Rayleigh–Bénard convection in rotating nanofluids layer with feedback control subjected to magnetic field

Izzati Khalidah Khalid¹, Nor Fadzillah Mohd Mokhtar*¹,² and Zarina Bibi Ibrahim²
¹Institute for Mathematical Research INSPEM Universiti Putra Malaysia 43500 Serdang Selangor, Malaysia
²Department of Mathematics Faculty of Science, Universiti Putra Malaysia 43500 Serdang Selangor, Malaysia
E-mail:*norfadzillah.mokhtar@gmail.com

Abstract. Magnetic field on Rayleigh–Bénard convective instability in rotating feedback–controlled nanofluids layer heated from below has been examined for the boundaries of free–free, rigid–free and rigid–rigid. Model applied to nanofluids associated with the Brownic movement and thermophoresis mechanism. A normal–mode linear stability assessment has been performed, the eigenvalue solution has been extracted by using single term Galerkin technique and computed by employing Maple software. It is found that the influences of magnetic field, feedback control, rotation are to slow down the thermal instability.

1. Introduction
Heat transfer enhancement in thermoscience and thermal engineering progress where the utilization of fluid additives is often involved. The solid nanoscaled either non–metal or metal nanoparticles are suspended in the base fluids in order to alter the properties of energy transportation, flow and thermal transfer characteristics of the fluids [1]. Ghasemi et al. [2] and Hamada et al. [3] used nanofluids based in water comprising various nanoparticles types such as silver Ag, Copper Cu and alumina Al₂O₃ for numerical calculation in nanofluids with magnetic field effect. Later, Yadav et al. [4] investigated the thermal instability of the combined effects of rotational magnetic field for alumina Al₂O₃–H₂O nanofluid. Later, Yadav et al. [5, 6] analyzed the effects of rotation and magnetic field independently for nanofluids of alumina–water Al₂O₃–H₂O and copper–water Cu–H₂O respectively.

Scientists and scientists began researching the impacts of rotation and magnetic field several centuries earlier. Chandrasekhar [7] indicates that Rayleigh’s critical value could be enhanced through the use of magnetic field and rotation effects, thus stabilized the system. Yadav et al. [8], Chand [9], Gupta et al. [10] and Yadav et al. [11] have demonstrated and studied the stabilizing impacts of magnetic field and rotation on nanofluids layer thermal instability. At the same time, Chand and Rana [12] and Yadav et al. [13] have introduced other relevant impacts on the thermal instability of the nanofluid layer in the presence of the magnetic field.

The utilizing of feedback control is used for convective thermal stabilization has been pioneered a few years ago by many scientists and researchers. It was shown by Tang and Bau
that the substitution feedback control impact can considerably raising critical Rayleigh number on convective instability. Bau [16] noted that the same control strategies used to stabilize the Marangoni-Benard convection can be employed to control the Rayleigh-Benard convection. Further, control strategy developed by Bau [16] has been applied by Arifin et al. [17], Hashim and Siri [18], Kechil and Hashim [19], Bachok et al. [20], Siri et al. [21] and Khalid et al. [22] to study the effect of feedback control with other effects.

In this study, Rayleigh–Bénard convection in rotating Al$_2$O$_3$–H$_2$O and Cu–H$_2$O nanofluids with feedback control and magnetic field for lower and upper free, lower rigid upper free as well as lower and upper rigid is investigated. Analysis of linear stabilization depending on normal mode was used and the eigenvalue was acquired using the technique of Galerkin. Numerical computations of the Taylor number Ta, magnetic Chandrasekhar number H and feedback control K parameters are computed by Maple software and presented graphically.

2. Mathematical Formulation

The infinite parallel plane of the nanofluids layer heated from below confined to the effects of rotation, magnetic field and feedback control between $z = 0$ and $z = d$ is studied. The temperature and volumetric fraction of nanoparticles at the lower and upper boundaries are referred to as T_0^* and ϕ_0^* at $z = 0$; and T_u^* and ϕ_u^* at $z = d$. The estimation of Oberbeck–Boussinesq flow that has been introduced depends on the following:

$$\nabla^* \cdot u^* = 0,$$

$$\rho_f \left[\frac{\partial u^*}{\partial t^*} + (u^* \cdot \nabla^*)u^* \right] = -\nabla^*p^* + \mu \nabla^2 u^* - 2\rho_f \Omega^* \times u^* + g \{ \phi^* \rho_p + (1 - \phi^*) \rho_f [1 - \alpha_T(T^* - T_u^*)] \} + \frac{\mu_e}{4\pi} (H^* \cdot \nabla^*)H^*, \quad (2)$$

$$\frac{\partial T^*}{\partial t^*} + (u^* \cdot \nabla^*)T^* = \kappa \nabla^2 T^* + (\rho c)_p D_B \nabla^* \phi^* \cdot \nabla^* T^* + \frac{\partial \phi^*}{\partial t^*} + (u^* \cdot \nabla^*)\phi^* = D_B \nabla^2 \phi^* + \frac{D_T}{T_u^*} \nabla^2 T^* \quad \text{(3)}$$

where u^* is the velocity, ρ_f is the density of the fluid, t^* is the time, p^* is the pressure, μ is the viscosity, $\Omega^* = (0, 0, \Omega)$ is the angular velocity, g is the gravity, ϕ^* is the volumetric fraction of nanoparticles, ρ_p is the particles density, α_T is the thermal volumetric coefficient, T^* is the temperature, H^* is the magnetic permeability, μ_e is the magnetic permeability of the fluids, H is the magnetic field, c is the specific heat, κ is the nanofluids thermal conductivity, D_B is the Brownian motion and D_T is the thermophoretic diffusion coefficient.

The modified Maxwells equation are, Chandrasekhar [7] :

$$\left[\frac{\partial}{\partial t^*} + (u^* \cdot \nabla^*) \right] H^* = (H^* \cdot \nabla^*)u^* + \eta \nabla^2 \cdot H^*, \quad (5)$$

$$\nabla^* \cdot H^* = 0, \quad \text{(6)}$$

where $\eta = \frac{1}{4\pi \mu_e h}$ and h are fluid resistivity and electrical conductivity.
Equations (1)–(6) are nondimensionalized using the following definitions

\[(x^*, y^*, z^*) = L(x, y, z), \quad p^* = \frac{\mu \alpha_f p}{L^2}, \quad \phi^* = \frac{\phi^* - \phi^*_l}{\phi^*_u - \phi^*_l}, \quad (H_x^*, H_y^*, H_z^*) = \frac{(H_x^s, H_y^s, H_z^s)}{H_0^*}, \]

\[\psi^*_z = \alpha_f \frac{\psi^*_z}{L}, \quad t^* = \frac{L^2 t}{\alpha_f}, \quad (u^*, v^*, w^*) = \alpha_f \left(\frac{u}{L}, v, w\right), \quad T = \frac{T^* - T^*_a}{\Delta T^*}, \quad x_z = L \frac{x_z^*}{H_0^*} \]

where \(\alpha_f = \frac{k}{(p c)_f} \) is defined as the thermal diffusiveness and \(\psi^*_z \) is the \(z \)-component rotational vorticity.

The following non-dimensional variables are obtained after nondimensionalization of Equations (1)–(6):

\[\nabla \cdot \mathbf{u} = 0, \quad \frac{1}{Pr} \left[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right] = -\nabla p + \nabla^2 \mathbf{u} - Rm \mathbf{e}_z + Ra T \mathbf{e}_z - Rn \phi \mathbf{e}_z - \sqrt{T} \mathbf{a} \times \mathbf{e}_z + H \frac{Pr}{Pm} (H \cdot \nabla) \mathbf{H}, \]

\[\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T = \nabla^2 T + \frac{N_B}{L_n} \nabla \phi \cdot \nabla T + \frac{N_A N_B}{L_n} \nabla \mathbf{T} \cdot \nabla T, \]

\[\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \frac{1}{L_n} \nabla^2 \phi + \frac{N_A}{L_n} \nabla^2 T, \]

\[\frac{\partial \mathbf{H}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{H} = (H \cdot \nabla) \mathbf{u} + \frac{Pr}{Pm} \nabla^2 \mathbf{H}, \]

\[\nabla \cdot \mathbf{H} = 0, \]

here \(Pm = \frac{\mu}{\rho_f \eta^*} \) is the magnetic Prandtl number and \(H = \frac{\mu \rho^2 L^2}{4 \pi \rho_f \nu^*} \) is the magnetic Chandrasekhar number, where the kinematic viscosity of nanofluids is \(\nu = \frac{\mu}{\rho_f} \).

The proposed representation of normal mode technique is

\[(u', T', \phi', \psi_z') = [W(z), \Theta(z), \Phi(z), \Psi(z)] e^{i[(a_x x + a_y y) + st]}, \]

where \(W(z), \Theta(z), \Phi(z) \) and \(\Psi(z) \) are vertical velocity disturbance, temperature, volumetric fraction of nanoparticles and vorticity due to the rotation amplitudes; the wavenumbers in the directions of \(x \) and \(y \) are \(a_x \) and \(a_y \); \(s = i \omega \), where \(i = \sqrt{-1} \) and \(\omega \) is real and dimensionless frequency.

\[(D^2 - a^2)^2 W - HD^2 W - \sqrt{T} a D \Psi - a^2 Ra \Theta + a^2 Rn \Phi = 0, \]

\[W + \left[D^2 - a^2 + \frac{N_B}{L_n} D - 2 \frac{N_A N_B}{L_n} D \right] \Theta - \frac{N_B}{L_n} D \Phi = 0, \]

\[W - \frac{N_A}{L_n} (D^2 - a^2) \Theta - \frac{1}{L_n} (D^2 - a^2) \Phi = 0, \]

\[(D^2 - a^2)^2 \Psi + \sqrt{T} a (D^2 - a^2) DW - HD^2 \Psi = 0, \]

where \(D = \frac{d}{dz} \) and \(a = \sqrt{a_x^2 + a_y^2} \) is the wavenumber.
Following Bau’s proportional feedback control [16], the continually circulated actuators and sensors are sorted in such a manner that an actuator is placed directly below it for each sensor. It is possible to determine a control $q(t)$ using the proportional–integral–differential (PID) controller of the form

$$q(t) = r + K \left[e(t) \right], e(t) = \hat{m}(t) + m(t),$$

(19)

where r is a control calibration, $e(t)$ is a measurement error, $\hat{m}(t)$, from the required reference value, $m(t)$, K is a scalar controller gain where $K = K_P + K_D \frac{d}{dt} + K_L \int_0^t dt$, K_P is a proportional gain, K_D is a differential gain, and K_L is an integral gain. On the basis of (19), the actuator modifies the temperature of the heated surface of one sensor plane and proportional feedback control using a proportional relationship between the lower, $z = 0$ and the upper, $z = 1$ thermal boundaries for disturbance field,

$$T'(x, y, 0, t) = -KT'(x, y, 1, t),$$

(20)

where T' is the fluid temperature variance from its conductive value. Under the appropriate boundary conditions, Equations (15)–(18) are solved by considering the proportional controller, K positioned at the lower boundary of nanofluids layer. Therefore, we will have:

Lower free and upper free boundaries

$$W = D^2W = \Theta(0) + K\Theta(1) = \Phi = \Psi = D\Psi = 0 \text{ at } z = 0,$$

$$W = D^2W = D\Theta = \Phi = D\Psi = 0 \text{ at } z = 1.$$

(21)

Lower rigid and upper free boundaries

$$W = DW = \Theta(0) + K\Theta(1) = \Phi = \Psi = D\Psi = 0 \text{ at } z = 0,$$

$$W = D^2W = D\Theta = \Phi = D\Psi = 0 \text{ at } z = 1.$$

(22)

Lower rigid and upper rigid boundaries

$$W = DW = \Theta(0) + K\Theta(1) = \Phi = \Psi = D\Psi = 0 \text{ at } z = 0,$$

$$W = DW = D\Theta = \Phi = D\Psi = 0 \text{ at } z = 1.$$

(23)

The technique of Galerkin is employed to discover an approximate solution to the system. In a series of basic functions, the variables are as shown below:

$$W = \sum_{i=1}^N A_iW_i, \quad \Theta = \sum_{i=1}^N B_i\Theta_i, \quad \Phi = \sum_{i=1}^N C_i\Phi_i, \quad \Psi = \sum_{i=1}^N D_i\Psi_i,$$

(24)

where constants are A_i, B_i, C_i and D_i and base functions are W_i, Θ_i, Φ_i and Ψ_i where $i = 1, 2, 3, ..$ will be selected for the trial function that meets the lower and upper boundaries of free–free, rigid–free and rigid–rigid, respectively.

$$W_i = \sin(z\pi), \quad \Theta_i = z(2 - z), \quad \Phi_i = \sin(z\pi), \quad \Psi_i = z(3z - 2z^2),$$

(25)

$$W_i = z^2(1 - z)(3 - 2z), \quad \Theta_i = z(2 - z), \quad \Phi_i = z(1 - z), \quad \Psi_i = z(3z - 2z^2),$$

(26)

$$W_i = z^2(1 - z)^2, \quad \Theta_i = z(2 - z), \quad \Phi_i = z(1 - z), \quad \Psi_i = z(3z - 2z^2).$$

(27)

Substitute (24) in Equations (15)–(18) and create the left–hand expressions of those equations (residuals) orthogonal to the trial functions, thus achieving a system of $4N$ linear algebraic equations in the unknown $4N$. The vanishing of the coefficients determinant generates the system’s eigenvalue equation. One can consider Ra as the eigenvalue solution.
3. Results and Discussion

Analysis of linear stabilization is conducted to investigate the control on Rayleigh–Bénard convection in rotating nanofluids layer subjected to the magnetic field. The nanofluid model includes two significant impacts of Brownian movement and thermophoresis. By using the lower–upper boundary conditions; free–free, rigid–free and rigid–rigid, the sensitiveness of the critical Rayleigh number Ra_c to changes in the physical difference parameters of Taylor number Ta, feedback control K and magnetic Chandrasekhar number H are studied. Comparative analysis of the thermal instability for alumina–water Al_2O_3–H_2O and copper–water Cu–H_2O nanofluids is done. Following Yadav et al. [5], the aforementioned values of the parameters for alumina–water Al_2O_3–H_2O nanofluids in the representative values of dimensionless parameters are $Le = 5000$, $N_A = 5$, $N_B = 0.00775$ and $Rn = 0.122$. Meanwhile, for copper–water Cu–H_2O nanofluids in the representative values of dimensionless parameters are $Le = 5000$, $N_A = 0.5$, $N_B = 0.0085$ and $Rn = 0.325$. The stationary convection curves of Rayleigh number Ra against wavenumber α for various values for parameter are shown in Figures 1–3. The global minimum marginal curve known as critical Rayleigh number Ra_c is presented in Figures 4–6. We employed alumina–water Al_2O_3–H_2O and copper–water Cu–H_2O nanofluids suspensions for numerical computation.

For the boundary conditions considered by using single–term Galerkin method, the resulting eigenvalue problem for different values of Ta, K, H, Rn, Ln, N_B and N_A are obtained. Calculations are performed first under the limiting case of nanofluids to validate the solution procedure, i.e. for regular fluids when $Rn = 0$, $N_A = 0$ and $N_B = 0$. The critical Rayleigh number Ra_c for different values of magnetic Chandrasekhar number H in the absence of Taylor number Ta and feedback control K are obtained and compared to the results in Chandrasekhar [7] and Yadav et al. [4] shown in Tables 1 and 2 for lower and upper boundaries of rigid–rigid and rigid–free. We notice from the tables that the agreement is very excellent and that the technique used is thus accurate.

Table 1. Comparisons of Ra_c for different values of H with Chandrasekhar [7] and Yadav et al. [4] for regular fluids in the absence of rotation in lower and upper rigid boundaries

H	Chandrasekhar [7]	Yadav et al. [4]	Present Study
0	1707.80	1707.83	1707.76
10	1945.90	1945.74	1945.74
50	2802.10	2801.96	2802.00
100	3757.40	3757.23	3757.23
200	5488.60	5489.18	5488.54
500	10110.00	10119.76	10109.28
1000	17103.00	17160.41	17109.06

Table 2. Comparisons of Ra_c for different values of H with Chandrasekhar [7] and Yadav et al. [4] for regular fluids in the absence of rotation in lower rigid upper free boundaries

H	Chandrasekhar [7]	Yadav et al. [4]	Present Study
0	1100.75	1100.77	1100.76
25	1699.40	1699.36	1699.32
50	2217.60	2217.28	2217.45
250	5613.30	5613.01	5613.25
500	9304.50	9306.52	9305.07
1000	16119.00	16137.56	16120.56
1500	22592.00	22660.07	22600.07
Figure 1. Variation of K on Ra against wavenumber a, for nanofluids of Al$_2$O$_3$–H$_2$O and Cu–H$_2$O

Figure 1 analyzed the effect of feedback control, $K = 30$ and 35, for the plot of Ra versus wavenumber, a in various types of boundary conditions of alumina–water Al$_2$O$_3$–H$_2$O and copper–water Cu–H$_2$O nanofluids. Clearly, the increasing values of the feedback control, K significantly postponed the onset of convection which is the result is equivalent to Bau [16]. The sensors identify the nanofluid from its conductive state physically and then the actuators are guided to eliminate any disruptions. Therefore, the same control strategy of feedback control implemented by the previous researchers; [14]–[16], [20] and [21], in fluids layer can be effectively used to stabilize the nanofluids layer heated from below. By comparing these two types of nanofluids considered in this problem, feedback control K plotted for alumina–water Al$_2$O$_3$–H$_2$O nanofluids showing a much better performance than copper–water Cu–H$_2$O nanofluids, thus reveals that alumina–water Al$_2$O$_3$–H$_2$O nanofluids stabilize more than copper–water Cu–H$_2$O nanofluids.

Figure 2 analyzed the effect of increasing the values of Taylor number, $Ta = 1000$ and 2500, for the plot of Ra versus wavenumber, a in various types of boundary conditions for nanofluids of alumina-water Al$_2$O$_3$–H$_2$O and copper-water Cu–H$_2$O. It has been found, the effect of elevating the values of Ta inhibit the onset of convection [5] and [7]. This is due to the rotation mechanism that induces vorticity into the nanofluids layer, causes the nanofluids to move in the horizontal planes with higher velocity and velocity at the vertical planes is reduces thus slow down the process of heat transfer [9].

Figure 3 represents the variation values of Ra with wavenumber, a for various values of magnetic Chandrasekhar number, $H = 100$ and 150 in various boundary conditions for nanofluids of alumina-water Al$_2$O$_3$–H$_2$O and copper-water Cu–H$_2$O. The impact of increasing the values of H has a strong magnetic field stabilizing impact and postpone the Rayleigh–Bénard convection [4]. This is due to the variations of the magnetic field implemented contributes to Lorentz force variability, where the Lorentz force generates greater resistance on the horizontal field than that of the vertical field thus delay the convection. The increasing values of magnetic Chandrasekhar number, H for alumina–water Al$_2$O$_3$–H$_2$O nanofluid have higher values of critical Rayleigh number, Ra_c than copper–water Cu–H$_2$O nanofluid. From the findings, it is noted that alumina–water Al$_2$O$_3$–H$_2$O nanofluid exhibit higher stability than copper–water Cu–H$_2$O
Figure 2. Variation of Ta on Ra against wavenumber a, for nanofluids of Al$_2$O$_3$–H$_2$O and Cu–H$_2$O.

Figure 3. Variation of H on Ra against wavenumber a, for nanofluids of Al$_2$O$_3$–H$_2$O and Cu–H$_2$O.

nanofluid and the most stable boundaries are rigid–rigid compared to free–free and rigid–free.

The effect of various feedback control values, $K = 15$ and 35 for critical Rayleigh number, Ra_c depending on Taylor number, Ta has been illustrated in Figure 4 in various boundary conditions for nanofluids of alumina–water Al$_2$O$_3$–H$_2$O and copper–water Cu–H$_2$O. As expected, the increasing values of K and Ta stabilizes the system and alumina–water Al$_2$O$_3$–H$_2$O nanofluid is more stable than copper–water Cu–H$_2$O nanofluid.
Figure 4. Variation of K on Ra_c against Ta, for nanofluids of Al_2O_3–H_2O and Cu–H_2O

Figure 5. Variation of H on Ra_c against K, for nanofluids of Al_2O_3–H_2O and Cu–H_2O

Figure 6. Variation of Ta on Ra_c against H, for nanofluids of Al_2O_3–H_2O and Cu–H_2O
Illustration in Figure 5 demonstrates the impact of the selected values of magnetic Chandrasekhar number $H = 100$ and 150 for critical Rayleigh number Ra_c depending on feedback control K for lower and upper boundaries of free–free, rigid–free and rigid–rigid. As discussed earlier, the impact of rising the values of magnetic Chandrasekhar number H and feedback control K stabilizes the system. At the same time, alumina–water Al_2O_3–H_2O nanofluids shows an excellence performance than copper–water Cu–H_2O nanofluids.

The variety of the critical number of Rayleigh, Ra_c for the magnetic Chandrasekhar number, H depending on various Taylor number, $Ta = 500$ and 1500 values are plotted in Figure 6. This plots indicate that as Ta and H increases, the Ra_c shows a positive increment and stabilized the system in various boundary conditions for nanofluids of alumina–water Al_2O_3–H_2O and copper–water Cu–H_2O.

4. Conclusion
The control problem of Rayleigh–Bénard convective instability in magnetic rotating nanofluids is heated from below for lower and upper boundaries free–free, rigid–free and rigid–rigid. The numerical computations are represented considering two types of nanofluids of water–based fluids and nanoparticles of alumina Al_2O_3 and copper Cu suspended in it. The implemented model for nanofluids incorporates the combination effects of Brownie movement and thermophoresis. A normal–mode linear stability assessment is used, the eigenvalue solution acquired is analyzed using the method of Galerkin numerically and calculated using Maple software.

The obtained results from the investigation can be concluded as the following:

(i) In the system, alumina–water Al_2O_3–H_2O and copper–water Cu–H_2O nanofluids thermal instability are regarded. It is found that alumina nanoparticles Al_2O_3 when deposited in liquids improve the system’s stability faster than copper nanoparticles Cu when feedback control, rotation and magnetic field are present. Therefore, alumina–water Al_2O_3–H_2O nanofluid is the most stable nanofluids compared to copper–water Cu–H_2O nanofluid.

(ii) The increasing values of magnetic Chandrasekhar number, H, feedback control, K and Taylor number, Ta significantly stabilized the system.

(iii) Finally, three different varieties of lower and upper boundaries, the most stable system is when both bounding surfaces are rigid and the most unstable system is when both bounding surfaces are free.

Acknowledgments
The authors would like to thank the Ministry of Higher Education (MOHE) for MyPhD and FRGS Vote no. 5524808.

References
[1] R. L. Webb, Principles of enhanced heat transfer, *John Wiley & Sons, New York*, 1993.
[2] B. Ghasemi, S. M. Aminossadati and A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure, *International Journal of Thermal Sciences*, vol. 50, pp. 1748-1756, 2011.
[3] M. A. A. Hamada, I. Pop and A. I. M. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, *Nonlinear analysis: Real World Applications*, vol. 12, pp. 1338-1346, 2011.
[4] D. Yadav, R. Bhargava, G. S. Agrawal, G. S. Hwang, J. Lee and M. C. Kim, Magnetno-convection in a rotating layer of nanofluid, *Asia-Pacific Journal of Chemical Engineering*, vol. 9, pp. 663-677, 2014.
[5] D. Yadav, G. S. Agrawal and J. Lee, Thermal instability in a rotating nanofluid layer : A revised model, *Ain Shams Engineering Journal*, vol. 7, pp. 431-440, 2016.
[6] D. Yadav, J. Wang, R. Bhargava, J. Lee and H. H. Cho, Numerical investigation of the effect of magnetic field on the onset of nanofluid convection, *Applied Thermal Engineering*, vol. 103, pp. 1441-1449, 2016.
[7] S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, *Oxford University Press, UK*, 1961.
[8] D. Yadav, R. Bhargava and G. S. Agrawal, Thermal instability in a nanofluid layer with a vertical magnetic field, *Journal of Engineering Mathematics*, vol. 80, pp. 147-164, 2013.

[9] R. Chand, On the onset of Rayleigh-Benard convection in a layer of nanofluid in hydromagnetics, *International Journal of Nanoscience*, vol. 12, pp. 1350038-7, 2013.

[10] U. Gupta, A. Ahuja and R. K. Wanchoo, Magneto convection in a nanofluid layer, *International Journal of Heat and Mass Transfer*, vol. 64, pp. 1163-1171, 2013.

[11] D. Yadav, C. Kim, J. Lee and H. H. Cho, Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating, *Computers and Fluids*, vol. 121, pp. 26-36, 2015.

[12] R. Chand and G. C. Rana, Magneto convection in a layer of nanofluid with Soret effect, *Acta Mechanica et Automatica*, vol. 9, pp. 63-69, 2015.

[13] D. Yadav, D. Lee, H. H. Cho and J. Lee, The onset of double-diffusive nanofluid convection in a rotating porous medium layer with thermal conductivity and viscosity variation: a revised model, *Journal of Porous Media*, vol. 19, pp. 31-46, 2016.

[14] J. Tang and H. H. Bau, Feedback control stabilization of the no-motion state of a fluid confined in a horizontal porous layer heated from below, *Journal of Fluid Mechanics*, vol. 257, pp. 485-505, 1993.

[15] J. Tang and H. H. Bau, Stabilization of the no-motion state in Rayleigh-Benard convection through the use of feedback control, *Physical Review Letters*, vol. 70, pp. 1795-1798, 1993.

[16] H. H. Bau, Control of Marangoni-Benard convection, *International Journal of Heat and Mass Transfer*, vol. 42, pp. 1327-1341, 1999.

[17] N. M. Arifin, R. Nazar and N. Senu, Feedback control of the Marangoni-Benard instability in a fluid layer with free-slip bottom, *Journal of the Physical Society Japan*, vol. 76, pp. 1-4, 2007.

[18] I. Hashim and Z. Siri, Stabilization of steady and oscillatory Marangoni instability in rotating fluid layer by feedback control strategy, *Numerical Heat Transfer, Part A: Applications (An International Journal of Computational Methodology)*, vol. 54, pp. 657-663, 2008.

[19] S. A. Kechil and I. Hashim, Control of Marangoni instability in a layer of variable-viscosity fluid, *International Communications Heat and Mass Transfer*, vol. 35, pp. 1368-1374, 2008.

[20] N. Bachok, N. M. Arifin and F. M. Ali, Effect of control on the onset of Marangoni-Benard convection with uniform internal heat generation, *MATEMATIKA Malaysia Journal of Industrial and Applied Mathematics*, vol. 24, pp. 23-29, 2008.

[21] Z. Siri, Z. Mustafa and I. Hashim, Effect of rotation and feedback control on Benard-Marangoni convection, *International Journal of Heat and Mass Transfer*, vol. 52, pp. 5770-5775, 2009.

[22] I. K. Khalid, N. F. M. Mokhtar and N. M. Arifin, Rayleigh-Benard convection in micropolar fluid with feedback control, *World Applied Sciences Journal 21 (Special Issue of Applied Mathematics)*, vol. 21, pp. 112-118, 2013.