Endoscopic endonasal resection of sinonasal teratocarcinosarcoma with intracranial breakthrough: illustrative case

*Yunjia Ni, MBBS,1 Yuanzhi Xu, MD,1 Xuemei Zhang, MMed,2 Pin Dong, MD,3 Qi Li, MD, PhD,4 Juan Shen, MMed,2 Jie Ren, MD, PhD,1 Zhaqi Yuan, MD,5 Fei Wang, MMed,3 Anke Zhang, MD,6 Yunke Bi, PhD,1 Qingwei Zhu, MD, PhD,1 Qiangyi Zhou, MD,1 Zhiyu Wang, MBBS,7 Jingjue Wang, MBBS,4 and Meiqing Lou, MD, PhD1

Departments of 1Neurosurgery, 2Pathology, 3Otolaryngology, 4Oncology, and 7Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 5Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and 6Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China

BACKGROUND Teratocarcinosarcoma traversing the anterior skull base is rarely reported in literature. The heterogenous and invasive features of the tumor pose challenges for surgical planning. With technological advancements, the endoscopic endonasal approach (EEA) has been emerging as a workhorse of anterior skull base lesions. To date, no case has been reported of EEA totally removing teratocarcinosarcomas with intracranial extensions.

OBSERVATIONS The authors provided an illustrative case of a 50-year-old otherwise healthy man who presented with left-sided epistaxis for a year. Imaging studies revealed a 31 × 60-mm communicating lesion of the anterior skull base. Gross total resection via EEA was achieved, and multilayered skull base reconstruction was performed.

LESSONS The endoscopic approach may be safe and effective for resection of extensive teratocarcinosarcoma of the anterior skull base. To minimize the risk of postoperative cerebrospinal fluid leaks, multilayered skull base reconstruction and placement of lumbar drainage are vitally important.

https://thejns.org/doi/abs/10.3171/CASE21471

KEYWORDS endoscopic; endonasal; teratocarcinosarcoma; transplanum; transtuberculum; sphenoidotomy; ethmoidectomy

Communicating lesions of the anterior skull base consist of a wide range of pathologic entities that pose both diagnostic and therapeutic challenges for neurosurgeons. Patients present with nonspecific symptoms, including nasal congestion, epistaxis, and headache. Imaging findings are also unspecific, with overlapping features. These lesions traverse anatomical compartments and may arise superiorly from the brain (e.g., olfactory groove meningiomas, subfrontal schwannomas), inferiorly from the sinonasal tract (e.g., squamous cell carcinomas, adenocarcinomas), from the bone proper (e.g., chordomas, fibrous dysplasia), or from systemic conditions (e.g., multiple myelomas, Langerhans cell histiocytosis).1–5 Of note, noneoplastic lesions such as frontoethmoidal mucoceles and invasive fungal sinusitis may also reveal aggressive features.1 To date, there are few guidelines regarding this entity of lesions. Therefore, management approaches should be individualized and discussed on a multidisciplinary basis.

Here we present a case of sinonasal teratocarcinosarcoma (SNTCS) with intracranial breakthrough, a rare entity with only about 15 cases (Supplementary Table 1) reported in literature. The tumor had intracranial breakthrough and was completely resected by the senior author (M.Q.L.) via the endoscopic endonasal approach (EEA) with rigorous skull base reconstruction. To our knowledge, this is the first case of teratocarcinosarcoma with intracranial extension to achieve gross total resection and successful skull base reconstruction via EEA.
Illustrative Case

A 50-year-old otherwise healthy man presented at the ear, nose, and throat office with intermittent left-sided epistaxis and dizziness lasting for a year. Computed tomography (CT) at another hospital revealed a left-sided mass located at the anterior cranial fossa. Biopsy indicated malignancy arising from the paranasal sinuses (Supplementary Fig. 1A–E). Smoking and alcohol history were positive. He denied any occupational exposure to toxic or radioactive materials. On admission, the patient was alert and oriented. Vital signs were normal. There was no lymphadenopathy. The patient was further referred to our neurosurgery department.

Preoperative CT with contrast revealed a lesion of the anterior skull base (Fig. 1A and B). MRI showed a well-defined 31 × 60-mm mass of irregular shape with heterogeneous enhancement (Fig. 1C–E). The left frontal lobe abutted frank vasogenic edema (Fig. 1F). Preoperative surgical planning (StealthStation S7, Medtronic, Minneapolis, MN) further confirmed cribiform plate destructions (Figs. 1G, 1H, and 2).

Management approaches were discussed on a multidisciplinary basis. Resection (Video 1; Fig. 3) by binostril EEA was decided with the patient’s consent after family meeting. Neuronavigation (StealthStation S7) was set up in the preparatory phase. Extensive sphenoidotomy and ethmoidectomy were performed to remove the intranasal portion of the tumor. Via the transplanum-transtuberculum approach, the peritumoral bony margin was drilled and extended. Care was taken to protect the underlying dura as long as it was

FIG. 1. Preoperative imaging studies and snapshots of the preoperative surgical planning. A: CT revealed the lesion at the anterior skull base (low density area). B: Further three-dimensional reconstruction confirmed bony destruction of the ethmoidal sinuses while sparing the crista galli. C: T2-weighted image (T2WI) revealed fluid retention in the left maxillary sinus due to obstruction by the tumor. D: T1-weighted image (T1WI) with contrast showed heterogeneously enhanced lesion of the anterior skull base. E: The cystic component (yellow arrowhead) of the intracranial portion was a feature like esthesioneuroblastoma. The right-sided tumor margin was not well-defined, which indicated pia mater invasion. This was further confirmed during the resection process. F: T2WI also indicated left frontal lobe edema. G: Midline structures of the anterior skull base was extensively destructed by the lesion, which was anteriorly limited by the crista galli and posteriorly limited by the tuberculum sellae. H: Further merging of CT and MRI confirmed remnants of the cribiform plate and the ethmoidal sinuses.

FIG. 2. Surface projections (green overlay) of the tumor on different viewing planes of human cadaveric specimens. A: The longitudinal extension (green overlay) of this tumor was defined superiorly by the left frontal lobe and inferiorly by the left inferior nasal concha. The fronto-temporal lobe abutted vasogenic edema, which was revealed on T2WI. The left-sided nasal cavity was occupied by the tumor, making endoscopic resection optimal choice for this portion. B: The anteroposterior extension (green overlay) was limited anteriorly by the crista galli and posteriorly by the planum sphenoidale. Despite the posterior proximity of the tumor to the optic canal, the right-sided optic nerve was not invaded. The crista galli was also spared. C: Endoscopic view of the skull base indicated that the tumor received arterial supplies from the ethmoidal arteries. The internal carotid artery was not involved because the tumor was limited laterally by the optico-carotid recess. A = artery; Ant = anterior; Clin = clinoid; Cond = condyle; Crib = cribiform; Eth = ethmoidal; For = foramen; Front = frontal; Gr = greater; ICA = internal carotid artery; Inf = inferior; LOCRe = left optico-carotid recess; M = muscle; Mandib = mandibular; Mid = middle; Orb = orbitalis; Operc = opercularis; Post = posterior; Precent = precentral; Proc = process; Sup = superior; Temp = temporal; Triang = triangularis; Tuberc = tuberculum; Zygo = zygomatic. Used with permission from Yuanzhi Xu.
intact by tumoral invasions. The dura of the tuberculum sellae was incised open, and the tumor was carefully removed in a piecemeal fashion. The skull base was reconstructed using multilayered materials according to institutional protocols (Fig. 4). Lumbar drainage was placed for 5 days.

VIDEO 1. Clip showing endoscopic endonasal resection of a traversing SNTCS with intracranial breakthrough. Click here to view.

The postoperative course was uneventful and without new-onset neurological deficits. Postoperative imaging studies confirmed gross total resection (Fig. 5). Pathologic findings were consistent with teratocarcinosarcoma (Supplementary Table 2; Supplementary Fig. 2). The patient was referred for further chemoradiotherapy and discharged home. There was no local recurrence of tumor upon 1-year follow-up.

Discussion

Observations

Based on history and biopsy results, differential diagnosis in this case includes squamous cell carcinoma, adenocarcinoma, adenoid cyst carcinoma, esthesioneuroblastoma, and rare entities such as carcinosarcoma and teratocarcinosarcoma (Supplementary Table 3). According to the existing literature, multimodality treatment, including...
surgery for sinonasal malignancy, can improve survival.7–12 Therefore, we opted for initial resection followed by adjuvant therapies.

The anterior skull base can be managed surgically by transfacial, transcranial open or keyhole, purely endoscopic, or combined transbasal and transnasal approaches. Selection of these approaches should be based not only on expected optimal outcomes but also on surgical abilities and preferences of the operating surgeon. This especially applies for the endoscopic approach, which involves a steep learning curve. For giant lesions that traverse anatomical compartments, surgical planning is highly individualized.13 The tumor in this case remained midline, with both intracranial and intranasal portions. Therefore, it could be readily accessed from a combined transnasal and transbasal approach.14 EEA in this case was another solution. With recent advancements, EEA has proven itself a safe alternative to the open approach for anterior and middle skull base lesions.15–18 The endoscope provided panoramic and close-up views to search for potential tumor remnants. In addition, the tumor was likely to be supplied by the ethmoidal arteries with meningial branches, which would be more readily cauterized under direct visualization with the endoscope. Of note, postoperative CSF leak (overall rate of 8.5%) remains a major concern for the transnasal endoscopic approach.19 The tumor here eroded the posterior two-thirds of the cribiform plate. High-flow intraoperative CSF leaks secondary to a large skull defect were a major challenge for watertight reconstruction.20–22

Many techniques have been proposed and have evolved through time, but the standard is not well established (Supplementary Table 4). The “gasket-seal” technique decreases the CSF leak rate of extensive endonasal surgeries to 4.3%.21,23 For larger defects, a nasoseptal pedicled flap with multilayered repairs should suffice, especially in grade 3 leaks.19,24–26 In addition, dura suturing has been practiced and proven effective.25,27–35 It was possible that the dura of the anterior skull base was not fully invaded. Otherwise, abdominal fat could be used as the primary reconstruction material.36 To further reduce postoperative CSF leaks, many studies advocated the placement of lumbar drainage.37–39 In our center, we achieved an overall 2.4% (4/170, unpublished data) postoperative CSF leak rate for first-onset anterior skull base lesions using a graded reconstruction approach. Therefore, multilayered skull base reconstruction with dura suturing was feasible and justified in this case.

To the best of our knowledge, there are approximately 128 SNTCS cases reported in English literature, with around 15 cases of intracranial breakthrough.12,40 The natural history of SNTCS is not fully understood. Given its aggressive nature, teratocarcinosarcoma has a 55% mean survival at 2 years, with a recurrence rate of 38%.12 Resection is still the mainstay of treatment. Although neoadjuvant chemo- and radiotherapy were reported, their effective roles have not been well studied.10,12,41,42

Lessons

In the hands of an experienced neurosurgeon, the EEA could be safe and effective for resecting a giant and extensive lesion of the anterior skull base, such as SNTCS. To minimize the risk of postoperative CSF leaks, the importance of meticulous skull base reconstruction and placement of lumbar drainage cannot be overemphasized.

References

1. Connor SE, Umaria N, Chavda SV. Imaging of giant tumours involving the anterior skull base. Br J Radiol. 2001;74(883):662–667.

2. Borges A. Skull base tumours part I: imaging technique, anatomy and anterior skull base tumours. Eur J Radiol. 2008;66(3):338–347.

3. Thust SC, Yousry T. Imaging of skull base tumours. Rep Pract Oncol Radiother. 2016;21(4):304–318.

4. Kunimatsu A, Kunimatsu N. Skull base tumours and tumor-like lesions: a pictorial review. Pol J Radiol. 2008;71(3):338–409.

5. Hanna EY, DeMonte F. Comprehensive Management of Skull Base Tumors. CRC Press; 2008.

6. Flint PW, Haughey BH, Lund VJ, et al. Cummings Otolaryngology-Head and Neck Surgery. Vol. 7. Elsevier; 2020.

7. Dulguerov P, Jacobsen MS, Allal AS, Lehmann W, Calcaterra T. Nasal and paranasal sinus carcinoma: are we making progress? A series of 220 patients and a systematic review. Cancer. 2001;92(12):3012–3029.

8. Gore MR. Treatment, outcomes, and demographics in sinonasal sarcoma: a systematic review of the literature. BMC Ear Nose Throat Disord. 2018;18:4.

9. Guntinas-Lichius O, Kreppel MP, Stuetzer H, Semrau R, Eckel HE, Mueller RP. Single modality and multimodality treatment of nasal and paranasal sinus sarcoma: a single institution experience of 229 patients. Eur J Surg Oncol. 2007;33(2):222–228.

10. Misra P, Husain Q, Svider PF, Sanghvi S, Liu JK, Eloy JA. Management of sinonasal teratocarcinosarcoma: a systematic review. Am J Otolaryngol. 2014;35:5–11.

11. Mody MD, Saba NF. Multimodal therapy for sinonasal malignancies: updates and review of current treatment. Curr Treat Options Oncol. 2020;21(1):4.

12. Chapurin N, Totten DA-O, Morse JC, et al. Treatment of sinonasal teratocarcinosarcoma: a systematic review and survival analysis. Am J Rhinol Allergy. 2021;35:132–141.

13. Komotar RJ, Starke RM, Raper DM, Anand VK, Schwartz TH. Endoscopic skull base surgery: a comprehensive comparison with open transcranial approaches. Br J Neurosurg. 2012;26(5):637–648.
