Spinon Attraction in Spin-1/2 Antiferromagnetic Chains

B. A. Bernevig, D. Giuliano and R. B. Laughlin
Department of Physics, Stanford University, Stanford, California 94305
(October 28, 2018)

We derive the representation of the two-spinon wavefunction for the Haldane-Shastry model in terms of the spinon coordinates. This result allows us to rigorously analyze spinon interaction and its physical effects. We show that spinons attract one another. The attraction gets stronger as the size of the system is increased and, in the thermodynamic limit, determines the power law with which the susceptibility diverges.

PACS numbers: 75.10.Jm, 75.40.Gb, 05.30.Pr

Interacting spin-1/2 antiferromagnetic spin chains in 1 dimension exhibit low-lying excitations carrying spin-1/2, called spinons. The Brillouin zone for one spinon is halved and spinons are semions, i.e., particles with statistics half that of regular fermions. The large-scale physics of a generic 1-d antiferromagnet with short-range interaction is given by a spinon gas. The corresponding energy for an N-spinon solution is the sum of the energies of each isolated spinon, plus corrections that go to zero in the thermodynamic limit.

The additivity of the energy is usually claimed as an evidence for a spinon gas to be an ensemble of free semions. In this letter we challenge this idea by carefully analyzing the interaction between spinons in an exact solution of a particular 1-d antiferromagnet: the Haldane-Shastry model (HSM). The HSM is a system of spins on a circular lattice interacting via an antiferromagnetic interaction inversely proportional to the square of the chord between the corresponding sites. The Hamiltonian is given by

$$\mathcal{H}_{HS} = J \frac{2\pi}{N} \sum_{\alpha<\beta} S^z_\alpha S^z_\beta + \sum_{\alpha<\beta} |z_\alpha - z_\beta|^2,$$

where $z_\alpha = \exp(2\pi i \alpha/N)$ and α is the lattice site. The HSM is the simplest exactly-solvable interacting antiferromagnet in 1-d. It is the prototype of a 1-d spinon gas since it does not take marginal logarithmic corrections, in contrast, for instance, with the behavior of the Heisenberg model.

Many-spinon solutions of the HSM have been constructed in analogy to the corresponding spinless continuum version of the model. However, from the corresponding “plane wave” representation of the many-spinon wavefunction, the persistence of a spinon interaction in the thermodynamic limit is not at all transparent. Indeed, in the thermodynamic limit the energy is the sum of the energies of each isolated spinon. However, the interaction between spinons is “hidden” in the nontrivial relation between the canonical momenta, which label the states, and the kinetic momenta, which determine the energy.

In this paper we work out the real-space coordinate representation for two-spinon eigenstates of \mathcal{H}_{HS} and the corresponding Schrödinger equation. Spinon interaction and its nature follow straightforwardly from the behavior of the exact solution of this equation. In Fig.1 we plot the result. While at large separations the probability amplitude is independent of spinon separation, as it is appropriate for noninteracting particles, at short separations there is a huge enhancement. Such a resonant enhancement is a clear evidence for a short range, attractive interaction between spinons. As we show in Fig.1 this enhancement gets sharpened as the number of sites increases, at odds with the belief that spinon interaction and its effects disappear in the thermodynamic limit.

Spinon dynamics determine the low-energy physics of the HSM. 1-d interacting antiferromagnets do not order and, accordingly, the spin-1 spin-wave (SW) is an unstable excitation of the HSM. The SW is absolutely unstable at any energy and momentum against decay into a spinon pair. This causes non-analyticities in the SW propagator, the dynamical spin susceptibility (DSS) $\chi(q)$ develops a branch cut at the threshold energy for a SW and a broad continuum above this threshold. Broad spectra have been observed by means of neutron scat-
tering on quasi 1-d samples, which experimentally substantiates this scenario. However, the continuum is not flat, as would be the case if it were a spinon joint density of states, but rather has a divergent square root edge. We shall show that it is the spinon interaction which makes the matrix element for the decay of the spin wave into spinon pairs huge at threshold, and causes this divergence. We explicitly prove that, in the thermodynamic limit, the spinon attraction turns into the square root divergence in the DSS. Spinon interaction and its relation to the DSS are the main result of our work.

Let us begin with some basic results from the HSM. In the even-N case the ground state of \mathcal{H}_{HS} (eq. 2) is a disordered spin singlet, whose wavefunction is given by

$$
\Psi_{GS}(z_1, \ldots, z_M) = \prod_{i<j}(z_i - z_j)^2 \prod_j z_j , \quad (2)
$$

where $M = N/2$ and the $\{j\}$'s denote the positions of \uparrow-spins, all the others being \downarrow. The corresponding energy is given by $E_{GS} = -J(\pi^2/24)(N + 5/N)$. Elementary excitations above Ψ_{GS} are spinons-spin-1/2 defects in the otherwise featureless disordered sea. A \downarrow spinon localized at α can be thought of as a singlet wave where the spin at α is constrained to be \downarrow. The corresponding wavefunction is

$$
\Psi_{\alpha}(z_1, \ldots, z_M) = \prod_j(z_\alpha - z_j)^2 \prod_{i<j}(z_i - z_j)^2 \prod_j z_j , \quad (3)
$$

where now N is odd and $M = (N - 1)/2$. A one-spinon eigenstate of \mathcal{H}_{HS} is constructed by making the plane-wave superposition

$$
\Psi_m(z_1, \ldots, z_M) = \frac{1}{N} \sum_{\alpha=1}^{N} (z_\alpha)^m \Psi_{\alpha}(z_1, \ldots, z_M) . \quad (4)
$$

The corresponding energy is

$$
E_m = -J\frac{\pi^2}{24}(N - 1/N) + J\frac{2\pi}{N}^2 m(M - m) . \quad (5)
$$

Ψ_m has also a well-defined crystal momentum: $q_m = (\pi/2)N - (2\pi/N)(m + 1/4)$ (mod 2π). In terms of q_m the energy with respect to the ground state is $E(q_m) = (J/2)\left[(\pi/2)^2 - q_m^2\right]$ (mod π).

Spinons do not lose their identity when many of them are present. L spinons can be thought of as a disordered sea with the spin at L sites constrained to be \downarrow. For two spinons this means that the corresponding wavefunction for a pair of localized spinons at α and β is given by ($M = N/2 - 1$)

$$
\Psi_{\alpha\beta}(z_1, \ldots, z_M) = \prod_j(z_\alpha - z_j)(z_\beta - z_j) \prod_{i<j}(z_i - z_j)^2 \prod_j z_j . \quad (6)
$$

$\Psi_{\alpha\beta}$ can be analytically extended to any value of z_α, z_β on the unit circle. As z_α, z_β are lattice sites, they are interpreted as locations of \downarrow-spins.

States with two spinons carrying well-defined crystal momentum are given by the lattice plane waves which have the expression

$$
\Psi_{mn}(z_1, \ldots, z_M) = \sum_{\alpha,\beta} (z_\alpha^m z_\beta^n) N^2 \Psi_{\alpha\beta}(z_1, \ldots, z_M) . \quad (7)
$$

The total crystal momentum of Ψ_{mn} is $q = (\pi/2)(N - 2) + q_m + q_n$ (mod 2π) and q_m, q_n are the momenta of each spinon. The Ψ_{mn} are an overcomplete set. A set of linearly independent states is constructed by taking only the Ψ_{mn} with $M \geq m \geq n \geq 0$. Two-spinon energy eigenstates are linear superpositions of these:

$$
\Phi_{mn} = \sum_{\ell=0}^{\ell_M} a_{\ell m}^{\ell n} \Psi_{m+\ell, n-\ell} , \quad (8)
$$

where $\ell_M = n$ if $m + n < M$, $\ell_M = M - m$ otherwise. The coefficients $a_{\ell m}^{\ell n}$ are

$$
a_{\ell m}^{\ell n} = \frac{(m-n+2\ell)}{2\ell(\ell + m - n + \frac{1}{2})} \sum_{k=1}^{\ell} a_{k m}^{kn} \quad (a_0 = 1) \quad (9)
$$

and the corresponding eigenvalue is

$$
E_{mn} = -J\frac{\pi^2}{24}(N + \frac{5}{N}) + \frac{\pi J}{N} \left|\frac{q_m - q_n}{2}\right| . \quad (10)
$$

E_{mn} is the sum of the ground-state contribution, $E_{GS} = -J(\pi^2/24)(N + 5/N)$, and $E(q_m, q_n)$, which is the two-spinon energy above the ground state. $E(q_m, q_n)$ is the sum of the energies of two isolated spinons plus a negative interaction contribution that becomes negligibly small thermodynamic limit.

The norm of Φ_{mn} can be computed by means of a recursive procedure, based on the operator $e_1(z_1, \ldots, z_M) = z_1 + \ldots + z_M$. For any wavefunction of the form $\Phi \times \Psi_{GS}$, where Φ is a symmetric polynomial, we have

$$
\mathcal{H}\Phi_{GS} = E_{GS}\Phi_{GS} + J\frac{2\pi}{N}^2 \Psi_{GS} \left\{ \frac{1}{2} \sum_j z_j^2 \frac{\partial^2}{\partial z_j^2} \right. \right.
$$

$$
+ 4 \sum_{j \neq k} \frac{z_j^2}{z_j - z_k} \frac{\partial}{\partial z_j} - \frac{N - 3}{2} \sum_j z_j \frac{\partial}{\partial z_j} \left. \right\} \Phi , \quad (11)
$$

and thus
\[\mathcal{H}e_1\Phi\Psi_{GS} - e_1\mathcal{H}\Phi\Psi_{GS} = \frac{J}{2} \left(\frac{2\pi}{N} \right)^2 \times \Psi_{GS} \left[\sum z_j^2 \frac{\partial}{\partial z_j} + \frac{N - 3}{2} e_1 \right] \Phi . \]

(12)

From the matrix elements of the commutator between \(\mathcal{H}_{HS}\) and \(e_1\) under the inner product \(\langle f | g \rangle = \sum z_{1,\ldots,z_M} f^\dagger (z_{1,\ldots,z_M}) g(z_{1,\ldots,z_M})\) we find that, for the two spinon eigenstates \((M = N/2 - 1)\):

\[\frac{\langle \Phi_{m-1,n} | e_1 | \Phi_{mn} \rangle}{\langle \Phi_{mn} | \Phi_{mn} \rangle} = -\frac{1}{2(m-n+1/2)} \quad \text{for } m \neq n, \quad \frac{\langle \Phi_{m-1,n} | e_1 | \Phi_{mn} \rangle}{\langle \Phi_{mn} | \Phi_{mn} \rangle} = \frac{n}{2(n+1/2)} \quad \text{for } m = n . \]

(13)

(14)

\[\langle \Phi_{m-1,n} | e_1 | \Phi_{mn} \rangle = \frac{(m-n+1/2)(m-n+1)^2}{2(m-n+1/2)(m-n+1)} . \]

(16)

Combining these expressions, one then finds by induction that

\[\frac{\langle \Phi_{mn} | \Phi_{mn} \rangle}{\langle \Psi_{GS} | \Psi_{GS} \rangle} = \frac{\Gamma[m-n+1/2] \Gamma[m-n+1]}{2\pi N (M+1)^2 [m-n+1]} \times \frac{\Gamma[m+1] \Gamma[M-m+1/2] \Gamma[m+1/2] \Gamma[M-n+1]}{\Gamma[m+1] \Gamma[M-m+1/2] \Gamma[m-m+1/2] \Gamma[M-n+1]} \]

(17)

where \(\langle \Psi_{GS} | \Psi_{GS} \rangle = N^{M+1} (2M+2)! / 2^{M+1} \).

The definition of the wavefunction for two spinons in real space is now straightforward. \(\Psi_{\alpha\beta}\) is the state of two localized spinons at \(z_\alpha\) and \(z_\beta\). Hence, we define the two-spinon wavefunction, \(z_\alpha^m z_\beta^n p_{mn}(z_\alpha / z_\beta)\) from

\[\Psi_{\alpha\beta} = \sum_{m=0}^{M} \sum_{n=0}^{m} (-1)^m z_\alpha^m z_\beta^n p_{mn}(z_\alpha / z_\beta) \Phi_{mn} . \]

(18)

It is in principle possible to invert Eq. (8) and to obtain \(p_{mn}\) algebraically. However, we developed a much simpler approach, which makes use of the fact that \(\Psi_{\alpha\beta}\) is perfectly defined for any \(z_\alpha, z_\beta\) on the unit circle. Because \(\Phi_{mn}\) is an eigenstate of \(\mathcal{H}_{HS}\), one obtains

\[\langle \Phi_{mn} | \mathcal{H}_{HS} | \Psi_{\alpha\beta} \rangle = E_{mn} \langle \Phi_{mn} | \Psi_{\alpha\beta} \rangle . \]

(19)

On the other hand, by standard manipulations \([11,9]\), one can also show that

\[\langle \Phi_{mn} | \mathcal{H}_{HS} | \Psi_{\alpha\beta} \rangle = E_{GS} \langle \Phi_{mn} | \Psi_{\alpha\beta} \rangle + \frac{J}{2} \left(\frac{2\pi}{N} \right)^2 \left[(M - z_\alpha \frac{\partial}{\partial z_\alpha}) z_\alpha \frac{\partial}{\partial z_\alpha} + (M - z_\beta \frac{\partial}{\partial z_\beta}) z_\beta \frac{\partial}{\partial z_\beta} \right] \]

\[- \frac{1}{2} \frac{z_\alpha + z_\beta}{z_\alpha - z_\beta} \left(z_\alpha \frac{\partial}{\partial z_\alpha} - z_\beta \frac{\partial}{\partial z_\beta} \right) \langle \Phi_{mn} | \Psi_{\alpha\beta} \rangle . \]

(20)

Note the last term in this equation, which is the spinon interaction, is large and diverges as one power of the spinon separation. Upon equating Eq. (13) to Eq. (20) we finally derive the differential equation

\[z(1-z) \frac{d^2 p_{mn}}{dz^2} + \left[1 - m + n - \frac{3}{2} \right] \frac{dp_{mn}}{dz} + m - n - p_{mn} = 0 \quad . \]

(21)

The solution to Eq. (21) is the hypergeometric polynomial \([13]\)

\[p_{mn}(z) = \Gamma[m-n+1] \Gamma[k+1/2] \Gamma[m-n+1+1/2] \]

\times \sum_{k=0}^{m-n} \Gamma[k+1/2] \Gamma[m-n-k+1/2] z^k . \]

(22)

In Fig. [1] we plot \(p_{mn}(z_\alpha / z_\beta)\) vs. \(\alpha - \beta\). The sharp maximum at small spinon separation is a direct consequence of the strong attractive interaction between the spinons seen in Eq. (20).

We shall now prove rigorously that this enhancement is responsible for the square-root singularity in the DDS. The susceptibility is defined by

\[\chi_q(\omega) = \sum_X \frac{\langle X | S_q^- | \Psi_{GS} \rangle^2}{\langle X | X \rangle \langle \Psi_{GS} | \Psi_{GS} \rangle} \times \frac{2(E_X - E_{GS})}{(\omega + i\eta)^2 - (E_X - E_{GS})^2} , \]

(23)

where \(\langle X \rangle\) denotes an exact eigenstate of \(\mathcal{H}\), \(E_X\) denotes its eigenvalue, and

\[S_q^- = \sum_{\alpha} (z_{\alpha}^q)^k \left(S_{\alpha}^+ - i S_{\alpha}^- \right) \quad (q = 2\pi k/N) \quad . \]

(24)

However, since the act of flipping an \(\uparrow\) spin to \(\downarrow\) at site \(\alpha\) is the same as creating two \(\downarrow\) spinons on top of each other at site \(\alpha\) we have by virtue of Eq. (18).
Thus the set of two-spinon eigenstates exhaust the excited states coupled to Ψ_{GS} by S_q, and we have

$$S_q^{-} \Psi_{GS} = \sum_{\alpha} (z_{\alpha})^{k} \Psi_{\alpha}.$$

$$= N \sum_{m=0}^{M} \sum_{n=0}^{m} (-1)^{m+n+1} p_{mn}(1) \delta(m + n - k) \Phi_{mn}. \quad (25)$$

This proves that the resonant enhancement is entirely due to the functional form of $p_{mn}(z)$ shown in Fig. 1.

The thermodynamic limit is defined as $M \to \infty$, with m/M and n/M held constant. From general properties of the hypergeometric functions [13] we obtain $p_{mn}(1) = \Gamma[1/2] \Gamma[m - n + 1]/\Gamma[m - n + 1/2]$. Then approximating all the gamma functions using Stirling’s formula and converting the sums on n and m to integrals over the 1-spinon Brillouin zone, we obtain the Haldane-Zirnbauer formula for the DSS [7]

$$\chi_q(\omega) = \frac{J}{2} \left(\frac{\pi}{2} \right) d_{q_1} \left(\frac{\pi}{2} \right) d_{q_2} \frac{|q_1 - q_2| \delta(q_1 + q_2 - q)}{\sqrt{E(q_1)E(q_2)}}$$

$$\times \frac{2E(q_1,q_2)}{(\omega + i\eta)^2 - (E_{mn} - E_{GS})^2}, \quad (27)$$

where $E(q)$ and $E(q_1, q_2)$ are the one-spinon and the two-spinon energies, respectively. This may be exactly integrated over q_1 and q_2, and the result is

$$\chi_q(\omega) = \frac{J}{4}$$

$$\times \frac{\Theta[\omega_2(q) - \omega] \Theta[\omega - \omega_{-1}(q)] [\omega - \omega_{+1}(q)]}{\sqrt{\omega - \omega_{-1}(q)}\sqrt{\omega - \omega_{+1}(q)}}, \quad (28)$$

where $\omega_{-1}(q) = (J/2)q(\pi - q)$, $\omega_{+1}(q) = (J/2)(2\pi - q)(q - \pi)$ and $\omega_2(q) = (J/2)q(2\pi - q)$. We see that, in the thermodynamic limit, the resonant enhancement in p_{mn} turns into the square-root divergence in $\chi_q(\omega)$ at threshold. The origin of the branch cut is the threshold energy for the creation of a spinon pair with total momentum q. The physical meaning of this branch cut is that the spin wave is absolutely unstable versus decay into a spinon pair. Hence, no sharp poles, corresponding to possible low-energy spin-1 stable excitations, develop, but on the contrary, the spinon-pair threshold is the same as the spin-wave threshold. This last observation points toward the main conclusion of our work: spinon attraction is of fundamental importance for understanding relevant low-energy properties of spin-1/2 antiferromagnets. It generates a resonant enhancement of the probability for two spinons to be at the same site. The resonant enhancement greatly increases the amplitude for a spin-1 excitation to break into a spinon pair, on top of an uniform two-spinon joint density of states. This effect is evident in the thermodynamic limit of our formulas, where we show that the enhancement turns into the branch cut in the DSS.

We wish to thank A. Tagliacozzo and D. I. Santiago for numerous useful discussions. This work was supported primarily by the National Science Foundation under grant No. DMR-9813899. Additional support was provided by the U.S. Department of Energy under contract No. DE-AC03-76SF00515 and by the Bing Foundation.

[1] L. D. Fadeev and L. A. Takhtajan, Russian Math. Surveys 34, 11 (1979).
[2] F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988); ibid. 66, 1529 (1991).
[3] B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).
[4] F. D. M. Haldane, Phys. Rev. Lett. 66, 1529 (1991).
[5] C. Nayak and F. Wilczek, Phys. Rev. Lett. 73, 2740 (1994).
[6] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard and V. Pasquier, Phys. Rev. Lett., 69, 2021 (1992).
[7] F. D. M. Haldane, M. R. Zirnbauer, Phys. Rev. Lett. 71, 4055 (1993).
[8] J. C. Talstra and S. P. Strong, Phys. Rev. B 56.
[9] B. Sutherland, Phys. Rev. A 4, 2019 (1971); ibid. 5, 1372 (1972). F. Calogero, J. Math Phys. 10, 2197 (1969).
[10] D. A. Tennant et al. Phys. Rev. B 60, 13368 (1995).
[11] R. B. Laughlin et al. Field Theory for Low-Dimensional Systems, ed. G. Morandi et al (Springer, Heidelberg, 1999).
[12] K. G. Wilson, Jour. Mat. Phys. 3, 1040 (1962).
[13] M. Abramowitz, Handbook of Mathematical Functions, (United States. National Bureau of Standards. Applied mathematics series, 55, 1964).