Phenol-Soluble Modulins Contribute to Early Sepsis Dissemination Not Late Local USA300-Osteomyelitis Severity in Rabbits

Benjamin Davido1*, Azzam Saleh-Mghir1, Frédéric Laurent2, Claire Danel3, Florence Couzon2, Laure Gatin1, François Vandenesch2, Jean-Philippe Rasigade2, Anne-Claude Crémieux1

1 Département de Médecine Aiguë Spécialisée, Hôpital Universitaire Raymond-Poincaré, Assistance Publique–Hôpitaux de Paris, Garches, and EA 3647, Faculté de Médecine Paris–Île-de-France Ouest, Université Versailles–Saint-Quentin, Versailles, France, 2 CIRI, International Center for Infectiology Research, Inserm U1111-CNRS UMR5308, ENS Lyon–Université Lyon 1, Hospices Civils de Lyon, Lyon, France, 3 Département de Pathologie, UFR de Médecine Paris 7, site Bichat, Paris, France

* benjamin.davido@aphp.fr

Abstract

Introduction

In bone and joint infections (BJIs), bacterial toxins are major virulence factors: Panton–Valentine leukocidin (PVL) expression leads to severe local damage, including bone distortion and abscesses, while α-hemolysin (Hla) production is associated with severe sepsis-related mortality. Recently, other toxins, namely phenol-soluble modulins (PSMs) expressed by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strain USA300 (LAC WT) were shown to have ex vivo intracellular cytotoxic activity after S. aureus invasion of osteoblasts, but their in vivo contribution in a relatively PVL-sensitive osteomyelitis model remains poorly elucidated.

Materials and Methods

We compared the outcomes of experimental rabbit osteomyelitis induced with pvl+ hla++ psmα LAC WT and its isogenic Δpsm derivatives (LAC Δpsmα and LAC Δpsmαβhld) using an inoculum of 3 × 10^8 CFUs. Mortality, hematogenous spread (blood culture, spleen and kidney), lung and bone involvements were assessed in two groups (non-survivors of severe sepsis and survivors sacrificed on day (D) 14).

Results

Severe sepsis-related mortality tended to be lower for Δpsm derivatives (Kaplan–Meier curves, P = .06). Non-survivors’ bone LAC-Δpsmα (6.9 log_{10} CFUs/g of bone, P = .04) or -Δpsmαβhld (6.86 log_{10} CFUs/g of bone, P = .014) densities were significantly higher than LAC WT (6.43 log_{10} CFUs/g of bone). Conversely, lung Δpsmαβhld CFUs were significantly lower than LAC WT (P = .04). LAC Δpsmα, Δpsmαβhld and WT induced similar bone damage in D14 survivors, with comparable bacterial densities (respectively: 5.89, 5.91, and...
6.15 log_{10} CFUs/g of bone). Meanwhile, pulmonary histological scores of inflammation were significantly higher for LAC Δpsma- and Δpsmaβhld-infected rabbits compared to LAC WT ($P = .04$ and $.01$, respectively) but with comparable lung bacterial densities.

Conclusion

Our experimental results showed that deactivating PSM peptides significantly limited bacterial dissemination from bone during the early phase of infection, but did not affect local severity of USA300 rabbit osteomyelitis.

Introduction

Since 1990, extensive spread in the United States of the community-associated methicillin-resistant *Staphylococcus aureus* (CA-MRSA) USA300 clone has been responsible for severe infections, including bone and joint infections (BJIs), especially in children [1]. BJIs represent up to 38% of pediatric CA-MRSA infections in the United States [2]. The global severity of CA-MRSA BJIs has been linked to local musculoskeletal involvement, including extraosseous abscesses, and the frequent need for surgical management [3,4], and systemic complications including severe sepsis and dissemination to the lungs [5,6].

Numerous CA-MRSA virulence factors have been identified [7], some of which appeared to play a specific role in the course of osteomyelitis. Panton—Valentine leukocidin (PVL), a phage-borne pore-forming toxin highly prevalent in CA-MRSA, was able to induce local complications, e.g. bone deformation and muscular abscesses in a rabbit osteomyelitis model [8]. PVL involvement in this context was further supported by the epidemiological association of PVL expression and clinical methicillin-susceptible *S. aureus* BJI severity [1]. CA-MRSA overexpression of another pore-forming toxin, α-hemolysin (Hla), was also shown to contribute to BJI pathogenesis [9]. We previously showed that Hla was associated with systemic complications, like severe sepsis-related mortality in CA-MRSA rabbit osteomyelitis [10].

In addition to PVL and Hla, secreted peptides called phenol-soluble modulins (PSMs) have been identified as key virulence factors that are also strongly expressed in staphylococci and CA-MRSA [11]. PSM-encoding genes appear in three distinct loci on the *S. aureus* chromosome. PSMs encoded by the first two loci have been designated PSMα and β. The third PSM locus encodes the δ-toxin; its open-reading frame is part of the RNAIII effector of the staphylococcal accessory-gene regulator (agr), a major two-component system coupled to a density-sensing cassette controlling the expression of most *S. aureus* virulence factors. All PSM-encoding genes are under *agr* control, either through the AgrA-mediated regulation pathway for *psma* and β, or as a consequence of the co-transcription with RNAIII, as for *hld* [12]. Thus, PSM expression is tightly coupled with staphylococcal quorum sensing through *agr*.

Several PSM biological functions impact pathogenesis and, possibly, the course of *S. aureus* osteomyelitis. PSMs are small peptides with amphipathic properties, allowing them to destabilize lipid bilayers at high concentrations. This activity has been linked to receptor-independent cytotoxicity to host cells, including neutrophils and osteoblasts, the bone-forming cells [13,14]. Moreover, receptor-dependent proinflammatory activation of neutrophils by PSMs was found, resulting from PSM detection by the neutrophil formyl-peptide receptor 2 (FRP2) [15]. Finally, PSMs can assemble into amyloid-like fibrillae, which contribute to stabilizing staphylococcal biofilms [16,17] and induce a tolerogenic phenotype in dendritic cells, contributing to bacterial
interference [12] and cell-cycle disruption [18]. These cytotoxic, proinflammatory and biofilm-enhancing properties could suggest PSM involvement in the in vivo outcome of osteomyelitis.

In previous in vivo studies on PSMs using a model of skin-and-soft-tissue infection, the LAC psmα-deleted strain, but not the other psm-deleted strains, was significantly less able to cause skin lesions in mice [11]. Also, Kobayashi et al demonstrated that PSMz and Hla contributed to the pathogenesis of USA300 skin infections in rabbits [19], whereas PSMα peptides had no impact in a PVL-negative ST72 CA-MRSA strain in a mouse model of skin infection [20]. Moreover, PSMs have been shown to facilitate dissemination from an infected catheter in a mouse model of biofilm-associate infection [21]. Furthermore, in a rabbit model of experimental endocarditis, Spaulding et al showed that deactivating PSMs delayed lethal sepsis but did not prevent mortality or valve lesions [22] and, thus, that they do not play a major role in infective endocarditis.

Concerning BJIs, PSMα expression was associated with extensive bone damage inducing the death of infected human osteoblasts in an ex vivo model of intracellular infection [14], whereas in a murine osteomyelitis model, PSMs enhanced cortical bone destruction [23]. Addressing in vivo PSM BJIs requires using a model sufficiently close to the human situation in terms of PVL susceptibility. In particular, murine models used in previous studies of PSM involvement in CA-MRSA osteomyelitis could not account for the PVL effect, because murine immune cells respond poorly to PVL [24], unlike those of rabbits that are highly PVL-sensitive [25]. Hence, disease outcomes as a function of PVL may differ between these species.

In this context, we sought to determine the contribution of PSMs to local and systemic osteomyelitis severity in a PVL-sensitive rabbit model of acute BJI, using the highly virulent USA300 CA-MRSA strain LAC, which expresses PSMs, Hla and PVL, and its isogenic derivatives lacking PSM expression.

Materials and Methods

We used the clinical S. aureus Los Angeles County wild-type strain (LAC-WT), and its isogenic Δpsm derivatives (LAC Δpsma and LAC Δpsmaβhld, respectively), all kindly provided by Frank Deleo, as for our previous studies. The strains were created and originated in Dr. Michael Otto’s laboratory and were previously described [11].

The Δpsm derivatives were constructed via allelic replacement with a spectinomycin-resistance cassette of the psmα and psmβ operons, as previously described [26], and by disrupting codon usage within the hld gene inside RNAIII to disable δ-toxin. Technical difficulties and cost prevented us from verifying modifications/confirming plasmid transfer with a gene-recomplementation assay.

Microorganisms were stored at −80°C until use. Prior to the experiments, bacteria were cultured in casein hydrolysate and yeast extract medium (CCY) at 37°C with shaking for 18 h. After centrifugation, the supernatants were passed through 0.22-μm filters, and the pellets were washed and resuspended in phosphate-buffered saline (PBS). All inocula were quantified by optical density (OD), then serial dilutions were plated on tryptic soy agar (bioMérieux, Paris, France).

Norden’s method [27] was used to induce osteomyelitis in female New Zealand white rabbits, weighing between 2 and 3 kg, housed in individual cages with ad libitum access to food and water, in compliance with French legislation on animal experimentation and with the approval of the Animal Use Committee of Maisons-Alfort Veterinary School. Rabbits were anesthetized by intramuscular injection of 25 mg/kg each of ketamine (Virbac, Carros, France) and 2% Xylazine (Bayer Santé, Division Santé Animal, Loos, France). An 18-gauge needle was inserted percutaneously through the right tibial metaphysis into the medullary cavity to
aspirate 0.4 mL of bone marrow. Infection was induced by direct injection of 0.1 mL of a sclerosing agent (3% sodium-tetradecyl sulfate), followed by 0.2 mL of inoculum (3 × 10⁸ colony-forming units (CFUs)) and 0.1 mL of saline to rinse the syringe. Fentanyl-patch analgesia was given for 7 days following surgery.

Animals were assigned to receive either LACΔpsma (n = 24) or LACΔpsmaβhld (n = 24) to evaluate the in vivo impact of PSMs. Nineteen LAC-WT—infected rabbits served as controls.

Macroscopic Appearance and Bacterial Densities in Bone and Lungs

Animals were monitored daily for general and local signs of osteomyelitis (mobility, leg appearance) and were weighed on inoculum and sacrifice days. Moribund animals (immobile, unable to be aroused from a recumbent position and unable to access food or water) were euthanized by rapid intravenous injection of pentobarbital. Otherwise, rabbits were observed until day (D)14 post-infection to assess PSM impact on the osteomyelitis time course.

Before death, venous blood was drawn for culture and serum samples were stored at −20°C for later antibody-profile determination.

On the day of death, lungs, right leg, spleen and kidneys were removed. Both lungs were weighed and visually examined. Left lungs were stored at −80°C until determination of bacterial densities and right lungs were embedded in paraffin for histological examination (scored 0–4: none, minimal, mild, moderate, severe, respectively) for diffusion, edema, congestion, hemorrhages, thrombi, inflammation, megakaryocytes, infarcts, abscesses, pleural involvement and bacterial density. Spleen and kidneys were crushed and cultured on blood agar to determine their infection status. Macroscopic appearance of the right leg was noted and photographed, and the upper third of the tibia was frozen for subsequent quantitative culture, as previously described [10].

Serum-Antibody Assay

Anti-PVL and -Hla antibodies were detected with specific enzyme-linked immunosorbent assays (ELISAs). Antibody levels are expressed as arbitrary units per mL (AU/mL), as previously described [10]. Anti-PSM antibodies could not be quantified.

Statistical Analyses

Percentages of hematogenous spread (positive blood, kidney and/or spleen cultures), bone deformations and abscesses were compared using Student’s t-test. Non-parametric Mann—Whitney U-tests were used to compare tibial bacterial counts and 2-way ANOVA with Tukey’s multiple comparisons tests for histological scores.

The Kaplan—Meier method was used to estimate survival mortality, with inoculation as time 0 and censoring at sacrifice on D14. Percentages of survivors were compared with the log-rank (Mantel—Cox) test (Fig 1).

Survivors’ antibody-titer changes between D0 and D14 were analyzed with paired Welch’s t-test after log10 transformation.

Results

We inoculated 48 rabbits with 3 × 10⁸ Δpsma (n = 24) or Δpsmaβhld (n = 24) CFUs; the two that died immediately post-anesthesia (1 each in Δpsma or Δpsmaβhld group) were excluded. Nineteen LAC-WT—infected rabbits served as controls.

D1 blood cultures were positive for 50% of the LAC-WT—infected rabbits tested vs. 65% of Δpsma—infected (P = .47) and 61% of Δpsmaβhld—infected animals (P = .72).
Ten (52%) LAC-WT—infected rabbits died of severe sepsis with disseminated infection between D0 and D7 (median: 4 days) compared to five (22%) of the ΔpsmA and seven (30%) of ΔpsmAβhld groups (P = .03 and .11, respectively), with respective median survival of 5 and 4 days (P = .53, non-significant (NS)). The lack of significantly different mortality rates between ΔpsmAβhld and WT groups, as opposed to the significantly different ΔpsmA group, was likely attributable to random fluctuation and small sample size rather than to a real difference between ΔpsmA and ΔpsmAβhld groups. Indeed, Kaplan—Meier survival curves (Fig 1) showed a trend towards lower mortality of ΔpsmA– and ΔpsmAβhld–infected rabbits (P = .06).

Most non-survivors had positive spleen (80% of ΔpsmA vs. 100% of ΔpsmAβhld and LAC WT, NS) and kidney (100% of all groups) cultures. Macroscopic examination of all non-survivors’ lungs found red and congestive lesions, as in the LAC-WT group. Their lung histological scores confirmed the comparability of ΔpsmA and ΔpsmAβhld vs. LAC-WT infections. However, LAC-WT bacterial lung densities were higher (8.19 (interquartile range (IQR), 7.55–8.23) log10 CFUs/g than ΔpsmAβhld (6.39 (IQR, 6.27–6.48) log10 CFUs/g P = .04), but comparable to ΔpsmA (6.79 (IQR 5.62–7.10) log10 CFUs/g, P = .25).

All non-survivors had infected bones, with median bacterial densities of 6.9 (IQR 6.85–6.96) log10 ΔpsmA CFUs/g and 6.86 (IQR, 6.81–7.38) ΔpsmAβhld log10 CFUs/g vs. 6.43 (IQR, 6.29–6.58) log10 LAC WT CFUs/g of bone (P = .04 and .014, respectively) (Fig 2A). As for LAC-WT—infected rabbits, rare microabscesses were found at the inoculation site (0% ΔpsmA, 20% ΔpsmAβhld vs. 20% LAC WT, NS) but no cortical deformation (NS).

Survivors were sacrificed on D14 to evaluate bones and organs (Fig 3). D14 ΔpsmA– and ΔpsmAβhld–infected survivors did not differ from LAC-WT—infected rabbits for hematogenous dissemination: 17%, 19% vs. 11% spleen-positive cultures (NS) and 34%, 44% vs. 11% positive kidney cultures (NS). Histological scores were comparable except for higher lung inflammation in ΔpsmA (P = .04) and ΔpsmAβhld (P = .01) than LAC-WT infections (Fig 2B), while mean (±SD) lung bacterial densities were comparable for the three groups (2.31 ± 1.04, 2.21 ± 0.39 vs. 2.03 ± 1.18 log10 CFUs/g, respectively; NS).

Unexpectedly, ΔpsmA and ΔpsmAβhld vs. LAC-WT strains, respectively, induced similar bone deformities (39% and 43% vs. 67%; P = .73 and .41), muscle abscesses (83% and 75% vs.
89%; NS), and bone bacterial density (5.89 (IQR, 4.71–6.63) log_{10} CFUs/g and 5.91 (IQR, 4.82–6.83) log_{10} CFUs/g) vs. (6.15 (IQR, 2.47–6.73) log_{10} CFUs/g) (P = .95 and .82) (Fig 2A).

D14 survivor’s titers were significantly higher than on D0 for anti-PVL (6.4-fold increase, 95% CI 2.9, 14.1; P = 3.5 × 10^{-5}, paired t-test of log_{10} values) and anti-Hla antibodies (41.3-fold increase, 95% CI 2.4, 45.8; P = 5.7 × 10^{-5}, paired t-test of log_{10} values) (Fig 2B).

Fig 2. Comparisons of osteomyelitis parameters observed in Δpsma (●○)-, Δpsmaβhld ▲△)- and with LAC-WT (◆◇)-infected non-survivors (black) and D14 survivors (white). (A) Median bacterial bone densities, expressed in log_{10} CFUs/g of bone. The Δpsma- or Δpsmaβhld-infected non-survivors differed significantly from those infected with LAC WT. (B) Mean histological scores (0–4: none, minimal, mild, moderate, severe) for lung involvement. The bacterial densities in Δpsmaβhld-infected non-survivors differed significantly from those infected with LAC WT (*P = .017), whereas inflammation was more severe in Δpsmaβhld- and Δpsma-infected D14 survivors than those infected with LAC WT (**P = .04 and ***P = .01, respectively).

doi:10.1371/journal.pone.0157133.g002
increase, 95% CI 18.1, 96.8; $P = 2.9 \times 10^{-10}$), thereby confirming a significant immune response towards the two toxins. Survivors’ and non-survivors’ D0 anti-PVL and anti-Hla antibody titers were similar (Fig 4).

Discussion

Our experimental model closely reproduces features of severe acute osteomyelitis seen in children with about half of the LAC-WT—infected rabbits dying within 7 days of severe sepsis, bacteremia, and high bone and lung bacterial densities associated with histological lung lesions, while D14 survivors developed severe bone infections with deformation and abscesses.

![Macroscopic findings after challenge with a high inoculum of CA-MRSA USA300. (A) Pulmonary hemorrhages demarcated by hyperemic regions in both lungs. (B) Abscesses in the left lung indicating disseminated infection. (C) White circled muscle abscess in the right leg. (D) Bone marrow filled with pus indicating osteomyelitis. (E) Splenomegaly with necrosis observed after disseminated sepsis.](https://doi.org/10.1371/journal.pone.0157133.g003)
Our main results demonstrated that, during the early first phase of acute disseminated severe sepsis, deactivating PSMs tended to limit sepsis-attributable mortality, albeit not significantly.

Δpsmαβhld-infected non-survivors had more bone CFUs than LAC-WT—infected non-survivors. In contrast, the former non-survivors had lower lung CFUs. This result can

Fig 4. Serum anti-PVL—and -Hla—antibody titers in a rabbit model of S. aureus LAC experimental osteomyelitis. Survivors' and non-survivors' Initial anti-PVL (A) and -Hla titers (C) did not differ significantly. Survivors had significantly higher anti-PVL (B) and -Hla (D) antibody levels between D0 (inoculation) and D14 (sacrifice) (P < .001). Welch’s t-test analyses of paired (B, D) or unpaired (A, C) log10 values.

doi:10.1371/journal.pone.0157133.g004
appear to be inconsistent with the bacterial lung histological score. However, bacterial enumeration by CFU counting is more reliable because (i) based on a larger sample size (tissue homogenate of a large piece of tissue) and (ii) assessing living but not dead cells.

These findings agree with the previously described role of PSMs in facilitating bacterial dissemination from an infected catheter in a mouse model [21, 28], a biofilm-associated infection like BJI. Conversely, during the second phase of subacute osteomyelitis (D14), deactivating PSMs did not modify bone CFUs, abscesses or deformities, in contrast to what could have been anticipated based on previous in vitro and ex vivo observations of PSMs’ osteoblast cytotoxicities [14].

The impact of PSMs (mainly PSMα) during the early phase of severe sepsis could be due to elevated production of agr-dependent toxins, including Hla and PSMs [29], especially by the LAC-WT strain. Although PSM deletion resulted in lower mortality, the effect was not significant, in contrast to previous observations with Hla [10].

Alternatively, the absence of PSMs’ effect on bone damage in D14 survivors could be explained by two hypotheses. First, agr might be less expressed during this late phase of osteomyelitis, considered a localized biofilm infection [29]. That possibility underlines the need to study the impact of virulence factors in a subacute osteomyelitis model (D14) with long-term animal survival [14]. Second, a potential PSM effect could have been masked by the impact of PVL, which plays a major role by enhancing rapid local spread of rabbit osteomyelitis with extrascutaneous infection extension, especially muscle abscesses [8], or by other toxins, e.g. Hla, which has been associated with severe sepsis-related mortality [10]. PSMs are by far the most abundant protein secreted by S. aureus (70–80%), much more than Hla or PVL [30]. Our results do not exclude a possible PSM effect on osteomyelitis caused by PVL-negative S. aureus isolates. A double-mutant strain Δpvl–Δpsmαβhld would have helped test this hypothesis, but we were unsuccessful in constructing one.

Our results do not corroborate those of Cassat et al, who showed that PSMα significantly limited bone remodeling in mice after creation of a cortical defect in the femur and local inoculation of 1 × 10⁶ LAC-WT or Δpsmα1–4 CFUs [23]. However, it should be stressed that their model of post-traumatic localized osteomyelitis is far from what was encountered in children with primary CA-MRSA osteomyelitis [1,2,4,5,31].

Finally, because PSMs were shown to play a proinflammatory role by inducing neutrophil activation and cytokine release through the through human formyl-peptide receptor-2 (FPR2) pathway, the higher pulmonary inflammation scores for Δpsmα and Δpsmαβhld groups were also unexpected [15]. Our results cannot be explained by the comparable lung bacterial densities of Δpsmαβhld and LAC-WT groups. FPR2 is known to be expressed by several epithelial tissues including human, mouse and rat lungs. However, FPR expressed by rabbits is only 68% homologous to FPR2. Also, FPR2 can be triggered by different ligands and induce pro- or anti-inflammatory responses [32]. Therefore, we think the pulmonary inflammation seen in experimental rabbit osteomyelitis might involve other pathways and cytokines, which would support our results.

In conclusion, our results showed that deactivating PSMs prevented bacterial dissemination from bone during the early stage of the infection, but did not impact the local severity of rabbit USA300 osteomyelitis during the later stage. In agreement with our earlier work on PVL and Hla involvements in CA-MRSA osteomyelitis [8,10], these new findings confirmed that PVL expression in a susceptible host, e.g. rabbit, is the major cause of abscesses and bone damage, potentially masking PSM effects. Nevertheless, PSMs and their modulation by the staphylococcal PSM-degrading protease aureolysin might remain important bone-damaging factors in PVL-insensitive hosts [23] and perhaps in PVL-negative S. aureus. This strong dependence of staphylococcal osteomyelitis pathophysiology on host susceptibility factors and the infecting
strain’s toxin-gene content are exemplary of the difficulties that must be overcome to improve our understanding of this disease. Beyond the pathogenic role of toxins, other bacterial factors related to quorum sensing and hypoxic response in poorly oxygenated bone tissue are likely equally important to establish bone infection, as recently demonstrated by comparisons of \textit{S. aureus} genes essential to infection in abscess and osteomyelitis models \cite{33,34}. Among the intricate array of staphylococcal virulence factors known to contribute to osteomyelitis so far, Hla is the only one that: measurably influences local and systemic outcomes, even in the presence of PVL \cite{10}; is common to virtually all \textit{S. aureus} lineages \cite{35}; and is already targeted by a monoclonal antibody being tested in a clinical trial (study identifier NCT02296320) to treat \textit{S. aureus} infection \cite{36}. In this context, it seems reasonable to designate Hla as a more promising target than PSMs to treat severe CA-MRSA osteomyelitis, in agreement with recent conclusions drawn from a mice model of skin and soft tissue infection \cite{20}.

\textbf{Acknowledgments}

The authors thank the Raymond Poincaré University Hospital and Infectious Diseases Colleagues: Aurore Lagrange and Aurélien Dinh for their support and Janet Jacobson for editorial assistance.

\textbf{Author Contributions}

Conceived and designed the experiments: BD JPR AS FV FL ACC. Performed the experiments: BD AS LG CD. Analyzed the data: BD ACC. Contributed reagents/materials/analysis tools: BD JPR AS FC FV FL ACC. Wrote the paper: BD ACC.

\textbf{References}

1. Dohin B, Gillet Y, Kohler R, Lina G, Vandenesch F, Vanhems P, et al. Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J. nov 2007; 26(11):1042–8. PMID:17984813
2. Iwamoto M, Mu Y, Lynfield R, Bulens SN, Nadle J, Aragon D, et al. Trends in invasive methicillin-resistant \textit{Staphylococcus aureus} infections. Pediatrics. oct 2013; 132(4):e817–824. doi: 10.1542/peds.2013-1112 PMID: 24062373
3. Martínez-Aguilar G, Avalos-Mishaan A, Hulten K, Hammerman W, Mason EO, Kaplan SL. Community-acquired, methicillin-resistant and methicillin-susceptible \textit{Staphylococcus aureus} musculoskeletal infections in children. Pediatr Infect Dis J. août 2004; 23(8):701-6. PMID:15295218
4. Arnold SR, Elias D, Buckingham SC, Thomas ED, Novais E, Arkader A, et al. Changing patterns of acute hematogenous osteomyelitis and septic arthritis: emergence of community-associated methicillin-resistant \textit{Staphylococcus aureus}. J Pediatr Orthop. déc 2006; 26(6):703-8. PMID: 15295218
5. Gonzalez BE, Martínez-Aguilar G, Hulten KG, Hammerman WA, Coss-Bu J, Avalos-Mishaan A, et al. Severe \textit{Staphylococcal} sepsis in adolescents in the era of community-acquired methicillin-resistant \textit{Staphylococcus aureus}. Pediatrics. mars 2005; 115(3):642-8. PMID: 15741366
6. Gonzalez BE, Hulten KG, Dishop MK, Lambeth LB, Hammerman WA, Mason EO, et al. Pulmonary manifestations in children with invasive community-acquired \textit{Staphylococcus aureus} infections. Clin Infect Dis Off Publ Infect Dis Soc Am. 1 sept 2005; 41(5):583-90.
7. Otto M. Basis of virulence in community-associated methicillin-resistant \textit{Staphylococcus aureus}. Annu Rev Microbiol. 2010; 64:143-62. doi: 10.1146/annurev.micro.112408.134309 PMID: 20825344
8. Crémieux A-C, Dumitrescu O, Lina G, Vallée C, Côté J-F, Muffat-Joly M, et al. Panton-valentine leukocidin enhances the severity of community-associated methicillin-resistant \textit{Staphylococcus aureus} rabbit osteomyelitis. PloS One. 2008; 4(9):e7204. doi: 10.1371/journal.pone.0007204 PMID: 18977908
9. Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in \textit{Staphylococcus aureus} pneumonia. Nat Med. déc 2007; 13 (12):1405-6. PMID: 18064027
10. Crémieux A-C, Saleh-Mghir A, Danel C, Couzon F, Dumitrescu O, Lilin T, et al. \textit{α}-Hemolysin, not Panton-Valentine leukocidin, impacts rabbit mortality from severe sepsis with methicillin-resistant
Staphylococcus aureus osteomyelitis. J Infect Dis. 1 juin 2014; 209(11):1773-80. doi: 10.1093/infdis/jit840 PMID: 24376272

11. Wang R, Braughton KR, Kretscher D, Bach T-HL, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. déc 2007; 13(12):1510-4. PMID: 17994102

12. Peschel A, Otto M. Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol. oct 2013; 11(10):667-73. doi: 10.1038/nrmicro3110 PMID: 24018382

13. Surewaard BGJ, de Haas CJC, Vervoort F, Rigby KM, DeLeo FR, Otto M, et al. Staphylococcal alphaphenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. août 2013; 15(8):1427-37. doi: 10.1111/cmi.12130 PMID: 23470014

14. Rasigade J-P, Trouillet-Assant S, Ferry T, Diep BA, Sapin A, Lhoste Y, et al. PSMs of hypervirulent Staphylococcus aureus act as intracellular toxins that kill infected osteoblasts. PloS One. 2013; 8(5): e63176. doi: 10.1371/journal.pone.0063176 PMID: 23690994

15. Kretscher D, Gleske A-K, Rautenberg M, Wang R, Köberle M, Bohn E, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe. 25 juin 2010; 7(6):463-73. doi: 10.1016/j.chom.2010.05.012 PMID: 20542250

16. Schwartz K, Syed AK, Stephenson RE, Rickard AH, Boles BR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 2012; 8(6):e1002744. doi: 10.1371/journal.ppat.1002744 PMID: 22685403

17. Periasamy S, Chatterjee SS, Cheung GYC, Otto M. Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol. 1 mai 2012; 5(3):275-7. doi: 10.4161/cib.19420 PMID: 22896791

18. Deplanche M, Filho RAE-A, Alekseeva L, Ladiere E, Jardin J, Henry G, et al. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells. FASEB J Off Publ Fed Am Soc Exp Biol. mai 2015; 29(5):1950-9.

19. Kobayashi SD, Malachowa N, Whitney AR, Braughton RA, Gardner DJ, Long D, et al. Comparative analysis of USA300 virulence determinants in a rabbit model of skin and soft tissue infection. J Infect Dis. 15 sept 2011; 204(6):937-41. doi: 10.1093/infdis/jir441 PMID: 21849291

20. Chen Y, Yeh AJ, Cheung GYC, Villaruz AE, Tan VY, Joo H-S, et al. Basis of virulence in a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain. J Infect Dis. 1 févr 2015; 211(3):472-80. doi: 10.1093/infdis/jiu462 PMID: 25139021

21. Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A. 24 janv 2012; 109(4):1281-6. doi: 10.1073/pnas.1115006109 PMID: 22232686

22. Spaulding AR, Satterwhite EA, Lin Y-C, Chuang-Smith ON, Frank KL, Merriman JA, et al. Comparison of Staphylococcus aureus strains for ability to cause infective endocarditis and lethal sepsis in rabbits. Front Cell Infect Microbiol. 2012; 2:18. doi: 10.3389/fcimb.2012.00018 PMID: 22919610

23. Cassat JE, Hammer ND, Campbell JP, Benson MA, Perrien DS, Mrak LN, et al. A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe. 12 juin 2013; 13(6):759-72. doi: 10.1016/j.chom.2013.05.003 PMID: 23768499

24. Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, et al. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe. 15 mai 2013; 13(5):584-94. doi: 10.1016/j.chom.2013.04.006 PMID: 23684309

25. Li M, Cheung GYC, Hu J, Wang D, Joo H-S, DeLeo FR, et al. Comparative Analysis of Virulence and Toxin Expression of Global Community-Associated Methicillin-Resistant Staphylococcus aureus Strains. J Infect Dis. 15 déc 2010; 202(12):1866-76. doi: 10.1086/657419 PMID: 21050125

26. Vuong C, Götz F, Otto M. Construction and Characterization of an agr Deletion Mutant of Staphylococcus epidermidis. Infect Immun. mars 2000; 68(3):1048-53. PMID: 10678906

27. Norden CW. Experimental osteomyelitis. I. A description of the model. J Infect Dis. nov 1970; 122(5):410-8. PMID: 5476391

28. Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013; 64:175-88. doi: 10.1146/annurev-med-042711-140023 PMID: 22906361

29. Kong K-F, Vuong C, Otto M. Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol IJMM. avr 2006; 296(2):133-9.

30. Periasamy S, Chatterjee SS, Cheung GYC, Otto M. Phenol-soluble modulins in staphylococci. Commun Integr Biol. 1 mai 2012; 5(3):275-7. doi: 10.4161/cib.19420 PMID: 22896791
31. Vardakas KZ, Kontopidis I, Gkegkes ID, Rafailidis PI, Falagas ME. Incidence, characteristics, and outcomes of patients with bone and joint infections due to community-associated methicillin-resistant Staphylococcus aureus: a systematic review. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. juin 2013; 32(6):711-21.

32. Horewicz VV, Crestani S, de Sordi R, Rezende E, Assreuy J. FPR2/ALX activation reverses LPS-induced vascular hyporeactivity in aorta and increases survival in a pneumosepsis model. Eur J Pharmacol. 5 janv 2015; 746:267-73. doi:10.1016/j.ejphar.2014.11.026 PMID: 25478948

33. Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA, Santa Maria J, et al. Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. mBio. 2014; 5(5):e01729-1714. doi:10.1128/mBio.01729-14 PMID: 25182329

34. Wilde AD, Snyder DJ, Putnam NE, Valentino MD, Hammer ND, Lonergan ZR, et al. Bacterial Hypoxic Responses Revealed as Critical Determinants of the Host-Pathogen Outcome by TnSeq Analysis of Staphylococcus aureus Invasive Infection. PLoS Pathog. déc 2015; 11(12):e1005341. doi:10.1371/journal.ppat.1005341 PMID: 26684646

35. Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol. 2012; 2:12. doi:10.3389/fcimb.2012.00012 PMID: 22919604

36. Hua L, Cohen TS, Shi Y, Datta V, Hilliard JJ, Tkaczyk C, et al. MEDI4893* Promotes Survival and Extends the Antibiotic Treatment Window in a Staphylococcus aureus Immunocompromised Pneumonia Model. Antimicrob Agents Chemother. 2015 Aug; 59(8):4526-32. doi:10.1128/AAC.00510-15 PMID: 25987629