Ginseng and obesity

Zhipeng Li 1, Geun Eog Ji 1,2, *

1 Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, Republic of Korea
2 Research Institute, Bifido Co., Ltd., Hongchun, Republic of Korea

1. Introduction

Obesity is a medical condition in which excess body fat accumulates to the extent that it may have a negative effect on health. Previous researchers have reported that obesity can increase the risk of various diseases, particularly type 2 diabetes [1]. Many factors such as diet, lifestyle, genetics, and gut microbiota may be associated with obesity; of those, excess food intake is considered a primary factor [2]. Apart from dieting and physical exercise, several drugs such as lorcaserin, orlistat, phentermine, and topiramate are available for the treatment of obesity. Unfortunately, drug treatment of obesity is often associated with side effects and a rebound weight gain after the cessation of drug use [3]. Complementary and alternative therapies, long used in the Eastern world, are currently receiving considerable attention and are eliciting widespread interest worldwide. Ginseng is an ancient herbal remedy that was recorded in The Herbal Classic of the Divine Plowman, the oldest comprehensive materia medica, which was scripted approximately 2000 yr ago. Contemporary science suggests that ginseng has various bioactivities. At present, research studies have also indicated that ginseng might exert a potential antiobesity effect. Ginsenosides are the main ginseng component that is responsible for its various activities. Dammarane-type ginsenosides can be divided into two groups: protopanaxadiol (PPD) and protopanaxatriol (PPT) types. Those groups are based on the number of hydroxyl groups that can be joined to sugar moieties via a dehydration reaction. Common PPD-type ginsenosides include ginsenosides Rb1, Rb2, Rc, Rd, Rg3, F2, Rh2, compound K (cK), and PPD, whereas common PPT-type ginsenosides include Re, Rf, Rg1, Rg2, F1, Rh1, and PPT. Ginsenosides can be degraded to a deglycosylated form by the actions of gut microbiota [4]. Generally, only the ginsenosides cK and Rh1 (or F1), the degraded forms of PPD and PPT types, respectively, can be absorbed into the circulatory system after oral intake [5]. This review is aimed at evaluating the antiobesity efficacy of ginseng and ginsenosides and delineating the mechanisms by which they function.

2. Effect on food intake

Hypothalamic inflammatory activation as a result of consuming a high fat diet (HFD) and obesity are thought to disturb anorexigenic and thermogenic signals and promote abnormal body weight control [6]. Under chronic inflammation in the hypothalamus of mice, as a response to HFD, mechanisms mediating a sustained cycle of appetite enhancement were observed [7]. Leptin is a hormone made by adipocytes, and it acts on receptors in the arcuate nucleus of the hypothalamus to regulate appetite in order to achieve energy homeostasis. Long-term HFD consumption in murine...
has been reported to evoke leptin resistance, which is characterized by an increased level of plasma leptin. Ginsenoside Rb1 was reported to decrease the expression levels of inflammatory markers such as p-IκB kinase, interleukin (IL)-6, and IL-1β, and negative regulators of leptin signaling such as suppressor of cytokine signaling 3 (SOCS3) and protein-tyrosine phosphatase 1B (PTP1B) in the hypothalamus and restore the anorexic effect of leptin in HFD-fed mice and leptin p-STAT3 signaling in the hypothalamus. Administration of ginseng extracts has decreased plasma levels of leptin and neuropeptide Y and alleviated leptin resistance in HFD-fed murine [9]. In addition, it was reported that PPD-type ginsenosides inhibited expression of cholecystokinin (CCK), which acts as a hunger suppressant, in the hypothalamus of mice fed with HFD, whereas PPT-type ginsenosides increased the expression [10]. Through such actions, ginseng or ginsenosides may prevent excess energy intake and the onset of obesity. In support of this suggestion, a number of animal researchers have documented that ginseng administration can repress food intake in mice and rats [10–18].

3. Effect on digestion and absorption systems

Liu et al [19] reported that PPD-type ginsenosides such as Rb1, Rb2, Rc, and Rd significantly suppress pancreatic lipase activity, whereas PPT-type ginsenosides Re and Rg1 do not, results that support the research results reported by Liu et al [20]. In addition, an extract of ginseng root, mainly containing PPD-type ginsenosides [21], was shown to exert similar activities [19,22]. Pancreatic lipase inhibitors can prevent obesity by increasing fat excretion into feces, and it has been reported that supplementation of ginseng extract increases fecal weight and fecal lipid content in mice [12,23]. Therefore, ginseng may decrease energy harvest of an organism by inhibiting pancreatic lipase activity. Although PPD-type ginsenosides may be more efficient than PPT-type ginsenosides in inhibiting pancreatic lipase activity, the PPT-type ginsenoside Rg1 was shown to suppress the expression of sodium-dependent glucose transporter 1 (SGLT1), thereby decreasing glucose absorption across Caco-2 cell monolayer, whereas Ck, a PPD-type ginsenoside, increased the expression of SGLT1 and the uptake of glucose [24]. Subsequent research has revealed that ginsenoside Rg1 can inhibit SGLT1 expression by reducing the binding of cAMP response element-binding protein (CREB) to the cAMP response element that is associated with an inactive chromatin status [25].

4. Effect on liver

The enzyme adenosine monophosphate-activated kinase (AMPK) acts as a metabolic master switch regulating cellular energy homeostasis, and activation of AMPK stimulates fatty acid oxidation, ketogenesis, biogenesis of mitochondria, and uptake of glucose, but inhibits cholesterogenesis, lipogenesis, and triglyceride (TAG) synthesis [26].

Numerous in vitro research reports have documented that ginseng and ginsenosides can activate the AMPK pathway resulting in increased levels of p-AMPK and phospho-acetyl-CoA carboxylase in hepatocyte HepG2 cells [27–35] (Table 1). By activating this pathway, ginseng and ginsenosides can, in vitro, suppress the expression of fatty acid synthase (FAS), 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6-phosphatase (G6Pase)—thereby inhibiting TAG synthesis [27,28,31], cholesterogenesis [28,33], and gluconeogenesis [29,30,34].

Consistent with the results of in vitro studies, various in vivo animal studies have indicated that ginseng or ginsenosides activate the AMPK pathway in liver in an HFD-fed model [29,65]. HFD-fed mice supplemented with a ginseng extract showed a low liver weight [66,67], which might be attributed to a decrease in the deposition of hepatic lipid. In support of that suggestion, several researchers have reported that ginseng supplementation can decrease hepatic lipid content and ameliorate liver steatosis [11,12,17,18,23,66–68] (Table 2).

Peroxisome proliferator-activated receptor (PPAR)-γ can be activated downstream by AMPK and can facilitate fatty acid export from hepatocytes and oxidation [76]. It has been reported that a fermented ginseng extract can increase the expression of PPAR-γ in HepG2 cells [27]. Furthermore, ginseng extract and its main ginsenoside, Rb1, were reported to exert such an effect in vivo [18,73]. An HFD increases PPAR-γ protein expression and decreases expression of CREB in the nuclei of hepatocytes—results that have been associated with HFD-induced liver steatosis [77]. Ginsenoside PPT, the final metabolite of PPT-type ginsenosides, has been shown to work as a PPAR-γ antagonist and represses fat deposition in the liver of HFD-induced obese C57BL/6 mice [13].

Nonalcoholic fatty liver disease (NAFLD), the most common liver disorder in developed countries, occurs when fat is deposited in the liver owing to causes other than excessive alcohol use and up to 80% of evaluated obese individuals have been shown to have NAFLD [78]. NAFLD is strongly associated with hepatic insulin resistance and type 2 diabetes [79]. On an HFD, lipotoxicity can result in increased activity levels of aspartate transaminase and alanine transaminase (ALT), which are commonly measured clinical biomarkers of liver health. Mice fed with HFD supplemented with ginseng have shown a low activity level of these two enzymes [67]. Thus, ginseng might alleviate lipotoxicity, hepatic steatosis, and insulin resistance by activating the AMPK pathway.

In enterohepatic circulation, bile synthesized in the liver from cholesterol is released to the intestine where a portion of the bile acids is degraded by intestinal bacteria exerting bile acid hydrolase activity and excreted with feces [80]. Cholesterol is used to neo-synthesize bile acids in a homeostatic response, resulting in a lowering of cholesterol levels in liver and plasma. Cytochrome P450 7A1 (CYP7A1) and cytochrome P450 8B1 (CYP8B1) are enzymes in bile acid synthesis, and multidrug resistance-associated protein (MRP) 2 is a transporter that facilitates biliary efflux from hepatocytes. It has been shown that red ginseng extract and ginsenosides can increase the expression of CYP7A1, CYP8B1, and MRP2 in vitro and in vivo [81,82]. Ginsenoside Rb1 can decrease the cholesterol content in the liver of HFD-fed mice by suppressing HMGR [83], and ginsenoside Rb2 can upregulate the expression of the low density lipoprotein receptor (LDL-R), which mediates the clearance of cholesterol from plasma to hepatocytes [55,84]. Qureshi et al [68] and Muwalla and Abuirmeileh [85] showed that dietary supplementation of ginseng can suppress avian hepatic cholesterogenesis and decrease plasma LDL cholesterol. Taken together, it may be concluded that ginseng inhibits cholesterogenesis in the liver and facilitates cholesterol clearance in plasma, bile acid synthesis from cholesterol, and biliary efflux from hepatocytes. Through such effects, the levels of cholesterol in liver and plasma are reduced.

5. Effect on adipose tissue

There are several reports showing that ginseng can reduce adipocyte size and fat storage in mice and rats fed with HFD [9,20,69,70]. In fact, ginseng or ginsenosides also activate the AMPK pathway in fat cells. Ginsenosides Rg1, Rg3, Rh2, and cK increase the level of p-AMPK and inhibit TAG synthesis in 3T3-L1 cells [40,43,65]. PPAR-γ stimulates lipid uptake, fatty acid storage, and adipogenesis in fat cells, and PPAR-γ knockout mice fail to generate adipose tissue when fed with HFD [86]. It has also been reported that ginsenosides Rh2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and cK
suppressed PPAR-γ and CCAAT-enhancer-binding protein (C/EBP)α, thereby inhibiting adipogenesis in 3T3-L1 cells [43,44,47,53,54]. With regard to the effects of ginsenosides Rb1, Rd, Rh1, and PPT on adipogenesis in vitro, the results of previous studies have been inconsistent [13,36,38–41,46,54], which might be attributed to those studies’ distinct experimental conditions and the differentiation phases of the preadipocytes in those studies. HFD model studies have indicated that ginseng represses differentiation of fat cells in adipose tissue of mice and rats and produces an antiobesity effect [9,23,72], whereas ob/ob and db/db diabetic mouse studies have shown that ginseng treatment stimulates the expression of PPAR-γ, adipogenesis, and exerts insulin-like effects [73,75]. Lipoprotein lipase (LPL) releases free fatty acids from circulating TAG-rich lipoprotein and mediates the clearance of blood fats. Moreover, ginsenosides Ro, Rd, Re, Rs1, and Chk increase insulin-induced expression of LPL [37], whereas the results from PPT-type ginsenosides were contradictory [13,39]. Ginseng treatment downregulates the expression of LPL in HFD-fed mice [9], but upregulates it in diabetic ob/ob or db/db mice [73,75]. Ginsenosides Rb1, Rh2, Re, Rd, Rs1, and Chk have been shown to stimulate glucose uptake in 3T3-L1 cells [41,42,45,52]. Taken together, these results suggest that ginseng and ginsenosides may have biphasic modulation effects on PPAR-γ, LPL, and adipogenesis and can have an effect on the maintenance of glucose homeostasis. Adiponectin, exclusively secreted from adipose tissue, is a protein hormone that modulates fatty acid oxidation and glucose

Table 1
Effects of ginseng on different targets related to obesity in cell line studies

Material	Cell line	Mechanism	Ref.
Ginseng extract,	3T3-L1	PPAR-γ,	[36]
Rb1, Rd, Rh2, Rd,	LPL	adipogenesis†	
Re, Rs1, Rs2, Rs3			
Rb2, Re, Rd, Rs1,	LPL	No effect	[37]
Rh1			
PPT	LPL	No effect	[38]
PPT (rosiglitazone)	LPL		[39]
Rh2, Rh1, Rd, Re	LPL		[40]
Rb1, Rs1	LPL		[41]
Rb2	LPL		[42]
Rb3	LPL		[43]
Rh2, Rh1, Rd, Re	LPL		[44]
Rb2, Rd, Re, Rs1,	LPL		[45]
Rh1, Rs1	LPL		[46]
Rh3, Rh2, Rh1, Rd	LPL		[47]
Rb2	LPL		[48]
Rg1	LPL		[49]
American ginseng	LPL		[50]
Ginseng extract	LPL		[51]
Re, Rs1, Rs2, Rs3	LPL		[52]
Gs	LPL		[53]
Ginseng extract,	LPL		[54]
Rb1, Rb2, Rd, Re	LPL		
Rs1, Rs2, Rs3	LPL		
Rb2, Re, Rs1, Rs2	LPL		
Rg1	LPL		
Fermented ginseng	LPL		
Korean Red Ginseng	LPL		
Korean Red Ginseng	LPL		
Ck	LPL		
Gs	LPL		
Ginseng extracts	LPL		
Rb1, Rb2, Rd, Re	LPL		
Rs1, Rs2, Rs3	LPL		
Rb2, Re, Rs1, Rs2	LPL		
Rg1	LPL		
Korean Red Ginseng	LPL		
Ginseng extracts	LPL		
Re, Rs1, Rs2, Rs3	LPL		
Gs	LPL		
Ginseng extracts	LPL		
Rb1, Rb2, Rd, Re	LPL		
Rs1, Rs2, Rs3	LPL		
Rb2, Re, Rs1, Rs2	LPL		
Rg1	LPL		
Korean Red Ginseng	LPL		
Ginseng extracts	LPL		
Re, Rs1, Rs2, Rs3	LPL		
Ginseng extracts	LPL		
Re, Rs1, Rs2, Rs3	LPL		
Ginseng extracts	LPL		

AMPK, adenosine monophosphate-activated kinase; aP2, adipocyte protein 2; CPT, carnitine palmityltransferase; FAS, fatty acid synthase; FGF2, fibroblast growth factor 2; G6Pase, glucose-6-phosphatase; GPDH, glyceral-3-phosphate dehydrogenase; HMGCR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; HSL, hormone sensitive lipase; IRS1, insulin receptor substrate 1; LB1, liver kinase B1; LPL, lipoprotein lipase; MMP, matrix metalloproteinase; mTOR, mechanistic target of rapamycin; NRF1, nuclear respiratory factor 1; ACC, phospho-acetyl-CoA carboxylase; PEPCK, phosphoenolpyruvate carboxykinase; PI3K, phosphatidylinositol 3-kinases; PKA, protein kinase A; PPAR-γ, peroxisome proliferator-activated receptor-γ; ROS, reactive oxygen species; SCD, stearoyl-CoA desaturase; SREBP, sterol regulatory element-binding protein; TAG, triglyceride; TC, total cholesterol; TNF, tumor necrosis factor; TSP1, thrombospondin 1; UCP, uncoupling protein; VEGF-A, vascular endothelial growth factor A.
In vitro studies have demonstrated that ginsenosides Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg2, Rg3, and cK suppress the expression of angiogenic factors such as vascular endothelial growth factor A (VEGF-A), basic fibroblast growth factor 2 (FGF2), and MMPs, whereas they facilitate the expression of angiogenic inhibitors such as thrombospondin (TSP) 1, tissue inhibitors of metalloproteinase (TIMP) 1, and TIMP2 in 3T3-L1 cells [29-31]. Such effects of ginseng on adipose tissue differentiation were also observed in HFD-induced obese mouse studies [15,17].

Obesity is associated with hyperplasia and hypertrophy of adipose tissue and is likely to lead to a reduction of adipose tissue blood flow, which results in adipocyte hypoxia [88]. Adipose hypoxia, the enlargement of adipocytes, can increase the distance from adipocytes to blood capillaries, resulting in adipocyte hypoxia. Increased necrosis-like adipocyte cell death due to hypoxia has been shown to be caused by hypoxia-induced mitochondrial dysfunction [80].

Table 2

Material	Animal	Mechanism	Ref.
Ginseng extracts	Orally, 4 wk chickens	BW gain, serum TC, LDL-C, TAG1, liver HMGR, CYP7A1, FAS	[68]
Korean Red Ginseng	i.p., 3 wk HFD rats	Food intake, BW gain, fat storage, leptin, NPY	[69]
Wild ginseng extract	8 wk HFD mice	BW gain, serum FBG, IR, TAG, TC, HDL-C, LDL-C, NEFA, adipocyte size, adipose tissue GLUT4	[70]
Mix of PPD type ginsenosides	Orally, 8 wk HFD mice	BW gain, serum TAG, adipose tissue weight, serum TAG, TC, LDL-C, liver TAG, TC	[20]
Ginseng extract	Orally, 8 wk HFD mice	BW gain, weight of WAT, serum TAG, leptin, adipocyte size, adipose tissue GLUT4	[9]
Vinegar processed Ginseng extracts	Orally, 8 wk HFD mice	Food intake, BW gain, FBG, insulin, HOMA-IR, liver weight, fat weight, serum TAG, TC, LDL-C, NEFA, blood pressure, adipose tissue GLUT4	[11]
Ginseng saponin	Orally, 3 wk HFD mice	BW gain, serum TAG, liver TAG, TC, HDL-C, lepim, adipocyte size, adipose tissue GLUT4	[22]
PPT type	i.p., 3 wk rats	BW gain, serum TAG, adipose tissue, leptin, liver weight, adipose tissue GLUT4	[10]
Korean Red Ginseng	Orally, 13 wk HFD mice	BW gain, weight of WAT, serum TAG, LDL-C, lepim, insulin, adiponectin	[66]
Ginseng radix	Orally, 8 wk HFD mice	BW gain, lip storage, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[15]
Ginsenoside Re	Orally, 3 wk HFD mice	BW gain, lip storage, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[65]
Black ginseng	Orally, 12 wk HFD rats	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[71]
Fermented Korean Red Ginseng	Orally, 12 wk HFD mice	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[12]
Ginsensin extract	Orally, 9 wk HFD mice	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[67]
Ginsensinyl acid	Orally, 4 wk HFD mice	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[16]
Ginseng extract	Orally, 14 wk HFD rats	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[23]
PPT	Orally, 4 wk HFD mice	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[13]
Rb1	i.p., 12 wk HFD rats	BW gain, adiponectin lepim, muscle p-AMPK, p-ACC, GLUT4	[18]
Korean Red Ginseng	Orally, 12 wk db/db mice	BW gain, FBG, insulin, NPY, serum TAG, liver PPAR-γ, adipose tissue	[73]
Ginseng bercy	i.p., 12 d ob/ob mice	BW gain, FBG, IR, body temperature	[74]
Ginseng root	i.p., 12 d ob/ob mice	BW gain, FBG, IR, body temperature	[74]
Wild ginseng	Orally, 4 wk ob/ob mice	BW gain, adipose tissue PPAR-γ Leptin, GLUT4, IR	[75]
Ginseng	Orally, 13 wk db/db mice	BW gain, adipose tissue, lip storage, serum TAG, NEFA, adipose diabetes	[17]

Acx1, peroxisomal acyl-coenzyme A oxidase 1; ALT, alanine transaminase; AMPK, adenosine monophosphate-activated kinase; aP2, adipocyte protein 2; AST, aspartate transaminase; BW, body weight; CCK, cholecystokinin; CPT, carnitine palmitoyltransferase; DGAT1, diglyceride acyltransferase; FAS, fatty acid synthase; FGF2, fibroblast growth factor 2; GSK, glycogen synthase kinase; HbA1c, hemoglobin A1c; HDL-C, high density lipoprotein-cholesterol; HFD, high fat diet; HMGR, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase; HOMA-IR, homeostatic model assessment-insulin resistance; i.p., intraperitonally; IR, insulin resistance; LDL-C, low density lipoprotein-cholesterol; MCP-1, monocyte chemoattractant protein-1; NEFA, nonesterified fatty acid; PAT, glycerc-3-phosphate O-acyltransferase; PPAR-γ, peroxisome proliferator-activated receptor; PPD, polyphenol-processed dispay; PPT, polyphenol-processed polyphenol-processed dispay; PTP, polyphenol-processed polyphenol-processed dispay; SREBP1, sterol regulatory element binding protein 1; SREBP2, sterol regulatory element binding protein 2; TGF-β, transforming growth factor β; TSP1, tissue inhibitor of metalloproteinase 1; TIMP1, tissue inhibitor of metalloproteinase 1; UCP3, uncoupling protein 3; VEGF-A, vascular endothelial growth factor A; WAT, white adipose tissue.
been reported to result in recruitment of macrophages to adipose tissue [89]. Macrophages surrounding dying or dead adipocytes form crown-like structures that can be identified by the absence of perilipin staining. Activated adipocytes and macrophages release proinflammatory cytokines such as IL-6 and TNF (tumor necrosis factor)-α, and they promote insulin resistance [90]. Kim [48] reported that administration of ginsenoside Re or Korean Red Ginseng extracts to mice fed with HFD and treated with ginseng for only 2 wk; thus, their research design might be a reason for their contrasting results. AMPK can be regulated downstream by adiponectin, and ginsenoside Rb1 has been shown to stimulate adiponectin signaling in C2C12 muscle cells through upregulation of adiponectin receptor (AdipoR)1 and AdipoR2 proteins [63].

6. Effect on skeletal muscle

Skeletal muscle is the predominant tissue responsible for the oxidation of glucose and fatty acids and therefore is a potential target for antiobesity and antidiabetes therapies. AMPK is an important energy-sensing and signaling system in skeletal muscle, and once activated, it stimulates biogenesis of GLUT4 and mitochondria and facilitates glucose uptake and acute fatty acid oxidation via phosphorylation of ACC with a consequent decrease while high density lipoprotein increases following the decrease of IL-6, TNF-α, and IL-1β in the adipose tissue of HFD-induced obese mice [72]. Exports of ginseng have also been found to repress the secretion of TNF-α, IL-6, and monocyte chemoattractant protein (MCP)-1 in the adipose tissue of mice fed with HFD [23].

7. Human study

Only seven papers of human study associated with ginseng and obesity are available and reviewed (Table 3). Kim and Park [93] reported that serum levels of TC (total cholesterol), TAG, and LDL decrease while high density lipoprotein increases following the administration of ginseng extract for 8 wk. A limitation of their study is that it was not placebo-controlled. Reeds et al [94] reported that oral administration of ginsenoside Re or Korean Red Ginseng extract to obese adults failed to have an effect on body weight, body mass index (BMI), fat mass, and plasma lipid profile. Although the small number of study participants (n = 5) may be a limitation of that research, their data did not even detect a trend toward treatment-induced improvement. Kwon et al [95] also reported that the administration of Korean Red Ginseng extract to obese females at a dose of 6 g/d for 8 wk failed to show an effect different from that in their placebo group, with the exception of an improvement in the obesity-related quality of life scale. Similarly, Cho et al [96] reported that administration of Korean Red Ginseng powder to overweight or obese adults at a dose of 6 g/d for 12 wk did not have an effect on BMI, body fat, and plasma lipid profile. In addition, Park et al [97] reported that administration of Korean Red Ginseng to adults with metabolic syndrome at a dose of 4.5 g/d for 12 wk failed to have an effect on waist circumference, blood pressure, TC, HDL, TAG, fasting plasma glucose, insulin, HOMA-IR, weight gain, and no effect on waist circumference, body fat percentage, plasma HDL, TAG, and glucose effects differed depending on the composition of gut microbiota prior to ginseng intake [98].

Table 3

Effects of ginseng on different targets related to obesity in human studies

Material	Participants	Mechanism	Ref.
50% alcohol ginseng extract	Male college students	MDA, SOD, CAT, TC, HDL, LDL, TAG	[91]
6 g/d, for 8 wk	Obese adults	No effect on weight, BMI, fat mass, glucose, insulin, HbA1c, TC, TAG, HDL	[94]
Korean Red Ginseng extract	Obese females	BW, BMI, WHR, food intake, Genotype: GNB3, CT: BMI, WHR, food intake, SBP	[95]
3 g/d for 2 wk; 8 g/d for 2 wk; Ginsenoside Re, 0.25 g/d for 2 wk	Placebo, n = 5; intervention, n = 5; Re, n = 5	BWL, BMI, WHR, food intake, Genotype: GNB3, CT: BMI, WHR, food intake, SBP, ADRB3, Trp64/Arg: BST	[96]
Korean Red Ginseng extract	Placebo, n = 23; intervention, n = 22	BWL, BMI, WHR, food intake, Genotype: GNB3, CT: BMI, WHR, food intake, SBP, ADRB3, Trp64/Arg: BST	[97]
6 g/d for 8 wk	Obese females	BWL, BMI, WHR, food intake, Genotype: GNB3, CT: BMI, WHR, food intake, SBP, ADRB3, Trp64/Arg: BST	[98]
Red ginseng	Males with metabolic syndrome	Mitochondrial function, total testosterone, IGF-1, diastolic blood pressure	[99]
3 g/d for 4 wk	Placebo, n = 30; intervention, n = 32	Mitochondrial function, total testosterone, IGF-1, diastolic blood pressure	[99]

AST, aspartate transaminase; BMI, body mass index; CAT, catalase; HbA1c, hemoglobin A1c; HDL-c, high density lipoprotein-cholesterol; HOMA-IR, homeostatic model assessment-insulin resistance; IGF-1, insulin-like growth factor 1; LDL-c, low density lipoprotein-cholesterol; MDA, malondialdehyde; SBP, Systolic blood pressure; SOD, superoxide dismutase; TAG, triglyceride; TC, total cholesterol; WHR, waist/hip ratio.
microbiota prior to ginseng administration. However, their research design was limited by the absence of a placebo control. In male participants with metabolic syndrome, Jung et al. [99] reported that red ginseng improved mitochondrial function, increased levels of testosterone and IGF-1, and reduced both diastolic blood pressure and serum cortisol level compared to the results in their placebo group.

Notably, ginsenosides have a very low bioavailability after oral intake, and only the deglycosylated forms of ginsenosides can be absorbed into the circulatory system. The transformation of ginsenosides is largely dependent on intestinal bacteria, which release various glycosidases to hydrolyze the sugar moieties of ginsenosides. Intestinal microbiota composition varies among individuals, and approximately 20% of people cannot partially or fully transform ginsenosides [100]. Moreover, the degree of transformation and concentration of ginsenosides may vary among ginseng products. In addition, the effects of ginseng might vary with individual genotypes [95]. These factors may, in part, lead to the differing results attained in the various human-based research carried out thus far. In addition, the length of the treatment periods has usually been 8 wk, regardless of whether the study is animal or human based. As the human life span is far longer than that of murine, such a short treatment period may be another reason for the apparent lack of antiobesity effects in human studies.

8. Conclusion

Ginseng or ginsenosides may help control appetite and prevent the overtake of food energy by attenuating the HFD-induced chronic inflammation of the hypothalamus, improving leptin resistance, and reducing the secretion of neuropeptide Y. Once food is consumed, PPD-type ginsenosides can inhibit the activity of pancreatic lipase and prevent digestion of TAG. Ginsenoside Rg1 suppresses the expression of SGLT1 and blocks the absorption of glucose. In this way, the energy harvested by an organism from the consumed lipids and carbohydrates can be reduced. Through the activation of AMPK, metabolism is switched from anabolism to catabolism. In liver, TAG synthesis, cholestero genesis, and gluconeogenesis are downregulated through the suppression of FAS, HMGCRC, PEPCK, and G6Pase. Moreover, PPAR-α is activated downstream by AMPK, and it stimulates oxidation and export of fatty acids. In this way, liver steatosis induced by an HFD may be improved. Furthermore, ginseng and ginsenosides stimulate the synthesis of bile acid from cholesterol, upregulate the expression of LDL receptor, and thereby mediate cholesterol clearance from blood and liver. Ginseng and ginsenosides also activate the AMPK pathway and inhibit TAG synthesis in adipose tissue. Results describing the effects of ginseng on adipogenesis via PPAR-γ and C/EBPα have so far been inconsistent. However, many researchers have reported that HFD-fed mice administered with ginseng have low adipose tissue weights and small adipocytes. Ginseng and ginsenosides may have a dual regulatory effect on adipogenesis and maintain homeostasis of lipid metabolism. In addition, inflammation due to hypoxia in adipose tissue is ameliorated by ginseng. Ginseng and ginsenosides also stimulate the AMPK pathway in skeletal muscle. Glucose uptake and fatty acid oxidation are upregulated via stimulation of GLUT4 and mitochondria biogenesis. Ginseng may downregulate blood glucose and lipids by facilitating energy expenditure in muscle.

In summary, ginseng and ginsenosides not only modulate appetite and reduce energy input in the intestine, but also inhibit lipid synthesis and stimulate energy consumption in skeletal muscle and liver via the activated AMPK pathway. Therefore, to some extent, the antiobesity effect of ginseng may be explained by the principle of energy conservation. In addition, ginseng treatment can result in a two-way adjustment of adipogenesis under HFD-induced obese and diabetic conditions. Nevertheless, previous studies into the antiobesity effects of ginseng are mostly restricted to animals. There is limited evidence supporting the suggestion that ginseng exerts an antiobesity effect in humans. Additional study and verification through longitudinal human studies are required to elucidate the antiobesity effects of ginseng in humans.

Conflicts of interest

Geun Eog Ji is a professor of Seoul National University and also the president of Bifido Co., Ltd. Zhipeng declares no conflict of interest.

Acknowledgements

This work was supported by Cooperative Research Program for Agriculture Science & Technology Development, Rural Development Administration, Republic of Korea (Project No. PJ01123001); and the Promoting Regional specialized Industry, the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT), Republic of Korea (Project No. R0004140).

References

[1] Yoon KH, Lee JH, Kim JW, Cho JH, Choi YH, Ko SH, Zimmert P, Son HY. Epidemic obesity and type 2 diabetes in Asia. Lancet 2006;368:1681–8.
[2] Bojanowski E, Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification of food preference behavior. Curr Neuropharmacol 2016;14:118–42.
[3] Wood S. Diet drug orlistat linked to kidney, pancreas injuries. Medscape. Medscape News. Retrieved. 2011. p. 28.
[4] Kim D. Intestinal microflora activate the pharmacological effects of herbal medicines. Nat Prod Sci 2002;8:35–43.
[5] Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Disposition 2003;31:1065–71.
[6] Thaler JP, Schwartz MW. Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocr Rev 2010;151:4109–15.
[7] Manousopoulou A, Koutnemi Y, Karaliotou S, Woelck C, Manolakos E, Karalis K, Gard S. Hypothalamus proteomics from mouse models with obesity and anorexia reveals therapeutic targets of appetite regulation. Nut Diet 2016:6. e204.
[8] Wu Y, Yu Y, Szabo A, Han M, Huang XF. Central inflammation and leptin resistance are attenuated by ginsenoside Rb1 treatment in obese mice fed a high-fat diet. PLoS One 2014;9:e92618.
[9] Lee YS, Cha BY, Yamaguchi K, Choi SX, Yonezawa T, Teruya T, Nagai K, Woo JT. Effects of Korean white ginseng extracts on obesity in high-fat diet-induced obese mice. Cytotherapy 2010;12:6367–76.
[10] Kim JH, Kang SA, Han SM, Shim I. Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother Res 2009;23:78–85.
[11] Yun SN, Ko SK, Lee KH, Chung SH. Vinegar-processed ginseng radix improves metabolic syndrome induced by a high fat diet in ICR mice. Arch Pharm Res 2007;30:587–95.
[12] Lee MK, Kim BC, Kim R, Oh HI, Kim HK, Choi KJ, Sung CK. Anti-obesity effects of black ginseng extract in high fat-fed mice. J Ginseng Res 2013;37:308–14.
[13] Zhang Y, Yu L, Cai W, Fan S, Feng L, Ji G, Huang C. Protopanaxatriol, a novel PPARγ antagonist from Panax ginseng, alleviates steatosis in mice. Sci Rep 2014;4.
[14] Lee YJ, Yang JY, Noh YJ, Shin JH, Park JH. Ginsenosides reduce obesity in high fat-fed mice via activation of AMPK and suppression of food intake. Diabetes 2012;61:225–34.
[15] Shin L, Yoon K, Kim MS, Lee YS. Ginseng treatment increases energy expenditure and reduces body weight, food intake, and glucose and lipid levels in diet-induced obese and diabetic rats. J Ethnopharmacol 2014;155:1342–52.
[16] Lee H, Kim H, Min SH, Yoon M. Ginseng treatment improves obesity and related disorders by inhibiting angio genesis in female db/db mice. J Ethnopharmacol 2014;155:1342–52.
Shang W, Zheng Y, Han L, Wang H, Saito M, Ling M, Kimura Y, Feng Y. Saponins (Ginsenosides) from stems and leaves of Panax quinquefolium prevented high-fat diet-induced obesity in mice. Phytotherapy Research 2008;22:1327–1333.

Liu R, Zhang J, Liu W, Kimura Y, Zhang Y. Anti-obesity effects of proto-panaxiadiol types of ginsenosides isolated from the leaves of American ginseng (Panax quinquefolium L.) in mice fed with a high-fat diet. Fitoterapia 2009;80:1079–1087.

Ko SK, Rhee HM, Cho OS, Im BO, Chung SH, Lee BY. Analysis of ginsenoside composition of ginseng berry and seed. Food Sci Biotechnol 2008;17:1379–82.

Karun N, Reifen R, Kerem Z. Weight gain reduction in mice fed Panax ginseng saponin, a pancreatic lipase inhibitor. J Agric Food Chem 2007;55:1384–93.

Jung S, Lee MS, Shin Y, Kim CT, Kim IH, Kim YS, Kim Y. Anti-obesity and anti-inflammatory effects of high hydrostatic pressure extracts of ginseng in high-fat diet-induced obese rats. J Funct Foods 2014;10:167–77.

Choi WC, Huang SF, Chan FN, Chang WC, Chang WL. Effect of ginsenosides on glucose uptake in human Caco-2 cells is mediated through altered Na+/glucose cotransporter 1 expression. J Agric Food Chem 2007;55:9178–83.

Wang CW, Su SC, Huang SF, Huang YC, Chen FN, Kuo YH, Hung MW, Lin HC, Chang WL. TC. An essential role of CAMP response element binding protein in ginsenoside Rg1-mediated inhibition of Na+/glucose cotransporter 1 gene expression. Mol Pharmacol 2015;88:1072–83.

Winder W, Hardie D. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 1999;277:E10–20.

Kim JY, Kim JS, Yuan HD, Chang SH. Fermented ginseng attenuates hepatic lipids accumulation and hyperglycemia through AMPK activation. Food Sci Biotechnol 2009;18:172–8.

Lee MS, Kim CT, Kim IH, YS, Effects of Korean Red Ginseng extract on hepatic lipid accumulation in HepG2 cells. Biosci Biotechnol Biochem 2015;79:819–26.

Quan HY, Yuan HD, Jung MS, Ko SK, Park YG, Chung SH. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet-fed mice. Int J Mol Med 2012;29:73–80.

Kim SJ, Yuan HD, Chung SH. Ginsenoside Rg1 suppresses hepatic glucose production via AMP-activated protein kinase in HepG2 cells. Biol Pharm Bull 2010;33:325–8.

Chang WC, Yuan HD, Zhang Y, Chung SH. Korean red ginseng attenuates hepatic lipid accumulation via AMPK activation in human hepatoma cells. Food Sci Biotechnol 2010;19:207–12.

Lee JH, Park SK, Han SJ, Kim SH, Hur KY, Kang ES, Ahn CW, Cha BS, Kim KS, Lee EY. Korean ginseng activates AMPK in skeletal muscle and liver. Diabetes 2007;56:PA448.

Lee S, Lee MS, Kim CT, Kim IH, YS, Ginsenoside Rg3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int J Mol Sci 2012;13:5729–39.

Chang WL, Ho YH, Huang YC, Huang SF, Lin JY, Lin HC, Chang TC. The inhibitory effect of ginsenoside Rg1 on glucose and lipid production in human HepG2 cells. Adaptive Med 2013;5:181–8.

Lee MS, Shin Y, Kim Y. Effect of the high hydrostatic pressure extract of Korean ginseng on hepatic lipid metabolism and AMP-activated protein kinase activation in HepG2 cells (1045.25). FASEB J 2014;28. 1045.1025.

Lee JH, Shin JH, Chun MS, Lee EY, Kim KS, Cho YK, Yoon JH, Chun KS, Ha J, Kim MS, Kim EJ, Lee HI, Chung KJ, Noh YH, Ro YT, Koo JH. The ginsenoside-Rb2 lowers inflammatory effects of high hydrostatic pressure extracts of ginseng in high-fat diet-induced obese rats. J Funct Foods 2014;10:167–77.

Lee OH, Lee HK, Kim JH, Lee BY. Effect of ginsenosides Rg3 and Re on glucose transport in mature 3T3-L1 adipocytes. Phytother Res 2011;25:768–73.

Park D, Yoon M, Compound K, a novel ginsenoside metabolite, inhibits adipocyte differentiation in 3T3-L1 cells. involvement of angiogenesis and MMPs. Biochem Biophys Res Commun 2012;422:263–7.

Oh J, Lee H, Park D, Ahn J, Shin SS, Yoon M. Ginseng and its active compo- nents ginsenosides inhibit adipogenesis in 3T3-L1 cells by regulating MMP-2 and MMP-9. Evid Based Complement Alternat Med 2012;2012:2856023.

Kim G, Lee H, Kim EJ, Noh YH, Ry O, Koo JH. Ginsenoside Rb2 upregulates the low density lipoprotein receptor gene expression through the activation of one sterol regulated element binding protein maceration in HepG2 cells. J Ginseng Res 2005;29:15–22.

Lee MS, Hwang JT, Sh Kim, Yoon S, Kim MS, Yang HJ, Kwon DY. Ginsenoside Rc, an active component of Panax ginseng, stimulates glucose uptake in C2C12 myotubes through an AMPK-dependent mechanism. J Ethnopharmacol 2010;127:771–86.

Lee HM, Lee OH, Kim KJ, Lee BY. Ginsenoside Rg1 promotes glucose uptake through activated AMPK pathway in insulin-resistant muscle cells. Phytomed Res 2012;26:1017–22.

Lee HJ, Yh Lee, Park SK, Kang ES, Kim HJ, Lee YH, Choi CS, Park SE, Ahn CW, Cha BS. Korean red ginseng (Panax ginseng) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long–Evans Tokushima Otsuka (LETO) rats. Metabolism 2009;58:1179–87.

Cha JY, Park EY, Kim HJ, Park SU, Nam KY, Choi JE, Jun HS. Effect of white, tareeguk, and red ginseng root extracts on insulin-stimulated glucose uptake in muscle cells and proliferation of β-cells. J Ginseng Res 2010;34:192–7.

Hwang JT, H, Lee M, Park JS, Kwon DY. Biological active components found in Panax ginseng improve glucose uptake via AMPK signaling pathway. FASEB J 2008;22:683.

Yuan HD, Huang B, Quan HY, Chung SH. Ginsenoside Rg3 (R)-Rg3 stimulates glucose uptake in C2C12 myotubes via CAMK-AMPK pathways. Food Sci Biotechnol 2010;19:1277–82.

Lee HM, Lee OH, Lee BY. Effect of ginsenoside Rg3 and Rb2 on glucose uptake in insulin-resistant muscle cells. J Korean Soc Appl Biological Chem 2010;53:129–35.

Tabahdeh MR, Jafari H, Hosseini SA, Hashemitarab M. Ginsenoside Rb1 stimulates adiponectin signaling in C2C12 muscle cells through up-regulation of AdipoR1 and AdipoR2 proteins. Pharm Biol 2015;53:125–32.

Kim MS, Park YD, Park Y, Chung SH, Hans HC, Park KS. Rg3 improves mitochondrial function and the expression of key genes involved in mitochondrial biogenesis in C2C12 myotubes. Diabetes Metab J 2016;40.

Yuan HD, Quan HY, Jung MS, Kim SJ, Huang B, Kim DY, Chung SH. Anti-diabetic effect of ginseng-processed ginseng radix (GINST) in high fat diet-fed ICR mice. J Ginseng Res 2011;35:308–14.

Song YB, An YK, Kim SJ, Park HW, Jung JW, Kyung JS, Hwang SW, Kim YS. Lipid metabolic effect of Korean ginseng extract in mice fed on a high-fat diet. Sci Food Agric 2012;92:388–96.

Kim CM, Yi SJ, Cho J, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 2013;5:4316–32.

Qi Y, Aburumi N, Din Z, Ahmad Y, Burger W, Elson C. Suppression of cholesterologenesis and reduction of LDL cholesterol by dietary ginseng and its fractions in chicken liver. Atherosclerosis 1983;48:81–94.

Kim JH, Hahn DH, Yang DC, Kim JH, Lee HJ, Shin L. Effect of crude saponin of Korean red ginseng on high-fat diet-induced obesity in the rat. J Pharmacol Sci 2005;97:124–31.

Yun SN, Moon SJ, Ko SK, Im BO, Chung SH. Wild ginseng prevents the onset of high-fat diet-induced hyperglycemia and obesity in ICR mice. Arch Pharm Res 2004;27:790–6.

Kim CM, Yi SJ, Cho J, Ku SK. Red-koji fermented red ginseng ameliorates high fat diet-induced metabolic disorders in mice. Nutrients 2013;5:4316–32.
Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Muwalla MM, Abuirmeileh NM. Suppression of avian hepatic cholesterol metabolism-related gene expression in Sprague–Dawley rats. Sci World J 2013:2013.

Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. Increased expression of PPARY in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun 2005:336:215–22.

Sanjary AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002;123:1705–25.

Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014;59:713–25.

Sanyal AJ. AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 2002;123:1705–25.