Screening test for anti-\textit{Helicobacter pylori} activity of traditional Chinese herbal medicines

Feng Ma, Ye Chen, Jing Li, He-Ping Qing, Ji-De Wang, Ya-Li Zhang, Bei-Guo Long, Yang Bai

Feng Ma, Ye Chen, Jing Li, He-Ping Qing, Ji-De Wang, Ya-Li Zhang, Yang Bai, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China

Bei-Guo Long, Department of Microbiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China

Author contributions: Ma F and Chen Y performed the majority of experiments, wrote and edited the manuscript; Li J and Qing HP had supportive contributions; Long BG and Wang JD provided the vital reagents and analytical tools; Bai Y and Zhang YL provided the financial support for this work; Bai Y designed the study and edited the manuscript.

Supported by The Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of China, No. 2009B090300280

Correspondence to: Dr. Yang Bai, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Tonghe Road 1838, Guangzhou 510515, Guangdong Province, China. baiyang1030@hotmail.com

Telephone: +86-20-61641535 Fax: +86-20-87280770

Received: June 1, 2010 Revised: August 3, 2010

Accepted: August 10, 2010

Published online: November 28, 2010

Abstract

AIM: To evaluate the anti-\textit{Helicobacter pylori} (\textit{H. pylori}) activity of 50 traditional Chinese herbal medicines in order to provide the primary evidence for their use in clinical practice.

METHODS: A susceptibility test of water extract from 50 selected traditional Chinese herbal medicines for \textit{in vitro} \textit{H. pylori} Sydney strain 1 was performed with broth dilution method. Anti-\textit{H. pylori} activity of the selected Chinese herbal medicines was evaluated according to their minimum inhibitory concentration (MIC).

RESULTS: The water extract from Rhizoma Coptidis, Radix Scutellariae and Radix isatidis could significantly inhibit the \textit{H. pylori} activity with their MIC less than 7.8 mg/mL, suggesting that traditional Chinese herbal medicines have anti-inflammatory and antibacterial effects and can thus be used in treatment of \textit{H. pylori} infection.

CONCLUSION: Rhizoma Coptidis, Radix Scutellariae and Radix isatidis are the potential sources for the synthesis of new drugs against \textit{H. pylori}.

© 2010 Baishideng. All rights reserved.

Key words: Chinese herbal medicines; \textit{Helicobacter pylori}; Minimum inhibitory concentration; Gastric; Oral

Peer reviewer: Seng-Kee Chuah, MD, Division of Hepatogastroenterology, Kaohsiung Chang Gang Memorial Hospital, 123, Ta-Pei Road, Niaosung Hsiang, Kaohsiung 833, Taiwan, China

Ma F, Chen Y, Li J, Qing HP, Wang JD, Zhang YL, Long BG, Bai Y. Screening test for anti-\textit{Helicobacter pylori} activity of traditional Chinese herbal medicines. World J Gastroenterol 2010; 16(44): 5629-5634 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i44/5629.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i44.5629

INTRODUCTION

\textit{Helicobacter pylori} (\textit{H. pylori}), a microaerophilic, Gram-negative spiral bacterium which was first detected in 1984 by Marshall et al\cite{1}, is one of the most common chronic bacterial pathogens in humans. Approximately 50% of people in the world are infected with it, and its prevalence is significantly higher in developing countries than in developed countries\cite{2}. \textit{H. pylori} infection is an important etiologic impetus usually leading to chronic gastritis, gastroduodenal ulcer and low grade gastric mucosa-associated lymphoid tissue lymphoma. Epidemiological data show that a high \textit{H. pylori} infection rate is related to the high incidence of gastric cancer and gastric adenocarcinoma\cite{3}. World Health Organization has categorized \textit{H. pylori} as...
a class 1 carcinogen\(^5\). Fortunately, its eradication with antibiotics can result in ulcer healing, prevent peptic ulcer recurrence and reduce the prevalence of gastric cancer in high-risk populations\(^6\). However, it is not always successful because of its resistance to one or more antibiotics and other factors such as poor patient compliance, undesirable side effects of the drugs and significant cost of combination therapy. Worrel \textit{et al.}\(^7\) reported that over 15\% of the patients undergoing antibiotics therapy would experience therapeutic failure. In developing countries, since the application of antibiotics is still under a poor management as a whole, there is a growing need for finding new anti-\textit{H. pylori} agents that can hopefully eradicate the invasion and presence of \textit{H. pylori} strains to avoid relapse of gastric ulcer. Hence, a considerable variety of studies involving tests for medicinal plants showing antimicrobial activity and discrepant susceptibility test results are available due to variations in the methods and conditions used for its susceptibility testing. It was reported that Garlic extracts exhibit a weak or modest anti-\textit{H. pylori} activity\(^7\). \textit{Prelepsis suberosa}\(^8\), \textit{Cinnamon}\(^9\), \textit{Craberry juice}\(^10\), \textit{Aristolochia paucinervis} Pomel\(^11\), \textit{black Myrobalan}\(^12\), etc., have also been found to have anti-\textit{H. pylori} activities. Ndip \textit{et al.}\(^13\) reported that \textit{Ageratum conyzoides}, \textit{Scleria striatinux} and \textit{Lycopodium cernua} show a very potent antibacterial activity. Fifty-four herbal medicines from Korea have been screened for their anti-\textit{H. pylori} activity, of which, \textit{Rheum palmatum}, \textit{Rhus javanica}, \textit{Coptis japonica} and \textit{Eugenia caryophyllata} have a strong anti-\textit{H. pylori} activity\(^14\). Extracts and fractions from 7 Turkish plants also demonstrate anti-\textit{HP} activities\(^15\). Traditional medicinal plants from Pakistan and \textit{Psoralea corylifolia} L. demonstrate a strong anti-\textit{H. pylori} activity\(^16\). Some compounds even have been isolated and their anti-\textit{H. pylori} activity has also been testified, for example, \textit{Myroxylon Periferum} from the Brazilian medicinal plants\(^17\). In addition, some flavonoids and isoflavonoids isolated from licorice, such as licochalcone A and licisofoflavone B, have been reported to exhibit inhibitory activities against \textit{H. pylori}\(^18\).

In China, traditional Chinese medicine and pharmacology play an indispensable role in the health care system, especially in prevention and management of chronic diseases. Studies\(^19\) revealed that some traditional herbal medicines are efficient against gastrointestinal diseases, including chronic gastritis and peptic ulcer disease, a major outcome of \textit{H. pylori} infection, indicating that the medicinal plants may contain constituents, which have antibacterial and anti-inflammatory activities. The present study was to evaluate the anti-\textit{H. pylori} activity of some selected medicinal plants to identify the potential sources for synthesis of new drugs against \textit{H. pylori}. In this study, 50 traditional Chinese medicinal herbs (Table 1) were examined and screened for their anti-\textit{HP} activity according to their minimum inhibitory concentration (MIC).

MATERIALS AND METHODS

Extract of medicinal plants

A total of 50 traditional Chinese medicinal herbs, pur-
Chinese name	English name	Pharmaceutical name	Botanical name	MIC (mg/mL)
Huanglian	Coptis Rhizome	Rhizoma Coptidis	Coptis chinensis Franch.	3.9 ± MIC ≤ 7.8
Huangqin	Baikal skullcap Root	Radix Scutellariae	Scutellaria Baicalensis Georgi.	3.9 ± MIC ≤ 7.8
Banlangen	Indigowood Root	Radix isatisid	Isatis tinctoria L.	3.9 ± MIC ≤ 7.8
Jinyinhu	Honeysuckle Flower	Floslonicereae Japonicae	L. Similis Hemsil	7.8 ± MIC ≤ 15.6
Qinpi	Largeleaf Chinese Ash Bark	Cortex Fraxini	F. Bungeana DC.	7.8 ± MIC ≤ 15.6
Zhihuadiding	Tokyo Violet Herb	Herba Violae cum Radice	Viola yedoensis Mak.	15.6 ± MIC ≤ 31.2
Huangbai	Chinese Corkreek Bark	Cortex Pheliodendreri	Chinese Schweid	15.6 ± MIC ≤ 31.2
Daqingyinge	Indigowood Leaf	Folium isatisid	Isatis	15.6 ± MIC ≤ 31.2
Puqingyinge	Dandelion	Herba Taraxaci Mongolicum cum Radice	Taraxacum mongolicum	15.6 ± MIC ≤ 31.2
Dahuang	Rhubarb Leaf	Rhizoma Rhei	R. Officinale baiil	31.2 ± MIC ≤ 62.5
Shandougen	Tonkin sorora Root	Radix Sororae Tonkinensis	Sophora Subprostrata Chun et T. Chen	31.2 ± MIC ≤ 62.5
Longdancao	Chinese Gentian Root	Radix Gentianae Scabrae	Gentiana Scabrae Bge. In	31.2 ± MIC ≤ 62.5
Hezi	Medicine Terminalia Fruit	Fructus Terminaleae Chebulae	Terminalia chebula Retz.	31.2 ± MIC ≤ 62.5
Machixian	Parslane Herb	Radix Sororae Subprostratae	Sophora Subprostrata Chun et T. Chen	62.5 ± MIC ≤ 125
Banhilian	Barbed Skullcap Herb	Herba Scutellariae Barbatae	Scutellaria Barbata D. Don	62.5 ± MIC ≤ 125
Yuxingcao	Heartleaf Houttuynia Herb	Herba Houttuyniae Cordatae	Houttuynia cordata Thunb.	62.5 ± MIC ≤ 125
Tufaling	Glabrous Greenbriher Rhizome	Rhizoma Similicis Glabre	Similax glabra Roxb.	62.5 ± MIC ≤ 125
Niubangi	Great Burdock Achene	Fructus Arctici Lappa	Fructus Arctii	125 ± MIC ≤ 250
Juhua	Chrysanthemum Flower	Flos Chrysanthemi Morfoli	Chrysanthemum morfolii Ramat.	125 ± MIC ≤ 250
Baijiangcao	Whiteflower Patrinia Herb	Herba Whiteflower Patrinia Herb	Patrinia Scabiosaefolia Fisch.	125 ± MIC ≤ 250
Tianhuafen	Snakegourd Root	Radix Trichosanthis	Thichosanthes kinilowii Maxim.	125 ± MIC ≤ 250
Yadanzi	Java Brucea Fruit	Fructus Bruecae Iavanicae	Brueca Javanica Merr.	125 ± MIC ≤ 250
Niuhuang	Cowcear	Calzulus Bovis	Bos taurus domesticus Gmelin	250 ± MIC ≤ 500
Mabo	Puff-ball	Fructifictio lasisphaeriae	Iasiophora fenselli Reih.	250 ± MIC ≤ 500
Zisu	Perilla Leaf	Folium Perillae Frutescencis	Perilla	250 ± MIC ≤ 500
Chaizhu	Chinese Thorowat Root	Radix Bupleuri	Bupleurum scorzoneraeofolium	250 ± MIC ≤ 500
Rendongteng	Honeymyone Stem	Caulis Lonicerae	Loniceria Japonica	250 ± MIC ≤ 500
Kussen	Lightyellow Sophora Root	Radix Sororae Flavescentsis	Sophora Flavescens Ait	250 ± MIC ≤ 500
Rougui	Cassia Bark	Cortex Cinamomoni Cassiae	Cinnamomum cassia Pres.	500
Congbai	Fistular Onion Stalk	Herba Ali Fistulata	Allium fistulatum	500
Xiangru	Haichow Elsholtzia Herb	Herba Elsholtziales Splendentis	E. Haichowensis Sun.	500
Bohe	Wild Mint	Herba Mentheae	Mentha hlapoclyax Bryq.	500
Qinghao	Sweet Wormwood	Herba Artemisiae Apiaceae	Artemesia apiaca Hance	500
Wuzhuoyu	Medicinal Evodia Fruit	Fructus Evodiae Rutacearpace	Evodia Rutacearpeta Benth.	500
Chishaoyao	Red Peyony Root	Radix Paenodi Rubra	Paonia lactiflora Pall.	500
Wumei	Smoked Plum	Fructus Pruni Mume	Prunus mumeie Sieb. et Zucc	500
Mudanpi	Tree Peyony Bark	Cortex Moutan Radicis	Paonia suffructiosa And.	500
Xuanxiao	Figwot Root	Radix Scrophulariae Nigroennis	Scrophularia ningroennis Hemsd	500
Ganjiang	Dried Ginger	Rhizoma Zingibereis Officinalis	Zingiber officinalis Rose	500
Fuzi	Root of Common Moonshood	Radixaconitil Carnichiaelli Praeparata	Aconite carniichiaelli Debs.	500
Huaijiao	Bange prickyloss	Fructus Zanthoxyli Bungeani	Zanthoxylum bungeanum Maxim.	500
Gaoliangiang	Lesser Galangal Rhizome	Rhizoma Alpiniae Officinarum	Alpinia officinarum Hance.	500
Dingsxang	Clover Fluwe-bud	Flos Caryophylli	Eugenia caryophylla Thunb.	500
Shiluipi	Rind Feel	Pericarpium Punicae Granatii	Punica granatuum L.	500
Xinm	Manchurian wildingger Herb	Herba Asari cum Radix	Asarum sieboldii Miq.	500
Cangzhu	Swordlike Atractylodes	Rhizoma Atractylodes	Atractylodes lancea Thunb.	500
Lugon	Reed Rhizome	Rhizome Phragmitis Communinis	Phragmites communis	500
Baitouweng	Chinese pulsatilla Root	Radix pulsatiliae Chinensis	Pulsatilia Chinensis Reg.	500
Xiaohuixiang	Fennel Fruit	Fructus Foeniculi vulgaris	Foeniculum vulgare Mill.	500
Zhizi	Cape Jasmine Fruit	Fructus Gardeniae Jasmilikiis	Gadenia Jasmonidios Ellis	500

MIC: Minimum inhibitory concentration.

15 min. No. 11 tube was used as a growth control (broth with bacterial inoculum, no extract) and No. 12 tube was used as a sterility control (broth only). All tubes were cultured in a shaking incubator containing 5% O₂, 10% CO₂, and 85% N₂. At the same time, 10 μL bacterial suspension from No. 11 tube was diluted quickly with 10 mL 0.9% sterile physiological saline at 1:1000, then 100 μL 0.9% sterile physiological saline was transferred onto the surface of three Campylobacter plates [control of diarrheal diseases in China Research, Shanghai Regent Supply; each liter containing bio-polyone (10 g), bio-lysat (10 g), bio-myotone (3 g), corn starch (1 g), sodium chloride (5 g), agar (13.5 g), pH 7.3, autoclaved at 121°C for 15 min] containing 5% (v/v) of sterile defibrinated sheep blood (Guangzhou Ruite Ltd., China), cultured at 37°C in a jar system (Refrigerating Machine Factory, Yiwu City, Zhejiang Province, China) containing 5% O₂, 10% CO₂, and 85% N₂: to verify the absence of contamination and calculate the colonies. Susceptibility test for other medicinal plants was performed in duplicate.
RESULTS

After incubation, the tubes were visually examined to determine whether the H. pylori strains grew. H. pylori strains in No. 11 tube grew well and no bacterial growth was observed in No. 12 tube. The colonies in 3 agar plates grew well with an average number of about 50. The lowest concentration (highest dilution) of extract that inhibited the visible growth of H. pylori strains (no turidity) was defined as MIC. For further confirmation, 10 μL of bacterial suspension from the clearly visible tubes was diluted quickly with 10 mL 0.9% sterile physiological saline at 1:1000, then 100 μL 0.9% sterile physiological saline was transferred onto the surface of three Campylobacter plates and cultured for 3 d. When the average number of colonies in the 3 agar plates was less than 5 or no colony was found, the MIC was considered less than or equal to the concentration. When the growth of H. pylori strains occurred in all dilutions containing the extract, the MIC was considered greater than the highest concentration. When no growth of H. pylori strains occurred in any concentration tested, the MIC was considered less than the lowest concentration. When a tube with visible growth of H. pylori strains, e.g. growth at 500, 250 and 62.5 mg/mL, but not at 125 mg/mL, was called a skipped tube and ignored. Growth of H. pylori strains in isolated tubes indicated contamination, the test should be repeated. The results are listed in Table 1. The MIC of Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis was less than 5.8 mg/mL. The MIC of Floslionicarum Japonicae and Cortex Fraxini was less than 15.6 mg/mL. The MIC of Herba Violaecum Radice, Cortex Phellodendri and Folium Isatidis, Herba Taraxaci Mongolicum cum Radice was less than 31.2 mg/mL. The MIC of Rhizoma Rhei, Radix Sophorae Tonkinensis, Radix Gentianae Scabrae, Frutus Terminaliae Chebulicae was less than 62.5 mg/mL. The MIC of Radix Sophorae Subprostratae, Herba Scutellariae Barbatae, Herba Houttuyniae Cordatae and Rhizoma Smilacis Glabrae was less than 125 mg/mL. The MIC of Fructus Arctii Lappae, Flos Chrysanthemum Mortifolii, Herba Whiteflower Patrinia Herb, Radix Thichosanthis and Fructus Brucae Javanicae was less than 250 mg/mL. The MIC of Calculus Bovis, Fructificto Lasiosphaeraceae, Folium Perilicr Frutescentis, Radix Bupleuri, Caulis Lonicerae, Radix Sophorae Flavscens was less than 500 mg/mL, and the MIC of other medicinal herbs was greater than 500 mg/mL. Authority books, such as Pharmacopoeia of People’s Republic of China (Committee of National Pharmacopoeia, 2005 edition), Chinese Herbal Medicine (Gong-Wang Liu, Li-Ya Gao, 2000, Hua Xia Publishing House), Modern Clinical Chinese Herbal Medicines (Dong Kun-Shan, Wang Xiu-Qin, Dong Yi-Fan, 2001, Chinese Traditional Medicine Press), acclaimed that most selected medicinal plants have an activity against microscopic organisms, including various Gram-negative or -positive bacteria, fungi, viruses or parasites. In fact, many of them are the constituents of Chinese patent medicines used in treatment of stomach discomfort-related diseases. More importantly, most of them demonstrate a significant anti-H. pylori activity.

DISCUSSION

In this study, the MIC in 50 traditional Chinese herbal medicines was detected. Although a considerable variety of plants showing an antimicrobial activity have also been reported in other studies[7-19], variation of MIC still exists due to the bioassay methods employed in different studies, the sources and age of the plants, the solvent used for extraction, and H. pylori strains. The susceptibility of H. pylori SS1 to water extracts was examined and screened in this study with broth dilution diffusion, a quantitative assay method, which is less time-consuming and less labor-intensive than agar dilution method, and cheaper than Etest. All selected herbal medicines are the commonly used traditional Chinese herbal medicines prescribed by physicians of traditional Chinese medicine. Some plants are even recommended as a dietetic therapy for health preserving, such as Radix Isatidis, Herba Houttuyniae Cordatae. More importantly, all the selected herbal medicines have a same standard from the TonRen Corporation. Although the susceptibility of only an isolated H. pylori strain to such medicines was tested, the susceptibility of other clinical strains to these medicines should also be tested.

In this study, the water extract from Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis had a stronger anti-H. pylori activity than that from other plants, indicating that the three plants can be used as useful sources for the synthesis of novel drugs against H. pylori. Traditional medical practitioners and biomedical specialists play an important role in pharmacodynamics and pharmacokinetics research. In order to find scientific evidence and rationalize the utility and efficacy of traditional Chinese medicines, they have tried to extract and analyze the active compounds of medicinal plants with various biomedical analytical techniques and assay methods, and evaluated their antibacterial and anti-inflammatory mechanism in animal experiments.

Rhizoma Coptidis contains berberine. Several protobberine alkaloids of berberine, palmatine, cotispine and aporphinoid alkaloid of magnoflorine have beenconfirmed to be the major pharmacologically active constituents, and these alkaloids demonstrate a significant antimicrobial activity against a variety of organisms including bacteria, viruses, fungi, protozoans, helminthes, and Chlamydia[22,23]. The pharmacological antibacterial activity of the 3 berberine alkaloids is berberine > cotispine > palmatine[24]. An animal experiment suggested that the total alkaloid is a potent protective agent against H. pylori LPS which induces gastric mucosal inflammation[25].

Radix Scutellariae contains over 30 kinds of flavonoid, such as baicalin, bicalaen, wogonin, wogonin7-glucuronide, oxorlyn A, and oxorlyn A 7-O-glucuronide[26]. Active flavonoids, including baicalin, baicalein, wogonin, and wogonoside, have a variety of pharmacological activities, such as anti-inflammation, free radical scavenging and anti-oxidation[27], and antibacterial action[28]. All active flavonoids exert their anti-inflammatory effect mainly by inhibiting the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) gene expression[29]. It was
reported that Radix Scutellariae inhibits LPS-induced production of proinflammatory mediators, including NO, IL-3, IL-6, IL-10, IL-12p40, IL-17, IP-10, KC, and VEGF in mouse macrophages[34].

Radix Isatidis is also officially documented. Organic acids, including syringic acid, 2-amino-benzoic acid, salicylic acid and benzoic acid among the main chemical active components, have been segregated and purified as a crystal[35]. Some authors have even tested the potency sequence of the 4 organic acids (syringic acid > 2-amino-benzoic acid > salicylic acid > benzoic acid)[32]. Furthermore, the 4 organic acids share a basic molecular structure, and the number, position and type of their functional groups on phenyl ring have great impacts on antibacterial activities. Extracts from Radix Isatidis can decrease the production of inflammatory mediators, such as nitric-oxide, prostaglandin E2, and pro-inflammatory cytokines[36,37].

Traditional Chinese medicines have a long history, due to their effectiveness and relatively low toxicity, and herbal medicines have drawn more and more attention during the past decades. Chemical compositions of Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis have been extensively studied, some of which can act on H. pylori LPS and inhibit the production of proinflammatory mediators. In our study, water extracts from the medicinal plants demonstrated a strong anti-H. pylori activity, and a wide range of phytochemistry materials from medicinal plants could reduce the inflammatory response, indicating that the 3 herbal drugs can be used as anti-inflammatory or anti-bacterial agents. However, the strong in vitro anti-H. pylori activity of these water extracts does not necessarily imply that they have a strong in vivo anti-H. pylori activity. On the other hand, some of these plants may be more potent in vivo due to metabolic transformation of their components into highly active intermediates. However, further study is needed to confirm the effect of Rhizoma Coptidis, Radix Scutellariae, Radix Isatidis and other traditional Chinese medicines on alimentary tract diseases due to H. pylori infection.

It is well known that human beings are the main reservoir of H. pylori. World Health Organization pointed out that most subjects infected with H. pylori have no clinical symptoms, peptic ulceration and superficial chronic gastritis, but peptic ulcer, ulcer complications, and progression to gastric cancer will occur in approximately 17%, 4.25% and 1% of H. pylori-infected subjects, respectively[38]. Besides, extragastric diseases involving the cardiovascular, hepatobiliary, dermatological, immunological, hematological systems[39] are also related with H. pylori infection. Moreover, since H. pylori was isolated from human dental plaque[39], H. pylori has been detected in oral cavity, suggesting that oral cavity diseases such as halitosis, glossitis, burning mouth syndrome, recurrent aphthous stomatitis, dental caries, are related with oral H. pylori infection. Anand et al[37] reported that the prevalence of H. pylori is higher in dental plaque of patients with gastric H. pylori infection than in that of patients without gastric H. pylori. It has been shown that patients with poor oral hygiene have the most frequent recurrence of gastric H. pylori infection[39]. Oral cavity is a potential reservoir of H. pylori and oral H. pylori may influence the relapse of gastric H. pylori infection. It was reported that H. pylori in dental plaque is hardly eradicated by triple therapy[30,31], suggesting that oral antibiotics have almost no effect on H. pylori in oral cavity.

With the better recognition of H. pylori, more diseases have been found to be related to H. pylori. Since oral cavity, as a residence of H. pylori, is as important as stomach, prevention and treatment of oral H. pylori infection should be put on the agenda. Antibiotics have been the main drugs against H. pylori since the bacterium was discovered. Further study is needed to solve the problems such as drug resistance, poor patient compliance, undesirable side effects and the significant cost of combination therapy. Traditional Chinese medicines have shown their advantages over Western drugs, including a lower price, a low toxicity and less adverse reactions.

It is exciting that Rhizoma Coptidis, Radix Scutellariae, Radix isatidis and other herbs with a strong anti-H. pylori activity may provide the potential sources of new drugs, thus reducing the morbidity of oral cavity diseases and improving the eradication rate and relapse of gastric H. pylori infection.

ACKNOWLEDGMENTS

The authors thank all members of the team for their assistance and Beijing Academy of Agriculture and Forestry Sciences for providing laboratory and experiment equipments, as well as Professor Chang-Qing Wang for providing Chinese herbal medicines.

COMMENTS

Background

Many diseases are related to Helicobacter pylori (H. pylori) infection. Although antibiotics can eradicate gastric H. pylori, antibiotics treatment can lead the problems, such as drug resistance, poor patient compliance and undesirable side effects. It has been reported that some herbal medicines have an anti-H. pylori activity. The herbal medicine resources are rich in China with a long history of practicing traditional Chinese medicine. However, few studies are available on the anti-H. pylori activity of herbal medicines. Herbal medicines may be potential sources of new drugs.

Research frontiers

Human beings are the main reservoir of H. pylori. World Health Organization estimates indicate that H. pylori infection is closely related with gastric and extragastric diseases involving the cardiovascular, hepatobiliary, dermatological, immunological, and hematological systems. H. pylori has been detected in oral cavity. Oral cavity diseases such as halitosis, glossitis, burning mouth syndrome, recurrent aphthous stomatitis, dental caries, may be related with H. pylori infection.

Innovations and breakthroughs

In vitro susceptibility test was performed for water extract from 50 selected traditional Chinese herbal medicines and their anti-H. pylori activity was evaluated according their MIC values. The active compounds of Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis, were detected and their anti-H. pylori activity was analyzed.

Applications

Since Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis have a strong anti-H. pylori activity, with a low toxicity, a low price and less adverse reactions, they can be used in preventing and treating gastric and/or oral H. pylori infection.

Peer review

This study described the strong anti-H. pylori activity of Rhizoma Coptidis, Radix Scutellariae and Radix Isatidis, thus adding some novel herbal medicines for preventing and treating gastric and/or oral H. pylori infection.
REFERENCES

1 Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1: 1311-1315

2 Goodwin CS, Mendall MM, Northfield TC. Helicobacter pylori infection. Lancet 1997; 349: 265-269

3 NIH Consensus Conference. Helicobacter pylori in peptic ulcer disease. NIH Consensus Development Panel on Helicobacter pylori in Peptic Ulcer Disease. JAMA 1994; 272: 65-69

4 Schistosomes, liver flukes and Helicobacter pylori. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994; 61: 1-241

5 Sepulveda AR, Coelho LG. Helicobacter pylori and gastric malignancies. Helicobacter 2002; 2: Suppl 1: 37-42

6 Worrel JA, Stoner SC. Eradication of Helicobacter pylori. Med Update Psychiatr 1998; 3: 99-104

7 Cellini L, Di Campli E, Masulli M, Di Bartolomeo S, Allocati N. Inhibition of gastric ulcers and Helicobacter pylori growth. J Ethnopharmacol 1998; 59: 167-172

8 O’Gara EA, Hill DJ, Maslin DJ. Activities of garlic oil, garlic powder, and their diallyl constituents against Helicobacter pylori. Appl Environ Microbiol 2000; 66: 2269-2273

9 Germano MP, Sanogo R, Guglielmo M, De Pasquale R, Cri-safi G, Bisignano G. Effects of Peleopopsis suberosa extracts on experimental gastric ulcers and Helicobacter pylori growth. J Ethnopharmacol 2000; 75: 203-205

10 Tabak M, Armon R, Neeman I. Cinnamon extracts’ inhibitory effect on Helicobacter pylori. J Ethnopharmacol 1999; 67: 269-277

11 Bae EA, Han MJ, Kim NJ, Kim DH. Anti-Helicobacter pylori activity of herbal medicines. J Ethnopharmacol 1999; 67: 286-291

12 Gadiri G, Aléker A, Jana M. Anti-Heli-co bacter pylori activity of Aristolochia paucinervis Pomel. J Ethnopharmacol 2001; 75: 203-205

13 Malekzadeh F, Ehsanifar H, Shahamat M, Levin M, Colwell RR. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int J Antimicrob Agents 2001; 18: 85-88

14 Ndip RN, Malange Tarkangn AE, Mbullah SM, Luma HN, Malengue A, Ndip LM, Nyongbela K, Wirmum C, Efange SM. In vitro anti-Helicobacter pylori activity of extracts of selected medicinal plants from North West Cameroon. J Ethnopharmacol 2007; 114: 452-457

15 Burger O, Ofek I, Tabak M, Weiss EI, Sharon N, Neeman I. A high molecular mass constituent of cranberry juice inhibits helicobacter pylori adhesion to human gastric mucus. FEMS Immunol Med Microbiol 2000; 28: 286-291

16 Yeşildağ E, Gürbüz I, Şhibata H. Screening of Turkish anti-inflamatory effects of a methanolic extract from Radix Isatidis in ex vivo macrophages. J Ethnopharmacol 2009; 125: 286-290

17 Zaidi SF, Yeşilada E, Ofek I, Tabak M, Weiss EI, Sharon N, Neeman I. Cinnamon extracts’ inhibitory effect on Helicobacter pylori. J Ethnopharmacol 1999; 67: 269-277

18 Obasi A, Takahama J, Chiba N, Kawamura M. Microanalytical of a selective potent anti-Helicobacter pylori compound in a Brazilian medicinal plant, Myroxylon peruiferum and the activity of analogues. Bioorg Med Chem Lett 1999; 9: 1109-1112

19 Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura T. Anti-Helicobacter pylori flavonoids from licorice extract. Life Sci 2002; 71: 1449-1463

20 Lu B, Chen MT, Fan YH, Liu Y, Meng LN. Effects of Helico bacter pylori eradication on atrophic gastritis and intestinal metaplasia: a 3-year follow-up study. World J Gastroenterol 2005; 11: 6518-6520

21 Wang Y. Clinical observation on the method of supplementing qi, clearing away heat and promoting blood circulation for treating 53 cases of gastritis related to pyrolic Helicobact-