated or partitioned by the invagination.

How or why these invaginations form right in the midst of the PSD—rather than around its edges, for example, where one might imagine the membranes to be more “flexible”—is one of the great mysteries that emerges from this study, and remains to be answered.

DISCUSSION

Clues About How and Why the Postsynaptic Protrusions Develop

The hypothesis that emerges from these observations is that overly exuberant presynaptic expansion and attempts at endocytosis are “deforming” their active zones and producing the inward membrane bulges that perforate the PSD (Figure 7). Support for this hypothesis came from our attempts to duplicate the effects of lanthanum on these cultures with other sorts of chemical stimulation of them (either by applying the excitatory neurotransmitter NMDA, or by elevating potassium to depolarize all the cells in the culture). But neither of these forms of stimulation induced any such protrusions or inward invaginations of their postsynapses, but the most they showed was the slight change in PSD curvature that has
FIGURE 1 | Upper panel shows a prototypical spine synapse from a control hippocampal culture, a culture not stimulated at all. Abundant synaptic vesicles are collected on the presynaptic side, converging on a solid, disk or plaque-like postsynaptic density (highlighted in red, inside the postsynapse, which is highlighted in blue in this and all subsequent figures). Only a few clathrin-coated vesicles are present (highlighted in yellow), and only at the periphery of the vesicle cluster. Lower panel shows, by way of contrast, a dramatically different spine synapse from a hippocampal culture exposed to 0.1 mM La⁺⁺⁺ for 20 min at 37°C. Synaptic vesicles are severely depleted, clathrin-coated vesicles (yellow) are unusually abundant, and the postsynapse (highlighted in blue) has “protruded” into the presynapse at several places, dragging along only fragments of the PSD (highlighted in red).
Examples of dendritic shaft synapses in hippocampal cultures exposed to 0.1 mM La+ for 10–20 min at 37°C. Synaptic vesicles are more or less depleted, but in all cases, clathrin-coated vesicles (presumably involved in the recycling of synaptic vesicle membrane) are increased in abundance, especially along the borders of the postsynaptic “protrusions” (highlighted in blue). Being shaft synapses (thus presumably inhibitory or Gray’s type II), the PSDs are not prominent in these fields and thus are not highlighted in red.

Indeed, we may learn someday that the most important reason for why lanthanum stimulation is so effective at expanding the surfaces of nerve terminals and bringing out signs of synaptic vesicle recycling is that it somehow slows down this membrane recycling, at the same time that it stimulates transmitter release, itself. This may someday be explained by several different mechanisms: for example, by some sort of “stiffening” of the presynaptic membrane or by La+++ tending to “glue” the presynaptic membrane to the extracellular matrix, or possibly by blocking sodium and calcium entry through the presynaptic membrane, which may in some way directly slow down some aspect of the recycling process. Indeed, there is a large body of evidence, which suggests that clathrin-coated vesicle formation...
FIGURE 3 | Montage of several different postsynaptic “protrusions” (or presynaptic “hugs,” depending on one’s vantage point) in hippocampal cultures exposed to 0.1 mM La $$^{+++}$$ for 10–20 min at 37°C. Synaptic vesicles are more or less depleted, and clathrin-coated vesicles (again highlighted in yellow) are relatively abundant, and PSDs (highlighted in red) are hanging back or are fragmented and “holding on” to the edges of the postsynaptic protrusions.

and/or synaptic vesicle recycling is somehow dependent on intracellular Ca$$^{++}$$ being at just the right level (Henkel and Betz, 1995; Neale et al., 1999; Vogel et al., 1999; Teng and Wilkinson, 2003; Zefirov et al., 2006; Yao et al., 2009; Morton et al., 2015; Miyano et al., 2019; Bourgeois-Jaarsma et al., 2021; Jiang et al., 2021). In any case, it is abundantly clear from the present observations and from the past work that lanthanum somehow creates a greater imbalance between exocytosis and endocytosis than any other form of synaptic stimulation, and consequently, produces the most enhanced accumulation of synaptic vesicle membrane on the presynaptic surface, and thus, the greatest expansion of the presynaptic membrane.

In this respect, these synaptic perturbations in lanthanum-stimulated hippocampal cultures show a remarkable parallel with the abundant, multiple, and florid invaginations of the presynaptic membrane that were seen so many decades ago in
Montage of cross sections of several other postsynaptic "protrusions" or presynaptic "hugs," from the same hippocampal cultures as in Figure 3 (exposed to 0.1 mM La+++ for 10–20 min at 37°C). Again, it is quite apparent that synaptic vesicles are more or less depleted, compared with the relative abundance of clathrin-coated vesicles (highlighted in yellow). Again, PSDs (highlighted in red) appear to be relatively fragmented or absent from these deeper regions of the postsynaptic involutions.
frog NMJs treated with lanthanum (Heuser and Miledi, 1971; Heuser, 1976, 1989a,b). These were also studded with endocytic profiles, and the thinking at that time was the same as today—that lanthanum caused such an unremitting stimulation of the NMJ that endocytosis became exhausted and “blocked” at that point, or at least greatly slowed down, such that it left much of the discharged synaptic vesicle membrane on the surface of the presynaptic terminal, and thereby expanding that surface. A lot of good immunocytochemistry was done in the ensuing decades, which entirely supported this view (von Wedel et al., 1981; Jones et al., 1982; Segal et al., 1985; Robitaille and Tremblay, 1987; Torri-Tarelli et al., 1987, 1990; Valtorta et al., 1988).

The important difference between the changes seen here, in lanthanum-stimulated hippocampal synapses, compared with the old NMJ observations, is that the postsynapse proper is pulled into the presynapse. This cannot happen at the NMJ, where the presynapse is separated from the postsynapse by a thick and rigid basal lamina. Instead, at the NMJ, the surrounding Schwann cell gets pulled into the invaginations—or one could say, the Schwann cell ends up “protruding” into the presynaptic terminal. (In this regard, it is worth noting that we observed no such “drawing inward” of surrounding glial processes in any of our lanthanum-stimulated hippocampal cultures. This at least partly due to the simple fact that there are not very many glial processes around the synapses in our cultures, in the first place; and the few glial cells that do happen to be there may have very little “give.”) Quite different is the situation at all NMJs, where Schwann cells totally embrace the whole nerve terminal, except at its immediate contact with the muscle, and where the Schwann cells are highly redundant and “plastic,” so they actively fill in any convolutions of the presynaptic membrane that develop during stimulation. Interestingly, in the primary neuron cultures from the De Camilli lab, their endocytosis-inhibited genotypes show both glial and postsynaptic involutions when the synapses are

FIGURE 5 Lower magnification survey views of hippocampal cultures exposed to 0.1 mM La++ for 10–20 min at 37°C, where only the particular dendrites that are involuting into their apposed synapses are highlighted in blue (other dendrites are also present in these fields). These views were chosen specifically to demonstrate the old adage that George Palade, the great “founder” of biological electron microscopy, always stressed: namely, that if a structural feature could be found two or more times in one and the same field of view in the electron microscope, then it must be generally present, and must be not an artifact. Two postsynaptic “protrusions” are indicated by asterisks in each field.
Heuser Lanthanum-Induced Hippocampal Synapse Remodeling

FIGURE 6 | “Anaglyph” 3D views of additional synapses in hippocampal cultures exposed to 0.1 mM La++ for 10–20 min at 37°C), from plastic blocks that were cut thicker (at 120–150 nm), and photographed at +20° and −20° of tilt in the EM, then superimposed to make the 3-D “anaglyphs”. These require red/green “anaglyph” glasses to fully appreciate, but even without, it is still readily apparent that synaptic vesicles are relatively depleted, coated vesicles are relatively abundant (yellow), and postsynaptic densities are relatively fragmented (PSDs highlighted in red, and dendrites highlighted in blue).
Comparing Classical Postsynaptic “Spinules” With the Protrusions and Distortions Seen Here in Lanthanum

There is no good reason to think that the so-called synaptic “spinules” described in many previous studies of hippocampal synapses (referenced in paragraph 1, above) can or should be differentiated from the fatter postsynaptic protrusions into the presynapse that we described here, as being the consequences of lanthanum stimulation. Neither type of invagination contains any postsynaptic structure that would suggest they were “active” invasions into the presynapse. In other words, neither type contains any signs of actin, nor any other cytoskeletal component might suggest that they actively push their way into the presynapse. Instead, the EMs presented here show clearly that both “spinules” and their fatter counterparts invade regions of the presynapse that show all the signs of being engaged in clathrin-mediated endocytosis. As explained above, this dedication to endocytosis is reason enough to understand why the presynapse should be involuted at those sites. But it also suggests that the spinules and their fatter counterparts, the postsynaptic protrusions, are not actively splitting the PSDs as they invade the presynapse. Again, their lack of contractile/propulsive machinery would seem to rule this out. Instead, this PSD splitting appears to be a passive process, almost an inadvertent consequence of the presynaptic involution, itself (inadvertent, except that it perhaps was selected by nature to be the fundamental “growth” event of LTP!!).

It is worth stressing here that both “spinules” and the fatter protrusions display uniformly close approximations of pre- and post-membranes, in their midst—the important point being that these are closer approximations than those observed at the AZ/PSD differentiations of the synapse per se, where so many spanning and attachment molecules are known to be located (and are known to be so abundant and strong that
they can even hold the pre- and post-membranes together during homogenization of nervous tissue) (Blomberg et al., 1977; Cohen et al., 1977; Cohen and Siekevitz, 1978; Carlin et al., 1980; Dosemeci et al., 2001). All these specific synaptic attachment proteins have spanning lengths of ~15–20 nm, which are greater than the pre-to-post-membrane separation seen at the protrusions/involutions under question (~10 nm). Indeed, this 10 nm separation distance that we observed in all the protrusion sites is the normal "minimum" found everywhere in the neuropil of our hippocampal cultures, e.g., between glia and neuronal elements, and between undifferentiated neural elements and each other. (Of course, this "minimum" is not nearly close enough to suggest electrical coupling, or anything of that sort.) In any case, this is one more indication that the protrusions are not pulling in the PSDs and their associated attachment proteins with them; rather, they are splitting the PSDs, and leaving these attachment proteins behind.

Here, we should add the qualification that despite the obvious structural parallels between synaptic spinules and their fatter counterparts displayed here, nothing in our studies to date would suggest that a precursor/product relationship exists between them. While both seem clearly to be exacerbated or accentuated by synaptic stimulation, the timing of this stimulation varies over several orders of magnitude (from just a few minutes in the present study of acute, ongoing chemical stimulation) to hours or longer, in previous studies characterizing the long-term aftereffects of LTP induction, as listed above. In other words, it is not (yet) possible to suggest that spinules grow into fatter protrusions as they invade, or that fat protrusions shrink down to spinules as they withdraw. These possibilities await further experimental discussion and analysis.

CONCLUSION AND FUTURE PERSPECTIVES

The simple observations and interpretations offered here provide a rationale for why such discontinuous or broken-apart PSDs could very likely represent the physical substrate of the temporary "tagging" of synapses that is generally thought to be so important for initiating the whole process of LTP (Frey and Morris, 1997, 1998a,b; Martin and Kosik, 2002; Redondo and Morris, 2011; Shires et al., 2012; Evans et al., 2021). This initiation is thought to prepare the synapse for later, long-term enhancement via new protein synthesis, which is presumed by all to be the consolidating event that culminates LTP (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973; Carlin and Siekevitz, 1983; Lomo, 2003, 2018; Bailey et al., 2015).

The rationale would be that the breakup of solid plaques or disks of PSD would create new edges where "modules" or molecular components of postsynaptic receptors, channels, and signaling molecules could be added, to enlarge or even create completely new PSD plaques. In other words, that the discontinuities and irregularities in the PSD created by the act of perforation, due to the exacerbation of synaptic vesicle recycling in the presynapse, would create additional (and new) free edges around the plaques—which originally had, by the simple fact that they were disk-like—had the minimum number of free edges possible, for a given collection of receptors (Figure 7).

The logical conclusion to draw from this seems to be that newly generated PSD "free edges" represent the synaptic "tags" that initiate LTP (Frey and Morris, 1997, 1998a,b; Martin and Kosik, 2002; Redondo and Morris, 2011; Shires et al., 2012; Evans et al., 2021). Although we did not attempt in this study to provide the complete structural evidence for this hypothesis, we predict that it should soon become available from many of the new LM and EM methods that are being developed to "tag" various presynaptic and postsynaptic proteins and protein complexes (MacGillavry et al., 2013; Broadhead et al., 2016; Zeng et al., 2016; Biederer et al., 2017; Chen et al., 2018, 2020; Crosby et al., 2019; Trotter et al., 2019; Obashi et al., 2021; Ramsey et al., 2021; Wegner et al., 2022). Here, we focused only on providing direct EM images that demonstrated how (and why) enhanced bursts of presynaptic secretory activity apparently create or cause the perforation of otherwise plaque-like postsynaptic densities, in the first place.

MATERIALS AND METHODS

Cell Culture

Dissociated cell hippocampal cultures were prepared from papain-dissociated hippocampi, which were harvested from embryonic day 20 rat fetuses, then plated onto confluent glial feeder cultures on 22 mm glass coverslips, and grown for 3–4 weeks before use. Throughout this growth period, the culture medium was half-exchanged 3 × weekly with fresh medium containing MEM (with Earle's salts, 6 g/L glucose, and 3.7 g/L sodium bicarbonate) supplemented with 5% (v/v) heat-inactivated horse serum, 2% (v/v) fetal bovine serum, and 2 mM Glutamax (all from Life Technologies), along with 136 μM uridine and 54 μM 2-deoxy-5-fluoro-uridine (from Sigma), plus N3 supplement from Sigma (which contains BSA, apotransferrin, putrescine, selenium, T3, insulin, progesterone, and corticosterone) (for further details, see Ransom et al., 1977; Mayer et al., 1989). Throughout this time, the coverslips were maintained in P35 culture dishes in a 36°C incubator with 10% CO2.

Culture Treatments

To conduct the experiments, the culture dishes containing the coverslips were removed from the CO2 incubator and immediately washed with a bicarbonate and phosphate-free "Ringers" solution. Removing bicarbonate so that the cultures did not alkalinize in room air, with its low CO2, and removing phosphate so that the subsequent application of lanthanum did not just precipitate as La(PO4)3. Henceforth, they were maintained on a rotating platform in a 37°C water bath. After three more washes in HCO3 and PO4-free "Ringers," for a total time of 12 min, the cultures were then exposed to a "Ringers" solution containing 0.1 mM LaCl3 (with its usual CaCl2 reduced from the usual 2 mM CaCl2 to only 1 mM, to minimize any competition of Ca++ with the La++. Alternatively, cultures were treated for 5–15 min at 37°C with high K+ [a
“Ringers” containing 90 mM KCl (whose osmolarity had been compensated by reducing the concentration of NaCl), or treated for 5–10 min at 37°C with 50–60 µM of N-methyl-D-aspartic acid (NMDA) in normal HCO$_3$-free “Ringers,” but containing our usual 2 mM of CaCl$_2$ and 3 mM of NaH$_2$PO$_4$.

Fixation and Processing

Primary fixation was accomplished by replacing the Ringers solution in the culture dishes with 2% glutaraldehyde, freshly dissolved from a 50% stock (from EMS, Inc.) into a “substitute Ringer’s,” where the normal 5 mM Hepes buffer concentration was increased 6 × for fixation purposes (and NaCl was decreased commensurately, to keep the solution isotonic). Most important at this point was to wash away the La + + + and restore the normal 2 mM calcium in the medium, to prevent any La + + + precipitates in the extracellular spaces of the cultures. (Indeed, this 2 mM calcium is maintained throughout primary fixation and postfixation, because we believe that it helps to minimize cellular membrane deterioration).

Immediately after the exchange into the glutaraldehyde, the culture dishes were placed on a vigorously rotating table, and the fixative was exchanged one or two more times, to ensure rapid and uniform fixation. (Even though this aldehyde fixation was probably complete in just a few minutes, we still left the cultures in fixative for another 1–2 h, or even overnight, before initiating postfixation).

The sequence of postfixation was as follows. (This was all done at room temperature, because we believe that cooling biological membranes to 4°C at any time during fixation damages cellular membranes.) First, the glutaraldehyde and Hepes buffer was washed away with 100 mM cacodylate buffer, with two exchanges over a period of at least 15–30 min. (This buffer always contained the same 2 mM Ca$^{2+}$, +, in this and all subsequent steps, so it will henceforth be termed “Cacodylate-Ca”). Next, the cultures were postfixed with 0.25% OsO$_4$ and 0.25% potassium ferocyanide in Cacodylate-Ca buffer (made fresh, by mixing 0.5% OsO$_4$ with 0.5% KFeCN$_6$ immediately before use) for exactly 30 min, no longer. Then, after washing away the OsO$_4$ with fresh Cacodylate-Ca buffer (for 5–10 min), the cultures were “mordanted” with 0.5% tannic acid (mw 1,700) in Cacodylate-Ca buffer (making sure to use a batch of tannic acid from EMS) that did not precipitate over time), for exactly 30 min, no longer. Finally, the grids were coated with a 3D information about the overall deployment of synapses in the cultures. Thin sections were picked up on high-resolution digital camera possible, regardless of sensitivity, as such Araldite sections were essentially indestructible and could tolerate endless electron bombardment. (We generally used the AMT “BioSprint” 29 Megapixel Camera, designed to have 4.5k images). The final digital images were processed and colorized with Photoshop, taking special advantage of its “high-pass” filter when very dark features happened to be located next to very light areas in the images, which made details hard to see. (We typically set the high-pass filter at 40 pixels for our 6,500 × 4,500 pixel AMT images, and layered this filtered image on top of the original image, at 50% density).

Postscript

We find it absolutely marvelous that over 45 years ago, Sally Tarrant and Aryeh Routtenberg, from Northwestern University’s...
Neuroscience Laboratory in Chicago, had the prescience and foresight to add the following tiny and obscure footnote to their fine study, a study in which they described and discussed “synaptic spinules” in the brains of rats they had prepared for EM by perfusion with Karnovsky’s fixative. The footnote was as follows:

P.S. “It is also possible that the ‘synaptic spine’ represents an active synapse and that the presynaptic invagination represents the coalescence of synaptic vesicles and the coated vesicle a device for membrane recycling (Heuser and Reese, 1973). The spine apparatus might contribute to the postsynaptic membrane as it protrudes into the presynaptic membrane invagination.” Tarrant and Routtenberg (1977).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal Use and Care Committee of the National Institute of Neurological Disorders and Stroke (NINDS) (Animal protocol Number: ASP1159).

REFERENCES

Bailey, C. H., Kandel, E. R., and Harris, K. M. (2015). Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb. Perspect. Biol. 7:a021758. doi: 10.1101/cshperspect.a021758

Biederer, T., Kaeber, P. S., and Blanpied, T. A. (2017). Transcellular nanoalignment of synaptic function. Neuron 96, 680–696. doi: 10.1016/j.neuron.2017.10.006

Blanpied, T. A., Scott, D. B., and Ehlers, M. D. (2002). Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449. doi: 10.1016/s0896-6273(02)00979-0

Bliss, T. V., and Gardner-Medwin, A. R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374. doi: 10.1113/jphysiol.1973.sp010274

Bliss, T. V., and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356. doi: 10.1113/jphysiol.1973.sp010273

Blomberg, F., Cohen, R. S., and Siekevitz, P. (1977). The structure of postsynaptic densities isolated from dog cerebral cortex. II. Characterization and arrangement of some of the major proteins within the structure. J. Cell Biol. 74, 204–225. doi: 10.1083/jcb.74.1.204

Bourgeois-Jaarsma, Q., Miaja Hernandez, P., and Groffen, A. J. (2021). Ca(2+) sensor proteins in spontaneous release and synaptic plasticity: limited contribution of Doc2c, rabphilin-3a and synaptotagmin 7 in hippocampal glutamatergic neurons. Mol. Cell Neurosci. 112:103613. doi: 10.1016/j.mcn.2021.103613

Bourne, I. N., and Harris, K. M. (2011). Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP. Hippocampus 21, 354–373. doi: 10.1002/hipo.20768

AUTHOR CONTRIBUTIONS

JH wrote, read, and approved the final manuscript.

FUNDING

This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS) intramural funds and the National Institute of Child Health and Human Development (NICHD) intramural funds.

ACKNOWLEDGMENTS

We thank Christine A. Winters (from the Laboratory of Neurobiology, NINDS, NIH) for kindly producing and supplying us with all the gorgeous and healthy hippocampal dissociated cell cultures that were used in this study. We thank Tatjana Tenkova-Heuser, M.D., for preparing all these cultures for electron microscopy, and for cutting all the thin-sections used in this study. We thank Thomas S. Reese for providing workspace and reagents to carry out these experiments in his Laboratory of Neurobiology, NINDS, NIH. Finally, for our salary support, we also thank Joshua Zimmerberg, head of the Section on Integrative Biophysics in the National Institute of Child Health and Human Development (NICHD).

FUNDING

This study was supported by the National Institute of Neurological Disorders and Stroke (NINDS) intramural funds and the National Institute of Child Health and Human Development (NICHD).
Cohen, R. S., Blomberg, F., Berzins, K., and Siekevitz, P. (1977). The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J. Cell Biol. 74, 181–203. doi: 10.1083/jcb.74.1.181

Coniglio, L. M., Hendricks, G. M., and Parsons, R. L. (1993). Effects of lanthanum on snake twitch and tonic muscle fibre endplates. J. Physiol. 466, 405–419.

Crosby, K. C., Gookin, S. E., Garcia, J. D., Hahm, K. M., Dell’Acqua, M. L., and Smith, K. R. (2019). Nanoscale subsynaptic domains underlie the organization of the inhibitory synapse. Cell Rep. 26, 3284.e3–3297.e3. doi: 10.1016/j.celrep.2019.02.070

Curts, M. J., Quastel, D. M., and Saint, D. A. (1986). Lanthanum as a surrogate for calcium in transmitter release at mouse motor nerve terminals. J. Physiol. 373, 243–260. doi: 10.1113/jphysiol.1986.sp016045

Dhanrajan, T. M., Lynch, M. A., Kelly, A., Popov, V. I., Rusakov, D. A., and Stewart, M. G. (2004). Expression of long-term potentiation in aged rats involves perforated synapses but dendritic spine branching results from high-frequency stimulation alone. Hippocampus 14, 255–264. doi: 10.1002/hipo.10172

dos Remedios, C. G. (1981). Lanthanide ion probes of calcium-binding sites on cellular membranes. Cell Calcium 2, 29–51. doi: 10.1016/0143-4160(81)90044-0

Dosemeci, A., Tao-Cheng, J. H., Vinade, L., Winters, C. A., Pozzo-Miller, L., and Geinisman, Y. (1993). Effects of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43. Neuropharmacology 32, 745–748. doi: 10.1016/0028-3908(93)90838-9

Dreyfus-Brissonnet, L., and Betz, W. J. (1995). Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43. Neuropharmacology 34, 1397–1406. doi: 10.1016/0028-3908(95)00126-q

Geinisman, Y. (1993). Perforated axospinous synapses with multiple, completely preserved complement of perforated axospinous synapses per hippocampal neuron to maintain good spatial memory. J. Comp. Neurol. 368, 247–260. doi: 10.1002/(SICI)1096-9861(19960506)368:3<413::AID-CNE7<3.0.CO;2-8

Geinisman, Y., Morrell, F., and de Toledo-Morrell, L. (1987a). Axospinous synapses with segmented postsynaptic densities: a morphologically distinct synaptic subtype contributing to the number of profiles of ‘perforated’ synapses visualized in random sections. Brain Res. 423, 179–188. doi: 10.1016/0006-8993(87)90943-7

Gray, E. G. (1959). A xo-somatic and a xo-dendritic synapses of the cerebral cortex: an electron microscope study. J. Anat. 93(Pt 4), 420–333.

Gray, E. G. (1976). Problems of understanding the substructure of synapses. Prog. Brain Res. 45, 207–234. doi: 10.1016/S0079-6123(08)60992-9

Harris, K. M., and Stevens, J. K. (1989). Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997. doi: 10.1523/JNEUROSCI.09-08-2998.1989

Harris, K. M., Fiala, J. C., and Ostroff, L. (2003). Structural changes at dendritic spine synapses during long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 745–748. doi: 10.1098/rspb.2002.1254

Hayashi, M., Raimondi, A., O’Toole, E., Paradise, S., Collesi, C., Cremona, O., et al. (2008). Cell and stimulus dependent heterogeneity of synaptic vesicle endocytic recycling mechanisms revealed by studies of dynamin 1-null neurons. Proc. Natl. Acad. Sci. U.S.A. 105, 2175–2180. doi: 10.1073/pnas.0712171105

Henkel, A. W., and Betz, W. J. (1995). Monitoring of black widow spider venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43. Neuropharmacology 34, 1397–1406. doi: 10.1016/0028-3908(95)00126-q

Heuser, J. E. (1976). “Morphology of synaptic vesicle discharge and reformatation at the frog neuromuscular junction,” in The Motor Innervation of Muscle, ed. S. Thesleff (London: Academic Press), 51–115. doi: 10.1113/expphysiol.1975.sp010926

Heuser, J. E. (1989a). The role of coated vesicles in recycling of synaptic vesicle membrane. Cell Biol. Int. Rep. 13, 1063–1076. doi: 10.1002/1097-0022(1989)90020-9

Heuser, J. E. (1989b). Review of electron microscopic evidence favouring vesicle exocytosis as the structural basis for quanta release during synaptic transmission. J. Exp. Physiol. 74, 1051–1069. doi: 10.1113/expphysiol.1989.sp003333

Heuser, J. E., and Miledi, R. (1971). Effects of lanthanum ions on function and structure of frog neuromuscular junctions. Proc. R. Soc. Lond. B Biol. Sci. 179, 247–260. doi: 10.1098/rspb.1971.0096

Heuser, J. E., and Reese, T. S. (1973) Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57, 315–344. doi: 10.1083/jcb.57.2.315

Heuser, J. E., and Tenkova, T. I. (2020). Introducing a mammalian nerve-muscle preparation ideal for physiology and microscopy, the transverse auricular muscle in the ear of the mouse. Neuroscience 439, 80–105. doi: 10.1016/j.neuroscience.2019.07.028

High, B., Cole, A. A., Chen, X., and Reese, T. S. (2015). Electron microscopic tomography reveals discrete transclef elements at excitatory and inhibitory synapses. Front. Synaptic Neurosci. 7:9. doi: 10.3389/fnsyn.2015.00009

Jiang, Z. J., Li, W., Yao, L. H., Saad, B., Yao, R., Grewe, B. S., et al. (2021). TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. Elife 10:66709. doi: 10.7554/elife.66709

Jones, R. T., Walker, J. H., Stadler, H., and Whitaker, V. P. (1982). Immunohistochemical localization of a synaptic-vesicle antigen in a cholinergic neuron under conditions of stimulation and rest. Cell Tissue Res. 223, 117–126. doi: 10.1007/BF00221503

Kennedy, M. B. (2016). Synaptic signaling in learning and memory. Cold Spring Harb. Perspect. Biol. 8:016824. doi: 10.1101/cshperspect.a016824

Kennedy, M. B. (2018). The protein biochemistry of the postsynaptic density in glutamatergic synapses mediates learning in neural networks. Biochemistry 57, 4005–4009. doi: 10.1021/acs.biochem.8b00496
Lansman, J. B. (1990). Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J. Gen. Physiol. 95, 679–696. doi: 10.1085/jgp.95.6.679

Lerner, I., Trus, M., Cohen, R., Yizhar, O., Nussinovitch, I., and Atlas, D. (2006). Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis. J. Neurochem. 97, 116–127. doi: 10.1111/j.0022-3077.2006.03709.x

Lemo, T. (2003). The discovery of long-term potentiation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 617–620. doi: 10.1098/rstb.2002.1226

Lemo, T. (2018). Discovering long-term potentiation (LTP)-recollections and reflections on what came after. Acta Physiol. 222:e12921. doi: 10.1111/apha.12921

Lu, Z., McLaren, R. S., Winters, C. A., and Ralston, E. (1998). Ribosome association with endosomes during activity-dependent bulk endocytosis. J. Cell Biol. 140, 437–448. doi: 10.1083/jcb.140.2.437

Mayer, M. L., Vyklicky, L. Jr., and Westbrook, G. L. (1989). Modulation of synaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J. Physiol. 408, 1227–1240. doi: 10.1113/jphysiol.1989.sp017741

Medvedev, N. I., Popov, V. I., Dallarac, G., Davies, H. A., Laroche, S., Kraev, I. V., et al. (2010). Alterations in synaptic curvature in the dentate gyrus following induction of long-term potentiation, long-term depression, and treatment with the N-methyl-D-aspartate receptor antagonist CPP. Neuroscience 171, 390–397. doi: 10.1016/j.neuroscience.2010.09.014

Meir, A., Ginsburg, S., Butkевич, A., Khachalsky, S. G., Kaiserman, I., Abdut, R., et al. (1998). Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev. 79, 1019–1088. doi: 10.1152/physrev.1998.79.3.319

Miledi, R. (1971). Lanthanum ions abolish the “calcium response” of nerve terminals. Nature 229, 410–411. doi: 10.1038/229410a0

Milosevic, I., Gyorkey, S., Lou, X., Raimondi, A., Collesi, C., Shen, H., et al. (2011). Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Proc. Natl. Acad. Sci. USA 108, 22273–22278. doi: 10.1073/pnas.1104205108

Miyano, R., Miki, T., and Sakaba, T. (2019). Ca2+-dependence of presynaptic vesicle exocytosis and endocytosis at the hippocampal mossy fibre terminal. J. Physiol. 597, 4373–4386. doi: 10.1113/JP278040

Morton, A., Marland, J. R., and Cousin, M. A. (2015). Synaptic vesicle exocytosis and increased cytosolic calcium are both necessary but not sufficient for activity-dependent bulk endocytosis. J. Neurochem. 134, 405–415. doi: 10.1111/jnc.13132

Neale, E. A., Bowers, L. M., Jia, M., Bateman, K. E., and Williamson, L. C. (1999). Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J. Cell Biol. 147, 1249–1260. doi: 10.1083/jcb.147.6.1249

Neuhoff, H., Roeppe, J., and Schweizer, M. (1999). Activity-dependent formation of perforated synapses in cultured hippocampal neurons. Eur. J. Neurosci. 11, 4241–4250. doi: 10.1111/j.0953-816X.1999.08856.x

Obashi, K., Taraska, J. W., and Okabe, S. (2021). The role of molecular diffusion within dendritic spines in synaptic function. J. Gen. Physiol. 153:e202012814. doi: 10.1085/jgp.202012814

Petraila, R. S., Wang, Y. X., Mattson, M. P., and Yao, P. J. (2017). Invaginating presynaptic terminals in neuromuscular junctions, photoreceptor terminals, and other synapses of animals. Neuronat. Med. 19, 193–240. doi: 10.1007/s10171-016-8405-y

Petraila, R. S., Wang, Y. X., Mattson, M. P., and Yao, P. J. (2016). The diversity of spine synapses in animals. Neuronat. Med. 18, 497–539. doi: 10.1007/s10171-016-8405-y

Powis, A. D., and Clark, C. L. (1994). Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium 16, 377–390. doi: 10.1016/0306-4522(94)90133-9

Powis, A. D., Clark, C. L., and O’Brien, K. J. (1994). Lanthanum-induced hippocampal synapse remodeling. J. Gen. Physiol. 105, 72–79. doi: 10.1085/jgp.98.6.679

Ramsey, A. M., Tang, A. H., LeGates, T. A., Gou, X. Z., Carbone, B. E., Thompson, M. L., Gabbott, P. L., et al. (2004). Modelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetised rat. Neuroscience 128, 251–262. doi: 10.1016/j.neuroscience.2004.06.029

Reichling, D. B., and MacDermott, A. B. (1991). Lanthanum actions on excitatory amino acid-gated currents and voltage-gated calcium currents in rat dorsal horn neurons. J. Physiol. 431, 191–218. doi: 10.1113/jphysiol.1991.sp017846

Robitaille, R., and Tremblay, J. P. (1987). Incorporation of vesicular antigens into the presynaptic membrane during exocytosis at the frog neuromuscular junction. J. Gen. Physiol. 89, 213–232. doi: 10.1085/jgp.89.9.017

Segal, J. R., Ceccarelli, B., Fesce, R., and Hurlbut, W. P. (1985). miniature endplate current: high-threshold potassium current in rat skeletal muscle. J. Physiol. 350, 1–11. doi: 10.1113/jphysiol.1985.sp016032

Shires, K. L., Da Silva, B. M., Hawthorne, J. P., Morris, R. G., and Martin, S. J. (2012). Synaptic tagging and capture in the living rat. Nat. Commun. 3:1246. doi: 10.1038/ncomms2250
Skrede, K. K., and Westgaard, R. H. (1971). The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 35, 589–593. doi: 10.1016/0006-8993(71)90508-7

Sorra, K. E., Fiala, J. C., and Harris, K. M. (1998). Critical assessment of the involvement of perforations, spines, and spine branching in hippocampal synapse formation. J. Comp. Neurol. 398, 225–240.

Spaccei, J., and Harris, K. M. (1997). Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17, 190–203. doi: 10.1523/JNEUROSCI.17-01-00190.1997

Spaccei, J., and Harris, K. M. (2004). Trans-endocytosis via spines in adult rat hippocampus. J. Neurosci. 24, 4233–4241. doi: 10.1523/JNEUROSCI.0287-04.2004

Stewart, M. G., Davies, H. A., Sandri, C., Kraev, I. V., Rogachevsky, V. V., Peddie, C. J., et al. (2005a). Stress suppresses and learning induces plasticity in cA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postysynaptic densities. Neuroscience 131, 43–54. doi: 10.1016/j.neuroscience.2004.10.031

Stewart, M. G., Medvedev, N. L., Popov, V. I., Schoepfer, R., Davies, H. A., Murphy, K., et al. (2005b). Chemically induced long-term potentiation increases the number of perforated and complex postysynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices. Eur. J. Neurosci. 21, 3388–3387. doi: 10.1111/j.1460-9568.2005.04174.x

Stoppani, L., Buchs, P. A., and Muller, D. (1991). A simple method for organotypic synapse formation. J. Comp. Neurol. 398, 225–240.

Tao-Cheng, J. H. (2019). Stimulation induces gradual increases in the thickness and curvature of postysynaptic density of hippocampal CA1 neurons in slice cultures. Mol. Brain 12:44. doi: 10.1186/s13041-019-0468-x

Tao-Cheng, J. H., Doosemei, A., Gallant, P. E., Miller, S., Galbraith, J. A., Weddie, C. A., et al. (2009). Rapid turnover of spines at synaptic terminals. Neuroscience 160, 42–50. doi: 10.1016/j.neuroscience.2009.02.031

Tao-Cheng, J. H., Gallant, P. E., Brightman, M. W., Doosemei, A., and Reese, T. S. (2007). Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. J. Comp. Neurol. 501, 731–740. doi: 10.1002/cne.21276

Tarrant, S. B., and Routtenberg, A. (1977). The synaptic spinule in the dendritic spine: electron microscopic study of the hippocampal dentate gyrus. J. Cell Biol. 76, 449–459. doi: 10.1083/jcb.76.2.449

Torti-Tarelli, F., Haimann, C., and Ceccharelli, B. (1987). Coated vesicles and pits during enhanced quantal release of acetylcholine at the neuromuscular junction. J. Neurocytol. 16, 205–214. doi: 10.1007/BF01795304

Torti-Tarelli, F., Villa, A., Valtorta, F., De Camilli, P., Greengard, P., and Ceccharelli, B. (1990). Redistribution of synaptophysin and synapsin I during alpha-latrotoxin-induced release of neurotransmitter at the neuromuscular junction. J. Cell Biol. 110, 449–459. doi: 10.1083/jcb.110.2.449

Trotter, J. H., Hao, J., Maxeiner, S., Tsetsenis, T., Liu, Z., Zhuang, X., et al. (2019). Synaptic neuroexin-1 assembles into dynamically regulated active zone nanoclusters. J. Cell Biol. 218, 2677–2698. doi: 10.1083/jcb.201812076

Valtorta, F., Jahn, R., Fesce, R., Greengard, P., and Ceccarelli, B. (1988). Synaptophysin (p38) at the frog neuromuscular junction: its incorporation into the axolemma and recycling after intense quantal secretion. J. Cell Biol. 107(6 Pt 2), 2717–2727. doi: 10.1083/jcb.107.6.2717

Vogel, S. S., Smith, R. M., Baibakov, B., Ikebuchi, Y., and Lambert, N. A. (1999). Calcium influx is required for endocytic membrane retrieval. Proc. Natl. Acad. Sci. U.S.A. 96, 5019–5024. doi: 10.1073/pnas.96.9.5019

von Wedel, R. J., Carlson, S. S., and Kelly, R. B. (1981). Transfer of synaptic vesicle antigens to the presynaptic plasma membrane during exocytosis. Proc. Natl. Acad. Sci. U.S.A. 78, 1014–1018. doi: 10.1073/pnas.78.2.1014

Watson, D. J., Ostroff, L., Cao, G., Parker, P. H., Smith, H., and Harris, K. M. (2016). LTP enhances synaptogenesis in the developing hippocampus. Hippocampus 26, 560–576. doi: 10.1002/hipo.22536

Wegner, W., Steffens, H., Gregor, C., Wolf, F., and Willig, K. I. (2022). Environmental enrichment enhances patterning and remodeling of synaptic nanonarchitecture as revealed by STED nanoscopy. Elife 11:e73603. doi: 10.7554/elife.73603

Wu, Y., O’Toole, E. T., Girard, M., Ritter, B., Messa, M., Liu, X., et al. (2014). A dynamin-1- dynamin-3- and clathrin-independent pathway of synaptic vesicle recycling mediated by bulk endocytosis. Elife 3:e01621. doi: 10.7554/elife.01621

Yao, C. K., Lin, Y. Q., Ly, C. V., Ohyama, T., Haueter, C. M., Brose, N., et al. (2012b). Leaky synapses: regulation of spontaneous neurotransmission in central synapses. Neuroscience 218, 177–188. doi: 10.1016/j.neuroscience.2008.03.028

Zefirov, A. L., Abdrahmanov, M. M., Mukhametyarov, M. A., and Grigoryev, P. N. (2006). The role of extracellular calcium in exo- and endocytosis of synaptic vesicles at the frog motor nerve terminals. Neuroscience 143, 905–910. doi: 10.1016/j.neuroscience.2006.08.025

Zeng, M., Shang, Y., Araki, Y., Guo, T., Hogun, R. L., and Zhang, M. (2016). Phase transition in postysynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166, 1163.e12–1175.e12. doi: 10.1016/j.cell.2016.07.008

Zhao, S., Studer, D., Graber, W., Nestel, S., and Frotscher, M. (2012a). Fine structure of hippocampal mossy fiber synapses following rapid high-pressure freezing. Epilepsia 53(Suppl. 1), 4–8. doi: 10.1111/j.1528-1167.2012.03469.x

Zhao, S., Studer, D., Chai, X., Graber, W., Brose, N., Nestel, S., et al. (2012b). Structural plasticity of hippocampal mossy fiber synapses as revealed by high-pressure freezing. J. Comp. Neurol. 520, 2340–2351. doi: 10.1002/cne.23040

Zhou, S., Studer, D., Chai, X., Graber, W., Brose, N., Nestel, S., et al. (2012c). Structural plasticity of spines at giant mossy fiber synapses. Front. Neural Circuits 6:103–134. doi: 10.3389/fncir.2012.00103

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Heuser. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.