Statistical matching for conservation science
Schleicher, Judith; Eklund, Johanna; Barnes, Megan; Goldman, Jonas; Oldekop, Johan A.; Jones, Julia P.G.

Conservation Biology

DOI:
10.1111/cobi.13448

Published: 01/06/2020

Peer reviewed version

Cyswllt i'r cyhoeddriad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Schleicher, J., Eklund, J., Barnes, M., Goldman, J., Oldekop, J. A., & Jones, J. P. G. (2020). Statistical matching for conservation science. Conservation Biology, 34(3), 538-549. https://doi.org/10.1111/cobi.13448

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Title: A good match? The appropriate use of statistical matching in conservation impact evaluation

Impact statement: We provide a step-by-step guide for using matching in conservation impact evaluation; highlighting pitfalls and potential improvements

Running head: A good match?

Keywords: causal inference, conservation effectiveness, spill-over, spatial autocorrelation, counterfactual

Word count: 6,183 words.

Authors: Judith Schleichera*, Johanna Eklundb, Megan Barnesc, Jonas Geldmannd, Johan A. Oldekope and Julia P. G. Jonesf

a Department of Geography, University of Cambridge, UK; email: judith.schleicher@geog.cam.ac.uk.
b Department of Geosciences and Geography, Helsinki Institute of Sustainability Science, Faculty of Science, PO Box 64 (Gustaf Hällströmin katu 2A), FI-00014 University of Helsinki, Finland; email: johanna.f.eklund@helsinki.fi
c School of Biology, The University of Queensland, St Lucia, QLD, 4067, Australia; email: meganbarnes84@gmail.com
d Conservation Science Group, Department of Zoology, University of Cambridge, Downing St., Cambridge CB2 3EJ, UK; email: jg794@cam.ac.uk
e School of Environment, Education and Development, University of Manchester, Oxford Road, Manchester, M13 9PL, UK; email: johan.oldekop@manchester.ac.uk
f College of Engineering and Environmental Sciences, Thoday Road, Deniel Road, Bangor University, LL57 2UW, UK; email: julia.jones@bangor.ac.uk
* Corresponding author: judith.schleicher@geog.cam.ac.uk; +44 (0)7570086101

Acknowledgements: This paper resulted from a symposium JS and JE organised at the European Congress of Conservation Biology 2018, for which we received funding from the FinCEAL programme. We thank Diogo Veríssimo, Rachel Carmenta, Janet Lessmann, Alejandro Guizar and Stephanie Hernandez for helpful comments on earlier versions of this paper, and governmental and non-governmental organizations in Peru for data that provided the basis for Figure 2. JS was supported by the Economic and Social Research...
Council (grant number ES/I019650/1). JPGJ thanks Fitzwilliam College and the Leverhulme Trust (grant RPG-2014-056). JE thanks the Kone foundation for funding. JG was supported by European Union’s Horizon 2020 Marie Skłodowska-Curie programme (No 676108) and Villum Fonden (VKR023371).

ABSTRACT

The awareness of the need for robust impact evaluations in conservation is growing, and statistical matching techniques are increasingly being use to assess the impacts of conservation interventions. Used appropriately, matching approaches are powerful tools, but they also pose potential pitfalls. We present important considerations and best practice when using matching in conservation science. We identify three steps in a matching analysis. The first step requires a clear theory of change to inform selection of treatment and controls, accounting for real world complexities and potential spill-over effects. The second step involves selecting the appropriate covariates and matching approach. The third step is assessing the quality of the matching by carrying out a series of checks. The second and third steps can be repeated and should be finalized before outcomes are explored. Future conservation impact evaluations could be improved by increased planning of evaluations alongside the intervention, better integration of qualitative methods, considering spill-over effects at larger spatial scales, and more publication of pre-analysis plans. This will require more serious engagement of conservation scientists, practitioners and funders to mainstream robust impact evaluations into conservation. We hope that this paper will improve the quality of evaluations, and help direct future research to continue to improve the approaches on offer.
INTRODUCTION

There have been numerous calls for conservation science to provide a stronger evidence base for policy and practice (Pullin & Knight 2001; Sutherland et al. 2004; Baylis et al. 2016). Rigorous impact assessments of conservation interventions is vital to prevent wasting conservation resources (Ferraro & Pattanayak 2006), and tackling rapid biodiversity loss. While the importance of establishing counterfactuals (what would have happened in the absence of an intervention) to generate more precise, and less biased, estimates of conservation impacts is increasingly recognized (Baylis et al. 2016), robust impact evaluations remain limited in number and scope (Schleicher 2018).

It is seldom feasible, or even desirable, to randomly implement conservation interventions for ethical, logistical and political reasons. Experimental evaluations are therefore likely to remain rare (Baylis et al. 2016; Pynegar et al. 2018; Wiik et al. 2019). However, methodological advances to improve causal inference from non-experimental data have helped to better attribute conservation impacts (Ferraro & Hanauer 2014a). These methods emulate experiments by identifying treatment and control groups with similar observed and unobserved characteristics (Rosenbaum & Rubin 1983; Stuart 2010). Among the range of non-experimental approaches available for impact evaluations, each with their strengths and weaknesses (see Table 1), ‘matching’ approaches are playing an increasingly important role in conservation science (e.g. Andam et al. 2008; Nelson & Chomitz 2011; Naidoo et al. 2019).

Matching comprises a suite of statistical techniques aiming to improve causal inference of subsequent analyses. They do so by identifying ‘control’ units that are closely ‘matched’ to ‘treatment’ units according to pre-defined measurable characteristics (covariates), and a
measure of similarity (Gelman & Hill 2007; Stuart 2010). Selecting comparable units of analysis (e.g. sites, individuals, households or communities) is important when conservation interventions are not assigned randomly. This is because units exposed to the intervention (treatment units), and those not exposed (control units) can differ in characteristics that influence the allocation of the treatment (i.e. where an intervention occurs, or who receives it) and the outcome of interest (e.g. species population trends, deforestation rates, changes in poverty levels). These characteristics are commonly referred to as confounding factors. For example, habitat conditions before an intervention can influence both the likelihood of the intervention being carried out in a specific location, and habitat condition after the intervention’s implementation.

Matching has two main applications in impact evaluation. First, where researchers seek to evaluate the impact of an intervention post hoc, matching can reduce differences between treatment and control units, and help isolate intervention effects. For example, when examining protected area (PA) effects on deforestation, distance from population centers (remoteness) is a likely confounder: remote sites tend to be more likely designated as protected, and less prone to deforestation because they are harder to reach (Joppa & Pfaff 2009). Second, matching can be used to inform study design and data collection prior to the implementation of an intervention. For example, to evaluate how a planned conservation intervention affects local communities, matching can be used to identify appropriate control and treatment communities to monitor effects before and after the intervention’s implementation (Clements et al. 2014).

Matching is a powerful statistical tool, but not a magic wand. The strengths and weaknesses of matching relative to alternative methods should be considered carefully, and its use
optimized to maximize the benefits. Given the rapid rise in the use of matching approaches in conservation science, there is an urgent need for reviewing best practices and bringing together the diverse technical literature, mostly from economics and statistical journals (Imbens & Wooldridge 2009; Abadie & Cattaneo 2018), for a conservation science audience. The few existing related papers targeted at a conservation audience have focused on the conceptual underpinnings of impact evaluations (Ferraro & Hanauer 2014a; Baylis et al. 2016), without providing specific methodological insights. We address this gap by providing an overview of matching and key methodological considerations for the conservation science community. We do so by drawing on the wider literature and our own collective experience using matching in conservation impact evaluations. We focus on important considerations when using matching, outline best practices, and highlight key methodological issues that deserve further attention and development.

IMPORTANT CONSIDERATIONS WHEN USING MATCHING IN CONSERVATION IMPACT EVALUATION

Three key steps when using matching for impact evaluations

As with any statistical analysis, matching studies require careful design (Stuart 2010; Ferraro & Hanauer 2014a). We identify three main steps for a matching analysis (Figure 1). The first step involves identifying units exposed to the treatment and those not. The second step consists of selecting appropriate covariates and the specific matching approach. The third step involves running the matching analysis and assessing the quality of the match (Table 2). Steps 2 and 3 should be repeated iteratively until the matching has been optimized. Only then should the matched data be used for further analysis. Doing so is important in post hoc analyses to avoid
selecting a matching approach that produces a desired result (Rubin 2007). We elaborate a
number of key considerations involved at each of these steps (see Figure 1) below.

Defining treatment and control units (Step 1)

A ‘theory of change’ is needed to make impact evaluation possible

The strength of the causal inference in observational studies relies on a clear understanding
of the mechanism through which interventions influence outcomes of interest. Rival
explanations should be carefully considered and, if possible, eliminated. Therefore, although
impact evaluation is an empirical exercise, it requires a strong theory-based explanation and
model of the causal pathways linking the intervention to the outcomes of interest (Ferraro &
Hanauer 2014b). This theoretical model is often referred to as a ‘theory of change’ (also called
‘causal chain’ or ‘logic model’). It comprises a theoretical understanding of how a treatment
interacts with the social-ecological system it is embedded in (Qiu et al. 2018). This
understanding is required to successfully argue that a causal pathway runs from the
intervention to the outcome of interest (and not *vice versa*). For example, the expansion of a
PA network might lead to the development of tourism infrastructure, which might also result
in poverty reduction (Ferraro & Hanauer 2014b; den Braber et al. 2018). However, causality
could run in the opposite direction: the development of tourism infrastructure close to a PA
might be the outcome of reduced poverty as local communities invest revenue.

Real world complexity cannot be ignored

Conservation interventions are seldom implemented in simple settings where the impacts of
one intervention can be easily separated from others. A thorough understanding of the study
area and context is essential for identifying appropriate treatment and control units. Typically,
conservation interventions are implemented in a landscape where potential treatment and control units have been exposed to a range of different interventions. The availability of spatially-explicit datasets identifying where interventions have been implemented, is inconsistent: spatial information for some interventions are much more readily available than for others (Oldekop et al. 2019). Teasing apart the effects of specific interventions can therefore be challenging. In the Peruvian Amazon for example, there are few land areas with no formal or informal land use restrictions, and these often overlap (Figure 2). This hinders the isolation of one particular treatment-type (e.g. PA) and identifying appropriate control units (e.g. non-protected land without land use restrictions). Indeed, the few matching studies that have accounted for differences between land use restrictions have found that the degree to which conservation interventions can be considered effective is influenced by how control areas are defined and selected (Gaveau et al. 2012; Schleicher et al. 2017). Conservation impact assessments could be improved by being more explicit about what the alternative land uses to the conservation interventions are, and why specific controls were selected.

'Spill-over' should be considered in the selection of controls

A central assumption in matching studies is that the outcome in one unit is not affected by the treatment in other units (Rubin 1980). However, this assumption does not always hold. There are many situations where outcomes in treatment units may 'spill-over' and affect outcomes in control units, either positively or negatively (Ewers & Rodrigues 2008; Baylis et al. 2016). For example, increased fish population in no-take zones might spill-over into adjacent non-protected habitats, a case of positive spill-over that is part of the design of no-take marine PAs. This would mask the positive impact of the intervention by reducing the difference between treatment and potential control units. In addition, fishing effort may be displaced
from a no-take zone into potential control areas (negative spill-over). One might thus wrongly
conclude that the intervention was successful, despite there being no overall reduction in
fishing effort. In studies evaluating the impact of PAs on deforestation, negative spill-overs
(also called ‘leakage’) have usually been accounted for by excluding buffer zones around
treatment areas, so that they cannot be included as controls (Andam et al. 2008). However,
leakage effects can vary across landscapes (Robalino et al. 2017), and take place over larger
geographical scales, which have so far not been accounted for in matching studies.

Selecting covariates and matching approach (Step 2)

The selection of matching covariates should be informed by the theory of change

A key assumption in non-experimental studies is that selection to the treatment should be
independent of potential outcomes (known as the ‘conditional ignorability assumption’;
Rosenbaum & Rubin, 1983). If factors affecting treatment assignment can be ignored, all
confounding factors should have been controlled for, and the study should not suffer from
hidden bias (i.e. not be very sensitive to potential missing variables). Therefore, matching
analyses should ideally include all covariates likely to impact both the selection to the
treatment and the outcome of interest (e.g. remoteness, as how remote a piece of land is will
affect the likelihood of it being designated as PA and also deforested). Researchers should
thus carefully consider which covariates are likely related to the outcome. It is better to err on
the side of caution by including a covariate if the researcher is unsure of its likely role as a
confounder. However, it is important that no variables likely to have been influenced by the
outcome of interest are used as part of the matching process (Stuart 2010), so matching should
only include variables pre-dating the intervention or time-invariant variables. Creating a table
of all possible confounding factors and how they relate to the selection and outcome variables,
can help organize this process (e.g. Schleicher et al. 2017). Running regression analyses prior to matching or plotting the results of a Principal Component Analysis (PCA) can also inform covariate selection. PCA can help visualize how treatment and outcome relate to the selected covariates by showing which combination of covariates explain the outcomes observed in different units of analysis, and whether treatment and outcome show similar patterns (Eklund et al. 2016).

Selection of the matching approach and how it is implement should be carefully considered

There are various matching approaches, all with strengths and weaknesses. It is difficult to assess a priori which method is the most appropriate for a given study. Thus, testing a suite of different matching methods to evaluate which produces the best balance (see Step 3 Figure 1), instead of relying on any one method, can be useful (e.g. Oldekop et al. 2018). Matching approaches include Mahalanobis, Propensity Score, Genetic and Full Matching (Stuart 2010; Iacus et al. 2012; Diamond & Sekhon 2013). Mahalanobis and Propensity Score matching are particularly commonly used in conservation science, and there is growing interest in the use of Genetic matching. Mahalanobis matching calculates how many standard deviations a unit is from the mean of other units (e.g. Rasolofoson et al. 2015). In contrast, Propensity Score matching combines all covariates into a single distance measure that estimates the probability of units receiving the treatment (e.g. Carranza et al. 2013). Genetic matching automates the iteration process (Diamond & Sekhon 2012) by optimizing balance diagnostics, rather than mean standardized distance (e.g. Hanauer & Canavire-Bacarreza 2015). Full matching uses a Propensity Score to match multiple control units to treatment unit and vice versa, and is particularly well suited when analyzing balanced datasets with similar number of treatment and control units (e.g. Oldekop et al. 2019). The development and testing of matching
approaches remains an active research area with some strongly arguing for one method over another (King & Nielsen 2019).

Each of these methods can be configured in multiple ways, requiring a series of additional decisions about: (1) Treatment-Control ratio: the ratio of treatment to control units used during matching (i.e. whether to use a one-to-one match or to match one treatment unit to several control units), (2) Replacement: whether control units can be used multiple times or not (i.e. match with or without replacement), (3) Weighting: the relative importance placed on retaining as many treatment units or control units in the analysis as possible (with some approaches applying sampling weights to give more importance to certain units and adjust for unbalanced datasets), (4) Calipers: whether to set bounds (called ‘calipers’) on the degree of difference between treatment and control units, (5) Order: the order in which matches are selected (e.g., at random or in a particular order) (Lunt 2014), and (6) Exact matching: whether or not to only retain units with the exact same covariate value. Exact matching using continuous covariates typically results in many treatment units being excluded because no control units with identical values are found. This can increase bias because data is being systematically discarded. It is thus better suited for categorical variables.

Inference can only be made for the region of ‘common support’

In some cases, treatments may be so closely interlinked with potential confounders that no good matches exist. For example, if intact habitat remains only on mountain tops and all mountain tops are protected, it would be impossible to separate the contribution of location from that of the intervention itself, as there are no controls with similar habitat available that are not protected (Green et al. 2013). Matching therefore depends on a substantial overlap in
relevant covariates between units exposed to the intervention and potential controls. This overlap is known as the region of ‘common support’. An assessment of common support early on in the matching process can be a good filter to determine whether matching will be useful. When using the Propensity Score, it is simple to discard potential control units with scores outside the range of the treatment group. Visual diagnostics, including the Propensity Score distribution, are a simple and robust way of diagnosing any challenges with common support (Caliendo & Kopeinig 2008; Lechner 2000; see Figure 1 and Table 2). Where many potential control units need to be discarded, it can be helpful to define the discard rule based on one or two covariates rather than the Propensity Score (Stuart 2010). If many treatment units must be discarded because no appropriate control units can be found, the research question being answered by the analysis is likely to be different from the one that was being asked to begin with. This needs to be acknowledged. In some cases, it will simply not be possible to use matching to evaluate the impact of an intervention on an outcome of interest, requiring the use of alternative quantitative or qualitative methods (e.g. Green et al. 2013).

Assessing the quality of the matching (Step 3)

The quality of the match achieved must be explored and reported

Matching provides no guarantee that biases have been sufficiently addressed. It is therefore important to assess the quality of the match and to report relevant statistics (see Figure 1 and Table 2). In fact, an advantage of using matching rather than standard regression, is that it highlights areas of the covariate distribution where there is not sufficient common support between treatment and control groups to allow effective inference without substantial extrapolation (Gelman and Hill 2007). When assessing the performance and appropriateness
of a match, three key features should be assessed and reported: (1) how similar are the
treatments and controls after matching (covariate balance), (2) how similar is the pre-match
treatment to the post-match treatment (large dissimilarities can potentially increase bias), and
(3) the number of treatment units that were matched and discarded during matching. In
addition, when matching is done with replacement, it is prudent to check the selection rate of
matched controls, to ensure that there is no oversampling of specific controls. The best
matching method will be the one that keeps the post-matched treatment as similar to the pre-
matched treatment as possible, while ensuring maximum similarity between post-match
treatment and control units, and removing the least number of observations in the process.
The proportion of covariates that have met a user-specified threshold for balance and the
covariate with the highest degree of imbalance, have been shown to be effective indicators in
diagnosing imbalance and potential bias (Stuart et al. 2013). Standard tests and visualizations
that explore match quality have been widely published in the statistical, economics, health and
political science literatures (e.g. Harris & Horst 2016; Rubin 2001). It is useful to combine both
numeric and visual diagnostics (see Table 2 for examples) (Caliendo & Kopeinig 2008; Stuart
2010; Harris & Horst 2016).

A central assumption underlying the use of matching approaches is that any difference
between treatment and control populations remaining after matching are due to treatment
effects alone. Validating this assumption rests on a robust theory of change, and a careful
selection of covariates. However, even if all known sources of potential bias have been
controlled for, unknown mechanisms might still confound either treatment or outcomes.
Checks to assess whether post-matching results are sensitive to potential unmeasured
confounders (e.g. Rosenbaum bounds; Rosenbaum 2007), allow one to evaluate the amount of variation that an unmeasured confounder would have to explain to invalidate the results. The robustness of matching results to spatial autocorrelation should be considered

Conservation interventions, and most data used to assess their impacts, have a spatial component. A key assumption of many statistical tests is that units of observation are independent from each other (e.g. Dormann et al. 2007; Haining 2003). Yet, this assumption is easily violated when using spatial data: units of observation that are closer together in space are often more similar to each other than units of observation that are further apart. Such spatial dependency, referred to as spatial autocorrelation (SAC), is often not discussed or explicitly tested for in conservation matching studies, despite being a well-recognized phenomenon (Legendre 1993; Dormann et al. 2007). While it is unclear how matching affects SAC, SAC can clearly affect impact estimations. For example, studies modeling deforestation have shown that the spatial coordinates of a data point are among the top predictors of deforestation (Green et al. 2013; Schleicher et al. 2017). Some matching studies in the conservation literature have acknowledged the potential resulting bias, and have attempted to account or test for any potential effects linked to the spatial sampling framework (e.g. Carranza et al. 2013; Schleicher et al. 2017; Oldekop et al. 2019). We call for increased attention to SAC when evaluating place-based interventions. Steps to test for SAC could include Moran’s I tests, semi-variograms, correlograms, and spatial plots of model residuals (Schleicher et al. 2017; Oldekop et al. 2019). These could be used to test for SAC of post-matching analyses and treatment assignment (e.g. by testing SAC of Propensity Score models). SAC could also be tested separately in the treatment and control groups before and after matching. If significant SAC remains after matching, it would be a strong indication that it needs to be accounted for.
in any post-matching regression, something that could be confirmed through inspection of spatial patterns of model residuals (Dormann et al. 2007; Zuur et al. 2009; Oldekop et al. 2019).

Post-matching analyses

Matching is often used as a data pre-processing step (Ho et al. 2007). If matching perfectly reduces the difference between treatment and control units to zero, or the residual variation is close to random and uncorrelated with treatment allocation and the outcome of interest, then the average treatment effect can be measured as the difference in the outcome between treatment and control units. However, in most instances matching reduces - but does not eliminate - differences between treatment and control units. It is often followed by regression analyses to control for any remaining differences between treatment and control units (Imbens & Wooldridge 2009). Where longitudinal panel data is available, matching can be combined with a difference-in-difference research design (e.g. Jones & Lewis 2015; Table 1). Combining matching with other statistical methods in this way tends to generate treatment effect estimates that are more accurate and robust than when using any one statistical approach alone (Blackman 2013).

MOVING FORWARD

The increasing use matching approaches in conservation science has great potential to rigorously inform what works in conservation. However, while matching approaches are a powerful tool that can improve causal inference, they are not a silver bullet. We caution against using matching approaches without a clear understanding of their strengths and weaknesses. Looking to the future, we highlight clear avenues for improving the use of matching in
conservation studies. This includes developing robust theories of change, incorporating real world complexities, careful selection of matching variables and approaches, assessing the quality of matches achieved, and accounting for SAC. Conservation impact evaluation would benefit by increased evaluation planning alongside conservation interventions, better integration of qualitative approaches with quantitative matching-based methods, further consideration of how spill-over effects should be accounted for, and more publications of pre-analysis plans. We explore each of these in turn.

Post hoc evaluations are often necessary in conservation as there is a pressing policy need to explore the impacts of past interventions. However, there are limits to what statistical analyses can do post hoc to overcome problems in the underlying study design of an impact evaluation (Ferraro & Hanauer 2014a). More integration of impact evaluations within intervention implementations is needed to address and account for biases in where interventions are located. Occasionally, this may provide the opportunity for experimental evaluation (Pynegar et al. 2018; Wiik et al. 2019). More commonly, where this is not possible or desirable, good practice should be to explore and consider potential controls using matching from as early as possible. Innovative funding is needed to allow researchers to work alongside conservation practitioners throughout their intervention to incorporate rigorous impact evaluation from the start (Craigie et al. 2015).

Matching does not provide certainty about causal links, and on its own does not likely provide insights into the mechanism by which an intervention had an impact. This highlights the importance of making use of the diverse set of evaluation approaches and data sources available. This includes the important, but often overlooked, contribution that qualitative data can make to impact evaluation and counterfactual thinking. For example, incorporating
qualitative data can provide depth in understanding, identify hypotheses, and help clarify potential reasons why an effect of an intervention was or was not found. Process tracing, realist evaluation, assessment of exceptional responders and contribution analyses are all suited for exploring the mechanisms by which an intervention led to an outcome (Collier 2011; Lemire et al. 2012; Westhorp 2014; Meyfroidt 2016; Post & Geldmann 2018). Qualitative Comparative Analysis can also be useful for exploring what factors needed to be present to achieve successful outcomes, or how impacts vary among different groups and circumstances (Korhonen-Kurki et al. 2014).

There are remarkably few explicit assessments of the importance of spill-over effects beyond intervention boundaries at different spatial scales (Pfaff & Robalino 2017). While impact evaluations on deforestation rates commonly avoid selecting control pixels from a pre-defined buffer area around an intervention, the size of the buffer are seldom based on a clear justification. We know of no matching studies that explicitly account for spill-over effects over larger spatial scales. This is despite the need to account for spill-overs to assess whether a net reduction in conservation pressure has taken place, instead of simply displacing it elsewhere (Pfaff & Robalino 2012). For example, stronger implementation of logging rules in one region of Brazil shifted pressures to other regions (Dou et al. 2018) and China’s national logging bans mean that timber demand is being met through imports from Indonesia (Lambin & Meyfroidt 2011). Accounting for these effects is inherently complex as many factors complicate the ability to account for effects over large spatial scales, including demand and supply dynamics, feedback cycles, and behavioral adaptation (Ferraro et al. 2019) – and will require further collective, interdisciplinary thinking and methodological developments.
Increasingly, there is a push for researchers in a number of fields to publish pre-analyses plans (e.g. Nosek et al. 2018), which lay out hypotheses identified *a priori*, and proposed analyses before the effects are assessed (Bauhoff & Busch 2018). The aim of pre-analyses plans is to reduce the risk of HARKing (Hypothesising After Results are Known; Kerr 1998). As there are many potential acceptable ways to select appropriate matches, there are benefits in publishing the matching and planned analysis before carrying it out.

Given continuous loss of biodiversity despite considerable conservation efforts, there is an urgent need to take impact evaluations more seriously, learn from other disciplines, and improve our practices as a conservation science community. The increasing interest in the use of counterfactual approaches for evaluating conservation impacts is therefore a very positive development. There is an important role for conservation practitioners, funders and academics to encourage this development and to mainstream rigorous impact evaluations into conservation practice. Furthermore, there is certainly a need to increase the capacity of conservation scientists and practitioners in both the conceptual and technical challenges of impact evaluation, including by incorporating impact evaluation and counterfactual thinking in postgraduate training of future conservationists. We hope that this paper will help both improve the general quality of evaluations being undertaken, and direct future research to continue to improve the approaches currently on offer.
LITERATURE CITED

Abadie A, Cattaneo MD. 2018. Econometric methods for program evaluation. Annual Review of Economics 10:465–503.

Alix-Garcia JM, Sims KRE, Orozco-olvera VH, Costica LE. 2018. Payments for environmental services supported social capital while increasing land management. Proceedings of the National Academy of Sciences of the United States of America 115:7016–7021.

Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA. 2008. Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences of the United States of America 105:16089–94. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2567237&tool=pmcentrez&rendertype=abstract.

Bauhoff S, Busch J. 2018. Does Deforestation Increase Malaria Prevalence? Evidence from Satellite Data and Health Surveys. 480, Center for Global Development Working Paper.

Baylis K, Honey-Rosés J, Börner J, Corbera E, Ezzine-de-Blas D, Ferraro PJ, Lapeyre R, Persson UM, Pfaff A, Wunder S. 2016. Mainstreaming Impact Evaluation in Nature Conservation. Conservation Letters 9:58–64.

Blackman A. 2013. Evaluating Forest Conservation Policies in Developing Countries Using Remote Sensing Data: An Introduction and Practical Guide. Forest Policy and Economics 34:1–16.

Caliendo M, Kopeinig S. 2008. Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys 22:31–72.

Carranza T, Balmford A, Kapos V, Manica A. 2013. Protected Area Effectiveness in Reducing Conversion in a Rapidly Vanishing Ecosystem: The Brazilian Cerrado. Conservation Letters 7:216–223. Available from http://dx.doi.org/10.1111/conl.12049.

Clements T, Suon S, Wilkie DS, Milner-Gulland EJ. 2014. Impacts of Protected Areas on Local Livelihoods in Cambodia. World Development 64:S12–S134. Elsevier Ltd. Available from http://dx.doi.org/10.1016/j.worlddev.2014.03.008.

Collier. 2011. Understanding Process Tracing. Political Science and Politics 44:823–30.

Craigie ID, Barnes MD, Geldmann J, Woodley S. 2015. International funding agencies: potential leaders of impact evaluation in protected areas? Philosophical Transactions of the Royal Society B: Biological Sciences 370:20140283.

den Braber B, Evans KL, Oldekop JA. 2018. Impact of protected areas on poverty, extreme poverty, and inequality in Nepal. Conservation Letters:e12576.

Diamond A, Sekhon JS. 2012. Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies. Review of Economics and Statistics.
Diamond A, Sekhon JS. 2013. Genetic Matching for Estimating Causal Effects: A General Multivariate Matching Method for Achieving Balance in Observational Studies. Review of Economics and Statistics 95:932–945.

Dormann CF et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628.

Dou Y, da Silva RFB, Yang H, Jianguo L. 2018. Spillover effect offsets the conservation effort in the Amazon. Journal of Geographical Science 28:1715–1732.

Eklund J, Blanchet FG, Nyman J, Rocha R, Virtanen T, Cabeza M. 2016. Contrasting spatial and temporal trends of protected area effectiveness in mitigating deforestation in Madagascar. Biological Conservation 203:290–297.

Ewers RM, Rodrigues ASL. 2008. Estimates of reserve effectiveness are confounded by leakage. Trends in Ecology and Evolution 23:113–116.

Ferraro PJ, Hanauer MM. 2014a. Advances in Measuring the Environmental and Social Impacts of Environmental Programs. Annual Review of Environment and Resources 39:495–517. Available from http://www.annualreviews.org/doi/abs/10.1146/annurev-environ-101813-013230.

Ferraro PJ, Hanauer MM. 2014b. Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure. Proceedings of the National Academy of Sciences 111:4332–4337.

Ferraro PJ, Pattanayak SK. 2006. Money for nothing? A call for empirical evaluation of biodiversity conservation investments. PLoS biology 4:e105. Available from http://www.ncbi.nlm.nih.gov/pubmed/16602825.

Ferraro PJ, Sanchirico JN, Smith MD. 2019. Causal inference in coupled human and natural systems 116:5311–5318.

Gaveau DLA, Curran LM, Paoli GD, Carlson KM, Wells P, Besse-Rimba A, Ratnasari D, Leader-Williams N. 2012. Examining protected area effectiveness in Sumatra: importance of regulations governing unprotected lands. Conservation Letters 5:142–148.

Gelman A, Hill J. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambirdge, UK.

Green JMH, Larrosa C, Burgess ND, Balmford A, Johnston A, Mbilinyi BP, Platts PJ, Coad L. 2013. Deforestation in an African biodiversity hotspot: Extent, variation and the effectiveness of protected areas. Biological Conservation 164:62–72. Available from http://dx.doi.org/10.1016/j.biocon.2013.04.016.

Haining RP. 2003. Spatial data analysis: Theory and Practice. Cambridge University Press, Cambrdige, UK.

Hanauer MM, Canavire-Bacarreza G. 2015. Implications of heterogeneous impacts of protected areas on deforestation and poverty. Philosophical Transactions of the Royal Society B: Biological Sciences 370:20140272.
Harris, Horst. 2016. A Brief Guide to Decisions at Each Step of the Propensity Score Matching Process. Practical Assessment, Research & Evaluation 21. Available from https://pareonline.net/getvn.asp?v=21&n=4.

Ho DE, Imai K, King G, Stuart EA. 2007. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis 15:199–236.

Iacus S, King G, Porro G. 2012. Causal Inference without Balance Checking: Coarsened Exact Matching. Political Analysis 20:1–24.

Imbens GW, Wooldridge JM. 2009. Recent Developments in the Econometrics of Program Evaluation. Journal of Economic Literature 47:5–86.

Jones KW, Lewis DJ. 2015. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS ONE 10:e0141380.

Joppa LN, Pfaff A. 2009. High and far: biases in the location of protected areas. PLoS ONE 4:e8273.

Kerr NL. 1998. HARKing: Hypothesizing After the Results are Known. Personality and Social Psychology Review 2:196–217.

King G, Nielsen R. 2019. Why Propensity Scores Should Not Be Used for Matching. Political Analysis:1–20. Available from http://j.mp/2ovYGsW.

Korhonen-Kurki K, Sehring J, Brockhaus M, Di M, Sehring J, Brockhaus M, Di M. 2014. Enabling factors for establishing REDD+ in a context of weak governance weak governance. Climate Policy 14:1–20.

Lambin EF, Meyfroidt P. 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America 108:3465–3472.

Lechner M. 2000. A Note on the Common Support Problem in Applied Evaluation Studies. 2001–01, Univ. of St. Gallen Economics Discussion Paper.

Legendre P. 1993. Spatial Autocorrelation: Trouble or New Paradigm? Ecology 74:1659–1673.

Lemire ST, Nielsen SB, Dybdal L. 2012. Making contribution analysis work: A practical framework for handling influencing factors and alternative explanations. Evaluation 18:294–309.

Liscow ZD. 2013. Do property rights promote investment but cause deforestation? Quasi-experimental evidence from Nicaragua. Journal of Environmental Economics and Management 65:241–261.

Lunt M. 2014. Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching. American Journal of Epidemiology 179:226–235.

Meyfroidt P. 2016. Approaches and terminology for causal analysis in land systems science. Journal of Land Use Science 11:501–522.
Naidoo R et al. 2019. Evaluating the impacts of protected areas on human well-being across the developing world. Science Advances 5:eaav3006.

Nelson A, Chomitz KM. 2011. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6:e22722.

Nosek BA, Ebersole CR, Dehaven AC, Mellor DT. 2018. The preregistration revolution. Proceedings of the National Academy of Sciences of the United States of America 2017:2600–2606.

Oldekop J, Sims K, Karna B, Whittingham M, Agrawal A. 2019. Reductions in deforestation and poverty from decentralized forest management in Nepal. Nature Sustainability:in press.

Oldekop JA, Sims KRE, Karna B, Whittingham MJ, Agrawal A. 2018. An upside to globalization: International migration drives reforestation in Nepal. Global Environmental Change 52:66–74.

Pfaff A, Robalino J. 2012. Protecting forests, biodiversity, and the climate: predicting policy impact to improve policy choice. Oxford Review of Economic Policy 28:164–179.

Pfaff A, Robalino J. 2017. Spillovers from Conservation Programs. Annual Review of Resource Economics 9:299–315.

Post G, Geldmann J. 2018. Exceptional responders in conservation. Conservation Biology 32:576–583.

Pullin AS, Knight TM. 2001. Effectiveness in Conservation Practice: Pointers from Medicine and Public Health. Conservation Biology 15:50 –54. Available from http://dx.doi.org/10.1111/j.1523-1739.2001.99499.x.

Pynegar EL, Jones JPG, Gibbons JM, Asquith NM. 2018. The effectiveness of Payments for Ecosystem Services at delivering improvements in water quality: lessons for experiments at the landscape scale. PeerJ 6:e5753.

Qiu J et al. 2018. Evidence-based causal chains for linking health, development and conservation actions. BioScience 68:182–193.

Rasolofoson R a., Ferraro PJ, Jenkins CN, Jones JGP. 2015. Effectiveness of Community Forest Management at reducing deforestation in Madagascar. Biological Conservation 184:271–277.

Robalino J, Pfaff A, Villalobos L. 2017. Heterogeneous Local Spillovers from Protected Areas in Costa Rica. Journal of the Association of Environmental and Resource Economists 4:795–820.

Rosenbaum PR. 2007. Sensitivity Analysis for m-Estimates, Tests, and Confidence Intervals in Matched Observational Studies. Biometrics 63:456–464.

Rosenbaum PR, Rubin DB. 1983. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 70:41–55.

Rosenbaum PR, Silber JH. 2009. Amplification of Sensitivity Analysis in Matched Observational
Rubin A. 2007. Improving the teaching of evidence-based practice: Introduction to the Special Issue. Research on Social Work Practice 17:541–547.

Rubin D. 1980. Bias reduction using Mahalanobis metric matching. Biometrics 36:293–298.

Rubin DB. 2001. Using propensity scores to help design observational studies: Application to the tobacco litigation. Health Services & Outcomes Research Methodology 2:169–188.

Schleicher J. 2018. The environmental and social impacts of protected areas and conservation concessions in South America. Current Opinion in Environmental Sustainability 32:1–8.

Schleicher J, Peres CA, Amano T, Llactayo W, Leader-Williams N. 2017. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Scientific Reports 7:11318.

Sills EO et al. 2015. Estimating the Impacts of Local Policy Innovation: The Synthetic Control Method Applied to Tropical Deforestation. PLoS ONE 10:e0132590.

Stuart EA. 2010. Matching methods for causal inference: A review and a look forward. Statistical Science 25:1–21.

Stuart EA, Lee BK, Leacy FP. 2013. Prognostic score-based balance measures can be a useful diagnostic for propensity score methods in comparative effectiveness research. Journal of Clinical Epidemiology 66:S84.

Sutherland WJ, Pullin AS, Dolman PM, Knight TM. 2004. The need for evidence-based conservation. Trends in ecology & evolution 19:305–8.

Westhorp. 2014. Realist Impact Evaluation: an introduction. London, UK.

Wiik E, D'Annunzio R, Pynegar E, Crespo D, Asquith N, Jones JPG. 2019. Experimental evaluation of the impact of a payment for environmental services program on deforestation. Conservation Science and Practice.

Zuur A, Saveliev AA, Ieno EN, Smith GM, Walker N. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer Verlag, New York.
TABLES AND FIGURES:

Table 1. Commonly used non-experimental, quantitative impact evaluation approaches with the pros and cons of their use in environmental management or conservation.

Method	When can it be used?	Pros	Cons
Matching*	When baseline information on confounding factors (those affecting both selection to the treatment and outcomes) are available for both treatment and control units (e.g. Andam et al. 2008).	Relatively low data requirements and lends itself to integration with other approaches when used as a data pre-processing step.	Assumes balance in observable covariates reflects balance in unobserved covariates, i.e. that there are no unobserved confounders.
Before-After-Control-Impact (Difference-in-Difference)	When data before and after treatment implementation can be collected from replicated treatment and ‘control’ units (e.g. Pynegar et al. 2018).	Controls for time invariant variables and for variables that change over time but affect both treatment and control groups equally.	Assumes a parallel trend in outcome between treatment and controls (confounding factors in this case are those affecting treatment assignment and changes in outcome over time).
Regression discontinuity	When selection to the intervention follows a sharp assignment rule (e.g., participants above a certain threshold are selected into the treatment; Alix-Garcia et al. 2018).	Strong causal inference.	Outcomes can only be calculated for units close to the cut-off (i.e. data from only a small sub-group of units are used).
Instrumental Variables	When treatment assignment is correlated with the error term (endogeneity), a third variable (the instrument) that is correlated with treatment but uncorrelated with the error term can be used instead of the treatment (e.g. Liscow 2013).	Helps to overcome endogeneity.	Suitable instruments can be hard to find.
Synthetic Control	When the intervention has only occurred in a single unit of observation information from a potential pool of controls can be synthesised to generate a single artificial counterfactual (e.g. Sills et al. 2015).	Can be conducted when large numbers of treatment units are not available.	Credibility relies on a good pre-implementation fit for the outcome of interest between treated unit and synthetic control.

* Matching can be used to identify control units for comparison with treatment units as a method for impact evaluation, but is often used to improve the rigor of other approaches. For example, matching can be used to select ‘control’ units for difference-in-differences analysis.
Table 2. Example diagnostics for the checks (suggested in Figure 1) part of a matching analysis to assess the quality of the matching and robustness of the post-matching analysis.

Check	Example diagnostic	Explanation and purpose	Example visualizations
Check 1: Balance	Mean values and standardized mean differences before and after matching	Test whether differences among treatment and control populations are meaningful. Compare covariate means and deviations for treatment and control units (before and after matching) to assess whether a matching has improved balance (similarity between treatment and control units). After matching mean covariate values should be similar and the standardized mean difference should ideally be close to zero. Standardized mean values of <0.25 are often deemed acceptable, but thresholds of 0.1 are more effective at reducing bias (Stuart 2010; Stuart et al. 2013).	Love plots and propensity score distributions before and after matching (e.g. Figure 1, Oldekop et al. 2019)
Check 2: Spatial autocorrelation	Moran's I and spatial distribution of post-matching analysis residuals	Moran's I values of the post-matching analysis should not be significantly different from zero to demonstrate low levels of spatial autocorrelation. Plotting the spatial distribution of post-matching analysis residuals can help visualize whether there is a spatial pattern to the error term.	Correlograms, semi-variograms and bubble plots (Figure 1, Oldekop et al. 2019)
Check 3: Hidden Bias	Rosenbaum bounds	Assess sensitivity of post-matching estimate to presence of an unobserved confounder. Rosenbaum bounds help to determine how much an unobserved covariate would have to affect selection into the treatment to invalidate the post-matching result (Rosenbaum 2007).	Amplification Plots (Rosenbaum & Silber 2009)
Figure 1. Visual representation of the suggested workflow, including key steps of a matching analysis, potential checks (see Table 2) and visual diagnostics of the matching process.
Figure 2. Map of (A) Peru and (B) the Peruvian Amazon with the main land use designations in 2011 to 2013. Conserved areas include government protected areas (PAs), conservation concessions, ecotourism concessions, concessions of non-timber forest products and territorial reserves. In an analysis of the impacts of PAs, Indigenous Territories and conservation concessions on deforestation rates, the decision of what to consider as appropriate control areas from which to select control pixels is far from straightforward given the multiple, and in part overlapping, land use designations (Schleicher et al. 2017).
Figure Legends:

Figure 1. Visual representation of the suggested workflow, including key steps of a matching analysis, potential checks (see Table 2) and visual diagnostics of the matching process.

Figure 2. Map of (A) Peru and (B) the Peruvian Amazon with the main land use designations in 2011 to 2013. Conserved areas include government protected areas (PAs), conservation concessions, ecotourism concessions, concessions of non-timber forest products and territorial reserves. In an analysis of the impacts of PAs, Indigenous Territories and conservation concessions on deforestation rates, the decision of what to consider as appropriate control areas from which to select control pixels is far from straightforward given the multiple, and in part overlapping, land use designations (Schleicher et al. 2017).