On the binomial edge ideals of block graphs

Faryal Chaudhry, Ahmet Dokuyucu, Rida Irfan

Abstract

We find a class of block graphs whose binomial edge ideals have minimal regularity. As a consequence, we characterize the trees whose binomial edge ideals have minimal regularity. Also, we show that the binomial edge ideal of a block graph has the same depth as its initial ideal.

1 Introduction

In this paper we study homological properties of some classes of binomial edge ideals.

Let G be a simple graph on the vertex set $[n]$ and let $S = K[x_1, \ldots, x_n, y_1, \ldots, y_n]$ be the polynomial ring in $2n$ variables over a field K. For $1 \leq i < j \leq n$, we set $f_{ij} = x_i y_j - x_j y_i$. The binomial edge ideal of G is defined as $J_G = \langle f_{ij} : \{i, j\} \in E(G) \rangle$. Binomial edge ideals were introduced in [8] and [12]. Algebraic and homological properties of binomial edge ideals have been studied in several papers. In [5], it was conjectured that J_G and $\text{in}_<(J_G)$ have the same extremal Betti numbers. Here $<$ denotes the lexicographic order in S induced by $x_1 > x_2 > \cdots > x_n > y_1 > y_2 > \cdots > y_n$. This conjecture was proved in [3] for cycles and complete bipartite graphs. In [6], it was shown that, for a closed graph G, J_G and $\text{in}_<(J_G)$ have the same regularity which can be expressed in the combinatorial data of the graph. We recall that a graph G is closed if and only if it has a quadratic Gröbner basis with respect to the lexicographic order.
In support of the conjecture given in [5], we show, in Section 3, that if \(G \) is a block graph, then \(\text{depth}(S/J_G) = \text{depth}(S/\text{in}_< (J_G)) \); see Theorem 3.2. By a block graph we mean a chordal graph \(G \) with the property that any two maximal cliques of \(G \) intersect in at most one vertex.

Also, in the same section, we show a similar equality for regularity. More precisely, in Theorem 3.4 we show that \(\text{reg}(S/J_G) = \text{reg}(S/\text{in}_< (J_G)) = \ell \) if \(G \) is a \(C_\ell \)-graph. \(C_\ell \)-graphs constitute a subclass of the block graphs; see Section 3 for definition and Figure 1 for an example.

In [10] it was shown that, for any connected graph \(G \) on the vertex set \([n]\), we have
\[
\ell \leq \text{reg}(S/J_G) \leq n - 1,
\]
where \(\ell \) is the length of the longest induced path of \(G \).

The main motivation of our work was to answer the following question. May we characterize the connected graphs \(G \) whose longest induced path has length \(\ell \) and \(\text{reg}(S/J_G) = \ell \)? We succeeded to answer this question for trees. In Theorem 4.1, we show that if \(T \) is a tree whose longest induced path has length \(\ell \), then \(\text{reg}(S/J_T) = \ell \) if and only if \(T \) is caterpillar. A caterpillar tree is a tree \(T \) with the property that it contains a path \(P \) such that any vertex of \(T \) is either a vertex of \(P \) or it is adjacent to a vertex of \(P \).

In [11], the so-called weakly closed graphs were introduced. This is a class of graphs which includes closed graphs. In the same paper, it was shown that a tree is caterpillar if and only if it is a weakly closed graph. Having in mind our Theorem 4.1 and Theorem 3.2 in [6] which states that \(\text{reg}(S/J_G) = \ell \) if \(G \) is a connected closed graph whose longest induced path has length \(\ell \), and by some computer experiments, we are tempted to formulate the following.

Conjecture 1.1. If \(G \) is a connected weakly closed graph whose longest induced path has length \(\ell \), then \(\text{reg}(S/J_G) = \ell \).

2 Preliminaries

In this section we introduce the notation used in this paper and summarize a few results on binomial edge ideals.

Let \(G \) be a simple graph on the vertex set \([n] = \{1, \ldots, n\} \), that is, \(G \) has no loops and no multiple edges. Furthermore, let \(K \) be a field and \(S = K[x_1, \ldots, x_n, y_1, \ldots, y_n] \) be the polynomial ring in \(2n \) variables. For \(1 \leq i < j \leq n \), we set \(f_{ij} = x_i y_j - x_j y_i \). The binomial edge ideal \(J_G \subset S \) associated with \(G \) is generated by all the quadratic binomials \(f_{ij} = x_i y_j - x_j y_i \) such that \(\{i, j\} \in E(G) \). Binomial edge ideals were introduced in the papers [8] and [12].

We first recall some basic definitions from graph theory. A vertex \(i \) of \(G \) whose deletion from the graph gives a graph with more connected components
than G is called a cut point of G. A chordal graph is a graph without cycles of length greater than or equal to 4. A clique of a graph G is a complete subgraph of G. The cliques of a graph G form a simplicial complex, Δ(G), which is called the clique complex of G. Its facets are the maximal cliques of G. A graph G is a block graph if and only if it is chordal and every two maximal cliques have at most one vertex in common. This class was considered in [5, Theorem 1.1].

The clique complex Δ(G) of a chordal graph G has the property that there exists a leaf order on its facets. This means that the facets of Δ(G) may be ordered as F₁, ..., Fₙ such that, for every i > 1, Fᵢ is a leaf of the simplicial complex generated by F₁, ..., Fᵢ₋¹. A leaf F of a simplicial complex Δ is a facet of Δ with the property that there exists another facet of Δ, say G, such that, for every facet H ≠ F of Δ, H ∩ F ⊆ G ∩ F.

Let < be the lexicographic order on S induced by the natural order of the variables. As it was shown in [8, Theorem 2.1], the Gröbner basis of J₆ with respect to this order may be given in terms of the admissible paths of G. We recall the definition of admissible paths from [8].

Definition 2.1. [8] Let i < j be two vertices of G. A path i = i₀, i₁, ..., iᵣ = j from i to j is called admissible if the following conditions are fulfilled:

1. iₖ ≠ iᵢ for k ≠ l;
2. for each k = 1, ..., r - 1 on has either iₖ < i or iₖ > j;
3. for any proper subset {j₁, ..., jₛ} of {i₁, ..., iᵣ₋₁}, the sequence i, j₁, ..., jₛ, j is not a path in G.

Given an admissible path π in G from i to j, we set uₚ = (∏ᵢₖ>j xᵢₖ)(∏ᵢᵢ<i yᵢᵢ).

By [8, Theorem 2.1], it follows that

\[\text{in}_<(J₆) = (uₚ xᵢ yⱼ : i < j, \text{π is an admissible path from } i \text{ to } j). \]

In particular, \(\text{in}_{<}(J₆) \) is a radical monomial ideal which implies that the binomial edge ideal \(J₆ \) is radical as well. Hence \(J₆ \) is equal to the intersection of all its minimal prime ideals. The minimal prime ideals were determined in [8, Section 3] in terms of the combinatorial data of the graph.

3 Initial ideals of binomial edge ideals of block graphs

In this section, we first show that, for a block graph G on \([n]\) with \(c\) connected components, we have depth(\(S/J₆\)) = depth(\(S/\text{in}_{<}(J₆)\)) = n + c, where <
denotes the lexicographic order induced by \(x_1 > \cdots > x_n > y_1 > \cdots > y_n \) in the ring \(S = K[x_1, \ldots, x_n, y_1, \ldots, y_n] \).

We begin with the following lemma.

Lemma 3.1. Let \(G \) be a graph on the vertex set \([n]\) and let \(i \in [n] \). Then
\[
\in_{\prec}(J_G, x_i, y_i) = (\in_{\prec}(J_G), x_i, y_i).
\]

Proof. We have \(\in_{\prec}(J_G, x_i, y_i) = \in_{\prec}(J_{G\setminus\{i\}}, x_i, y_i) = (\in_{\prec}(J_{G\setminus\{i\}}), x_i, y_i) \). Therefore, we have to show that \((\in_{\prec}(J_G), x_i, y_i) = (\in_{\prec}(J_{G\setminus\{i\}}), x_i, y_i)\). The inclusion \(\supseteq \) is obvious since \(J_{G\setminus\{i\}} \subset J_G \). For the other inclusion, let us take \(u \) to be a minimal generator of \(\in_{\prec}(J_G) \). If \(x_i \mid u \) or \(y_i \mid u \), obviously \(u \in (\in_{\prec}(J_{G\setminus\{i\}}), x_i, y_i) \). Let now \(x_i \notin u \) and \(y_i \notin u \). This means that \(u = u_x x_i y_i \) for some admissible path \(\pi \) from \(k \) to \(l \) which does not contain the vertex \(i \). Then it follows that \(\pi \) is a path from \(k \) to \(l \) in \(G\setminus\{i\} \), hence \(u \in \in_{\prec}(J_{G\setminus\{i\}}) \). \(\square \)

Theorem 3.2. Let \(G \) be a block graph. Then
\[
\text{depth}(S/J_G) = \text{depth}(S/\in_{\prec}(J_G)) = n + c,
\]
where \(c \) is the number of connected component of \(G \).

Proof. Let \(G_1, \ldots, G_c \) be the connected components of \(G \) and \(S_i = K[x_j, y_j]_{j \in G_i} \). Then \(S/J_G \cong S_1/J_{G_1} \otimes \cdots \otimes S_c/J_{G_c} \), so that
\[
\text{depth } S/J_G = \text{depth } S_1/J_{G_1} + \cdots + \text{depth } S_c/J_{G_c}.
\]

Moreover, we have \(S/\in_{\prec}(J_G) \cong S/\in_{\prec}(J_{G_1}) \otimes \cdots \otimes S/\in_{\prec}(J_{G_c}) \), thus
\[
\text{depth } S/\in_{\prec}(J_G) = \text{depth } S_1/\in_{\prec}(J_{G_1}) + \cdots + \text{depth } S_c/\in_{\prec}(J_{G_c}).
\]

Hence, without loss of generality, we may assume that \(G \) is connected. By [5, Theorem 1.1] we know that \(\text{depth}(S/J_G) = n + 1 \). In order to show that \(\text{depth}(S/\in_{\prec}(J_G)) = n + 1 \), we proceed by induction on the number of maximal cliques of \(G \). Let \(\Delta(G) \) be the clique complex of \(G \) and let \(F_1, \ldots, F_r \) be a leaf order on the facets of \(\Delta(G) \). If \(r = 1 \), then \(G \) is a simplex and the statement is well known. Let \(r > 1 \); since \(F_r \) is a leaf, there exists a unique vertex, say \(i \in F_r \), such that \(F_r \cap F_j = \{i\} \) for \(F_j \) is a branch of \(F_r \). Let \(F_{i_1}, \ldots, F_{i_q} \) be the facets of \(\Delta(G) \) which intersect the leaf \(F_r \) in the vertex \(\{i\} \). Following the proof of [5, Theorem 1.1] we may write \(J_G = J_1 \cap J_2 \) where \(J_1 = \bigcap_{s \in S} P_s(G) \) and \(J_2 = \bigcap_{l \in S} P_{F_l}(G) \). Then, as it was shown in the proof of [5, Theorem 1.1], it follows that \(J_1 = J_G' \) where \(G' \) is obtained from \(G \) by replacing the cliques \(F_1, \ldots, F_{i_q} \) and \(F_r \) by the clique on the vertex set \(F_r \cup (\bigcup_{j=1}^q F_{i_j}) \). Also, \(J_2 = (x_i, y_i) + J_{G''} \) where \(G'' \) is the restriction of \(G \) to the vertex set \([n] \setminus \{i\} \).
We have \(\text{in}_< (J_G) = \text{in}_< (J_1 \cap J_2) \). By [1, Lemma 1.3], we have \(\text{in}_< (J_1 \cap J_2) = \text{in}_< (J_1) \cup \text{in}_< (J_2) \) if and only if \(\text{in}_< (J_1 + J_2) = \text{in}_< (J_1) + \text{in}_< (J_2) \). But \(\text{in}_< (J_1 + J_2) = \text{in}_< (J_G') + (x_i, y_i) + \text{in}_< (J_G'') = \text{in}_< (J_G') + (x_i, y_i) \). Hence, by Lemma 3.1, we get \(\text{in}_< (J_1 + J_2) = \text{in}_< (J_G') + (x_i, y_i) = \text{in}_< (J_1) + \text{in}_< (J_2) \). Therefore, we get \(\text{in}_< (J_G) = \text{in}_< (J_1) \cap \text{in}_< (J_2) \) and, consequently, we have the following exact sequence of \(S \)-modules

\[
0 \rightarrow \frac{S}{\text{in}_< (J_G)} \rightarrow \frac{S}{\text{in}_< (J_1)} \oplus \frac{S}{\text{in}_< (J_2)} \rightarrow \frac{S}{\text{in}_< (J_1 + J_2)} \rightarrow 0.
\]

By using again Lemma 3.1, we have \(\text{in}_< (J_2) = \text{in}_< ((x_i, y_i), J_G'') = (x_i, y_i) + \text{in}_< (J_G'') \). Thus, we have actually the following exact sequence

\[
0 \rightarrow \frac{S}{\text{in}_< (J_G)} \rightarrow \frac{S}{\text{in}_< (J_G')} \oplus (x_i, y_i) + \text{in}_< (J_G'') \rightarrow \frac{S}{\text{in}_< (J_1 + J_2)} \rightarrow 0.
\]

(1)

Since \(G' \) inherits the properties of \(G \) and has a smaller number of maximal cliques than \(G \), it follows, by the inductive hypothesis, that

\[
\text{depth}(S/J_G') = \text{depth}(S/\text{in}_< (J_G')) = n + 1.
\]

Let \(S_i \) be the polynomial ring \(S/(x_i, y_i) \). Then \(S/((x_i, y_i) + \text{in}_< (J_G'')) \cong S_i/\text{in}_< (J_G'') \). Since \(G'' \) is a graph on \(n - 1 \) vertices with \(q + 1 \) connected components and satisfies our conditions, the inductive hypothesis implies that \(\text{depth} S/((x_i, y_i) + \text{in}_< (J_G'')) = n + q \geq n + 1 \). Hence,

\[
\text{depth}(S/\text{in}_< (J_G') \oplus S/((x_i, y_i) + \text{in}_< (J_G''))) = n + 1.
\]

Next, we observe that \(S/((x_i, y_i) + \text{in}_< (J_G'')) \cong S_i/\text{in}_< (J_H) \), where \(H \) is obtained from \(G' \) by replacing the clique on the vertex set \(F_r \cup (\bigcup_{j=1}^r F_r) \setminus \{i\} \) by the clique on the vertex set \(F_r \cup (\bigcup_{j=1}^r F_r) \setminus \{i\} \). Hence, by the inductive hypothesis, \(\text{depth} S/((x_i, y_i) + \text{in}_< (J_G'')) = n \) since \(H \) is connected and its vertex set has cardinality \(n - 1 \). Hence, by applying the Depth lemma to exact sequence (1), we get

\[
\text{depth} S/J_G = \text{depth} S/\text{in}_< (J_G) = n + 1.
\]

\[\Box\]

Definition 3.3. Let \(\ell \geq 2 \) be an integer. A \(C_\ell \)-graph is a connected graph \(G \) on the vertex set \([n]\) which consists of

(i) a sequence of maximal cliques \(F_1, \ldots, F_\ell \) with \(\dim F_i \geq 1 \) for all \(i \) such that \(|F_i \cap F_{i+1}| = 1 \) for \(1 \leq i \leq \ell - 1 \) and \(F_i \cap F_j = \emptyset \) for any \(i < j \) such that \(j \neq i + 1 \), together with
(ii) some additional edges of the form $F = \{j, k\}$ where j is an intersection point of two consecutive cliques F_i, F_{i+1} for some $1 \leq i \leq \ell - 1$, and k is a vertex of degree 1.

In other words, G is obtained from a graph H with $\Delta(H) = \langle F_1, \ldots, F_\ell \rangle$ whose binomial edge ideal is Cohen-Macaulay (see [5, Theorem 3.1]) by attaching edges in the intersection points of the facets of $\Delta(H)$. Obviously, such a graph has the property that its longest induced path has length equal to ℓ. In the case that $\dim F_i = 1$ for $1 \leq i \leq \ell$, then G is called a caterpillar graph. Figure 1 displays a $C\ell$-graph with $\ell = 5$.

![Figure 1: $C\ell$-graph](image)

We should also note that any $C\ell$-graph is chordal and has the property that any two distinct maximal cliques intersect in at most one vertex. So that any $C\ell$-graph is a connected block graph. But, obviously, there are block graphs which are not $C\ell$-graphs. Such an example is displayed in Figure 2.

![Figure 2: A block graph which is not a $C\ell$-graph](image)

Theorem 3.4. Let G be a $C\ell$-graph on the vertex set $[n]$. Then

$$\text{reg}(S/J_G) = \text{reg}(S/\text{in}_{\Delta}(J_G)) = \ell.$$

Proof. Let G consists of the sequence of maximal cliques F_1, \ldots, F_ℓ as in condition (i) in Definition 3.3 to which we add some edges as in condition (ii). So the maximal cliques of G are F_1, \ldots, F_ℓ and all the additional whiskers. We proceed by induction on the number r of maximal cliques of G. If $r = \ell$, then G is a closed graph whose binomial edge ideal is Cohen-Macaulay, hence the statement holds by [6, Theorem 3.2]. Let $r > \ell$ and let F'_1, \ldots, F'_r be a leaf order on the facets of $\Delta(G)$. Obviously, we may choose a leaf order on $\Delta(G)$
such that \(F'_r = F_r \). With the same arguments and notation as in the proof of Theorem 3.2, we get the sequence (1).

We now observe that \(G' \) is a \(C_{\ell-1} \)-graph, hence, by the inductive hypothesis,
\[
\text{reg} \left(\frac{S}{J_{G'}} \right) = \text{reg} \left(\frac{S}{\text{in}_<(J_{G'})} \right) = \ell - 1. \tag{2}
\]

The graph \(G'' \) has at most two non-trivial connected components. One of them, say \(H_1 \), is a \(C_{\ell'} \)-graph with \(\ell' \in \{\ell - 2, \ell - 1\} \). The other possible non-trivial component, say \(H_2 \), occurs if \(|F_{\ell}| \geq 3 \) and, in this case, \(H_2 \) is a clique of dimension \(|F_{\ell}| - 2 \geq 1 \). By the inductive hypothesis, we obtain
\[
\text{reg} \left(\frac{S}{J_{G''}} \right) = \text{reg} \left(\frac{S}{\text{in}_<(J_{G''})} \right) = \text{reg} \left(\frac{S}{J_{H_1}} \right) + \text{reg} \left(\frac{S}{J_{H_2}} \right) \leq \ell - 1 + 1 = \ell. \tag{3}
\]

Relations (2) and (3) yield \(\text{reg}(S/\text{in}_<(J_{G'}) \oplus S/(x_i, y_i) + \text{in}_<(J_{G''})) \leq \ell \).

From the exact sequence (1) we get
\[
\text{reg} \left(\frac{S}{\text{in}_<(J_G)} \right) \leq \max \{ \text{reg} \left(\frac{S}{\text{in}_<(J_{G'})} \oplus \frac{S}{(x_i, y_i) + \text{in}_<(J_{G''})} \right), \text{reg} \left(\frac{S}{\text{in}_<(J_G)} + 1 \right) \} \leq \ell. \tag{4}
\]

By [7, Theorem 3.3.4], we know that \(\text{reg}(S/J_G) \leq \text{reg}(S/\text{in}_<(J_G)) \), and by [10, Theorem 1.1], we have \(\text{reg}(S/J_G) \geq \ell \). By using all these inequalities, we get the desired conclusion.

\[\blacksquare \]

4 Binomial edge ideals of caterpillar trees

Matsuda and Murai showed in [10] that, for any connected graph \(G \) on the vertex set \([n]\), we have \(\ell \leq \text{reg}(S/J_G) \leq n - 1 \), where \(\ell \) denotes the length of the longest induced path of \(G \), and conjectured that \(\text{reg}(S/J_G) = n - 1 \) if and only if \(T \) is a line graph. Several recent papers are concerned with this conjecture; see, for example, [6], [13], and [14]. One may ask as well to characterize connected graphs \(G \) whose longest induced path has length \(\ell \) and \(\text{reg}(S/J_G) = \ell \). In this section, we answer this question for trees.

A caterpillar tree is a tree \(T \) with the property that it contains a path \(P \) such that any vertex of \(T \) is either a vertex of \(P \) or it is adjacent to a vertex of \(P \). Clearly, any caterpillar tree is a \(C_{\ell} \)-graph for some positive integer \(\ell \).

Caterpillar trees were first studied by Harary and Schwenk [9]. These graphs have applications in chemistry and physics [4]. In Figure 3, an example of caterpillar tree is displayed. Note that any caterpillar tree is a narrow graph in the sense of Cox and Erskine [2]. Conversely, one may easily see that any narrow tree is a caterpillar tree. Moreover, as it was observed in [11], a tree is
a caterpillar graph if and only if it is weakly closed in the sense of definition given in [11].

In the next theorem we characterize the trees \(T \) with \(\text{reg}(S/J_T) = \ell \) where \(\ell \) is the length of the longest induced path of \(T \).

Theorem 4.1. Let \(T \) be a tree on the vertex set \([n]\) whose longest induced path \(P \) has length \(\ell \). Then \(\text{reg}(S/J_T) = \ell \) if and only if \(T \) is caterpillar.

Proof. Let \(T \) be a caterpillar tree whose longest induced path has length \(\ell \). Then, by the definition of a caterpillar tree, it follows that \(T \) is a \(C_\ell \)-graph. Hence, \(\text{reg}(S/J_T) = \ell \) by Theorem 3.4. Conversely, let \(\text{reg}(S/J_T) = \ell \) and assume that \(T \) is not caterpillar. Then \(T \) contains an induced subgraph \(H \) with \(\ell + 3 \) vertices as in Figure 4.

Then, by [15, Theorem 27], it follows that \(\text{reg}(S/J_H) = \ell + 1 \). Thus, since \(\text{reg}(S/J_H) \leq \text{reg}(S/J_G) \) (see [10, Corollary 2.2]), it follows that \(\text{reg}(S/J_G) \geq \ell + 1 \), contradiction to our hypothesis. \(\square \)

References

[1] A. Conca, *Gorenstein ladder determinantal rings*, J. London Math. Soc. 54(3) (1996), 453–474.

[2] D. A. Cox and A. Erskine, *On closed graphs I*, arXiv:1306.5149.

[3] A. Dokuyucu, *Extremal Betti numbers of some classes of binomial edge ideals*, to appear in Math. Reports.
[4] S. El-Basil, *Applications of caterpillar trees in chemistry and physics*, J. Math. Chem. 1(2) (1987), 153–174.

[5] V. Ene, J. Herzog, T. Hibi, *Cohen-Macaulay binomial edge ideals*, Nagoya Math. J. 204 (2011), 57–68.

[6] V. Ene and A. Zarojanu, *On the regularity of binomial edge ideals*, Math. Nachr. 288(1) (2015), 19–24.

[7] J. Herzog and T. Hibi, *Monomial Ideals*, Graduate Texts in Mathematics 260, Springer, 2010.

[8] J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle, J. Rauh, *Binomial edge ideals and conditional independence statements*, Adv. Appl. Math. 45 (2010), 317–333.

[9] F. Harary and A. J. Schwenk, *The number of caterpillars*, Discrete Math. 6(4), (1973), 359–365.

[10] K. Matsuda and S. Murai, *Regularity bounds for binomial edge ideals*, J. Commut. Algebra 5 (2013), 141–149.

[11] K. Matsuda, *Weakly closed graphs and F-purity of binomial edge ideals*, arXiv: 1209.4300.

[12] M. Ohtani, *Graphs and Ideals generated by some 2-minors*, Commun. Algebra 39 (2011), no. 3, 905–917.

[13] S. Saeedi Madani and D. Kiani, *Binomial edge ideals of graphs*, Electron. J. Combin. 19 (2012), no. 2, # P44.

[14] S. Saeedi Madani and D. Kiani, *The regularity of binomial edge ideals of graphs*, arXiv: 1310.6126.

[15] S. Zafar and Z. Zahid, *On the Betti numbers of some classes of binomial edge ideals*, Electron. J. Combin. 20 (2013) no. 4, # P37.

Faryal CHAUDHRY,
Abdus Salam School of Mathematical Sciences,
GC University, Lahore
68-B, New Muslim Town, Lahore 54600, Pakistan.
Email: chaudhryfaryal@gmail.com
Ahmet DOKUYUCU,
Faculty of Mathematics and Computer Science,
Ovidius University of Constanta,
Bd. Mamaia 124, 900527 Constanta, Romania,
and Department of Information Technology,
Lumina-The University of South-East Europe,
Sos. Colentina nr. 64b, Bucharest, Romania.
Email: ahmet.dokuyucu@lumina.org

Rida IRFAN,
Abdus Salam School of Mathematical Sciences,
GC University, Lahore
68-B, New Muslim Town, Lahore 54600, Pakistan.
Email: ridairfan88@yahoo.com