Genetic Background of β-Lactamase Genes in Extraintestinal Pathogenic Escherichia coli ST131 in Indonesia Based on Whole-Genome Sequencing (WGS) Sequences

Noor Andryan Ilsan1*, Sipriyadi2,3, Melda Yunita4, Siti Nurfaejiah1, Maulin Inggraini1

1Department of Medical Laboratory Technology, STIKes Mitra Keluarga, Margahayu, Bekasi, Indonesia
2Department of Biology, Faculty of Mathematics and Natural Science, University of Bengkulu, Kandang Limun, Bengkulu, Indonesia
3Department of Magister Biology, Faculty of Mathematics and Natural Science, University of Bengkulu, Kandang Limun, Bengkulu, Indonesia
4Department of Medical Education, Faculty of Medicine, Universitas Pattimura, Ambon, Maluku, Indonesia

1. Introduction

Escherichia coli is a rod-shaped Gram-negative bacteria of the Enterobacteriaceae family that causes various diseases in animals and humans. Based on its location in the disease development, E. coli is divided into Enteropathogenic E. coli (EPEC) and Extraintestinal pathogenic E. coli (ExPEC). Although E. coli is classified as normal flora in the human digestive system, E. coli can also cause infection outside the host's intestine due to their niche reservoir. ExPEC causes infections in the urinary tract, kidney, bloodstream, and prostate (Poolman and Wacker 2016). ExPEC is considered a pathogen that can spread infections in either community or hospital environments (Mellata 2013). ExPEC is also increasing antibiotic resistance, limiting the options for its treatment. One of the important diseases caused by ExPEC is bacteremia and sepsis. ExPEC is a common cause of bacteremia in high-income countries, more than other bacteria that also cause bacteremia, such as Staphylococcus aureus and Streptococcus pneumoniae. ExPEC is also a common cause of meningitis and neonatal infection (Johnson et al. 2003; Bonacorsi and Bingen 2005). Patients with ExPEC infection have high morbidity and mortality rates because this bacterium may induce a strong host inflammation response and trigger sepsis (Miajlovic and Smith 2014).

The β-lactam antibiotic is the primary class of antimicrobial that has been used extensively in poultry, farm, and infectious disease treatments.
The overuse of β-lactam antimicrobials triggers resistance in this class of antibiotic. Treatment of β-lactam-resistant *E. coli* is challenging since β-lactam is still the first option and is an effective antimicrobial agent to diminish the wild-type *E. coli*. The resistance mechanism of β-lactam antimicrobial is frequently mediated by acquired resistance genes. These genes encode an enzyme that can degrade the β-lactam antibiotics called the β-lactamase enzyme. Extended-spectrum β-lactamase (ESBL) is considered a class A β-lactam, including 3rd generation β-lactam such as cephalosporins and aztreonam (Rawat et al. 2011). TEM and SHV ESBLs were the first such as cephalosporins and aztreonam (Rawat et al. 2011). TEM and SHV ESBLs were the first discovered and became the dominant genes in 2000 present in β-lactam-resistant *E. coli* (Karim et al. 2001; Pitout et al. 2005). The common ESBL genes are bla_{CTX-M-1}, bla_{CTX-M-14}, bla_{TEM-52}, and bla_{SHV}, together with another variant of bla_{CTX-M}, bla_{TEM}, and bla_{SHV} (Ejaz et al. 2021). Horizontal gene transfer factors drive the dissemination of ESBL genes between humans. ESBL genes are often associated with a transferable element such as insertion sequence (IS) ISEcp1, ISCR1, IS26, and IS10, also a transposable element (transposon) including Tn2, and integron (Poirel et al. 2008; Canton et al. 2012; Schink et al. 2013). Most ESBL genes in *E. coli* isolated from humans are integrated with a plasmid (Carattoli 2013; Ferreira et al. 2014; Guenther et al. 2017). The plasmid has a unique sequence in terms of replication function called replicon. *E. coli* with ESBL genes have been discovered in the plasmid, such as plasmid IncF, IncHI2, IncH1, IncN, and Inc1, another replicon may also contribute (Carattoli 2013).

Sequence type (ST) is a group of bacterial clonality that compares specific sequences of several housekeeping genes. The particular ST types identified may be unique phenotype traits related to virulence or antibiotic resistance. According to a review and meta-analysis of 217 studies, ExPEC ST131 was the most common in the late 2000s (Manges et al. 2019). *E. coli* ST131 with multidrug-resistant (MDR) accessories is becoming a high threat worldwide, with the most frequent being ExPEC type. This ST131 also been known to spread extensively worldwide (Mathers et al. 2015; Pitout and DeVinney 2017). Dissemination of *E. coli* ST131 is common among the patients, and food contamination (Platell et al. 2011). This clonality group can infect humans and animals and causes infections in the urinary tract and bloodstream (Kanamori et al. 2017; Johnson et al. 2017). Recently, *E. coli* ST131 has been the main clonal spread of MDR with CTX-M ESBL compared with another clone (Doi et al. 2017). The study above depicts the importance of ST131 in ExPEC. Meanwhile, only a few studies have been conducted on ExPEC in Indonesia, particularly on whole-genome sequencing (WGS) sequences. Paramitha et al. (2020) recently discovered 22 ExPECs from Indonesian bacteremia patients using WGS data. This study explained the epidemiology of ST type, virulence genes and antimicrobial resistance genes. The most frequent ST type is ST131, among others. Using this approach, we found out more about the β-lactamases genes with their genetic background comparison from WGS data deposited in the National Center for Biotechnology Information (NCBI) database. Furthermore, we also predicted the origin of β-lactamase genes from Indonesian ExPEC origin.

2. Materials and Methods

All *E. coli* ST131 in the Paramitha et al. (2020) study were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/), with accession number PRJNA596854. We collected an entire fasta file of each isolate in one file. This entire WGS file comprises many contigs. In finding the β-lactamase genes, we submitted each WGS fasta file in Resfinder 4.1 server on 16th November 2021 with the *Escherichia coli* database as the setting (Zankari et al. 2017; Clausen et al. 2018; Bortolaia et al. 2020). Plasmid replicon sequence was detected in PlasmidFinder 2.1 on 17th November 2021 (Clausen et al. 2018; Carattoli and Hasman 2020) with setting as follows; *Enterobacteriaceae* database, 95% minimum identity threshold, and 60% minimum coverage identity threshold. Several sequence hits that have unique sequences compared with our *E. coli* ST131 β-lactamases were downloaded from NCBI on 17th November 2021 and then analyzed in BlastN with a homolog search optimized for a highly similar sequence. A Genomic mapping was generated manually with the raw mapping from BlastN mapping. Circular map comparison of genomic data from all *E. coli* ST131 was visualized using CGView server on 21st November 2021 with Prokka annotation, GC content, contig information, and GC skew (Seemann 2014).
3. Results

We chose EC_0406 as a reference against other isolates in circular genomic mapping since it contains more β-lactamase genes, including bla_{DHA-1}, bla_{OXA-10}, $bla_{SHV-120}$, and bla_{TEM-18}. An entire sequence of EC_0406 had a length of about 5.5 megabase pairs. The circular genome visualization of these isolates includes a brief annotation, GC skew and GC content (Figure 1).

We enlarged the circular genome of the CGView to provide more details about the genetic background or surrounding DNA sequences of β-lactamase genes in all ExPEC ST131. Since we used CGView to generate the circular genome visualization, we need to confirm the precise annotation using ResFinder 4.1. Only EC_0406 had bla_{OXA-10} (in CGView circular genomic mapping, it is annotated by bla_{3}) from all ExPEC ST131 in this position (Figure 2A). The bla_{OXA-10} was the only protein-coding sequence (CDS) in its contig. Interestingly, EC_0406 putatively had the same copy of the bla_{OXA-10} presented in another position (Figure 2B is annotated by bla_{7} and bla_{8}, and Figure 3B is annotated by bla_{3}). EC_0406 was the only one that harboured bla_{TEM-1} (annotated by bla_{6} in Figure 2B) as the only CDS in its contig. In Figure 2C, only EC_0406 had $bla_{SHV-120}$ (annotated by bla_{5}). The upstream of the $bla_{SHV-120}$ was $emrE_{3}$ and $folP_{3}$, which were located in the same contig. Interestingly, EC_0911 and EC_1833 had these upstream genes without $bla_{SHV-120}$. In Figure 2D, all ST131 isolates had bla_{DHA-1}. The upstream and downstream of bla_{DHA-1} (annotated by $ampC_{4}$) in EC_0406 were hypothetical protein and $gcvA_{3}$, respectively, in one contig. However, none of the rest isolates contained those genes. There were other two copies of bla_{DHA-1} with identical upstream and downstream patterns in each isolate (Figure 3A and C). According to Figure 3A, only EC_0406 had $bla_{SHV-120}$ (annotated by bla_{4}) with hypothetical protein in the downstream and $ygbJ_{3}$ in the upstream. Also, there was another copy of $bla_{SHV-120}$ with identical surrounding genes in another location (Figure 3C). In Figure 3D, we found bla_{TEM-1} (annotated by bla_{1}) in EC_0406 and EC_1833. Interestingly, in EC_0406, bla_{TEM-1} was surrounded by IS21 family transposase IS1326 downstream and IS1182 family transposase ISCr1 upstream. While in EC_1833, only the upstream was closely related to EC_0406 of bla_{TEM-1} surrounding genes (Figure 3D).

Only several β-lactamase genes, including bla_{OXA-1} and bla_{DHA-1}, were visualized due to the read sequence limitation since these genomes are derived from short-read sequencing. In Figure 4, all of Indonesian ExPEC ST131 had bla_{OXA-1} with AAC(6’)-1b-cr5 in the downstream and $Cab83$ in the upstream with 100% identity. This region also had 100% identity with those in E. coli AH01 plasmid pAH01-4, E. coli NDM4 plasmid unnamed1, Klebsiella pneumoniae INF142 plasmid4, and Salmonella enterica S146 chromosome. One Pseudomonas aeruginosa genome also had this region, yet different only in AAC(6’)-1b-cr5 with 99% identity (lighter grey). While E. coli NC12 chromosome and K. pneumoniae pKP112 harboured bla_{OXA-1} with different surrounding genes than Indonesian ExPEC ST131 isolates. The differences were Class I integrin integrase IntI1 downstream and ANT(3")-1a upstream.

Specifically for bla_{DHA-1}, only EC_0406 was detected from all Indonesian ExPEC ST131. The surrounding genes of this region were had 100% identity with those of E. coli 142 plasmid p142-A-OXA-181, Shigella sonnei FC1428 chromosome, S. sonnei 6207 plasmid pM2901, and Shigella flexneri M2901 pM2901 (Figure 5). Acinetobacter indicus B18 pB18-2 had an identical only in Globulin in the upstream and LysR in the downstream. Moreover, bla_{DHA-1} with LysR downstream of EC_0406 was identical to those in Providencia rettgeri YPR31 pYPR31 and Enterobacter cloacae BSI034 pBSI034. The presence of plasmid backbone in their genomes was detected using PlasmidFinder. All Indonesian ExPEC ST131 harbored IncFIA, IncFIB, and INCFI, except IncFIA was absent in EC_1833.
Figure 1. The circular genomic mapping of WGS EC_0406 as a reference against other isolates. Notes from outermost circle to innermost are as follows; purple: forward transcription direction of EC_0406, purple: reverse transcription direction of EC_0406, the blue circle is EC_2442 sequence, the green circle is EC_0911 sequence, the grey circle is EC_1833, the pink circle is EC_2137. Annotation was performed using Prokka annotation from CGView Server.

Figure 2. Insert appearance of circular genomes from CGView of all ExPEC ST131 β-lactamase genes. (A) Visualization of the bla\textsubscript{OXA-10} (Annotated by bla\textsubscript{3}), (B) the bla\textsubscript{TEM-1} (bla\textsubscript{6}), and the bla\textsubscript{OXA-10} (bla\textsubscript{7} and bla\textsubscript{8}), (C) the bla\textsubscript{OXA-17}, (D) the bla\textsubscript{DHA-1} (amp\textsubscript{C-4}).
Figure 3. Insert appearance of other β-lactamase genes. (A) The \textit{bla}_{SHV-120} (annotated by \textit{bla}_4) and the \textit{bla}_{DHA-1} (\textit{ampC}_4), (B) the \textit{bla}_{OXA-10} (\textit{bla}_3), (C) the \textit{bla}_{SHV-120} (\textit{bla}_2), (D) the \textit{bla}_{TEM-1b} (\textit{bla}_1).

Figure 4. Genomic mapping of \textit{bla}_{OXA-1} surrounding genes of several strains compared to \textit{E. coli} ST131 isolates. The \textit{bla}_{OXA-1} was denoted with red bars. The mapping was visualized with protein abbreviations.
4. Discussion

The β-lactams antibiotic is a broad-spectrum antibiotic commonly produced by microorganisms, with a unique structure of four rings called β-lactam ring. Some have fused with another ring (penicillins, cephalosporins, and carbapenems), while another is formed monocyclic (monobactams). This ring is responsible for antibiotic activity by inhibiting bacterial cell wall synthesis through binding to penicillin-binding proteins (PBPs). This PBPs is the obligatory enzyme in building a bacterial cell wall called peptidoglycan (Bush and Bradford 2016). Overuse of many β-lactam antibiotics all over the field increases bacterial resistance. Many resistance mechanisms have been studied, such as efflux pump, change in antibiotic target, and β-lactam-degraded enzyme (Tang et al. 2014). The β-lactamase has been widespread all over the world recently. Moreover, this gene can be transferred because it is often found in one frame with transposable elements and transferable plasmid (Canton et al. 2012; Rozwandowicz et al. 2018; Darphorn et al. 2021). So far, β-lactamase has four different classes such as class A (TEM, SHV, CTX-M, and KPC), class B (NDM and VIM), class C (CMY and ADC), and class D or called oxacillinase (OXA) (Tooke et al. 2019).

The class A β-lactamases enzyme is the most studied of β-lactamases including TEM (from patient Temoneira), SHV (Sulfhydryl type, has similar activity to TEM, discovered in the chromosome of K. pneumoniae and mobilized into plasmids), CTX-M (Cefotaximase, active against cefotaxime antibiotic), KPC (K. pneumoniae carbapenemase) (Tooke et al. 2019). With their variants, TEM, SHV, and CTX-M are globally distributed and present in plasmids and mobile genetic elements among Gram-negative pathogens, such as Enterobacteriaceae. TEM is the β-lactamase that is carried by plasmid in Gram-negative bacteria and is active against penicillins and some cephalosporins. Carbapenems, such as imipenem, meropenem, and ertapenem, are considered a last-line agent for combating multidrug resistant bacteria. Unfortunately, a new variant of β-lactamases could interfere with the carbapenems. The most crucial enzyme with carbapenemase activity is KPC enzymes (Yigit et al. 2001). Recently, this enzyme has been found globally due to its genetic flexibility (Rapp and Urban 2012).

The class B β-lactamases is a zinc-dependent enzyme called Metallo- β-lactamases (MBLs). MBLs are differentiated with metal motifs in their core structure. The class B β-lactamases have a global distribution, including NDM (New Delhi MBL) and VIM (Verona Imipenemase) (Tooke et al. 2019). NDM is commonly found in Enterobacteriaceae, and VIM is mainly in non-fermenting bacteria, such as P. aeruginosa. The class C β-lactamase is the group that resides in the chromosome. This enzyme, annotated as amps, which is in normal conditions, could not be expressed. It was found in E. coli. This group is including CMY and DHA enzymes and is often found in mobile genetic elements in Enterobacteriaceae and non-fermenting bacteria, including P. aeruginosa (Cardoso et al. 2021).

The OXA enzyme is considered as the class D β-lactamase. The OXA-10 have a weak carbapenemase activity than other OXA type. The OXA-10 is also commonly found in P. aeruginosa that can be expressed as an association with class I integron or transposons (Partridge et al. 2002; Antunes and Fisher 2014). It makes OXA-10 can spread among Enterobacteriaceae.
due to horizontal gene transfer. In the Indonesian ExPEC ST131 genome, all \(\text{bla}_{\text{OXA-10}} \) were in the short contig. Thus we could not evaluate the surrounding genes among the \(\text{bla}_{\text{OXA-10}} \). The \(\text{bla}_{\text{OXA-17}} \) only has been detected in EC_0406. The \(\text{bla}_{\text{OXA-17}} \) is another variant of extended-spectrum \(\beta \)-lactamase OXA-10, which is different in serin that replaces asparagine in amino acid position number 73. OXA-17 transformation is confirmed to cause a higher resistance to cefotaxime and cefepime than OXA-10 transforman. The OXA-17 extracted enzyme had more activity than the OXA-10 enzyme against oxacillin and cefotaxime (Danel et al. 1999). In EC_0406, the upstream gene of \(\text{bla}_{\text{OXA-17}} \) was \text{emrE} and \text{folP}. The \text{emrE} encodes transporter in bacterial membrane that is belonged to Small Multidrug Resistance (SMR) transporter family. It has been known to imply osmotic stress response (Bay et al. 2017), biofilm formation (Matsumura et al. 2011), and resistance to acriflavine (a topical cationic antiseptic compound). TEM-1 is an enzyme from class A \(\beta \)-lactamase that was firstly found in \(E. coli \) and \(Salmonella \) (Palzkill 2018). Unfortunately, it can spread among \(Enterobacteriaceae \) and is responsible for \(\beta \)-lactam resistance dissemination. The TEM-1 has a high catalytic activity against penicillins and cephalosporins (Palzkill 2018). Another class A \(\beta \)-lactamase is SHV enzyme. The SHV enzyme is not easily spread compared to the CTX-M enzyme. However, The SHV has been found in \(Enterobacteriaceae \), including \(E. coli \) and \(K. pneumoniae \) (Canton et al. 2012). We found SHV-120 gene in these WGS of ExPEC ST131. Liakopoulos et al. (2016) published the different types of the schematic representation of \(\text{bla}_{\text{SHV-120}} \). Although, there was no \(\text{bla}_{\text{SHV-120}} \) in the mentioned scheme. Based on its genetic background, Indonesian ExPEC ST131 EC_0406 was identical to that of Incl_M plasmid-containing \(\text{bla}_{\text{SHV-120}} \). In its downstream, there was \text{lacY} gene and also \text{ygb} gene in the upstream. This surrounding gene pattern is identical to EC_0406 surrounding gene of \(\text{bla}_{\text{SHV-120}} \).

All Indonesian ExPEC ST131 isolates exhibit OXA-1, with either different strains or different species of this OXA-1 with an identical genetic background. Interestingly, we found that \(E. coli \) originating from China and Austria had an identical genetic background to Indonesian ExPEC ST131. Moreover, the \(E. coli \) from China was associated with plasmid-mediated colistin resistance. Colistin is the last line agent for treating multidrug resistance bacteria. At the same time, \(E. coli \) from Austria contained NDM-5 and was resistant to cefiderocol (Simner et al. 2021). \(Klebsiella pneumoniae \) INF142 plasmid originating from Australia and \(S. enterica \) S146 chromosome from China were other species with identical genetic backgrounds. Meanwhile, OXA-1 with different genetic background was detected in \(E. coli \) EC42 chromosome from Ghana and \(K. pneumoniae \) KP112 from France (NCBI provided country origin of isolates).

The \(\text{blaDHA-1} \) was exhibited by EC_0406, the only Indonesian ExPEC ST131 isolate. The genetic background of \(\text{blaDHA-1} \) was identical to either \(E. coli \) 142 plasmid p142-A-OKA181 or even other species, including \(Shigella sonei \) FC1428, \(S. sonei \) 6207, and \(S. flexneri \) M2901. In India, \(S. sonei \) FC1428 had been isolated from stool specimens with novel chromosome integration in IncFII plasmid-containing \text{mphA} gene (Muthuirulandi et al. 2021). The expression of \text{mphA} gene has been known to be able to inactivate azithromycin antibiotics. Interestingly, this \(\text{bla}_{\text{DHA-1}} \) was present in the chromosome instead of the plasmid. An isolate with identical genetic background, \(S. flexneri \) M2901, was known to cause an outbreak in Northern Australia with multidrug resistance accessories in 2016-2019 (Guglielmino et al. 2021). This isolate was the first report for MDR \(Shigella \) sp. in Australia that was not associated with men who have sex with men. This isolate also contained \(\text{bla}_{\text{DHA}} \) with IncFII plasmid backbone.

We reported a genetic background of \(\beta \)-lactamase genes of Indonesian ExPEC ST131 from WGS sequences. \(\text{bla}_{\text{OXA-1}} \) gene with its genetic background from all Indonesian ExPEC ST131 was identical with \(E. coli \) isolated from Austria and China. This \(\text{bla}_{\text{OXA-1}} \) is also identical to other species, including \(K. pneumoniae \) from Australia and \(S. enterica \) from China. At the same time, \(\text{bla}_{\text{DHA-1}} \) with its genetic background from Indonesian EC_0406 was identical with \(E. coli \) and other species, including \(Shigella sonei \) isolated from India and \(S. flexneri \) isolated from Australia.

Acknowledgments

We thank to Allah for giving us health and our family for all of the support. This study had no funding. None to declare for conflicts of interest.

References

Antunes, N.T., Fisher, J.F., 2014. Acquired class D \(\beta \)-lactamases. *Antibiotics (Basel)*. 3, 398-434. https://doi.org/10.3390/antibiotics3030398

Bay, D.C., Stremick, C.A., Slipski, C.J., Turner, R.J., 2017. Secondary multidrug efflux pump mutants alter *Escherichia coli* biofilm growth in the presence of cationic antimicrobial compounds. *Res. Microbiol.* 168, 208-221. https://doi.org/10.1016/j.resmic.2016.11.003
Bonacorsi, S., Bingen, E., 2005. Molecular epidemiology of *Escherichia coli* causing neonatal meningitis. *Int. J. Med. Microbiol.* 295, 373-381. https://doi.org/10.1016/j.ijmm.2005.07.011

Bortolola, V., Kaas, R.S., Ruppe, E., Roberts, M.C., Schwarz, M.U., Hamam, S.S.M., 2021. Molecular analysis of extended-spectrum beta-lactamases (ESBLs) in *Enterobacteriaceae* and its genetic context. *Int. J. Med. Microbiol.* 310, 603-611. https://doi.org/10.1016/j.ijmm.2021.03.001

Bush, K., Bradford, P.A., 2016. Beta-lactams and beta-lactamase inhibitors: an overview. *Cold. Spring. Harb. Perspect. Med.* 6, a025247. https://doi.org/10.1101/cshperspect.a025247

Canton, R., Gonzalez-Alba, J.M., Galan, J.C., 2012. CTX-M enzymes: origin and diffusion. *Front. Microbiol.* 3, 1-10. https://doi.org/10.3389/fmicb.2012.00110

Carattoli, A., 2013. Plasmids and the spread of resistance. *Int. J. Med. Microbiol.* 303, 298-304. https://doi.org/10.1016/j.ijmm.2013.02.001

Carattoli, A., Hasman, H., 2020. PlasmidFinder and *in silico* pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). *Methods. Mol. Biol.* 2075, 285-294. https://doi.org/10.1007/978-1-4939-9877-7_20

Cardoso, O., Osorio, S., Ramos, F., Donato, M.M., 2021. Plasmid-encoded AmpC and extended-spectrum beta-lactamaes in multidrug-resistant *Escherichia coli* isolated from piglets in Portugal. *Microb. Drug. Resist.* 27, 1742-1749. https://doi.org/10.1089/mdr.2020.0387

Clausen, P., Aarestrup, F.M., Lund, O., 2018. Rapid and precise alignment of raw reads against redundant databases with KMA. *BMC Bioinform.* 19, 307. https://doi.org/10.1186/s12859-018-2336-6

Danel, F., Hall, L.M., Duke, B., Gur, D., Livermore, D.M., 1999. OXA-17, a further extended-spectrum variant of OXA-10 beta-lactamae, isolated from *Pseudomonas aeruginosa*. *Antimicrob. Agents Chemother.* 43, 1362-1366. https://doi.org/10.1128/AAC.43.6.1362

Darwin, T.S., 2021. Roles of multidrug efflux pumps on the biofilm formation of *Escherichia coli*. *Int. J. Mol. Sci.* 22, 9230. https://doi.org/10.3390/ijms22179230

Doi, Y., Iovleva, A., Bonomo, R.A., 2017. The ecology of extended-spectrum beta-lactamases (ESBLs) in the developed world. *J. Travel. Med.* 24, 44-51. https://doi.org/10.1093/jtm/taw102

Ejaz, H., Younas, S., Abosafii, K.O.A., Junaid, K., Alzahrani, B., Alshrani, A., Abdalla, A.E., Ullah, M.I., Qamar, M.U., Hamam, S.S.M., 2021. Molecular analysis of *bla*_{DM}, *bla*_{TEM}, and *bla*_{CTX-M} in extended-spectrum beta-lactamaes-producing Enterobacteriaceae recovered from fecal specimens of animals. *PloS One.* 16, e0245126. https://doi.org/10.1371/journal.pone.0245126

Ferreira, J.C., Penha Filho, R.A., Andrade, L.N., Berchieri, A., Jr., Darlini, A.L., 2014. Detection of chromosomal *bla*_{TEM} or *bla*_{SHV}, and *bla*_{CTX-M} in diverse *Escherichia coli* isolates from healthy broiler chickens. *Clin. Microbiol. Infect.* 20, 623-626. https://doi.org/10.1111/1469-0691.12531

Guenther, S., Schmutz, T., Stubbe, A., Stubbe, M., Wieler, L.H., Schauffler, K., 2017. Chromosomally encoded ESBL genes in *Escherichia coli* of ST38 from Mongolian wild birds. *J. Antimicrob. Chemother.* 72, 1310-1313. https://doi.org/10.1093/jac/dkx006

Guglielmino, C.J.D., Kakkanat, A., Forde, B.M., Rubenach, S., Merone, L., Stafford, R., Graham, R.M.A., Beaton, S.A., Jennison, A.V., 2021. Outbreak of multi-drug-resistant (MDR) Shigella *flexneri* in northern Australia due to an endemic regional clone acquiring an IncFII plasmid. *Eur. J. Clin. Microbiol. Infect. Dis.* 40, 279-286. https://doi.org/10.1007/s10096-020-04029-w

Johnson, J.R., Gajewski, A., Lesse, A.J., Russo, T.A., 2003. Extraintestinal pathogenic *Escherichia coli* as a cause of invasive nonurinary infections. *J. Clin. Microbiol.* 41, 5798-5802. https://doi.org/10.1128/JCM.41.12.5798-5802.2003

Johnson, J.R., Porter, S., Thuras, P., Castanheira, M., 2017. The pandemic H30 subclone of sequence type 131 (ST131) as the leading cause of multidrug-resistant *Escherichia coli* infections in the United States (2011-2012). *Open. Forum. Infect. Dis.* 4, ofx089. https://doi.org/10.1093/ofid/ofx089

Kanamori, H., Parobek, C.M., Juliano, J.J., Johnston, B.D., Johnston, T.J., Weber, D.J., Rutala, W.A., Anderson, D.J., 2017. Genomic analysis of multidrug-resistant *Escherichia coli* from North Carolina community hospitals: ongoing circulation of CTX-M-producing ST131-H30R_x and ST131-H30R₁ strains. *Antimicrob. Agents Chemother.* 61. https://doi.org/10.1128/AAC.00912-17

Karim, A., Poirel, L., Nagarajan, S., Nordmann, P., 2001. Plasmid-mediated extended-spectrum beta-lactamases (CTX-M-1 like) from India and gene association with insertion sequence IS256. *FEBS Lett.* 501, 237-241. https://doi.org/10.1016/S0014-5793(01)02186-2

Liakopoulos, A., Mevius, D., Ceccarelli, D., 2016. A review of SHV extended-spectrum beta-lactamases: neglected yet ubiquitous. *Front. Microbiol.* 7, 1374. https://doi.org/10.3389/fmicb.2016.01374

Manges, A.R., Geum, H.M., Guo, A., Edens, T.J., Fikbe, C.D., Pitout, J.D.D., 2019. Global extraintestinal pathogenic *Escherichia coli* (ExiPEC) lineages. *Clin. Microbiol. Rev.* 32. https://doi.org/10.1128/CMR.00135-18

Mathers, A.J., Peirano, G., Pitout, J.D., 2015. *Escherichia coli* ST131: the quintessential example of an international multiresistant high-risk clone. *Adv. Appl. Microbiol.* 90, 109-154. https://doi.org/10.1016/bs.aamb.2014.09.002

Matsumura, K., Furukawa, S., Ogihara, H., Morinaga, Y., Kato, Y., Koenders, M.J., van Sint Annaland, M.B., Brul, S., Ter Kuile, B.H., 2021. Multiplication of ampC upon exposure to a beta-lactam antibiotic results in a transferable transposon in *Escherichia coli*. *Int. J. Mol. Sci.* 22, 9230. https://doi.org/10.3390/ijms22179230

Mellata, M., 2013. Human and avian extraintestinal pathogenic *Escherichia coli* infections: zoonotic risks, and antibiotic resistance trends. *Foodborne. Pathog. Dis.* 10, 916-932. https://doi.org/10.1089/fpd.2013.1533

Miajlovic, A., Smith, S.G., 2014. Bacterial self-defence: how *Escherichia coli* evades serum killing. *FEMS. Microbiol. Lett.* 354, 1-9. https://doi.org/10.1111/1574-6968.12419

Muthukandani, S.D.P., Anandan, S., Murugan, D., Asokan, K., Vasudevan, K., Jacob, J.J., Walaia, K., Michael, J.S., Veeraraghavan, B., 2021. Hybrid genome assembly of *Shigella sonnei* reveals the novel finding of chromosomal integration of an IncFI plasmid carrying a mhpA gene. *Access. Microbiol.* 3, 000189. https://doi.org/10.1007/s43299-020-000189

Palzkill, T., 2018. Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC beta-lactamaes. *Front Mol Biosci.* 5, 16. https://doi.org/10.3389/fmbio.2018.00016
Paramita, R.I., Nelwan, F.J., Fadilah, F., Renesteen, E., Puspandari, N., Erlina, L., 2020. Genome-based characterization of *Escherichia coli* causing bloodstream infection through next-generation sequencing. *PLoS One.* 15, e0244358. https://doi.org/10.1371/journal.pone.0244358

Partridge, S.R., Collis, C.M., Half, R.M., 2002. Class 1 integron containing a new gene cassette, aadA10, associated with Tn1404 from R151. *Antimicrob. Agents. Chemother.* 46, 2400-2408. https://doi.org/10.1128/AAC.46.8.2400-2408.2002

Pitout, J.D., Nordmann, P., Laupland, K.B., Poirel, L., 2005. Emergence of *Enterobacteriaceae* producing extended-spectrum beta-lactamases (ESBLs) in the community. *J. Antimicrob. Chemother.* 56, 52-59. https://doi.org/10.1093/jac/dki166

Pitout, J.D., DeVinney, R., 2017. *Escherichia coli* ST131: a multidrug-resistant clone primed for global domination. *F1000Res.* 6. https://doi.org/10.12688/f1000research.10609.1

Platell, J.L., Johnson, J.R., Cobbold, R.N., Trott, D.J., 2011. Multidrug-resistant extraintestinal pathogenic *Escherichia coli* of sequence type ST131 in animals and foods. *Vet. Microbiol.* 153, 99-108. https://doi.org/10.1016/j.vetmic.2011.05.007

Poirel, L., Naas, T., Nordmann, P., 2008. Genetic support of extended-spectrum beta-lactamases. *Clin. Microbiol. Infect.* 1, 75-81. https://doi.org/10.1111/j.1469-0691.2007.01865.x

Poolman, J.T., Wacker, M., 2016. Extraintestinal pathogenic *Escherichia coli*, a common human pathogen: challenges for vaccine development and progress in the field. *J. Infect. Dis.* 213, 6-13. https://doi.org/10.1093/infdis/jiw429

Rapp, K.P., Urban, C., 2012. *Klebsiella pneumoniae* carbapenemases in *Enterobacteriaceae*: history, evolution, and microbiology concerns. *Pharmacotherapy.* 32, 399-407. https://doi.org/10.1002/j.1875-9114.2012.01035.x

Rawat, D., Nair, D., 2010. Extended-spectrum beta-lactamases in Gram-negative bacteria. *J. Glob. Infect. Dis.* 2, 263-274. https://doi.org/10.4103/0974-777X.68531

Rozwandowicz, M., Brouwer, M.S.M., Fischer, J., Wagenaar, J.A., Gonzalez-Zorn, B., Guerra, B., Mevis, D.J., Hordijk, J., 2018. Plasmids carrying antimicrobial resistance genes in *Enterobacteriaceae*. *J. Antimicrob. Chemother.* 73, 1121-1137. https://doi.org/10.1093/jac/dkx488

Schink, A.K., Kadlec, K., Kaspar, H., Mankertz, J., Schwarz, S., 2013. Analysis of extended-spectrum-beta-lactamase-producing *Escherichia coli* isolates collected in the GERM-Vet monitoring programme. *J. Antimicrob. Chemother.* 68, 1741-1749. https://doi.org/10.1093/jac/dkt123

Seemann, T., 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics.* 30, 2068-2069. https://doi.org/10.1093/bioinformatics/btu153

Simner, P.J., Mostafa, H.H., Bergman, Y., Ante, M., Tekle, T., Adebayo, A., Beisken, S., Dzintars, K., Tamma, P.D., 2021. Progressive development of cefiderocol resistance in *Escherichia coli* during therapy is associated with increased blaNDM-5 copy number and gene expression. *Clin. Infect. Dis.* 2021, ciab888. https://doi.org/10.1093/cid/ciab888

Tang, S.S., Apisarnthanarak, A., Hsu, L.Y., 2014. Mechanisms of beta-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. *Adv. Drug. Deliv. Rev.* 78, 3-13. https://doi.org/10.1016/j.addr.2014.08.003

Tooke, C.L., Hincliffie, P., Bragginton, E.C., Colenso, C.K., Hirvonen, V.H.A., Takebayashi, Y., Spencer, J., 2019. Beta-lactamases and beta-lactamase inhibitors in the 21st century. *J. Mol. Biol.* 431, 3471-3500. https://doi.org/10.1016/j.jmb.2019.04.002

Yigit, H., Queenan, A.M., Anderson, G.J., Domenech-Sanchez, A., Biddle, J.W., Steward, C.D., Alberti, S., Bush, K., Tenover, F.C., 2001. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of *Klebsiella pneumoniae*. *Antimicrob. Agents. Chemother.* 45, 1151-1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

Zankari, E., Allesoe, R., Joensen, K.G., Cavaco, L.M., Lund, O., Aarestrup, F.M., 2017. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. *J. Antimicrob Chemother.* 72, 2764-2768. https://doi.org/10.1093/jac/dkw217