Kaonic atoms and strangeness in nuclei: SIDDHARTA-2 and AMADEUS experiments

M Iliescu, M Bazzi, G Belloti, C Berucci, A M Bragadireanu, D Bosnar, M Cargnelli, C Curceanu, A D Butt, R Del Grande, A D’Uffizi, L Fabiotti, C Fiorini, F Ghio, C Guaraldo, R S Hayano, T Ishiwatari, M Iwasaki, P Levi Sandri, J Marton, M Miliucci, S Okada, D Pietreanu, K Piscicchia, A Romero Vidal, A Scordo, H Shi, D L Sirghi, F Sirghi, H Tatsuno, I Tucakovic, O Vazquez Doce, E Widmann, S Wycech and J Zmeskal

1 INFN, Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044, Frascati (Roma), Italy
2 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
3 Politecnico di Milano, Dip.di Elettronica, Informazione e Bioingegneria, Milano, Italy
4 INFN Sezione di Milano, Milano, Italy
5 Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
6 Stefan-Meyer-Institut f’ur subatomare Physik, Vienna, Austria
7 INFN Sezione di Roma I and Istituto Superiore di Sanit’a, Roma, Italy
8 The University of Tokyo, Tokyo, Japan
9 RIKEN, The Institute of Physics and Chemical Research, Saitama, Japan
10 Technische Universitat Munchen, Physik Department, Garching, Germany
11 University of Santiago de Compostela, Santiago de Compostela, Spain
12 University of Zagreb, Zagreb, Croatia
13 National Centre for Nuclear Studies, 00-681 Hoza 69 , Warsaw, Poland
14 Museo Storico della Fisca e Centro Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1-00184 Roma, Italy

(SIDDHARTA, SIDDHARTA-2 and AMADEUS Collaborations)

E-mail: Mihai.Iliescu@lnf.infn.it
Abstract. The dynamics of the strong interaction processes in the non-perturbative regime is currently approached by lattice calculations and effective field theories (ChPT), still lacking several experimental results, fundamental for a good understanding of the strangeness sector. Among these, the information provided by the low-energy kaon nucleon/nuclei interaction, accessible through the study of kaonic atoms and kaonic nuclear processes, plays a key-role. The lightest atomic systems, the kaonic hydrogen and the kaonic deuterium, deliver, in a model-independent way, the isospin-dependent kaon-nucleon scattering lengths, through the X-ray spectroscopy of the exotic atoms de-exciting to the fundamental level. The most precise kaonic hydrogen measurement to-date, together with an exploratory measurement of kaonic deuterium, were carried out in 2009 at the DAΦNE collider, by the SIDDHARTA collaboration. Nowadays, an upgraded setup was built, for a precise measurement of kaonic deuterium and, eventually, of heavier exotic atoms. A correlated study of the kaon-nuclei interaction at momenta below 130 MeV/c is carried out by the AMADEUS collaboration, using the KLOE detector and dedicated targets inserted near the collider interaction point. Preliminary results of the study of charged antikaons interacting with nuclei are shown, including a discussion of the still controversial $\Lambda(1405)$.

1. Low energy QCD in the strange sector
The KN interaction at threshold provides important information on the relationship between spontaneous and explicit chiral symmetry breaking in low-energy QCD. Though the use of kaonic atoms as a perfect tool to extract without extrapolation the scattering lengths was predicted in the late 70s, reliable experimental data was available only from the 1990s, after the measurement of the strong-interaction energy shift $\varepsilon$ and width $\Gamma$ of kaonic-hydrogen 1s atomic state, at KEK-PS in Japan [1] and afterwards, at DAΦNE in Italy [2]. From the obtained values, the $K^-p$ scattering length was extracted using a Deser-Trueman-like formula [3], lately improved to account for the isospin-breaking corrections [4]. The measurement permitted a consistent interpretation of the scattering data [5] and the calculation of chiral SU(3) meson-baryon effective Lagrangian. Nevertheless, the amplitudes below the threshold were extrapolated with large uncertainties due to the experimental precision. Successively, the SIDDHARTA collaboration obtained more accurate values for both $\varepsilon$ and $\Gamma$ for kaonic hydrogen [9], thus providing stronger constraints on the theoretical models. The progress motivated new calculations regarding the structure of $\Lambda(1405)$ and investigations on the existence of kaonic nuclear clusters [6], both now under experimental study within the AMADEUS collaboration. In this context, the importance of kaonic deuterium (KD) X-ray spectroscopy has been well recognized, since the isospin-dependent scattering lengths $a_0$ and $a_1$, mediated in the K$p$ process, cannot be determined without the measurement of a system containing a neutron. As the neutron alone cannot form atoms, the K-D transitions on the 1s level will provide the missing information. Up to now, no experimental results have been achieved, due to the extremely low yield ($\sim 10^{-3}$) of the K-D transitions to the fundamental state, suppressed by the Stark effect coupled to a large contribution of the strong interaction, inducing $K^-$ nuclear absorption from higher levels.

2. Current experimental status
SIDDHARTA technique and results are fully described in [9], so only a short account will be given, to facilitate the understanding of the upgrade proposed by the SIDDHARTA-2 collaboration for reaching a significant measurement of the K-D transition parameters.

The SIDDHARTA experiment was performed at the DAΦNE $e^+e^-$ collider in Frascati, Italy. The two beams energy is tuned to create $\Phi$ mesons, which decay in $K^-K^+$ pairs with a BR of 49.1%. The monochromatic, low-energy charged kaons are degraded, then stopped in a cryogenic gaseous target, producing kaonic atoms. The target is a critical item, the yields of kaonic atom X-rays decreasing with the gas density, due to Stark mixing. On the other hand, a too low density does not permit efficient stopping and increases the kaons in-flight decay. For the SIDDHARTA optimized working point, the
yield was \(\sim1.2\%\) when filled with hydrogen and will presumably drop to \(\sim0.1\%\) for deuterium. The trigger was given by \(K^-K^+\) coincident hits on fast scintillators. The signal was detected with 144 silicon drift detectors (SDDs), 1 cm\(^2\) each, surrounding the target. The SDDs, developed by the collaboration, have an energy resolution of 150 eV FWHM at 6 keV, while their drift time is below 800 ns FWHM. The trigger signal, correlated with the fast X-ray detectors pulse, conferred a high background rejection \((10^4)\), most of the last consisting in electromagnetic (EM) showers from the beam losses, uncorrelated with the \(\Phi\) production (asynchronous background).

3. SIDDHARTA-2 experiment

Having acquired a good knowledge of the problems imposed by rare kaonic atom transition measurements and an accurate understanding of the background sources generating EM and hadronic cascades, the SIDDHARTA group has developed a set of methods aiming to increase the signal over background ratio (S/B) by a factor of 14 or better, thus allowing the kaonic deuterium measurement. The changes and add-ons required for reaching the above objective are briefly described, as follows:

- larger area, faster SDD detector array; the solution to improve the SDD time resolution consists in the reduction of the single element size (from 10 to 8 mm) and the replacement of the integrated J-FET (thermally limited), with a newly-developed amplifier on the ceramics, able to operate at very low temperatures (below 50 K). The shorter path and the higher carrier mobility consent a faster charge packet drift to the anode and therefore, a reduced time window (350 ns instead of 900 ns) for each trigger, with consequent suppression of the asynchronous background.

- a gas-moderation detector [19] measures the prompt time of the secondaries from \(K^-\) absorption on nuclei. The functioning is based on the kaon moderation time in a high-density gas, longer than the corresponding one in solids. Moreover, a fraction of the stopped \(K^-\) (~50\%) decays after \(K^-\) absorption, so its contribution to background is also removed. The system consists in scintillators surrounding the vacuum chamber, read at both ends by PMs coupled to mirrors and light-guides (to cope with the narrow space between the setup and the shielding against beam background).

- a new cryogenic target in reinforced kapton (13 cm diameter, 7 cm height), operating few hundred mK above the liquid point (~25 K) at a pressure of 4 bar (5% LHD), for more efficient kaon stopping.

- a veto system, consisting in scintillators read by SiPMs, placed behind each SDD array, to reject the hadronic background coming from border hits of MIPs, depositing energy in the X-ray range.

- a kaon trigger with geometric acceptance optimized to match the kaon gas stopping distribution.

- a new \(K^+ - K^-\) discrimination detector, to further reduce the background from the \(K^+\) mesons.

- an improved X-ray calibration system, providing low-rate in-situ calibration, as well as high rate calibration between physics runs, to compensate very small fluctuations in each single SDD response.

- mechanical and cryogenic improvements of the vacuum chamber, necessary to add more cooling power to the SDDs and to the cryogenic target.

All described items were optimized by GEANT4 simulation, considered reliable after having reproduced, in the same framework, the SIDDHARTA result, both in terms of signal and background, to 7\% accuracy. A sketch of the SIDDHARTA-2 setup is shown in the Fig.1 (top), while the Monte Carlo configuration and the expected spectrum of the \(K\ D\) transition, for an acquired luminosity of 800 pb\(^{-1}\) and assuming a yield of 0.1\%, are plot on the bottom. The fit on the simulated signal indicates the \(K\ D\) 1s level, modified by the strong interaction, can be determined with a precision of 30 eV for the shift and 70 eV for the width, corresponding to a statistical significance of 20 \(\sigma\) for the \(K\alpha\) line.
The estimated values are comparable with the precision obtained for kaonic hydrogen in SIDDHARTA and will allow to determine the antikaon-nucleon isospin-dependent scattering lengths, required by the non-perturbative QCD models dealing with strangeness.

4. AMADEUS
A research line complementary to that of exotic atoms, the AMADEUS experiment at DAΦNE, deals with the investigation of the low-energy kaon-nucleon/nuclei hadronic interaction. For that purpose, signals from K$^{-}$ absorption at-rest and in-flight (with momenta below 127 MeV/c), are investigated using a sample corresponding to a total integrated luminosity of 2 fb$^{-1}$ collected by KLOE [12] during the 2004 and 2005 runs. In a first phase the KLOE detector was used as an active target, the nuclear interaction of negatively charged kaons in the gas filling the KLOE Drift Chamber (DC) [13] (mainly 4He) and the DC entrance wall [14] (mainly 12C) was investigated. In the period November/December 2012 a successful data taking was performed with a dedicated pure carbon solid target implemented in the central region of KLOE. A total integrated luminosity of 90 pb$^{-1}$ was collected providing a high statistic sample of purely at-rest K$^{-}$ nuclear interactions [15]. The ongoing analyses are mainly concerned with the investigation of the K$^{-}$ multi-nucleon absorption processes (related the possible formation of K$^{-}$ multi-nucleon bound states [16]) and the $\Sigma^{+}/\Lambda^{+}$ properties and behavior in nuclear environment.

Figure 1: The SIDDHARTA-2 layout (top), with the Monte Carlo configuration (bottom left) and the expected K$^{-}$D spectrum (bottom right).
Table 1: Production probability of the $\Sigma^0 p$ final state for different intermediate processes normalized to the number of $K^-$ stopped in the DC wall. The statistical and systematic errors are shown as well.

| Process          | Yield / $K^-\text{stop}$, $10^{-2}$ | $\sigma_{\text{stat}}$, $10^{-2}$ | $\sigma_{\text{syst}}$, $10^{-2}$ |
|------------------|--------------------------------------|-----------------------------------|-----------------------------------|
| 2NA-QF           | 0.124 ± 0.019                        | +0.004 -0.008                     |
| 2NA-FSI          | 0.265 ± 0.027                        | +0.021 -0.022                     |
| Tot 2NA          | 0.366 ± 0.032                        | +0.022 -0.031                     |
| 3NA              | 0.267 ± 0.067                        | +0.043 -0.020                     |
| Tot 3body        | 0.532 ± 0.072                        | +0.047 -0.032                     |
| 4NA + Uncorr. bkg. | 0.753 ± 0.052                       | +0.024 -0.074                     |

In [17], a clean sample of $\Sigma^0 p$ events, from $K^-$ captures in the KLOE DC wall, was reconstructed. $\Sigma^0 p$ is (together with $\Lambda p$) an expected decay channel of the pp$K^-$ cluster, free from the $\Sigma$ conversion processes, which strongly affect the uncorrelated $\Lambda p$ production. A simultaneous fit of several kinematic variables was performed by a simulated cocktail containing $K^-$ absorptions on two or more nucleons (together with an uncorrelated background source). The study allowed isolating, with good precision, the $K^-$ absorption on two nucleons (2NA) free from any final state interaction (QF) of the produced $\Sigma^0 p$ pairs (2NA-QF). More difficult is to distinguish between 2NA and 3NA when 2NA is followed by final state interactions of the hyperon or nucleon with the residual nucleus. The obtained results are summarized in Table 1. The second step of the analysis consisted in the search of the pp$K^-$ bound state produced in $K^-$ interactions with $^{12}\text{C}$, decaying into a $\Sigma^0 p$ pair. The pp$K^-$ was simulated similarly to the 2NA-QF process but sampling the mass of the pp$K^-$ state with a distribution, rather than the Fermi momenta of the two nucleons in the initial state. A second fit of the experimental data was carried out including a pp$K^-$ component decaying into $\Sigma^0 p$. A systematic scan of possible binding energies and widths, varying within 15-75 MeV and 30-70 MeV respectively, was done. The best fit resulted in a binding energy of 45 MeV and a width of 30 MeV. The corresponding pp$K^-$ yield extracted from the fit is $(0.043 \pm 0.009 \text{ stat}^{-0.004 +0.005 \text{ syst}}) \times 10^{-2}$. In order to test the significance of the bound state with respect to a statistical fluctuation an $f$-test has been performed. The contribution of the pp$K^-$ component was found to be only significant at the level of 1$\sigma$. Although the measured spectra are compatible with the hypothesis of a pp$K^-$ contribution, the significance of the result is not sufficient to claim the discovery of the state.

The possible production of kaonic bound states is strongly influenced by the parameters of the $\Lambda(1405)$ state. We are presently investigating the $\Sigma^0 \pi^0$ decay of the $\Lambda(1405)$, produced in $K^-$ absorptions in-flight on $^4\text{He}$ and $^{12}\text{C}$. For kaon momenta of about 100 MeV the $K^-\text{N}$ sub-threshold region is accessible, thus allowing to explore the $\Lambda(1405)$ properties in the region 1415-1432 MeV. In order to extract the $\Lambda(1405)$ shape it is crucial to disentangle the $\Sigma^0 \pi^0$ resonant and non-resonant production. An analysis in this direction is ongoing, aiming to extract the yield of the non-resonant transition amplitude in the $\Lambda\pi^-$ isospin 1 channel. The $\Lambda\pi^-$ momentum spectra, including all the involved processes in $K^-$ capture on $^4\text{He}$ and possible final state interactions, were calculated in [18]. The spectra are expressed in terms of two $K^-$ in $\to \Lambda\pi^-$ transition amplitudes: the isospin l=1 S-wave amplitude ($|f^s|$) and the resonant l=1 P-wave amplitude, dominated by the $\Sigma(1385)$. $|f^p|$ below threshold can be inferred given the well-known $\Sigma(1385)$ amplitude. The goal is to get information on the corresponding l=0 sub-threshold amplitude in the $\Sigma\pi$ channel.

Acknowledgments
We thank C. Capoccia, G. Corradi, B. Dulach, and D. Tagnani from LNF-INFN; and H. Schneider, L. Stohwasser, and D. Stuükler from Stefan-Meyer-Institut, for their fundamental contribution in designing and building the SIDDHARTA setup. We thank as well the DAΦNE staff for the excellent working conditions and permanent support. Part of this work was supported by the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter”
(HadronPhysics2, Grant Agreement No. 227431, and HadronPhysics3 (HP3) Contract No. 283286) under the Seventh Framework Programme of EU; HadronPhysics I3 FP6 European Community program, Contract No. RII3-CT-2004- 506078; Austrian Science Fund (FWF) (P24756-N20); Austrian Federal Ministry of Science and Research BMBWK 650962/0001 VI/2/2009; Romanian National Authority for Scientific Research, Contract No. 2-CeX 06-11-11/2006; the Grant-in-Aid for Specially Promoted Research (20002003), MEXT, Japan; and the Croatian Science Foundation, under project HRZZ 1680.

References

[1] M Iwasaki et al. Observation of the kaonic hydrogen Kα x-ray Phys. Rev. Lett. 78, 3067-3069 (1997) T M Ito et al. Observation of kaonic hydrogen atom x rays Phys. Rev. C 58 2366-2382 (1998)
[2] G Beer et al. Measurement of the kaonic hydrogen X-ray spectrum DEAR Collaboration, Phys. Rev. Lett. 94 212302 (2005)
[3] S Deser et al. Energy level displacements in pi mesonic atoms Phys. Rev. 96 774-776 (1954) T L Trueman Energy level shifts in atomic states of strongly-interacting particles Nucl. Phys. 26, 57-67 (1961) A Deloff S Matrix Approach to Hadronic Atom Level Shifts Phys. Rev. C 13, 730-736 (1976)
[4] U G Meißner, U Raha, A Rusetsky Spectrum and decays of kaonic hydrogen Eur. Phys. J. C 35, 349-357 (2004) A Cieplý, J Smekal Kaonic hydrogen versus the K-p low-energy data Eur. Phys. J. A 34, 237-241 (2007)
[5] A D Martin: Kaon-Nucleon Parameters Nucl. Phys. B 179, 33-48 (1981) D N Tovee et al. Some properties of the charged sigma hyperons Nucl. Phys. B 33, 493-504 (1971) R J Nowak et al. Charged Sigma Hyperon Production by K Meson Interactions at Rest Nucl. Phys. B 139, 61-71 (1961)
[6] A Cieplý et al. Chirally motivated K− nuclear potentials Phys. Lett. B 702, 402-407 (2011) Y Ikeda, T Hyodo, W Wise Improved constraints on chiral SU(3) dynamics from kaonic hydrogen Phys. Lett. B 706, 63-67 (2011) Y Ikeda, T Hyodo, W Wise Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints Nucl. Phys. A 881, 98-114 (2012)
[7] M Boscolo et al. Description and performances of luminosity and background detectors at the upgraded e+e-DAFNE collider Nucl. Instr. Meth. Phys. Res. A 621, 157-170 (2010)
[8] H Koike, T Harada, Y Akaishi Cascade calculation of K−p and K−d atoms Phys. Rev. C 53, 79-87 (1996)
[9] M Bazzi et al. A new measurement of kaonic hydrogen X-rays SIDDHARTA Collaboration, Phys. Lett. B 704, 113-117 (2011) M Bazzi et al. Kaonic hydrogen X-ray measurement in SIDDHARTA SIDDHARTA Collaboration, Nucl. Phys. A 881, 88-97 (2012).
[10] B Borasoy, R Nißler, W Weise Kaonic Hydrogen and K-p Scattering Phys. Rev. Lett. 94, 213401 (2005) B Borasoy, U.-G Meißner, R Nißler : K-p scattering length from scattering experiments Phys. Rev. C 74, 055201 (2006)
[11] SIDDHARTA-2 Collaboration, Proposal of Laboratori Nazionali di Frascati of INFN (2010)
[12] F Bossi, E De Lucia, J Lee-Franzini, S Miscetti, M Palutan and KLOE coll. Riv. Nuovo Cim. 31 (2008) 531-623
[13] M Adinolfi et al., [KLOE Collaboration] Nucl. Inst. Meth. A 488, (2002) 51
[14] M Adinolfi et al. [KLOE Collaboration] Nucl. Inst. Meth. A 482, (2002) 368
[15] C Curceanu, K. Piscicchia et al. Acta Phys. Polon. B 46 1, 203-215, (2015)
[16] Y Akaiishi and T Yamazaki Emission spectra and invariant masses of A and p in the stopped-K−NN absorption process in 4He and 6Li, Nucl. Phys. A 792, 229 (2007)
[17] O Vazquez Doce et al. Phys. Lett. B 758, 134 (2016).
[18] K Piscicchia, S Wycech, C Curceanu Nucl. Phys. A 954 (2016) 75-93
[19] M Bazzi et al. JINST 8, (2013) T11003