Perturbation and Stability of Continuous Operator Frames in Hilbert C^*-Modules

Abdeslam Touri, 1 Hatim Labrigui, 1 Mohamed Rossafi, 2 and Samir Kabbaj 1

1Department of Mathematics, IBN Tofail University, B. P. 133, Kenitra, Morocco
2LASMA Laboratory Department of Mathematics, Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fes, Morocco

Correspondence should be addressed to Abdeslam Touri; touri.abdo68@gmail.com

Received 11 January 2021; Accepted 1 June 2021; Published 16 June 2021

Academic Editor: Ali Jaballah

Copyright © 2021 Abdeslam Touri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Frame theory has a great revolution in recent years. This theory has been extended from the Hilbert spaces to Hilbert C^*-modules. In this paper, we consider the stability of continuous operator frame and continuous K-operator frames in Hilbert C^*-modules under perturbation, and we establish some properties.

1. Introduction and Preliminaries

The concept of frames in Hilbert spaces is a new theory which was introduced by Duffin and Schaeffer [1] in 1952 to study some deep problems in nonharmonic Fourier series. This theory was reintroduced and developed by Daubechies et al. [2].

In 1993, Ali et al. [3] introduced the concept of continuous frames in Hilbert spaces. Gabardo and Han in [4] called these kinds of frames, frames associated with measurable spaces.

In 2000, Frank and Larson [5] introduced the notion of frames in Hilbert C^*-modules as a generalization of frames in Hilbert spaces. The theory of continuous frames has been generalized in Hilbert C^*-modules. For more details, see [6–25].

The aim of this paper is to extend the results of Rossafi and Akhlidj [23], given for Hilbert C^*-module in a discrete case.

In the following, we briefly recall the definitions and basic properties of C^*-algebra and Hilbert \mathcal{A}-modules. Our references for C^*-algebras are [26, 27]. For C^*-algebra \mathcal{A}, if $a \in \mathcal{A}$ is positive, we write $a \geq 0$, and \mathcal{A}^+ denotes the set of positive elements of \mathcal{A}.

Definition 1 (see [26]). Let \mathcal{A} be unital C^*-algebra and \mathcal{H} be left \mathcal{A}-module, such that the linear structures of \mathcal{A} and \mathcal{H} are compatible. \mathcal{H} is a pre-Hilbert \mathcal{A}-module if \mathcal{H} is equipped with an \mathcal{A}-valued inner product $\langle \cdot , \cdot \rangle_\mathcal{A}$, such that it is sesquilinear and positive definite and respects the module action. In the other words,

(i) $\langle x, x \rangle_\mathcal{A} \geq 0$, for all $x \in \mathcal{H}$, and $\langle x, x \rangle_\mathcal{A} = 0$ if and only if $x = 0$.

(ii) $\langle ax + y, z \rangle_\mathcal{A} = a \langle x, z \rangle_\mathcal{A} + \langle y, z \rangle_\mathcal{A}$, for all $a \in \mathcal{A}$ and $x, y, z \in \mathcal{H}$.

(iii) $\langle x, y \rangle_\mathcal{A} = \langle y, x \rangle_\mathcal{A}^*$, for all $x, y \in \mathcal{H}$.

For $x \in \mathcal{H}$, we define $\|x\| = \|\langle x, x \rangle_\mathcal{A}\|^{1/2}$. If \mathcal{H} is complete with $\|\cdot\|$, it is called a Hilbert \mathcal{A}-module or a Hilbert C^*-module over \mathcal{A}.

For every a in C^*-algebra \mathcal{A}, we have $|a| = (a^*a)^{1/2}$ and the \mathcal{A}-valued norm on \mathcal{H} is defined by $|x| = \langle x, x \rangle_\mathcal{A}^{1/2}$, for all $x \in \mathcal{H}$.
Let \mathcal{H} and \mathcal{K} be two Hilbert A-modules, a map $T: \mathcal{H} \to \mathcal{K}$ is said to be adjointable if there exists a map $T^*: \mathcal{K} \to \mathcal{H}$ such that $\langle Tx, y \rangle_A = \langle x, T^*y \rangle_A$ for all $x \in \mathcal{H}$ and $y \in \mathcal{K}$.

We reserve the notation $\text{End}_A^*(\mathcal{H}, \mathcal{K})$ for the set of all adjointable operators from \mathcal{H} to \mathcal{K} and $\text{End}_A^*(\mathcal{H}, \mathcal{H})$ is abbreviated to $\text{End}_A^*(\mathcal{H})$.

The following lemmas will be used to prove our result.

Lemma 1 (see [28]). Let \mathcal{H} be a Hilbert A-module. If $T \in \text{End}_A^*(\mathcal{H})$, then
\[
\langle Tx,Tx \rangle_A \leq \|T\|^2 \langle x,x \rangle_A, \quad x \in \mathcal{H}.
\]

Lemma 2 (see [29]). Let \mathcal{H} and \mathcal{K} be two Hilbert A-modules and $T \in \text{End}_A^*(\mathcal{H}, \mathcal{K})$. Then the following statements are equivalent:

(i) T is surjective.

(ii) T^* is bounded below with respect to norm, i.e., there is $\tau > 0$ such that $\|T^*x\| \geq \tau \|x\|$, for all $x \in \mathcal{H}$.

(iii) T^* is bounded below with respect to the inner product, i.e., there is $\zeta > 0$ such that $\langle T^*x, T^*y \rangle_A \geq \zeta \langle x, y \rangle_A$, for all $x \in \mathcal{H}$.

Lemma 3 (see [30]). Let (Ω, μ) be a measure space, X and Y are two Banach spaces, $\lambda: X \to Y$ is a bounded linear operator and $f: \Omega \to X$ measurable function, then
\[
\lambda\left(\int_{\Omega} f \, d\mu\right) = \int_{\Omega} (\lambda f) \, d\mu.
\]

2. Characterisation of Continuous Operator Frame for $\text{End}_A^*(\mathcal{H})$

Let X be a Banach space, (Ω, μ) a measure space, and $f: \Omega \to X$ be a measurable function. Integral of Banach-valued function f has been defined by Bochner and others. Most properties of this integral are similar to those of the integral of real-valued functions [30, 31]. Since every C^*-algebra and Hilbert C^*-module are Banach spaces, we can use this integral and its properties.

Let (Ω, μ) be a measure space, U and V be two Hilbert C^*-modules over a unital C^*-algebra and $\{V_w\}_{w \in \Omega}$ is a family of submodules of V. $\text{End}_A^*(U, V_w)$ is the collection of all adjointable A-linear maps from U into V_w.

We define the following:
\[
\mathcal{P}(\Omega, \{V_w\}_{w \in \Omega}) = \left\{ x = \{x_w\}_{w \in \Omega}: x_w \in V_w, \|x_w\|^2 \, d\mu(w) < \infty \right\}.
\]

For any $x = \{x_w\}_{w \in \Omega}$ and $y = \{y_w\}_{w \in \Omega}$, the A-valued inner product is defined by $\langle x, y \rangle_A = \int_\Omega \langle x_w, y_w \rangle_A \, d\mu(w)$ and the norm is defined by $\|x\|^2 = \int_\Omega \|x_w\|^2 \, d\mu(w)$. In this case, $\mathcal{P}(\Omega, \{V_w\}_{w \in \Omega})$ is an Hilbert C^*-module [32].

Definition 2. We call $\Lambda = \{\Lambda_w \in \text{End}_A^*(\mathcal{H}) : w \in \Omega\}$ a continuous operator frame for $\text{End}_A^*(\mathcal{H})$ if

(a) for any $x \in \mathcal{H}$, the mapping $\tilde{x}: \Omega \to V_w$ defined by $\tilde{x}(w) = \Lambda_w x$ is measurable

(b) there is a pair of constants $0 < \nu, \delta$ such that for any $x \in \mathcal{H}$,
\[
\nu \|x\|^2 \leq \int_{\Omega} \langle \Lambda_w x, \Lambda_w x \rangle_A \, d\mu(w) \leq \delta \|x\|^2,
\]
\[
x \in \mathcal{H}.
\]

The constants ν and δ are called continuous operator frame bounds.

If $\nu = \delta$, we call this continuous operator frame a continuous tight operator frame, and if $\nu = \delta = 1$, it is called a continuous Parseval operator frame.

If only the right-hand inequality of (4) is satisfied, we call $\Lambda = \{\Lambda_w \}_{w \in \Omega}$ the continuous Bessel operator frame for $\text{End}_A^*(\mathcal{H})$ with Bessel bound δ.

The continuous frame operator S of Λ on \mathcal{H} is defined by
\[
Sx = \int_{\Omega} \Lambda_w^* \Lambda_w x \, d\mu(w), \quad x \in \mathcal{H}.
\]

The continuous frame operator S is a bounded, positive, self-adjoint, and invertible.

Theorem 1. Let $\Lambda = \{\Lambda_w \in \text{End}_A^*(\mathcal{H}) : w \in \Omega\}$. Λ is a continuous operator frame for $\text{End}_A^*(\mathcal{H})$ if and only if there exist constants $0 < \nu, \delta$ such that for any $x \in \mathcal{H}$,
\[
\nu \|x\|^2 \leq \int_{\Omega} \langle \Lambda_w x, \Lambda_w x \rangle_A \, d\mu(w) \leq \delta \|x\|^2.
\]

3. Perturbation and Stability of Continuous Operator Frame for $\text{End}_A^*(\mathcal{H})$

Theorem 2. Let $\{T_w\}_{w \in \Omega}$ be a continuous operator frame for $\text{End}_A^*(\mathcal{H})$ with bounds ν and δ. If $\{R_w\}_{w \in \Omega} \subset \text{End}_A^*(\mathcal{H})$ is a continuous operator Bessel family with bound $\xi < \nu$, then $\{T_w + R_w\}_{w \in \Omega}$ is a continuous operator frame for $\text{End}_A^*(\mathcal{H})$.

Proof. We just prove the case that $\{T_w + R_w\}_{w \in \Omega}$ is a continuous operator frame for $\text{End}_A^*(\mathcal{H})$.

On the one hand, for each $x \in \mathcal{H}$, we have
\[\| (T_w + R_w)x \|_{\omega \in \Omega} = \left(\int_{\Omega} \langle (T_w + R_w)x, (T_w + R_w)x \rangle_{\omega} d\mu(w) \right)^{1/2} \]
\[
\leq \left\| (T_w x)_{\omega \in \Omega} \right\| + \left\| (R_w x)_{\omega \in \Omega} \right\|
\leq \int_{\Omega} \langle T_w x, T_w x \rangle_{\omega} d\mu(w) \left(\int_{\Omega} \langle R_w x, R_w x \rangle_{\omega} d\mu(w) \right)^{1/2} + \int_{\Omega} \langle R_w x, R_w x \rangle_{\omega} d\mu(w) \left(\int_{\Omega} \langle T_w x, T_w x \rangle_{\omega} d\mu(w) \right)^{1/2}
\leq \sqrt{\delta} \|x\| + \sqrt{\xi} \|x\|. \quad (7) \]

Hence,
\[
\left\| \int_{\Omega} \langle (T_w + R_w)x, (T_w + R_w)x \rangle_{\omega} d\mu(w) \right\|^{1/2} \leq (\sqrt{\delta} + \sqrt{\xi}) \|x\|. \quad (8) \]

\[
\left\| (T_w + R_w)x \right\|_{\omega \in \Omega} = \left(\int_{\Omega} \langle (T_w + R_w)x, (T_w + R_w)x \rangle_{\omega} d\mu(w) \right)^{1/2}
\geq \left\| (T_w x)_{\omega \in \Omega} \right\| - \left\| (R_w x)_{\omega \in \Omega} \right\|
\geq \int_{\Omega} \langle T_w x, T_w x \rangle_{\omega} d\mu(w) \left(\int_{\Omega} \langle R_w x, R_w x \rangle_{\omega} d\mu(w) \right)^{1/2} - \int_{\Omega} \langle R_w x, R_w x \rangle_{\omega} d\mu(w) \left(\int_{\Omega} \langle T_w x, T_w x \rangle_{\omega} d\mu(w) \right)^{1/2}
\geq \sqrt{\nu} \|x\| - \sqrt{\xi} \|x\|. \quad (9) \]

Then,
\[
\left\| \int_{\Omega} \langle (T_w + R_w)x, (T_w + R_w)x \rangle_{\omega} d\mu(w) \right\|^{1/2} \geq (\sqrt{\nu} - \sqrt{\xi}) \|x\|. \quad (10) \]

\[
(\sqrt{\nu} - \sqrt{\xi})^2 \|x\|^2 \leq \int_{\Omega} \langle (T_w + R_w)x, (T_w + R_w)x \rangle_{\omega} d\mu(w) \leq (\sqrt{\delta} + \sqrt{\xi})^2 \|x\|^2. \quad (11) \]

Therefore, \((T_w + R_w)_{\omega \in \Omega} \) is a continuous operator frame for \(\text{End}_{\omega}^d(\mathcal{H}) \). \(\square \)

Theorem 3. Let \((T_w)_{\omega \in \Omega} \) be a continuous operator frame for \(\text{End}_{\omega}^d(\mathcal{H}) \) with bounds \(\nu \) and \(\delta \) and let \((R_w)_{\omega \in \Omega} \subset \text{End}_{\omega}^d(\mathcal{H}) \). The following statements are equivalent:

(i) \((R_w)_{\omega \in \Omega} \) is a continuous operator frame for \(\text{End}_{\omega}^d(\mathcal{H}) \).

(ii) There exists a constant \(\xi > 0 \), such that for all \(x \) in \(\mathcal{H} \), we have

\[
\| (T_w - R_w)x, (T_w - R_w)x \|_{\omega \in \Omega} \leq \xi \cdot \min \left(\left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\omega} d\mu(w) \right\|, \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\omega} d\mu(w) \right\| \right). \quad (12) \]

Proof. Suppose that \((R_w)_{\omega \in \Omega} \) is a continuous operator frame for \(\text{End}_{\omega}^d(\mathcal{H}) \) with bound \(\eta \) and \(\rho \). Then for all \(x \in \mathcal{H} \), we have
\[
\left\| (T_w - R_w)x \right\|_{w \in \Omega} = \left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]
\[
\leq \left\| (T_w x)_{w \in \Omega} \right\| + \left\| (R_w x)_{w \in \Omega} \right\|
\]
\[
= \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2} + \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]
\[
\leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2} + \sqrt{\rho} \| x \|
\]
\[
\leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2} + \sqrt{\rho} \| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]
\[
= \left(1 + \sqrt{\rho} \right) \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2}.
\]

In the same way, we have

\[
\left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{sY} d\mu(w) \right\|^{1/2} \leq \left(1 + \sqrt{\delta/\eta} \right) \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|^{1/2}.
\]

(13)

For (12), we take \(\xi = \min (1 + \sqrt{\delta/\eta}, 1 + \sqrt{\rho/\gamma}) \).

Now we assume that (12) holds. For each \(x \in \mathcal{H} \), we have

\[
\sqrt{\gamma} \| x \| \leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]
\[
= \left\| (T_w x)_{w \in \Omega} \right\|
\]
\[
\leq \left\| (T_w - R_w)x \right\|_{w \in \Omega} + \left\| (R_w x)_{w \in \Omega} \right\|
\]
\[
= \left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{sY} d\mu(w) \right\|^{1/2} + \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]

(15)

From (12), we have

\[
\left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{sY} d\mu(w) \right\| \leq \xi \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|
\]

(16)

Then,

\[
\left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{sY} d\mu(w) \right\|^{1/2} \leq \sqrt{\xi} \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|^{1/2} + \sqrt{\xi} \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{sY} d\mu(w) \right\|^{1/2}
\]

(17)
Hence,

\[
\sqrt{\nu} \|x\| \leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)} \leq (1 + \sqrt{\xi}) \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)}.
\]

Also, we have

\[
\left\| \{R_w x\}_{w \in \Omega} \right\| = \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)} = \left\| \{(R_w x - T_w x) + T_w x\}_{w \in \Omega} \right\|^{(1/2)} = \left\| \int_{\Omega} \langle (T_w - R_w) x, (T_w - R_w) x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)} + \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)}.
\]

From (12), we have

\[
\left\| \int_{\Omega} \langle (T_w - R_w) x, (T_w - R_w) x \rangle_{\mathcal{H}} d\mu(w) \right\| \leq \xi \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} d\mu(w) \right\|.
\]

Then,

\[
\left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)} \leq (1 + \sqrt{\xi}) \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)}.
\]

So,

\[
\left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} d\mu(w) \right\|^{(1/2)} \leq (1 + \sqrt{\xi}) \sqrt{\delta} \|x\|.
\]

From (18) and (22), we give that

\[
\frac{\nu}{(1 + \sqrt{\xi})^2} \|x\|^2 \leq \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} d\mu(w) \right\| \leq \delta (1 + \sqrt{\xi})^2 \|x\|^2.
\]

Therefore, \(\{R_w\}_{w \in \Omega} \) is a continuous operator frame for \(\text{End}_{\mathcal{H}}^n(\mathcal{H}) \).

Theorem 4. Let \(\{T_{k,w}\}_{w \in \Omega} \subset \text{End}_{\mathcal{H}}^n(\mathcal{H}), k = 1, 2, \ldots, n \) be a continuous operator frames for \(\text{End}_{\mathcal{H}}^n(\mathcal{H}) \) with bounds \(\nu_k \) and \(\delta_k \) and let \(\{\alpha_k\}_{k=1}^n \) be any scalars. If there exists a constant \(\lambda > 0 \) and some \(p \in \{1, 2, \ldots, n\} \) such that

\[
\lambda \left\| \{T_{p,w}\}_{w \in \Omega} \right\| \leq \sum_{k=1}^n |\alpha_k T_{k,w} x|, \quad x \in \mathcal{H},
\]

then \(\left\{ \sum_{k=1}^n \alpha_k T_{k,w} \right\}_{w \in \Omega} \) is a continuous operator frame for \(\text{End}_{\mathcal{H}}^n(\mathcal{H}) \) and conversely.

Proof. For every \(x \in \mathcal{H} \), we have

\[
\sqrt{\nu p} \lambda \|x, x\| \leq \left\| \{T_{p,w} x\}_{w \in \Omega} \right\| \leq \left\| \left\{ \sum_{k=1}^n |\alpha_k T_{k,w} x| \right\}_{w \in \Omega} \right\| \leq \left(\max_{1 \leq k \leq n} |\alpha_k| \right) \sum_{k=1}^n \| T_{k,w} x \|_{w \in \Omega} \leq \left(\max_{1 \leq k \leq n} |\alpha_k| \right) \left(\sum_{k=1}^n \sqrt{\delta_k} \right) \|x, x\|^{(1/2)}.
\]
Hence
\[
y_p \lambda^2 \| \langle x, x \rangle_{sf} \| \leq \left\| \sum_{k=1}^{n} a_k T_{k,w} x \right\|_{w \in \Omega}^2 \leq \left(\max_{k \in \Omega} |a_k| \right)^2 \left(\sum_{k=1}^{n} \frac{1}{\sqrt{\delta_k}} \right)^2 \| \langle x, x \rangle_{sf} \|. \tag{26}
\]

Therefore, \(\left\{ \sum_{k=1}^{n} a_k T_{k,w} x \right\}_{w \in \Omega} \) is a continuous operator frame for \(\text{End}_f^* (\mathcal{H}) \).

For the converse, let \(\left\{ \sum_{k=1}^{n} a_k T_{k,w} x \right\}_{w \in \Omega} \) be a continuous operator frame for \(\text{End}_f^* (\mathcal{H}) \) with bounds \(\nu, \delta \) and let any \(k \in \{1, 2, \ldots, n\} \).

Since \(\left\{ T_{p,w} \right\}_{w \in \Omega} \) is a continuous operator frame for \(\text{End}_f^* (\mathcal{H}) \) with bounds \(\nu_p \) and \(\delta_p \), then for any \(x \in \mathcal{H} \), we have
\[
y_p \| \langle x, x \rangle_{sf} \| \leq \left\| \left\{ T_{p,w} \right\}_{w \in \Omega} \right\| \| \langle x, x \rangle_{sf} \|. \tag{27}
\]
Hence,
\[
\delta_p^{-1} \left\| \left\{ T_{p,w} \right\}_{w \in \Omega} \right\| \leq \| \langle x, x \rangle_{sf} \|. \tag{28}
\]
Also, we have
\[
\nu \| \langle x, x \rangle_{sf} \| \leq \left\| \left\{ \sum_{k=1}^{n} a_k T_{k,w} x \right\}_{w \in \Omega} \right\|_{w \in \Omega}^2, \quad x \in \mathcal{H}. \tag{29}
\]
Then,
\[
\| \langle x, x \rangle_{sf} \| \leq \nu^{-1} \left\| \left\{ \sum_{k=1}^{n} a_k T_{k,w} x \right\}_{w \in \Omega} \right\|_{w \in \Omega}^2, \quad x \in \mathcal{H}. \tag{30}
\]
So,
\[
\left\| \int_{\Omega} \langle T_{k,w} - R_{k,w}, (T_{k,w} - R_{k,w}) x \rangle_{sf} d\mu(w) \right\| \leq \lambda \int_{\Omega} \langle T_{w,x}, T_{w,x} \rangle_{sf} d\mu(w). \tag{34}
\]
Then \(\left\{ \sum_{k=1}^{n} R_{k,w} \right\}_{w \in \Omega} \) is a continuous operator frame for \(\text{End}_f^* (\mathcal{H}) \).

Proof. For all \(x \in \mathcal{H} \), we have
\[
\left\| \sum_{k=1}^{n} R_{k,w} x \right\|_{w \in \Omega} \leq \left\| \sum_{k=1}^{n} \left\| T_{k,w} x \right\|_{w \in \Omega} \right\| \leq \left\| \sum_{k=1}^{n} \left\{ T_{k,w} - R_{k,w} \right\}_{w \in \Omega} \right\| + \left\| \sum_{k=1}^{n} R_{k,w} x \right\|_{w \in \Omega} \leq (1 + \sqrt{\lambda}) \left(\sum_{k=1}^{n} \frac{1}{\sqrt{\delta_k}} \right) \| \langle x, x \rangle_{sf} \|^{(1/2)}. \tag{35}
\]
Since, for any \(x \in \mathcal{H} \), we have
\[
\left\| L \left(\sum_{k=1}^{n} R_{k,w} \right) \right\| = \left\| \{ T_{p,w} \}_{w \in \Omega} \right\|. \tag{36}
\]

Then
\[
\sqrt{\frac{\| p \|}{\| L \|}} \| \langle x, x \rangle \|_{\mathcal{H}}^{1/2} \leq \left\| \sum_{k=1}^{n} R_{k,w} \right\|_{w \in \Omega}, \quad x \in \mathcal{H}. \tag{37}
\]

Hence
\[
\frac{\sqrt{\| p \|}}{\| L \|} \| \langle x, x \rangle \|^{1/2} \leq \left\| \sum_{k=1}^{n} R_{k,w} \right\|_{w \in \Omega}. \tag{38}
\]

Therefore
\[
\frac{\sqrt{\| p \|}}{\| L \|} \| \langle x, x \rangle \|^{1/2} \leq \left(1 + \sqrt{\lambda} \right) \left\| \sum_{k=1}^{n} \sqrt{\| \delta_k \|} \right\| \| \langle x, x \rangle \|^{1/2}. \tag{39}
\]

This gives \(\sum_{k=1}^{n} R_{k,w} \) \(w \in \Omega \) is a continuous operator frame for \(\text{End}_{\mathcal{Y}}^{*} (\mathcal{H}) \).

\[\Box\]

4. Characterisation of Continuous K-Operator Frames for \(\text{End}_{\mathcal{Y}}^{*} (\mathcal{H}) \)

Definition 3. Let \(K \in \text{End}_{\mathcal{Y}}^{*} (\mathcal{H}) \). A family of adjointable operators \(\{ T_{w} \}_{w \in \Omega} \) on a Hilbert \(\mathcal{Y} \)-module \(\mathcal{H} \) is said to be a continuous K-operator frame for \(\text{End}_{\mathcal{Y}}^{*} (\mathcal{H}) \), if there exists two positive constants \(\nu, \delta > 0 \) such that
\[
\delta \| K^{*} x, K^{*} x \|_{\mathcal{Y}} \leq \int_{\Omega} \langle T_{w} x, T_{w} x \rangle_{\mathcal{Y}} \mathrm{d} \mu (w) \leq \delta \| x, x \|_{\mathcal{Y}}, \quad x \in \mathcal{H}. \tag{40}
\]

The numbers \(\nu \) and \(\delta \) are called, respectively, lower and upper bound of the continuous K-operator frame.

The continuous K-operator frame is called a \(\nu \)-tight if:
\[
\nu \| K \|^{2} \| K^{*} x, K^{*} x \|_{\mathcal{Y}} \leq \nu \| x, x \|_{\mathcal{Y}} \leq \int_{\Omega} \langle T_{w} x, T_{w} x \rangle_{\mathcal{Y}} \mathrm{d} \mu (w) \leq \delta \| x, x \|_{\mathcal{Y}}, \quad x \in \mathcal{H}. \tag{43}
\]

Hence \(\{ T_{w} \}_{w \in \Omega} \) is a continuous K-operator frame with bounds \(\nu \| K \|^{2} \) and \(\delta \).

Let \(\{ T_{w} \}_{w \in \Omega} \) be a continuous K-operator for \(\text{End}_{\mathcal{Y}}^{*} (\mathcal{H}) \). We define the operator
\[
\mathcal{R} : \mathcal{H} \rightarrow \ell^{2} (\mathcal{H}), \quad x \mapsto \mathcal{R} x = \{ T_{w} x \}_{w \in \Omega}. \tag{44}
\]

The operator \(\mathcal{R} \) is called the analysis operator of the continuous K-operator frame \(\{ T_{w} \}_{w \in \Omega} \), and its adjoint is defined as follows:

\[
\mathcal{R}^{*} : \ell^{2} (\mathcal{H}) \rightarrow \mathcal{H}, \quad \{ x_{w} \}_{w \in \Omega} \mapsto \mathcal{R}^{*} \{ x_{w} \}_{w \in \Omega} = \sum_{w \in \Omega} T_{w} x_{w} \mathrm{d} \mu (w). \tag{45}
\]

The operators \(\mathcal{R} \) is called the synthesis operator of the continuous K-operator frame \(\{ T_{w} \}_{w \in \Omega} \).

By composing \(\mathcal{R} \) and \(\mathcal{R}^{*} \), we obtain the operator
\[
\mathcal{S}^{*} : \mathcal{H} \rightarrow \mathcal{H}, \quad x \mapsto \mathcal{S}^{*} x = \mathcal{R}^{*} \mathcal{R} x = \sum_{w \in \Omega} T_{w}^{*} T_{w} x \mathrm{d} \mu (w). \tag{46}
\]
It is easy to show that the operator $S_{\mathcal{H}}$ is positive and self-adjoint.

Theorem 6. Let $\{T_w\}_{w \in \Omega}$ be a family of adjointable operators on a Hilbert \mathcal{A}-module \mathcal{H}. Assume that

$$\int_\Omega \langle T_w x, T_w x \rangle_d \mu(w) \text{ converges in norm for all } x \in \mathcal{H}. \quad (47)$$

Then $\{T_w\}_{w \in \Omega}$ is a continuous K-operator frame for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$ if and only if there exists two positive constants $\nu, \delta > 0$ such that

$$\nu \|K^*x\|^2 \leq \int_\Omega \langle T_w x, T_w x \rangle_d \mu(w) \leq \delta \|x\|^2. \quad (47)$$

Proof. Suppose that $\{T_w\}_{w \in \Omega}$ is a continuous K-operator frame.

From the definition of continuous K-operator frame, (47) holds.

Conversely, assume that (47) holds. The frame operator $S_{\mathcal{H}}$ is positive and self-adjoint; then

$$\langle S^{(1/2)}_{\mathcal{H}} x, S^{(1/2)}_{\mathcal{H}} x \rangle \leq \langle S_{\mathcal{H}} x, S_{\mathcal{H}} x \rangle \leq \int_\Omega \langle T_w x, T_w x \rangle_d \mu(w). \quad (48)$$

Then $\{T_w\}_{w \in \Omega}$ is a continuous K-operator frame for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$.

We have for any $x \in \mathcal{H}$,

$$\|K^*x\| \leq \|S^{(1/2)}_{\mathcal{H}} x\| \leq \sqrt{\delta} \|x\|. \quad (49)$$

Using Lemma 2, there exist two constants $\tau, \xi > 0$ such that

$$\tau \langle K^* x, K^* x \rangle \leq \langle S^{(1/2)}_{\mathcal{H}} x, S^{(1/2)}_{\mathcal{H}} x \rangle \leq \tau \langle x, x \rangle. \quad (50)$$

This proves that $\{T_w\}_{w \in \Omega}$ is a continuous K-operator frame for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$. \hfill \Box

5. Perturbation and Stability of Continuous K-Operator Frames for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$

Theorem 7. Let $\{T_w\}_{w \in \Omega}$ be a continuous K-operator frame for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$ with bounds A and B, let $\{R_w\}_{w \in \Omega} \subset \text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$ and $\{\beta_w\}_{w \in \Omega}, \{\mu_w\}_{w \in \Omega} \in \mathbb{R}$ be two positively families. If there exist two constants $0 \leq \lambda, \mu < 1$ such that for any $x \in \mathcal{H}$, we have

\[
\|\beta_w R_w x\|_{w \in \Omega} \leq (1 + \lambda) \|\alpha_w T_w x\|_{w \in \Omega} \quad \text{and} \quad \|\alpha_w T_w x\|_{w \in \Omega} \leq (1 + \mu) \|\beta_w R_w x\|_{w \in \Omega}. \quad (51)
\]

Then, $\{R_w\}_{w \in \Omega}$ is a continuous K-operator frame for $\text{End}_{\mathcal{A}}^{\ast}(\mathcal{H})$.

Proof. For every $x \in \mathcal{H}$, we have

\[
\|R_w x\|_{w \in \Omega} \leq (1 + \lambda) \sup_{w \in \Omega} (\alpha_w) \|T_w x\|_{w \in \Omega}. \quad (55)
\]

Hence

\[
\|R_w x\|_{w \in \Omega} \leq \frac{(1 + \lambda) \sup_{w \in \Omega} (\alpha_w)}{(1 - \mu) \inf_{w \in \Omega} (\beta_w)} \|T_w x\|_{w \in \Omega}. \quad (56)
\]

Also, for all $x \in \mathcal{H}$, we have

\[
(1 - \mu) \inf_{w \in \Omega} (\beta_w) \|R_w x\|_{w \in \Omega} \leq (1 + \lambda) \sup_{w \in \Omega} (\alpha_w) \|T_w x\|_{w \in \Omega}. \quad (54)
\]

\[
\|\alpha_w T_w x\|_{w \in \Omega} \leq \|\alpha_w T_w x\|_{w \in \Omega} + \|\beta_w R_w x\|_{w \in \Omega} \leq \|\alpha_w T_w x\|_{w \in \Omega} + \|\beta_w R_w x\|_{w \in \Omega}. \quad (56)
\]
then
\[(1-\lambda)\|\alpha_w T_w x\|_{w \in \Omega} \leq (1+\mu)\|\beta_w R_w x\|_{w \in \Omega} \].

Hence
\[(1-\lambda) \inf_{\omega \in \Omega} (\alpha_w) \|T_w x\|_{w \in \Omega} \leq (1+\mu) \sup_{\omega \in \Omega} (\beta_w) \|R_w x\|_{w \in \Omega} \].

Thus
\[
\frac{(1-\lambda) \inf_{\omega \in \Omega} (\alpha_w)}{(1+\mu) \sup_{\omega \in \Omega} (\beta_w)} \|T_w x\|_{w \in \Omega} \leq \|R_w x\|_{w \in \Omega} \].

Therefore

\[\nu \left(\frac{(1-\lambda) \inf_{\omega \in \Omega} (\alpha_w)}{(1+\mu) \sup_{\omega \in \Omega} (\beta_w)} \right)^2 \|\langle x, x \rangle_{A^1}\| \leq \left(\frac{(1-\lambda) \inf_{\omega \in \Omega} (\alpha_w)}{(1+\mu) \sup_{\omega \in \Omega} (\beta_w)} \right)^2 \|T_w x\|_{w \in \Omega}^2 \leq \|R_w x\|_{w \in \Omega}^2.\]

So,

\[\|R_w x\|_{w \in \Omega} \leq \left(\frac{(1+\lambda) \sup_{\omega \in \Omega} (\alpha_w)}{(1-\mu) \inf_{\omega \in \Omega} (\beta_w)} \right) \|T_w x\|_{w \in \Omega} \leq \delta \left(\frac{(1+\lambda) \sup_{\omega \in \Omega} (\alpha_w)}{(1-\mu) \inf_{\omega \in \Omega} (\beta_w)} \right) \|\langle x, x \rangle_{A^1}\|.\]

Hence

\[
\nu \left(\frac{(1-\lambda) \inf_{\omega \in \Omega} (\alpha_w)}{(1+\mu) \sup_{\omega \in \Omega} (\beta_w)} \right)^2 \|\langle x, x \rangle_{A^1}\| \leq \int_{\Omega} \langle R_w x, R_w x \rangle d\mu(\omega) \leq \delta \left(\frac{(1+\lambda) \sup_{\omega \in \Omega} (\alpha_w)}{(1-\mu) \inf_{\omega \in \Omega} (\beta_w)} \right) \|\langle x, x \rangle_{A^1}\|.\]

This gives that \(R_w \) is a continuous \(K \)-operator frame for \(\text{End}_{A^1}(\mathcal{H}) \).

Theorem 8. Let \(T_w \) be a continuous \(K \)-operator frame for \(\text{End}_{A^1}(\mathcal{H}) \) with bounds \(\nu \) and \(\delta \). Let \(R_w \in \text{End}_{A^1}(\mathcal{H}) \) and \(0 \leq \alpha < (\beta/\gamma) < 1 \) such that for all \(x \in \mathcal{H} \), we have

\[\int_{\Omega} \langle T_w x, T_w x \rangle d\mu(\omega) \leq \alpha \|\langle x, x \rangle_{A^1}\| + \beta \|\langle x, x \rangle_{A^1}\|.\]

Then \(R_w \) is a continuous \(K \)-operator frame with bounds \(\nu(1-\sqrt{\alpha+(\beta/\gamma)})^2 \) and \(\delta(1+\sqrt{\alpha+(\beta/\gamma)})^2 \).

Proof. Let \(T_w \) be a continuous \(K \)-operator frame with bounds \(\nu \) and \(\delta \). Then for any \(x \in \mathcal{H} \), we have

\[
\|T_w x\|_{w \in \Omega} \leq \|T_w x\|_{w \in \Omega} + \|R_w x\|_{w \in \Omega} \leq \left(\alpha \int_{\Omega} \langle T_w x, T_w x \rangle d\mu(\omega) + \beta \|\langle x, x \rangle_{A^1}\| \right)^{\frac{1}{2}}
\]

\[
+ \|\int_{\Omega} \langle R_w x, R_w x \rangle d\mu(\omega) \|^{\frac{1}{2}} \leq \left(\alpha \int_{\Omega} \langle T_w x, T_w x \rangle d\mu(\omega) + \beta \|\langle x, x \rangle_{A^1}\| \right)^{\frac{1}{2}}
\]

\[
+ \|\int_{\Omega} \langle R_w x, R_w x \rangle d\mu(\omega) \|^\frac{1}{2} = \sqrt{\alpha + \frac{\beta}{\gamma}} \|T_w x\|_{w \in \Omega} + \|\int_{\Omega} \langle R_w x, R_w x \rangle d\mu(\omega) \|^\frac{1}{2}.
\]
Therefore

\[
\left(1 - \sqrt{\alpha + \frac{\beta}{\nu}} \right) \left\| \{T_w x \}_{w \in \Omega} \right\| \leq \left(\int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{S}} d\mu(\omega) \right)^{1/2}.
\]

(65)

Thus

\[
\nu \left(1 - \sqrt{\alpha + \frac{\beta}{\nu}} \right)^2 \left\| \langle K^* x, K^* x \rangle_{\mathcal{S}} \right\| \leq \left(1 - \sqrt{\alpha + \frac{\beta}{\nu}} \right)^2 \left(\int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{S}} d\mu(\omega) \right)^{1/2}.
\]

(66)

Also, we have

\[
\left\| \{R_w x \}_{w \in \Omega} \right\| \leq \left\| \{T_w x - R_w x \}_{w \in \Omega} \right\| + \left\| \{T_w x \}_{w \in \Omega} \right\|
\]

\[
\leq \sqrt{\alpha + \frac{\beta}{\nu}} \left\| \{T_w x \}_{w \in \Omega} \right\| + \left\| \{T_w x \}_{w \in \Omega} \right\| = \left(1 + \sqrt{\alpha + \frac{\beta}{\nu}} \right) \left\| \{T_w x \}_{w \in \Omega} \right\|
\]

(67)

\[
\leq \sqrt{\delta} \left(1 + \sqrt{\alpha + \frac{\beta}{\nu}} \right) \langle x, x \rangle_{\mathcal{S}}^{1/2}.
\]

Hence

\[
\left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{S}} d\mu(\omega) \right\| \leq \delta \left(1 + \sqrt{\alpha + \frac{\beta}{\nu}} \right)^2 \langle x, x \rangle_{\mathcal{S}}.
\]

(68)

\[
\nu \left(1 - \sqrt{\alpha + \frac{\beta}{\nu}} \right)^2 \left\| \langle K^* x, K^* x \rangle_{\mathcal{S}} \right\| \leq \left(\int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{S}} d\mu(\omega) \right)^{1/2} \leq \delta \left(1 + \sqrt{\alpha + \frac{\beta}{\nu}} \right)^2 \langle x, x \rangle_{\mathcal{S}}.
\]

(69)

Corollary 1. Let \{T_w \}_{w \in \Omega} be a continuous K-operator frame for \text{End}_{\mathcal{S}}(\mathcal{H}) with bounds \nu and \delta. Let \{R_w \}_{w \in \Omega} \subset \text{End}_{\mathcal{S}}(\mathcal{H}) and 0 \leq a. If 0 \leq a < \nu such that

\[
\nu(1 + \sqrt{\alpha - (\beta/\nu)})^2 \quad \text{and} \quad \delta(1 + \sqrt{\alpha + (\beta/\nu)})^2.
\]

Hence \{R_w \}_{w \in \Omega} is a continuous K-operator frame with bounds \nu(1 + \sqrt{\alpha - (\beta/\nu)})^2 and \delta(1 + \sqrt{\alpha + (\beta/\nu)})^2.
\[\left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \leq a \left\| \langle K^* x, K^* x \rangle_{\mathcal{H}} \right\|, \quad x \in \mathcal{H}, \] \tag{70}

Then \(\{R_w\}_{w \in \Omega} \) is a continuous K-operator frame with bounds \(\nu (1 - \sqrt{\alpha/\gamma})^2 \) and \(\delta (1 + \sqrt{\alpha/\gamma})^2 \).

Proof. The proof comes from the previous theorem. \(\square \)

Theorem 9. Let \(\{T_w\}_{w \in \Omega} \) be a continuous K-operator frame for \(\text{End}^*_g(\mathcal{H}) \) with bounds \(\nu \) and \(\delta \). Let \(\{R_w\}_{w \in \Omega} \subset \text{End}^*_g(\mathcal{H}) \). If there exists \(\xi > 0 \) such that for any \(x \in \mathcal{H} \), we have

\[\left\| \int_{\Omega} \langle (T_w - R_w)x, (T_w - R_w)x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \leq \xi \min \left(\left\| \int_{\Omega} \langle R_wx, R_wx \rangle_{\mathcal{H}} \, d\mu(\omega) \right\|, \left\| \int_{\Omega} \langle R_wx, R_wx \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \right). \] \tag{71}

Then \(\{R_w\}_{w \in \Omega} \) is a continuous K-operator frame for \(\text{End}^*_g(\mathcal{H}) \). The converse is true for any surjective operator \(K \) such that in particular if \(K \) is co-isometry.

Proof. Assume that (71) holds. On the one hand, we have for any \(x \in \mathcal{H} \)

\[\sqrt{\nu} \| K^* x \| \leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| = \left\| \int_{\Omega} \langle T_w x, T_w x - R_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \]
\[\leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| + \left\| \int_{\Omega} \langle T_w x - R_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \]
\[\leq \sqrt{\nu} \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \]
\[= (1 + \sqrt{\nu}) \left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\|. \] \tag{72}

On the other hand, we have

\[\left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \]
\[\leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| + \left\| \int_{\Omega} \langle T_w x - R_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \]
\[\leq \left\| \int_{\Omega} \langle T_w x, T_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| + \sqrt{\delta} \left\| \langle x, x \rangle_{\mathcal{H}} \right\|. \] \tag{74}

Then

\[\left\| \int_{\Omega} \langle R_w x, R_w x \rangle_{\mathcal{H}} \, d\mu(\omega) \right\| \leq \sqrt{\nu} \left(1 + \sqrt{\nu} \right) \left\| \langle x, x \rangle_{\mathcal{H}} \right\|. \] \tag{73}
From (73) and (75), we obtain

\[
\frac{\nu}{(1 + \sqrt{\xi})^2} \| K^* x \|^2 \leq \left\| \int_\Omega \langle R_w x, R_w x \rangle_\omega d\mu(\omega) \right\| \leq \delta (1 + \sqrt{\xi})^2 \| \langle x, x \rangle_\omega \|^2.
\]

\[
(76)
\]

Hence \(\{ R_w \}_{w \in \Omega} \) is a continuous K-operator frame for \(\text{End}^*_\nu(\mathcal{H}) \).

For the converse, if \(\{ R_w \}_{w \in \Omega} \) is a continuous K-operator frame for \(\text{End}^*_\nu(\mathcal{H}) \) with bound \(\eta \) and \(\rho \), and \(K \) verify that, i.e, \(\| x \| \leq \| K^* x \| \), then for every \(x \in \mathcal{H} \), we have

\[
\| (T_w - R_w) x \|_{w \in \Omega} = \left\| \int_\Omega \langle T_w x, T_w x \rangle_\omega d\mu(\omega) \right\|^{1/2} \leq \left\| \int_\Omega \langle T_w x, T_w x \rangle_\omega d\mu(\omega) \right\|^{1/2} + \sqrt{\nu} \| x \|,
\]

\[
(77)
\]

Similarly we can obtain

\[
\int_\Omega \langle T_w x, T_w x \rangle_\omega d\mu(\omega) \leq \left(1 + \sqrt{\frac{\delta}{\eta}} \right) \int_\Omega \langle R_w x, R_w x \rangle_\omega d\mu(\omega).
\]

\[
(78)
\]

We take \(\xi = \min \{ 1 + \sqrt{\rho/\nu}, 1 + \sqrt{\delta/\eta} \} \), then (5.1) is verified.

Theorem 10. Let \(K \in \text{End}^*_\nu(\mathcal{H}) \). For \(k = 1, 2, \ldots, n \), let \(\{ T_{k,w} \}_{w \in \Omega} \subset \text{End}^*_\nu(\mathcal{H}) \) be a continuous K-operator frame for \(\text{End}^*_\nu(\mathcal{H}) \) with bounds \(\nu_k \) and \(\delta_k \), \(\{ \alpha_k \} \) be any scalars. If there exists a constant \(\lambda > 0 \) and \(p \in \{ 1, 2, \ldots, n \} \) such that

\[
\sqrt{\nu_p} \lambda \left\| \langle K^* x, K^* x \rangle_\omega \right\|^{1/2} \leq \lambda \left\| \{ T_{p,w} x \}_{w \in \Omega} \right\| \leq \sum_{k=1}^n |\alpha_k| \left\| \{ T_{k,w} x \}_{w \in \Omega} \right\| \leq \sum_{k=1}^n |\alpha_k| \left\| \{ T_{k,w} x \}_{w \in \Omega} \right\| \leq \max_{1 \leq k \leq n} |\alpha_k| \left\| \sum_{k=1}^n \alpha_k \right\| \left\| \{ T_{k,w} x \}_{w \in \Omega} \right\| \leq \max_{1 \leq k \leq n} |\alpha_k| \left(\sum_{k=1}^n \delta_k \right) \left\| \langle x, x \rangle_\omega \right\|^{1/2}.
\]

\[
(80)
\]
Hence for any $x \in \mathcal{H}$, we have

$$\sqrt{\nu_p}\|\langle K^*x, K^*x \rangle_{\mathcal{H}}\|^{(1/2)} \leq \sqrt{\sum_{k=1}^{n} \left\langle \alpha_k T_{k,w}x \right\rangle_{\mathcal{H}}} \leq \max_{1 \leq k \leq n} |\alpha_k| \left(\sum_{k=1}^{n} \delta_k \right) \|\langle x, x \rangle_{\mathcal{H}}\|^{(1/2)}. \quad (81)$$

Then

$$\nu_p \delta_p^2 \|\langle K^*x, K^*x \rangle_{\mathcal{H}}\| \leq \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{\mathcal{H}} \leq \left(\max_{1 \leq k \leq n} |\alpha_k| \right)^2 \left(\sum_{k=1}^{n} \delta_k \right)^2 \|\langle x, x \rangle_{\mathcal{H}}\|. \quad (82)$$

This gives that $\{\sum_{k=1}^{n} \alpha_k T_{k,w}x\}_{w \in \Omega}$ is a continuous K-operator frame for $\text{End}_{\mathcal{H}}^d(\mathcal{H})$. For the converse, let K be a co-isometric operator on \mathcal{H}, let $\{\sum_{k=1}^{n} \alpha_k T_{k,w}x\}_{w}$ be a continuous K-operator frame for $\text{End}_{\mathcal{H}}^d(\mathcal{H})$ with bounds ν and δ and let for all $p \in \{1, 2, \ldots, n\}$, $\{T_{k,w}x\}_{w}$ be a continuous K-operator frame for $\text{End}_{\mathcal{H}}^d(\mathcal{H})$ with bounds ν_p and δ_p. Then, for every $x \in \mathcal{H}$, we have

$$\nu_p \|\langle K^*x, K^*x \rangle_{\mathcal{H}}\| \leq \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{\mathcal{H}} \leq \|\langle x, x \rangle_{\mathcal{H}}\|. \quad (83)$$

Then

$$\frac{1}{\delta_p^2} \left\langle T_{k,w}x \right\rangle_{w} \leq \|\langle x, x \rangle_{\mathcal{H}}\|. \quad (84)$$

Also, we have

$$\nu \|\langle K^*x, K^*x \rangle_{\mathcal{H}}\| \leq \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{\mathcal{H}} \leq \|\langle x, x \rangle_{\mathcal{H}}\|. \quad (85)$$

Since K is a co-isometric operator, then

$$\|\langle x, x \rangle_{\mathcal{H}}\| = \|\langle K^*x, K^*x \rangle_{\mathcal{H}}\| \leq \frac{1}{\nu} \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{\mathcal{H}}, \quad x \in \mathcal{H}. \quad (86)$$

So

$$\frac{\nu}{\delta_p^2} \left\langle T_{k,w}x \right\rangle_{w} \leq \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{w}, \quad x \in \mathcal{H}. \quad (87)$$

Therefore, for $\lambda = (\nu/\delta_p)$, we have

$$\lambda \left\langle T_{k,w}x \right\rangle_{w} \leq \left\langle \sum_{k=1}^{n} \alpha_k T_{k,w}x \right\rangle_{w}, \quad x \in \mathcal{H}. \quad (88)$$

\[\text{Theorem 11. Let } K \in \text{End}_{\mathcal{H}}^d(\mathcal{H}). \text{ For } k = 1, 2, \ldots, n, \text{ let } \{T_{k,w}\}_{w \in \Omega} \subset \text{End}_{\mathcal{H}}^d(\mathcal{H}) \text{ be a continuous K-operator frame for } \]
\[
\sqrt{\Psi} \| \langle K^* x, K^* x \rangle_{\mathcal{A}} \|_{1/2} \\
\leq \| \langle T_{p,\omega} x \rangle_{\mathcal{A}} \| = \| S \left\{ \sum_{k=1}^{n} R_{k,\omega} x \right\}_{\mathcal{A}} \| \\
\leq \| S \| \| \sum_{k=1}^{n} R_{k,\omega} x \|_{\mathcal{A}}, \quad x \in \mathcal{H}.
\]

\text{(92)}

Thus

\[
\sqrt{\Psi} \| \langle K^* x, K^* x \rangle_{\mathcal{A}} \|_{1/2} \leq \left\| \sum_{k=1}^{n} R_{k,\omega} x \right\|_{\mathcal{A}}^2 \\
\leq (1 + \sqrt{\lambda}) \left(\sum_{k=1}^{n} \delta_k \right) \| \langle x, x \rangle_{\mathcal{A}} \|_{1/2}, \quad x \in \mathcal{H}.
\]

\text{(94)}

This gives that \(\{ \sum_{k=1}^{n} R_{k,\omega} \}_{\mathcal{A}} \) is a continuous K-operator frame for \(\text{End}^*_{\mathcal{A}} (\mathcal{H}) \).

\[\square \]

Data Availability

No data were used to support this study.

Conflicts of Interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

References

[1] R. J. Duffin and A. C. Schaeffer, "A class of nonharmonic fourier series," Transactions of the American Mathematical Society, vol. 72, no. 2, p. 341, 1952.

[2] I. Daubechies, A. Grossmann, and Y. Meyer, "Painless nonorthogonal expansions," Journal of Mathematical Physics, vol. 27, no. 5, pp. 1271–1283, 1986.

[3] S. T. Ali, J. P. Antoine, and J. P. Gazeau, "Continuous frames in Hilbert space," Annales of Physics, vol. 222, no. 1, pp. 1–37, 1993.

[4] J. P. Gabardo and D. Han, "Frames associated with measurable space," Advances in Computational Mathematics, vol. 18, no. 3, pp. 127–147, 2003.

[5] M. Frank and D. R. Larson, "Frames in Hilbert C*-modules and C*-algebras," Journal of Operator Theory, vol. 48, pp. 273–314, 2002.

[6] N. Assila, S. Kabbaj, and B. Moalige, "Controlled K-fusion frame for Hilbert spaces," Moroccan Journal of Pure and Applied Analysis, vol. 7, no. 1, pp. 116–133, 2021.

[7] S. Kabbaj, H. Labrigui, and A. Touri, "Controlled continuous g-frames in Hilbert C*-modules," Moroccan Journal of Pure and Applied Analysis, vol. 6, no. 2, pp. 184–197, 2020.

[8] H. Labrigui, A. Touri, and S. Kabbaj, "Controlled operators frames for End^*_{\mathcal{A}} (\mathcal{H})," Asian Journal Of Mathematics and Applications, vol. 2020, Article ID ama0554, 13 pages, 2020.

[9] H. Labrigui and S. Kabbaj, "Integral operator frames for \(\beta(H) \)," Journal of Interdisciplinary Mathematics, vol. 23, no. 8, pp. 1519–1529, 2020.

[10] M. Rahmani, "On some properties of c-frames," Journal of Mathematical Research with Applications, vol. 37, no. 4, pp. 466–476, 2017.

[11] M. Rahmani, "Sum of c-frames, c-Riesz Bases and orthonormal mapping," UPB Scientific Bulletin, Series A, vol. 77, no. 3, pp. 3–14, 2015.

[12] A. Rahmani, A. Najati, and Y. N. Deghan, "Continuous frames in Hilbert spaces, Method of Functional Analysis and Topology, vol. 12, no. 2, pp. 170–182, 2006.

[13] E. C. Hilbert, C*-modules, A Toolkit for Operator Algebraists: University of Leeds, Cambridge University Press, Cambridge, UK, 1995.

[14] M. Rossafi and S. Kabbaj, "*-K-operator frame for End^*_{\mathcal{A}} (\mathcal{H})," Asian-European Journal of Mathematics, vol. 13, no. 3, Article ID 2050060, 2020.

[15] M. Rossafi, A. Bourouhidiya, H. Labrigui, and A. Touri, "The duals of *-operator Frame for End^*_{\mathcal{A}} (\mathcal{H})," Asia Math, vol. 4, pp. 45–52, 2020.

[16] M. Rossafi, A. Touri, H. Labrigui, and A. Akhliji, "Continuous *-K-G-Frame in Hilbert C*-modules," Journal of Function Spaces, vol. 2019, Article ID 2426978, 5 pages, 2019.

[17] M. Rossafi and S. Kabbaj, "Operator frame for End^*_{\mathcal{A}} (\mathcal{H})," Journal of Linear and Topological Algebra, vol. 8, pp. 85–95, 2019.

[18] S. Kabbaj and M. Rossafi, "* -Operator Frame for End^*_{\mathcal{A}} (\mathcal{H})," Wavelet Linear Algebra, vol. 5, no. 2, pp. 1–13, 2018.

[19] M. Rossafi and S. Kabbaj, "* *-K-g-frames in Hilbert C*-modules," Journal of Linear and Topological Algebra, vol. 7, pp. 63–71, 2018.

[20] M. Rossafi and S. Kabbaj, "* *-g-frames in tensor products of Hilbert C*-modules," Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, vol. 17, no. 1, pp. 17–25, 2018.

[21] M. Rossafi and S. Kabbaj, "K-operator frame for End^*_{\mathcal{A}} (\mathcal{H})," Asia Math, vol. 2, pp. 52–60, 2018.
[22] M. Rossafi and S. Kabbaj, “Frames and operator frames for $B(\mathcal{H})$,” Asia Math, vol. 2, pp. 19–23, 2018.
[23] M. Rossafi and A. Akhlidj, “Perturbation and stability of operator frame for $\text{End}_{\pi}(\mathcal{H})$,” Math-Recherche and Applications, vol. 16, pp. 65–81, 2017-2018.
[24] M. Rossafi and S. Kabbaj, “Generalized frames for $B(\mathcal{H}, K)$,” Iranian Journal of Mathematical Sciences and Informatics, vol. x, 2019.
[25] M. Rossafi, A. Touri, H. Lahrigui, and A. Akhlidj, “Continuous $*$-K-G-Frame in Hilbert C^*-modules,” Journal of Function Spaces, vol. 2019, Article ID 2426978, 5 pages, 2019.
[26] J. B. Conway, A Course In Operator Theory, AMS, Providence, RI, USA, 2000.
[27] F. R. Davidson, “C^*-algebra by example,” in Volume 6 of Fields Institute Monographs, American Mathematical Society, Providence, RI, USA, 1996.
[28] W. Paschke, “Inner product modules over B^*-algebras,” Transactions of the American Mathematical Society, vol. 182, pp. 443–468, 1973.
[29] L. Arambašić, “On frames for countably generated Hilbert C^*-modules,” Proceedings of the American Mathematical Society, vol. 135, pp. 469–478, 2007.
[30] K. Yosida, Functional Analysis of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 6 edition, 1980.
[31] N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, of Pure and Applied Mathematics, Interscience, New York, NY, USA, 1958.
[32] E. C. Lance, Hilbert C^*-Modules: A Toolkit for Operator Algebraist of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1995.