Cognitive reserve attenuates 6-year decline in executive functioning after stroke

IHLE, Andreas, et al.

Abstract

Aims: We investigated whether the longitudinal relationship between history of stroke and subsequent decline in executive functioning over 6 years differed by cognitive reserve.

Methods: We analyzed longitudinal data from 897 older adults (mean age, 74.33 years) tested on the Trail Making Test (TMT) in two waves 6 years apart. Participants reported information on key frequently used proxies of lifelong cognitive reserve accumulation (i.e., education, occupation, and leisure activity engagement), and history of stroke.

Results: There was a significant interaction of stroke with leisure activity engagement on latent change in executive functioning. Specifically, only for individuals with low (but not those with high) leisure activity engagement, history of stroke significantly predicted a steeper subsequent decline in executive functioning across 6 years (i.e., increases in TMT completion time).

Conclusion: The detrimental aftereffects of stroke on subsequent decline in executive functioning may be attenuated in individuals who have accumulated greater cognitive reserve through leisure activity engagement across their life.

Reference

IHLE, Andreas, et al. Cognitive reserve attenuates 6-year decline in executive functioning after stroke. *Dementia and Geriatric Cognitive Disorders*, 2019, vol. 48, no. 5-6, p. 349-353

DOI : 10.1159/000506877
PMID : 32209793
Cognitive Reserve Attenuates Six-Year Decline in Executive Functioning after Stroke

Andreas Ihle1, 2, 3, Élvio R. Gouveia2, 4, 5, Bruna R. Gouveia2, 5, 6, 7, Boris Cheval8, 9, Stefan Sieber3, 10, Stéphane Cullati11, 12, Matthias Kliegel1, 2, 3

1 Cognitive Aging Lab, Department of Psychology, University of Geneva, Geneva, Switzerland
2 Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
3 Swiss National Centre of Competence in Research LIVES – Overcoming vulnerability: Life course perspectives, Lausanne and Geneva, Switzerland
4 Department of Physical Education and Sport, University of Madeira, Funchal, Portugal
5 LARSyS, Interactive Technologies Institute, Funchal, Portugal
6 Health Administration Institute, Secretary of Health of the Autonomous Region of Madeira, Funchal, Portugal
7 Saint Joseph of Cluny Higher School of Nursing, Funchal, Portugal
8 Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
9 Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva, Switzerland
10 Institute of Demography and Socioeconomics, University of Geneva, Geneva, Switzerland
11 Population Health Laboratory, Department of Community Health, University of Fribourg, Fribourg, Switzerland
Quality of Care Service, Department of Readaptation and Geriatrics, University of Geneva, Geneva, Switzerland

Short Title: Stroke and Cognitive Reserve

Corresponding Author
Andreas Ihle
Center for the Interdisciplinary Study of Gerontology and Vulnerability
University of Geneva,
Boulevard du Pont d'Arve 28, 1205 Geneva, Switzerland.
Phone: +41 22 379 83 08
E-mail: Andreas.Ihle@unige.ch

Keywords: stroke; decline in executive functioning; cognitive reserve; leisure activities

Published version: https://www.karger.com/Article/Abstract/506877
Abstract

Aims: We investigated whether the longitudinal relationship between history of stroke and subsequent decline in executive functioning over six years differed by cognitive reserve.

Methods: We analyzed longitudinal data from 897 older adults (M = 74.33 years) tested on the Trail Making Test (TMT) in two waves six years apart. Participants reported information on key frequently-used proxies of lifelong cognitive reserve accumulation (i.e., education, occupation, and leisure activity engagement) and history of stroke.

Results: There was a significant interaction of stroke with leisure activity engagement on latent change in executive functioning. Specifically, only for individuals with low (but not those with high) leisure activity engagement, history of stroke significantly predicted a steeper subsequent decline in executive functioning across six years (i.e., increases in TMT completion time).

Conclusion: The detrimental aftereffects of stroke on subsequent decline in executive functioning may be attenuated in individuals who have accumulated greater cognitive reserve through leisure activity engagement across their life.
Introduction

Stroke is a major risk factor for cognitive impairments and cognitive decline in old age [1]. Notably, considerable inter-individual differences regarding this relationship exist. Yet, to understand the mechanisms underlying post-stroke cognitive deficits, the factors contributing to pre-stroke architecture of cognitive networks are often ignored, even though they reportedly play a decisive role in the manifestation of cognitive impairments in neurodegeneration [2]. In this regard, cognitive reserve may be a crucial factor. In general, the cognitive reserve concept, which was originally developed to account for individual differences in the course of aging and neurodegenerative diseases, postulates that lifelong cognitive stimulation builds up a buffer that is instrumental for coping with brain damage in order to preserve cognitive functioning in aging [3]. Frequently-used proxies of cognitive reserve are education in early life, cognitively demanding jobs in midlife, and leisure activity engagement across adulthood, which contribute to the accumulation of cognitive reserve [3]. These cognitive-reserve proxies are for example related to better executive functioning in healthy older adults [4-8].

Notably, it has been suggested that cognitive reserve may help to overcome cognitive impairments related to neurological changes following stroke [2, 9]. Yet, reviews on this issue point out that the investigation of cognitive reserve in stroke is still insufficient and that future research needs to investigate for example the role of stimulating activity engagement as proxy of cognitive reserve and its effect on rehabilitative outcomes after stroke [9]. Specifically, to the best of our knowledge, there is no empirical longitudinal investigation to date regarding the role of cognitive reserve in modifying the long-term aftereffects of stroke on decline in executive functioning over a broader time frame. This gap in the literature is particularly troubling, as longitudinal research is needed to evaluate whether cognitive reserve not only modifies the cross-sectional association between stroke and executive functioning at a given point in time, but also the longitudinal relationship between stroke and the long-term rate of
decline in executive functioning. Moreover, to be able to derive concrete implications with respect to the different contributions to the accumulation of cognitive reserve across the lifespan it needs to be identified which of the key proxies (education, cognitive demand of jobs, or leisure activity engagement) may play the most important role in this context. To address these major gaps in the literature, we investigated whether the longitudinal relationship between history of stroke and subsequent decline in executive functioning over six years as measured through performance changes in the Trail Making Test (TMT) differed by key frequently-used proxies of lifelong cognitive reserve accumulation (i.e., education, cognitive demand of jobs, and leisure activity engagement).

Materials and Methods

Participants

We analyzed data from 897 individuals who participated in the two waves of the Vivre-Leben-Vivere (VLV) survey [10]. Respondents were first interviewed during 2011 (Wave 1; W1) and again in 2017 (Wave 2; W2) using face-to-face computer-assisted personal interviewing (CAPI) and paper-pencil questionnaires. For further details regarding the rationale, design, recruitment, materials, and procedures of the VLV survey see [6, 10, 11]. Mean age of these respondents in W1 was 74.33 years ($SD = 6.50$, range 64-96); 51.4% were men.

Materials

In both waves, we administered the Trail Making Test parts A and B (TMT A and TMT B, respectively [12]). Participants reported in W1 whether they had a history of stroke in the past. We used the Cognitive Reserve Index questionnaire (CRIq [13]) to assess proxies of accumulated cognitive reserve across the lifespan in terms of education, cognitive demand of jobs, and leisure activity engagement.
Statistical Analyses

Using latent change score modeling, we modeled latent executive functioning factors of TMT completion time in W1 (constructed from TMT parts A and B in W1) and W2 (constructed from TMT parts A and B in W2) as well as a latent change in executive functioning variable regarding change in TMT completion time from W1 to W2. We included the following covariates to predict latent change: history of stroke in W1, the proxies of cognitive reserve (education, cognitive demand of jobs, and leisure activity engagement), age in W1, sex, and the interactions of history of stroke in W1 with the proxies of cognitive reserve. We also included interrelations of all covariates to take the dependencies among them into account.

Results

The latent change score model provided a very good statistical account of the data ($\chi^2 = 26.97, df = 17, p = .059, CFI > .99, IFI > .99, RMSEA = .03, SRMR = .02$).

Older age in W1 significantly predicted a larger increase in TMT completion time from W1 to W2 (i.e., steeper decline in executive functioning, $\beta = .36, p < .001$). Greater past leisure activity engagement across adulthood significantly predicted a smaller increase in TMT completion time from W1 to W2 (i.e., smaller decline in executive functioning, $\beta = -.13, p = .002$). Education, cognitive demand of jobs, sex, and history of stroke per se did not predict changes in TMT completion time ($ps > .146$). Notably, there was a significant interaction of stroke with past leisure activity engagement ($\beta = -.15, p = .002$). Specifically, for individuals with low past leisure activity engagement (-1 SD), history of stroke in W1 significantly predicted a larger subsequent increase in TMT completion time from W1 to W2 (i.e., steeper decline in executive functioning, $\beta = .16, p = .004$). In contrast, for individuals with high past leisure activity engagement across adulthood (+1 SD), this longitudinal relationship between history of stroke and subsequent decline in executive functioning was
not significant ($\beta = -.11, p = .143$). Besides that, no other interactions of history of stroke in W1 with the proxies of cognitive reserve on latent change in TMT completion time were observed.

Discussion

Present longitudinal results have important implications. As the primary study on the role of cognitive reserve for long-term stroke-related decline in executive functioning, using latent change score modeling (extracting measurement-error variance) we demonstrated a substantial interaction of stroke with past leisure activity engagement on latent change in executive functioning. Specifically, for individuals with low past leisure activity engagement, history of stroke in the first wave of data collection predicted a steeper subsequent decline in executive functioning across six years (i.e., indicated by increases in TMT completion time). In contrast, for individuals with high past leisure activity engagement across adulthood, this longitudinal relationship between history of stroke and subsequent decline in executive functioning was not evident. These findings corroborate the conceptual view that cognitive reserve may help to reduce the neuropsychological aftereffects of stroke [2, 9]. In this regard, the present longitudinal study extends prior cross-sectional studies with longitudinal data regarding stroke-related decline in executive functioning over six years. Specifically, the longitudinal latent change score modeling approach in the present paper implies a highly novel and important advancement to investigate the role of cognitive reserve in modifying the long-term aftereffects of stroke on decline in executive functioning over a broader time frame. Disentangling the individual contributions to cognitive reserve accumulation across the lifespan, we found that (in contrast to education and cognitive demand of jobs) leisure activity engagement played the key role in this context. Thereby, our observations dovetail with findings that greater leisure activity engagement contributes to cognitive reserve and is associated with better performance and reduced decline in executive functioning [5, 14-16]
and are therefore of public importance [17, 18]. In this regard, the present study further elucidates leisure activity engagement as crucial cognitive-reserve proxy contributing to the build-up of a buffer prior to stroke that will be later instrumental for coping with stroke-related brain damage. Thereby, present results help to better understand the mechanisms underlying individual differences in long-term development of executive functioning after stroke.

In conclusion, present results suggest that the detrimental aftereffects of stroke on subsequent decline in executive functioning may be attenuated in individuals who have accumulated greater cognitive reserve through leisure activity engagement across their life. Therefore, especially a lifelong stimulating activity engagement is crucial for building up cognitive reserve in order to promote the maintenance of executive functioning after stroke. Future longitudinal research will have to include a larger set of cognitive abilities as well as medical reports on history of stroke.

Acknowledgement

The authors are grateful to the Swiss National Science Foundation for its financial assistance. The authors also thank the participants of the Vivre-Leben-Vivere (VLV) study, as well as all members of the LIVES project IP213 and LINK institute who contributed to the realization of the VLV study.

Statement of Ethics

All participants gave their written informed consent for inclusion in the study before participating. The present study was conducted in accordance with the Declaration of Helsinki, and the study protocol had been approved by the ethics commission of the Faculty of Psychology and Social Sciences of the University of Geneva (project identification codes: CE_FPSE_14.10.2010 and CE_FPSE_05.04.2017).
Disclosure Statement

The authors have no conflicts of interest to disclose.

Funding Sources

This work was supported by the Swiss National Centre of Competence in Research LIVES – Overcoming vulnerability: life course perspectives, granted by the Swiss National Science Foundation (grant number: 51NF40-160590). ERG and BRG acknowledge support from LARSyS - Portuguese national funding agency for science, research and technology (FCT) Pluriannual funding 2020-2023 (Reference: UIDB/50009/2020).

The funding sources had no role in the preparation of data or the manuscript. Moreover, the authors have not entered into an agreement with the funding organization that has limited their ability to complete the research as planned and publish the results. The authors have had full control of all the primary data.

Author Contributions

AI, ERG, and BRG formulated the research question, analyzed the data, and wrote the manuscript. BC, SS, and SC were involved in writing the manuscript. MK formulated the research question, conceptualized the study, supervised the data collection, and participated in writing.

References

1. Brainin M, Tuomilehto J, Heiss WD, Bornstein NM, Bath PM, Teuschl Y, et al. Post-stroke cognitive decline: an update and perspectives for clinical research. Eur J Neurol. 2015 Feb;22(2):229-38, e13-6.
2. Uniarova RM. Adapting the concepts of brain and cognitive reserve to post-stroke cognitive deficits: Implications for understanding neglect. Cortex. 2017 Dec;97:327-338.

3. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012 Nov;11(11):1006-12.

4. Opdebeeck C, Martyr A, Clare L. Cognitive reserve and cognitive function in healthy older people: a meta-analysis. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2016;23(1):40-60.

5. Wang HX, Jin Y, Hendrie HC, Liang C, Yang L, Cheng Y, et al. Late life leisure activities and risk of cognitive decline. J Gerontol A Biol Sci Med Sci. 2013 Feb;68(2):205-13.

6. Ihle A, Oris M, Fagot D, Kliegel M. The relation of the number of languages spoken to performance in different cognitive abilities in old age. J Clin Exp Neuropsychol. 2016 Dec;38(10):1103-14.

7. Ihle A, Gouveia ÉR, Gouveia BR, Freitas DL, Jurema J, Tinôco MA, et al. High-Density Lipoprotein Cholesterol Level Relates to Working Memory, Immediate and Delayed Cued Recall in Brazilian Older Adults: The Role of Cognitive Reserve. Dement Geriatr Cogn Disord. 2017;44(1-2):84-91.

8. Ihle A, Gouveia ÉR, Gouveia BR, Freitas DL, Jurema J, Machado FT, et al. The Relation of Hypertension to Performance in Immediate and Delayed Cued Recall and Working Memory in Old Age: The Role of Cognitive Reserve. J Aging Health. 2018 Sep;30(8):1171-1187.

9. Nunnari D, Bramanti P, Marino S. Cognitive reserve in stroke and traumatic brain injury patients. Neurol Sci. 2014 Oct;35(10):1513-8.

10. Ihle A, Zuber S, Gouveia ÉR, Gouveia BR, Mella N, Desrichard O, et al. Cognitive Reserve Mediates the Relation between Openness to Experience and Smaller Decline in Executive Functioning. Dement Geriatr Cogn Disord. 2019;48(1-2):39-44.
11. Ihle A, Oris M, Fagot D, Chicherio C, van der Linden BWA, Sauter J, et al. Associations of educational attainment and cognitive level of job with old age verbal ability and processing speed: The mediating role of chronic diseases. Appl Neuropsychol Adult. 2018 Jul-Aug;25(4):356-362.

12. Reitan RM. Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills. 1958 Dec;8:271--276.

13. Nucci M, Mapelli D, Mondini S. Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clin Exp Res. Jun;24(3):218-26.

14. Ihle A, Mons U, Perna L, Oris M, Fagot D, Gabriel R, et al. The Relation of Obesity to Performance in Verbal Abilities, Processing Speed, and Cognitive Flexibility in Old Age: The Role of Cognitive Reserve. Dement Geriatr Cogn Disord. 2016;42(1-2):117-26.

15. Ihle A, Grotz C, Adam S, Oris M, Fagot D, Gabriel R, et al. The association of timing of retirement with cognitive performance in old age: the role of leisure activities after retirement. Int Psychogeriatr. 2016 Oct;28(10):1659-69.

16. Ihle A, Gouveia ÉR, Gouveia BR, Freitas DL, Jurema J, Odim AP, et al. The relation of education, occupation, and cognitive activity to cognitive status in old age: the role of physical frailty. Int Psychogeriatr. 2017 Sep;29(9):1469-1474.

17. Ihle A, Borella E, Rahnfeld M, Müller SR, Enge S, Hacker W, et al. The role of cognitive resources for subjective work ability and health in nursing. Eur J Ageing 2015 Jan;12(2):131-140.

18. Suzman R, Beard JR, Boerma T, Chatterji S. Health in an ageing world—what do we know? Lancet 2015 Feb;385(9967):484-486.