Coorbit Spaces with Voice in a Fréchet Space

Stefano Vigogna

Università degli Studi di Genova, Dipartimento di Matematica

XXXIII Convegno Nazionale di Analisi Armonica
Alba, 20 Giugno 2013
This is a joint work with:

Stephan Dahlke (Marburg)
Filippo De Mari (Genova)
Ernesto De Vito (Genova)
Demetrio Labate (Houston)
Gabriele Steidl (Kaiserslautern)
Gerd Teschke (Neubrandenburg)
Outline

1. Reproducing representations
2. Classical coorbit theory
3. Generalized coorbit theory based on target spaces
4. Application to non integrable representations
5. Work in progress and open problems
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 \[
 V_u : \mathcal{H} \longrightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x)u \rangle_{\mathcal{H}};
 \]
- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 \[
 V_u' : L^2(G) \longrightarrow \mathcal{H} \quad V_u'f = \int_G f(x)\pi(x)u \, dx;
 \]
- thus one has the weak integral reconstruction
 \[
 v = V_u'V_u v = \int_G \langle v, \pi(x)u \rangle \pi(x)u \, dx.
 \]
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 \[
 V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x) u \rangle_{\mathcal{H}};
 \]
- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 \[
 V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x) \pi(x) u \, dx;
 \]
- thus one has the weak integral reconstruction
 \[
 v = V_u' V_u v = \int_G \langle v, \pi(x) u \rangle \pi(x) u \, dx.
 \]
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 \[V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x)u \rangle_{\mathcal{H}}; \]
- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 \[V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x)\pi(x)u \, dx; \]
- thus one has the weak integral reconstruction
 \[v = V_u' V_u v = \int_G \langle v, \pi(x)u \rangle \pi(x)u \, dx. \]
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 \[V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x)u \rangle_{\mathcal{H}}; \]
- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 \[V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x)\pi(x)u \, dx; \]
- thus one has the weak integral reconstruction
 \[v = V_u'V_u v = \int_G \langle v, \pi(x)u \rangle\pi(x)u \, dx. \]
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 \[V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x)u \rangle_{\mathcal{H}}; \]
- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 \[V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x) \pi(x)u \, dx; \]
- thus one has the weak integral reconstruction
 \[v = V_u' V_u v = \int_G \langle v, \pi(x)u \rangle \pi(x)u \, dx. \]
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by
 $$V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u v(x) := \langle v, \pi(x)u \rangle_{\mathcal{H}};$$
- if V_u defines an isometry $\mathcal{H} \leftrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map
 $$V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x) \pi(x)u \, dx;$$
- thus one has the weak integral reconstruction
 $$v = V_u' V_u v = \int_G \langle v, \pi(x)u \rangle \pi(x)u \, dx.$$
Voice transform

- \mathcal{H} Hilbert space of signals (e.g. $\mathcal{H} = L^2(\mathbb{R}^d)$);
- G locally compact group with Haar measure dx;
- π unitary representation of G on \mathcal{H};
- for a fixed vector $u \in \mathcal{H}$, the voice transform is defined by

$$V_u : \mathcal{H} \rightarrow L^\infty(G) \cap C(G) \quad V_u \psi(x) := \langle \psi, \pi(x)u \rangle_{\mathcal{H}};$$

- if V_u defines an isometry $\mathcal{H} \hookrightarrow L^2(G)$, π is called a reproducing representation and u an admissible vector;
- the synthesis operator is given by the dual map

$$V_u' : L^2(G) \rightarrow \mathcal{H} \quad V_u' f = \int_G f(x) \pi(x)u \, dx;$$

- thus one has the weak integral reconstruction

$$v = V_u' V_u \psi = \int_G \langle \psi, \pi(x)u \rangle \pi(x)u \, dx.$$
Reproducing kernels

- V_u intertwines π with the left regular representation of G;
- on the $L^2(G)$-side, we have the reproducing formula
 \[
 V_u v = V_u v * V_u u \quad \forall v \in \mathcal{H}
 \]
 where the convolution is given by $f * g(x) = \int f(y)g(y^{-1}x) \, dy$;
- $K := V_u u$ is called a kernel for the representation;
- \mathcal{H} is isometrically embedded into $L^2(G)$ via V_u as the reproducing kernel Hilbert space
 \[
 \mathcal{M}^2 := \{ f \in L^2(G) \mid f = f * K \}.
 \]
Reproducing representations

Reproducing kernels

- V_u intertwines π with the left regular representation of G;
- on the $L^2(G)$-side, we have the reproducing formula

$$V_u v = V_u v \ast V_u u \quad \forall v \in \mathcal{H}$$

where the convolution is given by $f \ast g(x) = \int f(y)g(y^{-1}x) \, dy$;
- $K := V_u u$ is called a kernel for the representation;
- \mathcal{H} is isometrically embedded into $L^2(G)$ via V_u as the reproducing kernel Hilbert space

$$\mathcal{M}^2 := \{ f \in L^2(G) \mid f = f \ast K \}.$$
Reproducing representations

Reproducing kernels

- V_u intertwines π with the left regular representation of G;
- on the $L^2(G)$-side, we have the reproducing formula

$$V_u v = V_u v \ast V_u u \quad \forall v \in \mathcal{H}$$

where the convolution is given by $f \ast g(x) = \int f(y)g(y^{-1}x) \, dy$;
- $K := V_u u$ is called a kernel for the representation;
- \mathcal{H} is isometrically embedded into $L^2(G)$ via V_u as the reproducing kernel Hilbert space

$$\mathcal{M}^2 := \{ f \in L^2(G) \mid f = f \ast K \}.$$
Reproducing kernels

- V_u intertwines π with the left regular representation of G;
- on the $L^2(G)$-side, we have the reproducing formula

$$V_u v = V_u v \ast V_u u \quad \forall v \in \mathcal{H}$$

where the convolution is given by $f \ast g(x) = \int f(y)g(y^{-1}x) \, dy$;
- $K := V_u u$ is called a kernel for the representation;
- \mathcal{H} is isometrically embedded into $L^2(G)$ via V_u as the reproducing kernel Hilbert space

$$\mathcal{M}^2 := \{ f \in L^2(G) \mid f = f \ast K \}. $$
Example: the wavelets

- $H = \mathcal{F}^{-1}L^2(\mathbb{R}^+) < L^2(\mathbb{R})$;
- $G = \mathbb{R} \times \mathbb{R}^+ = ax + b \quad (b', a')(b, a) = (b' + a'b, a'a)$;
- $dx = a^{-2} db da$;
- $\pi(b, a)\nu(x) := a^{-1/2} \nu((x - b)/a) \quad \nu \in H$.

Calderón’s condition

π is reproducing, and a vector $u \in H$ is admissible if and only if

$$\int_{\mathbb{R}^+} |\hat{u}(\xi)|^2 \frac{d\xi}{\xi} = 1.$$
Reproducing representations

Example: the wavelets

- \(\mathcal{H} = \mathcal{F}^{-1} L^2(\hat{\mathbb{R}}_+) < L^2(\mathbb{R}) \);
- \(G = \mathbb{R} \times \mathbb{R}_+ = ax + b \quad (b', a')(b, a) = (b' + a'b, a'a) \);
- \(dx = a^{-2} \, db \, da \);
- \(\pi(b, a) \nu(x) := a^{-1/2} \nu((x - b)/a) \quad \nu \in \mathcal{H} \).

Calderón’s condition

\(\pi \) is reproducing, and a vector \(u \in \mathcal{H} \) is admissible if and only if

\[
\int_{\mathbb{R}_+} |\hat{u}(\xi)|^2 \frac{d\xi}{\xi} = 1.
\]
Motivation for coorbits

- Some reproducing systems are better than others, as long as they have additional good properties, e.g. a fast coefficient decay;
- the good properties are not detected by the Hilbert space structure, whereas they are typically measured by norms;
- nice reproducing kernels can be extended to reproduce a certain family of Banach spaces.

Coorbit space theory

Every sufficiently good reproducing representation generates an associated family of smoothness Banach spaces, the coorbit spaces.
Motivation for coorbits

- Some reproducing systems are better than others, as long as they have additional good properties, e.g. a fast coefficient decay;
- the good properties are not detected by the Hilbert space structure, whereas they are typically measured by norms;
- nice reproducing kernels can be extended to reproduce a certain family of Banach spaces.

Coorbit space theory

Every sufficiently good reproducing representation generates an associated family of smoothness Banach spaces, the coorbit spaces.
Motivation for coorbits

- Some reproducing systems are better than others, as long as they have additional good properties, e.g. a fast coefficient decay;
- the good properties are not detected by the Hilbert space structure, whereas they are typically measured by norms;
- nice reproducing kernels can be extended to reproduce a certain family of Banach spaces.

Coorbit space theory

Every sufficiently good reproducing representation generates an associated family of smoothness Banach spaces, the coorbit spaces.
Motivation for coorbits

- Some reproducing systems are better than others, as long as they have additional good properties, e.g. a fast coefficient decay;
- the good properties are not detected by the Hilbert space structure, whereas they are typically measured by norms;
- nice reproducing kernels can be extended to reproduce a certain family of Banach spaces.

Coorbit space theory

Every sufficiently good reproducing representation generates an associated family of smoothness Banach spaces, the coorbit spaces.
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- \(\pi \) reproducing irreducible representation, \(u \) admissible vector;
- suppose \(K (= V_u u) \in L^1(G) \);
- \(\pi \) is called an integrable representation;
- define the space of test functions

\[
S := \{ \nu \in \mathcal{H} \mid V_u \nu \in L^1(G) \}
\]

with coorbit norm \(\| \nu \| := \| V_u \nu \|_1 \).

(i) \(S \subset \mathcal{H} \) is a dense \(\pi \)-invariant Banach space, independent of \(u \);
(ii) \(V_u \) defines an isometry from \(S \) onto the reproducing kernel space

\[
\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f * K \}.
\]
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- π reproducing irreducible representation, u admissible vector;
- suppose $K = V_u u \in L^1(G)$;
 π is called an integrable representation;
- define the space of test functions

$$S := \{ v \in \mathcal{H} \mid V_u v \in L^1(G) \}$$

with coorbit norm $\| v \| := \| V_u v \|_1$.

(i) $S < \mathcal{H}$ is a dense π-invariant Banach space, independent of u;
(ii) V_u defines an isometry from S onto the reproducing kernel space

$$\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f \ast K \}.$$
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- π reproducing irreducible representation, u admissible vector;
- suppose $K = V_u u \in L^1(G)$;
 π is called an integrable representation;
- define the space of test functions

$$S := \{ \psi \in \mathcal{H} \mid V_u \psi \in L^1(G) \}$$

with coorbit norm $\| \psi \| := \| V_u \psi \|_1$.

(i) $S < \mathcal{H}$ is a dense π-invariant Banach space, independent of u;
(ii) V_u defines an isometry from S onto the reproducing kernel space

$$\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f * K \}.$$
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- π reproducing irreducible representation, u admissible vector;
- suppose $K (= V_u u) \in L^1(G)$;
 π is called an integrable representation;
- define the space of test functions

$$S := \{ \nu \in \mathcal{H} \mid V_u \nu \in L^1(G) \}$$

with coorbit norm $\| \nu \| := \| V_u \nu \|_1$.

(i) $S < \mathcal{H}$ is a dense π-invariant Banach space, independent of u;
(ii) V_u defines an isometry from S onto the reproducing kernel space

$$\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f * K \}.$$
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- \(\pi \) reproducing irreducible representation, \(u \) admissible vector;
- suppose \(K = V_u u \in L^1(G) \);
 \(\pi \) is called an integrable representation;
- define the space of test functions

\[
S := \{ v \in \mathcal{H} \mid V_u v \in L^1(G) \}
\]

with coorbit norm \(\| v \| := \| V_u v \|_1 \).

(i) \(S \subset \mathcal{H} \) is a dense \(\pi \)-invariant Banach space, independent of \(u \);

(ii) \(V_u \) defines an isometry from \(S \) onto the reproducing kernel space

\[
\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f \ast K \}.
\]
Test functions

Classical setup (Feichtinger–Gröchenig, 1986).

- π reproducing irreducible representation, u admissible vector;
- suppose $K (= V_u u) \in L^1(G)$; π is called an integrable representation;
- define the space of test functions

$$S := \{ v \in \mathcal{H} \mid V_u v \in L^1(G) \}$$

with coorbit norm $\| v \| := \| V_u v \|_1$.

(i) $S < \mathcal{H}$ is a dense π-invariant Banach space, independent of u;
(ii) V_u defines an isometry from S onto the reproducing kernel space

$$\mathcal{M}^1 := \{ f \in L^1(G) \mid f = f * K \}.$$
Take S', the dual of S, as the space of distributions;

- we have dense embeddings $S \hookrightarrow \mathcal{H} \hookrightarrow S'$;
- extend the voice transform to S' by

$$V_u^e T(x) := S' \langle T, \pi(x)u \rangle_S;$$

The extended voice transform

$$V_u^e : S' \longrightarrow L^\infty(G)$$

is bounded and injective.
Distributions

- Take S', the dual of S, as the space of distributions;
- we have dense embeddings $S \hookrightarrow \mathcal{H} \hookrightarrow S'$;
- extend the voice transform to S' by

$$V_u^e T(x) := S' \langle T, \pi(x)u \rangle_S;$$

The extended voice transform

$$V_u^e : S' \longrightarrow L^\infty(G)$$

is bounded and injective.
Distributions

- Take S', the dual of S, as the space of distributions;
- we have dense embeddings $S \hookrightarrow \mathcal{H} \hookrightarrow S'$;
- extend the voice transform to S' by

$$V_u^e T(x) := s' \langle T, \pi(x)u \rangle_S;$$

The extended voice transform

$$V_u^e : S' \rightarrow L^\infty(G)$$

is bounded and injective.
Distributions

- Take S', the dual of S, as the space of distributions;
- we have dense embeddings $S \hookrightarrow \mathcal{H} \hookrightarrow S'$;
- extend the voice transform to S' by

$$V_u^e T(x) := S' \langle T, \pi(x)u \rangle_S;$$

The extended voice transform

$$V_u^e : S' \longrightarrow L^\infty(G)$$

is bounded and injective.
Coorbit spaces

- For any left-invariant Banach space of functions Y (e.g. $Y = L^p(G)$) define the coorbit space

$$Co(Y) := \{ T \in S' \mid V^e_T \in Y \}$$

with norm $\|T\| := \|V^e_T\|_Y$.

(i) Every $Co(Y)$ is a π-invariant Banach space;
(ii) V^e_u defines an isometry from $Co(Y)$ onto the reproducing kernel space

$$\mathcal{M}^Y := \{ f \in Y \mid f = f * K \}.$$

- In particular: $Co(L^\infty(G)) = S'$, $Co(L^2(G)) = \mathcal{H}$, $Co(L^1(G)) = S$.

For the wavelet representation: $Co(L^p_w(G)) = B^p,q_s(\mathbb{R})$ (Besov spaces).
Coorbit spaces

- For any left-invariant Banach space of functions Y (e.g. $Y = L^p(G)$) define the coorbit space

$$Co(Y) := \{ T \in S' \mid V_u^e T \in Y \}$$

with norm $\| T \| := \| V_u^e T \|_Y$.

(i) Every $Co(Y)$ is a π-invariant Banach space;

(ii) V_u^e defines an isometry from $Co(Y)$ onto the reproducing kernel space

$$\mathcal{M}^Y := \{ f \in Y \mid f = f \ast K \}.$$

- In particular: $Co(L^\infty(G)) = S'$, $Co(L^2(G)) = \mathcal{H}$, $Co(L^1(G)) = S$.

For the wavelet representation: $Co(L^p_w(G)) = B^{p,q}_s(\mathbb{R})$ (Besov spaces).
For any left-invariant Banach space of functions Y (e.g. $Y = L^p(G)$) define the coorbit space

$$Co(Y) := \{ T \in S' \mid V^e T \in Y \}$$

with norm $\| T \| := \| V^e T \|_Y$.

(i) Every $Co(Y)$ is a π-invariant Banach space;
(ii) V^e defines an isometry from $Co(Y)$ onto the reproducing kernel space

$$M^Y := \{ f \in Y \mid f = f \ast K \}.$$
Coorbit spaces

- For any left-invariant Banach space of functions \(Y \) (e.g. \(Y = L^p(G) \)) define the *coorbit space*

\[
Co(Y) := \{ T \in S' \mid V_u^e T \in Y \}
\]

with norm \(\| T \| := \| V_u^e T \|_Y \).

(i) Every \(Co(Y) \) is a \(\pi \)-invariant Banach space;

(ii) \(V_u^e \) defines an isometry from \(Co(Y) \) onto the reproducing kernel space

\[
\mathcal{M}_Y := \{ f \in Y \mid f = f \ast K \}.
\]

- In particular: \(Co(L^\infty(G)) = S' \), \(Co(L^2(G)) = \mathcal{H} \), \(Co(L^1(G)) = S \).

For the wavelet representation: \(Co(L_w^{p,q}(G)) = B^{p,q}_s(\mathbb{R}) \) (Besov spaces).
For any left-invariant Banach space of functions Y (e.g. $Y = L^p(G)$) define the coorbit space

$$Co(Y) := \{ T \in S' \mid V_u^e T \in Y \}$$

with norm $\| T \| := \| V_u^e T \|_Y$.

(i) Every $Co(Y)$ is a π-invariant Banach space;
(ii) V_u^e defines an isometry from $Co(Y)$ onto the reproducing kernel space

$$\mathcal{M}_Y := \{ f \in Y \mid f = f \ast K \}.$$

In particular: $Co(L^\infty(G)) = S'$, $Co(L^2(G)) = \mathcal{H}$, $Co(L^1(G)) = S$.

For the wavelet representation: $Co(L^{p,q}_w(G)) = B^{p,q}_s(\mathbb{R})$ (Besov spaces).
Limits of the classical theory

Classical coorbit theory works under two basic assumptions on the representation:

- π has to be irreducible ...
- ... and integrable.

Many interesting reproducing representations, which naturally arise as restrictions of the metaplectic representation on triangular subgroups of the symplectic group, are neither irreducible nor integrable!
Limits of the classical theory

Classical coorbit theory works under two basic assumptions on the representation:

- π has to be irreducible . . .
- . . . and integrable.

Many interesting reproducing representations, which naturally arise as restrictions of the metaplectic representation on triangular subgroups of the symplectic group, are neither irreducible nor integrable!
Limits of the classical theory

Classical coorbit theory works under two basic assumptions on the representation:

- π has to be irreducible . . .
- . . . and integrable.

Many interesting reproducing representations, which naturally arise as restrictions of the metaplectic representation on triangular subgroups of the symplectic group, are neither irreducible nor integrable!
Limits of the classical theory

Classical coorbit theory works under two basic assumptions on the representation:

- π has to be irreducible . . .
- . . . and integrable.

Many interesting reproducing representations, which naturally arise as restrictions of the metaplectic representation on triangular subgroups of the symplectic group, are neither irreducible nor integrable!
A non integrable representation

- $\mathcal{H} = \mathcal{F}^{-1} L^2(\hat{\mathbb{R}}_+) \otimes L^2(S^1) < L^2(\mathbb{R} \times S^1)$;
- $G = (\mathbb{R} \times \mathbb{R}_+) \times S^1$;
- $dx = a^{-2} \, db \, da \, d\varphi/2\pi$;
- $\pi(b, a, \varphi) \nu(x, \vartheta) = a^{-1/2} \nu((x - b)/a, \vartheta - \varphi) \quad \nu \in \mathcal{H}$;

Proposition

(i) π is reproducing;

(ii) there exist reproducing kernels K such that
- $K \in L^p(G)$ for all $p > 1$;
- $K \notin L^1(G)$.
Generalized coorbit theory

A non integrable representation

- $\mathcal{H} = \mathcal{F}^{-1}L^2(\hat{\mathbb{R}}_+) \otimes L^2(S^1) < L^2(\mathbb{R} \times S^1)$;
- $G = (\mathbb{R} \times \mathbb{R}_+) \times S^1$;
- $d\chi = a^{-2} db \, da \, d\varphi/2\pi$;
- $\pi(b, a, \varphi)\chi(x, \vartheta) = a^{-1/2} \chi((x - b)/a, \vartheta - \varphi)$ $\quad \chi \in \mathcal{H}$;

Proposition

(i) π is reproducing;

(ii) there exist reproducing kernels K such that
- $K \in L^p(G)$ for all $p > 1$;
- $K \notin L^1(G)$.
A non integrable representation

- $H = \mathcal{F}^{-1} L^2(\mathbb{R}_+^1) \otimes L^2(S^1) < L^2(\mathbb{R} \times S^1)$;
- $G = (\mathbb{R} \times \mathbb{R}_+) \times S^1$;
- $dx = a^{-2} db da d\varphi/2\pi$;
- $\pi(b, a, \varphi)v(x, \vartheta) = a^{-1/2} v((x - b)/a, \vartheta - \varphi)$ \quad $v \in H$;

Proposition

(i) π is reproducing;

(ii) there exist reproducing kernels K such that

- $K \in L^p(G)$ for all $p > 1$;
- $K \notin L^1(G)$.

Stefano Vigogna (Università di Genova)
Christensen–Ólafsson, 2011: \textit{Coorbit spaces for dual pairs} (axiomatic approach).

Which (non integrable) kernels are (still) good enough to reproduce coorbit spaces?
Christensen–Ólafsson, 2011: *Coorbit spaces for dual pairs* (axiomatic approach).

Generalized coorbit space theory based on target spaces

Which (non integrable) kernels are (still) good enough to reproduce coorbit spaces?
A coorbit space is the inverse image of some target space under the extended voice transform:

$$ Co(Y) \xrightarrow{V^e_u} Y; $$

the coorbit space $Co(Y)$ inherits its structure by isomorphism with the model space:

$$ \mathcal{M}^Y = \{ f \in Y \mid f = f \ast K \} < Y; $$

the inverse isomorphism is given by the weak integral

$$ \mathcal{M}^Y \ni f \mapsto \int_\mathcal{G} f(x)\pi(x)u \, dx \in Co(Y); $$

the space of test functions is itself a coorbit space, which is contained in \mathcal{H} and dense in it.
A coorbit space is the inverse image of some target space under the extended voice transform:

$$\text{Co}(Y) \xrightarrow{V_e^u} Y;$$

the coorbit space $\text{Co}(Y)$ inherits its structure by isomorphism with the model space:

$$\mathcal{M}^Y = \{ f \in Y \mid f = f \ast K \} < Y;$$

the inverse isomorphism is given by the weak integral

$$\mathcal{M}^Y \ni f \mapsto \int_G f(x) \pi(x) u \, dx \in \text{Co}(Y);$$

the space of test functions is itself a coorbit space, which is contained in \mathcal{H} and dense in it.
A coorbit space is the inverse image of some target space under the extended voice transform:

$$Co(Y) \xrightarrow{V^e_u} Y;$$

the coorbit space $Co(Y)$ inherits its structure by isomorphism with the model space:

$$\mathcal{M}^Y = \{f \in Y \mid f = f \ast K\} \subset Y;$$

the inverse isomorphism is given by the weak integral

$$\mathcal{M}^Y \ni f \mapsto \int_G f(x)\pi(x)u\,dx \in Co(Y);$$

the space of test functions is itself a coorbit space, which is contained in \mathcal{H} and dense in it.
A coorbit space is the inverse image of some target space under the extended voice transform:

\[\text{Co}(Y) \xrightarrow{V^e_u} Y; \]

the coorbit space \(\text{Co}(Y) \) inherits its structure by isomorphism with the model space:

\[\mathcal{M}^Y = \{ f \in Y \mid f = f \ast K \} < Y; \]

the inverse isomorphism is given by the weak integral

\[\mathcal{M}^Y \ni f \mapsto \int_G f(x)\pi(x)u\,dx \in \text{Co}(Y); \]

the space of test functions is itself a coorbit space, which is contained in \(\mathcal{H} \) and dense in it.
A notion is then focusing . . .

Target space

For a good target space it should make sense:

- the right convolution with the kernel: $f \ast K$, $f \in Y$;
- the weak integration: $\int f(x)\pi(x)u \, dx$, $f \in Y$.

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to

- converge in \mathcal{H};
- be dense in \mathcal{H}.
A notion is then focusing ...

Target space

For a good target space it shoulds make sense:

- the right convolution with the kernel: \(f \ast K, f \in Y \);
- the weak integration: \(\int f(x)\pi(x)u \, dx, f \in Y \).

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to

- converge in \(\mathcal{H} \);
- be dense in \(\mathcal{H} \).
A notion is then focusing . . .

Target space

For a good target space it should make sense:

- the right convolution with the kernel: $f \ast K$, $f \in Y$;
- the weak integration: $\int f(x)\pi(x)udx$, $f \in Y$.

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to

- converge in \mathcal{H};
- be dense in \mathcal{H}.
Target spaces (2)

A notion is then focusing . . .

Target space

For a good target space it should make sense:

- the right convolution with the kernel: \(f \ast K, f \in Y \);
- the weak integration: \(\int f(x)\pi(x)u \, dx, f \in Y \).

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to

- converge in \(\mathcal{H} \);
- be dense in \(\mathcal{H} \).
A notion is then focusing . . .

Target space

For a good target space it should make sense:
- the right convolution with the kernel: \(f \ast K, f \in Y \);
- the weak integration: \(\int f(x)\pi(x)u \, dx, f \in Y \).

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to
- converge in \(\mathcal{H} \);
- be dense in \(\mathcal{H} \).
A notion is then focusing . . .

Target space

For a good target space it should make sense:

- the right convolution with the kernel: \(f \ast K, f \in Y \);
- the weak integration: \(\int f(x)\pi(x)u \, dx, f \in Y \).

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to

- converge in \(\mathcal{H} \);
- be dense in \(\mathcal{H} \).
A notion is then focusing . . .

Target space

For a good target space it should make sense:
- the right convolution with the kernel: $f \ast K$, $f \in Y$;
- the weak integration: $\int f(x) \pi(x) u \, dx$, $f \in Y$.

Basic target space

The target space for the test functions should fulfill some additional properties: its weak integrals have further to
- converge in \mathcal{H};
- be dense in \mathcal{H}.
For the generalized coorbit theory, we need to handle Fréchet spaces.

- Let F be a conjugate left-invariant Fréchet space of measurable functions on G:
 - $F \subseteq L^0(G)$;
 - $\overline{f} \in \mathcal{T}$ for all $f \in F$;
 - $\ell(y)f \in \mathcal{T}$ for all $f \in F$ and $y \in G$, where $\ell(y)f(x) := f(y^{-1}x)$.

- The Köthe dual of F is the space

$$F^\# := \{g \in L^0(G) \mid fg \in L^1(G) \ \forall f \in F\}.$$

- e.g. $(L^p)^\# = L^{p'}$ for $p \in [1, \infty]$, $(L^\infty)^\# = L^1$.

For the generalized coorbit theory, we need to handle Fréchet spaces.
For the generalized coorbit theory, we need to handle Fréchet spaces.

- Let F be a conjugate left-invariant Fréchet space of measurable functions on G:
 - $F < L^0(G)$;
 - $\overline{f} \in \mathcal{T}$ for all $f \in F$;
 - $\ell(y)f \in \mathcal{T}$ for all $f \in F$ and $y \in G$, where $\ell(y)f(x) := f(y^{-1}x)$.

- The Köthe dual of F is the space

$$F^\# := \{g \in L^0(G) \mid fg \in L^1(G) \ \forall f \in F\}.$$

E.g. $(L^p)^\# = L^{p'}$ for $p \in [1, \infty]$, $(L^\infty)^\# = L^1$.
For the generalized coorbit theory, we need to handle Fréchet spaces.

- Let F be a conjugate left-invariant Fréchet space of measurable functions on G:
 - $F < L^0(G)$;
 - $\bar{f} \in \mathcal{T}$ for all $f \in F$;
 - $\ell(y)f \in \mathcal{T}$ for all $f \in F$ and $y \in G$, where $\ell(y)f(x) := f(y^{-1}x)$.

- The Köthe dual of F is the space

$$F^\# := \{ g \in L^0(G) \mid fg \in L^1(G) \ \forall f \in F \}.$$

 e.g. $(L^p)^\# = L^{p'}$ for $p \in [1, \infty]$, $(L^\infty)^\# = L^1$.

Stefano Vigogna (Università di Genova)
Extended voice

\(\pi : G \to U(\mathcal{H})\) reproducing (not necessarily irreducible) representation, \(u \in \mathcal{H}\) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T}\).

1. \(K \in \mathcal{T}^\#\);
2. Def \(\mathcal{M}^T := \{ f \in \mathcal{T} \mid f \ast K = f \};\)
3. Prop \(\mathcal{M}^T < \mathcal{T}\) is a \(\pi\)-invariant reproducing kernel Fréchet space.
4. \(V_u \mathcal{H} < (\mathcal{M}^T)^\#;\)
5. Def \(S := \{ v \in \mathcal{H} \mid V_u v \in \mathcal{T} \};\)
6. Prop \(S \simeq \mathcal{M}^T\) via \(V_u\).
7. \(u \in S\) (i.e. \(K \in \mathcal{T}\)) and be cyclic for \(\pi^S;\)
8. Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S'\) dense embeddings;
9. Def \(V_u^o : S' \to C(G), V_u^o T(x) := \langle T, \pi(x)u \rangle;\)
10. Prop \(V_u^o\) is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(H) \) reproducing (not necessarily irreducible) representation, \(u \in H \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(T \).

H1 \(K \in T^\# \);
Def \(M^T := \{ f \in T \mid f \ast K = f \} \);
Prop \(M^T \subset T \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_uH \subset (M^T)^\# \);
Def \(S := \{ \nu \in H \mid V_u \nu \in T \} \);
Prop \(S \simeq M^T \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in T \)) and be cyclic for \(\pi^S \);
Prop \(S \hookrightarrow H \hookrightarrow S' \) dense embeddings;
Def \(V^e_u : S' \to C(G), \ V^e_u T(x) := \langle T, \pi(x)u \rangle \);
Prop \(V^e_u \) is continuous respect to the compact convergence, and injective.
Extended voice

$\pi : G \to U(\mathcal{H})$ reproducing (not necessarily irreducible) representation, $u \in \mathcal{H}$ fixed admissible vector.
Take a conjugate left-invariant Fréchet space of functions T.

H1 $K \in T^\#$;

Def $M^T := \{ f \in T \mid f \ast K = f \}$;

Prop $M^T < T$ is a π-invariant reproducing kernel Fréchet space.

H2 $V_u \mathcal{H} < (M^T)^\#$;

Def $S := \{ \nu \in \mathcal{H} \mid V_u \nu \in T \}$;

Prop $S \simeq M^T$ via V_u.

H3 $u \in S$ (i.e. $K \in T$) and be cyclic for π^S;

Prop $S \hookrightarrow \mathcal{H} \hookrightarrow S'$ dense embeddings;

Def $V_u^e : S' \to C(G), \ V_u^e T(x) := \langle T, \pi(x) u \rangle$;

Prop V_u^e is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation,
\(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^{\#} \);

Def \(\mathcal{M}^{\mathcal{T}} := \{ f \in \mathcal{T} | f * K = f \} \);

Prop \(\mathcal{M}^{\mathcal{T}} \subset \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} \subset (\mathcal{M}^{\mathcal{T}})^{\#} \);

Def \(S := \{ v \in \mathcal{H} | V_u v \in \mathcal{T} \} \);

Prop \(S \simeq \mathcal{M}^{\mathcal{T}} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S \);

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V_u^e : S' \to \mathcal{C}(G), V_u^e T(x) := \langle T, \pi(x)u \rangle \);

Prop \(V_u^e \) is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \rightarrow U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation, \(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

\begin{enumerate}
 \item \(K \in \mathcal{T}^\# \);
 \item \text{Def } \mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f \ast K = f \};
 \item \text{Prop } \mathcal{M}^\mathcal{T} \subset \mathcal{T} \text{ is a } \pi \text{-invariant reproducing kernel Fréchet space.}
 \item \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\# \);
 \item \text{Def } S := \{ v \in \mathcal{H} \mid V_u v \in \mathcal{T} \};
 \item \text{Prop } S \simeq \mathcal{M}^\mathcal{T} \text{ via } V_u.
 \item \text{H3 } u \in S \text{ (i.e. } K \in \mathcal{T}) \text{ and be cyclic for } \pi^S;
 \item \text{Prop } S \hookrightarrow \mathcal{H} \hookrightarrow S' \text{ dense embeddings;}
 \item \text{Def } V_u^e : S' \rightarrow \mathcal{C}(G), \ V_u^e T(x) := \langle T, \pi(x)u \rangle;
 \item \text{Prop } V_u^e \text{ is continuous respect to the compact convergence, and injective.}
\end{enumerate}
Extended voice

\(\pi : G \rightarrow U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation,
\(u \in \mathcal{H} \) fixed admissible vector.
Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\# \);

Def \(\mathcal{M}^{\mathcal{T}} := \{ f \in \mathcal{T} \mid f \ast K = f \} \);

Prop \(\mathcal{M}^{\mathcal{T}} \subset \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} \subset (\mathcal{M}^{\mathcal{T}})^\# \);

Def \(S := \{ v \in \mathcal{H} \mid V_u v \in \mathcal{T} \} \);

Prop \(S \simeq \mathcal{M}^{\mathcal{T}} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S \);

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V_u^e : S' \rightarrow \mathcal{C}(G), \ V_u^e T(x) := \langle T, \pi(x)u \rangle \);

Prop \(V_u^e \) is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation, \(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\# \);

Def \(\mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f \ast K = f \} \);

Prop \(\mathcal{M}^\mathcal{T} \subset \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\# \);

Def \(S := \{ v \in \mathcal{H} \mid V_u v \in \mathcal{T} \} \);

Prop \(S \simeq \mathcal{M}^\mathcal{T} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S \);

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V_u^e : S' \to \mathcal{C}(G), V_u^e T(x) := \langle T, \pi(x)u \rangle \);

Prop \(V_u^e \) is continuous respect to the compact convergence, and injective.
Extended voice

\[\pi : G \to U(\mathcal{H}) \] reproducing (not necessarily irreducible) representation,
\[u \in \mathcal{H} \] fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\#; \)

Def \(\mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f \ast K = f \}; \)

Prop \(\mathcal{M}^\mathcal{T} < \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\#; \)

Def \(S := \{ v \in \mathcal{H} \mid V_u v \in \mathcal{T} \}; \)

Prop \(S \simeq \mathcal{M}^\mathcal{T} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S; \)

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V_u^e : S' \to C(G), V_u^e T(x) := \langle T, \pi(x)u \rangle; \)

Prop \(V_u^e \) is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation,
\(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\#; \)

Def \(\mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f \ast K = f \}; \)

Prop \(\mathcal{M}^\mathcal{T} \subset \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\#; \)

Def \(S := \{ \nu \in \mathcal{H} \mid V_u \nu \in \mathcal{T} \}; \)

Prop \(S \simeq \mathcal{M}^\mathcal{T} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S \);

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V^e_u : S' \to \mathcal{C}(G), \ V^e_u \mathcal{T}(x) := \langle T, \pi(x)u \rangle; \)

Prop \(V^e_u \) is continuous respect to the compact convergence, and injective.
Extended voice

π : G → U(H) reproducing (not necessarily irreducible) representation, u ∈ H fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions T.

H1 K ∈ T#;

Def $\mathcal{M}^T := \{ f ∈ T | f * K = f \}$;

Prop $\mathcal{M}^T < T$ is a π-invariant reproducing kernel Fréchet space.

H2 $V_u H < (\mathcal{M}^T)^#$;

Def $S := \{ ν ∈ H | V_u ν ∈ T \}$;

Prop $S \simeq \mathcal{M}^T$ via V_u.

H3 $u ∈ S$ (i.e. $K ∈ T$) and be cyclic for $π^S$;

Prop $S \hookrightarrow H \hookrightarrow S'$ dense embeddings;

Def $V^e_u : S' → C(G), V^e_u T(x) := ⟨ T, π(x)u ⟩$;

Prop V^e_u is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation, \(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\#; \)

Def \(\mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f \ast K = f \}; \)

Prop \(\mathcal{M}^\mathcal{T} < \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\#; \)

Def \(S := \{ \nu \in \mathcal{H} \mid V_u \nu \in \mathcal{T} \}; \)

Prop \(S \simeq \mathcal{M}^\mathcal{T} \) via \(V_u. \)

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S; \)

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V_u^e : S' \to \mathcal{C}(G), V_u^e \mathcal{T}(x) := \langle \mathcal{T}, \pi(x)u \rangle; \)

Prop \(V_u^e \) is continuous respect to the compact convergence, and injective.
Extended voice

\(\pi : G \to U(\mathcal{H}) \) reproducing (not necessarily irreducible) representation,
\(u \in \mathcal{H} \) fixed admissible vector.

Take a conjugate left-invariant Fréchet space of functions \(\mathcal{T} \).

H1 \(K \in \mathcal{T}^\#; \)

Def \(\mathcal{M}^\mathcal{T} := \{ f \in \mathcal{T} \mid f * K = f \}; \)

Prop \(\mathcal{M}^\mathcal{T} < \mathcal{T} \) is a \(\pi \)-invariant reproducing kernel Fréchet space.

H2 \(V_u \mathcal{H} < (\mathcal{M}^\mathcal{T})^\#; \)

Def \(S := \{ \nu \in \mathcal{H} \mid V_u \nu \in \mathcal{T} \}; \)

Prop \(S \simeq \mathcal{M}^\mathcal{T} \) via \(V_u \).

H3 \(u \in S \) (i.e. \(K \in \mathcal{T} \)) and be cyclic for \(\pi^S \);

Prop \(S \hookrightarrow \mathcal{H} \hookrightarrow S' \) dense embeddings;

Def \(V^e_u : S' \to C(G), V^e_u T(x) := \langle T, \pi(x)u \rangle; \)

Prop \(V^e_u \) is continuous respect to the compact convergence, and injective.
Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $M^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $M^Y < Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_\nu S < (M^Y)^\#$;

Def $Co(Y) := \{ T \in S' \mid V_\nu^e T \in Y \}$.

H6 $V_\nu^e Co(Y) < M^Y$;

Prop $Co(Y) \simeq M^Y$ via V_ν^e.
Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $\mathcal{M}^Y < Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^\#$;

Def $Co(Y) := \{ T \in S' \mid V_u^e T \in Y \}$.

H6 $V_u^e Co(Y) < \mathcal{M}^Y$;

Prop $Co(Y) \simeq \mathcal{M}^Y$ via V_u^e.
Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f * K = f \}$;

Prop $\mathcal{M}^Y \subset Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^\#$;

Def $Co(Y) := \{ T \in S' \mid V^e_u T \in Y \}$.

H6 $V^e_u Co(Y) \subset \mathcal{M}^Y$;

Prop $Co(Y) \simeq \mathcal{M}^Y$ via V^e_u.
Generalized coorbit theory

Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $\mathcal{M}^Y \leq Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^\#$;

Def $\text{Co}(Y) := \{ T \in S' \mid V_u^e T \in Y \}$.

H6 $V_u^e \text{Co}(Y) \leq \mathcal{M}^Y$;

Prop $\text{Co}(Y) \simeq \mathcal{M}^Y$ via V_u^e.
Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $\mathcal{M}^Y < Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^#$;

Def $\text{Co}(Y) := \{ T \in S' \mid V^e_u T \in Y \}$.

H6 $V^e_u \text{Co}(Y) < \mathcal{M}^Y$;

Prop $\text{Co}(Y) \simeq \mathcal{M}^Y$ via V^e_u.
Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $\mathcal{M}^Y \subset Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^\#$;

Def $Co(Y) := \{ T \in S' \mid V_u^e T \in Y \}$.

H6 $V_u^e Co(Y) < \mathcal{M}^Y$;

Prop $Co(Y) \simeq \mathcal{M}^Y$ via V_u^e.
Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $M^Y := \{ f \in Y \mid f \ast K = f \}$;

Prop $M^Y < Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (M^Y)^\#$;

Def $Co(Y) := \{ T \in S' \mid V^e_u T \in Y \}$.

H6 $V^e_u Co(Y) < M^Y$;

Prop $Co(Y) \simeq M^Y$ via V^e_u.
Coorbit spaces

Take a conjugate left-invariant Fréchet (Banach) space of functions Y.

H4 $K \in Y^\#$;

Def $\mathcal{M}^Y := \{ f \in Y \mid f * K = f \}$;

Prop $\mathcal{M}^Y < Y$ is a π-invariant reproducing kernel Fréchet (Banach) space.

H5 $V_u S < (\mathcal{M}^Y)^\#$;

Def $\text{Co}(Y) := \{ T \in S' \mid V^e_u T \in Y \}$.

H6 $V^e_u \text{Co}(Y) < \mathcal{M}^Y$;

Prop $\text{Co}(Y) \simeq \mathcal{M}^Y$ via V^e_u.
The hypothesis H6 looks rather difficult to check. Some stronger conditions are:

Proposition 1

If $T^\pi = T'$ and $|K| \ast |K|$ exists in T, then hypothesis H6 is verified.

Proposition 2

If S is reflexive and $K \in (V_u^e S')^\pi$, then hypothesis H6 is verified.
The hypothesis H6 looks rather difficult to check. Some stronger conditions are:

Proposition 1

If $\mathcal{T} \# = \mathcal{T}'$ and $|K| \ast |K|$ exists in \mathcal{T}, then hypothesis H6 is verified.

Proposition 2

If S is reflexive and $K \in (V_u^e S')^\#$, then hypothesis H6 is verified.
The hypothesis H6 looks rather difficult to check. Some stronger conditions are:

Proposition 1

If $T' = T$ and $|K| \ast |K|$ exists in T, then hypothesis H6 is verified.

Proposition 2

If S is reflexive and $K \in (V_u^e S')^\#$, then hypothesis H6 is verified.
If π is not irreducible, then the construction is no longer independent on the choice of the analysing vector (counterexample by Fuhr, 2012);

however, we have the following result:

Proposition

- Suppose $T \ast \tilde{T} < T$ and $f \mapsto f \ast \tilde{g}$ to be continuous for all $f, g \in T$;
- let $u \in \mathcal{H}$ be an admissible vector with kernel $V_u u \in T$ and test function space S;
- take another admissible vector u_1 with associated test function space S_1.

If $u_1 \in S$, then $V_{u_1} u_1 \in T$ and $S_1 = S$ with same topology.
Lack of irreducibility

- If π is not irreducible, then the construction is no longer independent on the choice of the analysing vector (counterexample by Fuhr, 2012);
- however, we have the following result:

Proposition

- Suppose $T \ast \tilde{T} \subset T$ and $f \mapsto f \ast \tilde{g}$ to be continuous for all $f, g \in T$;
- let $u \in H$ be an admissible vector with kernel $V_u u \in T$ and test function space S;
- take another admissible vector u_1 with associated test function space S_1.

If $u_1 \in S$, then $V_{u_1} u_1 \in T$ and $S_1 = S$ with same topology.
Lack of irreducibility

- If π is not irreducible, then the construction is no longer independent on the choice of the analysing vector (counterexample by Fuhr, 2012);
- however, we have the following result:

Proposition

- Suppose $\mathcal{T} \ast \tilde{\mathcal{T}} < \mathcal{T}$ and $f \mapsto f \ast \tilde{g}$ to be continuous for all $f, g \in \mathcal{T}$;
- let $u \in \mathcal{H}$ be an admissible vector with kernel $V_u u \in \mathcal{T}$ and test function space \mathcal{S};
- take another admissible vector u_1 with associated test function space \mathcal{S}_1.

If $u_1 \in \mathcal{S}$, then $V_{u_1} u_1 \in \mathcal{T}$ and $\mathcal{S}_1 = \mathcal{S}$ with same topology.
Lack of irreducibility

- If π is not irreducible, then the construction is no longer independent on the choice of the analysing vector (counterexample by Fuhr, 2012);
- however, we have the following result:

Proposition

- Suppose $\mathcal{T} \ast \tilde{\mathcal{T}} \subset \mathcal{T}$ and $f \mapsto f \ast \tilde{g}$ to be continuous for all $f, g \in \mathcal{T}$;
- let $u \in \mathcal{H}$ be an admissible vector with kernel $V_u u \in \mathcal{T}$ and test function space S;
- take another admissible vector u_1 with associated test function space S_1.

If $u_1 \in S$, then $V_{u_1} u_1 \in \mathcal{T}$ and $S_1 = S$ with same topology.
Lack of irreducibility

- If π is not irreducible, then the construction is no longer independent on the choice of the analysing vector (counterexample by Fuhr, 2012);
- however, we have the following result:

Proposition

- Suppose $\mathcal{T} \ast \widetilde{\mathcal{T}} < \mathcal{T}$ and $f \mapsto f \ast \tilde{g}$ to be continuous for all $f, g \in \mathcal{T}$;
- let $u \in \mathcal{H}$ be an admissible vector with kernel $V_u u \in \mathcal{T}$ and test function space \mathcal{S};
- take another admissible vector u_1 with associated test function space \mathcal{S}_1.

If $u_1 \in \mathcal{S}$, then $V_{u_1} u_1 \in \mathcal{T}$ and $\mathcal{S}_1 = \mathcal{S}$ with same topology.
Admissible target spaces

- Classical coorbit theory falls into the generalized framework for $\mathcal{T} = L^1(G)$;
- one can obtain the classical theory also starting from a reflexive target space, replacing $L^1(G)$ with $L^1(G) \cap L^2(G)$.
- All the assumptions hold true taking the projective target space

$$\mathcal{T} = \bigcap_{p \in (1,\infty)} L^p(G), \quad \mathcal{T}^\# = \mathcal{T}' = \text{span} \bigcup_{p \in (1,\infty)} L^p(G),$$

which is reflexive.
Admissible target spaces

- Classical coorbit theory falls into the generalized framework for $\mathcal{T} = L^1(G)$;
- one can obtain the classical theory also starting from a reflexive target space, replacing $L^1(G)$ with $L^1(G) \cap L^2(G)$.
- All the assumptions hold true taking the projective target space

$$\mathcal{T} = \bigcap_{p \in (1,\infty)} L^p(G), \quad \mathcal{T}^\# = \mathcal{T}' = \text{span} \bigcup_{p \in (1,\infty)} L^p(G),$$

which is reflexive.
Admissible target spaces

- Classical coorbit theory falls into the generalized framework for $\mathcal{T} = L^1(G)$;
- one can obtain the classical theory also starting from a reflexive target space, replacing $L^1(G)$ with $L^1(G) \cap L^2(G)$.
- All the assumptions hold true taking the projective target space

$$\mathcal{T} = \bigcap_{p \in (1, \infty)} L^p(G), \quad \mathcal{T}^\# = \mathcal{T}' = \text{span} \bigcup_{p \in (1, \infty)} L^p(G),$$

which is reflexive.
Open problems

- Other kinds of admissible target spaces;
- determine the coorbit spaces for the non integrable representations;
- discretization.
Open problems

- Other kinds of admissible target spaces;
- determine the coorbit spaces for the non integrable representations;
- discretization.
Open problems

- Other kinds of admissible target spaces;
- determine the coorbit spaces for the non integrable representations;
- discretization.
Thanks for your attention!