LYMPH-NODE-FIRST PRESENTATION OF KAWASAKI DISEASE IN A 12-YEAR-OLD GIRL WITH CERVICAL LYMPHADENITIS CAUSED BY *MYCOPLASMA PNEUMONIAE*: A CASE REPORT

Nayoung Kim, Young-Jin Choi, Jae Yoon Na, Jae-Won Oh

BACKGROUND
To the best of our knowledge, cases of Kawasaki disease (KD) occurring at the age of 12 are rare, even in Asia where the incidence of KD is high. We report a case of lymph-node-first presentation of KD (NFKD) in a 12-year-old girl with *Mycoplasma pneumoniae* (*M. pneumoniae*) infection who presented with prolonged fever and lymphadenitis refractory to macrolide antibiotics.

CASE SUMMARY
A previously healthy 12-year-old girl presented with fever, myalgia, sore throat, swelling, and tenderness on the right side of the neck. She was initially diagnosed with lymphadenitis caused by *M. pneumoniae* refractory to macrolide antibiotics. She had elevated brain natriuretic peptide (BNP) levels. Finally, the patient was diagnosed with KD. After receiving intravenous immunoglobulin, the fever resolved, and her symptoms improved.

CONCLUSION
NFKD should be differentiated from adolescent lymphadenitis presenting with prolonged fever by checking the BNP level early.

Key Words: Lymphadenopathy; *Mycoplasma pneumoniae*; Node-first presentation of Kawasaki disease; Case report
Core Tip: We report the case of a 12-year-old girl with lymphadenitis caused by *Mycoplasma pneumoniae* refractory to macrolide antibiotics. The fever persisted, and the patient did not respond to macrolide (clarithromycin) administered for 72 h. The brain natriuretic peptide (BNP) level, additionally measured to diagnose atypical Kawasaki disease (KD), was 427.2 ng/mL. A slight QT interval prolongation and a dilated right coronary artery were detected. She was finally diagnosed with lymph-node-first presentation of KD. Even if adolescent lymphadenitis with confirmed bacterial or viral infection does not have other symptoms of KD, early measurement of BNP levels can help diagnose KD.

Case Presentation

Chief complaints
A previously healthy 12-year-old girl presented to our hospital with fever, myalgia, sore throat, swelling, and tenderness on the right side of the neck on August 27, 2018.

History of present illness
She had fever, sore throat, and severe swelling of the left cervical lymph node (LN) for 4 d before hospital presentation. Furthermore, she had severe pain and tenderness in the swollen neck, which also limited the neck movement. As the fever worsened, she underwent treatment with antibiotics (amoxicillin) and antipyretics (non-steroidal anti-inflammatory drugs and acetaminophen) at a local clinic. However, the symptoms did not improve; thus, she was referred to a general hospital. She was hospitalized on fever day 4.

History of past illness
The patient’s medical history was unremarkable. Her physical and neurological developments were normal.

Personal and family history
Family and genetic history of the patient was unremarkable.
Physical examination
The patient's height and weight were 152.7 cm and 41.5 kg, respectively. Her vital signs at admission were as follows: body temperature, 39 °C; blood pressure, 100/60 mmHg; heart rate, 96 beats/min; respiratory rate, 22 breaths/min; and oxygen saturation, 99% at room air. She was alert, but looked ill and dehydrated. At the time of admission, she had severe left neck swelling and pain, which hindered her from moving her neck to the left. Other than the red tonsils, she had no other notable symptoms, such as red lips, strawberry tongue, conjunctival infection, rash, and edema of the hands and feet.

Laboratory examinations
Serum laboratory results showed elevated white blood cell count (WBC), C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), and liver enzyme level, which were as follows: WBC count, 14.7 × 10^3/mm^3; hemoglobin, 11.5 g/dL; platelet count, 242 × 10^3/mm^3; ESR, 120 mm/h; CRP, 6.44 mg/dL; alanine aminotransferase (ALT), 459 U/L; aspartate aminotransferase (AST), 650 U/L; and total bilirubin, 0.9 mg/dL. Prothrombin time and activated partial thromboplastin time were within normal ranges. Urinary analysis results were normal. There was no pyuria. She tested negative for Epstein-Barr virus (EBV), hepatitis virus, and respiratory virus. However, she tested positive for MP immunoglobulin M (IgM), with an index of 13. The results of MP are expressed as an index (ratio between the optical density of the test sample and that of the cut-off value) that could be used as a quantitative measure, as it is proportional to the amount of specific IgM present. The test serum is considered positive when the ratio is > 10^10^.

Imaging examinations
Neck computed tomography (CT) revealed a 2.5 cm × 2.0 cm × 3.2 cm acute infectious lymphadenitis with perilesional infiltration and necrosis (Figure 1).

Initial diagnosis
The patient was diagnosed with lymphadenitis caused by MP (Mycoplasma IgM ratio: 13).

Initial treatment
She was treated with intravenous (IV) antibiotics [third-generation cephalosporin (cefotaxime 150 mg/kg/d) + macrolide (clarithromycin 15 mg/kg/d) + clindamycin (full gram 25 mg/kg/d)] and silymarin (legalon 70 mg/d) on the first day of hospitalization.

Clinical course
On hospital day 3, the test results showed mild improvement, with CRP level of 5.71 mg/dL and AST and ALT levels of 85 U/L and 198 U/L, respectively. However, the fever, cervical edema, severe pain, and tenderness persisted without improvement. On hospital day 4, the fever persisted (day 8 of fever) and the patient had very slight conjunctival hyperemia in the morning. The patient did not respond to macrolide (clarithromycin) administered for 72 h. Therefore, we suspected a refractory MP infection. We also measured the brain natriuretic peptide (BNP) level to diagnose atypical KD because of the slight conjunctival hyperemia. The BNP level was 427.2 ng/mL (normal: < 100 ng/mL). Additional cardiac work-up included an echocardiography (ECG), which showed a slight QT interval prolongation (corrected QT interval: 489 ms) (Figure 2A) and a dilated right coronary artery (RCA diameter; 4.73 mm, Z score: 4.62, by Boston method) and left coronary artery [LCA diameter; 2.35 mm, Z score: -1.73, (Boston method); Figure 3]. Cardiac CT, performed to accurately evaluate the degree of coronary artery dilatation, revealed a multifocal ectatic change of the entire RCA (Figure 4).

FINAL DIAGNOSIS
Finally, the patient was diagnosed with NFKD. The patient’s fever subsided on the second day of treatment, and her general condition, symptoms, and laboratory findings gradually improved.

TREATMENT
A new treatment was initiated. Intravenous immunoglobulin (IVIG; 2 g/kg/d) and oral high-dose aspirin (50 mg/kg/d) were administered 5 d post-admission and 10 d after the onset of fever. Lymphedema, pain, and tenderness improved 3 d after IVIG treatment. On hospital day 8, the patient recovered and was discharged from the hospital. After discharge, the patient was placed on maintenance therapy with low-dose aspirin (5 mg/kg/d).
Kim N et al. Lymph-node-first presentation of KD

Figure 1 Neck computed tomography horizontal (A) and coronal (B) views showing perilesional infiltration (yellow arrow) and necrosis (orange arrow) as acute infectious lymphadenitis. Neck computed tomography reveals a 2.5 cm × 2.0 cm × 3.2 cm-sized acute infectious lymphadenitis with perilesional infiltration and necrosis.

Figure 2 Serial echocardiography findings. A: Prolonged QT interval was detected on echocardiography on hospital day 4 (red arrow); B: QT interval was gradually shortened in serial echocardiography at 2 month after discharge and finally completely normalized 2 years after discharge (blue arrow).

OUTCOME AND FOLLOW-UP

ECG performed at 1 mo after discharge showed improvement, with an RCA diameter of 3.40 mm (Z score= 1.68) and an LCA diameter of 0.26 mm (Z score= -1.17) by the Boston method; ECG performed 3 mo later showed further improvement, with an RCA diameter of 2.32 mm (Z score= -0.72 mm), an LCA diameter of 2.90 mm (Z score= -0.64), and a normal QT interval (0.36 s). Two months later, the ESR improved to 20 mm/h (Figure 5). At the 2-year follow-up evaluation, she remained healthy without any sequelae, including a normal QT interval (Figure 2B), and all blood test results showed normal findings.

DISCUSSION

We present the case of a 12-year-old female adolescent who was diagnosed with KD while undergoing treatment for fever and LN swelling.
Given that the patient was 12 years old, an age that is beyond the common age of onset of KD, and was confirmed to have MP infection, we had initially excluded the possibility of LN swelling caused by KD and treated the patient only for MP-induced cervical lymphadenitis. Eventually, the fever persisted, and after measuring the BNP level on day 9 of fever, we diagnosed the patient with NFKD and began treatment accordingly.

MP is known to produce superantigens, and various studies have reported MP as a KD-causing agent [11-15]. A case of cutaneous vasculitis induced by MP, through immune-complex-mediated mechanisms, has been reported [15]. In Perez et al’s [16] study, 12 of 54 (22.2%) patients with concurrent KD and pneumonia had anti-MP antibody titers ≥ 1:640. MP infection is highly correlated with KD induction. Therefore, it is essential to consider KD as an accompanying disease or a differential diagnosis in cases of MP infection [17,18].

Some studies have shown that the time of receiving the initial IVIG treatment was significantly later in incomplete KD cases than in complete KD cases (median: 7 d from the onset of fever in incomplete KD vs 5 d from the onset of fever in complete KD) [19]. Compared to these cases, the patient in the present case had a delayed diagnosis. The patient also had cardiovascular complications, such as QT prolongation and coronary artery dilatation, at the time of diagnosis.

Due to the growing number of reports of atypical KD that do not satisfy the conventional diagnostic criteria, clinicians have strived to diagnose atypical KD in a timely manner [20]. Atypical KD frequently affects infants aged < 1 year [20]. According to some reports, the incidence of major clinical symptoms of KD, with the exception of oral mucosal changes, was significantly lower in atypical KD than in typical KD, with the former having the lowest incidence of cervical lymphadenopathy and atypical rash [21-23].

Atypical KD, which has attracted much interest in recent years, occurs in young patients and more often shows oral erythema, compared to LN swelling. Therefore, it is difficult to suspect KD in NFKD cases occurring in older adolescent patients with a confirmed case of infection and only LN swelling presentation, such as in our case [21,22].

One previous study reported that patients with NKFD frequently develop cardiovascular complications and have delayed IVIG treatment and that NKFD itself may be a risk factor for cardiovascular complications [23-7,25,24]. The reason for this is that delayed diagnosis and treatment, as shown in our case, lead to fever persisting for a prolonged period and may cause coronary artery complications [24].
Figure 5 Chronological evolution of the case including symptoms, laboratory data, and treatment during hospitalization. WBC: White blood cell; PLT: Platelet; ESR: Erythrocyte sedimentation rate; IVIG: Intravenous immunoglobulin.

The main goal of the diagnosis and treatment of KD is to prevent coronary artery complications that can cause myocardial infarction or sudden death. Given that using IVIG early after onset can reduce the incidence of such serious complications, early diagnosis and treatment are crucial for NFKD\[24,25\]. Yanagi et al\[8\] reported that the levels of leukocytes, absolute neutrophils, CRP, and AST were higher in the NFKD group than in the BCL group. However, in Kanegaye et al\[6\]’s study, the ESR and the levels of CRP, blood pigment, platelets, ALT, and gamma-glutamyl transferase also showed significant differences between the two groups. Several studies have suggested that early BNP testing is useful for the early differentiation of NFKD from BCL\[25,26\]. Based on these findings, it will be helpful to measure BNP levels in the early stages of cervical lymphadenitis in patients with persistent fever that does not respond to antibiotic treatment. Moreover, measuring BNP levels at an early stage in patients with fever and LN swelling and in cases in which cardiac evaluation is difficult would be conducive for an early diagnosis of NFKD.

We report this case to show that the occurrence of NFKD is possible even in adolescents aged ≥ 10 years who are being treated for a confirmed infection due to a different bacterial pathogen, such as MP, with fever only, which persists for > 5 d, and LN swelling.

CONCLUSION

Clinicians should always consider the possibility of NFKD when making a differential diagnosis in pediatric patients with LN swelling and fever that persist for > 5 d and who do not respond to general antibiotics, even when the patient is older than the age group commonly affected by KD. Prompt diagnosis and timely initiation of IVIG are crucial for KD, because if diagnosed later, patients may have serious heart complications. Moreover, BNP levels should be measured early for this purpose.

FOOTNOTES

Author contributions: Choi YJ, Na JY, and Kim N planned and designed the study; Choi YJ and Kim N wrote the main manuscript text and prepared the figures; Choi YJ, Na JY, and Oh JW revised the manuscript.

Informed consent statement: We obtained parental consent for this case report.

Conflict-of-interest statement: The authors declare no conflict of interests for this article.

DOI: 10.1299/wjcc.v10.i10.3170 Copyright ©The Author(s) 2022.
Kim N et al. Lymph-node-first presentation of KD

CARE Checklist (2016) statement: The authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: South Korea

ORCID number: Nayoung Kim 0000-0003-0417-0421; Young-Jin Choi 0000-0001-7784-4367; Jae Yoon Na 0000-0002-0465-7902; Jae-Won Oh 0000-0003-2714-0655.

S-Editor: Zhang YL
L-Editor: A
P-Editor: Zhang YL

REFERENCES

1. Rogers MF, Kochel RL, Hurwitz ES, Jillson CA, Hanrahan CA, Schonberger LB. Kawasaki syndrome. Is exposure to rug shampoo important? Am J Dis Child 1985; 139: 777-779 [PMID: 4025256 DOI: 10.1001/archpedi.1985.02140100039022]

2. Kim GB, Park S, Eun LY, Han JW, Lee SY, Yoon KL, Yu JJ, Choi JW, Lee KY. Epidemiology and Clinical Features of Kawasaki Disease in South Korea, 2012-2014. Pediatr Infect Dis J 2017; 36: 482-485 [PMID: 27997519 DOI: 10.1097/INF.0000000000001474]

3. McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, Baker AL, Jackson MA, Takahashi M, Shah PB, Kobayashi T, Wu MH, Saji TT, Pahl E. American Heart Association. Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young: Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; and Council on Epidemiology and Prevention. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017; 135: e927-e999 [PMID: 28356445 DOI: 10.1161/CIR.000000000000484]

4. Thapa R, Chakrabarty S. Atypical Kawasaki disease with remarkable paucity of signs and symptoms. Rheumatol Int 2009; 29: 1095-1096 [PMID: 19381640 DOI: 10.1007/s00296-009-0899-2]

5. Nomura Y, Arata M, Koriyama C, Masuda K, Morita Y, Hazeki D, Ueno K, Eguchi T, Kawano Y. A severe form of Kawasaki disease presenting with only fever and cervical lymphadenopathy at admission. J Pediatr 2010; 156: 786-791 [PMID: 20097335 DOI: 10.1016/j.jpeds.2009.11.042]

6. Kanegaye JT, Van Cott E, Tremoulet AH, Salgado A, Shimizu A, Kruk P, Hauschildt J, Sun X, Jain S, Burns JC. Lymph-node-first presentation of Kawasaki disease compared with bacterial cervical adenitis and typical Kawasaki disease. J Pediatr 2013; 162: 1259-1263 [PMID: 23309595 DOI: 10.1016/j.jpeds.2012.11.064]

7. Stamos JK, Corydon K, Donaldson J, Shulman ST. Lymphadenitis as a dominant manifestation of Kawasaki disease. Pediatrics 1994; 93: 525-528 [PMID: 8115224]

8. Yanagi S, Nomura Y, Masuda K, Koriyama C, Sameshima K, Eguchi T, Imamura M, Arata M, Kawano Y. Early diagnosis of Kawasaki disease in patients with cervical lymphadenopathy. Pediatr Infect Dis 2008; 27: 179-183 [PMID: 18353055 DOI: 10.1095/1442-200X.2008.25474.x]

9. Kao HT, Huang YC, Lin TY. Kawasaki disease presenting as cervical lymphadenitis or deep neck infection. Otolaryngol Head Neck Surg 2001; 124: 468-470 [PMID: 11283510 DOI: 10.1067/mhn.2001.114796]

10. Kim S, Um TH, Cho CR. Evaluation of chorus Mycoplasma pneumoniae IgM assay for the serological diagnosis of Mycoplasma pneumoniae infection. J Lab Med Qual Assur 2012; 34: 57-62

11. Martíre B, Foti C, Cassano N, Buquicchio R, Del Vecchio GC, De Mattia D. Persistent B-cell lymphopenia, multiorgan dysfunction due to Mycoplasma pneumoniae infection with mycoplasmal bacteraemia without pneumonia. J Lab Med Qual Assur 2013; 113: 65 [PMID: 23615250 DOI: 10.1097/01.NAJ.0000430240.42621.16]

12. Christie J. Diagnosing Mycoplasma pneumoniae in children and adolescents with community-acquired pneumonia. Am J Nurs 2013; 113: 16 [PMID: 23615250 DOI: 10.1097/01.NAJ.0000430240.42621.16]

13. Naitra M, Yamada S, Nakayama T, Sawada H, Nakajima M, Sageshima S. Two cases of lymphadenopathy with liver dysfunction due to Mycoplasma pneumoniae infection with mycoplasmal bacteriaemia without pneumonia. J Infect 2001; 42: 154-156 [PMID: 11351323 DOI: 10.1053/jinf.2000.0769]

14. Romero-Gómez M, Otero MA, Sánchez-Muñoz D, Ramírez-Arcos M, Larraona JL, Suárez Garcia E, Vargas-Romero J. Acute hepatitis due to Mycoplasma pneumoniae infection without lung involvement in adult patients. J Hepatol 2006; 44: 827-828 [PMID: 16843682 DOI: 10.1016/j.jhep.2005.12.014]

15. Duxboeck F, Gattrenger R, Mustafa S, Bauer C, Assadian O. Elevated serum alanine aminotransferase (ALT) levels in patients with serologically verified Mycoplasma pneumoniae pneumonia. Clin Microbiol Infect 2005; 11: 507-510 [PMID: 15882205 DOI: 10.1111/j.1469-0691.2005.01154.x]

16. Perez C, Montes M. Cutaneous leukocytoclastic vasculitis and encephalitis associated with Mycoplasma pneumoniae infection. Arch Intern Med 2002; 162: 352-354 [PMID: 11822929 DOI: 10.1001/archinte.162.3.352]
17 Wang JN, Wang SM, Liu CC, Wu JM. Mycoplasma pneumoniae infection associated with Kawasaki disease. *Acta Paediatr* 2001; **90**: 594-595 [PMID: 11430729 DOI: 10.1111/j.1651-2227.2001.tb00810.x]

18 Vitale EA, La Torre F, Calcagno G, Infrieciori G, Fede C, Conti G, Chimenz R, Falcini F. Mycoplasma pneumoniae: a possible trigger of Kawasaki disease or a mere coincidental association? *Minerva Pediatr* 2010; **62**: 605-607 [PMID: 21042274]

19 Sudo D, Monobe Y, Yashiro M, Mieno MN, Uehara R, Tsuchiya K, Sonobe T, Nakamura Y. Coronary artery lesions of incomplete Kawasaki disease: a nationwide survey in Japan. *Eur J Pediatr* 2012; **171**: 651-656 [PMID: 22159904 DOI: 10.1007/s00431-011-1630-3]

20 Gandhi A, Wilson DG. Incomplete Kawasaki disease: not to be forgotten. *Arch Dis Child* 2006; **91**: 276-277 [PMID: 16942895 DOI: 10.1136/adc.2005.086884]

21 Luo ZM, Fan YH, Liu DS. Early diagnosis and clinical features of incomplete Kawasaki disease in children. *J Appl Clin Pediatr* 2011; **26**: 671-673

22 Gupta K, Rohit M, Sharma A, Nada R, Jain S, Varma S. An Adolescent with Kawasaki Disease. *Indian Pediatr* 2016; **53**: 51-56 [PMID: 26840674 DOI: 10.1007/s13312-016-0791-6]

23 Burns JC, Shike H, Gordon JB, Malhotra A, Schoenwetter M, Kawasaki T. Sequelae of Kawasaki disease in adolescents and young adults. *J Am Coll Cardiol* 1996; **28**: 253-257 [PMID: 8752822 DOI: 10.1016/0735-1097(96)00099-X]

24 Zhang RL, Lo HH, Lei C, Ip N, Chen J, Law BY. Current pharmacological intervention and development of targeting IVIG resistance in Kawasaki disease. *Curr Opin Pharmacol* 2020; **54**: 72-81 [PMID: 32956895 DOI: 10.1016/j.coph.2020.08.008]

25 Shiraishi M, Fuse S, Mori T, Doyama A, Honjyo S, Hoshino Y, Hoshino E, Kawaguchi A, Kuroiwa Y, Hotsubo T. N-terminal pro-brain natriuretic Peptide as a useful diagnostic marker of acute Kawasaki disease in children. *Circ J* 2013; **77**: 2097-2101 [PMID: 23615024 DOI: 10.1253/circj.cj-12-1281]

26 McNeal-Davidson A, Fournier A, Spiegelblatt L, Saint-Cyr C, Mir TS, Nir A, Dallaire F, Cousineau J, Delvin E, Dahdah N. Value of amino-terminal pro B-natriuretic peptide in diagnosing Kawasaki disease. *Pediatr Int* 2012; **54**: 627-633 [PMID: 22414326 DOI: 10.1111/j.1442-200X.2012.03609.x]
