The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA–protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.

**Abbreviations**

CTD, C-terminal domain; Tat, transactivator of transcription.
The folding of an RNA molecule into a specific conformation is a slow process \([2,5-7]\). Because RNA is not a single molecule, translation, catalysis, and riboprotein complex formation, or key components in RNA synthesis and maturation, form a stable complex, and is thereby removed from the conformational equilibrium \([23]\). The folding-assisting protein has to dissociate to its native structure. In this review, we will focus on those proteins that undergo transient interactions with RNA in the ligand-bound state. This specific conformation is characterized by weak, nonspecific interactions. Here, the transient interaction of proteins with RNA binding proteins can be modulated either by weak, nonspecific interactions or by transient interactions with RNA. The promiscuity often reported for RNA-protein interfaces is by the nature of transient interactions. To best describe the nature of transient interactions, they are compared with stable interactions. Tight complexes have lifetimes ranging from seconds to milliseconds. In contrast, transient interactions have lifetimes ranging from microseconds to milliseconds. In contrast, transient interactions have lifetimes ranging from microseconds to milliseconds.

**Static versus transient interactions**

Typically, the characteristic affinities for two binding partners that only interact transiently are found to be energetically balanced over the whole molecule. This can be achieved by changes in the molecular interface of the interacting molecules. In many cases, the RNA-binding proteins have an exactly opposite character: Tight complexes have long lifetimes (seconds or longer), whereas RNA-protein complexes based on transient interactions have lifetimes ranging from milliseconds to seconds. Typically, the characteristic affinities for two binding partners that only interact transiently are found to be energetically balanced over the whole molecule. This can be achieved by changes in the molecular interface of the interacting molecules. In many cases, the RNA-binding proteins have an exactly opposite character: Tight complexes have long lifetimes (seconds or longer), whereas RNA-protein complexes based on transient interactions have lifetimes ranging from milliseconds to seconds.

**RNA folding is characterized by weak, nonspecific interactions**

**RNA folding reactions can be modulated either by tight, stable RNA-protein complexes or by transient interactions with RNA.**

The second class is characterized by specific interactions between RNAs and their molecular interface of the interacting molecules. In contrast, transient interactions have lifetimes ranging from microseconds to milliseconds. In contrast, transient interactions have lifetimes ranging from milliseconds to seconds. Typically, the characteristic affinities for two binding partners that only interact transiently are found to be energetically balanced over the whole molecule. This can be achieved by changes in the molecular interface of the interacting molecules. In many cases, the RNA-binding proteins have an exactly opposite character: Tight complexes have long lifetimes (seconds or longer), whereas RNA-protein complexes based on transient interactions have lifetimes ranging from milliseconds to seconds.
that interact only transiently with RNA is achieved by the lack of geometrically complementary interfaces. Charged residues are frequently found in both static and transient complex interfaces, but in transient interfaces they are more often located at the perimeter. The presence of lysines and arginines to oppose the negatively charged sugar-phosphate RNA backbone is important, and they are found 1.5 and 1.4 times more often than in interfaces of protein-protein complexes [31]. Nonetheless, an exact match in transient complexes is not assumed, as it would prevent the disintegration of the complex.

**Proteins help RNAs to fold and unfold**

As mentioned above, optimal folding rates of RNA require an energetic balance between local and global interactions within the molecule [7]. If this balance is not intrinsic to the molecule itself, it can be achieved by the interaction of the RNA with proteins. If the $\Delta G_{\text{local}}/\Delta G_{\text{global}}$ ratio is far from unity and thereby unbalanced (meaning that the formation of local structures is more favorable than global interactions – assuming that both values have negative signs), then two possible scenarios of how proteins may contribute to the successful achievement of a $\Delta G_{\text{local}}/\Delta G_{\text{global}}$ ratio close to unity can be envisioned – either the protein stabilizes structure elements that are responsible for the formation of the global structure of the RNA (such as tertiary interactions) by recognition and subsequent binding to them, or the protein destabilizes local interactions (which mainly involve secondary structure elements), e.g. by opening base pair interactions.

Within the framework of this theoretical consideration, three types of proteins have been found to promote RNA folding: (a) specifically binding proteins, which recognize and bind certain RNAs and thus stabilize the RNA structure, thereby forming a stable RNA-protein complex; (b) proteins with RNA chaperone and annealing activity, which interact only transiently with RNAs without the recognition of a specific structure or sequence, thereby promoting folding via unfolding or via annealing acceleration; and (c) RNA helicases, which accelerate the unwinding of many RNAs under conditions of ATP binding and hydrolysis.

Here, we summarize the properties of the three protein classes, with the main focus being on RNA chaperones and annealer proteins.

**Specifically binding proteins**

A specific protein cofactor binds to its RNA target through well-defined structural features, thereby stabilizing its native structure. Two scenarios have been shown or postulated – either the protein can bind to the RNA molecule when it has already adopted its correct structure, or the specific binder can interact with the RNA during its folding process and can accelerate folding or even nucleate the folding event. In a distinct mechanism, the protein may capture one specific conformation out of an ensemble of possible structures [22].

While the functional fold of the RNA molecule has not yet been achieved, the protein can interact transiently with the native RNA substrate. During this first encounter, the protein can perform unfolding activities reminiscent of RNA chaperone activities to support the folding process and to achieve specific binding. Furthermore, specific binders have been shown to exert RNA chaperone activity when encountering RNAs that do not contain the canonical binding motif. A well-studied example is the CBP2 protein from yeast mitochondria, which binds specifically to the b5 group I intron [32]. The interaction of CBP2 with the intron RNA was studied with fluorescence resonance energy transfer, monitoring the dynamics of the RNA at a single-molecule level [33]. According to these studies, CBP2 stabilizes the native conformation, but additional, nonspecific interactions cause large conformational fluctuations in the RNA. Another example is the mitochondrial tyrosyl-tRNA synthetase Cyt-18 from *Neurospora crassa*, which binds specifically to group I introns, thereby stabilizing the three-dimensional structure of the RNA. The protein can display RNA chaperone activity when interacting with non-specific RNAs [34,35]. In a fluorescence resonance energy transfer-based assay, Cyt-18 efficiently promoted strand displacement of an artificial 21mer RNA duplex [36].

**RNA helicases**

DEAD-box proteins are RNA helicases that are ubiquitous in all RNA-mediated processes. They use ATP hydrolysis to (mostly sequence-independently) promote conformational changes in RNA molecules, to disrupt RNA structures in a nonprocessive way, and to accelerate structural transitions in RNAs and RNP complexes [37]. DEAD-box proteins also disrupt RNA-protein interactions [38,39], and some have been shown to promote duplex formation [40,41], which stresses their resemblance to proteins with RNA-annealing activity. DEAD-box proteins should therefore be considered as major players in RNA folding and in the assembly and functioning of RNP machines, mostly through transient interactions with the RNA.
DEAD-box proteins have low processivity when unwinding helices shorter than 25–40 base pairs [40], probably because their unwinding mechanism does not involve translocation, and nor does the ATP hydrolysis correlate with unwinding. High-resolution X-ray structures have given insights into the mechanism(s) of DEAD-box helicases. The binding sites for double-stranded RNA and ATP overlap, resulting in coupled binding of both molecules. Simultaneous binding forces the RNA into a bent conformation that is incompatible with duplex formation, suggesting that the induction of this bent state might be the initial step in strand separation by DEAD-box helicases [42,43]. Following this local duplex disruption, the bound ATP is hydrolyzed. Prior to ATP hydrolysis, single-stranded RNA is bound tightly to the protein. However, after ATP hydrolysis, conformational changes drive a cycle of regulated single-stranded RNA binding affinity transitions, so that protein and RNA dissociate [44].

RNA chaperones and annealers

RNA annealer proteins are able to accelerate annealing of complementary nucleic acid sequences. RNA chaperones have the ability to destabilize formed RNA structures, which is measurable in strand displacement assays, and may additionally accelerate annealing. The hypothesis that RNA chaperones and annealers interact with their targets in a transient way is founded on four main observations, as follows. (a) By definition, sequence-nonspecific activity is inherent to RNA chaperones [11,45]. Although, for some RNA chaperones, specific substrates or preferred nucleotide compositions have been identified, these proteins can accelerate annealing or catalyze strand displacement for a large variety of nucleic acid sequences. Interactions with both DNA and RNA have been demonstrated for a number of RNA chaperones, such as nucleolin [46,47], hepatitis delta antigen [48,49], and NCP7 [50], and may apply to all proteins of this class. (b) The dissociation constants measured for RNA chaperones and the nucleic acid substrates used are mostly in the low micromolar range, and thus outside the range of specific interactions [51]. (c) Although RNA chaperones and RNA annealers do not share common motifs, they harbor domains or surfaces with many basic amino acids [48,50,52–56]. Both this feature and the often reported dependence of the activity on the ionic strength of the solution [50,57–59] hint at the interaction between the proteins’ basic amino acids and the nucleic acid backbone via ionic forces. In fact, transient interactions are characterized mainly by long-range electrostatic interactions [60]. (d) For the human mRNA-binding protein hnRNP A1 [61], the Xenopus laevis protein X1rbpa [54], the trypanosome guideRNA-binding protein RBP16 [62], and the Escherichia coli protein StpA [63], an inverse or missing correlation between substrate binding strength and activity has been found. On the basis of the four above-mentioned observations, we hypothesize that the transient nature of RNA chaperone–RNA interactions is not a coincidence, but is in fact a prerequisite for the chaperone and annealing activity, and that it is the key to understanding the mechanism of protein-facilitated RNA folding. To develop this idea further, we concentrate on two proteins that have been studied in detail in this respect.

The HIV-1 transactivator of transcription (Tat) peptide is a potent nucleic acid annealer

The peptide Tat(44–61) is an 18-residue fragment of the HIV-1 Tat protein. Its sequence-nonspecific annealing activity was first described by Kuciak et al. (2008) [64]. Because of its basicity and its short length, we selected it as a model RNA annealer protein to study the mechanism of acceleration of annealing [65]. We found that Tat(44–61) efficiently annealed both short RNA and DNA substrates of different length and sequence. The annealing activity of the peptide was strongly inhibited at MgCl₂ concentrations above 2 mM and at NaCl concentrations above 60 mM. Supporting the assumption of ionic interactions between peptide and RNA, the overall charge of the peptide was crucial for the activity, as the replacement of single basic amino acids with alanine resulted in the annealing rate constant decreasing by a factor of 2.3–3 as compared with the wild-type peptide. Thermodynamic calculations regarding the transition state of the reaction explained the importance of the overall charge for the activity – the total peptide charge determines the magnitude of peptide–RNA binding, owing to counterion release from the RNA backbone [66]. The resulting entropy increase of the system drives binding of the peptide to the RNA (and thus, indirectly, the acceleration of annealing). However, the extent of decrease of annealing acceleration caused by the single amino acid mutant peptides was not reflected in the dissociation constants as determined by filter binding. Besides the overall charge, we found an exact spatial arrangement of basic amino acids to be important for the activity – scrambled peptides with the same amino acid composition as the wild-type peptide showed decreased performance in our annealing assay. 1D 1H-NMR spectra of a single-stranded RNA showed that, depending on the amount of peptide added, the
Tat peptide induced a change in the population of coexisting and interchanging RNA conformations. The lack of intermolecular NOE connectivities indicated a short residence time of the peptide in the RNA-peptide complex, confirming the transient interaction between the molecules [65]. Taking all these results into account, we suggest that the Tat peptide, by interacting transiently with the RNA phosphates, alters the structure of the RNA substrate. It thus increases the probability of successful procession from the encounter complex of two RNA molecules to the transition state with the first-formed base pairs and consequently to the final RNA duplex. Whether the annealing activity of the Tat protein plays a role in vivo, such as transcriptional activation of the viral genome, remains to be elucidated.

The *E. coli* protein and RNA chaperone StpA

The nucleoid-associated protein StpA in the form of a heterodimer with its homolog H-NS shapes the structure and organization of the *E. coli* genome and thus regulates various genes [67]. Besides its association with DNA, StpA has been found to interact with many different RNA molecules without exerting any sequence specificity. Accordingly, a genomic SELEX failed to identify a specific substrate for StpA [63]. Moreover, StpA was identified as a protein displaying RNA chaperone activity. It is able to promote the proper folding of ribozyme molecules both *in vitro* and *in vivo*. Restricted proteolysis experiments demonstrated a modular architecture of the protein, with two separate structural and functional domains. Most data map the RNA interaction function to the C-terminal domain (CTD) of StpA. Accordingly, this domain alone is able to catalyze RNA folding, as demonstrated in various different assays. In order to exert RNA chaperone activity, both the full-length protein and the CTD must be present in concentrations close to the respective dissociation constants, which are usually in the micromolar range [68–70]. This means that, in assays, StpA is usually applied in molar excess over the RNA substrates, and that the RNA is most probably coated with several protein molecules, as opposed to a 1:1 stoichiometry. In contrast to the entropy transfer model, the CTD of StpA is a structured domain comprising two antiparallel β-strands and two terminal α-helices (B. Fürtig, unpublished results). The domain displays a highly positively charged surface. It can be shown that the interaction with the RNA takes place at the positively charged patches of the surface. Furthermore, those regions also represent the flexible residues within the protein domain. NMR data provide evidence that the interaction site on the RNA is the phosphate backbone. This is also in accordance with the demonstrated inhibitory effect of monovalent and divalent cations on RNA binding and RNA chaperone activity [63]. Interestingly, the interaction between the CTD and RNA can be monitored by solution-state NMR spectroscopy but not by classical electrophoretic mobility shift assay, even at very low salt concentrations. As the latter assay would require the formation of a stable complex, the formation of only transiently populated RNA-protein complex states can be inferred. Furthermore, the results of the NMR titration series also show that the interaction takes place in the fast-exchange regime, meaning that the $k_{\text{off}}$ must be high (B. Fürtig, unpublished results). Interestingly, the StpA G126V mutant shows a dramatically reduced binding affinity, despite being more active in a chaperone assay than the wild-type protein [63]. Stressing the notion of transient interactions between StpA and RNA even further is the fact that the protein is dispensable after the refolding of an RNA molecule has occurred, and can be digested by proteinase K [69]. In all, these results lead to the conclusion that the transient nature of the interaction between RNA and protein is a prerequisite for the mode of action of these RNA chaperone(s).

As StpA and also its CTD alone can promote annealing as well as displacement of complementary RNAs, the question of which changes in the RNA are introduced during the transient interaction arises. Initial results indicate that the protein acts as an electrostatic lubricant that shields repulsive interactions within the RNA molecule. The protein thereby smooths the folding energy landscape. The direction of the RNA folding reaction (either annealing or displacement) is then no longer kinetically controlled, but instead follows the reaction route determined by thermodynamics.

A general annealing and chaperoning model

From the observations described above, we have delineated a general model for the mechanism of protein-facilitated annealing and strand displacement (Fig. 1). To illustrate the mechanism of RNA annealing acceleration, we first consider the annealing of RNA in the absence of any supporting protein (Fig. 1A). Like other molecules that react with or bind to each other, RNA molecules form a transient encounter complex upon their first collision. According to the Arrhenius theory, the complex proceeds into a transition state only when the prerequisites of availability of the reaction activation energy, an appropriate RNA
conformation and a suitable orientation of the molecules towards each other are fulfilled. Whereas the procession from the transition state into the final duplex is assumed to be very fast \[71,72\], the formation of the transition state can be – because of its high free energy – the rate-limiting step in nucleic acid annealing. We assume that this high free energy results from RNA conformational changes that have to occur prior to the formation of adjacent base pairs. In the presence of a protein with annealing activity, RNA molecules are ‘coated’ with this protein, owing to electrostatic attraction (Fig. 1B). The annealer protein, via transient interactions, alters the RNA structure in such a way that the probability of procession from encounter to transition state is increased. The result is an increase in the overall reaction velocity.

The strand displacement event resulting in an RNA duplex caused by a third, invading RNA molecule is often closely connected with the process of RNA annealing \[73,74\]. RNA chaperones destabilize double strands, starting from the ends or bulges of the base-paired region, and independently of the thermodynamic stability of the double strand (Fig. 1C). A third strand can utilize such destabilized regions as starting points for invasion. The concerted process of opening of the initial double strand and the annealing of the new duplex finally results in either the replacement of the original strand or the expulsion of the invading strand, according to the kinetics and thermodynamic situation. If the RNA chaperone also has annealing activity, it can catalyze the strand displacement event in two ways: by destabilizing edges and bulges, and by favoring the annealing reaction of the invading strand.

A clear advantage of transient interactions between RNA annealers/chaperones and their substrates is the low energy consumption of the reaction, especially in comparison with helicases, which have an ATP-dependent activity. Further advantages of transient interactions are a broad spectrum of substrates and the rapid availability of the protein for subsequent reactions. In order to avoid the general impairment of important cellular RNA structures, stringent regulation of expression and activity of these proteins is necessary. Thus, general RNA annealers and chaperones may be useful additions to the arsenal of specific RNA binders and helicases for the structural remodeling of RNA molecules.

**Acknowledgements**

We would like to thank all members of the Schroeder Laboratory for helpful discussions on the topic of...
Transient RNA–protein interactions in RNA folding

M. Doetsch is funded by the University of Vienna.

RNA chaperones. We are indebted to B. Morriswood and B. Zimmermann for critical reading of the manuscript. This work is supported by FWF through a Lise Meitner-Position (M1157-B12) to B. Fürtig and grant F1703 to R. Schroeder, and by the European Community (EU-NMR, Contract no. RII3-026145). M. Doetsch is funded by the University of Vienna.

References

1 Woodson SA (2000) Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci 57, 796–808.
2 Fresco JR, Adams A, Ascione R, Henley D & Lindahl T (1966) Tertiary structure in transfer ribonucleic acids. Cold Spring Harbor Symp Quant Biol 31, 527–537.
3 Schwalbe H, Buck J, Fürtig B, Noeske J & Wohnt J (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed Engl 46, 1212–1219.
4 Narberhaus F, Waldminghaus T & Chowdhury S (2006) RNA chaperones. FEBS Lett 577, 336–342.
5 Uhlenbeck OC (1995) Keeping RNA happy. RNA 1, 4–6.
6 Treiber DK & Williamson JR (1999) Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol 9, 339–345.
7 Thirumalai D & Woodson SA (2000) Maximizing RNA folding rates: a balancing act. RNA 6, 790–794.
8 Leulliot N & Varani G (2001) Current topics in RNA–protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956.
9 Schultes EA & Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289, 448–452.
10 Micura R & Hobartner C (2003) On secondary structure rearrangements and equilibria of small RNAs. ChemBioChem 4, 984–990.
11 Herschlag D (1995) RNA chaperones and the RNA folding problem. J Biol Chem 270, 20871–20874.
12 Pan J & Woodson SA (1999) The effect of long-range loop–loop interactions on folding of the Tetrahymena self-splicing RNA. J Mol Biol 294, 955–965.
13 Mohr G, Zhang A, Gianelos JA, Belfort M & Lambowitz AM (1992) The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell 69, 483–494.
14 Buchmueller KL, Webb AE, Richardson DA & Weeks KM (2000) A collapsed non-native RNA folding state. Nat Struct Biol 7, 362–366.
15 Mahen EM, Harger JW, Calderon EM & Fedor MJ (2005) Kinetics and thermodynamics make different contributions to RNA folding in vitro and in yeast. Mol Cell 19, 27–37.
16 Mahen EM, Watson PY, Cottrell JW & Fedor MJ (2010) mRNA secondary structures fold sequentially but exchange rapidly in vivo. PLoS Biol 8, e1000307.
17 Draper D, Grilley D & Soto A (2005) Ions and RNA folding. Biophysics 34, 221–243.
18 Heilman-Miller S, Pan J, Thirumalai D & Woodson S (2001) Role of counterion condensation in folding of the Tetrahymena ribozyme II. Counterion-dependence of folding kinetics1. J Mol Biol 309, 57–68.
19 Weeks K (1997) Protein-facilitated RNA folding. Curr Opin Struct Biol 7, 336–342.
20 Schroeder R, Barta A & Semrad K (2004) Strategies for RNA folding and assembly. Nat Rev Mol Cell Biol 5, 908–919.
21 Duncan C & Weeks K (2010) Nonhierarchical ribonucleoprotein assembly suggests a strain-propagation model for protein-facilitated RNA folding. Biochemistry 49, 5418–5425.
22 Zhang Q, Sun X, Watt ED & Al-Hashimi HM (2006) Resolving the motional modes that code for RNA adaptation. Science 311, 653–656.
23 Zhang Q, Stelzer AC, Fisher CK & Al-Hashimi HM (2007) Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450, 1263–1267.
24 Zhang F, Ramsay ES & Woodson SA (1995) In vivo facilitation of Tetrahymena group I intron splicing in Escherichia coli pre-ribosomal RNA. RNA 1, 284–292.
25 Schreiber G & Fersht AR (1996) Rapid, electrostatically assisted association of proteins. Nat Struct Biol 3, 427–431.
26 Maris C, Domínguez C & Allain FH (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272, 2118–2131.
27 Backe PH, Messias AC, Ravelli RB, Sattler M & Cussack S (2005) X-ray crystallographic and NMR studies of the third KH domain of hnRNP K in complex with single-stranded nucleic acids. Structure 13, 1055–1067.
28 Lu D, Searles MA & Klug A (2003) Crystal structure of a zinc-finger–RNA complex reveals two modes of molecular recognition. Nature 426, 96–100.
29 Chang KY & Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272, 2109–2117.
30 Lingel A, Simon B, Izaurralde E & Sattler M (2004) Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nat Struct Mol Biol 11, 576–577.
31 Bahadur RP, Zacharias M & Janin J (2008) Dissecting protein–RNA recognition sites. Nucleic Acids Res 36, 2705–2716.
32 Weeks KM & Cech TR (1996) Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271, 345–348.
Transient RNA–protein interactions in RNA folding

M. Doetsch et al.

33 Bokinsky G, Nivon LG, Liu S, Chai G, Hong M, Weeks KM & Zhuang X (2006) Two distinct binding modes of a protein cofactor with its target RNA. J Mol Biol 361, 771–784.

34 Paukstelis PJ, Chen JH, Chase E, Lambowitz AM & Golden BL (2008) Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451, 94–97.

35 Waldsich C, Grossberger R & Schroeder R (2002) RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo. Genes Dev 16, 2300–2312.

36 Rajkowitsch L & Schroeder R (2007) Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. BioTechniques, 43, 304–310.

37 Pan C & Russell R (2010) Roles of DEAD-box proteins in RNA and RNP folding. RNA Biology 7, 28–37.

38 Uhlmann-Schiffler H, Jalal C & Stahl H (2006) Ddx42p – a human DEAD box protein with RNA chaperone activities. Nucleic Acids Res 34, 10–22.

39 Fairman ME, Maroney PA, Wang W, Bowers HA, Gollnick P, Nilsen TW & Jankowsky E (2004) Protein displacement by DExH/D ‘RNA helicas’ without duplex unwinding. Science 304, 730–734.

40 Rossler OG, Straka A & Stahl H (2001) Rearrangement of structured RNA via branch migration structures catalysed by the highly related DEAD-box proteins p68 and p72. Nucleic Acids Res 29, 2088–2096.

41 Yang Q & Jankowsky E (2005) ATP- and ADP-dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601.

42 Sengoku T, Nureki O, Nakamura A, Kobayashi S & Yokoyama S (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosofila Vasa. Cell 125, 287–300.

43 Bono F, Ebert J, Lorentzen E & Conti E (2006) The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126, 713–725.

44 Henn A, Cao W, Liciardello N, Heitkamp SE, Hackney DD & De La Cruz EM (2010) Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA. Proc Natl Acad Sci USA 107, 4046–4050.

45 Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Blasi U & Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4, 118–130.

46 Sapp M, Knippers R & Richter A (1986) DNA binding properties of a 110 kDa nucleolar protein. Nucleic Acids Res 14, 6803–6820.

47 Ghisolfi L, Joseph G, Amalric F & Erard M (1992) The glycine-rich domain of nucleolin has an unusual secondary structure responsible for its RNA-helix-destabilizing properties. J Biol Chem 267, 2955–2959.

48 Huang ZS & Wu HN (1998) Identification and characterization of the RNA chaperone activity of hepatitis delta antigen peptides. J Biol Chem 273, 26455–26461.

49 Huang ZS, Chen AY & Wu HN (2004) Characterization and application of the selective strand annealing activity of the N terminal domain of hepatitis delta antigen. FEBS Lett 578, 345–350.

50 Lapadat-Tapolsky M, Pernelle C, Boric C & Darlix JL (1995) Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res 23, 2434–2441.

51 Crowley PB & Ubbink M (2003) Close encounters of the transient kind: protein interactions in the photosynthetic redox chain investigated by NMR spectroscopy. Acc Chem Res 36, 723–730.

52 Lee CG, Zamore PD, Green MR & Hurwitz J (1993) RNA annealing activity is intrinsically associated with U2AF. J Biol Chem 268, 13472–13478.

53 Muller UF, Lambert L & Goring Hu (2001) Annealing of RNA editing substrates facilitated by guide RNA-binding protein gBP21. EMBO J 20, 1394–1404.

54 Hitti E, Neunteufel A & Jantsch MF (1998) The double-stranded RNA-binding protein X1rbpa promotes RNA strand annealing. Nucleic Acids Res 26, 4382–4388.

55 Nedbal W, Frey M, Willemann B, Zentgraf H & Szakiel G (1997) Mechanistic insights into p53–promoted RNA–RNA annealing. J Mol Biol 266, 677–687.

56 Croitoru V, Semrad K, Brenninger S, Rajkowitsch L, Vejen M, Laursen BS, Sperling-Petersen HU & Isaksson LA (2006) RNA chaperone activity of translation initiation factor IF1. Biochimie 88, 1875–1882.

57 Akhmedov AT, Bertrand P, Cortegiani E & Lopez BS (1995) Characterization of two nuclear mammalian homologous DNA-pairing activities that do not require associated exonuclease activity. Proc Natl Acad Sci USA 92, 1729–1733.

58 Skabkin MA, Evdokimova V, Thomas AA & Ovchinnikov IP (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J Biol Chem 276, 44841–44847.

59 Kim S & Marians KJ (1995) DNA and RNA–DNA annealing activity associated with the tau subunit of the Escherichia coli DNA polymerase III holoenzyme. Nucleic Acids Res 23, 1374–1379.

60 Schreiber G, Haran G & Zhou HX (2009) Fundamental aspects of protein–protein association kinetics. Chem Rev 109, 839–860.

61 Cobianchi F, Calvio C, Stoppini M, Buvoli M & Riva S (1993) Phosphorylation of human hnRNP protein A1 abrogates in vitro strand annealing activity. Nucleic Acids Res 21, 949–955.
62 Ammerman ML, Fisk JC & Read LK (2008) gRNA/pre-mRNA annealing and RNA chaperone activities of RBP16. RNA 14, 1069–1080.
63 Mayer O, Rajkowitsch L, Lorenz C, Konrat R & Schroeder R (2007) RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res 35, 1257–1269.
64 Kuciak M, Gabus C, Ivanyi-Nagy R, Semrad K, Storck B, Chaloin O, Muller S, Mely Y & Darlix JL (2008) The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res 36, 3389–3400.
65 Doetsch M, Furtig B, Gstrein T, Stampfl S & Schroeder R (2011) The annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res doi:10.1093/nar/gkq1339.
66 Record MT Jr, Lohman ML & De Haseth P (1976) Ion effects on ligand–nucleic acid interactions. J Mol Biol 107, 145–158.
67 Muller CM, Schneider G, Dobrindt U, Emody L, Hacker J & Uhlin BE (2010) Differential effects and interactions of endogenous and horizontally acquired H-NS-like proteins in pathogenic Escherichia coli. Mol Microbiol 75, 280–293.
68 Cusick ME & Belfort M (1998) Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA. Mol Microbiol 28, 847–857.
69 Zhang A, Derbyshire V, Salvo JL & Belfort M (1995) Escherichia coli protein StpA stimulates self-splicing by promoting RNA assembly in vitro. RNA 1, 783–793.
70 Zhang A, Rimsky S, Reaban ME, Buc H & Belfort M (1996) Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J 15, 1340–1349.
71 Mohan S, Hsiao C, VanDeusen H, Gallagher R, Krohn E, Kalahar B, Wartell RM & Williams LD (2009) Mechanism of RNA double helix-propagation at atomic resolution. J Phys Chem B 113, 2614–2623.
72 Porschke D (1974) A direct measurement of the unzipping rate of a nucleic acid double helix. Biophys Chem 2, 97–101.
73 Furtig B, Buck J, Manoharan V, Bermel W, Jaschke A, Wenter P, Pitsch S & Schwalbe H (2007) Time-resolved NMR studies of RNA folding. Biopolymers 86, 360–383.
74 Furtig B, Wenter P, Pitsch S & Schwalbe H (2010) Probing mechanism and transition state of RNA refolding. ACS Chem Biol 5, 753–765.