High-Throughput Elliptic Curve Cryptography using AVX2 Vector Instructions

Hao Cheng Johann Großschädl Jiaqi Tian Peter B. Rønne Peter Y. A. Ryan

University of Luxembourg

SAC 2020
SIMD

Single Instruction Multiple Data
Intel x86/x64 Vector Extensions

ISA	Year	SIMD registers	
MMX	1997	8 64-bit 64-bit	
SSE	1999	8 128-bit 128-bit	
AVX	2011	16 256-bit 128-bit	
AVX2	2013	16 256-bit 256-bit	
AVX512	2016	32 512-bit 512-bit	

Intel® Advanced Vector eXtensions (AVX) series\(^1\) (bottom two rows)

\(^1\)figure from https://www.prowesscorp.com/what-is-intel-avx-512-and-why-does-it-matter/
AVX2

Properties

- SIMD fashions: 8-bit \times 32 \quad 16-bit \times 16 \quad 32-bit \times 8 \quad 64-bit \times 4
- Multiplier: 32-bit

\[
\begin{array}{cccccccc}
255 & 223 & 185 & 159 & 127 & 95 & 63 & 31 & 0 \\
\hline
A & a_7 & a_6 & a_5 & a_4 & a_3 & a_2 & a_1 & a_0 \\
\times & & & & & & & & \\
B & b_7 & b_6 & b_5 & b_4 & b_3 & b_2 & b_1 & b_0 \\
\hline
\end{array}
\]

\[a_6 \times b_6 \quad a_4 \times b_4 \quad a_2 \times b_2 \quad a_0 \times b_0\]

\mbox{__m256i _mm256_mul_epu32 (__m256i A, __m256i B)}
ECC with SIMD Acceleration

1) Field arithmetic ← limbs
2) Curve arithmetic ← field operations
3) Combination of ← 1) and 2)
4) Mixed use of 1), 2) and 3)
ECC with SIMD Acceleration

1) Field arithmetic ← limbs
2) Curve arithmetic ← field operations
3) Combination of ← 1) and 2)
4) Mixed use of 1), 2) and 3)

1) Accelerate the single addition
 \[A + B \]

2) Parallel additions
 \[G + H | E + F | C + D | A + B \]

3) Combination of 1) and 2)
 \[C + D | A + B \]

(Each \(x_i \) is one limb of the large integer \(X \))
(n \times m)-Way Parallelism

the number of field operations

the number of elements used by each field operation

\[(n \times m)\]-way
\((n \times m)\)-Way Parallelism

(1 \times 4)\)-way

\[
\begin{array}{cccc}
255 & 191 & 127 & 63 & 0 \\
a_{i+3} & a_{i+2} & a_{i+1} & a_i \\
+ & b_{i+3} & b_{i+2} & b_{i+1} & b_i \\
= & a_{i+3} + b_{i+3} & a_{i+2} + b_{i+2} & a_{i+1} + b_{i+1} & a_i + b_i \\
\end{array}
\]

1) Accelerate the single addition

\[A + B\]

(4 \times 1)\)-way

\[
\begin{array}{cccc}
255 & 191 & 127 & 63 & 0 \\
g_i & e_i & c_i & a_i \\
+ & h_i & f_i & d_i & b_i \\
= & g_i + h_i & e_i + f_i & c_i + d_i & a_i + b_i \\
\end{array}
\]

2) Parallel additions

\[G + H \mid E + F \mid C + D \mid A + B\]

(2 \times 2)\)-way

\[
\begin{array}{cccc}
255 & 191 & 127 & 63 & 0 \\
c_{i+1} & c_i & a_{i+1} & a_i \\
+ & d_{i+1} & d_i & b_{i+1} & b_i \\
= & c_{i+1} + d_{i+1} & c_i + d_i & a_{i+1} + b_{i+1} & a_i + b_i \\
\end{array}
\]

3) Combination of 1) and 2)

\[C + D \mid A + B\]

(Each \(x_i\) is one limb of the large integer \(X\))
Curve25519: $y^2 = x^3 + 486662x^2 + x$

Montgomery Ladder → Variable-base Scalar Multiplication

$F_{2^{255-19}}$ Operations

Point Addition
Point Doubling
Table Query

Ed25519: $-x^2 + y^2 = 1 - 121665/121666x^2y^2$

Fixed-base Scalar Multiplication

Key Generation

Shared Secret
Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.
[Chou15]	Chou	AVX	(2 × 1)-way	137.2 k cycles
[FHLD19]	Faz-H., López, Dahab	AVX2	(2 × 2)-way	99.4 k cycles
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4 × 2)-way	74.4 k cycles
[NS20]	Nath, Sarkar	AVX2 assembly	(4 × 1)-way	95.4 k cycles
Latency-Optimized Work

Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.
[Chou15]	Chou	AVX	(2 × 1)-way	137.2 k cycles (27.6%)
[FHL19]	Faz-H., López, Dahab	AVX2	(2 × 2)-way	99.4 k cycles
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4 × 2)-way	74.4 k cycles
[NS20]	Nath, Sarkar	AVX2 assembly	(4 × 1)-way	95.4 k cycles
Latency-Optimized Work

Work	Authors	ISA	Impl.	Var-base scalar mul.	
[Chou15]	Chou	AVX	(2 × 1)-way	137.2 k cycles	27.6%
[FHL19]	Faz-H., López, Dahab	AVX2	(2 × 2)-way	99.4 k cycles	25.2%
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4 × 2)-way	74.4 k cycles	
[NS20]	Nath, Sarkar	AVX2 assembly	(4 × 1)-way	95.4 k cycles	
Latency-Optimized Work

Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.
[Chou15]	Chou	AVX	(2 × 1)-way	137.2 k cycles
[FHL19]	Faz-H., López, Dahab	AVX2	(2 × 2)-way	99.4 k cycles
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4 × 2)-way	74.4 k cycles
[NS20]	Nath, Sarkar	AVX2 assembly	(4 × 1)-way	95.4 k cycles

Do not scale very well!
Throughput v.s. Latency

- How to exploit the massive parallelism of future SIMD extensions?
Throughput v.s. Latency

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
Throughput v.s. Latency

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side
Throughput v.s. Latency

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side

Computation \ll Transmission!
Throughput v.s. Latency

- **How** to exploit the massive parallelism of future SIMD extensions?

- **Why** low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side

 \[\text{Computation} \quad \ll \quad \text{Transmission} \]

- **Why** high-throughput implementations?
Why throughput-optimized?

TLS servers of big organizations ← several 10,000 TLS handshakes per second

- Latency ✗
- Throughput ✓
Throughput v.s. Latency

Why throughput-optimized?

TLS servers of big organizations ← several 10,000 TLS handshakes per second

- Latency
- Throughput

High throughput instead of low latency?

What throughput can it achieve?
This Work

- Takes first step to answer these questions
- Introduces a throughput-optimized AVX2 implementation of X25519
 - variable-base scalar multiplication on Curve25519
 - fixed-base scalar multiplication on Ed25519
Methodology – (4 × 1)-way scalar multiplication

Perform **FOUR** scalar multiplications simultaneously!
“Coarse-Grained” Parallelism

- Scalar multiplication
- Point arithmetic
- Field arithmetic

\[
\begin{align*}
\text{64-bit element of 256-bit AVX2 vector}
\end{align*}
\]
“Coarse-Grained” Parallelism

- Scalar multiplication
- Point arithmetic
- Field arithmetic

64-bit element of 256-bit AVX2 vector

Advantages

1) Easy to implement
2) Fully exploit parallelism
3) Support various SIMD extensions (straightforward extension to AVX512)
Multi-Precision Representation

Radix-$2^{25.5}$ (e.g. [Chou15], [FHLD19])

\[f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9 \]
Multi-Precision Representation

Radix-$2^{25.5}$ (e.g. [Chou15], [FHLD19])
$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$

Radix-2^{29} (this work)
$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$
Multi-Precision Representation

Radix-$2^{25.5}$ (e.g. [Chou15], [FHLD19])

$$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$$

Radix-2^{29} (this work)

$$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$$

- (2 × 2)-way both use five limbs
Multi-Precision Representation

Radix-$2^{25.5}$ (e.g. [Chou15], [FHLD19])
$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$

Radix-2^{29} (this work)
$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$

- (2 x 2)-way both use five limbs
- (4 x 1)-way Radix-$2^{25.5}$ uses ten limbs Radix-2^{29} uses nine limbs
$A = [e, f, g, h] = \left[\sum_{i=0}^{8} 2^{29i} e_i, \sum_{i=0}^{8} 2^{29i} f_i, \sum_{i=0}^{8} 2^{29i} g_i, \sum_{i=0}^{8} 2^{29i} h_i \right]$

$= \sum_{i=0}^{8} 2^{29i} [e_i, f_i, g_i, h_i] = \sum_{i=0}^{8} 2^{29i} a_i \quad \text{with} \quad a_i = [e_i, f_i, g_i, h_i].$
Arithmetic in $\mathbb{F}_{2^{255} - 19}$

- Modulus $p = 2^6 \cdot (2^{255} - 19) \leftrightarrow 29$-bit $\times 9 = 261$-bit
Arithmetic in $\mathbb{F}_{2^{255}-19}$

- Modulus $p = 2^6 \cdot (2^{255} - 19) \leftarrow 29$-bit $\times 9 = 261$-bit

- Addition \rightarrow ordinary integer addition $r = a + b$
Arithmetic in $\mathbb{F}_{2^{255}}$

- **Modulus**
 \[p = 2^6 \cdot (2^{255} - 19) \quad \leftarrow \quad 29\text{-bit} \times 9 = 261\text{-bit} \]

- **Addition**
 \[r = a + b \]

- **Subtraction**
 - ordinary subtraction
 \[r = 2p + a - b \]
 - modular subtraction
 \[r = 2p + a - b \mod p \]
Arithmetic in $\mathbb{F}_{2^{255} - 19}$

- **Modulus** $p = 2^6 \times (2^{255} - 19) \leftarrow 29$-bit $\times 9 = 261$-bit

- **Addition** \rightarrow ordinary integer addition $r = a + b$

- **Subtraction**
 - ordinary subtraction $r = 2p + a - b$
 - modular subtraction $r = 2p + a - b \mod p$

- **Multiplication** $r = a \times b \mod p$
Arithmetic in $\mathbb{F}_{2^{255}-19}$

- **Modulus** \(p = 2^6 \cdot (2^{255} - 19) \) \(\leftarrow\) \(29\)-bit\times9 = 261-bit

- **Addition** \(\rightarrow\) ordinary integer addition \(r = a + b \)

- **Subtraction**
 - ordinary subtraction \(r = 2p + a - b \)
 - modular subtraction \(r = 2p + a - b \mod p \)

- **Multiplication** \(r = a \times b \mod p \)

- **Squaring** \(\rightarrow\) special multiplication \(r = a^2 = a \times a \mod p \)
Field Multiplication

Design Principles

- Make full use of execution ports
- Reduce the sequential dependencies
Field Multiplication

Design Principles

- Make full use of execution ports
- Reduce the sequential dependencies

a dozen of candidates → benchmark → the lowest latency 1
Field Multiplication

Design Principles
- Make full use of execution ports
- Reduce the sequential dependencies

a dozen of candidates	benchmark	the lowest latency

Distinctions of candidates
1. Reduction & multiplication → **separated** or **interleaved**?
2. Different carry propagation plans
3. Intermediate values → local variables?
Field Multiplication

```c
#include <immintrin.h>
#define ADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */
#define MUL(X,Y) _mm256_mul_epi32(X,Y) /* VPADDLQ */
#define AND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
#define SRL(X,Y) _mm256_srl_epi64(X,Y) /* VPSRLQ */
#define BCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */
#define MASK29 0xffffffff /* mask of 29 LSBs */

void fp_mul(__m256i *r, const __m256i *a, const __m256i *b) {
    int i, j, k; __m256i t[8], accu;

    /* 1st loop of the product-scanning multiplication */
    for (i = 0; i < 9; i++) {
        t[i] = BCAST(0);
        for (j = 0, k = i; k >= 0; j++, k--)
            t[i] = ADD(t[i], MUL(a[j], b[k]));
    }
    accu = SRL(t[8], 29);
    t[8] = AND(t[8], BCAST(MASK29));

    /* 2nd loop of the product-scanning multiplication */
    for (i = 9; i < 17; i++) {
        for (j = i-8, k = 8; j < 9; j++, k--)
            accu = ADD(accu, MUL(a[j], b[k]));
        r[1-9] = AND(accu, BCAST(MASK29));
        accu = SRL(accu, 29);
    }
    r[8] = accu;

    /* Modulo reduction and conversion to 29-bit limbs */
    accu = BCAST(0);
    for (i = 0; i < 9; i++) {
        accu = ADD(accu, MUL(r[i], BCAST(64*19)));
        accu = ADD(accu, t[i]);
        r[i] = AND(accu, BCAST(MASK29));
        accu = SRL(accu, 29);
    }

    /* limbs in r[0] can finally be 30 bits long */
    r[0] = ADD(r[0], MUL(accu, BCAST(64*19)));
}
```
Take advantage of two types of field subtraction!

```c
void point_add(ExtPoint *R, ExtPoint *P, ProPoint *Q)
{
    __m256i t[9];

    fp_mul(t, P->e, P->h);        /* T = E_p * H_p */
    fp_sub(R->e, P->y, P->x);     /* E_H = Y_p - X_p */
    fp_add(R->h, P->y, P->x);     /* H_R = Y_p + X_p */
    fp_mul(R->x, R->e, Q->y);     /* X_R = E_R * Y_Q */
    fp_mul(R->y, R->h, Q->x);     /* Y_R = H_R * X_Q */
    fp_sub(R->e, R->y, R->x);     /* E_R = Y_R - X_R */
    fp_add(R->h, R->y, R->x);     /* H_R = Y_R + X_R */
    fp_mul(R->x, t, Q->z);        /* X_R = T * Z_Q */
    fp_sbc(t, P->z, R->x);        /* T = Z_p - X_R */
    fp_add(R->x, P->z, R->x);     /* X_R = Z_p + X_R */
    fp_mul(R->z, t, R->x);        /* Z_R = T * X_R */
    fp_mul(R->y, R->x, R->h);     /* Y_R = X_R * H_R */
    fp_mul(R->x, R->e, t);        /* X_R = E_R * T */
    fp_mul(R->x, R->e, t);
}
```
Measurement Environment

Platform

- a **Haswell** Intel® Core™ i7-4710HQ CPU clocked at 2.5 GHz
- a **Skylake** Intel® Core™ i5-6360U CPU clocked at 2.0 GHz

- Compiler Clang 10.0.0

- Disabled Features
 - Intel® Turbo Boost \(\times \)
 - Intel® Hyper-Threadin\(\times \)
Performance Evaluation

CPU cycles of \((4 \times 1)\)-way field and point arithmetic

Domain	Operation	[FHLD19]	This Work		
		Haswell	Skylake	Haswell	Skylake
\(\mathbb{F}_{2^{255}-19}\)	Addition	12	12	11	11
	Ord. Subtraction	n/a	n/a	14	12
	Mod. Subtraction	n/a	n/a	32	31
	Multiplication	159	105	122	88
	Squaring	114	85	87	65
twisted Edwards	Point Addition	1096	833	965	705
curve	Point Doubling	n/a	n/a	830	624
	Table Query	208	201	218	205
Montgomery curve	Ladder Step	n/a	n/a	1118	818
Performance Evaluation

Platform	CPU Frequency	Key Generation	Shared Secret	Table Size		
		Latency	Throughput	Latency	Throughput	
Haswell	2.5 GHz	104,579 cycles	95,568 ops/sec	329,455 cycles	30,336 ops/sec	24 kB
Skylake	2.0 GHz	80,249 cycles	99,363 ops/sec	246,636 cycles	32,318 ops/sec	24 kB

30% stronger on Skylake than on Haswell
Comparison on Haswell – 2.5 GHz

Work	Impl.	CPU	Compiler	Key Generation			Shared Secret	
				Latency [cycles]	Throughput [ops/sec]	Latency [cycles]	Throughput [ops/sec]	
[FHLD19]	(2 × 2)-way	i7-4770	Clang 5.0.2	43,700	57,208	121,000	20,661	
	(2 × 2)-way	i7-4710HQ	Clang 10.0.0	41,938	59,575	121,499	20,563	
[NS20]	(4 × 1)-way	i7-6500U	GCC 7.3.0	100,127	24,968	120,108	20,815	
	(4 × 1)-way	i7-4710HQ	GCC 8.4.0	100,669	24,820	120,847	20,676	
This work	(4 × 1)-way	i7-4710HQ	Clang 10.0.0	104,579	**95,568**	329,455	**30,336**	
					60.4%		45.7%	
Comparison on Skylake – 2.0 GHz

Work	Impl.	CPU	Compiler	Key Generation	Shared Secret		
				Latency [cycles]	Throughput [ops/sec]	Latency [cycles]	Throughput [ops/sec]
[FHL19]	(2 x 2)-way	i7-6700K	Clang 5.0.2	34,500	57,971	99,400	20,150
	(2 x 2)-way	i5-6360U	Clang 10.0.0	35,629	55,955	95,129	20,939
[HEY20]	(4 x 1)-way	i9-7900X	GCC 5.4	n/a	n/a	98,484	20,308
	(4 x 1)-way	i5-6360U	GCC 8.4.0	n/a	n/a	116,595	16,656
[NS20]	(4 x 1)-way	i7-6500U	GCC 7.3.0	84,047	23,796	95,437	20,956
	(4 x 1)-way	i5-6360U	GCC 8.4.0	82,054	24,406	93,657	21,168
This work	(4 x 1)-way	i5-6360U	Clang 10.0.0	80,249	246,636	99,363	32,318

This work: 71.4% 52.7%
AVX2 offers great potential to optimize ECC

The first to use AVX2 to maximize throughput

1.5x ~ 1.7x throughput compared to the state of the art

Straightforward extension to AVX512
Future Work

- Support AVX512
- Isogeny-based cryptography
Source code at
https://gitlab.uni.lu/APSIA/AVXECC

Thank you for your attention!