TorchGAN: A Flexible Framework for GAN Training and Evaluation

Avik Pal
avik.pal.2017@gmail.com
Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Aniket Das
aniketd@iitk.ac.in
Department of Electrical Engineering
Indian Institute of Technology Kanpur

Abstract

TorchGAN is a PyTorch based framework for writing succinct and comprehensible code for training and evaluation of Generative Adversarial Networks. The framework’s modular design allows effortless customization of the model architecture, loss functions, training paradigms, and evaluation metrics. The key features of TorchGAN are its extensibility, built-in support for a large number of popular models, losses and evaluation metrics, and zero overhead compared to vanilla PyTorch. By using the framework to implement several popular GAN models, we demonstrate its extensibility and ease of use. We also benchmark the training time of our framework for said models against the corresponding baseline PyTorch implementations and observe that TorchGAN’s features bear almost zero overhead.

1 Introduction

Generative Adversarial Networks (GANs) ([1]) are a class of deep generative models that formulate the model estimation problem as an adversarial game between two neural networks, a Generator representing an implicit generative distribution, and a Discriminator that differentiates between samples from said implicit distribution and the true data distribution. The implicit distribution recovers the data distribution when the game reaches equilibrium. Apart from being one of the most popular approaches for generative modeling and unsupervised learning tasks in Computer Vision, with diverse applications such as photo-realistic image generation ([2], [3]), image super-resolution ([4]), image-to-image translation ([5]) and video generation ([6], [7]), it has also found applicability in domains such as Natural Language Processing ([8]) and Time Series Analysis ([9]).

GANs generally share a standard design paradigm, with the building blocks comprising one or more generator and discriminator models, and the associated loss functions for training them. TorchGAN makes use of this design similarity by exposing a simple API for customizing these blocks. The interaction between these components at training time is facilitated by a highly robust trainer which automatically adapts to user-defined GAN models and losses. TorchGAN provides an extensive and continually expanding collection of popular GAN models, losses, evaluation metrics, and stability-enhancing features, which can either be used off the shelf or easily extended or combined to design more sophisticated models effortlessly. With the above design principles in mind, we aim to improve upon existing GAN training frameworks such as TFGAN [10], HyperGAN [11], and IBM GAN-Toolkit [12] on the aspects of extensibility, the richness of the feature set and documentation.

* Equal Contribution

Preprint. Under review.
train_dataset = dsets.CIFAR10(root='./cifar10', train=True,
 transform=transforms.Compose([transforms.ToTensor(),
 transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]),
 download=True)
train_loader = data.DataLoader(train_dataset, batch_size=128, shuffle=True)
trainer = Trainer(
 {
 "generator": {
 "name": DCGANGenerator, "args": {
 "out_channels": 3,
 "step_channels": 16},
 "optimizer": {
 "name": Adam, "args": {
 "lr": 0.0002,
 "betas": (0.5, 0.999)}}},
 "discriminator": {
 "name": DCGANDiscriminator, "args": {
 "in_channels": 3,
 "step_channels": 16},
 "optimizer": {
 "name": Adam, "args": {
 "lr": 0.0002,
 "betas": (0.5, 0.999)}}}, [MinimaxGeneratorLoss(),
 MinimaxDiscriminatorLoss()], sample_size=64, epochs=20)
trainer(train_loader)

Figure 1: DCGAN ([13]) in under 10 lines of code with TorchGAN

2 Implementing Models in TorchGAN

The core of the TorchGAN framework is a highly versatile trainer module, responsible for its flexibility and ease of use. The trainer requires specification of the generator and the discriminator architecture along with the optimizers associated with each of them, represented as a dictionary, as well as the list of associated loss functions, and optionally, evaluation metrics. We provide an illustrative example for training DCGAN on CIFAR10 in Figure 1. One can either choose from the in-built implementations of popular GAN models, losses and metrics or define custom variants of their own with minimal effort by extending the appropriate base classes. This extensibility is widely useful in research applications where the user only needs to write code for the model architecture and/or the loss function. The trainer automatically handles the intricacies of training with custom models/losses. The trainer also supports the usage of multiple generators and discriminators, allowing training of more sophisticated models such as Generative Multi Adversarial Networks ([14]). Performance visualization is handled by a customizable Logger object, which, apart from console logging, currently supports the Tensorboard and Vizdom backends.

Figure 2: Overview of TorchGAN Design
3 Comparison with Existing Frameworks

TorchGAN provides high-quality implementations of various GAN models, metrics for evaluating
GANs, and various approaches for improving the stability of GAN training. We provide an overview
of the features that are provided off the shelf by TorchGAN and compare them with the ones provided
by other frameworks. Note that the list is not exhaustive as the modular and extensible structure of
TorchGAN allows one to extend or modify these features, or use them as building blocks for more
sophisticated models.

Feature	TorchGAN	TFGAN	IBM GAN-Toolkit	HyperGAN
Vanilla GAN [1]	✓	✓	✓	✓
DCGAN [13]	✓	✓	✓	✓
Wasserstein GAN [15]	✓	✓	✓	✓
Wasserstein GAN-GP [16]	✓	✓	✓	✓
Inception Score [17]	✓	✓		✓
InfoGAN [18]	✓	✓		
Cycle GAN [5]	✓	✓		
Least Squares GAN [19]	✓	✓		
Auxiliary Classifier GAN [20]	✓	✓		
Spectral Normalization GAN [21]	✓	✓		
Self Attention GAN [22]	✓	✓		
Conditional GAN [23]	✓	✓		✓
Energy Based GAN [24]	✓	✓		
Boundary Equilibrium GAN [25]	✓	✓		
DRAGAN-GP [26]	✓	✓		
Binary GAN [27]	✓	✓		
Generative Multi Adversarial Networks (GMAN) [14]	✓	✓	✓	✓
Adversarial Autoencoders [8]	✓	✓		
Historical Averaging [17]	✓	✓		
Feature Matching [17]	✓	✓		
Minibatch Discrimination [17]	✓	✓		
Frechet Inception Distance [28]	✓	✓		
Progressive GAN [3]	✓	✓		
Adversarially Learned Inference [29]	✓	✓		✓
Star GAN [30]	✓	✓		

Table 1: Supported features of different frameworks. Features officially supported are marked "✓", under active development are marked "*" and those currently unsupported are left blank.

Table 1 summarizes the features supported by a variety of open-source GAN frameworks. It suggests that TorchGAN supports the widest variety of features among the frameworks being considered. For comparison, we only consider the models present in the official repository of a given framework or an associated officially maintained model-zoo/examples repository. We avoid comparisons with projects like Pytorch-GAN\(^1\), Keras-GAN\(^2\), etc., as these are not frameworks and hence cannot be extended to newer models.

4 Performance Benchmarks

In order to demonstrate that TorchGAN incurs zero training overhead despite the high level of abstra-
tion it provides, we compare the training time of TorchGAN with vanilla PyTorch implementations
of DCGAN ([13]), CGAN ([23]), BEGAN ([25]) and WGAN-GP ([16]). Table 2 reports the training
time for TorchGAN and Pytorch for 1 epoch, averaged over 8 runs.

\(^1\)https://github.com/eriklindernoren/PyTorch-GAN
\(^2\)https://github.com/eriklindernoren/Keras-GAN
	DCGAN	CGAN	WGAN-GP	BEGAN
	CIFAR-10	MNIST	MNIST	MNIST
TorchGAN	15.9s ± 0.64s	21.8s ± 0.43s	30.6s ± 1.35s	86.0s ± 0.62s
Pytorch	16.7s ± 0.24s	22.4s ± 0.52s	31.1s ± 0.97s	87.0s ± 0.27s

Table 2: Average Training Time: TorchGAN vs Pytorch Baselines

For a fair comparison, we disable any form of logging and compute the training time using the `%timeit` magic function. We train the models on the CIFAR10 ([31]) and MNIST datasets, with a batch size of 128, on an Nvidia GTX Titan X GPU.

5 Development

The source code is maintained at https://github.com/torchgan/torchgan and is available under the MIT License. The package is lightweight and easy to install, with dependencies only on numpy, pytorch, and torchvision. An extensive set of examples are present in the main repository (https://github.com/torchgan/torchgan), documentation (https://torchgan.readthedocs.io) and model zoo (https://github.com/torchgan/model-zoo). To uphold quality and maintainability, we follow a strict code review process with a comprehensive test suite and continuous integration services.

6 Conclusion and Future Work

We present the features of the TorchGAN framework and demonstrate its extensibility, ease of use and efficiency. Future work and extensions under active development include, integration of GAN models for video generation, generalization of the training loop to support Inference GAN models, such that they can be conveniently modified and extended, addition of features such as Adaptive Instance Normalization layers, and expanding the model zoo and documentation to cover more sophisticated examples such as Multi Agent-GAN training. We also envision the extension of the framework to domains beyond Computer Vision by adding support for NLP and Time Series GAN models.

References

[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Nets. In Advances in neural information processing systems, pages 2672–2680, 2014.
[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis, 2018.
[3] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation, 2017.
[4] Christian Ledig, Lucas Theis, Ferenc Huszar, Caballero, and et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017.
[5] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.
[6] Aidan Clark, Jeff Donahue, and Karen Simonyan. Efficient video generation on complex datasets, 2019.
[7] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MoCoGAN: Decomposing Motion and Content for Video Generation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

[^1]: http://yann.lecun.com/exdb/mnist/
[8] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. Adversarial feature matching for text generation. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 4006–4015. JMLR. org, 2017.

[9] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation with recurrent conditional gans. arXiv preprint arXiv:1706.02633, 2017.

[10] Joel Shor. Tensorflow GAN. https://github.com/tensorflow/models/tree/master/research/gan, 2017.

[11] KyperGAN Community. HyperGAN. https://github.com/HyperGAN/HyperGAN, 2016.

[12] Anush Sankaran Raunak Sinha, Naveen Panwar. IBM GAN Toolkit. https://https://github.com/IBM/gan-toolkit, 2018.

[13] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2015.

[14] Ishaan Durugkar, Ian Gemp, and Sridhar Mahadevan. Generative Multi-Adversarial Networks, 2016.

[15] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. arXiv preprint arXiv:1701.07875, 2017.

[16] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved Training of Wasserstein GANs, 2017.

[17] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved Techniques for Training GANs, 2016.

[18] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets, 2016.

[19] Xudong Mao, Qing Li, Haoran Xie, Raymond Y.K. Lau, Zhen Wang, and Stephen Paul Smolley. Least Squares Generative Adversarial Networks, isbn=9781538610329. 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.

[20] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional Image Synthesis with Auxiliary Classifier GANs. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 2642–2651. JMLR. org, 2017.

[21] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for Generative Adversarial Networks, 2018.

[22] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-Attention Generative Adversarial Networks. arXiv preprint arXiv:1805.08318, 2018.

[23] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets, 2014.

[24] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based Generative Adversarial Network, 2016.

[25] David Berthelot, Thomas Schumm, and Luke Metz. BEGAN: Boundary Equilibrium Generative Adversarial Networks, 2017.

[26] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. On Convergence and Stability of GANs, 2017.

[27] Hao-Wen Dong and Yi-Hsuan Yang. Training generative adversarial networks with binary neurons by end-to-end backpropagation, 2018.

[28] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural image synthesis, 2018.

[29] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex Lamb, Martin Arjovsky, and Aaron Courville. Adversarially learned inference. arXiv preprint arXiv:1606.00704, 2016.

[30] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2018.

[31] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.