Protein expression profiles in yeast cells, in response to salinity stress, were determined using the cleavable isotope-coded affinity tag (cICAT) labeling strategy. The analysis included separation of the mixed protein samples by SDS-PAGE, followed by excision of the entire gel lane, and division of the lane into 14 gel regions. Regions were subjected to in-gel digestion, biotin affinity chromatography, and analysis by nano-scale microcapillary liquid chromatography and analysis by tandem mass spectrometry. The novel 13C-labeled ICAT reagents have identical elution profiles for labeled peptide pairs and broadly spread the distribution of labeled peptides during reversed-phase chromatography. A total of 560 proteins were identified and quantified, with 51 displaying more than 2-fold expression differences. In addition to some known proteins involved in salt stress, four RNA-binding proteins were found to be up-regulated by high salinity, suggesting that selective RNA export from the nucleus is important for the salt-stress response. Some proteins involved in amino acid synthesis, which have been observed to be up-regulated by amino acid starvation, were also found to increase their abundance on salt stress. These results indicate that salt stress and amino acid starvation cause overlapping cellular responses and are likely to be physiologically linked. Molecular & Cellular Proteomics 2: 1198–1204, 2003.

Response and adaptation to high extracellular salinity is a critical event for cell survival. High salinity results in numerous cellular responses, including increased sodium pumping activity to avoid toxic concentrations of cellular sodium ion, synthesis of compatible solutes to counteract dehydration and to stabilize macromolecules, enhanced free-radical scavenging, and changes in redox control (1). Many of the responses to salinity involve changes in gene expression and are mediated by signaling pathways whose functions are to regulate transcription factors (1).

In Saccharomyces cerevisiae, the mitogen-activated protein kinase high-osmolarity glycerol (HOG)1p mediates the osmotic induction of many stress-responsive genes (2). Activation of HOG1p constitutes an early phase of the salinity stress response, which then appears to diverge into different pathways. One pathway is mediated by the transcription factors Msn2p/Msn4p binding to stress-response elements and leads to the transcription of many stress-responsive genes (3). The HOG pathway controls expression of genes encoding enzymes in glycerol production. Glycerol is the main yeast osmolyte, and its production is essential for growth in a high-osmolarity medium (2).

To obtain a more complete understanding of how yeast cells respond to salt stress at the molecular level, a systematic and quantitative analysis of mRNA as well as protein expression is necessary. Although several DNA microarray-based analyses have been carried out to study the transcriptional response of yeast cells to high salinity (4–7), a large-scale analysis of protein expression profiles has not been performed.

In theory, post-harvest labeling with stable isotopes can be used for protein quantitation in cells and tissues from any organism. The isotope-coded affinity tags (ICAT) strategy is a leading technology for relative protein quantification, relying on post-harvested, stable isotope labeling (8). The ICAT reagent consists of three components: (i) a reactive group that reacts with the free thiol functionality of cysteine residues; (ii) a linker in which stable isotopes have been incorporated; and (iii) a biotin tag that makes possible affinity isolation and detection of peptides labeled with either the heavy or light versions of the ICAT reagent. ICAT-labeled peptides elute as pairs from a reverse-phase column. By calculating the ratio of the areas under the curve for identical peptide peaks labeled with the light and heavy ICAT reagent, the relative abundance of that peptide in each sample can be determined, which is directly related to the abundance of the corresponding protein. In addition, because the ICAT reagents are specific for cysteiny1 residues, the complexity of the original peptide mixture is greatly reduced. The original ICAT reagents featured either eight deuterium or hydrogen atoms at particular positions in the linker. However, 2H- and 1H-labeled peptides show slightly different elution profiles during reversed-phase LC-MS/MS, liquid chromatography-tandem mass spectrometry.

From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115-5730

Received, July 14, 2003, and in revised form, September 9, 2003
Published, MCP Papers in Press, September 23, 2003, DOI 10.1074/mcp.M300070-MCP200

The abbreviations used are: HOG, high-osmolarity glycerol; cICAT, cleavable isotope-coded affinity tags; SCX, strong cation exchange; LC-MS/MS, liquid chromatography-tandem mass spectrometry.
Yeast Salinity Stress Response to cICAT Protein Profiling

chromatography, which makes it difficult to quantitatively compare a single moment in time (9). In addition, the rather hydrophobic biotin affinity tag causes peptides to elute in a relatively narrow time window.

Strong cation exchange (SCX) chromatography is often used as a primary separation tool prior to peptide sequence analysis by reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). Indeed, the ICAT strategy incorporates SCX chromatography prior to affinity purification of ICAT-labeled peptides (8). However, other separation strategies are also possible. For example, Aebersold and colleagues (10) used two-dimensional gel electrophoresis to separate ICAT-labeled proteins prior to analysis of gel spots by LC-MS/MS. Finally, the use of SDS-PAGE as a primary separation strategy followed by excising the entire gel lane into a manageable number of samples has been successfully implemented as an alternative proteome analysis technology, with hundreds to thousands of proteins identified (11–15). This whole-gel lane analysis strategy is termed “gelLC-MS” to denote the use of multiple dimensions of separation (SDS-PAGE and reversed-phase chromatography).

This study presents the use of cleavable (c)ICAT reagents for the large-scale quantitative profiling of protein expression after salinity stress. In this article, we have tried to highlight novel features of the new reagents, provide their use for the study of salinity stress in yeast, and describe the use of SDS-PAGE as a substitute for SCX chromatography in a multidimensional separation strategy. A total of 560 proteins were identified and quantified, and of these 51 displayed more than 2-fold expression differences in response to salinity stress. Twenty-seven of the proteins with abundance changes had not been previously reported to be involved in salinity stress.

EXPERIMENTAL PROCEDURES

Preparation of Proteins for ICAT Labeling—Yeast cells (BJ5459, MATa ura3–52 trp1 lys2–801 leu2 1 pep4–His3 prb11.6R can1–10 mg/ml, using Protein Assay kit (Bio-Rad, Hercules, CA). An Agilent 1100 high-performance liquid chromatography system (Agilent Technologies, Palo Alto, CA) was used to deliver a gradient across a flow splitter to the column (16). Eluting peptides from the column were ionized by electrospray ionization and analyzed using an API QSTAR Pulsar mass spectrometer (Applied Biosystems). The most intense peptide ions were dynamically selected by the operating software for fragmentation. The ProID and ProCat software packages (Applied Biosystems) were used for the identification and quantitation of proteins based on the peptides analyzed during the LC-MS/MS experiment. ProID provides a peptide match by correlating acquired-tandem mass spectra with computer-predicted spectra. The best matching peptides are returned to the investigator in a database format (Microsoft Access; Microsoft, Redmond, WA). ProCat is then used to calculate an expression ratio for each ICAT-labeled peptide identified by ProID. The data were searched against the yeast protein database followed by manual interpretation of all MS/MS spectra from proteins with changes greater than 2-fold.

RESULTS AND DISCUSSION

cICAT reagents differ in two ways from the original reagents. First, the polyethylene glycol linker has been replaced by an acid-cleavable linker. Second, this new linker contains nine 13C atoms in the heavy version of the reagent instead of...
eight deuterium atoms. Two studies have already appeared using these new reagents (17, 18). In this report, we highlight the novel features of these new reagents in the context of an analysis of protein expression profiles of yeast under salt-stress conditions.

The original ICAT protocol uses ion exchange chromatography after the ICAT labeling and mixing of the two samples to remove excess derived reagents (8). We, however, opted against ion exchange chromatography and used SDS-PAGE instead, for several reasons. First, using gel electrophoresis on the ICAT samples efficiently removes excess reagents, salts, and detergents, and allows easy buffer changes for the following digestion step. Second, gel-separated proteins are highly denatured and, therefore, easily accessible for digestion. Finally, proteins are pre-fractionated according to molecular weight. This reduces complexity of the sample, thereby increasing the number of proteins that can be identified, while increasing the confidence of protein identifications because the molecular weight can be used as an additional criterion for the evaluation of protein identifications. The workflow is outlined in Fig. 1.

Our studies showed that the new generation ICAT reagents and the modified protocol provided improved performance. For instance, the differences in the elution behavior of the \(^{2}\text{H}\)-versus \(^{13}\text{C}\)-ICAT reagents were clearly observed in experiments testing the properties of both ICAT reagents. Fig. 3A shows the base peak chromatogram of a yeast sample labeled with the \(^{2}\text{H}\)-ICAT reagent. The biotin moiety has masked the differences in hydrophobicity of the peptides such that the majority of the peptides eluted in a time window of approximately one-half the size as the smaller \(^{13}\text{C}\)-ICAT-labeled peptides (Fig. 3B).

After growing in either normal or high-salt media (0.7 M NaCl), yeast cells from both samples were separately harvested and lysed (see “Experimental Procedures”). Following ICAT labeling, the samples were combined and pre-fractionated by SDS-PAGE. Subsequently, the entire SDS-PAGE lane with the ICAT sample was cut into 14 bands of approximately equal size. Each gel band was separately digested and ana-
More than 560 proteins (Table I) were identified in 14 1-h LC-MS experiments using the most stringent identification criteria (score, 200), as provided by the ProID software package, which considers the score and the distance to the next best scoring peptide in dependence of the score. Approximately one-third of these proteins (201) were identified based on two or more distinct peptides, thereby increasing the confidence in the identification and quantification. One-tenth (51) of all identified proteins showed significant differences in abundance where changes of the heavy-to-light ratio of 2-fold or greater were considered as significant. As an example, Fig. 4 shows the identification and quantification of Pgk1, which was increased in its expression ratio by 2.3-fold. Because an antibody against Pgk1 was readily available, a Western blot was performed for this protein, confirming the up-regulation (Fig. 4C).

To avoid false-positives in this category, MS/MS spectra used in the identification of all proteins with significant abundance differences were manually confirmed for mass accuracy, expected fragment ions, and expected intensities of ions. Many more proteins showed an increase rather than a decrease in their abundance (43 versus 8; see Table I and II) in response to a 45-min treatment with 0.7 M sodium chloride. Among the 43 proteins with abundance increases in response to salinity, most were involved in glycerol production (Gpd1 and Gpp1), trehalose metabolism (Pgm2, and Tps2), detoxification (Ctt1, Dak1, and Glo1), oxidoreduction (Ald3, Gre3, and Trx2), amino acid catabolism (Aro9, and Car2), and protein folding (Cpr1, and Ssa1), which have all been reported to increase in their mRNA levels (4–7).

Interestingly, we found 20 proteins with increased protein levels in response to salinity, with no reported changes in mRNA levels, from DNA microarray studies. These proteins are involved in amino acid synthesis (Arg1, Lys9, and YHR070W), RNA binding (Arc1, Nab2, Nup133, and Rrp9), carbohydrate metabolism (Adh1, Gnd1, and Pgk1), protein synthesis (Frs1), pyrimidine biosynthesis (Ura2), GTP binding (Nog2), cell cycle and DNA processing (Sim1, and Uth1), cytokinesis (Scw11), as well as hypothetical proteins (YCL033C, YCR090C, and YOR243C) (see Table I).

The eight proteins found to be decreased in abundance in response to 0.7 M-NaCl treatment were involved in phospholipid transport (Sfh5), protein synthesis (Grp1), carbohydrate metabolism (Ade17, and Ade5,7), cell wall architecture (Ecm33), and vesicular transport (Sec21), as well as hypothetical proteins (YNL132W and YOR252W) (Table II). However, the transcript levels of only one gene (YNL132W) have been reported to be down-regulated in response to salinity (4).

Inconsistencies between mRNA levels and their corresponding protein levels have been reported in a number of studies (19–22). In fact, an excellent correlation between mRNA levels and protein changes of steady state would only be expected for transcriptionally regulated genes. Several possible explanations for the discrepancies include differential selection of mRNAs for translation, sequestration of mRNA from translation, and/or regulated protein degradation.

Yeast cells respond to amino acid starvation by increasing...
transcription of amino acid biosynthetic genes (23). High salinity inhibits amino acid uptake in yeast (24), which can cause amino acid starvation. Our finding that salt stress increased the protein abundance of amino acid synthesis genes (Table I) suggests that salt stress and amino acid starvation are physiologically connected.

Interestingly, we found that four RNA-binding proteins (Arc1, Nab2, Nup133, and Rrp9) increased their abundance in

Category	Gene name	Protein name	Fold increase in protein level ± SD	mRNA increased by salt stress
Amino acid synthesis	ARG1	Argininosuccinate synthetase	2.0 (1)	Yes
	LYS9	Saccharopine dehydrogenase	2.0 (1)	
	YFL030W	Alanine glyoxylate aminotransferase	2.6 (1)	Yes
	YHR070W	Strong similarity to Neurospora crassa met-10⁺ protein	15.6 (1)	
Amino acid catabolism	ARO9	Aromatic amino acid aminotransferase II	2.5 (1)	Yes
	CAR2	Ornithine aminotransferase	2.0 (1)	Yes
Carbohydrate metabolism	ADH1	Alcohol dehydrogenase 1	2.2 ± 0.2 (6)	
	GND1	6-phosphogluconate dehydrogenase	4.1 (1)	
	PGK1	Phosphoglycerate kinase	2.3 (1)	
	SOL4	6-phosphogluconolactonase	5.0 (1)pb	Yes
	GLD2	Glyceraldehyde 3-phosphatedehydrdogenase 2	2.0 (1)	Yes
	TKL2	Transketolase 2	>40.0 (2)b	Yes
	UGP1	UTP-glucose-1-phosphate uridylyltransferase	2.3 (1)	Yes
Cell cycle and DNA processing	SIM1	SIM1 protein	2.1 (1)	
	UTH1	UTH1 protein	3.0 (1)	
Cytokinesis	SCW11	Glucan 1,3-beta-glucosidase	2.0 (1)	
Detoxification	CTT1	Cytoplasmic catalase T	18.1 ± 4.6 (3)	Yes
	DAK1	Dihydroxyacetone kinase I	2.3 (1)	Yes
	GLO1	Glyoxalase I	3.3 ± 0.7 (2)	Yes
Extracellular secretion	NCE3	Non-classical export protein 3	3.6 ± 0.6 (3)	Yes
	SSR1	Secretory stress-response protein 1	2.7 ± 0.02 (2)	
Glycerol production	GPD1	Glycerol-3-phosphate dehydrogenase	7.1 (1)	Yes
	GPP1	Glycerol-3-phosphatase	2.1 (1)	Yes
GTP-binding protein	NOG2	Nuclear/nucleolar GTP-binding protein	2.0 (1)	
Hypothetical proteins	YCL033C		>2.00 (1)	
	YCR090C		>2.00 (1)	
	YMR090W		6.0 ± 2.0 (2)	Yes
	YOR243C		>3.00 (1)	
Nitrogen utilization	UGA1	4-aminobutyrate aminotransferase	2.3 (1)	Yes
Oxidoreduction	ALD3	Aldehyde dehydrogenase[NAD(P)]⁻¹	>10.00 (2)	Yes
	GRE3	Aldose reductase	3.0 ± 0.6 (2)	Yes
	TRX2	Thioredoxin II	2.2 (1)	Yes
Protein folding	CPR1	Peptidyl-proly cis-trans isomerase	2.1 ± 0.1 (2)	Yes
	SSA1	Heat-shock protein YG100	2.0 ± 0.02 (2)	Yes
Protein synthesis	FRS1	Phenylalanyl-tRNA synthetase, alpha subunit	2.0 (1)	
	MES1	Methionyl-tRNA synthetase	2.0 (1)	
Pyrimidine biosynthesis	URA2	Aspartate carbamoyltransferase	2.6 (1)	
RNA-binding protein	ARC1	ARC1 protein	2.0 (1)	
	NAB2	Nuclear polyadenylated RNA-binding protein	2.4 ± 0.2 (2)	
	NUP133	Nucleoporin NUP133	>2.00 (1)	
	RRP9	RRP9 protein	2.0 (1)	
Trehalose metabolism	PGM2	Phosphoglucomutase	5.5 (1)	Yes
	TPS2	Trehalose 6-phosphate phosphatase	3.4 (1)	Yes

a Number of peptides identified is shown in parentheses.

b Precise quantification limited by signal-to-noise ratio.
response to salt stress (Table I). It is known that yeast cells respond to heat stress by selectively exporting mRNAs encoding heat-shock proteins (25), and this export requires certain RNA-binding proteins (26). Whether the RNA-binding proteins we found play a role in exporting and/or stabilizing RNAs important for salt stress will be the subject of future studies.

It is critical to detect regulated alterations in protein levels occurring during cellular processes and in response to environmental stimuli such as salt stress. Accurate determination of differentially expressed protein levels in a biological process can provide a more complete understanding of the molecular mechanism. The cICAT strategy provides a large-scale and generic strategy for protein quantification in a variety of types of samples, including primary tissues from all organisms.

Acknowledgments—We thank Tony Hunt at Applied Biosystems (Framingham, MA) for providing early access to the cICAT reagents and protocol sharing, and Danesh Moazed for the use of some equipment.

* This work was funded by grants from the National Institutes of Health (HG00041 and GM67945). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The on-line version of this article (available at http://www.mcponline.org/) contains Table SI.

‡ J. L. and H. S. contributed equally to this work.

§ To whom correspondence should be addressed. Department of Cell Biology, 240 Longwood Avenue, Harvard Medical School, Boston, MA 02115-5730. E-mail: Steven_gygi@hms.harvard.edu.

Fig. 4. cICAT analysis of yeast phosphoglycerate kinase after salt stress.
A, Mass spectrum of a cICAT peptide ion pair showing a differential expression ratio. B, Product ion spectrum for precursor ion 714.7 m/z. This peptide ion was identified as having the sequence, DVTFLNDC*VGPEVEAAVK, from the protein phosphoglycerate kinase. C, Western blot analysis for phosphoglycerate kinase before and after salt stress.

TABLE II

Category	Gene name	Protein name	Fold decrease in protein levels ± SD	mRNA decreased by salt stress
Cell wall architecture	ECM33	Extracellular mutant 33 protein	0.32 ± 0.04 (2)*	Yes
Hupothetical proteins	YNL132W		0.53 (1)	
	YOR252W		0.50 (1)	
Phospholipid transport	SFH5	Putative phosphatidylinositol transfer protein	0.43 (1)	
Protein synthesis	GRS1	Glycine-tRNA ligase	0.52 (1)	
Purine metabolism	ADE17	5-aminimidazole-4-carboxamide ribonucleotide transformylase	0.50 ± 0.1 (3)	
	ADE5,7	Glyceramide ribonucleotide synthetase and aminimidazoleribonucleotide synthetase	0.53 ± 0.06 (2)	
Vesicular transport	SEC21	PEST sequence-containing protein	0.29 (1)	

* Number of peptides identified is shown in parentheses.
Yeast Salinity Stress Response to cICAT Protein Profiling

REFERENCES

1. Serrano, R. (1996) Salt tolerance in plants and microorganisms: Toxicity targets and defense responses. *Int. Rev. Cytol.* **165**, 1–52
2. Hohmann, S. (2002) Osmotic stress signaling and osmoreadaptation in yeasts. *Microbiol. Mol. Biol. Rev.* **66**, 300–372
3. Estruch, F. (2000) Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. *FEMS Microbiol. Rev.* **24**, 469–486
4. Rep, M., Krantz, M., Thevelein, J. M., and Hohmann, S. (2000) The transcriptional response of *Saccharomyces cerevisiae* to osmotic shock. Hot1p and Msr2p/Msr4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. *J. Biol. Chem.* **275**, 8290–8300
5. Posas, F., Chambers, Heyman, J. R., Hoeffler, J. A., de Nadal, J. E., and Arino, J. (2000) The transcriptional response of yeast to saline stress. *J. Biol. Chem.* **275**, 17249–17255
6. Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., Lee, T. I., True, H. L., Lander, E. S., and Young, R. A. (2001) Remodeling of yeast genome expression in response to environmental changes. *Mol. Biol. Cell* **12**, 323–337
7. Yale, J., and Bohnert, H. J. (2001) Transcript expression in *Saccharomyces cerevisiae* at high salinity. *J. Biol. Chem.* **276**, 15996–16007
8. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. *Nat. Biotechnol.* **17**, 994–999
9. Regnier, F. E., Riggs, L., Zhang, R., Xiong, L., Liu, P., Chakraborty, A., Seeley, E., Sioma, C., and Thompson, R. A. (2002) Comparative proteomics based on stable isotope labeling and affinity selection. *Int. J. Mass Spectrom.* **37**, 133–145
10. Smoika, M., Zhou, H., and Aebersold, R. (2002) Quantitative protein profiling using two-dimensional gel electrophoresis, isotope-coded affinity tag labeling, and mass spectrometry. *Mol. Cell. Proteomics* **1**, 19–29
11. Zhou, Z., Licklider, L. J., Gygi, S. P., and Reed, R. (2002) Comprehensive proteomic analysis of the human spliceosome. *Nature* **419**, 182–185
12. Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. *Genome Res.* **12**, 1231–1245
13. Jurica, M. S., Licklider, L. J., Gygi, S. R., Grigorieff, N., and Moore, M. J. (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. *RNA* **8**, 426–439
14. Lasonder, E., Ishihama, Y., Andersen, J. S., Vermunt, A. M., Pain, A., Sauerwein, R. W., Eling, W. M., Hall, N., Waters, A. P., Stummenberg, H. G., and Mann, M. (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. *Nature* **419**, 537–542
15. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., Millar, A., Taylor, P., Bennett, K., Boutillier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewmanarje, J., et al. (2002) Systematic identification of protein complexes in *Saccharomyces cerevisiae* by mass spectrometry. *Nature* **415**, 180–183
16. Peng, J., and Gygi, S. P. (2001) Proteomics: The move to mixtures. *Int. J. Mass Spectrom.* **36**, 1083–1091
17. Hansen, K. C., Schmitt-Ulms, G., Chalkley, R. J., Hirsch, J., and Baldwin, M. A., and Burlingame, A. L. (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. *Mol. Cell. Proteomics* **2**, 299–314
18. Oda, Y., Owa, T., Sato, T., Boucher, B., Daniels, S., Yamanaka, H., Shino-hara, Y., Yokoi, A., Kuromitsu, J., and Nagasu, T. (2003) Quantitative chemical proteomics for identifying candidate drug targets. *Anal. Chem.* **75**, 2159–2165
19. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. *Mol. Cell. Biol.* **19**, 1720–1730
20. Inderer, T., Thorsson, V., Raniash, J. A., Christinas, R., Buhler, J., Eng, J. K., Bumgarner, R., Goodlett, D. R., Aebersold, R., and Hood, L. (2001) Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. *Science* **292**, 929–934
21. Chen, G., Gharib, T. G., Huang, C. C., Taylor, J. M., Misek, D. E., Kardia, S. L., Giordano, T. J., Iannettoni, M. D., Orringer, M. B., Hanash, S. M., and Beer, D. G. (2002) Discordant protein and mRNA expression in lung adenocarcinomas. *Mol. Cell. Proteomics* **1**, 304–313
22. Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., Decliu, C., Winzeler, E., and Yates, J. R. III (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 3107–3112
23. Natarajan, K., Meyer, M. R., Jackson, B. M., Slade, D., Roberts, C., Hinebusch, A. G., and Marton, M. J. (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. *Mol. Cell. Biol.* **21**, 4347–4358
24. Norbeck, J., and Blomberg, A. (1998) Amino acid uptake is strongly affected during exponential growth of *Saccharomyces cerevisiae* in 0.7 M NaCl medium. *FEMS Microbiol. Lett.* **158**, 121–126
25. Saavedra, C., Tung, K. S., Amberg, D. C., Hopper, A. K., and Cole, C. N. (1996) Regulation of mRNA export in response to stress in *Saccharomyces cerevisiae*. *Genes Dev.* **10**, 1608–1620
26. Saavedra, C. A., Hammell, C. M., Heath, C. V., and Cole, C. N. (1997) Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. *Genes Dev.* **11**, 2845–2856