Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review

Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system

Eduardo Echer dos Reis, Paulo Cavalheiro Schenkel, Marli Camassola

A R T I C L E I N F O

Article history:
Received 23 August 2021
Accepted 14 December 2021
Available online 11 July 2022

Keywords:
Pleurotus
Food supplements
COVID-19
SARS-Cov-2
Coronavirus
Antiviral agents

A B S T R A C T

Mushrooms are a group of fungi with great diversity and ultra-accelerated metabolism. As a consequence, mushrooms have developed a protective mechanism consisting of high concentrations of antioxidants such as selenium, polyphenols, β-glucans, ergothioneine, various vitamins and other bioactive metabolites. The mushrooms of the Pleurotus genus have generated scientific interest due to their therapeutic properties, especially related to risk factors connected to the severity of coronavirus disease 2019 (COVID-19). In this report, we highlight the therapeutic properties of Pleurotus mushrooms that may be associated with a reduction in the severity of COVID-19: antihypertensive, antihyperlipidemic, antiatherogenic, anticholesterolemic, antioxidant, anti-inflammatory and antihyperglycemic properties. These properties may interact significantly with risk factors for COVID-19 severity, and the therapeutic potential of these mushrooms for the treatment or prevention of this disease is evident. Besides this, studies show that regular consumption of Pleurotus species mushrooms or components isolated from their tissues is beneficial for immune health. Pleurotus species mushrooms may have a role in the prevention or treatment of infectious diseases either as food supplements or as sources for pharmacological agents.

Please cite this article as: dos Reis EE, Schenkel PC, Camassola M. Effects of bioactive compounds from Pleurotus mushrooms on COVID-19 risk factors associated with the cardiovascular system. J Integr Med. 2022; 20(5): 385–395. © 2022 Shanghai Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine. Published by Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 386
2. Properties of Pleurotus mushrooms .. 387
 2.1. Antihypertensive effects ... 387
 2.2. Antihypercholesterolemic, antiatherogenic and antihyperlipidemic effects 388
 2.3. Antioxidant effects ... 388
 2.4. Anti-inflammatory effects .. 390
 2.5. Antihyperglycemic effects ... 390
 2.6. Antiviral effects .. 391
3. Unknown aspects of the research and future research ... 392
4. Conclusion ... 392

Funding .. 392
Authors’ contributions .. 392
Acknowledgements ... 392
Declaration of competing interest .. 392
References .. 392
1. Introduction

Mushrooms are fungi belonging to the divisions of Ascomycetes and Basidiomycetes, and constitute a group of organisms with a great diversity of forms, colors and sizes. They were among the foods first harvested by pre-historical people and may have become an important food source due to their flavor and their nutritional and medicinal properties [1–3].

The order Agaricales is in the division Basidiomycetes and comprises 300 genera and approximately 5000 species [4]. Among them, the genus Pleurotus, defined by Paul Kummer in 1871, is notable. Of the 40 Pleurotus species, about 20 are commercially grown for their ability to flourish on agro-industrial waste, which facilitates their low cost of production in a variety of regions [5,6]. In fact, commercial mushrooms of this genus are the second most common among edible mushrooms, surpassed only by Lentinula [7]. In addition, Pleurotus production is aligned with current regenerative economic practices, as they grow well on regional lignocellulosic waste [8,9].

The genus Pleurotus has attractive culinary characteristics, such as high fiber and protein content and low fat content [10]. Unlike other protein-rich foods, such as meats and chicken, mushrooms do not contain the steroid cholesterol, but rather contain ergosterol. Ergosterol has been associated with several biological activities and can be converted by irradiation into vitamin D for dietary supplementation or use as a food additive [10–13].

Besides their high nutritional value, the mushrooms of the genus Pleurotus have aroused scientific interest due to their therapeutic properties. In the last decade, the number of patents and scientific articles concerning this genus has increased exponentially. Research has shown that mushrooms in this genus have therapeutic properties, including antihypercholesterolemic, antihypertensive, antiabetic, antiobesity, antiaging, antimicrobial, antioxidant and hepatoprotective activities [14–19]. This can be an important alternative to changing patients’ diet in the prevention of heart disease (Fig. 1) [15]. Considering all of these potential benefits, the potential uses for Pleurotus mushrooms are numerous, and it is possible that they could even be used to attenuate risk factors that affect the severity of coronavirus disease 2019 (COVID-19) [20–24].

COVID-19 has affected about 200 territories across the world and is considered by the World Health Organization to be a pandemic disease. At the time of writing, COVID-19 has infected 37,728,386 people and caused the death of 1,078,446 worldwide. The agent behind this disease is a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The concerns about the comorbidities and deaths caused by this virus are of global interest, so it is important to understand the risk factors that can contribute to the severity of the disease [20,25]. As other works suggest, identifying the major risks and how they can be mitigated can be decisive in the treatment of COVID-19 and may be able to help us to understand future treatments for another pandemic disease [19]. One of the largest studies about these risks is the report by the China Center for Disease Control and Prevention, which observed that advanced age, cardiovascular disease, hyperglycemia/diabetes, hypertension, cancer, and chronic respiratory disease were associated with an increased risk of COVID-19-related death [20]. Furthermore, it has been suggested that obesity is also a risk factor for the severity of COVID-19 [21]. Since these factors appear to be the biggest determinants of the severity of coronavirus infection, we conducted a database review based on them.

We searched for scholarly articles and patents published in the PubMed and Google Patent databases from their inception until December 2020. The search terms used in the search were: Pleurotus coronavirus, mushroom coronavirus, Pleurotus COVID, Pleurotus SARS-CoV-2, mushroom COVID, mushroom SARS-CoV-2, Pleurotus antihypertensive, Pleurotus antihypercholesterolemic, Pleurotus antiatherogenic, Pleurotus antihyperlipidemic, Pleurotus antioxidant, Pleurotus anti-inflammatory, Pleurotus antihyperglycemic and Pleurotus antiviral.

Thus, this review explores the properties (based mainly on in vitro and in vivo investigations) of Pleurotus mushrooms that

![Fig. 1. Areas of Pleurotus mushroom bioactivity that could help to reduce risk factors for COVID-19. COVID-19: coronavirus disease 2019; ROS: reactive oxygen species.](image-url)
may be associated with the mitigation of poor prognosis in COVID-19 (Fig. 1). Mechanisms of protection from extracts and preparations of these mushrooms are shown in Fig. 2.

2. Properties of Pleurotus mushrooms

2.1. Antihypertensive effects

Systemic arterial hypertension is among the most important risk factors for cardiovascular diseases and affects 25%–30% of the world’s adult population [22]. Since cardiovascular disease has been consistently identified as a major risk factor for COVID-19 severity, it is important to control blood pressure [19].

Factors that contribute to the development of systemic arterial hypertension include lifestyle, rapid urbanization, racial differences, malnutrition, and diet imbalances [23]. Non-pharmaceutical antihypertensive treatments are based on exercise and diet, while the most commonly used classes of drugs are angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, calcium channel blockers and diuretics [24]. A strong connection has been found between eating habits (such as high sodium intake), lifestyle and hypertension [25].
In this context, edible mushrooms, due to their low sodium content, appear to provide excellent food options for people with high blood pressure. Moreover, mushrooms have a rich nutritional composition, containing a variety of compounds such as polysaccharides, dietary fiber, terpenes, peptides, glycoproteins, alcohols, mineral elements, unsaturated fatty acids, and antioxidants [26].

Edible mushrooms may also act as antihypertensives due to the presence of bioactive compounds capable of inhibiting angiotensin-converting enzyme, blocking calcium channels, and providing antioxidant capacity. In fact, previous studies have shown the hypotensive activity of extracts of Pleurotus species in rats, which included vasodilation through the decrease of total peripheral resistance induced by the inhibition of angiotensin-converting enzyme [27,28].

Another report showed that Pleurotus nebrodensis (Inzenga) Quél. had a protective effect against hypertension, which may have been linked to the metabolic pathway of blood lipids, renal function or the renin-angiotensin system [29]. The influence of P. tuber-regium (Fr.) Singer extract in attenuating systolic blood pressure and mean arterial pressure in rats has also been demonstrated. This hypotensive effect was attributed to the properties of flavonoids and phytosterol [30]. Therefore, edible mushrooms present interesting therapeutic applications for the prevention and treatment of hypertension, contributing to a lower risk of COVID-19 severity.

Table 1 summarizes the protective effects in terms of the antihypertensive response induced by different substances derived from Pleurotus fungi. Fig. 2A shows the mechanisms of protection associated with the regulation of vascular tone.

Research product	Species	Dosage employed	Quantitative data	Reference
Aqueous extract	P. sajor-caju (Fr.) Singer	25 mg/kg	Reduction of 36% in the mean systemic blood pressure	[27]
Polysaccharide fraction and protein fraction	P. nebrodensis (Inzenga) Quél.	9 g/d in humans	At week 16, reduction of 21% in the SBP	[29]
Aqueous extract	P. tuber-regium (Fr.) Singer	200 mg/kg	Reduction of 24% in the SBP	[30]
D-mannitol	P. cornucopiae (Paulet) Rolland	10 mg/kg	Reduction of 11.4% in the SBP	[31]
Aqueous extract	P. cornucopiae (Paulet) Rolland	600 mg/kg	Reduction of 27.7% in the SBP	[32]

SBP: systolic blood pressure.
Many processes in the body can make free radicals and reactive oxygen species (ROS) as by-products [50]. ROS is a group of molecules that contain oxygen and are highly reactive due to their unpaired valence electrons. At physiological levels, ROS has a signaling function and contributes to the maintenance of homeostasis. However, elevated levels of ROS induce cell membrane damage by lipoperoxidation, changes in protein structure and function, and structural damage to DNA [51–53]. As a mechanism of counter-regulation of these oxidative processes, antioxidant systems respond to stabilize the ROS and minimize the damage [53]. An antioxidant can be defined as any substance that is present in low concentrations when compared to the concentration of an oxidizable substrate and slows or inhibits the oxidation of that substrate. They can also be defined as molecules that donate electrons or hydrogen atoms to oxidants, thus stopping chain reactions [54,55]. When antioxidant systems are not effective in stabilizing ROS, these molecules accumulate, and the system can be said to be in a state of oxidative stress. Endogenous defenses maintain the redox balance in normal situations. Among the most important antioxidant defenses are thioredoxin (TRX), glutaredoxin (GRX), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx). TRX can act as an antioxidant enzyme by donating hydrogen to oxidized proteins. GRX can catalyze the reduction of disulfides, regenerating important activities of the cellular molecules. SOD catalyzes the dismutation of superoxide into oxygen and hydrogen peroxide. CAT acts on the decomposition of hydrogen peroxide into water and oxygen, and GPx acts on reduced glutathione, which is oxidized to oxidized glutathione [56]. In addition to the enzymes that are part of the antioxidant reserve, there are also non-enzymatic antioxidants, such as tocopherols, carotenoids, flavonoids, ascorbic acid, and uric acid [57].

Over the years, many studies have explored the role of oxidative stress in the pathogenesis of various diseases, including neurodegenerative, pulmonary, inflammatory, renal, ocular, and cardiovascular diseases [58,59].

Experimental and clinical data have shown that oxidative damage, widely studied in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, memory loss and depression, can trigger neuronal losses and release toxic peptides, thus leading to the progression of neurodegenerative processes [60,61].

In pulmonary diseases, oxidants increase inflammation through the activation of different kinases and redox-sensitive transcription factors, aggravating other conditions, such as asthma [59–69].

In autoimmune diseases such as rheumatoid arthritis, it has been possible to verify the influence of oxidative damage due to the high level of isoprostanes and prostaglandins [65]. In addition, oxidants may play crucial roles in renal diseases such as nephritis and chronic renal failure, with the damage mainly caused by lipoperoxidation in the renal cells [62,70]. In addition, in ocular diseases, oxidative stress can contribute to protein aggregation, cellular structural alterations, and damage to the photoreceptors by lipoperoxidation [71–73].

Therefore, considering that the imbalance between the formation of ROS and the antioxidant capacity is one of the main mechanisms involved in cardiovascular disease, together with the fact that cardiovascular disease is among the leading causes of death in the world, studies that seek to ameliorate oxidative stress are promising. Several studies have been carried out in this field [60,67–76].

Some of these studies have used extracts of mushrooms of the genus Pleurotus as a possible treatment or pre-treatment to combat oxidative damage. In in vitro studies, extracts from different species of Pleurotus demonstrated free radical-scavenging activity and ferric ion reduction power, as well as having a metal-chelating effect and partially inhibiting lipoperoxidation [74–81]. In this way, the treatment with P. eryngii (DC) Quéhl. extract increased antioxidant defenses in vitro, increasing the viability of baby hamster kidney cells (BHK 21) that had been exposed to oxidative stress by 1 mmol/L hydrogen peroxide [76]. Similarly, Khatun et al. [82] showed the nutritional and nutraceutical values of three different species of Pleurotus and found that P. florida Singer was superior, due to its CAT, phenolics and peroxidase contents.

In in vivo studies, rats that received carbon tetrachloride (CCL4) and treatment with P. ostreatus (Jacq.) P. Kumm. mushroom extracts had CAT, SOD and GPX activities significantly higher than rats that did not receive mushroom extract. In addition, the levels of malondialdehyde (MDA) and reduced glutathione (GSH) were restored to normal. The hepatoprotective effect and protective effect against oxidative stress were probably due to the reduction in the generation of free radicals that had been induced by CCL4 [71–73].

The administration of Pleurotus mushroom extract to elderly mice increased their levels of antioxidant defenses, such as CAT, SOD, GPX, vitamin C, vitamin E and glucose-6-phosphate dehydrogenase, to the same levels as found in young rats. In addition, the extract restored the levels of GSH, MDA and glutathione transference, and reduced the levels of lipoperoxidation, xanthine dehydrogenase and carbonyls. Thus, the extract appears to have a protective effect on oxidative stress, reducing the lipoperoxidation and increasing the levels of enzymatic and non-enzymatic antioxidants [16,50,83–87].

In other studies involving liver diseases, carcinoma, diabetes, hypercholesterolemia and hyperlipidemia, mushroom extracts from the genus Pleurotus also showed antioxidant effects, restoring MDA levels, and increasing antioxidant defenses such as GSH, SOD, CAT, GPX, vitamin C and vitamin E. Thus, they protect the tissues against oxidative damage [34,42,88–94].

In a study involving acute myocardial infarction, it was shown that the infarct caused a large increase in the MDA content of the cardiac tissue. However, treatment with 100 mg/kg of an extract from P. nebrodensis (Inzenga) Quél., prepared by using dry mushrooms twice degreased with CHCl3 (chloroform)/MeOH (methanol), extracted in distilled water and fractionated by chromatography, was able to significantly decrease the MDA content in the myocardial ischemia–reperfusion model group [70]. In addition, the activity of SOD, CAT and GSH in the cardiac tissue decreased dramatically in the infarcted group, but the treatment was able to prevent this. There was also a potential inhibitory effect of the extract on myocardial apoptosis, as pre-treatment with the extract significantly inhibited the increase in cells showing DNA fragmentation [70].
P. nebrodensis (Inzenga) Quél. extract also efficiently reduced the oxidative damage caused by ischemia–reperfusion in hepatic tissue. In addition, it has been shown in the expression levels of pro-apoptotic markers, such as Bax, caspase-3 and cytochrome c, was observed in the group treated with the extract. There was also an increase in the expression of the anti-apoptotic marker Bcl-2 in the treated rats compared to the ischemia–reperfusion group [71].

According to the literature, oxidative stress is connected to most of the risk factors for COVID-19 severity. Therefore, we think that antioxidant activity is relevant to the attenuation of the severity of COVID-19.

Table 3 shows data supporting the antioxidant responses and protective effects of different substances from the mycelium and basidiomes of Pleurotus. The mechanisms associated with these protective effects are illustrated in Fig. 2C.

2.4. Anti-inflammatory effects

Systemic inflammation is an important factor in the development and progression of many diseases. Many inflammatory markers are used in clinical studies to demonstrate the risks of cardiovascular diseases, such as hypertension, atherosclerosis and stroke [72]. Studies have demonstrated the role of inflammation in SARS-CoV-2 infection, which can cause a systemic cytokine storm and widespread inflammation, leading to tissue damage [73]. In view of these factors, it has been suggested that anti-inflammatory properties may be of interest in the treatment and prevention of severe COVID-19.

Research has shown that extracts from different species of the genus Pleurotus can modulate the synthesis and release of pro-inflammatory mediators and reduce in the migration of total leukocytes. Therefore, it has been suggested that these extracts have anti-inflammatory properties, reducing nociception and oedema [78,83–89].

Other studies have shown that β-glycan extracted from mushrooms of the genus Pleurotus exerts an immunostimulatory effect by modulating the activity of neutrophils, macrophages, monocytes, and natural killer cells [80,88]. This compound also stimulates cytokines such as interleukin-1 and tumor necrosis factor-α, resulting in an increased immune response. Another study verified that the ability of Pleurotus mushroom extracts to inhibit neutrophil accumulation, operated via a reduction in pro-inflammatory cytokine gene expression [85,88].

Another report showed the anti-inflammatory activity of P. florid extract; however, the mechanisms by which this activity occurred are unknown [89]. It is believed that a large number of phenolic compounds present in the extract may have been responsible for its activity [89].

Since the COVID-19 pandemic began, several doctors reported a cytokine storm as one of the stronger factors affecting the outcome of the infection. Since these data show the importance of inflammation in the severity of COVID-19, agents with anti-inflammatory activity may be able to reduce its severity.

Anti-inflammatory data related to Pleurotus are shown in Table 4 and in Fig. 2D, alongside the mechanisms associated with these protective effects.

2.5. Antihyperglycemic effects

Diabetes mellitus is an endocrine disorder characterized by hyperglycemia, resulting from a deficiency in insulin secretion, insulin action, or a combination of both [90]. It is estimated that there are 284 million people living with diabetes worldwide [91]. In many studies involving the severity of coronavirus infection,
diabetes and hyperglycemia were indicated as major risk factors for death or severe symptoms [19]. In fact, in a review based on risk factors for this disease, it was stated that diabetes has been highly consistently shown to be a risk factor for the severity of coronavirus infection [19].

The antihyperglycemic effects of Pleurotus mushrooms may be due to the healing of damaged pancreatic β cells, partially restoring their hormonal activity [45,89]. Increased peripheral sensitivity to insulin as well as the modulation of its synthesis and release has also been observed in response to treatment with extracts from different mushrooms of the genus Pleurotus [89,90–93,113–117].

Extracts from P. ostreatus (Jacq.) P. Kumm. and P. cystidiosus O.K. Mill. may also promote an increase in glucose utilization by the muscles, thus reducing serum glucose levels [90]. Rats treated with Pleurotus mushroom extracts showed increased glucose tolerance, in addition to an increase in expression and translocation of glucose transporter type 4 (GLUT 4). It has been shown that ergosterol present in the extract of these mushrooms can promote GLUT 4 translocation, increase GLUT 4 expression, and increase uptake of glucose through the phosphoinositide 3-kinase, protein kinase B translocation, increase GLUT 4 expression, and increase uptake of glucose transporter type 4 (GLUT 4). It has been shown that ergosterol in addition to an increase in expression and translocation of glucose transporter type 4 (GLUT 4) may also promote an increase in glucose utilization by the muscles, thus reducing serum glucose levels [90].

Table 4

Research product	Species	Dosage employed	Quantitative data	Reference
β-D-glucan	P. pulmonarius	3 mg/kg	82% inhibition of leukocyte infiltration	[83]
Glucans	P. ostreatus	20 mg/d	62% reduction in secretion of TNF-α mRNA transcript levels	[84]
Glucans	P. albidos	200 μg/mL	85% increase in cell viability	[85]
Glucans	P. citrinopileatus	10 μg/mL	Inhibition of the expression of the pro-inflammatory cytokines TNF-α and IL-6	[88]
Alcoholic extract	P. florida	1000 mg/kg	60% reduction in carrageenan-induced acute inflammation	[89]
Aqueous extract	P. ostreatus	100 μg/mL	61% reduction in TNF-α concentration	[105]
β-D-glucan	P. ostreatus	1 mg/kg	15% reduction in the arthrogram score	[106]
Extract	P. floridus	500 mg/kg	60% reduction in carrageenan-induced oedema in Wistar rats	[107]
Mannogalactan	P. sajor-caju	10 mg/kg	77% reduction in TNF-α gene expression	[108]
Aqueous extract	P. ostreatus	30 mg/kg	63% reduction in oedema level	[109]
Alcoholic extract	P. giganteus	4 mg/ear	94% inhibition of auricular oedema	[110]
Protein	P. eryngii	100 μg/mL	75% reduction in nitric oxide production	[111]
Extract	P. eryngii	200 μg/mL	81% reduction in IL-6 concentration	[112]

Table 5

Research product	Species	Dosage employed	Quantitative data	Reference
Aqueous extract	P. ostreatus	1250 mg/kg	39% reduction in blood glucose	[90]
Polysaccharides	P. sajor-caju	240 mg/kg	37% reduction in blood glucose	[91]
Polysaccharides	P. tuber-regium	20 mg/kg	26% reduction in blood glucose	[92]
Polysaccharides	P. eryngii	5 mg/mL	50% reduction in blood glucose	[93]
Polysaccharide-protein complex	P. abalonus	300 μg/mL	16% reduction in blood glucose	[113]
Polysaccharides	P. ostreatus	400 mg/kg	46% reduction in blood glucose	[114]
Ergosterol	P. ostreatus	120 mg/kg	40% reduction in blood glucose	[115]
Polysaccharide-peptide complex	P. abalonus	1 mg/kg	16% reduction in blood glucose	[116]
Polysaccharides	P. floridus	400 mg/kg	57% reduction in blood glucose	[117]
Polysaccharide	P. citrinopileatus	400 mg/kg	41% reduction in blood glucose	[121]
Aqueous extract	P. pulmonarius	500 mg/kg	50% reduction in blood glucose	[123]
In research on herpes virus, Urbancikova et al. [126] showed that a β-glucan from *P. ostreatus* (Jacq.) P. Kumm. caused a reduction in the duration of herpes symptoms and also caused a reduction in the duration of the acute respiratory symptoms and intercurrent diseases. This reduction in acute respiratory symptoms may be interesting in the context of COVID-19 treatment. One of the most promising glucans from *P. ostreatus* (Jacq.) P. Kumm. is pleuran, an insoluble polysaccharide isolated from the fruiting bodies of these mushrooms. A dietary supplement called Immunogulukan P4H™ has been formulated, consisting of pleuran associated with vitamin C, and has been investigated in several clinical studies involving respiratory tract infections, showing promising results [127].

Another antiviral factor associated with mushrooms is the regulation of the immune response. Several natural derivatives have been described in clinical trials, showing the capacity to enhance the immune response to viruses. Molecules derived from edible mushrooms are expected to be safe and can optimize the host immune function to possibly prevent secondary infections during SARS-CoV-2 infection [128].

The identification of bioactive compounds from natural sources that can act as inhibitors of the SARS-CoV-2 protease is considered a possible approach to combat COVID-19, reducing the viral replication. Mushrooms are excellent candidates for this research, since they are a rich source of bioactive compounds with antiviral activity. These compounds have been shown to inhibit human immunodeficiency virus protease, so they may also act against the proteases of coronaviruses [129]. Evidence suggests that mushrooms may be an alternative treatment that helps to attenuate the severity of COVID-19.

The data on the antiviral response exerted by different substances from the mycelium and basidiomes of *Pleurotus* are summarized in Fig. 2F.

3. Unknown aspects of the research and future research

At the time of preparation of this review, we could not find papers in the literature that described the use of *Pleurotus* mushrooms to attenuate the risk factors for COVID-19 severity. As this disease is a global concern, this review aims to provide a background on the use of *Pleurotus* as a protective agent to reduce the severity of this disease. We think that these mushrooms may have an indirect or direct effect on the risk factors associated with COVID-19. However, clinical research data are required to support this claim.

4. Conclusion

This review shows that mushrooms of the genus *Pleurotus* have antihypertensive, antihypercholesterolemic, antiatherogenic, anti-hyperlipidemic, antioxidant, anti-inflammatory, antihyperglycemic and antiviral properties. Since these properties interfere significantly in the risk factors for COVID-19 severity, the pharmacological potential of these mushrooms is evident. Because they are edible and widely produced in the world, they are easily accessible and could easily be incorporated into the diet, acting as a food supplement, or be used in the creation of pharmaceutical agents for direct use in treatment. Among the mushrooms described in this paper, we highlight the potential of *P. ostreatus* (Jacq.) P. Kumm. and its constituents, as they are the most cited in the literature research. This body of work should be developed further for verifying the efficacy of *P. ostreatus* products against diseases like COVID-19. Larger studies will be necessary to verify the efficacy of the treatment, especially in the context of food standards and other treatment patterns.

Funding

The authors are grateful to the Research Support Foundation of the State of Rio Grande do Sul (FAPERGS; PRONEM 246-0/2016), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Department of Science and Technology (DECIT), Secretariat of Science, Technology, and Strategic Inputs of the Brazilian Ministry of Health, State Health Secretariat of State of Rio Grande do Sul and FAPERGS (PPSU 1422-7/2017), and the National Council for Scientific and Technological Development (CNPq) (472153/2013-7) for financial support.

Authors’ contributions

EEDR: conceptualization, investigation, and writing original manuscript. PCS and MC: conceptualization, supervision, and review of manuscript.

Acknowledgements

The authors thank the infrastructure provided by Universidade de Caxias do Sul (UCS), Universidade Federal do Rio Grande do Sul (UFRGS), and Universidade Federal de Pelotas (UFPe). Marli Camassola is a recipient of a CNpq Research Fellowship.

Declaration of competing interest

There are no conflicts to declare.

References

[1] Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 2015;35(3):355–68.
[2] Xu XF, Yan HD, Chen J, Zhang XW. Bioactive proteins from mushrooms. Biotechnol Adv 2011;29(6):667–74.
[3] Kumar K. Nutraceutical potential and processing aspects of oyster mushrooms (*Pleurotus* species). Curr Nutr Food Sci 2020;16(1):3–14.
[4] Alespoulos C, Mims CW, Blackwell MM. Introductory mycology. 4th ed. New York: John Wiley & Sons Ltd; 1996.
[5] Junior NM, Asai T, Capelari M, Paccola-Meirelles LD. Morphological and molecular identification of four Brazilian commercial isolates of *Pleurotus* spp. and cultivation on corncob. Brazilian Arch Bioi Technol 2010;53(2):397–408.
[6] Lechner BE, Albertó E. Search for new naturally occurring strains of *Pleurotus* to improve yields: *Pleurotus albidus* as a novel proposed species for mushroom production. Rev Iberoam Micol 2011;28(4):148–54.
[7] Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Diego CZ, Pardo-Giménez A, editors. Edible and medicinal mushrooms: technology and applications. Hoboken: Wiley-Blackwell; 2017. p. 5–13.
[8] Lavelli V, Proserpio C, Gallotti F, Laureatti M, Pagliarini E. Circular reuse of bioresources: the role of *Pleurotus* spp. in the development of functional foods. Food Funct 2018;9(3):1353–72.
[9] Stajic M, Vukovic I, Duletic-Lauvič S. Biology of *Pleurotus* eryngii and role in biotechnological processes: a review. Crit Rev Biotechnol 2009;29(1):55–66.
[10] Ronceron-Ramos I, Delgado-Andrade C. The beneficial role of edible mushrooms in human health. Curr Opin Food Sci 2017;14:122–8.
[11] Jasinghe VJ, Perera CO. Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem 2005;92(3):541–6.
[12] Stoffel F, Santana WDO, Fontana RC, Gregolon JC, Kist TBL, De Siqueira FG, et al. Chemical features and bioactivity of grain flours colonized by macrofungi as a strategy for nutritional enrichment. Food Chem 2019;297:124988.
[13] Schueffler A, Anik E. Fungal natural products in research and development. Nat Prod Rep 2014;31(10):1425–48.
[14] Murphy TJ, Masterson C, Rezolghi E, O'Toole D, Major I, Stack GD, et al. β-Glucan extracts from the same edible shiitake mushroom *Lentinus edodes* produce differential in vitro immunomodulatory and pulmonary cytoprotective effects—implications for coronavirus disease (COVID-19) immunotherapies. Sci Total Environ. 2020;732:139330.
[15] Valenzuela PL, Carrera-Bastos P, Gálvez BG, Ruiz-Hurtado G, Ordovas JM, Ruilope LM, et al. Lifestyle interventions for the prevention and treatment of hypertension. Nat Rev Cardiol 2021;18(4):251–75.
Barbosa JR, Maurício MMS, Oliveira LC, Martins LH, Almada-Vilhena AO, Oliveira RM, et al. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. J Oleo Sci 2010;59(12):1271–7.

Aranaghi L, Alzoughoof F, Atom M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens 2020;9(5):331.

Rod JI, Oveido-Tapia O, Cortés-Ramírez J. A brief review of the risk factors for COVID-19 severity. Rev Saude Publica 2020;54;60.

Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020;323(13):1239–42.

Huang CL, Wang Y, Lam WM, Li XW, Ren LL, Zhao JP, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506.

Santiago ERC, Diniz ADS, Oliveira JS, Leal VS, de Andrade MIS, de Lira PIC. Prevalence of systemic arterial hypertension and associated factors among adults from the semi-arid region of Pernambuco, Brazil. Arq Bras Cardiol 2017;52(2):335–46.

Mohamed Yahaya NF, Rahman MA, Abdullah N. Therapeutic potential of Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the king oyster culinary-medicinal mushroom, Pleurotus eryngii var. fenulor DD001 (Agaricomycetes), in rats with high-fat diet-induced fatty liver and hyperlipidemia. J Oleo Sci 2017;66(2):107–19.

Dong YH, Zhang JJ, Gao Z, Zhao HJ, Sun GY, Wang XX, et al. Carboxylase inhibitory peptide from the Atractylodis lanceolata stem, retains antihypertensive activity of a flavonoid and phytosterol rich extract of the sclerotia of Pleurotus sajor-caju. Carbohydr Polym 2015;133:1–7.

Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for the management of cardiovascular risk. Ann Clin Biochem 2018;51:170–80.

Ceriello A. Possible role of oxidative stress in the pathogenesis of cardiac dysfunction. Eur Heart J 2000;21(12):1155–61.

Miyazawa N, Okazaki M, Ohga S. Antiatherosclerotic effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J Oleo Sci 2008;57(12):675–81.

Ratnesh H, Prasad S, Sharma S. Mushroom nutraceuticals for the improvement of nutrition and better human health: a review. Pharm Nutr 2017;5(2):335–46.

Tan SC, Yip KP, Fung KP, Chang ST. Hypotensive and renal effects of an extract of the edible mushroom Pleurotus sajor-caju. Life Sci 1986;38(13):1155–61.

Maghni S, Shab AS, Abdullah N. Structural characteristics and antihypertensive effects of angiotensin-I-converting enzyme inhibitory peptides in the renin-angiotensin and kallikrein kinin systems. African J Tradit Complement Altern Med 2017;14(2):383–406.

Hoshino Y, Mishima M. Redox-based therapeutics for lung diseases. Antioxid Redox Signal 2013;15(2):158–70.

Butterfield DA. Amyloid neurotoxicity: implications for neurodegeneration in Alzheimer’s disease. Brain Pathol 2005;15(4):425–32.

Zhang YY, Xu K, Cai H, Han MY. Protective effects of mushroom extracts in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2020;17(3):170–94.

Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4(2):89–96.

Doolittle EF. The role of oxidative stress in insulin resistance and type 2 diabetes in humans. J Nutr 2004;134(3):556S–64S.

Meyer CH, Sekundo W. Nutritional supplementation to prevent cataract development. J Nutr Sci 2013;14(5):158–63.

Halim W, Gordon RL. Mannose-binding lectin and superoxide dismutase: potential therapeutic implications for the management of cardiovascular disease. Curr Med Chem 2013;20(13):1586–94.

Mukherjee S, Sodhi GP, Hossain M. Reduced toxicity and enhanced efficacy for the treatment of cardiovascular disease. Eur J Integr Med 2020;33:101014.

Mulder KCL, Muliniari F, Franco OL, Soares MSF, Magalhães BS, Parachini NS. Lovastatin production: from molecular basis to industrial process optimization. Biotechnol Adv 2015;33(Suppl 1):648–60.

Rahman MA, Abdullah N. Therapeutic potential of Mori K, Kobayashi C, Tomita T, Inatomi S, Ikeda M. Antiatherosclerotic effect of the king oyster culinary-medicinal mushroom, Pleurotus eryngii var. fenulor DD001 (Agaricomycetes), in rats with high-fat diet-induced fatty liver and hyperlipidemia. J Oleo Sci 2017;66(2):107–19.

Dong YH, Zhang JJ, Gao Z, Zhao HJ, Sun GY, Wang XX, et al. Characterization and anti-atherosclerotic effects of enzymatic residue polysaccharides from Pleurotus ostreatus. Int J Biol Macromol 2019;129:316–25.

Bokel P, Galávby S. The oyster mushroom (Pleurotus ostreatus) effectively prevents the development of atherosclerosis in rabbits. Ceska Slov Farm 1999;48(5):226–30 [Slovak].

Driöge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82(1):147–95.

Cerello A. Possible role of oxidative stress in the pathogenesis of diabetes. Diabetes Care 2008;31(Suppl 2):S181–4.

Li L, Ng TB, Song M, Yuan F, Liu ZK, Wang CL, et al. A polysaccharide-peptide complex from an edible mushroom (Pleurotus sajor-caju) effectively increases activities and gene expression of antioxidant enzymes and reduces lipid peroxidation in senescence-accelerated mice. Appl Microbiol Biotechnol 2007;75(4):863–72.

Vali S, Bhodes CJ, Tompkins J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160(1):1–40.

Zhang YX, Murugesan P, Huang K, Cai H. NAPDH oxides and oxidative cross-talk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2020;17(3):170–94.

Belló-Klein A, Khofer N, Llesuy S, Vassallo DV, Pantos C. Oxidative stress and antioxidant strategies in cardiovascular disease. Oxd Med Cell Longev 2019;2019:678741.

Litescu SC, Eremia S, Radu GL. Methods for the determination of antioxidant capacity in food and raw materials. Adv Exp Med Biol 2010;698:241–5.

Chun OK, Zhang WO. Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients 2013;5(8):2969–3004.

Castro AL, Tavares AV, Campos F, Fernandes RO, Siqueira R, Conzatti A, et al. Cardioprotective effects of thyroid hormones in a rat model of myocardial infarction are associated with oxidative stress reduction. Mol Cell Endocrinol 2014;391(1–2):22–9.

Carachor Moriera FCR. A review on antioxidants, prooxidants and related compounds: natural antioxidant compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol 2013;51:15–25.

Gambato G, Todescato K, Pavlo EM, Sortegatagana A, Fontana RC, Salvador M, et al. Evaluation of productivity and antioxidant profile of solid-state cultured macrofungi Pleurotus albidus and Pycnoporus sanguineus. Bioresource Technol 2016;207:46–51.

Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4(2):89–96.

Halim W, Gordon RL. Role of free radicals in the neurodegenerative diseases. Drugs Aging 2001;19(8):685–716.

Bullerton DA. Amyloid β-(1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease. Neurotox Res 2002;3(6):1307–13.

MacNee W. Oxidative stress and lung inflammation in airways disease. Eur J Pharmacol 2001;429(1–2):195–207.

Hoshino Y, Mishima M. Redox-based therapies for lung diseases. Antioxid Redox Signal 2010;14(4):701–6.

Walston J, Xue Q, Semba RD, Ferrucci L, Cappola AR, Ricks M, et al. Preventive effects of two PAF-antagonists, PMS 536 and PMS 549, on cyclosporin-induced LLC-PK1 oxidative injury. J Lipid Mediat Cell Signal 2004;13(6):339–42.

Walston J, Xue Q, Semba RD, Ferrucci L, Cappola AR, Ricks M, et al. Preventive effects of two PAF-antagonists, PMS 536 and PMS 549, on cyclosporin-induced LLC-PK1 oxidative injury. J Lipid Mediat Cell Signal 2004;13(6):339–42.

Mukherjee S, Sodhi GP, Hossain M. Reduced toxicity and enhanced efficacy for the treatment of cardiovascular disease. Eur J Integr Med 2020;33:101014.
[120] Reis FS, Martins A, Barros L, Ferreira ICFR. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 2012;50(3):1201–7.

[121] Hu SH, Wang JC, Lien JL, Liaw ET, Lee MY. Antihiperglycemie effect of polysaccharide from fermented broth of Pleurotus citrinopileatus. Appl Microbiol Biotechnol 2006;70(1):107–13.

[122] Khatun S, Islam A, Guler P, Cakilcioglu U, Chatterjee NC. Hypoglycemic activity of a dietary mushroom Pleurotus florida on alloxan induced diabetic rats. Biol Divers Conserv 20013;6(2):91–6.

[123] Badole SL, Patel NM, Thakurdesai PA, Bodhankar SL. Interaction of aqueous extract of Pleurotus palmonarius (Fr.) Quel-Champ. with glyburide in alloxan induced diabetic mice. Evid Based Complement Altern Med 2008;5(2):159–64.

[124] Krupodorova T, Rybalko S, Barshteyn V. Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 2014;29(5):284–90.

[125] Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonia superinfection and complicating inflammation? Scand J Immunol 2021;93(1):e12937.

[126] Urbanicikova I, Hudackova D, Majtan J, Rennerova Z, Banovicin P, Jesenak M. Efficacy of pleuran (β-glucan from Pleurotus ostreatus) in the management of herpes simplex virus type 1 infection. Evid Based Complement Alternat Med 2020;2020:8562309.

[127] van Steenwijk HP, Bast A, de Boer A. Immunomodulating effects of fungal β-glucans: from traditional use to medicine. Nutrients 2021;13(4):1333.

[128] Di Pierro F, Bertuccioli A, Cavecchia I. Possible therapeutic role of a highly standardized mixture of active compounds derived from cultured Lentinula edodes mycelia (AHCC) in patients infected with 2019 novel coronavirus. Minerva Gastroenterol Dietol 2020;66(2):172–6.

[129] Rangsith P, Sillapachaiyaporn C, Nirkhet S, Tencomnao T, Ung AT, Chuchawankul S. Mushroom-derived bioactive compounds potentially serve as the inhibitors of SARS-CoV-2 main protease: an in silico approach. J Tradit Complement Med 2021;11(2):158–72.