SYNTHESIS AND ANTIBACTERIAL ACTIVITY OF 3-ARYLAMINOMETHYL-1-(2-OXO-2-ARYLETHYL)-6,7,8,9-TETRAHYDRO-5H-[1,2,4]TRIAZOLO[4,3-a] AZEPIN-1-IUM BROMIDES AND ARYL-(4-R-1-PHENYL-5,6,7,8-TETRAHYDRO-2,2a,8a-TRIAZACYCLOPENTA[cd]AZULEN-1-YLMETHYL)-AMINES

Nataliya Demchenko, Zinaida Suvorova, Yuliia Fedchenkova, Tamara Shpychak, Oleh Shpychak, Ludmila Bobkova, Sergii Demchenko

The aim of this work is to develop methods of synthesis of 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides produced novel 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides. The latter when refluxed in 10 % solution of NaOH gave aryl-(4-R-phenyl)-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta(cd)azulen-1-ylmethyl)-amines. The study of antimicrobial activity of the compounds obtained allowed to find derivatives which are active against C. albicans and S. aureus strains. Among the compounds tested 3-[(4'-bromophenylaminol)-methyl]-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide 5Cd appeared to be more active than the reference drug Cefixime and displayed close antimicrobial activity as the antibiotic Linezolid.

Conclusions. It was found out that derivatives of 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides display broad spectrum of antimicrobial activity and are able to inhibit growth of both bacteria and fungi. S. aureus and C. albicans turned out to be the most sensitive strains to the compounds tested, MIC was in the range of 6.2-25.0 μg/mL. Gram-negative strains of microorganisms were less sensitive to the compounds evaluated and 5fa was the most active derivative displaying antimicrobial activity at the concentration of 50.0 μg/mL. Antimicrobial activity of triazoloazepinium bromide derivatives was similar to that of Linezolid and Fluconazole reference drugs and more pronounced than the activity of Cefixime.

Hence, the data gathered evidence the feasibility of further study of the antimicrobial properties of the most active compounds in in vivo experiments aiming at assessment of the prospects for the creation of new effective and safe antimicrobial drugs based on them.

Keywords: 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides, antibacterial activity, in vitro tests, minimum inhibitory concentration.

How to cite: Demchenko, N., Suvorova, Z., Fedchenkova, Y., Shpychak, T., Shpychak, O., Bobkova, L., Demchenko, S. (2021). Synthesis and antibacterial activity of 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides AND aryl-(4-R-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta(cd)azulen-1-ylmethyl)-amines. ScienceRise: Pharmaceutical Science, 6 (34), 51–57. doi: http://doi.org/10.15587/2519-4852.2021.249480

© The Author(s) 2021
This is an open access article under the Creative Commons CC BY license hydrate

1. Introduction

Unreasonable usage of antimicrobial drugs leads to appearance and spread of microorganism strains which are resistant to antimicrobials [1, 2]. In addition to antimicrobial resistance spreading, existing drugs also have some drawbacks. Some of them display narrow spectrum of antimicrobial activity, unsatisfactory pharmacokinetic, high rate of side effects etc [3, 4]. These facts are the reasons that medicine is in urgent need of novel antimicrobial substances [5, 6]

The core of 5H-[1,2,4]triazolo[4,3-a]azepine is a part of many compounds possessing analgesic, anxiolytic, anti-inflammatory and antitumor activities. Additionally, structurally close to them 3-biphenyl-3H-imidazo[1,2-α]azepin-1-ium bromides display antibacterial and antifungal activity [7].

These compounds can be prepared by the condensation of 3-arylaminoethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines with substituted phenacyl bromides in ethyl acetate.

The aim of this work is to develop methods of synthesis of 3-arylaminoethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R-phenyl-5,6,7,8-tetrahydro-2,2a,8a-tria-
ScienceRise: Pharmaceutical Science № 6(34)2021

2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines and to study their antimicrobial activity against strains of gram-positive and gram-negative bacteria as well as yeast fungi. Previously one compound of 5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulene series has been synthesized and tested to possess antitumor activity. Experiments carried out revealed its potency to inhibit the growth of cancerous leukemia cells of CCRF-CEM, HL-60(TB), K-562, MOLT-4, RPMI-8226 lines [8].

2. Planning (methodology) of the research

For planning research, the following algorithm of actions was developed:

I stage. Synthesis of selected series of compounds and establishment of its chemical characteristics.

II stage. Establishment of the minimum inhibitory concentration (MIC) of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R-phenylamino)-acetic acid hydrazide (2 a-f).

In order to obtain the target 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R-phenyl)-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines against bacteria and fungi.

A mixture of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines quaternary salts (5bb,cd,dc,db,ea,eb,fc) was obtained by refluxing above mentioned 5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides in 10 % NaOH.

Antimicrobial activity screening of the compounds synthesized was performed by measuring their minimum inhibitory concentration (MIC) values.

3. Materials and methods

Chemical experiments. 1H NMR spectra were recorded on a Bruker 400 (Germany) spectrometer in DMSO-d6 solutions. 13C NMR spectra on a Varian Mercury-400 100 MHz in DMSO-d6 using tetramethylsilane as an internal standard. Chemical shifts were reported in ppm units using δ scale. The mass spectra were recorded on an Agilent 1200 LC/MSD SL instrument (Santa Clara, CA, USA). Elemental analysis was performed on a EuroVector EA-3000 instrument. Melting points were determined on a Kofler bench. All solvents and reagents were commercially available.

3-Arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines 3a-f contain three nitrogen atoms which could be alkylated (two nitrogen atoms of the triazole moiety and one exocyclic nitrogen atom), thus three different products or their mixtures can be formed. Nevertheless, NaOH promoted cyclization of the alkylated products 5 into aryl-(4-R-phenyl)-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-ylmethyl)-amines 6 unambiguously proves that the alkylation of amines 3a-f proceeds only on the nitrogen atom at the position 1 of the heterocyclic system. Antimicrobial activity of the compounds synthesized was evaluated by their minimum inhibitory concentration (MIC) values.

3-Arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines (3 a-f) were prepared according to the known method [15] by the interaction of 7-methoxy-3,4,5,6-tetrahydro-2H-azepine 1 with (4-R-phenylamino)-acetic acid hydrazide (2 a-f).

Synthesis of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines quaternary salts (5bb,cd,dc,db,ea,eb,fc)

A mixture of 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines 3a-f (0.01 mol) and appropriate alkylation reagent 4a-e (0.01 mol) was refluxed for 2 h in 80 ml of ethyl acetate and left overnight at room temperature. The obtained solid products were collected by filtration, washed with ethyl acetate, and recrystallized from the appropriate solvent.

3-[4-Chlorophenylamino]-methyl-1-[2-(4-chlorophenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide (5bb).

Yield 2.02 g (79 %). M.p.=145–147 °C (from propanol-2). Anal. Calcd. for C23H26Br2N4O2. %: N 9.85. Found, %: N 9.71. 1H NMR (400 MHz, DMSO-d6), δ (ppm): 1.80-1.97 (m, 6Н, (СН2), 2.32 (m, 2Н, 9-СН2), 4.65 (m, 4Н, NHCH2, 6.46 (s, 2Н, COCH2), 6.74 (m, 1Н, NH), 6.71 and 7.02 (d-d, 4Н, 4Н, С 6Н4, С 6Н4, СОСН2), 6.74 (m, 1Н, NH), 7.07 and 8.07 (d-d, 4Н, С 6Н4, С 6Н4, СОСН2), 6.65 and 7.71 (d-d, 4Н, С 6Н4, С 6Н4, СОСН2) MS m/z: 431.1 [M+].

3-[4-Bromophenylamino]-methyl-1-[2-(4-methoxyphenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide (5cd).

Yield 2.12 g (77 %). M.p.=204–205 °C (from ethanol). Anal. Calcd. for C23H26BrClN4O2. %: N 10.2. Found, %: N 10.4. 1H NMR (400 MHz, DMSO-d6), δ (ppm): 1.80–1.98 (m, 6Η, (СН2), 3.24 (m, 2Η, 9-СН2), 3.92 (s, 3Η, OCH3), 4.59 (m, 2Η, 5-СН2), 4.65 (d, 2Η, NHCH2, J=4.3 Hz), 6.32 (s, 2Η, COCH2), 6.70 (m, 1Η, NH), 6.67 and 7.15 (d-d, 4Η, С 6Н4, J=8.9 Hz), 7.07 and 8.07 (d-d, 4Η, С 6Н4, J=8.9 Hz). MS m/z: 471.1 [M+].

1-[2-(4-Chlorophenyl)-2-oxoethyl]-3-[4-(4-methoxyphenylamino)-methyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide (5db).

Yield 1.72 g (67 %). M.p. =175–176 °C (from propanol-2). Anal. Calcd. for C23H26BrClN4O2. %: N 11.1. Found, %: N 11.0. 1H NMR (400 MHz, DMSO-d6), δ (ppm): 1.69–1.86 (m, 6Η, (СН2), 2.36 (m, 2Η, 9-СН2), 3.64 (s, 3Η, OCH3), 4.46 (m, 2Η, 5-СН2), 4.60 (d, 2Η, NHCH2, J=4.3 Hz), 6.00 (m, 1Η, NH), 6.36 (s, 2Η, COCH2), 6.65 and 6.74 (d-d, 4Η, С 6Н4, J=8.7 Hz), 7.71 and 8.10 (d-d, 4Η, С 6Н4, J=8.4 Hz). MS m/z: 427.0 [M+].

1-[2-(4-Bromophenyl)-2-oxoethyl]-3-[4-(4-methoxyphenylamino)-methyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromide (5dc).

Yield 2.23 g (81 %). M.p. =211–212 Anal. Calcd. for C23H26BrN4O2. %: N 10.2. Found, %: N 10.3. 1H NMR (400 MHz, DMSO-d6), δ (ppm): 1.69–1.86 (m, 6Η, (СН2), 2.36 (m, 2Η, 9-СН2), 3.64 (s, 3Η, OCH3), 4.46 (m, 2Η, 5-СН2), 4.60 (d, 2Η, NHCH2, J=4.3 Hz), 6.09 (m, 1Η, NH), 6.38 (s, 2Η, COCH2), 6.66 and 7.72 (d-d, 4Η, С 6Н4, J=9.0 Hz), 7.88 and 8.00 (d-d, 4Η, С 6Н4, J=8.4 Hz). 13C NMR (100 MHz, DMSO-d6), δ: 20.8, 23.7, 26.1, 28.8, 35.6, 39.0, 43.1, 52.6, 55.6, 112.3, 114.3, 126.1, 132.2, 134.7, 138.6, 142.2, 150.7, 155.0, 164.7, 188.4. MS m/z: 471.2 [M+].
3-(p-Tolylaminomethyl)-1-(2-oxo-2-phenylethy- 
lyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-ajaze-
ipin-1-i um bromides (5a) Yield 1.74 g (71 %). M.p.=219– 
221 °C (from ethanol). Anal. Calc. for C_{23}H_{23}BrN_{4}O. %: 
N 11.4. Found, %: N 11.3. 'H NMR (400 MHz, DMSO-d_{6}), 
δ (ppm): 7.30 (1H, CH), 7.50 and 7.60 (d-d, 4H, С6Н4, 
J=8.8 Hz). 7.73 and 8.07 (d-d, 4H, С6Н4, 
J=8.4 Hz), 7.73 and 8.07 (d-d, 4H, С6Н4, 
J=8.4 Hz). MS m/z: 411.0 [M+].

3-[3-Chloro-2-methylphenylamino]-meth-
yl]-1-(2-oxo-2-phenylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4] 
triazolo[4,3-ajaze-pin-1-i um bromide (5f). Yield 2.45 g (86 %). 
M.p.=210–211 °C (from ethanol). Anal. Calc. for 
C_{23}H_{23}BrN_{4}O. %: N 9.9. Found, %: N 9.71. 'H NMR 
(400 MHz, DMSO-d_{6}), δ (ppm): 1.73–1.89 (m, 6H, (СН2) 
=4.3 Hz), 6.38 (s, 2H, СОСН₂), 6.61 and 6.90 (d-d, 4H, СН₂, 
J=8.0 Hz). MS m/z: 376.4 [M+].

All compounds were dissolved in DMSO to give 
stock solutions with concentration of 10 mg/mL, and ali-
quots were diluted in water and 5 µL dispensed into empty 
384-well plates in duplicates for each strain. Once 
cells were added to the plates, this gave a final compound 
concentration of 32 µg/mL, or in case of a serial dilution 
assay compound concentrations from 50 to 0.78 µg/mL, 
in both cases with a maximum DMSO concentration of 
0.3 %, which does not show antimicrobial activity and 
does not affect the results of microbiological screening.

Antimicrobial activity of the compounds was evaluated 
by their MIC values, which were determined by 
known approaches [11, 12]. In the research gram-positive 
control wells (containing bacterial/fungi inoculum suspen-
sions without the compounds (reference drugs) tested).
The inhibition level of C. albicans strain growth treated with the compounds tested was determined by measuring the optical density at wavelength of 530 nm (OD_{530}). The inhibition level of C. neoformans strain growth was determined by measuring the difference in optical density at wavelengths of 600 and 570 nm (OD_{600-570}) after adding resazurin solution (to its final concentration of 0.001 %) and incubation of the solutions at 35 °C for 2 h. The optical density of the mixtures containing fungi cultures was measured using multi-mode microplate reader Biotek Synergy HTX. The percentage of fungi growth inhibition was calculated in the same way as for the bacterial cultures [13, 14].

Negative growth inhibition values (Table 2) indicate lower growth rate (lower OD_{600} values) as compared to the negative control wells (inhibition level is set to 0 %). The growth rate of all bacterial and fungal strains was in the range of +/-10 % which is within normal growth rate distribution stated for bacteria/fungi [15, 16].

4. Results

The key intermediates – 3-arylaminoethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines (3 a-f) were synthesized by condensation of 7-methoxy-3,4,5,6-tetrahydro-2H-azepine 1 with (4-R-phenylamino)-acetic acid hydrazide (2 a-f). Interaction of 3-arylaminoethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines (3 a-f) with substituted phenacyl bromides 4 in ethyl acetate resulted in 3-arylaminoethyl-1-(2-oxo-2-aryl-ethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides 5. The latter when refluxed in 10 % solution of NaOH gave aryl-(4R-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacycloenta[cd]azulen-1-ylmethyl)-amines. 6. Compounds 3-6 are crystalline solids (Fig. 1).

Antimicrobial activity of 3-arylaminoethyl-1-(2-oxo-2-aryl-ethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides 5 was measured against gram-positive (S. aureus ATCC 25923) and gram-negative (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853) bacterial strains as well as yeasts fungi (Candida albicans NCTC 885/653). The results of antimicrobial activity study are given in the Table 1.

Compounds 3a-f and 6a-b, b-c, c-d, d-e, e-f were also tested to possess antimicrobial activity against bacterial strains of S. aureus (ATCC 43300), E. coli (ATCC 25922), P. aeruginosa (ATCC 27853), K. pneumoniae (ATCC 700630), A. baumannii (ATCC 19606) and fungal strains of C. albicans (ATCC 90028), C. neoformans (ATCC 208821). The compounds were assessed in concentration of 32 µg/mL. The values of the strains growth inhibition are given in the Table 2.

The tests were initially carried out using compounds 3, 6 in concentration of 32 µg/mL in duplicates in order to find active derivatives. Next, to determine MIC values preliminary assays were followed by a dose response test, using 8 double dilution concentrations of the compounds in duplicates.
5. Discussion

The obtained data indicate that six compounds (5bb, 5cf, 5cd, 5eb, and 5fa) display antimicrobial activity against gram-positive bacteria (S. aureus). The compounds are active in concentration range of 6.2–25.0 μg/mL, and derivative 5cd appeared to be the most active. It is worth noting that antistaphylococcal activity of the compounds mentioned was similar to the activity of Linezolid and more pronounced than the activity of Cefixime [17, 18].

At the same time the compounds tested had no activity against gram-negative bacteria. Only compound 5fa in inhibited growth of E. coli strain in concentration of 50.0 μg/mL. It was also established that all derivatives are inactive against P. aeruginosa and inferior to the reference drug Cefixime [19, 20].

Investigation of antifungal properties of the compounds evidence that four out of nine derivatives (5bb, 5fc, 5cd and 5eb) inhibited the growth of C. albicans in concentrations of 6.2–25.0 μg/mL. The most active derivative 5bb is of the same level of activity as antifungal drug Fluconazole [21, 22]. The study of antibacterial and antifungal activities of 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides 5 demonstrate that representatives of this class of compounds may have either single (antibacterial or antifungal) or polyvalent (antibacterial and antifungal) activity. The level of inhibiting effect and the antimicrobial spectrum of the compounds synthesized are clear evidences of prospects to create new antimicrobial drugs based on them.

Study limitations. Because serial dilution is performed in a stepwise manner, it requires a more extended period. Prepared environments must be deployed immediately, with no storage capability. It is limiting the efficiency of the method.

Prospects for further research. The further investigation of antimicrobial properties of the most active derivatives 5bb and 5cd seems to be promising way of finding and creating novel effective antimicrobial drugs.

6. Conclusion

A series of new 3-arylaminomethyl-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepines, 3-arylaminomethyl-1-(2-oxo-2-arylethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepin-1-ium bromides and aryl-(4-R1-phenyl-5,6,7,8-tetrahydro-2,2a,8a-triazacyclopenta[cd]azulen-1-yl)-amines 6ab,ba,ca,cd in concentration of 32 μg/mL.

Note: Sa – S. aureus (MRSA) ATCC 43300; Ec – E. coli ATCC 25922; Kp – K. pneumoniae ATCC 700603; Ab – A. baumannii ATCC 19606; Pa – P. aeruginosa ATCC 27853; Ca – C. albicans ATCC 90028; Cn – C. neoformans H99 ATCC 208821; OD – optical density (measured at a specific wavelength)
nyl-5,6,7,8-tetrahydro-2,2a,8- triazacyclopenta[c]azulen-1-yl methyl)-amines has been synthesized.

Experiments carried out revealed the compounds synthesized to possess broad spectrum of antimicrobial activity (compounds 5fa, 5bb, 5fc, 5cd and 5eb) inhibiting the growth of bacterial and fungal strains.

Conflict of interests
The authors declare that they have no conflict of interests.

References
1. Low, M., Balicer, R. D., Bitterman, H., Raz, R., Lieberman, N. (2014). Unwarranted Use Of Broad-Spectrum Antibiotics. Value in Health, 17 (3), A281. doi: http://doi.org/10.1016/j.jval.2014.03.1635
2. Antimicrobial resistance: no action today, no cure tomorrow (2011). WHO. Available at: https://www.who.int/dg/speeches/2011/WHD_20110407/en/2011 Last accessed: 18.04.2020
3. Fair, R. J., Tor, Y. (2014). Antibiotics and Bacterial Resistance in the 21st Century. Perspectives in Medicinal Chemistry, 6, 25–64. doi: http://doi.org/10.4137/pmc.s14459
4. Melander, R. J., Zurawski, D. V., Melander, C. (2018). Narrow-spectrum antibacterial agents. MedChemComm, 9 (1), 12–21. doi: http://doi.org/10.1039/c7md00528h
5. Moelling, R. C. (2011). Discovering new antimicrobial agents. International Journal of Antimicrobial Agents, 37 (1), 2–9. doi: http://doi.org/10.1016/j.ijantimicag.2010.08.018
6. Cully, M. (2014). Redesigned antibiotic combats drug-resistant tuberculosis. Nature Reviews Drug Discovery, 13 (4). doi: http://doi.org/10.1038/nrd4287
7. Demchenko, S., Lesyk, R., Zuegg, J., Elliott, A. G., Fedchenkova, Y., Suvorova, Z., Demchenko, A. (2020). Synthesis, antibacterial and antifungal activity of new 3-biphenyl-3H-Imidazo[1,2-a]azepin-1-imidium. European Journal of Medicinal Chemistry, 201. doi: http://doi.org/10.1016/j.ejmech.2020.112477
8. Demchenko, S. A., Sukhoveev, V. V., Moskalenko, O. V., Fedchenkova, Y. A., Potebnia, G. P., Demchenko, A. M. (2020). Synthesis and anti-tumor properties of derivatives [4- (41-chlorophenyl)-5,6,7,8-tetrahydro-2,2a,8- triazacyclopenta[c]azulen-1-yl-metil]-para-tolylamine. Farmatsevtchnyi Zhurnal, 4, 69–77. doi: http://doi.org/10.1035/c7md00528h
9. Demchenko, A. M., Nazarenko, K. G., Makei, A. P., Prikhodko, S. V., Kurmakova, I. N., Tretiak, A. P. (2004). Sintez, protivokorrozionnaya i biotsidnaia aktivnost proizvodnykh triazolozapin. Zhurnal prikladnoi khimii, 77 (5), 794–797.
10. Demchenko, S. A., Seredinska, N. M., Bukhtiarova, T. A., Bobbok, L. S., Demchenko, A. M. (2019). Pat. No. 119003 UA. 1-Aryl-aminomethyl-4-fenil-5,6,7,8-tetragidro-2,2a,8-triazatsiklopenta[c]azuleni, shco proivialviaut analitichnu aktivnist. No. a201707645; declared: 19.07.2017; published: 10.04.2019, Bul. No. 7.
11. Metodicheskii ukazaniia MUK 4.2.1890-04 (2004). Opredelenie chuvstvitelnosti mikroorganizmov k antibakterialnym preparatam. Klinicheskaiia Khimioterapiia i Antimikrobnaia KHimioterapiia, 6 (4), 306–359.
12. Arendrup, M. C., Cuenca-Estrella, M., Lass-Flörl, C., Hope, W. (2012). EUCAST technical note on the EUCAST definitive document EDef 7.2: method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-APST)*. Clinical Microbiology and Infection, 18 (7), 246–247. doi: http://doi.org/10.1111/j.1469-0691.2012.03880.x
13. Blaskovich, M. A., Zuegg, J., Elliott, A. G., Cooper, M. A. (2015). Helping Chemists Discover New Antibiotics. ACS Infectious Diseases, 1 (7), 285–287. doi: http://doi.org/10.1021/acsiinfecds.5b00044
14. Desselle, M. R., Neale, R., Hansford, K. A., Zuegg, J., Elliott, A. G., Cooper, M. A., Blaskovich, M. A. (2017). Institutional profile: Community for Open Antimicrobial Drug Discovery – crowdsourcing new antibiotics and antifungals. Future Science OA, 3 (2), FSO171. doi: http://doi.org/10.4155/fsoc.1600691.2012.0093
15. Wayne P.A. (2017). CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, 250.
16. Open-access antimicrobial screening program. (2017). Open-access antimicrobial screening program. https://www.co-add.org/
17. Zhuang, Z., Wan, D., Ding, J., He, S., Zhang, Q., Wang, X. et al. (2020). Synergistic Activity of Nitroimidazole-Oxazolidinone Conjugates against Anaerobic Bacteria. Molecules, 25 (10), 2431. doi: http://doi.org/10.3390/molecules25102431
18. Saurabh, A., Kumar, V., Kalaiselvan, V., Kumar, A., Thota, P., Sidhu, S., Medhi, B. (2018). Cefixime-associated acute generalized exanthematous pustulosis: Rare cases in India. Indian Journal of Pharmacology, 50 (4), 204–207. doi: http://doi.org/10.4103/ijp.ijp_673_17
19. Aliaga, L., Moreno, M., Aomar, I., Moya, S., Ceballos, Á., Giner, P. (2017). Treatment of acute uncomplicated cystitis – A clinical review. Clinical and Medical Investigations, 2 (4). doi: http://doi.org/10.15761/cmi.1000142
20. Sid Ahmed, M. A., Hassan, A. A. I., Abu Jarir, S., Abdel Hadi, H., Bansal, D., Abdul Wahab, A. (2019). Emergence of Multidrug- and Pandrug-Resistant Pseudomonas aeruginosa from Five Hospitals in Qatar. Infection Prevention in Practice, 1 (3–4), 100027. doi: http://doi.org/10.1016/j.infpip.2019.100027

Financing
The study was performed without financial support.

Acknowledgement
The authors are thankful to Johannes Zuegg and Alysha G. Elliot from The Community for Open Antimicrobial Drug Discovery (CO-ADD), Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia for carrying out the antimicrobial activity testing.
21. Ishida, K., Fernandes Rodrigues, J. C., Cammerer, S., Urbina, J. A., Gilbert, I., de Souza, W., Rozental, S. (2011). Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis. Annals of Clinical Microbiology and Antimicrobials, 10 (1). doi: http://doi.org/10.1186/1476-0711-10-3

22. Emami, S., Shojapour, S., Faramarzi, M. A., Samadi, N., Irannejad, H. (2013). Synthesis, in vitro antifungal activity and in silico study of 3-(1,2,4-triazol-1-yl)flavanones. European Journal of Medicinal Chemistry, 66, 480–488. doi: http://doi.org/10.1016/j.ejmech.2013.06.008

Received date 12.10.2021
Accepted date 16.12.2021
Published date 30.12.2021

Nataliya Demchenko, PhD, Associate Professor, Department of Biology, Taras Shevchenko National University «Chernihiv Collegium», Hetmana Polubotka str., 53, Chernihiv, Ukraine, 14013

Zinaida Suvorova, Leading Engineer, Department of Medical Chemistry, State Institution «Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine», Antona Tsedyka str., 14, Kyiv, Ukraine, 03057

Yuliia Fedchenkova, Doctor of Pharmacy, Professor, Department of Chemistry and Pharmacy, Nizhyn Mykola Gogol State University, Hrafiska str., 2 Nizhyn, Ukraine, 16600

Tamara Shpychak, PhD, Associate Professor, Department of Organic Chemistry, National University of Pharmacy, Pushkinska str., 53 Kharkiv, Ukraine, 61002

Oleh Shpychak, Doctor of Pharmaceutical Sciences, Professor, Department of Industrial Pharmacy and Economy, Institute for Advanced Training of Pharmacy Specialists of National University of Pharmacy, Zahyshnykiv Ukrainy sq., 17, Kharkiv, Ukraine, 61001

Ludmila Bobkova, Doctor of Pharmaceutical Sciences, Chief Researcher, Department of Medicinal Chemistry, State Institution «Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine», Antona Tsedyka str., 14, Kyiv, Ukraine, 03057

Sergii Demchenko, PhD, Researcher, Department of Pharmacology of Cell Signaling Systems and Experimental Therapy, State Institution «Institute of Pharmacology and Toxicology of the National Academy of Medical Sciences of Ukraine», Antona Tsedyka str., 14, Kyiv, Ukraine, 03057

*Corresponding author: Oleh Shpychak, e-mail: shpychak.oleg@gmail.com