Geometry of extended Bianchi-Cartan-Vranceanu spaces

Angel Ferrández¹⁺, Antonio M. Naveira² and Ana D. Tarrío³

¹Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain. E-mail address: aferr@um.es
²Departamento de Matemáticas, Universidad de Valencia (Estudi General), Campus de Burjassot, 46100 Burjassot, Spain. E-mail address: naveira@uv.es
³Departamento de Matemáticas, Universidade da Coruña, Campus A Zapateira, 15001 A Coruña, Spain. E-mail address: madorana@udc.es

Abstract

The differential geometry of 3-dimensional Bianchi, Cartan and Vranceanu (BCV) spaces is well known. We introduce the extended Bianchi, Cartan and Vranceanu (EBCV) spaces as a natural seven dimensional generalization of BCV spaces and study some of their main geometric properties, such as the Levi-Civita connection, Ricci curvatures, Killing fields and geodesics.

MSC: 53B21, 53B50, 53C42.

Keywords: Bianchi-Cartan-Vranceanu spaces, extended Bianchi-Cartan-Vranceanu spaces, Ricci tensor, Killing fields, geodesics.

1 Introduction

Let us denote by H^{2n+1} the $(2n + 1)$-dimensional complex Heisenberg group in $\mathbb{R}^{2n+1} = \mathbb{C}^n \times \mathbb{R}$ with coordinates $(z, t) = (x, y, t) = (x_1, y_1, \ldots, x_n, y_n, t)$ whose group law writes

$$(x, y, t) \cdot (x', y', t') = (z, t) \cdot (z', t') = (z + z', t + t' + \frac{1}{2} \text{Im} \sum_{j=1}^{n} z_j \bar{z}_j).$$

Set $g_0 = (z_0, t) \in H^{2n+1}$ and let $l_{g_0}g = g_0g$ be the left translation by g_0. We can then easily see that the left invariant vector fields write down

$$X_\alpha = \frac{\partial}{\partial x_\alpha} + \frac{1}{2} y_\alpha \frac{\partial}{\partial t}, \quad Y_\alpha = \frac{\partial}{\partial y_\alpha} - \frac{1}{2} x_\alpha \frac{\partial}{\partial t}, \quad T = \frac{\partial}{\partial t},$$

(*) Corresponding author A. Ferrández.
and \(\{X_\alpha, Y_\alpha, \alpha = 1, \ldots, n \} \) form an orthonormal basis of a distribution \(D \) with respect to the sub-Riemannian metric \(ds^2 = \sum_{\alpha=1}^{n} (dx_\alpha^2 + dy_\alpha^2) \) and satisfy the following bracket relations:

\[
[X_\alpha, Y_\alpha] = T, \quad [X_\alpha, T] = 0, \quad [Y_\alpha, T] = 0, \quad \alpha = 1, \ldots, n.
\]

Taking \(n = 1 \) and \(t \in S^1 \) we obtain the complex Heisenberg group, which is a manifold equipped with a contact structure.

The quaternionic Heisenberg group serves as a flat model of quaternionic contact manifolds. We can consider the following model \(\mathbb{Q}^n \times \text{Im}\mathbb{Q} \) with the group law

\[
(q, p) = (q_1, p_1) \circ (q_2, p_2) = (q_1 + q_2, p_1 + p_2 + \frac{1}{2} \text{Im}(p_1 \bar{p}_2)),
\]

where \(q_1, q_2 \in \mathbb{Q}^n, p_1, p_2 \in \text{Im}\mathbb{Q} \), and \(\mathbb{Q} \) stands for the quaternionic field \(\mathbb{Q} = \{ q = w + xI + yJ + zK, (w, x, y, z) \in \mathbb{R}^4 \} \) and \(\text{Im}\mathbb{Q} = \{ p = ri + sj + tk, (r, s, t) \in \mathbb{R}^3 \} \) with the Pauli matrices

\[
I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.
\]

Bearing in mind these elementary algebraic computations, it is easily understood the definitions of the Bianchi-Cartan-Vranceanu spaces (BCV spaces for short) as well as their natural extensions, as we will do in next sections.

2 The Bianchi-Cartan-Vranceanu (BCV) spaces (see [4])

It was Cartan ([5]) who obtained the families of today known as BCV-spaces by classifying three-dimensional Riemannian manifolds with four-dimensional isometry group. They also appeared in the work of L. Bianchi ([2, 3]), and G. Vranceanu ([15]). These kind of spaces have been extensively studied and classified (see for instance [10, 14]). In theoretical cosmology they are known as Bianchi-Kantowski-Saks spaces, which are used to construct some homogeneous spacetimes ([5]).

For real numbers \(m \) and \(l \), consider the set

\[
\text{BCV}(m, l) = \{(x, y, z) \in \mathbb{R}^3 : 1 + m(x^2 + y^2) > 0\}
\]

equipped with the metric

\[
ds_{m,l}^2 = \frac{dx^2 + dy^2}{(1 + m(x^2 + y^2))^2} + \left(dr + \frac{l}{2} \frac{x dy - y dx}{1 + m(x^2 + y^2)} \right)^2.
\]

Observe that this metric is obtained as a conformal deformation of the planar Euclidean metric by adding the imaginary part of \(z \, d\bar{z} \), for a complex number \(z \).

The complete classification of BCV spaces is as follows:

(i) If \(m = l = 0 \), then \(\text{BCV}(m, l) \cong \mathbb{R}^3 \);

(ii) If \(m = \frac{1}{4} \), then \(\text{BCV}(m, l) \cong (\mathbb{S}^3(m) - \{\infty\}) \);

(iii) If \(m > 0 \) and \(l = 0 \), then \(\text{BCV}(m, l) \cong (\mathbb{S}^2(4m) - \{\infty\}) \times \mathbb{R} \);
(iv) If $m < 0$ and $l = 0$, then $BCV(m, l) \cong (\mathbb{H}^2(4m) - \{\infty\}) \times \mathbb{R}$;
(v) If $m > 0$ and $l \neq 0$, then $BCV(m, l) \cong SU(2) - \{\infty\}$;
(vi) If $m < 0$ and $l \neq 0$, then $BCV(m, l) \cong \widetilde{SL}(2, \mathbb{R})$;
(vii) If $m = 0$ and $l \neq 0$, then $BCV(m, l) \cong Nil_3$.

The following vector fields form an orthonormal frame of $BCV(m, l)$:

$$E_1 = (1 + m(x^2 + y^2)) \partial_x - \frac{l}{2}y \partial_z, \quad E_2 = (1 + m(x^2 + y^2)) \partial_y + \frac{l}{2}x \partial_z, \quad E_3 = \partial_z.$$

Let \mathcal{D} be the distribution generated by $\{E_1, E_2\}$, then the manifold $(BCV(m, l), \mathcal{D}, ds_{m,l}^2)$ is an example of sub-riemannian geometry (see [3, 12]) and the horizontal distribution is a 2-step breaking-generating distribution everywhere.

3 Extended Bianchi-Cartan-Vranceanu spaces

3.1 Set up

Observe that letting $z = x + iy$, we see that $\text{Im}(z \, d\bar{z}) = ydx - xdy$, which reminds us the map $\mathbb{C} \times \mathbb{C} \to \mathbb{R} \times \mathbb{C}$ given by $(z_1, z_2) \mapsto (|z_1|^2 - |z_2|^2, 2(z_1 \bar{z}_2))$, that easily leads to the classical Hopf fibration $S^1 \hookrightarrow S^3 \to S^2$, where coordinates in S^2 are given by $(|z_1|^2 - |z_2|^2, 2\text{Re}(z_1 \bar{z}_2), 2\text{Im}(z_1 \bar{z}_2))$.

In the same line, using quaternions \mathbb{H} instead of complex numbers, we get the fibration $S^3 \hookrightarrow S^7 \to S^4$. Quaternions are usually presented with the imaginary units i, j, k in the form $q = x_0 + x_1i + x_2j + x_3k$, $x_0, x_1, x_2, x_3 \in \mathbb{R}$ with $i^2 = j^2 = k^2 = ijk = -1$. They can also be defined equivalently, using the complex numbers $c_1 = x_0 + x_1i$ and $c_2 = x_2 + x_3i$, in the form $q = c_1 + c_2j$. Then for a point $(q_1 = \alpha + \beta j, q_2 = \gamma + \delta j) \in S^7$, we get the following coordinate expressions $(|q_1|^2 - |q_2|^2, 2\text{Re}(\bar{\alpha}\gamma + \bar{\beta}\delta), 2\text{Im}(\bar{\alpha}\gamma + \bar{\beta}\delta), 2\text{Re}(\alpha\delta - \beta\gamma), 2\text{Im}(\alpha\delta - \beta\gamma))$.

For any $q = w + xi + yj + zk \in \mathbb{H}$ we find that $qd\bar{q} = wdw + xdx + ydy + zdz + (xdw - wdx + zdy - ydz)i + (ydw - wdy + xdz - zdx)j + (zdw - wdz + ydx - xdy)k$. As the quaternionic contact group $\mathbb{H} \times \text{Im}\mathbb{H}$, with coordinates (w, x, y, z, r, s, t) can be equipped with the metric

$$ds^2 = (dw^2 + dx^2 + dy^2 + dz^2) + \left(dr + \frac{1}{2}(xdw - wdx + zdy - ydz)\right)^2 + \left(ds + \frac{1}{2}(ydw - wdy + xdz - zdx)\right)^2 + \left(dt + \frac{1}{2}(zdw - wdz + ydx - xdy)\right)^2.$$

Then, by extending this metric, it seems natural to find a 7-dimensional generalization of the 3-dimensional BCV spaces endowed with the two-parameter family of metrics.
\[\text{ds}_{m,l}^2 = \frac{dw^2 + dx^2 + dy^2 + dz^2}{K^2} + \left(\frac{dr + \frac{1}{2}wdx - xdw + ydz - zdy}{K} \right)^2 \]
\[+ \left(ds + \frac{1}{2}wdy - ydw + zdx - xdz \right)^2 + \left(\frac{dt + \frac{1}{2}wdz - zdw + xdy - ydx}{K} \right)^2, \]

where \(l, m \) are real numbers and \(K = 1 + m(w^2 + x^2 + y^2 + z^2) > 0 \).

Then \((EBCV, \text{ds}_{m,l}^2)\) will be called extended BCV spaces \((EBCV\) for short).

That metric is obtained as a conformal deformation of the Euclidean metric of \(\mathbb{R}^4 \) by adding three suitable terms which depend on \(l \) and \(m \) concerning the imaginary part of \(q\overline{q} \), for a quaternion \(q \). When \(m = 0 \) we get a one-parameter of Riemannian metrics depending on \(l \). Furthermore, if \(l = 1 \), we find the 7-dimensional quaternionic Heisenberg group (see [7] and [16]). The manifold \(EBCV \) provides another example of sub-riemannian geometry and the horizontal distribution is a 2-step breaking-generating distribution everywhere.

Observe that when \(m = l = 0 \), \(EBCV \) is nothing but \(\mathbb{R}^7 \); when \(m > 0, l = 0 \), \(EBCV \cong S^4(4m) \times \mathbb{R}^3 \) and when \(m < 0, l = 0 \), \(EBCV \cong H^4(4m) \times \mathbb{R}^3 \).

The metric \(\text{ds}_{m,l}^2 \) can also be written as
\[\text{ds}_{m,l}^2 = \sum_{\alpha=1}^{7} \omega^a \otimes \omega^a, \]

where
\[
\begin{align*}
\omega^1 &= dr + \frac{l}{2K} (wdx - xdw + ydz - zdy), & \omega^4 &= \frac{1}{K} dw, \\
\omega^2 &= ds + \frac{l}{2K} (wdy - ydw + zdx - xdz), & \omega^5 &= \frac{1}{K} dx, \\
\omega^3 &= dt + \frac{l}{2K} (wdz - zdw + xdy - ydx), & \omega^6 &= \frac{1}{K} dy, \\
\omega^7 &= dz.
\end{align*}
\]

with the corresponding dual orthonormal frame
\[
\begin{align*}
X_1 &= \partial_r, & X_2 &= \partial_s, & X_3 &= \partial_t, \\
X_4 &= K \partial_w + \frac{lx}{2} \partial_r + \frac{ly}{2} \partial_s + \frac{lz}{2} \partial_t, & X_5 &= K \partial_x - \frac{lw}{2} \partial_r - \frac{lx}{2} \partial_s + \frac{ly}{2} \partial_t, \\
X_6 &= K \partial_y + \frac{lx}{2} \partial_r - \frac{lw}{2} \partial_s - \frac{lx}{2} \partial_t, & X_7 &= K \partial_z - \frac{ly}{2} \partial_r + \frac{lx}{2} \partial_s - \frac{lw}{2} \partial_t.
\end{align*}
\]

Writing \(1 \leq i, j \leq 3, 4 \leq a \leq 7 \), we find that
\[[X_i, X_j] = 0; \quad [X_i, X_a] = 0, \]
as well as

\[[X_4, X_5] = -l\{1 + m(x^2 + y^2)\}X_1 + ml(wx + xy)X_2 - ml(wy - xz)X_3 - 2mxX_4 + 2mwX_5, \]

and so on (see Appendix).

For later use, when \(m = 0 \) brackets reduce to

\[[X_4, X_5] = -lX_1, \quad [X_4, X_6] = -lX_2, \quad [X_4, X_7] = -lX_3, \]

\[[X_5, X_6] = -lX_3, \quad [X_5, X_7] = lX_2, \quad [X_6, X_7] = -lX_1. \]

Remark 1 When \(l = 1 \), we have the brackets of the quaternionic contact manifold.

As for the Levi-Civita connection we find out

\[\nabla_{X_i}X_j = 0, \quad \nabla_{X_i}X_a = \nabla_{X_a}X_i, \]

and

\[\nabla_{X_i}X_4 = \frac{l}{2}\{1 + m(y^2 + z^2)\}X_5 + \frac{ml}{2}(wx - yz)X_6 - \frac{ml}{2}(wy + xz)X_7, \]

\[\nabla_{X_i}X_5 = -\frac{l}{2}\{1 + m(y^2 + z^2)\}X_4 + \frac{ml}{2}(wy + xz)X_6 + \frac{ml}{2}(wx - yz)X_7, \]

\[\nabla_{X_i}X_6 = -\frac{ml}{2}(wx - yz)X_4 - \frac{ml}{2}(wy + xz)X_5 + \frac{l}{2}(1 - m(y^2 + z^2))X_7, \]

\[\nabla_{X_i}X_7 = \frac{ml}{2}(wy + xz)X_4 - \frac{ml}{2}(wx - yz)X_5 - \frac{l}{2}(1 + m(w^2 + x^2))X_6, \]

and so on (see Appendix).

When \(m = 0 \), the Levi-Civita connection reduces to

\[\nabla_{X_1}X_4 = \frac{l}{2}X_5, \quad \nabla_{X_1}X_5 = -\frac{l}{2}X_4, \quad \nabla_{X_1}X_6 = \frac{l}{2}X_7, \quad \nabla_{X_1}X_7 = -\frac{l}{2}X_6, \]

\[\nabla_{X_2}X_4 = \frac{l}{2}X_6, \quad \nabla_{X_2}X_5 = -\frac{l}{2}X_7, \quad \nabla_{X_2}X_6 = \frac{l}{2}X_5, \quad \nabla_{X_2}X_7 = -\frac{l}{2}X_4, \]

\[\nabla_{X_3}X_4 = \frac{l}{2}X_7, \quad \nabla_{X_3}X_5 = \frac{l}{2}X_6, \quad \nabla_{X_3}X_6 = \frac{l}{2}X_5, \quad \nabla_{X_3}X_7 = -\frac{l}{2}X_4, \]

\[\nabla_{X_4}X_4 = \frac{l}{2}X_1, \quad \nabla_{X_4}X_5 = \frac{l}{2}X_7, \quad \nabla_{X_4}X_6 = \frac{l}{2}X_5, \quad \nabla_{X_4}X_7 = \frac{l}{2}X_6, \]

\[\nabla_{X_5}X_4 = \frac{l}{2}X_1, \quad \nabla_{X_5}X_5 = \frac{l}{2}X_7, \quad \nabla_{X_5}X_6 = \frac{l}{2}X_5, \quad \nabla_{X_5}X_7 = -\frac{l}{2}X_4, \]

\[\nabla_{X_6}X_4 = \frac{l}{2}X_7, \quad \nabla_{X_6}X_5 = \frac{l}{2}X_6, \quad \nabla_{X_6}X_6 = \frac{l}{2}X_1, \quad \nabla_{X_6}X_7 = \frac{l}{2}X_5, \]

Remark 2 When \(l = 1 \), we find the Levi-Civita connection of the quaternionic contact manifold.

As for the curvature tensor \(R \) we have

\[R_{X_1X_4X_1X_4} = R_{X_1X_5X_1X_5} = \frac{l^2}{4}\{1 + m(K + 1)(y^2 + z^2)\}, \]

\[R_{X_1X_6X_1X_6} = R_{X_1X_7X_1X_7} = \frac{l^2}{4}\{1 + m(K + 1)(w^2 + x^2)\}, \]

and so on (see Appendix).

Remark 3 When \(m = 0 \), the curvature of the quaternionic contact manifold reduces to

\[R_{X_1X_4X_1X_4} = \frac{l^2}{4}, \quad \ldots \quad R_{X_6X_6X_6X_6} = \frac{3l^2}{4}. \]
3.2 The Ricci tensor

Proposition 4 The matrix representing the Ricci tensor is given by

\[
\begin{pmatrix}
\frac{l^2}{T}(K^2 + 1) & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{l^2}{T}(K^2 + 1) & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{l^2}{T}(K^2 + 1) & 0 & 0 & 0 \\
-mlx(K+2) & -mly(K+2) & -mlz(K+2) & -mlw(K+2) & mlz(K+2) & mlw(K+2) \\
mlw(K+2) & mlz(K+2) & -mly(K+2) & mlx(K+2) & -mlz(K+2) & mlw(K+2) \\
-mlz(K+2) & mlw(K+2) & mlx(K+2) & -mlz(K+2) & mlw(K+2) & mlx(K+2) \\
mlx(K+2) & mlw(K+2) & mlz(K+2) & mlx(K+2) & mlw(K+2) & mlz(K+2) \\
\end{pmatrix}
\]

where

\[
A = -l^2(K+1) \quad \text{and} \quad B = 12m - 3/2l^2.
\]

Some particular cases could be interesting, for instance we get the following Ricci matrix when \(K = 1\) (or \(m = 0\))

\[
\text{Ric}_1 = \begin{pmatrix}
l^2 & 0 & 0 & 0 & 0 & 0 \\
0 & l^2 & 0 & 0 & 0 & 0 \\
0 & 0 & l^2 & 0 & 0 & 0 \\
0 & 0 & 0 & -3/2l^2 & 0 & 0 \\
0 & 0 & 0 & 0 & -3/2l^2 & 0 \\
0 & 0 & 0 & 0 & 0 & -3/2l^2 \\
\end{pmatrix}
\]

Remark 5 When \(l = 1\), we find the Ricci curvature of the quaternionic contact manifold.

An easy computation leads to

Corollary 6 The \(EBCV\) manifold has constant scalar curvature \(S = 48m\).
4 The homogeneous structure

In [1] W. Ambrose and I. M. Singer proved that a connected, complete and simply-connected Riemannian manifold \((M, g)\) is homogeneous if and only if there exists a \((1,2)\) tensor field \(T\) such that

\[
\begin{align*}
(i) & \quad g(T_X Y, Z) + g(Y, T_X Z) = 0, \\
(ii) & \quad (\nabla_X R)_{YZ} = [T_X, R_{YZ}] - R_{TXYZ} - R_{Y TXZ}, \\
(iii) & \quad (\nabla_X T)_Y = [T_X, T_Y] - T_{TXY},
\end{align*}
\]

for \(X, Y, Z \in \mathfrak{X}(M)\), where \(\nabla\) stands for the Levi-Civita connection and \(R\) is the Riemann curvature tensor of \(M\) (see [13]). As a consequence, Tricerri and Vanhecke define a homogeneous Riemannian structure on \((M, g)\) as a \((1,2)\) tensor field \(T\) which is a solution of the above three equations. Instead of taking \((1,2)\) tensors it is preferred to work with \((0,3)\) tensors via the isomorphism \(T_{uvw} = g(T_u v, w)\), for \(u, v, w \in T_p M\) and \(p \in M\).

Then they consider the vector space \(\mathfrak{F}\) of \((0,3)\) tensors having the same symmetries as a homogeneous structure, i. e., \(\mathfrak{F} = \{T : T_{uvw} = -T_{uwv}, u, v, w \in T_p M\}\). The natural action of the orthogonal group \(O(T_p M)\) on \(\mathfrak{F}\) gives us the decomposition into eight irreducible invariant components. The main building blocks are defined as follows:

\[
\begin{align*}
\mathfrak{F}_1 & = \{T \in \mathfrak{F} : T_{uvw} = g(u,v)\alpha(w) - g(u,w)\alpha(v), \alpha \in T^*_p(M)\}, \\
\mathfrak{F}_2 & = \{T \in \mathfrak{F} : T_{uvw} + T_{uwv} + T_{vuw} = 0, c_{12}(T) = 0\}, \\
\mathfrak{F}_3 & = \{T \in \mathfrak{F} : T_{uvw} + T_{vuw} = 0\},
\end{align*}
\]

where \(u, v, w \in T_p M\) and \(c_{12}(T)(w) = \sum T_{e_i e_i w},\) for any orthonormal basis \(\{e_i\}\) of \(T_p M\).

We consider in \(EBCV\) the characteristic connection \(D\) defined by (see [11]):

\[
D_A B = \nabla_A B + \frac{P}{2}(\nabla_A P)B,
\]

where \(P\) is the natural almost product structure given by \(P = \mathcal{V} - \mathcal{H}, Id = \mathcal{V} + \mathcal{H}\). Let us remember that the vertical distribution in \(EBCV\) is spanned by \(X_1, X_2, X_3\) and the horizontal distribution by \(X_4, X_5, X_6, X_7\). Then we have

\[
\begin{align*}
D_{X_i} X_j & = \mathcal{V}(\nabla_{X_i} X_j), \quad i, j = 1, 2, 3, \\
D_{X_a} X_j & = \mathcal{V}(\nabla_{X_a} X_j), \quad a = 4 \ldots, 7; \quad j = 1, 2, 3, \\
D_{X_i} X_b & = \mathcal{H}(\nabla_{X_i} X_b), \quad i = 1, 2, 3; \quad b = 4 \ldots, 7, \\
D_{X_a} X_b & = \mathcal{H}(\nabla_{X_a} X_b), \quad a, b = 4 \ldots, 7.
\end{align*}
\]

This is a metric connection which makes parallel both the curvature and the torsion tensors and can be completely obtained by using the table giving the Levi-Civita connection.

By denoting \(T^D\) the torsion tensor of \(D\), that is,

\[
T^D_L M \equiv T^D(L, M) = D_L M - D_M L - [L, M],
\]

where \(L, M \in \mathfrak{X}(M)\).
or equivalently

\[T^D(L, M) = \frac{P}{2} ((\nabla_L P) M - (\nabla_M P) L), \]

we find out

\[T^D(X_i, X_j) = T^D(X_i, X_a) = 0, \quad i, j = 1, 2, 3; \quad a = 4, \ldots, 7, \]

\[T^D(X_4, X_4) = T^D(X_5, X_5) = T^D(X_6, X_6) = T^D(X_7, X_7) = 0, \]

as well as

\[T^D(X_4, X_5) = l\{ (1 + m(y^2 + z^2))X_1 - m(wx + yz)X_2 + m(wz + xy)X_3 \}, \]

\[T^D(X_4, X_6) = l\{ m(wz - xy)X_1 + (1 + m(x^2 + z^2))X_2 - m(wx + yz)X_3 \}, \]

\[T^D(X_4, X_7) = l\{-m(wz + xy)X_1 + (m(wx - yz))X_2 + (1 + m(x^2 + y^2))X_3 \}, \]

\[T^D(X_5, X_6) = l\{ m(wy + xz)X_1 - (m(wx - yz)X_2 + (1 + m(w^2 + z^2))X_3 \}, \]

\[T^D(X_5, X_7) = l\{ m(wz - xy)X_1 - (1 + m(w^2 + y^2))X_2 - m(wx + yz)X_3 \}, \]

\[T^D(X_6, X_7) = l\{ (1 + m(w^2 + x^2))X_1 + m(wx + xy)X_2 - m(wy - xz)X_3 \}. \]

Then \(T^D \) defines a homogeneous structure on \(EBCV \) in the sense of Tricerri-Vanhecke (see [13], pags I and 15-16). Furthermore, it is easy to see that

\[c_{12}(T) = \sum T_{X_r}X_r = 0, \quad r = 1, \ldots, 7, \]

so that \(T^D \) defines a homogeneous structure which is lying in the class \(\mathfrak{F}_2 \oplus \mathfrak{F}_3 \).

However, \(T^D \) does not belong to \(\mathfrak{F}_2 \), since, for instance,

\[T^D_{X_1X_4X_5} + T^D_{X_5X_1X_4} + T^D_{X_4X_5X_1} = (T^D_{X_1X_4X_5}) + (T^D_{X_5X_1X_4}) + (T^D_{X_4X_5X_1}) = l\{ 1 + m(y^2 + z^2) \} \neq 0. \]

Finally, from the definition of \(T^D \) we have that

\[T^D_{XYZ} = (T^D_X Y, Z) = - (T^D_Y X, Z), \]

that is, \(T^D_{XYZ} + T^D_{YXZ} = 0 \), and therefore \(T^D \) is lying in \(\mathfrak{F}_3 \).
5 Killing vector fields in $EBCV$

Remember that a Killing vector field is a vector field on a Riemannian manifold that preserves the metric. Killing vector fields are the infinitesimal generators of isometries, that is, flows generated by Killing fields are continuous isometries of the manifold. Specifically, a vector field X is a Killing vector field if the Lie derivative with respect to X of the metric g vanishes: $\mathcal{L}_X g = 0$ or equivalently

$$\mathcal{L}_X ds^2_{i,m} = (\mathcal{L}_X \omega^a) \otimes \omega^a = 0,$$

where

$$\mathcal{L}_X \omega^a = \iota_X d\omega^a + d(\iota_X \omega^a).$$

In terms of the Levi-Civita connection, Killing’s condition is equivalent to

$$g(\nabla_Y X, Z) + g(Y, \nabla_Z X) = 0.$$

(2)

It is easy to prove that

Proposition 7 $\mathcal{L}_X g(Y, Z) = 0$ if and only if $\mathcal{L}_X g(X_i, X_j) = 0$ for basic vector fields X_i, X_j.

We know that the dimension of the Lie algebra of the Killing vector fields is $m \leq n(n + 1)/2$ and the maximum is reached on constant curvature manifolds ([6], p. 238, Vol. II), then for our manifold $m < 28$. Then obviously

Proposition 8 The basic vertical vector fields X_1, X_2, X_3 are Killing fields.

From (2) it is easy to prove that the horizontal basic vector fields X_4, \cdots, X_7 are not Killing vector fields.

In her thesis, Profir [10] proved that the Lie algebra of Killing vector fields of BCV spaces is 4-dimensional. Our problem now is to determine the space of Killing vector fields in $EBCV$.

5.1 The Killing equations

In the usual coordinate system (r, s, t, w, x, y, z) on $EBCV$, a vector field $X = \sum_{a=1}^{7} f_a X_a$ will be a Killing field if and only if the real functions f_i satisfy the following system of 28-partial differential equations:

$$\mathcal{L}_X ds^2_{i,m} = (\mathcal{L}_X \omega^a) \otimes \omega^a = 0,$$

where

$$\mathcal{L}_X \omega^a = \iota_X d\omega^a + d(\iota_X \omega^a).$$

In terms of the Levi-Civita connection, Killing’s condition is equivalent to

$$g(\nabla_Y X, Z) + g(Y, \nabla_Z X) = 0.$$

(2)
\[\partial_r(f_1) = 0, \]
\[\partial_s(f_2) = 0, \]
\[\partial_t(f_3) = 0, \]
\[\partial_r(f_2) + \partial_s(f_1) = 0, \]
\[\partial_r(f_3) + \partial_t(f_1) = 0, \]
\[\partial_s(f_3) + \partial_t(f_2) = 0, \]
\[\partial_r(f_4) + K\partial_w(f_1) + \frac{\partial}{\partial x}\partial_r(f_1) + \frac{\partial}{\partial y}\partial_r(f_1) - l\{1 + m(y^2 + z^2)\}f_5 - ml(wz - xy)f_6 + ml(wy + xz)f_7 = 0, \]
\[\partial_r(f_5) + K\partial_x(f_1) - \frac{\partial}{\partial x}\partial_r(f_1) + \frac{\partial}{\partial y}\partial_r(f_1) + l\{1 + m(y^2 + z^2)\}f_4 - ml(wy + xz)f_6 - ml(wz - xy)f_7 = 0, \]
\[\partial_r(f_6) + K\partial_y(f_1) - \frac{\partial}{\partial x}\partial_r(f_1) + \frac{\partial}{\partial y}\partial_r(f_1) + ml(wz - xy)f_4 + ml(wy + xz)f_5 - l\{1 + m(w^2 + x^2)\}f_7 = 0, \]
\[\partial_r(f_7) + K\partial_z(f_1) + \frac{\partial}{\partial x}\partial_r(f_1) - \frac{\partial}{\partial y}\partial_r(f_1) - ml(wy + xz)f_4 + ml(wz - xy)f_5 + \{1 + m(w^2 + x^2)\}f_6 = 0, \]
\[\partial_s(f_4) + K\partial_w(f_2) + \frac{\partial}{\partial x}\partial_s(f_2) + \frac{\partial}{\partial y}\partial_s(f_2) + ml(wz + xy)f_5 - l\{1 + m(x^2 + z^2)\}f_6 - ml(wx - yz)f_7 = 0, \]
\[\partial_s(f_5) + K\partial_x(f_2) - \frac{\partial}{\partial x}\partial_s(f_2) + \frac{\partial}{\partial y}\partial_s(f_2) - ml(wz + xy)f_4 + ml(wx - yz)f_6 + l\{1 + m(w^2 + y^2)\}f_7 = 0, \]
\[\partial_s(f_6) + K\partial_y(f_2) - \frac{\partial}{\partial x}\partial_s(f_2) - \frac{\partial}{\partial y}\partial_s(f_2) + ml(wx - yz)f_4 - ml(wz + xy)f_5 - ml(wx + yz)f_7 = 0, \]
\[\partial_s(f_7) + K\partial_z(f_2) - \frac{\partial}{\partial x}\partial_s(f_2) - \frac{\partial}{\partial y}\partial_s(f_2) + ml(wx + yz)f_4 + l\{1 + m(w^2 + z^2)\}f_5 + ml(wx - yz)f_7 = 0, \]
\[\partial_t(f_4) + K\partial_w(f_3) + \frac{\partial}{\partial x}\partial_t(f_3) + \frac{\partial}{\partial y}\partial_t(f_3) + l\{1 + m(x^2 + y^2)\}f_4 - ml(wx + yz)f_5 - ml(wx - yz)f_6 = 0, \]
\[K\partial_w(f_4) + \frac{\partial}{\partial x}\partial_t(f_4) + \frac{\partial}{\partial y}\partial_t(f_4) + 2mzf_4 - 2myf_6 - 2mzf_7 = 0, \]
\[K\partial_w(f_5) + \frac{\partial}{\partial x}\partial_t(f_5) + \frac{\partial}{\partial y}\partial_t(f_5) + l\{1 + m(x^2 + z^2)\}f_5 = 0, \]
\[K\partial_w(f_6) + \frac{\partial}{\partial x}\partial_t(f_6) + \frac{\partial}{\partial y}\partial_t(f_6) + 2mzf_4 + 2myf_5 = 0, \]
\[K\partial_w(f_7) + \frac{\partial}{\partial x}\partial_t(f_7) + \frac{\partial}{\partial y}\partial_t(f_7) + 2mzf_5 = 0, \]
\[K\partial_s(f_4) - \frac{\partial}{\partial x}\partial_s(f_4) - \frac{\partial}{\partial y}\partial_s(f_4) = 0, \]
\[K\partial_s(f_5) - \frac{\partial}{\partial x}\partial_s(f_5) - \frac{\partial}{\partial y}\partial_s(f_5) + 2mzf_4 = 0, \]
\[K\partial_s(f_6) - \frac{\partial}{\partial x}\partial_s(f_6) - \frac{\partial}{\partial y}\partial_s(f_6) + 2mzf_5 = 0, \]
\[K\partial_s(f_7) - \frac{\partial}{\partial x}\partial_s(f_7) - \frac{\partial}{\partial y}\partial_s(f_7) + 2mzf_6 = 0, \]
\[K\partial_t(f_4) - \frac{\partial}{\partial x}\partial_t(f_4) - \frac{\partial}{\partial y}\partial_t(f_4) - 2mzf_4 - 2myf_6 - 2mzf_7 = 0, \]
\[K\partial_t(f_5) - \frac{\partial}{\partial x}\partial_t(f_5) - \frac{\partial}{\partial y}\partial_t(f_5) - 2mzf_4 - 2myf_5 = 0, \]
\[K\partial_t(f_6) - \frac{\partial}{\partial x}\partial_t(f_6) - \frac{\partial}{\partial y}\partial_t(f_6) - 2mzf_5 = 0, \]
\[K\partial_t(f_7) - \frac{\partial}{\partial x}\partial_t(f_7) - \frac{\partial}{\partial y}\partial_t(f_7) - 2mzf_6 = 0, \]
It seems that the solution of the system is very difficult, so that we focus on solving the system for \(m = 0 \), that is:

\[
\begin{align*}
\partial_r(f_1) &= 0, \\
\partial_s(f_2) &= 0, \\
\partial_t(f_3) &= 0, \\
\partial_r(f_2) + \partial_s(f_1) &= 0, \\
\partial_r(f_3) + \partial_t(f_1) &= 0, \\
\partial_s(f_3) + \partial_t(f_2) &= 0, \\
\partial_r(f_4) + \partial_w(f_1) + \frac{lw}{2} \partial_s(f_1) + \frac{l}{2} \partial_t(f_1) - lf_5 &= 0, \\
\partial_r(f_5) + \partial_x(f_1) - \frac{lx}{2} \partial_s(f_1) + \frac{l}{2} \partial_t(f_1) + lf_4 &= 0, \\
\partial_r(f_6) + \partial_y(f_1) - \frac{ly}{2} \partial_s(f_1) - \frac{l}{2} \partial_t(f_1) - lf_7 &= 0, \\
\partial_r(f_7) + \partial_z(f_1) + \frac{l}{2} \partial_s(f_1) - \frac{lz}{2} \partial_t(f_1) + lf_6 &= 0, \\
\partial_s(f_4) + \partial_u(f_2) + \frac{lu}{2} \partial_r(f_2) + \frac{l}{2} \partial_t(f_2) - lf_6 &= 0, \\
\partial_s(f_5) + \partial_x(f_2) - \frac{lx}{2} \partial_r(f_2) + \frac{l}{2} \partial_t(f_2) + lf_7 &= 0, \\
\partial_s(f_6) + \partial_y(f_2) + \frac{ly}{2} \partial_r(f_2) - \frac{l}{2} \partial_t(f_2) + lf_4 &= 0, \\
\partial_s(f_7) + \partial_z(f_2) - \frac{lz}{2} \partial_r(f_2) - \frac{l}{2} \partial_t(f_2) - lf_5 &= 0, \\
\partial_t(f_4) + \partial_w(f_3) + \frac{lw}{2} \partial_r(f_3) + \frac{l}{2} \partial_s(f_3) - lf_7 &= 0, \\
\partial_t(f_5) + \partial_x(f_3) - \frac{lx}{2} \partial_r(f_3) - \frac{l}{2} \partial_s(f_3) - lf_6 &= 0, \\
\partial_t(f_6) + \partial_y(f_3) + \frac{ly}{2} \partial_r(f_3) - \frac{l}{2} \partial_s(f_3) + lf_5 &= 0, \\
\partial_t(f_7) + \partial_z(f_3) - \frac{lz}{2} \partial_r(f_3) + \frac{l}{2} \partial_s(f_3) + lf_1 &= 0, \\
\partial_w(f_4) + \frac{lw}{2} \partial_r(f_4) + \frac{l}{2} \partial_s(f_4) + \frac{l}{2} \partial_t(f_4) &= 0, \\
\partial_w(f_5) + \frac{lw}{2} \partial_r(f_5) + \frac{l}{2} \partial_s(f_5) + \frac{l}{2} \partial_t(f_5) + \partial_x(f_4) - \frac{lx}{2} \partial_s(f_4) - \frac{l}{2} \partial_t(f_4) &= 0, \\
\partial_w(f_6) + \frac{lw}{2} \partial_r(f_6) + \frac{l}{2} \partial_s(f_6) + \frac{l}{2} \partial_t(f_6) + \partial_y(f_4) + \frac{ly}{2} \partial_r(f_4) - \frac{l}{2} \partial_s(f_4) - \frac{l}{2} \partial_t(f_4) &= 0, \\
\partial_w(f_7) + \frac{lw}{2} \partial_r(f_7) + \frac{l}{2} \partial_s(f_7) + \frac{l}{2} \partial_t(f_7) + \partial_z(f_4) - \frac{lz}{2} \partial_s(f_4) + \frac{l}{2} \partial_t(f_4) &= 0, \\
\partial_x(f_5) - \frac{lx}{2} \partial_r(f_5) - \frac{l}{2} \partial_s(f_5) + \frac{l}{2} \partial_t(f_5) &= 0, \\
\partial_x(f_6) - \frac{lx}{2} \partial_r(f_6) - \frac{l}{2} \partial_s(f_6) + \frac{l}{2} \partial_t(f_6) + \partial_y(f_5) + \frac{ly}{2} \partial_r(f_5) - \frac{l}{2} \partial_s(f_5) - \frac{l}{2} \partial_t(f_5) &= 0, \\
\partial_x(f_7) - \frac{lx}{2} \partial_r(f_7) - \frac{l}{2} \partial_s(f_7) + \frac{l}{2} \partial_t(f_7) + \partial_z(f_5) - \frac{lz}{2} \partial_s(f_5) + \frac{l}{2} \partial_t(f_5) &= 0, \\
\partial_y(f_6) + \frac{ly}{2} \partial_r(f_6) - \frac{l}{2} \partial_s(f_6) - \frac{l}{2} \partial_t(f_6) &= 0, \\
\partial_y(f_7) + \frac{ly}{2} \partial_r(f_7) - \frac{l}{2} \partial_s(f_7) - \frac{l}{2} \partial_t(f_7) + \partial_z(f_6) - \frac{lz}{2} \partial_s(f_6) + \frac{l}{2} \partial_t(f_6) &= 0, \\
\partial_x(f_7) - \frac{lx}{2} \partial_r(f_7) + \frac{l}{2} \partial_s(f_7) - \frac{l}{2} \partial_t(f_7) &= 0.
\end{align*}
\]
whose solution is given by

\[f_1(r, s, t, w, x, y, z) = (P + R)s + (S - N)t + \frac{l}{2}(-M(w^2 + x^2) - U(y^2 + z^2) + (R - P)(wy + xz)
+ (N + S)(wz - xy) + 2Tw - 2Qx + 2Wy - 2Vz) + C_1, \]

\[f_2(r, s, t, w, x, y, z) = -(P + R)r + (M + U)t - \frac{l}{2}\{N(w^2 + y^2) - S(x^2 + z^2) + (R - P)(wx - yz)
+ (M - U)(wz + xy) - 2Vw + 2Wx + 2Qy - 2Tz\} + C_2, \]

\[f_3(r, s, t, w, x, y, z) = -(S - N)r - (M + U)s - \frac{l}{2}\{P(w^2 + z^2) + R(x^2 + y^2) + (N + S)(wx + yz)
+ (U - M)(wy - xz) - 2Ww - 2Vx + 2Ty + 2Qz\} + C_3, \]

\[f_4(r, s, t, w, x, y, z) = Mx + Ny + Pz + Q, \]

\[f_5(r, s, t, w, x, y, z) = -Mw + Ry + Sz + T, \]

\[f_6(r, s, t, w, x, y, z) = -Nw - Rx + Uz + V, \]

\[f_7(r, s, t, w, x, y, z) = -Pw - Sx - Uy + W, \]

where \(M, N, P, Q, R, S, T, U, V, C_1, C_2, C_3 \in \mathbb{R} \).

As a consequence, when \(m = 0 \), we obtain

Proposition 9 The Lie algebra of Killing vector fields is 13-dimensional.

6 Computing horizontal geodesics of the quaternionic Heisenberg group (see [9])

A Riemannian metric on a manifold \(M \) is defined by a covariant two-tensor, which is to say, a section of the bundle \(S^2(T^*M) \). There is no such object in subriemannian geometry. Instead, a subriemannian metric can be encoded as a contravariant symmetric two-tensor, which is a section of \(S^2(TM) \). This two-tensor has rank \(k < n \), where \(k \) is the rank of the distribution, so it cannot be inverted to obtain a Riemannian metric. We call this contravariant tensor the **cometric**.

Definition 10 A cometric is a section of the bundle \(S^2(TM) \subset TM \otimes TM \) of symmetric bilinear forms on the cotangent bundle of \(M \).

Since \(TM \) and \(T^*M \) are dual, any cometric defines a fiber-bilinear form \((\cdot, \cdot) : T^*M \otimes T^*M \to \mathbb{R}\), i.e. a kind of inner product on covectors. This form in turn defines a symmetric bundle map \(\beta : T^*M \to TM \) by \(p(\beta_q(\mu)) = ((p, \mu))_q \), for \(p, \mu \in T^*_qM \) and \(q \in M \). Thus \(\beta_q(\mu) \in T_qM \). The adjective symmetric means that \(\beta \) equals its adjoint \(\beta^* : T^*M \to T^{**}M = TM \).

The cometric \(\beta \) for a subriemannian geometry is uniquely defined by the following conditions:
(1) \(\text{im}(\beta_q) = \mathcal{H}_q \);

(2) \(p(v) = \langle \beta_q(p), v \rangle \), for \(v \in \mathcal{H}_q \), \(p \in T_qM \),

where \(\langle \beta_q(p), v \rangle_q \) is the subriemannian inner product on \(\mathcal{H}_q \). Conversely, any cometric of constant rank defines a subriemannian geometry whose underlying distribution has that rank.

Definition 11 The fiber-quadratic function \(H(q, p) = \frac{1}{2} (p, p)_q \), where \((\cdot, \cdot)_q \) is the subriemannian inner product on \(\mathcal{H}_q \), is called the subriemannian Hamiltonian, or the kinetic energy.

The Hamiltonian \(H \) is related to length and energy as follows. Suppose that \(\gamma \) is a horizontal curve. Then, \(\dot{\gamma}(t) = \beta_{\gamma(t)}(p) \), for same covector \(p \in T_{\gamma(t)}^*M \), and

\[
\frac{1}{2} ||\dot{\gamma}||^2 = H(q, p).
\]

\(H \) uniquely determines \(\beta \) by polarization, and \(\beta \) uniquely determines the subriemannian structure. This proves the following proposition:

Proposition 12 The subriemannian structure is uniquely determined by its Hamiltonian. Conversely, any nonnegative fiber-quadratic Hamiltonian of constant fiber rank \(k \) gives rise to a subriemannian structure whose underlying distribution has rank \(k \).

To compute the subriemannian Hamiltonian we can start with a local frame \(\{X_a\}, a = 1, \ldots, k \), of vector fields for \(\mathcal{H} \). Thinking of the \(X_a \) as fiber-linear functions on the cotangent bundle, we rename them \(P_a \) so that

\[
P_a(q, p) = p(X_a(q)), \quad q \in M, p \in T_q^*M.
\]

Definition 13 Let \(X \) be a vector field on the manifold \(M \). The fiber-linear function on the cotangent bundle \(P_X : T^*M \to \mathbb{R} \), defined by \(P_X(q, p) = p(X(q)) \) is called the momentum function for \(X \).

Thus the \(P_a = P_{X_a} \) are the momentum functions for our horizontal frame. If \(X_a = \sum X_a^\alpha(x) \frac{\partial}{\partial x^\alpha} \) is the expression for \(X_a \) relative to coordinates \(x^\alpha \), then \(P_{X_a}(x, p) = \sum X_a^\alpha(x)p_\alpha \), where \(p_\alpha = P_{\frac{\partial}{\partial x^\alpha}} \) are the momentum functions for the coordinate vector fields. The \(x^\alpha \) and \(p_\alpha \) together form a coordinate system on \(T^*M \). They are called canonical coordinates.

Let \(g_{ab}(q) = \langle X_a(q), X_b(q) \rangle_q \) be the matrix of inner products defined by our horizontal frame. Let \(g^{ab}(q) \) be its inverse matrix. Then \(g^{ab} \) is a \(k \times k \) matrix-valued function defined in some open set of \(M \).

Proposition 14 Let \(P_a \) and \(g^{ab} \) be the functions on \(T^*M \) that are induced by a local horizontal frame \(X_a \) as just described. Then

\[
H(q, p) = \frac{1}{2} \sum g^{ab}(q) P_a(q, p) P_b(q, p).
\]

13
Indeed,

$$H(q, p) = \frac{1}{2}(p, p)_q = \frac{1}{2}\left(\sum p_a dx^a, \sum p_b dx^b\right) = \frac{1}{2} \sum g^{ab}(q)(p_a, p_b)$$

$$= \frac{1}{2} \sum g^{ab}(q)(p(X_a)(q), p(X_b)(q)) = \frac{1}{2} \sum g^{ab}(q)P_a(q, p)P_b(q, p).$$

Note, in particular, that if the X_a are an orthonormal frame for H relative to the subriemannian inner product, then $H = \frac{1}{2}P^2_a$.

Normal geodesics. Like any smooth function on the cotangent bundle, our function H generates a system of Hamiltonian differential equations. In terms of canonical coordinates (x^a, p_a), these differential equations are

$$\dot{x}^a = \frac{\partial H}{\partial p_a}, \quad \dot{p}_a = -\frac{\partial H}{\partial x^a}. \quad (4)$$

Definition 15 The Hamiltonian differential equations (4) are called the normal geodesic equations.

Riemannian geometry can be viewed as a special case of subriemannian geometry, one in which the distribution is the entire tangent bundle. The cometric is the usual inverse metric, written g^{ij} in coordinates. The normal geodesic equations in the Riemannian case are simply the standard geodesic equations, rewritten on the cotangent bundle.

6.1 One remark about the Hamiltonian

We follow word for word the computations in [9]. The vector fields

$$W = \partial_w + \frac{1}{2}(x\partial_r + y\partial_s + z\partial_t),$$

$$X = \partial_x - \frac{1}{2}(w\partial_r + z\partial_s - y\partial_t),$$

$$Y = \partial_y + \frac{1}{2}(z\partial_r - w\partial_s - x\partial_t),$$

$$Z = \partial_z - \frac{1}{2}(y\partial_r - x\partial_s - w\partial_t),$$

which are the old X_4, \ldots, X_7 ones, provided $m = 0, l = 1$, along with $\{\partial_r, \partial_s, \partial_t\}$, form an orthonormal frame for the quaternionic contact manifold $\mathbb{H} \times \text{Im}\mathbb{H}$. This means that $\{W, X, Y, Z\}$ form the fourth plane \mathcal{H} and they are orthonormal with respect to the inner product $ds^2 = (dw^2 + dx^2 + dy^2 + dz^2)|_\mathcal{H}$ on the distribution. According to the above discussion, the subriemannian Hamiltonian is

$$H = \frac{1}{2}(P^2_W + P^2_X + P^2_Y + P^2_Z). \quad (5)$$
where \(P_W, P_X, P_Y, P_Z \) are the momentum functions of the vector fields \(W, X, Y, Z \), respectively. Thus

\[
\begin{align*}
P_W &= p_w + \frac{1}{2}(xp_r + yp_s + zp_t), \\
P_X &= p_x - \frac{1}{2}(wp_r + zp_s - yp_t), \\
P_Y &= p_y + \frac{1}{2}(zp_r - wp_s - xp_t), \\
P_Z &= p_z - \frac{1}{2}(yp_r - xp_s + wp_t),
\end{align*}
\]

where \(p_w, p_x, p_y, p_z, p_r, p_s, p_t \) are the fiber coordinates on the cotangent bundle of \(\mathbb{R}^7 \) corresponding to the cartesian coordinates \(w, x, y, z, r, s, t \) on \(\mathbb{R}^7 \). Again, these fiber coordinates are defined by writing a covector as \(w, x, y, z, r, s, t \) in the more common form of Hamilton’s equations. By letting the functions \(\{ \cdot, \cdot \} : \mathbb{R}^7 \rightarrow \mathbb{R} \) be any smooth function on the cotangent bundle, we will need the Poisson bracket. The Poisson bracket on the cotangent bundle \(T^*\mathbb{R}^7 \) of a manifold \(\mathbb{R}^7 \) is a canonical Lie algebra structure defined on the vector space \(\mathbb{C}^\infty(T^*\mathbb{R}^7) \) of smooth functions on \(T^*\mathbb{R}^7 \). The Poisson bracket is denoted \(\{ \cdot, \cdot \} : \mathbb{C}^\infty \times \mathbb{C}^\infty \rightarrow \mathbb{C}^\infty \), where \(\mathbb{C}^\infty = \mathbb{C}^\infty(T^*\mathbb{R}^7) \), and can be defined by the coordinate formula

\[
\{ f, g \} = \frac{\partial f}{\partial x^i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial x^i} \frac{\partial f}{\partial p_i}.
\]

This formula is valid in any canonical coordinate system, and can be shown to be coordinate independent. The Poisson bracket satisfies the Leibniz identity

\[
\{ f, gh \} = g\{ f, h \} + h\{ f, g \},
\]

which means that the operation \(\{ \cdot, \cdot \} \) defines a vector field \(X_H \), called the Hamiltonian vector field. By letting the functions \(f \) vary over the collection of coordinate functions \(x^i \) and we get the more common form of Hamilton’s equations

\[
\dot{x}^\alpha = \frac{\partial H}{\partial p_\alpha}, \quad \dot{p}_\alpha = -\frac{\partial H}{\partial x^\alpha}.
\]

Indeed, for the first one we take \(f = w \) and \(g = H \). Then \(\{ w, H \} = \frac{\partial w}{\partial x} \frac{\partial H}{\partial p_r} - \frac{\partial H}{\partial x} \frac{\partial w}{\partial p_r} \) if and only if \(\dot{w} = \frac{\partial H}{\partial p_w} \). Also we have

\[
\dot{x} = \frac{\partial H}{\partial p_x}, \quad \dot{y} = \frac{\partial H}{\partial p_y}, \quad \dot{z} = \frac{\partial H}{\partial p_z}.
\]
These equations are in turn equivalent to the above formulation \((\ref{eq:7})\), which is more convenient to use, because the momentum function \(W \mapsto P_W\) is a Lie algebra anti-homomorphism from the Lie algebra of all smooth vector fields on \(\mathbb{R}^7\) to \(C(T^*\mathbb{R}^7)\) with the Poisson brackets:

\[
\{P_W, P_X\} = -P_{[W,X]}, \quad \{P_W, P_Y\} = -P_{[W,Y]}, \quad \{P_W, P_Z\} = -P_{[W,Z]}, \\
\{P_X, P_Y\} = -P_{[X,Y]}, \quad \{P_X, P_Z\} = -P_{[X,Z]}, \quad \{P_Y, P_Z\} = -P_{[Y,Z]}.
\]

Since all calculations are similar, we only prove the first one:

\[
\{P_W, P_X\} = \{p_w + \frac{x}{2}p_r + \frac{y}{2}p_s + \frac{z}{2}p_t, p_x - \frac{w}{2}p_r - \frac{z}{2}p_s + \frac{y}{2}p_t\} = p_r = -P_{[W,X]}.
\]

For the quaternionic contact group, with our choose of \(W, X, Y, Z\) as a frame for \(\mathcal{H}\), we compute

\[
[W, X] = -\partial_r, \quad [W, Y] = -\partial_s, \quad [W, Z] = -\partial_t,
\]

\[
[X, Y] = -\partial_t, \quad [X, Z] = \partial_s, \quad [Y, Z] = -\partial_t,
\]

\[
[W, \partial_r] = [W, \partial_r s] = [W, \partial_t] = [X, \partial_r] = [X, \partial_s] = [X, \partial_t] = 0,
\]

\[
[Y, \partial_r] = [Y, \partial_s] = [Y, \partial_t] = [Z, \partial_r] = [Z, \partial_s] = [Z, \partial_t] = 0.
\]

Thus

\[
\{P_W, P_X\} = \partial_r := P_r, \quad \{P_W, P_Y\} = \partial_s := P_s, \quad \{P_W, P_Z\} = \partial_t := P_t,
\]

\[
\{P_X, P_Y\} = P_t, \quad \{P_X, P_Z\} = -P_s = -P_s, \quad \{P_Y, P_Z\} = P_r = P_r.
\]

We can prove that

\[
\{P_W, P_r\} = \{P_W, P_s\} = \{P_W, P_t\} = \{P_X, P_r\} = \{P_X, P_s\} = \{P_X, P_t\} = 0,
\]

\[
\{P_Y, P_r\} = \{P_Y, P_s\} = \{P_Y, P_t\} = \{P_Z, P_r\} = \{P_Z, P_s\} = \{P_Z, P_t\} = 0.
\]

These relations can also easily be computed by hand, from our formulae for \(P_W, P_X, P_Y, P_Z\) and the bracket in terms of \(w, x, y, z, r, s, t\).

Lemma 16 By letting \(f\) vary over the functions \(w, x, y, z, r, s, t\), using the bracket relations and equation \((\ref{eq:7})\), we find that Hamilton’s equations are equivalent to the system

\[
\dot{w} = P_W, \quad \dot{x} = P_X, \quad \dot{y} = P_Y, \quad \dot{z} = P_Z, \\
\dot{r} = \frac{1}{2}(xP_W - wP_X + zP_Y - yP_Z), \quad \dot{s} = \frac{1}{2}(yP_W - zP_X + xP_Y - wP_Z), \\
\dot{t} = \frac{1}{2}(zP_W + yP_X - xP_Y - wP_Z), \quad \dot{P}_W = p_rP_X + p_sP_Y + p_tP_Z, \\
\dot{P}_X = -p_rP_W - p_sP_Z + p_tP_Y, \quad \dot{P}_Y = p_rP_Z - p_sP_W - p_tP_X, \\
\dot{P}_Z = -p_rP_Y + p_sP_X - p_tP_W, \quad \dot{P}_r = 0, \quad \dot{P}_s = 0, \quad \dot{P}_t = 0.
\]
To see it, remember that $H = \frac{1}{2}(P_W^2 + P_X^2 + P_Y^2 + P_Z^2)$. Then

\[
\dot{w} = \{w, H\} = P_w \frac{\partial P_W}{\partial p_w} = P_W,
\]

\[
\dot{x} = \{x, H\} = P_X \frac{\partial P_X}{\partial p_x} = P_X,
\]

\[
\dot{y} = P_Y,
\]

\[
\dot{z} = P_Z.
\]

Also, considering that:

\[
\frac{\partial P_W}{\partial p_r} = \frac{x}{2}, \quad \frac{\partial P_W}{\partial p_s} = \frac{y}{2}, \quad \frac{\partial P_W}{\partial p_t} = \frac{z}{2},
\]

\[
\frac{\partial P_X}{\partial p_r} = -\frac{w}{2}, \quad \frac{\partial P_X}{\partial p_s} = -\frac{z}{2}, \quad \frac{\partial P_X}{\partial p_t} = \frac{y}{2},
\]

\[
\frac{\partial P_Y}{\partial p_r} = \frac{z}{2}, \quad \frac{\partial P_Y}{\partial p_s} = -\frac{w}{2}, \quad \frac{\partial P_Y}{\partial p_t} = -\frac{x}{2},
\]

\[
\frac{\partial P_Z}{\partial p_r} = -\frac{y}{2}, \quad \frac{\partial P_Z}{\partial p_s} = \frac{x}{2}, \quad \frac{\partial P_Z}{\partial p_t} = -\frac{w}{2},
\]

we have

\[
\dot{r} = \frac{1}{2}(xP_W - wP_X + zP_Y - yP_Z).
\]

Indeed,

\[
\dot{r} = \{r, H\} = P_W \frac{\partial P_W}{\partial p_r} + P_X \frac{\partial P_X}{\partial p_r} + P_Y \frac{\partial P_Y}{\partial p_r} + P_Z \frac{\partial P_Z}{\partial p_r}
\]

\[
= \frac{1}{2}(xP_W - wP_X + zP_Y - yP_Z)
\]

\[
\dot{s} = \{s, H\} = P_W \frac{\partial P_W}{\partial p_s} + P_X \frac{\partial P_X}{\partial p_s} + P_Y \frac{\partial P_Y}{\partial p_s} + P_Z \frac{\partial P_Z}{\partial p_s}
\]

\[
= \frac{1}{2}(yP_W - zP_X + xP_Y - wP_Z)
\]

\[
\dot{t} = \{t, H\} = P_W \frac{\partial P_W}{\partial p_t} + P_X \frac{\partial P_X}{\partial p_t} + P_Y \frac{\partial P_Y}{\partial p_t} + P_Z \frac{\partial P_Z}{\partial p_t}
\]

\[
= \frac{1}{2}(zP_W + yP_X - xP_Y - wP_Z).
\]

Working as above we obtain

\[
\dot{P}_W = \{P_W, H\} = p_r P_X + p_s P_Y + p_t P_Z,
\]

\[
\dot{P}_X = \{P_X, H\} = -p_r P_W - p_s P_Z + p_t P_Y,
\]

\[
\dot{P}_Y = \{P_Y, H\} = p_r P_Z - p_s P_W - p_t P_X,
\]

\[
\dot{P}_Z = \{P_Z, H\} = -p_r P_Y + p_s P_X - p_t P_W.
\]
Then we are ready to show the following

Theorem 17 The horizontal geodesics of the quaternionic Heisenberg group are exactly the horizontal lifts of arcs of circles, including line segments as a degenerate case.

Proof. It is not difficult to see that \(\dot{P}_r = \dot{P}_s = \dot{P}_t = 0 \). These equations assert that \(P_r = p_r \), \(P_s = p_s \) and \(P_t = p_t \) are constant. The variables \(r, s, t \) appears nowhere in the right-hand sides of these equations. It follows that the variables \(w, x, y, z, P_W, P_X, P_Y, P_Z \) evolve independently of \(r, s, t \), and so we can view the system as defining a one-parameter family of dynamical systems on \(\mathbb{R}^8 \) parameterized by the constant value of \(P_r, P_s, P_t \).

Combine \(w, x, y, z \) into a single quaternionic variable \(\omega = w + ix + jy + kz \) and taking into account the fourteen equations one has

\[
\frac{d\omega}{du} = P_W + iP_X + jP_Y + kP_Z
\]

The \(u \)-derivative of \(P_W + iP_X + jP_Y + kP_Z \) is \(-(ip_r + jp_s + kp_t)(P_W + iP_X + jP_Y + kP_Z) \). Then we have \(\frac{d^2\omega}{du^2} = -(ip_r + jp_s + kp_t)\frac{d\omega}{du} \), where \(p_r, p_s \) and \(p_t \) are constant.

By integrating the above expression we get

\[
P_W + iP_X + jP_Y + kP_Z = P(0)\exp(-((ip_r + jp_s + kp_t)t),
\]

where \(P(0) = P_W(0) + iP_X(0) + jP_Y(0) + kP_Z(0) \).

A second integration yields the general form of the geodesics on the quaternionic contact group:

\[
\omega(u) = w(u) + ix(u) + jy(u) + kz(u) = \frac{P(0)}{ip_r + jp_s + kp_t}(\exp(-((ip_r + jp_s + kp_t)t) - 1) + w(0) + ix(0) + jy(0) + kz(0)),
\]

\[
r(u) = r(0) + \frac{1}{2} \int_0^t \text{Im}_I(\bar{\omega} d\omega),
\]

\[
s(u) = s(0) + \frac{1}{2} \int_0^t \text{Im}_J(\bar{\omega} d\omega),
\]

\[
r(u) = t(0) + \frac{1}{2} \int_0^t \text{Im}_K(\bar{\omega} d\omega).
\]
7 Appendix

The brackets:

\[[X_4, X_5] = -l \{1 + m(x^2 + y^2)\}X_1 + ml(wz + xy)X_2 - ml(wy - xz)X_3 - 2mxX_4 + 2mwX_5, \]
\[[X_4, X_6] = -ml(wx - yz)X_1 - \{1 + m(x^2 + z^2)\}X_2 + ml(wx + yz)X_3 - 2myX_4 + 2mwX_6, \]
\[[X_4, X_7] = ml(wy + xz)X_1 - ml(wx - yz)X_2 - l\{1 + (x^2 + y^2)\}X_3 - 2mzX_4 + 2mwX_7, \]
\[[X_5, X_6] = -ml(wx + yz)X_1 + ml(wx - yz)X_2 - l\{1 + m(w^2 + z^2)\}X_3 - 2myX_5 + 2mxX_6, \]
\[[X_5, X_7] = ml(xy - wz)X_1 + l\{1 + m(w^2 + y^2)\}X_2 + ml(wx + yz)X_3 - 2mzX_5 + 2mxX_7, \]
\[[X_6, X_7] = -l\{1 + m(w^2 + x^2)\}X_1 - ml(wz + xy)X_2 - ml(wx - yz)X_3 - 2mzX_6 + 2myX_7. \]

The Levi-Civita connection:

\[\nabla_{X_1}X_4 = \frac{l}{2}(1 + m(y^2 + z^2))X_5 + \frac{ml}{2}(wz - xy)X_6 - \frac{ml}{2}(wy + xz)X_7, \]
\[\nabla_{X_1}X_5 = \frac{l}{2}(1 + m(y^2 + z^2))X_4 + \frac{ml}{2}(wy + xz)X_6 + \frac{ml}{2}(wz - xy)X_7, \]
\[\nabla_{X_1}X_6 = -\frac{ml}{2}(wz - xy)X_4 - \frac{ml}{2}(wy + xz)X_5 + \frac{l}{2}(1 + m(w^2 + x^2))X_7, \]
\[\nabla_{X_1}X_7 = \frac{ml}{2}(wz + xy)X_5 - \frac{ml}{2}(wz - xy)X_7 - \frac{l}{2}(1 + m(w^2 + x^2))X_6, \]
\[\nabla_{X_2}X_4 = -\frac{ml}{2}(wz + xy)X_5 + \frac{l}{2}(1 + m(x^2 + z^2))X_6 + \frac{ml}{2}(wz - yz)X_7, \]
\[\nabla_{X_2}X_5 = \frac{ml}{2}(wz + xy)X_4 + \frac{l}{2}(1 + m(x^2 + y^2))X_5 - \frac{ml}{2}(wx + yz)X_6, \]
\[\nabla_{X_2}X_6 = \frac{ml}{2}(wx - yz)X_5 - \frac{ml}{2}(wx + yz)X_6 + \frac{l}{2}(1 + m(x^2 + y^2))X_7, \]
\[\nabla_{X_2}X_7 = -\frac{ml}{2}(wx + yz)X_4 - \frac{ml}{2}(wx - yz)X_5 + \frac{l}{2}(1 + m(x^2 + z^2))X_7, \]
\[\nabla_{X_3}X_4 = \frac{ml}{2}(wy - xz)X_5 - \frac{ml}{2}(wx - yz)X_6 + \frac{l}{2}(1 + m(x^2 + y^2))X_7, \]
\[\nabla_{X_3}X_5 = \frac{ml}{2}(wy - xz)X_4 + \frac{l}{2}(1 + m(w^2 + z^2))X_6 - \frac{ml}{2}(wx + yz)X_7, \]
\[\nabla_{X_3}X_6 = \frac{ml}{2}(wx + yz)X_4 - \frac{l}{2}(1 + m(w^2 + z^2))X_5 + \frac{ml}{2}(wy - xz)X_7, \]
\[\nabla_{X_3}X_7 = -\frac{l}{2}(1 + m(x^2 + y^2))X_4 + \frac{ml}{2}(wx + yz)X_5 - \frac{ml}{2}(wy - xz)X_6, \]
\[\nabla_{X_4}X_1 = 2m(wx + yX_5 + yX_6 + zX_7), \]
\[\nabla_{X_4}X_5 = -\frac{l}{2}(1 + m(y^2 + z^2))X_1 + \frac{ml}{2}(wz + xy)X_2 - \frac{ml}{2}(wy - xz)X_3 - 2mxX_4, \]
\[\nabla_{X_4}X_6 = -\frac{ml}{2}(wz - xy)X_1 - \frac{l}{2}(1 + m(x^2 + z^2))X_2 + \frac{ml}{2}(wx + yz)X_3 - 2myX_4, \]
\[\nabla_{X_4}X_7 = \frac{ml}{2}(wy + xz)X_1 - \frac{ml}{2}(wx - yz)X_2 - \frac{l}{2}(1 + m(x^2 + y^2))X_3 - 2mzX_4, \]
\[\nabla_{X_5}X_1 = \frac{l}{2}(1 + m(y^2 + z^2))X_4 - \frac{ml}{2}(wz + xy)X_2 + \frac{ml}{2}(wx - yz)X_3 + 2mwX_5, \]
\[\nabla_{X_5}X_2 = 2m(wX_4 + yX_6 + zX_7), \]
\[\nabla_{X_5}X_6 = -\frac{ml}{2}(wy + xz)X_1 + \frac{l}{2}(wx - yz)X_2 - \frac{l}{2}(1 + m(w^2 + z^2))X_3 - 2myX_5, \]
\[\nabla_{X_5}X_7 = -\frac{ml}{2}(wz - xy)X_1 + \frac{l}{2}(1 + m(w^2 + y^2))X_2 + \frac{ml}{2}(wx + yz)X_3 - 2mzX_5, \]
\[\nabla_{X_6} X_4 = \frac{ml}{2}(wz - xy)X_1 + \frac{l}{2}(1 + m(x^2 + z^2))X_2 - \frac{ml}{2}(wx + yz)X_3 - 2mwX_6, \]
\[\nabla_{X_6} X_5 = \frac{ml}{2}(wy + xz)X_1 - \frac{ml}{2}(wx - yz)X_2 + \frac{l}{2}(1 + m(w^2 + z^2))X_3 - 2mxX_6, \]
\[\nabla_{X_6} X_6 = 2m(wx_4 + xX_5 + zX_7), \]
\[\nabla_{X_6} X_7 = -\frac{l}{2}(1 + m(w^2 + z^2))X_1 - \frac{ml}{2}(wx + yz)X_2 + \frac{ml}{2}(wy - xz)X_3 - 2mzX_6, \]
\[\nabla_{X_7} X_4 = -\frac{ml}{2}(wy + xz)X_1 + \frac{ml}{2}(wx - yz)X_2 + \frac{l}{2}(1 + m(x^2 + y^2))X_3 - 2mwX_7, \]
\[\nabla_{X_7} X_5 = \frac{ml}{2}(wz - xy)X_1 - \frac{l}{2}(1 + m(w^2 + y^2))X_2 - \frac{ml}{2}(wx + yz)X_3 - 2mxX_7, \]
\[\nabla_{X_7} X_6 = \frac{l}{2}(1 + m(w^2 + x^2))X_1 + \frac{ml}{2}(wz + xy)X_2 - \frac{ml}{2}(wy - xz)X_3 - 2myX_7, \]
\[\nabla_{X_7} X_7 = 2m(wx_4 + xX_5 + yX_6). \]

The curvature tensor:

\[R_{X_1X_4X_1X_4} = R_{X_1X_5X_1X_5} = \frac{l^2}{4}\{1 + m(K + 1)(y^2 + z^2)\}, \]
\[R_{X_1X_6X_1X_6} = R_{X_1X_7X_1X_7} = \frac{l^2}{4}\{1 + m(K + 1)(w^2 + x^2)\}, \]
\[R_{X_2X_4X_2X_4} = R_{X_2X_6X_2X_6} = \frac{l^2}{4}\{1 + m(K + 1)(x^2 + z^2)\}, \]
\[R_{X_2X_5X_2X_5} = R_{X_2X_7X_2X_7} = \frac{l^2}{4}\{1 + m(K + 1)(w^2 + y^2)\}, \]
\[R_{X_3X_4X_3X_4} = R_{X_3X_7X_3X_7} = \frac{l^2}{4}\{1 + m(K + 1)(x^2 + y^2)\}, \]
\[R_{X_3X_5X_3X_5} = R_{X_3X_6X_3X_6} = \frac{l^2}{4}\{1 + m(K + 1)(w^2 + z^2)\}, \]
\[R_{X_4X_5X_4X_5} = 4m - 3R_{X_1X_4X_1X_4}, \]
\[R_{X_4X_6X_4X_6} = 4m - 3R_{X_2X_4X_2X_4}, \]
\[R_{X_4X_7X_4X_7} = 4m - 3R_{X_3X_4X_3X_3}, \]
\[R_{X_5X_6X_5X_6} = 4m - 3R_{X_3X_5X_3X_5}, \]
\[R_{X_5X_7X_5X_7} = 4m - 3R_{X_2X_5X_2X_5}, \]
\[R_{X_6X_7X_6X_7} = 4m - 3R_{X_1X_6X_1X_6}. \]

Acknowledgements. We wish to thank Professors V. Miquel and F. J. Carreras for his valuable and enlightening comments on the subject of this paper. AF has been partially supported by MINECO/FEDER grant MTM2015-65430-P and Fundación Séneca project 19901/GERM/15. AMN has been partially supported by MINECO-FEDER grant MTM2016-77093-P. ADT has been partially supported by Red IEMath-Galicia, reference CN 2012/077, Spain.
References

[1] W. Ambrose and I. M. Singer, *On homogeneous Riemannian manifolds*, Duke Math. J., 25, 647-669, 1958.

[2] L. Bianchi, Lezioni sulla Teoria dei Gruppi Continui e Finiti di Transforma- zoni, E. Spoerri, Pisa, 1918.

[3] L. Bianchi, *On three-dimensional spaces which admit a continuous group of motions*, Gen. Relativity Gravitation 33, 2171-2253, 2001. (Translation of: L. Bianchi, Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Mem. Mat. Fis. Soc. It. Sci. Terza XI, 1898, 267-352.)

[4] O. Calin and D-C. Chang, Sub-Riemannian Geometry, General Theory and Examples, Cambridge Univ. Press, 2009.

[5] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars Paris, II Ed. 1946.

[6] S. Kobayasi and K. Nomizu, Foundations of Differential Geometry, Volumes 1, 2, Wiley, 1963, 1969.

[7] C. S. Kunkel, *Quaternionic contact pseudohermitian normal coordinates*, [arXiv:0807.0465v1 [math.DG]].

[8] M. Lachieze-Rey and J. Luminet, *Cosmic topology*, Phys. Rep. 254, 135-214, 1995.

[9] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, AMS, Mathematical Surveys and Monographs, Vol. 91, 2002.

[10] M. M. Profir, Sugli spazi omogenei di dimensione tre $SO(2)$-isotropi, Tesi di Dottorato, Università degli Studi di Cagliari, 2008.

[11] A. H. Rocamora, Algunas propiedades geométricas en variedades casi-producto riemannianas y variedades casi-hermiticas, Tesis, Universitat de Valencia, 1987.

[12] R. S. Strichartz, *Sub-Riemannian geometry*, J. Diff. Geom. 24 (1986), 221-263.

[13] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds, Cambridge Univ. Press, 1983.

[14] J. Van der Veken, *Higher order parallel Surfaces in Bianchi-Cartan-Vranceanu Spaces*, Result. Math. 51, 339-359, 2008.

[15] G. Vranceanu, Leçons de Géometrie Différentielle I, Editions de l’Academie de la Republique Populaire Roumaine, Bucarest, 1947.

[16] J. Wang, *Sub-Riemannian heat kernels on model spaces and curvature-dimension inequalities on contact manifolds*, PhD thesis Purdue University, 2014.