Evidence for anisotropic spin-triplet Andreev reflection at the 2D van der Waals ferromagnet/superconductor interface

Ranran Cai¹,²,⁷, Yunyan Yao¹,²,⁷, Peng Lv³, Yang Ma¹,², Wenyu Xing¹,², Boning Li¹,², Yuan Ji¹,², Huibin Zhou¹,², Chenghao Shen⁴, Shuang Jia¹,²,⁵,⁶, X. C. Xie¹,²,⁵,⁶, Igor Žutić⁴, Qing-Feng Sun¹,²,⁵,⁶ & Wei Han¹,²✉

Fundamental symmetry breaking and relativistic spin–orbit coupling give rise to fascinating phenomena in quantum materials. Of particular interest are the interfaces between ferromagnets and common s-wave superconductors, where the emergent spin-orbit fields support elusive spin-triplet superconductivity, crucial for superconducting spintronics and topologically-protected Majorana bound states. Here, we report the observation of large magnetoresistances at the interface between a quasi-two-dimensional van der Waals ferromagnet Fe₀.₂₉TaS₂ and a conventional s-wave superconductor NbN, which provides the possible experimental evidence for the spin-triplet Andreev reflection and induced spin-triplet superconductivity at ferromagnet/superconductor interface arising from Rashba spin-orbit coupling. The temperature, voltage, and interfacial barrier dependences of the magnetoresistance further support the induced spin-triplet superconductivity and spin-triplet Andreev reflection. This discovery, together with the impressive advances in two-dimensional van der Waals ferromagnets, opens an important opportunity to design and probe superconducting interfaces with exotic properties.

¹International Center for Quantum Materials, School of Physics, Peking University, 100871 Beijing, P. R. China. ²Collaborative Innovation Center of Quantum Matter, 100871 Beijing, P. R. China. ³Department of Physics, Wuhan University of Technology, 430070 Wuhan, China. ⁴Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA. ⁵CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190 Beijing, P. R. China. ⁶Beijing Academy of Quantum Information Sciences, 100193 Beijing, P. R. China. ✉These authors contributed equally: Ranran Cai, Yunyan Yao. ✉✉email: weihan@pku.edu.cn
Fundamental symmetry breaking and relativistic spin–orbit coupling give rise to interesting phenomena in quantum materials\(^1\)\(^-\)\(^6\). For over 60 years, the interplay between ferromagnetism and superconductivity, has offered a wealth of intriguing phenomena in ferromagnet (FM)/superconductor (SC) heterostructures\(^3\)\(^-\)\(^6\). However, to overcome a strong suppression of spin-singlet superconductivity by the FM’s exchange field the platforms supporting spin-triplet pairing are sought. They are desirable for dissipationless spin currents in superconducting spintronics\(^5\)\(^-\)\(^7\), and probing quantum materials\(^8\), as well as for realizing elusive Majorana bound states to implement topological quantum computing\(^9\)\(^,\)\(^10\). The common expectation that spin-triplet pairing in superconducting spintronics requires complex FM multilayers, typically relying on noncollinear/spiral magnetization or half metals\(^3\)\(^-\)\(^6\),\(^11\).

Here, we report the possible experimental evidence for the spin-triplet Andreev reflection and induced spin-triplet superconductivity at the interface of a quasi-2D van der Waals (vdW) FM and a conventional \(s\)-wave SC with Rashba spin–orbit coupling (SOC). Such vdW heterostructures offer a great versatility in exploring the interplay between ferromagnetism and superconductivity, beyond the lattice-matching constraints of all-epitaxial FM/SC heterostructures\(^12\). Our results pave the way for future studies on spin-triplet superconductivity\(^13\),\(^14\) and the formation on Majorana bound states\(^9\)\(^,\)\(^10\), as well as many normal-state spintronic applications\(^15\).

Results and discussion
Spin-triplet Andreev reflection and spin-triplet MR. In contrast to the conventional Andreev reflection at the FM/SC interface (Fig. 1a), an incident spin-up electron forms a spin-singlet Cooper pair in the ordinary SC with a reflected spin-down hole in the FM, spin-triplet Andreev reflection generates the spin-up hole with an injection of an equal-spin triplet Cooper pair in the spin-triplet SC (Fig. 1b). Due to Rashba SOC\(^16\),\(^17\), spin-rotation symmetry is broken for the superconducting pairing (Fig. 1c), which acts as a spin-mixing described in conventional FM/SC heterostructures\(^5\),\(^6\). The broken spin-rotation symmetry leads to the spin-singlet paring \((m = 0, S = 0)\) (\(S\) is the total spin quantum number).

Fig. 1 Schematic of the spin-triplet Andreev reflection at FM/SC interface. a Conventional Andreev reflection at the FM/spin-singlet SC interface. b The spin-triplet Andreev reflection at the FM/spin-triplet SC interface. c Schematic of the spin-triplet Andreev reflection resulting from Rashba SOC at the interface between a FM and a conventional \(s\)-wave SC. The arrows in Rashba SOC band indicate spin-momentum locking and the red arrows represent the spin-polarization direction of equal-spin-triplet pairs. d, e Anisotropic spin-triplet Andreev reflection at the FM/SC interface and the low/high interfacial resistance states that depend on the FM magnetization direction, \(M\) (green arrow). Red arrows at the interface denote the spin direction of equal-spin-triplet pairs. For \(M\) along the interface the spin-triplet Andreev reflection can be suppressed.
number, and \(m \) is magnetic quantum number) with an unpolarized spin-triplet component \((m = 0, S = 1)\)\(^{18}\). The spin-triplet component results in the interface spin-triplet Andreev reflection at the FM/SC interface which is highly anisotropic (Supplementary Note 1 and Supplementary Fig. 1), depending on the relative orientation between the magnetization (\(M \)) in the FM and the interfacial spin–orbit field\(^{14,19}\). \(M \) sets the spin-quantization axis, and unpolarized spin-triplet component \((m = 0, S = 1)\) is projected onto the spin-quantization axis to generate the equal-spin-triplet component \((m = 1, S = 1)\), which can be considered as a spin-rotation process\(^3\). For example, for FM magnetization along \(z \) axis (perpendicular to the interface), unpolarized spin-triplet Cooper pairs component \((S = 1, S_z = 0)\) and \(S = 1, S_z = 0)\) can be projected to the spin quantization axis as \(S = 1, S_z = 1)\) due to the spin rotation process \((S_x, S_y, S_z)\) are the spin quantum numbers along \(y, x \) and \(z \) direction, respectively. Thus, both the \(S = 1, S_z = 0)\) and \(S = 1, S_z = 0)\) components will contribute to the interface conductance when \(M \) is perpendicular to interface, as illustrated in Fig. 1d. On the other hand, when the \(M \) is parallel to the interface along \(y \) direction, the equal-spin triplet Cooper pairs \((S = 1, S_z = 1)\) can only be projected from unpolarized spin-triplet pairing component \((S = 1, S_z = 0)\), since \(S_x, S_y \neq 0\). Consequently, spin-triplet Andreev reflection conductance channel is suppressed when \(M \) is parallel to interface, as illustrated in Fig. 1e. As a result of the anisotropic spin-triplet Andreev reflection processes, there is a low-resistance (high-resistance) state for \(M \) out-of-plane (in-plane) (Fig. 1d, e). Hence, the spin-triplet Andreev reflection can lead to the tunneling anisotropic magnetoresistance (MR) at the FM/SC interface, a proposed hallmark of the interfacial SOC and spin-triplet superconductivity in FM/SC heterostructures\(^{14,19}\).

To experimentally probe the anisotropic spin-triplet Andreev reflection and spin-triplet MR, we fabricate the FM/SC devices (see “Methods” section for details), which consist of a quasi-2D vdW \(\text{Fe}_{0.29}\text{TaS}_2 \) flake, several \(s \)-wave superconducting NbN electrodes, and two normal metal Pt electrodes (Fig. 2a and Supplementary Fig. 2). At the interface between the quasi-2D vdW \(\text{Fe}_{0.29}\text{TaS}_2 \) flake and \(s \)-wave NbN electrode, the Cooper pairing consists of both spin-singlet \((m = 0, S = 0)\) and spin-triplet components \((m = 0, S = 1)\) due to the spin-rotation symmetry breaking by the interfacial Rashba SOC (right panel of Fig. 2a). The superconducting critical temperature of the NbN electrode is \(T_{SC} \approx 12.5 \) K (Supplementary Fig. 3a) characterized by standard four-probe electrical measurement. \(\text{Fe}_{0.29}\text{TaS}_2 \) flakes are typical quasi-2D vdW FM, with a Curie temperature, \(T_{Curie} \approx 90 \) K, characterized by anomalous Hall effect (Supplementary Fig. 4)\(^{30}\). The magnetic easy axis is perpendicular to the sample plane, and \(M \) of \(\text{Fe}_{0.29}\text{TaS}_2 \) can be controlled by a large external magnetic field (\(B \)) (Supplementary Note 2 and Supplementary Fig. 5). For an in-plane \(B = 9 \) T, \(M \) is almost in plane, \(83^\circ \) from the \(z \) direction. Under \(B = 9 \) T, the current–voltage characteristics of the NbN electrode are measured, with critical currents of \(\sim 50 \) \(\mu \)A at \(T = 2 \) K (Supplementary Fig. 4b). Typical \(dI/dV \) curves of the \(\text{Fe}_{0.29}\text{TaS}_2/\text{SC} \) junctions as a function of \(T \) and \(B \) are shown in Supplementary Note 3 and Supplementary Fig. 6.

To characterize the expected MR arising from anisotropic spin-triplet Andreev reflection, the interfacial resistance between the quasi-2D vdW FM \(\text{Fe}_{0.29}\text{TaS}_2 \) and SC electrode is measured using the three-terminal geometry (Fig. 2a and see “Methods” section). Figure 2b shows the typical MR curve (blue) measured (device A; Supplementary Fig. 2) as a function of the magnetic field angle in the \(yz \) plane \((\Theta_{yz})\) at \(T = 2 \) K and \(B = 9 \) T. The observed MR shows a strong correlation with \(B \)-controlled \(M \) (Supplementary Fig. 7). In contrast to this large MR at \(T = 2 \) K, the normal-state interfacial resistance exhibits little variation at \(T = 20 \) K. A possible important contribution of vortices in type-II SC to the observed MR has been ruled out from our control measurements on normal metal/SC heterostructures at \(T = 2 \) K (orange curve in Fig. 2b and Supplementary Note 4 and Supplementary Fig. 8). We have also fabricated the control devices of \(\text{Fe}_{0.29}\text{TaS}_2/\text{Al}_2\text{O}_3/ \) normal metal (Al), where no MR could be observed at \(T = 2 \) K (Supplementary Fig. 9), which further indicates the critical role of SC for the observed MR. Furthermore, the \(\pi \)-periodic oscillation further supports that the observed MR results from the anisotropic feature of spin-triplet Andreev reflection at the interface with Rashba SOC\(^{13}\). Figure 2c shows the MR results measured on the device B as a function of \(\Theta_{yz} \) at \(T = 2 \) K and \(B = 9 \) T. The MR ratio can be defined as:

\[
\text{MR}(\Theta_{yz}) = \frac{R(\Theta_{yz}) - R(\Theta_{yz} = 0)}{R(\Theta_{yz} = 0)} \times 100\%.
\]

The \(R(\Theta_{yz} = 0) \) and \(R(\Theta_{yz} = 90) \) are the interfacial resistances for magnetic field that is perpendicular and parallel (along \(z \) and \(y \) directions in Fig. 2a) to the FM/SC interface, respectively. Interestingly, the observed MR ratio is \(\sim 37 \pm 2\% \) for device A, and \(\sim 103 \pm 4\% \) for device B, which are much larger than previous reports on the tunneling anisotropic MR in FM/semiconductor heterostructures arising from the Rashba and Dresselhaus SOC\(^{16,17}\).

Temperature evolution of spin-triplet MR. Next, we investigate the temperature evolution of the MR to distinguish the contributions from the spin-triplet Andreev reflection and spin-dependent scattering by Bogolubov quasiparticles under large magnetic field. Figure 3a shows the MR \((\Theta_{yz})\) for device B at \(T = 2, 4, 8, \) and \(9 \) K, respectively, under the magnetic field of \(B = 5 \) T. Figure 3b summarizes temperature dependence of the MR ratio for device B measured at \(B = 9, 7, \) and \(5 \) T, respectively. The MR appears for \(T < T_{C0} \) and starts to saturate below the temperature of \(\sim 5 \) K. The MR is no longer observable for \(T > T_{C0} \) at \(B = 9, 7, \) and \(5 \) T (Supplementary Fig. 10). Clearly, there is no enhancement or any anomaly of the MR observed at the temperature slightly below \(T_{C0} \) which further confirms that contribution from spin-dependent scattering by Bogolubov quasiparticles is negligible\(^{21,22}\).

Voltage dependence of spin-triplet MR. To further investigate the MR at the quasi-2D vdW FM \(\text{Fe}_{0.29}\text{TaS}_2/\text{SC} \) interface, we systematically vary the bias voltage \((V_{bias})\), which also affect the junction voltage \((V_{ST})\) across the interface. At the interface, the induced SC energy gap \((\Delta_{h}\)) by SC proximity effect with spin-triplet component is smaller compared to the SC gap \((\Delta_{N}\)) of bulk NbN electrode, as illustrated in Fig. 4a. When the potential \((eV_{ST})\) of the incoming electrons is considerably smaller than the interface spin-triplet superconducting energy gap \((\Delta_{h}\)) (Fig. 4a), the charge transport channel is dominated by the anisotropic spin-triplet Andreev reflection. Hence, the spin-triplet MR exhibits little variation with the \(eV_{ST} \) within the \(\Delta_{h} \). As the \(V_{ST} \) increases, other isotropic transport processes, such as electron-like and hole-like tunneling transmissions\(^{14}\), also contribute to the interface conductance. As these transport processes are \(M \)-independent, the spin-triplet MR ratio is expected to decrease significantly. Since the change of \(V_{ST} \) is much smaller than \(V_{bias} \) during the rotation of the external magnetic field, the junction voltage for \(\Theta_{yz} = 0 \) \((V_{ST,0})\) is used to qualitatively show the interface voltage dependence of the spin-triplet MR. Figure 4b, c summarize these results measured on devices B and C. For small \(V_{ST,0} \), the MR exhibit little variation as the voltage changes. However, when \(V_{ST,0} \) is higher than a critical value, MR strongly decreases as \(V_{ST} \)
increases. The critical junction voltage is obtained to be ~0.15 mV (~0.2 mV) for device B (C). We note that at 2 K the thermal energy is $k_B T \sim 0.17 \text{ meV}$, comparable to the critical electron potential from the bias-dependent results. Therefore, an accurate value of the proximity-induced superconducting gap is not able to be clearly resolved here, which will need future studies. Additionally, the bias dependence of the spin-triplet MR further confirms that the observed MR is correlated to the sub-gap properties, and is completely different from B-induced spin-splitting density of states at the gap edges of SC electrodes.

Interface barrier dependence of spin-triplet MR. As the spin-triplet Andreev reflection depends strongly on the FM and SC wave-function overlap, it is expected that the dimensionless interface barrier strength (Z) plays an important role in the spin-triplet MR24,25. To explore the influence of interface barrier strength on the observed spin-triplet MR, we investigate more than dozen devices that are fabricated with Al$_2$O$_3$ layer of different thickness (~1–2.5 nm) between the quasi-2D vdW Fe$_{0.29}$TaS$_2$ and NbN SC electrodes. This process leads to a large range of interface resistance area product (R_{JS}) from ~10 to ~2000 $\Omega \mu$m2, resulting in the FM/SC heterostructures with very different Z-values. Figure 5 shows the measured MR ratio as a function of the R_{JS} at $T = 2$ K and $B = 9$ T (Note: the MR is not observable for very large R_{JS} and not plotted in this figure). The largest MR is observed with $R_{JS} \sim 48.4$ $\Omega \mu$m2. The strong correlation of the MR ratio and R_{JS} reveals the important role of the Z-value in the spin-triplet MR.

This surprising nonmonotonic MR dependence on R_{JS} agrees well with the theoretical expectations14,25. The effective barrier...
strength is modified by SOC and depends on the helicity (outer/inner Rashba bands, Fig. 1b), \(Z_+ = Z \pm \gamma k_{ij} \), where \(\gamma \) is the SOC parameter\(^{25} \) and \(k_{ij} \) is the component of the wave vector along the interface (Fig. 5 inset). At zero \(k_{ij} \), the vanishing of Rashba SOC does not support spin-triplet component. At nonzero \(k_{ij} \), increasing \(Z \) can reduce \(|Z_+| \) or \(|Z_-| \) and thus enhance such a transmission for a given helicity. For much larger \(Z \), all of the conduction channels, including spin-triplet Andreev reflection, are suppressed due to the low interface transparency. As a result, the spin-triplet Andreev reflection and spin-triplet MR will also be nonmonotonic in \(Z \). Taken together, the observed nonmonotonic MR dependence with \(R_{JS} \) (Fig. 5) and MR decrease with \(T \) or an applied voltage (Figs. 2–4) are all experimental evidence for the spin-triplet Andreev reflection in our vdW heterostructures. We note that the spin-triplet MR theory is developed using an idealized model of ballistic systems\(^{14,25} \), the role of disorder, which could induce reflectionless tunneling, is expected to reduce the MR amplitude. To the best of our understanding, the spin-triplet Andreev reflection is the major cause for the observation of large MR up to \(\sim10^3 \pm 4\% \), and can qualitatively explain the bias.

Fig. 3 The temperature dependence of MR at Fe\(_{0.29}\)TaS\(_2\)/SC interface. a The interfacial resistance as a function of \(\Theta_{yz} \) measured on device B at \(T = 2 \) K (blue), 4 K (yellow) 8 K (olive), and 9 K (black), respectively. These results were obtained under \(B = 5 \) T and \(V_{bias} = 1 \) mV, which correspond to \(V_{3T} \sim 0.40 \) mV for \(T = 2 \) and 4 K, and \(V_{3T} \sim 0.25 \) mV for \(T = 8 \) and 9 K. b The temperature dependence of MR ratio of device B at \(B = 9 \) T, 7 T, and 5 T, respectively. The error bars correspond to one standard deviation. The open circles represent the absence of obvious MR.
Fig. 4 The voltage dependence of MR at Fe_{0.29}TaS_2/SC interface.

a Schematic of the incident spin-polarized electrons with chemical potentials inside and above the interface spin-triplet superconducting energy gap. \(\Delta_{in} \) and \(\Delta_{NbN} \) indicate the superconducting energy gaps of the interface SC and the bulk NbN.

b The voltage dependence \((V_{3T,0}) \) of the MR ratio of device B measured at \(T = 2 \) K and \(B = 9 \) T. \(V_{3T,0} \) represents \(V_{3T} \) when an applied magnetic field is perpendicular to the FM/SC interface. The error bars correspond to one standard deviation. Inset: The typical MR curve at \(V_{3T,0} = 0.10 \) mV.

c The voltage dependence \((V_{3T,0}) \) of the MR ratio of device C measured at \(T = 2 \) K and \(B = 9 \) T. The error bars correspond to one standard deviation. Inset: The typical MR curve at \(V_{3T,0} = 0.17 \) mV.
and temperature dependence of the MR. Given the growing interest in systems that could support spin-triplet superconductivity, in the future studies, it would be important to generalize our description and also include the effects of disorder and diffusive transport on spin-triplet MR.

Summary and outlook. Our experimental observation of a large tunneling anisotropic MR in quasi-2D vdW FM/s-wave SC heterostructures up to ~103 ± 4% is already promising for spintronic applications and much larger than for the normal-state transport. The quasi-2D vdW Fe0.29TaS2/SC heterostructures up to ~103 ± 4% is already promising for spintronic applications and much larger than for the normal-state transport.

Methods

Device fabrication. The quasi-2D vdW Fe0.29TaS2/SC spin-triplet MR devices were fabricated as follows. First, bulk single crystalline Fe0.29TaS2 were grown by the iodine vapor transport method. Then the quasi-2D vdW Fe0.29TaS2 flakes were mechanical exfoliated from the bulk single crystal onto the SiO2 (~300 nm)/Si substrates. Second, a first-step electron-beam lithography was used to define the SC electrodes on the quasi-2D vdW Fe0.29TaS2 flakes. The SC electrodes consist of ~5 nm thick Nb and ~60 nm thick NbN, which were grown in a DC magnetron sputtering system with a base pressure of ~1.2 × 10−4 Pa. Prior to the growth of SC electrodes, a thin Al2O3 layer (~1−2.5 nm) is deposited as the barrier to tune the interface coupling strength between the quasi-2D vdW Fe0.29TaS2 flakes and the SC electrodes. The Al2O3 layer was grown by reactive magnetron sputtering with Al target under the oxygen atmosphere. Then, a second-step electron-beam lithography was used to define the two normal Pt electrodes (~80 nm) on the quasi-2D vdW Fe0.29TaS2 flakes. The Pt electrodes were deposited by RF magnetron sputtering in a system with a base pressure lower than 6.5 × 10−4 Pa. The optical images of three typical devices (A, B, and C) are shown in Fig. S2.

Spin-triplet MR measurement. The MR measurement of the quasi-2D vdW Fe0.29TaS2/SC devices was performed in a Physical Properties Measurement System (PPMS; Quantum Design). A bias (Vbias) was applied between the SC electrode and one normal Pt electrode using a Keithley K2400, and the voltage (Vmr) between the SC electrode and the other Pt electrode was measured using a Keithley K2400. The interface resistance was obtained via dividing the three-terminal voltage by the source–drain current (Rint = Vmr/Ibias). During the measurement of each spin-triplet MR curve, the quasi-2D vdW Fe0.29TaS2/SC device was rotated from 0 to 360 degrees under the external static magnetic field in the PPMS.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.
Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. *Science* **363**, eaav4450 (2019).

Vezin, T., Shen, C., Han, J. E. & Žutić, I. Enhanced spin-triplet pairing in magnetic junctions with s-wave superconductors. *Phys. Rev. B* **101**, 014515 (2020).

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. *Science* **363**, eaar4445 (2019).

Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. *Nature* **563**, 47–52 (2018).

Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. *Nat. Rev. Phys.* **1**, 646–661 (2019).

Gilbertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. *Nat. Nanotechnol.* **14**, 408–419 (2019).

Yao, Y. et al. Probe of spin dynamics in superconducting NbN thin films via spin pumping. *Phys. Rev. B* **97**, 224414 (2018).

Meservey, R. & Tedrow, P. M. Spin-polarized electron tunneling. *Phys. Rep.* **238**, 173 (1994).

Blander, G. E., Tinkham, M. & Klappwijk, T. M. Transition from metallic to tunneling regimes in superconducting microconstrictions: excess current, charge imbalance, and supercurrent conversion. *Phys. Rev. B* **25**, 4515–4532 (1982).

Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. *Science* **563**, 47–52 (2018).

Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. *Nat. Rev. Phys.* **1**, 646–661 (2019).

Vezin, T., Shen, C., Han, J. E. & Žutić, I. Enhanced spin-triplet pairing in magnetic junctions with s-wave superconductors. *Phys. Rev. B* **101**, 014515 (2020).

Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. *Science* **363**, eaar4445 (2019).

Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. *Nature* **563**, 47–52 (2018).

Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. *Nat. Rev. Phys.* **1**, 646–661 (2019).

Gilbertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. *Nat. Nanotechnol.* **14**, 408–419 (2019).

T. S. Khaire et al., Observation of Spin-Triplet Superconductivity in Co-Based Josephson Junctions. *Phys. Rev. Lett.* **104**, 137002 (2010).

Banerjee, N., Robinson, J. W. A. & Blamire M. G. Reversible control of spin-polarized supercurrents in ferromagnetic Josephson junctions. *Nat. Commun.* **5**, 4771 (2014).

Zhang, H., Liu, D. E., Wimmer, M. & Kouwenhoven, L. P. Next steps of quantum transport in Majorana nanowire devices. *Nat. Commun.* **10**, 5128 (2019).

Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional FeGeTe2. *Nature* **563**, 94–99 (2018).

Desjardins, M. M. et al. Synthetic spin–orbit interaction for Majorana devices. *Nat. Mater.* **18**, 1060–1064 (2019).

Fatin, G. L., Matos-Abiague, A., Scharf, B. & Žutić, I. Wireless Majorana bound states from magnetic tunability to braiding. *Phys. Rev. Lett.* **117**, 077002 (2016).

Acknowledgements

We thank E. I. Rashba for valuable discussions. R.C., Y.Y., Y.M., W.X., B.L., Y.J., H.Z., S.J., X.C.X., I.Z., and Q.-F.S. performed the theoretical analysis. H.Z. and S.J. synthesized the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author contributions

R.C., W.X., and B.L. prepared the 2D van der Waals ferromagnet Fe0.29TaS2 flakes and fabricated the devices. R.C., Y.Y., Y.M., and Y.J. performed the MR measurements. P.L., C.S., X.C.X., I.Z., and Q.-F.S. performed the theoretical analysis. H.Z. and S.J. synthesized the bulk Fe0.29TaS2 single crystals. W.H. supervised the experiments and wrote the manuscript with contributions from all authors. All the authors discussed the results and contributed to the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-27041-w.

Correspondence

and requests for materials should be addressed to Wei Han.

Peer review information *Nature Communications* thanks Javier Villegas, Zhe Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021