Gravitational redshift and the vacuum index of refraction

Klaus Wilhelm • Bhola N. Dwivedi

Abstract A physical process of the gravitational redshift was described in an earlier paper (Wilhelm & Dwivedi 2014) that did not require any information for the emitting atom neither on the local gravitational potential U nor on the speed of light c. Although it could be shown that the correct energy shift of the emitted photon resulted from energy and momentum conservation principles and the speed of light at the emission site, it was not obvious how the speed is controlled by the gravitational potential. The aim of this paper is to describe a physical process that can accomplish this control. We determine the local speed of light by deducing a gravitational index of refraction n_G as a function of the potential U assuming a specific aether model, in which photons propagate as solitons. Even though an atom cannot locally sense the gravitational potential U (cf. Müller et al. 2010), the gravitational redshift will be determined by U (cf. Wolf et al. 2010) — mediated by the local speed of light c.

Keywords Gravitation, impact model, secular mass increase

1 Introduction

The study of the gravitational redshift, predicted for solar radiation by Einstein (1908), is still an important subject in modern physics and astrophysics (e.g. Kollatschny 2004; Negi 2005; Lämmerzahl 2009; Chou et al. 2010; Pasquini et al. 2011; Turyshev 2013). The displacement of metallic lines to the violet observed in the laboratory in comparison with the corresponding solar lines had first been noted by Jewell (1896). Measurements of the small gravitational redshift of solar spectral lines are inherently difficult, because many processes in the atmosphere of the Sun can influence the spectrum. In particular, the high speeds of the emitting plasmas lead to line shifts due to the classical Doppler effect (cf. Hentschel 1993). Nevertheless, early observations confirmed Einstein’s prediction in general (St. John 1928; Blamont & Roddier 1961; Brault 1963; Snider 1970, 1972; LoPresto et al. 1980). Improved observational techniques (cf. Cacciani et al. 2006; Takeda & Ueno 2012), have established a shift of solar lines of

$$c_0 \frac{\Delta \lambda}{\lambda} \approx 600 \, \text{m s}^{-1}, \quad (1)$$

where $c_0 = 299,792,458 \, \text{m s}^{-1}$ is the speed of light in vacuum remote from any masses and λ the wavelength of the electromagnetic radiation.

The gravitational potential U at a distance r from a spherical body with mass M is constraint in the weak-field approximation for non-relativistic cases (cf. Landau & Lifchitz 1972) by

$$-1 \ll \frac{U}{c_0^2} = -\frac{G_N M}{c_0^2 r} \leq 0, \quad (2)$$

where $G_N = 6.67554(16) \times 10^{-11} \, \text{kg}^{-1} \text{m}^3 \text{s}^{-2}$ is Newton’s constant of gravity (Onim et al. 2014). A def-
inition of a reference potential in line with Eq. (2) is \(U_0 = 0 \) for \(r = \infty \).

In an attempt to describe the physical process(es) that lead to the gravitational redshift, Wolf et al. (2010) and Müller et al. (2010) disagreed on whether the frequency of an atomic clock is sensitive to the gravitational potential \(U \) (according to Wolf et al.) or, as suggested by Müller et al., to the local gravity field \(g = \nabla U \). Support for the first alternative can be found in many publications (e.g. Einstein 1908; von Laue 1920; Schiff 1960; Will 1974; Okun et al. 2000; Sinha & Samuel 2011), but it is, indeed, not obvious how an atom can locally sense the gravitational potential \(U \).

Experiments on Earth (Pound & Rebka 1959; Cranshaw et al. 1961; Krause & Lüders 1961; Pound & Snider 1965), in space (Vessot et al. 1980; Bauch & Weyers 2002) and in the Sun-Earth system (St. John 1928; Blamont & Roddick 1964; Braul 1963; Snider 1972; LoPresto et al. 1991; Cacciani et al. 2000; Takeda & Ueno 2012) have, however, quantitatively confirmed in the static weak field approximation a relative frequency shift of

\[
\frac{\nu - \nu_0}{\nu_0} = \frac{\Delta \nu}{\nu_0} \approx \frac{\Delta U}{U_0} = \frac{U - U_0}{c_0^2},
\]

where \(\nu_0 = c_0/\lambda_0 \) is the frequency of the radiation emitted by a certain transition at \(U_0 \) and \(\nu \) the observed frequency there, if the emission caused by the same transition had occurred at a potential \(U \).

In addition to the redshift, the deflection of light near gravitational centres is of fundamental importance. For a close solar fly-by by Soldner (1804) and Einstein (1911) obtained 0.87” under the assumption that radiation would be affected in the same way as matter. Twice this value was then derived in the framework of the General Theory of Relativity (GTR, Einstein 1916) and later by Schiff (1960) using the equivalence principle and STR. The high value was confirmed during the total solar eclipse in 1919 for the first time (Dyson et al. 1919). This and later observations have been summarized by Mikhailov (1959) and combined to a mean value of approximately 2”.

2 Graviton interactions

A model of gravitational interactions based on a modified impact concept has been proposed for massive bodies (Wilhelm et al. 2013), and the difficulties of the old theory proposed by Nicolas Fatio de Duillieu (1690) have been considered in the light of the Special Theory of Relativity (STR, Einstein 1905a) and the non-local behaviour of virtual particles (cf. Nitz & Stahlhofen 2008). The basic idea is that impacting gravitons — originally named quadrupoles — with no mass and a speed \(c_0 \) are absorbed by massive particles and re-emitted with reduced energy \(T_G \) according to

\[
T_G = T_G (1 - Y),
\]

where \(T_G \) is the energy of a graviton in the background flux and \(0 < Y \ll 1 \). A spherically symmetric emission of a liberated graviton with a reduction parameter \(Y \) had been assumed in Paper 1. Further studies have, however, indicated that an anti-parallel emission with respect to the incoming graviton is more appropriate, because conflicts with the energy and momentum conservation principles in closed systems can be avoided by the second choice. Newton’s law of gravitation could be explained with this model, however, a secular mass increase of matter was a consequence of its application. This poses the question of how the interaction of gravity with photons can be understood, since the photon mass is in all likelihood zero.

\footnote{A zero mass of photons follows from the STR and a speed of light in vacuum \(c_0 \) constant for all frequencies. Einstein (1905b) used „Lichtquant“ for a quantum of electromagnetic radiation; the term „photon“ was introduced by Lewis (1926). With various methods the photon mass could be constrained to \(m_\nu < 10^{-49} \) kg (Goldhaber & Nieto 1971; Amsler et al. 2008).}

An initial attempt at solving that problem has been made in Paper 2 (Wilhelm & Dwivedi 2013) and is summarized here under the assumption of an anti-parallel re-emission, both for massive particles and photons.

A physical process will then be outlined that provides information on the gravitational potential \(U \) at the site of a photon emission. This aspect had not been covered in our earlier paper on the gravitational redshift (Wilhelm & Dwivedi 2014).

Interactions between massive bodies have been treated in Paper 1 with an absorption rate of half the intrinsic de Broglie frequency \(m c_0^2/h \) for a mass \(m \) (cf. de Broglie 1923), because two virtual gravitons have to be emitted for one interaction, whereas in Paper 2 it is assumed that a photon causes a reflection with an interaction rate of \(\nu = E_\nu/h \) with Planck’s constant \(h \). The momentum transfer to a photon will thus be twice as high as to a massive body with a mass equivalent to \(E_\nu/c_0^2 \).

If we apply the momentum conservation principle to photon-graviton pairs in the same way as to photons (cf.
The position vector of the photon is the distance of the photon from the center, and the actual path by a straight line and use

\[\Delta p = p_G = T_G/c_0. \]

We assume, applying Eq. (5), that under the influence of a gravitational center relevant interactions occur on opposite sides of a photon with \(p_G \) and \(p_G (1 - Y) \) transferring a net momentum of \(Y p_G \). Note, in this context, that the Doppler effect can only operate for interactions of photons with mass bodies (cf. Fermi 1932; Sommerfeld 1978). Consequently, there will be no energy change of the photon, because both gravitons are reflected with constant energies under these conditions, and we can write for a pair of interactions

\[E = |p_\nu| c = |p_\nu + 2Y p_G| c' = |p_\nu'| c' = E_\nu', \]

(6)

where \(p_\nu \) is the photon momentum after the events. If \(p_\nu \) is a component of \(2Y p_G \) are pointing in the same direction, it is \(c' < c \), the speed is reduced; an antiparallel direction leads to \(c' > c \). Note that this could, however, not result in \(c' > c_0 \), because \(c = c_0 \) can only be attained in a region with an isotropic distribution of gravitons with a momentum of \(p_G \), i.e. with a gravitational potential \(U_0 = 0 \).

The momentum \(p_\nu \) of a photon radially approaching a gravitational center will be treated in line with Eq. (6) in Sect. 2 of Paper 2 for massive bodies, however, with twice the interaction rate (valid for photons as explained above). Since we know from observations that the deflection of light during a close fly-by at the Sun is very small — to simplify the calculations, we only treat this configuration — the momentum variation caused by the weak and static gravitational interaction is also very small. The momentum change rate of the photon can then be approximated by

\[\Delta p_\nu \approx 2 G M \frac{\dot{r}}{r^2} \frac{p_\nu}{c_0}. \]

(7)

where \(M \) the mass of the gravitational center, \(r = |r| \) the distance of the photon from the center, and the position vector of the photon is \(r \dot{r} \) with a unit vector \(\dot{r} \).

The small deflection angle also allows us to approximate the actual path by a straight line and use \(x \approx c_0 t_M \) along an \(x \) axis. The normalized momentum variation along the trajectory then is

\[\frac{\Delta p_\nu}{\Delta t_M} \approx c_0 \frac{p_\nu}{c_0} \frac{\Delta p_\nu}{\Delta t_M} \cos \vartheta \approx 2 G M \frac{x}{r^3}. \]

(8)

The corresponding component perpendicular to the trajectory is

\[\frac{\Delta p_\nu}{\Delta t_M} \approx \frac{c_0}{p_\nu} \frac{\Delta p_\nu}{\Delta t_M} \sin \vartheta \approx \frac{2 G M}{r^3} R, \]

(9)

where \(R \) the impact parameter of the trajectory. Integration of Eq. (8) over \(t_M \) from \(-\infty \) to \(x/c_0 \) yields

\[\frac{1}{p_\nu} \left[\frac{dp_\nu(r)}{dr} \right]_x \approx \frac{2 G M}{c_0^2 r} \approx \frac{2 G M}{c_0^2 x^2 + R^2}. \]

(10)

If we apply Eq. (6) to a photon approaching the mass \(M \) along the \(x \) axis starting from infinity with \(E_\nu = p_\nu c_0 \), and considering that the \(y \) component in Eq. (5) is much smaller than the \(x \) component in Eq. (6) for \(x \gg R \), the photon speed \(c(r) \) as a function of \(r \) can be determined from

\[p_\nu c_0 \approx \{ p_\nu + [dp_\nu(r)]_x \} c(r). \]

(11)

Division by \(p_\nu c_0 \) then gives with Eq. (10)

\[\frac{1}{n_G(r)|_x} = \frac{c(r)}{c_0} \approx 1 - \frac{2 G M}{c_0^2 r} = 1 + \frac{2 U(r)}{c_0^2} \]

(12)

as a good approximation of the inverse gravitational index of refraction along the \(x \) axis. The same index has been obtained albeit with different arguments, e.g., by Boonserm et al. (2005); Ye & Lin (2008). The resulting speed of light is in agreement with evaluations by Schiff (1960), for a radial propagation in a central gravitational field, and Okun (2000) — calculated on the basis of the standard Schwarzschild metric. A decrease of the speed of light near the Sun, consistent with Eq. (12), is not only supported by the predicted and subsequently observed Shapiro delay (Shapiro 1964; Reasenberg et al. 1979; Shapiro et al. 1974; Kramer et al. 2006; Ballmer et al. 2010; Kutschera & Zajicke 2010), but also indirectly by the deflection of light (Dyson et al. 1920).

3 Gravitational redshift

Since Einstein discussed the gravitational redshift and published conflicting statements regarding this effect, the confusion could still not be cleared up consistently (cf., e.g., Mannheim 2006; Sotiriou et al. 2008). In most of his publications Einstein defined clocks as atomic clocks. Initially he assumed that the oscillation of an atom corresponding to a spectral line might be Einstein (1913) states explicitly that the speed at a certain location is not dependent on the direction of the propagation.
an intra-atomic process, the frequency of which would be determined by the atom alone \cite{Einstein1908, Einstein1911}. Scott \cite{2013} also felt that the equivalence principle and the notion of an ideal clock running independently of acceleration suggest that such clocks are unaffected by gravity. \cite{Einstein1916} later concluded that clocks would slow down near gravitational centres thus causing a redshift.

The question whether the gravitational redshift is caused by the emission process (Case a) or during the transmission phase (Case b) is nevertheless still a matter of recent debates. Proponents of (a) are, e.g.: Moller \cite{1957}; Desloge \cite{1990}; Schiff \cite{1960}; Cranshaw et al. \cite{1960}; Ohanian \cite{1976}; Earman & Glymour \cite{1980}; Okun \cite{2000}; Okun et al. \cite{2000} and of (b): Hay et al. \cite{1960}; Feynman et al. \cite{1995}; Straumann \cite{2004}; Fließbach \cite{2004}; Randal \cite{2006}; Will \cite{2006}.

There is general agreement on the observational and experimental facts and most of the arguments are formally consistent with them, but different physical processes or mathematical concepts are considered. In particular, it is surprising that the same team of experimenters, albeit with different first authors (Cranshaw et al. and Hay et al.) published different views on the process of the Pound–Rebka–Experiment. Pound & Snider \cite{1965} and Pound \cite{2000} pointed out, however, that this experiment could not distinguish between the two options, because the invariance of the velocity of the radiation had not been demonstrated. Bondi \cite{1980} and Dicke \cite{1962} also left the question open. In many cases, the confusion results from the unclear definitions of clocks and times as detailed, for instance, by Ashty & Allan \cite{1979} and Okun \cite{2000}.

\cite{Einstein1917} emphasized that for an elementary emission process not only the energy exchange, but also the momentum transfer is of importance (cf., as well Poincaré \cite{1900}; Abraham \cite{1903}; Fermi \cite{1932}). Taking these considerations into account, Wilhelm & Dwivedi \cite{2014} formulated a photon emission process at a gravitational potential \(U \) assuming that:

1. The atom cannot sense the potential \(U \) in line with the original proposal by Einstein \cite{1908, 1911}, and initially emits the same energy \(\Delta E_0 \) at \(U > 0 \) and \(U_0 = 0 \).
2. It also cannot directly sense the speed of light at the location with a potential \(U \). The initial momentum thus is \(p_0 = \Delta E_0 / c_0 \).
3. As the local speed of light is, however, \(c(U) \neq c_0 \), a photon having an energy of \(\Delta E_0 \) and a momentum \(p_0 \) is not able to propagate. The necessary adjustments of the photon energy and momentum as well as the corresponding atomic quantities then lead in the interaction region to a redshift consistent with \(h\nu = \Delta E_0 (1 + U/c_0^2) \) and observations.

As outlined in Sect. 2 there is general agreement in the literature that the local speed of light is

\[
 c(U) \approx c_0 \left(1 + \frac{2U}{c_0^2} \right)
\]

in line with Eq. \((12) \). It has, however, to be noted that in Sect. 4 the speed \(c(U) \) was obtained for a photon propagating from \(U_0 \) to \(U \), and, therefore, the physical process which controls the speed of newly emitted photons is not established. An attempt to do that will be made in the next section.

4 An aether model with photons as solitons

Before we suggest a specific aether model, a few statements on the aether concept in general should be mentioned. Following \cite{Michelson1887} famous experiment, Einstein \cite{1905, 1908} concluded that the concept of a light aether as carrier of the electric and magnetic forces is not consistent with the STR. In response to critical remarks by Wiechert \cite{1911}, cf. Schrödöer \cite{1990} for Wiechert’s support of the aether, von Laue \cite{1912} wrote that the existence of an aether is not a physical, but a philosophical problem, but later differentiated between the physical world and its mathematical formulation. A four-dimensional ‘world’ is only a valuable mathematical trick; deeper insight, which some people want to see behind it, is not involved \cite{von Laue1959}.

In contrast to his earlier statements, Einstein said at the end of a speech in Leiden that according to the GTR a space without aether cannot be conceived \cite{Einstein1920}; and even more detailed: Thus one could instead of talking about ‘aether’ as well discuss the ‘physical properties of space’. In theoretical physics we cannot do without aether, i.e., a continuum endowed with physical properties \cite{Einstein1924, Michelson1928} confessed at a meeting in Pasadena in the presence of H.A. Lorentz that he clings a little to the aether; and Dirac \cite{1951} wrote in a letter to Nature that there are good reasons for postulating an aether.

\cite{Wilhelm2013} proposed an impact model for the electrostatic force based on massless dipoles. The vacuum is thought to be permeated by these dipoles that are, in the absence of electromagnetic or gravitational disturbances, oriented and directed randomly propagating along their dipole axis with a speed of \(c_0 \). There is little or no interaction among them. Note that such electric dipoles have no mean interaction energy, even in the classical theory (see, e.g., Jackson \cite{2004}). We suggest to identify the dipole distribution with an aether. This is very similar to the conclusion of Preston \cite{1873}:
“[...] first, that the normal state of the component particles of the ether is a state of motion; second, that this motion of the particles takes place in straight lines; and third, that this motion takes place towards every possible direction.”

Einstein’s aether mentioned above may, however, be more related to the gravitational interactions (cf. Grunek 2001). In this case, we have to consider the graviton distribution as another component of the aether.

If we assume that an individual dipole interacts with gravitons in the same way as photons, see Eq. (6), according to

\[E_D = |p_D| c = |p_D + 2Y p_G| c' = |p'_D| c' = E'_D, \tag{14} \]

where \(E_D \) and \(p_D \) refer to the energy and momentum of a dipole. We can then modify Eqs. (7) to (11) by changing \(\nu \) to \(D \) and find that Eqs. (12) and (13) are also valid for dipoles with a speed of \(c_0 \) for \(U_0 = 0 \). One exception from Preston’s “ether” is that dipoles can, according to a modified Eq. (4), be deflected by graviton interactions.

Considering that many suggestions have been made to describe photons as solitons (e.g. Dirac 1927; Vigier 1991; Kamenov & Slavov 1998; Meulenberg 2013; Bersons 2013; Bersons et al. 2014), we also propose that a photon is a soliton propagating in the dipole aether with a speed of \(c(U) \), cf., Eq. (13), controlled by the dipoles moving in the direction of propagation of the photon. The dipole distribution thus determines the gravitational index of refraction, cf. Eq. (12), and consequently the speed of light \(c(U) \) at the potential \(U \). This solves the problem formulated at the end of Sect. 3 and might be relevant for other phenomena, such as gravitational lensing and the cosmological redshift (cf., e.g. Ellis 2011; Chen & Kantowski 2008).

We will further assume that the dipoles constituting a photon will have turned the orientation of their axes to a direction perpendicular to the photon velocity vector. This avoids any electrostatic interactions during emission and absorption processes of photons, and will probably also be required by their polarization effects.

5 Discussion and Conclusion

Our aim was to identify a physical process that leads to a speed \(c(U) \) of photons controlled by the gravitational potential \(U \). This could be achieved by postulating an aether model with moving dipoles, in which a gravitational index of refraction \(n_G(U) = c_0/c(U) \) regulates the emission and propagation of photons as required by energy and momentum conservation principles. The emission process thus follows Steps (1) to (3) in Sect. 3 where the local speed of light is given by the gravitational index of refraction \(n \). In this sense, the statement that an atom cannot detect the potential \(U \) by Müller et al. (2010) is correct; the local gravity field \(g \), however, is not controlling the emission process.

A photon will be emitted by an atom with appropriate energy and momentum values, because the local speed of light requires an adjustment of the momentum. This occurs in the interaction region between the atom and its environment as outlined in Step (3) of Sect. 3. A receiver of the same type next to the emitter would also not be able to determine the potential either, because the energy and momentum restrictions apply for the absorption process as well.

Acknowledgements This research has made extensive use of the Smithsonian Astrophysical Observatory (SAO)/National Aeronautics and Space Administration (NASA) Astrophysics Data System (ADS). Administrative support has been provided by the Max-Planck-Institute for Solar System Research and the Indian Institute of Technology (Banaras Hindu University).
References

Abraham, M., 1903, Prinzipien der Dynamik des Elektrons, Ann. Phys. (Leipzig), 310, 501
Amsler, C., Doser, M., Antonelli, M., & 170 authors, 2008, Review of particle physics, Phys. Lett. B, 667, 1
Ashby, N., & Allan, D.W., 1979, Practical implications of relativity for a global coordinate time scale, Radio Science, 14, 649
Ballmer, S., Márika, S., & Shawhan, P., 2010, Feasibility of measuring the Shapiro time delay over meter-scaled distances, Class. Quant. Grav., 27, 185018
Bauch, A., & Weyers, S., 2002, New experimental limit on distances, Class. Quant. Grav., 27, 185018
Ballmer, S., Márka, S., & Shawhan, P., 2010, Feasibility of measuring the Shapiro time delay over meter-scaled distances, Class. Quant. Grav., 27, 185018
Bauch, A., & Weyers, S., 2002, New experimental limit on distances, Class. Quant. Grav., 27, 185018

Bersons, I., Veilande, R., & Pirktinsh, A., 2014, Three-dimensional collinearly propagating solitons, Physica Scripta, 89, id. 045102
Blamont, J.E., & Roddier, F., 1961, Precise observation of the profile of the Fraunhofer strontium resonance line. Evidence for the gravitational red shift on the Sun, Phys. Rev. Lett., 7, 437
Boonserm, P., Cattoen, C., Faber, T., Visser, M., & We-infurtner, S., 2005, Effective refractive index tensor for weak-field gravity, Class. Quant. Grav., 22, 1905
Bondi, H., 1986, Relativity theory and gravitation, Eur. J. Phys., 7, 106
Bopp, K., (Ed.), 1929, Fatio de Duillier: De la cause de la pesanteur, Schriften der Straßburger Wiss. Ges. Heidel-
Cranshaw, T.E., Schiffer, J.P., & Whitehead, A.B., 1960, Measurement of the red shift in an accelerated system using the Mössbauer effect in Fe57, Phys. Rev. Lett., 4, 163
Desloge, E.A., 1990, The gravitational red shift in a uniform field, Am. J. Phys., 58, 856
Dicke, R.H., 1960, Eötvös experiment and the gravitational red shift, Am. J. Phys., 28, 344
Dirac, P.A.M., 1927, The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. Lond. Ser. A, 114, 243
Dirac, P.A.M., 1951, Is there an ether? Nature, 168, 906
Dyson, F.W., Eddington, A.S., & Davidson, C., 1920, A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919, Phil. Trans. R. astr. Soc. Lond. A, 220, 291

Earnan, J., & Glymour, C., 1980, The gravitational red shift as a test of general relativity: History and analysis, Stud. Hist. Philos. Sci. A, 11, 175
Einstein, A., 1905a, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Phys. (Leipzig), 322, 132
Einstein, A., 1905b, Zur Elektrodynamik bewegter Körper, Ann. Phys. (Leipzig), 322, 891
Einstein, A., 1908, Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen, Jahrbuch der Radioaktivität und Elektronik 1907, 4, 411
Einstein, A., 1911, Über den Einfluß der Schwerkraft auf die Ausbreitung des Lichtes, Ann. Phys. (Leipzig), 340, 898
Einstein, A., 1912, Lichtgeschwindigkeit und Statik des Gravitationsfeldes, Ann. Phys. (Leipzig), 343, 355
Einstein, A., 1916, Die Grundlage der allgemeinen Relativitätstheorie, Ann. Phys. (Leipzig), 354, 769
Einstein, A., 1917, Zur Quantentheorie der Strahlung, Phys. Z., XVIII, 121
Einstein, A., 1920, Äther und Relativitätstheorie, Rede gehalten am 5. Mai 1920 an der Reichs-Universität zu Leiden, Verlag von Julius Springer, Berlin
Einstein, A., 1924, Über den Äther, Verhandl. Schweiz. Naturforsch. Gesell., 105, 85
Ellis, R.S., 2010, Gravitational lensing: A unique probe of dark matter and dark energy, Phil. Trans. A: Math. Phys. Eng. Sci., 368, 1914, 967
Fatio de Duillier, N., 1690, Texte: De la cause de la pesanteur, Not. Rec. Roy. Soc. London, 6, 2 (May 1949), 125
Fermi, E., 1932, Quantum theory of radiation, Rev. Mod. Phys., 4, 87
Feynman, R.P., Morinigo, F.B., & Wagner, W.G., 1995, (Ed. Brian Hatfield), Feynman lectures on gravitation, Reading, MA, Addison-Wesley
Fießbach, T., 2006, Allgemeine Relativitätstheorie, Elsevier, Spektrum Akademischer Verlag, Heidelberg
Gagnebin, B., 1949, Introduction: 1. Nicolas Fatio de Duillier, 2. La communication de Fatio de Duillier, 3. Les manuscrits de Fatio de Duillier Not. Rec. Roy. Soc. London, 6, 2 (May 1949), 105
Goldhaber, A.S., & Nieto, M.M., 1971, Terrestrial and extraterrestrial limits on the photon mass, Rev. Mod. Phys., 43, 277
Granek, G., 2001, Einstein’s ether: F. Why did Einstein come back to the ether? Apeiron, 8, 19
Hay, H.J., Schiffer, J.P., Cranshaw, T.E., & Egelstaff, P.A., 1960, Measurement of the red shift in an accelerated system using the Mössbauer effect in Fe57, Phys. Rev. Lett., 4, 165
Hentschel, K., 1993, The conversion of St. John: A case study on the interplay of theory and experiment, Sci. Context 6, 1, 137
Jackson, J.D., 2006, Klassische Elektrodynamik, 4. Aufl., Walter de Gruyter, Berlin, New York
Jewell, L.E., 1896, The coincidence of solar and metallic lines. A study of the appearence of lines in the spectra of the electric arc and the Sun, Astrophys. J., 3, 89
Kamenov, P., & Slavov, B., 1998, The photon as a soliton, Found. Phys. Lett., 11, 325
Takeda, Y., & Ueno, S., 2012, Detection of gravitational redshift on the solar disk by using iodine-cell technique, Sol. Phys., 281, 551
Turyshev, S.G., 2013, Testing fundamental gravitation in space, Nucl. Phys. B (Proc. Suppl.) 243, 197
Vessot, R.F.C., Levine, M.W., Mattison, E.M., Blomberg, E.L., Hoffman, T.E., Nyström, G.U., Farrel, B.F., Decher, R., Eby, P.B., & Baugher, C.R., 1980, Test of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., 45, 2081
Vigier, J.-P., 1991, Explicit mathematical construction of relativistic nonlinear de Broglie waves described by three-dimensional (wave and electromagnetic) solitons “piloted” (controlled) by corresponding solutions of associated linear Klein-Gordon and Schrödinger equations, Found. Phys., 21, 125
Wiechert, E., 1911, Relativitätsprinzip und Äther, Phys. Z., 12, 689 & 737
Wilhelm, K., & Dwivedi, B.N., 2013, Gravity, massive particles, photons and Shapiro delay, (Paper 2), Astrophys. Space Sci., 343, 145
Wilhelm, K., & Dwivedi, B.N., 2014, On the gravitational redshift, New Astron., 31, 8
Wilhelm, K., Dwivedi, B.N., & Wilhelm, H., 2013a, An impact model of the electrostatic force: Coulomb’s law re-visited, arXiv1403.1489
Wilhelm, K., Wilhelm, H., & Dwivedi, B.N., 2013b, An impact model of Newton’s law of gravitation, (Paper 1), Astrophys. Space Sci., 343, 135
Will, C.M., 1974, Gravitational red-shift measurements as tests of nonmetric theories of gravity, Phys. Rev. D, 10, 2330
Will, C.M., 2006. The confrontation between general relativity and experiment, Living Rev. Relativity 9, 3
Wolf, P., Blanchet, L., Bordé, C.J., Reynaud, S., Salomon, C., & Cohen-Tannoudji, C., 2010, tom gravimeters and gravitational redshift, Nature, 467, E1
Ye, X.-H., & Lin, Q., 2008, Gravitational lensing analysed by the graded refractive index of a vacuum, J. Opt. A: Pure Appl. Opt., 10, 7, id. 075001