Assembly and analysis of the complete Salix purpurea L. (Salicaceae) mitochondrial genome sequence

Suyun Wei1,2,3, Xuelin Wang3, Changwei Bi3, Yiqing Xu3,4, Dongyang Wu1,2,3 and Ning Ye2,3*

Abstract

Plant mitochondrial (mt) genomes possess several complex features, including a variable size, a dynamic genome structure, and complicated patterns of gene loss and gain throughout evolutionary history. Studies of plant mt genomes can, therefore, provide unique insights into organelle evolution. We assembled the complete Salix purpurea L. mt genome by screening genomic sequence reads generated by a Roche-454 pyrosequencing platform. The pseudo-molecule obtained has a typical circular structure 598,970 bp long, with an overall GC content of 55.06%. The S. purpurea mt genome contains 52 genes: 31 protein-coding, 18 tRNAs, and three rRNAs. Eighteen tandem repeats and 404 microsatellites are distributed unevenly throughout the S. purpurea mt genome. A phylogenetic tree of 23 representative terrestrial plants strongly supports S. purpurea inclusion in the Malpighiales clade. Our analysis contributes toward understanding the organization and evolution of organelle genomes in Salicaceae species.

Keywords: Salicaceae, Mitochondrial genome, Genome assembly, Phylogenetic tree

Background

Mitochondria contribute to energy metabolism and play fundamental roles in plant development, fitness, and reproduction, as well as being associated with the biosynthesis of fatty acids and several active proteins (Mcbride et al. 2006; Ryan and Hoogenraad 2007). The mitochondrial (mt) genome has drawn increased attention during the genomic and now post-genomic eras owing to its maternal pattern of inheritance and unique evolutionary features, and is often used for the phylogenetic study of plants (Gualberto et al. 2014; Dames et al. 2015). Plant mt genomes can be extraordinarily larger than animal mt genomes, and vary significantly in size, even between very closely related species or within a single family (Alverson et al. 2010), whereas animal mt genomes, are conserved and relatively uniform in size (Zhang et al. 2012; Liu et al. 2013). More than 100 complete land plant mt genome sequences are available through the NCBI Organelle Genome Resources Web site (http://www.ncbi.nlm.nih.gov/genome/organelle/), ranging in size from 100,725 bp (Buxbaumia aphylla; GenBank accession number NC_024518) (Liu et al. 2014) to 1555.93 Kb (Cucumis sativus; GenBank accession number NC_016005) (Alverson et al. 2011b), since the first angiosperm mt genome nucleotide sequence was determined in 1997 (Arabidopsis thaliana; NC_001284) (Unseld et al. 1997). The comparative analysis of plant mt genomes enhances our understanding of genome rearrangement and DNA transfer mechanisms, and of phylogenetic diversity.

Salix purpurea L. is a willow species native to much of Europe (north to the British Isles, Poland, and the Baltic States), western Asia, and North Africa (Argus 1997; Skvortsov 1999; Sulima et al. 2009). It is a deciduous shrub growing 1–3 m tall, with purple-brown to yellow–brown shoots, green foliage, and small purple or red catkins produced in the early spring. S. purpurea has frequently been cultivated for its commercially important biomass. Purple willow bark contains a particularly valuable raw material traditionally used for the production of natural aspirin and other salicylic glycosides with...
analgesic, antipyretic, and anti-inflammatory effects (Skrzypczyńska 2001; Hakmaoui et al. 2007; Aliferis et al. 2015).

With the development of next generation sequencing (NGS) technologies, such as the Roche and Illumina platforms, new strategies are being used to characterize plant mitochondrial genomes. The mt genome of carrot (Zhang et al. 2012), soybean (Chang et al. 2013), rubber tree (Shearman et al. 2014), and some other species (Liu et al. 2013; Rd et al. 2015), have been successfully assembled through a combination approach using shotgun and paired-end NGS sequencing from non-enriched whole genome DNA libraries. Although the S. purpurea chloroplast genome has been published (Carlson et al. 2015), which is important for the genetic improvement and to further the understanding of biological mechanisms in plant species, the complete S. purpurea mt genome has not been previously published, because of its complex structure. In this study, we present the first complete mt genome of S. purpurea. We generated the mt genome sequence from 454 pyrosequencing whole genome big data. The mt genome was sequenced, assembled, and annotated as a circular-mapping DNA molecule. Additionally, we compared the S. purpurea mt genome to several previously published genomes to gain enhanced understanding of the evolution of organellar genomes. The strategy used in this study has broad applicability toward exploring additional mitochondrial genomes, and furthering the investigation of intra-cellular genome interactions and genome evolution.

Methods

Plant material

The raw sequencing and alignment data from the S. purpurea genome project is available at the NCBI Genome Resources Sequence Read Archive (SRA) database (http://www.ncbi.nlm.nih.gov/sra?LinkName=biosample_sra&from_uid=116760). The raw data were generated using Roche-454 FLX Titanium sequencing from random whole genome shotgun libraries. We deposited three whole genome sequence biosamples (Accessions: SRX029331, SRX029332, SRX029333), which respectively have 1,270,964 spots, 549,435 spots, and 448,379 spots, with total lengths of 1.4 Gb, 658.4 and 539 Mb.

Genome assembly

Our research goal was to produce a gap-free, scaffold-level S. purpurea mt genome. Two random genomic 454 sequencing read samples were combined for assembly using the gsAssembler Java GUI in Newbler (version 2.7) with default parameters, producing 50, 115, 25, 100, and 17,094 assembled contigs from five separate runs. The initial contigs are a mixture of DNA from the nucleus and from organelles, therefore, BLASTN (Buhler et al. 2007) was used to isolate mitochondrial contigs from the whole genome reads based on plant mt genomes sequences downloaded from the NCBI Organelle Genome Resources. A total of 5831 contigs, with read depths between 50× and 100×, contained essential mitochondrial genes. We used Perl scripts to visualize contig connections from the Newbler assembly results, which records all contig read depth and connection information. False links to other contigs and a few wrong forks were removed manually, according to the read depth of the contigs. We connected 26 final contigs to produce a circular mt genome consistent with the standard structure of most mitochondrion genomes, and we mapped the sequence to the Populus tremula mt genome (NC_028096). The complete S. purpurea mt genome sequence is 598,970 bp long.

Genome annotation

The S. purpurea mt genome was preliminarily annotated using the online program DOGMA (Organellar GenoMe Annotator) (Wyman et al. 2004) coupled with manual corrections for gene start and stop codons by comparison to homologous genes from other sequenced mt genomes. Subsequently, a detailed annotation of the protein-coding, tRNA, and tRNA genes was performed with a local database containing the nucleotide and protein sequences of all published land plant mitochondrial genomes available through the NCBI Organelle Genome Resources site. We also used tRNAscan-SE (Schattner et al. 2005) with default settings to corroborate tRNA boundaries identified by BLASTN. The circular mt genome map was drawn using Organellar Genome DRAW tool (OGDRAW) (Lohse et al. 2007) for further comparison of gene order and content.

Repeat structure

Tandem repeats in the S. purpurea mt genome were identified using the Tandem Repeats Finder program (Benson 1999) with default settings. The Perl script MISA (Thiel et al. 2003) was used to detect simple sequence repeats (SSRs) with a motif size of one to six nucleotides and thresholds of eight, four, four, three, three, and three, respectively. All repeats identified by the various programs were manually confirmed to remove redundant results.

Phylogenetic analysis

Phylogenetic analysis was performed with the mt genomes of 23 plant species, our newly sequenced S. purpurea mt genome and those from 22 other plant species (Aegilops speltoides [NC_022666], Ajuga reptans [NC_023103], Batis maritima [NC_024429],...
and
[NC_008331]). We obtained the 22 complete mt genome sequences through the NCBI Genome Resources Web site (http://www.ncbi.nlm.nih.gov/genome/organelle/). Twenty-three homologous protein-coding genes, 20 respiratory complex genes (atp1, atp4, atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9, rps3, and rps4), plus three cytochrome c biogenesis genes (ccmB, ccmFc, and ccmFn), were extracted from the 23 representative species mt genomes to estimate a phylogenetic tree. Exons of these genes were extracted and sequentially joined together using local Perl scripts. The orthologous genes were aligned using ClustalW (Thompson et al. 1994) and manually adjusted. A phylogenetic tree of the mitochondrial genome was estimated using the neighbor joining algorithm in MEGA version 6.0 (Tamura et al. 2013) with branch point confidence support based on 1000 bootstrap replicates.

Results and discussion

Genome features of the S. purpurea mitochondrial genome

We assembled the complete S. purpurea mt genome into a single circle of total length 598,970 bp from the S. purpurea whole genome project using Roche-454 Sequencing technologies. The sequence has been deposited in the NCBI GenBank Reference Sequence database with accession number NC_029693. We also deposited our S. purpurea mt genome data at GBROWSE (http://bio.njfu.edu.cn/gb2/gbrowse/Salix_pu_mt/). The overall GC content is 55.06%, with a base composition of 27.24% A, 27.82% T, 22.50% C, and 22.44% G (Table 1).

The S. purpurea mt genome encodes 52 unique genes, consisting of three ribosomal RNA (tRNA; rrs5, rrl5, and rrs5) genes, 18 transfer RNA (tRNA) genes, and 31 protein-coding genes (PCGs) (Fig. 1). Among the 31 PCGs, nine code for subunits of NADH dehydrogenase (complex I; nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, and nad9), one for a subunit of succinate dehydrogenase (complex II; sdh4), one for a subunit of ubiquinol cytochrome c reductase (complex III; cob), three for subunits of cytochrome c oxidase (complexIV; cox1, cox2, and cox3), five for different subunits of ATP synthase (atp1, atp4, atp6, atp8, and atp9), four for small ribosomal subunits (SSU; rps3, rps4, rps7, and rps12), two for large ribosomal subunits (LSU; rpl2 and rpl16), one for a maturase (matR), one for a SecY-independent transporter (mttB), and four are involved in the biogenesis of cytochrome c (ccmB, ccmC, ccmF, and ccmFn). All 52 genes are single copy, with the exception of one tRNA gene (trnP-UGG), which has a duplicated copy, and one tRNA gene (trnM-CAU), which occurs in triplicate. Eight genes contain introns, with most being interrupted by a single or a pair of introns, except for nad2 and nad4, which has three introns, and nad7, which has four introns (Table 2).

The positions of all the genes identified in the S. purpurea mt genome and profiles of those genes are presented in Table 3. Protein-coding genes range in length from 2004 bp (nad5) to 225 bp (atp9). Most of the PCGs use ATG as the start codon, except for mttB, which starts with ATT, and rpl16, which starts with GTG. Fifteen PCGs (rpl1, cox1, atp6, nad3, rps7, nad5, rps4, nad1, nad4L, nad2, sdh4, rpl16, nad9, cox2, and rps3) use the stop codon TAA; eight PCGs (nad7, ccmFc, atp8, mttB, nad6, atp4, matR, and atp9) use the stop codon TAG, and eight PCGs (ccmC, ccmF, rps12, nad4, ccmB, cox3, cob, and atp1) use the stop codon TGA.

Table 1 Summary of the complete S. purpurea mitochondrial genome

Total mt genome size	598,970 bp
Number of unique genes	52
Number of protein coding genes	31
tRNA genes	18
rRNA genes	3
A content	27.24%
T content	27.82%
C content	22.50%
G content	22.44%
GC content	44.94%

Analysis of tandem repeats and SSRs

Tandem repeats (TRs) are DNA sequence motifs that play an important role in genome recombination and rearrangement (Cavalier-Smith 2002; Zhao et al. 2013), and are often used for population and phylogenetic analyses (Nie et al. 2012; Schaper and Anisimova 2015). We found 18 tandem repeats in the S. purpurea mt genome with lengths ranging from 4 to 28 bp (Table 4). Most of the repeats (94%) were distributed in non-coding regions, specifically: 83% in intergenic spacer regions, 11% in introns, and 6% in protein-coding regions.
Simple sequence repeats (SSRs), also known as microsatellites, are short tandem repeat sequences with repeat lengths generally between one and six base pairs per unit, and are extensively distributed throughout mitochondrial genomes (Provan et al. 2001; Chen et al. 2006). SSRs are important genetic molecular markers, widely used in assisted breeding (Rafalski and Tingey 1993), population genetics (Doorduin et al. 2011; He et al. 2012; Powell et al. 1995), plant typing (Xue et al. 2012; Yang et al. 2011), and genetic linkage map construction (Pugh et al. 2004). We identified 404 SSR motifs in the *S. purpurea* mt genome with the microsatellite identification tool MISA (Thiel et al. 2003), accounting for 3810 bp of the total sequence. Among these SSRs, 171
have mononucleotide, 157 have dinucleotide, 17 have trinucleotide, 49 have tetranucleotide, nine have pentanucleotide, and one has hexanucleotide repeat motifs (Fig. 2a). Most of the mononucleotide repeats (90.7%) are composed of A/T, the 23 dinucleotides are all composed entirely of AT/TA, and the rest of the SSRs also have a high A/T content (Additional file 1: Table S1). These results are consistent with observations that mitochondrial SSRs are generally composed of short polyadenine (polyA) or polythymidine (polyT) repeats (Kuang et al. 2011). The high A/T content in mitochondrial SSRs contributes to a biased composition, such that the overall AT content is 55.06% in the *S. purpurea* mt genome. Moreover, it is clear that SSRs are most abundant in intergenic spacers versus other regions, and these account for 90.35% of all SSRs detected. The remaining 6.44, 2.48, and 0.74% of SSRs are in introns, protein-coding regions, and rRNA regions, respectively (Fig. 2b).

Comparison with other mitochondrial genomes

Multiple complete mt genomes provide an opportunity to compare variation in size, structure, and sequence content at the genomic level (Alverson et al. 2011a). We selected 35 land plant mt genomes and compared features to observe the variation among them and the *S. purpurea* mt genome (Additional file 1: Table S2). The mt genome size of our samples ranges from 104,239 bp in *Anomodon rugelii* to 982,833 bp in *Cucurbita pepo*, and the GC content ranges from 39.93% in *Bucklandiella orthotrichacea* to 53.02% in *Welwitschia mirabilis*. Because of a large number of open reading frames (ORFs) coding for proteins of unknown function in plant mt genomes, and frequent plastid DNA insertions including mitochondrial tRNA genes (Notsu et al. 2002; Marechal-Drouard et al. 1990), the number of genes in plant mt genomes widely vary. Some examples include 12 protein-coding genes in *Viscum album* versus 193 in *Capsicum annuum*, six tRNAs *Viscum album* versus 34 in *Phlegmariurus squarrosus*, and one rRNA *Viscum album* versus nine in *Triticum aestivum*.

We particularly compared the *S. purpurea* mt genome with the *Populus tremula* mt genome (NC_028096), another member of the Salicaceae family. The *P. tremula* mt genome is 783,442 bp long, which is much larger than that of *S. purpurea*, however, its base composition of 27.62% A, 22.36% C, 22.38% G, 27.64% T, with a slight A + T bias of 55.25%, is similar to that of the *S. purpurea* mt genome. As described previously, the complete *P. tremula* mt genome has three rRNA genes, 22 tRNA genes, and 33 protein-coding genes. Upon a comparison

Table 2 List of genes identified in the *S. purpurea* mitochondrial genome

Group of gene	Name of gene				
Transfer RNAs	trnC-GCA trnC-ACA trnD-GUC				
	trnE-UUC trnE-GAA trnG-GCC				
	trnF-GUC trnF-UCU trnG-CAU				
	trnN-GUG trnN-PUG trnQ-UUG				
	trnS-GGA trnS-UGA trnS-GCU				
	trnV-GAC trnV-CGA trnY-GUA				
Ribosomal RNAs	rrs rrs trnL trnS				
	Complex I (NADH dehydrogenase)	nad1 [2] nad2 [3] nad3			
	Complex II (succinate dehydrogenase)	34	nad4 [3] 34	nad5 [2] 34	nad6
	Complex III (ubichinol cytochrome c reductase)	34	cob		
	Complex IV (cytochrome c oxidase)	34	cox1 cox2 cox3		
	ATP synthase	34	atp1 atp4 atp6		
		34	atp8 atp9		
	Ribosomal proteins (SSU)	34	rps3 [1] rps4 rps7		
		34	rps12		
	Ribosomal proteins (LSU)	34	rpl2 [1] rpl16		
	Maturases	34	matR		
	Other genes	34	ccmB ccmC ccmFc [1]		
		34	ccmFn mttB		

*(*x*) number in parentheses indicates copy number of each gene
[[number in square brackets indicates intron number of each gene]]
of all orthologous genes between the two genomes, three PCGs (rpl10, rps1, and rps14) and three tRNA genes (trnV-ALIG, trnK-CUU, and trnS-USGLU) are seen to be present in the P. tremula genome, but not in the S. purpurea genome, while only two tRNA genes (trnC-ACA and trnV-GAC) exist in the S. purpurea genome that do not exist in the P. tremula genome. The P. tremula genome has 838 bp of tandem repeats, while S. purpurea has 665 bp (Table 5). The S. purpurea mitogenome, with its smaller gene count, sparser PCG annotation, and fewer tandem repeat, compared with P. tremula, may provide insight to further understand the divergent evolution between willow and poplar.
We estimated a plant phylogeny based on 23 conserved, orthologous mt genes (atp1, atp4, atp6, atp8, atp9, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9, rps3, rps4, ccmB, ccmF, and ccmFn) from 23 representative higher plant species (Cucumis sativus, Cucurbita pepo, Citrullus lanatus, Vitis vinifera, Liriodendron tulipifera, Phoenix dactylifera, Gossypium barbadense, Batis maritima, Carica papaya, Hyoscyamus niger, Boea hygrometrica, Ajuga reptans, Salvia miltiorrhiza, Salix purpurea, Populus tremula, Beta macrocarpa, Silene latifolia, Aegilops speltoides, Sorghum bicolor, Zea mays subsp parviglumis, Zea luxurians, Zea perennis, and Ginkgo biloba). Among these species, 22 are angiosperms representing 11 orders: Arecales (Phoenix dactylifera), Brassicales (Batis maritima and Carica papaya), Caryophyllales (Beta macrocarpa and Silene latifolia), Cucurbitales (Citrullus lanatus, Cucumis sativus, and Cucurbita pepo), Lamiales (Ajuga reptans, Boea hygrometrica, and Salvia miltiorrhiza), Magnoliales (Liriodendron tulipifera), Malpighiales (Populus tremula and Salix purpurea), Malvales (Gossypium barbadense), Poales (Aegilops speltoides, Sorghum bicolor, Zea luxurians, Zea mays subsp parviglumis, and Zea perennis), Solanales (Hyoscyamus niger), and Vitales (Vitis vinifera) (Additional file 1: Table S3). One additional species, a gymnosperm, Ginkgo biloba, was designated as the outgroup. We estimated a phylogenetic tree of these species using the neighbor-joining method (NJ; Fig. 3). Bootstrap analysis shows 20 of 23 nodes with bootstrap values > 90%, and 18 of these have a bootstrap value of 100%. Our phylogenetic analysis strongly supports the close relationship of S. purpurea and P. tremula, with a 100% bootstrap value. Both are classified as members of the Salicaceae family, and our results are consistent with previous molecular and taxonomic studies.

Table 5 Summary of the complete Populus tremula mitochondrial genome

Total mt genome size	783,442 bp
Number of genes	59
Protein-coding genes	33
tRNA genes	22
rRNA genes	3
A content	27.62%
T content	27.64%
C content	22.36%
G content	22.38%
GC content	44.75%
Total tandem repeats size	838 bp

Phylogenetic analysis

The dramatic increase in the number of sequenced mt genomes provided by NGS technology can yield unique insights into the phylogenetic relationships among plants.
phylogenetic analyses should contribute to a more comprehensive understanding of mitochondrion molecular evolution in higher plants.

Additional file

Additional file 1: Table S1. Distribution of SSRs in the S. purpurea mitochondrial genome. Table S2 Comparison of basic features among 35 mitochondrial genomes. Table S3 The list of mitochondrial genome sequences used in phylogenetic study.

Authors’ contributions

SW and NY conceived and designed the work outlines. SW, XW and CB performed acquisition and analysis of data. SW wrote the manuscript which was revised and put in final form by YX. YX and DW involved in revising the manuscript. All authors read and approved the final manuscript.

Author details

1 College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. 2 The Southern Modern Forestry Collaborative Innovation Center, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. 3 College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. 4 School of Computer Science and Engineering, Southeast University, Nanjing 211189, Jiangsu, China.

Acknowledgements

The work is supported by the National Basic Research Program of China (973 Program) (2012CB114505), and the National Natural Science Foundation of China (31570662 and 31500533). It is also enabled by the Innovative Research Team Program of the Educational Department of China and the PAPD (Priority Academic Program Development) program at Nanjing Forestry University.

Competing interests

The authors declare that they have no competing interests.

Received: 10 March 2016 Accepted: 11 October 2016
Published online: 28 October 2016

References

Aliferis KA, Chamoun R, Jabaji S (2015) Metabolic responses of willow (Salix purpurea L) leaves to mycorrhization as revealed by mass spectrometry and (1)H NMR spectroscopy metabolite profiling. Front Plant Sci 6:344. doi:10.3389/fpls.2015.00344
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the Evolution of Mitochondrial Genome Size from Complete Sequences of *Citrullus lanatus* and *Cucurbita pepo* (Cucurbitaceae). Mol Biol Evol 27(6):1436–1448. doi:10.1093/molbev/mqs029

Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume *Vigna radiata* and the analysis of recombination across short mitochondrial repeats. PLoS ONE 6(1):e16404. doi:10.1371/journal.pone.0016404

Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell 23(7):2499–2513. doi:10.1105/tpc.111.087189

Argus GW (1997) Infraeneric classification of Salix (Salicaceae) in the New World. Syst Bot Monogr 52:1–121. doi:10.2307/2509663

Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580. doi:10.1093/nar/27.2.573

Buhler J, Lancaster J, Jacob A, Chamberlain R (2007) Mercury BLASTN: faster DNA sequence comparison using a streaming hardware architecture. In: Reconfigurable Systems Summer Institute

Carlson C, Tang H, Krishnakumar V, Tuskan G, Goodstein D, Shu S, Barry K, Dames S, Eilbeck K, Mao R (2015) A high-throughput next-generation sequencing assay for the mitochondrial genome. Methods Mol Biol 1220:107–120. doi:10.1007/978-1-4939-2257-4_8

Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T (2013) The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. PLoS ONE 8(2):e56502. doi:10.1371/journal.pone.0056502

Chen C, Zhou P, Chao YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from citrus ESTs. Theor Appl Genet 112(7):1248–1257. doi:10.1007/s00122-006-0226-1

Dames S, Elbebeck K, Mao R (2015) A high-throughput next-generation sequencing assay for the mitochondrial genome. Methods Mol Biol 2647:77–88. doi:10.1007/978-1-4939-4499-9_8

Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling A (2005) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52(5):267–274. doi:10.1007/s00294-007-0161-y

Marechal-Drouard L, Guillaumet P, Cosset A, Arbogast M, Weber F, Weil J-H, Dietrich A (1990) Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res 18(13):3689–3696. doi:10.1093/nar/18.13.3689

Mcbride HM, Neuspiel M, Wasik S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16(14):R551–R560. doi:10.1016/j.cub.2006.06.054

Melton TT, Leliaert F, Tronholm A, Lopez-Bautista JM (2015) The complete chloroplast and mitochondrial genomes of the green macroalgae *Ulva sp*. UNA00071828 (Ulvophyceae, Chlorophyta). PLoS ONE 10(4):e0121020. doi:10.1371/journal.pone.0121020

Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, Tan X, Wan F, Weining S (2012) Complete chloroplast genome sequence of a major invasive species, crotton weed (Ageratina adenophora). PLoS ONE 7(5):e36869. doi:10.1371/journal.pone.0036869

Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadokawa K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268(4):434–445. doi:10.1007/s00438-002-0767-1

Powell W, Morgante M, McDavitt R, Vendramin GG, Rafalski JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci 92(17):7759–7763

Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16(7):347–352. doi:10.1016/S0169-5347(01)02097-8

Pugh T, Fouet O, Risterucci AM, Brotter P, Abouladze M, Deleuze C, Courtois B, Clement D, Larmande P, Ngóoran JAK, Lanauz C (2004) A new cacao linkage map based on codominant markers: development and integration of 201 new microsatellite markers. Theor Appl Genet 108(6):1151–1161. doi:10.1007/s00122-003-1533-4

Rafalski JA, Tingey SV (1993) Genetic diagnostics in plant breeding: RAPDs, microsatellites and machines. Trends Genet 9(8):275–280. doi:10.1016/0168-9525(93)90013-8

Ryan MT, Hoogenraad NJ (2007) Mitochondrial-nuclear communications. Annu Rev Biochem 76(1):701–722. doi:10.1146/annurev.biochem.76.052305.091720

Scharer A, Anisimova M (2015) The evolution and function of protein tandem repeats in plants. New Phytol 206(1):397–410. doi:10.1111/nph.13184

Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and sRNAs. Nucleic Acids Res 33(Web Server issue):W686–696. doi:10.1093/nar/gki366

Shearman JR, Sangsrukit D, Ruang-Areeate P, Sonthirod C, Uthaipasawanpong P, Yooha T, Pooper S, Theerawattanasaruk K, Trargonung S, Thaphomat-onruang S (2014) Assembly and analysis of a male sterile rubber tree mitochondrial genome reveals DNA rearrangement events and a novel transcript. BMC plant biology 14:45. doi:10.1186/1471-2229-14-45

Skrzypczyńska M (2001) Studies on insects and mites causing galls on the leaves of purple willow *Salix purpurea* L. in the Ojcow National Park in Poland. Anzeiger Für Schädlingskunde 74(1):11–12. doi:10.1007/s00122-000-01022-x

Skvortsov AK (1999) Willows of Russia and Adjacent Countries. Taxonomical and Geographical Revision. University of Joensuu, Joensuu

Sulima P, Przyborowski JA, Zaluski D (2009) RAPD markers reveal genetic diversity in *Salix purpurea* L. Crop Sci 49(3):857–863. doi:10.2135/cropsci2008.07.0397

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

Theil T, Michalek W, Varshney R, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (*Hordeum vulgare* L.). Theoretical and Applied Genetics 106(3):411–422. doi:10.1007/s00122-002-0310-0

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4680–4688. doi:10.1093/nar/22.22.4673

Unseld M, Marienfeld JR, Brennicke A (1990) Transfer RNAs of potato (*Solanum tuberosum*) and *Phragmites australis*. Zeitschrift fur Naturforschung C. J Biosci 45(10):1260–1268. doi:10.1007/jmls10130112608

Weit et al. SpringerPlus (2016) 5:1894 Page 9 of 10

Wei J-H, Dietrich A (1990) Transfer RNAs of potato (*Solanum tuberosum*) and *Phragmites australis*. Zeitschrift fur Naturforschung C. J Biosci 45(10):1260–1268. doi:10.1007/jmls10130112608
Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organelar genomes with DOGMA. Bioinformatics 20 (17):3252–3255. doi:10.1093/bioinformatics/bth352
Xue J, Wang S, Zhou SL (2012) Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am J Bot 99(6):240–244. doi:10.3732/ajb.1100547
Yang AH, Zhang JJ, Yao XH, Huang HW (2011) Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am J Bot 98(5):e123–e126. doi:10.3732/ajb.1000532
Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S, et al. (2012) The complete chloroplast and mitochondrial genome sequences of Boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS ONE 7(1): e30531. doi:10.1371/journal.pone.0030531
Zhao Z, Guo C, Sutharzan S, Li P, Echt CS, Zhang J, Liang C (2014) Genome-wide analysis of tandem repeats in plants and green algae. G3: Genes|Genomes|Genetics 4(1):67–78. doi:10.1534/g3.113.008524