Chromosome numbers and polyploidy events in Korean non-commelinids monocots: A contribution to plant systematics

Tae-Soo JANG* and Hanna WEISS-SCHNEEWEISS1

Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
1Department of Botany and Biodiversity Research, University of Vienna, A-1030 Vienna, Austria

(Received 4 June 2018; Revised 9 September 2018; Accepted 16 December 2018)

ABSTRACT: The evolution of chromosome numbers and the karyotype structure is a prominent feature of plant genomes contributing to or at least accompanying plant diversification and eventually leading to speciation. Polyploidy, the multiplication of whole chromosome sets, is widespread and ploidy-level variation is frequent at all taxonomic levels, including species and populations, in angiosperms. Analyses of chromosome numbers and ploidy levels of 252 taxa of Korean non-commelinid monocots indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with fewer triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found. The range of genome sizes of the analyzed taxa (0.3–44.5 pg/1C) falls well within that reported in the Plant DNA C-values database (0.061–152.33 pg/1C). Analyses of karyotype features in angiosperm often involve, in addition to chromosome numbers and genome sizes, mapping of selected repetitive DNAs in chromosomes. All of these data when interpreted in a phylogenetic context allow for the addressing of evolutionary questions concerning the large-scale evolution of the genomes as well as the evolution of individual repeat types, especially ribosomal DNAs (5S and 35S rDNAs), and other tandem and dispersed repeats that can be identified in any plant genome at a relatively low cost using next-generation sequencing technologies. The present work investigates chromosome numbers (n or 2n), base chromosome numbers (x), ploidy levels, rDNA loci numbers, and genome size data to gain insight into the incidence, evolution and significance of polyploidy in Korean monocots.

Keywords: base chromosome number, chromosome number, ploidy level, FISH, hybridization, polyploidization

Chromosome numbers and karyotype structure have always been considered to be an important character in analyses of the phylogenetic relationships and evolutionary processes in angiosperms (Levin and Wilson, 1976; Guerra, 2008; Jang et al., 2013). To date, chromosome numbers have been reported for about 25–30% of flowering plants (Bennett, 1998; Weiss-Schneeweiss and Schneeweiss, 2013). The chromosome numbers in angiosperms vary 160–fold (Weiss-Schneeweiss and Schneeweiss, 2013) ranging from 2n = 4 (Poaceae, Hyacinthaceae, Asteraceae, Cyperaceae: Vanzela et al., 1996; Roberto, 2005) to 2n = 640 (Crassulaceae: Uhl, 1978). The haploid chromosome numbers of the majority of angiosperms range between n = 7 and n = 20 (Grant, 1982; Masterson, 1994). Taxonomic groups display varying degrees of chromosome number changes both among and within genera (e.g., 2n = 8, 10, 12, 14, 19, 20, 25, 26, 27, 28, 35, 42 in Prospero/Hyacinthaceae: Jang, 2013; 2n = 18, 20, 22, 24, 28, 36, 40, 46, 48, 54, 56, 60, 66 in Melampodium/Asteraceae: Stuessy, 1971; Weiss-Schneeweiss et al., 2009; 2n = 24 in Lilium/Liliaceae: Sultana et al., 2010), and such changes continue to be used in systematics and elucidating evolutionary patterns within these groups of plants (Mayrose et al., 2010; Schubert and Lysak, 2011; Husband et al., 2013; McCann et al., 2016).

Hybridization and polyploidization have been commonly observed in many economically important plant groups (Lim et al., 2007; Mandáková et al., 2013), but recent studies have demonstrated that these processes have also been a major force
in the diversification and speciation of angiosperms in general (Leitch and Leitch, 2008). Hybrids and polyploids experience numerous chromosomal rearrangements (e.g., inversions, deletions, translocations, centromeric shifts, etc.) and more subtle changes in sequence composition (sequence loss or gain, expansion/reduction of repetitive DNA), and they continue to generate species diversity contributing to speciation events (Solís and Solís, 2009; Weiss-Schneeweiss and Schneeweiss, 2013). The propensity for polyploidization appears to be unequally distributed in plant groups with polyploidy in angiosperms being more common in monocots (ca. 58%) than in dicots (ca. 43%) (Solís and Solís, 2009; Weiss-Schneeweiss et al., 2013).

There are two general types of polyploidy: autopolyploidy (i.e., multiplication of chromosome sets within a single species or genome) and allopolyploidy (i.e., multiplication of chromosome sets accompanied by merger of genomes of two or more species), both of which arise as a result of a failure of either meiotic or mitotic cell division (Stebbins, 1971; Otto and Whiffin, 2000; Ramsey and Schemske, 2002). Although autopolyploidy has historically been considered as being less frequent and less important than allopolyploidy (Stebbins, 1971; Solís et al., 2007), natural autopolyploids are much more common than originally assumed (Ramsey and Schemske, 2002; Parisod et al., 2010), as recent studies continue to demonstrate. Multiple ploidy levels have been demonstrated to exist within many species (autopolyploidy), which often influences the degree of morphological variation in those taxa. Current focus of polyploidy research is on the genetic, epigenetic, chromosomal, and genomic consequences of polyploidization (Bowers et al., 2003; Liu and Wendel, 2003; Osborn et al., 2003; Rapp and Wendel, 2005), mechanisms of polyploid formation and establishment (Ramsey and Schemske, 2002), the ecological effects of polyploidization (Weiss-Schneeweiss et al., 2013; Solís et al., 2016), and most of all, the impact of polyploidy on plant diversity (Mandáková et al., 2017; Jang et al., 2018).

Modern cytology greatly profits from technical advances especially in situ hybridization (e.g., fluorescence in situ hybridization [FISH] and genomic in situ hybridization [GISH], respectively), large scale screening for polyploidy incidence using flow cytometry, and the advent of next-generation sequencing (NGS) technologies. These allow identification, quantification and localization on the genomes of various repeat types, which contribute to genome size variation and changes of which accompany species diversification and speciation (Weiss-Schneeweiss et al., 2015). Repetitive DNA fraction in plant genomes comprises tandem repeats (e.g., satellite DNAs, microsatellites, and ribosomal RNA genes [5S and 35S rRNA genes]) and dispersed repeats represented by mobile genetic elements (Weiss-Schneeweiss et al., 2015). The localization and evolution of tandemly repeated genes encoding 35S (18S-5.8S-25S) and 5S rRNAs in plants have been particularly useful for analysing systematic relationships between closely related species (Weiss-Schneeweiss and Schneeweiss, 2013).

The chromosome numbers in Korean non-Commelinids monocots have previously been reported for a number of taxonomically closely related taxa (Rice et al., 2015, references therein), although the incidence of polyploids and its evolutionary aspects have not been addressed in detail. It is therefore timely to summarize the knowledge of chromosome numbers, genome sizes, and polyploidy incidence in the Korean monocots (Rice et al., 2015; Vitales et al., 2017) and to identify the most important taxonomic groups in which questions of chromosomal evolution can be addressed most effectively.

Chromosome numbers and the incidence of polyploidy in non-Commelinids monocot species native to Korea

All available chromosome numbers and base chromosome numbers for Korean non-Commelinids monocots were obtained from the Chromosome Counts Database (CCDB, version 1.45: http://cytodb.tau.ac.il/Angiosperms/, accessed on 2018 May 22) (Rice et al., 2015) following APG IV classification system (Angiosperm Phylogeny Group IV) (Appendix 1) (The Angiosperm Phylogeny Group, 2016). Due to the scarcity of available data on chromosome numbers and ploidy levels variation in Korean Commelinids including Arecales, Commelinales, Poales, and Zingiberales (The Angiosperm Phylogeny Group, 2016), these were excluded from the current analyses.

The systematic ranking of taxa adopted in this study was mainly based on the recent online resources for monocot plants (http://e-monocot.org/), the World Checklist of Selected Plant Families (http://wesp.science.kew.org), the Missouri Botanical Garden Tropicos Database (http://www.tropicos.org/), and the nomenclature was adopted from the most accepted taxonomic treatment for the species based on the Korean Plant Names Index Committee (http://www.nature.go.kr/kpni/index.do) (Appendix 1).

The genome size values and ploidy level inferences in Korean non-Commelinids monocots were retrieved from the Plant DNA C-values database (http://www.kew.org/cvalues/, accessed on 2018 May 22) (Bennett and Leitch, 2012). The
data on number and chromosomal localization of rDNA loci (5S and 35S rDNA) in Korean non-Commelinids monocots obtained applying fluorescent in situ hybridization were retrieved from the third release of the plant rDNA database (Vitales et al., 2017; http://www.plantrDNAdatabase.com/, accessed on 2018 May 22).

Chromosome numbers are reported for 252 taxa (232 species, 2 subspecies, and 18 varieties) of Korean monocots, with the exception of Commelinids, due to the scarcity of published chromosome numbers for this very speciose this group (Appendix 1). Base chromosome numbers and ploidy levels variation is given for each taxon in Appendix 1. The chromosome numbers reported for Korean non-Commelinids monocots vary between $2n = 2x = 10$ in *Paris verticillata* M. Bieb. and $2n = 40x = 400$ in *Dioscorea japonica* Thunb. (Appendix 1). To date, the documented chromosome numbers in angiosperms vary from $2n = 4$ (e.g., *Ornithogalum tenuifolium* Delaroche in Hyacinthaceae) to $2n = 640$ (*Sedum sueculea* Kinnach in Crassulaceae), although most species possess between $2n = 14$ and $2n = 40$ chromosomes (Guerra, 2008; Weiss-Schneeweiss and Schneeweiss, 2013). The base chromosome numbers of analyzed Korean species vary from $x = 5$ in the genus *Paris* L. to $x = 30$ in the genus *Hosta* Tratt. (Appendix 1). Not only interspecific base chromosome number variation is found in thirteen genera analyzed here (*Acorus* L., *Arisaema* Mart., *Alisma* L., *Hydrocharis* L., *Potamogeton* L., *Lycoris* Herb., *Asparagus* Tourn. ex L., *Polygonatum* Mill., *Scilla* L., *Iris* Tourn. ex L., *Cephalanthera* Rich., *Gastrodia* R. Br., *Fritillaria* Tourn. ex L.) (Appendix 1) but also intraspecific base chromosome number variation is found within several species ($x = 9, 11, 12$ in *Acorus calamus* L.; $x = 13, 14$ in *Arisaema amurense* Maxim.; $x = 13, 14$ in *Arisaema peninsulae* Nakai; $x = 13, 14$ in most of taxa in the genus *Potamogeton* L.; $x = 9, 10$ in *Polygonatum falcatum* A. Gray; $x = 10, 11$ in *Polygonatum humile* Fisch. ex Maxim.; $x = 9, 10, 11$ in *Polygonatum involucratum* (Franch. & Sav.) Maxim.; $x = 8, 9$ in *Scilla scilloides* (Lindl.) Druce) (Appendix 1). The incidence of both interspecific ($x = 5, 6, 7$ in *Lotus/Fabaceae*; Grant, 1991; $x = 9, 10, 11, 12, 13, 14$ in *Melampodium/Asteraceae*: Blöch et al., 2009; $x = 3, 4, 5, 6$ in *Crepis/Asteraceae*: Babcock and Jenkins, 1943) and intraspecific base chromosome number variation ($x = 5, 6, 7$: *Prospero autumnale* complex: Jang et al., 2013; $x = 8, 9$: *Scilla scilloides* complex: Choi et al., 2008) have quite frequently been reported in angiosperms (Hubbard et al., 2003). Due to very low levels of phenotypic variation and thus lack of diagnostic morphological characters for species delimitations in some taxonomically intricate plant groups (often treated as species complexes), more detailed karyological investigations of the chromosome number variations and karyotype structure are needed for correct interpretation of taxonomic and evolutionary patterns as well as classifications of angiosperms in general, but also specifically of monocot species native in Korea in global world-wide context.

Two general types of polyploids can be distinguished, autopolyploids and allopolyploids. Allopolyploids originate via hybridization of at least two different taxa, thus carrying different multiplied sets of chromosomes, while autopolyploids result from multiplication of entire chromosome sets within one taxon, typically species. Thus, both hybridization and polyploidization may play an important role in creating new species diversity in angiosperms (Guerra, 2008; Solis and Solis, 2009; Hubbard et al., 2013; Weiss-Schneeweiss and Schneeweiss, 2013). In this study, the incidence of polyploidy has frequently been reported in *Araceae* Juss., *Hydrocharitaceae* Juss, *Juncaginaceae* Rich., *Amaryllidaceae* J. St.-Hil., *Asparagaceae* Juss., *Dioscoreaceae* R. Br., *Liliaceae* Juss., *Melanthiaceae* Batsch ex Borkh., *Smilacaceae* Vent. (Appendix 1). Analyses of ploidy levels distribution among these groups indicated that diploids (ca. 44%) and tetraploids (ca. 14%) prevail, with triploids (ca. 6%), pentaploids (ca. 2%), and hexaploids (ca. 4%) being found less frequently (Fig. 1, Appendix 1). Polyploidy is less frequent in *Orchidaceae* than in other families of Korean non-Commelinids monocots (Appendix 1), in agreement with previous reports for this region (Goldblatt, 1980; Ko et al., 2009; Rice et al., 2015, references therein). Despite the relatively high incidence of polyploidy in Korean non-Commelinids monocot flora and ease of inferring more recent polyploidy events based purely on increase of chromosome numbers, the clear inference of the mode of polyploids origin and inferences of the patterns of their post-polyploidization genome evolution are non-trivial and thus are not attempted here. These require rigorous phylogenetic analyses of the genera harboring polyploids to infer putative parental species and subsequent molecular cytogenetic analyses as well as genome size measurements to infer the patterns of their genome evolution. Such data are available only for a handful of selected monocot taxa (Appendix 1) and thus, more in-depth and group-oriented molecular cytological analyses are required to assist and guide species delimitation and interpretation of phylogenetic relationships and evolutionary patterns among Korean monocots (Choi et al., 2008; Jang et al., 2013; Jang and Weiss-Schneeweiss, 2015).
Fig. 1. Distribution of ploidy level variation containing two to eight ploidy levels in non-Commelinids monocot species occurring in Korea (representing their worldwide distribution).

Fig. 2. Distribution of genome size variation in non-Commelinids monocot species occurring in Korea (representing their worldwide distribution).
Genome size variation in non-commelinids monocots species native to Korea (in worldwide context)

The dynamics of genome size variation in a group of related diploid taxa can be very high despite lack of change in chromosome number. Genome size increase is, however, directly correlated to polyploidization, particularly recent one. Genome size changes in the absence of chromosome number changes are attributed to differential accumulation of various types of repetitive DNA elements (Leitch and Leitch, 2013). The range of genome sizes of Korean monocots falls within that reported in the Plant DNA C-values database which ranges from 0.061 pg/1C of DNA in *Genlisea tuberosa* Rivadavia, Gonella & A. Fleischm. (Fleischmann et al., 2014) to 152.33 pg/1C of DNA in *Paris japonica* Franch. (Pellicer et al., 2010). The 1C-values of species studied here differ nearly 150-fold and range from 0.3 pg in *Spirodea polyrrhiza* (L.) Schl. (Araceae) to 44.5 pg in *Trillium kamtschaticum* Pall. ex Pursh (Melanthiaceae) (Fig. 2, Appendix 1). In general, the broad range of variation of genome sizes in flowering plants correlates with the differences of total karyotype length and incidence of polyploidy, but also correlates with other factors, like the life cycle types (annual/perennial) (Bennett, 1972; Chumová et al., 2015).

Patterns of genome evolution: the use of molecular cytogenetics and phylogenetic analyses in Plant Systematics

Extensive studies of chromosome numbers (including polyploidy incidence) and genome sizes in evolutionary context, aiming to elucidate the genome dynamics and often aiding taxonomic classifications have often been carried out in plants of agricultural importance or in model plants (Gong et al., 2012; Renny-Byfield et al., 2013; Novák et al., 2014; Zhang et al., 2014; Jang et al., 2014; and Weiss-Schneeweiss, 2015). Repetitive DNA fraction of plant genomes is composed of tandem repeats encompassing satellite DNAs, microsatellites and rDNAs (5S and 35S ribosomal RNA genes) as well as dispersed repeats represented by mobile genetic elements, known also as transposable elements. The latter comprise class I retroelements and class II DNA transposons (Weiss-Schneeweiss et al., 2015). In-depth analyses of repeatomes have recently been demonstrated to be informative for inferences of phylogenetic relationships in plants (Table 1) (Dodsorth et al., 2015, 2017; McCann et al., 2018).

Molecular cytogenetic mapping of the nuclear ribosomal RNA genes encoding for 35S (18S-5.8S-25S) and 5S rDNAs have proved useful for identifying the patterns and dynamics of chromosomal changes in closely related species groups (Jang et al., 2013, 2016a; Vitales et al., 2017). The distribution of rDNA loci has been reported for some Korean monocots, as summarized in Table 1 (data retrieved from Plant rDNA Database; http://www.plantrDNAdatabase.com; 2018 May 22). The number and localization of rDNA loci in diploids and polyploids was intensively studied in selected genera of Alismatales (Wan et al., 2012), Asparagales (Hizume, 1994; Hizume and Araki, 1994; Lee et al., 1999; Do et al., 1999, 2001; Remon-Büttner et al., 1999; Kim et al., 2004; Hayashi et al., 2005; Lim et al., 2007; Deng et al., 2012; Son et al., 2012), and Liliales (Sultana et al., 2010). A survey of rDNA loci numbers reported for Korean monocots indicated that rDNA loci number can vary at the interspecific level in the genera *Allium*, *Lilium*, and *Potamogeton* (between 2 and 6) (Table 1) regardless of chromosome number and ploidy level variation between species, as show for many other plant groups (Table 1, Appendix 1). The rDNA loci number variation within species or among closely related taxa have often been shown to be correlated with geographic and/or populational factors (e.g., Jang et al., 2016a). Thus, the localization of rDNA loci analyzed in comparative context aids not only the analyses of chromosomal structural changes, but when interpreted in phylogenetic context (e.g., Jang et al., 2013, 2016b), it also allows broader conclusions with implications for taxonomy. Monocot genomes are often more dynamically evolving than those of the dicots. Thus, further cytogenetic analyses of selected groups of Korean monocots will be undertaken to shed light into their genome evolution and evolutionary relationships. Such analyses should and will certainly include also populations and relatives from other geographical areas to allow for more robust conclusions to be drawn.
Table 1. Summary of the chromosome numbers, ploidy level variation, and numbers of 5S and 35S rDNA signals in non-Commelinids monocot species occurring in Korea (representing their worldwide distribution)

Taxon	2n	Ploidy levels	5S rDNA	35S rDNA	References
Potamogeton crispus L.	48	4x	2	2	Wan et al. (2012)
P. distinctus A. Benn.	52	4x	2	2	Wan et al. (2012)
P. malaiamia Miq.	52	4x	2	4	Wan et al. (2012)
P. natans L.	52	4x	4	6	Wan et al. (2012)
P. octandrus Poir.	28	2x	2	2	Wan et al. (2012)
P. perfoliatus L.	50	4x	2	4	Wan et al. (2012)
Alismatales R. Br. ex Bercht. & J. Presl					
Allium cepa L.	16	2x	4	2	Hizume (1994)
A. fistulosum L.	16	2x	2	2	Do et al. (2001)
A. sativum L.	16	2x	2	4	Do et al. (2001)
Lycoris radiata (L'Hér.) Herb.	33	3x	4	6	Hayashi et al. (2005)
Asparagus officinalis L.	20	2x	2	6	Remon-Büttner et al. (1999)
Liliales Perleb					
Lilium amabile Palib.	24	2x	2	6	Sultana et al. (2010)
L. callosum Siebold & Zucc.	24	2x	2	10	Sultana et al. (2010)
L. cernuum Kom.	24	2x	2	10	Sultana et al. (2010)
L. concolor Salish.	24	2x	2	10	Sultana et al. (2010)
L. dauricum K. Gawl.	24	2x	2	8	Sultana et al. (2010)
L. distichum Nakai ex Kamih.	24	2x	2	8	Sultana et al. (2010)
L. hansonii Leichtlin ex D. D. T. Moore	24	2x	2	15	Sultana et al. (2010)
L. lancifolium Thumb.	24	2x	2	10	Sultana et al. (2010)
L. lancifolium Thumb.	36	3x	3	15	Sultana et al. (2010)
L. tsingtana use Gilg	24	2x	2	8	Sultana et al. (2010)
L. tsingtana use Gilg	24	2x	2	8	Sultana et al. (2010)
Acknowledgments

This work was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korea government (grant numbers NRF-2018R1C1B6003170) to T.-S. Jang.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Literature Cited

Babcock, E. B. and J. A. Jenkins. 1943. Chromosomes and phylogeny in Crepis. III. The relationships of one hundred and thirteen species. University of California Publications in Botany 18: 241–292.

Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B-Biological Sciences 181: 109–135.

Bennett, M. D. 1998. Plant genome values: how much do we know? Proceedings of the National Academy of Sciences of the United States of America 95: 2011–2016.

Blöch, C., H. Weiss-Schneeweiss, G. M. Schneeweiss, M. H. J. Barfuss, C. A. Rebermig, J. L. Villaseñor and T. F. Stuessy. 2009. Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dyssyndesis and polyplody chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Molecular Phylogenetics and Evolution 53: 220–233.

Bowers, J. E., B. A. Chapman, J. Rong and A. H. Paterson. 2003. Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422: 433–438.

Choi, H.-W., J.-S. Kim, S.-H. Lee and J.-W. Bang. 2008. Physical mapping by FISH and GISH of rDNA loci and discrimination of genomes A and B in Scilla scilloides complex distributed in Korea. Journal of Plant Biology 51: 408–412.

Chumová, Z., J. Krejčíková, T. Mandáková, J. Suda and P. Trávníček. 2015. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). PLoS ONE 10: e0133748.

Do, G.-S., B.-B. Seo, J.-M. Ko, S.-H. Lee, J.-H. Pak, I.-S. Kim and S.-D. Song. 1999. Analysis of somaclonal variation through tissue culture and chromosomal localization of rDNA sites by fluorescent in situ hybridization in wild Allium tuberosum and a regenerated variant. Plant Cell, Tissue and Organ Culture 57: 113–119.

Do, G. S., B. B. Seo, M. Yamamoto, G. Suzuki and Y. Mukai. 2001. Identification and chromosomal location of tandemly repeated DNA sequences in Allium cepa. Genes and Genetic Systems 76: 53–60.

Dodsworth, S., M. W. Chase, L. J. Kelly, I. J. Leitch, J. Macas, P. Novák, M. Piednoël, H. Weiss-Schneeweiss and A. R. Leitch. 2015. Genomic repeat abundances contain phylogenetic signal. Systematic Biology 64: 112–126.

Dodsworth, S., T.-S. Jang, M. Struebig, M. W. Chase, H. Weiss-Schneeweiss and A. R. Leitch. 2017. Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaeae). Plant Systematics and Evolution 303: 1013–1020.

Emadzade, K., T.-S. Jang, J. Macas, A. Kovářík, P. Novák, J. Parker and H. Weiss-Schneeweiss. 2014. Differential amplification of satellite PaB6 in chromosomally hypervariable Prospero autumnale complex (Hyacinthaceae). Annals of Botany 114: 1597–1608.

Fleischmann, A., T. P. Michael, F. Rivadavia, A. Sousa, W. Wang, E. M. Temsch, J. Greilhuber, K. F. Müller and G. Heubl. 2014. Evolution of genome size and chromosome number in the carnivorous plant genus Genlisea (Lentibulariaceae), with a new estimate of the minimum genome size in angiosperms. Annals of Botany 114: 1651–1663.

Goldblatt, P. 1980. Polyplody in angiosperms: monocotyledons. In Polyplody: Biological Relevance. Lewis, W. H. (ed.), Plenum Press, New York. Pp. 219–239.

Gong, Z., Y. Wu, A. Kobližková, G. A. Torres, K. Wang, M. Iovene, P. Neumann, W. Zhang, P. Novák, C. R. Buell, J. Macas and J. Jiang. 2012. Repeatless and repeat-based centromeres in potato: implications for centromere evolution. The Plant Cell 24: 3559–3574.

Grant, V. 1982. Chromosome number patterns in primitive angiosperms. Botanical Gazette 143: 390–394.

Grant, W. F. 1991. Chromosomal evolution and aneuploidy in Lotus. In Chromosome Engineering in Plant Genetics: Genetics, Breeding, Evolution. Part B: Tsuchiya, T. and P. K. Gupta (eds.), Elsevier, Amsterdam. Pp. 429–447.

Guerra, M. 2008. Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenetic and Genome Research
Ko, E.-M., H.-J. Choi and B.-U. Oh. 2009. A cytotaxonomic study
Hayashi, A., T. Saito, T. Mukai, S. Kurita and T. Horib. 2005.

Genetic variation in Lycoris radiata var. radiata in Japan.

Genes and Genetic Systems 80: 199–212.

Hizume, M. 1994. Allodiploid nature of Allium wakegi Araki revealed by genomic in situ hybridization and localization of 5S and 18S rDNAs. Japanese Journal of Genetics 69: 407–415.

Hizume, M. and H. Araki. 1994. Chromosomal localization of rRNA genes in six cytotypes of Scilla scilloides Druce. Cytologia 59: 35–42.

Husband, B. C., S. J. Baldwin and J. Suda. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In Plant Genome Diversity. Vol. 2. Physical Structure, Behaviour and Evolution of Plant Genomes. Leitch, I. J., J. Greilhuber, J. Doležel and J. F. Wendel (eds.), Springer, Vienna. Pp. 255–276.

Jang, T.-S. 2013. Chromosomal evolution in Prospero autumnale complex. Ph.D. dissertation, University of Vienna, Vienna, Austria, 165 pp.

Jang, T.-S., K. Emadzade, J. Parker, E. M. Temsch, A. R. Leitch, F. Speta and H. Weiss-Schneeweiss. 2013. Chromosomal diversification and karyotype evolution of diploids in the cytologically diverse genus Prospero (Hyacinthaceae). BMC Evolutionary Biology 13: 136.

Jang, T.-S., J. S. Parker, C. Takayama, S.-P. Hong, G. M. Schneeweiss and H. Weiss-Schneeweiss. 2016a. rDNA loci evolution in the genus Glechoma (Lamiaceae). PLoS ONE 11: e0167177.

Jang, T.-S., J. S. Parker, K. Emadzade, E. M. Temsch, A. R. Leitch and H. Weiss-Schneeweiss. 2018. Multiple origins and nested cycles of hybridization result in high tetraploid diversity in the monocot Prospero. Frontiers in Plant Science 9: 433.

Jang, T.-S., J. S. Parker and H. Weiss-Schneeweiss. 2016b. Structural polymorphisms and distinct genomic composition suggest recurrent origin and ongoing evolution of B chromosome in the Prospero autumnale complex (Hyacinthaceae). New Phytologist 210: 669–679.

Jang, T.-S. and H. Weiss-Schneeweiss. 2015. Formamide-free genomic in situ hybridization allows unambiguous discrimination of highly similar parental genomes in diploid hybrids and allopolyploids. Cytogenetic and Genome Research 146: 325–331.

Kim, S. Y., H. W. Choi and J. W. Bang. 2004. Physical mapping of rDNAs using McFISH in Anemarrhena asphodeloides Bunge. Korean Journal of Medicinal and Crop Sciences 12: 515–518 (in Korean).

Ko, E.-M., H.-J. Choi and B.-U. Oh. 2009. A cytotaxonomic study of Allium (Alliaceae) sect. Sacciflorum in Korea. Korean Journal of Plant Taxonomy 39: 170–180 (in Korean).

Lee, S. H., G. S. Do and B. B. Seo. 1999. Chromosomal localization of 5S rRNA gene loci and the implications for relationship within the Allium complex. Chromosome Research 7: 89–93.

Leitch, A. R. and I. J. Leitch. 2008. Genome plasticity and the diversity of polyploid plants. Science 320: 481–483.

Leitch, I. J. and A. R. Leitch. 2013. Genome size diversity and evolution in land plants. In Plant Genome Diversity. Vol. 2. Physical Structure, Behaviour and Evolution of Plant Genomes. Leitch, I. J., J. Greilhuber, J. Doležel and J. F. Wendel (eds.), Springer, Vienna. Pp. 307–322.

Levin, D. A. and A. C. Wilson. 1976. Rates of evolution in seed plants: net increase in diversity of chromosome numbers and species numbers through time. Proceedings of the National Academy of Sciences of the United States of America 73: 2086–2090.

Lim, K. Y., R. Matyasek, A. Kovarik and A. Leitch. 2007. Parental origin and genome evolution in the allopolyploid Iris versicolor. Annals of Botany 100: 219–224.

Liu, B. and J. F. Wendel. 2003. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution 29: 365–379.

Mandáková, T., A. Kovářík, J. Zozomová-Lihová, R. Shimizu-Imatsugi, K. K. Shimizu, K. Munnenhoff, K. Marhold and M. A. Lysak. 2013. The more the merrier: recent hybridization and polyploidy in Cardamine. The Plant Cell 25: 3280–3295.

Mandáková, T., M. Pouch, K. Harmanová, S. H. Zhan, I. Mayrose and M. A. Lysak. 2017. Multiples genome diploidization and diversification after an ancient allopolyploidization. Molecular Ecology 26: 6445–6462.

Masterson, J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–424.

Mayrose, I., M. S. Barker and S. P. Otto. 2010. Probabilistic models of chromosome number evolution and the inference of polyploidy. Systematic Biology 59: 132–144.

McCann, J., T.-S. Jang, J. Macas, G. M. Schneeweiss, N. J. Matzke, P. Novák, T. F. Stuessy, J. L. Villaseñor and H. Weiss-Schneeweiss. 2018. Dating the species network: allopolyploidy and repetitive DNA evolution in American daisies (Melampodium sect. Melampodium, Asteraceae). Systematic Biology 67:1010–1024.

McCann, J., G. M. Schneeweiss, T. F. Stuessy, J. L. Villaseñor and H. Weiss-Schneeweiss. 2016. The impact of reconstruction methods, phylogenetic uncertainty and branch lengths on inference of chromosome number evolution in American daisies (Melampodium, Asteraceae). PLoS ONE 11: e0162299.
Novák, P., E. Hřibová, P. Neumann, A. Klobůzková, J. Doležel and J. Macas. 2014. Genome-wide analysis of repeat diversity across the family Musaceae. PLoS ONE 9: e98918.

Novák, P., P. Neumann and J. Macas. 2010. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11: 378.

Osborn, T. C., J. C. Pires, J. A. Birchler, D. L. Auger, Z. J. Chen, H.-S. Lee, L. Comai, A. Madlung, R. W. Doerge, V. Colot and R. A. Martienssen. 2003. Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics 19: 141–147.

Otto, S. P. and J. Whitton. 2000. Polyploid incidence and evolution. Annual Review of Genetics 34: 401–437.

Parisod, C., R. Holderegger and C. Brochmann. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5–17.

Pellicer, J., M. F. Fay and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10–15.

Ramsey, J. and D. W. Schemske. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology and Systematics 33: 589–639.

Rapp, R. A. and J. F. Wendel. 2005. Epigenetics and plant evolution. New Phytologist 168: 81–91.

Remon-Büttrner, S. M., T. Schmidt and C. Jung. 1999. AFLPs represent highly repetitive sequences in Asparagus officinalis L. Chromosome Research 7: 279–304.

Renny-Byfield, S., M. Ainouche, I. J. Leitch, K. Y. Lim, S. C. Le Comber and A. R. Leitch. 2010. Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritima origin. Annals of Botany 105: 527–533.

Renny-Byfield, S., A. Kovařík, L. J. Kelly, J. Macas, P. Novák, M. W. Chase, R. A. Nichols, M. R. Pancholi, M.-A. Grandbastien and A. R. Leitch. 2013. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. The Plant Journal 74: 829–839.

Rice, A., L. Glick, S. Abadi, M. Einhorn, N. M. Kopelman, A. Salman-Minkov, J. Mayzel, O. Chay and I. Mayrose. 2015. The chromosome counts database (CCDB): a community resource of plant chromosome numbers. New Phytologist 206: 19–26.

Roberto, C. 2005. Low chromosome number angiosperms. Caryologia 58: 403–409.

Schubert, I. and M. A. Lysak. 2011. Interpretation of karyotype evolution should consider chromosome structural constraints. Trends in Genetics 27: 207–216.

Soltis, P. S. and D. E. Soltis. 2009. The role of hybridization in plant speciation. Annual Review of Plant Biology 60: 561–588.

Soltis, D. E., P. S. Soltis, D. W. Schermeske, J. F. Hancock, J. N. Thompson, B. C. Husband and W. S. Judd. 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56: 13–30.

Soltis, D. E., C. J. Visger, D. B. Marchant and P. S. Soltis. 2016. Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103: 1146–1166.

Son, J.-H., K.-C. Park, S.-I. Lee, E.-J. Jeon, H.-H. Kim and N.-S. Kim. 2012. Sequence variation and comparison of the 5S rRNA sequences in Allium species and their chromosomal distribution in four Allium species. Journal of Plant Biology 55: 15–25.

Stebbins, G. L. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold, London, 216 pp.

Stuessy, T. F. 1971. Chromosome numbers and phylogeny in Melampodium (Compositae). American Journal of Botany 58: 732–736.

Sultana, S., S.-H. Lee, J.-W. Bang and H.-W. Choi. 2010. Physical mapping of rRNA gene loci and inter-specific relationships in wild Lilium distributed in Korea. Journal of Plant Biology 53: 433–443.

The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

Uhl, C. H. 1978. Chromosomes of Mexican Sedum II. Section Pachyseumed. Rhodora 80: 491–512.

Vanzela, A. L. L., M. Guerra and M. Luceno. 1996. Rhynchospora tenusa Link (Cyperaceae), a species with the lowest number of holocentric chromosomes. Cytobios 88: 219–228.

Vitales, D., U. D’Ambrosio, F. Gálvez, A. Kovařík and S. Garcia. 2017. Third release of the plant rDNA database with updated content and information on telomere composition and sequenced plant genomes. Plant Systematics and Evolution 303: 1115–1121.

Wan, T., X. Zhang, J. Gregan, Y. Zhang, P. Guo and Y. Guo. 2012. A dynamic evolution of chromosome in subgenus Potamogeton revealed by physical mapping of rDNA loci detection. Plant Systematics and Evolution 298: 1195–1210.

Weiss-Schneeweiss, H., K. Emadzade, T.-S. Jang and G. M. Schneeweiss. 2013. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenetic and Genome Research 140: 137–150.

Weiss-Schneeweiss, H., A. R. Leitch, J. McCann, T.-S. Jang and J. Macas. 2015. Employing next generation sequencing to
explore the repeat landscape of the plant genome. In Next Generation Sequencing in Plant Systematics. Regnum Vegetabile. Hörandl, E. and M. Appelhans (eds.), Koeltz Scientific Books, Königstein. Pp. 155–179.

Weiss-Schneeweiss, H. and G. M. Schneeweiss. 2013. Karyotype diversity and evolutionary trends in angiosperms. In Plant Genome Diversity. Vol. 2. Physical Structure, Behaviour and Evolution of Plant Genomes. Leitch, I. J., J. Greilhuber, J. Doležel and J. F. Wendel (eds.), Springer, Vienna. Pp. 209–230.

Weiss-Schneeweiss, H., T. F. Stuessy and J. L. Villaseñor. 2009. Chromosome numbers, karyotypes, and evolution in Melampodium (Asteraceae). International Journal of Plant Sciences 170: 1168–1182.

Zhang, H., A. Koblížková, K. Wang, Z. Gong, L. Oliveira, G. A. Torres, Y. Wu, W. Zhang, P. Novák, C. R. Buell, J. Macas and J. Jiang. 2014. Boom-bust turnovers of megabase-sized centromeric DNA in Solanum species: rapid evolution of DNA sequences associated with centromeres. The Plant Cell 26: 1436–1447.
Appendix 1. Information on base chromosome number, ploidy level (if known), and genome size data with emphasis on non-Commelinids monocot species occurring in Korea (representing their worldwide distribution)

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
Acorales Mart.					
Acoraceae Martinov					
Acorus calamus L.	18, 24, 36, 44, 45, 48, 66	x = 9, 11, 12	2x, 4x, 5x, 6x	1.3	창포
A. gramineus Aiton	18, 22, 24	x = 9, 11, 12	2x	0.8	석창포
Alismatales R. Br. ex Bercht. & J. Presl					
Araceae Juss.					
Arisaema amurensce Maxim.	26, 28, 39, 48, 52, 56, 70	x = 13, 14	2x, 3x, 4x, 5x	-	동근잎천남성
A. heterophyllum Blume	28, 56, 84, 140, 168	x = 13, 14	2x, 4x, 10x, 12x	-	두루미천남성
A. negishii Makino	28	x = 14	2x	-	석천남성
A. peninsulac Nakai	26, 28	x = 13, 14	2x	-	젤봉잎천남성
A. ringens (Thunb.) Schott	28	x = 14	2x	-	큰천남성
A. thunbergii Blume	28	x = 14	2x	-	무늬천남성
Calla palustris L.	36, 60, 72	x = 18	2x, 3x, 4x	2.1	산부채
Lemna perpusilla Torr.	20, 40, 50, 60, 70, 72, 84	x = 10	2x, 4x, 5x, 6x, 7x, 8x	0.8	좀개구리밥
Pinellia ternata (Thumb.) Breitenb.	26, 42, 54, 72, 78, 90, 91, 99, 104, 108, 115, 117	x = 13	2x, 3x, 4x, 5x, 6x, 7x, 8x	7.0	밤하
P. tripartita (Blume) Schott	26, 52	x = 13	2x, 4x	-	대반하
Spirodela polyrrhiza (L.) Schleid.	30, 32, 38, 40, 50, 80	Unknown	Unknown	0.6	개구리밥
Symlocarpus nipponicus Makino	30	x = 15	2x	-	애기있는부채
S. renifolius Schott ex Tzvelev	60	x = 15	4x	-	은근부채
Tofieldiaceae Takht.					
Tofieldia coccinea Richardon	30, 32	x = 15, 16	2x	-	숙은돌창포
Alismataceae Vent.					
Alisma canaliculatum A. Braun & C. D. Bouché	26, 28, 40, 42	x = 13, 14	2x, 3x	-	탱사
A. plantago-aquatica subsp. orientale (Sam.) Sam.	14, 28	x = 7	2x, 4x	-	결경이랑사
Sagittaria aginashii Makino	22	x = 11	2x	-	보풀
S. natans Pall.	22	x = 11	2x	-	대택소귀나물
S. pygmaea Miq.	22	x = 11	2x	-	옥미
S. trifolia L.	22	x = 11	2x	-	뿔풀
Hydrocharitaceae Juss.					
Blyxa aubertii Rich.	24, 32, 40	x = 8, 12	2x, 4x, 5x	-	은행이자리
B. japonica (Miq.) Maxim. ex Asch. & Gürke	72	x = 12	6x	-	은행이송
Hydrilla verticillata (L.) Royle	16, 24, 32	x = 8	2x, 3x, 4x	-	구경밥
Najas graminea Delile	12, 24, 36, 48, 72	x = 6	2x, 4x, 6x, 8x, 12x	-	나가스말
N. marina L.	12, 24, 48, 60	x = 6	2x, 4x, 8x, 10x	-	민나가스말
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
N. minor All.	12, 24, 36, 46, 56	x = 6	2x, 4x, 6x, 8x, 9x	-	들나나자스말
Vallisneria natans (Lour.) H. Hara	20	x = 10	2x	-	나사말
Scheuchzeriaceae F. Rudolphi					
Scheuchzeria palustris L.	22	x = 11	2x	-	장지채
Juncaginaceae Rich.					
Hydrocharis dubia (Blume) Backer	16, 22	x = 8, 11	2x	-	자라풀
Ottelia alismoides (L.) Pers.	22, 44, 66, 88	x = 11	2x; 4x; 6x; 8x	-	물질경이
Triglochin maritima L.	12, 24, 36, 48, 96, 120	x = 6	2x; 4x; 6x; 8x; 16x; 20x	-	지채
Zosteraceae Dumort.					
Zostera asiatica Miki	12	x = 6	2x	-	왕거머리말
Z. marina L.	12	x = 6	2x	1.2	거머리말
Z. nana Roth	12	x = 6	2x	1.5	애기거머리말
Phyllospadix iwatensis Makino	16, 20	x = 8, 10	2x	-	새우말
Potamogetonaceae Bercht. & J. Presl					
Potamogeton berehtoldii Fieber	26	x = 13	2x	-	실말
P. crispus L.	48, 52, 56	x = 13, 14	3x; 4x	1.0	밭중
P. cristatus Regel & Maack	28	x = 14	2x	-	가느가례
P. distinctus A. Benn.	52	x = 13	4x	-	가례
P. fryeri A. Benn.	42, 48	x = 13, 14	3x	-	선가례
P. maackianus A. Benn.	52, 56	x = 13, 14	4x	-	새우가례
P. malayanus Miq.	26, 52	x = 13	2x; 4x	-	대가래
P. natans L.	42, 52, 195	x = 13	3x; 4x; 15x	-	대동가래
P. octandrus Poir.	28	x = 14	2x	-	애기가래
P. oxyphyllus Miq.	26, 28	x = 13, 14	2x	-	밭
P. pectinatus L.	42, 78	x = 13	4x; 6x	-	솔잎가래
P. perforata L.	50, 52, 78	x = 13	4x; 6x	-	네촌일말
Ruppia maritima L.	20, 40	x = 10	2x; 4x	--	종말
R. rostellata Koch	40	x = 10	4x	-	나가줄말
Zannichellia palustris subsp. pedicellata (Wahlenb. & Rosén) Hook.	24, 36	x = 12	2x; 3x	-	톨말
Dioscoreales Mart.					
Nartheciaceae Fr. ex Bjurzon					
Aletris glabra Bureau & Franch.	52	x = 13	4x	-	여우모리풀
A. spicata (Thunb.) Franch.	26, 52	x = 13	2x; 4x	-	취모리풀
Metanarthecium luteoviride Maxim.	52	x = 13	4x	-	철보치마
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
Dioscoreaceae R. Br.					
Dioscorea batatas Deene.	140	x = 10	14x	-	마
D. bulbifera L.	40, 60, 80	x = 10	2x, 4x, 6x	2.4	동근마
D. japonica Thunb.	100, 400	x = 10	10x, 40x	-	찜마
D. nipponica Makino	20, 40	x = 10	2x, 4x	-	부채마
D. septemloba Thunb.	20, 40	x = 10	2x, 4x	-	국화마
D. tenuipes Franch. & Sav.	20, 40	x = 10	2x, 4x	-	각시마
D. tokoro Makino ex Miyabe	20	x = 10	2x	0.8	도꼬로마
Liliales Perleb					
Melanthiaceae Batsch ex Borkh.					
Chionographis japonica (Willd.) Maxim.	24, 42	x = 12	2x, 4x	-	실향물
Heloniopsis orientalis (Thunb.) Tanaka	34	x = 17	2x	5.3	처녀차마
Paris verticillata M. Bieb.	10, 15, 20	x = 5	2x, 3x, 4x	-	삿갓나물
Trillium kamtschaticum Pall. ex Pursh	10, 30	x = 5	2x, 6x	89.0	안영초
T. tschonoskii Maxim.	10, 20	x = 5	2x, 4x	-	큰김단초
Veratrum bohnhojii var. lattifolium Nakai	16, 32	x = 8	2x, 4x	-	삼수여로
V. dolichopetalum O. Loes.	32	x = 8	4x	-	부른박새
V. maackii Regel	16	x = 8	2x	-	간단여로
V. maackii var. parviflorum (Maxim.) H. Hara	16, 32	x = 8	2x, 4x	-	파란여로
V. nigrum var. ussuriense Lose. f.	16	x = 8	2x	-	잠여로
V. oxysepalum Turcz.	32, 64, 80	x = 8	4x, 8x, 10x	-	박새
V. versicolor Nakai	16	x = 8	2x	-	빨여로
Zygadenus sibiricus (L.) A. Gray	32	x = 8	4x	-	나노여로
Colchicaceae DC.					
Disporum sessile (Thunb.) D. Don ex Schult. & Schult.	16, 24	x = 8	2x, 3x, 5x	37.2	육성나물
D. smilacinum A. Gray	16	x = 8	2x	-	에기나리
D. viridescens (Maxim.) Nakai	16, 17	x = 8	2x	-	큰에기나리
Smilacaceae Vent.					
Smilax china L.	32, 64, 96	x = 16	2x, 4x, 6x	-	정미레덩굴
S. nipponica Miq.	32	x = 16	2x	-	선לכא꽃나물
S. riparia var. ussuriensis (Regel) Hara & T. Koyama	32	x = 16	2x	-	밋나물
S. sieboldii Miq.	32	x = 16	2x	-	정가시덩굴
Lilaeae Juss.					
Clintonia udensis Trautv. & C. A. Mey.	14, 28, 38	x = 7	2x, 4x, 5x	-	나도옥잠화
Erythronium japonicum (Balrer) Deene.	24	x = 12	2x	-	염래지
Fritillaria ussuriensis Maxim.	22, 24	x = 11, 12	2x	-	패모
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
Gagea lutea (L.) K. Gawl.	36, 48, 72, 96, 132	x = 16, 18	2x, 3x, 4x, 6x, 8x	39.5	중의무릇
Lilium amabile Palib.	24	x = 12	2x	27.4	밭중나리
L. callosum Siebold & Zucc.	24	x = 12	2x	-	명나리
L. cernuum Kom.	24	x = 12	2x	-	송나리
L. concolor Salish.	24	x = 12	2x	-	하늘나리
L. dauricum K. Gawl.	24	x = 12	2x	-	날개하늘나리
L. distichum Nakai ex Kamib.	24	x = 12	2x	-	밭나리
L. hansonii Leichtlin ex D. D. T. Moore	24	x = 12	2x	-	참나리
L. lancifolium Thunb.	24, 36	x = 12	2x, 3x	-	중나리
L. leichtlinii var. maximowiczii (Regel) Baker	26	x = 12	2x	-	정발나리
L. tenuifolium Fisch.	24	x = 12	2x	-	농송나리
L. tsingtauense Gilg	24	x = 12	2x	-	헬로ў나리
Lloydia serotina (L.) Reichb.	24	x = 12	2x	-	개감채
L. triflora (Ledebr.) Baker	24	x = 12	2x	-	감대산자고
Streptopus amplexifolius (L.) DC.	16, 32	x = 8	2x, 4x	13.0	국대아재비
S. koreanus (Kom.) Ohwi	24, 48	x = 8	3x, 6x	-	콜육대아재비
S. ovalis (Ohwi) F. T. Wang & Y. C. Tang	16	x = 8	2x	-	진부계가나리
Tricyrtis macropoda Miq.	26	x = 13	2x	8.5	배꼽나리
Tulipa edulis (Miq.) Baker	24	x = 12	2x	-	산자고
T. heterophylla (Regel) Baker	24	x = 12	2x	37.5	금대산자고
Asparagales Link					
Orchidaceae Juss.					
Amitostigma gracile (Blume) Schltr.	42	x = 21	2x	-	벼가리난초
Bletilla striata (Thunb.) Reichb.	32, 76	x = 16, 19	2x, 4x	5.9	자란
Bulbophyllum drymoglossum Maxim.	40	x = 20	2x	-	송하개난
B. inconsicuum Maxim.	38	x = 19	2x	-	흉난초
Calanthe discolor Lindl.	40	x = 20	2x	-	세두난초
C. reflexa Maxim.	40	x = 20	2x	-	여름세두난
C. striata R. Br. ex Lindl.	40	x = 20	2x	-	금세두난
Calyso bulbosa (L.) Oakes	28	x = 14	2x	-	풍선난초
Cephalanthera ecretia (Thunb.) Blume	34	x = 17	2x	-	손난초
C. falcula (Thunb.) Blume	34	x = 17	2x	-	금난초
C. longibracteata Blume	32	x = 16	2x	-	손대난초
Coeloglossum viride var. bracteatum* (Willd.) Rich.	40	x = 20	2x	-	개냅비난
Corallorhiza trifida Chatel.	42	x = 21	2x	-	산호란
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
Cremastra appendiculata (D. Don) Makino	48	x = 24	2x	-	약난초
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. macranthos Sw.	20	x = 10	2x	64.7	노랑복주머니란
C. japonicum Thunb.	20	x = 10	2x	64.0	광릉요강꽃
C. kanran Makino	40	x = 20	2x	74.8	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
C. macranthos Sw.	20	x = 10	2x	64.7	노랑복주머니란
C. japonicum Thunb.	20	x = 10	2x	64.0	광릉요강꽃
C. kanran Makino	40	x = 20	2x	74.8	한란
Cremastra appendiculata (D. Don) Makino	48	x = 24	2x	-	약난초
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. macranthos Sw.	20	x = 10	2x	64.7	노랑복주머니란
C. japonicum Thunb.	20	x = 10	2x	64.0	광릉요강꽃
C. kanran Makino	40	x = 20	2x	74.8	한란
Cremastra appendiculata (D. Don) Makino	48	x = 24	2x	-	약난초
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
C. unguiculata (Finet) Finet	48	x = 24	2x	-	두잎약난초
Cymbidium goeringii (Rchb.) Rchb.	40	x = 20	2x	-	보춘화
C. kanran Makino	40	x = 20	2x	-	한란
C. macrorhizon Lindl.	38	x = 19	2x	-	대홍란
Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
---------------------------	------------------------	---------------------------	---------------	--------------	-------------
Myrmechis japonica (Rchb.) Rolfe	56	x = 14	4x	-	개미난초
Neofinetia falcata (Thunb.) Hu	38	x = 19	2x	4.7	평란
Neottia acuminata Schltr.	18	x = 9	2x	-	애기무엽란
N. nidus-avis var. manshurica Kom.	36	x = 9	4x	-	세동지란
Oberonia japonica (Maxim.) Makino	30	x = 15	2x	-	작긴비란
Orchis cyclochila (Franch. & Sav.) Maxim.	42	x = 21	2x	-	나도제비란
O. graminifolia (Rchb.) Tang & F. T. Wang	42	x = 21	2x	-	나미니초
O. jooiokiana Makino	42	x = 21	2x	-	나도제비난
Orbeochis patens (Lindl.) Lindl.	48	x = 24	2x	-	감자난
Platanthera hologlottis Maxim.	42	x = 21	2x	-	땅째기난초
P. japonica (Thunb.) Lindl.	42	x = 21	2x	-	산제비난
P. minor (Miq.) Rchb.	42	x = 21	2x	-	한라잠자리난
P. orthrodioides F. Schmidt	42	x = 21	2x	-	구름제비난
P. sachalinensis F. Schmidt	42	x = 21	2x	-	큰제비난
Pogonia japonica Rchb.	20	x = 10	2x	-	큰방울새난
P. minor (Makino) Makino	18	x = 9	2x	-	방울새난
Sedirea japonica (Rchb. f.) Garay & Sweet	38	x = 19	2x	-	나도풍란
Spiranthus sinensis (Pers.) Ames	30	x = 15	2x	-	타래난초
Taeniophyllum glandulosum Blume	38	x = 19	2x	-	금란
Tipularia ussuriensis (Regel) H. Hara	42	x = 21	2x	-	나도장지란
Vexillabium yakushimense (Yamam.) F. Mack.	26	x = 13	2x	-	백운란
Iridaceae Juss.					
Belamcanda chinensis (L.) DC.	32	x = 16	2x	-	밤부채
Iris dichotoma Pall.	34	x = 17	2x	-	대청부채
I. ensata var. spontanea (Makino) Nakai	24	x = 12	2x	-	꽃창포
I. korana Nakai	50	x = 25	2x	-	노랑붓꽃
I. lactea var. chinensis (Fisch.) Koidz.	32, 40	x = 16, 20	2x	-	타래붓꽃
I. laevigata Fisch.	28, 32, 34	x = 14, 16, 17	2x	-	제비붓꽃
I. minuta aurea Makino	22	x = 11	2x	-	금붓꽃
I. rossii Baker	32	x = 16	2x	-	밤부채
I. rutherenia K. Gawl.	32, 40, 84	x = 16, 20, 21	2x, 4x	-	슬롯붓꽃
I. sanguinea Donn ex Hornem.	26, 28	x = 13, 14	2x	-	붓꽃
I. setosa Pall. ex Link	40	x = 20	2x	-	부채붓꽃
I. uniflora var. caricina Kitag.	42	x = 21	2x	-	난장이붓꽃
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
Asphodelaceae Juss.					
Hemerocallis dumortieri E. Morren	22	x = 11	2x	-	각시원추리
H. fulva (L.) L.	22, 33	x = 11	2x, 3x	-	원추리
H. lilioasphodelas L.	22	x = 11	2x	-	곤임원추리
H. littorea Makino	22	x = 11	2x	-	홍도원추리
H. middendorffii Trautv. & C. A. Mey.	22	x = 11	2x	-	큰원추리
H. minor Mill.	22	x = 11	2x	-	애기원추리
H. thunbergii Barr	22	x = 11	2x	-	노랑원추리
Amaryllidaceae J. St.-Hil.					
Allium condensatum Turcz.	16	x = 8	2x	-	노랑부추
A. longistylum Baker	16	x = 8	2x	-	강부추
A. linearifolium H. J. Choi & B. U. Oh	16	x = 8	2x	-	선부추
A. macrostemon Maxim.	32, 40, 48	x = 8	4x, 5x, 6x	43.2	산담래
A. maximowiczii Regel	16	x = 8	2x	-	산파
A. microdictyon Prokh.	16	x = 8	2x	-	산마늘
A. monocanthum Maxim.	16, 24, 32	x = 8	2x, 3x, 4x	-	달래
A. ochotense Prokh.	16, 32	x = 8	2x, 4x	-	옹동산마늘
A. sacculiferum Maxim.	16, 32, 42	x = 8	2x, 4x, 5x	-	참산부추
A. senescens L.	16, 32	x = 8	2x, 4x	-	두배부추
A. taquetii H. Lév. & Vaniot	16	x = 8	2x	-	한라부추
A. thunbergii G. Don	16, 32	x = 8	2x, 4x	-	산부추
A. thunbergii var. deltaoides (S. Yu, W. Lee & S. Lee) H. J. Choi & B. U. Oh	16	x = 8	2x	-	세모산부추
A. thunbergii var. teretifolium H. J. Choi & B. U. Oh	16	x = 8	2x	-	동근산부추
Crinum asiaticum var. japonicum Baker	22	x = 11	2x	-	문주란
Lycoris albiflora Koidz.	17, 18, 19	x = 9	2x	-	환상사화
L. radiata (L’Hér.) Herb.	33	x = 11	3x	-	석산
L. sanguinea var. koreana (Nakai) T. Koyama	21, 22, 33, 45	x = 11	2x, 3x, 4x	-	백양꽃
Asparagaceae Juss.					
Anemarrhena asphodeloides Bunge	22	x = 11	2x	5.7	지모
Asparagus cochinichenensis (Lour.) Merr.	20	x = 10	2x	-	천문동
A. oligoclonos Maxim.	20, 40	x = 10	2x, 4x	-	방울비짜루
A. schoberioides Kunth	20, 40	x = 10	2x, 4x	-	비짜루
Convallaria keiskei Miq.	38	x = 19	2x	-	은방울비짜루
Hosta capitata (Koidz.) Nakai	60	x = 30	2x, 3x	19.3	임월비비추
H. clausa Nakai	60, 90, 96	x = 30	2x, 3x	28.5	참비비추
Appendix 1. Continued.

Order/Family/Genus/Species	Chromosome number (2n)	Base chromosome number (x)	Ploidy levels	2C-value (pg)	Korean name
H. clausa var. *normalis* F. Maek.	48, 60, 90	x = 30	2x, 3x	19.3	주걱비비추
H. longipes (Franch. & Sav.) Matsum.	60	x = 30	2x	26.3	비비추
H. longissima F. Maek.	60	x = 30	2x	19.3	산옥잠화
H. minor (Baker) Nakai	60	x = 30	2x	-	종비비추
Liriope platyphylla F. T. Wang & T. Tang	36, 72, 108, 112	x = 18	2x, 4x, 6x	21.1	맥문동
L. spicata Lour.	36, 72, 108	x = 18	2x, 4x, 6x	25.6	개맥문동
Maianthemum bifolium (L.) F. W. Schmidt	36, 54	x = 18	2x, 3x	30.6	두루미꽃
M. dilatatum (A. Wood) A. Nelson & J. F. Maechr.	36, 54	x = 18	2x, 3x	33.4	큰두루미꽃
Ophiopogon jaburan (Siebold) Lodd.	36	x = 18	2x	-	맥문아재비
O. japonicus (Thunb.) K. Gawl.	36, 67, 68, 70, 72	x = 18	2x, 4x	21.6	소엽맥문동
Polygonatum falcatum A. Gray	18, 20	x = 9, 10	2x	-	진황정
P. humile Fisch. ex Maxim.	20, 22, 30	x = 10, 11	2x, 3x	-	각시동굴레
P. inflatum Kom.	22	x = 11	2x	-	동동굴레
P. involucratum (Franch. & Sav.) Maxim.	18, 20, 22	x = 9, 10, 11	2x	-	용동굴레
P. lasianthum Maxim.	20	x = 10	2x	-	죽대
P. odoratum var. pluriflorum (Miq.) Ohwi	20, 30	x = 10	2x, 3x	-	동굴레
P. stenophyllum Maxim.	20, 24, 30	x = 10, 12	2x, 3x	-	충충동굴레
Scilla scilloides (Lindl.) Druce	16, 18, 26, 27, 34, 36, 38, 44, 53, 70	x = 8, 9	2x, 3x, 4x, 5x, 6x	-	무릇
Smilacina dahurica Turcz. ex Fisch. & C. A. Mey.	36	x = 18	2x	-	민솜대
S. japonica A. Gary	36	x = 18	2x	-	풀솜대
S. trifolium (L.) Desf.	36	x = 18	2x	22.2	세잎솜대

The table is arranged alphabetically by order, family, and genus recognized by APG IV classification system (The Angiosperm Phylogeny Group, 2016).

Note: All chromosome number information was taken from Rice et al. (2015).