Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis

Pensée Wu, MBChB, MD(Res); Martha Gulati, MD, MS; Chun Shing Kwok, MBBS, MSc, BSc; Chun Wai Wong; Aditya Narain, MBChB; Shaughn O’Brien, MB ChB, MD, DSc; Carolyn A. Chew-Graham, MBChB, MD; Ganga Verma, MBChB; Umesh T. Kadam, MBChB, PhD; Mamas A. Mamas, BM ChB, DPhil

Background—Preterm delivery (<37 weeks gestational age) affects 11% of all pregnancies, but data are conflicting whether preterm birth is associated with long-term adverse maternal cardiovascular outcomes. We aimed to systematically evaluate and summarize the evidence on the relationship between preterm birth and future maternal risk of cardiovascular diseases.

Methods and Results—A systematic search of MEDLINE and EMBASE was performed to identify relevant studies that evaluated the association between preterm birth and future maternal risk of composite cardiovascular disease, coronary heart disease, stroke, and death caused by cardiovascular or coronary heart disease and stroke. We quantified the associations using random effects meta-analysis. Twenty-one studies with over 5.8 million women, including over 338 000 women with previous preterm deliveries, were identified. Meta-analysis of studies that adjusted for potential confounders showed that preterm birth was associated with an increased risk of maternal future cardiovascular disease (risk ratio [RR] 1.43, 95% confidence interval [CI], 1.18, 1.72), cardiovascular disease death (RR 1.78, 95% CI, 1.42, 2.21), coronary heart disease (RR 1.49, 95% CI, 1.38, 1.60), coronary heart disease death (RR 2.10, 95% CI, 1.87, 2.36), and stroke (RR 1.65, 95% CI, 1.51, 1.79). Sensitivity analysis showed that the highest risks occurred when the preterm deliveries occurred before 32 weeks gestation or were medically indicated.

Conclusions—Preterm delivery is associated with an increase in future maternal adverse cardiovascular outcomes, including a 2-fold increase in deaths caused by coronary heart disease. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women. (J Am Heart Assoc. 2018;7:e007809. DOI: 10.1161/JAHA.117.007809.)

Key Words: cardiovascular disease risk factors • coronary heart disease risk • long-term outcome • pregnancy and postpartum • stroke

Globally, preterm birth affects 11% of all pregnancies, with an estimated 14.9 million babies born before 37 weeks gestational age each year.1 In addition to being the leading cause of neonatal mortality,2 there is increasing evidence to show that preterm delivery is an adverse pregnancy outcome associated with an increased risk of future maternal cardiovascular health.3–5 Cardiovascular disease is the leading cause of mortality worldwide,6 most of which is preventable by altering behavioral risk profiles and lifestyle modifications, but there may be sex-specific cardiovascular risk factors that need to be recognized in women.7

Pregnancy is characterized by a challenge to the cardiovascular system with a doubling of blood volume, elevated coagulation and inflammatory factors, hyperlipidemia, and insulin resistance.8,9 This physiological stress for most women is uncomplicated but for women who experience preterm birth,
Clinical Perspective

What Is New?

- Preterm delivery is associated with a 1.4- to 2-fold increase in maternal risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death, and stroke.
- This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia.
- For cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births.

What Are the Clinical Implications?

- In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioral changes to control their modifiable risk factors.
- These findings support the evaluation of preterm delivery in cardiovascular risk assessment in postnatal women.

This adverse pregnancy outcome may serve to identify women at risk for cardiovascular disease who would not have been detected using traditional risk assessment tools at a time when it may be possible to alter their risk trajectory.10–12

It remains unclear whether preterm delivery is an independent risk factor for future cardiovascular disease or an early marker of women with background high-risk profiles for future cardiovascular disease. As preterm birth is a heterogeneous condition with multiple causes, the pathogenesis of preterm birth remains poorly understood. The main proposed mechanisms include increased systemic inflammation, infection, or vascular diseases.13–15 The duration of pregnancy gestation has been inversely correlated to insulin resistance, blood pressure, and low-grade inflammation in women years after delivery.16–18 In addition, women with previous preterm births, but without pre-eclampsia or small-for-gestational-age births, have higher atherogenic lipids and carotid arterial wall thickening in the decade after delivery compared with women who had term births.19 Therefore, the dysregulation in cardiometabolic factors with their common pathways to cardiovascular diseases may provide a possible explanation for the link between preterm birth and future cardiovascular diseases.20,21

Previous studies, including a meta-analysis, have examined the relationship between preterm delivery and future incident cardiovascular disease.3–5 The previous meta-analysis included studies published up to 2011.3 Since then, there have been further studies including large sample sizes (ie, >100 000 participants).22–24 Some newer studies also demonstrated results inconsistent with earlier literature showing no increased risk for future stroke events.25,26 Furthermore, previous work did not differentiate between morbidity and mortality outcomes, nor examined clinically relevant factors such as gestation at delivery, recurrence and cause of preterm births. As recent guidelines from the United States27,28 and European Union29 recommend the inclusion of a history of preterm birth to evaluate the cardiovascular disease and stroke risk in women based on evidence from cohort studies published up to 2011,30–35 there is a need for contemporary evidence. To this end, we conducted a systematic review and meta-analysis to quantify the risk of maternal cardiovascular events in later life following preterm birth and contribute to future recommendations for clinical practice.

Methods

Eligibility Criteria

The data, analytic methods, and study materials have been made available to other researchers for purposes of reproducing the results or replicating the procedure. The protocol was registered on PROSPERO an International prospective register of systematic reviews.36 We selected studies investigating postnatal cardiovascular outcomes of women with preterm delivery. Preterm delivery was defined as birth any time before 37 weeks gestation. Primary cardiovascular outcomes were composite cardiovascular disease (defined as a combination of cardiac, cerebrovascular, and peripheral vascular disease), death caused by composite cardiovascular disease, coronary heart disease, death caused by coronary heart disease, stroke, and stroke death. The International Classification of Diseases (ICD) (versions 7–10) code definitions of the outcomes are specific to each study and are detailed in Table S2. The included studies had at least 2 groups (1 with preterm birth and 1 with term birth) and reported sufficient data to allow for accurate risk estimates to be calculated. There was no restriction based on language, cohort type, study design, or duration of follow-up.

Data Sources and Searches

MEDLINE and EMBASE were searched using OVID SP for studies from inception to October 2017. The detailed search terms are outlined in Methods S2. Manual searching for additional articles was also conducted by reviewing the bibliography of relevant review articles and published systematic reviews.3–5,37

Study Selection and Data Extraction

Two reviewers (P.W. and G.V.) screened all titles that met the inclusion criteria. This was followed by a screen of the remaining abstracts. The full articles were screened by
the same 2 reviewers and the final decision to include studies was made by P.W. Independent double data extraction was done by 4 reviewers (P.W., C.S.K., C.W., and A.N.). Data were collected on study design, year, country, number of participants, mean age, parity, cohort characteristics, definition and ascertainment of preterm birth, ascertainment of outcomes, timing of assessment, adequacy of follow-up, and results. The information was obtained from published data.

Study Quality Assessment

Study quality was assessed based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale for cohort studies. We evaluated studies that had the following characteristics as at low risk of bias: selection of exposed cohort from the general population of pregnant women; selection of nonexposed cohort from the same population; reliable ascertainment of exposure such that the likelihood of controls (term birth) being misclassified as having preterm birth when they did not or cases being wrongly classified as not having preterm birth was minimized; exclusion of women who had cardiovascular outcome of interest before or during pregnancy; comparable cohort where confounders, in particular age, pre-eclampsia, and diabetes mellitus/insulin resistance, or any other cardiovascular risk factors such as smoking, body mass index, and cholesterol, were accounted for; assessment of outcomes prospectively or through linkage of records and/or independent blind assessment; follow-up duration for at least 5 years postpartum; and <10% of the study participants in each cohort being lost to follow-up.

Data Synthesis and Analysis

We used RevMan Version 5.3.5 (Nordic Cochrane Centre) to conduct random effects meta-analysis using the inverse variance method for pooling log risk ratios (RRs). We used random effects because the studies were conducted in a wide range of settings in different populations, hence the need to take heterogeneity into account for the pooled effect estimate. Where possible, we chose to pool adjusted risk estimates from primary studies and when these data were not available, raw data were used to calculate unadjusted risk estimates. Studies were pooled in meta-analysis with subgroups based on whether or not the study used adjustments to account for confounders. Statistical heterogeneity was assessed using the I^2 statistic where I^2 values of 30% to 60% represented moderate level of heterogeneity. Where there was greater than a moderate degree of heterogeneity, we performed leave-1-out analysis to identify studies that contributed to high degree of heterogeneity. In the case of an analysis where there are more than 10 studies and little evidence of heterogeneity, we planned to perform funnel plots to assess for publication bias. Sensitivity analysis was performed to consider the follow-up duration of the studies (<10, 10–30, and >30 years), gestation (<32 weeks versus 32–37 weeks), and recurrence (1 recurrence versus ≥2 recurrence) of preterm births, and whether the preterm births occurred spontaneously or were medically indicated. For the sensitivity analysis on gestation, we excluded studies where the subgroups could not be categorized as either <32 weeks or 32 to 37 weeks gestation (eg, <34 weeks gestation).

Results

Description of Studies Included in Analysis

The initial MEDLINE and EMBASE search produced 653 titles and abstracts. After screening, 21 studies were included in the analysis (Figure 1) including 5,813,682 women in total (ranges from 446 to 923,686 women in each study). Studies recruiting patients from the same population were paired to avoid duplication of participant numbers. Some studies assessed the same population over different time points. In these cases, the study with the longest follow-up period was used for analysis in order to obtain the highest event rate.

Table 1 summarizes the study designs and participant characteristics. Out of the 16 studies that reported the number of women in study and control groups, 338,007 women delivered preterm while 5,261,933 delivered at term.* Data for women with singleton pregnancies were included in 15 studies. At the index pregnancy, the participants had a mean or median age ranging from 23 to 31 years. The mean follow-up period ranged from 5.2 to 57 years.

Quality Assessment of Included Studies

The study quality was evaluated based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale (Tables S1 and S2). Fifteen studies were found to use reliable methods of obtaining the preterm birth exposure, whereas 16 studies used reliable methods of obtaining cardiovascular outcomes.

Pooled Analysis of Preterm Birth and Cardiovascular Outcomes

Table 2 shows the results of the studies. A total of 8 studies were pooled and showed a 1.6-fold significantly increased

*References 5, 22, 23, 25, 26, 30, 31, 41, 43–51.
†References 22–24, 30–32, 35, 41–44, 47–50.
maternal risk of composite cardiovascular disease in preterm birth (RR 1.56, 95% confidence interval [CI], 1.32, 1.84, I²=93%) (Figure 2A). Combining the 5 studies that adjusted for potential confounders,22,23,25,43,46,48 the risk was 1.4-fold (adjusted risk ratio [aRR] 1.43, 95% CI, 1.18, 1.72; I²=89%). The potential confounding factors evaluated in the studies are shown in Table S2. All 5 studies had adjusted for age. We performed leave-1-out analyses to explore the sources of heterogeneity. It was mainly driven by the Catov 2010 study.43 By excluding this study, heterogeneity was reduced to 54% in the adjusted analysis (aRR 1.52, 95% CI, 1.31, 1.75). For composite cardiovascular disease death, the pooled results suggest a 1.8-fold increase in maternal cardiovascular disease death with preterm birth (RR 1.81, 95% CI, 1.55, 2.10, I²=70%; aRR 1.78, 95% CI, 1.42, 2.21, I²=77%) (Figure 2B).24,31,54,41,43,53 There were no common confounders in the adjusted studies as they had adjusted for different confounding factors. The heterogeneity was mainly driven by the Davey-Smith 2005 study.53 After excluding this study, heterogeneity reduced to 0% in both overall and adjusted analyses.

For coronary heart disease there was a 1.5-fold increase risk of events with preterm birth (RR 1.50, 95% CI, 1.39, 1.62, I²=51%, aRR 1.49, 95% CI, 1.38, 1.60, I²=54%) (Figure 3A). All of the 5 studies that used adjusted data had adjusted for age and socioeconomic status or education.23,25,43,44,50 The heterogeneity was mainly driven by the Hastie 2011 study.44 If this study was excluded, heterogeneity was reduced to 33% in the adjusted analysis (aRR 1.52, 95% CI, 1.31, 1.75). For coronary heart disease death, the adjusted studies reporting coronary heart disease death showed a 2-fold increased risk with preterm birth (aRR 2.10, 95% CI, 1.87, 2.36, I²=0%, Figure 3B).24,44,47,53 There were no common confounders over these 4 studies as they had adjusted for different confounding factors.
Table 1. Study Design and Participant Characteristics

Study ID	Study Design, Country, Year	Total No. of Participants (Preterm/Term)	Mean Age at Pregnancy (y)	Parity	Participant Selection Criteria
Bonamy 2011	Retrospective cohort study, Sweden, 1983–2005	923 686 (preterm 56 893/term 866 793)	Median 26.9	P	Women with a first singleton birth in Sweden between 1983 and 2005
Catov 2007	Cross-sectional study, United States, 1997–2004	446 (preterm 27/term 419)	23.5	P	Women enrolled in the Health, Aging and Body Composition (Health ABC) study on 70- to 79-year-olds living in Pittsburgh during 1997 and 1998, who provided their past obstetric history
Catov 2010	Retrospective cohort study, Denmark, 1973–2006	427 765 (preterm 26 588/term 401 177)	25.5	A	Women with singleton births in Denmark between 1973 and 1983
Cirillo 2015	Prospective cohort study, United States, 1959–2011	10 310 (preterm 1251/term 9059)	Median 26	A	Women receiving prenatal care from the Kaiser Health Plan in California recruited to the Child Health and Development Studies (CHDS)
Smith 2000	Cohort study, Finland, 1954 –2000	3706	Unclear	P	A cohort of singleton live births between 1954 and 1963 in Helsinki
Smith 2005	Cohort study, Finland, 1973 –1997	10 368 mothers and 22 807 fathers	Unclear	A	Parents who had children born between 1973 and 1980 in Sweden
Freibert 2011	Cross-sectional study, United States, 2006–2008	2882 (preterm 324/term 2558)	Unclear	A	Women from the Kentucky Women’s Health Registry aged ≥50 y of age between 2006 and 2008, who provided their past obstetric history
Hastie 2011	Retrospective cohort study, Scotland, 1969–2007	750 350 (preterm 44 743/term 705 607)	Median 24.5	P	Women with first singleton live births in Scotland between January 1969 and July 2007
Hovi 2014	Retrospective cohort study, Finland, 1987–2012	152 219 mothers (preterm 8720/term 39–41 wks 143 499 and 190 996 fathers)	Unclear	P	Women with first singleton births in the Finnish Medical Birth Register from 1987 to 1990
Irgens 2001	Retrospective cohort study, Norway, 1967–1992	602 117 (preterm 26 018/term 576 099)	Unclear	P	Women with first deliveries recorded in the Norwegian medical birth registry from 1967 to 1992
Kessous 2013	Retrospective cohort study, Israel, 1988–2010	47 908 (preterm 592/term 41 916)	29	A	Women with singleton birth at the Soroka University Medical Center in Negev between 1988 and 1999
Lykke 2010 &	Retrospective cohort study, Denmark, 1978–2007	755 398 (preterm 41 659/term 713 739) in Lykke 2010 or 685 594 (preterm 41 659/term 643 935) in Lykke 2010	26.8	P	Women with first singleton delivery in Denmark from 1978 to 2007
Nardi 2006	Case-control study, France, 1990–2000	514 (preterm 76/term 438)	55 at enrollment	P	Women born between 1925 and 1950 who had a first MI between 1990 and 2000, matched with women of similar age, year and month of inclusion in study, educational level and area of residence. All women were in a health insurance scheme primarily covering teachers who had singleton pregnancies

Continued
Figure 4 shows the pooled analysis for studies on maternal preterm birth and stroke, and illustrate the risk to be increased by 1.7-fold in preterm birth (aRR 1.65, 95% CI, 1.51, 1.79, I² = 0%).23,25,26,32,42,43 All studies had adjusted for potential confounders that included age and socioeconomic status or education or urbanization level. The pooled result on preterm birth and stroke death was not statistically significant (aRR 1.30, 95% CI, 0.94, 1.80, I² = 66%).24,53 We did not perform funnel plots to assess for publication bias as <10 studies were included in each analysis.

Sensitivity Analysis Considering Effect of Gestation of Preterm Birth, Recurrence of Preterm Birth, and Spontaneous Versus Medically Indicated Preterm Birth

Sensitivity analyses were performed to consider the effect of gestation, recurrence, and spontaneous onset of preterm birth in the 5 cardiovascular outcomes that were significant in the adjusted studies. These showed that the risks were higher when preterm deliveries occurred before 32 weeks gestation in all outcomes: composite cardiovascular disease (RR 1.85, 95% CI, 1.51, 2.28), composite cardiovascular disease death (RR 2.10, 95% CI, 1.61, 2.74), coronary heart disease (RR 1.62, 95% CI, 1.28, 2.04), coronary heart disease death (RR 2.30, 95% CI, 1.53, 3.46), and stroke (RR 2.00, 95% CI, 1.65, 2.43), compared with those occurring at 32 to 37 weeks gestation (Table 4).

When recurrence of preterm birth was studied, the risks for composite cardiovascular disease (RR 1.58, 95% CI, 1.17, 2.12) and coronary heart disease (RR 1.95, 95% CI, 1.53, 2.50) were higher if the preterm birth occurred in 2 or more pregnancies compared with recurring once only (Table 5). The

Study ID	Study Design, Country, Year	Total No. of Participants (Preterm/Term)	Mean Age at Pregnancy (y)	Parity	Participant Selection Criteria
Ngo 201523	Retrospective cohort study, Australia, 1994–2012	797 056 (preterm 59 563/term 737 493)	Median 31	A	Women who had a singleton birth between July 1994 and December 2011 in New South Wales
Pell 200442 & Smith 200132	Retrospective cohort study, Scotland, 1981–1999	199 668 (Pell 2004) or 129 920 (Smith 2001)	Median 23	P	Women with first singleton live births in Scotland between 1981 and 1985
Rich-Edwards 201524	Retrospective cohort study, Norway, 1967–2009	688 662 (preterm 40 981 (spontaneous 33 230; indicated 7751)/term 647 681 (spontaneous 550 604; indicated 97 077))	24.6	P	Women with first singleton birth between 1967 and 1998 in the Medical Birth Registry of Norway
Tanz 201725	Prospective cohort study, United States, 1989–2013	70 182 (preterm 6178, term 64 004)	27.4	P	Subset of women with pregnancies in the Nurses’ Health Study II, that followed registered nurses aged 25 to 42 y in 1989
Wang 201126	Retrospective cohort study, Taiwan, 2000–2008	4715 (preterm 1134/term 3581)	27.8	P	Randomly selected, frequency-matched control women delivering in the same year as women with hypertensive disorders in pregnancy in the National Health Insurance program between 2000 and 2004
Wikstrom 200550	Cross-sectional study; Sweden, 1973–1982	365 730 (preterm 17 860/term 347 870)	Median 48*	P	Women in the Swedish Medical Birth Register from 1973 to 1982 with singleton pregnancies

A indicates any parity; MI, myocardial infarction; P, primiparous.

*S Age at follow-up.
Table 2. Study Outcomes, Follow-Up and Results

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
Bonamy 2011³⁰	Moderately preterm (32–36 wks), very preterm (28–31 wks), extremely preterm (≤27 wks)	11.8 y	CVD: unstable angina, acute MI, cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, transient ischemic attack, acute stroke or heart failure	32 to 36 wks: 320/49 537 vs 3154/866 793. aHR 1.39 (1.22–1.58) 28 to 31 wks: 70/5259 vs 3154/866 793. aHR 2.57 (1.97–3.34) ≤27 wks: 24/2097 vs 3154/866 793. aHR 2.18 (1.33–3.57)
Catov 2007⁴⁶	Delivery <37 wks gestation	57 y	CVD: MI, angina, coronary artery bypass surgery, percutaneous transluminal angioplasty, stroke or peripheral vascular disease	12/27 vs 120/491. aHR 2.85 (1.19–6.85)
Catov 2010⁴³	Delivery <37 wks gestation	28 y	CVD: CHD, stroke, hypertension, atherosclerosis or thrombosis	Any preterm: 3454/26 588 vs 39 485/401 177. aHR 1.18 (1.10–1.25) 35 to 36 wks: aHR 1.26 (1.20–1.33) 33 to 34 wks: aHR 1.26 (1.16–1.37) ≤32 wks: aHR 1.36 (1.21–1.53) Recurrent 1 preterm birth: aHR 1.16 (1.09–1.25) Recurrent ≥2 preterm births: aHR 1.26 (1.05–1.51)
			CVD death*	Any preterm: aHR 1.98 (1.73–2.26) 35 to 36 wks: aHR 1.87 (1.59–2.14) 33 to 34 wks: aHR 2.10 (1.73–2.78) ≤32 wks: aHR 2.10 (1.47–3.00) Recurrent 1 preterm birth: aHR 1.70 (1.33–2.16) Recurrent ≥2 preterm births: aHR 2.12 (1.22–3.68)
			CHD*	Any preterm: 1272/26 588 vs 13 283/401 177. aHR 1.42 (1.34–1.52) 35 to 36 wks: aHR 1.41 (1.30–1.53) 33 to 34 wks: aHR 1.49 (1.32–1.68) ≤32 wks: aHR 1.38 (1.15–1.66) Recurrent 1 preterm birth: aHR 1.22 (1.09–1.36) Recurrent ≥2 preterm births: aHR 1.78 (1.40–2.27)
			Stroke*	Any preterm: 351/26 588 vs 3185/401 177. aHR 1.67 (1.48–1.89) 35 to 36 wks: aHR 1.73 (1.49–2.01) 33 to 34 wks: aHR 1.42 (1.10–1.84) ≤32 wks: aHR 1.92 (1.38–2.67) Recurrent 1 preterm birth: aHR 1.77 (1.44–2.17) Recurrent ≥2 preterm births: aHR 1.37 (0.75–2.49)
Cirillo 2015⁴⁷	Delivery <37 wks gestation	40 y	CHD death	aHR 2.1 (1.40–3.01)
Smith 2000³⁵	Delivery <37 wks gestation	Unclear	CVD death	aHR 2.06 (1.22–3.47)
Smith 2005⁵³	Delivery <37 wks gestation	20.4 y	CVD (CHD and stroke) death	aHR 1.32 (1.09–1.61)
			CHD death	aHR 1.66 (1.20–2.29)
			Stroke death	aHR 1.07 (0.77–1.49)

Continued
Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)	
Freibert 201151	Delivery between 20 and 36 wks gestation	Unclear	CVD	110/324 vs 573/2558	
			CHD	37/324 vs 159/2558	
Hastie 201444	Delivery < 37 wks gestation	22 y	CHD	Any preterm: aHR 1.58 (1.47–1.71)	
				Spontaneous (n=29 965): aHR 1.46 (1.33–1.61)	
				Medically indicated (n=14 747): aHR 1.81 (1.61–2.04)	
				CHD death	
				Any preterm: aHR 2.26 (1.88–2.71)	
				Spontaneous (n=29 965): aHR 2.14 (1.70–2.70)	
				Medically indicated (n=14 747): aHR 2.49 (1.89–3.30)	
Hovi 201422	Delivery < 37 wks gestation	22 y	CVD: CHD and stroke	Any preterm: 431/8720 vs 4127/143 499	
				34 to 36 wks: 303/6540 vs 4127/143 499. HR 1.55 (1.38–1.74)	
				32 to 33 wks: 50/954 vs 4127/143 499. HR 1.61 (1.22–2.13)	
				28 to 31 wks: 52/809 vs 4127/143 499. HR 1.61 (1.22–2.13)	
				< 28 wks: 26/417 vs 4127/143 499. HR 2.00 (1.36–2.94)	
Irgens 200145	Delivery between 16 and 36 wks gestation	13 y	CHD death	aHR 2.95 (2.12–4.11)	
			Stroke death	aHR 1.91 (1.26–2.91)	
Kessous 201348	Delivery < 37 wks gestation	10 y	CVD: hospitalization for CHD, stroke, peripheral vascular disease, hyperlipidemia, angina, hypertension, atherosclerosis, MI, heart failure, pulmonary heart disease, cardiac arrest, cardiac catheterization or cardiovascular stress test	Any preterm: aHR 1.4 (1.2–1.6)	
				34 to 37 wks (n=4596): OR 1.4 (1.2–1.6).	
				< 34 wks (n=1396): OR 1.7 (1.3–2.1)	
				Spontaneous (n=41 669): OR 1.4 (1.2–1.6)	
				Medically indicated (n=6239): OR 1.7 (1.3–2.4)	
				Recurrent 1 preterm birth: 261/5217 vs 1467/41 916	
				Recurrent ≥ 2 preterm births: 43/775 vs 1467/41 916	
Lykke 2010a31 &	Delivery < 37 wks gestation	14.6 y (Lykke 2010a)	CHD	Any preterm: 589/41 659 vs 7257/713 739	
Lykke 2010b31				32 to 36 wks: 500/35 255 vs 7257/713 739. aHR 1.32 (1.20–1.45)	
				28 to 31 wks: 63/4698 vs 7257/713 739. aHR 1.03 (0.80–1.34)	
				20 to 27 wks: 26/1706 vs 7257/713 739. aHR 1.61 (1.09–2.37)	
				Recurrent 1 preterm birth: 71/4244 vs 4730/471 052. aHR 1.36 (1.02–1.81)	
			14.8 y (Lykke 2010b)	CVD (CHD, stroke, hypertension, thromboembolic disease and type 2 diabetes mellitus) death	115/41 659 vs 824/643 935.
				aHR 1.98 (1.64–2.40)	
Nardi 200649	Delivery < 8 mo gestation	5.2 y	CHD death	23/76 vs 86/438	
Ngo 201523	Delivery 20 to 36 wks gestation	7.5 y	CVD: hospitalization or death for CHD, stroke, and congestive heart failure	Any preterm: aHR 1.65 (1.50–1.83)	
				35 to 36 wks: aHR 1.53 (1.35–1.74)	
				33 to 34 wks: aHR 1.89 (1.55–2.31)	
				20 to 32 wks: aHR 1.83 (1.50–2.23)	

Continued
Table 2. Continued

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
				Spontaneous: aHR 1.53 (1.35–1.72)
				Medically indicated: aHR 1.93 (1.66–2.25)
				1 preterm birth: aHR 1.62 (1.46–1.79)
				Recurrent ≥2 preterm births: aHR 2.04 (1.56–2.67)
			CHD	
			Any preterm: aHR 1.61 (1.39–1.85)	
			35 to 36 wks: aHR 1.49 (1.24–1.78)	
			33 to 34 wks: aHR 1.89 (1.43–2.51)	
			20 to 32 wks: aHR 1.72 (1.29–2.29)	
			Spontaneous: aHR 1.53 (1.29–1.81)	
			Medically indicated: aHR 1.77 (1.41–2.21)	
			1 preterm birth: aHR 1.54 (1.33–1.79)	
			Recurrent ≥2 preterm births: aHR 2.31 (1.61–3.33)	
			Stroke	
			Any preterm: aHR 1.68 (1.46–1.95)	
			35 to 36 wks: aHR 1.49 (1.23–1.80)	
			33 to 34 wks: aHR 1.90 (1.41–2.56)	
			20 to 32 wks: aHR 2.13 (1.61–2.62)	
			Spontaneous: aHR 1.49 (1.24–1.78)	
			Medically indicated: aHR 2.12 (1.70–2.65)	
			1 preterm birth: aHR 1.68 (1.44–1.95)	
			Recurrent ≥2 preterm births: aHR 1.76 (1.14–2.73)	
Pell 2004 & Smith 2001	Delivery 24 to 36 wks gestation	14 to 19 y (Pell 2004)	Stroke death	HR 2.2 (0.9–5.7), aHR 1.9 (0.7–4.9)
			CHD death	
Rich-Edwards 2015	Delivery <37 w gestation	24.8 y	CVD (CHD and stroke) death	HR 1.9 (1.7–2.2)
				Spontaneous:
				Any preterm: HR 1.7 (1.5–2.0)
				35 to 36 wks: aHR 1.4 (1.0–1.8)
				32 to 34 wks: aHR 1.9 (1.3–2.7)
				22 to 31 wks: aHR 2.1 (1.4–3.1)
				Medically indicated:
				Any preterm: HR 3.7 (2.4–4.5)
				1 preterm birth: aHR 3.3 (2.4–4.5)
			CHD death	
				Spontaneous:
				Any preterm: aHR 2.1 (1.7–2.5)
				35 to 36 wks: aHR 2.1 (1.6–2.7)
				32 to 34 wks: aHR 2.4 (1.7–3.4)
				22 to 31 wks: aHR 2.3 (1.5–3.4)
				Medically indicated:
				35 to 36 wks: aHR 6.2 (4.2–9.3)
				32 to 34 wks: aHR 3.4 (1.7–6.9)
				22 to 31 wks: aHR 4.7 (2.2–8.8)
			Stroke death	
				Spontaneous:
				Any preterm: 1.5 (1.2–1.8)
				35 to 36 wks: aHR 1.3 (0.9–1.7)
				32 to 34 wks: aHR 1.9 (1.3–2.8)
				22 to 31 wks: aHR 1.8 (1.1–2.8)
				Medically indicated:
				Any preterm: aHR 3.0 (2.0–4.3)
				35 to 36 wks: aHR 2.9 (1.7–5.1)
				32 to 34 wks: aHR 1.9 (0.8–4.7)
				22 to 31 wks: aHR 5.4 (2.8–10.4)
Table 2. Continued

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
Tanz 2017²⁵	Delivery >20 and <37 wks gestation	32 y	CVD: MI and stroke	Without hypertensive disorders of pregnancy (preterm 4487 vs term 51 343): Any preterm: aHR 1.35 (1.06–1.72) 32 to <37 wks: aHR 1.12 (0.83–1.52) 20 to <32 wks: aHR 2.01 (1.38–2.93) Recurrent 1 preterm birth: aHR 1.63 (1.18–2.25)
Wang 2011²⁶	Unclear	6.4 y	Stroke	aHR 1.51 (0.77–2.93)
Wikstrom 2005⁵⁰	Delivery <37 wks gestation	15 y	CHD	Without hypertension of pregnancy (preterm 4487 vs term 51 343): Any preterm: aHR 1.55 (1.19–2.01) 32 to <37 wks: aHR 1.36 (0.99–1.86) 20 to <32 wks: aHR 2.10 (1.38–3.21)

Data are HR/OR (95% confidence intervals). aHR indicates adjusted hazard ratio; aRR, adjusted risk ratio; CHD, coronary heart disease/ischemic heart disease; CVD, cardiovascular disease; MI, myocardial infarction; RR, risk ratio.

*Data not adjusted for diabetes mellitus.

Discussion

This meta-analysis examined 96 341 474 women years and included 338 007 women with preterm birth out of 5 813 682 study participants in 21 studies. We found that preterm delivery is associated with an increased maternal risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death, and stroke. The adjusted risk ranged between 1.4- and 2-fold compared with those without a history of preterm birth. This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia. For the composite cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births. Preterm delivery is a significant event in a woman’s reproductive history with a good recall rate including high specificity. Therefore, it may be considered as a potential risk factor for future cardiovascular disease in women, as recommended by the current guidelines from the American Heart Association and European Society of Cardiology.^{27–29}

By including an additional 1.7 million participants to the previous meta-analysis in this field, our results are consistent with earlier literature showing an increased risk in coronary heart disease, stroke, and composite cardiovascular disease. Although our risk estimate for composite cardiovascular disease was lower than previously reported, this may be because of the difference in data analysis. In the previous meta-analysis, there was no distinction between adjusted and unadjusted data nor between morbidity and mortality outcomes. There are 2 other systematic reviews without meta-analysis of the literature, which also support our findings.^{1,3} Unique to this study, we conducted sensitivity analyses to consider the duration of follow-up, gestation at birth,
recurrent preterm birth, and spontaneous or medically indicated preterm birth.

Because of the multifactorial nature of preterm birth causes, several pathognomonic mechanisms have been hypothesized. These include vascular and metabolic factors, as well as pre-eclampsia and fetal growth restriction that have both been independently associated with future adverse cardiovascular outcomes. Moreover, preterm birth markers, such as proinflammatory cytokines, matrix metalloproteinase, fibrinolysis, prostaglandin cascade, and dyslipidemia are also involved in atherosclerosis and endothelial dysfunction.
Therefore, preterm birth shares common risk factors with cardiovascular disease74,75 and the association we identified may have been an epiphenomenon in women with high cardiovascular risk profiles that predispose them to both preterm birth and cardiovascular diseases. In contrast, other longitudinal studies have shown no difference in lipid profile, blood pressure, and inflammatory markers between preterm and term deliveries.17,76

There may also be other possible hypotheses for the association of preterm delivery and long-term adverse cardiovascular outcomes. One third of normotensive preterm births exhibit placental abnormalities commonly seen in pre-eclampsia and placental insufficiency,77,78 while \(\approx\)17% of preterm births are medically indicated.79 Common medical indications for preterm birth include pre-eclampsia and placental insufficiency causing fetal growth restriction, which

Figure 3

Risk of coronary heart disease with preterm birth. A, Coronary heart disease events. B, Coronary heart disease death. CI indicates confidence interval.

Table A

Study or Subgroup	Weight	Risk Ratio	
	Unadjusted	IV, Random, 95% CI	
	Freibert 201151	4.4%	1.84 [1.31, 2.58]
	Subtotal (95% CI)	4.4%	1.84 [1.31, 2.58]
	Heterogeneity: Not applicable		
	Test for overall effect: \(Z = 3.52\) (\(P = 0.0004\))		
	Adjusted	IV, Random, 95% CI	
	Cato20149	30.4%	1.42 [1.33, 1.51]
	Hastie 201144	27.8%	1.58 [1.46, 1.70]
	Ngo 201523	16.1%	1.61 [1.40, 1.86]
	Tanz 201725	6.8%	1.55 [1.19, 2.01]
	Wikstrom 200550	14.6%	1.30 [1.11, 1.52]
	Subtotal (95% CI)	95.6%	1.49 [1.38, 1.60]
	Heterogeneity: \(\tau^2 = 0.00\); \(\chi^2 = 8.67\), df = 4 (\(P = 0.07\)); \(I^2 = 54\%\)		
	Test for overall effect: \(Z = 10.58\) (\(P < 0.00001\))		
	Test for subgroup differences: \(\chi^2 = 1.45\), df = 1 (\(P = 0.23\)), \(I^2 = 30.8\%\)		

Table B

Study or Subgroup	Weight	Risk Ratio	
	Unadjusted	IV, Random, 95% CI	
	Nardi 200649	9.9%	1.54 [1.04, 2.28]
	Subtotal (95% CI)	9.9%	1.54 [1.04, 2.28]
	Heterogeneity: Not applicable		
	Test for overall effect: \(Z = 2.17\) (\(P = 0.03\))		
	Adjusted	IV, Random, 95% CI	
	Cirillo 201547	10.3%	2.10 [1.43, 3.08]
	Davey Smith 200512	13.9%	1.66 [1.20, 2.29]
	Hastie 201144	34.2%	2.26 [1.88, 2.71]
	Rich-Edwards 201524	31.8%	2.10 [1.73, 2.55]
	Subtotal (95% CI)	90.1%	2.10 [1.87, 2.36]
	Heterogeneity: \(\tau^2 = 0.00\); \(\chi^2 = 2.65\), df = 3 (\(P = 0.45\)); \(I^2 = 0\%\)		
	Test for overall effect: \(Z = 12.43\) (\(P < 0.00001\))		
	Test for subgroup differences: \(\chi^2 = 2.20\), df = 1 (\(P = 0.14\)), \(I^2 = 54.6\%\)		

DOI: 10.1161/JAHA.117.007809
may have confounded any relationships reported in the literature. Moreover, diabetes mellitus is more common in women with previous preterm deliveries, which may have confounded our findings.80 Although smoking has not been universally agreed upon as a risk factor for preterm birth,81,82 the causative relationship between smoking and cardiovascular diseases is well established.83–86 Other possible confounders include obesity and socioeconomic status, both of which have been linked to increased risks of preterm birth32,87–89 and cardiovascular disease in women.90–92

Although the majority of the included studies (n=16) have attempted to adjust for some potential confounders,‡ none of the studies have adequately adjusted for all relevant risk factors that form the basis of many of the established cardiovascular risk prediction scores (eg, cholesterol and family history of cardiovascular disease). There was also limited overlap between the adjusted confounding factors among the studies. As many key confounders for cardiovascular diseases were not adjusted for in the included studies, it is possible that the relationships that we have reported are entirely driven by differences in cardiovascular risk factor profiles at baseline. In the studies (48% of total participants) that presented the baseline cardiovascular risk factor profiles, the majority did not calculate whether there were any differences between the preterm and term birth groups. In the 3 studies (21% of total participants) that calculated this difference, all of them showed significant baseline risk factor profile differences between the preterm birth and the term birth populations.43,44,48

The 2011 American Heart Association guidelines for cardiovascular disease prevention in women advised health-care professionals to inquire about adverse pregnancy outcomes, including preterm delivery, as a part of any cardiovascular risk assessment in women. However, there was a lack of additional specific guidance as preterm birth was not considered a major cardiovascular disease risk factor.28 The 2014 guidelines from the American Heart Association and American Stroke Association for the prevention of stroke in women also recognized preterm birth as a factor associated with increased stroke risks after pregnancy, but did not make further recommendations because of the lack of evidence in the literature.27 More recently, the 2016 European Society of Cardiology guidelines recommended the consideration of periodic screening for hypertension and

Table 3. Sensitivity Analyses With Regard to Duration of Follow-Up

Outcomes	<10 Y	10 to 30 Y	>30 Y
CVD	1.65 [1.49, 1.82], n=1	1.54 [1.19, 2.01], n=4	1.73 [0.87, 3.46], n=2
CVD death	...	1.79 [1.51, 2.11], n=4	...
CHD	1.61 [1.40, 1.86], n=1	1.45 [1.32, 1.60], n=3	1.55 [1.19, 2.01], n=1
CHD death	1.54 [1.04, 2.28], n=3	2.08 [1.80, 2.40], n=3	2.10 [1.43, 3.08], n=1
Stroke	1.67 [1.45, 1.93], n=2	1.70 [1.51, 1.90], n=2	1.28 [0.95, 1.72], n=1

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

‡References 23–26, 30–32, 35, 41–48, 50, 53.
Preterm Birth and Maternal Cardiovascular Disease Wu et al

Table 4. Sensitivity Analysis With Regard to Gestation of Preterm Birth

Outcomes	<32 Wks	32 to 37 Wks
CVD	1.85 [1.51, 2.28], n=6	1.40 [1.23, 1.59], n=5
CVD death	2.10 [1.61, 2.74], n=2	1.85 [1.58, 2.16], n=2
CHD	1.62 [1.28, 2.04], n=3	1.44 [1.35, 1.53], n=3
CHD death	2.30 [1.53, 3.46], n=1	2.20 [1.78, 2.71], n=1
Stroke	2.00 [1.65, 2.43], n=3	1.49 [1.22, 1.83], n=3

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

Table 6. Sensitivity Analysis With Regard to Spontaneous or Medically Indicated Preterm Birth

Outcomes	Spontaneous	Medically Indicated
CVD	1.47 [1.34, 1.62], n=2	1.88 [1.64, 2.16], n=2
CVD death	1.70 [1.47, 1.96], n=1	3.70 [2.88, 4.76], n=1
CHD	1.48 [1.36, 1.60], n=2	1.80 [1.62, 2.00], n=2
CHD death	2.12 [1.82, 2.45], n=2	3.56 [1.74, 7.25], n=2
Stroke	1.49 [1.24, 1.79], n=1	2.12 [1.70, 2.65], n=1

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

diabetes mellitus in women with a history of preterm birth.29 In line with these recommendations, we suggest a detailed evaluation of a screening program for cardiovascular disease in women with a history of preterm birth, particularly in women who delivered because of any medical indications or before 32 weeks gestation (ie, the very or extremely preterm as defined by the World Health Organization). An opportune time for this screening is at the 6-week postpartum visit suggested in the World Health Organization recommendations on postnatal care.93

The strength of our study lies in the large sample size with a total of 96 341 474 patient-years follow-up. We used a search strategy without limiting the study design, language, and used independent reviewers for performing double data extractions and data analysis. All of the studies were designed to assess future cardiovascular diseases as their main outcome.

The limitations of this study include the risk of confounding and being unable to attribute causality of future cardiovascular disease to preterm delivery. These are because of the longitudinal nature of the epidemiological studies we included in this meta-analysis. As with any meta-analysis, there may be inherent publication bias, where studies with positive findings are more likely to be published compared with those showing neutral or negative outcomes. Over half of the included studies were retrospective in design. Therefore, there was limited control over the quality of data collected. As such, the preterm birth exposure could have been prone to recall bias or inaccuracies in historical data collection. Furthermore, the cardiovascular outcomes were determined by subjective self-reporting in 3 studies.25,46,51 Heterogeneity may have arisen because of differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies. Two studies were conducted in ethnically diverse populations26,48 in contrast to the other studies that were performed in white populations. Six studies examined women of any parity,23,43,47,48,51,53 while the others studied primiparous women. Specific populations were analyzed in 2 studies, which were Nardi et al49 (women covered by a particular health insurance program) and Tanz et al25 (nurses). As shown in Table 1, there was a mixture of retrospective, prospective, cross-sectional, and case–control studies. Because of the variation in duration of follow-up in the studies, the index preterm birth could have occurred in 1954 or in 2011. There has been both a change in obstetric practice, cardiovascular screening, and management of cardiovascular risk factors over these 57 years, which could have contributed toward differences between the studies. In the composite cardiovascular disease outcome, the heterogeneity was mainly driven by the Catov 2010 study.43 Out of the pooled adjusted studies, this was the only study conducted in Europe as the others were conducted in the United States, Australia, or Israel.

Our finding of an association between preterm delivery and the future development of incident cardiovascular disease has important implications for women and health policy. Women who experience a preterm delivery are at a higher risk of cardiovascular events and this suggests that a formal cardiovascular risk assessment using established risk scores should be considered in these women.94,95 In addition, clinicians may find it pertinent to educate women regarding their increased cardiovascular risk and potentially motivate women toward controlling any modifiable risk factors. The perinatal period is a valuable time for opportunistic advice, education, intervention, and monitoring in at-risk women. However, there is little awareness regarding the long-term cardiovascular consequences of pregnancy complications.
among healthcare professionals. A survey showed that only 5% of internists inquired about pre-eclampsia during history taking, while primary care data showed that 50% of women who had pre-eclampsia did not receive any further postnatal follow-up after 3 months.96,97 Cardiovascular disease presents differently between men and women,28,98 and most early sudden deaths in women occur without prior history of heart disease.99,100 Therefore, it would be appropriate to utilize past obstetric history to comprehensively assess cardiovascular risk profiles in women. Our findings support the current guidelines from the American Heart Association27,28 and the European Society of Cardiology29 to assess preterm delivery as part of the cardiovascular disease risk assessment in women.

Conclusions

Our large meta-analysis that included 5,813,682 women, 338,007 of whom had experienced a preterm delivery, demonstrated that preterm birth is associated with a 1.4- to 2-fold increase in future adverse cardiovascular outcomes. In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioral changes to control their modifiable risk factors. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women, with the 6-week postpartum visit the ideal place for this to occur.

Sources of Funding

This work was supported by a grant from the North Staffordshire Heart Committee. Wu is funded by a National Institute for Health Research (NIHR) Transitional Research Fellowship and Kwok is funded by a NIHR Academic Clinical Fellowship. This article presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

Disclosures

None.

References

1. Blencowe H, Cousens S, Chou D, Estergaard M, Say L, Moller AB, Kinney M, Lawn J. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10:52.

2. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of child mortality in 2000–15, with projections to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385:430–440.

3. Heida KY, Velthuis BK, Oudijik MA, Reitsma JB, Bots ML, Franx A, van Dunné FM. Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;23:253–263.

4. Robbins CL, Hutchings Y, Dietz PM, Kuklin EA, Callaghan WM. History of preterm birth and subsequent cardiovascular disease: a systematic review. Am J Obstet Gynecol. 2014;210:285–297.

5. Rich-Edwards JW, Fraser A, Lawlor DA, Catan JM. Pregnancy characteristics and women’s future cardiovascular health: an underused opportunity to improve women’s health? Epidemiol Rev. 2014;36:57–70.

6. The World Health Organisation. The global health observatory (GHO). 2017.

7. Gulati M. Improving the cardiovascular health of women in the nation. Circulation. 2017;135:495–498.

8. Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? BMJ. 2002;325:157–160.

9. Hytten F, Leitch I. The physiology of human pregnancy. 2nd edition, Blackwell Scientific Publications, Oxford. 1971.

10. Harskamp RE, Zeeman GG. Preeclampsia: at risk for remote cardiovascular disease. Hypertension. 2010;56:331–334.

11. Garovic VD, Hayman SR. Hypertension in pregnancy: an emerging risk factor for cardiovascular disease. Nat Clin Pract Nephrol. 2007;3:613–622.

12. Rich-Edwards JW, McElrath TF, Karumanchi A, Seely EW. Breathing life into women, with the 6-week postpartum visit the ideal place for this to occur.

13. Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T, Mazor M. The preterm parturition syndrome. BJOG. 2006;113(suppl 3):17–42.

14. Siddiqui N, Hladunewich M. Understanding the link between the placenta and future cardiovascular disease. Trends Cardiovasc Med. 2011;21:188–193.

15. Romero R, Kusanovic JP, Chaiworapongsa T, Hassan SS. Placental bed disorders in preterm labor, preterm PROM, spontaneous abortion and abruptio placenta. Best Pract Res Clin Obstet Gynaecol. 2011;25:313–327.

16. Catov JM, Lewis CE, Lee M, Wollens MF, Gunderson EP. Preterm birth and future maternal blood pressure, inflammation, and intimal-medial thickness: the CARDIA study. Hypertension. 2013;61:641–646.

17. Hastie CE, Smith GC, Mackay DF, Pell JP. Association between preterm delivery and subsequent C-reactive protein: a retrospective cohort study. Am J Obstet Gynecol. 2011;205:556.e1–556.e4.

18. Peren W, Stuart J, Rifs-Shiman SL, Rich-Edwards JW, Stuebe A, Oken E. Preterm birth and long-term maternal cardiovascular health. Ann Epidemiol. 2015;25:40–45.

19. Catov JM, Dodge R, Barinas-Mitchell E, Sutton-Tyrrell K, Yamal JM, Piller LB, Ness RB. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. J Womens Health (Larchmt). 2013;22:835–843.

20. Kaaja RJ, Greer IA. Manifestations of chronic disease during pregnancy. JAMA. 2005;294:2751–2757.

21. Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15:465–471.

22. Hovi P, Turkkia S, Naasanen-Gilmore S, Vääräsmäki M, Gissler M, Pouta A, Kajantie E. Parenteral cardiovascular morbidity in families with a preterm child, a national register study [abstract]. Arch Dis Child. 2014;99:A103.

23. Ng O, Chang JS, Figtree G, Morris JM, Roberts CL. Preterm birth and future risk of maternal cardiovascular disease—is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth. 2015;15:144.

24. Rich-Edwards JW, Klineberg K, Wilcox AJ, Skjærseth FM. Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis. Eur J Prev Cardiol. 2015;21:188–193.

25. Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, Mukamel KJ, Rich-Edwards JW. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135:578–589.

26. Wang IK, Chuang SN, Cao CC, Liang CC, Chang CT, Lin HH, Liu JH, Liu YL, Chuang FR, Hsu CY, Huang CC, Sung FC. Hypertensive disorders in pregnancy and preterm delivery and subsequent stroke in Asian women: a retrospective study. Stroke. 2011;42:716–721.

27. Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL, Howard VJ, Lichtman JH, Lisabeth LD, Pina IL, Reeves MJ, Rexrode KM, Saposnik G, Singh V, Towfighi A, Vaccarino V, Walters MR. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:1545–1588.
Preterm Birth and Maternal Cardiovascular Disease

Wu et al

28. Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor R, Lloyd-Jones DM, Newby LK, Pria IL, Roger VL, Shaw LJ, Zhao D, Beckie TM, Bushnell C, D'Armiento J, Kris-Etherton PM, Fang J, Ganiats TG, Gomes AS, Gracia CR, Haan CK, Jackson EA, Judelson DR, Kelepouris E, Lavie CJ, Moore A, Nussmeier NA, Offli E, Oparil S, Ouyang P, Pinn WV, Sherif K, Smith SC, Sopko G, Chandra-Strobos N, Urbina EM, Vaccarino V, Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. Circulation. 2011;123:1243–1262.

29. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney M, De Lea J, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Lochen ML, Løljen H, Marques-Vidal P, Perl J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM. 2016 European guidelines on cardiovascular disease prevention in clinical practice. Eur J Prev Cardiol. 2016;23:NP1–NP96.

30. Bonyan AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. Circulation. 2011;124:2839–2846.

31. Lykke JA, Paidas MJ, Damm P, Triche EW, Kuczynski E, Langhoff-Roos J. Birth characteristics and subsequent risks of maternal cardiovascular disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006.

32. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a systematic review of 129,290 births. Ann Epidemiol. 2010;20:604–609.

33. Banerjee M, Cruickshank JK. Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nat Clin Pract Cardiovasc Med. 2006;3:596–603.

34. Sattar N. Do pregnancy complications and CVD share common antecedents? Atheroscler Suppl. 2004;5:3–7.

35. Smith GD, Whitley E, Gissler M, Hemminki E. Birth dimensions of offspring, characteristics and subsequent risks of maternal cardiovascular disease: systematic review of 60,999 births. BJOG. 2011;118:274–281.

36. Kim Y, Song JH, Seo E, Lee Y, Jeong SE, Cho KH, Park JS. Pregnancy complications in maternal cardiovascular disease: a nested case-control study. Int J Gynaecol Obstet. 2015;132:1234–1242.

37. Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, United Kingdom: Wiley; 2008.

38. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176:1091–1096.

39. Lykke JA, Langhoff-Roos J, Lockwood CJ, Triche EW, Paidas MJ. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr Perinat Epidemiol. 2010;24:323–330.

40. Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: a retrospective cohort study of 119,668 births. Am J Epidemiol. 2004;159:336–342.

41. Catoe JM, Wu CS, Olsen J, Sutton-Tyrrell K, Li J, Norh EA. Early or recurrent preterm birth and maternal cardiovascular disease risk. Ann Epidemiol. 2010;20:604–609.

42. Hassie CE, Smith GC, Mackay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: retrospective cohort study of 750,350 singleton pregnancies. Int J Epidemiol. 2011;40:914–919.

43. Ingens HU, Reisaeter L, Ingens LM. Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ. 2001;323:1213–1217.

44. Catoe JM, Newman AB, Roberts JM, Kelsey SF, Sutton-Tyrrell K, Harris TB, Colbert L, Rubin SM, Satterfield S, Ness RB, Health ABCs. Preterm delivery and preterm birth and maternal cardiovascular disease risk: Epidemiology. 2007,18:733–739.

45. Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. Circulation. 2015;132:1234–1242.

46. Kessous R, Shoham-Vardi I, Pariente G, Holberg G, Shemer E. An association between preterm birth and long-term maternal cardiovascular morbidity. Am J Obstet Gynecol. 2013;209:368.e1–368.e8.

47. Nardi O, Zereik M, Courbon D, Ducimetiere P, Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers’ risk of ischaemic heart disease: a nested case-control study. Eur J Cardiovasc Prev Rehabil. 2006;13:281–283.

48. Wilkstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG. 2005;112:1486–1491.

49. Freibert SM, Mannino DM, Bush H, Crofford LJ. The association of adverse pregnancy events and cardiovascular disease in women 50 years of age and older. J Womens Health (Larchmt). 2011;20:287–293.

50. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. PLoS Med. 2009;6:e1000097.

51. Smith GD, Sterne J, Tynelius P, Lawlor DA, Rasmussen F. Birth weight of offspring and subsequent cardiovascular mortality and type II diabetes in the mother. BJOG. 2010;117:274–281.

52. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006.

53. Raneree R, Cruickshank JK. Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nat Clin Pract Cardiovasc Med. 2006;3:596–603.

54. Sattar N. Do pregnancy complications and CVD share common antecedents? Atheroscler Suppl. 2004;5:3–7.

55. Tomeo CA, Rich-Edwards JW, Michels KB, Berkey CS, Hunter DJ, Frazier AL, Willett WC, Buka SL. Reproducibility and validity of maternal recall of pregnancy-related events. Epidemiology. 1999;10:774–777.

56. Buka SL, Goldman JM, Spartos E, Tsuang MT. The retrospective measurement of prenatal and perinatal events: accuracy of maternal recall. Schizophr Res. 2004;7:417–426.

57. Goldberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2006;367:75–84.

58. Catov JM, Bodnar LM, Kip KE, Hubel C, Ness RB, Harger G, Roberts JM. Early pregnancy lipid concentrations and spontaneous preterm birth. Am J Obstet Gynecol. 2007;197:610.e1–610.e17.

59. Catov JM, Bodnar LM, Ness RB, Barron SJ, Roberts JM. Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am J Epidemiol. 2007;166:1312–1319.

60. Kramer MS, Kahn SR, Rozan R, Evans R, Platt RW, Chen MF, Goulet L, Seguin L, Dassas C, Lydon J, McNamara H, Dahlou M, Genest J. Vasculopathic and thrombophilic risk factors for spontaneous preterm birth. Int J Epidemiol. 2009;38:715–723.

61. Magnussen EB, Vatten LJ, Lund-Nilsen TI, Salvesen KA, Davey Smith G, Romundstad PR. Prepregnancy cardiovascular risk factors as predictors of pre-eclampsia: population based cohort study. BMJ. 2007;335:978.

62. Ray LG, Diamond P, Singh B, Bell CM. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. J Obstet Gynaecol Res. 2006;32:391–397.

63. Wyshak G, Brien S, Kadam U, Mamas M. Preeclampsia and future thrombophilic risk factors for spontaneous preterm birth. J Matern Fetal Neonatal Med. 2012;25:726–730.

64. Ray LG, Diamond P, Singh B, Bell CM. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. J Obstet Gynaecol Res. 2006;32:391–397.

65. Catoe JM, Bodnar LM, Hackney D, Roberts JM, Simhan HN. Activation of the fibrinolytic cascade during human pregnancy. Circulation. 2006;114:559–565.

66. Libby P. Inflammation and cardiovascular disease mechanisms. Circ Res. 2007;101:1161–1162.

67. Libby P. Inflammation and cardiovascular disease mechanisms. Circ Res. 2006;98:4565–4605.
Preterm Birth and Maternal Cardiovascular Disease

Wu et al

72. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89:763–771.

73. DeFranco E, Teramo K, Muglia L. Genetic influences on preterm birth. Semin Reprod Med. 2007;25:40–51.

74. Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia. 2005;48:1684–1699.

75. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. Diabet Med. 2006;23:469–480.

76. Fraser A, Nelson SM, Macdonald-Wallis C, Cherry L, Butler E, Sattar N, Lawlor DA. Associations of pregnancy complications with calculated cardiovascular risk and cardiovascular risk factors in middle age: the Avon Longitudinal Study of Parents and Children. Circulation. 2012;125:1367–1380.

77. Arias F, Rodriquez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. Am J Obstet Gynecol. 1993;168:585–591.

78. Germain AM, Carvajal J, Sanchez M, Valenzuela GJ, Tsunekawa H, Chuaqui B. Preterm labor: placental pathology and clinical correlation. Obstet Gynecol. 1999;94:284–289.

79. Tucker JM, Goldenberg RL, Davis RO, Copper RL, Winkler CL, Hauth JC. Preterm birth and maternal smoking: an underappreciated public health problem. Am J Obstet Gynecol. 1999;180:898–903.

80. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Arch Intern Med. 2002;162:273–279.

81. Kyrklund-Blomberg NB, Cnattingius S. Preterm birth and maternal smoking: are there differences related to gestational age and onset of delivery? Acta Obstet Gynecol Scand. 1999;78:343–347.

82. Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Heart. 1998;79:1051–1055.

83. Tucker JM, Goldenberg RL, Davis RO, Copper RL, Winkler CL, Hauth JC. Preterm birth and maternal smoking: an underappreciated public health problem. Am J Obstet Gynecol. 1999;180:898–903.

84. Haire-Joshu D, Tibbs TL. Smoking and diabetes. Diabetes Care. 1999;22:1887–1898.

85. Al-Delaimy WK, Manson JE, Solomon CG, Kawachi I, Stampfer MJ, Willett WC, Hu FB. Smoking and risk of coronary heart disease among women with type 2 diabetes mellitus. Arch Intern Med. 2002;162:273–279.

86. Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. Diabetes Care. 1999;22:1887–1898.

87. Morgen CS, Bjork C, Andersen PK, Mortensen LH, Nybo Andersen AM. Socioeconomic position and the risk of preterm birth: a study within the Danish National Birth Cohort. Int J Epidemiol. 2008;37:1109–1120.

88. Torloni MR, Betran AP, Daher S, Widmer M, Dolan SM, Menon R, Bergel E, Allen T, Merialdi M. Maternal BMI and preterm birth: a systematic review of the literature with meta-analysis. J Matern Fetal Neonatal Med. 2009;22:957–970.

89. McDonald SD, Han Z, Mulla S, Beyene J. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. BMJ. 2010;341:c3428.

90. Thurstom RC, Kuzbansky LD, Kacwachi I, Berkman LF. Is the association between socioeconomic position and coronary heart disease stronger in women than in men? Am J Epidemiol. 2005;162:57–65.

91. Lawn JL, Brown JV, Tapp RJ, Stoll BJ, Carlo WA. Maternal smoking and risk of preterm birth. Acta Paediatr. 2003;92:1183–1191.

92. Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, Speizer FE, Hennekens CH. A prospective study of obesity and risk of coronary heart disease in women. N Engl J Med. 1990;322:882–889.

93. Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care. 2003;26:725–731.

94. Bang H, Edwards AM, Bomback AS, Ballantyne CM, Brillon D, Callahan MA, Chuaqui B, Gerstein HC, Teo K, Anand SS. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score. Eur Heart J. 2011;32:581–589.

95. Young B, Hacker MR, Rana S. Physicians’ knowledge of future vascular disease in women with preeclampsia. Hypertens Pregnancy. 2012;31:50–58.

96.的主题

97. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton H, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Muhlbaier LH, Nasir K, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wang ND, Woo D, Turner MB. Heart disease and stroke statistics—2012 update. Circulation. 2012;125:e2–e220.

DOI: 10.1161/JAHA.117.007809

Journal of the American Heart Association
SUPPLEMENTAL MATERIAL
Data S1.

Search terms

Synonyms of preterm birth (‘preterm delivery’ or ‘preterm birth’ or ‘premature delivery’ or ‘premature birth’) AND ‘ischaemic heart disease’ or ‘ischemic heart disease’ or ‘coronary artery disease’ or ‘coronary heart disease’ or ‘myocardial infarction’ or ‘acute coronary syndrome’ or ‘heart failure’ or ‘cardiac failure’ or ‘left ventricular systolic dysfunction’ or ‘stroke’ or ‘cerebrovascular disease’ or ‘cerebrovascular accident’ or ‘cardiomyopathy’ or ‘peripheral vascular disease’ or ‘cardiovascular disease’ or ‘cardiovascular morbidity’ or ‘cardiovascular mortality’.
Table S1. Study quality assessment overview.

Study ID	Representative of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of preterm birth	Demonstration that outcome of interest was not present at start of study	Comparability of cohort	Assessment of outcome	Follow-up duration to capture outcomes	Adequacy of follow-up	Total score
Bonamy 2011	*	*	*	*	*	*	*	*	9
Catov 2007	*	*					*	*	6
Catov 2010	*	*	*		*	*	*	*	9
Cirillo 2015	*	*	*		*		*	*	8
Davey Smith 2000	*	*	*		*		*	*	6
Davey Smith 2005	*	*	*		*		*	*	7
Freibert 2011	*						*	*	3
Hastie 2011	*	*	*		*	*	*	*	7
Hovi 2014	*	*	*		*		*	*	6
Irgens 2001	*	*	*		*	*	*	*	8
Kessous 2013	*	*	*		*		*	*	9
Lykke 2010a &	*	*	*		*		*	*	9
Lykke 2010b							*	*	
Nardi 2006	*		*				*	*	5
Ngo 2015	*	*	*		*		*	*	8
Pell 2004 &	*	*	*		*		*	*	6
Smith 2001							*	*	
Study									Rate
---------------	---	---	---	---	---	---	---	---	------
Rich-Edwards	*	*	*	*	*	*	*	*	8
2015									
Tanz		*	*	*	*	*			4
2017									
Wang	*	*	*	*	*	*	*	*	8
2011									
Wikstrom	*	*	*	*	*	*	*	*	7
2005									
Table S2. Study quality assessment in detail.

Study ID	Representative of the exposed cohort	Selection of the non-exposed cohort	Ascertainment of preterm birth	Demonstration that outcome of interest was not present at start of study	Comparability of cohort	Reliable ascertainment of outcomes	Follow-up duration to capture outcomes	Adequacy of follow-up
Bonamy 2011¹	General cohort of women.	Controls from the same cohort.	From the Swedish Medical Birth Register.	Excluded women with a CVD event before their first delivery.	Adjusted for maternal age, birth year, highest income and highest education level before first delivery, country of birth, pregestational hypertension, pregestational diabetes mellitus, gestational diabetes mellitus, gestational hypertension, pre-eclampsia/eclampsia and maternal smoking at beginning of pregnancy.	ICD-8 to 10 codes from the hospital discharge register or the cause of death register.	Median 11.8 years.	Database study.
Catov 2007²	General cohort of women.	Controls from the same cohort.	Self-reported.	Excluded women who reported pre-eclampsia or hypertension during pregnancy.	Adjusted for race, age at study baseline, systolic BP, log pulse wave velocity (from simultaneous carotid and femoral artery Doppler flow signals), insulin resistance, log	Self-reported and validated using an algorithm that assesses medication, physical examination, blood tests and ECG.	Mean 57 years.	All women followed up.
Catov 2010	General cohort of women.	Controls from the same cohort.	From the Danish Medical Birth Registry.	Excluded women with hospitalization for CVD or diabetes before the first birth during study period and those dying during delivery.	Adjusted for maternal age at first birth, parity, education, birth year. Excluded pre-eclampsia, SGA offspring and diabetes.	ICD-8 and 10 codes from the National Hospital Discharge Register.	Mean 28 years.	Database study.
------------	--------------------------	-------------------------------	--	--	--	---	---	---
Cirillo 2015	General cohort of women.	Controls from the same cohort.	From medical records.	Not applicable as death outcome.	Adjusted for age, race, parity, BMI and smoking. Excluded pre-existing heart disease, multiple births, gestations <20 weeks and missing parity data.	ICD-7 to 10 codes in data linkage to California Vital Statistics and National Death Index.	Median 40 years.	<10% loss to follow-up.
Study	Cohort Type	Controls Details	Data Source Details	Outcome Adjusted For	Data Source	Missing Data UV	Missing Data Parent	
--------	--------------------	---	---	---	---	-----------------	--------------------------------------	
Davey Smith 2000⁵	General cohort of women.	Controls from the same cohort.	From previous study records.	Not applicable as death outcome.	Adjusted for age, height, marital status, visits to private doctor, BP and hormone use during pregnancy,	From Finnish Central Population and Cause of Death registers.	Unclear.	Unclear.
Davey Smith 2005⁶	General cohort of parents.	Controls from the same cohort.	From the Swedish Medical Birth Register.	Not applicable as death outcome.	Adjusted for birth weight.	ICD-9 codes in the Swedish Cause of Death register.	Mean 20.4 years.	Unclear.
Freibert 2011⁷	General cohort of women.	Controls from the same cohort.	Self-reported.	No.	Unadjusted.	Self-reported.	Unclear.	92.3% of all eligible women had complete data.
Hastie 2011⁸	General cohort of women.	Controls from the same cohort.	From routine national electronic records.	No.	Adjusted for age at delivery, height, deprivation category, birthweight decile, essential hypertension and pre-eclampsia.	ICD-8 to10 codes from electronic records.	Mean 22 years.	Database study.
Hovi 2014⁹	General cohort of women.	Controls from the same cohort.	From the Finnish Medical Birth Register.	No.	Unadjusted.	ICD-9 and 10 codes from the Hospital Discharge Register data and non-primary	Up to 22 years.	<1% loss to follow-up.
Study	Cohort Description	Data Source	Key Exclusions/Adjustments	ICD Codes Used	Follow-up Details			
-------------	-------------------------------------	---	--	--	------------------			
Irgens 2001	General cohort of women. Controls from the same cohort.	From the Medical Birth Registry of Norway.	Not applicable as death outcome. Adjusted for age at delivery and year of birth of baby. Excluded pre-eclampsia.	ICD-8 and 9 codes from the Registry of Causes of Death. ICD-8/9: 410-429.	Median 13 years. <10% loss to follow-up.			
Kessous 2013	General cohort of women. Controls from the same cohort.	From the hospital perinatal database.	Excluded women with known CVD before or during the index pregnancy.	ICD-9 codes from the hospitalization database. ICD-9: 272.2, 272.4, 401.9, 402, 404, 404.9, 410, 411, 411.8, 411.81, 413, 413.9, 414, 414.8, 414.9, 415, 415.0, 427.5, 428.0, 428.1, 428.9, 429.9, 429.2, 436, 437, 437.1, 440, 440.2, 443.8, 443.89, 443.9, V810, V812, Z0045-Z0047, Z005,	Mean 10 years. Database study.			
Study	Cohort	Controls	Methods	Exclusions	Adjustments	ICD Codes	Median Age	Loss to Follow-up
-------	--------	----------	---------	------------	-------------	-----------	------------	------------------
Lykke 2010a¹² & Lykke 2010b¹³	General cohort of women.	Controls from the same cohort.	From the National Patient Registry in Denmark.	Excluded pre-existing diabetes, cardiovascular diagnosis and women who died or emigrated 3 months after delivery.	Adjusted for maternal age at delivery, year of delivery, hypertensive pregnancy disorders, SGA or large-for-gestational-age offspring, placental abruption and stillbirth (Lykke 2010a). Adjusted for maternal age at delivery and year of delivery (Lykke 2010b).	ICD codes from the National Patient Registry (Lykke 2010a) or from cause of death registry or first cardiovascular diagnosis within 1 week prior to death (Lykke 2010b).	Median 14.6 years (Lykke 2010a) or 14.8 years (Lykke 2010b).	<10% loss to follow-up.
Nardi 2006¹⁴	Teachers covered by a health insurance scheme.	Controls from the same cohort.	Self-reported.	Not applicable as death outcome.	Unadjusted. Excluded pre-existing MI, angina, psychiatric disorders and unspecified other cardiac and non-cardiac diseases.	Death from CHD using ICD-9 codes from insurance and national databases. ICD-9: 410-414.	Mean 5.2 years from study enrolment.	19% loss to follow-up.
-----------------------	--	-------------------------------	----------------	--------------------------------	---	---	--	---
Ngo 2015¹⁵	General cohort of women.	Controls from the same cohort.	From the perinatal data collection.	Excluded chronic hypertension or hypertensive disorders of pregnancy, CVD event prior to last birth, CVD event within 42 days of last birth and death	Adjusted for age, country of birth, socioeconomic status, parity, SGA offspring, diabetes, gestational diabetes and smoking.	ICD-10 codes from national datasets. ICD-10: G45.0-45.2, G45.4, G45.8, G45.9, G46, I20-25, I25.2, I50, I60-66, I67.0-67.2, I67.4-67.9, I68.1, I68.2, I68.8, I69.	Median 7.5 years.	Linkage proportion for records >98%.
Study	Population Description	Controls Description	Data Source	Exclusions/Adjustments	Follow-up Loss (%)	Year Follow-up		
------------------	---	---	--	---	--------------------	----------------		
Pell 2004 & Smith 2001	General cohort of women.	Controls from the same cohort.	From routine maternity hospital records.	Excluded stillbirths. Adjusted for age, height, deprivation category, pre-eclampsia, lowest birth weight quintiles and previous spontaneous miscarriage (Pell 2004). Additional adjustment for essential hypertension, but not previous miscarriage (Smith 2001).	ICD-9 and 10 codes from the Scottish Morbidity Record system and General Registrar’s Office.	11.9% (Pell 2004) or 4.4% (Smith 2001) loss to follow-up.	14-19 years	
Rich-Edwards 2015	General cohort of women.	Controls from the same cohort.	From the Medical Birth Registry of Norway.	Not applicable as death outcome.	Adjusted for year of delivery, age and education at first birth.	ICD-8 to 10 codes in the National Cause of Death Registry.	8.3% loss to follow-up.	Median 24.8 years
Tanz 2017	Registered nurses.	Controls from the same cohort.	Self-reported.	Excluded pre-existing MI or stroke.	Excluded hypertensive disorders of pregnancy. Adjusted for age at first birth, age in 1989, ethnicity, parental education, pre-pregnancy BMI, smoking. Alternative Self-reported then verified with medical records.	Self-reported then verified with medical records.	32% of eligible women had missing data.	Median 32 years
Study	Cohort Description	Controls Description	Data Source	Exclusion Criteria	Adjustment Factors	ICD Codes	Follow-up	Other Information
--------	--------------------	----------------------	-------------	-------------------	-------------------	------------	----------	-------------------
Wang 2011²⁰	General cohort of women.	Controls from the same cohort.	From National Health Insurance program database.	Excluded pre-existing stroke or hypertension.	Adjusted for age, urbanization level, diabetes, hyperlipidaemia, CHD, abrupton, lupus and thrombophilia.	ICD-9 codes from the national database. ICD-9: 430-437, 674.0, A290-294, A299.	Mean 6.4 years.	Database study.
Wikstrom 2005²¹	General cohort of women.	Controls from same cohort.	ICD codes from Swedish Medical Register.	Excluded hypertension and diabetes.	Adjusted for age, socio-economic level, category of hospital in which the first child was born.	ICD-9 and ICD-10 codes from hospital discharge register and cause of death register. ICD-9: 410-414. ICD=10: I20-25.	15 years.	3.15% died or emigrated.

BMI=body mass index, BP=blood pressure, CHD=coronary heart disease, CVD=cardiovascular diseases, ECG=electrocardiogram, HDL=high-density lipoprotein, IL=interleukin, MI=myocardial infarction, SGA=small-for-gestational age.
Table S3. Cardiovascular risk factor profile of preterm birth and term birth groups in the included studies. GDM=gestational diabetes, HBW=high birth weight >2500g, LBW=low birth weight <2500g, BMI=body mass index, N.S.=non-significant, SE=socio-economic, SEIFA=socio-economic indexes for areas, SGA=small-for-gestational age, wk=weeks gestation.

Study ID	Risk factor profile	During pregnancy / study enrolment	At follow-up					
		Preterm	Term	p value	Preterm	Term	p value	
Bonamy 2011¹	Not available	-	-	-	-	-	-	
Catov 2007²	Age (year)	23.1	HBW 23.7	-	72.9	HBW 73.0	-	
			LBW 22.0	-				
	Black race (%)	-	-	-	51.9	HBW 41.5	-	
						LBW 63.2		
	Low SE status (%)	-	-	-	22.2	HBW 14.2	-	
						LBW 18.4		
	Ever smoker (%)	-	-	-	66.7	HBW 41.7	-	
						LBW 47.4		
	BMI (kg/m²)	-	-	-	27.8	HBW 28.3	-	
						LBW 26.7		
	Triacylglycerol (mg/dL)	-	-	-	139.5	HBW 141.3	-	
						LBW		
	Catov 2010³	Cirillo 2015⁴	Davey Smith 2000⁵	Davey Smith 2005⁶	Freibert 2010⁷			
------------------------	-------------------------	--------------------------	-----------------------------	-----------------------------	--------------------------			
Age (year)	25.2	-	-	-	59.6			
Basic education (%)	51.1	44.1	<0.001	-	38			
Pre-eclampsia (%)	5.0	3.2	<0.001	-	36.4			
SGA (%)	13.1	9.2	<0.001	-	44			
Education ≤12 years (%)	-	-	-	-	-			
Ever smoker (%)	-	-	-	-	40			
Study	Variable	Year 1	Year 2	*p*	Year 3	Year 4	Year 5	
-------------------------------	-----------------------------------	--------	--------	-------	--------	--------	--------	
Hastie 2011	Age (year)	24	25	<0.001				
	High deprivation quintile using							
	Carstairs index (%)							
	Hypertension (%)	0.4	0.1	<0.001				
	Pre-eclampsia (%)	8.8	8.1	<0.001				
Hovi 2014	Not available	-	-					
Irgens 2001	Not available	-	-					
Kessous 2013	Age (years)	28.1	29.9	0.001				
	Jewish (%)	52.6	70.4	0.001				
	GDM and Diabetes (%)	8.3	8.2	N.S.				
	Obesity (%)	1.1	2.0	0.001				
Lykke 2010a & Lykke 2010b	Not available	-	-					
Nardi 2006	Not available	-	-					
Ngo 2015	High deprivation using SEIFA	24.0	20.9					
	index (%)							
	Ever smoker (%)	30.0	28.3					
	Diabetes (%)	1.3	0.4					
Pell 2004 & Smith 2001	Not available	-	-					
	Age (year)	23.7	23.9					
Study	Education	Age (year)	BMI ≥30 (%)	Caucasian (%)	Ever smoker (%)			
---------------	-----------	------------	-------------	---------------	-----------------			
Rich-Edwards	< high school (%)	53.6	46.4	-	-	-	-	
Tanz 2017	< <32 wk	27.5	27	-	-	-	-	
	≥32 to <37 wk	27.8	27	-	-	-	-	
	BMI ≥30 (%)	< <32 wk	4.0	3.1	-	-	-	-
	≥32 to <37 wk	3.4	3.4	-	-	-	-	
	Caucasian (%)	< <32 wk	91.0	92.9	-	-	-	-
	≥32 to <37 wk	90.9	90.9	-	-	-	-	
Wang 2011	Not available	-	-	-	-	-	-	-
Wikstrom 2005	Not available	-	-	-	-	-	-	-
Table S4. Sensitivity analysis with regards to singleton and multiple pregnancies.

Outcomes	Singleton pregnancies only	Singleton and multiple pregnancies
CVD	1.56 [1.27, 1.93], n=5	1.56 [1.32, 1.84], n=8
CVD death	1.95 [1.79, 2.12], n=4	1.81 [1.55, 2.10], n=5
CHD	1.48 [1.36, 1.61], n=4	1.50 [1.39, 1.62], n=6
CHD death	2.07 [1.76, 2.44], n=3	2.02 [1.78, 2.30], n=5
Stroke	1.69 [1.54, 1.85], n=3	1.65 [1.51, 1.79], n=5
Table S5. Sensitivity analysis with regards to the year each study was commenced.

Outcomes	Study year before 1990	Study year after 1990	Study year before 1970	Study year after 1970
CVD	1.51 [1.20, 1.90], n=5	1.62 [1.46, 1.80], n=3	-	-
CVD death	-	-	1.91 [1.68, 2.16], n=2	1.74 [1.36, 2.23], n=3
CHD	1.46 [1.34, 1.59], n=4	1.64 [1.44, 1.87], n=2	-	-
CHD death	-	-	2.17 [1.92, 2.46], n=3	1.61 [1.26, 2.07], n=2
Stroke	1.60 [1.33, 1.93], n=3	1.67 [1.45, 1.93], n=2	-	-
Table S6. Sensitivity analysis with regards to study quality score.

Outcomes	Study quality score ≤6	Study quality score ≥7
CVD	1.59 [1.38, 1.83], n=4	1.53 [1.18, 1.97], n=4
CVD death	2.06 [1.22, 3.47], n=1	1.79 [1.51, 2.11], n=4
CHD	1.65 [1.34, 2.03], n=2	1.48 [1.36, 1.61], n=4
CHD death	1.54 [1.04, 2.28], n=1	2.10 [1.87, 2.36], n=4
Stroke	1.55 [1.05, 2.29], n=2	1.67 [1.52, 1.83], n=3
Table S7. Sensitivity analysis with regards to study location.

Outcomes	Study location: Europe	Study location: U.S.	Study location: other
CVD	1.54 [1.23, 1.92], n=5	1.73 [0.87, 3.46], n=2	1.65 [1.49, 1.82], n=1
CVD death	1.81 [1.55, 2.10], n=5	-	-
CHD	1.45 [1.32, 1.60], n=3	1.65 [1.34, 2.03], n=2	1.61 [1.40, 1.86], n=1
CHD death	1.98 [1.69, 2.33], n=4	2.10 [1.43, 3.08], n=1	-
Stroke	1.70 [1.51, 1.90], n=2	1.28 [0.95, 1.72], n=1	1.67 [1.45, 1.93], n=2
Table S8. Sensitivity analysis with regards to whether the study excluded women with pre-existing cardiovascular disease.

Outcomes	Pre-existing CVD excluded	Pre-existing CVD not excluded
CVD	1.54 [1.24, 1.92], n=6	1.65 [1.46, 1.85], n=2
CVD death	1.98 [1.77, 2.21], n=2	1.54 [1.02, 2.33], n=3
CHD	1.45 [1.33, 1.57], n=4	1.59 [1.48, 1.71], n=2
CHD death	-	2.02 [1.78, 2.30], n=5
Stroke	1.63 [1.49, 1.78], n=4	1.91 [1.35, 2.70], n=1
Figure S1. PRISMA checklist

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis.	1
ABSTRACT			
Structured summary	2	*Background:* Preterm delivery (<37 weeks gestational age) affects 11% of all pregnancies, but data are conflicting whether preterm birth is associated with long-term adverse maternal cardiovascular outcomes. *Objectives:* To systematically evaluate and summarize the evidence on the relationship between preterm birth and future maternal risk of cardiovascular diseases. *Data sources:* A systematic search was conducted using MEDLINE and EMBASE from inception to October 2017. Manual searching for additional articles was also conducted by reviewing the bibliography of relevant review articles and published systematic reviews. Search terms were: Synonyms of preterm birth (‘preterm delivery’ or ‘preterm birth’ or ‘premature delivery’ or ‘premature birth’) AND ‘ischaemic heart disease’ or ‘ischemic heart disease’ or ‘coronary artery disease’ or ‘coronary heart disease’ or ‘myocardial infarction’ or ‘acute coronary syndrome’ or ‘heart failure’ or ‘cardiac failure’ or ‘left ventricular systolic dysfunction’ or ‘stroke’ or ‘cerebrovascular disease’ or ‘cerebrovascular accident’ or ‘cardiomyopathy’ or ‘peripheral vascular disease’ or ‘cardiovascular disease’ or ‘cardiovascular morbidity’ or ‘cardiovascular mortality’. *Study selection:* The included studies had at least two groups (one with preterm birth and one with term birth) and reported sufficient data to allow for accurate risk estimates to be calculated. There was no restriction based on language, cohort type, study design or duration of follow-up. *Data extraction:* Independent double data extraction was done by four reviewers using predefined data fields, including study quality indicators. *Study appraisal and synthesis methods:* Study quality was assessed based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale for cohort studies. We used RevMan Version 5.3.5 (Nordic Cochrane Centre) to conduct random effects meta-analysis using the inverse variance method for pooling log risk ratios (RRs).	5
			6
			7
			8
Results: Twenty-one studies with over 5.8 million women, including over 338,000 women with previous preterm deliveries, were identified. Meta-analysis of studies that adjusted for potential confounders showed that preterm birth was associated with an increased risk of maternal future cardiovascular disease (risk ratio (RR) 1.43, 95% CI 1.18, 1.72), cardiovascular disease death (RR 1.78, 95% CI 1.42, 2.21), coronary heart disease (RR 1.49, 95% CI 1.38, 1.60), coronary heart disease death (RR 2.10, 95% CI 1.87, 2.36), and stroke (RR 1.65, 95% CI 1.51, 1.79). Sensitivity analysis showed that the highest risks occurred when the preterm deliveries occurred before 32 weeks gestation or were medically indicated.

Limitations: The limitations of this study include the risk of confounding and being unable to attribute causality of future cardiovascular disease to preterm delivery. There may be inherent publication bias, recall bias or inaccuracies in historical data collection. Heterogeneity may have arisen due to differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies.

Conclusions: Preterm delivery is associated with an increase in future maternal adverse cardiovascular outcomes, including a two-fold increase in deaths due to coronary heart disease. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women.

Systematic review registration number: PROSPERO CRD42017068455

INTRODUCTION

Rationale:
Preterm birth (<37 weeks gestational age) affects 11% of all pregnancies. Pregnancy is characterized by a challenge to the cardiovascular system. This physiological stress for most women is uncomplicated but for women who experience preterm birth, this adverse pregnancy outcome may serve to identify women at risk for cardiovascular disease who would not have been detected using traditional risk assessment tools at a time when it may be possible to alter their risk trajectory. It remains unclear whether preterm delivery is an independent risk factor for future cardiovascular disease or an early marker of women with background high-risk profiles for future cardiovascular disease. The pathogenesis of preterm birth remains poorly understood.

Objectives:
To systematically evaluate and summarize the evidence on the relationship between preterm birth and future maternal risk of cardiovascular diseases, we reviewed studies that compared long-term adverse cardiovascular outcomes between women with and without preterm birth in postnatal women.

METHODS

Protocol and registration
Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017068455
Protocol registration number: PROSPERO CRD42017068455

Eligibility criteria
Participants: postnatal women.
Comparisons: Preterm birth versus term birth.
Outcome measures: ischaemic heart disease, coronary artery disease, coronary heart disease, myocardial infarction, acute coronary syndrome, heart failure, cardiac failure, left ventricular systolic dysfunction,
stroke, cerebrovascular disease, cerebrovascular accident, cardiomyopathy, peripheral vascular disease, cardiovascular disease, cardiovascular morbidity, cardiovascular mortality. **Study characteristics:** the included studies had at least two groups (one with preterm birth and one with term birth) and reported sufficient data to allow for accurate risk estimates to be calculated. There was no restriction based on language, cohort type, study design or duration of follow-up.

Information sources	7	Searches were conducted using the databases MEDLINE and EMBASE from inception to present. Manual searching for additional articles was also conducted by reviewing the bibliography of relevant review articles and published systematic reviews. The last search was run on 7th October 2017.
Search	8	Synonyms of preterm birth (‘preterm delivery’ or ‘preterm birth’ or ‘premature delivery’ or ‘premature birth’) AND ‘ischaemic heart disease’ or ‘ischemic heart disease’ or ‘coronary artery disease’ or ‘coronary heart disease’ or ‘myocardial infarction’ or ‘acute coronary syndrome’ or ‘heart failure’ or ‘cardiac failure’ or ‘left ventricular systolic dysfunction’ or ‘stroke’ or ‘cerebrovascular disease’ or ‘cerebrovascular accident’ or ‘cardiomyopathy’ or ‘peripheral vascular disease’ or ‘cardiovascular disease’ or ‘cardiovascular morbidity’ or ‘cardiovascular mortality’.
Study selection	9	Eligibility assessment was performed independently by 2 reviewers. Disagreements between reviewers were resolved by using the eligibility assessment by PW, who is a more experienced researcher.
Data collection process	10	Independent double data extraction was done by 4 reviewers using predefined data fields, including study quality indicators. Disagreements between reviewers were resolved by consensus. If no agreement could be reached, the decision was made by PW. The information was obtained from published data.
Data items	11	Data were collected on study design, year, country, number of participants, mean age, parity, cohort characteristics, definition and ascertainment of preterm birth, ascertainment of outcomes, timing of assessment, adequacy of follow-up and results. Where possible, we chose to pool adjusted risk estimates from primary studies and when these data were not available, raw data were used to calculate unadjusted risk estimates.
Risk of bias in individual studies	12	Each study was individually assessed for quality based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale for cohort studies by independent reviewers. No studies were excluded following quality assessment.
Summary measures	13	We conducted random effects meta-analysis using the inverse variance method for pooling log risk ratios.
Synthesis of results	14	Studies were pooled in meta-analysis with subgroups based on whether or not the study used adjustments to account for confounders. Statistical heterogeneity was assessed using the I² statistic.
Risk of bias across studies	15	In the case for an analysis where there is more than 10 studies and little evidence of heterogeneity, we planned to perform funnel plots to assess for publication bias.
Additional analyses	16	Sensitivity analysis was performed to consider the follow-up duration of the studies (<10 years, 10-30 years, and >30 years), gestation (<32 weeks versus 32-37 weeks) and recurrence (1 recurrence versus ≥2 recurrences).
recurrence) of preterm births, and whether the preterm births occurred spontaneously or were medically indicated.

RESULTS

Study selection
- 17 See flow diagram in figure 1.

Study characteristics
- 18 See table 1.

Risk of bias within studies
- 19 See supplemental table 1 and 2.

Results of individual studies
- 20 See table 2, figures 2-4.

Synthesis of results
- 21 See figures 2-4.

Risk of bias across studies
- 22 We did not perform funnel plots to assess for publication bias as less than 10 studies were included in each analysis.

Additional analysis
- 23 See table 3 and supplemental table 4.

DISCUSSION

Summary of evidence
- 24 We found that preterm delivery is associated with an increased maternal risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death and stroke. The adjusted risk ranged between 1.4 to 2-fold compared to those without a history of preterm birth. This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia. For the composite cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births.

Limitations
- 25 *Outcome level:* The limitations of this study include the risk of confounding and being unable to attribute causality of future cardiovascular disease to preterm delivery. Heterogeneity may have arisen due to differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies.
| Review level: | There may be inherent publication bias, recall bias or inaccuracies in historical data collection. |
|-------------|--|
| Conclusions | In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioural changes to control their modifiable risk factors. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women, with the 6-week postpartum visit the ideal place for this to occur. |
| FUNDING | |
| Funding | This work was supported by a grant from the North Staffordshire Heart Committee. PW and CSK are funded by National Institute for Health Research Fellowships. |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6: e1000097.
Supplemental References:

1. Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. *Circulation*. 2011;124:2839-2846.

2. Catov JM, Newman AB, Roberts JM, Kelsey SF, Sutton-Tyrrell K, Harris TB, Colbert L, Rubin SM, Satterfield S, Ness RB, Health ABCS. Preterm delivery and later maternal cardiovascular disease risk. *Epidemiology*. 2007;18:733-739.

3. Catov JM, Wu CS, Olsen J, Sutton-Tyrrell K, Li J, Nohr EA. Early or recurrent preterm birth and maternal cardiovascular disease risk. *Ann Epidemiol*. 2010;20:604-609.

4. Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. *Circulation*. 2015;132:1234-1242.

5. Smith GD, Whitley E, Gissler M, Hemminki E. Birth dimensions of offspring, premature birth, and the mortality of mothers. *Lancet*. 2000;356:2066-2067.

6. Smith GD, Sterne J, Tynelius P, Lawlor DA, Rasmussen F. Birth weight of offspring and subsequent cardiovascular mortality of the parents. *Epidemiology*. 2005;16:563-569.

7. Freibert SM, Mannino DM, Bush H, Crofford LJ. The association of adverse pregnancy events and cardiovascular disease in women 50 years of age and older. *J Womens Health (Larchmt)*. 2011;20:287-293.

8. Hastie CE, Smith GC, Mackay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: Retrospective cohort study of 750 350 singleton pregnancies. *Int J Epidemiol*. 2011;40:914-919.

9. Hovi P, Turkka S, Nääränen-Gilmore S, Viääräsmäki M, Gissler M, Pouta A, Kajantie E. Parental cardiovascular morbidity in families with a preterm child, a national register study [abstract]. *Arch Dis Child*. 2014;99:A103-A103.

10. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. *BMJ*. 2001;323:1213-1217.

11. Kessous R, Shoham-Vardi I, Pariente G, Holcberg G, Sheiner E. An association between preterm delivery and long-term maternal cardiovascular morbidity. *Am J Obstet Gynecol*. 2013;209:368 e361-368.

12. Lykke JA, Langhoff-Roos J, Lockwood CJ, Triche EW, Paidas MJ. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. *Paediatr Perinat Epidemiol*. 2010;24:323-330.

13. Lykke JA, Paidas MJ, Damm P, Triche EW, Kuczynski E, Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-ii diabetes in the mother. *BJOG*. 2010;117:274-281.
14. Nardi O, Zureik M, Courbon D, Ducimetiere P, Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers' risk of ischaemic heart disease: A nested case-control study. Eur J Cardiovasc Prev Rehabil. 2006;13:281-283.

15. Ngo AD, Chen JS, Figtree G, Morris JM, Roberts CL. Preterm birth and future risk of maternal cardiovascular disease - is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth. 2015;15:144.

16. Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: A retrospective cohort study of 119,668 births. Am J Epidemiol. 2004;159:336-342.

17. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet. 2001;357:2002-2006.

18. Rich-Edwards JW, Klungsoyr K, Wilcox AJ, Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. Am J Obstet Gynecol. 2015;213:518 e511-518.

19. Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, Mukamal KJ, Rich-Edwards JW. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. Circulation. 2017;135:578-589.

20. Wang IK, Chang SN, Liao CC, Liang CC, Chang CT, Lin HH, Liu JH, Liu YL, Chuang FR, Hsu CY, Huang CC, Sung FC. Hypertensive disorders in pregnancy and preterm delivery and subsequent stroke in asian women: A retrospective cohort study. Stroke. 2011;42:716-721.

21. Wikstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG. 2005;112:1486-1491.
Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta–Analysis

Pensée Wu, Martha Gulati, Chun Shing Kwok, Chun Wai Wong, Aditya Narain, Shaughn O'Brien, Carolyn A. Chew-Graham, Ganga Verma, Umesh T. Kadam and Mamas A. Mamas

J Am Heart Assoc. 2018;7:e007809; originally published January 15, 2018; doi: 10.1161/JAHA.117.007809

The *Journal of the American Heart Association* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231

Online ISSN: 2047-9980

The online version of this article, along with updated information and services, is located on the World Wide Web at:

http://jaha.ahajournals.org/content/7/2/e007809

Subscriptions, Permissions, and Reprints: The *Journal of the American Heart Association* is an online only Open Access publication. Visit the Journal at http://jaha.ahajournals.org for more information.