Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes

Shishuo Sun‡, Pengcheng Tan‡, Xiaoheng Huang‡, Wei Zhang§, Chen Kong§, Fangfang Ren‡ and Xiong Su‡,§,1

From the ‡Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China and the §Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, 63110

Running title: CD36 and IRS1 degradation

1To whom correspondence should be addressed: Soochow University Medical College, 199 Ren’ai Rd, Suzhou, 215123, China, Tel: 86-512-6588-3622, Fax: 86-512-6588-0103, E-mail: xsu@suda.edu.cn

Keywords: Akt, fatty acid, IRS1, insulin resistance, ubiquitination, CD36, CUL7,

ABSTRACT

Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared to wild type cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of wild type CD36, but not a ubiquitination-defective CD36 mutant delayed Akt activation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multi-subunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus.

Cell signaling is usually initiated by binding an activating ligand to a receptor on the plasma membrane (PM) that transmits the signal inside the cell. Distinct cellular responses and outcomes of a signaling pathway are achieved by precise regulation of its duration, magnitude and subcellular compartmentalization, which is mediated by an integrated network with multiple
positive and negative feedback and feedforward loops (1). Insulin plays a critical role in metabolic regulation by promoting glucose uptake and lipid synthesis, while inhibiting gluconeogenesis and lipolysis (2). Both magnitude and duration of insulin signaling are important in determining its metabolic functions.

Insulin signaling is initiated by its binding to and activation of the insulin receptor (IR) tyrosine kinase, which further induces phosphorylation and recruitment of insulin receptor substrate (IRS) family of proteins (3). Among the substrates, IRS1 is important in activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway (4) and its signaling functions are mediated by phosphorylation and acetylation (5,6). Ubiquitination of IRS1 following phosphorylation on Ser307 leads to its proteasome-dependent degradation, which in conjunction with lysosomal degradation of IR, resulting in decrease of insulin sensitivity after long-term stimulation by insulin (7). Insulin-induced IRS1 degradation relies on proteasome-dependent pathway (8), while osmotic stress and oxidative stress enhance IRS1 degradation in a proteasome-independent process (9,10). Cullin 7 (CUL7) is a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex that targets IRS1 for ubiquitin-dependent degradation while ubiquitin specific protease 7 can deubiquitinate IRS1, preventing it from proteasomal degradation (11). However, molecular mechanisms regulating stability of IRS1 in response to cellular stress have not been well understood.

CD36 (cluster of differentiation 36) has been shown in vitro and in vivo to facilitate the transport of many lipid species including FFAs in a variety of cells (12,13). CD36 is highly expressed in myocytes, adipocytes, and hepatocytes, where insulin signaling is a master metabolic regulator (14). Accordingly, potential regulation of insulin signaling by CD36 has been extensively studied. Hepatic CD36 upregulation is significantly associated with insulin resistance and increased steatosis in patients with non-alcoholic steatohepatitis (15). Unadjusted CD36 mRNA and protein in peripheral blood mononuclear cells were higher among subjects with type 2 diabetes mellitus versus control subjects (16), indicating that CD36 could be a negative mediator of insulin sensitivity. However, some other studies suggested the opposite CD36 regulation of insulin sensitivity. CD36 deficiency in spontaneously hypertensive rat underlies insulin resistance and defective FA metabolism and hypertriglyceridaemia (17), which are ameliorated by transgenic expression of CD36 (18). Similarly, muscle specific overexpression of CD36 reverses insulin resistance in a mouse model caused by overexpressing a dominant-negative form of IGF-1 receptor specifically in muscle (MKR mice) (19). Hepatic overexpression of CD36 improved glycogen homeostasis and attenuated high-fat diet-induced hepatic steatosis and insulin resistance (20). The hyperinsulinaemic-euglycaemic clamp study showed insulin resistance in people with genetic CD36 deficiency, which is common in Asian and African populations (21), but later study demonstrated that human CD36 deficiency is not necessarily responsible for insulin resistance (22). Collectively, the exact regulation of insulin sensitivity by CD36 is highly controversial and the underlying mechanisms are still unrevealed.

CD36 null mice clear glucose faster than the WT under chow diet. However, after switching to diet high in fructose, CD36 null mice but not WT mice develop hyperinsulinemia, marked glucose intolerance, and decreased muscle glucose uptake (23). Thus, it is likely that insulin signaling is dynamically regulated by CD36 and this regulation may be highly dependent on different
nutrient stress and hormone stimulation. Herein, we studied the magnitude and duration of insulin signaling as regulated by CD36 in C2C12 myotubes. Since IRS1 plays a critical role in insulin signaling pathway and insulin-induced IRS1 degradation is a key negative feedback mechanism to maintain appropriate signal strength and duration, we further examined whether CD36 mediates dynamics of insulin signaling activation by regulating IRS1 stability. We demonstrated that CD36 interacts with IRS1 and reduces its interaction with CUL7, which prevents proteasomal degradation of IRS1 and leads to distinct regulation of insulin signaling before and after chronic insulin treatment.

RESULTS

CD36 sustains insulin signaling and alleviates insulin-induced insulin resistance in C2C12 myotubes

Previous studies suggested that CD36 regulation of insulin signaling may be highly dependent on nutrient and signaling states of the cells. We first investigated the role of CD36 in regulating the dynamic response of Akt activation to insulin stimulation. CD36 was efficiently knocked down in myotubes using a siRNA as we previously verified (24) (Fig. 1A). Control or CD36 knockdown (KD) myotubes were treated with 10 nM insulin and Akt phosphorylation was monitored for up to 240 min. Phosphorylation of Akt at Thr308 and at Ser473 were initially increased but then started to decline, partially due to negative feedback regulation to terminate signaling (Fig. 1A, B, C). As compared with control myotubes, insulin-stimulated p-Akt (Thr308) and GSK3 phosphorylation was increased faster in CD36KD myotubes, but maintains for shorter period of time prior to deactivation (Fig. 1A, B, D). In contrast, activation and duration of Akt phosphorylation at Ser473 were similarly regulated by insulin in control and CD36KD myotubes (Fig. 1A, C), indicating specific accelerating activation of pAkt(Thr308)/pGSK3 pathway in response to loss of CD36 in myotubes. Insulin stimulated glycogen storage in both WT and CD36 KD myotubes. Similar to regulation of pGSK3 by CD36, increase of glycogen storage right after insulin stimulation was faster in CD36KD myotubes, but this increase sustained for shorter period of time and the glycogen accumulation reached plateau after 4 hours. In contrast, glycogen storage in WT myotubes kept increasing for longer period of time (Fig. 1E).

We then set out to compare differential regulation of insulin-induced Akt activation before and after insulin-induced insulin resistance. We examined acute Akt activation induced by insulin in control and CD36KD myotubes following starvation. Insulin-stimulated phosphorylation of GSK3 and Akt at Thr308 was significantly higher in CD36KD myotubes (Fig. 2A, B, D). In contrast, phosphorylation of Akt at Ser473 was not affected by CD36 knockdown (Fig. 2A, C). We next examined whether CD36 is able to protect myotubes from insulin-induced insulin resistance. Myotubes were pretreated with 50 nM insulin for 4 hours, washed and then re-stimulated with different concentrations of insulin for 5 mins (Fig. 2E). Phosphorylations of AKT at Ser473 and Thr308 and GSK3 were lower in CD36 KD myotubes than in control myotubes (Fig. 2F-I), suggesting that CD36 protects myotubes from insulin-stimulated insulin resistance and its regulation of insulin signaling is dependent on growing conditions.

CD36 protects IRS1 from insulin-induced proteasomal degradation

IRS1 not only plays an important role in
relaying insulin stimulation to the activation of PI3K/Akt pathway, but also provides a site of negative-feedback regulation to terminate signaling by undergoing insulin-stimulated ubiquitination and proteasomal degradation. We examined whether IRS1 plays a role in the observed protective effect of CD36 on insulin-induced insulin resistance and found that IRS1 level is higher in the presence of CD36 in myotubes following insulin treatment (Fig. 2J, K), contributing to higher insulin sensitivity (Fig. 2F). Insulin-induced changes of IRS1 and IRS2 levels in control and CD36KD myotubes were then followed. Level of IRS1 was gradually reduced after prolonged incubation of insulin in control myotubes (Fig. 3A), and the rate of this degradation significantly accelerated after CD36 KD (Fig. 3A). In contrast, IRS2 level was not decreased. We next examined rates of insulin-stimulated degradation of IRS1 and IRS2 in CHO/hIR cells stably expressing wild type (CD36 WT) and the ubiquitination deficient CD36 mutant where C-terminal lysines (Lys469 and Lys472) were substituted by alanine (CD36 K/A) as we previously established (25). We observed rapid degradation of IRS1 in CHO cells overexpressing human insulin receptor (CHO/hIR) where CD36 is virtually absent. In contrast, IRS2 level was not decreased by insulin treatment (Fig. 3B). Over-expression of CD36 WT significantly delayed insulin-stimulated IRS1 degradation, but this effect was not observed in cells overexpressing CD36 K/A (Fig. 3B). The expression levels of CD36 WT and CD36 K/A were similar and the degradation of IR was not obvious (Fig. 3C). The insulin-stimulated degradation of IRS1 in CD36KD myotubes as well as in CHO/hIR cells overexpressing CD36 was completely blocked by MG132 (Supplemental Fig. S1), suggesting that CD36 regulates proteasomal degradation of IRS1.

CD36 mediates insulin-stimulated phosphorylation and ubiquitination of IRS1

Phosphorylation at serine residues of IRS1 is a major regulator of insulin signaling. Phosphorylation at Ser307 triggers IRS1 ubiquitination and degradation, while phosphorylation at Ser612 blocks its interaction with PI3K (5). S307A mutant of IRS1 was more resistant to degradation following chronic exposure to insulin in rat hepatoma cells (26) and in myotubes (Fig. 4A and B). CD36 interacts with Fyn tyrosine kinase which binds IRS1 and forms signaling complex (27-29), suggesting that CD36 may play a role in IRS1-mediated feedback mechanism of insulin signaling. Control and CD36KD myotubes were treated with insulin for 15 mins and serine phosphorylation of IRS1 were evaluated. Phosphorylation level of IRS1 at Ser307 was increased in CD36KD myotubes as compared with control myotubes (Fig. 4C and D), which is consistent with the enhanced insulin-stimulated IRS1 degradation (Fig. 3). In contrast, phosphorylation level of IRS1 at Ser612 was reduced by CD36 knockdown (Fig. 4C, E), which may contribute to the increased Akt activation following acute insulin stimulation (Fig. 2A). We used a GST pull-down approach to detect ubiquitinated IRS1 as described (30). Ubiquitinated IRS1 interacted with the GST-UBA fusion protein, but not with a mutant version of the UBA domain predicted to abolish ubiquitin binding (GST-UBA mut). In CD36KD myotubes, the ubiquitinated IRS1 was higher than that in control myotubes, which is presumably due to increased phosphorylation at Ser307 (Fig. 4F, G).

Ubiquitinated CD36 associates with IRS1 and interrupts its interaction with CUL7

We examined interaction of IRS1 with CD36 and how this interaction was affected by insulin in
CHO/hIR cell lines. CD36 WT was co-immunoprecipitated with IRS1 using anti-IRS1 antibody (Fig. 5A). In contrast, the amount of ubiquitination defective CD36 K/A mutant co-immunoprecipitated with IRS1 was much lower (Fig. 5A). CD36 WT was also able to pull down IRS1 and its K/A mutant was less effective (Fig. 5B). Our previous study showed that CD36 associates with the Src family kinase Fyn (31), which binds IRS1 and forms a distinct signaling complex (29). We examined the potential presence of IRS1/Fyn/CD36 complex and its regulation by CD36 ubiquitination and found that Fyn co-immunoprecipitated with IRS1 and CD36 (Fig. 5A, B). Our results suggest that CD36 ubiquitination was important in its optimal interaction with IRS1 and in protecting IRS1 from insulin-stimulated degradation (Fig. 5B). The proteasomal degradation of IRS1 is regulated by CUL7 E3 ubiquitin ligase and we next examined whether CD36 competes with CUL7 in interacting with IRS1. Over-expression of CD36 decreased co-immunoprecipitation of CUL7 by anti-IRS1 antibody (Fig. 5C). In contrast, the ubiquitination defective CD36 K/A mutant with weaker interaction with IRS1 was less effective in blocking IRS1-CUL7 interaction (Fig. 5C).

We then examine the presence of endogenous IRS1/Fyn/CD36 complex in myotubes. Both CD36 and Fyn co-immunoprecipitated with IRS1 and insulin treatment which inhibits CD36 ubiquitination (25) decreased its association with IRS1 (Fig. 5D). Since Fyn interacts with both IRS1 and CD36, we examined whether Fyn is required for CD36 interaction with IRS1. Fyn was co-immunoprecipitated with IRS1 in the absence of CD36. In contrast, Fyn KD significantly decreased CD36 co-immunoprecipitated with IRS1 (Fig 5E). Disruption of endogenous CD36/IRS1 interaction either directly by CD36 KD or indirectly by Fyn KD enhanced the amounts of CUL7 co-immunoprecipitated with IRS1 (Fig. 5E). Inhibition of Fyn by Src inhibitor-1 (Src-1) decreased CD36 and increased CUL7 co-immunoprecipitated with IRS1 (Fig. 5F), suggesting a key role of Fyn and its kinase activity in CD36 regulation of IRS1 degradation.

Fyn participates in CD36 regulation of IRS1 degradation

We set out to examine whether Fyn is involved in CD36 regulation of insulin-stimulated IRS1 degradation. Since the enhanced FFA interaction with CD36 promotes Fyn dissociation from the protein complex (31), we studied how FA may interfere with CD36 function in stabilizing IRS1. Myotubes were pretreated with BSA control, palmitic acid (PA) or oleic acid (OA) prior to stimulation with insulin and the levels of IRS1 were determined. The degradation of IRS1 was significantly accelerated in PA or OA pretreated cells (Fig. 6A) and OA was more effective. In CD36 KD myotubes, the degradation of IRS1 could not be further accelerated by PA or OA pretreatment (Fig. 6A). Similarly, CD36 inhibition and Fyn dissociation by sulfo-N-succinimidyl oleate (SSO) pre-treatment enhanced insulin-stimulated degradation of IRS1 (Fig. 6B). We next examined the effect of Fyn KD or pharmaceutical Src inhibition. The degradation of IRS1 in Fyn KD myotubes or myotubes pretreated with Src inhibitor-1 (Src-1) was significantly accelerated. Fyn KD or Src-1 failed to further expedite the degradation of IRS1 in CD36 KD myotubes (Fig. 6C, D). Similar regulation was observed in CHO/hIR cells overexpressing CD36 WT, but not in control cells without CD36 or cell overexpressing CD36 K/A (Supplemental Fig. S2). Therefore, association of Fyn with ubiquitinated CD36 and Fyn activity may be important in CD36 regulation of IRS1 degradation.
DISCUSSION

The PI3K/Akt pathway conveys signals from receptor tyrosine kinases to regulate cell metabolism, proliferation and survival. The spatial, temporal or strength-controlling regulation of PI3K/Akt signaling determines its functional specificity. Sustained and periodic Akt signaling has an integral role in regulating T cell longevity and antigen-activated CD4+ cells without the activity of Akt maintained over time are short-lived (32). In Chinese hamster embryonic fibroblasts, the sustained β-arrestin1-independent Akt activity, but not the rapid β-arrestin1-dependent signaling, prevents G1 phase progression (33). Sustained inhibitory phosphorylation of GSK3 mediated by PI3K/Akt limits nerve regeneration after peripheral injury (34). Although the signaling duration of PI3K/Akt pathway and its importance have been studied in several in vitro and in vivo systems, the molecular mechanisms underlying this dynamic regulation are still unclear. Herein, we demonstrated an important role of CD36, a FA transporting and sensing protein, in regulating the rate and duration of insulin-stimulated Akt activation by mediating IRS1 stability.

Insulin-activated IR can tyrosine-phosphorylate IRS proteins which recruit and activate PI3K. The activity of Akt is markedly stimulated in a PI3K-dependent manner which is predominantly relies on the phosphorylation of Akt on Thr308 in the activation loop of the kinase catalytic domain and Ser473 in the “hydrophobic motif” carboxyl-terminal domain. The protein kinase responsible for phosphorylating Akt on Thr308 is phosphoinositide-dependent kinase (PDK) and mTOR complexed to RICTOR is the Ser473 kinase (35). The phosphorylation on Thr308 is associated with glycogen synthesis, while Ser473 site stimulates GLUT4 trafficking to the PM and glucose uptake (36,37). Our current study demonstrated that insulin-stimulated p-Akt (Thr308) and GSK3 phosphorylation were increased faster in CD36KD myotubes, but maintains for shorter period of time prior to deactivation. In contrast, Ser473 phosphorylation was not affected by CD36 KD. Moreover, IRS1-independent ERK activation is not affected (data not shown). Loss of CD36 in myotubes leads to AMPK activation (31) and PDK1/atypical protein kinase C pathway is involved in AMPK-stimulated increases in glucose transport (38). It is possible that AMPK activation by loss of CD36 may enhance PDK1 activity and determine the specific faster phosphorylation of Akt on Thr308, leading to acute increase of glycogen storage. Insulin-stimulated IRS1 degradation plays a role in both the feedback inhibition of the insulin signal and cellular insulin resistance. CD36 deficiency renders the cells more sensitive to insulin-induced insulin resistance by destabilizing IRS1 protein without affecting IRS1 mRNA level (data not shown). This dynamic regulation of insulin sensitivity by CD36 is in agreement with the increased insulin-sensitivity in CD36 null mice under chow diet, but marked glucose intolerance in high fructose diet-induced hyperinsulinemia (23). IRS1 can be degraded in lysosomes or in proteasomes and loss of CD36 enhances insulin-stimulated IRS1 degradation by ubiquitin proteasome pathway which is sensitive to MG132. CD36 regulation of IRS1 ubiquitination is achieved by its competitive interaction to decrease IRS1 interaction with E3 ligase CUL7. We provided several lines of evidence to support the requirement of ubiquitination in CD36 regulation of IRS1 degradation. CD36 interaction with IRS1 is decreased by insulin which inhibits CD36 ubiquitination (25). Moreover, CD36 K/A without ubiquitination has much weaker interaction with
IRS1. In consistent, CD36 WT, but not K/A mutant inhibits IRS1 interaction with CUL7 and promotes insulin-stimulated IRS1 degradation. A recent study showed that muscle-specific mitsugumin 53 (MG53) can also act as an E3 ligase and mediates the degradation of both IR and IRS1 (39). Since CD36 does not affect IR degradation, it may have minimal effect on MG53 activity. However, whether CD36 plays a role in MG53-mediated IRS1 degradation requires further study.

IRS1 can be phosphorylated at multiple serine residues, which has a dual role, either to enhance or to terminate the insulin effects (5). Phosphorylation at Ser307 enhances IRS1 ubiquitination and degradation and S307A mutant of IRS1 is more resistant to degradation following chronic exposure to insulin, while phosphorylation at Ser612 decreases its interaction with PI3K (40), demonstrating separable mechanisms for IRS1 inactivation by serine phosphorylation. Moreover, feedback of IRS1 phosphorylation on some Ser/Thr sites can strengthen the output of insulin signaling by reducing tyrosine dephosphorylation and inhibitory Ser/Thr phosphorylation at other sites (41). Recent in vivo studies demonstrated a much more complex regulation of insulin signaling by serine phosphorylation of IRS1. Muscle-specific IRS-1 Ser302, Ser307, and Ser612 mutated to alanine transgenic mice are protected from fat-induced insulin resistance in skeletal muscle (42). Surprisingly, given the sensitizing effect of the S307A IRS1 mutation in cell-based assays, homozygous transgenic mice of S307A IRS1 show increased fasting insulin versus control mice, as well as very mild glucose intolerance (43).

Our results showed that the phosphorylation at Ser307 was enhanced after CD36 knockdown, consistent with increased ubiquitination of IRS1. In contrast, phosphorylation at Ser612 is decreased by CD36 knockdown, which may contribute to faster upregulation of PI3K/Akt activity prior to insulin-induced IRS1 degradation. CD36 functions as a receptor recognizing a variety of lipid and non-lipid ligands. In addition to cargo transportation, it also initiates signaling pathways and a common theme in CD36 signal transduction is activation of Src family kinases (44). FA interaction with CD36 dissociates Fyn from the protein complex, allowing AMPK activation (31). Our data suggested that Fyn is required for CD36 interaction with IRS1 and at least part of CD36 is present in the endogenous CD36/Fyn/IRS1 complex (Fig. 5). Dissociation of Fyn from CD36 by FFA, Fyn KD or pharmaceutical inhibition of Fyn diminishes the stabilizing effect of CD36, suggesting that CD36 regulation of IRS1 degradation requires Fyn and its kinase activity (Fig. 6E).

Recent studies demonstrated frequent association of CD36 function with cancer development and metastasis. A subpopulation of cancer cells with high CD36 expression has unique metastasis-initiating potential, highlighting a key role of CD36-regulated lipid metabolism and signaling in metastatic colonization (45). Lysophosphatidic acid/protein kinase D1/CD36 signaling is a bona fide breast cancer promoter via stimulating microvascular remodeling in chronic diet-induced obesity (46). CD36-positive B-lymphoblasts predict poor outcome in children with B-lymphoblastic leukemia (47). There is increasing evidence that IRS-1 is an important growth-regulatory adaptor molecule which plays a role in cell proliferation. Prolylcarboxypeptidase and prolylendopeptidase-mediated stabilization of IRS1 is critical for PI3K/Akt signaling is associated with development and clinical aggressiveness of pancreatic cancer (48). Moreover, IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy (49).
pathway of CD36-mediated IRS1 stability as identified in this study may contribute to CD36 function in regulating cancer development and metastasis, which could provide pharmaceutical approach to treat cancers which are dependent on IRS1/PI3K pathway.

In summary, this study presented a novel dynamic regulatory pathway of insulin signaling in myotubes. Ubiquitinated CD36 delays, but sustains insulin signaling by interfering IRS1 interaction with CUL7 and blocking its degradation. Identification of CD36 as a critical regulator of the IRS1/PI3K/Akt signaling in this study may help design more effective therapies for metabolic dysfunctions of muscle.

EXPERIMENTAL PROCEDURES:

Materials

Horse serum and FBS were purchased from Invitrogen (Grand Island, NY). siRNA targeting mouse CD36 (5’-AACGACATGATTAATGGCACA-3’) (24), mouse Fyn (5’-CCTGTATGGAAGGTTCACA-3’) (50) and scrambled siRNA were purchased from Life technologies (Foster City, CA). SSO was synthesized and utilized as we described previously (51). Full-length HA-tagged CUL7 plasmid was kindly provided by Dr. James DeCaprio (Dana-Farber Cancer Institute) and FLAG-tagged IRS1 plasmid was from Dr. Richard Roth (Stanford University). Information of antibodies was provided in supplemental table S1. Other reagents were from Sigma-Aldrich (St. Louis, MO).

Cell culture

C2C12 murine myoblasts (from American Type Culture Collection) were maintained in high-glucose DMEM supplemented with 10% FBS, 200 units/ml penicillin and 50 μg/ml streptomycin, and were differentiated in high-glucose DMEM containing 2% horse serum for 6-7 days. CHO cells were maintained in Ham’s F-12 medium containing 10% FBS, 200 units/ml penicillin and 50 μg/ml streptomycin. Cells were maintained at 37 °C with 5% CO₂. C2C12 myotubes or CHO cells were serum-starved for indicated times in low-glucose DMEM or Ham’s F-12 with 0.2% BSA and then treated as indicated.

siRNA and plasmid transfection

Transfection of siRNA was carried out using Lipofectamine™ RNAiMax (Invitrogen) according to the manufacturer’s instructions on day 3 after differentiation of C2C12 myoblasts with indicated siRNAs (10 nM final concentration). Experiments were performed 3 days after transfection. FLAG-tagged IRS1 and HA-tagged CUL7 (2 μg/ml final concentration) were transfected using Lipofectamine™ 2000 (Invitrogen) in CHO cells following the manufacturer’s instructions.

Protein extraction and Western blotting

Cells were washed thrice with ice-cold PBS and lysed at 4 °C for 30 min with a lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS, 10% glycerol, 1 mM EDTA, 1 mM EGTA) containing a protease inhibitor mix (Sigma-Aldrich) and then the cell lysates were clarified by centrifugation (12,000 × g, 10 min, 4 °C), supernatant was collected and stored at -80 °C or used for immunoblotting as described (52). Protein samples were separated by SDS-PAGE after quantified with BCA kits (Thermo Scientific) and transferred to nitrocellulose membranes (GE healthcare), the membranes were blocked with 5% non-fat milk/TBST or 5% BSA/TBST for 1 h at room temperature and then incubated with
primary antibodies in 2% BSA/TBST overnight at 4 °C, followed by incubation with horseradish peroxidase-conjugated secondary antibodies and analyzed by chemiluminescence. The Western blotting results were quantified by ImageJ software.

Co-immunoprecipitation

Cells were lysed in lysis buffer (50 mM Tris•HCl, pH 8.0, 150 mM NaCl, 0.5% Triton X-100, 10% glycerol, 1 mM EDTA, 1 mM EGTA) containing a protease inhibitor mix (Sigma-Aldrich). The cell lysates were clarified by centrifugation (12,000 × g, 10 min, 4 °C), and the clarified lysates were incubated with primary antibodies against IRS1 overnight at 4 °C. Immune complexes were then incubated with 20 μl rec-Protein G-Sepharose® 4B (GE healthcare) for 4 h at 4 °C and the beads were washed for five times with lysis buffer/PBS (1:1). For IP of FLAG, the clarified lysates were incubated with Red Anti-FLAG M2 affinity gel beads (Sigma-Aldrich) overnight at 4 °C, then washed for five times as described above. Proteins were eluted by boiling (5 min) in 50 μl of SDS loading buffer. All of the samples were separated on 6-10% gradient SDS-PAGE.

GST-fusion pull-downs

Expression of GST-UBA and GST-UBA mutant in *Escherichia coli* (BL21-DE3, TransGen Biotech, Beijing) were induced by isopropyl β-D-1-thiogalactopyranoside (Sigma-Aldrich) and the GST-fusion proteins were purified with glutathione sepharose™ 4B (GE healthcare) as described (30). The beads were then incubated with cell lysates overnight at 4 °C, and then washed for 3 times. Proteins were eluted by boiling (5 min) in 50 μl of SDS loading buffer prior to separation on SDS-PAGE.

Glycogen measurement

The cellular glycogen concentrations were measured by Glycogen Assay Kit (Sigma-Aldrich) according to the manufacturer’s instruction.

Statistical analysis

The data were presented as mean ± SD. Statistically significant differences between mean values were determined using unpaired Student’s *t* test or one-way analysis of variance (ANOVA). In all cases a significant result was defined as *P* < 0.05.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions: S.S. conducted the research, analyzed the data, and wrote the manuscript. P.T., X.H., W.Z. and C.K. contributed to data collection and analysis. F.R. contributed to data analysis and edited the manuscript. X.S. designed the study and wrote the manuscript. S.S and X.S. are guarantors of this work and as such, had full access to all data and take responsibility for data integrity and accuracy of analysis.

REFERENCES:

1. Lemmon, M. A., Freed, D. M., Schlessinger, J., and Kiyatkin, A. (2016) The Dark Side of Cell
CD36 and IRS1 degradation

2. Samuel, V. T., and Shulman, G. I. (2016) The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. The Journal of clinical investigation 126, 12-22

3. Leto, D., and Saltiel, A. R. (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Bio 13, 383-396

4. Lavin, D. P., White, M. F., and Brazil, D. P. (2016) IRS proteins and diabetic complications. Diabetologia 59, 2280-2291

5. Gual, P., Le Marchand-Brustel, Y., and Tanti, J. F. (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87, 99-109

6. Kaiser, C., and James, S. R. (2004) Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol 2, 23

7. Mayer, C. M., and Belsham, D. D. (2010) Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation. Endocrinology 151, 75-84

8. Sun, X. J., Goldberg, J. L., Qiao, L. Y., and Mitchell, J. J. (1999) Insulin-induced insulin receptor substrate-1 degradation is mediated by the proteasome degradation pathway. Diabetes 48, 1359-1364

9. Gual, P., Gonzalez, T., Gremeaux, T., Barres, R., Le Marchand-Brustel, Y., and Tanti, J. F. (2003) Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 adipocytes. The Journal of biological chemistry 278, 26550-26557

10. Potashnik, R., Bloch-Damti, A., Bashan, N., and Rudich, A. (2003) IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 46, 639-648

11. Xu, X., Sarikas, A., Dias-Santagata, D. C., Dolios, G., Lafontant, P. J., Tsai, S. C., Zhu, W., Nakajima, H., Nakajima, H. O., Field, L. J., Wang, R., and Pan, Z. Q. (2008) The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. Mol Cell 30, 403-414

12. Ibrahimi, A., and Abumrad, N. A. (2002) Role of CD36 in membrane transport of long-chain fatty acids. Curr Opin Clin Nutr Metab Care 5, 139-145

13. Su, X., and Abumrad, N. A. (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20, 72-77

14. Hajri, T., and Abumrad, N. A. (2002) Fatty acid transport across membranes: relevance to nutrition and metabolic pathology. Annu Rev Nutr 22, 383-415

15. Miquilena-Colina, M. E., Lima-Cabello, E., Sanchez-Campos, S., Garcia-Mediavilla, M. V.,
Fernandez-Bermejo, M., Lozano-Rodriguez, T., Vargas-Castrillon, J., Buque, X., Ochoa, B., Aspichueta, P., Gonzalez-Gallego, J., and Garcia-Monzon, C. (2011) Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 60, 1394-1402

16. Sun, Y., Scavini, M., Orlando, R. A., Murata, G. H., Servilla, K. S., Tzamaloukas, A. H., Schrader, R., Bedrick, E. J., Burge, M. R., Abumrad, N. A., and Zager, P. G. (2010) Increased CD36 expression signals monocyte activation among patients with type 2 diabetes. Diabetes Care 33, 2065-2067

17. Aitman, T. J., Glazier, A. M., Wallace, C. A., Cooper, L. D., Norsworthy, P. J., Wahid, F. N., Al-Majali, K. M., Trembling, P. M., Mann, C. J., Shoulders, C. C., Graf, D., St Lezin, E., Kurtz, T. W., Kren, V., Pravenec, M., Ibrahimi, A., Abumrad, N. A., Stanton, L. W., and Scott, J. (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21, 76-83

18. Pravenec, M., Landa, V., Zidek, V., Musilova, A., Kren, V., Kazdova, L., Aitman, T. J., Glazier, A. M., Ibrahimi, A., Abumrad, N. A., Qi, N., Wang, J. M., St Lezin, E. M., and Kurtz, T. W. (2001) Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet 27, 156-158

19. Heron-Milhavet, L., Haluzik, M., Yakar, S., Gavrilova, O., Pack, S., Jou, W. C., Ibrahimi, A., Kim, H., Hunt, D., Yau, D., Asghar, Z., Joseph, J., Wheeler, M. B., Abumrad, N. A., and LeRoith, D. (2004) Muscle-specific overexpression of CD36 reverses the insulin resistance and diabetes of MKR mice. Endocrinology 145, 4667-4676

20. Garbacz, W. G., Lu, P., Miller, T. M., Poloyac, S. M., Eyre, N. S., Mayrhofer, G., Xu, M., Ren, S., and Xie, W. (2016) Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance. Molecular and cellular biology 36, 2715-2727

21. Miyaoka, K., Kuwasako, T., Hirano, K., Nozaki, S., Yamashita, S., and Matsuzawa, Y. (2001) CD36 deficiency associated with insulin resistance. Lancet 357, 686-687

22. Furuhashi, M., Ura, N., Nakata, T., and Shimamoto, K. (2003) Insulin sensitivity and lipid metabolism in human CD36 deficiency. Diabetes Care 26, 471-474

23. Hajri, T., Han, X. X., Bonen, A., and Abumrad, N. A. (2002) Defective fatty acid uptake modulates insulin responsiveness and metabolic responses to diet in CD36-null mice. J Clin Invest 109, 1381-1389

24. Zhou, D., Samovski, D., Okunade, A. L., Stahl, P. D., Abumrad, N. A., and Su, X. (2012) CD36 level and trafficking are determinants of lipolysis in adipocytes. Faseb J 26, 4733-4742

25. Smith, J., Su, X., El-Maghrabi, R., Stahl, P. D., and Abumrad, N. A. (2008) Opposite regulation of CD36 ubiquitination by fatty acids and insulin: effects on fatty acid uptake. The Journal of
CD36 and IRS1 degradation

26. Greene, M. W., Sakaue, H., Wang, L. H., Alessi, D. R., and Roth, R. A. (2003) Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by serine 312 phosphorylation. J Biol Chem 278, 8199-8211

27. Huang, M. M., Bolen, J. B., Barnwell, J. W., Shattil, S. J., and Brugge, J. S. (1991) Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and Yes protein-tyrosine kinases in human platelets. Proceedings of the National Academy of Sciences of the United States of America 88, 7844-7848

28. Bull, H. A., Brickell, P. M., and Dowd, P. M. (1994) Src-related protein tyrosine kinases are physically associated with the surface antigen CD36 in human dermal microvascular endothelial cells. FEBS letters 351, 41-44

29. Sun, X. J., Pons, S., Asano, T., Myers, M. G., Glasheen, E., and White, M. F. (1996) The fyn tyrosine kinase binds Irs-1 and forms a distinct signaling complex during insulin stimulation. J Biol Chem 271, 10583-10587

30. Lamb, C. A., McCann, R. K., Stockli, J., James, D. E., and Bryant, N. J. (2010) Insulin-regulated trafficking of GLUT4 requires ubiquitination. Traffic 11, 1445-1454

31. Samovski, D., Sun, J., Pietka, T., Gross, R. W., Eckel, R. H., Su, X., Stahl, P. D., and Abumrad, N. A. (2015) Regulation of AMPK activation by CD36 links fatty acid uptake to beta-oxidation. Diabetes 64, 353-359

32. Song, J., Salek-Ardakani, S., Rogers, P. R., Cheng, M., Van Parijs, L., and Croft, M. (2004) The costimulation-regulated duration of PKB activation controls T cell longevity. Nat Immunol 5, 150-158

33. Goel, R., Phillips-Mason, P. J., Raben, D. M., and Baldassare, J. J. (2002) alpha-Thrombin induces rapid and sustained Akt phosphorylation by beta-arrestin1-dependent and -independent mechanisms, and only the sustained Akt phosphorylation is essential for G1 phase progression. The Journal of biological chemistry 277, 18640-18648

34. Gobrecht, P., Leibinger, M., Andreadaki, A., and Fischer, D. (2014) Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun 5, 4561

35. Hresko, R. C., and Mueckler, M. (2005) mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. The Journal of biological chemistry 280, 40406-40416

36. Kumar, A., Harris, T. E., Keller, S. R., Choi, K. M., Magnuson, M. A., and Lawrence, J. C., Jr. (2008) Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Molecular and cellular biology 28, 61-70

37. Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J., and Sabatini, D. M. (2006) Ablation in mice of the mTORC components
raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11, 859-871

38. Sajan, M. P., Bandyopadhyay, G., Miura, A., Standaert, M. L., Nimal, S., Longnus, S. L., Van Obberghen, E., Hainault, I., Foufelle, F., Kahn, R., Braun, U., Leitges, M., and Farese, R. V. (2010) AICAR and metformin, but not exercise, increase muscle glucose transport through AMPK-, ERK-, and PDK1-dependent activation of atypical PKC. Am J Physiol Endocrinol Metab 298, E179-192

39. Song, R. S., Peng, W., Zhang, Y., Lv, F. X., Wu, H. K., Guo, J. J., Cao, Y. X., Pi, Y. B., Zhang, X., Jin, L., Zhang, M., Jiang, P., Liu, F. H., Meng, S. S., Zhang, X. Q., Jiang, P., Cao, C. M., and Xiao, R. P. (2013) Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494, 375-379

40. Ravichandran, L. V., Esposito, D. L., Chen, J., and Quon, M. J. (2001) Protein kinase C-zeta phosphorylates insulin receptor substrate-1 and impairs its ability to activate phosphatidylinositol 3-kinase in response to insulin. The Journal of biological chemistry 276, 3543-3549

41. Copps, K. D., and White, M. F. (2012) Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia 55, 2565-2582

42. Morino, K., Neschen, S., Bilz, S., Sono, S., Tsirigotis, D., Reznick, R. M., Moore, I., Nagai, Y., Samuel, V., Sebastian, D., White, M., Philbrick, W., and Shulman, G. I. (2008) Muscle-specific IRS-1 Ser->Ala transgenic mice are protected from fat-induced insulin resistance in skeletal muscle. Diabetes 57, 2644-2651

43. Copps, K. D., Hancer, N. J., Opare-Ado, L., Qiu, W., Walsh, C., and White, M. F. (2010) Irs1 serine 307 promotes insulin sensitivity in mice. Cell metabolism 11, 84-92

44. Silverstein, R. L., and Febbraio, M. (2009) CD36, a Scavenger Receptor Involved in Immunity, Metabolism, Angiogenesis, and Behavior. Sci Signal 2

45. Pascual, G., Avgustinova, A., Mejetta, S., Martin, M., Castellanos, A., Attolini, C. S., Berenguer, A., Prats, N., Toll, A., Hueto, J. A., Bescos, C., Di Croce, L., and Benitah, S. A. (2017) Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41-45

46. Dong, L., Yuan, Y., Opansky, C., Chen, Y., Aguilera-Barrantes, I., Wu, S., Yuan, R., Cao, Q., Cheng, Y. C., Sahoo, D., Silverstein, R. L., and Ren, B. (2017) Diet-induced obesity links to ER positive breast cancer progression via LPA/PKD-1-CD36 signaling-mediated microvascular remodeling. Oncotarget 8, 22550-22562

47. Newton, J. G., Horan, J. T., Newman, S., Rossi, M. R., Ketterling, R. P., and Park, S. I. (2017) CD36-positive B-lymphoblasts Predict Poor Outcome in Children With B-lymphoblastic Leukemia. Pediatr Dev Pathol 20, 224-231

48. Duan, L., Ying, G., Danzer, B., Perez, R. E., Shariat-Madar, Z., Levenson, V. V., and Maki, C. G.
CD36 and IRS1 degradation

(2014) The prolyl peptidases PRCP/PREP regulate IRS-1 stability critical for rapamycin-induced feedback activation of PI3K and AKT. The Journal of biological chemistry 289, 21694-21705

49. Porter, H. A., Perry, A., Kingsley, C., Tran, N. L., and Keegan, A. D. (2013) IRS1 is highly expressed in localized breast tumors and regulates the sensitivity of breast cancer cells to chemotherapy, while IRS2 is highly expressed in invasive breast tumors. Cancer Lett 338, 239-248

50. Lv, Z. M., Hu, M. S., Ren, X. X., Fan, M. H., Zhen, J. H., Chen, L. Q., Lin, J. G., Ding, N. N., Wang, Q., and Wang, R. (2016) Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro. J Diabetes Res

51. Zhou, D. Q., Samovski, D., Okunade, A. L., Stahl, P. D., Abumrad, N. A., and Su, X. (2012) CD36 level and trafficking are determinants of lipolysis in adipocytes. Faseb J 26, 4733-4742

52. Hu, X. Q., Cifarelli, V., Sun, S. S., Kuda, O., Abumrad, N. A., and Su, X. (2016) Major role of adipocyte prostaglandin E-2 in lipolysis-induced macrophage recruitment. Journal of lipid research 57, 663-673

FOOTNOTES:
This work was supported, in whole or in part, by National Natural Science Foundation of China Grants 31371437, 31570806, and 31620103906; Natural Science Foundation of Jiangsu Province Grant BK20150006; a project funded by Priority Academic Programme Development of Jiangsu Higher Education Institutions and by National Institutes of Health Grant DK097608.

The abbreviations used are: CD36, cluster of differentiation 36; CHO/hIR, CHO cells stably expressing the human insulin receptor; CHO/hIR/CD36-WT, CHO/hIR cells stably co-expressing wild type human CD36; CHO/hIR/CD36-K/A, CHO/hIR cells stably co-expressing mutated CD36 where C-terminal lysines (Lys469 and Lys472) were substituted by alanine; CUL7, Cullin 7; IR, insulin receptor; IRS, insulin receptor substrate; KD, knockdown; MG53: muscle-specific mitsugumin 53; OA, oleic acid; PA, palmitic acid; PDK, phosphoinositide-dependent kinase; PI3K, phosphatidylinositol 3-kinase; PM, plasma membrane; Src-1, Src inhibitor-1; SSO, sulfo-N-succinimidyl oleate.

FIGURE LEGENDS

Figure 1. CD36 sustains insulin signaling in myotubes. C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental Procedures.” A, myotubes were starved for about 18 h with low-glucose DMEM containing 0.2% BSA prior to stimulation with 10 nM insulin for indicated times. Whole cell lysates were subjected to immunoblot analysis with antibodies against CD36, p-Akt (T308), p-Akt (S473), t-Akt, p-GSK3 and tubulin. B, C, D, quantification of the mean ± SD of three independent experiments in A. E, cells were starved for 18 h with low-glucose DMEM containing 0.2% BSA with or without stimulation with 10 nM insulin for indicated time. Glycogen was extracted and measured using Glycogen Assay Kit according to the manufacturer’s instruction. Data are means ± SD, n=3. *, P < 0.05; **, P < 0.01, ***, P < 0.001,
CD36 and IRS1 degradation

Figure 2. Insulin-induced insulin resistance was exacerbated by CD36 knockdown in myotubes. C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental Procedures.” A, cells were starved for about 18 h with low-glucose DMEM containing 0.2% BSA followed by stimulation with indicated concentrations of insulin for 5 min. Whole cell lysates were prepared and subjected to immunoblot analysis using antibodies recognizing p-Akt (T308), p-Akt (S473), t-Akt, p-GSK3 and tubulin. B, C, D, quantification of the mean ± SD of three independent experiments in A. E, schematic diagram of protocol used to study insulin-induced insulin resistance. F, myotubes were starved overnight with low-glucose DMEM containing 0.2% BSA followed by incubation with 50 nM insulin for 4 h, washed and serum-starved for additional 4 h prior to stimulation with indicated concentrations of insulin for 5 min. Whole cell lysates were subjected to immunoblot analysis with antibodies as indicated. G, H, I, quantification of the mean ± SD of three independent experiments in F. J, whole cell lysates of cells before and after insulin treatment for 4 hours were subjected to immunoblot analysis with antibodies as indicated. K, quantification of the mean ± SD of three independent experiments in J. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$, compared with NC.

Figure 3. CD36 alleviates insulin-induced degradation of IRS-1. A, C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental Procedures.” Cells were starved overnight with low-glucose DMEM containing 0.2% BSA followed by stimulation with 50 nM insulin for indicated times. Whole-cell lysates were subjected to immunoblot analysis with antibodies against IRS1, IRS2 and tubulin. Quantification of the mean ± SD of three independent experiments was shown. *, $P < 0.05$; **, $P < 0.01$, compared with NC. B, CHO/hIR cells stably expressing empty vector (vector), wild type CD36 (CD36-WT) or mutated CD36 (CD36-K/A) were starved for 12 h with F12 medium containing 0.2% BSA followed by stimulation with 5 nM insulin for indicated times. Whole cell lysates were subjected to immunoblot analysis with antibodies recognizing IRS1, IRS2 and tubulin. Quantification of the mean ± SD of three independent experiments was shown. *, $P < 0.05$; ***, $P < 0.001$, compared with vector. C, whole cell lysates from B were subjected to immunoblot analysis with antibodies recognizing CD36, β subunit of IR (β-IR) and tubulin.

Figure 4. CD36 mediates insulin-stimulated phosphorylation and ubiquitination of IRS-1. A, C2C12 myotubes were infected with adenovirus containing HA tagged full-length wild type mouse IRS1 (IRS1-WT) or its S307A mutant (IRS1-S307A). Cells were induced to differentiation, starved overnight and stimulated with 50 nM insulin for indicated times. Whole cell lysates were subjected to immunoblot analysis with antibodies against HA and tubulin. B, Quantification of the mean ± SD of three independent experiments in D was shown. *, $P < 0.05$, compared with IRS1-WT. C, C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) as described under “Experimental Procedures.” Cells were starved for about 18 h with low-glucose DMEM containing 0.2% BSA followed by incubation with indicated concentrations of insulin for 15 min. Protein samples were subjected to immunoblot analysis using antibodies recognizing p-IRS1 (S307), p-IRS1 (S612) and tubulin. D, E, quantification of the mean ± SD of three independent experiments in A. F, myotubes were serum-starved for 16 h with
low-glucose DMEM containing 0.2% BSA, then treated with 20 μM MG132 for 30 min before incubation with 50 nM insulin for 4 h. The ubiquitinated IRS1 were detected as described under “Experimental Procedures.” G, the relative levels of ubiquitinated IRS1 were quantified with ImageJ software. The data represent the means ± SD of three independent experiments. *, P < 0.05; **, P < 0.01; ***, P < 0.001, compared with NC.

Figure 5. CD36 associates with IRS1 and interrupts its interaction with CUL7. A, CHO/hIR cells expressing empty vector (Vec), CD36-WT (WT), or CD36-K/A (K/A) were lysed for immunoprecipitation with IRS1 antibody or control IgG as indicated. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36 and Fyn. B, CHO/hIR cells were lysed for immunoprecipitation with FLAG affinity gel, followed by immunoblot analysis with antibodies against IRS1, CD36 and Fyn. C, CHO/hIR cells were transfected with HA-CUL7 and IRS1. The cell lysates were prepared for immunoprecipitation with antibody against IRS1 and the precipitates were subjected to immunoblot analysis using antibodies recognizing IRS1 and CUL7. D, C2C12 myotubes were untreated (basal) or starved for 18 h followed by incubation with 50 nM insulin (ins) for 10 min. Cells were lysed for immunoprecipitation with IRS1 antibody or control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36 and Fyn. E, C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) or Fyn (FynKD) as described under “Experimental Procedures.” Cells were lysed for immunoprecipitation with IRS1 antibody or control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36 and Fyn and CUL7. F, C2C12 myotubes were treated with 10 μM Src-1 (Src inhibitor-1) or DMSO for 30 min. Cells were lysed for immunoprecipitation with IRS1 antibody or control IgG. The immunoprecipitates were subjected to immunoblot analysis using antibodies recognizing IRS1, CD36, Fyn and CUL7. The experiment was repeated three times with similar results.

Figure 6. FAs or Fyn inhibition enhances CD36 regulation of IRS1 degradation. C2C12 myotubes were treated with a scrambled negative control (NC) siRNA or siRNA targeting mouse CD36 (CD36KD) and were starved overnight with low-glucose DMEM medium containing 0.2% BSA as described under “Experimental Procedures.” A, cells were incubated with 200 μM Palmitic acid (PA), oleic acid (OA) or equivolunal 20% BSA for 15 min and stimulated with 50 nM insulin for indicated times after removal of FA. B, cells were treated with 10 μM SSO or DMSO for 30 min and stimulated with 50 nM insulin for indicated times. C, cells co-transfected with siRNA targeting mouse Fyn (FynKD) were stimulated with 50 nM insulin for indicated times. D, cells were treated with 10 μM Src-1 (Src inhibitor-1) or DMSO for 30 min and stimulated with 50 nM insulin for indicated times. Whole cell lysates were subjected to immunoblot analysis using antibodies recognizing IRS1 and tubulin. Quantification of the mean ± SD of three independent experiments was shown. *, P < 0.05; **, P < 0.01, compared with BSA (A), DMSO treatment (B, D) or NC cells (C). E, schematic model of CD36 regulation of insulin-induced IRS1 degradation. Ubiquitinated CD36 interacts with IRS1 and prevents its interaction with CUL7. Insulin stimulation partially inhibits IRS1-CD36 association via decrease of CD36 ubiquitination, which leads to IRS1-CUL7 interaction and IRS1 degradation. In the absence of CD36 or expression of CD36-K/A which does not bind to IRS1 well, IRS1 interaction with CUL7 was enhanced, leading to accelerated
CD36 and IRS1 degradation

degradation. FA-induced dissociation of Fyn from CD36, Fyn KD or pharmaceutical inhibition of Fyn activity in CD36 expressing cells also blocks CD36 interaction with IRS1 and its effect on IRS1 stability.
FIGURE 1

A

insulin (min) 0 5 20 60 120 240 0 5 20 60 120 240

CD36KD NC

100 kDa

55 kDa

p-Akt (T308)

CD36

p-Akt (S473)

55 kDa

t-Akt

55 kDa

p-GSK3

tubulin

B

p-Akt(308)/Akt

0 min 5 min 20 min 60 min 120 min 240 min

CD36KD NC

C

p-Akt(373)/Akt

0 min 5 min 20 min 60 min 120 min 240 min

CD36KD NC

D

p-GSK3/tubulin

0 min 5 min 20 min 60 min 120 min 240 min

CD36KD NC

* ** ***

E
glycogen accumulations (ng/g fr. wt.)

0 2 4 6 8 10 12

insulin (hr)

CD36KD NC

* **

CD36 and IRS1 degradation
FIGURE 2

CD36 and IRS1 degradation
FIGURE 3

A

INSULIN (hr)

NC	CD36-KD	
IRS1	130 kDa	130 kDa
IRS2	130 kDa	130 kDa
tubulin	55 kDa	55 kDa

B

INSULIN (hr)

Vector	CD36-WT	CD36-K/A
IRS1	130 kDa	130 kDa
IRS2	130 kDa	130 kDa
tubulin	55 kDa	55 kDa

C

INSULIN (hr)

CD36-WT	CD36-K/A	Vector
100 kDa	100 kDa	100 kDa
55 kDa	55 kDa	55 kDa

CD36 and IRS1 degradation
FIGURE 4

A

insulin (hr) 0 2 5 8

IRS1 - WT 130 kDa 55 kDa

IRS1 - S307A 130 kDa 55 kDa

B

relative HA:IRS1 levels

insulin (hr) 0 2 4 6 8

WT S307A

C

CD36KD NC CD36KD NC

0 1 10 100 0 1 10 100 nM insulin

p-IRS1 (S307) 130 kDa

p-IRS1 (S612) 130 kDa

55 kDa

tubulin

D

p-IRS1(S307)/tubulin

0 nM 1 nM 10 nM 100 nM

*** ** *

E

p-IRS1(S612)/tubulin

0 1 nM 10 nM 100 nM

*** *

F

GST-UBA CD36KD NC GST-UBA mut CD36KD NC

130 kDa

GST-pull down

IR1

CD36KD NC

130 kDa 100 kDa

WCL

G

Ubi-IRS1/IRS1

CD36KD NC

*
CD36 and IRS1 degradation

FIGURE 5

A

B

C

D

E

F

IP: IRS1

IP: FLAG (CD36)

IP: IRS1

IP: IRS1

IP: IRS1

IP: IRS1
FIGURE 6

CD36 and IRS1 degradation
Ubiquitinated CD36 sustains insulin-stimulated Akt activation by stabilizing insulin receptor substrate 1 in myotubes

Shishuo Sun, Pengcheng Tan, Xiaoheng Huang, Wei Zhang, Chen Kong, Fangfang Ren and Xiong Su

J. Biol. Chem. published online December 21, 2017

Access the most updated version of this article at doi: 10.1074/jbc.M117.811471

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts