Bridge Structural Deformation Monitoring Using Digital Camera

M E Tjahjadi1, L A Parsamardhani2 and K T Suhari2

1,2Departement of Geodesy, National Institute of Technology (ITN) Malang- Indonesia

1edwin@lecturer.itn.ac.id

Abstract. Burgeoning off-the-selves Digital Single Lens Reflector (DSLR) cameras have been gaining attentions as a fast and affordable tool for conducting deformation monitoring of man-made engineering structures. When a sub millimetre of accuracy is sought, deliberate concerns of their usage must be considered since lingering systematic errors in the imaging process plaque such non metric cameras. This paper discusses a close range photogrammetric method to conduct structure deformation monitoring of the bridge using the digital DSLR camera. The bridge is located in Malang Municipality, East Java province, Indonesia. There are more than 100 images of the bridge’s concrete pillars were photographed using convergent photogrammetric network at distance variations between 5m to 30m long on each epoch. Then, the coordinates of around 550 captured retro-reflective markers attached on the pillars facade are calculated using self-calibrating bundle adjustment method. The coordinate differences of the markers from the two consecutive epochs are detected with a magnitude between 0.03 mm to 6 mm with a sub-millimetre precision measurement level. However, by using global congruency testing and a localization of deformation testing, it is confirmed that the bridge pillar’s structures are remain stable between those epochs.

1. Introduction

Deformation monitoring of the bridge’s structures has been disseminated in wide range multi discipline literatures [1–3]. A state of the art of spatially driven information in localizing deformations of man-made bridge structures is categorized into two approaches namely: contact-based and non-contact-based methods [4]. The contact-based method is achieved by utilizing a single or multi sensor of measurement tools attached on the bridge [5,6]. For examples, Global Navigation Satellite Systems (GNSS) technology has been employed to monitor bridge deformation [7,8]. Albeit it offers some advantages such as weather proof continuous operability and a provision of instantaneous 3D absolute displacements [7], but its high observation noise limits an attainable precision displacement extraction [8]. Furthermore, multipath effects could downgrade precision since the GNSS receivers are stationed along the bridge [9].

On the other hand, the non-contact based method provides more advantages [10] such that it cannot destruct the bridge surface by equipment [11], it has high precision, high efficient and high flexibility characteristics [12], and it can be operated in real time [13]. The non-contact method usually utilizes optical centric devices such as laser beam [14], radar [15,16], acoustic [17], thermal model [18], and image-based measurements [19,20]. Furthermore, the image-based methods are mainly grouped into two approaches: computer vision approach [21] and photogrammetric restitution approach [22].
This paper discusses the close-range photogrammetric restitution approach for processing images to calculate the coordinates of observation points of retro reflective markers. Any 3D structure displacements can be analyzed through coordinates differences of the markers from different epochs of image acquisition. A workflow of the restitution starts from image registration process and followed by self-calibrating bundle adjustment process to produce 3D coordinates of the markers. Then, a set statistical tests are conducted to ascertain stability of some or all markers points by utilizing congruency testing and deformation localization testing. This procedures are elaborated as follows.

2. Methods

Figure 1 depicts a general methodology to deformation monitoring of the bridge using two epoch analysis. The method is generally separate into two stages. The first stage is an image acquisition processes which aims to determine the object points coordinates. The next one is the deformation analysis itself which aims to test a stability of the point network. Those methods are elaborated as follows.

![Methodology to conduct deformation monitoring using close-range photogrammetric approach](image-url)
2.1. Self-Calibrating Bundle Adjustment

The photogrammetric restitution begins with by selecting two arbitrary overlapped images to determine its relative orientation parameters [23] and datum of a reference frame coordinate. Then, estimated orientation parameters of each processed images using a sequence of resection [24,25] and intersection [26] methods iteratively. Once the approximate values of each image’s exterior orientation parameters and each marker’s 3D coordinates of the chosen datum are obtained, these parameters are entered into the least squares adjustment process which known as self-calibrating bundle adjustment method rooted from photogrammetric collinearity condition [27]. The method generates a refined values of aforementioned parameters as well as the camera lens distortions parameters. Equation (1) compactly illustrates the method.

\[
\begin{bmatrix}
\mathbf{N}_{ij} \\
\mathbf{\tilde{N}}_{ij} \\
\mathbf{\tilde{N}}_{ij} \\
\end{bmatrix}
\begin{bmatrix}
\delta^i_j \\
\delta^i_j \\
\delta^i_j \\
\end{bmatrix}
+
\begin{bmatrix}
\mathbf{\hat{C}}_p \\
\mathbf{\hat{C}}_p \\
\end{bmatrix}
= 0; \text{ or } \mathbf{N} \mathbf{\delta} + \mathbf{C} = 0
\]

(1)

Equation (1) is a hyper matrix of the method’s normal equation. Subscripts of \(i, j \) and \(p \) represent information pertaining to the \(i^{th} \) image of \(m \) images and \(j^{th} \) point of \(n \) object points (i.e. markers), while \(p \) contains the number of lens distortion parameters. The matrix \(\mathbf{P} \) is formed by inverting the covariance matrix of the measured image points. The \(\mathbf{N}, \mathbf{\tilde{N}}, \mathbf{\tilde{N}} \) submatrices are symmetric, block diagonal, with each block on the diagonal referring to the particular exterior orientation parameters in \(\mathbf{N} \), the object point coordinates in \(\mathbf{\tilde{N}} \), and lens distortion parameters in \(\mathbf{\tilde{N}} \) respectively. These matrices are formed by a summation process as illustrated in equation (2a).

Since the image measurements are assumed to be independent of each other, the contributions to the normal equations from each set of the collinearity equation can be summed. The total \(\mathbf{N} \) block is matrix block diagonal, with 6 by 6 blocks on the diagonal, each referring to a separate image. Each \(\mathbf{N}_i \) is the sum of the \(\mathbf{\tilde{N}}_{ij} \) submatrices, formed by the \(\mathbf{A}_{ij} \) and \(\mathbf{P}_j \) matrices from each set of the collinearity equations that refer to the image \(i \). Also, the \(\mathbf{\tilde{N}} \) has 3 by 3 blocks on the diagonal, each referring to the coordinates of the individual point marker. Each \(\mathbf{\tilde{N}}_{ij} \) is formed from the \(\mathbf{A}_{3ij} \) and \(\mathbf{P}_j \) of the collinearity equations referring to the point marker \(j \). The \(\mathbf{\tilde{N}}, \mathbf{\tilde{N}}, \mathbf{\tilde{N}} \) submatrices in equation (2b) are generated based upon a point by point basis, not a summations. Their compositions are determined by which point marker occurs on which images.

In the application of deformation analysis, each epoch of image acquisition is adjusted separately as a free network bundle adjustment for obtaining markers’ 3D coordinates as well as their covariant matrices. Since our prime focus is to identify and discern displacements of suspected point markers with highly confidence, a removal systematic image errors is deemed necessary. A viable solution until now is to utilizing the self-calibrating bundle adjustment method. Additional parameters \(p \) are introduced into the bundle adjustment method to model the behavior of the systematic error in the form of \(\mathbf{N}_p \) submatrix. The estimation and solution of the additional parameters are determined from equation (1).

In the last iteration, the covariance matrix of the solution \(\mathbf{C}_x = \sigma^2_n \mathbf{N}^{-1} \) and the adjusted markers coordinates are then used to analyze the occurrence of possible point displacements.

2.2. Deformation analysis

Deformation analysis aims to detect the smallest possible displacements which are of the same order of magnitude as the precision of the measurement from which they are derived. The analysis process involve identification and quantification of the displacements, as well as ensuring that the measured
displacements were indeed not the result of random or systematic observations errors. Statistical testing of estimated displacements between two epochs is necessary to analyze whether significant movements have occurred. An acceptance of the test indicates that no significant displacement was occurred, otherwise the point movements were implied. The deformation analysis in this research is consisted of two interrelated phases: congruency test of the photogrammetric network between two epochs and localization of deformations test in Euclidian space and time.

2.2.1. Congruency Testing

The congruency test detects a stability and consistency of networks of a set of point markers between any two epochs. The set of points can either be all common points (i.e. a global congruency test) or few selected common points (i.e. a partial congruency test) suitable for datum definitions [28]. The testing procedure was initiated by performing the global congruency test. When the significant movements were indicated, the localization test is conducted then followed by some more partial congruency tests using reduced common points. These processes were repeated until the congruency test is pass and the remaining points were set as stable datum points. The global congruency test examines null hypothesis H_0 (i.e. no significant displacements) of all points of markers over two epochs which can be formulated as:

$$H_0: E[d] = 0 \, \text{against} \, H_1: E[d] \neq 0, \, \text{where} \, d = x_2 - x_1$$

Where x_1, x_2 are the vector of 3D coordinates of common point markers in both epochs in the same datum, d is a displacement vector with its cofactor matrix:

$$Q_d = Q_{x1} + Q_{x2}$$

Where Q_{x1} and Q_{x2} are the cofactor matrix of computed coordinates of x_1 and x_2 respectively. The test value is expressed as [29]:

$$\omega = \Omega / h\hat{\sigma}_0^2 = d^T Q_d^+ d / h\hat{\sigma}_0^2 \propto F_{h,r}$$

Where h is a rank of the cofactor matrix of Q_d of coordinate differences, i.e. $(3n - 7)$ for a 3D spatial network of n number of point markers. The common variance factor of $s\hat{\sigma}_0^2$ is estimated from

$$\hat{\sigma}_0^2 = (r_1\hat{\sigma}_{d1}^2 + r_2\hat{\sigma}_{d2}^2)/r \, ; \, \text{and} \, \, r = r_1 + r_2$$

Where r_1 and r_2 being the degrees of freedom, together with their corresponding variance factor in the estimation of x_1 and x_2. The test of ω is against the Fisher’s distribution $F_{h,r,1-\alpha}$, and usual significant level chosen for the test is $\alpha = 0.05$. If the ω is less than this critical value, the null hypothesis H_0 is accepted. It means that the points of network at the second epoch must be congruent (i.e. same shapes) with that at the first one. On the other hand, if the null hypothesis of global congruency is rejected, it indicates a significant change of movements. Also, the Q_d^+ is the Moore-Penrose pseudo inverse of Q_d together with its inner constraint matrix such that [28]:

$$Q_d^+ = (Q_d + GG^T)^{-1} - G(G^TGG^T)^{-1}G^T \, , \, \text{and}$$

$$G_i = \begin{bmatrix} 1 & 0 & 0 & 0 & Z_i & -Y_i & X_i \\ 0 & 1 & 0 & -Z_i & 0 & X_i & Y_i \\ 0 & 0 & 1 & Y_i & -X_i & 0 & Z_i \end{bmatrix}$$

However, in the photogrammetric network whose coordinate points of x_1, x_2 are calculated using a free network adjustments, the congruency test can be simplified into [30]:

$$\omega = \Omega / h\hat{\sigma}_0^2 = 1 / h\hat{\sigma}_0^2 \sum_{i=1}^n d_i^T Q_{di}^{-1} d_i = 1 / h \sum_{i=1}^n T_i \, ; \, \text{and} \, \Omega_i = d_i^T Q_{di}^{-1} d_i$$
The next step is to identify point or points in the network of point markers whose displacements cause a change in shape.

2.2.2. Localization of Deformation Test
When the congruency test fails, it indicates significant displacement. A non-congruency of the network between the two epochs is encoded in the quadratic form of Ω which possible to measure the contribution of each point displacement d_i of each Ω_i. The point which has highest value of Ω_i is likely to be a significant displacement, and it needs to be removed from the network by using partitioning method [30]:

$$(d_{sr} \quad d_{sl})^T = S(d_r \quad d_i)^T$$

Where d_i is the vector of eliminated point and d_r are the retain datum points. S is implied similarity transformation when equation (9) is used to perform congruency test. Once the localization test was conducted, a verification of each stable point is confirmed using:

$$T_i = \Omega_i/\bar{\Omega}_0^2 \sim F_{3,r,1-\infty}$$

If T_i is less than $F_{3,r,1-\infty}$, point i is considered as stable. The next section will discuss a process and result of the aforementioned general methodology.

3. Results and Discussion
A two series of photogrammetric campaigns were conducted to monitor a bridge located in Pandansari village, Malang Municipality, East Java province, Indonesia. The retro reflective markers attached on the bridge’s concrete pillars facades were photographed by using a DSLR camera as seen in figure 2. Approximately, more than 500 markers were observed as object points of the deformation monitoring network (figure 3). The self-calibrating bundle adjustment outlined in equation (1) to calculate exterior orientation parameters of each image (δ_1), coordinates of the point markers (δ_2), and the lens distortion parameters (δ_3). The values of δ_1 are out of the scope of discussion since the only interest in deformation analysis are of the coordinates of point markers. The lens distortion parameters δ_3 of p consists of 10 parameters as illustrated in table 1. The camera’s lens in both epoch is fixed to an equal value when using it during the campaign in all epochs.

The three parameters of p are interior orientation parameters which consist of calibrated focal length (c), and the camera’s coordinates of principal point (x_p, y_p). The next three parameters in table 1 are the lens radial distortion parameters (K_1, K_2, K_3), and followed by the lens decentering distortion parameters (P_1, P_2) and the sensor camera’s affinity (B_1, B_2). It can be noticed that a relatively insignificant perturbations of theses parameters between epochs still could degrade precisions of the obtained 3D coordinate of point markers.

Figure 2. A survey campaign for monitoring bridge deformation of photographing the bridge’s pillars.
Figure 3. Some observation points of markers on the pillar for analysis and assessment.

Table 1. Interior parameters and Lens distortion parameters of the camera on each epoch.

Parameters	Epoch 1	Standard Deviation	Epoch 2	Standard Deviation
	Values		Values	
c	35.0754 mm	3.735212e-03 mm	35.0756 mm	3.731455e-03 mm
x_p	0.0675 mm	2.621332e-03 mm	0.0668 mm	2.581106e-03 mm
y_p	-0.1105 mm	2.866541e-03 mm	-0.1108 mm	2.789062e-03 mm
K_1	2.5083143e-05	6.8887562e-07	2.4190865e-05	7.020997e-07
K_2	1.7262054e-08	1.1154521e-08	-1.2002541e-08	1.131436e-08
K_3	-4.1913242e-11	5.2263448e-11	-5.0282414e-11	5.259119e-11
P_1	9.2120343e-07	6.6832275e-07	1.2405429e-06	6.605084e-07
P_2	2.5821131e-05	7.3198715e-07	2.6225448e-05	7.114011e-07
B_1	2.5707542e-33	2.0307699e-21	2.5701407e-33	2.007332e-21
B_2	-3.1381344e-33	2.0304775e-21	-3.1358922e-33	2.007115e-21

The values of the δ_2 parameters comprise 555 point markers computed using free network datum on each epoch. Coordinates of these points and their cofactor matrices of Q_{x1} and Q_{x2} in equation (4) on each epoch are generated using the self-calibrating bundle adjustment outline in equation (1). Rigorous statistical testing were conducted on each epoch to ensure that all measurements are free of systematic errors and meet reliability criteria for deformation measurements. Some of the point coordinates as well as its variance components presented in standard deviations are illustrated in table 2 and table 3. The sign of (\cdots) that appear in all tables is indicated that not all data are presented. For a clarity of the discussion only few data are selected as an illustration purpose.
Table 2. 3D coordinates of common retro reflective markers on epoch 1. The sign of (:) means that not all data are presented.

Point	Coordinates(m)	Standard deviation (mm)					
		X	Y	Z	S_x	S_y	S_z
1	-13.6729	99.51288	-7.87061	-1.07	0.034	0.070	0.030
2	-10.70249	99.40796	-7.81698	-1.07	0.027	0.058	0.027
3	-7.77751	99.30436	-7.75465	-1.07	0.027	0.059	0.026
⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
553	21.43774	299.09105	31.85798	-1.07	0.069	0.054	0.056
554	21.40454	304.44544	31.93487	-1.07	0.071	0.061	0.063
555	21.31951	309.46729	31.96441	-1.07	0.092	0.080	0.090

Table 3. 3D coordinates of common retro reflective markers on epoch 2.

Point	Coordinates(m)	Standard deviation (mm)					
		X	Y	Z	S_x	S_y	S_z
1	-13.67622	99.51213	-7.87256	-1.07	0.034	0.052	0.029
2	-10.70178	99.40649	-7.81718	-1.07	0.032	0.049	0.028
3	-7.77698	99.30317	-7.75474	-1.07	0.033	0.049	0.029
⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
553	21.43306	299.08528	31.85929	-1.07	0.077	0.068	0.058
554	21.39659	304.44121	31.94159	-1.07	0.080	0.073	0.062
555	21.30397	309.45732	31.97049	-1.07	0.096	0.081	0.074

Table 2 and table 3 clearly showed that the DSLR camera has a capability to detect a potentially suspected structure deformation within an accuracy of about 0.1mm or less. It was noteworthy to mention that the point markers coordinates of x1 and x2 and the cofactor matrices of Qx1 and Qx2 respectively were using different kind of network datum. To calculate displacement vector d in equation (3), it is necessary to all values are in the same datum. S transformation could be used to solve the datum dependency problem. However, more straightforward solution for strong photogrammetric triangulation networks was employing the similarity transformation. The values of dx, dy, and dz in table 4 were the differences of coordinate component, which calculated in the same datum after the transformation. The values of δdx, δdy, and δdz were the standard deviations extracted from Qd [equation (4)], and the value of δd was the root of sum squared of δdx, δdy, and δdz as illustrated in table 4.

Table 4. Displacement measures between two epochs (mm). The sign of (:) means that not all data are presented.

Point	dx	dy	dz	δdx	δdy	δdz	d	δd
1	0.107	-0.075	-0.196	0.048	0.087	0.042	0.235	0.059
2	0.072	-0.147	-0.020	0.042	0.076	0.039	0.165	0.052
3	0.053	-0.118	-0.009	0.042	0.076	0.038	0.130	0.052
⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
553	-0.468	-0.588	0.131	0.104	0.164	0.131	0.754	0.133
554	-0.795	-0.423	0.672	0.107	0.174	0.134	1.123	0.138
555	-1.554	-0.997	0.608	0.133	0.180	0.153	1.944	0.155
The differences of points of coordinates between two epochs of \(d \) as illustrated in figure 4 are not necessarily indicated as displacements. In order to check the integrity of the network between epochs, the congruency test was conducted using the Fisher’s distribution with the significant level of \(\alpha = 0.05 \), and it gives the value of 2.61 at the maximum boundary. Table 5 shows the result of the test which implies that the value \(T_i \) in equation (9) of each point displacement are none surpass the threshold. It indicated that there were no significant movements occurred between measurements. Hence, the localization of deformation test was not necessarily conducted. Although the averaged movement is about 0.534 mm with a magnitude between 0.026 mm – 5.867 mm, the congruency of the network shape is still valid in all epochs.

![Figure 4. Coordinates differences between two epochs of some markers.](image)

Point	\(H_0 \) according to Fisher’s distribution	\(T \)	Null Hypothesis
1	0.004	Accepted	
2	0.001	Accepted	
3	0.001	Accepted	
\vdots	\vdots	\vdots	
553	0.006	Accepted	
554	0.019	Accepted	
555	0.037	Accepted	

4. Conclusions

This paper showed that the DSLR camera could be a convenient tool for conducting deformation monitoring of the bridge which can provide sub millimetre precision measurements of the retro-reflective markers. Employing self-calibrating bundle adjustment method can readily compensate any systematic errors of the camera and a datum dependency problem, as well as simplify the global congruency test procedure.

References

[1] Bien J, Kaminski T and Kuzawa M 2019 Taxonomy of non-destructive field tests of bridge materials and structures Arch. Civ. Mech. Eng. 19 1353–67
[2] Gharehbaghi V R, Noroozinejad Farsangi E, Noori M, Yang T Y, Li S, Nguyen A, Málag-Chuquitaype C, Gardoni P and Mirjalili S 2021 A Critical Review on Structural Health Monitoring: Definitions, Methods, and Perspectives Arch. Comput. Methods Eng.
[3] Al-Nasar M K R and Al-Zwainy F M S 2022 A systematic review of structural materials health monitoring system for girder-type bridges Mater. Today Proc. 49 A19–28
[4] Yaryshev S N, Li L, Marinov M B and Djamlykov T S 2020 Development of a Digital Camera-
Based Method for Bridge Deformation Measurement 2020 XXIX International Scientific Conference Electronics (ET) pp 1–4

[5] Li X, Xiao Y, Guo H and Zhang J 2022 A BIM Based Approach for Structural Health Monitoring of Bridges KSCE J. Civ. Eng. 26 155–65

[6] Scianna A, Giuseppe Fulvio G and Marcello La G 2022 Structure Monitoring with BIM and IoT: The Case Study of a Bridge Beam Model ISPRS Int. J. Geo-Information 11 173

[7] Xi R, Jiang W, Meng X, Chen H and Chen Q 2018 Bridge monitoring using BDS-RTK and GPS-RTK techniques Measurement 120 128–39

[8] Xi R, Meng X, Jiang W, An X and Chen Q 2018 GPS/GLONASS carrier phase elevation-dependent stochastic modelling estimation and its application in bridge monitoring Adv. Sp. Res. 62 2566–85

[9] Wang D, Meng X, Gao C, Pan S and Chen Q 2017 Multipath extraction and mitigation for bridge deformation monitoring using a single-difference model Adv. Sp. Res. 60 2882–95

[10] Abu Dabous S and Feroz S 2020 Condition monitoring of bridges with non-contact testing technologies Autom. Constr. 116 103224

[11] Mohammed Abbas M, Yussof M M, Ufuoma Joseph U, Fadzli Mohamed N, Mohd Khairul K, Parke G A R, Assi L N and Seyed Ali G 2021 Application of Digital Image Correlation in Structural Health Monitoring of Bridge Infrastructures: A Review Infrastructures 6 176

[12] Zhang G, Yang S, Hu P and Deng H 2022 Advances and Prospects of Vision-Based 3D Shape Measurement Methods 10 124

[13] Zhu J, Zhang C, Lu Z and Li X 2021 A multi-resolution deep feature framework for dynamic displacement measurement of bridges using vision-based tracking system Measurement 183 109847

[14] Gollee C, Seidel A, Schenke C-C, Hellmich A and Ihlenfeldt S 2022 Development and extrinsic calibration of a 3D optical multi sensor platform using laser line scanner and a 3-axis linear motion unit J. Manuf. Sci. Eng. 1–16

[15] Qin X, Li Q, Ding X, Xie L, Wang C, Liao M, Zhang L, Zhang B and Xiong S 2021 A structure knowledge-synthetic aperture radar interferometry integration method for high-precision deformation monitoring and risk identification of sea-crossing bridges Int. J. Appl. Earth Obs. Geoinf. 103 102476

[16] Zhang G, Wu Y, Zhao W and Zhang J 2020 Radar-based multipoint displacement measurements of a 1200-m-long suspension bridge ISPRS J. Photogramm. Remote Sens. 167 71–84

[17] Alotaibi M, Barmak Honarvar Shakibaei A and Khan M 2021 Non-Invasive Inspections: A Review on Methods and Tools Sensors 21 8474

[18] Wang Q and Ri S 2022 Sampling Moiré method for full-field deformation measurement: A brief review Theor. Appl. Mech. Lett. 12 100327

[19] Wu Z, Chen G, Ding Q, Yuan B and Yang X 2021 Three-Dimensional Reconstruction-Based Vibration Measurement of Bridge Model Using UAVs Appl. Sci. 11 5111

[20] Mandirola M, Casarotti C, Peloso S, Lanese I, Brunesi E and Senaldi I 2022 Use of UAS for damage inspection and assessment of bridge infrastructures Int. J. Disaster Risk Reduct. 72 102824

[21] Kromanis R and Kripakaran P 2021 A multiple camera position approach for accurate displacement measurement using computer vision J. Civ. Struct. Heal. Monit. 11 661–78

[22] Chen B, Genovese K and Pan B 2022 Calibrating large-FOV stereo digital image correlation system using phase targets and epipolar geometry Opt. Lasers Eng. 150 106854

[23] Tjahjadi M E and Agustina F D 2019 Fast and stable direct relative orientation of UAV-based stereo pair Int. J. Adv. Intell. Informatics 5 24–39

[24] Tjahjadi M E and Agustina F D D 2017 Single image orientation of UAV’s imagery using orthogonal projection model 2017 International Symposium on Geoinformatics, ISyG 2017 (Malang, Indonesia: IEEE Computer Society Press) pp 19–24

[25] Tjahjadi M E 2016 A fast and stable orientation solution of three cameras-based UAV imageries
[26] Ma Z, Wu X, Yan L and Xu Z 2017 Geometric Positioning for Satellite Imagery without Ground Control Points by Exploiting Repeated Observation Sensors 17 240

[27] Börlin N and Grussenmeyer P 2014 Camera Calibration using the Damped Bundle Adjustment Toolbox ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II 89–96

[28] Setan H 1997 A Flexible Analysis Procedure for Geometrical Detection of Spatial Deformation Photogramm. Rec. 15 841–61

[29] Fraser C S and Gruendig L 1985 The Analysis of Photogrammetric Deformation Measurements on Turtle Mountain Photogramm. Eng. Remote Sens. 51 207–16

[30] Clive S Fraser 1988 Periodic Inspection of Industrial Tooling by Photogrammetry Photogramm. Eng. Remote Sensing 54 211–6