On orthomorphism elements in ordered algebra

Bahri TURAN∗, Hüma GÜRKÖK

Department of Mathematics, Faculty of Science, Gazi University, 06500 Teknikokullar Ankara

Received: 08.11.2019 • Accepted/Published Online: 09.01.2020 • Final Version: 17.03.2020

Abstract: Let C be an ordered algebra with a unit e. The class of orthomorphism elements $\text{Orthe}(C)$ of C was introduced and studied by Alekhno in "The order continuity in ordered algebras". If $C = L(G)$, where G is a Dedekind complete Riesz space, this class coincides with the band $\text{Orth}(G)$ of all orthomorphism operators on G. In this study, the properties of orthomorphism elements similar to properties of orthomorphism operators are obtained. Firstly, it is shown that if C is an ordered algebra such that C_r, the set of all regular elements of C, is a Riesz space with the principal projection property and $\text{Orthe}(C)$ is topologically full with respect to I_e, then $B_e = \text{Orthe}(C)$ holds, where B_e is the band generated by e in C_r. Then, under the same hypotheses, it is obtained that $\text{Orthe}(C)$ is an f-algebra with a unit e.

Key words: Ordered algebra, orthomorphism elements, orthomorphism, f-algebra

1. Introduction

All vector spaces are considered over the reals only. An ordered vector space (Riesz space) C under an associative multiplication is said to be an ordered algebra (Riesz algebra) whenever the multiplication makes C an algebra, and in addition it satisfies the following property: $a,b \in C^+$ implies $ab \in C^+$. A Riesz algebra C is called an f-algebra if C has the additional property that $a \land b = 0$ implies $ac \land b = ca \land b = 0$ for each $c \in C^+$. Throughout the study, we will assume $C \neq \{0\}$ and C has a unit element $e > 0$. An element $a \in C$ is called a regular element if $a = b - c$ with b and c positive, the space of all regular elements of C will be denoted by C_r. Obviously, C_r is a real ordered algebra. Let C be an ordered vector space and an element $a \in C^+$, the order ideal I_a generated by a is the set $I_a = \{b \in C : -\lambda a \leq b \leq \lambda a \text{ for some } \lambda \in \mathbb{R}^+\}$. Under the algebraic operations and the ordering induced by C, I_a is an ordered vector subspace of C. Moreover, I_e is an ordered algebra [1].

An element $q \in C$ is said to be an order idempotent whenever $0 \leq q \leq e$ and $q^2 = q$. Under the partial ordering induced by C, the set of all order idempotents $\text{OI}(C)$ of C is a Boolean algebra and its lattice operations satisfy the identities $p \land q = pq$ and $p \lor q = p + q - pq$ for all $p, q \in \text{OI}(C)$. If $c \in C$ and the modulus $|c|$ of c exists, then $q|c| = |qc|$ and $|c|q = |cq|$ for all $q \in \text{OI}(C)$ [2].

Definition 1.1 [1] Let C be an ordered algebra, an element $a \in C$ is said to be an order idempotent preserving element whenever $(e - q)aq = 0$ for all $q \in \text{OI}(C)$. An element a is said to be an orthomorphism element of

∗Correspondence: bturan@gazi.edu.tr
2010 AMS Mathematics Subject Classification: 46B42, 47B60
an ordered algebra C whenever a is an order idempotent preserving element that is also regular.

The collection of all orthomorphism elements of an ordered algebra C will be denoted by $\text{Orthe}(C)$. An operator $\pi : G \to G$ on a Riesz space G is said to be band preserving whenever $\pi(B) \subseteq B$ holds for each band B of G. π is a band preserving operator if and only if $\pi(x) \perp y$ whenever $x \perp y$ in G. A band preserving and order bounded operator π is called orthomorphism of G and the set of all orthomorphisms of G is denoted by $\text{Orth}(G)$. If G has the principal projection property, then an operator $\pi : G \to G$ is band preserving if and only if $\pi p = p\pi$ (or $(I - p)p\pi = 0$) for every order projection p on G [3, Theorem 8.3]. If $C = L(G)$ is taken, where G is a Dedekind complete Riesz space, then the set of all order idempotents $OI(C)$ of C is the set of all order projections on G [3, Theorem 3.10] and the band B_e generated by e in C_r is equal to $\text{Orth}(G) = \text{Orthe}(C)$ [3, Theorem 8.11]. In general, the equality $B_e = \text{Orthe}(C)$ does not hold in the case of an arbitrary ordered algebra C. Therefore, the following question might come into mind. Under what condition $\text{Orthe}(C)$ could be identified to B_e? In this work, we try to provide an answer to this question. Moreover, we will show that, under the same hypothesis, $\text{Orthe}(C)$ has the similar properties of orthomorphisms.

We refer to [3, 5, 7, 9] for definitions and notations which are not explained here. All Riesz spaces in this paper are assumed to be Archimedean.

2. Ortomorphism elements

Proposition 2.1 Let C be an ordered algebra such that C_r is a Riesz space. Then, $\text{Orthe}(C)$ is a band in C_r so that $B_e \subseteq \text{Orthe}(C)$ where B_e is the band generated by e in C_r.

Proof Since $q|a| = |qa|$ and $|a|q = |aq|$ for all $q \in OI(C)$ and $a \in C_r$, it is easy to show that $\text{Orthe}(C)$ is an order ideal. To see that $\text{Orthe}(C)$ is a band in C_r, let $0 \leq (b_\alpha) \uparrow b$ in C_r with $(b_\alpha) \subseteq \text{Orthe}(C)$. Then, for all α we have

$$0 \leq (e - q)bq = (e - q)(b - b_\alpha)q + (e - q)b_\alpha q = (e - q)(b - b_\alpha)q \leq (b - b_\alpha).$$

Thus, $b - b_\alpha \downarrow 0$ implies $(e - q)bq = 0$ and $b \in \text{Orthe}(C)$. $B_e \subseteq \text{Orthe}(C)$ is obtained from the definition of B_e. \hfill \Box

Lemma 2.2 Let C be an ordered algebra such that C_r is a Riesz space with the principal projection property and $b \in C_r$. Then, $b \in \text{Orthe}(C)$ if and only if $ba = ab$ for all $a \in I_e$.

Proof Let $b \in C_r$. If $ba = ab$ for all $a \in I_e$ then $b \in \text{Orthe}(C)$ as $OI(C) \subseteq I_e$. Now, let $b \in \text{Orthe}(C)$. From Freudenthal’s Spectral Theorem [3, Theorem 6.8], there exists a sequence (u_n) of e-step function satisfying

$$0 \leq a - u_n \leq n^{-1}e$$

for each $a \in I_e$. As u_n e-step function, there exist $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{R}$ and $p_1, p_2, \ldots, p_k \in OI(C)$ such that $u_n = \sum_{i=1}^{k} \lambda_i p_i$. Thus, we have $bu_n = u_n b$ for each n. This yields

$$0 \leq |ab - ba| = |ab - u_n b + u_n b - ba| \leq |ab - u_n b| + |bu_n - ba| \leq n^{-1}b + n^{-1}b$$

for each n. Since C is Archimedean, we have $ab = ba$ for every $a \in I_e$. \hfill \Box
If \(C = L(G) \), where \(G \) is a Dedekind complete Riesz space, then \(\text{Orth}(G) = \text{Orth}(C) = B_I \) where \(B_I \) is the generated by the identity operator \(I \) in \(C_r \). In general, the equality \(B_c = \text{Orth}(C) \) does not hold in the case of an ordered algebra \(C \).

Example 2.3 Let \(G \) be the Riesz space of all continuous piecewise linear functions on \([0,1]\), then \(\text{Orth}(G) = \langle \lambda I : \lambda \in \mathbb{R} \rangle \) by the Problem 7 in [3, p. 124]. If we take \(C = L(G) \), then we have \(OI(C) = \{0, I\} \) as \(OI(C) \subseteq \text{Orth}(G) \) holds. As a result of these simple observations we obtain that \(\text{Orth}(C) = L_r(G) \neq B_I \).

Now, we will investigate when \(B_c = \text{Orth}(C) \) holds.

Definition 2.4 Let \(C \) be an ordered algebra such that \(C_r \) is a Riesz space and \(\text{Orth}(C) \) has separating order dual. Let \(b,c \in \text{Orth}(C) \) be arbitrary and \(0 \leq b \leq c \). \(\text{Orth}(C) \) is said to be topologically full with respect to \(I_e \) if there exists a net \(0 \leq a_\alpha \leq e \) with \(a_\alpha c \to b \) in \(\sigma(\text{Orth}(C), \text{Orth}(C)^\sim) \).

Example 2.5 Let \(G \) be a Dedekind complete Riesz space with separating order dual. If we take \(C = L(G) \), then \(\text{Orth}(C) = \text{Orth}(G) \) is topologically full with respect to \(I_e = Z(G) \) from the Theorem 4.3 in [6].

Let \(C \) be a Riesz algebra such that \(C_r \) is a Riesz space. It is easy to see that \((bc)q = q(bc)\) for each \(b,c \in \text{Orth}(C) \) and \(q \in OI(C) \). Thus, \(\text{Orth}(C) \) is a Riesz algebra. For \(b \in \text{Orth}(C) \), let us define \(L_b : \text{Orth}(C) \to \text{Orth}(C) : L_b(c) = bc \) and \(R_b : \text{Orth}(C) \to \text{Orth}(C) : R_b(c) = cb \) for each \(c \in \text{Orth}(C) \). \(L_b, R_b \) are regular operators and so that the adjoint operators \(L_b^\sim, R_b^\sim \) are regular operators on \(\text{Orth}(C)^\sim \). Let us consider positive linear maps

\[
S_h : \text{Orth}(C) \to I_e^\sim, \quad b \to S_{b,h} : S_{b,h}(a) = h(ab)
\]

\[
V_h : \text{Orth}(C) \to I_e^\sim, \quad b \to V_{b,h} : V_{b,h}(a) = h(ba)
\]

for each \(b \in \text{Orth}(C) \), \(a \in I_e \) and \(h \in \text{Orth}(C)^\sim_+ \). If \(\text{Orth}(C) \) is topologically full with respect to \(I_e \), then we can say more about the positivity of the maps \(S_h \) and \(V_h \). The proof of the following Lemma is the adaptation of the Lemma in [8, p.65].

Lemma 2.6 If \(C \) is an ordered algebra such that \(C_r \) is a Riesz space with the principal projection property and \(\text{Orth}(C) \) is topologically full with respect to \(I_e \), then \(S_h, V_h : \text{Orth}(C) \to I_e^\sim \) are lattice homomorphisms for each \(h \in \text{Orth}(C)^\sim_+ \).

Proof Let \(0 \leq h \in \text{Orth}(C)^\sim_+ \). To see that \(S_h \) is a lattice homomorphism, it is enough to show that \(S_{b,h} \wedge S_{c,h} = 0 \) for each \(b,c \in \text{Orth}(C) \) satisfying \(b \wedge c = 0 \). Let \(d = b + c \) and \(I_b, I_c, I_d \) be respectively the order ideals generated by \(b, c \), and \(d \). Then \(I_d \) is actually the order direct sum of \(I_b \) and \(I_c \) by the Theorem 17.6 [5]. We denote by \(p \) the order projection of \(I_d \) onto \(I_b \). Let \(R \) be the restriction to \(I_d \) of order bounded functionals on \(\text{Orth}(C) \). Then \(R \) is an order ideal in \(I_d^\sim \) by the Theorem 2.3 in [3]. The adjoint \(p^\sim : I_d^\sim \to I_d^\sim \) of \(p \) satisfies \(0 \leq p^\sim \leq I \) and as a consequence we obtain \(p^\sim \langle R \rangle \subseteq R \). As a result of these simple observations we obtain that the pair \(\langle I_d, R \rangle \) constitutes a Riesz pair and \(p : \langle I_d, \sigma(I_d, R) \rangle \to \langle I_d, \sigma(I_d, R) \rangle \) is continuous. Since \(0 \leq p(d) \leq d \) there exists \((a_\alpha) \) in \(I_e \) such that \(0 \leq a_\alpha \leq e \) with \(a_\alpha d \to p(d) = b \) in \(\sigma(\text{Orth}(C), \text{Orth}(C)^\sim) \). As \(L_{a_\alpha} \subseteq Z(I_d) \) for each \(\alpha) \) it is easy to see that \(a_\alpha d \to b \) in \(\sigma(I_d, R) \) and
\(a_{\alpha}p(d) = p(a_{\alpha}d)\). By the continuity of \(p\) now yields \(a_{\alpha}p(d) = a_{\alpha}b \rightarrow b\) in \(\sigma(I_d, R)\). Since \(a_{\alpha}d = a_{\alpha}b + a_{\alpha}c\) for each \(\alpha\), we have \(a_{\alpha}c \rightarrow 0\) in \(\sigma(I_d, R)\). As \((S_{b,h} \wedge S_{c,h})(a) \leq h((a - aa_{\alpha})b + (aa_{\alpha}c)\) for each \(\alpha\), we obtain
\[
0 \leq (S_{b,h} \wedge S_{c,h})(a) \leq \lim_{\alpha} h((a - aa_{\alpha})b + (aa_{\alpha}c))
\]
\[
= \lim_{\alpha} h(L_{a}(b - a_{\alpha}b + a_{\alpha}c))
\]
\[
= \lim_{\alpha} L_{a}^{\sim}(h)(b - a_{\alpha}b + a_{\alpha}c)
\]
\[
= 0
\]
as \(L_{a}^{\sim}(\text{Orthe}(C)^{\sim}) \subseteq \text{Orthe}(C)^{\sim}\), which implies that \(S_{h}\) is lattice homomorphism. On the other hand, by the Lemma 2.2 \(b\alpha_{\alpha} \rightarrow b\) and \(ca_{\alpha} \rightarrow 0\) in \(\sigma(I_d, R)\) holds. Similarly, taking \(V_{h}\) instead of \(S_{h}\) and \(R_{a}\) instead of \(L_{a}\), we get \(V_{h}\) is lattice homomorphism.

Corollary 2.7 Let the hypotheses in the Lemma 2.6 hold. If \(b, c \in \text{Orthe}(C)\) and \(b \wedge c = 0\) then \(|S_{b,h}| \wedge |S_{c,t}| = 0\) for each \(h, t \in \text{Orthe}(C)^{\sim}\).

Proof Let \(b, c \in \text{Orthe}(C)\) and \(b \wedge c = 0\). From the Lemma 2.6 we have
\[
0 \leq |S_{b,h}| \wedge |S_{c,t}| \leq |S_{b,h}| \wedge |S_{c,t}| \leq |S_{b,|h\wedge|t|} \wedge |S_{c,|h\wedge|t|} = S_{b \wedge c,|h\wedge|t|} = 0.
\]

Proposition 2.8 Let \(C\) be an ordered algebra such that \(C_{r}\) is a Riesz space with the principal projection property and \(\text{Orthe}(C)\) is topologically full with respect to \(I_{C}\). Then, \(B_{e} = \text{Orthe}(C)\) holds (where \(B_{e}\) is the band generated by \(e\) in \(\text{Orthe}(C)\)).

Proof Let \(b \in \text{Orthe}(C)\) with \(|b| \wedge e = 0\). Clearly,
\[
S_{b,h}(a) = h(ab) = h(L_{b}(a)) = L_{b}^{\sim}(h)(ae) = S_{e,L_{h}^{\sim}(h)}(a)
\]
holds for each \(h \in \text{Orthe}(C)^{\sim}\). Then, it follows that
\[
0 \leq |S_{b,h}| = |S_{b,h}| \wedge |S_{b,h} \wedge S_{e,L_{h}^{\sim}(h)} = 0
\]
and so \(S_{b,h} = 0\) for each \(h \in \text{Orthe}(C)^{\sim}\). Thus, we have \(b = 0\) which implies that \(B_{e} = \{e\}^{dd} = \text{Orthe}(C)\).

Corollary 2.9 Let the hypotheses be as in the Proposition 2.8. Then, the band \(B_{e}\) generated by \(e\) in \(C_{r}\) is equal to \(\text{Orthe}(C)\).

Proof It is clear that the band generated by \(e\) in \(\text{Orthe}(C)\) is equal to the band generated by \(e\) in \(C_{r}\) as \(\text{Orthe}(C)\) is a band in \(C_{r}\).

By the Example 2.5, we have known that if \(G\) is a Dedekind complete Riesz space with separating order dual and \(C = L(G)\), then \(\text{Orthe}(C)\) has separating order dual and \(\text{Orthe}(C) = \text{Orth}(G)\) is topologically full with respect to \(I_{C} = Z(G)\). By using this observation and the above result, we can obtain the following Corollary being previously proved as a theorem in a different manner.
Corollary 2.10 Let G be a Dedekind complete Riesz space and G has separating order dual. Then the band B_I generated by the identity operator in $L_r(G)$ is equal to $\text{Orth}(G)$.

Theorem 2.11 If C is an ordered algebra such that C_r is a Riesz space with the principal projection property and $\text{Orthe}(C)$ is topologically full with respect to I_e, then $\text{Orthe}(C)$ is an f-algebra. Moreover, it is a full subalgebra of C.

Proof Let $b,c,d \in \text{Orthe}(C)^+$ and $b \wedge c = 0$. For each $0 \leq h \in \text{Orthe}(C)^\sim$ and $a \in I_e$

$$0 \leq S_{db \wedge c,h}(a) = (S_{db,h} \wedge S_{c,h})(a) \leq S_{db,h}(a) \wedge S_{c,h}(a) = h(a(db)) \wedge S_{c,h}(a) = h(d(ab)) \wedge S_{c,h}(a) = h(L_d(ab)) \wedge S_{c,h}(a) = L_d(h)(ab) \wedge S_{c,h}(a) = S_{b,L_d^*(h)}(a) \wedge S_{c,h}(a) = 0$$

holds, which proves that $db \wedge c = 0$. Similarly, taking V instead of S and R_d instead of L_d, we have $bd \wedge c = 0$.

Let $b \in \text{Orthe}(C)$ be invertible in C. We will show that $b^{-1} \in \text{Orthe}(C)$. As $b \in \text{Orthe}(C)$ $bq = qb$ for each $q \in OI(C)$. It is easy to see that $b^{-1}q = qb^{-1}$ for each $q \in OI(C)$. Thus, $\text{Orthe}(C)$ is a full subalgebra of C.

Corollary 2.12 Let G be a Dedekind complete Riesz space and G has separating order dual. Then, $\text{Orth}(G)$ is an f-algebra. Moreover, it is a full subalgebra of $L_r(G)$.

As each unital f-algebra C with separating order dual is topologically full with respect to I_e [8], we can give the following corollary.

Corollary 2.13 Let C be an ordered algebra such that C_r is a Riesz space with the principal projection property and $\text{Orthe}(C)$ has separating order dual. Then, $\text{Orthe}(C)$ is an f-algebra if and only if $\text{Orthe}(C)$ is topologically full with respect to I_e.

As we said before, if G is a Dedekind complete Riesz space with separating order dual and $C = L(G)$ then $\text{Orthe}(C) = \text{Orth}(G)$ is topologically full with respect to $I_e = Z(G)$. However, even if C is a Dedekind complete ordered algebra, $\text{Orthe}(C)$ may not be topologically full with respect to I_e. We now give an example of a Dedekind complete ordered algebra which is not topologically full with respect to I_e.

Example 2.14 Let f be a multiplicative functional on l_∞ satisfying $f(e_0) = 0$ and C be the linear space $l_\infty \oplus \mathbb{R}$. C is a Dedekind complete ordered Banach algebra with unit $(e,0)$ under the multiplication

$$(u_1, \lambda_1) \ast (u_2, \lambda_2) = (u_1 u_2, \lambda_1 f(u_2) + \lambda_2 f(u_1) + \lambda_1 \lambda_2),$$

407
the norm
\[\|(u, \lambda)\| = \|u\| + |\lambda| \]
and the order induced by the cone
\[C^+ = \{(u, \lambda) : u \in l_\infty^+ \text{ and } \lambda \in \mathbb{R}\}. \]

Furthermore,
\[OI(C) = \{(p, 0) : p \in OI(l_{\infty})\} \text{ and } \]
\[Orthe(C) = \{(u, \lambda) : u \in Orthe(l_{\infty}) \text{ and } \lambda \in \mathbb{R}\} [1]. \]

Since \(C \) is Dedekind complete, \(C_r \) is a Riesz space with the principal projection property. As \(Orthe(C) \) is order closed, \(Orthe(C) \) is norm closed [9, Theorem 100.7]. This implies \(Orthe(C) \) Banach lattices, hence \(Orthe(C)^{\sim} = Orthe(C)' \) and so \(Orthe(C) \) has separating order dual. It is easy that, \((0, 1), (e, 0) \in Orthe(C)\) and \((0, 1) \perp (e, 0)\). On the other hand, we have
\[(0, 1) * (e, 0) = (0e, 1f(e) + 0f(0) + 01) = (0, 1) \neq 0 \]
so that \(Orthe(C) \) is not an \(f \)-algebra. By the Corollary 2.13, \(Orthe(C) \) is not topologically full with respect to \(I_e \).

Since each \(f \)-algebra is commutative, we can give the following corollary.

Corollary 2.15 Let \(C \) be an ordered algebra such that \(C_r \) is a Riesz space with the principal projection property and \(Orthe(C) \) is topologically full with respect to \(I_e \). Then, \(Orthe(C) \) is a commutative algebra.

References

[1] Alekhno EA. The order continuity in ordered algebras. Positivity 2017; 21 (2): 539-574. doi: 10.1007/s11117-016-0406-4
[2] Alekhno EA. The irreducibility in ordered Banach algebras. Positivity 2012; 16 (1): 143-176. doi: 10.1007/s11117-011-0117-9
[3] Aliprantis CD, Burkinshaw O. Positive Operators. London, United Kingdom: Academic Press, 1985. doi: 10.1007/978-1-4020-5008-4
[4] Alpay Ş, Turan B. On the commutant of the ideal centre. Note Di Matematica 1999; 18 (1): 63-69.
[5] Luxemburg WAJ, Zaanen AC. Riesz Space I. Amsterdam, Holland: North Holland Publishing Company, 1971.
[6] Luxemburg WAJ, Schep AR. Radon-Nikodym type theorem for positive operators and a dual. Indagationes Mathematicae 1978; 41: 145-154.
[7] Schaefer HH. Banach Lattices and Positive Operators. Berlin, Germany: Springer, 1991. doi: 10.1007/978-3-642-65970-6
[8] Turan B. On \(f \)-linearity and \(f \)-orthomorphisms. Positivity 2000; 4: 293-301.
[9] Zaanen AC. Riesz Spaces II. Amsterdam, Holland: North Holland Publishing Company, 1983.