Copper Oxide Nanoparticles: Reactive Oxygen Species Generation and Biomedical Applications

Sadaf Sarfraz¹, Akmal Javed¹, Shahzad Sharif Mughal¹, Muzammil Bashir¹, Abdul Rehman¹, Sajida Parveen¹, Anam Khushi¹, Muhammad Kamran Khan²

¹Department of Chemistry, Lahore Garrison University, Lahore, Pakistan
²Department of Botany, Government College University, Faisalabad, Punjab, Pakistan

Email address: shezi1130@gmail.com (S. S. Mughal)
*Corresponding author

To cite this article:
Sadaf Sarfraz, Akmal Javed, Shahzad Sharif Mughal, Muzammil Bashir, Abdul Rehman, Sajida Parveen, Anam Khushi, Muhammad Kamran Khan. Copper Oxide Nanoparticles: Reactive Oxygen Species Generation and Biomedical Applications. International Journal of Computational and Theoretical Chemistry. Vol. 8, No. 2, 2020, pp. 40-46. doi: 10.11648/j.ijctc.20200802.12

Received: June 22, 2020; Accepted: November 3, 2020; Published: November 19, 2020

Abstract: Copper oxide is a p-type semiconductor which has many applications in a different field. Copper oxide has excellent applications as an antioxidant, antibacterial, and antitumor or anticancer. Copper oxide nanoparticle combines with the cell membrane and enters into a cell; generate reactive oxygen specie (ROS), which causes oxidative stress in the cell. Oxidative stress leads to metastasis, cancer proliferation, apoptosis, DNA damage, cytotoxicity, and unregulated cell signaling. Hydroxyl free radical generated by Nanoparticles, combined with DNA and yield 8-hydroxyl-2-deoxyguanosine (8-OH dG), resultantly DNA is damaged. CuO nanoparticle shows antibacterial activity on different bacterial strains such as staphylococcus aureus, bacillus circulens BP2, Escherichia coli, and P. aeruginosa. Recently, CuO nanoparticles have applications in the detection of Cholesterol, lactate biosensor, DNA sequencing of microbe, and anti-HIV drug analysis. There is specialized CuO nanoparticle such as Glucose sensor, Hydrogen peroxide sensor, Immunosensor, Dopamine sensor for the detection of the different biomolecule. ROS generated by CuO nanoparticle causes toxicity, which leads to cell death. There is a fascinating area of research against tumors by nanoparticle use because of its antitumor nature. Metal nanoparticle exhibits anticancer activity due to physicochemical properties as antioxidant action or use of external stimuli. Free radical which are produced by the metal nanoparticle, kill cancer cells.

Keywords: Copper Oxide Nanoparticle, Reactive Oxygen Specie (ROS), Sensors, Cancer Therapy, Biomedical Applications, Cytotoxicity and Toxicity

1. Introduction

Nanotechnology has several applications in biosensors, cosmetics, imaging and diagnosis, and target drug delivery. Nanoparticles have excellent physiological properties due to which they got great attraction [1]. As the size of metal reduced from bulk to nanometer, properties like active surface area, hardness, electrical conductivities, biological activities, and chemical reactivity, are also changed. Due to the high surface to volume ratio of metal nanoparticle, they have significant applications in antibacterial activities. Metal nanoparticles can also be coated onto the polymer surface or combined with a polymer to achieve antimicrobial applications [2]. Copper oxide is in semiconductor nature and possesses a monoclinic structure. Copper oxide has wide application due to physical properties [3]. It is a p-type semiconductor, so used in many applications like field emission emitters, high-temperature superconductors, catalysis, sensors, and batteries [4]. In recent times, CuO nanoparticle was observed for microbial activity and reach to the respective organ by crossing the biological membrane [5]. There has been a utility of copper for many years as a
fungicidal agent. Free form or complex form of copper has
erganic activity. In recent studies, copper nanoparticles
are used in the paint industry as the antifouling coating.
Copper has also been used as a copper nanocomposite to
control fungi [6]. Metal nanoparticles exhibit antitumor
activity due to their ability to act as an antioxidant or use
of external stimuli. Free radical which are produced by the
metal nanoparticles, kill cancer cells and also reduce tumor
development. Metal nanoparticles reduced tumor development
due to their antioxidant abilities [7].

Active or Passive processes can employ against cancer.
There are merits of the passive process like Retention effect and
permeability. The nanoparticle can quickly pass into the
cancerous cell and kill them [17]. In the Active process, the
nanoparticle is synthesized to target the cancerous cell. A ligand
used as a receptor to the nanoparticle to specify target cancerous
cells [8]. Apart from biomedical applications, CuO
nanoparticles are toxic for animal cells, including mammalian
cells, due to more production of reactive oxygen species (ROS).
Thus oxidative stress is induced and increases the toxic effect,
which leads to damage of mitochondria and DNA [5, 9, 11].

In this review article, our aim to represent CuO
nanoparticle’s mode of action i.e generation of Reactive
oxygen species (ROS) and biomedical applications along with
its toxicity toward environment and animals, including humans.

2. Reactive Oxygen Specie (ROS)

It is a natural byproduct resulting from cellular oxidative
metabolism and a vital role in cell homeostasis [12]. ROS is
produced by intracellular organelles like mitochondria,
endoplasmic reticulum, etc. as shown in figure 2 [21, 22]. By
contrast, extracellular ROS are produced by ROS-inducing
agents like nanoparticle, radiation, and pollutants when
exposed to cell [23] Figure 1. It includes free radical and
non-radical such as superoxide and hydrogen peroxide,
respectively [13]. It is oxygen free radical and short-lived
specie. It is converted into hydrogen peroxide with the help of
superoxide dismutase (SODs) [14]. Superoxide is produced by
incomplete electron reduction of oxygen and then
converted into hydrogen peroxide by SOD, which acts as an
antioxidant in cells for oxygen exposure. ROS are intermediate in cellular levels, which are controlled by several
enzymes like SOD, Catalase (CAT), and Glutathione (GPS) or
by several antioxidants like Glutathione, Vitamin E, ascorbic
acids and flavonoids [9]. It imbalances between ROS
generation and its neutralization, which leads to harmful
effects on cell signaling mechanisms or oxidative harm for
biomolecules like nucleic acid, lipid, and protein [15]. ROS
generation promotes signaling molecule activation that leads
to cell death [16-19].

2.1. Mechanism of ROS

CuO nanoparticles act as a catalyst and enhance ROS
generation through Fenton reactions or Haber-Weiss reaction,
which produces hydroxyl radical [20, 21]. While hydroxyl
free radical is formed by the reaction of oxidized metal ion and
hydrogen peroxide in Haber-Weiss reaction [22, 23].
Nanoparticle interacts with the membrane and invades the cell.
They are ultimately transported into the cell by endocytosis.
Nanoparticle starts intracellular ROS generation by catalysis of
free radical reaction in mitochondria. The mitochondrial
membrane is depolarized and NADPH enzyme activation due
to interference in the electron transport chain by nanoparticles
[24]. CuO nanoparticles block the electron transport chain and
increase oxygen-free radicals and lead to oxidative stress in the
cell [29].

Moreover, in the ROS-dependent mechanism, immune cells
are activated by nanoparticle exposure via NADPH oxidase
(NOX) activation [25]. Free radicals produced by
nanoparticles reduced the Glutathione (GSH) into Glutathione
disulfide, leading to oxidative stress in cells [26, 27]. Cell
experience showed antioxidant defense when exposed to a low
level of CuO nanoparticle, and oxidative stress is overcome.
In contrast, the antioxidant system is overwhelmed by
exposure to a high level of CuO nanoparticle, which leads to
inflammation and cytotoxicity. Oxidative stress leads to
metastasis, cancer proliferation, apoptosis, DNA damage,
cytotoxicity, and unregulated cell signaling [28-30].

2.2. Cytotoxicity and DNA Damage

Hydroxyl free radical generated by nanoparticles, combined
with DNA and yield 8-hydroxyl-2-deoxyguanosine (8-OHdG),
resultantly DNA is damaged [31]. Polyunsaturated fatty acids
also oxidize, and lipid peroxide is produced at the start of ROS
generation. Nanoparticle genotoxicity caused mutation by
lipid peroxidation [32, 33]. Nanoparticle induced ROS cause
toxicity in several biological systems like tumor cell, human
erthrocytes, and skin fibroblasts [34].
3. Biomedical Application of CuO

3.1. Antibacterial Activity

CuO Antibacterial activity is investigated on different bacterial strains such as staphylococcus aureus, bacillus circulens BP2, Escherichia coli, and P. aeruginosa. The growth curve of bacterial culture was measured in antibacterial activity test in the presence of CuO nanoparticles. Spectrophotometer (600nm) was used to measure the optical density (OD) of bacterial culture [60]. The result showed prominent bacterial growth inhibition in culture concerning control [18]. It is supposed that bacterial growth is inhibited/killed by the use of CuO nanoparticles, although a high concentration of copper oxide nanoparticles shows more bactericidal effect [36]. Copper shows antibacterial activity because it damages protein, nucleic acid, and cell membranes, respectively [37, 38]. Copper attach to guanine of DNA molecule activation of oxidative stress occur, which leads to dislodging of DNA strands and resulting from 8-hydroxy-2-deoxyguanosine [39]. It is observed that copper has biocidal activity because it is effective against bacteria and viruses such as staphylococcus aureus strain, influenza viruses, bronchitis, human immunodeficiency virus, and bacteriophage [40, 41]. Reactive oxygen species produced by CuO nanoparticle penetrate cell by interacting with cell membranes, which lead to disruption of cell enzyme [42].

3.2. Sensors for Biomolecules Detection

Ultrafine mono-dispersed CuO nanoparticle deposited on Indium tin oxide glass substrate electrophoretically, used as a sensor for the detection of cholesterol [43]. CuO-graphene nanospheres used as a cholesterol sensor. CuO nanoparticle consisting of copper oxide-CeO2 used as a lactate biosensor [44]. Glassy carbon electrode having CuO nanoparticle with single-walled carbon nanotube, used in DNA sequence detection of bacteria and virus for identification of disease [45, 46]. CuO nanoparticles used for the assay of anti-HIV drugs [47].

3.3. Sensor for Glucose Detection

CuO nanoparticles are used in a glassy carbon electrode to detect glucose in the basic medium [48]. CuO/graphene nanocomposite modified glassy carbon electrode highly selective and sensitive for the detection of glucose [49].

3.4. Sensor for Hydrogen Peroxide Detection

Hydrogen peroxide is an intermediate in the biological system. So its detection is essential in hypoxic conditions and oxidative stress in all tissue and cell [50]. CuO nanoparticles can oxidize many chemical compounds. Hydrogen peroxide determined by the nanostructure of CuO [51]. CuO graphene nanocomposite can be used to monitor hydrogen peroxide in vivo methods.

3.5. Immunosensor for Immune Complex

Copper nanostructure such as CeO2-CuO [52], Ag-CuO [53], platinum CuO [54], Palladium CuO [55] used as tumor biomarker like alpha-fetoprotein [56, 57]. It has noted that CuO nanoparticles give synergetic effects and accelerate signal transduction.

3.6. Sensors for Dopamine Detection

Dopamine is a neurotransmitter that is an integral part of the central nervous system. It causes low-level neurological disorders like senile dementia, epilepsy, Parkinson’s Huntington’s schizophrenia, and Alzheimer’s disease [58-61]. Modified glassy carbon electrode CuO nanoparticle is used for dopamine sensors [62]. CuO/CNTs/Nafion composite used to enhance dopamine oxidation along with better peak current signals [63].

3.7. Cancer Nano Medicine

CuO nanoparticles selectively induce apoptosis in tumor cells and inhibit growth, which leads to metastasis of melanoma [64, 65]. CuO nanoparticle used against tumor of prostate, eye [66], breast [67], liver [68], brain [69], kidney [70] and lungs [71]. Upon entering of nanoparticle into cell or nucleus, it causes mitochondrial localization, DNA damage, mutation, and alteration of gene expression. CuO nanoparticle targets mitochondria and starts apoptosis due to oxidative stress in cells [70].

4. Toxic Effects

CuO nanoparticles have many applications in-vitro and
CuO nanoparticles pose toxicity due to small size and positive surface charge, which facilitate interactions between nanoparticles and cells. CuO nanoparticles pose a more toxic effect on algae and protozoa Tetrahymena Thermophila as compared to bulk form [4]. A study revealed that CuO nanoparticles enhance oxidative DNA damage, mitochondrial, and DNA damage [72]. CuO nanoparticles showed a more toxic effect on human skin organ culture and lungs culture cells [73]. A Study reports that hemolysis increase when cell membrane is damage by CuO nanoparticles [10]. A Study reports that hemolysis increase when the cell membrane is damaged by CuO nanoparticles [10]. It has stated that CuO nanoparticles affect human hepato blastoma (HEPG2) cells, which stop melanoma cell growth [74]. CuO nanoparticles pose neuronal toxicity by the loss of neurons membrane. CuO nanoparticles induce cell death in lymphocyte and hence weaken the human immune system [75].

CuO nanoparticle is an excellent antibacterial, antifungal, and antioxidant material which control microbe effectively because CuO penetrates membrane due to its high surface area. CuO nanoparticles are used in food packaging because it inhibits bacterial growth. Cu nanocomposite has many applications in biomedical detection due to excellent chemical and thermal stability and electrical conductivity. CuO acts as a drug carrier in nanomedicine. Nanomaterial based drugs have been developed to selectively kill the cancerous cell in target cancer therapy in the field of nanomedicine. Modified CuO nanocrystals with specific ligand interact with specific receptors on the tumor cell. CuO nanoparticle can be used to detect many diseases like cardiac syndrome, neurological disorder, tumors, stress, and diabetes. CuO acts as a biosensor in for pollutants and metabolites. CuO nanoparticle can be used to sense different compounds such as the detection of Cholesterol, lactate biosensor, DNA sequencing of microbe, and analysis of the anti-HIV drug. It was found that excess quantity of CuO nanoparticle promotes toxicity to humans, other living beings, and the environment as well.

References

[1] Sankar, R., et al., Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles. Materials Science and Engineering: C, 2014. 44: p. 234-239.
[2] Ren, G., et al., Characterisation of copper oxide nanoparticles for antimicrobial applications. International journal of antimicrobial agents, 2009. 33 (6): p. 587-590.
[3] Tranquada, J., et al., Evidence for stripe correlations of spins and holes in copper oxide superconductors. nature, 1995. 375 (6532): p. 561.
[4] Chang, Y.-N., et al., The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials, 2012. 5 (12): p. 2850-2871.
[5] Perreault, F., et al., Genotoxic effects of copper oxide nanoparticles in Neuro 2a cell cultures. Science of the Total Environment, 2012. 441: p. 117-124.
[6] Cioffi, N., et al., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 2005. 17 (21): p. 5255-5262.
[7] Caputo, F., M. De Nicola, and L. Ghibelli, Pharmacological potential of bioactive engineered nanomaterials. Biochemical pharmacology, 2014. 92 (1): p. 112-130.
[8] Danhier, F., O. Feron, and V. Prétat, To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of controlled release, 2010. 148 (2): p. 135-146.
[9] Baek, Y.-W. and Y.-J. An, Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Science of the total environment, 2011. 409 (8): p. 1603-1608.
[10] Isani, G., et al., Comparative toxicity of CuO nanoparticles and CuSO4 in rainbow trout. Ecotoxicology and environmental safety, 2013. 97: p. 40-46.

5. Conclusions

CuO nanoparticles possess fascinating physiological properties that can use to get desirable properties. CuO is an emerging horizon for in-vitro and in-vivo therapy and application in the biomedical field.

Figure 3. ROS generation and its consequence, including DNA damage, cell cycle arrest, alteration in apoptosis, and damage to the cell membrane [23].

Figure 4. CuO nanoparticles Toxicity mechanism [76].
Ruiz, P., et al., *Short-term effects on antioxidant enzymes and long-term genotoxic and carcinogenic potential of CuO nanoparticles compared to bulk CuO and ionic copper in mussels Mytilus galloprovincialis*. Marine environmental research, 2015. 111: p. 107-120.

Touyz, R. M., *Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II—editorial review*. Current opinion in nephrology and hypertension, 2005. 14 (2): p. 125-131.

Finkel, T., *Signal transduction by mitochondrial oxidants*. Journal of Biological Chemistry, 2012. 287 (7): p. 4434-4440.

Johnson, F. and C. Giulivi, *Drug targets for novel antioxidant strategies*. Coso, S., et al., *Redox signaling*, 2012. 16 (11): p. 1229-1247.

Guzik, T. J. and D. G. Harrison, *DNA damage by particulate air pollution: studies on free radicals, antioxidants and co-factors*. Mignolet-Spruyt, L., et al., *Oxidative stress properties*. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of experimental botany, 2016. 67 (13): p. 3831-3844.

Bedard, K. and K.-H. Krause, *The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology*. Physiological reviews, 2007. 87 (1): p. 245-313.

Storz, P., *Forkhead homeobox type O transcription factors in the responses to oxidative stress*. Antioxidants & redox signaling, 2011. 16 (11): p. 1229-1247.

Halliwell, B. and J. M. Gutteridge, *Free radicals in biology and medicine*. 2015: Oxford University Press, USA.

Mignolet-Spruyt, L., et al., *Spreading the news: subcellular and organellar reactive oxygen species production and signalling*. Journal of experimental botany, 2016. 67 (13): p. 3831-3844.

Aust, S., et al., *Free radicals in toxicology*. Toxicology and applied pharmacology, 1993. 120 (2): p. 168-178.

Thannickal, V. J. and B. L. Fanburg, *Reactive oxygen species in cell signaling*. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2000. 279 (6): p. L1005-L1028.

Xia, T., et al., *Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm*. Nano letters, 2006. 6 (8): p. 1794-1807.

Risom, L., P. Møller, and S. Loft, *Oxidative stress-induced DNA damage by particulate air pollution*. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2005. 592 (1-2): p. 119-137.

Rahman, K., *Studies on free radicals, antioxidants, and co-factors*. Clinical interventions in aging, 2007. 2 (2): p. 219.

Fenoglio, I., et al., *The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress*. Free radical research, 2008. 42 (8): p. 437-745.

Zhu, X., et al., *Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure*. Small, 2013. 9 (9-10): p. 1821-1830.

Nel, A., et al., *Toxic potential of materials at the nanolevel*. science, 2006. 311 (5761): p. 622-627.

Xia, T., et al., *Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties*. ACS nano, 2008. 2 (10): p. 2121-2134.

Valavanidis, A., T. Vlachogianni, and C. Fiotakis, *8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis*. Journal of environmental science and health Part C, 2009. 27 (2): p. 120-139.

Shukla, R. K., et al., *ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epithelial cells*. Toxicology in vitro, 2011. 25 (1): p. 231-241.

Turski, M. L. and D. J. Thiele, *New roles for copper metabolism in cell proliferation, signaling, and disease*. Journal of Biological Chemistry, 2009. 284 (2): p. 717-721.

Li, Y., et al., *Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans*. Journal of hazardous materials, 2012. 219: p. 221-230.

Vallyathan, V. and X. Shi, *The role of oxygen free radicals in occupational and environmental lung diseases*. Environmental Health Perspectives, 1997. 105 (suppl 1): p. 165-177.

Das, D., et al., *Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles*. Colloids and Surfaces B: Biointerfaces, 2013. 101: p. 430-433.

Borkow, G. and J. Gabbay, *Copper as a biocidal tool*. Current medicinal chemistry, 2005. 12 (18): p. 2163-2175.

Gant, V. A., et al., *Three novel highly charged copper-based biocides: safety and efficacy against healthcare-associated organisms*. Journal of Antimicrobial Chemotherapy, 2007. 60 (2): p. 294-299.

Kawanishi, S., Y. Hiraku, and S. Oikawa, *Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging*. Mutation Research/Reviews in Molecular and Cellular Toxicology, 2001. 488 (1): p. 57-76.

Borkow, G., et al., *Deactivation of human immunodeficiency virus type 1 in medium by copper-oxide-containing filters*. Antimicrobial agents and chemotherapy, 2008. 52 (2): p. 518-525.

Borkow, G., et al., *A novel anti-influenza copper oxide containing respiratory face mask*. PLoS One, 2010. 5 (6): p. e11295.

AshaRani, P., et al., *Cytotoxicity and genotoxicity of silver nanoparticles in human cells*. ACS nano, 2008. 3 (2): p. 279-290.

Singh, J., et al., *Biocompatible cuprous oxide/chitosan nanocomposite platform for biomedical application*. The Journal of Physical Chemistry B, 2012. 117 (1): p. 141-152.

Sharma, V. and S. M. Mobin, *Cytocompatible peroxidase mimic CuO: graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation*. Sensors and Actuators B: Chemical, 2017. 240: p. 338-348.
PSA detection based on Cu-glucose-functionalized cuprous oxide nanowires nanocomposites and Electrochemical Investigation of anti-HIV Drug Nevirapine on Precasted Carbon Nanoparticles Film for surface antigen-sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink.

Yazid, S. N. A. M., I. M. Isa, and N. Hashim, Electroanalysis, 2015. 27 (8): p. 1989-1997.

Xu, D., et al., Design and fabrication of Ag-CuO nanoparticles on reduced graphene oxide for nonenzymatic detection of glucose. Sensors and Actuators B: Chemical, 2018. 265: p. 435-442.

Hasan, A., et al., Recent advances in application of biosensors in tissue engineering. BioMed research international, 2014. 2014.

Ruan, Y., et al., Stable controlled growth of 3D CuO/Cu nanoflowers by surfactant-free method for non-enzymatic hydrogen peroxide detection. Journal of materials science & technology, 2018. 34 (9): p. 1692-1698.

Li, F., et al., Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@ CeO2-Au nanocomposites as integrated triple signal amplification strategy. Biosensors and Bioelectronics, 2017. 87: p. 630-637.

Wang, Y., et al., Simple synthesis of silver nanoparticles functionalized cuprous oxide nanowires nanocomposites and its application in electrochemical immunosensor. Sensors and Actuators B: Chemical, 2016. 236: p. 241-248.

Li, F., et al., Facile synthesis of MoS2@ Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosensors and Bioelectronics, 2018. 100: p. 512-518.

Feng, T., et al., A porous CuO nanowire-based signal amplification immunosensor for the detection of carcinoembryonic antigens. Rsc Advances, 2016. 6 (21): p. 16982-16987.

Wang, Y., et al., Layer-by-layer self-assembly of 2D graphene nanosheets, 3D copper oxide nanoflowers and 0D gold nanoparticles for ultrasensitive electrochemical detection of alpha fetoprotein. Rsc Advances, 2015. 5 (70): p. 56583-56589.

Sun, G., et al., CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosensors and Bioelectronics, 2015. 66: p. 565-571.

Ghodsí, J., et al., Determination of dopamine in the presence of uric acid and folic acid by carbon paste electrode modified with CuO nanoparticles/hemoglobin and multi-walled carbon nanotube. Journal of The Electrochemical Society, 2015. 162 (4): p. B69-B74.
Ahir, M., et al., Tailored-CuO-nanowire decorated with folic acid mediated coupling of the mitochondrial-ROS generation and miR425-PTEN axis in furnishing potent anti-cancer activity in human triple negative breast carcinoma cells. Biomaterials, 2016. 76: p. 115-132.

Chibber, S., S. A. Ansari, and R. Satar, New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. Journal of Nanoparticle Research, 2013. 15 (4): p. 1492.

Rodhe, Y., et al., Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicology in Vitro, 2015. 29 (7): p. 1711-1719.