Non-Archimedean Normal Operators

Anatoly N. Kochubei

Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereshchenkivska 3, Kiev, 01601 Ukraine
E-mail: kochubei@i.com.ua

Abstract

We describe some classes of linear operators on Banach spaces over non-Archimedean fields, which admit orthogonal spectral decompositions. Several examples are given.

MSC 2000. Primary: 47S10. Secondary: 11S80; 81Q99

1 INTRODUCTION

Non-Archimedean functional analysis is a well-developed branch of mathematics comparable to its classical counterpart dealing with spaces over \mathbb{R} and \mathbb{C}; see, for example, the monographs [8, 22, 26, 31] and the survey papers [14, 24, 30]. This includes some basic information on non-Archimedean Banach spaces, and a rather complete theory of compact operators (Serre [28]). A new stimulus for the development of non-Archimedean operator theory was given by recent attempts to develop p-adic models of quantum mechanics with p-adic valued wave functions [16, 1]. In contrast to the classical situation, most of the interesting examples deal with bounded operators. In particular, there exist bounded p-adic representations of the canonical commutation relations of quantum mechanics [6, 18].

As in any kind of operator theory, a central problem is a construction and study of spectral decompositions. In the non-Archimedean case, there are several results in this direction [32, 7, 20]. In particular, analogs of spectral operators of scalar type were found. However, no class of operators resembling normal operators on Hilbert spaces (with orthogonal, in an appropriate non-Archimedean sense, spectral decompositions) is known. The main difficulties are the absence of nontrivial involutions on non-Archimedean fields coordinated with their algebraic structure, and the absence of inner products coordinated with the norms, on non-Archimedean Banach spaces. In [9], examples of symmetric matrices over the field \mathbb{Q}_p of p-adic numbers are given, which cannot be diagonalized over any extension of \mathbb{Q}_p. For other examples of unusual behavior of p-adic matrices see [1]. Thus, already the non-Archimedean linear algebra is quite
different from the classical one ("exotic" exceptions appearing for some fields with infinite rank valuations will not be considered in this paper; see \[15\]).

In this paper we propose a new approach to the above problem. We consider separately the cases of finite-dimensional spaces (where lesser restrictions upon the underlying field are imposed) and infinite-dimensional spaces. For both situations, we obtain spectral theorems comparable to the classical ones; their conditions are especially transparent for finite matrices and compact operators. A number of examples are considered. As it could be expected, the structure substituting the non-existing ones, is the possibility of the reduction procedure – from a space over a non-Archimedean field to a space over its residue field.

Our method follows the well-known idea of deriving the spectral theorem from the representation theorem for an appropriate commutative Banach algebra. For our situation, the crucial result regarding a class of non-Archimedean Banach algebras was obtained by Berkovich \[7\].

The structure of this paper is as follows. In Section 2, we recall some notions and results from non-Archimedean analysis, especially from the theory of non-Archimedean Banach algebras. For the latter, we follow the approach by Berkovich \[7\]; for other methods and the history of this subject see \[11\]. For a detailed exposition of a variety of topics from non-Archimedean analysis, see \[25, 29\].

In Section 3, we describe the reduction of our problem to the study of the Banach algebra generated by a linear operator. The spectral theorem for the finite-dimensional case is proved in Section 4, while the infinite-dimensional case is considered in Section 5. Section 6 is devoted to examples.

2 PRELIMINARIES

2.1. Let \(\mathcal{A} \) be a ring with identity 1. A \textit{seminorm} on \(\mathcal{A} \) is a function \(\| \cdot \| : \mathcal{A} \to \mathbb{R}_+ \) possessing the following properties: \(\| 0 \| = 0, \| 1 \| = 1, \| f + g \| \leq \| f \| + \| g \|, \| fg \| \leq \| f \| \cdot \| g \| \), for any \(f, g \in \mathcal{A} \). A seminorm is a \textit{norm}, if the equality \(\| f \| = 0 \) holds only for \(f = 0 \). A seminorm is called \textit{multiplicative}, if \(\| fg \| = \| f \| \cdot \| g \| \) for any \(f, g \in \mathcal{A} \). A multiplicative norm is called a \textit{valuation}. Any norm defines a metric, thus a topology on \(\mathcal{A} \), in a standard way. A Banach ring is a normed ring complete with respect to its norm.

A seminorm \(\| \cdot \| \) is called \textit{non-Archimedean}, if \(\| f + g \| \leq \max(\| f \|, \| g \|) \), \(f, g \in \mathcal{A} \).

A \textit{valuation field} is a commutative Banach field whose norm is a valuation. In particular, a complete non-Archimedean field is a valuation field with a non-Archimedean valuation (in this terminology the completeness property is included in the notion of a valuation field). Below we consider only fields with nontrivial valuations, that is the valuations taking only the values 0 and 1 are excluded.

The simplest and most important example of a valuation field is the field \(\mathbb{Q}_p \) of \(p \)-adic numbers where \(p \) is a prime number. \(\mathbb{Q}_p \) is a completion of the field \(\mathbb{Q} \) of rational numbers with respect to the norm (the norm of a valuation field is called an absolute value) \(\| x \|_p = p^{-N} \) where the rational number \(x \neq 0 \) is presented as \(x = p^N \frac{\xi}{\eta} \), \(N, \xi, \eta \in \mathbb{Z} \), and \(p \) does not divide \(\xi, \eta \).

This absolute value can be extended to any wider field (see \[29\]), in particular, to an algebraic closure of \(\mathbb{Q}_p \), and then to the completion \(\mathbb{C}_p \) of the algebraic closure. It is important that \(\mathbb{C}_p \) is algebraically closed.
A Banach ring \(A \) (with the norm \(\| \cdot \| \)) that is an algebra over a non-Archimedean field \(k \) (with the absolute value \(| \cdot | \)) is called a non-Archimedean Banach algebra, if \(\| \lambda f \| = | \lambda | \cdot \| f \| \) for any \(\lambda \in k, f \in A \).

Below we have to deal with multiplicative seminorms on a Banach ring \(A \) where a norm \(\| \cdot \| \) defining the structure of a normed ring is already fixed. It will be convenient to denote such seminorms by \(| \cdot |_s \) where the meaning of the index will be clear later. In this situation, a multiplicative seminorm \(| \cdot |_s \) is called bounded if \(| f |_s \leq \| f \| \) for all \(f \in A \); this definition is in fact equivalent to a seemingly wider one, with the inequality \(| f |_s \leq C \| f \| \) (\(C > 0 \) does not depend on \(f \)); see [7].

Note that a bounded multiplicative seminorm \(| \cdot |_s \) on a non-Archimedean Banach algebra \(A \) has the property that \(| \lambda \cdot 1 |_s = | \lambda |_s \), so that it coincides with the absolute value on \(k \), if \(k \) is considered as a subfield of \(A \). Indeed, \(| \cdot |_s \) induces another absolute value on \(k \), and \(| \lambda |_s \leq | \lambda | \) for any \(\lambda \in k \). Since the valuation \(| \cdot | \) is nontrivial, we find that \(| \lambda |_s = | \lambda | \) for all \(\lambda \in k \) ([29, Exercise 9.C]; see also Proposition 11.2 in [10]).

Let \(O \subset k \) be the ring of integers, that is \(O = \{ \lambda \in k : | \lambda | \leq 1 \} \). The set \(P = \{ \lambda \in k : | \lambda | < 1 \} \) is a maximal ideal in \(O \). The quotient ring \(\hat{k} = O / P \) is in fact a field called the residue field of \(k \). In particular, if \(k \) is locally compact (such non-Archimedean fields are called local), then \(\hat{k} \) is a finite field. For example, if \(k = \mathbb{Q}_p \), then \(\hat{k} = \mathbb{F}_p \), the field with exactly \(p \) elements. If \(k = \mathbb{C}_p \), then \(\hat{k} \) is an algebraic closure of \(\mathbb{F}_p \). For \(k = \mathbb{Q}_p \), there is a standard notation \(O = \mathbb{Z}_p \); in this case \(P = p\mathbb{Z}_p \).

A vector space \(\mathcal{B} \) over a non-Archimedean valuation field \(k \) is called a Banach space, if it is endowed with a norm \(\| x \| \), \(x \in \mathcal{B} \), with values in \(\mathbb{R}_+ \), such that \(\| x \| = 0 \) if and only if \(x = 0 \), \(\| \lambda x \| = | \lambda | \cdot \| x \| \), \(\| x + y \| \leq \max(\| x \|, \| y \|) \) \((x, y \in \mathcal{B}, \lambda \in k)\), and \(\mathcal{B} \) is complete as a metric space where the metric is given by the norm. The conjugate space \(\mathcal{B}^* \) consists of all continuous linear functionals \(\mathcal{B} \to k \).

Below we will consider Banach spaces over \(k \) possessing orthonormal bases, that is such families \(\{ e_j \}_{j \in J} \) that each element \(x \in \mathcal{B} \) has a unique representation as a convergent series \(x = \sum c_j e_j, c_j \in k, | c_j | \to 0 \) (by the filter of complements to finite sets), and

\[\| x \| = \sup_{j \in J} | c_j |. \]

Conditions for the existence of such bases (formulated for abstract spaces) are well known; see [25, 26]. To simplify matters, we will consider the finite-dimensional spaces \(k^n, n \in \mathbb{N} \), and the infinite-dimensional space \(c(J,k) \) of \(k \)-valued sequences \(\{ a_j \}, j \in J \), tending to zero by the filter of complements of finite subsets of the set \(J \); in both cases the supremum norm is used. In examples, we will deal with some function spaces with explicitly given bases.

2.2. Let \(A \) be a non-Archimedean commutative Banach algebra over a complete non-Archimedean field \(k \) with a nontrivial valuation. Its spectrum \(\mathcal{M}(A) \) is defined as the set of all bounded multiplicative seminorms on \(A \) (denoted \(| \cdot |_s \), \(s \in \mathcal{M}(A) \)). The set \(\mathcal{M}(A) \) is endowed with the weakest topology, with respect to which all the mappings \(\mathcal{M}(A) \to \mathbb{R}, | \cdot |_s \mapsto | T |_s \) \((T \in A)\) are continuous. The spectrum \(\mathcal{M}(A) \) is a nonempty Hausdorff compact topological space.

For \(| \cdot |_s \in \mathcal{M}(A) \), denote \(P_s = \{ T \in A : | T |_s = 0 \} \). The set \(P_s \) is a closed prime ideal of \(A \). The value \(| T |_s \) depends only on the residue class of \(T \) in \(A/P_s \). The resulting valuation on the integral domain \(A/P_s \) extends to a valuation on its fraction field \(\mathcal{F}_s \). Let the valuation field
\(\mathcal{H}(s) \) be the completion of \(\mathcal{F}_s \) with respect to the above valuation. Denote by \(T(s) \) the image of an element \(T \in \mathcal{A} \) in \(\mathcal{H}(s) \). The homomorphism
\[
\mathcal{A} \to \prod_{s \in \mathcal{M}(\mathcal{A})} \mathcal{H}(s), \quad T \mapsto (T(s))_{s \in \mathcal{M}(\mathcal{A})},
\]
is called the Gelfand transform.

Let \(K \) be an arbitrary non-Archimedean valuation field. A nonzero continuous homomorphism \(\chi : \mathcal{A} \to K \) is called a character of the ring \(\mathcal{A} \). Two characters \(\chi' : \mathcal{A} \to K' \) and \(\chi'' : \mathcal{A} \to K'' \) are called equivalent, if there exist such a character \(\chi : \mathcal{A} \to K \) and isometric monomorphisms \(K \to K' \) and \(K \to K'' \) that the diagram

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\chi} & K' \\
\downarrow & & \downarrow \\
K & \xrightarrow{\chi'} & K''
\end{array}
\]
is commutative.

The spectrum \(\mathcal{M}(\mathcal{A}) \) may be interpreted as the set of equivalence classes of characters: a character \(\chi \) generates a seminorm \(T \mapsto |\chi(T)| \), while each seminorm \(s \in \mathcal{M}(\mathcal{A}) \) generates, via the Gelfand transform, a character \(T \mapsto T(s) \in \mathcal{H}(s) \). In [7], this description is given for general Banach rings, and ring characters are used. For commutative non-Archimedean Banach algebras (where \(P_s \) is an ideal of \(\mathcal{A} \) as an algebra, thus the Gelfand transform is an algebra homomorphism), it is sufficient to consider the algebra characters.

A non-Archimedean commutative Banach algebra \(\mathcal{A} \) over \(k \) is called uniform, if \(\|T^2\| = \|T\|^2 \) for any \(T \in \mathcal{A} \). The simplest example of a uniform algebra is the algebra \(C(M, k) \) of all continuous functions on a compact set with values in \(k \), endowed with the supremum norm.

The following result ([7, Corollary 9.2.7]) will be our main tool in the sequel.

Theorem A (Berkovich). Let \(\mathcal{A} \) be a uniform commutative Banach algebra over \(k \) with identity, such that all the characters of \(\mathcal{A} \) take values in \(k \). Then the space \(\mathcal{M}(\mathcal{A}) \) is totally disconnected, and the Gelfand transform gives an isomorphism \(\mathcal{A} \xrightarrow{\sim} C(\mathcal{M}(\mathcal{A}), k) \).

3 BANACH ALGEBRA OF A BOUNDED OPERATOR

3.1

Let \(A \) be a bounded linear operator on a non-Archimedean Banach space \(\mathcal{B} \) over a non-Archimedean valuation field \(k \) with the absolute value \(|\cdot| \). Denote by \(\mathcal{L}_A \) the commutative closed subalgebra in the algebra \(\mathcal{L}(\mathcal{B}) \) of all bounded operators on \(\mathcal{B} \) generated by the operators \(A \) and \(I \) (the identical operator). The algebra \(\mathcal{L}_A \) is the closure, with respect to the operator
norm, of the algebra \(k[A] \) of polynomials of \(A \). The elements \(\lambda \in k \) are identified with the operators \(\lambda I \). Denote by \(\mathcal{M}_A \) the spectrum of the algebra \(\mathcal{L}_A \).

Suppose that the algebra \(\mathcal{L}_A \) is uniform, and all its characters take values in \(k \). By Theorem A, the space \(\mathcal{M}_A \) is totally disconnected, and \(\mathcal{L}_A \) is isomorphic to \(C(\mathcal{M}_A, k) \). Locally constant functions \(\eta : \mathcal{M}_A \to k \), that is functions constant on a neighbourhood of each point, are finite linear combinations of characteristic functions \(\eta_\Lambda \) of disjoint open-closed subsets \(\Lambda \subset \mathcal{M}_A \). The set of all such functions is dense in \(C(\mathcal{M}_A, k) \) (see Corollary 9.2.6 in [7] or Theorem 26.2 in [29]). Thus, if \(f \in C(\mathcal{M}_A, k) \), then, for any \(\varepsilon > 0 \), there exists such a locally constant function

\[
f_\varepsilon(x) = \sum_{i=1}^{n_\varepsilon} c_i \eta_{\Lambda_i}(x), \quad \bigcup_{i=1}^{n_\varepsilon} \Lambda_i = \mathcal{M}_A,
\]

that \(\max_{x \in \mathcal{M}_A} |f(x) - f_\varepsilon(x)| < \varepsilon \). In particular, if \(x_i \in \Lambda_i \), then \(|f(x_i) - c_i| < \varepsilon \), whence

\[
\max_{x \in \mathcal{M}_A} \left| f(x) - \sum_{i=1}^{n_\varepsilon} f(x_i) \eta_{\Lambda_i}(x) \right| < \varepsilon. \tag{1}
\]

Under the isomorphism \(\mathcal{L}_A \cong C(\mathcal{M}_A, k) \), the characteristic functions \(\eta_\Lambda \) correspond to idempotent operators \(E(\Lambda) \in \mathcal{L}_A \), \(\|E(\Lambda)\| = 1 \) (if \(\Lambda \) is nonempty), and we may write the inequality (1) in the form

\[
\left\| f(A) - \sum_{i=1}^{n_\varepsilon} f(x_i) E(\Lambda_i) \right\| < \varepsilon
\]

where the operator \(f(A) \) corresponds to the function \(f \). Interpreting this approximation procedure as integration (compare with Appendix A5 in [29]) we may write

\[
f(A) = \int_{\mathcal{M}_A} f(\lambda)E(d\lambda), \quad f \in C(\mathcal{M}_A, k), \tag{2}
\]

where \(E(\cdot) \) is a finitely additive norm-bounded (by 1) projection-valued measure.

In particular, we have the decomposition of unity

\[
I = \int_{\mathcal{M}_A} E(d\lambda).
\]

If \(f \in \mathcal{B} \), then \(\|f\| \leq \sup_{\Lambda \subset \mathcal{M}_A} \|E(\Lambda)f\| \) (the supremum is taken over all nonempty open-closed subsets of \(\mathcal{M}_A \)). Since \(\|E(\Lambda)\| = 1 \) for any \(\Lambda \), we find that

\[
\|f\| = \sup_{\Lambda} \|E(\Lambda)f\|. \tag{3}
\]

If \(\mathcal{M}_A \) is finite or countable, this equality is a kind of the non-Archimedean orthogonality property of the expansion in eigenvectors.

By the construction, the spectral measure \(E(\Lambda) \) has the operator multiplicativity property: if \(\Lambda_1 \) and \(\Lambda_2 \) are open-closed sets, then \(E(\Lambda_1 \cap \Lambda_2) = E(\Lambda_1)E(\Lambda_2) \). Moreover, if \(\Lambda_1 \cap \Lambda_2 = \emptyset \),
the operators $E(\Lambda_1)$ and $E(\Lambda_2)$ are orthogonal in non-Archimedean sense, as elements of the Banach space $\mathcal{L}(\mathcal{B})$. Indeed, if $a_1, a_2 \in k$, then
\[\|a_1 E(\Lambda_1) + a_2 E(\Lambda_2)\| = \|a_1 \eta_{\Lambda_1} + a_2 \eta_{\Lambda_2}\| = \sup_{\lambda \in \Lambda_1 \cup \Lambda_2} |a_1 \eta_{\Lambda_1}(\lambda) + a_2 \eta_{\Lambda_2}(\lambda)| = \max(|a_1|, |a_2|). \]

We will call an operator A normal, if its Banach algebra \mathcal{L}_A generates the functional calculus (2) with a multiplicative and orthogonal, in the and non-Archimedean sense, does not have a bounded inverse), while all possible values of a character χ are determined by a single value $\lambda = \chi(A)$, and $\lambda \in \sigma(A)$. It follows from the definition of the Gelfand transform that in this case the operator $\pi(A)$, where π is an arbitrary polynomial, corresponds to the polynomial function $\{\pi(\lambda), \lambda \in \sigma(A)\}$. In particular, A itself corresponds to $\pi(\lambda) = \lambda$, and we obtain the classical formula $A = \int_{\sigma(A)} \lambda E(d\lambda)$.

In the finite-dimensional case, the operator $E(\{\lambda\}), \lambda \in \sigma(A)$, is a projection onto the eigensubspace corresponding to an eigenvalue λ.

The Finite-Dimensional Case

4.1. Let $\mathcal{B} = k^n$, with the norm $\|(x_1, \ldots, x_n)\| = \max_{1 \leq i \leq n} |x_i|$. An operator A is represented, with respect to its standard basis in k^n, by a matrix $(a_{ij})_{i,j=1}^n$. Its operator norm coincides with $\|A\| = \max_{i,j} |a_{ij}|$ (see [28]). Without restricting generality, we assume that $\|A\| = 1$.

Let \hat{k} be the residue field of the field k. Together with the operator A, we consider its reduction, the operator \mathfrak{A} on the \hat{k}-vector space $\hat{\mathcal{B}} = \hat{k}^n$ corresponding to the matrix $(\hat{a}_{ij})_{i,j=1}^n$, where \hat{a}_{ij} is the image of a_{ij} under the canonical mapping $O \to \hat{k}$. In invariant terms, we may define $\hat{\mathcal{B}} = \mathcal{B}_0/P\mathcal{B}_0$ (\mathcal{B}_0 is the closed unit ball in \mathcal{B}); \mathfrak{A} is the operator induced by A on $\hat{\mathcal{B}}$.

An operator A will be called degenerate, if $\mathfrak{A} = \nu I$ where $\nu \in \hat{k}$, and I denotes the identity operator on $\hat{\mathcal{B}}$ (in fact, we denote by I all the identity operators). Otherwise A will be called non-degenerate.

Lemma 1. If all n eigenvalues of the operator A belong to k, then all the characters of the Banach algebra \mathcal{L}_A take their values in k, and $\mathcal{M}_A = \sigma(A)$.

Proof. Let P_A be the characteristic polynomial of the operator A. By the Cayley-Hamilton theorem, $P_A(A) = 0$. If χ is a character of \mathcal{L}_A, then $P_A(\chi(A)) = 0$, that is $\chi(A)$ is a root of the characteristic equation, thus $\chi(A) \in \sigma(A) (\subset k)$. Then also $\chi(f(A)) \in k$, for any $f(A) \in \mathcal{L}_A$.\]
and each equivalence class of the characters is determined by the element $\chi(A)$. This means that $M_A = \sigma(A)$. ■

Now we can give a description of all non-degenerate normal operators.

Theorem 1. Let an operator A be non-degenerate, all n its eigenvalues belong to k, and its reduction \mathfrak{A} be diagonalizable, that is \mathfrak{A} possess an eigenbasis in \mathfrak{B}. Then A is a normal operator.

Proof. By Theorem B and Lemma 1, it suffices to prove that the algebra \mathcal{L}_A is uniform.

First of all, for the operator A with $\|A\| = 1$, the condition $\|A^2\| = \|A\|^2 (= 1)$ is equivalent to the fact that $\mathfrak{A}^2 \neq 0$. By our conditions, there exists such an invertible operator U on $\hat{\mathfrak{B}}$ that

$$\mathfrak{A} = U^{-1} \text{diag}(\xi_1, \ldots, \xi_n)U,$$

$0 \neq (\xi_1, \ldots, \xi_n) \in \hat{k}^n$.

Then $\mathfrak{A}^2 = U^{-1} \text{diag}(\xi_1^2, \ldots, \xi_n^2)U \neq 0$.

In a similar way, consider an operator $f(A)$, $f \in k[t]$, $f(t) = \sum_{j=0}^N a_j t^j$, $a_j \in k$ (it is sufficient to prove the uniformity identity for such operators). Let K be the splitting field of the polynomial f, that is

$$f(t) = a_N \prod_{j=1}^N (t - t_j), \quad t_j \in K,$$

whence

$$f(A) = a_N \prod_{j=1}^N (A - t_j I).$$

The operator A is assumed to be extended onto the space K^n where it corresponds to the same matrix, and its reduction has the same eigenbasis.

Now we have only to prove that, for each j,

$$\|(A - t_j I)^2\| = \|A - t_j I\|^2.$$

If $|t_j| < 1$ (we use the extension of the absolute value from k to K), then $\|(A - t_j I)^2\| = \|A^2 - 2t_j A + t_j^2 I\| = \|A^2\| = 1$, and $\|A - t_j I\| = \|A\| = 1$. If $|t_j| > 1$, then $\|2t_j A\| \leq |t_j| < |t_j|^2$

whence $\|(A - t_j I)^2\| = |t_j|^2 = \|A - t_j I\|^2$.

Let us consider the case where $|t_j| = 1$. Let \hat{t}_j be the image of t_j in the residue field of K. Then the reduction of the matrix $A - t_j I$ has the form

$$U^{-1} \text{diag}(\xi_1 - \hat{t}_j, \xi_2 - \hat{t}_j, \ldots, \xi_n - \hat{t}_j)U,$$

so that the reduction of $(A - t_j I)^2$ equals

$$U^{-1} \text{diag}((\xi_1 - \hat{t}_j)^2, (\xi_2 - \hat{t}_j)^2, \ldots, (\xi_n - \hat{t}_j)^2)U.$$

Both the reductions are different from zero, due to the non-degeneracy of the operator A. Therefore $1 = \|A - t_j I\|^2 = \|(A - t_j I)^2\|$. ■
Corollary. If all \(n \) eigenvalues of the operator \(A \) belong to \(k \), and its reduction \(\mathfrak{A} \) has \(n \) different eigenvalues from \(k \), then the operator \(A \) is normal.

The proof follows from the fact \([10]\) that an operator on \(\hat{k}^n \) with all different eigenvalues is diagonalizable.

4.2. It is clear that the non-degeneracy assumption cannot be dropped. For example, the operator \(A = I + B \), where \(B \) is a non-diagonalizable operator and \(\|B\| < 1 \), is not normal and has the reduction \(I \).

In the case of a local field, we can describe the structure of degenerate operators.

Proposition 1. Let \(k \) be a non-Archimedean local field, \(\|A\| = 1 \), and \(\mathfrak{A} = \gamma I \), \(\gamma \in \hat{k} \). Then there exists such \(g \in k \), \(|g| = 1 \), that either \(A = gI \), or \(A = gI + A_0 \), where \(\|A_0\| < 1 \), and the operator \(\lambda_0 A_0 \) with such \(\lambda_0 \in k \) that \(\|\lambda_0 A_0\| = 1 \), is non-degenerate.

Proof. Let \(g_1 \in k \), \(|g_1| = 1 \), be an arbitrary inverse image of \(\gamma \) under the canonical mapping \(O \setminus P \to O/P \cong \hat{k} \). If \(A = g_1 I \), then the proof is finished. Otherwise \(A = g_1 I + A_1 \) where \(\|A_1\| < 1 \). Choose \(\lambda_1 \in k \) in such a way that \(\|\lambda_1 A_1\| = 1 \); then \(|\lambda_1| = q^{m_1} \), \(m_1 \in \mathbb{N} \) (\(q \) is the cardinality of the residue field \(\hat{k} \)). If \(\lambda_1 A_1 \) is non-degenerate, the proof is finished. Otherwise we find that \(\lambda_1 A_1 = g_2 I + A_2 \), \(\|A_2\| < 1 \), \(|g_2| = 1 \), that is \(A_1 = \lambda_1^{-1} g_2 I + \lambda_1^{-1} A_2 \),

\[
A = (g_1 + \lambda_1^{-1} g_2) I + \lambda_1^{-1} A_2.
\]

If the continuation of this procedure does not produce, at a certain stage, a non-degenerate operator, then, for each \(n \), we obtain the representation

\[
A = (g_1 + \lambda_1^{-1} g_2 + \lambda_1^{-1} \lambda_2^{-1} g_3 + \cdots + \lambda_1^{-1} \lambda_2^{-1} \cdots \lambda_{n-1}^{-1} g_n) I + \lambda_1^{-1} \lambda_2^{-1} \cdots \lambda_{n-1}^{-1} A_n
\]

where \(|\lambda_1^{-1} \cdots \lambda_{n-1}^{-1}| = q^{-m_1} \cdots q^{-m_{n-1}} \leq q^{-n+1} \to 0 \), as \(n \to \infty \), \(|g_n| = 1 \) for all \(n \), \(\|A_n\| < 1 \).

This means that \(A = g_0 I \) where

\[
g_0 = g_1 + \lambda_1^{-1} g_2 + \lambda_1^{-1} \lambda_2^{-1} g_3 + \cdots + \lambda_1^{-1} \lambda_2^{-1} \cdots \lambda_{n-1}^{-1} g_n + \cdots ,
\]

and the series converges in \(k \). ■

5 INFINITE-DIMENSIONAL OPERATORS

5.1. In this section we assume that \(k \) is a complete non-Archimedean algebraically closed field with a nontrivial valuation.

Let \(A \) be a bounded linear operator on the Banach space \(\mathcal{B} = c(J,k) \) (see Sect. 2.1). We assume that \(A \) is an analytic operator with a compact spectrum \([22]\), that is the spectrum \(\sigma(A) \subseteq k \) is a compact set, and the resolvent \(R_z(A) = (A - zI)^{-1} \) has the property that, for any \(h \in \mathcal{B}^* \), \(g \in \mathcal{B} \), the function \(z \mapsto \langle h, R_z(A) g \rangle \) belongs to the space \(H_0(k \setminus \sigma(A)) \) of Krasner analytic functions.

The latter space is defined as follows. For a given \(r > 0 \), choose a covering of \(\sigma(A) \) by a minimal possible number of non-intersecting open balls \(D_i(r) \) of radius \(r \) with centers \(a_i \in \sigma(A) \).
Let \(D(r) \) be the union of these balls. The space \(H_0(k \setminus \sigma(A)) \) consists of all such functions \(\varphi : k \setminus \sigma(A) \to k, \varphi(\infty) = 0 \), that, for each \(r > 0 \), \(\varphi \) can be uniformly on \(k \setminus D(r) \) approximated by rational functions with possible poles in \(D(r) \).

A spectral theory of analytic operators with compact spectra was developed by Vishik [32], and we will use some of his results. In fact, we will deal with a more narrow class of scalar type operators which satisfy an additional condition

\[
\|R_z(A)\| \leq \frac{C}{\text{dist}(z, \sigma(A))}, \quad C > 0. \tag{4}
\]

In this case, there exists such a projection-valued finitely additive bounded measure \(\mu_A \) on the Boolean algebra of open-closed subsets of \(\sigma(A) \), such that

\[
\langle \mu_A(u), u^j \rangle = \int_{\sigma(A)} u^j \mu_A(du) = A^j, \quad j = 0, 1, 2, \ldots. \tag{5}
\]

More generally, the expression

\[
\langle \mu_A, f \rangle = \int_{\sigma(A)} f(u)\mu_A(du)
\]

defines a continuous mapping from \(C(\sigma(A), k) \) to \(\text{End} \mathcal{B} \). The measure \(\mu_A \) is uniformly bounded in the operator norm; however in general one cannot assert the crucial property \(\|\mu_A(\Lambda)\| = 1, \Lambda \neq \emptyset \).

The above approximation property of the resolvent can be made explicit: \(R_z(A) \) can be approximated, uniformly on \(k \setminus D(r) \), by the rational operator-functions

\[
R_N(z) = \sum_{i \in I} \sum_{j=1}^N A_{ij}(a_i - z)^{-j}, \quad N \to \infty,
\]

where \(I \) is a finite set (depending on \(r \)),

\[
A_{ij} = \langle \mu_A(u), \eta(r, i, j - 1, u) \rangle,
\]

\[
\eta(r, i, j, u) = \begin{cases} (u - a_i)^j, & \text{if } u \in D_i(r), \\ 0, & \text{if } u \notin D_i(r). \end{cases}
\]

By Kaplansky’s theorem (see Theorem 43.3 in [29]), each of the continuous functions \(\eta \) can be uniformly approximated by polynomials. Then it follows from (5) that, for any fixed \(z \notin \sigma(A) \), the operator \(R_z(A) \) can be approximated, in the operator norm, by polynomials of the operator \(A \). In other words, \(R_z(A) \) belongs to the Banach algebra \(\mathcal{L}_A \) of the operator \(A \). Similarly, approximating the characteristic function of an open compact set uniformly by polynomials and using (5) we find that the values of \(\mu_A \) belong to \(\mathcal{L}_A \).

5.2. Below we assume that \(A \) is an analytic operator with a compact spectrum, \(\|A\| = 1 \), and the set \(J \) of indices is infinite. Let us consider the matrix representation of the operator.
With respect to the standard orthonormal basis in the sequence space \(\mathcal{B} = c(J, k) \), the operator \(A \) corresponds to an infinite matrix \((a_{ij})_{i,j\in J}\). The operator norm \(\|A\| = \sup_{\|x\|\leq 1} \|Ax\| \) equals \(\sup_{i,j} |a_{ij}| \) (the double sequence \(\{a_{ij}\} \) is bounded, and \(|a_{ij}| \to 0 \) for any fixed \(j \), and \(i \to \infty \), by the filter of complements to finite subsets of \(J \); see [28]).

Just as for finite matrices, we can define the reduction \(\mathfrak{A} \) of the operator \(A \). This is an operator on the space \(\hat{k}_0^\infty \) of all such sequences with elements from \(\hat{k} \) that there is only a finite number of nonzero elements in each sequence. The operator \(\mathfrak{A} \) is determined by the infinite matrix \((\alpha_{ij})\) where \(\alpha_{ij} \) is the image of \(a_{ij} \) under the canonical mapping \(O \to \hat{k} \). We say that \(\mathfrak{A} \) is diagonalizable, if \(\mathfrak{A} \) possesses an eigenbasis (in algebraic sense) in \(\hat{k}_0^\infty \).

The operator \(A \) is called non-degenerate, if \(\mathfrak{A} \) is non-scalar: \(\mathfrak{A} \neq \gamma I \) for any \(\gamma \in \hat{k} \).

Lemma 2. If the operator \(A \) is non-degenerate, and its reduction is diagonalizable, then \(A \) is a scalar type operator.

Proof. Let \(z \in \hat{k} \). We consider three possible cases.

1) \(|z| > \|A\| (= 1)\). If \(\zeta \in \sigma(A) \), then \(|\zeta| \leq \|A\| \) (see Section 4.1 in [22]). Then

\[
\|A - zI\| = |z| = |(z - \zeta) + \zeta| = |z - \zeta| \geq \inf_{\zeta \in \sigma(A)} |z - \zeta| = \dist(z, \sigma(A)).
\]

2) \(|z| < \|A\|\). For \(\zeta \in \sigma(A) \), we have \(|z - \zeta| \leq \|A\|, \|A - zI\| = \|A\| \geq |z - \zeta| \geq \dist(z, \sigma(A)) \).

3) \(|z| = \|A\| = 1\). Then \(\|A - zI\| = \|B - I\| \) where \(B = z^{-1}A, \|B\| = 1 \). Suppose that \(B \) is given by an infinite matrix \((b_{ij})\). The reduced operator \(\tilde{B} \) equals \(U^{-1} \diag(\beta_1, \ldots, \beta_n, \ldots)U \) where \(U \) is the operator on \(\hat{k}_0^\infty \) transforming the bases, and there are at least two different elements among \(\beta_1, \ldots, \beta_n, \ldots \). We have

\[
\tilde{B} - I = U^{-1} \diag(\beta_1 - 1, \ldots, \beta_n - 1, \ldots)U \neq 0,
\]

so that \(\|B - I\| = 1 \), and for any \(\zeta \in \sigma(A) \),

\[
\|A - zI\| = |z| \geq |z - \zeta| \geq \dist(z, \sigma(A)),
\]

and we come to (4) in this case too.

5.3. Let us prove the result extending Theorem 1, for the case of a complete algebraically closed field \(k \) with a nontrivial valuation, to the infinite-dimensional situation.

Theorem 2. If \(A \) is an analytic operator with compact spectrum, \(A \) is non-degenerate, and its reduction is diagonalizable, then \(A \) is normal and \(M_A = \sigma(A) \).

Proof. As we have seen, it follows from Lemma 2 that, for each \(z \notin \sigma(A) \), the resolvent \(R_z(A) \) belongs to the algebra \(\mathcal{L}_A \). Let \(\chi : \mathcal{L}_A \to \hat{k} \) be a character of \(\mathcal{L}_A \) with values in a possibly wider field \(K \supset k \). Denote \(\beta = \chi(A) \).

Let us write the representation

\[
A = \int_{\sigma(A)} \lambda \mu_A(d\lambda).
\]

(6)
Since μ_A is norm-uniformly bounded, the integral converges in the operator norm, that is A is approximated by linear combinations of values of μ_A with coefficients from $\sigma(A) \subset k$. Let us apply the character χ to both sides of (6). Note that $[\mu_A(\Lambda)]^2 = \mu_A(\Lambda)$ for any open-closed subset $\Lambda \subset \sigma(A)$, so that $\chi(\mu_A(\Lambda))$ equals 0 or 1. It follows that $\beta \in k$.

Next, let us apply χ to both sides of the equality $(A - zI)R_z(A) = I$, $z \notin \sigma(A)$. We get that $(\beta - z)\chi(R_z(A)) = 1$, so that $\beta \neq z$. Thus, we have proved that an arbitrary character k takes its values in k and, more specifically, in $\sigma(A)$. Therefore $M_A \subset \sigma(A)$.

Just as in the proof of Theorem 1, we show that the algebra L_A is uniform. By Theorem A, L_A is isomorphic to $C(M_A, k)$. We find that the operator A is normal and corresponds, under this isomorphism, to the multiplication operator $\varphi(m) \mapsto m\varphi(m)$, $\varphi \in C(M_A, k)$. Obviously, its spectrum is a subset of M_A. Thus, we have proved that $\sigma(A)$ and M_A coincide as sets.

The topology on $\sigma(A)$ induced by its identification with M_A is the weakest topology, for which all the functions from $C(M_A, k)$ are continuous. Since M_A is a compact Hausdorff space, and polynomials $\pi : M_A (= \sigma(A)) \to k$ separate its points, the topology on M_A coincides with the one determined by these polynomials ([27], Proposition 7.1.8; this proposition is formulated for real- or complex-valued functions but remains valid for our case). On the other hand, defining on $\sigma(A)$ a topology by the same polynomials and taking into account that $\sigma(A)$ is compact in k, we find similarly that the above topology of $\sigma(A)$ coincides with the topology of $\sigma(A)$ as a subset of k.

5.5. Let us consider the case of a compact, or a completely continuous operator A, that is a norm limit of a sequence of finite rank operators. There exists also an alternative definition involving a generalization of the notion of a compact set called a compactoid; see [30, 31].

There is also a description of compact operators in terms of their matrices $(a_{ij})_{i,j \in J}$. Let $r_j(A) = \sup_{i \in J} |a_{ij}|$. Then A is compact, if and only if $r_j(A) \to 0$, as $j \to \infty$ by the filter of complements of finite sets.

Suppose, as before, that $\|A\| = 1$. For a degenerate operator A, $r_j(A) = 1$ for all indices j. Therefore a compact operator on an infinite-dimensional space is always non-degenerate. Moreover, it is an analytic operator with a compact spectrum [32]. Thus, we have the following result.

Corollary. If a compact operator is such that its reduction is diagonalizable, then it is normal.

In general, the spectrum of a compact operator is at most countable, with 0 as the only possible accumulation point. Every nonzero element of the spectrum is an eigenvalue of finite multiplicity. For a compact normal operator, we have, just as in the classical case, that, for any $f \in \mathcal{B}$, the vector Af can be expanded into a convergent series with respect to an orthogonal system of eigenvectors of the operator A. In particular, a normal compact operator always has a nonzero eigenvalue – if the spectral measure is concentrated at the origin, then $Af = 0$ for any $f \in \mathcal{B}$.

6. **EXAMPLES**

6.1. The first nontrivial example of a p-adic normal operator is quite explicit and does not
require any general theorems. This is a counterpart of the number operator coming from a
\(p \)-adic representation of the canonical commutation relations of quantum mechanics. In the
model given in [18], \(B = C(\mathbb{Z}_p, \mathbb{C}_p) \),
\[
(a^+ f)(x) = xf(x - 1), \quad (a^- f)(x) = f(x + 1) - f(x), \quad x \in \mathbb{Z}_p.
\]
The operators (7) are bounded and satisfy the relation \([a^-, a^+] = I\). Let \(A = a^+ a^-\), so that
\[
(Af)(x) = x\{f(x) - f(x - 1)\}.
\]
Then \(AP_n = nP_n, n \geq 0, \) where
\[
P_n(x) = \frac{x(x - 1) \cdots (x - n + 1)}{n!}, \quad n \geq 1; \quad P_0(x) \equiv 1,
\]
is the Mahler basis, an orthogonal basis in \(C(\mathbb{Z}_p, \mathbb{C}_p) \cong c(\mathbb{Z}_+, \mathbb{C}_p) \). Thus \(A \) is normal. An
equivalent, though more complicated, construction was given a little earlier in [6].

In fact, a general version of the above construction involves a Banach space \(B \) with an
orthonormal basis \(\{e_n\}_{n=0}^\infty \), and the linear operators \(\alpha^+, \alpha^- \) on \(B \) acting on the basis vectors as follows:
\[
\alpha^- e_n = e_{n-1}, \quad n \geq 1; \quad \alpha_- e_0 = 0;
\]
\[
\alpha^+ e_n = (n + 1)e_{n+1}, \quad n \geq 0.
\]
Then \([\alpha^-, \alpha^+] = I\) and \((\alpha^+ \alpha^-) e_n = ne_n, n \geq 0\). In the language of [6], \(B \) is a Banach
space (with an appropriate norm) generated by the normalized Hermite polynomials, and the
operators \(\alpha^\pm \) are given in terms of the differentiation and multiplication by the independent
variable.

It is not clear whether the position and momentum operators defined in [3, 4, 5] (or perhaps
their modifications) are normal. This subject deserves further study which goes beyond the
scope of this paper.

Returning to the representation (7), note that, as it was mentioned in [18], the relation
\([a^-, a^+] = I\) admits nonequivalent bounded representations. In particular, let us take, instead
of \(a^- \), the operator
\[
(a' f)(x) = f(x + 1), \quad x \in \mathbb{Z}_p.
\]
Then \([a', a^+] = I, A' = a^+ a'\) is the multiplication operator on \(C(\mathbb{Z}_p, \mathbb{C}_p) \), that is
\[
(A' f)(x) = xf(x), \quad x \in \mathbb{Z}_p.
\]
It is clear that \(A' \) has no eigenvalues. Nevertheless we have the following result.

Proposition 2. The operator \(A' \) is normal.

Proof. It is obvious that \(\sigma(A') \subset \mathbb{Z}_p \), so that \(A' \) has a compact spectrum. Let us prove that
the operator \(A' \) is analytic. We have to check that, for any \(h \in C(\mathbb{Z}_p, \mathbb{C}_p) \), and any \(\mathbb{C}_p \)-valued
bounded measure \(\mu \) on \(\mathbb{Z}_p \), the function
\[
\varphi(z) = \langle R_z(A') h, \mu \rangle = \int_{\mathbb{Z}_p} \frac{1}{x - z} h(x) \mu(dx)
\]

12
admits, on the set $V_z = \{ z \in \mathbb{C}_p : |z|_p > 1 + r \}$ with an arbitrary fixed $r > 0$, the uniform approximation by rational functions with possible poles in the complement of V_z.

Denote

$$\Delta = \frac{h(x)}{x - z} - \frac{h(y)}{y - z}, \quad x, y \in \mathbb{Z}_p, \ z \in V_z.$$

Then, for any $\varepsilon > 0$, there exists such $\delta > 0$, independent of $z \in V_z$, that $|\Delta| < \varepsilon$, as soon as $|x - y|_p < \delta$.

Indeed,

$$\Delta = \frac{y h(x) - x h(y)}{(x - z)(y - z)} - \frac{z}{(x - z)(y - z)} [h(x) - h(y)],$$

so that

$$|\Delta|_p \leq \frac{1}{|(x - z)(y - z)|_p} \max \{|y h(x) - x h(y)|_p, |z|_p |h(x) - h(y)|_p\}.$$

We have $|x - z|_p = |y - z|_p = |z|_p$,

$$|y h(x) - x h(y)|_p \leq \max \{|y - x|_p |h(x)|_p, |x|_p |h(x) - h(y)|_p\},$$

whence

$$|\Delta|_p \leq (1 + r)^{-1} \max \{|x - y|_p \|h\|, |h(x) - h(y)|_p\} < \varepsilon,$$

if $|x - y|_p$ is small enough.

The integral in (8) is a limit, as $n \to \infty$, of the Riemann sums

$$\sum \frac{h(x_0 + x_1p + \cdots + x_np^n)}{x_0 + x_1p + \cdots + x_np^n - z} \mu(B(x_0 + x_1p + \cdots + x_np^n, p^{-n-1}))$$

where the sum is taken over all $x_0, \ldots, x_n \in \{0, 1, \ldots, p - 1\}$, $B(\cdot, p^{-n-1})$ is a closed ball in \mathbb{Z}_p with a center at the appropriate point and radius p^{-n-1}. The difference of two Riemann sums of this kind, the above one and the one with $l > n$ substituted for n, which corresponds to the decomposition of balls into non-intersecting subballs, is a sum of the expressions like the above Δ multiplied by the uniformly bounded measures of the balls (this is similar to the standard justification of the p-adic integration procedure; see Chapter 2 in [L7]). Each of these Riemann sums is a rational function of z with poles in \mathbb{Z}_p, and the above estimate of Δ proves the uniform approximation of the function φ by such rational functions. Thus, the operator A' is analytic.

Let us use the identity

$$t P_n(t) = n P_n(t) + (n + 1) P_{n+1}(t), \quad n = 0, 1, 2, \ldots$$

([29], Example 52.B). We find that, with respect to the basis $\{P_n\}$, the matrix of A' has the form

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 1 & 2 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & 0 & 2 & 3 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & n & n + 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots
\end{pmatrix}.
$$

13
In the reduction procedure, the block
\[
\begin{pmatrix}
 p & p+1 & 0 & \ldots & 0 & 0 \\
 0 & p+1 & p+2 & \ldots & 0 & 0 \\
 & & \ddots & \ddots & \ddots & \ddots \\
 0 & 0 & 0 & \ldots & 2p-2 & 2p-1 \\
 0 & 0 & 0 & \ldots & 0 & 2p-1 \\
\end{pmatrix}
\]
(as well as similar subsequent blocks; here we do not show zeroes to the right) is transformed into
\[
\begin{pmatrix}
 0 & 1 & 0 & \ldots & 0 & 0 \\
 0 & 1 & 2 & \ldots & 0 & 0 \\
 & & \ddots & \ddots & \ddots & \ddots \\
 0 & 0 & 0 & \ldots & p-2 & p-1 \\
 0 & 0 & 0 & \ldots & 0 & p-1 \\
\end{pmatrix}
\]
(9)

Therefore the reduction A' of the operator A' is an infinite direct sum of the finite blocks (9), each of which is diagonalizable having all different eigenvalues. Thus, A' is normal. ■

6.2. Let us give an example of a non-degenerate operator with a non-diagonalizable reduction. Let, as before, $\mathcal{B} = C(\mathbb{Z}_p, \mathbb{C}_p)$. Consider the operator $(A_1 f)(t) = f(t-1)$, $t \in \mathbb{Z}_p$. Since
\[
P_n(t-1) = \sum_{j=0}^{n} P_{n-j}(-1)P_j(t)
\]
([29], Proposition 47.2), the matrix of A_1 has the form
\[
\begin{pmatrix}
 1 & 0 & 0 & \ldots & 0 & 0 & \ldots \\
 P_1(-1) & 1 & 0 & \ldots & 0 & 0 & \ldots \\
 P_2(-1) & P_1(-1) & 1 & \ldots & 0 & 0 & \ldots \\
 \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
 P_n(-1) & P_{n-1}(-1) & P_{n-2}(-1) & \ldots & P_1(-1) & 1 & \ldots \\
\end{pmatrix}
\]

It is known ([29], Exercise 47.C) that $|P_n(-1)|_p = 1$, $n = 0, 1, 2, \ldots$. Thus the reduction \mathfrak{A}_1 has the form
\[
\begin{pmatrix}
 1 & 0 & 0 & \ldots \\
 \theta_{21} & 1 & 0 & \ldots \\
 \theta_{31} & \theta_{32} & 1 & \ldots \\
\end{pmatrix}
\]
where $\theta_{ij} \neq 0$ for any $i > j$. If $u = (u_0, u_1, u_2, \ldots)^T$ is an eigenvector, then the eigenvalue must equal 1, and it is easy to check that $u = 0$ (for a finite matrix of this form, an eigenvector would have a nonzero last component, but here the last component is absent). The more so, \mathfrak{A}_1 is non-diagonalizable.

6.3. The last counter-example prompts us to change the Banach space, in order to accommodate such natural operators. More generally, we will consider the affine dynamical system
\(T(x) = \alpha x + \beta, \; x \in \mathbb{Z}_p, \) where \(\alpha, \beta \in \mathbb{Z}_p, \; |\alpha|_p = 1. \) Properties of this transformation have been studied by a number of authors, see [12] and references therein; note also the paper [23] where an operator generated by \(T \) on a space of complex-valued functions on \(\mathbb{Z}_p \) is considered.

Let \(\mu_{p^n} \subset \mathbb{C}_p \) be the set of all roots of 1 of order \(p^n, \) \(\Gamma = \bigcup_{n=0}^{\infty} \mu_{p^n}. \) Following [13], we consider the space \(B_2 = L^1(\Gamma, \mathbb{C}_p) \) of functions

\[
 f(x) = \sum_{\gamma \in \Gamma} c_\gamma \gamma^x, \; x \in \mathbb{Z}_p,
\]

where \(c_\gamma \in \mathbb{C}_p, \; |c_\gamma|_p \to 0 \) by the filter of complements to finite sets. Note that if \(\zeta \in \mu_{p^n}, \) then

\[
 |\zeta - 1|_p = p^{-\frac{1}{(p-1)p^{n-1}}} < 1
\]

([25], Sect. 3.4.2), so that \(\gamma^x \) is well-defined. See [25] [29] regarding the definition and properties of the mapping \(\gamma \mapsto \gamma^x. \)

The norm in \(B_2 \) is given by \(\|f\| = \sup_{\gamma \in \Gamma} |c_\gamma|. \) The functions \(\gamma \mapsto \gamma^x, \; \gamma \in \Gamma, \) form an orthonormal basis of \(B_2. \)

Let \(A_2 \) be the operator on \(B_2 \) of the form

\[
 (A_2 f)(x) = f(T(x)) = \sum_{\gamma \in \Gamma} c_\gamma \gamma^x \cdot \gamma^{\alpha x}, \; x \in \mathbb{Z}_p.
\]

Considering the structure of \(A_2, \) we begin with the following lemma.

Lemma 3. For each \(n, \) the mapping \(S_\alpha \gamma = \gamma^\alpha \) is a one-to-one mapping of the set \(\mu_{p^n} \) onto itself.

Proof. We have \((\gamma^\alpha)^{p^n} = \gamma^{\alpha p^n} = 1, \) so that \(S_\alpha : \mu_{p^n} \to \mu_{p^n}. \) Suppose that \(\gamma_1^\alpha = \gamma_2^\alpha, \gamma_1, \gamma_2 \in \mu_{p^n}, \) so that \(\gamma_1^3 = 1, \gamma_3 = \gamma_1 \gamma_2^{-1} \in \mu_{p^n}. \) Writing the canonical representation

\[
 \alpha = \alpha_0 + \alpha_1 p + \cdots + \alpha_n p^n + \alpha_{n+1} p^{n+1} + \cdots, \; \alpha_j \in \{0, 1, \ldots, p - 1\} \; (j \geq 0), \; \alpha_0 \neq 0,
\]

we find that

\[
 1 = \gamma_3^\alpha = \gamma_3^{\alpha_0 + \alpha_1 p + \cdots + \alpha_n p^n},
\]

so that \(\gamma_3 \) is a root of unity of order \(\alpha_0 + \alpha_1 p + \cdots + \alpha_n p^n. \) The last number is not divisible by \(p. \) Since the sets of nontrivial roots of unity of order \(p^n \) and of an order not divisible by \(p \) do not intersect ([29], Lemma 33.1), we have \(\gamma_3 = 1, \) so that \(\gamma_1 = \gamma_2. \)

By Lemma 3, the mapping \(\gamma \mapsto \gamma^\alpha \) defines, for each \(n, \) a permutation \(\Lambda_n \) of the set \(\mu_{p^n} \) agreed with the filtration

\[
 \{1\} = \mu_1 \subset \mu_p \subset \mu_{p^2} \subset \ldots.
\]

We will assume that, for each \(n \geq 1, \) the finite set \(\mu_{p^n} \) is numbered in such a way that elements of \(\mu_{p^{n-1}} \) go first. The permutations \(\Lambda_n \) determine a permutation \(\Lambda \) of the whole set \(\Gamma \) coinciding with \(\Lambda_n \) on \(\mu_{p^n}. \) For each \(n, \) the permutation \(\Lambda \) preserves also the set \(\mu_{p^{n+1}} \setminus \mu_{p^n}. \)
After a change of variables, we see that

\[(A_2f)(x) = \sum_{\nu \in \Gamma} c_{\Lambda^{-1}(\nu)} B(\nu) \nu^x, \quad x \in \mathbb{Z}_p,\]

where \(B(\nu) = [\Lambda^{-1}(\nu)]^3\), and \(B(\nu) \in \mu_{p^n}\), if \(\nu \in \mu_{p^n}\).

For each \(n\), the permutation \(\Lambda^{-1}_n\) defines a linear transformation \(L_n\) on \(p^n\)-tuples \((c_1, \ldots, c_{p^n})\) described by a zero-one permutation matrix \[21\]. Thus, the operator \(A_2\) is represented by an infinite block matrix with nonzero diagonal blocks \(L_n\) multiplied from the right by the diagonal matrix \(\text{diag}(B(\nu), \nu \in \Gamma)\).

In order to prove the normality of \(A_2\), it is sufficient to prove it for each finite block. In the reduction process, we obtain the same permutation matrix; the image of \(B(\nu)\) equals 1. Some diagonal block may be degenerate only if it is equal to \(I\).

It is known \([21\), Sect. 4.10.8\] that a finite permutation matrix can be brought to a block-diagonal form determined by a cycle structure of the permutation; the transforming matrix is a permutation matrix itself (so that the construction makes sense over fields like an algebraic closure of \(\mathbb{F}_p\)). Each diagonal block has roots of unity of an appropriate order as its eigenvalues. Thus, if \(\alpha \neq 1\), the diagonal subblocks are either non-degenerate or diagonal, and the reduction of each of them is a diagonalizable operator. If \(\alpha = 1\), then \(A_2\) is diagonal. We have proved the following result.

Proposition 3. The operator \(A_2\) is normal.

6.4. Many new examples of normal operators can be constructed via a dilation procedure described below.

Let an operator \(A\) on \(k^n\) be given by a matrix \((a_{ij})\). Extending the space \(k^n\) to \(k^{n+1}\), we will denote by \(P\) the projection operator: if \(y = (\xi, y_1, \ldots, y_n) \in k^{n+1}\), then \(Py = (y_1, \ldots, y_n)\).

An operator \(B\) on \(k^{n+1}\) is called a 1-dilation of \(A\), if \(Ax = PB\bar{x}\) for all \(x \in k^n\), where \(x = (x_1, \ldots, x_n), \bar{x} = (0, x_1, \ldots, x_n)\).

Suppose that \(A\) is a Jordan cell

\[
A = \begin{pmatrix}
a & 1 & 0 & \ldots & 0 & 0 \\
0 & a & 1 & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & a & 1 \\
0 & 0 & 0 & \ldots & 0 & a \\
\end{pmatrix}, \quad a \in k, |a| \leq 1.
\]

Define an operator \(B\) on \(k^{n+1}\), setting

\[
B = \begin{pmatrix}
a & 1 & 0 & \ldots & 0 & 0 \\
0 & a & 1 & \ldots & 0 & 0 \\
0 & 0 & a & 1 & \ldots & 0 \\
0 & 0 & 0 & \ldots & a & 1 \\
-1 & 0 & 0 & \ldots & 0 & a \\
\end{pmatrix}
\]
(we added the first row and the first column). Then
\[
B(0, x_1, x_2, \ldots, x_n)^T = (x_1, (Ax)_1, \ldots, (Ax)_n),
\]
so that \(B\tilde{x} = Ax \). Let us check the normality of \(B \).

The reduction \(\tilde{B} \) of the matrix \(B \) has the same form, with \(\tilde{a} \in \hat{k} \) substituted for \(a \). In order to find the eigenvalues of \(\tilde{B} \), we note expanding along the first column, that \(\det(\tilde{B} - \lambda I) = (\tilde{a} - \lambda)^{n+1} - (-1)^n \). Thus the eigenvalues equal \(\tilde{a} + \gamma_j \), \(j = 1, \ldots, n + 1 \), where \(\gamma_j \) are the roots of \((-1)^n \) of degree \(n + 1 \).

Therefore, if the field \(k \) is complete and algebraically closed, then, by Theorem 1, \(B \) is a normal 1-dilation of \(A \). We obtain further examples, considering finite or infinite direct sums of such operators.

ACKNOWLEDGEMENT

This work was supported in part by the Ukrainian Foundation for Fundamental Research, Grant 29.1/003.

References

[1] S. Albeverio, J. M. Bayod, C. Perez-Garcia, R. Cianci, and A. Khrennikov, Non-Archimedean analogues of orthogonal and symmetric operators and \(p \)-adic quantization, *Acta Appl. Math.* **57** (1999), 205–237.

[2] S. Albeverio, R. Cianci, and A. Khrennikov, \(p \)-Adic valued quantization, *p-Adic Numbers, Ultrametric Anal. Appl.* **1** (2009), 91–104.

[3] S. Albeverio, R. Cianci, and A. Khrennikov, On the spectrum of the \(p \)-adic position operator, *J. Phys. A* **30** (1997), 881–889.

[4] S. Albeverio, R. Cianci, and A. Khrennikov, On the Fourier transform and the spectral properties of the \(p \)-adic momentum and Schrodinger operators, *J. Phys. A* **30** (1997), 5767–5784.

[5] S. Albeverio, R. Cianci, and A. Khrennikov, Representation of a quantum field hamiltonian in a \(p \)-adic Hilbert space, *Theor. Math. Phys.*, **112** (1997), 1081–1096.

[6] S. Albeverio and A. Yu. Khrennikov, Representations of the Weyl group in spaces of square integrable functions with respect to \(p \)-adic valued Gaussian distributions, *J. Phys. A* **29** (1996), 5515–5527.

[7] V. G. Berkovich, *Spectral Theory and Analytic Geometry over Non-Archimedean Fields*, AMS, Providence, 1990.

[8] S. Bosch, U. Güntzer, and R. Remmert, *Non-Archimedean Analysis*, Springer, Berlin, 1984.
[9] B. Diarra, Remarques sur les matrices orthogonales (resp. symétriques) à coefficients p-adiques, *Ann. Sci. Univ. Blaise Pascal, Sér. Math.* 26 (1990), 31–50.

[10] A. J. Engler and A. Prestel, *Valued Fields*, Springer, Berlin, 2005.

[11] A. Escassut, *Ultrametric Banach Algebras*, World Scientific, Singapore, 2003.

[12] A.-H. Fan, M.-T. Li, J.-Y. Yao, and D. Zhou, Strict ergodicity of affine dynamical systems on \mathbb{Z}_p, *Adv. Math.* 214 (2007), 666–700.

[13] J. Fresnel and B. de Mathan, Algèbres L^1_p-adiques, *Bull. Soc. Math. France* 106 (1978), 225–260.

[14] L. Gruson and M. van der Put, Banach spaces, *Bull. Soc. Math. France*, Mém. 39-40 (1974), 55–100.

[15] H. A. Keller and H. Ochsenius, Non-Archimedean orthomodular spaces and their residual spaces, *Contemporary Math.* 384 (2005), 145–156.

[16] A. Khrennikov, *Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models*, Kluwer, Dordrecht, 1997.

[17] N. Koblitz, *p-Adic Numbers, p-Adic Analysis, and Zeta-Functions*, Springer, New York, 1977.

[18] A. N. Kochubei, p-Adic commutation relations, *J. Phys. A* 29 (1996), 6375–6378.

[19] S. Lang, *Algebra*, Addison-Wesley, Reading, 1965.

[20] S. Ludkovsky and B. Diarra, Spectral integration and spectral theory for non-Archimedean Banach spaces, *Int. J. Math. and Math. Sci.* 31 (2002), 421–442.

[21] M. Markus and H. Minc, *A Survey of Matrix Theory and Matrix Inequalities*, Allyn and Bacon, Boston, 1964.

[22] L. Narici, E. Beckenstein, and G. Bachman, *Functional Analysis and Valuation Theory*, Marcel Dekker, New York, 1971.

[23] R. Osselies und H. Zieschang, Ergodische Eigenschaften der Automorphismen p-adischen Zahlen, *Arch. Math.* 26 (1975), 144–153.

[24] C. Perez-Garcia, Locally convex spaces over non-Archimedean valued fields, *Contemporary Math.* 319 (2003), 251–279.

[25] A. M. Robert, *A Course in p-Adic Analysis*, Springer, New York, 2000.

[26] A. van Rooij, *Non-Archimedean Functional Analysis*, Marcel Dekker, New York, 1978.

[27] Z. Semadeni, *Banach Spaces of Continuous Functions*, Vol. 1, PWN, Warszawa, 1971.

[28] J.-P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, *Publ. Math. IHES* 12 (1962), 69–85.
[29] W. H. Schikhof, *Ultrametric Calculus*, Cambridge University Press, Cambridge, 1984.

[30] W. H. Schikhof, Banach spaces over nonarchimedean valued fields, *Topology Proceedings* **24** (1999), 547–583.

[31] P. Schneider, *Nonarchimedean Functional Analysis*, Springer, Berlin, 2002.

[32] M. M. Vishik, Non-Archimedean spectral theory, *J. Soviet Math.* **30** (1985), 2513–2554.