Review

Caloric Restriction and Cancer

David Kritchevsky

The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA

(Received November 13, 2000)

Summary In 1909 Moreschi observed that tumors transplanted into underfed mice did not grow as well as those transplanted into mice fed ad libitum. His finding stimulated a decade of research which showed that caloric restriction also affected negatively the growth of spontaneous tumors. Between 1920 and 1940 little work was done in this area, possibly because of limiting methodology. In the 1940s the laboratories of Tannenbaum (Chicago) and Baumann (Wisconsin) were able to design studies using defined diets and showed that the observed effect was due to caloric content of the diet independently of the source of calories. After another active decade research activity in the calorie-cancer area declined until it was reborn in the 1980s. By the 1980s knowledge of physiology and molecular biology had advanced enough to allow investigators to probe mechanisms underlying the calorie-cancer phenomenon. We now know that caloric expenditure (as work or exercise) will lead to reduced risk. Energy restriction enhances DNA repair and moderates oxidative damage to DNA. Energy restriction reduces oncogene expression as well. Over a half century ago, Boutwell noted that energy restriction in female rats resulted in adrenal hypertrophy and reduced weight of ovaries and uterus. He suggested that energy restriction resulted in "pseudohypophysectomy." We now know that adrenalectomy can negate the effects of caloric restriction. Caloric restriction also affects insulin metabolism and may influence gene expression. These recent observations should help us understand some of the basic mechanisms involved in establishment and proliferation of tumors.

Key Words caloric restriction, exercise, insulin, metabolism

In 1935 McCay et al. (1) showed that underfed rats lived almost twice as long as ad libum fed controls. The diet contained 40% casein, 22% starch, 10% lard, 10% sucrose, 6% mineral mix, 5% yeast, 5% cod liver oil, and 2% cellulose (37.8 en% protein, 30.3 en% carbohydrate, 31.9 en% fat) and was fed at a level which limited weight gain to 10 g every 2–3 mo. The average life span of male rats was increased by 70%. That of female rats was not increased but the upper range of their life span rose from 1,189 to 1,421 d. The underfed rats showed evidence of a lower incidence of tumors (2). Thirty years earlier Moreschi (3) showed that the growth of transplanted tumors in mice was reduced significantly by underfeeding. The total weight of tumors in freely fed mice was 7.6±0.8 g whereas it was only 1.3±0.2 g in mice fed 1 g diet daily. A few years later Rous (4) reported that underfeeding inhibited growth of both spontaneous and transplanted tumors in mice. Sugiu and Benedict (5) found that recurrence of tumors after excision in mice was 82% in fully fed mice, but only 27% in underfed mice. Most of the early (1940–1950) work on caloric effects in tumorigenesis was carried out in the laboratories of Tannenbaum, at the Michael Reese Hospital in Chicago, and Baumann at the University of Wisconsin.

Originally Tannenbaum underfed mice in order to achieve caloric restriction and underfeeding did indeed inhibit spontaneous and chemically-induced tumors in several strains of mouse (6) (Table 1). However, realizing that simple underfeeding could lead to trace nutrient (minerals, vitamins) deficiencies Tannenbaum began using a formula diet consisting of commercial dog or fox chow, skim milk powder, and corn starch. The level of corn starch was manipulated in order to achieve the desired reduction in calories. Boutwell et al. (7), using a scientifically designed semi-purified diet, confirmed the tumor inhibiting effects of caloric restriction. Two basic studies carried out in the 1940s were by Lavik and Baumann (8) who showed that a high-fat, low calorie diet was about half as carcinogenic as a low-fat, high calorie diet (Table 2), and by Tannenbaum (9) who showed caloric restriction was effective only when imposed during the promotion phase of tumor growth (Table 3).

Visscher et al. (10) studied the effect of about 33% caloric restriction on spontaneous mammary tumors in virgin C3H mice. After 16 mo the calorie restricted mice exhibited no tumors whereas the freely-fed mice showed a 72% incidence of tumors. Histological examination of the ovaries, uteri, and mammae of the restricted mice suggested pseudohypophysectomy as the result of lower energy intake and the mechanism of action of caloric restriction was suggested to be a reduction in the level of ovarian secretion (11). The overall inhibitory effects of caloric restriction on the growth of spontaneous, transplanted or induced tumors in rats...
Table 1. Effects of underfeeding on carcinogenesis.

Mouse strain	Carcinogen	Site	Duration (wk)	No. of tumors	
				Full fed	Underfed
ABC	BP	Skin	67	22	7
Swiss	BP	Skin	26	24	6
C57	BP	Subq.	34	36	22
DBA²	Spont.	Breast	64	13	3
DBA³	Spont.	Breast	56	20	1

1 Adapted from Tannenbaum (6).
2 Twelve virgin, 32 parous females.
3 Fifty virgin females.

Table 2. Influence of calories and fat on methylcholanthrene-induced skin tumors in mice.

Regimen	Tumor incidence (%)	
Calories	Fat	
Low	Low	0
Low	High	28
High	Low	54
High	High	66

1 Adapted from Lavik and Baumann (8).

Table 3. Period of caloric restriction as related to tumor incidence.

Regimen	Tumor incidence (%)	
Initiation	Promotion	
Ad libitum	Ad libitum	69
Ad libitum	Restricted	34
Restricted	Ad libitum	55
Restricted	Restricted	24

1 Adapted from Tannenbaum (9). Skin tumors induced in mice by benzpyrene.

Table 4. Mammary and colon tumors in rats calorie restricted by 40%.

Regimen	Fat	Type¹	Amount (%)	Incidence (%)
Mammary tumors²	CNO	4.0	14/24 (58)	
Ad libitum	CNO	7.9	0/23 (0)	16
Restricted	Ad libitum	CO	4.0	16/20 (80)
Restricted	Restricted	CO	7.9	4/20 (20)
Colon tumors³	BO	4.0	17/20 (85)	
Ad libitum	BO	7.9	7/20 (35)	18
Restricted	Ad libitum	CO	4.0	19/19 (100)
Restricted	Restricted	CO	7.9	10/19 (53)

1 CNO, coconut oil plus 1% CO; CO, corn oil; BO, butter oil plus 1% CO.
2 Induced in female Sprague-Dawley rats by DMBA.
3 Induced in male F344 rats by DMH.

and mice have been reviewed (12–14).

We studied effects of amount and type of fat in caloric restriction. In view of the earlier study by Carroll and Khor (15) which reported unsaturated fat to be more co-carcinogenic than saturated fat we compared corn oil effects with those of coconut or butter oils. As Table 4 shows, caloric restriction reduces the incidence of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors or 1,2-dimethylhydrazine (DMH)-induced colon tumors. The restriction is more effective in the presence of saturated fat. Boissonneault et al. (19) studied effects of DMBA on mammary tumor development in rats fed high or low fat diets or a high fat, restricted diet (Table 5). The high fat, restricted diet provided almost four times as much fat, but 19% fewer calories and led to 84% lower tumor incidence.

We (20) set about to determine the lowest level of restriction which began to effect carcinogenesis. As Table 6 shows as little as 10% restriction leads to reductions of 36, 10, and 47% in tumor multiplicity, weight, and burden, respectively.

In a further study of fat effects, rats were fed DMBA...
and then placed on ad libitum diets containing 5, 15 or 20% fat or 25% energy restricted diets containing 20 or 26.7% fat (21). The rats ingesting 15 or 20% fat ad libitum or 20 or 26.7% fat in the restricted diets ate exactly the same amount of fat daily. Among the ad libitum fed rats tumor incidence rose sharply between intake of 5 or 15% fat. Tumor multiplicity rose by 58 and 116% in comparing rats fed 15 or 20% fat with those fed 5% fat. Tumor weight increased by 15 and 45% with increasing fat load and tumor burden by 57 and 181%. In the rats fed the 25% restricted diet tumor incidence was lower than in those fed 5% corn oil ad libitum. Going from 20 to 26.7% corn oil in the restricted rats led to increases in tumor weight and tumor burden of 75 and 53%, respectively (Table 7). It would appear that increasing dietary fat leads to increases in tumor size.

The experiments described above involved institution of caloric restriction at the beginning of each particular study. How early in the course of the experiment must restriction be instituted to be effective? Tannenbaum (22), studying the incidence of spontaneous mammary tumors, placed mice on a restricted regimen at 2, 5 or 9 mo of life. After 20 mo the level of tumor inhibition was 100% in mice placed on the restricted diet at 2 mo, 95% when restriction was begun at 5 mo, and 80% when begun at 9 mo. Weindruch and Walford (23) studied tumor incidence and survival in 1 y old mice placed on 28% caloric restriction for 1 mo and on 44% restriction thereafter. As can be seen from Table 8, life span was increased by 23% in tumor-free mice and by about 10% in tumor-bearing mice. Incidence of multiple tumors, lung tumors, lymphomas, and hepatomas were reduced by 63, 50, 34, and 7%, respectively. When rats were placed on varying patterns of ad libitum feeding or caloric restriction incidence of DMBA-induced mammary tumors was correlated with weight gain, caloric intake, and feed efficiency (24) (Table 9).

Ross and Bras (25) studied tumorigenesis in three groups of male rats-those fed ad libitum over their life span, those whose calories were restricted by 70% over their life span, and those who were calorie-restricted for 7 wk after weaning then placed on an ad libitum diet. Restriction from weaning extended life span by about

Food intake	Group	High fat	Low fat	High fat restricted
g/d	8.0±0.3	11.0±0.7	6.7±0.2	
kcal/d	40.8±1.5	42.2±2.7	34.1±1.0	
g fat/d	2.7±0.10	0.6±0.04	2.2±0.07	
Tumor incidence (%)	11/15 (73)	6/14 (43)	1/14 (7)	

1 Adapted from Boissonneault et al. (19).

Regimen	Tumor incidence (%)	Multiplicity2	Average tumor weight (g)	Tumor burden (g)
Ad libitum	12/20 (60%)	4.7±1.3	2.0±0.8	10.1±3.3
10% Restriction	12/20 (60%)	3.0±0.8	1.8±0.5	5.4±3.0
20% Restriction	8/20 (40%)	2.8±0.7	1.9±0.7	4.7±1.9
39% Restriction	7/20 (35%)	1.3±0.3	0.7±0.6	0.9±0.8
40% Restriction	1/20 (5%)	1.0		
Probability	<0.005	NS	≤0.10	≤0.05

1 Adapted from Klurfeld et al. (20).
2 Tumors/tumor-bearing rat.
3 NS-not significant.

All diets contained 5% corn oil.

Regimen	Incidence (%)	Multiplicity2	Tumor weight (g)	Tumor burden (g)
Ad libitum	13/20 (65)	1.9±0.3	2.0±0.7	4.2±1.9
5% Corn oil	17/20 (85)	3.0±0.6	2.3±0.7	6.6±2.7
20% Corn oil	16/29 (80)	4.1±0.6	2.9±0.5	11.8±3.2
Restricted	12/20 (60)	1.9±0.4	0.8±0.2	1.5±0.5
26.7% Corn oil	6/20 (30)	1.5±0.3	1.4±1.0	2.3±1.6
Probability	≤0.005	≤0.0001	≤0.0001	≤0.0001

1 Adapted from Klurfeld et al. (21).
2 Tumors/tumor-bearing rat.
Table 8. Life span and spontaneous cancer incidence in mice calorie restricted beginning at 1 y of age.1

Tumor type	Incidence (%)	Mean age at death (mo)		
	Control	Restricted	Control	Restricted
No tumor	13	25	33.7±2.4	41.3±0.9
Multiple	16	6	34.1±0.8	40.3±1.9
Lung	12	6	34.4±1.7	38.6±2.2
Lymphoma	47	31	31.9±0.9	36.2±1.2
Hepatoma	43	40	33.9±0.8	35.1±1.0

1 Adapted from Weindruch and Walford (23).
2 Sixty-seven restricted mice, 68 control mice. Controls fed 160 kcal/wk; restricted fed 115 kcal/wk for 1 mo and 90 kcal/wk thereafter.

Table 9. DMBA-induced mammary tumor incidence in rats subjected to variable caloric restriction.1

Regimen	Incidence (%)	Weight gain (g)	Caloric intake	FE×10², ³
A-A-A-A	50	156	7,508	2.08
R-R-R-R	20	76	5,624	1.35
R-A-A-A	60	152	7,401	2.05
R-R-A-A	40	126	6,746	1.87
A-R-R-A	45	126	6,691	1.88
A-R-R	30	99	6,958	1.42
Correlation with incidence, r	0.96	0.83		0.94

1 Adapted from Kritchevsky et al. (24).
2 A=ad libitum; R=restricted. Each letter=1 mo.
3 FE=feed efficiency (weight gain/caloric intake).

50% and reduced the incidence of both benign and malignant tumors by 94%. The short (7 wk) period of restriction did not influence life span, but reduced the incidence of benign tumors by 49% and of malignant tumors by 16%.

Exercise will also reduce the incidence of transplanted (26) or chemically induced (27, 28) tumors. Treadmill exercise lowers incidence of DMH-induced colon tumors in rats to about the same extent as 25% caloric restriction (29) (Table 10).

What is the relevance of these animal studies to man? Hoffman suggested in 1913 (30) that “erroneous diet” was an important factor in carcinogenesis and later (31) proposed that energy excess was that factor. Berg (32) also proposed a relationship between high energy intake and carcinogenesis. Epidemiological data (33, 34) point to a relationship between cancer mortality and overweight. Miller et al. (35) reported that the daily caloric intake of women with breast cancer was significantly higher than that of controls and Jain et al. (36), and Bristol et al. (37) found caloric intake to be positively and significantly correlated with colon cancer incidence. Lyon et al. (38) showed that risk of colon cancer in both men and women increased with increasing caloric intake (Table 11). There are now a number of studies which show that cancer risk is inversely proportional to the degree of muscular activity required in various occupations (39–42) (Table 12).

Table 10. Influence of caloric restriction ± treadmill exercise on DMH-induced colon tumors in male F344 rats.1

Regimen	Tumor incidence (%)	Multiplicity ³	
Diet	Exercise⁴		
AL	–	75	2.1±0.4
AL	+	36	1.3±0.2
CR (25%)	–	35	1.3±0.2
CR (25%)	+	29	1.1±0.1
CR (40%)	–	21	1.2±0.2

1 Adapted from Klurfeld et al. (29).
2 AL=ad libitum; CR=calorie restricted.
3 Tumors/tumor-bearing rat.
4 Treadmill 20 meters/min at 7° incline. 60 min/d. 5 d/wk.

50% and reduced the incidence of both benign and malignant tumors by 94%. The short (7 wk) period of restriction did not influence life span, but reduced the incidence of benign tumors by 49% and of malignant tumors by 16%.

Exercise will also reduce the incidence of transplanted (26) or chemically induced (27, 28) tumors. Treadmill exercise lowers incidence of DMH-induced colon tumors in rats to about the same extent as 25% caloric restriction (29) (Table 10).

What is the relevance of these animal studies to man? Hoffman suggested in 1913 (30) that “erroneous diet” was an important factor in carcinogenesis and later (31) proposed that energy excess was that factor. Berg (32) also proposed a relationship between high energy intake and carcinogenesis. Epidemiological data (33, 34) point to a relationship between cancer mortality and overweight. Miller et al. (35) reported that the daily caloric intake of women with breast cancer was significantly higher than that of controls and Jain et al. (36), and Bristol et al. (37) found caloric intake to be positively and significantly correlated with colon cancer incidence. Lyon et al. (38) showed that risk of colon cancer in both men and women increased with increasing caloric intake (Table 11). There are now a number of studies which show that cancer risk is inversely proportional to the degree of muscular activity required in various occupations (39–42) (Table 12).

Table 11. Energy intake and colon cancer risk.¹

Energy intake	Odds ratio as a function of kcal/d	
Males	Energy intake	
<1.900	1.900–2.600	2.600
Odds ratio	1.0	2.5
Females	Energy intake	
<1.300	1.300–1.800	>1.800
Odds ratio	1.0	2.0
Total energy	Intake must be evaluated before	
Total energy	attempting to assign a causal	
Intake	role to any food or nutrient	
that may	that may be postulated to play a	
be postulated	role in colon cancer.	
assign a causal	role to any food or nutrient	
role to any	that may be postulated to play a	
food or nutrient	role in colon cancer.	

50% and reduced the incidence of both benign and malignant tumors by 94%. The short (7 wk) period of restriction did not influence life span, but reduced the incidence of benign tumors by 49% and of malignant tumors by 16%.

Exercise will also reduce the incidence of transplanted (26) or chemically induced (27, 28) tumors. Treadmill exercise lowers incidence of DMH-induced colon tumors in rats to about the same extent as 25% caloric restriction (29) (Table 10).

What is the relevance of these animal studies to man? Hoffman suggested in 1913 (30) that “erroneous diet” was an important factor in carcinogenesis and later (31) proposed that energy excess was that factor. Berg (32) also proposed a relationship between high energy intake and carcinogenesis. Epidemiological data (33, 34) point to a relationship between cancer mortality and overweight. Miller et al. (35) reported that the daily caloric intake of women with breast cancer was significantly higher than that of controls and Jain et al. (36), and Bristol et al. (37) found caloric intake to be positively and significantly correlated with colon cancer incidence. Lyon et al. (38) showed that risk of colon cancer in both men and women increased with increasing caloric intake (Table 11). There are now a number of studies which show that cancer risk is inversely proportional to the degree of muscular activity required in various occupations (39–42) (Table 12).

The mechanism(s) by which caloric restriction affects carcinogenesis are moot. Insulin deprivation will inhibit tumor growth (43) and cell division (44). When tumor-bearing rats are rendered diabetic their tumors cease to grow (45). Plasma insulin levels of rats fall upon the institution of caloric restriction (Table 13). Levels of IGF-I fall at first, but rebound to normal and IGF-II levels are unaffected (47). Insulin receptors increase in calorie-restricted mice (48) and rats (49).

Energy restriction increases the activity of superoxide diamutase, catalase, and glutathione peroxidase in the livers of aging rats (50). Energy restriction also modulates oxidative DNA damage (51) and enhances DNA repair (52). It also reduces oncogene expression in rats (53) and mice (54), and inhibits expression of c-fos and c-ki-ras (55). A recent publication devoted to effects of
Caloric restriction (56) carries descriptions of the number of effects on antioxidant systems, oncogene expression, and genome expression exerted by this nutritional modality.

Caloric restriction by 40% increases slightly hexokinase activity in mammary tissue of normal female Sprague-Dawley rats, but inhibits activity of malic enzyme by 79% and of glucose-6-phosphate dehydrogenase by 70% (57). Female Sprague-Dawley rats were given DMBA and maintained on ad libitum or restricted diets. The ratio of large, palpable to small, non-palpable tumors was 4.9 in the controls and dropped to 3.8, 3.3, and 0.7, in rats subjected to 10, 20 or 30% caloric restriction, respectively (57) (Table 14). The data suggest that caloric restriction preferentially deprives tumors of nutrition.

Huseby et al. (11), Boutwell et al. (58), and their colleagues showed that caloric restriction in female rats resulted in adrenal hypertrophy and reduction in size of uterus and ovaries. They suggested that caloric restriction might be thought of as "pseudohypophysectomy." Pashko and Schwartz (59, 60) have shown that adrenalectomy can reverse the effects of caloric restriction on papilloma formation (Table 15) or lung tumor levels in mice. Plasma corticosterone levels are increased from 8.6±2.5mg/dL in normal mice to 15.0±3.2mg/dL in energy-restricted mice. These findings offer another av-

Table 12. Colon cancer as related to lifetime work exercise.

Proportion of life spent in sedentary or light work	Age 30–65	Groups	Age 66–79			
	Cases	Controls	Odds ratio	Cases	Controls	Odds ratio
None	32	380	1.00	32	209	1.00
1–40%	49	365	1.59	20	85	1.54
41–100%	44	269	1.94²	33	123	1.75¹

¹ Adapted from Vena et al. (40).
² p≤0.01.
³ p≤0.05.

Table 14. Mammary tumors in ad libitum-fed and calorically restricted female Sprague-Dawley rats.*

Dietary regimen	Tumor incidence	Tumors/ tumor-bearing rat	Total tumor yield	Percent of LP¹	Percent of SNP¹	Ratio LP/SNP
Ad libitum	60%	4.7±1.3²	59	83	17	4.88
10% restriction	60%	3.0±0.8	36	79	21	3.76
20% restriction	40%	2.8±0.7	22	77	23	3.35
30% restriction	35%	1.3±0.3	10	40	60	0.67
40% restriction	5%	1.0²	1	—	—	—

* Adapted from Ruggeri et al. (57).
¹ LP, large, palpable; SNP, small, nonpalpable.
² Mean ± SE.
³ This single tumor was necrotic and not used for subsequent enzymatic studies.

Table 13. Effect of caloric restriction on plasma insulin levels in rats.

Experimental groups	Insulin (mU/mL)	Reference
Ad libitum (5% fat)	122±16	20
30% restricted	42±5	
40% restricted	41±8	
Ad libitum (5% fat)	143±16	21
15% fat	164±15	
20% fat	158±15	
Restricted (25%)	100±12	
20% fat	117±13	
26.7% fat	117±13	
Ad libitum (obese)	1003±193	46
40% restricted (obese)	328±41	

Table 15. Papilloma development (TPA-induced) in adrenalectomized, food restricted mice.

Group	Regimen¹	Papillomas/mouse
Sham operated	AL	5.4
Adrenalectomized	AL	7.7
Sham operated	FR	1.0
Adrenalectomized	FR	6.2

¹ AL = ad libitum. FR = food restricted.

Note: Papillomas measured at 82 d. Adapted from Pashko and Schwartz (59).

The data suggest that caloric restriction preferentially deprives tumors of nutrition.
ene of investigation into the mechanisms of tumor growth and its control by caloric restriction. In 1945 Potter suggested that we might reduce cancer risk by eating less and exercising more (61). The simplest dietary advice would appear to be moderation, balance and variety (62).

REFERENCES
1) McCay CM, Crowell MF, Maynard LA. 1935. The effect of retarded growth upon the length of life span and upon the ultimate body size. J Nutr 10: 63–79.
2) McCay CM, Ellis GH, Barnes LJ, Smith CAH, Sperling G. 1939. Chemical and pathological changes in aging and after retarded growth. J Nutr 18: 15–25.
3) Moreschi C. 1909. Beziehung zwischen ernährung und tumorschwarchtum. Z. Immunforsch 2: 651–675.
4) Roux P. 1914. The influence of diet on transplanted and spontaneous tumors. J Exp Med 20: 433–451.
5) Sugiyura K, Benedict SR. 1926. The influence of insufficient diets upon tumor recurrence and growth in mice. Am J Cancer 10: 309–314.
6) Tannenbaum A. 1940. The initiation and growth of tumors. Introduction I. Effects of underfeeding. Am J Cancer 38: 335–350.
7) Boutwell RK, Brush MK, Rusch HP. 1949. The stimulating effect of dietary fat on carcinogenesis. Cancer Res 9: 741–746.
8) Lavik PS, Baumann CA. 1943. Further studies on the tumor-promoting action of fat. Cancer Res 3: 749–756.
9) Tannenbaum A. 1944. The dependence of the genesis of induced skin tumors on the caloric intake during different stages of carcinogenesis. Cancer Res 4: 673–677.
10) Visscher MB, Ball ZB, Barnes RH, Silverstein I. 1942. The influence of caloric restriction upon the incidence of spontaneous mammary carcinoma in mice. Surgery 11: 48–55.
11) Huseby RA, Ball ZB, Visscher MB. 1945. Further observations on the influence of simple caloric restriction on mammary cancer incidence and related phenomena in C3H mice. Cancer Res 5: 40–46.
12) White FR. 1961. The relationship between underfeeding and tumor formation, transplantation, and growth in rats and mice. Cancer Res 21: 281–290.
13) Kritchevsky D, Klurfeld DM. 1986. Influence of caloric intake on experimental carcinogenesis. Adv Exp Med Biol 206: 55–68.
14) Albano D. 1987. Caloric intake, body weight and cancer. A review. Nutr Cancer 9: 199–217.
15) Carroll KK, Khor HT. 1970. Effect of level and type of dietary fat on incidence of mammary tumors induced in female Sprague-Dawley rats by 7,12-dimethylbenz(a)-anthracene. Lipids 6: 415–420.
16) Kritchevsky D, Weber MM, Klurfeld DM. 1984. Dietary fat versus caloric content in initiation and promotion of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Cancer Res 44: 3174–3177.
17) Klurfeld DM, Weber MM, Kritchevsky D. 1987. Inhibition of chemically induced mammary and colon tumor promotion by caloric restriction in rats fed increased dietary fat. Cancer Res 47: 2759–2762.
18) Kritchevsky D, Klurfeld DM. Unpublished observation.
19) Boissonneault GA, Elson CE, Pariza MW. 1986. Net energy effects of dietary fat on chemically induced carcinogenesis in F344 rats. J Natl Cancer Inst 76: 335–338.
20) Klurfeld DM, Welch CB, Davis MJ, Kritchevsky D. 1989. Determination of degree of energy restriction necessary to reduce DMBA-induced mammary tumorigenesis in rats during the promotion phase. J Nutr 119: 286–291.
21) Klurfeld DM, Welch CB, Lloyd LM, Kritchevsky D. 1989. Inhibition of DMBA-induced mammary tumorigenesis by caloric restriction in rats fed high fat diets. Int J Cancer 43: 922–925.
22) Tannenbaum A. 1947. Effects of varying caloric intake upon tumor incidence and tumor growth. Ann NY Acad Sci 49: 5–18.
23) Weintraub R, Walford RL. 1982. Dietary restriction in mice beginning at one year of age. Effects on life span and spontaneous cancer incidence. Science 215: 1415–1418.
24) Kritchevsky D, Welch CB, Klurfeld DM. 1989. Response of mammary tumors to caloric restriction during different time periods during the promotion phase. Nutr Cancer 12: 259–269.
25) Ross MH, Bras G. 1971. Lasting effect of early caloric restriction on prevalence of neoplasms in the rat. J Natl Cancer Inst 47: 1095–1113.
26) Rusch HP, Kline BE. 1944. The effect of exercise on the growth of a mouse tumor. Cancer Res 4: 116–118.
27) Cohen LP, Choi K, Wang CX. 1988. Influence of dietary fat, caloric restriction and voluntary exercise on N-nitrosomethylurea-induced mammary tumorigenesis in rats. Cancer Res 48: 4276–4283.
28) Roebuck BD, McCaffrey J, Baumgartner KJ. 1990. Protective effects of voluntary exercise during the post-initiation phase of pancreatic carcinogenesis in the rat. Cancer Res 50: 6811–6816.
29) Klurfeld DM, Welch CB, Einhorn E, Kritchevsky D. 1988. Inhibition of colon tumor promotion by caloric restriction or exercise in rats. FASEB J 2: A433.
30) Hoffman FL. 1923. Cancer and civilization. Prudential Ins. Co., Newark, NJ.
31) Hoffman FL. 1927. Cancer increase and overnutrition. Prudential Ins. Co., Newark, NJ.
32) Berg JW. 1975. Can nutrition explain the pattern of international epidemiology of hormone-dependent cancer? Cancer Res 35: 3345–3350.
33) Lew EA, Garfinkel L. 1979. Variations in mortality by weight among 750,000 men and women. J Chronic Dis 32: 563–576.
34) Garfinkel L. 1985. Overweight and cancer. Ann Internat Med 103: 1034–1036.
35) Miller AB, Kelly A, Choi NW, Matthews V, Morgan RW, Munan L, Burch JD, Feather J, Howe GR, Jain M. 1978. A study of diet and breast cancer. Am J Epidemiol 107: 499–509.
36) Jain M, Cook GM, Davis FG, Grace MG, Howe GR, Miller AB. 1980. A case-control study of diet and colorectal cancer. Int J Cancer 26: 757–768.
37) Bristol JA, Emmett PM, Heaton KW, Williamson RC. 1985. Sugar, fat, and the risk of colon cancer. Br Med J 291: 1467–1470.
38) Lyon JL, Mahoney AW, West DW, Gardner JW, Smith KR, Sorenson AW, Stanish W. 1987. Energy intake: its relation to cancer. J Natl Cancer Inst 78: 853–861.
39) Garabrant DH, Peters JM, Mack TM, Bernstein L. 1984. Am J Epidemiol 119: 1005–1014.
40) Vena JE, Graham S, Zielezny M, Swanson MK, Barnes RE, Nolan J. 1985. Lifetime occupational exercise and
colon cancer. *Am J Epidemiol* **122**: 357–365.

41) Gerhardsson M, Floderus B, Norell SE. 1988. Physical activity and colon cancer risk. *Int J Epidemiol* **17**: 743–746.

42) Fredricksson M, Bengtsson NO, Hardell L, Axelsson O. 1989. Colon cancer, physical activity and occupational exposures. A case control study. *Cancer* **63**: 1838–1842.

43) Cohen ND, Hill R. 1974. Influence of insulin on growth and metabolism of 7,12-dimethylbenz(a)anthracene-induced mammary tumors. *Cancer Res* **34**: 3245–3252.

44) Taub R, Roy A, Dieter R, Koontz J. 1987. Insulin as a growth factor in rat hepatoma cells: stimulation of proto-oncogene expression. *J Biol Chem* **262**: 10893–10897.

45) Heuson JC, Legros N. 1972. Influence of insulin deprivation on growth of the 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. *Cancer Res* **32**: 226–232.

46) Klurfeld DM, Lloyd LM, Welch CB, Davis MJ, Tulp OL, Kritchevsky D. 1991. Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. *Proc Soc Exp Biol Med* **196**: 381–384.

47) Ruggieri BA, Klurfeld DM, Kritchevsky D, Furlanetto RW. 1989. Caloric restriction and 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in rats. Alterations in circulating insulin, insulin-like growth factors I and II, and epidermal growth factor. *Cancer Res* **49**: 4130–4134.

48) Spindler SR, Grizzle JM, Walford RL, Mote PL. 1991. Aging and restriction of dietary calories increases insulin receptor mRNA, and aging increases glucocorticoid receptor mRNA in the liver of female C3B10RF mice. *J Gerontol* **46**: B233–B237.

49) Bagule M, Manin M, Arnal M, Grizard J. 1988. Differential regulation of muscle and liver insulin receptors by energy restriction in growing rats. *Reprod Nutr Dev* **18**: 819–820.

50) Rao G, Xia E, Nadakuvakaren MJ, Richardson A. 1990. Effect of dietary restriction on the age-dependent changes in the expression of antioxidant enzymes in rat liver. *J Nutr* **120**: 602–609.

51) Djuric Z, Kritchevsky D. 1993. Modulation of oxidative DNA damage levels by dietary fat and calories. *Mutation Res* **295**: 181–190.

52) Srivastava VK, Tilley RD, Hart RW, Busbee DL. 1991. Effect of dietary restriction on the fidelity of DNA polymerases in aging mice. *Exp Gerontol* **26**: 453–466.

53) Fernandes G, Khare A, Langamere S, Yu B, Sandberg L, Fredricks B. 1987. Effect of food restriction and aging on immune cell fatty acids, functions, and oncogene expression in SPF Fischer 344 rats. *Fed Proc* **46**: 467.

54) Nakamura KD, Duffy PH, Lu M, Turturro A, Hart RW. 1989. The effect of dietary restriction on myc proto-oncogene expression in mice. A preliminary study. *Mech Aging Dev* **48**: 199–205.

55) Himeno Y, Engelman RW, Good RA. 1992. Influence of caloric restriction on oncogene expression and DNA synthesis during liver degeneration. *Proc Natl Acad Sci USA* **89**: 5497–5501.

56) Hart RW, Neumann DA, Robertson RT eds. 1995. Dietary restriction: Implications for the design and interpretation of toxicity and carcinogenicity studies. ILSI Press, Washington, DC.

57) Ruggeri BA, Klurfeld DM, Kritchevsky D. 1987. Biochemical alterations in 7,12-dimethylbenz(a)anthracene-induced mammary tumors from rats subjected to caloric restriction. *Biochim Biophys Acta* **929**: 239–246.

58) Boutwell RK, Brush MK, Rusch HP. 1949. Some physiological effects associated with chronic caloric restriction. *Am J Physiol* **154**: 517–524.

59) Pashko LL, Schwartz AG. 1992. Reversal of food restriction-induced inhibition of mouse skin tumor promotion by adrenalectomy. *Carcinogenesis* **13**: 1925–1928.

60) Pashko LL, Schwartz AG. 1996. Inhibition of 7,12-dimethylbenz(a)anthracene-induced lung tumorigenesis in A/J mice by food restriction is reversed by adrenalectomy. *Carcinogenesis* **17**: 209–212.

61) Potter VR. 1945. The role of nutrition in cancer prevention. *Science* **101**: 105–109.

62) Kritchevsky D. 1991. Diet and cancer. *CA Cancer J for Clinicians* **41**: 328–333.