Adaptive estimation and control of unstable periodic dynamics in excitable biological systems

David J. Christini† and Daniel T. Kaplan‡

†Division of Cardiology, Department of Medicine, Cornell University Medical College, New York, NY 10021
‡Department of Mathematics and Computer Science, Macalester College, St. Paul, MN 55105

February 4, 2008

Abstract

Dynamical control of excitable biological systems is often complicated by the difficult and unreliable task of pre-control identification of unstable periodic orbits (UPOs). Here we show that, for both chaotic and nonchaotic systems, UPOs can be located, and their dynamics characterized, during control. Tracking of system nonstationarities emerges naturally from this approach. Such a method is potentially valuable for the control of excitable biological systems, for which pre-control UPO identification is often impractical and nonstationarities (natural or stimulation-induced) are common.

1email: dchristi@med.cornell.edu
2email: kaplan@macalester.edu
Chaos control techniques have been applied to a number of excitable biological systems [1, 2, 3, 4, 5] comprised of spontaneously firing cells. Such control typically attempts to replace an unwanted irregular or higher-order firing pattern with a lower-order periodic rhythm. One particular control technique, PPF control [1], uses isolated electrical stimuli to cause the cells to fire at a specified time, thus altering the variable of interest, the inter-excitation interval. In the idealized situation presented in Refs. [1] and [2] the PPF stimuli achieve control by placing the state of the biological system onto the stable manifold of a desired unstable periodic orbit (UPO).

The successful application of PPF control requires an estimate of the location of the uncontrolled system’s UPO and corresponding manifolds. UPOs and their eigenvalues [6] are typically characterized from measurements of the system in free-running mode, without external stimulation [1, 2]. PPF-type [7] stimuli are then used to alter the inter-excitation interval in an attempt to place the system state point onto the estimated stable manifold and therefore stabilize the UPO.

Proper estimation of the UPO and its characteristics is of fundamental importance to PPF-type control for several reasons. First, optimal control (which we consider to be stabilization of the desired UPO with a minimal number of stimuli) is achieved when the system state is placed onto the stable manifold. Without placement directly onto a stable manifold, control can be achieved via alternative dynamical mechanisms [8, 9, 10, 11, 12] that require more frequent stimulation. Second, knowledge of unstable orbits can provide a skeleton upon which to build a model of the overall system. Third, the UPO may change in time; by continuously tracking the properties of the orbit, one can adaptively change the control parameters in order to maintain the controlled stability of the orbit. Changes in the UPO may stem from autonomous drifts in the properties of the biological system, or may be a response to the control stimuli (a tissue’s dynamical or electrochemical properties may be modified by stimulation [13, 14]). With these reasons in mind, this report is concerned with ways to use PPF-type control in order to identify, control, and track such UPOs and their manifolds.

The detection of a UPO using data collected in the uncontrolled, free-running system [1, 2] can be problematic. As mentioned above, one problem with such an approach is that excitable biological systems are commonly nonstationary. Thus, a pre-control UPO estimate may become invalid before or during the control stage. Another problem is that in the free-running system, the system’s state may spend little time in the vicinity of the orbit. As an extreme case, a system with a stable attracting periodic orbit may well have other UPOs, but the free-running system will visit only the stable orbit. Even with a lengthy free-running data collection stage, there is no guarantee that there will be sufficient data from within the UPO neighborhood; a paucity of such data from within the UPO neighborhood renders dubious the reliability of the estimated UPO characteristics. Statistical tests have been proposed to validate UPO existence [15], but the most compelling evidence comes when control of a putative orbit is successfully achieved. With this in mind, an alternative to pre-control UPO identification is to locate and characterize a UPO while attempting control.

To this end, Kaplan [12] recently showed that control can be used to locate UPOs by tuning the control parameters to be near a bifurcation in the controlled system’s dynamics. Such control allows the experimentalist to circumvent the major hurdle of pre-control UPO identification: the limited time that the state point spends in the UPO neighborhood. However, although the system’s
state stays near the UPO during such control, estimation of UPO characteristics is complicated by
the fact that the natural UPO dynamics are masked by the control stimuli. So, the experimentalist
faces a choice of studying the free-running system with infrequent UPO data, or studying the
controlled system with plentiful data but with obscured or altered dynamics. As we show in this
report, the latter alternative can be rendered feasible by circumventing the masking in either of
two ways: 1) estimating the natural UPO dynamics between intermittently applied stimuli or 2) jiggling
the control parameters.

We will examine systems whose natural, uncontrolled dynamics can be approximated by an
autoregressive system $x_{n+1} = f(x_n, x_{n-1})$. Such systems can have many types of UPOs. For
control of excitable biological systems, $x_n$ is taken to be the time interval between the $n^{th}$ firing
of the system and the previous firing. As long as the state point $(x_n, x_{n-1})$ is in the neighborhood of a
UPO, the system dynamics can be approximated linearly as $x_{n+1} = a x_n + b x_{n-1} + c$, or, rewriting
the constants $a$, $b$, and $c$ in terms of the parameters of the UPO:

$$x_{n+1} = (\lambda_s + \lambda_u)x_n - \lambda_s \lambda_u x_{n-1} + x_*(1 + \lambda_s \lambda_u - \lambda_s - \lambda_u)$$

where $\lambda_s$ and $\lambda_u$ are the eigenvalues of the linearized system, and $x_*$ is the location of the UPO
sampled once per cycle. The notation is intended to suggest that there is one stable and one
unstable eigenvalue, as required for a saddle-type fixed point. However, the equation is applicable
even when both eigenvalues are unstable.

The application of PPF-type control changes the dynamics near the UPO to a nonlinear form:

$$x_{n+1} = \min \begin{cases} (\lambda_s + \lambda_u)x_n - \lambda_s \lambda_u x_{n-1} + x_*(1 + \lambda_s \lambda_u - \lambda_s - \lambda_u) & \text{natural dynamics} \\ \hat{\lambda}_s(x_n - \hat{x}_*) + \hat{x}_* & \text{control stimulus} \end{cases}$$

where $\hat{x}_*$ and $\hat{\lambda}_s$ are estimates of the UPO position $x_*$ and stable manifold slope $\lambda_s$. Kaplan [12]
showed that for a flip-saddle, when $\hat{x}_* \approx x_*$ and $|\hat{\lambda}_s| < 1$ the controlled system modeled by
Eq. 2 will be characterized by a control stimulus applied either every interval (when $\hat{x}_* < x_*$) or
every second interval with the intervening intervals being terminated naturally (when $\hat{x}_* > x_*$).
As shown in Ref. [12], $x_*$ can be located by systematically scanning over a range of $\hat{x}_*$ for the
stimulus-pattern bifurcation.

In the system of Eq. 2, because the natural dynamics are obscured by the control stimuli, it is
not possible to estimate $\lambda_s$ and $\lambda_u$. For the case where $\hat{x}_* < x_*$, (when control stimuli are applied
every interval), the controlled dynamics are simply

$$x_{n+1} = \hat{\lambda}_s(x_n - \hat{x}_*) + \hat{x}_*.$$  (3)

The natural $\lambda_s$ and $\lambda_u$ do not enter into these dynamics and therefore cannot be estimated from
them. For the case where $\hat{x}_* > x_*$ (when control stimuli are applied every second interval), the
controlled dynamics for intervals that end naturally without a control stimulus, are

$$x_{n+1} = (\hat{\lambda}_s(\lambda_s + \lambda_u) - \lambda_s \lambda_u)x_{n-1} + (1 + \lambda_s \lambda_u - \hat{\lambda}_s)(\lambda_s + \lambda_u))\hat{x}_*$$

(as can be found by substituting the bottom equation of Eq. 2 for $x_n$ in the top equation). Note that
from measurements of $x_{n+1}$ and $x_{n-1}$, only the lumped constant parameter $\lambda_s \lambda_u - \hat{\lambda}_s(\lambda_s + \lambda_u)$ in
Eq. 4 can be estimated, and not $\lambda_s$ and $\lambda_u$ individually.
Christini and Collins [11] proposed a simplified modification of PPF control, which they termed SMP control. They showed that effective control can be accomplished by turning off the control stimuli and allowing the system to free-run according to the natural dynamics until the state point \((x_n, x_{n-1})\) wanders out of the UPO neighborhood. Only when the difference between \((x_n, x_{n-1})\) and the UPO \((x_*, x_*)\) reaches a threshold is control reactivated to return the state point to the UPO neighborhood via the stable manifold. In Ref. [11], the primary motivation for such intermittent perturbation was to minimize control interventions in order to limit stimulation-induced modification of the dynamical or electrochemical properties of the excitable tissue [13, 14]. In the present context, intermittent stimulation provides another important benefit: allowing observation and characterization of the natural UPO dynamics between control perturbations.

When the control stimuli are turned off when using the SMP strategy, the system dynamics near the fixed point are given by Eq. [1]. The parameters \(\lambda_s\), \(\lambda_u\), and \(x_*\) can then be estimated by linear regression of \(x_{n+1}\) on \(x_n\) and \(x_{n-1}\). We define a “natural triplet” to be a sequence \((x_{n+1}, x_n, x_{n-1})\) in which interval \(n + 1\) is terminated naturally, but intervals \(n\) and \(n - 1\) could be terminated naturally or by control stimuli. Only natural triplets can be used in the regression.

In order to track UPO drift, estimates of \(\lambda_s\), \(\lambda_u\), and \(x_*\) are made from the last \(N\) natural triplets \((x_{n+1}, x_n, x_{n-1})\). In this letter, we take \(N = 10\). After each estimation, the control parameters \(\tilde{\lambda}_s\) and \(\tilde{x}_*\) in Eq. [2] are adjusted accordingly.

Care must be taken when performing the linear regression. If only one eigenvector is required to characterize the data fit to Eq. [1] then the parameter estimations will not accurately represent the natural two-manifold UPO dynamics. This situation occurs when one of the manifolds has little or no influence on the state dynamics for several consecutive natural triplets. For example, when control is turned off when using the SMP strategy, the state point will tend to retreat from the UPO along the unstable manifold. Thus, the natural dynamics will be \(x_{n+1} = \lambda_u (x_n - x_*) + x_*\), which does not reflect \(\lambda_s\). If the \(N\) points used in the estimation consist mainly of such points, the parameter estimations will not accurately represent the natural two-manifold UPO dynamics. Such a situation can be detected by using singular value decomposition (SVD) [15] to carry out the linear regression: if the ratio between the regression’s largest and smallest singular values is exceedingly large, the estimate is dubious. If this is the case, \(\tilde{x}_*\) and \(\tilde{\lambda}_s\) from the last valid estimation of Eq. [1] should be used for setting the control parameters in Eq. [2].

We illustrate the SMP characterization and tracking technique using the chaotic Hénon map,

\[
x_{n+1} = 1.0 - Ax_n^2 + Bx_{n-1},
\]

where \(A = 1.4\), \(B = 0.3\), and \(x_n\) represents the \(n^{th}\) inter-excitation interval. With these parameter values, the system is chaotic and has a flip-saddle UPO at \(x_* = 0.8839\), with \(\lambda_u = -1.9237\) and \(\lambda_s = 0.1559\). Figure [I] shows a trial demonstrating the adaptive estimation and control of this UPO. Initially, the Hénon map was free-run for 100 points without control [Fig. [I][a)]. At \(n = 100\), control was activated, setting the control parameter \(\tilde{\lambda}_s = 0\) and scanning for \(x_*\) by systematically increasing \(\tilde{x}_*\). For \(\tilde{x}_* < x_*\), the resulting controlled dynamics show a fixed point at \(\tilde{x}_*\) with the control stimulus being applied at every interval. At \(\tilde{x}_* = x_*\), a period-doubling bifurcation occurs, thus marking the location of the flip-saddle UPO. As shown in the inset of Fig. [I][b), the bifurcation occurred at \(n = 174\).
Following detection of the bifurcation, control continued with $\hat{x}_s$ set to 0.9073, the midpoint of the last pre-bifurcation pacing interval and the first post-bifurcation pacing interval. After $N$ natural triplets had occurred [see inset in Fig. 1(b)], the first SVD estimation of $\lambda_s$, $\lambda_u$, and $x_*$ was performed [17]. After $n = 190$, control followed the SMP protocol, with control stimuli used only when $|x_* - x_n| > \delta$. ($\delta$ was set to 0.001 for all trials in this study.) SMP successfully stabilized the UPO with control stimuli being provided approximately every 20th interval as seen in Fig. 1(c). Figure 1(d) shows that the control-stage SVD estimates $\hat{\lambda}_s$ and $\hat{\lambda}_u$ (re-estimated via SVD following every natural interval using the most recent $N$ natural triplets) were close to their true values.

After $n = 500$, to simulate a noisy system, a Gaussian white noise iterate (standard deviation 0.0001) was added to each non-controlled Hénon map iterate. In the noisy system, control required more frequent SMP perturbations because the additive noise caused the system state point to wander more quickly away from $x_*$. Due to the additive noise, $\hat{\lambda}_s$ and $\hat{\lambda}_u$ fluctuated, but remained scattered around the true values [Fig. 1(d)].

This technique can also be used to locate and stabilize UPOs in nonchaotic systems. We performed a trial controlling the Hénon map of Eq. 5 with $A = 1.0$ and $B = 0.3$. With these parameter values, the system settles into a stable period-4 rhythm. However, there is an underlying unstable flip-saddle UPO at $x_* = 0.7095$, with $\lambda_u = -1.6058$ and $\lambda_s = 0.1868$. This UPO cannot be detected from free-running data, but the bifurcation search, SVD parameter estimation, and SMP control were able to locate and stabilize the UPO. For this trial, the bifurcation search, control perturbations, and manifold estimations were all qualitatively similar to those shown for the chaotic Hénon map in Fig. 1. As in Fig. 1, control remained effective when a Gaussian white noise iterate (standard deviation 0.0001) was added to each non-controlled Hénon map iterate. Given the prevalence of pathologic nonchaotic rhythms in excitable biological systems [3, 4, 5], this example demonstrates an important capability of this control technique.

It is of particular interest to be able to track drifting UPOs in nonstationary systems. To illustrate how this can be done, we use the Hénon map with a randomly drifting parameter:

$$x_n = 1.0 - (A + \eta_n)x_{n-1}^2 + Bx_{n-2},$$

where $\eta_n$ is an iterate of a correlated noise process [18], given by $\eta_n = 0.999\eta_{n-1} + 4.5 \times 10^{-7}\zeta_n$, where $\zeta_n$ is Gaussian white noise with unity standard deviation. Figure 2(a) shows the inter-excitation intervals for a control trial of this nonstationary system. Figure 2(b), (c), and (d) show the analytically-determined $x_{s_n}$, $\lambda_{s_n}$, and $\lambda_{u_n}$, respectively, and their SVD estimates $\hat{x}_{s_n}$, $\hat{\lambda}_{s_n}$, and $\hat{\lambda}_{u_n}$, respectively. These panels demonstrate that the repeated SVD estimation was able to effectively track the drifting parameters.

A second method for estimating $\lambda_s$ and $\lambda_u$ is applicable when the natural unstable dynamics are sufficiently strong that SMP control cannot be practically applied. As shown in [12], it is not necessary for the control parameters $\hat{\lambda}_s$ and $\hat{x}_s$ to match the natural parameters $\lambda_s$ and $x_s$ in order to accomplish successful control. In the case of a flip saddle, for example, by setting the control parameter $\hat{x}_s$ slightly larger than the true fixed point location $x_s$, the controlled system will have a period-2 orbit, where control stimuli are provided every second interval. By jiggling the control parameters in a small range around their nominal values, one eliminates the linear degeneracy of Eq. 3 and enables $\lambda_s$ and $\lambda_u$ to be separately estimated from the natural triplets $(x_{n+1}, x_n, x_{n-1})$. 

\[ \text{Christini and Kaplan} \]
The techniques presented in this study dispense with pre-control data analysis and enable control of nonstationary UPOs in chaotic and nonchaotic systems. Thus, they are more appropriate than previous techniques for control of excitable biological systems. This fact, coupled with experimental evidence that model-independent control techniques can modify or eliminate pathological excitation patterns [1, 5], implies that they may have clinical utility. As one possibility, we note that in some clinical applications of tachycardia pacing, one uses rapid pacing in order to capture the tissue’s rhythm, and then gradually slows pacing to return the heart to an acceptably slow rhythm. The techniques described here may be useful in maintaining capture of the rhythm while the pacing rate is slowed.

While this study demonstrates the feasibility of controlling models of excitable biological systems, important questions regarding the physiological feasibility of control of real excitable biological systems remain unanswered. One question is whether or not excitable biological systems actually contain UPOs. This is a topic of considerable research and debate [20, 15, 21, 22]. Another question is whether SMP control stimuli, which are large perturbations to the electrochemical properties of the system, actually modify the underlying UPO dynamics [11, 13, 14]. Further investigation is needed to address these, and other, issues to determine whether such control is physiologically feasible and clinically useful.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the National Institutes of Health (R01 HL56139) [DJC] and sabbatical support from Macalester College [DTK].
References

[1] A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss, Science 257, 1230 (1992).

[2] S. J. Schiff, K. Jerger, D. H. Duong, T. Chang, M. L. Spano, and W. L. Ditto, Nature 370, 615 (1994).

[3] D. J. Christini and J. J. Collins, Physical Review E 53, R49 (1996).

[4] M. E. Brandt and G. Chen, International Journal of Bifurcation and Chaos 6, 715 (1996).

[5] K. Hall, D. J. Christini, M. Tremblay, J. J. Collins, L. Glass, and J. Billette, Physical Review Letters 78, 4518 (1997).

[6] The stable/unstable eigenvalue provides a linear approximation to the stable/unstable manifold of the saddle point.

[7] We use “PPF” to refer to the original PPF algorithm of Ref. [1]. We use “PPF-type” to refer to any algorithm, such as PPF of Ref. [1], that directly alters the inter-excitation interval to place the state point onto the stable manifold.

[8] D. J. Christini and J. J. Collins, Physical Review Letters 75, 2782 (1995).

[9] L. Glass and W. Zeng, International Journal of Bifurcation and Chaos 4, 1061 (1994).

[10] T. Sauer, Fields Institute Communication 11, 63 (1997).

[11] D. J. Christini and J. J. Collins, CHAOS 7, 544 (1997).

[12] D. T. Kaplan, preprint (1999).

[13] A. Kunysz, L. Glass, and A. Shrier, American Journal of Physiology 269, H1153 (1995).

[14] Z. Wanzhen, L. Glass, and A. Shrier, Circulation Research 69, 1022 (1991).

[15] P. So, E. Ott, T. Sauer, B. Gluckman, C. Grebogi, and S. J. Schiff, Physical Review E 55, 5398 (1997).

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, England, 1992).

[17] Note that in contrast to the explanation accompanying Eq. 4, estimation was possible during alternation between natural- and stimuli-terminated intervals due to the transient from $n = 173$ to $n = 180$.

[18] R. Mannella and V. Palleschi, Physical Review A 40, 3381 (1989).

[19] The two distinct branches of $\hat{\lambda}_{un}$ seen in Fig. 2(d) result from a quasi-periodic cycling of the SMP control and estimation, seen clearly in the insets of Fig. 2(a) and (d).
[20] D. Pierson and F. Moss, Physical Review Letters 75, 2124 (1995).

[21] P. So, J. T. Francis, T. I. Netoff, B. Gluckman, and S. J. Schiff, Biophysical Journal 74, 2776 (1998).

[22] D. Petracchi, Chaos, Solitons, & Fractals 8, 327 (1997).
Figure 1: A trial controlling the chaotic Hénon map of Eq. 5. (a), (b), the inset in (b), and (c) show the intervals $x_n$ versus interval number $n$ for various stages of the control trial. Natural intervals are shown as filled circles, while control-induced intervals are shown as open triangles. (d) shows the SVD estimates (re-estimated following every non-control interval) $\tilde{\lambda}_s$ and $\tilde{\lambda}_u$ during the control stage.

Figure 2: A trial controlling the modified Hénon map of Eq. 6. (a) and the inset in (a) show the intervals $x_n$ versus interval number $n$ for the entire trial. Natural intervals are shown as filled circles, while control-induced intervals are shown as open triangles. (b), (c), (d), and the inset in (d) show the analytically-determined (open circles) $x_n$, $\lambda_s_n$, and $\lambda_u_n$, respectively, and their SVD estimates (closed circles behind the open circles) $\tilde{x}_n$, $\tilde{\lambda}_s_n$, and $\tilde{\lambda}_u_n$, respectively.
N - No control
B - Bifurcation search
C - Control
A - Noise added

Fig. 1
Fig. 2