Journal of Laboratory Physicians / Jan-Jun 2011 / Vol-3 / Issue-1

Behavior, prognosis, and response to therapy are similar to renal nephroblastomas. Extrarenal nephroblastomas are believed to arise from heterotrophic metanephric blastema. Nephrogenic rests (NR) and nephroblastomatosis are considered to be the precursor lesions of nephroblastoma and most rests are destined for eventual atresia. NR are an abnormal focal persistence of clusters of embryonal cells (metanephric blastema) into later infancy and childhood. They are present multifocal or diffuse in nephroblastomatosis. Focal NR may be located in perilobular or intralobular region. Perilobular NR occurs in fetal overgrowth and with certain overgrowth syndromes. Intralobular NR are frequently associated with deletions or mutations of WT1. Nephroblastomatosis can be perilobular (subcapsular), pan lobular (diffuse cortical), or intralobular (in the renal parenchyma along the columns of Bertin). Nephroblastomatosis is also associated with (1) WAGR syndrome, (2) Denys-Drash Syndrome, and (3) Beckwith Weidman Syndrome. These syndromes are associated with increased risk of developing Wilms' tumor, suggesting related manifestations of genetic damage, affecting single gene or closely linked genes WT1 and WT2. The expression of WT1–mRNA has also been seen in some extrarenal nephroblastoma, indicating similar histogenesis as that of renal nephroblastoma. Staging and management of extrarenal nephroblastoma will be the same as those of renal nephroblastomas. Histologically, these tumors show similar to renal nephroblastomas. The presence of anaplasia, characterized by extreme polyploidy, with nuclear and mitotic atypia, indicates poor prognosis as they show increased resistance to therapy. Distribution of anaplasia is having critical prognostic relevance. The present case did not show any anaplastic features. The diagnosis of extrarenal Wilms's tumor has to be done after ruling out an extension from the intrarenal Wilms' tumor or a metastatic lesion. However, the final diagnosis is established by histopathology. The recommended management of the extrarenal nephroblastoma is similar to intrarenal nephroblastoma. All cases treated by surgery need postoperative adjuvant chemotherapy, and drugs used for renal nephroblastoma, were equally effective for extrarenal nephroblastoma. Radiotherapy should be reserved for those patients with unresectable gross residual tumor and those with distant metastasis. This case was treated surgically with postoperative adjuvant chemotherapy. There was no evidence of recurrence of the tumor after 4 years of treatment.

Microbial Profile of Sugarcane Juice Sold at Rohtak, Haryana with Special Reference to Bile Esculin Azide Medium

Sir,
Sugarcane juice is a common man’s refreshing beverage and it is sold at most of the public places at reasonable prices. Hygienic standards are not maintained by the sellers and no pasteurized commercial sugarcane juice is available in our region. Many outbreaks of food borne diseases have been reported due to consumption of unpasteurised and contaminated juices. Various pathogenic organisms like Escherichia coli, coliforms, enterococci, Salmonella spp., and Vibrio cholerae have been isolated from sugarcane juice by several workers. The present study was carried out to study the bacteriological profile of sugarcane juice sold at
roadside at Rohtak, Haryana and the use of bile esculin azide medium for isolation of enterococci.

Thirty samples of fresh sugarcane juice were collected in sterile containers and transported to the laboratory in ice boxes. All the samples were diluted 10-folds with phosphate buffered saline. Surface plating was done on blood agar, MacConkey’s agar, XLD, and bile salt agar and organisms were identified by standard microbiological procedures. For isolation of enterococci bile esculin azide membrane nutrient pad medium (Hi Media) was used. The test samples were filtered through a sterile membrane filter of pore size 0.22 µm. The nutrient pad was rehydrated with sterile distilled water. The membrane filter was aseptically removed and placed on the rehydrated nutrient pad and incubated overnight. Brownish black colonies suggested the presence of enterococci.

Out of the 30 samples tested, 27 (90%) were found to be contaminated with bacteria. The bacterial count for all the isolates was >10^5 cfu/ml. Enterococci (55.5%) and E. coli (48.1%) were the predominant isolates followed by Citrobacter spp. (18.5%), Klebsiella spp. (18.5%), and Enterobacter spp. (14.8%). In 15 samples a mixture of two organisms were isolated.

In our study, the presence of E. coli, coliforms, and enterococci in significant number suggests faecal contamination of samples. This much bacterial contamination of sugarcane juice is a matter of great concern. It was noticed that hygienic measures were poorly implemented. During the preparation, bare hands were used for handling the ice and sieving of juice. The utensils and glasses were washed just by dipping in the same water.

Bile esculin azide medium is a selective medium for detection and enumeration of enterococci from water, food and other samples. It is a very good medium for selective isolation of enterococci from the samples where a mixture of organisms is suspected.

To conclude, our study emphasizes on strict implementation of hygienic measures by the food handlers and their mandatory screening for bacterial carriage and infection.

Aparna, Sarita Yadav, Madhu Sharma, Uma Chaudhary

Department of Microbiology, BDS PGIMS, Rohtak, Haryana, India.

Address for correspondence: Dr. Madhu Sharma, E-mail: madhusharma71@rediffmail.com

REFERENCES

1. Mahale DP, Khade RG, Vaidya VK. Microbiological analysis of street vended fruit juices from Mumbai city, India. Internet J food safety 2008;10:31-4.
2. Bose S, Basak S, Mallick Sk, Chakraborty K, Chakraborty D. Street food: From dish to petridish. Indian Med Gazette 2010: 53:129-32.
3. Subbannayya K, Bhart GK, Shetty S, Munu VG. How safe is sugarcane juice. Indian J Med Microbiol 2007;25:73-4.
4. Senior BW. Examination of water, milk, food and air. Chapter 51. In: Collee JG, Marmion BP, Simmons A, editors. Mackie and McCartney Practical Medical Microbiology. 14th ed. New York: Churchill Livingstone; 1996. p. 883-921.