Current understanding of substrate specificity and regioselectivity of LPMOs

Xiaoli Zhou and Honghui Zhu

Abstract
Renewable biomass such as cellulose and chitin are the most abundant sustainable sources of energy and materials. However, due to the low degradation efficiency of these recalcitrant substrates by conventional hydrolases, these biomass resources cannot be utilized efficiently. In 2010, the discovery of lytic polysaccharide monooxygenases (LPMOs) led to a major breakthrough. Currently, LPMOs are distributed in 7 families in CAZy database, including AA9–11 and AA13–16, with different species origins, substrate specificity and oxidative regioselectivity. Effective application of LPMOs in the biotransformation of biomass resources needs the elucidation of the molecular basis of their function. Since the discovery of LPMOs, great advances have been made in the study of their substrate specificity and regioselectivity, as well as their structural basis, which will be reviewed below.

Keywords: Lytic polysaccharide monooxygenase, LPMO, Substrate specificity, Regioselectivity

Introduction
Biocatalytic degradation of renewable biomass resources is a potential way to address energy and environmental crises. Despite the abundance, the crystalline structure of cellulose and chitin hinders the accessibility of hydrolases, and thus the effective saccharification by traditional glycoside hydrolase systems. In 1950, Reese et al. postulated that the process of cellulolytic organisms degrading cellulose involves two steps (Reese et al. 1950). Firstly, the 'C1' degrades native cellulose into shorter linear polyanhydroglucose chains, which are then hydrolyzed by Cx into soluble, small molecules. In 1974, Eriksson et al. reported the presence of an oxidase in the extracellular enzyme system of Sporotrichum pulverulentum, which boosted the degradation of cellulose by the mixture of endo- and exo-glucanases (Eriksson et al. 1974). However, this oxidase has not been clearly characterized for a long time.

The first structure of Cel61B (a member of GH61 family) was resolved in 2008, revealing its difference from other glycoside hydrolases, suggesting that it may have different enzyme activities (Karkehabadi et al. 2008). Until 2010, Vaaje-Kolstad et al. reported that the bacterial CBP21 protein (a member of CBM33 family) is actually an enzyme that catalyzes oxidative depolymerization of chitin (Vaaje-Kolstad 2010). Shortly thereafter, the cellulose oxidative activities of GH61 family members were characterized (Quinlan et al. 2011). Then these Cu-dependent enzymes were named as lytic polysaccharide monooxygenases (LPMOs), and the GH61 and CBM33 families were reclassified as AA9 (Auxiliary Activity family 9) and AA10, respectively. Currently the LPMOs are distributed in 7 Auxiliary Activity families in CAZy database (www.cazy.org), with various origins and substrate specificities: AA9s, AA11s, AA13s, AA14s and AA16s are mainly from eukaryota with cellulose-, chitin-, starch-, and xylan-active, respectively; AA10s are from bacteria, eukaryota, viruses or archaea, with cellulose- or chitin activity; AA15s are from eukaryota (including insect) or viruses, with cellulose- or chitin-activity. The currently reported cleavage of chitin, starch and xylan substrates is C1-oxidized, while the cleavage of cellulosic substrates
is C1- or C4-oxidized, or both. The information on currently characterized LPMOs are summarized in Table 1.

Despite the low sequence identities, the catalytic domains of these LPMOs share some common structural features (Fig. 1), as recently reviewed (Beevon et al. 2015; Hemsworth et al. 2013a; Span and Marletta 2015; Vaaje-Kolstad et al. 2017). The core of the catalytic domain is a β sandwich of seven to nine β-strands. Loops connecting these β-strands constitute the ‘flat’ substrate binding surface, which is believed to interact with flat surfaces of crystalline substrates. The region located between β1 and β2 of LPMO9 (between β1 and β3 of LPMO10), denoted L2, includes a variable number of loops and short helices. Some LPMOs have an insertion between β3 and β4 denoted L3, which interacts with L2. In AA9 and AA13 LPMOs, there are LS (loop short) on the opposite side of L2. Besides, AA9 members have a long C-terminal loop, termed LC. As discussed below, the variable length and amino acid constitution of these loops might contribute to the substrate specificity and regioselectivity. The N-terminal histidine and a second conserved histidine coordinate a copper ion, forming the ‘histidine brace’. The N-terminal histidine of some fungal LPMOs is methylated at the Ne2, and the significance of this methylation is unclear.

Studies have shown that adding LPMOs to cellulase cocktails can improve the degradation efficiency of cellulose biomass and reduce the required enzyme amount (de Gouvea et al. 2019; Dimarogona et al. 2013; Harris et al. 2010; Hemsworth et al. 2015; Zhang et al. 2019). It is speculated that this synergy is due to the oxidative cleavage of polysaccharide crystalline regions by LPMOs, which provides more accessible sites for glycoside hydrolases (Fig. 2). Further elucidating the biological functions and catalytic mechanisms of these enzymes will bring more exciting possibilities for their application in the utilization of renewable biomass resources. The catalytic mechanism of LPMOs has been in scientific debate. One view is that, the catalytic center Cu (II) is activated by reduction into Cu (I) by two external electrons (Kjaergaard et al. 2014; Kracher et al. 2016). The Cu (I) activates dioxygen, leading to hydrogen abstraction from one of the carbons in the scissile glycoside bond. Then the hydroxylation of the resulting substrate radical leads to bond cleavage via an elimination reaction. In other studies, however, it has been proposed that, instead of dioxygen, H2O2 is the preferred co-substrate for LPMOs, in a per-oxigenase reaction where a single priming reduction to Cu(I) is needed (Bissaro et al. 2017). The catalytic mechanism of LPMOs has been extensively reviewed (Forsberg 2019; Tandrup et al. 2018; Walton and Davies 2016) and not discussed in depth here. The focus of this review is to give an insight into the current understanding of the substrate specificity, oxidation regioselectivity and their structural basis of LPMOs.

Substrate specificity

AA9 (former GH61) and AA10 (former CBM33) were originally found to act on crystalline cellulose and chitin substrates, respectively. As more related proteins are characterized, the broad substrate spectrum of LPMO superfamily is revealed. Besides insoluble substrates (such as cellulose, chitin, starch and xylan), the soluble oligosaccharides like xyloglucan, glucomannan and β-(1→3), (1→4)-d-glucan have been found to be oxidized by some LPMOs (Isaksen et al. 2014; Kojima et al. 2016). Biochemical characterization and structural studies, especially the complex structures of LPMOs and soluble oligosaccharide substrates, provide us much for in-depth understanding of LPMOs (Frandsen et al. 2016; Simmons et al. 2017). Detailed sequence and structure comparisons have revealed that the substrate binding surfaces of LPMOs with different substrate specificities have diverse characteristics in terms of amino acid composition and topological features. Since the L2, L3, LS and LC loops constitute the majority of the substrate binding surface, and their amino acids composition are highly variable, these loops are believed to affect substrate recognition and specificity.

Amino acids composition on the substrate binding surface

There are usually several aromatic amino acids on the substrate binding surface loops of LPMO9s (Fig. 3a, b). From structural studies and MD simulations, it was found that the spatial distribution of these aromatic amino acids facilitates stacking interactions with the sugar units of cellulose substrates, although the enzymes may bind to the surface of the cellulose fibers in different directions (Liu et al. 2018; Wu et al. 2013). In Wu’s study, 100 ns MD simulations of PchGH61D on cellulose showed that the three tyrosines on substrate binding surface tightly bonded with polysaccharide chains in the substrate (the interaction energies were −10.86 kcal/mol for Y28, −10.17 kcal/mol for Y75 and −9.5 kcal/mol for Y198, respectively) and are the main contributors to substrate binding. While LPMO10s generally only have one aromatic amino acid involved in substrate binding, LPMO11s and LPMO13s do not even have aromatic amino acids on substrate binding surface (Fig. 3a), and their polar amino acids are more abundant, possibly binding to substrates by polar interactions (Forsberg et al. 2014a; Hemsworth et al. 2014). Structural studies and site-directed mutagenesis revealed that binding of CBP21 to chitin is mediated primarily by conserved, solvent-exposed, hydrophilic residues, which arranged in a patch on the substrate binding surface (Aachmann et al. 2012;
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
AA9	Aspergillus nidulans	AN1602	CBM1	–	PASC	C4	(Jagadeeswaran et al. 2018; Jagadeeswaran et al. 2016)
	Aspergillus nidulans	AN3046	–	–	PASC	C1	(Jagadeeswaran et al. 2016)
	Gloeophyllum trabeum NBRC 6430	LPMO9A-2, GTLPMO9A-2	C-terminal domain with unknown function	–	PASC	C1 / C4	(Kojima et al. 2016)
	Gloeophyllum trabeum KUC 8013	Cel61G, GTGH61, GTLPMO9B, LPMO98	–	5NNS	PASC	C1	(Hegnar et al. 2019)
	Heterobasidion irregularis TC 32-1	HiLPMO98	–	5NNS	PASC	C1	(Liu et al. 2018)
	Lentinus similis	LsAA9A	–	5ACF	PASC	C1 / C4(PASC)	(Frandsen et al. 2016)
	Neurospora crassa OR74A	PMO-2, NCPO-2, NCPO9D, GH61-4, NCU01050, LPMO99D	–	4EIR	PASC	C4	(Li et al. 2012; Petrovic et al. 2019)
	Neurospora crassa OR74A	LPMO-03328, NCPO9F, GH61-6, NCU03328, LPMO99F	–	4Q8	Microcrystalline cellulose	C1	(Kittl et al. 2012) (Tan et al. 2015)
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
--------------	-------------------	---------------	-----------------	----------	------------	-------------------	---
Neurospora crassa OR74A	PMO-01867 LPMO-01867	CBM1	–	Microcrystalline cellulose	C1	Kittl et al. 2012	
	LPMO-01867 NcLPMO9J		NcLPMO9JPASCA	Steam-exploded spruce	C1	Li et al. 2012; Vu et al. 2014a	
	GH61-10		NCU02916LPMO9C	C1/C4	Li et al. 2012; Vu et al. 2014a		
	B1 3N4.070 LPMO9J			C1/C4	Vu et al. 2014a		
Neurospora crassa OR74A	PMO-3 NcLPMO9M GH61-13 NcPMMO-3 NCU07898 LPMO9M	CBM1	4EIS	PASC	C1/C4	(Agger et al. 2014; Borisova et al. 2015; Courte et al. 2016; Isakson et al. 2014; Karnaouri et al. 2017; Kittl et al. 2012; Kojima et al. 2016; Kracher et al. 2018; Nekuniite et al. 2016b; Varanai et al. 2018; Westereng et al. 2016)	
Neurospora crassa OR74A	PMO-02916 LPMO-02916 NcLPMO9C GH61-3 NCU02916 LPMO9C	CBM1	4D7U 4D7V	PASC Avicel Steam-exploded spruce Cello-oligosaccharides Xyloglucan β-(1→3,1→4)-D-Glucan Glucomannan	C4	(Agger et al. 2014; Borisova et al. 2015; Courte et al. 2016; Isakson et al. 2014; Karnaouri et al. 2017; Kittl et al. 2012; Kojima et al. 2016; Kracher et al. 2018; Nekuniite et al. 2016b; Varanai et al. 2018; Westereng et al. 2016)	
Neurospora crassa OR74A	GH61-2 NCU07760	CBM1	–	PASC	C1/C4	(Vuong et al. 2017; Westereng et al. 2013; Westereng et al. 2011; Wu et al. 2013)	
Neurospora crassa OR74A	GH61-1 NcLPMO9A NCU02240	CBM1	5FOH 5FOH	PASC	C4	(Petrovic et al. 2019; Vu et al. 2014a)	
Neurospora crassa OR74A	NCU08336	CBM1	–	PASC	C1	(Vuong et al. 2017; Westereng et al. 2013; Westereng et al. 2011; Wu et al. 2013)	
Neurospora crassa OR74A	PMO-08760 LPMO-08760 NcLPMO9E GH61-5 NCU08760 LPMO9E	CBM1	–	PASC	C1	(Karnaouri et al. 2017; Kittl et al. 2012; Kojima et al. 2016; Kracher et al. 2018; Nekuniite et al. 2016b; Varanai et al. 2018; Westereng et al. 2016)	
Pestalotiopsis sp. NCi6	PsLPMO8	–	–	PASC	C4	(Patel et al. 2016)	
Pestalotiopsis sp. NCi6	PsLPMOA	–	–	PASC	C1/C4	(Patel et al. 2016)	
Phanerochaete chrysosporium K-3	GH61D	–	4BSQ	PASC Avicel	C1	(Danneels et al. 2019; Danneels et al. 2017; Vuong et al. 2017; Westereng et al. 2013; Westereng et al. 2011; Wu et al. 2013)	
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
--------------------------------	-------------------------------	--------------------------	-----------------	----------	--	-------------------	------------
Podospora anserina	S mat+	Pa_4_1020 PalPMO9H	CBM1	–	PA SC Gluco-oligosaccharides, Xyloglucan, Glucosan, Lichenan, β-(1 → 3,1 → 4)-d-Glucan CMC	C1/C4	(Bennati-Granier et al. 2015; Chalak et al. 2019; Fauvel et al. 2017; Garajova et al. 2016; Villares et al. 2017)
Podospora anserina	S mat+	Pa_4_7570 PalPMO9D	–	–	PA SC	C1	(Bennati-Granier et al. 2015)
Podospora anserina	S mat+	Pa_1_16300 PalPMO9E	CBM1	–	PA SC	C1	(Bennati-Granier et al. 2015; Chabbert et al. 2017; Garajova et al. 2016)
Podospora anserina	S mat+	Gh61B	CBM1	–	PA SC	C1	(Bey et al. 2013)
Thermoascus aurantiacus	TaAA9	TaAA9	–	–	PA SC	C1/C4	(Cannella et al. 2016; Harris et al. 2010; Kitaoku et al. 2018; Muller et al. 2015; Petrovic et al. 2018; Quinlan et al. 2011; Singh et al. 2019)
Myceliophthora thermophila	MtLPMO9J MYCTH_79765	–	–	–	PA SC Cello-oligosaccharides, Xyloglucan	C4	(Kadowaki et al. 2018)
Myceliophthora thermophila	MtPMO3 MYCTH_92668 MtLPMO9D	–	–	–	RAC PA SC	C1	(Frommhagen et al. 2018; Span et al. 2017; Vu et al. 2014a)
Myceliophthora thermophila	MYCTH_112089 MYCTH112089	–	–	–	PA SC	C1	(Vu et al. 2014a)
Myceliophthora thermophila	MtLPMO9A LPMO9A	–	–	–	RAC PA SC Xyloglucan β-(1 → 3,1 → 4)-d-Glucan	C1/C4	(Frommhagen et al. 2016; Frommhagen et al. 2015; Gusakov et al. 2017)
Myceliophthora thermophila	MYCTH_103537 MtLPMO9L	–	–	–	PA SC Avicel	C1	(Zhou et al. 2019a)
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
----------------------------	-----------------------------------	---------------	-----------------	------------------	-----------------------------	-------------------	--
Myceliophthora thermophila/Thermothelomyces thermophilus	MtLPMO9B	–	–	RAC	C1	(Frommhagen et al. 2016; Frommhagen et al. 2017a; Frommhagen et al. 2018)	
Myceliophthora thermophila/Thermothelomyces thermophilus	MtLPMO9C	–	–	RAC, β-(1→3,1→4)-o-Glucan, Xyloglucan	C4	(Frommhagen et al. 2016; Frommhagen et al. 2017b)	
Myceliophthora thermophila/Thermothelomyces thermophilus	MtLPMO9	CBM1	–	PASC	C1/C4	(Karnaouri et al. 2017)	
Trichoderma reesei	LPMO9A, HjLPMO9A, TrCel61A	CBM1	5O2W, 5O2X	PASC	C1/C4	(Hansson et al. 2017; Tanghe et al. 2015)	
Trichoderma reesei	HjLPMO9B, HjGHK61B, Cel61B	–	2VTC	PASC	C1/C4	(Karkehabadi et al. 2008)	
Collariella virescens	CvAA9A	–	5NLT	PASG	Glucomannan, Mannohexaose, Xylohexaose	(Simmons et al. 2017)	
Aspergillus fumigatus	AfAA9B	–	5X6A, 6H1Z, 6HA5, 6HAQ	–	–	(Lo Leggio et al. 2018)	
Fusarium graminearum	FgLPMO9A	–	–	PASC	Xyloglucan, C1/C4	(Nekiunaite et al. 2016b)	
Geotrichum candidum	GcLPMO9A	–	–	PASC	Xyloglucan, C1/C4	(Ladeveze et al. 2017)	
Geotrichum candidum	GcLPMO9B	–	–	PASC	Xyloglucan, C1/C4	(Ladeveze et al. 2017)	
Malbranchea cinnamomea	McAA9A	–	–	PASC	Xyloglucan, Glucomannan, Cellohexaose, C1/C4	(Huttner et al. 2019)	
Malbranchea cinnamomea	McAA9B	–	–	PASC	Xyloglucan, G4 (Xyloglucan)	(Huttner et al. 2019)	
Malbranchea cinnamomea	McAA9F	–	–	PASC	Xyloglucan, Cellohexaose, G4 (Xyloglucan)	(Huttner et al. 2019)	
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
-----------------	---------------------------	--------------------------------	----------------	----------------	-----------------	-------------------	--
Malbranchea cinnamomea	McAA9H	–	–	PASC	Xylan	C1 (PASC)	(Huttner et al. 2019)
Thielavia terrestris	TtLPMO9E	–	–	PASC	Avicel	C1 /C4 (Xylan)	(Cannella et al. 2016; Gusakov et al. 2017; Kim et al. 2017; Mollers et al. 2017; Westereng et al. 2015)
Chaetomium thermophilum	CtLPMO1	–	–	PASC	Celloheptaose	C1 /C4	(Chen et al. 2018)
Bacillus amylophilaeiens	ChhB	–	–	2YOW	α and β chitin	C1	(Gregory et al. 2016; Hemsworth et al. 2013b)
Bacillus licheniformis	ChhB	–	–	5LW4	α and β chitin	C1	(Courtade et al. 2015; Forsberg et al. 2014b)
Bacillus thuringiensis	Lpmo10A	–	–	5WSZ	α and β chitin	C1	(Zhang et al. 2015)
Bacillus thuringiensis	Cbp	CBM5 Fibronectin-type III-like domains	–	β Chitin	C1	(Manjeet et al. 2019; Manjeet et al. 2013)	
Cellvibrio japonicus Ueda107	CjpLPMO10A CJA_2191	CBM5 CBM73	5FJQ	α and β chitin	C1	(Forsberg et al. 2016)	
Cellvibrio japonicus Ueda107	CjpLPMO10B CJA_3139	CBM10	–	PASC Avicel BMCC Filter paper	C1	(Gardner et al. 2014)	
Enterococcus faecalis V583	EFAA10A	–	–	4A02 4ALE 4ALQ 4ALR 4AL6 4ALT	α and β chitin	(Gudmundsson et al. 2014; Vaaje-Kolstad et al. 2012)	
Hahella chejuensis KCTC 2396	HcAA10-2 HCH_00807	CBM2	–	Avicel	C1	(Ghatge et al. 2015)	
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
-------------------------	------------------------------	--------------------------------	-----------------	----------	---------------------------	--------------------	---
Jonesia denitrificans	DSM 20603	Jden_1381 JdLPMO10A LPMO10A	CBM5, GH18	5AA7	α and β chitin	C1	(Back et al. 2017; Mekasha et al. 2016)
Listeria monocytogenes				5VG0			
Serratia marcescens	BJL200	Cbp21 CBP21 Cbp SmAA10A SmLPMO10A		2BEM	α and β chitin	C1	(Pasapaliari et al. 2015)
Serratia marcescens	ATCC 23877	SAMO570 SamLPMO10B		5L2V	α and β chitin	C1	
Streptomyces ambofaciens	ATCC 23877	Cbp SmAA10A SmLPMO10A		2BEN			
Streptomyces ambofaciens	ATCC 23877	SAML1174 SamLPMO10C	CBM2	4OY7	PASC Avicel β Chitin	C1/C4	(Forsberg et al. 2014a)
Streptomyces coelicolor	A3(2)	ScLPMO10B ScCO0643 SCF91.03c		4OY8	PASC Avicel β Chitin	C1	(Courtade et al. 2018; Forsberg et al. 2014a, Forsberg et al. 2011)
Streptomyces coelicolor	A3(2)	ScLPMO10C Ce6S2 ScAA10C SCO1188 SGG11A.19	CBM2, 4OY7	4OY7	PASC Avicel β Chitin	C1	
Streptomyces griseus subsp. griseus NBRC 13350		SGR_6855 SglLPMO10F	–	4OY7	PASC Avicel β Chitin	C1	(Nakagawa et al. 2015)
Streptomyces lividans 1326		SLLPMO10E SLL_3182		5FTZ	β Chitin	C1	(Chaplin et al. 2016)
Teredinibacter turnerae T7901		TaAA10A TERTU_0046	CBM10, 6W7	4GBO	PASC Avicel β Chitin	C1/C4	(Fowler et al. 2019)
Thermobifida fusca YX	Tfu_1268 Tfu_1 268 Tfu_1 268 Tfu_1 268	TflPMO10A		4GBO	PASC Avicel β Chitin	C1/C4	(Forsberg et al. 2014a; Kruger-Zerhusen et al. 2017; Russo et al. 2019)
Vibrio cholerae O1 biovar B	Tor str 1N6961	GbpAVcGbpAVcAA10BVCA0811 GbpAVcAD2 GbpAVcAD2 GbpAVcAD2 GbpAVcAD2		2XXW	β Chitin	C1	(Loose et al. 2014; Wong et al. 2012)
Tectaria macrodonta	Tma12			6F7	Colloidal crab chitin	–	(Shukla et al. 2016; Yadav et al. 2019)
Family	Organism	Protein names	Associated CBMs	PDB code	Substrates	Regioselectivities	References
--------	----------	---------------	-----------------	----------	------------	-------------------	------------
	Anomala cuprea entomopoxivirus CV6M	Fusolin ACV034	–	4YN1 4YN2 4X29 4X27 4OW5	–	–	(Chiu et al. 2015)
	Micromonospora aurantiaca	MaLPMO10B	CBM2	5OPF	PASC β Chitin	C1 /C4 C1 (chitin)	(Forsberg et al. 2018)
	Micromonospora aurantiaca	MaLPMO10D	CBM2	–	PASC β Chitin	C1 /C4 C1 (chitin)	(Forsberg et al. 2018)
	Bacillus cereus	BcLPMO10A	CBM5 Fibronectin-type III-like domain	–	α and β chitin	C1	(Mutahir et al. 2018)
	Aspergillus oryzae RIB40	AoLpmo11	X278	4MAH 4MAi	β Chitin	C1	(Hemsworth et al. 2014)
	Fusarium fujikuroi	FfAA11	X278	–	α and β chitin	C1	(Wang et al. 2018)
	Aspergillus nidulans FGSC A4	AnAA13 AN5463.2	CBM20	–	Retrograded starch	C1	(Lo Leggio et al. 2015)
	Aspergillus oryzae RIB40	AoAA13	–	4OPB 5LSV 5T7J 5T7N	–	–	(Frandsen et al. 2017; Lo Leggio et al. 2015)
	Aspergillus terreus NIH2624	AtLPMO13A ATEG_07286	CBM20	–	Wheat starch	–	(Nekiunaite et al. 2016a)
	Magnaporthe oryzae	MoLPMO13A	CBM20	–	Binding to wheat starch	–	(Nekiunaite et al. 2016a)
	Neurospora crassa OR74A	NcAA13 NCU08746	CBM20	–	Amylose Amylopectin Cornstarch	C1	(Vu et al. 2014b; Vu et al. 2019)
	Myceliophthora thermophila	MtAA13	–	–	Amylose Amylopectin Cornstarch	–	(Vu et al. 2019)
	Trametes coccinea CIRM-BRM 310	PcAA14A	–	–	Xylan	C1	(Couturier et al. 2018)
	Trametes coccinea CIRM-BRM 310	PcAA14B	–	5NO7	Xylan	C1	(Couturier et al. 2018)
	Thermobia domestica	TdAA15A	–	5MSZ	β Chitin PASC	C1	(Sabbadin et al. 2018)
	Thermobia domestica	TdAA15B	–	–	α and β chitin	C1	(Sabbadin et al. 2018)
	Aspergillus aculeatus ATCC 15872	ASPACDRAFT_74022 AaAA16	–	–	PASC	C1	(Filiatrault-Chastei et al. 2019)
Fig. 1 The overall structures and substrate binding surfaces of LPMOs. The loop regions are colored in red (L2), green (L3), yellow (LS) and blue (LC). The catalytic center histidines are shown in sticks. The structures representing different families are: NcuLPAM09C (PDB ID 4d7u) (Borisova et al. 2015), CBP21 (PDB ID 2bem) (Vaaje-Kolstad et al. 2005b), AoLPMO11 (PDB ID 4mah) (Hemsworth et al. 2014), AoAA13 (PDB ID 4OPB) (Lo Leggio et al. 2015), PcAA14B (PDB ID 5no7) (Couturier et al. 2018), TdAA15A (PDB ID 5msz) (Sabbadin et al. 2018).
Vaaje-Kolstad et al. (2005b). MD simulations of CBP21 on crystalline chitin substrates have also shown that although the only tyrosine Y54 on the substrate-binding surface is a key factor, the hydrogen bonding formed between substrate and the residues E55, T111, H114, Q57, and D182 was very important for substrate binding (Bissaro et al. 2018).

Within the AA10 family, the amino acid composition of the substrate-binding surface of different substrate-specific LPMOs is also diverse. The Gln-Thr pair (Q78 and T133 in CjLPMO10A) is presumed to be a determinant of chitin activity, since it is conserved in chitin-active LPMO10s, whereas in cellulose-active LPMO10s, the corresponding sites are Phe and Trp (Forsberg et al. 2016). Li et al. suggested that, compared with chitin-active SmAA10A, an insertion in the cellulose-active ScAA10C that contains four aromatic residues could account for cellulose specificity (Li et al. 2012). In previous work, we found a motif on L2 with different amino acid composition in different substrate-specific LPMO10s (Fig. 3c) (Zhou et al. 2019b). In cellulose-active LPMO10s, this motif mainly consists of non-polar amino acids (Y[W]NWF[N]G[A]V[N]L[Y]). While in chitin-active LPMO10s, this motif mainly consists of polar amino acids (Y[W]EPQSVE). We speculated that the different amino acid composition of this motif may lead to differences in substrate binding surface electrostatic potential, which in turn affects
substrate specificity. Jensen et al. constructed a mutation library of five sites on the substrate binding surface of ScLPMO10C, three of which are located in this motif region (Y79, N80, F82), and the other two are located in the adjacent loops (Y111, W141). Substrate specificity of the mutant M18 (Y79/N80D/F82A/Y111F/W141Q) significantly changed from wild-type cellulose-preference to chitin-preference, demonstrating the role of these residues in substrate specificity (Jensen et al. 2019).

The complex structures of the LsAA9A and soluble oligosaccharide substrates showed that in addition to the Y203 stacking, the hydrogen bond network formed between the +2 subsite and the polar residues (N28, H66 and N67) plays an important role in substrate binding, and this may be a determinant of soluble oligosaccharide...
activity, as sequence and structure alignments found that there is no corresponding residue forming a hydrogen bond network in LPMOs that can only act on crystalline substrates (Frandsen et al. 2016).

The topological features of substrate binding surface

The crystal structure of BaAA10A shows a cavity near the catalytic Cu center, and the authors speculated that it is for dioxygen binding (Fig. 3a) (Hemsworth et al. 2013b). Shortly thereafter, through structural comparisons, Forsberg et al. found that this cavity is absent in the cellulose-active LPMO10s (Forsberg et al. 2014a). Therefore, the cavity was presumed to accommodate N-acetyl group of chitin substrates, and may be a structural feature that determines substrate specificity. However, one exception is the chitin-active CjLPMO10A, which shows similar features to cellulose-active LPMO10s without this cavity (Forsberg et al. 2016).

LPMOs that can act on oligosaccharides, such as LsAA9A, NcLPMO9C and NcLPMO9D, have a more contoured substrate binding surface than LPMOs that can only act on crystalline substrates (Borisova et al. 2015; Frandsen et al. 2016; Li et al. 2012). The ridge near substrate binding subsites +1 and +2 was proposed to allow LPMOs binding to more contoured substrates such as oligosaccharides (Fig. 3a).

In AoAA13, the surface loops (the long loop preceding β2, the loop between β2 and β3, the long loop preceding β4 and the loop between β5 and β6) form a shallow groove, crossing the copper active site (Fig. 3a) (Lo Leggio et al. 2015). It was speculated that, compared with the flatter substrate binding surface of LPMO9s, which is more suitable for the binding of flatter crystalline cellulose substrates, the groove on the surface of AoAA13 might be more suitable for the binding of the contoured surface of resistant starch. It is worth noting that no crystal structures of the currently characterized LPMO13s have been resolved so far, and the structurally characterized AoAA13 has not been reported to have starch activity.

Similarly, the substrate binding surface of PcAA14B, an xylan-active LPMO, has a rippled shape with a clamp formed by two prominent surface loops, which are equivalent to the L2 and L3 regions of AA9 (Figs. 1 and 3a). The extended L3 loop of PcAA14B forms a protrusion through the cystines (C67–C90). Although there is no enzyme–substrate complex structure, these loops constitute a large part of the substrate binding surface, and it is speculated that this clamp is a structural feature of LPMO14s required for the xylan substrate binding (Courtier et al. 2018).

From the sequence alignment of PaLPMO9H and NcLPMO9C, it was speculated that the L3 loop, which is a common feature of these two enzymes, might be a prerequisite for xyloglucan specificity (Bennati-Granier et al. 2015). NMR (nuclear magnetic resonance) studies on enzyme–substrate interactions also showed that L3 of NcLPMO9C did participate in the binding of xyloglucan substrate (Courtade et al. 2016). However, as more LPMOs are characterized, some enzymes have been found to have xyloglucan-activity, but L3 is absent, such as GtLPMO9A-2. It was presumed that the extended L2 of the xyloglucan-active GtLPMO9A-2 compensate for the lack of L3 (Kojima et al. 2016).

The appended modules

Similar to GHs (glycoside hydrolases), a considerable part of LPMOs are modular, with domains of non-catalytic CBMs (carbohydrate-binding modules), GHs or other unknown functions appended to the catalytic domain. Domain similarity network analysis has shown the correlation between the additional domains and the substrate specificity of the full enzymes (Book et al. 2014; Zhou et al. 2019b). CBM truncation studies have been reported for both LPMO9s and LPMO10s (Chaklak et al. 2019; Courtade et al. 2018; Crouch et al. 2016; Forsberg et al. 2016; Laurent et al. 2019). Comparison of the performance of LPMOs with and without CBMs have shown that, deletion of CBMs reduced LPMO’s binding capacity to crystalline substrates, especially at low substrate concentrations. Therefore, CBMs may affect substrate specificity through promoting the binding of LPMOs to the appropriate substrates.

Oxidative regioselectivity

LPMO9s have been shown to oxidize either the C1, C4 or both the C1 and C4 carbon of the scissile bond of cellulose substrates. According to the oxidative regioselectivity, LPMO9s have been classified into three types: PMO1s are the strict C1-oxidizers; PMO2s are the strict C4-oxidizers; PMO3s are the mixed C1/C4-oxidizers; and a subtype of PMO3, PMO3’s, are the C1-oxidizers (Vu et al. 2014a). Cellulose-active LPMO10s are strict C1-oxidizers or mixed C1/C4-oxidizers, whereas no strict C4-oxidizing LPMO10 has been reported. LPMOs acting on chitin (LPMO10s, 11s and 15s), starch (LPMO13s) and xylan (LPMO14s) have only been shown to oxidize the C1-carbon. It is speculated that the oxidative regioselectivity may be determined by the precise positioning of the enzyme on the substrates, so factors that affect the relative position of the enzyme’s active center Cu and the C1 or C4 carbon of the scissile glycosidic bond may affect regioselectivity (Fig. 4).
Amino acid composition and arrangement on substrate binding surface

Due to the contribution of L2 to the substrate binding surface and the diversity of its amino acid composition, many studies on the regioselectivity of LPMOs have focused on this region. By sequence alignment, Vu et al. found that PMO3s had a 12-amino acid insertion on L2, including a conserved tyrosine, compared to other subgroups of LPMO9s. Deletion of this sequence caused the loss of C4-oxidizing function of NCU07760, indicating the importance of this sequence for C4 regioselectivity of PMO3. However, although the conserved tyrosine in this insertion is a feature of PMO3, mutation of this residue into glycine did not change the regioselectivity of NCU07760 (Vu et al. 2014a).

Sequence and structural information show that the number and distribution of aromatic residues on the surfaces of LPMOs are different. Therefore, it is speculated that LPMOs may bind to the substrates in different directions, resulting in different regioselectivity (Li et al. 2012). Recently, Danneels et al. studied the oxidative regioselectivity of LPMO9s in detail (Danneels et al. 2019). One part of the research was the mutation of aromatic amino acids on the substrate binding surfaces of PcLPMO9D, ScLPMO9C and HjLPMO9A. They found that the properties of these aromatic amino acids affect C1/C4-oxidation ratios. In another work, Liu et al. used molecular dynamics simulations to study the binding mode of HiLPMO9B to the substrate, and found that multiple surface-exposed hydrophobic residues, including the tyrosine on L2, are important for substrate binding in this C1-specific LPMOs. Besides, acidic amino acids on L2 and LC participate in substrate binding. In both the two binding modes obtained with different binding directions, the catalytic center Cu is more biased towards the C1 carbon of the glycosidic bond, suggesting that the arrangement of amino acids on substrate binding surface may affect regioselectivity by affecting the relative position of the catalytic center Cu and the substrate (Liu et al. 2018).

Similar speculation has been made for LPMO10s. On the substrate-binding surface of chitin-active C1-specific LPMO10s, the conservative amino acids involved in the formation of hydrogen bonds with the polysaccharide substrate are arranged on opposite sides of the catalytic center Cu, and thus direct the orientation of the substrate relative to the Cu. This directed binding makes the enzyme prone to act on C1 carbon of the scissile glycosidic bond (Hemsworth et al. 2013b). Forsberg et al. mutated a subset of coevolutionary residues of C1/C4-oxidizing MaLPMO10B into the corresponding residues of C1-oxidizing LPMO10s, and the resulting mutants lost the C4-oxidizing activity. They found that, the residues located near the catalytic Cu that are involved in substrate positioning (especially the N85 of MaLPMO10B) are the major determinants of regioselectivity (Forsberg et al. 2018).

Accessibility to the surface-exposed axial copper coordination site

A conserved alanine in LPMO10s active site has been postulated to provide steric congestion at the solvent-facing axial position of active center Cu (Hemsworth et al. 2013b). Subsequent research showed that the loop hosting this alanine adopts different conformations in C1- and C1/C4-oxidizers, making the solvent-facing axial position of C1/C4-specific ScLPMO10B more open than C1-specific ScLPMO10C (Forsberg et al. 2014a). Similarly, structural comparisons revealed that, strictly C1-oxidizing LPMO9s have a conserved tyrosine, preventing optimal axial access to the copper ion, whereas C4-oxidizing LPMO9s have an open access to this position. The mixed C1/C4-oxidizing LPMO9s show an intermediate situation (Borisova et al. 2015). Thus, the accessibility of surface-exposed axial position of Cu, or the ability to bind a ligand in the axial position, could be a determinant of C4-oxidizing activity. However, recent studies suggested that, mutations affecting accessibility of this axial position did not change the regioselectivities of PcLPMO9D and MaLPMO10B (Danneels et al. 2019; Forsberg et al. 2018).

The appended CBM modules

The CBM domains seem to affect the binding of LPMOs to substrates, thereby affecting the precise positioning of the enzymes on the substrates’ surfaces, that is, the relative position of C1 or C4 carbon to the catalytic center Cu, and thus the regioselectivity of the enzymes. Removing or replacing the endogenous CBMs of LPMO9s and LPMO10s have been reported to alter the regioselectivity
of these enzymes. For instance, deleting CBM1 of PaLP-
MO9H significantly increased the proportion of C1-oxi-
dized products (Laurent et al. 2019). Crouch et al.
replaced the endogenous CBM2a domain of TblP-
MO10 with the CBM10 of CjLPMO10B, and found that the
ratio of non-oxidized to oxidized products of the mutant
increased significantly. The authors speculated that the
non-oxidized products are the oligosaccharides derived
from C1-oxidation near the reducing end of cellulose,
which may be due to the grafted CBM affecting the
localization of the enzyme on the substrate (Crouch et al.
2016). But the impact of CBMs on the regioselectivity
of LPMOs is also controversial, e.g., removing the CBM
domains did not significantly change the regioselectivity
of MalP-
MO10B, NcLPMO9C and HjLPMO9A (Dan-
neels et al. 2019; Forsberg et al. 2018; Laurent et al. 2019).

N-Glycan on substrate binding surface
Fungal-derived LPMOs are generally glycosylated on the
surface, but their function is unclear. Sequence and struc-
tural information show that C1/C4-specific LPMO9s
often have an N-glycan at the planar active surface,
which is a feature different from the other two groups (Li
et al. 2012). Mutation studies showed that removing this
N-glycan can alter the C1/C4-oxidation ratios of HjL-
MO9A. The authors suggested that this is because N-gly-
can affects the structural features of the substrate binding
surface, which in turn affects the substrate binding and
oxidative force accurate directions (Danneels et al. 2019).

Structures of substrates
The regioselectivity of LPMOs appears to be substrate-
dependent. The most typical examples are the LPMO10s
with both cellulose- and chitin-activity. They are C1/
C4-specific for cellulose oxidation and C1-specific for
chitin oxidation. Recently, a multifunctional LPMO10,
KpLPMO10A has been reported that besides chitin-
and cellulose-activity, it can also act on xylan to produce
C4-oxidized products (Correa et al. 2019). In addition,
it is reported that, PaLPMO9H is C4-specific on mixed-
linkage glucans, and C1/C4-specific on glucomannan
(Fanuel et al. 2017). LsAA9A and CvAA9A are reported to
be C4-specific for shorter oligosaccharides and C1/
C4-specific for longer polysaccharides (Simmons et al.
2017).

Conclusions
Elucidating the molecular basis of substrate specific-
ity and oxidative regioselectivity of LPMOs will be more
helpful for their application in the biotransformation of
renewable biomass. Researches indicate that the sub-
strate binding and regioselectivity of LPMOs are pre-
cisely regulated. This precise regulation is based on the
complex synergistic modules and amino acid networks
that evolved from interactions with complex and diverse
substrate structures in nature. However, the character-
ized LPMOs are only a small part of the sequences that
have been found so far. More enzymatic and structural
characterization is needed to provide more information.
Structural-based mutation studies and MD simulations
will bring in-depth understanding of the molecular basis
of the function of LPMOs. In addition, given the com-
plexity and structural characteristics of the substrates,
it is necessary to develop more effective enzyme activity
detection methods to avoid the neglect of weak enzyme
activity.

Abbreviations
LPMO: Lytic polysaccharide monooxygenase; CBM: Carbohydrate-binding
module; PDB: Protein data bank; NMR: Nuclear magnetic resonance; AA: Auxil-
iary Activity; GH: Glycoside hydrolases; MD: Molecular dynamic.

Acknowledgements
The authors are thankful to the Guangdong Province Science and Technology
Innovation Strategy Special Fund (2018B020206001); the GDAS’ Special Project
of Science and Technology Development (2018GDASCX-0909); and the Sci-
ence and Technology Plan Project of Guangdong Province (2016A010105013,
2019B030316017); and the National Natural Science Foundation of China
(31400681).

Authors’ contributions
XZ, HZ developed the manuscript. XZ reviewed and corrected the manuscript
for grammatical and syntax errors. HZ reviewed the manuscript and provided
comments to enhance the quality of manuscript. Both authors read and
approved the final manuscript.

Funding
This work was funded by the Guangdong Province Science and Technology
Innovation Strategy Special Fund (2018B020206001); the GDAS’ Special Project
of Science and Technology Development (2018GDASCX-0909); and the Sci-
ence and Technology Plan Project of Guangdong Province (2016A010105013,
2019B030316017); and the National Natural Science Foundation of China
(31400681).

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 7 January 2020 Accepted: 21 February 2020
Published online: 02 March 2020

References
Achmann FL, Sorlie M, Skjåk-Braek G, Eijssink VG, Vaage-Kolstad G (2012) NMR
structure of a lytic polysaccharide monooxygenase provides insight
into copper binding, protein dynamics, and substrate interactions. Proc
Natl Acad Sci USA 109:18779–18784
Agger JW, Isaksen T, Varnai A, Vidal-Melgoza S, Willats WG, Ludwig R, Horn
SJ, Eijssink VG, Westereng B (2014) Discovery of LPMO activity on
hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci USA 111:6287–6292

Back JF, Meikash S, Forsberg Z, Kovalesky AV, Vaaje-Kolstad G, Eijssink VGH, Nix JC, Coates L, Cuneo MJ, Unkefer CJ, Chen JC (2017) Neutron and atomic resolution X-ray structures of a lytic polysaccharide monoxygenase reveal copper-mediated dioxygen binding and evidence for N-terminal deprotonation. Biochemistry 56:2529–2532

Beeson WT, Yu W, Span EA, Phillips CM, Marletta MA (2015) Cellulose degradation by polysaccharide monoxygenases. Annu Rev Biochem 84:923–946

Bennati-Granier C, Garajova S, Champion C, Grisel S, Haon M, Zhou S, Fanuel M, Ropartz D, Rogniaux H, Gimbert I, Record E, Berrin JG (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monoxygenases secreted by Podospora anserina. Biotechnol Biofuels 7:109

Bey M, Zhou S, Peidevin L, Henriassit B, Coutinho PM, Berrin JG, Sigogollot JC (2013) Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monoxygenases (family GH61) from Podospora anserina. Appl Environ Microbiol 79:488–496

Bissaro B, Rohr AK, Muller G, Chyldenski P, Skaugen M, Forsberg Z, Horn SJ, Vaaje-Kolstad G, Eijssink VGH (2017) Oxidative cleavage of polysaccharides by monocomponent enzymes depends on pH2O2. Nat Chem Biol 13:1123–1128

Bissaro B, Isaksen T, Vaaje-Kolstad G, Eijssink VGH, Rohr AK (2018) How a lytic polysaccharide monoxygenase binds crystalline chitin. Biochemistry 57:1893–1906

Book AJ, Yennamalli RM, Takasuka TE, Currie CR, Phillips GN Jr, Fox BG (2014) Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monoxygenases. Biotechnol Biofuels 7:109

Borisova AS, Isaksen T, Dimarogona M, Kogone AA, Mathiessen G, Varnai A, Rohr AK, Payne CM, Sorlie M, Sandgren M, Eijssink VGH (2015) Structural and functional characterization of a lytic polysaccharide monoxygenase with broad substrate specificity. J Biol Chem 290:22955–22969

Cannella D, Mollers KB, Frigaard NU, Jensen PE, Johansen KS, Felby C (2018) Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nat Commun 7:11134

Chabbert B, Habrart A, Herbaut M, Foulon L, Aggue-Beghin V, Garajova S, Grisel S, Bennati-Granier C, Gimbert-Herpoel I, Jamme F, Refregiers M, Sandt C, Berrin JG, Paes G (2017) Action of a lytic polysaccharide monoxygenase on plant tissue is governed by cellular type. Sci Rep 7:17792

Chalak A, Villares A, Moreau C, Haon M, Grisel S, Orlando A, Herpoel-Gimbert I, Labourel A, Cathala B, Berrin JG (2019) Influence of the carbohydrate-binding module on the activity of a fungal AA9 lytic polysaccharide monoxygenase on cellulose substrates. Biotechnol Biofuels 12:206

Chaplin AK, Wilson MT, Hough MA, Stivuntenko DA, Hemsworth GR, Walton PH, Vigenboom E, Worrall JA (2016) Heterogeneity in the histidine-brace coordination sphere in auxiliary activity family 10 (AA10) lytic polysaccharide monoxygenases. J Biol Chem 291:12838–12850

Chen C, Chen J, Geng Z, Wang M, Liu N, Li D (2018) Regioselectivity of oxidation by a polysaccharide monoxygenase from Chlostridium thermophilum. Biotechnol Biofuels 11:155

Chiu E, Hijnem M, Bunker RD, Boudes M, Rajendra C, Azel K, Olieric V, Schulze-Briese C, Mitsuhashi W, Young V, Ward VK, Bergmon M, Metcalf P, Coombly F (2015) Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc Natl Acad Sci USA 112:3973–3978

Correa TLR, Junior AT, Wolf LD, Buckeridge MS, dos Santos LV, Murakami MT (2019) An actinobacteria lytic polysaccharide monoxygenase acts on both cellulose and xylan to boost biomass saccharification. Biotechnol Biofuels 12:117

Courtade G, Balzer S, Forsberg Z, Vaaje-Kolstad G, Eijssink VGH, Aachmann FL (2015) (1)H, (13)C, (15)N resonance assignment of the chitin-active lytic polysaccharide monoxygenase BLPMMO10A from Bacillus licheniformis. Biopolym NMR Assign 9:207–210

Courtade G, Wimmer R, Rohr AK, Preims M, Felice AK, Dimarogona M, Vaaje-Kolstad G, Sorlie M, Sandgren M, Ludwig R, Eijssink VGH, Aachmann FL (2016) Interactions of a fungal lytic polysaccharide monoxygenase with beta-glucan substrates and cellulose dehydrogenase. Proc Natl Acad Sci USA 113:5922–5927

Courtade G, Forsberg Z, Heggeseth EB, Eijssink VGH, Aachmann FL (2018) The carbohydrate-binding module and linker of a modular lytic polysaccharide monoxygenase promote localized cellulose oxidation. J Biol Chem 293:13006–13015

Couturier M, Ladeveze S, Sulzenbacher G, Ciano L, Fanuel M, Moreau C, Villares A, Cathala B, Chaspouf F, Frandsen KE, Labourel A, Herpoel-Gimbert I, Grisel S, Haon M, Lenfant N, Rogniaux H, Ropartz D, Davies GJ, Rosso MN, Walton PH, Henriassit B, Berrin JG (2018) Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 14:306–310

Crouch LL, Labourel A, Walton PH, Davies GJ, Gilbert HJ (2016) The contribution of non-catalytic carbohydrate binding modules to the activity of lytic polysaccharide monoxygenases. J Biol Chem 291:7439–7449

Danneels B, Tanghe M, Joosten HJ, Gudtenger T, Spadiut O, Stals I, Desmet T (2017) A quantitative indicator diagram for lytic polysaccharide monoxygenases reveals the role of aromatic residues in HjLP-MOAa regioselectivity. PLoS ONE 12:e0178446

Danneels B, Tanghe M, Desmet T (2019) Structural features on the substrate-binding surface of fungal lytic polysaccharide monoxygenases determine their oxidative regioselectivity. Biotechnol Biofuels 12:117

Evolution of substrate specificity in bacterial AA10 lytic polysaccharide monoxygenases. Biotechnol Biofuels 7:109

Forsberg Z, Vaaje-Kolstad G, Westereng B, Bunaes AC, Steenstrom Y, Mackenzie A, Sorlie M, Horn SJ, Eijssink VG (2011) Cleavage of cellulose by a CBM33 protein. Protein Sci 20:1479–1483

Forsberg Z, Mackenzie AK, Sorlie M, Rohr AK, Helland R, Arvai AS, Vaaje-Kolstad G, Eijssink VG (2014a) Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monoxygenases. Proc Natl Acad Sci USA 111:8446–8451

Forsberg Z, Rohr AK, Meikash S, Andersson KK, Eijssink VG, Vaaje-Kolstad G, Sorlie M (2014b) Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monoxygenases. Biochemistry 53:1647–1656

Forsberg Z, Nelson CE, Dalhus B, Meikash S, Loose JS, Crouch L, Rohr AK, Gardner JG, Eijssink VG, Vaaje-Kolstad G (2016) Structural and functional analysis of a lytic polysaccharide monoxygenase important for efficient utilization of chitin in Cellvibrio japonicus. J Biol Chem 291:7300–7312

Forsberg Z, Bissaro B, Gullese J, Dalhus B, Vaaje-Kolstad G, Eijssink VG (2018) Structural determinants of bacterial lytic polysaccharide monoxygenase functionality. J Biol Chem 293:1397–1412

Forsberg Z, Sorlie M, Petrovic D, Courtaud G, Aachmann FL, Vaaje-Kolstad G, Bissaro B, Rohr AK, Eijssink VG (2019) Polysaccharide degradation by lytic polysaccharide monoxygenases. Curr Opin Struct Biol 15(9):54–64

Fowler CA, Sabbadin F, Ciano L, Hemsworth GR, Elias L, Bruce N, McQueen-Mason S, Davies GJ, Walton PH (2019) Discovery, activation and characterisation of an AA10 lytic polysaccharide oxidase from the shipworm symbiont Teredinibacter turnerae. Biotechnol Biofuels 12:232

Frandsen KE, Simmons TJ, Dupree P, Poulsen JC, Hemsworth GR, Ciano L, Johnston EM, Tovborg M, Johansen KS, von Freiesleben P, Marmuse L, Foster S, Cottaz S, Driguez H, Henriassit B, Lenfant N, Tuna F, Baldansuren A, Davies GJ, Lo Leggio L, Walton PH (2016) The molecular basis of polysaccharide cleavage by lytic polysaccharide monoxygenases. Nat Chem Biol 12:298–303

Frandsen KE, Poulsen JC, Tovborg M, Johansen KS, Lo Leggio L (2017) Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide
monooxygenase: crystal packing, ligand binding and active-site disorder. Acta Crystallogr D Struct Biol 73:64–76

Fromhagen M, Sforza S, Westphal AH, Visser J, Hinz SW, Koetsier MJ, van Berkel WJ, Gruppen H, Kabel MA (2015) Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnol Biofuels 8:101

Fromhagen M, Koetsier MJ, Westphal AH, Visser J, Hinz SW, Vincken JP, van Berkel WJ, Kabel MA, Gruppen H (2016) Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnol Biofuels 9:186

Fromhagen M, Mutzel SK, Westphal AH, Koetsier MJ, Hinz SWA, Visser J, Vincken JP, Weijers D, van Berkel WJ, Gruppen H, Kabel MA (2017a) Boosting LPMO-driven lignocellulose degradation by polyphenol oxide–activated lignin building blocks. Biotechnol Biofuels 10:121

Fromhagen M, van Erven G, Sanders M, van Berkel WJ, Kabel MA, Gruppen H (2017b) RP-UHPLC-U-VIS-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminoanbenzamide. Carbohydr Res 448:191–199

Fromhagen M, Westphal AH, Hilgers R, Koetsier MJ, Hinz SWA, Visser J, Gruppen H, van Berkel WJ, Kabel MA (2018) Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases. Appl Microbiol Biotechnol 102:1281–1295

Garajova S, Mathieu Y, Beccia MR, Bennati-Granier C, Biaso F, Fanuel M, Ropartz PH, Dhaille S, Recorde E, Roghairux V, Hennassat B, Berrin JG (2016) Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci Rep 6:26276

Gardner JG, Crouch L, Labourel E, Forbserg Z, Bukhman YV, Vaaje-Kolstad G, Gilbert HJ, Keating DH (2014) Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Mol Microbiol 94(5):1121–1133

Ghatge SS, Tellke AA, Waghmode TR, Lee Y, Lee KW, Oh DB, Shin HD, Kim SW (2015) Multifunctional cellulolytic auxiliary activity protein HcAA10-2 from Hahella chejuensis enhances enzymatic hydrolysis of crystalline cellulose. Appl Microbiol Biotechnol 99:3041–3055

Gregory RC, Hemsworth GR, Turkenburg JP, Hart SJ, Walton PH, Davies GJ (2016) Activity, stability and 3-D structure of the Cu(II) form of a chitinolytic auxiliary activity protein from Bacillus amylofermentans. Dalton Trans 45:16904–16912

Guudmundsson M, Kim S, Wu M, Ishida T, Momeni MH, Vaaje-Kolstad G, Lundberg D, Royant A, Stahlberg J, Eijsink VGH, Beckham GT, Sandgren M (2014) Structural and electronic snapshots during the transition from a Cu(II) to Cu(I) metal center of a lytic polysaccharide monooxygenase by X-ray photoelectron spectroscopy. J Biol Chem 289:18782–18792

Gusakov AV, Bulakhov AG, Demin IN, Sinitsyn AP (2017) Monitoring of reactions catalyzed by lytic polysaccharide monooxygenases using highly-sensitive fluorometric assay of the oxygen consumption rate. Carbohydr Res 452:156–161

Hansson H, Karkehabadi S, Mikkelsen N, Douglas NR, Kim S, Lam A, Kaper T, Kelemen B, Meier KK, Jones SM, Solomon EI, Sandgren M (2017) High-resolution structure of a lytic polysaccharide monooxygenase from Hypocrea jecorina reveals a predicted linker as an integral part of the catalytic domain. J Biol Chem 292:19099–19109

Harries PW, Welner D, Mcfarland KC, Bach CK, Kim Anh DT, Thanh VN, Eijsink VGH, Larsbrink J, Olsson L (2019) Characterization of a lytic polysaccharide monooxygenase of the thermophilic fungus Malbranchea cinnamea by functional characterization. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01408-19

Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kjell R, Ludvig R, Haltrich D, Eijsink VGH, Horner SJ (2014) A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2623–2642

Jagadeeswaran G, Gainey L, Prade R, Mot A (2016) A family of AA9 lytic polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by multiple substrates and at least one is active on cellulose and xylolignan. Appl Environ Microbiol 100:4535–4547

Jagadeeswaran G, Gainey L, Mot A (2018) An AA9/LPMO containing a CBM1 domain in Aspergillus nidulans is active on cellulose and cleaves cello-oligosaccharides. AMB Express 8:171

Jensen MS, Klinkenberg G, Bissaro B, Chylenski P, Vaaje-Kolstad G, Kvithyng HF, Naerdal GK, Stletta H, Forsberg Z, Eijsink VGH (2019) Engineering chitino-lytic activity into a cellulose-lytic active lytic polysaccharide monooxygenase provides insights into substrate specificity. J Biol Chem 294:19349–19361

Kavoussi MA, Varnai A, Jameson JK, Leite AE, Costa-Filho AJ, Kamaga PS, Prade RA, Polikarpov I, Eijsink VG (2018) Functional characterization of a lytic polysaccharide monooxygenase from the thermophilic fungus Thermobifida fusca. Biotechnol Biofuels 10:126

Keml J, Lee N, An HJ, Kim JH, Harris PC, Kim KH (2017) Type-dependent action modes of TtAA9E and TaAA9A acting on cellulose and differently pre-treated lignocellulosic substrates. Biotechnol Biofuels 10:126

Kitt R, Kracher D, Burgstaller J, Haltrich D, Ludvig R (2012) Production of four Neuropsora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorometric assay. Biotechnol Biofuels 5:79

Kjaergaard CH, Qayyum MF, Wong SD, Hemsworth GR, Walton DJ, Goodall B, Alfredsen G, Westereng B, Eijsink VGH, Yoshida M (2016) The first structure of a glycoside hydrolase family 61 member, CeTypB from Hypocrea jecorina, at 1.6 Å resolution. J Mol Biol 383:144–154

Kamouna A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopulos P (2017) Recombinant expression of thermostable processive MtEGS endoglucanase and its synergism with MtLPMO from Thermobifida fusca during the hydrolysis of lignocellulosic substrates. Biotechnol Biofuels 10:126

Kim JS, Lee N, An HJ, Kim JH, Harris PC, Kim KH (2017) Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium. Mol Microbiol 94(5):1121–1133

Kitt R, Kracher D, Burgstaller J, Haltrich D, Ludvig R (2012) Production of four Neuropsora crassa lytic polysaccharide monooxygenases in Pichia pastoris monitored by a fluorometric assay. Biotechnol Biofuels 5:79

Kjaergaard CH, Qayyum MF, Wong SD, Hemsworth GR, Walton DJ, Goodall B, Alfredsen G, Westereng B, Eijsink VGH, Yoshida M (2016) A lytic polysaccharide monooxygenase with broad xyloglucan specificity from the brown-rot fungus Gloeophyllum trabeum and its action on cellulose-xyloglucan complexes. Appl Environ Microbiol 82:6557–6572

Kracher D, Scheiblbrander S, Felice AK, Breslmayr E, Preims M, Ludwicka K, Haltrich D, Eijsink VG, Ludvig R (2016) Exacellular electron transfer systems fuel cellulose oxidative degradation. Science 352:1098–1101

Kracher D, Andlar M, Furttmüller PG, Ludvig R (2018) Active-site copper reduction promotes substrate binding of fungal lytic polysaccharide monooxygenases and reduces stability. J Biol Chem 293:1676–1687

Kruer-Zerhusen N, Alahuhta M, Linnunen HW, Hiltunen ML, Bump AR, Wilson DB (2017) Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues. Biotechnol Biofuels 10:215

Laudent CV, Sun P, Scheiblbrander S, Cazanam F, Cannizzaro P, Fromhagen M, van Berkel WJ, Oostenbrink C, Kabel MA, Ludvig R (2019) Influence of
lytic polysaccharide monoxygenase active site segments on activity and affinity. Int J Mol Sci 20(24):6219

Li X, Beseen WT IV, Phillips CM, Marletta MA, Cate JH (2012) Structural basis for substrate targeting and catalysis by fungal polysaccharide monoxygenases. Structure 20(6):1051–1061

Liu B, Olson A, Wu M, Broberg A, Sandgren M (2017) Biochemical studies of two lytic polysaccharide monoxygenases from the white-rot fungus *Heterobasidion irregulare* and their roles in lignocellulose degradation. PLoS ONE 12:e0189479

Liu B, Kognole AA, Wu M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M (2018) Structural and molecular dynamics studies of a Cl-oxidizing lytic polysaccharide monoxygenase from *Heterobasidion irregulare* reveal amino acids important for substrate recognition. FEBS J 285:2225–2242

Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsorth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Hans PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henriassit B, Davies GJ, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monoxygenase. Nat Commun 6:5961

Lo Leggio L, Weihe CD, Poulsen JN. Sweeney M, Rasmussen F, Lin J, De Maria L, Wogulis M (2018) Structure of a lytic polysaccharide monoxygenase from *Aspergillus fumigatus* and an engineered thermostable variant. Carbohydr Res 469:55–59

Loose JS, Forsberg Z, Freajao-MW, Eijisink VG, Vaaje-Kolstad G (2014) A rapid quantitative activity assay shows that the vibrio chelone colonization factor GbpA is an active lytic polysaccharide monoxygenase. FEBS Lett 588:3435–3440

Manjeert K, Purushothram P, Neeraja C, Podile AR (2013) Bacterial chitin binding-proteins show differential substrate binding and synergy with chitinases. Microbiol Res 168:461–468

Manjeert K, Madhuprakash J, Manjeet K, Purushotham P, Neeraja C, Podile AR (2013) Bacterial chitin binding-proteins show differential substrate binding and synergy with chitinases. Microbiol Res 168:461–468

Mekasha S, Forsberg Z, Dalhus B, Back JP, Choudhary S, Schmidt-Dannert C, Wolfs G, McRae JG, Tryfona T, Dimarogona M, Mathiesen G, Sandgren M, Westereng B, Crowley MF, Kim S, Dimarogona M, Payne CM, Sandgren M (2018) Structural and molecular dynamics studies of a Cl-oxidizing lytic polysaccharide monoxygenase from *Heterobasidion irregulare* reveal amino acids important for substrate recognition. FEBS J 285:2225–2242

Moller KB, Mikkelsen H, Simonsen TI, Cannella D, Johansen KS, Bjerum MJ, Felby C (2017) On the formation and role of reactive oxygen species in light-driven LPMO oxidation of phosphoric acid swollen cellulose. Carbohydr Res 448:182–186

Muller G, Varani A, Johansen KS, Eijisng VK, Horn SJ (2015) Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions. Biotechnol Biofuels 8:186

Mutahir Z, Mekasha S, Loose JS, Abdias F, Vaaje-Kolstad G, Eijisng VK, Forsberg Z (2018) Characterization and synergistic action of a tetra-modular lytic polysaccharide monoxygenase from *Bacillus circulans*. FEBS J 294:15068–15081

Pandey P, Hans AL, Srivastava S, Rajapure Y, Yadav SK, Singh MK, Kumar J, Chandrashekar K, Verma PC, Singh AP, Nar N, Bhadauaria S, Wahajuddin M, Singh S, Sharma S, Omkar, Upadhyay RS, Randade SA, Tuli R, Singh PK (2016) Expression of an insecticidal ferrin protein in cotton protects against whitefly. Nat Biotechnol 34:1046–1051

Simmons TJ, Frandsen KEH, Ciano L, Tryfona T, Lenfant N, Poulsen JC, Wilson LFL, Tandrup T, Tovborg M, Schorn K, Johansen KS, Henriassit B, Walton PH, Lo Leggio L, Dupree P (2017) Structural and electronic determinants of lytic polysaccharide monoxygenase reactivity on polysaccharide substrates. Nat Commun 8:1906

Singh RK, Blossom BM, Russo DA, Singh R, Weihe H, Andersen NH, Tiwari MK, Jensen PE, Felby C, Bjerum MJ (2020) Detection and characterization of a novel copper-dependent intermediate in a lytic polysaccharide monoxygenase. Eur J Biochem 262(2):454–463

Span EA, Marletta MA (2015) The framework of polysaccharide monoxygenase structure and chemistry. Curr Opin Struct Biol 35:93–99

Span EA, Suess DL, Deller MC, Britt RD, Marletta MA (2017) The role of the secondary coordination sphere in a fungal polysaccharide monoxygenase. ACS Chem Biol 12:1095–1103

Tan TC, Kracher D, Gandini R, Sygmund C, Kirt R, Haltrich D, Hallberg BM, Ludwig A, Divine C (2015) Structural basis for cellulose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542

Tandrup T, Frandsen KEH, Johansen KS, Bengt JG, Lo Leggio L (2018) Recent insights into lytic polysaccharide monoxygenases (LPMOs). Biochem Soc Trans 46:1431–1447

Tanghe M, Danneels B, Camattari A, Glieder A, Vandenberghe I, Devreese B, Stals I, Desmet T (2015) Recombinant Expression of *Trichoderma reesei* Cel61A in *Pichia pastoris*: optimizing Yield and N-terminal Processing. Mol Biotechnol 57:1010–1017

Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, Eijisng VK (2005a) The non-catalytic chitin-binding protein CBP21 from *Serratia marcescens* is essential for chitin degradation. J Biol Chem 280:28492–28497

Vaaje-Kolstad G, Houston DR, Riemen AH, Eijisng VK, van Aalten DM (2005b) Crystal structure and binding properties of the *Janusia marcescens* chitin-binding protein CBP21. J Biol Chem 280:11313–11319

Vaaje-Kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sorel M, Eijisng VK (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science 330(6001):219–222

Vaaje-Kolstad G, Bohle LA, Gaseidnes S, Dalhus B, Bjornd M, Mathiesen G, Eijisng VK (2012) Characterization of the chitinoclastic machinery of *Enterococcus faecalis* V583 and resolution structure of its oxidative CBM53 enzyme. J Mol Biol 416:239–254
Vaaje-Kolstad G, Forsberg Z, Loose JS, Bissaro B, Eijsink VG (2017) Structural diversity of lytic polysaccharide monoxygenases. Curr Opin Struct Biol 44:67–76
Valenzuela SV, Ferreres G, Margalef G, Pastor FJ (2017) Fast purification method of functional LPMOs from Streptomyces ambifaciens by affinity adsorption. Carbohydr Res 448:205–211
Vänni A, Umezawa K, Yoshida M, Eijsink VG (2018) The pyrroloquinoline-quinone-dependent pyranose dehydrogenase from Coprinopsis cinerea drives lytic polysaccharide monoxygenase action. Appl Environ Microbiol 84(11):e00156–18
Villares A, Moreau C, Bennati-Granier C, Garajova S, Foucat L, Falourd X, Saake B, Berrin JG, Cathala B (2017) Lytic polysaccharide monoxygenases disrupt the cellulose fibers structure. Sci Rep 7:40262
Vu VV, Beeson WT, Phillips CM, Cate JH, Marletta MA (2014b) A family of starch-active polysaccharide monooxygenases. Proc Natl Acad Sci USA 111:13822–13827
Vu VV, Beeson WT, Span EA, Fanquhar ER, Marletta MA (2014a) Determinants of regioselective hydroxylation in the fungal polysaccharide monoxygenases. J Am Chem Soc 136:362–365
Wong E, Vaaje-Kolstad G, Ghosh A, Hurtado-Guerrero R, Konarev PV, Ibrahim AF, Svergun DI, Eijsink VG, Chatterjee NS, van Aalten DM (2012) The Vibrio cholerae colonization factor GbpA possesses a modular structure that governs binding to different host surfaces. PLoS Pathog 8:e1002373
Wu M, Beckham GT, Larsson AM, Ishida T, Kim S, Payne CM, Himmel ME, Crowley MF, Horn SJ, Westereng B, Igarashi K, Samejima M, Stahlberg J, Eijsink VG, Sandgren M (2013) Crystal structure and computational characterization of the lytic polysaccharide monoxygenase GH61D from the Basidiomycota fungus Phanerochaete chrysosporium. J Biol Chem 288:12828–12839
Yadav SK, Archana, Singh R, Singh PK, Vasudev PG (2019) Insecticidal fern protein Tma12 is possibly a lytic polysaccharide monoxygenase. Planta 249:1987–1996
Zhang H, Zhao Y, Cao H, Mou G, Yin H (2015) Expression and characterization of a lytic polysaccharide monoxygenase from Bacillus thuringiensis. Int J Biol Macromol 79:72–75
Zhang R, Liu Y, Zhang Y, Feng D, Hou S, Guo W, Niu K, Jiang Y, Han L, Sindhu L, Fang X (2019) Identification of a thermostable fungal lytic polysaccharide monoxygenase and evaluation of its effect on lignocellulosic degradation. Appl Microbiol Biotechnol 103:5739–5750
Zhou H, Li T, Yu Z, Ju J, Zhang H, Tan H, Li K, Yin H (2019a) A lytic polysaccharide monoxygenase from Myceliophthora thermophila and its synergism with cellulobiohydrolases in cellulose hydrolysis. Int J Biol Macromol 139:570–576
Zhou X, Qi X, Huang H, Zhu H (2019b) Sequence and structural analysis of AA9 and AA10 LPMOs: an insight into the basis of substrate specificity and regioselectivity. Int J Mol Sci 20(18):4594

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com