Several immunotoxins are currently in clinical trials or preclinical hybrid proteins that consist of antibody variable fragments. Moxetumomab paseudotox targeting CD22 produces complete and is highly expressed in all MM cells from patients. Because of the restricted expression of BCMA to plasma cells and its role in growth as well as cell survival of MM, the BCMA antigen has been investigated as the targets in various immunotherapeutic strategies. These include antibody-based therapy,\(^9\) chimeric antigen receptor therapy\(^8\) and therapy with BiTEs.\(^10\)

To develop immunotoxins that target BCMA we have generated a panel of monoclonal antibodies (mAbs) by immunizing mice with recombinant BCMA protein using hybridoma technology. We produced hybridomas producing anti-BCMA mAbs as described (Supplementary Materials and Methods). Because BCMA, TACI and BAFFR and BCMA share the same natural ligands, we tested the reactivity of each anti-BCMA mAb with two structurally closely-related TNFRs (TACI or BAFFR) expressed on transfected 293 T cells by flow cytometry (Supplementary Figure S1A) and TNFR:Fc fusion proteins by enzyme-linked immunosorbent assay (Supplementary Figure S1B). Based on this analysis, we selected BM24 and BM306 because they bind to BCMA antigen on the cell surface with high affinity and specificity. The binding affinity (KD) of both mAbs are \(<1 \times 10^{-10}\) M. We cloned the VH and the VL \(-\) oligo primers\(^11\) and used the LR version of the PE indicates.

Multiple myeloma (MM) is a B-cell malignancy that originates in the bone marrow (BM). Although there are FDA-approved antibody-based therapies available for the treatment of some B-cell malignancies, no very effective antibody-based therapy is yet available for MM.\(^6\) The B-cell maturation antigen (BCMA) belongs to the tumor necrosis factor receptor (TNFR) superfamily and is highly expressed in all MM cells from patients.\(^7\) Because of the restricted expression of BCMA to plasma cells and its role in growth as well as cell survival of MM, the BCMA antigen has been investigated as the targets in various immunotherapeutic strategies. These include antibody-based therapy,\(^9\) chimeric antigen receptor therapy\(^8\) and therapy with BiTEs.\(^10\)

To develop immunotoxins that target BCMA we have generated a panel of monoclonal antibodies (mAbs) by immunizing mice with recombinant BCMA protein using hybridoma technology. We produced hybridomas producing anti-BCMA mAbs as described (Supplementary Materials and Methods). Because BCMA, TACI and BAFFR and BCMA share the same natural ligands, we tested the reactivity of each anti-BCMA mAb with two structurally closely-related TNFRs (TACI or BAFFR) expressed on transfected 293 T cells by flow cytometry (Supplementary Figure S1A) and TNFR:Fc fusion proteins by enzyme-linked immunosorbent assay (Supplementary Figure S1B). Based on this analysis, we selected BM24 and BM306 because they bind to BCMA antigen on the cell surface with high affinity and specificity. The binding affinity (KD) of both mAbs are \(<1 \times 10^{-10}\) M. We cloned the VH and the VL \(-\) oligo primers\(^11\) and used the LR version of the PE toxin.\(^12\) A schematic of the Fab-immunotoxin protein and genes

Supplementary Information

Supplementary Information accompanies this paper on the Leukemia website (http://www.nature.com/leu)

Recombinant immunotoxins targeting B-cell maturation antigen are cytotoxic to myeloma cell lines and myeloma cells from patients

Leukemia (2018) **32**, 569–572; doi:10.1038/leu.2017.315

Novel antibody-based therapies for cancer are predictably effective if they can target cancer cells without damaging normal organs.\(^1\) We have developed various recombinant immunotoxins (RITs) against different targets on cancer cell surfaces.\(^2\) RITs are hybrid proteins that consist of antibody variable fragments attached to a truncated portion of *Pseudomonas* Exotoxin A (PE). Several immunotoxins are currently in clinical trials or preclinical development.\(^2\)-\(^4\) We have reported previously that immunotoxin moxetumomab paseudotox targeting CD22 produces complete remissions in many patients with refractory hairy cell leukemia.\(^5\) This agent has recently completed a phase 3 trial. In addition, a RIT that targets mesothelin showed promising clinical responses in patients with chemotherapy-resistant malignant mesothelioma.\(^6\)

Multiple myeloma (MM) is a B-cell malignancy that originates in the bone marrow (BM). Although there are FDA-approved antibody-based therapies available for the treatment of some B-cell malignancies, no very effective antibody-based therapy is yet available for MM.\(^6\) The B-cell maturation antigen (BCMA) belongs to the tumor necrosis factor receptor (TNFR) superfamily and is highly expressed in all MM cells from patients.\(^7\) Because of

REFERENCES

1. Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. *Adv Anat Pathol* 2015; **22**: 29–49.

2. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. *Blood* 2016; **127**: 2375–2390.

3. Lamant L, de Reynies A, Duplitantier MM, Rickman DS, Sabourdy F, Giuriato S et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. *Blood* 2007; **109**: 2156–2164.

4. Iqbal J, Wright G, Wang C, Rosenwald A, Gascoyne RD, Weisenburger DD et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphomas. *Blood* 2014; **123**: 2915–2923.

5. Piva R, Agnelli L, Pellegrino E, Todoerti K, Grosso V, Tamagno I et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. *J Clin Oncol* 2010; **28**: 1583–1590.

6. Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. Stat3 is required for ALK-mediated lymphogenesis and provides a possible therapeutic target. *Nat Med* 2005; **11**: 623–629.

7. Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. *Cancer Cell* 2015; **27**: 516–532.

© 2018 Macmillan Publishers Limited, part of Springer Nature.

Leukemia (2018) **539**–**572**
encoding the immunotoxins is shown (Supplementary Figure S1C and D). After expression and purification, we obtained highly purified RITs for both BM24 and BM306. The corresponding immunotoxins are named LMB38 and LMB70, respectively. A sodium dodecyl sulfate gel showing that the immunotoxins are highly purified is shown (Supplementary Figure S1E).

We tested the cytotoxic activity of LMB38 and LMB70 on BCMA expressing cell lines using a cell proliferation assay (WST-1).
Representative cell-killing curves are shown for LMB70 (Figure 1a) and LMB38 (Supplementary Figure S1F). The IC\textsubscript{50} values are summarized in Table 1. The IC\textsubscript{50} of LMB38 on H929, U266B, JJN3, RPMI-8226, LP-1 and KMS-18 are 1.2, 1.9, 2.5, 6.9, 25 and 55 ng/ml, respectively. Similarly, the IC\textsubscript{50} values for LMB70 on those cell lines are 1.1, 1.9, 2.5, 6.9, 25 and 55 ng/ml, respectively. LMB38 and LMB70 have no activity on Jeko-1 and the HUT-102 cell line that is BCMA negative.

Because WST-1 assays measure both cell growth inhibition and cell death, we measured the cell killing by 3 days incubation with LMB70 for indicated time, washed three times and incubated further with complete media. Three days after seeding, cells were stained with Annexin V PE and 7-ADD and cell viability was analyzed using flow cytometry. Annexin V- and 7AAD-negative cells were considered viable.

To determine whether the apoptosis pathway is induced after exposure of H929 cells to LMB70, we performed western analysis of proteins involved in apoptosis. As shown in Supplementary Figure S2D, the level of Mcl-1 and Bcl-XL was markedly diminished after 6-h exposr of immunotoxin. Also, Caspase 3, 8 and 9 underwent cleavage during the 6-h period. These changes are consistent with rapid induction of apoptosis.

Conflicts of Interest

This study was supported by grants from the National Cancer Institute, National Institutes of Health, Cancer Biology Research, Bethesda, MD, USA; American Cancer Society, and the American Association for Cancer Research, and the T32 Training grants RODS from the National Institute of Health. The remaining authors declare no conflicts of interest.
REFERENCES
1 Scott AM, Allison JP, Wolchok JD. Monoclonal antibodies in cancer therapy. Cancer Immunol Immunother 2012; 12: 14.
2 Pastan I, Hassan R, Fitzgerald DJ, Kreitman RJ. Immunotoxin treatment of cancer. Annu Rev Med 2007; 58: 221–237.
3 Wayne AS, Kreitman RJ, Findley HW, Lew G, Delbrok C, Steinberg SM et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22 positive hematologic malignancies of childhood: pre-clinical studies and Phase I clinical trial. Clin Cancer Res 2010; 16: 1894–1903.
4 Hassan R, Miller AC, Sharon E, Thomas A, Reynolds JC, Ling A et al. Major cancer regressions in mesothelioma after treatment with an anti-mesothelin immunotoxin and immune suppression. Sci Transl Med 2013; 5: 208ra147.
5 Kreitman RJ, Tallman MS, Robak T, Coutre S, Wilson WH, Stetler-Stevenson M et al. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol 2012; 30: 1822–1828.
6 Kumar SK, Lee JH, Lahuerta JI, Morgan G, Richardson PG, Crowley J et al. Risk of progression and survival in multiple myeloma relapsing after therapy with IMiDs and bortezomib: a multicenter international myeloma working group study. Leukemia 2012; 26: 149–157.
7 Laabi Y, Gras MP, Carbonnel F, Brouet J, Berger R, Larsen CI et al. A new gene, BCM, on chromosome 16 is fused to the interleukin 2 gene by a t(4;16)(q26;p113) translocation in a malignant T cell lymphoma. EMBO J 1992; 11: 3897–3904.
8 Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnet A et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood 2014; 123: 3128–3138.
9 Carpenter RD, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res 2013; 19: 2048–2060.
10 Ramadoss NS, Schulman AD, Choi SH, Rodgers DT, Kazane SA, Kim CH et al. An anti-B cell maturation antigen bispecific antibody for multiple myeloma. J Am Chem Soc 2015; 137: 5288–5291.
11 Pastan I, Beers R, Bera TK. Recombinant immunotoxins in the treatment of cancer. Methods Mol Biol 2004; 248: 503–518.
12 Weldon JE, Xiang L, Chertov O, Margulies I, Kreitman RJ, FitzGerald DJ et al. A protease-resistant immunotoxin against CD22 with greatly increased activity against CLL and diminished animal toxicity. Blood 2009; 113: 3792–3800.
13 Miller HJ, Leong T, Khondekar JD, Greipp PR, Gertz MA, Kyle RA. Paclitaxel as the initial treatment of multiple myeloma: an Eastern Cooperative Group Study (E1A93). Am J Clin Oncol 1998; 21: 553–556.
14 Jain T, Dueck AC, Kosirek HE, Ginos BF, Mayo A, Reeder CB et al. Phase II trial of nab-paclitaxel in patients with relapsed or refractory multiple myeloma. Am J Hematol 2016; 91: E504–E505.
15 Alewine C, Xiang L, Yamon T, Niederfellner G, Bosslet K, Pastan I. Efficacy of RG7787, a next-generation mesothelin-targeted immunotoxin, against triple-negative breast and gastric cancers. Mol Cancer Ther 2014; 13: 2653–2661.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

© The Author(s) 2018