Genotypic Diversity and Drug Susceptibility Patterns among *M. tuberculosis* Complex Isolates from South-Western Ghana

Dorothy Yeboah-Manu1*, Adwoa Asante-Poku1, Thomas Bodmer2, David Stucki4,5, Kwadwo Koram1, Frank Bonsu3, Gerd Pluschke5,6, Sebastien Gagneux4,5,6

1 Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana, 2 University of Bern, Institute for Infectious Diseases, Bern, Switzerland, 3 Ghana Health Services, Accra, Ghana, 4 MRC, National Institute for Medical Research, London, United Kingdom, 5 Swiss Tropical and Public Health Institute, Basel, Switzerland, 6 University of Basel, Basel, Switzerland

Abstract

**Objective:** The aim of this study was to use spoligotyping and large sequence polymorphism (LSP) to study the population structure of *M. tuberculosis* complex (MTBC) isolates.

**Methods:** MTBC isolates were identified using standard biochemical procedures, IS6110 PCR, and large sequence polymorphisms. Isolates were further typed using spoligotyping, and the phenotypic drug susceptibility patterns were determined by the proportion method.

**Result:** One hundred and sixty-two isolates were characterised by LSP typing. Of these, 130 (80.25%) were identified as *Mycobacterium tuberculosis* sensu stricto (MTBss), with the Cameroon sub-lineage being dominant (N = 59/130, 45.38%). Thirty-two (19.75%) isolates were classified as *Mycobacterium africanum* type 1, and of these 26 (81.25%) were identified as West-Africa 1, and 6 (18.75%) as West-Africa II. Spoligotyping sub-lineages identified among the MTBss included Haarlem (N = 15, 11.53%), Ghana (N = 22, 16.92%), Beijing (4, 3.08%), EAI (4, 3.08%), Uganda I (4, 3.08%), LAM (2, 1.54%), X (N = 1, 0.77%) and S (2, 1.54%). Nine isolates had SIT numbers with no identified sub-lineages while 17 had no SIT numbers. MTBss isolates were more likely to be resistant to streptomycin (p<0.008) and to any drug resistance (p<0.03) when compared to *M. africanum*.

**Conclusion:** This study demonstrated that overall 36.4% of TB in South-Western Ghana is caused by the Cameroon sub-lineage of MTBC and 20% by *M. africanum* type 1, including both the West-Africa 1 and West-Africa 2 lineages. The diversity of MTBC in Ghana should be considered when evaluating new TB vaccines.

Introduction

Despite the World Health Organization declaring tuberculosis (TB) a global emergency in 1993, TB remains a major global health problem. About 9 million new TB cases and 2 million deaths occur each year. TB is the leading cause of adult mortality caused by a single infectious agent worldwide [1–3]. Similar to other countries in sub-Saharan Africa, TB is a major public health problem in Ghana. In 2004, it was estimated that the prevalence of all forms of TB was 376/100,000, with an annual incidence of 206 cases per 100,000 populations. The annual risk of infection with TB was estimated to be between 1–2%; deaths due to TB averaged 50/100,000 annually [1].

The backbone of TB control is case detection by smear microscopy and treatment of identified cases by the DOTS strategy [4]. A threat to this strategy is the emergence of strains which are resistant to first-line drugs especially isoniazid (INH) and rifampicin (RIF). Such cases may either not be cured by the current first-line treatment regimen or have a more expensive and long treatment course [5]. The tendency to acquire drug resistance may be influenced by the genetic and background of the strain [6–8]. TB is caused mainly by a group of genetically closely related species and sub-species together referred to as *M. tuberculosis* complex (MTBC); however human TB is caused mainly by *M. tuberculosis* sensu stricto (MTBss) and *M. africanum*. Based on biochemical analysis, *M. africanum* used to be subdivided into two separate groups. However, genetic analyses have now indicated that *M. africanum* II, predominant in East-Africa is actually a variant of *M. tuberculosis*. In this manuscript, *M. africanum* is defined as the one originally termed *M. africanum* I based on biochemical analysis, which is genetically sub-divided into West-African genotype 1 and II. While *M. tuberculosis* is globally distributed, *M.
**Genetic Diversity in TB Isolates from Ghana**

**Mycobacterial Isolation**

All specimens after decontamination were cultured on two Lowenstein-Jensen slopes; one with supplemented with 0.4% sodium pyruvate to enhance the isolation of *M. africanaum* and *M. bovis*. The cultures were incubated at 37°C and were read weekly for growth for a maximal duration of 16 weeks.

Preliminary identification of suspected mycobacterial isolates was done by AFB staining and biochemical methods such as susceptibility to p-nitro benzoic acid (PNB) and to thiophene carboxylic acid hydrazide (TCH), pyrazinamidase activity (PZA), nitrate reduction, niacin production [20].

**Drug Susceptibility Testing**

The susceptibility pattern of all identified mycobacterial isolates to isoniazid (0.2 μg/ml), rifampicin (40 μg/ml), streptomycin (4 μg/ml), and ethambutol (2 μg/ml) for all *M. tuberculosis* complex primary isolates was determined phenotypically by the indirect proportion method on L-J slants, as described previously [21]. Drug resistance was expressed as the proportion of colonies that grow on drug containing medium to drug-free medium and the critical proportion for resistance was 1% for all drugs.

**DNA Extraction**

DNA extraction was done according to previously outlined protocol [22]. About two-5 μl loop full of bacteria were heat killed in 500 μl of an extraction mixture (50 mM Tris–HCl, 25 mM EDTA, and 5% monosodium glutamate). After cooling, 100 μl of a 50 mg/ml lysozyme solution was added and incubated with shaking for 2 h at 37°C. Sixty micro litres of 20 mg/ml proteinase K solution in a 10× buffer [100 mM Tris–HCl, 50 mM EDTA, 5% sodium dodecyl sulphate (pH 7.8)] were then added and incubated at 45°C overnight. The bacterial cell wall was fully disrupted by adding 200 μl of 0.1 mm-diameter zirconia beads (BioSpec Products) to each sample and vortexing at full speed for 4 min. Beads and undigested tissue fragments were removed by centrifugation at 14,000 rpm for 3 minutes, and the supernatants were transferred to fresh tubes for phenol-chloroform (Fluka) extraction. The DNA contained in the upper phase was precipitated with ethanol and re-suspended in 100 μl of water.

**Genotyping**

Genotyping of MTBC isolates was done in a stepwise mode (table 1). All isolates included in the study were first identified as belonging to MTBC by PCR targeting the insertion sequence IS6110 as previously described [23]. Species were defined by analysing for large sequence polymorphisms (LSP) at the regions of difference (RD) 9, 12 and 4 using published flanking primers [9,10]. Isolates that were identified as *M. africanaum* were further typed for RD702 and RD711; and the Cameroon lineage, which we assumed to be the most dominant among the MTBss was defined by a deletion in RD726 also using flanking primers [10,11]. All the isolates that we confirmed as *M. tuberculosis* complex were further typed by spoligotyping [17]. Briefly the direct repeat region of each genome was amplified using primers DRa (5′-CCG AGA GGG GAC GGA AAC-3′) and biotinylated Drb (5′-GGT TTT GGG TCT GAC GAC-3′). The amplified DNA was tested for the presence of specific spacers by hybridization with a set of 43 oligonucleotides derived from the spacer sequences of *M. tuberculosis* H37Rv and *M. bovis* BCG P3 (the GenBank accession no. for the sequence of *M. tuberculosis* H37Rv is Z48304, and that for *M. bovis* BCG P3 is X57835). Bound fragments were revealed by chemiluminescence after incubation with horse-radish peroxidase-labeled streptavidin (Boehringer Mannheim). In order to prevent cross contamination, PCR amplifications and pre-
PCR procedures were conducted in physically separated rooms. Negative water controls were PCR amplified and included on each blot to identify any possible amplicon contamination. In addition, positive controls (H37Rv and M. bovis BCG DNA) was amplified and included on each blot.

Data Analysis

Spoligotyping patterns were analysed as character types. The obtained spoligotyping patterns were compared with those available in the international spoligotype database (SpolDB4) [24] containing 35,925 spoligotypes comprising 39,295 isolates from 122 countries. A shared type was defined as a spoligotyping pattern common to at least two isolates, and clades were assigned according to signatures described in the database. Phylogenetic relationships among the isolates were inferred from Spoligotyping using the MIRU-VNTR plus software. In addition we compared the diversity within the main lineages that is MTBss and M. africanum I as well as between the main sublineages M. africanum West-African type I (WafrI) and the Cameroon family (Euro-American). This was done by comparing both the number of isolates and the number of different spoligotype patterns between these groups. The significance difference among different categories specific demographic character as well as drug resistance and isolate lineage were analysed by the chi squared test and Fisher’s exact test as appropriate using STATA, and the medians of the ages of the various groups were analysed by Mann-Whitney U test.

Results

Study Population and Bacterial Samples

One hundred and sixty-two isolates representing 70% of isolates (162/232) obtained from sputum samples consecutively collected from patients suffering from pulmonary TB attending four main health facilities in the Central and Western regions of Ghana were analysed. Age of patients enrolled ranged from 2 to 90 years, with a median age of 38.5 years. Out of the 162 cases, the nationality of 160 was indicated. 12 were Liberians, two Togolese and 1 each of, Nigerians and Ivorians, respectively living in the Bujumbura refugee camp. The remaining 144 patients were Ghanaians. Of the 161 TB cases who indicated their sex, 109 (67.7%) were male while 52 (32.3%) were female.

Prevalence of the different sub-species and lineages within the M. tuberculosis complex by LSP analysis

A total of 162 isolates were confirmed as belonging to MTBC (Table 2). All isolates had the insertion sequence IS6110 evident by the production of the specific 550 bp amplicon corresponding to a portion of the IS6110 DNA sequence (Figure 1a). The presence of the main lineages within MTBC were analysed by large sequence polymorphism analysis at various regions of difference (RD). RD9 analysis by PCR identified 130/162 (80%) of the isolates as MTBss defined by the detection of an intact PCR product (Figure 1b), and among this group, RD726 PCR (Figure 1c) defined 59/130 (45%) as belonging to the Cameroon sub-lineage. 32/162 (20%) were classified as M. africanum type I by analysis of the RD9 region (Figure 1b); the majority of them 26 (81%) were identified by RD711 PCR (Figure 1d) as West-African I, and 6 (19%) as West-African II by RD702 PCR (Figure 1e). Based on RD12 and RD4 analyses, no M. bovis was detected.

Spoligotyping Patterns

One hundred and sixty-one isolates comprising the 31 M. africanum and 130 MTBss isolates were spoligotyped, and the different lineages and corresponding spoligotype patterns are indicated in Table 3. Even though we acknowledge limitation in the discriminatory ability of spoligotyping, we defined a cluster as spoligotypes that contained two or more isolates with identical spoligotyping pattern in our analyses. Based on this definition, clusters of between 2 and 41 isolates were observed in this study. In all, 56 distinct spoligotyping patterns were obtained; 39 and 16 different patterns were obtained from the MTBss and M. africanum lineages, respectively. 27 different clusters involving 131 out of 161 (81.4%) of the isolates were observed, MTBss were more likely to be in spoligotyping clusters, with 111/130 (85.4%) isolates clustered within 20 different spoligotypes, compared to 21/31 (67.7%) of the M. africanum isolates grouped in 7 spoligotyping clusters (OR: 2.78, 95%CI = 1.0004–7.35, p = 0.02). A large cluster consisting of forty-one isolates (25.3%) shared a spoligo-pattern defined in the latest spoligotype database (SpolDB4) with SIT number 61; these strains were identified by LSP involving the deletion of RD726 as belonging to the Cameroon sub-lineage.

Comparing our isolate patterns with the SpolDB4 database, 130/161 (80.7%) isolates had previously defined shared spoligotype numbers; while the remaining 31 isolates had unidentified patterns. 14 of the isolates which gave newly identified spoligotypes clustered into six groups of between 2 and 3 isolates. The remaining 17 isolates gave unique patterns.

In addition to the Cameroon family, 8 additional spoligotyping families were identified among the MTBss isolates that we tested. These are 15 isolates (11.53%) belonging to the Haarlem family, 22 isolates of the Ghana family (16.92%), 4 isolates (3.08%) each of “Beijing”, Uganda I and EAI, respectively, LAM (2.15%), S (2.15%) and X (1.077%). 9 isolates had SIT numbers with no identified sublineages while 16 had no SIT numbers.

Prevalence of drug resistance among the main lineages and sublineages

The drug susceptibility patterns of 92 of the 130 MTBss isolates and all the M. africanum isolates were analyzed by the proportion method. Table 2 specifies the level of resistance that was obtained among the main lineages and sublineages analysed in the study. While we did not find any difference in resistance to INH, RIF and EMB, we found that MTBss (OR = 4.30, CI95% 1.33–18.10, p<0.008) and the Cameroon sub-lineage (OR = 5.20, CI95% 1.27–30.22p<0.015) were more likely to be STR resistant when compared to all M. africanum and the West-African I sublineage respectively. Overall, the proportion of MTBss isolates resistant to any of the tested drugs was higher when compared to all M. africanum (OR = 2.74, CI95% 1.01–8.24, P<0.03).

Table 1. PCR Procedures used for species and lineage identification of M. tuberculosis complex isolates obtained in this study.

| Locus Analyzed | M. tuberculosis complex | RD4 | RD9 | RD12 | RD702 | RD711 | RD726 |
|----------------|-------------------------|-----|-----|------|-------|-------|-------|
| M. tuberculosis OTCF | + | + | + | + | nd | nd | + |
| M. tuberculosis CF | + | + | + | + | nd | nd | – |
| M. africanum WAfri I | + | – | + | + | + | – | nd |
| M. africanum WAfri II | + | + | – | + | – | + | nd |

PCR polymerase chain reaction; RD = regions of difference; + = locus intact; – = locus deleted OTCF = Other than Cameroon family; CF = Cameroon family WAfri = West-African type. nd = not determined.
doi:10.1371/journal.pone.0021906.t001
Epidemiological Associations

Table 4 shows some demographic parameters we analysed. The median age of 48 female participants who indicated their age (29.8, range = 2–90) was lower but not statistically significantly different from that of male participants (median = 41, range = 18–73). There was no significant difference in median age of participants from whom *M. africanum* was isolated (median = 42, range = 16–68) compared to that of MTBss (median = 38.5, range = 2–90). Female and male TB patients were equally likely to carry MTBss as opposed to *M. africanum*. 11 out of the 16 foreigners (68.8%) were male and only five were females, while 67.4% of the Ghanaians were males.

Epidemiological Associations

Table 2. The level of resistance obtained from the main lineages and sub-lineages that were tested in the study.

| Tested Drug | M. tuberculosis (n = 92) N (%) | M. africanum (32) N (%) | P value* |
|-------------|--------------------------------|-------------------------|----------|
| STR         | 35 (38%)                       | 4 (12.5%)               | 0.008    |
| INH         | 14 (15.2%)                     | 2 (6.25%)               | 0.237    |
| RIF         | 7 (7.6%)                       | 1 (3.1%)                | 0.679    |
| EMB         | 4 (4.3%)                       | 1 (3.1%)                | 1.000    |
| MDR         | 4 (4.3%)                       | 0 (0%)                  | 0.572    |
| ANY RESISTANCE | 40 (43.5%)           | 7 (21.9%)               | 0.030    |

| Tested Drug | Cameroon Sub-lineage (n = 47) N (%) | West-African I (n = 26) N (%) | P value* |
|-------------|-------------------------------------|-------------------------------|----------|
| STR         | 19 (40.4%)                         | 3 (11.5%)                    | 0.015    |
| INH         | 9 (19.1%)                          | 1 (3.8%)                     | 0.086    |
| RIF         | 5 (10.6%)                          | 1 (3.8%)                     | 0.412    |
| EMB         | 4 (8.5%)                           | 1 (3.8%)                     | 0.649    |
| MDR         | 4 (8.5%)                           | 0 (0%)                       | 0.290    |
| ANY RESISTANCE | 22 (46.8%)           | 6 (23.1%)                    | 0.046    |

The resistance was measured by the proportion method.

*Where cells had values 5 or less the P value was computed using the Fisher’s exact test.

The resistance was measured by the proportion method.

*Where cells had values 5 or less the P value was computed using the Fisher’s exact test.

doi:10.1371/journal.pone.0021906.t002

Figure 1. Polymerase chain reaction procedures used for the differentiation of the MTBC Amplicons obtained after various PCR analysis performed in the study. A) IS6110; B–E = Large sequence polymorphism analysis of different regions of difference (RD) RD9 (b), 726(c), 711 (d) and 702 (e) showing deleted and intact genomic regions at the respective locus.

doi:10.1371/journal.pone.0021906.g001
**Table 3. Spoligotyping profile for *M. tuberculosis* complex isolates from Ghana as defined by RDs.**

| RD9<sup>a</sup> | RD711 | RD702 | RD726 | Spoligoprofile<sup>b</sup> | Sub lineage | No of isolates | Spoldb4<sup>c</sup> |
|-----------------|-------|-------|-------|---------------------------|-------------|----------------|----------------|
| Undel<sup>b</sup> | del<sup>a</sup> | 11111111111111111111111110001111110000111111 | Cameroon | 41 | 61 |
| Undel | del | 1111111111111111111111111111000111111111111111 | Cameroon | 2 | 115 |
| Undel | del | 111111111111111111111111111100111111111111111111 | Cameroon | 1 | 403 |
| Undel | del | 1111111111111111111111111111100011111111111111111 | Cameroon | 6 | 772 |
| Undel | del | 11111111111111111111111111111011111111111111111111111 | Cameroon | 1 | 1580 |
| Undel | del | 1111111111111111111111111111111111111111111111111 | Cameroon | 2 | 3 |
| Undel | del | 11111111111111111111111111111111111111111111111111111 | Cameroon | 3 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 115 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 403 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 6 | 772 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1580 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 3 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 115 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 403 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 6 | 772 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1580 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 3 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 115 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 403 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 6 | 772 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1580 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 3 | 3 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 1 | 1 |
| Undel | del | 1111111111111111111111111111111111111111111111111111111 | Cameroon | 2 | 115 |

**Footnotes:**

<sup>a</sup> RDs are reference DNA sequences.

<sup>b</sup> Spoligotypes are defined by RDs.

<sup>c</sup> Spoldb4 is defined as the number of spacers between repeats.

Genetic Diversity in TB Isolates from Ghana
Discussion

This study sought to use various molecular methods in an African setting for the characterisation of MTBC isolates obtained from TB patients attending various health facilities. Three main methods which were used in this study namely, IS6110 PCR, RD-PCR analysis and spoligotyping this also makes our study the first to be conducted in which the same sets of isolates from Ghana are analysed by RD-PCR and spoligotyping. This will provide the basis for the design and implementation of in-depth molecular epidemiological studies in the country in future.

MTBC lineages that affect humans have been subdivided into six geographically linked phylogenetic lineages defined by both SNPs and LSP analysis [11,12]. When Gagneux et al analysed a collection of 875 MTBC isolates from patients originating from 80 countries using LSP analysis, one of the major observations was that two of the six lineages are dominantly found in West-Africa; West-Africa I and West-Africa II. West-Africa I is predominantly found around the Gulf of Guinea and West-Africa II is prevalent in western West-Africa [25].

Our LSP analysis of 162 MTBC isolates from Ghana revealed that 20% belonged to M. africanum. Eighty-one percent of M. africanum isolates belonged to West-Africa I and 19% to West-Africa II. M. africanum was first identified in 1968 in Senegal and was described biochemically as having characteristics between M. tuberculosis and M. bovis [26]. M. africanum has been found in some studies to cause up to 40% of human TB in West-Africa [25]. The observed percentage in the current study is higher than in a previous study, which found M. africanum type I to be up to 13% [27]. However, in that earlier study, mycobacterial characterisation was based solely on biochemical methods. In our analysis we found isolates with discordant results between the biochemical analysis and the molecular identification we established (data not reported here). For example some of the isolates that tested positive for pyrazinamadase and negative for niacin accumulation were found to be M. tuberculosis rather than M. bovis. These discordant findings were clarified by the RD-PCR analysis. This shows that reliance on biochemical methods for species differentiation is not only cumbersome but can also lead to misclassification [28]. We therefore suggest that reference laboratories in endemic countries should establish genetic identification systems to confirm results of biochemical differentiation methods or abandon biochemical differentiation altogether. Also in Senegal it has been observed, that the proportion of M. africanum causing TB varies by region [29]. The same may be true for Ghana, as the current study was conducted in the Central region of Ghana, while in the previous study isolates from the Greater-Accra region were analysed [27]. The proportion of M. africanum West-African I lineage (>80%) of the total M. africanum isolates found in this study is high compared to the study reported by Goyal et al [19], in which out of the 75 isolates whose pattern was indicated, 26%
were *M. africanum* and of this only 52% belonged to the *M. africanum* West-African I lineage. The previous study collected samples from the Ashanti region which is in the north central part of the country whilst the current study was conducted in the southwestern part of Ghana. This disparity could also confirm that even within *M. africanum* endemic countries, there are regional variations in distribution. However, this need to be evaluated further in a population-based study as the sample sizes in both studies is small. The reason why *M. africanum* is common among MTBC isolates in humans in West-Africa but essentially absent in the rest of the world needs to be investigated further [25].

The outcomes of TB infections in humans are extremely variable, ranging from lifelong latent infection to active disease with variable degrees of extra-pulmonary involvement. In addition to host and other environmental factors, this variability could be the result of genetic variation in infecting strains. There is increasing evidence from experimental studies that points the MTBss lineages differ in virulence and immunogenicity [30]. It has been suggested that *M. africanum* is less virulent than MTBss, since a study in The Gambia demonstrated that although MTBss and *M. africanum* infected cases were equally able to transmit infections to household contacts, more contacts infected with MTBss progressed to active disease [31]. In this work we evaluated the effect of strain genetic background and the occurrence of drug resistance by comparing the proportion of phenotypic drug resistance between the different MTBC lineages. We found that MTBss isolates were more likely to be resistant to any of the tested drugs when compared to *M. africanum*, this association was primarily driven by resistance to STR. Drug resistance has been often associated with the Beijing lineage for reasons that remain unclear [32]. Our finding that *M. africanum* was less likely to be resistant to STR suggests putative interaction between drug resistant and strain genetic background. There is mounting evidence that different lineages of MTBC can be associated with different drug-resistance conferring mutations [7,32], perhaps indicating an interaction between the strain genetic background and particular drug resistance mutations [33]. A study conducted in Ghana using DNA sequencing detected significant variations in the proportion of INH resistance-conferring mutations in different MTBC lineages. While there was a significantly higher proportion of katG 315 mutations in MTBss, *M. africanum* West-African I strains were more likely to harbour a mutation in the promoter region of inhA [6]. Future work in our laboratory will try to confirm these results.

Among the 161 isolates that we analysed by spoligotyping, 56 distinct spoligotypes were identified, indicating a wide diversity among isolates obtained from a small region in Ghana.

We found that MTBss isolates were more likely than the *M. africanum* isolates to be part of a spoligotyping cluster. This observation could indicate an overall higher genetic diversity among *M. africanum* compared to MTBss in Ghana, similar to what has been found in earlier publications from West Africa [9,31]. This supports the hypothesis that *M. africanum* established itself in West Africa before the Euro-American *M. tuberculosis* lineage was introduced during European exploration and colonization [34]. Alternatively, MTBss might be more transmissible than *M. africanum* in Ghana. However, whether these spoligotyping clusters represent linked transmission events will need to be confirmed by genotyping methods such as MIRU-VNTR which exhibit a higher discriminatory power. MIRU-VNTR typing as well as single nucleotide polymorphism analyses are currently being established in our laboratory in Ghana.

We conclude that molecular methods are more robust and specific than the classical biochemical test for MTBC species determination and that such techniques can and should be established more widely in countries of sub-Saharan Africa. Ghana is one of the few countries which harbour both lineages of *M. africanum* (i.e. West-Africa I and West-Africa II). Given the current efforts in TB vaccine development, strain diversity should be considered when evaluating new vaccine candidates in areas where *M. africanum* is prevalent.

### Acknowledgments

We thank Ms Emelia Danso, Head and staff of the Bacteriology Department, and Mr David Mensah of Epidemiology department of NMIMR for their contributions to the study. We also acknowledge Dr Bouke de Jong for various discussions before setting spoligotyping in our laboratory; and the numerous laboratory staff of Ghana Health service in the Central and Western regions in patients’ recruitment.

### Author Contributions

Conceived and designed the experiments: DYM FB KK GP SG. Performed the experiments: DYM AAP TB DS. Analyzed the data: DYM AAP SG KK. Contributed reagents/materials/analysis tools: FB. Wrote the paper: DYM GP SG.

### References

1. World Health Organization, WHO (2008) Global tuberculosis control: Surveillance, Planning, Financing. Report.
2. Maher D, Raviglione M (2005) Global epidemiology of tuberculosis. Clin Chest Med 26: 167-82.
3. Raviglione MC, Snider DE, Kochi A (1995) Global epidemiology of tuberculosis: Morbidity and mortality of a worldwide epidemic. JAMA 273: 220-226.
4. de Jong BC, Antonio M, Awine T, Ogungbemi K, de Jong YP, et al. (2009) Use of Spoligotyping and Large Sequence Polymorphisms To Study the Population Structure of the Mycobacterium tuberculosis Complex in a Cohort Study of Consecutive Smeares-Positive Tuberculosis Cases in The Gambia. J Clin Microbiol 47: 994–1001.
5. Brosch R, Gordon SV, Marmsere M, Bezin P, Buchrieser C, et al. (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99: 3684–3689.
6. Gagneux S, Deriemer K, Van T, Kato-Maeda M, de Jong BC, et al. (2006) Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103: 2689–2693.
7. Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathogens.
8. Mathema B, Karupina NE, Bilani PJ, Kreiswirth BN (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19: 658–665.
9. Crampin AC, Glynn JR, Taaro H, Yates MD, Mwaungulu L, et al. (2006) Tuberculosis transmission attributable to close contacts and HIV status, Malawi. Emerg Infect Dis 12: 729–735.
10. Easterbrook PJA, Gibson S, Murad D, Lamprecht N, Ives A, et al. (2004) High rates of clustering of strains causing tuberculosis in Harare, Zimbabwe: a molecular epidemiological study. J Clin Microbiol 42: 4536–4544.
11. Narayanan S (2004) Molecular epidemiology of tuberculosis. Indian J Med Res 120: 233–247.
12. Kamerbeek J, Schous I, Køk A, van Agterveld M, van Soolingen D, et al. (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35: 907–14.
18. Supply P, Lejean S, Savine E, Kremer K, van Soolingen D, et al. (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39: 3563–3571.

19. Goyal M, Lawn S, Allot B, Acheampong JW, Griffin G, Shaw R (1999) Spoligotyping in molecular epidemiology of tuberculosis in Ghana. J Infect 38: 171–175.

20. Kent PT, Kubica GP (1985) Public health mycobacteriology: a guide for the level III laboratory. Atlanta, Georgia: U.S. Department of Health and Human Services, Centers for Disease Control. 207 p.

21. Canetti G, Fox W, Khomenco A, Maler HT, Menon NK, et al. (1969) Advances in techniques of testing mycobacterial in tuberculosis control programmes. Bull. W H O 41: 21–43.

22. Mensah-Qainoo E, Yehoash-Mamoo D, Asebi G, Patafuor F, Ofori-Adjei D, et al. (2008) Diagnosis of Mycobacterium ulcerans infection (Buruli ulcer) at a treatment centre in Ghana: a retrospective analysis of laboratory results of clinically diagnosed cases. Trop Med Int Health 13: 191–196.

23. Yehoash-Mamoo D, Yates MD, Stuart Mark Wilson (2001) Application of a simple multiplex polymerase chain reaction to aid in the routine work of the mycobacterium reference laboratory. J Clin Microbiology 39: 4166–4168.

24. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, et al. (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6: 23.

25. de Jong BC, Antonio M, Gagneux S (2010) Mycobacterium africanum-Review of an important cause of tuberculosis in west Africa. PLoS Negl Trop Dis 4(9): e744.

26. Castets M, Beuveret H, Grumbach F, Brunel M, Rist N (1968) [Tuberculosis bacilli of the African type: preliminary note]. Revue de tuberculose et de pneumologie 32: 179–184.

27. Addo K, Owusu-Darko K, Yehoash-Mamoo D, Canley P, Mimamikawa M, et al. (2007) Mycobacterial species causing pulmonary tuberculosis at Koele-Bu teaching hospital, Accra. Ghana Med J 41(2): 52–7.

28. Mostowy S, Ouipeede A, Gagneux S, Nienmann S, Kremer K, et al. (2004) Genomic analysis distinguishes Mycobacterium africanum. J Clin Microbiol 42: 3594–3599.

29. Diop S, de Medeiros D, de Medeiros G, Baylet R, Sankale M (1976) Incidence and geographic distribution of Mycobacterium africanum in Senegal. Bull Soc Med Afr Noire Lang Fr1976 21: 50–56. (In French.).

30. de Jong BC, Hill PC, Aiken A, Avine T, Antonio M, et al. (2008) Progression to Active Tuberculosis, but Not Transmission, Varies by Mycobacterium tuberculosis Lineage in The Gambia. J Infect Dis 198: 1–7.

31. Baker J, Brown T, Marden MC, Drobniweski F (2004) Silent nucleotide polymorphism and a phylogeny for Mycobacterium tuberculosis. Emerg Infect Dis 10(9): 1568–77.

32. Borrell S, Gagneux S (2009) Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. JTLID, Volume 13, Number 12.

33. Niemann S, Kubica T, Range FC, Adjei O, Browne EN, et al. (2004) The species Mycobacterium africanum in the light of new molecular markers. J Clin Microbiol 42: 3956–3962.

34. Hershberg R, Lipatov M, Small PM, Sheffer H, Nienmann S, et al. (2008) High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography. PLoS Biol 6: e311. doi:10.1371/journal.phb.0060311.

Genetic Diversity in TB Isolates from Ghana

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e21906