Emergence of phenotypic and genotypic resistance in the intestinal microbiota of rainbow trout (*Oncorhynchus mykiss*) exposed long-term to sub-inhibitory concentrations of sulfamethoxazole

Rachael N. Labitt1 · Jennifer Ren1 · Hélène Marquis1

Accepted: 1 September 2021 / Published online: 20 September 2021 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021, corrected publication 2021

Abstract
Natural waters are contaminated globally with pharmaceuticals including many antibiotics. In this study, we assessed the acquisition of antimicrobial resistance in the culturable intestinal microbiota of rainbow trout (*Oncorhynchus mykiss*) exposed for 6 months to sub-inhibitory concentrations of sulfamethoxazole (SMX), one of the most prevalent antibiotics in natural waters. SMX was tested at three concentrations: 3000 µg/L, a concentration that had no observed effect (NOEC) on the in vitro growth of fish intestinal microbiota; 3 µg/L, a theoretical predicted no effect concentration (PNEC) for long-term studies in natural environments; and 0.3 µg/L, a concentration detected in many surveys of surface waters from various countries including the USA. In two independent experiments, the emergence of phenotypic resistance and an increased prevalence of bacteria carrying a sulfonamide-resistance gene (*sul*1) were observed in SMX-exposed fish. The emergence of phenotypic resistance to 1000 mg/L SMX was significant in fish exposed to 3 µg/L SMX and was in large part independent of *sul*1 resistance genes. The prevalence of bacteria carrying the *sul*1 resistance gene increased significantly in the culturable intestinal microbiota of SMX-exposed fish, but the *sul*1-positive population was in large part susceptible to 1000 mg/L SMX, suggesting that the gene confers a lower resistance level or a growth advantage. The increased prevalence of *sul*1 bacteria was observed in all groups of SMX-exposed fish. Overall, this study suggests that fish exposed long-term to waters contaminated with low levels of antibiotics serve as reservoir of antimicrobial resistant genes and of resistant bacteria, a potential threat to public health.

Keywords Antibiotics · Water contamination · Long-term exposure · Fish · Antimicrobial resistance · *sul*1

Abbreviations
SMX Sulfamethoxazole
MIC Minimum Inhibitory Concentration
NOEC No Observed Effect Concentration
PNEC Predicted No Effect Concentration
MEC Measured Environmental Concentrations
AF Assessment Factor

Introduction
Natural waters are frequently contaminated with antibiotics all around the world (Batt et al. 2016; Fatta-Kassinos et al. 2011; Fram and Belitz 2011; Kolpin et al. 2002; Kummerer 2009; Pochodylo and Helbling 2017). Factors contributing to this phenomenon include human and animal excretion of unmetabolized antibiotics, the variable effectiveness of wastewater treatment plants in eliminating antibiotics (Rizzo et al. 2013), run off from antibiotics used in agriculture, inadequate sewage management, and improper disposal of unused antibiotics. Considering that antibiotic resistance is a major global health problem, the potential role of the aquatic environment in the spread of antimicrobial resistance should not be underestimated.

Even though antibiotics are found in trace concentrations in natural waters, exposure of bacteria to levels of antibiotics that are too low to inhibit growth (sub-inhibitory levels) promotes the emergence of resistant bacteria and
promoting biofilm formation and modulating bacterial metabolism and virulence, including mutagenesis, horizontal gene transfer, as well as virulence genes (Johansson et al. 2014; Uhlich et al. 2018; Underwood et al. 2011). However, the long-term effect of environmental concentrations of SMX on the aquatic environment has not yet been tested experimentally (Al-Ahmad et al. 1999; Bengtsson-Palme and Larsson 2016; Straub 2016; Yan et al. 2016). Considering its ubiquitous presence in natural waters and the high level of resistance associated with this antibiotic, SMX was chosen to assess the consequences of chronic exposure of fish to antibiotics that contaminate natural waters. Rainbow trout (Oncorhynchus mykiss) was chosen as the fish model because it is native to cold water tributaries in many regions of the world, including North America, and is a salmonid species of economic importance for aquaculture. It has been used as a model in ecotoxicological investigations, and for studies with suspected carcinogens, heavy metals, and agricultural, industrial, and pharmaceutical chemicals (Laville et al. 2004).

In the present study, we tested the hypothesis that resistance will emerge in the intestinal microbiota of fish exposed long-term to sub-inhibitory concentrations of SMX. This was tested by exposing juvenile rainbow trout for 6 months to SMX concentrations equivalent to 10^{-5} to 10^{-6} MIC, the lowest concentration being comparable to concentrations detected in natural waters. Results from the study support the conclusion that contamination of natural waters with sub-inhibitory concentrations of antibiotics leads to the emergence of phenotypic and genotypic resistance in the culturable intestinal microbiota of fish, potentially contributing to the spread of antibiotic resistance.

Materials and methods

Animals and husbandry

All animals were cared for in compliance with the *Guide for the Care and Use of Laboratory Animals* and American Association of Laboratory Animal Science Position Statements, and all procedures were approved by the Institutional Animal Care and Use Committee of Cornell University. Fish were housed in an AAALAC-accredited facility. Approximately 2 months old (7.5 cm length) juvenile rainbow trout (Oncorhynchus mykiss) were graciously provided by the New York State Department of Environmental Conservation Bath Hatchery. This hatchery maintains trout...
in raceways supplied by an underground source of water. The trout had never been treated with antibiotics.

Fish were maintained in 35 L tanks in groups of approximately 15 fish per tank. Each individual tank was equipped with air stones and two mechanical pumps circulating the water through dense floss and mesh filters to absorb particulates, and an activated charcoal filter to absorb dissolved organic and inorganic molecules. The same filters were maintained during the entire experiment and fifty percent water changes were performed a minimum of twice a week. Water temperature was regulated by partly submerging the tanks in flowing streams maintained at 10–15 °C. A subset of fish was periodically weighed to allow feeding at 1% body weight once daily with Finfish Starter Slow Sinking diet 1.0 mm and 2.0 mm (Zeigler Bros., Inc).

Intestinal microbiota sampling

Trout were euthanized by immersion in 300 mg/L tricaine methanesulfonate (MS-222 from Western Chemical, Inc) buffered with 300 mg/L sodium bicarbonate, followed by decapitation and pithing. Euthanasia occurred 2–4 h post-feeding to minimize effects of feed on the intestinal microbiota. Trout weight and length were recorded. The distal 1–1.5 cm segment of the hindgut was dissected with disinfected instruments, opened longitudinally, placed into a tube containing 400 µl sterile PBS, homogenized for 30 sec using a pestle mixer (Argos Technologies), and stored on ice until processed.

Broth growth curves

Bacterial growth curves were performed using 96-well flat-bottom microtiter plates and an ELx808 BioTek spectrophotometer. Four trout were used for this assay. Each trout intestinal content was diluted in LBL broth (BD Difco) to obtain a concentration of approximately 4 × 10^5 CFU/ml. Rows of two-fold serial dilutions of SMX (S7507 from Sigma-Aldrich) were prepared in LBL broth and each well was inoculated with 100 µl of culture (=4 × 10^4 CFU) in a final volume of 200 µl per well. Final concentrations of SMX ranged from 1000 mg/L to 1 mg/L with a no antibiotic control well. Each fish sample was tested in triplicate at each antibiotic concentration. Plates were incubated at 16 °C. Absorbance at OD₆₀₀ was measured every 6–12 h for 60 h.

Toxicological parameters

The No Observed Effect Concentration (NOEC), which is the concentration of SMX that has no observed effect on the growth of the culturable intestinal microbiota in broth, was calculated by a linear mixed effect model using maximum likelihood method at time t = 48 h modeling optical density as a function of time and antibiotic concentration, with fish ID and replicate number as random effects. NOEC was the largest concentration statistically equivalent to the no antibiotic control. MIC was the smallest concentration statistically equivalent to 1000 mg/L SMX. As data from only one trophic level was available, an assessment factor (AF) of 1000 was assigned (ECHA 2008) to measure the Predicted No Effect Concentration (PNEC = NOEC/AF). A review of the literature revealed that Measure Environmental Concentrations (MEC) of SMX in natural waters ranged from 0.001 to 2 µg/L (Baran et al. 2011; Batt et al. 2016; Fattakassinos et al. 2011; Fram and Belitz 2011; Hossain et al. 2018; Hu et al. 2018; Kolpin et al. 2002; Kummerer 2009; Na et al. 2019; Segura et al. 2009).

Chronic SMX-exposure studies

Two independent trials were performed on consecutive years. In both trials, trout were acclimated for 2 to 3 months prior to experimental manipulation. Tanks were dosed at every 50% water change (occurring 2–3 times weekly) to maintain SMX concentrations of 0.3 µg/L, 3 µg/L, and 3000 µg/L, approximating concentrations detected in natural waters, calculated PNEC, and in vitro determined NOEC (Fig. 1 and Table 1) for trout intestinal microbiota, respectively. An additional group not exposed to SMX served as a control. The stock solutions for SMX were prepared as 10,000 mg/L in 95% ethanol and stored at −20 °C (trial 1), or 170 mg/L in water, and stored at 4 °C for up to 1 week (trial 2). Trout were harvested at time 0- and 6-months exposure to SMX. At each time point, fish were selected from 2–4 tanks, for a total of 5–7 independent tanks per treatment group over the two trials.

Fig. 1 Determination of MIC and NOEC for culturable trout intestinal microbiota. The growth assays were performed at 16 °C in broth with SMX concentrations ranging from 0 to 500 mg/L. Each intestinal sample was tested in triplicate. Results were normalized by subtracting the average OD₆₀₀ reading at time 0 from all subsequent timepoints for each individual sample. Select concentrations are presented as mean ± SD, n = 4 fish.
Verification of SMX concentrations in aquariums

Water samples were collected from the rainbow trout tanks at multiple time points. All water samples were stored frozen in the dark until processed. SMX concentration was assessed in duplicate by ELISA (Sulfamethoxazole Plate Assay Kit, Abraxis) as per the manufacturer’s instructions. Samples were diluted with double distilled water as applicable to fall within the concentration range of the assay (0.015–1 µg/L).

Absorbance at OD400 was read using a ELx808, BioTek spectrophotometer and analyzed by online software (www.elisaanalysis.com) using 4-parameter logistic regression.

Assessing culturable microbiota for resistance

Total CFU per intestinal sample was assessed by plating 50 µl of 10-fold serial dilutions of homogenized trout intestinal segments onto LBL agar plates supplemented with 2500 mg/L amphotericin B to prevent the growth of fungi, which interfered with counting of CFU. Resistance was assessed by plating undiluted and 1:10 dilutions onto LBL agar plates containing 2500 mg/L amphotericin B and 1000 mg/L SMX. Plates were incubated at room temperature (≈23 °C), and CFU counts were recorded at 3 or 7 days for total or SMX-resistant CFU, respectively.

Bacterial isolation and verification of resistance

For each processed fish, isolated colonies from SMX plates and from non-SMX plates were archived and stored at −80 °C. Efforts were made to select phenotypically different colonies. Isolates were re-tested for susceptibility or resistance to 1000 mg/L SMX on LBL agar plates.

Bacteria identification

A subset of archived bacterial isolates was submitted to an accredited veterinary diagnostic laboratory (Animal Health Diagnostic Center [AHDC], Ithaca NY) for identification by MALDI-TOF mass spectrometry (Bruker MALDI-Biotyper) to the closest genus (and species when possible), using 70% formic acid extraction. Protein spectra were compared to a library of known veterinary isolates. Scores > =2.0 were considered acceptable to be reported to genus and species level, and scores of 1.7 to 1.99 were acceptable to be reported to genus level.

Susceptibility testing

A subset of archived colonies (27 SMX-resistant and 7 SMX-susceptible) was submitted to the AHDC for susceptibility to a panel of antibiotics using an automated broth-microdilution technique (TREK Sensititre™ Systems). The antibiotic panel used was the poultry specific panel Thermo Scientific™ Sensititre™ Avian AVIAN1F Plate. Antibiotics tested were: amoxicillin, ceftiofur, clindamycin, enrofloxacin, erythromycin, florfenicol, gentamicin, neomycin, novobiocin, oxytetracycline, penicillin, spectinomycin, streptomycin, sulphadimethoxine, sulphathiazole, tetracycline, trimethoprim/sulfamethoxazole, and tylosin.

Detection of sul genes

Archived isolates were grown on LBL agar plates, and isolated colonies were used as a DNA template for PCR. Reactions were performed in 20 µl using the Qiagen Taq DNA polymerase kit according to manufacturer’s instructions. Primers for detection of the V4 region of the 16S rRNA gene were used as an internal PCR control. Primers and annealing temperatures are given in Supplementary Table 1. A strain of Salmonella Typhimurium carrying the sul1 gene was provided by Prof. Craig Altier (Cornell University), whereas a DNA extract from bacteria carrying the sul2 and sul3 genes was provided by Prof. Patrick Boerlin (University of Guelph). These were used as positive controls for detection of the sul genes. PCR that failed to amplify the 16S rRNA gene were excluded from analysis.

Statistical analysis

Statistical analysis was performed using R version 3.5.1 “Feather Spray” (2018-07-02) on a x86_64-w64-mingw32/
x64 (64-bit) platform (The R Foundation for Statistical Computing, Vienna, Austria). Resistance was defined as alpha = 0.05.

To achieve an arbitrary minimum level of detection of 1 in 10,000, fish with fewer than 10,000 CFU detected on media without SMX were excluded from analysis. The percent ratio of resistance was calculated by dividing the number of resistant CFU by the total number of CFU per fish and multiplying by one hundred.

Resistant fish were defined as any fish that was confirmed to have at least one colony resistant to 1000 μg/ml SMX. The count of resistant fish per treatment group was analyzed by logistic regression using a binomial family. Resistant tanks were defined as any tank in which at least one fish had one colony resistant to 1000 μg/ml SMX. The proportion of resistant tanks, resistant fish, and sul1 positive fish were analyzed by logistic regression using a binomial family with post-hoc pairwise comparisons with Tukey adjustment for multiple comparisons.

Results

In vitro susceptibility of culturable trout intestinal microbiota to SMX

The susceptibility of rainbow trout culturable intestinal microbiota to SMX was assessed in broth cultures in 96-well microtiter plates. Each row was supplemented with 2-fold serial dilutions of SMX from 1000 to 1 mg/L, with a no antibiotic control well, and each well was inoculated with ~4 × 10e4 CFU from trout intestinal microbiota. Bacterial growth at 16°C was measured by spectrophotometry at OD600 (Fig. 1). The MIC and NOEC were calculated at 48 h, during exponential growth, by linear mixed effect modeling. Figure 1 represents the results from trial 1 (n = 4). Equivalent results were obtained the following year using trout from trial 2 (data not shown). Calculated MIC and NOEC for SMX were 250 mg/L and 3.9 mg/L respectively (Table 1). An environmental PNEC of 3.9 μg/L was estimated by dividing the NOEC by an AF of 1000.

Chronic SMX-exposure studies

Juvenile rainbow trout were exposed for 6 months to 0.3, 3.0, or 3000 μg/L SMX to approximate the environmental levels of SMX found in natural waters, the calculated PNEC (NOEC/AF of 1000), and the NOEC determined in vitro (Fig. 1 and Table 1), respectively. A no antibiotic group was added as a control. Two trials were performed on consecutive years with two different batches of fish. SMX concentration was tested in a preliminary experiment to assess stability and at random time points during the two trials. The results indicated that SMX is stable in the aquatic environment for a minimum of 7 days and concentrations were maintained in the targeted range during the trials (Supplementary Fig. 1 and Supplementary Table 2). There was no effect of treatment group on fish standard length, weight, or total intestinal CFU (Supplementary Table 3) for either trial, neither did we observed behavioral changes.

Resistance to SMX was assessed by plating serial dilutions of intestinal contents on LBL agar with and without 1000 mg/L SMX (four-fold higher than the MIC), and calculating the percentage of resistant to total CFU. At time 0, no resistance was observed (n = 12, data not shown). At 6 months, resistant CFU were observed in both experimental repeats (Table 2 and Fig. 2). Resistance was assessed on the tank level, in the event that fish with resistant bacteria would contaminate their environment and subsequently the other fish in the tank, and on the individual fish level (Fig. 2). On the tank level, all groups exposed to SMX showed an increase in resistance compared to the control group, although the trend was not statistically significant. On the individual fish level, logistic regression analysis reveals an overall significant difference (p = 1.1E−6). Significant differences were also revealed by post-hoc pairwise comparisons: 0 vs. 3 (p = 0.01), 0 vs. 3000 (p = 0.02), 0.3 vs. 3 (p = 0.01), and 0.3 vs. 3000 (p = 0.03) μg/L SMX groups. There were no pairwise significant differences between 0 vs. 0.3 and 3 vs. 3000 μg/L SMX. The median percentage and limits of SMX-resistant CFU per fish is shown in Table 2.

Identification of bacterial isolates resistant and susceptible to SMX

A subset of bacteria resistant or susceptible to 1000 mg/L of SMX (4X MIC) were identified by MALDI-TOF mass spectrometry (Table 3). A total of 234 (90 from trial 1 and 132 from trial 2) isolates from 77 individual fish (27 from trial 1 and 50 from trial 2) were identified. A different bacterial species was dominant among the resistant isolates for each experimental repeat: Carnobacterium maltaromaticum (Trial 1) and Lelliottia amnigena (Trial 2). These two species were also found in the subset of susceptible isolates in either trial, including in tanks where no resistant bacteria were found. In trial 2, Aeromonas and Deęfgea species dominated the pool of SMX-susceptible bacteria.

Susceptibility testing of isolates

We performed susceptibility testing for a panel of antibiotics on L. amnigena isolates that were susceptible (n = 6) or resistant (n = 19) to 1000 mg/L of SMX. All L. amnigena isolates were resistant to clindamycin, novobiocin, and penicillin. There was no difference in susceptibility patterns.
for the 18 antibiotics tested. We also performed susceptibility testing of 7 Pseudomonas isolates. The Pseudomonas isolates had elevated MICs to 8–11 antibiotics: amoxicillin, clindamycin, florfenicol, neomycin, novobiocin, oxytetracycline, penicillin, spectinomycin, streptomycin, sulfa-thiazole. Two Pseudomonas isolates were additionally resistant to trimethoprim.

Detection of bacteria carrying the sul1 resistance gene

We aimed to identify the mechanism conferring resistance to SMX in the intestinal isolates of fish exposed to SMX. The presence of sul1, the most prevalent resistance determinant to SMX, was assessed by PCR. SMX-resistant isolates carrying the sul1 gene were found in five fish total: three out of 35 fish (8.5%) in trial 1 and two out of 103 fish (1.9%) in trial 2 (Fig. 3). The SMX-resistant isolates that were positive for sul1 were two Panotea agglomerans and three Pseudomonas species. SMX-susceptible isolates carrying the sul1 gene were found in 85 fish total: six out of 35 fish (17.1%) in trial 1 and 79 out of 103 fish (76.7%) in trial 2 (Fig. 3). In trial 1, fish carrying sul1 SMX-susceptible isolates were found in the 3000 µg/L treatment group exclusively. In trial 2, fish carrying sul1 SMX-susceptible isolates were found in all groups: 48, 83, 89, and 79% for the 0, 0.3, 3, and 3000 µg/L SMX treatment groups, respectively. When analyzed by logistic regression using a binomial family with post-hoc pairwise comparisons. On the individual fish level, logistic regression analysis reveals an overall significant difference (p = 1.1E−6). * and ** indicate p values of ≤0.03 and 0.01, respectively, for pairwise comparisons.

Discussion

This study shows the emergence of phenotypic resistance to SMX in the microbiota of fish exposed long-term to sub-inhibitory concentrations of this antibiotic. Phenotypic

Table 2 Percentage of intestinal CFU resistant to 1000 mg/L SMX

SMX treatment group (µg/L)	Trial 1	Trial 2
	Median^a (n)^b Range^c	Median (n) Range
0	N.D. N.A.	9.01E−5 (1) N.A.
0.3	N.D. N.A.	N.D. N.A.
3.0	4.16E1 (7) 1.39E−5–1.00E2	1.87E−3 (10) 3.04E−5–2.14E−1
3000	5.71E−1 (9) 1.90E−5–5.67E1	1.32E−3 (4) 8.20E−5–1.21E−1

^aMedian percentage and range of SMX-resistant CFU per treatment group, excluding fish in which ratio of SMX-resistant CFU were not available

^b n number of fish carrying SMX-resistant CFU

^cN.D. Not Detected, N.A. Not applicable

Fig. 2 Emergence of CFU resistant to 1000 mg/L SMX in the intestinal microbiota of trout exposed to SMX for 6 months. Trials 1 and 2 are combined. A percentage of tanks with fish carrying SMX-resistant CFU for each experimental group. Total number of tanks per experimental group was 5, 5, 7, and 6 for the 0, 0.3, 3, and 3000 µg/L SMX groups, respectively. B percentage of fish carrying SMX-resistant CFU for each experimental group. Total number of fish tested per experimental group was 26, 25, 41, and 35 for the 0, 0.3, 3, and 3000 µg/L SMX groups, respectively. Data were analyzed by logistic regression followed by post-hoc pairwise comparisons. On the individual fish level, logistic regression analysis reveals an overall significant difference (p = 1.1E−6). * and ** indicate p values of ≤0.03 and 0.01, respectively, for pairwise comparisons.
resistance was robust at 1000 mg/L SMX and repeatable in two independent trials in fish exposed to the PNEC of 3 µg/L and the NOEC of 3000 µg/L. In addition, we observed an increased incidence of bacteria carrying sul1, a gene associated with resistance to SMX, in fish exposed to as little as 0.3 µg/L SMX, a concentration that has been detected in surface waters in the United States, Europe, and globally (Batt et al. 2016; Fatta-Kassinos et al. 2011; Fram and Belitz 2011; Hossain et al. 2018; Hu et al. 2018; Kolpin et al. 2002; Kummerer 2009; Na et al. 2019). Results of this study underline the importance of in vivo testing to assess the consequences of long-term exposure to sub-inhibitory concentrations of antibiotics on the aquatic life, and the critical role of the aquatic environment in the spread of antimicrobial resistance.

In vitro susceptibility of culturable trout intestinal microbiota to SMX

For this study, we first assessed the limits of susceptibility of the trout microbiota to SMX in broth culture and determined that the MIC (250 mg/L) was 64-fold higher than the NOEC (3.9 mg/L). As with most culture-based systems, these values do not consider anaerobic or otherwise unculturable bacteria which may make up a significant proportion of total bacteria. In addition, these values are population based, whereas, traditionally, antibiotic susceptibility values are determined for monoclonal populations. It is expected that, within a population, the level of susceptibility to SMX will vary among bacterial species. Therefore, the calculated MIC represents the concentration at which the growth of the least susceptible species is inhibited, whereas the NOEC represents the concentration at which the growth of the most susceptible species is not inhibited within this population of culturable intestinal bacteria. Thus, while the MIC and NOEC values are not directly comparable to single species estimations, they are representative of the population dynamics that occur in vivo.

The PNEC is an estimate of the concentration of antibiotic that would have no deleterious effects on a bacterial population in a complex environment and under chronic exposure (ECHA 2008). A PNEC of 3.9 µg/L was calculated for our model by applying an arbitrary assessment factor (AF) of 1000 to the NOEC (ECHA 2008). SMX has been detected at concentrations between 0.001 and 2 µg/L in many different countries, including Bangladesh, China, France, Germany, India, Luxembourg, South Korea, Spain, and the USA (Batt et al. 2016; Fatta-Kassinos et al. 2011; Fram and Belitz 2011; Hossain et al. 2018; Hu et al. 2018; Kolpin et al. 2002; Kummerer 2009; Na et al. 2019), and in some studies, at a frequency of 70 and 89% of water samples tested (Batt et al. 2016; Hossain et al. 2018; Hu et al. 2018; Na et al. 2019). These concentrations suggest that a PNEC of 3.9 µg/L SMX would have no effects on the intestinal microbiota of our animal model, the rainbow trout. It is generally accepted that environmental concentrations of SMX pose little toxicological risk to vertebrates, but may be toxic to invertebrates, bacteria, or plants.

Table 3 Archived bacterial isolates from trout intestines identified by MALDI-TOF

SMX treatment group (µg/L)	Bacterial IDa	Trial 1	Trial 2
0	*Acinetobacter tjernbergiae*	N.D.b	S
	Aeromonas species	N.D.	S
	Bacillus subtilis	S	N.D.
	Deefgea rivuli	N.D.	S
	Flavobacterium plurextorum	S	N.D.
	Lelliottia annigea	N.D.	S
	Micrococcus luteus	S	N.D.
	Pseudomonas species	N.D.	R and S
	Stenotrophomonas maltophilia	N.D.	S
0.3	*Aeromonas species*	N.D.	S
	Bacillus licheniformis	N.D.	S
	Carnobacterium maltaromaticum	S	N.D.
	Deefgea species	N.D.	S
	Lelliottia annigea	S	S and R
	Staphylococcus warneri	R	N.D.
	Stenotrophomonas maltophilia	N.D.	S
3	*Aeromonas species*	N.D.	S
	Bacillus species	N.D.	S
	Carnobacterium maltaromaticum	R and S	N.D.
	Deefgea species	N.D.	S
	Lelliottia annigea	N.D.	R and S
	Panotea agglomerans	R	N.D.
	Pseudomonas chlororaphis	N.D.	R
	Staphylococcus hominis	S	N.D.
3000	*Aeromonas species*	R	S
	Carnobacterium maltaromaticum	R and S	N.D.
	Deefgea species	N.D.	S
	Lelliottia annigea	N.D.	R
	Microbacterium maritypicum	N.D.	S
	Pseudomonas species	R	R
	Staphylococcus species	S	S

*a*Isolates were identified by MALDI-TOF mass spectrometry to the closest genus or species

b*Not detected

c*Susceptible (S) or resistant (R) to 1000 mg/L SMX

d*Multiple species identified
(Baran et al. 2011; Batt et al. 2016; Isidori et al. 2005; Park and Choi 2008; Yan et al. 2016). Ecotoxicological testing provides values for binary measures of toxicity and growth rates, but not necessarily change in phenotype such as antibiotic resistance. Therefore, in addition to theoretical studies, actual exposure experiments, as in this study, are needed to assess more accurate PNEC values.

In vivo emergence of resistance in the intestinal microbiota of fish exposed to sub-inhibitory levels of SMX

The emergence of resistance to 1000 mg/L SMX, a concentration four times higher than the determined MIC, was detected in a percentage of culturable isolates from the intestinal microbiota of trout exposed for 6 months to SMX at the NOEC determined in vitro (3000 µg/L), the PNEC (3 µg/L), and at a conservative concentration value detected in surface waters (0.3 µg/L). Resistance was first analyzed at the tank level with the rationale that any fish within a tank was susceptible to acquire a resistant bacterial clone from any other fish in that tank. A trend toward an increase in the number of tanks with resistant bacteria in SMX-exposed groups was observed, but the difference was not significant. The median percentage of fish with resistant isolates per resistant tank was 55%. However, in the groups exposed to 3 µg/L or 3000 µg/L SMX, every fish in three out of 13 tanks carried resistant bacteria. It is reasonable to speculate that in these three tanks resistant bacterial clones were transmitted orally between fish, but the kinetics of transmission is likely to be time-dependent, increasing as the number of fish carrying and shedding resistant bacteria increases with time. Although the initial acquisition of resistance within a fish intestinal microbiota is random, over time, all fish within a tank are susceptible to colonization by resistant clones shed in the environment. Ultimately, it is not a question of whether a fish will acquire resistant bacteria but rather a question of when.

When resistance data were analyzed at the fish level, the ratio of SMX-resistant bacteria among the culturable microbiota increased in all SMX-exposed groups, and this difference was statistically significant in the groups exposed to 3 µg/L and 3000 µg/L SMX. This difference was present in both trials, but there was variation in the percentage of resistant CFU to total CFU. Variables that might account for this difference include the make-up of the microbiota or vehicles, the phenomenon of emergence of resistance due to effects on the microbiota or directly on fish physiology. Yet despite any confounding effects of differing microbiota or vehicles, the phenomenon of emergence of resistance was repeatable in two independent trials carried out in two separate years.
This study was designed to model chronic exposure of fish to sub-inhibitory concentrations of SMX. However, it did not mimic environmental conditions under which actual concentrations of SMX are likely to vary based on inputs such as agricultural use or release from wastewater treatment plants. While SMX is the most commonly detected antibiotic in natural waters, this environment is typically contaminated with multiple antibiotics and other pharmaceutical drugs that may affect bacterial genetic and metabolic functions, contributing to the development of resistance mechanisms or the acquisition of resistance genes (Auberthau et al. 2017; Batt et al. 2016; Fatta-Kassinos et al. 2011; Fram and Belitz 2011; Hossain et al. 2018; Kolpin et al. 2002; Lam et al. 2004; Na et al. 2019).

Overall, the data indicate that an AF of 1000 to determine the PNEC is an underestimate of the selective pressure from contaminated waters for the emergence of resistance in the microbiota of exposed fish. An AF of 10,000 would be closer to what we observed in our experimental model. We also observed that the acquisition of resistance appears to be more at the individual level with a low incidence of transfer between fish, although a different type of study with traceable resistant clones would be required to verify that observation. Importantly, resistance emerged in two independent trials with different batches of trout and different drug vehicles, demonstrating that chronic exposure to a concentration of SMX 10-fold lower than the theoretical PNEC reproducibly promotes the emergence of resistance in fish microbiota.

The resistant culturable microbiome

The culturable microbiota from trials 1 and 2 differed extensively, emphasizing the fact that the composition of the intestinal microbiota is plastic and responsive to variables such as genetics and the environment (Egerton et al. 2018). In this study, the fish came from the same hatchery, but the two trials occurred on different years. In each trial, a single species of bacteria predominated the culturable resistant microbiome, arising in multiple independent tanks. The two species, *Carnobacterium maltaromaticum* in trial 1 and *Lelliottia amnigena* in trial 2, were present at a low frequency in the susceptible population but contributed to 92 and 86% of the resistant population, respectively. The overall number of identified genera present in resistant isolates was low: five in trial 1 and three in trial 2.

C. maltaromaticum is a gram-positive facultative anaerobe lactic acid bacteria that has been associated with healthy and diseased salmonids (Leisner et al. 2007). Pathogenic *C. maltaromaticum* has been noted to be resistant to sulfonamides, tetracyclines, and quinolones (Leisner et al. 2007). *L. amnigena*, formerly identified as *Enterobacter amnigenus* (Brady et al. 2013), is a gram-negative, facultative anaerobe. *L. amnigena* is found in the environment, but occasionally causes infection in humans (Leal-Negredo et al. 2017; Stock and Wiedemann 2002). A diverse collection of 18 *L. amnigena* isolates from soil, water, and clinical specimens were tested for susceptibility to various antibiotics; three of the isolates were resistant to 1000 mg/L SMX, whereas the others were susceptible to ≤64 mg/L (Stock and Wiedemann 2002). Our results suggest that *C. maltaromaticum* and *L. amnigena* are particularly adapted to evolving resistance to SMX, and/or that an undetectable population of resistant clones in the original microbiome expanded to the detriment of the susceptible population.

There was also no evidence that SMX-resistant isolates had acquired resistance to other antibiotics and less than four percent carried a sul resistance gene. One of the most common mechanisms of resistance to SMX is mutation in the dihydrofolate reductase gene, *folP* (Skold 2000). Efflux pumps are not a common mechanism of resistance, but Resistance-Nodulation-Division efflux pumps have been shown to efflux sulfonamides, (Li 2016) as well as novel efflux pumps in the AbgT family (Delmar and Yu 2016). It is reasonable to speculate that the SMX-resistant bacteria isolated in this study used more than one mechanism of resistance, independent of the sul resistance genes, and that the sum of these mechanisms conferred high resistance to SMX.

Exposure to sub-inhibitory concentrations of SMX selectively promotes the establishment of bacteria carrying the sul1 resistance gene

We observed that exposure to SMX caused an increase in the incidence of *sul1* in the intestinal culturable microbiota but the *sul2* and *sul3* genes were not detected in any of the archived isolates. The population of *sul1* carrying bacteria was comprised in large part of SMX-susceptible clones. In the first trial, SMX-susceptible isolates carrying the *sul1* gene were detected only in the group of exposed to 3000 µg/L SMX at a level of 50%. The second trial was different as 48% of the unexposed population of fish carried *sul1* SMX-susceptible bacteria in the intestines. However, the population of fish colonized with *sul1* bacteria was larger by an average of 75% in all SMX-exposed groups. These results indicate that exposure to sub-inhibitory levels of SMX promotes the selection of *sul1* carrying bacteria and/or the acquisition of the *sul1*-integron across the population (Bennett 2008).

The fact that the *sul1* gene was detected primarily in the population of SMX-susceptible isolates suggests that the conditions used for selection of resistant clones were too stringent for the level of resistance conferred by the *sul1* gene. Indeed, the *sul1*-positive *Salmonella* strain used as a positive control for the PCR assay grew with 500 mg/L SMX.
but was inhibited by 1000 mg/L SMX, the concentration used in this study to select for SMX-resistant intestinal bacteria. Additional growth assays were performed with a subset of sul1 positive fish isolates susceptible to 1000 mg/L, but none of them grew with 500 mg/L SMX (data not shown). These data were inconclusive as the MIC in absence of sul1 is not known for any of the tested clones.

Alternative mechanisms exist for the selection of sul1 under conditions that are presumably non-selective for SMX-resistant bacteria. Sulfonamides are synthetic compounds with no known natural analogs, yet sul1 genes have an ancient evolutionary past (Sanchez-Osuna et al. 2018). This suggests some fitness benefit or lack of detriment for their evolution, and perhaps the existence of natural sulfonamide analogs. Additionally, the sul genes are highly sensitive enzymes, and have Michaelis-Menten constants that are equivalent to or better than the native folP in E. coli (Skold 2000; Swedberg et al. 1979). Perhaps the sul genes provide fitness benefits by counteracting effects of SMX at low concentrations. The presence of sul1 genes could serve to increase output of the folate pathway, resulting in more available metabolic building blocks. Moreover, exposure to sub-inhibitory doses of sulfonamides have been documented to increase quorum sensing (Deng et al. 2012) and to change expression of genes coding for virulence factors (Moon et al. 2017; Uhlich et al. 2018), outer membrane proteins, and transcription factors (Yergeau et al. 2010). These overall effects of SMX at sub-inhibitory concentrations might have provided a growth advantage within the intestinal microbiota of fish. In summary, long-term exposure to sub-inhibitory concentrations of SMX causes the emergence of sul1 carrying bacteria, although the selection pressure for this phenomenon and the potential advantage conferred by the sul1 gene within the intestinal microbiota of fish remain to be determined.

Conclusions

This study demonstrates that chronic exposure to SMX at concentrations as low as those found in surface waters across the globe promotes the selection of bacteria carrying the sul1 resistance gene and, independently of sul1, the emergence of bacterial clones highly resistant to SMX. The development of resistance in the environment with exposure to sub-inhibitory levels of antibiotics has far-reaching consequences on both applied and basic science fronts. Generation of antibiotic resistance and modulation of fish microbiota may have ecological effects on the aquatic habitat. It can potentially expose those in contact with fish, such as anglers, swimmers, or pets, to resistant bacteria. The potential of aquatic animal species as carriers of antibiotic resistant bacteria and the release of these bacteria in rivers and streams may also pose risk to agriculture, potentially contaminating soils and crops with resistance genes. Further efforts are needed to reduce antibiotic contamination of water.

Acknowledgements From Cornell University, we are grateful to Craig Altier for providing the sul1 positive Salmonella isolate and for helpful scientific discussions, to Melissa Aprea, Animal Health Diagnostic Center, for assistance with MALDI-TOF and antibiotic susceptibility testing and interpretation, to Renata Ivanek for statistical analysis of broth growth curves, and to Stephen Parry, Cornell University Statistical Consulting Unit, for assistance with statistical analysis and interpretation of data. We are also grateful to Patrick Boerlin, University of Guelph, for providing genetic positive controls for sul1, sul2, and sul3, and to Ken Osika, from New York State Department of Environmental Conservation, Bath Hatchery, for donation of trout. We are especially grateful to Erin Daugherity, Rodman Getchell, Marvin Ho, Nathaniel Sibinga, Kari Brossard Stoos, and Loredana Locatelli for helpful scientific discussions, critiques and support.

Author contributions RNL and HM designed the study, analyzed the results, and wrote the manuscript; RNL and JR performed the experiments.

Funding Resident Research Grant, Cornell University College of Veterinary Medicine, June 2019–2020, Consequences of chronic exposure of fish to antibiotic-contaminated water, with funding by USDA, National Institute of Food and Agriculture, Animal Health and Disease Research Program. Project No. NYCV433866.

Compliance with ethical standards

Conflict of interest The authors declare no competing interests.

Ethical approval All animals were cared for in compliance with the Guide for the Care and Use of Laboratory Animals and American Association of Laboratory Animal Science Position Statements, and all procedures were approved by the Institutional Animal Care and Use Committee of Cornell University. Fish were housed in an AAALAC-accredited facility.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

Al-Ahmad A, Daschner FD, Kummerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Contam Toxicol 37:158–163. https://doi.org/10.1007/s002499000501

Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478. https://doi.org/10.1038/nrmicro3270

Aubertheau E, Stalder T, Mondamert L, Ploy MC, Dagot C, Labanowski J (2017) Impact of wastewater treatment plant discharge on the contamination of river biofilms by pharmaceuticals and antibiotic resistance. Sci Total Environ 579:1387–1398. https://doi.org/10.1016/j.scitotenv.2016.11.136
Emergence of phenotypic and genotypic resistance in the intestinal microbiota of rainbow trout... 2053

Baran W, Adamek E, Ziemianska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15. https://doi.org/10.1016/j.jhazmat.2011.08.082

Batt AL, Kincaid TM, Kostich MS, Lazorchak JM, Olsen AR (2016) Evaluating the extent of pharmaceuticals in surface waters of the United States using a National-scale Rivers and Streams Assessment survey. Environ Toxicol Chem 35:874–881. https://doi.org/10.1002/etc.3161

Bengtsson-Palme J, Larsson DG (2016) Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int 86:140–149. https://doi.org/10.1016/j.envint.2015.10.015

Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(Suppl 1):S347–357. https://doi.org/10.1038/bjp. 07077607

Bernier SP, Surette MG (2013) Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 4:20. https://doi.org/10.3389/fmicb.2013.00020

Bhanu SV, Philip B (2011) Effect of ethanol on branchial adenosine triphosphatases in Oreochromis mossambicus (Peters). Toxicol Int 18:27–30. https://doi.org/10.4103/0971-6580.75849

Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P (2013) Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. niminipressuralis and E. ammigenus into Lelliottia gen. nov. as Lelliottia niminipressuralis comb. nov. and Lelliottia ammigena comb. nov., respectively. E. gergoviae and E. pyrus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrus comb. nov., respectively, E. cowanii, E. radicicintans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicicintans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulversi into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulversi comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36:309–319. https://doi.org/10.1016/j.syampm.2013.03.005

Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M (2010) Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 6:e1000834. https://doi.org/10.1371/journal.ppat.1000834

Capkin E, Terzi E, Altinok I (2015) Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Dis Aquat Organ 114:127–137. https://doi.org/10.1371/journal.pone.028252

Delmar JA, Yu EW (2016) The AbgT family: a novel class of antibiotic metabolicity transporters. Protein Sci 25:322–337. https://doi.org/10.1002/pro.2820

Deng Z, Lin Z, Zou X, Yao Z, Tian D, Wang D, Yin D (2012) Model of hormesis and its toxicity mechanism based on quorum sensing: a case study on the toxicity of sulfonamides to Photobacterium phosphoreum. Environ Sci Technol 46:7746–7754. https://doi.org/10.1021/es303490f

Domínguez M, Miranda CD, Fuentes O, de la Fuente M, Godoy FA, Bello-Toledo H, Gonzalez-Rocha G (2019) Occurrence of transferable integrons and sul and dfr genes among sulfonamide-and/or trimethoprim-resistant bacteria isolated from Chilean salmonid farms. Front Microbiol 10:748. https://doi.org/10.3389/fmicb.2019.00748

Duman M, Altun S, Cengiz M, Saticioglu IB, Buyukcekgiz AG, Sahinturk P (2017) Genotyping and antimicrobial resistance genes of Yersinia ruckeri isolates from rainbow trout farms. Dis Aquat Organ 125:31–44. https://doi.org/10.3354/dao03132

ECHA (2008) Guidance on information requirements and chemical safety assessment Chapter R.10: Characterisation of dose [concentration]-response for environment. pp 1-65. https://echa.europa.eu/documents/10162/13632/information_requirements_r10_en.pdf/bb902be7-a503-4ab7-903d-6d866d8ddce69

Egerton S, Culloty S, Whooly J, Stanton C, Ross RP (2018) The gut microbiota of marine fish. Front Microbiol 9:873. https://doi.org/10.3389/fmicb.2018.00873

Fatta-Kassinos D, Mercia S, Nikolau A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275. https://doi.org/10.1007/s00216-010-4300-9

Fram MS, Beltiz K (2011) Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci Total Environ 409:3409–3417. https://doi.org/10.1016/j.scitotenv.2011.05.053

Froeher K, Backhaus T, Grimmle LH (2000) Bioassays with Vibrio fischeri for the assessment of delayed toxicity. Chemosphere 40:821–828

Gullberg E, Cao S, Berg OG, Ilback C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7:e1002158. https://doi.org/10.1371/journal.ppat.1002158

Hossain A, Kamakichi S, Habibullah-Al-Mamun M, Tani K, Masunaga S, Matsuda H (2018) Occurrence and ecological risk of pharmaceuticals in river surface water of Bangladesh. Environ Res. 165:258–266. https://doi.org/10.1016/j.envres.2018.04.030

Hu Y, Yan X, Shen Y, Di M, Wang J (2018) Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment. Ecotoxicol Environ Saf 157:150–158. https://doi.org/10.1016/j.ecoenv.2018.03.083

Isidori M, Lavorgna M, Nardelli A, Pancarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98. https://doi.org/10.1016/j.scitotenv.2004.11.017

Johansson CH, Janmar L, Backhaus T (2014) Toxicity of ciprofloxacin and sulfamethoxazole to marine periphytic algae and bacteria. Aquat Toxicol 156:248–258. https://doi.org/10.1016/j.aquatox.2014.08.015

Knudsen GM, Fromberg A, Ng Y, Gram L (2016) Sublethal concentrations of antibiotics cause shift to anaerobic metabolism in Listeria monocytogenes and induce phenotypes linked to antibiotic tolerance. Front Microbiol 7:1091. https://doi.org/10.3389/fmicb.2016.01091

Kolbe DN, Furlinge ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

Kummerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

Lam MW et al. (2004) Aquatic persistence of eight pharmaceuticals in a microcosm study. Environ Toxicol Chem 23:1431–1440. https://doi.org/10.1897/03-421

Laureti L, Matic I, Gutierrez A (2013) Bacterial responses and genome instability induced by subinhibitory concentrations of antibiotics. Antibiotics (Basel) 2:100–114. https://doi.org/10.3390/antibiotics2010100

Laville N, Ait-Aissa S, Gomez E, Casellas C, Porcher JM (2004) Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes. Toxicology 196:41–55. https://doi.org/10.1016/j.tox.2003.11.002

Leal-Negredo A, Castello-Abieta C, Leiva PS, Fernandez J (2017) Urinary tract infection by Lelliottia amnigena (Enterobacter amnigenus): an uncommon pathogen. Rev Esp Quimioter 30:483–484

Springer
Leisner JI, Laursen BG, Prevost H, Drider D, Dalgaard P (2007) Carnobacterium: positive and negative effects in the environment and in foods. FEMS Microbiol Rev 31:592–613. https://doi.org/10.1111/j.1574-6976.2007.00080.x

Li X-Z (2016) Antimicrobial resistance in bacteria: an overview of mechanisms and role of drug efflux pumps. In: Li X-Z, Elkins CA, Zgurskaya HI (eds) Efflux-mediated antimicrobial resistance in bacteria: mechanisms, regulation and clinical implications. Springer International Publishing, Cham, pp 131–163. https://doi.org/10.1007/978-3-319-39658-3_6

Liu A et al. (2011) Selective advantage of resistant strains at trace levels of antibiotics: a simple and ultrasensitive color test for detection of antibiotics and genotoxic agents. Antimicrob Agents Chemother 55:1204–1210. https://doi.org/10.1128/AAC.01182-10

Ma D, Alberti M, Lynch C, Nikaido H, Hearst JE (1996) The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol Microbiol 19:101–112. https://doi.org/10.1046/j.1365-2958.1996.357881.x

Martí E, Huerta B, Rodríguez-Mozaz S, Barceló D, Marce R, Balcázar JL (2018) Abundance of antibiotic resistance genes and bacterial community composition in wild freshwater fish species. Chemosphere 196:115–119. https://doi.org/10.1016/j.chemosphere.2017.12.108

Moon KH, Weber BS, Feldman MF (2017) Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of Csu pilus expression Antimicrob Agents Chemother 61 https://doi.org/10.1128/AAC.00778-17

Na TW, Kang TW, Lee KH, Hwang SH, Jung HJ, Kim K (2019) Distribution and ecological risk of pharmaceuticals in surface water of the Yeongsan river, Republic of Korea. Ecotoxicol Environ Saf 181:180–186. https://doi.org/10.1016/j.ecoenv.2019.06.004

Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17:526–538. https://doi.org/10.1007/s10646-008-0209-x

Pochodzaly AL, Helbling DE (2017) Emerging investigators series: prioritization of suspect hits in a sensitive suspect screening workflow for comprehensive micropollutant characterization in environmental samples. Environ Sci: Water Res. Technol 3:54–65

Rizzo L et al. (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360. https://doi.org/10.1016/j.scitotenv.2013.01.032

Sanchez-Osuna M, Cortes P, Barbe J, Erill I (2018) Origin of the mobile di-hydro-pteroate synthase gene determining sulfonamide resistance in clinical isolates. Front Microbiol 9:3332. https://doi.org/10.3389/fmicb.2018.03332

Segura PA, Francois M, Gagnon C, Sauge S (2009) Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters. Environ Health Perspect 117:675–684. https://doi.org/10.1289/ehp.11776

Skold O (2000) Sulfonamide resistance: mechanisms and trends. Drug Resist Update 3:155–160. https://doi.org/10.1054/drup.2000.0146

Stock I, Wiedemann B (2002) Natural antibiotic susceptibility of Enterobacter amnigenus, Enterobacter cancerogenus, Enterobacter gergoviae and Enterobacter sakazakii strains. Clin Microbiol Infect 8:564–578. https://doi.org/10.1046/j.1469-0691.2002.00413.x

Straub JO (2016) Aquatic environmental risk assessment for human use of the old antibiotic sulfamethoxazole in Europe. Environ Toxicol Chem 35:767–779. https://doi.org/10.1002/etc.2945

Swedberg G, Castensson S, Skold O (1979) Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofollate analog. J Bacteriol 137:129–136. https://doi.org/10.1128/JB.137.1.129-136.1979

Uhlich GA, Andreozzi E, Cottrell BJ, Reichenberger ER, Zhang X, Paoli GC (2018) Sulfamethoxazole - Trimethoprim represses csgD but maintains virulence genes at 30 degrees C in a clinical Escherichia coli O157:H7 isolate. PLoS One 13:e0196271. https://doi.org/10.1371/journal.pone.0196271

Underwood JC et al. (2011) Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environ Sci Technol 45:3096–3101. https://doi.org/10.1021/es103605e

Yan Z, Lu G, Ye Q, Liu J (2016) Long-term effects of antibiotics, norfl Roxacin, and sulfamethoxazole, in a partial life-cycle study with zebrafish (Danio rerio): effects on growth, development, and reproduction. Environ Sci Pollut Res Int 23:18222–18228. https://doi.org/10.1007/s11356-016-7018-1

Yergeau E, Lawrence JR, Waisel MJ, Korber DR, Greer CW (2010) Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl Environ Microbiol 76:5432–5439. https://doi.org/10.1128/AEM.00873-10