Courcelle’s Theorem Made Dynamic

Patricia Bouyer-Decitre1,2, Vincent Jugé1,2,3 & Nicolas Markey1,2,4

1: CNRS — 2: ENS Paris-Saclay (LSV) — 3: UPEM (LIGM) — 4: Rennes (IRISA)

03/10/2017
Contents

1 Dynamic Complexity of Decision Problems

2 Courcelle’s Theorem

3 Making Courcelle’s Theorem Dynamic
Dynamic Complexity of Decision Problems

Modulo 3 Decision

- **Input:** Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- **Output:** Yes if $x_1 + x_2 + \ldots + x_n = 0$ — No otherwise
Dynamic Complexity of Decision Problems

Modulo 3 Decision

- Input: Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- Output: Yes if $x_1 + x_2 + \ldots + x_n = 0$ — No otherwise

Solving this problem...

- **Static world**: membership in a regular language
Dynamic Complexity of Decision Problems

Modulo 3 Decision

- **Input:** Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- **Output:** Yes if $x_1 + x_2 + \ldots + x_n = 0$ — No otherwise

Solving this problem...

- **Static world:** membership in a regular language
- **Dynamic world:** what if some element x_k changes?
 - Maintain predicates $S_i \equiv "x_1 + x_2 + \ldots + x_n = i"$ for $i \in \mathbb{F}_3$
 - Update the values of S_0, S_1, S_2 when x_k changes
 - Use the new value of S_0 and answer the problem
Dynamic Complexity of Decision Problems

Modulo 3 Decision

- **Input:** Elements x_1, x_2, \ldots, x_n of \mathbb{F}_3
- **Output:** Yes if $x_1 + x_2 + \ldots + x_n = 0$ — No otherwise

Solving this problem...

- **Static world:** membership in a regular language
- **Dynamic world:** what if some element x_k changes?
 - Maintain predicates $S_i = \{x_1 + x_2 + \ldots + x_n = i\}$ for $i \in \mathbb{F}_3$
 - Update the values of S_0, S_1, S_2 when x_k changes
 - Use the new value of S_0 and answer the problem

How complex is it?

- **Static world:** linear time
- **Dynamic world:**
 - **Easy** initial instance ($x_1 = x_2 = \ldots = x_n = 0$): constant time
 - Each update: constant time

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Reachability in DAGs

- **Input:** Directed acyclic graph $G = (V, E)$ & two vertices $s, t \in V$
- **Output:** **Yes** if \exists path from s to t in G — **No** otherwise
Dynamic Complexity of Decision Problems

Reachability in DAGs

- **Input:** Directed acyclic graph \(G = (V, E) \) & two vertices \(s, t \in V \)
- **Output:** \textbf{Yes} if \(\exists \) path from \(s \) to \(t \) in \(G \) — \textbf{No} otherwise

Solving this problem...

- **Static world:** use your favorite graph exploration algorithm
- **Dynamic world:** what if edge \(u \rightarrow v \) is inserted/deleted?
 - Maintain a predicate \(R(x, y) \equiv (\exists \text{ path from } x \text{ to } y \text{ in } G) \) for \(x, y \in V \)
 - Update the values of \(R(x, y) \) when \(u \rightarrow v \) is inserted/deleted
 - Use the new value of \(R(s, t) \) and answer the problem

P. Bouyer-Decitre, V. Jugé & N. Markey

Courcelle’s Theorem Made Dynamic
Dynamic Complexity of Decision Problems

Reachability in DAGs

- **Input:** Directed acyclic graph $G = (V, E)$ & two vertices $s, t \in V$
- **Output:** Yes if \exists path from s to t in G — No otherwise

Solving this problem...

- **Static world:** use your favorite graph exploration algorithm
- **Dynamic world:** what if edge $u \rightarrow v$ is inserted/deleted?
 - Maintain a predicate $R(x, y) \equiv (\exists$ path from x to y in $G)$ for $x, y \in V$
 - Update the values of $R(x, y)$ when $u \rightarrow v$ is inserted/deleted
 - Use the new value of $R(s, t)$ and answer the problem

How complex is it?

- **Static world:** linear time
- **Dynamic world:**
 - **Easy** initial edgeless instance: FO formulæ
 - Each update: FO formulæ
Dynamic Complexity of Decision Problems

Reachability in DAGs

- **Input:** Directed acyclic graph \(G = (V, E) \) & two vertices \(s, t \in V \)
- **Output:** Yes if \(\exists \) path from \(s \) to \(t \) in \(G \) — **No** otherwise

Solving this problem...

- **Static world:** use your favorite graph exploration algorithm
- **Dynamic world:** what if edge \(u \rightarrow v \) is inserted/deleted?
 - Maintain a predicate \(R(x, y) \equiv (\exists \) path from \(x \) to \(y \) in \(G \)) for \(x, y \in V \)
 - Update the values of \(R(x, y) \) when \(u \rightarrow v \) is inserted/deleted
 - Use the new value of \(R(s, t) \) and answer the problem

How complex is it?

- **Static world:** linear time
- **Dynamic world:**
 - **Easy** initial edgeless instance: FO formulæ (parallel constant time)
 - Each update: FO formulæ (parallel constant time)
FO formulæ \Rightarrow parallel \approx constant time

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$
FO formulæ ⇒ parallel ≈ constant time

\[\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x) \]

\[\psi(e_1, e_1) \psi(e_1, e_2) \psi(e_2, e_1) \psi(e_2, e_2) \]
FO formulae \Rightarrow parallel \approx constant time

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \quad \psi(e_1, e_2) \quad \psi(e_2, e_1) \quad \psi(e_2, e_2)$$
FO formulæ ⇒ parallel ≈ constant time

\[\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x) \]

\[\psi(e_1, e_1) \quad \psi(e_1, e_2) \quad \psi(e_2, e_1) \quad \psi(e_2, e_2) \]

\[x = e_1 \quad y = e_1 \]
\[x = e_1 \quad y = e_2 \]
\[x = e_2 \quad y = e_1 \]
\[x = e_2 \quad y = e_2 \]
FO formulae \Rightarrow parallel \approx constant time

$$\phi = \exists x.\forall y.\psi(x, y) \lor \psi(y, x)$$

$$\psi(e_1, e_1) \quad \psi(e_1, e_2) \quad \psi(e_2, e_1) \quad \psi(e_2, e_2)$$
FO formulae \Rightarrow parallel \approx constant time

$$\phi = \exists x. \forall y. \psi(x, y) \lor \psi(y, x)$$
Reachability in DAGs with FO formulæ

- **Initialization (on the edgeless graph):** ✓

\[R(x, y) \leftarrow (x = y) \]
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ
- Initialization (on the edgeless graph): ✓
- Update after inserting the edge \(u \rightarrow v \)

\[R(x, y) \leftarrow R(x, y) \]
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge \(u \rightarrow v \): ✓

\[
R(x, y) \leftarrow R(x, y) \lor (R(x, u) \land R(v, y))
\]

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in \(\text{DynFO} \) if every predicate can be initialized in every predicate can be updated in FO and one predicate is the goal predicate.
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge $u \rightarrow v$: ✓
- Update after deleting the edge $u \rightarrow v$

\[R(x, y) \leftarrow (R(x, y) \land \neg R(x, u)) \]
Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after **inserting** the edge $u \rightarrow v$: ✓
- Update after **deleting** the edge $u \rightarrow v$

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in \(\text{DynFO} \) if

\[
R(x, y) \leftarrow (R(x, y) \land \neg R(x, u)) \lor (R(x, y) \land R(y, u))
\]
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge \(u \rightarrow v \): ✓
- Update after deleting the edge \(u \rightarrow v \): ✓

\[
\begin{align*}
R(x, y) &\leftarrow (R(x, y) \land \neg R(x, u)) \lor \\
&\quad (R(x, y) \land R(y, u)) \lor \\
&\quad (\exists a. \exists b. R(x, a) \land R(b, y) \land \\
&\quad (a \rightarrow b) \land (a, b) \neq (u, v) \land \\
&\quad R(a, u) \land \neg R(b, u))
\end{align*}
\]
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge $u \rightarrow v$: ✓
- Update after deleting the edge $u \rightarrow v$: ✓

⇒ You can even maintain paths from s to t!
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge \(u \rightarrow v \): ✓
- Update after deleting the edge \(u \rightarrow v \): ✓

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in \(C\text{-DynFO} \) if \(\exists \) predicates s.t.:

- every predicate can be initialized in \(C \)
- every predicate can be updated in FO
- one predicate is the goal predicate
Dynamic Complexity of Decision Problems

Reachability in DAGs with FO formulæ

- Initialization (on the edgeless graph): ✓
- Update after inserting the edge $u \rightarrow v$: ✓
- Update after deleting the edge $u \rightarrow v$: ✓

Definition (Dong & Su & Topor 93 – Patnaik & Immerman 97)

A decision problem with updates is in \textbf{DynFO} if \exists predicates s.t.:

- every predicate can be initialized in FO
- every predicate can be updated in FO
- one predicate is the goal predicate
Dynamic Complexity of Decision Problems

Some more problems in DynFO

- Reachability in undirected graphs (Patnaik & Immerman 97)
- Integer multiplication (Patnaik & Immerman 97)
- Context-free language membership (Gelade et al. 08)
- Distance in undirected graphs (Grädel & Siebertz 12)
- Reachability in directed graphs (Datta et al. 15)

Some problems that might be in DynFO

- Distance in directed graphs
- Next hop / path maintenance in directed graphs
- Shortest path maintenance in undirected graphs
Dynamic Complexity of Decision Problems

Some more problems in LogSpace-DynFO

- Reachability in undirected graphs (Patnaik & Immerman 97)
- Integer multiplication (Patnaik & Immerman 97)
- Context-free language membership (Gelade et al. 08)
- Distance in undirected graphs (Grädel & Siebertz 12)
- Reachability in directed graphs (Datta et al. 15)
- MSO model checking on graphs of small tree-width (Bouyer et al. 17 – Datta et al. 17)

Some problems that might be in DynFO

- Distance in directed graphs
- Next hop / path maintenance in directed graphs
- Shortest path maintenance in undirected graphs
Contents

1 Dynamic Complexity of Decision Problems
2 Courcelle’s Theorem
3 Making Courcelle’s Theorem Dynamic
Tree Decompositions and Tree Width

Definition #1 (Halin 76 – Robertson & Seymour 84)

A tree decomposition of a graph $G = (V, E)$ is formed of:
- a tree $T = (V, E)$
- a mapping $T : V \mapsto 2^V$, such that:
 - for every edge (x, y) of G, we have $\{x, y\} \subseteq T(v)$ for some node $v \in V$
 - for every vertex x of G, the set $\{v \in V \mid x \in T(v)\}$ is a sub-tree of T

The width of the tree decomposition is $\max\{\#T(v) \mid v \in V\} - 1$.

![Diagram of tree decompositions](image)

Width = 2
Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph G is the minimal width of all of G’s tree decompositions.
Tree Decompositions and Tree Width

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph G is the minimal width of all of G’s tree decompositions.

Tree width of some specific graphs

Graph	Width
Tree	1
Cycle	2
K_n	$n - 1$
$K_{a,b}$	$\min\{a, b\}$
$\mathbb{Z}_a \times \mathbb{Z}_b$	$\min\{a, b\}$
Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph \(G \) is the minimal width of all of \(G \)'s tree decompositions.

Tree width of some specific graphs

Graph	Width
Tree	1
Cycle	2
\(K_n \)	\(n - 1 \)
\(K_{a,b} \)	\(\min\{a, b\} \)
\(\mathbb{Z}_a \times \mathbb{Z}_b \)	\(\min\{a, b\} \)
Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph G is the minimal width of all of G’s tree decompositions.

Tree width of some specific graphs

Graph	Width
Tree	1
Cycle	2
K_n	$n - 1$
$K_{a,b}$	$\min\{a, b\}$
$\mathbb{Z}_a \times \mathbb{Z}_b$	$\min\{a, b\}$
Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph G is the minimal width of all of G’s tree decompositions.

Tree width of some specific graphs

Graph	Width
Tree	1
Cycle	2
K_n	$n - 1$
$K_{a,b}$	$\min\{a, b\}$
$\mathbb{Z}_a \times \mathbb{Z}_b$	$\min\{a, b\}$
Tree Decompositions and Tree Width

Definition #2 (Halin 76 – Robertson & Seymour 84)

The **tree width** of a graph G is the minimal width of all of G’s tree decompositions.

Tree width of some specific graphs

Graph	Width
Tree	1
Cycle	2
K_n	$n - 1$
$K_{a,b}$	min{a, b}
$\mathbb{Z}_a \times \mathbb{Z}_b$	min{a, b}
Monadic Second-Order Formulae on Directed Graphs

Is the graph $G = (V, E)$

- **Undirected?** $\forall s. \forall t. (s, t) \in E \implies (t, s) \in E$
Monadic Second-Order Formulae on Directed Graphs

Is the graph $G = (V, E)$

- **Undirected?** $\forall s. \forall t. (s, t) \in E \Rightarrow (t, s) \in E$

- **Strongly connected?**
 \[\forall X. \forall a. \forall b. a \in X \land b \notin X \Rightarrow (\exists s. \exists t. s \in X \land t \notin X \land (s, t) \in E) \]

- **3-colorable?**
 \[\exists V_1. \exists V_2. \exists V_3. V = V_1 \uplus V_2 \uplus V_3 \land \forall s. \forall t. \bigwedge_{i=1}^{3} (s \in V_i \land t \in V_i) \Rightarrow (s, t) \notin E \]
Is the partitioned graph $G = (V_A \uplus V_B, E)$

- **Undirected?** $\forall s.\forall t. (s, t) \in E \Rightarrow (t, s) \in E$
- **Strongly connected?**
 $\forall X. \forall a. \forall b. a \in X \land b \notin X \Rightarrow (\exists s. \exists t. s \in X \land t \notin X \land (s, t) \in E)$
- **3-colorable?**
 $\exists V_1. \exists V_2. \exists V_3. V = V_1 \uplus V_2 \uplus V_3 \land \forall s. \forall t. \bigwedge_{i=1}^{3} (s \in V_i \land t \in V_i) \Rightarrow (s, t) \notin E$
- **Properly partitioned?** $\forall s. \forall t. (s, t) \in E \Rightarrow (s \in V_A \iff t \in V_B)$
- **Winning for Alice (in the reachability game $s \to t$)?**
 \exists Alice’s strategy s.t. \forall Barbara’s strategies, A wins
Monadic Second-Order Formulae on Directed Graphs

Is the **partitioned** graph $G = (V_A \uplus V_B, E)$

- **Undirected?** $\forall s.\forall t. (s, t) \in E \Rightarrow (t, s) \in E$
- **Strongly connected?**
 $\forall X.\forall a.\forall b. a \in X \land b \notin X \Rightarrow (\exists s.\exists t. s \in X \land t \notin X \land (s, t) \in E)$
- **3-colorable?**
 $\exists V_1.\exists V_2.\exists V_3. V = V_1 \uplus V_2 \uplus V_3 \land \forall s.\forall t. \bigwedge_{i=1}^{3} (s \in V_i \land t \in V_i) \Rightarrow (s, t) \notin E$
- **Properly partitioned?** $\forall s.\forall t. (s, t) \in E \Rightarrow (s \in V_A \iff t \in V_B)$
- **Winning for Alice (in the reachability game $s \rightarrow t$)?**
 \exists Alice’s strategy s.t. \forall Barbara’s strategies, A wins

Theorem (Karp 72)

Checking a given MSO formula on finite **structures** is NP-hard.
Theorem (Courcelle 90, Bodlaender 96 & Eberfeld et al. 10)

For all κ, checking a given MSO formula on n-vertex structures of tree width at most κ is feasible in time $O(n)$ and space $O(\log(n))$.

⚠ The constant in the $O(\cdot)$ may be huge!
Courcelle’s Theorem

Theorem (Courcelle 90, Bodlaender 96 & Eberfeld et al. 10)
For all κ, checking a given MSO formula on n-vertex structures of tree width at most κ is feasible in time $O(n)$ and space $O(\log(n))$.

⚠ The constant in the $O(\cdot)$ may be huge!

Proof Idea
1. Compute a tree decomposition of G of width κ
2. Run a tree automaton on the tree decomposition
Result Framework

Check MSO satisfaction in low dynamic complexity
Result Framework

Check MSO satisfaction in LogSpace-DynFO
Result Framework

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general!
Look for restricted cases
Result Framework

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general!
- Use a maximal graph $G_{*} = (V, E_{*})$?
- Still too hard in general!

Look for restricted cases
Added edges belong to E_{*}
Look for further restricted cases
Result Framework

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general! Look for restricted cases
- Use a maximal graph $G_\ast = (V, E_\ast)$? Added edges belong to E_\ast
- Still too hard in general! Look for further restricted cases
- Do it for graphs G_\ast with tree width at most κ! Copy Courcelle
Result Framework

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general!
- Use a maximal graph \(G_\star = (V, E_\star) \)?
- Still too hard in general!
- Do it for graphs \(G_\star \) with tree width at most \(\kappa \)!

Look for restricted cases

Added edges belong to \(E_\star \)

Look for further restricted cases

Copy Courcelle

HURRAY! IT WORKS!
Result Framework

Check MSO satisfaction in LogSpace-DynFO

- Too hard in general!
- Use a maximal graph $G_* = (V, E_*)$?
- Still too hard in general!
- Do it for graphs G_* with tree width at most κ!
- **Bonus:** Compute witnesses of \exists formulæ

Look for restricted cases
Added edges belong to E_*
Look for further restricted cases
Copy Courcelle

[HURRAY! IT WORKS!]
Sketch of Proof

1. Compute a **nice** tree decomposition from G

 (linear-size, log-depth binary tree)
Sketch of Proof

1. Compute a nice tree decomposition from G (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton

Golden rule:
1 change in $G = O(1)$ changes in G'
Sketch of Proof

1. Compute a **nice** tree decomposition from G (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton **sequentially**
3. Identify its run with a path in an acyclic graph G'
Sketch of Proof

1. Compute a **nice** tree decomposition from G
 (linear-size, log-depth binary tree)

2. Run a (bottom-up, deterministic) automaton **sequentially**

3. Identify its run with a path in an acyclic graph G'
Sketch of Proof

1. Compute a nice tree decomposition from G
 (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton sequentially
3. Identify its run with a path in an acyclic graph G'

Golden rule: 1 change in $G = O(1)$ changes in G'

Diagram:

- q_6 and q_7 are states in the automaton.
- $n_1, n_2, n_3, n_4, n_5, n_6, n_7$ are nodes in the graph.
- The automaton transitions from q_6 to q_7.
- The graph has a tree structure with nodes n_1 to n_7.

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Sketch of Proof

1. Compute a **nice** tree decomposition from G (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton **sequentially**
3. Identify its run with a path in an acyclic graph G'

Golden rule: 1 change in $G = O(1)$ changes in G'
Sketch of Proof

1. Compute a **nice** tree decomposition from G (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton **sequentially**
3. Identify its run with a path in an acyclic graph G'

\[
\begin{align*}
\emptyset & \quad \lambda_7 \\
q_7 & \quad \lambda_6 \\
q_6 & \quad \lambda_5 \\
q_5 & \quad \lambda_4 \\
q_4 \quad q_5 & \\
\end{align*}
\]

\[
\begin{align*}
n_6 & \quad n_5 \\
n_3 & \quad n_1 \\
n_7 & \quad n_4 \\
n_2 & \\
\end{align*}
\]
Sketch of Proof

1. Compute a **nice** tree decomposition from G
 (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton **sequentially**
3. Identify its run with a path in an acyclic graph G'

Golden rule: 1 change in $G = O(1)$ changes in G'

P. Bouyer-Decitre, V. Jugé & N. Markey

Courcelle's Theorem Made Dynamic
Sketch of Proof

1. Compute a \textbf{nice} tree decomposition from G (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton \textit{sequentially}
3. Identify its run with a path in an acyclic graph G'
Sketch of Proof

1. Compute a **nice** tree decomposition from G
 (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton **sequentially**
3. Identify its run with a path in an acyclic graph G'

Golden rule: 1 change in $G = O(1)$ changes in G'

![Diagram of tree decomposition and automaton run](image-url)
Sketch of Proof

1. Compute a **nice** tree decomposition from G
 (linear-size, log-depth binary tree)

2. Run a (bottom-up, deterministic) automaton **sequentially**

3. Identify its run with a path in an acyclic graph G'

\[
\begin{align*}
q_7 & \xrightarrow{\lambda_6} q_6 \\
q_6 & \xrightarrow{\lambda_5} q_5 \\
q_5 & \xrightarrow{\lambda_4} q_4 \quad q_5 \\
\end{align*}
\]

\[
\begin{align*}
q_2 & \xrightarrow{\lambda_1} q_1 \\
q_2 & \xrightarrow{\lambda_2} q_3 \\
\end{align*}
\]
Sketch of Proof

1. Compute a nice tree decomposition from \(G \)
 (linear-size, log-depth binary tree)
2. Run a (bottom-up, deterministic) automaton sequentially
3. Identify its run with a Dyck path in an acyclic graph \(G' \)

Golden rule: 1 change in \(G \) = \(\mathcal{O}(1) \) changes in \(G' \)
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

• ([()] ())
• ([()])
• ([()] ())
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ())
- ([()])
- ([()] ())
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ())
- ([(]))
- ([()] ())
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

• ([()] ())
• ([()])
• ([()] ()]

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- \(([(()])(())])\): ✓
- \(([()])\)
- \(([(()])(())])\)
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([()])
- ([()] ())

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([()]): ✗
- ([()] ()])
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ✗
- ([()] ()])

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ✗
- ([()] ()]:

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey

Courcelle’s Theorem Made Dynamic
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([()]): ✗
- ([()] ())

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- $([()] ())$: ✓
- $([(]))$: ✗
- $([()] ())$: ✗
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- $([()] ())$: ✓
- $([())]$: ×
- $([()] ()]$: ×

Dyck paths = Paths labeled with Dyck words

$\begin{align*}
V_1 & \xrightarrow{)} V_2 \\
V_2 & \xrightarrow{[} V_3 \xrightarrow{]} V_4
\end{align*}$
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ✗
- ([()] ()]: ✗

Dyck paths = Paths labeled with Dyck words

\[
\begin{array}{c}
\text{v}_1 \\
\downarrow \overline{0} \\
\text{v}_2 \\
\downarrow 0, 1 \\
\text{v}_3 \\
\downarrow 1 \\
\text{v}_4
\end{array}
\]
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ✗
- ([()] ()]: ✗

Dyck paths = Paths labeled with Dyck words

\[
\begin{align*}
&v_1 & v_2 & v_3 & v_4 \\
&0 & 0, 1 & 1 & \\
&v_4 & & & \\
\end{align*}
\]
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())]): ✗
- ([()] ()]): ✗

Dyck paths = Paths labeled with Dyck words

\[
\begin{array}{ccccccc}
V_1 & \xrightarrow{0} & V_2 & \xrightarrow{0, 1} & V_3 & \xrightarrow{1} & V_4 \\
& & & & & & \\
& \xrightarrow{1} & V_3 & \xleftarrow{1} & V_4 & \xleftarrow{1} & V_2 \\
\end{array}
\]

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)
Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.

P. Bouyer-Decitre, V. Jugé & N. Markey
Courcelle’s Theorem Made Dynamic
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- \(([()] ())\): ✓
- \(([()])\): ❌
- \(([()] ()]\): ❌

Dyck paths = Paths labeled with Dyck words

\[
\begin{align*}
&v_1 \quad 0 \quad v_2 \quad 0, 1 \quad v_3 \quad 1 \quad v_4 \\
&v_2 \quad 0 \quad v_3 \quad 1 \quad v_4 \quad \overline{1} \quad v_2 \quad \overline{0} \quad v_1
\end{align*}
\]
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ✗
- ([()] ()) : ✗

Dyck paths = Paths labeled with Dyck words

\[v_1 \xrightarrow{0} v_2 \xrightarrow{0,1} v_3 \xrightarrow{1} v_4 \]

\[v_3 \xrightarrow{1} v_4 \xrightarrow{\overline{1}} v_2 \xrightarrow{0} v_3 \xrightarrow{1} v_4 \xrightarrow{\overline{1}} v_2 \xrightarrow{\overline{0}} v_1 \]
Sketch of Proof

Dyck words = Well-parenthesized words

Are these words Dyck?

- ([()] ()): ✓
- ([())): ×
- ([()] ()): ×

Dyck paths = Paths labeled with Dyck words

\[\begin{align*}
 v_3 & \xrightarrow{1} v_4 \xrightarrow{\overline{1}} v_2 \xrightarrow{0} v_3 & \xrightarrow{1} v_4 \xrightarrow{\overline{1}} v_2 \xrightarrow{0} v_1
\end{align*} \]

Theorem (Weber & Schwentick 05 – Bouyer et al. 16)

Computing endpoints of Dyck paths in acyclic graphs is in DynFO and we can maintain such paths.
Sketch of Proof

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_1

old memory

new memory
Sketch of Proof

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_2

\[m_1 \rightarrow m'_1 \]
\[m_2 \rightarrow m'_2 \]
\[m_3 \rightarrow m'_3 \]
Sketch of Proof

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ?

when reading ℓ_1

$m_1 \rightarrow m'_2$
$m_2 \rightarrow m'_1$
$m_3 \rightarrow m'_2$

when reading ℓ_2

$m_1 \rightarrow m'_1$
$m_2 \rightarrow m'_3$
$m_3 \rightarrow m'_1$
Sketch of Proof

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_1

when reading ℓ_1
- $m_1 \rightarrow m'_1$
- $m_2 \rightarrow m'_2$
- $m_3 \rightarrow m'_3$

when reading ℓ_2
- $m_1 \rightarrow m'_1$
- $m_2 \rightarrow m'_2$
- $m_3 \rightarrow m'_3$
Sketch of Proof

Dyck words = Paths on a pushdown graph

Memory update when reading the symbol ℓ_2

when reading ℓ_1

$m_1 \rightarrow m'_2$
$m_2 \rightarrow m'_1$
$m_3 \rightarrow m'_2$

when reading ℓ_2

$m_1 \rightarrow m'_2$
$m_2 \rightarrow m'_3$
$m_3 \rightarrow m'_1$
Future work

Some problems to investigate:

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with n players
Future work

Some problems to investigate:

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with n players
- Computing good path or tree decompositions in PTIME-DynFO
Future work

Some problems to investigate:

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with n players
- Computing good path or tree decompositions in PTIME-DynFO
- Model checking MSO in all graphs of tree width κ \hspace{1cm} (Datta et al. 17)
Future work

Some problems to investigate:

- Parity games with n priorities (\approx mean-payoff games)
- Nash equilibria with n players
- Computing good path or tree decompositions in PTIME-DynFO
- Model checking MSO in all graphs of tree width κ (Datta et al. 17)

Thank you