A simultaneous decomposition of four real quaternion matrices encompassing \(\eta \)-Hermicity and its applications

Zhuo-Heng He\(^{a,b} \), Qing-Wen Wang\(^{b,*} \)

\(^a\) Department of Mathematics and Statistics, Auburn University, AL 36849-5310, USA
\(^b\) Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China

Abstract: Let \(\mathbb{H} \) be the real quaternion algebra and \(\mathbb{H}^{m \times n} \) denote the set of all \(m \times n \) matrices over \(\mathbb{H} \). Let \(i, j, k \) be the imaginary quaternion units. For \(\eta \in \{i, j, k\} \), a square real quaternion matrix \(A \) is said to be \(\eta \)-Hermitian if \(A^{\eta^*} = A \) where \(A^{\eta^*} = -\eta A^* \eta \), and \(A^* \) stands for the conjugate transpose of \(A \). In this paper, we construct a simultaneous decomposition of four real quaternion matrices with the same row number \((A, B, C, D) \), where \(A = A^{\eta^*} \in \mathbb{H}^{m \times m} \), \(B \in \mathbb{H}^{m \times p_1} \), \(C \in \mathbb{H}^{m \times p_2} \), \(D \in \mathbb{H}^{m \times p_3} \). As applications of this simultaneous matrix decomposition, we derive necessary and sufficient conditions for some real quaternion matrix equations involving \(\eta \)-Hermicity in terms of ranks of the coefficient matrices. We also present the general solutions to these real quaternion matrix equations. Moreover, we provide some numerical examples to illustrate our results.

Keywords: Matrix decomposition; Matrix equation; Quaternion; Solvability; General \(\eta \)-Hermitian solution; Rank

2010 AMS Subject Classifications: 15A09, 15A23, 15A24, 15B33, 15B57

1. Introduction

Let \(\mathbb{R} \) and \(\mathbb{H}^{m \times n} \) stand, respectively, for the real number field and the set of all \(m \times n \) matrices over the real quaternion algebra

\[\mathbb{H} = \{ a_0 + a_1 i + a_2 j + a_3 k \mid i^2 = j^2 = k^2 = ijk = -1, a_0, a_1, a_2, a_3 \in \mathbb{R} \}. \]

For \(\eta \in \{i, j, k\} \), a square real quaternion matrix \(A \) is said to be \(\eta \)-Hermitian if \(A^{\eta^*} = A \) where \(A^{\eta^*} = -\eta A^* \eta \), and \(A^* \) stands for the conjugate transpose of \(A \) \((31)\). The map \(A \mapsto A^{\eta^*} \) on \(\mathbb{H}^{m \times n} \) is involutorial \((18)\). The symbol \(r(A) \) stands for the rank of a given real quaternion matrix \(A \). For a real quaternion matrix \(A \), \(r(A) = r(A^{\eta^*}) \) \((18)\). The identity matrix and zero matrix with appropriate sizes are denoted by \(I \) and \(0 \), respectively. The set of all \(n \times n \) invertible matrix over \(\mathbb{H} \) are denoted by \(GL_n \).

The \(\eta \)-Hermitian matrices arise in statistical signal processing and widely linear modelling \((29)-(31)\). The decompositions of matrices and \(\eta \)-Hermitian matrices have applications in system and control theory, signal processing, linear modelling, engineering and so on \((e.g., \ [1]-[8], [15], \ [17])\).

1 This research was supported by the grants from the National Natural Science Foundation of China (11571220).

* Corresponding author. lzh19871126@126.com (Z.H. He), wqw@t.shu.edu.cn, wqw369@yahoo.com (Q.W. Wang)
The study on the decompositions of \(\eta \)-Hermitian matrices is active in recent years. The decomposition of an \(\eta \)-Hermitian matrix was first proposed in 2011. Horn and Zhang [24] presented an analogous special singular value decomposition for \(\eta \)-Hermitian matrices. Very recently, He and Wang [17] gave a simultaneous decomposition for a set of nine real quaternion matrices involving \(\eta \)-Hermicity with compatible sizes:

\[
A_i \in \mathbb{H}^{p_i \times t_i}, \quad B_i \in \mathbb{H}^{p_i \times (t_i+1)}, \quad C_i \in \mathbb{H}^{p_i \times p_i}, \quad (i = 1, 2, 3).
\]

To the best of our knowledge, there is little information on the simultaneous decomposition of four real quaternion matrices with the same row number involving \(\eta \)-Hermicity:

\[
(\begin{array}{c}
A \\
B \\
C \\
D
\end{array})
\]

where \(B \in \mathbb{H}^{m \times p_1}, \quad C \in \mathbb{H}^{m \times p_2}, \quad D \in \mathbb{H}^{m \times p_3}, \quad \text{and} \quad A \in \mathbb{H}^{m \times m} \) is an \(\eta \)-Hermitian matrix. Motivated by the wide application of real quaternion matrices and \(\eta \)-Hermitian matrices and in order to improve the theoretical development of the decompositions of \(\eta \)-Hermitian matrices, we consider the simultaneous decomposition of four real quaternion matrices involving \(\eta \)-Hermicity (1.1). One contribution of this paper is to show how to find matrices \(P \in GL_m(\mathbb{H}), \quad T_1 \in GL_{p_1}(\mathbb{H}), \quad T_2 \in GL_{p_2}(\mathbb{H}), \quad T_3 \in GL_{p_3}(\mathbb{H}), \) such that

\[
P A P^{\eta\ast} = S_A, \quad P B T_1 = S_B, \quad P C T_2 = S_C, \quad P D T_3 = S_D.
\]

where \(S_B, S_C, S_D \) are quasi-diagonal matrices with the finest possible subdivision of matrices, and \(S_A = S_A^{\eta\ast} \) have appropriate forms (see Theorem 2.3 for the definitions in details). We conjecture that this simultaneous decomposition will also play an important role in signal processing and linear modelling.

Using the simultaneous matrix decomposition (1.2), we consider the following two real quaternion matrix equations involving \(\eta \)-Hermicity:

\[
BXB^{\eta\ast} + CYC^{\eta\ast} + DZD^{\eta\ast} = A, \quad X = X^{\eta\ast}, \quad Y = Y^{\eta\ast}, \quad Z = Z^{\eta\ast}
\]

and

\[
BXC + (BXC)^{\eta\ast} + DYD^{\eta\ast} = A, \quad Y = Y^{\eta\ast}.
\]

where \(A, B, C, \) and \(D \) are given real quaternion matrices, \(X, Y, Z \) are unknowns. We will make use of the simultaneous matrix decomposition (1.2) that bring the real quaternion matrix equations (1.3) and (1.4) to some canonical forms. Then we can give some necessary and sufficient conditions for the existence of the general solutions to the real quaternion matrix equations (1.3) and (1.4) in terms of the ranks of the given coefficient matrices. There have been many papers using different approaches to investigate the matrix equations and real quaternion matrix equations involving \(\eta \)-Hermicity (e.g., [9]-[14], [16]-[23], [33]-[49]).

The rest of this paper is organized as follows. We in Section 2 construct a simultaneous decomposition of four real quaternion matrices involving \(\eta \)-Hermicity (1.1). As applications of this simultaneous decomposition, we in Section 3 establish necessary and sufficient conditions for the existence of the \(\eta \)-Hermitian solution to the real quaternion matrix equation (1.3), and give an expression of this \(\eta \)-Hermitian solution when the solvability conditions are satisfied. In Section 4, we derive necessary and sufficient conditions for the existence of the solution to the...
real quaternion matrix equation \((1.4)\), and present an expression of the general solution when the solvability conditions are satisfied.

2. A simultaneous decomposition of four real quaternion matrices \((1.1)\)

In this section, we establish a simultaneous decomposition of four real quaternion matrices involving \(\eta\)-Hermicity \((1.1)\). We begin with the following lemma that is an important tool for obtaining the main result.

Lemma 2.1. \([32]\) Let \(B \in \mathbb{H}^{m \times p_1}\), \(C \in \mathbb{H}^{m \times p_2}\), and \(D \in \mathbb{H}^{m \times p_3}\) be given. Then there exist \(P_1 \in GL_m(\mathbb{H}), W_B \in GL_{p_1}(\mathbb{H}), W_C \in GL_{p_2}(\mathbb{H}),\) and \(W_D \in GL_{p_3}(\mathbb{H})\) such that

\[
P_1 BW_B = \tilde{S}_B, \quad P_1 CW_C = \tilde{S}_C, \quad P_1 DW_D = \tilde{S}_D,
\]

where

\[
\tilde{S}_B = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} r(B), \quad \tilde{S}_C = \begin{pmatrix} 0 & I & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} r(B) - r_1,
\]

\[
\tilde{S}_D = \begin{pmatrix} 0 & 0 & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 & 0 \\ 0 & I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} r_2 - r_3 - r_4 - r_5 - r_6 - r_7,
\]

Horn and Zhang \([24]\) presented an analogous special singular value decomposition for an \(\eta\)-Hermitian matrix.

Lemma 2.2. \([24]\) Suppose that \(A\) is \(\eta\)-Hermitian. Then there is a unitary matrix \(U\) such that

\[
UAU^{\eta*} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix},
\]

where \(\Sigma = \text{diag}(\sigma_1, \sigma_2, \cdots, \sigma_r)\) and \(\sigma_1, \sigma_2, \cdots, \sigma_r\) are real positive singular values of \(A\).
Now we give the main theorem of this paper.

Theorem 2.3. Let \(A = A^{py} \in \mathbb{H}^{m \times n} \), \(B \in \mathbb{H}^{m \times p_1} \), \(C \in \mathbb{H}^{m \times p_2} \), and \(D \in \mathbb{H}^{m \times p_3} \) be given. Then there exist \(P \in GL_m(\mathbb{H}) \), \(T_1 \in GL_{p_1}(\mathbb{H}) \), \(T_2 \in GL_{p_2}(\mathbb{H}) \), \(T_3 \in GL_{p_3}(\mathbb{H}) \), such that

\[
PAP^{py} = S_A, \quad PBT_1 = S_B, \quad PCT_2 = S_C, \quad PDT_3 = S_D,
\]

where

\[
S_A = S_A^{py} = \begin{pmatrix}
A_{11} & \cdots & A_{19} & A_{1,10} & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
0 & \cdots & A_{9,9} & A_{9,10} & 0 \\
0 & \cdots & 0 & 0 & \Sigma
\end{pmatrix},
\]

\[
S_B = \begin{pmatrix}
im_1 & 0 & 0 & 0 & 0 \\
0 & im_2 & 0 & 0 & 0 \\
0 & 0 & im_3 & 0 & 0 \\
0 & 0 & 0 & im_4 & 0 \\
0 & 0 & 0 & 0 & im_5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
S_C = \begin{pmatrix}
0 & 0 & 0 & im_1 & 0 \\
0 & 0 & 0 & 0 & im_2 \\
0 & 0 & 0 & 0 & im_3 \\
0 & 0 & 0 & 0 & im_4 \\
0 & 0 & 0 & 0 & im_5 \\
0 & 0 & 0 & 0 & im_6 \\
0 & 0 & 0 & 0 & im_7 \\
0 & 0 & 0 & 0 & im_8 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

\[
S_D = \begin{pmatrix}
0 & 0 & 0 & 0 & im_1 \\
0 & 0 & 0 & 0 & im_2 \\
0 & 0 & 0 & 0 & im_3 \\
0 & 0 & 0 & 0 & im_4 \\
0 & 0 & 0 & 0 & im_5 \\
0 & 0 & 0 & 0 & im_6 \\
0 & 0 & 0 & 0 & im_7 \\
0 & 0 & 0 & 0 & im_8 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

where \(\Sigma \) is a diagonal and nonsingular matrix, and

\[
r(\Sigma) = r \begin{pmatrix}
A & B & C & D \\
B^{py} & 0 & 0 & 0 \\
C^{py} & 0 & 0 & 0 \\
D^{py} & 0 & 0 & 0
\end{pmatrix} - 2r(B, C, D),
\]

\[
m_1 = r(D) + r(B) + r(C) - r \begin{pmatrix}
D & B & 0 \\
0 & D & C
\end{pmatrix},
\]

\[
m_2 = r \begin{pmatrix}
D & B & 0 \\
0 & D & C
\end{pmatrix} - r(B, C) - r(D),
\]

\[
m_3 = r \begin{pmatrix}
D & B & 0 \\
0 & D & C
\end{pmatrix} - r(B, D) - r(C),
\]

\[
m_4 = r(B, C) + r(C, D) + r(B, D) - r(B, C, D) - r \begin{pmatrix}
D & B & 0 \\
0 & D & C
\end{pmatrix},
\]

\[
m_5 = r(B, C, D) - r(C, D),
\]

\[
m_6 = r \begin{pmatrix}
D & B & 0 \\
0 & D & C
\end{pmatrix} - r(C, D) - r(B),
\]

\[
m_7 = r(B, C, D) - r(B, D),
\]

\[
m_8 = r(B, C, D) - r(B, C),
\]
Proof. It follows from Lemma 2.1 that there exist four matrices $P_1 \in GL_m(\mathbb{H})$, $W_B \in GL_{p_1}(\mathbb{H})$, $W_C \in GL_{p_2}(\mathbb{H})$, and $W_D \in GL_{p_3}(\mathbb{H})$ such that

$$
P_1(B, C, D) \begin{pmatrix} W_B & 0 & 0 \\ 0 & W_C & 0 \\ 0 & 0 & W_D \end{pmatrix} = \begin{pmatrix} I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & I & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & I \end{pmatrix} m_{10}$$

$$
\begin{pmatrix} 1 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 \end{pmatrix} \begin{pmatrix} 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \end{pmatrix} m - r(B, C, D)
$$

Let

$$
P_1 A_{p_1}^* = P_1 A_{n_1}^* P_1^* \triangleq \begin{pmatrix} A_{11}^{(1)} & \cdots & A_{11,10}^{(1)} \\ \vdots & \ddots & \vdots \\ A_{10,10}^{(1)} & \cdots & A_{10,10}^{(1)} \end{pmatrix},
$$

where the symbol \triangleq means “equals by definition”. Now we pay attention to the η-Hermitian matrix $A_{10,10}^{(1)}$. By Lemma 2.2, we can find a unitary matrix P_2 such that

$$
P_2 A_{10,10}^{(1)} P_2^* = \begin{pmatrix} 0 & 0 \\ 0 & \Sigma \end{pmatrix},
$$

where Σ is a diagonal and nonsingular matrix, and $r(\Sigma) = r(A_{10,10}^{(1)})$. Then we have

$$
\begin{pmatrix} I_{r(B,C,D)} & 0 \\ 0 & P_2 \end{pmatrix} \begin{pmatrix} A_{11}^{(1)} & \cdots & A_{11,10}^{(1)} \\ \vdots & \ddots & \vdots \\ A_{10,10}^{(1)} & \cdots & A_{10,10}^{(1)} \end{pmatrix} \begin{pmatrix} I_{r(B,C,D)} & 0 \\ 0 & P_2 \end{pmatrix}^* = \begin{pmatrix} A_{11}^{(2)} & \cdots & A_{11,11}^{(2)} \\ \vdots & \ddots & \vdots \\ A_{11,11}^{(2)} & \cdots & A_{11,11}^{(2)} \end{pmatrix}

\begin{pmatrix} I_{r(B,C,D)} & 0 \\ 0 & P_2 \end{pmatrix} P_1(B, C, D) \begin{pmatrix} W_B & 0 & 0 \\ 0 & W_C & 0 \\ 0 & 0 & W_D \end{pmatrix} =
Hence, the matrices $P \in GL_{m_1}(\mathbb{H})$, $T_1 \in GL_{p_1}(\mathbb{H})$, $T_2 \in GL_{p_2}(\mathbb{H})$, and $T_3 \in GL_{p_3}(\mathbb{H})$ satisfy the equation (2.3). Now we want to give the dimensions of $r(\Sigma), m_1, \ldots, m_8$. It is easy to verify that

$$r(\Sigma) = r \left(\begin{array}{cccc} A & B & C & D \\ B^\eta & 0 & 0 & 0 \\ C^\eta & 0 & 0 & 0 \\ D^\eta & 0 & 0 & 0 \end{array} \right) - 2r(B, C, D).$$

i	m_i
1	m_1
2	m_2
3	m_3
4	m_4
5	m_5
6	m_6
7	m_7
8	m_8

Let

$$P_3 = \begin{pmatrix} \begin{pmatrix} A_{11}^{(2)} & \cdots & A_{19}^{(2)} & A_{1,10}^{(2)} & A_{1,11}^{(2)} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ A_{19}^{(2)\eta^*} & \cdots & A_{99}^{(2)} & A_{9,10}^{(2)} & A_{9,11}^{(2)} \\ A_{1,10}^{(2)\eta^*} & \cdots & A_{9,10}^{(2)\eta^*} & 0 & 0 \\ A_{1,11}^{(2)\eta^*} & \cdots & A_{9,11}^{(2)\eta^*} & 0 & \Sigma \end{pmatrix} \end{pmatrix} P_{3}^{\eta^*} \triangleq \begin{pmatrix} A_{11} & \cdots & A_{19} & A_{1,10} & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ A_{19}^{\eta^*} & \cdots & A_{99}^{\eta^*} & A_{9,10} & 0 \\ A_{1,10}^{\eta^*} & \cdots & A_{9,10}^{\eta^*} & 0 & 0 \\ 0 & \cdots & 0 & 0 & \Sigma \end{pmatrix}.$$
It follows from $S_A, S_B, S_C,$ and S_D in (2.4)-(2.5) that

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 2 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 2 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 2 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1
\end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_7 \\ m_8 \end{pmatrix} = \begin{pmatrix} r(B) \\ r(C) \\ r(D) \\ r(B, C) \\ r(B, D) \\ r(C, D) \\ r(B, C, D) \end{pmatrix}.
\]

Solving for $m_i, (i = 1, \ldots, 8)$ gives (2.7)-(2.11). \hfill \Box

Let D vanish in Theorem 2.3, then we obtain the simultaneous decomposition of a matrix triplet with the same row numbers

\[(A, B, C),\]

where A is an η-Hermitian matrix.

Corollary 2.4. Let $A = A^{\eta^*} \in \mathbb{H}^{m \times m}, B \in \mathbb{H}^{m \times p_1},$ and $C \in \mathbb{H}^{m \times p_2}$ be given. Then there exist $P \in GL_m(\mathbb{H}),$ $T_1 \in GL_{p_1}(\mathbb{H}),$ $T_2 \in GL_{p_2}(\mathbb{H}),$ such that

\[PAP^{\eta^*} = S_A, \quad PBT_1 = S_B, \quad PCT_2 = S_C,\]

where

\[
(S_A, S_B, S_C) = \begin{pmatrix}
n_1 & (A_{11}^1)^{\eta^*} & A_{12}^1 & A_{13}^1 & A_{14}^1 & 0 & I & 0 & 0 & I & 0 & 0 \\
n_2 & (A_{12}^2)^{\eta^*} & A_{22}^1 & A_{23}^1 & A_{24}^1 & 0 & 0 & I & 0 & 0 & 0 & 0 \\
n_3 & (A_{13}^3)^{\eta^*} & (A_{14}^3)^{\eta^*} & A_{33}^1 & A_{34}^1 & 0 & 0 & 0 & 0 & 0 & I & 0 \\
n_4 & (A_{14}^4)^{\eta^*} & (A_{24}^4)^{\eta^*} & (A_{34}^4)^{\eta^*} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \Sigma_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

where

\[n_1 = r(B) + r(C) - r(B, C), \quad n_2 = r(B, C) - r(C), \quad n_3 = r(B, C) - r(B), \quad n_4 = r \begin{pmatrix} A & B & C \\
B^{\eta^*} & 0 & 0 \\
C^{\eta^*} & 0 & 0 \end{pmatrix} - 2r(B, C).
\]

3. **Solvability conditions and general η-Hermitian solution to (1.3)**

In this section, we give some solvability conditions for the real quaternion matrix equation (1.3) to possess an η-Hermitian solution and to present an expression of this η-Hermitian solution when the solvability conditions are met. A numerical example is also given to illustrate the main result.
Theorem 3.1. Let \(A = A^{\eta*} \in \mathbb{H}^{m \times m}, B \in \mathbb{H}^{m \times p_1}, C \in \mathbb{H}^{m \times p_2}, \) and \(D \in \mathbb{H}^{m \times p_3} \) be given. Then the real quaternion matrix equation \((3.3)\) has an \(\eta \)-Hermitian solution \((X, Y, Z)\) if and only if the ranks satisfy:

\[
r(A, B, C, D) = r(B, C, D), \quad r\left(\begin{array}{ccc} A & B & C \\ D & 0 & 0 \\ \end{array} \right) = r(B, C) + r(D),
\]

\[
r\left(\begin{array}{ccc} A & B & D \\ C & 0 & 0 \\ \end{array} \right) = r(B, D) + r(C), \quad r\left(\begin{array}{ccc} A & C & D \\ B & 0 & 0 \\ \end{array} \right) = r(C, D) + r(B),
\]

\[
r\left(\begin{array}{ccc} 0 & D^{\eta*} & 0 \\ D & -A & 0 \\ 0 & A & C \\ 0 & C^{\eta*} & 0 \\ 0 & 0 & B^{\eta*} \\ \end{array} \right) = 2r\left(\begin{array}{ccc} D & 0 \\ 0 & C \\ \end{array} \right).
\]

In this case, the general \(\eta \)-Hermitian solution to \((3.3)\) can be expressed as

\[
X = T_1 \hat{X}T_1^{\eta*}, \quad Y = T_2 \hat{Y}T_2^{\eta*}, \quad Z = T_3 \hat{Z}T_3^{\eta*},
\]

where

\[
\hat{X} = \hat{X}^{\eta*} =
\begin{pmatrix}
 m_1 & m_2 & m_3 & m_4 & m_5 & p_1 - r(B) \\
 X_{11} & X_{12} & X_{13} & X_{14} & A_{15} & X_{16} \\
 X_{12}^{\eta*} & X_{22} & A_{23} & A_{24} & A_{25} & X_{26} \\
 X_{13}^{\eta*} & A_{23}^{\eta*} & X_{33} & A_{34} - A_{36} & A_{35} & X_{36} \\
 X_{14}^{\eta*} & A_{24}^{\eta*} & (A_{34} - A_{36})^{\eta*} & A_{44} - A_{46} & A_{45} & X_{46} \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
 X_{16}^{\eta*} & X_{26}^{\eta*} & X_{36}^{\eta*} & X_{46}^{\eta*} & X_{56}^{\eta*} & X_{66} \\
\end{pmatrix},
\]

\[
\hat{Y} = \hat{Y}^{\eta*} =
\begin{pmatrix}
 m_4 & m_6 & m_7 & m_1 & m_2 & p_2 - r(C) \\
 A_{66} - A_{46} & A_{67} - A_{47} & A_{68} & A_{16}^{\eta*} - A_{14}^{\eta*} + X_{14}^{\eta*} & A_{26}^{\eta*} & Y_{16} \\
 (A_{67} - A_{47})^{\eta*} & Y_{22} & A_{78} & Y_{24} & A_{27}^{\eta*} & Y_{26} \\
 A_{68}^{\eta*} & A_{78}^{\eta*} & A_{88} & A_{18}^{\eta*} & A_{28}^{\eta*} & Y_{36} \\
 A_{16} - A_{14} + X_{14} & Y_{24}^{\eta*} & A_{18} & Y_{44} & A_{12} - X_{12} & Y_{46} \\
 A_{26} & A_{27} & A_{28} & (A_{12} - X_{12})^{\eta*} & A_{22} - X_{22} & Y_{56} \\
 Y_{16}^{\eta*} & Y_{26}^{\eta*} & Y_{36}^{\eta*} & Y_{46}^{\eta*} & Y_{56}^{\eta*} & Y_{66} \\
\end{pmatrix},
\]
\[
\hat{Z} = \hat{Z}^{\eta*} = \begin{pmatrix}
m_8 & m_4 & m_6 & m_3 & m_1 & p_3 - r(D) \\
A_{99} & A_{99}^{\eta*} & A_{99}^{\eta*} & A_{99}^{\eta*} & A_{99}^{\eta*} & Z_{16} \\
A_{69} & A_{69} & A_{69}^{\eta*} & A_{69}^{\eta*} & A_{69}^{\eta*} & Z_{26} \\
A_{79} & A_{79}^{\eta*} & A_{79}^{\eta*} & A_{79}^{\eta*} & A_{79}^{\eta*} & Z_{36} \\
A_{39} & A_{39} & A_{39} & A_{39} & A_{39} & Z_{55} \\
A_{19} & A_{19} & A_{19} & A_{19} & A_{19} & Z_{66} \\
Z_{16}^{\eta*} & Z_{16}^{\eta*} & Z_{16}^{\eta*} & Z_{16}^{\eta*} & Z_{16}^{\eta*} & Z_{16}^{\eta*} \\
\end{pmatrix}, \quad (3.6)
\]

in which \(X_{11}, X_{22}, X_{33}, X_{66}, Y_{22}, Y_{44}, Y_{66}, Z_{55},\) and \(Z_{66}\) are arbitrary \(\eta\)-Hermitian matrices over \(\mathbb{H}\) with appropriate sizes, the remaining \(X_{ij}, Y_{ij}, Z_{ij}\) are arbitrary matrices over \(\mathbb{H}\) with appropriate sizes.

Proof. Observe that the dimensions of the coefficient matrices \(A, B, C,\) and \(D\) in the real quaternion matrix equation (1.3) have the same number of rows. Hence, the coefficient matrices \(A, B, C, D\) can be arranged in the following matrix array

\[
\begin{pmatrix}
A & B & C & D
\end{pmatrix}.
\]

It follows from Theorem 2.3 that there exist \(P \in GL_m(\mathbb{H}), T_1 \in GL_{p_1}(\mathbb{H}), T_2 \in GL_{p_2}(\mathbb{H}), T_3 \in GL_{p_3}(\mathbb{H}),\) such that

\[
PAP^{\eta*} = S_A, \quad PB{T_1} = S_B, \quad PCT_2 = S_C, \quad PDT_3 = S_D,
\]

where \(S_A, S_B, S_C,\) and \(S_D\) are given in (2.4) and (2.5). Hence the matrix equation (1.3) is equivalent to the matrix equation

\[
P^{-1}S_B(T_1XT_1^{\eta*})S_B^{\eta*}P^{-\eta*} + P^{-1}S_C(T_2YT_2^{\eta*})S_C^{\eta*}P^{-\eta*} + P^{-1}S_D(T_3ZT_3^{\eta*})S_D^{\eta*}P^{-\eta*} = P^{-1}S_AP^{-\eta*},
\]

i.e.,

\[
S_B(T_1XT_1^{\eta*})S_B^{\eta*} + S_C(T_2YT_2^{\eta*})S_C^{\eta*} + S_D(T_3ZT_3^{\eta*})S_D^{\eta*} = S_A.
\] \quad (3.7)

Let the matrices

\[
\hat{X} = T_1^{-1}XT_1^{-\eta*} = \begin{pmatrix}
X_{11} & \cdots & X_{16} \\
\vdots & \ddots & \vdots \\
X_{16}^{\eta*} & \cdots & X_{66}
\end{pmatrix} = \hat{X}^{\eta*}, \quad (3.8)
\]

\[
\hat{Y} = T_2^{-1}YT_2^{-\eta*} = \begin{pmatrix}
Y_{11} & \cdots & Y_{16} \\
\vdots & \ddots & \vdots \\
Y_{16}^{\eta*} & \cdots & Y_{66}
\end{pmatrix} = \hat{Y}^{\eta*}, \quad (3.9)
\]

\[
\hat{Z} = T_3^{-1}ZT_3^{-\eta*} = \begin{pmatrix}
Z_{11} & \cdots & Z_{16} \\
\vdots & \ddots & \vdots \\
Z_{61} & \cdots & Z_{66}
\end{pmatrix} = \hat{Z}^{\eta*}, \quad (3.10)
\]
be partitioned in accordance with (3.7). Substituting \(\hat{X}, \hat{Y}, \) and \(\hat{Z} \) of (3.8)-(3.10) into (3.7) yields

\[
\begin{bmatrix}
X_{11} + Y_{44} + Z_{55} & X_{12} + Y_{45} & X_{13} + Z_{45}^* & X_{14} + Z_{25}^* & X_{15} & Y_{14}^* + Z_{25}^* & Y_{24}^* + Z_{35}^* & Y_{34}^* & Z_{15}^* & 0 & 0 \\
X_{16}^* + Y_{46}^* & X_{22} + Y_{55} & X_{23} & X_{24} & X_{25} & Y_{15}^* & Y_{25}^* & Y_{35}^* & 0 & 0 & 0 \\
X_{17}^* + Z_{45} & X_{26}^* & X_{33} + Z_{44} & X_{34} + Z_{24}^* & X_{35} & Z_{24}^* & Z_{34}^* & 0 & Z_{14}^* & 0 & 0 \\
X_{18}^* + Z_{25} & X_{27}^* & X_{34} + Z_{24} & X_{44} + Z_{32} & X_{45} & Z_{22} & Z_{32} & 0 & Z_{12}^* & 0 & 0 \\
X_{19}^* & X_{28}^* & X_{35} & X_{45} & X_{55} & 0 & 0 & 0 & 0 & 0 & 0 \\
Y_{44} + Z_{25} & Y_{45} & Z_{24} & Z_{22} & 0 & Y_{11} + Z_{22} & Y_{12} + Z_{23} & Y_{13} & Z_{12}^* & 0 & 0 \\
Y_{45} + Z_{35} & Y_{55} & Z_{34} & Z_{32} & 0 & Y_{12}^* + Z_{23}^* & Y_{22} + Z_{33} & Y_{23} & Z_{13}^* & 0 & 0 \\
Y_{55} & 0 & Z_{14} & Z_{12} & 0 & Z_{12} & Z_{13} & 0 & Z_{11} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\left(\begin{array}{cccccc}
A_{11} & \cdots & A_{19} & A_{1,10} & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
A_{19}^* & \cdots & A_{99} & A_{9,10} & 0 \\
A_{1,10}^* & \cdots & A_{9,10}^* & 0 & 0 \\
0 & \cdots & 0 & 0 & \Sigma
\end{array} \right). \tag{3.11}
\]

If the equation (1.3) has an \(\eta \)-Hermitian solution \((X, Y, Z) \), then by (3.11), we obtain that

\[
\Sigma = 0, \ A_{49} = A_{69}, \ A_{46} = A_{66}^\eta, \ \left(A_{1,10}^\eta, \cdots, A_{9,10}^\eta \right) = 0, \tag{3.12}
\]

\[
A_{29} = 0, \ A_{38} = 0, \ A_{48} = 0, \ A_{56} = 0, \ A_{57} = 0, \ A_{58} = 0, \ A_{59} = 0, \ A_{89} = 0. \tag{3.13}
\]

and

\[
X_{11} + Y_{44} + Z_{55} = A_{11}, \ X_{12} + Y_{45} = A_{12}, \ X_{13} + Z_{45} = A_{13}, \ X_{14} + Z_{25} = A_{14}, \ X_{15} = A_{15},
\]

\[
Y_{11} + Z_{52} = A_{16}, \ Y_{22} + Z_{33} = A_{17}, \ Y_{33} = A_{18}, \ Z_{11} = A_{19}, \ X_{21} + Y_{54} = A_{21}, \ X_{22} + Y_{55} = A_{22},
\]

\[
X_{23} = A_{23}, \ X_{24} = A_{24}, \ X_{25} = A_{25}, \ Y_{51} = A_{26}, \ Y_{52} = A_{27}, \ Y_{53} = A_{28}, \ X_{31} + Z_{45} = A_{31},
\]

\[
X_{32} = A_{32}, \ X_{33} + Z_{44} = A_{33}, \ X_{34} + Z_{42} = A_{34}, \ X_{35} = A_{35}, \ Z_{22} = A_{36}, \ Z_{43} = A_{37}, \ Z_{41} = A_{39},
\]

\[
X_{41} + Z_{25} = A_{41}, \ X_{42} = A_{42}, \ X_{43} + Z_{24} = A_{43}, \ X_{44} + Z_{22} = A_{44}, \ X_{45} = A_{45}, \ Z_{22} = A_{16},
\]

\[
Z_{23} = A_{47}, \ Z_{21} = A_{49}, \ X_{51} = A_{51}, \ X_{52} = A_{52}, \ X_{53} = A_{53}, \ X_{54} = A_{54}, \ X_{55} = A_{55}
\]

\[
Y_{14} + Z_{25} = A_{61}, \ Y_{15} = A_{62}, \ Z_{24} = A_{63}, \ Z_{22} = A_{64}, \ Y_{11} + Z_{22} = A_{66}, \ Y_{12} + Z_{23} = A_{67},
\]

\[
Y_{13} = A_{68}, \ Z_{21} = A_{69}, \ Y_{24} + Z_{35} = A_{71}, \ Y_{25} = A_{72}, \ Z_{34} = A_{73}, \ Z_{32} = A_{74}, \ Y_{21} + Z_{32} = A_{76},
\]

\[
Y_{22} + Z_{33} = A_{77}, \ Y_{23} = A_{78}, \ Z_{31} = A_{79}, \ Y_{34} = A_{81}, \ Y_{35} = A_{82}, \ Y_{31} = A_{86}, \ Y_{32} = A_{87},
\]

\[
Y_{33} = A_{88}, \ Z_{15} = A_{91}, \ Z_{14} = A_{93}, \ Z_{12} = A_{94}, \ Z_{12} = A_{96}, \ Z_{13} = A_{97}, \ Z_{11} = A_{99}.
\]

Hence, the general \(\eta \)-Hermitian solution \((X, Y, Z) \) can be expressed as (3.3)-(3.6) by (3.11).

Conversely, assume that the equalities in (3.12) and (3.13) hold, then by (3.8)-(3.11), it can be verified that the matrices have the forms of (3.4)-(3.6) is an \(\eta \)-Hermitian solution of (3.7), i.e., (1.3).
We now show that (3.1)-(3.3)⇐⇒ (3.12) and (3.13). From $S_A, S_B, S_C,$ and S_D in Theorem 2.3 we can infer that

$$r(A, B, C, D) = r(B, C, D) \iff (A_{1,10}^\eta, \ldots, A_{9,10}^\eta) = 0, \Sigma = 0,$$

$$r\begin{pmatrix} A & B & C \\ D_{\eta^*} & 0 & 0 \end{pmatrix} = r(B, C) + r(D) \iff A_{29} = 0, A_{48} = 0, A_{49} = A_{69}, \Sigma = 0,$$

$$r\begin{pmatrix} A & B & D \\ C_{\eta^*} & 0 & 0 \end{pmatrix} = r(B, D) + r(C) \iff A_{38} = 0, A_{57} = 0, A_{58} = 0, A_{59} = 0, \Sigma = 0,$$

$$r\begin{pmatrix} A & C & D \\ B_{\eta^*} & 0 & 0 \end{pmatrix} = r(C, D) + r(B) \iff A_{56} = 0, A_{57} = 0, A_{58} = 0, A_{59} = 0, \Sigma = 0,$$

$$r\begin{pmatrix} 0 & D_{\eta^*} & D_{\eta^*} & 0 & 0 \\ D & -A & 0 & 0 & B \\ D & 0 & A & C & 0 \\ 0 & C_{\eta^*} & 0 & 0 & 0 \\ 0 & 0 & B_{\eta^*} & 0 & 0 \end{pmatrix} = 2r\begin{pmatrix} D & B & 0 \\ D & 0 & C \end{pmatrix} \iff A_{46} = A_{46}^{\eta^*}, \Sigma = 0.$$

Now we give an example to illustrate Theorem 3.1.

Example 1. Given the real quaternion matrices:

$$B = \begin{pmatrix} i + j + k & 1 & 1 + i + j - k \\ -1 - j + k & i & -1 + i + j + k \end{pmatrix}, C = \begin{pmatrix} 1 & 2i + j & -1 + k \\ i + k & 1 + i + j - k & 0 \end{pmatrix},$$

$$D = \begin{pmatrix} j + 2k & i + k & j \\ -2j + k & -1 - j & k \end{pmatrix}, A = A_{\eta^*} = \begin{pmatrix} -1 + 5i - 20k & -25 - 2i - 17j - 5k \\ -25 - 2i + 17j - 5k & -9 - 18i - 14k \end{pmatrix}.$$

Now we consider the j-Hermitian solution to the real quaternion matrix equation (1.3). Check that

$$r(A, B, C, D) = r(B, C, D) = 2,$$

$$r\begin{pmatrix} A & B & C \\ D_{\eta^*} & 0 & 0 \end{pmatrix} = r(B, C) + r(D) = 3,$$

$$r\begin{pmatrix} A & B & D \\ C_{\eta^*} & 0 & 0 \end{pmatrix} = r(B, D) + r(C) = 3,$$

$$r\begin{pmatrix} A & C & D \\ B_{\eta^*} & 0 & 0 \end{pmatrix} = r(C, D) + r(B) = 3.$$
\[
\begin{pmatrix}
0 & D^{\eta*} & D^{\eta*} & 0 & 0 \\
D & -A & 0 & 0 & B \\
D & 0 & A & C & 0 \\
0 & C^{\eta*} & 0 & 0 & 0 \\
0 & 0 & B^{\eta*} & 0 & 0 \\
\end{pmatrix} = 2r \begin{pmatrix} D & B & 0 \\ D & 0 & C \end{pmatrix} = 6.
\]

All the rank equalities in (3.1)-(3.3) hold. Hence, the real quaternion matrix equation (1.3) has a \(j\)-Hermitian solution \((X, Y, Z)\). Note that
\[
X = X^{j*} = \begin{pmatrix} 1 & i+k & 0 \\ i+k & 1+i & 1-k \\ 0 & 1-k & 0 \end{pmatrix}, \quad Y = Y^{j*} = \begin{pmatrix} 0 & 1+i & k \\ 1+i & i & 2k \\ k & 2k & 1 \end{pmatrix},
\]
\[
Z = Z^{j*} = \begin{pmatrix} i & i-k & k \\ i-k & i & 1 \\ k & 1 & 1 \end{pmatrix}
\]
satisfy the real quaternion matrix equation (1.3).

4. The solution to (1.4) with \(Y\) being \(\eta\)-Hermitian

In this section, we consider the real quaternion matrix equation (1.4). We derive necessary and sufficient conditions for (1.4) in terms of ranks of the coefficient matrices. We also give the general solution to this real quaternion matrix equation. A numerical example is also given to illustrate the main result.

Theorem 4.1. Let \(A = A^{\eta*} \in \mathbb{H}^{m \times m}, B \in \mathbb{H}^{m \times p_1}, C \in \mathbb{H}^{p_2 \times m},\) and \(D \in \mathbb{H}^{m \times p_3}\) be given. Then the real quaternion matrix equation (1.4) has a solution \((X, Y)\), where \(Y\) is \(\eta\)-Hermitian, if and only if the ranks satisfy:

\[
r(A, B, C^{\eta*}, D) = r(B, C^{\eta*}, D), \tag{4.1}
\]
\[
r \begin{pmatrix} A & B & C^{\eta*} \\ D^{\eta*} & 0 & 0 \end{pmatrix} = r(B, C^{\eta*}) + r(D), \tag{4.2}
\]
\[
r \begin{pmatrix} A & B \\ D^{\eta*} & 0 \end{pmatrix} = r(B, D) + r(B), \tag{4.3}
\]
\[
r \begin{pmatrix} A & C^{\eta*} \\ C & 0 \end{pmatrix} = r(C^{\eta*}, D) + r(C), \tag{4.4}
\]
\[
r \begin{pmatrix} A & 0 & B & 0 & D \\ 0 & -A & 0 & C^{\eta*} & D \\ B^{\eta*} & 0 & 0 & 0 & 0 \\ 0 & C & 0 & 0 & 0 \\ D^{\eta*} & D^{\eta*} & 0 & 0 & 0 \end{pmatrix} = 2r \begin{pmatrix} B & 0 & D \\ 0 & C^{\eta*} & D \end{pmatrix}. \tag{4.5}
\]
In this case, the general solution to (1.4) can be expressed as

\[X = T_1 \hat{X} T_2^\eta^*, \quad Y = T_3 \hat{Y} T_3^\eta^*, \]

where

\[
\hat{X} = \begin{pmatrix}
X_{11} & X_{12} & A_{18} & X_{14} & A_{12} - X_{21}^\eta^* & X_{16}
\end{pmatrix}
\]

\[
\hat{Y} = \begin{pmatrix}
A_{99} & A_{49}^* & A_{79}^* & A_{39}^* & A_{19}^* & Y_6
\end{pmatrix}
\]

(4.6)

(4.7)

in which \(Y_{66} \) and \(Z \) are arbitrary \(\eta \)-Hermitian matrices and skew-\(\eta \)-Hermitian matrices over \(\mathbb{H} \) with appropriate sizes, the remaining \(X_{ij} \) and \(Y_{ij} \) are arbitrary matrices over \(\mathbb{H} \) with appropriate sizes.

Proof. Note that the dimensions of the coefficient matrices \(A, B, C^\eta^* \), and \(D \) in real quaternion matrix equation (1.4) have the same number of rows. Hence, the coefficient matrices \(A, B, C, D \) can be arranged in the following matrix array

\[
\begin{pmatrix}
A & B & C^\eta^* & D
\end{pmatrix}.
\]

It follows from Theorem 2.3 that there exist \(P \in GL_m(\mathbb{H}) \), \(T_1 \in GL_{p_1}(\mathbb{H}) \), \(T_2 \in GL_{p_2}(\mathbb{H}) \), \(T_3 \in GL_{p_3}(\mathbb{H}) \), such that

\[
P A P^\eta^* = S_A, \quad P B T_1 = S_B, \quad P C^\eta^* T_2 = S_C, \quad P D T_3 = S_D,
\]

where \(S_A, S_B, S_C, \) and \(S_D \) are given in (2.4) and (2.5). Hence the real quaternion matrix equation (1.4) is equivalent to the real quaternion matrix equation

\[
P^{-1} S_B (T_1^{-1} X T_2^{-\eta^*}) S_C^\eta^* P^{-\eta^*} + P^{-1} S_C (T_2^{-1} X^\eta^* T_1^{-\eta^*}) S_B^\eta^* P^{-\eta^*} + P^{-1} S_D (T_3 Y T_3^\eta^*) S_D^\eta^* P^{-\eta^*} = P^{-1} S_A P^{-\eta^*},
\]

i.e.,

\[
S_B (T_1^{-1} X T_2^{-\eta^*}) S_C^\eta^* + S_C (T_2^{-1} X^\eta^* T_1^{-\eta^*}) S_B^\eta^* + S_D (T_3 Y T_3^\eta^*) S_D^\eta^* = S_A.
\]

(4.8)

Let the matrices

\[
\hat{X} = T_1^{-1} X T_2^{-\eta^*} = \begin{pmatrix}
X_{11} & \cdots & X_{16}
\vdots & \ddots & \vdots
X_{16}^\eta^* & \cdots & X_{66}
\end{pmatrix},
\]

(4.9)
be partitioned in accordance with (4.8). Substituting \(\hat{X} \) and \(\hat{Y} \) of (4.9) and (4.10) into (4.8) yields

\[
\begin{pmatrix}
X_{14} + X_{7}^{a} + Y_{55} & X_{15} + X_{2}^{a} + Y_{34}^{a} & X_{4}^{a} + Y_{45}^{a} & X_{11}^{a} + Y_{25}^{a} & X_{12}^{a} + Y_{35}^{a} & X_{13}^{a} & 0 & 0 \\
X_{24} + X_{15}^{a} & X_{25} + X_{3}^{a} & X_{7}^{a} & X_{21} & X_{22} & X_{23} & 0 & 0 \\
X_{34} + Y_{55} & X_{35} & Y_{24} & 0 & X_{13} & Y_{24} + Y_{34}^{a} & X_{10} & 0 \\
X_{44} + Y_{25} & X_{45} & Y_{24} & 0 & X_{41} + Y_{22} & X_{42} + Y_{23} & X_{13} & 0 \\
X_{54} & 0 & 0 & 0 & X_{51} & X_{52} & X_{53} & 0 \\
X_{11}^{a} + Y_{25} & X_{12}^{a} & X_{24} + Y_{22} & X_{25}^{a} & X_{22} & X_{23} & 0 & 0 \\
X_{12}^{a} & X_{22} & X_{34} + X_{3}^{a} + Y_{34}^{a} & X_{23}^{a} & X_{32}^{a} & X_{33}^{a} & 0 & 0 \\
X_{13} & X_{23}^{a} & X_{32}^{a} & X_{34}^{a} & 0 & 0 & 0 & 0 \\
X_{15} & 0 & Y_{14} & Y_{12} & 0 & Y_{12} & Y_{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
= \begin{pmatrix}
A_{11} & \cdots & A_{19} & A_{1,10} & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
A_{19}^{a} & \cdots & A_{99} & A_{9,10} & 0 \\
A_{1,10}^{a} & \cdots & A_{9,10}^{a} & 0 & 0 \\
0 & \cdots & 0 & 0 & \Sigma
\end{pmatrix}
\]

If the equation (1.4) has a solution \((X, Y)\), then by (4.11), we obtain that

\[
\Sigma = 0, \quad \begin{pmatrix}
A_{1,10}^{a} & \cdots & A_{9,10}^{a}
\end{pmatrix} = 0, \quad A_{44} = A_{66}, \quad A_{49} = A_{69}.
\]

(4.12)

\(A_{29} = 0, \, A_{59} = 0, \, A_{89} = 0, \, A_{68} = 0, \, A_{78} = 0, \, A_{88} = 0, \, A_{35} = 0, \, A_{45} = 0, \, A_{55} = 0. \) (4.13)

Then

\[
X_{14} + X_{7}^{a} + Y_{55} = A_{11}, \, X_{15} + X_{2}^{a} + Y_{34}^{a} = A_{12}, \, X_{4}^{a} + Y_{45}^{a} = A_{13}, \, X_{24}^{a} + Y_{25}^{a} = A_{14}, \, X_{13}^{a} = A_{15},
\]

\[
X_{11} + Y_{25}^{a} = A_{16}, \, X_{12} + Y_{3}^{a} = A_{17}, \, X_{13} = A_{18}, \, Y_{15}^{a} = A_{19}, \, X_{25} + Y_{25}^{a} = A_{22}, \, X_{3}^{a} = A_{23},
\]

\[
X_{45}^{a} = A_{24}, \, X_{55}^{a} = A_{25}, \, X_{21} = A_{26}, \, X_{22} = A_{27}, \, X_{23} = A_{28}, \, Y_{44} = A_{33}, \, Y_{24}^{a} = A_{34},
\]

\[
X_{31} + Y_{24}^{a} = A_{36}, \, X_{32} + Y_{3}^{a} = A_{37}, \, X_{33} = A_{38}, \, Y_{14}^{a} = A_{39}, \, Y_{22} = A_{44}, \, X_{41} + Y_{22} = A_{46},
\]

\[
X_{42} + Y_{23} = A_{47}, \, X_{43} = A_{48}, \, Y_{12}^{a} = A_{49}, \, X_{51} = A_{56}, \, X_{52} = A_{57}, \, X_{53} = A_{58},
\]

\[
Y_{22} = A_{66}, \, Y_{23} = A_{67}, \, Y_{12}^{a} = A_{69}, \, Y_{33} = A_{77}, \, Y_{13}^{a} = A_{79}, \, Y_{11} = A_{99}.
\]

Hence, the general solution \((X, Y)\) can be expressed as (4.6) and (4.7) by (4.11).

Conversely, assume that the equalities in (4.12) and (4.13) hold, then by (4.9)-(4.11), it can be verified that the matrices have the forms of (4.9) and (4.7) is a solution of (4.11), i.e., (4.14).

We now want to prove that (4.11) is equivalent to (4.12) and (4.13). From \(S_A, S_B, S_C, \) and \(S_D \) in Theorem 2.3, we can infer that

\[r(A, B, C^{a}, D) = r(B, C^{a}, D) \iff \begin{pmatrix} A_{1,10}^{a}, \cdots, A_{9,10}^{a} \end{pmatrix} = 0, \, \Sigma = 0, \]
\[
\begin{align*}
&\begin{pmatrix} A & B & C \ast \\ D \ast & 0 & 0 \end{pmatrix} = r(B, C \ast) + r(D) \iff A_{29} = 0, A_{89} = 0, A_{49} = A_{69}, \Sigma = 0, \\
&\begin{pmatrix} A & B & D \ast \\ B \ast & 0 & 0 \end{pmatrix} = r(B, D) + r(B) \iff A_{68} = 0, A_{78} = 0, A_{88} = 0, A_{89} = 0, \Sigma = 0, \\
&\begin{pmatrix} A & C \ast & D \ast \\ C & 0 & 0 \end{pmatrix} = r(C \ast, D) + r(C) \iff A_{35} = 0, A_{45} = 0, A_{55} = 0, A_{59} = 0, \Sigma = 0.
\end{align*}
\]

Next we give an example to illustrate Theorem 4.1

Example 2. Given the real quaternion matrices:

\[
B = \begin{pmatrix} 1 + j & i + k & 1 + 2i + j & -1 - k \\ i - j & -1 - k & -2 + i - j & -i + k \end{pmatrix},
C = \begin{pmatrix} i + j & -2 + k \\ 1 + 2j & 2i + 2k \\ -i + j + k & 2 - j + k \\ j & k \end{pmatrix},
D = \begin{pmatrix} i + j & 1 + 3i & 1 + k \\ -1 + k & -3 + i & i + j \end{pmatrix},
A = A^\ast = \begin{pmatrix} -16 - 6j + 34k & 9 + 17i - 31j - 3k \\ 9 - 17i - 31j - 3k & -30 + 12j - 16k \end{pmatrix}.
\]

Now we consider the i-Hermitian solution to the real quaternion matrix equation \([1.4]\). Check that

\[
\begin{align*}
&\begin{pmatrix} A & B & C \ast \\ D \ast & 0 & 0 \end{pmatrix} = r(B, C \ast, D) = 2, \\
&\begin{pmatrix} A & B & D \ast \\ B \ast & 0 & 0 \end{pmatrix} = r(B, D) + r(B) = 3, \\
&\begin{pmatrix} A & C \ast & D \ast \\ C & 0 & 0 \end{pmatrix} = r(C \ast, D) + r(C) = 4.
\end{align*}
\]
\[
\begin{pmatrix}
A & 0 & B & 0 & D
\end{pmatrix}
\begin{pmatrix}
0 & -A & 0 & C_{\eta^*} & D
\end{pmatrix}
\begin{pmatrix}
B_{\eta^*} & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
0 & C & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
D_{\eta^*} & D_{\eta^*} & 0 & 0 & 0
\end{pmatrix}
= 2r \begin{pmatrix}
B & 0 & D
\end{pmatrix}
\begin{pmatrix}
0 & C_{\eta^*} & D
\end{pmatrix}
= 8.
\]

All the rank equalities in (4.1)-(4.5) hold. Hence, the real quaternion matrix equation (1.4) has a solution \((X, Y)\), where \(Y\) is \(i\)-Hermitian. Note that

\[
X = \begin{pmatrix}
2 + i + k & 1 + i + j & 1 & i + k \\
-1 + k & -i + k & j & 1 \\
1 + i + j + k & 1 & 1 + j & 1 + i + k \\
i + j + 2k & 1 - i + k & 1 + 2j & 2 + i + k
\end{pmatrix}
\]

and

\[
Y = Y^{i*} = \begin{pmatrix}
1 + j & 1 + i & j \\
1 - i & k & i \\
j & -i & j
\end{pmatrix}
\]

satisfy the real quaternion matrix equation (1.4).

5. Conclusion

We have derived a simultaneous decomposition of four real quaternion matrices with the same row number \((A, B, C, D)\), where \(A = A_{\eta^*} \in \mathbb{H}^{m \times m}, B \in \mathbb{H}^{m \times p_1}, C \in \mathbb{H}^{m \times p_2}, D \in \mathbb{H}^{m \times p_3}\). As applications of this simultaneous decomposition, we have presented necessary and sufficient conditions for the existence and the general \(\eta\)-Hermitian solution to the real quaternion matrix equation (1.3). We have also given necessary and sufficient conditions for the existence and the general solution to the real quaternion matrix equation (1.4). Some numerical examples are presented to illustrate the results.

References

[1] D.L. Chu, Y.S. Hung, H.J. Woerdeman, Inertia and rank characterizations of some matrix expressions, SIAM J. Matrix Anal. Appl. 31 (2009) 1187–1226.
[2] D.L. Chu, B.De Moor, On a variational formulation of the QSVD and the RSVD, Linear Algebra Appl. 311 (2000) 61–78.
[3] D.L Chu, L. De Lathauwer, B. De Moor, A QR-type reduction for computing the SVD of a general matrix product/quotient, Numer. Math. 95 (2) (2003) 101–121.
[4] D.L Chu, L. De Lathauwer, B. De Moor, On the computation of the restricted singular value decomposition via the cosine-sine decomposition, SIAM J. Matrix Anal. Appl. 22 (3) (1991) 469–500.
[5] B. De Moor, H.Y. Zha, A tree of generalization of the ordinary singular value decomposition, Linear Algebra Appl. 147 (1991) 469–500.
[6] B. De Moor, G.H. Golub, The restricted singular value decomposition: properties and applications, SIAM J. Matrix Anal. Appl. 12 (3) (1991) 401–425.
[7] B. De Moor, P. Van Dooren, Generalizations of the singular value and QR decompositions, SIAM J. Matrix Anal. Appl. 13 (4) (1992) 993–1014.
[8] B. De Moor, On the structure of generalized singular value and QR decompositions, SIAM J. Matrix Anal. Appl. 15 (1) (1994) 347–358.
[9] F. De Terán, The solution of the equation $AX + BX^* = 0$, *Linear and Multilinear Algebra* 61 (12) (2013) 1605–1628.

[10] M. Dehghan, B. Hashemi, M. Ghee, Computational methods for solving fully fuzzy linear systems, *Appl. Math. Comput.* 179 (2006) 328–343.

[11] X.F. Duan, Q.W. Wang, C.M. Li, Positive definite solution of a class of nonlinear matrix equation, *Linear and Multilinear Algebra* 62 (6) (2014) 839–852.

[12] A. Dmytryshyn, B. Kågström, Coupled Sylvester-type matrix equations and block diagonalization, *SIAM J. Matrix Anal. Appl.* 36 (2) (2015) 580–593.

[13] F.O. Farid, Z.H. He, Q.W. Wang, The consistency and the exact solutions to a system of matrix equations, *Linear and Multilinear Algebra* 64 (11) (2016) 2133–2158.

[14] F. O. Farid, M. S. Moslehian, Q.W. Wang, Z.C. Wu, On the Hermitian solutions to a system of adjointable operator equations, *Linear Algebra Appl.* 437 (2012) 1854–1891.

[15] G.H. Golub, R. Christian, Singular value decomposition and least squares solutions, *Numer. Math.* 14.5 (1970) 403–420.

[16] Z.H. He, O.M. Agudelo, Q.W. Wang, B. De Moor, Two-sided coupled generalized Sylvester matrix equations solving using a simultaneous decomposition for fifteen matrices, *Linear Algebra Appl.* 496 (2016) 549–593.

[17] Z.H. He, Q.W. Wang, Y. Zhang, Simultaneous decomposition of quaternion matrices involving η-Hermicity with applications, *Appl. Math. Comput.* 298 (2017) 13–35.

[18] Z.H. He, Q.W. Wang, A real quaternion matrix equation with applications, *Linear and Multilinear Algebra* 61 (2013) 725–740.

[19] Z.H. He, Q.W. Wang, The η-bihermitian solution to a system of real quaternion matrix equations, *Linear and Multilinear Algebra* 62 (2014) 1509–1528.

[20] Z.H. He, Q.W. Wang, The general solutions to some systems of matrix equations, *Linear and Multilinear Algebra* 63 (10) (2015) 2017–2032.

[21] Z.H. He, Q.W. Wang, Y. Zhang, The complete equivalence canonical form of four matrices over an arbitrary division ring, *Linear and Multilinear Algebra*, 2017, http://dx.doi.org/10.1080/03081087.2017.1284740

[22] Z.H. He, Q.W. Wang, Solutions to optimization problems on ranks and inertias of a matrix function with applications, *Appl. Math. Comput.* 219 (2012) 2989–3001.

[23] Z.H. He, Q.W. Wang, A system of periodic discrete-time coupled Sylvester quaternion matrix equations, *Algebra Colloq.* 24 (2017) 169–180.

[24] R.A. Horn, F.Z. Zhang, A generalization of the complex Autonne-Takagi factorization to quaternion matrices, *Linear and Multilinear Algebra* 60 (11-12) (2012) 1239-1244.

[25] A. Orly, P.O. Brown, D. Botstein, Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms, *Proc. Nat. Acad. Sci. U.S.A.* 100 (6) (2003) 3351-3356.

[26] A. Orly, G.H. Golub, Singular value decomposition of genome-scale mRNA lengths distribution reveals asymmetry in RNA gel electrophoresis band broadening, *Proc. Nat. Acad. Sci. U.S.A.* 103 (32) (2006) 11828-11833.

[27] C.C. Paige, M. Wei, History and generality of the CS decomposition, *Linear Algebra Appl.* 208 (1994) 303–326.

[28] G.W. Stewart, On the early history of the singular value decomposition, *SIAM Rev.* 35.4 (1993) 551–566.

[29] C.C. Took, D.P. Mandic, Augmented second-order statistics of quaternion random signals, *Signal Processing* 91 (2011) 214-224.

[30] C.C. Took, D.P. Mandic, The quaternion LMS algorithm for adaptive filtering of hypercomplex real world processes, *IEEE Trans. Signal Process.* 57 (2009) 1316-1327.

[31] C.C. Took, D.P. Mandic, F.Z. Zhang, On the unitary diagonalization of a special class of quaternion matrices, *Appl. Math. Lett.* 24 (2011) 1806-1809.

[32] Q.W. Wang, J.W. van der Woude, S.W. Yu, An equivalence canonical form of a matrix triplet over an arbitrary division ring with applications, *Sci. China Math.* 54 (5) (2011) 907–924.
[33] Q.W. Wang, Z.H. He, Some matrix equations with applications, *Linear and Multilinear Algebra* 60 (2012) 1327–1353.

[34] Q.W. Wang, X. Zhang, J.W. van der Woude, A new simultaneous decomposition of a matrix quaternion over an arbitrary division ring with applications, *Comm. Algebra*. 40 (2012) 2309-2342.

[35] Q.W. Wang, Z.H. He, Solvability conditions and general solution for the mixed Sylvester equations, *Automatica* 49 (2013) 2713–2719.

[36] Q.W. Wang, J.H. Sun, S.Z. Li, Consistency for bi(skel) symmetric solutions to systems of generalized Sylvester equations over a finite central algebra, *Linear Algebra Appl.* 353 (2002) 169-182.

[37] Q.W. Wang, Z.H. He, Systems of coupled generalized Sylvester matrix equations, *Automatica* 50 (2014) 2840–2844.

[38] Q.W. Wang, A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity, *Linear Algebra Appl.* 384 (2004) 43–54.

[39] Q.W. Wang, The general solution to a system of real quaternion matrix equations, *Comput. Math. Appl.* 49 (2005) 665–675.

[40] Q.W. Wang, Bisymmetric and centrosymmetric solutions to system of real quaternion matrix equations, *Comput. Math. Appl.* 49 (2005) 641–650.

[41] Q.W. Wang, H.X. Chang, C.Y. Lin, P-(skew)symmetric common solutions to a pair of quaternion matrix equations, *Appl. Math. Comput.* 195 (2008) 721–732.

[42] Q.W. Wang, Z.H. He, A system of matrix equations and its applications, *Sci. China Math.* 56 (2013) 1795–1820.

[43] Q.W. Wang, J.W. van der Woude, H.X. Chang, A system of real quaternion matrix equations with applications, *Linear Algebra Appl.* 431 (2009) 2291–2303.

[44] H.K. Wimmer, Consistency of a pair of generalized Sylvester equations. *IEEE Trans. on Automatic Control*. 39(1994) 1014-1016.

[45] G.P. Xu, M.S. Wei, D.S. Zheng, On solution of matrix equation \(AXB + CYD = F \), *Linear Algebra Appl.* 279 (1998) 93-109.

[46] Q.X. Xu, Common Hermitian and positive solutions to the adjointable operator equations \(AX = C, XB = D \), *Linear Algebra Appl.* 429 (2008) 1-11.

[47] S.F. Yuan, Q.W. Wang, Z.P. Xiong, The least squares \(\eta \)-Hermitian problems of quaternion matrix equation \(A^HXA + B^H YB = C \), *Filomat* 28 (2014) 1153–1165.

[48] S.F. Yuan, Q.W. Wang, Two special kinds of least squares solutions for the quaternion matrix equation \(AXB + CXD = E \), *Electron. J. Linear Algebra*. 23 (2012) 257–274.

[49] Y. Zhang, R.H. Wang, The exact solution of a system of quaternion matrix equations involving \(\eta \)-Hermicity, *Appl. Math. Comput.* 222 (2013) 201–209.