Stochastic Restricted Biased Estimators in misspecified regression model with incomplete prior information

Manickavasagar Kayanan1,2 and Pushpakanthie Wijekoon3

1Department of Physical Science, Vavuniya Campus of the University of Jaffna, Vavuniya, Sri Lanka,
2 Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka,
3Department of Statistics and Computer Science, University of Peradeniya, Peradeniya, Sri Lanka.
email: mgayan@vau.jfn.ac.lk, pushpaw@pdn.ac.lk

In this article, the analysis of misspecification was extended to the recently introduced stochastic restricted biased estimators when multicollinearity exists among the explanatory variables. The Stochastic Restricted Ridge Estimator (SRRE), Stochastic Restricted Almost Unbiased Ridge Estimator (SRAURE), Stochastic Restricted Liu Estimator (SRLE), Stochastic Restricted Almost Unbiased Liu Estimator (SRAULE), Stochastic Restricted Principal Component Regression Estimator (SRPCR), Stochastic Restricted r-k class estimator (SRrk) and Stochastic Restricted r-d class estimator (SRrd) were examined in the misspecified regression model due to missing relevant explanatory variables when incomplete prior information of the regression coefficients is available. Further, the superiority conditions between estimators and their respective predictors were obtained in the mean square error matrix (MSEM) sense. Finally, a numerical example and a Monte Carlo simulation study were used to illustrate the theoretical findings.

Keywords: Misspecified regression model, Generalized stochastic restricted estimator, Mean square error matrix, Monte Carlo simulation

1 Introduction

Misspecification due to left out relevant explanatory variables is very often when considering the linear regression model, which causes these variables to become a part of the error term. Consequently, the expected value of error term of the model will not be zero. Also, the omitted variables may be correlated with the variables in the model. Therefore, one or more assumptions of the linear regression model will be violated when the model is misspecified, and hence the estimators become biased and inconsistent. Further, it is well-known that the ordinary least squares estimator (OLSE) may not be very reliable if multicollinearity exists in the linear regression model. As a remedial measure to solve multicollinearity problem, biased estimators based on the sample model \(y = X\beta + \epsilon \) with prior information which can be exact or stochastic restrictions have received much attention in the statistical literature. The intention of this work is to examine the performance of the recently introduced stochastic restricted biased estimators in the misspecified regression model with incomplete prior knowledge about regression coefficients when there exists multicollinearity among explanatory variables.

When we consider the biased estimation in misspecified regression model without any restrictions on regression parameters, Sarkar (1989) discussed the consequences of exclusion of some important explanatory variables from a linear regression model when multicollinearity exists. Siray (2015) and Wu (2016) examined the efficiency of the r-d class estimator and r-k class estimator over some existing estimators, respectively in the misspecified regression model. Chandra and Tyagi (2017) studied the effect of misspecification due to the omission of relevant variables on the dominance of the r-(k,d) class estimator. Recently, Kayanan and Wijekoon (2017) examined the performance of existing biased estimators and the respective predictors based on the sample information in a misspecified linear regression model without considering any prior information about regression coefficients. It is recognized that the mixed regression estimator (MRE) introduced by Theil and Goldberger (1961) outperform ordinary least squares estimator (OLSE) when the regression model is correctly specified. The biased estimation with stochastic linear restrictions in the misspecified regression model due to inclusion
of an irrelevant variable with the incorrectly specified prior information was discussed by Teräsvirta (1980). Later Mittelhammer (1981), Ohtani and Honda (1984), Kadiyala (1986) and Trenkler and Wijekoon (1989) discussed the efficiency of MRE under misspecified regression model due to exclusion of a relevant variable with correctly specified prior information. Further, the superiority of MRE over the OLSE under the misspecified regression model with incorrectly specified sample and prior information was discussed by Wijekoon and Trenkler (1989). Hubert and Wijekoon (2004) have considered the improvement of Liu estimator (LE) under a misspecified regression model with stochastic restrictions, and introduced the Stochastic Restricted Liu Estimator (SRLE).

In this paper, the performance of the recently introduced stochastic restricted estimators namely the Stochastic Restricted Ridge Estimator (SRRE) proposed by Li and Yang (2010), Stochastic Restricted Almost Unbiased Ridge Estimator (SRAURE) and Stochastic Restricted Almost Unbiased Liu Estimator (SRAULE) proposed by Wu and Yang (2014), Stochastic Restricted Principal Component Regression Estimator (SRPCR) proposed by He and Wu (2014), Stochastic Restricted r-k class estimator (SRrk) and Stochastic Restricted r-d class estimator (SRrd) proposed by Jibo Wu (2014) were examined in the misspecified regression model when multicollinearity exists among explanatory variables. Further, a generalized form to represent these estimators is also proposed.

The rest of this article is organized as follows. The model specification and the estimators are written in section 2. In section 3, the Mean Square Error Matrix (MSEM) comparison between two estimators and respective predictors are considered. In section 4, a numerical example and a Monte Carlo simulation study are given to illustrate the theoretical results in Scalar Mean Square Error (SMSE) criterion. Finally, some concluding remarks are mentioned in section 5. The references and appendixes are given at the end of the paper.

2 Model specification and the estimators

Assume that the true regression model is given by

\[y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon = X_1 \beta_1 + \delta + \varepsilon \]

(2.1)

where \(y \) is the \(n \times 1 \) vector of observations on the dependent variable, \(X_1 \) and \(X_2 \) are the \(n \times l \) and \(n \times p \) matrices of observations on the \(m = l + p \) regressors, \(\beta_1 \) and \(\beta_2 \) are the \(l \times 1 \) and \(p \times 1 \) vectors of unknown coefficients, \(\varepsilon \) is the \(n \times 1 \) vector of disturbances such that \(E(\varepsilon) = 0 \) and \(E(\varepsilon \varepsilon') = \Omega = \sigma^2 I \).

Let us say that the researcher misspecifies the regression model by excluding \(p \) regressors as

\[y = X_1 \beta_1 + u \]

(2.2)

Let us also assume that there exists prior information on \(\beta_1 \) in the form of

\[r = R \beta_1 + g + v \]

(2.3)

where \(r \) is the \(q \times 1 \) vector, \(R \) is the given \(q \times l \) matrix with rank \(q \), \(g \) is the \(q \times 1 \) unknown fixed vector, \(v \) is the \(q \times 1 \) vector of disturbances such that \(E(v) = 0 \), \(D(v) = E(vv') = \Psi = \sigma^2 W \), where \(W \) is positive definite, and \(E(vu') = 0 \).

By combining sample model (2.2) and prior information (2.3), Thiel and Goldberger (1961) proposed the Mixed Regression Estimator (MRE) as

\[\hat{\beta}_{MRE} = (X_1' \Omega^{-1} X_1 + R' \Psi^{-1} R)^{-1} (X_1' \Omega^{-1} y + R' \Psi^{-1} r) \]

(2.4)

\[= (X_1' X_1 + R' W^{-1} R)^{-1} (X_1' y + R' W^{-1} r) \]

To combat multicollinearity, several researchers introduce different types of stochastic restricted estimators in place of MRE. Seven such estimators are SRRE, SRAURE, SRLE, SRALUE, SRPCR, SRrk class estimator and SRrd class estimator defined below, respectively:

\[\hat{\beta}_{SRRE} = (X_1' X_1 + kI)^{-1} X_1' \hat{\beta}_{MRE} \]

(2.5)
\[
\hat{\beta}_{\text{SRAURE}} = (I - k^2(X_1'X_1 + kl)^{-2})\hat{\beta}_{\text{MRE}} \\
\hat{\beta}_{\text{SRLE}} = (X_1'X_1 + I)^{-1}(X_1'X_1 + dI)\hat{\beta}_{\text{MRE}} \\
\hat{\beta}_{\text{SRAULE}} = (I - (1 - d)^2(X_1'X_1 + I)^{-2})\hat{\beta}_{\text{MRE}} \\
\hat{\beta}_{\text{SRPCR}} = T_hT_h'\hat{\beta}_{\text{MRE}} \\
\hat{\beta}_{\text{SRr}} = T_hT_h(X_1'X_1 + kI)^{-1}X_1\hat{\beta}_{\text{MRE}} \\
\hat{\beta}_{\text{SRrd}} = T_hT_h(X_1'X_1 + I)^{-1}(X_1'X_1 + dI)\hat{\beta}_{\text{MRE}}
\]

where \(k > 0, 0 < d < 1 \) and \(T_h = (t_1, t_2, \ldots, t_h) \) be the first \(h \) columnns of \(T = (t_1, t_2, \ldots, t_h, \ldots t_l) \) which is an orthogonal matrix of the standardized eigenvectors of \(X_1'X_1 \).

According to Kadiyala (1986), now we apply the simultaneous decomposition to the two symmetric matrices \(X_1'X_1 \) and \(R'\Psi^{-1}R \), as

\[
B'X_1'X_1B = I \quad \text{and} \quad B'R'\Psi^{-1}RB = \Lambda.
\]

where \(X_1'X_1 \) is a positive definite matrix and \(R'\Psi^{-1}R \) is a positive semi-definite matrix, \(B \) is a \(l \times l \) nonsingular matrix, \(\Lambda \) is a \(l \times l \) diagonal matrix with eigenvalues \(\lambda_i > 0 \) for \(i = 1, 2, \ldots, q \) and \(\lambda_i = 0 \) for \(i = q + 1, \ldots, l \).

Let \(X_1B = R_1 \), \(R = RB \), \(\gamma = B^{-1}\beta_1 \), \(X_1'X_1 = I \) and \(R'\Psi^{-1}R_1 = \Lambda \), then the models (2.1), (2.3) and (2.3) can be written as

\[
y = X_1\gamma + \delta + \varepsilon, \quad (2.12) \\
y = X_1\gamma + u, \quad (2.13) \\
r = R_1\gamma + g + v. \quad (2.14)
\]

According to Wijekoon and Trenkler (1989), the corresponding MRE is given by

\[
\hat{\gamma}_{\text{MRE}} = X_1'X_1 + R'\Psi^{-1}R_1)^{-1}(X_1'\gamma + R_1'W^{-1}r) \\
= (I + \sigma^2\Lambda)^{-1}(X_1'\gamma + R_1'W^{-1}r) \quad (2.15)
\]

Hence, the respective expectation vector, bias vector and dispersion matrix are given by

\[
\mathbb{E}(\hat{\gamma}_{\text{MRE}}) = \gamma + (I + \sigma^2\Lambda)^{-1}(X_1'\delta + R_1'W^{-1}g), \quad (2.16) \\
\text{Bias}(\hat{\gamma}_{\text{MRE}}) = (I + \sigma^2\Lambda)^{-1}(X_1'\delta + R_1'W^{-1}g), \quad (2.17) \\
D(\hat{\gamma}_{\text{MRE}}) = \sigma^2(I + \sigma^2\Lambda)^{-1}. \quad (2.18)
\]

In the case of misspecification, now the SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd for model (2.12) can be written as

\[
\hat{\gamma}_{\text{SRRE}} = (X_1'X_1 + kI)^{-1}X_1'X_1\gamma_{\text{MRE}} = (1 + k)^{-1}\gamma_{\text{MRE}} = C_k\gamma_{\text{MRE}} \quad (2.19) \\
\hat{\gamma}_{\text{SRAURE}} = (I - k^2(X_1'X_1 + kI)^{-2})\gamma_{\text{MRE}} = (1 + k)^{-2}(1 + 2k)\gamma_{\text{MRE}} \\
= (1 + 2k)C_k^2\gamma_{\text{MRE}} = C_k^2\gamma_{\text{MRE}} \quad (2.20) \\
\hat{\gamma}_{\text{SRLE}} = (X_1'X_1 + I)^{-1}(X_1'X_1 + dI)\gamma_{\text{MRE}} = 2^{-1}(1 + d)\gamma_{\text{MRE}} = C_d\gamma_{\text{MRE}} \quad (2.21) \\
\hat{\gamma}_{\text{SRAULE}} = (I - (1 - d)^2(X_1'X_1 + I)^{-2})\gamma_{\text{MRE}} = 2^{-2}(1 + d)(3 - d)\gamma_{\text{MRE}} \\
= 2^{-1}(3 - d)C_d\gamma_{\text{MRE}} = C_d\gamma_{\text{MRE}} \quad (2.22) \\
\hat{\gamma}_{\text{SRPCR}} = T_hT_h'\gamma_{\text{MRE}} = C_h\gamma_{\text{MRE}} \quad (2.23) \\
\hat{\gamma}_{\text{SRrk}} = (1 + k)^{-1}T_hT_h'\gamma_{\text{MRE}} = C_kC_h\gamma_{\text{MRE}} = C_kC_h\gamma_{\text{MRE}} \quad (2.24) \\
\hat{\gamma}_{\text{SRrd}} = 2^{-1}(1 + d)T_hT_h'\gamma_{\text{MRE}} = C_dC_h\gamma_{\text{MRE}} = C_dC_h\gamma_{\text{MRE}} \quad (2.25)
\]
respectively, where $C_k = (1 + k)^{-1}$, $C_k' = (1 + 2k)(C_k)^2$, $C_d = 2^{-1}(1 + d)$, $C_d' = 2^{-1}(3 - d)C_d$, $C_h = T_T T_T'$, $C_h k = C_k C_h$ and $C_h d = C_d C_h$.

It is clear that C_k, C_k', C_d and C_d' are positive definite, and C_h, $C_h k$ and $C_h d$ are non-negative definite.

Since all these estimators can be written by incorporating \hat{y}_{MRE}, now we write a generalized form to represent SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd as given below:

$$\hat{y}_{(j)} = G_{(j)} \hat{y}_{MRE}$$

(2.26)

where $G_{(j)}$ is positive definite matrix if it stands for C_k, C_k', C_d and C_d', and it is non-negative definite matrix if it stands for C_h, $C_h k$ and $C_h d$.

Now the expectation vector, bias vector, the dispersion matrix and the mean square error matrix can be written as

$$E(\hat{y}_{(j)}) = G_{(j)} E(\hat{y}_{MRE}) = G_{(j)} (y + (I + \sigma^2 A)^{-1}(X^* \delta + R^* W^{-1} g)) = G_{(j)} (y + \tau A)$$

(2.27)

$$Bias(\hat{y}_{(j)}) = E(\hat{y}_{(j)} - y) = G_{(j)} (y + \tau A) - y = (G_{(j)} - I)y + G_{(j)} \tau A$$

(2.28)

$$D(\hat{y}_{(j)}) = G_{(j)} D(\hat{y}_{MRE}) G_{(j)}' = G_{(j)} (I + \sigma^2 A)^{-1} G_{(j)} = \sigma^2 G_{(j)} (I + \sigma^2 A)^{-1} G_{(j)}$$

(2.29)

$$MSEM(\hat{y}_{(j)}) = E(\hat{y}_{(j)} - y)(\hat{y}_{(j)} - y)'$$

$$= D(\hat{y}_{(j)}) + Bias(\hat{y}_{(j)})Bias(\hat{y}_{(j)})'$$

$$= \sigma^2 G_{(j)} \tau G_{(j)} + \left((G_{(j)} - I)y + G_{(j)} \tau A\right)\left((G_{(j)} - I)y + G_{(j)} \tau A\right)'$$

(2.30)

where $\tau = (I + \sigma^2 A)^{-1}$ and $A = (X^* \delta + R^* W^{-1} g)$.

Based on 2.27 to 2.30, the respective bias vector, dispersion matrix and MSEM of the MRE, SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd can easily be obtained, and given in Table B1 in Appendix B.

By using the approach of Kadiyala (1986) and equations (2.3) and (2.4), the generalized prediction function can be defined as follows:

$$y_0 = X_0 y + \delta$$

(2.31)

$$\hat{y}_{(j)} = X_0 \hat{y}_{(j)}$$

(2.32)

where y_0 is the actual value and $\hat{y}_{(j)}$ is the corresponding predictor.

The MSEM of the generalized predictor is given by

$$MSEM(\hat{y}_{(j)}) = E(\hat{y}_{(j)} - y_0)(\hat{y}_{(j)} - y_0)'$$

$$= X_0 \left(MSEM(\hat{y}_{(j)})\right) X_0' - X_0 \left(Bias(\hat{y}_{(j)})\right)\delta' - \delta \left(Bias(\hat{y}_{(j)})\right)' X_0 + \delta \delta'$$

(2.33)

Note that the predictors based on the MRE, SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd are denoted by $\hat{y}_{MRE}, \hat{y}_{SRRE}, \hat{y}_{SRAURE}, \hat{y}_{SRLE}, \hat{y}_{SRAULE}, \hat{y}_{SRPCR}, \hat{y}_{SRrk}$ and \hat{y}_{SRrd} respectively.

3 Mean Square Error Matrix (MSEM) comparisons

If two generalized biased estimators $\hat{y}_{(i)}$ and $\hat{y}_{(j)}$ are given, the estimator $\hat{y}_{(j)}$ is said to be superior to $\hat{y}_{(i)}$ with respect to MSEM sense if and only if $MSEM(\hat{y}_{(i)}) - MSEM(\hat{y}_{(j)}) \geq 0$. Also, if two generalized predictors $\hat{y}_{(i)}$ and $\hat{y}_{(j)}$ are given, the predictor $\hat{y}_{(j)}$ is said to be superior to $\hat{y}_{(i)}$ with respect to MSEM sense if and only if $MSEM(\hat{y}_{(i)}) - MSEM(\hat{y}_{(j)}) \geq 0$.

Now let $D_{(i,j)} = D(\hat{y}_{(i)}) - D(\hat{y}_{(j)})$, $b_{(i)} = Bias(\hat{y}_{(i)})$, $b_{(j)} = Bias(\hat{y}_{(j)})$ and
\[\Delta_{(i,j)} = \text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) = D_{(i,j)} + b_{(i)}b'_{(i)} - b_{(j)}b'_{(j)}. \]

By applying Lemma A1 (see Appendix A), the following theorem can be stated for the superiority of \(\hat{y}_{(j)} \) over \(\hat{y}_{(i)} \) with respect to the MSEM criterion.

Theorem 1: If \(D_{(i,j)} \) is positive definite, then \(\hat{y}_{(j)} \) is superior to \(\hat{y}_{(i)} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

\[b'_{(j)}(D_{(i,j)} + b_{(i)}b'_{(i)})^{-1}b_{(j)} \leq 1. \]

Proof: Let \(D_{(i,j)} \) is a positive definite matrix. According to Lemma A1 (see Appendix A), \(\Delta_{(i,j)} \) is non-negative definite matrix if \(b'_{(j)}(D_{(i,j)} + b_{(i)}b'_{(i)})^{-1}b_{(j)} \leq 1 \). This completes the proof.

The following theorem can be stated for the superiority of \(\hat{y}_{(j)} \) over \(\hat{y}_{(i)} \) with respect to the MSEM criterion.

Theorem 2: If \(A \geq 0, \) \(\hat{y}_{(j)} \) is superior to \(\hat{y}_{(i)} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only \(\theta \in \mathcal{R}(A) \) and \(\theta' A^{-1} \theta \leq 1, \)

\[
\text{where } A = X, \Delta_{(i,j)}X' + X, \left(b_{(i)} - b_{(j)} \right) \left(b_{(i)} - b_{(j)} \right)'X' + \delta \delta', \quad \theta = \delta + X, \left(b_{(i)} - b_{(j)} \right) \text{ and } \mathcal{R}(A) \text{ stands for column space of } A \text{ and } A^{-1} \text{ is an independent choice of } g\text{-inverse of } A.
\]

Proof: According to 2.33 we can write \(\text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) \) as

\[
\text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) = X, \left(\text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) \right) X' - X, \left(\text{Bias}(\hat{y}_{(i)}) - \text{Bias}(\hat{y}_{(j)}) \right) \delta' \\
- \delta \left(\text{Bias}(\hat{y}_{(i)}) - \text{Bias}(\hat{y}_{(j)}) \right)'X' \\
= X, \Delta_{(i,j)}X' - X, \left(b_{(i)} - b_{(j)} \right) \delta' - \delta \left(b_{(i)} - b_{(j)} \right)'X'.
\]

After some straight forward calculation, it can be written as

\[
\text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) = A - \theta \theta'
\]

where \(A = X, \left(\Delta_{(i,j)} \right) + \left(b_{(i)} - b_{(j)} \right) \left(b_{(i)} - b_{(j)} \right)'X' + \delta \delta' \) and \(\theta = \delta + X, \left(b_{(i)} - b_{(j)} \right). \)

Due to Lemma A3 (see Appendix A), \(\text{MSEM}(\hat{y}_{(i)}) - \text{MSEM}(\hat{y}_{(j)}) \) is non-negative definite matrix if and only if \(A \geq 0, \theta \in \mathcal{R}(A) \) and \(\theta' A^{-1} \theta \leq 1, \) where \(\mathcal{R}(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of g-inverse of \(A. \) This completes the proof.

Based on Theorem 1 and Theorem 2 we can define Corollaries C1-C28, written in the Appendix C, for the superiority conditions between two selected estimators and for the respective predictors by substituting the relevant expressions for \(\text{Bias}(\hat{y}_{(i)}), \text{Bias}(\hat{y}_{(j)}), D(\hat{y}_{(i)}), \) and \(D(\hat{y}_{(j)}) \) given in Table B1 in Appendix B.
4 Illustration of theoretical results
4.1 Numerical example

To illustrate the theoretical results, the dataset which gives total National Research and Development Expenditures—as a Percent of Gross National Product by Country: 1972–1986 is considered. The dependent variable Y of this dataset is the percentage spent by the United States, and the four other independent variables are X_1, X_2, X_3 and X_4. The variable X_1 represents the percent spent by the former Soviet Union, X_2 that spent by France, X_3 that spent by West Germany, and X_4 that spent by the Japan. The data has been analysed by Gruber (1998), Akdeniz and Erol (2013), Li and Yang (2010) and among others. Now we assemble the data as follows:

\[
X = \begin{pmatrix}
1.9 & 2.2 & 1.9 & 3.7 \\
1.8 & 2.2 & 2.0 & 3.8 \\
1.8 & 2.4 & 2.1 & 3.6 \\
1.8 & 2.4 & 2.2 & 3.8 \\
2.0 & 2.5 & 2.3 & 3.8 \\
2.1 & 2.6 & 2.4 & 3.7 \\
2.1 & 2.6 & 2.6 & 3.8 \\
2.2 & 2.6 & 2.6 & 4.0 \\
2.3 & 2.8 & 2.8 & 3.7 \\
2.3 & 2.7 & 2.8 & 3.8 \\
\end{pmatrix}
Y = \begin{pmatrix}
2.3 \\
2.2 \\
2.2 \\
2.3 \\
2.4 \\
2.5 \\
2.6 \\
2.6 \\
2.7 \\
2.7 \\
\end{pmatrix}
\]

Note that the eigenvalues of the $X'X$ are 302.96, 0.728, 0.044, 0.035, the condition number is 93, and the variance Inflation Factor (VIF) values are 6.91, 21.58, 29.75, and 1.79. This implies the existence of serious multicollinearity in the data set.

The corresponding OLS estimator of β is $\hat{\beta} = (X'X)^{-1}X'y = (0.645, 0.089, 0.143, 0.152)$ and the estimate of σ^2 is $\hat{\sigma}^2 = 0.00153$. In this example we consider $R = (1, -2, -2, -2)$ and $g = c(1, -1, 2, 0)$. The SMSE values of the estimators are summarized in the Tables B2-B3 in Appendix B.

Table B2 shows the estimated SMSE values of MRE, SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd for the regression model when $(l, p) = (4, 0)$, $(l, p) = (3, 1)$, and $(l, p) = (2, 2)$ with respect to shrinkage parameters (k/d), where l denotes the number of variable in the model and p denotes the number of misspecified variables. Table B3 shows the estimated SMSE values of the predictor of MRE, SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd for the regression model when $(l, p) = (4, 0)$, $(l, p) = (3, 1)$, and $(l, p) = (2, 2)$ for some selected shrinkage parameters (k/d).

Note that when $(l, p) = (4, 0)$ the model is correctly specified, when $(l, p) = (3, 1)$ one variable is omitted from the model and when $(l, p) = (2, 2)$ two variables are omitted from the model. For simplicity we choose shrinkage parameter values k and d in the range $(0, 1)$.

From Table B2, we can observe that the MRE is superior to the other estimators when $(l, p) = (4, 0)$, and SRAULE, SRRE, SRLE and SRAURE are outperformed the other estimators for $(k/d) < 0.2$, $0.2 \leq (k/d) < 0.5$, $0.5 \leq (k/d) < 0.7$ and $(k/d) \geq 0.7$, respectively, when $(l, p) = (3, 1)$). Similarly, SRLE and SRRE are superior to the other estimators for $(k/d) < 0.5$ and $(k/d) \geq 0.5$, respectively, when $(l, p) = (2, 2)$.
From Table B3, we further observe that predictors based on SRLE and SRRE are outperformed by the other predictors for \((k/d) < 0.5\) and \((k/d) \geq 0.5\), respectively, when \((l,p) = (4,0)\) and \((l,p) = (3,1)\), and predictors based on SRrd and SRrk are superior to the other predictors for \((k/d) < 0.5\) and \((k/d) \geq 0.5\), respectively, when \((l,p) = (2,2)\).

4.2 Simulation

For further clarification, a Monte Carlo simulation study is done at different levels of misspecification using R 3.2.5. Following McDonald and Galarneau (1975), we can generate the explanatory variables as follows:

\[
x_{ij} = (1 - \rho^2)^{1/2} z_{ij} + \rho z_{i,m}; \quad i = 1, 2, \ldots, n; \quad j = 1, 2, \ldots, m.
\]

where \(z_{ij}\) is an independent standard normal pseudo random number, and \(\rho\) is specified so that the theoretical correlation between any two explanatory variables is given by \(\rho^2\). A dependent variable is generated by using the following equation

\[
y_i = \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \beta_5 x_{i5} + \epsilon_i; \quad i = 1, 2, \ldots, n.
\]

where \(\epsilon_i\) is a normal pseudo random number with mean zero and variance one. Also, we select \(\beta = (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)\) as the normalized eigenvector corresponding to the largest eigenvalue of \(X'X\) for which \(\beta'\beta = 1\). Further we choose \(R = (1, 1, 1, 1)\) and \(g = (1, -2, 0, 3, 1)\).

Then the following setup is considered to investigate the effects of different degrees of multicollinearity on the estimators:

- \(\rho = 0.9\), condition number = 9.49 and VIF = (5.99, 5.88, 5.94, 5.96, 20.47)
- \(\rho = 0.99\), condition number = 34.77 and VIF = (57.66, 56.50, 57.26, 57.31, 225.06)
- \(\rho = 0.999\), condition number = 115.66 and VIF = (574.3, 562.8, 570.7, 570.8, 2271.4)

Three different sets of observations are considered by selecting \((l,p) = (5,0), (l,p) = (4,1)\) and \((l,p) = (3,2)\) when \(n = 50\), where \(l\) denotes the number of variable in the model and \(p\) denotes the number of misspecified variables. Note that when \((l,p) = (5,0)\) the model is correctly specified, when \((l,p) = (4,1)\) one variable is omitted from the model and when \((l,p) = (3,2)\) two variables are omitted from the model. For simplicity, we select values \(k\) and \(d\) in the range \((0,1)\).

The simulation is repeated 2000 times by generating new pseudo random numbers and the simulated SMSE values of the estimators and predictors are obtained using the following equations:

\[
SMSE(\hat{y}_{(j)}) = \frac{1}{2000} \sum_{r=1}^{2000} \text{tr}\left(\text{MSEM}(\hat{y}_{(j)r})\right) \quad \text{and}
\]

\[
SMSE(\tilde{y}_{(j)}) = \frac{1}{2000} \sum_{r=1}^{2000} \text{tr}\left(\text{MSEM}(\tilde{y}_{(j)r})\right) \quad \text{respectively.}
\]

The simulation results are summarized in Tables B4-B9 in Appendix B.

Table B4, Table B5, and Table B6 in Appendix show the estimated SMSE values of the estimators for the regression model when \((l,p) = (5,0)\), \((l,p) = (4,1)\) and \((l,p) = (3,2)\), and \(\rho = 0.9\), \(\rho = 0.99\) and \(\rho = 0.999\) for the selected values of shrinkage parameters \((k/d)\), respectively. Table B7, Table B8, and
Table B9 in Appendix show the corresponding estimated SMSE values of the predictors for the above regression models, respectively.

From Table B4, we can observe that MRE and SRAULE are outperformed the other estimators for $(k/d) < 0.8$ and $(k/d) \geq 0.8$, respectively, when $(l, p) = (5, 0)$ and $(l, p) = (4, 1)$. Further, SRLE and SRRE are superior to the other estimators for $(k/d) < 0.5$ and $(k/d) \geq 0.5$, respectively, when $(l, p) = (3, 2)$ under $\rho = 0.9$.

From Table B5, we can observe that SRAULE, MRE and SRAURE are outperformed the other estimators for $(k/d) < 0.3$, $0.3 \leq (k/d) < 0.7$ and $(k/d) \geq 0.7$, respectively, when $(l, p) = (5, 0)$. Similarly, SRAULE, SRRE, SRLE and SRAURE are superior to the other estimators when $(k/d) < 0.2$, $0.2 \leq (k/d) < 0.5$, $0.5 \leq (k/d) < 0.7$ and $(k/d) \geq 0.7$, respectively, when $(l, p) = (4, 1)$, and both SRLE and SRRE are outperformed the other estimators for $(k/d) < 0.5$ and $(k/d) \geq 0.5$, respectively, when $(l, p) = (3, 2)$ and $\rho = 0.99$.

The results in Table B6 indicate that MRE is superior to the other estimators when $(l, p) = (5, 0)$, and SRAULE, SRRE, SRLE and SRAURE are outperformed the other estimators for $(k/d) < 0.2$, $0.2 \leq (k/d) < 0.5$, $0.5 \leq (k/d) < 0.7$ and $(k/d) \geq 0.7$, respectively, when $(l, p) = (4, 1)$. Further, SRLE and SRRE are outperformed the other estimators for $(k/d) < 0.5$ and $(k/d) \geq 0.5$, respectively, when $(l, p) = (3, 2)$ and $\rho = 0.999$.

From Tables B7-B9, we further observe that the predictors based on SRrd and SRrk are always outperformed the other predictors for $(k/d) < 0.5$ and $(k/d) \geq 0.5$, respectively, when $(l, p) = (5, 0)$, $(l, p) = (4, 1)$ and $(l, p) = (3, 2)$.

The SMSE values of the selected estimators are plotted with different ρ values to demonstrate the results graphically when $(l, p) = (3, 2)$. Figures 1-3 show the graphical illustration of the performance of estimators in the misspecified regression model $((l, p) = (3, 2))$ when $\rho = 0.9$, $\rho = 0.99$ and $\rho = 0.999$, respectively. Similarly, Figures 4-6 present the graphical illustration of the performance of predictors in the misspecified regression model $((l, p) = (3, 2))$ when $\rho = 0.9$, $\rho = 0.99$ and $\rho = 0.999$, respectively.

![Figure 1. SMSE values of the estimators in the misspecified regression model $((l, p) = (3, 2))$ when $n = 50$ and $\rho = 0.9$](image-url)
Figure 2. SMSE values of the estimators in the misspecified regression model \((l, p) = (3, 2)\) when \(n = 50\) and \(\rho = 0.99\)

Figure 3. SMSE values of the estimators in the misspecified regression model \((l, p) = (3, 2)\) when \(n = 50\) and \(\rho = 0.999\)

Figure 4. SMSE values of the predictors in the misspecified regression model \((l, p) = (3, 2)\) when \(n = 50\) and \(\rho = 0.9\)
Figure 5. SMSE values of the predictors in the misspecified regression model \((l, p) = (3, 2)\) when \(n = 50\) and \(\rho = 0.99\)

Figure 6. SMSE values of the predictors in the misspecified regression model \((l, p) = (3, 2)\) when \(n = 50\) and \(\rho = 0.999\)

5 Conclusion

Theorem 1 and Theorem 2 give the common form of superiority conditions to compare the estimators (MRE, SRRE, SRAURE, SRLE, SRAULE, SRPCR, SRrk and SRrd) and their respective predictors in MSEM criterion in the misspecified linear regression model when the prior information of the regression coefficients is incomplete, and the multicollinearity exists among the explanatory variables.

From the simulation study, it can be identified the superior estimators and predictors over the others when the conditions are different. The results obtained in this research will produce significant improvements in the parameter estimation in misspecified regression models with incomplete prior information, and the results are applicable to real-world applications.
Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Akdeniz, F., & Erol, H. (2003). Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression. *Communications in Statistics - Theory and Methods*, 2389-2413. doi:10.1081/STA-120025385

Baksalary, J., & Kala, R. (1983). Partial orderings between matrices one of which is of rank one. *Bull. Pol. Acad. Sci. Math*, 31, 5-7.

Chandra, S., & Tyagi, G. (2017). On the performance of some biased estimators in a misspecified model with correlated regressors. *STATISTICS IN TRANSITION new series*, 27-52. doi:10.21307/stattrans-2016-056

Gruber, M. (1998). *Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators*. New York: CRC Press.

He, D., & Wu, Y. (2014). A Stochastic Restricted Principal Components Regression Estimator in the Linear Model. *The Scientific World Journal*. doi:10.1155/2014/231506

Hubert, M., & Wijekoon, P. (2004). Superiority of the stochastic restricted Liu estimator under misspecification. *Statistica, 64*(1), 153-162. doi:10.6092/issn.1973-2201/29

Jibo, W., & Hu, Y. (2014). On the Stochastic Restricted Almost Unbiased Estimators in Linear Regression Model. *Communications in Statistics - Simulation and Computation*, 428-440. doi:10.1080/03610918.2012.704540

Kadiyala, K. (1986). Mixed Regression Estimator under misspecification. *Economic Letters*, 21, 27-30. doi:10.1016/0165-1765(86)90115-1

Kayanan, M., & Wijekoon, P. (2017). Performance of Existing Biased Estimators and the respective Predictors in a Misspecified Linear Regression Model. *Open Journal of Statistics*, 876-900. doi:10.4236/ojs.2017.75062

Li, Y., & Yang, H. (2010). A new stochastic mixed ridge estimator in linear regression model. *Statistical Papers*, 315–323. doi:10.1007/s00362-008-0169-5

McDonald, G. C., & Galarneau, D. I. (1975). A Monte Carlo Evaluation of Some Ridge-Type Estimators. *Journal of the American Statistical Association*, 70, 407-416.

Mittelhammer, R. C. (1981). On specification error in the general linear model and weak mean square error superiority of the mixed estimator. *Communications in Statistics - Theory and Methods*, 167-176. doi:10.1080/03610928108828027

Ohtani, K., & Honda, Y. (1984). On small sample properties of the mixed regression predictor under misspecification. *Communications in Statistics - Theory and Methods*, 2817-2825. doi:10.1080/03610928408828863

Sarkar, N. (1989). Comparisons Among Some Estimators In Misspecified Linear Models With Multicollinearity. *Ann. Inst. Statist. Math*, 41(4), 717-724. doi:10.1007/BF00057737
Şiray, G. Ü. (2015). r-d Class Estimator under misspecification. *Communications in Statistics - Theory and Methods, 44*(22), 4742-4756. doi:10.1080/03610926.2013.835421

Teräsvirta, T. (1980). *Linear restrictions in misspecified linear models and polynomial distributed lag estimation*. Finland : Department of Statistics University of Helsinki.

Theil, H., & Goldberger, A. S. (1961). On Pure and Mixed Statistical Estimation in Economics. *International Economic Review, 2*(1), 65-78. doi:10.2307/2525589

Trenkler, G., & Toutenburg, H. (1990). Mean square error matrix comparisons between biased estimators: an overview of recent results. *Statistical Papers, 31*, 165-179. doi:10.1007/BF02924687

Trenkler, G., & Wijekoon, P. (1989). Mean square error matrix superiority of the mixed regression estimator under misspecification. *Statistica anno, 49*(1), 65-71. doi:10.6092/issn.1973-2201/785

Wang, S., & al, e. (2006). *Matrix Inequalities* (2 ed.). Beijing: Chinese Science Press.

Wijekoon, P., & Trenkler, G. (1989). Mean Square Error Matrix Superiority of Estimators under Linear Restrictions and Misspecification. *Economics Letters, 30*, 141-149. doi:10.1016/0165-1765(89)90052-9

Wu, J. (2014). On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model. *Journal of Applied Mathematics*. doi:10.1155/2014/173836

Wu, J. (2016). Superiority of the r-k class estimator over some estimators in a misspecified linear model. *Communication in Statistics-Theory and Methods, 45*, 1453-1458. doi:10.1080/03610926.2013.863934

Appendix A: Lemmas

Lemma A1: (Trenkler and Toutenburg, 1990)
Let $\hat{\beta}_1$ and $\hat{\beta}_2$ be two linear estimator of β. Suppose that $D = D(\hat{\beta}_1) - D(\hat{\beta}_2)$ is positive definite, then
\[
\Delta = MSEM(\hat{\beta}_1) - MSEM(\hat{\beta}_2)
\]
is non negative if and only if $b'_2(D + b_1b'_1)^{-1}b_2 \leq 1$, where $D(\hat{\beta}_j)$, $MSE(\hat{\beta}_j)$ and b_j denote dispersion matrix, mean square error matrix and bias vector of $\hat{\beta}_j$ respectively, $j = 1, 2$.

Lemma A2: (Wang et al., 2006)
Let $n \times n$ matrices $M > 0, N \geq 0$, then $M > N$ if and only if $\lambda_* < 1$, where λ_* is the largest eigenvalue of the matrix NM^{-1}.

Lemma A3: (Baksalary and Kala, 1983)
Let $B \geq 0$ of type $n \times n$ matrix, b is a $n \times 1$ vector and λ is a positive real number. Then the following conditions are equivalent.

i. $\lambda B - bb' \geq 0$

ii. $B \geq 0$, $b \in \Re(B)$ and $b'b^{-1}b \leq \lambda$, where $\Re(B)$ stands for column space of B and B^{-1} is a independent choice of g-inverse of B.

12
Appendix B: Tables

Table B1. Bias vector, Dispersion matrix and MSEM of the estimators

Estimators (\(\hat{\psi}(j)\))	\(Bias(\hat{\psi}_{MRE}) = \tau A\)	\(D(\hat{\psi}_{MRE}) = \sigma^2 \tau\)	\(MSEM(\hat{\psi}_{MRE}) = \sigma^2 \tau + (\tau A)(\tau A)'\)
\(\hat{\psi}_{MRE}\)			
\(\hat{\psi}_{SRRE}\)	\(Bias(\hat{\psi}_{SRRE}) = (1 + k)^{-1}(\tau A - k \gamma)\)	\(D(\hat{\psi}_{SRRE}) = (1 + k)^{-2} \sigma^2 \tau\)	\(MSEM(\hat{\psi}_{SRRE}) = (1 + k)^{-2}(\sigma^2 \tau + (\tau A - k \gamma)(\tau A - k \gamma)')\)
\(\hat{\psi}_{SRAUDE}\)	\(Bias(\hat{\psi}_{SRAUDE}) = (1 + k)^{2}((1 + 2k)\tau A - k^2 \gamma)\)	\(D(\hat{\psi}_{SRAUDE}) = (1 + k)^{-4}(1 + 2k)^2 \sigma^2 \tau\)	\(MSEM(\hat{\psi}_{SRAUDE}) = (1 + k)^{-4}(1 + 2k)^2 \sigma^2 \tau + ((1 + 2k)^2 \tau A - k^2 \gamma)((1 + 2k)\tau A - k^2 \gamma)'\)
\(\hat{\psi}_{SRLE}\)	\(Bias(\hat{\psi}_{SRLE}) = 2^{-1}((1 + d)\tau A - (1 - d)\gamma)\)	\(D(\hat{\psi}_{SRLE}) = 2^{-2}((1 + d)^2 \sigma^2 \tau\)	\(MSEM(\hat{\psi}_{SRLE}) = 2^{-2}((1 + d)^2 \sigma^2 \tau + ((1 + d)\tau A - (1 - d)\gamma)((1 + d)\tau A - (1 - d)\gamma)')\)
\(\hat{\psi}_{SRAUDE}\)	\(Bias(\hat{\psi}_{SRAUDE}) = 2^{-2}((1 + d)^2 (3 - d)\tau A - (1 - d)^2 \gamma)\)	\(D(\hat{\psi}_{SRAUDE}) = 2^{-2}(1 + d)^2 (3 - d)^2 \sigma^2 \tau\)	\(MSEM(\hat{\psi}_{SRAUDE}) = 2^{-2}(1 + d)^2 (3 - d)^2 \sigma^2 \tau + ((1 + d)(3 - d)\tau A - (1 - d)\gamma)((1 + d)(3 - d)\tau A - (1 - d)\gamma)'\)
\(\hat{\psi}_{SRRP}\)	\(Bias(\hat{\psi}_{SRRP}) = (T_h T_h' - I)\gamma + T_h T_h' \tau A\)	\(D(\hat{\psi}_{SRRP}) = \sigma^2 T_h T_h' T_h' T_h\)	\(MSEM(\hat{\psi}_{SRRP}) = \sigma^2 T_h T_h' T_h' T_h + ((T_h T_h' - I)\gamma + T_h T_h' \tau A)((T_h T_h' - I)\gamma + T_h T_h' \tau A)'\)
\(\hat{\psi}_{SRRk}\)	\(Bias(\hat{\psi}_{SRRk}) = (1 + k)^{-1}((T_h T_h' - (1 + k)I)\gamma + T_h T_h' \tau A)\)	\(D(\hat{\psi}_{SRRk}) = (1 + k)^{-2} \sigma^2 T_h T_h' \tau A T_h\)	\(MSEM(\hat{\psi}_{SRRk}) = (1 + k)^{-2}((\sigma^2 T_h T_h' \tau A T_h + ((T_h T_h' - (1 + k)I)\gamma + T_h T_h' \tau A)((T_h T_h' - (1 + k)I)\gamma + T_h T_h' \tau A)'\)
\(\hat{\psi}_{SRRd}\)	\(Bias(\hat{\psi}_{SRRd}) = 2^{-1}(1 + d)((T_h T_h' - 2(1 + d)^{-1}I)\gamma + T_h T_h' \tau A)\)	\(D(\hat{\psi}_{SRRd}) = 2^{-2}(1 + d)^2 \sigma^2 T_h T_h' \tau A T_h\)	\(MSEM(\hat{\psi}_{SRRd}) = 2^{-2}(1 + d)^2((\sigma^2 T_h T_h' \tau A T_h + ((T_h T_h' - 2(1 + d)^{-1}I)\gamma + T_h T_h' \tau A)((T_h T_h' - 2(1 + d)^{-1}I)\gamma + T_h T_h' \tau A)'\)
Table B2. Estimated SMSE values of the estimators

k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\((l, p) = (4, 0)\)									
SMSE(\(\hat{y}_{MRE}\))	0.119	0.119	0.119	0.119	0.119	0.119	0.119	0.119	0.119
SMSE(\(\hat{y}_{SRRE}\))	0.545	1.672	3.174	4.860	6.621	8.388	10.124	11.805	13.420
SMSE(\(\hat{y}_{SRAURE}\))	0.116	0.142	0.246	0.456	0.777	1.206	1.729	2.333	3.002
SMSE(\(\hat{y}_{SRLE}\))	12.104	9.550	7.302	5.359	3.722	2.390	1.364	0.644	0.229
SMSE(\(\hat{y}_{SRPCR}\))	2.450	1.545	0.930	0.536	0.304	0.182	0.131	0.117	0.117
SMSE(\(\hat{r}_{rk}\))	3.336	3.336	3.336	3.336	3.336	3.336	3.336	3.336	3.336
SMSE(\(\hat{r}_{rd}\))	14.546	12.132	10.011	8.182	6.644	5.399	4.445	3.784	3.414
\((l, p) = (3, 1)\)									
SMSE(\(\hat{y}_{MRE}\))	2.974	2.974	2.974	2.974	2.974	2.974	2.974	2.974	2.974
SMSE(\(\hat{y}_{SRRE}\))	1.171	0.395	0.255	0.511	1.014	1.668	2.411	3.202	4.014
SMSE(\(\hat{y}_{SRAURE}\))	2.771	2.323	1.803	1.312	0.900	0.588	0.379	0.269	0.248
SMSE(\(\hat{y}_{SRLE}\))	3.349	2.156	1.251	0.634	0.305	0.263	0.509	1.043	1.865
SMSE(\(\hat{y}_{SRPCR}\))	0.259	0.437	0.767	1.185	1.633	2.064	2.440	2.730	2.912
SMSE(\(\hat{r}_{rk}\))	13.712	13.712	13.712	13.712	13.712	13.712	13.712	13.712	13.712
SMSE(\(\hat{r}_{rd}\))	13.273	13.276	13.541	13.959	14.464	15.015	15.586	16.159	16.725
\((l, p) = (2, 2)\)									
SMSE(\(\hat{y}_{MRE}\))	8.499	8.499	8.499	8.499	8.499	8.499	8.499	8.499	8.499
SMSE(\(\hat{y}_{SRRE}\))	4.873	2.617	1.251	0.477	0.102	0.001	0.008	0.297	0.508
SMSE(\(\hat{y}_{SRAURE}\))	8.128	7.285	6.253	5.197	4.203	3.314	2.544	1.987	1.365
SMSE(\(\hat{y}_{SRLE}\))	0.347	0.040	0.036	0.336	0.938	1.844	3.053	4.565	6.381
SMSE(\(\hat{y}_{SRPCR}\))	1.792	2.787	3.847	4.904	5.898	6.780	7.508	8.051	8.386
SMSE(\(\hat{r}_{rk}\))	12.232	12.232	12.232	12.232	12.232	12.232	12.232	12.232	12.232
SMSE(\(\hat{r}_{rd}\))	12.916	13.542	14.111	14.627	15.095	15.521	15.910	16.265	16.591
SMSE(\(\hat{r}_{rd}\))	16.326	15.784	15.264	14.765	14.288	13.834	13.400	12.989	12.599
(l, p)	k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$(4, 0)$	$SMSE(\hat{y}_{MRE})$	7954.9	7954.9	7954.9	7954.9	7954.9	7954.9	7954.9	7954.9	7954.9
	$SMSE(\hat{y}_{SRRE})$	6460.6	5334.0	4464.9	3781.5	**3235.0**	**2791.9**	**2428.0**	**2125.8**	**1872.5**
	$SMSE(\hat{y}_{SRAURe})$	7812.7	7481.8	7060.7	6606.0	6149.6	5709.1	5293.2	4905.9	4548.1
	$SMSE(\hat{y}_{SRLE})$	**2076.5**	**2541.7**	**3053.8**	**3613.0**	4219.3	4872.4	5572.6	6319.7	7113.8
	$SMSE(\hat{y}_{SRAuckle})$	4838.6	5428.8	5977.7	6474.8	6910.9	7278.3	7570.6	7783.0	7911.8
	$SMSE(\hat{y}_{SRPCr})$	7954.8	7954.8	7954.8	7954.8	7954.8	7954.8	7954.8	7954.8	7954.8
	$SMSE(\hat{y}_{SRck})$	6460.5	5333.9	4464.8	3781.4	3235.1	2790.0	2428.1	2125.9	1872.6
	$SMSE(\hat{y}_{SRad})$	**2076.6**	**2541.8**	**3053.9**	**3613.1**	4219.2	4872.3	5572.5	6319.6	7113.7
$(3, 1)$	$SMSE(\hat{y}_{MRE})$	3496.8	3496.8	3496.8	3496.8	3496.8	3496.8	3496.8	3496.8	3496.8
	$SMSE(\hat{y}_{SRRE})$	2966.2	2557.4	2235.1	1976.2	**1764.7**	**1589.4**	**1442.4**	**1317.7**	**1210.9**
	$SMSE(\hat{y}_{SRAURe})$	3446.7	3330.0	3180.7	3018.3	2854.2	2694.5	2542.4	2399.5	2266.3
	$SMSE(\hat{y}_{SRLE})$	**1297.0**	**1488.7**	**1693.5**	**1911.5**	2142.7	2387.1	2644.7	2915.5	3199.5
	$SMSE(\hat{y}_{SRAuckle})$	2374.6	2592.1	2792.0	2971.3	3127.3	3257.9	3361.4	3436.3	3481.6
	$SMSE(\hat{y}_{SRPCr})$	5417.8	5417.8	5417.8	5417.8	5417.8	5417.8	5417.8	5417.8	5417.8
	$SMSE(\hat{y}_{SRck})$	4572.5	3922.8	3412.0	3002.4	2668.7	2392.8	2161.8	1966.4	1799.3
	$SMSE(\hat{y}_{SRad})$	1934.1	2234.4	2556.5	2900.2	3265.6	3652.7	4061.5	4491.9	4944.0
$(2, 2)$	$SMSE(\hat{y}_{MRE})$	4864.5	4864.5	4864.5	4864.5	4864.5	4864.5	4864.5	4864.5	4864.5
	$SMSE(\hat{y}_{SRRE})$	4110.3	3530.3	3073.9	2707.9	2409.5	2162.6	1955.9	1780.8	1631.1
	$SMSE(\hat{y}_{SRAURe})$	4793.3	4627.3	4415.0	4184.3	3951.3	3724.7	3509.1	3306.6	3118.0
	$SMSE(\hat{y}_{SRLE})$	1751.9	2020.9	2309.1	2616.5	2943.2	3289.0	3654.1	4038.3	4441.8
	$SMSE(\hat{y}_{SRAuckle})$	3271.3	3579.5	3863.0	4117.5	4339.1	4524.8	4671.9	4778.4	4842.9
	$SMSE(\hat{y}_{SRPCr})$	847.0	847.0	847.0	847.0	847.0	847.0	847.0	847.0	847.0
	$SMSE(\hat{y}_{SRck})$	737.8	652.6	584.6	529.3	**483.6**	**445.3**	**412.8**	**385.0**	**360.9**
	$SMSE(\hat{y}_{SRad})$	**380.3**	**423.1**	**468.1**	**515.4**	565.0	616.8	670.9	727.3	786.0
Table B4. Estimated SMSE values of the estimators when \(n = 50 \) and \(\rho = 0.9 \)

\(l/p \)	\(k/d \)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
\((l, p) = (3, 0) \)	\(SMSE(\hat{y}_{MRE}) \)	5.73	5.73	5.73	5.73	5.73	5.73	5.73	5.73	5.73
	\(SMSE(\hat{y}_{SSRE}) \)	7.38	12.01	18.23	25.25	32.60	39.98	47.23	54.27	61.03
	\(SMSE(\hat{y}_{SRAURe}) \)	5.70	5.78	6.18	7.01	8.32	10.08	12.24	14.74	17.52
	\(SMSE(\hat{y}_{SRLLE}) \)	55.52	44.84	35.44	27.33	20.51	14.98	10.74	7.78	6.11
	\(SMSE(\hat{y}_{SRAULE}) \)	15.23	11.48	8.95	7.34	6.40	5.93	5.74	5.70	5.71
	\(SMSE(\hat{y}_{SRPCR}) \)	165.01	165.01	165.01	165.01	165.01	165.01	165.01	165.01	165.01
	\(SMSE(\hat{y}_{SRrd}) \)	182.06	178.16	174.76	171.87	169.47	167.58	166.18	165.29	164.90
\((l, p) = (4, 1) \)	\(SMSE(\hat{y}_{MRE}) \)	31.497	31.497	31.497	31.497	31.497	31.497	31.497	31.497	31.497
	\(SMSE(\hat{y}_{SSRE}) \)	17.883	9.773	5.207	2.969	2.280	2.631	3.679	5.192	7.009
	\(SMSE(\hat{y}_{SRAURe}) \)	30.085	26.888	23.008	19.078	15.433	12.229	9.522	7.312	5.568
	\(SMSE(\hat{y}_{SRLLE}) \)	5.503	3.268	2.314	2.640	4.248	7.136	11.305	16.755	23.486
	\(SMSE(\hat{y}_{SRAULE}) \)	6.961	10.369	14.144	17.998	21.683	24.985	27.733	29.792	31.066
	\(SMSE(\hat{y}_{SRPCR}) \)	44.136	44.136	44.136	44.136	44.136	44.136	44.136	44.136	44.136
	\(SMSE(\hat{y}_{SRrd}) \)	37.801	34.469	33.032	32.809	33.368	34.431	35.814	37.393	39.085
\((l, p) = (2, 2) \)	\(SMSE(\hat{y}_{MRE}) \)	61.869	61.869	61.869	61.869	61.869	61.869	61.869	61.869	61.869
	\(SMSE(\hat{y}_{SSRE}) \)	41.520	27.719	18.282	11.828	7.455	4.559	2.724	1.661	1.161
	\(SMSE(\hat{y}_{SRAURe}) \)	59.848	55.213	49.447	43.407	37.559	32.139	27.250	22.918	19.130
	\(SMSE(\hat{y}_{SRLLE}) \)	1.533	3.238	6.192	10.397	15.851	22.555	30.509	39.712	50.166
	\(SMSE(\hat{y}_{SRAULE}) \)	22.190	28.818	35.416	41.703	47.435	52.406	56.448	59.428	61.254
	\(SMSE(\hat{y}_{SRPCR}) \)	38.090	38.090	38.090	38.090	38.090	38.090	38.090	38.090	38.090
	\(SMSE(\hat{y}_{SRrd}) \)	34.346	32.175	31.013	30.508	30.438	30.657	31.066	31.601	32.216
	\(SMSE(\hat{y}_{SRle}) \)	31.708	30.913	30.494	30.451	30.784	31.493	32.579	34.040	35.877
Table B5. Estimated SMSE values of the estimators when $n = 50$ and $\rho = 0.99$

k/d	$(l, p) = (5, 0)$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
SMSE(\hat{f}_{MRE})	5.89	5.89	5.89	5.89	5.89	5.89	5.89	5.89	5.89	
SMSE(\hat{f}_{SRRE})	7.38	11.93	18.13	25.16	32.54	39.97	47.29	54.38	61.21	
SMSE(\hat{f}_{SRAURE})	**5.84**	**5.88**	6.23	7.02	8.29	10.02	12.16	14.65	17.42	
SMSE(\hat{f}_{SRLE})	55.65	44.87	35.41	27.25	20.41	14.88	10.67	7.76	6.17	
SMSE(\hat{f}_{SRAULE})	15.13	11.41	8.91	7.34	6.44	6.01	**5.85**	**5.84**	**5.87**	
SMSE(\hat{f}_{SRPCR})	195.79	195.79	195.79	195.79	195.79	195.79	195.79	195.79	195.79	
SMSE(\hat{f}_{SRrk})	195.66	196.47	197.82	199.45	201.22	203.04	204.85	206.63	208.36	
SMSE(\hat{f}_{SRrd})	206.95	204.25	201.91	199.94	198.34	197.10	196.22	195.71	195.57	

k/d	$(l, p) = (4, 1)$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
SMSE(\hat{f}_{MRE})	19.939	19.939	19.939	19.939	19.939	19.939	19.939	19.939	19.939	
SMSE(\hat{f}_{SRRE})	10.064	**5.145**	**3.333**	**3.494**	4.914	7.131	9.844	12.850	16.014	
SMSE(\hat{f}_{SRAURE})	18.862	16.462	13.629	10.873	8.458	6.497	**5.017**	**4.004**	**3.417**	
SMSE(\hat{f}_{SRLE})	13.416	8.899	5.691	3.795	**3.209**	**3.934**	5.969	9.315	13.972	
SMSE(\hat{f}_{SRAULE})	**3.866**	5.457	7.647	10.142	12.685	15.060	17.091	18.640	19.609	
SMSE(\hat{f}_{SRPCR})	47.194	47.194	47.194	47.194	47.194	47.194	47.194	47.194	47.194	
SMSE(\hat{f}_{SRrk})	42.791	41.218	41.373	42.592	44.459	46.710	49.175	51.742	54.339	
SMSE(\hat{f}_{SRrd})	52.213	48.337	45.290	43.073	41.686	41.128	41.400	42.502	44.433	

k/d	$(l, p) = (3, 2)$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
SMSE(\hat{f}_{MRE})	49.955	49.955	49.955	49.955	49.955	49.955	49.955	49.955	49.955	
SMSE(\hat{f}_{SRRE})	31.645	19.652	11.823	6.804	**3.718**	**1.979**	**1.190**	**1.076**	**1.443**	
SMSE(\hat{f}_{SRAURE})	48.113	43.906	38.710	33.317	28.157	23.440	19.254	15.617	12.509	
SMSE(\hat{f}_{SRLE})	**1.112**	**1.367**	**2.914**	**5.755**	9.889	15.316	22.036	30.049	39.355	
SMSE(\hat{f}_{SRAULE})	15.014	20.589	26.283	31.807	36.908	41.372	45.025	47.731	49.394	
SMSE(\hat{f}_{SRPCR})	44.297	44.297	44.297	44.297	44.297	44.297	44.297	44.297	44.297	
SMSE(\hat{f}_{SRrk})	40.730	38.850	38.034	37.900	38.206	38.796	39.565	40.445	41.389	
SMSE(\hat{f}_{SRrd})	40.613	39.293	38.406	37.951	37.928	38.337	39.179	40.452	42.158	
Table B6. Estimated SMSE values of the estimators when $n = 50$ and $\rho = 0.999$

k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$(l, p) = (5, 0)$									
SMSE(\hat{p}_{MRE})	**2.39**	**2.39**	**2.39**	**2.39**	**2.39**	**2.39**	**2.39**	**2.39**	**2.39**
SMSE(\hat{p}_{SRRE})	4.52	9.46	15.90	23.06	30.49	37.93	45.21	52.26	59.02
SMSE($\hat{p}_{SRRAURE}$)	2.41	2.60	3.13	4.11	5.55	7.44	9.71	12.30	15.16
SMSE(\hat{p}_{SRLE})	53.51	42.81	33.36	25.17	18.23	12.55	8.13	4.96	3.05
SMSE($\hat{p}_{SRRAULE}$)	12.80	8.91	6.23	4.47	3.41	2.81	2.53	2.42	2.40
SMSE(\hat{p}_{SRPCR})	196.31	196.31	196.31	196.31	196.31	196.31	196.31	196.31	196.31
SMSE(\hat{p}_{SRrk})	196.66	197.70	199.12	200.72	202.39	204.08	205.74	207.35	208.90
SMSE(\hat{p}_{SRld})	207.64	205.19	203.05	201.19	199.64	198.38	197.41	196.75	196.38
$(l, p) = (4, 1)$									
SMSE(\hat{p}_{MRE})	13.160	13.160	13.160	13.160	13.160	13.160	13.160	13.160	13.160
SMSE(\hat{p}_{SRRE})	5.343	**2.031**	**1.501**	**2.706**	4.988	7.929	11.255	14.786	18.405
SMSE($\hat{p}_{SRRAURE}$)	12.276	10.327	8.073	5.949	4.176	2.841	**1.962**	**1.516**	**1.461**
SMSE(\hat{p}_{SRLE})	15.440	10.116	6.059	3.270	**1.749**	**1.496**	2.510	4.792	8.342
SMSE($\hat{p}_{SRRAULE}$)	**1.478**	2.206	3.608	5.401	7.336	9.204	10.835	12.095	12.889
SMSE(\hat{p}_{SRPCR})	45.790	45.790	45.790	45.790	45.790	45.790	45.790	45.790	45.790
SMSE(\hat{p}_{SRrk})	42.368	41.593	42.412	44.190	46.535	49.198	52.022	54.906	57.784
SMSE(\hat{p}_{SRld})	55.431	51.070	47.532	44.815	42.922	41.850	41.602	42.175	43.571
$(l, p) = (3, 2)$									
SMSE(\hat{p}_{MRE})	42.748	42.748	42.748	42.748	42.748	42.748	42.748	42.748	42.748
SMSE(\hat{p}_{SRRE})	26.110	15.416	8.618	4.435	**2.035**	**0.870**	**0.566**	**0.866**	**1.589**
SMSE($\hat{p}_{SRRAURE}$)	41.064	37.224	32.498	27.618	22.976	18.767	15.066	11.885	9.204
SMSE(\hat{p}_{SRLE})	**0.971**	**0.590**	**1.465**	**3.595**	6.982	11.624	17.521	24.675	33.084
SMSE($\hat{p}_{SRRAULE}$)	11.362	16.241	21.300	26.256	30.864	34.916	38.244	40.715	42.235
SMSE(\hat{p}_{SRPCR})	44.641	44.641	44.641	44.641	44.641	44.641	44.641	44.641	44.641
SMSE(\hat{p}_{SRrk})	41.468	39.910	39.365	39.461	39.965	40.726	41.646	42.659	43.722
SMSE(\hat{p}_{SRld})	42.850	41.326	40.233	39.571	39.339	39.538	40.168	41.229	42.720
Table B7. Estimated SMSE values of the predictors when $n = 50$ and $\rho = 0.9$

k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$(l, p) = (5, 0)$									
$\text{SMSE}(\hat{\gamma}_{\text{MRE}})$	26713	26713	26713	26713	26713	26713	26713	26713	26713
$\text{SMSE}(\hat{\gamma}_{\text{SRRE}})$	22354	19021	16413	14333	12646	11258	10101	9127	8298
$\text{SMSE}(\hat{\gamma}_{\text{SRRAURe}})$	26300	25340	24112	22781	21439	20136	18900	17741	16665
$\text{SMSE}(\hat{\gamma}_{\text{SRLE}})$	8966	10464	12081	13816	15669	17641	19731	21940	24267
$\text{SMSE}(\hat{\gamma}_{\text{SRRAULe}})$	17540	19304	20931	22396	23674	24747	25598	26214	26588
$\text{SMSE}(\hat{\gamma}_{\text{SRPCr}})$	26257	26257	26257	26257	26257	26257	26257	26257	26257
$\text{SMSE}(\hat{\gamma}_{\text{SRrk}})$	21978	18705	16144	14101	12444	11080	9944	8987	8172
$\text{SMSE}(\hat{\gamma}_{\text{SStd}})$	**8829**	**10301**	**11889**	**13593**	15143	17350	19402	21571	23856
$(l, p) = (4, 1)$									
$\text{SMSE}(\hat{\gamma}_{\text{MRE}})$	16251	16251	16251	16251	16251	16251	16251	16251	16251
$\text{SMSE}(\hat{\gamma}_{\text{SRRE}})$	13669	11690	10139	8898	7891	7060	6366	5781	5282
$\text{SMSE}(\hat{\gamma}_{\text{SRRAURe}})$	16007	15438	14711	13922	13126	12352	11618	10929	10288
$\text{SMSE}(\hat{\gamma}_{\text{SRLE}})$	5684	6584	7553	8590	9695	10869	12112	13423	14803
$\text{SMSE}(\hat{\gamma}_{\text{SRRAULe}})$	10809	11858	12824	13693	14451	15087	15591	15956	16177
$\text{SMSE}(\hat{\gamma}_{\text{SRPCr}})$	8636	8636	8636	8636	8636	8636	8636	8636	8636
$\text{SMSE}(\hat{\gamma}_{\text{SRrk}})$	7314	6299	5502	4863	4342	**3912**	**3552**	**3248**	**2988**
$\text{SMSE}(\hat{\gamma}_{\text{SStd}})$	**3198**	**3666**	**4167**	**4703**	5273	5877	6516	7188	7895
$(l, p) = (3, 2)$									
$\text{SMSE}(\hat{\gamma}_{\text{MRE}})$	14936	14936	14936	14936	14936	14936	14936	14936	14936
$\text{SMSE}(\hat{\gamma}_{\text{SRRE}})$	12511	10657	9207	8051	7114	6344	5702	5161	4702
$\text{SMSE}(\hat{\gamma}_{\text{SRRAURe}})$	14707	14172	13489	12748	12002	11277	10590	9945	9347
$\text{SMSE}(\hat{\gamma}_{\text{SRLE}})$	5072	5903	6800	7764	8794	9890	11052	12280	13575
$\text{SMSE}(\hat{\gamma}_{\text{SRRAULe}})$	9833	10814	11719	12534	13245	13842	14316	14659	14867
$\text{SMSE}(\hat{\gamma}_{\text{SRPCr}})$	5972	5972	5972	5972	5972	5972	5972	5972	5972
$\text{SMSE}(\hat{\gamma}_{\text{SRrk}})$	5054	4350	3799	3358	3000	2705	2458	2250	2073
$\text{SMSE}(\hat{\gamma}_{\text{SStd}})$	**2216**	**2536**	**2880**	**3248**	3641	4059	4500	4966	5457
Table B8. Estimated SMSE values of the predictors when $n = 50$ and $\rho = 0.99$

k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$(l, p) = (5, 0)$									
$SMSE(\hat{y}_{MRE})$	20010	20010	20010	20010	20010	20010	20010	20010	20010
$SMSE(\hat{y}_{SRRE})$	16798	14337	12410	10871	9620	8591	7731	7007	6390
$SMSE(\hat{y}_{SRAURE})$	19707	18999	18094	17112	16122	15161	14248	13392	12596
$SMSE(\hat{y}_{SRLE})$	6887	8001	9201	10487	11859	13318	14862	16492	18208
$SMSE(\hat{y}_{SRAULE})$	13243	14546	15748	16828	17771	18562	19189	19643	19918
$SMSE(\hat{y}_{SRPCR})$	19969	19969	19969	19969	19969	19969	19969	19969	19969
$SMSE(\hat{y}_{SRrk})$	16763	14309	12386	10849	9602	8574	7717	6994	6378
$SMSE(\hat{y}_{SRrd})$	**6875**	**7986**	**9184**	**10467**	11836	13291	14832	16458	18171
$(l, p) = (4, 1)$									
$SMSE(\hat{y}_{MRE})$	17211	17211	17211	17211	17211	17211	17211	17211	17211
$SMSE(\hat{y}_{SRRE})$	14481	12389	10748	9436	8369	7490	6756	6135	5607
$SMSE(\hat{y}_{SRAURE})$	16953	16351	15583	14749	13907	13089	12313	11584	10906
$SMSE(\hat{y}_{SRLE})$	6033	6986	8012	9109	10279	11521	12835	14221	15680
$SMSE(\hat{y}_{SRAULE})$	11457	12566	13589	14507	15308	15980	16513	16899	17132
$SMSE(\hat{y}_{SRPCR})$	10589	10589	10589	10589	10589	10589	10589	10589	10589
$SMSE(\hat{y}_{SRrk})$	8960	7709	6725	5937	**5295**	**4765**	**4321**	**3946**	**3625**
$SMSE(\hat{y}_{SRrd})$	**3884**	**4461**	**5080**	**5741**	6444	7189	7976	8805	9676
$(l, p) = (3, 2)$									
$SMSE(\hat{y}_{MRE})$	15859	15859	15859	15859	15859	15859	15859	15859	15859
$SMSE(\hat{y}_{SRRE})$	13285	11318	9779	8552	7556	6738	6056	5482	4994
$SMSE(\hat{y}_{SRAURE})$	15615	15048	14323	13537	12745	11976	11246	10562	9927
$SMSE(\hat{y}_{SRLE})$	5388	6270	7223	8246	9340	10503	11737	13040	14414
$SMSE(\hat{y}_{SRAULE})$	10443	11484	12445	13310	14064	14698	15200	15564	15785
$SMSE(\hat{y}_{SRPCR})$	7664	7664	7664	7664	7664	7664	7664	7664	7664
$SMSE(\hat{y}_{SRrk})$	6471	5557	4840	4267	**3802**	**3418**	**3098**	**2828**	**2597**
$SMSE(\hat{y}_{SRrd})$	**2783**	**3198**	**3646**	**4124**	4635	5177	5751	6357	6995
Table B9. Estimated SMSE values of the predictors when $n = 50$ and $\rho = 0.999$

k/d	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
$(l, p) = (5, 0)$									
$\text{SMSE}(\tilde{y}_{\text{MRE}})$	16692	16692	16692	16692	16692	16692	16692	16692	16692
$\text{SMSE}(\tilde{y}_{\text{SRRE}})$	14034	11998	10401	9125	8088	7234	6520	5918	5405
$\text{SMSE}(\tilde{y}_{\text{SRAURE}})$	16441	15855	15107	14295	13475	12679	11923	11214	10555
$\text{SMSE}(\tilde{y}_{\text{SRLE}})$	5819	6744	7741	8807	9945	11153	12432	13781	15201
$\text{SMSE}(\tilde{y}_{\text{SRAULE}})$	11091	12170	13165	14060	14840	15494	16013	16388	16616
$\text{SMSE}(\tilde{y}_{\text{SRPCR}})$	16689	16689	16689	16689	16689	16689	16689	16689	16689
$\text{SMSE}(\tilde{y}_{\text{SRK}})$	14031	11995	10399	9123	8087	7232	6519	5917	5404
$\text{SMSE}(\tilde{y}_{\text{SRrd}})$	**5818**	6743	7739	**8805**	9943	11151	12429	13778	15198
$(l, p) = (4, 1)$									
$\text{SMSE}(\tilde{y}_{\text{MRE}})$	16427	16427	16427	16427	16427	16427	16427	16427	16427
$\text{SMSE}(\tilde{y}_{\text{SRRE}})$	13834	11845	10284	9036	8021	7184	6484	5893	5389
$\text{SMSE}(\tilde{y}_{\text{SRAURE}})$	16182	15610	14880	14088	13288	12511	11772	11080	10435
$\text{SMSE}(\tilde{y}_{\text{SRLE}})$	5795	6704	7680	8725	9838	11019	12269	13587	14973
$\text{SMSE}(\tilde{y}_{\text{SRAULE}})$	10959	12014	12985	13858	14620	15258	15764	16130	16352
$\text{SMSE}(\tilde{y}_{\text{SRPCR}})$	10765	10765	10765	10765	10765	10765	10765	10765	10765
$\text{SMSE}(\tilde{y}_{\text{SRK}})$	9110	7839	6840	6039	**5387**	**4848**	**4396**	**4015**	**3689**
$\text{SMSE}(\tilde{y}_{\text{SRrd}})$	**3952**	**4538**	**5168**	**5840**	**6554**	7311	8111	8953	9837
$(l, p) = (3, 2)$									
$\text{SMSE}(\tilde{y}_{\text{MRE}})$	15149	15149	15149	15149	15149	15149	15149	15149	15149
$\text{SMSE}(\tilde{y}_{\text{SRRE}})$	12696	10820	9352	8182	7233	6452	5801	5253	4787
$\text{SMSE}(\tilde{y}_{\text{SRAURE}})$	14917	14376	13685	12936	12181	11447	10752	10100	9494
$\text{SMSE}(\tilde{y}_{\text{SRLE}})$	5163	6006	6915	7891	8934	10043	11219	12463	13772
$\text{SMSE}(\tilde{y}_{\text{SRAULE}})$	9986	10979	11895	12719	13439	14042	14521	14868	15079
$\text{SMSE}(\tilde{y}_{\text{SRPCR}})$	7736	7736	7736	7736	7736	7736	7736	7736	7736
$\text{SMSE}(\tilde{y}_{\text{SRK}})$	6527	5600	4874	4294	**3823**	**3435**	**3111**	**2838**	**2605**
$\text{SMSE}(\tilde{y}_{\text{SRrd}})$	**2793**	**3213**	**3665**	**4150**	4667	5216	5798	6412	7058
Appendix C: Corollaries

Corollary C1:

a) $\hat{\gamma}_{SRRE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$(\tau A - ky)'(k(2 + k)\sigma^2 \tau + (1 + k)^2(\tau A)'(\tau A))^{-1}(\tau A - ky) \leq 1$$

Proof: Consider $D_{(i,j)} = D(\hat{\gamma}_{MRE}) - D(\hat{\gamma}_{SRRE}) = \sigma^2 \tau - (1 + k)^{-2}\sigma^2 \tau$

$$= ((1 + k)^2 - 1)(1 + k)^{-2}\sigma^2 \tau$$

$$= k(2 + k)(1 + k)^{-2}\sigma^2 \tau$$

Since $k > 0$ and $\tau > 0$, hence $D_{(i,j)} > 0$. This completes the proof.

b) If $A \geq 0$, $\hat{\gamma}_{SRRE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathfrak{R}(A)$ and $\theta' A^{-1} \theta \leq 1$, where $A = X_\omega(k(2 + k)(1 + k)^{-2}\sigma^2 \tau + (\tau A)'(\tau A)' - (1 + k)^{-2}(\tau A - ky)(\tau A - ky)' + k^2(1 + k)^{-2}(\gamma + \tau A)(\gamma + \tau A)' X_\omega + \delta \delta'$. $\mathfrak{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + k(1 + k)^{-1} X_\omega(\gamma + \tau A)$.

Corollary C2:

a) $\hat{\gamma}_{SRAURE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$(1 + 2k)\tau A - k^2 \gamma)'(k^2(2 + 4k + 2)\sigma^2 \tau + (1 + k)^4(\tau A)'(\tau A))^{-1}(1 + 2k)\tau A - k^2 \gamma) \leq 1$$

Proof: Consider $D_{(i,j)} = D(\hat{\gamma}_{MRE}) - D(\hat{\gamma}_{SRAURE}) = \sigma^2 \tau - (1 + k)^{-4}(1 + 2k)^2 \sigma^2 \tau$

$$= ((1 + k)^4 - (1 + 2k)^2)(1 + k)^{-4}\sigma^2 \tau$$

$$= k^2(2 + 4k + 2)(1 + k)^{-4}\sigma^2 \tau$$

Since $k > 0$ and $\tau > 0$, hence $D_{(i,j)} > 0$. This completes the proof.

b) If $A \geq 0$, $\hat{\gamma}_{SRAURE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathfrak{R}(A)$ and $\theta' A^{-1} \theta \leq 1$, where $A = X_\omega(k^2(2 + 4k + 2)(1 + k)^{-4}\sigma^2 \tau + (\tau A)'(\tau A)' - (1 + k)^{-4}(1 + 2k)\tau A - k^2 \gamma)' + k^4(1 + k)^{-4}(\gamma + \tau A)(\gamma + \tau A)' X_\omega + \delta \delta'$. $\mathfrak{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + k^2(1 + k)^{-2} X_\omega(\gamma + \tau A)$.

Corollary C3:

a) $\hat{\gamma}_{SRLE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$(1 + d)\tau A - (1 - d) \gamma)'((3 + d)(1 - d)\sigma^2 \tau + 2^2(\tau A)'(\tau A))^{-1}(1 + d)\tau A - (1 - d) \gamma) \leq 1$$

Proof: Consider $D_{(i,j)} = D(\hat{\gamma}_{MRE}) - D(\hat{\gamma}_{SRLE}) = \sigma^2 \tau - 2^{-2}(1 + d)^2 \sigma^2 \tau$

$$= (4 - (1 + d)^2)2^{-2}\sigma^2 \tau$$

$$= 2^{-2}(3 + d)(1 - d)\sigma^2 \tau$$

Since $0 < d < 1$ and $\tau > 0$, hence $D_{(i,j)} > 0$. This completes the proof.
b) If $A \geq 0$, $\hat{\gamma}_{SRLE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_\ast(2^{-2}(3 + d)(1 - d)\sigma^2 \tau + (\tau A)(\tau A)' - 2^{-2}((1 + d)\tau A - (1 - d)\gamma)((1 + d)\tau A - (1 - d)\gamma)' + 2^{-2}(1 - d)^2(\gamma + \tau A)(\gamma + \tau A)'\mathcal{X}' + \delta \delta'$, $\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + 2^{-2}(1 - d) X_\ast(y + \tau A)$.

Corollary C4:

a) $\hat{\gamma}_{SRARULE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$((1 + d)(3 - d)\tau A - (1 - d)^2\gamma)'((7 + 2d - d^2)(1 - d)^2\sigma^2 \tau + 2^4(\tau A)(\tau A))^{-1}((1 + d)(3 - d)\tau A - (1 - d)^2\gamma) \leq 1$$

Proof: Consider $D_{(i,j)} = D(\hat{\gamma}_{MRE}) - D(\hat{\gamma}_{SRARULE}) = \sigma^2 \tau - 2^{-4}(1 + d)^2(3 - d)^2\sigma^2 \tau$

$$= (2^{-4} - (1 + d)^2(3 - d)^2)2^{-4}\sigma^2 \tau$$

$$= 2^{-4}(7 + 2d - d^2)(1 - d)^2\sigma^2 \tau$$

Since $0 < d < 1$ and $\tau > 0$, hence $D_{(i,j)} > 0$. This completes the proof.

b) If $A \geq 0$, $\hat{\gamma}_{SRARULE}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_\ast(2^{-4}(7 + 2d - d^2)(1 - d)^2\sigma^2 \tau + (\tau A)(\tau A)' - 2^{-4}((1 + d)(3 - d)\tau A - (1 - d)^2\gamma)' + 2^{-4}(1 - d)^4(\gamma + \tau A)(\gamma + \tau A)'\mathcal{X}' + \delta \delta'$, $\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + 2^{-2}(1 - d)^2 X_\ast(y + \tau A)$.

Corollary C5:

a) If $\lambda_\ast < 1$, $\hat{\gamma}_{SRPCR}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$(T_h T_h' - I)\gamma + T_h T_h'\tau A)'((\sigma^2(\tau - T_h T_h'\tau T_h' T_h) + (\tau A)(\tau A))^{-1}((T_h T_h' - I)\gamma + T_h T_h'\tau A) \leq 1$$

where λ_\ast is the largest eigenvalue of $T_h T_h'\tau T_h' T_h^{-1}$.

Proof: Consider $D_{(i,j)} = D(\hat{\gamma}_{MRE}) - D(\hat{\gamma}_{SRPCR}) = \sigma^2 \tau - \sigma^2 T_h T_h'\tau T_h' T_h$

$$= \sigma^2(\tau - T_h T_h'\tau T_h' T_h)$$

Since $\tau > 0$, according to **Lemma A2** (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_\ast < 1$, where λ_\ast is the largest eigenvalue of $T_h T_h'\tau T_h' T_h^{-1}$. This completes the proof.

b) If $A \geq 0$, $\hat{\gamma}_{SRPCR}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_\ast(\sigma^2(\tau - T_h T_h'\tau T_h' T_h)) + (\tau A)(\tau A)' - ((T_h T_h' - I)\gamma + T_h T_h'\tau A)((T_h T_h' - I)\gamma + T_h T_h'\tau A)' + (I - T_h T_h)(\gamma + \tau A)(\gamma + \tau A)'(I - T_h T_h)'\mathcal{X}' + \delta \delta'$, $\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + X_\ast(I - T_h T_h')(\gamma + \tau A)$.

Corollary C6:

a) If $\lambda_\ast < 1$, $\hat{\gamma}_{SRPCA}$ is superior to $\hat{\gamma}_{MRE}$ in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[(1 + k)^{-2}((T_hT'_h - (1 + k)I)\gamma + T_hT'_h\tau A)^{'}(\sigma^2(\tau - (1 + k)^{-2}T_hT'_h\tau T_hT_h) + (\tau A)(\tau A)^{-1}((T_hT'_h - (1 + k)I)\gamma + T_hT'_h\tau A) \leq 1 \]

where \(\lambda_s\) is the largest eigenvalue of \((1 + k)^{-2}T_hT'_h\tau T_hT_h\tau^{-1}\).

Proof: Consider \(D_{(i,j)} = D(\hat{y}_{MRE}) - D(\hat{y}_{SRrk}) = \sigma^2\tau - (1 + k)^{-2}\sigma^2T_hT'_h\tau T_hT_h = \sigma^2(\tau - (1 + k)^{-2}T_hT'_h\tau T_hT_h)\)

Since \(\tau > 0\), according to Lemma A2 (see Appendix A) \(D_{(i,j)} > 0\) if \(\lambda_s < 1\), where \(\lambda_s\) is the largest eigenvalue of \((1 + k)^{-2}T_hT'_h\tau T_hT_h\tau^{-1}\). This completes the proof.

b) If \(A \geq 0\), \(\hat{y}_{SRrk}\) is superior to \(\hat{y}_{MRE}\) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Theta(A)\) and \(\theta' A^{-1} \theta \leq 1\), where \(A = X_s(\sigma^2(\tau - (1 + k)^{-2}T_hT'_h\tau T_hT_h) + (\tau A)(\tau A)^{'} - (1 + k)^{-2}((T_hT'_h - (1 + k)I)\gamma + T_hT'_h\tau A)((T_hT'_h - (1 + k)I)\gamma + T_hT'_h\tau A)^{'} + (1 + k)^{-2}((1 + k)I - T_hT_h')(\gamma + \tau A)(\gamma + \tau A)'((1 + k)I - T_hT_h')\) \(X_s^{'} + \delta \delta^{'}\) \(\Theta(A)\) stands for column space of \(A\) and \(A^{-1}\) is an independent choice of g-inverse of \(A\) and \(\theta = \delta + (1 + k)^{-1}X_s((1 + k)I - T_hT_h')(\gamma + \tau A)\).

Corollary C7:

a) If \(\lambda_s < 1\), \(\hat{y}_{SRrd}\) is superior to \(\hat{y}_{MRE}\) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[2^{-2}(1 + d)^{-2}((T_hT'_h - 2(1 + d)^{-1})\gamma + T_hT'_h\tau A)^{'}(\sigma^2(\tau - 2^{-2}(1 + d)^{-2}T_hT'_h\tau T_hT_h) + (\tau A)(\tau A)^{-1}((T_hT'_h - 2(1 + d)^{-1})\gamma + T_hT'_h\tau A) \leq 1 \]

where \(\lambda_s\) is the largest eigenvalue of \(2^{-2}(1 + d)^{-2}T_hT'_h\tau T_hT_h\tau^{-1}\).

Proof: Consider \(D_{(i,j)} = D(\hat{y}_{MRE}) - D(\hat{y}_{SRrd}) = \sigma^2\tau - 2^{-2}(1 + d)^{-2}\sigma^2T_hT'_h\tau T_hT_h = \sigma^2(\tau - 2^{-2}(1 + d)^{-2}T_hT'_h\tau T_hT_h)\)

Since \(\tau > 0\), according to Lemma A2 (see Appendix A) \(D_{(i,j)} > 0\) if \(\lambda_s < 1\), where \(\lambda_s\) is the largest eigenvalue of \(2^{-2}(1 + d)^{-2}T_hT'_h\tau T_hT_h\tau^{-1}\). This completes the proof.

b) If \(A \geq 0\), \(\hat{y}_{SRrd}\) is superior to \(\hat{y}_{MRE}\) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Theta(A)\) and \(\theta' A^{-1} \theta \leq 1\), where \(A = X_s(\sigma^2(\tau - 2^{-2}(1 + d)^{-2}T_hT'_h\tau T_hT_h) + (\tau A)(\tau A)^{'} - 2^{-2}(1 + d)^{-2}((T_hT'_h - 2(1 + d)^{-1})\gamma + T_hT'_h\tau A)((T_hT'_h - 2(1 + d)^{-1})\gamma + T_hT'_h\tau A)^{'} + 2^{-2}(1 + d)^{-2}(2(1 + d)^{-1}I - T_hT_h')(\gamma + \tau A)(\gamma + \tau A)'(2(1 + d)^{-1}I - T_hT_h')\) \(X_s^{'} + \delta \delta^{'}\), \(\Theta(A)\) stands for column space of \(A\) and \(A^{-1}\) is an independent choice of g-inverse of \(A\) and \(\theta = \delta + 2^{-1}(1 + d)X_s(2(1 + d)^{-1}I - T_hT_h')(\gamma + \tau A)\).

Corollary C8:

a) \(\hat{y}_{SRRE}\) is superior to \(\hat{y}_{SRAURE}\) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[(1 + k)^2(\tau A - ky)^{'}(k(2 + 3k)\sigma^2\tau + ((1 + 2k)\tau A - k^2\gamma)((1 + 2k)\tau A - k^2\gamma)^{-1}(\tau A - ky)^{'} \leq 1 \]
Proof: Consider
\[D_{(i,j)} = D(\hat{y}_{SRAUE}) - D(\hat{y}_{SRRE}) = (1 + k)^{-4}(1 + 2k)^2\sigma^2\tau - (1 + k)^{-2}\sigma^2\tau \]
\[= ((1 + 2k)^2 - (1 + k)^2)(1 + k)^{-4}\sigma^2\tau \]
\[= k(2 + 3k)(1 + k)^{-4}\sigma^2\tau \]

Since \(k > 0 \) and \(\tau > 0 \), hence \(D_{(i,j)} > 0 \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRRE} \) is superior to \(\hat{y}_{SRAUE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Re(A) \) and \(\theta'A^{-1}\theta \leq 1 \), where \(A = X_*\left(k(2 + 3k)(1 + k)^{-4}\sigma^2\tau + (1 + k)^{-4}\left((1 + 2k)\tau A - k^2\gamma\right)((1 + 2k)\tau A - k^2\gamma)' - (1 + k)^{-2}(\tau A - k\gamma)(\tau A - k\gamma)' + k^2(1 + k)^{-4}(\gamma + \tau A)(\gamma + \tau A)'X_* + \delta\delta'\right) \). \(\Re(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of \(g \)-inverse of \(A \) and \(\delta = \delta + k(1 + k)^{-2}X_*(\gamma + \tau A) \).

Corollary C9:

a) If \(k > (1 - d)(1 + d)^{-1} \), \(\hat{y}_{SRRE} \) is superior to \(\hat{y}_{SRL} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\tau A - k\gamma \leq 1 \)

\[2^2(1 + k)^{-2}(\tau A - k\gamma)'\left((1 + k)^{-2}(k(1 + d) + d + 3)(k(1 + d) + d - 1)\sigma^2\tau + ((1 + d)\tau A - (1 - d)\gamma)'(1 + d)\tau A - (1 - d)\gamma\right) \]
\[= 2^2(1 + k)^{-2}(k(1 + d) + d + 3)(k(1 + d) + d - 1)\sigma^2\tau \]
\[= 2^2(1 + k)^{-2}(k(1 + d) + d + 3)(k(1 + d) + d - 1)\sigma^2\tau \]

Since \(k > 0 \), \(0 < d < 1 \) and \(\tau > 0 \), \(D_{(i,j)} > 0 \) if \((k(1 + d) + d - 1) > 0 \), which implies \(k > (1 - d)(1 + d)^{-1} \). This complete the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRRE} \) is superior to \(\hat{y}_{SRL} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Re(A) \) and \(\theta'A^{-1}\theta \leq 1 \), where \(A = X_*\left(2^2(1 + k)^{-2}(k(1 + d) + d + 3)(k(1 + d) + d - 1)\sigma^2\tau + 2^2((1 + d)\tau A - (1 - d)\gamma)'(1 + d)\tau A - (1 - d)\gamma)' - (1 + k)^{-2}(\tau A - k\gamma)(\tau A - k\gamma)' + 2^2(1 + k)^{-2}(1 + k + d + kd)^2(\gamma + \tau A)(\gamma + \tau A)'X_* + \delta\delta'\right) \). \(\Re(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of \(g \)-inverse of \(A \) and \(\delta = \delta + 2^{-1}(1 + k)^{-1}(1 + k + d + kd)X_*(\gamma + \tau A) \).

Corollary C10:

a) If \(k > (1 - d)^2(1 + d)^{-1}(3 - d)^{-1} \), \(\hat{y}_{SRRE} \) is superior to \(\hat{y}_{SRAUE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(2^4(1 + k)^{-2}(\tau A - k\gamma)'\left((1 + k)^{-2}(1 + 2d - d^2 + k(1 + d)(3 - d))(k(1 + d)(3 - d) - (1 - d)^2)\sigma^2\tau + ((1 + d)(3 - d)\tau A - (1 - d)^2\gamma)'(1 + d)(3 - d)\tau A - (1 - d)^2\gamma)'\right)^{-1}(\tau A - k\gamma) \leq 1 \)

Proof: Consider
\[D_{(i,j)} = D(\hat{\gamma}_{SRAUL}) - D(\hat{\gamma}_{SRRE}) = 4(1 + d)^2 (3 - d)^2 \sigma^2 \tau - (1 + k)^{-2} \sigma^2 \tau \\
= ((1 + d)^2 (3 - d)^2 (1 + k)^{-2} - 4)2^{-4}(1 + k)^{-2} \sigma^2 \tau \\
= 2^{-4}(1 + k)^{-2}(7 + 2d - d^2 + k(1 + d)(3 - d))(k(1 + d)(3 - d) - (1 - d)^2)\sigma^2 \tau \]

Since \(k > 0, 0 < d < 1 \) and \(\tau > 0 \). \(D_{(i,j)} > 0 \) if \((k(1 + d)(3 - d) - (1 - d)^2) > 0 \), which implies \(k > (1 - d)^2(1 + d)^{-1}(3 - d)^{-1} \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{\gamma}_{SRPCR} \) is superior to \(\hat{\gamma}_{SRAUL} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathcal{R}(A) \) and \(\theta'A^{-1}\theta \leq 1 \), where \(A = X_*(2^{-4}(1 + k)^{-2}(7 + 2d - d^2 + k(1 + d)(3 - d))(k(1 + d)(3 - d) - (1 - d)^2)\sigma^2 \tau + 2^{-4}(1 + d)(3 - d)\tau A - (1 - d)^2)\gamma((1 + d)(3 - d)\tau A - (1 - d)^2)\gamma - (1 + k)^{-2}(\tau A - k\gamma)(\tau A - k\gamma)' + 2^{-4}(1 + k)^{-2}(1 + k)d(2 - d) + 3k - 1)^2(\gamma + \tau A)(\gamma + \tau A)'X_*' + \delta \delta' \), \(\mathcal{R}(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of g-inverse of \(A \) and \(\theta = \delta + 2^{-2}(1 + k)^{-1}(1 + k)d(2 - d) + 3k - 1)X_*'(\gamma + \tau A) \).

Corollary C11:

a) If \(\lambda_* < 1 \), \(\hat{\gamma}_{SRPCR} \) is superior to \(\hat{\gamma}_{SRRE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

\[
((T_hT_h' - I)\gamma + T_hT_h'\tau A)'((1 + k)^{-2}\tau - T_hT_h'\tau T_hT_h')(\sigma^2 + (1 + k)^{-2}(\tau A - k\gamma)(\tau A - k\gamma)')^{-1}(T_hT_h' - I)\gamma + T_hT_h'\tau A) \leq 1
\]

where \(\lambda_* \) is the largest eigenvalue of \((1 + k)^2T_hT_h'\tau T_hT_h'\tau^{-1}\).

Proof: Consider

\[
D_{(i,j)} = D(\hat{\gamma}_{SRRE}) - D(\hat{\gamma}_{SRPCR}) = (1 + k)^{-2} \sigma^2 \tau - \sigma^2 T_hT_h'\tau T_hT_h'\tau T_hT_h'
\]

\[
= ((1 + k)^{-2}\tau - T_hT_h'\tau T_hT_h')(\sigma^2 \tau)
\]

Since \(\tau > 0 \), according to Lemma A2 (see Appendix A) \(D_{(i,j)} > 0 \) if \(\lambda_* < 1 \), where \(\lambda_* \) is the largest eigenvalue of \((1 + k)^2T_hT_h'\tau T_hT_h'\tau^{-1}\). This completes the proof.

b) If \(A \geq 0 \), \(\hat{\gamma}_{SRPCR} \) is superior to \(\hat{\gamma}_{SRRE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathcal{R}(A) \) and \(\theta'A^{-1}\theta \leq 1 \), where \(A = X_*((1 + k)^{-2}\tau - T_hT_h'\tau T_hT_h')(\sigma^2 + (1 + k)^{-2}(\tau A - k\gamma)(\tau A - k\gamma)')^{-1}(T_hT_h' - (1 + k)d(2 - d) + 3k - 1)X_*'(\gamma + \tau A) \).

Corollary C12:

a) If \(\lambda_* < 1 \), \(\hat{\gamma}_{SRk} \) is superior to \(\hat{\gamma}_{SRRE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

\[
((T_hT_h' - (1 + k)I)\gamma + T_hT_h'\tau A)'((\tau - T_hT_h'\tau T_hT_h)\sigma^2 + (\tau A - k\gamma)(\tau A - k\gamma)')^{-1}(T_hT_h' - (1 + k)I)\gamma + T_hT_h'\tau A) \leq 1
\]

where \(\lambda_* \) is the largest eigenvalue of \(T_hT_h'\tau T_hT_h'\tau^{-1} \).
Proof: Consider \(D_{(i,j)} = D(\hat{y}_{SRRE}) - D(\hat{y}_{SRrk}) = (1 + k)^{-2} \sigma^2 \tau - (1 + k)^{-2} \sigma^2 T_h T'_h \tau T'_h T_h \)
\[= (\tau - T_h T'_h \tau T'_h T_h) (1 + k)^{-2} \sigma^2 \]
Since \(\tau > 0 \), according to Lemma A2 (see Appendix A) \(D_{(i,j)} > 0 \) if \(\lambda_* < 1 \), where \(\lambda_* \) is the largest eigenvalue of \(T_h T'_h \tau T'_h T_h \tau^{-1} \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRrk} \) is superior to \(\hat{y}_{SRRE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathfrak{R}(A) \) and \(\theta'A^{-1} \theta \leq 1 \), where \(A = X_* \big((\tau - T_h T'_h \tau T'_h T_h) (1 + k)^{-2} \sigma^2 + (1 + k)^{-2} (\tau A - k\gamma) (\tau A - k\gamma)' - (1 + k)^{-2} ((T_h T'_h - (1 + k)I)\gamma + T_h T'_h \tau A)' + (1 + k)^{-2} (I - T_h T'_h) (\gamma + \tau A)(\gamma + \tau A)'(I - T_h T'_h)' \big) X_*' + \delta \delta' \), \(\mathfrak{R}(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of g-inverse of \(A \) and \(\theta = \delta + (1 + k)^{-1} X_* (I - T_h T'_h) (\gamma + \tau A) \).

Corollary C13:
a) If \(A > 1 \), \(\hat{y}_{SRrd} \) is superior to \(\hat{y}_{SRRE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[2^{-2} (1 + d)^2 (T_h T'_h - 2(1 + d)^{-1} I) \gamma + T_h T'_h \tau A)' (1 + k)^{-2} \sigma^2 + 2^{-2} (1 + d)^2 T_h T'_h \tau T'_h T_h \sigma^2 + (1 + k)^{-2} (\tau A - k\gamma)(\tau A - k\gamma)' (T_h T'_h - 2(1 + d)^{-1} I) \gamma + T_h T'_h \tau A) \leq 1 \]
where \(\lambda_* \) is the largest eigenvalue of \(2^{-2} (1 + d)^2 (1 + k)^2 T_h T'_h \tau T'_h T_h \tau^{-1} \).

Proof: Consider
\[D_{(i,j)} = D(\hat{y}_{SRRE}) - D(\hat{y}_{SRrd}) = (1 + k)^{-2} \sigma^2 \tau - 2^{-2} (1 + d)^2 \sigma^2 T_h T'_h \tau T'_h T_h \]
\[= ((1 + k)^{-2} \tau - 2^{-2} (1 + d)^2 T_h T'_h \tau T'_h T_h) \sigma^2 \]
Since \(\tau > 0 \), according to Lemma A2 (see Appendix A) \(D_{(i,j)} > 0 \) if \(\lambda_* < 1 \), where \(\lambda_* \) is the largest eigenvalue of \(2^{-2} (1 + d)^2 (1 + k)^2 T_h T'_h \tau T'_h T_h \tau^{-1} \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRrd} \) is superior to \(\hat{y}_{SRRE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathfrak{R}(A) \) and \(\theta'A^{-1} \theta \leq 1 \), where \(A = X_* \big((1 + k)^{-2} \tau - 2^{-2} (1 + d)^2 T_h T'_h \tau T'_h T_h \sigma^2 + (1 + k)^{-2} (\tau A - k\gamma)(\tau A - k\gamma)' - 2^{-2} (1 + d)^2 ((T_h T'_h - 2(1 + d)^{-1} I) \gamma + T_h T'_h \tau A)' + (1 + k)^{-2} (2I - (1 + k)(1 + d)T_h T'_h)(\gamma + \tau A)(\gamma + \tau A)'(2I - (1 + k)(1 + d)T_h T'_h)' \big) X_*' + \delta \delta' \), \(\mathfrak{R}(A) \) stands for column space of \(A \) and \(A^{-1} \) is an independent choice of g-inverse of \(A \) and \(\theta = \delta + 2^{-1} (1 + k)^{-1} X_* (2I - (1 + k)(1 + d)T_h T'_h)' (\gamma + \tau A) \).

Corollary C14:
a) If \(d > (1 + 2k - k^2)(1 + k)^{-2} \), \(\hat{y}_{SRAURE} \) is superior to \(\hat{y}_{SRLE} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
2^2((1+2k)\tau A - k^2 \gamma)'((3+6k+k^2+d(1+k)^2)(k^2-2k-1+d(1+k)^2)\sigma^2\tau + \\
(1+k)^4((1+d)\tau A - (1-d)\gamma)((1+d)\tau A - (1-d)\gamma)'\}^{-1}((1+2k)\tau A - k^2 \gamma) \leq 1
\]

Proof: Consider

\[
D_{(i,j)} = D(\hat{y}_{SRAU}^*) - D(\hat{y}_{SRA}^*) = 2^{-2}(1+d)^2\sigma^2\tau - (1+k)^{-4}(1+2k)^2\sigma^2\tau
\]

\[
= ((1+d)^2(1+k)^4 - 2^2(1+2k)^2)2^{-2}(1+k)^{-4}\sigma^2\tau
\]

\[
= (3+6k+k^2+d(1+k)^2)(k^2-2k-1+d(1+k)^2)2^{-2}(1+k)^{-4}\sigma^2\tau
\]

Since \(k > 0, \ 0 < d < 1 \) and \(\tau > 0 \). \(D_{(i,j)} > 0 \) if \((k^2-2k-1+d(1+k)^2) > 0 \), which implies \(d > (1+2k-k^2)(1+k)^{-2} \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRAU}^* \) is superior to \(\hat{y}_{SRA}^* \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathcal{R}(A) \) and \(\theta' A^{-1} \theta \leq 1 \), where \(A = X_*(3+6k+k^2+d(1+k)^2)(k^2-2k-1+d(1+k)^2)2^{-2}(1+k)^{-4}\sigma^2\tau + 2^{-2}(1+k)^{-4}((1+d)\tau A - (1-d)\gamma)((1+d)\tau A - (1-d)\gamma)' + \]

\[
2^{-2}(1+k)^{-4}((1+d)k^2+(2k+1)(d-1))^2(\gamma+\tau A)(\gamma+\tau A)'X_*' + \delta \delta', \ \mathcal{R}(A) \text{ stands for column space of } A \text{ and } A^{-1} \text{ is an independent choice of g-inverse of } A \text{ and } \theta = \delta + 2^{-1}(1+k)^{-2}((1+d)k^2+(2k+1)(d-1))X_*(\gamma+\tau A).
\]

Corollary C15:

a) If \((1+d)(3-d) > 4(1+2k)(1+k)^{-2} \), \(\hat{y}_{SRAU}^* \) is superior to \(\hat{y}_{SRA}^* \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

\[
2^4((1+2k)\tau A - k^2 \gamma)'\}^{-1}((1+2k)\tau A - k^2 \gamma)' \leq 1
\]

Proof: Consider

\[
D_{(i,j)} = D(\hat{y}_{SRAU}^*) - D(\hat{y}_{SRA}^*) = 2^{-4}(1+d)^2(3-d)^2\sigma^2\tau - (1+k)^{-4}(1+2k)^2\sigma^2\tau
\]

\[
= ((1+k)^4(1+d)^2(3-d)^2 - 2^4(1+2k)^2)2^{-4}(1+k)^{-4}\sigma^2\tau
\]

\[
= ((1+k)^2(1+d)(3-d) + 4(1+2k))((1+k)^2(1+d)(3-d) - 4(1+2k)
\]

\[
2^{-4}(1+k)^{-4}\sigma^2\tau
\]

Since \(k > 0, \ 0 < d < 1 \) and \(\tau > 0 \). \(D_{(i,j)} > 0 \) if \((1+k)^2(1+d)(3-d) - 4(1+2k) > 0 \), which implies \((1+d)(3-d) > 4(1+2k)(1+k)^{-2} \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRAU}^* \) is superior to \(\hat{y}_{SRA}^* \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathcal{R}(A) \) and \(\theta' A^{-1} \theta \leq 1 \), where \(A = X_*, ((1+k)^2(1+d)(3-d) + 4(1+2k))((1+k)^2(1+d)(3-d) - 4(1+2k)
\]

\[
2^{-4}(1+k)^{-4}\sigma^2\tau + 2^{-4}((1+d)(3-d)\tau A - (1-d)^2 \gamma)((1+d)(3-d)\tau A - (1-d)^2 \gamma)' + (1+
\]

28
\[\frac{\delta}{\tau} = \frac{1}{\gamma} + \frac{\delta}{\tau} X \gamma + \delta \delta', \ \mathcal{R}(A) \text{ stands for column space of } A \text{ and } A^{-1} \text{ is an independent choice of } g^{-1} \text{ of } A \text{ and } \theta = \delta + 2^{-2}(1 + k)^{-2}\left((k - 1)(3k + 1) + d(2 - d)(1 + k)^2\right)X_\gamma + \delta \delta'. \]

Corollary C16:

a) If \(\lambda_\gamma < 1 \), \(\hat{y}_{SRPCR} \) is superior to \(\hat{y}_{SRAURE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

\[\left((T_h T_h' - I)\gamma + T_h T_h' \tau A \right) \left((k - 1)(1 + 2k)^2 - (k - 1)(3k + 1) + d(2 - d)(1 + k)^2\right)X_\gamma \leq 1 \]

where \(\lambda_\gamma \) is the largest eigenvalue of \((1 + k)^2 \left((1 + 2k)^2 - (1 + k)^2(1 + k)^2\right)X_\gamma \).

Proof: Consider

\[D_{(i,j)} = D(\hat{y}_{SRAURE}) - D(\hat{y}_{SRPCR}) = (1 + k)^{-4}(1 + 2k)^2 \tau - \tau A - (1 + k)^{-4}(1 + 2k)^2 \tau T_h T_h' \tau A - (1 + k)^{-4}(1 + 2k)^2 \tau - T_h T_h' \tau A \]

Since \(\tau > 0 \), according to **Lemma A2** (see Appendix A) \(D_{(i,j)} > 0 \) if \(\lambda_\gamma < 1 \), where \(\lambda_\gamma \) is the largest eigenvalue of \((1 + k)^2(1 + 2k)^2 T_h T_h' \tau A T_h \). This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRPCR} \) is superior to \(\hat{y}_{SRAURE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \mathcal{R}(A) \) and \(\theta'A^{-1} \theta \leq 1 \), where \(A = X_\gamma \left((1 + 3k)^{-4}(1 + 2k)^2 \tau - T_h T_h' \tau A T_h \right) \left((k - 1)(3k + 1) + d(2 - d)(1 + k)^2 \right)X_\gamma \leq 1 \).

Corollary C17:

a) If \(\lambda_\gamma < 1 \), \(\hat{y}_{SRrk} \) is superior to \(\hat{y}_{SRAURE} \) in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

\[(1 + k)^2 \left((1 + 2k)^2 \tau - T_h T_h' \tau A \right) \left((k - 1)(3k + 1) + d(2 - d)(1 + k)^2 \right)X_\gamma \leq 1 \]

where \(\lambda_\gamma \) is the largest eigenvalue of \((1 + k)^2(1 + 2k)^2 T_h T_h' \tau A T_h \).

Proof: Consider

\[D_{(i,j)} = D(\hat{y}_{SRAURE}) - D(\hat{y}_{SRrk}) = \frac{1}{\gamma} + \frac{\delta}{\tau} X \gamma + \delta \delta'. \]
Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $(1 + 2k)^{-2}(1 + k)^2 T_h T_h^\tau T_h T_h^\tau$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRrk} is superior to \hat{y}_{SRAURE} in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta A^{-1} \theta \leq 1$, where

$$A = X_* \left(((1 + 2k)^2 \tau - (1 + k)^2 T_h T_h^\tau T_h^\tau) (1 + k)^{-4} \sigma^2 + (1 + k)^{-4} \left((1 + 2k) \tau A - k^2 \gamma \right) \right) (1 + 2k) \tau A - k^2 \gamma').$$

$\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + (1 + k)^{-2} X_* ((1 + 2k) l - (1 + k) T_h T_h^\tau) (\gamma + \tau A)$.

Corollary C18:

a) If $\lambda_* < 1$, \hat{y}_{SRrk} is superior to \hat{y}_{SRAURE} in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

$$2^{-2} (1 + d)^2 \left((T_h T_h^\tau - 2(1 + d)^{-1}) \gamma + T_h T_h^\tau A \right)' \left((1 + k)^{-4} (1 + 2k)^2 \tau - 2^{-2} (1 + d)^2 \right) T_h T_h^\tau T_h^\tau T_h^\tau \gamma^2 + (1 + k)^{-4} \left((1 + 2k) \tau A - k^2 \gamma \right) \left((1 + 2k) \tau A - k^2 \gamma \right)' (1 + 2k) \tau A - k^2 \gamma)^{-1} \left(T_h T_h^\tau - 2(1 + d)^{-1}) \gamma + T_h T_h^\tau A \right).$$

where λ_* is the largest eigenvalue of $2^{-2} (1 + d)^2 (1 + k)^4 (1 + 2k)^{-2} T_h T_h^\tau T_h^\tau T_h^\tau \gamma^{-1}$.

Proof: Consider

$$D_{(i,j)} = D(\hat{y}_{SRAURE}) - D(\hat{y}_{SRrk}) = (1 + k)^{-4} (1 + 2k)^2 \sigma^2 \tau - 2^{-2} (1 + d)^2 \sigma^2 T_h T_h^\tau T_h^\tau T_h \sigma^2.$$

Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $2^{-2} (1 + d)^2 (1 + k)^4 (1 + 2k)^{-2} T_h T_h^\tau T_h^\tau T_h^\tau \gamma^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRrk} is superior to \hat{y}_{SRAURE} in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta A^{-1} \theta \leq 1$, where

$$A = X_* \left(((1 + k)^{-4} (1 + 2k)^2 \tau - 2^{-2} (1 + d)^2 \sigma^2 T_h T_h^\tau T_h^\tau T_h \sigma^2 + (1 + k)^{-4} \left((1 + 2k) \tau A - k^2 \gamma \right) \right) (1 + 2k) \tau A - k^2 \gamma') - 2^{-2} (1 + d)^2 \left((T_h T_h^\tau - 2(1 + d)^{-1}) \gamma + T_h T_h^\tau A \right) (\gamma + \tau A)' (2(1 + 2k) l - (1 + k) T_h T_h^\tau) (\gamma + \tau A).$$

$\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + 2^{-1} (1 + k)^{-2} X_* (2(1 + 2k) l - (1 + k) T_h T_h^\tau) (\gamma + \tau A)$.

Corollary C19:

a) \hat{y}_{SRLE} is superior to \hat{y}_{SRAULE} in MSE sense when the regression model is misspecified due to excluding relevant variables if and only if

$$2^2 \left((1 + d) \tau A - (1 - d) \gamma \right)' \left((5 - d)(1 - d) (1 + d)^2 \sigma^2 \tau + ((1 + d) (3 - d) \tau A - (1 - d)^2 \gamma) \right) (1 + d) (3 - d) \tau A - (1 - d)^2 \gamma)^{-1} (1 + d) \tau A - (1 - d) \gamma) \leq 1.
Proof: Consider $D_{(i,j)} = D(\hat{y}_{SRAUEL}) - D(\hat{y}_{SRLE}) = 2^{-4}(1 + d)^2(3 - d)^2\sigma^2\tau - 2^{-2}(1 + d)^2\sigma^2\tau$
\[
= ((3 - d)^2 - 2^2)2^{-4}(1 + d)^2\sigma^2\tau \\
= (5 - d)(1 - d)2^{-4}(1 + d)^2\sigma^2\tau
\]
Since $0 < d < 1$ and $\tau > 0$, hence $D_{(i,j)} > 0$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRLE} is superior to \hat{y}_{SRAUEL} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_s \left((5 - d)(1 - d)2^{-4}(1 + d)^2\sigma^2\tau + 2^{-4}((1 + d)(3 - d)\tau A - (1 - d)^2)^2\gamma \right)((1 + d)\tau A - (1 - d)\gamma)' + 2^{-4}(1 + d)^2(1 - d)^2(\gamma + \tau A)(\gamma + \tau A)'X_s' + \delta\delta'$. $\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + 2^{-2}(1 + d)(1 - d)X_s(\gamma + \tau A)$.

Corollary C20:

a) If $\lambda_s < 1$, \hat{y}_{SRPCLR} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
\left((T_h T_h' - I)\gamma + T_h T_h'\tau A\right)' \left((2^{-2}(1 + d)^2\tau - T_h T_h'\tau T_h T_h)\sigma^2 + 2^{-2}((1 + d)\tau A - (1 - d)\gamma)'(1 + d)\tau A - (1 - d)\gamma)\right) \leq 1
\]
where λ_* is the largest eigenvalue of $2^2(1 + d)^2T_h T_h'\tau T_h T_h\tau^{-1}$.

Proof: Consider $D_{(i,j)} = D(\hat{y}_{SRLE}) - D(\hat{y}_{SRPCLR}) = 2^{-2}(1 + d)^2\sigma^2\tau - 2^{-2}(1 + d)^2\tau^2 T_h T_h'\tau T_h T_h\sigma^2$
\[
= (2^{-2}(1 + d)^2\tau - T_h T_h'\tau T_h T_h)\sigma^2
\]
Since $\tau > 0$, according to **Lemma A2** (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $2^2(1 + d)^2T_h T_h'\tau T_h T_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRPCLR} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_s \left((2^{-2}(1 + d)^2\tau - T_h T_h'\tau T_h T_h)\sigma^2 + 2^{-2}((1 + d)\tau A - (1 - d)\gamma)'(1 + d)\tau A - (1 - d)\gamma)\right)' \left((T_h T_h' - I)\gamma + T_h T_h'\tau A\right)' + 2^{-2}((1 + d)I - 2T_h T_h')(\gamma + \tau A)(\gamma + \tau A)'((1 + d)I - 2T_h T_h')(\gamma + \tau A)$
\[
\] $\mathcal{R}(A)$ stands for column space of A and A^{-1} is an independent choice of g-inverse of A and $\theta = \delta + 2^{-1}X_s((1 + d)I - 2T_h T_h')(\gamma + \tau A)$.

Corollary C21:

a) If $\lambda_* < 1$, \hat{y}_{SRPk} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
(1 + k)^{-2}((T_h T_h' - (1 + k)I)\gamma + T_h T_h'\tau A)' \left((2^{-2}(1 + d)^2\tau - (1 + k)^{-2}T_h T_h'\tau T_h T_h)\sigma^2 + 2^{-2}((1 + d)\tau A - (1 - d)\gamma)'(1 + d)\tau A - (1 - d)\gamma)\right)' \left((T_h T_h' - (1 + k)I)\gamma + T_h T_h'\tau A\right) \leq 1
\]
where λ_* is the largest eigenvalue of $2^2(1 + d)^2(1 + k)^{-2}T_h T_h'\tau T_h T_h\tau^{-1}$.
Proof: Consider $D_{(i,j)} - D(\hat{y}_{SRLE}) = 2^{-2}(1 + d)^2\sigma^2\tau - (1 + k)^{-2}\sigma^2T_hT_h'T_hT_h = (2^{-2}(1 + d)^2\tau - (1 + k)^{-2}\sigma^2T_hT_h'T_hT_h)^2$

Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $2^2(1 + d)^{-2}(1 + k)^{-2}T_hT_h'T_hT_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRrk} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left(2^{-2}(1 + d)^2\tau - (1 + k)^{-2}T_hT_h'T_hT_h\sigma^2 + 2^{-2}\left((1 + d)^2\tau - (1 + d)\tau A - (1 - d)\gamma\right)\right)' - \left((1 + k)^{-2}\left(T_hT_hT_hT_h\sigma^2 - (1 + d)\tau A - (1 - d)\gamma\right)\right)' \leq 1$

where λ_* is the largest eigenvalue of $T_hT_h'T_hT_h\tau^{-1}$.

Proof: Consider $D_{(i,j)} = D(\hat{y}_{SRLE}) - D(\hat{y}_{SRrk}) = 2^{-2}(1 + d)^2\sigma^2\tau - 2^{-2}(1 + d)^2\sigma^2T_hT_h'T_hT_h = (2^{-2}(1 + d)^2\sigma^2T_hT_h'T_hT_h)^2$

Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $T_hT_h'T_hT_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRrk} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left(\tau - T_hT_hT_hT_h\right)^2\left(T_hT_hT_hT_h\sigma^2 - (1 + d)^2\tau - (1 + d)\tau A - (1 - d)\gamma\right)\left((1 + d)\tau A - (1 - d)\gamma\right)' - 2^{-2}(1 + d)^2\gamma'\left(T_hT_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' + 2^{-2}(1 + d)^2\gamma'\left(I - T_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' \leq 1$

where λ_* is the largest eigenvalue of $T_hT_h'T_hT_h\tau^{-1}$. This completes the proof.

Corollary C22:

a) If $\lambda_* < 1$, \hat{y}_{SRkd} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left(\tau - T_hT_hT_hT_h\right)^2\left(T_hT_hT_hT_h\sigma^2 - (1 + d)^2\tau - (1 + d)\tau A - (1 - d)\gamma\right)\left((1 + d)\tau A - (1 - d)\gamma\right)' - 2^{-2}(1 + d)^2\gamma'\left(T_hT_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' + 2^{-2}(1 + d)^2\gamma'\left(I - T_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' \leq 1$

Proof: Consider $D_{(i,j)} = D(\hat{y}_{SRLE}) - D(\hat{y}_{SRkd}) = (2^{-4}(1 + d)^2(3 - d)^2\tau - T_hT_hT_hT_h\sigma^2 + 2^{-4}\left((1 + d)^2\tau - (1 - d)^2\gamma\right)\right)' - (T_hT_hT_hT_h\gamma + T_hT_hT_h\tau A)' \leq 1$

Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $T_hT_h'T_hT_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRkd} is superior to \hat{y}_{SRLE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left(\tau - T_hT_hT_hT_h\right)^2\left(T_hT_hT_hT_h\sigma^2 - (1 + d)^2\tau - (1 + d)\tau A - (1 - d)\gamma\right)\left((1 + d)\tau A - (1 - d)\gamma\right)' - 2^{-2}(1 + d)^2\gamma'\left(T_hT_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' + 2^{-2}(1 + d)^2\gamma'\left(I - T_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' \leq 1$

where λ_* is the largest eigenvalue of $T_hT_h'T_hT_h\tau^{-1}$. This completes the proof.

Corollary C23:

a) If $\lambda_* < 1$, \hat{y}_{SRPCR} is superior to \hat{y}_{SRcule} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left(\tau - T_hT_hT_hT_h\right)^2\left(T_hT_hT_hT_h\sigma^2 - (1 + d)^2\tau - (1 + d)\tau A - (1 - d)\gamma\right)\left((1 + d)\tau A - (1 - d)\gamma\right)' - 2^{-2}(1 + d)^2\gamma'\left(T_hT_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' + 2^{-2}(1 + d)^2\gamma'\left(I - T_hT_hT_h\gamma + T_hT_hT_h\tau A\right)' \leq 1$
where λ_* is the largest eigenvalue of $2^4(1 + d)^{-2}(3 - d)^{-2}T_hT_h^\prime T_hT_h^\prime T_h\tau^{-1}$.

Proof: Consider

$$D_{(i,j)} = D(\hat{y}_{SRAULE}) - D(\hat{y}_{SRPCR}) = 2^{-4}(1 + d)^2(3 - d)^2\sigma^2\tau - \sigma^2T_hT_h^\prime\tau T_hT_h^\prime$$

$$= (2^{-4}(1 + d)^2(3 - d)^2\tau - T_hT_h^\prime\tau T_hT_h^\prime)\sigma^2$$

Since $\tau > 0$, according to **Lemma A2** (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $2^4(1 + d)^{-2}(3 - d)^{-2}T_hT_h^\prime T_hT_h^\prime T_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRPCR} is superior to \hat{y}_{SRAULE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left((2^{-4}(1 + d)^2(3 - d)^2\tau - (1 + d)^2(3 - d)^2\tau)\sigma^2 - (1 + k)^2T_hT_h^\prime\tau T_hT_h^\prime \sigma^2 + 2^{-4}(1 + d)^2(3 - d)^2\tau - (1 + d)^2(3 - d)^2\tau\right)^{-1}((1 + d)(3 - d)\tau A - (1 + d)(3 - d)\tau A)(Y + \tau A)'((1 + d)(3 - d)I - 2^2T_hT_h^\prime(\gamma + \tau A))/(Y + \tau A)$.

Corollary C24:

a) If $\lambda_* < 1$, \hat{y}_{SRrk} is superior to \hat{y}_{SRAULE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if

$$(1 + k)^{-2}((T_hT_h^\prime - (1 + k)I)\gamma + T_hT_h^\prime A)'\left((2^{-4}(1 + d)^2(3 - d)^2\tau - (1 + k)^2T_hT_h^\prime\tau T_hT_h^\prime \sigma^2 + 2^{-4}(1 + d)(3 - d)\tau A - (1 + d)(3 - d)\tau A)(Y + \tau A)^{-1}((1 + d)(3 - d)\tau A - (1 + d)(3 - d)\tau A) \leq 1$$

where λ_* is the largest eigenvalue of $2^4(1 + d)^{-2}(3 - d)^{-2}(1 + k)^{-2}T_hT_h^\prime T_hT_h^\prime T_h\tau^{-1}$.

Proof: Consider $D_{(i,j)} = D(\hat{y}_{SRAULE}) - D(\hat{y}_{SRrk}) = 2^{-4}(1 + d)^2(3 - d)^2\sigma^2\tau - (1 + k)^{-2}\sigma^2T_hT_h^\prime\tau T_hT_h^\prime$.

$$= (2^{-4}(1 + d)^2(3 - d)^2\tau - (1 + k)^{-2}T_hT_h^\prime\tau T_hT_h^\prime)\sigma^2$$

Since $\tau > 0$, according to **Lemma A2** (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_* < 1$, where λ_* is the largest eigenvalue of $2^4(1 + d)^{-2}(3 - d)^{-2}(1 + k)^{-2}T_hT_h^\prime T_hT_h^\prime T_h\tau^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{y}_{SRrk} is superior to \hat{y}_{SRAULE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \mathcal{R}(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X_*\left((2^{-4}(1 + d)^2(3 - d)^2\tau - (1 + k)^2T_hT_h^\prime\tau T_hT_h^\prime \sigma^2 + 2^{-4}(1 + d)(3 - d)\tau A - (1 + d)(3 - d)\tau A)(Y + \tau A)^{-1}((1 + k)(1 + d)(3 - d)I - 2^2T_hT_h^\prime(\gamma + \tau A))/(Y + \tau A)$.

$\theta = \delta + 2^{-2}(1 + k)^{-1}X_*((1 + k)(1 + d)(3 - d)I - 2^2T_hT_h^\prime(\gamma + \tau A)$.
Corollary C25:

a) If $\lambda_0 < 1$, \hat{Y}_{SRrd} is superior to \hat{Y}_{SRAULE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
2(1 + d)^2((T_hT_h' - 2(1 + d)^{-1})\gamma + T_hT_h'\tau A)'
\left((3 - d)^2\tau - 2T_hT_h'T_hT_hT_h(1 + d)^2\sigma^2 +
(1 + d)(3 - d)\tau A - (1 - d)^2\gamma\right)((1 + d)(3 - d)\tau A - (1 - d)^2\gamma)
\left((T_hT_h' - 2(1 + d)^{-1})\gamma + T_hT_h'\tau A\right) \leq 1
\]
where λ_0 is the largest eigenvalue of $2(3 - d)^{-2}T_hT_h'T_hT_h^{-1}$.

Proof: Consider
\[
D_{(i,j)} = D(\hat{Y}_{SRRAULE}) - D(\hat{Y}_{SRrd}) = 2^{-4}(1 + d)^2(3 - d)^2\sigma^2\tau - 2^{-4}(1 + d)^2\sigma^2T_hT_h'T_hT_h'
\]
Since $\tau > 0$, according to Lemma A2 (see Appendix A) $D_{(i,j)} > 0$ if $\lambda_0 < 1$, where λ_0 is the largest eigenvalue of $2(3 - d)^{-2}T_hT_h'T_hT_h^{-1}$. This completes the proof.

b) If $A \geq 0$, \hat{Y}_{SRrd} is superior to \hat{Y}_{SRAULE} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \Re(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X, ((3 - d)^2\tau - 2T_hT_h'T_hT_h)2^{-4}(1 + d)^2\sigma^2 + 2^{-4}(1 + d)(3 - d)\tau A - (1 - d)^2\gamma)((1 + d)(3 - d)\tau A - (1 - d)^2\gamma)'.$

Corollary C26:

a) If $T_hT_h'T_hT_h$ is positive definite, \hat{Y}_{SRrk} is superior to \hat{Y}_{SRPCR} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
(1 + k)^{-2}\left((T_hT_h' - (1 + k)I)\gamma + T_hT_h'\tau A\right)'\left(k(2 + k)(1 + k)^{-2}T_hT_h'T_hT_h + ((T_hT_h' - I)\gamma + T_hT_h'\tau A)\right)'
\left(T_hT_h'T_h - (1 + k)I\right)\gamma + T_hT_h'\tau A\right) \leq 1
\]
Proof: Consider $D_{(i,j)} = D(\hat{Y}_{SRPCR}) - D(\hat{Y}_{SRrk}) = \sigma^2T_hT_h'T_hT_hT_h - (1 + k)^{-2}\sigma^2T_hT_h'T_hT_hT_h'
\sigma^2T_hT_h'(\tau - (1 + k)^{-2}\tau)T_hT_h'
\sigma^2T_hT_h'k(2 + k)(1 + k)^{-2}T_hT_h'
\sigma^2T_hT_h'k(2 + k)(1 + k)^{-2}\sigma^2T_hT_h'T_hT_h'

Since $k > 0$ and $\tau > 0$. $D_{(i,j)} > 0$ if $T_hT_h'T_hT_hT_h$ is positive definite. This completes the proof.

b) If $A \geq 0$, \hat{Y}_{SRrk} is superior to \hat{Y}_{SRPCR} in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if $\theta \in \Re(A)$ and $\theta'A^{-1}\theta \leq 1$, where $A = X, \left(k(2 + k)(1 + k)^{-2}\sigma^2T_hT_h'T_hT_h\right)$.

34
Corollary C27:

a) If \(T_h T'_h \tau T_h T_h \) is positive definite, \(\hat{y}_{SRrd} \) is superior to \(\hat{y}_{SRPCR} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
2^{-2}(1 + d)(T'_h T_h - 2(1 + d)^{-1}I)\gamma + T_h T'_h \tau A \left(2^{-2}(3 + d)(1 - d)\sigma^2 T_h T'_h \tau T_h T_h + ((T_h T'_h - I)\gamma + T_h T'_h \tau A) \right)^{-1} - 2^{-2}(1 + d)(T_h T'_h - 2(1 + d)^{-1}I)\gamma + T_h T'_h \tau A \leq 1
\]

Proof: Consider \(D_{(i,j)} = D(\hat{y}_{SRPCR}) - D(\hat{y}_{SRrk}) = \sigma^2 T_h T'_h \tau T_h T_h - 2^{-2}(1 + d)^2 \sigma^2 T_h T'_h \tau T_h T_h \]
\[
= \sigma^2 T_h T'_h (\tau - 2^{-2}(1 + d)^2 \tau T_h T_h
\]
\[
= \sigma^2 T_h T'_h (\tau T_h T_h - 2(3 + d)) T_h T'_h \tau A T_h T_h - 2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h
\]
Since \(0 < d < 1 \) and \(\tau > 0 \). \(D_{(i,j)} > 0 \) if \(T_h T'_h \tau T_h T_h \) is positive definite. This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRrd} \) is superior to \(\hat{y}_{SRPCR} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Re(A) \) and \(\theta A^{-1} \theta \leq 1 \), where \(A = X (2^{-2}(3 + d)(1 - d)\sigma^2 T_h T'_h \tau T_h T_h + ((T_h T'_h - I)\gamma + T_h T'_h \tau A) \left(2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \right)^{-1} - 2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \)
\]
\[
C \equiv \text{Corollary C28:}
\]

a) If \((k(1 + d) + d - 1) T_h T'_h \tau T_h T_h \) is positive definite, \(\hat{y}_{SRrk} \) is superior to \(\hat{y}_{SRrd} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if
\[
(1 + k)^{-2}((T'_h T_h - (1 + k)I)\gamma + T_h T'_h \tau A)^{-1}((2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h + ((T_h T'_h - I)\gamma + T_h T'_h \tau A) \left(2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \right)^{-1} - 2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \)
\]
\[
0 < d < 1 \), \(k > 0 \) and \(\tau > 0 \). \(D_{(i,j)} > 0 \) if \((k(1 + d) + d - 1) T_h T'_h \tau T_h T_h \) is positive definite. This completes the proof.

b) If \(A \geq 0 \), \(\hat{y}_{SRrk} \) is superior to \(\hat{y}_{SRrd} \) in MSEM sense when the regression model is misspecified due to excluding relevant variables if and only if \(\theta \in \Re(A) \) and \(\theta A^{-1} \theta \leq 1 \), where \(A = X (2^{-2}(1 + k)^{-2} \sigma^2(1 + d) + k) \left((T'_h T_h - (1 + k)I)\gamma + T_h T'_h \tau A \right)^{-1}((2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h + ((T_h T'_h - I)\gamma + T_h T'_h \tau A) \left(2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \right)^{-1} - 2^{-2}(3 + d)(1 - d) \sigma^2 T_h T'_h \tau T_h T_h \)
\]
\[
\text{This completes the proof.}
\]