The Setting of Road Tunnel Cross Passages Based on Risk Analysis

Shuai Liu¹, Hao Ding*, Yong Pan¹, Li Bin², Wei Li² and Lianghong Lü²

¹China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd., Chongqing, 400067, China
²Long-Huai Expressway Management Center of Guangdong Provincial Nanyue Transportation, Yingde, Guangdong, 513000, China

*Corresponding author’s e-mail: dinghao@cmhk.com

Abstract. Cross passages are critical infrastructure for evacuation and rescue in fire accidents of road tunnels. Reasonable cross channel design is conducive to improving the efficiency of evacuation and rescue. In this paper, a key parameter setting method of highway tunnel cross-passages based on risk assessment is established. Aiming for safe evacuation of people and vehicles in the tunnel, this method is based on risk evaluation and involves comprehensive analysis of the effects of tunnel properties, traffic conditions, cross passage parameters and evacuation guidance measures so as to support the development of an optimum design of cross passages. This paper describes in detail its design approach, parameter determination process and risk evaluation method and taking an actual tunnel as example, demonstrates the process of determining key parameters of tunnel cross passages on the basis of risk evaluation.

1. Introduction

Tunnels are control works in a highway project and have a special semi-closed long structure. In the event of a fire, fumes are hard to disperse, and rescue is difficult, often leading to mass deaths and casualties [1]. For example, the 2014 fire incident in Yanhua Tunnel of Jincheng-Jiyuan Expressway in Shanxi caused 40 deaths and 12 injuries. The 2019 fire incident in Maoliling Tunnel of G15 Shenyang-Haikou Expressway resulted in 5 deaths and 31 injuries. The best first response for a tunnel fire incident is the evacuation and self-rescue of drivers and passengers in the initial stage of the fire, known as the prime time for tunnel emergency rescue. A suitable design of cross passages of the tunnel holds the key to effective utilization of this prime time to make evacuation and rescue more efficient. Cross passages are critical safety facilities to ensure safe evacuation of tunnel occupants and quick arrival at the incident site by first responders. They consist of pedestrian and vehicle cross passages [3-4].

China's current Specifications for Design of Highway Tunnel: Section 1 - Civil Engineering (JTG 3370.1-2018) recommends a spacing of cross passages of 250m which shall not be greater than 350m on the basis of past engineering experience in China and relevant foreign codes. However, it does not give specific calculation and verification methods and its theoretical basis is insufficient. Reported research results mostly focus on the spacing of cross passages using the following method: on the basis of performance-based design philosophy, numerical modeling and comparison of Available Safe Egress Time (ASET) and Required Safe Egress Time (RSET) are used to determine the suitability of cross passage spacing by assessing evacuation safety [5-10]. Current codes and reported research results
suggest tunnel designers and researchers mainly consider the spacing of cross passages. In fact, the angle between vehicle cross passage and main tunnel, the relative location of vehicle cross passage and emergency parking strip, evacuation guidance provisions (such as cross passage indicators and emergency broadcast), etc. also have some effect on evacuation efficiency. However, prior design and research did not take these factors into account when determining cross passage parameters.

This paper introduces the concept of risk evaluation to AHP-based consideration of the influences of tunnel length, number of lanes, traffic flow, pedestrian/vehicle cross passage configuration and other evacuation guidance features on safe evacuation of people and vehicles so as to determine suitable key parameters for cross passages.

2. Setting of Road Tunnel Cross Passages Based on Risk Analysis

2.1. Idea on determining key parameters of cross passages
Key parameters of cross passages include spacing and width of cross passages, the angle between vehicle cross passage and main tunnel, the relative location of vehicle cross passage and emergency parking strip, and evacuation guidance provisions (such as cross passage indicators and emergency broadcast) in the event of an emergency. During design of cross passages, the comprehensive risk level of cross passages shall be considered in addition to individual parameters meeting specification requirements. Consequently, the basic idea of determining cross passage key parameters is to preliminarily determine relevant parameters of cross passages based on tunnel basic information in accordance with design code requirements, then evaluate safety risks of people and vehicle evacuation using risk evaluation method, and finally adjust relevant parameter based on risk evaluation results to finalize key parameters of cross passages.

2.2. Procedures for determining key parameters
Key parameters of tunnel cross passages can be determined in 4 steps: collect basic data on the tunnel; preliminarily determine design parameters of cross passages; evaluate safety risks of tunnel evacuation; and analyze risk evaluation results. The flowchart is given in Fig. 1.

1. Collect and organize tunnel related data
Collect and organize basic data on the tunnel including tunnel length, number of lanes, traffic volume and types of vehicles by means of data access, field measurement, calculation, Q&A and informal discussions.

2. Preliminarily determine design parameters of cross passages
Preliminarily determine design parameters of cross passages including spacing and width, the angle between vehicle cross passage and main tunnel and configuration of tunnel evacuation guidance facilities, in accordance with applicable specification requirements on the basis of basic information on the tunnel.

3. Evaluate safety risks of tunnel evacuation
Aiming for safe evacuation, perform risk evaluation on the preliminary design scheme for the tunnel to determine preliminary evacuation risk level.

4. Analyze risk evaluation results
Analyze risk evaluation results. If the risk level is acceptable then the preliminary design scheme meets safety requirements. If the risk level is unacceptable then the scheme is adjusted according to contribution of each risk factor and re-evaluated until the risk level is acceptable.
3. Risk Evaluation Method for Road Tunnel Evacuation

3.1. Establishment of assessment indicator system

An assessment indicator system is the basis for risk evaluation. Tunnel safety assessment systems in prior work mainly generalize and classify risks in tunnel basic information, traffic conditions, civil structure, E&M system, management system and organization and operating environment. Overall, each of these assessment indicator systems has its own advantages and disadvantages and focuses on different aspects depending on assessment goal or emphasis.

In this study, the tunnel evacuation safety risk assessment system is considered in 3 aspects: tunnel traffic conditions, tunnel evacuation conditions and evacuation guidance features. Tunnel traffic conditions dictate the number of people and vehicles to be evacuated in the tunnel. The specific assessment indicators include traffic volume, traffic mix and passage of hazardous chemicals. Tunnel evacuation conditions dictate the inherent evacuation capacity of the tunnel including tunnel basic information such as tunnel length and number of lanes; configuration of pedestrian cross passages such as spacing and width; configuration of vehicle cross passages such as spacing, width, the angle between vehicle cross passage and main tunnel and its location with regard to emergency parking strip and the presence or absence of ear-shaped cavity for personnel evacuation. Tunnel evacuation guidance features dictate utilization of tunnel evacuation facilities including cross passage indication signs, evacuation indication signs and emergency broadcast.

To sum up, according to the purpose and principle of establishing the assessment indicator system a tunnel evacuation safety risk evaluation system is established in 5 aspects: tunnel information, traffic conditions, pedestrian cross passages, vehicle cross passages and evacuation guidance, as shown in Fig. 2.
3.2. Determination method for indicator weight

In order to determine assignment of weight to indicators, analytic hierarchy process (AHP) is used in this study to perform analysis and well-known experts in the industry are asked to complete questionnaires for survey. Specific steps of AHP are as follows:

(1) Build a hierarchical structure model

First, build a hierarchical structure model that consists of three layers - target layer, criterion layer and indicator layer, as detailed below:

1) Target layer
 Evacuation safety for road tunnel is denoted by U.

2) Criterion layer
 $U = \{ \text{tunnel basic information } U_1, \text{ traffic conditions } U_2, \text{ pedestrian cross passage } U_3, \text{ vehicle cross passage } U_4, \text{ evacuation guidance } U_5 \}$

3) Indicator layer
 Tunnel basic information $U_1 = \{ \text{tunnel length } U_{11}, \text{ number of lanes } U_{12} \}$;
 Traffic conditions $U_2 = \{ \text{traffic volume } U_{21}, \text{ Proportion of large vehicles } U_{22}, \text{ Proportion of hazardous goods vehicles } U_{23} \}$;
 Pedestrian cross passage $U_3 = \{ \text{spacing and width of cross passages } U_{31}, \text{ cross passage indication sign } U_{32} \}$;
 Vehicle cross passage $U_4 = \{ \text{spacing and width of cross passages } U_{41}, \text{ angle between vehicle cross passage and main tunnel } U_{42}, \text{ location of vehicle cross passage with regard to emergency parking strip } U_{43}, \text{ ear-shaped cavity for people evacuation } U_{44} \}$;
 Evacuation guidance $U_5 = \{ \text{evacuation indication sign } U_{51}, \text{ emergency broadcast } U_{52} \}$.

(2) Create assessment matrix

According to the subordination relationship between upper and lower layers as established by the hierarchical structure, Expert Investigation Method is used to compare the importance of lower layer indicators relative to upper layer indicators and create assessment matrices in conjunction with T. L. Satty scales 1-9 (as defined in Table 1). This converts qualitative assessment to quantitative result. Values of elements in the assessment matrix directly reflect relative importance of factors. For example, U_i is influenced by $U_{k1}, U_{k2} \text{ and } U_{k3}, ..., U_{k n}$ in the lower layer. Two factors U_{ki} and U_{kj} are taken for comparison each time. a_{ij} denotes the ratio between relative importance of U_{ki} and U_{kj} to U_k. Thus the assessment matrix created is as shown in Table 2.
Table 1. Assessment matrix scale and meaning

Scale	Meaning
1	Two factors are equally important.
3	One factor is slightly more important than the other one.
5	One factor is apparently more important than the other one.
7	One factor is significantly more important than the other one.
9	One factor is extremely more important than the other one.
2, 4, 6, 8	Medians between the above adjacent scales

Table 2. Assessment matrix

U_k	U_{k1}	U_{k2}	...	U_{kn}
U_{k1}	a_{11}	a_{12}	...	a_{1n}
U_{k2}	a_{21}	a_{22}	...	a_{2n}
...
U_{kn}	a_{n1}	a_{n2}	...	a_{nn}

$$ A = \begin{pmatrix} a_{11} & \ldots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \ldots & a_{nn} \end{pmatrix} = A \left(a_{ij} \right)_{n \times n} $$

$$ a_{ij} > 0, a_{ij} = \frac{1}{a_{ji}}, a_{ii} = 1 (i, j = 1, 2, 3, \ldots, n) $$

(3) Calculation of relative weight

After creating the assessment matrix A for U_{ki} importance relative to U_{kj} under criterion U_k using the above method, maximum characteristic value of the matrix and its corresponding characteristic vector are calculated.

$$ AW = \lambda_{max} W $$

Thus maximum characteristic value λ_{max} and the corresponding characteristic vector $W = (W_1, W_2, \ldots, W_n)^T$ are obtained. If the matrix is determined to meet consistency requirements, then through normalization processing $\omega = (\omega_1, \omega_2, \ldots, \omega_n)^T$ is derived as the weight coefficient of U_{ki} under criterion U_k.

(4) Check the consistency of assessment matrix

Because people's understanding of complex and diversified objective things is subjective, the assessor cannot give the accurate value of a_{ij} but only can give an estimated value. This cannot ensure the consistency of the assessment matrix, so it is necessary to check the consistency of the assessment matrix. Consequently, consistency check is required to identify any potential conflict between indicator weights. The steps are given below:

1) Calculate consistency indicator CI

$$ CI = \frac{\lambda_{max} - n}{n - 1} $$

where n is the order of the assessment matrix.

2) Look up the corresponding mean stochastic consistency indicator RI. The mean stochastic consistency indicator is obtained from Table 3.
Table 3. Values of mean stochastic consistency indicator

n	2	3	4	5	6	7	8	9
RI	0	0.58	0.90	1.12	1.24	1.32	1.41	1.45

3) Calculate consistency ratio CR

$$CR = \frac{CI}{RI}$$

If $CR < 0.10$ then the matrix meets the consistency requirement; otherwise the consistency value of the matrix needs adjustment.

(5) Weight calculation of evacuation safety indicators for road tunnels

To ensure the scientificity of expert investigation results, 15 leading experts in the industry were invited to score indicators in the hierarchical structure model; and weighted arithmetic mean values of the score results were derived to obtain the final indicator weight. The calculation results are given in Table 4.

Table 4. Indicator weight calculation results

Criterion layer	Weight coefficient	Indicator layer	Comprehensive weight coefficient
Tunnel basic information	0.059	Tunnel length U_{11}	0.033
		Number of lanes U_{12}	0.027
Traffic conditions	0.319	Traffic volume U_{21}	0.082
		Proportion of large vehicles U_{22}	0.093
		Proportion of hazardous goods vehicles U_{23}	0.143
Pedestrian cross passage	0.267	Spacing and width of pedestrian cross passages U_{31}	0.098
		Pedestrian cross passage indication sign U_{32}	0.169
Vehicle cross passage	0.089	Spacing and width of vehicle cross passages U_{41}	0.039
		Angle between vehicle cross passage and main tunnel U_{42}	0.011
		Location of vehicle cross passages with regard to emergency parking strip U_{43}	0.012
		Ear-shaped cavity for people evacuation in vehicle cross passage U_{44}	0.027
Evacuation guidance	0.266	Evacuation signs U_{51}	0.129
		Emergency broadcast U_{52}	0.137

3.3. Assessment indicator risk score

Assessment of individual factors in the indicator layer is the basis for comprehensive evacuation safety risk evaluation for road tunnels. On the basis of summarizing research results, this paper gives indicator risk scores as follows.

(1) Tunnel basic information

A longer tunnel means a longer evacuation distance to outside the tunnel for people and vehicles and more difficult evacuation, hence higher risk. For a unidirectional tunnel, more lanes mean safer vehicle operation, i.e. the larger the number of lanes, the safer vehicles are operated and the lower the probability of an incident. In addition, with the same volumes of traffic, more lanes afford more space for evacuation, especially when vehicle evacuation is needed. more lanes are more beneficial to vehicle evacuation. Risk scores of tunnel information are presented in Table 5.
Table 5. Risk scores of tunnel basic information

Assessment indicator	Assessment criteria	Risk score
Tunnel length U_{11} (m)	$L \leq 1000$	20
$1500 \leq L > 1000$	40	
$3000 \leq L > 1500$	60	
$5000 \leq L > 3000$	80	
$L > 5000$	100	
Single-tube two-lane	100	
Two lanes	80	
Three lanes	60	
Four or more lanes	40	

Number of lanes U_{12}

Assessment criteria	Risk score
Single-tube two-lane	100
Two lanes	80
Three lanes	60
Four or more lanes	40

(2) Traffic conditions

In the event of a fire or leakage of hazardous goods, higher Annual Average Daily Traffic (AADT) means more potential casualties and more difficult evacuation. The impact of traffic mix on tunnel evacuation is mainly due to large vehicles especially large trucks. With an increasing proportion or number of trucks, the probability of serious fire incidents increases. Serious incidents may result from improper treatment by field personnel at the tunnel or improper measures taken by tunnel operators. A traffic accident involving hazardous goods vehicles may result in serious disasters due to explosion, combustion and leakage of toxic gas. Consequently, the proportion of hazardous goods vehicles in the vehicles passing through the tunnel has a significant influence on the probability of risk and severity of consequences. The assessment criteria are shown in Table 6.

Table 6. Risk scores of traffic condition indicators

Assessment indicator	Assessment criteria	Risk score
AADT U_{21} (unit: vehicles/day)	$0 < T_v \leq 2000$	0
$2000 < T_v \leq 4000$	10	
$4000 < T_v \leq 8000$	30	
$8000 < T_v \leq 12000$	50	
$12000 < T_v \leq 20000$	70	
$20000 < T_v \leq 40000$	90	
$40000 < T_v$	100	
Proportion of large vehicles U_{22} (unit: %)	$0 < T_l \leq 0.1\%$	0
$0.1 < T_l \leq 5\%$	10	
$5\% < T_l \leq 10\%$	30	
$10\% < T_l \leq 15\%$	50	
$15\% < T_l \leq 20\%$	70	
$20\% < T_l \leq 30\%$	90	
$30\% < T_l$	100	

Proportion of hazardous goods vehicles U_{23} (unit: %)	$0 < T_g \leq 0.1\%$	0
$0.1 < T_g \leq 0.5\%$	10	
$0.5\% < T_g \leq 1\%$	30	
$1\% < T_g \leq 3\%$	50	
$3\% < T_g \leq 4\%$	70	
$4\% < T_g \leq 5\%$	90	
$5\% < T_g$	100	

(3) Pedestrian cross passage

More closely spaced cross passages mean smaller evacuation distance and less time needed for evacuation. More prominent indication signs of cross passages are more beneficial to people evacuation, thus assisting with self-rescue in the event of a tunnel fire. Table 7 gives the risk scores of pedestrian cross passage indicators.
Table 7. Risk scores of pedestrian cross passage indicators

Assessment indicator	Assessment criteria	Risk score
Spacing of cross passages U_{31} (m)	$L \leq 200$	60
	$200 < L \leq 250$	70
	$250 < L \leq 300$	80
	$300 < L \leq 350$	90
	$L > 350$	100
Cross passage indication sign U_{32}	Enlarged cross passage wall painted sign + LED strobe guidance light + conventional electro-optic indication sign for pedestrian cross passage	60
	LED strobe guidance light + conventional electro-optic indication sign for pedestrian cross passage	70
	Enlarged cross passage wall painted sign + conventional electro-optic indication sign for pedestrian cross passage	80
	conventional electro-optic indication sign for pedestrian cross passage	90
	Without indication signs	100

(4) Vehicle cross passage

The main purpose of vehicle cross passages is to allow rescue vehicles to rapidly arrive at the incident site in the tunnel from the adjacent incident-free tunnel or to allow obstructed vehicles to evacuate after the fire has been put out. A smaller spacing of these cross passages is more beneficial to rescue. A smaller angle between vehicle cross passage and main tunnel is more beneficial to movement of rescue vehicles. Suitably located vehicle cross passages relative to emergency parking strips can assist with vehicle movement especially for a two-lane tunnel. Providing an ear-shaped cavity for people evacuation at the fire resisting shutter of the vehicle cross passage can aid in safe evacuation of people and prevent fire smoke spreading to non-incident tunnel from the incident tunnel. Table 8 gives the risk scores of vehicle cross passage indicators.

Table 8. Risk scores of vehicle cross passage indicators

Assessment indicator	Assessment criteria	Risk score
Spacing of cross passages U_{41} (m)	$L \leq 750$	60
	$750 < L \leq 800$	70
	$800 < L \leq 900$	80
	$900 < L \leq 1000$	90
	$L > 1000$	100
Angle between vehicle cross passage and main tunnel U_{42}	45°	50
	60°	60
	90°	100
Location of vehicle cross passages with regard to emergency parking strip U_{43}	End wall of emergency parking strip aligned with the center of vehicle cross passage	70
	End wall of emergency parking strip ≤ 5m from the center of vehicle cross passage	80
	The center of emergency parking strip aligned with the center of vehicle cross passage	90
	End wall of emergency parking strip > 5m from the center of vehicle cross passage	100
Ear-shaped cavity for people evacuation at the vehicle cross passage U_{44}	Yes	60
	No	100
9

(12) Evacuation guidance

Sound evacuation guidance features have a significant influence on people evacuation safety in the event of a tunnel fire. Inadequate guidance features may lead to the following problems: (1) blocked people may stop to wait or even become onlookers at the incident scene; (2) blocked people far from the incident scene do not know what happened ahead and how to react correctly; (3) evacuees may be unaware of the location or even the existence of nearby emergency exit. Table 9 gives the score criteria for evacuation guidance indicators.

Table 9. Risk scores of evacuation guidance indicators

Assessment indicator	Assessment criteria	Risk score
Evacuation signs U_{51}	Yes, and the signs are clear.	60
	Yes, but the signs are not clear enough.	80
	No.	100
Emergency broadcast U_{52}	Yes, and the directions are clear.	60
	Yes, but the directions are not clear enough.	80
	No.	100

3.4.1.4 Comprehensive risk level and calculation method

(1) Comprehensive risk level

The assessed risk level of road tunnel evacuation safety M is defined as a number ranging from 0 to 100. In this paper the safety level of road tunnels is divided into 5 classes, as shown in Table 10.

Table 10. Risk level classification for road tunnel evacuation safety

Tunnel evacuation risk level	I	II	III	IV	V
Assessment risk	Extremely low risk	Low risk	General risk	High risk	Extremely high risk
Risk score M	$M<60$	$60 \leq M < 70$	$70 \leq M < 80$	$80 \leq M < 90$	$90 \leq M$

(2) Comprehensive risk calculation method

In this paper the tunnel evacuation safety risk score is obtained by weighted sum method, i.e. deriving a comprehensive assessed value through weighted sum of factors in the indicator layer. The calculation method is as follows:

$$M = \sum_{i}^{n} \omega_i U_i$$

where n is the number of factors in the indicator layer; ω_i is the weight of each factor in the indicator layer as given in Table 4; U_i is the risk score of each factor as calculated per Section 3.3.

4. Case Study

4.1. Project overview

An expressway tunnel is 6492/6482.63m long with unidirectional two lanes in each of the two tubes. The design speed is 100km/h. According to construction drawing design documents, its forecast traffic volume and traffic mix are shown in Tables 11-12. Pedestrian cross passages are perpendicular to main tunnel and spaced 300m apart; vehicle cross passages form an angle of about 60° with main tunnel (left and right tubes) and are spaced 895m apart at maximum; the end wall of emergency parking strips is 5m from the center of vehicle cross passage.
Table 11. Forecast traffic volume through the tunnel

Design target year	2025	2038
Daily traffic volume	23100	45959
Peak hourly volume	1142	2271

Table 12. List of types of vehicles

Year	Small truck	Medium truck	Large truck	Trailer	Minibus	Large bus
2025	13.3%	13.23%	20.43%	15.36%	27.51%	10.17%
2038	10.49%	10.06%	21.57%	16.35%	30.48%	11.05%

4.2. Risk analysis

According to tunnel data and assessment criteria, individual indicator risks and comprehensive risks of tunnel evacuation safety are determined as shown in the table below:

Table 13. Risk scores of individual indicators

Risk assessment indicator	Indicator weight	Risk score of individual indicator
Tunnel length	0.033	100
Number of lanes	0.027	80
Traffic volume	0.082	90
Traffic composition	0.093	100
Passage of hazardous chemicals	0.143	50
Spacing and width of pedestrian cross passages	0.098	80
Pedestrian cross passage indication sign	0.169	90
Spacing and width of vehicle cross passages	0.039	80
Angle between vehicle cross passage and main tunnel	0.011	60
Location of vehicle cross passages with regard to emergency parking strip	0.012	80
Ear-shaped cavity for people evacuation in vehicle cross passage	0.027	100
Evacuation signs	0.129	60
Emergency broadcast	0.137	60
Comprehensive risk		**75.74**

Thus, comprehensive risk score of the tunnel evacuation safety is 75.74. According to the risk level classification criteria, the tunnel evacuation safety risk is Class III, meaning general risk.

4.3. Optimization of design scheme

From individual indicator risk scores it can be seen that the risk scores of spacing of pedestrian cross channels, cross passage indication sign and ear-shaped cavity for people evacuation in vehicle cross passage are high. Therefore, the design scheme can be optimized by targeting these 3 aspects as follows: adjust the spacing of pedestrian cross passages to 250m; add enlarged cross passage wall painted sign + LED strobe guidance light; and add ear-shaped cavity for people evacuation at the vehicle cross passages. After optimization, the tunnel evacuation safety risk is re-evaluated to derive a comprehensive risk score of 68.61 which means Class II risk (low risk).
5. Conclusions
This paper presents a risk evaluation based configuration method for cross passages of a road tunnel. Aiming for safe evacuation of people and vehicles in the tunnel, this method is based on risk evaluation and involves comprehensive analysis of the effects of tunnel properties, traffic conditions, cross passage parameters and evacuation guidance measures so as to support the development of an optimum design of cross passages. This paper describes in detail its design approach, parameter determination process and risk evaluation method and taking an actual tunnel as example, demonstrates the process of determining key parameters of tunnel cross passages on the basis of risk evaluation.

Acknowledgments
The authors appreciate the funding of National Key Research and Development Program of China (Grant no. 2018YFC0809600, 2018YFC0809603).

References
[1] Ren, B. (2014) Study on cross passage interval of bigger Single-hole highway tunnel. (Master's thesis) Chang'an University, Xi'an, China.
[2] An, Y.L., Peng, L.M., Yang, G.S. (2007) A research on cross passage spacing and car spacing in an extra-long highway tunnel[J]. Journal of Catastrophology, 22(2):128-136.
[3] Yao, C.P. (2008). Risk-based design research of escape channels in shanghai Yangtze River tunnel. (Master's thesis) Tongji University, Shanghai, China.
[4] Yang, G.S., Peng, L.M., An, Y.L. (2007). Study on spacing between vehicles and passages of road tunnel[J]. Journal of Central South University (Science and Technology), 38(2):362-367.
[5] Fan, L. (2007). Study on highway tunnel fire impacts on the cross passage interval. (Master's thesis) Southwest Jiaotong University, Chengdu, China.
[6] Wang, C.X. (2015) Analysis of multi-lane expressway tunnel transverse-hole evacuation safety[J]. Journal of Highway and Transportation Research and Development, 32(11):100-106.
[7] Yang, G.S., Peng, L.M., Peng, J.G., Zhang, J.H. (2007). A study on cross passage interval of super long tunnel from viewpoint of people's safe escape[J]. Highway, No.1:191-196.
[8] Zhang, H., Sun, J. C., Liu, X. C., Tu, P. (2018). Investigation and analysis on the setting of cross passage and auxiliary passage in extra-long highway tunnel[J]. Procedia Engineering, 211:659-667.
[9] Han, X., Cong, B.H., Wu, X. M. (2011) Simulation analysis on smoke characteristics of tunnel fire with different cross passage interval. Advanced Materials Research, 271-273, 1003-1008.
[10] Han, X., Cong, B.H. (2010) Performance-Based Fire Protection Design Method for Large Cross-Section Road Tunnel. 2010 International Conference on Optoelectronics and Image Processing, Haikou, 116-119.