Impact of renal dysfunction on surgical outcomes in patients with aortic dissection

Pei-Yi Fan, MDa, Chao-Yu Chen, MDa, Cheng-Chia Lee, MDa,b, Kuo-Sheng Liu, MDb, Victor Chien-Chia Wu, MDc, Pei-Chun Fan, MDa,b, Ming-Yang Chang, MDa,b, Jason Chih-Hsiang Chang, MDa,b, Ya-Chung Tian, MDa,b, Shao-Wei Chen, MDa,c,*

Abstract
Preoperative renal dysfunction is associated with mortality in patients who undergo coronary artery bypass graft and valve surgery. Thus, urgent surgical repair should be considered for all patients with TAAD. In-hospital mortality for patients with renal dysfunction exhibited a lower 90-day survival rate than did patients without the condition (P = 0.005).

Preoperative renal dysfunction may have a critical role in the surgical outcomes of patients with TAAD. Additional large-scale investigations are warranted.

Abbreviations: AKI = acute kidney injury, CABG = coronary artery bypass graft, CI = confidence interval, CKD = chronic kidney disease, COPD = chronic obstructive pulmonary disease, Cr = creatinine, CT = computed tomography, eGFR = estimated glomerular filtration rate, ICU = intensive care unit, IRAD = International Registry of Acute Aortic Dissections, NA = not applicable, TAAD = type A aortic dissection.

Keywords: prognosis, renal dysfunction, risk factors, type A aortic dissection (TAAD)

1. Introduction
The mortality rate of patients with acute unoperated type A aortic dissection (TAAD) increases 1% to 2% every hour within the first 2 days of an acute event. Thus, urgent surgical repair should be considered for all patients with TAAD. In-hospital mortality for patients managed surgically was found to be 27%, compared with 56% for those managed medically.[11] Refractory pain, an age of over 70 years, and the absence of chest pain on admission have been reported as predictors of death. Aortic rupture was the most common cause of death identified in the International Registry of Acute Aortic Dissections (IRAD).[2] In the past decade, neither the symptoms nor physical findings of TAAD have changed substantially. Advancements in diagnostic computed tomography (CT) have significantly reduced in-hospital mortality by facilitating early surgical intervention.[3] Evidence suggests that acute kidney injury (AKI) following dissection worsens the prognosis and prolongs hospitalization.[4,5] However, the potential effects of preoperative renal dysfunction have not been clearly explored in the literature. Recently, preoperative organ malperfusion was proved to affect the outcome in these patients.[6] Therefore, our investigation evaluated the impact of preoperative renal dysfunction on mortality in patients with TAAD.

2. Methods
2.1. Study participants and design
The data of patients with TAAD treated between January 2005 and December 2010 were extracted for analysis from a prospectively collected database. This study design was approved by the institutional review board of Chang Gung Memorial Hospital (201601407B), and the need for individual consent was waived. We excluded patients who had undergone prior cardiac surgery, had end-stage renal disease, or died within 1 day after...
surgery. All patients had received contrast CT before surgery. The final cohort comprised 159 consecutive patients who received dissection repair in a single tertiary referral hospital. The patients were divided into 2 groups according to their serum creatinine (Cr) levels.

2.2. Data collection and definition

The baseline characteristics and demographic data of the patients were extracted from the database. The laboratory data comprised the preoperative values recorded on the operation date. Patient surgical details were also obtained from the database for analysis. Outcomes in terms of de novo dialysis, mortality, major complications, blood transfusions, and hospital stay were compared between the 2 renal function groups. Postoperative care was standardized in our intensive care unit (ICU) by 2 critical care specialists. Shock was defined as systolic pressure less than 90 mmHg.

2.3. Statistical analysis

Continuous variables were summarized as mean and standard deviation and were compared using the Student t test between the 2 groups defined according to preoperative Cr (<1.5 vs ≥1.5). The distribution of categorical variables in each group was compared using Fisher exact test. Associations of characteristics and operative conditions with risk of in-hospital mortality were assessed using univariate and multivariable logistic regression models. Variables with a P value less than .20 in the univariate models were subsequently introduced into the multivariable model with a stepwise selection procedure. Finally, Kaplan-Meier survival curves of 90-day mortality were plotted together with the log-rank test to compare the 2 groups. All statistical tests were 2-tailed and a P value less than .05 was considered significant. Data were analyzed using SPSS 22.0 software (IBM SPSS, Armonk, NY: IBM Corp).

3. Results

3.1. Study population characteristics and surgical details

One hundred and fifty-nine patients were examined in this study. The mean age was 57.5 years (SD = 13.2 years), and 27.0% of the patients were female. Thirty-two of the patients (20.1%) had preoperative Cr of 1.5 mg/dL or more. The baseline preoperative demographic and clinical characteristics are listed in Table 1. The 2 groups did not differ significantly in their baseline characteristics, namely age, sex, diabetes mellitus, hypertension, silent stroke, cardiac ejection fraction, chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD) and cirrhosis. Renal artery involvement was found in 36.1% in our cohort. The patients with Cr less than 1.5 mg/dL were more likely to have renal artery involvement than the others (40.9% vs 16.1% P = .012, respectively). Laboratory data for hemoglobin, platelet count, and prothrombin time also did not differ significantly between the groups, with the exception of Cr level.

The surgical details are shown in Table 2. They indicate that the patients with Cr less than 1.5 mg/dL were more likely to receive aortic arch repair (P = .043), which might reflect a more aggressive surgical strategy adopted for patients with a stable preoperative condition. No significant differences were present for additional coronary artery bypass graft, intraoperative bypass time, clamp time, arrest time, or brain protection strategy.

3.2. Patient outcomes in different groups

In-hospital mortality was significantly higher in the group whose Cr was 1.5 mg/dL or more (34.4% vs 12.6%, P = .007). Other associated outcomes are listed in Table 3. However, no significant difference was observed in postoperative ventilator time, tracheostomy rate, ICU stay, hospital stay, unexpected bleeding check, or wound infection. In the first 48 hours after surgery, the transfusion amount did not differ significantly between the groups. The incidence of de novo dialysis in the patients with Cr of 1.5 mg/dL or more before surgery was also significantly higher.

Table 1
Preoperative demographic data and clinical characteristics.

Variable	All patients (n = 159)	Cr < 1.5 mg/dL (n = 127)	Cr ≥ 1.5 mg/dL (n = 32)	P Value
Demographic data				
Age (y)	57.5±13.2	56.5±12.6	61.5±14.6	.055
Female sex, n (%)	43 (27.0)	36 (28.3)	7 (21.9)	.513
Body weight (kg)	73.9±13.3	73.7±13.7	74.5±12.1	.773
Diabetes mellitus, n (%)	13 (8.2)	9 (7.1)	4 (12.5)	.301
Hypertension, n (%)	113 (71.1)	90 (70.9)	23 (71.9)	1.000
CKD, n (%)	123 (77.8)	95 (74.8)	28 (90.3)	.089
Silent stroke, n (%)	15 (9.4)	11 (8.7)	4 (12.5)	.505
Ejection fraction (%)	59.1±10.0	59.4±10.1	57.6±9.9	.372
Smoking, n (%)	68 (42.8)	53 (41.7)	15 (46.9)	.690
COPD, n (%)	4 (2.5)	4 (3.1)	0 (0.0)	.584
Liver cirrhosis, n (%)	1 (0.6)	1 (0.8)	0 (0.0)	1.000
Hemopericardium, n (%)	61 (38.4)	46 (36.2)	15 (46.9)	.311
Shock, n (%)	6 (3.8)	4 (3.2)	2 (6.3)	.348
Lab data				
Cr (mg/dL)	1.21±0.42	1.05±0.22	1.84±0.44	<.001
Hemoglobin (g/dL)	13.4±1.8	13.5±1.7	13.3±1.9	.547
Platelet (x10^4/µL)	180.0±46.8	183.4±65.4	166.8±61.3	.197
Prothrombin time (second)	1.10±0.14	1.10±0.12	1.13±0.19	.261

CKD = chronic kidney disease, COPD = chronic obstructive pulmonary disease.
these literatures, they investigated renal dysfunction as complication or postoperative outcome. A retrospective study by Kato et al. showed that TAAD is a risk factors for AKI after aortic dissection, and AKI increased the all-cause mortality. Another study by Pismis et al showed that thoracic aortic endograft has a significant rate of renal dysfunction. Some literatures revealed renal ischemia as risk factor of surgical outcome of acute TAAD. A retrospective review by Kazui et al demonstrated that renal ischemia is one of preoperative dissection-related complications and comorbidities, which significantly affect early and late survival rates after surgical treatment of acute TAAD. Our study focuses on the impact of pre-operative renal function to surgical outcome of patient with aortic dissection, which has not been investigated thoroughly. In the present study, we identified preoperative Cr level as an independent predictor for in-hospital mortality. The observed mortality rate of 17.0% is similar to those reported in prior publications.

3.3. Association between Cr and In-hospital mortality

To determine the risk factors for mortality, baseline characteristics and operative factors were analyzed using univariate logistic regression models; the results are shown in Table 4. The following variables were found to be significant: preoperative Cr of 1.5 mg/dL or more, preoperative shock, number of transfused platelets, prothrombin time, and intraoperative bypass time. The multivariable model indicated that preoperative renal function (odds ratio [OR], 3.79; 95% confidence interval [CI], 1.64–8.77), preoperative hypotension (OR, 8.75; 95% CI, 2.83–27.02), and bypass time (OR, 1.008; 95% CI, 1.003–1.013) were independently associated with risk of in-hospital mortality. Figure 1 presents the 90-day Kaplan–Meier survival curves for both groups, revealing that the patients with a higher Cr level had a lower 90-day survival rate (P = 0.005).

4. Discussion

The relationship of renal dysfunction and surgery for aortic dissection have been discussed in many literatures. In most of

Table 2
Operative and periprocedure data.
Variable

Surgical method, n (%)
Bentall
Aortic valve replacement
Aortic arch
Additional surgery, n (%)
CABG
Intraoperative data (min)
Bypass time
Clamp time
Arrest time
Brain protection strategy, n (%)
Selective antegrade cerebral perfusion
Retrograde cerebral perfusion

CABG = coronary artery bypass graft.

Table 3
Postoperative outcomes.
Variable

In-hospital mortality, n (%)
Ventilator time (h)
ICU stay (d)
Hospital stay (d)
Transient ischemic attack, n (%)
De novo dialysis (%)
Tracheostomy, n (%)
Unexpected bleeding check, n (%)
Wound infection, n (%)
Transfusion 0–48 h (l)
Packed red blood cells
Fresh frozen plasma

ICU = intensive care unit.
Table 4
Associated factors of risk of in-hospital mortality.

Characteristics	Univariate model				Multivariable model		
	OR	95% CI	P Value	OR	95% CI	P Value	
Preop Cr ≥ 1.5 mg/dL	2.80	1.30–6.04	.009	3.79	1.64–8.77	.002	
Age (yr)	1.01	0.98–1.04	.465				
Female sex	0.63	0.24–1.68	.358				
Body weight (kg)	1.01	0.98–1.04	.509				
Diabetes mellitus	1.35	0.41–4.50	.622				
Hypertension	0.52	0.24–1.12	.092				
Silent stroke	1.05	0.32–3.51	.934				
Ejection fraction (%)	0.99	0.96–1.03	.585				
Smoking	1.36	0.64–2.91	.424				
COPD	1.87	0.52–13.84	.540				
Liver cirrhosis	NA	NA	NA				
Hemopericardium	0.84	0.38–1.88	.674				
Shock	10.35	3.41–31.40	<.001	8.75	2.83–27.02	<.001	
Cr, mg/dL	1.93	0.98–3.81	.059				
Hemoglobin (g/dL)	1.13	0.91–1.42	.276				
Platelet (× 10^3/µL)	0.99	0.98–1.00	.012				
Prothrombin time (s)	19.08	2.78–130.43	.003				
Surgical method							
Bentall	1.07	0.25–4.54	.923				
Aortic valve replacement	NA	NA	NA				
Aortic arch	2.12	0.85–5.28	.108				
Additional surgery							
CABG	1.20	0.16–8.94	.862				
Intra-operative data							
Bypass time	1.006	1.002–1.01	.007	1.008	1.003–1.013	.002	
Clamp time	1.005	0.999–1.01	.130				
Arrest time	1.009	0.998–1.02	.103				
Brain protection strategy							
Selective antegrade cerebral perfusion	Ref.	Ref.	Ref.				
Retrograde cerebral perfusion	1.05	0.48–2.29	.907				

CABG = coronary artery bypass graft, CI = confidence interval, COPD = chronic obstructive pulmonary disease, NA = not applicable, OR = odds ratio.

* included variables with a P value of <.2 in the univariate analyses and employed a stepwise selection method.

Figure 1. Kaplan-Meier survival curves for 90-day mortality according to the serum creatinine level.
Pei-Chun Fan, Ming-Yang Chang, Pei-Yi Fan, Victor Chien-Chia Wu, Ming-Yang Chang, Pei-Yi Fan, Jason Chih-Hsiang Chang, Pei-Yi Fan, Chao-Yu Chen.

Acknowledgments
This study was supported by grants from Chang Gung Memorial Hospital, Taiwan (CORPG5G0081 CORPG5G0071). Dr. C-H Chang was supported by the Ministry of Science and Technology (106-2314-B-182A-118-MY3). The authors thank all the participating patients of the Kidney Research Center of Chang Gung Memorial Hospital, Linkou, Taiwan.

Author contributions
Conceptualization: Ming-Yang Chang, Ya-Chung Tian, Shao-Wei Chen.
Data curation: Jason Chih-Hsiang Chang, Pei-Yi Fan, Chao-Yu Chen.
Formal analysis: Pei-Chun Fan, Jason Chih-Hsiang Chang, Pei-Yi Fan, Chao-Yu Chen.
Investigation: Victor Chien-Chia Wu, Ming-Yang Chang, Pei-Yi Fan, Chao-Yu Chen.
Methodology: Pei-Chun Fan, Ming-Yang Chang, Pei-Yi Fan, Chao-Yu Chen.
Resources: Shao-Wei Chen.
Supervision: Cheng-Chia Lee, Kuo-Sheng Liu, Jason Chih-Hsiang Chang, Ya-Chung Tian.
Writing – original draft: Pei-Yi Fan, Chao-Yu Chen.
Writing – review & editing: Chao-Yu Chen.

References
[1] Tsai TT, Trimarchi S, Nienaber CA. Acute aortic dissection: perspectives from the International Registry of Acute Aortic Dissection (IRAD). Eur J Vasc Endovasc Surg 2009;37:149–59.
[2] Trimarchi S, Eagle KA, Nienaber CA, et al. Importance of refractory pain and hypertension in acute type B aortic dissection: insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation 2010;122:1283–9.
[3] Pape LA, Awais M, Woznicki EM, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J Am Coll Cardiol 2013;66:350–8.
[4] Tsai HS, Tsai FC, Chen YC, et al. Impact of acute kidney injury on one-year survival after surgery for aortic dissection. Ann Thorac Surg 2012;94:1407–12.
[5] Lee CC, Chang CH, Chen SW, et al. Preoperative risk assessment improves biomarker detection for predicting acute kidney injury after cardiac surgery. PLoS One 2018;13:e0203447.
[6] Czerny M, Schoenhoff F, Ezt C, et al. The impact of pre-operative malperfusion on outcome in acute type a aortic dissection: results from the GERAADA registry. J Am Coll Cardiol 2015;66:2628–35.
[7] Kato A, Ito E, Kamegai N, et al. Risk factors for acute kidney injury after initial acute aortic dissection and their effect on long-term mortality. Renal Replace Ther 2016;2:53.
[8] Pismisso GT, Khoynezhad A, Bashir K, et al. Incidence and risk factors of renal dysfunction after thoracic endovascular aortic repair. J Thorac Cardiovasc Surg 2010;140(6 Suppl):S161–167.
[9] Kazui T, Washiyama N, Bashar AH, et al. Surgical outcome of acute type A aortic dissection: analysis of risk factors. Ann Thorac Surg 2002;74:75–81. discussion 81-72.
[10] Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type A aortic dissection. Circulation 2002;105:200–6.
[11] Easo J, Weigang F, Holzé PP, et al. Influence of operative strategy for the aortic arch in DeBakey type I aortic dissection: analysis of the German Registry for Acute Aortic Dissection Type A. J Thorac Cardiovasc Surg 2012;144:617–23.
[12] Conzelmann LO, Weigang E, Mehlhorn U, et al. Mortality in patients with acute aortic dissection type A: analysis of pre- and intraoperative risk factors from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur J Cardiothorac Surg 2016;49:e44–52.
[13] Brown JR, Cochran RP, Dacey LJ, et al. Perioperative increases in serum creatinine are predictive of increased 90-day mortality after coronary artery bypass graft surgery. Circulation 2006;114(1 Suppl):i409–413.
[14] van Straten AH, Soliman Hamad MA, van Zundert AA, et al. Preoperative renal function as a predictor of survival after coronary artery bypass grafting; comparison with a matched general population. J Thorac Cardiovasc Surg 2009;138:971–6.
[15] Chen SW, Chang CH, Fan PC, et al. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study. BMJ Open 2016;6:e010176.
[16] Chen SW, Chang CH, Lin YS, et al. Effect of dialysis dependence and duration on post-coronary artery bypass grafting outcomes in patients with chronic kidney disease: a nationwide cohort study in Asia. Int J Cardiol 2016;223:65–71.
[17] Chang CH, Chen SW, Fan PC, et al. Sequential organ failure assessment score predicts mortality after coronary artery bypass grafting. BMC Surg 2017;17:22.
[18] Tsai HS, Tsai FC, Chen YC, et al. Impact of acute kidney injury on one-year survival after surgery for aortic dissection. Ann Thorac Surg 2012;94:1407–1412.
[19] Imasaka K, Tajama E, Tomita Y. Preoperative renal function and surgical outcomes in patients with acute type A aortic dissection and their effect on long-term mortality. Interact Cardiovasc Thorac Surg 2015;20:470–6.
[20] Berk BC, Haendeler J, Sottile J. Angiotensin II, atherosclerosis, and aortic aneurysms. J Clin Invest 2000;105:1525–6.
[21] Onitsuka T, Koga Y, Yonezawa T, et al. Renal function after aortic reconstruction for aortic dissection: special reference to the renal blood flow from false lumen. Kyobu Geka 1990;43:856–60. discussion 860–853.
[22] Cho JS, Shim JH, Soh S, et al. Perioperative dexmedetomidine reduces the incidence and severity of acute kidney injury following valvular heart surgery. Kidney Int 2016;89:693–700.