EBV based cancer prevention and therapy in nasopharyngeal carcinoma

Ya Cao1,2,3,4

Epstein–Barr virus is an important cancer causing virus. Nasopharyngeal carcinoma is an infection-related cancer strongly driven by Epstein–Barr virus. In this cancer model, we identified the major host targets of latent membrane protein 1 which is a driving oncogene encoded by Epstein–Barr virus in latency infection. Latent membrane protein 1 activates several oncogenic signaling axes causing multiple malignant phenotypes and therapeutic resistance. Also, Epstein–Barr virus up-regulates DNA methyltransferase 1 and mediates onco-epigenetic effects in the carcinogenesis. The collaborating pathways activated by latent membrane protein 1 constructs an oncogenic signaling network, which makes latent membrane protein 1 an important potential target for effective treatment or preventive intervention. In Epstein–Barr virus lytic phase, the plasma level of Epstein–Barr virus DNA is considered as a distinguishing marker for nasopharyngeal carcinoma in subjects from healthy high-risk populations and is also a novel prognostic marker in Epstein–Barr virus-positive nasopharyngeal carcinoma. Now the early detection and screening of the lytic proteins and Epstein–Barr virus DNA have been applied to clinical and high-risk population. The knowledge generated regarding Epstein–Barr virus can be used in Epstein–Barr virus based precision cancer prevention and therapy in the near future.

1 Key Laboratory of Carcinogenesis and Invasion, Ministry of Education, Xiangya Hospital, Central South University, Changsha 410008, China; 2 Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha 410078, China; 3 Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China and 4 Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China

Correspondence: Ya Cao (ycao98@vip.sina.com)

Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics
Hunan Province, Changsha 410078, China
School of Medicine, Central South University, Changsha 410078, China; 3 Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Changsha 410078, China and 4 Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha 410078, China

Received: 14 October 2016 Revised: 1 March 2017 Accepted: 3 March 2017
Published online: 15 May 2017
LMP1/ERK/OP18 which mediate therapeutic resistance.14, 22, 23, 28, 29 Notably, one of the phenotype caused by LMP1 is glycolysis. LMP1 induces the expression of HK2.29 And knockdown of HK2 in the LMP1 expressing NPC cells induces cell death, indicating that the induction of glycolysis is necessary for cell survival. The LMP1/PI3K/Akt/GSK3β/c-Myc/HK2 axis is involved in this regulation. Recently, we discovered that a new mechanism of LMP1-induced radioreistance occurring through the modulation of LMP1/DNAPK/AMPK DDR signaling axis and provided a mechanistic rationale supporting the use of AMP-activated protein kinase (AMPK) activators for facilitating NPC radiotherapy.23 Together, LMP1 promotes tumorigenesis and therapeutic resistance by inappropriate regulation of key transcription factors and kinases. And the collaborating pathways activated by LMP1 constructs an oncogenic signaling network, which makes LMP1 an important potential target for effective treatment or preventive intervention.

Now evaluation of LMP1 as a therapeutic target is identified.30 As LMP1 is an attractive and promising target for EBV-positive NPC, we successfully developed a DNAzyme (DZ1) that was engineered to specifically target the LMP1 mRNA.31 DZ1 treatment can reverse malignant phenotypes caused by LMP1 and increase the radiosensitivity of NPC, indicating the potential for DZ1 therapeutic approaches for the treatment of EBV-related cancers.23, 31–33 Recently, an adenovirus-based adoptive immunotherapy has been developed that encodes Epstein–Barr nuclear antigen 1 (EBNA1) fused to multiple CD8 T-cell epitopes from LMP1 and LMP2.34 Also, LMP1-specific autologous CTLs were further proven in recurrent NPC patient. These early trials showed promising results of the use of EBV-CTL therapy in NPC patients.35

EBV REACTIVATION AND ONCOGENESIS IN NPC

Researchers paid their major attention to the transformation role in EBV latency infection for a long time. Evidence of a contribution of the lytic cycle to EBV-induced oncogenesis has emerged only in recent years.11 EBV lytic phase is associated with NPC, GC and multiple lymphomas and confers therapeutic resistance to tumor cells.30, 51 The expression of lytic EBV genes was observed in the upper layers of differentiated epithelium but not in the undifferentiated basal layers.52 In NPC patients, high levels of lytic proteins, BALF1/BCRF1/BHRF1, are expressed in EBV lytic phase and increases EBV DNA loading amount and the antibody titles (EBV viral-capsid antigen (VCA-IgA)).53 The plasma level of EBV DNA is considered as a distinguishing marker for NPC in subjects from healthy high-risk populations and is also a novel prognostic marker of metastatic/recurrent NPC, which complements the TNM stage classification and can be used to judge therapeutic response to radiation and chemotherapy.53–58 In NPC patients with low EBV DNA level, intensity modulated radiotherapy (IMRT) and concurrent chemoradiation (CCRT) are the major therapeutic strategies applied.59 But, in patients with a high level of EBV DNA, IMRT, CCRT, and possibly neoadjuvant chemotherapy, cisplatin or 5-Fu are needed.59 Recently, a prospective and population-based cohort study was conducted in southern China.60 In this study, serum EBV VCA-IgA antibodies and qualified EBV DNA loading from nasopharyngeal swab were used as methods to predict NPC development in seropositive high-risk individuals.60 In summary, early detection of NPC using markers from EBV lytic proteins or the EBV DNA is an available tool.

EBV reactivation is controlled by both host and viral factors. Cellular stresses contribute to EBV reactivation. Therefore, mechanism of EBV reactivation involves oxidative stress, inflammation (IL-6/IL-8/IL-13), angiogenesis, genomic instability and cell death.53, 61–64 In addition, EBV lytic proteins involve in carcinogenesis process, such as BGLF4 and BGLF5 which can promote genomic instability, BARF1 and BHRF1 which can exhibit homology to Bcl-2 and play an anti-apoptotic role. Notably, the lytic genes encode immune evasion proteins, including BNLF2a which inhibits the transporter of antigen processing, BILF1 which induces major histocompatibility complex (MHC) class I internalization and degradation.65–67

Targeting EBV reactivation by antioxidant compound NAC and various nature compounds, such as resveratrol, curcumin, emodin or sulforaphen, showed a good potential for inhibiting the onco-virus lytic phase.68, 69 We found epigallocatechin gallate inhibits EBV lytic protein expression and decreases EBV copy numbers through the AMPK pathway (unpublished data). Identifying new nature compounds to intervene the EBV reactivation and sensitizing patients to the therapy might be a good way for NPC prevention.

ONCO-FUNCTIONS OF OTHER EBV PRODUCTS

Almost all cancer hallmarks could be targeted by EBV latent genes. In EBV-associated epithelial malignancies, the latent genes, beside LMP1, there are EBNA1, EBNA2, LMP2, BARTs, miR-BARTs. The major function of EBNA1 is promoting the survival of cells upon DNA damage and beneficial for cell growth. Also EBNA1 inhibits the canonical NF-κB pathway in carcinoma cells by inhibiting IkB kinase phosphorylation.70 EBNA2 mimics a constitutively activated NOTCH receptors. The expression of LMP2A could be detected in more than 50% of NPC cases.71 LMP2 promotes cell survival, stemness, EMT, which may related to the metastatic phenotype.72–74 Also, LMP1 and LMP2A function cooperatively to promote carcinoma development specialy in NPC.71, 75

EBV can encode 44 microRNAs (miRNAs), which can drive tumor growth in vivo and could be potential serum biomarkers in NPC.
patients. Our group identified EBV encoded miR-BHRF1-1 potentiates viral lytic replication, which involved in host p53 down-regulation.16

PRECISION PREVENTION OF NPC IN THE FUTURE

Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors.76–78 The 2014 AACR Cancer Progress Report states that a large proportion of cancers could be prevented by modifying factors such as cancer-causing pathogens (16%).77 EBV is an important and fascinating cancer causing virus. We still have many questions in need of answers. The knowledge generated regarding EBV can be used to identify risk factors, genotypes, and biomarkers that can be applied in primary prevention, early detection of cancer, and prediction of those individuals who are most likely to exhibit unfavorable cancer outcomes.80

1. EBV infection is listed as a Group I carcinogen category by the International Agency for Research on Cancer. NPC is an infection-related cancer strongly driven by EBV.78 As EBV is associated with nearly 200,000 new malignancies each year worldwide, in EBV-based primary cancer prevention, we urgently need to develop a safe and effective vaccine. Now most efforts to develop prophylactic vaccines are focused on EBV gp350. The therapeutic vaccine targeting LMP2A and EBNA1 can induce EBV-specific T cells response.62 None of these two types of vaccines are licensed. The major problems are lack of an animal model and are difficult to find the best immunogen and adjuvant. Prospects include prevention of infectious mononucleosis, post-transplant lymphoproliferative disease, multiple sclerosis, and treatment of EBV-related cancer.63

2. Smoking induces EBV lytic and smoking cessation together with EBV control might be the most important approach for the prevention of NPC. Smoking cessation programs should be advocated for the primary prevention of NPC, especially in NPC endemic areas.34–37

3. Co-infection of EBV and HPV is usually found in NPC patients from endemic regions.84 But the co-infection of these two viruses in other cancers are controversial. We need further identify the possible mechanisms of their synergistic effect during tumorigenesis and develop new strategies. Hopefully, the HPV vaccine may offer protection against a HPV-positive subtype of head-and-neck cancers in the future.85

4. Now the early detection and screening of the lytic proteins and EBV DNA have been applied to clinical and high-risk population. For EBV-based secondary cancer prevention, we should further confirm the effect of population-based NPC screening by EBV-related serum EBV VCA/IgA antibodies and quantitative EBV DNA loading methods, which can be used to identify the high-risk individuals and diagnose early-stage patients.60, 86

5. For EBV-based tertiary cancer prevention (treatment intervention), DZ1 treatment could increase the sensitivity to radiation therapy in EBV-positive NPC. Also high dose Vitamin C might reduce EBV EA IgG and VCA IgM antibody levels in NPC patients.87

China’s population accounts for 1/5 of the world’s population. 22% of the new cancer cases and 27% death cases are happened in China.76 Fortunately, China set up the ‘Health China 2030’ strategic planning. And a 3-year national plan for cancer prevention including NPC established by Chinese government is now in effect. More recently, Chinese government announced the programming “Prevention and treatment of chronic diseases in China”. The first aim of this project is to improve the cancer 5-year survival rate from 30.9 to 40.9%, and the second aim is to increase the cancer early diagnostic rate from 48 to 60% in high-risk areas before 2025. Given the importance of the contribution of EBV to the burden of the cancers especially in NPC, we should pay more attention to the EBV based cancer prevention and therapy in NPC in the future. A better understanding of the mechanism of EBV in cancer may lead to develop novel prevention and therapeutic strategies which not only for NPC, but also for EBV-associated cancers.

ACKNOWLEDGEMENTS

This work was supported by the State Key Program of National Natural Science Foundation of China (No. 81430604); the National Natural Science Foundation of China (No. 81161120410 and 81101747); the National Basic Research Program of China (2011CB504300, 2015CB553903); the National High Technology Research and Development Program of China (863 Program, No. 2012AA02A051).

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

1. de Martel, C., Ferlay, J., Franceschi, S., Vignat, J., Bray, F., Forman, D. & Plummer, M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13, 607–615 (2012).
2. Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus particles in cultured Lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703 (1964).
3. Rowe, M., Fitzsimmons, L. & Bell, A. I. Epstein-Barr virus and Burkitt lymphoma. *Chinese Journal of Cancer* 33, 609–619 (2014).
4. Khan, G. & Hashim, M. J. Global burden of deaths from Epstein-Barr virus attributable malignancies 1990-2010. *Infect. Agent Cancer* 9, 38 (2014).
5. Holmes, D. The cancer-virus cures. *Nat. Med.* 20, 571–574 (2014).
6. Varmus, H. & Kumar, S. H. Addressing the growing international challenge of cancer: a multinational perspective. *Sci. Transl. Med.* 5, 175cm2 (2013).
7. Liberman, P. M. Virology. Epstein-Barr virus turns 50. *Science* 343, 1323–1325 (2014).
8. Zheng, H., Li, L. L., Hu, D. S., Deng, X. Y. & Cao, Y. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. *Cell Mol. Immunol.* 4, 185–196 (2007).
9. Chen, Y. P., Zhang, W. N., Chen, L., Tang, L. L., Mao, Y. P., Li, W. F., Liu, X., Zhou, G. Q., Sun, Y. & Kang, T. B. et al. Effect of latent membrane protein 1 expression on overall survival in Epstein-Barr virus-associated cancers: a literature-based meta-analysis. *OncoTarget* 6, 29311–29323 (2015).
10. Tao, S. W., Tramoutanis, G., Dawson, C. W., Lo, A. K. & Huang, D. P. The significance of LMP1 expression in nasopharyngeal carcinoma. *Semin. Cancer Biol.* 12, 473–487 (2002).
11. Young, S. L., Yap, L. F. & Murray, P. G. Epstein-Barr virus: more than 50 years old and still providing surprises. *Nat. Rev. Cancer* 16, 789–802 (2016).
12. Meckes, D. G. Jr., Menaker, N. F. & Raab-Traub, N. Epstein-barr virus LMP1 modulates lipid raft microdomains and the vimentin cytoskeleton for signal transduction and transformation. *J. Virol.* 87, 1301–1313 (2013).
13. Kondo, S., Wakisaka, N., Muramatsu, M., Zen, Y., Endo, K., Murono, S., Sugimoto, H., Yamaoka, S., Pagano, J. S. & Yoshizaki, T. Epstein-Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. *J. Virol.* 85, 11255–11264 (2011).
14. Shi, Y., Tao, Y., Jiang, Y., Xu, Y., Yan, B., Chen, X., Xiao, L. & Cao, Y. Nuclear epidermal growth factor receptor interacts with transcriptional intermediary factor 2 to activate cyclin D1 gene expression triggered by the oncoprotein latent membrane protein 1. *Carcinogenesis* 33, 1468–1478 (2012).
15. Lin, X., Tang, M., Tao, Y., Li, L., Liu, S., Guo, L., Li, Z., Ma, X., Xiu, J. & Cao, Y. Epstein-Barr virus-encoded LMP1 triggers regulation of the ERK-mediated OPl8/stathmin signaling pathway in association with cell cycle. *Cancer Sci.* 103, 993–999 (2012).
16. Li, Z., Chen, X., Li, L., Liu, S., Yang, L., Ma, X., Tang, M., Bode, A. M., Dong, Z. & Sun, L. et al. EBV-encoded miR-BHRF1-1 potentiates viral lytic replication by down-regulating host p53 in nasopharyngeal carcinoma. *Int. J. Biochem. Cell. Biol.* 44, 275–279 (2012).
17. Li, L., Li, W., Xiao, L., Xu, J., Chen, X., Tang, M., Dong, Z., Tao, Q. & Cao, Y. Viral oncoprotein LMP1 disrupts p53-induced cell cycle arrest and apoptosis through modulating K63-linked ubiquitination of p53. *Cell Cycle* 11, 2327–2336 (2012).
18. Liu, H., Duan, Z., Zheng, H., Hu, D., Li, M., Tao, Y., Bode, A. M., Dong, Z. & Cao, Y. EBV-encoded LMP1 upregulates Ig kappa 3 enhancer activity and Ig kappa expression in nasopharyngeal cancer cells by activating the Ets-1 through ERKs signaling. *PLoS ONE* 7, e32624 (2012).
4. Luo, X. J., Li, L. L., Deng, O. P., Yu, X. F., Yang, L. F., Luo, F. J., Xiao, L. B., Chen, X. Y., Ye, M. & Liu, J. K. et al. Grifolin, a potent antitumour natural product upregulates death-associated protein kinase 1 DAPK1 via p53 in nasopharyngeal carcinoma cells. Eur. J. Cancer 47, 316–325 (2011).
5. Loyo, M., Bratt, M., Kim, M. S., Oстро, R. L., Jie, C. C., proud, A. Y., Calafano, J. A., Liegeois, N. J., Begum, S. & Westra, W. H. et al. A survey of methylated candidate tumor-suppressor genes in nasopharyngeal carcinoma. Int. J. Cancer 128, 1393–1403 (2011).
6. Kwong, J., Lo, K. W., To, K. F., Teo, P. M., Johnson, P. D. & Huang, D. P. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin. Cancer Res. 8, 131–137 (2002).
7. Tsai, C. L., Li, H. P., Lu, Y. J., Hsueh, C., Liang, Y., Chen, C. L., Tsao, S. W., Tse, K. P., Yu, J. J., Xie, Y. Z. et al. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH(2)-terminal kinase signaling. Cancer. Cell 66, 1168–1176 (2006).
8. Dutton, A., Woodman, C. B., Chukwumaa, M. B., Last, J. I., Wei, W., Vockerodt, M., Baumforth, K. R., Flavell, J. R., Rowe, M. & Taylor, A. M. et al. Bmi-1 is induced by the Epstein-Barr virus oncoprotein LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109, 2597–2603 (2007).
9. Gerhauer, C. Cancer chemoprevention and nutrigenomics: state of the art and future challenges. Top. Curr. Chem. 329, 73–132 (2013).
10. Feng, M. Z., Wang, Y., Ai, N., Hou, Z., Sun, Y., Lu, H., Welsh, W. & Yang, C. S. Tea polyphenol (-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 63, 7563–7570 (2003).
11. Lee, W. J. & Zhu, B. T. Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols. Carcino genesis 27, 269–277 (2006).
12. Fu, S. & Kurzrock, R. Development of curcumin as an epigenetic agent. Cancer 116, 4670–4676 (2010).
13. Luo, X. J., Li, W., Yang, L. F., Yu, X. F., Xiao, L. B., Tang, M., Dong, X., Deng, P. Q., Bode, A. M. & Liu, J. K. et al. DAPK1 mediates the G1 phase arrest in human nasopharyngeal carcinoma cells induced by grifolin, a potent antitumour natural product. Eur. J. Pharmacol. 670, 427–434 (2011).
14. Liu, L. T., Tang, L. Q., Chen, Y. Q., Zhang, L., Guo, S. S., Guo, L., Mo, H. Y., Zhao, C., Guo, X & Cao, K. et al. The Prognostic value of plasma Epstein-barr viral DNA and tumor response to neoadjuvant chemotherapy in advanced-stage nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 93, 862–869 (2014).
15. Chang, M. S., Kim, D. H., Roh, J. K., Middeldorp, J. M., Kim, Y. S., Kim, S., Han, S., Kim, C. W., Lee, B. L. & Kim, W. H. et al. Epstein-Barr virus-encoded BARF1 promotes proliferation of gastric carcinoma cells through regulation of NF-kappaB. J. Virol. 87, 10515–10523 (2013).
16. Kenney, S. C. & Mertz, J. E. Regulation of the latent-lytic switch in Epstein-Barr virus. Sem. Cancer Biol. 26, 60–68 (2014).
17. Zheng, X. H., Lu, L. X., Li, X. Z. & Jia, W. H. Quantification of Epstein-Barr virus DNA load in nasopharyngeal brushing samples in the diagnosis of nasopharyngeal carcinoma in southern China. Cancer Sci. 106, 1196–1201 (2015).
18. Xu, F. H., Xiong, D., Xu, Y. F., Cao, M. S., Xue, W. Q., Qin, H. D., Liu, W. S., Cao, J. Y., Zhang, Y. & Feng, Q. S. et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J. Natl. Cancer Inst. 104, 1396–1410 (2012).
19. Wang, Y., Xu, C., Chen, H. H., Jiang, R. S., Wu, C. T., Liang, K. L., Shih, Y. T., Chen, C. C., Lin, P. J. & Liu, Y. C. et al. (2011) analysis of nasopharyngeal carcinoma by plasma Epstein-Barr virus DNA levels. Cancer 119, 963–970 (2013).
20. Chen, W. H., Tang, L. Q., Wang, F. W., Li, C. P., Tian, X. P., Huang, X. X., Mai, S. J., Yao, J. Y., Deng, H. X. & Chen, Q. Y. et al. Elevated levels of plasma D-dimer predict a worse outcome in patients with nasopharyngeal carcinoma. BMC Cancer 14, 583 (2014).
21. Yoshimatsu, H. Development of the diagnosis of lung tumor. [5 Mediastinoscopy]. Nihon Kyokai Shinkou Gakkai Zasshi 110, 659–664 (1974).
22. Zhang, L., Tang, L. Q., Chen, Q. Y., Liu, H., Guo, S. S., Liu, L. T., Guo, L. H. M., Zhao, C. & Guo, X. et al. Plasma Epstein-Barr virus DNA complements TNM classification of nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy. Oncotarget 7, 6221–6230 (2016).
23. Chen, Y., Zhao, W., Liu, L. X., Xiao, Z., Huang, M., Tang, L. Q., Li, J. Y., and Zeng, X. et al. Nasopharyngeal Epstein-Barr virus load: an efficient supplementary method for population-based nasopharyngeal carcinoma screening. PLoS ONE 10, e0132665 (2015).
24. Granato, M., Santarelli, R., Farina, A., Gonnella, R., Lotti, L. V. Faggioni, A. & Cione, M. Epstein-Barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J. Virol. 88, 12715–12726 (2014).
62. Hoebee, E. K., Le Large, T. Y., Greijer, A. E. & Middeldorp, J. M. Bam-HA rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev. Med. Virol. 23, 367–383 (2013).

63. Desbien, A. L., Kappler, J. W. & Marrack, P. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of bim. Proc. Natl. Acad. Sci. USA 106, 5663–5668 (2009).

64. Millan, E., Prats, E., Cairo, J. J., Godia, F. & Vives, J. BHRF1 exerts an antiapoptotic effect and cell cycle arrest via Bcl-2 in murine hybridomas. J. Biotechnol. 209, 58–67 (2015).

65. Hislop, A. D., Resing, M. E., van Leeuwen, D., Pudney, V. A., Horst, D., Koppers-Lalic, D., Croft, P. N., Neefjes, J. J., Rickinson, A. B. & Wiertz, E. J. A CD8+T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in old world primates. J. Exp. Med. 204, 1863–1873 (2007).

66. Zuo, J., Currin, A., Griffin, B. D., Shannon-Lowe, C., Thomas, W. A., Resing, M. E., Wiertz, E. J. & Rowe, M. The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog. 5, e1000255 (2009).

67. Rowe, M., Glaunsinger, B., van Leeuwen, D., Zuo, J., Sweetman, D., Ganem, D., Middeldorp, J., Wiertz, E. J. & Resing, M. E. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc. Natl. Acad. Sci. USA 104, 3366–3371 (2007).

68. Gargouri, B., Nasr, R., ben Mansour, R., Lassoued, S., Mseddi, M., Attia, H., El Feki Ael, F. & Van Pelt, J. Reactive oxygen species hydrogen peroxide mediates Kaposi’s sarcoma-associated herpesvirus reactivation from latency. PLoS Pathog. 7, e1002054 (2011).

69. Valentine, R., Dawson, C. W., Hu, C., Shah, K. M., Owen, T. J., Date, K. L., Maia, S. P., Shao, J., Arrand, J. R. & Young, L. S. et al. Epstein-Barr virus-encoded EBNA1 inhibits the canonical NF-kappaB pathway in carcinoma cells by inhibiting IKK phosphorylation. Mol. Cancer 9, 1 (2010).

70. Dunn, B. K. & Kramer, B. S. Cancer prevention: lessons learned and future directions. Trends Cancer 2, 713–722 (2016).

71. Kong, Q. L., Hu, L. J., Cao, J. Y., Huang, Y. J., Xu, L. H., Liang, Y., Xiong, D., Guan, S., Guo, J., Y Cao et al. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) and LMP2A function cooperatively to promote carcinoma development in a mouse carcinogenesis model. J. Virol. 86, 5352–5365 (2012).

72. Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X. Q. & He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016).

73. Cao, Y., DePinho, R. A., Ernst, M. & Vossen, K. Cancer research: past, present and future. Nat. Rev. Cancer 11, 749–754 (2011).

74. Dunn, B. K. & Kramer, B. S. Cancer prevention: lessons learned and future directions. Trends Cancer 2, 713–722 (2016).

75. Kong, Q. L., Hu, L. J., Cao, J. Y., Huang, Y. J., Xu, L. H., Liang, Y., Xiong, D., Guan, S., Guo, J., Y Cao et al. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) and LMP2A function cooperatively to promote carcinoma development in a mouse carcinogenesis model. J. Virol. 86, 5352–5365 (2012).

76. Chen, W., Zheng, R., Baade, P. D., Zhang, S., Zeng, H., Bray, F., Jemal, A., Yu, X. Q. & He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 66, 115–132 (2016).

77. Cao, Y., DePinho, R. A., Ernst, M. & Vossen, K. Cancer research: past, present and future. Nat. Rev. Cancer 11, 749–754 (2011).

78. Dunn, B. K. & Kramer, B. S. Cancer prevention: lessons learned and future directions. Trends Cancer 2, 713–722 (2016).

79. Rebbbeck, T. R. Precision prevention of cancer. Cancer Epidemiol. Biomarkers Prev. 23, 2713–2715 (2014).

80. Yu, S., Yang, C. S., Li, J., You, W., Chen, J., Cao, Y., Dong, Z. & Qiao, Y. Cancer prevention research in China. Cancer Prev. Res. 8, 662–674 (2015).

81. Wang, J., Mei, F., Gao, X. & Wang, S. Identification of genes involved in Epstein-barr virus-associated nasopharyngeal carcinoma. Oncol. Lett. 12, 2375–2380 (2016).

82. Cohen, J. I. Epstein-Barr virus vaccines. Clin. Transl. Immunol. 4, e32 (2015).

83. Balfour, H. H. Jr. Progress, prospects, and problems in Epstein-Barr virus vaccine development. Curr. Opin. Virol. 6, 1–5 (2014).

84. Shi, Y., Peng, S. L., Yang, L. F., Chen, X., Tao, Y. G. & Cao, Y. Co-infection of Epstein-barr virus and human papillomavirus in human tumorigenesis. Chinese J. Cancer 35, 16 (2016).

85. Wojtowicz, M. E., Dunn, B. K. & Umar, A. Immunologic approaches to cancer prevention-current status, challenges, and future perspectives. Sem. Oncol. 43, 161–172 (2016).

86. Liu, Z., Ji, M. F., Huang, Q. H., Fang, F., Liu, Q., Jia, W. H., Guo, X., Xie, S. H., Chen, F. & Liu, Y. et al. Two Epstein-Barr virus-related serologic antibody tests in nasopharyngeal carcinoma screening: results from the initial phase of a cluster randomized controlled trial in Southern China. Am. J. Epidemiol. 177, 242–250 (2013).

87. Mikroiva, N. & Hunninghake, R. Effect of high dose vitamin C on Epstein-Barr viral infection. Med. Sci. Monit. 20, 725–732 (2014).

© The Author(s) 2017