A Photo-Responsive Porphyrin-Mn@Choles Complex for Bacteria Treatment

Wei Wang 1 · Jun Wang 1 · Qiu-Yun Chen 1 · Qing-Shan Liu 1 · Xu Liang 1

Received: 3 October 2021 / Accepted: 8 November 2021 / Published online: 26 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Biocompatible photo-driven producers of singlet oxygen can inhibit the growth of drug-resistant bacteria and tumors. In order to develop bacteria targeting generator of singlet oxygen for tumor and bacterial treatment, a metal porphyrin liposome (Phy–Mn–Ls) was prepared by the metal coordination reaction and self-assembly of porphyrin compounds with bacteria targeting polymer (HS–PEG–chol). The photo-driven production of $^{1}\text{O}_2$, binding with bovine serum protein (BSA) and lipase, toxicity to MCF-7 breast cancer cells and inhibitory effect on the growth of Escherichia coli have been investigated. Fluorescence analysis results show that Phy–Mn–Ls can bind to lipase, and it shows less effect on the conformation of BSA and is low cytotoxicity without irradiation. In particular, the good biocompatibility made Phy–Mn–Ls exhibit good photosensitive antibacterial activity and anti-tumor properties. The results demonstrate that the coordination of HS–PEG–chol with metal-phorphrin coordination is an effective way to develop bacteria targeting nano-complexes (Phy–Mn–Ls) for lipase affinity and photodriven bacteria treatment.

Keywords Mn complex · Antimicrobial activity · Porphyrin · Protein interaction

1 Introduction
The drug resistant bacteria and the effect of bactericides to environment have caused a public healthy issue [1, 2]. It is necessary to develop new bactericides for the treatment of pathogen infection [3, 4]. Photo-irriated reactive species (such as $^{1}\text{O}_2$), have been reported as effective photo-driven therapy agents [5, 6]. Singlet oxygen and other reactive oxygen species (ROS) can damage protein or cause the oxidation of intracellular thiols in bacteria, which could reduce the resistance of bacteria to drug [7]. Porphrins and borondipyrromethene fluorophore (BODIPY) derivatives were reported as $^{1}\text{O}_2$ generators for photodynamic therapy [8–10]. Photoactive Mn(II) complexes can be $^{1}\text{O}_2$ generators for the cancer cell treatment by attenuating the cell energy metabolism [11]. Metal porphyrins were reported as mimics of PSII (photosynthesis II) for the oxygen generation [12–15]. Oxygen and $^{1}\text{O}_2$ can attenuate the cell metabolism. Attenuating the cell metabolism is also a promising strategy for pathogen infection [16]. Bacteria have low metabolic activity and are less sensitive to antibacterial compounds, while bacteria show strong response to nanoparticles because of their good cell membrane penetration [17–19]. Porphyrin could assemble with cholesterol-linked polyethylene glycol polymer (Chol–PEG) resulting bacteria surface targeting nanoparticles [20, 21]. Therefore, Chol-PEG conjugated porphyrin might be targeting inhibitors of bacteria. However, it is a challenge to make photosensitive porphrins be reversible affinity to protein and non-toxic to cells in black. To develop safer nano-generator of $^{1}\text{O}_2$ for bacteria treatment, thiol polyethylene glycol cholesterol (HS–PEG–chol) coordinated and assembled with Mn(II) complex of phorphrin (TAPP, Scheme 1) resulting a photodriven nano-generator (Phy–Mn–Ls) of $^{1}\text{O}_2$ for cancer and bacteria treatment.

2 Experimental

2.1 Chemicals and Instruments
1,3-Diphenyl isobenzofuran (DPBF), thiol polyethylene glycol cholesterol (HS–PEG–chol, Mw. 3400), MnCl$_2$ and dichloromethane (DCM), bovine serum protein (BSA),
pancreatic lipase (PL), were obtained from DeWei Chemicals (Zhenjiang, China) Co., Ltd. 2-Chloro-N-(4-(10,15,20-triphenylporphyrin-5-yl)phenyl)acetamide (TAPP) was synthesized according to a reported publication [22]. Fluorescence spectra were taken on a fluorescence spectrophotometer (VARIAN, USA), (slit width = 5 nm). The UV-vis spectra were measured on a UV-2450 spectrophotometer. FT-IR spectra were recorded by a Nicolet Nexus 470 FT-IR spectrophotometer. SEM images came from a scanning electron microscope (S5-550 from Shimadzu, Japan). NMR spectra were recorded on a Bruker AVANCE II 400 MHz spectrometer.

2.2 Synthesis of Mn Complex of 2-Chloro-N-(4-(10,15,20-triphenylporphyrin-5-yl)phenyl)acetamide Thiol Polyethylene Glycol Cholesterol (Phy–Mn–Ls)

TAPP (100 mg, 0.12 mmol) was added into the ethanol solution (20 mL) of MnCl₂ (23 mg, 0.12 mmol). After the mixture was stirred at 80 °C for 1 h HS–PEG–chol (20 mg) was added, and then the mixture was stirred at 80 °C for 4 h. After cooled to room temperature, the solution was purified by cellulose membrane (5000) dialysis in DMF and water, respectively. The Phy–Mn–Ls (80 mg) was obtained after concentration and dried in vacuum, yield, 60%.

2.3 Interaction with Protein and Lipase

The interaction between Phy–Mn–Ls and BSA or pancreatic lipase (PL) was determined on CARY Eclipse fluorescence spectrophotometer. Firstly, BSA or PL solution (0.5 mg/mL) in PBS buffer (20 mM, pH 7.0) was prepared. Different volume of Phy–Mn–Ls in water (100 µg/mL) was mixed with proteins. After have shaken for 5 min, the emission spectra (λ_{ex} = 290 nm; λ_{em} = 340 nm) were determined.

2.4 Singlet Oxygen Determination

1,3-Diphenyl isobenzofuran (DPBF) (100 µM, 15 mL) and Phy-Mn-Ls (2 µM, 15 mL) in water were mixed; the absorption change of DPBF at 415 nm was recorded on UV-vis spectrometer every 1 min under irradiation with red LED light (4 W).

2.5 Antibacterial

The effect of Phy–Mn–Ls on *E. coli* and *S. aureus* was investigated. The single colony of bacteria was inoculated in LB broth medium (3 mL), and cultured in a vibration incubator (180 RPM) at 37 °C under aerobic condition. Bacterial growth was evaluated by measuring absorbance at 600 nm (OD₆₀₀). Bacteria were washed with PBS (phosphate buffered saline) and collected by centrifugation (10 min, ~ 2000 g/m) for 10 min. Then the bacteria were diluted by PBS solution to 1 × 10⁵ CFU/mL, all instruments were sterilized before use.

2.6 MTT Assay

The anticancer property of Phy–Mn–Ls was evaluated by measuring the inhibition of samples on the proliferation of MCF-7 cancer cells under normal culture conditions. Cells (4 x 10⁴ per milliliter) were incubated into sterile 96-well plates for 24 h. Phy–Mn–Ls (100 µg/L) was diluted with culture solution to different concentrations and then was incubated with MCF-7 cells for 24 h. Cell viability was evaluated by recording the absorption at 570 nm (MTT assay). The test was repeated for three times.
3 Results and Discussions

3.1 Characterization of Phy–Mn–Ls

TAPP was synthesized as reported method [22]. NMR spectrum confirms the structure of TAPP (Fig. S1). In the mass spectrum of TAPP, the main peak at \(m/z = 706.61 \) (100) corresponds to the positive TAPP [(TAPP)+] in ES-MS condition (Fig. S2). TAPP coordinated with MnCl₂ resulting TAPP:MnCl, in which Mn–Cl can be replaced by HS–PEG–chol producing Phy–Mn–Ls (Scheme 1). In the ES-MS spectra of TAPP:MnCl in methanol, the \(m/z = 758.60 \) (100) corresponds to the specie [TAPP:Mn]⁺, indicating the 1:1 ratio of TAPP and Mn in TAPP:MnCl (Fig. S3). The ESR data confirm the existence of Mn(II) ion in Phy–Mn–Ls (Fig. 1) [23]. The intermolecular forces between TAPP and HS–PEG–chol makes the Phy–Mn–Ls self-assembled into tube-shaped nano-complex (Fig. 1d). The UV–Vis absorption of Phy–Mn–Ls in the range of 400–450 nm shows a hypochromic effect compared to TAPP. The absorption at ca. 420 nm (Soret band) and 510–650 nm (Q bands) of Phy–Mn–Ls indicates the existence of tetraaryporphyrin [24]. The coordination of Mn(II) with TAPP resulted in the enhancement of absorption at 475 nm [13, 22]. The content of Mn complex of TAPP in Phy–Mn–Ls was evaluated to be 14.5% according to the absorption of TAPP MnCl at 475 nm (Fig. S4). In IR spectra, the peak at 2933–2978 cm⁻¹, 3033 cm⁻¹, 2500 cm⁻¹ indicate the presence of H–C, H–C=, H–S groups in Phy–Mn–Ls.

3.2 Interaction with Lipase and BSA

There are high level of lipase or fat acid synthase in most bacteria or cancer cells. The interaction of Phy–Mn–Ls with lipase was investigated by measuring the fluorescence emission change of lipase at 348 nm. The addition of Phy–Mn–Ls to lipase resulted in the decrease of fluorescence intensity at 348 nm (Fig. 2), indicating a high affinity with lipase. The deceased fluorescence emission showed that the Phy–Mn–Ls can interacted with both lipase and BSA. The affinity of Phy–Mn–Ls to BSA is a litter stronger than lipase (Fig. 3b and c). Do the affinity of compounds with proteins change the conformation? The effect of Phy–Mn–Ls on the conformation of BSA was evaluated by Circular dichromatography (CD). Results show that the Phy–Mn–Ls changed the band intensity of the BSA at 195 nm and 210 nm, indicating the decreased level of α-helix BSA [25]. The spectra of BSA and BSA/Phy–Mn–Ls are similar indicating the weak effect for Phy–Mn–Ls on the conformation of BSA (Fig. 3). The higher affinity and weak conformation change indicate protein can be good carrier of Phy–Mn–Ls.

Fig. 1 a UV absorption spectra of TAPP (red) and Phy–Mn–Ls (black) (0.1 mg/mL, H₂O), b Infrared spectra of Phy-Mn-Ls (red) and TAPP (blue), c ESR spectrum of Phy–Mn–Ls at 298 K, d SEM diagram of Phy–Mn–Ls (Color figure online)

© Springer
3.3 Photodriven Generation of $^1\text{O}_2$

DPBF can combine singlet oxygen with the absorption change at 415 nm [18]. The peak of DPBF decreased at 415 nm under red LED light irradiation (Fig. 4a), indicating the production of singlet oxygen. Singlet oxygen (can reduce the probability of the drug resistance and kill microbial cells [26]. Metalloporphyrin complexes have been reported as good photosensitizer (PS) for photodriven intracellular $^1\text{O}_2$ generation [27]. Therefore, Phy–Mn–Ls is a photo-driven singlet oxygen generator for potential photo-dynamic therapy.

3.4 MTT Assay and Antibacteria Property

The cytotoxicity of Phy–Mn–Ls was studied by measuring the cell viability of compounds treated MCF-7 cells using the MTT assay. Under red LED light irradiation, Phy–Mn–Ls did alter the viability of MCF-7 after 24 h treatment. The IC$_{50}$ of Phy–Mn–Ls is 1.674 µg/mL. In contrast, Phy–Mn–Ls shows no toxicity to cells without irradiation (Fig. 5), indicating Phy–Mn–Ls is a safer photodynamic agent [27]. The higher the concentration of the compound the more it inhibits cell proliferation, which proves that the Phy–Mn–Ls is a concentration dependent photo-responsive anticancer agent.

The effect of Phy–Mn–Ls on the inhibition of E. coli was investigated (Fig. 6). Phy–Mn–Ls inhibited the bacteria proliferation under light irradiation; but the antibacterial potency of Phy–Mn–Ls was weak without irradiation which indicated that the Phy–Mn–Ls was a LED light responsive antibacterial agent. In the absence of Phy–Mn–Ls, LED light has little inhibition effect on bacterial growth. Therefore, Phy–Mn–Ls interact with lipase and produce singlet oxygen
to inhibit bacteria under irradiation (Scheme 2). Metallophyrin complexes have been reported as photosensitizers (PS) for bacteria treatment [27, 28]. The receptor of cholesterol is highly expressed in most bacteria [21]. Phy–Mn–Ls is a potential bacteria surface targeting nanoparticles for bacteria photodynamic inactivation.

4 Conclusions

A biocompatible nanocomplex (Phy–Mn–Ls) was synthesized and used as a photodynamic agent for both cancer and bacteria treatment. The phorphyrin and cholesterol groups in Phy–Mn–Ls make it can bind with lipase, which are highly expressed in most bacteria. The Phy–Mn–Ls can produce 1O$_2$ under red LED light irradiation. Meanwhile, Phy–Mn–Ls show less effect on the conformation of BSA indicating BSA can be carrier of Phy–Mn–Ls. In particular, Phy–Mn–Ls show good inhibition on the proliferation of both MCF-7 cancer cells and E. coli bacteria under irradiation, while it is less toxicity to cells without irradiation. Results indicate that the Phy–Mn–Ls is an environmental friendly photosensitive agent for bacteria treatment.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10904-021-02148-1.

Acknowledgements Financial support of National Natural Science Foundation of China (21571085, 21701056).

References

1. M.I. Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, M. Megharaj, Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total Environ. 711, 134612 (2020)
2. A.M. Meireles, A.L.A. Lage, J.M. Ribeiro, M.P.N. Silva, E.M. Souza-Fagundes, D.C.S. Martins, Martins, synthetic Mn(III) porphyrins as biomimetic catalysts of CYP450: degradation of antibiotic norfloxacin in aqueous medium. Environ. Res. 177, 108615 (2019). https://doi.org/10.1016/j.envres.2019.108615
3. W.Y. Mu, A. Robertson, Q.Y. Chen, Near-infrared-driven Au-decorated polymer-metal protein microfibers with bacterial filtration ability for use in photothermal sterilization. Chem. Eng. J. 388, 124236 (2020). https://doi.org/10.1016/j.cej.2020.124236
4. J.Y. Li, W. Sun, Z.H.Y. Yang, G. Gao, H.H. Ran, K.F. Xu, Q.Y. Duan, X.Y. Liu, F.G. Wu, Rational design of self-assembled cationic porphyrin-based nanoparticles for efficient photodynamic inactivation of bacteria. ACS Appl. Mater. Interfaces 12, 54378–54386 (2020). https://doi.org/10.1021/acsami.0c15244
5. W.Y. Mu, W. Wang, Q.Y. Chen, L.L. Qu, Polymer fused GoFe: light-driven oxygen donor and antiseptics. Photochem. Photobiol. A Chem. 408, 113075 (2021). https://doi.org/10.1016/j. ejpcho.2020.113075
6. A. Frei, J. Zuegg, A.G. Elliott, M. Baker, S. Braese, C. Brown, F. Chen, C.G. Dowson, G. Dujardin, N. Jung, A.P. King, A.M. Mansous, M. Massi, J. Moat, H.A. Mohamed, A.K. Renfrew, P.J. Rutledge, P.J. Sadler, M.H. Todd, C.E. Willans, J.J. Wilson, M.A. Cooper, M.A.T. Blaskovich, Metal complexes as a promising source for new antibiotics. Chem. Sci. 11, 2627–2639 (2020). https://doi.org/10.1039/C9SC04640E
7. A. Cossu, F. Dou, G.M. Young, N. Nitin, Biomarkers of oxidative damage in bacteria for the assessment of sanitation efficacy in lettuce wash water. Appl. Microbiol. Biotechnol. 101, 5365–5375 (2017). https://doi.org/10.1007/s00253-017-8314-5
8. H.P. Wang, H.L. Wang, B.L. Li, Synthesis, structure, luminescence and thermal stability properties of a new (3,4)-connected 2D
Zn coordination polymer, Chin. J. Struct. Chem. **39**, 1835–1840 (2020). https://doi.org/10.14102/j.cnki.cn32-5861.2011-2708

9. X.L. Fang, R. Akrofi, Q.Y. Chen, The NIR inspired nano-
CuSMn(II) composites for lactate and glycolysis attenuation. Colloids Surf. B Biointerfaces **181**, 728–733 (2019)

10. I.K. Attatini, W. Zhu, X. Liang, Surface molecular engineering of axial-exchanged Fe(II)Cl- and Mn(II)Cl- porphyrins towards enhanced electrocatalytic ORRs and OERs. Inorg. Chem. Acta **507**, 119584 (2020). https://doi.org/10.1016/j.ica.2020.119584

11. W.L. Lu, Y.Q. Lan, K.J. Xiao, Q.M. Xu, L.L. Qu, Q.Y. Chen, T. Huang, J. Gao, Y. Zhao, BODIPY-Mn nanomaterials for accurate MRI and phototherapy of hypoxia cancer. J. Mater. Chem. B **5**, 1275–1283 (2017). https://doi.org/10.1039/cb700257g

12. L. Zhao, Q. Xu, Z. Shao, Y. Chen, Z. Xue, H. Li, J. Zhang. Enhanced oxygen reduction reaction performance using inter-
molecular forces coupled with more exposed molecular orbitals of triphenylamine in co-porphyrin electrocatalysts. ACS Appl. Mater. Interfaces **12**, 45976–45986 (2020). https://doi.org/10.1021/acsami.1c1742

13. H.Y. Gu, X.Y. Huang, Q.S. Chen, Y.H. Sun, Rapid assessment of total polar material in used frying oils using manganese tetrphe-
nylporphyrin fluorescent sensor with enhanced sensitivity. Food Anal. Methods **13**, 2080–2086 (2020)

14. Z.H. Li, X.C. Zhou, J.Y. Shi, X.B. Zou, X.W. Huang, T.H. Tahir, Preparation of conducting polyaniline/protoporphyrin composites and their application for sensing VOCs. Food Chem. **276**, 291–297 (2019). https://doi.org/10.1016/j.foodchem.2018.10.029

15. A. Wang, L. Cheng, X. Shen, X. Chen, W. Zhu, W. Zhao, C. Lv, Porphyrin coordination polymer/Co1-xS composite electrocatalyst for efficient oxygen evolution reaction. Chem. Eng. J. **400**, 125975 (2020). https://doi.org/10.1016/jcej.2020.125975

16. R. Yang, W.Y. Mu, Q.Y. Chen, Q. Wang, J. Gao, Smart magnetic nanooptamer: construction, subcellular distribution, and silencing HIF for cancer gene therapy. ACS Biomater. Sci. Eng. **4**, 2606–2613 (2018). https://doi.org/10.1021/acsbiomaterials.8b00204

17. Y.I. Openda, P. Sen, M. Managa, T. Nyokong, Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against *Staphylococcus aureus*. Photodiag. Photodyn. Ther. **29**, 101607 (2020). https://doi.org/10.1016/j.pdpt.2019.101607

18. J. Shao, P.Z. Huang, Q.Y. Chen, Q.L. Zheng, Nano adamantane-conjugated BODIPY for lipase affinity and light driven antibacte-
rial. Spectrochim Acta A Biomol. Spectros. **234**, 118252 (2020). https://doi.org/10.1016/j.saa.2020.118252

19. T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical applications. Drug Deliv. Rev. **65**, 36–48 (2013)

20. H.R. Jia, Y.X. Zhu, Z. Chen, F.G. Wu, Cholesterol-assisted bacter-
ial cell surface engineering for photodynamic inactivation of gram-positive and gram-negative bacteria. ACS Appl. Mater. Interfaces **9**, 15943–15951 (2017). https://doi.org/10.1021/acsami.7b02562

21. J.M. Hendersona, N.S. Iyengara, K.L.H. Lamb, E. Maldonadoa, T. Suwattheea, I. Royc, A.J. Waringd, K.Y.C. Lee, Beyond electro-
statics: antimicrobial peptide selectivity and the influence of cholesterol-mediated fluidity and lipid chain length on protegrin-1 activity. BBA Biomembrane **1861**, 182977 (2019). https://doi.org/10.1016/j.bbamem.2019.04.011

22. S. Mathew, M.R. Johnston, The synthesis and characterization of a free-base porphyrin–perylene dyad that exhibits electronic coupling in both the ground and excited states. Chem. Eur. J. **15**, 248–225 (2009). https://doi.org/10.1002/chem.200801779

23. M.D. Hartle, M.R. Tillotson, J.S. Prell, M.D. Pluth, Spectro-
scopic investigation of the reaction of metallo-protoporphyrins with hydrogen sulfide. J. Inorg. Biochem. **173**, 152–157 (2017). https://doi.org/10.1016/j.jinorgbio.2017.04.021

24. T. Hashimoto, Y.K. Choe, H. Nakano, K. Hirao, Theoretical study of the Q and B bands of free-base, magnesium, and zinc porphy-
rins, and their derivatives. J. Phys. Chem. **103**, 1894–1904 (1999). https://doi.org/10.1021/jp984807d

25. W.Y. Mu, R. Yang, R. Akrofi, Q.Y. Chen, A near-infrared BSA coated DNA-AgNCs for cellular imaging. Colloids Surf. B Biointerfaces **162**, 427–431 (2018). https://doi.org/10.1016/j.colsurfb.2017.12.023

26. P.L. Zhang, Z.K. Wang, Q.Y. Chen, X. Du, J. Gao, Biocompati-
bility-G-quadruplex/BODIPY assembly for cancer cell imaging and the attenuation of mitochondria. Bioorg. Med. Chem. Lett. **29**, 1943–1947 (2019). https://doi.org/10.1016/j.bmcl.2019.05.043

27. T.H.S. Souza, J.F. Sarmento-Neto, S.O. Souza, B.L. Raposo, B.P. Silva, C.P.F. Borges, B.S. Santos, P.E.C. Filho, J.S. Rebouças, A. Fontes, Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. J. Photochem. Photobiol. C Photochem. **49**, 100454 (2021). https://doi.org/10.1016/j.jphotochemrev.2021.100454

28. P.R. Judzewitsch, N. Corrigan, E.H.H. Wong, C. Boyer, Photo-
enhanced antimicrobial activity of polymers containing an embed-
ded photosensitiser. Angew. Chem. Int. Ed. **60**, 24248–24256 (2021). https://doi.org/10.1002/anie.202110672

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.