Persistent sodium current blockers can suppress seizures caused by loss of low-threshold D-type potassium currents: Predictions from an in silico study of Kv1 channel disorders

Jiaxin Du | Viktor Vegh | David C. Reutens

Abstract

Objective: Ion channels belonging to subfamily A of voltage-gated potassium channels (Kv1) are highly expressed on axons, where they play a key role in determining resting membrane potential, in shaping action potentials, and in modulating action potential frequency during repetitive neuronal firing. We aimed to study the genesis of seizures caused by mutations affecting Kv1 channels and searched for potential therapeutic targets.

Methods: We used a novel in silico model, the laminar cortex model (LCM), to examine changes in neuronal excitability and network dynamics associated with loss-of-function mutations in Kv1 channels. The LCM simulates the activities of a network of tens of thousands of interconnected neurons and incorporates the kinetics of 11 types of ion channel and three classes of neurotransmitter receptor. Changes in two types of potassium currents conducted by Kv1 channels were examined: slowly inactivating D-type currents and rapidly inactivating A-type currents. Effects on neuronal firing rate, action potential shape, and neuronal oscillation state were evaluated. A systematic parameter scan was performed to identify parameter changes that can reverse the effects of the changes.

Results: Reduced axonal D-type currents led to lower firing threshold and widened action potentials, both lowering the seizure threshold. Two potential therapeutic targets for treating seizures caused by loss-of-function changes in Kv1 channels were identified: persistent sodium channels and NMDA receptors. Blocking persistent sodium channels restored the firing threshold and reduced action potential width. NMDA receptor antagonists reduced excitatory postsynaptic currents from excessive glutamate release related to widened action potentials.

Significance: Riluzole reduces persistent sodium currents and excitatory postsynaptic currents from NMDA receptor activation. Our results suggest that this FDA-approved drug can be repurposed to treat epilepsies caused by mutations affecting axonal Kv1 channels.
1 | INTRODUCTION

Voltage-gated potassium (Kv) channels are highly expressed in the brain. They limit neuronal excitability by contributing to membrane repolarization and hyperpolarization. Kv1 channels are an important subgroup of the Kv family. They are primarily expressed on axons, where they are responsible for determining resting membrane potentials, shaping action potentials, and modulating action potential (AP) frequency during repetitive neuronal firing. Mutations in genes encoding Kv1 channels and related proteins cause several different epilepsy phenotypes. These genes include LGII, KCNA1, and KCNA2, which encode the leucine-rich glioma-inactivated 1 protein, Kv1.1 and Kv1.2 channels, respectively. LGII mutations are associated with autosomal dominant temporal lobe epilepsy, KCNA1 mutations can cause episodic ataxia 1, usually associated with seizures, and both KCNA1 and KCNA2 mutations have been associated with epileptic encephalopathy. Associated epilepsy phenotypes can be refractory to existing antiepileptic medications, often with devastating sequelae. LGII encodes a protein that regulates the expression and function of Kv1 channels and AMPA receptors. In LGII knockout models, the expression of Kv1.1 and Kv1.2 channels is reduced by more than 50%. Depletion of leucine-rich glioma-inactivated 1 protein also increases the release of glutamate and significantly reduces the expression of AMPA receptors. These changes have mixed effects on the excitability of neurons, and the mechanisms by which LGII mutations cause epilepsy remain elusive. Kv1.1 and Kv1.2 potassium channels activate rapidly at relatively low voltage (<−40 mV). Most of these channels inactivate slowly and contribute to long-lasting D-type currents. However, when they co-assemble with Kvβ1 subunits, they display rapid inactivation, contributing to transient A-type currents. Hence, loss of Kv1.1 or Kv1.2 channels reduces both D-type and A-type currents.

In the present paper, we decided to study seizure genesis in epilepsies associated with loss-of-function mutations in Kv1 channels using computer simulations based on the laminar cortex model (LCM). The LCM is a computational framework designed to simulate the activities of a thalamocortical network comprising tens of thousands of interconnected neurons. The model incorporates a realistic synaptic connection map, thalamocortical architecture, and 11 neuron types, with distinct action potential firing behaviors, into an integrated simulation framework. Neuron behaviors incorporate the kinetics of 11 types of ion channel as well as short-term synaptic plasticity. These features allow us to model the effects of changes in ion channel properties associated with gene defects realistically. We use the LCM to examine the effects of KCNA1, KCNA2, and LGII mutations on neuronal excitability and network dynamics. To search for potential therapeutic targets, we performed a systematic parameter scan to identify those that can be tuned to reverse the effects of the gene mutations.

2 | EXPERIMENTAL PROCEDURES

In this section, we briefly introduce the architecture of the LCM and outline the parameters used to describe ion channel kinetics.

2.1 | Ion channel kinetics

In the LCM, a neuron consists of several connected segments, which are modeled as a small cylindrical compartment with a set of ion channels (see Figure 1). The membrane potential of a segment is driven by ion channel currents and postsynaptic currents, stated as

\[
\frac{dV_{m,i}}{dt} = -\sum_{j=1}^{g_{IC}} g_{IC}(V_{m,j} - E_A) - \sum_{j=1}^{g_{SI}} g_{SI}(V_{m,j} - E_S) - \sum_{j=1}^{g_{ij}} g_{ij}(V_{m,j} - V_{m,i})
\]

where \(V_{m,i}\) and \(V_{m,j}\) are the membrane potentials of the segments \(i\) and \(j\), respectively; \(c_{m,i} = C_m A_i\) is the total membrane capacitance for a segment with surface area \(A_i\) and specific membrane...
capacitance C_m and is set to 0.9 μF/cm²; g_{IC} is the total conductance of ion channel IC; E_A is the reversal potential of the corresponding ion; g_{sy} and E_{sy} are the conductance and reversal potential of synapse sy, respectively; and g_{ij} is the intracellular conductance between segment i and j. The last summation in the right hand of Equation (1) is performed over all segments that are connected to segment i. The LCM simulates one type of leaking currents and eleven types of voltage-gated ion channel for three ion species (sodium, potassium, and calcium). The kinetics of the ion channels are modeled using the Hodgkin-Huxley method. The currents passing through an ion channel are given by:

$$g = \bar{g}m^n h G,$$

where g is the temporally varying conductance, \bar{g} is its peak conductance; $0 \leq m, h \leq 1$ are the activation and inactivation probabilities, respectively, with $h = 1$ for non-activating ion channels; $n = 1, 2, 3, or 4$ is the power of activation probability; $0 \leq G \leq 1$; is the gating probability, dependent on mechanisms other than membrane potential, and is set to 1 for ion channels that are only activated and inactivated by membrane potentials. The activation and inactivation probabilities are voltage-dependent, and follow the Hodgkin-Huxley first-order differential equations,

$$\frac{dm}{dt} = \frac{m^\infty - m}{\tau_m}, \quad \frac{dh}{dt} = \frac{h^\infty - h}{\tau_h},$$

where m^∞ and h^∞ are steady-state values, and τ_m and τ_h are time constants. Ion channels incorporated in the LCM and the notation for their conductance are listed below:

1. Leaking conductance (g_{L}, passive);
2. Sodium currents: (a) fast activating and inactivating transient conductance (g_{NaT}); (b) slowly activating and non-inactivating persistent conductance (g_{NaP});
3. Potassium currents: (a) low-voltage and fast-activating D-type conductance (g_{KD}); (b) fast activating and inactivating A-type transient conductance (g_{KA}); (c) Kv2 conductance by Kv2-like channels (g_{Kv2}); (d) Kv3.1 conductance by Kv3.1 like channels (g_{Kv3_1}); (e) muscarinic sensitive M-type conductance (g_{KM}); (f) intracellular calcium-dependent conductance (g_{SK});
4. Calcium currents: (a) low-threshold transient inactivating conductance (g_{CaLVA}); (b) high-threshold non-inactivating conductance (g_{CaHVA});
5. Non-selective anomalous rectifier (AR) conductance by the hyperpolarization-activated cyclic nucleotide-gated channels (g_{AR}).

The voltage dependence of the activation and inactivation probabilities is adopted from the work of Hay et al and listed in the Supplementary Information (Figure S1 and Data S1). An iteration equation of membrane potentials is drawn from Equation (1):

$$V_{m,i}(t_n + \Delta t) = V_{ss} - \left[V_{ss} - V_{m,i}(t_n)\right] \exp \left(-\Delta t_n / \tau_M\right)$$
where t_n is the time at iteration step n, Δt_n is the size of the iteration step, and V_{ss} and τ_M are the steady value and time constant of the membrane potential with values given by:

$$
\tau_M = \frac{\sum_{ij} g_{ij} + \sum_{sy} g_{sy} + \sum_i g_i}{\sum_{ij} g_{ij} + \sum_{sy} g_{sy} + \sum_i g_i},
$$

$$
V_{ss} = -\frac{\sum_{ij} g_{ij} E_{ij} + \sum_{sy} g_{sy} E_{sy} + \sum_i g_i V_{m,i}}{\sum_{ij} g_{ij} + \sum_{sy} g_{sy} + \sum_i g_i}.
$$

In the LCM, Equations (4) and (5) are used to update membrane potentials of segments repetitively in discrete time steps. The LCM adopts variable time steps, and the size of an iteration step depends on the second-order derivative of membrane potential, $\Delta t = \sqrt{0.01/2V_m}$. The time step is capped within 0.02 and 0.1 ms.

For calcium-dependent potassium currents ($g_{K(\text{Ca})}$ and $g_{K(AHP)}$), the intracellular calcium concentration is modeled using:

$$
\frac{d[Ca^{2+}]}{dt} = -\gamma_{\text{Ca}}[Ca^{2+}] / \tau_{\text{Ca}}
$$

where i_{Ca} is the calcium current, γ is a coefficient characterizing concentration change caused by the currents, set to 0.002 μmol/L·cm²/(ms·μA), and τ_{Ca} is the ion concentration recovery time constant, set to 80 ms.

2.2 Synaptic transmission and short-term plasticity

Short-term synaptic plasticity of the PSC is incorporated into the model. Three types of neurotransmitter receptors are simulated: AMPA, NMDA, and GABAA. Postsynaptic currents triggered by a spike are given by:

$$
I_{sy} = N_{sy} g_{sy} (V_{m,\text{post}} - E_{sy}) R(t)
$$

where N_{sy} is the number of synapses, E_{sy} is the reverse potential, set to 0 mV for AMPA and NMDA receptors and to −80 mV for GABAA receptors, $R(t)$ is the time course of postsynaptic currents, modeled using a bi-exponential function (see Du et al.), and g_{sy} is temporally varied conductance of the receptors, determined using:

$$
g_{sy} = \overline{g}_{sy} n_{sy} p_{sy} f(V_{m,\text{post}})
$$

where \overline{g}_{sy} is the peak conductance of a synapse, n_{sy} is the occupancy of the neurotransmitter pool in the presynaptic terminals and has a value between 0 and 1, p_{sy} is the portion of the neurotransmitter released upon the arrival of presynaptic spikes, $f(V_{m,\text{post}})$, is a factor describing the PSC dependency on the membrane potential of the postsynaptic neurons ($V_{m,\text{post}}$ see below). Occupancy of the neurotransmitter pool V_{sy} is reduced by presynaptic spikes and recovers with time and is described by:

$$
\frac{dn_{sy}}{dt} = 1 - n_{sy} - \sum_j \delta(t - t_j) \cdot p_{sy} \cdot n_{sy}
$$

where τ_{sy} is the time constant characterizing the neurotransmitter pool recovery speed, $\delta(t - t_j)$ is the delta function, which is 1 when $t = t_j$ and 0 otherwise and t_j is the arrival time of presynaptic spikes. The conductance of AMPA and GABAA receptors is assumed to be dependent on postsynaptic membrane potential $V_{m,\text{post}}$ (i.e., $f(V_{m,\text{post}})$ in Equation (7)), and the conductance of NMDA receptors has a sigmoidal relationship with $V_{m,\text{post}}$ that is:

$$
f(V_{m,\text{post}}) = \frac{1}{1 + \exp \left(\frac{-(V_{m,\text{post}} - \theta_{\text{NMDA}})}{k_{\text{NMDA}}}\right)}
$$

with $\theta_{\text{NMDA}} = -20.53$ mV and $k_{\text{NMDA}} = 16.13$ mV.

2.3 Local field potential computations

Local field potentials at the center of the stimulated cortical area are computed using:

$$
LFP = \frac{1}{4\pi \sigma} \sum_i \frac{l_i}{r_i}
$$

where σ is the conductivity of the cerebrospinal fluid, which is set to 1.56 S/m, l_i are the total currents generated by a segment including leakage currents, ionic channel currents, and postsynaptic currents, r_i is the distance between the local field potentials (LFP) measurement location and the segment, and the summation runs over all the segments of all neurons in the model. The LFPs computed using Equation (11) are dominated by the activities of a small number of neurons around the electrode. To measure the overall network activity, we manually set r_i to 100 μm whether they are smaller than 100 μm.

2.4 Computer simulation

The simulation program was written using the C++ language and compiled with the Intel C++ compiler (http://software.intel.com/intel-compilers/, version 19.03). The program was compiled and executed on the Tinaroo computing facilities provided by the Research Computing Center at the University of Queensland. OpenMP (http://www.openmp.org), a shared-memory parallel programming library, was used to parallelize the code to speed up program execution. The authors wish to provide the
3 | RESULTS

3.1 Laminar cortex model with ion channel kinetics

The features of the LCM are summarized in Figure 1. A conductance-based model was used to simulate neuronal membrane potentials. The model incorporated the following ion currents: passive leaking currents (I_{Pas}), transient (I_{NaT}) and persistent (I_{NaP}) sodium currents, transient low-voltage activated T-type (I_{CaLVA}) and long-lasting high-voltage activated L-type (I_{CaHAV}) calcium currents, calcium-dependent potassium currents (I_{SK}), and the non-selective anomalous rectifier (I_{AR} or I_h), and five types of voltage-dependent potassium currents—slowly inactivating D-type currents (I_{KD}), transient rapidly inactivating A-type currents (I_{KA1}), and somatodendritic A-type currents conducted by K_{v},4 channels (I_{KA2}). Channel activation and inactivation data of the two A-type currents were drawn from the work of Roeper et al.22 and Mendonca et al.23 I_{KA1} activates at a higher voltage than I_{KA2}, and unlike I_{KA2}, I_{KA1} has two inactivation processes with time constants around 8 and 40 ms.22 The activation and inactivation thresholds and time constants of the ion channels are shown in Figure 2A, and additional details are provided in Supplementary Information (Figure S1 and Data S1).

A weighted segment model was used to reduce the computational complexity of iteratively updating membrane potentials. A segment in the LCM incorporates most of the features of the compartment model implemented in the NEURON platform,24 including passive electrical properties, ion channel kinetics, and inter-segment conductance. Two additional features of each segment are a dendrite field and a weight factor. The dendrite field is a cylindrical space in which synapses are distributed around the segment. We assumed that the dendrites are purely passive, allowing their effects on postsynaptic currents to be modeled by an exponential decay function.25 A segment may connect to several segments with identical biophysical properties. To avoid simulating multiple identical segments, we introduced a weight factor to the segment (see Figure 1A). This controls the conductances between segments so that a segment with a weight of n is equivalent to n identical segments when connecting to another segment (see Figure 1A and Supplementary Information Figure S1 and Data S1). The simplified neuron shapes used in the LCM are shown in Figure 1D.

Cortical neurons display several firing patterns, such as regular-spiking (RS), fast-spiking (FS), and intrinsic bursting.

![Figure 2](image-url)

FIGURE 2 Ion channel activation and inactivation information and neuronal firing behaviors. Displayed are (A) the voltage dependency of activation and inactivation thresholds and time constants (τ_{a}, τ_{h}) for potassium channels, (B) the membrane potentials of the axon initial segment in five neuron classes during a 500-ms current injection into the soma, and (C) the relationships between firing rate and current size for the neurons. In (A), the markers and error bars indicate the respective values for θ_m and σ_m in the Boltzmann function $m^\infty = 1/[1 + \exp \{-(V-\theta_m)/\sigma_m\}$ or $h^\infty = 1/[1 + \exp \{-(V-\theta_h)/\sigma_h\}$ used to describe the voltage dependence of ion channel activation and inactivation. In (B), the current sizes are shown on the left, the horizontal scale bars represent 100 ms, and the vertical scale bars represent 50 mV. See also Figure S1.
(IB). To mimic these firing patterns, we configured each neuron class with a range of ion channel conductances and stimulated it with a 500-ms current injection into the soma. We tested a series of current amplitudes from 0 to 1000 pA to determine the relationship between neuronal firing rate and current amplitude (ie, F-I curve). We measured five quantities for each test: (a) the slope of the F-I curve, determined using a linear regression; (b) the firing rheobase, the minimum current required to elicit a spike; (c) inter-spike intervals (ISI), (d) AP height and (e) AP width at −20 mV. Typical firing behaviors and F-I relations of neurons are shown in Figure 2B,C. Firing behaviors aligned with experimental observations.26‒28

3.2 | Impact of Kv1 loss on neuronal excitability

We first examined how the loss of Kv1.1 and Kv1.2 channels affected neuronal excitability. We considered two changes, decreases in D-type conductance (g_{KD}) and decreases in axonal A-type conductance (g_{KA1}). Effects on neuronal excitability were tested in the absence of synaptic inputs in five neuron types: pyramidal neurons in layer II/III (P2/3), IV (P4), V (P5), and VI (P6), and spiny stellate neurons in layer IV (SS4). The results are shown in Figure 3. Decreases in axonal A-type conductance, g_{KA1}, did not significantly affect the excitability of all the tested neurons. They only slightly

![Figure 3](image-url)

FIGURE 3 Characteristics of neuronal firing with reduced D-type (K_D) and axonal A-type (K_A1) potassium currents. Shown are the slopes of F-I curves (A), firing rheobases (B), action potential widths (C), and firing rates with 0.5 nA of currents injected into the soma (D) with reduced peak conductance for D-type (g_{KD}) and axonal A-type (g_{KA1}) potassium currents, and the F-I relationship (E) with reduced g_{KD} produced in the five excitatory cortical neuron types: pyramidal neurons in layer II/III (P2/3, the first column), IV (P4), V (P5), and VI (P6, the fifth column), and spiny stellate neurons in layer IV (SS4, the third column). The conductance is shown as percentages of the corresponding “normal” values. The inserted figure in (B) displays the spontaneous firing rate for P5 neuron, and the inserted figures in (E) are the magnified pictures for the corresponding indicated regions.
changed the firing rates and action potential widths when $I_{K_{D}}$ was extremely low (<70% of its normal value). However, reducing $g_{K_{D}}$ dramatically increased the excitability of all neurons and, $g_{K_{D}}$ modulated the F-I slopes of the neurons. In all neuron types except P5, F-I slopes increased by approximately 10%-20% when D-type conductance was halved, and further reductions decreased the F-I slopes in pyramidal neurons, but not in SS4 neurons. Reducing $I_{K_{D}}$ also lowered firing rheobases. These decreased by 13% in the P2/3, P4, and P6 neurons and by 33% in the SS4 neuron when $g_{K_{D}}$ was halved. The P5 neuron, which is configured to have a low firing rheobase (<10 pA), fired spontaneously with reduced $g_{K_{D}}$. The spontaneous firing rate (f_0) increased as the conductance decreased. Reducing $g_{K_{D}}$ also widened APs. A 50% reduction in $g_{K_{D}}$ increased AP width by about 20% in all neurons. When $g_{K_{D}}$ was gradually decreased, the firing behaviors of the pyramidal neurons did not change in a continuous fashion. Small to medium reductions in $g_{K_{D}}$ (<60%) displayed a dominant effect of lowered firing rheobase and increased AP width, whereas increases in firing rate were relatively small. Large $g_{K_{D}}$ reductions displayed more significant effects on firing rates than on firing rheobases or AP width.

Suppression of seizures caused by the loss of $K_{v1.1}$ and $K_{v1.2}$ channels requires the effects of reduced $g_{K_{D}}$ to be counteracted. To search for parameters with the potential to reverse the effects of reduced $g_{K_{D}}$, we systematically varied the conductance of ion channels while decreasing $g_{K_{D}}$.

Figure 4 shows neuron firing characteristics when both $g_{K_{D}}$ and g_{NaP} are reduced. F-I slopes decreased for g_{NaP} reductions up to 50%, with further reductions increasing the slopes (refer to Figure 4B). Reduced g_{NaP} also dramatically increased firing rheobases, and significantly reduced the width of APs in all neurons. Herein, AP widths increased with small I_{NaP} reductions and decreased for large I_{NaP} reductions. As such, we estimated the reduction in g_{NaP} required to restore the neuronal changes caused by reductions in $g_{K_{D}}$. For example, to compensate for a 50% reduction in $g_{K_{D}}$, less than 25% reduction in g_{NaP} was sufficient to restore the F-I slopes to baseline values, and around 25% reduction was required to restore the rheobases. A further 25% reduction was necessary to restore AP widths in most neuron types except SS4. The required reductions in g_{NaP} varied significantly across neuron types. It was much higher in SS4 neurons, which have the highest density of D-type channels, than in other neuron types.

3.3 Impacts of K_{v1} loss on network dynamics

We incorporated the neuronal changes related to reduced D-type current into the LCM to examine effects on neuronal network dynamics. We first reduced the peak D-type conductance in the axon initial segment of all neurons by 25%, 50%, and 75%. The LCM automatically incorporates the changes in F-I slope, firing rheobase, and firing rate. To simulate effects of widened APs on neurotransmitter release, we also increased the value of neurotransmitter release probability (p_{o}) in excitatory synapses following the arrival of an AP from 0.6 to 0.8 and 1. The LCM was then used to simulate 20,000 neurons in a 0.5 x 0.5 mm² cortical area, reflecting a neuron density similar to that of the cerebral cortex. Local field potentials in the center of the region were generated using the LCM and used to quantify neuronal oscillations. We defined seizure-like activity as LFPs with a mean power spectrum density (PSD) in the 2-20 Hz frequency band exceeding 2.0 µV/Hz; an example is shown in Figure 5B. We measured seizure threshold by systematically varying the conductance of inhibitory synapses. Based on estimates from previous experiments, we set the “normal” conductance to 0.5 nS for AMPA receptors, to 0.4 nS for NMDA receptors, and to 0.8 nS for GABAA receptors. The seizure threshold was defined as the amount of reduction in GABAA receptor conductance (g_{GABA}) required to induce seizure-like activity. For a neuronal network with “normal” ion channel and receptor function, seizure-like activity was observed when g_{GABA} was reduced to 0.38 nS, that is, the seizure threshold was 0.42 nS. Reductions in $g_{K_{D}}$ significantly lowered the seizure threshold to 0.36 nS for a 25% reduction, to 0.14 nS for a 50% reduction.
reduction, and to almost zero for a 75% reduction. Increases in p_{sy} also lower the seizure threshold but only modestly. The seizure threshold decreased from 0.42 nS to 0.36 nS when p_{sy} was increased from 0.6 to 0.8, and to 0.28 nS when p_{sy} was set to 1.

We additionally examined two mechanisms that are potentially capable of compensating for the effects of reduced D-type currents: blocking NMDA receptors (g_{NMDA}) or persistent sodium conductance (g_{NaP}). We tested the effects of reducing g_{NMDA} and g_{NaP} in a neuronal network with g_{KD} halved. We found that the seizure threshold increased by only 0.14 nS when g_{NMDA} was decreased from 0.4 to 0.1 nS, but blocking persistent sodium currents significantly increased seizure threshold. A 25% decrease in g_{NaP} was enough to restore seizure threshold to the “normal” value (~0.4 nS), and further g_{NaP} reductions continuously increased seizure threshold.

4 | DISCUSSION

We studied seizure generation in epilepsies associated with mutations affecting Kv1 channels using the LCM simulation platform. Kv1.1 and Kv1.2 are the most abundant potassium channels in the axon. They activate rapidly at a relatively low voltage compared to other potassium channels, allowing them to be an important determinant of firing thresholds in neurons. Our simulations suggest that decreases in D-type currents lead to lower firing rheobase, higher firing rate, and wider APs. Thereby, decreases in D-type currents are the most important contributing factor to seizure generation in epilepsies associated with loss of function in Kv1.1 and Kv1.2 channels.

Previous studies on synaptic function in LGII knockout mice have yielded conflicting results with both enhanced excitatory transmission and reduced AMPA receptor function being reported.6,8-11 Our simulations suggest that enhanced excitatory transmission is likely to be the consequence of a higher level of neurotransmitter release caused by widened APs. Though the loss of the leucine-rich glioma-inactivated 1 protein is associated with reduced expression of AMPA receptor GluA1 subunits, resulting in smaller postsynaptic currents,4 this effect is outweighed by increases in postsynaptic currents via NMDA receptors. Because inactivation of NMDA receptors stimulates neuronal firing, these simulations are consistent with the behavior of LGII knockout mice.
while B-type currents may account for >90% of the total sodium currents in neurons. They are responsible for the depolarization phase of action potentials and are thus a determinant of firing thresholds and action potential shapes. Rapid-activating, slow-inactivating persistent sodium currents comprise up to 10% of the total sodium currents. They typically activate at subthreshold membrane potentials and enhance repetitive action potential firing and synaptic transmission. Another type of sodium current is the “resurgent current” which is found in ~20, predominantly inhibitory, neuron types. Resurgent currents appear when neurons are polarized after prolonged depolarization. They are reported to promote spontaneous firing and high-frequency firing of inhibitory neurons and may be a promising antiepileptic therapeutic target. A computer model that includes the unique activation features of resurgent currents is still to be developed.

Seizures caused by loss of D-type currents may also be treated using activators of voltage-gated potassium channels. A group of compounds shown to enhance potassium currents through Kv1.1 channels by delaying inactivation of the channels may be a potential treatment for Kv1 channel-related epilepsy. Further work investigating specific pharmacological activators or inhibitors of D-type currents that can be potentially tailored for this application is imperative. Activators of M-type currents could also be used to treat seizures. M-type currents, which are conducted by Kv7.2 and Kv7.3 channels, share many characters with D-type currents. For example, they both activate at a relatively low voltage (around ~45 mV), M-type currents are non-inactivating, and D-type currents are slowly inactivating (with a time constant of 1 second), and they are both abundant in the axon initial segment. Agents that enhance M-type currents include flupirtine and its analogue retigabine. Both negatively shift the activation threshold of Kv7.2 and Kv7.3 channels leading to significant increases in M-type currents during resting and depolarization states.

ACKNOWLEDGMENTS
This work was supported by Australian Research Council (ARC) under Discovery Projects funding scheme (project number DP150104771). We wish to acknowledge The University of Queensland’s Research Computing Centre (RCC) for its support in this research.

CONFLICT OF INTERESTS
Neither of the authors has any conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.
REFERENCES

1. Villa C, Combi R. Potassium channels and human epileptic phenotypes: an updated overview. Front Cell Neurosci. 2016;10:81.

2. Monaghan MM, Trimmer JS, Rhodes KJ. Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. J Neurosci. 2001;21:5973–83.

3. Inda MC, DeFelipe J, Munoz A. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci U S A. 2006;103:2920–5.

4. Petit-Pedrol M, Sell J, Planaguma J, Mannara F, Radoevic M, Haselmann H, et al. LGI1 antibodies alter Kv1.1 and AMPA receptors changing synaptic excitability, plasticity and memory. Brain. 2018;141:3144–59.

5. Seagar M, Russier M, Caillard O, Maulet Y, Fronzaroli-Molinieres M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 protein complex directs synapse maturation during early postnatal development. Sci Rep. 2016;6:21769.

6. Boillot M, Lee CY, Allene C, Leguern E, Baulac S, Rouach N. LGI1-ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function. Proc Natl Acad Sci U S A. 2015;112:E4129–E4137.

7. Lovero KL, Fukata Y, Granger AJ, Fukata M, Nicoll RA. The LGI1-ADAM22 protein complex drives synapse maturation in mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci. 1997;17:3379–91.

8. Higgs MH, Spain WJ. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurons. J Physiol. 2013;33:18161–74.

9. Fukata Y, Lovero KL, Iwanaga T, Watanabe A, Yokoi N, Tabuchi K, et al. Disruption of LGI1-linked synaptic complex causes abnormal synaptic transmission and epilepsy. Proc Natl Acad Sci U S A. 2010;107:3799–804.

10. Fukata Y, Adesnik H, Iwanaga T, Breit DS, Nicoll RA, Fukata M. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science. 2006;313:1792–5.

11. Higgs MH, Spain WJ. Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurons. J Physiol. 2011;589:5125–42.

12. Du J, Vegh V, Reutens DC. The laminar cortex model: a new continuum cortex model incorporating laminar architecture. PLoS Comput Biol. 2012;8:e1002733.

13. Du J, Vegh V, Reutens DC. Small changes in synaptic gain lead to seizure-like activity in neuronal network at criticality. Sci Rep. 2019;9:1097.

14. Gentet LJ, Stuart GI, Clements JD. Direct measurement of specific membrane capacitance in neurons. Biophys J. 2000;79:314–20.

15. Traub RD, Buhl EH, Glovelli T, Whittington MA. Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J Neurophysiol. 2003;89:909–21.

16. Hay E, Hill S, Schurmann F, Markram H, Segev I. Models of neocortical layer 5b pyramidal cells capturing a wide range of dendritic and perisomatic active properties. PLoS Comput Biol. 2011;7:e1002107.

17. Wang XJ. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol. 1998;79:1549–66.

18. Jahr CE, Stevens CF. A quantitative description of NMDA receptor-channel kinetic behavior. J Neurosci. 1990;10:1830–7.

19. Nunez PL, Srinivasan R. Electric Fields of the Brain: The Neuophysiology of EEG. Oxford; New York: Oxford University Press, 2006.

20. Druckmann S, Banitt Y, Gidon A, Schurmann F, Markram H, Segev I. A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci. 2007;1:7–18.

21. Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, et al. Reconstruction and simulation of neocortical microcircuitry. Cell. 2015;163:456–92.

22. Roeppe J, Lorra C, Pongs O. Frequency-dependent inactivation of mammalian A-type K+ channel KV1.4 regulated by Ca2+/calmodulin-dependent protein kinase. J Neurosci. 1997;17:3379–91.

23. Mendonca PR, Vargas-Caballero M, Erdelji F, Szabo G, Paulsen O, Robinson HP. Stochastic and deterministic dynamics of intrinsically irregular firing in cortical inhibitory interneurons. Elife. 2016;5:e16475.

24. Hines ML, Carnevale NT. The NEURON simulation environment. Neural Comput. 1997;9:1179–209.

25. Johnston D, Wu SM. Foundations of Cellular Neurophysiology. Cambridge, MA: MIT Press, 1995.

26. Guan D, Armstrong WE, Foehring RC. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca(2)(+)/Ca(2)(+) dependence and differential modulation by norepinephrine. J Neurophysiol. 2015;113:2014–32.

27. Degenetanis E, Thierry AM, Glowinski J, Gioanni Y. Electrophysiological properties of pyramidal neurons in the rat prefrontal cortex: an in vivo intracellular recording study. Cereb Cortex. 2002;12:1–16.

28. Nowak LG, Aozou R, Sanchez-Vives MV, Gray CM, McCormick DA. Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. J Neurophysiol. 2003;89:1541–66.

29. Beaulieu C, Colonnier M. The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat, Canada. J Comp Neurol. 1983;217:337–44.

30. Sarid L, Feldmeyer D, Gidon A, Sakmann B, Segev I. Contribution of intracolumnar layer 2/3-to-Layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex. Cereb Cortex. 2015;25:849–58.

31. Hofmann JHO, Meyer HS, Schmitt AC, Straehle J, Weitbrecht T, Sakmann B, et al. Synaptic conductance estimates of the connection between local inhibitor interneurons and pyramidal neurons in layer 2/3 of a cortical column. Cereb Cortex. 2015;25:4415–29.

32. Chen SH, Fu SJ, Huang JJ, Tang CY. The episodic ataxia type 1 mutation I262T alters voltage-dependent gating and disrupts protein biosynthesis of human Kv1.1 potassium channels. Sci Rep. 2016;6:19378.

33. Spadoni F, Hainsworth AH, Mercuri NB, Caputi L, Martella G, Lavaroni F, et al. Lamotrigine derivatives and riluzole inhibit Ina, P in cortical neurons. Neuroreport. 2002;13:1167–70.

34. Urban A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci. 2000;12:13567–74.

35. Ahn HS, Choi JS, Choi BH, Kim MJ, Rhee DJ, Yoon SH, et al. Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole. Neuroscience. 2005;133:1007–19.

36. Xu L, Enyeart JA, Enyeart JJ. Neuroprotective agent riluzole dramatically slows inactivation of Kv1.4 potassium channels by a voltage-dependent oxidative mechanism. J Pharmacol Exp Ther. 2001;299:227–37.
37. Lamanauskas N, Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur J Neurosci. 2008;27:2501–14.
38. Wang YJ, Lin MW, Lin AA, Wu SN. Riluzole-induced block of voltage-gated Na+ current and activation of BKCa channels in cultured differentiated human skeletal muscle cells. Life Sci. 2008;82:11–20.
39. Le Liboux A, Lefebvre P, Le Roux Y, Truffinet P, Aubeneau M, Kirkeselli S, et al. Single- and multiple-dose pharmacokinetics of riluzole in white subjects. J Clin Pharmacol. 1997;37:820–7.
40. Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7:15–22.
41. So EC, Wu S-N, Lo Y-C, Su K. Differential regulation of tefluthrin and telmisartan on the gating charges of INa activation and inactivation as well as on resurgent and persistent INa in a pituitary cell line (GH3). Toxicol Lett. 2018;285:104–12.
42. Hong H, Lu T, Wang XY, Wang Y, Sanchez JT. Resurgent sodium current promotes action potential firing in the avian auditory brainstem. J Physiol. 2018;596:423–43.
43. Lu Q, Peevey J, Jow F, Monaghan MM, Mendoza G, Zhang H, et al. Disruption of Kv1.1 N-type inactivation by novel small molecule inhibitors (disinactivators). Bioorg Med Chem. 2008;16:3067–75.
44. Wu YJ, Dworetzky SI. Recent developments on KCNQ potassium channel openers. Curr Med Chem. 2005;12:453–60.
45. Blackburn-Munro G, Jensen BS. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol. 2003;460:109–16.
46. Wu YJ, Boissard CG, Greco C, Gribkoff VK, Harden DG, He H, et al. (S)-N-[1-(3-morpholin-4-ylphenyl)ethyl]-3-phenylacrylamide: an orally bioavailable KCNQ2 opener with significant activity in a cortical spreading depression model of migraine. J Med Chem. 2003;46:3197–200.
47. Ilyin V, Carlin KP, Hodges DD, Robeldo S, Woodward RM. Flupirtine: A Positive Modulator of Heteromeric KCNQ2/Q3 Channels. Program No. 785.10. 2002 Neuroscience Meeting Planner. Orlando, FL: Society for Neuroscience, 2002.
48. Brown DA, Passmore GM. Neural KCNQ (Kv7) channels. Br J Pharmacol. 2009;156:1185–95.
49. Tatulian L, Brown DA. Effect of the KCNQ potassium channel opener retigabine on single KCNQ2/3 channels expressed in CHO cells. J Physiol. 2003;549:57–63.
50. Wladyka CL, Kunze DL. KCNQ/M-currents contribute to the resting membrane potential in rat visceral sensory neurons. J Physiol. 2006;575:175–89.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Du J, Vegh V, Reutens DC. Persistent sodium current blockers can suppress seizures caused by loss of low-threshold D-type potassium currents: Predictions from an in silico study of Kv1 channel disorders. Epilepsia Open. 2020;5:86–96. https://doi.org/10.1002/epi4.12379