Monads and Vector Bundles on Quadrics

Francesco Malaspina
Dipartimento di Matematica Università di Torino
via Carlo Alberto 10, 10123 Torino, Italy
e-mail: francesco.malaspina@unito.it

Abstract

We improve Ottaviani’s splitting criterion for vector bundles on a quadric hypersurface and obtain the equivalent of the result by Rao, Mohan Kumar and Peterson. Then we give the classification of rank 2 bundles without ”inner” cohomology on Q_n ($n > 3$). It surprisingly exactly agrees with the classification by Ancona, Peternell and Wisniewski of rank 2 Fano bundles.

Introduction

A monad on P^n or, more generally, on a projective variety X, is a complex of three vector bundles

$$0 \to \mathcal{A} \overset{\alpha}{\to} \mathcal{B} \overset{\beta}{\to} \mathcal{C} \to 0$$

such that α is injective and β is surjective. Monads have been studied by Horrocks, who proved (see [Ho] or [BH]) that every vector bundle on P^n is the homology of a suitable minimal monad. Throughout the paper we often use the Horrocks correspondence between a bundle \mathcal{E} on P^n ($n \geq 3$) and the corresponding minimal monad

$$0 \to \mathcal{A} \overset{\alpha}{\to} \mathcal{B} \overset{\beta}{\to} \mathcal{C} \to 0,$$

where \mathcal{A} and \mathcal{C} are sums of line bundles and \mathcal{B} satisfies:

1. $H^i_{\ast}(\mathcal{B}) = H^{n-1}_{\ast}(\mathcal{B}) = 0$
2. $H^i_{\ast}(\mathcal{B}) = H^i_{\ast}(\mathcal{E}) \quad \forall i, 1 < i < n - 1.$

This correspondence holds also on X ($\dim X \geq 3$). Indeed the proof of the result in ([BH] proposition 3) can be easily extended to X (see [MI] theorem 2.1.6.).

Rao, Mohan Kumar and Peterson have successfully used this tool to investigate the intermediate cohomology modules of a vector bundle on P^n and give cohomological splitting conditions (see [KPR1]).

The first aim of the present paper is to extend to smooth quadric hypersurfaces the above result by Rao, Mohan Kumar and Peterson. In Q_n, the Horrocks criterion does not work, but there is a theorem that classifies all the ACM bundles (see [Kn]) as direct sums of line bundles.

Mathematics Subject Classification 2000: 14F05, 14J60.

Keywords: Monads, vector bundles, spinor bundles.
bundles and spinor bundles (up to a twist - for generalities about spinor bundles see [Ot2]).

In the first section we prove some necessary conditions that a minimal monad associated to a bundle \(E \) must satisfy.

The second aim of this paper is the improvement of Ottaviani’s splitting criterion (see [Ot1] and [Ot3]): we obtain the equivalent of the result by Rao, Mohan Kumar and Peterson on a quadric hypersurface. In the last section we focus our interest on rank two vector bundles on \(Q_4 \) and prove the following theorem, which is our main result:

For an indecomposable rank 2 bundle \(E \) on \(Q_4 \) with \(H^1(E) \neq 0 \) and \(H^2(E) = 0 \), the only possible minimal monad, such that both \(A \) and \(C \) do not vanish, is (up to a twist)

\[
0 \rightarrow O \rightarrow S'(1) \oplus S''(1) \rightarrow O(1) \rightarrow 0,
\]

(1)

and such a monad exists.

This means that the two spinor bundles and the bundle corresponding to this monad are the only rank 2 bundles without “inner” cohomology (i.e. \(H^2(E) = ... = H^{n-2}(E) = 0 \)). By using monads again we can also understand the behavior of rank two bundles on \(Q_5 \) and also on \(Q_n, n > 5 \). More precisely we can prove that:

1. For an indecomposable rank 2 bundle \(E \) on \(Q_5 \) with \(H^2(E) = 0 \) and \(H^3(E) = 0 \), the only possible minimal monad, such that both \(A \) and \(C \) do not vanish, is (up to a twist)

\[
0 \rightarrow O \rightarrow S_5(1) \rightarrow O(1) \rightarrow 0,
\]

and such a monad exists.

2. For \(n > 5 \), there is no indecomposable bundle of rank 2 on \(Q_n \) with \(H^2(E) = ... = H^{n-2}(E) = 0 \).

It is surprising that this classification of rank 2 bundle on \(P^n \) and \(Q_n (n > 3) \) exactly agrees with the classification by Ancona, Peternell and Wisniewski of rank 2 Fano bundles (see [APW]).

We can say that if \(E \) is a rank 2 bundle on \(P^n \) and \(Q_n (n > 3) \), then

\(E \) is a Fano bundle \(\iff \) \(E \) is without inner cohomology.

I would like to thank A. Prabhakar Rao for having introduced me into the topic and Giorgio Ottaviani for his useful comments and suggestions.

1 Monads for Bundles without inner cohomology

In this section \(X \) denotes a nonsingular subcanonical, irreducible ACM projective variety.

If \(M \) is a finitely generated module over the homogeneous coordinate ring of \(X \), we denote by \(\beta_i(M) \) the total Betti numbers of \(M \).

We say that a bundle is indecomposable if it does not split as a direct sum of line bundles.
Definition 1.1. We will call bundle without inner cohomology a bundle E on X with
$$H^2_*(E) = \cdots = H^{n-2}_*(E) = 0,$$
where $n = \dim X$.

In \mathbb{P}^n Kumar Peterson and Rao showed that, if n is even and $\text{rank}(E) < n$ (or if n is odd and $\text{rank}(E) < n - 1$), and
$$0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0$$
is a minimal monad for E such that \mathcal{A}, \mathcal{B} and \mathcal{C} are not zero, then \mathcal{B} cannot split.
This means that E splits if and only if it is without inner cohomology.

On X we are able to prove the first part of the theorem about monads:

Theorem 1.2. Let E be a vector bundle on X of dimension n, with $n > 3$.

1. If n is even and if
$$\text{rank}(E) < n$$
then no minimal monad for E exists such that \mathcal{A} or \mathcal{C} are not zero and \mathcal{B} is split.

2. If n is odd and if
$$\text{rank}(E) < n - 1$$
then no minimal monad for E exists such that \mathcal{A} or \mathcal{C} are not zero and \mathcal{B} is split.

First of all we prove a simple and useful lemma:

Lemma 1.3. Let E be a bundle on X with $H^2_*(E) = H^{n-2}_*(E) = 0$ where $n = \dim X > 3$ and let H be a hyperplane such that $X' = X \cap H$ is a subcanonical, irreducible, ACM, nonsingular projective variety. (use Bertini’s theorem for irreducibility).

If
$$0 \to \mathcal{A} \to \mathcal{B} \to \mathcal{C} \to 0$$
is a minimal monad for E, then a minimal monad for the restriction $E|_{X'}$ is just the restriction
$$0 \to \mathcal{A}|_{X'} \to \mathcal{B}|_{X'} \to \mathcal{C}|_{X'} \to 0.$$

Proof. From the sequence
$$0 \to E(-1) \to E \to E|_{X'} \to 0,$$
and the corresponding sequence in cohomology
$$H^2_*(E(-1)) \to H^1_*(E) \xrightarrow{\gamma} H^1_*(E|_{X'}) \to H^2_*(E(-1)) = 0$$
we see that the map γ is surjective. Then the module $H^1_*(E|_{X'})$ has the same generators of $H^1_*(E)$ of the same degrees restricted to X' and this means that, if
$$0 \to \mathcal{A'} \xrightarrow{\alpha} \mathcal{B'} \xrightarrow{\beta} \mathcal{C'} \to 0$$
is a minimal monad for $E|_{X'}$, then
$$\mathcal{C'} \cong \mathcal{C}_{X'}.$$
In the same way, by using the fact that $H^{n-2}_*(E) = 0$, we see that
\[A' \simeq A|_{X'} \].
Then, by construction we see that also
\[B' \simeq B|_{X'} \].

Proof. (of theorem 1.2)
Let us suppose that we know the result of the theorem for n even. Let E be a bundle on X with
\[\text{rank}(E) < n - 1, \]
n > 3, n odd. Let us also suppose that we have a minimal monad
\[0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0, \]
where A and C not zero and B splits.
Let H be any hyperplane such that $X' = X \cap H$ is a subcanonical, irreducible, ACM projective variety. By (1.3) we have that
\[0 \to A|_{X'} \to B|_{X'} \to C|_{X'} \to 0 \]
is the minimal monad for $E|_{X'}$, where $E|_{X'}$ is a bundle of rank $< n - 1$, and $n - 1 = \dim X$ is even.
Now if B splits also $B|_{X'}$ has to split and this is against our assumption of the result of the theorem for n even.
Thus, establishing the result of the theorem for the case of n even will also establish the result for n odd.

Now if one of A or C is zero, and B splits, then either E or its dual is a first syzygy module. In this case, E must have rank at least n by the following argument.
Assume that C is zero and let r be the rank of E. From the short exact sequence
\[0 \to A \to B \to E \to 0 \]
we get the exact sequence
\[0 \to S^r A \xrightarrow{\gamma_r} S^{r-1} A \otimes B \xrightarrow{\gamma_{r-1}} \ldots \xrightarrow{\gamma_1} S^1 A \otimes B \xrightarrow{\gamma_0} B \to \bigwedge^r E \to 0. \]
If we put
\[\Gamma_i = ker \gamma_i, \]
we see that
\[H^r_*(S^r A) = H^r_*(\Gamma_{r-1}) = \ldots = H^1_*(\Gamma_{i-1}) = \ldots = H^1_*(\Gamma_0) \]
and $\forall 0 < j < r,$
\[H^{r-j}_*(S^r A) = H^{r-j}_*(\Gamma_{r-1}) = \ldots = H^{r-j}_*(\Gamma_{i-1}) = \ldots = H^{r-j}_*(\Gamma_j). \]
When \(r < n \),
\[H^r_\ast(S^r \mathcal{A}) = 0, \]
so
\[H^1_\ast(\Gamma_0) = 0 \]
and
\[H^0_\ast(\wedge^r \mathcal{B}) \to H^0_\ast(\wedge^r \mathcal{E}) \]
is a surjective map between free modules.
This means that the map \(\gamma_0 \) splits and the bundle \(\Gamma_0 \) is a direct sum of line bundles.
Now, since also
\[H^{r-1}_\ast(S^r \mathcal{A}) = \cdots = H^1_\ast(S^r \mathcal{A}) = 0, \]
we have
\[H^1_\ast(\Gamma_1) = \cdots = H^1_\ast(\Gamma_{r-1}) = 0. \]
We consider, then, the short exact sequence
\[0 \to \Gamma_1 \to S^1 \mathcal{A} \otimes \wedge^{r-1} \mathcal{B} \to \Gamma_0 \to 0. \]
Since \(\Gamma_0 \) is free and
\[H^1_\ast(\Gamma_1) = 0 \]
we have that also this sequence splits and, hence, the map \(\gamma_1 \) splits and the bundle \(\Gamma_1 \) is a sum of line bundles.
By iterating this argument we can conclude that the long exact sequence is split at each place.
In particular, the map
\[S^r \mathcal{A} \to S^{r-1} \mathcal{A} \otimes \wedge^1 \mathcal{B}, \]
which is obtained from \(\alpha \) as
\[a_1 a_2 \ldots a_r \to \sum (\pm a_1 a_2 \ldots \hat{a}_i \ldots a_r \otimes \alpha(a_i)), \]
is split.
This goes against the minimality of the monad.
Suppose now that \(\mathcal{A} \) and \(\mathcal{C} \) are both not zero and \(n \) is even with \(n = 2k \).
Let \(\mathcal{E} \) be a bundle on \(X \) with
\[\text{rank}(\mathcal{E}) \leq n - 1. \]
By adding line bundles to \(\mathcal{E} \) (if necessary), we may suppose that
\[\text{rank}(\mathcal{E}) = n - 1. \]
Now we can follow the proof in \((\text{KPR1}) \) pages 7-8] and see that such a monad
\[0 \to \mathcal{A} \xrightarrow{\alpha} \mathcal{B} \xrightarrow{\beta} \mathcal{C} \to 0 \]
cannot exist. \(\square \)
Remark 1.4. The Kumar-Peterson-Rao theorem tells us that on \mathbb{P}^n there is no indecomposable bundle without inner cohomology with small rank.

In a more general space X we cannot say that because the Horrocks theorem fails. But is still true the following:

In a minimal monad

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0,$$

for a bundle without inner cohomology on X, the bundle B must be ACM and indecomposable.

Now we prove a theorem about minimal monads for rank 2 bundles:

Theorem 1.5. Let X be of dimension $n > 3$, and E a rank 2 bundle with $H^2_*(E) = 0$. Then any minimal monad

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$$

for E, such that A, B and C are not zero, must satisfy the following conditions:

1. $H^1_*(\wedge^2 B) \neq 0$ and $\beta_0(H^1_*(\wedge^2 B)) \geq \beta_0(H^0_*(S^2C))$.
2. $H^2_*(\wedge^2 B) = 0$

Proof. First of all, since X is ACM, the sheaf \mathcal{O}_X does not have intermediate cohomology. The same is true for A and C that are free \mathcal{O}_X-modules.

Let us now assume the existence of a minimal monad with $H^1_*(\wedge^2 B) = 0$

$$0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0.$$

Then, if $G = \ker \beta$, from the sequence

$$0 \to S^2A \to (A \otimes G) \to \wedge^2G \to \wedge^2E \to 0,$$

we have

$$H^2_*(\wedge^2 G) = H^2_*(A \otimes G) = 0,$$

since $H^2_*(B) = H^2_*(G) = H^2_*(E) = 0$.

Moreover, from the sequence

$$0 \to \wedge^2G \to \wedge^2B \to B \otimes C \to S^2C \to 0,$$

passing to the exact sequence of maps on cohomology groups, since $H^1_*(\wedge^2 B) = H^2_*(\wedge^2 G) = 0$, we get

$$H^0_*(B \otimes C) \to H^0_*(S^2C) \to 0.$$

Now, if we call S_X the coordinate ring, we can say that $H^0_*(S^2C)$ is a free S_X-module, hence projective; then there exists a map

$$H^0_*(B \otimes C) \leftarrow H^0_*(S^2C)$$

and this means that

$$B \otimes C \to S^2C \to 0$$

splits.

But this map is obtained from β as $b \otimes c \mapsto \beta(b)c$, so if it splits also β has to split and this
violates the minimality of the monad. We can say something stronger.

From the sequence
$$0 \to \wedge^2 \mathcal{G} \to \wedge^2 \mathcal{B} \to \mathcal{B} \otimes \mathcal{C} \xrightarrow{\gamma} S_2 \mathcal{C} \to 0,$$
since $H^2_*(\wedge^2 \mathcal{G}) = 0$, we have a surjective map
$$H^1_*(\wedge^2 \mathcal{B}) \to H^1_*(\Gamma) \to 0$$
where $\Gamma = \ker \gamma$, and then
$$\beta_0(H^1_*(\wedge^2 \mathcal{B})) \geq \beta_0(H^0_*(\Gamma)).$$

On the other hand we have the sequence
$$H^0_*(\mathcal{B} \otimes \mathcal{C}) \xrightarrow{\gamma} H^0_*(S_2 \mathcal{C}) \to H^1_*(\Gamma) \to 0;$$
so, if
$$\beta_0(H^1_*(\wedge^2 \mathcal{B})) < \beta_0(H^0_*(S_2 \mathcal{C})), $$
also
$$\beta_0(H^1_*(\Gamma)) < \beta_0(H^0_*(S_2 \mathcal{C})), $$
and some of the generators of $H^0_*(S_2 \mathcal{C})$ must be in the image of γ.

But γ is obtained from β as $b \otimes c \mapsto \beta(b)c$, so also some generators of \mathcal{C} must be in the image of β and this contradicts the minimality of the monad.

We conclude that not just $H^1_*(\wedge^2 \mathcal{B})$ has to be non zero but also
$$\beta_0(H^1_*(\wedge^2 \mathcal{B})) \geq \beta_0(H^0_*(S_2 \mathcal{C})).$$

The second condition comes from the sequence
$$0 \to \wedge^2 \mathcal{G} \to \wedge^2 \mathcal{B} \to \mathcal{B} \otimes \mathcal{C} \to S_2 \mathcal{C} \to 0,$$
since $H^2_*(\wedge^2 \mathcal{G}) = H^2_*(\mathcal{B} \otimes \mathcal{C}) = 0.

\[\square\]

2 \ Splitting Criteria on Q_n

In this section we apply our results to a smooth quadric hypersurface Q_n in \mathbb{P}^{n+1}. Let us notice that Q_n is a nonsingular, ACM, irreducible projective variety and, if $n > 3$, we also have
$$\text{Pic}(Q_n) = \mathbb{Z},$$
so it satisfies all the conditions of X.

First of all we need a useful remark about spinor bundles:

\textbf{Remark 2.1.} By applying ([OT2] Lemma 2.7. and Theorem 2.8) we have that if $n = 2m + 1$,
$$h^0(Q_n, S(1) \otimes \mathcal{S}) = 1.$$
So from the sequence
$$0 \to \mathcal{S} \otimes \mathcal{S} \to \mathcal{O}_{Q_n}^{2m+1} \otimes \mathcal{S} \to S(1) \otimes \mathcal{S} \to 0,$$
and the sequence in cohomology

\[0 = H^0(O_{\mathbb{P}^n}^{2m+1} \otimes S) \to H^0(S(1) \otimes S) \to H^1(S \otimes S) \to 0 \]

we see that

\[h^0(Q_n, S(1) \otimes S) = h^1(Q_n, S \otimes S) = 1. \]

Moreover, if \(n = 4m \), we have

\[h^0(Q_n, S'(1) \otimes S') = h^0(Q_n, S''(1) \otimes S'') = 1 \]

and

\[h^0(Q_n, S'(1) \otimes S'') = h^0(Q_n, S''(1) \otimes S') = 0. \]

Then

\[h^1(Q_n, S'' \otimes S') = 1 \]

and

\[h^1(Q_n, S'' \otimes S'') = h^1(Q_n, S' \otimes S') = 0 \]

while, if \(n = 4m + 2 \),

\[h^0(Q_n, S'(1) \otimes S') = h^0(Q_n, S''(1) \otimes S'') = 0 \]

and

\[h^0(Q_n, S'(1) \otimes S'') = h^0(Q_n, S''(1) \otimes S') = 1. \]

Then

\[h^1(Q_n, S'' \otimes S') = 0 \]

and

\[h^1(Q_n, S'' \otimes S'') = h^1(Q_n, S' \otimes S') = 1. \]

Our starting point is the splitting criterion of Ottaviani (see [Ot1] or [Ot3]). By using monads we can improve this criterion in the case of bundle with a small rank:

Theorem 2.2. Let \(E \) a vector bundle on \(Q_n \) (\(n > 3 \)). If \(n \) is odd, \(S \) the spinor bundle and rank \(E < n - 1 \), then \(E \) splits if and only if

1. \(H^i_*(Q_n, E) = 0 \) for \(2 \leq i \leq n-2 \)
2. \(H^1_*(Q_n, E \otimes S) = 0. \)

If \(n \) is even, \(S' \) and \(S'' \) are the two spinor bundles and rank \(E < n \), then \(E \) splits if and only if

1. \(H^i_*(Q_n, E) = 0 \) for \(2 \leq i \leq n-2 \)
2. \(H^1_*(Q_n, E \otimes S') = H^1_*(E \otimes S'') = 0. \)
Proof. Let us assume that E does not split and let us consider a minimal monad for E,

$$0 \to A \overset{\alpha}{\to} B \overset{\beta}{\to} C \to 0.$$

Since $H^i_*(Q_n, E) = 0$ for $2 \leq i \leq n - 2$, by (1.4), B is an ACM bundle on Q_n and, it has to be isomorphic to a direct sum of line bundles and spinor bundles twisted by some $O(t)$. If S is a spinor bundle and $H^1_*(E \otimes S) = 0$, from the two sequences

$$0 \to G \otimes S \to B \otimes S \to C \otimes S \to 0$$

and

$$0 \to A \otimes S \to G \otimes S \to E \otimes S \to 0,$$

we can see that also $H^1_*(B \otimes S) = 0$.

Now, in the odd case, since $H^1_*(S \otimes S) \neq 0$ see (2.1), we can say that no spinor bundle can appear in B. So B has to split and this is a contradiction.

In the even case, since, according with (2.1), when $n \equiv 2 \pmod{4}$,

$$H^1_*(S' \otimes S') \neq 0$$

and

$$H^1_*(S'' \otimes S'') \neq 0,$$

or, when $n \equiv 0 \pmod{4}$,

$$H^1_*(S' \otimes S'') \neq 0,$$

we can say that no spinor bundles can appear in B. So B has to split and this is a contradiction.

This theorem is the equivalent in Q_n of the result by Kumar, Peterson and Rao.

Remark 2.3. The techniques of this proof are similar to those used by Arrondo and Graña on the Grassmannian $G(1, 4)$ (see [AG]).

3 Rank 2 Bundles without Inner Cohomology

Let us study more carefully the rank 2 bundles in Q_n ($n > 3$).

In Q_4 by (2.1) we have that

$$H^1_*(S' \otimes S') = H^1_*(S'' \otimes S'') = 0$$

and

$$H^1_*(S' \otimes S'') = C.$$

So from the sequence (see [Or2])

$$0 \to S' \to O_{Q_n}^{\oplus 4} \to S''(1) \to 0,$$

and his dual we see that

$$H^2_*(S' \otimes S') = H^2_*(S'' \otimes S'') = C,$$

It is then possible to prove the following theorem:
Theorem 3.1. For an indecomposable rank 2 bundle \mathcal{E} on \mathbb{Q}_4 with $H^1_1(\mathcal{E}) \neq 0$ and $H^2_2(\mathcal{E}) = 0$, the only possible minimal monad with A or C different from zero is (up to a twist)

$$0 \to O \to S'(1) \oplus S''(1) \to O(1) \to 0,$$

and such a monad exists.

Proof. First of all in a minimal monad for \mathcal{E},

$$0 \to A \overset{\alpha}{\to} B \overset{\beta}{\to} C \to 0,$$

B is an ACM bundle on \mathbb{Q}_4; then it has to be isomorphic to a direct sum of line bundles and spinor bundles twisted by some $O(t)$.

Since B cannot split at least a spinor bundle must appear.

Assume that just one copy of S' or one copy of S'' it appears in B. Since

$$\text{rank } S'' = \text{rank } S' = 2$$

and then $\wedge^2 S'$ and $\wedge^2 S''$ are line bundles, also the bundle $\wedge^2 B$ is ACM and the condition

$$H^1_1(\wedge^2 B) \neq 0,$$

in (1.5), is not satisfied.

Assume that more than one copy of S' or more than one copy of S'' appears in B. Then in the bundle $\wedge^2 B$, $(S' \otimes S')(t)$ or $(S'' \otimes S'')(t)$ appears and, since

$$H^2_2(S' \otimes S') = H^2_2(S'' \otimes S'') = C,$$

the condition

$$H^2_2(\wedge^2 B) = 0$$

in (1.5), fails to be satisfied. So B must contain both S' and S'' with some twist and only one copy of each. We can conclude that B has to be of the form

$$(\bigoplus_i O(a_i)) \oplus (S'(b)) \oplus (S''(c)).$$

Let us notice furthermore that if $H^1_1(\mathcal{E})$ has more than 1 generator, rank $C > 1$ and $H^0_0(S_2 C)$ has at least 3 generators.

But

$$H^1_1(\wedge^2 B) \simeq H^1_1(S' \otimes S'') = C$$

has just 1 generator and this is a contradiction because by (1.5)

$$\beta_0(H^1_1(\wedge^2 B)) \geq \beta_0(H^0_0(S_2 C)).$$

This means that rank $A = \text{rank } C = 1$.

At this point the only possible minimal monads are like

$$0 \to O(-a + c_1(\mathcal{E})) \to S'(b) \oplus S''(c) \to O(a) \to 0.$$
where a, b and c are integer numbers.

Since \mathcal{B} must be isomorphic to $B^\vee(c_1(\mathcal{E}))$ and $S^\vee \cong S(1)$ and $S'^\vee \cong S''(1)$, we have that

$$b = c = \frac{1 + c_1(\mathcal{E})}{2};$$

this means that $c_1(\mathcal{E})$ must be odd so we can assume $c_1(\mathcal{E}) = -1$ and $b = c = 0$. Now our monad, twisted by $\mathcal{O}(a + 1)$ looks like

$$0 \to \mathcal{O} \xrightarrow{\alpha} S'(a + 1) \oplus S''(a + 1) \to \mathcal{O}(2a + 1) \to 0$$

and we can assume $a \geq 0$ because both $S'(l)$ and $S''(l)$ do have sections only if $l \geq 1$.

It is possible to have an injective map α at level of bundles only if

$$c_4(S'(a + 1) \oplus S''(a + 1)) = c_4(S'^\vee(a) \oplus S''^\vee(a)) = 0.$$

Our goal now is to find the values of a such that this condition is satisfied.

We know (see [Fr]) the intersection ring of \mathcal{Q}_4:

$$A^\vee(\mathcal{Q}_4) = \mathbb{Z}e_1 \oplus (\mathbb{Z}e_2 \oplus \mathbb{Z}e_2') \oplus \mathbb{Z}e_3 \oplus \mathbb{Z}e_4.$$

We also know that $c_1(S'^\vee) = c_1(S''^\vee) = 1$, $c_2(S'^\vee) = (1, 0) = e_2$ and $c_2(S''^\vee) = (0, 1) = e_2'$. Then

$$c_2(S'^\vee(a)) = e_2 + ae_1 * (1)e_1 + ae_1 * ae_1 = (1 + a + a^2)e_2 + (a + a^2)e_2'$$

and

$$c_2(S''^\vee(a)) = e_2' + ae_1 * (1)e_1 + ae_1 * ae_1 = (a + a^2)e_2 + (1 + a + a^2)e_2';$$

so

$$c_4(S'^\vee(a) \oplus S''^\vee(a)) = c_2(S'^\vee(a)) \ast c_2(S''^\vee(a)) =$$

$$(1 + a + a^2)(a + a^2)e_4 + (a + a^2)(1 + a + a^2)e_4 = 2(1 + a + a^2)(a + a^2)e_4$$

This is zero if and only if $a = 0$ or $a = -1$ and we can not accept the last case. For $a = 0$ we have the claimed monad

$$0 \to \mathcal{O} \xrightarrow{\alpha} S'(1) \oplus S''(1) \xrightarrow{\beta} \mathcal{O}(1) \to 0.$$

We finally want to prove that such a monad exists.

We denote by $\mathcal{Z}_4(1)$ the homology of our monad. We compute $c_1(\mathcal{Z}_4) = -1$, $c_2(\mathcal{Z}_4) = (1, 1)$ and $H^0(\mathcal{Z}_4) = 0$ and by ([AS] Proposition p. 205) we can conclude that the bundle \mathcal{Z}_4 lies in a sequence

$$0 \to \mathcal{O} \to \mathcal{Z}_4(1) \to \mathcal{I}_Y(1) \to 0$$

where Y is the disjoint union of a plane in Λ and a plane in Λ', the two families of planes in \mathcal{Q}_4.

We can hence conclude that our monad exists because it is the homology of a well known bundle. \square

Remark 3.2. We can say then that there exist only three rank 2 bundles without inner cohomology in \mathcal{Q}_4. They are S, S' and \mathcal{Z}_4 that is associated, by the Serre correspondence, to two disjoint planes, one in Λ and one in Λ'.

11
Corollary 3.3. In higher dimension we have:

1. For an indecomposable rank 2 bundle E on Q_5 with $H^2_*(E) = 0$ and $H^3_*(E) = 0$, the only possible minimal monad with A or C not zero is (up to a twist)

$$0 \rightarrow O \rightarrow S_5(1) \rightarrow O(1) \rightarrow 0.$$ and such a monad exists.

2. For $n > 5$, no indecomposable bundle of rank 2 in Q_n exists with $H^2_*(E) = \ldots = H^{n-2}_*(E) = 0$.

Proof. First of all let us notice that for $n > 4$ there is no indecomposable ACM rank 2 bundle since the spinor bundles have rank greater than 2.

Let us then assume that $H^1_*(E) \neq 0$ and let us see how many minimal monads it is possible to find:

1. In a minimal monad for E in Q_5,

$$0 \rightarrow A \overset{\alpha}{\rightarrow} B \overset{\beta}{\rightarrow} C \rightarrow 0,$$

B is an ACM bundle on Q_5; then it has to be isomorphic to a direct sum of line bundles and spinor bundles twisted by some $O(t)$.

Moreover, since $H^2_*(E) = 0$ and $H^3_*(E) = 0$, $E|_{Q_4} = F$ is a bundle with $H^2_*(F) = 0$ and for (1.3) his minimal monad is just the restriction of the minimal monad for E

$$0 \rightarrow A \overset{\alpha}{\rightarrow} B \overset{\beta}{\rightarrow} C \rightarrow 0.$$

For the theorem above, hence, this minimal monad must be

$$0 \rightarrow O \rightarrow S'(1) \oplus S''(1) \rightarrow O(1) \rightarrow 0.$$

Now, since

$$S_5|_{Q_4} \simeq S' \oplus S'',$$

the only bundle of the form

$$(\bigoplus_i O(a_i)) \oplus (\bigoplus_j S_5(b_j))$$

having $S'(1) \oplus S''(1)$ as restriction on Q_4 is $S_5(1)$ and then the claimed monad

$$0 \rightarrow O \overset{\alpha}{\rightarrow} S_5(1) \overset{\beta}{\rightarrow} O(1) \rightarrow 0$$

is the only possible.

We finally want to prove that such a monad exists.

We denote by $Z_5(1)$ the homology of our monad.

We compute $c_1(Z_5) = -1$, $c_2(Z_5) = 1$ and $H^0(Z_5) = 0$ and by ([Ot4] Main Theorem p. 88) we can conclude that the bundle Z_5 is a Cayley bundle (see [Ot4] for generalities on Cayley bundles).

The bundle Z_5 appear also in [13] and [KPR2].

We can hence conclude that our monad exists because it is the homology of a well known bundle.
2. In \(Q_6 \) we use the same argument but, since \(S'_6 \mid Q_5 \simeq S'_5 \) and also \(S''_6 \mid Q_5 \simeq S''_5 \), we have two possible minimal monads:

\[0 \to O \to S'_6(1) \to O(1) \to 0 \]

and

\[0 \to O \to S''_6(1) \to O(1) \to 0. \]

In both sequences the condition

\[B \simeq B^\vee(c_1) \]

is not satisfied, since \(S'_6 \mid Q_5 \simeq S''_6(1) \) and \(S''_6 \mid Q_5 \simeq S'_6(1) \).

So they cannot be the minimal monads of a rank 2 bundles.

We can conclude that no indecomposable bundle of rank 2 in \(Q_6 \) exists with \(H^2(E) = \cdots = H^4(E) = 0 \) and clearly also in higher dimension it is not possible to find any bundle without inner cohomology.

\[\square \]

As a conclusion, the Kumar-Peterson-Rao theorem tells us that in \(\mathbb{P}^n \) with \(n > 3 \) there are no rank 2 bundles without inner cohomology while in \(Q_n \) with \(n > 3 \) there are 4 of them: precisely 3 in \(Q_4 \) and 1 in \(Q_5 \).

It is surprising that this classification of rank 2 bundle on \(\mathbb{P}^n \) and \(Q_n \) (\(n > 3 \)) exactly agrees with the classification by Ancona, Peternell and Wisniewski of rank 2 Fano bundles (see [APW]).

Theorem 3.4 (Ancona, Peternell and Wisniewski). Let \(E \) be a rank 2 Fano bundle on \(\mathbb{P}^n \) (\(n > 3 \)). Then \(E \) splits.

Let \(E \) be a rank 2 Fano bundle on \(Q_n \) (\(n > 3 \)). Then either \(E \) splits or:

1. \(n = 4 \) and \(E \) is (up to twist) a spinor bundle or the bundle \(Z_4 \).
2. \(n = 5 \) and \(E \) is (up to twist) a Cayley bundle.

Corollary 3.5. If \(E \) is a rank 2 bundle on \(\mathbb{P}^n \) and \(Q_n \) (\(n > 3 \)), then

\[E \text{ is a Fano bundle } \iff \text{E is without inner cohomology.} \]

References

[APW] V. Ancona, T. Peternell, J. Wisniewski, *Fano bundles and splitting theorems on projective spaces and quadrics*, 1994, Pacific Journal of Mathematics vol. 163, no. 1, 17-42.

[AG] E. Arrondo, B. Graña, *Vector bundles on G(1,4) without intermediate cohomology*, 1999, J. of Algebra 214, 128-142.
[AS] E. Arrondo, I. Solis, Classification of smooth congruences of low degree, 1989, J. reine angew. Math. 393, 199-219.

[BH] W. Barth, K. Hulek, Monads and moduli of vector bundles, 1978, Manuscripta Math. 25, 323-447.

[Fr] K. Fritzschke, Linear-Uniforme Bundel auf Quadriken, 1983, Ann. Sci. Norm. Sup. Pisa (4) 10, 313-339.

[Ho] G. Horrocks, Vector bundles on the punctured spectrum of a ring, 1964, Proc. London Math. Soc. (3) 14, 689-713.

[Kn] H. Knörrer, Cohen-Macaulay modules of hypersurface singularities I, 1987, Invent. Math. 88, 153-164.

[KPR1] N. Mohan Kumar, C. Peterson and A.P. Rao, Monads on projective spaces, 2003, Manuscripta Math. 112, 183-189.

[KPR2] N. Mohan Kumar, C. Peterson and A.P. Rao, Construction of low rank vector bundles on \(\mathbb{P}^4 \) and \(\mathbb{P}^5 \), 2002, J. Algebraic Geometry 11, 203-217.

[Mi] F. Malaspina, Monads and Vector Bundles on Quadrics: Cohomological Splitting Conditions, 2006, PhD thesis, Torino.

[Ot1] G. Ottaviani, Critères de scindage pour les fibres vectoriel sur les grassmanniennes et les quadriques, 1987, C. R. Acad. Sci. Paris, 305, 257-260.

[Ot2] G. Ottaviani, Spinor bundles on Quadrics, 1988, Trans. Am. Math. Soc.; 307, no 1, 301-316.

[Ot3] G. Ottaviani, Some extension of Horrocks criterion to vector bundles on Grassmannians and quadrics, 1989, Annali Mat. Pura Appl. (IV) 155, 317-341.

[Ot4] G. Ottaviani, On Cayley Bundles on the Five-Dimensional quadric, 1990, Boll. U.M.I. (7) 4-A, 87-100.

[Ta] H. Tango, on morphisms from projective space \(\mathbb{P}^n \) to the Grassmann variety \(Gr(n,d) \), 1976, Journal of Mathematics of Kyoto University 16 no 1, 201-207.