On primes and practical numbers

Carl Pomerance · Andreas Weingartner

In memory of Ron Graham (1935–2020) and Richard Guy (1916–2020)

Received: 21 July 2020 / Accepted: 23 October 2020 / Published online: 15 February 2021
© Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
A number n is practical if every integer in $[1, n]$ can be expressed as a subset sum of the positive divisors of n. We consider the distribution of practical numbers that are also shifted primes, improving a theorem of Guo and Weingartner. In addition, essentially proving a conjecture of Margenstern, we show that all large odd numbers are the sum of a prime and a practical number. We also consider an analogue of the prime k-tuples conjecture for practical numbers, proving the “correct” upper bound, and for pairs, improving on a lower bound of Melfi.

Keywords Practical number · Shifted prime

Mathematics Subject Classification 11N25 (11N37)

1 Introduction
After Srinivasan [16], we say a positive integer n is practical if every integer $m \in [1, n]$ is a subset-sum of the positive divisors of n. After the proof of Erdős [2] in 1950 that the practical numbers have asymptotic density 0, their distribution has been of some interest, with work of Margenstern, Melfi, Tenenbaum, Saias, and the second-named author of this paper. In particular, we now know, [23,24], that there is a constant $c = 1.33607 \ldots$ such that the number of practical numbers in $[1, x]$ is $\sim cx/\log x$ as $x \to \infty$. For other problems and results about practical numbers see [5, Sect. B2].
The problem of how frequently a shifted prime $p - h$ can be practical was considered recently in [4]. Since practical numbers larger than 1 are all even, one assumes that the shift h is a fixed odd integer. Under this assumption, it would make sense that the concept of being practical and being a shifted prime are “independent events” and so it is natural to conjecture that the number of primes $p \leq x$ with $p - h$ practical is of magnitude $x / \log^2 x$. Towards this conjecture it was shown in [4] that the number of shifted primes up to x that are practical is, for large x depending on h, between

$$x \left(\log x \right)^{5.7683 \ldots} \quad \text{and} \quad x \left(\log x \right)^{1.0860 \ldots}.$$

Here we make further progress with this problem, proving the conjecture for the upper bound of the count and reducing the lower bound exponent $5.7683 \ldots$ to $3.1647 \ldots$.

As in [4] we consider a somewhat more general problem. Let θ be an arithmetic function with $\theta(n) \geq 2$ for all n and let B_θ be the set of positive integers containing $n = 1$ and all those $n \geq 2$ with canonical prime factorization $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, $p_1 < \cdots < p_k, \alpha_1, \ldots, \alpha_k \geq 1$, which satisfy

$$p_j \leq \theta \left(p_1^{\alpha_1} \cdots p_{j-1}^{\alpha_{j-1}} \right) \quad (1 \leq j \leq k). \quad (1)$$

(It is not necessary that p_i be the i-th prime number.) Stewart [17] and Sierpiński [15] showed that if $\theta(n) = \sigma(n) + 1$, where $\sigma(n)$ is the sum of the positive divisors of n, then the set B_θ is precisely the set of practical numbers. Tenenbaum [20] found that if $\theta(n) = yn$, where $y \geq 2$ is a constant, then B_θ is the set of integers with y-dense divisors; i.e., the ratios of consecutive divisors are at most y.

Throughout this paper, all constants implied by the big O and \ll notation may depend on the choice of θ. For several of our results we assume that there are constants A, C such that

$$\theta(mn) \leq Cm^A \theta(n), \quad m, n \geq 1. \quad (2)$$

This holds for $\theta(n) = \sigma(n) + 1$ with $A = 2, C = 1$, since we trivially have $\sigma(mn) \leq \sigma(m) \sigma(n)$ and $\sigma(m) \leq m^2$.

We write $\log_2 x = \log \log x$ for $x > e^e$ and $\log_2 x = 1$ for $0 < x \leq e^e$, and write $\log_3 x = \log_2 \log x$ for $x > 1$. Let

$$l(x) = \exp \left(\frac{\log x}{\log_2 x \log_3 x} \right)$$

and

$$S_h(x) := |\{p \leq x : p \text{ prime, } p - h \in B_\theta\}|.$$
Theorem 1 Fix a nonzero integer h. Assume (2) and $n \leq \theta(n) \ll n \ell(n)$ for $n \geq 1$. For x sufficiently large depending on the choice of θ, h, we have

$$\frac{x}{(\log x)^{3.1648}} < S_h(x) \ll_h \frac{x}{(\log x)^2},$$

where $h \in \mathbb{Z}$ and h is not divisible by $\prod_{p \leq \theta(1)} p$ in the lower bound.

The exponent in the lower bound can be taken as any number larger than $(e + 1) \log(e + 1) - e + 1$. In the case of practical numbers, where $\theta(n) = \sigma(n) + 1$ and $\prod_{p \leq \theta(1)} p = 2$, Theorem 1 implies the following.

Corollary 1 For any fixed odd $h \in \mathbb{Z}$, the number of primes $p \leq x$ such that $p - h$ is practical satisfies (3).

It seems likely that the upper bound in (3) is best possible, apart from optimizing the implied constant as a function of the shift parameter h. Our proof shows that this constant is $\ll h/\varphi(h)$.

Margenstern [8, Conjecture 7] conjectured that every natural number other than 1 is the sum of two numbers that are either practical or prime. The case of even numbers was settled by Melfi [10, Theorem 1], who showed that every even number is the sum of two practical numbers. Somewhat weaker versions of the problem for odd numbers were recently stated by Sun [19]. (Also see [18] for several other related problems.) We show that, in the case of odd numbers, there are at most a finite number of exceptions to Margenstern’s conjecture. Tomás Oliveira e Silva has told us that Margenstern’s conjecture has no counterexamples to 10^9 and we have verified this via a direct search. We have used this result to bootstrap the calculation to a considerably higher bound, see Sect. 5. It may be difficult by our methods to get a numerical bound x_0 for which every odd number $> x_0$ is the sum of a prime and a practical number, but such a calculation is tractable using our proof if one is prepared to use the extended Riemann Hypothesis in place of the Bombieri–Vinogradov theorem. However, it may be that even this hypothetical x_0 is too large for a feasible calculation to close the gap.

Theorem 2 Assume $\theta(n) \geq n$. Every sufficiently large integer not divisible by $\prod_{p \leq \theta(1)} p$ is the sum of a prime and a member of B_θ.

Corollary 2 Every sufficiently large odd integer is the sum of a prime and a practical number.

Margenstern [8, Theorem 6] showed that for every fixed even number h, there are infinitely many practical numbers n such that $n + h$ is also practical. He conjectured [8, Conjecture 2] that the number of practical pairs $\{n, n + 2\}$ up to x is asymptotic to $cx/\log^2 x$ for some positive constant c. Let

$$T_h(x) := |\{n \leq x : n \in B_\theta, n + h \in B_\theta\}|.$$
Theorem 3 Fix a nonzero integer h. Assume (2) and $\theta(n) \ll n \log n$ for $n \geq 1$.

(i) We have

$$T_h(x) \ll_h \frac{x}{\log^2 x}. \tag{4}$$

(ii) Assume further that $\theta(n) \geq n$ for all n, and that $n \in B_0$ and $m \leq 3n/|h|$ imply $mn \in B_0$. Moreover, if $\theta(1) < 3$, assume that

$$\begin{cases} h \in 2\mathbb{Z} & \text{if } \theta(2) \geq 3, \\ h \in 4\mathbb{Z} & \text{if } \theta(2) < 3. \end{cases} \tag{5}$$

Then for sufficiently large x, depending on the choice of h,

$$T_h(x) > \frac{x}{(\log x)^{9.5367}}. \tag{6}$$

When $h \in 2\mathbb{Z}$ and $\theta(n) = \sigma(n) + 1$, all conditions of Theorem 3 are satisfied, since for practical n we have $\sigma(n) + 1 \geq 2n$, by [8, Lemma 2].

Corollary 3 For every nonzero even integer h, the number of practical n up to x, such that $n + h$ is also practical, satisfies (4) and (6).

Corollary 3 improves on the lower bound by Melfi [11, Theorem 1.1] for twin practical numbers, $T_2(x) \gg x/\exp(k\sqrt{\log x})$ for $k > 2 + \log(3/2)$.

The upper bound in Theorem 3 generalizes as follows to the distribution of practical k-tuples.

Theorem 4 Fix integers $0 \leq h_1 < h_2 < \cdots < h_k$. Assume (2) and $\theta(n) \ll n \log n$ for $n \geq 1$. We have

$$\left| \{n \leq x : \{n + h_1, \ldots, n + h_k\} \subset B_0\} \right| \ll_{h_1,\ldots,h_k} \frac{x}{\log^k x}.$$

When $k \geq 3$ getting a lower bound of the same quality for these k-tuples seems difficult. In some cases with the practical numbers we know there are no large examples, such as when the h_i do not all have the same parity, or for the example $0, 2, 4, 6$ when at least one of $n + h_i$ must be $2 \pmod{4}$ and not divisible by 3, cf. [8]. However, when the k-tuple is admissible, i.e., not ruled out by congruence conditions, it would seem likely that the “independent events” heuristic would again apply and that the upper bound in Theorem 4 is correct up to a constant factor. In our proof of the lower bound in Theorem 3 we use the Bombieri–Vinogradov theorem. If instead the Elliott–Halberstam conjecture is assumed, it may be possible to get a reasonable lower bound in Theorem 4 when the k-tuple is admissible in the sense above. Finally, we remark that in certain special cases, such as when the h_i are $0, 2, 4$, we at least know that there are infinitely many practical examples, see Melfi [10].
2 The upper bound of Theorem 1

Lemma 1 There exists a constant $K > 0$ such that for all $a, b \in \mathbb{Z} \setminus \{0\}$ and all $x > 1$ we have

$$|\{m \leq x : m \text{ and } am + b \text{ are both prime}\}| \leq K \frac{|a|b|}{\varphi(|a|b|)} \cdot \frac{x}{\log^2 x}.$$

This result follows immediately from [12, Lemma 5].

Let $P^+(n)$ denote the largest prime factor of $n > 1$ and $P^+(1) = 1$. Define

$$B(x, y, z) = |\{n \leq x : n \in B_z^\theta, P^+(n) \leq y\}|.$$

Proposition 1 Assume $\theta(n) \ll n \log n$. For $x \geq 2, y \geq 2$ and $z \geq 1$,

$$B(x, y, z) \ll \frac{x \log(2z)}{\log x} e^{-u/3},$$

where $u = \log x / \log y$.

Before proving this we establish some consequences.

Corollary 4 Let $\alpha \in \mathbb{R}$. Assume (2) and $\theta(n) \ll n \log n$ for $n \geq 1$. For $x \geq 1, y \geq 2, z \geq 1$,

$$\sum_{n \leq x, \ n \in B_z^\theta, \ P^+(n) \leq y} \left(\frac{\sigma(n)}{n} \right)^\alpha \ll_\alpha \frac{x \log(2z)}{\log(2x)} \exp \left(-\frac{\log x}{3 \log y} \right).$$

Proof When $\alpha \leq 0$, the result follows from Proposition 1. We will show the result for $\alpha \in \mathbb{N}$ by induction. Note that because of (2) we have that $kd \in B_\theta$ implies $k \in B_{\theta_d}$, where $\theta_d(n) = Cd^A \theta(n)$. By Proposition 1 with z replaced by zCd^A,

$$\sum_{n \leq x, \ n \in B_z^\theta, \ P^+(n) \leq y} \left(\frac{\sigma(n)}{n} \right)^\alpha = \sum_{n \leq x, \ n \in B_z^\theta, \ P^+(n) \leq y} \left(\frac{\sigma(n)}{n} \right)^{\alpha-1} \sum_{d \mid n} 1 \leq \sum_{d \leq x} \frac{\sigma(d)^{\alpha-1}}{d^\alpha} \sum_{k \leq x/d, \ k \in B_{\theta_d}, \ P^+(k) \leq y} \left(\frac{\sigma(k)}{k} \right)^{\alpha-1} \ll_\alpha \sum_{d \leq x} \frac{\sigma(d)^{\alpha-1}}{d^\alpha} \frac{x \log(2dz)}{d \log(2x/d)} \exp \left(-\frac{\log(x/d)}{3 \log y} \right).$$
$$\ll x \exp\left(-\frac{\log x}{3 \log y}\right) \sum_{d \leq x} \exp\left(\frac{\log d}{3 \log y}\right) \frac{(\log_2 d)^{\alpha - 1} \log(2dz)}{d^2 \log(2x/d)}$$

$$\ll \alpha \frac{x \log(2z)}{\log(2x)} \exp\left(-\frac{\log x}{3 \log y}\right).$$

since \(\exp((\log d)/(3 \log y)) \leq d^{1/2}\). \hfill \Box

With \(y = x, z = 1\) and \(\alpha = 1\) in Corollary 4, we get

Corollary 5 Under the assumptions of Corollary 4 we have, for \(x > 1\),

$$\sum_{\substack{n \leq x \ni \sigma(n)/n \ll x \log x.}} \sigma(n)/n \ll \frac{x}{\log x}.$$

Remark 1 Corollary 5 allows us to replace the relative error term \(O(\log_2 x/\log x)\) in [23, Theorem 1.1], the asymptotic for the count of practical numbers up to \(x\), by \(O(1/\log x)\). Indeed, in the proof of [23, Theorem 1.1], the estimate \(\sigma(n)/n \ll \log_2 n\) leads to the extra factor of \(\log_2 x\). Using instead Corollary 5 in the proofs of Lemmas 5.3 and 5.6 of [23], the factor \(\log_2 x\) can be avoided.

Proof of the upper bound in Theorem 1 Assume \(x \geq 2|h|\). We consider those \(n \in \mathcal{B}_\theta\) with \(n + h\) prime and \(n + h \leq x\). We may assume that \(n > x/\log^2 x\). Write \(n = mq\), where \(q = P^+(n)\). We have \(m \in \mathcal{B}_\theta, P^+(m) \leq q\) and \(q \leq \theta(m) \leq ml(m)\). So, assuming \(x\) is large, we have \(m > x^{1/3}\). By Lemma 1,

$$S_h(x) \leq \sum_{m \in \mathcal{B}_\theta} \left|\{q \text{ prime} : mq + h \text{ prime}, q \leq (x - h)/m\}\right|$$

$$\ll \sum_{m \in \mathcal{B}_\theta, \ m > x^{1/3}} \frac{m|h|}{\varphi(m|h|)} \frac{(x - h)/m}{\log^2(2(x - h)/m)}$$

$$\leq \frac{2|h|x}{\varphi(|h|)} \sum_{m \in \mathcal{B}_\theta, \ m > x^{1/3}} \frac{1}{\varphi(m) \log^2 P^+(m)}.$$

We will show that the last sum is \(\ll 1/\log^2 x\). With \(p = P^+(m)\) and \(m = kp\), we have \(k \in \mathcal{B}_\theta\) and \(k > x^{1/7}\). The last sum is

$$\ll \sum_{p \geq 2} \frac{1}{p \log^2 p} \sum_{k \in \mathcal{B}_\theta, \ k > x^{1/7}, \ P^+(k) \leq p} \frac{k}{\varphi(k)} \cdot \frac{1}{k}.$$

Since \(k/\varphi(k) \ll \sigma(k)/k\), Corollary 4 (with \(\alpha = z = 1\)) and partial summation applied to the inner sum shows that the last expression is

$$\ll \sum_{p \geq 2} \frac{1}{p \log^2 p} \cdot \frac{\log p}{\log x} \exp\left(-\frac{\log x}{21 \log p}\right) \ll \frac{1}{\log^2 x}.$$

@Springer
by the prime number theorem. \hfill \square

Proof of Proposition 1 We follow the proof of Saias [13, Proposition 1], who established this result in the case when $\theta(n) = yn$ with $y \geq 2$ (integers with y-dense divisors) and in the case when $\theta(n) = \sigma(n) + 1$ (practical numbers) and $z = 1$. Let $f(n)$ be an increasing function with $\theta(n) \leq nf(n)$ for all $n \geq 1$ and $f(n) \ll l(n)$. Suppose $n \in B_{z\theta}$, where $n = p_1p_2 \ldots p_k$ with $p_1 \leq p_2 \leq \cdots \leq p_k$. Since f is increasing, $p_j \leq zp_1 \cdots p_{j-1}f(p_1 \cdots p_{j-1})$, so $p_j^2 \leq znf(n) \leq zxf(x)$ for $n \leq x$.

By sorting the integers counted in $B(x, y, z)$ according to their largest prime factor, we get

$$B(x, y, z) \leq 1 + \sum_{p \leq \min(y, \sqrt{xf(x)})} B(x/p, p, z),$$

the analogue of [13, Lemma 8].

Let $\Psi(x, y)$ denote the number of integers $n \leq x$ with $P^+(n) \leq y$. We write $u = \log x / \log y$ and $\tilde{v} = \log x / \log (2x)$. Let $\tilde{\rho}(u) = \rho(\max(0, u))$, where $\rho(u)$ is Dickman’s function. Let $\tilde{D}(x, y, z)$ be the function defined in [13, p. 169]. It satisfies

$$\tilde{D}(x, y, 2z) \approx \frac{x}{y} \tilde{\rho} \left(u \left(1 - 1/\sqrt{\log y} \right) - 1 \right) \quad (0 < u < 3(\log x)^{1/3})$$

and

$$\tilde{D}(x, y, 2z) = \Psi(x, y) \quad (u \geq 3(\log x)^{1/3}),$$

Lemma 9 of [13] shows that

$$\tilde{D}(x, y, 2z) \geq 1 + \sum_{p \leq \min(y, \sqrt{xf(x)})} \tilde{D}(x/p, p, 2z),$$

for $z \geq 1$, $y \geq 2$, $\tilde{v} \geq v_0$ and $0 < u \leq 3(\log x)^{1/3}$.

We claim that

$$B(x, y, z) \leq c \tilde{D}(x, y, 2z), \quad (7)$$

for some suitable constant c. If $2 \leq x \leq x_0$, we have $\tilde{D}(x, y, 2z) \approx 1$, so we may assume $x \geq x_0$ and hence $\sqrt{f(x)} \leq l(x)$. If $0 < \tilde{v} \leq u < 3(\log x)^{1/3}$, then $2z \geq y$ and $B(x, y, z) = \Psi(x, y) \ll \tilde{D}(x, y, 2z)$, where the last estimate is derived in the penultimate display on page 182 of [13]. If $0 < u \leq \tilde{v} \leq v_0$, then $\tilde{D}(x, y, 2z) \approx x$ so (7) holds. If $u \geq 3(\log x)^{1/3}$, then $\tilde{D}(x, y, 2z) = \Psi(x, y)$ and (7) holds. Assume that c is such that (7) holds in the domain covered so far. In the remainder we may assume that $u \leq 3(\log x)^{1/3}$ and $\tilde{v} \geq v_0$. We show by induction on k that (7) holds.
for $y \geq 2, z \geq 1, 2 \leq x \leq 2^k$. We have

$$B(x, y, z) \leq 1 + \sum_{p \leq \min(y, \sqrt{2z} f(x))} B(x/p, p, z)$$

$$\leq 1 + c \sum_{p \leq \min(y, \sqrt{2z} f(x))} \tilde{D}(x/p, p, 2z)$$

$$\leq c \left(1 + \sum_{p \leq \min(y, \sqrt{2z} f(x))} \tilde{D}(x/p, p, 2z) \right)$$

$$\leq c \tilde{D}(x, y, 2z).$$

It remains to show that

$$\tilde{D}(x, y, 2z) \ll x \log(2z) e^{-u/3}.$$

We may assume $x \geq x_0$. If $u \leq 3 \log x)^{1/3}$, then $y \geq y_0$ and the result follows from $\rho(u) \ll e^{-u}$. If $u > 3 \log x)^{1/3}$, then

$$\tilde{D}(x, y, 2z) = \Psi(x, y) \ll xe^{-u/2} \ll \frac{x}{\log x} e^{-u/3} \ll \frac{x \log(2z)}{\log x} e^{-u/3},$$

where the upper bound for $\Psi(x, y)$ is [21, Theorem III.5.1].

\[\square \]

3 Some Lemmas

The following observation follows immediately from the definition of the set B_θ in (1).

Lemma 2 Let $\theta(n) \geq n$ for all $n \in \mathbb{N}$. If $n \in B_\theta$ and $P^+(k) \leq n$, then $nk \in B_\theta$.

If $\theta(n) = yn$, we write D_y for B_θ. For an integer $n > 1$, let $P^-(n)$ denote the least prime dividing n, and let $P^-(1) = +\infty$.

Lemma 3 There is a number y_0 such that if $x \geq z^4 \geq 1$ and $y \geq \max\{y_0, z + z^{0.535}\}$, we have

$$\left|\{n \leq x : n \in D_y, P^-(n) > z\}\right| \asymp \frac{x \log(y/z)}{\log(xy) \log(2z)}.$$

This conclusion continues to hold if $z + 1 \leq y \leq y_0$ and (z, y) contains at least one prime number.

Proof When $x \geq y \geq y_0$ and $z \geq 3/2$, then $\log(xy) \asymp \log x$ and the result follows from [14, Theorem 1] and [22, Remark 2]. When $y > x$, the result follows from $\left|\{n \leq x : P^-(n) > z\}\right| \asymp x/\log(2z)$. If $1 \leq z \leq 3/2$, the result follows from [13,
Thm. 1. If \(y \leq y_0 \), the result follows from iterating [14, Lemma 8] a finite number of times. □

Lemma 4 For \(d \in \mathbb{N} \), \(x \geq 1 \), \(z \geq 1 \) and \(y \geq 2z \), we have

\[
|\{ n \leq x : n \in D_y, \ P^-(n) > z, \ d \mid n \}| \ll 1_{d \in D_y} + \frac{x \log(dy)}{d \log(xy) \log(2z)}.
\]

Proof We first assume that \(x/d \geq z^4 \). If \(d = 1 \) the result follows from Lemma 3, so we assume \(d > 1 \). We have

\[
|\{dw \leq x : dw \in D_y, \ P^-(w) > z\}| \leq \frac{x \log(dy)}{d \log(xy) \log(2z)}.
\]

by Lemma 3.

If \(x/d \leq z^4 \), then \(\log(xy) \leq \log(ydz^4) \leq 5 \log(yd) \), so the result follows from \(|\{2 \leq w \leq x/d : P^-(w) > z\}| \ll x/(d \log(2z)) \). □

Lemma 5 Assume \(\theta(n) \geq n \) for all \(n \in \mathbb{N} \). For all \(h \in \mathbb{N} \) that are not divisible by \(\prod_{p \leq \theta(1)} p \), we have

\[
|\{x/p_0 < n \leq x : n \in B_{\theta}, \ \gcd(n, h) = 1\}| \gg \frac{x}{\log x \log(2h) \log_2 h},
\]

for \(x \geq K \log^5(2h) \), where \(p_0 \leq \theta(1) \) is the smallest prime not dividing \(h \), and \(K \) is some positive constant depending only on \(\theta \). Moreover, there exists a constant \(\eta > 0 \) such that if \(L \geq 1 \) satisfies

\[
\sum_{p \mid h, \ p > L} \frac{\log p}{p} < \eta
\]

then, for \(x \geq KL^5 \),

\[
|\{x/p_0 < n \leq x : n \in B_{\theta}, \ \gcd(n, h) = 1\}| \gg \frac{x}{L \log x \log(2L)}.
\]

Proof Let \(p_0 \leq \theta(1) \) be the smallest prime with \(p_0 \mid h \). Let \(k \in \mathbb{N} \), \(L_k = p_0^k/2 \), and assume \(x \geq 2L_k^5 \). Since \(\theta(n) \geq n \),

\[
|\{x/p_0 < n = p_0^k w \leq x : n \in B_{\theta}, \ P^-(w) > L_k\}| \geq |\{x/p_0^{k+1} < w \leq x/p_0^k : w \in D_{p_0^k}, \ P^-(w) > L_k\}|.
\]

We would like to use Lemma 3 to obtain a lower bound for this count, but the fact that \(w \) is not free to roam over the entire interval \([1, x/p_0^k]\) is problematic. We note though
that Lemma 3 implies there is a set \(\mathcal{K} \subset \mathbb{N} \) with bounded gaps such that if \(x \geq 2L_k^5 \) and \(k \in \mathcal{K} \), we have

\[
|\{x/p_0^{k+1} < w \leq x/p_0^k : w \in \mathcal{D}_{p_0^k}, P^-(w) > L_k\}| \gg \frac{x \log (p_0^k/L_k)}{p_0^k \log x \log L_k} \gg \frac{x}{L_k \log x \log L_k}.
\]

We have

\[
|\{w \leq x/p_0^k : w \in \mathcal{D}_{p_0^k}, P^-(w) > L_k, \gcd(h, w) > 1\}|
\leq \sum_{p|h \atop \mu(p) > 1} \sum_{p|w \atop \mu(p) > 1} \frac{x \log p}{L_k \log x \log L_k}.
\]

by Lemma 4, since \(\log (p_0^k) \ll \log p \) for \(p > L_k \). The sum of 1 is clearly \(\leq L_k \leq (x/2)^{1/5} \). The second statement of the lemma now follows with the smallest \(k \in \mathcal{K} \) such that \(L_k \geq L \).

Since \(h \) has at most \(\log h/\log L_k \) prime factors > \(L_k \), the last sum above is

\[
\ll \frac{\log h}{\log L_k} \cdot \frac{x}{L_k \log L_k \log x} \cdot \frac{L_k}{L_k} = \frac{x \log h}{L_k^2 \log x}.
\]

We need this to be \(< x/(CL_k \log x \log L_k) \) for some sufficiently large constant \(C > 0 \), that is, \(L_k \geq C \log(2h) \). The first statement of the lemma now follows with the smallest such \(k \in \mathcal{K} \).

\[\square\]

4 The lower bound of Theorem 1

Let \(h \) be a fixed integer that is not a multiple of \(\prod_{p \leq \theta(1)} p \). Let \(\delta = 1/\log_2 x \) and define

\[Q = \{q \in (x^{1/2-\delta}, x^{1/2}/\log^{10} x) : \gcd(q, h) = 1, \quad q \in \mathcal{B}_{\theta}\}. \]

Let \(N_h(x) \) denote the set of pairs \((q, m) \) with \(q \in Q, qm + h \leq x \), and \(qm + h \) prime, and let \(N_h(x) = |N_h(x)| \). Thus,

\[N_h(x) = \sum_{q \in Q} \pi(x; q, h). \]
Now, by the Bombieri–Vinogradov theorem, see [21, p. 403], we have
\[
\sum_{q \in \mathbb{Q}} \left| \pi(x; q, h) - \frac{\pi(x)}{\varphi(q)} \right| \ll \frac{x}{\log^6 x}.
\]

Thus,
\[
N_h(x) = \sum_{q \in \mathbb{Q}} \pi(x; q, h) = \sum_{q \in \mathbb{Q}} \frac{\pi(x)}{\varphi(q)} + O \left(\frac{x}{\log^6 x} \right).
\]

Further, using Lemma 5, we have
\[
\sum_{q \in \mathbb{Q}} \frac{1}{\varphi(q)} \geq \sum_{q \in \mathbb{Q}} \frac{1}{q} \gg_h \delta.
\]

We conclude that
\[
N_h(x) \gg_h \delta x / \log x. \tag{8}
\]

Let \(N_{h,1}(x) \) denote the set of those pairs \((q, m)\) in \(N_h(x) \) with \(x^\delta < P^+(m) < x^{1/2-\delta} \).

Lemma 6 We have \(|N_{h,1}(x)| = |N_h(x)| + O(\delta^2 x / \log x)\).

Proof Let \(q \in \mathbb{Q} \). The number of integers \(m \leq (x-h)/q \) with \(P^+(m) \leq x^\delta \) is \(\ll (x-h)/(q \log x) \), see [21, Lem. III.5.19], and so such numbers \(m \) are negligible. For \(m = rk \), where \(r = P^+(m) \geq x^{1/2-\delta} \), we have \(k \leq x^{2\delta} \). Thus, the number of such pairs \((q, rk)\) is at most
\[
\sum_{q \in \mathbb{Q}} \sum_{k \leq x^{2\delta}} \sum_{\text{prime } r} \frac{1}{q \varphi(k) \sigma(q)/q} \leq \sum_{q \in \mathbb{Q}} \frac{1}{q \varphi(q)} \ll_h \delta x / \varphi(q) \log x.
\]

The inner sum, by Lemma 1, is \(\ll_h x/(\varphi(q) \varphi(k) \log^2 x) \). Summing on \(k \) gives us \(\ll_h \delta x / (\varphi(q) \log x) \), and then summing on \(q \) gives us \(\ll_h \delta^2 x / \log x \), using \(q/\varphi(q) \ll \sigma(q)/q \), Corollary 5, and partial summation. This concludes the proof. \(\square \)

Corollary 6 For a pair \((q, m)\) in \(N_{h,1}(x) \) we have \(qm \in B_0 \).

Proof Since \(P^+(m) < x^{1/2-\delta} < q \), it follows from Lemma 2 that \(qm \in B_0 \). \(\square \)

Let \(v_2(n) \) denote the number of factors 2 in the prime factorization of \(n \) and let \(\Omega(n) \) denote the total number of prime factors of \(n \), counted with multiplicity. Let \(\varepsilon > 0 \) be arbitrarily small but fixed. Let \(N_{h,2}(x) \) denote the set of pairs \((q, m)\) in \(N_{h,1}(x) \) with
\[
\Omega(m) \leq I := \lfloor (1 + \varepsilon) \log_2 x \rfloor \text{ and } v_2(m) \leq 4 \log_3 x.
\]
Lemma 7 We have

\[|N_{h,2}(x)| = |N_h(x)| + O_h(\delta^2 x / \log x). \]

Proof Assume \((q, m) \in N_{h,1}(x)\). Let \(r = P^+(m) \), so that \(r > x^\delta \), and write \(m = rk \).

If \((q, m) \notin N_{h,2}(x)\) then either \(\Omega(k) > I - 1 \) or \(v_2(k) > 4 \log_3 x \). For a given number \(k \), the number of primes \(r \leq (x - h)/qk \) with \(qrk + h \) prime is, by Lemma 1, \(\ll_h x / (\varphi(q) \varphi(k) \log^2(x/qk)) \). Summing this expression over \(k \) with \(v_2(k) > 4 \log_3 x \) and \(q \in \mathbb{Q} \), it is \(\ll_h \delta^2 x / \log x \), since \(2^{-4 \log_3 x} < \delta^2 \). We now wish to consider the case when \(\Omega(k) > I - 1 \). Following a standard theme (see Exercises 04 and 05 in [6]) we have uniformly for each real number \(z \) with \(1 < z < 2 \) that

\[
\sum_{n \leq x} \frac{z^{\Omega(n)}}{\varphi(n)} \ll \frac{1}{2 - z} (\log x)^z. \tag{9}
\]

Applying this with \(z = 1 + \varepsilon \), we have

\[
\sum_{k \leq x^{1/2}} \frac{1}{\varphi(k)} \leq z^{I+1} \sum_{k \leq x^{1/2}} \frac{z^{\Omega(k)}}{\varphi(k)} \ll (\log x)^{1+\varepsilon} - (1+\varepsilon) \log(1+\varepsilon).
\]

This last expression is of the form \((\log x)^{1-\eta}\), where \(\eta > 0 \) depends on the choice of \(\varepsilon \). Thus, the number of pairs \((q, m)\) in this case is \(\ll_h \delta x / (\log x)^{1-\eta} \), which is negligible.

Let \(\Omega_3(n) = \Omega(n/v_2(n)) \) denote the number of odd prime factors of \(n \) counted with multiplicity, and let \(N_{h,3} \) denote the number of pairs \((q, m) \in N_{h,2} \) with \(\Omega_3(q) \leq J := \lfloor (e + \varepsilon) \log_2 x \rfloor \).

Lemma 8 We have \(|N_{h,3}(x)| = |N_h(x)| + O_h(\delta^2 x / \log x) \).

Proof By the same method that gives (9), we have

\[
\sum_{n \leq x} \frac{z^{\Omega_3(n)}}{\varphi(n)} \ll \frac{1}{3 - z} (\log x)^z, \tag{10}
\]

uniformly for \(1 < z < 3 \). Assuming that \(\varepsilon \) is small enough that \(z = e + \varepsilon < 3 \), we have

\[
\sum_{q \in \mathbb{Q} \atop \Omega_3(q) > J} \frac{1}{\varphi(q)} \leq \sum_{q \leq x^{1/2} \atop \Omega_3(q) > J} \frac{1}{\varphi(q)} \leq z^{-J} \sum_{q \leq x^{1/2}} \frac{z^{\Omega_3(q)}}{\varphi(q)} \ll (\log x)^{z-(e+\varepsilon) \log z}.
\]

Since \(z-(e+\varepsilon) \log z = -\eta < 0 \), where \(\eta \) depends on the choice of \(\varepsilon \), this calculation shows that those pairs with \(\Omega_3(q) > J \) are negligible.

\(\square \)
Let \(K = \lfloor 4 \log_3 x \rfloor + 1 \). For a given pair \((q, m) \in \mathcal{N}_{h,3}(x)\), we count the number of pairs \((q', m') \in \mathcal{N}_{h,3}(x)\) with \(q'm' = qm\). The pair \((q', m')\) is determined by \((q, m)\) and \(m'\), so all we need to do is count the number of divisors \(d\) of \(qm\) with \(\Omega(d) \leq I\) and \(v_2(d) < K\). This count is at most

\[
K \sum_{i \leq I} \binom{I + J}{i} \ll K \binom{I + J}{I}.
\]

Stirling’s formula shows that

\[
K \binom{I + J}{I} \ll (\log x)^{\alpha + \eta} \log_3 x,
\]

where \(\alpha = (e + 1) \log(e + 1) - e \log e = 2.16479\ldots\) and \(\eta \to 0\) as \(\varepsilon \to 0\). It follows from (8) and Lemma 8 that

\[
S_h(x) \gg \frac{\delta x}{\log x} \cdot \frac{1}{(\log x)^{\alpha + \eta} \log_3 x} \gg \frac{x}{(\log x)^{1 + \alpha + 2\eta}} = \frac{x}{(\log x)^{3.16479\ldots + 2\eta}}.
\]

Remark 2 The proof of the lower bound of Theorem 1 would be somewhat simpler if instead of the Bombieri–Vinogradov theorem we had used a very new result of Maynard [9]. With the choice of parameters \(\delta = 0.02, \eta = 0.001\) in his Corollary 1.2, one has for the set \(Q\) of integers \(q \leq x^{0.52}\) with a divisor in \((x^{0.041}, x^{0.071})\) that

\[
\sum_{q \in Q, \gcd(q, a) = 1} \left| \pi(x; q, a) - \frac{\pi(x)}{\varphi(q)} \right| \ll a, A \frac{x}{\log^A x},
\]

for any fixed integer \(a \neq 0\) and any positive \(A\). We note that all of the members of \(B_\theta \cap (x^{0.041}, x^{0.52})\) are in \(Q\).

5 Proof of Theorem 2

Let \(h\) be an integer in \((x/2, x]\) that is not a multiple of \(\prod_{p \leq \theta(1)} p\). Define

\[
\mathcal{D} = \{q \in B_\theta \cap (x^{1/2 - \delta}, x^{1/2}/ \log^{10} x] : \gcd(q, h) = 1\}.
\]

By Lemma 5,

\[
|\mathcal{D}| \gg \frac{x^{1/2}}{\log^{12} x \log \log x}.
\]

For each \(q \in \mathcal{D}\), if \(p \leq x/2 < h\), where \(p\) is a prime that satisfies \(p \equiv h \mod q\), then \(p = h - qm\) for some \(m \in \mathbb{N}\). Let \(M_h(x)\) denote the number of pairs \((p, q)\) with \(p\)
prime, \(p \leq x/2, p \equiv h \mod q \) and \(q \in \mathcal{D} \). As in Section 4, we have

\[
M_h(x) = \sum_{q \in \mathcal{D}} \pi(x/2; q, h) = \sum_{q \in \mathcal{D}} \pi(x/2) \varphi(q) + O \left(\frac{x}{\log^6 x} \right).
\]

From (11), we have

\[
F := \sum_{q \in \mathcal{D}} \frac{1}{\varphi(q)} \geq \sum_{q \in \mathcal{D}} \frac{1}{q} \geq \frac{|\mathcal{D}|}{x^{1/2} \log^{10} x} \gg \frac{1}{\log^2 x \log \log x}.
\]

We conclude that

\[
M_h(x) \gg F \frac{x}{\log x} \gg \frac{x}{\log^3 x \log \log x}, \tag{12}
\]

We claim that most of the pairs \((p, q)\) counted in \(M_h(x)\) are such that \(qm = h - p \in \mathcal{B}_\theta\). Since \(q > x^{1/2-\delta}\) and \(qm < h \leq x\), we have \(m \leq x^{1/2+\delta}\). If \(P^+(m) \leq x^{1/2-\delta}\), then \(P^+(m) < q\) and \(mq \in \mathcal{B}_0\). If \(P^+(m) > x^{1/2-\delta}\), write \(r = P^+(m) > x^{1/2-\delta}\) and \(m = ra\) with \(a < x^{2\delta}\). Given \(a\) and \(q\), the number of primes \(r < x/(aq)\) with \(h - aqr\) prime is

\[
\ll \frac{hx}{\varphi(h)\varphi(q)\varphi(a) \log^7 x}, \tag{13}
\]

by Lemma 1. We have \(h/\varphi(h) \ll \log \log x\) and

\[
\sum_{a < x^{2\delta}} \frac{1}{\varphi(a)} \ll \delta \log x.
\]

Thus, summing (13) over \(q \in \mathcal{D}\) and \(a < x^{2\delta}\) amounts to

\[
\ll F \frac{x^{\delta} \log \log x}{\log x} = o \left(F \frac{x}{\log x} \right),
\]

since \(\delta = 1/(\log \log x)^2\). By (12), the number of pairs \((p, q)\) with \(h = p + qm, p\) prime and \(qm \in \mathcal{B}_0\) is

\[
\gg F \frac{x}{\log x} \gg \frac{x}{\log^2 x \log \log x},
\]

which is at least 1 when \(x\) is sufficiently large. This completes the proof of Theorem 2.
5.1 Checking Margenstern’s conjecture numerically

For positive coprime integers \(u, v\), let \(p(u, v)\) be the least prime \(p \equiv u \pmod{v}\), and let \(M(v) = \max_{\gcd(u, v)=1} p(u, v)\). For example, \(M(8) = 17\), since \(p(1, 8) = 17\), \(p(3, 8) = 3\), \(p(5, 8) = 5\), and \(p(7, 8) = 7\).

Lemma 9 Suppose that \(a\) is a positive integer with \(M(2^a) < 2^{2a+1}\). Then every odd number \(n \in (M(2^a), 2^{2a+1})\) is the sum of a prime and a practical number.

Proof For each odd \(n \in (M(2^a), 2^{2a+1})\) let \(q = n - p(n, 2^a)\). Note that \(0 < q < 2^{2a+1}\) and \(2^a \mid q\). Since \(2^a\) is practical and \(\sigma(2^a) + 1 = 2^{a+1} > q/2^a\), it follows that \(q\) is practical. Thus, \(n = q + p(n, 2^a)\) is a representation of \(n\) as the sum of a prime and a practical. \(\square\)

Note that the condition in Lemma 9 that \(M(2^a) < 2^{2a+1}\) is not guaranteed by any known result in analytic number theory. We do know that \(M(2^a) \leq 2^{O(a)}\) with a fairly modest \(O\)-constant, but we are not close to proving the condition in the lemma. (Heuristically, we should have \(M(2^a) = O(2^a a^2)\).) For a given numerical value of \(a\), one might actually compute the exact value of \(M(2^a)\). And if it is smaller than \(2^{2a+1}\), we have verified Margenstern’s conjecture for the interval \((M(2^a), 2^{2a+1})\). For example, since \(M(2^3) = 17\), we automatically have the conjecture for odd numbers in the interval \((17, 128)\).

We have computed that \(M(2^{23}) = 997,427,777\). This number is less than \(2^{47}\), in fact, it is less than \(10^9\). Thus, Margenstern’s conjecture holds for all odd numbers (greater than 1) up to \(2^{47}\). Moreover, since \(M(2^{35}) = 9,968,601,716,713 < 2^{17}\), the conjecture holds up to \(2^{71}\). It would not be difficult to push this calculation further.

6 The upper bound in Theorems 3 and 4

For a natural number \(n\), a divisor \(d\) of \(n\) is said to be initial if \(P^+(d) \leq P^-(n/d)\). Let \(I_y(n)\) be the largest initial divisor of \(n\) with \(d \leq y\). Note that if \(n \in B_y\), then \(I_y(n) \in B_y\) for all \(y\).

Assume \(n \leq x\) and \(n, n + h \in B_y\). Let \(q = I_{x^{1/3}}(n), q' = I_x^{1/3}(n + h)\). Since \(n, n + h \in B_y\) and \(\theta(n) = n^{1+o(1)}\), we may assume that \(q, q' \in [x^{1/7}, x^{1/3}]\). Write \(n = qm\) and \(n + h = q'm'\). We have \(q, q' \in B_y\) and \(P^-(m) \geq P^+(q) = r, P^-(m') \geq P^+(q') = : r'\). Given \(q, q' \in B_y\) with \(d = \gcd(q, q')\), we need \(m, m'\) such that \(q'm' - qm = h\). This equation only has solutions if \(d|h\), in which case all solutions have the form

\[m = m_0 + jq'/d, \quad m' = m'_0 + jq/d, \quad j \in \mathbb{Z}.
\]

If \(m_0, m'_0\) are the smallest positive solutions to \(q'm' - qm = h\), then \(1 \leq n = mq \leq x\) implies \(0 \leq j \leq dx/q'q < hx/qq'\). Let

\[A = \{(m_0 + jq'/d)(m'_0 + jq/d) : 0 \leq j \leq hx/qq' \},\]
and let \(S(A) \) be the number of elements of \(A \) remaining after removing all products \(mm' \), where either \(m \) is a multiple of a prime \(p < r \), \(p \nmid hqq' \), or \(m' \) is a multiple of a prime \(p < r' \), \(p \nmid hqq' \). For each prime \(p \nmid hqq' \), each of the conditions \(p|m \) and \(p|m' \) is equivalent to \(j \) belonging to a unique residue class modulo \(p \) (because \(p \nmid qq' \)), and those two residue classes are distinct (because \(p \nmid h \)). Selberg’s sieve [3, Proposition 7.3 and Theorem 7.14] shows that

\[
S(A) \ll \frac{hx/qq'}{\log r \log r'} \left(\frac{hqq'}{\varphi(hqq')} \right)^2 \ll_h \frac{xqq'}{\varphi(q)^2 \varphi(q')^2 \log P^+(q) \log P^+(q')}.
\]

Summing this estimate over \(q, q' \in [x^{1/7}, x^{1/3}] \cap B_\theta \), the upper bound in Theorem 3 follows from Lemma 10 with \(\alpha = 2 \).

This argument generalizes naturally to yield Theorem 4: For \(1 \leq i \leq k \), let \(n+h_i = m_i q_i \in B_\theta \), where \(q_i = I_{x^{1/(k+1)}(n+h_i)} \), so that \(q_i \in B_\theta \cap [x^{1/(2k+3)}, x^{1/(k+1)}] \). One finds that if \(\gcd(q_i, q_i) | (h_l - h_i) \), for \(1 \leq i < l \leq k \), then

\[
m_i = m_{i,0} + j \operatorname{lcm}(q_1, \ldots, q_k)/q_i \quad (1 \leq i \leq k),
\]

where \(0 \leq j \leq x/\operatorname{lcm}(q_1, \ldots, q_k) \leq x_{q_1 \cdots q_k} \prod_{1 \leq l \leq k} (h_l - h_i) \). Eliminating values of \(j \) for which \(p|m_i \), where \(p < P^+(q_i) \), \(p \nmid \prod_{1 \leq i \leq k} q_i \) and \(p \nmid \prod_{1 \leq i \leq l \leq k} (h_l - h_i) \), we find that

\[
S(A) \ll_{h_1, \ldots, h_k} x \prod_{1 \leq i \leq k} q_i^{k-1} \frac{1}{\varphi(q_i)^k \log P^+(q_i)}.
\]

Theorem 4 now follows from Lemma 10 with \(\alpha = k \).

Lemma 10 Let \(\alpha \in \mathbb{R} \). Assume (2) and \(\theta(n) \ll n \log n \) for \(n \geq 1 \). We have

\[
\sum_{q \geq x, \ q \in B_\theta} \frac{q^{\alpha-1}}{\varphi(q)^{\alpha} \log P^+(q)} \ll_{\alpha} \frac{1}{\log x}.
\]

Proof It suffices to estimate the sum restricted to \(q \in I := [x, x^{4/3}] \). We write \(q = mr \), where \(r = P^+(q) \). Note that \(q \in B_\theta \cap I \) and \(\theta(n) < n^{1+o(1)} \) implies that \(r \leq x^{3/4} \). We have

\[
\sum_{q \in B_\theta \cap I} \frac{q^{\alpha-1}}{\varphi(q)^{\alpha} \log P^+(q)} \ll \sum_{r \leq x^{3/4}} \frac{1}{r \log r} \sum_{m \in B_\theta \cap (I/r)} \left(\frac{m}{\varphi(m)} \right)^{\alpha} \frac{1}{m}.
\]

\(\square \) Springer
Since \(m/\varphi(m) \ll \sigma(m)/m \), partial summation and Corollary 4 applied to the inner sum shows that the last expression is
\[
\ll_a \sum_{r \leq x^{1/4}} \frac{1}{r \log r} \cdot \frac{\log r}{\log x} \exp \left(-\frac{\log x}{3 \log r} \right) \ll \frac{1}{\log x},
\]
by the prime number theorem.

\[\square \]

7 The lower bound in Theorem 3

Lemma 11 Assume (2) and \(\theta(n) \ll n \log n \) for \(n \geq 1 \). For \(L \geq 1 \) and \(x \geq 1 \), we have
\[
\sum_{n \in \mathcal{B}_\theta} \sum_{p|n, n \leq x, p > L} \frac{\log p}{p} \ll \frac{x \log(2L)}{L \log(2x)}.
\]

Proof As in the proof of Corollary 4,
\[
\sum_{n \in \mathcal{B}_\theta} \sum_{p|n, n \leq x, p > L} \frac{\log p}{p} = \sum_{L < p < x^{1/3}} \frac{\log p}{p} \sum_{m \in \mathcal{B}_\theta, m \leq x/p} 1 \leq \sum_{L < p < x^{1/3}} \frac{\log p}{p} \sum_{m \in \mathcal{B}_{\theta, p}, m \leq x/p} 1.
\]
\[
\ll \sum_{L < p < x^{1/3}} \frac{\log p}{p} \cdot \frac{x \log p}{p \log(2x)} \ll \frac{x \log(2L)}{L \log(2x)},
\]
by Proposition 1 and the prime number theorem. \[\square \]

Say a pair \(n_1, n_2 \in \mathcal{B}_\theta \) is \(h,\varepsilon \)-special if \(\gcd(n_1, n_2) = h \) and \(\Omega_3(n_i) \leq (\varepsilon + \varepsilon) \log_2 n_i \) for \(i = 1, 2 \).

Lemma 12 Assume (2) and \(n \leq \theta(n) \ll n \log n \) for \(n \geq 1 \). For \(h \geq 1 \) satisfying (5) and \(0 < \varepsilon < 1 \), the number of \(h,\varepsilon \)-special pairs \(n_1, n_2 \in \mathcal{B}_\theta \) with \(N/3 < n_1, n_2 < N \) and \(v_2(n_1), v_2(n_2) \leq C \), where \(C \) is some number depending only on \(h \), is \(\gg_{h,\varepsilon} N^2/\log^2 N \).

Proof Write \(h = 2^a 3^b h' \), where \(P^-(h') > 3 \), \(a, b \geq 0 \), but assume that \(a \geq 1 \) or \(a \geq 2 \), according to the two cases in (5). We consider \(n_1 \in \mathcal{B}_\theta \) of the form
\[
n_1 = 2^{a+k} 3^b h' n_1' = 2^k h n_1'
\]
where \(P^-(n_1') \) is less than \(\max\{3, P^+(h') \} = p \) and \(2^k > 2p \). Since \(\theta(n) \geq n \), the number of such \(n_1 \) with \(N/2 < n_1 \leq N \) is at least
\[
\left| \left\{ \left\{ \frac{N}{h_2^{k+1}} < n'_1 \leq \frac{N}{h_2^k} : n_1' \in \mathcal{D}_{h_2^k}, P^-(n_1') > p \right\} \right\} \right| \ll_h \frac{N}{\log N}, \tag{14}
\]
by Lemma 3, for a suitable \(k \) with \(2^k > 2p > 2^{k+O(1)} \). In particular, \(v_2(n_1) \ll_h 1 \).

As in the proof of the lower bound of Theorem 1, we can remove those \(n_1 \) with \(\Omega_3(n_1) > (e + \varepsilon) \log_2 n_1 \) without affecting (14). This follows from an estimate analogous to (10):

\[
\sum_{n \leq x} z^{\Omega_3(n)} \ll \frac{x}{3 - z} \log^{-1} x
\]

uniformly for \(1 < z < 3 \) (cf. [21, Exercise 217(b)]).

Let \(\eta > 0 \) be an arbitrary constant. Lemma 11 shows that we can choose a sufficiently large constant \(L = L(\eta) \) such that removing those \(n_1 \) for which

\[
\sum_{p|n_1 \atop p > L} \frac{\log p}{p} > \eta
\]

will not affect (14). For each of the \(\gg_h \varepsilon N/\log N \) values of \(n_1 \) that remain, consider \(n_2 \in B_\theta \) of the form

\[
n_2 = 2^a 3^{b+j} h' n'_2 = 3^j h n'_2,
\]

where \(\gcd(n'_2, 2n'_1) = 1 \), and \(j \) is as in Lemma 12. For each such \(n_2 \leq N \) is at least

\[
\sum_{N/h^3j+1 < n'_2 \leq N/h^3j \atop n'_2 \in D_{h^3j} \atop \gcd(n'_2, 2n'_1) = 1} 1 \gg_h \frac{N}{\log(2L)} \gg \frac{N}{\log N},
\]

by Lemma 5 with \(p_0 = 3 \). As with \(n_1 \), this estimate is unchanged if we remove those \(n_2 \) with \(\Omega(n_2) > (e + \varepsilon) \log_2 n_2 \). Further, \(v_2(n_2) = v_2(h) \ll_h 1 \). \(\square \)

Let \(N = \sqrt{xh} \). Suppose \(a, a' \in B_\theta \cap (N/3, N) \) is an \(h-\varepsilon \)-special pair, with \(v_2(a), v_2(a') \leq C \), where \(C = C(h) \) is as in Lemma 12. For each such pair \(\{a, a'\} \), there is a unique pair \(\{b, b'\} \) such that \(ab - a'b' = h \) and \(1 \leq b \leq a'/h, 1 \leq b' \leq a/h \).

We have \(ab, a'b' \leq aa'/h \leq x \). Now \(b, b' < \sqrt{xh} < 3a/h, 3a'/h \), so \(ab, a'b' \in B_\theta \) by the assumption on \(\theta \). By Lemma 12, it would seem we have created \(\gg_h x/\log^2 x \) pairs \(\{ab, a'b'\} \subset B_\theta \cap [1, x] \) with \(ab - a'b' = h \), but we have to check for possible multiple representations.

Note that in a graph of average degree \(\geq d \), there is an induced subgraph of minimum degree \(\geq d/2 \). This folklore result can be proved by induction on \(d \), see [1]. (Also see [7, Prop. 3] for a somewhat sharper version.) We apply this to the graph on members of \(B_\theta \cap (N/3, N) \), where two integers are connected by an edge if they form an \(h-\varepsilon \)-special pair. From Lemma 12 the average degree in this graph is \(\gg N/\log N \), so there is a subgraph \(G \) of minimum degree \(\gg N/\log N \).
We use this to say something about $\Omega_3(b)$, $\Omega_3(b')$. For edges (a, a') in G, note that for any residue class mod a' there are at most 2 choices for a, and similarly for any residue class mod a there are at most 2 choices for a'. For (a, a') with corresponding pair (b, b') as above, let $f(a, a') = b$ and $g(a, a') = b'$. For each fixed a' the function f is at most two-to-one in the variable a, since $(a/h)b \equiv 1 \pmod{a'/h}$ and $b \leq a'/h$. Similarly, for each fixed a, the function $g(a, a') = b'$ is at most two-to-one in the variable a'. Thus, for each fixed a' there are $\gg N/\log N$ distinct values of b and for each fixed a there are $\gg N/\log N$ distinct values of b'. Now $b, b' \leq N$ and as we have seen, the number of integers $n \leq N$ with $\Omega_3(n) > (e + \varepsilon) \log_2 x$ is $o(N/\log N)$. So, by possibly discarding $o(x/\log^2 x)$ pairs (a, a'), we may assume that the corresponding pair (b, b') satisfies $\Omega_3(b), \Omega_3(b') \leq (e + \varepsilon) \log_2 x$.

The numbers ab and $a'b'$ might arise from many different pairs (a, a'). However, we have $\Omega_3(ab), \Omega_3(a'b') \leq 2(e + \varepsilon) \log_2 x$, so the number of odd divisor pairs of $ab, a'b'$ is
\[
\leq 2^{4(e+\varepsilon) \log_2 x} = (\log x)^{4(e+\varepsilon) \log 2}.
\]
Since $\nu_2(a), \nu_2(a') \ll_h 1$, there are $\gg_{h, \varepsilon} x/(\log x)^{2+4(e+\varepsilon) \log 2}$ pairs $n, n + h \in B_\theta$, with $n \leq x$. This completes the proof of the theorem.

Acknowledgements We thank David Eppstein for informing us of [7] and Paul Pollack for [19].

References

1. DeVos, M.: Graph theory lecture notes www.sfu.ca/~mdevos/notes/graph/
2. Erdős, P.: On a diophantine equation. Mat. Lapok 1, 192–210 (1950)
3. Friedlander, J., Iwaniec, H.: Opera de cribro. American Mathematical Society, Providence (2010)
4. Guo, V., Weingartner, A.: The practicality of shifted primes. Integers 18, 93 (2018)
5. Guy, R.K.: Unsolved Problems in Number Theory, 3rd edn. Springer, New York (2004)
6. Hall, R.R., Tenenbaum, G.: Divisors. Cambridge University Press, Cambridge (1988)
7. Kaczorowski, J.: On a problem of Erdős and Kac. J. Number Theory 123, 123–135 (2000)
8. Kaczorowski, J.: Primes in arithmetic progressions to large moduli I: fixed residue classes. arXiv:2006.0572v1 (2020)
9. Melfi, G.: On two conjectures about practical numbers. J. Number Theory 56, 205–210 (1996)
10. Melfi, G.: A note on twin practical numbers. Matematiche (Catania) 57(2002), 111–117 (2004)
11. Riesel, H., Vaughan, R.: On sums of primes. Arkiv för Mat. 21, 45–74 (1983)
12. Saias, E.: Entiers à diviseurs denses 1. J. Number Theory 62, 163–191 (1997)
13. Saias, E.: Entiers à diviseurs denses 2. J. Number Theory 86, 39–49 (2001)
14. Saias, E.: Entiers à diviseurs denses. J. Number Theory 56, 205–210 (1996)
15. Saias, E.: On a problem of Erdős and Kac. J. Number Theory 123, 123–135 (2000)
16. Srinivasan, A.K.: Practical numbers. Curr. Sci. 17, 179–180 (1948)
17. Stewart, B.M.: Sums of distinct divisors. Am. J. Math. 76, 779–785 (1954)
18. Sun, Z.-W.: Conjectures on representations involving primes. In: Nathanson, M.B. (ed.) Combinatorial and Additive Number Theory II, pp. 279–310. Springer PROMS, New York (2018)
19. Sun, Z.-W.: Write $2n + 1 = p + q$ with p prime and q practical. https://mathoverflow.net/questions/360288/
20. Tenenbaum, G.: Sur un problème de cribles et ses applications. Ann. Sci. École Norm. Sup. (4) 19, 1–30 (1986)
21. Tenenbaum, G.: Graduate Studies in Mathematics. Introduction to analytic and probabilistic number theory. American Mathematical Society, Providence (2015)
22. Weingartner, A.: Integers with dense divisors. J. Number Theory 108, 1–17 (2004)
23. Weingartner, A.: Practical numbers and the distribution of divisors. Q. J. Math. 66, 743–758 (2015)
24. Weingartner, A.: The constant factor in the asymptotic for practical numbers. Int. J. Number Theory 16, 629–638 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.