Synthesis and Ab Initio Determination Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$ Triclinic Structure from Powder X-Ray Diffraction Data

Bimal K. Kanth, Parashuram Mishra*

Bioinorganic, Materials Chemistry Research Lab. Tribhuvan University, M.M.A.M. Campus, Biratnagar, Nepal

DOI: 10.36348/sijcms.2020.v03i06.002 | Received: 18.07.2020 | Accepted: 25.07.2020 | Published: 09.08.2020

*Corresponding author: Parashuram Mishra

Abstract

This paper is examined the synthesis and ab initio structure determination of the heavy metal framework mixed valence Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$ from precession electron diffraction intensities. The metal framework of the compound was solved in this investigation via direct methods from Powder XRD. A subsequent (kinematical) least-squares refinement with electron intensities yielded slightly improved co-ordinates for the 6 heavy atoms in the structure. Chemical analysis of several crystallites by EDX is in agreement with the formula Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$. Moreover, the structure was independently determined by Rietveld refinement from X-ray powder data obtained from a multi-phasic sample. The compound having triclinic crystal system space group P-1 and Centrosymmetry structure with refined lattice parameters a=5.8655, b=4.4099, c=17.6031, α =82.0712, β =88.251 and γ =74.4651. Comparison of the framework structure from electron diffraction with the result from Rietveld refinement shows an average agreement for the heavy atoms within 0.09Å. The titled compound was prepared from mixture of Bi$_2$O$_3$, Zr(NO$_3$)$_4$, and La$_2$O$_3$ by solid state reaction with full thermal decomposition at 1000°C. Rwp = 0.0680, Rp = 0.030 and GOF=0.31 and the structure factors F0 = 2023 and Fc = 2021.

Keywords: Centrosymmetry, X-ray diffraction, EDX, multi-phase, refinement.

© 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

INTRODUCTION

A recent investigation of structural and conductivity properties of Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$oxide and nitride conductors (Bi, La and Zr) which belong to the dimorphic tri clinic structural-type family, has proved a close conductivity composition dependence [1]. This has been interpreted on the basis of structural data obtained from Rietveld structure investigations [2]. The structure is built from cationic slabs parallel to (001) faces of the triclinic cells. N and two oxygen sites are located inside; complementary oxide ions, implied by the formulation stoichiometries, are distributed over one or two sites of the inters lab space and exhibit a high mobility, mainly responsible for the conductivity [3]. Depending on the rare-earth nature, at high-temperature form is observed, with a closely hexagonal related structure; its formation from the b2 low-temperature variety occurs during a phase transition that has been attributed to a cationic disordering in the mixed Bi$_3$~/3~3 layers [3]. It is accompanied by sudden increases of both lattice parameters, of oxide occupancy in inter slab spaces, and of the conductivity. The pure iron oxide conductor character of the variety has been clearly demonstrated for the alkaline-earth-based solid solutions and has been also verified for lanthanides-based solid solutions (unpublished results). The thickness of the cationic slabs, which is the largest for the lanthanum term Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$ (the best oxide conductor ever evidences in this family), appears to be an important factor for these attractive conductivity properties. Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$ a term of a wide Bi1-xLaO1.5 solid solution domain, with 0.154>x0.333, which exhibits anomalies in the evolution of the cell parameters versus composition [5] for one of the particular compositions & Bi$_{1.256}$ La$_{0.53}$ N$_{0.231}$ O$_{0.521}$ Zr$_{1.543}$, a thermal investigation of the quenched to high-temperature form led to evidence of a triclinic crystal system. This paper deals with the ab initio structure determination of this new phase from powder X-ray diffraction data; identification and investigation of the corresponding solid solution, using various techniques such as X-ray diffraction method.
MATERIAL AND METHOD

All chemicals used were analytical grade. A polycrystalline sample of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ was synthesized by a standard solid state reaction using a mixture of high purity reagents of Bi_2O_3, $\text{Zr(NO}_3)_4$ and La_2O_3 which contained mixed valence as the starting materials in the molar ratio of 1:1:1. The mixture was ground carefully, homogenized thoroughly with methanol (99%) in an agate mortar pestle and then packed into an alumina crucible and calcined at 1000°C in air for 30h with several intermediate grindings [6]. Finally, the product was pressed into pellets and sintered at 100 K/h. Powder X-ray diffraction (XRD) data were collected at room temperature in the angular range of 2θ =10 to 90 with scan step width of 0.02° and a fixed containing time of 15 s using Philips powder diffractometer with graphite monochromatic CuKα radiation. The powder was rotated during the data collection to minimize preferred Orientation effect if any. The program TREOR in CRYSFIRE was used to index the powder pattern which give triclinic cell system. SIRPOW92 was used to locate the positional parameters of constituent atoms. The full pattern is fitting and peak decomposition in the space group P-1 using check cell program. The structural parameters were refined by the Rietveld method using the JANA program which gave at 1000°C. $R_{wp} = 0.0680$, $R_p = 0.030$ and $GOF=0.31$ and the structure factors $F_0 = 2023$ and $F_c = 2021$. The density is determined by Archimedes principle.

RESULTS AND DISCUSSIONS

The crystal structure of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ is as shown in figure 7. The zirconium occupies the MO6 position in the perovskite layer. However, the continuous O–La–O chains expected in a simple perovskite is disrupted at every $n = 4$ along the c axis by $[\text{Bi}_2\text{O}_2]^{2+}$ layers. The Zr–N distances range from 1×301(4) to 2×557Å with alternate bonds being long and short to result in a zigzag arrangement of ZrO_3O_7 octahedra [7]. The range of the Zr- N and La–O distances calculated appear to be rather large than those reported in the literature for similar systems. However, more accurate bond lengths have been obtained via neutron diffraction studies for $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ [8]. The differences in ionic radii of Bi, La and Zr ions also appear to influence the tilt and distortion of the ZrO_3O_7 octahedra. The Bi–O distances range from 2×25 Å to 3×31 Å. The structure $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ has three Bi atoms in the asymmetric unit with one of the atoms [Bi(3)] forming the [Bi2O2]2+ layer, while the other two [Bi(1) and Bi(2)] belong to the perovskite layers. Bi (1) and Bi (2) are coordinated to 12 oxygen atoms and Bi(3) is coordinated to 8 oxygens. The structure of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ refined using the Rietveld method in the space group P-I. However, it is noteworthy that earlier reports [10] on thin films of this material demonstrate that it is ferroelectric when grown in specified directions. This suggests the possibility of centrosymmetric arrangements in specific domains in certain crystallographic directions. The occupancy refinements suggest that only in case of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ the Zr cations get localized in the Bi2O2 layers. However, it is hard to ascertain this feature since the scattering factors for X-rays for Bi and Zr are nearly the same. On the other hand, it is clear that in the other two compounds the Bi/Zr cations are distributed in both the ZrO3 octahedra. The range of the Zr- N and La–O distances calculated appear to be rather large than those reported in the literature for similar systems. However, more accurate bond lengths have been obtained via neutron diffraction studies for $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ [8]. The differences in ionic radii of Bi, La and Zr ions also appear to influence the tilt and distortion of the ZrO_3O_7 octahedra. The Bi–O distances range from 2×25 Å to 3×31 Å. The structure $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ has three Bi atoms in the asymmetric unit with one of the atoms [Bi(3)] forming the [Bi2O2]2+ layer, while the other two [Bi(1) and Bi(2)] belong to the perovskite layers. Bi (1) and Bi (2) are coordinated to 12 oxygen atoms and Bi(3) is coordinated to 8 oxygens. The structure of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ refined using the Rietveld method in the space group P-I. However, it is noteworthy that earlier reports [10] on thin films of this material demonstrate that it is ferroelectric when grown in specified directions. This suggests the possibility of centrosymmetric arrangements in specific domains in certain crystallographic directions. The occupancy refinements suggest that only in case of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$ the Zr cations get localized in the Bi2O2 layers. However, it is hard to ascertain this feature since the scattering factors for X-rays for Bi and Zr are nearly the same. On the other hand, it is clear that in the other two compounds the Bi/Zr cations are distributed in both the Bi2O2 and the perovskite layers. Table 2 provides a list of valence bond sums [11] in all these three structures, which indicate a measure of the extent of disorder in these phases. It also compares the tendency of the three oxides to incorporate A type cations in the [Bi2O2] layer and the perovskite layers [12].

Fig-1: Powder XRD spectra of $\text{Bi}_2\text{Zr}_1\text{La}_{0.53}\text{N}_{0.231}\text{O}_{0.521}\text{Zr}_{1.543}$
Crystal structures

High-resolution data set was collected for Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$ on a Philips powder diffractometer utilizing CuKα radiation. The refinement was done using the JANA2006 software. As in the case of Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$, indexing the powder patterns was not straightforward as two sets of Miller indices are possible for the strongest reflections yielding two alternative unit cells which led to close residuals upon LeBail full-pattern decomposition. Subsequent Rietveld refinements clearly ruled out one of these due to intolerably dissimilar La–O distances in the Bi$_2$O$_3$ anion. Final Rietveld refinement plot for Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$ is given in Figure 3; general projection of the Perovskite crystal structure is shown in Figure 2; the refinement results are collected in Tables 1. For Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$ structures was refined from routine XRD data to confirm the same atomic arrangement; these refinements also converged to reasonable R values. Just traces of by-products were present which could not be identified as their estimated content is below 1%.

Fig-2: Rietveld refinement of Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$

Fig-3: Perovskite structure of Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$
Fig. 3: General projection of polyhedron type structure of Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$

Table 1: Crystallographic data after Rietveld refinement

Formula sum	Bi$_{1.256}$La$_{0.53}$N$_{0.231}$O$_{0.521}$Zr$_{1.543}$
Formula weight	488.4 g/mol
Crystal system	Triclinic
Space group	P - 1 (2)
Cell parameters	a=5.0302 Å, b=7.2625 Å, c=8.3400 Å, α=74.3014°, β=84.4133°, γ=74.2675°
Cell ratio	a/b=0.6926, b/c=0.8708, c/a=1.6580
Cell volume	282.23 Å3
Z	2
Calc. density	5.74684 g/cm3
Meas. density	5.7659 g/cm3
Pearson code	aP43
Formula type indexes	N2O4P6Q6R25
Wyckoff sequence	i21f

Table 2: Fraction Atomic parameters

Atom	Ox.	Wyck.	Site	S.O.F.	x/a	y/b	z/c	U [Å2]
Bi1	3	2i	1	-0.00536	0.10643	0.20272	0.0380	
La1	3	2i	1	-0.66940	0.30889	0.87557	0.0380	
La2	3	2i	1	-1.02512	0.57776	0.25255	0.0380	
La3	3	2i	1	-0.41060	0.19881	0.42437	0.0380	
Zr1	4	2i	1	-0.57773	0.24545	0.53666	0.0380	
Zr2	4	2i	1	-0.71116	0.60189	0.18303	0.0380	
Zr3	4	2i	1	-0.76396	0.43947	0.24622	0.0380	
Zr4	4	2i	1	-0.52333	0.34626	0.04873	0.0380	
Zr5	4	2i	1	-0.53518	0.20067	0.76182	0.0380	
Zr6	4	2i	1	-0.67793	0.40350	0.33281	0.0380	
Zr7	4	2i	1	-0.29135	0.17799	0.10042	0.0380	
Zr8	4	2i	1	-0.87047	0.29054	0.28411	0.0380	
Zr9	4	2i	1	-0.53782	0.10083	0.96235	0.0380	
Zr10	4	1f	-1	-1/2	0	1/2	0.0380	
Zr11	4	2i	1	0.30565	-0.01498	0.15334	0.0380	
Zr12	4	2i	1	-0.31980	0.42431	0.49792	0.0380	
Zr13	4	2i	1	0.23623	0.01199	0.35639	0.0380	
O1	2	2i	1	-0.16966	0.22472	0.33583	0.0380	
O2	2	2i	1	-0.11962	-0.09476	0.13916	0.0380	
N1	3	2i	1	-0.88339	0.41703	0.08263	0.0380	
N2	3	2i	1	-0.12394	-0.14891	0.32576	0.0380	
N3	3	2i	1	-0.10011	0.37329	0.09634	0.0380	
Table-3: Selected bond angles

Atom 1	Atom 2	Atom Code 1	Atom Code 2	Bond angle
Bi1	O1	18555011	Zr7	87.657
Bi1	O1	18555011	Zr11	142.246
Bi1	O1	18555011	Zr13	82.017
Bi1	O1	18555011	N3	71.966
Bi1	O1	18555011	O2	124.559
Bi1	O1	18555011	Zr8	55.503
Bi1	O1	18555011	N2	92.567
Bi1	O1	18555011	N1	81.950
La1	Zr7	11555011	Zr11	129.753
La1	Zr7	11555011	Zr13	164.067
La1	N3	22555011	O2	125.363
La1	N3	22555011	Zr8	60.076
N3	N3	22555011	N2	149.571
N3	N3	22555011	N1	28.894
N3	O1	19456021	Zr2	44.622
La2	Zr5	9555011	La2	92.393
La2	Zr5	9555011	O2	68.926
La2	Zr9	13555011	La2	132.607
La2	Zr9	13555011	O2	64.325
La2	Zr9	13555011	Zr2	95.447
La2	Zr9	13550011	N1	100.488
La2	Zr9	13550011	N3	146.472
La2	La2	3366021	N3	66.902
La2	La2	3366021	Zr11	125.495
O2	Zr3	19456021	Zr2	44.622
N3	Zr9	22466021	Zr11	162.579
La3	Zr3	7555011	Zr2	46.610
La3	Zr3	7555011	La1	137.766
La3	Zr3	7555011	N1	51.896
La3	Zr3	7555011	N2	129.414
La3	Zr3	7555011	O2	126.029
La3	Zr3	7555011	N3	75.341
La3	Zr6	2366021	Zr5	36.613
La3	Zr6	10555011	Zr8	47.297
N1	N1	20555011	Zr5	124.474
N2	N2	21465011	O2	39.792
N2	N2	21465011	N3	52.401
N2	N2	21465011	Zr5	55.077
O2	O2	19465011	Zr5	118.897
O2	O2	19465011	Zr2	54.244
N3	N3	22455011	Zr5	99.525
La3	Zr1	5555011	O1	145.411
La3	Zr1	5555011	Zr10	79.278
Zr6	Zr6	10555011	Zr12	78.383
Zr6	Zr6	10555011	Zr13	148.425
Zr1	La1	4555011	Zr6	67.615
Zr1	La1	4555011	Zr10	58.322
Zr1	La1	4555011	Zr10	58.322
N2	N2	21465021	Zr13	96.571
N2	N2	21465021	Zr12	107.508
Zr12	Zr12	16555011	Zr13	90.866
Zr12	Zr12	16555011	Zr12	59.934
Zr12	Zr12	17566021	Zr12	136.453
Zr2	Zr3	7555011	Zr6	30.028
Zr3	Zr3	7550011	La2	56.513
Zr3	Zr3	7550011	Zr6	126.308
O1	O1	4555011	Bi1	155.591
O1	O1	4555011	Zr8	159.757
O1	O1	4555011	N3	131.075
O1	O1	4555011	Zr12	66.452
O1	O1	4555011	Zr13	127.375
O1	O1	4555011	Zr7	95.178
Bi1	Bi1	1555011	Zr8	59.564
Bi1	Bi1	1555011	N3	166.607
N1	N3	22455011	Zr3	117.790
N1	N3	22455011	Zr8	80.646
N1	N3	22455011	Zr4	147.681
N1	N3	22455011	N3	108.028
N1	N3	22455011	N1	69.545
N1	N3	22455011	La2	89.041
N1	N3	22455011	Zr2	135.809
N1	N3	22455011	La1	104.767
N1	N3	22455011	Zr6	117.167
N1	N3	22455011	Bi1	48.004
CONCLUSIONS

In summary, it may be stated that the room temperature crystal structures of three \(n = 4 \) Perovskite types of oxides have been refined from high resolution X-ray diffraction data. The pattern decomposition and peak extraction methods have been used for the first time to derive starting models for \(\text{Bi}_2\text{La}_{0.5}\text{Ni}_{0.5}\text{O}_{3} \) and \(\text{Zr}_3\text{Ti}_5\text{O}_{15} \). A model has been proposed for this high temperature phase. It is also confirmed that the ferroelectric to paraelectric phase transition in \(\text{Bi}_2\text{La}_{0.5}\text{Ni}_{0.5}\text{O}_{3} \) is accompanied by a structural phase transition. The zigzag arrangement of the distorted \([\text{ZrO}_4] \) octahedral and \(\text{LaNi} \) is tetrahedral as observed in the \(n = 2 \) series of Perovskite phases are found in these structures as well. A rational explanation for the distribution of the \(\text{Bi}^3\text{Zr}^4\text{La}^4 \) cations in the A sites as well as the \([\text{Bi}_2\text{O}_2] \) sites is provided based on the VBS calculations. \(\text{Bi}_2\text{La}_{0.5}\text{Ni}_{0.5}\text{O}_{3} \) shows a structural transition to the prototype triclinic structure in the space group \(P-1 \). A model has been proposed for this high temperature phase. It is also confirmed that the ferroelectric to paraelectric phase transition in \(\text{Bi}_2\text{La}_{0.5}\text{Ni}_{0.5}\text{O}_{3} \) by a structural phase transition.

REFERENCES

1. Missen, O. P., Kampf, A. R., Mills, S. J., Housley, R. M., Spratt, J., Welch, M. D., ... & Ferraris, C. (2019). The crystal structures of the mixed-valence tellurium oxyxalts tapalllite, \((\text{Ca}, \text{Pb})_3\text{CaCu}_6[\text{Te}_4^+\text{O}_3]^2(\text{SO}_4)^2\cdot 3\text{H}_2\text{O} \), and carlfriesite, \(\text{CaTe}_4^+\text{Te}_6^+\text{O}_{12} \cdot 2(\text{Te}_4^+\text{O}_3)^2\cdot 3\text{H}_2\text{O} \), and tlapallite, \((\text{Ca}, \text{Pb})_3\text{CaCu}_6[\text{Te}_4^+\text{O}_3]^2(\text{SO}_4)^2\cdot 3\text{H}_2\text{O} \), and carlfriesite, \(\text{CaTe}_4+\text{Te}_6+\text{O}_{12} \cdot 2(\text{Te}_4+\text{O}_3)^2\cdot 3\text{H}_2\text{O} \), and carlfriesite, \(\text{CaTe}_4+\text{Te}_6+\text{O}_{12} \cdot 2(\text{Te}_4+\text{O}_3)^2\cdot 3\text{H}_2\text{O} \), and carlfriesite, \(\text{CaTe}_4+\text{Te}_6+\text{O}_{12} \cdot 2(\text{Te}_4+\text{O}_3)^2\cdot 3\text{H}_2\text{O} \). Mineralogical Magazine, 83(4), 539-549.

2. Brugger, J., Liu, W., Etschmann, B., Mei, Y., Sherman, D. M., & Testemale, D. (2016). A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chemical Geology, 447, 219-253.

3. Christy, A. G., & Mills, S. J. (2013). Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to \(\text{Te}_4\text{VO}_6 \) octahedra. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 69(5), 446-456.

4. Christy, A. G., Mills, S. J., & Kampf, A. R. (2016). A review of the structural architecture of tellurium oxycompounds. Mineralogical Magazine, 80(3), 415-545.

5. Christy, A. G., Mills, S. J., Kampf, A. R., Housley, R. M., Thorne, B., & Marty, J. (2016). The relationship between mineral composition, crystal structure and paragenetic sequence: the case of secondary Te mineralization at the Bird Nest drift, Otto Mountain, California, USA. Mineralogical Magazine, 80(2), 291-310.

6. Degen, T., Sadki, M., Bron, E., König, U., & Něnert, G. (2014). The highscore suite. Powder Diffraction, 29(2), S13-S18.

7. Eby, R. K., & Hawthorne, F. C. (1993). Structural relations in copper oxyxalts minerals. I. Structural hierarchy. Acta Crystallographica Section B: Structural Science, 49(1), 28-56.

8. Effenberger, H., Zemann, J., & Mayer, H. (1978). Carlfriesite; crystal structure, revision of chemical formula, and synthesis. American Mineralogist, 63(9-10), 847-852.

9. Gagné, O. C., & Hawthorne, F. C. (2015). Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 71(5), 562-578.

10. Gaines, R. V. (1968). Poughite, a new tellurite mineral from Mexico and Honduras. American Mineralogist: Journal of Earth and Planetary Materials, 53(7-8), 1075-1080.

11. Caskey, C. M., Holder, A., Shulda, S., Christensen, S. T., Diercks, D., Schwartz, C. P., ... & Prendergast, D. (2016). Synthesis of a mixed-valent tin nitride and considerations of its possible crystal structures. The Journal of chemical physics, 144(14), 144201.

12. Bennour, I., Mohamed, M., Kabadou, A., & Abdmelouhe, M. (2020). New perovskite \(\text{Ba}_0.7\text{La}_0.3\text{Ti}_0.5\text{Fe}_0.4\text{O}_3 \) prepared by citric sol-gel method: From structure to physical properties. Journal of Molecular Structure, 128347.

13. Gao, H., Ning, S., Zou, J., Men, S., Zhou, Y., Wang, X., & Kang, X. (2020). The electrocatalytic activity of \(\text{BaTi}_3\text{O}_7 \) nanoparticles towards polysulfides enables high-performance lithium-sulfur batteries. Journal of Energy Chemistry, 48, 208-216.

14. Thanki, A. A., & Goyal, R. K. (2016). Study on effect of acidic- and tetragonal phased \(\text{BaTi}_3\text{O}_7 \) on the electrical and thermal properties of polymeric nanocomposites. Materials Chemistry and Physics, 183, 447-456.

15. Parashuram, M. (2011). Synthesis, crystal structure determination and ionic properties of novel Bi \(\text{Ca}_{0.5}\text{Mg}_{0.5}\text{O}_{0.5} \) O_{2.5} via X-ray powder diffraction data Crystal Growth, 2041 32; 2041-204.

16. Charkin, D. O., Karpov, A. S., Kazakov, S. M., Plokhikh, I. V., Zadoya, A. I., Kuznetsov, A. N., ... & Siidra, O. I. (2019). Synthesis, crystal structure, spectroscopic properties, and thermal behavior of rare-earth oxide selenates, \(\text{Ln}_{2}\text{O}_2\text{Se}_4 \). Journal of Solid State Chemistry, 277, 163-168.