Fibronectins: Multifunctional Modular Glycoproteins

RICHARD O. HYNES and KENNETH M. YAMADA
Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; and the Membrane Biochemistry Section, Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20205

Fibronectins are large glycoproteins that have been implicated in a wide variety of cellular properties, particularly those involving the interactions of cells with extracellular materials. These properties include cell adhesion, morphology, cytoskeletal organization, migration, differentiation, oncogenic transformation, phagocytosis, and hemostasis. During the past several years, investigations in many laboratories have analyzed the expression, functions, and structure of fibronectins. These studies have revealed that fibronectins have a complex molecular structure consisting of multiple specific binding sites, and studies have revealed that fibronectins have a complex molecular structure consisting of multiple specific binding sites, and the complex biological phenomena in which fibronectins participate can now be considered in terms of this structure.

In this brief article we will review the current understanding of the structure and properties of fibronectins. Because a number of comprehensive reviews on various aspects of fibronectins have been published (1-13), we shall focus on overall concepts, recent developments and promising future research directions in this rapidly expanding field.

Sources of Fibronectins

In vivo, fibronectins are found in body fluids (300 μg/ml in plasma, lesser amounts in other fluids), soft connective tissue matrices, and most basement membranes. Fibronectins are synthesized by a wide variety of cells in vitro (Table I). Fibroblasts and endothelial cells are major producers, but many other cell types, including some epithelial cells, synthesize fibronectin at lower levels. There are at least two types of fibronectin, termed plasma and cellular fibronectins, although there may well be multiple forms of cellular fibronectin. Cellular and plasma fibronectins, although distinguishable, are very similar in structure and properties (see below). One major source of plasma fibronectin appears to be hepatocytes (14, 15) although endothelial cells (16–18) and macrophages (19–22) could also contribute, given their close association with the bloodstream.

Properties of Fibronectins

The basic properties of fibronectins are listed in Table II. The molecule is asymmetric and consists of two similar or identical subunits of molecular weight 220,000 ± 20,000 daltons held together by disulfide-bonding near their carboxyl termini. Biophysical measurements indicate that, although the molecule as a whole is flexible, it contains compact globular domains (23, 24). Electron microscopic results confirm the idea that the molecule is extended and flexible (25–27), although the globular domains have not yet been observed by this technique.

One important characteristic of fibronectins is that they are capable of interacting specifically with a wide variety of other macromolecules. Table III lists the various interactions, some of which have been studied in more detail than others. The best-established interactions, for which evidence exists both for their occurrence in vivo and for their specificity in vitro, are the interactions with gelatin and collagens, fibrin, factor XIIIa transglutaminase, heparin, and proteoglycans. In addition, it is clear that fibronectins interact with many cells; however, the molecular basis for this interaction remains unclear and is one of the major unanswered questions concerning fibronectins. The binding sites on fibronectins involved in many of these interactions have been identified and isolated, as will be discussed in a later section.

Although plasma fibronectin exists as a soluble protein, the typical appearance of cellular fibronectin is as a fibrillar extracellular matrix. The fibrils containing fibronectin can also contain collagens (28, 29) and proteoglycans (30–32). It is possible that interactions between fibronectin and other matrix molecules are important in the formation of these fibrils. The detailed molecular interactions involved in the formation of extracellular matrices and basement membranes are another area of active research.

FUNCTIONS OF FIBRONECTINS

Table IV summarizes the cellular properties in which fibronectins have been implicated. The most thoroughly studied, and perhaps most basic, function of fibronectins is in the adhesion to solid substrates. Numerous studies have reported that fibronectins promote the adhesion and/or spreading of cells on a variety of materials including plastic, collagen, gelatin, and fibrin (33–36). Cells that synthesize their own fibronectin do...
not require exogenous fibronectin for adhesion and spreading, but many cells that produce little or none will respond to added fibrinogen. Furthermore, extracellular fibrils that contain fibronectin are often observed to correspond in their arrangement with intracellular microfilament bundles (40–47). Fig. 1 shows examples of this phenomenon. These results, and others, suggest that there may be some form of physical connection between the extracellular matrix and the intracellular cytoskeleton (10). The molecular basis for this interaction is not understood as yet. However, the idea that the cytoskeleton and the extracellular matrix are part of a continuous supra-

Table I

Cell type	Fibronectin Synthesis In Vitro*
Fibroblasts	Often decreased after oncogenic transformation
Endothelial cells	High rate of synthesis, large proportion secreted in vitro
Chondrocytes	Amount correlates inversely with differentiation
Myoblasts & myotubes	Quantity appears to differ according to source of cells; transformed cells have less; myotubes often have less than myoblasts
Macrophages	All or most is secreted
Hepatocytes	All or most is secreted plasma fibronectin
Amniotic cells	Amniotic FN is more heavily glycosylated
Glial cell lines	GLial cells in vivo probably do not synthesize FN
Intestinal epithelial cells	Small amounts only
Mammary epithelial cells	Decreased on metastatic cells
Teratocarcinomas	Changes with differentiation
Early embryonic tissues	Cells from all three germ layers have been reported to synthesize fibronectin

* Specific references can be found in earlier reviews (see 3, 4, and 12 for summary tables with references) and in the text.

Table II

Properties of Fibronectins*
Subunits
pl
Carbohydrate
Sulphydryl groups
Disulfide bonds
Secondary structure
Tertiary structure
High order associations

* Specific references can be found in earlier reviews (see 3, 4, and 12 for summary tables with references) and in the text.

not require exogenous fibronectin for adhesion and spreading, but many cells that produce little or none will respond to added fibronectin. Among these cells are some oncogenically transformed cells that produce reduced quantities of fibronectin as a consequence of transformation (37, 38).

Concomitant with the spreading induced by added fibronectin, cells often acquire highly ordered intracellular microfilament bundles (38, 39). Furthermore, extracellular fibrils that contain fibronectin are often observed to correspond in their arrangement with intracellular microfilament bundles (40–47). Fig. 1 shows examples of this phenomenon. These results, and others, suggest that there may be some form of physical connection between the extracellular matrix and the intracellular cytoskeleton (10). The molecular basis for this interaction is not understood as yet. However, the idea that the cytoskeleton and the extracellular matrix are part of a continuous supra-

Table III

Interactions of Fibronectins

Selected references
Gelatin, denatured collagens, collagens I–V
Fibron, fibrinogen
Factor XIIla transglutaminase
Heparin
Proteoglycans
Cells
Bacteria
Actin
DNA
Hyaluronic acid
Gangliosides
Asymmetric acetylcholinesterase
Clq component of complement
Thrombospondin

* See text and reviews for specific references.

Table IV

Functions of Fibronectins*

Functions of Fibronectins*
Cellular adhesion
Cellular morphology and spreading
Cytoskeletal (microfilament) organization
Oncogenic transformation
Cell migration/chemotaxis or haptotaxis
Phagocytosis
Hemostasis/thrombosis
Embryonic differentiation

* Specific references for the various functions are given in the text.
Figure 1 Codistribution of fibronectin fibrils and actin microfilament bundles. (A and B) Double label immunofluorescence of NIL8 hamster cells arrested in low serum (cf. reference 40). A shows fibronectin stain, B shows actin staining of the same cells. Arrows mark some of the coincidences. (C and D) Immunoperoxidase staining of fibronectin in Xenopus mesentery cell cultures. C shows peroxidase staining of fibronectin. D shows a phase photograph of the same field. Actin microfilament bundles are colinear with the fibronectin (reprinted from reference 71). (E) Immunoferritin staining of fibronectin in tsSV40-hamster embryo fibroblasts at nonpermissive temperature. Figure shows an oblique section through the base of the cell with fibronectin fibril outside cell at left colinear with actin microfilament bundle inside cell at right (reprinted from reference 42). (F) Similar section of NIL8 hamster cells not stained with antibody. Figure again shows extracellular fibrils colinear with intracellular microfilament bundles (picture courtesy of Irwin Singer).
presence of fibronectin in areas of cell migration does not prove that it is functionally involved, even less that it is the only relevant matrix component.

A functional role for fibronectin in phagocytosis was originally suggested on the basis of in vivo results that showed that levels of plasma fibronectin correlated with the ability of an organism to clear particulate debris, especially gelatin-coated particles, from the circulation (5). It was suggested that fibronectin was acting as a “non-specific opsonin” for the reticuloendothelial system. This suggestion became even more interesting with the observation that fibronectin binds to certain bacteria (75, 76). The recently reported binding of C1q by fibronectin (77-79) might also be important in phagocytosis of antibody aggregates or fragments of cells lysed by complement. In vitro studies have shown that fibronectin will indeed promote phagocytosis of gelatin-coated beads by certain macrophages although heparin is required as a cofactor (21, 80-82).

No detailed studies have yet shown fibronectin to act as an opsonin for bacteria. Thus, the in vivo relevance of the “opsonic” activity of fibronectin remains unclear and is under active investigation. One interpretation of fibronectin-stimulated endocytosis is that it is simply a specialized form of cell spreading on a substrate with a small rather than an infinite radius of curvature.

Another possible role of plasma fibronectin is in hemostasis and thrombosis. During coagulation, fibronectin is crosslinked to fibrin by factor XIIIa transglutaminase (83, 84). Furthermore, platelets contain intracellular fibronectin (85, 86), possibly in their α-granules, and release it on activation (86-88). Activated platelets will also bind exogenous plasma fibronectin (50, 88, 89). Consequently, at the site of interaction of platelets with endothelial cell basement membrane, there are three possible sources of fibronectin: plasma, basement membrane, and the platelets themselves. Because other adhesive proteins such as von Willebrand’s factor and thrombospondin are also present in the platelets, the basement membrane and the plasma (88, 90-94), the adhesion of platelets is likely to be complex. The exact role of fibronectin in this process remains unclear but, under certain artificial in vitro conditions, fibronectin can promote the adhesion and/or spreading of platelets (50, 95, 97). Crosslinking experiments suggest that an interaction between fibronectin and thrombospondin occurs when platelets spread on solid substrata (97). Thrombospondin has also been implicated in platelet aggregation (98, 99).

Finally, fibronectin has been implicated in the regulation of several differentiation pathways. Fibronectin has been reported both to stimulate myogenesis and to inhibit myoblast fusion (100, 101) and to inhibit chondrogenesis (102-104). The precursor cells of both the myogenic and chondrogenic lineage are fibronectin-positive, and there appears to be a loss of fibronectin during progression along these two differentiation pathways (103-108). Fibronectin has also been reported to inhibit melanogenesis and to promote adrenergic differentiation in explanted neural crest cells (109, 110). Extracellular matrices have long been thought to play important roles in development. Fibronectin has now joined collagens and proteoglycans as a candidate for a role in these processes, as have even more recently discovered glycoproteins such as laminin and chondronectin. Clearly the role of the various matrix constituents, singly and in combination, in various differentiative events will be an active area of research in the next few years.

Fibronectins therefore appear to be involved in an almost embarrassingly large array of cellular functions. How can an individual molecule perform so many functions? The following sections review our current understanding of the structure-function relationships of fibronectins.

STRUCTURE AND FUNCTIONAL DOMAINS OF FIBRONECTINS

As mentioned above, spectrophotometric and ultracentrifugation experiments indicate that cellular and plasma fibronectins are elongated molecules composed of structured domains separated by flexible, extendable regions of polypeptide chain (23, 24, 111). By electron microscopy, fibronectins are usually visualized as slender, elongated molecules with regions of apparently increased flexibility (25, 26), although they can appear more globular under certain conditions (27). Variability also exists in the hydrodynamic radius, which is known to increase or decrease, depending upon ionic strength (23). A unifying interpretation of these studies is that fibronectins are highly flexible molecules that can expand or contract depending upon the local environment.

Flexible polypeptide regions of proteins such as fibronectin tend to be particularly susceptible to attack by a variety of proteases. Proteases will cleave such regions to generate separate, structured domains of the molecule containing specific binding sites for ligands (e.g., collagen and heparin, see Table III).

There are two approaches to purifying such structural domains from fibronectin or any molecule with binding sites. In the first, specific ligands are coupled covalently to agarose beads and are poured into affinity columns. The fibronectin is allowed to bind to the column and then incubated with various proteases. Under appropriate conditions, the enzymes cleave the molecule into protease-resistant domains. After extensive washing of the column, the only regions that remain bound to the column are domains specific for binding to the specific ligand. An alternative approach is to pretreat the fibronectin with proteases, to inhibit the proteases with protease inhibitors, and to pour the entire digest over affinity columns. Specific protease-resistant domains then bind to the column, and other fragments are discarded. These two approaches have been surprisingly successful in identifying and purifying a series of protease-resistant, functional domains of fibronectin and locating these domains and other structural features on the molecule (112-132). Fig. 2 shows the current model based on these results.

Collagen-binding Domain

The first domain of fibronectin to be isolated was the collagen-binding domain. This region of the molecule is ~30-40,000 daltons in size, and can be produced after digestion of the intact molecule with chymotrypsin, subtilisin, thermolysin, or even the broad spectrum protease pronase (112, 114, 116, 117, 119, 120, 124, 125). This region binds to collagen or to gelatin affinity columns, yet cannot mediate cell interactions. Larger fragments are produced by different proteolytic conditions and allow mapping of the collagen-binding domain near to but not at the amino-terminus (112, 113, 115, 116, 118, 119, 120, 122-125, 128-131).

Cell-binding Domain

The cell-binding activity appears to require a separate region, the “cell-binding” region of fibronectin, that can be purified
Glycosaminoglycan-binding Domains

As described previously, interactions of fibronectin with heparin and heparan sulfate may play important roles in the uptake of material by macrophages or in the structural organization of the extracellular matrix (21, 30–32, 80–82, 138–143). When examined in vitro, the interactions of fibronectin and heparin appear to be complex, with at least two components of moderately high binding affinity (121).

The results of proteolytic dissection of the fibronectin molecule to identify the regions that bind to heparin affinity columns are also complex. There are two or three distinct regions of the molecule that bind to heparin (125, 126, 128–131). One binding site is located in the amino-terminal domain of the molecule (125, 128, 130, 131). Interaction of this domain with heparin can be modulated by physiological concentrations of calcium (138) and is inhibited by 0.25 M salt (130).

A second binding site is located close to the carboxyl terminus of the molecule (125, 128–131), and its binding is less sensitive to salt (130) and is insensitive to divalent cations (138). The existence of these multiple heparin-binding domains on fibronectin, and their differing sensitivities to divalent cations and salt concentrations, suggest that the interactions of fibronectin with even one ligand can be surprisingly complex and may be modulated by the local microenvironment.

Fibronectin can also bind to the glycosaminoglycan hyaluronic acid, which could affect the interactions of hyaluronic acid with cells or other extracellular matrix molecules (121, 140, 141). The binding to cellular fibronectin is kinetically complex and of moderately high affinity (121). Recent data suggest that fibronectin must exist as an aggregate in order to mediate efficient binding, because nonaggregated cellular or plasma fibronectins coupled to affinity columns bind poorly to hyaluronic acid (144). Because of this latter property, the binding region for hyaluronic acid has not yet been identified.

Disulfides and Sulfhydryls

Similar analyses of fragments of fibronectin have shown that the interchain disulfides connecting the subunits of the fibronectin dimer are very close to the carboxyl terminus (115, 118, 120, 122, 145–147). Both the amino-terminal and the collagen-binding domains are extremely rich in intrachain disulfides (113, 115, 117, 118). The amino-terminal domain contains almost 10% half cystine and probably contains 10 intrachain disulfides. These may be responsible for the compact protease-resistant structure of this domain. The intrachain disulfides of the collagen-binding domain are essential for binding to collagen (113, 115). Each subunit of fibronectin contains at least one sulfhydryl group (115, 120) located ~170,000 daltons from the amino-terminus (122) and probably a second one further towards the carboxyl terminus (122, 148).

If these sulfhydryl groups are alkylated, the binding of fibronectin into the cell surface matrix is inhibited (115, 122). It is possible that these sulfhydryls are involved in the intermolecular disulfide bonding of fibronectin either to other fibronectin molecules or to other cell surface constituents such as proteoglycans.

Structure–Function Model of Fibronectin

The current model for the structure of fibronectin based on these results postulates a series of protease-resistant structural
domains, each of which contains specific ligand-binding activities (Fig. 2). The existence of these multiple, specific domains on fibronectin can begin to explain how this molecule may act in a variety of molecular interactions. Fibronectin can be viewed as a molecule that interconnects a series of cell and matrix components to form macromolecular complexes at the cell surface and in the extracellular matrix (Fig. 3).

In addition, this model makes predictions about the requirements for certain combinations of domains for specific functions. For example, cell-cell interactions would be expected to require a multivalent molecule to enable fibronectin molecules to bind to more than one cell. Monomeric fibronectin fragments do have greatly diminished activity in such an assay (114). On the other hand, the attachment of cells to collagen would be expected to occur with even simple monomers but would require two different binding domains. As predicted, monomeric fragments of 205,000 daltons containing one cell- and one collagen-binding site are high active (114).

It will be of interest to examine the requirements for the different heparin-binding domains in the nonimmune opsonic activity of fibronectin with macrophages, in terms of which different heparin-binding domains in the nonimmune opsonic activity require two different binding domains. As predicted, monomeric fibronectin fragments of the molecule (149, 150).

The nature of the cell surface binding site is speculative. For example, the ability of fibronectin to promote migration of fibroblasts has been attributed to only the cell-binding region of the molecule (149, 150).

Role of Fibronectin's Carbohydrates

Fibronectin contains ~5% carbohydrate, consisting solely of "complex" oligosaccharides linked to asparaginyl residues. The synthesis of these oligosaccharide residues on fibronectin can be inhibited by 95-98% with tunicamycin, a relatively specific inhibitor of glycosylation (151, 153). The resultant nonglycosylated fibronectin is secreted in virtually normal quantities, suggesting that the carbohydrate moieties play no role in the secretion of this glycoprotein (152). However, the rate of turnover of carbohydrate-free fibronectin is accelerated by two- to threefold, and this increased rate results in a threefold decrease in total quantities of fibronectin on the cell surface of tunicamycin-treated chick fibroblasts (152).

Isolated nonglycosylated fibronectin is unusually susceptible to various proteases (152, 154). The region of fibronectin that becomes the most susceptible to proteolysis is the collagen-binding region, which normally contains most of the carbohydrate residues of glycosylated fibronectin (154). A heparin-binding region of fibronectin that normally lacks carbohydrate has the same protease susceptibility in glycosylated or nonglycosylated fibronectin (154).

Interestingly, there is no evidence that the carbohydrate on fibronectin has any role in its known biological activities. For example, the additional branching of oligosaccharides on fibronectin that accompanies neoplastic transformation has no effect on its morphological activities (53), and even the total absence of carbohydrates after tunicamycin treatment does not alter four other biological activities of fibronectin (153). It therefore appears that the carbohydrates on this molecule function primarily to stabilize specific regions against proteolytic attack and abnormal rates of turnover; this stabilization may also be one of the major functions of carbohydrates on other glycoproteins (155).

Cellular Versus Plasma Fibronectins

Recent studies indicate that the cellular and plasma forms of fibronectin are structurally and functionally very similar, but not identical. The model shown in Fig. 2 apparently applies for both forms. Table V compares the biological activities of purified cellular and plasma fibronectins in a number of in vitro assays. The two forms of fibronectin are indistinguishable in their biological activities in assays involving cell interactions with substrates (156, 157), or in opsonic activity for macrophages (82). In contrast, the effects of these molecules on cell morphology and alignment of transformed cells and on hemagglutination are sometimes substantially different; in these assays, cellular fibronectin can be more active than plasma fibronectin (50, 157).

Biochemical studies have also revealed both similarities and differences between the two molecules. The molecules have very similar amino acid compositions, carbohydrate structures, and secondary and tertiary structures. In addition, the types and the organization of specific structural domains are indistinguishable. Nevertheless, plasma and fibroblast fibronectins have differences in pI (15), solubility (23, 24, 111), numbers of...
subunits linked together by disulfide bonds (111, 158–160), and subtle differences in the apparent size of specific domains (113, 131). Any of these differences might be related to the biological differences. An interesting finding in this regard is that the regions of apparent difference between the two forms can be mapped to the interior of the molecules, rather than to an end (131, 161). This finding appears to rule out the previous most popular hypothesis that the two forms are related by simple proteolytic processing of one form to the other. Monoclonal antibodies provide independent evidence that the two forms are distinct, because monoclonal antibodies have been found that bind preferentially to cellular as compared with plasma fibronectin (161, 162). One of these distinguishing monoclonals binds a determinant located near to the carboxy-terminal end but internal to the interchain disulfide bonds and its binding does not appear to require the presence of carbohydrate (161). This suggests the existence of differences in primary sequence.

These studies indicate that although the two forms of fibronectin are very similar, they are structurally and functionally distinct. It will be of considerable interest to determine whether the two forms are the product of two or more distinct genes, or whether they are encoded by a single gene that produces an RNA that is differentially processed to produce mRNA's encoding either cellular or plasma fibronectins.

CONCLUSIONS AND FUTURE PROSPECTS

Analysis of the structure of fibronectins reveals a modular structure that appears well suited for functioning as an adhesive ligand-like molecule. Fig. 3 shows one current view of fibronectin in the role of a cell-matrix ligand and also depicts the possible relationship with intracellular microfilaments. Obviously, several features of this model remain uncertain. However, the general picture of a molecule with binding sites specific for some cell surface molecule(s) connected to other binding sites specific for various extracellular moieties is well-founded on experimental data. Furthermore, some form of relationship with intracellular microfilaments is in accord with current data (10, 38-48), although the molecular basis for the transmembrane relationship remains unknown.

This picture of an involvement of fibronectin in a connection between the cytoskeleton and the extracellular matrix, and in cellular interactions with this matrix, suggests plausible and testable hypotheses to explain the roles played by fibronectins in the various cellular properties discussed earlier (Table IV). The challenge now is to test these hypotheses and resolve the unanswered questions.

Although much is known about the structure (Fig. 2), not all the interactions of fibronectin (Table III) can yet be assigned to specific locations within the molecule, and the details of many of the interactions remain to be analyzed. Further work along the lines discussed earlier should provide much of this information. Detailed structural studies (primary sequence, biophysical measurements) on the individual domains should be available in the near future. Acquisition of primary sequence data will be greatly aided by nucleic acid cloning studies now in progress. Detailed protein structural and nucleic acid analyses will also provide further insight into the nature of the differences between plasma and cellular fibronectins and the possibility of multiple forms of fibronectin.

The modular structure of fibronectin lends itself well to the development of antibodies specific for different functional regions. Several monoclonal antibodies are already available (152, 161, 162), as well as some domain-specific polyclonal antisera (112, 163, 164). In the future, these reagents should be useful for investigating which local domains and binding sites function in which of the more complex biological functions (Table IV). The combination of a detailed analysis of the structure of fibronectins with the development of antibodies able to interfere with specific functions should provide a clear picture of the structure-function relationships of these complex proteins.

Two important properties of fibronectin that remain enigmatic are its ability to form fibrils and its interaction with cells. Analysis by chemical cross-linking, antibodies, and other techniques should allow identification of the cell surface binding site(s) and of the arrangement of fibronectin and other molecules in the fibrils.

The suggested roles of fibronectins in complex biological phenomena such as cell migration, cellular differentiation, hemostasis and thrombosis, reticuloendothelial clearance, and cancer all require much more extensive investigation. Studies of these phenomena in vivo will be contingent upon progress on the biochemical, immunological, and cell biological analyses of fibronectins. Furthermore, because fibronectins undoubtedly interact in vivo with other molecules (collagens, proteoglycans), these other constituents will have to be studied in parallel. It also seems clear that several other proteins of a type similar to fibronectins also function as cell-matrix ligands (e.g., laminin, chondronectin, von Willebrand factor, thrombospondin) and this list is likely to grow rapidly. The complex interaction among these various molecules are likely to provide a fertile field for research in the next few years, as they have in the last several.

REFERENCES

1. Hynes, R. O. 1976. Cell surface proteins and malignant transformation. Biochim. Biophys. Acta. 458:73-107.
2. Yamada, K. M., and K. Olden. 1978. Fibronectins: adhesive glycoproteins of cell surface and blood. Nature (Lond.) 275:179-184.
3. Valeri, A., and D. F. Mosher. 1978. High molecular weight, cell surface-associated glycoprotein (fibronectin) lost in malignant transformation. Biochim. Biophys. Acta. 516:1-25.
4. Mosher, D. F. 1980. Fibronectin. Prog. Horm. Res. 35:111-155.
5. Saha, T. M., and E. Jaffe. 1980. Plasma fibronectin (opsonic glycoprotein): its synthesis by endothelial cells and role in cardiovascular integrity after trauma as related to reticuloendothelial function. Am. J. Med. 68:537-544.
6. Mosesson, M. W., and D. L. Amtrani. 1980. The structure and biological activities of plasma fibronectin. Blood. 56:145-158.
7. Pearlman, E. L., L. Gold, and A. Garcia-Pardo. 1980. Fibronectin: a review of its structure and biological activity. Mol. Cell. Biochem. 29:103-128.
8. Watahara, J., and A. Valeri. 1980. Fibronectin and early mammalian embryogenesis. Dev. Growth Differ. 22:233-246.
9. Rouschell, E., E. Engvall, and E. G. Hayman. 1981. Fibronectin: current concepts of its structure and function. Cell. Res. 195-128.
10. Hynes, R. O. 1981. Relationships between fibronectin and the cytoskeleton, in Cell Surf. Res. 7:97-136.
11. Hynes, R. O. 1981. Fibronectin and its relation to cell structure and behavior. In Cell Biology of the Extracellular Matrix. E. D. Hay, editor. Plenum Publishing Corp., New York. 295-333.
12. Yamada, K. M. 1982. Biochemistry of fibronectin. In The Glycoconjugates, Vol. III. M. H. Horowitz, editor. Academic Press, New York.
13. Akizawa, S. K., and K. M. Yamada. 1982. Fibronectin in Disease. In Connective Tissues and Diseases of Connective Tissues. R. Fischmacher and B. Wagner, editors. Williams and Wilkins Co., Baltimore.
14. Vons, B., S. Aiah, J. Raulserger, K. Ulrich, V. Gieselmann, and K. Von Figura. 1979. Primary cultures of rat hepatocytes synthesize fibronectin. Biochim. Biophys. Acta. 590:1346-1354.
15. Reference deleted in proof.
16. Buschelli, C. R., D. Grispanzusen, and G. L. Nicolson. 1978. Identification, localization, and role of fibronectin in cultured bovine endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 75:3273-3277.
17. Marzetti, E. J., E. Kirby, T. Kirk, and N. A. Kefalides. 1978. Synthesis of cold-insoluble globulin by cultured calf endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 75:2621-2625.
18. Jaffe, E. A., and D. F. Mosher. 1978. Synthesis of fibronectin by cultured human endothelial cells. J. Exp. Med. 147:1779-1791.
19. Aitasho, K., T. Hovi, and A. Valeri. 1980. Fibronectin is produced by human macrophages. J. Exp. Med. 151:602-613.
20. Johansson, S. K., K. Buhin, M. Hook, T. Ahlgren, and R. Seljelin. 1979. In vitro biosynthesis of cold-insoluble globulin (fibronectin) by mouse peritoneal macrophages. FEDS (Fed. Eur. Biochem. Soc. Lett.) 105:313-316.
21. van de Water III, L. J., S. Schroeder, E. B. Crenshaw, and R. O. Hynes. 1981. Phagocytosis of gelatin-latex particles by a mouse macrophage line is dependent on fibronectin and heparin. J. Cell Biol. 90:32-39.
null
134. Hormann, H., and M. Seidl. 1980. Affinity chromatography on immobilized fibrin.

131. Hayashi, M., and K. M. Yamada. 1981. Differences in domain structures between plasma elastase. Proc. Natl. Acad. Sci. U. S. A. 253:10017-10020.

130. Richter, H., M. Seidl, and H. Hormann. 1981. Location of heparin-binding sites of fibrinogen alters the phenotypic properties of cultured chick embryo chondroblasts. Cell. 27:491-501.

129. Ruoslahti, E. G. Hayman, E. Engvall, W. C. Cothran, and W. T. Butler. 1981. Mutations of an adhesive cell surface protein on the surface of transformed cells caused by tunicamycin, an inhibitor of protein glycosylation. Proc. Natl. Acad. Sci. U. S. A. 78:3337-3340.

128. Postlethwaite, A. E., J. Keski-Oja, G. Balian, and A. H. Kang. 1981. Induction of fibroblast adhesion by fibronectin: localization of the chemotactic region to a 140,000 molecular weight region in fibronectin. Proc. Natl. Acad. Sci. U. S. A. 78:492-496.

127. Seppä, H., T. Hynynen, and K. Yamada. 1982. Evidence for an organizing function of exogenous fibronectin. J. Biol. Chem. 257:3811-3818.

126. Hynynen, R., and F. Bornstein. 1982. Changes in surface properties of normal and transformed cells caused by tunicamycin, an inhibitor of protein glycosylation. Proc. Natl. Acad. Sci. U. S. A. 79:4333-4337.

125. Olden, K., M. W. Mosesson. 1977. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma fibronectin. J. Biol. Chem. 252:6452-6462.

124. Everts, V. J. Keski-Oja, D. W. Kennedy, and D. W. Kennedy. 1981. Nonuniform distribution of fibronectin during avian limb development. Dev. Biol. 90:118-126.

123. Sieber-Blum, M., F. Sieber, and K. M. Yamada. 1981. Cellular fibronectin promotes lens epithelial cell cell-cell interactions. Exp. Eye Res. 33:285-292.

122. Loring, J., B. Grindel, and J. A. Weston. 1982. Extracellular matrix materials influence quail neural crest cell differentiation in vitro. Dev. Biol. 90:165-174.

121. Yamada, K. M., D. W. Kennedy, Kimata, K. and R. M. Pratt. 1980. Characterization of fibronectin. J. Biol. Chem. 255:1311-1319.

120. Seppä, H. E. J., K. M. Yamada, S. T. Seppä, M. H. Silver, H. K. Kleinman, and E. A. Jaffe. 1982. Nonuniform distribution of fibronectin: a chromatin-associated protein? J. Biol. Chem. 257:1089-1097.

119. Tomasek, J. J., J. E. Mazurkiewicz, and S. A. Newman. 1982. Nonuniform distribution of fibronectin in chick embryo fibroblasts. Cell Biol. Int. Rep. 5:813-819.

118. Furie, M. H., J. M. Foidart, R. M. Pratt. 1981. Distribution of fibronectin and collagen in fibroblast extracellular matrix. J. Cell. Biochem. Suppl. 7:492-496.

117. Gold, L. I., A. Garcia-Pardo, B. Frangione, E. C. Franklin, and E. Pcarlstein. 1979. Transforming fragments of fibronectin and cold-insoluble globulin, a circulating cell surface protein. Biochem. Biophys. Acta. 493:160-322.

116. Hahn, L. H. E., and K. M. Yamada. 1979. Isolation and biological characterization of a collagen-binding fragment from fibronectin and cold-insoluble globulin. J. Biol. Chem. 254:1429-1432.

115. Wagner, D. D., R. O. Hynes. 1979. Domain structure of fibronectin and its relation to collagen and cold-insoluble globulin (Clg), a circulating cell surface protein. Biochem. Biophys. Acta. 579:100-115.

114. Baliau, G., E. M. Click, E. Crouch, J. M. Davidson, and P. Bornstein. 1979. Isolation of a myosin-binding fragment containing the collagen-binding site of plasma fibronectin. J. Biol. Chem. 254:6054-6059.

113. Dessau, W., H. von der Mark, K. von der Mark, and S. Fischer. 1980. Changes in the unequal distribution between two subunit polypeptides. Hoppe-Seyler's Z. Physiol. Chem. 357:519-526.

112. Furie, M., and D. B. Rilkin. 1980. Proteolytically derived fragments of human plasma fibronectin. J. Biol. Chem. 255:5119-5122.

111. Yamada, K. M., D. H. Schlesinger, D. W. Kennedy, and I. Pastan. 1977. Characterization of elastase. Proc. Natl. Acad. Sci. U. S. A. 74:1166-1163.

110. West, C. M., R. Lanza, J. Rosenbloom, M. Lowe, H. Holtzer, and N. Avdalovic. 1979. Changes in surface properties of normal and transformed cells caused by tunicamycin, an inhibitor of protein glycosylation. Proc. Natl. Acad. Sci. U. S. A. 76:103-106.

109. Chiquet, M., H. M. Eppenberger, and D. C. Turner. 1981. Muscle morphogenesis: evidence for an organizing function of exogenous fibronectin. Dev. Biol. 88:220-235.

108. Tomasek, J. J., J. E. Mazurkiewicz, and S. A. Newman. 1982. Nonuniform distribution of fibronectin in chick embryo fibroblasts. Cell Biol. Int. Rep. 5:813-819.

107. Chiquet, M., H. M. Eppenberger, and D. C. Turner. 1981. Muscle morphogenesis: evidence for an organizing function of exogenous fibronectin. Dev. Biol. 88:220-235.

106. Silver, M. H., J. M. Foidart, R. M. Pratt. 1981. Distribution of fibronectin and collagen in fibroblast extracellular matrix. J. Cell. Biochem. Suppl. 7:492-496.

105. Dessau, W. H. von der Mark, K. von der Mark, and S. Fischer. 1980. Changes in the pattern of collagens and fibronectin during limb-bud chondrogenesis. J. Embryol. Exp. Morph. 17:1-40.

104. Podolski, T. R., I. Greenberg, J. Schlegier, and K. M. Yamada. 1979. Fibronectin delays the fusion of L6 myoblasts. Exp. Cell Res. 122:317-326.

103. Pennypacker, J. P. R. Hasell, K. M. Yamada, and R. M. Pratt. 1979. The influence of an adhesive cell surface protein on chondrogenic expression in vivo. Exp. Cell Res. 121:411-415.

102. West, C. M., R. Lanza, J. Rosenbloom, M. Lowe, H. Holtzer, and N. Avdalovic. 1979. Changes in the unequal distribution between two subunit polypeptides. Hoppe-Seyler's Z. Physiol. Chem. 357:519-526.

101. Jaffe, E. A., L. L. K. Leung, R. L. Nachman, R. L. Levin, and D. F. Mosher. 1982. Thrombospondin is the endogenous lectin of human platelets. Nature (Wash. D. C.). 295:246-248.