On Weighted L^p – Approximation by Weighted Bernstein-Durrmeyer Operators

Meiling Wang1, Dansheng Yu1,* and Dejun Zhao2

1 Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China
2 College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620, China

Received 30 June 2017; Accepted (in revised version) 14 August 2017

Abstract. In the present paper, we establish direct and converse theorems for weighted Bernstein-Durrmeyer operators under weighted L^p – norm with Jacobi weight $w(x) = x^\alpha (1-x)^\beta$. All the results involved have no restriction $\alpha, \beta < 1 - \frac{1}{p}$, which indicates that the weighted Bernstein-Durrmeyer operators have some better approximation properties than the usual Bernstein-Durrmeyer operators.

Key Words: Weighted L^p–approximation, weighted Bernstein-Durrmeyer operators, direct and converse theorems.

AMS Subject Classifications: 41A10, 41A25

1 Introduction

Let

$$w(x) = x^\alpha (1-x)^\beta, \quad \alpha, \beta > -1, \quad 0 \leq x \leq 1,$$

be the classical Jacobi weights. Let

$$L_w^p := \begin{cases} \{f : w f \in L^p (0,1)\}, & 1 \leq p < \infty, \\ \{f : f \in C (0,1), \lim_{x(1-x) \to 0} (w f) (x) = 0\}, & p = \infty. \end{cases}$$

Set

$$\|f\|_{p,w,I} = \begin{cases} \left(\int_I |(w f)(x)|^p dx \right)^{1/p}, & 1 \leq p < \infty, \\ \sup_{x \in I} |(w f)(x)|, & p = \infty. \end{cases}$$

*Corresponding author. Email addresses: dsyu@hznu.edu.cn (D. S. Yu), zdejun@aliyun.com.cn (D. J. Zhao)
When \(I = [0,1] \), we briefly write \(\| f \|_{p,w} \) instead of \(\| f \|_{p,w,[0,1]} \). Obviously, \(\| f \|_{p,w} \) is the norm of \(L^p_w \) spaces.

For any \(f \in L^p([0,1]), 1 \leq p \leq \infty \), the corresponding Bernstein-Durrmeyer operators \(M_n(f,x) \) are defined as follows:

\[
M_n(f,x) = (n+1) \sum_{k=0}^{n} p_{n,k}(x) \int_0^1 p_{n,k}(t) f(t) dt, \quad x \in [0,1],
\]

where

\[
p_{n,k}(x) = \binom{k}{n} x^k (1-x)^{n-k}, \quad x \in [0,1], \quad k = 0, 1, \ldots, n.
\]

The approximation properties of \(M_n(f,x) \) in \(L^p_w \) were also studied by Zhang (see [9]). Some approximation results were given under the restrictions \(-\frac{1}{p} < \alpha, \beta < 1 - \frac{1}{p} \) on the weight parameters. Generally speaking, the restrictions can not be eliminated for the approximation by \(M_n(f,x) \). For the weighted approximation by Kantorovich-Bernstein operators defined by

\[
K_n(f,x) := \sum_{k=0}^{n} \frac{(n+1)}{\pi^n} f(u) du p_{nk}(x),
\]

the situation is similar (see [5]). Recently, Della Vecchia, Mastroianni and Szabados (see [2]) introduced a weighted generalization of the \(K_n(f,x) \) as follows:

\[
K_n^w(f,x) := \sum_{k=0}^{n} \frac{1}{\pi^n} \frac{f(u)}{u} du p_{nk}(x), \quad x \in [0,1]. \tag{1.1}
\]

When \(\alpha = \beta = 0 \), \(K_n^w(f,x) \) reduces to the classical Kantorovich-Bernstein operator \(K_n(f,x) \). Della Vecchia, Mastroianni and Szabados obtained the direct and converse theorems and a Voronovskaya-type relation in [2], and solved the saturation problem of the operator in [3]. Their results showed that \(K_n^w(f,x) \) allows a wider class of functions than the operator \(K_n(f,x) \). In fact, they dropped the restrictions \(\alpha, \beta < 1 - \frac{1}{p} \) on the weight parameters. Later, Yu (see [8]) introduced another kind of modified Bernstein-Kantorvich operators, and established direct and converse results on weighted approximation which also have no restrictions \(\alpha, \beta < 1 - \frac{1}{p} \).

Then, a natural question is: can we modified the Bernstein-Durrmeyer operators properly such that the restrictions \(\alpha, \beta < 1 - \frac{1}{p} \) on weighted approximation can be dropped? In the present paper, we will show that the weighted Bernstein-Durrmeyer operator
introduced by Berens and Xu (see [1]) is the one we need. The weighted Bernstein-Durrmeyer operator is defined as follows:

\[M^*_n(f,x) = \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t) w(t) f(t) dt, \quad x \in [0,1], \quad f \in L^1_w, \]

where

\[C_{n,k} = \left(\int_0^1 p_{n,k}(t) w(t) dt \right)^{-1}, \quad k = 0,1,\ldots,n. \]

Define

\[W^p_{2,w} := \{ f \in L^p_w : f' \in AC(0,1), \| q^2 f'' \|_{p,w} < \infty \}, \]

where \(q(x) = \sqrt{x(1-x)} \), and \(AC(I) \) is the set of all absolutely continuous functions on \(I \).

For \(f \in L^p_w \), define the weighted modulus of smoothness by

\[\omega^2_{q}(f,t)_{p,w} := \sup_{0 < h \leq t} \left\{ \| \Delta^2_h f \|_{p,w,[Ch^2,1-Ch^2]} + \| \Delta^2_h f \|_{p,w,[0,Ch^2]} + \| \Delta^2_h f \|_{p,w,[1-Ch^2,1]} \right\}, \]

with

\[\Delta^2_h f(x) = f(x + h \frac{q(x)}{2}) - 2f(x) + f(x - h \frac{q(x)}{2}), \]

\[\Delta^2_h f(x) = f(x + 2h) - 2f(x + h) + f(x), \]

\[\Delta^2_h f(x) = f(x) - 2f(x - h) + f(x - 2h). \]

Define

\[E_0(f)_{p,w} := \inf_{C \in \mathbb{R}} \| f - C \|_{p,w} \]

to be the best approximation of \(f \) in weighted \(L^p_w \) spaces by constants.

The main results of the present paper are the following:

Theorem 1.1. If \(f \in L^p_w, 1 \leq p \leq \infty \), then

\[\| f - M^*_n(f) \|_{p,w} \leq C \left(\omega^2_{q}(f,\frac{1}{\sqrt{n}})_{p,w} + \frac{E_0(f)_{p,w}}{n} \right). \]

(1.2)

Theorem 1.2. If \(f \in L^p_w, 1 \leq p \leq \infty \), then

\[\| f - M^*_n(f) \|_{p,w} = O \left(n^{-\gamma/2} \right) \iff \omega^2_{q}(f,h)_{p,w} = O(h^\gamma), \quad 0 < \gamma < 2. \]

(1.3)
2 Auxiliary lemmas

We need the following inequalities:

\[\int_0^1 p_{n,k}(x)dx = \frac{1}{n+1}, \quad \text{(see [7])}, \quad (2.1a) \]

\[\sum_{k=0}^n \left(\frac{k^*}{n} \right)^{-u} \left(1 - \frac{k^*}{n} \right)^{-v} p_{n,k}(x) \leq C x^{-u} (1-x)^{-v}, \quad u,v \geq 0, \quad \text{(see [8])}, \quad (2.1b) \]

\[\sum_{k=0}^n p_{n,k}(x) \left| \frac{k}{n} - x \right|^\gamma \leq C n^{-\frac{1}{2}} \varphi^\gamma(x), \quad \gamma \geq 0, \quad \text{(see [7])}, \quad (2.1c) \]

\[\int_0^1 w^p(x) \varphi^{-2}(x) p_{n,k}(x) |k-nx|^2 dx \leq C w^p \left(\frac{k^*}{n} \right), \quad \text{(see [2])}, \quad (2.1d) \]

where

\[k^* := \begin{cases}
1, & k = 0, \\
 k, & 1 \leq k \leq n-1, \\
n-1, & k = n.
\end{cases} \quad (2.2) \]

It should be noted that (2.1d) is contained in the first inequality of [2, pp. 9].

Lemma 2.1. For \(1 \leq p < \infty, 0 \leq k \leq n \) and \(n \geq 3 \), we have

\[\int_0^1 w^p(x) p_{n,k}(x)dx \sim n^{-1} w^p \left(\frac{k^*}{n} \right), \quad (2.3) \]

where \(k^* \) is defined by (2.2).

Proof. By the fact that (see [3])

\[\frac{\Gamma(n+a)}{n^a \Gamma(n)} = 1 + O \left(\frac{1}{n} \right), \quad a > -1, \]

we deduce that

\[\int_0^1 w^p(x) p_{n,k}(x)dx = \left(\frac{n}{k} \right) \int_0^1 x^{k+a p} (1-x)^{n-k+\beta p} dx \]

\[= \left(\frac{n}{k} \right) \frac{\Gamma(k+a p+1) \Gamma(n-k+\beta p+1)}{\Gamma(n+a p+\beta p+2)} \]

\[= \frac{(n+1)^{a p+\beta p+1} \Gamma(n+1) \Gamma(k+a p+1)}{(k+1)^{a p} \Gamma(k+1)} \]

\[\left(\frac{n}{k} \right) \Gamma(k+a p+1) \Gamma(n-k+\beta p+1) \]

\[= \frac{(n+1)^{a p+\beta p+1} \Gamma(n+1) \Gamma(k+a p+1)}{(k+1)^{a p} \Gamma(k+1)} \]
\[
\Gamma(n-k+\beta p+1) \\
(n-k+1)\beta p(n-k+1)^{\beta p} \\
(k+1)^{\beta p} \Gamma(n-k+1) \\
(n+1)^{\beta p+\beta p+1} \\
= \left(1+\Theta\left(\frac{1}{n}\right)\right) \frac{(k+1)^{\beta p} (n-k+1)^{\beta p}}{(n+1)^{\beta p+\beta p+1}} \\
\sim n^{-1} w^p \left(\frac{k^*}{n}\right).
\]

Thus, we complete the proof. \(\square\)

Especially, by taking \(p = 1\) in (2.3), we get

\[
C_{n,k}^{-1} = \int_0^1 w(x) p_{n,k}(x) dx \sim n^{-1} w \left(\frac{k^*}{n}\right), \quad k = 0,1,\ldots,n. \tag{2.4}
\]

Lemma 2.2. For any \(f \in L_{\beta w}^p\), \(1 \leq p \leq \infty\), we have

\[
\|M_n^*(f)\|_{\beta w} \leq C\|f\|_{\beta w}. \tag{2.5}
\]

Proof. When \(p = \infty\), by (2.1a), (2.4) and (2.1b), we get

\[
|w(x) M_n^*(f,x)| \leq w(x) \sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t) |w(t) f(t)| dt \\
\leq \|f\|_{\infty, w} w(x) \sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t) dt \\
\leq \|f\|_{\infty, w} w(x) \sum_{k=0}^n p_{n,k}(x) w^{-1} \left(\frac{k^*}{n}\right) \\
= C \|f\|_{\infty, w}. \tag{2.5}
\]

When \(1 < p < \infty\), by using Hölder’s inequality, (2.4) and (2.3), we have

\[
\|M_n^*(f)\|_{\beta w}^p \leq \int_0^1 w^p(x) \left(\sum_{k=0}^n p_{n,k}(x) C_{n,k}^p \int_0^1 p_{n,k}(t) w(t) f(t) dt\right)^p \left(\sum_{k=0}^n p_{n,k}(x)\right)^{p-1} dx \\
\leq \frac{1}{(n+1)^p-1} \int_0^1 w^p(x) \left(\sum_{k=0}^n p_{n,k}(x) C_{n,k}^p \int_0^1 p_{n,k}(t) |w(t) f(t)|^p dt dx \right) \int_0^1 p_{n,k}(t) |w(t) f(t)|^p dt \\
\leq Cn \sum_{k=0}^n \left(\int_0^1 w^p(x) p_{n,k}(x) dx\right) w^{-p} \left(\frac{k^*}{n}\right) \int_0^1 p_{n,k}(t) |w(t) f(t)|^p dt \\
\leq C \sum_{k=0}^n \int_0^1 p_{n,k}(t) |w(t) f(t)|^p dt \\
= C \|f\|_{\beta w}^p. \tag{2.6}
\]

By a similar and more simpler deduction, we see that (2.6) also holds for \(p = 1\).

Combining (2.5) and (2.6), Lemma 2.2 is proved. \(\square\)
Lemma 2.3. If \(f \in W_{w}^{2,p} \), then
\[
\|q^2 M_n''(f)\|_{p,w} \leq C \|q^2 f''\|_{p,w} \quad 1 \leq p \leq \infty.
\]

Proof. Direct calculations yield that (see [4, pp. 331-332]),
\[
M_n''(f,x) = \frac{n!}{(n-2)!} \sum_{j=0}^{2} p_{n-2,k-j}(x)((-1)^{2-j}C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)f(t)dt
\]
\[
= \frac{n!}{(n-2)!} \sum_{j=0}^{2} p_{n-2,k}(x) \sum_{j=0}^{2} \left(\begin{array}{c} 2 \\ j \end{array} \right) (-1)^{2-j}C_{n,k+j}p_{n,k+j}(t)w(t)f(t)dt
\]
\[
= \frac{n!}{(n-2)!} \sum_{j=0}^{2} p_{n-2,k}(x) \sum_{j=0}^{2} \left(\begin{array}{c} 2 \\ j \end{array} \right) (-1)^{2-j}C_{n,k+j}p_{n,k+j}(t)w(t)f(t)dt
\]
\[
= \frac{n!}{(n-2)!} \sum_{j=0}^{2} p_{n-2,k}(x) \sum_{j=0}^{2} \left(\begin{array}{c} 2 \\ j \end{array} \right) (-1)^{2-j}C_{n,k+j}p_{n,k+j}(t)w(t)f(t)dt. \tag{2.7}
\]
Therefore,
\[
\|q^2 M_n''(f)\|_{p,w} \leq C \left\| \sum_{k=0}^{n-2} p_{n,k+1}(x)C_{n+2,k+2} \int_{0}^{1} p_{n,k+1}(t)w(t)q^2(t)f''(t)dt \right\|_{p,w}
\]
\[
\leq C \left\| \sum_{k=0}^{n-2} p_{n,k+1}(x)C_{n,k+1} \int_{0}^{1} p_{n,k+1}(t)w(t)|q^2(t)f''(t)|dt \right\|_{p,w}
\]
\[
\leq C \left\| \sum_{k=0}^{n} p_{n,k}(x)C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)|q^2(t)f''(t)|dt \right\|_{p,w}.
\]

For \(p = \infty \), by (2.1a), (2.1b) and (2.1c), we have
\[
|w(x)q^2(x)M_n''(f,x)| \leq w(x) \sum_{k=0}^{n} p_{n,k}(x)C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)|q^2(t)f''(t)|dt
\]
\[
\leq \|wq^2f''\|_{\infty,w} \sum_{k=0}^{n} p_{n,k}(x)w^{-1} \left(\frac{k^4}{n^4} \right)
\]
\[
\leq C \|q^2 f''\|_{\infty,w}. \tag{2.8}
\]

For \(1 < p < \infty \) (for \(p = 1 \), it can be treated similarly and more simpler), by using Hölder’s inequality, (2.1a), (2.3) and (2.4), we have
\[
\|q^2 M_n''(f)\|_{p,w}^p
\]
\[
\leq C \int_{0}^{1} \sum_{k=0}^{n} p_{n,k}(x)C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)|q^2(t)f''(t)|dt \|w^p(x)dx
\]
\[
\leq C \int_{0}^{1} \sum_{k=0}^{n} p_{n,k}(x)C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)|q^2(t)f''(t)|p dt \left(\int_{0}^{1} p_{n,k}(tdt) \right)^{p-1} \|w^p(x)dx.
\]
Proof. We prove the result by estimating the integral on two intervals

We finish Lemma 2.3 by combining (2.8) and (2.9).

Lemma 2.4. If \(f \in L_w^p \), then

\[
\|q^2M_n^{\prime\prime\prime}(f)\|_{p,w} \leq Cn\|f\|_{p,w}, \quad 1 \leq p \leq \infty.
\]

Proof. We prove the result by estimating the integral on two intervals \(E_n = \left[\frac{1}{n}, 1 - \frac{1}{n} \right] \) and \(E_n = \{0,1\} \) \(E_n \) respectively.

Simple calculation leads to

\[
q^2(x)M_n^{\prime\prime\prime}(f,x) = \frac{n^2}{q^2(x)} \sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right)^2 C_{n,k} \int_0^1 p_n,k(t)w(t)f(t)dt - nM_n^1(f,x)
\]

\[
- \frac{d}{dx} (q^2(x)) \frac{n}{q^2(x)} \sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right) C_{n,k} \int_0^1 p_n,k(t)w(t)f(t)dt
\]

\[
= : I_1(n,x) + I_2(n,x) + I_3(n,x).
\] (2.10)

For \(I_1(n,x) \), when \(p = \infty \), by applying (2.1a)-(2.1c), (2.4) and Cauchy’s inequality, we have

\[
|w(x)I_1(n,x)| \leq n^2 \frac{w(x)}{q^2(x)} \sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right)^2 C_{n,k} \left| \int_0^1 p_n,k(t)w(t)f(t)dt \right|
\]

\[
\leq n^2 \|f\|_{\infty,w} \frac{w(x)}{q^2(x)} \sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right)^2 C_{n,k} \int_0^1 p_n,k(t)dt
\]

\[
\leq C n^2 \|f\|_{\infty,w} \frac{w(x)}{q^2(x)} \sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right)^2 w^{-1} \left(\frac{k^+}{n} \right)
\]

\[
\leq C n^2 \|f\|_{\infty,w} \frac{w(x)}{q^2(x)} \left(\sum_{k=0}^{n} p_n,k(x) \left(\frac{k}{n} - x \right)^4 \right)^{\frac{1}{2}} \left(\sum_{k=0}^{n} p_n,k(x)w^{-2} \left(\frac{k^+}{n} \right) \right)^{\frac{1}{2}}
\]

\[
\leq C n^2 \|f\|_{\infty,w} \frac{w(x)}{q^2(x)} \left(\sum_{k=0}^{n} p_n,k(x)w^{-2} \left(\frac{k^+}{n} \right) \right)^{\frac{1}{2}}
\]

\[
= Cn\|f\|_{\infty,w}.
\] (2.11)
When $1 \leq p < \infty$, by using Hölder’s inequality twice for $p > 1$ ($p = 1$ is more direct), (2.1c), (2.1d), (2.4) and (2.1a),

\[
\begin{align*}
&\int_0^1 |w(x) I_1(n,x)|^p dx \\
&\leq \int_0^1 n^{2p} \frac{w^p(x)}{q^p(x)} \left(\sum_{k=0}^{n} p_{n,k}(x) \left(\frac{k}{n} - x \right)^2 \right)^{p-1} \sum_{k=0}^{n} p_{n,k}(x) \left(\frac{k}{n} - x \right)^2 C_{n,k}^p \\
&\times \left(\int_0^1 p_{n,k}(t)|w(t)f(t)|dt \right)^p dx \\
&\leq Cn^{p+1} \int_0^1 w^p(x) q^{-2}(x) \sum_{k=0}^{n} p_{n,k}(x) \left(\frac{k}{n} - x \right)^2 C_{n,k}^p \left(\int_0^1 p_{n,k}(t)w(t)f(t)dt \right)^p dx \\
&\leq Cn^{p+1} \int_0^1 w^p(x) q^{-2}(x) \sum_{k=0}^{n} p_{n,k}(x) \left(\frac{k}{n} - x \right)^2 C_{n,k}^p \left(\int_0^1 p_{n,k}(t)w(t)f(t)dt \right)^p \\
&\leq Cn^{p+1} \int_0^1 p_{n,k}(t)|w(t)f(t)|^p dt \left(\int_0^1 p_{n,k}(t)dt \right)^{p-1}
\end{align*}
\]

(2.12)

For $I_2(n,x)$, by Lemma 2.2, we have

\[
|I_2|_{p,w} \leq Cn||f||_{p,w}, \quad 1 \leq p \leq \infty.
\]

(2.13)

For $I_3(n,x)$, when $p = \infty$, by (2.1a)-(2.1d) and (2.4), we have

\[
|w(x) I_3(n,x)| \leq n \frac{w(x)}{q^2(x)} \sum_{k=0}^{n} p_{n,k}(x) \left| \frac{k}{n} - x \right| C_{n,k} \int_0^1 p_{n,k}(t)|w(t)f(t)|dt \\
\leq ||f||_{\infty,w} \frac{w(x)}{q^2(x)} \sum_{k=0}^{n} p_{n,k}(x) \left| \frac{k}{n} - x \right| C_{n,k} \\
\leq ||f||_{\infty,w} \frac{w(x)}{q^2(x)} \left(\sum_{k=0}^{n} p_{n,k}(x) \left(\frac{k}{n} - x \right)^2 \right)^{\frac{1}{2}} \left(\sum_{k=0}^{n} p_{n,k}(x)C_{n,k}^2 \right)^{\frac{1}{2}} \\
\leq C||f||_{\infty,w} \frac{n^{\frac{1}{2}}}{q^2(x)} \leq Cn||f||_{\infty,w}
\]

(2.14)

where in the last inequality, we used the fact $1/n^{\frac{1}{2}} q(x) \leq C$, $x \in E_n$.

When $1 \leq p < \infty$, by using Hölder’s inequality, (2.1a), (2.1c), (2.1d), (2.4), and the fact
\[1/n^2 \varphi(x) \leq C, x \in E_n \] again, we deduce that

\[
\int_{E_n} |w(x)I_3(n,x)|^p dx
\leq \int_{E_n} w^p(x) \frac{n^p}{\varphi^p(x)} \sum_{k=0}^{n} p_{n,k}(x) \left(k/n - x \right) C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)f(t)dt \left| dx \right|^p
\] (2.15)

\[
\leq \int_{E_n} w^p(x) \frac{n^p}{\varphi^p(x)} \left(\sum_{k=0}^{n} p_{n,k}(x) \left| k/n - x \right| \right)^{p-1} \times \sum_{k=0}^{n} p_{n,k}(x) \left| k/n - x \right| C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)f(t)dt \left| dx \right|^p
\]

\[
\leq C \int_{E_n} w^p(x) \frac{n^{-2/2}p}{\varphi^{p+1}(x)} \sum_{k=0}^{n} p_{n,k}(x) \left| k/n - x \right| C_{n,k} \int_{0}^{1} p_{n,k}(t)w(t)f(t)\left| t \right|^p dt dx
\]

\[
\leq Cn \sum_{k=0}^{n} C_{n,k}^{p} \left(\int_{E_n} w^p(x) \varphi^{-2}(x)p_{n,k}(x) \left(k/n - x \right)^2 dx \right)^{1/2}
\times \left(\int_{E_n} w^p(x) \varphi^{-2}(x)p_{n,k}(x)dx \right)^{1/2} \int_{0}^{1} p_{n,k}(t)w(t)f(t)\left| t \right|^p dt
\]

\[
\leq Cn^{3/2} \sum_{k=0}^{n} C_{n,k}^{p} \left(n^{-2}w^p \left(k/n \right) \right)^{1/2} \left(\int_{E_n} w^p(x) p_{n,k}(x)dx \right)^{1/2} \int_{0}^{1} p_{n,k}(t)w(t)f(t)\left| t \right|^p dt
\]

\[
= Cn^{p}\left| f \right|_{p,w}^{p}. \tag{2.16}
\]

By combining (2.10)-(2.15), we already have

\[
\left\| \varphi^2 M_n^{n''}(f) \right\|_{p,w,E_n} \leq Cn\left\| f \right\|_{p,w}, \quad 1 \leq p \leq \infty. \tag{2.17}
\]

Now, we estimate the integral on \(E_0^c \). By (2.7), we have

\[
M_n^{n''}(f,x) = \frac{n!}{(n-2)!} \sum_{k=0}^{n-2} p_{n-2,k}(x) \int_{0}^{1} \sum_{j=0}^{2} (2j)! \left(-1\right)^{2-j} C_{n,k+j} p_{n,k+j}(t)w(t)f(t)dt.
\]

When \(1 \leq p < \infty \), noting that \(n \varphi^2(x) \leq C \) for \(x \in E_n^c \), by Hölder’s inequality, (2.3) and (2.4),
we have

\[\| q^2 M_n^{x''} f \|_{p,W,E_n}^p \]
\[\leq \int_{E_n} \left| w(x) q^2(x) n^2 \sum_{k=0}^{n-2} p_{n-2,k}(x) \int_0^1 \sum_{j=0}^1 \frac{1}{(2j)!} (-1)^{2j} C_{n,k+j}(t) w(t) f(t) dt \right|^p dx \]
\[\leq C n^p \sum_{j=0}^2 \int_{E_n} w(x) q^2(x) \sum_{k=0}^{n-2} p_{n-2,k}(x) C_{n,k+j}^{p'} \left| \int_0^1 p_{n,k+j}(t) w(t) f(t) dt \right|^p dx \]
\[\leq C n^p \sum_{j=0}^2 \int_{E_n} w(x) q^2(x) \sum_{k=0}^{n-2} p_{n-2,k}(x) n^p w^{-p} \left(\frac{k^+}{n} \right) \]
\[\times \left[\int_0^1 p_{n,k+j}(t) |w(t)| f(t) |t|^p dt \right]^{p-1} \left(\int_0^1 p_{n,k+j}(t) dt \right) dx \]
\[\leq C n^{p+1} \sum_{j=0}^2 \sum_{k=0}^{n-2} w^{-p} \left(\frac{k^+}{n} \right) \int_{E_n} w(x) p_{n-2,k}(x) dx \int_0^1 p_{n,k+j}(t) |w(t)| f(t) |t|^p dt \]
\[\leq C n^{p+1} \sum_{j=0}^2 \sum_{k=0}^{n-2} n^{-1} w^{-p} \left(\frac{k^+}{n} \right) w^{-p} \left(\frac{k^+}{n} \right) \int_0^1 p_{n,k+j}(t) |w(t)| f(t) |t|^p dt \]
\[\leq C n^p \int_0^1 \left(\sum_{j=0}^2 \sum_{k=0}^{n-2} p_{n,k+j}(t) |w(t)| f(t) |t|^p dt \right) \]
\[\leq C n^p \| f \|_{p,W}^p. \quad (2.18) \]

When \(p = \infty \), for \(x \in E_n \), by (2.1a) and (2.1b),

\[\left| w(x) q^2(x) M_n^{x''}(f, x) \right| \]
\[\leq C n^2 \| f \|_{\infty,W} \sum_{j=0}^2 \sum_{k=0}^{n-2} w(x) q^2(x) p_{n-2,k}(x) C_{n,k+j} \int_0^1 p_{n,k+j}(t) dt \]
\[\leq C \| f \|_{\infty,W} \sum_{j=0}^2 \sum_{k=0}^{n-2} w(x) p_{n-2,k}(x) C_{n,k+j} \]
\[\leq C \| f \|_{\infty,W} w(x) \sum_{k=0}^{n-2} p_{n-2,k}(x) n w^{-1} \left(\frac{k^+}{n-2} \right) \]
\[\leq C n \| f \|_{\infty,W}. \quad (2.19) \]

By (2.18) and (2.19), we see that

\[\| q^2 M_n^{x''}(f) \|_{p,W,E_n} \leq C n \| f \|_{p,W}, \quad 1 \leq p \leq \infty. \quad (2.20) \]
By (2.17) and (2.20), we complete the proof of Lemma 2.4.

Lemma 2.5. For any nonnegative integer m, set

$$T_n^m((x-t)^m,x) = \sum_{k=0}^{n} p_{nk}(x) C_{n,k} \int_0^1 p_{nk}(t) w(t) (x-t)^m dt.$$

Then

$$T_{n,2m} = \sum_{i=0}^{m} p_{i,m,n,a,b}(x) \left(\frac{q^2(x)}{n} \right)^{m-i} n^{-2i}$$

and

$$T_{n,2m-1} = \sum_{i=0}^{m-1} p_{i,m,n,a,b}(x) \left(\frac{q^2(x)}{n} \right)^{m-i-1} n^{-2i+1},$$

where $p_{i,m,n,a,b}(x)$ are polynomials in x of fixed degree with coefficients that are bounded uniformly for all n.

Proof. Analogue to [4], we have the recursion relation:

$$(n + m + 2) T_{n,m+1}(x) = x(1-x) (2m T_{n,m-1}(x) - T'_{nm}(x)) - (1-2x)(m+1) T_{nm}(x).$$

Direct calculations yield that

$$T_{n0}(x) = 1,$$

and

$$T_{n1}(x) = \sum_{k=0}^{n} p_{nk}(x) C_{n,k} \int_0^1 w(t) p_{nk}(t) t dt - x$$

$$= \sum_{k=0}^{n} \frac{B((k+a+1)+1,n-k+b+1)}{B(k+a+b+1,n-k+b+1)} p_{nk}(x) - x$$

$$= \sum_{k=0}^{n} \frac{k+a+1}{n+a+b+2} p_{nk}(x) - x$$

$$= \frac{nx+a+1}{n+a+b+2} - x$$

$$= \frac{\alpha+1-(\alpha+b+2)x}{n+a+b+2},$$

where $B(p,q) := \int_0^1 x^{p-1} (1-x)^{q-1} dx$, $p,q > 0$.

By (2.23)-(2.25) and a simple induction process, we obtain (2.21) and (2.22).

By (2.21), we have
Lemma 2.6. For any given m, it holds that

\[T_{n,2m}(x) \leq Cn^{-m} \left(\phi^2(x) + \frac{1}{n} \right)^m. \]

(2.26)

Lemma 2.7. For \(1 \leq p < \infty \), \(f \in W^{2,p}_w \), there is a positive constant \(C \) such that

\[\| M_n(R_2(f,t,x),x) \|_{p,w,E_n} \leq \frac{C}{n} \| \phi^2(x) f'' \|_{p,w}, \]

(2.27)

where

\[R_2(f,t,x) := \int_{\mathcal{E}} (t-v) f''(v)dv. \]

Proof. Firstly, we consider the case \(p = 1 \). Set \(g(v) = w(v) \phi^2(v) f''(v) \). By the inequality (see [5]):

\[\frac{|t-u|}{\phi^2(u)} \leq \frac{|t-x|}{\phi^2(x)} \]

for any \(u \) between \(x \) and \(t \),

we have

\[
\begin{align*}
&\int_{E_n} w(x) |M_n(R_2(f,t,x),x)|dx \\
&\leq \int_{E_n} w(x) \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{0}^{1} p_{n,k}(t) w(t) \left[\int_{x}^{t} |v| f''(v)dv \right] dt dx \\
&\leq \int_{E_n} w(x) \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{0}^{1} p_{n,k}(t) w(t) \left[\int_{x}^{t} g(v)dv \right] |t-x| \left(\frac{1}{w(x)} + \frac{1}{w(t)} \right) dt dx \\
&\leq \int_{E_n} \phi^{-2}(x) \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{0}^{1} p_{n,k}(t) w(t) \left[\int_{x}^{t} g(v)dv \right] |t-x| dt dx \\
&\quad + \int_{E_n} w(x) \phi^{-2}(x) \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{0}^{1} p_{n,k}(t) \left[\int_{x}^{t} g(v)dv \right] |t-x| dt dx \\
&= : I_1 + I_2. \tag{2.28}
\end{align*}
\]

Set

\[D(l,n,x) := \{ t: \ln^{1-l} \phi(x) \leq |t-x| \leq (l+1)n^{-1} \phi(x) \}, \]

\[F(l,x) := \{ v: v \in (0,1), |v-x| \leq (l+1)n^{-1} \phi(x) \}, \]

\[G(l,v) := \{ x: x \in E_n, v \in F(l,x) \}. \]
For $l \geq 1$, by (2.1b), (2.4), and (2.26) with $w \equiv 1$, we deduce that

$$\sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{D(l,n,x)} p_{n,k}(t) |t-x| dt$$

$$\leq \frac{Cn^2}{l^4 q^4(x)} \sum_{k=0}^{n} p_{n,k}(x) n w^{-1} \left(\frac{k^*}{n} \right) \int_{D(l,n,x)} p_{n,k}(t) |t-x|^5 dt$$

$$\leq \frac{Cn^3}{l^4 q^4(x)} \left(\sum_{k=0}^{n} p_{n,k}(x) n w^{-2} \left(\frac{k^*}{n} \right) \right)^{\frac{1}{2}} \left(\sum_{k=0}^{n} p_{n,k}(x) \left(\int_{0}^{l} p_{n,k}(t) |t-x|^5 dt \right)^2 \right)^{\frac{1}{2}}$$

$$\leq \frac{Cn^2}{l^4 q^4(x) w(x)} \left(\sum_{k=0}^{n} p_{n,k}(x)(n+1) \int_{0}^{l} p_{n,k}(t) |t-x|^{10} dt \right)^{\frac{1}{2}}$$

$$\leq \frac{Cn^2}{l^4 q^4(x) w(x)} \left(n - \frac{1}{2} q(x) \right) \frac{C}{(l+1)^4 w(x)}.$$

For $l = 0$, by (2.1b) and (2.4),

$$\sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{D(l,n,x)} p_{n,k}(t) |t-x| dt \leq Cn^{-\frac{1}{2}} q(x) \sum_{k=0}^{n} p_{n,k}(x) w^{-1} \left(\frac{k^*}{n} \right) \leq C \frac{n^{-\frac{1}{2}} q(x)}{w(x)}.$$

Therefore,

$$I_2 \leq \int_{E_n} w(x) q^{-2}(x) \sum_{l=0}^{n} \sum_{k=0}^{n} p_{n,k}(x) C_{n,k} \int_{D(l,n,x)} p_{n,k}(t) \left| \int_{x}^{l} g(v) dv \right| |t-x| dt dx$$

$$\leq C n^{-1} \sum_{l=0}^{n} \frac{1}{(l+1)^4} \int_{E_n} q(x) \int_{f(l,x)} g(v) dv dx$$

$$\leq C n^{-1} \sum_{l=0}^{n} \frac{1}{(l+1)^4} n^{\frac{1}{2}} \int_{0}^{1} g(v) \left\{ \int_{G(l,v)} q^{-1}(x) dx \right\} dv.$$

Noting that $G(l,v) \subset E_n \subset [0,1]$ for $l \geq n^{\frac{1}{2}}$ and $\int_{0}^{1} q^{-1}(x) dx \leq C$, we have

$$n^{\frac{1}{2}} \sum_{l \geq n^{\frac{1}{2}}} \frac{1}{(l+1)^4} \int_{0}^{1} g(v) \left\{ \int_{G(l,v)} q^{-1}(x) dx \right\} dv \leq C \|q^2 f''\|_{1,w}.$$

Since (see [5])

$$\int_{\{x: |v-x| \leq h q(x)\}} q^{-1}(x) dx \leq Ch,$$

then (by taking $h = (l+1)n^{\frac{1}{2}}$)

$$\int_{G(l,v)} q^{-1}(x) dx \leq C(l+1)n^{\frac{1}{2}}.$$
Therefore,
\[
\frac{1}{n^4} \sum_{0 \leq l \leq n^4} \frac{1}{(l+1)^4} \int_0^1 g(v) \left\{ \int_{G(l,v)} \varphi^{-1}(x) dx \right\} dv \leq C \| \varphi^2 f'' \|_{1,w}.
\]

Thus, we can conclude that
\[
I_2 \leq \frac{C}{n} \| \varphi^2 f'' \|_{1,w}. \quad (2.29)
\]

Now, we begin to prove the following
\[
I_1 \leq \frac{C}{n} \| \varphi^2 f'' \|_{1,w}. \quad (2.30)
\]

For \(l \geq 1 \), by (2.4) and (2.26), we deduce that
\[
\sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_{D(l,n,x)} p_{n,k}(t) w(t) |t-x| dt \\
\leq C \frac{n^2}{l^4 \varphi^4(x)} \sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t) w(t) |t-x|^{10} dt \\
\leq C \frac{n^2}{l^4 \varphi^4(x)} \left[\sum_{k=0}^n p_{n,k}(x) C_{n,k} \left(\int_0^1 p_{n,k}(t) w(t) |t-x|^{5} dt \right)^2 \right]^\frac{1}{2} \\
\leq C \frac{n^2}{l^4 \varphi^4(x)} \left[\sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t) w(t) |t-x|^{10} dt \right]^\frac{1}{2} \\
\leq C \frac{n^2}{l^4 \varphi^4(x)} \left(n^{-5} \varphi^{10}(x) \right)^\frac{1}{2} \leq \frac{n^{-\frac{1}{2}} \varphi(x)}{(l+1)^4}. \tag{2.30}
\]

For \(l = 0 \), by (2.1b), (2.3) and (2.4), we have
\[
\sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_{D(l,n,x)} p_{n,k}(t) w(t) |t-x| dt \\
\leq C n^{-\frac{1}{2}} \varphi(x) \sum_{k=0}^n p_{n,k} w^{-1} \left(\frac{k^2}{n} \right) \int_0^1 p_{n,k}(t) w(t) dt \\
\leq C n^{-\frac{1}{2}} \varphi(x).
\]

Then, we can derive (2.30) in a similar way to the proof of (2.29).

By combining (2.28)-(2.30), we obtain Lemma 2.7 for \(p = 1 \).

Finally, we prove Lemma 2.7 for \(1 < p \leq \infty \).

Set
\[
G(g,x) = \sup_l \left| \frac{1}{l-x} \int_x^l g(v) dv \right|.
\]
The following maximal function inequality are well known
\[\| G(g) \|_p \leq C \| g \|_p. \]
Since \(1/w(v) \leq C(1/w(t) + 1/w(x)) \) for any \(v \) between \(x \) and \(t \), by the maximal function inequality, we have
\[
\| M^*_n(R_3(f,t,x),x) \|_{p,w,E_n}
\leq C \left\| \varphi^{-2}(x) M^*_n \left(|t-x| \left(\frac{1}{w(t)} + \frac{1}{w(x)} \right) \int_x^t w(v) \varphi^2(v) f''(v) dv, x \right) \right\|_{p,w,E_n}
\leq C \left\| \varphi^{-2}(x) M^*_n \left((t-x)^2 \left(\frac{1}{w(t)} + \frac{1}{w(x)} \right) G(g,x), x \right) \right\|_{p,w,E_n}
\leq C \| g \|_p \left\| \varphi^{-2}(x) M^*_n \left((t-x)^2 \left(\frac{1}{w(t)} + \frac{1}{w(x)} \right), x \right) \right\|_{\infty,w,E_n}.
\]
Therefore, we only need to prove that
\[\| K \|_{\infty,E_n} = \left\| \frac{w(x)}{\varphi^2(x)} M^*_n \left((t-x)^2 \left(\frac{1}{w(t)} + \frac{1}{w(x)} \right), x \right) \right\|_{\infty,E_n} \leq \frac{C}{n}, \tag{2.31} \]
where \(\| K \|_{\infty,E_n} \) is the usual supremum norm of \(K \) on \(E_n \), and
\[K = \frac{1}{\varphi^2(x)} M^*_n((t-x)^2,x) + \frac{w(x)}{\varphi^2(x)} M^*_n \left(\frac{(t-x)^2}{w(t)}, x \right). \tag{2.32} \]
For the first part of \(K \), by (2.26),
\[\frac{1}{\varphi^2(x)} M^*_n((t-x)^2,x) \leq \frac{C}{n}, \quad x \in E_n. \tag{2.33} \]
For the second part of \(K \), by (2.4), (2.1b) and (2.26) (with \(w = 1 \)),
\[
= \frac{w(x)}{\varphi^2(x)} \sum_{k=0}^n p_{n,k}(x) C_{n,k} \int_0^1 p_{n,k}(t)(t-x)^2 dt
\leq \frac{w(x)}{\varphi^2(x)} \left[\sum_{k=0}^n p_{n,k}(x) w^{-2} \left(\frac{k^2}{n} \right) \sum_{k=0}^n p_{n,k}(x) n^2 \left(\int_0^1 p_{n,k}(t)(t-x)^2 dt \right)^2 \right]^{\frac{1}{2}}
\leq \frac{1}{\varphi^2(x)} \left[\sum_{k=0}^n p_{n,k}(x) (n+1) \int_0^1 p_{n,k}(t)(t-x)^4 dt \right]^{\frac{1}{2}}
\leq \frac{1}{\varphi^2(x)} \left(n^{-\frac{1}{2}} \varphi(x) \right)^2 \leq \frac{C}{n}. \tag{2.34}
\]
By (2.33) and (2.34), we get (2.31), and thus Lemma 2.7 is valid for \(1 < p \leq \infty. \)
3 Proofs of theorems

Proof of Theorem 1.1. It is sufficient to prove that
\[
\| M_n^* (f) - f \|_{p,w} \leq C_n \left(\| \phi^2 f'' \|_{p,w} + \| f' \|_{p,w} \right)
\]
(3.1)

for \(\phi^2 f'' \in L^p_w \). By the Taylor’s formula
\[
f(t) = f(x) + f'(x)(t-x) + \int_x^t (t-v)f''(v)dv,
\]
we have
\[
w(x)(M_n^* (f,x) - f(x)) = w(x)f'(x)M_n^* ((t-x),x) + w(x)M_n^* (R_2 (f,t,x),x).
\]
Then, by (2.25) and (2.27), we get (3.1) immediately. □

Proof of Theorem 1.2. The “\(\Leftarrow \)” part follows from Theorem 1.1. The “\(\Rightarrow \)” part can be done by using the argument of proof of Theorem 9.3.2 in [5], we omit the details here. □

References

[1] H. Berens and Y. Xu, On Bernstein-Durrmeyer polynomials with Jacobi weights, In C. K. Chui, editor, Approximation Theory and Functional Analysis, Boston: Academic Press, (1991), 25–46.
[2] B. Della Vecchia, G. Mastroianni and J. Szabados, A weighted generalization of the classical Kantorovich operator, Rend. Circ. Mat. Palermo, 82(2) (2010), 1–27.
[3] B. Della Vecchia, G. Mastroianni and J. Szabados, A weighted generalization of the classical Kantorovich operator, II: Saturation, Mediterr. J. Math., 10 (2013), 1–15.
[4] M. M. Derriennic. Sur l’approximation de fonctions integrables sur \([0,1]\) par des ploynomes de Bernstein modifies, J. Approx. Theory, 31 (1981), 325–343.
[5] Z. Ditzian, V. Totik, Moduli of Smoothness, Berlin: Springer-Verlag, 1987.
[6] J. L. Durrmeyer, une formule d’inversion de la transformee de Laplace: Applications a la therie des moments, These de 3e cycle, Faculte des sciences de l’ universite de Paris, 1967.
[7] G. G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[8] D. S. Yu, Weighted approximation by modified Kantorovich-Bernstein operators, Acta Math. Hungar., 141 (2013), 132–149.
[9] Z. Q. Zhang, On weighted approximation by Bernstein-Durrmeyer operators, Approx. Theory Appl., 7 (1991), 51–64.