Bacterial lipopolysaccharides change membrane fluidity with relevance to phospholipid and amyloid beta dynamics in Alzheimer's disease

Ian James Martins

Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/ECUworkspost2013

Part of the Diseases Commons

Martins, I. J. (2016). Bacterial lipopolysaccharides change membrane fluidity with relevance to phospholipid and amyloid beta dynamics in Alzheimer's disease. Journal of Microbial & Biochemical Technology, 8(4), 322-324. https://doi.org/10.4172/1948-5948.1000304

This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ECUworkspost2013/2657
Bacterial Lipopolysaccharides Change Membrane Fluidity with Relevance to Phospholipid and Amyloid Beta Dynamics in Alzheimer’s Disease

Ian James Martins

Abstract

Bacterial lipopolysaccharides (LPS) and their increase in plasma in individuals in the developing world has become of major concern. LPS can transform cells by their rapid insertion into cell membranes that partition into cholesterol/sphingomyelin domains. LPS alter cell phospholipid dynamics associated with the recruitment of the Alzheimer’s disease amyloid beta (Aβ) peptide with the promotion of toxic Aβ oligomer formation. The common pattern of naturally occurring phospholipids such as 1-palmitoyl-2-oleoyl-phosphatidylcholine in cells confers cells with the rapid transfer of Aβ and phospholipids. Phospholipids such as dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) are poorly transported with delayed metabolism of Aβ oligomers. LPS can alter cells with POPC cell membrane characteristics by insertion of itself and promotion of ganglioside GM1-cholesterol as the seed for Aβ oligomerization. LPS modification of cell membrane fluidity involves the phospholipid transfer protein that affects vitamin E, phospholipid and Aβ metabolism. Healthy diets that contain olive oil, canola oil and vegetable oil promote membrane fluidity and Aβ metabolism but in the developing world increased LPS levels interfere with healthy diets and their regulation of phospholipid and Aβ dynamics. Unhealthy diets that contain palmitic acid should be avoided that promote DPPC cell membrane contents with poor phospholipid and Aβ metabolism. Nutritional therapy may improve metabolic disease and Alzheimer’s disease by the delay of LPS toxic induced Aβ interactions that involve various proteins such as albumin (Aβ self-association) with reduced toxic effects of LPS to astrocyte-neuron crosstalk in the brain.

Keywords: Lipopolysaccharide; Amyloid beta; Phospholipid; Ganglioside; Cholesterol; Membrane; Fluidity; Diet; Olive oil; Palmitic acid

Short Commentary

The interests in bacterial lipopolysaccharides (LPS) and their influence on cell membrane fluidity in the brain has accelerated with the increase in plasma LPS in individuals of the developing world with elevated LPS levels in 30% of individuals in United States of America, Australia, Germany and India [1]. LPS are endotoxins and essential components of the outer membrane of all Gram-negative bacteria. LPS from bacteria share common features in their basic architecture and consists of three covalently linked segments, a surface carbohydrate polymer (O-specific chain), a core oligosaccharide featuring an outer and inner region and an acylated glycolipid (termed Lipid A). LPS is an amphiphile that can rapidly insert into cell membranes and transform mammalian cells with a preference for insertion and partition into cholesterol/sphingomyelin (SM) domains in cell membranes [2-4] leaving the hydrophilic polysaccharide chain exposed to the exterior of the cell. LPS in cholesterol/SM-rich domains partition into ordered lipid phases of ratios phosphatidylcholine such as DOPC (55), sphingomyelin (15) and cholesterol (30) membranes [2,5].

Lipid rafts preferentially sequester saturated-chain lipids and proteins such as the hydrophobic Alzheimer’s disease amyloid beta (Aβ) peptide into the disordered phase and alter cells phospholipid dynamics [6] in cell membranes with the promotion of non-brownian Aβ dynamics and toxic Aβ formation [3,4]. Divalent cations such as magnesium [7] may neutralize and stabilize LPS in the outer membrane but LPS in the presence of monovalent cations forms highly negatively-charged aggregates [7]. Research studies support that LPS and lipids with highly charged or bulky head groups can promote highly curved membrane architectures due to electrostatic and/or steric repulsions [8]. It is now clear that LPS can act on plasma lipid membranes in a receptor independent interaction to phase separate into small, cholesterol and SM-rich domains (lipid rafts) in contrast to a fluid, phosphatidylcholine-rich phase [2,8]. The interactions of cholesterol, apolipoprotein E (apo E) and Aβ [9] are secondary events in cell membranes compared to the rapid cell phospholipid dynamics associated with phospholipids such as 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC). The common pattern of naturally occurring phospholipids in cells occurs with a saturated chain at the glycerol-1-position and an unsaturated chain at the 2-position that confers cells and lipoproteins to have unique metabolic handling with the rapid transfer of phospholipids from the lipoproteins/cells to the liver for metabolism [10]. Phospholipids such as dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) are poorly transported from lipoproteins to the liver with delayed metabolism [10]. Aβ oligomers and apo E have been shown to be sensitive to DPPC or DOPC membranes with monomer Aβ favoured by the POPC structures [11-13].

LPS acts on the blood brain barrier (BBB) with BBB disruption or via receptors with the induction of a neuroinflammatory response [14-16]. LPS corrupts Aβ transport across the BBB with increased influx, decreased efflux and increased neuron production of Aβ by induction.

*Corresponding author: Ian James Martins, Centre of Excellence in Alzheimer’s Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, Australia; Tel: +61863042574; E-mail: i.martins@ecu.edu.au

Received June 07, 2016; Accepted July 02, 2016, Published July 10, 2016

Citation: Martins IJ (2016) Bacterial Lipopolysaccharides Change Membrane Fluidity with Relevance to Phospholipid and Amyloid Beta Dynamics in Alzheimer’s Disease. J Microb Biochem Technol 8: 322-324. doi: 10.4172/1948-5948.1000304

Copyright: © 2016 Martins IJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LPS has been shown to neutralize apo E with relevance to apo E-PLTP transfer protein (PLTP) with preference for transport by PLTP instead of ceramide and sphingomyelin content [4]. LPS binds to phospholipid and cholesterol metabolism relevant to altered cellular the release of cellular alpha-synuclein may determine membrane levels and non-alcoholic fatty liver disease (NAFLD). LPS effects on liver X-receptor-ATP binding cassette transporter 1 (LXR-ABCA1) AD. LPS has been shown to involve cholesterol efflux with effects on relevant to the metabolism of neuronal Aβ and the progression of Aβ homeostasis associated with abnormal phospholipid dynamics cells and the liver with impaired Aβ efflux across the BBB and disturbed Aβ homeostasis associated with abnormal phospholipid dynamics relevant to the metabolism of neuronal Aβ and the progression of AD. LPS has been shown to involve cholesterol efflux with effects on liver X-receptor-ATP binding cassette transporter 1 (LXR-ABCA1) interactions [4]. Monitoring dietary fat intake to reduce LPS [19] has become important with absorption of fat relevant to plasma LPS levels and non-alcoholic fatty liver disease (NAFLD). LPS effects on the release of cellular alpha-synuclein may determine membrane phospholipid and cholesterol metabolism relevant to altered cellular ceramide and sphingomyelin content [4]. LPS binds to phospholipid transfer protein (PLTP) with preference for transport by PLTP instead of vitamin E, phospholipid and Aβ transport between cells [3,4,30,31]. LPS has been shown to neutralize apo E with relevance to apo E-PLTP transport of phospholipids and Aβ [19]. Inhibitors of PLTP in plasma should be checked in various populations with relevance to drugs that have a core benzazepine core structure that inhibit PLTP [32,33]. Nutritional therapy [9,19,34] that improves the survival of the species by the release of proteins that delay LPS toxic Aβ interactions and involve various proteins such as albumin (Aβ self-association) may be involved with reduced toxic effects of LPS associated Aβ oligomerization. Unhealthy diets such as high fat and cholesterol have been shown to increase plasma LPS levels and induce hypercholesterolemia, inflammation and NAFLD in man and mice [35-39]. Unhealthy diets that contain palmitic acid (dairy, coconut oil, palm oil) should be avoided that change cell membrane fluidity since they promote DPPC cell membrane contents with poor Aβ metabolism. Bacterial LPS can insert into cell membranes the liver and brain with the increased induction of NAFLD and neurodegeneration.

Healthy diets such as olive oil maintain POPC cell phospholipids that confers cells with the rapid metabolism of cholesterol and Aβ. Unhealthy diets without LPS but high in cholesterol and fat (palmitic acid) may induce increased liver and neuron membrane cholesterol/ DPPC lipid rafts with delayed metabolism of Aβ oligomers. Unhealthy diets that contain palmitic acid or LPS can also downregulate the nuclear receptor Sirtuin 1 (Sirt 1) [3,4,34,40] with abnormal membrane fluidity and increased cell cholesterol levels associated with alteration in phosphatidylcholine, sphingomyelin and cholesterol ratios in cholesterol/SR-rich domains. Alcohol can stimulate LPS absorption from the intestine with alcohol involved with Sirt 1 downregulation [41,42]. Sirt 1 inhibitors such as suramin and sirtinol [43] inhibit hepatic Sirt 1 with reduced clearance of LPS and increased plasma LPS levels. Alteration by LPS of liver and brain cholesterol and phospholipid dynamics promotes toxic Aβ oligomer formation with the development of AD.

Conclusion

In the developing world the rise in plasma LPS levels has become of major concern to health and nutrition. LPS can corrupt healthy diets with POPC cell membrane characteristics by insertion of itself or promotion of ganglioside GM1-cholesterol as the seed for Aβ oligomerization. LPS modification of cell membrane fluidity in the liver and neurons interfere with apo E-PLTP actions that effect vitamin E, phospholipid and Aβ metabolism. Nutritional therapy intervention such as low fat and cholesterol diets prevent the absorption of LPS and maintain liver and brain membrane fluidity in metabolic disease and Alzheimer’s disease with reduced toxic effects of LPS to astrocyte-neuron crosstalk in the brain.

Acknowledgement

This work was supported by grants from Edith Cowan University, the McCusker Alzheimer’s Research Foundation and the National Health and Medical Research Council.

References

1. Akhtar S, Sarker MR, Hossain A (2014) Microbiological food safety: a dilemma of developing societies. Crit Rev Microbiol 40: 348-359.
2. Ciesielski F, Griffin DC, Rittig M, Moriyón I, Bonev BB (2013) Interactions of lipopolysaccharide with lipid membranes, raft models - a solid state NMR study. Biochim Biophys Acta 1828: 1731-1742.
3. Martins LJ (2015) Unhealthy diets determine benign or toxic amyloid beta states and promote brain amyloid beta aggregation. Austin J Clin Neurol 2: 1060-66.
4. Martins LJ (2015) Diabetes and cholesterol dyshomeostasis involve abnormal a-synuclein and amyloid beta transport in neurodegenerative diseases. Austin Alzheimers J Parkinsons Dis 2: 1020-1028.
5. De Almeida, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/ cholesterol phase diagram: Boundaries and composition of lipid rafts. Biophys J 85: 2406-2416.

6. Zhou X, Yang C, Liu Y, Li P, Yang H, et al. (2014) Lipid rafts participate in aberrant degradative autophagic-lysosomal pathway of amyloid-beta peptide in Alzheimer's disease. Neural Regen Res 9: 92-100.

7. Adams PG, Lamoureux L, Swingle KL, Mukundan H, Montaño GA (2014) Lipopolysaccharide-induced dynamic lipid membrane reorganization: Tubules, perforations, and stacks. Biochem J 460: 2395-2407.

8. Adams PG, Swingle KL, Paxton WF, Nogan JG, Stromberg LR, et al. (2015) Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns. Sci Rep 27: 10331.

9. Martins U, Gupta V, Wilson AC, Fuller SJ, Martins RN (2014) Interactions between Apo E and amyloid beta and their relationship to nutriproteomics and neurodegeneration. Current Proteomics 11: 173-183.

10. Matsi PG, Lenzo NP, Redgrave TG (1989) Phosphatidylcholine metabolism after transfer from lipid emulsions injected intravenously in rats Implications for high-density lipidoprotein metabolism. Biochim Biophys Acta 1005: 217-224.

11. Peters-Libeau CA, Newhouse Y, Hall SC, Wilkowski HE, Weissgraber KH (2007) Apolipoprotein E*dipalmityl phosphatidyl choline particles are ellipsoidal in solution: J Lipid Res 48: 1035-1044.

12. Hane F, Drolle E, Gaikwad R, Faught E, Leenonken Z (2011) Amyloid-β aggregation on model lipid membranes: an atomic force microscopy study. J Alzheimer Dis 26: 485-494.

13. Drolle E, Gaikwad RM, Leenonken Z (2012) Nanoscale electrostatic domains in cholesterol-laden lipid membranes creates a target for amyloid binding. Biochem J 430: L27-29.

14. Ghosh A, Bimgruber T, Satller W, Kroath T, Ratzer M, et al. (2014) Assessment of blood-brain barrier function and the neuroinflammatory response in the rat brain by using cerebral open flow microperfusion (cOPFM). PLoS One 9: e98143.

15. Banks WA, Gray AM, Erickson MA, Lalamh TS, Damodarasamy M, et al. (2015) Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cytochrome oxidase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. J Neuroinflammation 12: 223.

16. Banks WA, Robinson SM (2010) Minimal Penetration of Lipopolysaccharide across the Murine Blood-brain barrier. Brain Behav Immun 24: 102–109.

17. Jaeger LB, Dough S, Sultana R, Lynch J, Owen JB, et al. (2009) Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein: a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav Immun. 23: 507-517.

18. Liu Y, Walter S, Stagi M, Chen Y, Lettembre M, et al. (2005) LPS receptor (CD14): A receptor for phagocytosis of Alzheimer's amyloid peptide. Brain 128: 1778-1789.

19. Martins U (2015) LPS regulates apolipoprotein E and Aβ interactions with effects on acute phase proteins and amyloidosis. Advances in Aging Research 4: 69-77.

20. Zanolini I, Ostuni R, Marek LR, Barbesi R, Barbalat R, et al. (2011) CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 147: 868-880.

21. Li Y, Powell DA, Shaffer SA, Rasko DA, Pelletier MR, et al. (2012) LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci U S A 109: 8716-8721.

22. Clifton LA, Skoda MW, Daulton EL, Hughes AV, Le Brun AP, et al. (2013) Asymmetric phosphatidyl serine lipopolysaccharide bilayers: a Gram-negative bacterial outer membrane mimic. J R Soc Interface 10: 89.

23. Pet B, Chen JW (2003) More ordered, convex ganglioside-enriched membrane domains: the effects of GM1 on sphingomyelin bilayers containing a low level of cholesterol. J Biochem 134: 575-561.

24. Nikolaeva S, Bayounova L, Sokolova T, Vilasova Y, Bachtseeva V, et al. (2015) GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TL4 translocation into lipid rafts. Biochim Biophys Acta 1851: 239-247.

25. Yanagisawa K (2005) GM1 ganglioside and the seeding of amyloid in Alzheimer's disease: endothogenous seed for Alzheimer amyloid. Neuroscientist 11: 250-260.

26. Sáčik R, Amaro M, Auydogan G, Koukalová A, Mihalyiov I, et al. (2015) On multivalent receptor activity of GM1 in cholesterol containing membranes. Biochim Biophys Acta 1853: 850-857.

27. Frey SL, Chi EY, Arratia C, Majewski J, Kjaer K, et al. (2008) Condensing and fluidizing effects of ganglioside GM1 on phospholipid films. Biophys J 94: 3047-3064.

28. Nicastro MC, Spigolon D, Librizzi F, Moran O, Orto MG, et al. (2016) Amyloid β-peptide insertion in liposomes containing GM1-cholesterol domains. Biophys Chem 208: 9-16.

29. Martins UJ (2016) Magnesium therapy prevents senescence with the reversal of diabetes and Alzheimer’s disease. Health 8: 694-710.

30. Desrumaux C, Pisoni A, Meunier J, Deckert V, Athias A, et al. (2013) Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (PLTP) gene knockout mice. Neuropsychopharmacology 38: 817-825.

31. Martins U, Hopkins L, Joll CA, Redgrave TG (1991) Interactions between model triacylglycerol-rich lipoproteins and high-density lipoproteins in rat, rabbit and man. Biochim Biophys Acta 1081: 328-338.

32. Luo Y, Shelly L, Sand T, Reidlich B, Chang G, et al. (2010) Pharmacologic inhibition of phospholipid transfer protein activity reduces apolipoprotein-B secretion from hepatocytes. J Pharmacol Exp Ther 332: 1100-1106.

33. Rakonczay Z (2003) Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer's disease brain. Acta Biol Hung 54: 183-189.

34. Martins UJ (2015) Unhealthy nutrigenomic diets accelerate NAFLD and adiposity in global communities. J Mol Genet Med 9: 1-11.

35. Huang H, Liu T, Rose LJ, Stevens RL, Hoyt DG (2007) Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet. J Inflamm (Lond) 4: 22.

36. Ghosh SS, Righi S, Krieg R, Kang L, Carl D, et al. (2015) High fat high cholesterol diet (Western Diet) aggravates atherosclerosis, hyperglycemia and renal failure in nephrectomized LDL receptor knockout mice: Role of intestine derived lipopolysaccharide. PLoS One 10: e0141109.

37. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7: e47713.

38. Pendyala S, Walker JM, Holt PR (2012) A high-fat diet is associated with model triacylglycerol-rich lipoproteins and high-density lipoproteins in rat, rabbit and man. Biochim Biophys Acta 1853: 850-857.

39. Erridge C, Attina T, Spickett CM, Webb DJ (2007) A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr 86: 1286-1292.

40. Martins UJ (2016) Anti-aging genes improve appetite regulation and reverse cell senescence and apoptosis in global populations. Advances in Aging Research 5: 9-26.

41. Wang H, Zakhari S, Jung MK (2010) Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 16: 1304-1313.

42. Lieber CS, Leo MA, Wang X, Decarli LM (2008) Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1alpha in rats. Biochim Biophys Res Commun 370: 44-48.

43. Martins UJ (2016) Drug therapy for obesity with anti-aging genes modification. Ann Obes Disord 1: 1001.