GLOBAL WELL-POSEDNESS OF THE COMPRESSIBLE BIPOLAR EULER-MAXWELL SYSTEM IN \mathbb{R}^3

ZHONG TAN AND YONG WANG

ABSTRACT. We first construct the global unique solution by assuming that the initial data is small in the H^3 norm but its higher order derivatives could be large. If further the initial data belongs to H^{-s} $(0 \leq s < 3/2)$ or $B_{2,\infty}^{-s}$ $(0 < s \leq 3/2)$, we obtain the various decay rates of the solution and its higher order derivatives. As an immediate byproduct, the L^p-L^2 $(1 \leq p \leq 2)$ type of the decay rates follow without requiring the smallness for L^p norm of initial data. In particular, the decay rate for the difference of densities could reach to $(1+t)^{-\frac{3}{2}}$ in L^2 norm.

1. INTRODUCTION

We consider the compressible isentropic bipolar Euler-Maxwell system in three space dimensions. The non-relaxation case is much more difficult, we refer to [6, 8, 10] for such a case. For the future work. We should notice that the relaxation term of the velocity plays an important role in the time decay rates of the solution as well as its spatial derivatives of any order. Because of the complexities and some new difficulties, we will study the compressible non-isentropic bipolar Euler-Maxwell system in the future work. We should notice that the relaxation term of the velocity plays an important role in the whole paper. The non-relaxation case is much more difficult, we refer to [6, 8, 10] for such a case. For the

\begin{align}
\begin{aligned}
\frac{\partial}{\partial t} \tilde{n}_\pm + \text{div}(\tilde{n}_\pm \tilde{u}_\pm) &= 0, \\
\frac{\partial}{\partial t} (\tilde{n}_\pm \tilde{u}_\pm) + \text{div}(\tilde{n}_\pm \tilde{u}_\pm \otimes \tilde{u}_\pm) + \nabla p_\pm(\tilde{n}_\pm) &= \pm \tilde{n}_\pm (\tilde{E} + \varepsilon \tilde{u}_\pm \times \tilde{B}) - \frac{1}{\tau_\pm} \tilde{n}_\pm \tilde{u}_\pm, \\
\varepsilon \lambda^2 \frac{\partial}{\partial t} \tilde{E} - \nabla \times \tilde{B} &= \varepsilon (\tilde{n}_- \tilde{u}_- - \tilde{n}_+ \tilde{u}_+), \\
\varepsilon \frac{\partial}{\partial t} \tilde{B} + \nabla \times \tilde{E} &= 0, \\
\lambda^2 \text{div} \tilde{E} &= \tilde{n}_+ - \tilde{n}_-, \\
\text{div} \tilde{B} &= 0, \\
(\tilde{n}_\pm, \tilde{u}_\pm, \tilde{E}, \tilde{B})|_{t=0} &= (\tilde{n}_{\pm 0}, \tilde{u}_{\pm 0}, \tilde{E}_0, \tilde{B}_0).
\end{aligned}
\end{align}

Here the unknown functions are the charged density \tilde{n}_\pm, the velocity \tilde{u}_\pm, the electric field \tilde{E} and the magnetic field \tilde{B}, with the subscripts $+$ and $-$ representing ion and electron respectively. We assume the pressure $p_\pm(\tilde{n}_\pm) = A_\pm \tilde{n}_\pm^\gamma$ with constants $A_\pm > 0$ and $\gamma \geq 1$ the adiabatic exponent. $1/\tau_\pm > 0$ are the velocity relaxation time of ions and electrons respectively. $\lambda > 0$ is the Debye length, and $\varepsilon = 1/c$ with c the speed of light.

Although its significance in plasma physics and semiconductor physics, there are merely few mathematical results about the compressible Euler-Maxwell system since its complexity in mathematics. For the unipolar case: Chen, Jerome and Wang [2] showed the global existence of entropy weak solutions to the initial-boundary value problem for arbitrarily large initial data in $L^\infty(\mathbb{R})$; Guo and Tabhildar-Zadeh [11] showed a blow-up criterion for spherically symmetric Euler-Maxwell system; Recently, there are some results on the global existence and the asymptotic behavior of smooth solutions with small amplitudes, see Tan et al. [24], Duan [3], Ueda and Kawashima [27], Ueda et al. [25]; For the asymptotic limits that derive simplified models starting from the Euler-Maxwell system, we refer to [13][20][31] for the relaxation limit, [31] for the non-relativistic limit, [13][19] for the quasi-neutral limit, [23][26] for WKB asymptotics and the references therein. For the bipolar case: Duan et al. [4] showed the global existence and time-decay rates of solutions near constant steady states with the vanishing electromagnetic field; Xu et al. [32] studied the well-posedness in critical Besov spaces. Since the unipolar or bipolar Euler-Maxwell system is a symmetrizable hyperbolic system, the Cauchy problem in \mathbb{R}^3 has a local unique smooth solution when the initial data is smooth, see Kato [13] and Jerome [14] for instance. Besides, we can refer to [5][29] for the non-isentropic case.

In this paper, we will derive a refined global existence of smooth solutions near the constant equilibrium $(n_\infty, n_\infty, 0, 0, 0, B_\infty)$ to the compressible isentropic bipolar Euler-Maxwell system and show some various time decay rates of the solution as well as its spatial derivatives of any order. Because of the complexities and some new difficulties, we will study the compressible non-isentropic bipolar Euler-Maxwell system in the future work. We should notice that the relaxation term of the velocity plays an important role in the whole paper. The non-relaxation case is much more difficult, we refer to [6][8][10] for such a case. For the
compressible unipolar Euler-Maxwell system \[24\], we do not need that the initial electron density belongs to negative Sobolev spaces \(H^{-s}\) or negative Besov spaces \(B_{2,\infty}^{-s}\) when deriving the optimal decay rates of solutions. However, in Theorem 1.2 the initial total densities \(n_{10}\) must belong to \(H^{-s}\) or \(B_{2,\infty}^{-s}\) since the cancelation between two carriers. In fact, in Theorem 1.2 the assumption for the initial difference of densities \(n_{20}\) could be deleted given \[24\]. Compared with \[24\], there are two major difficulties except the computational complexity. First of all, the bipolar system \(1.1\) could be reformulated equivalently as the damped Euler equations coupled with the one-fluid Euler-Maxwell equations \(1.5\). Then, the total densities \(n_{1}\) in the damped Euler equations is degenerately dissipative because of the cancelation between two carriers. It is difficult to close the energy estimates since the degenerate dissipation of \(n_{1}\). We manage to obtain the effective energy estimates by dealing carefully with these terms involved with \(n_{1}\) in the proofs of Lemma 2.8 and Lemma 2.9. The other difficulty is caused by the nonlinear function \(f\left(\frac{n_{1} \pm n_{2}}{2}\right)\). Here we overcome such a obstacle by some detailed calculi. Without loss of generality, we take all the physical constants \(\tau_{\pm}, \varepsilon, \lambda, A_{\pm}, n_{\infty}\) in \(1.1\) to be one.

We define

\[
\begin{align*}
n_{\pm}(x, t) &= \frac{2}{\gamma} \left\{ \left[\frac{n_{\pm}}{\gamma} (x, \frac{t}{\gamma}) \right] \right\}^{\frac{\gamma - 1}{\gamma}}, \\
u_{\pm}(x, t) &= \frac{1}{\sqrt{\gamma}} \tilde{n}_{\pm}(x, \frac{t}{\gamma}), \\
E(x, t) &= \frac{1}{\sqrt{\gamma}} \tilde{E} \left(x, \frac{t}{\gamma} \right), \\
B(x, t) &= \frac{1}{\sqrt{\gamma}} \tilde{B} \left(x, \frac{t}{\gamma} \right) - B_{\infty}.
\end{align*}
\]

(1.2)

Then the Euler-Maxwell system \(1.1\) is reformulated equivalently as

\[
\begin{align*}
\partial_{t} n_{\pm} + \text{div} u_{\pm} &= -u_{\pm} \cdot \nabla n_{\pm} - \mu n_{\pm} \text{div} u_{\pm}, \\
\partial_{t} u_{\pm} + \nu u_{\pm} &\mp u_{\pm} \times B_{\infty} + \nabla n_{\pm} \mp \nu E = -u_{\pm} \cdot \nabla u_{\pm} - \mu n_{\pm} \nabla n_{\pm} \pm u_{\pm} \times B, \\
\partial_{t} E - \nu \nabla \times B &+ \nu \left(u_{+} - u_{-} \right) = \nu \left(f(n_{+}) u_{-} - f(n_{-}) u_{+} \right), \\
\partial_{t} B + \nu \nabla \times E &= 0, \\
\text{div} E &= \nu \left(f(n_{+}) - f(n_{-}) \right), \quad \text{div} B = 0, \\
\left(n_{\pm}, u_{\pm}, E, B \right)_{t=0} &= \left(n_{\pm,0}, u_{\pm,0}, E_{0}, B_{0} \right).
\end{align*}
\]

Here \(\mu := \frac{\gamma - 1}{2}\), \(\nu := \frac{1}{\sqrt{\gamma}}\) and the nonlinear function \(f(n_{\pm})\) is defined by

\[
f(n_{\pm}) := \left(1 + \frac{\gamma - 1}{2} n_{\pm} \right)^{-\frac{\gamma - 1}{2}} - 1.
\]

(1.3)

In fact, we have assumed \(\gamma > 1\) in \(1.2\). If \(\gamma = 1\), we instead define \(n_{\pm} := \ln \tilde{n}_{\pm}\).

Let

\[
n_{1} = n_{+} + n_{-}, \quad n_{2} = n_{+} - n_{-}, \quad u_{1} = u_{+} + u_{-}, \quad u_{2} = u_{+} - u_{-},
\]

that is

\[
n_{1} = \frac{n_{1} + n_{2}}{2}, \quad n_{2} = \frac{n_{1} - n_{2}}{2}, \quad u_{1} = \frac{u_{1} + u_{2}}{2}, \quad u_{2} = \frac{u_{1} - u_{2}}{2}.
\]

(1.4)

Then \(U := (n_{1}, n_{2}, u_{1}, u_{2}, E, B)\) satisfies

\[
\begin{align*}
\partial_{t} n_{1} + \text{div} u_{1} &= g_{1}, \\
\partial_{t} u_{1} + \nu u_{1} - u_{2} \times B_{\infty} + \nabla n_{1} &= g_{2} + u_{2} \times B, \\
\partial_{t} u_{2} + \text{div} u_{2} &= g_{3}, \\
\partial_{t} u_{2} + \nu u_{2} - u_{1} \times B_{\infty} + \nabla n_{2} - 2\nu E &= g_{4} + u_{1} \times B, \\
\partial_{t} E - \nu \nabla \times B &+ \nu u_{2} = g_{5}, \\
\partial_{t} B &+ \nu \nabla \times E = 0, \\
\text{div} E &= \nu \left(f\left(\frac{n_{1} + n_{2}}{2} \right) - f\left(\frac{n_{1} - n_{2}}{2} \right) \right), \quad \text{div} B = 0,
\end{align*}
\]

(1.5)

with initial data

\[
U|_{t=0} = U_{0} := (n_{10}, n_{20}, u_{10}, u_{20}, E_{0}, B_{0}).
\]
Here
\[
g_1 = -\frac{1}{2} (u_1 \cdot \nabla u_1 + u_2 \cdot \nabla u_2) - \frac{\mu}{2} (n_1 \text{div} u_1 + n_2 \text{div} u_2),
\]
\[
g_2 = -\frac{1}{2} (u_1 \cdot \nabla u_1 + u_2 \cdot \nabla u_2) - \frac{\mu}{2} (n_1 \nabla u_1 + n_2 \nabla u_2),
\]
\[
g_3 = -\frac{1}{2} (u_1 \cdot \nabla n_2 + u_2 \cdot \nabla n_1) - \frac{\mu}{2} (n_1 \text{div} u_2 + n_2 \text{div} u_1),
\]
\[
g_4 = -\frac{1}{2} (u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1) - \frac{\mu}{2} (n_1 \nabla u_2 + n_2 \nabla u_1),
\]
\[
g_5 = \nu \left(f \left(\frac{n_1 - n_2}{2} \right) \frac{u_1 - u_2}{2} - f \left(\frac{n_1 + n_2}{2} \right) \frac{u_1 + u_2}{2} \right).
\]

Notations: In this paper, we use $H^s(\mathbb{R}^3)$, $s \in \mathbb{R}$ to denote the usual Sobolev spaces with norm $\| \cdot \|_{H^s}$ and $L^p(\mathbb{R}^3)$, $1 \leq p \leq \infty$ to denote the usual L^p spaces with norm $\| \cdot \|_{L^p}$. ∇^ℓ stands for an integer $\ell \geq 0$ stands for the usual any spatial derivatives of order ℓ. When $\ell < 0$ or ℓ is not a positive integer, ∇^ℓ stands for Λ^ℓ defined by $\Lambda^\ell f := \mathcal{F}^{-1}((\xi^\ell \mathcal{F} f)$. Here \mathcal{F} is the usual Fourier transform operator and \mathcal{F}^{-1} is its inverse. We use $H^s(\mathbb{R}^3)$, $s \in \mathbb{R}$ to denote the homogeneous Sobolev spaces on \mathbb{R}^3 with norm $\| \cdot \|_{H^s}$ defined by $\|f\|_{H^s} := \|\Lambda^s f\|_{L^2}$. We then recall the homogeneous Besov spaces. Let $\phi \in C_0^\infty(\mathbb{R}^3)$ be such that $\phi(\xi) = 1$ when $|\xi| \leq 1$ and $\phi(\xi) = 0$ when $|\xi| \geq 2$. Let $\varphi_\ell(\xi) = \phi(\xi) - \phi(2\xi)$ and $\varphi_j(\xi) = \varphi(2^{-j}\xi)$ for $j \in \mathbb{Z}$. Then by the construction, $\sum_{j \in \mathbb{Z}} \varphi_j(\xi) = 1$ if $\xi \neq 0$. We define $\Delta_j f := \mathcal{F}^{-1}(\varphi_j \ast f)$, then for $s \in \mathbb{R}$ and $1 \leq p, r \leq \infty$, we define the homogeneous Besov spaces $\dot{B}^s_{p,r}(\mathbb{R}^3)$ with norm $\| \cdot \|_{\dot{B}^s_{p,r}}$ defined by
\[
\|f\|_{\dot{B}^s_{p,r}} := \left(\sum_{j \in \mathbb{Z}} 2^{js} \|\Delta_j f\|_{L^p}^r \right)^{\frac{1}{r}}.
\]
Particularly, if $r = \infty$, then
\[
\|f\|_{\dot{B}^s_{p,\infty}} := \sup_{j \in \mathbb{Z}} 2^{js} \|\Delta_j f\|_{L^p}.
\]
Throughout this paper we let C denote some positive (generally large) universal constants and λ denote some positive (generally small) universal constants. They do not depend on either k or N; otherwise, we will denote them by C_k, C_N, etc. We will use $a \lesssim b$ if $a \leq Cb$, and $a \sim b$ means that $a \lesssim b$ and $b \lesssim a$. We use C_0 to denote the constants depending on the initial data and k, N, s. For simplicity, we write $\| (A, B) \|_X := \|A\|_X + \|B\|_X$ and $\int f := \int_{\mathbb{R}^3} f \, dx$. $(\ast) \times (\ast) + (\ast\ast)$ denote that multiplying (\ast) by a sufficiently small but fixed factor ε and then adding it to $(\ast\ast)$. For $N \geq 3$, we define the energy functional by
\[
E_N(t) := \sum_{i=0}^{N} \|\nabla^i U\|^2_{L^2},
\]
and the corresponding dissipation rate by
\[
D_N(t) := \sum_{i=1}^{N} \|\nabla^i n_1\|^2_{L^2} + \sum_{i=0}^{N} \|\nabla^i (n_2, u_1, u_2)\|^2_{L^2} + \sum_{i=0}^{N-1} \|\nabla^i E\|^2_{L^2} + \sum_{i=1}^{N-1} \|\nabla^i B\|^2_{L^2}.
\]

Our first main result about the global unique solution to the system \((1.5)\) is stated as follows.

Theorem 1.1. Assume the initial data satisfy the compatible conditions
\[
\text{div} E_0 = \nu \left(f \left(\frac{n_{110} + n_{220}}{2} \right) - f \left(\frac{n_{110} - n_{220}}{2} \right) \right), \quad \text{div} B_0 = 0.
\]
There exists a sufficiently small $\delta_0 > 0$ such that if $\mathcal{E}_3(0) \leq \delta_0$, then there exists a unique global solution $U(t)$ to the Euler-Maxwell system \((1.5)\) satisfying
\[
\sup_{0 \leq t \leq \infty} \mathcal{E}_3(t) + \int_0^\infty D_3(\tau) \, d\tau \leq C \mathcal{E}_3(0).
\]
Furthermore, if $\mathcal{E}_N(0) < +\infty$ for any $N \geq 3$, there exists an increasing continuous function $P_N(\cdot)$ with $P_N(0) = 0$ such that the unique solution satisfies
\[
\sup_{0 \leq t \leq \infty} \mathcal{E}_N(t) + \int_0^\infty D_N(\tau) \, d\tau \leq P_N(\mathcal{E}_N(0)).
\]
In the proof of Theorem 1.1, the major difficulties are caused by the degenerate dissipation for the total densities and the regularity-loss of the electromagnetic field. We will do the refined energy estimates stated in Lemma 2.3 [24] which allow us to deduce
\[\frac{d}{dt} \mathcal{E}_3 + \mathcal{D}_3 \lesssim \sqrt{\mathcal{E}_3} \mathcal{D}_3 \]
and for \(N \geq 4, \)
\[\frac{d}{dt} \mathcal{E}_N + \mathcal{D}_N \leq C_N \mathcal{D}_{N-1} \mathcal{E}_N. \]

Then Theorem 1.1 follows in the fashion of [9, 30, 24].

Our second main result is on some various decay rates of the solution to the system (1.5) by making the much stronger assumption on the initial data.

Theorem 1.2. Assume that \(U(t) \) is the solution to the Euler-Maxwell system (1.5) constructed in Theorem 1.1 with \(N \geq 5 \). There exists a sufficiently small \(\delta_0 = \delta_0(N) \) such that if \(\mathcal{E}_N(0) \leq \delta_0 \), and assuming that \(U_0 \in H^{−s} \) for some \(s \in [0, 3/2) \) or \(U_0 \in \dot{B}^{-s}_{2,∞} \) for some \(s \in (0, 3/2] \), then we have
\[\|U(t)\|_{H^{−s}} \leq C_0 \] (1.9)
or
\[\|U(t)\|_{\dot{B}^{-s}_{2,∞}} \leq C_0. \] (1.10)

Moreover, for any fixed integer \(k \geq 0 \), if \(N \geq 2k + 2 + s \), then
\[\|\nabla^k U(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}. \] (1.11)

Furthermore, for any fixed integer \(k \geq 0 \), if \(N \geq 2k + 4 + s \), then
\[\|\nabla^k (n_2, u_1, u_2, E)(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}; \] (1.12)

if \(N \geq 2k + 6 + s \), then
\[\|\nabla^k n_2(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}; \] (1.13)

if \(N \geq 2k + 12 + s \) and \(B_∞ = 0 \), then
\[\|\nabla^k (n_2, \text{div} u_2)(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}} \] (1.14).

In the proof of Theorem 1.2, we mainly use the regularity interpolation method developed in Strain and Guo [23], Guo and Wang [12] and Sohinger and Strain [22]. To prove the optimal decay rate of the dissipative equations in the whole space, Guo and Wang [12] developed a general energy method of using a family of scaled energy estimates with minimum derivative counts and interpolations among them. However, this method can not be applied directly to the compressible bipolar Euler-Maxwell system which is of regularity-loss. To overcome this obstacle caused by the regularity-loss of the electromagnetic field, we deduce from Lemma 2.3 [24] that
\[\frac{d}{dt} \mathcal{E}_{k+2} + \mathcal{D}_{k+2} \leq C_k \| (n_2, u_1, u_2) \|_{L^∞} \| \nabla^{k+2} (n_1, u_2, u_1, u_2) \|_{L^2} \| \nabla^{k+2} (E, B) \|_{L^2}, \]
where \(\mathcal{E}_{k+2} \) and \(\mathcal{D}_{k+2} \) with minimum derivative counts are defined by (3.5) and (3.6) respectively. Then combining the methods of [12, 22] and a trick of Strain and Guo [23] to treat the electromagnetic field, we manage to conclude the decay rate (1.11). If in view of the whole solution, the decay rate (1.11) can be regarded as be optimal. The higher decay rates (1.12)–(1.14) follow by revisiting the equations carefully. In particular, we will use a bootstrap argument to derive (1.14).

By Theorem 1.2 and Lemma 2.4 [24] we have the following corollary of the usual \(L^p - L^2 \) type of the decay results:

Corollary 1.3. Under the assumptions of Theorem 1.2 except that we replace the \(H^{−s} \) or \(\dot{B}_{2,∞}^{-s} \) assumption by that \(U_0 \in L^p \) for some \(p \in [1, 2] \), then for any fixed integer \(k \geq 0 \), if \(N \geq 2k + 2 + s_p \), then
\[\|\nabla^k U(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}. \]
Here the number \(s_p := 3 \left(\frac{1}{p} - \frac{1}{2} \right) \).

Furthermore, for any fixed integer \(k \geq 0 \), if \(N \geq 2k + 4 + s_p \), then
\[\|\nabla^k (n_2, u_1, u_2, E)(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}; \]
if \(N \geq 2k + 6 + s_p \), then
\[\|\nabla^k n_2(t)\|_{L^2} \leq C_0(1 + t)^{-\frac{k+s}{2}}; \]
if \(N \geq 2k + 12 + s_p \) and \(B_\infty = 0 \), then

\[
\| \nabla^k (n_2, \text{div} u_2)(t) \|_{L^2} \leq C_0 (1 + t)^{-\left(\frac{N}{2} + \frac{5}{2} + s_p\right)}. \tag{1.15}
\]

The followings are several remarks on Theorem 1.1 and Corollary 1.3.

Remark 1.4. In Theorem 1.4, we only assume that the initial data is small in the \(H^3 \) norm but the higher order derivatives could be large. Notice that in Theorem 1.3, the \(\dot{H}^{-s} \) and \(\dot{B} _{2, \infty}^{-s} \) norms of the solution are preserved along the time evolution, however, in Corollary 1.3 it is difficult to show that the \(L^p \) norm of the solution can be preserved. Note that the \(L^2 \) decay rate of the higher order spatial derivatives of the solution is obtained. Then the general optimal \(L^q \) \((2 \leq q \leq \infty)\) decay rates of the solution follow by the Sobolev interpolation.

Remark 1.5. In Theorem 1.4, the space \(\dot{H}^{-s} \) or \(\dot{B} _{2, \infty}^{-s} \) was introduced there to enhance the decay rates. By the usual embedding theorem, we know that for \(p \in (1, 2], \ L^p \subset \dot{H}^{-s} \) with \(s = 3\left(\frac{1}{p} - \frac{1}{2}\right) \in [0, 3/2) \). Meantime, we note that the endpoint embedding \(L^1 \subset \dot{B} _{2, \infty}^{-\frac{3}{2}} \) holds. Hence the \(L^p-L^2 \) \((1 \leq p \leq 2)\) type of the optimal decay results follows as a corollary.

Remark 1.6. We remark that Corollary 1.3 not only provides an alternative approach to derive the \(L^p-L^2 \) type of the optimal decay results but also improves the previous results of the \(L^p-L^2 \) approach in Duan et al. [4]. In Duan et al. [4], assuming that \(B_\infty = 0 \) and \(||U_0||_{L^1} \) is sufficiently small, by combining the energy method and the linear decay analysis, Duan proved that

\[
\| u_2(t) \|_{L^2} \leq C_0 (1 + t)^{-\frac{5}{2}}, \quad \| (u_1, u_2, E)(t) \|_{L^2} \leq C_0 (1 + t)^{-\frac{3}{4}} \quad \text{and} \quad \| (u_1, B)(t) \|_{L^2} \leq C_0 (1 + t)^{-\frac{5}{4}}.
\]

Notice that for \(p = 1 \), our decay rate of \(u_2(t) \) is \((1 + t)^{-3/4}\) in (1.15).

The rest of our paper is structured as follows. In section 2, we establish the refined energy estimates for the solution and derive the negative Sobolev and Besov estimates. Theorem 1.1 and Theorem 1.2 are proved in section 3.

2. Nonlinear energy estimates

In this section, we will do the a priori estimate by assuming that \(\| n_{\pm}(t) \|_{H^3} \leq \delta \ll 1 \). Recall the expression (1.3) of \(f(n_{\pm}) \) and (1.4). Then by Taylor’s formula and Sobolev’s inequality, we have

\[
f \left(\frac{n_1 \pm n_2}{2} \right) \sim \frac{n_1 \pm n_2}{2} \quad \text{and} \quad f^{(k)} \left(\frac{n_1 \pm n_2}{2} \right) \leq C_k \text{ for any } k \geq 1. \tag{2.1}
\]

2.1. Preliminary

In this subsection, we collect some analytic tools used later in this paper.

Lemma 2.1. Let \(2 \leq p \leq +\infty \) and \(\alpha, m, \ell \geq 0 \). Then we have

\[
\| \nabla^\alpha f \|_{L^p} \leq C_p \| \nabla^n f \|^{1-\theta}_{L^2} \| \nabla^\ell f \|^{\theta}_{L^2}.
\]

Here \(0 \leq \theta \leq 1 \) (if \(p = +\infty \), then we require that \(0 < \theta < 1 \)) and \(\alpha \) satisfies

\[
\alpha + 3 \left(\frac{1}{2} - \frac{1}{p} \right) = m(1 - \theta) + \ell \theta.
\]

Proof. For the case \(2 \leq p < +\infty \), we refer to Lemma A.1 in [12]; for the case \(p = +\infty \), we refer to Exercise 6.1.2 in [7] (pp. 421).

Lemma 2.2. For any integer \(k \geq 0 \), we have

\[
\| \nabla^k f(n) \|_{L^\infty} \leq C_k \| \nabla^{k+1} n \|^{1/2}_{L^5} \| \nabla^{k+2} n \|^{1/2}_{L^2}, \tag{2.2}
\]

and

\[
\| \nabla^k f(n) \|_{L^2} \leq C_k \| \nabla^k n \|_{L^2}.
\]

Proof. See Lemma 2.2 in [23].

We recall the following commutator estimator:

Lemma 2.3. Let \(k \geq 1 \) be an integer and define the commutator

\[
[\nabla^k, g] h = \nabla^k (gh) - g \nabla^k h.
\]

Then we have

\[
\| [\nabla^k, g] h \|_{L^2} \leq C_k \left(\| \nabla^k g \|_{L^\infty} \| \nabla^{k-1} h \|_{L^2} + \| \nabla^k g \|_{L^2} \| h \|_{L^\infty} \right),
\]
and
\[\| \nabla^k (gh) \|_{L^2} \leq C_k \left(\| g \|_{L^\infty} \| \nabla^k h \|_{L^2} + \| \nabla^k g \|_{L^2} \| h \|_{L^\infty} \right). \]

Proof. It can be proved by using Lemma 2.4, see Lemma 3.4 in [15] (pp. 98) for instance. \(\square \)

Notice that when using the commutator estimate in this paper, we usually will not consider the case that \(k = 0 \) since it is trivial.

We have the \(L^p \) embeddings:

Lemma 2.4. Let \(0 \leq s < 3/2, \ 1 < p \leq 2 \) with \(1/2 + s/3 = 1/p \), then
\[\| f \|_{H^{-s}} \lesssim \| f \|_{L^p}. \]

Proof. It follows from the Hardy-Littlewood-Sobolev theorem, see [7]. \(\square \)

Lemma 2.5. Let \(0 < s \leq 3/2, \ 1 \leq p < 2 \) with \(1/2 + s/3 = 1/p \), then
\[\| f \|_{B_{2,s}^\infty} \lesssim \| f \|_{L^p}. \]

Proof. See Lemma 4.6 in [22]. \(\square \)

It is important to use the following special interpolation estimates:

Lemma 2.6. Let \(s \geq 0 \) and \(\ell \geq 0 \), then we have
\[\| \nabla^\ell f \|_{L^2} \lesssim \| \nabla^{\ell+1} f \|_{L^2}^{1-\theta} \| f \|_{H^{-s}}^\theta, \text{ where } \theta = \frac{1}{\ell + 1 + s}. \]

Proof. It follows directly by the Parseval theorem and Hölder’s inequality. \(\square \)

Lemma 2.7. Let \(s > 0 \) and \(\ell \geq 0 \), then we have
\[\| \nabla^\ell f \|_{L^2} \lesssim \| \nabla^{\ell+1} f \|_{L^2}^{1-\theta} \| f \|_{B_{2,s}^\infty}^\theta, \text{ where } \theta = \frac{1}{\ell + 1 + s}. \]

Proof. See Lemma 4.5 in [22]. \(\square \)

2.2. **Energy estimates.** In this subsection, we will derive the basic energy estimates for the solution to the Euler-Maxwell system (1.3). We begin with the standard energy estimates.

Lemma 2.8. For any integer \(k \geq 0 \), we have
\[
\frac{d}{dt} \sum_{l=k}^{k+2} \| \nabla U \|_{L^2}^2 + \lambda \sum_{l=k}^{k+2} \| \nabla^l (u_1, u_2) \|_{L^2}^2 \\
\leq C_k F \left(\| \nabla n_1 \|_{L^2}^2 + \sum_{l=k}^{k+2} \| \nabla^l (n_2, u_1, u_2) \|_{L^2}^2 + \sum_{l=k}^{k+1} \| \nabla^l E \|_{L^2}^2 + \| \nabla^{k+1} B \|_{L^2}^2 \right) \\
+ \| (n_2, u_1, u_2) \|_{L^\infty} \| \nabla^{k+2} (n_2, u_1, u_2) \|_{L^2} \| \nabla^{k+2} (E, B) \|_{L^2},
\] \(\text{where } F \text{ is defined by} \)
\[F = F(n_1, n_2, u_1, u_2, B) := \| \nabla n_1 \|_{H^2} + \| (n_2, u_1, u_2) \|_{H^{s+1, \gamma_1 + \gamma_2} + \gamma_3 H^s} + \| \nabla B \|_{L^2}. \]

Proof. The standard \(\nabla^l \) \((l = k, k + 1, k + 2)\) energy estimates on the system (1.3) yield
\[
\frac{1}{2} \frac{d}{dt} \int \| \nabla^l (n_1, n_2, u_1, u_2) \|_{L^2}^2 + \frac{d}{dt} \int \| \nabla^l (E, B) \|_{L^2}^2 + \nu \| \nabla^l (u_1, u_2) \|_{L^2}^2 \\
= \int \nabla^l g_1 \nabla^l n_1 + \nabla^l g_2 \cdot \nabla^l u_1 + \nabla^l g_3 \nabla^l n_2 + \nabla^l g_4 \cdot \nabla^l u_2 \\
+ \int \nabla^l (u_2 \times B) \cdot \nabla^l u_1 + \nabla^l (u_1 \times B) \cdot \nabla^l u_2 + 2\nu \int \nabla^l g_5 \cdot \nabla^l E \\
:= I_1 + I_2 + 2\nu I_3.
\]

We now estimate \(I_1 \sim I_3 \). First, by (1.5), we split \(I_1 \) as:
\[
I_1 = -\frac{1}{2} \int \nabla^l (u_1 \cdot \nabla n_1) \cdot \nabla^l n_1 + \nabla^l (u_1 \cdot \nabla u_1) \cdot \nabla^l u_1 \\
-\frac{1}{2} \int \nabla^l (u_1 \cdot n_2) \cdot \nabla^l n_2 + \nabla^l (u_1 \cdot u_2) \cdot \nabla^l u_2 \\
-\frac{1}{2} \int \nabla^l (u_2 \cdot n_2) \cdot \nabla^l n_1 + \nabla^l (u_2 \cdot n_1) \cdot \nabla^l n_2.
\]
In light of (2.7) and (2.8), we deduce from (2.6) that for $\alpha \leq 1$ and $\ell + \frac{3}{2} = \alpha \times \left(1 - \frac{\ell}{2} \right) + (l + 1) \times \frac{\ell}{2} \implies \alpha = \frac{3l - 2\ell}{2l - 2\ell} \in \left[\frac{3}{2}, 3 \right]$ since $\ell \leq l$;

If $0 \leq \ell \leq \left[\frac{3}{2} \right]$, by Hölder’s inequality and Lemma A.1, we have
\[
\|\nabla^{l-\ell} u_1 \cdot \nabla^{\ell} n_1\|_{L^6/5} \lesssim \|\nabla^{l-\ell} u_1\|_{L^5} \|\nabla^{l+1} n_1\|_{L^3} \\
\lesssim \|u_1\|_{L^2}^{\frac{3}{2}} \|\nabla^{l+1} n_1\|_{L^2}^{\frac{1}{2}} \|\nabla^{l+1} n_1\|_{L^2} \lesssim (\|\nabla^{l+1} n_1\|_{H^2} + \|u_1\|_{H^3}) (\|\nabla^{l+1} n_1\|_{L^2} + \|\nabla^{l+1} u_1\|_{L^2}),
\]
where α is defined by
\[
\ell + \frac{3}{2} = \alpha \times \left(1 - \frac{\ell}{2} \right) + (l + 1) \times \frac{\ell}{2} \implies \alpha = \frac{3l - 2\ell}{2l - 2\ell} \in \left[\frac{3}{2}, 3 \right] \text{ since } \ell \leq l;
\]

if $\left[\frac{3}{2} \right] + 1 \leq \ell \leq l$, by Hölder’s inequality and Lemma A.1 again, we have
\[
\|\nabla^{l-\ell} u_1 \cdot \nabla^{\ell} n_1\|_{L^6/5} \lesssim \|\nabla^{l-\ell} u_1\|_{L^5} \|\nabla^{l+1} n_1\|_{L^2} \\
\lesssim \|\nabla^{l+1} n_1\|_{L^2}^{\frac{1}{2}} \|\nabla^{l+1} n_1\|_{L^2} \lesssim (\|\nabla^{l+1} n_1\|_{H^2} + \|u_1\|_{H^3}) (\|\nabla^{l+1} n_1\|_{L^2} + \|\nabla^{l+1} u_1\|_{L^2}),
\]
where α is defined by
\[
l - \ell + \frac{1}{2} = \alpha \times \frac{\ell}{2} + l - \ell \implies \alpha = \frac{l - \ell + \frac{1}{2}}{2l - 2\ell} \in \left[\frac{1}{2}, 3 \right] \text{ since } \ell \geq \frac{l + 1}{2}.
\]

In light of (2.6) and (2.8), we deduce from (2.9) that for $l = k$ or $k + 1$,
\[
- \int \nabla^{l} (u_1 \cdot \nabla n_1) \nabla^{l} n_1 \lesssim (\|\nabla n_1\|_{H^2} + \|u_1\|_{H^3}) (\|\nabla^{l+1} n_1\|_{L^2}^2 + \|\nabla^{l+1} u_1\|_{L^2}^2).
\]

Now for $l = k + 2$, by integrating by parts and Lemma 2.8, we have
\[
- \int \nabla^{k+2} (u_1 \cdot \nabla n_1) \nabla^{k+2} n_1 = - \int [\nabla^{k+2} u_1 \cdot \nabla n_1 \nabla^{k+2} n_1 - \int u_1 \cdot \nabla \nabla^{k+2} n_1 \nabla^{k+2} n_1 \\
\lesssim (\|\nabla n_1\|_{L^\infty} \|\nabla^{k+2} n_1\|_{L^2} + \|\nabla^{k+2} u_1\|_{L^2} \|\nabla n_1\|_{L^\infty}) \|\nabla^{k+2} n_1\|_{L^2} \\
\lesssim \|\nabla (n_1, u_1)\|_{L^\infty} \|\nabla^{k+2} (n_1, u_1)\|_{L^2}^2 + \frac{1}{2} \int \nabla u_1 \cdot \nabla^{k+2} n_1 \\
\lesssim (\|\nabla n_1\|_{H^2} + \|u_1\|_{H^3}) \|\nabla^{k+2} (n_1, u_1)\|_{L^2}^2.
\]
On the other hand, like (2.11), we have for \(l = k, k + 1, k + 2, \)

\[
- \int \nabla^l (u_1 \cdot \nabla u_1) \cdot \nabla u_1 = - \int (u_1 \cdot \nabla \nabla^l u_1 + [\nabla^l, u_1] \cdot \nabla u_1) \cdot \nabla u_1 \\
= - \int \frac{1}{2} u_1 \cdot \nabla (\nabla^l u_1 \cdot \nabla^l u_1) + [\nabla^l, u_1] \cdot \nabla u_1 \cdot \nabla u_1 \\
\lesssim \| \nabla u_1 \|_{L^\infty} \| \nabla^l u_1 \|_{L^2}^2. \quad (2.11)
\]

Hence, by (2.10)-(2.11), we have for \(l = k, k + 1, \)

\(I_{11} \lesssim (\| \nabla n_1 \|_{H^2} + \| u_1 \|_{H^3}) \left(\| \nabla^{l+1} n_1 \|_{L^2}^2 + \| \nabla^l u_1 \|_{L^2}^2 \right), \)

and for \(l = k + 2, \)

\(I_{11} \lesssim (\| \nabla n_1 \|_{H^2} + \| u_1 \|_{H^3}) \| \nabla^{k+2} (n_1, u_1) \|_{L^2}^2. \)

Like (2.10), we have for \(l = k, k + 1, k + 2, \)

\(I_{12} \lesssim \| (n_2, u_2) \|_{H^3} \| \nabla^l (n_2, u_2) \|_{L^2}^2 \), \quad \(I_{14} \lesssim \| (u_1, u_2) \|_{H^3} \| \nabla^l (u_1, u_2) \|_{L^2}^2. \)

As in (2.6)-(2.10), we have for \(l = k, k + 1, \)

\(I_{13} \lesssim (\| \nabla n_1 \|_{H^2} + \| (n_2, u_2) \|_{H^3}) \left(\| \nabla^{l+1} (n_1, n_2) \|_{L^2}^2 + \| \nabla^l u_1 \|_{L^2}^2 \right), \)

and for \(l = k + 2, \)

\(I_{13} \lesssim (\| \nabla n_1 \|_{H^2} + \| (n_2, u_2) \|_{H^3}) \| \nabla^{k+2} (n_1, n_2, u_1) \|_{L^2}^2. \)

We next estimate the term \(I_{15}. \) For \(l = k \) or \(k + 1, \) we split \(I_{15} \) as:

\[
I_{15} = - \int \nabla^l (n_1 \div u_1) \nabla^l n_1 + \nabla^l (n_1 \nabla n_1) \cdot \nabla u_1 \\
= - \int \sum_{0 \leq \ell \leq l} C_{\ell} \left(\nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \nabla^l n_1 + \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \cdot \nabla^\ell u_1 \right) \\
= - \int \sum_{0 \leq \ell \leq l-1} C_{\ell} \nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \nabla^l n_1 - \int \sum_{0 \leq \ell \leq l-1} C_{\ell} \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \cdot \nabla^\ell u_1 \\
- \int n_1 \div \nabla^l u_1 \nabla^l n_1 + n_1 \nabla^{l+1} n_1 \cdot \nabla^l u_1 \\
:= I_{151} + I_{152} + I_{153}. \quad (2.12)
\]

First we estimate \(I_{153}. \) By Hölder’s, Sobolev’s and Cauchy’s inequalities, we obtain

\[
I_{153} = - \int n_1 \div \nabla^l u_1 \nabla^l n_1 + n_1 \nabla^{l+1} n_1 \cdot \nabla^l u_1 = - \int n_1 \div (\nabla^l u_1 \nabla^l n_1) = \int \nabla^l n_1 \nabla^\ell u_1 \nabla^l n_1 \\
\lesssim \| \nabla n_1 \|_{L^3} \| \nabla^l u_1 \|_{L^2} \| \nabla^l n_1 \|_{L^6} \lesssim \| \nabla n_1 \|_{H^2} \left(\| \nabla^{l+1} n_1 \|_{L^2}^2 + \| \nabla^l u_1 \|_{L^2}^2 \right). \quad (2.13)
\]

Next we estimate the term \(I_{151}. \) By Hölder’s and Sobolev’s inequalities, we obtain

\[
I_{151} = - \int \sum_{0 \leq \ell \leq l-1} C_{\ell} \nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \nabla^l n_1 \lesssim \sum_{0 \leq \ell \leq l-1} \| \nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \|_{L^{6/5}} \| \nabla^l n_1 \|_{L^6} \\
\lesssim \sum_{0 \leq \ell \leq l-1} \| \nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \|_{L^{6/5}} \| \nabla^{l+1} n_1 \|_{L^2}. \quad (2.14)
\]

If \(0 \leq \ell \leq \left[\frac{l}{2} \right], \) by Hölder’s inequality and Lemma A.1, we have

\[
\| \nabla^{l-\ell} n_1 \nabla^\ell \div u_1 \|_{L^{6/5}} \lesssim \| \nabla^{l-\ell} n_1 \|_{L^3} \| \nabla^{l+1} u_1 \|_{L^2} \\
\lesssim \| n_1 \|_{L^3} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^{l+1} u_1 \|_{L^2} \| \nabla^\ell u_1 \|_{L^2} \lesssim (\| \nabla n_1 \|_{L^2} + \| u_1 \|_{H^3}) \left(\| \nabla^{l+1} n_1 \|_{L^2} + \| \nabla^l u_1 \|_{L^2} \right), \quad (2.15)
\]

where \(\alpha \) is defined by

\[
\ell + 1 = \alpha \times \frac{2l - 2\ell - 1}{2l} + \frac{2\ell + 1}{2} \quad \Rightarrow \frac{\ell}{\alpha} = \frac{l}{2l - 2\ell - 1} \in \left(\frac{1}{2}, 3 \right) \quad \text{since } \ell \leq \frac{l}{2},
\]
if \(\lfloor \frac{l}{2} \rfloor + 1 \leq \ell \leq l - 1 \), by Hölder’s inequality and Lemma A.1 again, we have

\[
\| \nabla^{l-\ell} n_1 \nabla^\ell \text{div} u_1 \|_{L^{6/5}} \lesssim \| \nabla^{l-\ell} n_1 \|_{L^6} \| \nabla^{l+1} u_1 \|_{L^2} \\
\lesssim \| \nabla^\ell n_1 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^\ell u_1 \|_{L^2} \| \nabla^{l+1} u_1 \|_{L^2} \\
\lesssim (\| \nabla n_1 \|_{H^2} + \| u_1 \|_{H^3}) (\| \nabla^{l+1} n_1 \|_{L^2} + \| \nabla^{l+1} u_1 \|_{L^2}),
\]

(2.16)

where \(\alpha \) is defined by

\[
l - \ell + \frac{1}{2} = \alpha \times \frac{l - \ell}{l} + (l + 1) \times \frac{l - \ell - 1}{l} \\
\implies \alpha = 1 + \frac{l}{2\ell + 2} \in \left[\frac{3}{2}, 3 \right) \text{ since } \ell \geq \frac{l + 1}{2}.
\]

In light of (2.15) and (2.16), we deduce from (2.14) that

\[
I_{151} \lesssim (\| \nabla n_1 \|_{H^2} + \| u_1 \|_{H^3}) (\| \nabla^{l+1} n_1 \|_{L^2} + \| \nabla^{l+1} u_1 \|_{L^2}).
\]

(2.17)

Finally, we estimate the term \(I_{152} \). By Hölder’s inequality, we obtain

\[
I_{152} = - \int \sum_{0 \leq \ell \leq l-1} C_{n} \| \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \cdot \nabla^\ell u_1 \|_{L^2} \sum_{0 \leq \ell \leq l-1} \| \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \|_{L^2} \| \nabla^\ell u_1 \|_{L^2}.
\]

(2.18)

If \(0 \leq \ell \leq \lfloor \frac{l}{2} \rfloor \), by Hölder’s inequality and Lemma A.1, we have

\[
\| \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \|_{L^2} \lesssim \| \nabla^{l-\ell} n_1 \|_{L^6} \| \nabla^{l+1} n_1 \|_{L^2} \\
\lesssim \| \nabla n_1 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^\ell u_1 \|_{L^2} \\
\lesssim \| \nabla n_1 \|_{H^2} \| \nabla^{l+1} n_1 \|_{L^2},
\]

(2.19)

where \(\alpha \) is defined by

\[
\ell + \frac{3}{2} = \alpha \times \frac{l - \ell}{l} + (l + 1) \times \frac{\ell}{l} \\
\implies \alpha = \frac{3l - 2\ell}{2l - 2\ell} \in \left[\frac{3}{2}, 3 \right) \text{ since } \ell \leq \frac{l}{2};
\]

if \(\lfloor \frac{l}{2} \rfloor + 1 \leq \ell \leq l - 1 \), by Hölder’s inequality and Lemma A.1 again, we have

\[
\| \nabla^{l-\ell} n_1 \nabla^{l+1} n_1 \|_{L^2} \lesssim \| \nabla^{l-\ell} n_1 \|_{L^6} \| \nabla^{l+1} n_1 \|_{L^2} \\
\lesssim \| \nabla n_1 \|_{L^6} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^\ell u_1 \|_{L^2} \\
\lesssim \| \nabla n_1 \|_{H^2} \| \nabla^{l+1} n_1 \|_{L^2},
\]

(2.20)

where \(\alpha \) is defined by

\[
l - \ell + \frac{1}{2} = \alpha \times \frac{l - \ell}{l - 1} + (l + 1) \times \left(1 - \frac{\ell}{l - 1} \right) \\
\implies \alpha = 2 + \frac{l + 1}{2l} \in \left[\frac{3}{2}, 3 \right) \text{ since } \ell \geq \frac{l + 1}{2}.
\]

In light of (2.19) and (2.20), we deduce from (2.18) that

\[
I_{152} \lesssim \| \nabla n_1 \|_{H^2} \left(\| \nabla^{l+1} n_1 \|_{L^2}^2 + \| \nabla^{l+1} u_1 \|_{L^2}^2 \right).
\]

(2.21)

Hence, by (2.13), (2.17) and (2.21), we deduce from (2.12) that for \(l = k, k + 1 \),

\[
I_{15} \lesssim (\| \nabla n_1 \|_{H^2} + \| u_1 \|_{H^3}) \left(\| \nabla^{l+1} n_1 \|_{L^2}^2 + \| \nabla^{l+1} u_1 \|_{L^2}^2 \right).
\]
For $l = k + 2$, like (2.10), we have

$$I_{15} = - \int \nabla^{k+2}(n_1 \text{div} u_1) \nabla^{k+2} n_1 + \nabla^{k+2}(n_1 \nabla n_1) \cdot \nabla^{k+2} u_1$$

$$= - \int \left[\nabla^{k+2}, n_1 \right] \text{div} u_1 \nabla^{k+2} n_1 + \left[\nabla^{k+2}, n_1 \right] \nabla n_1 \cdot \nabla^{k+2} u_1$$

$$- \int n_1 \text{div} \nabla^{k+2} u_1 \nabla^{k+2} n_1 + n_1 \nabla \nabla^{k+2} n_1 \cdot \nabla^{k+2} u_1$$

$$\lesssim \left(||\nabla n_1||_{L^\infty} ||\nabla^{k+2} u_1||_{L^2} + ||\nabla^{k+2} n_1||_{L^2} ||\nabla u_1||_{L^\infty} \right) ||\nabla^{k+2} n_1||_{L^2}$$

$$- \int n_1 \text{div} \left(\nabla^{k+2} u_1 \nabla^{k+2} n_1 \right)$$

$$\lesssim ||\nabla (n_1, u_1)||_{L^\infty} ||\nabla^{k+2} (n_1, u_1)||_{L^2}^2 + \int n_1 \nabla^{k+2} u_1 \nabla^{k+2} n_1$$

$$\lesssim \left(||\nabla n_1||_{H^2} + ||u_1||_{H^3} \right) ||\nabla^{k+2} (n_1, u_1)||_{L^2}^2.$$

Applying the same arguments to these terms $I_{16} - I_{18}$, we deduce that for $l = k + 1$,

$$I_{16} + I_{17} + I_{18} \lesssim \left(||\nabla n_1||_{H^2} + ||(n_2, u_1, u_2)||_{H^3} \right) \left(||\nabla^{l+1} (n_1, n_2)||_{L^2}^2 + ||\nabla^l (u_1, u_2)||_{L^2}^2 \right);$$

for $l = k + 2$,

$$I_{16} + I_{17} + I_{18} \lesssim \left(||\nabla n_1||_{H^2} + ||(n_2, u_1, u_2)||_{H^3} \right) ||\nabla^{k+2} (n_1, n_2, u_1, u_2)||_{L^2}^2.$$

Hence, by these estimates for $I_{11} \sim I_{18}$, we deduce for $l = k, k + 1$

$$I_1 \lesssim \left(||\nabla n_1||_{H^2} + ||(n_2, u_1, u_2)||_{H^3} \right) \left(||\nabla^{l+1} (n_1, n_2)||_{L^2}^2 + ||\nabla^l (u_1, u_2)||_{L^2}^2 \right);$$

(2.22)

for $l = k + 2$

$$I_1 \lesssim \left(||\nabla n_1||_{H^2} + ||(n_2, u_1, u_2)||_{H^3} \right) ||\nabla^{k+2} (n_1, n_2, u_1, u_2)||_{L^2}^2.$$

Now we estimate the term I_2, and we must be much more careful about this term since the magnetic field B has the weakest dissipative estimates. First of all, we have

$$I_2 = \sum_{l=1}^{l} C_{1} l^l \int \nabla^{l-\ell} u_2 \times \nabla^{l} B \cdot \nabla^{l-\ell} u_1 + \nabla^{l-\ell} u_1 \times \nabla^{l} B \cdot \nabla^{l} u_2$$

$$\lesssim C_l \sum_{l=1}^{l} \left(\left(||\nabla^{l-\ell} u_2 \nabla^{l} B||_{L^2} \left(||\nabla^{l} u_1||_{L^2} + ||\nabla^{l-\ell} u_1 \nabla^{l} B||_{L^2} \right) \right) \right).$$

(2.23)

Here we notice $\nabla^l u_2 \times B \cdot \nabla^l u_1 + \nabla^l u_1 \times B \cdot \nabla^l u_2 = 0$. We only estimate the first term on the right-hand side of (2.23), the second term can be estimated similarly. We again have to distinguish the arguments by the value of l. First, let $l = k$. We take $L^3 - L^6$ and then apply Lemma 2.1 to have

$$||\nabla^{k+1-\ell} u_2 \nabla^{k} B||_{L^2} \lesssim ||\nabla^{k+1-\ell} u_2||_{L^3} \left(||\nabla^{k} B||_{L^6} \right)$$

$$\lesssim ||\nabla^\alpha u_2||_{L^2} \left(||\nabla^{k} u_2||_{L^2} \right)^{1-\frac{\ell}{k}} \left(||\nabla B||_{L^2} \right)^{1-\frac{\ell}{k}} ||\nabla^{k+1} B||_{L^2}^{\frac{\ell}{k}},$$

where α is defined by

$$k - \ell + \frac{1}{2} = \alpha \times \frac{\ell}{k} + k \times \left(1 - \frac{\ell}{k} \right) \Rightarrow \alpha = \frac{k}{2\ell} \leq \frac{k}{2}.$$

Hence by Young’s inequality, we have that for $l = k$,

$$I_2 \leq C_k \left(\left(||u_1, u_2||_{H^2} \right)^{\frac{\ell}{k}} + \left(||B||_{L^2} \right)^{\frac{\ell}{k}} \right) \left(\left(||\nabla^{k+1} (u_1, u_2)||_{L^2} \right)^{\frac{\ell}{k}} + \left(||\nabla^{k+1} B||_{L^2} \right)^{\frac{\ell}{k}} \right).$$

(2.24)

We then let $l = k + 1$. If $1 \leq \ell \leq k$, we take $L^3 - L^6$ and by Lemma 2.1 again to obtain

$$||\nabla^{k+1-\ell} u_2 \nabla^{k} B||_{L^2} \lesssim ||\nabla^{k+1-\ell} u_2||_{L^3} \left(||\nabla^{k} B||_{L^6} \right)$$

$$\lesssim ||\nabla^\alpha u_2||_{L^2} \left(||\nabla^{k+1} u_2||_{L^2} \right)^{1-\frac{\ell}{k}} \left(||\nabla B||_{L^2} \right)^{1-\frac{\ell}{k}} ||\nabla^{k+1} B||_{L^2}^{\frac{\ell}{k}},$$

where α is defined by

$$k + 1 - \ell + \frac{1}{2} = \alpha \times \frac{\ell}{k} + (k + 1) \times \left(1 - \frac{\ell}{k} \right) \Rightarrow \alpha = \frac{k + 1}{2\ell} \leq \frac{k + 1}{2}.$$
if \(\ell = k + 1 \), we take \(L^\infty - L^2 \) to get
\[
\| u_2 \nabla^{k+1} B \|_{L^2} \lesssim \| u_2 \|_{L^\infty} \| \nabla^{k+1} B \|_{L^2}.
\]
We thus have that for \(\ell = k + 1 \), by Sobolev's inequality,
\[
I_2 \leq C_k \left(\| (u_1, u_2) \|_{H^{\frac{2\ell+1}{2}} + H^2} + \| \nabla B \|_{L^2} \right) \left(\| \nabla^{k+1} (u_1, u_2) \|_{L^2} + \| \nabla^{k+1} B \|_{L^2}^2 \right).
\]
We now let \(\ell = k + 2 \). If \(1 \leq \ell \leq k \), we take \(L^1 - L^0 \) and by Lemma 2.1 again to have
\[
\| \nabla^{k+2-\ell} u_2 \nabla^\ell f \|_{L^2} \lesssim \| \nabla^{k+2-\ell} u_2 \|_{L^2} \| \nabla^\ell f \|_{L^6},
\]
\[
\lesssim \| \nabla^\alpha u_2 \|_{L^2} \| \nabla^{k+2} u_2 \|_{L^2}^{1-\frac{\ell}{2}} \| \nabla^\ell B \|_{L^2}^{1-\frac{\ell}{2}} \| \nabla^{k+1} B \|_{L^2}^{\frac{\ell}{2}},
\]
where \(\alpha \) is defined by
\[
k + 2 - \ell + \frac{1}{2} = \alpha \times \frac{\ell}{k} + (k + 2) \times \left(1 - \frac{\ell}{k} \right) \Rightarrow \alpha = 2 + \frac{k}{2\ell} \leq \frac{k}{2} + 2.
\]
if \(\ell = k + 1 \) or \(k + 2 \), we take \(L^\infty - L^2 \) to get
\[
\| u_2 \nabla^{k+1} B \|_{L^2} \lesssim \| u_2 \|_{L^\infty} \| \nabla^{k+1} B \|_{L^2},
\]
and
\[
\| u_2 \nabla^{k+2} B \|_{L^2} \lesssim \| u_2 \|_{L^\infty} \| \nabla^{k+2} B \|_{L^2}.
\]
We thus have that for \(\ell = k + 2 \),
\[
I_2 \leq C_k \left(\| (u_1, u_2) \|_{H^{\frac{2\ell+1}{2}} + H^2} + \| \nabla B \|_{L^2} \right) \left(\| \nabla^{k+2-\ell} (u_1, u_2) \|_{L^2} + \| \nabla^{k+1} B \|_{L^2}^2 \right)
\]
\[
+ C \| (u_1, u_2) \|_{L^\infty} \| \nabla^{k+2} B \|_{L^2} \| \nabla^{k+2-\ell} (u_1, u_2) \|_{L^2}.
\]
We now estimate the last term \(I_3 \) in (2.24). First, we split \(I_3 \) as:
\[
I_3 = \nu \sum_{l=0}^\ell C_l^x \int \left[\nabla^\ell f \left(\frac{n_1 - n_2}{2} \right) \nabla^{l-\ell} \left(\frac{u_1 - u_2}{2} \right) - \nabla^\ell f \left(\frac{n_1 + n_2}{2} \right) \nabla^{l-\ell} \left(\frac{u_1 + u_2}{2} \right) \right] \cdot \nabla E
\]
\[
= \frac{\nu}{2} \sum_{l=0}^\ell C_l^x \int \nabla^\ell f \left(\frac{n_1 - n_2}{2} \right) \nabla^{l-\ell} u_1 \cdot \nabla E - \frac{\nu}{2} \sum_{l=0}^\ell C_l^x \int \nabla^\ell f \left(\frac{n_1 - n_2}{2} \right) \nabla^{l-\ell} u_2 \cdot \nabla E
\]
\[
- \frac{\nu}{2} \sum_{l=0}^\ell C_l^x \int \nabla^\ell f \left(\frac{n_1 + n_2}{2} \right) \nabla^{l-\ell} u_1 \cdot \nabla E + \frac{\nu}{2} \sum_{l=0}^\ell C_l^x \int \nabla^\ell f \left(\frac{n_1 + n_2}{2} \right) \nabla^{l-\ell} u_2 \cdot \nabla E
\]
\[
= \frac{\nu}{2} I_{31} + \frac{\nu}{2} I_{32} + \frac{\nu}{2} I_{33} + \frac{\nu}{2} I_{34}.
\]
We still have to distinguish the arguments by the value of \(l \). For \(l = k \) or \(k + 1 \), we only estimate the first term \(I_{31} \) on the right-hand side of (2.25), the other terms \(I_{32} - I_{34} \) can be estimated similarly. If \(0 \leq l \leq l - 1 \), we take \(L^\infty - L^2 \) and by Lemma 2.1 and the estimate (2.24) of Lemma 2.2 to obtain
\[
\| \nabla^\ell f \left(\frac{n_1 - n_2}{2} \right) \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
\leq \| \nabla^\ell f \left(\frac{n_1 - n_2}{2} \right) \|_{L^\infty} \| \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
\leq C_1 \| \nabla^{l+1} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l+2} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l-\ell} u_1 \|_{L^2} + C_1 \| \nabla^{l+1} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l+2} n_2 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
\leq C_1 \left(\| \nabla n_1 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l+2} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
+ C_1 \left(\| \nabla n_2 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l+2} n_2 \|_{L^2}^{\frac{1}{2}} \| \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
\leq C_1 \| \nabla n_1 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^{l+2} n_1 \|_{L^2} \| \nabla^{l-\ell} u_1 \|_{L^2} + C_1 \| \nabla n_1 \|_{L^2} \| \nabla^{l+1} n_2 \|_{L^2} \| \nabla^{l+2} n_2 \|_{L^2} \| \nabla^{l-\ell} u_1 \|_{L^2}
\]
\[
+ C_1 \| \nabla n_2 \|_{L^2} \| \nabla^{l+1} n_1 \|_{L^2} \| \nabla^{l+2} n_2 \|_{L^2} \| \nabla^{l-\ell} u_1 \|_{L^2},
\]
where \(\alpha \) is defined by
\[
l - \ell = \alpha \times \frac{2\ell + 1}{2l} + l \times \left(1 - \frac{2\ell + 1}{2l} \right) \Rightarrow \alpha = \frac{l}{2\ell + 1} \leq l;
if $\ell = l$, we take $L^2 - L^\infty$ and by the estimate (2.2) of Lemma 2.2 to have
\[
\left\| \nabla^l \left(\frac{n_l - n_{l+1}}{2} \right) u_l \right\|_{L^2} \leq C_2 \left\| \nabla^l f \left(\frac{n_l - n_{l+1}}{2} \right) \right\|_{L^2} \left\| u_l \right\|_{L^3} \leq C_l \left\| \nabla^{l+1} (n_1, n_2) \right\|_{L^2} \left\| u_1 \right\|_{H^1}.
\]
We thus have that for $l = k$ or $k + 1$,
\[
I_{31} \leq C_l \left(\left\| \nabla (n_1, n_2) \right\|_{L^2} + \left\| u_1 \right\|_{H^1} \right) \left(\left\| \nabla^{l+1} (n_1, n_2) \right\|_{L^2}^2 + \left\| \nabla^l u_1 \right\|_{L^2}^2 + \left\| \nabla^l E \right\|_{L^2}^2 \right).
\]
Hence, we have that for $l = k$ or $k + 1$,
\[
I_3 \leq C_l \left(\left\| \nabla (n_1, n_2) \right\|_{L^2} + \left\| (u_1, u_2) \right\|_{H^1} \right) \left(\left\| \nabla^{l+1} (n_1, n_2) \right\|_{L^2}^2 + \left\| \nabla^l (u_1, u_2) \right\|_{L^2}^2 + \left\| \nabla^l E \right\|_{L^2}^2 \right). \tag{2.26}
\]
Now for $l = k + 2$, we rewrite $I_{31} + I_{33}$ as
\[
I_{31} + I_{33} = \sum_{\ell = 0}^{k+1} C_{k+2}^l \int \nabla^\ell g \nabla^{k+2-\ell} u_1 \cdot \nabla^{k+2} E
\]
\[
= \int \left(g \nabla^{k+2} u_1 + \nabla^{k+2} g u_1 \right) \cdot \nabla^{k+2} E - \sum_{\ell = 1}^{k+1} C_{k+2}^\ell \int \nabla \left(\nabla^{k+2-\ell} g \nabla^\ell u_1 \right) \cdot \nabla^{k+1} E
\]
\[
= \int \left(g \nabla^{k+2} u_1 + \nabla^{k+2} g u_1 \right) \cdot \nabla^{k+2} E - (k+2) \int \left(\nabla^{k+2} g \nabla u_1 + \nabla g \nabla^{k+2} u_1 \right) \cdot \nabla^{k+1} E
\]
\[
- \sum_{\ell = 1}^{k+1} C_{k+2}^\ell \int \nabla^{k+3-\ell} g \nabla^\ell u_1 \cdot \nabla^{k+1} E - \sum_{\ell = 1}^{k} C_{k+2}^\ell \int \nabla^{k+2-\ell} g \nabla^\ell u_1 \cdot \nabla^{k+1} E
\]
\[
: = I_{311} + I_{312} + I_{313} + I_{314},
\]
where the function g is defined as
\[
g := f \left(\frac{n_l - n_{l+1}}{2} \right) - f \left(\frac{n_1 + n_2}{2} \right). \tag{2.27}
\]
By Lemma 2.2 and (2.1), we have
\[
I_{311} \leq C_k \left(\left\| g \right\|_{L^\infty} \left\| \nabla^{k+2} u_1 \right\|_{L^2} + \left\| \nabla^{k+2} g \right\|_{L^2} \left\| u_1 \right\|_{L^\infty} \right) \left\| \nabla^{k+2} E \right\|_{L^2}
\]
\[
\leq C_k \left(\left\| (n_2, u_1) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_2, u_1) \right\|_{L^2} \left\| \nabla^{k+2} E \right\|_{L^2}
\]
and
\[
I_{312} \leq C_k \left(\left\| \nabla^{k+2} g \right\|_{L^2} \left\| u_1 \right\|_{L^\infty} + \left\| g \right\|_{L^\infty} \left\| \nabla^{k+2} u_1 \right\|_{L^2} \right) \left\| \nabla^{k+1} E \right\|_{L^2}
\]
\[
\leq C_k \left(\left\| (n_2, u_1) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_2, u_1) \right\|_{L^2} \left\| \nabla^{k+1} E \right\|_{L^2}.
\]
As for the cases $l = k, k + 1$ for I_3, we can bound I_{313} and I_{314} by
\[
I_{313} + I_{314} \leq C_k \left(\left\| \nabla (n_1, n_2) \right\|_{L^2} + \left\| u_1 \right\|_{H^{k+1}} \right) \left(\left\| \nabla^{k+2} (n_1, n_2) \right\|_{L^2} + \left\| \nabla^{k+1} u_1 \right\|_{L^2}^2 + \left\| \nabla^{k+1} E \right\|_{L^2}^2 \right).
\]
Hence, we have that for $l = k + 2$,
\[
I_{31} + I_{33}
\]
\[
\leq C_k \left(\left\| \nabla u_1 \right\|_{L^2} + \left\| (n_2, u_1) \right\|_{H^{k+1}} \right) \left(\left\| \nabla^{k+1} u_1 \right\|_{L^2} + \left\| \nabla^{k+2} (n_1, n_2, u_1) \right\|_{L^2}^2 + \left\| \nabla^{k+1} E \right\|_{L^2}^2 \right)
\]
\[
+ C_k \left(\left\| (n_2, u_1) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_2, u_1) \right\|_{L^2} \left\| \nabla^{k+2} E \right\|_{L^2}.
\]
Similarly, we can estimate $I_{32} + I_{34}$ for $l = k + 2$. So, we have for $l = k + 2$,
\[
I_3 \leq C_k \left(\left\| \nabla u_1 \right\|_{L^2} + \left\| (n_2, u_1, u_2) \right\|_{H^{k+1} + H^{l+1}} \right) \left(\sum_{l=k+1}^{k+2} \left\| \nabla^l (n_1, n_2, u_1, u_2) \right\|_{L^2} + \left\| \nabla^{k+1} E \right\|_{L^2} \right)
\]
\[
+ C_k \left(\left\| (n_2, u_1, u_2) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_2, u_1, u_2) \right\|_{L^2} \left\| \nabla^{k+2} E \right\|_{L^2}.
\]
Consequently, plugging these estimates for $I_1 \sim I_3$ into (2.24) with $l = k, k+1, k+2$, and then summing up, we deduce (2.23). □

Note that in Lemma 2.8 we only derive the dissipative estimates of u_1 and u_2. We now recover the dissipative estimates of n_1, n_2, E and B by constructing some interactive energy functionals in the following lemma.
Lemma 2.9. For any integer $k \geq 0$, we have that for any small fixed $\eta > 0$,
\[
\frac{d}{dt} \sum_{l=k}^{k+1} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - \sum_{l=k}^{k+1} \int \nabla^l u_2 \cdot \nabla^l E - \eta \int \nabla^k E \cdot \nabla^k \times B
\]
\[+ \lambda \left(\sum_{l=k+1}^{k+2} \|\nabla^l n_1\|_{L^2}^2 + \sum_{l=k}^{k+2} \|\nabla^l n_2\|_{L^2}^2 + \sum_{l=k}^{k+1} \|\nabla^l E\|_{L^2}^2 + \|\nabla^{k+1} B\|_{L^2}^2 \right)\]
\[\leq C \sum_{l=k}^{k+2} \|\nabla^l (u_1, u_2)\|_{L^2}^2 + C_{\lambda} G \left(\sum_{l=k+1}^{k+2} \|\nabla^l n_1\|_{L^2}^2 + \sum_{l=k}^{k+2} \|\nabla^l (n_2, u_1, u_2)\|_{L^2}^2 + \|\nabla^{k+1} B\|_{L^2}^2 \right),
\]
where G is defined by
\[
G = G(n_1, n_2, u_1, u_2, B) := \|\nabla n_1\|_{H^2}^2 + \|(n_2, u_1, u_2)\|_{H^{k+1} \cap H^3}^2 + \|\nabla B\|_{L^2}^2.
\]
Proof. We divide the proof into four steps.

Step 1: Dissipative estimates of n_1, n_2.
Applying $\nabla^l (l = k, k+1)$ to (1.5) and then taking the L^2 inner product with $\nabla^l n_1$, $\nabla^l n_2$ respectively, we obtain
\[
\int \partial_t \nabla^l u_1 \cdot \nabla^l n_1 + \partial_t \nabla^l u_2 \cdot \nabla^l n_2 + \|\nabla^l (n_1, n_2)\|_{L^2}^2 \leq 2\nu \int \nabla^l E \cdot \nabla^l n_2 + C \|\nabla^l u_1\|_{L^2} \|\nabla^{l+1} n_1\|_{L^2} + C \|\nabla^l u_2\|_{L^2} \|\nabla^{l+1} n_2\|_{L^2}
\]
\[+ \|\nabla^l (u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 + n_1 \nabla n_2 + n_2 \nabla n_1 + u_1 \times B)\|_{L^2} \|\nabla^{l+1} n_1\|_{L^2}
\]
\[+ \|\nabla^l (u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 + n_1 \nabla n_1 + n_2 \nabla n_2 + u_2 \times B)\|_{L^2} \|\nabla^{l+1} n_2\|_{L^2}.
\]

The delicate first term on the left-hand side of (2.29) involves $\partial_t \nabla^l (u_1, u_2)$, and the key idea is to integrate by parts in the t-variable and use the equations (1.5) and (1.5). Thus integrating by parts for both the t- and x-variables, we obtain
\[
\int \nabla^l \partial_t u_1 \cdot \nabla^l n_1 + \nabla^l \partial_t u_2 \cdot \nabla^l n_2
\]
\[= \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - \int \nabla^l u_1 \cdot \nabla^l \partial_t n_1 + \nabla^l u_2 \cdot \nabla^l \partial_t n_2
\]
\[= \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 + \int \nabla^l \text{div} u_1 \nabla^l \partial_t n_1 + \nabla^l \text{div} u_2 \nabla^l \partial_t n_2
\]
\[= \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - \|\nabla^l (\text{div} u_1, u_2)\|_{L^2}^2 + \int \nabla^l \text{div} u_1 \nabla^l g_1 + \nabla^l \text{div} u_2 \nabla^l g_3
\]
\[\geq \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - C \|\nabla^{l+1} (u_1, u_2)\|_{L^2}^2
\]
\[- C \|\nabla^l (u_1 \cdot \nabla u_1 + u_2 \cdot \nabla u_2 + n_1 \text{div} u_1, n_2 \text{div} u_2)\|_{L^2}^2
\]
\[\geq \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - C \|\nabla^{l+1} (u_1, u_2)\|_{L^2}^2
\]
\[- C \|\nabla^l (u_1 \cdot \nabla u_1, u_2 \cdot \nabla u_2, n_1 \text{div} u_1, n_2 \text{div} u_2)\|_{L^2}^2.
\]

First, we have
\[
\|\nabla^l (u_1 \cdot n_1)\|_{L^2} \lesssim \sum_{0 \leq \ell \leq l} \|\nabla^l u_1 \cdot \nabla^{l-\ell} n_1\|_{L^2}.
\]

If $\ell = 0$, then
\[
\|u_1 \cdot \nabla^\ell n_1\|_{L^2} \lesssim \|u_1\|_{H^\infty} \|\nabla^{l+1} n_1\|_{L^2} \lesssim \|u_1\|_{H^2} \|\nabla^{l+1} n_1\|_{L^2};
\]
if $1 \leq \ell \leq [\frac{l}{2}]$, by Hölder’s inequality and Lemma A.1, we have
\[
\|\nabla^l u_1 \cdot \nabla^{l-\ell} n_1\|_{L^2} \lesssim \|\nabla^{l+1-\ell} n_1\|_{L^6} \|\nabla^l u_1\|_{L^6}
\]
\[\lesssim \|n_1\|_{L^2} \|\nabla^{l+1} n_1\|_{L^2} \|\nabla^{l+1} u_1\|_{L^2} \|\nabla^{l+1} n_1\|_{L^2} \lesssim (\|n_1\|_{L^2} + \|u_1\|_{H^2}) \|\nabla^{l+1} (n_1, u_1)\|_{L^2},
\]
(2.31)
where α is defined by
\[
\ell + \frac{1}{2} = \alpha \times \frac{l - \ell + 1}{l} + (l + 1) \times \frac{\ell - 1}{l} \implies \alpha = \frac{3l - 2\ell + 2}{2\ell - 2\ell + 2} \in \left[\frac{3}{2}, 3 \right) \text{ since } \ell \leq \frac{l}{2}.
\]
if $\left[\frac{l}{2} \right] + 1 \leq \ell \leq l$, by Hölder's inequality and Lemma A.1 again, we have
\[
\|\nabla^\ell u_1 \cdot \nabla\nabla^{l-\ell} n_1\|_{L^2} \leq \|\nabla^{l-\ell} n_1\|_{L^2} \|\nabla u_1\|_{L^5} \\
\leq \|\nabla^{l-\ell} n_1\|_{L^2} \|\nabla^{l-\ell} n_1\|_{L^5} \|\nabla u_1\|_{L^5} \\
\leq (\|\nabla n_1\|_{H^2} + \|u_1\|_{H^3}) \|\nabla^{l+1}(n_1, u_1)\|_{L^2},
\]
where α is defined by
\[
l - \ell + \frac{3}{2} = \alpha \times \frac{l - \ell + 1}{l+1} + l - \ell \implies \alpha = \frac{3l + 3}{2\ell + 2} \in \left[\frac{3}{2}, 3 \right) \text{ since } l \geq \frac{l+1}{2}.
\]
Hence, by (2.30)-(2.32), we have
\[
\|\nabla^l(u_1 \cdot n_1)\|_{L^2} \lesssim (\|\nabla n_1\|_{H^2} + \|u_1\|_{H^3}) \|\nabla^{l+1}(n_1, u_1)\|_{L^2}.
\]
Similarly, we also have
\[
\|\nabla^l(u_2 \cdot n_1, n_1 \text{div} u_1, n_1 \text{div} u_2)\|_{L^2} \lesssim (\|\nabla n_1\|_{H^2} + \|(u_1, u_2)\|_{H^3}) \|\nabla^{l+1}(n_1, u_1, u_2)\|_{L^2}.
\]
Using the commutator estimate of Lemma 2.8, we have
\[
\|\nabla^l(u_1 \cdot n_2)\|_{L^2} \leq \|u_1 \cdot \nabla n_2\|_{L^2} + \|\nabla^l u_1 \cdot n_2\|_{L^2} \\
\leq \|u_1\|_{L^\infty} \|\nabla^{l+1} n_2\|_{L^2} + C_1 \|\nabla u_1\|_{L^\infty} \|\nabla n_2\|_{L^2} + C_1 \|\nabla u_1\|_{L^2} \|\nabla n_2\|_{L^\infty} \\
\leq C_1 \|(n_2, u_1)\|_{H^3} \left(\|\nabla^{l+1}(n_2, u_1)\|_{L^2} + \|\nabla^{l+1} n_2\|_{L^2} \right).
\]
Similarly,
\[
\|\nabla^l(u_2 \cdot n_2, n_2 \text{div} u_2, n_2 \text{div} u_1)\|_{L^2} \leq C_1 \|(n_2, u_1, u_2)\|_{H^3} \left(\|\nabla^{l+1}(n_2, u_1, u_2)\|_{L^2} + \|\nabla^{l+1}(n_2, u_1, u_2)\|_{L^2} \right).
\]
Hence, we obtain
\[
\int \nabla^l \partial_1 u_1 \cdot \nabla^l n_1 + \nabla^l \partial_2 u_2 \cdot \nabla^l n_2 \\
\geq \frac{d}{dt} \int \nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 - C \|\nabla^{l+1}(u_1, u_2)\|^2_{L^2} \\
- C_1 \left(\|\nabla n_1\|^2_{H^2} + \|(n_1, n_1, n_1)\|^2_{H^3} \right) \left(\|\nabla^{l+1}(n_2, u_1, u_2)\|^2_{L^2} + \|\nabla^{l+1}(n_2, u_1, u_2)\|^2_{L^2} \right).
\]
Next, integrating by parts and using the equation (1.19), we have
\[
2\nu \int \nabla^l E \cdot \nabla^l n_2 \\
= -2\nu \int \nabla^l \text{div} E \nabla^l n_2 = -2\nu^2 \int \nabla^l \left(f\left(\frac{n_1 + n_2}{2} \right) - f\left(\frac{n_1 - n_2}{2} \right) \right) \nabla^l n_2 \\
= -2\nu^2 \int \nabla^l \left[n_2 + f\left(\frac{n_1 + n_2}{2} \right) - f\left(\frac{n_1 - n_2}{2} \right) - n_2 \right] \nabla^l n_2 \\
\lesssim \|\nabla^l n_2\|^2_{L^2} + \|\nabla n_1\|_{H^2} \|n_2\|_{H^3} \left(\|\nabla^{l+1}(n_1, n_2)\|_{L^2} + \|\nabla n_2\|_{L^2} \right).
\]
Here we have used the estimate
\[
\left\| \nabla^l \left[f\left(\frac{n_1 + n_2}{2} \right) - f\left(\frac{n_1 - n_2}{2} \right) - n_2 \right] \right\|_{L^2} \\
\lesssim (\|\nabla n_1\|_{H^2} + \|n_2\|_{H^3}) \left(\|\nabla^{l+1}(n_1, n_2)\|_{L^2} + \|\nabla n_2\|_{L^2} \right).
\]
In fact, by noticing that $f\left(\frac{n_1 + n_2}{2} \right) - f\left(\frac{n_1 - n_2}{2} \right) - n_2 \sim n_1 n_2$ and Lemma 2.2, we have
\[
\left\| \nabla^l \left[f\left(\frac{n_1 + n_2}{2} \right) - f\left(\frac{n_1 - n_2}{2} \right) - n_2 \right] \right\|_{L^2} \lesssim \|\nabla(n_1 n_2)\|_{L^2} \lesssim \sum_{0 \leq \ell \leq l} \|\nabla^{\ell+1} n_1^{\ell-1} n_2\|_{L^2}.
\]
If $\ell = 0$, then
\[
\|n_1 \nabla n_2\|_{L^2} \lesssim \|n_1\|_{L^6} \|\nabla n_2\|_{L^6} \lesssim \|n_1\|_{L^5} \|\nabla n_2\|_{H^1};
\]
if $1 \leq \ell \leq \left[\frac{l}{2} \right]$, by Hölder’s inequality and Lemma A.1, we have
\[
\|\nabla n_1 \nabla^{l-\ell} n_2 \|_{L^2} \lesssim \|\nabla n_1 \|_{L^3} \|\nabla^{l-\ell} n_2 \|_{L^6}
\lesssim \|\nabla^{\alpha} n_1 \|_{L^2} \|\nabla^{l+1} n_1 \|_{L^6} \|\nabla n_2 \|_{L^6} \|\nabla^{l+1} n_2 \|_{L^2},
\]
where α is defined by
\[
\ell + \frac{1}{2} = \alpha \times \frac{l-\ell + 1}{l} + (l + 1) \times \frac{\ell - 1}{2l} \implies \alpha = \frac{3l - 2\ell + 2}{2l - 2\ell + 2} \in \left[\frac{3}{2}, 3 \right] \text{ since } \ell \leq \frac{l}{2}.
\]
if $\left[\frac{l}{2} \right] + 1 \leq \ell \leq l$, by Hölder’s inequality and Lemma A.1 again, we have
\[
\|\nabla^{\ell} n_1 \nabla^{l-\ell} n_2 \|_{L^2} \lesssim \|\nabla^{\ell} n_1 \|_{L^6} \|\nabla^{l-\ell} n_2 \|_{L^2} \\
\lesssim \|\nabla n_1 \|_{L^2} \|\nabla^{l+1} n_1 \|_{L^6} \|\nabla^{\alpha} n_2 \|_{L^2} \|\nabla n_2 \|_{L^2} \|\nabla^{l+1} n_2 \|_{L^2},
\]
where α is defined by
\[
l - \ell + \frac{1}{2} = \alpha \times \frac{l-\ell + 1}{l} + l - \ell \implies \alpha = \frac{l}{2} \in \left[\frac{1}{2}, 3 \right] \text{ since } \ell \geq \frac{l+1}{2}.
\]
By (2.39) - (2.43), we complete the proof of (2.39).

Lastly, as in (2.34) - (2.36), we have
\[
\|\nabla^l (u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 + n_1 \nabla n_2 + n_2 \nabla n_1) \|_{L^2} \\
\leq C_1 \|\nabla n_1 \|_{H^3} \|\nabla (n_2, u_1, u_2) \|_{H^3} \|\nabla^{l+1} (n_1, u_1, u_2) \|_{L^2} + \|\nabla^l (u_1, u_2) \|_{L^2} + \|\nabla^{l+1} B \|_{L^2}.
\]

From the estimate of I_3 in Lemma 2.3, we have that for $l = k$ or $k + 1$,
\[
\|\nabla^l (u_1 \times B, u_2 \times B) \|_{L^2} \leq C_k \left(\|(u_1, u_2) \|_{H^{l+1} \cap H^3} + \|\nabla B \|_{L^2} \right) \|\nabla^l (u_1, u_2) \|_{L^2} + \|\nabla^{k+1} B \|_{L^2}.
\]

Plugging these estimates (2.37), (2.38), (2.41) and (2.45) into (2.29), by Cauchy’s inequality, we obtain
\[
\frac{d}{dt} \sum_{l=k}^{k+1} \left(\int \nabla^l u_1 \cdot \nabla \nabla^l n_1 + \nabla^l u_2 \cdot \nabla \nabla^l n_2 + \lambda \left(\sum_{l=k+1}^{k+2} \|\nabla^l n_1 \|_{L^2}^2 + \sum_{l=k}^{k+2} \|\nabla^l n_2 \|_{L^2}^2 \right) \right) \\
\leq C \sum_{l=k}^{k+2} \|\nabla^l (u_1, u_2) \|_{L^2}^2 \\
+ C_{kG} \left(\sum_{l=k}^{k+2} \|\nabla^l n_1 \|_{L^2}^2 + \sum_{l=k}^{k+2} \|\nabla^l (n_2, u_1, u_2) \|_{L^2}^2 + \|\nabla^{k+1} B \|_{L^2}^2 \right).
\]

Here G is well-defined above. This completes the dissipative estimates for n_1, n_2.

Step 2: Dissipative estimate of E.

Applying $\nabla^l (l = k, k + 1)$ to (1.5), and then taking the L^2 inner product with $-\nabla^l E$, we obtain
\[
- \int \nabla^l \partial_t u_2 \cdot \nabla^l E + 2\nu \|\nabla^l E \|_{L^2}^2 \leq \int \nabla^l n_2 \cdot \nabla^l E + C \|\nabla^l (u_1, u_2) \|_{L^2} \|\nabla^l E \|_{L^2} \\
+ \|\nabla^l (u_1 \cdot \nabla u_2 + u_2 \cdot \nabla u_1 + n_1 \nabla n_2 + n_2 \nabla n_1 + u_1 \times B) \|_{L^2} \|\nabla^l E \|_{L^2}.
\]

Again, the delicate first term on the left-hand side of (2.47) involves $\partial_t \nabla^l u_2$, and the key idea is to integrate by parts in the t-variable and use the equation (1.5) in the Maxwell system. Thus we obtain
\[
- \int \nabla^l \partial_t u_2 \cdot \nabla^l E \\
= - \frac{d}{dt} \int \nabla^l u_2 \cdot \nabla^l E + \int \nabla^l u_2 \cdot \nabla^l \partial_t E \\
= - \frac{d}{dt} \int \nabla^l u_2 \cdot \nabla^l E - \nu \|\nabla^l u_2 \|_{L^2}^2 + \int \nabla^l u_2 \cdot \nabla^l (g_5 + \nu \nabla \times B).
\]
From the estimates of I_3 in Lemma 2.38 we have that
\[\| \nabla^l g_5 \|_{L^2} \leq C_l (\| \nabla n_1 \|_{L^2} + \| (n_2, u_1, u_2) \|_{H^{1/2} \cap H^1}) (\| \nabla^{l+1} (n_1, n_2) \|_{L^2} + \| \nabla^l (u_1, u_2) \|_{L^2}). \]
We must be much more careful about the remaining term in (2.48) since there is no small factor in front of it. The key is to use Cauchy’s inequality and distinguish the cases of $l = k$ and $l = k + 1$ due to the weakest dissipative estimate of B. For $l = k$, we have
\[\nu \int \nabla^k u_2 \cdot \nabla \times \nabla^k B \leq \varepsilon \| \nabla^{k+1} B \|_{L^2}^2 + C_\varepsilon \| \nabla^k u_2 \|_{L^2}^2; \]
for $l = k + 1$, integrating by parts, we obtain
\[\nu \int \nabla^{k+1} u_2 \cdot \nabla \times \nabla^{k+1} B = \nu \int \nabla \times \nabla^{k+1} u_2 \cdot \nabla^{k+1} B \leq \varepsilon \| \nabla^{k+1} B \|_{L^2}^2 + C_\varepsilon \| \nabla^{k+2} u_2 \|_{L^2}^2. \] (2.49)

Plugging these estimates (2.48)–(2.49) and (2.38), (2.41) and (2.45) from Step 1 into (2.37), by Cauchy’s inequality, we then obtain
\[-\frac{d}{dt} \sum_{k=0}^{k+1} \int \nabla^l u_2 \cdot \nabla^l E + \lambda \sum_{k=0}^{k+1} \| \nabla^l E \|_{L^2}^2 \leq \varepsilon \| \nabla^{k+1} B \|_{L^2}^2 + C_\varepsilon \sum_{k=0}^{k+2} \| \nabla^l (u_1, u_2) \|_{L^2}^2 \]
\[+ C_k G \left(\sum_{l=k+1}^{k+2} \| \nabla^l u_1 \|_{L^2}^2 + \sum_{l=k}^{k+2} \| \nabla^l (n_2, u_1, u_2) \|_{L^2}^2 + \| \nabla^{k+1} B \|_{L^2}^2 \right). \] (2.50)

This completes the dissipative estimate for E.

Step 3: Dissipative estimate of E.

Applying ∇^k to (1.36) and then taking the L^2 inner product with $-\nabla \times \nabla^k B$, we obtain
\[- \int \nabla^k \partial_t E \cdot \nabla \times \nabla^k B + \nu \| \nabla \times \nabla^k B \|_{L^2}^2 \leq \nu \| \nabla^k u_2 \|_{L^2} \| \nabla \times \nabla^k B \|_{L^2} + \| \nabla^l g_5 \|_{L^2} \| \nabla \times \nabla^k B \|_{L^2}. \] (2.51)

Integrating by parts for both the t- and x-variables and using the equation (1.35), we have
\[- \int \nabla^k \partial_t E \cdot \nabla \times \nabla^k B = - \frac{d}{dt} \int \nabla^k E \cdot \nabla \times \nabla^k B + \int \nabla \times \nabla^k E \cdot \nabla^k \partial_t B \]
\[= - \frac{d}{dt} \int \nabla^k E \cdot \nabla \times \nabla^k B - \nu \| \nabla \times \nabla^k E \|_{L^2}^2. \]

From the estimates of I_3 in Lemma 2.38 we have that
\[\| \nabla^k g_5 \|_{L^2} \leq C_l (\| \nabla n_1 \|_{L^2} + \| (n_2, u_1, u_2) \|_{H^{1/2} \cap H^1}) (\| \nabla^{k+1} (n_1, n_2) \|_{L^2} + \| \nabla^k (u_1, u_2) \|_{L^2}). \]

Plugging the estimates above into (2.51) and by Cauchy’s inequality, since $\text{div} B = 0$, we then obtain
\[- \frac{d}{dt} \int \nabla^k E \cdot \nabla^k \text{div} B + \lambda \| \nabla^{k+1} B \|_{L^2}^2 \leq C \| \nabla^k u_2 \|_{L^2}^2 + C \| \nabla^{k+1} E \|_{L^2}^2 \]
\[+ C_k \left(\| \nabla n_1 \|_{L^2}^2 + \| (n_2, u_1, u_2) \|_{H^{1/2} \cap H^1}^2 \right) \left(\| \nabla^{k+1} (n_1, n_2) \|_{L^2}^2 + \| \nabla^k (u_1, u_2) \|_{L^2}^2 \right). \] (2.52)

This completes the dissipative estimate for B.

Step 4: Conclusion.

Multiplying (2.52) by a small enough but fixed constant η and then adding it to (2.49) so that the second term on the right-hand side of (2.52) can be absorbed, then choosing ε small enough so that the first term on the right-hand side of (2.49) can be absorbed; we obtain
\[\frac{d}{dt} \left(\sum_{k=0}^{k+1} \int \nabla^l u_2 \cdot \nabla^l E - \eta \int \nabla^l E \cdot \nabla^k \text{div} B \right) + \lambda \sum_{k=0}^{k+1} \| \nabla^l E \|_{L^2}^2 + \| \nabla^{k+1} B \|_{L^2}^2 \]
\[\leq C \sum_{k=0}^{k+2} \| \nabla^l u_2 \|_{L^2}^2 + C_k G \left(\sum_{k=0}^{k+2} \| \nabla^l n_1 \|_{L^2}^2 + \| \nabla^l (n_2, u_1, u_2) \|_{L^2}^2 + \| \nabla^{k+1} B \|_{L^2}^2 \right). \]

Adding the inequality above to (2.46), we get (2.28). \qed
2.3. Negative Sobolev estimates. In this subsection, we will derive the evolution of the negative Sobolev norms of \(U \equiv (n_1, n_2, u_1, u_2, E, B)\). In order to estimate the nonlinear terms, we need to restrict ourselves to that \(s \in (0, 3/2)\). We will establish the following lemma.

Lemma 2.10. For \(s \in (0, 1/2]\), we have

\[
\frac{d}{dt} \|U\|^2_{H^{-s}} + \lambda \|(u_1, u_2)\|^2_{H^{-s}} \lesssim \left(\|(n_2, u_1, u_2)\|_{H^2}^2 + \|\nabla (n_1, B)\|_{H^1}^2\right) \|U\|_{H^{-s}}; \tag{2.53}
\]

and for \(s \in (1/2, 3/2)\), we have

\[
\frac{d}{dt} \|U\|^2_{H^{-s}} + \lambda \|(u_1, u_2)\|^2_{H^{-s}} \lesssim \|(\nabla n_1, n_2, u_1, u_2)\|_{H^1}^2 \|U\|_{H^{-s}} + \|(n_1, B)\|_{L^2}^{3/2-s} \|(\nabla n_1, \nabla n_2, u_1, u_2, \nabla u_1, \nabla u_2)\|_{L^2} \|U\|_{H^{-s}}. \tag{2.54}
\]

Proof. The \(\Lambda^{-s}\) \((s > 0)\) energy estimate of (1.5), (1.6) yield

\[
\frac{d}{dt} \left(\frac{1}{2} \|(n_1, n_2, u_1, u_2)\|_{H^{-s}}^2 + \|(E, B)\|_{H^{-s}}^2\right) + \nu \|(u_1, u_2)\|_{H^{-s}}^2
\]

\[
\lesssim \|g_1\|_{H^{-s}} \|n_1\|_{H^{-s}} + \|g_2 + u_1 \times B\|_{H^{-s}} \|u_1\|_{H^{-s}} + \|\Lambda^{-s} g_3 \cdot \Lambda^{-s} n_2 + \Lambda^{-s} (g_4 + u_1 \times B) \cdot \Lambda^{-s} u_1 + 2 \Lambda^{-s} g_5 \cdot \Lambda^{-s} E
\]

\[
\lesssim \|n_1\|_{H^{-s}} \|n_2\|_{H^{-s}} + \|g_2 + u_1 \times B\|_{H^{-s}} \|u_1\|_{H^{-s}} + \|g_3\|_{H^{-s}} \|n_2\|_{H^{-s}} + \|g_4 + u_1 \times B\|_{H^{-s}} \|u_2\|_{H^{-s}} + \|g_5\|_{H^{-s}} \|E\|_{H^{-s}}. \tag{2.55}
\]

We now restrict the value of \(s\) in order to estimate the other terms on the right-hand side of (2.55).

If \(s \in (0, 1/2]\), then \(1/2 + s/3 < 1\) and \(3/s \geq 6\). Then applying Lemma 2.4 together with Hölder’s, Sobolev’s and Young’s inequalities, we obtain

\[
\|u_1 \cdot \nabla u_2\|_{H^{-s}} \lesssim \|u_1 \cdot \nabla u_2\|_{L^{1/2+s}} \lesssim \|u_1\|_{L^{3/s}} \|\nabla u_2\|_{L^2}
\]

\[
\lesssim \|\nabla u_1\|_{L^{2}}^{1/2+s} \|\nabla^2 u_1\|_{L^2}^{1/2-s} \|\nabla u_2\|_{L^2}
\]

\[
\lesssim \|\nabla u_1\|_{H^1}^2 + \|\nabla u_2\|_{L^2}^2.
\]

We can similarly bound the other terms in the \(g_1 \sim g_5\) and \((u_1 + u_2) \times B\). So we have

\[
\sum_{i=1}^{5} \|g_i\|_{H^{-s}} + \|(u_1 + u_2) \times B\|_{H^{-s}} \lesssim \|(n_2, u_1, u_2)\|_{H^2}^2 + \|\nabla (n_1, B)\|_{H^1}. \tag{2.56}
\]

Now if \(s \in (1/2, 3/2)\), we shall estimate the right-hand side of (2.55) in a different way. Since \(s \in (1/2, 3/2)\), we have that \(1/2 + s/3 < 1\) and \(2 < 3/s < 6\). Then applying Lemma 2.4 and using (different) Sobolev’s inequality, we have

\[
\|u_1 \cdot \nabla u_2\|_{H^{-s}} \lesssim \|u_1\|_{L^{3/s}} \|\nabla u_2\|_{L^2} \lesssim \|u_1\|_{L^2}^{3/2-s} \|\nabla u_2\|_{L^2}
\]

\[
\lesssim \|u_1\|_{H^1}^2 + \|\nabla u_2\|_{L^2}^2.
\]

In particular, we must be careful about the terms involved with \(n_1\) and \(B\) since they are both degenerately dissipative. For example,

\[
\|n_1 \nabla n_2\|_{H^{-s}} \lesssim \|n_1\|_{L^2}^{s-1/2} \|\nabla n_1\|_{L^2}^{3/2-s} \|\nabla n_2\|_{L^2};
\]

\[
\|u_2 \times B\|_{H^{-s}} \lesssim \|B\|_{L^2}^{s-1/2} \|\nabla B\|_{L^2}^{3/2-s} \|u_2\|_{L^2}.
\]

Then, we have

\[
\sum_{i=1}^{5} \|g_i\|_{H^{-s}} + \|(u_1 + u_2) \times B\|_{H^{-s}} \lesssim \|(\nabla n_1, n_2, u_1, u_2)\|_{H^2}^2
\]

\[
+ \|(n_1, B)\|_{L^2}^{s-1/2} \|\nabla (n_1, B)\|_{L^2}^{3/2-s} \|\nabla n_1, \nabla n_2, u_1, u_2, \nabla u_1, \nabla u_2\|_{L^2}. \tag{2.57}
\]

Hence, we deduce (2.53) from (2.56) and (2.54) from (2.57). \(\square\)
2.4. Negative Besov estimates. In this subsection, we will derive the evolution of the negative Besov norms of \(U := (n_1, n_2, u_1, u_2, E, B) \). The argument is similar to the previous subsection.

Lemma 2.11. For \(s \in (0, 1/2) \), we have
\[
\frac{d}{dt} \|U\|_{B^s_{2,\infty}}^2 + \lambda \|u_1, u_2\|_{B^s_{2,\infty}}^2 \lesssim \left(\|n_2, u_1, u_2\|_{H^s}^2 + \|\nabla(n_1, B)\|_{H^s}^2 \right) \|U\|_{B^s_{2,\infty}}^2.
\]
and for \(s \in (1/2, 3/2) \), we have
\[
\frac{d}{dt} \|U\|_{B^s_{2,\infty}}^2 + \lambda \|u_1, u_2\|_{B^s_{2,\infty}}^2 \lesssim \|\nabla(n_1, n_2, u_1, u_2)\|_{H^s}^2 \|U\|_{B^s_{2,\infty}}^2
+ \|n_1, B\|_{L^2} \|\nabla(n_1, B)\|_{L^2}^{3/2-s} \|\nabla(n_1, n_2, u_1, u_2, \nabla u_1, \nabla u_2)\|_{L^2} \|U\|_{B^s_{2,\infty}}^2.
\]

Proof. The \(\tilde{\Delta}_j \) energy estimates of (3.3) and (3.6) yield, with multiplication of \(2^{-2s} \) and then taking the supremum over \(j \in \mathbb{Z} \),
\[
\frac{d}{dt} \left(\frac{1}{2} \|n_1, n_2, u_1, u_2\|_{B^s_{2,\infty}}^2 + \|E, B\|_{B^s_{2,\infty}}^2 \right) + \nu \|u_1, u_2\|_{B^s_{2,\infty}}^2
\leq \sup_{j \in \mathbb{Z}} 2^{-2s} \sum_{\tilde{j} \leq j} \tilde{\Delta}_j g_1 \cdot \tilde{\Delta}_j n_1 + \tilde{\Delta}_j (g_2 + u_2 \times B) \cdot \tilde{\Delta}_j u_1
+ \sup_{j \in \mathbb{Z}} 2^{-2s} \sum_{\tilde{j} \leq j} \tilde{\Delta}_j g_3 \cdot \tilde{\Delta}_j n_2 + \tilde{\Delta}_j (g_4 + u_1 \times B) \cdot \tilde{\Delta}_j u_2 + 2 \tilde{\Delta}_j g_5 \cdot \tilde{\Delta}_j E
\lesssim \|g_1\|_{B^s_{2,\infty}} \|n_1\|_{B^s_{2,\infty}} + \|g_2 + u_2 \times B\|_{B^s_{2,\infty}} \|u_1\|_{B^s_{2,\infty}}
+ \|g_3\|_{B^s_{2,\infty}} \|n_2\|_{B^s_{2,\infty}} + \|g_4 + u_1 \times B\|_{B^s_{2,\infty}} \|u_2\|_{B^s_{2,\infty}} + \|g_5\|_{B^s_{2,\infty}} \|E\|_{B^s_{2,\infty}}.
\]
Then the proof is exactly the same as the proof of Lemma 2.10 except that we should apply Lemma 2.5 instead to estimate the \(\tilde{B}^s_{2,\infty} \) norm. Note that we allow \(s = 3/2 \). \(\square \)

3. PROOF OF THEOREMS

3.1. Proof of Theorem 1.1. In this subsection, we will prove the unique global solution to the system (1.5) \(i \), and the key point is that we only assume the \(H^3 \) norm of initial data is small.

Step 1. Global small \(E_3 \) solution.

We first close the energy estimates at the \(H^3 \) level by assuming a priori that \(\sqrt{E_3(t)} \leq \delta \) is sufficiently small. Taking \(k = 0, 1 \) in (2.3) of Lemma 2.8 and then summing up, we obtain
\[
\frac{d}{dt} \sum_{l=0}^{3} \|\nabla^l U\|_{L^2}^2 + \lambda \sum_{l=0}^{3} \|\nabla^l (u_1, u_2)\|_{L^2}^2 \lesssim \sqrt{E_3} D_3 + \sqrt{D_3} \sqrt{E_3} \lesssim \delta D_3. \tag{3.1}
\]

Taking \(k = 0, 1 \) in (2.28) of Lemma 2.9 and then summing up, we obtain
\[
\frac{d}{dt} \left(\sum_{l=0}^{3} \|\nabla^l u_1 \cdot \nabla^l n_1 + \nabla^l u_2 \cdot \nabla^l n_2 + \sum_{l=0}^{2} \|\nabla^l u_2 \cdot \nabla^l E - \eta \sum_{l=0}^{1} \|\nabla^l E \cdot \nabla^l \nabla \times B\|_{L^2} \right)
+ \lambda \left(\sum_{l=0}^{3} \|\nabla^l n_1\|_{L^2}^2 + \sum_{l=0}^{3} \|\nabla^l n_2\|_{L^2}^2 + \sum_{l=0}^{2} \|\nabla^l E\|_{L^2}^2 + \sum_{l=0}^{2} \|\nabla^l B\|_{L^2}^2 \right)
\lesssim \sum_{l=0}^{3} \|\nabla^l (u_1, u_2)\|_{L^2}^2 + \delta^2 D_3. \tag{3.2}
\]

Since \(\delta \) is small, we deduce from (3.2) \(\times \varepsilon + (3.1) \) that there exists an instant energy functional \(\tilde{E}_3 \) equivalent to \(E_3 \) such that
\[
\frac{d}{dt} \tilde{E}_3 + D_3 \leq 0.
\]

Integrating the inequality above directly in time, we obtain (1.7). By a standard continuity argument, we then close the a priori estimates if we assume at initial time that \(E_3(0) \leq \delta_0 \) is sufficiently small. This concludes the unique global small \(E_3 \) solution.

Step 2. Global \(E_N \) solution.
We shall prove this by an induction on \(N \geq 3 \). By (1.7), then (1.8) is valid for \(N = 3 \). Assume (1.8) holds for \(N - 1 \) (then now \(N \geq 4 \)). Taking \(k = 0, \ldots, N - 2 \) in (2.3) of Lemma 2.8 and then summing up, we obtain
\[
\frac{d}{dt} \sum_{l=0}^{N} \| \nabla^l U \|_{L^2}^2 + \lambda \sum_{l=0}^{N} \| \nabla^l (u_1, u_2) \|_{L^2}^2 \leq C_N \sqrt{D_{N-1} \epsilon N} \sqrt{D_N} + C \sqrt{D_{N-1} \epsilon N} \leq C_N \sqrt{D_{N-1} \epsilon N}. \tag{3.3}
\]
Here we have used the fact that \(3 \leq \frac{N}{2} + 2 \leq N - 2 + 1 \) since \(N \geq 4 \). Note that it is important that we have put the two first factors in (2.3) into the dissipation.

Taking \(k = 0, \ldots, N - 2 \) in (2.28) of Lemma 2.9 and then summing up, we obtain
\[
\frac{d}{dt} \sum_{l=0}^{N} \left(\sum_{l=0}^{N} \| \nabla^l (u_1, u_2) \|_{L^2}^2 + \sum_{l=0}^{N} \| \nabla^l E \|_{L^2}^2 \right) + \lambda \left(\sum_{l=0}^{N} \| \nabla^l E \|_{L^2}^2 \right) \leq C \sum_{l=0}^{N} \| \nabla^l (u_1, u_2) \|_{L^2}^2 + C_N \sqrt{D_{N-1} \epsilon N}. \tag{3.4}
\]

We deduce from (3.4) × \(\epsilon \) + (3.3) that there exists an instant energy functional \(\tilde{\mathcal{E}}_N \) equivalent to \(\mathcal{E}_N \) such that, by Cauchy’s inequality,
\[
\frac{d}{dt} \tilde{\mathcal{E}}_N + D_N \leq C_N \sqrt{D_{N-1} \epsilon N} \sqrt{D_N} \leq \epsilon D_N + C_N \epsilon D_{N-1} \mathcal{E}_N.
\]
This implies
\[
\frac{d}{dt} \tilde{\mathcal{E}}_N + \frac{1}{2} D_N \leq C_N D_{N-1} \mathcal{E}_N.
\]

We then use the standard Gronwall lemma and the induction hypothesis to deduce that
\[
\mathcal{E}_N(t) + \int_0^t D_N(\tau) \, d\tau \leq C \mathcal{E}_N(0) e^{C_N \int_0^t D_{N-1}(\tau) \, d\tau} \leq C \mathcal{E}_N(0) e^{C_N P_{N-1}(\mathcal{E}_N(0))} \leq C \mathcal{E}_N(0) e^{C_N P_{N-1}(\mathcal{E}_N(0))} \equiv P_N(\mathcal{E}_N(0)).
\]
This concludes the global \(\mathcal{E}_N \) solution. The proof of Theorem 1.1 is completed. \(\square \)

3.2. Proof of Theorem 1.2

In this subsection, we will prove the various time decay rates of the unique global solution to the system (1.5) obtained in Theorem 1.1. Fix \(N \geq 5 \). We need to assume that \(\mathcal{E}_N(0) \leq \delta_0 = \delta_0(N) \) is small. Then Theorem 1.1 implies that there exists a unique global \(\mathcal{E}_N \) solution, and \(\mathcal{E}_N(t) \leq P_N(\mathcal{E}_N(0)) \leq \delta_0 \) is small for all time \(t \). Since now our \(\delta_0 \) is relative small with respect to \(N \), we just ignore the \(N \) dependence of the constants in the energy estimates in the previous section.

Step 1. Basic decay.

For the convenience of presentations, we define a family of energy functionals and the corresponding dissipation rates with minimum derivative counts as
\[
\mathcal{E}_k^{k+2} = \sum_{l=k}^{k+2} \| \nabla^l U \|_{L^2}^2, \tag{3.5}
\]
and
\[
D_k^{k+2} = \sum_{l=k+1}^{k+2} \| \nabla^l n_1 \|_{L^2}^2 + \sum_{l=k+1}^{k+2} \| \nabla^l (n_2, u_1, u_2) \|_{L^2}^2 + \sum_{l=k}^{k+1} \| \nabla^l E \|_{L^2}^2 + \| \nabla^{k+1} B \|_{L^2}^2. \tag{3.6}
\]
By Lemma 2.8 we have that for \(k = 0, \ldots, N - 2 \),
\[
\frac{d}{dt} \sum_{l=k}^{k+2} \| \nabla^l U \|_{L^2}^2 + \lambda \sum_{l=k}^{k+2} \| \nabla^l (u_1, u_2) \|_{L^2}^2 \lesssim \sqrt{\delta_0 D_k^{k+2} + \|(n_2, u_1, u_2)\|_{L^\infty} \| \nabla^{k+2} (n_1, n_2, u_1, u_2) \|_{L^2} \| \nabla^{k+2} (E, B) \|_{L^2}. \tag{3.7}
\]
By Lemma 2.10, we have that for \(k = 0, \ldots, N - 2, \)
\[
\frac{d}{dt} \sum_{l=k}^{k+1} \int \nabla^l u_1 \cdot \nabla \nabla^l n_1 + \nabla^l u_2 \cdot \nabla \nabla^l n_2 + \sum_{l=k}^{k+1} \int \nabla^l u_2 \cdot \nabla^l E - \eta \int \nabla^k E \cdot \nabla^k \nabla \times B
\]
\[
+ \lambda \left(\sum_{l=k+1}^{k-2} \left\| \nabla^l n_1 \right\|_{L^2}^2 + \sum_{l=k}^{k+2} \left\| \nabla^l n_2 \right\|_{L^2}^2 + \sum_{l=k}^{k+1} \left\| \nabla^l E \right\|_{L^2}^2 + \left\| \nabla^{k+1} B \right\|_{L^2}^2 \right)\]
\[
\lesssim \sum_{l=k}^{k+2} \left\| \nabla^l (u_1, u_2) \right\|_{L^2}^2 + \delta_0 \sum_{l=k}^{k+2} \left\| \nabla^l (u_1, u_2) \right\|_{L^2}^2.
\]
(3.8)

Since \(\delta_0 \) is small, we deduce from (3.8) \(\times \varepsilon \) + (3.7) that there exists an instant energy functional \(\mathcal{E}^{k+2}_k \) equivalent to \(\mathcal{E}^{k+2}_k \) such that
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + D^{k+2}_k \lesssim \left\| (n_2, u_1, u_2) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_1, n_2, u_1, u_2) \right\|_{L^2} \left\| \nabla^{k+2} (E, B) \right\|_{L^2}.
\]
(3.9)

Note that we can not absorb the right-hand side of (3.9) by the dissipation \(D^{k+2}_k \) since it does not contain \(\left\| \nabla^{k+2} (E, B) \right\|_{L^2}^2 \). We will distinguish the arguments by the value of \(k \). If \(k = 0 \) or \(k = 1 \), we bound \(\left\| \nabla^{k+2} (E, B) \right\|_{L^2} \) by the energy. Then we have that for \(k = 0, 1, \)
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + D^{k+2}_k \lesssim \sqrt{D^{k+2}_k} \sqrt{D^{k+2}_k} \mathcal{E}_3 \lesssim \sqrt{\delta_0 D^{k+2}_k},
\]
which implies
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + D^{k+2}_k \leq 0.
\]

If \(k \geq 2 \), we have to bound \(\left\| \nabla^{k+2} (E, B) \right\|_{L^2} \) in terms of \(\left\| \nabla^{k+1} (E, B) \right\|_{L^2} \) since \(\sqrt{D^{k+2}_k} \) can not control \(\left\| (n_2, u_1, u_2) \right\|_{L^\infty} \). The key point is to use the regularity interpolation method developed in [12, 23]. By Lemma 2.11 we have
\[
\left\| (n_2, u_1, u_2) \right\|_{L^\infty} \left\| \nabla^{k+2} (n_1, n_2, u_1, u_2) \right\|_{L^2} \left\| \nabla^{k+2} (E, B) \right\|_{L^2}
\]
\[
\lesssim \left\| (n_2, u_1, u_2) \right\|_{L^2}^{1 - \frac{1}{k+2}} \left\| \nabla^k (n_2, u_1, u_2) \right\|_{L^2}^{\frac{1}{k+2}} \left\| \nabla^{k+2} (n_1, n_2, u_1, u_2) \right\|_{L^2}
\]
\[
+ \left\| \nabla^{k+1} (E, B) \right\|_{L^2}^{1 - \frac{1}{k+2}} \left\| \nabla^{\alpha} (E, B) \right\|_{L^2}^{\frac{1}{k+2}}.
\]
(3.10)

where \(\alpha \) is defined by
\[
k + 2 = (k + 1) \times \left(1 - \frac{3}{2k} \right) + \alpha \times \frac{3}{2k} \Rightarrow \alpha = \frac{5}{3} k + 1.
\]

Hence, for \(k \geq 2 \), if \(N \geq \frac{5}{3} k + 1 \) \(\iff \) \(2 \leq k \leq \frac{3}{2} (N - 1) \), then by (3.10), we deduce from (3.9) that
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + D^{k+2}_k \lesssim \sqrt{D^{k+2}_k} \mathcal{E}_3 \lesssim \sqrt{\delta_0 D^{k+2}_k},
\]
which allow us to arrive at that for any integer \(k \) with \(0 \leq k \leq \frac{3}{2} (N - 1) \) (note that \(N - 2 \geq \frac{5}{2} (N - 1) \geq 2 \) since \(N \geq 5 \), we have
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + D^{k+2}_k \leq 0.
\]
(3.11)

We now begin to derive the decay rate from (3.11). In fact, we have proved (1.9) or (1.10) in the similar fashion of (2.11) by utilizing Lemma 2.10 and 2.11. Using Lemma 2.6 we have that for \(s \geq 0 \) and \(k + s > 0, \)
\[
\left\| \nabla^k (n_1, B) \right\|_{L^2} \leq \left\| (n_1, B) \right\|_{H^{k+s}} \left\| \nabla^{k+1} (n_1, B) \right\|_{L^2} \leq C_0 \left\| \nabla^{k+1} (n_1, B) \right\|_{L^2}^{\frac{5}{k+1}}.
\]

Similarly, using Lemma 2.7 we have that for \(s > 0 \) and \(k + s > 0, \)
\[
\left\| \nabla^k (n_1, B) \right\|_{L^2} \leq \left\| (n_1, B) \right\|_{B^{k+s}_{\infty}} \left\| \nabla^{k+1} (n_1, B) \right\|_{L^2} \leq C_0 \left\| \nabla^{k+1} (n_1, B) \right\|_{L^2}^{\frac{k+s}{k+1}}.
\]

On the other hand, for \(k + 2 < N \), we have
\[
\left\| \nabla^{k+2} (E, B) \right\|_{L^2} \leq \left\| \nabla^{k+1} (E, B) \right\|_{L^2} \lesssim C_0 \left\| \nabla^{k+1} (E, B) \right\|_{L^2}^{\frac{k+2}{k+1}}.
\]

Then we deduce from (3.11) that
\[
\frac{d}{dt} \mathcal{E}^{k+2}_k + \left\{ \mathcal{E}^{k+2}_k \right\}^{1 + \theta} \leq 0,
\]
where \(\vartheta = \max \left\{ \frac{1}{k+2}, \frac{N}{k-2} \right\} \). Solving this inequality directly, we obtain in particular that
\[
\mathcal{E}_k(t) \leq \left\{ \frac{\mathcal{E}_k(0)}{1+\vartheta t} \right\}^{-1/\vartheta} \leq C_0(1+t)^{-1/\vartheta} = C_0(1+t)^{-\min(k+s,N-k-2)}.
\]
(3.12) Notice that (3.12) holds also for \(k+s = 0 \) or \(k+2 = N \). So, if we want to obtain the optimal decay rate of the whole solution for the spatial derivatives of order \(k \), we only need to assume \(N \) large enough (for fixed \(k \) and \(s \)) so that \(k+s \leq N-k-2 \). Thus we should require that
\[
N \geq \max \left\{ k+2, \frac{5}{3}k+1, 2k+2+s \right\} = 2k+2+s.
\]
This proves the optimal decay (1.11).

Step 2. Further decay.

We first prove (1.12) and (1.13). First, noticing that \(-\nu g = \text{div} E \), by (1.11) and Lemma 2.2, if \(N \geq 2k+4+s \), then
\[
\|\nabla^k u_2(t)\|_{L^2} \leq \|\nabla^k \phi(t)\|_{L^2} \leq \|\nabla^{k+1} E(t)\|_{L^2} \leq C_0(1+t)^{-\frac{k+s}{k+1}}.
\]
(3.13) Next, applying \(\nabla^k \) to (3.12, 3.14, 1.15, 5) and then multiplying the resulting identities by \(\nabla^k u_1, \nabla^k u_2, \nabla^k E \) respectively, summing up and integrating over \(\mathbb{R}^3 \), we obtain
\[
\frac{d}{dt} \int \left(\frac{1}{2} \|\nabla^k (u_1, u_2)\|^2 + \|\nabla^k E\|^2 \right) + \nu \|\nabla^k (u_1, u_2)\|^2 = \int \nabla^k (-\nabla_1 + g_2 + u_2 \times B) \cdot \nabla^k u_1 + \int \nabla^k (-\nabla u_2 + g_4 + u_1 \times B) \cdot \nabla^k u_2 + 2\nu \int \nabla^k (\nabla \times B + g_5) \cdot \nabla^k E \leq \int \nabla^k g_1 \cdot \nabla^k E + C \|\nabla (u_1, u_2)\|_{L^2} \|\nabla^k E\|_{L^2} \|\nabla^k E\|_{L^2}.
\]
(3.14) On the other hand, taking \(l = k \) in (2.47), we may have
\[
- \int \nabla^k \partial_t u_2 \cdot \nabla^k E + 2\nu \|\nabla^k E\|^2 \leq \int \nabla^k g_1 \cdot \nabla^k E + C \|\nabla^k (u_1, u_2)\|_{L^2} \|\nabla^k E\|_{L^2} \|\nabla^k E\|_{L^2}.
\]
(3.15) Substituting (2.48) with \(l = k \) into (3.15), we may then have
\[
- \frac{d}{dt} \int \nabla^k u_2 \cdot \nabla^k E + 2\nu \|\nabla^k E\|^2 \leq \int \nabla^k g_1 \cdot \nabla^k E + C \|\nabla (u_1, u_2)\|_{L^2} \|\nabla^k E\|_{L^2} \|\nabla^k E\|_{L^2}.
\]
(3.16) Since \(\varepsilon \) is small, we deduce from (3.13) \(\varepsilon + 3.14 \) that there exists \(F_k(t) \sim \|\nabla^k (u_1, u_2, E)(t)\|_{L^2} \) such that, by Cauchy’s inequality, Lemma 2.3, 2.22, 2.24, 2.20, 1.11 and 3.13,
\[
\frac{d}{dt} F_k(t) + F_k(t) \leq \int \nabla^k g_1 \cdot \nabla^k E + 2\nu \|\nabla^k E\|^2 \leq \int \nabla^k g_1 \cdot \nabla^k E + C \|\nabla (u_1, u_2)\|_{L^2} \|\nabla^k E\|_{L^2} \|\nabla^k E\|_{L^2}.
\]
(3.17) where we required \(N \geq 2k+4+s \). Applying the standard Gronwall lemma to (3.17), we obtain
\[
F_k(t) \leq F_k(0)e^{-\tau} + C_0 \int_0^t e^{-(\tau-\tau)}(1+\tau)^{-(k+1+s)} d\tau \leq C_0(1+t)^{-\min(k+s,N-k-2)}.
\]
This implies
\[\left\| \nabla^k(u_1, u_2, E)(t) \right\|_{L^2} \lesssim \sqrt{F_{\infty}(t)} \lesssim C_0 (1 + t)^{-\frac{k+1+s}{2}}. \]

We thus complete the proof of (1.12). Notice that (1.13) now follows by (3.13) with the improved decay rate of \(E \) in (1.12), just requiring \(N \geq 2k + 6 + s \).

Now we prove (1.14). Assuming \(B_\infty = 0 \), then we can extract the following system from (1.5), denoting \(\psi = \text{div}u_2 \),
\[\begin{cases} \partial_t n_2 + \psi = g_3, \\ \partial_t \psi + \nu \psi - 2\nu^2 n_2 = -\Delta n_2 - \text{div}(g_4 + u_1 \times B) + 2\nu^2 (-g - n_2). \end{cases} \tag{3.18} \]
Here \(g \) is defined in (2.27). Applying \(\nabla^k \) to (3.18) and then multiplying the resulting identities by \(2\nu^2 \nabla^k n_2, \nabla^k \psi \), respectively, summing up and integrating over \(\mathbb{R}^3 \), we obtain
\[\frac{d}{dt} \int \nu^2 \left| \nabla^k n_2 \right|^2 \, dx + \frac{1}{2} \left| \nabla^k \psi \right|^2 + \nu \left\| \nabla^k \psi \right\|_{L^2}^2 \]
\[= 2\nu^2 \int \nabla^k g_3 \nabla^k n_2 - \int \nabla^k \Delta n_2 \nabla^k \psi \]
\[- \int \nabla^k \left[\text{div}(g_4 + u_1 \times B) - 2\nu^2 (-g - n_2) \right] \nabla^k \psi. \tag{3.19} \]

Applying \(\nabla^k \) to (3.18) and then multiplying by \(-\nabla^k n_2 \), as before integrating by parts over \(t \) and \(x \) variables and using the equation (3.18), we may obtain
\[-\frac{d}{dt} \int \nabla^k \psi \nabla^k n_2 + 2\nu^2 \left| \nabla^k n_2 \right|_{L^2}^2 = \left| \nabla^k \psi \right|_{L^2}^2 + \nu \int \nabla^k g_3 \nabla^k n_2 \nabla^k \psi - \int \nabla^k \Delta n_2 \nabla^k \psi \]
\[+ \int \nabla^k \left[\text{div}(g_4 + u_1 \times B) - 2\nu^2 (-g - n_2) \right] \nabla^k \psi. \tag{3.20} \]

Since \(\varepsilon \) is small, we deduce from (3.20) \times \varepsilon + (6.1) that there exists \(G_k(t) \sim \left| \nabla^k (n_2, \psi) \right|_{L^2}^2 \) such that, by Cauchy’s inequality,
\[\frac{d}{dt} G_k(t) + G_k(t) \lesssim \left| \nabla^{k+1} n_2 \right|_{L^2}^2 + \left| \nabla^k g_3 \right|_{L^2}^2 + \left| \nabla^{k+1} g_4 \right|_{L^2}^2 + \left| \nabla^{k+1} (u_1 \times B) \right|_{L^2}^2 \]
\[\lesssim \langle \nabla^k (-g - n_2) \rangle_{L^2}^2. \tag{3.21} \]

By Lemma 2.2 and Lemma 2.3 we obtain
\[\left| \nabla^k (-g - n_2) \right|_{L^2}^2 \lesssim \left| n_1 \right|_{L^\infty}^2 + \left| \nabla^k n_2 \right|_{L^2}^2 + \left| \nabla^k n_1 \right|_{L^2}^2 \left| n_2 \right|_{L^\infty}^2 \]
\[\lesssim \delta_0 \left| \nabla^k n_2 \right|_{L^2}^2 + \left| n_2 \right|_{L^\infty}^2 \left| \nabla^k n_1 \right|_{L^2}^2. \]

By Lemma 2.3 and Cauchy’s inequality, we obtain
\[\left| \nabla^{k+1} (u_1 \times B) \right|_{L^2}^2 = \left| u_1 \times \nabla^{k+1} B + \left[\nabla^{k+1}, u_1 \right] \times B \right|_{L^2}^2 \]
\[\lesssim \left| u_1 \times \nabla^{k+1} B \right|_{L^2}^2 + \left| \left[\nabla^{k+1}, u_1 \right] \times B \right|_{L^2}^2 \]
\[\lesssim \left| u_1 \right|_{L^\infty}^2 \left| \nabla^{k+1} B \right|_{L^2}^2 + \left| \nabla u_1 \right|_{L^\infty}^2 \left| \nabla^k B \right|_{L^2}^2 + \left| \nabla^{k+1} u_1 \right|_{L^2}^2 \left| B \right|_{L^\infty}^2. \]

The other nonlinear terms on the right-hand side of (3.21) can be estimated similarly. Hence, we deduce from (3.21) that, by (1.11) \begin{flushright}(1.14),
\[\frac{d}{dt} G_k(t) + G_k(t) \]
\[\lesssim \left| \nabla^{k+2} n_2 \right|_{L^2}^2 + \left| u_1 \right|_{L^\infty}^2 \left| \nabla^{k+1} B \right|_{L^2}^2 + \left| \nabla u_1 \right|_{L^\infty}^2 \left| \nabla^k B \right|_{L^2}^2 + \left| B \right|_{L^\infty}^2 \left| \nabla^{k+1} u_1 \right|_{L^2}^2 \]
\[+ \left| n_2 \right|_{L^\infty}^2 \left| \nabla^k n_1 \right|_{L^2}^2 + \left| (n_1, n_2, u_1, u_2) \right|_{L^\infty}^2 \left| \nabla^{k+2} (n_1, n_2, u_1, u_2) \right|_{L^2}^2 \]
\[+ \left| \nabla (n_1, n_2, u_1, u_2) \right|_{L^\infty}^2 \left| \nabla^{k+1} (n_1, n_2, u_1, u_2) \right|_{L^2}^2 \]
\[\leq C_0 (1 + t)^{-(k+3+s)} + (1 + t)^{-(k+7/2+2s)} + (1 + t)^{-(k+11/2+2s)} \]
\[\leq C_0 (1 + t)^{-(k+3+s)} \tag{3.22}, \]
where we required \(N \geq 2k + 8 + s \). Applying the Gronwall lemma to (3.22) again, we obtain
\[G_k(t) \leq G_k(0) e^{-t} + C_0 \int_0^t e^{-(t-\tau)} (1 + \tau)^{-(k+3+s)} d\tau \leq C_0 (1 + t)^{-(k+3+s)}. \]
This implies
\[\left\| \nabla^k (n_2, \psi)(t) \right\|_{L^2} \lesssim \sqrt{G_k(t)} \leq C_0 (1 + t)^{-\frac{k+3+s}{2}}. \] (3.23)
If required \(N \geq 2k + 12 + s \), then by (3.23) we have
\[\left\| \nabla^{k+2} n_2(t) \right\|_{L^2} \lesssim C_0 (1 + t)^{-\frac{k+5+s}{2}}. \]
Having obtained such faster decay, we can then improve (3.22) to be
\[\frac{d}{dt} G_k(t) + G_k(t) \leq C_0 \left((1 + t)^{-\frac{k+5+s}{2}} + (1 + t)^{-\frac{k+7}{2}+2s} \right) \leq C_0 (1 + t)^{-\frac{k+7}{2}+2s}. \]
Applying the Gronwall lemma again, we obtain
\[\left\| \nabla^k (n_2, \psi)(t) \right\|_{L^2} \lesssim \sqrt{G_k(t)} \leq C_0 (1 + t)^{-\frac{k+7}{4}+s}. \]
We thus complete the proof of (1.14). The proof of Theorem 1.2 is completed.

Acknowledgments.

This research is supported by the National Natural Science Foundation of China–NSAF (No. 10976026) and the National Natural Science Foundation of China (Grant No. 11271305).

References

[1] Chen, F.: Introduction to Plasma Physics and Controlled Fusion. Vol. 1. Plenum Press, New York, 1984
[2] Chen, G.Q., Jerome, J.W., Wang, D.H.: Compressible Euler-Maxwell equations. Transp. Theory, Statist. Phys. 29, 311–331 (2000)
[3] Duan, R.J.: Global smooth flows for the compressible Euler-Maxwell system: The relaxation case. J. Hyp. Diff. Eq. 8, 375–413 (2011)
[4] Duan, R.J., Liu, Q.Q., Zhu, C.J.: The Cauchy problem on the compressible two-fluids Euler-Maxwell equations. SIAM J. Math. Anal. 44, 102-133 (2012)
[5] Feng, Y.H., Wang, S., Kawashima, S.: Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system. Preprint, arXiv: 1202.0111.
[6] Germain, P., Masmoudi, N.: Global existence for the Euler-Maxwell system. Preprint, arXiv: 1207.2207.
[7] Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Inc., Prentice Hall, (2004)
[8] Guo, Y.: Smooth irrotational flows in the large to the Euler-Poisson system. Preprint, arXiv: 1202.0111.
[9] Guo, Y.: The Vlasov-Poisson-Landau system in a periodic box. J. Amer. Math. Soc. 25, 759–812 (2012)
[10] Guo, Y., Pausader, B.: Global smooth ion dynamics in the Euler-Poisson system. Comm. Math. Phys. 303, 89–125 (2011)
[11] Guo, Y., Tahvildar-Zadeh, A.S.: Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. In: Nonlinear partial differential equations (Evanston, IL, 1998), Contemp.Math., Providence, RI: Amer. Math. Soc. 238, 151–161 (1999)
[12] Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Comm. Part. Diff. Eqs. 37, 2165–2208 (2012)
[13] Hajjej, M.L., Peng, Y.J.: Initial layers and zero-relaxation limits of Euler-Maxwell equations. J. Diff. Eqs. 252, 1441–1465 (2012)
[14] Jerome, J.W.: The Cauchy problem for compressible hydrodynamic-Maxwell systems: A local theory for smooth solutions. Differential Integral Equations 16, 1345–1368 (2003)
[15] Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)
[16] Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, (2002)
[17] Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer-Verlag, Vienna (1990)
[18] Peng, Y.J., Wang, S.: Convergence of compressible Euler-Maxwell equations to compressible Euler equations. Comm. Part. Diff. Eqs. 33, 349–376 (2008)
[19] Peng, Y.J., Wang, S.: Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations. SIAM J. Math. Anal. 40, 540–565 (2008)
[20] Peng, Y.J., Wang, S., Gu, Q.L.: Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations. SIAM J. Math. Anal. 43, 944–970 (2011)
[21] Rishbeth, H., Garriott, O.K.: Introduction to Ionospheric Physics. Academic Press, (1969)
[22] Sohinger, V., Strain, R.M.: The Boltzmann equation, Besov spaces, and optimal time decay rates in \(R^3 \). Preprint, arXiv:1206.0027.
[23] Strain, R.M., Guo, Y.: Almost exponential decay near Maxwellian. Comm. Part. Diff. Eqs. 31, 417–429 (2006)
[24] Tan, Z., Wang, Y.J., Wang, Y.: Global solution and time decay of the compressible Euler-Maxwell system in \(R^3 \). Preprint, arXiv:1207.2207.
[25] Texier, B.: WKBJ asymptotics for the Euler-Maxwell equations. Asymptot. Anal. 42, 211–250 (2005)
[26] Texier, B.: Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184, 121–183 (2007)
[27] Ueda, Y., Kawashima, S.: Decay property of regularity-loss type for the Euler-Maxwell system. Methods Appl. Anal. 18, 245–268 (2011)
[28] Ueda, Y., Wang, S., Kawashima, S.: Dissipative structure of the regularity-loss type and time asymptotic decay of solutions for the Euler-Maxwell system. SIAM J. Math. Anal. 44, 2002–2017 (2012)
[29] Wang, S., Feng, Y.H., Li, X.: The asymptotic behavior of globally smooth solutions of bipolar non-isentropic compressible Euler-Maxwell system for plasma. Preprint, arXiv: 1202.0112.
[30] Wang, Y.J.: Global solution and time decay of the Vlasov-Poisson-Landau system in \mathbb{R}^3. *SIAM J. Math. Anal.* **44**, 3281–3323 (2012)
[31] Xu, J.: Global classical solutions to the compressible Euler-Maxwell equations. *SIAM J. Math. Anal.* **43**, 2688–2718 (2011)
[32] Xu, J., Xiong, J., Kawashima, S.: Global well-posedness in critical Besov spaces for two-fluid Euler-Maxwell equations. Preprint, arXiv: 1208.3532.

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

E-mail address, Z. Tan: ztan85@163.com

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, China

E-mail address, Y. Wang: wangyongxmu@163.com