The Change of Pelvic Tilt Angle and Backrest Pressure According to Hip Joint Angle in Healthy Adult

Jae Ho Yu, Eun Jeong Lee, Jin Seop Kim, Ji Heon Hong and Dong Yeop Lee*
Department of Physical Therapy, Sun Moon University, Korea; kan717@hanmail.net

Abstract
The aim of this study is to prove that the change of pelvic tilt angle and backrest pressure according to hip joint angle in healthy adult. Thirty healthy male and female adults consented to participate in this study. Subjects sat on the chair with 90°, 100° and 120° hip joint flexion while both the Pressure Sensors (PS) and Passive Makers (PM) were stuck to the subjects by an examiner. In difference between the distance values of the total axis (in distance between Superior Iliac Crest (SIC) and thigh) and the distance values of the total axis (in distance between Anterior Superior Iliac Spine (ASIS) and thigh), there was significant value (p<.01). And in difference between the thoracic pressure and the lumbar pressure, there was significant value (p<.001). Thus, in comparison with the subjects sitting down with a smaller hip joint angle, the subjects sitting down with the bigger hip joint angle can be exposed to danger complaining of low back pain.

Keywords: Back Pressure, Component, Hip Joint Angle, Pelvic Tilt, Sitting Posture

1. Introduction

Low Back Pain (LBP) is the biggest global causes of disability worldwide. And a musculoskeletal disorder doubted to be provoked by a chronic overuse and an acute injury. Previous studies have proposed that physical activities in awkward postures can result in the LBP. One of the risk factor for LBP is prolonged sitting, yet the time spent in a sitting posture is increasing steadily in modern society. The best way to sit is controversial in the literature, but generally sitting is worsening factor.

Increasing sitting adaptation can reduce trunk motion. In term of trunk motion, lordosed and kyphosed sitting posture is widely discussed in various research. Chief of both, people with LBP believes that increased lordosis come as a relief of pain. But lordotic sitting has been related to aggravated discomfort. For example, lordotic lumbar spine curve brings increased fatigue and discomfort on paraspinal muscle activation, and disrupts the liberty of the spine.

The spine curvature is crucial factor in body posture and movement. When the curvature changes during movement like walking and transportation of stuffs, spine is stressed. The spine may obtain a big compressive load and it depends on a follower force pattern. In particular, lumbar spine is pressured by upper body weight in sitting posture.

According to an existing study, Vergara and Page made a subject stay in the sitting posture for a long time to create various loads on the spine, and the study showed that lordotic postures are the principal factor of the increased discomfort using rachimeter (containing a goniometer and inclinometer). And Patwardhan et al. experimented on the lumbar spine under a compressive load which is placed direction having no connection with the deficient curve (lumbar lordosis) during showing the ligamentous lumbar, and measuring a preload magnitude and range of motion. Their study reported that follower preload provides a stimulation which allows the spine to support induced compressive loads during flexion-extension activities. Han et al. studied a follower load mechanism.
and muscle activation pattern around lumbar spine using electromyograph, and then their results demonstrate that muscles around spine can create compression load in the lumbar spine while standing on neutral posture16.

These studies commonly conduct the test stays the subject’s unsupported sitting posture in lordotic lumbar spine, proposing the reasonable results about correlation between the sitting posture and lordotic spinal curvature. Until a recent study, also there are lacks of studies on the supported sitting posture for a lordotic curve researches. But, above all research results are difficult to generalize to our contemporaries because commonly chairs released in the market has a backrest.

Thus, the aim of this study is to prove that the change of pelvic tilt angle and backrest pressure according to hip joint angle in healthy adult. I hypothesize that in comparison with the subjects sitting down with a smaller hip joint angle, the subjects sitting down with the bigger hip joint angle may be exposed to danger complaining of LBP. More accurately, the various hip joint angles bring out the data containing pelvic anterior tilt and lumbar lordotic curve. Lordotic curve is estimated through the difference between thoracic and lumbar spine pressure on backrest.

2. Method

2.1 Subjects

Thirty healthy male and female adults consented to participate in this study. Exclusion criteria included any medical history of injury, postural or skeletal disorders, cardiovascular or neurological conditions which could affect normal posture, impairment of vestibular system. None of the subjects was excluded in this study. All of the participants were fully informed about the procedure and aim of current experiment. Afterward, all participants were signed up on consent form for research. This study was approved by the Institutional Review Board (IRB) of Sun Moon University.

2.2 Procedure

The design of this experiment was cross sectional and single blind study. And the subjects was randomly divided into three groups and allocated to different tasks, and then each group was consisted of ten subjects. Participants were fully engaged with dressing comfortable clothes. All participants received instructions to sit on a chair (width 400mm*length 400mm*height 750mm, FURSYS) having a backrest as Pressure Sensors (PS) were attached to T6 and L1. And to measure the pelvic tilt using motion capture analyzer (Qualisys system-\texttrademark Qualisys Medical AB 41113, Gothenburg, Sweden), Passive Makers (PM) were attached to left and right anterior superior iliac spine (ASIS), superior iliac crest (SIC), thigh. Both the PS and PM were sticked to the subjects by an examiner who practiced it repeatedly. Each joint angles was measured with digital goniometer (Authorized CE representative RMS, UK Ltd). In a first group, subjects sat on the chair with 90° hip joint flexion. Excepting hip joint angle, neck angle and knee joint angle (90°) were supervised by the examiner, and it was applied to all group. In a seconds group, subjects sat leaning back in the chair backrest with 100° hip joint flexion. In a third group, sat on the chair in the way that the seconds group did with 120° hip joint flexion. Flow diagram of subjects screening and experimental protocol were presented on Figure 1.

Figure 1. Flow diagram of subjects screening and experimental protocol.

2.3 Measurement of Lumbar Lordotic Curve

2.3.1 Pelvic Tilt

To measure the pelvic tilt, the motion analyzer was used. And this measuring equipment was processed in 3
dimensions. Six cameras (Qualisys Oqus 300) that emit and capture infrared light reflected by spherical passive markers were used. Data were captured at a frequency of 120 Hz, using Qualisys Track Manager v2.5 acquisition software. The makers were attached to left and right ASIS following the iliac crest anteriorly to the spine at the end of the crest, SIC on the crest at the most superior and lateral point, thigh namely, the total number of makers is six. In this study, the change of pelvic tilt angle was calculated from difference between a length between SIC and thigh and length between ASIS and thigh using the following formula Figure 2.

2.3.2 The Difference between Thoracic and Lumbar Spine Pressure on Backrest
To measure the backrest pressure, the sensors were attached to T6 and L1 level. And examiner applied the sensors to the skin. The data was sent at Arduino software v1.0.5 connecting an Arduino board (Arduino Uno). This hardware was linked the metal PS using a cable, and adapted to computer as a serial port. To calibrate sensors, examiner arranged the laboratory environment.

2.4 Statistical Analysis
All statistical analysis was performed using the SPSS statistical analysis software v18.0. The mean and standard deviations of variables were calculated by descriptive statistics. One way ANOVA was used to detect differences in the difference between a length between SIC and thigh and length between ASIS and thigh during pelvic tilt and the difference between thoracic and lumbar spine pressure on backrest. A post hoc test was performed using Bonferroni correction. The significance of level was set at p<.05.

3. Result
Mean distance between SIC and thigh, and ASIS and thigh on various hip joint angle are following Table 1. In distance between SIC and thigh, X axis did showed significant value in every hip joint angle (p<.01). In Y axis, there was significant value (p<.001) which depended on hip joint angle, and there was significant value (p<.001) depend on hip joint angle in Z axis. Post hoc test result showed significant value (p<.05) on hip joint angle between 90°-120°. In distance between ASIS and thigh, X axis did showed significant value in hip joint angle (p<.05). In Y axis, there was significant value (p<.001) depend on hip joint angle, and there was significant value (p<.001) which depended on hip joint angle in Z axis. Post hoc test result showed significant value (p<.05) on hip joint angle between 90°-100°, 90°-120° in X, Y, Z axis. The distance values of the total axis in distance between ASIS and thigh was not significant (p<.05). Finally in difference between the distance values of the total axis (in distance between SIC and thigh) and the distance values of the total axis (in distance between ASIS and thigh), there was significant value (p<.01). And post hoc test result showed significant value (p<.05) on hip joint angle between 90°-120°. Mean distance between SIC and thigh, and ASIS and thigh on various hip joint angle are following Table 2. In thoracic pressure, there was significant value (p<.001), and post hoc test result showed significant value (p<.05) on hip joint angle between 90°-120°, 100°-120°. Lumbar pressure was significant value (p<.001), and post hoc test result showed significant value (p<.05) on hip joint angle between 90°-100°, 100°-120°. Finally in difference between the thoracic pressure and the lumbar pressure, there was significant value (p<.01). And post hoc test result showed significant value (p<.05) on hip joint angle between 90°-120°, 90°-100°, 100°-120°.

4. Discussion
This study analyzed the change of pelvic tilt and back pressure while sitting on the chair with backrest depend on various hip joint angle. In a recent study, the researcher evaluated ideal sitting behavior and reported that movement of the trunk and pelvic was significant in sitting17. Some chair movements cause a dynamic relation of sitting impairment of physical mechanical18. Paul et al.19 investigated that the effect of adjustable simulator chair on body segments orientation using the motion capture system on the pelvic, and there was significant the effect various manipulations of the chair on pelvic tilt. Claus et al.18 researched sagittal spinal curves (thoracic, thoraco-lumbar, lumbar) depend on four different sitting posture (flat, long lordosis, short lordosis, slumped posture), and reported that it was difficult to divide between thoraco-lumbar region and lumbar region while adjust sitting posture by oneself without visual and verbal description18. In
current study, the subjects were controlled depend on three posture fixed hip joint angles in advance. Result of this study was that pelvic movement and spinal curvature in sitting on the three chair posture were significant. In contrast with Paul et al. and this study which draw a significant result using the precise control of the simulator chair and exact hip joint angles, the study of Andrew leads to no significant result. For this reason, it is considered that posture set of examiner is important when the researcher experiment about sitting posture, because it is difficult to maintain pelvic movement or spinal curve.

Precise hip joint angles should be defined by regarding the effect of different tasks in sitting posture20. Shibata21 investigated the effects of hip joint angles by backrest inclination (0°, 10°, 30°) in vertical axis on power absorption through seats using biodynamic response parameter, and else study evaluated that change of axial stiffness in region between the buttocks and the thighs upon the various sitting posture in the same principal with above study. Both proposed that the more hip joint angles increase, the more risk of LBP decrease21,22. This study likes the two researches in that hip joint angles were changed in each group and set (90°, 100°, 120°) by examiner. But current study showed that the subject sitting apple down with the bigger hip joint angle were exposed to risk of LBP. Result of this study is different from above two researches. The reason why this study places emphasis on lordotic curve depend on various hip joint angle while the backrest was controlled, in contrast with other studies which overlooked the spinal curve by touching back to backrest continuously.

When hip joint angle changes, pelvic tilt measured angle between ASIS-PSIS line and horizontal line also changes. For example, hip flexion cause pelvic posterior tilt, hip extension cause pelvic anterior tilt23. To measure pelvic tilt, Virginie et al.23 used prospective radiographic analysis and Harvey et al.23 utilizes protractor device, and Nik et al.24 used Textile-based Micro electro mechanical system accelerometer23–25. However, this study stuck to use motion capture system, although many method measured pelvic tilt like above researches, in order to

| Table 2. The change of back pressure according to each hip joint angle(Units : index) |
|---|---|---|---|---|
| | 90 | 100° | 120° | F |
| Thoracic pressure (C) | 1393.20±45.62a | 1347.20±74.12a | 1562.30±77.91a | 28.209 |
| Lumbar pressure (D) | 1436.50±45.10 | 1239.80±48.87 | 957.70±116.78 | (C) |
| (C)-(D) | -63.30±53.35 | 107.40±70.76 | 604.60±178.43 | 87.778 |

All values are *mean ± standard deviation (SD)
aP<.05, **P<.01, ***P<.001
test objectively. In current study, PSIS is not recognized because of backrest. Therefore, the pelvic tilt means difference value app lengths between SIC and thigh and length between ASIS and thigh using the formula in this study.

Along with change of pelvic tilt, spine curvature is also crucial factor in dynamic sitting posture. O’Sullivan et al. investigated effects of various sitting posture on spine curvature using the Spinal Position Monitoring Device (SPMD). And the study reported that pain-free subjects can be adjusted in a neutral lumbar sitting posture. This study used the pressure sensor to measure the spinal curve unlike above study using the SPMD. The sensors were attached to T6 and L1 level because the PS can contact with backrest well in that location. In present study, when hip joint angle was 120°, thoracic spine pressure is bigger than lumbar spine pressure; it means that lumbar lordotic curve was bigger. On the contrary, when hip joint angle was 90°, there was no difference between thoracic pressure and lumbar pressure. It means that lordotic curve was not bigger and may be the better sitting posture. And this study examined in case of healthy adults, whereas above research inspected in case of both healthy adults and adult with LBP group. If this study was designed in case of both subjects, in this way, it is considered that the result can be proved difference between two subject groups.

In the limit of this study, the small number of subjects was studied, so it is hard to generalize the results. And as mentioned above, result of this study is limited in healthy adult. For clinical application, the future research needs to investigate that the change of pelvic tilt angle and backrest pressure according to hip joint angle in adult with LBP.

5. References

1. Schinkel-Ivy A, Nairn BC, Drake JD. Investigation of trunk muscle co-contraction and its association with low back pain development during prolonged sitting. J Electromyogr Kinesiol. 2013; 23(4):778–86.
2. Roffey DM, Wai EK, Paul B, Kwon BK, Simon D. Causal assessment of awkward occupational postures and low back pain: results of a systematic review. Spine J. 2010; 10(1):89–99.
3. Katz JN. Lumbar disc disorders and low-back pain: Socio-economic factors and consequences. J Bone Jt Surg Am. 2006; 88(Suppl. 2):21–4.
4. Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a Systematic review. Am J Preventive Med. 2012; 42(3):3–28.
5. Edmondston SJ, Chan HY, Ngai GC, Warren ML, Williams JM, Glennon S, Netto K. Postural neck pain: An investigation of habitual sitting posture, perception of ‘good’ posture and cervicothoracic kinaesthesia. Man Ther. 2007; 12(4):363–71.
6. Pynt J, Higgs J, Mackey M. Seeking the optimal posture of the seated lumbar spine. Physiother Theory Practice. 2001; 17(1):5–21.
7. Henry W, Kaitlyn JW, Mason CH, Jacqueline EH. The effect of active sitting on trunk motion. J Sport and Health Science. 2014; 1–5.
8. Vergara M, Page A. Relationship between comfort and back posture and mobility in sitting-posture. Appl Ergon. 2002; 33(1):1–8.
9. Crisco JJP, Yamamoto MM, Oxland ITR. Euler stability of the human ligamentous spine. Part 2: Experiment. Clin Biomech. 1992; 7(1):27–32.
10. Mitnitski AB, Yahia LH, Newman NM, Gracovetsky SA, Feldman AG. Coordination between the lumbar spine lordosis and trunk angle during weight lifting. Clinical Biomechanics. 1998; 13(2):121–7.
11. Peatsall DJ, Reid JG. Line of gravity relative to upright, vertebral, posture. Clin Biomech. 1992; 7:80–6.
12. McGill S. Loads on the lumbar spine and associated tissues: Biomechanics of the spine: Clinical and surgical perspective. CRC Press; 1990. p. 65–95.
13. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res. 2003; 21(3):540–6.
14. Han KS, Rohlmann A, Yang SJ, Kim BS, Lim TH. Spinal muscles can create compressive follower loads in the lumbar spine in a neutral standing posture. Med Eng Phys. 2011; 33(4):472–8.
15. Lin F, Parthasarathy S, Taylor SJ, Pucci D, Hendrix RW, Makhsous M. Effect of different sitting postures on lung capacity, expiratory flow and lumbar lordosis. Arch Phys Med Rehabil. 2006; 87(4):504–9.
16. Fenety PA, Putnam C, Walker JM. In-chair movement: Validity, reliability and implications for measuring sitting discomfort. Appl Ergon. 2006; 31(4):383–93.
17. van Geffen P, Molier BI, Reenalda J, Veltink PH, Koopman BF. Body segments decoupling in sitting: Control of body posture from automatic chair adjustments. J Biomech. 2008; 41(16):3419–25.
18. Claus AP, Hides JA, Moseley GL, Hodges PW. Is ‘ideal’ sitting posture real? Measurement of spinal curves in four sitting postures. Manual Therapy. 2009; 14(4):404–8.
19. Schmidt S, Amereller M, Franz M, Kaiser R, Schwartz A. A literature review on optimum and preferred joint angles in automotive sitting posture. Appl Ergon. 2014; 45(2):247–60.
20. Kitazaki S, Griffin MJ. A model analysis of whole-body vertical vibration, using a finite element model of the human body. J Sound Vib. 1997; 200(1):83–103.

21. Shibata N, Maeda S. Determination of backrest inclination based on biodynamic response study for prevention of low back pain. Med Eng Phys. 2010; 32(6):577–83.

22. Magee D. Orthopedic Physical Assessment. 6th ed. Elsevier. 2014.

23. Harvey NL, Hodgson RL, Kinsella SM. Does body mass index influence the degree of pelvic tilt produced by a Crawford wedge? Int J Obstet Anesth. 2013; 22(2):129–32.

24. Nik NZM, Azam AB, Syaidah MS, Dedy HB, Wicaksono. Textile-based Micro Electro Mechanical System (MEMS) Accelerometer for pelvic tilt measurement original. Procedia Engineering. 2012; 41:532–7.

25. Virginie L, Benjamin B, Justin SS, Oheneba B, Richard AH, Douglas B, Gregory M, Eric K, Christopher A, Behrooz A, Shary B, Frank S. Preoperative Planning for Pedicle Subtraction Osteotomy: Does Pelvic Tilt Matter? J Spine Deformity. 2014; 2(5):358–66.

26. O'Sullivan K, O'Dea P, Wim D, O'Sullivan P, Amanda C, O'Sullivan L. Neutral lumbar spine sitting posture in pain-free subjects. Man Ther. 2010; 15(6):557–61.