LETTERS: NEW OBSERVATIONS

Movement Disorder Phenotypes in Children With 22q11.2 Deletion Syndrome

The 22q11.2 deletion syndrome (22q11.2DS) is associated with a broad spectrum of clinical phenotypes, including congenital heart defects and immune deficiencies. In addition, there is also an increased risk of psychiatric disorders, cognitive deficits, and functional motor impairments. To date, a systematic examination of movement disorders has not been undertaken in this group.

Nineteen participants with 22q11.2DS (11 male; 8 female; median age, 12.7 years; range, 6.8–17.1 years), and 13 sibling controls (7 male; 6 female; median age, 11.2 years; range, 7.5–17.5 years) were recruited following informed consent. Examinations were reviewed independently by 3 neurologists blinded to all clinical information. Reviewers indicated if a movement disorder was observed and determined its phenomenology and body distribution. A movement disorder was considered present when there was agreement between all neurologists. Statistical analysis was carried out in R, using Fisher’s exact tests, chi-squared tests, Pearson’s correlations, and t tests as appropriate.

Sample demographics are presented in Table 1. There was a higher rate of movement disorders in the 22q11.2DS group compared with controls ($P = 0.0002$), with consensus agreement for a movement disorder in 18 of 19 children with 22q11.2DS (94.7%) compared with 4 of 13 of controls (30.8%). Dystonia was the most common movement disorder subtype, in isolation (94.4%, $n = 17$) and combined with upper limb distal jerks (5.6%, $n = 1$). The limbs and craniofacial region were most commonly affected, with upper limb involvement in all 18 cases (Videos 1–3). Three of 4 controls displayed isolated dystonia, with upper limb involvement in all 4. In the 22q11.2DS cohort, dystonia severity was mild (mean BFMDRS, 24.93/120) but was associated with lower IQ ($r = −0.52$, $P = 0.03$) and higher anxiety symptoms ($r = 0.57$, $P = 0.03$).

This is the first cohort study investigating the prevalence and type of movement disorders in young people with 22q11.2DS. Dystonia was the most commonly observed subtype, although these features were mild and tended to be associated with action. Identification of true movement disorders is often challenging in this age range, but the frequency of dystonic signs in the 22q11.2DS group indicate that they were associated with the 22q11.2DS phenotype, rather than neuromotor immaturity. More severe dystonia was associated with lower IQ and higher levels of anxiety. The 22q11.2 deletion is known to affect brain development, and genes in the region such as COMT are expressed in the brain. Our study is a cross-sectional, longitudinal examination throughout childhood, adolescence, and into adult-life and is required to gain a more comprehensive understanding of the 22q11.2DS motor phenotype. Although this cohort is relatively small, the high rate and preponderance of dystonia indicate that it is likely part of the neurodevelopmental phenotype of 22q11.2DS.

Author Contributions

Adam C Cunningham had a major role in the acquisition of data; interpreted the data; and drafted the article for full-scale intelligence quotient (IQ), psychiatric symptoms, and coordination performance. Motor assessment involved a standardized videotaped clinical examination using a modified Burke-Fahn-Marsden Dystonia (BFMDRS) rating scale protocol. Examinations were reviewed independently by 3 neurologists blinded to all clinical information. Reviewers indicated if a movement disorder was observed and determined its phenomenology and body distribution. A movement disorder was considered present when there was agreement between all neurologists. Statistical analysis was carried out in R, using Fisher’s exact tests, chi-squared tests, Pearson’s correlations, and t tests as appropriate.

Sample demographics are presented in Table 1. There was a higher rate of movement disorders in the 22q11.2DS group compared with controls ($P = 0.0002$), with consensus agreement for a movement disorder in 18 of 19 children with 22q11.2DS (94.7%) compared with 4 of 13 of controls (30.8%). Dystonia was the most common movement disorder subtype, in isolation (94.4%, $n = 17$) and combined with upper limb distal jerks (5.6%, $n = 1$). The limbs and craniofacial region were most commonly affected, with upper limb involvement in all 18 cases (Videos 1–3). Three of 4 controls displayed isolated dystonia, with upper limb involvement in all 4. In the 22q11.2DS cohort, dystonia severity was mild (mean BFMDRS, 24.93/120) but was associated with lower IQ ($r = −0.52$, $P = 0.03$) and higher anxiety symptoms ($r = 0.57$, $P = 0.03$).

This is the first cohort study investigating the prevalence and type of movement disorders in young people with 22q11.2DS. Dystonia was the most commonly observed subtype, although these features were mild and tended to be associated with action. Identification of true movement disorders is often challenging in this age range, but the frequency of dystonic signs in the 22q11.2DS group indicate that they were associated with the 22q11.2DS phenotype, rather than neuromotor immaturity. More severe dystonia was associated with lower IQ and higher levels of anxiety. The 22q11.2 deletion is known to affect brain development, and genes in the region such as COMT are expressed in the brain. Our study is a cross-sectional, longitudinal examination throughout childhood, adolescence, and into adult-life and is required to gain a more comprehensive understanding of the 22q11.2DS motor phenotype. Although this cohort is relatively small, the high rate and preponderance of dystonia indicate that it is likely part of the neurodevelopmental phenotype of 22q11.2DS.

Author Contributions

Adam C Cunningham had a major role in the acquisition of data; interpreted the data; and drafted the article for full-scale intelligence quotient (IQ), psychiatric symptoms, and coordination performance. Motor assessment involved a standardized videotaped clinical examination using a modified Burke-Fahn-Marsden Dystonia (BFMDRS) rating scale protocol. Examinations were reviewed independently by 3 neurologists blinded to all clinical information. Reviewers indicated if a movement disorder was observed and determined its phenomenology and body distribution. A movement disorder was considered present when there was agreement between all neurologists. Statistical analysis was carried out in R, using Fisher’s exact tests, chi-squared tests, Pearson’s correlations, and t tests as appropriate.

Sample demographics are presented in Table 1. There was a higher rate of movement disorders in the 22q11.2DS group compared with controls ($P = 0.0002$), with consensus agreement for a movement disorder in 18 of 19 children with 22q11.2DS (94.7%) compared with 4 of 13 of controls (30.8%). Dystonia was the most common movement disorder subtype, in isolation (94.4%, $n = 17$) and combined with upper limb distal jerks (5.6%, $n = 1$). The limbs and craniofacial region were most commonly affected, with upper limb involvement in all 18 cases (Videos 1–3). Three of 4 controls displayed isolated dystonia, with upper limb involvement in all 4. In the 22q11.2DS cohort, dystonia severity was mild (mean BFMDRS, 24.93/120) but was associated with lower IQ ($r = −0.52$, $P = 0.03$) and higher anxiety symptoms ($r = 0.57$, $P = 0.03$).

This is the first cohort study investigating the prevalence and type of movement disorders in young people with 22q11.2DS. Dystonia was the most commonly observed subtype, although these features were mild and tended to be associated with action. Identification of true movement disorders is often challenging in this age range, but the frequency of dystonic signs in the 22q11.2DS group indicate that they were associated with the 22q11.2DS phenotype, rather than neuromotor immaturity. More severe dystonia was associated with lower IQ and higher levels of anxiety. The 22q11.2 deletion is known to affect brain development, and genes in the region such as COMT are expressed in the brain. Our study is a cross-sectional, longitudinal examination throughout childhood, adolescence, and into adult-life and is required to gain a more comprehensive understanding of the 22q11.2DS motor phenotype. Although this cohort is relatively small, the high rate and preponderance of dystonia indicate that it is likely part of the neurodevelopmental phenotype of 22q11.2DS.

Author Contributions

Adam C Cunningham had a major role in the acquisition of data; interpreted the data; and drafted the article for full-scale intelligence quotient (IQ), psychiatric symptoms, and coordination performance. Motor assessment involved a standardized videotaped clinical examination using a modified Burke-Fahn-Marsden Dystonia (BFMDRS) rating scale protocol. Examinations were reviewed independently by 3 neurologists blinded to all clinical information. Reviewers indicated if a movement disorder was observed and determined its phenomenology and body distribution. A movement disorder was considered present when there was agreement between all neurologists. Statistical analysis was carried out in R, using Fisher’s exact tests, chi-squared tests, Pearson’s correlations, and t tests as appropriate.

Sample demographics are presented in Table 1. There was a higher rate of movement disorders in the 22q11.2DS group compared with controls ($P = 0.0002$), with consensus agreement for a movement disorder in 18 of 19 children with 22q11.2DS (94.7%) compared with 4 of 13 of controls (30.8%). Dystonia was the most common movement disorder subtype, in isolation (94.4%, $n = 17$) and combined with upper limb distal jerks (5.6%, $n = 1$). The limbs and craniofacial region were most commonly affected, with upper limb involvement in all 18 cases (Videos 1–3). Three of 4 controls displayed isolated dystonia, with upper limb involvement in all 4. In the 22q11.2DS cohort, dystonia severity was mild (mean BFMDRS, 24.93/120) but was associated with lower IQ ($r = −0.52$, $P = 0.03$) and higher anxiety symptoms ($r = 0.57$, $P = 0.03$).

This is the first cohort study investigating the prevalence and type of movement disorders in young people with 22q11.2DS. Dystonia was the most commonly observed subtype, although these features were mild and tended to be associated with action. Identification of true movement disorders is often challenging in this age range, but the frequency of dystonic signs in the 22q11.2DS group indicate that they were associated with the 22q11.2DS phenotype, rather than neuromotor immaturity. More severe dystonia was associated with lower IQ and higher levels of anxiety. The 22q11.2 deletion is known to affect brain development, and genes in the region such as COMT are expressed in the brain. Our study is a cross-sectional, longitudinal examination throughout childhood, adolescence, and into adult-life and is required to gain a more comprehensive understanding of the 22q11.2DS motor phenotype. Although this cohort is relatively small, the high rate and preponderance of dystonia indicate that it is likely part of the neurodevelopmental phenotype of 22q11.2DS.
TABLE 1. Cohort demographic, motor, and nonmotor characteristics

	22q11.2DS n (%)/mean (SD)	Sibling controls	22q11.2DS versus sibling controls	22q11.2DS cohort: correlation analysis with BFMDRS severity Scores
Total cohort (M:F)	19 (11:8)	13 (7:6)	—	—
Age at examination (years), Median (range)	12.70 (6.8–17.1)	11.12 (7.5–17.5)	0.79 (–2.8 to 2.2)	−0.24 (0.34)
FSIQ	78.83 (10.06)	109 (15.13)	<0.0001 (21.16–39.64)	−0.52 (0.03)
BFMDRS severity score (maximum possible score, 120)	24.93 (8.17)	—	—	—
Medication				
≥1 Medication prescribed	12 (63.2%)	0 (0%)	0.0004b	
Melatonin	5 (26.3%)	—	—	
Antibiotics	4 (21.1%)	—	—	
Laxatives	3 (15.8%)	—	—	
Vitamin/mineral supplementation	3 (15.8%)	—	—	
Antidepressants	1 (5.3%)	—	—	
Medical comorbidities				
Cardiac defect	13 (68.4%)	0 (0%)	0.0001	
ASD/VSD	5 (26.3%)	—	—	
Tetralogy of Fallot	4 (21.1%)	—	—	
Other	4 (21.1%)	—	—	
Past/present seizures	1 (5.3%)	0 (0%)	>0.99	
Cleft lip/palate	6 (31.6%)	0 (0%)	0.06	
Recurrent respiratory infections	7 (36.8%)	0 (0%)	0.02	
Recurrent ear infections	6 (31.6%)	1 (7.7%)	0.20	
Psychiatric symptoms				
ADHD	7 (36.8%)	1 (7.7%)	0.10	
Anxiety disorder (overall)	5 (26.3%)	1 (7.7%)	0.36	
Social phobia	3 (15.8%)	0 (0%)	0.25	
Generalized anxiety disorder	1 (5.3%)	0 (0%)	>0.99	
Specific phobia	1 (5.3%)	1 (7.7%)	>0.99	
ADHD count score	3.39 (3.38)	1.00 (3.16)	0.07 (–2.39 to 1.3)	0.41 (0.10)
Anxiety count score	2.13 (3.18)	1.75 (2.96)	0.78 (–3.17 to 2.42)	0.57 (0.03)
Autism trait symptoms score	11.43 (5.16)	2.50 (2.27)	<0.0001 (–12.55 to –5.30)	0.42 (0.16)
Developmental history				
Preterm birth	4 (21.1%)	5 (38.5%)	0.43	
Failure to thrive	8 (42.1%)	0 (0%)	0.01	
Feeding difficulties	16 (84.2%)	1 (7.7%)	<0.0001 (–12.55 to –5.30)	0.42 (0.16)
Parental reported clumsiness	15 (78.9%)	3 (23.1%)	0.003	
Talking by 2 years of age	6 (31.6%)	12 (92.3%)	0.0009	
Walking by 1.5 years of age	11 (57.9%)	11 (84.6%)	0.14	
Statement of educational needs/education and health care plan	13 (68.4%)	1 (7.7%)	0.0009	
Age at riding a bike (years), median (range)	6.5 (5–10)	5 (3.5–7)	0.09 (–27.6 to 2.1)	0.02 (0.95)
Age at being able to button (years), median (range)	6.2	4 (3–6.5)	0.008 (–41.6 to –7.0)	–0.10 (0.79)
Age at being able to do laces (years), median (range)	9.75 (6–11)	6.9 (5–8.7)	0.008 (–47.3 to 8.4)	0.20 (0.63)
Movement disorder				
Evidence of movement disorder on examination	18 (94.7%)	4 (30.8%)	0.0002	
Dystonia	17 (94.4%)	3 (23.1%)	0.0002	
Distal UL jerks (possible myoclonus/possible chorea)	1 (5.6%)	1 (7.7%)	>0.99	
Body part affected				
Eyes	0 (0%)	0 (0%)	>0.99a	
Oromandibular region	6 (31.6%)	0 (0%)	0.05	
Cervical	8 (42.1%)	1 (7.7%)	0.05	
Upper limbs	18 (94.7%)	4 (30.8%)	0.0002	
Trunk	0 (0%)	0 (0%)	>0.99	
Lower limbs	8 (42.1%)	3 (23.1%)	0.45	

(Continues)
and conceptualized the study, analyzed the data, and drafted the article for intellectual content.

Statistical analysis undertaken by A.C.C. and K.J.P. (both Cardiff University, UK).

Search terms: [161] All Movement Disorders, [162] Dystonia, [228] Developmental Disorders, [230] Child Psychiatry, [91] All Genetics.

Adam C. Cunningham, PhD, 1 Wilson Fung, MD, 2 Thomas H. Massey, MD, PhD, 1 Jeremy Hall, MD, PhD, 1,3 Michael J. Owen, MD, PhD, 1,3 Marianne B. M. van den Bree, PhD, 1,3 and Kathryn J. Peall, MD, PhD* 3

1 MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK
2 Aneurin Bevan University Health Board, Royal Gwent Hospital, Newport, UK
3 Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK

References

1. McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers 2015;1:15071.

2. Schneider M, Debbane M, Bassett AS, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: Results from the international consortium on brain and behavior in 22q11.2 deletion syndrome. Am J Psychiatry 2014; 171:627–639.

3. Cunningham AC, Delport S, Cumines W, et al. Developmental coordination disorder, psychopathology and IQ in 22q11.2 deletion syndrome. Br J Psychiatry 2018;212:27–33.

4. Burke RE, Fahn S, Marsden CD, et al. Validity and reliability of a rating scale for the primary torsion dystonias. Neurology 1985;35:73–77.

5. Sun D, Ching CRK, Lin A, et al. Large-scale mapping of cortical alterations in 22q11.2 deletion syndrome: Convergence with idiopathic psychosis and effects of deletion size. Mol Psychiatry 2018; https://doi.org/10.1038/s41380-018-0078-5

6. Ching CRK, Gutman BA, Sun D, et al. Mapping Subcortical Brain Alterations in 22q11.2 Deletion Syndrome: Effects of Deletion Size and Convergence With Idiopathic Neuropsychiatric Illness. Am J Psychiatry 2020; https://doi.org/10.1176/appi.ajp.2019.19060583

7. Meechan DW, Maynard TM, Tucker ES, et al. Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 2015;130:1–28.

Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.