Structure of cylindrical electric double layers:
Comparison of density functional and modified Poisson-Boltzmann theories with Monte Carlo simulations

V. Dorvilien, C.N. Patra, L.B. Bhuiyan, C.W. Outhwaite

1 Laboratory of Theoretical Physics, Department of Physics, Box 70377, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA
2 Theoretical Chemistry Section, Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400085, India
3 Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK

Received June 27, 2013

The structure of cylindrical double layers is studied using a modified Poisson Boltzmann theory and the density functional approach. In the model double layer, the electrode is a cylindrical polyion that is infinitely long, impenetrable, and uniformly charged. The polyion is immersed in a sea of equi-sized rigid ions embedded in a dielectric continuum. An in-depth comparison of the theoretically predicted zeta potentials, the mean electrostatic potentials, and the electrode-ion singlet density distributions is made with the corresponding Monte Carlo simulation data. The theories are seen to be consistent in their predictions that include variations in ionic diameters, electrolyte concentrations, and electrode surface charge densities, and are also capable of well reproducing some new and existing Monte Carlo results.

Key words: electric double layer, restricted primitive model, density profiles

PACS: 82.45.Fk, 61.20.Qg, 82.45.Gj

1. Introduction

Description of the interactions and correlations of large polyions with the small, more mobile ions in the surrounding ionic cloud is of significance in situations ranging from fundamental life processes such as the transport of ions, water, and various molecules across cell membranes, flocculation in colloidal systems [1], industrial polyelectrolytes [2], and the native structure of DNA and various proteins [3-5]. The structure and thermodynamics of all these systems manifest the complex behaviour of small ions within the atmosphere. A detailed understanding of the static structural features is therefore central to assessing the relative effect of various control parameters in such phenomena.

The electrode (polyion) along with the neighbouring inhomogeneous ion layer constitute the electric double layer with the shape of the polyion determining the geometry of the double layer. Over the past few decades the planar double layer (PDL) has become synonymous with the electric double layer as it has been the one to have been extensively investigated through theoretical approaches, numerical simulation methods, and experimental techniques (see for example, references [6, 7] for recent reviews). This notwithstanding, other double layer systems, viz., the cylindrical double layer (CDL), the spherical double layer (SDL), and ellipsoidal double layer (ESDL) have been coming under increasing scrutiny in recent years.

A number of experimental techniques including the small angle x-ray and neutron scattering [8, 9], the optical imaging, and electrophoretic mobility measurements have been used to probe the properties

*It is a pleasure to dedicate this paper to Dr. Myroslav Holovko on the occasion of his 70th Birthday.
of electric double layers\cite{10,11}. Recent advances in theoretical approaches and simulation methodologies have aided in the explanation of some of these experimental observations\cite{12}. In most of the theoretical studies, the polion is generally modelled as an infinitely long, hard, uniformly charged cylinder with the small ions being treated as charged hard spheres moving in a dielectric continuum. This is the so-called primitive model of the CDL. Of the theoretical studies mentioned, computational methods and the so-called counterion condensation (CC) theory\cite{13}, the classical Poisson-Boltzmann (PB) description\cite{14,15}, and the formal statistical mechanical approaches, for example, the integral equation theories\cite{16,17}, the modified Poisson-Boltzmann theory (MPB)\cite{18–20}, and the density functional theory (DFT)\cite{21,22}. Parallel Monte Carlo (MC) simulations in various forms\cite{23–32} have provided exact quantitative data for many model systems with regard to their structure and thermodynamics. However, many of these simulations have involved the cylindrical cell model\cite{9,27–32} where the polion is at a finite, non-zero concentration. By contrast, in the case of the CDL — our focus in this paper, the polion is at infinite dilution, and in this situation the early MC simulations\cite{23–26} were somewhat limited in their scope. Indeed, in an earlier paper\cite{33}, two of us tried to compare the DFT and the MPB structural results for the primitive model CDL but the lack of detailed simulation data proved a hindrance and precluded a detailed comparison. The picture has now changed, however, with the availability of a new generation of MC simulation results due to Goel et al.\cite{34}. This will permit a critical evaluation of these theories relative to the benchmark of the simulation data.

The DFT and MPB approaches to the electric double layer theory have come to be recognized as being two of the more successful ones for the planar\cite{35}, spherical\cite{36,37}, and cylindrical\cite{33} symmetries. In the PDL, in particular, both the theories have proved useful in describing capacitance behaviour including capacitance anomaly at low temperatures\cite{38}. The DFT techniques have evolved over the years since the initial applications to the PDL in the early 1990’s\cite{39–41}. In recent years, a number of new formulations of DFT, coupled with different statistical mechanical approaches, have emerged as robust methods to study the systems involving correlations like the electric double layer\cite{42}. A partially perturbative DFT procedure\cite{21,43} is adopted in the present work where the hard sphere part is determined through the weighted density approach (WDA) of Denton and Ashcroft\cite{44}, while the electrical contribution is a perturbation on the corresponding bulk electrolyte. The essential idea of the MPB theory is to incorporate within a potential formulation, the important missing elements in the classical PB formulation, namely, the inter-ionic correlations and the ionic exclusion volume effects. For the CDL, an MPB equation was first obtained by Outhwaite\cite{18}. Numerical solutions were later developed by Bhuiyan and Outhwaite\cite{19,20} with some limited comparison with the hypernetted chain/mean spherical approximation\cite{45,46}.

The first detailed comparative study of the DFT and the MPB structural results relative to MC simulations was undertaken by Bhuiyan and Outhwaite\cite{35} for the PDL. The two theories were seen to be remarkably consistent over a wide range of physical parameters probed through the simulations\cite{47}. A similar consistency between the theories was later observed by the same authors\cite{36} with regard to structure in a SDL. An interesting result of the latter work is the charge inversion phenomenon observed in the MC simulations\cite{48} for higher valencies, which was also reproduced by both the theories to a very good accuracy. It is thus natural to wonder if such trends will carry over to cylindrical symmetries.

In this paper, we will explore the DFT and MPB theories for a primitive model CDL with a particular emphasis on the comparative behaviour of zeta potentials, density, and mean electrostatic profiles vis-a-vis the Monte Carlo data. The zeta potentials are useful indicators of the capacitance characteristics of double layers and such comparison of these two theories in this regard has not appeared in the literature. Although our focus will be on DFT and MPB calculations at different physical states, we also intend to do MC simulations for new states.

2. Model and methods

As indicated in the previous section, in the model double layer system treated here, the polion is mimicked by an infinitely long, non-polarizable, hard cylinder with a uniform surface charge density. The polion is bathed by a restricted primitive model (RPM) electrolyte (equi-sized charged hard spheres moving in a dielectric continuum). The polion surface charge density σ is related to the axial charge ξ.
through

\[
\sigma = \frac{e}{2\pi R b} = \frac{2\varepsilon_0 e_r}{\beta e R} \xi,
\]

where \(e \) is the fundamental charge, \(b \) is the monomer length (length per unit charge), \(\beta = (k_B T)^{-1}, \) \(k_B \)
being the Boltzmann’s constant, and \(T \) the temperature. The continuum solvent is characterized by the
relative permittivity \(\varepsilon_r \) (\(\varepsilon_0 \) is the vacuum permittivity), which is taken to be \(\varepsilon_r = 78.358, \) and \(R \) is
the radius of the polyion taken as \(R = 8 \times 10^{-10} \) m. Following the previous work of Patra and Bhuiyan [33]
we have set \(T = 298.15 \) K, \(b = 1.7 \times 10^{-10} \) m, and in most cases \(\xi = 4.2 (\sigma = 0.187 \text{ C/m}^2), \) which are the
accepted values for a double-stranded DNA [26]. The other variable physical quantities will be described
in the Results section. Denoting the charge of a small ion of species \(i \) by \(q_i = Z_i e, \) with \(Z_i \) being the ionic
valency, the ion-ion interaction potential in the Hamiltonian can be written as

\[
u_{ij}(r) = \begin{cases} \infty, & r < a, \\
q_i q_j / 4\pi\varepsilon_0 e_r r, & r > a,
\end{cases}
\]

where \(r \) is the distance between a pair of ions and \(a \) is the common diameter of the ions of the bathing
electrolyte. The bare interaction between an ion of species \(i \) and the polyion is given by

\[
u_i(r_i) = v_i(r_i) + w_i(r_i),
\]

where \(v_i(r_i) \) and \(w_i(r_i) \) are the non-electrostatic and electrostatic (Coulombic) parts of the ion-polyion
potential with \(r_i \) being radial distance of ion \(i \) from the polyion axis. The non-electrostatic contribution
is a hard-core potential

\[
u_i(r_i) = \begin{cases} \infty, & r_i < R + a/2, \\
0, & r_i > R + a/2.
\end{cases}
\]

The electrostatic part \(w_i(r) \) is given by

\[
w_i(r) = \begin{cases} -\frac{e q_i}{2\pi\varepsilon_0 e_r b} \ln(r_i), & r_i \geq R + a/2, \\
\infty, & \text{otherwise.}
\end{cases}
\]

The above double layer model was solved using the DFT and MPB techniques. The development of
these theories has been chronicled elsewhere in the literature and will not be repeated here. For a summary
of the principal equations that are used in the present calculations we refer the reader again to the
earlier work by Patra and Bhuiyan [33]. The MC simulations were done in the canonical ensemble using
the standard Metropolis algorithm and have been described by Goel et al. [34].

3. Results and discussion

The DFT and MPB equations were solved numerically following the procedure given in references
[39, 43] for DFT and [49–51] for MPB. During the course of calculations we generally considered the
following ranges of variation for some of the physical parameters: the electrolyte concentration \(c \) from
0.05 mol/dm\(^3\) to 2 mol/dm\(^3\), the ionic diameter \(e \) from 2 \(\times 10^{-10} \) m to 6 \(\times 10^{-10} \) m, and the axial charge
factor \(\xi \) from 2.1 (\(\sigma = 0.0935 \text{ C/m}^2 \)) to 10.5 (\(\sigma = 0.468 \text{ C/m}^2 \)). These parameters were chosen to be in line
with the existing MC data [34]. It ought to be mentioned though that the same ranges of variation for
the same parameters were not strictly maintained for all the electrolyte systems treated. For comparison
purposes we have also obtained numerical solution of the classical PB theory at the same set of physical
states. In describing the results we will use universal reduced parameters for convenience, the relevant
ones in the present case being \(\sigma^* = \sigma a^2 / e \) for the reduced surface charge density, and \(\psi^*(r) \) (= \(\beta e \psi(r) \))
for the reduced mean electrostatic potential.
3.1. Zeta potential

We begin this discussion by considering the zeta potential profile as a function of polyion surface charge density σ, salt concentration c, and ionic valency Z_i. The zeta potential is defined in the polyelectrolyte literature as the mean electrostatic potential at the closest approach between the small ion and the charged polyion, that is, $\zeta = \psi(R + a/2)$. Figures 1–3 depict the reduced zeta potential profiles $\zeta^* = \psi^*(R/a + 1/2)$ with respect to the reduced surface charge density σ^*. In these calculations, the ionic diameter is held fixed at $a = 4 \times 10^{-10}$ m. The results for a 1:1 electrolyte system at three different electrolyte concentrations $c = 0.1$ mol/dm3, 1 mol/dm3, and 2 mol/dm3 are shown in figures 1(a)–(c). In all cases the MC ζ^* is monotonic and increases continuously with σ^*, although the rate of increment decreases at the higher salt concentration. The PB results overestimate the MC ζ^* for the same σ^* and this deviation increases with concentration. This is of course a well known feature of the mean field result in that the theory is more useful for monovalent systems at low concentrations where the effect of the neglected inter-ionic correlations is relatively less. One of the more noteworthy features of figure 1 is the quantitative agreement of the DFT and MPB predictions with MC results at all concentrations and over the whole range of σ^* studied. A similar level of agreement between the two approaches was seen for the PDL [33] and the SDL [38].

As we move on to 2:2 systems in figure 2 the striking feature is that the MC, DFT, and MPB ζ^* are no longer monotonic. Indeed, the MC ζ^* shows a maximum before starting to decrease at high σ^*. Both DFT and MPB ζ^* follow the MC trends closely. At still higher surface charges, viz., $\sigma^* \gtrsim 0.5$, the MPB shows a shallow valley before increasing again as can be seen in the insets. This trend is probably an artefact of the theory. The PB results are monotonic and are thus not even qualitative with the simulations.
Structure of cylindrical electric double layers

3.2. Double layer structure

3.2.1. 1:1 electrolytes

We now focus on the static structural properties of the CDL given in figures 4, 5, and 6. In the three figures we will compare the theoretical results with the available MC data for ionic density distributions as well as the mean electrostatic potentials for 1:1 salts at different parametric conditions. Figure 4 depicts variation in concentration of the salt while keeping all other parameters fixed, and in particular, \(a = 4 \times 10^{-10} \) m and \(\xi = 4.2 \) \((\sigma = 0.187 \text{ C/m}^2) \). As might be expected, there is an excessive accumulation of counterions near the polion surface, which continuously decays down to the bulk. All the \(\psi^*(r) \) and
Figure 3. (Color online) Reduced zeta potential $\zeta^* = \psi^*(R/a + 1/2)$ versus reduced surface charge density σ^* for a 2:1/1:2 electrolyte at solution concentration (in mol/dm3 units) 0.05 M (panel a), 0.5 M (panel b), and 1 M (panel c) in a RPM cylindrical double layer. The symbols represent MC data, while the solid line represents the MPB results, the dashed line represents the DFT results, and the dash-dotted line shows the PB results. The polyion radius is 8×10^{-10} m, and the ionic diameter $a = 4 \times 10^{-10}$ m. MC data from reference [34].

$g_i(r)$ are monotonically decreasing with the DFT and MPB results being virtually indistinguishable from the MC results. With an increase in electrolyte concentration, this decrease becomes more rapid and the double layer becomes progressively less diffuse. An increase of concentration also leads to an increase in coion contact value and to a decrease in counterion contact value. This is due to a more complete screening at these conditions. As has been seen previously in case of the PDL [35], at such relatively low concentration 1:1 systems, the PB results are also in good agreement with the simulations.

The effect of ionic size on the double layer structure is illustrated in figure 5, where we present the results at ionic diameters $a = 2, 4, \text{and } 6 \times 10^{-10}$ m, respectively. These calculations are at $c = 0.5 \text{ mol/dm}^3$, and $\xi = 4.2$ ($\sigma = 0.187 \text{ C/m}^2$). A glance at the figures across the panels from left to right reveals that the double layer becomes more compact as the ionic diameter increases. The consequent increase of the ion exclusion volume, or equivalently the solute volume fraction, results in increased packing effects, which reduces the range of the singlet distribution functions. This feature is corroborated by the corresponding potential profiles. In figure 6, the effect of charge correlations on structure can be seen in the profiles now at different axial charge parameters, viz., $\zeta = 2.1, 4.2,$ and 10.5, corresponding to $\sigma = 0.0935, 0.187, \text{ and } 0.468 \text{ C/m}^2$. Here, the ionic diameter and concentration are held fixed at 4×10^{-10} m and 0.5 mol/dm3, respectively. A high surface charge density leads to stronger electrostatic correlations, which in turn leads again to compact double layers. In effect, both size and charge correlations affect the structure in the same directions. In the last two figures the DFT and MPB reproduce the simulation results to a very good degree, while the PB shows the maximum deviation at $a = 6 \times 10^{-10}$ m (figure 5) and $\xi = 10.5$ ($\sigma = 0.468 \text{ C/m}^2$), figure 6.
3.2.2. 2:2 and 2:1/1:2 electrolytes

Turning now to higher and/or multivalent electrolyte systems, in Figure 7 we present the density and the potential profiles for 2:2 and 2:1 electrolytes at \(0.1 \text{ mol/dm}^3\) concentration, \(a = 4 \times 10^{-10} \text{ m}\), and \(\xi = 4.2 (\sigma = 0.187 \text{ C/m}^2)\). We remark here that we have performed the MC simulations for these cases in the course of this work as this data in reference [34] has been found to be somewhat doubtful. The 2:2 electrolytes...
electrolyte with the divalent counterion shows somewhat larger structure relative to the 2:1 electrolyte due to an increased polyion-counterion attraction. This is also visible in the potential profiles with the double layer being more diffuse in the latter case. The DFT and MPB results again show a considerable consistency for both 2:2 and 2:1 salts, although in the former instance the MPB coion $g(r)$ is marginally

![Figure 6](image1.png)

Figure 6. (Color online) Polyion-ion singlet distributions (lower panel) and the reduced mean electrostatic potentials (upper panel) for a 0.5 M 1:1 electrolyte surrounding a polyion with a radius $R = 8 \times 10^{-10}$ m. The polyion axial charge parameter ζ values are, from left to right, 2.1 ($\sigma = 0.0935$ C/m2), 4.2 ($\sigma = 0.187$ C/m2), and 10.5 ($\sigma = 0.468$ C/m2), respectively. The ionic diameter is 4×10^{-10} m. The rest of symbols and notation as in figure 1. MC data from reference [34].

![Figure 7](image2.png)

Figure 7. (Color online) Polyion-ion singlet distributions (lower panel) and the reduced mean electrostatic potentials (upper panel) for 2:2 and 2:1 electrolytes surrounding a polyion with an axial charge parameter $\zeta = 4.2$ ($\sigma = 0.187$ C/m2) and radius $R = 8 \times 10^{-10}$ m. The electrolyte concentration is 0.1 M in each case. The rest of symbols and notation as in figure 1. The ionic diameter $a = 4 \times 10^{-10}$ m.
Figure 8. (Color online) Polyion-ion singlet distributions (lower panel) and the reduced mean electrostatic potentials (upper panel) for a 1:2 electrolyte surrounding a polyion with an axial charge parameter $\xi = 4.2$ ($\sigma = 0.187$ C/m2) and radius $R = 8 \times 10^{-10}$ m. The electrolyte concentrations are, from left to right, 0.05 M, 0.1 M, and 0.5 M, respectively. The rest of symbols and notation as in figure 1. The ionic diameter $a = 4 \times 10^{-10}$ m. MC data from reference [34].

closer to the MC data near contact. In the same case, the PB also shows a greater deviation.

The role of an increased electrostatic attraction between the polyion and multivalent counterions in characterizing the polyion–ion distributions and mean electrostatic potential profiles is further evident in figures 8–10, which show the structure of a double layer for 1:2 electrolytes under different physical conditions. Figure 8 shows the effect of an increasing concentration at fixed $a = 4 \times 10^{-10}$ m and $\xi = 4.2$ ($\sigma = 0.187$ C/m2). While at the two lower concentrations the profiles are all monotonic, at the highest con-

Figure 9. (Color online) Polyion-ion singlet distributions (lower panel) and the reduced mean electrostatic potentials (upper panels) for a 0.5 M 1:2 electrolyte surrounding a polyion with an axial charge parameter $\xi = 4.2$ ($\sigma = 0.187$ C/m2) and radius $R = 8 \times 10^{-10}$ m. The ionic diameters are, from left to right, 3, 4, and 6×10^{-10} m (in the labels $\lambda = 10^{-10}$ m), respectively. The rest of symbols and notation as in figure 1. MC data from reference [34].
Figure 10. (Color online) Polyion-ion singlet distributions (lower panel) and the reduced mean electrostatic potentials (upper panel) for a 0.5 M 1:2 electrolyte surrounding a polyion with a radius \(R = 8 \times 10^{-10} \) m. The polyion axial charge parameter \(\xi \) values are, from left to right, 2.1 (\(\sigma = 0.0935 \) C/m\(^2\)), 4.2 (\(\sigma = 0.187 \) C/m\(^2\)), and 10.5 (\(\sigma = 0.468 \) C/m\(^2\)), respectively. The ionic diameter is 4 \(\times 10^{-10} \) m. The rest of symbols and notation as in figure 1. MC data from reference [34].

Concentration (\(c = 0.5 \) mol/dm\(^3\)) oscillations are visible in the \(g_i' \)’s and \(\psi^* \). In particular, the minimum in \(\psi^* \) next to the polyion indicates an overscreening (charge reversal) of the polyion by the counterions. This has been observed in earlier double layer studies involving, besides the DFT and MPB, other theoretical and numerical methods [17]. The DFT and MPB theories follow the MC data very closely, whereas the classical theory shows a substantial deviation especially at \(c = 0.5 \) mol/dm\(^3\) where its monotonic behaviour is at odds with that of the simulations.

Overscreening can also be a function of ionic size as well as the surface charge density of the polyion as can be gleaned from figures 9 and 10. A rather large charge inversion is observed in figure 9 when the depth of the potential minimum increases with an increase in ionic size. The comparative behaviour of the DFT and the MPB theories relative to the MC simulations seen earlier extends to these situations too, while the PB theory continues to show large and sometimes qualitative discrepancies. Charge correlation shows its prominence in figure 10 with overscreening leading to large charge inversion at the highest surface charge density treated (\(\xi = 10.5 \) (\(\sigma = 0.486 \) C/m\(^2\))). However, in this situation the DFT coion distribution shows some deviation from the MC and MPB results, similar to that for the 2:2 case in figure 7, possibly due to the approximation involved in the present formulation of the theory. The DFT charge inversion is also overestimated at \(\xi = 10.5 \). In the classical formalism, ionic effects or charge correlations are never taken into account and as such the PB theory yields monotonically decreasing density and potential profiles at all concentrations, ionic sizes, and surface charge densities.

4. Conclusions

We have done a comparative study of the density functional and the modified Poisson-Boltzmann theories as applied to the RPM cylindrical double layer. A critical evaluation of these analytical approaches in their ability to reproduce the Monte Carlo results for the zeta potentials, the singlet density distributions, and the mean electrostatic potential profiles has been the theme of this work. An important global aspect of the results is the consistency of both theories in their predictions of these structural features for the range of the concentrations of the electrolyte, ionic diameters, and the polyion surface charge densities studied here; the theories also follow the Monte Carlo simulations to a very good degree overall.

The classical mean field results are reasonable for 1:1 valencies at relatively low concentrations, but
are generally poor and even fail to be qualitative with the simulations and the formal theoretical results at higher concentrations and/or in the presence of higher valency or asymmetric valency electrolytes. These results are not unsurprising and point to the importance of including ionic correlations and exclusion volume effects. The appearance of a maximum (or minimum) in the zeta potentials for electrolytes with multivalent counterions is an interesting phenomenon and is suggestive of a non-monotonic nature of the differential capacitance. In such situations, the density and potential profiles also indicate polyion overcharging [36, 37].

The present study of the double layer in cylindrical geometry in conjunction with the earlier studies in planar [35], and spherical [36] geometries reveal remarkable overall consistency of the DFT and MPB theories both among themselves and with the corresponding simulation data. and hence the usefulness of these theories in describing interfacial double layers. This is encouragement for a future development and application of these theories to more complex polyelectrolyte and colloidal systems.

Acknowledgements

V. D. acknowledges an institutional grant through FIPI, University of Puerto Rico during the initial stages of this project. C.N.P would like to thank Drs. T. Goel and S.K. Ghosh for useful discussions.

References

1. Mandel M., Polyelectrolytes, Reidel, Dordrecht, 1988.
2. Hara M., Polyelectrolytes: Science and Technology, Dekker, New York, 1993.
3. Harrison S.C., Aggarwal A.K., Annu. Rev. Biochem., 1990, 59, 933; doi:10.1146/annurev.bi.59.070190.004441
4. Mishra V.K., Hecht J.L., Sharp K.A., Friedman R.A., Honig B., J. Mol. Biol., 1994, 238, 264; doi:10.1006/jmbi.1994.1286
5. Jary D., Sikorav J.-L., Biochemistry, 1999, 28, 3223; doi:10.1021/bi982770h
6. Henderson D., Boda D., Phys. Chem. Chem. Phys., 2009, 11, 3822; doi:10.1039/b815946g
7. Chersty A.G., Phys. Chem. Chem. Phys., 2011, 13, 9942; doi:10.1039/c0cp02796k
8. Bhuiyan L.B., Outhwaite C.W., van der Maarel J.R.C., J. Phys. Chem., 1993, 103, 6080; doi:10.1021/jp991062i
9. Bhuiyan L.B., Outhwaite C.W., In: Condensed Matter Theories, Vol. 8, Blum L., Malik F.B. (Eds.), New York, Plenum, 1993, 551–555.
10. Israelevich J., Intermolecular and Surface Forces, Academic Press, New York, 1992.
11. Imaging of Surfaces and Interfaces, Lipkowski J., Ross P. (Eds.), Wiley-VCH, New York, 1999.
12. Levin Y., Rep. Prog. Phys., 2002, 65, 1577; doi:10.1088/0034-4885/65/11/201
13. Manning G.S., Acc. Chem. Res., 1979, 12, 445; doi:10.1021/ar50144a004
14. Stigter D., J. Phys. Chem., 1978, 82, 1603; doi:10.1021/j100503a006
15. Sharp K.A., Honig B., J. Phys. Chem., 1990, 94, 7684; doi:10.1021/j100382a068
16. Fundamentals of Inhomogeneous Fluids, Henderson D. (Ed.), Dekker, New York, 1992.
17. Yeomans L., Feller S.E., Sánchez E., Lozada-Cassou M., J. Chem. Phys., 1993, 98, 1436; doi:10.1063/1.464308
18. Outhwaite C.W., J. Chem. Soc. Faraday Trans. 2, 1986, 82, 789; doi:10.1039/b29868200789
19. Bhuiyan L.B., Outhwaite C.W., In: Condensed Matter Theories, Vol. 8, Blum L., Malik F.B. (Eds.), New York, Plenum, 1993, 551–555.
20. Bhuiyan L.B., Outhwaite C.W., Phîlos. Mag. B, 1994, 69, 1051; doi:10.1080/01418639408240174
21. Patra C.N., Yethiraj A., J. Phys. Chem. B, 1999, 103, 6080; doi:10.1021/jp991062i
22. Patra C.N., Yethiraj A., Biophys. J., 2000, 78, 699; doi:10.1016/S0006-3495(00)76626-8
23. Mills P., Anderson C.F., Record M.T. (Jr.), J. Phys. Chem., 1985, 89, 3984; doi:10.1021/j100265a012
24. Mills P., Anderson C.F., Record M.T. (Jr.), J. Phys. Chem., 1986, 90, 6541; doi:10.1021/j100282a025
25. Ni H.H., Anderson C.F., Record M.T. (Jr.), J. Phys. Chem. B, 1999, 103, 3489; doi:10.1021/jp984380a
26. Anderson C.F., Record M.T. (Jr.), Annu. Rev. Phys. Chem., 1982, 33, 191; doi:10.1146/annurev.physchem.33.100182.001203
27. Das T., Bratko D., Bhuiyan L.B., Outhwaite C.W., J. Phys. Chem., 1995, 99, 410; doi:10.1021/j100011a061
28. Das T., Bratko D., Bhuiyan L.B., Outhwaite C.W., J. Chem. Phys., 1997, 107, 9197; doi:10.1063/1.475211
29. Bratko D., Vlachy V., Chem. Phys. Lett., 1982, 90, 434; doi:10.1016/0009-2614(82)80250-9
30. Bratko D., Vlachy V., Chem. Phys. Lett., 1985, 115, 294; doi:10.1016/0009-2614(85)80051-2
31. Le Bret M., Zimm B.H., Biopolymers, 1984, 23, 271; doi:10.1002/bip.360230208
32. Vlachy V., Haymet A.D.J., J. Chem. Phys., 1986, 84, 5874; doi:10.1063/1.449898
33. Patra C.N., Bhuiyan L.B., Condens. Matter Phys., 2005, 8, 425; doi:10.5488/CMP.8.2.425
34. Goel T., Patra C.N., Ghosh S.K., Mukherjee T., J. Chem. Phys., 2008, 129, 154906; doi:10.1063/1.2992525
35. Bhuiyan L.B., Outhwaite C.W., Phys. Chem. Chem. Phys., 2004, 6, 3467; doi:10.1039/b316098j
36. Bhuiyan L.B., Outhwaite C.W., Condens. Matter Phys., 2005, 8, 287; doi:10.5488/CMP.8.2.287
37. Goel T., Patra C.N., J. Chem. Phys., 2007, 127, 094502; doi:10.1063/1.2750335
38. Bhuiyan L.B., Outhwaite C.W., Henderson D., J. Chem. Phys., 2005, 123, 034704; doi:10.1063/1.1992427
39. Tang Z., Mier-y-Teran L., Davis H.T., Scriven L.E., White H.S., Mol. Phys., 1990, 71, 369; doi:10.1080/00268979010001851
40. Mier-y-Teran L., Suh S.H., White H.S., Davis H.T., J. Chem. Phys., 1990, 92, 5087; doi:10.1063/1.458542
41. Mier-y-Teran L., Tang Z., Davis H.T., Scriven L.E., White H.S., Mol. Phys., 1991, 72, 817; doi:10.1080/00268979100100581
42. Li Z., Wu J., Phys. Rev. Lett., 2006, 96, 048302; doi:10.1103/PhysRevLett.96.048302
43. Patra C.N., Ghosh S.K., J. Chem. Phys., 1994, 100, 5219; doi:10.1063/1.467186
44. Denton A.R., Ashcroft N.W., Phys. Rev. A, 1989, 39, 426; doi:10.1103/PhysRevA.39.426
45. Lozada-Cassou M., J. Phys. Chem., 1983, 87, 3729; doi:10.1021/j100242a031
46. Gonzalez-Tovar E., Lozada-Cassou M., Henderson D., J. Chem. Phys., 1985, 83, 361; doi:10.1063/1.4409779
47. Boda D., Fawcett W.R., Henderson D., Sokolowski S., J. Chem. Phys., 2002, 116, 7170; doi:10.1063/1.1464826
48. Terao T., Nakayama N., Phys. Rev. E, 2001, 63, 041401; doi:10.1103/PhysRevE.63.041401
49. Bellman R., Kalaba R., Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965.
50. Outhwaite C.W., J. Chem. Soc. Faraday Trans. 2, 1987, 83, 949; doi:10.1039/F29878300949
51. Outhwaite C.W., Bhuiyan L.B., Levine S., J. Chem. Soc. Faraday Trans. 2, 1980, 76, 1388; doi:10.1039/F29807601388
52. Carnie S.L., Torrie G.M., Adv. Chem. Phys., 1984, 56, 141; doi:10.1002/9780470142806.ch2
53. Boda D., Henderson D., Plaschko P., Fawcett W.R., Mol. Simulat., 2004, 30, 137; doi:10.1080/0892702031000152163
54. Yu Y.-X., Wu J., Gao G.-H., J. Chem. Phys., 2004, 120, 7223; doi:10.1063/1.1678121
55. Degreve L., Lozada-Cassou M., Sanchez E., Gonzalez-Tovar E., J. Chem. Phys., 1993, 98, 8905; doi:10.1063/1.464449
56. Degreve L., Lozada-Cassou M., Mol. Phys., 1995, 86, 759; doi:10.1080/00268979500102351

Структура циліндричного подійного шару. Порівняння теорій функціоналу густини і модифікованого рівняння Пуассона-Больцмана з моделюванням Монте-Карло

В. Дорвільєн, К.Н. Патра, Л.Б. Буйян, К.В. Оутвейн

Вивчено структуру циліндричних подійних шарів, використовуючи модифіковану теорію Пуассона-Больцмана і теорію функціоналу густини. У цій моделі подійного шару електродом є нескінченно довгий, непроникний та однорідно заряджений циліндричний поліон. Він оточений системою іонів аналогочного розміру у діелектричному середовищі. Виконано докладне порівняння результатів теорії для дзета потенціалів, для середнього електростатичного потенціалу та для розподілу густини іон-електрод з даними комп’ютерного моделювання Монте Карло. Теоретичні результати узгоджуються з новими та попередніми даними моделювання Монте Карло при зміні різних параметрів, таких як іонні діаметри, концентрація електрода, густина заряду електрода.

Ключові слова: подійний електричний шар, обмежена примітивна модель, профіль густини