Alternative Feed Resources in Aquaculture: The Role of Underutilized Plants – A Review

J.B. Olasunkanmi*, O.T. Julius, T.O. Babalola, J.O. Jimoh and T.O. Ariyomo

Department of Fisheries and Aquaculture, Federal University, Oye Ekiti, Ekiti State, Nigeria

Corresponding email: john.olasunkanmi@fuoye.edu.ng

Abstract. Feed plays an important role in the development and sustainability of the aquaculture industry. Feedstuffs are either of plant or animal origins. Some plants despite their potentials are underutilized in fish feed industry. The cost effectiveness, availability and sustainability potentials of these plants coupled with their nutritional composition make them fit to compete favourably well with the commonly utilized plants. Leaves and seeds of plants such as Moringaoleifera, Gliricida sepium, Leucaenaleucocephala, alfalfa, sweet potato, velvet bean, cucumber, squash, broad bean, papaya, azolla, water hyacinth, duckweeds, etc. have been discovered to possess the requirements needed for use as a feedstuff in the fish feed industry. This paper therefore reviewed extensively; the potential use of various plant products as ingredients in fish feed industry.

Keywords: Aquaculture, Underutilized, Plants, Fish Nutrition, Anti-nutritional Factors

1. Introduction

Fish has been identified to be an affordable source of high quality protein animal source for which demand and consumption in many developing countries has been increasing [1]. According to [2], animal protein consumption of average Nigerian falls below the 33% mark recommended by [3]. The increasing demand to meet the required protein production can be satisfied through intensive fish culture [2] as wild catch has been found insufficient to meet the demands for fish [4]. For an optimum productivity in aquaculture to be achieved with profitability, feed and feeding among other factors must be given careful attention [5].

High cost of quality fish feed is one of the problems militating against the development of aquaculture [6]. This might not be unconnected to the scarcity and high cost of some conventional protein feedstuffs like Soybean meal and fish meal due to an ever increasing demand as staple food for man, raw material in industries and as feed ingredients in farm animals [7]. Expensive feeds will significantly increase cost of production and in return reduce the profitability. Therefore, to beat down cost and increase profitability in an aquaculture business, the introduction of protein of plant sources that would favourably compete with the conventional protein sources in term of nutritional qualities is inevitable [8]. Although, limitations do exist to the use of plant sources in fish nutrition because of
certain problems which includes; low amount of protein, presence of anti-nutrients which will no doubt affect palatability and digestibility of feed by fish [9, 10]. However, over the years, measures like drying soaking, fermentation, toasting etc. have been taken to either reduce to a bare minimum or to remove the anti-nutrients in these unconventional feed stuffs [11]. This paper is aimed at reviewing the potentials of the various underutilized plants and they can be incorporated into the fish feed industry as feedstuffs for optimal fish production.

2. THE ROLE OF UNDERUTILIZED PLANTS IN FISH NUTRITION.

Literature is replete on the importance of plant protein in fish nutrition for various commercially culture fish species [10]. These plants are valuable not only for their availability and economic benefits but also for their potentials in reducing the chances of eutrophication in ponds because their products contain smaller amount of phosphate and nitrogen when compared to animal protein.

2.1 UNDERUTILIZED TERRESTRIAL PLANTS

2.1.1. MORINGA (Moringaoleifera)

In recent times, researchers have paid attention to Moringaoleifera, known as drumstick tree, due to its economic and important uses. It is a fast growing member of the Moringaceae family and this tree is widely tropics and sub-tropics). The total dry matter (DM) yield of M. oleifera can be up to 24-ton ha⁻¹·year⁻¹[12, 13] and the crude protein content of the leaf ranged between 23 % and 28 % [13, 14, 15]. The detailed proximate composition of M. oleifera is presented in Table 1.

Table 1: Proximate composition of Moringaoleifera leaves

Nutrients	Percentage composition
Moisture content	8.19
Crude protein	28.03
Crude lipid	2.25
Crude fibre	18.87
Total ash	6.81
Nitrogen free extracts	35.85

Source: [13]

Saponins and phenols (anti-nutrients), in the leaf of M. oleifera [15] can be removed using various methods including soaking in water, air drying at room temperature or grinding [16]. Meal from Moringa leaves was reported to have positive effect on ruminants: improved feeding behaviour in goats [17], improved weights in sheep [18] and improved milk yield in dual purpose cows [19]. Also, increased protein content and certain amino acids – methionine and tryptophan contents was observed when added to the diets of Clarias gariepinus[18]. These nutrients improve fish health, maximise growth and hence productivity in aquaculture [10, 19, 20]. Nile tilapia and common carps are other fish species whose diets have successfully been augmented up to 30% level of inclusion with meals from Moringa leaves without any recorded defects in term of growth performance [21, 22].
2.1.2. GLIRICIDIA (*Gliricidia sepium*)

Gliricidia belongs to the sub-family Papilionoideae and the tribe Robinieae [23]. According to [24], it is believed to be the most widely cultivated multipurpose tree after *Leucaenaleucocephala*.

The protein content of *Gliricidia sepium* ranged between 16 and 30% according to various reports [2, 25, 26, 27]. The proximate compositions are presented in Table 2. Although there is scarcity of information about the digestibility of *Gliricidia* in fish, [28] reported a high digestibility in the ruminants when compared to other multi-purpose tree forages and that in cases of low digestibility, leaves of legumes can be added to improve it [28]. However, despite the good combination of proximate composition and minerals, *Gliricidia* has been reported to be low in phosphorus and calcium [2].

Table 2: Proximate composition of *Gliricidia sepium* leaves

Nutrient	Composition
Dry matter (%)	86.26
Crude protein (%)	16.88
Ether extract (%)	1.14
Crude fibre (%)	16.97
Ash (%)	10.37
Organic matter	89.63
Gross Energy (Kcal/g)	3.01
Calcium	0.20
Phosphorus	0.40

Source: [2]

Like many other plants, *Gliricidia sepium* contain some anti-nutrients, notably HCN and cyanogens [26], saponin, Phytate, Tannin and Cyanide [2], phenols and flavonoid compounds [29].

2.1.3. LEUCAENA

Leucaenaleucocephala is a multi-purpose tree that provides fuel wood, green manure, improves degraded lands and cover for soils [6]. It is fast growing and drought-resistant [10, 31]. The use of *Leucaenaleucocephala* has been reported to reduce feed cost and it has been discovered to have the nutritive values that are in right proportion [6, 32]. The leaves of *Leucaenaleucocephala* have been reported to contain a crude protein that is above 20% as shown in table 3 [33, 34]. The seeds also contain α-carotene with rich amino acid profile [34].

Table 3: Proximate composition of *Leucaenaleucocephala* leaves

	MC %	CP %	EE %	CF %	ASH %
LLM	6.70	22.76	4.60	22.29	9.73

MC = Moisture Content; CP = Crude Protein; EE = Ether extract; CF = Crude Fibre; NFE = Nitrogen Free Extract; LLM = *Leucaenaleucocephala* Leaf Meal.
The leaves and seeds contain mimosine, an ANF [35] which is a toxic non-protein amino acid that can inhibit growth in animals [36]. When included at 20% in the diet of Oreochromis niloticus, an improved growth performance was observed [6]. Similar results were obtained with Clarias gariepinus [10, 36].

2.1.4. VELVET BEAN (*Mucuna utilis*)

Velvet bean (*Mucuna utilis*), is a tropical legume belonging to the family Leguminosae [37]. It is widely cultivated as a cover crop and highly productive (200 to 600 kg seed/ha) [38]. *Mucuna utilis* is native to South Asia and Malaysia, but is presently widely grown throughout the tropics [39]. *Mucuna* contains a high level of protein, vitamins and minerals [42]. The seed is known to contain high protein (25.4% to 35%), starch (31.2% to 39.5%), desirable amino acid profile, fatty acids vitamins and minerals with good nutritional properties [43]. [45] reported that processing improves the nutrient, especially protein values in velvet beans.

However, the seeds of velvet beans are known to contain some ANFs such as tannins, lectins, phytic acid, cyanogens, trypsin inhibitors and 3-4 di-hydroxyl-L-phenylalanine (L-Dopa) [46, 47]. Common and effective method for detoxifying some these ANFs includes the use of heat as they are thermo-labile. The most potent ANF known in velvet beans is L-DOPA. L-DOPA content of the seed can be degraded by methods described by [47, 48].

2.1.5. SWEET POTATO (*Ipomoea batatas*)

Sweet potato is a world-wide cultivated crop. It is an important food crop in most developing countries of the world. Both the leaves and peels from the roots can be of great use in the fish feed industry.

The leaves contain high protein, good amino acid profile, minerals, vitamins and fibre content [10, 49,50, 51]. The leaves of *Ipomoea batatas* can be harvested many times within a year. Invertase and protase inhibitors are the prominent ANFs in these leaves, but simple methods like drying, boiling or steaming can reduce them to the barest minimum tolerable to fish [51]. Table 5 shows the proximate composition of *Ipomeabatatas*.

| Table 4: Proximate Composition of *Ipomeabatatas* leaves. |
|---|---|---|---|---|---|---|
IPL	MC %	CP %	EE %	CF %	ASH %	NFE
72	28.91	4.71	8.55	6.02	41.16	

MC = Moisture Content; CP = Crude Protein; EE = Ether extract; CF = Crude Fibre; NFE = Nitrogen Free Extract; GLM = *Ipomeabatatas* leaves.

Source: [50].

Sweet potato peels is rich in nutrients: it contains adequate quantities of calories and other micronutrients. However, it lacks tryptophan and Sulphur [52, 53]. The proximate composition of *Ipomeabatatas* peels is presented in Table 5.
Table 5: Proximate composition of *Ipomeabatatas* peels.

	MC %	CP %	EE %	CF %	ASH %	NFE
IPP	8.91	5.91	4.71	3.55	6.02	71.16

Source: [54]

A replacement level of between 50 and 75% of yellow maize with sweet potato peels in the diets of *Clarias gariepinus* have been recommended by [54] for good growth.

2.1.6. Alfalfa Plants (*Medicago sativa*)

Medicago sativa is a flowering plant that is grown as forage for cattle due to its high nutritional value[10, 55]. With the increased interest in bio-fuels and leaf protein concentrates, refining alfalfa into a digestible ingredient for fish feeds is becoming a possibility [56]. The inclusion of alfalfa leaf meal up to 35% in the diets of tilapia did not compromise the growth and survival of the fish. Likewise, common carps and sea bream have had their growth enhanced when their diets were augmented with alfalfa leaf meals up to 40% level of inclusion [10, 57, 58]. However, some authors suggested a lower level of inclusion as they argued that an increased inclusion level might not be good for the fish [9, 59]. The proximate composition of Alfalfa leaves according to [55] are presented in table 6.

Table 6: Proximate compositions of Chloroplastic Alfalfa leave Protein.

	MC %	CP %	EE %	CF %	ASH %	NFE
CALP	1.84	53.22	6.77	1.92	4.81	31.44

Source: [55]

2.2. UNDERUTILIZED AQUATIC PLANTS

Many aquatic plants (macrophytes) have been reportedly used as fertilizers, mulch, compost, food and fodder [60]. Also, there are reports that leaves of some aquatic plants have been used in fish nutrition because of their good nutrient profile and availability with resultant reduction of cost of producing the feed [10, 60, 61, 62, 63].

2.2.1. WATER HYACINTH (*Eichhorniacrassipes*)

Eichhorniacrassipes, an invasive, herbaceous, free-floating aquatic plant is the most noisome aquatic plant. However, new research development points towards the use of water hyacinth as an alternative protein source although this development is still at laboratory research level [64, 65]. This activity is aimed at serving dual purposes, namely, to remove the plant from
waterways and reduce the cost of fish production while not denying the fish their required nutrients.

A limiting factor to the use of water hyacinth as a feed resource in fish is its high crude fibre content [66, 67, 68]. Table 7 shows the proximate composition of *Eichhorniacrassipes*.

Table 7: Proximate composition of Water Hyacinth Meals (WHMs)

WHMs	Crude protein (%)	Crude lipid (%)	Crude fibre (%)	Ash (%)	NFE (%)
WPM	24.17	2.37	19.62	11.35	42.49
WLM	28.20	4.70	14.79	7.03	45.28

NFE = Nitrogen Free Extract; WPM = Water Hyacinth Protein Meal; WLM = Water Hyacinth Leaf Meal

Source: [65]

Various authors have recommended composting and/or fermentation as methods that can help to reduce the fibre content, improve palatability, and also improve the protein content of water hyacinth plant meal [60]. Water hyacinth after fermentation has been included in the diets of Nile tilapia (*Oreochromis niloticus*) by up to 25% inclusion level [70]. A replacement level as high as 75% of fish meal with composted water hyacinth meal in the diets of *O. niloticus* has also been suggested by [71].

2.2.2. AZOLLA (*Azollapinnata*)

Azolla is a free-floating aquatic fern that grows rapidly with a nuemenon to have twice its size in just ten days. It is capable of understanding and fixing atmospheric nitrogen [10]. *Azollapinnata* is a high biomass plant with good CP content [72] ranging between 20 and 30% on a dry matter basis [73], its rich in lysine (a limiting essential amino acid) [74] with an ability to store phosphorus and potassium from water. It has also been found to be rich in iron, copper, manganese [75], vitamins A, B12 and beta-carotene [10]. The proximate composition of Azolla according to is presented in Table 8.

Table 8: Proximate composition of Azolla Leaf Meals (ALM)

Nutrients	Percentage Composition
Moisture content	83.84
Crude protein	28.92
Ether extract	6.31
Crude fibre	6.92
Ash	4.81
Nitrogen free extract	31.44

Source: [73]

The inclusion of Azolla in the diets of many fish species has been reported to have improved growth performance and nutrient utilization [63]. However, an inclusion level of up to 50% was observed to reduce the protein utilization capacity of *Labeorohitafry* [10, 61]. Some
reports suggested a replacement level of up to 25% fishmeal in tilapia [10, 70], 45% in Cirrhinus mrigala fry [10, 63] and 42% in Oreochromis niloticus fry [10, 76].

2.2.3. DUCKWEED
Duckweed is a floating aquatic weed that grows in tropical and sub-tropical freshwaters. The four genera of duckweed are Lemna, Spirodela, Wolfilla and Wolffiella [10]. The plant is very rich in nutrients (Table 9). Different authors reported varying amount of nutrients in duckweed [10, 77, 78]. Fresh duckweed has been successfully used as feedstuffs for common carp, Thai sharputi, raj puti, silver carp, mrigal and tilapia [10, 77].

Table 9: Proximate composition of Duckweed Leaf Meals (DLM)

	MC %	CP %	EE %	CF %	ASH %	NFE
DLM	79.84	38.75	5.31	.23.47	6.81	21.34

MC = Moisture Content; CP = Crude Protein; EE = Ether extract; CF = Crude Fibre; NFE = Nitrogen Free Extract; DLM = Duckweed Leaf Meal
Source: [78]

In order to reduce ANFs and improve palatability of duckweed, [10] suggested fermentation of the leaf before its addition to fish feed. It has also been reported that fish meal can be substituted up to 20% level with duckweed meal in the diets of common carp [78], while improved growth was observed in mango tilapia fed 10% duckweed substituted meal [77]. Furthermore, [79] reported that fish meal can be replaced up to 30% level in the diets of Nile tilapia without hampering their growth.

CONCLUSION
With the recent developments in aquaculture, there is a need to look into a sustainable means of fish feeding without driving up the cost of production. The potentials of the reviewed plants in this work have placed them in good position to either replace partially or in some cases even replace the usual sources of protein in fish feeds that are unnecessarily increasing production costs. Many of these plants can be gotten all the year round at little or no cost. Therefore, their usage could reduce the cost of feed production hence, promoting a sustainable aquaculture practice.

REFERENCES
[1]. Gebeyehu G. T., (2004). Utilization of Gliricidia Sepium Leaf Meal as Protein Source in Diets of Mozambique Tilapia, Oreochromis Mossambicus (Pisces: Cichlidae), Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy.
[2]. Olopade O. A., Lamidi A. A., and Ogungbesan M. O., (2015), Effect of Gliricidia sepium (Jacq) Leaf Meal Supplemented with Enzymes (Roxzyme® G2 and Maxigrain®) on Growth Performance of Clarias gariepinus, American Journal of Experimental Agriculture 8(3): 152-158.
[3]. FAO (1987). Production Yearbook. Trade and commerce 4, *Food and Agriculture Organisation, Rome, Italy; 1987*.

[4]. FAO (2018). The State of the World Fisheries and Aquaculture (SOFIA). *Food and Agriculture Organisation, United Nations. Rome*

[5]. Akinrotimi O. A., Gabriel U. U., Owhonda N. K., Onukwo D. N., Opara J. Y. (2007). Formulating an environmentally friendly fish feed for sustainable aquaculture development in Niger. *Agric J. 2(5):606-612*

[6]. Tiamiyu L. O, Okomoda V. T and Agbo A. O, (2015). Nutritional Suitability of *Leucaena* Leaf Meal in the Diet of *Clarias Gariepinus*. *Journal of Fisheries Sciences.com* E-ISSN 1307-234X, 9(2): 001-005.

[7]. Adikwu, O.A., (1992). Fish Feed and Nutrition. A paper presentation at the FISON symposium held at Sokoto on 31st October 1991, organized by African Regional Aquaculture Centre and N.I.O.M.R/P/Harcourt.

[8]. Francis, G., Makkar, H.P. and Becker, K., (2012). Products from little researched plants as aquaculture feed ingredients. Agrippa–FAO online journal (www. fao. org/Agrippa).

[9]. Ali, A., Al-Asgah, N. A., Al-Ogaily, S. M and Ali, S. (2003). Effect of feeding different levels alfalfa meal on the growth performance and body composition of Nile tilapia (*Oreochromis niloticus*) fingerlings. Asian fisheries science, 16(1/2): 59-68.

[10]. Dorothy, M.S., Sudhanshu Raman, Vipin Nautiyal, Khushvir Singh, T. Yogananda and Makamguang Kamei. (2018). Use of Potential Plant Leaves as Ingredient in Fish Feed - A Review. *Int.J.Curr.Microbiol.App.Sci.* 7(07): 112-125. doi: https://doi.org/10.20546/ijcmas.2018.707.014

[11]. Bairagi, A., Ghosh, K.S., Sen, S.K. and Ray, A.K., (2002). Duckweed (*Lemma polyrhiza*) leaf meal as a source of feedstuff in formulated diets for rohu (*Labeorohita Ham.*) fingerlings after fermentation with a fish intestinal bacterium. Bioresource technology, 85(1):17-24.

[12]. Reyes-Sánchez N, Ledin S, Ledin I, (2006a). Biomass production and chemical composition of *Moringaoleifera* under different management regimes in Nicaragua.AgroforestSyst, 66:231-242.

[13]. Dienye H. E. andOlumui O. K. (2014) Growth performance and haematological responses of African mud catfish *Clarias gariepinus* fed dietary levels of *Moringaoleifera* leaf meal. *Net Journal of Agricultural Science* 2(2), pp. 79-88.

[14]. Makkar, H.P.S., Becker, K., (1997). Nutrients and antiquality factors in different morphological parts of the *Moringaoleifera*tree. *Journal of Agricultural Science*, Cambridge 128: 311-322.

[15]. Egwui, P.C., Mgbenka, B.O. and Ezeonyejiaku, C.D., (2013). Moringa plant and it use as feed in aquaculture development: a review. *Animal Research International, 10*(1):1672.

[16]. Lochmann R., Engle, C., Kasiga, T., Chenyamburga, S.W., Shihulu, H., Madalla, N., Mnembuka, B.V. and Quagrainie, K., (2011). Develop Feeding Strategies for *Moringaoleifera* and *LeucaenaLeucocephala* as Protein Sources in Tilapia Diets.

[17]. Ben Salem H, Makkar H, (2009). Defatted *Moringaoleifera*seed meal as a feed additive for sheep. *Anim Feed SciTechnol*, 150: 27-33.

[18]. Reyes-Sánchez N, Spörndly E, Ledin I, (2006b). Effect of feeding different levels of foliage of *Moringaoleiferato* creole dairy cows on intake, digestibility, milk production and composition. *Livestock Sci*, 101:24-31.

[19]. Makkar, H.P.S., Becker, K., (1997). Nutrients and antiquality factors in different
morphological parts of the *Moringa oleifera* tree. *Journal of Agricultural Science*, Cambridge 128: 311-322.

[20]. Nsofor, C.I., Igwilo, I.O., Avwemoya, F.E. and Adindu, C.S., (2012). The effects of feeds formulated with *Moringa oleifera* leaves in the growth of the African Catfish, *Clarias gariepinus*. *Res. Rev. Biosci.*, pp. 121-126.

[21]. Afuangu, W., Siddhuraju, P. and Becker, K. (2003). Comparative nutritional evaluation of raw, methanol extracted residues and methanol extracts of moringa (*Moringa oleifera Lam.*) leaves on growth performance and feed utilization in Nile tilapia (*Oreochromis niloticus L.*). *Aquaculture Research*. 34, 1147–1159.

[22]. Yawngsoi, B. and Masumoto, T., (2012). Replacing moringa leaf (*Moringa oleifera*) partially by protein replacement in soybean meal of fancy carp (*Cyprinus carpio*). *Songklanakarin Journal of Science & Technology*, 34(5).

[23]. Lavin M. (1987) Acladistic analysis of the tribe Robineae. In: Stirton, C.H. (ed.), *Advances in Legume Systematics*, Part 3. Royal Botanic Gardens, Kew, pp. 31-64.

[24]. Stewart J.L., Dunsdon, A.J., Hellin, J.J. and Hughes, C.E. (1992) Wood Biomass Estimation of Central American Dry Zone Species. *Tropical Forestry Paper* 26, Oxford Forestry Institute, 83 pp.

[25]. Gohl B. (1981). Tropical foods; feed information summaries and nutritive values. FAO Animal Production and Health Series, No. 12.FAO, Rome, Italy, 529 pp.

[26]. Adejumo J. O., Ademosun A. A. (1985) Effects of planting distance, cutting frequency and height on dry matter yield and nutritive value of *Leucaenaeuleuicephala* sown alone in mixture *Panicum maximum*. *Journal of Animal Production Research*. 1985;5(2):221.

[27]. Aye P.A and Adegun M. K. (2013). Chemical Composition and some functional properties Of Moringa, *Leucaena* and *Gliricidia* leaf meals. Agriculture and Biology Journal of North America ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.1.71.77

[28]. Ivory, D.A. (1990) Major characteristics, agronomic features and nutritional value of shrubs and tree fodders. In: Devendra, C. (ed.), *Shrubs and Tree Fodders for Farm Animals*. Proceedings of a workshop in Denpasar, Indonesia, 24-29 July 1989, pp. 22-38.

[29]. Kakwi, D.G., and Audu, B.S., (2016) Effect of partial replacement of Soybean meal with *Mucuna pruriens*Meal in the diet of Common Carp, (*Cyprinus carpio* Linnaeus, 1785) Fingerlings Nigerian Journal of Fisheries and Aquaculture 4(2):48 – 60

[30]. Adeparusi E.O., and Agbede J.O. (2001) Evaluation of *leucaena* and *gliricidia* leaf protein concentrate as supplements tobambara groundnut (*vignas subterranean*) (l. verd) in the diet of *Oreochromis niloticus* naga 24 (3): 9-13

[31]. Osman, M.F., Omar, A.E. and Nour, A.M., (1996). The use of leucaena leaf meal in feeding Nile tilapia.*Aquaculture international*, 4(1): 9-18.

[32]. Jones R.J., (1979). The value of *Leucaenaleuicephala*as a feed for ruminants in the tropics.*World Anim, Rev*, 31, 13-23.

[33]. Kale, A.U. (1987). Nutritive value of *Leucaenaleuicephala*(subbabul).Ph.D thesis, Submitted to the University of Bombay, India.

[34]. Atawodi, S. E., Mari, D., Atawodi, J.C. and Yahaya, Y., (2008). Assessment of *Leucaenaleuicephala* leaves as feedsupplement in laying hens. *African Journal of Biotechnology*, 7(3): 317-321.
[35]. Francis, G., Makkar, H.P.S and Becker, K., (2001). Anti-nutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. *Aquaculture*, **199**: 197-227.

[36]. Sotolu, A.O. and Faturoti, E.O., (2008). Digestibility and nutritional values of differently processed *Leucaena leucocephala* (Lam. de Wit) seed meals in the diet of African catfish (*Clarias gariepinus*).

[37]. Umberto Q (2000). *CRC World Dictionary of Plant Names*. 3 M-Q, CRC Press. p. 1738.

[38]. Olasunkanmi, J. B. and Omitoyin, B. O. (2011). Growth Response of *Clarias gariepinus* (Burchell1822) Juveniles to Diets containing raw *Mucuna utilis* Seed Meal. *Journal of Aquaculture Feed Science and Nutrition* **3** (1-4): 17-19.

[39]. Szabo N. J. (2003). Indolealkyamines in *Mucuna pruriens*. Trop. Subtrop. Agroecosyst., 1:295-307

[40]. Ceballos A. I. O., Rivera J. R. A., Arce M. M. O., and Valdivia C. P. (2012). Velvet bean (*Mucuna pruriens*var. utilis) a cover crop as Bio herbicide to preserve the Environmental Services of Soil, Herbicides-Environmental Impact Studies and Management Approaches. IntechOpen, DOI: 10.5772/31833.

[41]. Sathiyanarayanan, L., and Arulmozhi, S., (2007). *Mucuna pruriens*. A comprehensive review. Pharmacognosy Rev., 1, 157-162.

[42]. Iyayi E.A, Taiwo V.O, (2003). The effect of diets incorporating Mucuna (*Mucuna pruriens*) seed meal on the performance of laying hens and broilers. Trop. Subtrop. Agroecosyst., 1: 239-246.

[43]. Siddhuraju, P. and Becker, K. (2003). Comparative nutritional evaluation of differently processed mucuna seeds (*Mucuna pruriens* (L.) on growth performance, feed utilization and body composition of Nile tilapia (*Oreochromis niloticus*). *Aquaculture Research*, **34**(6): 256.

[44]. Tuleun C.D, Igba .F, (2008). Growth and carcass characteristics of broiler chickens fed water soaked and cooked velvet bean (*Mucunautilis*) meal. Afr. J. Biotechnol. Vol. 7(15): 2676-2681.

[45]. Ifesan, B.O.T., Akintade, A.O., Babriel-Ajobiewe, R.A.O., (2017). Physicochemical and nutritional properties of *Mucuna pruriens* and *Parkia biglobosa* subjected to controlled fermentation, International Food Research Journal 24(5): 2177-2184.

[46]. Siddhuraju P, Becker K, Makkar H.P.S, (2000). Studies on the nutritional composition and antinutritional factors of three different germplasm seed materials of an underutilized tropical legume, *Mucuna pruriens* var. utilis. J. Agric. Food Chem., 48: 6048-6060.

[47]. Pugalenthi M, Vadivel V, Siddhuraju P (2005). Alternative Food/Feed Perspectives of an underutilized Legume *Mucuna pruriens* var. *Utilis*—A Review. Plant Foods for Human Nutrition 60: 201-218.

[48]. Siddhuraju P., Becker .K., Richter N., (1996), Chemical composition and protein quality of the little-known legume, velvet bean (*Mucuna pruriens* (L.) DC). J. Agric. Food Chem., 44: 2636-2641.

[49]. Antial, B.S., Akpanz, E.J., Okonl, P.A. and Umorenl, I.U., (2006). Nutritive and anti-nutritive evaluation of sweet potatoes. Pak. J. Nutr, 5(2):166-168.

[50]. Adewolu, M.A., (2008). Potentials of sweet potato (*Ipomoea batatas*) leaf meal as dietary ingredient for Tilapia zilli fingerlings. Pakistan Journal of Nutrition, 7(3):444-449.
[51]. Preston, T.R., (2006). Forages as protein sources for pigs in the tropics. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(046).

[52]. FAO. (1970). Amino acid of foods and biological data on protein. FAO of United Nations, Nutritional studies FAO UN, Rome. 285p.

[53]. Oyin O. (2006). Nutritive potential of sweet potato meal and root replacement value for maize in Diets of African Catfish (Clarias gariepinus) advanced fry. Journal of feed Technology. 20-22pp.

[54]. Solomon S.G., Okomoda V.T. and Oloche J.A. (2015). Evaluation of Sweet Potato (Ipomeabatatas) Peel as a Replacement for Maize Meal in the Diet of Clarias gariepinus Fingerling. Journal of FisheriesSciences.com, 9(4): 063-068 (2015)

[55]. Olvera-Novoa, M. A., Campos, S. G., Sabido, M. G. and Palacios, C. A. M. (1990). The use of alfalfa leaf protein concentrates as a protein source in diets for tilapia (Oreochromis mossambicus). Aquaculture, 90(3-4): 291-302.

[56]. Bals, B.D., Dale B.E., and BalanV. (2012). Recovery of leaf protein for animal feed and high-value uses. p. 179–197. In Bergeron, C., Carrier, D.J., Ramaswamy, S. (eds.). Biorefinery Co-Products: Phytochemicals, Primary Metabolites and Value-Added Biomass Processing. First.John Wiley & Sons, Ltd.

[57]. Vhanalakar, S.A., (2009). Growth response of Cirrhinamrigala and CyprinusCarpioto plants formulated diets as protein source.

[58]. Chatzifotis.S., Esteban, A.G and Divanach, P., (2006). Fishmeal replacement by alfalfa protein concentrates in sharp snout sea bream Diploduspuntazzo. Fish. Sci., 72: 1313–1315.

[59]. Sklan D, Prag T and Lupatsch I, (2004). Apparent digestibility coefficients of feed ingredients and their prediction in diets for tilapia Oreochromis niloticus × Oreochromis aureus(Telepstei, Cichlidae). Aquacul. Res., 35: 358–364.

[60]. Wersal, R.M. and Madsen, J.D., (2012). Aquatic plants their uses and risks. A review of the global status of aquatic plants. Rome, Italy: FAO.

[61]. Sheeno, T.P. and Sahu,N.P. (2006). Use of Freshwater Aquatic Plants as a Substitute of Fishmeal in the Diet of Labeorohta Fry. Journal of Fisheries and Aquatic Science, 1: 126-135

[62]. Hasan, M.R. and Rina, C., (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review (No. 531). Food and Agriculture Organization of the United Nations (FAO).

[63]. Gangadhar, B., Sridhar, N., Saurabh, S., Raghavendra, C.H., Hemaprasanth, K.P., Raghunath, M.R. and Jayasankar, P., (2014). Growth Response of CirrhinusmrigalaFry to Azolla (Azollapinnata)-incorporated Diets. Fishery Technology, 51(3).

[64]. Daddy F. (2000). Water hyacinth and its control on KainjiLake. Newsletter of National Institute for Freshwater Fisheries. New Bussa Niger State-Nigeria, 16(1): 56-60.

[65]. Sotolu, A.O. and Sule, S.O., (2011). Digestibility and Performance of Water Hyacinth Meal in The Diets of African Catfish (Clarias gariepinus; Burchell, 1822). Tropical and Subtropical Agro-ecosystems, 14 (2011): 245 - 250

[66]. Igbinosun, J.E., Roberts, O. and Amako, D., (1988). Investigation into the probable use of water hyacinth (Eichhorniacrassipes) in Tilapia feed formulation. NIOMR Tech. Pap. No. 39.Pp 1-22.

[67]. Wolerton, B.C. and McDonald, R.C., (1979). The water hyacinth: From prolific pest to potential provider. Ambio. Vol. 8 (1): 1-9.
[68]. Lareo L. and Bressani, R., (1982). Possible utilization of the water hyacinth in nutrition and industry. Food and Nutrition Bulletin, 4(4): 60-64.

[69]. Nwanna L.C., Falaye A.E and Sotolu A.O. (2008): Water hyacinth (EichhorniacrassipesMart) Somls: A sustainable protein source for fish feed in Nigeria. (Food, Health and Environmental Issues in Developing Countries: The Nigerian Situation (Eds. Adebooye O.C, Taiwo K.A and Fatufe A.A) Alexander Von Humboldt Foundation, Bonn-Germany. Pp. 187-194.

[70]. El-Sayed, A.F., (2003). Effects of fermentation methods on the nutritive value of water hyacinth for Nile tilapia Oreochromis niloticus (L.) fingerlings. Aquaculture, 218(1): 471-478.

[71]. Edwards, P., Kamal, M. and Wee, K.L., (1985). Incorporation of composted and dried water hyacinth in pelleted feed for the tilapia Oreochromis niloticus (Peters). Aquaculture Research, 16(3):233-248.

[72]. Radhakrishnan S, Saravana BP, Seenivasan C, Shanthi R, Muralisankar T (2014) Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azollapiinnataon non-enzymatic and enzymatic antioxidant activities of Macrobrachiumrosenbergtii. The J Basic ApplZool 67: 25–33.

[73]. Fiogbe’ E.D., Micha J.C and Van Hove C. (2004). Use of a natural aquatic fern, Azollamicrophylla, as a main component in food forthe omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. J. Appl. Ichthyol.20 (2004), 517–520, Blackwell Verlag, Berlin.ISSN 0175–8659.

[74]. Panigrahi S, Choudhary D, Sahoo K, Das S, Rath R.K. (2014). Effect of dietary supplementation of Azolla growth and survibility of Labeorohitafingerlings. Asian J Animal Sci 9: 33-37.

[75]. Leonard V., (1997): Use of Aquatic Fern (Azollafiliculoides) in Two Species of Tropical Fish (Oreochromis niloticus and Tilapia rendalli). PhD Thesis.Presses Universitaires de Namur, Belgium, 276 pp.

[76]. Santiago, C.B., Aldaba, M.B., Reyes, O.S. and Laron, M.A., (1988). Response of Nile tilapia (Oreochromis niloticus) fry to diets containing Azolla meal.In International Symposium on Tilapia in Aquaculture, 2: 377-382.

[77]. Leng, R.A., Stambolie, J.H. and Bell, R., (1995). Duckweed-a potential high-protein feed resource for domestic animals and fish. Livestock Research for Rural Development, 7(1): 36.

[78]. Mohapatra, S.B. and Patra, A.K., (2013). Effect of Partial Replacement of Fishmeal with Duck Weed (Lemma minor) feed on the Growth Performance of CyprinuscarpioFry. IOSR-JAVS, 4: 34-37.

[79]. Fasakin, E. A., Balogun, A. M. and Fasuru, B. E., (1999). Use of duckweed, Spirodelapolyyrhisz L. Schleiden, as a protein feedstuff in practical diets for tilapia, Oreochromis niloticus L. Aquaculture Research, 30(5): 313-318.