Serum hepatitis B core antibody levels predict HBeAg seroconversion in chronic hepatitis B patients with high viral load treated with nucleos(t)ide analogs

BACKGROUND: Patients with chronic hepatitis B virus (HBV) infection who are hepatitis B virus e antigen (HBeAg) positive are increasingly being treated with nucleos(t)ide analogs (NUCs). However, the predictive value of serum hepatitis B core antibody (HBcAb) levels for HBeAg seroconversion among patients with high viral load remains unclear.

METHODS: This study consisted of 74 patients with high viral load (HBV DNA >1 × 10^7 copies/mL) enrolled in a multicenter, randomized, controlled trial, treated with lamivudine and adefovir (N = 32) or entecavir (N = 42) for up to 96 weeks. Serum HBV DNA, quantitative hepatitis B virus surface antigen (HBsAg), HBeAg, and HBcAb was tested at each visit. Quantitative HBcAb evaluation was conducted for all the available samples in the trial, by using a newly developed double-sandwich anti-HBc immunoenzymoassay.

RESULTS: Serum HBcAb levels were significantly higher in patients with a serum alanine aminotransferase (ALT) level more than five times the upper limit of normal (ULN) compared with patients with ALT levels within 5 × ULN (4.25 ± 0.61 vs. 3.94 ± 0.47 log_10 IU/mL, P = 0.0345). Patients with HBeAg seroconversion were associated with a higher level of HBcAb at baseline, compared with those without HBeAg seroconversion (4.38 ± 0.54 vs. 4.02 ± 0.58 log_10 IU/mL, P = 0.029). The area under receiver operating characteristic curve of baseline HBcAb for HBeAg seroconversion was 0.71 (95% CI: 0.55–0.86, P = 0.013). When the baseline HBcAb level was >4.375 log_10 IU/mL, the sensitivity and specificity to predict HBeAg seroconversion at week 96 were 62.5% and 74.2%, and the positive likelihood ratio (LR) and negative LR were 2.42 and 0.51, respectively. The multivariate analysis result indicated that baseline serum HBcAb level was the only independent predictor for HBeAg seroconversion at week 96, with an odds ratio of 4.78.

CONCLUSION: Baseline serum HBcAb level >4.375 log_10 IU/mL could satisfactorily predict HBeAg seroconversion among patients with high viral load treated with NUC.

KEYWORDS: chronic hepatitis B, HBV: hepatitis B core antibody, hepatitis B e antigen, seroconversion, high viral load

Introduction

It has been estimated that 240 million people worldwide are chronically infected with hepatitis B virus (HBV). People with chronic HBV infection are at increased risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Five nucleos(t)ide analogs (NUCs) have been approved for antiviral treatment of chronic HBV infection in most countries. The aim of antiviral treatment for chronic HBV infection is to suppress HBV replication and to achieve hepatitis B virus e antigen (HBeAg) seroconversion in HBeAg seropositive patients, to improve health-related quality of
life, and patient survival.2 The presence of HBeAg seropositivity indicates active replication of HBV and a reflection of high risk of HCC. The relative risk of HCC in chronic HBV infection has been reported as 9.6% for patients who were seropositive for hepatitis B virus surface antigen (HBsAg) alone; the risk increased to 60.2% for patients who were both HBsAg seropositive and HBeAg seropositive.3 Therefore, it is important to monitor HBeAg status in patients with chronic HBV infection during anti-HBV treatment.

Recently, available evidence suggests that patients with chronic HBV infection with high viral load (HVL) are less likely to achieve HBeAg seroconversion and more likely to be associated with high drug-related resistance and treatment failure. In the 2-year GLOBE trial, data suggested that patients with chronic HBV infection with serum HBV DNA levels at baseline <9 log10 copies/mL were confirmed to have a stronger host-adaptive antiviral immune response. The performance of detection of HBcAb as a marker for HBeAg seroconversion in patients with chronic HBV infection and with HVL requires further validation.

In 2013, a study by Yuan et al reported that increased serum levels of hepatitis B virus core antibody (HBcAb) may indicate a stronger host-adaptive antiviral immune response in chronic HBV infection.4 This study suggested a possible role for HBcAb as a predictor of host immune response to HBV infection. However, due to the relatively low HBV DNA viral load, the performance of detection of HBcAb as a marker for HBeAg seroconversion in patients with chronic HBV infection and with HVL at baseline are limited. There is currently no specific predictor for HBeAg seroconversion in patients with chronic HBV infection with HVL.

In this study, a virologic response was defined as HBV DNA levels at baseline defined as serum HBV DNA levels >1 × 10^7 copies/mL enrolled in a multicenter, randomized, controlled trial, treated with lamivudine (LAM) and adefovir (ADV) (N = 32) or entecavir (ETV) (N = 42) for up to 96 weeks. Patients enrolled in the trial were HBsAg seropositive for at least 6 months, HBeAg-positive with an HVL at baseline, accompanied by alanine aminotransferase (ALT) levels greater than the upper limit of normal (ULN), documented on two separate occasions, at least 2 weeks apart, with the latest ALT ≥2 × ULN.

The exclusion criteria included patients who had received previous treatment with IFN or NUCs; pregnancy; a history of metabolic liver disease; patients who had diagnostic markers of co-infection with hepatitis C virus, hepatitis D virus, or HIV; autoimmune hepatitis; heavy alcohol intake; liver cirrhosis; or HCC.

Serological methods

Serum levels of ALT, HBV serological markers, and HBV DNA viral load were evaluated every 12 weeks from baseline to the end of the study. Levels of HBV serological markers and serum HBV DNA levels were measured at the Central Laboratory of Nanfang Hospital, and serum ALT levels were assessed at local laboratories according to local standard procedures.

Serum ALT levels were measured by automated techniques. HBsAg, HBeAg, and HBeAb were measured using a commercially available radioimmunoassay (ARCHITECT i2000SR; Abbott Laboratories, Abbott Park, IL, USA). Serum HBV DNA viral load was measured using real-time quantitative PCR, with the Cobas Amplicore and Cobas TaqMan, version 2.0 (CAP/CTM; Hoffman-La Roche Ltd., Basel, Switzerland).5 According to the manufacturer’s report, the HBV DNA linear range was 20 IU/mL to 1.7 × 10^4 IU/mL (1 IU/mL = 5.82 copies/mL).

Quantitative analysis of serum HBcAb levels was performed by using a newly developed, double-sandwich immunoassay (dynamic range 0.1–2.0 IU/mL; Wantai, Beijing, China), a method previously validated by the World Health Organization HBcAb standards.6 The evaluation was conducted with the investigators blinded to treatment status and other clinical characteristics, for all the available samples in the study. The samples were tested at dilutions of 1:100–1:100000 (10-fold increase) if the HBcAb level was >2.0 IU/mL (Figure S1).

In this study, a virologic response was defined as HBV DNA <100 IU/mL; biochemical responses were defined as normalization of ALT levels; HBeAg seroconversion was defined as HBeAg negative and HBeAb positive.

Reproducibility and reliability evaluation of the double-sandwich HBcAb assay

Five serum specimens were used for the evaluation of the reproducibility of the double-sandwich HBcAb assay used in

Methods

Patients studied

This study consisted of 74 patients with HVL (an HVL at baseline defined as serum HBV DNA levels >1 × 10^7 copies/mL) enrolled in a multicenter, randomized, controlled trial, treated with lamivudine (LAM) and adefovir (ADV) (N = 32) or entecavir (ETV) (N = 42) for up to 96 weeks.
the study. The HBcAb titers of the five specimens were 0.1, 0.3, 0.6, 1.2, and 2.0 IU/mL. The reproducibility was assessed from ten measurements of the five specimens. The coefficient of variation was calculated to estimate the precision of the assay. To evaluate the quantitative accuracy of the assay, 80 randomly selected serum specimens of chronic hepatitis B (CHB) patients were independently measured twice by the assay (Figure S1).

Statistical analysis

The measurements were expressed as mean ± SD for normally distributed data, and median (range), for data showing a non-normal distribution. Categorical data were expressed as a percentage. The HBV DNA levels were expressed in logarithmic units (log10 IU/mL). The χ2-test and Student’s t-test were applied when appropriate. Spearman’s rho tests were used for correlation analyses. We performed the randomization by random numbers generated by Excel. Data analysis and quality control procedures were performed using SPSS for Windows, version 13.0 (SPSS Inc., Chicago, IL, USA) with an alpha level of 0.05.

Ethics statement

The Institutional Review Board of Nanfang Hospital, Southern Medical University approved the study (ID: ZHF2011206). All procedures were in accordance with the ethical standards of the responsible committee on human experimentation and the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients included in the study.

Results

Patient demographics and clinical characteristics

A total of 74 patients who completed a 96-week treatment program with NUCs were included in the study, as shown in Figure 1. At the end of the study, 16 (21.6%) patients achieved HBeAg seroconversion in the cohorts. Of these 74 patients, there were 32 patients receiving LAM and ADV combination therapy with an average age of 32.9 ± 10.6 years; 42 patients receiving ETV therapy, with an average age of 30.1 ± 8.4 years. The baseline HBcAb levels in patients treated with LAM and ADV combination therapy and in ETV therapy were 4.06 ± 0.57 and 4.13 ± 0.61 log10 IU/mL, respectively. The two groups did not differ in the distribution of baseline demographics and clinical characteristics (P > 0.05, Table 1).

Evaluation of the serum HBcAb levels during antiviral treatment with NUCs

The HBcAb serum levels of patients were stratified according to whether HBeAg seroconversion was confirmed, as shown...
in Figure 2. At baseline, the mean levels of HBcAb were 4.38 ± 0.54 and $4.02 \pm 0.58 \log_{10} \text{IU/mL}$, respectively ($P = 0.029$), in patients with and without HBeAg seroconversion. During antiviral treatment, the mean HBcAb level decreased to $3.69 \pm 0.39 \log_{10} \text{IU/mL}$ at week 24 and $3.42 \pm 0.46 \log_{10} \text{IU/mL}$ at week 48, in patients with HBeAg seroconversion. Similar results were identified for those without HBeAg seroconversion at week 96. The mean HBcAb decreased to 3.53 ± 0.57 and $3.27 \pm 0.52 \log_{10} \text{IU/mL}$ at week 24 and week 48, respectively. Although the HBcAb level in both groups decreased during anti-HBV treatment, no difference was found between the two groups with respect to HBcAb levels at week 24 and week 48 in our study.

Analysis of the performance of HBcAb as a predictor of 96-week HBeAg seroconversion

The area under receiver operating characteristic (AUROC) curve was used to determine whether the serum levels of HBcAb could be an indicator for HBeAg seroconversion at week 96 for patients with chronic HBV infection and HVL (Figure 3). The AUROC was 0.71 ($P = 0.013$) with 95% CI from 0.55 to 0.86. When baseline HBcAb level $>4.375 \log_{10} \text{IU/mL}$, the predictive sensitivity and specificity for HBeAg seroconversion at week 96 during NUC treatment were 62.5% and 74.2%, and the positive likelihood ratio (LR) and negative LR were 2.42 and 0.51, respectively.

In order to further evaluate baseline characteristics in predicting HBeAg seroconversion, a multivariate analysis was conducted with inclusion of gender, age, ALT level, HBV DNA levels, HBcAb levels, and type of treatment in the model. The results showed that baseline serum HBcAb level was the only independent strong predictor for HBeAg seroconversion at week 96 with an odds ratio (OR) of 4.78 ($P = 0.009$), as shown in Table 2.

To validate the serum HBcAb cut-off value set as $4.375 \log_{10} \text{IU/mL}$ to predict the HBeAg seroconversion at week 96, the rates of HBeAg seroconversion between patients with different HBcAb levels were compared. The results showed that 40% (10/25) patients with baseline HBcAb $>4.375 \log_{10} \text{IU/mL}$ achieved HBeAg seroconversion at week 96 compared with only 12.2% (6/49) of patients with baseline HBcAb level $\leq 4.375 \log_{10} \text{IU/mL}$ ($P = 0.006$), as shown in Figure 4.

Discussion

Serum HBcAb is one of the most widely used serum markers for HBV infection. However, the clinical significance of serum HBcAb levels is poorly understood. There have been few studies to evaluate the performance of quantitative HBcAb in predicting HBeAg seroconversion among patients with chronic HBV infection with HVL. This study has shown that a baseline serum HBcAb level $>4.375 \log_{10} \text{IU/mL}$ could predict which patients with chronic HBV infection and with an HVL experience HBeAg seroconversion at week 96 during treatment with NUCs.

Previous studies have demonstrated that a high HBV DNA level is an independent predictor of patient outcome with NUC treatment, and a predictor of risk of developing HCC. For patients with chronic HBV infection and with HVL, there remains a clinical challenge to improve the efficacy of antiviral therapy and to achieve desirable therapeutic endpoints.

A previously published study has reported predictive serological markers in chronic HBV infection, including HBV

Figure 2 Serum levels of HBcAb at different timepoints according to whether HBeAg seroconversion occurred at week 96. **Notes:** Stratification of patients according to whether or not HBeAg seroconversion occurred at week 96. The baseline mean quantitative serum HBcAb levels were 4.38 ± 0.54 and $4.02 \pm 0.58 \log_{10} \text{IU/mL}$ in groups with and without HBeAg seroconversion, respectively ($P = 0.029$). The mean serum HBcAb level in the group with HBeAg seroconversion decreased to $3.69 \pm 0.39 \log_{10} \text{IU/mL}$ at week 24 and to $3.42 \pm 0.46 \log_{10} \text{IU/mL}$ at week 48, and decreased to 3.53 ± 0.57 and $3.27 \pm 0.52 \log_{10} \text{IU/mL}$ at weeks 24 and 48 in the group without HBeAg seroconversion.

Figure 3 Baseline serum HBcAb levels to predict HBeAg seroconversion at week 96. **Notes:** The AUROC curve was 0.71 (95% CI: 0.55–0.86, $P = 0.013$). When the baseline HBcAb level $>4.375 \log_{10} \text{IU/mL}$, the sensitivity and specificity to predict HBeAg seroconversion at week 96 during nucleos(t)ide analog treatment were 62.5% and 74.2%, and the positive likelihood ratio (LR) and negative LR were 2.42 and 0.51, respectively.
Table 2 Baseline variables associated with HBeAg seroconversion

Variables	Univariate analysis OR 95% CI	P-value	Multivariate analysis OR 95% CI	P-value		
Gender (female/male)	0.64	0.19–2.16	0.47			
Age (year)	0.99	0.94–1.05	0.79			
ALT level (U/L)	3.28	0.84–12.8	0.08			
HBV DNA levels (lg IU/mL)	1.67	0.51–4.43	0.39			
HBcAb levels (lg IU/mL)	4.78	1.48–15.4	0.009	4.78	1.48–15.4	0.009
Type of treatment (LAM+ADV/ETV)	1.96	0.64–5.99	0.24			

Abbreviation: HBV, hepatitis B virus.

DNA viral load and serum ALT levels. However, measurement of serum HBV DNA levels reflects the pathogen load. Chronic viral hepatitis results from pathogen–host interactions, including the immune status of the host. Serum ALT levels may be raised due to a variety of other diseases, such as neuromuscular disease, myocardial injury, and other liver diseases. However, a high pretreatment ALT level, particularly more than 5 × ULN, is a strong predictor of HBeAg seroconversion in both IFN and NUC therapy. In CHB patients, the HBeAb level was positively correlated with the ALT level from 0.5 × ULN to 5 × ULN and reached a plateau at ALT levels greater than 5 × ULN, the cut-off value for treatment response prediction. In the present study, we demonstrated the practical application of measurement of serum HBeAb levels to predict HBeAg seroconversion in patients with chronic HBV infection and HVL; an elevated ALT level more than 5 × ULN and a baseline HBeAb level of >4.375 log_{10} IU/mL may be applied practically in real-world clinical practice.

Although baseline HBeAb levels showed an independent association with clinical outcome after NUC treatment, AUROC values for serum HBeAg were unsatisfactory at only 0.71. Therefore, a combination formula with several independent predictors may be more effective for predicting clinical outcome in patients with chronic HBV infection treated with NUCs. In 2009, Zeuzem et al reported that virological response at week 24 was a strong predictor of clinical outcomes in patients with chronic HBV infection who received tenofovir treatment, although there was no significant early reduction in serum levels of HBcAb detected between patients with and without HBeAg seroconversion. The role of HBeAb serum levels in predicting serologic response during NUC treatment should be confirmed in larger, randomized clinical studies.

For patients with chronic HBV infection, the mechanisms underlying the relationship between HBeAb level and host immune status remain poorly understood, but HBV-specific CD4 and CD8 T-cells have an important role in the cellular immune response. Studies have further shown a role for B-cells; HBeAb is produced by HBeAg-activated B-cells. Recently, Zgair et al reported that HBeAb could inhibit or clear HBV through hepatocytotoxic effects associated with HBeAb-secreting B cells. Therefore, it is possible that high serum levels of HBeAb may indicate a robust adaptive immune host response against HBV infection, resulting in an improved clinical outcome following NUC treatment.

Another problem is that NUC therapy does not eliminate viral cccDNA and recurrent viremia is the clinical recurring event after treatment cessation in most CHB patients. Combination therapies of NUC with IFN are associated with increased cure rates with HBsAg loss compared to NUC alone. Therefore, serum conversion from HBeAg to HBeAb is an insufficient marker to eliminate HBV. Although HBeAg seroconversion is a good serum marker in the first few years during treatment, suggesting that risk of end-stage hepatic disease in CHB patients has been reduced. However, for a long-term anti-HBV treatment, HBsAg seroconversion will be a more appropriate marker. A further study about the correlation between HBeAb and HBsAg seroconversion should be done. Recent studies have reported that the innate immune response is critical in the development of adaptive
immune response, and multiple innate immune pathways are
ultimately induced in chronic HBV infection with relevance
to clinical outcome.27–30 The innate immune response and
adaptive immune response should also be taken into consider-
ation as research targets in further studies.

This study had several limitations. The major limitation
was the relatively small sample size. However, the data
collected for this study were collection from only four centers.
That could remedy the limitation and reduce bias to some
extent. We believe that this preliminary study has resulted
in findings that warrant future, larger multicenter controlled
studies. The approaches used in this study to measure HBcAb
levels should be confirmed in future studies and verified with
the use of other methods. Therefore, we recommend that to
validate these preliminary results further, and to understand
the value of serum HBcAb measurement, these findings
should be supplemented with the use of examination of liver
biopsies to provide information on the histological response.

In conclusion, the findings of this study have shown that
in CHB patients with HVL treated with NUCs, a baseline
serum HBcAb level >4.375 log_{10} IU/mL was predictive for
HBeAg seroconversion.

Acknowledgments

This study was supported by grants from Bristol-Myers
Squibb and the Chinese Foundation for Hepatitis Preven-
tion and Control (GHF 2011206). We want to thank Dr
Yegui Jiang for providing the participants from Southwest
Hospital, Third Military Medical University; Dr Yonghong
Zhang for providing the participants from Second Xiangya
Hospital, Central South University, and Dr Fangfang Lv for
providing the participants from Sir Run Run Shaw Hospital,
Zhejiang University.

The abstract of this paper was presented at the 26th
Annual Conference of APASL (February 15–19, 2017,
Shanghai) as an abstract presentation with interim find-
ings. The poster’s abstract was published in Abstracts of the
26th Annual Conference of APASL, February 15–19, 2017,
Shanghai, China. Hepatol Int. 2017;11(Suppl 1).

Disclosure

The authors report no conflicts of interest in this work.

References

1. Sarin SK, Kumar M, Lau GK, et al. Asian-Pacific clinical practice
guidelines on the management of hepatitis B: a 2015 update. Hepatol
Int. 2016;10(1):1–98.

2. Terrault NA, Bzowej NH, Chang KM, et al. AASLD guidelines for
treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–283.

3. Yang HH, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of
hepatocellular carcinoma. N Engl J Med. 2002;347(3):168–174.

4. Liaw YF, Gane E, Leung N, et al. 2-Year GLOBE trial results: telbi-
vudine is superior to lamivudine in patients with chronic hepatitis B.
Gastroenterology. 2009;136(2):486–495.

5. Moucari R, Mackiewicz V, Lada O, et al. Early serum HBsAg drop: a
strong predictor of sustained virological response to pegylated interferon
alfa-2a in HBsAg-negative patients. Hepatology. 2009;49(4):1151–1157.

6. Cai S, Yu T, Jiang Y, Zhang Y, Lv F, Peng J. Comparison of entecavir
monotherapy and de novo lamivudine and adefovir combination therapy
in HBeAg-positive chronic hepatitis B with high viral load: 48-week
result. Clin Exp Med. 2016;16(3):429–436.

7. Yuan Q, Song LW, Liu CJ, et al. Quantitative hepatitis B core antibody
level may help predict treatment response in chronic hepatitis B patients.
Gut. 2013;62(1):182–184.

8. Cai SH, Lv FF, Zhang YH, Jiang YG, Peng J. Dynamic comparison
between Daan real-time PCR and Cobas TaqMan for quantification of
HBV DNA levels in patients with CHB. BMC Infect Dis. 2014;14:85.

9. Li A, Yuan Q, Huang Z, et al. Novel double-antigen sandwich immuno-
assay for human hepatitis B core antibody. Clin Vaccine Immunol.
2010;17(3):464–469.

10. Song LW, Liu PG, Liu CJ, et al. Quantitative hepatitis B core antibody
levels in the natural history of hepatitis B virus infection. Clin Microbiol
Infect. 2015;21(2):197–203.

11. Zeuzem S, Gane E, Liaw YF, et al. Baseline characteristics and early
on-treatment response predict the outcomes of 2 years of telbivudine
therapy in chronic hepatitis B. J Hepatol. 2009;51(1):11–20.

12. Peng J, Cao J, Yu T, Cai S, Li Z, Zhang X, Sun J. Predictors of sustained
virologic response after discontinuation of nucleotide analog therapy
for chronic hepatitis B. Saudi J Gastroenterol. 2015;21(4):245–253.

13. Garvey WT, Mechanick JI, Brett EM, et al. American association of
clinical endocrinologists and American college of endocrinology
comprehensive clinical practice guideline for medical care of patients
with obesity. Endocr Pract. 2016;22 Suppl 3:1–203.

14. European Association for the Study of the Liver (EASL); European
Association for the Study of Diabetes (EASD); European Association
for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice
Guidelines for the management of non-alcoholic fatty liver disease.
J Hepatol. 2016;64(6):1388–1402.

15. Chien RN, Liaw YF, Atkins M. Pretherapy alanine transaminase level as
a determinant for hepatitis B e antigen seroconversion during lamivudine
therapy in patients with chronic hepatitis B. Asian Hepatitis Lamivudine
Trial Group. Hepatology. 1999;30(3):770–774.

16. Yuen MF, Yuan JJ, Hui CK, et al. A large population study of spontaneous
HBsAg seroconversion and acute exacerbation of chronic hepatitis
B infection: implications for antiviral therapy. Gastroenterology.
2005;11(24):3772–3777.

17. Furuichi Y, Tokuyama H, Ueha S, Kurachi M, Moriyasu F, Kakimi K.
Depletion of CD25+CD4+ T cells (Treg) enhances the HBV-specific
CD8+ T cell response primed by DNA immunization. World J Gastro-
enterol. 2005;11(24):3772–3777.

18. Bayard F, Malmassari S, Deng Q, Lone YC, Michel ML. Hepatitis B virus
(HBV)-derived DRB1*0101-restricted CD4 T-cell epitopes help in
the development of HBV-specific CD8+ T cells in vivo. Vaccine.
2016;34(22):3818–3826.

19. Leung N, Liaw YF, Gane E, et al. Enhanced protective capacity in chronic
hepatitis C and chronic hepatitis B virus infections. J Hepatol. 2011;55(1):53–60.

20. Zgair AK, Ghafil JA, Al-Sayidi RH. Direct role of antibody-
secreting B cells in the severity of chronic hepatitis B. J Med Virol.
2015;87(3):407–416.

21. Wu X, Cai S, Li Z, et al. Potential effects of telbivudine and entecavir
on renal function: a systematic review and meta-analysis. Virol J.
2016;13:64.

22. Moucari R, Mackiewicz V, Lada O, et al. Early serum HBsAg drop: a
strong predictor of sustained virological response to pegylated interferon
alfa-2a in HBsAg-negative patients. Hepatology. 2009;49(4):1151–1157.

23. Moucari R, Mackiewicz V, Lada O, et al. Early serum HBsAg drop: a
strong predictor of sustained virological response to pegylated interferon
alfa-2a in HBsAg-negative patients. Hepatology. 2009;49(4):1151–1157.

24. Moucari R, Mackiewicz V, Lada O, et al. Early serum HBsAg drop: a
strong predictor of sustained virological response to pegylated interferon
alfa-2a in HBsAg-negative patients. Hepatology. 2009;49(4):1151–1157.

25. Moucari R, Mackiewicz V, Lada O, et al. Early serum HBsAg drop: a
strong predictor of sustained virological response to pegylated interferon
alfa-2a in HBsAg-negative patients. Hepatology. 2009;49(4):1151–1157.
23. Peng J, Yin J, Cai S, Yu T, Zhong C. Factors associated with adherence to nucleos(t)ide analogs in chronic hepatitis B patients: results from a 1-year follow-up study. Patient Prefer Adherence. 2015;9:41–45.

24. Marcellin P, Ahn SH, Ma X, et al. Combination of tenofovir disoproxil fumarate and peginterferon alpha-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology. 2016;150(1):134–144.

25. Cai S, Cao J, Yu T, Xia M, Peng J. Effectiveness of entecavir or telbivudine therapy in patients with chronic hepatitis B virus infection pre-treated with interferon compared with de novo therapy with entecavir and telbivudine. Medicine (Baltimore). 2017;96(22):e7021.

26. Zeng J, Cai S, Liu J, Xue X, Wu X, Zheng C. Dynamic changes in liver stiffness measured by transient elastography predict clinical outcomes among patients with chronic hepatitis B. J Ultrasound Med. 2017;36(2):261–268.

27. Maini MK, Gehring AJ. The role of innate immunity in the immunopathology and treatment of HBV infection. J Hepatol. 2016;64(1 Suppl):S60–70.

28. Lan P, Zhang C, Han Q, Zhang J, Tian Z. Therapeutic recovery of hepatitis B virus (HBV)-induced hepatocyte-intrinsic immune defect reverses systemic adaptive immune tolerance. Hepatology. 2013;58(1):73–85.

29. Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol. 2013;35(1):23–38.

30. Martinet J, Dufeu-Duchesne T, Bruder Costa J, et al. Altered functions of plasmacytoid dendritic cells and reduced cytolytic activity of natural killer cells in patients with chronic HBV infection. Gastroenterology. 2012;143(6):1586–1596.
Supplementary materials

Figure S1 Additional performance validation of the double-sandwich anti-HBc assay.
Notes: (A) Reproducibility of the HBcAb assay. (B) Correlation analyses of the results obtained from two independent quantitative HBcAb measurements for 80 chronic hepatitis B serum specimens.
Abbreviations: Con.c, concentration; CV, coefficient of variation.

Figure S2 Correlation between the baseline HBcAb level and ALT.
Note: The baseline HBcAb level was positively associated with ALT (R value = 0.174, P = 0.0127).
Figure S3 Measurement of serum HBcAb levels in patients with chronic hepatitis B virus infection with different ALT levels, separated as four strata (ALT < 2 ULN n = 4, 2 ULN ≤ ALT < 5 ULN n = 24, 5 ULN ≤ ALT < 10 ULN n = 37, 10 ULN ≤ ALT n = 9). The serum HBcAb levels in patients who had elevated ALT levels more than 5 × ULN were significantly greater than in those who had lower elevated levels (4.25 ± 0.61 vs. 3.94 ± 0.47 log10 IU/mL, P = 0.0345).

Abbreviation: ULN, upper limit of normal.