INTRODUCTION

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, abundant cases of dermatologic reactions have been reported in the settings of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which many of them have been the result of exacerbation of previously recognized dermatoses, while the new-onset adverse events have not been uncommon.\(^1,2\)

With progresses made in cosmetic dermatology and surgery, a great majority of the world population are being interested in cosmetic and aesthetic procedures, particularly minimally invasive ones. Liposuction, dermal filler injection, platelet rich plasma treatment (PRP), mesotherapy, microdermabrasion, ablative resurfacing lasers, and botulinum toxin injection are among the related procedures. The COVID-19 pandemic has led to an increased rate of facial procedures as people spend hours watching their virtual images and evaluate themselves through video-conferencing. On the contrary, SARS-CoV-2 infection and its associated vaccine can be triggers for allergic and inflammatory reactions in previously treated areas of the body, especially filler injected sites.\(^3-6\) With the global vaccination program against COVID-19, the reports of tissue filler reactions would be increasingly demonstrated.\(^7,8\)

1.1 Tissue filler reactions

Hyaluronic acid (HA) is a natural polysaccharide and the most commonly used dermal filler for tissue augmentation, due to its favorable safety profile and wide range of applications. In general, the more long-lasting the HA fillers are, the higher would be the risk of dermal reactions.\(^9-11\)

In general, any implant or external material used in the body tissues can potentially be followed by autoimmune or inflammatory reactions. The early-onset or immediate-type reactions are actually
type 1 hypersensitivity reactions mediated by immunoglobulin E (IgE) and usually take place within minutes or hours after filler injection. The underlying mechanism includes histamine release from mast cells and is manifested as urticaria, angioedema, or anaphylaxis. However, pain, pruritus, eczema, surface nodules, HSV reactivation, and thromboembolic events are also common. The delayed-type reactions (DTRs) are mainly type 4 hypersensitivity reactions, which occur later than 2–4 weeks, even years, after procedure and are mediated by macrophage and T-cell interactions. These reactions can present with local swelling, redness, dyspigmentation, scarring, or granuloma formation. Systemic inflammatory responses of any cause, such as flu-like syndrome, facial trauma, consuming certain medications and chemotherapeutic agents or vaccination, can trigger LMW HA degradation and give rise to DTRs but they are usually triggered by dental procedures, inappropriate injection techniques, low-quality materials, or mixing different fillers. Another possible mechanism might be the fact that tissue fillers might serve as adjuvants that increase antigen-specific responses; this can be associated with genetic predisposition.

HMW HA has anti-inflammatory effects while LMW HA has pro-inflammatory effects. Therefore, the Vycross technology which is switched from the 100% HMW HA filler to a 10% HMW and a 90% LMW HA filler has a higher probability to induce allergic reactions. It is interesting to know that HA fillers which are cross-linked with PEG, instead of BDDE, are associated with less allergic and anaphylactic AEs due to their less potent immunostimulatory effects.

1.2 Vaccine-induced filler reactions

COVID-19 vaccines have been associated with a wide range of allergic and anaphylactic reactions, some of which are serious and of medical significance. Nevertheless, facial filler reactions are being increasingly reported in this setting. Previously, dermal filler reactions had been reported after influenza and zoster vaccines. As has been previously mentioned, vaccines can precipitate adverse events in the filler injected tissues due to their immunomodulating effects. One possible mechanism for this phenomenon is related to autoimmune/inflammatory syndrome induced by adjuvants (ASIA), which explains most of the post-vaccination phenomena; it is believed that polyethylene glycol (PEG) is the responsible vaccine ingredient for these adverse events (AEs). The interaction between the vaccine’s spike protein and angiotensin converting enzyme (ACE) 2 receptors can trigger a CD8+ T-cell mediated response leading to DTRs. This is comparable with filler reactions following being infected with SARS-CoV-2, which is believed to be the result of reaction to the viral spike protein and immunogenic response.

The Advisory Committee on Immunization Practices (ACIP) and the Vaccine Adverse Event Reporting system (VAERS) have reported several local reactions in vaccinated ones who had undergone cosmetic filler injections. Most of the reactions took place within 10 days after vaccination and were manifested as orofacial swelling, bilateral tear trough area swelling, progressive periorbital edema, and lip angioedema. However, the causal relationship is still unclear. Some of them had a history of filler reaction after receiving routine vaccines like influenza or following an upper respiratory tract infection. Most of filler reactions have occurred following receiving mRNA COVID-19 vaccines, that could be the result of hypersensitivity reaction to PEG or interaction with SARS-CoV-2 spike glycoprotein that are encoded by the vaccine. However, other vaccine platforms, including inactivated virus and vector-based ones, have also given rise to delayed dermal filler reactions.

1.3 Dermal filler reactions management

Most cases of filler reactions following COVID-19 vaccination are self-limiting and subside with no or minimal intervention. However, in prolonged or severe cases, we should think therapeutic measures to restrict the reactions. It is interesting to know that antihistamines are of no use in managing DTRs, although many of the aforementioned events had resolved by mere antihistamine use. Rather, corticosteroids, systemic, or intralesional, are believed to be the main therapeutic solution for these phenomena. Other potential therapies include massaging, saline or water dilution, oral antibiotics, nonsteroidal anti-inflammatory drugs (NSAIDs), ACE inhibitors such as Lisinopril, colchicine, 5-fluourouracil, and methotrexate. Rare cases have been reported that had not responded to medical therapy and necessitated surgical intervention such as curettage, incision, and drainage, and granuloma or nodule removal.

It should be kept in mind that since tissue fillers are foreign bodies, a biofilm-related infectious process should always be suspected in intractable cases. Hence, blood testing for inflammatory biomarkers and taking cultures and sometimes biopsies should be considered if response to treatment is not demonstrated.

1.4 Vaccine-induced dermal filler reaction prevention

As COVID-19 vaccination program is being held in large scale, the increasing rate of allergic and inflammatory reactions is inevitable; accordingly, since interest in cosmetic procedures are being increasingly demonstrated, measures should be thought out to prevent associated inflammatory and allergic reactions. On the contrary, allergic and inflammatory reactions to facial fillers following COVID-19 vaccination can increase hesitancy to receive vaccines and this would be a challenge. In order to prevent vaccination hesitancy, patients should be counseled about the low risk of filler reactions following vaccination and it should be emphasized that these AEs, if ever occur, are usually short-lasting and treatable. Furthermore, it should be acknowledged that if filler reaction occurs following the first vaccine dose, they...
can receive the second dose with precautionary measures such as pretreating with antihistamines or corticosteroids. Moreover, protocols should be recommended for filler procedures in the field of aesthetic medicine in relationship with vaccination timing and dosing; since it takes up to 3 weeks for the peak immune response, some authorities advise not to undergo facial filler injection prior to SARS-CoV-2 vaccination up to at least 3–4 weeks after the last vaccine dose, in order to avoid AEs; however, there have been reports of vaccine-related filler reactions even in those who had undergone this cosmetic procedure 6 months to 1 year prior to vaccination.14,41,46,47 It is important to be more vigilant and give more space between vaccination and filler injection in individuals with a history of sensitivity to tissue fillers or those with autoimmune disorders or taking immunomodulatory/immunosuppressive agents. In addition, since PEG is probably the causative etiology of post-vaccination filler reactions, those individuals who have a history of allergy to PEG-containing products, such as penicillin and makeup, or are patch-test positive should be more cautiously cared after vaccination if undergone filler injections. Moreover, in those individuals tending to be vaccinated, dilution of tissue fillers with saline or lidocaine or utilizing non-HA fillers can lower the risk of vaccine-related filler reactions.14 In addition, in case of the presence of any infection or inflammation near the injection area, the cosmetic procedure should best be delayed.48

2 CONCLUSION

With the increasing rate of COVID-19 vaccination along with the high number of individuals undergoing aesthetic and cosmetic procedures, associated dermatologic reactions are inevitable and expectable. However, these complications should not lead to vaccine hesitancy; therefore, clinicians should first be aware of the potential vaccine-induced AEs and their management, reassure the population about the temporary nature of these reactions and encourage them to receive vaccines even they are intending to seek cosmetic procedures like tissue fillers.

AUTHOR CONTRIBUTIONS

P.H., S.E., Z. R., and Z.M. performed the research. Z.A., K.B., and S.E. designed and supervised the research study. P.H. and Z.R. wrote the initial draft. Z.M wrote the final paper. All authors have read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors would like to thank Razi Hospital Clinical Research Development Center, Imam Reza Hospital Clinical Research Development Center, and Autoimmune Bullous Diseases Research Center for their technical and editorial assistance.

ETHICAL APPROVAL

The protocol of this study was approved by relevant ethics committee.

CONFLICT OF INTEREST

All the authors declare that there is no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID

Parvaneh Hatami https://orcid.org/0000-0002-3531-2907

REFERENCES

1. Mohseni Afshar Z, Babazadeh A, Hasanpour A, et al. Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. J Med Virol. 2021;93(10):5756-5767.
2. Mohaghegh F, Hatami P, Refaghat A, et al. New-onset pemphigus foliaceus following SARS-CoV-2 infection and unmasking multiple sclerosis: A case report. Clin Case Rep. 2022;10(6):e05910.
3. Walker CE, Krumhuber EG, Dayan S, Furnham A. Effects of social media use on desire for cosmetic surgery among young women. Curr Psychol. 2021;40(7):3355-3364.
4. Galadari H, Gupta A, Kroumpouzos G, et al. COVID 19 and its impact on cosmetic dermatology. Dermatol Ther. 2020;33:e13822.
5. Rice SM, Siegel JA, Libby T, Graber E, Kourosh AS. Zooming into cosmetic procedures during the COVID-19 pandemic: the provider’s perspective. Int J Women's Dermatol. 2021;7(2):213-216.
6. Kalantari Y, Sadeghzadeh-Bazargan A, Aryanian Z, Hatami P, Goodarzi A. First reported case of delayed-type hypersensitivity reaction to non-hyaluronic acid Polyacrolactone dermal filler following COVID-19 vaccination: a case report and a review of the literature. Clin Case Rep. 2022;10(2):e05343. doi:10.1002/ccr3.5343
7. Kalantari Y, Aryanian Z, Mirahmadi SM, Aliou S, Hatami P, Goodarzi A. A systematic review on COVID-19 vaccination and cosmetic filler reactions: a focus on case studies and original articles. J Cosmet Dermatol. 2022;21(7). Epub ahead of print. doi:10.1111/jocd.15071
8. Savva D, Battineni G, Amenta F, Nittari G. Hypersensitivity reaction to hyaluronic acid dermal filler after the Pfizer vaccination against SARS-CoV-2. Int J Infect Dis. 2021;113:233-235.
9. Michon A. Hyaluronic acid soft tissue filler delayed inflammatory reaction following COVID-19 vaccination–a case report. J Cosmet Dermatol. 2021;20(9):2684-2690.
10. Hotta TA. The expanding market of health Canada-approved hyaluronic acid-injectable dermal fillers. Plast Surg Nurs. 2017;37(1):25-31.
11. Heitmiller K, Ring C, Saedi N. Rheologic properties of soft tissue fillers and implications for clinical use. J Cosmet Dermatol. 2021;20(1):28-34.
12. Artzi O, Cohen JL, Dover JS, et al. Delayed inflammatory reactions to hyaluronic acid fillers: a literature review and proposed treatment algorithm. Clin Cosmet Investig Dermatol. 2020;13:371-378.
13. Mikkilineni R, Wipf A, Farah R, Sadick N. New classification schema of hypersensitivity adverse effects after hyaluronic acid injections: pathophysiology, treatment algorithm, and prevention. Dermatol Surg. 2020;46(11):1404-1409.
14. Rice SM, Ferree SD, Mesinkovska NA, Kourosh AS. The art of prevention: COVID-19 vaccine preparedness for the dermatologist. Int J Women's Dermatol. 2021;7(2):209-212.
15. Lowe NJ, Maxwell CA, Patnaik R. Adverse reactions to dermal fillers. Dermatol Surg. 2005;31:1626-1633.
16. Turkmani MG, De Bouillé K, Philipp-Dormston WG. Delayed hypersensitivity reaction to hyaluronic acid dermal filler following influenza-like illness. Clin Cosmet Investig Dermatol. 2019;12:277-283.
17. Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol. 2018;14(2):1-10.

18. Decates TS, Velthuis PJ, Schelke LW, et al. Increased risk of late-onset, immune-mediated, adverse reactions related to dermal fillers in patients bearing HLA-B*08 and DRB1*03 haplotypes. Dermatol Ther. 2021;34(1):e14944.

19. Artzi O, Loizides C, Verner I, Landau M. Resistant and recurrent late reaction to hyaluronic acid–based gel. Dermatol Surg. 2016;42(1):31-37.

20. Scheibner KA, Lutz MA, Boodoo S, Fenton MJ, Powell JD, Horton MR. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177(2):1272-1281.

21. Zerbinati N, Lotti T, Monticelli D, et al. In vitro evaluation of the biosafety of hyaluronic acid PEG cross-linked with micromolecules of calcium hydroxyapatite in low concentration. Open Access Med J Med Sci. 2018;6(1):15-19.

22. Mohseni Afshar Z, Barary M, Hosseinzadeh R, et al. COVID-19 vaccination challenges: a mini-review. Hum Vacc Immunother. 2022;18:1-9.

23. Rice SM, Ferree SD, Kourosh AS. COVID-19 vaccine reactions in dermatology: “filling” in the gaps. Cutis. 2021;107:288-290.

24. Aryanian Z, Ehsani A, Razavi Z, Hamzelou S, Afshar ZM, Hatami P. The COVID-19 pandemic and its impact on aesthetic dermatology. J Cosmet Dermatol. 2022. Epub ahead of print. doi:10.1111/jocd.15386

25. Washrawirul C, Triwatcharikorn J, Phannajit J, Ullman M, P. The COVID-19 pandemic and its impact on aesthetic dermatology. J Eur Acad Dermatol Venereol. (2022). Portico. 10.1111/jdv.18294. Online ahead of print.

26. Sarigul Guduk S. A case of delayed inflammatory filler reaction following Shingrix and Fluzone vaccines treated with lisinopril. Laser Ther. 2021;23(3–4):52-54.

27. Witt J, Hooper D, Munavalli GG. Delayed inflammatory reaction to hyaluronic acid filler following Shingrix and Fluzone vaccines treated with lisinopril. JAAD Case Rep. 2022;23:133-135.

28. Shoenfeld Y, Agmon-Levin N. ‘ASIA’–autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011;36(1):4-8.

29. Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anaesth. 2021;126:e104-e108.

30. Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee (VRBPAC) Adult Indication Briefing Document: Prevnar 13. US Department of Health and Human Services. Food and Drug Administration; 2021.

31. Munavalli GG, Knutsen-Larson S, Lupo MP, Geronemus RG. Oral angiotensin-converting enzyme inhibitors for treatment of delayed inflammatory reaction to dermal hyaluronic acid fillers following COVID-19 vaccination-a model for inhibition of angiotensin II–induced cutaneous inflammation. JAAD Case Rep. 2021;10:63-68.

32. Chiang C-H, Peng J-H, Peng H. Filler-induced granuloma from polycaprolactone-based collagen stimulator injection in the tear trough area: a case report. J Cosmet Dermatol. 2021;20:1529-1531.

33. Skrzypek E, Görnicka B, Skrzypek DM, Krzysztof MR. Granuloma of calcium hydroxylapatite in low concentration. Cutis. 2019;107:288-290.

34. López Pérez V. COVID y rellenos faciales: ¿realmente debemos preocuparnos? Actas Dermosifiliogr. 2022;113(9):888-894. https://doi.org/10.1016/j.ad.2022.05.019

35. Novak N, Tordesillas L, Cabanillas B. Adverse rare events to vaccines for COVID-19: from hypersensitivity reactions to thrombosis and thrombocytopenia. Int Rev Immunol. 2021;1:1043-447.

36. Temiz SA, Abdelmaksoud A, Wollina U, et al. Cutaneous and allergic reactions due to COVID-19 vaccinations: a review. J Cosmet Dermatol. 2022;21(1):4-12.

37. Bawa M. The rare reports of dermal filler reactions following the COVID-19 vaccine—and why it is still safe. J Aesthet Nurs. 2021;10(Suppl 1):24-26.

38. López Pérez V. COVID y rellenos faciales, realmente debemos preocuparnos? Actas Dermosifiliogr. 2022;113(9):888-894. https://doi.org/10.1016/j.ad.2022.05.019

39. Philibert F, Gras-Champel V, Chaby G, et al. Granulomes après injection d’Ellansé®, résolutifs sous méthotrexate. Ann Dermatol Venéréol. 2020;147:525-529.

40. Aguilera SB, Aristizabal M, Reed A. Successful treatment of calcium hydroxyapatite nodules with intralesional 5-fluorouracil, dexamethasone, and triamcinolone. J Drugs Dermatol. 2016;15(9):1142-1143.

41. Munavalli GG, Knutsen-Larson S, Lupo MP, Geronemus RG. Oral angiotensin-converting enzyme inhibitors for treatment of delayed inflammatory reaction to dermal hyaluronic acid fillers following COVID-19 vaccination-a model for inhibition of angiotensin II–induced cutaneous inflammation. JAAD Case Rep. 2021;10:63-68.

42. Rauso R, Lo Giudice G, Zerbinati N, Nicoletti GF, Fragola R, Tartaro G. Adverse events following COVID-19 vaccine in patients previously injected with facial filler: scoping review and case report. Appl Sci. 2021;11(22):10888.

43. Cassuto D, Sundaram H. A problem-oriented approach to nodular complications from hyaluronic acid and calcium hydroxyapatite fillers: classification and recommendations for treatment. Plast Reconstr Surg. 2013;132(45–2):485-585.

44. Beer K, Avelar R. Relationship between delayed reactions to dermal fillers and biofilms: facts and considerations. Dermatol Surg. 2014;40(11):1175-1179.

45. Danese E, Montagnana M, Salvagno GL, et al. Comprehensive assessment of humoral response after Pfizer BNT162b2 mRNA Covid-19 vaccination: a three-case series. Clin Chem Lab Med. 2021;59(9):1585-1591.

46. De Boule K, Heydenrych I. Patient factors influencing dermal filler complications: prevention, assessment, and treatment. Clin Cosmet Investig Dermatol. 2015;8:205.

How to cite this article: Aryanian Z, Balighi K, Emadi SN, Razavi Z, Hatami P, Afshar ZM. COVID-19 vaccines and filler reactions: Should it be considered as a concern? J Cosmet Dermatol. 2022;21:6564-6567. doi: 10.1111/jocd.15428