RESEARCH PAPER

Mass testing after a single suspected or confirmed case of COVID-19 in London care homes, April–May 2020: implications for policy and practice

Suzanne Tang1, Marina Sanchez Perez1, Maria Saavedra-Campos2, Karthik Paranthaman2, Richard Myers3, Jonathan Fok1, Emma Crawley-Boevey1, Kate Dun-Campbell1, Roshni Janarthanan1, Elena Fernandez1, Amoolya Vusirikala1, Bharat Patel1, Thomas Ma2, Zahin Amin-Chowdhury4, Nandini Shetty5, Maria Zambon5, Anita Bell1, Edward Wynne-Evans1,6, Yimmy Chow1, Shamez Ladhani4,7

1London Health Protection Team, National Infection Service, Public Health England, London, UK
2Field Service, National Infection Service, Public Health England, London, UK
3Bioinformatics Unit, Public Health England, London, UK
4Immunisation and Countermeasures Division, Public Health England, London, UK
5Virus Reference Department, Public Health England, London, UK
6Joint Biosecurity Centre, London, UK
7Paediatric Infectious Diseases Research Group, St. George’s University of London, London, UK

Address correspondence to: Suzanne Tang, Public Health England, Skipton House, 80 London Road, London SE1 6LH, UK.
Email: suzanne.tang@nhs.net

Abstract

Introduction: Previous investigations have identified high rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among residents and staff in care homes reporting an outbreak of coronavirus disease 2019 (COVID-19). We investigated care homes reporting a single suspected or confirmed case to assess whether early mass testing might reduce risk of transmission during the peak of the pandemic in London.

Methods: Between 18 and 27 April 2020, residents and staff in care homes reporting a single case of COVID-19 to Public Health England had a nasal swab to test for SARS-CoV-2 infection by reverse transcription polymerase chain reaction and subsequent whole-genome sequencing. Residents and staff in two care homes were re-tested 8 days later.

Results: Four care homes were investigated. SARS-CoV-2 positivity was 20% (65/333) overall, ranging between 3 and 59%. Among residents, positivity ranged between 3 and 76% compared with 3 and 40% in staff. Half of the SARS-CoV-2-positive residents (23/46, 50%) and 63% of staff (12/19) reported symptoms within 14 days before or after testing. Repeat testing 8 days later in two care homes with the highest infection rates identified only two new cases. Genomic analysis demonstrated a small number of introduction of the virus into care homes, and distinct clusters within three of the care homes.

Conclusions: We found extensive but variable rates of SARS-CoV-2 infection among residents and staff in care homes reporting a single case of COVID-19. Although routine whole-home testing has now been adopted into practice, care homes must remain vigilant and should be encouraged to report a single suspected case, which should trigger appropriate outbreak control measures.

Keywords: SARS-CoV-2, COVID-19, care home, long-term care facility, mass testing, older people
Key Points

- Mass testing showed extensive but variable rates of SARS-CoV-2 infection in care homes reporting a single case.
- Rapid reinforcement of infection prevention and control measures can mitigate further transmission of SARS-CoV-2 in care homes.
- A single suspected or confirmed case of SARS-CoV-2 in a care home should trigger mass testing regardless of symptoms.
- Genomic analysis suggests silent transmission of SARS-CoV-2 in care homes following a small number of introduction of the virus.
- Almost half of SARS-CoV-2-positive care home residents and staff did not develop symptoms during the surveillance period.

Introduction

Outbreaks of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in care homes have devastating consequences for residents [1–4]. Age, multimorbidity, disability, cognitive impairment and frailty make care home residents at higher risk of becoming infected with and dying from coronavirus disease 2019 (COVID-19) [5–7]. Non-specific and atypical presentations of COVID-19, especially in older adults with dementia and neurological conditions, can hinder early identification of cases [4, 5, 8–10], leading to delays in isolation of positive cases and reinforcement of stringent infection prevention and control (IPC) measures, and potentially allowing for rapid and extensive spread of SARS-CoV-2 within the care homes.

In the United Kingdom, imported cases of SARS-CoV-2 were first detected in late January 2020 followed by sustained community circulation from early March, with London being one of the earliest and most affected cities [11]. Between 2 March and 1 May 2020, the UK Office for National Statistics reported 45,899 deaths of care home residents, of which 27% involved COVID-19 [12]. With ∼400,000 older people living in UK care homes [13], 5,167 out of 15,514 (33%) nursing and residential homes in England had declared an outbreak by 1 May 2020, including 539 homes in London [14].

Early in the 1st wave of the pandemic, little was known about the risk of infection and transmission of SARS-CoV-2 in care homes. Following the large number of outbreaks in care homes reported to Public Health England (PHE), enhanced outbreak investigations were initiated. In the 1st phase of the investigations conducted during 10–13 April 2020, we found that by the time an outbreak—defined as at least two suspected cases within 14 days—was reported in a care home, almost half the residents and a fifth of staff had already been infected with SARS-CoV-2, most of whom were asymptomatic at the time of testing [15]. We therefore hypothesised that mass testing of residents and staff after a single case of SARS-CoV-2 in a care home might allow early identification and isolation of infected individuals and, together with rapid reinforcement of IPC measures, could potentially prevent further spread of the virus within the care home. Phase two of the London care home investigations, therefore, aimed to assess incidence, symptom status and transmission of SARS-CoV-2 through mass testing of staff and residents in care homes reporting a single suspected or confirmed case, with repeat testing 1 week later.

Methods

Recruitment

At the start of the COVID-19 pandemic in England, care homes were asked to report suspected or confirmed outbreaks (defined as two or more cases) to PHE for further management. A suspected case was defined as any individual who developed COVID-19 symptoms (fever or cough as per national guidance at the time). Between 18 and 27 April 2020, we prospectively recruited all London care homes with a minimum of 30 residents reporting a single case of suspected or confirmed SARS-CoV-2 infection in a resident or staff member to PHE for further management. We contacted the care home managers to confirm that they did only have a single suspected or confirmed case since the start of the pandemic and were willing to undertake serial testing for their residents and staff. Care home managers provided consent for participation in the surveillance.

IPC advice

Upon reporting, care homes received expert advice and support, including testing for SARS-CoV-2 infection and recommendations on appropriate IPC measures to minimise transmission in line with national guidance [16]. Once enrolled, care homes were contacted regularly by phone by a member of the PHE investigation team, who provided IPC advice, shared relevant guidance, answered queries and supported managers in the appropriate implementation of all IPC measures (Supplementary Table S1).

Testing

Two rounds of mass testing were undertaken in the recruited care homes. Nasal swabs were taken from all residents and staff working in the care homes at the time of the 1st round of testing (day 0). The residents and staff were re-tested on day 8 to detect any further transmission of the virus within the care home. In two of the care homes, due to practical considerations, it was not possible to re-test residents on day 8 so only staff was re-tested. Staff members who tested positive for SARS-CoV-2 were re-swabbed every week until...
a negative result was obtained. Following verbal consent from the resident or next-of-kin as appropriate, nasal swabs for residents were taken by trained care staff who received detailed sampling instructions. Staff members (including agency and night staff) were given written information about the investigation and gave their implicit consent to participate by providing self-sampled nasal swabs. Swabs were couriered to the PHE reference laboratory on the day of collection. Nucleic acid was extracted and analysed by a realtime reverse transcription polymerase chain reaction (RT-PCR) assay on an Applied Biosystems 7500 FAST system targeting a conserved region of the open reading frame (ORF1ab) gene of SARS-CoV-2, together with an internal control [17].

Assessment of symptom status and follow-up

Individuals were classified as symptomatic if they reported typical (fever > 37.8°C or new continuous cough) or atypical (new confusion, reduced alertness, fatigue, lethargy, reduced mobility, diarrhoea) COVID-19 symptoms or other non-specific symptoms. Symptom status was collected for staff and residents at the time of testing and in the 2 weeks prior to testing. Daily telephone follow-up was undertaken for 14 days from the date of 1st sampling using a standard data collection proforma to collect details on symptoms, hospitalisation and death. Care home-level data, including administration, facilities, staffing and IPC measures in place were collected using a standardised data collection tool.

Whole-genome sequencing

Whole-genome sequencing (WGS) was performed on all RT-PCR-positive samples. Viral amplicons were sequenced using Illumina library preparation kits (Nextera) and sequenced on Illumina short-read sequencing machines. Raw sequence data was trimmed and aligned against a SARS-CoV-2 reference genome (NC_045512.2). A consensus sequence representing each genome base was derived from the reference alignment. Consensus sequences were assessed for quality, aligned using MAFFT (Multiple Alignment using Fast Fourier Transform, version 7.310), manually curated and maximum likelihood phylogenetic trees derived using IQtree (version 2.04).

Ethics approval

This investigation was undertaken as part of PHE’s role to monitor and manage outbreaks of communicable disease. PHE has legal permission, provided by Regulation 3 of The Health Service (Control of Patient Information) Regulations 2002, to process patient confidential information for national surveillance of communicable diseases.

Results

Descriptive analysis of care homes

Four care homes were recruited for this investigation. Care home D was a mixed residential and nursing home and the other three were residential homes (Table 1). IPC measures in all care homes included enhanced cleaning, closing to visitors, isolating residents in single rooms where possible and restricting use of shared spaces, although these were implemented at different times. Care homes A and D were closed to visitors, restricted shared spaces and isolated residents by the end of March 2020. In contrast, care homes B and C did not implement isolation and restriction of shared spaces until after mid-April.

1st round of sampling (day 0)

Testing took place within 2 days of a care home reporting a single suspected or confirmed case of SARS-CoV-2. Overall, SARS-CoV-2 positivity was 20%, with higher positivity rates in care homes B (31%) and C (59%) compared with care homes A (11%) and D (3%) (Table 2). Among residents, SARS-CoV-2 positivity ranged between 3 and 76% compared with 3 and 40% in staff, with a similar trend of lower positivity rates in care homes A and D. Half of the SARS-CoV-2-positive residents (23/46) and 63% (12/19) of staff reported having symptoms. Of these positive and symptomatic cases, when questioned individually, 13/23 residents and 7/12 staff reported varying symptoms in the 14 days prior to the test, and 10/23 residents and 5/12 staff reported symptoms in the 14 days after the test (Table 2).

Among 268 SARS-CoV-2-negative staff and residents, 10 (4%) reported having symptoms in the 14 days before or after testing, including four residents and six staff members (Table 3).

2nd round of sampling (day 8)

SARS-CoV-2 positivity among residents and staff decreased between the 1st and 2nd rounds of sampling (Table 4). There were only two cases (one resident and one staff in different care homes) who initially tested negative on day 0, but subsequently tested positive on day 8 (Table 4). Of the 19 staff members who tested positive initially, two remained positive at day 8, but both tested negative 1 week later.

Outcomes

There were four hospitalisations during the surveillance period, all in symptomatic residents (4 of 23 symptomatic SARS-CoV-2-positive residents, 17%) of care home C (Table 3). Seven residents died; all were symptomatic and six were SARS-CoV-2 positive (6 of 23 symptomatic SARS-CoV-2-positive residents, 26%). Four deaths occurred in care home C and the other care homes reported one death each.

WGS analysis

In total, 65 positive PCR samples from four care homes were submitted for WGS analysis. Four samples did not yield a genome sequence of sufficient quality (>80% coverage at >10-fold depth).

Phylogenetic analysis of 61 SARS-CoV-2 genomes (Figure 1) identified care home-specific clusters in three of
Table 1. Summary description of the care homes layout, number of residents and staff, type of staff working in each care home and infection control measures at the time of the survey, London, 2020

Care Type home	Layout	Communal areas	Room types	Number of residents	Type of staff	Infection control	Hospital admission in 4 weeks prior to 1st case
A Residential	Three floors	Each unit has a communal lounge and dining area	All single occupancy en-suite rooms	46	Do not employ agency staff, but staff also worked elsewhere. Now asking staff to choose between jobs	23/03/20: Enhanced cleaning and isolating in single rooms where possible; 01/04/20: Closed to admissions and visitors; 14/05/20: Difficulty accessing PPE (especially fluid repellent masks)	No
B Residential	Three floors	Three communal lounges	All single occupancy rooms, only nine en-suite	39	Do not employ agency staff. One employee works in an adult learning difficulty unit too	15/03/20: Closed to visitors (except end-of-life care); 23/03/20: Enhanced cleaning and closed to admissions; 24/04/20: Isolating in single rooms and restricted shared space	Last day visit to hospital on 16/03/20
C Residential	Three floors	Unknown	Two double rooms, the rest single rooms. All en-suite	32	Employed agency staff for the 1st time following COVID-19. One staff member worked in another home, but stopped when suspicion of cases started	23/03/20: Closed to admissions and visitors; 24/04/20: Enhanced cleaning, isolation in single rooms, cohorting and restriction of shared space	No
D Residential and nursing	Unknown	Two nursing units: One residential	All single occupancy en-suite rooms	58	Do not employ agency staff now. Bank nursing staff work elsewhere, but have not returned to the home since lockdown began	16/03/20: Closed to visitors (except end-of-life care); 23/03/20: Enhanced cleaning, isolation in single rooms, restricted shared space and closed to admissions; 24/04/20: Started cohorting	One resident returned on 21/04/20 and isolated

Number of residents present at the care home at the time of the survey may differ from the number of residents tested during the study. This may be due to residents not consenting to testing, residents having died or hospitalised and new residents being admitted.

Table 2. Number of residents and staff by care home that tested positive for SARS-CoV-2 in the 1st round of sampling and whether they reported symptoms in the 14 days prior and the 14 days after testing

Care home	Total SARS-CoV-2 positive (%)	Residents	Staff	Total SARS-CoV-2 positive (%)							
	No. tested	No. SARS-CoV-2 positive	No. SARS-CoV-2 positive and symptomatic	No. tested	No. SARS-CoV-2 positive	No. SARS-CoV-2 positive and symptomatic					
			Symptoms in 14 days before test	Symptoms in 14 days after test	Symptoms in 14 days before test	Symptoms in 14 days after test					
A (n = 81)	9 (11%)	42	7 (17%)	2	0	2 (29%)	39	2 (5%)	0	1	1 (50%)
B (n = 65)	20 (31%)	35	15 (43%)	6	2	8 (53%)	30	5 (17%)	4	0	4 (80%)
C (n = 54)	32 (59%)	29	22 (76%)	3	8	11 (50%)	25	10 (40%)	2	4	6 (60%)
D (n = 133)	4 (3%)	59	2 (3%)	2	0	2 (100%)	74	2 (3%)	1	0	1 (50%)
Total (n = 333)	65 (20%)	165	46 (28%)	23 (50%)	168	19 (11%)	12 (63%)				
Table 3. Characteristics of residents and staff by clinical status, testing results and outcome

	Symptomatic	Asymptomatic	All
Residents			
SARS-CoV-2 positive	23	23	46
Female	17	19	36
Median age in years (IQR)	88 (82–94)	83 (76–92)	86.5 (81–93)
Hospitalised	4	0	4
Died	6	0	6
SARS-CoV-2 negative	4	115	119
Female (%)	2	92	94
Median age in years (IQR)	80 (78–81)	87 (82–91)	87 (81–91)
Hospitalised	0	0	0
Died	1	0	1
Staff			
SARS-CoV-2 positive	12	7	19
Female (%)	12	5	17
Median age in years (IQR)	57 (44–62)	51 (32–52)	51 (40–60)
Hospitalised	0	0	0
Died	0	0	0
SARS-CoV-2 negative	6	143	149
Female (%)	5	114	119
Median age in years (IQR)	58 (50–65)	49 (41–57)	50 (41–58)
Hospitalised	0	0	0
Died	0	0	0

Note that not all the staff and residents tested in both periods are necessarily the same people.

Table 4. Results of the mass swabbing by period of testing in residents and staff by care home, London, 2020

Care home	1st period of testing	2nd period of testing	Number of new positive cases in 2nd period of testing 8 days later					
	Tested	Positive	%	Tested	Positive	%		
A	Residents	42	7	17%	41	3	7%	1
	Staff	39	2	5%	39	0	0	0
B	Residents	35	15	43%	Not tested	Not tested	0	
	Staff	30	5	17%	17	1	6%	0
C	Residents	29	22	76%	Not tested	Not tested	0	
	Staff	25	10	40%	25	2	8%	1
D	Residents	59	2	3%	59	0	0	0
	Staff	74	2	3%	74	0	0	0

Discussion

This investigation found that by the time care homes reported their 1st case of suspected or confirmed SARS-CoV-2 infection during the peak of the pandemic in London, United Kingdom, all four investigated care homes had additional staff and residents who tested positive for SARS-CoV-2 infection, almost half of whom did not report any symptoms in the 14 days before or after the test. Infection rates were highly variable, ranging from 3 to 76% in residents and 3 to 40% in staff. Genomic analysis showed clusters in three of the four care homes, indicating that the virus was already spreading silently within the care home when the 1st suspected case was identified. A 2nd round of mass testing 8 days later found very few additional cases, suggesting that the four care homes, which indicated likely transmission within the care home setting. The majority of genomes from samples in care homes A, B and C formed clusters of highly similar sequences that were largely identical with a maximum of two single-nucleotide polymorphisms (SNPs) different (care home: A—six of nine genomes, B—18 of 19 genomes, C—29 of 31 genomes). These large clusters contained genomes derived from both staff and residents. In all three care homes, there were additional sequences external to the main genomic clusters, which likely represented additional introduction of SARS-CoV-2 into the care home. There were only two genomes identified from care home D, these were only one SNP different from each other. Overall, phylogenetic analysis of this set of genomes did not indicate that there was transmission between the four care homes in this study, at that time.
reinforcement of IPC measures may have mitigated further transmission.

There are now many published reports of care home outbreaks across the globe, demonstrating high rates of SARS-CoV-2 infection and transmission, resulting in high rates of hospitalisation and death, mainly among the older frail residents [4, 6, 10, 18–24]. This information, however, was not available during the early pandemic. In the 1st phase of our care home investigations, we found high rates of SARS-CoV-2 infection among residents and staff in six London care homes reporting a possible outbreak with two or more confirmed or suspected cases of COVID-19 [15]. In that investigation, too, a high case fatality rate was observed among symptomatic SARS-CoV-2-positive residents, demonstrating the vulnerability of this group. Subsequent serological testing in the same London care homes found nearly all SARS-CoV-2-positive and two-thirds of SARS-CoV-2-negative staff and surviving residents had SARS-CoV-2 antibodies, highlighting the true extent of virus spread within these care homes [25].

In order to try and identify outbreaks earlier, we immediately initiated phase two of the investigation to identify care homes reporting a single suspected or confirmed case of SARS-CoV-2. We hypothesised that this would allow early identification and isolation of infected individuals, which along with reinforcement of strict IPC measures would prevent further transmission of the virus and protect the residents and staff. We found evidence for moderate transmission when mass screening was undertaken following a single case, although there was wide variation in the levels of infection detected among residents and staff across the four care homes under investigation. These differences may be due to the care homes being at different stages of their outbreak at the time of initial testing. In care home C, for example, the outbreak continued to evolve, resulting in several hospitalisations and deaths in the 2 weeks after the initial swabbing. Other potential factors may be differences in resident profile, staff occupational risk factors such as working across different care homes [26] or compliance with recommended IPC measures. Of note, care homes B and C, which had higher SARS-CoV-2 infection rates, began isolating residents and restricting the use of shared spaces in late April when directly advised by PHE. This was almost a month later than in care homes A and D, which were more proactive. The difference in control measures in the care homes could explain the findings of genomic analysis, which identified significant clusters in care homes B and C and suggests that following SARS-CoV-2 introduction into the care home, the virus was likely to have spread more extensively in these care homes.

Figure 1. Maximum-likelihood phylogeny of 61 SARS-CoV-2 genomes. Samples were taken from individuals in four care homes (represented by differing colours). Care home staff and residents are shown using different shaped markers. Markers located along a circular line indicate highly similar sequences, forming a cluster. Branch length indicates increasing number of SNPs difference between genomes.1

1 Example. Sequences from care home A (red markers) are located in two distinct parts of the tree image. There is a cluster of six sequences where five sequences are identical and one sequence is one SNP different from those five. The other three care home A sequences are located in a different part of the phylogeny separated by long branches from the initial cluster of six sequences. The length of the branches indicates that these two groups are >10 SNPs apart, and, therefore, it is most likely that they represent separate introduction into the care home. It is unclear but quite possible that the group of three care home A sequences represents two introduction into the care home setting, based on the SNP distance (branch length) between them.
homes with less stringent IPC measures in place. Very few staff members reported working across different care homes, although it is possible they may not have volunteered this information to the care home managers.

The identification of additional cases through mass testing in the 1st round emphasises the importance of maintaining high vigilance in such high-risk settings, given the variable clinical manifestations of SARS-CoV-2, especially in older residents with multiple comorbidities [8–10]. In particular, we found that although these care homes had reported only one suspected or confirmed case, upon further enquiry, a large proportion of residents and staff who tested PCR positive reported having varying symptoms in the 14 days before the test. The reason for this is unclear, but it suggests that often COVID-19 infection may not be considered as a possibility when the presentations are mild or non-specific in both residents and staff, which further delays testing and means that staff may continue to work even if they have symptoms. Our findings also highlight the challenges posed by asymptomatic cases, which have been shown to play an important part in SARS-CoV-2 transmission, especially in institutional settings in care homes [4, 6, 15]. Our investigation found high rates of asymptomatic infection among both residents and staff, which varied by care home from 25 to 67%. The standard practice at the time was for care homes and other institutional settings to report outbreaks with at least two suspected or confirmed cases to PHE, which would initiate additional testing of symptomatic individuals only along with reinforcement of IPC measures. However, a high proportion of asymptomatic cases highlight the limitations of symptom-based surveillance and signals the need for mass testing of all staff and residents to identify and rapidly isolate infected residents and staff.

We conducted repeat testing 1 week after the initial sampling, which identified very few additional SARS-CoV-2 infections, unlike our experience with the other London care home outbreaks, which lasted for many weeks and were associated with large numbers of hospitalisations or deaths [15]. It is likely that early reporting to PHE and the resultant early mass testing increased awareness and vigilance in the care homes and led to rapid identification and isolation of infected asymptomatic residents and staff who may otherwise have been missed. Moreover, the investigation team maintained daily contact with the care homes throughout the surveillance period to reinforce stringent IPC practices and provide outbreak management support.

In keeping with emerging reports of widespread asymptomatic SARS-CoV-2 infections in countries experiencing high rates of SARS-CoV-2 [4, 6, 19–22], the findings of our 1st phase of investigations led to national recommendations for mass testing in care homes experiencing an outbreak. The phase two investigation reported here, however, provided additional unique information on the risk of infection and transmission in care homes reporting a single suspected or confirmed case, which had not been reported elsewhere. This additional insight informed and supported public health authorities to update the UK care home testing strategy in May 2020 and provide whole-home testing for all residents and staff as soon as they identified a single symptomatic case. As testing capacity increased, the UK government announced routine whole-home testing to be implemented weekly for all care home staff and monthly for residents regardless of symptoms, in addition to mass testing in response to a suspected case or outbreak [27].

There are some limitations to this investigation. Due to practical considerations, residents in care homes B and C were not tested during the 2nd period of sampling. It is therefore not possible to determine with certainty that transmission was controlled after the initial testing, although no additional cases or outbreaks were reported in these two care homes. In addition, testing was voluntary and not all the residents and staff were tested on both occasions, although the numbers that were not tested at both time points was low. It was also not possible to independently assess the level and rigour of IPC measures implemented by care homes, and, therefore, it cannot be stated with certainty that these measures were directly responsible for limiting transmission and controlling the spread of infection. Symptom status for staff was self-reported, whereas resident symptoms were reported by their care staff, and both may be subjected to potential recall or recording bias. A further limitation is that due to practical considerations, data on other contributing factors such as comorbidities and frailty were not routinely collected.

An important strength of this study, however, is the high uptake of testing among residents and staff across four care homes. The findings of this study highlight the limited value of symptom-based screening and further underscore the need for timely mass testing to confirm the extent of SARS-CoV-2 infections in care homes and other similar institutional settings.

Our findings indicate that, during periods of continuous community SARS-CoV-2 transmission, care homes are extremely vulnerable to large outbreaks. Although routine whole-home testing has now been adopted into practice across the country, with further roll out of rapid tests using lateral flow devices for staff, care homes must remain vigilant and should be encouraged to report a single case of suspected or confirmed SARS-CoV-2 in a resident, staff or visitor to public health authorities. This should trigger appropriate outbreak control measures, with rapid mass testing, isolation of infected individuals and reinforcement of robust IPC measures.

Supplementary Data: Supplementary data mentioned in the text are available to subscribers in *Age and Ageing* online.

Acknowledgements: The authors thank the care home residents and staff for their ongoing efforts during the response and the staff at PHE London Coronavirus Response Centre, National Infection Service and Infectious Disease Informatics for their support with this research.

Declaration of Conflicts of Interest: None.

Declaration of Sources of Funding: None.
References

1. Lai CC, Wang JH, Wang JH et al. COVID-19 in long-term care facilities: an upcoming threat that cannot be ignored. J Microbiol Immunol Infect 2020; 53: 444–6.
2. European Centre of Communicable Diseases. Surveillance of COVID-19 at Long Term Care Facilities in the EU/EEA. Technical Report [Internet]. Stockholm. 2020. https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-long-term-care-facilities-surveillance-guidance.pdf (25 May 2020, date last accessed).
3. Burki T. England and Wales see 20 000 excess deaths in care homes. Lancet 2020; 395: 1190–1.
4. Graham NSN, Junghans C, Downes R et al. SARS-CoV-2 infection, clinical features and outcome of COVID-19 in nursing homes. J Infect 2020; 81: 411–9.
5. Wang H, Li T, Barbarino P et al. Dementia care during COVID-19. Lancet 2020; 395: 1190–1.
6. McMichael TM, Currie DW, Clark S et al. Epidemiology of COVID-19 in a Long-Term Care Facility in King County, Washington. N Engl J Med 2020; 382: 2005–11.
7. Hewitt J, Carter B, Vilches-Moraga A et al. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health 2020; 5: e444–51.
8. Rawle MJ, Berfield DL, Brill SE. Atypical presentations of COVID-19 in care home residents presenting to secondary care: a UK single centre study. Aging Medicine 2020; 3: 237–44.
9. British Geriatrics Society. COVID-19: Managing the COVID-19 Pandemic in Care Homes for Older People [Internet]. 2020. https://www.bgs.org.uk/resources/covid-19-managing-the-covid-19-pandemic-in-care-homes#_e7dn1 (25 May 2020, date last accessed).
10. Roxby AC, Greninger AL, Hatfield KM et al. Outbreak investigation of COVID-19 among residents and staff of an independent and assisted living community for older adults in Seattle, Washington. JAMA Intern Med 2020; 180: 1101–5.
11. Public Health England [dataset]. National COVID-19 Surveillance Reports [Internet]. 2020. https://www.gov.uk/government/publications/national-covid-19-surveillance-reports (10 July 2020, date last accessed).
12. UK Office for National Statistics [dataset]. Deaths Involving COVID-19 in the Care Sector, England and Wales: Deaths Occurring up to 1 May 2020 and Registered up to 9 May 2020 (Provisional) [Internet]. 2020. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/deathsinvolvingcovid19inthecaresectorenglandandwales/deathsoccurringupto1may2020andregisteredupto9may2020provisional (15 May 2020, date last accessed).
13. Age UK. Later Life in the United Kingdom [Internet]. 2019. https://www.ageuk.org.uk/globalassets/age-uk/documents/reports-and-publications/later_life_uk_factsheet.pdf (30 May 2020, date last accessed).
14. Public Health England [dataset]. COVID-19: Number of Outbreaks in Care Homes – Management Information [Internet]. 2020. https://www.gov.uk/government/statistical-data-sets/covid-19-number-of-outbreaks-in-care-homes-management-information (25 May 2020, date last accessed).
15. Ladhani S, Chow JY, Janarthanan R et al. Investigation of SARS-CoV-2 in 6 care homes in London, April 2020. The London Care Home investigation. EClinicalMedicine 2020; 26: 100533. doi: 10.1016/j.eclinm.2020.100533.
16. UK Department of Health and Social Care. Admission and Care of Patients in a Care Home During COVID-19. [Internet]. 2020. https://www.gov.uk/government/publications/coronavirus-covid-19-admission-and-care-of-people-in-care-homes (9 July 2020, date last accessed).
17. Corman VM, Landt O, Kaiser M et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25: 2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
18. Borras-Bermejo B, Martinez-Gomez X, San Miguel MG et al. Asymptomatic SARS-CoV-2 infection in nursing homes, Barcelona, Spain, April 2020. Emerg Infect Dis 2020; 26: 2281–3.
19. Arons MM, Hatfield KM, Reddy SC et al. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N Engl J Med 2020; 382: 2081–90.
20. Kimball A, Hatfield KM, Arons M et al. Asymptomatic and presymptomatic SARS-CoV-2 infections in residents of a long-term care skilled nursing facility - King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 377–81.
21. Feaster M, Goh YY. High proportion of asymptomatic SARS-CoV-2 infections in 9 long-term care facilities, Pasadena, California, USA, April 2020. Emerg Infect Dis 2020; 26: 2416–9.
22. Ly TA, Zanini D, Laforge V et al. Pattern of SARS-CoV-2 infection among dependent elderly residents living in long-term care facilities in Marseille, France, March–June 2020. Int J Antimicrob Agents 2020; 56: 106219. doi: 10.1016/j.ijantimicag.2020.106219.
23. White EM, Kosar CM, Feifer RA et al. Variation in SARS-CoV-2 prevalence in U.S. skilled nursing facilities. J Am Geriatr Soc 2020; 68: 2167–73.
24. Hatfield KM, Reddy SC, Forsberg K et al. Facility-wide testing for SARS-CoV-2 in nursing homes - seven U.S. jurisdictions, March–June 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 1095–9.
25. Ladhani SN, Jeffery-Smith A, Patel M et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: prospective cohort study, England. EClinicalMedicine 2020; 28: 100597. doi: 10.1016/j.eclinm.2020.10.014.
26. Ladhani SN, Chow JY, Janarthanan R et al. Increased risk of SARS-CoV-2 infection in staff working across different care homes: enhanced COVID-19 outbreak investigations in London care homes. J Infect 2020; 81: 621–4.
27. HM Government. Care Home COVID-19 Testing Guidance: For Testing of Staff and Residents [Internet]. 2021. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950192/Care_Home_Testing_Guidance_England_v06-01_3.pdf (12 January 2021, date last accessed).

Received 21 December 2020; editorial decision 2 February 2021