Community Evolution

Piotr Bródka, Stanisław Saganowski, Przemysław Kazienko
Wrocław University of Technology, Institute of Informatics
Wrocław
Poland
piotr.brodka@pwr.wroc.pl, stanislaw.saganowski@pwr.wroc.pl, kazienko@pwr.wroc.pl

Synonyms

Social group evolution
Temporal communities
Evolutionary communities
Changes of social groups

Glossary

SN: social network
TSN: temporal social network

Definition

Evolution of a particular social community can be represented as a sequence of events (changes) following each other in the successive timeframes within the temporal social network. In other words, the evolution is described by identified group transformations from time T_i to T_{i+1} (i is the period index).

There are several approaches to definition of possible events in the social group evolution

- Asur at al. distinguish 5 possible events that may happen to groups, i.e. they may dissolve, form, continue, merge and split [Asur 07];
- Pala et al. identify 6 distinct transformations: growth, contraction, merging, splitting, birth and death [Palla, 07];
- Bródka at al., in turn, describe 7 noticeable event types: continuing, shrinking, growing, splitting, merging, dissolving and forming [Bródka, 12].

Some other different taxonomies can be found in [Spiliopoulou, 06], [Oliveira, 10], [Takaffoli, 11] but all of them are very similar and actually complete each other. The short description of the most common changes can be found below.

Continue [Asur, 07], continuing [Bródka, 12] – the community continues its existence when two groups in the consecutive time windows are identical or when two groups differ by only few nodes but their sizes remain the same. Intuitively, continuation happens when two communities are so much similar that it is hard to see any significant differences.
Contraction [Palla, 07] shrinking [Bródka, 12] – the community shrinks/contracts when some members have left the group, making its size smaller than in the previous time window. A group can shrink either slightly, losing only few nodes, or greatly, losing most of its members.

Growth [Palla, 07] growing [Bródka, 12] – the community grows when some new members have joined the group, making its size bigger than in the previous time window. A group can grow slightly as well as significantly, doubling or even tripling its size.

Split [Asur, 07], splitting [Palla, 07] splitting [Bródka, 12] – the community splits into two or more communities in the next time window when few groups from timeframe T_{i+1} consist of nodes of one group from timeframe T_i. Two types of splitting can be distinguished: (1) *equal*, which means the contribution of the groups in the split group is more or less the same and (2) *unequal*, if one of the groups outweighs the others and participates much higher in the split group. In the latter case, the splitting might look similar to shrinking for the biggest group.

Merge [Asur, 07], merging [Palla, 07] merging [Bródka, 12] – the community has been created by merging several other groups, when one group from timeframe T_{i+1} consist of two or more groups from the previous timeframe T_i. A merge, just like the split, might be (1) *equal*, if the contribution of the groups in the merged group is almost the same, or (2) *unequal*, if one of the groups contributes into the merged group much higher than other groups. For the largest group, the merging looks quite similarly to growing in the case of unequal merging.

Dissolve [Asur, 07], death [Palla, 07] dissolving [Bródka, 12] happens when a community ends its life and does not occur in the next time window at all, i.e. its members have vanished or stop maintaining their relationships within the group and scattered among other groups.

Form [Asur, 07], birth [Palla, 07] forming [Bródka, 12] of a new community occurs when a group which has not existed in the previous time window T_i comes into existence in the next time window T_{i+1}. In some cases, a group can be inactive even over several timeframes. Then, such sequence is treated as a dissolving of the first community and its birth again in the form of the second, new one.

The examples of all events described above are depicted in Figure 1.
The whole evolution process for a particular social community combines all changes during its lifetime to a sequence of changes - following events. A simple example of such evolution for only one group is presented in Figure 2. The community evolution is composed of seven consecutive changes, which have occurred between eight following time windows. At the beginning, group G_1 forms itself in T_2, i.e. members of G_1 have no relations in T_1 or their relations are rare. Next, the community grows in T_3 by gaining four new nodes. In following timeframe T_4, group G_1 splits into G_2 and G_3. By losing one node, group G_2 shrinks in T_5, while group G_3 remains unchanged. Then, a new group G_4 forms in T_6, while both previous communities G_2 and G_3 continue their existence. All groups merge into one community G_5 in timeframe T_7 but in the last timeframe T_8, this large group violently dissolves preserving only few relations between its members.
Introduction

The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Having communities extracted, appropriate knowledge and methods for dynamic analysis may be applied in order to identify changes as well as to predict the future of all or some selected groups. Furthermore, knowing the most probably change of a given group some additional steps may be performed in order to change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, telecommunication companies, etc.

To be able to describe evolution of social communities, we need to introduce the general concept of temporal social network.

First of all, a social network itself should be defined. Using a graph representation a social network SN is a tuple $<V,E>$, where:

V is a not-empty set of nodes (vertices, actors representing social entities: humans, organizations, departments etc., also called vertex or members);

E – is a set of directed edges (relations between actors called also arcs or connections) where a single edge is represented by a tuple $<x,y>$, $x,y\in V$, $x\neq y$ and for two edges $<x,y>$ and $<x’,y’>$ if $x=x’$ then $y\neq y’$.

A temporal social network TSN, in turn, is a list the snapshots from the following timeframes T_i (time windows, time steps). It means that each timeframe T_i is in fact a single social network $SN_i(V_i,E_i)$, where V_i – is a set of vertices in the ith timeframe and E_i is a set of directed edges existing in the ith timeframe, as follows:

$TSN=<T_1,T_2,...,T_m>$, m – the total number of timeframes

$T_i=SN_i(V_i,E_i), i=1,2,...,m$

$E_i=<x,y>, x,y\in V_i, i=1,2,...,m$.

An example of a temporal social network TSN is presented in Figure 3. It consists of five timeframes, and each timeframe is a separate social network created from data gathered within the particular interval of time. In the simplest case, one interval starts when the previous one ends, however, in some applications the intervals may overlap each other or even contain the full history of previous timeframes in the aggregated form.

Group in T_1	Event type	Group in T_2	Event type	Group in T_3	Event type	Group in T_4	Event type	Group in T_5	Event type	Group in T_6	Event type	Group in T_7	Event type	Group in T_8	Event type					
No group	form G_1	grow G_1	split G_2	shrink G_3	continue G_4	continue G_5	form G_6	merge G_7	dissolve G_8	No group	form G_1	grow G_1	split G_2	shrink G_3	continue G_4	continue G_5	form G_6	merge G_7	dissolve G_8	No group

Figure 2 Changes over time for the single group.
Key Points

Several different approaches for community evolution detection can be distinguished:

1. Detection of static communities in a given timeframe and matching the separately detected communities from the following periods.
2. Detection of temporal communities also called evolutionary communities mining.
3. Evolutionary clustering, analogous to community mining.

It the first approach the data about people relationships (usually based on their activity/behaviour) is split into several timeframes forming in consequence a temporal social network. Independently, for each time window, a selected community detection method is used in order to extract social communities. Some group evolution extraction algorithms can operate on the results of one predefined group extraction algorithm like in [Palla, 07], while the other methods are independent from the grouping algorithm like [Takaffoli, 11] or [Bródka, 12]. Next, a certain similarity measure, e.g. auto-correlation function [Palla, 07], Jaccard measure [Greene, 10], inclusion measure [Bródka, 12], is utilized to match, which group from a given timeframe T_t corresponds to which group in the next timeframe T_{t+1}. Apart from matching groups between following timeframes it is also possible to apply clustering on a graph formed by all detected groups at different timeframes [Falkowski, 06]. The last step is to assign a proper change type to describe what happened between a given (T_t) and following snapshot (T_{t+1}).

The second approach also starts with creating a temporal social network, but the community detection phase is different. Instead of identification of regular, static communities for each timeframe separately, some methods to find temporal communities are applied. They detect continuous/stable social communities that last over many timeframes [Sarkar, 05], [Mucha, 10], [Kawadia, 12], [Zygmunt, 12].

Another approach is evolution of clusters, which aims to find best partition that represents the community structure at time t based on partition at time $t – 1$ and information about the network at time t. Finding the best partition involves optimization techniques which vary across different methods. Chakrabarti et al. [Chakrabarti, 06] introduced snapshot quality, Sun et al. [Sun, 07] presented encoding cost and Lin et al. [Lin, 08] proposed snapshot cost to find the best partition of the network at given time. Ganti et al. [Ganti, 02] proposed a change
detection framework called FOCUS, where two datasets are compared by computing a deviation measure between them. Spiliopoulou et al. [Spiliopoulou, 06] proposed an event-based framework called MONIC to model and track cluster transitions. They also introduced the concept of cluster matching to simplify the detection and evaluation of the cluster events that occurred. Oliveira et al. [Oliveira, 10] undertook dilemma of monitoring the transitions experienced by clusters over time by identifying the temporal relationships among them.

Historical Background

The need to uncover and analyse community evolution derives from two important areas, namely community detection and social network evolution. Since the well-known paper by Girvan and Newman [Girvan, 02] about community structure in social networks and their method to detect them was published in 2002, dozens of new methods have appeared each year [Fortunato, 10]. At the same time, different scientists struggle to analyse, understand and model the evolution of networks [Barabasi 02], [Dorogovtsev, 03], [Kossinets, 06]. Thus, when researchers found out a little about community extraction and entire network evolution they have started to analyse the evolution of the communities themselves. Chakrabarti et al. [Chakrabarti, 06], Sun et al. [Sun, 07] and Lin et al. [Lin, 08] used partitioning to look for changes in the network over time. Kim and Han [Kim, 09] used *nano-communities* to find evolution of communities over time. Palla et al. [Palla, 07], Asur et al. [Asur, 07] and Bródka et al. [Bródka, 12] calculate similarity between groups in following timeframes in order to discover community life time.

Tracking Group Evolution

One area in the social network analysis is to investigate the dynamics of a community, i.e. how a particular group changes over time. To deal with this problem several methods for tracking group evolution have been proposed. Almost all of them need as the input data the social network with communities already discovered using one of the group extraction methods. Additionally, separate methods for tracking evolution are designed to operate either on disjoint or overlapping groups and some of them are able to process both types. The further discussion provides the basic ideas behind the most recent methods for analysis of social group evolution and a more detailed description of three most popular methods. The summary of most representative methods can be found in Table 1.

Name / Authors	Source	Type of communities	Type of community changes	Idea
Chakrabarti, Kumar, Tomkins	[Chakrabarti, 06]	disjoint	-	*snapshot quality and history cost* are calculated to obtain total value of partition C_t at time t
Authors	Reference	Type	Changes	Details
--------------------------	---------------	------------	---	---
Kim, Han	[Kim, 09]	disjoint	forming, dissolving, growing, shrinking and drifting	nodes are connected to their future occurrences and neighbours with links creating nano-communities, the number and density of links determines the type of community change
Mucha, Richardson, Macon, Porter, Onnela	[Mucha, 10]	disjoint	-	multislice generalization of modularity obtained from the Laplacian dynamics is defined on a stacked aggregate network consisting of all snapshots
Takaffoli, Sangi, Fagnan, Zäiane	[Takaffoli, 11]	disjoint	split, survive, dissolve, merge, and form.	meta community is constructed for each series of similar groups detected by the matching algorithm in different timeframes; then, significant events are identified
Kawadia, Sreenivasan	[Kawadia, 12]	disjoint	-	partition distance called estrangement is calculated to find meaningful temporal communities
FacetNet / Lin, Chi, Zhu, Sundaram, Tseng	[Lin, 08]	disjoint, overlapping	-	snapshot cost and history cost are computed to obtain the appropriate partition of the data
GraphScope / Sun, Papadimitriou, Yu, Faloutsos [Sun, 07] disjoint - partitioning is repeated to get the smallest encoding cost of the graph and put it in the correct segment, jumps between segments denote changes in the graph evolution

Asur, Parthasarathy, Ucar [Asur, 07] disjoint form, dissolve, continue, merge, split group size and overlap between groups are calculated to assign type of the community change

Palla, Barabási, Vicsek [Palla, 07] overlapping birth, death, growth, contraction, merge, split groups are separately extracted from the individual timeframes, their following timeframes and the union of both to find similar communities; the type of community change is manually assigned based on the matching of groups, with their successors and unions

GED / Bródka, Saganowski, Kazienko [Bródka, 12] disjoint, overlapping forming, dissolving, continuing, growing, shrinking, merging, splitting inclusion measure is calculated to match similar communities; this measure and the group size determine the type of the community change

Chakrabarti et al. Method

Chakrabarti et al. presented in their method an original concept for the identifying group changes over time [Chakrabarti, 06]. Instead of extracting communities for each timeframe and matching them, the authors of the method introduced the snapshot quality to measure the accuracy of the partition C_t in relation to the graph formation at time t. Then, the history cost quantifies the difference between partition C_t and partition in the previous timeframe C_{t-1}. The total value of C_t is the sum of snapshot quality and history cost at each timeframe. The most valuable partition is the one with the high snapshot quality and low history cost. To obtain C_t from C_{t-1}, Chakrabarti et al. used the relative weight cp (tuned by user) to minimize difference between snapshot quality and history cost. Chakrabarti et al. did not consider, whether their method works for overlapping groups.
Kim and Han Method

Kim and Han in their method [Kim, 09] used links to connect nodes at timeframe T_i with nodes at timeframe T_{i-1}, creating nano-communities. The nodes are connected to their future occurrences and to their future neighbours. Next, the authors analysed the number and density of the links to judge which case of relationship occurs for a given nano-community. Kim and Han defined the most common changes, which are: evolving, forming and dissolving. Evolving of a group can be distinguished into three different cases: growing, shrinking and drifting. Community C_i grows between timeframes T_i and T_{i+1}, if there is a group C_{i+1} in the following timeframe T_{i+1} containing all nodes from C_i. Group C_{i+1} may, of course, contain additional nodes, which are not present in C_i. In opposite, community C_i shrinks between timeframes T_i and T_{i+1} when there is a group C_{i+1} in the next timeframe T_{i+1}, whose all nodes are within C_i. Finally, group C_i is drifting between timeframes T_i and T_{i+1}, if there is group C_{i+1} in the following timeframe T_{i+1}, which has at least one node common with C_i. Kim and Han did not specify, if the method is designed for overlapping or disjoint groups, but the drifting event suggests that the method will not work correctly for overlapping groups.

FacetNet

Lin et al. used evolutionary clustering to create FacetNet [Lin, 08], a framework allowing members to be a part of more than one community in a given timeframe. In contrast to Chakrabarti et al. method, Lin et al. used the snapshot cost and not the snapshot quality to calculate adequate of the partition to the data. Kullback-Leibler method [Kullback 51] has been used for counting snapshot cost and history cost. Based on the results of FacetNet, it is easier to follow what happens with a particular nodes, rather than what happens with a group in general. The algorithm is not assigning any events, but the user can analyse results and assign events on his own. Unfortunately, FacetNet is unable to catch forming and dissolving events.

GraphScope

Sun et al. presented parameter-free method called GraphScope [Sun, 07]. At the first step partitioning is repeated until the smallest encoding cost for a given graph is found. Subsequent graphs are stored in the same segment S_i, if the encoding cost is similar. When the examined graph G has higher encoding cost than encoding cost of segment S_i, graph G is placed to segment S_{i+1}. Jumps between segments marks change-points in graph evolution over time. The main goal of this method is to work with a streaming dataset, i.e. the method has to detect new communities in the network and to decide if the structure of the already existing communities should be changed in the database.

Asur et al. Method

The method by Asur et al. is a simple and intuitive approach for investigating community evolution over time [Asur, 07]. The group size and overlap are compared for every possible pair of groups in the consecutive timeframes and events involving those groups are assigned. If none of the nodes of the community from timeframe T_i occurs in the following timeframe T_{i+1}, the method by Asur et al. describes such case as dissolve of the group.

\[\text{Dissolve}(C_i^k) = 1 \text{ iff } \exists \text{ no } C_{i+1}^j \text{ such that } V_i^k \cap V_{i+1}^j > 1 \]

where:
C_i^k – community number k in timeframe T_i,
V_i^k – the set of the vertex (nodes) of the community number k in timeframe T_i,

In opposite to dissolve, if none of the nodes of the community from timeframe T_{i+1} was present in the previous timeframe T_i, the group is marked as new born.

$$Form(C_i^k) = 1 \text{ iff } \exists \text{ no } C_i^j \text{ such that } V_i^k \cap V_i^j > 1$$

A community continue its existence if an identical occurrence of the group in the consecutive timeframe T_{i+1} is found.

$$Continue(C_i^k, C_i^j) = 1 \text{ iff } V_i^k = V_i^j$$

A situation when two considered communities from the timeframe T_i overlap with more than $\kappa\%$ nodes of another single group in the following timeframe T_{i+1}, is called a merge.

$$Merge(C_i^k, C_i^j, \kappa) = 1 \text{ iff } \exists C_i^{j'} \text{ such that } \frac{|(V_i^k \cup V_i^j) \cap V_{i+1}^j|}{\max(|V_i^k \cup V_i^j|, |V_{i+1}^j|)} > \kappa\%$$

and $|V_i^k \cap V_{i+1}^j| > \frac{|C_i^k|}{2}$ and $|V_i^j \cap V_{i+1}^j| > \frac{|C_i^j|}{2}$

An opposite case is marked as a split, when two groups from the following timeframe T_{i+1} joint together overlap in more than $\kappa\%$ with another single group from the previous timeframe T_i.

$$Split(C_i^j, \kappa) = 1 \text{ iff } \exists C_{i+1}^k, C_{i+1}^l \text{ such that } \frac{|(V_i^k \cup V_i^l) \cap V_i^j|}{\max(|V_i^k \cup V_i^l|, |V_i^j|)} > \kappa\%$$

and $|V_i^k \cap V_i^j| > \frac{|C_{i+1}^k|}{2}$ and $|V_i^l \cap V_i^j| > \frac{|C_{i+1}^l|}{2}$

The authors of the method suggested 30% or 50% as a value for κ threshold. Example of the events described by Asur et al. are presented in Figure 4. Communities C_1^1 and C_1^2 continue between timeframes 1 and 2, then they merge into one community C_1^3 in timeframe 3. In timeframe 4, community C_1^3 splits into three other groups C_4^4, C_4^2 and C_4^3, next, in timeframe 5, a new community C_5^4 forms and finally in timeframe 6 the biggest community C_5^1 dissolves.
The method proposed by Asur et al. allows also to investigate behaviour of individual members within the community lifetime. A node can appear or disappear in/from the network, and also join or leave a particular community.

Unfortunately, Asur et al. did not specify which method should be used for community detection, nor if the method works for overlapping groups.

Palla et al. Method

Palla et al. used in their method all advantages of the clique percolation method (CPM) [Palla, 05] for tracking social group evolution [Palla, 07]. Social networks from two consecutive timeframes T_i and T_{i+1} are merged into a single graph $Q(T_i,T_{i+1})$ and its groups are extracted using the CPM method. Next, the communities from timeframes T_i and T_{i+1}, which are the part of the same group from the joint graph $Q(T_i,T_{i+1})$, are considered to be matching, i.e. the community from timeframe T_{i+1} is treated as an evolution of the community from timeframe T_i. It is quite common that more than two communities are contained in the same group from the joint graph (Figure 5b and Figure 5c). In such a case, matching is performed based on the value of their relative overlap sorted in the descending order. The overlap is calculated as follows:

$$O(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

where:

- $|C_1 \cap C_2|$ – the number of common nodes in the communities C_1 and C_2,
- $|C_1 \cup C_2|$ – the number of nodes in the union of the communities C_1 and C_2.

However, the authors of the method did not explain how to choose the best match for the community, which in next timeframe T_{i+1} has the highest overlap with two different groups.
Figure 5. Most common scenarios in the group evolution by Palla et al. The groups at timeframe T_i are marked with blue, the groups at timeframe T_{i+1} are marked with yellow, and the groups in the joint graph are marked with green. a) a group continue its existence, b) the dark blue group swallows the light blue, c) the yellow group is detached from the orange one (figure from [Palla 07]).

Palla et al. proposed several event types between groups: growth, contraction, merge, split, birth and death, but no algorithm to identify these types has been provided. The biggest disadvantage of the method by Palla et al. is that it has to be run with CPM, no other method for community evolution can be used. Despite some lacks, the method is considered the best algorithm tracking evolution for overlapping groups.

GED – Group Evolution Discovery

Yet another method to discover group evolution in the social network was called GED (Group Evolution Discovery) [Bródka, 12]. The most important component of this method is a measure called *inclusion*. This measure allows to evaluate the inclusion of one group in another. Therefore, inclusion $I(G_1,G_2)$ of group G_1 in group G_2 is calculated as follows:
\[
I(G_1, G_2) = \frac{\sum_{x \in (G_1 \cap G_2)} N_{I_{G_1}}(x)}{\sum_{x \in G_1} N_{I_{G_1}}(x)}
\]

where \(N_{I_{G_1}}(x) \) is the value reflecting importance of node \(x \) in group \(G_1 \).

Any metric, which indicates the member position within the community can be used as node importance measure \(N_{I_{G_1}}(x) \), e.g. centrality degree, betweenness degree, page rank, social position, etc. The second factor in the above equation would have to be adapted accordingly to the selected measure.

The GED method, used to discover group evolution, respects both the quantity and quality of the group members. The quantity is reflected by the first part of the inclusion measure, i.e. what portion of the members from group \(G_1 \) is in group \(G_2 \), whereas the quality is expressed by the second part of the inclusion measure, namely, what contribution of important members from group \(G_1 \) is in \(G_2 \). It provides a balance between the groups that contain many of the less important members and groups with only few but key members. A complete procedure for GED can be found in [Bródka, 12], whereas studies on influence of timeframe type and size are available in [Saganowski, 12].

The procedure for the Group Evolution Method (GED) is as follows:

GED – Group Evolution Discovery Method

Input: Temporal social network \(TSN \), in which groups are extracted by any community detection algorithm separately for each timeframe \(T \) and any user importance measure is calculated for each group.

1. For each pair of groups \(<G_1, G_2> \) in consecutive timeframes \(T \) and \(T_{i+1} \) inclusion \(I(G_1, G_2) \) for \(G_1 \) in \(G_2 \) and \(I(G_2, G_1) \) for \(G_2 \) in \(G_1 \) is computed according to equations (3).

2. Based on both inclusions \(I(G_1, G_2), I(G_2, G_1) \) and sizes of both groups only one type of event may be identified:
 a. **Continuing:** \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| = |G_2| \)
 b. **Shrinking:** \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| > |G_2| \) OR \(I(G_1, G_2) < \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| \geq |G_2| \) OR \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) < \beta \) and \(|G_1| \leq |G_2| \) and there is only one match between \(G_2 \) and groups in the previous time window \(T_i \)
 c. **Growing:** \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| < |G_2| \) OR \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) < \beta \) and \(|G_1| \leq |G_2| \) OR \(I(G_1, G_2) < \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| \leq |G_2| \) and there is only one match between \(G_1 \) and groups in the next time window \(T_{i+1} \)
 d. **Splitting:** \(I(G_1, G_2) < \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| \geq |G_2| \) OR \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) < \beta \) and \(|G_1| \geq |G_2| \) and there is more than one match between \(G_1 \) and groups in the next time window \(T_{i+1} \)
 e. **Merging:** \(I(G_1, G_2) \geq \alpha \) and \(I(G_2, G_1) < \beta \) and \(|G_1| \leq |G_2| \) OR \(I(G_1, G_2) < \alpha \) and \(I(G_2, G_1) \geq \beta \) and \(|G_1| \leq |G_2| \) and there is more than one match between \(G_2 \) and groups in the previous time window \(T_i \)
 f. **Dissolving:** for \(G_1 \) in \(T_i \) and each group \(G_2 \) in \(T_{i+1} \) \(I(G_1, G_2) < 10\% \) and \(I(G_2, G_1) < 10\% \)
 g. **Forming:** for \(G_2 \) in \(T_{i+1} \) and each group \(G_1 \) in \(T_i \) \(I(G_1, G_2) < 10\% \) and \(I(G_2, G_1) < 10\% \)

The general scheme, which facilitates understanding of the event selection (identification) for the pair of groups in the GED method, is presented in Figure 6.
Figure 6 The decision tree for assigning the event type to a pair of groups.

Constants α and β are the GED method parameters, which can be used to adjust the method to the particular social network and community detection method.

For example, if both α and β will be set to 70% and there are two identical groups G_2 and G_2 in timeframes T_5 and T_6, respectively (see Figure 2), the inclusion measures $I(G_1,G_2)$ and $I(G_2,G_1)$ will be equal 100%. Since the size of the groups is the same continuing event between those groups is assigned. Another example is three groups G_1, G_2 and G_3 in timeframes T_3 and T_4, respectively (see Figure 2), the inclusion measures $I(G_1,G_2) = 67\%$, $I(G_2,G_1) = 100\%$, $I(G_1,G_2) = 33\%$, $I(G_2,G_1) = 100\%$. And since G_1 is bigger than G_2 and G_3 and there is more than one match between G_1 and groups in the next time window i.e. G_2 and G_3, a splitting event between G_1 and G_2 plus G_1 and G_3 is assigned.

Key Applications

Detection of social group evolution is one of the crucial component of dynamic analysis of social networks. Comparison of various social groups statements enables identification of key factors that influence group evolution. It helps, for example, to answer the following question: do small groups evolve similarly as big ones?

Additionally, having changes identified some predictive models may be created in order to forecast what is most likely to happen with a certain community in the following period [Bródka, 12b]. Quantification of changes facilitates comparison of communities existing in various populations, e.g. among users of different services or group dynamics in different periods (this year compared to the previous one).

Future Directions

Further research in the field of social community evolution will probably focus on extraction of useful group evolution patterns as well as analysis not only single changes between two following timeframes but long-term series of changes.

Cross-References

Communities Discovery and Analysis in Online and Offline Social Networks, ID 00006
Social Networks, Merging and Integration, 00015
Detection, Current and Future Research Trends, ID 00027
Future Directions in Predicting the Dynamic Evolution of a Network, 00030
Temporal Networks, 00042
Evolving Social Graphs Clustering, 00047
Online Communities, 00081
Clustering Algorithms, 00138
Models for Community Dynamics, 00180
Models for Group Formation, 00181
Combining Link and Content for community detection, 00214
Connecting Communities, 00217
Extracting and Inferring communities via link analysis, 00218
Web Communities Versus Physical Communities, 00225
Social Groups in Crowd, 00255
Evolution of Social Networks, 00318

Acknowledgements [optional]
The work was partially supported by fellowship co-financed by the European Union within the European Social Fund, the Polish Ministry of Science and Higher Education, the research project 2010-13.

References
Asur, S., Parthasarathy, S., Ucar, D. An Event-based Framework for Characterizing the Evolutionary Behavior of Interaction Graphs, KDD 2007, ACM, 2007, pp. 913-921.
Barabasi A.L, Jeong H., Neda Z., Ravasz E., Schubert A., Vicsek T., Evolution of the social network of scientific collaborations. Physica A 311, 2002, pp. 590–614
Bródka P., Saganowski S., Kazienko P., GED: The Method for Group Evolution Discovery in Social Networks, Social Network Analysis and Mining, 2012, DOI:10.1007/s13278-012-0058-8.
Bródka P., Saganowski S., Kazienko P., Predicting Group Evolution in the Social Network, SocInfo 2012, LNCS, Springer, 2012.
Chakrabarti D, Kumar R, Tomkins A, Evolutionary Clustering, KDD 2006, ACM, 554-560.
Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of Networks: From Biological Nets to the Internet and WWW, Oxford Univ. Press, Oxford, 2003.
Falkowski T., Bartelheimer J., & Spiliopoulou M. Mining and visualizing the evolution of subgroups in social networks. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence WI ’06 (pp. 52–58), 2006.
Fortunato S., Community Detection in Graphs. Physics Reports, vol. 486, no. 3-5, 2010, pp. 75-174.

Ganti V., Gehrke J., Ramakrishnan R., LohW.-Y. A framework for measuring differences in data characteristics. Journal of Computer and System Sciences, 64, pp. 542–578, 2002.

Girvan M., Newman M.E.J., Community Structure in Social and Biological Networks, Proceedings of the National Academy of Sciences USA, vol. 99, no. 12, 2002, pp. 7821–7826.

Greene D, Doyle D, Cunningham P, Tracking the evolution of communities in dynamic social networks. ASONAM 2010 pp.176-183.

Kawadia V., Sreenivasan S., Online detection of temporal communities in evolving networks by estrangement confinement, arXiv:1203.5126v1, 2012

Kim M.S., Han J., A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks, VLDB 2009, ACM, 622-633

Kossinets, G., Watts, D. J. Empirical analysis of an evolving social network. Science 311, 2006, pp. 88–90.

Kullback S., Leibler R. A., On Information and Sufficiency. Annals of Mathematical Statistics 22, 49, 1951.

Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L. Facetnet: A Framework for Analyzing Communities and Their Evolutions in Dynamic Networks, WWW 2008, ACM, 2008, pp. 685-694.

Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J-P., Community Structure in Time-Dependent, Multiscale, and Multiplex Networks, Science, vol. 328, no. 5980, 2010, pp. 876-878

Oliveira, M. C. M., Gama, J. Bipartite graphs for monitoring clusters transitions. 9th International Conference on Intelligent Data Analysis, 2010, pp. 114–124.

Palla G., Barabási A.L., Vicsek T., Quantifying Social Group Evolution. Nature, 446, 2007, pp. 664-667.

Saganowski S., Bródka P., Kazienko P.: Influence of the Dynamic Social Network Timeframe Type and Size on the Group Evolution Discovery. ASONAM 2012, IEEE Computer Society, 2012, pp. 678-682.

Sarkar, P., Moore, A. W. Dynamic social network analysis using latent space models. SIGKDD Explor. Newsl., 7, pp. 31–40, 2005.

Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R., Monic: modeling and monitoring cluster transitions. KDD 2006, pp. 706–711.

Sun J, Papadimitriou S, Yu P.S, Faloutsos C, GraphScope: Parameter-free Mining of Large Time-evolving Graphs. KDD 2007, ACM, pp. 687-696.

Takaffoli M., Sangi F., Fagnan J., Zäiane O. R., Community Evolution Mining in Dynamic Social Networks, Procedia - Social and Behavioral Sciences, vol. 22, 2011, pp. 49-58

Zygmunt A., Bródka P., Kazienko P., Koźlak J., Key Person Analysis in Social Communities within the Blogosphere. Journal of Universal Computer Science, 18(4), 2012, 577-597.