Horning cell self-digestion: Autophagy wins the 2016 Nobel Prize in Physiology or Medicine

Po-Yuan Ke \(^{a,b,c,*}\)

\(^a\) Department of Biochemistry & Molecular Biology, Graduate Institute of Biomedical Sciences, and Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan, Taiwan

\(^b\) Liver Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan

\(^c\) Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan

A B S T R A C T

Autophagy is an evolutionarily conserved process by which eukaryotic cells eliminate intracellular components via the lysosomal degradation process. This cell self-digestion process was first discovered and morphologically characterized in the late 1950s and early 1960s. The genetic screen studies in baker’s yeast in the 1990s further identified the essential genes functioning in the autophagic process. In the past two decades, the detailed molecular process involved in the completion of autophagy was delineated. Additionally, autophagy has been implied to function in many aspects of biological processes, including maintenance of organelle integrity, protein quality control, regulation of the stress response, and immunity. In addition to maintain cell homeostasis, autophagy has recently been shown to be modulated and to participate in the pathogenesis of human diseases, such as pathogen infections, neurodegenerative diseases, and tumor development. Overall, the breakthrough in autophagy research relies on the discovery of autophagy-related genes (ATGs) using a genetic screening approach in Saccharomyces cerevisiae, which was established by Yoshinori Ohsumi. This year the Nobel Committee has awarded Yoshinori Ohsumi the Nobel Prize in Physiology or Medicine for his remarkable contribution to autophagy research.

The term “autophagy” is derived from the Greek words for eat (“phagy”) and oneself (“auto”) and was coined in the early 1960s by Christian de Duve, the 1974 Nobel Laureate in Physiology or Medicine, who discovered lysosomes and peroxisomes [1]. In response to stresses, such as nutrient deprivation, protein unfolding and aggregation, or invasion of pathogens, autophagy is activated to regulate a variety of biological pathways to counteract these adverse stimuli, thus maintaining cellular homeostasis [2,3]. The entire process of autophagy involves a stepwise membrane rearrangement process. At the initial step, the particular membranous structure, the so-called isolation membrane (IM)/phagophore, is first originated...
from various organelles, such as endoplasmic reticulum (ER) [4,5], plasma membrane [6], mitochondria [7], and Golgi apparatus [8]. Then, the IM/phagophore further elongates and envelopes the cargo to form a double-membraned autophagosome. Autophagosomes sequester the cargo and fuse with lysosomes, forming autolysosomes in which the engulfed materials are degraded and recycled for further use by cells [2,3]. Although autophagy has been long considered a non-selective bulk degradation process, mounting evidence shows that autophagy can selectively degrade damaged organelles and infecting pathogens [2,3]. The cargo receptors of selective autophagy specifically recognize the polyubiquitinated cargo and subsequently target them to autophagic degradation via interacting with ATG8 family proteins [9,10].

Uncovering of autophagy-related genes (ATGs)

Autophagy was first characterized in the late 1950s by transmission electron microscopy observation of dense bodies that sequester the digestive mitochondria and ER and deliver them to be eliminated by lysosomal proteases in monkey kidney tissue and rat hepatocytes [11–14]. Later, at the 1963 Ciba Foundation symposium on lysosomes, Christian de Duve defined these sequesterating vacuoles that contain cytoplasmic components and lysosomal degradation enzymes as a cell self-lytic process and named it “autophagy” [1]. Soon afterwards, several studies noted that hormones can activate or repress autophagic process due to a loss of autophagic vacuoles in yeast cells [23]. Yoshinori Ohsumi also defined these sequestrating vacuoles that contain cytoplasmic components and lysosomal degradation enzymes as a cell self-lytic process and named it “autophagy” [1].

In the past decade, autophagy has been shown to play functional roles in the development of human diseases [2,48,49]. Hence, modulation of autophagic activity by a specific enhancer or inhibitor has therapeutic potential as a new strategy for curing human diseases. New findings and concepts regarding the regulation and function of autophagy are still growing. Additionally, several fundamental questions for autophagy, such as the origin of preautophagosomal structure and the molecular mechanism responsible for membrane regeneration of vacuoles, are still unanswered and require further investigations. Nevertheless, Yoshinori Ohsumi’s tremendous contribution to autophagy research presents a hallmark for how to utilize baker’s yeasts in biomedical research and has clinical implications for understanding the pathogenesis of human diseases.

Conflicts of interest

The authors have no conflicts of interest relevant to this article.

Acknowledgments

This study was supported by research grants from the National Science Council (NSC 101-2320-B-182-043 and NSC 102-2320-B-182-037-MY3) and Chang Gung Memorial Hospital (CMRPD1C0211, CMRPD1D0021, CMRPD1D0022, CMRPD1D0023, and CRRPD1F0031).

REFERENCES

[1] De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol 1966;28:435–92.
Beaulaton J, Lockshin RA. Ultrastructural study of the normal proximal tubule cell in experimental diabetes. Nature 1980;285:1069–75.

Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshiyama T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009;11:1433–7.

Reggiori F, Shintani T, Nair U, Klionsky DJ. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy 2005;1:101–9.

Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009;12:747–57.

Takeshige K, Baba M, Takeshige K, Baba N, Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 1994;124:903–14.

Taketomi A, Osumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993;333:169–74.

Ohsumi Y. Autophagy in yeast, bulk protein degradation in the vacuole. Seikagaku 1997;69:39–44.

Kametaka S, Okano T, Ohsumi M, Ohsumi Y. Apg14p and Apg6p/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J Biol Chem 1998;273:22284–91.

Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 1998;273:3963–6.

Hayashi-Nishino M, Fujita N, Noda T, Ohsumi Y. Acidification of vacuoles is required for autophagic degradation in the yeast, Saccharomyces cerevisiae. J Biochem 1997;121:338–44.

Kihara A, Noda T, Ishihara N, Ohsumi Y. Two distinct Vps34 microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. J Biol Chem 1998;273:17621–4.

Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J 1998;17:3597–607.

Yoshimori T, et al. The reversible modification regulates the function of the Apg12p-Apg5p conjugate in the yeast Saccharomyces cerevisiae. J Biol Chem 1998;273:1068–76.

Shintani T, Matsuura A, Wada Y, Ohsumi Y. A novel system for autophagy in yeast Saccharomyces cerevisiae. J Cell Biol 2001;152:519–31.

Kametaka S, Matsuura A, Wada Y, Ohsumi Y. Structural and functional analyses of Apg5, a gene involved in autophagy in yeast. Gene 1996;178:139–43.

Mizushima N, Noda T, Ishii T, Ishihara N, Ohsumi Y. A unified nomenclature for yeast autophagy-related genes. Dev Cell 2003;5:339–45.
autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol 2000;151:263–76.

[45] Yoshimori T. Autophagy in mammalian cells—enter actors. Seikagaku 2001;73:1154–9.

[46] Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19:5720–8.

[47] Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004;15:1101–11.

[48] Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010;40:280–93.

[49] Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol 2010;12:823–30.