Palaeobiogeography of the Late Carboniferous brachiopoda from Velebit Mt. (Croatia)

Mirko Japundžić¹ and Jasenka Sremac²

¹ Gruška 16, 10 000 Zagreb, Hrvatska; (mijapundzic@gmail.com)
² University of Zagreb, Department of Geology, Division of Geology and Paleontology, Horvatovac 102a, 10 000 Zagreb, Croatia; (corresponding author: jsremac@geol.pmf.hr)

doi: 10.4154/gc.2016.23

Abstract
An abundant and diverse Late Carboniferous brachiopod fauna from Velebit Mt. (Croatia) comprises 63 brachiopod taxa dominated by Productida and Spiriferida. The Spiriferinida, Athyridida, Orthotethida and Rhynchonellata are less common, while the Orthida, Dictyonellida and Terebratulida occur in very small numbers. Brachiopods are mostly preserved as casts and moulds in shales, limestones and sandstones. Associated fusulinid foraminifera and calcareous algae indicate a Kasimovian to Gzhelian age for the brachiopod–bearing deposits. The global biogeographic distribution of brachiopod taxa indicates the probable seaways and brachiopod migration routes, along the Euramerican shelves.

1. INTRODUCTION
Brachiopods are common marine macrofossils in the Late Carboniferous sedimentary rocks of Velebit Mt. They have been collected since the beginning of the 19th century and stored in the Croatian Natural History Museum.

Upper Carboniferous (Pennsylvanian) sedimentary rocks from Velebit Mt. crop out in an elongate belt, 40 km long and up to 6 km wide, representing the core of an anticline, with a NW-SE strike (Fig. 1). They exhibit a variety of ancient environments varying from shoreline forests and swamps, through coastal and shallow shelf biomes (SREMAC, 2012; CLEAL et al., 2015). Carboniferous shelves were densely populated with foraminifera (mostly fusulins), calcareous algae, brachiopods, crinoids, bry-

Figure 1. Simplified geological map of the research area, with the location of brachiopod observations (black squares?) (after CLEAL et al., 2015).
The Carboniferous palaeogeographic map chosen to present the Carboniferous brachiopod localities is based upon Blakey’s (2015) reconstruction.

3. BRACHIOPOD TAXA

Brachiopods were discovered in Carboniferous sedimentary rocks forming the core of the anticline on the continental slopes of Velebit Mt. (SIMIĆ, 1935; SALOPEK, 1942, 1948). Brachiopods are in most cases preserved as casts and moulds (Fig. 2), and it is not always possible to determine them to species level.

The determined taxa belong to nine taxonomic groups: Prodictida, Orthothetida, Athyridida, Spiriferinida, Spiriferida, Rhynchonellida, Orthida, Dictyonellida and Terebratulida (Table 1.). Initial brachiopod taxonomy studies were based upon several published papers (e.g. VON SCHLOTHEIM, 1816; WAAGEN, 1884; SCHELLWIESEN, 1892, 1900; MOORE, 1979). Taxa are revised according to the Treatise on Invertebrate Palaeontology (SELDEN, 2007). Localities with carboniferous brachiopods can be grouped into three clusters (A, B and C) with different brachiopods (Fig. 1, Tab 1., 2. Figs. 1, 3–7).

The westernmost localities (A) are dominated almost completely by productids (Linoproductus lineatus, Neochonetes granulifer, Paramesolobulus latesinuata, with small Dielasma (Tab. 1.; Fig. 3 a, 4). Altogether, 6 brachiopod specimens from this area are stored in the Natural History Museum. Moving eastwards (B), brachiopod diversity increases and, the first orthotethids and rhychonellids occur (Tabs. 1., 2.; Figs. 3 b, 5). The Eastern part of the Carboniferous belt in Velebit Mt. and the Lika region (C) comprises highly variable brachiopod assemblages, with almost a hundred specimens of productids, orthothetids, athyridids, spiriferinids, spiriferids, rhynchonellids, orthids and dictyonellids (Tabs. 1., 2.; Figs. 3 c, 6).

All together 110 brachiopod specimens from this study were collected by SALOPEK (1942, 1948) and by the present authors between 2012–2014. The brachiopod collection is stored in the Croatian Natural History Museum (under 96 inventory numbers).

All together 110 brachiopod specimens were determined and/or revised (SELDEN, 2007; EMIG et al., 2013; Paleobiology Database; www.fossilworks.org and references therein; August 2015) and asserted to 63 taxa.

The westernmost localities (A) are dominated almost completely by productids (Linoproductus lineatus, Neochonetes granulifer, Paramesolobulus latesinuata, with small Dielasma (Tab. 1.; Fig. 3 a, 4). Altogether, 6 brachiopod specimens from this area are stored in the Natural History Museum. Moving eastwards (B), brachiopod diversity increases and, the first orthothetids and rhychonellids occur (Tabs. 1., 2.; Figs. 3 b, 5). The Eastern part of the Carboniferous belt in Velebit Mt. and the Lika region (C) comprises highly variable brachiopod assemblages, with almost a hundred specimens of productids, orthothetids, athyridids, spiriferinids, spiriferids, rhynchonellids, orthids and dictyonellids (Tabs. 1., 2.; Figs. 3 c, 6).

All the aforementioned facies types occur in all three sampling areas (SALOPEK, 1942, 1948; SREMAC, 2012), but greywackes (‘Fusulinid sandstones’) are more common in the older horizons, while shales and scarce limestones prevail in the younger horizons. Brachiopod fossils are particularly numerous...
Table 1. List of Carboniferous brachiopod taxa grouped through localities in the Velebit Mt. and facies types. (SIMIĆ, 1935; SALOPEK, 1942, 1948 and own research revised).

CLASS/ORDER/GENUS/SPECIES	LOCALITIES (W→E)	FACIES				
	A (1-4)	B (5-6)	C (7-11)	cau	cv	cf
STROPHOMENATA						
PYSTROPECTINIDA						
Breilienia echidniformis						
(GRABAU in CHAO)						
Chooeilla gruenewaldti						
(KROTOV)						
Chonetes mamositori						
Chonetes papillonosus (PHILLIPS)						
Chonetes sp.						
Comuquia curvirostris						
(SCHELLWIEN)						
Labacula subpunctata						
(NIRITINO)						
Echinoconchus elegans						
NORWOOD and PRATTEN						
Echinoconchus punctatus						
(MARTIN)						
Nicula incisa (SCHELLWIEN)						
Linoproduktus lineatus						
WAAGEN						
Linoproduktus sp.						
Marginifera pusilla						
SCHELLWIEN						
Megania aagandi (TOULA)						
Neochonetes granulifer						
(OWEN)						
Neochonetes variolata						
(d’ORBIGNY)						
Neochonetes (Sommeriella)						
strophomenoides WAAGEN						
Paramesolobus latesinuata						
SCHELLWIEN						
Fiscalifera sp.						
Productus molleri						
Productus transversalis						
TSCHERNYSCHEW						
Productus sp.						
Productus cf. longispinus						
SOWERBY						
Transennatia gratiosa						
WAAGEN						
Rediproduktus punctatiformis						
CHAIO						
Haagenococchus sp.						
ORTHOTHEITIDA						
Derbya (Derbya) altessiata						
WAAGEN						
Derbya (Derbya) cf. grandi						
WAAGEN						
Derbya (Derbya) sp.						
Meekellia sp.						
Streptorhynchus pelagonatus						
SCHLOTHEIM						
Streptorhynchus semiplanus						
WAAGEN						
Streptorhynchus sp.						
RHYNCHONELLATA						
ATHYRIDIDAE						
Actis sp.						
Hustedia mormoni (MARCOU)						
SPIRIFERINIDAE						
Callissipina ornata Waagen						
SPIRIFERIDAE						
Alphachoristites trautscholdi						
STUCKENBERG						
Ambisecelia sp.						
Brijuniace rostrata KUTORGA						
Charistites fritschii						
(SCHELLWIEN)						
Charistites sp.						
Elionis carica (SCHELLWIEN)						
Elva lyra (KUTORGA)						
Martinia semiplana (WAAGEN)						
Martinia sp.						
Neospirifer camenatus (MORTON)						
Neospirifer fasciger (KEYSERLING)						
Placostychia zitteli (SCHELLWIEN)						
Reticulana lineata (MARTIN)						
Reticulana sp.						
Spirifer sp.						
Squamularia sp.						
RHYNCHONELLIDAE						
Hustedia mormoni (MARCOU)						
Rhynchonella off. confinensis (SCHELLWIEN)						
Stenosiscia alpinum (SCHELLWIEN)						
Uncinunellina timorensis (BEYRICHT)						
ORTHIDA						
Rhipidomella pecosi (MARCOU)						
Enteletes sp.						
DICYTONELLIDAE						
Programma paotechovensis (GRAB)						
TUBEFRATULIDA						
Vielassia sp.						
and diverse in the shales and siltstones (calx, equivalent to the Auerzig Beds according to SALOPEK, 1942, 1948). A different fossil assemblage is preserved in the limestones (cv, according to SALOPEK, 1942, 1948). Only a few brachiopod taxa were observed in the greywackes ("fusulinid sandstones", cf, according to SALOPEK, 1942, 1948) (Tab. 1.).

4. DISCUSSION

4.1. Palaeoecology and the local distribution of brachiopod genera

Brachiopod finds are clearly grouped into three areas with different fossil assemblages (Tabs. 1., 2., Fig. 3). Palaeobiodiversity evidently increases towards the East (Tab. 2., Fig. 8). It is important to note that these three areas very rarely comprise the same taxa (Tab. 1). The exceptions are several tolerant taxa, capable of adapting to a variety of marine environments, such as Linoproductus lineatus (present in all three areas and in all lithological units – shales and siltstones, greywackes and limestones), or Transennatia gratiosa, present in the central and eastern areas, and in two of the three lithological units (shales and siltstones; limestones) (Tab. 1.).

The western area (A, Fig. 1) is characterized by several small productid taxa, with the exception of the larger Linoproductus (Tabs. 1., 2., Figs. 4 a, b). They lived anchored by spines on the soft bottom, with low depositional rates. Their low diversity and small size probably indicate restricted food sources.

The central area (B, Figs. 1, 3 b, 5 a-d), comprises some orthothetids and rhynconellids (Tabs. 1., 2; Figs. 5 b, c) in addition to the productids. Linoproductus and Transennatia (Figs. 5 a, d) discovered in this area could have lived in different marine environments, from open subtidal, to basinal areas.

The eastern area (C, Fig. 1) is generally rich in fossils. A well preserved terrestrial megaflora indicates the vicinity of land (SREM A C, 2012; CLEAL et al., 2015). Marine fossils are diverse, with a predomination of fusulinids and crinoid ossicles, together with calcareous algae, brachiopods (Figs. 6 a-h), bryozoans (Fig. 7 a), bivalves (Fig. 7 b) and gastropods (SIMIĆ, 1935; SALOPEK, 1948; KOCHANSKY-DEVIDÉ 1955, 1970; SREM A C, 2012).
Figure 5. *Transennatia* (a), *Derbya* (b, c) and segment of *Linoproductus* (d) with visible spine bases from the locality B. (Scale bar 1cm)

Figure 6. Productid genera (a-f): *Productus* (a, c, e), *Dictyoclostus* (b), *Linoproductus* (d) and *Marginifera* (f), spiriferinid (*Spiriferina* sp.) (g) and the spiriferid (*Choristites*) (h) brachiopoda from locality group C. (Scale bar 1cm)
Trace fossils are common in the sandstones and siltstones, present on bedding surfaces, but also within the layers, and can be attributed to the Scolithos ichnofacies.

Well sorted conglomerates and the aligned orientation of fusulinids in some sandstone layers indicate a coastal environment. Partial or complete dissolution of fusulinid tests (SALOPEK, 1948; KOCHANSKY, 1955) indicate a probable fresh-water influence (SREMAC, 2012). Brachiopods, although numerous and highly diverse, are also mostly present as casts or moulds (Figs. 1-6). All these features indicate a variety of environments, from beaches to the more favourable subtidal niches.

Erosion of the uplifted Variscan Mountains provided nutrients and enabled the significant diversification of marine biota. Similar trends were described from Spain (WINKLER PRINS, 2007; MERINO-TOMÉ et al., 2009).

4.2. Palaeobiogeographic studies

The Late Carboniferous was a time of a slight increase in brachiopod diversity (SHU-ZHONG et al., 2006) and these organisms were present in all seas and oceans. Their geographic distribution was closely related to the position of continental shelves and possible sea-ways and climate gradients, recently studied by several authors (ANGIOLINI et al., 2007; BERRA & ANGIOLINI, 2014). During the Late Carboniferous, the study area was a part of NE Gondwana, situated near the equator (VO-ZAROVA et al., 2009; SREMAC, 2012; CLEAL et al., 2015).

Table 2. Total number of brachiopod taxa in three different Carboniferous areas in Velebit Mt.

BRACHIOPOD GROUP	LOCALITY GROUP A, B, C	FACIES					
	A (1–4)	B (5–6)	C (7–11)	cau	cv	df	
Productida	26	5	3	24	23	9	
Orthothetida	7	0	3	4	5	2	
Athyridida	2	0	0	2	2	0	
Spiriferida	4	0	0	4	3	1	
Spiriferida	16	0	0	16	15	4	
Rhynchonellida	4	0	1	3	2	0	
Orthida	2	0	0	2	2	0	
Dicyonellida	1	0	0	1	1	0	
Terebratulida	1	1	0	0	1	0	
Total	63	6	7	56	54	16	2

Figure 7. Cast of a fenestellid bryozoan (a) and a scallop Acanthopesten sp. (b) from locality group C. (Scale bar 1cm)

Figure 8. Total brachiopod diversity and area specific diversity for the three Carboniferous areas in Velebit Mt.
In order to identify possible migration routes, some of the common Carboniferous brachiopod genera from Velebit Mt. were selected for further palaeobiogeographic studies.

Tolerant brachiopod taxa (Neospirifer, Derbya) were widely spread. Discoveries of Neospirifer have been recorded in almost a thousand Carboniferous and Permian collections all over the world (PEDERSON, 1954; SUTHERLAND, 1991; KORA, 1995; KALASHNIKOV, 1998; SOBOLEV et al., 1998; WENDT et al., 2001; SCHNEIDER, 2003; GONG et al., 2007; http://fossilworks.org/ and references therein). They lived all along the continental shelves of Euramerica, but also on the shelves of the southern continents and islands (Fig. 9). It is possible that they had a rather long-lived swimming larval stage. The genus Chonetes was also widespread, present all around Euramerica (Fig. 9). However, the geographic range of the genus Echinoconchus is very peculiar (Fig. 10) indicating possible migrations along the shelves of Panthalassa, rather than those of Palaeotethys. The genus Megousia was common on the northern shelves of Euramerica and its ap-
pearance near the equator is interesting (Fig. 10). Alternatively, the genus Transennatia is rather endemic, appearing on the eastern continental shelves of Euramerica, near the equator (Fig. 10).

5. CONCLUSIONS
The Carboniferous brachiopod fauna from Velebit Mt. is very rich and diverse, but in most cases not well preserved. All together 63 taxa were determined, belonging to nine brachiopod groups, with a predominance of productids and spiriferids.

Brachiopods were observed in the form of moulds and casts in shales and siltstones, limestones and graywackes, with the highest abundance in fine-grained clastic deposits. Three different areas with diverse brachiopod associations can be clearly recognized. The highest brachiopod diversity was observed in coastal fine-grained clastic deposits at the eastern part of the outcropping Carboniferous rock belt.

A Kasimovian to Gzhelian age was proposed on the basis of the associated fusulinid fauna.
During the Late Carboniferous, brachiopods were common along the continental shelves of Euroamerica. Southern hemisphere records are less common and represented by tolerant genera, e.g. the cosmopolitan Neospirifer and Derbya.

ACKNOWLEDGEMENT

The authors are grateful to Sanja JAPUNDŽIĆ (Croatian Natural History M useum) for the macrophotography of the brachiopods and Robert KOŠČAL (Faculty of Science, University of Zagreb) for preparation of graphics, and to both reviewers for their contribution in the improvement of the manuscript.

REFERENCES

ANGIOLINI, I., GAETANI, M., MUTTONI, G., STEPHENSON, M.H. & ZANCHI, A. (2007): Tethyan oceanic currents and climate gradients 300 m.y. ago. – Geology, 35/12, 1071–1074. doi: 10.1130/G24031.1
BERRA, F. & ANGIO LINI, L. (2014): The Evolution of the Tethys Region throughout the Phanerozoic: A Brief Tectonic Reconstruction. – In: MARKLOW, I., KENDALL, C. & YOSE, L. (eds.): Petroleum systems of the Tethyan region. AAPG Memoir, 106, 1–27.
CLEAL, C.J., TENCHOV, Y.G., SREMAC, J., DEREK, T. & JAPUNDŽIĆ, S. (2015): Pennsylvanian fossil flora from the Velebit Mountains and Lika region (SW Croatia).– Bulletin of Geosciences.
EMIG, C.C.; BITNER, M.A.; & ALVAREZ, F. (2013): Phylum Brachiopoda. – Treatise on Invertebrate Paleontology, Part H, Brachiopoda
CLEAL, C.J., TENCHOV, Y.G., SREMAC, J., ĐEREK, T. & JAPUNDŽIĆ, S. (2015): The influence of terrestrial run off on marine biotic communities: An example from the Upper Carboniferous of the Velebit Mountains and Lika region – in Croatian. – Rad JAZU, 274, 75 p.
SANDO, W., GORDON, J.M. & DUTOY, J.R.J.T. (1975): Stratigraphy and geologic history of the Amsden Formation [Mississippian and Pennsylvanian] of Wyoming. United States Geological Survey Professional Paper 648A:1–83
SCHELLI WEN, E. (1982): Die Fauna des karmischen Fossilenkalks, Palaeontographica, 39, 1–56.
SCHELLI WEN, E. (1900): Die Fauna der Troglofossilien in den Karmischen Alpen und den Karawanken I. Theil: Die Brachiopoden. Abhandlungen der Kaiserlichen Königlichen Geologischen Reichsanstalt, I–122.
SOLDEN, P.A. (2007): Treatise on Invertebrate Paleontology, Part H, Brachiopoda (Revised), vol. 6. Geological Society of America, Boulder, Colorado and University of Kansas Press, Law ence, Kansas, 956 p SHU-ZHONG, S., HUA, Z., WEN-ZHONG, L., LIN, M., JUN-FANG, Z. (2006): Brachiopod diversity patterns from Carboniferous to Triassic in South China. – Geol. J., 41, 345–361.
SIMIC, V. (1953): Gornjakorbonski fossili iz Like u Hrvatskoj [Late Carboniferous fossils from Lika in Croatia – in Serbian]. – Vesnik Geol. Inst. Kralj. Jugosl, 1/1, 141–145.
SOBOLEV, L.S., BUDNIKOV, I.V., KLETAS, A.G., GRINENKO, V.S. (1998): Late basi- kiran ammonoids and nautiloids from western Verkhoyansk region. – Palaeontological Journal 32/5, 13–25 [J. Alroy/C. Simpson/C. Simpson]
SOKAC, B., BAHUN, S., VELIC, I. & GALOVIC, I. (1976a): Osnovna geološka karta SFRJ 1:100000, Tumač za list Otočac L33-115 [Basic Geologic Map of SFRJ 1:100000, Geology of Otočac sheet – in Croatian]. – Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 64 p.
SOKAC, B., SKVONČAR, B. & VELIC, I. (1976b): Osnovna geološka karta SFRJ 1:100000, Tumač za list Osijek L33-123 [Basic Geologic Map of SFRJ 1:100000, Geologic sheet – in Croatian]. – Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 64 p.
SOKAC, B., ŠUŠNJAR, M., BUKOVAC, J. & BAHUN, S. (1976c): Osnovna geološka karta SFRJ 1:100000, Tumač za list Udine L33-128 [Basic Geologic Map of SFRJ 1:100000, Geologic sheet – in Croatian]. – Geološki zavod, Zagreb, Savezni geološki zavod, Beograd, 44 p.
SREMAC, J. (2005): Equatorial Shelf of the Palaeozoic Supercontinent – Cradle of the Adriatic Carbonate Platform. – Geol. Croat., 58/1, 1–19.
SREMAC, J. (2012): Influence of terrestrial sedimentation in Pennsylvanian rocks of Croatia. – Geol. Croat., 65/3, 274–277.
SUTHERLAND, P. K. (1991): Morrowan brachiopods from the type “Derryn” series (Pennsylvanian), southern New Mexico. – New Mexico Bureau of Mines and Mineral Resources Bulletin, 137,186–188 [J. Alroy/C. Simpson/C. Simpson]
VELIC, I., SPARICA, M. & VLADOVIČ, I. (2009): Klastične i karbonatne naslage (kar- bon–perm – C, P) [Clastic and carbonate deposits (Carboniferous, Permian – C, P)] – in Croatian. – In: VELIC, I. & VLADOVIČ, I. (eds.): Exploratory Text for Geologic Map of Croatia 1:300000, Hrvatski geološki institut, 20–23.
VON SCHLOTHEIM, E.F. (1816): Beiträge zur Naturgeschichte der Versteinerungen in Geognostischer Hinsicht. Denkschriften der Königlichen Akademie der Wissenschaften zu München für des Jahre 1816 und 1817, 6, 13–36.
VOZAROVA, A., EBNER, F., KOVACS, S., KRÄUTNER, H.G., ZSDERKENYI, TKRSTIC, B., SREMAC, J., ALJINOVIĆ, D., NOVAK, M. & SKABERNE, D. (2009): Late Variscan (Carboniferous to Permian) environments in the Circum Pa- mondian Region. – Geol. Carpath., 60/1, 71–104. doi: 10.2478/v10009-0009-0002-7
WAGNER, W. (1884): Productus Limestone Fossils, Part IV, fasc. 4. – Salt Range Fossils, WAAGEN, W. (1884): Productus Limestone Fossils, Part IV, fasc. 4. – Salt Range Fossils, Palaeontographica, 61, 615–623 [W. Kliesing/U. Merkel]
WINKLER PRINS, C.F. (2007): The Role of Spain in the Development of the Reef Bra- chiopod Faunas During the Carboniferous.– In: RENEMA, W. (ed.): Biogeography, Palaeontology and Geology, 145, 215–233 [W. Kiessling/U. Merkel]
ZANCTH, A. (1976): Osnovna geološka karta SFRJ 1:100000, list Gornji Vrbovec–Dolac, Zagreb, Savezni geološki zavod, Beograd, 44 p.
ZAVOSKAR, S., GORDON, J.M. & DUTOY, J.R.J.T. (1975): Stratigraphy and geologic history of the Amsden Formation [Mississippian and Pennsylvanian] of Wyoming. United States Geological Survey Professional Paper 648A:1–83
SANDO, W., GORDON, J.M. & DUTOY, J.R.J.T. (1975): Stratigraphy and geologic history of the Amsden Formation [Mississippian and Pennsylvanian] of Wyoming. United States Geological Survey Professional Paper 648A:1–83
WEB sources
http://www.fossilworks.org, last checked April 2016
http://peboxy.ysel.net/sites/default/files/documents/invertebrate-paleontolgy/Re- siser%20realise.pdf, last checked April 2016
www.fossi lworks.org, last checked April 2016
