Replacing wheat bran by corn gluten feed without steep water in complete dog food

Juliana de Melo Pires, Lívia Geraldi Ferreira, Flávia Maria de Oliveira Borges Saad, Márcio Gilberto Zangeronimo, Ives Cláudio da Silva Bueno, Aline Duarte de Souza Carneiro, Graziane Ferrer Corrêa, Giuliana Parisi & Roberta Ariboni Brandi

To cite this article: Juliana de Melo Pires, Lívia Geraldi Ferreira, Flávia Maria de Oliveira Borges Saad, Márcio Gilberto Zangeronimo, Ives Cláudio da Silva Bueno, Aline Duarte de Souza Carneiro, Graziane Ferrer Corrêa, Giuliana Parisi & Roberta Ariboni Brandi (2017): Replacing wheat bran by corn gluten feed without steep water in complete dog food, Italian Journal of Animal Science, DOI: 10.1080/1828051X.2017.1335183

To link to this article: http://dx.doi.org/10.1080/1828051X.2017.1335183

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 07 Jun 2017.

Submit your article to this journal

Article views: 71

View related articles

View Crossmark data
Replacing wheat bran by corn gluten feed without steep water in complete dog food

Juliana de Melo Pires, Lívia Geraldi Ferreira, Flávia Maria de Oliveira Borges Saad, Márcio Gilberto Zangeronimo, Ives Cláudio da Silva Bueno, Aline Duarte de Souza Carneiro, Graziane Ferrer Corrêa, Giuliana Parisi and Roberta Ariboni Brandi

ABSTRACT
Twenty-four adult Beagles were utilised to evaluate the partial replacement of wheat bran with corn gluten feed without steep water on digestibility and characteristics of faeces. The treatments were 0 (no substitution), 30, 60 or 90 g/kg of corn gluten without steep water. There was no effect (p > 0.05) on the digestibility coefficients (g/kg) of dry matter (0.771), organic matter (0.806), crude protein (0.813), ether extract (0.798), crude fibres (0.393), neutral detergent fibre (0.425), acid detergent fibre (0.286) and crude energy (0.812), whilst there was effect (p < 0.05) on the digestible and metabolisable energy. There were effects (p < 0.05) for dry matter and pH of faeces but no effect (p > 0.05) was found on the remaining faecal characteristics: excretion for 100 g of food (56.77 g), excretion (129.6 g/day and 49.0 g dry matter/day), score (3.90), dry matter excretion for 100 g of food (22.86 g), buffer capacity (BC) at pH 5 (57.81), ammonia nitrogen (1.46 g/kg of faecal dry matter) and water balance (333.25 mL/day), in vivo and in situ gas production (p > 0.05). Corn gluten feed without steep water can be utilised to replace up to 90 g/kg of wheat bran without causing negative effect on the digestibility and characteristics of faeces.

Introduction
The importance of fibre in non-ruminant nutrition has been previously questioned because its direct role as a nutrient was unknown, and certain functions, such as the maintenance of gastrointestinal tract transit, energy dilution and decrease in nutrient digestibility, were attributed to it (Roque et al. 2006). However, promoting intestinal health in dogs using fibre has aroused interest in using fibrous ingredients that do not decrease the digestibility of complete food (Kawauchi et al. 2011).

Different fibre sources have been tested, as corn gluten with 21% of crude protein (Kawauchi et al. 2011), beet pulp, tomato pomace, peanut hulls, wheat bran, alkaline hydrogen peroxide-treated wheat straw (Fahey et al. 1990a), alkaline hydrogen peroxide-treated oat hulls (Fahey et al. 1992), SolkaFloc® (a product based on carefully processed, highly purified cellulose; International Fiber Corporation, North Tonawanda, NY), citrus pulp and three blends, including SolkaFloc® and gum arabic, citrus pectin, gum talha, carob bean gum, locust bean gum, beet pulp, citrus pectin and guar gum (Sunvold et al. 1995).

The differences in the solubility and fermentability of these fibres can provide different physiological benefits and affect faecal characteristics (de-Oliveira et al. 2008; Calabrò et al. 2012). Several outcomes were evaluated to determine the physicochemical characteristics of faeces, such as faecal production (Kawauchi et al. 2011), faecal score (Laflamme et al. 2008), pH (de-Oliveira et al. 2008), buffering capacity (BC) (Zeyner et al. 2004) and ammonia nitrogen (Brito et al. 2010).

The study of the use of corn gluten feed without steep water as a fibre alternative source in dog nutrition is a pioneer study. The aim of this study was to evaluate the effect of partial replacement of wheat bran with increasing levels of corn gluten without steep water on the nutrient digestibility and physicochemical characteristics of dog faeces.
Materials and methods

The trial was conducted at the experimental kennel of the Federal University of Lavras (UFLA) Minas Gerais, Brazil. Twenty-four 5.17 ± 1.37 years old Beagles with a live weight of 15.37 ± 2.0 kg were utilised in this study. During the five adaptation days, the animals were maintained in individual boxes with a solarium area. During the five sample collection days, the dogs were housed in metabolic cages equipped with grouted flooring and a nipple drinker, receiving water *ad libitum*.

The daily supply of complete food was calculated using the equation 95 × (BW)0.75 recommended by the NRC (2006) for inactive adult dogs. The treatments consisted of partial replacement of wheat bran with corn gluten feed without steep water in increasing levels, i.e. 0 (no substitution), 30, 60 or 90 g/kg of corn gluten without steep water (Table 1). The complete foods were extruded, subsequently ground and then provided to the dogs with an added water ratio of 2:1 (water:food) in two daily meals at 8:00 am and 5:00 pm.

The faeces samples were collected immediately after defaecation to determine their physicochemical characteristics using the following measurements: a consistency score according to de-Oliveira et al. (2008), weight, pH (determined directly in the faeces using a 0.01 accuracy digital pH metre (model Q400A, QUIMIS, Diadema, SP, Brazil), buffer capacity (BC) (Zeyner et al. 2004) and ammonia nitrogen (Preston 1995).

Following the methodology of Carciofi et al. (2005), the water balance was determined by the daily difference between ingested water (drinking water and water from the food) and water eliminated through urine and faeces without considering the metabolic water produced by protein and carbohydrate intake or eliminated by other methods. The water intake was measured by the difference between the amount delivered per day and the amount of leftover.

To determine the chemical composition and digestibility of nutrients, the stools, after dried and grounded, were routed to the Animal Research Laboratory of the Department of Animal Science at Federal University of Lavras (Lavras, MG, Brazil) where the analyses were carried out. The methodologies of the Association of Official Analytical Chemistry (AOAC 1995) were utilised to determine the dry matter (DM), mineral matter (MM), ether extract (EE), crude protein (CP), gross energy (GE) and crude fibre (CF). The acid detergent fibre (ADF) and neutral detergent fibre (NDF) analyses were conducted based on Van Soest et al. (1991) method. The coefficient of total apparent digestibility (CTTAD) of the nutrients was performed following the procedure of Andriguotto et al. (2002).

For in vitro and in situ gas determination, the faeces were incubated at 39°C for 6, 12 and 24 hours to determine *in vitro* production of gases (Citrignelli et al. 1999; Mauricio et al. 1999) and *in situ* gas generation was accomplished by radiographic examination in the lateral–lateral and ventral–dorsal position for intestinal gas identification through radiolucent images (Feliciano et al. 2010).

On the last day of the experiment, blood samples were collected in heparinised tubes, from jugular vein, pre-feeding and four and eight hours post-feeding. Samples were centrifuged at 15,000 rpm for 10 minutes, and then the plasma was placed in polypropylene tubes and stored at −20°C. For the analysis of short-chain fatty acid (SCFA) concentrations, 1 mL of plasma was added to 5 mL of ethyl alcohol and then centrifuged at 3000 rpm for 10 minutes. The supernatant was added to 40 μL of 1 mM NaOH and placed in a forced ventilation oven at 60°C until completely dry. Afterwards, the residues were dissolved with 99% formic acid and 1 mL of distilled water and stored in a freezer at −15°C until analysis of SCFA by gas chromatography using a gas chromatograph GC-2014 Shimadzu (Shimadzu, Kyoto, Japan), equipped with a capillary column Stabilwax® (30 m length, 0.53 mm internal diameter, 0.50 μm thickness; Restek

Table 1. Ingredients and chemical composition of the complete foods formulated by replacing wheat bran with corn gluten without steep water, (g/kg DM), except otherwise stated.

Item	Treatments, g/kg
Ingredient composition	
Wheat bran	0 (control) 30 60 90
Corn gluten without steep water	0 30 60 90
Corn grain	290 280 280 280
Rice grits	210 210 210 210
Soybean meal	110 110 110 110
Meat and bone meal	60 60 60 60
Whole viscera meal	80 90 90 100
Minor ingredients*	50 50 50 50
Total	1000 1000 1000 1000
Chemical composition	
Dry matter, g/kg	967.1 967.1 965.5 955.2
Ashes	76.2 71.4 70.3 59.3
Crude protein	239.9 250.2 235.1 224.0
Ether extract	54.8 52.8 51.4 59.8
Crude fibre	35.7 38.2 39.8 37.8
Neutral detergent fibre	150.6 167.9 170.1 169.5
Acid detergent fibre	56.7 55.1 57.4 61.0
Nitrogen-free extract	593.4 587.4 603.4 616.1
Crude energy, MJ/kg	18.20 18.27 18.17 18.59

*Supplement per kg of complete food: vitamin A, 10,000 U; vitamin D₃, 1500 U; vitamin E, 50 U; vitamin K, 0.55 mg; vitamin B₁₂, 30 mg; vitamin B₂, 5.5 mg; vitamin B₆, 4 mg; vitamin B₉, 5.5 mg; niacin, 50 mg; biotin, 0.012 mg; pantothenic acid, 12 mg; folic acid, 0.8 mg; choline, 1200 mg; cobalt, 0.2 mg; manganese, 40 mg; zinc, 120 mg; copper, 18 mg; iodine, 1.8 mg; Iron, 80 mg; selenium, 0.12 mg; antioxidant, 150 mg (BHT, China); antifungal, 2 g (calcium propionate, China); zeolite, 10 g (Celpec, Celta Brasil); Yucca extract, 0.25 g (Alitech, Brazil); flavour agent, 10 g (SPF, Brazil); poultry viscera oil, 20 g (Big Frango, Brazil).
Corporation, Bellefonte, PA) at 145°C (isothermic condition), an injector split/splittless and a detector dual FID at 250°C, according to the method described by Getachew et al. (2005). The trial was performed using completely randomised design, with six replicates per treatment, and each dog was the experimental unit.

A Kruskal–Wallis test was utilised to evaluate the faecal score results. For data analysis, a linear mixed model by the Statistical Analysis System, version 9.1.3 (SAS 2004) was utilised, considering as fixed effect of the corn gluten without steep water inclusion levels (0, 30, 60, 90 g/kg) as well as the effect of animals and residue. In case of significant effects for inclusion level, regression analyses were conducted.

Results and discussion

During this study, the dogs showed no change in their body weight. There was no effect (p > .05) of the treatment on the apparent digestibility coefficients of DM, organic matter (OM), CP, EE, CF, NDF, ADF and GE (Table 2). However, an effect was observed for apparent digestible energy (DE, expressed as MJ/kg DM; \(Y = 15.27 - 0.0228 \times X + 0.0002 \times X^2; p = .097\)) and for apparent metabolisable energy (ME, expressed as MJ/kg DM; \(Y = 14.27 - 0.0252 \times X + 0.0002 \times X^2; p = .0049\)), results that comply with those obtained by Sá (2011). The major digestible energy (DE, ME) coefficients were observed with 0 replacement level and can be attributed to the lesser amount of crude fibre observed in these diets, followed by 90 g/kg diets, which presented higher amounts of EE and NFE.

On the other hand, Burkhalter et al. (2001), using soybean hulls, observed a decrease (p < .05) in the digestibility of the nutrients regardless of the proportion of insoluble fibre, as well as Fahey et al. (1992) that observed that the DM, OM and TDF digestibility coefficients decreased as the hulls were added to the food. The disparity between these data may be attributed to the difference in the quality of the substituted ingredients in the treatments and the type and amount of fibre in these ingredients. For this study, the formulated diets maintained similar NDF and ADF values (Table 1), unlike in Fahey et al. (1992). The digestibility of GE was higher than that observed by Fahey et al. (1990b) and Cole et al. (1999), which may be because their diets had higher energy concentration and lesser EE concentration as observed in the diets from this study.

There was no diet effect (p > .05) on the remaining faecal characteristics: excretion for 100 g of food, daily excretion, score, dry matter excretion for 100 g of food, buffering capacity, ammonia nitrogen and water balance, faecal production in relation to the amount of food intake regarding OrM (original matter) and DM (Table 2). These results differed from those found by Fahey et al. (1990b), Sá (2011), Kawauchi et al. (2011) and Burkhalter et al. (2001) who observed an increase (p < .05) in faecal weight with fibre inclusion, and may be attributed to the similar digestibility of

Table 2. Mean apparent digestibility coefficients of nutrients, digestible and metabolisable energy, and the physicochemical characteristics of dog faeces as a result of consuming complete food with the partial replacement of wheat bran by corn gluten without steep water.

Coefficient of total tract apparent digestibility	Treatments, g/kg	SEM*	p linear	p quadratic
Dry matter	0.792			
Organic matter	0.829			
Crude protein	0.824			
Ether extract	0.825			
Crude fibre	0.393			
Neutral detergent fibre	0.449			
Acid detergent fibre	0.290			
Nitrogen-free extract	0.872			
Crude energy	0.835			
Daily faecal excretion	0.230			
Faecal DM, g/kg	384.90			
Daily DM faecal excretion	46.06			
Faecal score	3.93			
Excreted OrM for every 100 g of ingested food, g	52.48			
Faecal pH	6.06			
Ammonia nitrogen, g/kg faeces DM	1.38			
Water balance, ml/day	396.39			
Gas production – 6 hs, ml/g DM	33.88			
Gas production – 12 hs, ml/g DM	76.56			
Gas production – 24 hs, ml/g DM	126.17			

*Standard error of the means.
the fibre fraction (NDF, ADF and CF) among the treatments considered in the present study. The average faecal score remained in a desirable classification between three and four (Maia et al. 2010; Laflamme et al. 2011). From a commercial perspective, the volume and consistency of the faeces produced by the dogs are relevant characteristics; therefore, it is important that the foods result in firmer stools (Maia et al. 2010; Sá 2011).

In this experiment, there were diet effects ($p < .05$) on faeces DM ($Y = 38.87 - 1.5380X + 0.1889X^2$) and faeces pH ($Y = 6.36 - 0.1952X + 0.0234X^2$), which differed from the studies by Sá (2011) and Kawauchi et al. (2011). Lower pH values can inhibit the proliferation of pathogenic bacteria (Hussein 1999), thus favouring animal health. Therefore, it can be suggested that the treatments may have had a prebiotic effect, which is desired in complete foods for dogs, and can be supported by the lower in vitro and in situ gas production (Table 2).

The amount of faecal DM had an effect ($p < .05$) with drier faeces at 90 g/kg corn gluten feed and wetter faeces at 60 g/kg, which differed from Fahey et al. (1990b) who observed a linear decrease ($p < .05$) in faecal DM with the inclusion of beet pulp. Little variation was observed in the faecal DM (g/kg) by Guevara et al. (2008), who considered the corn fibre to be a potential source of dietary fibre in dog food. The results of the present study confirm previous studies that have shown significant effects of dietary fibre on DM and moisture in dog faeces (Fahey et al. 1990a; Fahey et al. 1990b). The ammonia nitrogen was quantified to analyse the effect of the diets with different level of corn gluten inclusion on faeces odour, and there was no effect ($p > .05$) of the diets. The lowest level of ammonia nitrogen observed can be characterised as a positive factor because lower ammonia concentrations are associated with reduced faecal odour (Swanson et al. 2002).

The daily water balance of dogs did not change with the diets and this result reinforcing the similarities of the chemical and physical characteristics of the treatments, given that these food characteristics influence the water balance of animals (Carciofi et al. 2005). The two different fibre sources utilised in this study showed identical behaviour since no difference in the amount of water retained by the animal or in the total amount of excreted water was observed in dogs differently fed.

When the in vitro and in situ gas production are considered (Table 2), there was no difference ($p > .05$) between treatments in the different periods of in vitro incubation, and there was no effect ($p > .05$) on the quantification of intestinal gases identified by radiographic examination, which can be benefited by the pH stability, BC, physicochemical characteristics of faeces and ammonia production, strengthening the possibility of the use of diets based in corn gluten feed without steep water.

It was observed an increasing gas production between 6 and 24 hours of incubation. The main SCFA observed in faeces was acetate that showed a quadratic evolution ($Y = 398.67 + 34.174X - 4.5239X^2; p = .0186$) with the highest values observed with levels of 30 and 60 g/kg of inclusion. For the concentration of propionate and butyrate, no effect ($p > .05$) of the diet was observed (Table 3), a result that disagrees with that previously obtained by Ferreira et al. (2017), but working with cats. The predominance of acetate can be probably attributed to the type of fibre (hemicelluloses) present in the diet, the higher contribution of NDF and ADF in 90 g/kg diet, which favoured the fermentation.

For the blood concentrations of short-chain fatty acids (SCFAs), we observed a significant effect of the treatment on blood acetate that showed a linear behaviour ($Y = 1.9957 - 0.036X; p = .0409$) whilst for propionate and total SCFA there was not verified a significant effect. By analysing the effect of collection time on the blood concentrations of SCFA, we observed that the acetate concentration ($Y = 4.9678 - 0.3085X$) and total SCFA concentration ($Y = 6.4924 - 0.3127X$) were

Table 3. Short-chain fatty acid (SCFA) concentration in faeces and blood of dogs fed increasing levels of corn gluten without steep water in partial substitution of wheat bran after 24 hours of incubation.

Treatment, g/kg	Faeces SCFA concentration, mmol/g DM	Blood SCFA concentration, mmol/l			
	Propionic acid	Butyric acid	Total SCFA	Propionic acid	Total SCFA
0	0.156	0.005	0.623	1.597	4.752
30	0.170	0.0007	0.638	1.567	5.304
60	0.165	0.0004	0.571	1.638	6.089
90	0.119	0.003	0.616	1.508	5.242

p Value (significant effects):
- Propionic acid: $p = .1074$ (faeces), $p = .1889$ (blood)
- Butyric acid: $p = .1481$ (faeces), $p = .1074$ (blood)
- Total SCFA: $p = .6684$ (faeces), $p = .0622$ (blood)

Downloaded by [162.252.224.37] at 03:13 04 August 2017
affected by the time of collection \((p < .05)\), on the contrary to what was observed \((p > .05)\). In general, for fatty acids, the blood concentrations presented the same profile of the faeces, with a clear predominance of the acetate on the other SCFA (Table 3).

Conclusions

The partial replacement of wheat bran with increasing levels of corn gluten without steep water in diets for dog did not affect the physicochemical characteristics of faeces, nor the digestibility coefficients of dry matter, organic matter, gross energy and chemical components. A significant effect was observed for digestible and metabolizable energy and for the concentration of acetate in faeces and in blood. Based on the results obtained in the trial, corn gluten feed without steep water can be utilised to replace up to 90 g/kg of wheat bran without causing deleterious effects on nutrient digestibility and on the physicochemical characteristics of faeces.

Ethical approval

All procedures in this study were approved by the Ethics Committee on Animal Research of the College of Animal Science and Food Engineering (FZEA) of the University of São Paulo (USP), protocol number 2012.1.1327.74.0.

Acknowledgments

This work was supported by Ingredion Brazil – Ingredientes Industriais Ltda and Manfrim – Manfrim Industrial e Comercial Ltda.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Giuliana Parisi http://orcid.org/0000-0003-4646-6036
Roberta Ariboni Brandi http://orcid.org/0000-0003-4044-7408

References

Andriguetto JM, Perly L, Minardi I, Gemael A, Flemming JS, Souza GA, De Bona Filho A. 2002. Nutrição animal, as bases e os fundamentos da nutrição animal [Animal Nutrition, the Bases and Grounds of Animal Nutrition]. Barueri, São Paulo: Livraria Nobel.

AOAC. 1995. Association of Official Analytical Chemists. Official Methods of Analysis. Washington: AOAC.

Brito CBM, Portella Félix A, Moreto de Jesus R, de Franc¸a MI, de Oliveira SG, Krabbe EL, Maiorka A. 2010. Digestibility and palatability of dog foods containing different moisture levels, and the inclusion of a mold inhibitor. Anim Feed Sci Technol. 159:150–155.

Burkhalter TM, Merchen NR, Bauer LL, Murray SM, Patil AR, Brent JL Jr, Fahey GC Jr. 2001. The ratio of insoluble to soluble fiber components in soybean hulls affects ileal and total-tract nutrient digestibilities and fecal characteristics of dogs. J Nutr. 131:1978–1985.

Calabrò S, Carciofi AC, Musco N, Tudisco R, Gomes MOS, Cutrignelli MI. 2012. Fermentation characteristics of several carbohydrate sources for dog diets using the *in vitro* gas production technique. Ital J Anim Sci. 12:21–27.

Carciofi AC, Bazolli RS, Zanni A, Kihara LLR, Prada F. 2005. Influence of water content and the digestibility of pet foods on the water balance of cats. Braz J Vet Res Anim. 42:429–434.

Cole JT, Fahey GC, Merchen NR, Patil AR, Murray SM, Hussein HS, Brent JL. 1999. Soybean hulls as a dietary fiber source for dogs. J Anim Sci. 77:917–924.

Cutrignelli MI, Bovera F, Tudisco R, D’Urso S, Marono S, Piccolo G, Calabrò S. 1999. *In vitro* fermentation characteristics of different carbohydrate sources in two dog breeds (German shepherd and Neapolitan mastiff). J Anim Physiol Anim Nutr (Berl). 93:305–312.

de-Oliveira LD, Carciofi AC, Oliveira MCC, Vasconcellos RS, Bazolli RS, Pereira GT, Prada F. 2008. Effects of six carbohydrate sources on diet digestibility and post-prandial glucose and insulin responses in cats. J Anim Sci. 86:2237–2246.

Fahey GC, Merchen NR, Corbin JE, Hamilton AK, Bauer LL, Titgemeyer EC, Hirakawa DA. 1992. Dietary fiber for dogs: III. Effects of beet pulp and oat fiber additions to dog diets on nutrient intake, digestibility, metabolizable energy, and digesta mean retention time. J Anim Sci. 70:1169–1174.

Fahey GC, Merchen NR, Corbin JE, Hamilton AK, Serbe KA, Hirakawa DA. 1990a. Dietary fiber for dogs: II. Iso-total dietary fiber (TDF) additions of divergent fiber sources to dog diets and their effects on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J Anim Sci. 68:4229–4235.

Fahey GC, Merchen NR, Corbin JE, Hamilton AK, Serbe KA, Lewis SM, Hirakawa DA. 1990b. Dietary fiber for dogs: I. Effects of graded levels of dietary beet pulp on nutrient intake, digestibility, metabolizable energy and digesta mean retention time. J Anim Sci. 68:4221–4228.

Feliciano MAR, Saad FMOB, Leite CAL, Vicente WRR, Nepomuceno ACO, Silveira TV. 2010. Ultrasonographic and radiographic evaluations of the effects of supplementation with two types of probiotics on the gut of puppies. Arq Bras Med Vet Zoo. 62:1109–1116.

Ferreira LG, de Meio Pires J, Zangeronimo MG, de Oliveira Borges Saad FM, Brandi RA, da Silva Bueno IC, Barbosa PB, Lisenko KG, Taffarel TR, Santana dos Reis J. 2017. Substituição do farelo de trigo pelo farelo de casca de milho sem água de maceração em alimentos para gatos [Replacement of wheat bran with Corn without...
maceration water in cat food]. Cienc Rural. 47:e20160306. doi.org/10.1590/0103-8478cr20160306.

Getachew G, DePeters EJ, Robinson PH. 2005. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim Feed Sci Technol. 123:547–559.

Guevara MA, Bauer LL, Abbas CA, Beery KE, Holzgraefe DP, Cecava MJ, Fahey GC Jr. 2008. Chemical composition, in vitro fermentation characteristics, and in vivo digestibility responses by dogs to select corn fibers. J Agric Food Chem. 56:1619–1626.

Hussein HS. 1999. Petfood applications of inulin and oligofructose. J Nutr. 129:1454–1456.

Kawauchi IM, Sakomura NK, Vasconcellos RS, de-Oliveira LD, Gomes MOS, Loureiro BA, Carciofi AC. 2011. Digestibility and metabolizable energy of maize gluten feed for dogs as measured by two different techniques. Anim Feed Sci Technol. 169:96–103.

Maia GVC, de Oliveira Borges Saad FM, Charleaux Roque N, França J, Silva Lima LM, Aquino AA. 2010. Zeólites e Yucca schidigera em rações para cães: palatabilidade, digestibilidade e redução de odores fecais [Zeolites and Yucca Schidigera in dog diets: palatability, digestibility and reduction of fecal odors]. Rev Bras Zootecn. 39:2442–2446.

Mauricio RM, Dhanoa FL, Owen MSE, Channa KS, Theodorou MK. 1999. A semi-automated in vitro gas production technique for ruminants feedstuff evaluation. Anim Feed Sci Technol. 79:321–330.

NRC (National Research Council) 2006. Nutrient requirements of dogs and cats. Washington: The National Academies Press.

Preston TR, editor. 1995. Biological and chemical analytical methods. In: Tropical animal feeding; a manual for research workers. Chap. 9. Rome: FAO; p. 191–264.

Roque NC, Vivian de Aro J, Aquino AA, Pereira Alves M, de Oliveira Borges Saad FM. 2006. Utilização da fibra na nutrição de cães [Use of fiber in dog nutrition]. Boletim Agropecuário. 70:1–13. [cited 2017 Feb 17] Available from: http://livraria.editora.ufla.br/upload/boletim/tecnico/boletim-tecnico-70.pdf

Sá FC. 2011. Efeito da suplementação de enzimas sobre o processamento e digestibilidade de dietas extrusadas para cães contendo farelo de trigo [Effect of enzyme supplementation on Processing and digestibility of extruded diets for dogs containing wheat bran]. Dissertação (Mestrado em Medicina Veterinária) – Curso de Pós-graduação em Medicina Veterinária, Universidade Estadual Paulista.

SAS. 2004. Statistical Analysis System – SAS Online Doc. Cary: SAS Institute.

Sunvold GD, Fahey GC, Merchen NR, Titgemeyer EC, Bourquin LD, Bauer LL, Reinhart GA. 1995. Dietary fiber for dogs: IV. In vitro fermentation of selected fiber sources by dog fecal inoculum and in vivo digestion and metabolism of fiber-supplemented diets. J Anim Sci. 73:1099–1109.

Swanson KS, Grieshop CM, Flickinger EA, Chow JM, Wolf BW, Garleb KA, Fahey GC Jr. 2002. Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs. J Nutr. 132:3721–3731.

Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583–3597.

Zeyner A, Geißler C, Dittrich A. 2004. Effects of hay intake and feeding sequence on variables in faeces and faecal water (dry matter, pH value, organic acids, ammonia, buffering capacity) of horses. J Anim Physiol Anim Nutr (Berl). 88:7–19.