Nonacosan-10-ol and n-Alkanes in Needles of *Pinus halepensis*

Biljana Nikolić1, Marina Todosijević2, Iris Đorđević3, Jovana Stanković4, Zorica S. Mitić5, Vele Tešević2, and Petar D. Marin6

Abstract

In needle cuticular wax of *Pinus halepensis*, nonacosan-10-ol is high (77.08% on average). n-Alkanes ranged from C18 to C35 with the most dominant C27 and C29 (32.4% and 25.8%, respectively). The carbon preference index ranged from 3.2 to 5.4 (3.4 on average), while the average chain length ranged from 14.0 to 18.0 (17.2 on average). Long-chain n-alkanes strongly dominated (95.1%).

Keywords

Pinus halepensis, nonacosan-10-ol, n-alkanes, needles, waxes

Received: January 15th, 2020; Accepted: April 1st, 2020.

Introduction

Pinus halepensis Miller, also known as Aleppo pine or Jerusalem’s oren, is a 2-needle pine which belongs to family Pinaceae, genus *Pinus*, subgenus *Pinus*, section *Pinus*, subsection *Pinaster* (classification of Germandroid et al.). It is distinctly Mediterranean species which spreads from Morocco to Tunisia and Libya as well as from Spain to France, Italy, former Yugoslavia, Greece, Israel, Jordan, and Corisca. It succeeds from sea level to altitude of 1500 m (in Morocco and Algeria).

Cuticular waxes and n-alkanes have often been studied in trees and herbaceous plants. They are also used in chemosystematic and phylogenetic studies, hybrid detection, etc. Cuticular waxes and n-alkanes of various *Pinus* species have already been investigated, sometimes on population level (in case of *Pinus heldreichii*, *Pinus pinea*, *Pinus nigra*, etc.). Other authors have already reported that pine epicuticular waxes have tube crystalloids and that nonacosan-10 is the main component of epicuticular wax components.

The aim of this study is to examine for the first time amount of nonacosan-10-ol and n-alkane profile of *P. halepensis* in needle cuticular waxes. Besides that, the chemotaxonomy of section *Pinus* was done by comparing our results of *P. halepensis* with other pines of section *Pinus*.

Results and Discussion

Nonacosan-10-ol content of *P. halepensis* is a little bit smaller in spring needles (76.7%) than in autumn needles (77.4%). In average, nonacosan-10-ol is higher (77.1%) than in wax of other species of subsection *Pinaster* (*P. heldreichii*, Bosnian pine, up to 73.2%, 55.5% on average). n-Alkane profile of spring needles of *P. halepensis* is C27, C29, and C23 while autumn needles are abundant in C29, C27, and C31 (Figure 1). On the species level, n-alkanes ranged from C18 to C35 with the most dominant C27 and C29 (32.4% and 25.8%, respectively) (Figure 1, Table 1). In *P. heldreichii*, this range is C18 to C33 with the most dominant C23.

The carbon preference index (CPItotal) was much higher in spring than in autumn (Table 1). Mean values of CPItotal ranged from 3.2 to 5.4 (3.4 on average) (Table 1), while in *P. heldreichii*, it ranged from 0.8 to 3.1 (1.6 on average). Almost all CPIs (from Table 1), exhibited odd/even predominance (OEP) (because CPI >1 indicates OEP, CPI <1 denotes OEP). The average chain length (ACLtotal) was much higher in autumn than in spring needles (Table 1). Mean ACLtotal ranged from 14.0 to 18.0 (17.2 on average). Long-chain n-alkanes strongly dominated (95.1%). In *P. heldreichii*, it ranged from
from 20.9 to 26.5 (24.4 on average) and long-chain \(n\)-alkanes did not strongly dominate (mid-chain: 37.9\%, long-chain: 49.6\%).

Experimental

Plant Material

Twigs with needles from the lowest third of the full tree crown were collected in spring and autumn 2015 from Croatia, Island Korčula. The collected twigs were stored at –20°C prior to further needle analyses.

Extraction of Needle Wax for the Investigation of the Nonacosan-10-ol Content

A concentrated sample of epicuticular wax was collected from each tree by immersing 3 g of needles in 10 mL of \(n\)-hexane (high-performance liquid chromatography grade; Merck, Darmstadt) for 45 seconds. The samples were then dried under vacuum at 60°C, and aliquots of 1 mL of these samples were used to determine the nonacosan-10-ol content by gas chromatography (GC)–mass spectrometry (MS) analysis (Figure 2).

Extraction of Needle Wax for the Investigation of the \(n\)-Alkanes

The concentrated extracts, obtained as described above, were chromatographed on small-scale columns using a Pasteur pipette filled with silica gel 60 (SiO\(_2\), 0.2–0.5 mm; Merck) previously activated at –20°C. The wax samples were obtained by elution with 5 mL of hexane and stored at –20°C until further analysis.

Table 1. Variability of the Most Abundant \(n\)-Alkanes, CPIs, ACLs, and Relative Proportions of Short, Mid, and Long-Chain \(n\)-Alkanes in the Needle Wax of \(P\). halepensis

Range	Mean	CPI\(_{25-33}\)	CPI\(_{20-36}\)	CPI\(_{15-21}\)	CPI\(_{25-31}\)	ACL\(_{23-35}\)	Short-chain	Mid-chain	Long-chain		
18-35	29.3	8.03	10.21	10.12	5.17	3.84	23.46	1.09	0.0-2.2	0.6	0.1-3.1
Mean	29.9	8.27	10.26	10.09	5.23	3.90	23.67	1.2	0.0-2.2	0.6	0.1-3.1

CPI, carbon preference index; ACL, average chain length.

- CPI\(_{25-33}\) = \(\sum\) (C\(_{25-33}\)odd)/\(\sum\) (C\(_{24-32}\)even + C\(_{25-33}\)odd)/2.
- CPI\(_{20-36}\) = \(\sum\) (C\(_{20-36}\)odd)/\(\sum\) (C\(_{19-34}\)even + C\(_{20-36}\)odd)/2.
- CPI\(_{15-21}\) = \(\sum\) (C\(_{15-21}\)odd)/\(\sum\) (C\(_{14-20}\)even + C\(_{15-21}\)odd)/2.
- CPI\(_{25-31}\) = \(\sum\) (C\(_{25-31}\)odd)/\(\sum\) (C\(_{24-29}\)even + C\(_{26-31}\)odd)/2.
- ACL\(_{23-35}\) = \(\sum\) (C\(_{23-35}\)) \times n/\(\sum\) C\(_{23-35}\).

Relative proportions (%) of short, mid, and long-chain \(n\)-alkanes, respectively, calculated according to Mazurek and Simoneit and expressed as percentage of the total \(n\)-alkanes (C\(_{18-35}\)).

Figure 1. Profile of \(n\)-alkanes (in percentage) of \(P\). halepensis needle waxes.
GC and GC-MS Analyses of Needle Wax

GC and GC-MS analyses were performed using an Agilent 7890A GC equipped with an inert 5975C XL EI/CI mass selective detector and flame ionization detector (FID) connected by capillary flow technology 2-way splitter with make-up. An HP-5MS capillary column (30 m × 0.25 mm × 0.25 μm) was used. The GC oven temperature was programmed from 60°C to 315°C at a rate of 3°C/min and held for 15 minutes. Helium was used as the carrier gas at 16.255 psi (constant pressure mode). An auto-injection system (Agilent 7683B Series Injector) was employed to inject 1 µL of the sample. The sample was analyzed in the splitless mode. The injector and the detector temperature was 300°C. MS data were acquired in the EI mode with scan range 30-550 m/z, source temperature 230°C, and quadrupole temperature 150°C; the solvent delay was 3 minutes (Figure 3).

Identification of Needle Wax Components

The components were identified based on their retention indices and comparison with reference spectra (Wiley and NIST databases) as well as by the retention time locking (RTL) method and the RTL Adams database. The retention indices were experimentally determined using the standard method of Van Den Dool and Kratz involving retention times of n-alkanes, injected after the sample under the same chromatographic conditions. The relative abundance of the n-alkanes was calculated from the signal intensities of the homologs in the GC-FID traces.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by Grants No. 173029, 173021 and 172053 by the Ministry of Education, Science and Technological Development of the Republic of Serbia. Authors are grateful to Dr Dragan Kovačević from Serbia and Ing. Milan Vojinović from Croatia, who collected plant material.
References

1. Gernandt DS, López GG, García SQ, Liston A, García López G, Ortiz García S. Phylogeny and classification of Pinus. Taxon. 2005;54(1):29-42. doi:10.2307/25065300

2. Vidaković M. Crétajuš Morfološka i varijabilnost. Zagreb: JAZU i Sveučilišna naklada Liber; 1982:710.

3. Maffei M, Badino S, Bossi S. Chemotaxonomic significance of leaf wax n-alkanes in the Pinales (Coniferales). J. Biol. Res. 2004;1:3-19.

4. Herbin GA, Robins PA. Studies on plant cuticular waxes – II. Alkanes from members of the genus Agave (Agavaceae), the genera Kalanchoe, Esbeveria, Crassula and Sedum (Crassulaceae) and the genus Eucalyptus (Myrtaceae) with an examination of Hutchinson’s sub-division of the Angiospermo into Herbacea and Lignosae. Phytochemistry. 1968a;7(2):267-268.

5. Herbin GA, Robins PA. Studies on plant cuticular waxes—III. The leaf wax alkanes and ω-hydroxy acids of some members of the Cupressaceae and Pinaceae. Phytochemistry. 1968b;7(8):1325-1337. doi:10.1016/S0031-9422(00)80563-3

6. Tin W, Vasek FC, Scora RW. Analysis of n-alkanes from three species of Clarkia. Am J Bot. 1971;58(3):255-256. doi:10.1002/j. 1537-2197.1971.tb09970.x

7. Cameron KD, Tecce MA, Bevilacqua E, Smart LB, Lawrence B. Diversity of cuticular wax among Salix species and Populus species hybrids. Phytochemistry. 2002;60(7):715-725. doi:10.1016/S0031-9422(02)00198-X

8. Tulloch AP, Berger L. Epicuticular wax of Juniperus scopulorum. Phytochemistry. 1981;20(12):2711-2716. doi:10.1016/0031-9422(81)85274-0

9. Stevens JF, Hart H, Block A, Zwaving JH, Malingre TM. Epicuticular wax composition of some European Sedum species. Phytochemistry. 1994;35(2):389-399. doi:10.1016/S0031-9422(90)94770-8

10. Maffei M. Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochem Syst Ecol. 1994;22(7):711-728. doi:10.1016/0305-1978(94)90057-4

11. Cape J, Fowler D. Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fenn. 1981;15(4):457-458. doi:10.14214/sfai15373

12. Burkhardt J, Peters K, Crossley A. The presence of structural surface waxes on coniferous needles affects the pattern of dry deposition of fine particles. J Exp Bot. 1995;46(7):823-831. doi:10.1093/jxb/46.7.823

13. Nikolić B, Tešević V, Đorđević I, et al. N-Alkanes in needle waxes of Pinus heldreichii var. pančići. J. Serb. Chem. Soc. 2010;75(10):1337-1346. doi:10.2298/JSC100322089N

14. Nikolić B, Todosijević M, Ratknić M, et al. Terpenes and n-alkanes in needles of Pinus sylvestris. Nat Prod Commun. 2018;13(8):1934578X1801300-1037. doi:10.1177/1934578X1801300828

15. Nikolić B, Tešević V, Đorđević I, et al. Chemodiversity of nonacosan-10-ol and n-alkanes in the needle wax of Pinus heldreichii. Chem Biodivers. 2012;9(1):80-90. doi:10.1002/cbdv.201100179

16. Nikolić B, Tešević V, Đorđević I, et al. Population variability of nonacosan-10-ol and n-alkanes in needle cuticular waxes of Macedonian pine (Pinus peuce Griseb.). Chem Biodivers. 2012;9(6):1155-1165. doi:10.1002/cbdv.201100316

17. Bojović S, Sarac Z, Nikolić B, et al. Composition of n-alkanes in natural populations of Pinus nigra from Serbia - chemotaxonomic implications. Chem Biodivers. 2012;9(12):2761-2774. doi:10.1002/cbdv.201200051

18. Mićić ZS, Zlatković BK, Jovanović SC, et al. Diversity of needle n-alkanes, primary alcohols and diterpenes in Balkan and Carpathian native populations of Pinus nigra J.F. Arnold. Biochem Syst Ecol. 2018;80:46-54. doi:10.1016/j.bse.2018.06.005

19. Nikolić B, Tešević V, Đorđević I, et al. N-Alkanes in needle waxes of Pinus heldreichii var. pančići. J Serb Chem Soc. 2010;75(10):1337-1346. doi:10.2298/JSC100322089N

20. Domnisse A, Wirtz J, Koch K, Barthlott W, Kolter T, et al. Synthesis of (3S)-Nonacosan-10-ol, the Major Component of Tubular Plant Wax Crystals. European J Org Chem. 2007;2007(21):3508-3511. doi:10.1002/ejoc.200700262

21. Matas AJ, Sanz MJ, Heredia A. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Int J Biol Macromol. 2003;33(1-3):31-35. doi:10.1016/S0141-8130(03)00061-8

22. Mazurek MA, Simonite BRT. Molecular Markers in Environmental Geochemistry. In: Eganhouse RP, ed. ACS Symposium Series 671. 92. Washington DC: American Chemical Society; 1997.

23. Sonibare MA, Jayeola AA, Egunyomi A. Chemotaxonomic significance of leaf alkanes in species of Ficus (Moraceae). Biochem Syst Ecol. 2005;33(1):79-86. doi:10.1016/j.bse.2004.05.010

24. Poynter J, EGLINTON G. Molecular composition of three sediments from Hole 717C: the Bengal Fan. 1990, Proceedings of the Ocean Drilling Program, Scientific Results. In: Cochran JR, Stow DAV, eds. College Station TX (Ocean Drilling Program, Scientific Results. In: Cochran JR, Stow DAV, eds. College Station TX (Ocean Drilling Program, Sci Repts. 1990), 204-2002.

25. Kuhn TK, Krull ES, Bowater A, Grice K, Gleixner G. The occurrence of short chain n-alkanes with an even over odd predominance in higher plants and soils. Org Geochim. 2010;41(2):88-95. doi:10.1016/j.orggeochem.2009.08.003

26. Mimura MR, Salatino MLF, Salatino A, Baumgratz JFA. Alkanes from foliar epicuticular waxes of Huberia species: taxonomic implications. Biochem Syst Ecol. 1998;26(5):581-588. doi:10.1016/S0305-1978(97)00131-2

27. Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr. 1963;11:463-471. doi:10.1016/S0021-9673(01)80947-X