Impaired Control of Epstein–Barr Virus Infection in B-Cell Expansion with NF-κB and T-Cell Anergy Disease

Swadhinya Arjunaraja1, Pamela Angelus2,3, Helen C. Su2 and Andrew L. Snow1

1Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States, 2Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States, 3Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD, United States

B-cell expansion with NF-κB and T-cell anergy (BENTA) disease is a B-cell-specific lymphoproliferative disorder caused by germline gain-of-function mutations in CARD11. These mutations force the CARD11 scaffold into an open conformation capable of stimulating constitutive NF-κB activation in lymphocytes, without requiring antigen receptor engagement. Many BENTA patients also suffer from recurrent infections, with 7 out of 16 patients exhibiting chronic, low-grade Epstein–Barr virus (EBV) viremia. In this mini-review, we discuss EBV infection in the pathogenesis and clinical management of BENTA disease, and speculate on mechanisms that could explain inadequate control of viral infection in BENTA patients.

Keywords: Epstein–Barr virus, B-cell expansion with NF-κB and T-cell anergy, CARD11, NF-κB, primary immune deficiency

INTRODUCTION

Epstein–Barr virus (EBV) is a ubiquitous human herpesvirus that establishes life-long infection in ~90% of individuals (1). Primary EBV infection in childhood is usually asymptomatic in immunocompetent hosts, while acquisition of EBV during adolescence can result in infectious mononucleosis (IM) that usually resolves within days to weeks. However, EBV infections can also trigger lymphoproliferative disease, lymphoma, fulminant infectious mononucleosis (FIM), and/or hemophagocytic lymphohistiocytosis (HLH) in genetically or iatrogenically immunocompromised patients (2–4). These conditions clearly suggest that EBV has co-evolved with its host under constant immune surveillance to ensure that virus–host homeostasis is maintained (5, 6).

The transmission, circulation, and persistence of EBV in the human host have been reviewed extensively (1, 4, 7–9). EBV initially establishes lytic infection in both B lymphocytes and epithelial cells of the oropharynx. The EBV lytic gene program ensures both viral replication and evasion from early detection by either natural killer (NK) cells or CD8+ T cells (10). EBV then switches to a latent infection program that expands the pool of infected B cells considerably (11). This is achieved in part through the expression of key latent membrane proteins 1 and 2A, which mimic constitutive CD40 and B cell receptor signaling, respectively. Evidence suggests that this “growth” program of latency (i.e., latency III) provides the proliferative and pro-survival signals necessary to drive the EBV-infected B cell through a germinal center-like reaction and eventually into the memory B cell pool,
all without requiring cognate antigen recognition. At the same
time, latent proteins such as LMP2 and EBNA3A/B/C contain
potent immunodominant class I MHC peptide epitopes for CD8+
T cell recognition, ensuring the destruction of most EBV-infected
B cells at this stage (3). CD8+ T (and NK) cell-mediated killing is
also aided by the robust upregulation of ligands for both NKG2D
and signaling lymphocyte activation molecule (SLAM) family
receptors on EBV-infected B cells, which participate in signaling
for cytotoxic functions (see below) (5). Surviving EBV+ memory
B cells remain quiescently infected without expressing viral anti-
gens (latency 0) for the lifetime of the individual, with occasional
rounds of viral reaction thought to occur as these cells traffic
back through the oropharynx (12). EBV-specific cellular immu-

nity maintains tight control throughout these cycles (5).

In this manner, EBV has evolved an elegant strategy for ensur-
ing initial colonization followed by persistent, benign infection
in the immunocompetent host, in which a sizable portion of
the memory CD8+ T cell pool (~2–5%) is dedicated to maintaining
EBV-specific immunosurveillance (3, 13). Indeed, cytolytic kill-
ing of EBV-infected B cells by effector CD8+ T cells occurs during
acute IM, comprising up to 50% of the CD8+ T cell compartment
(4, 14). EBV-specific CD4+ T cells are also important for robust
CD8+ cellular immunity and can also participate directly in cyto-
toxic killing of infected B cells (15, 16). During asymptomatic
infection, NK cells help to restrict viral load by inhibiting their
replication and can reduce the likelihood of EBV transformation
of B cells (10, 17, 18). Furthermore, other innate effectors such
as invariant natural killer T cells are also known to play a role in
killing of infected B cells and can limit EBV transformation of
B cells in vitro (19).

The advent of next-generation sequencing technology has
enabled us to characterize primary immune deficiency (PID)
states in humans caused by mutations in single immune-related
genes that predispose them to certain pathogens. Indeed, several
PIDs have now been recognized for their specific susceptibility
to uncontrolled EBV infection and associated disease, sometimes
referred to collectively as “EBV-opathies” (5, 20–22). In this
review, we focus our attention on the incidence and severity of
EBV infection in a recently characterized PID known as B-cell
expansion with NF-κB and T-cell anergy (BENTA). Mechanistic
insights into possible immunological shortcomings surrounding
EBV infections in BENTA patients are provided below.

BENTA DISEASE

Our group discovered a B-cell-specific lymphoproliferative
congenital human disorder termed BENTA (23). BENTA disease
is caused by heterozygous, germline-encoded gain-of-function
mutations in the gene CARD11, which encodes a lymphocyte-
specific scaffold protein (CARD11) also known as CARMA1.
The CARD11 protein bridges the antigen receptor ligation in B
or T cells with multiple downstream signaling pathways such as
canonical NF-κB, c-Jun N-terminal kinase (JNK), and mechanis-
tic target of rapamycin (mTOR) (24–26). Subsequent to antigen
receptor ligation in lymphocytes, CARD11 is phosphorylated
to facilitate BCL10 and MALT1 binding to form the CARD11–
BCL10–MALT1 (CBM) complex, which further nucleates the
dynamic signalosomes that activate inhibitor of κB kinase (IKK)
and culminate in NF-κB translocation into the nucleus (27–30)
to activate the canonical NF-κB pathway. The NF-κB family of
transcription factors is critical for the induction of genes involved
in cell survival, proliferation, and immune effector functions (31).
GOF mutations in CARD11 render the protein in an open, active
state irrespective of antigen receptor engagement, resulting in
constitutive NF-κB activation (31–33).

To date, 16 different BENTA patients have been identified
and definitively diagnosed, with five distinct CARD11 mutations.
Polyclonal B cell lymphocytosis in early childhood is a hallmark
of BENTA disease, often accompanied by splenomegaly and
lymphadenopathy (23, 34–40). Immunologic phenotyping reveals
the remarkable accumulation of both CD10+CD24–CD38+ transi-
tional and IgM+IgD+ mature naïve polyclonal B cells, even though
T cell numbers frequently fall within the normal range (Table 1).
Many BENTA patients also present with several signs of primary
immunodeficiency despite the absence of any autoimmune dis-
ease symptoms. Recurrent ear and sinopulmonary infections are
common in all patients, with other opportunistic viral infections
such as molluscum contagiosum, BK virus, and EBV observed in
some patients. In most patients, inadequate antibody responses
against T-cell independent pneumococcal and meningococcal
polysaccharide-based vaccines are noted. Some patients also show
poor responses to T-cell-dependent vaccines such as Varicella
Zoster virus and measles. Poor humoral immune responses in
these patients are also reflected in very low frequencies of circulat-
ing class-switched and memory B cells, as well as low levels of IgM
and IgA in the serum. Impaired humoral immunity in BENTA is
evidenced by intrinsic defects in plasma cell differentiation and
antibody secretion upon stimulation of naïve patient B cells in vitro,
despite normal proliferation and enhanced survival (41). The
hyporesponsiveness of BENTA patient T cells to in vitro stimula-
tion, including poor proliferation and reduced IL-2 secretion, may
also contribute to defective class-switched Ab responses (23, 35).

Eight out of 16 patients were seropositive for EBV (Table 1).
While EBV viral load is generally undetectable in healthy carriers,
amost all BENTA patients (7/8) exposed to EBV are demonstra-
bly viremic as measured by their DNA copy number (Table 1).
However, EBV viral loads in BENTA patients are not nearly as high
as seen in chronic active EBV (CA-EBV) patients and other PIDs
(46). These data suggest that EBV-specific immunity is impaired
in BENTA patients, but pales in comparison to other PIDs such as
X-linked lymphoproliferative syndrome (XLP) or MAGT1/
CD27/CD70/ITK or Coronin1A deficiency diseases featuring
exquisite susceptibility to severe EBV infection and disease (5,
20–22). In the next section, we speculate on why gain-of-function
CARD11 mutations might confer susceptibility to moderate EBV
viremia in BENTA disease.

MECHANISMS UNDERLYING BENTA SUSCEPTIBILITY TO EBV

Too Many B Cells, Too Few T/NK Cells?
The consequences of distorted antigen receptor signaling in the
presence of GOF CARD11 mutations reverberate throughout
the lymphoid lineage in BENTA patients. Indeed, the size and makeup of lymphocyte compartments may influence EBV status in certain patients. Most notably, constitutive, canonical NF-κB activity induced by GOF CARD11 signaling in B cells drives excessive B cell accumulation in BENTA patients and may predispose them to malignant transformation as additional mutations are acquired over time. In fact, two patients in our cohort developed B-cell tumors in adulthood (P1 and P11), although neither was associated with EBV infection. Transgenic expression of a constitutively active form of IKKβ (caiKKβ) promotes the survival of mature murine B cells in vivo, which it is not sufficient to induce lymphomagenesis (47). Indeed, NF-κB-induced tumor suppressor genes such as A20 and IκB provide important negative feedback on NF-κB signaling, which must be overcome to promote lymphomagenesis (48). This negative feedback remains intact in primary BENTA B cells and may explain why only a fraction of BENTA B cells exhibit p65 nuclear localization at any given time (23).

Epstein–Barr virus itself is not likely a contributing factor for B-cell lymphocytosis in BENTA, as EBV-negative patients also have high B cell numbers. Although NF-κB actively represses lytic infection (49), the proliferation of latently infected EBV+ B cells relies on NF-κB signaling through viral proteins such as LMP1 and LMP2A, which mimic CD40 and BCR signaling, respectively (5). Hence, constitutive NF-κB activity in BENTA patient B cells could better enable EBV to expand the pool of latently infected B cells. Perhaps this could manifest in increased viral reactivation and viremia as CARD11-dependent NF-κB activity oscillates in infected BENTA B cells. Regardless, the presence of EBV may increase the risk of B cell malignancy later in life, simply given the increased size of target B cell compartment. An expanded pool of naïve B cells may simply support an increased level of lytic infection at any given time in EBV-infected BENTA patients, contributing to consistently higher viral loads.

As shown in Table 1, the absolute number of CD8+ T cells and the ratio of CD4+/CD8+ T cells are within normal range in most patients reported thus far. Nevertheless, the low number of NK/NKT cells observed in certain patients (e.g., P14, P15, and P16) could contribute to persistent EBV viremia in those individuals. Patient P5 also has a lower percentage and absolute number of NK cells.

Table 1 | Phenotypic analysis of BENTA patients.

Agea	EBV LOAD	CD8+ T	CD4/CD8 ratio	NK	CD3+ NKT	CD19+ B								
Healthy control	>18 years	Neg	UD	11.2–34.8	178–853	1.17–5.17	6.2–34.6	126–729	2.2–12.4	29–299	3–19	59–329		
ref ranges	6–18 years	Neg	UD	18–35	330–1,100	1.34–1.72	3–22	70–480	0.49–15	12–350	6–27	110–860		
BENTA patients	G123S	P4	Pos	3.35	19	868	0.51	4.9	224	2.7	123	62.2	2,843	
	P7	43	Pos	UD	2	300	5	ND	ND	ND	ND	52	7,900	
	P14	20	Pos	4.6	3.3	200	1.5	ND	ND	Low	Low	83	5,000	
	G123D	P6	15	Pos	2.07	3.3	2,853	0.64	3.5	3,026	1.6	1,383	89.4	77,286
	H234L Δ235-8	P11	57	Pos	3.13	31.7	970	1.11	8.9	272	10	306	20	612
	P12	32	Pos	4.45	16.3	535	2.48	6.5	213	6	197	32.5	1,066	
	P13	6	ND	Neg	13.7	507	2.55	4.1	152	3.6	133	43.3	1,602	
	C49Y	P5	21	ND	Neg	10.7	322	1.8	2	60	2.2	66	66.4	1,938
	P8	53	ND	Neg	8	152	3.37	10	190	ND	ND	48	912	
	P9	20	ND	Neg	11	418	2.6	6	228	ND	ND	50	1,900	
	P15	43	Pos	2.07	14.6	298	1.28	4.7	96	1.6	33	56	1,142	
	P16	16	Pos	3.13	20.7	271	2.12	3.8	50	2.9	38	21.3	279	
	E134G	P1	55	Neg	Neg	34.1	1,449	1.09	5.6	238	15.5	659	18.9	803
	P2	13	Neg	Neg	10.2	585	1.67	4.1	235	1.6	92	65.4	3,754	
	P3	11	Neg	Neg	10.6	409	1.99	3.6	139	2.1	81	61.9	2,389	

Values in blue and red color indicate lower and higher range, respectively, compared with adult (>18 years) or pediatric (6–18 years) healthy control range (42, 43) as specified in the subheader column. Adult ranges are derived from the NIH Clinical Center (Department of Laboratory Medicine). EBV seropositive carriers are in bold. Several patients have been described in published reports, including P1–P4 (23, 44), P6 (35), P7 (38), P5, P8, and P9 (36), P14 (37), and P16 (36). Other patients (P10–P13, P15) have been evaluated at the NIH Clinical Center but have not been published to date.

ND, not determined; UD, undetectable; Pos, positive; EBV, Epstein–Barr virus; NK, natural killer; BENTA, B-cell expansion with NF-κB and T-cell anergy.

*Measurement taken while P6 was 14 years old, but for reasons unknown his EBV load was undetectable at age 15.

*Patient's age at the time of measurement.

*Measurement range for 5- to 16-year-old healthy controls (45).
presenting a potential culprit for her frequent susceptibility to other viral infections.

Impaired T/NK Cell Function

A more likely explanation for uncontrolled EBV infection concerns impaired T cell function described in BENTA disease. *In vitro*, we observed poor proliferation and reduced IL-2 secretion from BENTA patient T cells stimulated with anti-CD3/anti-CD28 antibodies. This "anergic" response correlated with defects in TCR-mediated MAPK signaling and Ca**++** flux (23, 35). Although the biochemical mechanisms remain nebulous, these defects are almost certainly linked to constitutive canonical NF-κB activation induced by GOF CARD11 signaling. Indeed, Krishna et al showed that restricting expression of constitutively active IKKβ (caIKKβ) to murine T cells also rendered them hyporesponsive to TCR/CD28 stimulation, marked by proximal TCR signaling defects and attenuated responses to bacterial infection (50). The authors connected some of these defects to enhanced expression of the transcriptional repressor Blimp-1, which has been shown to promote T cell exhaustion. Although we have not measured Blimp-1 in BENTA T cells, we recently characterized a profound, intrinsic defect in patient B cell differentiation linked to failed induction of Blimp-1 (41). Clearly much more work is required to understand how elevated NF-κB activation perturbs seemingly independent pathways downstream of TCR signaling. Regardless, it is tempting to speculate that any flaw in PLCγ1-mediated Ca**++** flux underlies poor T cell-dependent control of EBV, as observed in more dramatic fashion in both ITK and MAGT1 deficiency (51–55).

Inactivation of CARD11 has also been shown to inhibit NK cell development and function (56). Although it is not clear how GOF CARD11 signaling may affect NK cells in BENTA, poor IL-2 secretion by anergic T cells upon stimulation could certainly weaken the NK cell response to viral infection. As mentioned earlier, some patients also display lower frequencies of NK and NKT cells, although EBV viremia is observed in several patients with normal NK/NKT counts. Thus, the increased susceptibility of BENTA patients to EBV could be linked to both excessive polyclonal B cell lymphocytosis and hyporesponsive T cells/NK cells that help in combating the viral infection.

Dysregulation of Key Receptor–Ligand Signals Required for EBV Control

The removal of latently infected B cells by cytotoxic T and NK cells requires several receptor–ligand interactions for recognition, cell–cell conjugation, and cytolysis, some of which may be weakened in BENTA patients (Figure 1). For example, cognate engagement of EBV-infected B cells by T cells requires

![Figure 1](image-url)
SAP-dependent signaling through two receptors belonging to the SLAM family: 2B4 and NTB-A (57–60). Whereas most SLAM receptors participate in homotypic interactions in trans, 2B4 recognizes a distinct ligand on target cells known as CD48. The expression of both NTB-A and CD48 is dramatically upregulated on the B cell surface upon EBV infection, which promotes T cell and NK cell activation during asymptomatic infection and acute infection, respectively (5, 61). Recruitment of SAP, a small SH2 adaptor protein, to the cytoplasmic tails of NTB-A and 2B4 upon ligand binding is required for conveying downstream signals that ensure strong T:B cell conjugation and B cell killing (62). In this regard, SAP deficiency in XLP-1 patients makes them exquisitely susceptible to severe, uncontrolled EBV infection due to debilitated 2B4 and NTB-A signaling, presenting as FIM/HLH (63, 64). Based on our published RNA-Seq data, BENTA B cells activated in vitro with polyclonal stimuli display normal expression of CD48 and NTB-A compared with healthy human donors (41). Whether perturbed 2B4 and/or NTB-A signaling in BENTA patient T cells may influence EBV predisposition remains unclear, but warrants further investigation.

Upon activation, the C-type lectin-like receptor NKG2D is also expressed on NK cells and CD8+ T cells and plays a major role in cytotoxic elimination of transformed and virally infected cells (65). The importance of NKG2D in EBV immunity was recently revealed by the discovery of X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia (XMEN) disease, caused by deficiency of the magnesium transporter MAGT1. Although NK cell and CD8+ T cell numbers are normal in XMEN patients, reduced intracellular Mg2+ abrogates NKG2D receptor expression on activated NK cells and CD8+ T cells, which compromises cytolytic responses against EBV+ B cells (51, 66–68). Similarly, GOF CARD11 signaling may diminish NKG2D expression on BENTA NK cells or CD8+ T cells, perhaps linked to a Ca2+ flux defect similar to that noted in XMEN T cells (54). On the other hand, there is no evidence for transcriptional upregulation of NKG2D receptor ligands MICA, MICB, and ULBP5 on activated BENTA B cells compared with healthy control B cells. Simultaneous engagement of SAP-dependent 2B4 and SAP-independent NKG2D signaling is indispensable for CD8+ T cell-mediated killing of EBV-infected B cells (69), explaining why neither receptor (NKG2D or 2B4) can compensate for the absence of the other to maintain normal CTL activity in XMEN and XLP-1 patients. If constitutive CARD11 signaling indirectly impedes NKG2D or 2B4 signaling in BENTA CD8+ T cells/NK cells, this could jeopardize their ability to completely control EBV infection.

CD27, a costimulatory molecule belonging to the tumor necrosis factor receptor superfamily, is constitutively expressed on memory B cells and most T cells. CD27 engagement in B cells is known to play a key role in B cell activation and immunoglobulin synthesis (70). Our recent in vitro studies with BENTA B cells revealed an intrinsic defect in plasma cell differentiation and antibody production that correlated with poor induction of several genes related to plasma cell commitment, including CD27 (41), although CD27 expression is readily detected on patient T cells (data not shown). CD27 interacts with the ligand CD70, expressed transiently on activated B cells, T cells, and dendritic cells. EBV infection upregulates CD70 expression to greater levels on B cells (20). Recently described human patients with CD27 or CD70 deficiency present with similar disease phenotypes, including hypogammaglobulinemia, reduced memory B cells, increased viral infection, and EBV-induced lymphoproliferation and lymphoma. Heightened susceptibility to EBV-driven disease in these patients, despite normal numbers of T and NK cells, highlights a critical, non-redundant role for CD27–CD70 interactions in driving Ab responses and ensuring optimal cellular control of EBV (44, 71–74). Intriguingly, we recently discovered a significant reduction in CD70 expression on activated BENTA B cells in vitro compared with healthy control B cells (data not shown). Thereby, an impaired CD27–CD70 signaling axis in BENTA could significantly contribute to both specific Ab deficiency and impaired priming and function of EBV-specific CD8+ T cells. The latter could also be related to decreased NKG2D and 2B4 expression on memory CD8+ T cells, similar to CD70-deficient patients (44). Further exploration of a potential CD27–CD70 signaling deficit in BENTA patients is therefore warranted to elucidate a plausible mechanism to explain the inability of BENTA T and NK cells to fully contain EBV.

CLINICAL MANAGEMENT OF EBV IN BENTA PATIENTS

Assuming B cell lymphocytosis may predispose BENTA patients to greater risk of B cell malignancy later in life, patients are monitored closely for any evidence of B cell clonal outgrowth, using flow cytometry and Ig heavy chain rearrangement analysis. EBV viral load is also measured regularly, as increases in detectable viremia may reflect further debilitation of CD8+ T cell and NK cell function and could theoretically contribute to B cell transformation. However, viral loads in most EBV+ BENTA patients remain comparatively low relative to CA-EBV and other PIDs (46).

To the best of our knowledge, only one patient (P6) was actively treated for EBV-related complications (35). This patient was hospitalized at age 4 with acute EBV infection, featuring profound adenopathy and splenomegaly, as well as immune thrombocytopenic purpura. Lymph node biopsies revealed substantial polyclonal B cell accumulation in follicular and parafollicular areas, mixed with moderate numbers of CD8+ and CD4+ T cells. At this time, years before the causative CARD11 mutation was discovered, the patient was treated aggressively with intravenous immunoglobulin, rituximab, corticosteroids, and acyclovir. Symptoms resolved with treatment, and plasma EBV load was rendered undetectable by PCR. CD4+/CD8+ T cell ratio, which had dropped significantly during acute EBV infection, also recovered once infection was cleared. Following elective splenectomy 3 years later, his circulating B cell, T cell, and NK cell counts increased dramatically. This phenomenon has been observed in other patients following spleen removal (40) and likely reflects the loss of an important secondary lymphoid tissue niche for excess lymphocytes. Nevertheless, B cell counts in this patient remained 5–10 times higher than those noted in other BENTA patients. To control lymphocytosis, P6 was treated with methotrexate for 4 years until his lymphocyte count was reduced below 80 × 10^3/μl (35).

Frontiers in Immunology | www.frontiersin.org 5 February 2018 | Volume 9 | Article 198
This distinctive case provides an illustrative example of successful treatment for acute EBV infection and may represent a blueprint for care if EBV viremia or lymphocytosis increases rapidly in any BENTA patient. Unlike CA-EBV patients, BENTA patients should not require more radical clinical interventions, such as hematopoietic stem cell transplantation or administration of autologous cytotoxic T cells to combat EBV infection (46). In the future, pharmacological inhibitors of NF-κB activation may be an attractive therapeutic tool for reducing B cell numbers in BENTA patients but must be approached with caution to avoid exacerbating underlying T/NK cell immunodeficiency. Inhibitors of MALT1 protease, which dampen canonical NF-κB activity without completely blocking it, may be a more attractive option and have recently yielded promising results for treatment of B cell lymphoma and autoimmune disease (75–78). Future clinical management will ultimately be guided by more basic research into possible aforementioned mechanisms that might explain impaired CTL and NK cell function and compromised EBV control in BENTA disease.

CONCLUSION

Although the current cohort of patients remains small, impaired control of EBV infection has emerged as a recurring problem in BENTA disease. In contrast to PIDs involving severe EBV-related complications (e.g., fulminant hepatitis and HLH) and complete deficiency of aforementioned receptors and signaling proteins required for EBV immunity, lower viremia in BENTA patients likely reflects attenuation, but not complete abrogation, of T and NK cell functions (Figure 1). Further research is required to connect CARD11 GOF signaling mechanistically to these moderate functional defects, which may involve aberrant signaling through NF-κB as well as other downstream signaling nodes, including JNK and mTORC1. Indeed, severe atopic disease observed in patients carrying CARD11 loss-of-function mutations can be attributed to defects in both NF-κB and mTORC1 activation in T cells (79), although none of these patients have presented with significant EBV infections. Continued identification and careful characterization of additional patients harboring novel CARD11 variants should yield further insights into how CARD11 signaling ultimately governs the immune response against EBV.

ACKNOWLEDGMENTS

The authors thank all patients and their families for participating in research described in this review. They thank Dr. Thomas Fleisher (NIH Clinical Center) for supporting diagnostic flow cytometry on BENTA patients seen at NIH. They also thank all of our collaborating physicians for referring patients and providing helpful information, including Drs. Marylin Desjardins and Bruce Mazer at McGill University Health Centre and Dr. Ian Morison at the University of Otago, New Zealand.

FUNDING

This work was supported with funding from the National Institutes of Health (1R21AI109187 to AS) and the Intramural Research Program of the NIH, National Institute of Allergy and Infectious Diseases. This project has also been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

REFERENCES

1. Cohen JJ. Epstein-Barr virus infection. N Engl J Med (2000) 343(7):481–92. doi:10.1056/NEJM2000081713430707
2. Cohen JJ. Epstein-Barr virus vaccines. Clin Transl Immunol (2015) 4(1):e32. doi:10.1038/cti.2014.27
3. Hislop AD, Taylor GS, Sauce D, Richardson AB. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu Rev Immunol (2007) 25:587–617. doi:10.1146/annurev.immunol.25.022106.141553
4. Taylor GS, Long HM, Brooks JM, Richardson AB, Hislop AD. The immunology of Epstein-Barr virus-induced disease. Annu Rev Immunol (2015) 33:787–821. doi:10.1146/annurev-immunol-032414-112326
5. Tangye SG, Palendira U. Human immunity against EBV-lesions from the clinic. J Exp Med (2017) 214(2):269–83. doi:10.1084/jem.20161846
6. Young LS, Richardson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer (2004) 4(10):757–68. doi:10.1038/nrc1452
7. Chen MR. Epstein-Barr virus, the immune system, and associated diseases. Front Microbiol (2011) 2:53. doi:10.3389/fmicb.2011.00005
8. Oudinade OA, Hogquist KA, Ballfour HH Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev (2011) 24(1):193–209. doi:10.1128/CMR.00044-10
9. Ohga S, Nomura A, Takada H, Harra T. Immunological aspects of Epstein-Barr virus infection. Crit Rev Oncol Hematol (2002) 44(3):203–15. doi:10.1016/S1040-8428(02)00112-9
10. Azzi T, Lüneemann A, Murer A, Ueda S, Béziat V, Malmberg KJ, et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood (2014) 124(16):2533–43. doi:10.1182/blood-2014-01-553024
11. Thorley-Lawson DA. EBV persistence – introducing the virus. Curr Top Microbiol Immunol (2015) 390(Pt 1):151–209. doi:10.1007/978-3-319-22822-8_8
12. Kuppers R. B cells under influence: transformation of B cells by Epstein-Barr virus. Nat Rev Immunol (2003) 3(10):801–12. doi:10.1038/nri1201
13. Rickinson AB, Callan MF, Annels NE. T-cell memory: lessons from Epstein-Barr virus infection in man. Philos Trans R Soc Lond B Biol Sci (2000) 355(1395):391–400. doi:10.1098/rstb.2000.0579
14. Callan MF, Fazou C, Yang H, Rostron T, Poon K, Hatton C, et al. CD8+ T cell selection, function, and death in the primary immune response in vivo. J Clin Invest (2000) 106(10):1251–61. doi:10.1172/JCI10590
15. Long HM, Haigh TA, Gudgeon NH, Leen AM, Tsang CW, Brooks J, et al. CD4+ T-cell responses to Epstein-Barr virus (EBV) latent-cycle antigens and the recognition of EBV-transformed lymphoblastoid cell lines. J Virol (2005) 79(8):4896–907. doi:10.1128/JVI.79.8.4896-4907.2005
16. Amyes E, Hatton C, Montamat-Sicotte D, Gudgeon N, Rickinson AB, McMichael AJ, et al. Characterization of the CD4+ T cell response to Epstein-Barr virus during primary and persistent infection. J Exp Med (2003) 198(6):903–11. doi:10.1084/jem.20022058
17. Chijioke O, Landtwing V, Munz C. NK cell influence on the outcome of primary Epstein-Barr virus infection. Front Immunol (2016) 7:323. doi:10.3389/fimmu.2016.00323
24. Blonska M, Lin X. CARMA1-mediated NF-κB and JNK activation in
23. Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, et al.
37. Buchbinder D, Stinson JR, Nugent DJ, Heurtier L, Suarez F, Sukumar
34. Arjunaraja S, Snow AL. Gain-of-function mutations and immunodeficiency:
33. Jattani RP, Tritapoe JM, Pomerantz JL. Intramolecular interactions and
32. Jattani RP, Tritapoe JM, Pomerantz JL. Cooperative control of caspase recruit-
30. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-García ME,
28. Paul S, Traver MK, Kashyap AK, Washington MA, Latoche JR, Schaefer BC,
27. McCully RR, Pomerantz JL. The protein kinase C-responsive inhibitory
26. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to
25. Winter D, Paustian P, Pfeifer S, Kanzler J, Kanzler B, Delecluse HJ, et al.
24. Blonska M, Lin X. CARMA1-mediated NF-κB and JNK activation in
23. Snow AL, Xiao W, Stinson JR, Lu W, Chaigne-Delalande B, Zheng L, et al.
37. Buchbinder D, Stinson JR, Nugent DJ, Heurtier L, Suarez F, Sukumar
34. Arjunaraja S, Snow AL. Gain-of-function mutations and immunodeficiency:
33. Jattani RP, Tritapoe JM, Pomerantz JL. Intramolecular interactions and
32. Jattani RP, Tritapoe JM, Pomerantz JL. Cooperative control of caspase recruit-
30. Sommer K, Guo B, Pomerantz JL, Bandaranayake AD, Moreno-García ME,
28. Paul S, Traver MK, Kashyap AK, Washington MA, Latoche JR, Schaefer BC,
27. McCully RR, Pomerantz JL. The protein kinase C-responsive inhibitory
26. Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to
virus-infected B cells in X-linked lymphoproliferative disease. J Exp Med (2001) 194(3):235–46. doi:10.1084/jem.194.3.235

58. Nakajima H, Colonna M. B2R as an NK cell activating receptor with unique specificity and signal transduction mechanism. Hum Immunol (2000) 61(1):39–43. doi:10.1016/S0198-8859(99)00170-6

59. Parolini S, Bottino C, Falco M, Augugliaro R, Giliani S, Franceschini R, et al. X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells. J Exp Med (2000) 192(3):337–46. doi:10.1084/jem.192.3.337

60. Tangye SG, Cherwinski H, Lanier LL, Phillips JH. 2B4-mediated activation of human natural killer cells. Mol Immunol (2000) 37(9):493–501. doi:10.1016/S0161-5890(00)00576-6

61. Thorley-Lawson DA, Schooley RT, Bhan AK, Nadler LM. Epstein-Barr virus super induces a new human B cell differentiation antigen (B-LAST-1) expressed on transformed lymphoblasts. Cell (1982) 30(2):415–25. doi:10.1016/0092-8674(82)90239-2

62. Dupré L, Andolfi G, Tangye SG, Clementi R, Locatelli F, Aricò M, et al. SAP controls the cytolytic activity of CD8+ T cells against EBV-infected cells. Blood (2001) 97(11):398–408. doi:10.1182/blood-2001-03-275909

63. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood (2010) 116(18):3398–408. doi:10.1182/blood-2010-03-275909

64. Nakajima H, Cell M, Bouzouen A, Grierson HL, Lewis J, Duckett CS, et al. Patients with X-linked lymphoproliferative disease have a defect in 2B4 receptor-mediated NK cell cytotoxicity. Eur J Immunol (2000) 30(11):3309–18. doi:10.1002/1521-4141(200011)30:11<3309::AID-IMMU3309>3.0.CO;2-3

65. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Rault DH. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity (2002) 17(1):19–29. doi:10.1016/S1074-7613(02)00333-3

66. Chaing-Delalande B, Li FY, O’Connor GM, Lakacs MJ, Jiang P, Zheng L, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science (2013) 341(6142):337–46. doi:10.1126/science.1240094

67. Dhalla R, Murray S, Sadler R, Chaing-Delalande B, Sadaoka T, Soilleux E, et al. Identification of a novel mutation in MAGT1 and progressive multifocal leukoencephalopathy in a 58-year-old man with X-MEN disease. J Clin Immunol (2015) 35(2):112–8. doi:10.1007/s10875-014-0116-2

68. Patiroglu T, Haluk Akar H, Gilmour K, Unal E, Akif Ozdemir M, Bibi S, et al. A case of X-MEN syndrome presented with severe auto-immune disorders mimicking autoimmune lymphoproliferative disease. Clin Immunol (2015) 159(1):58–62. doi:10.1016/j.clim.2015.04.015

69. Kwon HJ, Choi GE, Byu S, Kwon SJ, Kim SC, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-κB activation and NK cell responses during target cell recognition. Nat Commun (2016) 7:11686. doi:10.1038/ncomms11686

70. Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol (2005) 17(3):275–81. doi:10.1016/j.coi.2005.04.004

71. Alkhairy OK, Perez-Bechara R, Lysson GI, Abolhassani H, van Montfrans J, Borte S, et al. Novel mutations in TNFRSF7/CD27: clinical, immunologic, and genetic characterization of human CD27 deficiency. J Allergy Clin Immunol (2015) 136(3):703–12.e10. doi:10.1016/j.jaci.2015.02.022

72. Salzer E, Daschkey S, Choo S, Gombert M, Santos-Valente E, Ginzel S, et al. Combined immunodeficiency with life-threatening EBV-associated lymphoproliferative disorder in patients lacking functional CD27. Haematologica (2013) 98(3):473–8. doi:10.3324/haematol.2012.068791

73. van Montfrans JM, Hoepelman AI, Otto S, van Gijn M, van de Corput L, de Weger RA, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol (2012) 129(3):787.e9–9.e. doi:10.1016/j.jaci.2011.11.013

74. Izawa K, Martin E. Inherited CD70 deficiency in humans reveals a critical role for the CD70–CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med (2017) 214(1):73–89. doi:10.1084/jem.20160784

75. Demeyer A, Staal J, Beyaert R. Targeting MALT1 proteolytic activity in immunity, inflammation and disease: good or bad? Trends Mol Med (2016) 22(2):135–50. doi:10.1016/j.molmed.2015.12.004

76. Lee CH, Bae SJ, Kim M. Mucosa-associated lymphoid tissue lymphoma translocation 1 as a novel therapeutic target for rheumatoid arthritis. Sci Rep (2017) 7(1):11889. doi:10.1038/s41598-017-12349-9

77. Saha NS, Wong DH, Tanios G, Iyer JR, Lobel RP, Dadasani E, et al. MALT1 inhibition is efficacious in both naïve and ibritumumab-resistant chronic lymphocytic leukemia. Cancer Res (2017) 77(24):7038–48. doi:10.1158/0008-5472.CAN-17-2485

78. Bardet M, Unterreiner A, Malinvernì C, Lafossas E, Vedrine C, Boesch D, et al. The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition. Immunol Cell Biol (2017) 96(1):81–99. doi:10.1111/imcb.1018

79. Ma CA, Stinson JR, Zhang Y, Abbott JK, Weinreich MA, Hauk PJ, et al. Germline hypomorphic CARD11 mutations in severe atopic disease. Nat Genet (2017) 49(8):1192–201. doi:10.1038/ng.3898

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling editor declared a shared affiliation, although no other collaboration, with the authors PA and HS.

Copyright © 2018 Arjunaraja, Angelus, Su and Snow. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.