The ultimate goals of rotator cuff tear management are to relieve pain and restore shoulder function. Rehabilitation after surgical management is crucial to realize these goals and improve patient functional outcome, range of motion, and strength.9,14 Although rehabilitation protocols may differ widely among surgeons, there exist 2 central parameters that can differentiate protocols: timing of mobilization and continuous passive mobilization (CPM).

From the 9Department of Orthopaedic Surgery, University of Southern California Keck School of Medicine, Los Angeles, California. 9Address correspondence to Anthony Yi, BS, University of Southern California Keck School of Medicine, 1520 San Pablo Street, HCC II, Los Angeles, CA 90033 (e-mail: yi.anthony.m@gmail.com).

The authors report no potential conflicts of interest in the development and publication of this article.

DOI: 10.1177/1941738115576729

© 2015 The Author(s)
Currently, there is no consensus regarding the optimal timing of mobilization after arthroscopic rotator cuff repair. Some advocate early mobilization to prevent postoperative stiffness and subsequent decreased range of motion and function.\(^{16}\) Others advocate a delay in mobilization to avoid compromise of tendon healing and integrity. Tendon integrity remains a valid concern as the retear rate after arthroscopic rotator cuff repair has been reported to be as high as 94% for massive cuff tears.\(^{2,5,11}\) However, a variety of factors such as patient age and initial tear size are risk factors for recurrent tears.\(^{12,15}\) Additionally, debate exists regarding the use of CPM in rehabilitation protocols after arthroscopic rotator cuff repair. CPM may allow cautious early mobilization, an increase in collagen tissue healing with proper fiber orientation, and better functional outcomes after total knee arthroplasty.\(^{10,13}\) However, there is a lack of consensus regarding its effect on functional outcomes in arthroscopic rotator cuff repair.

Given the central role of rehabilitation, the authors conducted a qualitative systematic review to investigate the optimal timing of therapy and the use of CPM in rehabilitation after rotator cuff repair. The primary purpose was to review all level 1 and 2 studies that evaluated the clinical outcomes of early versus late mobilization and CPM versus manual therapy after arthroscopic rotator cuff repair to compare the efficacies of these approaches. The authors hypothesized that clinical outcomes between patients that undergo early versus late mobilization and between patients that undergo CPM versus manual therapy are not statistically different.

METHODS

Studies were included that met the following criteria: level 1 or 2 evidence, written in English, compared outcomes between patients undergoing early versus late mobilization or compared outcomes between patients undergoing rehabilitation with CPM versus manual therapy after primary arthroscopic rotator cuff repair, and detailed the rehabilitation protocol. Studies were excluded if they: had level 3, 4, or 5 evidence, were non-English articles, or maintained a significant difference between study groups in terms of demographic variables.

Literature Search

PubMed was used to find relevant articles, published between January 1980 and March 2014, on rehabilitation after arthroscopic rotator cuff repair using the keywords *rotator cuff, rotator cuff tears, lacerations,* and *rehabilitation.* General search terms were used to prevent the inadvertent neglect of potential studies. The references of all included studies were

Study	Level of Evidence	Study Type	Patients Enrolled, n	Patients at Final Follow-up, n	Mean Follow-up, mo	Average Age, y	Men	Women	Small Tear (<1 cm)	Medium Tear (1-3 cm)	Large Tear (3-5 cm)
Arndt et al\(^{1}\)	1	Early vs late mobilization	100	92	16	55	34	58	NR	NR	NR
Cuff and Pupello\(^{2}\)	1	Early vs late mobilization	68	68	12	63	38	30	NR	NR	NR
Düzgün et al\(^{4}\)	1	Early vs late mobilization	29	29	6	56	3	26	NR	12	17
Garofalo et al\(^{6}\)	1	CPM vs manual therapy	100	100	12	60	47	53	NR\(^{4}\)	NR\(^{4}\)	NR\(^{4}\)
Keener et al\(^{7}\)	1	Early vs late mobilization	145	114	24	55	73\(^{2}\)	51\(^{3}\)	NR	NR	NR
Kim et al\(^{8}\)	1	Early vs late mobilization	117	105	12	60	44	61	NR\(^{5}\)	NR\(^{5}\)	NR
Lee et al\(^{9}\)	1	CPM vs manual therapy	85	64	25	55	41	23	0	41	23

CPM, continuous passive mobilization; NR, not reported.

\(^{1}\)All had C2-C3\(^{18}\) rotator cuff tears (C2, <2 cm; C3, 3-4 cm).

\(^{2}\)Reflects patients who underwent surgery.

\(^{3}\)All were small- or medium-sized tears.
carefully reviewed for studies not identified by our literature search. Two independent reviewers reviewed the abstract of every article to determine the methods and subsequently reviewed all articles that met the aforementioned inclusion and exclusion criteria. The Consolidated Standards of Reporting Trials (CONSORT) 2010 checklist was used by both independent reviewers for quality appraisal of each randomized controlled study eligible for final inclusion.

Data Extraction

Level of evidence, study type, number of patients enrolled, number of patients at final follow-up, length of follow-up, age, sex, rotator cuff tear size, surgical technique, and concomitant operative procedures were extracted from included articles. Postoperative data included clinical outcome scores, visual analog score for pain, shoulder range of motion, strength, and rotator cuff retear rates (Table 1).

RESULTS

Literature Search

The literature search is detailed in Figure 1.

Patient Demographics

Patient demographics are available in Table 1. None of the studies investigating the use of CPM reported the effective
follow-up for each study group individually.6,9 Five studies included a study of homogeneity to ensure that comparison groups were not significantly different in terms of baseline characteristics.1,4,7-9 One study6 matched for age and sex and another study3 did not specify whether a study of homogeneity was performed, but showed similar comparison group baseline characteristics in tabular format without mentioning statistical significance.

Rotator Cuff Tear Classification

Tear sizes were classified as small (<1 cm), medium (1-3 cm), large (3-5 cm), and massive (>5 cm). Full- and partial-thickness tears were included in the studies (Table 1).

Table 2. Surgical procedures, concomitant procedures, and retear rate

Study	Arthroscopic Technique	Concomitant Procedures	Retear Rate, %	Modality Used to Determine Retear
Arndt et al1	Single-row fixation (59%), double-row fixation (41%)	Long head of biceps tenotomy (65%), long head of biceps tenodesis (11%), acromioplasty (91%), AC joint osteophyte removal (5%), complete AC resection (15%)	20	Arthro–computed tomography
Cuff and Pupello3	Transosseous equivalent suture bridge (100%)	Subacromial decompression (100%)	12	Ultrasound
Düzgün et al4	1 anchor (76%), 2 anchors (24%); Side-to-side technique: 1 (38%), 2 (14%), 3 (3%)	NR	NR	NR
Garofalo et al6	Double-loaded titanium suture anchor (100%)	NR	NR	NR
Keener et al7	Modified double-row transosseous technique (100%)	Subacromial decompression (100%), acromioplasty (100%)	16	Ultrasound
Kim et al8	Single-row fixation (16%), double-row fixation (2%), suture bridge (82%)	Subacromial decompression (100%), acromioplasty (100%)	NR	NR
Lee et al9	Single-row fixation (100%); 1 or 2 anchors (64%), 3 or 4 anchors (36%)	Subacromial decompression (100%)	16	Magnetic resonance imaging

AC joint, acromioclavicular joint; NR, not reported.

Surgical Technique and Concomitant Procedures

All included studies involved all-arthroscopic rotator cuff repair, although the exact method varied (Table 2).

Rehabilitation Protocol

Tables 3 and 4 outline the rehabilitation protocols used in the included studies.

Functional Scores

All studies investigating early versus late mobilization reported functional outcome scores (Table 5). Only 1 of 2 studies evaluating CPM versus manual therapy reported functional scores (Table 6).
Table 3. Rehabilitation protocols in studies comparing early versus late mobilization

Early Group	Late Group
Arndt et al¹	Sling immobilization for 6 weeks postoperatively
3-5 physical therapy sessions per week starting on day after operation (stressing pendulum exercise, manual passive ROM, and CPM)	
Identical progressive active ROM rehabilitation protocol started at 6 weeks postoperatively	
Cuff and Pupello³	Sling immobilization for 6 weeks postoperatively, but pendulum exercises (3 times daily for 5 min/session) during this time period
3 physical therapy sessions per week starting on postoperative day 2 (stressing pendulum exercise and graduated passive ROM) for 6 weeks	
Active assisted ROM at weeks 6-10	Passive ROM at week 6; then started same protocol that “Early Group” started at week 6
Active ROM to tolerance at weeks 10-12	
Rotator cuff muscle strengthening at week 12	
Düzgün et al⁴	
Identical protocols consisting of progressive increases in active ROM and exercise intensity	
Reached final stage (active ROM against resistance and rotator cuff muscle strengthening) at week 7	Reached final stage at week 18
Keener et al⁷	
Initial 6 weeks of passive ROM, progressive active ROM in subsequent 6 weeks, and rotator cuff strengthening 3-4 months postoperatively	
Protocol started at first postoperative visit (10-14 days)	Protocol started 6 weeks postoperatively
Kim et al⁸	
Passive shoulder ROM initiated on postoperative day 1	Shoulders immobilized for 4 or 5 weeks postoperatively (based on tear size)
At 4-5 weeks postoperatively, identical progressive increases in active ROM and rotator cuff muscle strengthening at 9-12 weeks postoperatively	

CPM, continuous passive mobilization; ROM, range of motion.

Table 4. Rehabilitation protocols in studies comparing manual therapy versus CPM

Manual Therapy Group	CPM Group
Garofalo et al⁶	CPM regimen in addition to progressive pendulum and passive ROM exercises for the next 4 weeks
Shoulders immobilized 4 weeks in both groups	
Progressive pendulum and passive ROM exercises for the next 4 weeks	
Starting at 8 weeks postoperatively, both groups stress identical increases in passive and active ROM	
Lee et al⁹	
Starting on day of surgery, pendulum and progressive passive ROM ×6 weeks	Starting on day of surgery, CPM machine with stretching limited to 90° ×3 weeks
	Progressive increases in passive ROM for next 3 weeks
In both groups, active ROM started at 6 weeks postoperatively	

CPM, continuous passive mobilization; ROM, range of motion.
Pain data are summarized in Tables 5 and 6 for early versus late mobilization and CPM versus manual therapy, respectively.

Range of Motion data are summarized in Tables 7 and 8 for early versus late mobilization and CPM versus manual therapy, respectively.
Table 8a. CPM versus manual therapy: range of motion (in degrees)

Study	Mean Follow-up, mo	Forward Flexion	External Rotation				
		CPM	Manual	P Value	CPM	Manual	P Value
Garofalo et al⁶	12	165.2 ± 8	158 ± 10.1	>0.05	86 ± 4	85 ± 4.2	>0.05
Lee et al⁷	12	153.0 ± 12.2	155.3 ± 13.0	0.729	48.1 ± 13.9	53.0 ± 11.6	0.078

CPM, continuous passive mobilization.

Table 8b. CPM versus manual therapy: range of motion (in degrees)

Study	External Rotation at 90° of Abduction	Internal Rotation at 90° of Abduction	Abduction
	CPM Manual P Value	CPM Manual Therapy P Value	CPM Manual Therapy P Value
Garofalo et al⁶	NR	90 ± 2.5 88 ± 1.8 >0.5	>0.5
Lee et al⁷	77.7 ± 11.6 76.3 ± 12.1 0.778 54.9 ± 21.5 65.7 ± 13.3 0.057 161.8 ± 27.3 167.8 ± 12.8 0.884	161.8 ± 27.3 167.8 ± 12.8 0.884	0.884

CPM, continuous passive mobilization, NR, not reported.

Table 9. Early versus late mobilization: tendon retear rate (%)

Study	Mean Follow-up, mo	Early	Late	P Value
Arndt et al¹	16	23.3	15.4	0.269
Cuff and Pupello³	12	15	9	0.47
Düzgün et al⁴	6	NR	NR	NR
Keener et al⁷	24	10	6	0.46
Kim et al⁸	12	NR	NR	NR

NR, not reported.

Strength

Strength data are summarized in Tables 7 and 8 for early versus late mobilization and CPM versus manual therapy, respectively.

Tendon Retear Rate

For studies comparing early and late mobilization, 2 studies used ultrasound³⁵ and 1 study used arthro–computed tomography¹ to evaluate tendon retear rates. All 3 studies found a higher tendon retear rate in the early mobilization group relative to the late mobilization group, but none of the differences were statistically significant (Table 9).

Lee et al⁷, using magnetic resonance imaging, found a statistically nonsignificant higher tendon retear rate in the manual therapy group relative to the CPM group at final 24-month follow-up (Table 10).

Discussion

Published data do not definitively demonstrate a significant clinical difference between patients who undergo early versus late mobilization and between patients who undergo CPM versus manual therapy.

Although all 5 studies that investigated early versus late mobilization reported functional scores, there was considerable study heterogeneity. In general, there exists a possible benefit from early mobilization at early follow-up, but results are equivocal at later follow-up.
Regarding pain, the literature generally shows no significant difference between early and late rehabilitation in terms of pain as measured by visual analog scale (VAS) pain scores. Only 1 study found a lower VAS pain score in the early mobilization group at 5- and 16-week follow-up, but not at final 6-month follow-up.4

Similarly, the literature generally does not demonstrate a significant difference between early and delayed mobilization in terms of range of motion. Three studies found significantly greater forward flexion and external rotation range of motion in the early mobilization group relative to the late mobilization group, but only at early follow-up (6 months or less).1,3,7 Only 1 study reported consistently better external range of motion at each follow-up for the early mobilization group.1 Similar to the functional outcome score results, range of motion results showed a possible improved outcome at early follow-up with early mobilization and equivocal results at later follow-up.

Only 1 article comparing early versus late mobilization reported strength as an outcome and did not find a significant difference.7 The authors consistently found a statistically nonsignificant trend of higher retear rates among patients undergoing early mobilization relative to those undergoing late mobilization. The higher rate of rotator cuff retears among patients undergoing early mobilization may still be clinically significant, especially as these studies were not powered to detect a significant difference between study groups in terms of retear rates. However, the true clinical significance of postoperative rotator cuff retears is unclear. Studies have implicated male sex, older age, and larger initial tear size as risk factors for recurrent rotator cuff tears.12,15

The paucity of studies comparing CPM versus manual therapy precludes the ability to draw any meaningful conclusion regarding the efficacy of CPM. The literature shows superior results in terms of functional scores, at early 3-month follow-up only, for the manual therapy group relative to the CPM group.9 However, patients undergoing CPM had lower pain levels at early 2.5-month follow-up only,6 and a nonsignificant higher retear rate was observed in the manual therapy group.9 The clinical significance of these differences at early follow-up only is unclear. The strengths of this systematic review include the adherence to strict inclusion and exclusion criteria, the analysis of level 1 studies only, and the high number of patients (572) included in the final analysis. In addition, the authors used 2 independent reviewers and the CONSORT 2010 checklist17 to ensure the inclusion of high-quality data.

There are several limitations to this study. First, there was heterogeneity among the included studies in terms of patient demographics, tear characteristics, rehabilitation program protocols, outcome assessment tools, and imaging modalities used to determine retear rates. This heterogeneity among individual study designs precludes data analysis through meta-analysis. The final analysis only included 7 studies identified through a single database, which may not be generalizable to current clinical practice.

CONCLUSION

Based on the current literature, timing of mobilization and the use of CPM after arthroscopic rotator cuff repair do not significantly affect clinical outcomes at early to midterm follow-up.

Table 10. CPM versus manual therapy: strength (in kg unless noted otherwise)

Study	Mean Follow-up, mo	CPM	Manual	P value	CPM	Manual	P value	CPM	Manual	P value	CPM Manual Therapy	P value	
Garofalo et al⁶	12	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	
Lee et al⁹	12	7.33	7.76	0.227	7.62	7.94	0.542	8.44	8.90	0.450	8.8%	23.3%	0.106

CPM, continuous passive mobilization; NR, not reported.

Clinical Recommendations

SORT: Strength of Recommendation Taxonomy

- **A**: consistent, good-quality patient-oriented evidence
- **B**: inconsistent or limited-quality patient-oriented evidence
- **C**: consensus, disease-oriented evidence, usual practice, expert opinion, or case series

Clinical Recommendation	SORT Evidence Rating
Clinicians should exercise their best clinical judgment based on patient-specific factors such as patient age and initial size of tear when deciding between different rehabilitation strategies.	B
REFERENCES

1. Arndt J, Clavert P, Mielcarek P, Bouchaib J, Meyer N, Kempf JF. Immediate passive motion versus immobilization after endoscopic supraspinatus tendon repair: a prospective randomized study. *Orthop Traumatol Surg Res*. 2012;98(suppl 5):S131-S138.

2. Bishop J, Klepps S, Lo IK, Bird J, Gladstone JN, Flatow EL. Cuff integrity after arthroscopic versus open rotator cuff repair: a prospective study. *J Shoulder Elbow Surg*. 2006;15:290-299.

3. Cuff DJ, Pupello DR. Prospective randomized study of arthroscopic rotator cuff repair using an early versus delayed postoperative physical therapy protocol. *J Shoulder Elbow Surg*. 2012;21:1450-1455.

4. Düzgün I, Baltacı G, Atay OA. Comparison of slow and accelerated rehabilitation protocol after arthroscopic rotator cuff repair: pain and functional activity. *Acta Orthop Traumatol Turc*. 2011;45:23-33.

5. Galatz LM, Ball CM, Teefey SA, Middleton WD, Yamaguchi K. The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears. *J Bone Joint Surg Am*. 2004;86-A:219-224.

6. Garofalo R, Conti M, Notarnicola A, Maradei L, Giardella A, Castagna A. Effects of one-month continuous passive motion after arthroscopic rotator cuff repair: results at 1-year follow-up of a prospective randomized study. *Musculoskelet Surg*. 2010;94(suppl 1):S79-S83.

7. Keener JD, Galatz LM, Teefey SA, Middleton WD, Yamaguchi K. Rehabilitation following arthroscopic rotator cuff repair: a prospective randomized trial of immobilization compared with early motion. *J Bone Joint Surg Am*. 2014;96:11-19.

8. Kim Y-S, Chung SW, Kim JY, Oh J-H, Park I, Oh JH. Is early passive motion exercise necessary after arthroscopic rotator cuff repair? *Am J Sports Med*. 2012;40:815-821.

9. Lee BG, Cho NS, Rhee YG. Effect of two rehabilitation protocols on range of motion and healing rates after arthroscopic rotator cuff repair: aggressive versus limited early passive exercises. *Arthroscopy*. 2012;28:34-42.

10. Lensen TA, van Steyn MJ, Crijns YH, et al. Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty. *BMC Musculoskelet Disord*. 2008;9:60.

11. Liem D, Bartl C, Lichtlenberg S, Magesch P, Habermeyer P. Clinical outcome and tendon integrity of arthroscopic versus mini-open supraspinatus tendon repair: a magnetic resonance imaging-controlled matched-pair analysis. *Arthroscopy*. 2007;23:514-521.

12. McEvany M, McGoldrick E, Gee A, Neradilek M, Matse F 3rd. Rotator cuff repair: published evidence on factors associated with repair integrity and clinical outcome. *Am J Sport Med*. 2015;43:491-500.

13. Pope RO, Concoran S, McCal K, Howie DW. Continuous passive motion after primary total knee arthroplasty. Does it offer any benefits? *J Bone Joint Br*. 1997;79:914-917.

14. Raab MG, Rzeszutko D, O’Connor W, Greatting MD. Early results of continuous passive motion after rotator cuff repair: a prospective, randomized, blinded, controlled study. *Am J Orthop (Belle Mead NJ)*. 1996;25:214-220.

15. Robinson P, Wilson J, Dalal S, Parker R, Norburn P, Bay B. Rotator cuff repair in patients over 70 years of age: early outcomes and risk factors. *Bone Joint J*. 2013;95-b:199-205.

16. Sarver JJ, Peltz CD, Doubt L, Reddy S, Williams GR, Soslowsky LJ. After rotator cuff repair, stiffness—but not the loss in range of motion—increased transiently for immobilized shoulders in a rat model. *J Shoulder Elbow Surg*. 2008;17(1 suppl):108S-115S.

17. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. *Int J Surg*. 2011;9:672-677.

18. Snyder S. Shoulder Arthroscopy. New York, NY: Lippincott Williams & Wilkins; 2003:207-210.