NONLINEAR DIFFERENTIAL EQUATIONS ARISING FROM
BOOLE NUMBERS AND THEIR APPLICATIONS

TAEKYUN KIM AND DAE SAN KIM

Abstract. In this paper, we study nonlinear differential equations satisfied by
the generating function of Boole numbers. In addition, we derive some explicit
and new interesting identities involving Boole numbers and higher-order Boole
numbers arising from our nonlinear differential equations.

1. Introduction

The Boole polynomials, $Bl_n (x \mid \lambda), \ (n \geq 0)$, are given by the generating function

\[\frac{1}{1 + (1 + t)^{\lambda}} (1 + t)^x = \sum_{n=0}^{\infty} Bl_n (x \mid \lambda) \frac{t^n}{n!}, \quad (\text{see } [5-8, 10, 11, 18]), \]

where we assume that $\lambda \neq 0$.

When $x = 0$, $Bl_n (x) = Bl_n (0 \mid \lambda)$, $(n \geq 0)$, are called the Boole numbers. The
higher-order Boole polynomials (or Peters polynomials) are also defined by the
generating function

\[\left(\frac{1}{1 + (1 + t)^{\lambda}} \right)^r (1 + t)^x = \sum_{n=0}^{\infty} Bl^{(r)}_n (x \mid \lambda) \frac{t^n}{n!}, \quad (r \in \mathbb{N}), \quad (\text{see } [18]). \]

The first few Boole and higher-order Boole polynomials are as follows:

$Bl_0 (x \mid \lambda) = \frac{1}{2}$, \quad $Bl_1 (x \mid \lambda) = \frac{1}{4} (2x - \lambda)$, \quad $Bl_2 (x \mid \lambda) = \frac{1}{4} (2x (x - \lambda - 1) + \lambda)$,
and

$Bl^{(r)}_0 (x \mid \lambda) = 2^{-r}$, \quad $Bl^{(r)}_1 (x \mid \lambda) = 2^{-(r+1)} (2x - \lambda)$,
$Bl^{(r)}_2 (x \mid \lambda) = 2^{-(r+2)} (4x (x - 1) + (2 - 4x) \lambda r + r (r - 1) \lambda^2)$, \ldots

With the viewpoint of umbral calculus, Boole numbers and polynomials have
been studied by several authors (see [1-20]).

Recently, Kim-Kim has studied the following nonlinear differential equations(see [6, 8]):

\[\left(\frac{d}{dt} \right)^N F (t) = \frac{(-1)^N}{(1 + t)^N} \sum_{j=2}^{N+1} (j-1)! (N-1)! H_{N-1,j-2} F (t)^j, \quad (N \in \mathbb{N}), \]

where

$H_{N,0} = 1$, \quad for all N,

2010 Mathematics Subject Classification. 05A19,11B68, 11B83, 34A34.

Key words and phrases. Boole numbers, higher-order Boole numbers, non-linear differential equation.
2. Nonlinear differential equations arising from the generating function of Boole numbers

Let

\[F(t; \lambda) = \frac{1}{(1 + t)^{\lambda} + 1}. \]

Then, by (2.1), we get

\[F^{(1)} = \frac{d}{dt} F(t) \]

\[= \left(\frac{1}{(1 + t)^{\lambda} + 1} \right)^2 \frac{(-1)^{\lambda}}{(1 + t)^{\lambda}} (1 + t)^\lambda \]

\[= \frac{(-1)^{\lambda}}{1 + t} \left(\frac{1}{(1 + t)^{\lambda} + 1} \right)^2 (1 + t)^\lambda - 1 \]

\[= \frac{(-1)^{\lambda}}{1 + t} \left(F - F^2 \right), \]

and

\[F^{(2)} = \frac{dF^{(1)}}{dt} \]

\[= \frac{(-1)^{\lambda}}{(1 + t)^2} \left(F - F^2 \right) - \frac{\lambda}{1 + t} \left(F^{(1)} - 2FF^{(1)} \right) \]

\[= \frac{(-1)^{\lambda}}{(1 + t)^2} \left(F - F^2 \right) + \frac{(-1)^{\lambda}}{(1 + t)^2} (1 - 2F) (F - F^2) \]

\[= \frac{(-1)^{\lambda}}{(1 + t)^2} \left((1 + \lambda) F - (1 + 3\lambda) F^2 + 2\lambda F^3 \right). \]

Continuing this process, we set

\[F^{(N)} = \left(\frac{d}{dt} \right)^N F(t) = \frac{(-1)^{N\lambda}}{(1 + t)^N} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) F^i, \]

where \(N = 0, 1, 2, \ldots. \)

From (2.4), we have

\[F^{(N+1)} \]
\[d\frac{F^{(N)}}{dt} = \frac{-1}{(1+t)^{N+1}} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) F^i + \frac{-1}{1+t} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) i F^{i-1} F^{(1)} \]

\[= \frac{-1}{(1+t)^{N+1}} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) F^i + \frac{-1}{1+t} \sum_{i=1}^{N+1} i a_{i-1} (N; \lambda) F^{i-1} (F - F^2) \]

\[= \frac{-1}{(1+t)^{N+1}} \sum_{i=1}^{N+1} (N+i\lambda) a_{i-1} (N; \lambda) F^i - \sum_{i=2}^{N+2} (i-1) \lambda a_{i-2} (N; \lambda) F^i \]

\[= \frac{-1}{(1+t)^{N+1}} \left\{ (N+\lambda) a_0 (N; \lambda) F - (N+1) \lambda a_N (N; \lambda) F^{N+2} \right\} \]

On the other hand, replacing \(N \) by \(N + 1 \) in (2.4), we get

\[F^{(N+1)} = \frac{-1}{(1+t)^{N+1}} \sum_{i=1}^{N+2} a_{i-1} (N+1; \lambda) F^i. \]

From (2.5) and (2.6), we can derive the following relations:

\[a_0 (N+1; \lambda) = (N+\lambda) a_0 (N; \lambda), \]

\[a_{N+1} (N+1; \lambda) = - (N+1) \lambda a_N (N; \lambda) \]

and

\[a_{i-1} (N+1; \lambda) = - (i-1) \lambda a_{i-2} (N; \lambda) + (N+i\lambda) a_{i-1} (N; \lambda), \]

where \(2 \leq i \leq N+1 \).

By (2.1) and (2.4), it is easy to show that

\[F = F^{(0)} = \lambda a_0 (0; \lambda) F. \]

By comparing the coefficients on both sides of (2.10), we have

\[a_0 (0; \lambda) = \frac{1}{\lambda}. \]

From (2.2) and (2.4), we note that

\[\frac{-1}{1+t} \frac{\lambda}{1+t} (F - F^2) = F^{(1)} \]

\[= \frac{-1}{1+t} \frac{\lambda}{1+t} (a_0 (1; \lambda) F + a_1 (1; \lambda) F^2) \]

Thus, by (2.12), we get

\[a_0 (1; \lambda) = 1, \text{ and } a_1 (1; \lambda) = -1. \]

(2.13) \[a_0 (N+1; \lambda) = (N+\lambda) a_0 (N; \lambda) = (N+\lambda) (N+\lambda-1) a_0 (N-1; \lambda) \]

\[; \]

\[\vdots \]
From (2.9), we can derive the following equations:

\(a_1 (N + 1; \lambda) \)
\(= -\lambda a_0 (N; \lambda) + (N + 2\lambda) a_1 (N; \lambda) \)
\(= -\lambda a_0 (N; \lambda) + (N + 2\lambda) \{ -\lambda a_0 (N - 1; \lambda) + (N - 1 + 2\lambda) a_1 (N - 1; \lambda) \} \)
\(= -\lambda (a_0 (N; \lambda) + (N + 2\lambda) a_0 (N - 1; \lambda)) + (N + 2\lambda) (N + 2\lambda - 1) a_1 (N - 1; \lambda) \)
\(= -\lambda \{ a_0 (N; \lambda) + (N + 2\lambda) a_0 (N - 1; \lambda) + (N + 2\lambda) (N + 2\lambda - 1) a_0 (N - 2; \lambda) \} \)
\(+ (N + 2\lambda) (N + 2\lambda - 1) (N + 2\lambda - 2) a_1 (N - 2; \lambda) \)
\(= -\lambda \sum_{i=0}^{N-1} (N + 2\lambda) a_0 (N - i; \lambda) + (N + 2\lambda) a_1 (N; \lambda) \)
\(= -\lambda \sum_{i=0}^{N} (N + 2\lambda) a_0 (N - i; \lambda) , \)

\(a_2 (N + 1; \lambda) \)
\(= -2\lambda a_1 (N; \lambda) + (N + 3\lambda) a_2 (N; \lambda) \)
\(= -2\lambda a_1 (N; \lambda) + (N + 3\lambda) \{ -2\lambda a_1 (N - 1; \lambda) + (N + 3\lambda - 1) a_2 (N - 1; \lambda) \} \)
\(= -2\lambda \{ a_1 (N; \lambda) + (N + 3\lambda) a_1 (N - 1; \lambda) \} \)
\(+ (N + 3\lambda) (N + 3\lambda - 1) \{ -2\lambda a_1 (N - 2; \lambda) + (N + 3\lambda - 2) a_2 (N - 2; \lambda) \} \)
\(= -2\lambda \{ a_1 (N; \lambda) + (N + 3\lambda) a_1 (N - 1; \lambda) + (N + 3\lambda) (N + 3\lambda - 1) a_1 (N - 2; \lambda) \} \)
\(+ (N + 3\lambda) (N + 3\lambda - 1) (N + 3\lambda - 2) a_2 (N - 2; \lambda) \)
\(= \cdots \)

where

\((x)_n = x (x - 1) (x - 2) \cdots (x - n + 1) , \quad (n \geq 0) . \)
We have the following recurrence relations:

Theorem 1. We have the following recurrence relations:

(i) \(a_0 (0; \lambda) = \frac{1}{\lambda}; \) \(a_0 (1; \lambda) = 1, \) \(a_1 (1; \lambda) = -1, \)

(ii) \(a_0 (N + 1; \lambda) = (N + \lambda) a_{N+1} (N + 1; \lambda) = (-1)^{N+1} \lambda^N (N + 1)!, \)

(iii) \(a_k (N + 1; \lambda) = -k \lambda \sum_{i_1 = 0}^{N-k+1} (N + (k + 1) \lambda)_{i_1} a_{k-1} (N - i_1; \lambda), \)

for \(1 \leq k \leq N. \)

Now, we observe that

\[
(2.21) \quad a_1 (N + 1; \lambda) = -\lambda \sum_{i_1 = 0}^{N} (N + 2 \lambda)_{i_1} a_0 (N - i_1; \lambda)
\]

\[
= -\lambda \sum_{i_1 = 0}^{N} (N + 2 \lambda)_{i_1} (N + \lambda - i_1 - 1)_{N-i_1-1},
\]

(2.22) \(a_2 (N + 1; \lambda) \)
(2.23) \[= -2\lambda \sum_{i_2=0}^{N-1} (N + 3\lambda)_{i_2} a_1 (N - i_2; \lambda) \]
\[= (-1)^2 2! \lambda^2 \sum_{i_2=0}^{N-1} \sum_{i_1=0}^{N-i_2-1} (N + 3\lambda)_{i_2} (N + 2\lambda - i_2 - 1)_{i_1} \]
\[\times (N + \lambda - i_2 - i_1 - 2)_{N-i_2-i_1-2}, \]
and

(2.24) \[a_3 (N + 1; \lambda) \]
\[= -3\lambda \sum_{i_3=0}^{N-2} (N + 4\lambda)_{i_3} a_2 (N - i_3; \lambda) \]
\[= (-1)^3 3! \lambda^3 \sum_{i_3=0}^{N-2} \sum_{i_2=0}^{N-i_3-2} \sum_{i_1=0}^{N-i_3-i_2-2} (N + 4\lambda)_{i_3} (N + 3\lambda - i_3 - 1)_{i_2} \]
\[\times (N + 2\lambda - i_3 - i_2 - 2)_{i_1} \]
\[\times (N + \lambda - i_3 - i_2 - i_1 - 3)_{N-i_3-i_2-i_1-3}. \]

Continuing this process, we have

(2.25) \[a_j (N + 1; \lambda) \]
\[= (-1)^j j! \lambda^j \]
\[\times \sum_{i_j=0}^{N-j+1} \sum_{i_{j-1}=0}^{N-j+1-i_j} \cdots \sum_{i_1=0}^{N-j+1-i_2-i_3-\cdots-i_j} (N + (j + 1)\lambda)_{i_j} (N + j\lambda - i_j - 1)_{j-1} \]
\[\times \cdots \times (N + 2\lambda - i_j - \cdots - i_2 - (j - 1))_{i_1} \]
\[\times (N + \lambda - i_j - \cdots - i_1 - j)_{N-i_j-\cdots-i_1-j}, \]
where \(1 \leq j \leq N.\)

From (2.25), we note that the matrix \((a_i (j; \lambda))_{0 \leq i,j \leq N}\) is given by

\[
\begin{pmatrix}
0 & 1 & 2 & 3 & \cdots & (N-1)\lambda^{N-1} \\
0 & 1 & (1+\lambda) & (2+\lambda) & \cdots & (N+\lambda-1)\\n1 & -1 & & & & \\
2 & & & & & (-1)^2 \lambda^2! \\
3 & & & & & (-1)^3 \lambda^3! \\
\vdots & & & & & \\
N & & & & & (-1)^N \lambda^{N-1} N! \\
\end{pmatrix}
\]

Therefore, by Theorem 1, (2.4), and (2.25), we obtain the following theorem.
Theorem 2. The nonlinear differential equations

\[F^{(N)} = \frac{(-1)^N \lambda}{(1 + t)^N} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) F^i, \quad (N \in \mathbb{N}), \]

have a solution \(F = F(t, \lambda) = \frac{1}{(1 + t)^N + 1} \),

where \(a_0 (N; \lambda) = (N + \lambda - 1)_{N-1}, \ a_N (N; \lambda) = (-1)^N \lambda^{N-1} N! \),

\[a_j (N; \lambda) = (-1)^j j! \lambda^j \prod_{i=0}^{N-j-1-i_j} \frac{(N + (j+1) \lambda - 1)_{i_j}}{i_j!} \times (N + j \lambda - \lambda - 2)_{i_{j-1}} \cdots (N + 2 \lambda j - i_{j-2} - j)_{i_1} \times (N + \lambda - i_{j-1} - \cdots - i_1 - j - 1)_{N-i_{j-1} - \cdots - i_1 - 1}, \quad (1 \leq j \leq N - 1). \]

Recall that the Boole numbers, \(B_l (\lambda), \ (k \geq 0) \), are given by the generating function

(2.27) \[\frac{1}{(1 + t)^\lambda + 1} = \sum_{k=0}^{\infty} B_l (\lambda) \frac{t^k}{k!}. \]

Thus, by (2.27), we get

\[F^{(N)} = \left(\frac{d}{dt} \right)^N F(t, \lambda) \]

\[= \left(\frac{d}{dt} \right)^N \left(\frac{1}{(1 + t)^\lambda + 1} \right) \]

\[= \sum_{k=N}^{\infty} B_k (\lambda) (k)_{N} \frac{t^{k-N}}{k!} \]

\[= \sum_{k=0}^{\infty} B_{k+N} (\lambda) \frac{(k + N)_{N} t^k}{(k + N)!} \]

\[= \sum_{k=0}^{\infty} B_{k+N} (\lambda) \frac{t^k}{k!}, \quad (N \in \mathbb{N}). \]

From (1.2), Theorem 2 and (2.27), we have

(2.28) \[\sum_{k=0}^{\infty} B_{k+N} (\lambda) \frac{t^k}{k!} = F^{(N)} \]

\[= \frac{(-1)^N \lambda}{(1 + t)^N} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \left(\frac{1}{(1 + t)^\lambda + 1} \right)^i \]

\[= (-1)^N \lambda (1 + t)^{-N} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \left(\frac{1}{(1 + t)^\lambda + 1} \right)^i. \]
\[
\begin{align*}
&= (-1)^N \lambda \left(\sum_{l=0}^{\infty} (-1)^l (N + l - 1) t^l / l! \right) \left(\sum_{n=0}^{\infty} \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) B_{m}^{(i)} (\lambda) t^n / m! \right) \\
&= (-1)^N \lambda \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \left(\sum_{l=0}^{\infty} (-1)^l (N + l - 1) t^l / l! \right) \left(\sum_{m=0}^{\infty} B_{m}^{(i)} (\lambda) t^n / m! \right) \\
&= (-1)^N \lambda \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \left(\sum_{k=0}^{\infty} \sum_{l=0}^{k} \binom{k}{l} (-1)^l (N + l - 1) B_{k-l}^{(i)} (\lambda) \right) \frac{t^k}{k!} \\
&= \sum_{k=0}^{\infty} \left((-1)^N \lambda \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \sum_{l=0}^{k} \binom{k}{l} (-1)^l (N + l - 1) B_{k-l}^{(i)} (\lambda) \right) \frac{t^k}{k!},
\end{align*}
\]

where \(N \in \mathbb{N} \).

By comparing the coefficients on both sides of (2.28), we obtain the following theorem.

Theorem 3. For \(N \in \mathbb{N} \) and \(k \in \mathbb{N} \cup \{0\} \), we have

\[
B_{k+N} (\lambda) = (-1)^N \lambda \sum_{i=1}^{N+1} a_{i-1} (N; \lambda) \sum_{k=0}^{n} \binom{k}{l} (-1)^l (N + l - 1) B_{k-l}^{(i)} (\lambda).
\]

By replacing \(t \) by \(e^t - 1 \) in (1.1), we get

\[
(2.29) \quad \frac{1}{2} \left(\frac{2}{e^{\lambda t} + 1} \right) = \sum_{k=0}^{\infty} B_k (\lambda) \frac{1}{k!} (e^t - 1)^k \\
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} B_k (\lambda) S_2 (n, k) \right) \frac{t^n}{n!},
\]

where \(S_2 (n, k) \) are the Stirling numbers of the second kind.

As is well known, Euler numbers are given by the generating function

\[
(2.30) \quad \left(\frac{2}{e^t + 1} \right) = \sum_{n=0}^{\infty} E_n t^n / n!, \quad \text{(see [6])}.
\]

From (2.29) and (2.30), we have

\[
(2.31) \quad 2^{-1} \lambda^n E_n = \sum_{k=0}^{n} B_k (\lambda) S_2 (n, k), \quad (n \geq 0).
\]

It is well known that the higher-order Euler numbers are also defined by the generating function

\[
(2.32) \quad \left(\frac{2}{e^t + 1} \right)^r = \sum_{n=0}^{\infty} E_n^{(r)} t^n / n!, \quad \text{(see [19])}.
\]

Now, we observe that

\[
(2.33) \quad \left(\frac{1}{e^{\lambda t} + 1} \right) = \left(\frac{1}{(e^t - 1 + 1)^\lambda + 1} \right)^i \\
= \sum_{k=0}^{\infty} B_{k}^{(i)} (\lambda) \frac{1}{k!} (e^t - 1)^k
\]

\(\text{(see [17])} \).
\[
\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} B_{k}^{(i)} (\lambda) S_2 (n, k) \right) \frac{t^n}{n!}.
\]

Thus, by (2.32) and (2.33), we get
\[
2^{-i} \lambda^n E_n^{(i)} = \sum_{k=0}^{n} B_{k}^{(i)} (\lambda) S_2 (n, k), \quad (n \geq 0, i \in \mathbb{N}).
\]

From (1.1) and (2.30), we note that
\[
2^{-i} \lambda^n E_n^{(i)} = \sum_{k=0}^{n} E_k \frac{\lambda^k}{k!} (\log (1 + t))^k
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} E_k \lambda^k S_1 (n, k) \right) \frac{t^n}{n!},
\]
where \(S_1 (n, k) \) are the Stirling numbers of the first kind.

Thus, by (2.34), we get
\[
(2.35) \quad B_l (\lambda) = \frac{1}{2} \sum_{k=0}^{n} E_k \lambda^k S_1 (n, k), \quad (n \geq 0).
\]

By (2.32), we easily get
\[
(2.36) \quad \left(\frac{2}{(1 + t)^{\lambda} + 1} \right)^i = \left(\frac{2}{e^{\lambda \log(1+t)} + 1} \right)^i
\]
\[
= \sum_{k=0}^{\infty} E_k \frac{1}{k!} \lambda^k (\log (1 + t))^k
\]
\[
= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} E_k \lambda^k S_1 (n, k) \right) \frac{t^n}{n!}, \quad (i \in \mathbb{N}).
\]

From (2.32) and (2.36), we have
\[
(2.37) \quad 2^i B_l (\lambda) = \sum_{k=0}^{n} E_k^{(i)} \lambda^k S_1 (n, k), \quad (n \geq 0, i \in \mathbb{N}).
\]

Therefore, by Theorem 3, (2.36), and (2.37), we obtain the following theorem.

Theorem 4. For \(k \in \mathbb{N} \cup \{ 0 \} \) and \(N \in \mathbb{N} \), we have
\[
\frac{1}{2} \sum_{n=0}^{k+N} E_n \lambda^n S_1 (k + N, n)
\]
\[
= (-1)^N \lambda \sum_{i=1}^{N+1} a_{i-1} (N ; \lambda) \sum_{l=0}^{k} \binom{k}{l} (-1)^l (N + l - 1) \sum_{n=0}^{k-l} 2^{-i} E_n^{(i)} \lambda^n S_1 (k - l, n).
\]
References

1. H. Alzer and R. Chapman, *On Boole’s formula for factorials*, Australas. J. Combin. 59 (2014), 333–336.
2. A. Bayad and J. Chikhi, *Apostol-Euler polynomials and asymptotics for negative binomial reciprocals*, Adv. Stud. Contemp. Math. (Kyungshang) 24 (2014), no. 1, 33–37.
3. A. Bayad and T. Kim, *Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials*, Russ. J. Math. Phys. 18 (2011), no. 2, 133–143.
4. D. Kang, J. Jeong, S.-J. Lee, and S.-H. Rim, *A note on the Bernoulli polynomials arising from a non-linear differential equation*, Proc. Jangjeon Math. Soc. 16 (2013), no. 1, 37–43.
5. D. S. Kim and T. Kim, *A note on Boole polynomials*, Integral Transforms Spec. Funct. 25 (2014), no. 8, 627–633. MR 3195946
6. ———, *Some identities of Boole and Euler polynomials*, Ars Combin. 118 (2015), 349–356.
7. D. S. Kim, T. Kim, and J. J. Seo, *A note on q-analogue of Boole polynomials*, Appl. Math. Inf. Sci. 9 (2015), no. 6, 3135–3158. MR 3386346
8. T. Kim, *Identities involving Frobenius-Euler polynomials arising from non-linear differential equations*, J. Number Theory 132 (2012), no. 12, 2854–2865. MR 2965196
9. ———, *Degenerate Euler zeta function*, Russ. J. Math. Phys. 22 (2015), no. 4, 469–472.
10. ———, *On the degenerate higher-order Cauchy numbers and polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) 25 (2015), no. 3, 417–421.
11. T. Kim, D. V. Dolgy, and D. S. Kim, *Symmetric identities for degenerate generalized Bernoulli polynomials*, J. Nonlinear Sci. Appl. 9 (2016), no. 2, 677–683.
12. T. Kim, D. S. Kim, D. V. Dolgy, and J.-J. Seo, *Bernoulli polynomials of the second kind and their identities arising from umbral calculus*, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 860–869.
13. T. Kim, D. S. Kim, H.-I. Kwon, J.-J. Seo, and D. V. Dolgy, *Some identities of q-Euler polynomials under the symmetric group of degree n*, J. Nonlinear Sci. Appl. 9 (2016), no. 3, 1077–1082.
14. J. Kwon and J.-W. Park, *A note on (h, q)-Boole polynomials*, Adv. Difference Equ. (2015), 2015:198, 11.
15. J. K. Kwon, *A note on weighted Boole polynomials*, Global J. Pure Appl. Math. 11 (2015), no. 5, 2055–2063.
16. M. Nuzzetti, *Toward a history of the algebra of logic (from Boole to Sheffer)*, Metalogicon 27 (2014), no. 1, 45–62. MR 3289454
17. A. Osipov, *On a G. Boole’s identity for rational functions and some trace formulas*, Complex Anal. Oper. Theory 5 (2011), no. 3, 889–900. MR 2836331 (2012i:47047)
18. S. Roman, *The umbral calculus*, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015)
19. E. Şen, *Theorems on Apostol-Euler polynomials of higher order arising from Euler basis*, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 337–345. MR 3088764
20. S. L. Uckelman, *Computing with concepts, computing with numbers: Llull, Leibniz, and Boole*, Programs, proofs, processes, Lecture Notes in Comput. Sci., vol. 6158, Springer, Berlin, 2010, pp. 427–437. MR 2678155 (2012c:03022)

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

E-mail address: tkkim@kw.ac.kr

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea

E-mail address: dskim@sogang.ac.kr