Robust Unsupervised Cross-Lingual Word Embedding using Domain Flow Interpolation

Liping Tang1 Zhen Li2 Zhiquan Luo2 Helen Meng1,3
1Centre for Perceptual and Interactive Intelligence
2The Chinese University of Hong Kong, Shenzhen
3The Chinese University of Hong Kong
lptang@cpii.hk, {zhenli, zqluo}@cuhk.edu.cn, hmmeng@cuhk.edu.hk

Abstract

This paper investigates an unsupervised approach towards deriving a universal, cross-lingual word embedding space, where words with similar semantics from different languages are close to one another. Previous adversarial approaches have shown promising results in inducing cross-lingual word embedding without parallel data. However, the training stage shows instability for distant language pairs. Instead of mapping the source language space directly to the target language space, we propose to make use of a sequence of intermediate spaces for smooth bridging. Each intermediate space may be conceived as a pseudo-language space and is introduced via simple linear interpolation. This approach is modeled after domain flow in computer vision, but with a modified objective function. Experiments on intrinsic Bilingual Dictionary Induction tasks show that the proposed approach can improve the robustness of adversarial models with comparable and even better precision. Further experiments on the downstream task of Cross-Lingual Natural Language Inference show that the proposed model achieves significant performance improvement for distant language pairs in downstream tasks compared to state-of-the-art adversarial and non-adversarial models.

1 Introduction

Learning cross-lingual word embedding (CLWE) is a fundamental step towards deriving a universal embedding space in which words with similar semantics from different languages are close to one another. CLWE has also shown effectiveness in knowledge transfer between languages for many natural language processing tasks, including Named Entity Recognition (Guo et al., 2015), Machine Translation (Gu et al., 2018), and Information Retrieval (Vulic and Moens, 2015).

Inspired by Mikolov et al. (2013), recent CLWE models have been dominated by mapping-based methods (Ruder et al., 2019; Glavas et al., 2019; Vulic et al., 2019). They map monolingual word embeddings into a shared space via linear mappings, assuming that different word embedding spaces are nearly isomorphic. By leveraging a seed dictionary of 5000 word pairs, Mikolov et al. (2013) induces CLWEs by solving a least-squares problem. Subsequent works (Xing et al., 2015; Artetxe et al., 2016; Smith et al., 2017; Joulin et al., 2018) propose to improve the model by normalizing the embedding vectors, imposing an orthogonality constraint on the linear mapping, and modifying the objective function. Following work has shown that reliable projections can be learned from weak supervision by utilizing shared numerals (Artetxe et al., 2017), cognates (Smith et al., 2017), or identical strings (Søgaard et al., 2018).

Moreover, several fully unsupervised approaches have been recently proposed to induce CLWEs by adversarial training (Zhang et al., 2017a; Zhang et al., 2017b; Lample et al., 2018). State-of-the-art unsupervised adversarial approaches (Lample et al., 2018) have achieved very promising results and even outperform supervised approaches in some cases. However, the main drawback of adversarial approaches lies in their instability on distant language pairs (Søgaard et al., 2018), inspiring the proposition of non-adversarial approaches (Hoshen and Wolf, 2018; Artetxe et al., 2018b). In particular, Artetxe et al. (2018b) (VecMap) have shown strong robustness on several language pairs. However, it still fails on 87 out of 210 distant language pairs (Vulic et al., 2019).

Subsequently, Li et al. (2020) proposed Iterative Dimension Reduction to improve the robustness of VecMap. On the other hand, Mohiuddin and Joty (2019) revisited adversarial models and add two regularization terms that yield improved results. However, the problem of instability still remains. For instance, our experiments show that the improved version (Mohiuddin and Joty, 2019)
still fails in inducing reliable English-to-Japanese and English-to-Chinese CLWE space.

In this paper, we focus on the challenging task of unsupervised CLWE on distant language pairs. Due to the high precision achieved by adversarial models, we revisit adversarial models and propose to improve their robustness. We adopt the network architecture from Mohiuddin and Joty (2019) but treat the unsupervised CLWE task as a domain adaptation problem. Our approach is inspired by the idea of domain flow in computer vision that has been shown to be effective for domain adaptation tasks. Gong et al. (2019) introduced intermediate domains to generate images of intermediate styles. They added an intermediate domain variable on the input of the generator via conditional instance normalization. The intermediate domains can smoothly bridge the gap between source and target domains to ease the domain adaptation task. Inspired by this idea, we adapt domain flow for our task by introducing intermediate domains via simple linear interpolations. Specifically, rather than mapping the source language space directly to the target language space, we map the source language space to intermediate ones. Each intermediate space may be conceived as a pseudo-language space and is introduced as a linear interpolation of the source and target language space. We then engage the intermediate space approaching the target language space gradually. Consequently, the gap between the source language space and the target space could be smoothly bridged by the sequence of intermediate spaces. We have also modified the objective functions of the original domain flow for our task.

We evaluate the proposed model on both intrinsic and downstream tasks. Experiments on intrinsic Bilingual Dictionary Induction (BLI) tasks show that our method can significantly improve the robustness of adversarial models. Simultaneously, it could achieve comparable or even better precision compared with the state-of-the-art adversarial and non-adversarial models. Although BLI is a standard evaluation task for CLWEs, the performance on the BDI task might not correlate with performance in downstream tasks (Glavas et al., 2019). Following previous works (Glavas et al., 2019; Doval et al., 2020; Ormazabal et al., 2021), we choose Cross-Lingual Natural Language Inference (XNLI), a language understanding task, as the downstream task to further evaluate the proposed model. Experiments on the XNLI task show that the proposed model achieves higher accuracy on distant language pairs compared to baselines, which validates the importance of robustness of CLWE models in downstream tasks and demonstrates the effectiveness of the proposed model.

2 Proposed Model

Our model is implemented based on the network structure from Mohiuddin and Joty (2019), which implements a cycleGAN on the latent word representations transformed by autoencoders. In our model, the source language space corresponds to the source domain \(S \) and the target language space corresponds to the target domain \(T \).

2.1 Introducing Intermediate Domains

Let \(z \in [0, 1] \) and denote the intermediate domain as \(M(z) \), similar to Gong et al. (2019). \(M(0) \) corresponds to the source domain \(S \), and \(M(1) \) corresponds to the target domain \(T \). By varying \(z \) from 0 to 1, we can obtain a sequence of intermediate domains from \(S \) to \(T \), referred to as domain flow. There are many possible paths from \(S \) to \(T \) and we expect \(M(z) \) to be the shortest one.

Moreover, given any \(z \), we expect the distance between \(S \) and \(M(z) \) to be proportional to the distance between \(S \) and \(T \) by \(z \), or equivalently,

\[
\frac{\text{dist}(P_S, P_{M(z)})}{\text{dist}(P_T, P_{M(z)})} = \frac{z}{1-z}.
\]

Thus finding the shortest path from \(S \) to \(T \), i.e., the sequence of \(M(z) \), leads to minimizing the following loss:

\[
L = z \cdot \text{dist}(P_T, P_{M(z)}) + (1-z) \cdot \text{dist}(P_S, P_{M(z)}).
\]

We use the adversarial loss in GAN (Goodfellow et al., 2014) to model the distance between distributions, similar to Gong et al. (2019).

2.2 Implementation of Generators

Suppose \(x \) is sampled from the source domain \(S \) and \(y \) is sampled from the target domain \(T \).

The generator \(G_{ST} \) in our model transfers data from the source domain to an intermediate domain instead of the target domain. Denote \(Z = [0, 1] \), then \(G_{ST} \) is a mapping from \(S \times Z \) to \(M(z) \).

To ensure the generator to be a linear transformation, we consider our generator as

\[
G_{ST}(x, z) = W_{ST}(z) \cdot x + (1-z) \cdot x.
\]
In this setup, \(G_{ST}(x, 0) = x \) and \(G_{ST}(x, 1) = W_{ST}(z) \cdot x \). We adopt \(W_{ST}(z) \) as a simple scale multiplication on a matrix, i.e.,

\[
W_{ST}(z) = z \cdot W_{ST}, \tag{4}
\]

where \(W_{ST} \) is the final transformation matrix that we are interested in. Finally, our intermediate mappings become

\[
G_{ST}(x, z) = z \cdot W_{ST} \cdot x + (1 - z) \cdot x. \tag{5}
\]

These intermediate mappings are simple linear interpolations between the data from source domain \(x \) and that from the pseudo target domain \(W_{ST} \cdot x \). The generator \(G_{TS}(y, z) \) can be defined similarly.

2.3 The Domain Flow Model

The discriminator \(D_{ST} \) is used to distinguish \(S \) and \(M(z) \), and \(D_{T} \) is used to distinguish \(T \) and \(M(z) \). Using the adversarial loss as the distribution distance measure, we obtain the adversarial losses between \(M(z) \) and \(S \) as

\[
\mathcal{L}_{adv}(G_{ST}, D_{ST}) = \mathbb{E}_{x \sim P_{S}} \left[\log (D_{ST}(x)) \right] - \mathbb{E}_{x \sim P_{S}} \left[\log (1 - D_{ST}(G_{ST}(x, z))) \right]. \tag{6}
\]

Similarly, the adversarial losses between \(M(z) \) and \(T \) can be written as

\[
\mathcal{L}_{adv}(G_{ST}, D_{T}) = \mathbb{E}_{y \sim P_{T}} \left[\log (D_{T}(y)) \right] - \mathbb{E}_{x \sim P_{S}} \left[\log (1 - D_{T}(G_{ST}(x, z))) \right]. \tag{7}
\]

Deploying the above losses as \(\text{dist}(P_{S}, P_{M(z)}) \) and \(\text{dist}(P_{T}, P_{M(z)}) \) in Eq. (2), we can derive the following loss

\[
\mathcal{L}_{adv}(G_{ST}, D_{ST}, D_{T}) = z \cdot \mathcal{L}_{adv}(G_{ST}, D_{T}) + (1 - z) \cdot \mathcal{L}_{adv}(G_{ST}, D_{S}). \tag{8}
\]

Consider the other direction from \(T \) to \(M^{(1-z)} \), we can define similar loss \(\mathcal{L}_{adv}(G_{TS}, D_{S}, D_{T}) \). Then the total adversarial loss is

\[
\mathcal{L}_{adv} = \mathcal{L}_{adv}(G_{ST}, D_{S}, D_{T}) + \mathcal{L}_{adv}(G_{TS}, D_{S}, D_{T}). \tag{9}
\]

Modification of Adversarial Loss In the loss discussed above, \(D_{ST} \) is trained to assign a high value (i.e. 1) to \(x \) and assign a low value (i.e. 0) to \(G_{ST}(x, z) \), and similar for \(D_{T} \). But when \(z \) is small, \(G_{ST}(x, z) \) is close to the data from source domain and it will be too aggressive if we train the discriminator to assign 0 to it. In our model, we train the discriminator \(D_{S} \) to assign \(1 - z \) instead of 0 to \(G_{ST}(x, z) \). When \(z = 0 \), \(G_{ST}(x, z) = x \) and the discriminator \(D_{S} \) is trained to assign 1 to it. \(G_{ST} \) and \(G_{TS} \) are trained to fool the discriminator \(D_{S} \), trying to make \(D_{S}(G_{TS}(y, z)) \) close to 1 and \(D_{S}(G_{ST}(x, z)) \) close to \(z \).

Besides the adversarial loss, the cycle consistency loss in the cycle GAN here is defined as:

\[
\mathcal{L}_{cyc}(G_{ST}, G_{ST}) = \mathbb{E}_{x \sim P_{S}} \left[\|G_{TS}(G_{ST}(x), z) - x\|^2 \right] \tag{10}
\]

\[
+ \mathbb{E}_{y \sim P_{T}} \left[\|G_{ST}(G_{TS}(y, z)) - y\|^2 \right]. \tag{11}
\]

Then the total loss is

\[
L = L_{adv} + \lambda_1 \cdot L_{cyc} + \lambda_2 \cdot L_{rec}, \tag{12}
\]

where \(\lambda_1 \) and \(\lambda_2 \) are two hyperparameters.

Choice of \(z \) In our model, \(z \) is sampled from a beta distribution \(f(z, \alpha, \beta) = \frac{1}{B(\alpha, \beta)} z^{\alpha-1}(1 - z)^{\beta-1} \), where \(B(\cdot, \cdot) \) is the Beta function, \(\beta \) is fixed to be 1, and \(\alpha \) is set as a function of the training iterations. Specifically, \(\alpha = e^{-\frac{10 - 0.5t}{50}} \), where \(t \) is the current iteration and \(T \) is the total number of iterations. In this setting, \(z \) tends to be more likely to be small values at the beginning, and gradually shift to larger values during training. In practice, we set \(z = 1 \) in the last several epochs to fine-tune the model. For the case of running 10 epochs using our proposed model, the intermediate domain variable \(z \) is fixed to be 1 in the last 3 epochs, trying to fine-tune our proposed model. For other cases, i.e., when running 20 and 30 epochs, \(z \) is fixed to be 1 in the last 5 epochs.

3 Bilingual Lexicon Induction

3.1 Experimental Setup

Bilingual Lexical Induction (BLI) has become the de facto standard evaluation for mapping-based CLWEs (Ruder et al. 2019; Glavas et al. 2019; Vulic et al. 2019). Given a shared CLWE space
Table 1: The list of 15 languages from our main BLI experiments along with their corresponding language family, broad morphological type, number of Wikipedia articles of monolingual corpora, and their ISO 639-1 codes.

Languages	Language Family	Morphology Type	Wikipedia Size	ISO 639-1
English	Indo-European	isolating	6.46M	en
German	Indo-European	fusional	2.67M	de
French	Indo-European	fusional	2.40M	fr
Russian	Indo-European	fusional	1.80M	ru
Spanish	Indo-European	fusional	1.75M	es
Italian	Indo-European	fusional	1.74M	it
Japanese	Japonic	agglutinative	1.31M	ja
Chinese	Sino-Tibetan	isolating	1.25M	zh
Arabic	Afro-Asiatic	fusional	1.16M	ar
Finnish	Uralic	agglutinative	0.52M	fi
Turkish	Turkic	agglutinative	0.47M	tr
Malay	Austronesian	agglutinative	0.36M	ms
Hebrew	Afro-Asiatic	fusional	0.31M	he
Bulgarian	Indo-European	isolating	0.28M	bg
Hindi	Indo-European	fusional	0.15M	hi

and a list of source language words, the task is to retrieve their target translations based on their word vectors. The lightweight nature of BLI allows us to conduct a comprehensive evaluation across a large number of language pairs. We adopt Cross-domain Similarity Local Scaling (CSLS) from Lample et al. (2018) for the nearest neighbor retrieval. Following a standard evaluation practice (Mikolov et al., 2013; Lample et al., 2018; Mohiuddin and Joty, 2019), we evaluate the performance of induced CLWEs with the Precision at k (P@k) metric, which measures the percentage of ground-truth translations that are among the top k ranked candidates.

Selection of Languages From the 110 bilingual test dictionaries of Lample et al. (2018), we select test language pairs based on the following goals: a) for a direct comparison with recent works, we aim to cover both close and distant language pairs that are discussed in recent works; and b) for analyzing a large set of language pairs, we aim to ensure the coverage of different language properties and training data size. The resulting 15 languages (including English) are listed in Table 1. We run BLI evaluations for language pairs of English and the rest 14 languages in both directions. The first five languages other than English in Table 1 belong to the same language family as English and have large monolingual corpora, which are categorized as "close" languages to English. The remaining languages are then categorized as "distant" to English since they belong to different language family from English or have much smaller monolingual corpora. For the Dinu-Artetxe dataset, we select all its 4 language pairs, i.e., English-German (en-de), English-Spanish (en-es), English-Italian (en-it), and English-Finnish (en-fi).

Baselines We compare our model with the well-known unsupervised models of Lample et al. (2018)

1https://fasttext.cc/docs/en/pretrained-vectors.html
2https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
3Since the training corpus size of fastText embeddings is not available, the Wikipedia Size in Table 1 is chosen as the number of wikipedia articles listed in https://en.wikipedia.org/wiki/List_of_Wikipedias#Details_table. It may differ from the actual size of fastText training corpus but the relative size among languages should not be far away from this.
We implemented our proposed method of domain flow based on Mohiuddin and Joty (2019), which is denoted as AutoEnc in this paper. Results of all baselines are obtained by rerunning the public codes with the default settings on our machine. More experimental details are presented in Appendix A.

3.2 Results and Discussion

Results on Lample et al. (2018) Dataset

We report the average precision at 1 (across the successful runs out of 10 runs) on Lample et al. (2018) dataset in Table 2, Table 3, and Table 4. The P@1 of close language pairs is shown in Table 2 and that of distant language pairs is Table 3 and Table 4. The detailed results including P@5, P@10 are presented in Appendix B. As shown in Table 2, the proposed model performs on par with that of the unsupervised baselines in close language pairs. As shown in Table 3 and Table 4, the proposed model gets comparable results with the baselines on distant language pairs en-bg and en-ms and achieves higher precision on en-he, en-tr, en-hi, en-fi, and en-ar. For more distant language pairs en-ja and en-zh, AutoEnc fails for all 10 runs.\(^8\) Even for the most robust system VecMap, it still fails on en-zh. Our results show that the proposed model offers enhanced robustness that is able to complete these two difficult cases and exceed the performance of all baselines.

Results on Dinu-Artetxe Dataset

We report the average precision at 1 on Dinu-Artetxe dataset in Table 5. Similar conclusion can be drawn. Specifically, the proposed model gets comparable results with baselines for close language pairs en-de, en-es, and en-it. Moreover, the proposed model achieves higher precision on distant-language pair en-fi.

Results on Robustness

We reference Artetxe et al. (2018b) to define that a system ‘succeeds’ when it attains a precision above 5% and ‘fails’ otherwise. The precision in above sections is averaged over all successful runs. Indeed, the baselines do not always succeed even in the case where a positive precision is reported. For instance, using the default setting (5 epochs with epoch size of 1,000,000) and running the codes 10 times, AutEnc model succeeds 7 runs on en-he, 7 runs on en-ar, and 5 runs on en-hi. Even worse, out of 10 runs, the baseline MUSE only succeeds 6 runs on en-he, 7 runs on en-ar, and 2 runs on en-hi. To show the effectiveness of the proposed domain flow in improving the robustness of adversarial models, we compare the proposed model with AutoEnc on distant language pairs of en-he, en-tr, en-bg, en-hi, en-fi, en-ar and en-ms.\(^9\) Specifically, using an epoch size of 100,000 and various numbers of epochs, we count the successful runs of the proposed model and AutoEnc out of 10 runs. The results are shown in Table 6. As shown in Table 6, our model succeeds with a much higher probability (cf AutoEnc) for all the 3 language pairs, as well as succeeds 100% if it is given 30 epochs. Note that the default setting of AutoEnc is equivalent to 50 epochs. AutoEnc can not achieve 100% success under this setting. However, for the proposed approach, 30 epochs are sufficient for all the 7 distant language pairs.

Visualization on Smoothing Training

We use the unsupervised validation criterion proposed by Lample et al. (2018), which is the mean cosine value in a pseudo dictionary (details in Appendix C), to show the learning curves of en-ja in Figure 1. We observe that the training procedure of AutoEnc is very unstable. However, the mean cosine value of the proposed model can increase smoothly\(^8\)

models	en-de	de-en	en-fr	fr-en	en-ru	ru-en	en-es	es-en	en-it	it-en
MUSE	75.26	72.53	82.21	82.36	40.65	58.46	82.60	83.40	77.87	77.30
VecMap	75.33	74.00	82.20	83.73	47.13	64.13	82.33	84.33	78.67	79.40
AutoEnc	75.77	73.87	82.55	83.33	47.29	64.48	82.25	84.21	79.06	80.20
Our model	**75.78**	**74.83**	**82.53**	**83.51**	**47.55**	**65.08**	**82.36**	**84.43**	**79.10**	**80.20**

Table 2: BLI translation precision (P@1) of Lample et al. (2018) on close language pairs. The highest precision values are boldfaced.

\(^4\)https://github.com/facebookresearch/MUSE
\(^5\)https://github.com/artetxem/vecmap
\(^6\)https://ntunlpsg.github.io/project/unsup-word-translation/

\(^7\)We have not compared with Li et al. (2020) since its code is not publicly available.

\(^8\)Kindly note that we obtained one successful run for en-zh and 2 for en-ja when we changed the default SGD optimizer of the released code to Adam, with the learning rate of 0.001, and trained 50 epochs with epoch size of 100,000 for 20 times.

\(^9\)En-ja and en-zh are not compared since Table 4 has shown that AutoEnc can never succeed in these two language pairs.
Table 3: BLI translation precision (P@1) of Lample et al. (2018) on distant language pairs. The highest precision values are boldfaced.

models	en-he	he-en	en-tr	tr-en	en-bg	bg-en	en-hi	hi-en	en-fi	fi-en
MUSE	36.26	54.07	45.40	59.65	41.97	56.29	30.40	39.55	42.70	59.30
VecMap	41.20	52.80	48.06	59.64	44.46	57.80	35.33	37.57	46.13	62.27
AutoEnc	43.71	57.76	49.31	61.01	46.62	61.01	35.74	46.58	44.65	62.59
Our model	44.67	58.01	50.45	61.19	46.77	60.85	36.88	49.17	48.28	64.66

Table 4: BLI translation precision (P@1) of Lample et al. (2018) on distant language pairs. The highest precision values are boldfaced.

models	en-ar	ar-en	en-ms	ms-en	en-ja	ja-en	en-zh	zh-en
MUSE	32.00	0	0.67	0.67	0	5.31	0.67	0
VecMap	34.79	49.26	48.40	38.80	37.56	26.12	0	0
AutoEnc	36.27	53.27	53.42	48.53	0	0	0	0
Our model	36.33	53.60	52.64	51.22	46.67	50.45	41.45	32.62

Table 5: BLI translation precision (P@1) of Dinu-Artetxe dataset on all 4 language pairs. The highest precision values are boldfaced.

models	en-de	en-es	en-it	en-fi
MUSE	65.57	67.89	67.45	30.76
VecMap	65.73	69.31	68.71	37.95
AutoEnc	65.76	69.25	68.76	36.38
Our model	66.01	69.53	68.78	38.35

corpus (Williams et al., 2018). The English word embeddings are from the induced CLWE space and are kept fixed during training. The trained ESIM model is then evaluated on the L2 portion of the XNLI (Conneau et al., 2018) by changing the embedding layer to L2 embeddings from the induced CLWE space. The test languages are the intersection of the selected 14 languages in Table 1 and the available languages in XNLI dataset, which include 9 languages, i.e., German(de), French(fr), Russian(ru), Spanish(es), Chinese(zh), Arabic(ar), Turkish(tr), Bulgarian(bg), and Hindi (hi).

4 Cross-Lingual Natural Language Inference

Moving beyond the BLI evaluation, we evaluate our model on a language understanding downstream task, Cross-Lingual Natural Language Inference (XNLI). Given a pair of sentences, the Natural Language Inference (NLI) task is to detect entailment, contradiction and neutral relations between them. We test our model on a zero-shot cross-lingual transfer setting where an NLI model is trained on English corpus and then tested on a second language (L2). Following Glavas et al. (2019), we train a well-known robust neural NLI model, Enhanced Sequential Inference Model (ESIM; Chen et al., 2017) on the English MultiNLI corpus (Williams et al., 2018). The accuracy values in Table 7 are obtained by evaluating the L2 portion of XNLI using the fully trained English NLI model. We also evaluate the XNLI accuracy of L2 using the English NLI model checkpoint from every training epoch. We observe that while the test accuracy of English on MNLI is always increasing with more training epochs, the XNLI accuracy of L2 increases in the first few epochs and then decreases. The phenomenon may come from the overfitting of English NLI model. Thus we also report the highest XNLI accuracy value of L2 in Table 8 by evaluating the L2 portion of XNLI on every checkpoint and selecting the highest one. Following Glavas et al. (2019), we use asterisks to denote language pairs for which the given CLWE models sometimes could not yield successful runs in BLI task.

4.1 Results and Discussion

We report the average XNLI accuracy scores (from 3 NLI model training) in Table 7 and Table 8. The accuracy values in Table 7 are obtained by evaluating the L2 portion of XNLI using the fully trained English NLI model. We also evaluate the XNLI accuracy of L2 using the English NLI model checkpoint from every training epoch. We observe that while the test accuracy of English on MNLI is always increasing with more training epochs, the XNLI accuracy of L2 increases in the first few epochs and then decreases. The phenomenon may come from the overfitting of English NLI model. Thus we also report the highest XNLI accuracy value of L2 in Table 8 by evaluating the L2 portion of XNLI on every checkpoint and selecting the highest one. Following Glavas et al. (2019), we use asterisks to denote language pairs for which the given CLWE models sometimes could not yield successful runs in BLI task.

10https://cims.nyu.edu/~sbowman/multinli/
11https://github.com/facebookresearch/XNLI
# of epochs	models	en-he	en-tr	en-bg	en-hi	en-fi	en-ar	en-ms
10	AutoEnc	2	7	8	6	2	3	0
	Ours	6	9	10	9	6	8	9
20	AutoEnc	6	7	8	7	4	6	2
	Ours	8	10	10	8	10	10	10
30	AutoEnc	7	7	9	7	4	7	4
	Ours	10	10	10	10	10	10	10

Table 6: Number of successful runs out of 10 runs.

![Learning curve of en-ja without domain flow](image)

(a) AutoEnc - without domain flow

![Learning curve of en-ja with domain flow](image)

(b) Proposed model - with domain flow

Figure 1: Learning curves of en-ja: mean cosine value in a pseudo dictionary (Appendix C) w.r.t. training iterations.

As shown in Table 7 and Table 8, the proposed model gets comparable results on close languages de, ru, and es. For all other languages, the proposed model outperforms all the baselines. Moreover, the performance of the proposed model gives marked improvements over all baselines for the languages where CLWE models yield failed runs in BLI task. When testing in zh, the XNLI accuracy values of all baselines are close to 33.33%, which means their predictions are almost like random guessing. Furthermore, the test XNLI accuracy values for NLI models trained from "failed" CLWEs are all close to 33.33%, which degrades the overall accuracy of ar, bg, and hi (shown in Table 7 and Table 8). This observation validates the importance of successful runs in BLI for downstream XNLI task and the high accuracy of the proposed model demonstrate its effectiveness in improving the robustness of adversarial models.

5 Related Work

Adversarial Approaches Adversarial training has shown great success in inducing unsupervised CLWEs. This was first proposed by Barone (2016), who initially utilized an adversarial autoencoder to learn CLWEs. Despite encouraging results, his model is not competitive with approaches using bilingual seeds. Based on a similar model structure, Zhang et al. (2017a) improve the adversarial training with orthogonal parameterization and cycle consistency. They incorporate additional techniques like noise injection to aid training and report competitive results on the BLI task. Their follow-up work (Zhang et al., 2017b) propose to view word embedding spaces as distributions and to minimize their earth mover’s distance. Lample et al. (2018) report impressive results on a large BLI dataset by adversarial training and an iterative refinement process. Mohiuddin and Joty (2019) revisit the adversarial training and focus on mitigating the robustness issue by adding cycle consistency loss and learning cross-lingual mapping in a latent space encoder by autoencoders.

Projecting Embeddings into Intermediate Spaces The idea of projecting word embedding spaces into intermediate spaces has been explored in other works. Jawanpuria et al. (2019) propose to decouple the cross-lingual mappings into language-specific rotations, to align embeddings in a latent common space, and a language-independent similarity metric, i.e., Mahalanobis metric, to measure the similarity of words in the latent common space. Doval et al. (2018) apply an additional transformation to refine the already aligned word embeddings, which moves cross-lingual synonyms towards a middle point between them. Kementchedjhieva et al. (2018) propose to project two languages onto a third latent space via generalized procrustes
Table 7: XNLI performance (test set accuracy) from fully trained English NLI model. The highest accuracy values are boldfaced. Asterisks denote language pairs for which CLWE models sometimes could not yield successful runs in the BLI tasks.

models	de	ru	es	fr	ar	tr	bg	hi	zh
MUSE	56.53	47.33	48.75	41.40	45.36*	50.18	47.10*	34.04*	34.06*
VecMap	51.38	45.46	40.51	36.61	41.13	44.74	41.60	37.43	33.89*
AutoEnc	56.21	49.73	50.45	40.83	43.80*	51.56	48.83*	34.91*	33.67*
Our model	56.33	49.00	49.32	42.50	51.64	52.28	51.82	43.47	45.44

Table 8: Highest XNLI performance (test set accuracy) during the English NLI model training. The highest accuracy values are boldfaced. Asterisks denote language pairs for which CLWE models sometimes could not yield successful runs in the BLI task.

models	de	ru	es	fr	ar	tr	bg	hi	zh
MUSE	58.65	48.81	49.87	42.82	47.07*	51.78	49.27*	34.65*	34.89*
VecMap	52.46	46.35	41.45	38.13	43.54	45.50	44.58	43.83	34.61*
AutoEnc	60.23	51.36	51.63	42.94	46.27*	53.92	50.46*	39.47*	34.67*
Our model	59.73	51.50	51.36	46.40	55.13	54.18	54.92	46.11	50.76

analysis. Different from us, their work focus on weakly supervised settings and they consider no constraint on the third latent space. However, we focus on the unsupervised case and the third space in our model is forced to approach the target space gradually staring from the source space. Heyman et al. (2019) utilize a similar idea to induce multilingual word embeddings. To learn a shared multilingual embedding space for a variable number of languages, they propose to incrementally add new languages to the current multilingual space. They find that it is beneficial to project close languages first and then more distant languages. Different from our work, their model is based on real languages and requires to construct a language order for the incremental learning. In contrast, our model utilizes a sequence of pseudo-languages and no additional engineering work on language order is required.

Motivation for unsupervised CLWE Despite the success of fully unsupervised CLWE approaches, some recent works have questioned the motivations behind them. Søgaard et al. (2018) challenge the basic assumption of unsupervised CLWE approaches that monolingual word embedding graphs are approximately isomorphic. They further show the well-known adversarial approach, MUSE (Lample et al., 2018), performs poorly on morphologically rich languages and adding a weak supervision signal from identical words enables more robust induction. Vulic et al. (2019) show that the most robust non-adversarial approach, VecMap (Artetxe et al., 2018b), still fails on 87 out of 210 distant language pairs. Artetxe et al. (2020) argue that a scenario without any parallel data and abundant monolingual data is unrealistic in practice. However, Søgaard et al. (2018) shows that unsupervised approaches can sometimes outperform the supervised approaches (last row in their Table 2). Vulic et al. (2019) point out that techniques learned from unsupervised approaches can also benefit supervised and weakly supervised approaches. Artetxe et al. (2020) analyze the scientific value of unsupervised approaches. According to the literature, it is still an open problem which approach is better. The main drawback of unsupervised approaches lies in their instability. The research value of unsupervised approaches may exceed that of supervised approaches if we can solve the instability problem.\(^{12}\)

6 Conclusion

This paper proposes an approach for improving the robustness of unsupervised cross-lingual word embeddings by leveraging the idea of domain flow from computer vision. Experimental results on BLI tasks demonstrate that the proposed approach can achieve comparable precision on close language pairs and effectively enhance the robustness of adversarial models on distant language pairs, achieving a smooth learning curve. The experiments on XNLI tasks further validate importance of success-

\(^{12}\)Additional discussions on CLWE and multilingual pre-trained language models are in Appendix D.
ful runs in BLI and the effectiveness of the proposed model.

References

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016. Learning principled bilingual mappings of word embeddings while preserving monolingual invariance. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2289–2294. The Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017. Learning bilingual word embeddings with (almost) no bilingual data. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 451–462. Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018a. Generalizing and improving bilingual word embedding mappings with a multi-step framework of linear transformations. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5012–5019. AAAI Press.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018b. A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 789–798. Association for Computational Linguistics.

Mikel Artetxe, Sebastian Ruder, Dani Yogatama, Gorka Labaka, and Eneko Agirre. 2020. A call for more rigor in unsupervised cross-lingual learning. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7375–7388. Association for Computational Linguistics.

Antonio Valerio Miceli Barone. 2016. Towards cross-lingual distributed representations without parallel text trained with adversarial autoencoders. In Proceedings of the 1st Workshop on Representation Learning for NLP, Rep4NLP@ACL 2016, Berlin, Germany, August 11, 2016, pages 121–126. Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomáš Mikolov. 2017. Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5:135–146.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1657–1668. Association for Computational Linguistics.

Alexandra Chronopoulou, Dario Stojanovski, and Alexander Fraser. 2021. Improving the lexical ability of pretrained language models for unsupervised neural machine translation. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages 173–180. Association for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 8440–8451. Association for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-lingual language model pretraining. In Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 7057–7067.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger Schwenk, and Veselin Stoyanov. 2018. XNLI: evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2475–2485. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational Linguistics.

Georgiana Dinu and Marco Baroni. 2015. Improving zero-shot learning by mitigating the hubness problem. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings.

Yerai Doval, José Camacho-Collados, Luis Espinosa Anke, and Steven Schockaert. 2018. Improving cross-lingual word embeddings by meeting in the
middle. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 294–304. Association for Computational Linguistics.

Yerai Doval, José Camacho-Collados, Luis Espinosa Anke, and Steven Schockaert. 2020. On the robustness of unsupervised and semi-supervised cross-lingual word embedding learning. In Proceedings of the 12th Language Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020, pages 4013–4023. European Language Resources Association.

Goran Glavas, Robert Litschko, Sebastian Ruder, and Ivan Vulic. 2019. How to (properly) evaluate cross-lingual word embeddings: On strong baselines, comparative analyses, and some misconceptions. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28–August 2, 2019, Volume 1: Long Papers, pages 710–721. Association for Computational Linguistics.

Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. 2019. DLOW: domain flow for adaptation and generalization. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 2477–2486. Computer Vision Foundation / IEEE.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2672–2680.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Victor O. K. Li. 2018. Universal neural machine translation for extremely low resource languages. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 344–354. Association for Computational Linguistics.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and Ting Liu. 2015. Cross-lingual dependency parsing based on distributed representations. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1: Long Papers, pages 1234–1244. The Association for Computer Linguistics.

Geert Heyman, Bregt Verrept, Ivan Vulic, and Marie-Francine Moens. 2019. Learning unsupervised multilingual word embeddings with incremental multilingual hubs. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 1890–1902. Association for Computational Linguistics.

Yedid Hoshen and Lior Wolf. 2018. Non-adversarial unsupervised word translation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 469–478. Association for Computational Linguistics.

Pratik Jawanpuria, Arjun Balgovern, Anoop Kunchukuttan, and Bamdev Mishra. 2019. Learning multilingual word embeddings in latent metric space: A geometric approach. Trans. Assoc. Comput. Linguistics, 7:107–120.

Armand Joulin, Piotr Bojanowski, Tomáš Mikolov, Hervé Jégou, and Edouard Grave. 2018. Loss in translation: Learning bilingual word mapping with a retrieval criterion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pages 2979–2984. Association for Computational Linguistics.

Yova Kementchedjhieva, Sebastian Ruder, Ryan Cotterell, and Anders Søgaard. 2018. Generalizing procrustes analysis for better bilingual dictionary induction. In Proceedings of the 22nd Conference on Computational Natural Language Learning, CoNLL 2018, Brussels, Belgium, October 31 - November 1, 2018, pages 211–220. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018. Word translation without parallel data. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Yanyang Li, Yingfeng Luo, Ye Lin, Quan Du, Huizhen Wang, Shujian Huang, Tong Xiao, and Jingbo Zhu. 2020. A simple and effective approach to robust unsupervised bilingual dictionary induction. In Proceedings of the 28th International Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), December 8-13, 2020, pages 5990–6001. International Committee on Computational Linguistics.

Tomáš Mikolov, Quoc V. Le, and Ilya Sutskever. 2013. Exploiting similarities among languages for machine translation. CoRR, abs/1309.4168.
Revisiting adversarial autoencoder for unsupervised word translation with cycle consistency and improved training. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 3857–3867. Association for Computational Linguistics.

Beyond offline mapping: Learning cross-lingual word embeddings through context anchoring. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, Virtual Event, August 1-6, 2021, pages 6479–6489. Association for Computational Linguistics.

ERNIE-M: enhanced multilingual representation by aligning cross-lingual semantics with monolingual corpora. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 27–38. Association for Computational Linguistics.

A survey of cross-lingual word embedding models. Journal of Artificial Intelligence Research, 65:569–631.

On the limitations of unsupervised bilingual dictionary induction. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 778–788. Association for Computational Linguistics.

Subword mapping and anchoring across languages. In Findings of the Association for Computational Linguistics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 16-20 November, 2021, pages 2633–2647. Association for Computational Linguistics.

Do we really need fully unsupervised cross-lingual embeddings? In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4406–4417. Association for Computational Linguistics.

Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th International Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015, pages 363–372. ACM.

A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics.

Normalized word embedding and orthogonal transform for bilingual word translation. In NAACL HLT 2015, The 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, USA, May 31 - June 5, 2015, pages 1006–1011. The Association for Computational Linguistics.

Adversarial training for unsupervised bilingual lexicon induction. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1959–1970. Association for Computational Linguistics.

Earth mover’s distance minimization for unsupervised bilingual lexicon induction. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017, pages 1934–1945. Association for Computational Linguistics.
A Experimental Details

All experiments are conducted on a single GPU of Tesla V100 DGXS 32GB.

Parameter and Optimizer Settings In our setting, λ_1 and λ_2 are set to be 5 and 1, respectively. The dimension of the hidden space from autoencoders is set to be 350. We use the Adam optimizer (Kingma and Ba, 2015) with the learning rate of 0.001 and the batch size of 32 to train our model. The epoch size is chosen as 100,000. Note that in the default setting of MUSE and AutoEnc, the epoch size is chosen as 1,000,000 and the optimizer is chosen as the SGD with the learning rate of 0.1.

Fine-tuning Steps After the initial mapping is derived from the adversarial training, some fine-tuning steps are used to refine it, just like what Lample et al. (2018) and Mohiuddin and Joty (2019) did in their work. That is, using the self-learning scheme to update the mappings and dictionaries alternatively and apply symmetric re-weighting (Artetxe et al., 2018a) on the transformed word embeddings. Then Cross-domain Similarity Local Scaling (Lample et al., 2018) is used to retrieve the word translation.

B Detailed BLI Results

The detailed BLI precision results on Lample et al. (2018) dataset are shown in Table 10 and the results on Dinu-Artetxe dataset are shown in Table 9. In Table 10 and Table 9, \rightarrow refers to the direction from English to other languages and \leftarrow refers to the direction from other languages to English.

C Unsupervised Validation Criterion

We apply the unsupervised validation criterion proposed by Lample et al. (2018) to select the best model. Specifically, we consider 10,000 most frequent source words and find their nearest neighbors in the target space via the current mapping. We maintain a pseudo dictionary that consists of the words with their translations if the translations are also among the 10,000 most frequent words in the target language space. Then among these pseudo translation pairs, the average cosine similarity is calculated as the validation criterion, i.e., we save the model with the largest average cosine similarity. This average cosine value is empirically highly correlated with the mapping quality (Lample et al., 2018).

D Related Work on CLWE and Multilingual Pre-trained Language Models

Multilingual pre-trained language models (MPLMs) have shown impressive results on cross-lingual tasks by pre-training a single model to handle multiple languages (Devlin et al., 2019; Conneau and Lample, 2019; Conneau et al., 2020; Ouyang et al., 2021). The shared information among multiple languages is implicitly explored by the overlapped subword vocabulary. Recent works have shown that CLWE is effective to improve the cross-lingual transferability of MPLMs. Chronopoulou et al. (2021) utilize the mapped CLWEs to initialize the embedding layer of multilingual pre-trained language models and achieve a little improvement on the unsupervised machine translation task. Vernikos and Popescu-Belis (2021) transfer a pretrained Language Model from one language (L_1) to another language (L_2) by initializing the embedding layer in L_2 as the embeddings of aligned words in L_1. They observe performance improvement in the zero-shot XNLI task and the machine translation task. The research of CLWE may benefit recent MPLMs and we leave it for future work.
language pairs	models	P@1	P@5	P@10
de	MUSE	65.57	79.61	83.23
	VecMap	65.73	79.73	**83.37**
	AutoEnc	65.76	79.85	82.98
	Ours	**66.01**	**80.05**	83.14
es	MUSE	67.89	81.74	84.73
	VecMap	69.31	82.11	85.33
	AutoEnc	69.25	82.46	85.25
	Ours	**69.53**	**82.66**	**85.51**
it	MUSE	67.45	81.83	85.69
	VecMap	68.71	**83.60**	86.04
	AutoEnc	68.76	83.22	86.00
	Ours	**68.78**	83.35	**86.06**
fi	MUSE	30.76	49.57	57.47
	VecMap	37.95	58.22	65.23
	AutoEnc	36.38	57.60	64.24
	Ours	**38.35**	**58.56**	**65.25**

Table 9: BLI translation precision of Dinu-Artetxe. The highest precision values are boldfaced. "-" indicates the value is not available.
language pairs	models	P@1	P@5	P@10	P@1	P@5	P@10
de	MUSE	74.70	88.80	91.56	72.49	85.45	88.36
	VecMap	75.33	89.66	92.26	74.00	85.73	88.53
	AutoEnc	75.72	89.50	92.18	74.35	85.67	88.77
	Ours	75.79	89.51	91.78	74.75	85.89	89.96
fr	MUSE	82.21	90.53	92.78	82.36	91.34	93.08
	VecMap	82.20	91.13	93.20	83.73	91.80	93.33
	AutoEnc	82.55	91.27	93.03	83.33	91.34	93.38
	Ours	82.53	91.17	93.05	83.51	91.47	93.44
ru	MUSE	40.65	68.78	75.53	58.46	75.65	79.76
	VecMap	47.13	70.20	75.93	64.13	77.33	81.20
	AutoEnc	47.29	73.41	78.91	64.48	77.40	81.11
	Ours	47.55	73.83	79.36	65.08	77.75	81.45
es	MUSE	82.36	91.17	93.60	84.02	91.90	93.54
	VecMap	82.33	91.33	92.91	84.33	92.26	93.86
	AutoEnc	82.25	90.70	92.96	84.31	92.48	94.34
	Ours	82.36	90.80	92.95	84.33	92.42	94.37
it	MUSE	77.87	88.57	91.00	77.30	88.07	90.27
	VecMap	78.67	89.26	91.40	79.40	88.00	90.06
	AutoEnc	78.97	89.13	91.60	80.10	88.36	90.46
	Ours	79.04	89.11	91.69	80.31	88.29	90.47
he	MUSE	38.07	60.47	67.20	52.33	68.90	72.16
	VecMap	41.20	62.06	69.00	52.80	66.96	72.16
	AutoEnc	43.71	65.39	70.36	57.76	70.21	73.50
	Ours	44.67	65.60	70.60	58.01	70.35	73.71
tr	MUSE	45.40	64.80	72.16	59.65	73.93	78.21
	VecMap	48.06	66.33	72.00	59.64	72.51	75.78
	AutoEnc	49.31	69.33	74.79	61.01	73.36	76.37
	Ours	50.45	70.50	75.73	61.19	74.08	77.18
bg	MUSE	41.97	63.75	70.49	56.29	72.17	76.74
	VecMap	44.46	64.13	68.87	57.80	71.33	74.93
	AutoEnc	46.62	67.63	73.85	61.01	75.03	78.76
	Ours	46.77	68.60	74.53	60.85	74.42	78.17
hi	MUSE	30.40	47.07	52.64	39.55	57.97	63.13
	VecMap	35.33	49.86	53.80	37.57	52.17	55.86
	AutoEnc	35.74	50.68	56.57	46.58	62.49	66.63
	Ours	36.88	52.69	58.62	49.27	65.82	70.10
fi	MUSE	42.70	67.13	74.10	59.30	74.20	78.40
	VecMap	46.13	70.26	76.33	62.27	76.46	80.20
	AutoEnc	44.65	63.05	74.33	62.59	75.87	79.43
	Ours	48.28	72.11	78.20	64.66	77.16	80.87
ar	MUSE	30.94	50.34	58.20	44.48	60.94	65.91
	VecMap	34.79	55.80	62.60	49.26	65.06	68.14
	AutoEnc	36.28	56.84	64.15	53.28	67.65	71.24
	Ours	36.79	58.27	66.17	54.42	69.31	72.64
ms	VecMap	50.27	64.40	69.06	47.10	61.64	65.04
	AutoEnc	53.42	68.66	73.95	48.53	62.61	66.77
	Ours	52.64	67.91	72.98	51.22	66.12	70.32
ja	VecMap	37.56	53.39	59.08	26.12	35.29	38.87
	Ours	46.67	62.59	67.15	31.11	44.87	49.19
zh	Ours	41.45	59.75	65.24	32.62	51.53	57.89

Table 10: BLI translation precision of Lample et al. (2018). The highest precision values are boldfaced and precision for failed runs are skipped.