Characteristics and influencing factors of crop coefficient for drip-irrigated cotton under plastic-mulched condition in arid environment

Zhipin Ai, Yonghui Yang, Qinxue Wang, Kiril Manevski, Quan Wang, Qiuli Hu, Deni Eer and Jiusheng Wang

Abstract
Crop coefficient (K_c) is a very useful and widely used variable in evapotranspiration estimation in cropland. Traditional methods in calculating K_c are based on field water balance, which is limited by long measurement interval and small study area. In addition, there is the need for K_c under new agronomy practice such as plastic mulching and drip irrigation in arid environments. This study calculated and analyzed K_c of a drip-irrigated and plastic-mulched cotton field in Aksu Oasis of the arid Tarim River Basin, China, and its relationships with several crop-, soil- and management variables such as relative growth days (RGD), leaf area index (LAI), extractable soil water (ESW), and irrigation, based on two years’ observations. The results showed that daily K_c varied within the range of 0.08–1.28, with an average of 0.54 for the entire cotton growth season, in 2013 and 2014. Compared to non-mulched condition already published, the K_c of mulched cotton for the entire growth season decreased by 16 to 39% on average, partly due to arid advection. This study provided up-to-date and detailed information on cotton crop coefficient under plastic mulching and drip irrigation conditions in arid environment, and it is useful for improved management of agricultural water resources.

Key words: Arid advection, Bowen ratio, Cotton growth, Eddy covariance

1. Introduction
According to the United Nations World Water Assessment Programme (2015), agriculture by 2050 will need to produce 60% more food globally, and 100% more in developing countries. The sector needs to increase its water use efficiency by reducing water losses and, most importantly, increase crop productivity with respect to water. The semi-arid and arid agricultural regions are particularly important due to the contrasting conditions of high water demand and low water availability. This suggests an inevitable need for conserving water by improving irrigation management via accurate estimation of crop water requirement, i.e., evapotranspiration (Grassini et al., 2011).

Actual crop evapotranspiration (ET_c) can be directly measured with weighing or burrowed zero-tension lysimeters and eddy covariance towers. Lysimeter studies involving the water balance are restricted by long measurement intervals and small study areas (Rana and Katerji, 2000), whereas studies with eddy covariance are overall complex and expensive (Vásquez et al., 2015). The FAO recommended calculation of ET_c is relatively simple method that combines reference evapotranspiration (ET_0) and crop coefficient (K_c) (Allen et al., 1998). ET_c can be readily obtained by the FAO Penman-Monteith equation using standard meteorological data. On the other hand, K_c is often adopted from previous studies or from generalized K_c curves (Farahani et al., 2008). However, the use of standard or generalized K_c values under non-standard pedo-climatic and management conditions, i.e., conditions significantly different from those of standard/ generalized K_c determination, can lead to significant errors in the calculation of ET_c (Shukla et al., 2013). Therefore, it is important to have reliable estimation of K_c and ET_c, especially in arid environments with water-saving managements, in order to facilitate sustainable water management.

Cotton is the major cash crop in Aksu Oasis of the Tarim River Basin (TRB), an arid region in Northwest China with...
global importance for cotton production. Almost 50% of the total cotton in the TRB is produced in the Aksu Oasis. While annual precipitation amounts only 50 mm on average, nearly all croplands are irrigated and account for over 97% of total water use in the oasis (Zhang et al., 2012a). With the expansion of the oasis and the exploitation of the groundwater in recent years, the use and allocation of water resources are now critical elements of the water resources management in the region (Han et al., 2015). Therefore, a comprehensive understanding of K_c for cotton will not only optimize the amounts of irrigation water, but will also support the government in the a priori information decision making.

Most studies on K_c for cotton in Aksu Oasis have considered flood or furrow irrigation without plastic mulching (Liu, 1998). Over the years, however, these systems have been replaced by drip irrigation and plastic mulching (Zhong et al., 2009). Plastic mulching is a dominant water conservation technique in arid and semiarid regions in China and worldwide. It involves an application of a continuous and impervious sheet of polyethylene film that covers the lengths of the field rows (Kasirajan and Ngouajio, 2012). Accurate information on the seasonal dynamics of K_c for cotton under plastic mulching and associated influencing factors such as fraction of mulch cover, plant row spacing, irrigation scheme and overall growth condition are very limited (Zhou et al., 2012).

The objective of this study is to determine the daily dynamics of K_c of cotton in an arid region in China for two full seasons in order to: 1) capture the seasonal dynamics in K_c for drip-irrigated and plastic-mulched cotton fields, 2) determine the differences in K_c of cotton between plastic mulch and non-plastic mulch condition, and 3) analyze the key factors influencing K_c such as relative growth days, leaf area index, extractable soil water, and irrigation.

2. Materials and Methods

2.1 Study site and hydrometeorological conditions

This study was conducted at the Soil and Water Conservation Monitoring Station (81°11' E, 40°37' N, 1013 m above sea level) in Aksu Oasis near Aler City, TRB during the cotton growing season.
season in 2013 and 2014. The climate is typical temperate desert with average annual sunshine of 2892 h, average annual cumulated daily temperature (higher than 10°C) of 4081°C, average annual precipitation of 50 mm, and average annual pan evaporation of 1987 mm. Air temperature, relative humidity, and wind speed were measured at 2.0 m above the ground surface using standard automatic instruments in a self-build meteorology station. The daily variations of mean air temperature, humidity, wind speed, and precipitation are plotted in Fig. 1. The mean daily values of air temperature, humidity and wind speed for 2013 and 2014 were, respectively, 21.4 and 20.4°C, 48.8 and 46.4%, and 2.6 and 2.6 m s⁻¹. Total precipitation during the growing season in 2013 and 2014 was, respectively, 72.6 and 30.3 mm, deviating from the long-term (1961–2007) mean annual precipitation of 49.5 mm obtained from Aler Soil and Water Conservation Monitoring Station. The soil texture in the region is mainly sandy loam, with an average bulk density of 1.58 g cm⁻³ in the top 1.6 m profile.

2.2 Crop development, plastic mulching and agronomic management

Cotton (Gossypium hirsutum L., Xinluzhong-37) was planted in early April in 2013 and 2014 in a narrow row with a width of 10 cm, as illustrated on Fig. 2. The distance between two narrow rows was 60 cm. A drip tape was placed in the center of each of two narrow row in east-west direction. The two narrow rows (including the drip tape) were covered with a transparent polyethylene plastic film and tightly pegged into the soil at the edges. The width of the transparent polyethylene plastic film was 110 cm. The width of pure bare soil between two successive plastic films was 50 cm. Thus, the area under plastic mulching accounted for almost 70% of the total cotton field. In order to ensure that the study was consistent with the local farming conditions, the cotton field was fertilized, irrigated, and managed in accordance with the local practices. LAI was directly measured by taking statistically significant sample of foliage from cotton canopy at seedling stage and indirectly measured every 10 days by hand-held LAI-2000 Plant Canopy Analyzer (LI-COR Inc., USA) at other growth stages.

2.3 Eddy covariance measurements

An eddy covariance system, oriented toward the direction of the prevailing winds (northeast), was installed in the center of a large cotton field (520 m × 225 m) to measure latent heat flux and sensible heat flux. The area surrounding the study site was flat and composed of homogeneous cotton fields, assuring large fetch for the measurements. The eddy covariance system consisted of a 3D sonic anemometer (CSAT3, Campbell Scientific Inc., USA) and an open-path infrared gas analyzer (LI-7500, LI-Cor Inc., USA). The sensors were installed at 3.0 m above the ground surface, i.e., about 2.2 m above the highest cotton canopy. The three orthogonal wind components and vapor concentration were sampled at a frequency of 10 Hz. The monitored results were averaged at 30 min intervals and post-processed in Eddypro 5.1.1 software (LI-COR) for quality control, including specific corrections and steps, as described in Ai and Yang (2016).

2.4 Irrigation and soil moisture

The cotton field was irrigated in accordance with the local practice, which corresponds to about 10-day interval and adjustment to soil moisture and precipitation water contents. The irrigation time in 2013 was 20 and 21 June, 1, 11, 18 and 25 July, 2, 8, 12 and 24 August and 9 September, with respective amounts of 63, 42, 48, 48, 49, 50, 50, 20, 48, 22 and 18 mm, whereas in 2014 irrigation time was 26 June, 6, 15 and 23 July, 3, 11, 18 and 24 August and 5 September and respective amounts of 30, 48, 48, 44, 40, 48, 48 and 48 mm. Before and after irrigation or precipitation, soil moisture was regularly measured at 10, 20, 30, 50, 70, 90, 110, 130, 150 and 160 cm soil depths with three neutron probe (503DR hydroprobe, CPN International Inc., USA) installed in the centers of the narrow and wide row and in bare soil between two successive plastic films. The probes were placed through PPR (polypropylene) access tubes following their calibration by the oven-dried method.

2.5 Data analysis and calculations

Kc was calculated according to the following equation:

\[K_c = \frac{ET_c}{ET_{oa}} \]

(1)

where \(ET_c \) is actual crop evapotranspiration (mm) obtained by eddy covariance measurements, and \(ET_{oa} \) is reference evapotranspiration (mm) estimated by the FAO Penman-Monteith equation (Allen et al., 1998):

\[ET_{oa} = \frac{0.408\Delta(R_n - G) + \gamma}{\Delta + \gamma(1 + 0.3\hbar_2)} \left(\frac{900}{T + 273}\right) \left(\varepsilon_s - \varepsilon_a\right) \]

(2)

where \(\Delta \) is slope vapor pressure curve (kPa°C⁻¹); \(R_n \) is net radiation at crop surface (MJ m⁻² day⁻¹); \(G \) is soil heat flux density (MJ m⁻² day⁻¹); \(\gamma \) is psychrometric constant (kPa°C⁻¹); \(T \) is mean daily air temperature at 2 m height (°C); \(\varepsilon_s \) is saturation vapor pressure (kPa); \(\varepsilon_a \) is actual vapor pressure (kPa); and \(\hbar_2 \) is wind speed at 2 m height (m s⁻¹). Mean daily \(K_c \) for each growth stage was calculated by the average of daily \(K_c \) during each growth stage that

![Fig. 2. Schematic representation of cotton plants spacing and row spacing according to the local agronomic practices in Aksu Oasis of Tarim River Basin, Northwest China. The unit of the number in the figure is centimeter.](image-url)
described in Table 1.

The K_c curve was estimated on a daily scale as a function of relative growth days (RGD) i.e. normalized growing days (equals to the ratio of the day after emergency to the total days during a whole growth season) where “1” represents the last day in a growth season. The number of total days is 186 and 181 in 2013 and 2014, respectively. A piecewise third-degree polynomial regression equation was fitted to the K_c as follow:

$$K_c = a_1 \cdot RGD^1 + a_2 \cdot RGD^2 + a_3 \cdot RGD + a_4$$

where a_1, a_2, a_3, and a_4 are the fitted regression coefficients.

Two indices of LAI and extractable soil water (ESW) were used to analyze the driving factors affecting K_c, where ESW was calculated as:

$$ESW = \frac{\theta_f - \theta_w}{\theta_f - \theta_G}$$

where θ_f is soil water content in the cotton root zone, θ_w is the wilting point, and θ_G is the filled capacity, the unit is in volumetric (m3 m$^{-3}$).

2.6 Statistical analysis

Performance of the models was evaluated for key residuals using root-mean square error (RMSE), and for correlation and efficiency using the coefficient of determination (R^2) and the NasheSutcliffe Model Efficiency (NSME) between modeled (M_j) and observed (O_j) values of K_c (Bennet et al., 2013). The model performance is optimum at low RMSE and high R^2 and NSME values, though these indices are sensitive to extreme values and should be interpreted with caution.

3. Results and Discussion

3.1 K_c dynamics and effect of plastic mulching

The growth stages of plastic-mulched cotton for the two-year study period are presented in Table 1, whereas the daily dynamics of K_c during its growth stages are plotted in Fig. 3. K_c was low and relatively stable during the juvenile seedling stage, after which it rapidly increased during squaring stage; daily K_c values remained high during flowering and boll-setting stage, thereafter decreasing at boll opening stage. The mean daily K_c for the aforementioned four growth stages was 0.25/0.21, 0.54/0.45, 0.90/0.82, and 0.58/0.54 in 2013/2014. These values corroborate well the results of Yang et al. (2016), who found K_c of 0.23, 0.88, and 0.44 during initial, middle, and late growth season, respectively, of a three-year plastic-mulched cotton in similar study area in China. Furthermore, comparison of cotton K_c obtained in this study under plastic mulch with literature values obtained for cotton without mulch is given in Table 2. There was a notable reduction in cotton K_c under plastic mulch conditions compared to no mulch conditions, which can be mainly attributed to the high mulch fraction of almost 70% used in the present study. The lower values for plastic-mulched cotton K_c were particularly evident during the initial- and development stages, with respective of reductions 47 and 35 for the two development stages, compared to no mulched cotton. For the entire growth period, the reduction in K_c under plastic mulch conditions ranged from 16 to 39, with an average of about 27%, compared to

Growth stage	Training period	Testing period
Sowing to emergence	April 4 to April 15	April 8 to April 23
Seedling	April 16 to May 21	April 24 to May 30
Squaring	May 22 to June 21	May 31 to June 25
Flowering and boll-setting	June 22 to September 2	June 26 to September 5
Boll opening	September 3 to October 18	September 6 to October 21

![Fig. 3. Variations in daily crop coefficient (K_c) of cotton under plastic mulch conditions in Aksu Oasis of Tarim River Basin, Northwest China at different growth stages in 2013 and 2014.](image-url)
no mulch conditions. Although the reported effects of mulching (with plastic or straw) on water utilization are often contradictory, likely due to differences in weather-, soil-, crop characteristics and water and fertilizer inputs (Zhang et al., 2017), literature reviews clearly indicate that mulching significantly improves the agro-hydrological performance, primarily yields and water use efficiency (yield per unit water) for many crops, compared with no-mulching (Qin et al., 2015). Compared to no mulching, the effect of plastic mulching on evapotranspiration and associated K_c values is expected to diminish as the plant grows due to canopy cover of the soil, which decreases the amplitudes of soil heat flux and soil temperature (Zhang et al., 2017; Farahani et al., 2008). In the early growth stages, however, plant transpiration and soil evaporation under mulching do not attain saturation of intercepted sunlight and the magnitude and variation of K_c are lower. Therefore, using K_c growth stages, plant transpiration and soil evaporation may contain uncertainties due to differences in climatic and management condition. It is noted that the K_c comparison presented in Table 2 reported by no mulching studies may overestimate evapotranspiration for any day during the growth stage in TRB or other regions under the same or comparable hydrometeorological and management conditions.

3.2 Variation of K_c with RGD

A piecewise dual polynomial model for the rising and the fall- ing trends of the K_c curve was fitted to the data for 2013 and the equations for the two main RGD stages are presented in Table 3. Furthermore, the model was validated using the K_c data for 2014 and the fit between modelled and measured values is shown in Fig. 4 with associated model performance indicators given in Table 4. It can be deducted from these results that the model had an acceptable statistical performance, with significantly high values of R^2 and NSME and low values of RMSE, despite the slight tendency for overestimation of K_c, probably due to cooler weather conditions in 2014 (Fig. 1) that also affected crop growth and lowered slightly the K_c values (Fig. 3). Nevertheless, the regressions reliably reflect the daily K_c patterns of the plastic mulched cotton by depicting an increasing trend from initial to early development season, followed by a gradual decrease in K_c from mid- to the end of late season. Reddy (2015) used similar approach to model K_c in function of days after sowing and found good model performance for castor and maize in India. Thus, the proposed models can be useful for estimation of cotton evapotranspiration for any day during the growth stage in TRB or other regions under the same or comparable hydrometeorological and management conditions.

Table 2. Comparison of cotton crop coefficient (K_c) values under plastic mulch condition in this study and under non-plastic mulch condition reported by other studies.

Cotton K_c	Growth stage	Initial	Development	Mid-season	Late-season	Average
This study		0.23	0.49	0.86	0.56	0.54
Allen et al. (1998)		0.35	0.66	1.15 – 1.20	0.50 – 0.70	0.67 – 0.73
Farahani et al. (2008)		0.29	None	1.05	0.66	0.67
Mohan and Arumugam (1994)		0.46	0.7	1.01	0.39	0.64
Bezerra et al. (2012)		0.75	None	1.09	0.8	0.88
Ko et al. (2009)		0.43	0.94	1.24	0.58	0.8
Karam et al. (2006)		0.58	None	1.1	0.83	0.84

Table 3. Polynomial regression models for crop coefficient (K_c) of cotton under plastic mulch conditions in Aksu Oasis of the Tarim River Basin, Northwest China, under two different relative growth day (RGD) periods.

Relative growth period	Regression equation
0 < RGD ≤ 0.6	$K_c = -21.346RGD^3 + 19.261RGD^2 - 2.9885RGD + 0.3285$
0.6 < RGD ≤ 1	$K_c = -1.6519RGD^3 - 2.4627RGD^2 + 5.6725RGD - 1.3268$
significantly increase K_c (Allen et al., 1998; Ding et al., 2015).

Soil water content is an important factor influencing K_c. In the present study, a linear and significant ($P<0.05$) correlation was found between K_c and extractable soil water (ESW) in the root zone (0–100 cm), expressed as $K_c = 2.39 \times \text{ESW} - 0.30$ for ESW < 0.5 (Fig. 5); for ESW > 0.5, K_c was nearly constant and insignificantly ($P>0.05$) correlated to ESW according to the relation $K_c = 0.42 \times \text{ESW} + 0.54$. This suggested that ESW of 0.5 can be adopted as a critical value when evaluating the influences of extractable soil water on cotton K_c. A possible reason is that the crop would be under water stress condition and K_c would therefore increase with the increase of ESW when ESW is less than 0.5 (Ding et al., 2015).

Zhang et al. (2012b) pointed on soil water content at 10 cm soil depth, rather than biological factors such as LAI, as the driving factor of K_c in desert steppe conditions. It was noted in this study, however, that both LAI and extractable soil water were the main driving factors of K_c. And the critical values of 3.0 in LAI and 0.5 for extractable soil water were detected, which was similar to the results of Ding et al. (2015). The above-mentioned equations could be useful in analyzing or estimating cotton K_c independently on LAI or ESW alone.

3.4 Effect of irrigation on K_c

The effect of irrigation on K_c for plastic mulched cotton, expressed by K_c values before and after irrigation events are presented in Table 5. It can be seen from the table that K_c generally increased after irrigation, and the increase was, on average, 0.22 corresponding to 29.4. This finding suggests that irrigation has a significant effect on K_c of plastic mulched cotton under arid conditions. Similar results of crop coefficient increase due to irrigation have been observed by Li et al. (2008) and Ding et al. (2015). The main reason could be the increase of latent heat flux after irrigation. The effect of arid advection after irrigation probably also contributes to the increase of K_c. In order to investigate advection effect on K_c in more detail, Bowen

Table 4. Statistical analysis of the crop coefficient (K_c) models for cotton under plastic mulch conditions in Aksu Oasis of the Tarim River Basin, Northwest China.

Indicators	Training period	Testing period
Slope of the scatter plot	0.9999	0.9276
R^2	0.82	0.69
RMSE	0.13	0.17
NSME(%)	91.32	86.29
P	<0.01	<0.01

Fig. 4. Scatter plots of daily observed versus model-estimated crop coefficient (K_c) of cotton under plastic mulch conditions in Aksu Oasis of Tarim River Basin, Northwest China.

Fig. 5. Relationships between crop coefficient (K_c) and leaf area index (LAI) and extractable soil water (ESW) for cotton under plastic mulch conditions in Aksu Oasis of Tarim River Basin, Northwest China.
ration, i.e., the ratio of the sensible to the latent heat flux, was calculated for a single irrigation event on 11 July 2013 (Fig. 6). Bowen ratio of less than zero indicates that sensible heat advection has taken place because the sensible heat is negative and the latent heat is higher than the available energy under such condition (Gavilán and Berengena, 2007). From Fig. 6, it can be seen that the Bowen ratio indeed decreased to less than zero after irrigation, indicating that advection occurred and provided additional energy for evapotranspiration, and hence increased K_c. The decrease of the Bowen ratio was due to the increase of near-surface soil moisture and latent heat flux. For example, soil volumetric water content at 10 cm increased from 0.1 m3 m$^{-3}$ (one day before irrigation) to 0.19 m3 m$^{-3}$ (two day after irrigation). The negative Bowen ratio was due to the negative sensible heat advection from the surrounding dry land. Similar findings have also been reported by Lei and Yang (2010). Therefore, advection should be considered by further studies in the estimation of evapotranspiration for irrigated and plastic mulched croplands under arid climate. The use of the difference between potential evapotranspiration and available energy, as conducted by Yang et al. (2013), may be one kind of method to address such issue.

4. Conclusion

This study determined the values and characteristics of K_c and related driving factors in cotton fields under plastic mulch conditions in Aksu Oasis, TRB, China, using the eddy covariance method to calculate actual evapotranspiration. Compared with traditional method based on water balance, eddy covariance is more reliable for calculation of actual evapotranspiration due to shorter measurement intervals and larger study area. The K_c for plastic mulched cotton in Aksu Oasis, TRB, varied within a range of 0.08–1.28, with an average value of 0.54 for the entire growth season. Compared to non-plastic mulch condition, K_c of cotton under plastic mulch had a substantial decrease of 47% and 35%, for initial and developmental stage, respectively, whereas K_c values during mid- and late season were less different. Thereafter, a piecewise defined K_c model in function of relative growth days was developed and validated based on the eddy covariance measurements. The proposed model is useful for estimation of cotton evapotranspiration during its growth under the same or comparable hydrometeorological and management conditions.

Table 5. Effect of irrigation on crop coefficient (K_c) of cotton under plastic mulch conditions in Aksu Oasis of the Tarim River Basin, Northwest China. “I” denotes irrigation day, “1BI” denotes 1 day before irrigation, and “1AI”, “2AI”, and “3AI” denote 1, 2, and 3 days after irrigation, respectively. “none” denotes no K_c values due to the failure of eddy covariance observation.

Irrigation time (year/month/day)	K_c
	1BI
2013/06/10	0.44
2013/06/21	0.98
2013/07/01	0.93
2013/07/11	0.90
2013/07/18	1.06
2013/07/25	1.16
2013/08/02	0.90
2013/08/12	0.70
2013/08/24	0.73
2013/09/09	0.73
2014/06/26	0.50
2014/07/06	0.77
2014/07/15	0.68
2014/08/24	1.13
2014/09/05	0.90

Fig. 6. Daytime variation in half-hourly Bowen ratio values for cotton after irrigation under plastic mulch conditions in Aksu Oasis of Tarim River Basin, Northwest China. “I” denotes irrigation day (11 July 2013), “1AI”, “2AI”, and “3AI” denote 1, 2, and 3 days after irrigation, and “1BI”, “2BI” denote 1 and 2 days before irrigation, respectively.
conditions. Additional analysis showed that LAI and extractable soil water are important factors influencing K_c, and near-maximum K_c was reached at critical values of 3.0 for LAI and 0.5 for extractable soil water. In addition, irrigation notably increased K_c, i.e., about 29% on average, partly due to advective heat fluxes.

Acknowledgements

This study was funded by the National 973 Project (No. 2010CB951002) and International Collaborative Project (No. 2012DFG090290) of China’s Ministry of Science and Technology. The authors greatly appreciate the efforts of Shumin Han, Yanmin Yang, Shaojie Bi, Zhanyao Lü, Ping Wang, Mingfa Li, and Xiaogang Li for their help in the field experiments.

References

Ai Z, Yang Y, 2016: Modification and validation of Priestley–Taylor model for estimating cotton evapotranspiration under plastic mulch condition. Journal of Hydrometeorology 17, 1281–1293.

Allen RG, Pereira LS, Raes D, Smith M, 1998: Crop evapotranspiration:Guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper No. 56. Food and Agriculture Organization of the United Nations, Rome, pp.300.

Bennett ND, Croke BFW, Guariso G, Guillaume JHA, Hamilton SH, Jakeman AJ, Marsili-Libelli S, Newham LTH, Norton JP, Perrin C, Pierce SA, Robson B, Seppelt R, Voinov AA, Fath BD, Andreadissian V, 2013: Characterising performance of environmental models. Environmental Modelling & Software 40, 1–20.

Bezzerra BG, da Silva BB, Bezzerra JRC, Sofiatti V, dos Santos CAC, 2012: Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil. Agricultural Water Management 107, 86–93.

Ding R, Tong L, Li F, Zhang Y, Hao X, Kang S, 2015: Variations of crop coefficient and its influencing factors in an arid advective cropland of northwest China. Hydrological Processes 29, 239–249.

Farahani HJ, Oweis TY, Izza G, 2008: Crop coefficient for drip-irrigated cotton in a Mediterranean environment. Irrigation Science 26, 375–383.

Gavilán P, Berengena J, 2007: Accuracy of the Bowen ratio-energy balance method for measuring latent heat flux in a semiarid advective environment. Irrigation Science 25, 127–140.

Grassini P, Yang H, Irmak S, Thorburn J, Burr C, Cassman KG, 2011: High-yield irrigated maize in the Western U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Research 120, 133–141.

Han S, Hu Q, Yang Y, Wang J, Wang P, Wang Q, 2015: Characteristics and driving factors of drainage water in irrigation districts in arid areas. Water Resources Management 29, 5323–5337.

Karam F, Lahoud R, Masaad R, Daccache A, Mounzer O, Rouphael Y, 2006: Water use and lint yield response of drip irrigated cotton to the length of irrigation season. Agricultural Water Management 85, 287–295.

Kasirajan S, Ngouajio M, 2012: Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32, 501–529.

Ko J, Piccinni G, Marek T, Howell T, 2009: Determination of growth-stage-specific crop coefficients (K_c) of cotton and wheat. Agricultural Water Management 96, 1691–1697.

Lei H, Yang D, 2010: Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agricultural and Forest Meteorology 150, 581–589.

Li S, Kang S, Li F, Zhang L, 2008: Evapotranspiration and crop coefficient of spring maize with plastic mulch using eddy covariance in northwest China. Agricultural Water Management 95,1214–1222.

Liu S, 1998: Calculation of actual evapotranspiration for cotton field by means of the Priestley-Taylor model. Quarterly Journal of Applied Meteorology 9, 88–93. (In Chinese with English abstract)

Mohan S, Arumugam N, 1994: Crop coefficients of major crops in South India. Agricultural Water Management 26,67–80.

Qin W, Hu C, Oenema O, 2015: Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific Reports 5,16210.

Rana G, Katerji N, 2000: Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13, 125–153.

Reddy KC, 2015: Development of crop coefficient models of castor and maize crops. European Journal of Agronomy 69, 59–62.

Shukla S, Jaber FH, Goswami D, Srivastava S, 2013: Evapotranspiration losses for pepper under plastic mulch and shallow water table conditions. Irrigation Science 31, 523–536.

United Nations World Water Assessment Programme, 2015: The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO, Paris, pp.139.

Vásquez V, Thomsen A, Iversen BV, Jensen R, Ringgaard R, Schelde K, 2015: Integrating lysimeter drainage and eddy covariance flux measurements in a groundwater recharge model. Hydrological Sciences Journal 60,1520–1537.

Yang P, Hu H, Tian F, Zhang Z, Dai C, 2016: Crop coefficient for cotton under plastic mulch and drip irrigation based on eddy covariance observation in an arid area of northwestern China. Agricultural Water Management 171, 21–30.

Yang Y, Su H, Zhang R, Wu J, Qi J, 2013: A new evapotranspiration model accounting for advection and its validation during SMEX02. Advances in Meteorology 2013, 1–13.

Zhang XY, Yang DG, Xiang XY, Huang X, 2012a: Impact of agricultural development on variation in surface runoff in arid regions: a case of the Aksu River Basin. Journal of Arid Land 4, 399–410.

Zhang F, Zhou G, Wang Y, Yang F, Nilsson C, 2012b: Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrological Processes 26, 379–386.

Zhang YL, Wang FX, Shook CC, Yang KJ, Kang SZ, Qin JT, Li SE, 2017: Effects of plastic mulch on the radiative and thermal conditions and potato growth under drip irrigation in arid Northwest China. Soil and Tillage Research 172,1–11.

Zhong RS, Dong XG, Ma YJ, 2009: Sustainable water saving: new concept of modern agricultural water saving, starting from development of Xinjiang’s agricultural irrigation over the last 50 years. Irrigation and Drainage 58, 383–392.

Zhou SQ, Wang J, Liu JX, Yang JH, Xu Y, Li JH, 2012: Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China. Hydrological Processes 26, 1169–1178.