Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Associations of cereal grains intake with cardiovascular disease and mortality

across 21 countries in Prospective Urban and Rural Epidemiology study: prospective cohort study
Table of Contents
Funding/Support ..4
PURE Project Office Staff, National Coordinators, Investigators and Key Staff ..6
PURE Country Institution Names ..9
Supplementary methods ..12
The Prospective Urban Rural Epidemiology Study (PURE Study) Design ..12
PURE Study Participant Selection Methodology as Excerpted from Teo et al\(^1\) ..12
 Selection of Countries ..12
 Selection of Communities ...12
 Selections of Households and Individuals ...12
Collection of Demographics, Risk Factors and Outcome Events ...14
Prospective Follow-up for Cardiovascular Events and Total mortality ...15
Event Definitions ...16
Classification of PURE Countries into Geographic Regions ..23
PURE food frequency questionnaire validation studies ..24
PURE food frequency questionnaires- Regional list of food items and portion sizes for refined grains, whole grains and white rice ..25
Figure 1: Flow chart of recruitment ..28
Supplementary tables ...29
Table S1: Classification of PURE Countries by country income level and follow up rates29
Table S2: Description of covariates by categories of refined grain intake ...30
Table S3: Description of covariates by categories of whole grain intake ...31
Table S4: Description of covariates by categories of white rice intake ...32
Table S5: Associations between refined grain intake and clinical outcomes among those with diabetes (DM) and without diabetes (WO DM) ..33
Table S6: Association between whole grain intake and clinical outcomes among those with diabetes (DM) and those without diabetes (WO DM) ..34
Table S7: Association between white rice intake and clinical outcomes among those with diabetes (DM) and those without diabetes (WO DM) ..35
Table S8a Association between refined grain intake and clinical outcomes in high intake countries (N=102 075) ..36
Table S8b Association between refined grain intake and clinical outcomes in low intake countries (N=33 185) ..37
Table S9: Association between quantiles of refined grain intake and clinical outcomes (N=135 260) without baseline CVD ..38
Table S10 Association between whole grain intake and clinical outcomes (N= 131 313) in all regions excluding Africa ...40
Table S11 Association between whole grain intakes estimated on dry weight basis and clinical outcomes (N=137 130) .. 41
Table S12a Association between white rice intake and clinical outcomes in Asian countries (N=82 652) .. 43
Table S12b Association between consumption of white rice and clinical outcomes in Non-Asian countries (N=54 478) .. 45
Table S13: Association between refined grain intake and clinical outcomes (N=135 260) without baseline CVD adjusted for sodium and saturated fat .. 46
Table S14: Association between whole grain intake and clinical outcomes (N=137 130) without baseline CVD adjusted for sodium and saturated fat .. 47
Table S15: Association between white rice intake and clinical outcomes (N=137130) without baseline CVD adjusted for sodium and saturated fat .. 48
Table S16: Associations between refined grain intake and clinical outcomes excluding CVD events until 2 years of follow up .. 49
Table S17: Associations between whole grain intake and clinical outcomes excluding CVD events until 2 years of follow up .. 51
Table S18: Associations between white rice intake and clinical outcomes excluding CVD events until 2 years of follow up .. 53
Table S19: Association between refined grain and whole grain intakes in servings per day* and clinical outcomes .. 54
Table S20: Associations between refined grain intake and clinical outcomes in high, middle, and low income countries .. 56
Table S21: Associations between whole grain intake and clinical outcomes in high, middle, and low income countries .. 58
Table S22: Associations between white rice intake and clinical outcomes in high-, middle- and low-income countries .. 60
Table S23: Association of refined grain intake with blood lipids and blood pressure .. 62
Table S24: Association of whole grain intake with blood lipids and blood pressure .. 63
Table S25: Association of white rice intake with blood lipids and blood pressure .. 64
Table S26: Intake of food groups by categories of refined grain intake .. 65
Table S26: Intake of food groups by categories of refined grain intake .. 65
Table S27: Intake of food groups by categories of whole grain intake .. 66
Supplementary figures .. 67
Funding/Support

Dr S Yusuf is supported by the Marion W Burke endowed chair of the Heart and Stroke Foundation of Ontario.

The PURE study is an investigator-initiated study that is funded by the Population Health Research Institute, Hamilton Health Sciences Research Institute (HHSRI), the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, Support from Canadian Institutes of Health Research’s Strategy for Patient Oriented Research, through the Ontario SPOR Support Unit, as well as the Ontario Ministry of Health and Long-Term Care and through unrestricted grants from several pharmaceutical companies [with major contributions from AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, and GlaxoSmithKline], and additional contributions from Novartis and King Pharma and from various national or local organisations in participating countries.

These include: **Argentina**: Fundacion ECLA (Estudios Clínicos Latino America); **Bangladesh**: Independent University, Bangladesh and Mitra and Associates; **Brazil**: Unilever Health Institute, Brazil; **Canada**: This study was supported by an unrestricted grant from Dairy Farmers of Canada and the National Dairy Council (U.S.), Public Health Agency of Canada and Champlain Cardiovascular Disease Prevention Network; **Chile**: Universidade de La Frontera [DI13-PE11]; **China**: National Center for Cardiovascular Diseases and ThinkTank Research Center for Health Development; **Colombia**: Colciencias (grant 6566-04-18062 and grant 6517-777-58228); **India**: Indian Council of Medical Research; **Malaysia**: Ministry of Science, Technology and Innovation of Malaysia (grant number: 100-IRDC/BIOTEK 16/6/21 [13/2007], and 07-05-IFN-BPH 010), Ministry of Higher Education of Malaysia (grant number: 600-RMI/LRGS/5/3 [2/2011]), Universiti Teknologi MARA, Universiti Kebangsaan Malaysia (UKM-Hejim-Komuniti-15-2010); **occupied Palestinian territory**: the United Nations Relief and Works Agency for Palestine Refugees in the Near East, occupied Palestinian territory; International Development Research Centre, Canada; **Philippines**: Philippine Council for Health Research and Development; **Poland**: Polish Ministry of Science and Higher Education (grant number: 290/W-PURE/2008/0), Wroclaw Medical University; **Saudi Arabia**: Saudi Heart Association. Saudi Gastroenterology Association. Dr.Mohammad Alfagih Hospital. The Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia (Research group number: RG -1436-013); **South Africa**: The North-West University, SA and
Netherlands Programme for Alternative Development, National Research Foundation, Medical Research Council of South Africa, The South Africa Sugar Association, Faculty of Community and Health Sciences; **Sweden:** Grants from the Swedish state under the Agreement concerning research and education of doctors; the Swedish Heart and Lung Foundation; the Swedish Research Council; the Swedish Council for Health, Working Life and Welfare, King Gustaf V:s and Queen Victoria Freemason’s Foundation, AFA Insurance; **Turkey:** Metabolic Syndrome Society, AstraZeneca, Sanofi Aventis; **United Arab Emirates:** Sheikh Hamdan Bin Rashid Al Maktoum Award For Medical Sciences and Dubai Health Authority, Dubai.

Role of Sponsor: The external funders and sponsors had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; in the preparation, review, or approval of the manuscript; or in the decision to submit the manuscript for publication.
PURE Project Office Staff, National Coordinators, Investigators and Key Staff

PURE Project Office Staff, National Coordinators, Investigators, and Key Staff:

Project office (Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada): S Yusuf* (Principal Investigator).
S Rangarajan (Program Manager); K K Teo, S S Anand, C K Chow, M O’Donnell, A Mente, D Leong, A Smyth, P Joseph, M Duong, R D’Souza, M Walli-Attaei, S Islam (Statistician), W Hu (Statistician), C Ramasundarahettige (Statistician), P Sheridan (Statistician), S Bangdiwala, L Dyal, B Liu (Biometric Programmer), C Tang (Biometric Programmer), X Yang (Biometric Programmer), R Zhao (Biometric Programmer), L Farago (ICT), M Zarate (ICT), J Godreault (ICT), M Haskins (ICT), M Jethva (ICT), G Rigitano (ICT), A Vaghela (ICT), M Dehghan (Nutrition Epidemiologist), A Aliberti, A Reyes, A Zaki, B Connolly, B Zhang, D Agapay, D Krol, E McNeice, E Ramezani, F Shifaly, G McAlpine, I Kay, J Rimac, J Swallow, M Di Marino, M Jakymyshyn, M(a) Mushtaha, M(o) Mushtaha, M Trotter, N Aoucheva, N Kandy, P Mackie, R Buthool, R Patel, R Solano, S Gopal, S Ramachan, S Trotter

Core Laboratories: G Pare, M McQueen, S Lamers, J Keys (Hamilton), X Wang (Beijing, China), A Devanath (Bangalore, India).

Argentina: R Diaz*, A Orlandini, P Lamelas, M L Diaz, A Pascual, M Salvador, C Chacon;
Bangladesh: O Rahman*, R Yusuf*, S A K S. Ahmed, T Choudhury, M Sintaha, A Khan, O Alam, N, Nayeem, S N Mitra, S Islam, F Pasha; Brazil: A Avezum*, C S Marcilio, A C Mattos, G B Oliveira; Canada: K Teo*, S Yusuf*, Sumathy Rangarajan, A Arshad, B Bideri, I Kay, J Rimac, R Buthool, S Trotter, G Dagenais, P Poirier, G Turbite, AS Bourlaud, A LeBlanc De Bluts, M Cayer, I Tardif, M Pettigrew, S Lear, V de Jong, A N Saidy, V Kandola, E Corber, I Vukmirovich, D Gasevic, A Wielgosz, A Pipe, A Lefebvre, A Pepe, A Auclair, A Prémont, A S Bourlaud; Chile: F Lanas*, P Serón, M J Oliveros, F Cazor, Y Palacios; China: Liu Lisheng*, Li Wei*, Chen Chunming*, Zhao Wenhua. Hu Bo, Yin Lu, Zhu Jun, Liang Yan, Sun Yi, Wang Yang, Deng Qing, Jia Xuan, He Xinye, Zhang Hongye, Bo Jian, Wang Xingyu, Liu Xu, Gao Nan, Bai Xiulin, Yao Chenrui, Cheng Xiaoru, Wang Chuangshi, Li Sidong, Liu Weida, Lang Xinyue, Liu Xiaoyun, Zhu Yiping, Su yuxuan, Han Guoliang, Song Rui, Cao Zhuangni, Sun Yaya, Li Xiangrong, Wang Jing, Wang Li, Peng Ya, Li Xiaoqing, Li Ling, Wang
Jia, Zou Jianmei, Gao Fan, Tian Shaofang, Liu Lifu, Li Yongmei, Bi Yanhui, Li Xin, Zhang Anran, Wu Dandan, Cheng ying, Xiao Yize, Lu Fanghong, Li Yindong, Hou Yan, Zhang Liangqiong, Guo Baoxia, Liao Xiaoyang, Chen Di, Zhang Peng, Li Ning, Ma Xiaolan, Lei Rensheng, Fu Minfan, Liu Yu, Xing Xiaojie, Yang Youzhu, Zhao Shenghu, Xiang Quanyong, Tang Jinhua, Liu Zhengrong, Qiang Deren, Li Xiaoxia, Xu Zhengting, Aideeraili.Ayoupu, Zhao Qian; Colombia: P Lopez-Jaramillo*, P A Camacho-Lopez, M Perez, J Otero-Wandurraga, D I Molina, C Cure-Cure, JL Accini, E Hernandez, E Arcos, C Narvaez, A Sotomayor, F Manzur, H Garcia, G Sanchez, F Cotes, A Rico, M Duran, C Torres; India: Bangalore - P Mony *, M Vaz*, S Swaminathan, AV Bharathi, K Shankar#, A V Kurpad, K G Jayachitra, H A L Hospital, AR Raju, S Niramala, V Hemalatha, K Murali, K Balaji, A Janaki, K Amaranad, P Vijayalakshmi, Chennai - V Mohan*, R M Anjana, M Deepa, K Parthiban, L Dhanasekaran, SK Sundaram, M Rajalakshmi, P Rajaneesh, K Munusamy, M Anitha, S Hemavathy, T Rahulashankiruthiyayan, D Anitha, R. Dhanasekhar, S. Sureshkumar, D Anitha, K Sridevi, Jaipur - R Gupta, R B Panwar, I Mohan, P Rastogi, S Rastogi, R Bhargava, M Sharma, D Sharma, Trivandrum - V Raman Kutty, K Vijayakumar, S Nair, Kamala R, Manu MS, Arunlal AR, Veena A, Sandeep P Kumar, Leena Kumari, Tessi R, Jith S, K Ajayan, G Rajasree, AR Renjini, A Deepu, B Sandhya, S Asha, H S Soumya, Chandigarh - R Kumar, M Kaur, P V M Lakshmi, V Sagar J S Thakur, B Patro, R Mahajan, A Joshi, G Singh, K Sharma, P Chaudary, Iran: R Kelishadi*, A Bahonar, N Mohammadifard, H Heidari, Kazakhstan: K Davletov*, B Assembekov, B Amirov; Kyrgyzstan: E Mirrakhimov*, S Abilova, U Zakirov, U Toktomamatov; Malaysia: UiTM - K Yusoff*, T S Ismail, K Ng, A Devi, N Mat-Nasir, AS Ramli, MNK Nor-Ashikin, R Dasiman, MY Mazapuspavina, F Ariffin, M Miskan, H Abdul-Hamid, S Abdul-Razak, N Baharudin, NMN Mohd-Nasir, SF Badlishah-Sham, MS Mohamed-Yassin, M Kaur, M Koshy, F A Majid, N A Bakar, N Zainon, R Salleh, SR Norlizan, NM Ghazali, M Baharom, H Zulkifli, R Razali, S Ali, CWJCW Hafar, F Basir; UKM - Noorhassim Ismail, M J Hasni, M T Azmi, M I Zaleha, R Ismail, K Y Hazdi, N Saian, A Jusoh, N Nasir, A Ayub, N Mohamed, A Jamaludin, Z Rahim; Occupied Palestinian Territory: R Khatib*, U Khammash, R Giacaman; Pakistan: R Iqbal*, R Khawaja, I Azam, K Kazmi; Peru: J Miranda*, A Bernabe Ortiz, W Checkley, R H Gilman, L Smeeth, R M Carrillo, M de los Angeles, C Tarazona Meza; Philippines: A Dans*, H U Co, J T Sanchez, L Pudol, C Zamora-Pudol, L A M Palileo-Villanueva, M R Aquino, C Abaquin, SL Pudol, K Manguiat, S Malayang; Poland: W Zatonski*, A Szuba, K Zatonska, R Ilow#, M Ferus, B Regulska-Ilow, D Różańska, M Wolyniec; Saudi Arabia: KF AlHabib*, M Alshamiri, HB Altaradi, O Alnobani, N Alkamel, M Ali, M Abdulrahman, R Nouri; South Africa: L Kruger*, A Kruger#, P Bestra, H Voster,
A E Schutte, E Wentzel-Viljoen, FC Eloff, H de Ridder, H Moss, J Potgieter, A Roux, M Watson, G de Wet, A Olckers, J C Jerling, M Pieters, T Hoekstra, T Puoane, R Swart*, E Igumbor, L Tsolekile, K Ndayi, D Sanders, P Naidoo, N Steyn, N Peer, B Mayosi#, B Rayner, V Lambert, N Levitt, T Kolbe-Alexander, L Ntyintyane, G Hughes, J Fourie, M Muzigaba, S Xapa, N Gobile, K Ndayi, B Jwili, K Ndibaza, B Egbuie; Sweden A Rosengren*, K Bengtsson Boström, A Rawshani, A Gustavsson, M Andreasson, L Wirdemann; Tanzania: K Yeates*, M Oresto, N West Turkey: A Oguz*, N Imeryuz, Y Altuntas, S Gulec, A Temizhan, K Karsidag, K B T Calik, A K Akalin, O T Caklili, M V Keskinler, K Yildiz; United Arab Emirates: A H Yusufali, F Hussain, M H S Abdelmotagali, D F Youssef, O Z S Ahmad, F H M Hashem, T M Mamdouh, F M AbdRabboou, S H Ahmed, M A AlOmairi, H M Swidan, M Omran, N A Monsef; Zimbabwe: J Chifamba*, T Ncube, B Ncube, C Chimhete, G K Neya, T Manenji, L Gwaunza, V Mapara, G Terera, C Mahachi, P Murambiwa, R Mapanga, A Chinhara

*National Coordinator
Deceased
PURE Country Institution Names

Country	Institution
South Africa	Faculty of Health Science
North-West University	
Potchefstroom Campus	
University of the Western Cape	
Department of Dietetics and Nutrition	
Private Bag X17, 7535	
Bellville, South Africa	
Zimbabwe	University of Zimbabwe
College of Health Sciences	
Physiology Department	
Harare, Zimbabwe	
Tanzania	Pamoja Tunaweza Health Research Centre, Moshi, Tanzania
Division of Nephrology, Department of Medicine	
Queen's University	
China	National Centre for Cardiovascular Diseases
Cardiovascular Institute & Fuwai Hospital	
Chinese Academy of Medical Sciences	
167, Bei Li Shi Lu, Beijing, China	
Fuwai Hospital	
167 Beilishi Rd. Xicheng District	
Beijing, 100037 China	
Philippines	University of Philippines, Section of Adult Medicine & Medical Research Unit, Manila, Philippines
Pakistan	Department of Community Health Sciences and Medicine
Aga Khan University	
Stadium Road, P.O Box 3500	
Karachi Pakistan	
India, Bangalore	St John's Medical College and Research Institute
Bangalore 560034, India	
India, Chennai	Madras Diabetes Research Foundation & Dr. Mohan’s Diabetes Specialities Centre, Chennai
India Jaipur	Eternal Heart Care Centre and Research Institute, Jaipur
India, Trivandrum	Health Action by People, Thiruvananthapuram, Kerala, 695011 INDIA
India, Chandigarh	School of Public Health, Post Graduate Institute of Medical Education & Research, Chandigarh (India)
Bangladesh	Independent University, Bangladesh
Bashundhara, Dhaka	
Bangladesh	
Malaysia	Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia AND UCSI University, Cheras, Selangor, Malaysia
Department of Community Health. Faculty of Medicine. University Kebangsaan Malaysia. Kuala Lumpur. Malaysia	
Poland	Wroclaw Medical University
Department of Internal Medicine; Department of Social Medicine	
Borowska 213 street; 50- 556 Wroclaw, Poland	
Department of Epidemiology,	
The Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology	
02-034 Warsaw, 15B Wawelska str.	
Poland	
---	---
Turkey	Istanbul Medeniyet University
Istanbul, Turkey	
Sweden	Sahlgrenska Academy
University of Gothenburg	
Sweden	
Iran	Isfahan Cardiovascular Research Center, Isfahan Research Institute
Isfahan University of Medical Sciences, Isfahan, Iran	
UAE	Dubai Medical University, Hatta Hospital, Dubai Health Authority, Dubai, United Arab Emirates
Saudi Arabia	Department of Cardiac Sciences, King Fahad Cardiac Center
College of Medicine	
King Saud University	
Riyadh, Saudi Arabia	
Palestine	Institute of Community and Public Health, Birzeit University, Ramallah, occupied Palestinian territory
Canada	Université Laval Institut universitaire de cardiologie et de pneumologie de Québec, Quebec
Canada G1V 4G5	
Simon Fraser University,	
Dept. of Biomedical Physiology & Kinesiology, BC, Canada	
Department of Medicine,	
University of Ottawa,	
Ottawa, Canada	
Population Health Research Institute, McMaster University, Hamilton	
Health Sciences, Hamilton, Ontario, Canada	
Argentina	Estudios Clinicos Latinoamerica ECLA
Rosario, Santa Fe	
Argentina	
Department of Chronic Diseases	
South American Center of Excellence for Cardiovascular Health (CESCAS)	
Institute for Clinical Effectiveness and Health Policy (IECS)	
Brazil	Dante Pazzanese Institute of Cardiology;
Hospital Alemao Oswaldo Cruz	
Sao Paulo, SP Brazil	
Colombia	Facultad de Ciencias de la Salud, Universidad de Santander (UDES), Bucaramanga, Santander,
Fundacion Oftalmologica de Santander (FOSCAL)	
Floridablanca-Santander, Colombia	
Country	Institution
---	---
Chile	Universidad de La Frontera
	Temuco, Chile
Ecuador	DECANO
	Facultad de Ciencias de la Salud Eugenio Espejo
	Universidad Tecnológica Equinoccial
	Dirección: Av. Mariscal Sucre s/n y Av. Mariana de Jesús, Quito Ecuador
Peru	CRONICAS Centro de Excelencia en Enfermedades Crónicas
	www.cronicas-upch.pe
	Universidad Peruana Cayetano Heredia
	Av. Armendáriz 497, Miraflores, Lima
Russia	Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo,
	Russia
	Institute For Medical Education, Yaroslav-the-Wise Novgorod State University
	Ministry of Education and Science of the Russian Federation
	Russia, Saint-Petersburg, 197022, Karpovka river emb., Bld.13, office 28
Kazakhstan	Research Institute of Cardiology & Internal Diseases, Almaty, Kazakhstan
Kyrgyzstan	Kyrgyz Society of Cardiology, National Center of Cardiology and Internal
	Disease, Bishkek, Kyrgyzstan
Supplementary methods
The Prospective Urban Rural Epidemiology Study (PURE Study) Design

The Prospective Urban Rural Epidemiology Study (PURE Study) enrolled 186,790 individuals between 35 and 70 years of age from low, middle and high-income countries. The study includes population samples from 639 communities from 24 countries from 5 continents representing a broad range of economic and social circumstances (1). PURE includes countries in four income strata based on World Bank classification in 2006: five low-income countries (Bangladesh, India, Pakistan, Tanzania, and Zimbabwe), eleven middle-income countries (Argentina, Brazil, Chile, China, Colombia, Iran, Malaysia, Occupied Palestine Territory, Poland, South Africa, and Turkey), and four high-income countries (Canada, Saudi Arabia, Sweden, and United Arab Emirates). The study is coordinated by the Population Health Research Institute, Hamilton Health Sciences and McMaster University, Canada.

PURE Study Participant Selection Methodology as Excerpted from Teo et al

Selection of Countries
The choice and number of countries selected in PURE reflects a balance between involving a large number of communities in countries at different economic levels, with substantial heterogeneity in social and economic circumstances and policies, and the feasibility of centers to successfully achieve long-term follow-up. Thus, PURE included sites in which investigators are committed to collecting good-quality data for a low-budget study over the planned 10-year follow-up period and did not aim for a strict proportionate sampling of the entire world.

Selection of Communities
Within each country, urban and rural communities were selected based on broad guidelines. A common definition for “community” that is applicable globally is difficult to establish (2). In PURE, a community was defined as a group of people who have common characteristics and reside in a defined geographic area. A city or large town was not usually considered to be a single community, rather communities from low-, middle-, and high-income areas were selected from sections of the city and the community area defined according to a geographical measure (e.g., a set of contiguous postal code areas or a group of streets or a village). The primary sampling unit for rural areas in many countries was the village. The reason for inclusion of both urban and rural communities is that for many countries, urban and rural environments exhibit distinct characteristics in social and physical environment, and hence, by sampling both, we ensured considerable variation in societal factors across PURE communities. The number of communities selected in each country varied, with the aim to recruit communities with substantial heterogeneity in social and economic circumstances balanced against the capacity of local investigators to maintain follow-up. In some countries (e.g., India, China, Canada, and Colombia), communities from several states/provinces were included to capture regional diversity, in policy, socioeconomic status, culture, and physical environment. In other countries (e.g., Iran, Poland, Sweden, and Zimbabwe), fewer communities were selected.

Selections of Households and Individuals
Within each community, sampling was designed to achieve a broadly representative sample of that community of adults aged between 35 and 70 years. The choice of sampling frame within each center was based on both “representativeness” and feasibility of long-term follow-up, following broad study guidelines. Once a community was identified, where possible, common and standardized approaches were applied to the enumeration of households, identification of individuals, recruitment procedures, and data collection. The method of approaching households differed between regions. For example, in rural areas of India and China, a community announcement was made to the village through contact of a community leader, followed by in-person door-to-door visits of all households. In contrast in Canada, initial contact was by mail followed by telephone inviting members of the households to a central clinic. Households were eligible if at least 1 member of the household was between the 10 ages of 35 and 70 years and the household members intended to continue living in their current home for a further 4 years. For each approach, at least 3 attempts at contact
were made. All individuals within these households between 35 and 70 years providing written informed consent were enrolled. When an eligible household or eligible individual in a household refused to participate, demographics and self-reported data about CVD risk factors, education, and history of CVD, cancers and deaths in the households within the two previous years were recorded. To ensure standardization and high data quality, we used a comprehensive operation manual, training workshops, DVDs, regular communication with study personnel and standardized report forms. We entered all data in a customized database programmed with range and consistency checks which was transmitted electronically to the Population Health Research Institute in Hamilton (Ontario, Canada) where further quality checks were implemented.
Collection of Demographics, Risk Factors and Outcome Events

CVD risk factors (smoking, history of hypertension, diabetes, psychosocial factors and alcohol consumption, diet, use of tobacco, physical activity) are recorded using standardized questions.

Urban and rural	In urban areas, communities from low-, middle- and high-income areas were selected based on known information of the geographical area such as a set of contiguous postal codes or groups of streets to obtain some representative population of each income area. Rural communities were villages at least 50 km from the cities. Many of these communities were remote with few health facilities.
Household wealth	Information on indicators of housing characteristics (e.g., type of windows and flooring, water and sanitation facilities) and assets (e.g., ownership of home, car, computer, and mobile phone) were weighted and combined with weights derived from a principal component analysis procedure. The resulting variable was standardized to a mean of 0 and standard deviation of 1 and using this index the household population was divided into thirds from poorest to richest.
Blood pressure measurements	Two BP readings are taken in the right arm in the sitting position and after a minimum of 5 minutes of rest by trained personnel with an Omron automatic digital blood pressure monitor (Omron HEM-757), using the mean of the 2 BP measures. High blood pressure was defined by SBP >140, DBP >100 mmHg.
Blood lipid measurements	Fasting blood samples were collected and stored between -20 and -70 degrees centigrade. Samples were analysed for total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, triglycerides, Apolipoprotein A (ApoA), Apolipoprotein B (ApoB) after being either shipped to Hamilton General Hospital (Hamilton, ON, Canada) or at the regional laboratories at Beijing (China), Bangalore (India), or Kocaeli (Turkey), with validated, standardized methods
Physical activity	One-week recall of physical activity (PA) and sitting time were assessed using the long-form International Physical Activity Questionnaire, with high PA defined as metabolic equivalent task (MET) score ≥ 3000, moderate as MET score 600–3000 and low as MET score o600 MET-minutes per week
Prospective Follow-up for Cardiovascular Events and Total mortality

History of disease was collected at baseline from every participant with standardized questionnaires. Follow-up was initiated in all sites by 2008 and completed by March, 2017. Up to three attempts were made to interview all households to document events.

Information on specific events (death, myocardial infarction, stroke, heart failure, cancer, hospitalizations, new diabetes, injury, tuberculosis, human immunodeficiency viral infections, malaria, pneumonia, asthma, chronic obstructive pulmonary disease) were obtained from participants or their family members. This information was adjudicated centrally in each country by trained physicians using standardized definitions. Because the PURE study involves urban and rural areas from middle- and low-income countries, supporting documents to confirm cause of death and/or event varied in degrees of completion and availability. In most of middle- and low-income countries there was no central system of death or event registration. Therefore, information was obtained about prior medical illness and medically certified cause of death where available, and, second, best available information was captured from reliable sources in those instances where medical information was not available in order to be able to arrive at a probable diagnosis or cause of death. Event documentation was based on information from death certificates (available in 100% of deaths), medical records (MI: 49.4%, stroke 80.8% and heart failure: 76.2%), household interviews and other sources. Verbal Autopsies were also used to ascertain cause of death in addition to medical records which were reviewed by a health professional. This approach has been used in several studies conducted in middle- and low-income countries.

To ensure a standard approach and accuracy for classification of events across all countries and over time, the first 100 CVD events (deaths, MI, strokes, heart failure or cancers) for China and India, and 50 cases for other countries were adjudicated both locally and also by the adjudication chair, and if necessary further training was provided. Thereafter, every year, 50 cases for China and India and 25 cases for each of the remaining countries were adjudicated as above.
Event Definitions

FATAL EVENTS

Cardiovascular Death – Definitions
01.00 DEATH DUE TO CARDIOVASCULAR EVENTS
01.10 Sudden unexpected Cardiovascular Death (SCVD)

Without evidence of other cause of death, death that occurred suddenly and unexpectedly (examples: witnessed collapse, persons resuscitated from cardiac arrest who later died) or persons seen alive less than 12 hours prior to discovery of death (example persons found dead in his/her bed).

- SCVD is either definite, probable or possible according to the following characteristics:

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
01.11: Definite	One of the following in persons with:	
	• known cardiovascular disease, or	
	• diabetes with an additional risk factor such as hypertension, smoking, dyslipidemia, microalbuminuria, serum creatinine 50% above upper limit of normal, or	
	• 3 of the above risk factors, or	
	• 2 of the above risk factors in men aged 60 and more and women aged 65 and more	
	No ICD-10 Code	
01.12: Probable	One of the following in persons with:	
	• diabetes, or	
	• 2 of the above risk factors in men aged less than 60 and in women less than 65, or	
	• one of the above risk factor in men aged 60 and more and in women aged 65 and more, or	
	• typical of chest pain or sudden severe dyspnea of less than 20-minute duration preceding the event	
01.13: Possible	In persons without risk factor	

For SCVD, the patient was well or had a stable CVD (example stable angina) when last seen alive. The event of a sudden death occurring during the hospitalization of MI is considered a fatal MI and not sudden death.
01.30 Fatal Myocardial Infarction

Symptoms of Myocardial Infarction:
Typical symptoms or suggestive symptoms of MI according to physician are characterized by severe anterior chest pain as tightness, crushing, burning, lasting at least 20 minutes, occurring at rest, or on exertion, that may radiate to the arms or neck or jaw and may be associated with dyspnea, diaphoresis and nausea. However, death associated with nausea and vomiting with or without chest pain not due to another cause may be considered as possible MI if ECG and cardiac markers are not done. These symptoms may have occurred the last month before death.

Fatal myocardial infarction is either definite, probable or possible according to the following characteristics:

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
01.31: Definite	1. Autopsy demonstrating fresh myocardial infarction and/or recent coronary occlusion, **or**	
2. ECG showing new and definite sign of MI (Minnesota code 1-1-1) **or**
3. Symptoms typical or atypical or inadequately described but attributed to cardiac origin lasting at least 20 minutes and by troponin or cardiac enzymes (CKMB, CK, SGOT, SLDH) above center laboratory ULN
4. ECG with new ischemic changes (new ST elevation/depression or T wave inversion ≥ 2 mm) and by troponin or cardiac enzymes (CKMB, CK, SGOT, SLDH) above center laboratory ULN | I21- I22 |
| **01.32: Probable** | 1. ECG with sign of probable MI (Minnesota code 1-2-1), **or**
2. Typical symptoms lasting at least 20 minutes considered of cardiac origin, with only new ST-T changes (new ST elevation/depression or T wave inversion ≥ 1 but < 2mm) without documented increased cardiac markers or enzyme as in PURE definition 1.31 (above), **or**
3. Increased cardiac enzymes as in PURE definition 1.31 (above) showing a typical pattern of MI as above without symptoms or significant ECG changes | |
| **01.33: Possible** | 1. ECG with sign of possible MI (Minnesota code 1-3-1) **or**
2. Typical symptoms or symptoms suggestive of MI according to the physician lasting at least 20 minutes without documented ECG or cardiac marker. | |

The Minnesota codes for MI is taken from Rose and Blackburn and published in their book “Evaluation Methods of Cardiovascular Disease WHO 1969”.

- **Definite MI** is Q/R ratio $\geq 1/3$ and Q duration ≥ 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-1-1)
- **Probable MI** is Q/R ratio $\geq 1/3$ and Q duration between 0.02 and 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-2-1)
- **Possible MI** is Q/R ratio between 1/5 and 1/3 and Q duration between 0.02 and 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-3-1)
01.40 Fatal Stroke

Fatal stroke is either definite or possible according to the following characteristics:

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
01.41: Definite	Stroke death is defined as death within 30 days from an acute focal neurological deficit *diagnosed by a physician* and thought to be of vascular origin (without other cause such as brain tumor) with signs and symptoms lasting ≥ 24 hrs. Stroke death is also considered if death occurred within 24 hrs. of onset of persisting signs and symptoms, or if there is evidence of a recent stroke on autopsy.	I60- I64, I69
	N.B.	
	In a subject with a stroke ≤ 30 days: If death occurred with a pneumonia due to possible aspiration, death will be considered to be due to stroke.	
	In a subject with a stroke > 30 days: If death occurred with a pneumonia due to possible aspiration, the adjudicator will make a decision according to his/her clinical judgment if death is related to stroke or not.	
	Subarachnoid hemorrhage death manifested by sudden onset headache with/without focal signs and imaging (CT or MRI) evidence of bleeding primarily in the subarachnoid space is considered a fatal stroke in absence of trauma or brain tumor or malformation	
	Subdural hematoma death is not considered as a stroke death and may be related to previous trauma or other cause.	
01.43: Possible	Death in a participant with a history of sudden onset of focal neurological deficit of one or more limbs, loss of vision or slurred speech lasting about 24 hours.	
01.50 Fatal Congestive Heart Failure
Fatal congestive heart failure is either definite or possible according to the following characteristics:

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
01.51: **Definite**	The diagnosis of congestive heart failure may be an autopsy finding in absence of other cause or requires signs (rales, increased jugular venous pressure or ankle edema) or symptoms (nocturnal paroxysmal dyspnea, dyspnea at rest or ankle edema) of congestive heart failure **and** one or both of the following:	
 - radiological signs of pulmonary congestion,
 - treatment of heart failure with diuretics

If sudden death occurred in a patient with chronic severe heart failure, it should be adjudicated as fatal congestive heart failure. | I50 |
| 01.52: **Probable** | Progressive shortness of breath on lying down or at night, improving on sitting up **and** any of the following signs or symptoms: swelling of feet, distension of abdomen, progressive cough in a person with known hypertension or a history of previous MI/angina or other heart disease |
| 01.53: **Possible** | Progressive shortness of breath on lying down or at night, improving on sitting up **and** any of the following signs or symptoms: swelling of feet, distension of abdomen, progressive cough |
01.60 Death Due to Other Cardiovascular Deaths

(other causes [1.10 to 1.50 above] having been excluded)

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
01.61	Arterial rupture of aneurysm	I71- I72
01.62	Pulmonary embolism Note: Death associated with pulmonary embolism occurring within 2 weeks after a fracture such as hip, femur should attributed to death due to injury. Refer to Injury, Section 6.0	I26
01.63	Arrhythmic death (A-V block, sustained ventricular tachycardia in absence of other causes)	I44- I45, I47- I49
01.64	Death after invasive cardiovascular intervention: a perioperative death extending to 30 days after coronary or arterial surgical revascularization and to 7 days after a coronary or arterial percutaneous dilatation (angioplasty) with or without a stent or an invasive diagnostic procedure.	I97
01.65	Congenital heart disease	Q20-Q28
01.66	Heart valve disease (including rheumatic heart disease)	I01, I05- I09, I34- I37
01.67	Endocarditis	I33, I38
01.68	Myocarditis	I40
01.69	Tamponade (pericarditis)	I30, I31, I32
01.70	Other cardiovascular events (Excluding 1.61 to 1.69 above) Valid ICD-10 codes would include the following: I11, I12, I13, I23, I24, I25, I27, I28, I42, I51, I52, I65-I68, I73, I74, I96, I98, I99 (Refer to ICD-10 Listing for associated definitions for each code)	Any valid ‘I’ (Cardiovascular) ICD-10 code that can be classified as underlying Code, not specified above
NON-FATAL EVENTS

Cardiovascular Events – Definitions

10.00 NON-FATAL CARDIOVASCULAR EVENTS

10.10 Non-Periprocedural Myocardial Infarction (MI)

MI is considered either definite, probable or possible according to the following characteristics:

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
10.11: Definite	5. ECG showing new and definite sign of MI (Minnesota code 1-1-1) **or**	
6. Symptoms typical or atypical or inadequately described but attributed to cardiac origin lasting at least 20 minutes and by troponin or cardiac enzymes (CKMB, CK, SGOT, SLDH) above center laboratory ULN
7. ECG with new ischemic changes (new ST elevation/depression or T wave inversion ≥ 2 mm) and by troponin or cardiac enzymes (CKMB, CK, SGOT, SLDH) above center laboratory ULN

Please note that increased markers may occur in trauma (CK, AST, myoglobin and CK MB to a lesser degree); renal insufficiency, heart failure, pulmonary embolism…. (troponin), cardioversion (all) |
| 121-122 |
| **10.12: Probable** | 4. ECG with new and probable sign of MI (Minnesota code 1-2-1), **or**
5. Typical symptoms lasting at least 20 minutes considered of cardiac origin, with only new ST-T changes (new ST elevation/depression or T wave inversion ≥ 1 but < 2mm) without documented increased cardiac markers as in PURE definition 10.11 (above), **or**
6. Increased cardiac enzymes showing a typical pattern of MI as above without symptoms or significant ECG changes. |
| **10.13: Possible** | 1. ECG with new and possible sign of MI (Minnesota code 1-3-1), **or**
2. Typical symptoms lasting 20 minutes and more considered to be of cardiac origin without documented ECG or cardiac marker. |
10.20 Periprocedural Myocardial Infarction

PURE Adjudication Code	Event Type	Acceptable ICD-10 codes
10.21: **Definite**	1. ECG showing new and definite sign of MI (Minnesota code 1-1-1), or 2. Increased cardiac markers within 48 hours of procedure:	
 - percutaneous coronary intervention: CKMB should be $\geq 5 \times$ ULN or troponin $\geq 5 \times$ above lower level of necrosis OR $> 20\%$ increase in cardiac markers if elevated at the beginning of the procedure in a patient with symptoms suggestive of myocardial ischemia
 - Coronary surgery: Increased cardiac markers CKMB should be $\geq 10 \times$ ULN or troponin $\geq 10 \times$ above lower limit of necrosis. | I21-I22 |

The **Minnesota codes** for MI is taken from Rose and Blackburn and published in their book “Evaluation Methods of Cardiovascular Disease WHO 1969”.

- **Definite MI** is Q/R ratio $\geq 1/3$ and Q duration ≥ 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-1-1)
- **Probable MI** is Q/R ratio $\geq 1/3$ and Q duration between 0.02 and 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-2-1)
- **Possible MI** is Q/R ratio between 1/5 and 1/3 and Q duration between 0.02 and 0.03 second in one of the following leads: I, II, V2, 3, 4, 5, 6. (code 1-3-1)
Classification of PURE Countries into Geographic Regions

South Asia: India, Bangladesh and Pakistan
China: China
South East Asia: Malaysia
Africa: South Africa, Zimbabwe, Tanzania
North America and Europe: Canada, Poland, Sweden, Turkey
Middle East: United Arab Emirates, Iran, Saudi Arabia, occupied Palestinian territory
South America: Argentina, Brazil, Colombia, Chile
PURE food frequency questionnaire validation studies

Country	Validated	Reference dietary method	Reference
Argentina	Yes	Multiple dietary recalls	Dehghan et al. PLoS One. 2012;7(5):e37958
Brazil	Yes	Multiple dietary recalls	Under preparation
Canada	Yes	Multiple dietary recalls	Kelemen L et al. J Am Diet Assoc. 2003 103(9):1178-84
Chile	Yes	Multiple dietary recalls	Dehghan et al. Public Health Nutr. 2013;16 (10):1782-8.
China	Yes	Multiple dietary recalls	Zhao WH et al. Biomedical and environmental sciences. 2010; 23(suppl.)to 1-38.
Colombia	Yes	Multiple dietary recalls	Dehghan et al. J Nutr Educ Behav. 2012;44(6):609-13.
Iran	Yes	Multiple dietary recalls	Under preparation
India	Yes	Multiple dietary recalls	Iqbal R et al. Public Health Nutr. 2009; 12(1):12-18
			Bharati A et al. Asia Pac J Clin Nutr 2008; 14(1):178-185.
			Mahajan R et al. The National Medical Journal of India vol. 26to no. 5to 2013
Malaysia	Yes	Multiple dietary recalls	Book chapter
Palestine	Yes	Multiple dietary recalls	Under preparation
Poland	Yes	Multiple dietary recalls	Dehghan et al. J Hum Nutr Diet. 2012; 25(3):225-32
Sweden	Yes	Multiple dietary recalls	Khani B et al. J Nutr. 2004to 134:1541-1545
South Africa	Yes	Multiple dietary recalls	MacIntyre UE et al. Public Health Nutr. 2000; 4(1): 63-71
Turkey	Yes	Multiple dietary recalls	Gunes eat al. J Pak Med Assoc. 2015; 65(7):756-63.
UAE	Yes	Multiple dietary recalls	Dehghan et al. Nutr J. 2005;4:18
Kuwait/UAE	Yes	Multiple dietary recalls	Dehghan et al. Saudi Med J 2009; Vol30(1)
Zimbabwe	No	FFQ development	Development of FFQ Merchant et al. Nutr J. 2005;4:37
PURE food frequency questionnaires - Regional list of food items and portion sizes for refined grains, whole grains and white rice

North America/Europe

Refined grains: Cold cereal breakfast, white bread, pasta, spaghetti, macaroni, crisp bread, bagels, bread made with corn flour, doughnuts, pancakes, cracker, muffins, pies and tarts, Danish, yeast cake, gingerbread cake, corn cereal, polish dumplings, shortcake, acma

Portion size: Cold cereal breakfast- 25g; Bread- one slice; Rice- one cup; Pasta, spaghetti, macaroni- one plate, Cookies and biscuit- one number; Dumpling- one plate; Pies- one slice; Cakes- one slice

Whole grains: whole wheat bread, rye brown bread, wheat bran, wheat germ, kajzerki, bread ekmek (whole grain esmer), wroclawskie, zurek sour rye soup, bran/granola cereals, bran/oat muffins, buckwheat groats (boiled), pearl barley groats, boiled, bulgur

Portion size: Breads - one slice; Kajzerki and ekmek- one piece; Bran/oat= one cup

Rice: Fried rice, boiled rice

Portion size: Fried rice, boiled rice - one cup

South America

Refined grains: Cold cereal breakfast, white bread, pasta, spaghetti, cracker, flour toast , ravioli, gnocci, noodle, budin, alfajor, dulce de leche, bizocho, bread with chicharron, factura, brownies, waffle, cakes, panqueques, doughnuts, manjar, empanada, corn pastel, ayaco, cookie

Portion size: Cold cereal breakfast- 25g; Bread-one slice; Pasta, spaghetti, macaroni- one plate; Cookies and biscuit- one number; Pies- one slice; Cake - one slice

Whole grains: Whole wheat bread, gluten bread, polenta/angu, rye bread, integral bread, other grains (cebada/avena)

Portion size: Breads - one slice; Polenta/angu - one plate

Rice: White rice

Portion size: White rice- one cup

Africa

Refined grains: Breakfast cereals, pasta, white bread, bread rolls, mealie, nophi, macaroni, dumpling, biscuits, cookies, crackers, scones, samosa, cake, scones, doughnut

Portion size: Cold cereal breakfast- 25g; Breads - one slice; Samosa - one medium piece; Macaroni - one plate; Dumpling - one plate
Whole grains: Sadza, mealie, maize meal porridge, mabella, samp, finger millet porridge, mahindi, provita, samp, dark bread

Portion size: Sadza - one plate; Samp - one cup; Porridge - one cup

Rice: White rice, spiced rice

Portion size: Rice - one cup

Middle East

Refined grains: Cold cereal breakfast, white bread, Irani bread, cheese croissant, khubz white, pasta, spaghetti, sambosa, lasangna, shabura, rahash, falodeh, ghotab, musakan, zaatar manakeesh, biscuits, crackers, baklava, knafeh, hareesh, cake, hallaweh, nekhee, khameer, chabab, rigag, pita, betheeth, kanafa, lagaimaat, mahlabiyyeh, mehaiwah, tarhana soup, lahmacun, manti, bread ekmek, yufka, acma, helva irmik, arayes, aaseedah

Portion size: Cold cereal breakfast - 25 g; Irani breads - one piece; Samosa - one medium piece; Spaghetti - one plate; Zaatar - one large; Pita one medium; All types of pastries - one piece

Whole grains: whole wheat bread, jareesh, hareese, fatayer zatar (whole), Chapati, Khubz brown, brown pita bread, Irani bread with sesame, balaleet, bread ekmek (whole grain esmer), managesh zatar whole

Portion size: Whole wheat breads - one piece; Irani bread (whole wheat) - one piece; Samosa - one medium; Spaghetti - one plate; Zaatar - one large; Brown pita - one medium

Rice: White rice, tahchin, shirbranj, kofteh sabzi, reshteh polo, kalam polo, mamowash rubian, mahamer

Portion size: All types of rice listed above - one plate

South Asia

Refined grains: Cold breakfast cereal, cornflakes, white bread, bun, pizza, burgers, pasta, spaghetti, noodles, sambosa/samosa, shingara, tandoori naan, mathri, vegetarian puff, non-vegetarian puff, salted biscuits, sweet biscuits, rusk, fuchka, chotpoti, sheermaal/taftan, mithai, kheer, firni, sheer, zarda, rabri, cake, jamun, jilebi, barfi, cake

Portion size: Cold cereal breakfast - 25g; Bread one slice; Pizza, burgers – one number; Pasta, spaghetti, noodles - one bowl; Sambosa/samosa, shingara, tandoori naan, mathri, vegetarian puff, non-vegetarian puff, salted biscuits, sweet biscuits, rusk, fuchka, chotpoti, sheermaal/taftan, mithai, zarda, cake, jamun, jilebi, barfi, cake - one number/slice; Kheer, firni, sheer, rabri./rabadi – one bowl/katori
Whole grains: Chapati (whole wheat/jowar/bajra), puri, mughlai paratha, paratha, puree, roti, phulka, mixed roti, ragi ball, rabri (bajra/jau/makka), oats porridge, dalia, upma, kesari bhath, halwa

Portion size: Chapati (whole wheat/jowar/bajra), puri, mughlai paratha, paratha, puree, roti, phulka, mixed roti, ragi ball- one number; Rabri (bajra/jau/makka), oats porridge, dalia, upma, kesari bhath- one bowl/katori; Halwa- one bowl/number

Rice: White polished and unpolished rice, parboiled rice, puffed rice (hand-pounded), water rice (hand-pounded), biryani/pulao/fried rice/jeera rice, lime rice, tomato rice, rice porridge/kanji, kitchree/khichdi, bhelpuri, all chaats, pongal, avalakki, poha, rice kheer, sweet pongal, rice pudding, idli, dosa, masala dosa, adai, puttu, appam, murukku, chakli, adhirasam, namkeen

Portion size: White polished and unpolished rice, parboiled rice, puffed rice (hand-pounded), water rice (hand-pounded), biryani/pulao/fried rice/jeera rice, lime rice, tomato rice, rice porridge/kanji, kitchree/khichdi, bhelpuri, all chaats, pongal, avalakki, poha, rice kheer, sweet pongal, rice pudding-one bowl; Idli, dosa, masala dosa, adai, puttu, appam, murukku, chakli, adhirasam- one number

South East Asia

Refined grains: Cold breakfast cereal, shite bread, roti canai, roti telur, dosai, bun, cracker, pasta, fried noodles, bandung, hailam, laksa, yong tau foo, kokodok pisang, curry puff, cucur udang, Sri muka, lopes, lapis, cake, pandesal, monay, biscuit, native kakanin, spaghetti/macaroni, pancit bihon, Instant noodles/canton, monay

Portion size: All types of bread - one slice; Pasta - one plate; Porridge - one bowl; yong tau foo, Laksa and other similar foods -one bowl; Biscuit - one piece; Cake - one slice; Noodles - one bowl

Whole grains: Oatmeal

Portion size: one bowl

Rice: White rice, fried rice, nasi lemak, nasi dagang, nasi kerabu

Portion size: All rice listed above- one plate

China

Refined grains: Bread, cakes, starch noodle, fried wheat flour

Whole grains: Corn, sorghum

Rice: White rice, sticky rice, rice noodle, Stick rice

Portion size: All portion sizes were based on one Liang
Figure 1: Flow chart of recruitment

- 149,573 households approached
 - 525,174 individuals
 - 21 countries
 - 47,633 (9.1%) declined to participate

- 477,521 (91.0%) individuals consented to participate
 - 253,747 (53.1%) met age eligibility of 35-70 years
 - 223,774 (46.9%) were <35 years or >70 years

- 185,635 (73.2%) consented to Core study with detailed baseline data collection
 - 66,112 (26.8%) consented to Surveillance study with only mortality collection

- 166,762 participants in 21 countries phase I+II eligible for follow-up
 - 14,509 Core study participants in phase III are still undergoing follow-up

- 164,007 participants with at least 1 follow-up in 21 countries

- 148,858 participants from 21 countries

- 137,130 participants in Final analysis from 21 countries

- 15,278 participants with implausible value of energy intake, missing value in age and sex excluded
- 11,728 participants with missing values on grains intake excluded
Supplementary tables

Table S1: Classification of PURE Countries by country income level and follow up rates

Low-income countries	No. of participants at the baseline (N)	Follow up rate (%)	Duration of follow up (Median (IQR))
Bangladesh	2936	84.3	7.38 (7.25 - 7.55)
India	29259	85.8	11.85 (10.02 - 13.38)
Pakistan	2721	95.2	5.59 (5.33 - 8.64)
Tanzania	2061	72.5	5.25 (3.27 - 5.88)
Zimbabwe	1263	80.3	9.32 (8.00 - 10.58)
Total	**38 240**		

Middle-income countries	No. of participants at the baseline (N)	Follow up rate (%)	Duration of follow up (Median (IQR))
Argentina	7535	98.1	9.54 (9.09 - 10.08)
Brazil	6081	97.5	9.57 (8.79 - 10.60)
Chile	3590	97.0	9.08 (8.83 - 9.52)
China	47935	98.5	9.68 (8.70 - 10.74)
Colombia	7542	95.3	9.78 (8.73 - 10.50)
Iran	6013	98.0	9.68 (8.82 - 10.09)
Malaysia	15793	93.1	9.12 (8.68 - 9.52)
Palestine	1668	94.5	3.20 (3.10 - 3.26)
Philippines	5019	83.3	3.01 (2.93 - 3.10)
Poland	2036	96.9	10.92 (9.97 - 10.99)
South Africa	4059	89.5	6.96 (5.62 - 10.33)
Turkey	4056	99.2	9.01 (8.77 - 9.84)
Total	**111 327**		

High-income countries	No. of participants at the baseline (N)	Follow up rate (%)	Duration of follow up (Median (IQR))
Canada	10462	98.5	9.44 (8.91 - 11.06)
Saudi Arabia	2046	91.1	3.38 (3.21 - 6.02)
Sweden	4153	96.8	3.38 (3.21 - 6.02)
United Arab Emirates	1499	97.3	10.11 (9.39 - 10.43)
Total	**18160**		
Total from all regions	**167 727**	**94.1**	**9.49 (8.59 - 10.87)**
Table S2: Description of covariates by categories of refined grain intake

Parameters	<50	50-150	150-250	250-350	>=350	P-Value
Age	50.4±10.2	50.9±9.9	50.7±9.9	51.1±9.9	49.9±9.7	<0.001
Sex						<0.001
Male	22 841 (59.9)	28 597 (59.8)	16 523 (59.1)	7686 (57.4)	9858 (50.2)	
Female	15 307 (40.1)	19 219 (40.2)	11 416 (40.9)	5714 (42.6)	9767 (49.8)	
Education						<0.001
None, Primary, or Unknown	20 334 (53.5)	17 418 (36.5)	10 722 (38.4)	5349 (40)	8547 (43.6)	
Secondary/High/Higher secondary	11 921 (31.4)	18 118 (38)	11 000 (39.4)	5599 (41.9)	8817 (45)	
Location						<0.001
Urban	17 450 (45.7)	29 157 (61)	17 082 (61.1)	7526 (56.2)	7896 (40.2)	
Rural	20 698 (54.3)	18 659 (39)	10 857 (38.9)	5874 (43.8)	11 729 (59.8)	
Level of Physical Activity						<0.001
Low - Met score < 600	7411 (21.6)	7807 (17.7)	4303 (16.2)	1941 (15)	3355 (17.6)	
Moderate - Met score in 600-3000	12 194 (35.5)	16 892 (38.4)	10 497 (39.6)	4942 (38.3)	7151 (37.4)	
High - Met score >= 3000	14 743 (42.9)	19 307 (43.9)	11 729 (44.2)	6025 (46.7)	8605 (45)	
History of tobacco use						<0.001
Former	3447 (9.1)	7364 (15.5)	3576 (12.9)	1558 (11.7)	1476 (7.6)	
Current	8368 (22.2)	8524 (17.9)	5483 (19.7)	2913 (21.9)	4657 (24.1)	
Never	25 924 (68.7)	31 668 (66.6)	18 713 (67.4)	8832 (66.4)	13 194 (68.3)	
Diagnosed with Diabetes						<0.001
No	35 436 (93)	42 962 (90)	25 405 (91.1)	12 364 (92.5)	18 528 (94.6)	
Yes	2658 (7)	4777 (10)	2493 (8.9)	1008 (7.5)	1059 (5.4)	
Waist to hip ratio	0.86±0.09	0.88±0.09	0.88±0.08	0.88±0.08	0.87±0.07	<0.001
Energy in kcal	1844±711	2111±754	2283±830	2349±902	2537±842	<0.001
Global Wealth Index	-0.46±1.14	0.23±0.99	0.33±0.82	0.21±0.72	-0.15±0.74	<0.001
Fruits & Vegetables (g/d)	282.8 (129.6,466.3)	451.2 (273.7,773.6)	450.0 (301.2,700.2)	391.4 (287.0,609.9)	362.3 (292.7,476.1)	<0.001
Red Meat (g/d)	15.7 (7.8,51.0)	40.7 (13.1,82.8)	56.6 (21.0,113.1)	53.6 (19.7,116.4)	40.0 (14.3,100.0)	<0.001

¶ Mean±SD, One way ANOVA; § N(%), Chi-Square test; ¥ Median(IQR), Kruskal Wallis test
Table S3: Description of covariates by categories of whole grain intake

Parameters	0	<50	50-99	>=100	P-Value
Age[^]	50.6±9.7	50.2±9.9	50.8±9.9	50.9±10.2	<0.001
Sex[^]					
Male	19 768 (57.3)	28 214 (58)	11 085 (59.7)	27 513 (58.4)	<0.001
Female	14 708 (42.7)	20 458 (42)	7477 (40.3)	19 635 (41.6)	
Education[^] N(%)					
None, Primary, or Unknown	17 438 (50.7)	22 104 (45.5)	5757 (31.1)	18 200 (38.7)	
Secondary/High/Higher secondary	13 517 (39.3)	17 630 (36.3)	7571 (40.9)	17 472 (37.1)	<0.001
Trade or College/University	3429 (10)	8795 (18.1)	7571 (40.9)	17 472 (37.1)	
Location[^]					
Urban	14 559 (42.2)	24 809 (51)	11 700 (63)	28 046 (59.5)	<0.001
Rural	19917 (57.8)	23 863 (49)	6862 (37)	19 102 (40.5)	
Level of Physical Activity[^]					
Low - Met score < 600	6445 (19.4)	9186 (19.8)	2812 (16)	6773 (16.3)	
Moderate - Met score in 600-3000	12 184 (36.6)	17 007 (36.6)	6884 (39.1)	16 242 (39.2)	<0.001
High - Met score >= 3000	14 643 (44.0)	20 292 (43.7)	7925 (45.0)	18 417 (44.5)	
History of tobacco use[^]					
Former	3303 (9.7)	5653 (11.7)	2783 (15.1)	5793 (12.4)	
Current	7741 (22.8)	10078 (20.8)	3312 (17.9)	9292 (19.9)	
Never	22 948 (67.5)	32 690 (67.5)	12 359 (67.0)	31 660 (67.7)	<0.001
Diagnosed with Diabetes[^]					
No	32 073 (93.2)	44 416 (91.4)	16 696 (90.1)	43 260 (91.9)	
Yes	2348 (6.8)	4197 (8.6)	1832 (9.9)	3795 (8.1)	<0.001
Waist to hip ratio[^]	0.88±0.08	0.87±0.09	0.87±0.09	0.87±0.09	<0.001
Energy in kcal[^]	2047±807	2091.8±800	2142±795	2279±833	<0.001
Global Wealth Index[^]	-0.04±0.82	0.02±1.1	0.26±0.98	-0.08±1.03	<0.001
Fruits & Vegetables (g/d)[¥]	338.4 (250.6,518.6)	362.7 (230.8,605.7)	439.4 (298.7,745.0)	394.3 (248.3,685.9)	<0.001
Red Meat (g/d)[¥]	40.83 (13.19,100)	31.9 (8.2,79.4)	41.9 (13.1,83.8)	35.2 (7.7,78.9)	<0.001

[^] Mean±SD, Oneway ANOVA; § N(%), Chi-Square test; ¥ Median(IQR), Kruskal Wallis test
Table S4: Description of covariates by categories of white rice intake

Parameters	<50	50-150	150-300	300-450	>=450	P-Value
Age†	51.7±10.0	50.1±9.9	50.9±9.8	51.5±9.8	49.3±9.9	<0.001
Sex†						
Male	24 751 (58.9)	23 007 (59.7)	10 718 (59.7)	10 391 (59.2)	17 713 (54.1)	<0.001
Female	17 304 (41.1)	15 522 (40.3)	7 227 (40.3)	7 176 (40.8)	15 049 (45.9)	
Education‡						
None, Primary, or Unknown	17 086 (40.7)	17 406 (45.3)	6 523 (36.4)	7 389 (42.1)	15 095 (46.3)	<0.001
Secondary/High/Higher secondary	13 534 (32.2)	13 958 (36.3)	7 461 (41.6)	6 953 (39.7)	14 284 (43.8)	
Trade or College/University	11 352 (27)	7 094 (18.4)	3 936 (22.0)	3 193 (18.2)	3 219 (9.9)	
Location§						
Urban	23 499 (55.9)	22 421 (58.2)	10 990 (61.2)	9 923 (56.5)	12 281 (37.5)	<0.001
Rural	18 556 (44.1)	16 108 (41.8)	6 955 (38.8)	7 644 (43.5)	20 481 (62.5)	
Level of Physical Activity§						
Low - Met score < 600	6451 (16.8)	7 135 (20.2)	3 179 (18.7)	2 589 (15.4)	5 862 (18.7)	
Moderate - Met score in 600-3000	14 093 (36.7)	13 817 (39.1)	6 898 (40.6)	6 412 (38.2)	11 097 (35.5)	<0.001
High - Met score >= 3000	17 868 (46.5)	14 376 (40.7)	6 926 (40.7)	7 770 (46.3)	14 337 (45.8)	
History of tobacco use§						
Former	7 711 (18.5)	4 569 (12.0)	1 604 (9.0)	1 913 (11.0)	1 735 (5.3)	<0.001
Current	8 651 (20.7)	7 376 (19.3)	3 126 (17.6)	3 228 (18.5)	8 042 (24.8)	
Never	25 359 (60.8)	26 277 (68.7)	13 073 (73.4)	12 288 (70.5)	22 660 (69.9)	<0.001
Diagnosed with Diabetes§						
No	38 667 (92.1)	35 122 (91.4)	15 981 (89.2)	15 936 (90.8)	30 739 (93.9)	<0.001
Yes	3 315 (7.9)	3 321 (8.6)	1 938 (10.8)	1 617 (9.2)	1 981 (6.1)	
Waist to hip ratio§	0.88±0.09	0.88±0.08	0.88±0.08	0.88±0.08	0.86±0.08	<0.001
Energy in kcal†	2 001±782	2 157±828	2 157±820	2 174±822	2 299±814	<0.001
Global Wealth Index§	0.32±1.04	0.19±0.88	0.28±0.81	-0.01±0.82	-0.76±0.90	<0.001
Fruits & Vegetables (g/d)§	434.3 (268.2,734.0)	429.4 (276.4,730.7)	407.8 (285.1,645.1)	396.5 (277.9,652.3)	284.4 (154.0,377.3)	<0.001
Red Meat (g/d)§	37.0 (13.0,76.1)	48.5 (16.4,100.4)	48.6 (14.6,103.6)	48.0 (15.3,109.7)	14.8 (1.6,50.0)	<0.001

† Mean±SD, Oneway ANOVA; § N(%), Chi-Square test; ¥ Median(IQR), Kruskal Wallis test
Table S5: Associations between refined grain intake and clinical outcomes among those with diabetes (DM) and without diabetes (WO DM)

Hazard ratio (95 CI)	<50 g/d (n=35 665)	50-150 g/d (n=44 015)	150-250 g/d (n=25 507)	250-350 g/d (n=12 133)	≥350 g/d (n=17 940)	P trend
DM						
Base model	1 (reference)	0.97 (0.91 to 1.02)	0.97 (0.91 to 1.02)	0.93 (0.87 to 0.99)	0.97 (0.89 to 1.05)	0.97 (0.89 to 1.05)
Minimally adjusted	1 (reference)	1.07 (1.01 to 1.15)	1.09 (1.02 to 1.16)	1.11 (1.03 to 1.20)	1.12 (1.03 to 1.21)	1.16 (1.05 to 1.28)
Fully adjusted	1 (reference)	1.07 (1.01 to 1.14)	1.09 (1.02 to 1.16)	1.11 (1.03 to 1.21)	1.12 (1.04 to 1.22)	1.17 (1.05 to 1.29)
Fully adjusted with medications	1 (reference)	1.08 (1.01 to 1.15)	1.09 (1.02 to 1.16)	1.12 (1.03 to 1.21)	1.13 (1.04 to 1.23)	1.18 (1.06 to 1.30)
Total mortality						
No (% events)	2703(7.6)	2289(5.2)	1122 (4.4)	532 (4.4)	878 (4.9)	
Base model	1 (reference)	0.91 (0.85 to 0.97)	0.91 (0.85 to 0.97)	0.87 (0.80 to 0.95)	0.87 (0.80 to 0.95)	0.85 (0.76 to 0.96)
Minimally adjusted	1 (reference)	1.04 (0.96 to 1.13)	1.06 (0.98 to 1.15)	1.08 (0.97 to 1.20)	1.09 (0.98 to 1.21)	1.04 (0.91 to 1.19)
Fully adjusted	1 (reference)	1.04 (0.96 to 1.13)	1.06 (0.98 to 1.15)	1.09 (0.98 to 1.21)	1.10 (0.99 to 1.22)	1.05 (0.91 to 1.20)
Fully adjusted with medications	1 (reference)	1.05 (0.96 to 1.14)	1.06 (0.98 to 1.15)	1.09 (0.98 to 1.21)	1.10 (0.99 to 1.23)	1.05 (0.92 to 1.21)
Major CVD						
No (% events)	1,774(5.0)	2000(4.5)	1127(4.4)	654(5.4)	1233(6.9)	
Base model	1 (reference)	1.08 (1.00 to 1.17)	1.08 (1.00 to 1.17)	1.03 (0.94 to 1.13)	1.03 (0.94 to 1.13)	1.12 (1.00 to 1.25)
Minimally adjusted	1 (reference)	1.11 (1.01 to 1.21)	1.12 (1.03 to 1.22)	1.13 (1.02 to 1.26)	1.14 (1.02 to 1.27)	1.25 (1.10 to 1.42)
Fully adjusted	1 (reference)	1.11 (1.01 to 1.21)	1.12 (1.03 to 1.22)	1.13 (1.02 to 1.26)	1.14 (1.03 to 1.27)	1.26 (1.10 to 1.43)
Fully adjusted with medications	1 (reference)	1.11 (1.02 to 1.21)	1.12 (1.03 to 1.22)	1.14 (1.03 to 1.27)	1.15 (1.03 to 1.28)	1.27 (1.12 to 1.45)

*Diabetes- as a covariate only in the DM model not in WO DM
IQR=interquartile range.

Cox frailty model: **Base Model:** adjusted for age and sex with centre as random effect; **Minimally adjusted:** adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes*, daily intakes of energy (kcal), vegetable and fruits, red meats with centre as random effect. **Fully adjusted:** Minimally adjusted + whole grains with centre as random effect. Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range.
Table S6: Association between whole grain intake and clinical outcomes among those with diabetes (DM) and those without diabetes (WO DM)

Hazard ratio (95% CI)	P trend								
	0 (n=45 380)	<50 g/d (n=46 234)	50-100 g/d (n=14 581)	≥100 g/d (n=28 901)					
DM	**WO DM**	**DM**	**WO DM**	**DM**	**WO DM**				
Composite events									
No (%) events	2717(8.6)	4484(9.9)	1455(8.6)	4012(9.3)					
Base Model	1.15 (1.08 to 1.23)	1.15 (1.08 to 1.23)	1.08 (1.02 to 1.14)	1.08 (1.02 to 1.14)	1.04 (0.97 to 1.11)	1.04 (0.97 to 1.11)	1 (reference)	<0.001	<0.001
Minimally Adjusted	1.04 (0.97 to 1.12)	1.00 (0.93 to 1.08)	1.02 (0.96 to 1.09)	0.99 (0.93 to 1.05)	1.05 (0.98 to 1.13)	1.03 (0.96 to 1.10)	1 (reference)	0.37	0.84
Fully adjusted	1.03 (0.96 to 1.10)	0.99 (0.92 to 1.07)	1.01 (0.95 to 1.08)	0.98 (0.92 to 1.04)	1.05 (0.98 to 1.13)	1.03 (0.96 to 1.11)	1 (reference)	0.59	0.59
Fully adjusted with medications	1.03 (0.96 to 1.11)	1.00 (0.93 to 1.07)	1.01 (0.95 to 1.08)	0.98 (0.92 to 1.05)	1.05 (0.98 to 1.13)	1.03 (0.96 to 1.11)	1 (reference)	0.57	0.70
Total Mortality									
No (%) events	1518(4.8)	2892(6.4)	840 (4.9)	2571(5.9)					
Base Model	1.17 (1.07 to 1.28)	1.17 (1.07 to 1.28)	1.06 (0.99 to 1.14)	1.06 (0.99 to 1.14)	0.99 (0.91 to 1.08)	0.99 (0.91 to 1.08)	1 (reference)	<0.001	<0.001
Minimally Adjusted	0.99 (0.90 to 1.09)	0.94 (0.85 to 1.04)	0.96 (0.88 to 1.04)	0.91 (0.84 to 0.99)	1.01 (0.92 to 1.11)	0.98 (0.89 to 1.08)	1 (reference)	0.54	0.08
Fully adjusted	0.97 (0.88 to 1.07)	0.93 (0.84 to 1.02)	0.95 (0.87 to 1.03)	0.91 (0.84 to 0.99)	1.00 (0.91 to 1.11)	0.98 (0.89 to 1.08)	1 (reference)	0.37	0.05
Fully adjusted with medications	0.97 (0.88 to 1.07)	0.93 (0.84 to 1.03)	0.95 (0.87 to 1.03)	0.91 (0.84 to 0.99)	1.00 (0.91 to 1.10)	0.98 (0.89 to 1.08)	1 (reference)	0.37	0.06
Major CVD									
No (%) events	1618(5.1)	2243(5.0)	853(5.0)	2184(5.0)					
Base Model	1.11 (1.02 to1.20)	1.11 (1.02 to 1.2)	1.05 (0.98 to 1.13)	1.05 (0.98 to 1.13)	1.06 (0.98 to 1.16)	1.06 (0.98 to 1.16)	1 (reference)	0.03	0.03
Minimally Adjusted	1.04 (0.95 to 1.14)	1.01 (0.92 to 1.11)	1.04 (0.96 to 1.13)	1.01 (0.93 to 1.10)	1.07 (0.97 to 1.17)	1.05 (0.96 to 1.15)	1 (reference)	0.37	0.95
Fully adjusted	1.04 (0.95 to 1.14)	1.01 (0.92 to 1.11)	1.04 (0.96 to 1.13)	1.01 (0.93 to 1.10)	1.07 (0.97 to 1.17)	1.05 (0.96 to 1.15)	1 (reference)	0.41	0.98
Fully adjusted with medications	1.05 (0.95 to 1.15)	1.02 (0.93 to 1.12)	1.04 (0.96 to 1.12)	1.01 (0.93 to 1.10)	1.06 (0.97 to 1.17)	1.05 (0.96 to 1.15)	1 (reference)	0.38	0.84

Cox frailty model:
- **Base model:** adjusted for age and sex with centre as a random effect;
- **Minimally adjusted:** adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes*, daily intakes of energy (kcal), vegetable and fruits, red meats with centre as a random effect;
- **Fully adjusted:** Minimally adjusted+ refined grains with centre as a random effect; Fully adjusted with medications: Fully adjusted +medications (statins and blood pressure) with centre as a random effect.

*Diabetes- as a covariate only in the DM model not in WO DM

IQR=interquartile range.
Table S7: Association between white rice intake and clinical outcomes among those with diabetes (DM) and those without diabetes (WO DM)

Hazard ratio (95 CI)	P trend										
	<50 g/d (n=38 022)	50-150 g/d (n=35 617)	150-300 g/d (n=16 230)	300-450 g/d (n=16 045)	≥450 g/d (n=31 216)						
	DM	WO DM	DM	WO DM	DM	WO DM					
Composite events	20.0 (8.2-28.0)	84.6 (67.7-114.3)	200 (171.4-214.3)	395.0 (327.3-400.0)	863.1 (608.2, 988.8)						
No (% events)	3437 (9.0)	2826 (7.9)	1393 (8.6)	1436 (9.0)	3576 (11.5)						
Base model	1 (reference)	0.89 (0.85 to 0.95)	0.89 (0.85 to 0.95)	0.84 (0.78 to 0.90)	0.84 (0.78 to 0.90)	0.79 (0.72 to 0.86)	<0.001	<0.001			
Minimally adjusted	1 (reference)	1.00 (0.93 to 1.06)	0.99 (0.92 to 1.05)	0.97 (0.89 to 1.06)	0.98 (0.90 to 1.07)	0.95 (0.86 to 1.04)	0.94 (0.86 to 1.03)	0.87 (0.79 to 0.96)	0.83 (0.75 to 0.92)	0.01	0.001
Fully adjusted	1 (reference)	1.01 (0.94 to 1.07)	1.00 (0.94 to 1.07)	1.01 (0.93 to 1.11)	1.03 (0.94 to 1.12)	0.98 (0.89 to 1.08)	0.98 (0.89 to 1.08)	0.97 (0.86 to 1.08)	0.93 (0.83 to 1.04)	0.58	0.33
Fully adjusted with medications	1 (reference)	1.01 (0.95 to 1.08)	1.00 (0.94 to 1.07)	1.01(0.92 to 1.11)	1.02 (0.94 to 1.12)	0.98 (0.89 to 1.08)	0.98 (0.89 to 1.08)	0.96 (0.86 to 1.08)	0.93 (0.83 to 1.04)	0.55	0.32
Total mortality	2114 (5.6)	1698 (4.8)	784 (4.8)	867 (5.4)	2358 (7.6)						
No (% events)											
Base model	1 (reference)	0.85 (0.79 to 0.91)	0.85 (0.79 to 0.91)	0.77 (0.70 to 0.85)	0.77 (0.70 to 0.85)	0.81 (0.72 to 0.90)	0.81 (0.72 to 0.90)	0.77 (0.69 to 0.86)	0.77 (0.69 to 0.86)	<0.001	<0.001
Minimally adjusted	1 (reference)	0.95 (0.87 to 1.04)	0.94 (0.87 to 1.03)	0.89 (0.79 to 1.00)	0.90 (0.80 to 1.02)	0.91 (0.80 to 1.03)	0.90 (0.80 to 1.02)	0.81 (0.71 to 0.93)	0.77 (0.68 to 0.88)	0.004	<0.001
Fully adjusted	1 (reference)	0.96 (0.88 to 1.05)	0.96 (0.88 to 1.04)	0.93 (0.82 to 1.05)	0.95 (0.84 to 1.07)	0.95 (0.83 to 1.08)	0.95 (0.83 to 1.08)	0.90 (0.78 to 1.04)	0.87 (0.75 to 1.01)	0.18	0.10
Fully adjusted with medications	1 (reference)	0.96 (0.89 to 1.05)	0.96 (0.88 to 1.04)	0.93 (0.82 to 1.05)	0.95 (0.84 to 1.07)	0.94 (0.83 to 1.07)	0.95 (0.83 to 1.07)	0.90 (0.78 to 1.04)	0.87 (0.75 to 1.01)	0.17	0.01
Major CVD	1925 (5.1)	1598 (4.5)	851 (5.2)	824 (5.1)	1700 (5.5)						
No (% events)											
Base model	1 (reference)	0.93 (0.86 to 1.00)	0.93 (0.86 to 1.00)	0.90 (0.81 to 0.99)	0.90 (0.81 to 0.99)	0.86 (0.77 to 0.95)	0.86 (0.77 to 0.95)	0.79 (0.70 to 0.89)	0.79 (0.70 to 0.89)	<0.001	<0.001
Minimally adjusted	1 (reference)	1.01 (0.93 to 1.10)	1.00 (0.92 to 1.09)	0.99 (0.89 to 1.11)	1.01 (0.90 to 1.12)	0.93 (0.82 to 1.05)	0.93 (0.82 to 1.04)	0.87 (0.76 to 0.99)	0.83 (0.73 to 0.95)	0.05	0.02
Fully adjusted	1 (reference)	1.02 (0.94 to 1.11)	1.02 (0.94 to 1.10)	1.04 (0.93 to 1.16)	1.05 (0.94 to 1.18)	0.98 (0.86 to 1.10)	0.97 (0.86 to 1.10)	0.97 (0.84 to 1.13)	0.94 (0.81 to 1.08)	0.70	0.48
Fully adjusted with medications	1 (reference)	1.03 (0.95 to 1.12)	1.02 (0.94 to 1.11)	1.03 (0.92 to 1.15)	1.04 (0.93 to 1.17)	0.97 (0.86 to 1.10)	0.97 (0.85 to 1.10)	0.97 (0.83 to 1.12)	0.93 (0.81 to 1.08)	0.63	0.44

Cox frailty model: Base model: adjusted for age to sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes*, daily intakes of energy (kcal), vegetable and fruits, and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + refined grains to whole grains with centre as a random effect; Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

*Diabetes- as a covariate only in the DM model not in WO DM

IQR=interquartile range.
Table S8a Association between refined grain intake and clinical outcomes in high intake countries (N= 102 075)

Median (IQR)	Hazard ratio (95 % CI)				
	<50 g/d (n=17 033)	50-150 g/d (n=32 805)	150-250 g/d (n=22 775)	250-350 g/d (n=11 701)	≥350 g/d (n=17 761)
Composite events	26.0 (13.6-38.0)	94.4 (73.0-119.5)	186.8 (165.8-214.6)	300.0 (273.1-319.7)	499.0 (450.0-675.0)
No (%) events	1129(6.6)	2259(6.9)	620(7.1)	966(8.3)	755(9.9)
Base model	1.00 (reference)	1.06 (0.98 to 1.14)	1.05 (0.96 to 1.14)	1.09 (0.98 to 1.20)	1.25 (1.14 to 1.38)
Minimally adjusted	1.00 (reference)	1.12 (1.04 to 1.22)	1.19 (1.09 to 1.31)	1.23 (1.10 to 1.38)	1.33 (1.18 to 1.50)
Fully adjusted	1.00 (reference)	1.13 (1.04 to 1.22)	1.20 (1.09 to 1.32)	1.24 (1.11 to 1.39)	1.35 (1.20 to 1.53)
Fully adjusted with medications	1.00 (reference)	1.13 (1.04 to 1.22)	1.21 (1.10 to 1.32)	1.25 (1.12 to 1.40)	1.36 (1.21 to 1.53)
Total mortality					
No (%) events	613 (3.6)	1282 (3.9)	905 (4.0)	495 (4.2)	860 (4.8)
Base model	1.00 (reference)	1.00 (0.91 to 1.11)	1.01 (0.90 to 1.13)	0.97 (0.84 to 1.11)	1.22 (1.07 to 1.39)
Minimally adjusted	1.00 (reference)	1.11 (0.99 to 1.24)	1.17 (1.03 to 1.33)	1.09 (0.94 to 1.28)	1.28 (1.08 to 1.50)
Fully adjusted	1.00 (reference)	1.11 (0.99 to 1.24)	1.17 (1.03 to 1.33)	1.10 (0.94 to 1.28)	1.28 (1.09 to 1.52)
Fully adjusted with medications	1.00 (reference)	1.11 (0.99 to 1.24)	1.18 (1.04 to 1.34)	1.11 (0.95 to 1.29)	1.29 (1.09 to 1.52)
Major CVD					
No (%) events	654 (3.8)	1332 (4.1)	978 (4.3)	636 (5.4)	1223 (6.9)
Base model	1.00 (reference)	1.13 (1.02 to 1.25)	1.11 (0.99 to 1.24)	1.21 (1.07 to 1.37)	1.33 (1.18 to 1.51)
Minimally adjusted	1.00 (reference)	1.18 (1.06 to 1.31)	1.24 (1.10 to 1.40)	1.39 (1.20 to 1.60)	1.48 (1.28 to 1.72)
Fully adjusted	1.00 (reference)	1.18 (1.06 to 1.31)	1.25 (1.11 to 1.41)	1.40 (1.21 to 1.61)	1.51 (1.30 to 1.76)
Fully adjusted with medications	1.00 (reference)	1.18 (1.06 to 1.31)	1.26 (1.11 to 1.42)	1.41 (1.23 to 1.63)	1.52 (1.30 to 1.76)

Cox frailty model: Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + whole grains with centre as a random effect; Fully adjusted with medications: Fully adjusted +medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range.
Table S8b Association between refined grain intake and clinical outcomes in low intake countries (N= 33 185)

Hazard ratio (95 % CI)	<50 g/d (n=18632)	50-150 g/d (n=11210)	150-250 g/d (n=2732)	250-350 g/d (n=432)	≥350 g/d (n=179)
Median (IQR)	11.6 (4.2, 25.4)	89.4 (68.8, 115.3)	180.0 (162.9, 206.4)	278.9 (262.1, 305.4)	451.8 (386.0,582.8)
Composite events					
No (%) events	2774 (14.9)	1427 (12.7)	318 (11.6)	50 (11.6)	23 (12.8)
Base model	1.00 (reference)	0.89 (0.82 to 0.96)	0.77 (0.68 to 0.88)	0.76 (0.57 to 1.01)	0.90 (0.59 to 1.36)
Minimally adjusted	1.00 (reference)	1.02 (0.91 to 1.14)	0.95 (0.79 to 1.13)	1.03 (0.69 to 1.53)	1.31 (0.79 to 2.16)
Fully adjusted	1.00 (reference)	1.02 (0.91 to 1.14)	0.95 (0.79 to 1.13)	1.03 (0.69 to 1.53)	1.31 (0.79 to 2.16)
Fully adjusted with medications	1.00 (reference)	1.02 (0.91 to 1.14)	0.95 (0.79 to 1.13)	1.03 (0.69 to 1.53)	1.31 (0.79 to 2.17)
Total mortality					
No (%) events	2090 (11.2)	1007 (9.0)	217 (7.9)	37 (8.6)	18 (10.1)
Base model	1.00 (reference)	0.86 (0.78 to 0.94)	0.73 (0.63 to 0.85)	0.75 (0.54 to 1.05)	0.93 (0.58 to 1.49)
Minimally adjusted	1.00 (reference)	0.97 (0.85 to 1.11)	0.93 (0.74 to 1.15)	1.02 (0.63 to 1.65)	1.53 (0.87 to 2.68)
Fully adjusted	1.00 (reference)	0.97 (0.86 to 1.11)	0.93 (0.75 to 1.16)	1.03 (0.63 to 1.66)	1.54 (0.88 to 2.7)
Fully adjusted with medications	1.00 (reference)	0.98 (0.86 to 1.11)	0.93 (0.75 to 1.16)	1.03 (0.64 to 1.67)	1.54 (0.88 to 2.7)
Major CVD					
No (%) events	1120 (6.0)	668 (6.0)	149 (5.5)	18 (4.2)	10 (5.6)
Base model	1.00 (reference)	1.02 (0.91 to 1.16)	0.90 (0.74 to 1.09)	0.73 (0.45 to 1.17)	0.99 (0.53 to 1.87)
Minimally adjusted	1.00 (reference)	0.92 (0.78 to 1.09)	0.81 (0.63 to 1.05)	0.78 (0.44 to 1.38)	1.18 (0.58 to 2.42)
Fully adjusted	1.00 (reference)	0.92 (0.78 to 1.09)	0.81 (0.63 to 1.05)	0.78 (0.44 to 1.38)	1.18 (0.58 to 2.41)
Fully adjusted with medications	1.00 (reference)	0.93 (0.78 to 1.09)	0.81 (0.63 to 1.05)	0.78 (0.44 to 1.38)	1.18 (0.58 to 2.42)

Cox frailty model: Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + whole grains with centre as a random effect; Fully adjusted with medications: Fully adjusted +medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range
Table S9: Association between quantiles of refined grain intake and clinical outcomes (N=135 260) without baseline CVD

	Q1 (n=27 493)	Q2 vs Q1 (n=26 870)	Q3 vs Q1 (n=26 832)	Q4 vs Q1 (n=26 899)	Q5 vs Q1 (n=27 166)	Hazard ratio (95% CI)	P trend
Median (IQR)	22.1 (5.3-41.6)	76.0 (49.2-118.0)	142.5 (75.3-204.3)	197.9 (107.5-325.7)	325.3 (183.5-602.5)		
Composite							
No (%) events	2616 (9.5)	2401 (8.9)	2386 (8.9)	2403 (8.9)	2515 (9.3)		<0.001
Fully adjusted	1.00 (reference)	1.12 (1.05 to 1.19)	1.13 (1.06 to 1.20)	1.15 (1.08 to 1.23)	1.19 (1.11 to 1.27)		
Total Mortality							
No (%) events	1746 (6.4)	1510 (5.6)	1421 (5.3)	1404 (5.2)	1443 (5.3)		0.01
Fully adjusted	1.00 (reference)	1.11 (1.02 to 1.20)	1.07 (0.99 to 1.17)	1.11 (1.02 to 1.21)	1.14 (1.04 to 1.25)		
Non-CV mortality							
No (%) events	1266 (4.6)	1071 (4.0)	968 (3.6)	949 (3.5)	934 (3.4)		0.50
Fully adjusted	1.00 (reference)	1.07 (0.97 to 1.17)	1.02 (0.92 to 1.12)	1.06 (0.96 to 1.17)	1.04 (0.93 to 1.17)		
CV mortality							
No (%) events	544 (2)	511 (1.9)	523 (1.9)	522 (1.9)	576 (2.1)		<0.001
Fully adjusted	1.00 (reference)	1.26 (1.10 to 1.45)	1.25 (1.08 to 1.44)	1.30 (1.12 to 1.50)	1.41 (1.21 to 1.64)		
Major CVD							<0.001
No (%) events	1223 (4.4)	1264 (4.7)	1379 (5.1)	1418 (5.3)	1504 (5.5)		
Fully adjusted	1.00 (reference)	1.21 (1.11 to 1.32)	1.27 (1.17 to 1.39)	1.28 (1.18 to 1.40)	1.37 (1.25 to 1.50)		<0.001
MI							
No (%) events	529 (1.9)	544 (2.0)	615 (2.3)	596 (2.2)	647 (2.4)		<0.001
Fully adjusted	1.00 (reference)	1.26 (1.10 to 1.44)	1.35 (1.18 to 1.54)	1.29 (1.13 to 1.48)	1.40 (1.22 to 1.62)		
Stroke							
No (%) events	568 (2.1)	595 (2.2)	627 (2.3)	681 (2.5)	739 (2.7)		
Fully adjusted	1.00 (reference)	1.18 (1.04 to 1.34)	1.19 (1.05 to 1.35)	1.22 (1.08 to 1.38)	1.34 (1.18 to 1.53)		<0.001
Heart Failure							
No (%) events	115 (0.4)	116 (0.4)	146 (0.5)	138 (0.5)	137 (0.5)		
Fully adjusted	1.00 (reference)	1.09 (0.82 to 1.46)	1.37 (1.03 to 1.81)	1.32 (0.99 to 1.75)	1.33 (0.98 to 1.81)		0.03

Cox frailty model: Fully adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits to red meats and whole grains with centre as a random effect.
IQR=interquartile range
Table S10 Association between whole grain intake and clinical outcomes (N= 1313313) in all regions excluding Africa

	Hazard ratio (95 %CI)	P trend
	0 (n=31 646)	
	<50 g/d (n=44 951)	
	50-100 g/d (n=16 648)	
	≥100 g/d (n=38 068)	
Median (IQR)	0 (0,0)	17.3 (9.1, 31.3)
	73.6 (61.8, 84.1)	214.3 (147.8, 326.5)
Composite		
No (% events)	2714 (8.6)	4470 (9.9)
	1418 (8.5)	3266 (8.6)
Base model	1.18 (1.10 to 1.26)	1.09 (1.03 to 1.16)
	1.05 (0.98 to 1.13)	1.00 (reference)
	<0.001	0.20
Minimally adjusted	1.05 (0.98 to 1.13)	1.03 (0.97 to 1.10)
	1.05 (0.98 to 1.13)	1.00 (reference)
	0.0	0.34
Fully adjusted	1.04 (0.97 to 1.12)	1.03 (0.96 to 1.09)
	1.06 (0.98 to 1.14)	1.00 (reference)
	0.33	
Fully adjusted with medications	1.04 (0.97 to 1.12)	1.02 (0.96 to 1.09)
	1.05 (0.98 to 1.13)	1.00 (reference)
Total mortality		
No (% events)	1515 (4.8)	2882 (6.4)
	812 (4.9)	1992 (5.2)
Base model	1.20 (1.10 to 1.31)	1.08 (1.00 to 1.16)
	1.01 (0.92 to 1.10)	1.00 (reference)
	<0.001	0.80
Minimally adjusted	1.00 (0.91 to 1.10)	0.97 (0.89 to 1.05)
	1.00 (0.91 to 1.11)	1.00 (reference)
	0.80	
Fully adjusted	0.99 (0.90 to 1.09)	0.96 (0.88 to 1.04)
	1.00 (0.90 to 1.10)	1.00 (reference)
	0.60	
Fully adjusted with medications	0.99 (0.89 to 1.09)	0.96 (0.88 to 1.04)
	1.00 (0.90 to 1.10)	1.00 (reference)
	0.60	
Major CVD		
No (% events)	1617 (5.1)	2239 (5.0)
	842 (5.1)	1955 (5.1)
Base model	1.11 (1.02 to 1.21)	1.05 (0.98 to 1.14)
	1.07 (0.98 to 1.16)	1.00 (reference)
	0.02	
Minimally adjusted	1.05 (0.96 to 1.15)	1.04 (0.96 to 1.13)
	1.06 (0.97 to 1.17)	1.00 (reference)
	0.35	
Fully adjusted	1.05 (0.95 to 1.15)	1.04 (0.96 to 1.13)
	1.07 (0.97 to 1.17)	1.00 (reference)
	0.38	
Fully adjusted with medications	1.05 (0.96 to 1.15)	1.04 (0.96 to 1.13)
	1.06 (0.97 to 1.17)	1.00 (reference)
	0.35	

Cox frailty model: Base model: adjusted for age and sex with centre as a random effect; **Minimally adjusted:** adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; **Fully adjusted:** Minimally adjusted+ refined grains, with centre as a random effect; **Fully adjusted with medications:** Fully adjusted + medications (statins and blood pressure with centre as a random effect.

IQR=interquartile range
Table S11 Association between whole grain intakes estimated on dry weight basis and clinical outcomes (N= 137 130)

Hazard ratio (95 CI)	0 g/d (n=31 686)	<10 g/d (n=33 495)	10-19.9 g/d (n=15 178)	20-29.9 g/d (n=9775)	>=30 g/d (n=46 996)	P trend
Composite events						
No (% events)	2717 (8.6)	3440 (10.3)	1335 (8.8)	818 (8.4)	4358 (9.3)	
Base model	1.16 (1.09 to 1.23)	1.10 (1.04 to 1.17)	1.03 (0.97 to 1.11)	1.02 (0.95 to 1.11)	1.00 (reference)	<0.001
Minimally Adjusted	1.02 (0.96 to 1.10)	1.01 (0.95 to 1.08)	1.01 (0.94 to 1.09)	0.99 (0.91 to 1.08)	1.00 (reference)	0.47
Fully adjusted	1.01 (0.94 to 1.09)	1.00 (0.94 to 1.07)	1.00 (0.93 to 1.08)	1.00 (0.91 to 1.09)	1.00 (reference)	0.75
Fully adjusted with Medications	1.01 (0.94 to 1.09)	1.00 (0.94 to 1.07)	1.01 (0.93 to 1.09)	1.00 (0.91 to 1.09)	1.00 (reference)	0.75
Total mortality						
No (% events)	1518 (4.8)	2269 (6.8)	800 (5.3)	480 (4.9)	2754 (5.9)	
Base model	1.18 (1.09 to 1.29)	1.10 (1.02 to 1.18)	1.01 (0.93 to 1.11)	0.98 (0.89 to 1.09)	1.00 (reference)	<0.001
Minimally Adjusted	0.97 (0.89 to 1.07)	0.94 (0.87 to 1.02)	0.96 (0.87 to 1.06)	0.95 (0.84 to 1.06)	1.00 (reference)	0.42
Fully adjusted	0.96 (0.87 to 1.06)	0.93 (0.86 to 1.02)	0.96 (0.87 to 1.06)	0.94 (0.84 to 1.06)	1.00 (reference)	0.27
Fully adjusted with Medications	0.96 (0.87 to 1.06)	0.93 (0.85 to 1.01)	0.96 (0.87 to 1.06)	0.94 (0.83 to 1.06)	1.00 (reference)	0.26
Non-CV mortality						
No (% events)	1030 (3.3)	1614 (4.8)	535 (3.5)	325 (3.3)	1902 (4.1)	
Base Model	1.20 (1.08 to 1.33)	1.09 (1.00 to 1.19)	0.98 (0.88 to 1.09)	0.94 (0.83 to 1.07)	1.00 (reference)	<0.001
Minimally Adjusted	0.96 (0.85 to 1.07)	0.91 (0.82 to 1.00)	0.91 (0.81 to 1.02)	0.93 (0.82 to 1.07)	1.00 (reference)	0.22
Fully adjusted	0.93 (0.83 to 1.05)	0.88 (0.80 to 0.98)	0.91 (0.80 to 1.02)	0.92 (0.80 to 1.07)	1.00 (reference)	0.08
Fully adjusted with Medications	0.93 (0.83 to 1.04)	0.88 (0.80 to 0.98)	0.91 (0.80 to 1.02)	0.92 (0.80 to 1.06)	1.00 (reference)	0.08
CV mortality						
No (% events)	557 (1.8)	764 (2.3)	301 (2.0)	170 (1.7)	985 (2.1)	
Base model	1.18 (1.03 to 1.35)	1.10 (0.97 to 1.25)	1.08 (0.93 to 1.25)	1.03 (0.86 to 1.22)	1.00 (reference)	0.02
Minimally Adjusted	1.04 (0.89 to 1.21)	1.02 (0.89 to 1.18)	1.08 (0.92 to 1.26)	0.92 (0.76 to 1.13)	1.00 (reference)	0.51
Fully adjusted	1.05 (0.89 to 1.22)	1.03 (0.89 to 1.19)	1.08 (0.91 to 1.27)	0.94 (0.76 to 1.15)	1.00 (reference)	0.46
Fully adjusted with Medications	1.05 (0.90 to 1.23)	1.03 (0.89 to 1.19)	1.08 (0.92 to 1.28)	0.93 (0.76 to 1.15)	1.00 (reference)	0.45

Major CVD

Median (IQR)	0 (0-0)	4.2 (2.5-6.9)	14.9 (12.5-17.3)	25.0 (22.5-28.0)	73.8 (48.4-131.8)	
Composite events						
No (% events)						
Base model						
Minimally Adjusted						
Fully adjusted						
Fully adjusted with Medications						
Total mortality						
No (% events)						
Base model						
Minimally Adjusted						
Fully adjusted						
Fully adjusted with Medications						
Non-CV mortality						
No (% events)						
Base Model						
Minimally Adjusted						
Fully adjusted						
Fully adjusted with Medications						
CV mortality						
No (% events)						
Base model						
Minimally Adjusted						
Fully adjusted						
Fully adjusted with Medications						
Major CVD						
No (%) events	1618 (5.1)	1652 (4.9)	753 (5.0)	472 (4.8)	2403 (5.1)
Base model	1.11 (1.02 to 1.2)	1.06 (0.98 to 1.15)	1.04 (0.95 to 1.14)	1.05 (0.95 to 1.17)	1.00 (reference)
Minimally adjusted	1.03 (0.94 to 1.12)	1.03 (0.94 to 1.12)	1.03 (0.94 to 1.13)	0.99 (0.88 to 1.11)	1.00 (reference)
Fully adjusted	1.03 (0.94 to 1.12)	1.03 (0.94 to 1.12)	1.02 (0.93 to 1.13)	0.99 (0.88 to 1.11)	1.00 (reference)
Fully adjusted with medications	1.03 (0.94 to 1.12)	1.02 (0.94 to 1.12)	1.03 (0.93 to 1.13)	0.99 (0.88 to 1.11)	1.00 (reference)

MI

No (%) events	651 (2.1)	772 (2.3)	358 (2.4)	224 (2.3)	994 (2.1)
Base model	1.11 (0.97 to 1.26)	1.02 (0.91 to 1.15)	1.08 (0.94 to 1.24)	1.09 (0.94 to 1.28)	1.00 (reference)
Minimally adjusted	1.08 (0.94 to 1.25)	1.03 (0.90 to 1.18)	1.12 (0.97 to 1.30)	1.02 (0.86 to 1.21)	1.00 (reference)
Fully adjusted	1.08 (0.93 to 1.25)	1.03 (0.90 to 1.18)	1.11 (0.95 to 1.29)	1.01 (0.85 to 1.21)	1.00 (reference)
Fully adjusted with medications	1.08 (0.93 to 1.25)	1.03 (0.90 to 1.17)	1.11 (0.96 to 1.29)	1.01 (0.85 to 1.21)	1.00 (reference)

Stroke

No (%) events	852 (2.7)	669 (2.0)	318 (2.1)	211 (2.2)	1177 (2.5)
Base model	1.13 (1.01 to 1.26)	1.04 (0.93 to 1.17)	0.99 (0.87 to 1.13)	1.06 (0.91 to 1.23)	1.00 (reference)
Minimally adjusted	1.04 (0.92 to 1.17)	0.99 (0.87 to 1.12)	0.95 (0.82 to 1.09)	1.03 (0.87 to 1.21)	1.00 (reference)
Fully adjusted	1.03 (0.92 to 1.17)	0.98 (0.86 to 1.11)	0.94 (0.82 to 1.08)	1.01 (0.86 to 1.19)	1.00 (reference)
Fully adjusted with medications	1.04 (0.92 to 1.17)	0.98 (0.86 to 1.11)	0.94 (0.82 to 1.09)	1.01 (0.86 to 1.19)	1.00 (reference)

Heart Failure

No (%) events	109 (0.3)	184 (0.6)	93 (0.6)	50 (0.5)	220 (0.5)
Base model	0.86 (0.66 to 1.14)	1.18 (0.93 to 1.5)	1.23 (0.94 to 1.61)	1.05 (0.76 to 1.45)	1.00 (reference)
Minimally adjusted	0.77 (0.56 to 1.05)	1.24 (0.95 to 1.61)	1.27 (0.95 to 1.71)	0.94 (0.65 to 1.36)	1.00 (reference)
Fully adjusted	0.75 (0.55 to 1.03)	1.25 (0.96 to 1.63)	1.29 (0.96 to 1.72)	0.96 (0.67 to 1.39)	1.00 (reference)
Fully adjusted with medications	0.76 (0.55 to 1.03)	1.24 (0.95 to 1.63)	1.30 (0.97 to 1.74)	0.96 (0.67 to 1.39)	1.00 (reference)

Cox frailty model: *Base model:* adjusted for age and sex with centre as a random effect; *Minimally adjusted:* adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), , vegetable and fruits, dairy and red meats with centre as a random effect; *Fully adjusted:* Minimally adjusted+ refined grains, with centre as a random effect; *Fully adjusted with medications:* Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range.
Table S12a Association between white rice intake and clinical outcomes in Asian countries (N=82 652)

Hazard ratio (95 CI)	<50 g/d (n=13,953)	50-<150 g/d (n=15 669)	150-<300 g/d (n=10 887)	300-<450 g/d (n=11 289)	≥450 g/d (n=30 854)
Median (IQR)	19.7 (6.6-30.2)	85.7 (64.3-143.3)	200.0 (186.6-214.3)	389.0 (321.9-400.6)	885.7 (609.8-989.5)
Composite events					
No (%) events	1550 (11.1)	1458 (9.3)	1083 (10.0)	1081 (9.6)	3561 (11.5)
Base model	1.00 (reference)	0.86 (0.80 to 0.93)	0.79 (0.72 to 0.87)	0.78 (0.71 to 0.86)	0.74 (0.68 to 0.82)
Minimally adjusted	1.00 (reference)	0.98 (0.90 to 1.07)	0.96 (0.86 to 1.06)	0.94 (0.84 to 1.05)	0.85 (0.76 to 0.95)
Fully adjusted	1.00 (reference)	1.00 (0.92 to 1.10)	1.03 (0.92 to 1.15)	1.01 (0.90 to 1.13)	0.99 (0.87 to 1.13)
Fully adjusted with medications	1.00 (reference)	1.01 (0.93 to 1.11)	1.03 (0.92 to 1.14)	1.01 (0.90 to 1.13)	0.99 (0.87 to 1.13)
Total mortality					
No (%) events	974 (7.0)	821 (5.2)	608 (5.6)	634 (5.6)	2352 (7.6)
Base model	1.00 (reference)	0.77 (0.70 to 0.85)	0.70 (0.62 to 0.78)	0.72 (0.63 to 0.81)	0.70 (0.62 to 0.79)
Minimally adjusted	1.00 (reference)	0.89 (0.79 to 1.01)	0.85 (0.74 to 0.98)	0.87 (0.75 to 1.01)	0.78 (0.67 to 0.90)
Fully adjusted	1.00 (reference)	0.92 (0.81 to 1.03)	0.91 (0.79 to 1.05)	0.93 (0.79 to 1.09)	0.88 (0.74 to 1.05)
Fully adjusted with medications	1.00 (reference)	0.92 (0.82 to 1.04)	0.91 (0.79 to 1.05)	0.93 (0.79 to 1.09)	0.88 (0.75 to 1.05)
Major CVD					
No (%) events	952 (6.8)	919 (5.9)	671 (6.2)	621 (5.5)	1691 (5.5)
Base model	1.00 (reference)	0.91 (0.83 to 1.00)	0.86 (0.77 to 0.97)	0.82 (0.72 to 0.92)	0.75 (0.66 to 0.85)
Minimally adjusted	1.00 (reference)	1.00 (0.90 to 1.12)	0.98 (0.86 to 1.11)	0.92 (0.79 to 1.05)	0.83 (0.72 to 0.97)
Fully adjusted	1.00 (reference)	1.03 (0.92 to 1.14)	1.04 (0.91 to 1.19)	0.98 (0.85 to 1.14)	0.97 (0.82 to 1.15)
Fully adjusted with medications	1.00 (reference)	1.04 (0.93 to 1.16)	1.03 (0.90 to 1.18)	0.98 (0.85 to 1.14)	0.97 (0.82 to 1.15)

Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI): Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal),...
vegetable and fruits, dairy and red meats with centre as a random effect; **Fully adjusted**: Minimally adjusted + refined grains, whole grains with centre as a random effect. Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range.
Table S12b Association between consumption of white rice and clinical outcomes in Non-Asian countries (N=54,478)

Consumption (g/d)	Hazard ratio (95 CI)	Median (IQR)	Composite events	Total mortality	Major CVD	
		<50 g/d (n=24,069)	50-150 g/d (n=19,948)	150-300 g/d (n=5,343)	300-450 g/d (n=4,756)	≥450 g/d (n=3,62)
		n	n	n	n	n
<50 g/d	1.00 (reference)	20.7 (8.2, 26.8)	79.0 (67.7, 120.1)	171.4 (158.0, 214.3)	395.0 (327.5, 395.0)	589.5 (503.4, 786.0)
50-150 g/d	1.02 (0.92 to 1.12)	23.6 (13.6, 41.1)	77.8 (65.5, 106.2)	171.4 (158.0, 214.3)	395.0 (327.5, 395.0)	589.5 (503.4, 786.0)
150-300 g/d	1.02 (0.91 to 1.12)	30.4 (18.5, 51.8)	144.3 (120.8, 176.6)	395.0 (327.5, 395.0)	589.5 (503.4, 786.0)	589.5 (503.4, 786.0)
300-450 g/d	1.02 (0.92 to 1.12)	40.3 (20.5, 80.1)	205.5 (181.1, 235.6)	589.5 (503.4, 786.0)	589.5 (503.4, 786.0)	589.5 (503.4, 786.0)
≥450 g/d	1.02 (0.92 to 1.12)	58.8 (21.5, 160.7)	307.5 (235.0, 400.0)	589.5 (503.4, 786.0)	589.5 (503.4, 786.0)	589.5 (503.4, 786.0)

Composite events

Events	Hazard ratio (95 CI)	Median (IQR)
No (%)		
Base model	1.00 (reference)	20.7 (8.2, 26.8)
Minimally adjusted	1.02 (0.92 to 1.12)	23.6 (13.6, 41.1)
Fully adjusted	1.02 (0.92 to 1.12)	30.4 (18.5, 51.8)
Fully adjusted with medications	1.02 (0.92 to 1.12)	40.3 (20.5, 80.1)

Total mortality

Events	Hazard ratio (95 CI)	Median (IQR)
No (%)		
Base model	1.00 (reference)	20.7 (8.2, 26.8)
Minimally adjusted	1.02 (0.91 to 1.16)	30.4 (18.5, 51.8)
Fully adjusted	1.02 (0.91 to 1.16)	40.3 (20.5, 80.1)
Fully adjusted with medications	1.02 (0.91 to 1.16)	58.8 (21.5, 160.7)

Major CVD

Events	Hazard ratio (95 CI)	Median (IQR)
No (%)		
Base model	1.00 (reference)	20.7 (8.2, 26.8)
Minimally adjusted	1.02 (0.90 to 1.16)	30.4 (18.5, 51.8)
Fully adjusted	1.02 (0.90 to 1.16)	40.3 (20.5, 80.1)
Fully adjusted with medications	1.02 (0.90 to 1.16)	58.8 (21.5, 160.7)

Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI): Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + refined grains, whole grains with centre as a random effect. Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range.
Table S13: Association between refined grain intake and clinical outcomes (N=135 260) without baseline CVD adjusted for sodium and saturated fat

Hazard ratio (95% CI)	P trend					
	<50 g/d (n=35 665)	50-150 g/d (n=44 015)	150-250 g/d (n=25 507)	250-350 g/d (n=12 133)	≥350 g/d (n=17 940)	
Composite events						
No (% events)	3903 (10.9)	3686 (8.4)	1938 (7.6)	1016 (8.4)	1778 (9.9)	<0.001
Fully adjusted	1.00 (reference)	1.07 (1.01 to 1.15)	1.11 (1.02 to 1.20)	1.15 (1.04 to 1.28)	1.26 (1.13 to 1.40)	<0.001
Total mortality						
No (% events)	2703 (7.6)	2289 (5.2)	1122 (4.4)	532 (4.4)	878 (4.9)	
Fully adjusted	1.00 (reference)	1.04 (0.96 to 1.13)	1.08 (0.97 to 1.20)	1.03 (0.90 to 1.19)	1.24 (1.08 to 1.44)	0.01
Non-CV mortality						
No (% events)	1907 (5.4)	1564 (3.6)	812 (3.2)	375 (3.1)	530 (3.0)	0.004
Fully adjusted	1.00 (reference)	1.08 (0.98 to 1.19)	1.20 (1.06 to 1.36)	1.12 (0.95 to 1.32)	1.32 (1.10 to 1.57)	0.01
CV mortality						
No (% events)	904 (2.5)	851 (1.9)	358 (1.4)	179 (1.5)	384 (2.1)	
Fully adjusted	1.00 (reference)	0.99 (0.86 to 1.14)	0.83 (0.70 to 1.00)	0.87 (0.69 to 1.09)	1.09 (0.86 to 1.37)	0.94
Major CVD						
No (% events)	1774 (5.0)	2000 (4.5)	1127 (4.4)	654 (5.4)	1233 (6.9)	<0.001
Fully adjusted	1.00 (reference)	1.10 (1.01 to 1.20)	1.12 (1.01 to 1.25)	1.23 (1.08 to 1.40)	1.30 (1.14 to 1.49)	<0.001
MI						
No (% events)	874(2.5)	983 (2.2)	485 (1.9)	229 (1.9)	360 (2.0)	0.37
Fully adjusted	1.00 (reference)	1.08 (0.95 to 1.23)	1.05 (0.89 to 1.23)	1.09 (0.89 to 1.35)	1.12 (0.90 to 1.40)	0.37
Stroke						
No (% events)	751 (2.1)	774 (1.8)	519 (2.0)	369 (3.0)	797 (4.4)	<0.001
Fully adjusted	1.00 (reference)	1.08 (0.95 to 1.24)	1.14 (0.97 to 1.33)	1.29 (1.07 to 1.55)	1.42 (1.18 to 1.72)	<0.001
Heart Failure						
Events N (%)	129 (0.4)	244 (0.6)	150 (0.6)	57 (0.5)	72 (0.4)	
Fully adjusted	1.00 (reference)	1.23 (0.93 to 1.62)	1.61 (1.17 to 2.20)	1.48 (0.98 to 2.23)	1.23 (0.77 to 1.94)	0.13

Cox frailty model hazard ratios and 95% confidence intervals (CI): Fully adjusted: adjusted for age, sex, location (urban/rural, wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats and whole grains with centre as random effect.

IQR=interquartile range
Table S14: Association between whole grain intake and clinical outcomes (N=137 130) without baseline CVD adjusted for sodium and saturated fat

Hazard ratio (95 %CI)	0 (n=31 686)	<50 g/d (n=45 112)	50-100 g/d (n=17 016)	≥100 g/d (n=43 316)	P trend
Median (IQR)	0 (0-0)	17.3 (9.2-31.3)	73.6 (62.0-84.2)	226.8 (154.3-362.2)	
Composite					
No (%) events	2717(8.6)	4484(9.9)	1455(8.6)	4012(9.3)	
Fully adjusted	1.03 (0.96 to 1.11)	1.01 (0.95 to 1.08)	1.05 (0.98 to 1.13)	1.00 (reference)	0.57
Total mortality					
No (%) events	1518 (4.8)	2892 (6.4)	840 (4.9)	2571 (5.9)	
Fully adjusted	0.97 (0.88 to 1.08)	0.95 (0.87 to 1.03)	1.00 (0.91 to 1.11)	1.00 (reference)	0.38
Non-CV mortality					
No (%) events	1030 (3.3)	2023 (4.5)	570 (3.4)	1783 (4.1)	
Fully adjusted	0.94 (0.83 to 1.05)	0.89 (0.81 to 0.98)	0.97 (0.86 to 1.09)	1.00 (reference)	0.10
CV mortality					
No (%) events	557 (1.8)	1008 (2.2)	300 (1.8)	912 (2.1)	
Fully adjusted	1.08 (0.92 to 1.26)	1.06 (0.93 to 1.22)	1.03 (0.87 to 1.22)	1.00 (reference)	0.33
Major CVD					
No (%) events	1618 (5.1)	2243 (5.0)	853 (5.0)	2184 (5.0)	
Fully adjusted	1.04 (0.95 to 1.14)	1.04 (0.96 to 1.12)	1.07 (0.97 to 1.17)	1.00 (reference)	0.39
MI					
No (%) events	651 (2.1)	1038 (2.3)	392 (2.3)	918 (2.1)	
Fully adjusted	1.11 (0.96 to 1.29)	1.07 (0.94 to 1.21)	1.13 (0.97 to 1.30)	1.00 (reference)	0.22
Stroke					
No (%) events	852 (2.7)	950 (2.1)	383 (2.3)	1042 (2.4)	
Fully adjusted	1.06 (0.93 to 1.20)	1.00 (0.89 to 1.12)	1.02 (0.89 to 1.16)	1.00 (reference)	0.47
Heart Failure					
No (%) events	109 (0.3)	243 (0.5)	99 (0.6)	205 (0.5)	
Fully adjusted	0.75 (0.54 to 1.04)	1.19 (0.92 to 1.54)	1.26 (0.95 to 1.68)	1.00 (reference)	0.24

Cox frailty model: Fully adjusted adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats, and refined grains with centre as a random effect.

IQR=interquartile range
Table S15: Association between white rice intake and clinical outcomes (N=137130) without baseline CVD adjusted for sodium and saturated fat

	<50 g/d (n=38022)	50-150 g/d (n=35617)	150-300 g/d (n=16230)	300-450 g/d (n=16045)	≥450 g/d (n=31216)	P trend
Hazard ratio (95 CI)						
Composite events						
No (% events)	3437 (9.0)	2826 (7.9)	1393 (8.6)	1436 (9.0)	3576 (11.5)	
Fully adjusted	1.00 (reference)	1.00 (0.94 to 1.07)	1.01 (0.92 to 1.10)	0.97 (0.88 to 1.07)	0.95 (0.84 to 1.07)	0.43
Total mortality						
No (% events)	2114 (5.6)	1698 (4.8)	784 (4.8)	867 (5.4)	2358 (7.6)	
Fully adjusted	1.00 (reference)	0.96 (0.88 to 1.05)	0.92 (0.82 to 1.04)	0.94 (0.82 to 1.06)	0.88 (0.76 to 1.03)	0.12
Non-CV mortality						
No (% events)	1527 (4.0)	1191 (3.3)	513 (3.2)	570 (3.6)	1605 (5.1)	
Fully adjusted	1.00 (reference)	0.94 (0.85 to 1.04)	0.90 (0.77 to 1.04)	0.91 (0.78 to 1.06)	0.81 (0.68 to 0.98)	0.04
CV mortality						
No (% events)	659 (1.7)	605 (1.7)	319 (2.0)	338 (2.1)	856 (2.7)	
Fully adjusted	1.00 (reference)	1.03 (0.89 to 1.20)	1.00 (0.82 to 1.22)	0.98(0.80 to 1.21)	1.02 (0.80 to 1.31)	0.98
Major CVD						
CVD (%) events	1925 (5.1)	1598 (4.5)	851 (5.2)	824 (5.1)	1700 (5.5)	
Fully adjusted	1.00 (reference)	1.02 (0.94 to 1.11)	1.03 (0.92 to 1.16)	0.98 (0.86 to 1.11)	0.98 (0.84 to 1.15)	0.80
MI						
No (% events)	832 (2.2)	670 (2.0)	380 (2.3)	337 (2.1)	780 (2.5)	
Fully adjusted	1.00 (reference)	1.00 (0.87 to 1.14)	1.08 (0.91 to 1.29)	0.89 (0.73 to 1.08)	0.89 (0.70 to 1.13)	0.32
Stroke						
No (% events)	891 (2.3)	735 (2.1)	395 (2.4)	407 (2.5)	799 (2.6)	
Fully adjusted	1.00 (reference)	0.98 (0.87 to 1.10)	0.95 (0.81 to 1.11)	0.97 (0.81 to 1.16)	0.97 (0.78 to 1.21)	0.71
Heart Failure						
No (% events)	193 (0.5)	198 (0.6)	75 (0.5)	79 (0.5)	111 (0.4)	
Fully adjusted	1.00 (reference)	1.47 (1.13 to 1.92)	1.34 (0.92 to 1.94)	1.37 (0.93 to 2.03)	1.21 (0.73 to 1.98)	0.25

Cox frailty model Fully adjusted: adjusted for age, sex, location (urban/rural, wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats, whole grains, sodium and saturated fat with centre as random effect.

IQR=interquartile range
Table S16: Associations between refined grain intake and clinical outcomes excluding CVD events until 2 years of follow up

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
<50 g/d	18.5 (7.1-33.0)	34018	34155	34017	1524
50 to <150 g/d	93.1 (72.1-119.0)	42163	42369	42163	1668
150 to <250 g/d	186.0 (165.4-213.9)	24666	24787	24666	952
250 to <350 g/d	300.0 (272.3-319.4)	11739	11797	11739	574
≥350 g/d	500.9 (450.0-675.0)	17567	17627	17567	1132

No, total included N

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
No (%) events	34018	42163	34155	34017	1524

Base model

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Fully adjusted

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Non-CV mortality

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD	
No (%) events	1759 (5.2)	1371 (3.2)	707 (1.7)	786 (2.3)	153 (1.3)	1524 (4.5)

Base model

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Fully adjusted

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

CV mortality

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD	
No (%) events	786 (2.3)	707 (1.7)	301 (1.2)	786 (2.3)	153 (1.3)	1524 (4.5)

Base model

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Fully adjusted

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Major CVD

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD	
No (%) events	1524 (4.5)	1668 (4.0)	952 (3.9)	1524 (4.5)	574 (4.9)	1132 (6.4)

Base model

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)

Fully adjusted

Hazard ratio (95 CI)	Median (IQR)	Composite events	Non-CV mortality	CV mortality	Major CVD
Minimally adjusted	1.00 (reference)	1.04 (0.95 to 1.13)	1.06 (0.96 to 1.18)	1.06 (0.96 to 1.18)	1.00 (0.98 to 1.16)
	Fully adjusted	Fully adjusted with medications			
-------------------------	----------------	---------------------------------			
	1.00 (reference)	1.10 (1.00 to 1.21)			
	1.13 (1.01 to 1.27)	1.28 (1.11 to 1.47)			
	1.35 (1.17 to 1.56)	<0.001			
MI	1.00 (reference)	1.10 (1.00 to 1.21)			
	1.14 (1.02 to 1.28)	1.29 (1.12 to 1.48)			
	1.36 (1.17 to 1.57)	<0.001			
No, total included	34,082	42,280			
No (%) events	740 (2.2)	822 (1.9)			
Base model	1.00 (reference)	1.07 (0.95 to 1.21)			
Minimally adjusted	1.10 (0.95 to 1.27)	1.08 (0.91 to 1.29)			
Fully adjusted	1.00 (reference)	1.10 (0.95 to 1.27)			
Fully adjusted with medications	1.00 (reference)	1.10 (0.96 to 1.27)			
MI	1.00 (reference)	1.10 (0.95 to 1.27)			
No, total included	34,093	42,274			
No (%) events	650 (1.9)	639 (1.5)			
Base model	1.00 (reference)	1.03 (0.91 to 1.17)			
Minimally adjusted	1.00 (reference)	1.07 (0.93 to 1.24)			
Fully adjusted	1.00 (reference)	1.07 (0.93 to 1.23)			
Fully adjusted with medications	1.00 (reference)	1.07 (0.93 to 1.23)			
Stroke	1.00 (reference)	1.16 (0.98 to 1.37)			
Heart Failure	1.00 (reference)	1.16 (0.98 to 1.37)			
No, total included	34,150	42,345			
No (%) events	116 (0.3)	212 (0.5)			
Base model	1.00 (reference)	1.16 (0.91 to 1.50)			
Minimally adjusted	1.00 (reference)	1.16 (0.87 to 1.55)			
Fully adjusted	1.00 (reference)	1.17 (0.87 to 1.56)			
Fully adjusted with medications	1.00 (reference)	1.17 (0.87 to 1.56)			

Cox frailty model: Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + whole grains with centre as a random effect; Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range
Table S17: Associations between whole grain intake and clinical outcomes excluding CVD events until 2 years of follow up

	Hazard ratio (95 CI)	P trend				
	0	<50 g/d	50 to <100 g/d	≥100 g/d		
Median (IQR)						
Composite events						
No, total included	30 510	43 553	16 384			
No (%) events	2317 (7.6)	3980 (9.1)	1277 (7.8)	3478 (8.4)		
Base model	1.17 (1.09 to 1.25)	1.09 (1.03 to 1.16)	1.04 (0.97 to 1.12)	1.00 (reference)	<0.001	
Minimally adjusted	1.06 (0.98 to 1.15)	1.04 (0.97 to 1.11)	1.06 (0.98 to 1.14)	1.00 (reference)	0.16	
Fully adjusted	1.05 (0.97 to 1.13)	1.03 (0.96 to 1.10)	1.06 (0.98 to 1.14)	1.00 (reference)	0.30	
Fully adjusted with medications	1.05 (0.97 to 1.13)	1.03 (0.96 to 1.10)	1.05 (0.98 to 1.14)	1.00 (reference)	0.29	
Total mortality						
No, total included	30 653	43 762	16 457			
No (%) events	1310 (4.3)	2636 (6.0)	758 (4.6)	2254 (5.4)		
Base model	1.17 (1.07 to 1.28)	1.06 (0.99 to 1.15)	1.00 (0.91 to 1.09)	1.00 (reference)	0.001	
Minimally adjusted	0.99 (0.90 to 1.10)	0.96 (0.88 to 1.04)	1.01 (0.91 to 1.11)	1.00 (reference)	0.60	
Fully adjusted	0.97 (0.88 to 1.08)	0.95 (0.87 to 1.03)	0.99 (0.90 to 1.10)	1.00 (reference)	0.38	
Fully adjusted with medications	0.97 (0.88 to 1.08)	0.95 (0.87 to 1.03)	0.99 (0.90 to 1.10)	1.00 (reference)	0.38	
Non-CV mortality						
No, total included	30 653	43 762	16 457			
No (%) events	899 (2.9)	1870 (4.3)	518 (3.2)	1586 (3.8)		
Base model	1.16 (1.04 to 1.29)	1.04 (0.95 to 1.13)	0.95 (0.85 to 1.06)	1.00 (reference)	0.01	
Minimally adjusted	0.95 (0.84 to 1.07)	0.91 (0.82 to 1.01)	0.97 (0.86 to 1.09)	1.00 (reference)	0.19	
Fully adjusted	0.91 (0.80 to 1.03)	0.89 (0.80 to 0.98)	0.95 (0.84 to 1.08)	1.00 (reference)	0.06	
Fully adjusted with medications	0.91 (0.80 to 1.03)	0.89 (0.80 to 0.98)	0.95 (0.84 to 1.08)	1.00 (reference)	0.06	
CV mortality						
No, total included	30 653	43 762	16 457			
No (%) events	462 (1.5)	888 (2.0)	261 (1.6)	767 (1.8)		
Base model	1.23 (1.06 to 1.44)	1.14 (1.00 to 1.29)	1.06 (0.91 to 1.24)	1.00 (reference)	0.006	
Minimally adjusted	1.13 (0.95 to 1.34)	1.09 (0.94 to 1.26)	1.04 (0.87 to 1.24)	1.00 (reference)	0.14	
Fully adjusted	1.14 (0.96 to 1.35)	1.10 (0.95 to 1.28)	1.04 (0.87 to 1.25)	1.00 (reference)	0.12	
Fully adjusted with medications	1.14 (0.96 to 1.36)	1.10 (0.95 to 1.28)	1.04 (0.87 to 1.24)	1.00 (reference)	0.11	
Major CVD						
No, total included	30 510	43 553	16 383			
No (%) events	1386 (4.5)	1927 (4.4)	746 (4.6)	1891 (4.6)		
Base model	1.14 (1.04 to 1.25)	1.06 (0.98 to 1.15)	1.08 (0.99 to 1.18)	1.00 (reference)	0.007	
Minimally adjusted	1.09 (0.99 to 1.20)	1.05 (0.97 to 1.15)	1.08 (0.98 to 1.20)	1.00 (reference)	0.11	
MI	Fully adjusted	1.09 (0.99 to 1.20)	1.05 (0.96 to 1.15)	1.08 (0.98 to 1.20)	1.00 (reference)	0.13
-------------------	----------------	---------------------	---------------------	---------------------	-----------------	------
	Fully adjusted with medications	1.09 (0.99 to 1.20)	1.05 (0.96 to 1.15)	1.08 (0.98 to 1.19)	1.00 (reference)	0.11
No, total included	30 593	43 664	16 423	41 590		
No (%) events	537 (1.8)	880 (2.0)	339 (2.1)	787 (1.9)		
Base model	1.15 (0.99 to 1.32)	1.05 (0.93 to 1.19)	1.14 (0.99 to 1.31)	1.00 (reference)	0.16	
Minimally adjusted	1.15 (0.98 to 1.35)	1.08 (0.95 to 1.24)	1.15 (0.99 to 1.34)	1.00 (reference)	0.15	
Fully adjusted	1.15 (0.98 to 1.35)	1.08 (0.94 to 1.24)	1.15 (0.98 to 1.35)	1.00 (reference)	0.15	
Fully adjusted with medications	1.15 (0.98 to 1.35)	1.08 (0.94 to 1.24)	1.15 (0.98 to 1.35)	1.00 (reference)	0.15	
Stroke	30 578	43 668	16 427	41 557		
No (%) events	747 (2.4)	826 (1.9)	344 (2.1)	916 (2.2)		
Base model	1.17 (1.04 to 1.32)	1.06 (0.95 to 1.18)	1.05 (0.92 to 1.20)	1.00 (reference)	0.02	
Minimally adjusted	1.11 (0.97 to 1.26)	1.02 (0.90 to 1.15)	1.05 (0.91 to 1.20)	1.00 (reference)	0.19	
Fully adjusted	1.10 (0.97 to 1.25)	1.01 (0.89 to 1.14)	1.03 (0.90 to 1.19)	1.00 (reference)	0.22	
Fully adjusted with medications	1.10 (0.97 to 1.26)	1.01 (0.89 to 1.14)	1.03 (0.90 to 1.18)	1.00 (reference)	0.20	
Heart Failure	30 645	43 739	16 447	41 632		
No (%) events	98 (0.3)	218 (0.5)	85 (0.5)	172 (0.4)		
Base model	0.93 (0.69 to 1.25)	1.22 (0.96 to 1.56)	1.23 (0.93 to 1.63)	1.00 (reference)	0.10	
Minimally adjusted	0.84 (0.60 to 1.18)	1.30 (0.99 to 1.71)	1.29 (0.95 to 1.75)	1.00 (reference)	0.75	
Fully adjusted	0.81 (0.57 to 1.13)	1.29 (0.98 to 1.70)	1.29 (0.95 to 1.75)	1.00 (reference)	0.59	
Fully adjusted with medications	0.81 (0.58 to 1.14)	1.29 (0.98 to 1.70)	1.29 (0.95 to 1.75)	1.00 (reference)	0.61	

Cox frailty model : **Base model**: adjusted for age and sex with centre as a random effect; **Minimally adjusted**: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; **Fully adjusted**: Minimally adjusted+ refined grains, with centre as a random effect; **Fully adjusted with medications**: Fully adjusted +medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range
Table S18: Associations between white rice intake and clinical outcomes excluding CVD events until 2 years of follow up

Median (IQR)	<50 g/d	50 to <150 g/d	150 to <300 g/d	300 to <450 g/d	≥450 g/d	P trend
No (%) events included	36 904	34 474	15 498	15 224	29834	
Base model (reference)	1.00	0.90 (0.85 to 0.95)	0.84 (0.78 to 0.92)	0.86 (0.79 to 0.94)	0.80 (0.73 to 0.87)	<0.001
Minimally adjusted	1.00	1.00 (0.93 to 1.07)	0.97 (0.89 to 1.07)	0.95 (0.86 to 1.05)	0.86 (0.77 to 0.96)	0.01
Fully adjusted	1.00	1.01 (0.94 to 1.08)	1.02 (0.93 to 1.12)	0.99 (0.90 to 1.10)	0.96 (0.86 to 1.09)	0.65
Fully adjusted with medications	1.00	1.01 (0.94 to 1.08)	1.02 (0.93 to 1.12)	0.99 (0.89 to 1.10)	0.96 (0.85 to 1.08)	0.62

Total mortality

No (%) events included	37 079	34 618	15 563	15 285	29 974	
Base model (reference)	1.00	0.85 (0.79 to 0.92)	0.77 (0.69 to 0.86)	0.83 (0.74 to 0.93)	0.79 (0.71 to 0.89)	<0.001
Minimally adjusted	1.00	0.97 (0.88 to 1.06)	0.89 (0.78 to 1.00)	0.91 (0.80 to 1.04)	0.82 (0.72 to 0.94)	0.008
Fully adjusted	1.00	0.98 (0.89 to 1.07)	0.93 (0.81 to 1.05)	0.95 (0.83 to 1.09)	0.91 (0.78 to 1.06)	0.26
Fully adjusted with medications	1.00	0.98 (0.89 to 1.07)	0.92 (0.81 to 1.05)	0.95 (0.83 to 1.09)	0.91 (0.78 to 1.06)	0.25

Non-CV mortality

No (%) events included	37 079	34 618	15 563	15 285	29 974	
Base model (reference)	1.00	0.85 (0.78 to 0.94)	0.75 (0.66 to 0.85)	0.83 (0.72 to 0.95)	0.74 (0.65 to 0.85)	<0.001
Minimally adjusted	1.00	0.95 (0.85 to 1.06)	0.87 (0.75 to 1.01)	0.90 (0.77 to 1.05)	0.75 (0.64 to 0.89)	0.002
Fully adjusted	1.00	0.96 (0.86 to 1.07)	0.91 (0.78 to 1.07)	0.94 (0.80 to 1.11)	0.85 (0.70 to 1.02)	0.12
Fully adjusted with medications	1.00	0.96 (0.86 to 1.07)	0.91 (0.78 to 1.06)	0.94 (0.80 to 1.11)	0.84 (0.70 to 1.02)	0.12

CV mortality

No (%) events included	37 079	34 618	15 563	15 285	29 974	
Base model (reference)	1.00	0.85 (0.75 to 0.98)	0.85 (0.71 to 1.00)	0.85 (0.70 to 1.02)	0.93 (0.77 to 1.13)	0.36
Minimally adjusted	1.00	1.03 (0.88 to 1.21)	0.96 (0.78 to 1.18)	0.96 (0.78 to 1.19)	0.99 (0.78 to 1.24)	0.79
Fully adjusted	1.00	1.05 (0.90 to 1.23)	1.00 (0.81 to 1.24)	0.99 (0.79 to 1.24)	1.07 (0.83 to 1.38)	0.75
Fully adjusted with medications	1.00	1.06 (0.90 to 1.24)	1.00 (0.81 to 1.24)	0.99 (0.79 to 1.23)	1.07 (0.83 to 1.39)	0.77

Major CVD
Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI): Base model: adjusted for age, sex with centre as random effect; Minimally adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, dairy and red meats with centre as a random effect; Fully adjusted: Minimally adjusted + refined grains, whole grains with centre as a random effect. Fully adjusted with medications: Fully adjusted + medications (statins and blood pressure) with centre as a random effect.

IQR=interquartile range

Table S19: Association between refined grain and whole grain intakes in servings per day* and clinical outcomes
Outcomes	Refined grains (servings/d)	Whole Grain (Servings/day)				
	No (%) events	Hazard ratio (95% C.I)	P-Value	No (%) events	Hazard ratio (95% C.I)	P-Value
Composite events						
Fully adjusted	11 968 (9.15)	1.02 (1.01 to 1.03)	<0.001	12 526 (9.37)	1.00 (0.98 to 1.01)	0.60
Total mortality						
Fully adjusted	7264 (5.55)	1.02 (1.00 to 1.03)	0.01	7737 (5.79)	1.01 (0.98 to 1.03)	0.58
Non-CV mortality						
Fully adjusted	4984 (3.81)	1.02 (1.00 to 1.04)	0.01	5359 (4.01)	1.01 (0.98 to 1.03)	0.65
CV mortality						
Fully adjusted	2615 (2.00)	1.01 (0.99 to 1.03)	0.49	2740 (2.05)	1.00 (0.97 to 1.04)	0.81
Major CVD						
Fully adjusted	6648 (5.08)	1.02 (1.01 to 1.03)	0.002	6799 (5.08)	0.99 (0.97 to 1.01)	0.45
MI						
Fully adjusted	2840 (2.17)	1.01 (0.99 to 1.03)	0.56	2953 (2.21)	0.98 (0.95 to 1.01)	0.20
Stroke						
Fully adjusted	3168 (2.42)	1.03 (1.01 to 1.05)	<0.001	3179 (2.38)	1.02 (0.98 to 1.06)	0.34
Heart Failure						
Fully adjusted	646 (0.49)	1.01 (0.97 to 1.05)	0.65	649 (0.49)	0.95 (0.88 to 1.02)	0.17

*Servings per day considered as a continuous variable

Cox frailty model: **Fully adjusted**: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats and whole grains for refined grains, refined grains for whole grains and refined and whole grains for rice to with centre as a random effect.
Table S20: Associations between refined grain intake and clinical outcomes in high, middle, and low income countries

	Hazard ratio (95 %CI)					
	<50 g/d	50-150 g/d	150-250 g/d	250-350 g/d	≥350 g/d	
High-income countries						
Number	2961	8368	3299	821	357	
Median (IQR)	32.3 (20.4-41.6)	92.8 (71.7-118.9)	183.4 (165.7-208.2)	283.1 (265.8-309.6)	402.9 (370.8-447.4)	
Composite events						
No (%) events	187 (6.3)	462 (5.5)	171 (5.2)	37 (4.5)	20 (5.6)	
Fully adjusted	1.00 (reference)	1.01 (0.83 to 1.22)	1.07 (0.82 to 1.38)	0.99 (0.64 to 1.52)	1.44 (0.84 to 2.46)	
Total mortality						
No (%) events	81 (2.7)	217 (2.6)	85 (2.6)	16 (1.9)	11 (3.1)	
Fully adjusted	1.00 (reference)					
Middle-income countries						
Number	14 731	26 257	20 210	11 018	17 435	
Median (IQR)	24.6 (11.8-36.9)	95.3 (73.4-120.0)	187.3 (165.8-215.4)	300.6 (273.8-320.0)	506.1 (450.0-675.0)	
Composite events						
No (%) events	1064 (7.2)	2087 (7.9)	1558 (7.7)	946 (8.6)	1741 (10.0)	
Fully adjusted	1.00 (reference)	1.16 (1.06 to 1.27)	1.23 (1.12 to 1.37)	1.28 (1.14 to 1.44)	1.37 (1.21 to 1.56)	
Total Mortality						
No (%) events	626 (4.2)	1284 (4.9)	898 (4.4)	493 (4.5)	854 (4.9)	
Fully adjusted	1.00 (reference)	1.09 (0.97 to 1.23)	1.14 (1.00 to 1.31)	1.08 (0.92 to 1.27)	1.23 (1.03 to 1.46)	
Major CVD						
No (%) events	569 (3.9)	1129 (4.3)	917 (4.5)	612 (5.6)	1214 (7.0)	
Fully adjusted	1.00 (reference)	1.23 (1.09 to 1.38)	1.32 (1.16 to 1.51)	1.47 (1.26 to 1.71)	1.59 (1.35 to 1.86)	
Low-income countries						
Number	17 973	9390	1998	294	148	
Median (IQR)	11.4 (4.1-24.6)	87.4 (68.1-112.6)	179.6 (162.4, 205.3)	279.1 (262.0, 306.8)	464.9 (391.3, 625.3)	
Composite events						
No (%) events	2652 (14.8)	1137 (12.1)	209 (10.5)	33 (11.2)	17 (11.5)	
Fully adjusted	1.00 (reference)	1.00 (0.89 to 1.12)	0.91 (0.75 to 1.10)	0.97 (0.63 to 1.49)	1.23 (0.73 to 2.06)	
Total Mortality	Events N (%)	1996 (11.1)	788 (8.4)	139(7.0)	23(7.8)	13(8.8)
----------------	--------------	-------------	----------	----------	---------	---------
Fully adjusted	1.00 (reference)	0.95 (0.83 to 1.08)	0.91 (0.72 to 1.14)	0.94 (0.55 to 1.58)	1.42 (0.79 to 2.54)	

Major CVD	Events N (%)	1090 (6.1)	583 (6.2)	110 (5.5)	15 (5.1)	8 (5.4)
Fully adjusted	1.00 (reference)	0.93 (0.78 to 1.10)	0.75 (0.57 to 0.99)	0.77 (0.42 to 1.39)	1.03 (0.48 to 2.22)	

*Insufficient events reported, hazard ratio not estimable

Cox frailty model :Fully adjusted: adjusted for age, sex, location (urban/rural, wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats and whole grains with centre as random effect.

IQR=interquartile range
Table S21: Associations between whole grain intake and clinical outcomes in high, middle, and low income countries

	Hazard ratio (95%CI)	P trend		
	0	<50 g/d	50-100 g/d	≥100 g/d
High-income countries				
Number	488	5069	4075	6174
Median (IQR)	0 (0-0)	26.0 (13.7-37.4)	71.1 (60.8-75.0)	177.8 (132.0-254.4)
Composite events				
No (%) events	27 (5.5)	273 (5.4)	215 (5.3)	362 (5.9)
Fully adjusted	1.04 (0.66 to 1.62)	1.01 (0.83 to 1.23)	0.98 (0.81 to 1.19)	1.00 (reference)
Total mortality				
No (%) events	12 (2.5)	121 (2.4)	99 (2.4)	178 (2.9)
Fully adjusted*	1.00 (reference)			
Middle-income countries				
Number	28 680	28 252	9210	23 509
Median (IQR)	0 (0-0)	16.6 (9.2-31.3)	75.0 (65.3-84.2)	218.8 (144.2-348.6)
Composite events				
No (%) events	2271 (7.9)	2225 (7.9)	765 (8.3)	2135 (9.1)
Fully adjusted	1.00 (0.92 to 1.08)	1.01 (0.93 to 1.09)	1.06 (0.97 to 1.17)	1.00 (reference)
Total mortality				
No (%) events	1263 (4.4)	1291 (4.6)	404 (4.4)	1197 (5.1)
Fully adjusted	0.97 (0.87 to 1.09)	0.97 (0.87 to 1.08)	1.08 (0.95 to 1.23)	1.00 (reference)
Major CVD				
No (%) events	1353 (4.7)	1315 (4.7)	493 (5.4)	1280 (5.4)
Fully adjusted	1.02 (0.92 to 1.13)	1.04 (0.94 to 1.14)	1.05 (0.94 to 1.17)	1.00 (reference)
Low-income countries				
Number	2518	11 791	3731	13 633
Median (IQR)	0 (0-0)	14.5 (5.9-28.9)	70.4 (59.3-83.5)	273.7 (190.0-426.7)
Composite events				
------------------	-----------------	-----------------	-----------------	-----------------
No (%) events	419 (16.6)	1986 (16.8)	475 (12.7)	1515 (11.1)
Fully adjusted	1.31 (1.08 to 1.59)	1.11 (0.97 to 1.26)	1.14 (0.98 to 1.33)	1.00 (reference)

Total mortality				
No (%) events	243 (9.7)	1480 (12.6)	337 (9.0)	1196 (8.8)
Fully adjusted	1.25 (0.99 to 1.58)	1.05 (0.90 to 1.22)	1.01 (0.84 to 1.21)	1.00 (reference)

Major CVD				
No (%) events	248 (9.8)	748 (6.3)	229 (6.1)	691 (5.1)
Fully adjusted	1.11 (0.84 to 1.47)	1.06 (0.86 to 1.30)	1.19 (0.95 to 1.50)	1.00 (reference)

Insufficient events reported, hazard ratio not estimable

Cox frailty model : Fully adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats, and refined grains with centre as a random effect.

IQR=interquartile range
Table S22: Associations between white rice intake and clinical outcomes in high-, middle- and low-income countries

	<50 g/d	50-150 g/d	150-300 g/d	300-450 g/d	≥450 g/d	P trend
High-income countries						
Number	11 059	4315	420	12	0	
Median (IQR)	17.9 (8.2-26.8)	79.0 (62.5-89.3)	197.5 (187.5-210.5)	374.3 (337.6-375.0)		
Composite events						
No (% events)	684 (6.2)	180 (4.2)	12 (2.9)	1 (8.3)		0.083
Fully adjusted	1.00 (reference)	0.82 (0.67 to 1.02)	0.73 (0.37 to 1.42)	4.75 (0.64 to 35.08)		
Total mortality						
No (% events)	319 (2.9)	85 (2.0)	5 (1.2)	1 (8.3)		
Fully adjusted*	1.00 (reference)					
Middle-income countries						
Number	20 280	27 867	13 678	13 451	14 375	
Median (IQR)	22.6 (6.6-28.6)	85.7 (67.7-120.8)	200.0 (171.4-214.3)	395.0 (327.5-400.0)	750.0 (600.0-904.1)	
Composite						
No (% events)	1952 (9.6)	2307 (8.3)	1115 (8.2)	1057 (7.9)	965 (6.7)	
Fully adjusted	1.00 (reference)	1.02 (0.94 to 1.09)	0.99 (0.89 to 1.09)	0.98 (0.88 to 1.10)	0.88 (0.75 to 1.02)	0.239
Total Mortality						
No (% events)	1130 (5.6)	1358 (4.9)	573 (4.2)	587 (4.4)	507 (3.5)	
Fully adjusted	1.00 (reference)	0.96 (0.87 to 1.06)	0.86 (0.75 to 0.99)	0.91 (0.78 to 1.05)	0.79 (0.64 to 0.97)	0.037
Major CVD						
No (% events)	1170 (5.8)	1303 (4.7)	713 (5.2)	670 (5)	585 (4.1)	
Fully adjusted	1.00 (reference)	1.03 (0.94 to 1.13)	1.03 (0.91 to 1.17)	1.01 (0.88 to 1.16)	0.92 (0.76 to 1.10)	0.708
Low-income countries						
Number	6683	3435	2132	2582	16841	
Median (IQR)	19.54 (8.61-31.75)	80.1 (67.1-103.56)	192.83 (168.39-234.21)	353.9 (325.39-395)	948 (679.14-1083.99)	
Composite						
No (% events)	801 (12)	339 (9.9)	266 (12.5)	378 (14.6)	2611 (15.5)	
Fully adjusted	1.00 (reference)	1.07 (0.88 to 1.29)	1.18 (0.94 to 1.48)	1.00 (0.79 to 1.27)	1.09 (0.86 to 1.36)	0.579
Total Mortality						
No (%) events	665 (10)	255 (7.4)	206 (9.7)	279 (10.8)	1851 (11)	
---------------	----------	-----------	-----------	------------	-----------	
Fully adjusted	1.00 (reference)	0.97 (0.78 to 1.22)	1.11 (0.87 to 1.42)	0.93 (0.73 to 1.19)	0.97 (0.77 to 1.22)	0.690
Major CVD						
No (%) events	344 (5.1)	175 (5.1)	129 (6.1)	153 (5.9)	1115 (6.6)	
Fully adjusted	1.00 (reference)	1.13 (0.86 to 1.50)	1.20 (0.85 to 1.70)	0.93 (0.64 to 1.36)	1.11 (0.78 to 1.58)	0.520

* Insufficient events reported, hazard ratio not estimable

Cox frailty model: Fully adjusted: adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats, refined grains and whole grains with centre as a random effect.

IQR=interquartile range
Table S23: Association of refined grain intake with blood lipids and blood pressure

	Refined grains						
	<50 g/d	50-150 g/d	150-250 g/d	250-350 g/d	≥350 g/d	P trend	
	(n=35665)	(n=44015)	(n=25507)	(n=12133)	(n=17940)		
Total cholesterol (mmol/l)	4.68±1.04	5.02±1.05	5.00±1.02	4.90±1.02	4.64±0.95	0.38	
LDL-C (mmol/l)	2.93±0.95	3.21±0.98	3.14±0.93	3.01±0.90	2.82±0.83	0.19	
HDL-C (mmol/l)	1.19±0.36	1.24±0.35	1.21±0.32	1.20±0.31	1.14±0.30	0.05	
TC/HDL-C ratio	4.17±1.27	4.28±1.29	4.34±1.28	4.30±1.25	4.25±1.18	0.53	
Triglycerides (mmol/l)	1.26±1.78	1.29±1.78	1.35±1.78	1.38±1.78	1.26±1.78	0.001	
ApoA (mmol/l)	1.40±0.33	1.52±0.31	1.51±0.29	1.51±0.29	1.50±0.29	0.04	
ApoB (mmol/l)	1.01±0.26	1.03±0.25	1.02±0.25	0.98±0.25	0.93±0.25	0.008	
ApoB/ApoA (mmol/l)	0.75±0.24	0.70±0.23	0.70±0.21	0.67±0.21	0.64±0.21	0.46	
Systolic blood pressure (mm Hg)	128.5±22.8	131.2±22.3	131.7±21.8	133.9±22.4	135.5±22.5	<0.001	
Diastolic blood pressure (mm Hg)	81.1±14.6	82.0±17.5	81.7±14.4	82.7±14.1	83.5±13.1	0.001	

All values of lipids and blood pressure are represented as mean ±SD. Analysis done using multilevel linear regression with random effect adjusted for age, sex, location (urban/rural), wealth index, education, smoking status, waist-hip ratio (WHR), physical activity, history of diabetes, intakes of energy (kcal), fruit and vegetable intake, red meat and whole grain intake.
Table S24: Association of whole grain intake with blood lipids and blood pressure

	Whole grains	P trend			
	0 (n=31686)	<50 g/d (n=45112)	50-100 g/d (n=17016)	≥100 g/d (n=43316)	
Total cholesterol (mmol/l)	4.86±1.03	4.93±1.06	4.94±1.02	4.75±1.01	0.54
LDL-C (mmol/l)	3.02±0.92	3.13±0.99	3.13±0.94	2.95±0.92	0.15
HDL-C (mmol/l)	1.18±0.32	1.21±0.34	1.24±0.35	1.21±0.35	0.001
TC/HDL-C ratio	4.36±1.29	4.31±1.31	4.21±1.21	4.14±1.2	0.003
Triglycerides (mmol/l)	1.32±1.82	1.32±1.78	1.26±1.78	1.26±1.78	<0.001
ApoA (mmol/l)	1.46±0.32	1.48±0.33	1.55±0.3	1.47±0.3	0.62
ApoB (mmol/l)	1.00±0.24	1.04±0.25	1.03±0.25	0.97±0.26	0.09
ApoB/ApoA (mmol/l)	0.72±0.23	0.73±0.24	0.69±0.21	0.68±0.21	0.25
Systolic blood pressure (mm Hg)	132.1±22.5	128.6±22.0	130.6±21.3	132.1±22.3	0.001
Diastolic blood pressure (mm Hg)	82.0±16.1	80.7±16.6	81.9±13.0	82.5±13.7	0.51

All values of lipids and blood pressure are represented as mean ±SD. Analysis done using multilevel linear regression with random effect adjusted for age, sex, location (urban/rural), wealth index, education, smoking status, waist-hip ratio (WHR), physical activity, history of diabetes, intakes of energy (kcal), fruit and vegetable intake, red meat and refined grain intake.
Table S25: Association of white rice intake with blood lipids and blood pressure

	<50 g/d (n=38 022)	50-150 g/d (n=35 617)	150-300 g/d (n=16 230)	300-450 g/d (n=16 045)	≥450 g/d (n=31 216)	P trend
Total cholesterol (mmol/l)	4.96±1.07	4.85±1.03	4.88±1	4.96±1.02	4.66±1.01	0.001
LDL-C (mmol/l)	3.07±0.93	3.01±0.9	3.05±0.9	3.12±0.94	3.02±1.05	0.01
HDL-C (mmol/l)	1.26±0.36	1.17±0.32	1.18±0.31	1.2±0.31	1.17±0.34	<0.001
TC/HDL-C ratio	4.18±1.31	4.36±1.28	4.33±1.21	4.32±1.2	4.19±1.24	<0.001
Triglycerides (mmol/l)	1.26±1.82	1.35±1.82	1.35±1.74	1.38±1.78	1.20±1.74	<0.001
ApoA (mmol/l)	1.52±0.3	1.48±0.3	1.5±0.31	1.5±0.32	1.36±0.34	<0.001
ApoB (mmol/l)	1.01±0.25	0.98±0.26	1.02±0.24	1.03±0.25	1.01±0.26	0.09
ApoB/ApoA (mmol/l)	0.68±0.2	0.69±0.22	0.71±0.23	0.71±0.23	0.79±0.26	<0.001
Systolic blood pressure (mm Hg)	133.5±22.4	131.8±22.3	131.8±21.9	132.0±23.3	127.6±22.2	0.02
Diastolic blood pressure (mm Hg)	82.9±13.8	82.15±13.82	82.33±15.64	82.2±22.85	80.08±13.3	0.03

All values of lipids and blood pressure are represented as mean ±SD. Analysis done using multilevel linear regression with random effect adjusted for age to sex to location (urban/rural) to wealth index to education to smoking status to waist-hip ratio (WHR) to physical activity to history of diabetes to intakes of energy (kcal) fruit and vegetable intake to nuts to refined and whole grain intake.
Table S26: Intake of food groups by categories of refined grain intake

Dietary Intake (g/d)	<50	50-150	150-250	250-350	>=350
Fruits	72.2 (25.2,195.5)	189.7 (76.1,392.2)	210.9 (93.1,383.9)	166.6 (70.9,337.8)	126.2 (59.4,235.3)
Vegetables	194.0 (72.7,262.4)	250.2 (140.0,378.1)	250.0 (158.2,290.6)	250.0 (155.8,264.3)	250.0 (200.0,262.1)
Dairy	64.7 (0.0,240.0)	131.4 (21.5,291.3)	153.6 (26.6,298.6)	102.9 (6.6,243.0)	38.2 (0.0,240.0)
Red Meat	15.7 (0.8,51.0)	40.7 (13.1,82.8)	56.6 (21.0,113.1)	53.6 (19.7,116.4)	40.0 (14.3,100.0)
Nuts	3.4 (0.0,17.1)	6.4 (0.2,21.8)	11.1 (1.3,37.5)	21.8 (2.7,64.2)	21.8 (4.9,57.1)
Sweets	16.8 (2.9,56.6)	60.4 (14.5,204.0)	74.9 (14.8,204.0)	50.5 (7.1,193.2)	19.2 (0.8,85.7)
Eggs	7.1 (0.8,22.9)	19.6 (7.8,33.6)	25.5 (14.1,46.8)	31.4 (16.5,51.3)	50.0 (21.4,58.6)
Fish	2.9 (0.0,20.3)	16.9 (3.3,41.1)	14.2 (3.9,40.5)	12.0 (2.6,36.7)	9.4 (0.0,26.3)
Legumes	47.7 (17.3,104.0)	42.5 (18.2,90.1)	34.4 (14.5,66.6)	28.6 (13.0,59.3)	21.4 (5.3,49.4)

Values presented as median (interquartile range (IQR) intake)
Table S27: Intake of food groups by categories of whole grain intake

Dietary Intake (g/d)	0	<50	50-99	>=100
Fruits	115.5 (44.4,257.4)	143.4 (48.4,305.1)	186.4 (75.0,393.2)	154.1 (57.8,345.4)
Vegetables	249.3 (137.4,260.8)	225.9 (115.7,279.8)	251.4 (172.3,329.3)	250.0 (119.2,307.0)
Dairy	34.1 (0.0,240.0)	70.5 (9.5,243.9)	160.9 (36.0,293.9)	168.4 (32.2,300.1)
Red Meat	40.8 (13.2,100.0)	31.9 (8.2,79.5)	41.9 (13.1,83.8)	35.2 (7.7,78.9)
Nuts	6.6 (0.0,28.6)	6.4 (0.0,21.8)	10.0 (1.0,38.3)	10.4 (0.2,43.2)
Sweets	30.8 (4.2,112.6)	45.4 (6.2,151.6)	35.7 (6.1,183.3)	35.6 (7.9,129.6)
Eggs	22.9 (9.1,46.0)	18.1 (7.0,35.1)	22.3 (8.7,46.8)	21.4 (4.6,50.0)
Fish	11.8 (0.0,36.7)	12.9 (1.3,38.2)	14.7 (2.2,35.4)	8.2 (0.0,25.8)
Legumes	23.4 (6.6,48.2)	42.4 (18.0,86.0)	41.6 (18.5,81.8)	45.9 (18.6,95.8)

Values presented as Median (interquartile range (IQR) intake)
Supplementary figures

Figure S1: Association between refined grain intake and clinical outcomes (<25 kg/m² N=62 033, ≥ 25 kg/m² N=65 756). Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI) performed in a model fully adjusted for age, sex, location (urban/rural), education, wealth index, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats and whole grains with centre as a random effect.

Figure S2: Association between whole grain intake and clinical outcomes (<25 kg/m² N=63 330, ≥ 25 kg/m² N=66 295). Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI) performed in a model fully adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats and refined grains with centre as a random effect.

Figure S3: Association between white rice intake and clinical outcomes (<25 kg/m² N=63 330, ≥ 25 kg/m² N=66 295). Cox frailty model hazard ratios (HR) and 95% confidence intervals (CI) performed in a model fully adjusted for age, sex, location (urban/rural), wealth index, education, smoking, waist-hip ratio, physical activity, history of diabetes, daily intakes of energy (kcal), vegetable and fruits, red meats, refined grains and whole grains with centre as a random effect.

Figure S4: Meta-analysis of the association of grain intake with clinical outcomes by regions. (A) Analysis of refined grains intake with clinical events of composite events, total mortality and major CVD (B) Analysis of refined grains intake for 50 g increase on a continuous scale with clinical events of composite events, total mortality and major CVD (C) Analysis of whole grains intake with clinical events of composite events, total mortality and major CVD (D) Analysis of white rice intake with clinical events of composite events, total mortality and major CVD. Africa region has been excluded from all regional analysis due to the very small sample size. An estimate for total mortality with refined grain intake could not be obtained for South East Asia region.
Figure S1: Meta-analysis of the association of grain intake with clinical outcomes by regions
Figure S2: Association between refined grain intake and clinical outcomes (<25 kg/m² N=62,033, ≥ 25 kg/m² N=65,756)

	BMI<25		BMI≥25	
		Composite events		Composite events
		Grains g/d		Grains g/d
Outcome and Refined	HR (95% CI)		HR (95% CI)	
Composite events				
<50 (Ref)	1.00 (1.00 to 1.00)		1.00 (1.00 to 1.00)	
50 to <150	1.07 (0.93 to 1.21)		1.03 (0.91 to 1.21)	
150 to <250	1.07 (0.95 to 1.26)		1.10 (0.94 to 1.27)	
250 to <350	1.15 (0.99 to 1.33)		1.08 (0.87 to 1.30)	
≥350	1.28 (1.11 to 1.49)		1.33 (1.10 to 1.62)	
Total Mortality				
<50 (Ref)	1.00 (1.00 to 1.00)		1.00 (1.00 to 1.00)	
50 to <150	1.02 (0.91 to 1.14)		1.05 (0.91 to 1.23)	
150 to <250	1.10 (0.94 to 1.26)		0.99 (0.82 to 1.20)	
250 to <350	1.08 (0.87 to 1.30)		1.20 (0.94 to 1.53)	
≥350	1.33 (1.10 to 1.62)		1.42 (1.18 to 1.71)	
Major CVD				
<50 (Ref)	1.00 (1.00 to 1.00)		1.00 (1.00 to 1.03)	
50 to <150	1.12 (0.99 to 1.27)		1.09 (0.96 to 1.23)	
150 to <250	1.08 (0.92 to 1.27)		1.18 (1.02 to 1.38)	
250 to <350	1.27 (1.05 to 1.54)		1.24 (1.04 to 1.47)	
≥350	1.20 (1.04 to 1.53)		1.42 (1.18 to 1.71)	

Figure S3: Association between whole grain intake and clinical outcomes (<25 kg/m2 N=63 330, ≥ 25 kg/m2 N=66 295)
Figure S4: Association between white rice intake and clinical outcomes (<25 kg/m² N=63 330, ≥ 25 kg/m² N=66 295).