Search for Higgs Bosons Decaying to Tau Pairs in \(pp \) Collisions with the DØ Detector

V. M. Abazov
Joint Institute for Nuclear Research, Dubna, Russia

Kenneth A. Bloom
University of Nebraska-Lincoln, kbloom2@unl.edu

Gregory Snow
University of Nebraska-Lincoln, gsnow1@unl.edu

DØ Collaboration

Follow this and additional works at: https://digitalcommons.unl.edu/physicsbloom

Part of the *Physics Commons*

Abazov, V. M.; Bloom, Kenneth A.; Snow, Gregory; and Collaboration, DØ, "Search for Higgs Bosons Decaying to Tau Pairs in \(pp \) Collisions with the DØ Detector" (2008). *Kenneth Bloom Publications*. 257.
https://digitalcommons.unl.edu/physicsbloom/257

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kenneth Bloom Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Search for Higgs Bosons Decaying to Tau Pairs in $p\bar{p}$ Collisions with the D0 Detector

V. M. Abazov,36 B. Abbott,75 M. Abolins,65 B. S. Acharya,29 M. Adams,51 T. Adams,49 E. Aguilo,6 S. H. Ahn,31 M. Ahsan,59 G. D. Alexeev,36 G. Alkhazov,40 A. Alton,64,48 G. Alverson,63 G. A. Alves,2 M. Anastasioaie,35 L. S. Ancu,35 T. Andeen,53 S. Anderson,45 B. Andrieu,17 M. S. Anzelc,53 M. Aoki,50 Y. Arnoud,14 M. Arov,50 M. Arthaud,18 A. Askew,49 B. Ásman,41 A. C. S. Assis Jesus,3 O. Atramentov,49 C. Avila,4 F. Badaud,13 A. Baden,61 L. Bagby,50 B. Baldin,50 D. V. Bandurin,59 P. Banerjee,23 S. Banerjee,29 E. Barberis,63 A.-F. Barfuss,15 P. Bargassa,80 B. Barlow,58 J. Barrote,2 J. F. Bartlett 50 U. Bassler,81 D. Bauer,43 S. Beale,58 A. Bean,58 M. Begali,3 M. Begg,73 C. Belanger-Champagne,41 L. Bellantoni,50 A. Bellavance,50 J. A. Benitez,65 S. B. Berti,27 G. Bernardi,17 R. Bernhard,23 I. Bertram,42 M. Besançon,18 R. Beuselinck,43 V. A. Bezubov,39 P. C. Bhat,50 V. Bhatnagar,27 C. Biscarret,20 G. Blazey,72 A. M. Blouin,58 C. Bohm,81 N. Bongiorno,70 D. A. Brown,81 I. N. Buchanan,49 D. Buchholz,53 M. Buehler,81 V. Buescher,22 V. Bunichev,38 S. Burdin,42,4 P. Burke,43 T. H. Burnett,172 C. P. Buszello,43 J. M. Butler,62 P. Cal Rafanelli,25 S. Cal Rafanelli,25 C. de la Fuente,62 P. Cal Rafanelli,25 C. de la Fuente,62 P. Cal Rafanelli,25 C. de la Fuente,62 P. Cal Rafanelli,25 C. de la Fuente,62
M. Rominsky, C. Royon, P. Rubinov, R. Ruchti, G. Safronov, G. Sajot, A. Sánchez-Hernández, M. P. Sanders, B. Sanghi, A. Santoro, G. Savage, T. Scanlon, D. Schaele, R. D. Schamberger, Y. Scheglov, H. Schellman, T. Schliephake, C. Schwanenberger, A. Schwartzman, Y. Scheglov, H. Schellman, T. Schliephake, C. Schwanenberger, A. Schwartzman, J. Sekaric, H. Severini, E. Shabalina, M. Shamim, A. A. Shchukin, R. K. Shivpuri, V. Siccardi, V. Simak, V. Stolin, D. A. Stoyanova, J. Strandberg, S. Strandberg, M. A. Strang, E. Strauss, M. Strauss, R. Ströhmer, D. Strom, L. Stutte, S. Sumowidagdo, P. Svoisky, A. Szajek, P. Tamburello, W. Taylor, J. Temple, B. Tiller, F. Tissandier, G. W. Wilson, S. J. Wimpenny, M. Wobisch, D. R. Wood, Y. Xie, S. W. Yoon, C. Zeitnitz, T. Zhao, B. Zhou, J. Zhu, M. Zielinski, D. Zieminska, A. Zieminski, L. Zivkovic, V. Zutshi, and E. G. Zverev

(The D0 Collaboration)

1 Universidad de Buenos Aires, Buenos Aires, Argentina
2 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4 Universidade Federal do ABC, Santo André, Brazil
5 Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil
6 University of Alberta, Edmonton, Alberta, Canada
7 Simon Fraser University, Burnaby, British Columbia, Canada
8 York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada
9 University of Science and Technology of China, Hefei, People’s Republic of China
10 Universidad de los Andes, Bogotá, Colombia
11 Center for Particle Physics, Charles University, Prague, Czech Republic
12 Czech Technical University, Prague, Czech Republic
13 Universidad San Francisco de Quito, Quito, Ecuador
14 LPC, Univ Blaise Pascal, CNRS/IN2P3, Clermont, France
15 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, France
16 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
17 LAL, Univ Paris-Sud, IN2P3/CNRS, Orsay, France
18 LPNHE, IN2P3/CNRS, Universités Paris VI and VII, Paris, France
19 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
20 IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS/IN2P3, Strasbourg, France
21 IPNL, Université Lyon I, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
22 III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany
23 Physikalisches Institut, Universität Bonn, Bonn, Germany
24 Physikalisches Institut, Universität Freiburg, Freiburg, Germany
25 Institut für Physik, Universität Mainz, Mainz, Germany
26 Ludwig-Maximilians-Universität München, München, Germany
27 Fachbereich Physik, Universität of Wuppertal, Wuppertal, Germany
28 Panjab University, Chandigarh, India
29 Delhi University, Delhi, India
30 Tata Institute of Fundamental Research, Mumbai, India
31 University College Dublin, Dublin, Ireland
32 Korea Detector Laboratory, Korea University, Seoul, Korea
33 CINVESTAV, Mexico City, Mexico

071804-2
We present a search for the production of neutral Higgs bosons ϕ decaying into $\tau^+\tau^-$ final states in pp collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of approximately 1 fb$^{-1}$, were collected by the D0 experiment at the Fermilab Tevatron Collider. Limits on the production cross section times branching ratio are set. The results are interpreted in the minimal supersymmetric standard model yielding limits that are the most stringent to date at hadron colliders.

DOI: 10.1103/PhysRevLett.101.071804

PACS numbers: 14.80.Cp, 12.60.Fr, 12.60.Jv, 13.85.Rm

We present a search for the production of neutral Higgs bosons ϕ decaying into $\tau^+\tau^-$ final states in pp collisions at a center-of-mass energy of 1.96 TeV. The data, corresponding to an integrated luminosity of approximately 1 fb$^{-1}$, were collected by the D0 experiment at the Fermilab Tevatron Collider. Limits on the production cross section times branching ratio are set. The results are interpreted in the minimal supersymmetric standard model yielding limits that are the most stringent to date at hadron colliders.
Higgs bosons are an essential ingredient of electroweak symmetry breaking in the standard model (SM). A search for Higgs bosons (denoted as ϕ) decaying to tau leptons is of particular interest in models with more than one Higgs doublet, where production rates for $p\bar{p} \rightarrow \phi \rightarrow \tau^+\tau^-$ can potentially be large enough for observation at the Fermilab Tevatron Collider. This situation is realized in the minimal supersymmetric standard model (MSSM) [1], which contains two complex Higgs doublets, leading to two neutral CP-even (h, H), one CP-odd (A), and a pair of charged (H^\pm) Higgs bosons. At tree level, the Higgs sector of the MSSM is fully specified by two parameters, generally chosen to be M_A, the mass of the CP-odd Higgs boson, and $\tan\beta$, the ratio of the vacuum expectation values of the two Higgs doublets. Dependence on other MSSM parameters enters through radiative corrections. At large $\tan\beta$, the coupling of the neutral Higgs bosons to down-type quarks and charged leptons is strongly enhanced, leading to sizable cross sections. The Higgs bosons will decay predominantly into third generation fermions.

Searches for neutral MSSM Higgs bosons have been conducted at the CERN LEP collider [2] and at the Tevatron [3–5]. These Tevatron searches used between 260 pb$^{-1}$ and 350 pb$^{-1}$ of collider data. In this Letter a search for $\phi \rightarrow \tau^+\tau^-$ with about 1 fb$^{-1}$ [6] of data is presented. At least one of the tau leptons is required to decay leptonically, leading to final states containing $e\tau_h$, $\mu\tau_h$, and $e\mu$, where τ_h represents a hadronically decaying tau lepton. The data were collected at the Tevatron with the D0 detector between 2002 and 2006 at a $p\bar{p}$ center-of-mass energy $\sqrt{s} = 1.96$ TeV. A description of the D0 detector can be found in Ref. [7].

Signal and SM background processes are modeled using the PYTHIA 6.329 [8] Monte Carlo (MC) generator, followed by a GEANT-based [9] simulation of the D0 detector. The signal events are produced with the width of the SM Higgs boson. All background processes, apart from multijet production and W boson production, are normalized using cross sections calculated at next-to-leading order (NLO) and next-to-NLO (for Z boson and Drell-Yan production) based on the CTEQ6.1 [10] parton distribution functions (PDF).

The normalizations and shape of background contributions from multijet production, where jets are misidentified as leptons, are estimated from the data by using same charge e and τ_h candidate events ($e\tau_h$ channel) or by selecting background samples by inverting lepton identification criteria ($\mu\tau_h$ and $e\mu$ channels). These samples are normalized to the data at an early stage of the selection in a region of phase space dominated by multijet production. The multijet background estimation in the $\mu\tau_h$ and $e\tau_h$ channels was checked by using an independent method to estimate the background: in the $\mu\tau_h$ channel same charge $\mu\tau_h$ events were used and in the $e\tau_h$ channel the multijet background was estimated from measurements in the jet of the probability to misreconstruct electrons from jets. The differences between the estimates were used to set the systematic uncertainty on the multijet production. The normalization of the background from W boson production is obtained from data in a sample dominated by W boson + jet events.

Electrons are selected using their characteristic energy deposits, including the transverse and longitudinal shower profile in the electromagnetic (EM) calorimeter. To reject photons, a reconstructed track is required to point to the energy cluster. Further rejection against background is achieved by using a likelihood discriminant. Muons are selected using reconstructed tracks in the central tracking detector in combination with patterns of hits in the muon detector. Electrons and muons are required to be isolated in the calorimeter and in the case of muons also in the tracker [11]. Events are triggered by inclusive electron and muon triggers. Reconstruction and trigger efficiencies for both leptons are measured in data using $Z/\gamma^* \rightarrow \mu^+\mu^-, e^+e^-$ events.

A hadronically decaying tau lepton is characterized by a narrow isolated jet with low track multiplicity [12]. Three τ-types are distinguished: τ-type 1 is a single track with energy deposited in the hadronic calorimeter (π^0-like); τ-type 2 is a single track with energy deposited in the hadronic and the electromagnetic calorimeters (ρ-like); τ-type 3 is three tracks with an invariant mass below 1.7 GeV, with energy deposited in the calorimeter.

A set of neural networks, NN_{τ_h}, one for each τ-type, has been trained to separate hadronic tau decays from jets using $Z/\gamma^* \rightarrow \tau^+\tau^-$ MC events as the signal and multijet data as background. The selections on the neural networks retain 66% of the $Z/\gamma^* \rightarrow \tau^+\tau^-$ events, while rejecting 98% of the multijet background. In addition, a neural network has been trained with electron MC events as background to separate τ-type 2 hadronic tau candidates from electrons (NN_{e}).

The signal is characterized by two leptons, missing transverse energy E_T and as an enhancement above the background in the visible mass $M_{\text{vis}} = \sqrt{(P_{T1} + P_{T2} + P_T)^2}$, calculated using the four-vectors of the visible tau decay products $P_{T\tau}$ and of the missing momentum $P_T = (E_T, E_x, E_y, 0)$. The components E_x and E_y of E_T are computed from calorimeter cells and the momentum of muons, and corrected for the energy response of electrons, taus, and jets. The four-vectors of the hadronic taus are calculated using the calorimeter for τ-types 2 and 3 and the central tracking system for τ-type 1.

In the $e\tau_h$ and $\mu\tau_h$ channels, an isolated lepton (e, μ) with transverse momentum above 15 GeV and an isolated hadronic tau with transverse momentum above 16.5 GeV (22 GeV for τ-type 3) are required. The pseudorapidity $|\eta|$ is less than 2 for muons and hadronic taus and 2.5 for electrons. In addition to the background from $Z/\gamma^* \rightarrow \tau^+\tau^-$ production, a $W(\rightarrow \ell\nu)$ + jet event can be misiden-
Data are reported below, categorized by channel.

Channel

Channel	$\mu\tau_h$	$\mu\tau_h$	$e\mu$
$Z/\gamma^* \rightarrow \tau^+\tau^-$	581 ± 5	1130 ± 7	212 ± 3
Multijet	332 ± 20	86 ± 4	29 ± 1
$W \rightarrow e\nu, \mu\nu, \tau\nu$	42 ± 5	32 ± 4	9 ± 2
$Z/\gamma^* \rightarrow e^+e^-$	31 ± 2	19 ± 1	12 ± 1
Diboson + $t\bar{t}$	3.0 ± 0.1	7.0 ± 0.4	6.1 ± 0.1
Total expected	989 ± 23	1274 ± 9	269 ± 3
Efficiency (%)	1.04 ± 0.03	1.46 ± 0.04	0.57 ± 0.03

The τ_h channel has a significant background from $Z/\gamma^* \rightarrow e^+e^-$ production, where an electron is misreconstructed as a hadronic tau candidate. To remove these events, the hadronic tau candidates in the $\mu\tau_h$ channel are required to be outside of the region $1.05 < |\eta| < 1.55$, where there is limited EM calorimeter coverage and are required to have less than 90% of their energy deposited in the EM calorimeter. Finally, τ-type 2 candidates are required to have $N_{vis} > 0.8$, which rejects 92% of the $Z/\gamma^* \rightarrow e^+e^-$ events, while retaining 83% of the $Z/\gamma^* \rightarrow \tau^+\tau^-$ events.

We select one muon with $p_T > 10$ GeV and one electron with $p_T > 12$ GeV in the $e\mu$ channel. Multijet and W boson production are suppressed by requiring the invariant mass of the electron-muon pair to be above 20 GeV and $E_T > 65$ GeV. Background from $W +$ jet events can be reduced using the transverse mass by requiring that either $M_T^Z < 10$ GeV or $M_T^W < 10$ GeV. Furthermore, the minimum angle between the leptons and the E_T vector, $\Delta \phi(e, \mu, E_T)$, has to be smaller than 0.3. Contributions from $t\bar{t}$ background are suppressed by rejecting events where the scalar sum of the transverse momenta of all jets in the event is greater than 70 GeV.

The number of events observed in the data and expected from the various SM processes show good agreement (Table I). The M_{vis} distribution is shown in Fig. 1. The number of background and signal events depend on numerous measurements that introduce a systematic uncertainty: integrated luminosity (6.1%), trigger efficiency (3%–4%), lepton identification and reconstruction efficiencies (2%–10%), jet and tau energy calibration (2%–3%), PDF uncertainty (4%), the uncertainty on the Z/γ^* production cross section (5%), normalization of the W boson background (6%–15%), and modeling of multijet background (4%–40%). All except the last one are correlated among the three final states. Most of the uncertainties affect only the overall acceptance for the signal and backgrounds. However, uncertainties on the energy scale and electron trigger efficiencies modify the shape of the visible mass distribution. These uncertainties are therefore parameterized as a function of M_{vis}.

We extract upper limits on the production cross section times branching ratio as a function of Higgs boson mass M_h. In order to maximize the sensitivity (median expected limit), the event samples of the τ_h and $\mu\tau_h$ channels are...
The limits in Fig. 2 assume a Higgs boson with SM width, which is negligible compared to the experimental resolution on M_{vis}. In models such as the MSSM the Higgs boson width can become substantially larger than the value in the SM. This was simulated by multiplying a relativistic Breit-Wigner (BW) function with the cross section from FeynHiggs [14] for masses $M > 80$ GeV to obtain the differential cross section for a wide Higgs boson as a function of mass:

$$\frac{d\sigma}{dM} = \sigma(M, \tan\beta, \Gamma_\phi = 0) \times \text{BW}(M, M_\phi, \Gamma_\phi).$$

This differential cross section was used to build a signal template of the M_{vis} distribution for a Higgs boson of mass M_ϕ and width Γ_ϕ. The limit calculation procedure was then repeated with templates corresponding to various values of Γ_ϕ. The ratio of the expected cross section limit for a wide Higgs boson to the limit for a Higgs boson with SM width as a function of M_ϕ is shown in Fig. 3. This result can be used to correct the cross section limit for a Higgs boson with SM width (Fig. 2) for a non-SM width in a model independent way.

In the MSSM, the masses and couplings of the Higgs bosons depend, in addition to $\tan\beta$ and M_A, on the MSSM parameters through radiative corrections. In a constrained model, where unification of the SU(2) and U(1) gaugino masses is assumed, the most relevant parameters are the mixing parameter X_t, the Higgs mass parameter μ, the gaugino mass term M_2, the gluino mass $m_{\tilde{g}}$, and a common scalar mass M_{SUSY}. Limits on $\tan\beta$ as a function of M_A are derived for two scenarios assuming a CP-conserving Higgs sector [15]: the $m_{\tilde{t}}^{\max}$ scenario [16] and the no-mixing scenario [17] with $\mu = +0.2$ TeV. The $\mu < 0$ case is not considered as it is currently disfavored [18]. The production cross sections, widths, and branching ratios for the Higgs bosons are calculated over the mass range from 90 GeV to 300 GeV using the FeynHiggs program [14]. In these scenarios $\Gamma_A/M_A < 0.1$ for $M_A < 200$ GeV. The effect of the Higgs boson width is therefore small. For large

![Graph](image-url)
\(\tan \beta \), the \(A \) boson is nearly degenerate in mass with either the \(h \) or the \(H \) boson, and their production cross sections (\(gg \to \phi, b\bar{b} \to \phi \)) are added.

Figure 4 shows the results interpreted in the MSSM scenarios considered in the Letter. We reach a sensitivity of around \(\tan \beta = 50 \) for \(M_A \) below 180 GeV. The result represents the most stringent limit on the production of neutral MSSM Higgs bosons at hadron colliders.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); STFC (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC, and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); the Swedish Research Council (Sweden); and the Alexander von Humboldt Foundation.

*Visitor from Augustana College, Sioux Falls, SD, USA.
†Visitor from The University of Liverpool, Liverpool, UK.
‡Visitor from ICN-UNAM, Mexico City, Mexico.
§Visitor from II. Physikalisches Institut, Georg-August-University, Göttingen, Germany.
∥Visitor from Helsinki Institute of Physics, Helsinki, Finland.
¶Visitor from Universität Zürich, Zürich, Switzerland.
**Deceased.

[1] H. P. Nilles, Phys. Rep. 110, 1 (1984); H. E. Haber and G. L. Kane, Phys. Rep. 117, 75 (1985).