Anisotropic Membranes

Mark Bowick, Simon Catterall, Simeon Warner
Physics Department, Syracuse University
Syracuse, NY 13244–1130, U.S.A.

Gudmar Thorleifsson
Fakultät für Physik, Universität Bielefeld
Bielefeld D–33615, Germany

Marco Falcioni
Chemical Engineering Department, UCLA
Los Angeles, CA 90095–1592 U.S.A.

September 1998
Syracuse University Preprint SU-4240-684

Abstract

We describe the statistical behavior of anisotropic crystalline membranes. In particular we give the phase diagram and critical exponents for phantom membranes and discuss the generalization to self-avoiding membranes.

1 Introduction

The statistical mechanics of phantom tethered membranes with bending rigidity is quite well understood if the elastic and bending moduli are isotropic. There is a continuous crumpling transition from the expected high-temperature crumpled phase to a low-temperature flat phase that has no analogue in conventional spin systems [1, 2]. This flat phase is characterized by long-range orientational order of the membrane in the embedding space and large longitudinal (in-plane) fluctuations. Two important generalizations of this class of membranes arise by incorporating self-avoidance and/or intrinsic anisotropy. In [3] Radzihovsky and Toner (RT) showed that intrinsic anisotropy generally leads to a much richer phase diagram for phantom (non-self-avoiding) tethered membranes. Although anisotropy is irrelevant in the flat and crumpled phases it leads to an entirely new tubular phase separated by distinct continuous phase transitions from both the conventional phases. This phase diagram is shown in Fig. [4].

From the applied point of view both isotropic and anisotropic membranes should be important. Isotropic membranes may be made by suitable random polymerization of fluid...
vesicles. On the other hand polymerization in the presence of an applied electric field should in principle yield an anisotropic membrane [4]. Polymerized membranes with in-plane tilt order have a natural anisotropy. The tubular phase is characterized by long-range orientational order in one (extended) direction only — in the remaining transverse direction the membrane is crumpled.

The tubular phase thus resembles a rough sausage with a crumpled cross-section. This existence of this totally tubular phase was confirmed by Monte Carlo simulations in [5]. In this paper the size (Flory) exponent ν_F, describing the growth of the tubule-diameter R_G with internal system size (L), and the roughness exponent ζ, characterizing the height fluctuations along the extended tubule axis, were also reported. The results $\nu_F = 0.305(14)$ and $\zeta = 0.895(60)$ were in rough qualitative agreement with the theoretical predictions $\nu = \frac{1}{4}$ and $\zeta = 1$ of [3]. More extensive subsequent simulations [6] have improved these first results – the best current results are $\nu_F = 0.269(7)$ and $\zeta = 0.859(40)$. Configurations characteristic of the various phases are shown in Fig. 2.

2 Model

A tethered membrane is described by a 2-dimensional regular triangulated net, with the topology of a disk. Each node of the net has six neighbors, except at the boundary. The Hamiltonian of the system is

$$\mathcal{H}[r] = \sum_{\langle \sigma \sigma' \rangle} |r_{\sigma} - r_{\sigma'}|^2$$
Figure 2: The three phases of anisotropic membranes: (a) tubular (b) crumpled and (c) flat.

\[- \kappa_1 \sum_{(ab)} \langle x \rangle n_a \cdot n_b - \kappa_2 \sum_{(ab)} \langle y \rangle n_a \cdot n_b. \tag{1}\]

where \(r_\sigma \) is the position in 3-dimensional space of the node labelled \(\sigma = (\sigma_x, \sigma_y) \). The first sum runs over all nearest-neighbor pairs (bonds) of the membrane, and is the tethering potential. The second and third term are the bending energies in the \(x \) and \(y \) intrinsic directions. The bending energy is a ferromagnetic interaction between the unit normals to the faces of the membrane. The strength of this interaction is anisotropic: if two adjacent faces share a bond parallel to the \(x \) direction the coupling is \(\kappa_1 \); otherwise it is \(\kappa_2 \).

The canonical partition function for a membrane of fixed number of nodes \(N \) is

\[Z = \int [dr] \delta(r_{cm}) e^{-\mathcal{H}[r]}. \tag{2}\]

The Hamiltonian of Eq.(1) was simulated using Monte Carlo methods for triangular lattices ranging from \(25^2 \) to \(175^2 \) nodes. Further numerical details are given in [5, 6].

3 Global Phase Diagram

To determine the global phase diagram of anisotropic membranes we explored the line \((\kappa_1, \kappa_2) = (3\kappa, \kappa)\). We have also simulated the lines \((\kappa, 0)\) and \((2, \kappa)\) on smaller lattices. Distinct signatures of phase transitions were found in the specific heats \(C_V^i \) associated with the variance of the two bending energy terms in the action \(E_x \) and \(E_y \);

\[C_V^i(\kappa) = \frac{\kappa^2}{L^2} \frac{\partial}{\partial \kappa} \langle E_i \rangle. \tag{3}\]

In Fig.3 we show the total specific heat along the line \(\kappa_1 = 3\kappa_2 \) for lattice sizes up to \(175^2 \). There are two distinct peaks. We have confirmed that the two peaks occur at different values of the bending rigidity, signaling the existence of two distinct transitions.

Performing a similar analysis along the other two lines in the \((\kappa_1, \kappa_2)\) plane yields a phase diagram consistent with that of Fig.3. This confirms the three phase scenario.
4 Tubular Exponents

A more detailed understanding of this tubular phase is obtained by looking at the fluctuations of the zero-mode of the tubule height h_{rms}, analogous to the height fluctuations of a flat membrane, and the scaling of the width of the tubule R_{\perp}^G. These are expected to scale as $h_{rms} \sim L^{\zeta}$ and $R_{\perp}^G \sim L^{\nu_F}$.

We find $\zeta = 0.859(40)$ and $\nu_F = 0.269(7)$. The result for ν_F is in excellent agreement with the analytic continuum prediction of $[3]$ ($\nu_F = 1/4$) but the roughness exponent is well below the analytic prediction $\zeta = 1$. Further studies are under way $[6]$.

The most challenging problem in the physics of tubules is the incorporation of self-avoidance. Self-avoidance becomes relevant below the upper-critical embedding dimension $d = 11$, and here one can develop a systematic ϵ expansion $[10]$. This expansion can be improved and this is treated in the contribution to this proceedings by Alex Travesset $[11, 12]$. We are also performing Monte Carlo simulations of this system. Preliminary results indicate a flat-to-tubular transition in the physical case of three dimensions. The specific heat plot is shown in Fig. 4.

References

[1] Statistical Mechanics of Membranes and Surfaces, edited by D.R. Nelson, T. Piran and S. Weinberg, (World Scientific, Singapore, 1989).

[2] Fluctuating Geometries in Statistical Mechanics and Field Theory, edited by P. Ginsparg, F. David and J. Zinn-Justin (http://xxx.lanl.gov/lh94 and North Holland, Amsterdam, 1996).

[3] L. Radzihovsky and J. Toner, Phys. Rev. Lett. 75 (1995) 4752 (cond-mat/9510172).

[4] D. Bensimon, private communication.
Figure 4: The specific heat C_V for self-avoiding membranes.

[5] M. Bowick, M. Falcioni and G. Thorleifsson, Phys. Rev. Lett. 79 (1997) 885 (cond-mat/9705059).

[6] M. Bowick, M. Falcioni and G. Thorleifsson, in preparation.

[7] L. Radzihovsky and J. Toner, Phys. Rev. E57 (1998) 1832 (cond-mat/9708046).

[8] G. Thorleifsson and M. Falcioni, Computer Physics Communications 109 (1998) 161 (physics/9709026).

[9] M. Bowick, S. Catterall, M. Falcioni, G. Thorleifsson and K. Anagnostopoulos, J. Phys. I France 6 (1996) 1321 (cond-mat/9603157).

[10] M. Bowick and E. Guitter, Phys. Rev. E56 (1997) 7023 (cond-mat/9705047).

[11] M. Bowick and A. Travesset, The tubular phase of self-avoiding anisotropic crystalline membranes, SU-4240-680 (cond-mat/9808214).

[12] M. Bowick and A. Travesset, New analytical results on anisotropic membranes, these Proceedings.