Innate Immune Response Induced by Theiler’s Murine Encephalomyelitis Virus Infection

Abstract
Although the causative agents of human multiple sclerosis (MS) are not known, it is suspected that a viral infection may be associated with the initiation of the disease. Several viral disease models in mice have been studied to understand the pathogenesis of demyelination. In particular, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) has been extensively studied as a relevant model. Various cytokines and chemokines are produced upon viral infection by different cell types, including antigen-presenting cells (APCs) such as macrophages; dendritic cells (DCs); and glial cells, such as astrocytes, microglia, and oligodendrocytes. The upregulation of the corresponding molecules are also found in MS and are likely to play an important role in the protection and/or pathogenesis of chronic inflammatory demyelinating disease. In this review, the type of cells and molecules, gene-activation mechanisms as well as their potential roles in protection and pathogenesis will be discussed.

Key Words
Demyelination
Theiler’s virus
Cytokines
Chemokines
Signal transduction

Introduction
Multiple sclerosis (MS) is a chronic inflammatory immune-mediated neurological disease leading to demyelination of the white matter of the brain and spinal cord (1,2). It is suspected that the initial tissue damage caused by infectious agents yields autoimmunity to myelin components (3,4). Several virus-induced models have been used to study the underlying mechanisms of this disease (5,6). In particular, the Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination system has been extensively studied as a relevant model (7). After susceptible mice are intracerebrally infected with TMEV, they develop a chronic immune-mediated demyelinating disease similar to human
MS involving strong autoimmunity to myelin antigens (8). Viral persistence is closely associated with the progression of demyelinating disease (9–11). In addition, the various proinflammatory chemokines and cytokines found in the central nervous system (CNS) of infected mice are similar to those found in human MS. More recently, it has been shown that various chemokines and cytokines are directly activated by TMEV infection in many different cell types including glial cells and antigen-presenting cells (APCs) (12–14). These findings suggest that these proinflammatory molecules affect the initiation and establishment of inflammatory responses. In this article, we will review current and ongoing studies in order to understand the role and mechanisms of activation of these cellular genes in the protection and pathogenesis of demyelination.

TMEV-induced demyelinating disease (TMEV-IDD) has been recognized as an immune-mediated disease based on several experimental approaches. The treatment of host with either anti-thymocyte, anti-Ia (MHC class II), or anti-CD4 antibodies delays the onset of disease (15–17), suggesting the involvement of CD4+ T cells. T helper type 1 (Th1) cells preferentially producing interferon-γ (IFN-γ) are found within demyelinating lesions of the CNS and appear to be involved in the pathogenesis of demyelination (18–21). Furthermore, the genetic association between susceptibility to TMEV-IDD and the major histocompatibility complex (MHC) (22,23), as well as the T-cell receptor (TCR) β-chain (24,25), further supports the involvement of such immune responses in pathogenesis. These associations have also been identified in human MS (26). Attempts to correlate antibody response to viral antigens and pathogenesis have been made (27). However, there is no clear critical role of the antibody response in developing demyelinating disease. A strong preventive role is established if TMEV-specific antibodies are present prior to viral infection, but these antibodies provide weak protection after viral persistence is established. The role of CD8+ T cells is not yet clear. It is generally believed that virus-specific CD8+ T cells are important for viral clearance and consequent resistance to TMEV-induced demyelinating disease (7).

Owing to the inflammatory nature of immune responses in the CNS following TMEV infection, the majority of the previous studies have been focused on the cytokines associated with Th1 and/or Th2 responses.

Innate Immunity and TMEV-IDD

NK/NKT Cells

In general, viral infection and subsequent pathogenesis can be greatly affected by different innate immune responses. These include natural killer (NK) and natural killer T (NKT) cell responses, as well as various cytokines and chemokines directly induced upon viral infection. Because TMEV infection also induces various innate immune responses including a wide range of chemokines and cytokines (28,29), these chemokines/cytokines and NK/NKT cell responses are likely to affect each other, leading to the induction of virus-specific adaptive immune responses. The balance of various cytokines produced by glial cells, APCs, NK cells, as well as CD4+ and CD8+ T cells, determines the outcome of either protection or pathogenesis. Not many studies on NK/NKT cells associated with TMEV-IDD have been reported. One early study (30) attempted to remove the NK cell population with anti-NK1.1 or anti-asialo-GM1 antibodies. This study found that the lack of NK population in resistant C57BL/10 mice renders susceptibility to acute encephalitis. In our preliminary studies, NK-deficient mice (Ly49A Tg C57BL/6 mice obtained from Dr. W. Kim et al.)
Yokoyama) with resistant background genes are also susceptible (3/6 mice) to the early gray matter disease, suggesting the importance of NK response in viral clearance, hence protection from disease.

Interferon (IFN)-α/β

Administration of IFN-α/β is a widely used and effective treatment for human MS (31,32). However, its mechanism of action is poorly understood. It is known that IFN-α/β (type I) plays an important role in the reduction of blood-brain barrier (BBB) permeability as well as induction of the NK response (33,34). Type I IFN is induced via Toll-like receptor (TLR)-mediated activation leading to NF-κB activation upon microbial/viral infections, which results in further induction of chemokine/cytokine expression (35). Infection of IFN-α/β receptor-deficient mice (IFN-α/βR knockout [KO]) with TMEV results in rapid gray matter disease and subsequent death (36). Furthermore, type I IFN can induce Th2 cytokines such as interleukin (IL)-10 and IL-4 and downregulate Th1-associated genes such as IL-12 receptor β2 (37,38). It is also interesting to note that the induction of IFN-α/β gene in macrophages or astrocytes after TMEV-infection is significantly decreased or delayed compared to other proinflammatory cytokines (28,39). Thus, this suggests that type I IFN plays a significant role in the protection against TMEV-IDD. Type I IFN is also a strong anti-viral agent that directly inhibits viral replication. This delayed IFN-α/β induction may result in viral persistence, leading to subsequent early establishment of inflammatory responses and eventual Th1-mediated demyelinating disease in susceptible SJL mice.

Other Cytokines

Many investigations have examined the production of various cytokines in the CNS throughout the course of TMEV-IDD. Both Th1- and Th2-associated cytokines are detected during early infection. These include IFN-γ, IL-1, IL-6, IL-12, tumor necrosis factor-α (TNF-α), and transforming growth factor-β (TGF-β) (40–45). In addition, previous studies indicate that administration of anti-TNFα or anti-IL-12 antibody to susceptible mice significantly inhibits both disease progression and severity, strongly supporting the importance of these cytokines in the pathogenesis of disease (44,45). In MS, Th1-type cytokines are associated with relapses, whereas Th2-type cytokines are associated with remission (46–48). However, the pathogenesis of TMEV-IDD is significantly enhanced in mice pretreated with anti-IFN-γ antibodies or in IFN-γ receptor KO mice (36,49), whereas administration of IFN-γ also exacerbates the disease (49). These results suggest that this cytokine can be either protective or pathogenic, depending on the time present with respect to viral infection. Therefore, these studies imply that the balance between Th1 and Th2 responses may be important in the development of pathogenesis or protection.

Chemokines

The production of chemokines has also been detected in the CNS of mice following a variety of viral infections, including TMEV (50–55). Chemokines have multiple biological functions in inflammatory responses, such as chemo-attraction of a variety of cell types, activation of certain cell populations, as well as angiogenesis and BBB dysfunction (56,57). Our results concur with these findings. The brains (initial site of infection), but not the spinal cords, from susceptible SJL/J mice infected with TMEV show prominent expression of RANTES and IP-10 as early as 1 and 3 d
after viral infection when analyzed by RPA (Fig. 1A). At the peak of viral RNA levels (10 d postinfection), a corresponding increase of RANTES and IP-10 transcripts was observed in the brain. As the viral message was reduced (20 d postinfection), chemokine expression was only slightly reduced, which may reflect continuous chemokine gene activation by cytokines produced by infiltrating T-cell populations. In the spinal cord, however, the level of viral and RANTES messages was barely detectable at 6 d post viral infection, followed by a rapid increase in viral, RANTES, and IP-10 messages at 20 d postinfection. These data strongly suggest that early upregulation of chemokines in the brain and spinal cord is subsequent to TMEV-infection and coincides with the level of viral replication. Such a correlation between viral persistence and chemokine production has also recently been suggested by others in TMEV-infected SJL mice (58). We have also determined the levels of viral and chemokine messages in the brain and spinal cord of the prototypically resistant C57BL/6 strain, during TMEV infection (Fig. 1B). RANTES and IP-10 (and to some level, eotaxin, MIP-1β, and MCP-1) genes are similarly induced at the early stage of viral infection (up to 6 d). However, overall levels of viral as well as chemokine messages were markedly reduced later in the brain of resistant C57BL/6 mice, in sharp contrast to SJL/J mice. Interestingly, no significant expression of chemokine or viral messages was detectable in the spinal cord except for IP-10 at 6 d postinfection. This lack of significant upregulation correlates well with the low inflammatory response in C57BL/6
mice. Therefore, the lack of sustained chemokine induction in the CNS of resistant C57BL/6 mice may reflect poor viral persistence, critically important for initiating and promoting inflammatory responses, including cytokine/chemokine expression leading to demyelination. Recently, it was shown that transgenic mice expressing MCP-1 (CCL2) in the CNS show increased severity and accelerated onset of demyelinating disease (59). Together, these studies strongly suggest that chemokines are likely to play an important role in the initiation of TMEV-IDD.

Cellular Source of Cytokines and Chemokines

Glial Cells

Previous studies have indicated that the main reservoir of viral replication is microglia/macrophages in the CNS (60). Our initial studies indicate that the majority (>50%) of microglia in the CNS of TMEV-infected SJL/J mice produce TNF-α, compared to a minor population (<5%) of CNS-infiltrating macrophages, suggesting that microglia rather than infiltrating macrophages/monocytes are a major contributor of pro-inflammatory chemokines and cytokines (Mohindru and Kim, unpublished data). Infection of other glial cells (e.g., astrocytes, oligodendrocytes) within the CNS is also crucial for viral persistence (61). However, isolation and maintenance of these glial cells from infected adult mice are rather difficult. As an alternate source of glial cells, astrocytes, oligodendrocytes, and microglia derived from neonatal brains have been utilized to investigate the effects of viral infection on the production of chemokines and cytokines. Owing to the abundance and ease of isolation, primary astrocyte cultures have been most frequently used. These studies indicate that various cytokines such as IL-12, IL-6, TNF-α, IL-1, and IFN-β are directly induced following TMEV infection in primary astrocytes (28). Similarly, TNF-α, IL-6, IL-18, type I IFNs, and IL-12 genes are activated in microglia cultures upon TMEV infection (13). It is interesting to note that the levels of key proinflammatory cytokines (e.g., IL-12 and IL-1) are much reduced following infection with a low-pathogenic variant virus (14), strongly suggesting the important pathogenic role of these initial proinflammatory cytokines directly induced after viral infection in developing demyelinating disease.

In addition to cytokines, various chemokines are also produced in these glial cells following TMEV infection. Previously, we have demonstrated that several chemokine genes are activated upon TMEV infection in various glial cells (12). The scope of chemokine genes that are activated at 6–8 h post-TMEV-infection has been determined using a mini-array system (SuperArray, Bethesda, MD) (29). The results clearly indicate that only select chemokine genes (9 out of >30 tested) are significantly (>fivefold) activated in astrocyte cultures. These include MCP-1 (CCL2), MIP-1α (CCL3), MIP-1β (CCL4), RANTES (CCL5), MCP-3 (CCL7), MCP-5 (CCL12), GRO-1 (CXCL1), MIP-2 (CXCL2), and IP-10 (CXCL10). It is interesting to note that the level of GRO-1 (KC) chemokine protein secreted by astrocytes after TMEV infection is >20-fold higher than MCP-1 or MIP-1α. However, the significance of this difference in the pathogenesis of the initial inflammatory response and establishment of chronic demyelinating disease is not yet clear. It has been reported that GRO-1 is a potent chemottractant of neutrophils and an angiogenic factor. Nevertheless, overlapping chemokines (29) and cytokines (unpublished results) are
also induced in astrocyte cultures after treatment with proinflammatory cytokines. Thus, chemokines and cytokines produced in a delayed fashion (after 24 h viral infection) may include those indirectly stimulated by the initial proinflammatory cytokines produced in culture.

Antigen-Presenting Cells

The initial commitment of Th1/Th2 differentiation is most likely affected by professional APCs in the periphery. Thus, the possibility that TMEV infection may also directly induce proinflammatory cytokines in professional APCs has been explored (14). Infection of isolated DCs and macrophages with pathogenic TMEV results in the preferential upregulation of Th1-promoting IL-12 production over Th2-promoting IL-10, whereas nonpathogenic variant virus preferentially activates IL-10 over IL-12. In addition to these cytokines, additional proinflammatory cytokines (e.g., TNF-α, IL-6, IL-1) as well as chemokines (RANTES, MCP-1, MIP-2, MCP-1, IP-10) are also induced in APCs upon TMEV infection (unpublished observation). These results suggest the importance of cytokines directly induced in these cells by TMEV infection in subsequent inflammatory immune responses.

Molecular Mechanisms of Chemokine/Cytokine Gene Activation

NF-xB Requirement

To identify the mechanism(s) involved in TMEV-induced cytokine expression in glial cells, the activation of NF-xB has been investigated in astrocytes by immunohistochemistry and electrophoretic mobility shift assay (EMSA) (28). Rapid NF-xB nuclear translocation is observed within 5–15 min after TMEV infection. The activation of NF-xB is also apparent based on EMSA experiments with nuclear extracts from TMEV-infected astrocytes. The molecular weights of NF-xB subunits involved in the binding to NF-xB-specific oligonucleotides suggest that p65/p50 and p50/p50 complexes are involved in the activation. These results conclusively demonstrate the activation of NF-xB in astrocytes after TMEV infection. To correlate NF-xB activation and cytokine gene expression induced by TMEV, chemical inhibitors for the NF-xB pathway (caffeic ester phenyl ester and MG132), as well as recombinant-adenovirus expressing a dominant-negative form of I-xB, were used. Pretreatment of astrocytes with these inhibitors suppress most, if not all, of the cytokines and chemokines (28,29). These results indicate that TMEV-induced NF-xB activation is required for cytokine and chemokine gene expression in primary astrocyte cultures.

MAPK, PKR, and IFN-α/β Dependence

Many pathways, including the double-stranded RNA-dependent protein kinase (PKR), can lead to NF-xB activation, resulting in the production of proinflammatory cytokines (62–68). Pretreatment of astrocytes with 2-aminopurine (AP), a serine threonine protein kinase inhibitor of PKR (69), was able to only partially reduce the level of some (i.e., IL-1, TNF-α, and IL-6) of the TMEV-induced cytokines (28,29). In addition, TMEV-induced cytokine expression was not significantly compromised in a PKR-deficient fibroblast cell line. These results strongly suggest that NF-xB activation induced by TMEV can be independent of the PKR pathway. The possibility that MAPK is necessary for the activation of chemokine/cytokine genes after TMEV infection was also examined (15,29) and unpublished results using specific inhibitors for MEK and p38 (U0126 and SB2024190, respectively). These treatments partially inhibited both chemokine and cyto-
kine gene expression, suggesting that activation of MAPK may also contribute to the activation of chemokine gene expression at some level.

The type I interferons (IFN-α/β) induced following various infections, including viruses, further induce numerous other cytokines (TNF-α, IL-12, IL-1, and IL-6) and chemokines (63–65,70). To determine the potential involvement of IFN-α/β in the induction of cytokines and chemokines by TMEV infection, the levels of cytokine and chemokine gene expression in astrocytes from control and IFN-α/β receptor-deficient (IFN-α/βR-KO) mice were examined (28, 29). The overall kinetics of the initial gene expression was similar to astrocytes with intact IFN-α/β receptor. However, the levels of some cytokines critically important for inflammatory responses (IL-12p40 and TNF-α) are significantly lower in the IFN-α/βR KO astrocytes during the late time periods (12–24 h). The lack of additional stimulation secondarily induced by Type I IFNs may result in a reduction in cytokine gene expression at late time points, because IFN-α/β treatment induces significant levels of cytokines and chemokines in astrocyte cultures (28). These results indicate that the induction of cytokines/chemokines by TMEV does not require the IFN-α/β pathway, which is important for amplifying and sustaining the subsequent protective immune response (29).

Differential Gene Activation in Different Species

Infection with different picornaviruses such as Coxsackievirus can cause meningitis/encephalitis in humans and experimental animals. Potential chemokine gene activation in human astrocytes by TMEV has been investigated along with the human picornaviruses, Coxsackievirus B3, or Coxsackievirus B4 (71). Interestingly, all of these viruses induce the expression of IL-8 and MCP-1 genes in primary human astrocytes as well as in an established astrocyte cell line. The pattern of activated chemokine genes in human astrocytes is quite restricted compared to that in mouse astrocytes infected with the same viruses, suggesting distinct mechanisms of gene activation in cells from different species (Fig. 2). Further studies indicate that both AP-1 and NF-κB transcription factors are required for the activation of chemokine genes in human astrocytes, whereas only NF-κB activation is sufficient for mouse astrocytes (71). Such a difference in the activation pathway and pattern of chemokine/ cytokine production may result in potential differences in the pathogenic outcome in different species following infection with the same virus.

Association With Viral Replication

Several lines of experimental data suggest that there is an association between viral replication and chemokine/cytokine gene activation. First, UV-inactivated virus fails to activate these genes in both mouse and human astrocytes (12,71). Second, the number of astrocytes showing viral message is similar to that displaying NF-κB nuclear translocation (28). Third, NF-κB inhibitors that inhibit chemokine/cytokine gene activation following TMEV-infection completely suppress viral replication in both mouse and human astrocytes (unpublished results). These results strongly suggest that cellular gene activation is required for TMEV infection and replication. Supporting this notion, viral replication is also significantly enhanced in cell lines and primary astrocytes that are preactivated with lipopolysaccharide (LPS), which is known to be a potent activator for many different cell types, including APCs (unpublished data). In addition, we have also observed that
administration of LPS or IL-1β peptide permits viral persistence in resistant mice and renders them susceptible to disease (11).

Role of the Initial Innate Immunity in Pathogenesis

As discussed earlier, a variety of chemokines and cytokines appear to play critical roles in early cellular infiltration, viral persistence, development of adaptive immunity, and consequent pathogenesis of viral demyelinating disease. It appears that viral replication is required for the initial activation of chemokine and cytokine genes and these are dependent on NF-κB activation. It is not yet clear which pathway triggers NF-κB activation. Because dsRNA generated during TMEV replication may activate NF-κB via PKR and TLR-3, it is conceivable that these receptors are involved in delivering initial signals for NF-κB activation, leading to the production of chemokines and cytokines. The initial proinflammatory chemokines and cytokines produced in various virus-infected glial cells and APCs may further activate adjacent cell populations that are not infected by virus (Fig. 3). The specific inhibition or delay in IFN-α/β gene activation in virus-infected cells may allow continuous viral replication initially. The newly released virus may have easy access to adjacent cells that are pre-activated by proinflammatory cytokines from virus-infected cells. In particular, TNF-α and IL-1, which are potent NF-κB activators,
Fig. 3. Potential role of innate immune responses in immune-mediated demyelination induced following TMEV infection. Viral infection may activate various glial cells, including astrocytes, microglia via NF-κB to produce select chemokines, and proinflammatory cytokines. The secreted chemokines promote infiltration of various inflammatory cells to the CNS, including NK, Th, CTL, B, and monocytes/macrophages. The secreted cytokines activate adjacent glia cells and infiltrating inflammatory cells, and this may enhance viral infection, replication, and/or cellular function. The combination of NK, CTL, and Th cells to some extent clears viral infection by removing virus-infected cells followed by resolution of inflammation. When, however, inadequate initial innate and virus-specific immune responses fail to clear viral infection in susceptible mice, a chronic immune-mediated demyelinating inflammatory response is established.
References

1. Trapp BD, Peterson J, Ransohoff RM, Rudack R, Mock S, Bo L: Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998;338:278–285.
2. Steinman L: Multiple sclerosis: a two-stage disease. Nat Immunol 2001;2:762–764.
3. Johnson RT: The possible viral etiology of multiple sclerosis. Adv Neurol 1975;13:1–46.
4. McFarlin DE, McFarland HF: Multiple sclerosis. N Engl J Med 1982;307:1183–1188.
5. Dal Canto MC, Kim BS, Miller SD, Melford RW: Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination: a model for human multiple sclerosis. Methods 1996;10:453–461.
6. Lane TE, Buchmeier MJ: Murine coronavirus infection: a paradigm for virus-induced demyelinating disease. Trends Microbiol 1997;5:9–14.
7. Kim BS, Lynn MA, Kang BS, Kang HK, Lee HG, Mohindru M, Palma JP: Pathogenesis of virus-induced immune-mediated demyelination. Immunol Res 2001;24:121–130.
8. Miller SD, Vanderlugt CL, Regoli D, Pan W, Yauch RL, Neville KL, et al.: Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. J Virol 1997;71:113–116.
9. Tangy F, McAllister A, Aubert C, Brahic M: Determinants of persistence and demyelination of the DA strain of Theiler’s virus are found only in the 5′ noncoding sequences from a less virulent Theiler’s virus. J Virol 1993;65:1616–1618.
10. Lipton HL, Calabrese L, Bandypadhyay P, Miller SD, Dal Canto MC, Gerry S, Jensen K: The 5′ noncoding sequences from a less virulent Theiler’s virus dramatically attenuate G10V neurovirulence. J Virol 1991;65:4370–4377.
11. Pullen LC, Park SH, Miller SD, Dal Canto MC, Kim BS: Treatment with bacterial LPS renders genetically resis-
tant C57BL/6 mice susceptible to Theiler’s virus-induced demyelinating disease. J Immunol 1995;155:6497–6501.
12. Peterson JD, Karpus WJ, Clatch RJ, Miller SD: Induction of selected chemokines in glial cells infected with Theiler’s virus. J Neuroimmunol 2001;117:166–170.
13. Olson JK, Girvin AM, Miller SD: Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 2001;75:7970–7979.
14. Palma JP, Yauch RL, Kang HK, Lee HG, Kim BS: Preferential induction of IL-10 in APC correlates with a switch from Th1 to Th2 response following infection with a low pathogenic variant of Theiler’s virus. J Immunol 2002;168:4221–4230.
15. Lipton HL, Calabrese L: Contrasting effects of immunosuppression on Theiler’s virus infection in mice. Infect Immun 1997;65:1569–1569.
16. Rodríguez M, Lafuente WF, Lefebvre J, David CS: Partial suppression of Theiler’s virus-induced demyelination in vivo by administration of monoclonal antibodies to immune response gene products (Ia antigens). Neurology 1986;36:964–967.
17. Welsh GT, Tontin P, Nash AA, Blakemore WF: The effect of L3T4 T cell depletion on the pathogenesis of Theiler’s murine encephalomyelitis virus infection in CBA mice. J Gen Virol 1987;68:1659–1667.
18. Peterson JD, Karpus WJ, Clatch RJ, Miller SD: Split tolerance of Th1 and Th2 cells in tolerance to Theiler’s murine encephalomyelitis virus. Eur J Immunol 1993;23:46–55.
19. Karpus WJ, Peterson JD, Miller SD: Anergy in vivo: down-regulation of antigen-specific CD4+ Th1 but not Th2 cytokine responses. Int Immunol 1994;6:721–730.
20. Yauch RL, Kim BS: A predominant viral epitope recognized by T cells from the periphery and demyelinating lesions of SJL/J mice infected with Theiler’s virus.
is located within VPI 233–244. J Immunol 1994;153: 4508–4510.

21. Tauch BY, Palma JP, Yahikozawa H, Koh CS, Kim BS: Role of murine T-cell epitopes of Theiler’s virus in the pathogenesis of demyelination correlates with the ability to induce a Th1 response. J Virol 1995;72: 6149–6174.

22. Rodríguez-M, Leibowitz J, Davis CS: Susceptibility to Théler’s virus-induced demyelination. Mapping of the gene within the H-2D region. J Exp Med 1986;163: 620–631.

23. Clatch RJ, Lipton HL, Miller SD: Class II-restricted T cell responses in Théler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease. II. Survey of host immune responses and central nervous system virus titers in inbred mouse strains. Microb Pathol 1987;3: 327–332.

24. Melvold RW, Jokinen DM, Knobler RL, Lipton HL: Variations in genetic control of susceptibility to Théler’s murine encephalomyelitis virus (TMEV)-induced demyelinating disease. I. Differences between susceptible SJL/J and resistant BALB/c strains map near the T cell β-chain constant gene on chromosome 6. J Immunol 1987;138: 1429–1433.

25. Palma JP, Kappel CA, Rasmussen G, Kim BS: Association between susceptibility to Théler’s virus-induced demyelination and T cell receptor β chain polymorphism rather than β chain deletion. J Virol 1997;71:4181–4185.

26. Haines JL, Ter-Minassian M, Bazyk A, Gusella JF, Kim BS: Major linear antibody epitopes and capsid proteins differentially induce protective immunity against Théler’s murine encephalomyelitis virus infection. J Virol 1997;71: 3105–3113.

27. Palma JP, Inoue A, Koh CS, Chen YK, Kim BS: Major linear antibody epitopes and capsid proteins differentially induce protective immunity against Théler’s murine encephalomyelitis virus infection. J Neuroimmunol 2000;110: 63–68.

28. Palma JP, Kim BS: The scope and activation mechanisms of chemokine gene expression following infection with Théler’s murine encephalomyelitis virus. J Neuroimmunol 2004;149:121–126.

29. Paya CV, Patrick AK, Leibson PJ, Rodríguez-M: Role of natural killer cells in immune effectors in encephalitis and demyelination induced by Théler’s virus. J Immunol 1991;143: 101–102.

30. Goodin DS: Interferon-beta therapy in multiple sclerosis: evidence for a clinically relevant dose response. Drugs 2001;61:1693–1703.

31. Vennerchi Pd, Seze J, Skujins T, Hartung P: Interferon-β1a (Avonex) treatment in multiple sclerosis: similarity of effect on progression of disability in patients with mild and moderate disability. J Neurol 2002; 249:184–187.

32. Itoh K, Itoh K, Albert PS, Rash C, Smith ME, Malik H, McFarland HP: The effect of interferon-β on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann Neurol 1995;37:614–619.

33. Biron CA, Nguyen R, Pop GC, Cousens LP, Silazaz-Mathot TP: Natural killer cells in antiviral defense: function and regulation by innate cytokines. Ann Rev Immunol 1999;17:189–220.

34. Hui LL, Lee SC: Distinct patterns of stimulus-induced chemokine mRNA accumulation in human fetal astrocytes and microglia. Glia 2000;30:74–81.

35. van Pesch V, van Eyf O, Michiel T: The leader protein of Théler’s virus inhibits immediate-early alphavirus interferon production. J Virol 2001;75:7811–7817.

36. Palma JP, Park SH, Kim BS: Treatment with lipopolysaccharide enhances the pathogenicity of a low-pathogenic variant of Théler’s murine encephalomyelitis virus. J Neurosci 1996;45:776–785.

37. Olesen J, Jensen SF, Rask KA, Christensen DM, Christensen JB, Clausen K, et al.: A complete genomic screen for multiple sclerosis variants of Theiler’s murine encephalomyelitis virus. J Neuroimmunol 1999;108:141–147.

38. Wandinger KP, Sturzebecher CS, Bielekova B, Detter G, Rosenwald A, Staub LM, et al.: Complex immunomodulatory effects of interferon-β in multiple sclerosis include the upregulation of T helper 1-associated marker genes. Ann Neurol 2001;50:349–357.

39. van Pesch V, van Eyf O, Michiel T: The leader protein of Théler’s virus inhibits immediate-early alphavirus interferon production. J Virol 2001;75:7811–7817.

40. Palma JP, Park SH, Kim BS: Treatment with lipopolysaccharide enhances the pathogenicity of a low-pathogenic variant of Théler’s murine encephalomyelitis virus. J Neurosci 1996;45:776–785.

41. Kim BS, Palma JP, Inoue A, Koh CS: Pathogenic immu

42. Chang JR, Zaczynska E, Kaisers CS, Platascaud CA, Olesen E: Differential expression of IFN-β, IL-6, and other cytokines in the CNS of Théler’s murine encephalomyelitis virus-infected susceptible and resistant strains of mice. Virology 2000;278:346–350.

43. Kim BS, Palma JP, Inoue A, Koh CS: Pathogenic immu

44. Inoue A, Koh CS, Yahikozawa H, Ichikawa H, Inoue A: Pathogenic immunity in Théler’s virus-induced demyelinating disease: a viral model for multiple sclerosis. Arch Immunol Ther Exp 2000;48:373–379.

45. Inoue A, Koh CS, Yahikozawa H, Ichikawa H, Yagita H, Kim BS: Suppressive effect on Théler’s murine encephalomyelitis virus-induced demyelinating disease by the administration of anti-IL-12 antibody. J Immunol 1998;161:4437–4444.

46. Benvenuto R, Paroli M, Buttinelli C, Franco A, Barnaba V, Frischd C, Balsemi F: Tumor necrosis factor-alpha and interferon-gamma synthesis by cerebrospinal fluid-derived T cell clones in multiple sclerosis. Ann NY Acad Sci 1992;620:341–348.

47. Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, et al.: Tumor necrosis factor-alpha messen

Virus-Induced Innate Immunity
multiple sclerosis is associated with disease activity. Ann Neurol 1995;37:82–88.

48. Correale J, Gilmore W, McMillan M, Li S, McCarthy K, Le T, Weiner LP: Patterns of cytokine secretion by autoreactive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 1995;154:2959–2968.

49. Pullen LC, Miller SD, Dal Canto MC, Van der Meide PH, Kim BS: Alteration in the level of interferon-gamma results in acceleration of Theiler's virus-induced demyelinating disease. J Neuroimmunol 1994;55:143–152.

50. Asensio VC, Campbell IL: Chemokine gene expression in the brains of mice with lymphocytic choriomeningitis. J Virol 1997;71:3832–3840.

51. Lane TE, Asensio VC, Yu N, Paletti AD, Campbell IL, Buchmeier MJ: Dynamic regulation of α- and β-chemokine expression in the central nervous system during mouse hepatitis virus-induced demyelinating disease. J Immunol 1998;160:970–978.

52. Hoffman LM, Fife BT, Begolka WS, Miller SD, Karpus WJ: Central nervous system chemokine expression during Theiler's virus-induced demyelinating disease. J Neurovirol 1999;5:635–642.

53. Noe KH, Cenciarelli C, Moyer SA, Rota PA, Shin ML: Requirements for measles virus induction of RANTES chemokine in human astrocytoma-derived U373 cells. J Virol 1999;73:3117–3124.

54. Lane TE, Liu MT, Chen BP, Asensio VC, Samawi RM, Paoletti AD, et al.: A central role for CD4+ T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J Virol 2000;74:1415–1424.

55. Thiel DJ, Tsanoda I, Libby JE, Derfuss TJ, Fujinami RS: Alterations in cytokine but not chemokine aRNA expression during three distinct Theiler's virus infections. J Neuroimmunol 2000;104:22–36.

56. Kim JS, Cenciarelli C, Moyer SA, Rota PA, Shin ML: Expression of chemokines and the tissue-specific migration of lymphocytes. Immunity 2002;16:1–4.

57. Kwon D, Fuller AC, Palma JP, Choi I-H, Kim BS: Induction of chemokines in human astrocytes by picornavirus infection requires activation of both double-stranded RNA-dependent protein kinase and NF-κB. J Virol 2004;78:2217–2224.