Synthesis of Isatin and Its Derivatives and their Applications in Biological System

Tariq Aziz1*, Asmat Ullah2, Roh Ullah3, Fazal Haq4, Mudassir Iqbal1, Farman Ullah Khan5, Muhammad Imran Jamil1, Muhammad Raheel6 and Mehwish Kiran7

1College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
2School of Pharmacy. Xian Jiaotong University Shannxi, China
3School of Chemistry and Chemical Engineering, Beijing Institute of Technology, China
4Department of Chemistry, Gomal University, Dera Ismail Khan, KPK, Pakistan
5Department of Chemistry, University of Science and Technology Bannu 28000, Pakistan/ Department of Chemistry, University of Lakki Marwat, Lakki Marwat 28420, KPK, Pakistan
6Baluchistan University of Information Technology, Engineering and Management Sciences (BUITEMS), Department of Chemistry. Baluchistan, Pakistan
7Department of Horticulture Gomal University, Dera Ismail Khan, KPK, Pakistan

*Corresponding author: Tariq Aziz, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China

ARTICLE INFO

Received: September 11, 2020
Published: September 23, 2020

Citation: Tariq Aziz, Asmat Ullah, Roh Ullah, Fazal Haq, Mudassir Iqbal, et al. Synthesis of Isatin and Its Derivatives and their Applications in Biological System. Biomed J Sci & Tech Res 30(4)-2020. BJSTR. MS.ID.004991.

ABSTRACT

Here investigations were made to study the variant developments in the synthesis of isatin and its derivatives. This review comprehended the various synthetic methods especially, sandmeyer synthesis, stolle synthesis and gassman synthesis for the synthesis of isatin. The isatin and its derivatives played a key role in biomedical applications. The isatin and its derivatives are used as bactericide, fungicide, anti-HIV, anti-epileptic, anti-instigative and so on. The isatin derivatives are helpful in inhibiting the activity of the urease and α-glucosidase enzymes and reduce the risks of pyelonephritis, gastric problems and diabetes. This review highlighted the synthetic routes for the synthesis of isatin and the beneficial aspects of isatin and its derivatives in biomedical field.

Keywords: Isatin; Urease Inhibition; α-Glucosidase Inhibition; Antioxidant Activity; Sandmeyer Synthesis

Introduction

Isatin is an indole derivative firstly synthesized in the laboratory by Erdmann and Laurent by oxidation of indigo pigment having chronic acid. It is orange-red in color with freezing point 200°C [1,2]. Isatin is heterocyclic compound and acts as important species for the synthesis of various heterocyclic compounds especially, indolic and quinolonic compounds. It is also used in medicines synthesis (Figure 1). Thiosemicarbazide derivatives of isatin were reported as an anti-HIV agent [3]. N-methyl isatin-β-4',4'-diethylthiosemicarbazone prove high inhibition of HIV by their action on contrary transcriptase and viral structural proteins [4]. 3-p-(p-(alkoxycarbonyl) phenyl carbamoyl) phenyl) imino-1-aminomethyl-2-indolinones was by R.S Verma et al. was successfully tested against M. tuberculosis H37Rv [5]. Isatin derivatives are very effective against micro-organism especially, S aureus, S epidermis, Micrococcus luteus, and B cereus. The Schiff base of isatin derivatives 5-substituted and N-acetyl isatin with different substituted aromatic aldehydes was assumed to be very operative against micro-organisms [6,7]. Bis-Schiff bases of isatin were found to possess significant anti-viral, antibacterial and anti-fungal activity [8,9].

Figure 1: Skeleton of Isatin.
The azetidine and thiadiazine derivatives of isatin were also found to possess significant antibacterial activity [10]. 5-Nitro-1H-indole-2,3-dione-3-N-(4H-methyl phenyl)thiosemicarbazones screened for antibacterial activity against *E.coli* and *S.aureus* by the cup-plate method and found active [11]. It also acts as anti-HIV, showing enzyme inhibition activity and as cytotoxic agent against tumor cells [12-14]. In antismallpox [15], inflammatory activities [16], kinase activator [17]. Also, biologically active on echinococcus multilocularis metacestodes [18]. Meshram et al. also developed an isatin-based multicomponent reaction for the synthesis of spirooxindole fused N-heterocyles with anticancer properties [19].

Zhang et al. first reported the vinylogous, henry reaction between isatin and 3,5-dialkyl-4-nitroisoxazole, leading to isoxazole-substituted 3-hydroxy-2-oxindole derivatives, medicinally important compounds [20], also provided the basis for removal of industrial dye wastewater [21]. In this study, we discuss in detail “Synthesis of isatin and its derivatives and their applications in biological system” because isatin play a key effects like ascorbic acid, hydroxyl amino acids, omeprazole, thiol compounds and imidazole etc. which is helpful for the pathogenesis of gastric ulcer and peptic ulcer.

Also discuss antioxidants, which are responsible for converting free radicals into stable substances, especially serious diseases caused by diabetes. We can say, that isatin provides a critical and dynamic role in the pharmaceutical industry.

Isatin Synthesis

Sandmeyer Synthesis

One of the most famous techniques for the synthesis of isatin is Sandmeyer method. Aniline reacts with chloral hydrate and hydroxylamine hydrochloride conducting aqueous solution of sodium sulfate to produce an isonitrosoacetenilide. In this way, isonitosoacetenilide easily converted into isatin analogs [22] (Figure 2).

Stolle Synthesis

This method is very effective for the synthesis of isatin and its derivatives. The substituted isatin is synthesized by converting substituted aniline in the presence of oxalyl chloride and Lewis acids like BF3 or AlCl3. This method is also very useful to synthesize 1-Maryland polycyclic istan from phenothiazine, phenoxazine, dibenzoazepine and indol [23,24] (Figure 3).

Gassman Synthesis

Gassman introduced a new approach, to synthesize isatin. This method involves the characteristics relationship between electrons donating, an electron withdrawing group, to convert aniline to intermediate 3-methylthiooxindol. In this intermediate, the methyl group is oxidized by N-chlorosucinamide, which is proceeded by the hydrolysis of the chlorinated intermediate [25,26] (Figure 4).
Isatin Derivatives

Isatin derivatives are well known malleable substances, which are acted as forerunners for the synthesis of heterocyclic compounds [27]. Isatin derivatives play a vital role in the medicines because it used as bactericide [28], used for viral infections [29], anti-HIV [30], fungicide [31], anti-epileptic [32], anti-neoplastic [33], for the treatment of Mycobacterium [34] and anti-invasive [35]. Isatin derivative like 5-hydroxy isatin and spirobenzodiazepine, also used to reduce depression [36] (Figure 5). Few derivatives of isatin like 3-p-(p-(alkoxy carbonyl)phenyl)carbonylphenyl) imino-1-aminomethyl-2-indolinone is found to be effective against tuberculosis [37]. 5-[2(3)-diallyl aminoalkoxy] Indole 2,3-dione is one of the important isatin derivative used against aminallane (histamine) [38]. Isatin derivatives are used for the treatment of malaria. 4-aminoquinoline derivatives were found to be efficacious versus Plasmodium falciparum [39]. Such derivatives can be obtained both from natural and synthetic source. tryptanthrin well-known isatin derivative obtained from Chinese herb [40].

![Figure 5: Structure of 5-hydroxy and spirobenzodiazepine isatin derivative.](image)

Most of this type, derivatives are synthesized in laboratories, such as 5-methyl isatin [41], and 5-aminoindazole and mercapto-acetic acid can easily prepared [42]. By treating alkyl isatin with the compound labeled acidic medium (acetic acid) reflux at 2 hours is converted into 2-amino benzoic acid (2-oxo-1,2-dihydro-indol-3-ylidene)-hydrazide [43]. Synthesizes, compound involves so many synthetic routes. Then these compounds were dissolved in acidic (acetic acid) in water basic solution [44-48]. The synthesis of Schiff bases, are prepared simply by reacting isatin and its derivatives were also synthesized [59].

Urease Inhibition

Urea, which is well-known fertilizer used for the enhancement of fertility of the soil, urea contains (46%) nitrogen. This urea release nitrogen in the form of ammonia gas due to which its action of fertility is also affected [60]. Urease is a well-known enzyme has nickel in their body structure which convert urea to carbon dioxide and ammonia by hydrolytic catalysis [61]. This typical enzyme is isolated by the same catalysis process from different plants, algae, fungi and bacteria [62,63]. As this enzyme has the same amino acid sequence and having Ni^{2+} in their core structure that is why its origin is very common [62,64,65], and develop various types of diseases in animals and plants especially stomach and gastrointestinal ulcer; hepatic coma auralithiasis and pyelonephritis [66,67]. Recently two new isatin derivatives (1-allyl-2-oxoindolin-3-ylidene)-4-methylbenzenesulfonyl-hydrazide and (1-allyl-2-oxoindolin-3-ylidene)-4-chlorobenzenesulfonyl-hydrazide were synthesized with a high yields. The dynamic stability, reactivity, and affinity of these two derivatives are described. Enzyme inhibition potential test was carried out on urea enzyme of bacillus pasteurii urease and both compounds retarded the enzymatic activity with IC50 values of 39.46 ± 0.12 mM and 148.35 ± 0.16 mM respectively [68] (Figure 6).
Helicobacter pylori is the well-known bacterium which causes gastric and peptic ulcer [69]. This bacterium discharge urease which converts urea to ammonia which is basic in nature which increases the pH of the stomach and provides a good environment for their growth. This enzyme is very useful to eradicate the toxic organism from our body [70]. Recently numerous urease enzymes have been added to literature especially triazoles and coumarin derivatives [71]. Schiff bases derivatives [72], omeprazole [73], plan tool and its thiourea derivatives [74], hydroxamic acid [75], lansoprazole [76], thiol-compound [77], phosphorodiamidates [78,79], imidazoles, for example, rabeprazole [80], hydroxyurea [81], quinine [82] and hydroxamic acid derivatives [83].

α-Glucosidase Inhibition

α-glucosidase is also regarded as exoglycosidase enzyme. This enzyme is present in the intestinal tract which hydrolyzed the carbohydrate and converted into glucose. This glucose is then entering the bloodstream and its excess causes postprandial hypoglycemia [84]. The main aim of the α-glucosidase inhibitors is to delay the hydrolysis of carbohydrate to reduce the risks of diabetes [85], that’s why this enzyme is preferably used in anti-diabetic medicines [86]. α-Glucosidase inhibitors retard the function of α-glucidase, which is responsible, to convert carbohydrate into glucose. So, in this, way it, reduces the glucose level in the blood stream and hemoglobin [87]. The main drawback of this enzyme is lack of specify in targeting glycosidase and causes infections especially relating to the stomach and intestines, looseness of the bowel and produce a state of excessive gas in the alimentary canal [88]. The derivatives of benzathiazole-triazole were synthesized, and their characterization was carried out with 1H-NMR and 13C-NMR. The inhibitory activity of α-glucosidase inhibitory in vitro was screened by baker’s yeast α-glucosidase enzyme. Compared to standard IC50 817.38 μm values between 20.7 and 6.11 μm, most compounds exhibit varying degrees of alpha-glucose inhibition activity (Figure 7).

Antioxidant Activity

Free radicals are atom or molecule with an odd electron in their outmost shell [89], are highly unstable and always in search to gain an electron from any species to complete its outmost shell in order to make itself stable. In our body, during the metabolism process of oxygen, any free radicals are generated in mitochondria. So, it is very important to eradicate these free radicals, if it is not so, they will cause different diseases especially malignant neoplasic disease, disease relating to the brain and the blood vessels, dotage, heart disease, ulceration, diabetes, heart disease, mucoviscidosis, agedness, gastrointestinal ulcer and acquired immune deficiency syndrome [90,91]. So, to overcome this problem antioxidants are used, because their main function is to convert these highly unstable free radicals to stable substances. Antioxidants are used in a large number of medicines which are used to cure the diseases caused by the free radicles [92-94]. Here also experimental and theoretical results, compatible with (H25MI3ClPT) and (H25MI3PT) concentration of free radical scavenging in DPPH. The proportionality increased in the antioxidant activity. In particular, it is theoretically confirmed that the antioxidant activity of DPPH products with high energy volume (H25MI3CIPT) -IC50 is lower than (H25MI3PT)-DPPH products [95].

Conclusion

In this paper, isatin and its derivatives were studied and evaluate their biological activates, such as urea enzyme inhibition, alpha-glucosamine inhibition and antioxidant activity. Various synthetic methods especially, sandmeyer synthesis, stolle synthesis and gassman synthesis were discussed for the synthesis of isatin. The isatin and its derivatives played a phenomenal role in biomedical applications. The isatin and its derivatives are used as bactericide, fungicide, anti-HIV, anti-epileptic, anti-instigative and so on. The isatin derivatives are useful in constraining the natural action of the urease and α-glucosidase enzymes and reduce the threats to human health like pyelonephritis, gastric problems and diabetes.

Compliance with Ethical Standards

Conflict of Interest: The authors declare that they have no conflict of interest.

Ethical Approval: This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Medvedev A, Buneeva O, Gnedenko O, Ershov P, Ivanov A, et al. (2018) Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. Biofactors 44(2): 95-108.
2. Sumrara SH, AtilfAH, Zafar MN, Khalid M, Tahir MN, et al. (2018) Synthesis, crystal structure, spectral and DFT studies of potent isatin derived metal complexes. J Mol Struct 1166(15): 110-120.

3. HryvnyakD, ZimenkovskyB, VasylkenkoG, GzeliaA, Lesyk R, et al. (2012) Synthesis of New 4-Thiazolidinone-, Pyrazoline-, and Isatin-Based Conjugates with Promising Antitumor Activity. Journal of Medicinal Chemistry 55(20): 8630-8641.

4. Da Silva JFM, Garden SJ, Pinto AC (2001) The chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 12(3): 273-324.

5. Medvedev AE, Cloow A, Sandler M, Glover V (1996) Isatin: A link between natriuretic peptides and monoamines? Biochemical Pharmacology 52(3): 385-391.

6. Boufhid R, Joly N, Essami EM, Lequart V, Massouli M, et al. (2011) Synthesis of New Spiro[1,4,2-dioxazole-5,3′-indolin]-2′-one by 1,3-Dipolar Cyclodaddition. Synthetic Communications 41: 2096-2102.

7. Noori MS, O'Brien JD, Champa ZJ, Lanier OL, et al. (2017) Phenylmethimazole and a thiazole derivative of phenylmethimazole inhibit IL-6 expression by triple negative breast cancer cells. European Journal of Pharmacology 803: 130-137.

8. Abdelhamid AO, Gomha SM (2017) Synthesis and characterization of new pyrazole-based thiazolediones. Synthetic Communications 47: 1409-1414.

9. Ullah A, Mangi AA, Khan H, Khan B, Nawaz T, et al. (2019) Formulation of Loxoprofen Microparticles and its In Vitro Characterization. Lat Am J Pharm 38(8): 1648-1659.

10. Fadda AA, Afsah ESM, Awad RS (2013) Synthesis and antimicrobial activity of some new benzo and naphthoquinone derivatives. Eur J Med Chem 60: 421-430.

11. Zelisko N, Atamanyuk D, Vasylenko O, Grelier P, Lesyk R, et al. (2012) Synthesis and antiinflammatory activity of new 6,6,7-trisubstituted thiopyrano 2,3-d 1,3 thiazoles. Bioorg Med Chem Lett 22(23): 7071-7074.

12. Nath Pandeya S, Smitha S, Jyoti M, Krishnan Sridhar S (2005) Biological activities of isatin and its derivatives Acta Pharm 55(1): 27-46.

13. Konkel MJ, Lagu B, Boteju LW, Jimenez H, Noble S, et al. (2006) 3-Arylimino-2-indolones Are Potent and Selective Galanin GAL3 Receptor Antagonists. Journal of Medicinal Chemistry 49(13): 3757-3758.

14. Matesic L, Locke JM, Bremner JB, Pyne SG, Skropeta D, et al. (2008) N-Phenethyl and N-naphthylmethyl isatins and analogues as in vitro cytotoxic agents. Bioorganic & Medicinal Chemistry 16(6): 3118-3124.

15. C Pirring M, V Pansare S, Das Sarma K, Keith K, R Korn E, et al. (2005) Combinatorial Optimization of Isatin-β-Thiosemicarbazones as Antipoxviruses Agents. J Med Chem 48(8): 3045-3050.

16. Sridhar SK, Pandeya SN, Stables JP, Ramesh A (2002) Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives. European Journal of Pharmacological Sciences 16(3): 129-132.

17. Natarajan A, Fan Y-H, Chen H, Guo Y, Iyaeare J, et al. (2004) 3,3-Diaryl-1,3-dihydropyridine-2-ones as Antiproliferative Mediated by Translation Inhibition. Journal of Medicinal Chemistry 47(8): 1882-1885.

18. Paria S, Lee H-J, Maruoka K (2019) Enantioselective Alkylation of Isatin Derivatives Using a Chiral Phase-Transfer/Transition-Metal Hybrid Catalyst System. Acc Catal 9: 2395-2399.

19. Mishra R, Jana A, Panday AK, Choudhury LH (2019) Synthesis of spirooxindoles fused with pyrazolo-tetrahydropyridine and coumarin-dihydropyridine-pyrazole tetracycles by reaction medium dependent isatin-based multicomponent reactions. New J Chem 43(2): 2920-2932.

20. Yang L, Zhao J, Yang X, Chen M, Xue Y, et al. (2019) Effects of solvents on the DABCoy-catalyzed vinyllogous Henry reaction of isatin with 3,5-dimethyl-4-nitroisoxazole “on-water” and in solution from QM/MM MC simulations. Rsc Advances 9: 4932-4941.

21. Yin G, Xu C, Yu W, Jia Y, Sun W, et al. (2019) Synthesis of a novel isatin and ethylenediamine modified resin and effective adsorption behavior towards Orange G. Rsc Advances 9: 801-809.

22. Hawsawasam PM, NA (1994) A General Method for the Synthesis of Isatin: Preparation of Regiospecifically Functionalized Isatin from Anilines. Tetrahedron Letter 35(40): 7295-7306.

23. Magnus NAD WD, Nevill CR, Wespiec s (2006) Synthesis of Imidazole Based p38 MAP (Mitogen-Activated Protein) Kinase Inhibitors under Buffered Conditions. J Org Proc Res Dev 10(3): 545-556.

24. Papeo GPH, Broghi D, Varasi (2005) A New Glycociamidine Ring Precursor: Syntheses of (Z)-Hymenialdisine, (Z)-2 Debrohmethylidroladisine, and (s)-endo-2-Debrohmethylidroladisine. M Org Lett 7(25): 561-564.

25. Karale BK, Takate SJ, Salve SR, Zaware BH, Jadhav SS, et al. (2015) Synthesis and Antibacterial Screening of Novel Fluorine Containing Heterocycles. Orient J Chem 31: 307-315.

26. Nain S (2014) Recent Advancement in Synthesis of Isatin as Anticonvulsant Agents: A Review. Med Chem 4(4): 1-12.

27. Khalid Mohammed Khan, Momin Khan, Muhammad Ali, Muhammad Taha, Saima Rasheed, et al. (2009) Synthesis of bis-Schiff bases of isatins and their antigenicity activity. Bioorganic & Medicinal Chemistry 17(22): 7795-7801.

28. Kassab SH G, Eid N, Amin K, El-Gendy, Sridhar SK, et al. Saravanan M; Ramesh A Eur (c) Singh, U. K; Pandeya SN; Singh A; Srivastava BK; Pandey, Int. M (a) 2010 (b) 2001 (c) 2010) (a) A Nucleosides, Nucleotides Nucleic Acids (b) Med Chem (c) J Med Chem (a) 11 (b) 101 (c) 3:151.

29. Quenelle DK, K; Kern Jiang, T; Kuen KL Wolff, K; Yin H; Biezka K; Caldwell J; Bursula B; Tuntland T; Zhang K; Karanewsky, D Bioorg (c) 2005). (a) Bioorg Med Chem (b) J Med Chem (c) Drug Res (a)29 (b) 36 (c) 21:615 (b) 36 (c) 2:(a)72 (b) 615 (c) 151.

30. Ball TRA B; Yogeeswari P; Sriram D Lett (b) Sriram D; Yogeeswari P; Dimoglo A Bioorg, Feng LS; Liu ML; Wang B; Chai Y; Hao XQ; Meng S; Mc; Mosquera-V G; Matalobos J; Ón-Touceda P; Sanmart (c) 2007). (a) E Antiviral Res (b) (c) (b) Med Chem Lett (c) J Molecules (a) 71 (b) 12 (c) 12(a) 24 (b) 2109 (c) 1720.

31. Amal Raj AR; SrideviKumar MG; Raman N Bioorg; Rodríguez-Argüelles MC; Mosquera-Vázquez S; Tourón-Touceda P; Sanmartín-Matallbos J; García-Debie AL; Belchí-Ferrari M; Pelosi G; Pelizzi C; Zani FJ Inorg (c) Dandia A; Singh R; Khaturia S; Mornant C; Tour MC simulations. Rsc Advances 9: 4932-4941.

32. Verma MP SN; Singh KN; Stables JP (2004) Acta Pharm 54: 36-49.

33. Göroś AK, N Eur (2003) J Med Chem 38: 625-633.

34. Karah NG A; Kandemirli F; Shvets N; Kaynak FB; Özbey S; Kovalidshyn V; Dimoglo A Bioorg, Feng LS; Liu ML; Wang B; Chai Y; Hao XQ; Meng S; Guo HY Eur (c) Sriram D; Yogeeswari P; Basha S; Radha DR; Nagaraja V Bioorg (a) 2007 (b) 2010 (c) 2005) (a) Med Chem (b) Med Chem (c) Med Chem (a) 15 (b) 45 (c) 1:3 (a) 5888 (b) 3407 (c) 5774.

35. Sridhar SKR, A Biol (2001) Pharm Bull 24:1138-1149.

36. Rang HP DM, Ritter JM, Flower RJ (2007) Rang and Dale’s Pharmacology. 6th edition Churchill Livingstone Elsevier 538: 670-681.

37. Varma RS PR (1982) Indian J Pharm Sci. 46: 132-135.
Design, synthesis, and evaluation of novel organophosphorus inhibitors of bacterial ureases Journal of Medicinal Chemistry. 51(8): 5736-5744.

Mitscher LA BW (1998) A search for novel chemotherapeutic agents against tuberculosis amongst natural products. Pure & Appl Chem 70(2): 365-371.

Sriram DYP, Gopal G Eur (2005) Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs. J Med Chem 40(12): 1373-1376.

Jain SK P, Bhagat S, Jain M, Sahuja R (2005) Phosphorus, Sulfur, Silicon Relat Elem 180: 1820-1829.

G Ssmalhah GBAMS (2011) Synthesis and biological activity of 2-amino benzoic acid (2-oxo-1, 2 dihydro-indole-3-ylidene)-hydrazides. Journal of Advanced Pharmaceutical Sciences 1: 11-12.

Xie X, YJL (2007) Chemical Reagent 29: 25-34.

Li C, Y ZQO, Lij H (2001) Chemical Reagents 23: 335-344.

Li Z, XYL (2007) Journal of Northwest Normal University (Natural Science) 43: 46-57.

He BJ, J SHF (2007) Chinese Journal of Synthetic Chemistry 15: 356-365.

Idan C EH (2003) Bioorganic & Medicinal Chemistry Letters 13: 3516-3527.

UK Singh SNP, A Singh BK, Srivastava M Pandey (2010) Synthesis and Antimicrobial Activity of Schiff’s and N-Mannich Bases of Isatin and Its Derivatives with 4-Amino-N-Carbamimidoyl Benzene Sulfonylamide. International Journal of Pharmaceutical Sciences and Drug Research 2(2); 151-154.

Voronin V, Petrova V, Leksin C, Shemeryankin D (1976) Methods for the N-alkylation of isatin compounds. Synth Commun 28(9): 1679-1689.

Hassaan AMA (1990) Infect Dis 8-11 QH2OQuinoline. J Chem Heter Comp 21: 1-5.

Verma M, Pandeya SN, Singh KN, Stable (2004) JP Acta Pharm 54: 36-49.

Sarkiyan MG (2004) Information systems for the practical use of information in biotechnology and the practical use of information in biotechnology. Journal of Biological Chemistry 264(27): 15835-15842.

MJ Todd, RP Hausinger (1989) Competitive inhibitors of bacterial ureases. Journal of Medicinal Chemistry 32(25): 4906-4916.

TC Kuhler JF, NA Bergman, J Weilitz, A Lee, H Larsson, et al. (1995) Structure-activity relationship of omeprazole and analogues as potent antibacterial agents against Helicobacter pylori. Bioorganic & Medicinal Chemistry Letters 9(10): 1347-1350.

S Odake TM, M Tsuchiya, L Imamura, K Kobashi (1994) Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives. European Journal of Medicinal Chemistry 46(11): 5473-5479.

Amin MI, MS Hughes, RW Khan, PA Enne, et al. (2010) Mechanochemo synthesis and in vitro Helicobacter pylori urease activity of novel zinc(II)-famotidine complex. J Enzyme Inhib Med Chem 25(3): 383-390.

10.26717/BJSTR.2020.30.004991
80. JB Park LJ, K Kobashi (1996) Kinetic studies of Helicobacter pylori urease inhibition by a novel proton pump inhibitor, rabeprazole. Biological and Pharmaceutical Bulletin 19(2): 182-187.

81. S Uesato YH, M Nishino, Y Nagaoka, H Kuwajima (2002) N-substituted hydroxyureas as urease inhibitor. Chemical and Pharmaceutical Bulletin 50(9): 1280-1282.

82. Bremner LG, BajM (1973) Effects of substituted p-benzoquinones on urease activity in soils. Soil Biology and Biochemistry 5(6): 847-853.

83. Z Amtul AUR, RA Siddiqui, MI Choudhary (2002) Chemistry and mechanism of urease inhibition Current Medicinal Chemistry 9(14): 1323-1348.

84. Jyothis KSN, Hemalatha P, Challa S (2011) Evaluation of α-amylase inhibitory potential of three medicinally important traditional wild food plants of India 5(2): 95-99.

85. Rhabasa LR CJDR, Ferrannini E, Keen H, Zimmet P (2004) Alpha-glucosidase inhibitors (3rd edn.). In International textbook of diabetes mellitus John Wiley UK 1: 1-13.

86. SEI (2002) Oral antihyperglycemic therapy for type 2 diabetes. scientific review JAMA 287(3): 360-372.

87. Samantha J Venable, Diane S Aschenbrenner H, MD Lippincott Williams, Wilkins (2000) Drug Therapy in Nursing ISBN: 0-7817-4839-7819.

88. Cheng AYY FI (2005) Oral antihyperglycemic therapy for type 2 diabetes mellitus. Canadian medicinal association 172: 213-226.

89. Hatano T, H Kagawa, T Yasuhara, T Okudas (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36(6): 1090-2097.

90. Halliwell H (1994) Free radicals, antioxidants and human disease: Curiosity, cause or consequence? Lancet 344 (8924): 721-724.

91. Halliwell B McNeil D (1985) Free radicals, ageing and disease, Free radicals in Biology and Medicine. Clarendon Press Oxford 2: 279-315.

92. Hertog MGP E J, Hollman PC Katan, MB Kromhout D Lancet (1993) 342: 1001-1007.

93. Moure ACJ, Franco D, Dominguez M, Sineiro J, Dominguez H, et al. (2001) JFood Chem 72: 138-145.

94. Hollman PCH MG (1996) Food Chem 57: 32-43.

95. Bakır T, Sayiner H, Kandemirli F (2018) Experimental and theoretical investigation of antioxidant activity and capacity of thiosemicarbazones based on isatin derivatives 193: 493-499.