Computer Aided Design of Civil Structures – Topology Optimization in Statics and Dynamics

R Peter
Vienna University of Technology, Karlsplatz 13/E2063, A-1040 Vienna, Austria

*peter.rosko@tuwien.ac.at

Abstract. The objective of the paper is structural topology optimization in statics and dynamics. The topology is defined on the base of the material distribution in elements of the structure. The optimal topology design is defined as an optimization problem. The objective is the maximum stiffness of the structure in statics and maximal natural frequency in dynamics of the structure. The constraints of the optimization problem are related to the mass of the structure and to the loading and boundary conditions of the structure. The evolutionary method - genetic algorithm is applied for optimization problem solution. Examples on optimal topology of structures in statics and dynamics are presented. The obtained results are comparable with results based on experience of civil engineers. The structural topology optimization does not use experience from structural evolution and it is applicable for design of new structures – prototypes.

1. Introduction
The aim of engineer design is a structure which optimally satisfies all technical, economical and manufacturing requirements. Topology optimization of structures is a relatively new field of research. The concept for topology optimization was proposed by M.P. Bendsøe and N. Kikuchi in 1988 [1]. The interest of scientific community was great from the beginning and persists to this day. It is surprising when the computer - a machine, can do the same design of structure which resembles the design of engineers after centuries of experience. By new types of structures with special loading cases often absents the experience of engineers. This is the reason to use the topology optimization of the structure. Intensive research in the last decades resulted effectively optimized topologies of structures applied in practice.

Most of the problems of the optimal topology were solved in linear statics. Scientific discussions on structural optimization and requirements formulated by the practice are motivation to invest research work into the field of optimal topology of civil structures.

2. Methods
The structural optimization can be distinguished into three levels: dimension optimization, shape optimization and topology optimization (includes material optimization). The order of levels reflects the historical development. The reverse order corresponds with the sequence applied in practice-oriented design.
2.1. Optimization procedures
The optimal topology design is defined as an optimization problem. The optimization methods serve as a tool to minimize or maximize the objective function(s) satisfying the prescribed constraints. The optimization is generally an iterative process. The appropriate optimization method depends on mathematical properties of the objective and constraint functions. Generally, two groups of methods are available:

The first group of methods is the group of gradient based methods. Very intensive research of mathematical programming started in sixties. The researchers often use the Svanberg’s Method of Moving Asymptotes (MMA) from [2] very successfully.

The second group contents evolutionary algorithms (e.g. GA - genetic algorithm [3]), does not need any special properties of objective functions. This is the advantage. The disadvantage is that optimization process is more expensive. The powerful hardware enables successfully to use evolutionary procedures in the last years.

2.2. Dimension optimization
Designers commonly do the dimension optimization of structures in statics step by step. The dimension optimization can be automated using mathematical programming methods and evolutionary procedures.

2.3. Shape optimization
The expansion of the shape optimization occurred when the discretization methods in mechanics reached a sufficient level of development. The shape optimization is the most frequently applied on the finite element model of the structure.

2.4. Topology optimization
Last decades the optimal topology replaces the experience gained during many years. Nowadays is the topology optimization a modern tool for design of new types of structures.

Topology does not have a long history. Key works in the short history of the structural topology optimization have been done by M.P. Bendsøe and N. Kikuchi [1], G.I.N. Rozvany [4] and O. Sigmund [5]. Although the excellent work of other scientists is acknowledged. The best overview of the topology optimization can be found in the papers of H.A. Eschenauer and N. Olhoff [6], G.I.N. Rozvany [7], M.P. Bendsøe, E. Lund, N. Olhoff and O. Sigmund [8] and in the books from M.P. Bendsøe [9], M.P. Bendsøe and O. Sigmund [10]. The first applications of the optimal topology of structures were realized in statics. The model of the structure was established on the base of the finite element method. Recently the topology optimization has been extended in probability design, dynamics and other fields of physics [11].

3. Results and Discussion
The topology is defined on the base of the material distribution in elements of the structure usually with help of material density \( \rho \). An important issue in the model problem is the relation between density and stiffness. In the so-called SIMP-model [8] is the stiffness proportional to density in the power \( p \) where \( p > 1 \).

3.1. Mathematical problem definition
Typical topology problem definition in statics is as follows:

Optimization problem formulation for maximum stiffness (= min compliance):

\[
\min_{\rho} C(\rho)
\]
\[
\sum_{e=1}^{N} v_e \rho_e \leq V, \quad 0 < \rho_{\text{min}} \leq \rho_e \leq 1, \quad e = 1, \ldots, N
\] (2)

\[
C(\rho) = f^T u
\] (3)

\[
K(\rho) u = f
\] (4)

\[
K(\rho) = \sum_{e=1}^{N} \rho_e^p K_e
\] (5)

with

\[
\rho \quad \text{density,} \quad V \quad \text{volume,} \quad K \quad \text{stiffness matrix of the structure,} \quad K_e \quad \text{global stiffness matrix of element } e, \quad u \quad \text{displacements,} \quad f \quad \text{loading-forces, with stochastic loading} \quad f_j = f_j(d_j) \quad \text{where} \quad d_j \quad \text{Gauss deviation is.}
\]

The main task in dynamics of structures is to leave the resonance interval. This problem occurs in design of structures by earthquake excitation, wind excitation and machine excitation. This leads to optimization problem formulation for maximum natural frequency:

\[
\max_{\rho} \left\{ \omega_1 = \omega_{\text{min}} \right\}
\] (6)

\[
(K(\rho) - \omega_i^2 M) \Phi_i = 0, \quad i = 1, \ldots, N \quad \text{where} \quad K(\rho) = \sum_{e=1}^{N} \rho_e^p K_e
\] (7)

\[
\sum_{e=1}^{N} v_e \rho_e \leq V, \quad 0 < \rho_{\text{min}} \leq \rho_e \leq 1, \quad e = 1, \ldots, N
\] (8)

with

\[
\omega_i \quad \text{natural frequency,} \quad \Phi_i \quad i \quad \text{modes}
\]

The topology optimization problem of minimizing the dynamic compliance subject to periodic forces is defined as follows:

\[
\min_{\rho} \quad C(\rho) = (f^T u)^2
\] (9)

\[
(K(\rho) - \Omega_j^2 M) u = f_j \quad \text{where} \quad K(\rho) = \sum_{e=1}^{N} \rho_e^p K_e
\] (10)

\[
\sum_{e=1}^{N} v_e \rho_e \leq V, \quad 0 < \rho_{\text{min}} \leq \rho_e \leq 1, \quad e = 1, \ldots, N
\] (11)

The force \( f_j = f_j(\Omega_j, \bar{m}_j, d_j) \) is weighted function of frequency \( \Omega_j \), \( \bar{m}_j \) and Gauss deviation.

The probability based constraint in this case is included in the problem definition.
3.2. Methods of solution
The structures are modelled on the base of finite element method. The finite element mesh is regular and fine. Density of material is defined as variable for each finite element. The initial area has simple geometry and allows wide variability of solutions. The mass is in the initial area constantly distributed (constant density). The genetic algorithm [3] is used for the optimization problem (see chapter 3.1.).

3.3. Examples-Results

3.3.1. Structural optimization in statics: Bridge example

![Figure 1](image1.png)

**Figure 1.** Initial structure: down: 3 supports, top: uniformly distributed load.

![Figure 2](image2.png)

**Figure 2.** Result: Optimal density distribution – max. stiffness.

The initial plane structure is supported by three supports at the bottom. The loading on the top is uniformly distributed – see figure 1. The optimization problem formulation is given in (1) - (5). The resulting image shows the mass distribution for the maximum stiffness – see figure 2.
3.3.2. Structural optimization in statics: Cantilever example

The initial plane structure is supported on the left side. The Gauss-distributed load is located at the bottom on the right side – see figure 3. The optimization problem formulation is given in (1) - (5). The resulting image shows the mass distribution for the maximum stiffness – see Figure 4.

3.3.3. Structural optimization in dynamics: Plate example in dynamics.

The initial plane structure is supported on the left side. The Gauss-distributed load is located at the bottom on the right side – see figure 3. The optimization problem formulation is given in (1) - (5). The resulting image shows the mass distribution for the maximum stiffness – see Figure 4.

Figure 3. Initial structure: left supported down: vertical load distribution.  
Figure 4. Result: Optimal density distribution- max. stiffness

Figure 5. Initial structure, constant material distribution.  
Figure 6. Result: Optimal density- max. Natural frequency.
The plate shown in plan view with line supports is loaded by vertical uniformly distributed dead load – see figure 5. The optimization problem formulation is given in (6) - (8). The result of the optimization procedure: optimal mass distribution for maximum natural frequency is shown in Figure 6.

All results are compatible with previous research and agree with results published in [8], [9] and [10].

4. Conclusions
The paper provides the overview in the research area and presents examples on optimal topology of structures in statics and dynamics. The topology design of structures is defined as mathematic problem. The problem definitions are stated. Results of the examples represent the solution of material distribution of optimal designed structures. The results of simple examples are comparable with results of designer’s experiences. The structural topology optimization does not use experience from structural evolution and it is applicable for design of new structures – prototypes.

References
[1] Bendsøe M P and Kikuchi N 1988 Generating optimal topologies in structural design using a homogenization method Computer Methods in Applied Mechanics and Engineering 71 (2) pp 197-224
[2] Svanberg K 1987 The method of moving asymptotes – A new method for structural optimization International Journal for numerical Methods in Engineering 24 pp 359-373
[3] Goldberg D E 1989 Genetic algorithms in search, optimization and machine learning, (New York: Addison Wesley Publishing Company)
[4] Rozvany G I N, Zhou M and Birker T 1992 Generalized shape optimization without homogenization Structural optimization 4 pp 250-252
[5] Sigmund O 1994 Design of material structures using topology optimization PhD thesis (Lyngby: Department of Solid Mechanics Technical University of Denemark), DCAMM Special Report No. S69
[6] Eschenauer H A and Olhoff N 2001 Topology optimization of continuum structures: A review Appl Mech Rev 54 (4) pp 331-390
[7] Rozvany G I N 2001 Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics, Structural and Multidisciplinary Optimization 21 pp 90-108
[8] Bendsøe M P, Lund E, Olhoff N and Sigmund O 2005 Topology optimization – broadening the areas of application Control and Cybernetics 34 (1) pp 7-35
[9] Bendsøe M P and Sigmund O 2004 Topology optimization, Theory, Methods and Applications, (Berlin Heidelberg: Springer Verlag)
[10] Bendsøe M P 1995 Optimization of Structural Topology, Shape and Material, (Berlin Heidelberg: Springer Verlag)
[11] Maute K and Fragopol D M 2003 Reliability-based design of MEMS mechanismus by topology optimization Computers & Structures 81 pp 813-824