Towards Good Practices for Data Augmentation in GAN Training

Ngoc-Trung Tran, Viet-Hung Tran, Ngoc-Bao Nguyen, Trung-Kien Nguyen, and Ngai-Man Cheung

Singapore University of Technology and Design (SUTD)
Corresponding author: ngaiman_cheung@sutd.edu.sg

Abstract. Recent successes in Generative Adversarial Networks (GAN) have affirmed the importance of using more data in GAN training. Yet it is expensive to collect data in many domains such as medical applications. Data Augmentation (DA) has been applied in these applications. In this work, we first argue that the classical DA approach could mislead the generator to learn the distribution of the augmented data, which could be different from that of the original data. We then propose a principled framework, termed Data Augmentation Optimized for GAN (DAG), to enable the use of augmented data in GAN training to improve the learning of the original distribution. We provide theoretical analysis to show that using our proposed DAG aligns with the original GAN in minimizing the JS divergence w.r.t. the original distribution and it leverages the augmented data to improve the learnings of discriminator and generator. The experiments show that DAG improves various GAN models. Furthermore, when DAG is used in some GAN models, the system establishes state-of-the-art Fréchet Inception Distance (FID) scores.

1 Introduction

Generative Adversarial Networks (GANs). GAN [17] is an active research area of generative model learning. GAN has achieved remarkable results in various tasks, for example: image generation [22,23], image transformation [21,55], super-resolution [29], text to image [41,54]. GAN aims to learn the distribution of a finite number of (high-dimensional) training data samples. The learning is achieved by an adversarial minimax game between a generator G and a discriminator D [17]. The minimax game is: \(\min_G \max_D V(D,G) \),

\[
V(D,G) = \mathbb{E}_{x \sim P_d} \log \left(D(x) \right) + \mathbb{E}_{x \sim P_g} \log \left(1 - D(x) \right) \tag{1}
\]

Here, $V(.)$ is the value function, P_d is the real data distribution of the training samples, P_g is the distribution captured by the generator (G) that maps from the prior noise $z \sim P_z$ to the data sample $G(z) \sim P_g$. P_z is often Uniform or Gaussian distribution. It is shown in [17] that given the optimal discriminator D^*, \(\min_G V(D^*,G) \) is equivalent to minimizing the Jensen-Shannon (JS) divergence $\text{JS}(P_d||P_g)$. Therefore, with more samples from P_d (e.g., with a larger
training dataset), the empirical estimation of $\text{JS}(P_d||P_g)$ can be improved while training a GAN. This has been demonstrated in recent works [48][4][10], where GAN benefits dramatically from more data.

However, it is widely known that data collection is an extremely expensive process in many domains, e.g. medical images. Therefore, data augmentation, which has been applied successfully to many deep learning-based discriminative tasks [27][49][37], could be considered for GAN training. In fact, some recent works (e.g. [13]) have applied label-preserving transformations (e.g. rotation, translation, etc.) to enlarge the training dataset to train a GAN.

However, second thoughts about adding transformed data to the training dataset in training GAN reveal some issues. Some transformed data could be infrequent or non-existence w.r.t. the original data distribution ($P_d(T(x)) \approx 0$, where $T(x)$ is some transformed data by a transformation T). On the other hand, augmenting the dataset may mislead the generator to learn to generate these transformed data. For example, if rotation is used for data augmentation on a dataset with category “horses”, the generator may learn to create rotated horses, which could be inappropriate in some applications. The fundamental issue is that, with data augmentation (DA), the training dataset distribution becomes P_T^d which could be different from the distribution of the original data P_d. Following [17], it can be shown that, with DA, generator learning is minimizing $\text{JS}(P_T^d||P_g)$ instead of $\text{JS}(P_d||P_g)$.

In this work, we take the first step to understand the issue of applying DA for GAN training. The main challenge is to utilize the augmented dataset with distribution P_T^d to improve the learning of P_d, distribution of the original dataset. We make the following novel contributions:

- We reveal the issue that the classical way of applying DA for GAN could mislead the generator to create infrequent samples w.r.t. P_d.
- We propose a new Data Augmentation optimized for GAN (DAG) framework, to leverage augmented samples to improve the learning of GAN to capture the original distribution. We discuss invertible transformation and its JS preserving property. We discuss discriminator regularization via weight-sharing. We use these as principles to build our framework.
- We show that our proposed DAG overcomes the issue in classical DA. When DAG is applied to some existing GAN model, we could achieve state-of-the-art performance.

2 Related works

The standard GAN [17] connects the learning of the discriminator and the generator via the single feedback (real or fake) to find the Nash equilibrium in high-dimensional parameter space. With this feedback, the generator or discriminator may fall into ill-posed settings and get stuck at bad local minimums (i.e. mode collapse) though still satisfying the model constraints. To overcome the problems, different approaches of regularizing models have been proposed.
Lipschitzness based Approach. The most well-known approach is to constrain the discriminator to be 1-Lipschitz. Such GAN relies on methods like weight-clipping [3], gradient penalty constraints [18, 26, 38, 31] and spectral norm [35]. This constraint mitigates gradient vanishing [3] and catastrophic forgetting [43]. However, this approach often suffers the divergence issues [53, 4].

Inference Models based Approach. Inference models enable to infer compact representation of samples, i.e., latent space, to regularize the learning of GAN. For example, using auto-encoder to guide the generator towards resembling realistic samples [33]; however, computing reconstruction via auto-encoder often leads to blurry artifacts. VAE/GAN [28] combines VAE [24] and GAN, which enables the generator to be regularized via VAE to mitigate mode collapse, and blur to be reduced via the feature-wise distance. ALI [11] and BiGAN [9] take advantage of the encoder to infer the latent dimensions of the data, and jointly train the data/latent samples in the GAN framework. InfoGAN [6] improves the generator learning via maximizing variational lower bound of the mutual information between the latent and its ensuing generated samples. [44, 45] used auto-encoder to regularize both learning of discriminator and generator. It is worth-noting auto-encoder based methods [28, 44, 45], are likely good to mitigate catastrophic forgetting since the generator is regularized to resemble the real ones. The motivation is similar to EWC [25] or IS [52], except the regularization is obtained via the output. Although using feature-wise distance in auto-encoder could reconstruct sharper images, it is still challenging to produce realistic detail of textures or shapes.

Multiple Feedbacks based Approach. The learning via multiple feedbacks has been proposed. Instead of using only one discriminator or generator like standard GAN, the mixture models are proposed, such as multiple discriminators [36, 12, 2], the mixture of generators [20, 14] or an attacker applied as a new player for GAN training [32]. [4, 46] train GAN with auxiliary self-supervised tasks via multi pseudo-classes [15] that enhance stability of the optimization process.

Large-Scale based Approach. Recent works [4, 10] suggests GAN benefit disproportionately from large mini-batch sizes and the larger dataset [48, 13] as many other deep learning models. Larger dataset improves the generalization of learning, while intuitively, with the huge batch size, the probability of one sample appears in the batches is higher that enables GAN to mitigate the catastrophic forgetting more effectively. Unfortunately, both cases require a large-scale collection of samples, which is costly to get in many domains. This motivates us to investigate whether Data Augmentation is a data solution for this approach.

3 Notations

We define some notations to be used in our paper:

- \(\mathcal{X} \) denotes the original training dataset; \(x \in \mathcal{X} \) has the distribution \(P_d \).
- \(\mathcal{X}^T, \mathcal{X}^{Tk} \) denote the transformed datasets that are transformed by \(T, T_k \), resp. \(T(x) \in \mathcal{X}^T \) has the distribution \(P_d^T \); \(T_k(x) \in \mathcal{X}^{Tk} \) has the distribution \(P_d^{Tk} \). We use \(T_1 \) to denote an identity transform. Therefore, \(\mathcal{X}^{T_1} \) is the original data \(\mathcal{X} \).
Table 1. The list of DA techniques in our experiments. ✓: Invertible, x: Non-invertible. Invertible: the original image can be exactly reverted by the inverse transformation. Each original image is transformed into $K - 1$ new transformed images. The original image is one class as the identity transformation. FlipRot = Flipping + Rotation.

Methods	Invertible	Description
Rotation	✓	Rotating images with 0°, 90°, 180° and 270° degrees.
Flipping	✓	Flipping the original image with left-right, bottom-up and the combination of left-right and bottom-up.
Translation	x	Shifting images N_t pixels in directions: up, down, left and right. Zero-pixels are padded for missing parts caused by the shifting.
Cropping	x	Cropping at four corners with scales N_c of original size and resizing them into the same size as the original image.
FlipRot	✓	Combining flipping (left-right, bottom-up) + rotation of 90°.

$X^\mathcal{T} = X^{T_1} \cup X^{T_2} \ldots \cup X^{T_K}$ denotes the augmented dataset, where $\mathcal{T} = \{T_1, T_2, \ldots, T_K\}$. Sample in $X^\mathcal{T}$ has the mixture distribution $P^\mathcal{T}_d$.

4 Issue of Classical Data Augmentation for GAN

Data Augmentation (DA) increases the size of the dataset to reduce the overfitting and generalize the learning of deep neural networks \cite{27,49,37}. The goal is to strengthen the classification performance of these networks on the original dataset. Similarly, we have questioned whether doing DA for GAN with the same principle that the learning of the generator is also generalized and meanwhile has to capture the distribution P_d of the original dataset. The challenge here is to use more augmented data but have to keep the learning on the original distribution. To understand this problem, we first investigate how the classical way of using DA (increasing diversity of X via transformations \mathcal{T} and use augmented dataset $X^\mathcal{T}$ as training data for GAN) influences the learning of GAN.

Fig. 1. Generated examples of toy experiment on the full MNIST dataset (100%). From left to right: the real samples, the generated samples of Baseline model, the rotated real samples and the generated samples of DA with rotation.

$\mathcal{V}(D, G) = \mathbb{E}_{x \sim P^\mathcal{T}_d} \log \left(D(x) \right) + \mathbb{E}_{x \sim P_g} \log \left(1 - D(x) \right)$ (2)

Toy example. We set up the toy example with the MNIST dataset for the illustration. In this experiment, we augment the original MNIST dataset (distribution P_d) with some widely-used augmentation techniques \mathcal{T} (rotation, flipping,
Towards Good Practices for Data Augmentation in GAN Training

and cropping) (Refer to Table. 1 for details) to obtain new dataset (distribution P_{T_d}). Then, we train the standard GAN (objectives is shown in Eq. 2) on this new dataset. We construct two datasets with two different sizes (100% and 25% (randomly selected) of the MNIST dataset) to understand the effects of data size into the GAN performance. We denote the GAN model trained on the original dataset as Baseline, and GAN trained on the augmented dataset as DA. We evaluate models by FID scores. See more details in Appendix C.1.

Table 2. Best FID (10K-10K) of GAN baseline with classical DA on MNIST dataset.

Data size	Baseline	Rotation	Flipping	Cropping
100%	6.8	73.1	47.3	114.4
25%	7.5	72.5	46.2	114.2

Some generated examples of Baseline and DA methods are visualized in Fig. 1. Examples from left to right are: real samples, the generated samples of the Baseline model, the rotated real samples and the generated samples of DA with rotation. See more examples of DA with flipping and cropping in Fig. 7 of Appendix B. We observe that the generators trained with DA methods create samples similar to the augmented distribution P_{T_d}. Therefore, many generated examples are out of P_d. To be precise, we measure the similarity between the generator distribution P_g and P_d with FID scores as in Table. 2. The FIDs of DA methods are much higher as compared to that of Baseline for both cases 100% and 25% of the dataset. It means that classically doing DA misleads to a significant difference between the distribution that generator learns and the original distribution. Comparing different augmentation techniques, it makes sense that the distributions of DA with flipping and DA with cropping are most similar and different from the original distribution respectively. Training DA on small/full dataset results in FID difference for Baseline. It means there are some impacts of data size on the learning of GAN (to be discussed further). We further support these observations with the theoretical analysis in Appendix A.1. This result confirms that doing DA in a classical way for GAN encountering the issue: the infrequent original samples may get generated more due to alternation in the data distribution P_d. Therefore, the classical way of doing DA is not recommended for GAN. To use the augmentation techniques in GAN more effectively, the form of doing DA needs to ensure the learning of the generator is on P_d. We propose a new DA framework to address this problem.

5 Proposed method

The previous section illustrates the issue of classical DA for GAN training. The challenge here is to use the augmented dataset X_T to improve the learning of the distribution of original data, i.e. P_d instead of P_{T_d}. To address this,

1. We first discuss invertible transformations and their invariance for JS divergence.
2. We then present a simple modification of the vanilla GAN that is capable to learn P_d using transformed samples X^T_k, provided that the transformation is invertible as discussed in (1).

3. Finally, we present our model which is a stack of the modified GAN in (2); we show that this model is capable to use the augmented dataset X^T, where $\mathcal{T} = \{T_1, T_2, \ldots, T_K\}$, to improve the learning of P_d.

5.1 Jensen-Shannon (JS) Preserving with Invertible Transformation

Invertible mapping function [39]. Considering two distributions $p_x(x)$ and $q_x(x)$ in space \mathbb{X}. Let $T: \mathbb{X} \rightarrow \mathbb{Y}$ denote the differentiable and invertible (bijective) mapping function (linear or non-linear) that converts x into y, i.e. $y = T(x)$. Then we have the following theorem:

Theorem 1. The Jensen-Shannon (JS) divergence between two distributions is invariant under differentiable and invertible transformation T:

$$JS(p_x(x)||q_x(x)) = JS(p_y(y)||q_y(y))$$ \hspace{1cm} (3)

Proof. Refer to our proof in Appendix A.2. In our case, we have $p_x(\cdot), q_x(\cdot), p_y(\cdot), q_y(\cdot)$ to be P_d, P_g, P_d^T, P_g^T resp. Thus, if an invertible transformation is used, then $JS(P_d||P_g) = JS(P_d^T||P_g^T)$. Note that, if T is non-invertible, $JS(P_d^T||P_g^T)$ may approximate $JS(P_d||P_g)$ to some extent. The detailed investigation of this situation is beyond the scope of our work. However, the take-away from this theorem is that **JS preserving can be guaranteed if invertible transformation is used**.

5.2 GAN Training with Transformed Samples

![Fig. 2.](image-url) The original (vanilla) GAN model (left) and our design to train GAN with transformed data (right).

Motivated by this invariant property of JS divergence, we design the GAN training mechanism to utilize the transformed data, but still, preserve the learning of P_d by the generator. Figure 2 illustrates the vanilla GAN (left) and this new design (right). Compared to the vanilla GAN, the change is simple: the real and fake samples are transformed by T_k before feeding into the discriminator D_k. Importantly, generator’s samples are transformed to imitate the transformed real samples, thus the generator is guided to learn the distribution of the original data samples in \mathcal{X}. The mini-max objective of this design is same as that of the vanilla GAN, except that now the discriminator sees the transformed real/fake samples:

$$\mathcal{V}(D_k, G) = \mathbb{E}_{x \sim P_d^T} \log \left(D_k(x) \right) + \mathbb{E}_{x \sim P_g^T} \log \left(1 - D_k(x) \right)$$ \hspace{1cm} (4)
Towards Good Practices for Data Augmentation in GAN Training

Towards Good Practices for Data Augmentation in GAN Training

where $P_{T_k}^d, P_{T_k}^g$ be the distributions of transformed real and fake data samples respectively, $T_k \in T$. For fixed generator G, the optimal discriminator D_k^* of $V(D_k, G)$ is that in Eq. [5] (the proof is the same as that of the vanilla GAN in [17]). With the invertible transformation T_k, D_k is trained to achieve exactly the same optimal as D:

$$D_k^*(T_k(x)) = \frac{p_{T_k}^d(T_k(x))}{p_{T_k}^d(T_k(x)) + p_{T_k}^g(T_k(x))} = \frac{p_d(x)|J_{T_k}(x)|^{-1}}{p_d(x)|J_{T_k}(x)|^{-1} + p_g(x)|J_{T_k}(x)|^{-1}}$$

$$= \frac{p_d(x)}{p_d(x) + p_g(x)} = D^*(x)$$

(5)

where $|J_{T_k}(x)|$ is the determinant of Jacobian matrix of T_k. Given optimal D_k^*, training generator with these transformed samples is equivalent to minimizing JS divergence between $P_{T_k}^d$ and $P_{T_k}^g$:

$$V(D_k^*, G) = -\log(4) + 2 \cdot JS(P_{T_k}^d || P_{T_k}^g)$$

(6)

Furthermore, if an invertible transformation is chosen for T_k, then $V(D_k^*, G) = -\log(4) + 2 \cdot JS(P_d || P_g)$ (using Theorem 1). Therefore, this mechanism guarantees the generator to learn to create the original samples, not transformed samples. The convergence of GAN with transformed samples has the same JS divergence as the original GAN if the transformation T_k is invertible. Note that, this design has no advantage over the original GAN: it performs the same as the original GAN. However, we explore a design to stack them together to utilize augmented samples with multiple transformations. This will be discussed next.

5.3 Data Augmentation Optimized for GAN

Building on the design of the previous section, we make the first attempt to leverage the augmented samples for GAN training as shown in Fig. 3a, termed Improved DA (IDA). Specifically, we transform fake and real samples with $\{T_k\}$.
and put the mixture of those transformed real/fake samples as inputs to train a single discriminator \(D \) (recall that \(T_1 \) denotes the identity transform). Training the discriminator (regarded as a binary classifier) using augmented samples tends to improve generalization of discriminator learning; i.e., by increasing feature invariance (regarding real vs. fake) to specific transformations, and penalizing model complexity via a regularization term based on the variance of the augmented forms \([8]\). Improving feature representation learning is important to improve the performance of GAN \([7,15]\). However, although IDA benefits invertible transformation as in Section 5.2, training all samples with a single discriminator does not preserve JS divergence of original GAN (Refer to Theorem 3 of Appendix A for proofs). IDA is our first attempt to use augmented data to improve GAN training. Since it is “JS non-preserving”, it does not guarantee the convergence of GAN. Due to this issue, although using more augmented samples, but IDA (FID = 29.7) does not out-perform the Baseline (FID = 29.6) (Refer to Table 3 in Section 6).

To overcome this problem, we propose another framework, termed Data Augmentation optimized for GAN (DAG), to utilize an augmented dataset \(\mathcal{X}^T \) with samples transformed by \(T = \{T_1, T_2, \ldots, T_K\} \) to improve learning of the distribution of original data (Fig. 3b). DAG takes advantage of the different transformed samples by using different discriminators \(D, \{D_k\} = \{D_2, D_3, \ldots D_K\} \). The discriminator \(D_k \) is trained on samples transformed by \(T_k \).

\[
\max_{D, \{D_k\}} \mathcal{V}(D, \{D_k\}, G) = \mathcal{V}(D, G) + \frac{\lambda_u}{K-1} \sum_{k=2}^{K} \mathcal{V}(D_k, G) \quad (7)
\]

We form our discriminator objective by augmenting the original GAN discriminator objective \(\mathcal{V}(D, G) \) with \(\mathcal{V}(\{D_k\}, G) = \sum_{k=2}^{K} \mathcal{V}(D_k, G) \), see Eq. \([7] \). Each objective \(\mathcal{V}(D_k, G) \) is given by Eq. \([4] \) i.e., similar to original GAN objective \([17]\) except that the inputs to discriminator are now transformed, as discussed previously. \(D_k \) is trained to distinguish transformed real samples vs. transformed fake samples (both transformed by same \(T_k \)).

\[
\min_G \mathcal{V}(D, \{D_k\}, G) = \mathcal{V}(D, G) + \frac{\lambda_v}{K-1} \sum_{k=2}^{K} \mathcal{V}(D_k, G) \quad (8)
\]

Our generator objective is shown in Eq. \([8] \). The generator \(G \) learns to create samples to fool the discriminators \(D \) and \(\{D_k\} \) simultaneously. The generator takes the random noise \(z \) as input and maps into \(G(z) \) to confuse \(D \) as in standard GAN. It is important as we want the generator to generate only original images, not transformed images. Then, \(G(z) \) is transformed by \(T_k \) to confuse \(D_k \) in the corresponding task \(\mathcal{V}(D_k, G) \). Here, \(\mathcal{V}(\{D_k\}, G) = \sum_{k=2}^{K} \mathcal{V}(D_k, G) \). When leveraging the transformed samples, the generator receives \(K \) feed-back signals to learn and improve itself in the adversarial mini-max game. If the generator wants its created samples to look realistic, the transformed counterparts need to
look realistic also. The feedbacks are computed from not only JS($P_d||P_g$) of the original samples but also JS($P_{d}^{Tk}||P_{g}^{Tk}$) of the transformed samples as discussed in the next section. In Eq. 7 and 8 λ_u and λ_v are constants.

Analysis on JS preserving The invertible transformations ensure no discrepancy in the optimal convergence of discriminators, i.e., D_k are trained to achieve the same optimal as D: $D^*_k(T_k(x)) = D^*(x)$, $\forall k$ (Refer to Eq. 5). Given these optimal discriminators $\{D^*_k\}$ at equilibrium point. For generator learning, minimizing $\mathcal{V}(\{D_k\}, G)$ in Eq. 8 is equivalent to minimizing Eq. 9:

$$\mathcal{V}(\{D^*_k\}, G) = \text{const} + 2\sum_{k=2}^K \text{JS}(P_{d}^{Tk}||P_{g}^{Tk})$$

Furthermore, if all T_k are invertible, the r.h.s. of Eq. 9 becomes: const + 2($K - 1$)·JS($P_d||P_g$). In this case, the convergence of GAN is guaranteed. In this attempt, $D, \{D_k\}$ do not have any shared weights. Refer to Table 3 in Section 6 when we use multiple discriminators $D, \{D_k\}$ to handle transformed samples by $\{T_k\}$ respectively, the performance is slightly improved to FID = 28.6 (“None” DAG) from Baseline (FID = 29.6). This verifies the advantage of JS preserving of our model in generator learning. To further improve the design, we propose to apply weight sharing for $D, \{D_k\}$, so that we can take advantage of data augmentation, i.e. via improving feature representation learning of discriminators.

Discriminator regularization via weight sharing We propose to regularize the learning of discriminators by enforcing weights sharing between them. Like IDA, discriminator gets benefit from the data augmentation to improve the representation learning of discriminator and furthermore, the model preserves the same JS objective to ensure the convergence of the original GAN. Note that the number of shared layers between discriminators does not influence the JS preserving property in our DAG (the same proofs about JS as in Section 5.2). The effect of number of shared layers will be examined via experiments (i.e., in Table 3 in Section 6). Here, we highlight that with discriminator regularization (on top of JS preserving), the performance is substantially improved. In practical implementation, $D, \{D_k\}$ shared all layers except the last layers to implement different heads for different outputs. See Table 3 in Section 6 for more details. We also discuss the perspective of DAG in GAN training in Appendix C.5.

In this work, we focus on invertible transformation in image domains. In the image domain, the transformation is invertible if its transformed sample can be reverted to the exact original image. For example, some popular affine transformations in image domain are rotation, flipping or fliprot (flipping + rotation), etc.; However, empirically, we find out that our DAG framework works favorably with most of the augmentation techniques (even non-invertible transformation) i.e., cropping and translation. However, if the transformation is invertible, the convergence property of GAN is theoretically guaranteed. Table 1 represents some examples of invertible and non-invertible transformations that we study in this work.
The usage of DAG outperforms the baseline GAN models (refer to Section 6.2 for details). Our DAG framework can apply to various GAN models. Specifically, the same ideas can be applied for another GAN model: modify the model to utilize transformed real/fake samples to learn P_d, as discussed in the previous section; then, stack such modified models as discussed in this section. We select one state-of-the-art GAN system recently published [46] and apply DAG. We refer to this as our best GAN system; this system advances state-of-the-art performance on benchmark datasets, as will be discussed next.

Difference from existing works with multiple discriminators We highlight the difference between our work and existing works that also uses multiple discriminators [36, 12, 2]: i) we use augmented data to train multiple discriminators, ii) we propose the DAG architecture with invertible transformations that preserve the JS divergence as the original GAN. Furthermore, our DAG is simple to implement on top of any GAN models and potentially has no limits of augmentation techniques or number discriminators to some extent. Empirically, the more augmented data DAG uses (adhesive to the higher number of discriminators), the better FID scores it gets.

6 Experiments

We first conduct the ablation study on DAG, then investigate the influence of DAG across various augmentation techniques on two state-of-the-art baseline models: SS-GAN [5] and Dist-GAN [44]. Finally, we introduce our best system by making use of DAG on top of a recent GAN system to compare to the state of the art. See the details of model training parameters and experimental setup in Appendix C.2.

Evaluation. We perform extensive experiments on datasets: CIFAR-10, STL-10, and Stacked MNIST. We measure the diversity/quality of generated samples via FID [19] for CIFAR-10 and STL-10. FID is computed with 10K real samples and 5K generated samples as in [35] if not precisely mentioned. We report the best FID attained in 300K iterations as in [50, 30, 44, 51]. In FID figures, The horizontal axis is the number of training iterations, and the vertical axis is the FID score. We report the number of modes covered (#modes) and the KL divergence score on Stacked MNIST similar to [34].

6.1 Ablation study

We conduct the experiments to verify the importance of discriminator regularization, and JS preserving our proposed DAG. In this study, we mainly use Dist-GAN and SS-GAN as baselines and train on full (100%) CIFAR-10 dataset. For DAG, we use $K = 4$ rotations. As the study requires expensive computation, we prefer the small DC-GAN network (Refer to Appendix D for details). The network backbone has four conv-layers and 1 fully-connect (FC) layer.

The impacts of discriminator regularization We validate the importance of discriminator regularization (via shared weights) in DAG. We compare four variants of DAG: i) discriminators share no layers (None), ii) discriminators share
a half number of conv-layers (Half), which is two conv-layers in current model, iii) discriminators share all layers (All), iv) discriminators share all layers but FC (All but heads). As shown in Table 3, comparing to Baseline, DA, and IDA, we can see the impacts of shared weights in our DAG. This verifies the importance of discriminator regularization in DAG. In this experiment, two settings: “Half” and “All but heads”, achieve almost similar performance, but the latter is more memory-efficient, cheap and consistent to implement in any network configurations. Therefore, we choose “All but heads” for our DAG setting for the next experiments. Dist-GAN is the baseline for this experiment. Note that “All”-DAG and IDA are quite similar and have the same number of parameters, but thanks to JS preserving, “All”-DAG significantly outperforms IDA.

Table 3. The ablation study on discriminator regularization via number of shared layers in our DAG model. Baseline: Dist-GAN.

Shared layers	None	Half	All but heads	All	Baseline	DA	IDA
FID	28.6	23.9	23.7	26.0	29.6	49.0	29.7

The importance of JS preserving and the role of transformations in generator learning of DAG First, we compare our DAG to IDA (see Table 3). The results suggest that IDA is not comparable to even the worst versions of DAG (None), which means that when JS divergence is not preserved (i.e., minimizing lower-bounds in the case of IDA), the performance is degraded. Second, we use DAG models with rotation as the baselines and remove branches T_k when training generator G (Fig. 12 of Section C.6 in supplementary), and others are kept exactly the same as DAG. The substantial degradation occurs as shown in Table 4. This confirms the significance of augmented samples in generator learning. Refer to Appendix C for studies of data augmentation (Appendix C.4) and the impact of the number of branches K (Appendix C.7).

Table 4. FID of DistGAN + DAG (rotation) and SS-GAN + DAG (rotation) with and without augmented samples in generator learning. “-G”: no augmented samples in G learning.

Methods	DistGAN+DAG	DistGAN+DAG (-G)	SSGAN+DAG	SSGAN+DAG (-G)
FID	23.7	30.1	25.2	31.5

6.2 Data Augmentation optimized for GAN

In this study, experiments are conducted mainly on the CIFAR-10 dataset. We use small DC-GAN architecture (Refer to Appendix D for details) to this study. We choose two state-of-the-art models: SS-GAN [5], Dist-GAN [44] as the baseline models. The popular augmentation techniques in Table 1 are used in the experiment. In addition to the full dataset (100%) of the CIFAR-10 dataset, we construct the subset with 25% of CIFAR-10 dataset (randomly selected) as another dataset for our experiments. This small dataset is to investigate how the models address the problem of limited data. We compare DAG to DA and
Baseline. **DA** is the classical way of applying GAN on the augmented dataset (similar to Section 4 of our toy example) and **Baseline** is training GAN models on the original dataset. Fig. 10 and Fig. 11 (of Section C.3 in supplementary) present the results on the full dataset (100%) and 25% of datasets respectively. Figures in the first row are with the SS-GAN, and figures in the second row are with the Dist-GAN. SS-GAN often diverges at about 100K iterations; therefore, we report its best FID within 100K. We summarize the best FID of these figures into Tables 5.

Table 5. Best FID of SS-GAN (above) and Dist-GAN (below) baseline, DA and DAG methods on the CIFAR-10 dataset. FlipRot = Flipping + Rotation. We use K = 4 for all experiments (including FlipRot) as discussed in Table 1 for a fair comparison.

Data size	Baseline	DA	DAG	DA	DAG	DA	DAG	DA	DAG		
100%	28.0	31.8	25.2	33.0	25.9	45.7	23.9	122.6	26.3	31.7	25.2
25%	49.4	39.6	38.7	37.1	40.0	48.8	39.2	157.3	42.7	36.4	40.1
100%	29.6	49.0	23.7	40.1	25.0	55.3	24.2	134.6	25.5	42.1	23.3
25%	46.2	47.4	35.2	44.4	31.4	60.6	30.6	163.8	38.5	41.4	30.3

First, we observe that applying DA for GAN does not support GAN to learn \(P_d \) better than Baseline, despite few exceptions with SS-GAN on the 25% dataset. Mostly, the distribution learned with DA is too different from the original one; therefore, the FIDs are often higher than those of the Baselines. In contrast, DAG improves the two Baseline models substantially with all augmentation techniques on both datasets.

Second, all of the augmentation techniques used with DAG improve both SS-GAN and Dist-GAN on two datasets. For 100% dataset, the best improvement is with the Fliprot. For the 25% dataset, Fliprot is competitive compared to other techniques. It is consistent with our theoretical analysis, and the invertible method like Fliprot is mostly recommended. The translation with zero-padding pixels (non-invertible) has the least suggestion. Although the cropping is non-invertible, utilizing this technique in our DAG still enables substantial improvements from the Baseline. This result further corroborates the effectiveness of our proposed model that fits with various data augmentation techniques, even non-invertible ones.

Third, GAN gets more fragile when training with fewer data, i.e., 25% of the dataset. Specifically, on the full dataset GAN models converge stably, on the small dataset they both suffer the divergence and mode collapse problems, especially SS-GAN. It is along with recent observations [48][10][13], the more data GAN model trains, the higher quality it gets. In the case of limited data, the performance gap between DAG versus DA and Baseline is even larger. Encouragingly, with only 25% of the dataset, Dist-GAN + DAG with FlipRot still achieves similar FID scores as that of Baseline trained on the full dataset. DAG brings more significant improvements with Dist-GAN over SS-GAN. This sug-
Towards Good Practices for Data Augmentation in GAN Training

6.3 Comparison to state-of-the-art GAN

Previous sections suggest that FlipRot is our best augmentation and guarantees the convergence of GAN. In this section, we adopt this technique in our DAG and combine with SS-DistGAN [46], an improved version of DistGAN. We indicate this combination (SS-DistGAN + DAG) with FlipRot as our best system to compare to state-of-the-art methods. We also report (SS-DistGAN + DAG) with rotation to compare with previous works [5,46] for fairness. We highlight the main results as follows.

Table 6. FID scores with ResNet [35] on CIFAR-10 and STL-10 datasets. The FID scores are extracted from the respective papers when available. ‘*: 10K-10K FID is computed as in [5]. ‘+’: 50K-50K FID is computed. All compared GANs are unconditional, except SAGAN and BigGAN. R: rotation and F+R: FlipRot.

Methods	CIFAR-10	STL-10	CIFAR-10*
SN-GAN [35]	21.70 ± .21	40.10 ± .50	19.73
SS-GAN [5]	-	-	15.65
DistGAN [44]	17.61 ± .30	28.50 ± .49	13.01
GN-GAN [45]	16.47 ± .28	-	-
MMD GAN+ [47]	-	37.63+	16.21+
Auto-GAN+ [16]	-	31.01+	12.42+
MS-DistGAN [46]	13.90 ± .22	27.10 ± .34	11.40
SAGAN [53] (cond.)	13.4	-	-
BigGAN [4] (cond.)	14.73	-	-
Ours (R)	**13.72 ± .15**	**25.69 ± .15**	**11.35**
Ours (F+R)	**13.20 ± .19**	**25.56 ± .15**	**10.89**

Image Quality/Diversity on Natural Image Datasets

We report our performance on natural images datasets: CIFAR-10, STL-10 (resized into 48 × 48 as in [35]). We investigate the performance of our best system. We use ResNet [18,35] (refer to Appendix D) with “hinge” loss as it attains better performance than standard “log” loss [35]. We compare our proposed method to other state-of-the-art unconditional and conditional GANs. We emphasize that our proposed method is unconditional and does not use any labels.

Main results are shown in Table 6. The best FID attained in 300K iterations are reported as in [50,30,44,51]. The ResNet is used for the comparison. We report our best system (SS-DistDAN + DAG) with Rotation and FlipRot. The out-performance over state-of-the-art GAN confirms the effectiveness of our proposed system.

In Table 6 we compare our FID to those of SAGAN [53] and BigGAN [4] (the current state-of-the-art conditional GANs). We perform the experiments under the same conditions using ResNet backbone on the CIFAR-10 dataset. The FID of SAGAN is extracted from [46]. For BigGAN, we extract the best
FID from the original paper. Although our method is unconditional, our best FID approaches these state-of-the-art conditional GAN. Generated images using our system can be found in Figures 9 of Appendix B. Refer to Appendix C.8 for discussion about the execution time of DAG.

Mode collapse on Stacked MNIST We evaluate the stability of our best system and the diversity of its generator on Stacked MNIST [34]. Each image of this dataset is synthesized by stacking any three random MNIST digits. We follow the same setup with tiny architectures $K = \{\frac{1}{2}, \frac{1}{4}\}$ and evaluation protocol of [34]. K indicates the size of the discriminator relative to the generator. We measure the quality of methods by the number of covered modes (higher is better) and KL divergence (lower is better) [34]. For this dataset, we report for our performance and compare to previous works as in Table. 7. The numbers show our proposed system outperforms the state of the art for both metrics. The results are computed from eight runs with the best parameters obtained via the same parameter as previous experiments.

Methods	$K=\frac{1}{4}$ #modes	KL	$K=\frac{1}{2}$ #modes	KL
Unrolled GAN [34]	372.2 ± 20.7	4.66 ± 0.46	817.4 ± 39.9	1.43 ± 0.12
WGAN-GP [18]	640.1 ± 136.3	1.97 ± 0.70	772.4 ± 146.5	1.35 ± 0.55
Dist-GAN [44]	859.5 ± 68.7	1.04 ± 0.29	917.9 ± 69.6	1.06 ± 0.23
Pro-GAN [22]	859.5 ± 36.2	1.05 ± 0.09	919.8 ± 35.1	0.82 ± 0.13
MS-DistGAN [46]	926.7 ± 32.65	0.78 ± 0.13	976.0 ± 10.0	0.52 ± 0.07
Ours (R)	947.4 ± 36.3	0.68 ± 0.14	983.7 ± 9.7	0.42 ± 0.11
Ours (F+R)	972.9 ± 19.0	0.57 ± 0.12	981.5 ± 15.2	0.49 ± 0.15

Table 7. Comparing to state-of-the-art methods: Unrolled GAN [34], WGAN-GP [18], Dist-GAN [44], Pro-GAN [22], MS-DistGAN [46] on Stacked MNIST with tiny $K=\frac{1}{4}$ and $K=\frac{1}{2}$ architectures [34]. R: rotation and F+R: fliprot.

7 Conclusion

We propose a Data Augmentation optimized GAN (DAG) framework to improve GAN learning to capture the distribution of the original dataset. Our DAG can leverage the various data augmentation techniques to improve the learning stability of the discriminator and generator. We provide theoretical and empirical analysis to show that our DAG preserves the Jensen-Shannon (JS) divergence of original GAN with invertible transformations. Our theoretical and empirical analyses support the improved convergence of our design. Our proposed model can be easily incorporated into existing GAN models. Experimental results suggest that they help boost the performance of baselines implemented with various network architectures on the CIFAR-10, STL-10, and Stacked-MNIST datasets. The best version of our proposed method establishes state-of-the-art FID scores on all these benchmark datasets. Our system is potentially applied to resolve the data issue for GAN in many applications i.e., medical images where unlabeled data is difficult to obtain.
References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
http://tensorflow.org/, software available from tensorflow.org
2. Albuquerque, I., Monteiro, J., Doan, T., Considine, B., Falk, T., Mitliagkas, I.: Multi-objective training of generative adversarial networks with multiple discriminators. arXiv preprint arXiv:1901.08680 (2019)
3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. ICML (2017)
4. Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
5. Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised gans via auxiliary rotation loss. In: CVPR (2019)
6. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 2172–2180 (2016)
7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Info-gan: Interpretable representation learning by information maximizing generative adversarial nets. In: NIPS. pp. 2172–2180 (2016)
8. Dao, T., Gu, A., Ratner, A.J., Smith, V., De Sa, C., Ré, C.: A kernel theory of modern data augmentation. Proceedings of machine learning research 97, 1528 (2019)
9. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)
10. Donahue, J., Simonyan, K.: Large scale adversarial representation learning. arXiv preprint arXiv:1907.02544 (2019)
11. Dumoulin, V., Belghazi, I., Poole, B., Lamb, A., Arjovsky, M., Mastropietro, O., Courville, A.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)
12. Durugkar, I., Gemp, I., Mahadevan, S.: Generative multi-adversarial networks. arXiv preprint arXiv:1611.01673 (2016)
13. Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)
14. Ghosh, A., Kulharia, V., Namboodiri, V.P., Torr, P.H., Dokania, P.K.: Multi-agent diverse generative adversarial networks. In: CVPR (2018)
15. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. ICLR (2018)
16. Gong, X., Chang, S., Jiang, Y., Wang, Z.: Autogan: Neural architecture search for generative adversarial networks. In: ICCV (2019)
17. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS. pp. 2672–2680 (2014)
18. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: Advances in Neural Information Processing Systems. pp. 5767–5777 (2017)
19. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems. pp. 6626–6637 (2017)
20. Hoang, Q., Nguyen, T.D., Le, T., Phung, D.: Mgan: Training generative adversarial nets with multiple generators (2018)
21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. CVPR (2017)
22. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)
23. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
24. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
25. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of sciences (2017)
26. Kodali, N., Abernethy, J., Hays, J., Kira, Z.: On convergence and stability of gans. arXiv preprint arXiv:1705.07215 (2017)
27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
28. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)
29. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
30. Li, C.L., Chang, W.C., Cheng, Y., Yang, Y., Póczos, B.: Mmd gan: Towards deeper understanding of moment matching network. In: NIPS (2017)
31. Liu, K.: Varying k-lipschitz constraint for generative adversarial networks. arXiv preprint arXiv:1803.06107 (2018)
32. Liu, X., Hsieh, C.J.: Rob-gan: Generator, discriminator and adversarial attacker. In: CVPR (2019)
33. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I.: Adversarial autoencoders. In: International Conference on Learning Representations (2016)
34. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. ICLR (2017)
35. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. ICLR (2018)
36. Nguyen, T., Le, T., Vu, H., Phung, D.: Dual discriminator generative adversarial nets. In: NIPS (2017)
37. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
38. Petzka, H., Fischer, A., Lukovnicov, D.: On the regularization of wasserstein gans. arXiv preprint arXiv:1709.08894 (2017)
39. Qiao, Y., Minematsu, N.: A study on invariance of f-divergence and its application to speech recognition. IEEE Transactions on Signal Processing 58(7), 3884–3890 (2010)
40. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

41. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

42. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: Advances in Neural Information Processing Systems. pp. 2018–2028 (2017)

43. Thanh-Tung, H., Tran, T., Venkatesh, S.: On catastrophic forgetting and mode collapse in generative adversarial networks. In: Workshop on Theoretical Foundation and Applications of Deep Generative Models (2018)

44. Tran, N.T., Bui, T.A., Cheung, N.M.: Dist-gan: An improved gan using distance constraints. In: ECCV (2018)

45. Tran, N., Bui, T., Chueng, N.: Improving gan with neighbors embedding and gradient matching. In: AAAI (2019)

46. Tran, N.T., Tran, V.H., Nguyen, B.N., Yang, L., Cheung, N.M.: Self-supervised gan: Analysis and improvement with multi-class minimax game. In: NeurIPS (2019)

47. Wang, W., Sun, Y., Halgamuge, S.: Improving mmd-gan training with repulsive loss function. arXiv preprint arXiv:1812.09916 (2018)

48. Wang, Y., Wu, C., Herranz, L., van de Weijer, J., Gonzalez-Garcia, A., Raducanu, B.: Transferring gans: generating images from limited data. In: ECCV (2018)

49. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding data augmentation for classification: when to warp? In: 2016 international conference on digital image computing: techniques and applications (DICTA)

50. Xiang, S., Li, H.: On the effects of batch and weight normalization in generative adversarial networks. arXiv preprint arXiv:1704.03971 (2017)

51. Yazıcı, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The unusual effectiveness of averaging in gan training. arXiv preprint arXiv:1806.04498 (2018)

52. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. arXiv preprint arXiv:1703.04200 (2017)

53. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018)

54. Zhang, H., Xu, T., Li, H., Zhang, S., Wang, X., Huang, X., Metaxas, D.N.: Stack-gan: Text to photo-realistic image synthesis with stacked generative adversarial networks. In: CVPR (2017)

55. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
A Appendix A

A.1 Theoretical Analysis on DA

Generally, let $T = \{T_1, T_2, \ldots, T_K\}$ be the set of augmentation techniques to apply on the original dataset. P_d is the distribution of original dataset. $P_{\mathcal{T}d}$ is the distribution of the augmented dataset. Training GAN \cite{17} on this new dataset, the generator is trained via minimizing the JS divergence between its distribution P_g and $P_{\mathcal{T}d}$ as following (The proof is similar in \cite{17}).

$$\mathcal{V}(D^*, G) = -\log(4) + 2 \cdot \text{JS}(P_{\mathcal{T}d} || P_g)$$ \hspace{1cm} (10)

where D^* is the optimal discriminator. Assume that the optimal solution can be obtained: $P_g = P_{\mathcal{T}d}$.

A.2 Proofs for theorems

Theorem \cite{1} (Restate). Let $p_x(x)$ and $q_x(x)$ are two distributions in space X. Let $T : X \to Y$ (linear or nonlinear) is differentiable and invertible mapping function (diffeomorphism) that transform x to y. Under transformation T, distributions $p_x(x)$ and $q_x(x)$ are transformed to $p_y(y)$ and $q_y(y)$, respectively. Therefore,

$$dy = |J(x)| dx \hspace{1cm} (11)$$

$$p_y(y) = p_y(T(x)) = p_x(x)|J(x)|^{-1} \hspace{1cm} (12)$$

$$q_y(y) = q_y(T(x)) = q_x(x)|J(x)|^{-1} \hspace{1cm} (13)$$

where $|J(x)|$ is the determinant of the Jacobian matrix of T. From (12) and (13), we have:

$$p_y(y) + q_y(y) = p_x(x)|J(x)|^{-1} + q_x(x)|J(x)|^{-1} \hspace{1cm} (14)$$

Let $m_y = \frac{p_y + q_y}{2}$ and $m_x = \frac{p_x + q_x}{2}$. From (14), we have equations:

$$m_y(y) = \frac{p_y(y) + q_y(y)}{2} = \frac{p_x(x)|J(x)|^{-1} + q_x(x)|J(x)|^{-1}}{2}$$

$$= \frac{p_x(x) + q_x(x)}{2} |J(x)|^{-1} \hspace{1cm} (15)$$

Since $m_x(x) = \frac{p_x(x) + q_x(x)}{2}$, then,

$$m_y(y) = m_x(x)|J(x)|^{-1} \hspace{1cm} (16)$$

From (12), (13) and (16), we continue our proof as follows:
Theorem 2. Considering two mixtures of distributions: \(p = \sum_{m=1}^{K} w_m p^m \) and \(q = \sum_{m=1}^{K} w_m q^m \). We have:

\[
JS(p||q) \leq \sum_{m=1}^{K} w_m JS(p^m||q^m)
\]

Proofs. JS divergence is defined by:

\[
JS(p||p) = \frac{1}{2} KL(p||\frac{p+q}{2}) + \frac{1}{2} KL(q||\frac{p+q}{2})
\]

From \(p = \sum_{m=1}^{K} w_m p^m \) and \(q = \sum_{m=1}^{K} w_m p^m \), we have:

\[
\frac{p+q}{2} = \frac{\sum_{m=1}^{K} w_m p^m + \sum_{m=1}^{K} w_m q^m}{2} = \sum_{m=1}^{K} w_m \frac{p^m + q^m}{2}
\]

Using the log-sum inequality: Given \(a_i \geq 0, b_i \geq 0, \forall i \), we have: \(\sum_{i=1}^{K} a_i \log \frac{a_i}{b_i} \geq (\sum_{i=1}^{K} a_i) \log \frac{\sum_{i=1}^{K} a_i}{\sum_{i=1}^{K} b_i} \). We obtain the upper-bound of KL divergence as follows:
\[
 KL(p \parallel \frac{p + q}{2}) = KL(\sum_{m=1}^{K} w_m p^m \parallel \sum_{m=1}^{K} w_m \frac{(p^m + q^m)}{2})
\]
\[
\leq \sum_{m=1}^{K} KL(w_m p^m \parallel w_m \frac{(p^m + q^m)}{2}) \tag{21}
\]

With equality if and only if \(\frac{w_m p^m}{w_m p^m + w_m q^m} = \frac{p^m}{p^m + q^m} \) are equals for all \(m \).

Similarly,
\[
 KL(q \parallel \frac{p + q}{2}) = KL(\sum_{m=1}^{K} w_m q^m \parallel \sum_{m=1}^{K} w_m \frac{(p^m + q^m)}{2})
\]
\[
\leq \sum_{m=1}^{K} KL(w_m q^m \parallel w_m \frac{(p^m + q^m)}{2}) \tag{22}
\]

From Eqs 19), 21), and 22), we have:

\[
 JS(p \parallel q)
\]
\[
\leq \frac{1}{2} \sum_{m=1}^{K} KL(w_m p^m \parallel w_m \frac{(p^m + q^m)}{2}) + \frac{1}{2} \sum_{m=1}^{K} KL(w_m q^m \parallel w_m \frac{(p^m + q^m)}{2})
\]
\[
= \frac{1}{2} \sum_{m=1}^{K} KL(w_m p^m \parallel w_m \frac{(p^m + q^m)}{2}) + KL(w_m q^m \parallel w_m \frac{(p^m + q^m)}{2})
\]
\[
= \sum_{m=1}^{K} JS(w_m p^m \parallel w_m q^m) = \sum_{m=1}^{K} w_m JS(p^m \parallel q^m) \tag{23}
\]

That concludes our proof.

Theorem 3. Considering two distributions \(p, q \) like Theorem 2 and assume that \(\sum_{m=1}^{K} w_m = 1 \). If distributions \(p^m \) and \(q^m \) are distributions of \(p^0 \) and \(q^0 \) transformed by invertible transformations \(T_m \) respectively, we have:

\[
 JS(p \parallel q) \leq JS(p^0 \parallel q^0) \tag{24}
\]

Proofs. From Theorem 1 of invertible transformation \(T_m \), we have \(JS(p^0 \parallel q^0) = JS(p^m \parallel q^m) \). Substituting this into the Theorem 2: \(JS(p \parallel q) \leq \sum_{m=1}^{K} w_m JS(p^0 \parallel q^0) = (\sum_{m=1}^{K} w_m)JS(p^0 \parallel q^0) = JS(p^0 \parallel q^0) \). It concludes the proof.

In our case that, we assume that \(p, q \) are mixtures of distributions that are inputs of IDA method (discussed in Section 5.3) and \(p^0 = P_d, q^0 = P_g \). In fact, the
mixture of transformed samples has the form of distributions as discussed in Theorem 3 (refer to Theorem 4 for the proofs). According to Theorem 3, IDA method is minimizing the lower-bound of JS divergence instead of the exact divergence of $\text{JS}(P_d||P_g)$.

Theorem 4. Let the sets of examples \mathcal{X}^m have distributions p^m respectively, $m = 1, \ldots, K$. Assume that the set \mathcal{X} merges all samples of $\{\mathcal{X}^m\}$: $\mathcal{X} = \{\mathcal{X}^1, \ldots, \mathcal{X}^K\}$ has the distribution p. Prove that the distribution p can represented as the combination of distributions of its subsets: $p(x) = \sum_{m=1}^K w_m p^m(x)$, $\sum_{m=1}^K w_m = 1$, $w_m \geq 0$.

Proofs.
- The statement holds for $K = 1$, since we have: $p = p_1$, $w_1 = \sum_{m=1}^K w_m = 1$.
- For $K = 2$, let $\mathcal{X} = \{\mathcal{X}^1, \mathcal{X}^2\}$. We consider two cases:
 a. If \mathcal{X}^1 and \mathcal{X}^2 are disjoint ($\mathcal{X}^1 \cap \mathcal{X}^2 = \emptyset$). Clearly, p can be represented:

$$p(x) = \frac{p(x|\mathcal{X}^1)}{w_1} p_1 + \frac{p(x|\mathcal{X}^2)}{w_2} p_2 \tag{25}$$

where $p(x|\mathcal{X}^k)$ is the probability that $x \in \mathcal{X}$ is from the subset \mathcal{X}^k, therefore $w_1 + w_2 = \sum_{m=1}^K w_m = 1$. The statement holds.

b. If \mathcal{X}^1 and \mathcal{X}^2 are intersection. Let $\mathcal{X}^1 \cap \mathcal{X}^2 = A$. The set can be re-written: $\mathcal{X} = \{\mathcal{X}^1\backslash A, \mathcal{X}^2\backslash A, A\} = \{\mathcal{X}^1\backslash A, \mathcal{X}^2\backslash A, A, A\}$, where $\mathcal{X}^1\backslash A$ and $\mathcal{X}^2\backslash A$ are also disjoint. Therefore, p can be represented like Eq. (25)

$$p(x) = \frac{p(x|\mathcal{X}^1\backslash A)}{w_1} p_{12-A}(x) + \frac{p(x|A)}{w_2} p^A(x) \tag{26}$$

Note that since $\mathcal{X}^1\backslash A$ (assume that it has distribution p^{1-A}) and $\mathcal{X}^2\backslash A$ (assume that it has distribution p^{2-A}) are disjoint. Therefore, p^{12-A} can be written: $p^{12-A}(x) = p^{12-A}(x|\mathcal{X}^1\backslash A)p^{1-A}(x) + p^{12-A}(x|\mathcal{X}^2\backslash A)p^{2-A}(x)$. Substituting this into Eq. (26), we have:

$$p(x) = \frac{p(x|\mathcal{X}^{12-A})}{w_1} p^{12-A}(x) + \frac{p(x|A)}{w_2} p^A(x) \tag{27}$$

Since two pairs ($\mathcal{X}^1\backslash A$ and A) and ($\mathcal{X}^2\backslash A$ and A) are also disjoint. Therefore, p^1 and p^2 can be represented:

$$p^1(x) = \frac{p^1(x|\mathcal{X}^1\backslash A)}{w_1} p^{1-A}(x) + \frac{p^1(x|A)}{w_2} p^A(x) \tag{28}$$

$$p^2(x) = \frac{p^2(x|\mathcal{X}^2\backslash A)}{w_1} p^{2-A}(x) + \frac{p^2(x|A)}{w_2} p^A(x) \tag{29}$$
Note that:

\[
p(x|\mathcal{X}^{1-A}) \ast p^{12-A}(x|\mathcal{X}^{1-A}) = p(x|\mathcal{X}^{1-A}) = p^1(x|\mathcal{X}^{1-A}) \ast p(x|\mathcal{X}^1)
\] (30)

\[
p(x|\mathcal{X}^{12-A}) \ast p^{12-A}(x|\mathcal{X}^{2-A}) = p(x|\mathcal{X}^{2-A}) = p^2(x|\mathcal{X}^{2-A}) \ast p(x|\mathcal{X}^2)
\] (31)

From (28), (29), (30), (31), the Eq. (27) is re-written:

\[
p(x) = \underbrace{p(x|\mathcal{X}^1)}_{w_1} p^1(x) + \underbrace{p(x|\mathcal{X}^2)}_{w_2} p^2(x)
\] (32)

The statement holds for \(K = 2 \).

* Assume the statement holds with \(K = k, k > 2: \mathcal{X} = \{\mathcal{X}^1, \ldots, \mathcal{X}^k\} \) and \(p = \sum_{m=1}^{k} w_m p^m, \sum_{m=1}^{k} w_m = 1 \). We will prove the statement holds for \(K = k + 1 \).

Let \(\mathcal{X} = \{\mathcal{X}^1, \ldots, \mathcal{X}^k, \mathcal{X}^{k+1}\} \). Assume that \(\mathcal{X}^{1:k} \) has distribution \(p^{1:k} \) and \(\mathcal{X}^{k+1} \) has distribution \(p^{k+1} \). Thus,

\[
p(x) = (1 - w_{k+1}) p^{1:k}(x) + w_{k+1} p^{k+1}(x)
\]

\[
= (1 - w_{k+1}) \left(\sum_{m=1}^{k} w_m p^m(x) \right) + w_{k+1} p^{k+1}(x)
\] (33)

\[
= \sum_{m=1}^{k+1} w'_m p^m(x)
\]

where \(w'_m = (1 - w_{k+1}) \ast w_m, m \leq k \), and \(w'_m = w_{k+1}, m = k + 1 \). Clearly, \(\sum_{m=1}^{k+1} w'_m = 1 \). That concludes our proof.

B Appendix B

B.1 DAG model diagrams

Figures 4 and 5 present model diagrams of applying DAG for DistGAN and SSGAN baselines respectively. We keep the components of the original baseline models and only apply our DAG with branches of \(T_k \) for the generators and discriminators. From these diagrams, it is clear that the DAG paths are the same as that for the vanilla GAN as shown in Figure 3 of our main paper: DAG involves a stack of real/fake discriminators for transformed samples. These examples show that the same DAG design is generally applicable to other GAN models.
Towards Good Practices for Data Augmentation in GAN Training

Fig. 4. Applying our DAG for SSGAN model. R_k, $k = 1 \ldots 4$ are the rotation techniques (0°, 90°, 180°, 270°) and the classifier C used in the self-supervised task of the original SSGAN. Refer to [5] for details of SSGAN. We apply T_k, $k = 1 \ldots K$ as the augmentation techniques for our DAG. Note that the DAG paths (bottom-right) are in fact the same as that for the vanilla GAN as shown in Figure 3 of our main paper: DAG involves a stack of real/fake discriminators for transformed samples. This shows that the same DAG design is generally applicable to other GAN models.

Fig. 5. Our DAG applied for DistGAN model (Refer to [44] for the details). Here, we emphasize the difference is the DAG with T_k branches. T_k are the augmentation techniques used in our DAG. Furthermore, we note that the DAG paths (bottom-right) are in fact the same as that for the vanilla GAN as shown in Figure 3 of our main paper: DAG involves a stack of real/fake discriminators for transformed samples. This shows that the same DAG design is generally applicable to other GAN models.
Fig. 6. The screenshots of demo videos of GAN (top) and GAN + DAG (bottom). For each screenshot, the first window shows the discriminator loss (blue) and generator loss (green), and the second window are the data samples (green) and the generated samples (red) and the discriminator scores (blue). The third window of DAG screenshot shows the transformed distributions: $y = 0.1x$ and $y = 0.5x$. Our GAN + DAG at the best time can capture the entire data distribution.
Fig. 7. The generated examples of toy experiment on the full dataset (100%). First column: the real samples and real augmented samples. Second column: generated samples. First row: the real samples, the generated samples of the GAN baseline. Second row: flipped real samples, and the generated samples of DA with flipping. Third row: the cropped real samples and the generated samples of DA with cropping.
B.2 Generated examples on MNIST dataset

Figure 7 shows more generated samples for the toy example with DA methods (flipping and cropping) on MNIST dataset (please refer to Section 4 of our main paper). In the first row are with the real samples and the generated samples of the Baseline. The second row is with flipped real samples and the generated samples of DA with flipping. The last row is with the cropped real samples and the generated samples of DA with cropping.

B.3 Generated examples on CIFAR-10 and STL-10 datasets

Examples of transformed real samples. Figure 8 illustrates examples of transformed real samples we used to augment our training CIFAR-10 dataset. From left to right and top to bottom are with the original real samples, the rotated real samples, the flipped real samples, the translated real samples, the cropped real samples, and the flipped+rotated real samples.

Generated samples. Fig. 9 shows the generated examples of our best system (SS-DistGAN + DAG with flipping+rotation). The left column is with the real samples, and the right column is with our generated samples. The first row is with CIFAR-10 and the second row is with STL-10.

C Appendix C

C.1 Toy example on MNIST dataset

We train the model with 200K iterations using small DCGAN architecture similar to [18]. We compute the 10K-10K Fréchet Inception Distance (FID) [19] (using a pre-trained MNIST classifier) to measure the similarity between the generator distributions and the distribution of the original dataset. For a fair comparison, we use K = 4 for all augmentation methods.

C.2 Model training

We use batch size of 64 and the latent dimension of $d_z = 128$ in most of our experiments (except in Stacked MNIST dataset, we have to follow the latent dimension as in [34]). We train models using Adam optimizer with learning rate $\text{lr} = 2 \times 10^{-4}$, $\beta_1 = 0.5$, $\beta_2 = 0.9$ for DCGAN backbone [40] and $\beta_1 = 0.0$, $\beta_2 = 0.9$ for Residual Network (ResNet) backbone [18]. We use linear decay over 300K iterations for ResNet backbone like [18]. We use our best parameters: $\lambda_u = 0.2$, $\lambda_v = 0.2$ for SS-GAN and $\lambda_u = 0.2$, $\lambda_v = 0.02$ for Dist-GAN. We follow [5] to train the discriminator with two critics to obtain the best performance for SS-GAN baseline. For fairness, we implement DAG with $K = 4$ branches for all augmentation techniques, and the number of samples in each training batch are equal for DA and DAG. In our implementation, $N_t = 5$ pixels for translation and the cropping scale $N_c = 0.75$ for cropping (Table 1).
Fig. 8. Examples of real and transformed real samples of CIFAR-10 used to train DA and DAG. Figures from left to right and top to bottom: the real samples, the rotated real samples, the flipped real samples, the translated real samples, the cropped real samples, and the flipped+rotated real samples.
Fig. 9. Real (left) and generated (right) examples by our best system on CIFAR-10 (first row) and STL-10 (second row).
C.3 DA vs. DAG on 25% datasets

Figs. 10 and 11 present the results on the 25% of datasets of DA and DAG methods with two baselines: SS-GAN (top row) and Dist-GAN (bottom row).

Fig. 10. Comparing DA and our proposed DAG with SS-GAN [5] (first row) and Dist-GAN [44] (second row) baselines on full dataset (100%). Left to right columns: rotation, flipping, cropping, translation, and flipping+rotation. The horizontal axis is the number of training iterations, and the vertical axis is the FID score.

Fig. 11. Comparing DA and our proposed DAG with SS-GAN [5] (first row) and Dist-GAN [44] (second row) baselines on 25% of dataset. Left to right columns: rotation, flipping, cropping, translation, and flipping+rotation. The horizontal axis is the number of training iterations, and the vertical axis is the FID score.

C.4 The importance of data augmentation in our DAG

Tables 8 and 9 represent the complementary results of other DAG methods to the MD variant (Baseline + MD is similar to Baseline + DAG and they have the same number of parameters except that T_k are removed). We use K = 4 branches for all DAG methods. The experiments are with two baseline models: DistGAN and SSGAN. We train DistGAN + MD and SS-GAN + MD on full
Using MD indeed slightly improves the performance of Baseline, but the performance is substantially improved further as adding any augmentation technique (DAG). *This study strongly verifies the importance of augmentation techniques and our DAG in the improvements of GAN baseline models.* We use small DCGAN (Appendix D) for this experiment.

Table 8. FID of DistGAN + MD compared with DistGAN Baseline and our DistGAN + DAG methods.

Methods	FID
DistGAN	29.6
DistGAN + MD (rotation)	23.7
DistGAN + DAG (flipping)	25.0
DistGAN + DAG (cropping)	24.2
DistGAN + DAG (translation)	25.5
DistGAN + DAG (flipping+rotation)	23.3

Table 9. FID of SSGAN + MD compared with SSGAN Baseline and our SSGAN + DAG methods.

Methods	FID
SSGAN	28.0
SSGAN + MD (rotation)	25.2
SSGAN + DAG (flipping)	25.9
SSGAN + DAG (cropping)	23.9
SSGAN + DAG (translation)	26.3
SSGAN + DAG (flipping+rotation)	25.2

C.5 DAG in perspective of GAN training

In the perspective of GAN training, because of that D and $\{D_k\}$ shared weights (i.e., all layers but heads is our practical implementation, refer to Section 6.1), it is more difficult to train multiple discriminators of DAG to concurrently reach the same optimal than the single discriminator of original GAN in the optimization. As a result, some discriminators can be less optimal or be weaker regarding discriminative power. These weaker discriminators, which could be more easily confused by the generator, provide good gradients for the generator learning.
Towards Good Practices for Data Augmentation in GAN Training

Thus, healthy interactions between discriminators and the generator are consistently maintained during training. Furthermore, the system makes use of the transformed samples to improve the learning of the generator, i.e., the generator is improved via multiple feedbacks from the discriminators.

To validate healthy interaction between the discriminators and generator of DAG, we set up the 1D toy examples with standard GAN baseline, and add the DAG into GAN. The demo videos (GAN: demo_gan_baseline.mp4, GAN + DAG: demo_gan_dag.mp4) are attached to the supplementary material. The best screenshots of video frames are shown in Fig. 6. The data distribution P_d and the generator distribution P_g are in the green and red colors (in the second window). The standard GAN has gradient vanishing issues and the generator gets stuck at the local minimum. In contrast, when adding our DAG with invertible transformations (two paths: $y = 0.1x$, $y = 0.5x$) into GAN, the new model (GAN + DAG), by the discriminator regularization, overcomes the gradient vanishing issue and can even capture exact data distribution at some times thanks to the JS preserving. Note that two compared methods use the same small backbone networks (two fully connected layers, four neurons per hidden layer) and are in the same initial condition. This example at certain degree verifies the importance of multiple JS divergences (with two principles: discriminator regularization and JS preserving) in our proposed model which enables GAN to learn better the data distribution.

C.6 The importance of transformations in generator learning of DAG

To validate the importance of transformation in generator learning of DAG, we remove T_k when training DAG for the generator as shown in Fig. 12. Note that we still train discriminator exactly as our DAG.

![Fig. 12. The modified models with K branches from DAG: k = 2,...,K without data augmentation in generator learning (represented by dot lines – note that these are used in training D_k).](image-url)
C.7 The ablation study on the number of branches \(K \) of DAG

We conduct the ablation study on the number of branches \(K \) in our DAG, we note that using large \(K \) is adhesive to combine more augmentations since each augmentation has the limit number of invertible transformations in practice, i.e. 4 for rotations (Table 1). The Dist-GAN + DAG model is used for this study. In general, we observe that the larger \(K \) is (by simply combining with other augmentations on top of the current ones), the better FID scores DAG gets as shown in Table 10. However, there is a trade-off between the accuracy and processing time as increasing the number of branches \(K \). (Refer to more details about the training time in Section C.8). We use small DCGAN (Appendix D) for this experiment.

Table 10. The ablation study on the number of branches \(K \) in our DAG model. We use Dist-GAN + DAG as the baseline for this study.

Number of branches	FID
\(K = 4 \) (1 identity + 3 rotations)	23.7
\(K = 7 \) (1 identity + 3 rotations + 3 flippings)	23.1
\(K = 10 \) (1 identity + 3 rotations + 3 flippings + 3 croppings)	22.4

C.8 Training time comparison

Our GAN models are implemented with the Tensorflow deep learning framework [1]. We measure the training time of DAG (\(K=4 \) branches) on our machine: Ubuntu 18.04, CPU Core i9, RAM 32GB, GPU GTX 1080Ti. We use DCGAN baseline (in Section 6.2) for the measurement. We compare models before and after incorporating DAG with SS-GAN and Dist-GAN. SS-GAN: 0.14 (s) per iteration. DistGAN: 0.11 (s) per iteration. After incorporating DAG, we have these training times: SS-GAN + DAG: 0.30 (s) per iteration and DistGAN-DAG: 0.23 (s) per iteration. The computation time is about 2\(\times \) higher with adding DAG (\(K = 4 \)) and about 5\(\times \) higher with adding DAG (\(K = 10 \)). Because of that, we propose to use \(K = 4 \) for most of the experiments which have a better trade-off between the FID scores and processing time and also is fair to compare to other methods. With \(K = 4 \), although the processing 2\(\times \) longer, DAG helps achieve good quality image generation, e.g. 25\% dataset + DAG has the same performance as 100\% dataset training, see our results of Dist-GAN + DAG with flipping+rotation. For most experiments in Section 6.2 we train our models on 8 cores of TPU v3 to speed up the training.
D Appendix D

D.1 DCGAN

We use the small DCGAN backbone for the study of data augmentation on CIFAR-10. Our DCGAN networks are presented in Table. 11 for the encoder, the generator, and the discriminator.

Table 11. Our DCGAN architecture is similar to [40] but the smaller number of feature maps (D = 64) to be more efficient for our ablation study on CIFAR-10. The Encoder is the mirror of the Generator. Slopes of lReLU functions are set to 0.2. \(U(0, 1) \) is the uniform distribution. \(M = 32 \). Discriminator for CIFAR-10: three different heads for GAN task and auxiliary tasks. \(K = 4 \) in our implementation.

Encoder for CIFAR-10	Generator for CIFAR-10
RGB image \(x \in \mathbb{R}^{M \times M \times 3} \)	z \(\in \mathbb{R}^{128} \sim U(0, 1) \)
5×5, stride=2 conv. 1 × D ReLU	dense \(\rightarrow 2 \times 2 \times 8 \times D \)
5×5, stride=2 conv. BN 2 × D ReLU	5×5, stride=2 deconv. BN 4 × D ReLU
5×5, stride=2 conv. BN 4 × D ReLU	5×5, stride=2 deconv. BN 2 × D ReLU
5×5, stride=2 conv. BN 8 × D ReLU	5×5, stride=2 deconv. BN 1 × D ReLU
dense \(\rightarrow 128 \)	5×5, stride=2 deconv. 3 Sigmoid

D.2 Residual Networks

Our Residual Networks (ResNet) backbones of the encoders, the generators and the discriminators for CIFAR-10 and STL-10 datasets are presented in Table. 12 and Table. 13 respectively (the same as in [35]).
Table 12. ResNet architecture for CIFAR10 dataset. The Encoder is the mirror of the Generator. We use similar architectures and ResBlock to the ones used in [35]. $\mathcal{U}(0,1)$ is the uniform distribution. Discriminator. K different heads for GAN task and auxiliary tasks. $K = 4$ in our implementation.

Encoder for CIFAR	Generator for CIFAR
RGB image $x \in \mathbb{R}^{32 \times 32 \times 3}$	$z \in \mathbb{R}^{128} \sim \mathcal{U}(0, 1)$
3×3 stride=1, conv. 256	dense, $4 \times 4 \times 256$
ResBlock down 256	ResBlock up 256
ResBlock down 256	ResBlock up 256
ResBlock down 256	ResBlock up 256
dense \rightarrow 128	BN, ReLU, 3×3 conv, 3 Sigmoid

Discriminator for CIFAR
RGB image $x \in \mathbb{R}^{32 \times 32 \times 3}$
ResBlock down 128
ResBlock down 128
ResBlock 128
ResBlock 128
ReLU
dense \rightarrow 1 (GAN task)
dense \rightarrow K - 1 (K - 1 augmented GAN tasks)
Table 13. ResNet architecture for STL-10 dataset. The Encoder is the mirror of the Generator. We use similar architectures and ResBlock to the ones used in [35]. $U(0, 1)$ is the uniform distribution. For discriminator, different heads for GAN task and auxiliary tasks. $K = 4$ in our implementation.

Encoder for STL-10	Generator for STL-10
RGB image $x \in \mathbb{R}^{48 \times 48 \times 3}$	$z \in \mathbb{R}^{128} \sim U(0, 1)$
3×3 stride=1, conv. 64	dense, 6×6×512
ResBlock down 128	ResBlock up 256
ResBlock down 256	ResBlock up 128
ResBlock down 512	ResBlock up 64
dense \rightarrow 128	BN, ReLU, 3×3 conv, 3 Sigmoid
RGB image $x \in \mathbb{R}^{48 \times 48 \times 3}$	**Generator for STL-10**
ResBlock down 64	**ResBlock down 64**
ResBlock down 128	**ResBlock down 128**
ResBlock down 256	**ResBlock down 256**
ResBlock down 512	**ResBlock down 512**
ResBlock 1024	**ResBlock 1024**
ReLU	**ReLU**
dense \rightarrow 1 (GAN task)	dense \rightarrow 1 (GAN task)
dense \rightarrow K - 1 (K - 1 augmented GAN tasks)	dense \rightarrow K - 1 (K - 1 augmented GAN tasks)
Discriminator for STL-10	**Discriminator for STL-10**