Abstract. The incidence of cholangiocarcinoma has been increasing steadily over the past 50 years, but the survival rates remained low due to the disease being highly resistant to non-surgical treatment interventions. Cancer stem cell markers are expressed in cholangiocarcinoma, suggesting that they serve a significant role in the physiology of the disease. Cancer stem cells are frequently implicated in tumor relapse and acquired resistance to a number of therapeutic strategies, including chemotherapy, radiation and immune checkpoint inhibitors. Novel targeted therapies to eradicate cancer stem cells may assist in overcoming treatment resistance in cholangiocarcinoma and reduce the rates of relapse and recurrence. Several signaling pathways have been previously documented to regulate the development and survival of cancer stem cells, including Notch, janus kinase/STAT, Hippo/yes-associated protein 1 (YAP1), Wnt and Hedgehog signaling. Although pharmacological agents have been developed to target these pathways, only modest effects were reported in clinical trials. The Hippo/YAP1 signaling pathway has come to the forefront in the field of cancer stem cell research due to its reported involvement in epithelium-mesenchymal transition, cell adhesion, organogenesis and tumorigenesis. In the present article, recent findings in terms of cancer stem cell research in cholangiocarcinoma were reviewed, where the potential therapeutic targeting of cancer stem cells in this disease was discussed.

Contents

1. Introduction
2. Defining cancer stem cells
3. Signaling pathways involved in CSC stemness and potential targets
4. Challenges and ongoing research targeting CSCs
5. Conclusions

1. Introduction

Cholangiocarcinoma (CCA) is a diverse and collective malignancy that is derived from the biliary epithelium (1). Broadly recognized risk factors for CCA include liver fluke infection, primary sclerosing cholangitis, cirrhosis, viral hepatitis, congenital anomalies of the biliary tree and hepatolithiasis (1). In addition, inflammatory bowel disease, obesity and genetic predisposition have been reported to be associated with a higher risk of developing CCA (Fig. 1) (1). Although the incidence of CCA in the United States remains relatively low, at 1.26 cases per 100,000 people as of 2015, its prevalence has been steadily increasing over the past 50 years (2). According to analysis by race, CCA has the highest overall incidence in Asian Americans at 1.87 cases per 100,000 people, followed by Caucasian Americans at 1.23 cases per 100,000 people and lastly African Americans, which is 1.17 per 100,000 people (2). However, the mortality rate of CCA in African Americans has increased dramatically over the past decade, increasing 45% compared to ~20% in Asian Americans and Caucasian Americans (3).

The current 5-year survival rate in patients with early stage CCA who undergo curative-intent surgery is 30% (4). Patients with advanced disease at diagnosis have limited treatment options and poor prognosis. In a previous surveillance program of 825 patients with CCA, regardless of treatment modality or tumor pathology, the median overall survival (OS) was found to be 7 months, whilst the 5-year survival rate was revealed to be 5.7% (5). Due to aggressive tumor growth and the presence of metastases at diagnosis, ~86% of patients with CCA patients are ineligible for either curative-intent surgery or palliative resection (5). Patients ineligible for curative surgery are provided a combinatorial chemotherapy of gemcitabine and cisplatin either as adjuvant to surgery or as the first line of care. However, combination chemotherapy confers minimal survival benefit, where it modestly prolongs the median OS to 11.7 months and progression free survival to 8 months compared with a historical OS of 2.5-4.5 months with supportive care (6,7). This highlights the urgent need for the development of novel effective treatment options for patients who are ineligible for surgery.

Newly developed targeted therapies have demonstrated promising clinical efficacy against chemotherapy-refractory
CCA. In a phase II study of patients with fibroblast growth factor receptor (FGFR)-altered advanced biliary tract cancer (BTC), a selective pan-FGFR kinase inhibitor exerted impressive anti-tumor activity with a disease-control rate (DCR) of 82% (8). Additionally, in another phase I study involving patients with isocitrate dehydrogenase 1 (IDH)-positive CCA, which represents ~25% of all cases of CCA, the IDH1 inhibitor ivosidenib exhibited a well-tolerated safety profile with an overall response rate (ORR) of 5% and an OS of 13.8 months (9). However, these aforementioned promising targeted therapies were only viable for a relatively small percentage of patients with CCA with the specific IDH1 and FGFR mutations aforementioned (9).

Within the last decade, immunotherapy has become a major pillar of cancer therapy. Immune checkpoint inhibitors (ICIs) act by targeting dysregulated immune checkpoints, including programmed death protein 1 (PD-1) and programmed death ligand (PD-L1), which affect anti-tumor immunity in several types of cancers (10). Accumulating evidence have demonstrated encouraging results in applications with ICIs alone for treating hepatocellular carcinoma (HCC), with response rates reaching ~15-20% (11,12). However, ICIs have demonstrated minimal efficacy for the treatment of CCA (13,14). In a recent study of advanced BTCs that were treated with a combination of an ICI and microwave ablation, the ORR was found to be 12.5% (15). Novel therapeutic strategies to combat CCA progression are therefore urgently sought. One emerging target in this research field is cancer stem cells (CSCs), also referred to as tumor-initiating or -propagating cells.

2. Defining cancer stem cells

There is increasing consensus supporting the existence of a distinct cellular hierarchy within a tumor, where CSCs are unique originators of all tumor cells and are responsible for tumor growth (16-18). CSCs have been implicated in CCA along with a variety of other solid tumors, including breast, brain, colorectal (CRC), pancreatic, liver, melanoma, ovarian and prostate cancer (Tables I and II). It is hypothesized that CSCs survive following the initial stages of cancer therapy and thereby facilitate relapse and metastasis, where they are responsible for acquired resistance to conventional cancer treatment regimens, including radiation therapy and the more recently discovered immunotherapy (18-20). CSCs may be able to evade the immune system by altering their immunogenicity, enabling the avoidance of rejection mediated by the immune system in vitro (21). CSCs are defined by their enriched capacity for self-renewal and differentiation into explicit malignant progenies. Tumors with CSC-enriched phenotypes are considerably more plastic than originally anticipated, which are in turn heavily influenced by the tumor microenvironment, rendering the design of therapeutic methodology against them difficult (22). In addition, although previous reports suggested a frequency of <1 CSC per 1,000 cancer cells, the proportion of CSCs with tumorigenic capacity could be much higher (23,24). CSCs can be uniquely characterized by their cell-surface markers, where several markers have been used to identify CSCs in various types of cancers such as CCA (Tables I and II).

CD133, also known as prominin-1, is a pentaspan transmembrane glycoprotein that appears to be an epithelial marker in tissues in addition to being a CSC marker (24). Although the precise function of CD133 remains unclear, considerable evidence exists for the increased capabilities for tumor initiation in CD133+ cell cultures and tumor xenografts (24-28). The presence of CD133 along with other suspected CSC markers has also been associated with poorer overall survival in patients with CCA (29). In a previous study of 29 patients with intrahepatic CCA who had undergone major hepatectomies, only 8% of CD133+ patients remained alive 5 years following surgery, compared with 57% among CD133- patients (P=0.02) (29). Consistent with this notion, CD133+ liver cancer cell lines appear to exhibit significantly higher resistance to autophagy as a result of IFN-γ treatment compared with the corresponding CD133- cell lines in vitro (28). This finding has been corroborated in vivo, where CD133+ tumors shrank in cirrhosis-associated HCC cells in mice treated with IFN-γ. By contrast, tumors of the CD133+ phenotype were resistant and instead became further enriched with CD133+ expression (28).

CD44 and CD24. CD44 is a cell-surface glycoprotein that is involved in cell-cell adhesion and migration (30,31). Functionally, it is involved in leukocyte homing and activation, wound healing and cell migration (30,31). CD44s, the conventional isoform of CD44, is expressed in normal epithelial cells and serves as an adhesion molecule in the extracellular matrix (30,31). In some carcinomas of epithelial origin, variant isoforms of CD44 have been implicated in tumor metastasis and invasion (32). Previous studies have suggested CD44 and its variant isoforms to be responsible for cellular stemness characteristics, associated with resistance to reactive oxygen species (ROS) in CSCs and implicated in the progression of malignancies in gastrointestinal system (30,31). However, it should be noted that the clinical relevance of different CD44 isoforms are
Table I. Cancer stem cell markers from various solid tumors.

Marker	Type of cancer	In vitro assay	In vivo study (Xenograft)
CD133	Brain	Sphere formation (94)	NOD/SCID mice (106), nude mice (94)
	Breast	Colony formation (95)	NOD/SCID mice (95)
	Colon	Clonosphere formation (96,97)	NOD/SCID mice (96,107)
	Kidney	Colony formation (98)	SCID mice (98)
	Hepatic	Colony formation (97,99)	NOD/SCID (97), SCID mice (99)
	Lung	Sphere formation (100)	SCID mice(100)
	Melanoma	Colony formation (101)	N/A
	Ovarian	Sphere formation (102,103)	NSG mice (102), NOG mice (103)
	Pancreatic	Colony formation (104)	N/A
	Prostate	Colony formation (105)	Nude mice (108)
	CD90	Sphere formation (109)	NOD/SCID mice (103)
	Breast	Sphere formation (110)	NOD/SCID mice (110)
	Lung	Colony and sphere formation (111)	NOD/SCID mice (111)
	Ovarian	Colony formation (112)	NOD/SCID mice (112)
	Stomach	Sphere formation (113)	ALB/c nude mice (113)
ALDH1	Brain	Colony formation (114)	Nude mice (114)
	Breast	IHC staining (115)	BALB/c mice (120)
	Colon	Colony (116) and sphere formation (117)	Nude mice (117)
	Hepatic	Colony formation (99)	SCID mice (99)
	Lung	Colony formation (118)	N/A
	Melanoma	N/A	NOD/SCID mice (121)
	Ovarian	Sphere formation (102,103)	NSG™ mice (102), NOG® mice (103)
	Pancreatic	N/A	NMRI nu/nu mice (122)
	Prostate	Sphere formation (119)	NOD/SCID mice (119)
	CD44	Colony (123) and sphere formation (124)	CD44 KO mice (123), nude mice (124)
	Breast	IHC staining (115)	N/A
	Colon	Colony formation (125)	NOD/SCID (131), BALB/c mice (125)
	Kidney	IHC staining (126)	N/A
	Hepatic	Colony formation (127)	NOD/SCID mice (127)
	Lung	Colony and sphere formation (111)	NOD/SCID (111), BALB/c mice (132)
	Ovarian	Sphere formation (128)	NOD/SCID mice (128)
	Pancreatic	N/A	NOD/SCID mice (133)
	Prostate	Colony (105) and sphere formation (129)	NOD/SCID mice (129)
	Stomach	IHC staining (130)	SCID mice (134)
EpCAM	Breast	Sphere formation (135)	NOD/SCID mice (135)
	Colon	Colony formation (136)	N/A
	Hepatic	Sphere formation (110)	NOD/SCID mice (110)
	Ovarian	Sphere formation (128)	N/A
	Pancreatic	N/A	NOD/SCID mice (133)
CD24	Breast	IHC staining (115)	BALB/c mice (120)
	Colon	Colony formation (137)	NOD/SCID mice (137)
	Hepatic	Colony formation (138)	N/A
	Ovarian	Sphere formation (128)	NOD/SCID mice (128)
	Pancreatic	N/A	NOD/SCID mice (133)
SOX2	Brain	Colony formation (139)	NOD/SCID mice (139)
	Breast	Colony formation (140)	N/A
	Lung	Colony formation (141)	N/A
	Nanog	Sphere formation (142)	NOD/SCID, BALB/c mice (138)
	Prostate	Sphere formation (143)	NOD/SCID mice (143)
	Testis	IHC staining (144)	N/A

NOD, non-obese diabetic; SCID, severe combined immunodeficient; KO, knockout; ALDH1, aldehyde dehydrogenase 1; EpCAM, epithelial cell adhesion molecule; SOX2, SRY-box transcription factor 2.
highly dependent of the type of cancer. For example, CD44v6 appeared to be unrelated to the CCA progression, whilst CD44v9 appears to be clinically relevant to the disease (32-34). In a previous immunohistochemistry analysis of CCA tumors, CD44v9 was found to associate with the expression of inflammatory markers cyclooxygenase-2 (COX2) and S100 Calcium Binding Protein P, where CD44v9 expression was found to be higher in CCA associated with liver fluke infection (32).

There have been disparities in the findings regarding the use of CD24 as a CSC marker. The CD44^hi/CD24^lo cell phenotype has been repeatedly utilized as a signature of CSCs in breast tumors, where they were demonstrated to be chemoresistant following chemotherapy (35). Similar findings were also documented in a previous in vitro study of CCA (36). In CCA cell lines, a shift from CD44^hi/CD24^lo to CD44^lo/CD24^hi was observed in cells resistant to epidermal growth factor receptor inhibition (36). By contrast, pharmacological depletion of ROS scavengers resulted in increased sensitivity to radiotherapy and depleted clonogenicity in the CD24^hi/CD90^-enriched cell population, suggesting that the CD24^hi/CD90^- combination may be responsible for mediating resistance to radiation in CSCs (37). In patients with CCA who received chemotherapy and radiation, CD24 expression was previously found to be associated with a lower median survival time (38). To verify these findings, further research on the individual role of CD24 in CSCs and cancer progression is required.

Epithelial cell adhesion molecule (EpCAM). EpCAM is a downstream signaling target of the Wnt pathway (39,40). Wnt signaling was previously demonstrated to be simultaneously decreased in colon cancer cells following EpCAM knockdown (39). Furthermore, it was previously found in HCC that EpCAM expression is dependent on the nuclear accumulation of β-catenin (40). EpCAM has been applied as a prognostic marker for a number of epithelial cancers, including HCC and CCA (41-44). In accordance with in vitro studies of the individual tumorigenic potential of CSC markers, CD44^hi/CD24^EpCAM^+ cells isolated from extrahaemato CCA xenografts in immuno-compromised mouse exhibited higher tumorigenicity compared with those of the CD44^lo/CD24^EpCAM^− phenotype (45).

Aldehyde dehydrogenases (ALDH). ALDH belong to a family of intracellular enzymes that are involved in cellular detoxification, differentiation, and drug resistance (46,47). Although ALDH1 has been most commonly applied as a CSC marker in breast cancer, it has also been previously implicated in CCA and HCC (46,47), where the expression level of ALDH1 was found to be correlated with poor prognosis in patients with CCA (46,47). In addition, ALDH1 expression has been demonstrated to potentiate mesenchymal properties in the CCA cell line TFK-1 (46). However, conflicting evidence exists with regards to the role of ALDH1 in CRC compared with that in CCA. In CRC, it was hypothesized that the expression of extracellular, rather than intracellular CSC markers, may serve as superior indicators of tumor stemness (23,24).

SRY-box transcription factor (SOX)2, NANOG, and octamer-binding transcription factor 4 (OCT4). SOX2, NANOG and OCT4 are all transcription factors essential for the maintenance of stemness in embryonic stem cells and have been previously used as markers for CSCs (48). They directly communicate with each other during embryonic development, where they suppress differentiation into progenitor cells (48). NANOG, OCT4, and SOX2 expression have all been previously revealed to be associated with poor prognosis in rectal cancer, glioma and CCA (49). In rectal cancer, expression of ≥2 in comparison to ≤1 of these markers was found to associate significantly with poorer OS. In particular, OCT4 was also demonstrated to be independently associated with poor tumor differentiation, higher N stage and larger tumor size in rectal cancer (48). Likewise in CCA, co-expression of OCT4 and Nanog was found to be associated with the most inferior of the clinical outcomes (49). Elevated SOX2 expression has also been previously associated with poorly differentiated tumors, metastasis and insignificantly, vascular invasion and tumor stage in CCA (50). Patients with CCA in which SOX2 was overexpressed, exhibited significantly lower OS with no difference in DFS (50).

Overall, based on the data available on CSC markers, it is important to characterize CSCs in tumors by using multiple markers instead of reliance on any single marker.

3. Signaling pathways involved in CSC stemness and potential targets

In addition to the expression of cell surface molecules that are typically associated with stem cells, CSCs exhibit classical

Marker	In vitro assay	In vivo study (xenograft)
CD133	Sphere formation (24)	BALB/c, NOD/SCID mice (24)
CD90	Sphere formation (24)	BALB/c mice, NOD/SCID mice (24)
ALDH1	Colony formation (46)	NOD/SCID mice (46)
CD44	Sphere formation (36)	NOD/SCID mice (45)
EpCAM	Sphere formation (24)	NOD/SCID mice (45)
CD24	Sphere formation (36)	NOD/SCID mice (45)
SOX2	Immunohistochemical human samples (50)	NOD/SCID mice (139)

ALDH1, aldehyde dehydrogenase 1; EpCAM, epithelial cell adhesion molecule; SOX2, SRY-box transcription factor 2; NOD, non-obese diabetic; SCID, severe combined immunodeficient.
Figure 2. Pathways involved in CSC Development. Hippo/YAP1, Notch, Hedgehog, and Wnt signaling are all pathways implicated in the development of stemness features, including EMT, cell migration and proliferation, and tumorigenesis. The regulation of their target genes plays a vital role in CSC development. YAP1, yes-associated protein 1; EMT, epithelial-to-mesenchymal transition; CSC, cancer stem cells; MAM, mastermind; CSL, CBF-1, suppressor of hairless, lag-1; HES, hairy and enhancer of split; CDKN1A, cyclin dependent kinase inhibitor 1A; CCND3, cyclin D3; COS, costal; HER2, human epidermal growth factor receptor 2; PTP, patched; SHH, sonic hedgehog; MOB, smoothened; SAV, suppressor of fused homolog; CCND1, cyclin D1; HIP, hedgehog-interacting protein; LATS1/2, large tumor suppressor kinase 1/2; TAZ, tafazzin; TEAD, transcriptional enhancer factor; CTGF, connective tissue growth factor; SOX2, SRY-box transcription factor 2; ID1/2, inhibitor of differentiation 1/2, AREG, amphiregulin.

features of stem cells such as the ability to differentiate into explicit progenies (51). Signal transduction pathways that are highly active in embryonic and adult stem cells, including Notch, Hedgehog and Wnt, are also highly active in CSCs (Fig. 2) (19). In this section, the various signaling pathways involved in CSC maintenance and research that are focused on targeting these pathways will be outlined.

Hippo/Yes-associated Protein (YAP1). The Hippo/YAP1 is a signaling pathway that is highly conserved among the majority of mammalian species. It has recently garnered significant attention due to its reported role in regulating CSCs (52). Core kinases involved in this pathway include mammalian target of rapamycin (mTOR) 1/2 and large tumor suppressor kinase (LATS) 1/2, which are under regulation by scaffolding proteins Salvador family WW domain containing protein 1 and phoecine (MOB), respectively (Fig. 2). Activation of mTOR and LATS leads to the phosphorylation and subsequent inactivation of YAP1. This inhibits YAP1 from entering the nucleus, where it would normally bind to the transcriptional enhancer factor (TEAD) and SMAD families of transcription factors, leading to the transcription of a number of oncogenic genes, including SOX9, amphiregulin, MYC and Gli1 (53-55).

YAP1 overexpression is associated with tumorigenesis, epithelial-to-mesenchymal transition (EMT), in addition to tumor angiogenesis and invasion, physiological processes that have been previously demonstrated to lead to unfavorable prognoses in malignancies, including CCA, HCC, lung, brain, ovarian, breast, bladder and colon cancer (56-60). YAP1 expression was found to be an independent prognostic factor in both human and animal studies of CCA (57,59). Previous studies have demonstrated that liver-specific MOB1a/1b double knockout (61) and MST1/2 conditional knockout mice (62) exhibited phenotypically mixed HCC/CCA inducible tumors. These findings suggest that the Hippo/YAP1 signaling pathway is critical for liver tumorigenesis. Intriguingly, the introduction of activated YAP1 and myrystoylated AKT in the biliary tract, coupled with biliary ligation, triggered CCA formation in an IL-6-dependent manner within 6-8 weeks in >70% of the mice tested (63). This was performed through the ectopic expression of the constitutively active AKT and YAP1 using the Sleeping Beauty transposon transfection system. This study not only highlighted the potential role of inflammatory cytokines on CCA oncogenesis but also suggests YAP1 to be an important driver of CCA tumorigenesis.

A number of studies have indicated that the Hippo/YAP1 pathway serves an integral role in the maintenance of CSCs. YAP1 overexpression directly upregulates SOX9 in esophageal cancer, which in turn endows cancer cells with stem-like properties (64,65). In addition, YAP1 can induce the expression of the embryonic stem cell transcription factor SOX2 and co-operate with the pro-inflammatory COX2 pathway to expand the population of CSCs in urothelial cancer (66). Immunohistochemistry analysis of COX2 and YAP1 expression in bladder cancer samples previously demonstrated that these two proteins can mediate resistance to treatment, whilst the in vitro inhibition of these proteins significantly reduced tumor growth (66). Additionally, the expression of YAP1 was found to be upregulated in CSCs in non-small cell lung cancer (NSCLC) cell lines, which was believed to contribute to their capacity for self-renewal forming angiogenic tubules (67). This previous study also showed that knocking down YAP1 expression can significantly reduce the spheroid forming and proliferative capacity of NSCLC (67). Interestingly, the effects of YAP1 were revealed to be mediated through induction of SOX2, which then directly interacts with OCT4, in a manner...
that was independent of TEAD2 (67). It was reported previously that long noncoding RNAs are highly expressed in CSCs of HCC, which are required for the self-maintenance of liver CSCs (68). Among those, lncBRM initiates YAP1 signaling activation to drive the self-renewal of liver CSCs (68). In conclusion, these findings suggest that YAP1 likely serve a pivotal role in the maintenance of stemness in CSCs.

Until recently, targeting the Hippo/YAP1 signaling pathway has proved challenging due to its complexity and substantial crosstalk with other pathways. Verteporfin, a photodynamic drug that was traditionally used for treating macular degeneration, has recently emerged as a YAP/tafazzin (TAZ) inhibitor, where it has demonstrated promising preclinical results in cancers such as CCA (57). The combination of verteporfin and rapamycin was previously found to inhibit intrahepatic CCA cell proliferation and tumor growth (57), where verteporfin activated mTOR whilst inhibiting STAT3 phosphorylation in CCA (57). However, to the best of our knowledge, no clinical studies on the effects of verteporfin on CCA or CSCs in other cancers have been performed.

In a recent study, LEE011 was found to inhibit cyclin-dependent kinase 6 (CDK6), whilst CA3 inhibited YAP1, using both in vivo and in vitro models of esophageal cancer (69). YAP1 and CDK6 expression were also revealed to associate positively with each other and with resistance to radiation (69). Combined treatment using both CA3 and LEE011 reduced tumor volume to a greater degree compared with either treatment alone. These findings suggest that YAP1 may synergize with CDK6 to induce cell proliferation and resistance to chemotherapy in cancer (69). However, to date, no clinical studies have been conducted using the novel Hippo/YAP1 inhibitors. Further research devoted to the effects of verteporfin on CCA or CSCs in other cancers have been performed.

Notch. The Notch signaling pathway has been extensively studied in cancer, where it was suggested to be important for the regulation of cell survival and apoptosis (74). Notch is cleaved sequentially by tumor necrosis factor-α converting enzyme (TACE) and γ-secretase, resulting in the release of the intracellular domain of Notch (NICD). NICD then translocates into the nucleus where it mediates the transcription of target genes, including hairy and enhancer of split-1, NF-κB, cyclin D1 and c-myc (75). The Notch1 receptor and the Notch ligand Jagged 1 was found to be overexpressed in four human CCA cell lines (76). In addition, overexpression of NICD in mouse livers has been previously found to induce cystic CCA tumor development (77). These observations suggest that Notch can serve as a potential target for controlling CSCs (78).

γ-secretase inhibitors are among the largest class of Notch inhibitors, with >12 different clinical trials having previously applied this class of drug (19). However, none have progressed to phase III trials due to inefficacy or intolerance and therefore development of drugs of this class has been discontinued. Antibodies specifically targeting Notch 1-3 have also been developed, but like γ-secretase inhibitors, research on this class of drug has been repeatedly discontinued (19). By
Table III. Active clinical trials targeting CSCs in solid tumors.

Trial identifier	Type of solid tumor	Experimental arm	Phase
NCT03949283	Recurrent ovarian carcinoma, platinum-resistant ovarian cancer	Chemo ID assay	III
NCT02232633	HCC, CCA	BBI503	II
NCT03632798	Recurrent ovarian cancer	Chemo ID assay	III
NCT03632135	Recurrent glioblastoma	Chemo ID assay	III
NCT02642094	Breast cancer	Rapamycin	II
NCT03548571	Glioblastoma	Dendritic cell immunization, adjuvant temozolomide	II, III
NCT03298763	Lung adenocarcinoma	MSCTRIAL	I, II
NCT02859415	Thoracic cancer	Mithramycin	I, II
NCT02279719	HCC	BBI608, BBI503, in combination with sorafenib	I, II
NCT03186937	Triple negative breast cancer	Hominex-2	II
NCT02370238	Metastatic breast cancer	Paclitaxel, reparixin	II
NCT03030287	Ovarian, peritoneal, fallopian cancer	OMP-305B83, paclitaxel	I
NCT03927573	NSCLS, breast, pancreatic, urogenital	GEM3PSCA	I
NCT03572283	Pancreatic cancer	Bethanechol	I
NCT02753127	Colorectal	Napabucasin + FOLFIRI	III
NCT02157051	Breast cancer	CD105/Yb-1/CD4/CD3/CDM2-polyepitope plasmid DNA vaccine	I
NCT03466450	Glioblastoma	Glasdegib and temozolomide	I, II
NCT03816163	Pancreatic cancer	Zolbetuximab + nab-paclitaxel + gemcitabine	II
NCT02432326	Solid tumors	BBI608, BBI503	I
NCT02483247	Solid tumors	BBI503 in combination: capcitabine doxorubicin nivolumum pembrolizumum paclitaxel or sunitinib	I, II
NCT02467361	Metastatic cancer	BBI608 in combination: plimubum, nivolumum, or pembrolizumub	I, II
NCT02776917	Breast cancer	Cirmtuzumab + paclitaxel	I
NCT03851614	Mismatch repair proficient CRC, PAC, leiomyosarcoma	Durvalumab in combination with olaparib or cediranib	II
NCT02231723	PDAC	BBI608 in combination with four standard chemotherapies	I
NCT02024607	CRC, HCC, PDAC, CCA, EAC or gastric cancer	BBI608 in combination with 7 standard chemotherapies	I, II
NCT01781455	Solid tumors	BBI503	I, II
NCT02903771	Ovarian, peritoneal, fallopian cancer	Cantrixil	I
NCT01372579	Breast cancer	Eribulin mesylate, carboplatin	II

NSCLC, non-small cell lung cancer; CRC, colorectal cancer; HCC, hepatocellular carcinoma; PDAC, pancreatic ductal adenocarcinoma; PAC, pancreatic adenocarcinoma; CCA, cholangiocarcinoma; EAC, esophageal adenocarcinoma.

In contrast, the anti-delta like canonical notch ligand 4 antibody, Demcizumab, has progressed to randomized phase II trials in lung and pancreatic cancer after exhibiting a manageable safety profile and an ORR of 51% in phase I NSCLC trials (19). No data on its use in CCA are currently available.

Wnt/β-catenin. The Wnt/β-catenin signaling pathway is one of widely studied pathways in cancer research. Notably, CRC is initiated by mutations in genes such as adenomatous polyposis coli (APC), which activates the Wnt/β-catenin pathway (79). In the canonical Wnt/β-catenin pathway, Wnt ligands bind to Frizzled and low-density lipoprotein receptor-related protein receptor complexes, initiating the recruitment of scaffold proteins and disruption of the β-catenin destruction complex. Mutations in this complex, including that of APC, can lead to β-catenin accumulation in the cytosol. The accumulated β-catenin then translocates into the nucleus where it associates with the TCF family of transcription factors and a number of co-activators, including TAZ, to initiate the transcription of target genes. It has been previously reported that the canonical Wnt/β-catenin signaling pathway is activated in human CCA, where the inhibition of Wnt/β-catenin signaling reduced proliferation whilst inducing apoptosis in vivo (80). However, it remains unclear how the Wnt signaling pathway serves a role on the stemness of CSCs. The canonical Wnt/β-catenin pathway has been previously reported to be directly regulated by TAZ, an effector of the Hippo/YAP1 pathway (81).
LY2090314 is a glycerogen synthase kinase 3 inhibitor, which induces the accumulation of β-catenin (Fig. 2). It has been shown that LY2090314 treatment in conjunction with nab-paclitaxel in a preclinical model of pancreatic cancer prolonged mice survival (82). However, regimens consisting of LY2090314 in combination with penetrexed and carboplatin, demonstrated suboptimal safety profiles and minimal clinical efficacy in patients with advanced pancreatic cancer in a previous phase I clinical trial (83). BBI503 is a novel stemness kinase inhibitor that inhibits Nanog and serine/threonine kinase 17a, which induces β-catenin accumulation by stabilizing the β-catenin destruction complex (Fig. 2). Phase I data on BBI503 indicated prolonged OS and disease control in patients with CRC tumors with positive Nanog expression (84,85). Phase II trials in both patients with HCC and CCA in addition to those with other types of solid tumors are under way (84,85).

JAK/STAT. STATs are a family of cytoplasmic transcription factors that serve key roles in maintaining cancer stemness. They exert significant influence on cellular survival, proliferation, differentiation and apoptosis by mediating responses to cytokine, hormone and growth factor signaling. Genetic variations in the JAK/STAT signaling pathway appear to be associated with CRC (86). Notably, abnormalities in STAT3 have been revealed to be involved in the oncogenesis of a number of cancers, where it was demonstrated that STAT3 and both JAK1 and JAK2 are involved in CRC cell growth, survival, invasion and migration through the regulation of target gene expression, including Bel-2, E-cadherin, vascular endothelial growth factor and matrix metalloproteinases (86).

Napabucasin (BBI608), a drug that targets the transcription factor STAT3 to reduce stemness characteristics, has reached phase III trials (87). In phase II trials in CRC, napabucasin, in combination with standard chemotherapy, exhibited an impressive DCR of 93% and an ORR of 33% (88). Napabucasin has also been studied preclinically in CCA, where treatment with this drug resulted in general cytotoxicity and inhibited cancer stemness (89). In addition, napabucasin has been shown to inhibit colony formation and significantly downregulate the expression of several stemness-related genes, including CSC markers ALDH1 and CD133 in CCA cells (89).

4. Challenges and ongoing research targeting CSCs

To the best of our knowledge, no single agent is currently available that can effectively target CSCs. One of the reasons is the substantial crosstalk among the pathways aforementioned. For example, phosphorylated YAP in the cytoplasm can associate with β-catenin to promote its degradation (90). Furthermore, nuclear β-catenin can associate with TAZ and SMAD to induce transcription of Wnt target genes. Recently, it was discovered that the loss of MST1/2 in hepatocytes, a core kinase of the Hippo pathway, led to the activation of Notch signaling (91). This resulted in severe liver enlargement and HCC formation due to a positive feedback loop with YAP/TAZ (91). Knockdown of β-catenin expression in the livers of MST1/2-null mice was found to increase tumorigenesis, revealing an inhibitory role of Wnt in relation to YAP (91). Additionally, Hh can interact with both the Wnt and Notch pathways, where increased Hh signaling can upregulate the expression of the Notch ligand and Jagged 2 in neuronal stem cells, thereby maintaining stemness (92). It is possible that this phenomenon is conserved in cancer. Secrected frizzled protein 1 is an integral protein upstream in the Wnt signaling cascade that was previously identified as a target of Hh signaling through the actions of Glil2 (93). All aforementioned crosstalk between the signaling pathways increase the complexity and challenge of targeting CSCs using a single agent.

Given the role of CSCs in cancer relapse and metastasis, there is an urgent need for the development of novel therapies that target CSCs to effectively eradicate cancer (Fig. 3). Even with the knowledge of the pathways involved in the development and maintenance of CSCs, designing pharmacological agents for targeting these pathways has proven to be exceedingly difficult. Although there are only a small number of clinical drugs currently available that are hypothesized to target CSCs exclusively, a number of clinical trials targeting CSCs in different types of cancer, including CCA, are currently ongoing (Table III).

5. Conclusions

CSCs have the ability to hide from the immune system and resist therapies designed to kill cancer cells. YAP1 is a downstream effector of the Hippo/YAP1 pathway, where the dysregulation of this pathway leads to oncogenesis and the enhancement of cell stemness. A number of drugs have attempted to targeted cancer stemness with modest effects in clinical trials. The Hippo/YAP1 pathway has become an attractive target for novel CSC inhibition. Although novel therapeutic agents targeting CSCs have demonstrated promise in preclinical research, none have demonstrated satisfactory outcomes in clinical settings. The complexity of crosstalk between signaling pathways therefore warrants further research. Given the resistance of CCA to non-surgical treatment, patients with CCA may benefit substantially from research on this topic.

Acknowledgements

Not applicable.

Funding

The present study is supported by Physician-Scientist Early Investigator Program at CCR of NIH/NCI to CX.

Availability of data and materials

The datasets generated during the current study are not publicly available because they consist of publicly accessible information but are available on reasonable request.

Authors’ contributions

NAM, JF, and CX collected information and wrote the manuscript. SZG collected information and edited the manuscript. All authors read and approved the final version of this manuscript.

Ethics approval and consent to participate

Not applicable.
Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Shab I and El-Seraq HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis 24: 115-125, 2004.
2. Patel N and Benipal B: Incidence of Cholangiocarcinoma in the USA from 2001 to 2015: A US Cancer Statistics Analysis of 50 States. Cureus 11: e962, 2019.
3. Yao KJ, Jabbour S, Parekh N, Lin Y and Moss RA: Increasing mortality in the United States from cholangiocarcinoma: An analysis of the National Center for Health Statistics Database. BMJ Gastroenterol 16: 117, 2016.
4. Mavros MN, Economopoulos KP, Alexiou GV and Pavlik TM: Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma. Systematic Review and Meta-analysis. JAMA Surg 149: 565-574, 2014.
5. Arrington AK, Nelson RA, Falor A, Luu C, Wiartrek RL, Fakh I, Singh G and Kim J: Impact of medical and surgical intervention on survival in patients with cholangiocarcinoma. World J Gastrointest Surg 5: 178-186, 2013.
6. Valle J, Wasan H, Palmer DH, Cunningham D, Anthony E, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, et al; ABC-02 Trial Investigators: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med 362: 1273-1281, 2010.
7. Park JO, Oh DY, Hsu C, Chen JS, Chen LT, Orlando M, Kim JS and Lim HY: Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review. Cancer Res Treat 47: 343-361, 2015.
8. Javle M, Lowery M, Shroff RT, Weiss KH, Springford B, Cordar MJ, Ramanathan RK, Goyal L, Sadeghi S, Macarulla T, et al: Phase II Study of BGI398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol 36: 276-282, 2018.
9. Lowery MA, Burriss HA III, Janku F, Shroff RT, Clery JM, Azad NS, Goyal L, Maher EA, Gore L, Hollebecque A, et al: Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol Hepatol 4: 711-720, 2019.
10. Akinleye A and Rasool Z: Immunological checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 12: 92, 2019.
11. El-Khoueiry AB, Sangro B, Yau T, Crocenzzi TS, Kudo M, Hsu C, Kim TY, Choo SF, Trojan J, Welling TH III, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 204): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389: 2492-2502, 2017.
12. Zhu AX, Finn RS, Edeline J, Cattan S, Ogawa S, Palmer DH, Verslype C, Zagonel V, Falor A, Luu C, Wiatrek RL, Vercellino P, et al; KEYNOTE-224 investigators: Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol 19: 940-952, 2018.
13. Guo M, Zhang Y, Si H and Dai G: Efficacy and safety of nivolumab for metastatic biliary tract cancer. Oncol Targets Ther 12: 861-867, 2019.
14. Ueno M, Chung HC, Nagrial A, Marabelle A, Kelley RK, Xu L, Mahoney J, Pruitt SK and Oh D: Pembrolizumab for advanced biliary adenocarcinoma: Results from the multicohort, phase 2 KEYNOTE-158 study. Ann Oncol 29 (Suppl 8): viii205-viii207, 2018.
15. Xie C, Duffy AG, Mabry-Hrones D, Wood B, Levy E, Krishnasamy V, Khan J, Wei JS, Agdashian D, Tyagi M, et al: Tremelimumab in Combination With Microwave Ablation in Patients With Refractory Biliary Tract Cancer. Hepatology 69: 2048-2059, 2019.
16. Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730-737, 1997.
17. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hwang T, Caceres-Assenden M, Park JS, Caliguri MA and Dick JE: A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 367: 645-648, 1994.
18. Yamashita T and Wang XY: Cancer stem cells in the development of liver cancer. J Clin Invest 123: 1911-1918, 2013.
19. Clara JA, Monge C, Yang Y and Takebe N: Targeting signaling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 17: 204-223, 2020.
20. Lytle NK, Barber AG and Reya T: Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer 18: 669-680, 2018.
21. Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS and Lethia JD: The intersection of cancer, cancer stem cells, and the immune system: Therapeutic opportunities. Neuro-oncol 18: 153-159, 2016.
22. Lu W and Kang Y: Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 49: 361-374, 2019.
23. Brambilla E, Leitz G, Hesdorffer L, Muroz MG, Mey V, Tornillo L, Carafa V, Spagnoli G, Terracciano L and Zlobec I: Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer 103: 382-390, 2010.
24. Cardinale V, Renzi A, Cappino G, Torrice A, Braggazzi MC, Giuliani F, DeRose AM, Fraveto A, Onori P, Napolitano C, et al: Profiles of cancer stem cell subpopulations in cholangiocarcinomas. Am J Pathol 185: 1724-1739, 2019.
25. Singh SK, Clarke ID, Hide T and Dirks PB: Cancer stem cells in nervous system tumors. Oncogene 23: 7267-7273, 2004.
26. Glimuc PM and Lebeau AM: The role of CD133 in cancer: A concise review. Clin Transl Med 7: 18, 2018.
27. Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozo K and Plentz RR: Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res 385: 116719, 2021.
28. Li J, Chen JN, Zeng TT, He F, Chen SP, Ma S, Bi J, Zhi XF and Guan XY: CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer 16: 15, 2016.
29. Shimada M, Sugimoto K, Iwahashi S, Utsumi Y, Tone M, Imura S and Ikenoto T: CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma. J Gastroenterol 45: 986-902, 2010.
30. Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, et al: CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 72: 3414-3423, 2012.
31. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, et al: CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 34: 180-191, 2013.
32. Guo M, Zhang Y, Si H and Dai G: Efficacy and safety of nivolumab for metastatic biliary tract cancer. Oncotargets Ther 12: 861-867, 2019.
33. Zhou FQ, Qi YM, Xu H, Wang QY, Gao XS and Guo HG: Expression of EpCAM and Wnt/β-catenin in human colon cancer. Genet Mol Res 14: 4485-4494, 2015.
et al: WNT signaling drives cholangiocarcinoma. Cancer Lett 354: 320-328, 2019.

Lingala S, Cui YY, Chen X, Ruebner BH, Qian XF, Zern MA: Targeting of TAZ for cancer therapy: Opportunities and challenges (Review). Int J Oncol 46: 1444-1452, 2015.

Goh J, Liu Y, Huang G, Liu B, Ye D, Yu G, Gao T, He L, et al: LnCBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 7: 13608, 2016.

Li F, Xu Y, Liu B, Singh PK, Zhao W, Jin J, Han G, Scott AW, Dong X, Luo L, et al: YAP1-Mediated CDK6 Activation Confers Radiation Resistance in Esophageal Cancer - Rationale for the Combination of YAP1 and CDK4/6 Inhibitors in Esophageal Cancer. Clin Cancer Res 25: 2264-2277, 2019.

Syed IS, Pedram A and Farhat WA: Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis. Curr Urol Rep 17: 11, 2016.

U.S. National Library of Medicine: A Study Evaluating IPI-926 in Combination With Gemcitabine in Patients With Metastatic Pancreatic Cancer. ClinicalTrials.gov Identifier: NCT01130142. https://clinicaltrials.gov/ct2/show/NCT01130142. Accessed May 25, 2010.

Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelly R, Lewis S, Chang WC, Catenacci DV, et al: Phase I Study of TOLPRINOX Plus IPI-926, a Hedgehog Pathway Inhibitor, for Advanced Pancreatic Adenocarcinoma. Cancer 1627-1642, 2015.

Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X, et al: Cholangiocarcinomas can originate from hematocytes in mice. J Clin Invest 29: 2291-2303, 2012.

Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA and Cheng B: Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget 7: 5754-5768, 2016.

Schatoff EM, Leach BI and Dow LE: Wnt Signaling and Oncotarget 8: 7555-7568, 2017.

Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA and Cheng B: Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget 7: 5754-5768, 2016.

Wang P, Wang Y, Wu J, Huang G, Liu B, Ye D, Yu G, Gao T, Tian Y, He L, et al: LnCBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun 7: 13608, 2016.

Li F, Xu Y, Liu B, Singh PK, Zhao W, Jin J, Han G, Scott AW, Dong X, Luo L, et al: YAP1-Mediated CDK6 Activation Confers Radiation Resistance in Esophageal Cancer - Rationale for the Combination of YAP1 and CDK4/6 Inhibitors in Esophageal Cancer. Clin Cancer Res 25: 2264-2277, 2019.
Park HW, Kim YC, Yu B, Moroissi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative Wnt Signaling Activates YAP/TAZ. Cell 162: 780‑794, 2015.

Sanfilippo R, M, Simioni S, D, Merz V, Cavallini C, Piro G, Suddhabadi F, Boschi F, Scarpa A and Melisi D: Modulating TAK1 expression inhibits YAP and TAZ oncogenic functions in pancreatic cancer. Mol Cancer Ther 19: 247‑257, 2020.

Gray JE, Infante JR, Brail LH, Simon GR, Cooksey JF, Jones SF, Farrington DL, Yeo A, Jackson KA, Chow KH, et al: A first-in-human, dose‑escalating, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2909314, a glycosyn synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Invest New Drugs 33: 1187‑1196, 2015.

US National Library of Medicine: A Study of BBi503 in Adult Patients With Advanced Hepatocellular Cancer. ClinicalTrials.gov Identifier: NCT02326363. https://clinicaltrials.gov/show/NCT02326363. Accessed September 5, 2014.

Jonker DJ, Laurie SA, Cote GM, Flaherty K, Fuchs CS, Chugh R, Smith DC, Ebertlin WJ, Conkling PR, Mier JW, et al: Phase 1 extension study of BBi503, a first‑in‑class cancer stemness kinase inhibitor, in patients with advanced colorectal cancer. J Clin Oncol 33 (Suppl 15): 3615, 2015.

Xiong H, Zhang ZG, Tan XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX and Fang JY: Inhibition of JAK1, STAT3 signaling induces apoptosis and cell cycle arrest, and reduces invasion in colorectal cancer cells. Neoplasia 10: 287‑297, 2008.

US National Library of Medicine: A Study of Nabpecasucin (BBi-608) in Combination With FOLFIRI in Adult Patients With Previously Treated Metastatic Colorectal Cancer. ClinicalTrials.gov Identifier: NCT02753127. https://clinicaltrials.gov/ct2/show/NCT02753127. Accessed April 27, 2016.

Bendell JC, Hubbard JM, O’Neill BH, Jonker DJ, Starodub A, Peyton JD, Pitot HC, Halfdansen TR, Nadeau BR, Zubkis JD, et al: Phase IIb/I study of cancer stemness inhibitor nabpecasucin (BBi-608) in combination with FOLFIRI + bevacizumab (bev) in metastatic colorectal cancer (mCRC) patients (pts). J Clin Oncol 35 (Suppl 15): 3529, 2017.

Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T and Maré C: The Cancer Stem Cell Inhibitor Nabpecasucin (BBi068) Shows Genomic Cytotoxicity in Biliary Tract Cancer Cells and Reduces Cancer Stem Cell Characteristics. Cancers (Basel) 11: E276, 2019.

Piersma B, Bank RA and Boersema M: Signaling in Fibrosis: Characteristics. Cancers (Basel) 11: E276, 2019.

Kim W, Khan SK and Yang Y: Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumour formation. BMB Rep 50: 1‑2, 2017.

Rabadán CA, Miyuso J, Le Dreau G, Cruz B, Carini M, Pons S, Brisocoe J and Martí E: Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Differ 19: 209‑219, 2012.

Briscoe J and Martí E: Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Differ 19: 209‑219, 2012.

Singh SK, Mougham MM, Wadhwa A, Gupta A, Chaturvedi D, Cannadine GA, Bouck N, Bigner DD, et al: CD133 defines ovarian cancer stem cells. Int J Cancer 130: 29‑39, 2012.

Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston G, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase combination in CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res 71: 3991‑4001, 2011.

Lardon J, Corbeil D, Huttner WB, Ling Z and Bouwens L: Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 36: e1‑e6, 2008.

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective tumor microdissection identifies tumor‑specific prostate cancer stem cells. Cancer Res 65: 10946‑10951, 2005.

Cao Y, Martín‑Carrasco J, Cao L, Zhang H, Xia Y, Zhou Q, et al: ALDH1A3 affects cell growth, cell motility and gene expression in lung cancer cells. Cell Death Differ 22: 2236‑2252, 2009.

Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T and Maré C: The Cancer Stem Cell Inhibitor Nabpecasucin (BBi068) Shows Genomic Cytotoxicity in Biliary Tract Cancer Cells and Reduces Cancer Stem Cell Characteristics. Cancers (Basel) 11: E276, 2019.

Kim W, Khan SK and Yang Y: Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumour formation. BMB Rep 50: 1‑2, 2017.

Rabadán CA, Miyuso J, Le Dreau G, Cruz B, Carini M, Pons S, Brisocoe J and Martí E: Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Differ 19: 209‑219, 2012.

He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA and Xie J: Suppressing Wnt signaling by the hedgehog pathway through SFRP1. J Biol Chem 281: 35598‑35602, 2006.

Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn Ú and Beier CP: CD133(+ and CD133(-) glioblastoma‑derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010‑4015, 2007.

Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA, et al: Aldehyde dehydrogenase activity plays a key role in the aggressive phenotype of neuroblastoma. BMC Cancer 16: 781, 2016.

Flinn IV, DuBose AS, Reid BM, Axtell ML, Singhal SD, et al: Aldehyde dehydrogenase activity is associated with high levels of hypoxia in colorectal cancer. Mol Cancer Ther 7: 1845‑1852, 2008.

Avril T, Etcheverry A, Pineau R, Obacz J, Jegou G, Jouan F, Le Reste PJ, Hatami M, Colen RR, Carlson BL, et al: CD90 expression controls migration and predicts dasatinib response in glioblastoma. Clin Cancer Res 23: 7360‑7374, 2017.

Yamashita T, Honda M, Nakamato Y, Baba N, Kori H, Yara Y, Zeng SS, Hayashi T, Kondo M, Takatori H, et al: CD133 defines ovarian cancer stem cells through STAT3 signaling. Cell Death Differ 15: 504‑514, 2008.

Lardon J, Corbeil D, Huttner WB, Ling Z and Bouwens L: Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 36: e1‑e6, 2008.

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective tumor microdissection identifies tumor‑specific prostate cancer stem cells. Cancer Res 65: 10946‑10951, 2005.

Cao Y, Martín‑Carrasco J, Cao L, Zhang H, Xia Y, Zhou Q, et al: ALDH1A3 affects cell growth, cell motility and gene expression in lung cancer cells. Cell Death Differ 22: 2236‑2252, 2009.
et al: Combined targeted treatment to eliminate colonization of metastatic cancer cell. Nat Commun 3: 883, 2012.

Takashi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells 27: 1006-1020, 2009.

Wang T, Gantier MP, Xiang D, Bean AG, Bruce M, Zhou SF, Khasraw M, Ward A, Wang L, Wei MQ, et al: EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics 5: 1456, 2015.

Münz M, Kieu C, Mack B, Schmitt B, Zeidler R and Gires O: The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23: 5748, 2004.

Yeung TM, Gandhi SC, Wilding JL, Muschel R and Bodmer WF: Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107: 3722-3727, 2010.

Lee TK, Castilho A, Cheung VC, Tang KH, Ma S and Ng IO: CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell 9: 50-63, 2011.

Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravelli GT, Zona GL, Daga A and Corte G: SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 27: 40-48, 2009.

Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, et al: The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283: 17969-17978, 2008.

Chou YT, Lee CC, Hsiao SH, Lin SE, Lin SC, Chung CH, Chung CH, Kao YR, Wang YH, Chen CT, et al: The emerging role of SOX2 in cell proliferation and survival and its cross-talk with oncogenic signaling in lung cancer. Stem Cells 31: 2607-2619, 2013.

Higgins DM, Wang R, Milligan B, Schroeder M, Carlson B, Pokorny J, Cheshier SH, Meyer FB, Weissman IL, Sarkaria JN, et al: Brain tumor stem cell multipotency correlates with nanog expression and extent of passaging in human glioblastoma xenografts. Oncotarget 4: 792-801, 2013.

Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaeheres H, Daley GQ and Tang DG: Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells 27: 993-1005, 2009.

Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graen N, Skakkebaek NE, Leffers H and Raipert-De Meyst E: Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology 47: 48-56, 2005.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.