Effects of crabs on greenhouse gas emissions, soil nutrients, and stoichiometry in a subtropical estuarine wetland

Xiaoxuan Chen¹,² · Martin Wiesmeier³ · Jordi Sardans⁴,⁵ · Lukas Van Zwieten⁶ · Yunying Fang⁷ · Albert Gargallo-Garriga⁴,⁵ · Youyang Chen¹,² · Shuyun Chen¹,² · Congsheng Zeng¹,² · Josep Peñuelas⁴,⁵ · Weiqi Wang¹,²

Received: 4 November 2019 / Revised: 14 September 2020 / Accepted: 20 September 2020 / Published online: 28 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Crabs may elicit effects on wetland carbon (C), nitrogen (N), and phosphorus (P) concentrations and associated ecological stoichiometry. In this study, we assessed effects of crabs on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions; soil C, N, and P concentrations; and stoichiometry in upper and mid-tidal flats of an estuarine wetland in China. The results showed that averaged CO2, CH4, and N2O fluxes were greater in the upper and mid-tidal flats in the presence of crabs, being 46.4, 66.7, and 69.7% and 53.6, 143, and 73.1% greater than control, respectively. Mixed model analyses showed overall positive relationships between wetland soil CO2, CH4, and N2O emissions (F = 4.65, P = 0.033; F = 42.42, P = 0.042 and F = 10.2, P = 0.0018, respectively) in the presence of crabs, taking into account season, flooding intensity, and plot effects. This may be related to the direct effects of respiration and the indirect effects of feeding, excretion, and disturbance of soil on microorganisms and/or plant roots. There were no effects of crabs on total C or N concentrations, whereas decreased soil total P concentrations, especially in the upper-tidal flats (P < 0.0001 and P < 0.0001, respectively), taking into account season, flooding intensity, and plot effects. In the upper and mid-tidal flats, soil CO2 emissions were negatively correlated with total soil C; CH4 emissions were positively correlated with ratios of C/N and C/P; and N2O emissions were positively correlated with N content. In general, global warming potential (GWP) of the upper-tidal flats in the presence of crabs increased by 138% compared with the absence of crabs, and GWP of the mid-tidal flats in the presence of crabs increased by 99.3% compared with the absence of crabs. Global warming and associated flooding rise in several coastal wetland areas are favoring benthic fauna number enhancement, and this in turn increases GWP of overall gas emissions further contributing to future warming rise.

Keywords Greenhouse gas emission · Carbon · Nitrogen · Phosphorus · Elemental stoichiometry · Wetlands

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00374-020-01512-6) contains supplementary material, which is available to authorized users.

¹ Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
² Institute of Geography, Fujian Normal University, Fuzhou 350007, China
³ TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
⁴ CSIC, Global Ecology CREAFC-SIC-UBA, Bellaterra, 08193 Barcelona, Catalonia, Spain
⁵ CREAF, Cerdanyola del Valles, 08193 Barcelona, Catalonia, Spain
⁶ NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia
⁷ NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
Introduction

The global average temperature increased by 0.58 °C during the period between 1880 and 2012 (IPCC 2014), and although many factors contributed to this rise in temperature, increasing concentrations of the key greenhouse gases (carbon dioxide: CO2; methane: CH4; and, nitrous oxide: N2O) in the atmosphere contributed about 80% to global warming (IPCC 2014). Globally, wetlands account for 5–8% of the land surface area (RoyChowdhury et al. 2018), yet despite this relatively small area, they represent important sources and sinks of greenhouse gases (Altor and Mitsch 2008; Chen et al. 2010; Bridgham et al. 2013), due to high levels of primary productivity and soil carbon (C) and nutrient storage (Mander and Shirmohammadi 2008). Wetlands are increasingly important in the retention and filtration of excess reactive nitrogen from surrounding soils and may produce N2O by nitrification and denitrification processes (Burgin and Groffman 2012; Cui et al. 2013). Moreover, CH4 emissions are non-linearly increased with temperature (Peltola et al. 2015) that may elicit a positive feedback on climate change in wetland.

Recent studies of soil C, N, and P have explored the relative balance in concentrations of different elements and turnover processes (Elser et al. 2000) as part of the concept of ecological stoichiometry, which is based on the relationships between ecosystem structure and function, stoichiometry and use of C/N/P in different ecosystem compartments (Elser et al. 2000; Sterner and Elser 2002; Sardans et al. 2012). The relationship between ecosystem energy and multi-elemental balance described using ratios (Elser et al. 2000) has become a focus on the study of elemental ecological stoichiometry (Elser et al. 2000; Tessier and Raynal 2003; Allen and Gilllooly 2009). While spatial variability in ecological stoichiometry and implications for plant growth and ecosystem function have been studied (Han et al. 2005), the effects of benthic organisms on soil nutrient stoichiometry and greenhouse gas emissions are unknown, particularly in estuarine wetlands. The influence of factors at the land-sea interface, periodic tidal inundation, and the effects of benthic fauna on soil and plants is known to affect soil C, N, and P cycling in estuarine wetlands (Liu et al. 2014). Therefore, quantification of nutrient ecological stoichiometry in these ecosystems may increase understanding of drivers and mechanisms of their ecological function and service provision.

As secondary producers in estuarine wetlands, benthic fauna (Stahl et al. 2014) is essential for a healthy ecosystem (Vermeiren and Sheaves 2015), where their bioturbation (Suren et al. 2011), excretion and other physiological activities, and biological irrigation effects impact biogeochemical cycling processes in wetlands (Hu et al. 2016), especially for soil C and N (Liu et al. 2005). Studies have shown that benthic species diversity is greater in the intertidal zone than in the upper mid-tidal zone (Wang et al. 2011; Liu et al. 2015), mainly due to flooding frequency and associated changes in salinity. For example, flooding of the mid-tidal zone brings rapid influxes of nutrients beneficial to benthic organisms and higher levels of salinity that support the growth of algae and other organisms, leading to increased abundance of crabs (Chen et al. 2008).

While the effects of benthic fauna on C and N cycling in wetlands have been studied (Mereta et al. 2013), effects on C, N, and P stoichiometry remain unclear. Crabs (Arthropoda: Brachyura) are commonly occurring zoobenthos in wetlands, and they may directly affect soil properties, such as acidity, aeration, and texture, through burrowing activity that subsequently affects C, N, and P cycling (Simioni et al. 2014). For example, CO2 emissions from burrows in which the crab *Upogebia yokoyai* was present were greater than in the absence of the crab (Sasaki et al. 2014). CO2 fluxes at the soil-atmosphere interface were greater in burrows containing crabs (Kristensen et al. 2008), and crab activity in upper tidal flats may promote the production and release of N2O as a result of digging behavior, excretion, and sediment resuspension (Liu et al. 2008). Other types of benthos have been shown to elicit CH4 by nutrient-mediated changes to the microbial cycle and coupling between the benthic upper food chain and this can lead to increased CH4 emissions (Figueiredobarros et al. 2009). Predicted rises in sea levels due to greenhouse gas-mediated global warming are the intensity predicted to lead to increases in the intensity and frequency of flooding that may result in greater crab activity in wetlands, along with associated changes in soil properties and production and emissions of greenhouse gases (Chen et al. 2008; Wang et al. 2011; Liu et al. 2015). Therefore, it is important to increase the understanding of the role of crabs in the emission of greenhouse gases so as to promote mitigation. The impacts of crab activities on soil stoichiometry and C, N, and P concentrations and further on greenhouse gas emissions in tidal marshes remain, however, to be studied.

We hypothesized the following: (1) crabs presence increases organic matter and aeration in soil, with associated increases in CO2 and N2O emissions and decreases in CH4 emissions; (2) crab presence changes physicochemical properties with effects on CO2, CH4, and N2O emissions; and (3) crab presence increases soil C and nutrient concentrations and leads to lower soil C/N and C/P ratios and stimulates emissions of greenhouse gases. To test these hypotheses and to solve these gaps, (1) we determine the effects of the presence of crabs on soil CO2, CH4, and N2O emissions in the upper and middle-tidal flats; (2) we measured the impact of crab presence on soil nutrient levels and their stoichiometry; and (3) we evaluated the relationship between greenhouse gas emissions and soil nutrient concentrations and associated stoichiometry in the presence of crabs.
Materials and methods

Study sites

The study sites were located in a tidal Spartina alterniflora wetland in the Minjiang River estuary, China (Fig. 1), where there is a subtropical monsoon climate, with a mean annual temperature of 19.9 °C and a mean annual precipitation of 1380 mm. Precipitation is concentrated between March and September, with bimodal peaks in June in the rainy season and August in the typhoon period (Liu et al. 2006). The dominant plant species in the study area included Kandelia candel, Casuarina equisetifolia, Phragmites australis, Cyperus malaccensis, Scirpus triquetrus, and Spartina alterniflora.

Three replicates of 1×1 m sampling plots were established in four experimental treatments that comprised combinations of presence (P) and absence of crabs (D, control) at upper (G) and mid-tidal (Z, control) flats (GP, GD, ZP, and ZD). Mid-tidal flat is the high-flooding habitat, which is flooded by intermediate tides ca. 240 d $^{-1}$ and is submerged beneath 10–120 cm of water for 0.5–4 h during each tidal inundation (average of 540 h $^{-1}$ of inundation). Upper-tidal flat is the intermediate-flooding habitat nearer to coastal line, which is flooded by intermediate tides ca. 220 d $^{-1}$ and is submerged beneath 10–100 cm of water for 0.5–3 h during each tidal inundation (average of 385 h $^{-1}$ of inundation). All measurements have been performed ± 1 h from low tide. The presence of crabs at the sampling plots was confirmed by the presence of flat holes and chimney burrows (> 4 cm and our in situ investigation showing that these holes were crab holes): in the upper tidal flats, crab burrows were larger in diameter but fewer in number than in the mid-tidal flats (Table S1). To avoid the effects of isolated crabs, control plots (D) were covered with rust-proof barbed wire, polypropylene random (PPR) tubes, and 60-mesh nylon mesh that was installed 70 cm above ground level and 30 cm below ground level.

Greenhouse gas sampling

Greenhouse gas emissions from the plots were collected using static chambers that consisted of an upper chamber and lower base made of opaque PVC (polyvinyl chloride), with diameter and heights of 0.2×0.4 m, and 0.2×0.1 m, respectively. There was a extraction gas and temperature measurement hole in the top of the upper chamber (Fig. S1). The base of the static chamber used to collect gas samples in the crab-free plots, whereas there was a ≥ 4 cm-hole in the center of the base of the static chamber used in the crab plots to facilitate normal crab activity.

We collected gas samples at low tide in 2015 on January 10 (winter), April 18 (spring), June 27 (summer), and September 13 (autumn) at 09:00, 12:00, and 15:00 h. At each time step, three samples were collected consecutively for 15 min; 40 ml of gas were sampled from the upper chamber and injected into a 50 mL aluminum foil gas sample bag. The temperature in the chamber was recorded during gas collection by the thermometer.

We used gas chromatography to determine CO$_2$ and CH$_4$ (Shimadzu GC-2010, Kyoto, Japan) and N$_2$O (Shimadzu GC-2014, Kyoto, Japan) concentrations in the gas samples using a Porapak Q stainless steel column (2 m in length, 4 mm OD, 80/100 mesh). A methane conversion furnace, flame ionization detector (FID), and electron capture detector (ECD) were used for the determination of the CO$_2$, CH$_4$, and N$_2$O concentrations, respectively. The operating temperatures of the column, injector, and detector for the determination of CO$_2$, CH$_4$, and N$_2$O concentrations were adjusted to 45, 100, and 280 °C; to 70, 200, and 200 °C; and to 70, 200, and 320 °C, respectively. These temperatures were the optimum values for the different parts of the instrument. The gas chromatograph was calibrated before and after each set of measurements using 503, 1030, and 2980 μL of CO$_2$ L$^{-1}$ in He; 1.01, 7.99, and 50.5 μL of CH$_4$ L$^{-1}$ in He; and 0.2, 0.6, and 1.0 μL of N$_2$O.
L−1 in He (CRM/RM information center of China, Beijing) as primary standards (Wang et al. 2015a, b).

CO2, CH4 and N2O fluxes and the global warming potential (GWP) estimation

The CO2, CH4 and N2O fluxes were estimated by the following equation:

$$ F = \frac{M}{V} \frac{dc}{dt} \cdot H \cdot \left(\frac{273}{273 + T} \right) $$

where F is the CO2, CH4, or N2O flux (mg/µg CO2/CH4/N2O m−2 h−1); M is the molecular weight of the gas (44, 16 and 44 g mol−1 for CO2, CH4 and N2O, respectively); V is the molar volume of gas in a standard state (22.4 mol−1); dc/dt is the variation ratio of CO2, CH4, and N2O concentrations (µmol mol h−1); H is the height of the chamber above the water surface (m); and T is the air temperature inside the chamber (°C).

To estimate GWP, CO2 is typically taken as the reference gas, and a change in the emission of CH4 or N2O is converted into “CO2-equivalents” (Hou et al. 2012):

$$ f = F \cdot t $$

where f (kg/hm2) represents the amount of different greenhouse gas emissions during the sampling period. t represents the time of the period. According to Ahmad et al. (2009) the equation used to calculate GWP is:

$$ GWP = f_{CO2} + 34f_{CH4} + 298f_{N2O} $$

The GWP for CH4 is 34 (based on a 100-year time horizon and a GWP for CO2 of 1), and the GWP for N2O is 298 (Myhre et al. 2013).

Soil sampling

More than 95% of large benthic fauna is distributed in the upper 10 cm of soil. The diameter of a crab hole is greater at the soil surface and extend to around 10 cm. Therefore, we collected five soil samples from the upper 10 cm of soil of each plot; these samples were mixed to reduce heterogeneity and interference from crab holes (Wang et al. 2008), placed in closure pockets, and transported to the laboratory. Impurities, such as stones, wood, and plastic, were removed from the soil, and after air-drying, the samples were passed through a 2-mm sieve prior to measurement of physicochemical soil properties (total C, N, and P concentrations, dissolved organic C, soil exchangeable NH4+–N, NO3−–N concentrations, soil bulk density, water content, pH, salinity, and temperature). Half of the samples were subsequently passed through a 0.149-mm sieve prior to measurement of soil nutrient.

Total C and N (TC and TN, respectively) concentrations were measured using a Vario MAX CN Elemental Analyzer (Elementar Scientific Instruments, Hanau, Germany), and total P (TP) concentration was determined using Mo-Sb colorimetry (Lu 1999; Ruban et al. 1999). Soil DOC was determined by extracting the soils with deionized water (1:5 ratio) and measuring the total C concentration using a TOC-V CPH total C analyzer (Shimadzu Scientific Instruments, Kyoto, Japan). Soil exchangeable NH4+–N, NO3−–N concentrations were measured using a continuous flow injection analyzer (Skalar Analytical SAN ++ Instruments, Breda, Netherlands).

Bulk density was measured from three 5 × 3-cm cores, while soil water content and soil pH were determined using the drying method and a portable IQ 150 pH meter in a 1:5 ratio of soil/water (IQ Scientific Instruments, Carlsbad, USA), respectively. Salinity and soil temperature in the field were measured using a 2265FS salinity/temperature meter (Spectrum Technologies Inc., Paxinos, USA).

Statistical analyses

We used general mixed models (GLM) in the “nlme” (Pinheiro et al. 2016) R package with the “lme” function, with crab presence, tidal flat (upper or mid to represent flooding intensity), and season as independent fixed categorical variables, plot as independent random factor and CO2, CH4, and N2O soil gas emissions and soil physicochemical properties as continuous dependent variables. When a variable did not follow normal distribution, it was log transformed to reach normal distribution before statistical analyses. We chose the best model for each dependent variable based on the Akaike information criterion, and we used the MuMln package (Barton 2012) in R to estimate variance explained by the mixed statistical algorithm that derived an optimal separation between groups, which was established a priori by maximizing between-group variance while minimizing within-group variance, to control for effects of season (Raamsdonk et al. 2001).

We used major axis (MA) and standardized major axis (SMA) (SMATR package; http://www.bio.mq.edu.au/ecology/SMATR) regression to compare the slopes of the
regressions of the relationships among the C, N, and P with and without crab.

Results

General effects of crab presence on greenhouse gas emissions

CO₂ emissions were globally higher with than without crabs \((P < 0.05, \text{Table S2}) \). Average CO₂ emissions from soils in the presence and absence of crabs in the upper tidal flats were \(125 \pm 14.8 \) and \(67.1 \pm 7.67 \) mg m\(^{-2}\)h\(^{-1}\), respectively (CVs: 23.7 and 22.9%, respectively), and in the mid-tidal flat, average emissions were \(128 \pm 62.4 \) and \(58.8 \pm 20.2 \) mg m\(^{-2}\)h\(^{-1}\), respectively (CVs: 97.2 and 68.7%, respectively) (Fig. 2). There was no effect of crabs on CO₂ emissions, regardless of degree of tidal inundation \((P > 0.05) \).

Cumulative CH₄ emissions were significantly higher with than without crabs \((\text{Table S2}) \). Mean CH₄ emissions in the upper tidal flats with than without crabs were \(0.35 \pm 0.22 \) and \(0.10 \pm 0.05 \) mg m\(^{-2}\)h\(^{-1}\), respectively (CVs: 128 and 98%, respectively), and in the mid-tidal flat, mean CH₄ emissions were \(0.29 \pm 0.26 \) and \(-0.11 \pm 0.18 \) mg m\(^{-2}\)h\(^{-1}\), respectively (CVs: 180 and 320%, respectively) (Fig. 3). There was no effect of crabs on soil CH₄ emissions, regardless of degree of tidal inundation.

N₂O emissions were globally higher with than without crabs \((P < 0.05, \text{Table S2}) \). N₂O emissions in the upper tidal flats were greater in the presence of crabs, especially during the autumn (Fig. 4), and overall, average N₂O emissions in the tidal flats were significantly greater in the presence of crabs \((\text{Table S2}, P < 0.05) \). N₂O emissions were higher in autumn than in the other three seasons and were higher under high tidal intensity (Table S2, Fig. 4).

Under the action of crabs, the CO₂ and N₂O global warming potential (GWP) of the upper tidal and mid-tidal flats were significantly higher than those without crabs \((P < 0.05) \). GWP of the upper tidal flats in the presence of crabs increased by 138% compared with the absence of crabs, and GWP of the mid-tidal flats in the presence of crabs increased by 99.3% compared with the absence of crabs (Tables S2 and S3).

Crab presence and soil properties

In general, crab presence was associated with greater levels of soil water content, pH. Maximum and minimum soil temperatures were recorded in June and January, respectively; maximum and minimum soil salinities were recorded in January and September, respectively; and maximum and minimum soil pH values were recorded in September and June, respectively. Soil bulk density was greater in the upper tidal flat than
middle tidal flat. There was no effect of crab presence on seasonal variations in soil temperature, salinity, pH, water content, or salinity, but soil water content was greater with than without crabs (Fig. S2).

There was an overall effect of crab presence on soil TP, but not on soil TC or TN through the year (Table S2, S4). Concentrations of soil TC and TN were greater in the upper tidal flats in the winter and spring than in the upper tidal flats ($P < 0.05$). Crab presence was associated with greater levels of soil C/P and N/P ratios (Table S2).

Season had a significant influence on the total soil nutrients and their stoichiometric ratios. TN varied greatly for different tidal flats and was related to the frequency of soil flooding ($P < 0.05$). TC and C/N were significantly influenced by different seasons, different tidal flats, and the presence or absence of crabs. The change of C/P was significant under the combined effect of seasons and crabs and TP in different seasons ($P < 0.001$). The ratio of soil C/N was stable among the seasons in the upper tidal flats in the presence of crabs, while that of N/P varied; ratios of soil C/N and N/P in the upper tidal flat in the presence of crabs were stable (Fig. 5). Nutrient ratios were greater with than without crabs, and the ratio of soil C/N ratio varied with season ($P < 0.01$, Table S2).

The y1 and y2 functions represent the linear fitting relationship of total nutrients with and without crab activity, respectively. The R^2 value in the y1 function was significantly higher than the y2 function, indicating that the crab activity helps to improve the correlation between the total soil nutrients (Fig. 6). We observed that none of the slopes of the regression lines of the TN-TC, TP-TC, and TP-TN differed significantly between with and without crabs ($P > 0.05$, SMA test of common slopes). Concentrations of soil TC, TN, and TP were related (Fig. 6, $P < 0.01$), but the relationship between TC and TP concentrations was weaker than between TC and TN concentrations. Overall, differences in soil concentrations of TC and TN were more distinct than differences in TP during the year.

Relationship between greenhouse gas emissions and soil properties

Overall, CO$_2$ emissions were positively correlated with soil temperature ($R = 0.35$, $P < 0.05$) and negatively associated with soil bulk density ($R = -0.36$, $P < 0.05$), CH$_4$ and N$_2$O emissions were positively correlated with soil temperature ($R = 0.60$, $R = 0.57$, $P < 0.01$, respectively), and N$_2$O emissions were positively correlated with soil pH ($R = 0.44$, $P < 0.01$) and water content ($R = 0.39$, $P < 0.05$). However, the relationships changed in function of the presence of crabs depending on the level of tidal intensity. N$_2$O emissions in the upper tidal flat in the presence of crabs were positively correlated with pH ($R = 0.82$, $P < 0.01$) and water content ($R = 0.59$, $P < 0.05$), negatively correlated with salinity ($R = -0.59$, $P < 0.01$) (Table 1). In the upper tidal flat without crabs, there was a negative correlation between CH$_4$ emissions and salinity ($R = -0.86$, $P < 0.01$), and N$_2$O emissions were positively correlated with soil temperature ($R =$...
Fluxes of CO₂, CH₄, and N₂O were positively correlated with soil temperature (R = 0.84, R = 0.89, R = 0.88, P < 0.01, respectively) and in the presence of crabs (P < 0.005), while N₂O emission flux was negatively correlated with soil bulk density (R = −0.88, P < 0.01).

We found that N₂O fluxes in the upper tidal flats were positively correlated with soil concentration of TN, TP (R = 0.75, R = 0.79, P < 0.01, respectively), and TC (R = 0.63, P < 0.05) in the presence of crabs and with soil concentration of TC, TN, and TP (R = 0.77, R = 0.83, R = 0.78, P < 0.01, respectively) in the absence of crabs (Table 2). CO₂ emissions in the mid-tidal flats were negatively correlated with soil TC (R = −0.58, P < 0.05) in the presence of crabs and with soil concentration and ratio of N:P (R = −0.62, R = −0.68, P < 0.05, respectively) in the absence of crabs. CH₄ emissions were positively correlated with C:N (R = 0.71, P < 0.01) and C:P ratios (R = 0.60, P < 0.05), and N₂O flux was positively correlated with ratio of C:N (R = 0.77, P < 0.01). Overall CO₂ emissions were negatively correlated with soil concentration of TC (R = −0.37, P < 0.05), while CH₄ flux was positively correlated with C/N and C/P ratios (R = 0.36, R = 0.29, P < 0.05, respectively) and N₂O flux was positively correlated with soil TN concentration (R = 0.35, P < 0.05). The relationships between soil physicochemical factors on soil TC, TN, and TP and soil stoichiometry are provided in supplementary material (Table S4).

Overall effects of crabs and flooding intensity on greenhouse gas emissions and soil physicochemical properties

The GDA showed that N₂O emissions, soil TC, C/N ratio, water content, bulk density, and temperature clustered in the four combinations of crab presence/absence and flooding intensity (Tables S5, S6). This GDA detected that the presence of crabs in upper tidal had higher overall effects in the studied variables than in the middle tidal intensity (Fig. S4). Plots in the upper-tidal flats were associated with N₂O emissions, bulk density, and soil C/P and N/P ratios more with than without crab presence. These great differences due to crab presence were instead not observed in the middle tidal intensity plots (Fig. S4). Plots in the middle tidal flats were correlated with higher soil water content and TP more with than without crab presence (Fig. S4).

Discussion

Effects of crab presence on greenhouse gas emissions

CO₂ emissions in wetland soils largely derive from respiration of soil animals and plant roots, and the decomposition of organic C by soil microorganisms (Blagodatsky and Smith 2012). This study showed that CO₂ emissions were greater
with than without crabs, possibly due to the direct effects of respiration and the indirect effects feeding, excretion, and disturbance of soil on soil microorganisms and/or plant roots. The burrowing activity of crabs may increase the diffusion of gas and increase soil concentration of O$_2$, and this increases soil oxidation capacity. Similar increases in organic C mineralization due to high litter decomposition rates in crab burrows observed in other wetlands (Daleo and Iribarne 2009; Weissberger et al. 2009) depended on the stimulation aerobic bacteria respiration (Liang et al. 2015).

Estuarine wetlands are an important source of CH$_4$ (Du et al. 2016) and emissions of CH$_4$ mainly depend on the relative balance its production and oxidation processes. In this study, greater CH$_4$ emissions were correlated with presence of crabs throughout the year. Consumption of plant and animal litter by crabs is converted to detritus and promotes the accumulation of organic C (Moseman-Valtierra et al. 2011), and this stimulates the growth and reproduction of methanogens (Kammann et al. 2009) leading to increased CH$_4$ production and emission. Burrowing activities of crabs increase the sediment-water-gas contact interface and the diffusion of inorganic N in sediments from the overlying water bodies and accelerate the rate of ammonia formation (Mereta et al. 2013) and its accumulation in soil. Studies have found that an increase in NH$_4^+$ inhibits methanotrophic activity, and this promotes CH$_4$ emissions (Hu et al. 2015).

Our results showed that N$_2$O fluxes were greater in the presence of crabs. Production of N$_2$O was the result of a combination of soil nitrification and denitrification (Harley et al. 2015), which are microbial processes, so factors that affect soil microbial activity also impact soil nitrification and denitrification (Angar et al. 2016). Crab burrowing activity results in the heterogeneous creation of anaerobic and aerobic microsites in soils that are used by a diverse range of microbes; soils

Fig. 5 Effect of crabs on soil TC, TN, and TP concentrations and their stoichiometric ratios. Different uppercase letters indicate within season treatment differences and different lowercase letters indicate between season treatment differences ($P<0.05$)
surrounding burrows were compacted and anaerobic, while burrows facilitate advection and diffusion of O₂. Microbial activity in these contrasting soil environments generates N₂O through nitrification and denitrification (Liu et al. 2008). Crabs may affect microbial diversity through feeding on bacteria and fungi, mechanical action on organic matter, propagation of microbial propagules, and changes in nutrient availability that leads to increases in soil N₂O emissions (Cragg and Bardgett 2001). The O₂ exchange interface between soil and water or the atmosphere is increased in crab burrows. This may lead to increased soil nitrification at the burrow wall, while soil behind this wall may remain anaerobic (Kristensen et al. 2008) and support denitrification leading to greater production and release of N₂O. Studies have shown that crabs in upper tidal flats may elicit environmental effects. For example, high densities of crabs at small spatial scales accelerate N₂O release in flooded tidal flats (Liu et al. 2008) and crab fragmentation of surface accelerates litter decomposition with the release of N to the soil environment (Chen et al. 2010). In addition, direct input of excreta by crabs increases soil N concentration (Van Nedervelde et al. 2015) that triggers N₂O emissions due to the increased abundance and activity of nitrifying and denitrifying soil bacteria (Welsh et al. 2015).

Global warming potential (GWP) of the upper tidal flats increased by 138% with than without crabs, and GWP of the mid-tidal flats increased by 99.3% with than without crabs (Tables S2, S3). This a very noticeable result because high-

Fig. 6 Linear regression of the effect of crabs on relationships between soil C, N, and P. The y1 and y2 functions represent the linear fitting relationship of total nutrients with and without crab activity, respectively.
feedback has been detected. Rises in sea levels due to global warming are predicted and under this scenario further increase in the intensity and frequency of flooding are expected that may result in greater crab activity in wetlands, along with associated changes in soil properties (Chen et al. 2008; Wang et al. 2011; Liu et al. 2015). We have demonstrated that higher crab presence favors the production and emissions of greenhouse gases closing a positive feedback effect.

Effects of crab presence on soil C, N, and P concentrations

Soil C, N, and P in wetlands may be affected by multiple factors, such as microbial activity, animal disturbance, decomposition of animals and plants, tidal movement, and human activities (Liu et al. 2014). In this study, the disturbance by crabs was correlated with changes in the concentrations of soil C, N, and P that varied with season. The greatest concentrations of soil C, N, and P were recorded in autumn, correlated with plant senescence and higher inputs of litter that results in larger inputs of food to be consumed and decomposed by the crabs. Overall soil TP concentrations were significantly lower in the presence of crabs than in the control. These results were not consistent with the findings of Mortimer et al. (1999) who did not observe changes in soil TP in the presence of crabs. Animal excreta (feces + urine) drive soil N:P ratios (Sitters et al. 2017). Nevertheless, the greater range in soil TC and TN than TP concentration values throughout the year is consistent with lower mobility and transformation rates of soil P than C and N.

Ecological stoichiometry of soil C, N, and P under the presence of crabs

Concentrations of soil C, N, and P vary spatiotemporally with soil factors, such as animal activity, vegetation, climate, and human interference (Cleveland and Liptzin 2007; Liu et al. 2014). We found that C/N, C/P, and N/P ratios were lowest in summer, and these lower ratios were correlated with higher temperatures in summer when microbial activity is also higher, favoring nutrient use and organic mineralization. The greater release of soil C during the summer reduces its soil concentration and thus favors the drop of its ratios with nutrients, indicating that soil C/nutrient ratios are also controlled by soil C retention and input (Xiao et al. 2014). The decrease in the N/P ratio during the summer is likely due to the slower mineralization rates of P than N, while N responded more rapidly to environmental changes than P (Cleveland and Liptzin 2007). These results confirm the observed nutrient limitation that occurs during *S. alterniflora* growth in the estuarine wetlands of the Minjiang River (Wang et al. 2015c; Mactavish and Cohen 2017) that lead to greater plant N and P-uptake, especially during summer.

The ratios of C/N and N/P were greater with than without crabs, and these ratios were greater in the crab-free upper tidal flats than in the crab-free mid-tidal flats. Thus, the presence of

Table 2 Correlation between emissions of greenhouse gases and soil content of nutrients in the presence and absence of crabs (Pearson correlation coefficient)

Treatment	Index	TC	TN	TP	C/N	C/P	N/P
GP	CO₂	-0.282	-0.172	-0.106	-0.154	0.170	0.344
	CH₄	0.055	-0.064	-0.086	0.352	0.301	0.139
	N₂O	0.633*	0.746**	0.787**	-0.093	-0.097	-0.103
GD	CO₂	-0.300	-0.151	-0.060	0.039	-0.116	-0.206
	CH₄	-0.283	0.025	0.102	-0.440	-0.448	-0.315
	N₂O	0.773**	0.833**	0.778**	0.150	-0.227	-0.429
ZP	CO₂	-0.576*	-0.115	0.301	-0.175	0.095	0.232
	CH₄	0.473	0.476	0.488	0.055	0.111	0.114
	N₂O	-0.468	-0.071	0.340	-0.034	0.173	0.244
ZD	CO₂	-0.616*	-0.441	0.338	0.468	0.066	-0.675*
	CH₄	-0.273	-0.180	0.068	0.710**	0.601*	-0.118
	N₂O	-0.568	-0.066	0.267	0.769**	0.482	-0.187
Total	CO₂	-0.374**	-0.153	0.099	0.059	0.093	-0.022
	CH₄	0.026	0.058	0.157	0.355*	0.289*	-0.009
	N₂O	0.260	0.351*	0.283	0.082	0.097	0.042

TC soil total C, TN soil total N, soil TP total P, C/N soil C/N ratio, C/P soil C/P ratio, N/P soil N/P ratio, GP upper tidal flat in presence of crabs, GD upper tidal flats in absence of crabs, ZP mid-tidal flats in presence of crabs, and ZP mid-tidal flats in absence of crabs. *P < 0.05, **P < 0.01
crabs was correlated with greater N/P ratios and thus specially with the lower TP concentration.

Nutrient ratios and C concentration have important implications for C storage. In this study, we found the ecological stoichiometric ratios (C/N, C/P, and N/P) were positively correlated with C stocks, supporting findings of Wang et al. (2016). The N/P ratio in soils of our study without and with crabs (2.03 and 2.14) was lower than the national wetland N/P ratio (13.6) (Zhang et al. 2016); in general, a lower N/P ratio indicates greater primary productivity capacity, but N-limitation may become more critical for plant growth in this wetland area under increasing temperatures due to climate change (Wang et al. 2015c).

Effect of presence of crabs on relationships between soil greenhouse gas emissions and soil nutrient and ecological stoichiometry

The availability of soil organic C is an important factor for microbial-mediated decomposition processes and CO2 flux (Vieux et al. 2013). Crabs convert litter into debris through feeding and digestion, and this debris is subsequently incorporated into the soil in the form of excrement; this process increases input to the soil of organic substances and abundance and activity of soil microbes that altogether lead to accelerated C-cycling (Žifčáková et al. 2016), accumulation of organic C in the soil, and increased CO2 production and emissions (Mehnaz et al. 2018). When oxidation of organic matter is incomplete, as expected under flooding conditions, the production of a series of pyrolytic compounds increases, and this increases the resistance to chemical and biological degradation (Shahbaz et al. 2017). However, crab activity increases aeration and destroys large aggregates, allowing greater decomposition of soil organic matter until complete oxidation occurs, resulting in greater CO2 formation (Lehmann and Kleber 2015; Murphy et al. 2017).

Consistently, in mid-flooding plots without crabs, we found a positive correlation between CH4 emission flux and ratios of C/N and C/P, indicating that increasing amounts of organic C substrates with lower nutritional quality favored growth and development of soil methanogens and an increase in CH4 production and emissions in the absence of crabs. This was not observed in the presence of crabs suggesting the role of crabs in increasing soil aeration and destroying large aggregates.

Other drivers of greenhouse gas emissions from wetland soils

In this study, the CO2 flux of soil was positively correlated with soil temperature, likely as a result of associated increases in soil microbial abundance and activity (Andrews et al. 2000). Increases in soil temperature to 35 °C drive increases in the abundance and activity of soil microorganisms and CO2 emission flux (Pugh et al. 2018). Soils contain autotrophic and heterotrophic respiring microorganisms (Murdiyarso et al. 2010), and temperatures of c. 15–31 °C enhance wetland soil microbial activity and accelerate the rate of degradation of soil organic C, leading to greater releases of CO2 (Yang et al. 2017).

We found that emissions of CH4 from the soil were positively correlated with soil temperature, supporting a previous study in a wetland (Yang et al. 2017). The associated increase in soil microbial activity with temperature increases soil O2 consumption, and this stimulates the growth of methanogens (Zheng et al. 2018), thus observing a positive correlation between soil N2O flux and soil temperature consistent with Tian et al. (2015).

As soil temperatures rise, soil microbial nitrification and denitrification and N2O emission rate similarly increase (Castaldi 2000). The optimum soil temperature range for nitrification is c. 15–35 °C, while that for denitrification is c. 5–75 °C (Sun et al. 2010), so it is likely that these processes were active in this study, with greater levels of microbial activity and associated N2O emissions from soil. The soil water content, which was 44.2–59.1%, was positively correlated with N2O flux, probably because nitrification processes are favored in this range of soil water content (Bramley and White 1989; Szukics et al. 2010). These results support a previous study that showed N2O production and emissions increased with increasing soil water content (Di et al. 2014). N2O flux was positively correlated with soil pH, consistent with what observed in previous reports (Nkongolo et al. 2008; Duan et al. 2018), and associated with the microbial growth (Castellano-Hinojosa et al. 2018). Moreover, the wetland anaerobic environment was rich in ammonium substrate, and then N2O flux here is mainly produced by nitrification, and its emissions increase with the increase of soil pH.

Conclusion

This study, at the best of our knowledge, is the first that has studied the shift of gas emissions and nutrient stoichiometry due to the presence of crabs in a subtropical estuarine wetland ecosystem. The presence of crabs mainly accelerates the C and N cycling probably due to increasing aeration, allowing greater decomposition of soil organic matter with greater CO2 formation. However, crab presence, especially in up-tidal sites, decreased soil P concentration, thus rising soil C/P and N/P ratio.

Crab activity (feeding and digestion) also favored the incorporation of litter into soil in the form of excrement; this process increased the input of organic substances to soil and the abundance and activity of soil microbes, both leading to accelerated C-cycling and increased CO2 production and
emissions. Moreover, crab burrowing activity resulted in the heterogeneous creation of anaerobic and aerobic micro-sites, where soils surrounding burrows were compacted and anaerobic, while burrows facilitate advection and diffusion of O₂. This soil environment generates the conditions favorable for CH₄ production and for N₂O emission. Cumulative CH₄ emissions were significantly higher with than without crabs under both tidal intensities, whereas cumulative CO₂ and N₂O emissions were also higher with than without crabs, but the impact was significantly higher under up- than under middle-tidal intensity.

The rise of sea level due to global warming may increase the intensity and frequency of flooding, thus promoting the activity of crabs in wetlands, along with associated changes in soil properties, thus inducing a positive feedback effect on global warming.

Acknowledgments The authors would like to thank Dengzhou Gao, Xu Song, and Kang Xu for their assistance with field sampling. Funding was provided by the National Science Foundation of China (41571287), the Outstanding Youth Scientific Research Talents Cultivation Plan in Colleges and Universities of Fujian Province 2017, Spanish Government grant CGL2016-79835, Catalan Government grant SGR 2017-1005, and European Research Council Synergy grant ERC-SyG-2013-610028, IMBALANCE-P.

Compliance with ethical standards

Conflict of interest The authors declare no conflicts of interest.

References

Ahmad S, Li C, Dai G, Zhan M, Wang J, Pan S, Cao C (2009) Greenhouse gas emission from direct seeding paddy field under different rice tillage systems in Central China. Soil Tillage Res 106:54–61

Allen AP, Gillooly JF (2009) Towards an integration of ecological stoichiometry and the metabolic theory ecology to better understand nutrient cycling. Ecol Lett 12:369–384

Altor AE, Mitsch WJ (2008) Pulsing hydrology, methane emissions and carbon dioxide fluxes in created marshes: a 2-year ecosystem study. Wetlands 28:423–438

Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the δ¹³C of soil-respired CO₂. Soil Biol Biochem 32:699–706

Angr Y, Kebbouche-Gana S, Djalali NE, Khemili-Talbi S (2016) Novel approach for the ammonium removal by simultaneous heterotrophic nitrification and denitrification using a novel bacterial species co-culture. World J Microbiol Biotechnol 32:36

Barton K (2012) MuM. Multi-model inference. R package version 1.7.2. http://CRAN.R-project.org/package=MuMn. at http://cran.R-project.org/package=MuMn. Accessed 16/02/2017

Blagodatsky S, Smith P (2012) Soil physics meets soil biology: towards better mechanistic prediction of greenhouse gas emissions from soil. Soil Biol Biochem 47:78–92

Bramley RGV, White RE (1989) The effect of pH, liming, moisture and temperature on the activity of nitrifiers in a soil under pasture. Soil Res 27:711–724

Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q (2013) Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol 19:1325–1346

Burgin AJ, Groffman PM (2012) Soil O₂ controls denitrification rates and N₂O yield in a riparian wetland. J Geophys Res-Biogeoc 117:G01010

Castaldi S (2000) Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol Fertil Soils 32:67–72

Castellano-Hinojosa A, González-López J, Bedmar EJ (2018) Distinct effect of nitrogen fertilisation and soil depth on nitrous oxide emissions and nitrifiers and denitrifiers abundance. Biol Fertil Soils 54:829–840

Chen GC, Tam NFY, Ye Y (2010) Summer fluxes of atmospheric greenhouse gases N₂O, CH₄, and CO₂ from mangrove soil in South China. Sci Total Environ 408:2761–2767

Chen GC, Ye Y, Lu CY (2008) Effect of Kandelia candel mangrove rehabilitation on macro-benthic fauna in Julongjiang River estuary. J Xiamen University: Nat Sci 47:260–264

Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochchemistry 85:235–252

Cragg RG, Bardgett RD (2001) How changes in soil faunal diversity and composition within a trophic group influence decomposition processes. Soil Biol Biochem 33:2073–2081

Cui S, Shi Y, Groffman PM, Schlesinger WH, Zhu YG (2013) Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010). PNAS 110:2052–2057

Daleo P, Iribarne O (2009) The burrowing crab Neohelice granulate affects the root strategies of the cordgrass Spartina densiflora in SW Atlantic salt marshes. J Exp Mar Biol Ecol 373:66–71

Di HJ, Cameron KC, Podolyan A, Robinson A (2014) Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil. Soil Biol Biochem 73:59–68

Du HN, Xie WX, Zhao QS, Ye SY, Ma XF (2016) Characteristics of methane emission fluxes in wetlands of Dagu River estuary in Jiaozhou Bay. Wetlands 14:44–49

Duan M, House J, Liu Y, Chang SX (2018) Contrasting responses of gross and net nitrogen transformations to salinity in a reclaimed boreal forest soil. Biol Fertil Soils 54:385–396

Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB (2009) Biological stoichiometry from genes to ecosystems. Ecol Lett 12:369–384

Enright MC, Syrett J, Vergin K, Freyer T, Raskin L, Reynolds MG, Johnson CD (2012) Leaf nitrogen and phosphorus availability explain root strategy variation in a grassland soil. Soil Biol Biochem 51:1–6

Esteves FA (2009) Benthic bioturbator enhances CH₄ fluxes among benthic bioturbers in a grassland soil. Soil Biol Biochem 73:59–68

Figueiredo-Barbosa MP, Caliman A, Leal JF, Bozelli RL, Farjalla VF, Esteves FA (2009) Benthic bioturbator enhances CH₄ fluxes among aquatic compartments and atmosphere in experimental microcosms. Can J Fish Aquat Sci 66:1649–1657

Han W, Fang J, Guo D, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

Harley JF, Carvalho L, Dudley B, Heal KV, Rees RM, Skiba U (2015) Spatial and seasonal fluxes of the greenhouse gases N₂O, CO₂, and CH₄ in a UK macrotidal estuary. Estuar Coast Shelf Sci 153:62–73

Hotorn R, Brix Y, Westfall P (2013) Package “mulcomp” (WWW document). U.R.L. http://cran.stat.sfu.ca/web/packages/mulcomp/mulcomp.pdf. (accessed 19.12.17)

Hou H, Peng S, Xu J, Yang S, Mao Z (2012) Seasonal variations of CH₄ and N₂O emissions in response to water management of paddy fields located in Southeast China. Chemosphere 89:884–892

Hu WF, Zeng CS, Gao JY, Zhang WL, Zhang LH, Wang WQ, Huang JF, Yan YY (2015) Response of methane production and oxidation potential to exogenous substances in the Phragmites australis marsh
sediments of Shanyuan wetland in the Min River estuary. Acta Sci Circumst. 35:1116–1124
Hu Z, Wu S, Ji C, Zou J, Zhou Q, Liu S (2016) A comparison of methane emissions following rice paddies conversion to crab-fishing wetlands in Southeast China. Environ Sci Pollut Res 23:1505–1515
IPCC (2014) Climate change 2014: synthesis report. In: Core writing team, Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental panel on climate change. IPCC, Geneva
Kammann C, Hepp S, Lenhart K, Müller C (2009) Stimulation of methane consumption by endogenous CH₄ production in aerobic grassland soil. Soil Biol Biochem 41:622–629
Kristensen E, Flindt MR, Uldum S, Borges A, Abril G, Bouillon S (2008) Emission of CO₂ and CH₄ to the atmosphere by sediments and open waters in two Tanzanian mangrove forests. Mar Ecol Prog Ser 370: 53–67
Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68
Liang LL, Eberwein JR, Allsman LA, Grantz DA, Jenerette GD (2015) Regulation of CO₂ and N₂O fluxes by coupled carbon and nitrogen availability. Environ Res Lett 10:034008
Liu J, Chen ZL, Xu SY, Wang DQ, Zheng XM (2008) Impacts of burrowing crab on the dissolved inorganic nitrogen exchange at the sediment-water interface in the intertidal flat of the Yangtze estuary, Mar Sci 32:10–16
Liu JQ, Zeng CS, Chen N (2006) Research of Minjiang River estuary wetland. Science Press, Beijing
Liu M, Hou LJ, Yuan XS, Jie YU, Ni OD, Mei LQ (2005) Experimental simulation of the effects of macrobenthos on the microcycling of nitrogen in the Yangtze estuarine and tidal flat ecosystem. Acta Ecol Sin 25:1132–1137
Liu WL, Xie WX, Zhao QS, Zhu KJ, Yu RR (2014) Spatial distribution and ecological stoichiometry characteristics of carbon, nitrogen and phosphorus in soil in Phragmites australis tidal flat of Jiaozhou bay. Wetland Sci China 12:362–368
Liu YY, Jun Z, Lin JD, Wu HH (2015) Invasion and morphological variation of the non-indigenous barnacle Chthamalus challenger (Hoek, 1883) in Yangshan port and its surrounding areas. J Ocean Univ China 14:575–583
Lu RK (1999) Analysis methods of soil science and agricultural chemistry. Agriculture Science and Technology Press, Beijing
Mactavish RM, Cohen RA (2017) Water column ammonium concentration and salinity influence nitrogen uptake and growth of Spartina alterniflora. J Exp Mar Biol Ecol 488:52–59
Mander U, Shirmohammadi A (2008) Transport and retention of pollutants from different production systems. Boreal Environ Res 13:177–184
Mehnaz KR, Keitel C, Dijkstra FA (2018) Effects of carbon and phosphorus addition on microbial respiration, N₂O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biol Fertil Soils 54:481–493
Mereta ST, Boets P, Meester LD, Goethals PLM (2013) Development of a multimetric index based on benthic macroinvertebrates for the assessment of natural wetlands in Southwest Ethiopia. Ecol Indic 29:510–521
Mortimer RJG, Davey JT, Krom MD, Watson PG, Frickers PE, Clifton RJ (1999) The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber estuary. Estuar Coast Shelf Sci 48:683–699
Mosseman-Valtierra S, Gonzalez R, Kroeger KD, Tang J, Chao WC, Crusius J, Bratton J, Green A, Shelton J (2011) Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N₂O. Atmos Environ 45:4390–4397
Murdiyarso D, Hergoualc’h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Nat Acad Sci 107:19655–19660
Murphy CJ, Baggs EM, Morley N, Wall DP, Paterson E (2017) Nitrogen availability alters rhizosphere processes mediating soil organic matter mineralisation. Plant Soil 417:499–510
Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Bouschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, p 714
Nkongolo NV, Kuramochi K, Ryuusuke H (2008) Nitrous oxide (N₂O) emissions from a Japanese lowland soil cropped to onion: ii. Relationship with soil chemical properties. Int J Agric Res 3:371–385
Peltola O, Hensen A, Marchesini LB, Helfter C, Bosveld FC, Bulk WCM, Haapanala S, Huissteden Jv, Laurila T, Lindroth A, Nemitz E, Rockmann T, Vermeulen AT, Mammarella I (2015) Studying the spatial variability of methane flux with five eddy covariance towers of varying height. Agric For Meteorol 214-215: 456–472
Pinheiro J, Bates D, DebRoy S, Sarkar D, Core TR (2016) nlme: linear and nonlinear mixed effects models. R package version 3.1–126, http://CRAN
Pugh CA, Reed DE, Desai AR, Sulman BN (2018) Wetland flux controls: how does interacting water table levels and temperature influence carbon dioxide and methane fluxes in northern Wisconsin? Biogeochemistry 137:15–25
Raamsdonk LM, Teusink B, Broadhurst D, Zhang NS, Hayes A, Walsh MC, Berden JA, Bruddle KM, Kell DK, Rowland JJ, Westerhoff HV, van Dam K, Oliver SG (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19:45–50
RoyChowdhury T, Bramer L, Hoyt DW, Kim YM, Metz TO, McCue LA, Dieffenderfer HD, Jansson JK, Bailey V (2018) Temporal dynamics of CO₂ and CH₄ loss potentials in response to rapid hydrological shifts in tidal freshwater wetland soils. Ecol Eng 114:104–114
Ruban V, López-Sánchez JF, Parido P, Rauret G, Muntiah H, Quevauviller P (1999) Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. J Environ Monit 1:51–56
Sardans J, Rivas-Ubach A, Peñuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111: 1–39
Sasaki A, Nakao H, Yoshitake S, Nakatsubo T (2014) Effects of the burrowing mud shrimp, upogebia yokoyai, on carbon flow and microbial activity on a tidal flat. Ecol Res 29:493–499
Shahbaz M, Kuzuyakov Y, Heitkamp F (2017) Decrease of soil organic matter stabilization with increasing inputs: mechanisms and controls. Geoderma 304:76–82
Simioni F, Campos VA, Dorado-Rodrigues TF, Penha J, Strüssmann C (2014) Crab burrows and termite termal chimneys as refuges for anurans in a neotropical wetland. Salamandra 50:133–138
Sitters L, Bakker ES, Veldhuis MP, Veen GF, Venterik HO, Vanni MJ (2014) Crab burrows as conduits for groundwater-surface water exchange in Bangladesh. Geophys Res Lett 41:8342–8347
Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton
Sun ZQ, Hao QJ, Jiang CS, Wang DY (2010) Advances in the study of nitrous oxide production mechanism and its influencing factors in agricultural soils. Chin J Soil Sci 41:1524–1530

Suren AM, Lambert P, Sorrell BK (2011) The impact of hydrological restoration on benthic aquatic invertebrate communities in a New Zealand wetland. Restor Ecol 19:747–757

Szukics U, Abell GCJ, Hõld V, Mitter B, Sessitsch A, Hackl E, Zecheimter-Boltenstern S (2010) Nitrifiers and denitrifiers respond rapidly to changed moisture and increasing temperature in a pristine forest soil. FEMS Microbiol Ecol 72:395–406

Tessier JT, Raynal DJ (2003) Use of nitrogen to phosphorus ratio in plant tissue as indicator of nutrient limitation and nitrogen saturation. J Appl Ecol 40:523–534

Tian H, Chen G, Lu C, Xu X, Ren W, Zhang B, Banger K, Tao B, Pan S, Liu M, Zhang C, Bruhwiler L, Wofsy S (2015) Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosys Health Sustain 1:4–20

Van Nedervelde F, Cannicci S, Koedam N, Dahdouh-Guebas F (2015) What regulates crab predation on mangrove propagules? Acta Oecol 63:63–70

Vermeiren P, Sheaves M (2015) Modeling intertidal crab distribution patterns using photographic mapping among tropical Australian estuaries. Estuar Coasts 38:1545–1556

Vieux F, Soler LG, Touazi D, Darmon N (2013) High nutritional quality is not associated with low greenhouse gas emissions in self-selected diets of French adults. Am J Clin Nutr 97:569–583

Wang BQ, Xue JZ, Zhuang H, Wu HX (2011) Community structure and diversity of macrobenthos in the intertidal zones of Yangshan port. Acta Ecol Sin 31:5865–5874

Wang WQ, Lai DYF, Sardans J, Wang C, Datta A, Pan T, Zeng C, Bartrons M, Peñuelas J (2015a) Rice straw incorporation affects global warming potential differently in early va. Late cropping seasons in Southeastern China. Field Crop Res 181:42–51

Wang WQ, Min Q, Sardans J, Wang C, Asensio D, Bartrons M, Peñuelas J (2016) Organic cultivation of jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry. Agron J 108:1–13

Wang WQ, Sardans J, Lai DYF, Wang C, Zeng C, Tong C, Liang Y, Peñuelas J (2015b) Effects of steel slag application on greenhouse gas emissions and crop yield over multiple growing seasons in a subtropical paddy field in China. Field Crop Res 171:146–156

Wang WQ, Wang C, Sardans J, Zeng CS, Tong C, Peñuelas J (2015c) Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil–plant system in the Minjiang river tidal estuarine wetlands of China. Wetl Ecol Manag 23:865–880

Wang X, Li HX, Zhu L, Liu B, Hu F (2008) Effects of earthworm activities on soil nitrogen mineralization. Acta Pedol Sin 45:641–648

Weissberger EJ, Coiro LL, Davey EW (2009) Effects of hypoxia on animal burrow construction and consequent effects on sediment redox profiles. J Exp Mar Biol Ecol 371:60–67

Welsh DT, Nizzoli D, Fano EA, Viaroli P (2015) Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment. Estuar Coast Shelf Sci 154:84–93

Xiao Y, Shang LN, Huang ZG, Zhang WG, Xue ZS, Zhang ZS, Lu XG (2014) Ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in mountain swamps of eastern Jilin Province. Geoscience 34:994–1001

Yang WB, Yuan CS, Tong C, Yang P, Yang L, Huang BQ (2017) Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Mar Pollut Bull 119:289–298

Zhang ZS, Lu XG, Xue ZS, Liu XH (2016) Is there a Redfield-type C:N:P ratio in Chinese wetland soils? Acta Pedol Sin 53:1160–1169

Zeng C, Yang Z, Gu B, Wullschleger SD, Graham DE (2018) Impacts of temperature and soil characteristics on methane production and oxidation in arctic polygonal tundra. Biogeosciences 15:6621–6635

Žiříková L, Větrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.