advanced wound care products that will become leaders in the wound care marketplace. In 2009, the estimated value of these products was $5.5 billion; by 2022, the estimated value will be $10 billion.²

While chronic wounds become more prevalent and expensive, far more worrisome is the troubling variation in treating chronic wounds that is a result of poor use of available evidence-based best practices, inadequate training in new highly technical products, and a lack of valid and reliable research on available products.

Plastic surgeons have long been considered the advocates for and guardians of “wound medicine.” Plastic surgery residencies provide training in the field, albeit modest, if not superficial. Most plastic surgeons practice in urban areas where sufficiently well-off patients can afford their noninsured fees. This means that millions of U.S. citizens are bereft of adequate wound care while the need explodes across all demographics. The time for change is at hand!

DOI: 10.1097/PRS.0000000000009597

Richard Simman, M.D.
American Board of Wound Medicine and Surgery
Jobst Vascular Institute
ProMedica Health Network
Division of Plastic Surgery
University of Toledo College of Medicine and Life Sciences
Toledo, Ohio

Tony McNevin, M.A.
American Board of Wound Medicine and Surgery
Gettysburg, Pa.

Correspondence to Dr. Simman
Jobst Vascular Institute
ProMedica Health Network
2109 Hughes Drive, Suite 400
Toledo, Ohio 43606
richard.simmanmd@promedica.org

DISCLOSURE
The authors have no financial interest to declare in relation to the content of this article.

REFERENCES
1. Agency for Healthcare Research and Quality. Are we ready for this change? Preventing pressure ulcers in hospitals: A toolkit for improving quality of care. Rockville, Md: Agency for Healthcare Research and Quality; 2011.
2. Reportbuyer. Global advanced wound care market: Analysis and forecast (2016-2022) (Focus on advanced wound care dressings, NPWT devices, HBOT devices, wound care biologics, ultrasonic devices, and electromagnetic devices). 2016. Available at: https://www.reportbuyer.com/product/4717465/globaladvanced-wound-care-market-analysis-and-forecast-2016-2022-focus-onadvanced-wound-care-dressings-npwt-devices-hbot-devices-wound-carebiologics-ultrasonic-devices-and-electromagnetic-devices.html. Accessed August 1, 2021.

Lessons from the Epicenter of the COVID-19 Pandemic: An Analysis of the Surgical Completion Rates between Priority Classes and Procedure Types

In March of 2020, elective surgical procedures in New York State were suspended in response to the COVID-19 pandemic. At Northwell Health, this lasted a total of 8 weeks, leaving plastic surgeons responsible for recording and rescheduling delayed procedures. Many plastic and reconstructive procedures are considered elective, but these procedures can be time sensitive, and delays can have a negative impact on patient care.¹ Our goal was to compare the rates of completion and time to completion between different priority groups and procedure types in order to predict potential consequences for one’s practice if future suspensions in elective surgery were to occur. We hypothesized that procedures grouped in the reconstructive categories with higher priority levels would have a higher completion rate and lower time to completion compared to less urgent, aesthetic based procedures.

Plastic surgeons working for our department were responsible for keeping track of their suspended cases between March 23, 2020, and May 19, 2020.²³ Under the discretion of the attending plastic surgeon, cases were categorized into procedure type, priority level, and surgery setting. The procedure types included aesthetic, pediatrics/craniofacial, hand, general, and reconstructive. The priority classes were elective, non-urgent, semiurgent, urgent, and emergent. The surgery setting was classified into inpatient and outpatient.

In total, we examined 135 surgical cases that were suspended (Table 1). The average patient age was 45.8 years, and 45.9 percent of the surgical procedures were completed by the end of August of 2020, more than 3 months after the suspension was lifted. Of those that were completed, the average time to completion from the original surgical date was 79.2 days. Surgery classifications are summarized in Table 1. We ran binary logistic regressions that showed no significant correlation between the surgery type, urgency, or priority class and whether or not the surgery was completed. In addition, linear regression analyses did not show a significant correlation between the surgery type, urgency, or priority class and the time it took to complete the surgery. All the models controlled for patient age and whether or not there was malignancy.

Our surprising results may be due to several factors, including differences in patients’ concerns with undergoing surgery during a pandemic, patients’ continuous desire to undergo aesthetic surgery, or a lack of prioritization of urgent cases when rescheduling surgery. With new variants of SARS-CoV-2 emerging and the number of COVID-19 cases climbing rapidly in the United States,⁴ plastic surgeons must be prepared for another potential suspension of surgery.⁵ Plastic surgery departments and private practices can use our experience to guide their recovery from future surgical suspension. Prior studies have already shown the tremendous economic impact of...
Table 1. Summary of Sample by Procedure Priority

Procedure Classification	No. of Patients	Percent of Sample
Priority		
Elective	8	5.93%
Nonurgent	80	52.99%
Semiurgent	22	16.30%
Urgent	24	17.78%
Emergent	1	0.01%
Type		
Aesthetic	12	8.89%
Pediatrics/craniofacial	10	7.41%
Hand	9	6.67%
General	35	25.93%
Reconstructive	68	50.37%
No type specified	1	0.74%
Location		
Inpatient	34	25.19%
Outpatient	66	48.89%
No location specified	35	25.93%

surgery delays on plastic surgeons. Additional research is needed, however, to evaluate the impact of delays on patient care and quality of life. A more systematic approach to rescheduling surgery, which prioritizes the most vulnerable patients, is needed.

DOI: 10.1097/PRS.0000000000009598

Rebecca Suydam, B.A.
Tracey Cook, M.D.
Sarah Barnett, B.A.
Neil Tanna, M.D., M.B.A.
Division of Plastic and Reconstructive Surgery
Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
Division of Plastic and Reconstructive Surgery
Northwell Health
Great Neck, N.Y.
Correspondence to Dr. Tanna
600 Northern Boulevard, Suite 310
Great Neck, N.Y. 11021
ntanna@gmail.com
Twitter, Instagram, and Facebook: @drneiltanna

DISCLOSURE
The authors have no relevant financial disclosures to report.

REFERENCES
1. Siddiqui S. COVID-19: Guidance for triage of non-emergent surgical procedures. American College of Surgeons. March 17, 2020. Available at: https://www.facs.org/covid-19/c clinical-guidance/triage. Accessed February 20, 2021.
2. Cuomo AM, Dresdin S, Zucker HA. COVID-19 directive to increase availability of beds by a minimum of 50% and provide necessary staffing and equipment. New York State Department of Health. March 23, 2020. Available at: http://dmna.ny.gov/covid19/docs/all/DOH_COVID19_FacilityDirective_032320.pdf. Accessed February 20, 2021.
3. Bolger T. Nassau gets ok to resume elective surgeries. Long Island Press May 19, 2020. Available at: https://www.longislandpress.com/2020/05/19/nassau-gets-ok-to-resume-e lective-surgeries/. Accessed February 20, 2021.
4. Bregman DE, Cook T, Thorne C. Estimated national and regional impact of COVID-19 on elective case volume in aesthetic plastic surgery. Aesthet Surg J 2020;41:358–369.
5. Allen J, Almukhtar S, Aufrichtig A, et al. Coronavirus in the U.S.: Latest map and case count. The New York Times July 23, 2021. Available at: https://www.nytimes.com/interactive/ 2021/us/covid-cases.html. Accessed July 23, 2021.
6. Hollier LH Jr, Tanna N, Kasabian AK, et al. The COVID-19 pandemic: Crisis management for plastic surgeons. Plast Reconstr Surg 2020;146:1197–1206.

Launching a Plastic Surgery Clinic on Instagram: The Dynamic of a New Account

Plastic surgery is one of the medical fields in which social media are broadly used as a tool for informing and educating patients. Little is known, however, about the workings of Instagram—how to measure the success of a post and when or what to post.

A measurement of the success of a post is the engagement rate (i.e., engagement divided by the number of followers). Engagement, according to the statistics from Instagram, equals the sum of the number of likes plus comments plus saves, but social media networks tend to be dynamic. Considering that the number of followers today is much higher than the number of followers a year ago, while the engagement within this year does not increase proportionally, we questioned the use of engagement rate as a sufficient indicator of the success of a post.

We analyzed our plastic surgery team’s Instagram account, “plastische_chirurgie_muenster,” from September 9, 2018, until April 19, 2020. Overall, 164 posts were evaluated twice: 24 hours after the post and on April 19, 2020. We evaluated the number of followers, likes, comments, saves, reach, impressions, and hashtags, as well as the day, time, and content of the post. Finally, we compared the 24-hour values with the end values.

We found a strong correlation between the engagement in the first 24 hours and the overall engagement ($\rho = 0.972$, $p < 0.001$) and a weak correlation between the engagement rate of the first 24 hours and the overall engagement rate ($\rho = 0.204$, $p = 0.009$) (Table 1). We found that most of the engagement was achieved in the first 24 hours (Fig. 1).

No significant differences ($p = 0.371$) were found among the different number of hashtags (from 0 to 24), among different days ($p = 0.346$), or among different times (from 8 a.m. to 10 p.m.) ($p = 0.113$). However, there seemed to be a trend with regard to the day of the post, with Friday having the highest 24-hour engagement rate, followed by Monday. Sunday was the least successful day (24-hour engagement rate; $p = 0.009$) (Table 1).